Определение 1. Пусть задана числовая последовательность (a_n) . Формальное выражение $a_1 + a_2 + a_3 + \dots =$

называется pядом. Для краткости мы вместо $\sum_{n=0}^{\infty}$ будем писать просто $\sum_{n=0}^{\infty}$. Число $s_n=a_1+a_2+\ldots+a_n$ называется *n-ой частичной суммой* ряда.

Говорят, что ряд $\sum a_n$ сходится и имеет сумму A, если существует $\lim_{n\to\infty} s_n = A$. Тогда пишут $\sum a_n = A$. Если предел $\lim_{n \to \infty} s_n$ не существует, то говорят, что ряд $\sum a_n \stackrel{n}{pacxodumcs}$.

Задача 1. Пусть $a_n \geqslant 0$ при $n \in \mathbb{N}$. Докажите, что ряд $\sum a_n$ сходится тогда и только тогда, когда ограничено множество его частичных сумм $\{s_n \mid n \in \mathbb{N}\}$, причём в этом случае $\sum a_n = \sup\{s_n \mid n \in \mathbb{N}\}$.

Задача 2. Какие из следующих рядов сходятся? Найдите их суммы.

а)
$$\sum (-1)^n$$
; б) (геометрическая прогрессия) $\sum q^n$; в) $\sum \frac{n}{2^n}$; г) $\sum \frac{n^2}{2^n}$; д) $\sum n! \, q^n$; е) (гармоническая $p n \partial$) $\sum \frac{1}{n}$; ж) $\sum \frac{1}{n(n+1)}$; з)* $\sum \frac{1}{n(n+1)(n+2)}$.

Задача 3. Докажите, что если ряд $\sum a_n$ сходится, то $\lim_{n\to\infty} a_n = 0$. Верно ли обратное?

Задача 4. (*Критерий Коши сходимости ряда*) Докажите, что ряд $\sum a_n$ сходится тогда и только тогда, когда для любого $\varepsilon>0$ существует такое N, что из $n\geqslant m>N$ (где $n,m\in\mathbb{N}$) следует $|a_m + a_{m+1} + \dots + a_n| < \varepsilon.$

Задача 5.

- а) Пусть ряды $\sum a_n$ и $\sum b_n$ сходятся. Докажите, что тогда ряд $\sum (\alpha a_n + \beta b_n)$ тоже сходится, причём выполнено равенство $\sum (\alpha a_n + \beta b_n) = \alpha \sum a_n + \beta \sum b_n$.
- **б)** Пусть ряд $\sum a_n$ сходится, а ряд $\sum b_n$ расходится. Докажите, что тогда ряд $\sum (a_n + b_n)$ расхо-

Задача 6. Сходятся ли следующие ряды: a) $\sum \frac{(-1)^n}{n}$; б) $\sum \frac{1}{\sqrt{n}}$; в) $\sum \frac{1}{n^2}$?

Задача 7. Докажите: а) ряд $\sum_{n=0}^{\infty} \frac{1}{n!}$ сходится; б) $\sum_{n=0}^{\infty} \frac{1}{n!} = e$; в) $\left| e - \sum_{n=0}^{m} \frac{1}{n!} \right| < \frac{1}{m! \, m}$;

 \mathbf{r}) число e иррационально.

 $\left(\Pi \text{ОДСКАЗКА K ПУНКТУ } \mathbf{6} \colon \infty \leftarrow \lambda$ или $^{k} \left(\frac{1}{k} + 1 \right)$ яля для обинома Ньютона для $^{k} \text{ОДСКАЗКА K ПУНКТУ } \mathbf{6} \colon$

Задача 8*. Докажите, что сумма ряда $\sum \frac{1}{2n^2}$ есть число иррациональное.

Задача 9. Пусть $a_n \geqslant 0$ при всех $n \in \mathbb{N}$ и $\sigma \colon \mathbb{N} \to \mathbb{N}$ — взаимно однозначное отображение (перестановка натурального ряда). Тогда $\sum a_n = \sum a_{\sigma(n)}$ (то есть если сходится ряд в левой части равенства, то сходится и ряд в правой части, причём их суммы равны; если ряд в левой части расходится, то и ряд в правой части расходится).

Задача 10*. Пусть $p_n - n$ -е простое число, $n \in \mathbb{N}$.

- а) Докажите, что $\lim_{n\to\infty} \left(\frac{1}{1-1/p_1^2} \cdot \dots \cdot \frac{1}{1-1/p_n^2}\right) = \sum \frac{1}{n^2}$.
- **б)** Существует ли предел $\lim_{n\to\infty} \left(\frac{1}{1-1/p_1} \cdot \dots \cdot \frac{1}{1-1/p_n}\right)$? **в)** Сходится ли ряд $\sum \frac{1}{p_n}$?
- 0.3 mm 6.5 mm

Задача 11*. а) Пусть γ_k — сумма ряда $\sum_{k=2}^{\infty} \frac{1}{n^k}$. Найдите сумму $\sum_{k=2}^{\infty} \gamma_k$.

