嵌入式系统 Embedded System

毛维杰

杭州 • 浙江大学 • 2021

第六章 触发器

6.1 概述

含有触发器的逻辑电路称为时序逻辑电路,其特性结构决定了电路 具有如下特征:

- ① 电路由组合电路和存储电路组成,具有对过去输入保持记忆的功能;
- ② 电路中包含反馈回路,通过反馈使电路功能与"时序"相关;
- ③ 电路的输出由电路当时的输入情况和状态(对过去输入记忆的结果)共同决定。

6.2 RS触发器

6.2.1 基本RS触发器

(a) 或非门组成的基本 RS 触发器

(b) 与非门组成的基本 RS 触发器

图6-1 两种不同逻辑门组成的基本RS触发器

6.2.1 基本RS触发器

表6-1 或非门组成的基本RS触发器的真值表

R	S	Q	Q	触发器状态
0	0	不变	不变	保持
0	1	1	0	置1
1	0	0	1	置0
1	1	0^*	0^*	不定

表6-2 与非门组成的RS触发器的真值表

R	S	Q	Q	触发器状态
0	0	1*	1*	不定
0	1	0	1	置 0
1	0	1	0	置 1
1	1	不变	不变	保持

6.2.2 钟控RS触发器

(b) 逻辑符号

图6-3 钟控RS触发器

6.2.2 钟控RS触发器

表6-3 钟控RS触发器状态转换真值表

Qn	Qn+1	功能说明
0	0	Q ⁿ⁺¹ =Q ⁿ
1	1	保持
0	0	$\mathbf{Q}^{\mathbf{n+1}} = \mathbf{Q}^{\mathbf{n}}$
1	1	保持
0	0	Q ⁿ⁺¹ =0
1	0	置0
0		$Q^{n+1} = 1$
1	1	置1
0	1*	不允许
	0 1 0 1 0 1	0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 1 1

钟控**RS**触发器的特性方程
$$=S+RQ^n$$
 $=S+RQ^n$ $=S+RQ^n$

6.3 D触发器

6.3.1 电平触发型D触发器

表6-4 D触发器真值表(CP=1时)

(a) 电路结构

(b) 逻辑符号

图6-6 D触发器

$$\begin{cases}
Q^{n+1} = S + RQ^{n} \\
RS = 0
\end{cases}$$

$$Q^{n+1}=D$$

(6-2)

6.3.1 电平触发型D触发器

【例6-1】电平触发型D触发器的电路如图6-7所示,D为输入信号,CP为时钟信号,设初始状态为O,确定输出端Q的波形。解:

在CP=1时,Q输出端的信号总是和D输入信号相同;而在CP=O时,Q的输出保持原来的状态不变。故Q输出波形如图6-7所示。

图6-7 例6-1的电路图与时序波形图

6.3.2 边沿触发型D触发器

6.3.2 边沿触发型D触发器

图6-9 74LS74结构图

边沿D触发器

图6-10 7474的内部结构带异步清零端和异步置1端的

6.3.2 边沿触发型D触发器

【例6-2】图6-11中为上升沿触发型D触发器的输入信号和时钟脉冲波形,设触发器的初始状态为O,确定输出信号Q的波形。解:

把握边沿触发型D触发器工作特性的关键是,确认每个时钟脉冲CP上升沿之后的输出状态等于该上升沿前一瞬间D信号的状态,此状态将保持到下一个时钟脉冲CP上升沿到来时。由此可画出输出Q的波形如图6-11所示。

图6-11 例6-2波形图

【例6-3】图6-12为边沿D触发器构成的电路图,设触发器的初始状态 $Q_1Q_0=00$,试确定 Q_0 及 Q_1 在时钟脉冲作用下的波形(参考图6-13)。

