Билеты Высшая Математика - 3

Тимур Адиатуллин | telegram, github

Содержание

1	Определение решения ОДУ. Эквивалентные дифференциальные уравнения. Задача Коши для ОДУ n-го порядка.	3
2	Общий интеграл ОДУ 1-го порядка.	4
3	Уравнение с разделяющимися переменными. Линейное уравнение 1-го порядка. Уравнение в полных дифференциалах.	5
4	Формулировка теоремы о существовании и единственности решения задачи Коши для нормального ДУ n-го порядка.	8
5	Линейные дифференциальные уравнения п-го порядка (ЛДУ). Теорема о существовании и единственности решения задачи Коши.	9
6	Линейно зависимые и независимые системы функций. Определение фундаментальной системы решений (ФСР) однородного ЛДУ. Теорема о свойствах ФСР.	10
7	Теорема о существовании ФСР однородного ЛДУ. (Доказательство)	12
8	Определение общего решения ЛДУ п-го порядка. Теорема о связи ФСР и общего решения однородного ЛДУ. (Доказательство)	13
9	Комплекснозначные функции действительной переменной. Лемма о комплекснозначном решении однородного ЛДУ.	14
10	Доказательство формулы для $L(e^{\lambda x}f(x))$ где L – линейный дифференциальный оператор с постоянными коэффициентами.	15
11	Теорема о построении ФСР однородного ЛДУ с постоянными коэффициентами, если известны корни его характеристиче- кого многочлена.	16
12	Теорема о построении ФСР однородного ЛДУ с вещественными постоянными коэффициентами, состоящей только из ве-	
	щественнозначных функций.	18
	Теорема о структуре общего решения неоднородного ЛДУ. (Доказательство)	19
	Метод вариации произвольных постоянных (метод Лагранжа) нахождения решения неоднородного ЛДУ.	20
15	Линейные нормальные системы дифференциальных уравнений (СЛДУ). Запись в векторной форме. Теорема о существо-	
	вании и единственности решения задачи Коши. Определение общего решения.	23
	Общее решение однородной системы ЛДУ в случае, когда количество линейно- независимых собственных векторов матрицы системы совпадает с порядком системы.	24
17	Общее решение однородной системы ЛДУ в случае, когда количество линейно- независимых собственных векторов матрицы системы меньше порядка системы.	25
	Понятие числового ряда. Асимптотическая формула для частичной суммы гармонического ряда.	26
19	Теоремы о сходящихся рядах (возможность заключать элементы в скобки; сходимость ряда с элементами - линейными комбинациями элементов сходящихся рядов).	27
20	Остаток ряда. Связь между сходимостью ряда и его остатка. Необходимое условие сходимости ряда.	28
21	Первый и второй признаки сравнения рядов с неотрицательными членами.	29
22	Признак Даламбера.	30
23	Признак Коши.	31
24	Интегральный признак сходимости рядов. Сходимость обобщенного гармонического ряда.	32
25	Абсолютно сходящиеся ряды.	33
26	Признак Дирихле.	34
27	Признак Абеля. Признак сходимости знакочередующихся рядов. Оценка остатка знакочередующегося ряда.	35
28	Теорема о произведении абсолютно сходящихся рядов.	36
29	Степенные ряды. Теорема о существовании радиуса сходимости степенного ряда (с леммой). Теорема о непрерывности суммы степенного ряда на концах интервала сходимости.	37
30	Теорема о дифференцировании и интегрировании суммы степенного ряда. Бесконечная дифференцируемость суммы сте-	• •
	пенного ряда. Связь коэффициентов степенного ряда с производными его суммы.	38
	Ряд Тейлора функции в точке. Пример: показать, что ряд Тейлора функции (посмотреть в списке и написать)	39
	Разложение в степенные ряды элементарных функций действительной переменной.	40
	Предел последовательности с комплексными членами. Сходимость последовательностей действительных и мнимых частей.	41
34	Сумма ряда с комплексными членами, ее связь с суммой рядов действительных и мнимых частей. Связь сходимости и	42
25	абсолютной сходимости.	42
	Степенной ряд с комплексными членами, его круг сходимости.	43
	Функция e^z и далее переписать из списка	44
	Функция $cos(z), sin(z)$ дальше переписать из списка	45
	Тригонометрический ряд Фурье. Формулы для его коэффициентов. Свойства ряда Фурье, вытекающие из полноты тригонометрической системы функций.	46
39	Теорема о сходимости тригонометрического ряда Фурье кусочно-дифференцируемой на $[-\pi, \pi]$ функции. Теорема о сходимости тригонометрического ряда Фурье 2π -периодической кусочно-дифференцируемой функции.	47
	Замечание о 21-периодических функциях.	48
41	Определение площади плоской фигуры. Необходимое и достаточное условие измеримости плоской фигуры. Следствие.	49
41 42	Определение площади плоской фигуры. Необходимое и достаточное условие измеримости плоской фигуры. Следствие. Площадь кривой. Следствие.	49 50
41 42 43	Определение площади плоской фигуры. Необходимое и достаточное условие измеримости плоской фигуры. Следствие.	49

1 Определение решения ОДУ. Эквивалентные дифференциальные уравнения. Задача Коши для ОДУ п-го порядка.

Определение 1.1

Уравнение

$$F(x, y, y', y'', \dots, y^{(n)}) = 0,$$

где F — известная функция n+2 переменных, x — независимая переменная, а y — функция, которую нужно найти, называется обыкновенным дифференциальным уравнением (ОДУ) n-го порядка.

Функция y(x) называется **решением** уравнения.

Определение 1.2

Пусть $F(T) = F(t_1, t_2, \dots, t_{n+2})$ определена и непрерывна на множестве $\Omega \subset \mathbb{R}^{n+2}$. Функция y(x), определённая на некотором промежутке (a, b), называется **решением ОДУ** (1), если выполняются условия:

- 1. $\exists y, ..., y^{(n)}$ на (a, b),
- 2. $(x, y, y', \dots, y^{(n)}) \in \Omega \quad \forall x \in (a, b),$
- 3. $F(x, y, y', \dots, y^{(n)}) = 0 \quad \forall x \in (a, b).$

Пример

- 1. $y' = -xy^2$ (здесь $F(t, t_2, t_3) = t_1t_2^2 + t_3$),
- 2. $y=\frac{2}{x^2}$ $(x\in (-\infty,0))$ и $y=\frac{2}{x^2}$ $(x\in (0,+\infty))$ разные решения.

