# Previsão da Receita Semanal para Novembro de 2020

#### Rafael Setti Riedel Sturaro

15/03/2021

## Introdução e Visão Geral do problema

A Black Friday é um momento em que, quando se refere ao ramo de vendas, é sempre esperado uma movimentação grande do mercado. Dessa forma, no contexto do nosso problema, temos um banco de dados que contém a receita de uma empresa, junto a quantidade que o cliente investe em 3 diferentes mídias (A, B e C) coletados semanalmente.

Assim, as mídias A, B e C modelam o valor de nossa variável de interesse (Receita), de forma que, serão propostos modelos de previsão baseados em regressão linear múltipla e previsões baseadas em modelos autoregressivos.

Dessa forma, parte-se para descrição de uma série temporal com cada unidade de tempo referente a uma semana que contém uma observação:

```
## Definição da série
y <- ts(data = as.numeric(dados$Receita), start = 2018, frequency = 52)
autoplot(y) + ggtitle("Receita Gerada pela empresa ao longo dos Anos") + ylab("Receita (R$)")</pre>
```





Olhando para essa série temporal do valor da receita, pode-se identificar alguns padrões além de sugerir perguntas a respeito do comportamento da série, dentre essas questões, tem-se:

- Dentre esses padrões, primeiramente é sugerido a presença de um período sazonal bastante acentuado, referente justamente a época da Black Friday;
- È possível visualizar, em 2020, uma queda acentuada no valor da receita, seguido por um grande aumento que não foi visualizado nos anos anteriores. Dessa forma, por hora atribuí-se a causa desse evento ao surgimento da pandemia do novo coronavírus, que por tratar de um evento que estimula o funcionamento do e-commerce, pode ser uma das causas desse brusco aumento na receita para o primeiro semestre de 2020;
- Ao longo da coleta dos dados, é possível suspeitar da existência de uma tendência de alta presente na série. Contudo, essa tendência pode ser influenciada pela inflação. Nesse caso, será suposto que a inflação **não** é capaz de influenciar a tendência.

# Início do procedimento de previsão

#### Decomposição da série

A fim de comprovar as suspeitas levantadas no primeiro tópico, será realizada a decomposição da série a fim de identificar tendências e sazonalidades:



A partir da decomposição da série, é possível identificar que existe, de fato, a tendência de alta que foi proposta anteriormente, tal como a existência de um período sazonal por ano, que é justamente referente a Black Friday. Dessa forma, o modelo de decomposição foi capaz de identificar o período de oscilação presente no surgimento da pandemia do coronavírus como um comportamento anômalo na série.

#### Gráficos de sazonalidade

A fim de confirmar novamente a presença de um período sazonal presente no modelo, e, nos prognosticar a respeito da previsão exigida, faz-se um gráfico de sazonalidade:

ggseasonplot(y) + ggtitle("Gráfico de sazonalidade para Receita (R\$)")





A partir do gráfico de sazonalidade, dividido pelo período para cada uma da coleta dos dados (Dados semanais), é possível enxergar que nosso período sazonal é justamente as próximas semanas de novembro as quais há interesse em se prever. Assim, pensando nas expectativas para o modelo final de previsão, espera-se um acentuado aumento na receita para esse período a ser previsto.

Outro ponto a ser notado nesse gráfico a disparidade de 1 semana em relação ao pico de venda observado em 2018 e em 2019, fato que pode ser explicado pela Black Friday de 2018 ter ocorrido no dia 23 de novembro (penúltima semana do mês), enquanto a promoção em 2019 ocorreu no dia 29 de novembro (última semana do mês), fato que também é consequência do número de semanas não ser fixo por ano, sendo possível observar a presença de 53 semanas em 2019 e 52 semanas em 2018.

# Modelos de séries temporais baseados em regressão múltipla

### Validação Cruzada

Para validar a estimação proposta pelos modelos, primeiramente é necessário dividir os dados de interesse em 2 partições: Partição de treino e Partição de teste e, então, comparar a estimação dos parâmetros dada através da partição de treino e comparar com os valores presentes na partição de teste;

```
training <- window(y, start = c(2018,01), end = c(2020,13))
testing <- window(y, start = c(2020,14))</pre>
```

### Modelo de regressão linear múltipla aproximado por pares de Fourier

Um primeiro modelo a ser sugerido é construído de forma a assumir que os valores das covariáveis são capazes de explicar os valores futuros da variável de interesse (Receita).