图6-12 例6-3电路

图6-13 例6-3波形图

解:由于两个D触发器的输入信号分别为另一个D触发器的输出,因此在确定它们的输出端波形时,应分段交替画出 Q_0 及 Q_1 的波形(图6-13)。第1个CP脉冲到来时,初态 Q_1Q_0 =00,D0=1,D1=0,因此 Q_0 =1, Q_1 =0;第2个CP脉冲到来时,现态 Q_1Q_0 =10,D0=1,D1=1,因此 Q_0 =1, Q_1 =1;第3个CP脉冲到来时,现态 Q_1Q_0 =11,D0=0,D1=1,因此 Q_0 =0, Q_1 =1;第4个CP脉冲到来时,现态 Q_1Q_0 =01,D0=0,D1=0,因此 Q_0 =0, Q_1 =0。

6.4 主从触发器

6.4.1 主从RS触发器

图6-14 主从RS触发器

工作原理可简述为:

(1) **CP=1**期间:
$$\begin{cases} Q_m^{n+1} = S + RQ_m^n \\ RS = 0 \end{cases}$$
 (6-3)

(2) CP由1变为O,即下降沿到来时:

$$\begin{cases} Q^{n+1} = Q_m^{n+1} = S + \overline{R}Q_m^n = S + \overline{R}Q^n \\ RS = 0 \end{cases}$$
 (6-4)

(3) CP=O期间:

6.4.2 主从JK触发器

$$S = J\overline{Q}^n$$
 , $R = KQ^n$

(b) 主从JK触发器的逻辑符号

图6-15 主从JK触发器

6.4.2 主从JK触发器

$$Q^{n+1} = S + \overline{R}Q^{n}$$

$$= J\overline{Q}^{n} + \overline{K}Q^{n}Q^{n}$$

$$= J\overline{Q}^{n} + \overline{K}Q^{n}$$

$$= J\overline{Q}^{n} + \overline{K}Q^{n}$$
(6-5)

表6-5 J	主从 JK 魚 K	#发器状态等 Q ⁿ	专换真值表 Q ⁿ⁺¹	(CP下降沿即 功能	寸) 世
0	0	0	0	$Q^{n+1} = Q^n$	保持
0	1	0	0	$Q^{n+1}=0$	置0
1 1	0	0	1	$Q^{n+1} = 1$	置1
1 1 1		0	1 0	$Q^{n+1} = \overline{Q}^{n}$	翻转

6.4.2 主从JK触发器

在第1个CP高电平期间,J=1, K=0, Qⁿ⁺¹为1; 在第2个CP高电平期间,J=0, K=1, Qⁿ⁺¹置为0; 在第3个CP高电平期间,J=1, K=1, Qⁿ⁺¹翻转为1; 在第4个CP高电平期间,J=0, K=0, Qⁿ⁺¹保持不变.

图6-17 下降沿触发的JK触发器

图6-18 下降沿触发型JK触发器内部结构

图6-19 触发器74LS73和74LS76

图6-20 双上升沿JK触发器74LS73的内部结构

图6-21 上升沿JK触发器的仿真波形

【例6-4】设上升沿JK触发器的初态为O,输入信号波形如图6-21 所示,试画出它的输出波形。解:

- (1)以时钟*CP*的上升降沿为基准,划分时间间隔,*CP*上升沿到来前为现态,上升沿到来后为次态;
- (2)每个时钟脉冲上升沿到来后,根据触发器的特性方程或状态转换真值表确定其次态。输出波形如图6-21所示。

图6-22 例6-4波形图

【例6-5】设上升沿JK触发器电路如图6-22所示,其初态为O,输入信号波形如图6-23所示,试画出它的输出波形。

【例6-6】边沿JK触发器 FF_0 和 FF_1 的连接如图6-24所示,设两个触发器的初始状态都是O状态,试确定输出端 O_1 、 O_0 的波形,并写出由这些波形所表示的二进制序列。