Определение 1.3

График решения ОДУ называется интегральной кривой этого уравнения.

Определение 1.4

Два алгебраических уравнения $F_1(T)=0$ и $F_2(T)=0$ называются эквивалентными на множестве $\Omega\subset R^{n+2}$, если множества их решений совпадают.

Соответственно, два ДУ называются эквивалентными на множестве Ω , если на Ω эквивалентны соответствующие им алгебраические уравнения.

Множества решений эквивалентных ДУ совпадают.

Определение 1.5

Задача Коши для ДУ n-го порядка:

Требуется найти решение y(x) ДУ (1), удовлетворяющее начальным условиям

$$y(x_0) = y_0, \quad y'(x_0) = y_1, \quad \dots, \quad y^{(n-1)}(x_0) = y_{n-1}, \quad y^{(n)} = y_n,$$

где $(x_0, y_0, y_1, \dots, y_{n-1})$ — заданные значения.

В частности, для ДУ 1-го порядка F(x, y, y') = 0 имеем одно условие $y(x_0) = y_0$. То есть, требуется найти интегральную кривую, проходящую через точку (x_0, y_0) .

Задача Коши может иметь или не иметь решение.

Общий интеграл ОДУ 1-го порядка.

Определение 2.1

Рассмотрим ДУ 1-го порядка F(x,y,y')=0 (2), где $F(t_1,t_2,t_3),\ \frac{\partial F}{\partial t_2},\ \frac{\partial F}{\partial t_3},$ непрерывны в области $\Omega\subset R^3.$ Общим интегралом уравнения (2) называется равенство $\Phi(x,y,c)=0$ (3), где $\Phi(t_1,t_2,t_3)$ непрерывно дифференцируемо в

некоторой области $G \subset R_3$ и обладает свойством: если y(x) непрерывно, дифференцировать равенство (3) по x, то

(при этом получим $\frac{\partial \Phi}{\partial x} + \frac{\partial \Phi}{\partial y} \cdot y'(x) = 0$ (4)), и исключить сиз уравнений (3) и (4) , то получим ДУ, эквивалентное исходному уравнению (2)

Уравнение (2, общий интеграл) называют также дифференциальным уравнением функций, заданных (возможно, неявно) уравнением (3).

Замечание

Не всегда общий интеграл (3) содержит все решения ДУ (2).

Теорема 2.1

Добавим в определение 2.1 требование, чтобы равенство (3) было разрешимо относительно параметра c, то есть, имело вид

$$c = \varphi(x, y) \tag{5}$$

 $(\varphi$ — непрерывно дифференцируемая в некоторой области \tilde{G})

Тогда, если y(x), определенная на (a,b), и $(x,y(x)) \in \tilde{G}$, $(x,y,y') \in \Omega \forall x \in (a,b)$ — непрерывно дифференцируемая функция, удовлетворяющая уравнению (2), при некотором значении параметра c, то она является решением ДУ (2).

И обратно, любое решение ДУ (2), определенное на (a, b), удовлетворяет равенству (5) при некотором значении c (то есть, в общем интеграле (5) содержатся все решения ДУ).

Определение 2.2

ДУ 1-го порядка, разрешенное относительно производной, называется нормальным:

$$y' = f(x, y) \tag{6}$$

Теорема 2.2

Существование и единственность решения задачи Коши для нормального ДУ 1-го порядка (6).

Пусть f, f_y непрерывны в области $G \subset R^2$. Тогда $\forall (x_0, y_0) \in G \exists !$ решение y(x) уравнения (6), определенное на некотором промежутке $[x_0-h,\ x_0+h]$ и удовлетворяющее начальному условию $y(x_0)=y_0$ (hсвое для каждой точки) $(x_0,\ y_0$ — любая точка G).

То есть, через каждую точку G проходит ровно одна интегральная кривая. (без доказательства)

3 Уравнение с разделяющимися переменными. Линейное уравнение 1-го порядка. Уравнение в полных дифференциалах.

Некоторые классы нормальных ДУ 1-го порядка.

Рассмотрим нормальное ДУ первого порядка:

$$y' = f(x, y) \tag{6}$$

Другая записи:

$$M(x, y) dx + N(x, y) dy = 0$$

Этот вид объединяет два уравнения:

$$y'=-\frac{M(x,y)}{N(x,y)}\quad \text{if}\quad x'=-\frac{N(x,y)}{M(x,y)}$$

Напоминание: по определению производной

$$\frac{dy}{dx} = y'(x) dx \quad \Rightarrow \quad y' = \frac{dy}{dx}$$

І. Уравнение с разделяющимися переменными

Пусть дана функция g(x)f(y), где g(x)f(y) непрерывна на $(a,b)\times(c,d)=\Omega$.

1. Рассмотрим область $\Omega^* \subset \Omega$, в которой $g_2(y) \neq 0$.

$$g_1(x)dx - \left(\frac{1}{g_2(y)}\right)dy = 0 \Leftrightarrow d(G(x) - F(y)) = 0 \Leftrightarrow G(x) - F(y) = \text{const}$$
 (всюду в области $\Omega^* \subset \Omega$, общий интеграл)

(Здесь G(y) — некоторая фиксированная первообразная функции $g_1(y)$; Здесь F(y) — некоторая фиксированная первообразная функции $1/g_2(y)$.)

Если $g_2(y)$ непрерывно дифференцируема, уравнение удовлетворяет теореме о существовании и единственности решения задачи Коши. Следовательно, через каждую точку Ω^* проходит ровно одна интегральная кривая. Также выполнены требования теоремы 2.1. Следовательно, равенство G(x)-F(y)= const содержит все решения ДУ в области Ω^* .

