ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ

- Διαμόρφωση Διπλής Πλευρικής Ζώνης με Καταπιεσμένο Φέρον (DSB-SC)
- Πολυπλεξία Ορθογωνικών Φερόντων (Quadrature Amplitude Modulation, QAM)
- Μέθοδοι Διαμόρφωσης Απλής & Υπολειπόμενης Πλευρικής Ζώνης (Single-Sideband, SSB & Vestigial-Sideband, VSB Methods of Modulation)
- Μετατόπιση Συχνότητας (Frequency Translation)
- Πολυπλεξία Συχνότητας (Frequency-Division Multiplexing)

1 Απριλίου, 2022

Διαμόρφωση κατά πλάτος (Επανάληψη Ι)

$$c(t) = A\cos(2\pi f_c t) \qquad x(t) = [1 + km(t)]$$

$$s(t) = x(t)A\cos(2\pi f_c t)$$

$$s(t) = A[1 + km(t)]\cos(2\pi f_c t)$$

$$|km(t)| < 1 \Rightarrow -1 < km(t) < 1 \Rightarrow 0 < 1 + km(t) < 2$$

m(t): σήμα βασικής ζώνης (σήμα διαμόρφωσης)

c(t): φέρον σήμα

s(t): διαμορφωμένο σήμα

k: ευαισθησία πλάτους διαμορφωτή

Διαμόρφωση: κάποιο χαρακτηριστικό του φέροντος (π.χ. πλάτος)

μεταβάλλεται σύμφωνα με το σήμα διαμόρφωσης

Ποσοστό Διαμόρφωσης: Απόλυτη μέγιστη τιμή του km(t)

πολλαπλασιασμένη επί 100

Διαμόρφωση κατά πλάτος (Επανάληψη ΙΙ)

$$s(t) = x(t)\cos(2\pi f_c t) \quad x(t) = A \left[1 + km(t)\right]$$
$$|km(t)| < 1 \Rightarrow -1 < km(t) < 1 \Rightarrow 0 < 1 + km(t) < 2$$

$$S(f) = \frac{A}{2} \left[S(f - f_c) + S(f + f_c) \right] + \frac{kA}{2} \left[M(f - f_c) + M(f + f_c) \right]$$

Διαμόρφωση διπλής πλευρικής ζώνης με καταπιεσμένο φέρον (Double-sideband suppressed carrier modulation - DSBSC)

Αρχική παρατήρηση: Η μετάδοση του φέροντος αποτελεί σπατάλη ισχύος.

Για να αποφευχθεί μεταδίδεται μόνο το

$$s(t) = c(t)m(t) = A_c \cos(2\pi f_c t)m(t)$$

και στο πεδίο της συχνότητας

$$S(f) = \frac{1}{2} A_c [M(f - f_c) + M(f + f_c)]$$

$$\frac{1}{2} A_c M(0)$$

$$-f_c - W \qquad -f_c + W$$

$$f_c - W \qquad f_c + W$$

Ισορροπημένος διαμορφωτής DSBSC

Ομόδυνη αποδιαμόρφωση κυματομορφών DSBSC

$$v(t) = A'_{c} \cos(2\pi f_{c}t + \varphi)s(t) =$$

$$= A'_{c} \cos(2\pi f_{c}t + \varphi)A_{c} \cos(2\pi f_{c}t)m(t) =$$

$$= \frac{1}{2} A_{c} A'_{c} \cos(4\pi f_{c}t + \varphi)m(t) + \frac{1}{2} A_{c} A'_{c} m(t) \cos \varphi$$

$$\Rightarrow v_{0}(t) = \frac{1}{2} A_{c} A'_{c} m(t) \cos \varphi$$

Ορθογωνική διαμόρφωση πλάτους (QAM)

Σήμα εξόδου: $s(t) = A_c m_1(t) \cos(2\pi f_c t + \phi) + A_c m_2(t) \sin(2\pi f_c t + \phi)$

Ορθογωνική διαμόρφωση πλάτους (QAM): Αποδιαμορφωτής

Σε τι χρειάζεται η διαμόρφωση απλής πλευρικής (single-sideband - SSB);

Η διαμόρφωση διπλής πλευρικής οδηγεί σε φάσμα ως εξής:

Στις δυο πλευρές εκατέρωθεν της συχνότητας $\pm f_c$ περιέχεται η ίδια πληροφορία. Θα ήταν αρκετό να στείλουμε π.χ. το σήμα

Δημιουργία του σήματος SSB (I)

Αρχίζουμε με ένα σήμα DSBSC:

$$r(t) = m(t)\cos 2\pi f_c t = \frac{1}{2}m(t)e^{j2\pi f_c t} + \frac{1}{2}m(t)e^{-j2\pi f_c t}$$

