Module - 02

MOSFET Power Amplifiers

Power Amplifiers, Power Transistors, Classes of Amplifiers, Class A Power Amplifiers, Class B, Class AB Push-Pull Complementary Output Stages.

Four of the principal classifications are: class A, class B, class AB, and class C.

In **class-A operation**, an output transistor is biased at a quiescent current *IQ* and conducts for the entire cycle of the input signal.

For **class-B operation**, an output transistor conducts for only one-half of each sine wave input cycle.

In **class-AB operation**, an output transistor is biased at a small quiescent current *IQ* and conducts for slightly more than half a cycle.

class-A amplifier

Collector current versus time characteristics

Collector current versus time characteristics

class-AB amplifier

Collector current versus time characteristics

Cross Over Distortion

Crossover distortion can be virtually eliminated by applying small quiescent bias on each transistor (See Figure)

If Q_n and Q_p are matched, each GATE-SOURCE junction is biased with $V_{BB}/2$ when v_I is zero. Hence v_O is also zero.

MOSFET class-AB output stage

A class-AB output stage using enhancement-mode MOSFETs is shown in Figure.

If Mn and Mp are matched, and if $v_I = 0$, then VBB/2 is applied across the gate—source terminals of Mn and the source—gate terminals of Mp.

The quiescent drain currents established in each transistor

$$I_{DQ} = 0.05 = K \left(\frac{V_{BB}}{2} - |V_T| \right)^2$$

As v_l increases, the voltage at the gate of Mn increases and v_o increases. Transistor Mn operates as a source follower, supplying the load current to RL.

Since i_{Dn} must increase to supply the load current, v_{GSn} must also increase. Assuming V_{BB} remains constant, an increase in v_{GSn} implies a decrease in v_{SGp} and a resulting decrease in i_{Dp} .

As v_I goes negative, the voltage at the base of Mp decreases and v_O decreases. Transistor Mp then operates as a source follower, sinking current from the load.

Source:Donald Neamen

The input voltage for v_o positive is

Design Equations

$v_I = v_O + v_{GSn} - \frac{V_{BB}}{2}$

The source-to-gate voltage of Mp is

The output voltage v_o is $v_o = R_L i_L$

The quiescent drain currents established in each transistor are given by

$$v_{GSn} = \sqrt{\frac{i_{Dn}}{K}} + |V_T|$$

The source-to-gate voltage of M_p is $v_{SGp} = V_{BB} - V_{GSn}$ $i_{Dn} = i_{Dp} = I_{DQ} = K \left(\frac{V_{BB}}{2} - |V_T| \right)^2$

Source:Donald Neamen

- Class-AB Operation

Numerical

 M_n and M_p are matched transistors with the following parameters;

$$|V_T| = 1 \text{ V};$$

$$K = 0.20 \text{ A/V}^2$$

If V_{DD} = 10 V and R_L = 20 Ω , find the bias voltage $V_{BB}/2$ for I_{DQ} = 0.05 A. Find also V_{GSn} , V_{SGp} and v_I if v_O = 5 V.

$$i_D = K (v_{GS} - |V_T|)^2$$

Since the MOSFETs are matched, at quiescent point;

$$i_D = I_{DQ}$$

and

$$V_{GS} = V_{GSQ} = V_{SGQ} = \frac{V_{BB}}{2}$$

Hence;

$$I_{DQ} = K \left(\frac{V_{BB}}{2} - |V_T| \right)^2$$

Substituting values;

$$0.05 = 0.2 \left(\frac{V_{BB}}{2} - 1 \right)^2$$

which yields; $\frac{V_{BB}}{2} = 1.5 \text{ V}$

From the expression

$$i_{Dn} = K \left(v_{GSn} - \left| V_T \right| \right)^2$$

we have;

$$v_{GSn} = \sqrt{\frac{i_{Dn}}{K}} + \left| V_T \right|$$

When
$$v_O = 5 \text{ V}$$
;
$$i_{Dn} \cong i_L = \frac{v_O}{R_L}$$

$$= \frac{5}{20} = 0.25 \text{ A}$$
;

and

$$v_{GSn} = \sqrt{\frac{i_{Dn}}{K}} + |V_T| = \sqrt{\frac{0.25}{0.2}} + 1 = 2.12 \text{ V}$$

Since;

$$V_{BB} = v_{GSn} + v_{SGp}$$

then;

$$v_{SGp} = V_{BB} - v_{GSn}$$

$$=3-2.12=0.88 V$$

And;

$$v_I = v_O + v_{GSn} - \frac{V_{BB}}{2} = 5 + 2.12 - \frac{3}{2} = 5.62 \text{ V}$$