- 2. Если $\exists c : g_2(c^*) = 0$, то $y(x) = c^*$ решение ДУ.
- 3. Другая запись ДУ с разделяющимися переменными:

$$M_1(x)M_2(y) dx + N_1(x)N_2(y) dy = 0 \quad \Leftrightarrow \quad \begin{cases} y' = -\frac{M_1(x)M_2(y)}{N_1(x)N_2(y)} \\ x' = -\frac{N_1(x)N_2(y)}{M_1(x)M_2(y)} \end{cases}$$

В этом случае, если $\exists c^* : N_1(c^*) = 0$, то $x(y) = c^*$ также будет решением ДУ.

Пример.

$$y' = \frac{xy}{x+1}$$

Ответ: $y = \frac{ce^x}{x+1}$ — общий интеграл (содержит все решения).

Замечания к примеру.

- а. Если бы пример был записан в виде xydx (x+1) dy = 0, то добавилось бы решение x(y) = -1.
- b. Найдём решение, удовлетворяющее начальным условиям y(0) = -2.

Отметим, что в каждой из полуплоскостей x > -1, x < -1 выполнены требования теоремы о существовании и единственности решения задачи Коши. Следовательно, через каждую точку полуплоскости проходит ровно одна интегральная кривая.

Обозначим начальные условия: $-2=c \to c=-2 \to y=\frac{-2e^x}{x+1}$ — особое решение, определенное на $(-1;+\infty)$.

II. Линейное ДУ 1-го порядка

y' + p(x)y = g(x), (7), где p(x) и g(x) непрерывны на (a, b).

$$y' = -p(x)y + g(x).$$

$$f(x,y) = -p(x)y + g(x), \quad \frac{\partial f}{\partial y} = -p(x)$$

непрерывны в области $G = (a, b) \times R$. Следовательно, выполнены требования теоремы о существовании и единственности решения задачи Коши. Следовательно, через каждую точку области G проходит ровно одна интегральная кривая.

Следовательно, g(x) = 0 и f(x, y) = -p(x)y.

1. Решим однородное уравнение y' + p(x)y = 0.

Это уравнение с разделяющимися переменными.

$$\frac{dy}{y} = -p(x)dx; \quad \ln|y| = \Phi(x) + c_1$$

(где $\Phi(x)$ - некоторая фиксированная первообразная функции -p(x) на $(a,b),c_1$ - произвольная постоянная);

$$|y| = e^{\Phi(x)} \cdot c_2$$
 (где $c_2 = e^{c_1} > 0$); $y = c_3 \cdot e^{\Phi(x)}$ (где $c_3 \neq 0$);

потеряли решение y(x)=0. Следовательно, общий интеграл $y=c\cdot e^{\Phi(x)}$ (c произвольной постоянной); также называется общим решением однородного линейного уравнения; содержит все решения (так как разрешим относительно параметра c).

2. Будем искать решение неоднородного уравнения в виде $y = e^{F(x)}c(x)$, где c(x) — неизвестная функция.

Подставим в уравнение (7):

Так как
$$y'=e^{\Phi(x)}c(x)\Phi'(x)+e^{\Phi(x)}c'(x)=-p(x)e^{\Phi(x)}c(x)+e^{\Phi(x)}c'(x)$$
, то

$$-p(x)e^{\Phi(x)}c(x) + e^{F(x)}c'(x) + p(x)e^{\Phi(x)}c(x) = g(x); \quad c'(x) = e^{-\Phi(x)}g(x);$$

$$c(x) = F(x) + c^*$$

(где F(x) — некоторая фиксированная первообразная функция $e^{-\Phi(x)}g(x)$ на $(a,b),c^*$ - произвольная постоянная)

Следовательно, $y(x) = e^{\Phi(x)} F(x) + e^{\Phi(x)} c^*$ — общий интеграл, также называется общим решением неоднородного линейного уравнения; содержит все решения (так как разрешим относительно параметра c^*).

Отметим, что первое слагаемое $e^{\Phi(x)}F(x)$ — это частное решение неоднородного уравнения, второе слагаемое $e^{\Phi(x)}c^*$ — это общее решение соответствующего однородного уравнения.

III. Уравнение в полных дифференциалах

$$P(x,y) dx + Q(x,y) dy = 0;$$
 $P(x,y), Q(x,y)$ непрерывны в области $D \subset \mathbb{R}^2$.

Это уравнение называется уравнением в полных дифференциалах, если существует непрерывно дифференцируемая в D функция u(x,y): $du=P\,dx+Q\,dy$. в D

В этом случае равенство u(x,y)=c является общим интегралом уравнения, так как

$$\frac{\partial u}{\partial x} \, dx + \frac{\partial u}{\partial y} \, dy = 0$$

$$P\,dx + Q\,dy = 0.$$

Общий интеграл u(x,y) = c содержит все решения (так как разрешен относительно параметра c).

Определение 2.3

- 1. Множество $D \subset \mathbb{R}^2$ называется связным, если любые две точки из него можно соединить непрерывной кривой, целиком лежащей в D.
- 2. Связное множество $D \subset \mathbb{R}^2$ называется односвязным, если любую замкнутую непрерывную кривую в D, как бы она ни была взята, можно стянуть в точку непрерывным образом, не выходя из D.
- 3. Открытое связное множество называется областью.

Лемма 2.1

Пусть $D\subset R^2$ — односвязная область, и в D существуют и непрерывны $\frac{\partial Q}{\partial x}$ и $\frac{\partial P}{\partial y}$. Тогда, для того, чтобы уравнение $P(x,y)\,dx+Q(x,y)\,dy=0$ было уравнением в полных дифференциалах, необходимо и достаточно, чтобы

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \quad {\rm B} \quad D.$$

4 Формулировка теоремы о существовании и единственности решения задачи Коши для нормального ДУ n-го порядка.

Определение 3.1

 Π У n-го порядка, разрешенное относительно старшей производной, называется нормальным.