6.5 不同类型触发器的相互转换

- 6.5.1 D触发器转换为JK、T和T′触发器
- 1. D触发器转换成JK触发器

$$Q^{n+1} = D Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$

$$D = J\overline{Q}^n + \overline{K}Q^n$$

图6-27 用D触发器构成的JK触发器

6.5.1 D触发器转换为JK、T和T′触发器

2. T触发器和 T' 触发器

表6-6 T触发器真值表

T Qn+1	功能说明
\mathcal{Q}^n	保持
$\overline{\mathcal{Q}}^n$	翻转

《数字电子技术基础》

6.5.1 D触发器转换为JK、T和T′触发器

3. D触发器转换成T、T′触发器

$$Q^{n+1} = T\overline{Q}^n + \overline{T}Q^n = T \oplus Q^n$$

$$Q^{n+1} = D \qquad D = T \oplus Q^n$$

(a) 用D触发器构成的T触发器

(b) 用D触发器构成的T' 触发器

6.5.2 JK触发器转换为D触发器

$$Q^{n+1} = D = DQ^{n} + D\overline{Q^{n}}$$

$$Q^{n+1} = J\overline{Q^{n}} + \overline{K}Q^{n}$$

$$J = D, K = \overline{D}$$

图6-29 JK触发器构成的D触发器

6.6 存储器概述

存储器分类

1. 按存储介质分类

半导体存储器

磁存储器

光存储器

2. 按存取功能分类

只读存储器 (ROM)

随机存取存储器 (RAM)

3.按制造工艺分类

双极型存储器

MOS型存储器

4. 根据数据的输入/输出方式分类

串行存储器

并行存储器

SRAM的基本存储单元

静态RAM基本存储单元

用D触发器构成SRAM结构

4×2静态RAM结构

SRAM存储矩阵结构

第七章 时序电路的分析与设计

7.1 时序逻辑电路的特点与功能

图7-1时序电路的一般结构

$$y_{i} = f_{i}(x_{1},...x_{n}, w_{1},...,w_{l}) \qquad (i = 1,2,...,j)$$

$$z_{i} = g_{i}(y_{1},...y_{j}, w_{1},...,w_{l}) \qquad (i = 1,2,...,k)$$

$$w_{i} = h_{i}(y_{1},...y_{j}, w_{1},...,w_{l}) \qquad (i = 1,2,...,l)$$

$$(7-2)$$

7.2 时序电路的手工分析方法

【例7-1】试分析图7-4所示同步时序电路的功能。

(1)

$$\begin{cases} J_1 = K_1 = 1 \\ J_2 = K_2 = A \oplus Q_1 \end{cases}$$

图7-4 例7-1的逻辑电路图

(2)

$$\begin{cases} Q_1^{n+1} = J_1 \overline{Q_1} + \overline{K_1} Q_1 = \overline{Q_1} \\ Q_2^{n+1} = J_2 \overline{Q_2} + \overline{K_2} Q_2 = A \oplus Q_1 \oplus Q_2 \end{cases}$$

$$Y = \overline{Q_1 Q_2} \overline{AQ_2}$$

(7-6)

$$(7-7)$$

同步时序电路分析

表7-1 状态转换表

输入	IJ	见态	次	态	输出
A	Q_2^n	Q_1^n	Q_2^{n+1}	Q_1^{n+1}	Y
0	0	0	0	1	0
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	1	0	1
1	1	0	0	1	1
1	1	1	0	0	1

同步时序电路分析

【例7-2】试分析图7-7所示异步时序电路的功能。

图7-7 例7-2的异步时序电路图

(1) 时钟脉冲逻辑方程为:

$$\begin{cases} CP_1 = CLK \downarrow \\ CP_2 = CP_4 = Q_1 \downarrow \\ CP_3 = Q_2 \downarrow \end{cases}$$

(7-8)

驱动方程为:

$$\begin{cases} J_1 = K_1 = 1 \\ J_2 = \overline{Q}_4^n, & K_2 = 1 \\ J_3 = K_3 = 1 \\ J_4 = Q_2^n Q_3^n, & K_4 = 1 \end{cases}$$

(7-9)