Στο πεδίο της συχνότητας είναι

$$R(f) = \frac{1}{2}M(f - f_c) + \frac{1}{2}M(f + f_c)$$

$$\frac{1}{2}M(f + f_c)$$

$$\frac{1}{2}M(0)$$

$$\frac{1}{2}M(f - f_c)$$

$$0$$

$$f_c - W$$

$$f_c - f_c + W$$

Δημιουργία του σήματος SSB (II)

Υπολογισμόςτης παράστασης του σήματος SSB

$$\begin{split} S(f) &= \frac{1}{4}M(f - f_c)[1 + sgn(f - f_c)] + \frac{1}{4}M(f + f_c)[1 - sgn(f + f_c)] \\ \Rightarrow 2s(t) &= \frac{1}{2}m(t)e^{j2\pi f_c t} + \frac{1}{2}m(t)e^{-j2\pi f_c t} \\ &- \frac{1}{2j}F^{-1}\{-jsgn(f - f_c)M(f - f_c)\} \\ &+ \frac{1}{2j}F^{-1}\{-jsgn(f + f_c)M(f + f_c)\} \\ \Rightarrow 2s(t) &= \frac{1}{2}m(t)e^{j2\pi f_c t} + \frac{1}{2}m(t)e^{-j2\pi f_c t} - \frac{1}{2j}\mathring{m}(t)e^{j2\pi f_c t} + \frac{1}{2j}\mathring{m}(t)e^{-j2\pi f_c t} \\ \Rightarrow s(t) &= \frac{1}{2}m(t)cos2\pi f_c t - \frac{1}{2}\mathring{m}(t)sin2\pi f_c t \end{split}$$

Παραγωγή SSB με διευκρίνιση φάσης (διαμορφωτής Hartley)

Ομόδυνη φώραση SSB

Ομόδυνη φώραση SSB

με σφάλμα

συχνότητας

$$v(t) = \frac{1}{2} A'_{c} \cos[2\pi (f_{c} + \Delta f)t] A_{c} [m(t) \cos(2\pi f_{c}t) - m(t) \sin(2\pi f_{c}t)] =$$

$$= \frac{1}{4} A'_{c} A_{c} m(t) \cos(2\pi \Delta f t) + \frac{1}{4} A'_{c} A_{c} m(t) \cos[2\pi (2f_{c} + \Delta f)t]$$

$$- \frac{1}{4} A'_{c} A_{c} \stackrel{\wedge}{m}(t) \sin[2\pi (2f_{c} + \Delta f)t] + \frac{1}{4} A'_{c} A_{c} \stackrel{\wedge}{m}(t) \sin 2\pi \Delta f t] =$$

$$\Rightarrow v_{0}(t) = \frac{1}{4} A'_{c} A_{c} m(t) \cos(2\pi \Delta f t) + \frac{1}{4} A'_{c} A_{c} \stackrel{\wedge}{m}(t) \sin 2\pi \Delta f t]$$

Ομόδυνη φώραση SSB με σφάλμα συχνότητας (ΙΙ)

Ομόδυνη φώραση SSB με σφάλμα φάσης

$$v(t) = \frac{1}{2} A'_{c} \cos(2\pi f_{c} t + \phi) A_{c} [m(t) \cos(2\pi f_{c} t) - \stackrel{\wedge}{m}(t) \sin(2\pi f_{c} t)] =$$

$$v_{0}(t) = \frac{1}{4} A'_{c} A_{c} m(t) \cos\phi + \frac{1}{4} A'_{c} A_{c} \stackrel{\wedge}{m}(t) \sin\phi$$

Ορισμένες παρατηρήσεις για το SSB

- Η δημιουργία φίλτρων με απότομο πέρασμα από της ζώνη διέλευσης στη ζώνη φραγής είναι δύσκολη.
- Η διαμόρφωση SSB είναι κατάλληλη όταν το φασματικό περιεχόμενο του σήματος είναι αμελητέο σε μια ζώνη γύρω από το μηδέν, όπως π.χ. συμβαίνει στη φωνή.
- Όταν αυτό δεν συμβαίνει, όπως στο τηλεοπτικό και στο τηλεγραφικό σήμα, η κάτω άκρη της άνω πλευρικής και η άνω άκρη της κάτω πλευρικής συναντώνται γύρω από τη συχνότητα του φέροντος.
- Το γεγονός αυτό κάνει προβληματική την αποδιαμόρφωση.