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$$

Теорема 3.1 — Существование и единственность решения задачи Коши для нормального ДУ n-го порядка

Пусть f непрерывна и имеет непрерывные частные производные по 2-й, 3-й, ..., n+1-й переменным в окрестности некоторой точки $(x_0,y_0,y_1,\ldots,y_{n-1})$. Тогда существует интервал $[x_0-h,x_0+h]$ и определённая на нём n раз дифференцируемая функция y(x), которая удовлетворяет уравнению и начальным условиям:

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)}), \quad y(x_0) = y_0, \quad y'(x_0) = y_1, \dots, \quad y^{(n-1)}(x_0) = y_{n-1}.$$

Такая функция единственна (без доказательства).

5 Линейные дифференциальные уравнения п-го порядка (ЛДУ). Теорема о существовании и единственности решения задачи Коши.

Определение 3.2

ДУ вида

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = g(x)$$

называется ЛДУ n-го порядка (функции $a_n(x), a_{n-1}(x), \ldots, a_1(x), a_0(x)$, которые называются коэффициентами уравнения, функция g(x), которая называется правой частью уравнения, непрерывны на промежутке (a,b), и $a_n(x) \neq 0$ на (a,b)). Разделим обе части уравнения на $a_n(x)$, получим

$$y^{(n)} + p_{n-1}(x)y^{(n-1)} + \dots + p_1(x)y' + p_0(x)y = q(x)$$
 (3.1).

Теорема 3.2

Пусть $p_{n-1}(x), \ldots, p_1(x), p_0(x)$ и q(x) непрерывны на (a,b). Тогда для любого набора значений $(x_0, y_0, \ldots, y_{n-1})$, где $x_0 \in (a,b), (y_0, \ldots, y_{n-1}) \in \mathbb{R}^n$, существует единственное решение y(x) ЛДУ (3.1), удовлетворяющее начальным условиям:

$$y(x_0) = y_0, \quad y'(x_0) = y_1, \quad \dots, \quad y^{(n-1)}(x_0) = y_{n-1}.$$

Замечание

Можно показать, что для ЛДУ каждое решение определено на всём промежутке (a, b) (без доказательства).

6 Линейно зависимые и независимые системы функций. Определение фундаментальной системы решений (ФСР) однородного ЛДУ. Теорема о свойствах ФСР.

Однородные ЛДУ

Общее выражение однородного линейного дифференциального уравнения порядка n:

$$y^{(n)} + p_{n-1}(x)y^{(n-1)} + \dots + p_1(x)y' + p_0(x)y = 0$$
(4.1)

Замечание

Множество p раз дифференцируемых на (a,b) функций образует бесконечномерное линейное пространство. Рассмотрим линейный дифференциальный оператор:

$$L(g) = g^{(p)} + \rho_{p-1}(x)g^{(p-1)} + \ldots + \rho_1(x)g' + \rho_0(x)g$$

Уравнение (4.1):

$$L(g) = 0$$

То есть, решения уравнения (4.1) — это функции, на которые действует дифференциальный оператор L порядка p. Покажем, что dim ker L=p.

Напомним: оператор L(q) линейный, если

$$L(q_1(x) + q_2(x)) = L(q_1) + L(q_2), \quad L(\lambda q) = \lambda L(q)$$

Определение 4.1

1. Функции $\varphi_1(x), \varphi_2(x), \dots, \varphi_k(x)$, определённые на (a,b), называются **линейно независимыми** на (a,b), если равенство

$$c_1 \varphi_1(x) + c_2 \varphi_2(x) + \ldots + c_k \varphi_k(x) = 0$$
 на (a,b)

возможно только в случае, когда $c_1 = c_2 = \ldots = c_k = 0$.

2. Функции $\varphi_1(x), \varphi_2(x), \dots, \varphi_k(x)$, определённые на (a, b), называются **линейно зависимыми** на (a, b), если существуют числа c_1, c_2, \dots, c_k , не все из которых равны нулю, такие, что выполняется равенство

$$c_1\varphi_1(x) + c_2\varphi_2(x) + \ldots + c_k\varphi_k(x) = 0$$
 Ha (a, b) .

Следствия.

- 1. Система функций $\{\varphi_i(x)\}_{i=1}^k$ линейно зависима (ЛЗ) \iff одна из них является линейной комбинацией (ЛК) остальных.
- 2. Система функций $\{\varphi_i(x)\}_{i=1}^k$ содержит 0, то она линейно зависима.

Определение 4.3

Пусть функции $\varphi_1(x), \varphi_2(x), \dots, \varphi_n(x)$ определены на интервале (a,b). Определим функцию

$$W(x) = \begin{vmatrix} \varphi_1(x) & \varphi_2(x) & \dots & \varphi_n(x) \\ \varphi'_1(x) & \varphi'_2(x) & \dots & \varphi'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n-1)}(x) & \varphi_2^{(n-1)}(x) & \dots & \varphi_n^{(n-1)}(x) \end{vmatrix}$$

Функция W(x), определённая на (a,b), называется **вронскианом** системы функций $\{\varphi_k(x)\}_{k=1}^n$.

Теорема 4.1

Пусть все коэффициенты $\rho_{n-1}(x), \dots, \rho_1(x), \rho_0(x)$ уравнения

$$y^{(n)} + \rho_{n-1}(x)y^{(n-1)} + \dots + \rho_1(x)y' + \rho_0(x)y = 0$$
(4.1)

непрерывны на интервале (a, b).

Пусть функции $\varphi_1(x), \varphi_2(x), \dots, \varphi_n(x)$ являются решениями этого уравнения.

Следующие три утверждения равносильны:

1. $\{\Phi(x)\}_{x=1}^n$ — фундаментальная система решений (ФСР) дифференциального уравнения.

2. Вронскиан системы функций W(x) не равен тождественно нулю на интервале (a,b), то есть

$$\exists x \in (a,b) : W(x) \neq 0.$$

3. Вронскиан системы функций W(x) не равен нулю на всём интервале (a,b), то есть

$$W(x) \neq 0 \quad \forall x \in (a, b).$$

Следствие

Пусть функции $\varphi_1(x), \varphi_2(x), \dots, \varphi_n(x)$ являются решениями дифференциального уравнения. Тогда:

- 1. либо вронскиан системы функций $W(x)=0 \quad \forall x \in (a,b)$, что равносильно тому, что $\{\varphi_k(x)\}_{k=1}^n$ линейно зависимая система функций;
- 2. либо $W(x) \neq 0 \quad \forall x \in (a,b)$, что равносильно тому, что $\{\varphi_k(x)\}_{k=1}^n$ линейно независимая система функций.

