

4. 1D and 2D Scalar Fields

ohm

Introduction

Basic mapping techniques

- Mapping
 - from (filtered) data to renderable representation (visualization pipeline)
- Most important part of visualization
- Possible visual representations
 - Position
 - Size
 - Orientation
 - Shape
 - Brightness
 - Color (hue, saturation)

•

ohm

Introduction

1D Functions - Typical strategy when creating a graph

- Stepping through a series of choices, including
 - Different types of graphs
 - Several aspects of appearance
- Choices are often made as if one is sleepwalking
 - Neglected issue: Why one choice is better than another?
- What we have to know
 - Nature of the data
 - Graphing conventions
 - Psychological investigations
 - A bit about visual perception
 - Evaluate appropriateness of mapping approaches

Ωhm

Data and Scales

Quantitative information consists of both

- Quantitative data: Numbers
- Categorical data: Labels what numbers measure
- Example: Categorical (horiz. axis) and quantitative data (vert. axis)

ohm

Data and Scales

Three types of categorical scales

- Nominal scales
 - Consists of discrete items
 - Belong to a common category
 - Do not relate to one another in any particular way
 - Differ in name only (nominally!)
 - Have no particular order and don't represent quantitative values

- Further examples
 - Continents: the Americas, Asia, Europe, ...
 - Departments (e.g. sales, marketing and finance)

Data and Scales

Three types of categorical scales

- Ordinal scales
 - Consists of items with intrinsic order
 - Items do not represent quantitative values

- Further examples involve rankings
 - "A, B and C"
 - "small, medium and large"
 - "poor, below average, average, above average and excellent"

ohm

Data and Scales

Three types of categorical scales

- Interval scales
 - Consists of items with intrinsic order
 - Represent quantitative values as well

- Example
 - Start as quantitative then convert into categorical scale

Conversion into a categorical scale according to

- 1. > 55 and ≤ 60
- 2. $> 60 \text{ and } \le 65$
- 3. > 65 and ≤ 70
- 4. > 70 and ≤ 75
- 5. > 75 and ≤ 80

4.1 Diagram Techniques

Diagram Techniques

- Discrete range of definition
 - 1D drawing / 2D drawing
- Example
 - Distance from reference location (e.g. Erlangen)

Diagram Techniques

Bar charts

- Appropriate for nominal and ordinal scales
 - Individual items not related closely enough for link with lines

- Example
 - Transition from one sales region to the next
 - Use bars-inappropriate to display with lines

Diagram Techniques

Pie charts

Quantitative data that adds up to a (fixed?) number

BMW
Daimler
Audi

Diagram Techniques

Histogram

- Measure the frequency (number) of items
 - Very important in scientific analysis
- Example
 - Grey values in an 8-bit image

Prof. Dr. Matthias Teßmann

12

Diagram Techniques Scatter plots

- Quantitative scales along both axes
- Visual recognition of correlations

13

Ωhm

Diagram Techniques

Line graphs

- Connection between points (interpolation!)
- Appropriate for interval scale
 - Shows trend of patterns in the data
- Example
 - Change from one day to the next or from one price to the next
 - Appropriate to use lines for display

ohm

Diagram Techniques

Line graphs

 Inappropriate and appropriate use of lines

Diagram Techniques

Line graphs

- Avoid "blind" interpolation
- Show all data points
- Set an order
- Caption of axes
 - Several ordinates / y-axes
- Additional annotations
 - e.g. Labels, error bars
- Line type
 - Dashed, dotted, color, \Box
- Continuous range-parametric representation

Height Fields

Function plot for a 2D scalar field

- 2D manifold: surface
- Plot styles
 - Wireframe
 - Hidden lines
 - Shaded surface

4.2 Isolines

Isolines

Visualization of 2D scalar fields

- Given a scalar function $f: \Omega \to R$ and a scalar value $c \in R$
- The isoline / isocontour or contour line consist of points {(x, y) | f(x, y) = c}

Punkt -> Konstante bei Funktion für Punkt

- If f is differentiable and grad(f) ≠ 0, then isolines are curves
 - if grad(f) = 0 in some points, "isolines" may be single points or whole areas of the domain
- Remark
 - Isolines are closed curves, or they get in and out of the domain.
 They do not terminate in the domain!

