LY50S03

BLE 蓝牙模块用户手册

Bluetooth Series BLE Mode

深圳市科名科技有限公司
Shenzhen Keming
Technology

- ➤ 蓝牙版本: Bluetooth Specification V5.0 BLE
- > AT 指令集
- ▶ 使用简单
- ▶ 主机功能,连接从机设备
- ▶ 支持 BLE 5.0 BEL 4.2, BLE 4.1, BLE 4.0
- ▶ 高速传输,每包最大有效数据:244 字节
- ➤ 最大支持 10K 字节每秒的数据传输(测试条件: 115200 bps,每 包数据 10000 字节,连续发送,模块一个做主机,一个做从机,相互连接通信)
- ▶ 速度: 6-10K 字节/秒
- ➤ 供电: 2.4V~3.6V
- > 主从一体

目录

- 1. 模块介绍
- 2. 基本参数
- 3. 应用领域
- 4. 模块引脚定义、尺寸、参考电路
- 5. AT 指令集

1 模块介绍

LY50S03 蓝牙模块是基于 Bluetooth Specification V5.0 BLE 蓝牙协议的数传模块。无线工作 频段为 2.4GHz ISM,调制方式是 GFSK(Gaussian Frequency Shift Keying)。模块发射功率为可调,-21dbm ~~ +5dbm 共 13 个功率级别。模块采用 TI 的 CC2640R2 芯片,支持蓝牙 5.0BLE.

层块米用 II 的 CC2640R2 心厅,文持监才 5.0BLE 另可根据客户需求定制功能。

2基本参数

名称	参数	名称	参数
模块型号	LY50S03	工作频段	2.4G
芯片型号	TICC2640R2	数字接口	UART (3.3V TTL)
工作电压	2.0V~3.6V	平均工作电流	小于 4mA
发射功率	5dBm(最大)	通信速率	5-10K/s
天线连接方式	PCB 板载天线	工作湿度	10%~90%
存储温度	-40°C~+85°C	工作温度	0°C~+65°C
客户定制功能	支持	模块尺寸	13.5mm*18mm

LY50S03 BLE Module

工业遥控、遥测 电子秤 游戏手柄 血糖仪等便携、电池供电医疗器械 数据采集设备 智能照明设备 蓝牙遥控玩具 无线 LED 显示屏 蓝牙打印机 智能家居、工业控制

.

LY50S03 BLE Module

4 模块引脚定义

管脚编号	管脚编号 名称 CC2640R2 接口		说明	复用功能
1	1 DIO0		GPIO 通用 IO 口	
2	TXD 串口发送	DIO1	串口信号	
3	NC	NC		
4	RXD 串口接收	DIO2	串口信号	
5	JTAG_TMS	JTAG_TMS	程序烧录口	
6	JTAG_TCK	JTAG_TCK	程序烧录口	
7	DIO3	DIO3/JTAG_TDO	GPIO 通用 IO 口	
8	DIO4	DIO4/JTAG_TDI	GPIO 通用 IO 口	
9	电源 3.3V	VCC	电源	
10	电源 3.3V	VCC	电源	
11	复位引脚	RESET	复位	
12	电源地	GND	电源正	
13	DIO6	DIO6	GPIO 通用 IO 口	
14	DIO7	DIO7	GPIO 通用 IO 口	
15	LED 指示连接状态	DIO8	LED 指示连接状态	
16	WAKEUP	DIO9	按键唤醒引脚	

模块尺寸

参考电路

LY50S03 BLE Module

模块间通信

移动设备与模块间的通信

AT 指令 模块默认串口参数: 波特率 115200BPS, N,8,1 格式

序号	AT 指令	功能说明	默认参数	
1	AT	测试指令,检测串口通信		
2	AT+ADDR	查询模块 MAC 地址		
3	AT+VERS	查询模块蓝牙固件版本		
4	AT+BAUD	波特率设置	115200	
5	AT+PARI	设置串口检验	无校验	
6	AT+STOP	设置串口停止位	1 位停止位	
7	AT+NAME	查询设置模块名称	LY50S03	
8	AT+NOTI	查询设置通知信息		
9	AT+DISCON	断开所有连接		
10	AT+TXPW	发射功率设置	0dBm	
11	AT+GAIN	接收增益设置	标准	
12	AT+RESET	重启/复位模块		
13	AT+RENEW	恢复出厂设置		
14	AT+PAIR	设置配对模式		
15	AT+PASS	设置连接密码	000000	
16	AT+PWSV	设置休眠方式		
17	AT+SLEEP	从机模块进入休眠		