7 Теорема о существовании ФСР однородного ЛДУ. (Доказательство)

Теорема 4.2

Пусть все коэффициенты $p_{n-1}(x), p_{n-2}(x), \dots, p_1(x), p_0(x)$ уравнения

$$y^{(n)} + p_{n-1}(x)y^{(n-1)} + \dots + p_1(x)y' + p_0(x)y = 0$$
(4.1)

непрерывны на интервале (a, b).

Тогда существует фундаментальная система решений (Φ CP) этого уравнения на (a, b).

Доказательство

Выберем произвольную точку $x_0 \in (a, b)$ и рассмотрим следующие задачи Коши:

$$\begin{cases} y(x_0) = 1 \\ y'(x_0) = 0 \\ y''(x_0) = 0 \end{cases} \begin{cases} y(x_0) = 0 \\ y'(x_0) = 1 \\ y''(x_0) = 0 \end{cases} \dots \begin{cases} y(x_0) = 0 \\ y'(x_0) = 0 \\ \vdots \\ y^{(n-1)}(x_0) = 0 \end{cases} \vdots$$
$$\vdots \\ y^{(n-1)}(x_0) = 0 \end{cases} \dots \begin{cases} y(x_0) = 0 \\ y'(x_0) = 0 \\ \vdots \\ y^{(n-1)}(x_0) = 1 \end{cases}$$

Их (задач Коши) n штук, и у каждой существует решение.

Пусть $\varphi_1(x)$ — решение первой задачи Коши, $\varphi_2(x)$ — решение второй задачи Коши, ..., $\varphi_n(x)$ — решение n-й задачи Коши. Тогда система функций $\{\varphi_k(x)\}_{k=1}^n$ является фундаментальной системой решений (ФСР), так как

$$W(x) = |E| = 1 \ (\neq 0).$$

8 Определение общего решения ЛДУ n-го порядка. Теорема о связи ФСР и общего решения однородного ЛДУ. (Доказательство)

Определение 4.4

n-параметрическая функция $y(x) = \Psi\langle x, c_1, c_2, \dots, c_n \rangle$ называется **общим решением** ЛДУ n-го порядка, если выполняются следующие условия:

- 1. для любого набора чисел c_1, c_2, \ldots, c_n функция y(x) является решением уравнения;
- 2. для любого решения $\tilde{y}(x)$ существуют такие числа $\tilde{c}_1, \tilde{c}_2, \dots, \tilde{c}_n$, что

$$\tilde{y}(x) = \Psi \langle x, \tilde{c}_1, \tilde{c}_2, \dots, \tilde{c}_n \rangle.$$

Теорема 4.3

Пусть все коэффициенты $p_{n-1}(x), p_{n-2}(x), \dots, p_1(x), p_0(x)$ уравнения

$$y^{(n)} + p_{n-1}(x)y^{(n-1)} + \dots + p_1(x)y' + p_0(x)y = 0$$
(4.1)

непрерывны на интервале (a, b).

Пусть $\{\varphi_k(x)\}_{k=1}^n$ — ФСР этого уравнения.

Тогда общее решение уравнения имеет вид:

$$y(x) = c_1 \varphi_1(x) + c_2 \varphi_2(x) + \ldots + c_n \varphi_n(x),$$

где c_1, c_2, \ldots, c_n — произвольные постоянные.

Доказательство

- 1. Для любого набора чисел c_1, c_2, \ldots, c_n , функция y(x) является решением уравнения, так как L линейный оператор.
- 2. Пусть $\tilde{y}(x)$ решение уравнения. Выберем произвольную точку $x_0 \in (a,b)$ и вычислим значения:

$$\tilde{y}(x_0) = y_0, \quad \tilde{y}'(x_0) = y_1, \quad \dots, \quad \tilde{y}^{(n-1)}(x_0) = y_{n-1}.$$

Рассмотрим СЛАУ:

$$\begin{cases}
c_1 \varphi_1(x_0) + c_2 \varphi_2(x_0) + \ldots + c_n \varphi_n(x_0) = y_0 \\
c_1 \varphi_1'(x_0) + c_2 \varphi_2'(x_0) + \ldots + c_n \varphi_n'(x_0) = y_1 \\
\vdots \\
c_1 \varphi_1^{(n-1)}(x_0) + c_2 \varphi_2^{(n-1)}(x_0) + \ldots + c_n \varphi_n^{(n-1)}(x_0) = y_{n-1}
\end{cases}$$

Её определитель $W(x_0) \neq 0$.

Следовательно, существует решение $c_1^*, c_2^*, \dots, c_n^*$ этой системы.

Функция

$$z(x) = c_1^* \varphi_1(x) + c_2^* \varphi_2(x) + \ldots + c_n^* \varphi_n(x)$$

является решением однородного ЛДУ (4.1), так как L — линейный оператор.

Функция z(x) удовлетворяет начальным условиям:

$$z(x_0) = y_0, \quad z'(x_0) = y_1, \quad \dots, \quad z^{(n-1)}(x_0) = y_{n-1}.$$

Следовательно, по теореме единственности, эти решения совпадают, то есть

$$\widetilde{y}(x) = c_1^* \varphi_1(x) + c_2^* \varphi_2(x) + \ldots + c_n^* \varphi_n(x)$$
 на (a, b) .

Таким образом, для любого решения $\widetilde{y}(x)$ существуют такие числа $c_1^*, c_2^*, \dots, c_n^*$, что

$$\widetilde{y}(x) = c_1^* \varphi_1(x) + c_2^* \varphi_2(x) + \ldots + c_n^* \varphi_n(x).$$

Следствие

Фундаментальная система решений (Φ CP) является базисом пространства решений однородного линейного дифференциального уравнения (ЛДУ), то есть базисом ker L.

Размерность пространства решений однородного ЛДУ равна n, то есть

$$n = \dim \ker L$$
.

9 Комплекснозначные функции действительной переменной. Лемма о комплекснозначном решении однородного ЛДУ.

