Titulaire: Th. Gallouët

MATHF214, Compléments de Mathématiques Assistants : S. Dendievel, R. Nascimento

Exercice 1 Sachant que la transformée de Fourier de la fonction h définie par

$$h(t) = \begin{cases} 1, & si \ t \in] -\frac{1}{2}, \frac{1}{2}[, \\ 0, & sinon. \end{cases}$$

est donnée par $\hat{h}(\omega) = \frac{1}{\pi \omega} \sin(\pi \omega)$, on demande :

a) Ecrire la fonction f définie par

$$f(t) = \begin{cases} 1, & si \ 0 < t < 1, \\ 0, & si \ t = 0, \\ -1, & si \ -1 < t < 0, \end{cases}$$

en fonction de h et calculer $\hat{f}(\omega)$.

b) Ecrire la fonction g définie par

$$g(t) = \begin{cases} 1, & si \ 0 < t < \frac{1}{2}, \\ 0, & si \ t = 0, \\ -1, & si \ -\frac{1}{2} < t < 0, \end{cases}$$

en fonction de f et calculer $\hat{f}(\omega)$.

Exercice 2 Soient

$$f(t) = e^{-|t|}$$
 et $f_a(t) = \frac{a}{2}e^{-a|t|}$.

Déterminer $\hat{f}_a(\omega)$ pour a > 0.

Exercice 3 Calculer $\hat{f}(\omega)$, où f est définie par

$$f(t) = \begin{cases} 1 - |t|, & si |t| \le 1, \\ 0, & sinon. \end{cases}$$

Exercice 4 Montrer par intégration par parties que si $\lim_{t\to\pm\infty} f^{(k-1)}(t)=0$, alors pour $k\in\mathbb{N}$,

$$\mathcal{F}[f^{(k)}(t)](\omega) = (2\pi i \omega)^k \mathcal{F}[f(t)].$$

Exercice 5 Montrer, en dérivant sous l'intégrale, que pour $k \in \mathbb{N}$,

$$\mathcal{F}[f]^{(k)}(\omega) = (-2\pi i)^k \mathcal{F}[t^k f(t)].$$