Para isso, é construído um modelo de regressão linear múltipla incluindo as 3 covariáveis Investimento em Mídias A, B e C) no processo, de forma que descreve-se o modelo como:

```
mt <- tslm(training~trend+fourier(training,26))</pre>
```

Como os dados possuem uma frequência muito alta (aproximadamente 52 semanas por ano), uma boa alternativa para lidar com a sazonalidade é utilizar a aproximação de Fourier para uma função periódica modelado pelos pares de Seno e Coseno incluindo as 3 covariáveis.

No nosso caso, o número máximo de termos de Fourier é dado por metade do período da nossa série (Aproximadamente 52).

Assim, obtem-se um forecast ilutrado por:

```
mt <- tslm(training~trend+fourier(training,26))
ft <- forecast(mt, data.frame(fourier(training,26,length(testing)+4)))
autoplot(ft) + autolayer(training) + autolayer(testing) +
    ggtitle("Forecast baseado em modelo de Regressão Linear")</pre>
```

### Forecast baseado em modelo de Regressão Linear



Conclui-se, então, a repeito do modelo de regressão múltipla, que este foi capaz de ajustar os dados com certa precisão, levando em conta o pequeno número de observações presente para estudo.

O modelo foi capaz de prever uma alta relacionada ao período anômalo ao longo do primeiro semestre de 2020 (Atribuído ao surgimento da pandemia da COVID-19).

Por fim, observa-se que o modelo prevê uma alta na receita para as próximas semans de novembro, periodo sazonal em que estamos interessados (Black Friday), de forma que pode-se esperar um pico de vendas semelhante ao de 2019.

Vale também ressaltar que, para esse gráfico, as escalas estão ajustadas devido ao comportamento de tendência presente na série original.

### Modelos Auto-Regressivos

#### Modelo STLF

Como potencial primeiro modelo auto-regressivo, tem-se o modelo STLF que se dá combinado ao modelo de alisamento exponencial para realizar o primeiro forecast auto-regressivo. Descreve-se o modelo como:

```
m1 <- stlf(training)</pre>
```

Que resultou em uma previsão ilustrada por:

```
f1 <- forecast(m1, h = length(testing) + 4)
autoplot(f1) + autolayer(testing) + ggtitle("Previsão para Receita (R$) via STLF + ETS")</pre>
```

## Previsão para Receita (R\$) via STLF + ETS



É possível notar uma disparidade dos valores reais com os valores previstos pelo modelo quando comparados, principalmente ao período do surgimento da COVID-19, o que causou um impacto que o modelo não foi capaz de representar.

Quanto as próximas semanas da previsão (Referentes ao mês de novembro e a própria Black Friday), pode-se notar que esse modelo é capaz de identificar o período sazonal da Black Friday, e então, se mostra eficiente em ao menos indicar um forte indicador de que a receita deve subir ao longo do mês de Novembro.

#### Modelo ARIMA

O segundo modelo a ser desenvolvido é um modelo ARIMA. Contudo, como a série possuí tendência e sazonalidade, é necessário aplicar diferenciação nos dados a fim de transformar a série em estacionária e, adicionar o efeito sazonalidade ao modelo. Transformando-o em, na verdade, um modelo SARIMA.

```
m2 <- auto.arima(training, d=1, D=1, stepwise = FALSE)
```

Que resultou em um forecast ilustrado por:

```
f2 <- forecast(m2, h = length(testing)+4)
autoplot(f2) + autolayer(testing) + ggtitle("Forecast a partir de SARIMA(3,1,0)(0,1,0)[52]")</pre>
```



A partir do gráfico, nota-se que reais valores da partição de teste estão contidos dentro do intervalo de confiança para os valores ajustados, porém ainda com uma certa defasagem.

Para os valores a serem preditos no mês de novembro, novamente o modelo foi capaz de identificar o período sazonal referente a Black Friday e então, retornou novamente uma grande receita para as próximas semanas.

### Modelo de Regressão Harmônica Dinâmica

Como último candidato a modelo, será feito um modelo de Regressão Harmônica Dinâmica, de forma que é selecionado um par de coeficientes para a função ARIMA de forma a minimizar o AICc.

Esse modelo foi sugerido por se tratar de dados colhidos semanalmente, e as previsões realizadas a partir de modelos ARIMA podem acarretar em falhas de aproximação devido ao longo período (Aproximadamente 52). Além de poder ser aplicado a séries com tendência e sazonalidade.

Que resulta em uma previsão ilustrada por:

# Forecast a partir de Regressão com os erros de ARIMA(0,1,2)



Novamente para esse modelo, o período classificado como o surgimento da pandemia da COVID-19 não pode ser explicado. De forma que os valores presentes na partição de teste não estão contidos em boa parte dos intervalos de confiança sugeridos.

Contudo, novamente o modelo foi capaz de identificar a sazonalidade e retribuir prognósticos de alta na receita para as próximas 4 semanas de novembro.

#### Modelo Final

Para selecionar o modelo final, é necessário se atentar a algumas métricas que quantificam a qualidade dos modelos propostos. São eles os índices de acurácia RSME, MAPE, MAE e MASE.

Fazendo uma tabela desses coeficientes de acordo com o modelo proposto, visualizamos a seguinte tabela:

|                     | RSME      | MAPE           | MAE       | MASE      |
|---------------------|-----------|----------------|-----------|-----------|
| Modelo Linear       | 467678.43 | 1.336224e+06   | 467678.43 | 5.0517472 |
| STL                 | 434240.40 | 1.240687e + 06 | 434240.40 | 4.6905578 |
| ARIMA               | 415434.6  | 1.186956e + 06 | 415434.64 | 4.4874226 |
| Regressão Harmônica | 434779.21 | 1.242226e+06   | 434779.21 | 4.6963779 |

A partir da tabela, é possível visualizar que os valores não se diferem muito entre eles, contudo a modelo que apresentou os melhores resultados, dado a tabela, foi o modelo ARIMA.

Contudo, ao longo do procedimento é estudado quanto aos resíduos propostos pelos modelos e, ao visualizar a distribuição dos resíduos obtidos através da ARIMA fez com que fosse descartado como potencial modelo final.

Dessa forma, restaram 3 modelos que a serem considerados, dentre eles um modelo STL, Regressão Harmônica e Modelo Linear.

Por fim, será conduzido o teste de Diebold-Mariano a fim de buscar pelo teste que performa sob maior acurácia.

Após combinar todos os testes entre os modelos restantes, restaram dois modelos a serem considerados: Modelo de previsão STL e modelo de previsão via Modelo Linear. A estatística do teste é dada por:

```
dm.test(f1$residuals,ft$residuals,alternative = "greater",h=30)
```

```
##
## Diebold-Mariano Test
##
## data: f1$residualsft$residuals
## DM = 2.1196, Forecast horizon = 30, Loss function power = 2, p-value =
## 0.01809
## alternative hypothesis: greater
```

O teste nos retorna a estatística de comparação entre os modelos STL e Linear, e, a partir do teste, como a hipótese nula é rejeitada, toma-se então o modelo previsto via **Regressão Linear com aproximações de Fourier** como o mais preciso e de acordo com as restrições a serem seguidas ao implementar o modelo.

# Conclusões a Respeito do Modelo

Relembrando o modelo final dado por:







Concluido a respeito do modelo final selecionado, tem-se as seguintes observações finais pautadas:

- Espera-se um crescimento na receita relativo ao período da Black Friday de 2019;
- O modelo se mostrou mais robusto ao se tratar de valores outliers, de forma que soube contornar o período anômalo visualizado no surgimento da pandemia;
- Os valores estão transformados em relação aos valores da série original. Isso se da devido ao método para tratar com a tendência presente na série da receita;
- O investimento em mídias A, B e C são capazes de modelar a receita e agregam ao modelo preditivo.
- Embora o modelo não tenha obtido resultados tão significativamente melhores quando comparados aos outros é interessante ressaltar que, a capacidade computacional exigida para a execução desse modelo foi inferior aos demais, de forma que, ao se tratar de um conjunto de dados maior que o estudado, esse modelo será capaz de suportar o processamento das previsões.