LY50S03 BLE Module

18	AT+ADIN	设置广播间隔	100ms
19	AT+ROLE	设置主从模式	从机
20	AT+SCAN?	主机搜索指令	
21	AT+CONNX	通过索引连接 BLE 设备	
22	AT+CON	通过 MAC 地址连接	
23	AT+CONNL	连接上一次成功连接过的设备	
24 AT+CLEAR		清除连接信息/配对信息	
25	AT+GPIOS	置高指定GPIO端口(可延时设置)	
26	AT+GPIOC	置低指定GPIO端口(可延时设置)	
27	AT+GPIOT	翻转指定GPIO端口电平(可延时)	
28 AT+GPIOR		读指定GPIO端口输入状态	
29	AT+GPIOG	读指定GPIO 端口输出状态	

AT 指令说明

1. AT 测试指令

如果适配器工作正常,发送AT 会返回 "OK"

AT	
执行指令	响应返回
AT	ок
 示例:	
AT	
ок	
OK	

2. AT+ADDR? 查询模块的 MAC 地址

AT+ADDR?	
查询指令	响应
AT+ADDR?	OK+Get: <mac></mac>

参数

<MAC> 模块的 MAC 地址

示例:

AT+ADDR?

OK+Get:0x0C61CFC6F664

模块的 MAC 地址为: 0xC61CFC6F664

3. AT+VERS? 查询软件版本

AT+VERS?							
查询指令				П	句应		
AT+VERS?	•		OK	+Get:	VERS	ION>	
参数							
<version></version>	模块	的软件版本					

示例:

AT+VERS?

OK+Get:LY50S03-V01

模块的软件版本为: LY50S03-V01

4. AT+BAUD 查询/设置波特率

E>
E>
J

参数

<VALUE> 0 设置波特率为 9600

- 1 设置波特率为 19200
- 2 设置波特率为 38400
- 3 设置波特率为 57600
- 4 设置波特率为 115200

示例

AT+BAUD4 //设置波特率为 115200 bps
OK+Set:4

深圳市科名科技有限公司

AT+BAUD?

OK+Get:4 //查询到的波特率为 115200 bps

5. AT+PARI 查询/设置串口(UART)校验方式

AT+PARI	
执行指令	响应
AT+PARI <value></value>	OK+Set: <value></value>
查询指令	
AT+PARI?	OK+Get: <value></value>

参数

<VALUE> <u>0</u> 设置串口(UART) 校验位为 0 无校验 (默认值)

1 设置串口(UART)校验位为1 奇校验

2 设置串口(UART)校验位为2 偶校验

示例

AT+ PARIO // 设置 UART 无校验	
--------------------------	--

OK+Set:0

示例

AT+ PARI?

OK+Get:0 // 查询到 UART 无校验

6. AT+STOP 查询/设置串口(UART)停止位

AT+STOP	
执行指令	响应
AT+STOP <value></value>	OK+Set: <value></value>
查询指令	
且 呴油マ AT+STOP?	OK+Get: <value></value>
AITSIUP	UN+Get: <value></value>

参数

- **<VALUE>** <u>1</u> 设置串口(UART)停止位为 1 1 位停止位 (默认值)
 - 2 设置串口(UART)停止位为2 2位停止位

示例

AT+ STOP1

//设置串口(UART)为1位停止位

OK+Set:0

示例

AT+ STOP?

OK+Get:1 //查询到的串口停止位为 1 位

查询/设置模块名称 7. AT+NAME

AT+NAME	
执行指令	响应
AT+NAME <value></value>	OK+Set: <value></value>
查询指令	
AT+NAME?	OK+Get: <value></value>

参数

<VALUE> 模块的名称 最大长度为 20 字节,支持英文,数字,'-',

''组合。模块默认的名称采用模块的型号

LY50S03 默认名称:

AT+ NAMEABC123 //设置模块名称为 ABC123

OK+Set: ABC123

示例

AT+ NAME?

OK+Get:LY50S03 //查询到模块的名称为 LY50S03

8. AT+NOTI 查询/设置模块的通知信息

AT+NOTI	
执行指令	响应
AT+NOTI <value></value>	OK+Set: <value></value>
本为长人	
查询指令	
AT+NOTI?	OK+Get: <value></value>

参数

<VALUE> 0 不发送状态信通知息到串口

1 向串口发送状态通知信息(下表列出) (默认值)

通知状态信息

1.上电初始化完成信息: OK+INIT

2.连接成功通知: OK+CONN

3.断开连接通知: OK+LOST

AT+ NOTIO	//设置模块发送状态信息
OK+Set:0	

示例

 AT+ NOTI?

