Определение

Пусть X — произвольное множество, тогда множество $2^X = \{Y | Y \subseteq X\}$ называется булеаном множества X. Примеры:

$$\bullet \ X = \{a,b,c\}$$

$$2^X = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}$$

•
$$X = {\emptyset, {\emptyset}}$$

Замечание:
$$\emptyset \neq \{\emptyset\}$$

$$2^X = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}$$

6a

Докажите, что

$$2^{A_1 \cap A_2 \cap \dots A_n} = 2^{A_1} \cap 2^{A_2} \cap \dots \cap 2^{A_n}$$

Решение:

Воспользуемся методом математической индукции, поэтому можно доказать для двух элементов.

Пусть у нас есть 2 множества A, B.

Элементы этих множеств можно разбить на 3 категории

- $A \setminus (A \cap B)$
- $B \setminus (A \cap B)$
- $A \cap B$

Тогда, $2^{(A\cap B)}$ – все подмножества, состоящие только из элементов третьей группы

Аналогичное определение и у величины $2^A \cap 2^B$ — среди всех подмножетств множества A и множетва B выбраны только те, в которых есть только элементы из третьей группы.

Значит,

$$2^{(A\cap B)} = 2^A \cap 2^B$$

Далее, рассуждения по методу математичсекой индукции

6б

Перечислите все элементы множества 2^A , где $A = \{1, 2, \{\{1\}, 2, 3\}\}$

Решение:

Если ввести обозначение $c = \{\{1\}, 2, 3\}$

$$2^X = \{\emptyset, \{1\}, \{2\}, \{c\}, \{1,2\}, \{1,c\}, \{2,c\}, \{1,2,c\}\}$$

$$2^X = \{\emptyset, \{1\}, \{2\}, \{\{\{1\}, 2, 3\}\}, \{1, 2\}, \{1, \{\{1\}, 2, 3\}\}, \{2, \{\{1\}, 2, 3\}\}, \{1, 2, \{\{1\}, 2, 3\}\}\}$$

Определение

Пусть $f: X \to Y$ – произвольное отображение.

Образ

 $A\subseteq X,\ f(A)=\{f(x)|x\in A\}$ – образ множества A при отображении f.

Прообраз

 $B\subseteq X,\,f^{-1}(B)=\{x\in X|f(x)\in B\}$ – прообраз множества A при отображении f.

7a

Пусть $f: X \to Y$ – произвольное отображение. $A_i \subseteq X, B_i \subseteq Y$, где i=1,2,...n Докажите, следующее свойство образов и прообразов.

$$f(A_1 \cup A_2 \cup ... \cup A_n) = f(A_1) \cup f(A_2) \cup ... \cup f(A_n)$$

Решение:

Воспользуемся методом математической индукции

Поэтому доказательство можно провести для двух множеств.

Доказать, что

$$f(A \cup B) = f(A) \cup f(B)$$

Чтобы доказать, что два множества равны между собой, докажем, что каждое из них является подмножеством другого множества

• $f(A \cup B) \subseteq f(A) \cup f(B)$

Без потери общности, зафиксируем $x \in A$. Тогда, результат отображения лежит в образе $f(x) \in f(A)$

Значит, $f(x) \in f(A \cup B)$, также $f(x) \in f(A) \cup f(B)$.

x – принимает все значения из $(A \cup B)$

• $f(A) \cup f(B) \subseteq f(A \cup B)$

Рассуждения аналогичны.

Без потери общности, зафиксируем $x \in A$. Тогда, результат отображения лежит в образе $f(x) \in f(A)$

8

Пусть U — универсальное множество, $S,T\subseteq U$ — фиксированные подмножества множества U. Определим отображение $f:2^U\to 2^U$, как $f(A)=T\cap (S\cup A)$. Найдите $f^{(2)}$. Выясните, чему равно f^n .