Определение 5.1

Отображение $y(x):(a,b)\to C$, сопоставляющее каждой точке промежутка (a,b) некоторое комплексное число, называется комплекснозначной функцией вещественной переменной.

Любую такую функцию можно записать в виде:

$$y(x) = u(x) + iv(x),$$

где u(x) и v(x) — вещественнозначные функции. Если $y(x_0) = c + id$, то $u(x_0) = c$, а $v(x_0) = d$.

Теорема 5.1

1. Если y(x) = u(x) + iv(x), где u(x) и v(x) — вещественнозначные функции, то производная комплекснозначной функции имеет вид:

$$y'(x) = u'(x) + iv'(x).$$

2. Для комплекснозначных функций справедливы все формулы и правила дифференцирования, аналогично вещественным функциям. (Без доказательства)

Лемма 5.1

Функция y(x) = u(x) + iv(x) является решением ЛД) (5.1) тогда и только тогда, когда функции u(x) и v(x) являются решениями ЛДУ (5.1).

10 Доказательство формулы для $L(e^{\lambda x}f(x))$ где ${\bf L}$ – линейный дифференциальный оператор с постоянными коэффициентами.

Лемма 5.2

Для любой n-раз дифференцируемой функции f(x) справедлива формула:

$$L\left(e^{xt}f(x)\right) = e^{xt}\left(D(\lambda)f(x) + \frac{D^{(1)}(\lambda)}{1!}f'(x) + \frac{D^{(2)}(\lambda)}{2!}f''(x) + \dots + \frac{D^{(n)}(\lambda)}{n!}f^{(n)}(x)\right),$$

где L — линейный дифференциальный оператор, $D^{(k)}(\lambda)$ — его производные по параметру λ , а t — фиксированная величина.

11 Теорема о построении ФСР однородного ЛДУ с постоянными коэффициентами, если известны корни его характеристичекого многочлена.

Определение 5.2

Многочлен

$$D(t) = t^{n} + p_{n-1}t^{n-1} + \ldots + p_{1}t + p_{0}$$

называется **характеристическим многочленом** уравнения (5.1) или оператора L.

$$y^{(n)} + p_{n-1}y^{(n-1)} + \dots + p_1y' + p_0y = 0 \quad \iff \quad L(y) = 0$$
(5.1)

Теорема 5.2

1. Пусть λ — корень характеристического многочлена D(t) кратности k. Тогда функции

$$e^{\lambda x}$$
, $xe^{\lambda x}$, ..., $x^{k-1}e^{\lambda x}$

являются решениями однородного ЛДУ (5.1).

- 2. Если $L(x^p e^{\lambda x}) = 0$ при x = 0 для $p = 0, 1, \dots, k 1$, то λ корень характеристического многочлена D(t) кратности не менее, чем k.
- 3. Пусть $\lambda_1, \lambda_2, \dots, \lambda_m$ корни характеристического многочлена D(t), а k_1, k_2, \dots, k_m их кратности, такие что

$$k_1 + k_2 + \ldots + k_m = n.$$

Тогда функции

$$e^{\lambda_1 x}$$
, $xe^{\lambda_1 x}$, ..., $x^{k_1 - 1}e^{\lambda_1 x}$

$$e^{\lambda_2 x}$$
, $xe^{\lambda_2 x}$, ..., $x^{k_2 - 1}e^{\lambda_2 x}$,

. . .

$$e^{\lambda_m x}$$
, $xe^{\lambda_m x}$, ..., $x^{k_m-1}e^{\lambda_m x}$

образуют фундаментальную систему решений (ФСР) уравнения (5.1).

Примеры

1. Уравнение:

$$y''' - 2y'' + y' - 2y = 0$$

Характеристический многочлен:

$$D(t) = t^3 - 2t^2 + t - 2 = (t - 2)(t - 1)(t + 1)$$

Корни: $\lambda_1 = 2, \lambda_2 = 1, \lambda_3 = -1$ — кратность 1.

ΦCP: e^{2x} , e^{x} , e^{-x}

Общее решение:

$$y(x) = c_1 e^{2x} + c_2 e^x + c_3 e^{-x}$$

2. Уравнение:

$$y'' + 2y' + y = 0$$

Характеристический многочлен:

$$D(t) = t^2 + 2t + 1 = (t+1)^2$$

Корень: $\lambda = -1$, кратность 2.

ФСР: e^{-x} , xe^{-x}

Общее решение:

$$y(x) = c_1 e^{-x} + c_2 x e^{-x}$$

3. Уравнение:

$$y^{(4)} + 2y'' = 0$$

Характеристический многочлен:

$$D(t) = t^4 + 2t^2 = t^2(t^2 + 2)$$

Корни: $\lambda_{1,2}=\pm i\sqrt{2}$, кратность 1; $\lambda=0$, кратность 2.

ФСР: $e^{i\sqrt{2}x}$, $e^{-i\sqrt{2}x}$, x, x^2

Общее решение:

$$y(x) = c_1 e^{i\sqrt{2}x} + c_2 e^{-i\sqrt{2}x} + c_3 x + c_4 x^2$$

12 Теорема о построении ФСР однородного ЛДУ с вещественными постоянными коэффициентами, состоящей только из вещественнозначных функций.

Теорема 5.3

Пусть все коэффициенты p_{n-1}, \dots, p_1, p_0 уравнения (5.1) вещественны. Тогда существует ФСР этого уравнения, состоящая только из вещественнозначных функций.

13 Теорема о структуре общего решения неоднородного ЛДУ. (Доказательство)

Неоднородные ЛДУ

Общее неоднородное линейное дифференциальное уравнение имеет вид:

$$y^{(n)} + p_{n-1}(x)y^{(n-1)} + \ldots + p_1(x)y' + p_0(x)y = q(x)$$
(6.1)

Эквивалентно:

$$L(y) = q(x)$$

где коэффициенты $p_{n-1}(x), \dots, p_1(x), p_0(x)$ и функция q(x) непрерывны на интервале (a, b).

Теорема 6.1

Общее решение неоднородного линейного дифференциального уравнения (ЛДУ) есть сумма частного решения неоднородного ЛДУ.

