

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Moore's Law vs. Sequencing Technology

Sequencing Read Archive (NCBI)

Blue and green = 'Next Generation Sequencing'

2nd Gen: Sequencing Platforms

Next Generation Sequencing platforms from trusted names

Next-Generation Sequencing: Typical Workflow

2nd Gen: Common Elements

Sequencing Library Preparation

- Extract & purify DNA*
- 2. Fragment to target size (75-750 bp)
- 3. Strand isolation
- 4. Clonal Amplification
- 5. Nucleotide detection

2. Fragment Sizes (longer list on website)

Platform	Instrument	Mreads	Length (bp)	Gbp	Туре
Illumina	NovaSeq 6000 S4	10000	300	3000	SR & PE
Illumina	NextSeq 500 High-Output	400	300	120	SR & PE
Illumina	HiSeq X	375	300	112.5	PE
Illumina	HiSeq High-Output v4	250	250	62.5	SR & PE
Illumina	MiSeq v3	25	600	15	SR & PE
Illumina	MiniSeq High-Output	25	300	7.5	SR & PE
lon	Proton I	60	200	12	SR
lon	PGM 318	4	400	1.6	SR
lon	PGM 316	2	400	0.8	SR
lon	PGM 314	0.4	400	0.16	SR
PacBio	PacBio Sequel	0.37	20000	7.4	SR
PacBio	PacBio RS II (P6)	0.055	15000	0.825	SR
Roche 454	GS FLX+ / FLX	0.7	700	0.49	SR
SOLiD	5500xl W	267	100	26.7	SR & PE

Sequence isolation (and cloning)

Ion Torrent

2nd Gen: 454 Sequencing (Roche; deprecated)

CSB2008 August 2008

2nd Gen: 454 Sequencing (Roche; deprecated)

CSB2008 August 2008

SOLiD Sequencing (ABI)

8. Repeat Reset with , n-2, n-3, n-4 primers

Illumina Devices

MiniSeq System

Illumina flow cells

Illumina sequencing (formerly Solexa)

- 1. Prepare genomic DNA
- 2. Attach DNA to surface
- 3. Bridge amplification
- 4. Fragment become double stranded
- 5. Denature the double stranded molecules
- 6. Complete amplification

Illumina sequencing

- 7. Determine first base
- 8. Image first base
- 9. Determine second base
- 10. Image second base
- 11. Sequence reads over multiple cycles
- 12. Align data

Review

Working in groups (15 mins):

Stretch and divide into working groups

Summarize sequencing-by-synthesis (SBS) with Illumina

Review key concepts:

- 1. How a flow cell works
- 2. Contrast Sanger with SBS sequencing

Try flowcharts or cartoons to simplify & summarize

BRAINSTORM:

What are the main benefits & limitations of each technology?

Why is coding valuable for 2nd generation sequencing?

Is coding important?

R Introduction Tutorial

Field Excursion


```
11:00
Groups 1 & 2: Boat Tour – Aquatic Sampling
Groups 3 & 4: QUBS Tour – Soil Sampling

12:00 LUNCH

13:00
Groups 3 & 4: Boat Tour – Aquatic Sampling
Groups 1 & 2: QUBS Tour – Soil Sampling
```

14:00 PRESENT

Apply your expertise in (eco)toxicology to formulate a question and design **a field sampling** protocol. *Consider using hand-drawn figs*. What are your major concerns or considerations?

Methods & Applications

Single Read (SR) vs Paired-End (PE) Reads

Multiplexing reduces per-sample costs

Target Enrichment (Exome capture)

Other methods

Genotype-by-sequencing

e.g. RADSeq, POOLSeq

Population genomics

Association mapping (QTL, GWAS)

Epigenetics

DNA methylation sites (Methy-Seq or Bisulfite sequencing)

Protein-binding sites (CHIP-Seq)

Whole Genome Shotgun Sequencing

DIY Reference Genome <u>Assembly</u> (~\$10,000)

Extract

Fragment

Sequence

rRNA Depleted RNA sequencing

Most intracellular RNA Is ribosomal RNA

rRNA Depleted transcriptomics

rRNA Depleted transcriptomics

Alignment coverage (e.g. RNA-Sequencing)

1. Collect
 2. Extract
 3. Prepare
 4. Sequence
 5. Process
 6. Visualize
 7. Analyze
 8. Report

Transcriptome Tutorial

Amplicon sequencing (metabarcoding)

Amplicon sequencing (metabarcoding)

OUT = Operational Taxonomic Unit

Review

Working in groups of 2-4 (15 mins):

Stretch and divide into working groups

Review key concepts:

- 1. SR vs PE sequencing
- 2. Target enrichment
- 3. Amplicon sequencing
- 4. RNA sequencing

Try flowcharts or cartoons to simplify & summarize

Which applications are relevant to (eco)toxicology? Explain.

Bioinformatics: The **true cost** of NGS

FASTO file

The current trimming steps are:

- Cut adapters
- Cut bad parts of a read OR
- Cut the read to a specified length
- Drop bad reads

Assign the reads to a "species"

Or OPERATIONAL TAXONOMIC UNIT

A little extra:

Assign a "function" to the OTU

Metabarcoding Tutorial

3rd Gen: Nanopore Sequencing

* Coming soon

3rd Gen: Nanopore Sequencing

Nanopore Sequencing Comparison

Platform	Instrument	Mreads	Length (bp)	Gbp	Туре
Illumina	NovaSeq 6000 S4	10000	300	3000	SR & PE
Illumina	NextSeq 500 High-Output	400	300	120	SR & PE
Illumina	HiSeq X	375	300	112.5	PE
Illumina	HiSeq High-Output v4	250	250	62.5	SR & PE
Illumina	MiSeq v3	25	600	15	SR & PE
Illumina	MiniSeq High-Output	25	300	7.5	SR & PE
Oxford Nanopore	MinION		1M+	20	SR
Oxford Nanopore	PromethION		TIVIT	1000	SR
lon	Proton I	60	200	12	SR
lon	PGM 318	4	400	1.6	SR
lon	PGM 316	2	400	0.8	SR
lon	PGM 314	0.4	400	0.16	SR
PacBio	PacBio Sequel	0.37	20000	7.4	SR
PacBio	PacBio RS II (P6)	0.055	15000	0.825	SR
Roche 454	GS FLX+ / FLX	0.7	700	0.49	SR
SOLiD	5500xl W	267	100	26.7	SR & PE

Nanopore Demo