Knapsack Problem - Using greedy approach

Object 1 2 3 4 5 6 7 profit 10 5 15 7 6 16 3 weight 2 3 5 7 1 4 1

max capacity want to file bag, M=15 Sell for profit

Constraint:

 $\sum_{i} X_{i} W_{i} \leq 15$ Object weight

<u>objective</u>: ∑ X_i W_i → max

maximum profit from selling items in bag

total weight of objects in bag cannot exceed 15

ONE optimal solution:

Select max profit 16,15,10... nope Consider profit per weight instead!

Object 1 2 3 4 5 6 7 profit 10 5 15 7 6 16 3 weight 2 3 5 7 1 4 1 $^{9/w}$ 5 1.3 3 1 6 4 3

1. Select based on highest 1/w

2 - 1.3 = 0.7

2.

3. Check if optimal solution

Prim's Algorithm

$$V' = 7$$

$$E' = |V| - 1 = 6$$

$$L \neq 0$$

1. Choose min-cost edge

2. choose min-cost edge attached to ALREADY SELECTED vertices (1 and 6)

3. repeat step 2 ...

E' has to be 6 so stop here!

10+25+22+12+16+14 = MIN COST SPANNING TREE

Job Sequencing w/ Deadline (greedy)

Show Sequence & Max profit

Jobs

$$j_1$$
 j_2
 j_3
 j_4
 j_5
 j_6
 j_7

 Profits
 35
 30
 25
 20
 15
 12
 15

 deadlines
 3
 4
 4
 2
 3
 1
 2

Constraint: deadline - 4 units of time longest wait in chart

Objective: max profit

Assumption: each job can be done in I unit of time

- 1 Select based on highest profit
- 2 Put in earliest avoil time slot if max deadline taken

$$35 \rightarrow 3 \text{ hours } (j,)$$

earliest time slot = 2 hrs

 $0.00 \quad 14 \quad 10.00 \quad$

MAX PROFIT
$$\sum P_i = 35 + 30 + 25 + 20 = 110$$