Ωhm

Isolines

Isolines

Pixel by pixel contouring

- Straightforward approach
 - Scanning all pixels for equivalence with iso-value (this is an image space method)
- Input
 - $f:(1,...,x_{max}) \times (1,...,y_{max}) \rightarrow R$
 - Iso-values I₁, ..., I_n and iso-colors c₁, ..., c_n
- Algorithm

```
for all (x,y) \in (1,...,xmax) \times (1,...,ymax) do for all k \in \{1,...,n\} do if |f(x,y) - I_k| < \epsilon then draw(x, y, c_k)
```

- Problems
 - Isoline missed if gradient of f is too large, produces no additional data, only visualization

Isolines

Isolines on triangle meshes

- Cell search over all cells (isovalue f_c)
 - No intersection

if
$$(f_i > f_c \text{ or } f_i < f_c)$$

for $i = 1,2,3$

Trivial reject

if
$$(f_i == f_c)$$

for $i = 1,2,3$

Normal case: find 2 intersection points

if
$$(f_0 < f_c < f_1 \text{ or } f_1 < f_c < f_0)$$

then calculate intersection point
do the same for P_1P_2 and P_2P_0

Isolines

Special cases

- Only one "normal" intersection point
- No "normal" intersections
 - Draw no lines
 - Consider in other triangle
 - Draw line along edge
 - Draw twice
 - For this and the neighboring triangle

ohm

Isolines

Calculate intersection points

Interpolate point from data value

$$P_c = \frac{1}{f_{i+1} - f_i} \left[P_i (f_{i+1} - f_c) + P_{i+1} (f_c - f_i) \right]$$

Isolines

Rectilinear meshes

- Representation of scalar function on a rectilinear grid
 - Scalar values are given at each vertex $f \leftrightarrow f_{ij}$
 - Consider interpolation within cells (bilinear!)
 - Isolines cannot be missed
- Divide and conquer "Marching Squares"
 - Consider cells independently of each other

Isolines

Marching Squares

- Which cells will be intersected?
 - Initially mark all vertices with "+" or "-", depending on the condition $f_{ij} \ge c$, $f_{ij} < c$
 - Isoline does not pass through cells which have the same sign at all four vertices
 - Only determine edges with different signs and find intersection by linear interpolation

$$x_{c} = \frac{1}{f_{2} - f_{1}} [(f_{2} - c)x_{1} + (c - f_{1})x_{2}]$$

Isolines

Marching Squares

- There are 2^4 = 16 different intersection possibilities (combinations of signs)
 - Using symmetries, only 4 different cases remain (rotation, reflection)
 - Compute intersections between isoline and cell edge (linear interpolation)

Distinguish ambiguous case by a decider

Isolines

Mid-point decider

Interpolate the function value at the center

$$f_{\text{center}} = \frac{1}{4} (f_{i,j} + f_{i+1,j} + f_{i,j+1} + f_{i+1,j+1})$$

If f_{center} < c choose right case, otherwise left case

This is not always the correct solution!

IsolinesAsymptotic decider

- We know that the true isolines within a cell are hyperbolas
 - Why?-Consider the bilinear interpolant within a cell
 - i.e. find stationary point where grad f = 0
- Interpolate function bilinearly $f(x,y) = f_{i,j}(1-x)(1-y) + f_{i+1,j}x(1-y) + f_{i,j+1}(1-x)y + f_{i+1,j+1}xy$
- Transform to normal form by comparison of coefficients $f(x,y) = \eta(x-x_0)(y-y_0) + \gamma$
 - \bullet \forall is the function value in the intersection point of the asymptotes
 - If y ≤ c choose right case, otherwise left case

Isolines

Explicit transformation of f can be avoided

- Consider order of intersection points either along x or y axis
 - Build pairs of first two and last two intersections

Isolines cannot intersect asymptotes!

Isolines

Algorithms: Cell order approach for marching squares

Apply marching squares to each individual cell

- Advantage
 - Simple approach
- Disadvantage
 - Process every vertex and every edge twice
 - Output is just a collection of pieces of isolines which have to be post-processed to get (closed) isoline

Ωhm

Isolines

Algorithms: Contour tracing approach

- Start at a seed point of the isoline
 - Move to neighboring cell (into which the isoline enters)
 - Trace isoline until bounds of domain are reached or isoline is closed
- Advantage
 - Polygons
 - Information about inclination
- Disadvantage
 - Marking of processed cells (list of started contours)
 - Problem: how to find seed points efficiently?
 - Remove marker from traversed cells (unless 4 intersections!)

32

Isolines

Smoothing isolines

- Evaluate gradient at vertices by central differences
- Estimate tangents at intersection points by linear interpolation - Gradient is perpendicular to isoline!
- Draw parabolic arc which is tangential to the estimated tangents at the intersections
 - Quadratic Bezier curve

 (2-3 subdivisions per step is sufficient!)

Ω hm

Isolines

Summary

- Smoothing by interpolation falsifies the contour
- Multiple isolines
 - Line type (dashed, dotted, ...), annotation, color
- Advantages
 - Line plots in black/white possible
 - Annotation within image
 - Shows gradient within image
 - Simple extension for complex grids
- Disadvantages
 - Max/min not directly visible
 - Strongly depends on choice of isovalue
 - No use of color and rasterization features

4.3 Color Coding

Color Coding

- Questions
 - What kind of data can be color-coded?
 - What kind of information can be efficiently visualized?
- Areas of application
 - Provide information coding
 - Designate / emphasize target in crowded display
 - Provide sense of realism (or virtual realism)
 - Warning signals or signify low probability events
 - Group, categorize and chunk information
 - Convey emotional content
 - Provide an aesthetically pleasing display
- Possible problems
 - Distract the user when inadequately used
 - Dependent on viewing and stimulus conditions
 - Ineffective for color deficient individuals
 - Results in information overload
 - Unintentionally conflict with cultural conventions
 - Cause unintended visual effects and discomfort

Reds and Blues are on opposite ends of the

Chromatic aberration = different refraction depending on wavelength (red "nearer", blue "farther" - different foci!)

focus on both.