 OK+Get:1
 //查询到模块不发送状态信息到串口

9. AT+DISCON 断开连接

AT+DISCON	
执行指令	响应
AT+DISCON	OK+LOST

模块收到 AT+DISCON 指令后,会与连接的设备断开,并返回 **OK+LOST** (AT+NOTIO 配置了模块返回状态通知指令)

示例

AT+DISCON OK+LOST

10.AT+TXPW设置模块发射功率

AT+TXPW	
执行指令	响应
AT+TXPW <value></value>	OK+Set: <value></value>
查询指令	
AT+TXPW?	OK+Get: <value></value>

参数

<VALUE> 0 设置

- 0 设置发射功率为 -21dbm
- 1 设置发射功率为 -18dbm
- 2 设置发射功率为 -15dbm
- 3 设置发射功率为 -12dbm
- 4 设置发射功率为 -9dbm
- 5 设置发射功率为 -6dbm
- 6 设置发射功率为 -3dbm
- 7 设置发射功率为 0dbm(默认值)
- 8 设置发射功率为 +1dbm
- 9 设置发射功率为+2dbm
- A 设置发射功率为 +3dbm
- B 设置发射功率为 +4dbm
- C 设置发射功率为 +5dbm

示例

AT+TXPWC	// 设置发射功率为 +5dbm
OK+Set:C	

示例

AT+TXPW?

OK+Get:0 // 查询到发射功率为-21dbm

11.AT+GAIN 查询/设置接收增益

AT+GAIN	
执行指令	响应
AT+GAIN <value></value>	OK+Set: <value></value>
查询指令	
AT+GAIN?	OK+Get: <value></value>
_	

参数

<VALUE> <u>0</u> 标准接收增益 **(默认值)**

1 高接收增益

AT+GAIN1 // 设置模块为高接收增益

OK+Set:1

示例

AT+GAIN?

OK+Get:0 // 查询到模块设置的为标准接收增益

12.AT+RESET 重新启动

模块会重新启动

参数

NONE

示例

AT+RESET

OK+RESET

13.AT+RENEW 恢复出厂设置

AT+RENEW	
执行指令	响应
AT+RENEW	OK+RENEW
会 粉	

参数

NONE

所有参数恢复到出厂默认状态

示例

AT+RENEW

OK+RENEW

14.AT+PAIR 查询/设置配对模式

AT+PAIR	
执行指令	响应
AT+PAIR <value></value>	OK+Set: <value></value>
查询指令	
AT+PAIR?	OK+Get: <value></value>
AT+PAIR?	OK+Get: <value></value>

参数

<VALUE> <u>0</u> 无需配对,不需要密码直接连接 (默认值)

- 1 简单配对, 静态密码验证
- 2 动态配对模式, 动态密码验证
- 4 安全验证模式, 数字确认验证

注:静态密码是从设备的固定密码,并且每次密码都相同。

动态密码是蓝牙从设备的随机密码。 每次建立连接时,密码都会更改。 同时,从机通过串口输出动态密码。

安全配对模式通过数字确认验证。连接后,从机或者主机需要用户使用 AT + PASS1 或 AT + PASS0 接受或拒绝连接。

示例

71.03	
AT+ PARIO	// 设置无需配对模式
OK+Set:0	

示例

AT+ PARI?	
OK+Get:0	// 查询配对模式

15.AT+PASS 查询/设置配对密码

AT+PASS	
执行指令	响应
AT+PASS <value></value>	OK+Set: <value></value>
查询指令	
AT+PASS?	OK+Get: <value></value>

<VALUE> 000000-999999 密码

示例

AT+ PASS123456 //设置密码为 123456

OK+Set:123456

示例

AT+ PASS?

OK+Get:123456 // 查询到的密码为 123456

16.AT+PWSV 设置/查询模块的休眠方式

AT+PWSV	
执行指令	响应
AT+PWSV <value></value>	OK+Set: <value></value>
查询指令	
AT+PWSV?	OK+Get: <value></value>

参数

- **<VALUE>** 0 不休眠 可以通过 AT+SLEEP 指令使模块进入休眠模式
 - 1 断开连接1分钟后自动休眠,继续广播,可通过连接唤醒
 - 2 深度休眠,不广播,需通过 IO 口唤醒,通过 wake up 脚 唤醒

示例

// 设置断开连接后1分钟休眠 AT+PWSV1

OK+Set:1

示例

AT+PWSV?