Соответствующее однородное ЛДУ имеет вид:

$$y^{(n)} + p_{n-1}(x)y^{(n-1)} + \ldots + p_1(x)y' + p_0(x)y = 0$$

Доказательство

Докажем, что

$$y(x) = y_0(x) + c_1\varphi_1(x) + c_2\varphi_2(x) + \ldots + c_n\varphi_n(x),$$

где $y_0(x)$ — частное (то есть конкретное) решение неоднородного ЛДУ (6.1), а $\{\varphi_k(x)\}_{k=1}^n$ — ФСР соответствующего однородного ЛДУ, является общим решением уравнения (6.1).

1. Для любого набора чисел c_1, c_2, \ldots, c_n , функция y(x) является решением уравнения (6.1), так как:

$$L(y(x)) = L(y_0(x)) + L(c_1\varphi_1(x) + c_2\varphi_2(x) + \dots + c_n\varphi_n(x)) = q(x) + 0 = q(x)$$

2. Пусть $\tilde{y}(x)$ — решение уравнения (6.1). Рассмотрим функцию:

$$y(x) = \tilde{y}(x) - y_0(x)$$

Тогда:

$$L(y(x)) = L(\tilde{y}(x) - y_0(x)) = L(\tilde{y}(x)) - L(y_0(x)) = q(x) - q(x) = 0$$

Следовательно,

$$y(x) = \tilde{y}(x) - y_0(x)$$

— решение соответствующего однородного ЛДУ.

Следовательно, существуют числа $\tilde{c}_1, \tilde{c}_2, \dots, \tilde{c}_n$, такие что:

$$y(x) = \tilde{y}(x) - y_0(x) = \tilde{c}_1 \varphi_1(x) + \tilde{c}_2 \varphi_2(x) + \ldots + \tilde{c}_n \varphi_n(x)$$

Отсюда:

$$\tilde{y}(x) = y_0(x) + \tilde{c}_1 \varphi_1(x) + \tilde{c}_2 \varphi_2(x) + \ldots + \tilde{c}_n \varphi_n(x)$$

То есть для любого решения $\tilde{y}(x)$ существуют числа $\tilde{c}_1, \tilde{c}_2, \dots, \tilde{c}_n$, такие что:

$$\tilde{y}(x) = y_0(x) + \tilde{c}_1 \varphi_1(x) + \tilde{c}_2 \varphi_2(x) + \ldots + \tilde{c}_n \varphi_n(x)$$

Метод вариации произвольных постоянных (метод Лагранжа) нахождения решения неоднородного ЛДУ.

Неоднородные ЛДУ

Общее неоднородное линейное дифференциальное уравнение имеет вид:

$$y^{(n)} + p_{n-1}(x)y^{(n-1)} + \dots + p_1(x)y' + p_0(x)y = q(x)$$
(6.1)

Эквивалентно:

$$L(y) = q(x)$$

где коэффициенты $p_{n-1}(x), \dots, p_1(x), p_0(x)$ и функция q(x) непрерывны на интервале (a, b).

Метод вариации постоянных

Пусть $\{\varphi_k(x)\}_{k=1}^n$ — фундаментальная система решений соответствующего однородного ЛДУ. Будем искать решение неоднородного ЛДУ (6.1) в виде:

$$y(x) = c_1(x)\varphi_1(x) + c_2(x)\varphi_2(x) + \ldots + c_n(x)\varphi_n(x) = \sum_{j=1}^{n} c_j(x)\varphi_j(x),$$

где $c_1(x), c_2(x), \ldots, c_n(x)$ — неизвестные функции, которые нужно найти. Имеем:

$$y'(x) = \sum_{j=1}^{n} c'_{j}(x)\varphi_{j}(x) + \sum_{j=1}^{n} c_{j}(x)\varphi'_{j}(x)$$

Наложим условие:

$$\sum_{j=1}^{n} c_j'(x)\varphi_j(x) = 0$$

Тогда:

$$y'(x) = \sum_{j=1}^{n} c_j(x)\varphi'_j(x)$$

Аналогично:

$$y''(x) = \sum_{j=1}^{n} c'_{j}(x)\varphi'_{j}(x) + \sum_{j=1}^{n} c_{j}(x)\varphi''_{j}(x)$$

Наложим условие:

$$\sum_{j=1}^{n} c_j'(x)\varphi_j'(x) = 0$$

Тогда:

$$y''(x) = \sum_{j=1}^{n} c_j(x)\varphi_j''(x)$$

Продолжая по аналогии:

$$y^{(3)}(x) = \sum_{j=1}^{n} c'_{j}(x)\varphi''_{j}(x) + \sum_{j=1}^{n} c_{j}(x)\varphi_{j}^{(3)}(x)$$

Наложим условие:

$$\sum_{j=1}^{n} c_j'(x)\varphi_j''(x) = 0$$

Тогда:

$$y^{(3)}(x) = \sum_{j=1}^{n} c_j(x)\varphi_j^{(3)}(x)$$

И, наконец:

$$y^{(n)}(x) = \sum_{j=1}^{n} c'_{j}(x)\varphi_{j}^{(n-1)}(x) + \sum_{j=1}^{n} j(x)\varphi_{j}^{(n)}(x)$$

Наложим условие:

$$\sum_{j=1}^{n} c'_{j}(x)\varphi_{j}^{(n-1)}(x) = 0$$

Тогда:

$$y^{(n)}(x) = \sum_{j=1}^{n} c_j(x)\varphi_j^{(n)}(x)$$

Подстановка в левую часть уравнения

Подставим в левую часть уравнения:

$$\sum_{j=1}^{n} c'_{j}(x)\varphi_{j}^{(n-1)}(x) + \sum_{j=1}^{n} c_{j}(x)\varphi_{j}^{(n)}(x) + p_{n-1}(x)\sum_{j=1}^{n} c_{j}(x)\varphi_{j}^{(n-1)}(x) + \dots$$

$$+p_{1}(x)\sum_{j=1}^{n} c_{j}(x)\varphi'_{j}(x) + p_{0}(x)\sum_{j=1}^{n} c_{j}(x)\varphi_{j}(x) =$$

$$= \sum_{j=1}^{n} c'_{j}(x)\varphi_{j}^{(n-1)}(x) + \sum_{j=1}^{n} c_{j}(x)L(\varphi_{j}(x)) = \sum_{j=1}^{n} c'_{j}(x)\varphi_{j}^{(n-1)}(x).$$

(так как $L(\varphi_j(x)) = 0$).