(2) 求出各触发器的状态方程。

$$egin{cases} Q_1^{n+1} = \overline{Q}_1ullet CP_1 \ Q_2^{n+1} = \overline{Q}_4\overline{Q}_2ullet CP_2 \ Q_3^{n+1} = \overline{Q}_3ullet CP_3 \ Q_4^{n+1} = Q_2Q_3ullet CP_4 \end{cases}$$

(7-10)

(3) 根据状态方程和输出方程,列出状态转换表

表7-2 例7-2的状态转换表

CP1		时钟	信号		触发語	器状态	(现态)		触发器	器状态	(次态)		输出
的 顺序	CP ₄	CP ₃	CP ₂	CP ₁	Q_4	Q_3	${\tt Q}_2$	Q_1	Q_4^{n+1}	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	Y
0	0	0	0	1	0	0	0	0	0	0	0	1	0
1	0	0	0	1	0	0	0	1	0	0	1	0	0
2	1	0	1	1	0	0	1	0	0	0	1	1	0
3	0	0	0	1	0	0	1	1	0	1	0	0	0
4	1	1	1	1	0	1	0	0	0	1	0	1	0
5	0	0	0	1	0	1	0	1	0	1	1	0	0
6	1	0	1	1	0	1	1	0	0	1	1	1	0
7	0	0	0	1	0	1	1	1	1	0	0	0	0
8	1	1	1	1	1	0	0	0	1	0	0	1	0
9	0	0	0	1	1	0	0	1	0	0	0	0	1
10	1	0	1	1	1	0	1	0	1	0	1	1	0
11	0	0	0	1	1	0	1	1	0	1	0	0	1
12	1	1	1	1	1	1	0	0	1	1	0	1	0
13	0	0	0	1	1	1	0	1	0	1	0	0	1
14	1	0	1	1	1	1	1	0	1	1	1	1	0
15	0	0	0	1	1	1	1	1	0	0	0	0	1
16	1	1	1	1	0	0	0	0	0	0	0	1	0

(4) 根据状态表可以画出图7-8所示的状态图。

(5) 根据状态转换图说明该时序电路的逻辑功能。

7.3 同步时序逻辑电路的手工设计方法

同步时序电路的基本设计步骤

- 1. 根据需要实现的逻辑功能要求建立状态转换图和状态转换表
- 2. 状态化简
- **3.** 状态编码 $n \ge \log_2 M$
- 4. 求出相关触发器的状态方程、驱动方程和电路的输出方程
- 5. 画出逻辑电路图并检查电路的自启动能力

设计举例

【例7-3】要求使用D触发器设计一个同步8421 BCD码的十进制加法计数器。

解: (1)

图7-9 例7-3的状态图

《数字电子技术基础》

解: (2)

Q_2Q_1	00	01	11	10
00	0001	0101	XXXX	1001
01	0010	0110	xxxx	0000
11	0100	1000	xxxx	xxxx
10	0011	0111	xxxx	XXXX

(a) 次态卡诺图

Q_2Q_1	00	01	11	10
00	0	0	x	1
01	0	0	X	0
11	0	1	X	X
10	0	0	x	X

(b) Q_4^{n+1} 卡诺图

Q_4Q_3 Q_2Q_1	00	01	11	10
00	0	1	\mathbf{x}	0
01	0	1	x	0
11	1	0	x	L _X
10	0	1	x	x

(c) Q₃ⁿ⁺¹卡诺图

Q_2Q_1	00	01	11	10
00	0	0	X	0
01	(1	1)	X	0
11	0	0	X	X
10	1	1	X	X

 (\mathbf{d}) Q_2^{n+1} 卡诺图

 Q_4Q_3 00 01 11 10 1 1 X 01 0 0 X 11 0 0 X 10

(e) Q_1^{n+1} 卡诺图

图7-10 例7-3的次态卡诺图

解: (3)

