Principle of Mathematical Induction* Mathematics Extension 1

Vafa Khalighi[†]

June 14, 2008

Contents

1	Proof By Mathematical Induction	1
1.1	Equalities	2
1.2	Divisilbilities	4
1.3	Inequalities	
	Section	1

Proof By Mathematical Induction

The statement P(n) may be proved for all integers n greater than or equal to some starting value n_0 by doing the following steps:

- 1. Show that the statement is true for $n = n_0$, that is $P(n_0)$ is true.
- 2. Assume that the statement is true for n = k, where k is a positive integer such that $k \ge n_0$.
- 3. Prove that the statement is true for n = k + 1.
- 4. Write your Conclusion

Note. The conclusion that you need to write at the end of each proof would be almost identically the same conclusion. A good conclusion is something like:

"Since the statement is true for $n=n_0$, then it must also be true for $n=n_0+1$ by induction. It follows by induction that the statement is also true for $n=n_0+1+1=n_0+2$ and so on. Hence the statement is true for all the values of n."

Note. Generally in Mathematics Extension 1, we have three different kinds of statements that we want to prove by induction. These statements are:

^{*©} Vafa Khalighi. Permission to copy for private use granted.

[†]E-mail: vafa@live.com.au

- Equalities
- Divisilbilities
- Inequalities

We give some examples of these statements in the following sections.

1.1 Equalities

Example 1.1.1. Prove the following statement for $n \geq 1$.

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

Proof. We first need to show that the statement is true for n = 1.

$$P(1) : LHS = \frac{1}{2} = RHS$$

Now we assume that the statement is true for n = k.

$$P(k): \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{k(k+1)} = \frac{k}{k+1}$$

Now we should prove that the statement is true for n = k + 1.

$$P(k+1): \underbrace{\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{k(k+1)}}_{\text{equals } \frac{k}{k+1} \text{ from the assumption}} + \frac{1}{(k+1)(k+2)} = \frac{k+1}{k+2}$$

therefore we only are required to show that

$$\frac{k}{k+1} + \frac{1}{(k+1)(k+2)} = \frac{k+1}{k+2}$$

LHS =
$$\frac{k+1}{k+2} \left(\frac{k(k+2)}{(k+1)^2} + \frac{1}{(k+1)^2} \right)$$

= $\frac{k+1}{k+2} \left(\frac{k^2+2k+1}{(k+1)^2} \right)$
= $\frac{k+1}{k+2} \left(\frac{(k+1)^2}{(k+1)^2} \right)$
= $\frac{k+1}{k+2}$
= RHS

Example 1.1.2. Prove the following statement for $n \geq 1$ by mathematical induction.

$$\log 2 + \log \left(\frac{3}{2}\right) + \log \left(\frac{4}{3}\right) + \dots + \log \left(\frac{n+1}{n}\right) = \log (n+1)$$

Principle of Mathematical Induction

1.1 Equalities Page 3 of 6

Proof. We first need to show that the statement is true for n = 1.

$$P(1)$$
: LHS = $\log 2$ = RHS

Now we assume that the statement is true for n = k.

$$P(k): \log 2 + \log \left(\frac{3}{2}\right) + \log \left(\frac{4}{3}\right) + \dots + \log \left(\frac{k+1}{k}\right) = \log (k+1)$$

Now we should prove that the statement is true for n = k + 1.

$$P(k+1): \underbrace{\log 2 + \log\left(\frac{3}{2}\right) + \log\left(\frac{4}{3}\right) + \dots + \log\left(\frac{k+1}{k}\right)}_{\text{left}} + \log\left(\frac{k+2}{k+1}\right) = \log\left(k+2\right)$$

So it is needed to show that

$$\log(k+1) + \log\left(\frac{k+2}{k+1}\right) = \log(k+2)$$

LHS =
$$\log (k + 1) + \log (k + 2) - \log (k + 1)$$

= $\log (k + 2)$
= RHS

Example 1.1.3. Show that the following statement is tre for $n \geq 1$ by mathematical induction

$$1^{3} + 2^{3} + 3^{3} + 4^{3} + \dots + n^{3} = \frac{1}{4}n^{2}(n+1)^{2}$$

Proof. First we need to show that the statement is true for n=1.

$$P(1) : LHS = 1 = RHS$$

Now we assume that the statement is true for n = k.

$$P(k): 1^3 + 2^3 + 3^3 + 4^3 + \dots + k^3 = \frac{1}{4}k^2(k+1)^2$$

Now we should prove that the sttement is true for n = k + 1.

$$P(k+1): \underbrace{1^3 + 2^3 + 3^3 + 4^3 + \dots + k^3}_{\text{equals } \frac{1}{4}k^2(k+1)^2 \text{ from the assumption}} + (k+1)^3 = \frac{1}{4}(k+1)^2(k+2)^2$$

So we really need to show that

$$\frac{1}{4}k^{2}(k+1)^{2} + (k+1)^{3} = \frac{1}{4}(k+1)^{2}(k+2)^{2}$$

LHS =
$$\frac{1}{4}(k+1)^2(k^2+4k+4)$$

= $\frac{1}{4}(k+1)^2(k+2)^2$
= RHS

1.2 Divisibilities

Example 1.2.1. Prove by induction that $5^n + 2 \times 11^n$ is a multiple of 3 for $n \ge 1$.