Color Coding

Nominal data

- Colors need to be distinguished
- Localization of data
- Around 8 different basis colors

LASERS

SEMICONDUCTORS

ENVIRONMENTAL SCIENCE

Prof. Dr. Matthias Teßmann 38

ITO Project TOP LEVEL

ohm

Color Coding

Ordinal and interval data

- Represent ordering of data by ordering of colors
 - Psychological aspects
 - $x_1 < x_2 < ... < x_n \rightarrow E(c_1) < E(c_2) < ... < E(c_n)$
- Color coding for scalar data
 - Assign to each scalar value a different color value
 - Assignment via transfer function T : scalar value → color value (RGB or HSV)
 - Code color values into a color lookup table

ohm

Color Coding

Assignment via transfer function T

T: scalar value → color value (RGB, HSV, ...)

Color Coding

Linear transfer function for color coding

- Specify color for f_{min} and f_{max}
 - $(R_{min}, G_{min}, B_{min})$ and $(R_{max}, G_{max}, B_{max})$
 - Linearly interpolate between them

$$f \mapsto \frac{f - f_{\min}}{f_{\max} - f_{\min}} (R_{\min}, G_{\min}, B_{\min}) + \frac{f_{\max} - f}{f_{\max} - f_{\min}} (R_{\max}, G_{\max}, B_{\max})$$
 lineare Interpolation

- Different color spaces
 - Lead to different interpolation functions
 - In order to visualize (enhance / suppress) specific details, non-linear color lookup tables are needed

ohm

Color Coding

Examples of different color tables

- Gray scale
 - Intuitive ordering
- Rainbow
 - Less intuitive

Temperature

Color Coding

Bivariate and trivariate color tables

2-dim 3-dim

- Not very useful as there is no intuitive ordering
 - Colors hard to distinguish
- Many more color tables
 - For specific applications
 - Design of good color tables depends on psychological / perceptional issues
- Important requirement
 - Often, interactive specification of transfer function is needed to extract important features (which leads to nonlinear transfer functions), e.g. medical data

Color Coding

Examples

Magnetic Resonance Imaging (MRI)

Linear mapping of

all data values

Special transfer function for brain tissue

Special transfer function for bone structure

Color Coding

- Color guidelines
 - [C.A. Brewer, 1994, "Color Use Guidelines for Mapping and Visualization", Chapter 7 (pp. 123-147) in Visualization in Modern Cartography]
- 4 different types of color schemes
 - Qualitative data of different categories
 - Represented by differences in hue
 - E.g. blue-rivers, brown-mountains, red-road
 - Binary only two categories
 - Use difference in hue or lightness
 - Diverging -data showing different trends
 - Use colors with very different hues in extremes
 - E.g. red blue, red green (yellow blue for color blind)
 - Sequential ordered data in sequential form
 - Use variations in lightness or saturation of given hue
- Bivariate color schemes. www.infovis.net (2006, No. 184)

Color Coding

Pre-shading vs. post-shading

- Pre-shading (pre-interpolation)
 - Assign color values to original function values (i.e. vertices of a cell)
 - Interpolate between color values (within a cell)
- Post-shading (post-interpolation)
 - Interpolate between scalar values (within a cell)
 - Assign color values to interpolated scalar values

Prof. Dr. Matthias Teßmann

46

4.4 Glyphs, Icons and others...

Glyphs and Icons

- Features
 - Should be easy to distinguish and combine
- Icons
 - Should be separated from each other
- Mainly used for multivariate data
 - More than one data value at each coordinate
- Stick-figure icon [Picket & Grinstein 88]
 - 2D figure with 4 limbs
 - Coding of data via
 - Length, thickness, angle with vertical axis
 - 12 attributes
 - Exploits human capability to recognize patterns/textures

Glyphs and Icons

Chernoff faces/icons

 [H. Chernoff (1973). The use of faces to represent points in k-dimensional space graphically. Journal of the American Statistical Association , 68:361-368]

Codierung von Daten in einem Icon (=Gesicht)

- Each facial feature represents one variable
- Useful for qualitative and multivariate data
- Human ability to distinguish small features in faces
- Useful for sparse data representations
- Possible assignment in decreasing order of importance
 Area of face, shape of face, length of nose, location of mouth
 - Curve of smile, width of mouth, location, separation, angle, shape and width of eyes, location of pupil
 - Location, angle and width of eyebrows
- Additional variables
 - Could be encoded by making faces asymmetric

31 January 2011

15 December 2010