// 查询到模块不休眠 OK+Get:0

17.AT+SLEEP 设置模块休眠

AT+SLEEP	
执行指令	响应
AT+SLEEP	OK+SLEEP

参数

<VALUE> 无参数

用户给蓝牙发送休眠指令后,模块立即进入休眠模式。休眠模式是带有广播,并可以通过连接唤醒模块的。

示例

AT+SLEEP	// 设置模块进入休眠模式
OK+SLEEP	

18.AT+ADIN设置/查询模块的广播间隔

AT+ADIN	
执行指令	响应
AT+ADIN <value></value>	OK+Set: <value></value>
查询指令	
AT+ADIN?	OK+Get: <value></value>
AI · ADINI	ON: OGLIVALOL

参数	
<value></value>	0 广播间隔 100ms
	1 广播间隔 200ms
	2 广播间隔 300ms
	3 广播间隔 400ms
	4 广播间隔 500ms
	5 广播间隔 600ms
	99 广播间隔 10000ms

广播间隔越大,功耗越低,但是连接越难。

AT+ADIN1 // 设置模块的广播间隔为 200ms

OK+Set:1

示例

AT+ADIN?

OK+Get:0 // 查询到模块广播间隔为 100ms

19.AT+ROLE设置/查询模块的主从模式

AT+ROLE	
执行指令	响应
AT+ROLE <value></value>	OK+Set: <value></value>
查询指令	
AT+ROLE?	OK+Get: <value></value>
AITRULE!	ON+Get: <value></value>

参数

<VALUE> <u>0</u> 从机模式 (默认值)

1 主机模式

设置完主从模式后,模块会自动重启

示例

AT+ROLE1 // 设置模块为主机模式

OK+Set:1

示例

AT+ROLE?

OK+Get:0 // 查询到模块为从机模式

20.AT+SCAN? 搜索 BLE 从机设备

AT +SCAN?	
执行指令	响应
AT+SCAN?	Scanning
	<index>:<mac><rssi><name></name></rssi></mac></index>
	Devices Found: <quantity></quantity>

参数

<INDEX> 搜索到的 BLE 设备索引编号

<MAC> 搜索到的 BLE 设备 MAC 地址

<RSSI> 搜索到的 BLE 设备的 RSSI 值

<NAME> 搜索到的 BLE 设备的名称

<QUANTITY> 搜索到的 BLE 设备的总数量

示例:

AT+SCAN?

Scanning...

0: 0x1CCAE32FC8AF, -60, KM-BLE

1: 0x1CCAE32FC512, -72, KM-BLE

2: 0x1CCAE328BE93, -68, KM-BLE

3: 0x1CCAE325E0CB, -51, KM-BLE

4: 0x1CCAE326226D, -69, KM-BLE

5: 0x1CCAE325E051, -60, KM-BLE

6: 0x2CAB332D37A5, -85, KM-BLE

7: 0x2CAB332D52F5, -83, KM-BLE

8: 0x2CAB33355259, -76, KM-BLE

9: 0x2CAB332D4F99, -83

Devices Found: 10

21.AT+CONN 通过索引连接 BLE 设备

AT +CONN	
执行指令	响应
AT+CONN <index></index>	Connecting
	OK+CONN: <mac></mac>

参数

<INDEX> 已搜索到的 BLE 蓝牙设备的索引

<MAC> 已连接 BLE 设备的 MAC 地址

示例

AT+SCAN?

Scanning...

0: 0x1CCAE32FC8AF, -60, KM-BLE

1: 0x1CCAE32FC512, -72, KM-BLE

2: 0x1CCAE328BE93, -68, KM-BLE

3: 0x1CCAE325E0CB, -51, KM-BLE

4: 0x1CCAE326226D, -69, KM-BLE

5: 0x1CCAE325E051, -60, KM-BLE

6: 0x2CAB332D37A5, -85, KM-BLE

7: 0x2CAB332D52F5, -83, KM-BLE

8: 0x2CAB33355259, -76, KM-BLE

9: 0x2CAB332D4F99, -83

Devices Found: 10

AT+CONNO

Connecting

OK+CONN:0x1CCAE32FC8AF

22.AT+CON 通过 MAC 地址连接设备

注①:如果主机连接过该 MAC 地址的设备,并存有这个 MAC 从机信息情况下,

则不会显示"Scanning..."字符。

参数

<MAC> 已连接 BLE 设备的 MAC 地址

示例

AT+CON1CCAE32FC8AF

Scanning...