VSB (Vestigial sideband modulation) Διαμόρφωση υπολειπόμενης πλευρικής ζώνης

Σε αυτό το είδος διαμόρφωσης, που μοιάζει με το SSB, κάθε πλευρική υπερβαίνει λίγο τη συχνότητα φέροντος προκειμένου να υλοποιηθεί πιο εύκολα το φίλτρο αποκοπής της άλλης πλευρικής. Το μεταδιδόμενο κατάλοιπο της ανεπιθύμητης πλευρικής ζώνης αντισταθμίζει την ποσότητα που αφαιρείται από την επιθυμητή πλευρική ζώνη. Το εύρος ζώνης μετάδοσης που απαιτείται είναι:

 $B_T = W + f_v$

Αν το αρχικό σήμα έχει φάσμα

το διαμορφωμένο σήμα (κάτω πλευρικής) έχει ως εξής:

Συνθήκη για το βαθυπερατό φίλτρο (Ι)

Η διαμόρφωση VSB επιτυγχάνεται από διέλευση DSBSC μέσω κατάλληλου φίλτρου H(f)

$$s_1(t) = A_c m(t) \cos(2\pi f_c t)$$

$$S(f) = \frac{A_c}{2} [M(f - f_c) + M(f + f_c)]H(f)$$

Θέλουμε να βρούμε την H(f) ώστε το S(f) να ορίζει ντο φάσμα της επιθυμητής VSB κυματομορφής s(t).

Συνθήκη για το βαθυπερατό φίλτρο (ΙΙ)

Αποδιαμόρφωση:

$$= \frac{A_c A'_c}{A} M(f) [H(f - f_c) + H(f + f_c)] +$$

$$+\frac{A_{c}A'_{c}}{4}[M(f-2f_{c})H(f-f_{c})+M(f+2f_{c})H(f+f_{c})]$$

Μετά το φίλτρο:

$$V_0(f) = \frac{A_c A'_c}{4} M(f) [H(f - f_c) + H(f + f_c)]$$

Άρα η συνθήκη είναι

$$H(f - f_c) + H(f + f_c) = \sigma \tau \alpha \theta . (= e^{-j2\pi f \tau_0})$$

$$(\gamma \iota \alpha |f| < W)$$

Συνθήκη για το βαθυπερατό φίλτρο (ΙΙΙ)

$$H (f - f_c) + H (f + f_c) = \sigma \tau \alpha \theta.$$

Έκφραση του διαμορφωμένου σήματος

VSB (I)

$$s(t) = h(t) * A_c m(t) \cos 2\pi f_c t =$$

$$= \int_{-\infty}^{\infty} h(\tau)a(t-\tau)\cos[2\pi f_c(t-\tau)]d\tau =$$

$$\left| 2\pi f_c t \int_{-\infty}^{\infty} h(\tau) a(t-\tau) \cos 2\pi f_c \tau d\tau + \sin 2\pi f_c t \int_{-\infty}^{\infty} h(\tau) a(t-\tau) \sin 2\pi f_c \tau d\tau \right| = 0$$

$$= \frac{1}{2}a_{c}(t)\cos 2\pi f_{c}t + \frac{1}{2}a_{s}(t)\sin 2\pi f_{c}t$$

όπου

$$a_c(t) = 2\int_{-\infty}^{\infty} h(\tau)a(t-\tau)\cos 2\pi f_c \tau d\tau$$

$$a_s(t) = 2\int_{-\infty}^{\infty} h(\tau)a(t-\tau)\sin 2\pi f_c \tau d\tau$$

Έκφραση του διαμορφωμένου σήματος VSB (II)

$$a_{c}(t) = 2 \int_{-\infty}^{\infty} h(\tau) a(t - \tau) \cos 2\pi f_{c} \tau d\tau$$

Στο πεδίο της συχνότητας

$$a_c(t) = 2\int_{-\infty}^{\infty} h(\tau)a(t-\tau)\cos 2\pi f_c \tau d\tau$$

$$A_c(f) = 2A(f) \times \frac{1}{2} [H(f-f_c) + H(f+f_c)] \Rightarrow$$

$$\frac{A_c(f)}{A(f)} = H(f-f_c) + H(f+f_c) = 1 \Rightarrow$$

$$a_c(t) = a(t)$$

Έκφραση του διαμορφωμένου σήματος VSB (III)

$$a_s(t) = 2 \int_{-\infty}^{\infty} h(\tau) a(t - \tau) \sin 2\pi f_c \tau d\tau$$