Следовательно $\sum_{j=1}^{n} c_j'(x) \varphi_j^{(n-1)}(x) = q(x)$

Система линейных алгебраических уравнений

Получили систему линейных алгебраических уравнений (СЛАУ) относительно $c_1'(x), c_2'(x), \dots, c_n'(x)$:

$$\sum_{j=1}^{r} c'_{j}(x)\varphi_{j}(x) = 0$$

$$\sum_{j=1}^{r} c'_{j}(x)\varphi_{j}^{(1)}(x) = 0$$

$$\sum_{j=1}^{r} c'_{j}(x)\varphi_{j}^{(2)}(x) = 0$$

. .

$$\sum_{j=1}^{r} c_j'(x)\varphi_j^{(n-2)}(x) = 0$$

$$\sum_{i=1}^{r} c'_{j}(x)\varphi_{j}^{(n-1)}(x) = q(x)$$

Её определитель $W(x) \neq 0$ на интервале (a,b). Следовательно, существует единственное решение:

$$c'_1(x) = f_1(x), \quad c'_2(x) = f_2(x), \quad \dots, \quad c'_n(x) = f_n(x),$$

где функции $f_j(x)$ непрерывны на (a,b), так как выражаются через функции $\varphi_1(x), \varphi_2(x), \dots, \varphi_n(x)$ и их производные до порядка n-1 (вспомните формулы Крамера).

Следовательно:

$$c_1(x) = F_1(x) + c_1^*, \quad c_2(x) = F_2(x) + c_2^*, \quad \dots, \quad c_n(x) = F_n(x) + c_n^*,$$

где $F_1(x), F_2(x), \dots, F_n(x)$ — некоторые первообразные функции.

Положим $c_1^* = c_2^* = \ldots = c_n^* = 0$, тогда получим конкретные функции $c_1(x), c_2(x), \ldots, c_n(x)$ и конкретное (то есть частное) решение:

$$y(x) = F_1(x)\varphi_1(x) + F_2(x)\varphi_2(x) + \ldots + F_n(x)\varphi_n(x)$$

Замечание

Тогда общее решение неоднородного ЛДУ (6.1) будет иметь вид:

$$y(x) = F_1(x) + F_2(x) + \ldots + F_n(x) + c_1\varphi_1(x) + c_2\varphi_2(x) + \ldots + c_n\varphi_n(x),$$

где $c_1\varphi_1(x)+c_2\varphi_2(x)+\ldots+c_n\varphi_n(x)$ — общее решение соответствующего однородного ЛДУ. Следовательно, если бы мы в выражениях

$$c_1F_1(x) + c_2F_2(x) + \ldots + c_nF_n(x), \quad c_1\varphi_1(x) + c_2\varphi_2(x) + \ldots + c_n\varphi_n(x)$$

принимали произвольные постоянные c_1, c_2, \ldots, c_n , то сразу бы получили общее решение неоднородного ЛДУ (6.1).

15	Линейные нормальные системы дифференциальных уравнений (СЛДУ). Запись в векторной форме. Теорема о существовании и единственности решения задачи Коши. Определение общего решения.

16	Общее решение однородной системы ЛДУ в случае, когда количество линейно- независимых собственных векторов матрицы системы совпадает с порядком системы.

17	17 Общее решение однородной системы ЛДУ в случае, когда количество лино независимых собственных векторов матрицы системы меньше порядка с мы.		

18	Понятие числового ряда. Асимптотическая формула для частичной суммы гармонического ряда.

20	Остаток ряда. Связь между сходимостью ряда и его остатка. Необходимое условие сходимости ряда.

21	Первый и второй признаки сравнения рядов с неотрицательными членами.

22	Признак Даламбера.	
22	Признак Даламбера.	

24	Интегральный призна ческого ряда.	к сходимости рядов	. Сходимость обоби	ценного гармони-

25	Абсолютно сходящиеся ряды.

26 Признак Дир	ихле.
----------------	-------

27	Признак Абеля. Признак сходимости знакочередующихся рядов. Оценка остатка знакочередующегося ряда.

28	Теорема о произведении абсолютно сходящихся рядов.

29	Степенные ряды. Теорема о существовании радиуса сходимости степенного ряда (с леммой). Теорема о непрерывности суммы степенного ряда на концах интервала сходимости.

30	Теорема о дифференцировании и интегрировании суммы степенного ряда. Бесконечная дифференцируемость суммы степенного ряда. Связь коэффициентов степенного ряда с производными его суммы.

31	Ряд Тейлора функции в точке. Пример: и (посмотреть в списке и написать)	показать,	что ряд	Тейлора (р ункции

32	Разложение в менной.	степенные	ряды	элементарных	к функций	действител	пере-

33	Предел последовательности с комплексными членами. Сходимость последовательностей действительных и мнимых частей.

34	Сумма ряда с комплексными членами, ее связь с суммой рядов действительных и мнимых частей. Связь сходимости и абсолютной сходимости.

35	Степенной ряд с комплексными членами, его круг сходимости.

37 Функция cos(z), sin(z) дальше переписать из списка

38	Тригонометрический ряд Фурье. Формулы для его коэффициентов. Свойства ряда Фурье, вытекающие из полноты тригонометрической системы функций.

39	Теорема о сходимости тригонометрического ряда Фурье кусочно-дифференцируемо на $[-\pi,\pi]$ функции. Теорема о сходимости тригонометрического ряда Фурье 2π -периодической кусочно-дифференцируемой функции.

40	Замечание о 21-периодических функциях.

41	Определение площади плоской фигуры. Необходимое и измеримости плоской фигуры. Следствие.	достаточное	условие

42	Площадь кривой. Следствие.

43	Основные свойства площади.

44	Определение двойного интеграла.

45	Сведение двойного интеграла к повторному.