$$\begin{aligned} Q_{4}^{n+1} &= Q_{3}Q_{2}Q_{1} + \overline{Q_{1}}Q_{4} \\ Q_{3}^{n+1} &= \overline{Q_{3}}Q_{2}Q_{1} + Q_{3}\overline{Q_{2}} + Q_{3}\overline{Q_{1}} = \overline{Q_{3}}Q_{2}Q_{1} + Q_{3}\overline{Q_{2}}Q_{1} \\ Q_{2}^{n+1} &= \overline{Q_{4}}Q_{1}\overline{Q_{2}} + \overline{Q_{1}}Q_{2} \\ Q_{1}^{n+1} &= \overline{Q_{1}} \end{aligned} \tag{7-11}$$

$$(4) Q^{n+1} = D$$

 $D_1 = Q_1$

$$D_4 = Q_3 Q_2 Q_1 + \overline{Q}_1 Q_4$$

$$D_3 = \overline{Q}_3 Q_2 Q_1 + Q_3 \overline{Q}_2 + Q_3 \overline{Q}_1 = \overline{Q}_3 Q_2 Q_1 + Q_3 \overline{Q}_2 \overline{Q}_1$$

$$D_2 = \overline{Q}_4 Q_1 \overline{Q}_2 + \overline{Q}_1 Q_2$$

$$(7-12)$$

设计举例

7.4 寄存器

7.4.1并行寄存器

表7-4 74LS175真值表

清零	时钟脉冲	输入				输出					
CLRN	CLK	1D	2D	3D	4D	1Q	2Q	3Q	4Q	工作模式	
0	×	×	×	×	×	0	0	0	0	异步清零	
1	1	D ₀	D_1	D_2	D_3	D _o	D_1	D_2	D_3	数据寄存	
1	1	×	×	×	×		保	持		数据保持	
1	0	×	×	×	×		保	持		数据保持	

7.4.1并行寄存器

图7-16 4位边沿触发寄存器74LS175的逻辑符号和内部结构逻辑图

7.4.2移位寄存器

1. 串行输入/串行输出/并行输出移位寄存器

7.4.2移位寄存器

1. 串行输入/串行输出/并行输出移位寄存器

表7-6 74LS164的真值表

	输	λ		输	输出		
CLK	CLR	A	В	QA	QBQH	功能	
×	0	×	×	0	00	清零	
0	1	×	×	QA ₀	QB ₀ QH ₀	保持	
4	1	1	1	1	QA ⁿ QG ⁿ	移位	
1	1	0	×	0	QA ⁿ QG ⁿ	移入0	
4	1	×	0	0	QA ⁿ QG ⁿ	移入0	

7.4.2移位寄存器

2. 并行输入/串行输出移位寄存器

图7-19 74LS165的逻辑符号

图7-20 74LS165的仿真波形

7.5 计数器及其手工设计

7.5.1 异步计数器设计

7.5.1 异步计数器设计

图7-24 三位二进制异步加法计数器仿真波形

同步二进制加法计数器

$$D_i = (Q_0 Q_1 \cdots Q_{i-1}) \oplus Q_i$$

$$D_0 = \overline{Q}_0$$

$$D_1 = Q_0 \oplus Q_1$$

$$\begin{cases} D_0 = \overline{Q}_0 \\ D_1 = Q_0 \oplus Q_1 \\ D_2 = (Q_0 Q_1) \oplus Q_2 \end{cases}$$

$$Q_i^{n+1} = D_i$$

$$C = Q_2 Q_1 Q_0$$

$$(7-16)$$

	Q3	Q2	Q1	Q0	
同步非二进制计数器设计	0	0	0	0	←
	0	0	0	1	
	0	0	1	0	
	0	0	1	1	
	0	1	0	0	循环
	0	1	0	1	1 1/821
	0	1	1	0	
	0	1	1	1	
	1	0	0	0	
	1	0	0	1 .	▼ C 进位输出
	1	0	1	0	→ 正常计数的
	1	0	1	1	下一个状态
	1	1	0	0	
图7-31模10计数器输出状态	1	1	0	1	
	1	1	1	0	
	1	1	1	1	

同步非二进制计数器设计