Στο πεδίο της συχνότητας

$$a_c(t) = 2\int_{-\infty}^{\infty} h(\tau)a(t-\tau)\sin 2\pi f_c \tau d\tau$$

$$A_s(f) = 2A(f) \times \frac{1}{2j} [H(f - f_c) - H(f + f_c)] \Rightarrow$$

$$\frac{A_s(f)}{A(f)} = \frac{1}{j} [H(f - f_c) - H(f + f_c)]$$

Μετατόπιση Συχνότητας

Μείκτης (Mixer)

Frequency Translation (frequency changing, mixing, heterodyning) Σήμα m(t) bandwidth W διαμορφώνει κατά DSB-SC φέρον συχνότητας $f_1\gg W$ Ο μείκτης λαμβάνει σήμα $s_1(t)=m(t)A_c\cos(2\pi f_1t)$ και το μετατοπίζει σε φέρον συχνότητας f_2

$$f_1 \to f_2 = f_1 + f_l$$

όπου $f_l>0$ η συχνότητα τοπικού ταλαντωτή για τη μετατόπιση της συχνότητας του φέροντος

$$s_{1}(t) = m(t)A_{c}\cos(2\pi f_{1}t) \rightarrow s'(t) \rightarrow s_{2}(t)$$

$$s'(t) = s_{1}(t) \times A_{l}\cos(2\pi f_{l}t) = \frac{1}{2}A_{c}A_{l}m(t)[\cos(2\pi (f_{1} + f_{l})t) + \cos(2\pi (f_{1} - f_{l})t)]$$

$$s_{2}(t) = \frac{1}{2}A_{c}A_{l}m(t)\cos(2\pi (f_{1} + f_{l})t) = \frac{1}{2}A_{c}A_{l}m(t)\cos(2\pi f_{2}t)$$

μέσω ζωνοπερατού φίλτρου που προωθεί τις συχνότητες περί την $f_2=f_1+f_l$ ενώ αποκόπτει τις συχνότητες περί την f_1-f_l

Η όλη διαδικασία είναι γραμμική και διατηρεί τη σχέση πλευρικών ζωνών (sidebands) του σήματος ως προς το φέρον

Πολυπλεξία Διαίρεσης Συχνότητας, FDM

Receiver

Transmitter

IA	BLE 1: MICROWA	WE LETTER BAND DESIGNATIONS
Rand	Frequency range	Applications

Band	Frequency range	Applications	
L	1 to 2 GHz	Satellite, navigation (GPS, etc.), cellular phones	
s	2 to 4 GHz	Satellite, SiriusXM radio, unlicensed (Wi-Fi, Bluetooth, etc.), cellular phones	
C	4 to 8 GHz	Satellite, microwave relay	
Х	8 to 12 GHz	Radar	
K _u	12 to 18 GHz	Satellite TV, police radar	
K	18 to 26.5 GHz	Microwave backhaul	
K _a	26.5 to 40 GHz	Microwave backhaul	
Q	30 to 50 GHz	Microwave backhaul	
U	40 to 60 GHz	Experimental, radar	
V	50 to 75 GHz	New WLAN, 802.11ad/WiGig	
E	60 to 90 GHz	Microwave backhaul	
W	75 to 110 GHz	Automotive radar	
F	90 to 140 GHz	Experimental, radar	
D	110 to 170 GHz	Experimental, radar	

TABLE 2: STANDARD DEFINITIONS

or interest entremediate			
Frequency range	Applications		
30 to 300 kHz	Navigation, time standards		
300 kHz to 3 MHz	Marine/aircraft navigation, AM broadcast		
3 to 30 MHz	Broadcasting, mobile radio, amateur radio		
30 to 300 MHz	Landmobile,FM/TVbroadcast,amateurradio		
300 MHz to 3 GHz	Cell phones, mobile radio, WLAN, personal-area networks (PANs)		
3 to 30 GHz	Satellite, radar, backhaul, TV		
30 to 300 GHz	Satellite, radar, backhaul, experimental		
	30 to 300 kHz 300 kHz to 3 MHz 3 to 30 MHz 3 to 30 MHz 30 to 300 MHz 300 MHz to 3 GHz 3 to 30 GHz		

Παράδειγμα

- Θεωρείστε σήμα βασικής ζώνης με εύρος W=1kHz. Έστω κυματομορφή DSBSC που εφαρμόζεται μετά σε ομόδυνο φωρατή.
 Θεωρώντας άριστο συγχρονισμό μεταξύ φερόντων διαμορφωτή και φωρατή βρείτε το φάσμα εξόδου όταν:
- a) fc=1.25 kHz
- b) fc=0.75 kHz
 - ▶ Για να αποφευχθεί επικάλυψη πρέπει fc>=1kHz?

(b) For the case when $f_{_{\mbox{\scriptsize C}}}$ = 0.75, the respective spectra are as follows:

