Comunicaciones I2C vs SPI.

Curso robótica II: Día 3

Curso Robótica 2 de @labgluor

Comunicación SPI e I2C

- Protocolos más comunes junto con UART.
- Comunicación en serie.
- Comunicación entre elementos de una PCB/Equipo.
- Distancias cortas (máximo 1m)
- Se trabajan con lectura/escritura con registros.
- Muy común en sensores/actuadores.

Ejemplo mapa registros BMI160

Read/write			read only			write only			reserved	
Register Address	Register Name	Default Value	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0x7E	CMD	0x00		·	•		cmd			
0x7D	4	1.5				re	served			
0x7C	57.					re	served			
0x7B	STEP_CONF_1	0x03		reser	ved		step_cnt_en		step_conf_10_8	
0x7A	STEP_CONF_0	0x15	step_conf_7_0							
0x79	STEP_CNT_1	0x00	step_cnt_15_8							
0x78	STEP_CNT_0	0x00	step_cnt_7_0							
0x77	OFFSET_6	0x00	gyr_off_en acc_off_en off_gyr_z_9_8 off_gyr_y_9_8 off_gyr_x_9_8					x 9 8		
0x76	OFFSET_5	0x00	off_gyr_z_7_0							
0x75	OFFSET_4	0x00	off_gyr_y_7_0							
0x74	OFFSET_3	0x00				off_c	gyr_x_7_0			
0x73	OFFSET_2	0x00	off_acc_z							
0x72	OFFSET_1	0x00	off_acc_y							
0x71	OFFSET_0	0x00	off_acc_x							
0x70	NV_CONF	0x00					spi_en			
0x6F			reserved							
0x6E	9		reserved							

Más ejemplos

Table 7. ADT7411 Registers

RD/WR Address	Name	Power- on Default
00h	Interrupt Status 1	00h
01h	Interrupt Status 2	00h
02h	Reserved	
03h	Internal Temperature and Voo LSBs	00h
04h	External Temperature and AIN1 to AIN 4 LSBs	00h
05h	AINS to AIN8 LSBs	00h
06h	V _{DO} MSBs	xxh
07h	Internal Temperature MSBs	00h
08h	External Temperature MSBs/AIN1 MSBs	00h
09h	AIN2 MSBs	00h
0Ah	AIN3 MSBs	00h
0Bh	AIN4 MSBs	00h
0Ch	AIN5 MSBs	00h
0Dh	AIN6 MSBs	00h
0Eh	AIN7 MSBs	00h
0Fh	AIN8 MSBs	00h
10h-17h	Reserved	
18h	Control Configuration 1	00h
19h	Control Configuration 2	00h
1Ah	Control Configuration 3	00h

Más ejemplos

8 REGISTER MAP

The following table lists the register map for the IAM-20380.

Table	7.	AD	T741	11	Registers
-------	----	----	------	----	-----------

RD/WR Address	Name
00h	Interrupt Status 1
01h	Interrupt Status 2
02h	Reserved
03h	Internal Temperature and Voo LS
04h	External Temperature and AIN1 to
05h	AINS to AIN8 LSBs
06h	V _{DD} MSBs
07h	Internal Temperature MSBs
08h	External Temperature MSBs/AIN1
09h	AIN2 MSBs
0Ah	AIN3 MSBs
0Bh	AIN4 MSBs
0Ch	AIN5 MSBs
0Dh	AIN6 MSBs
0Eh	AIN7 MSBs
0Fh	AIN8 MSBs
10h-17h	Reserved
18h	Control Configuration 1
19h	Control Configuration 2
1Ah	Control Configuration 3
24.	

Addr (Hex)	Addr (Dec.)	Register Name	Serial I/F	Accessible (writable) in Sleep Mode	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
00	00	SELF_TEST_X_GYRO	R/W	N				XG_ST_	DATA[7:0]			*
01	01	SELF_TEST_Y_GYRO	R/W	N				YG_ST_	DATA[7:0]			
02	02	SELF_TEST_Z_GYRO	R/W	N				ZG_ST_	DATA[7:0]			
13	19	XG_OFFS_USRH	R/W	N				X_OFFS_	USR [15:8]			
14	20	XG_OFFS_USRL	R/W	N				X_OFFS	_USR [7:0]			
15	21	YG_OFFS_USRH	R/W	N				Y_OFFS_	USR [15:8]			
16	22	YG_OFFS_USRL	R/W	N				Y_OFFS	_USR [7:0]			
17	23	ZG_OFFS_USRH	R/W	N				Z_OFFS_	USR [15:8]			
18	24	ZG_OFFS_USRL	R/W	N				Z_OFFS	_USR [7:0]			
19	25	SMPLRT_DIV	R/W	N		33 - 3	¢.	SMPLR	T_DIV[7:0]			
1A	26	CONFIG	R/W	N	1.5	FIFO_ MODE	(0	EXT_SYNC_SET[2:0	1		DLPF_CFG[2:0]	
18	27	GYRO_CONFIG	R/W	N	XG_ST	YG_ST	ZG_ST	FS_SE	L [1:0]	3	FCHO	CE_B[1:0]
16	30	LP_MODE_CFG	R/W	N	GYRO_CYCL E		G_AVGCFG[2:0]	TV.		3	ž Š	
23	35	FIFO_EN	R/W	N	TEMP _FIFO_EN	XG_FIFO_EN	YG_FIFO_EN	ZG_FIFO_EN	Hō.	8	(%)	8
36	54	FSYNC_INT	R/C	N	FSYNC_INT	12	25	13.1	15	82	1925	81
37	55	INT_PIN_CFG	R/W	Y	INT_LEVEL	INT_OPEN	LATCH _INT_EN	INT_RD _CLEAR	FSYNC_INT_L EVEL	FSYNC _INT_MODE_ EN	7	8
38	56	INT_ENABLE	R/W	Y		9	·	FIFO _OFLOW _EN	*	GDRIVE_INT_ EN	(%)	DATA_RDY_ NT_EN
ЗА	58	INT_STATUS	R/C	N		100		FIFO _OFLOW _INT	79	GDRIVE_INT	920	DATA _RDY_INT

Ejemplo Registro STATUS (BMI160)

2.11.6 Register (0x1B) STATUS

ADDRESS 0x1B RESET 0b00000000 MODE R DESCRIPTION Reports sensor status flags. DEFINITION

Bit	Acronym	Definition
7	drdy_acc	Data ready (DRDY) for accelerometer in register
6	drdy_gyr	Data ready (DRDY) for gyroscope in register
5	drdy_mag	Data ready (DRDY) for magnetometer in register
5 4 3	nvm_rdy	NVM controller status
3	foc_rdy	FOC completed
2	mag_man_op	'0' indicates no manual magnetometer interface operation '1' indicates a manual magnetometer interface operation triggered via MAG_IF[2] or MAG_IF[3]
1	gyr_self_test_ok	'0' when gyroscope self-test is running or failed. '1' when gyroscope self-test completed successfully.

Drdy_*: gets reset when one byte of the register for sensor * is read.

Nvm_rdy: status of NVM controller: '0' → NVM write operation is in progress; '1' → NVM

is ready to accept a new write trigger

foc_rdy: Fast offset compensation completed

Curso Robolica 2 de Wiabyldon en twitch y youtube.

Ejemplo registro ACC_CONF (BMI160)

2.11.11 Register (0x40) ACC_CONF

ADDRESS 0x40 RESET 0b00101000 MODE RW

DESCRIPTION Sets the output data rate, the bandwidth, and the read mode of the acceleration sensor.

DEFINITION

Name		Register (0:	Register (0x40) ACC_CONF					
Bit	7	6	5	4				
Read/Write	R/W	R/W	R/W	R/W				
Reset Value	0	0	1	0				
Content	acc_us	acc_bwp						
Bit	3	2	1	0				
Read/Write	R/W	R/W	R/W	R/W				
Reset Value	1	0	0	0				
Content	acc_odr							

acc_us: undersampling parameter. The undersampling parameter is typically used in low power mode

acc_bwp: bandwidth parameter determines filter configuration (acc_us=0) and averaging for

undersampling mode (acc_us=1). For details see chapter 2.2.4.

acc_odr: define the output data rate in Hz is given by 100/2^{8-val(acc_odr)}. The output data rate is independent of the power mode setting for the sensor

acc_odr	Output data rate in Hz
0ь0000	Reserved
0b0001	25/32
0b0010	25/16
•••	
0b1000	100
0b1011	800
0b1100	1600
0b1101-0b1111	Reserved

When acc_us is set to '0' and the accelerometer is in low-power mode, it will change to normal mode. If the acc_us is set to '0' and an command to enter low-power mode is send to the Register (0x7E) CMD, this command is ignored.

Inter-Integrated Circuit (I2C)

Características I2C

- Comunicación half-duplex
- Solo se necesitan 2 pines:
 - SDA: DatosSCL: Reloj
- Se necesitan resistencias de pull-up.
 Su valor limita la velocidad.
- Velocidades:
 - Standard: 100 kbits/s
 - Fast: 400 kbits/s
 - Existen más, pero el ESP32 no las soporta
- Los dispositivos tienen direcciones (generalmente configurables)
- Meten el Read/Write en el byte de address.

I ² C	modes
------------------	-------

Mode ^[3]	Maximum speed	Maximum capacitance	Drive	Direction
Standard mode (Sm)	100 kbit/s	400 pF	Open drain*	Bidirectional
Fast mode (Fm)	400 kbit/s	400 pF	Open drain*	Bidirectional
Fast mode plus (Fm+)	1 Mbit/s	550 pF	Open drain*	Bidirectional
High-speed mode (Hs)	1.7 Mbit/s	400 pF	Open drain*	Bidirectional
High-speed mode (Hs)	3.4 Mbit/s	100 pF	Open drain*	Bidirectional
Ultra-fast mode (UFm)	5 Mbit/s	?	Push-pull	Unidirectional

Señales I2C

Ejemplo I2C del bmi160

A tener en cuenta durante el diseño

- El valor de la resistencia de pull-up limita la velocidad:
 - A mayor resistencia, menos velocidad.
 - A menor resistencia, más velocidad.
- Elegir la resistencia entre 2k2Ω y 10kΩ.
- Para resolver problemas:
 - Ejecutar escáner de I2C en velocidades bajas.
 - Probar velocidades de I2C más bajas.
 - Si funciona, bajar el valor de las resistencias y volver a subir la velocidad
 - Sino, seguramente sea otra cosa.

Ejemplos de chips I2C

- VL53I0x: Sensor de distancia ToF
- TMP100: Sensor de temperatura
- AHT-20: Sensor de humedad y temperatura
- TCA9548A: Multiplexor I2C
- MCP23016: Expansor I2c

Serial Peripheral Interface (SPI)

Características SPI

- Comunicación full-duplex
- Se necesitan 3 pines + 1x dispositivo:
 - MOSI: Master Out Slave In
 - MISO: Master In Slave Out
 - o SCLK: Reloj
 - CS: Chip Select
- Velocidades hasta cientos de MHz
- Solo puede haber un CS encendido a la vez.
- Se puede configura el CPAH y CPOL dando 4 configuraciones:
 - CPAH = 0, CPOL = 0 (modo 0)
 - CPAH = 0, CPOL = 1
 - CPAH = 1, CPOL = 0
 - CPAH = 1, CPOL = 1 (modo 3)

Modos SPI

Ejemplo SPI BMI160

Límites de velocidad para el SPI en ESP32

Ejemplos de chips SPI

- ICM-40627: Imu
- BMP384: Sensor de presión
- Memorias Flash (Usando QSPI)
- HIH6030-000-001: Sensor de humedad
- **PCF2123**: RTC

I2C vs SPI (En ESP32)

	I2C	SPI
Velocidad	Hasta 400 kbps	Hasta 80 MHz
Número de pines	2	3 + 1x (nº Dispositivos)
Componentes externos	Resistencias pull-up	Nada
Interfaces disponibles	2 en el ESP32	3 en el ESP32

No usar el SPI1

Alataqueerr

ESP-IDF: SPI Configuración

- spi_bus_config_t:
 - Configuramos el SPI común, pines generales.
 - Se usa en: spi_bus_initialize
- spi_device_interface_config_t:
 - Configuración de la comunicación.
 - Hay uno por cada dispositivo que tengas conectado.
 - Se usa en: spi_bus_add_device
- spi_device_handle_t:
 - Tiene que haber uno por cada dispositivo conectado.
 - Se usa para hacer la acción en un dispositivo concreto.

```
#include <driver/spi_master.h>
typedef struct {
    int mosi io num;
    int miso io num;
    int sclk_io_num;
} spi bus config t;
typedef struct {
    uint8 t command bits;
    uint8 t address bits;
    uint8 t mode:
    int clock_speed_hz;
    int spics_io_num;
} spi device interface config t;
```

ESP-IDF: SPI Transmisión.

- spi_transaction_t:
 - Configuramos la transferencia, datos y longitud.
 - Se usa en: spi_device_polling_transmit
- Flags:
 - SPI_TRANS_USE_RXDATA
 - SPI_TRANS_USE_TXDATA

```
struct spi_transaction_t {
    uint32_t flags;
    size_t length;
    size_t rxlength;
    union {
        const void *tx_buffer;
        uint8_t tx_data[4];
    };
    union {
        void *rx_buffer;
        uint8_t rx_data[4];
```