

UM0100 User Manual

Description of Python Driver for Hummingbird Bit V0_1

Introduction:

Hummingbird Bit is the next generation of the Hummingbird Robotics Kit. It can be interfaced with various software like Make Code , Snap , Scratch , Birdblox , Java and Python. This document contains a detailed description of how to use the python driver.

Contents

1. Requirements

2. API

- i. Class
 - a. Micro:bit
 - b. Hummingbird Bit

ii Outputs

- a. setLED
- b. setTriLED
- c. setPositionServo
- d. setRotationServo
- e. setDisplay
- f. print

iii. Inputs

- a. getAcceleration
- b. getCompass
- c. getMagnetometer
- d. getButton
- e. isShaking

- f. getOrientation
- g. getLight
- h. getSound
- i. getDistance
- j. getDial

Requirements, API UM0100

1.Requirements

Python Version 3.2 or greater

Bluebird Connector 1.0 or greater

Operating Systems tested on Windows 10

2.API

i. Class

With bluebird connector you can connect either a Micro:bit or Hummingbird bit. Once you have connected the device use the respective class.

a. Micro:bit

Micro bit class has all the methods to receive and set peripherals on the Micro:bit itself.

b. Hummingbird Bit

Includes all the methods of a Micro bit and others to control the outputs and inputs of the bit.

ii. Outputs

a. setLED(port_no,intensity)

First argument – port_no	Select the port (1-3) of the LED to be changed.
Second argument intensity	Select the intensity value (0-100). 0 off 100 full intensity
Return	Integer 1/0. To Be Decided
Description	Change the LED intensity attached any three ports corresponding to LED.
Example	setLED(1,50) LED on 50% intensity setLED(2,0) LED off setLED(3,100) LED full intensity

b. setTriLED(port_no,r_intensity,g_intensity,b_intensity)

First argument – port_no	Select the port (1-3) of the LED to be changed.
Second argument – r_intensity Third argument g_intensity Fourth argument b_intensity	Select the intensity value (0-100). 0 off 100 full intensity
Return	Integer 1/0. To Be Decided
Description	Change the Tri Color LED intensity attached to any two ports corresponding to Tricolor LED.
Example	a.setTriLED(1,0,0,50) Port1 a. R Intensity - 0 b. G Intensity - 0 c. B Intensity - 50 a.setTriLED(2,0,0,0) Port - 2, RGB LED off

$c.\ setPositionServo(port_no, angle)$

First argument – port_no	Select the port (1-4) of the servo to be changed. Connect the position servo to that port you desire.
Second argument Angle	Select the intensity value (0-180). O Position zero 180
Return	Integer 1/0. To Be Decided
Description	Set the angle of the servo which is connected in the desired port
Example	setPositionServo(1,180) – End Point, Port 1 setPositionServo(2,0) – Start Point, Port2

${\tt d.}~ {\bf setRotationServo(port_no,speed)}$

First argument – port_no	Select the port (1-4) of the servo to be changed. Connect the rotation servo to the desired port
Second argument Angle	Select the intensity value (-100 - 100).
Return	Integer 1/0. To Be Decided
Description	Move the rotation servo connected in desired port in clock wise or anti-clock wise direction
Example	setRotationServo(1,0) – No Movement setRotationServo(2,20) – Rotate clockwise setRotationServo(2,-30)—Rotate Anti Clockwise

$e.\ setDisplay(Display_string)$

First argument – Display_string	String of 1's and 0's to control the corresponding LEDs on the LED matrix.
Return	Integer 1/0. To Be Decided
Description	Can control the 25 LEDs on the LED Matrix on the micro bit by appropriately choosing the values in the LED_string
Example	setDisplay("101010100000000101010101") Image -1

Image-1

f. print(print_string)

First argument – print_string	Maximum length of the string is 18. Print the desired string on the display.
Return	Integer 1/0. To Be Decided
Description	Flash a string on the LED display screen on the microbit
Example	Print("TEST123")

iii.Outputs

a. getAcceleartion()

Return	(float X, float Y, float Z) → m/sec^2
Description	Get the acceleration values of X,Y,Z in m/sec^2 from the micro::bit connected.
Example	(X,Y,Z) = getAcceleration()

b. getCompass()

Return	Float value → degree(0-360)
Description	0 should roughly correspond to North.
Example	degree = getCompass()

c. getMagnetometer()

Return	(float X, float Y, float Z) \rightarrow uT
Description	Get the Magnetometer values of (X,Y,Z) in uT from the micro::bit connected.
Example	(X,Y,Z) = getMangetometer()

d. getButtons(button_name)

First argument – button_name	'A' or 'B'
Return	"true"/"false"
Description	Get the state of the button on the micro:bit. True when the button is pressed and false when the button is not pressed.
Example	Button_state = getButtons('A')

e. isShaking()

Return	"true"/"false"
Description	True if the device is shaken.
Example	shake = isShaken()

f. getOrientation()

Return	"ScreenUp"/"ScreenDown"/"TiltLeft"/"TiltRight" "LogoUp"/"LogoDown"
Description	Returns the value of Orientation in which micro::bit is aligned.
Example	orientation = getOrientation()

g. getLight(Port)

First argument – button_name	1-3
Return	0-100
Description	0 corresponds to if there is no light, and 100 if there is light at the maximum level.
Example	Light =getLight(1), port 1

g. getSound(Port)

First argument – button_name	1-3
Return	0-100
Description	0 corresponds to if there is no sound, and 100 if there is sound at the maximum level.
Example	Light =getSound(1), port 1

h. getDistance(Port)

First argument – button_name	1-3
Return	0-200 in cms
Description	Ultrasound range is from 3cm – 2meters.
Example	Distance = getDistance(1), port 1

h. getDial(Port)

First argument – button_name	1-3
Return	0-100
Description	One of the extreme point is 0 and other is 100
Example	Dial = getDial(1), port 1