Решение

Дано

$$f(A) = T \cap (S \cup A)$$

$$f^{(2)}(A) = f(f(A))$$

$$= T \cap (S \cup f(A))$$

$$= T \cap (S \cup (T \cap (S \cup A)))$$

$$= [use : X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)]$$

$$= (T \cap S) \cup (T \cap T \cap (S \cup A)))$$

$$= (T \cap S) \cup (T \cap (S \cup A)))$$

$$= [use : X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)]$$

$$= (T \cap S) \cup (T \cap S) \cup (T \cap A)$$

$$= (T \cap S) \cup (T \cap A)$$

$$= T \cap (S \cup A)$$

$$(1)$$

Значит, f(f(A)) = f(A), $f^{(n)}(A) = f(A)$

Определение

Инъективность отображения

Если $f(x_1) = f(x_2)$, то $x_1 = x_2$

Сюръективность отображения

Если f(X) = Y.

Если все элементы из области значения достижимы в отображении.

Биективность отображения

Если отображение и сюръективно, и инъективно одновременно

9

Отображения $f, g, h: 2^N \times 2^N \to 2^N$ заданы следующим образом: $f(A, B) = A \cap B$, $g(A, B) = A \cup B$, $h(A, B) = A \oplus B$. Выясните, какие из этих отображений являются инъективными, сюръективными и биективными. Установите, какие из указанных ниже множеств не являются конечными, и перчислите элементы конечных множеств:

- $f^{-1}(\emptyset)$
- $g^{-1}(\emptyset)$
- $h^{-1}(\emptyset)$
- $f^{-1}(\{1\})$
- $g^{-1}(\{2\})$
- $h^{-1}(\{3\})$
- $f^{-1}(\{4,7\})$
- $g^{-1}(\{8,12\})$
- $h^{-1}(\{5,9\})$

Решение

Функция		Инъективна	Сюрьективна	Биективная
$f(A,B) = A \cap B$		-	+	-
g(A,B) =	$A \cup B$	-	+	-
h(A,B) =	$A \oplus B$	-	+	-
Функция				
$f^{-1}(\emptyset)$	бесконечно, (A_1,A_2) , где $A_1 \cup A_2 = \emptyset$			
$g^{-1}(\emptyset)$	(\emptyset,\emptyset)			
$h^{-1}(\emptyset)$	бесконечно, (A_1, A_1)			
$f^{-1}(\{1\})$	бесконечно, два множества с общим элементом 1			
$g^{-1}(\{2\})$	$(\emptyset, \{2\}), (\{2\}, \emptyset), (\{2\}, \{2\})$			
$h^{-1}(\{3\})$	бесконечно, к примеру $(A_1, A_1 \cup \{3\})$			
$f^{-1}(\{4,7\})$	бесконечно, два множества с общими элементами $\{4,7\}$			
$g^{-1}(\{8,12\})$	$(\emptyset, \{8, 12\}), (\{8, 12\}, \emptyset), (\{8\}, \{12\}), (\{12\}, \{8\})$			
$h^{-1}(\{5,9\})$		бесконечно, к	примеру (A_1, A_1)	$\cup \{5,9\})$

Выясните, для каких значений $n \in N$ отображение $f_n : N \cup 0 \to N$ является инъективным, сюрьективным, биективным

$$f_n(k) = \begin{cases} n - k, & \text{if } k < n \\ n + k, & \text{if } k \ge n \end{cases}$$

Решение:

Давайте посмотрим на значения функции при n=1

$$f_1(k) = \begin{cases} 1 - k, & \text{if } k < 1\\ 1 + k, & \text{if } k \ge 1 \end{cases}$$

Функция Инъективна Сюрьективна Биективная $f_1(k)$ + + +

Давайте посмотрим на значения функции при n=2

$$f_2(k) = \begin{cases} 2 - k, & \text{if } k < 2\\ 2 + k, & \text{if } k \ge 2 \end{cases}$$

Функция Инъективна Сюрьективна Биективная $f_2(k)$ + - -

Давайте посмотрим на значения функции при n=3

$$f_3(k) = \begin{cases} 3 - k, & \text{if } k < 3\\ 3 + k, & \text{if } k \ge 3 \end{cases}$$

Функция Инъективна Сюрьективна Биективная $f_3(k)$ + - -

Видно, что график состоит из двух частей. Тогда при n>1

Функция Инъективна Сюрьективна Биективная $f_n(k)$ + - - -