Proof.

$$P(1): 5^1 + 2 \times 11^1 = 27 = 3 \times 9$$

Hence P(1) is true.

$$P(k): 5^k + 2 \times 11^k = 3Q$$
 Where Q is some integer

$$P(k+1): 5^{k+1} + 2 \times 11^{k+1} = 3R$$
 Where R is some integer

Now P(k+1) can be written as:

LHS =
$$5 \times 5^k + 2 \times 11 \times 11^k$$
 =
$$= 5 \left(\underbrace{5^k + 2 \times 11^k}_{3Q}\right) + 12 \times 11^k$$

$$= 5 \times 3Q + 12 \times 11^k$$

$$= 3 \left(\underbrace{5Q + 4 \times 11^k}_{R}\right)$$

$$= 3R$$

$$= RHS$$

Example 1.2.2. Prove by mathematical induction that $x^n - 1$ is divisible by x - 1 for $n \ge 1$.

Proof.

$$P(1): x^1 - 1 = 1 \times (x - 1)$$

Hence the statement is true for n = 1.

$$P(k): x^{k} - 1 = Q(x - 1)$$
 Where Q is some integer

$$P(k+1): x^{k+1} - 1 = R(x-1)$$
 Where R is some integer

Now in order to prove P(k+1), let's multiply both sides of P(k) by x.

$$x^{k+1} - x = Qx(x-1) \Rightarrow x^{k+1} - 1 = Qx(x-1) + x - 1$$

$$\therefore x^{k+1} - 1 = (x-1)\left(\underbrace{Qx+1}_{R}\right) \Rightarrow x^{k+1} - 1 = R(x-1)$$

Example 1.2.3. Prove by induction for even n that $n^3 + 2n$ is divisible by 12.

Principle of Mathematical Induction

1.3 Inequalities Page 5 of 6

Proof.

$$P(2): 2^3 + 2 \times 2 = 8 + 4 = 12 = 12 \times 1$$

Hence the statement is true for n=2.

$$P(k): k^3 + 2k = 12Q$$
 Where Q is some integer

$$P(k+2): (k+2)^3 + 2(k+2) = 12R$$
 Where R is some integer

Now P(k+2) can be written as

LHS =
$$k^{3} + 6k^{2} + 12k + 8 + 2k + 4$$

= $\underbrace{k^{3} + 2k}_{12Q} + 6k^{2} + 12k + 12$
= $12\left(\underbrace{Q + \frac{1}{2}k^{2} + k + 1}_{R}\right)$
= $12R$
= RHS

1.3 Inequalities

Example 1.3.1. By using induction show that $(1+p)^n \ge 1 + np$, where p > -1.

Proof.

$$P(1): 1 + p = 1 + p$$

Therefore the statement is true for n = 1.

$$P(k): (1+p)^k \ge 1 + kp$$

$$P(k+1): (1+p)^{k+1} \ge 1 + p(k+1)$$

By multiplying both sides of P(k) by (1+p), we get

$$(1+p)^{k+1} \ge (1+kp)(1+p)$$
 (1.3.1)

$$(1+kp)(1+p) = 1+p+kp+kp^{2}$$

= $(1+p(k+1))+kp^{2} > 1+p(k+1)$ (1.3.2)

By comparing equations 1.3.1 and 1.3.2, it becomes clear that $(1+p)^{k+1} \ge 1+p(k+1)$.

Example 1.3.2. Prove by mathematical induction that for all integers $n \geq 5$, $n^2 < 2^n$.

Proof.

$$P(5): 5^2 < 2^5 \Rightarrow 25 < 32$$

Thus the statement is true for n = 5.

$$P(k): k^2 < 2^k$$

$$P(k+1): (k+1)^2 < 2^{k+1}$$

By multiplying both sides of P(k) by 2, we have

$$2k^2 < 2^{k+1} \tag{1.3.3}$$

$$(k+1)^2 < 2k^2 \tag{1.3.4}$$

By comparing equation 1.3.3 and 1.3.4, it becomes clear that $(k+1)^2 < 2^{k+1}$.

Example 1.3.3. Prove by induction that $\sum_{r=1}^{n} \frac{1}{r^2} \le 2 - \frac{1}{n}$, for $n \ge 1$.

Proof.

$$P(1): 1 < 2 - 1 = 1$$

Hence the statement is true for n = 1.

$$P(k): \sum_{r=1}^{k} \frac{1}{r^2} \le 2 - \frac{1}{k}$$

$$P(k+1): \sum_{r=1}^{k+1} \frac{1}{r^2} \le 2 - \frac{1}{k+1}$$

Now by adding $\frac{1}{(k+1)^2}$ to both sides of P(k), we get

$$\sum_{r=1}^{k+1} \frac{1}{r^2} \le 2 - \frac{1}{k} + \frac{1}{(k+1)^2} \tag{1.3.5}$$

$$2 - \frac{1}{k} + \frac{1}{(k+1)^2} = 2 + \frac{-k^2 - 2k - 1 + k}{(k+1)^2}$$

$$= 2 + \frac{-k^2 - k - 1}{(k+1)^2}$$

$$= 2 - \left(\frac{k^2 + k + 1}{(k+1)^2}\right)$$

$$= 2 - \left(\frac{k(k+1) + 1}{(k+1)^2}\right)$$

$$= 2 - \left(\frac{k}{k+1} + \frac{1}{(k+1)^2}\right) < 2 - \frac{1}{k+1}$$
 (1.3.6)

By comparing equations 1.3.5 and 1.3.6, it becomes clear that $\sum_{r=1}^{k+1} \frac{1}{r^2} \le 2 - \frac{1}{k+1}$.