б) (Эйлер) Пусть A — множество всех целых чисел, представимых в виде n^k , где n,k — целые числа, большие 1. Найдите сумму $\sum_{a \in A} \frac{1}{a-1}$.

Задача 12*. ($\mathit{Число\ Лиувилля}$) Докажите, что число $\xi = \sum_{n=1}^{\infty} \frac{1}{2^{n!}}$ является трансцендентным.

Признаки сходимости рядов

Задача 13.

- а) (Признак сравнения Вейерштрасса) Пусть $\sum a_n$, $\sum b_n$ ряды с неотрицательными членами. Пусть найдётся такой номер k, что при всех n > k, $n \in \mathbb{N}$ будет выполнено неравенство $b_n \geqslant a_n$. Тогда если $\sum b_n$ сходится, то $\sum a_n$ сходится; если $\sum a_n$ расходится, то $\sum b_n$ расходится.
- Тогда если $\sum b_n$ сходится, то $\sum a_n$ сходится; если $\sum a_n$ расходится, то $\sum b_n$ расходится. **6)** (Признак д'Аламбера) Пусть члены ряда $\sum a_n$ положительны, и существует $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = q$. Если q < 1, то ряд сходится, а если q > 1, то ряд расходится. Что можно сказать о сходимости, если q = 1?
- в) (Признак Коши) Пусть члены ряда $\sum a_n$ неотрицательны и существует $\lim_{n\to\infty} \sqrt[n]{a_n} = q$. Если q < 1, то ряд сходится, а если q > 1, то ряд расходится. Что можно сказать о сходимости ряда, если q = 1?
- **r)** Приведите пример сходящегося ряда с положительными членами, к которому применим признак Коши, но не применим признак д'Аламбера. Бывает ли наоборот?

Задача 14.

- а) (*Теорема Лейбница*) Пусть $a_n > 0$ при всех $n \in \mathbb{N}$, и кроме того, $a_1 \geqslant a_2 \geqslant a_3 \geqslant \dots$; $\lim_{n \to \infty} a_n = 0$. Тогда знакочередующийся ряд $\sum (-1)^{n-1} a_n$ сходится.
- **б**) Верно ли утверждение теоремы без условия монотонности (a_n) ?

Задача 15. Пусть $a_n > 0$ при всех $n \in \mathbb{N}$, и кроме того, $a_1 \geqslant a_2 \geqslant a_3 \geqslant \dots$ Докажите, что ряд $\sum a_n$ сходится или расходится одновременно с рядом $\sum 2^n a_{2^n}$.

Задача 16. Исследуйте следующие ряды на сходимость:

a)
$$\sum \sin \frac{1}{n^2} \mathbf{6}$$
) $\sum \operatorname{tg} \frac{1}{n} \mathbf{p}$) $\sum \sin(n\alpha) \mathbf{r}$) $\sum_{n=2}^{\infty} \frac{1}{n \ln n} \mathbf{g}$) $\sum \frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot 2n} \mathbf{e}$) $\sum \frac{n^k}{a^n} \mathbf{g}$) $\sum \frac{a^n}{n!} \mathbf{g}$) $\sum \frac{e^n}{n!} \mathbf{g}$

и)
$$\sum \frac{n^3}{e^n}$$
ж) $\sum \frac{n!}{n^n}$ (п) $\sum \frac{(n!)^2}{n^n}$ (м) $\sum \left(\frac{n+1}{2n-1}\right)^n$ (н) $\sum \frac{1}{\sqrt{n(n+1)}}$.

Задача 17. (Дзета-функция Римана) Исследуйте сходимость ряда $\zeta(s) = \sum \frac{1}{n^s}$ в зависимости от параметра $s \in \mathbb{R}$.

Задача 18. Верно ли, что если ряды $\sum a_n$ и $\sum b_n$ сходятся, то сходится и ряд $\sum a_n b_n$?

Задача 19. Известно, что $a_n\geqslant 0,\ b_n\geqslant 0$ и ряды $\sum a_n^2$ и $\sum b_n^2$ сходятся. Докажите, что ряд $\sum a_nb_n$ тоже сходится.

Задача 20. Известно, что $a_n \geqslant 0$ и ряд $\sum a_n^2$ сходится. Можно ли утверждать, что ряд $\sum \frac{a_n}{n}$ сходится?

1	2 a	2 6	2 B	2 Г	2 д	2 e	2 ж	2 3	3	4	5 a	5	6 a	6 6	6 B	7 a	7 б	7 в	7 Г	8	9	10 a	10 6	10 B

11 a	11 б	12	13 a	13 6	13 B	13 Г	14 a	14 6	15	16 a	16 б	16 B	16 Г	16 Д	16 e	16 ж	16 3	16 и	16 K	16 Л	16 M	16 H	17	18	19	20