Connecting

OK+CONN:0x1CCAE32FC8AF

0: 2A00, Read, Write

1: 2A01, Read

2: 2A04, Read

3: 8146C203-EF6F-42AF-B1C6-F339DBDCE2EA, Read, Write

4: 8146C201-EF6F-42AF-B1C6-F339DBDCE2EA, Read, Notify

Chars Found: 5

23.AT+CONNL 连接上一次成功连接过的设备

AT +CONNL	
执行指令	响应
AT+CONNL	Connecting
	OK+CONN: <mac></mac>

参数

<MAC> 已连接 BLE 设备的 MAC 地址

示例

AT+CONNL

Connecting

OK+CONN:0x1CCAE32FC8AF

24.AT+CLEAR 清除连接信息/配对信息

AT+CLEAR	
执行指令	响应
AT+CLEAR	OK+CLEAR

参数

NONE

清除主机连接信息(如果模块作为主机,连接过其他从机,会将从机的信息保存到模块里,这里清除就是清除已经保存的从机信息)

清除从机/主机的配对信息

示例

AT+CLEAR

OK+CLEAR

25.AT+GPIOS 设置模块指定GPIO 口为高

AT+GPIOS	
执行指令	响应
AT+GPIOS <gpio><time></time></gpio>	OK+Set: <value></value>

参数

<GPIO> GPIO 口 可以设置的 GPIO 口如下表 蓝色加粗

取值: 00, 03, 04, 06, 07 (实际上是蓝牙芯片对的 IO 口)

<TIME> 可选参数,这个是延时时间,用于延时一段时间后再设置指定 GPIO 为高电平,取值范围 1-99999 单位: 秒(s);如果不设置

这个参数,指令立即执行

示例

AT+GPIOS00 // 设置 GPI00 输出为高电平,立即执行

OK+Set:1

示例

AT+GPIOS0310 // 10s 后,设置 GPIO03 为高电平

OK+Set:0 // 这里返回的是当前的状态,当前 GPIO03 的为低电平,

10S 后会设置 **GPIO03** 为高

示例

AT+GPIOS0310 // 10s 后, 设置 GPIO03 为高电平

OK+Set:1 // 这里返回的是当前的状态,当前 **GPIO03** 为高电平, 10S

后 GPIO03 仍为高。

可设置的 GPIO 端口如下表中蓝色加粗

管脚编号	名称	CC2640R2 接口	说明	复用功能
1	DIO0	DIO0	GPIO 通用 IO 口	
2	TXD 串口发送	DIO1	串口信号	
3	NC	NC		
4	RXD 串口接收	DIO2	串口信号	
5	JTAG_TMS	JTAG_TMS	程序烧录口	
6	JTAG_TCK	JTAG_TCK	程序烧录口	
7	DIO3	DIO3/JTAG_TDO	GPIO 通用 IO 口	

LY50S03 BLE Module

8	DIO4	DIO4/JTAG_TDI	GPIO 通用 IO 口
9	电源 3.3V	VCC	电源
10	电源 3.3V	VCC	电源
11	复位引脚	RESET	复位
12	电源地	GND	电源正
13	DIO6	DIO6	GPIO 通用 IO 口
14	DIO7	DIO7	GPIO 通用 IO 口
15	LED 指示连接状态	DIO8	LED 指示连接状态
16	WAKEUP	DIO9	按键唤醒引脚

26.AT+GPIOC 设置模块指定 GPIO 口为低电平

AT+GPIOC	
执行指令	响应
AT+GPIOC <gpio><time></time></gpio>	OK+Set: <value></value>

参数

<GPIO> GPIO 口 可以设置的 GPIO 口如下表 蓝色加粗

取值: 00, 03, 04, 06, 07 (实际上是蓝牙芯片对的 IO 口)

<TIME> 可选参数,这个是延时时间,用于延时一段时间后再设置指定 GPIO 为低电平,取值范围 1-99999 单位:秒(s);如果不设置

这个参数,指令立即执行

示例

AT+GPIOC00 // 设置 GPI00 输出为低电平,立即执行

OK+Set:0

示例

AT+GPIOC0310 // 10s 后,设置 GPIO03 为低电平

OK+Set:0 // 这里返回的是当前的状态,当前 GPIO03 的为低电平,

10S 后 **GPIO03** 仍为低

示例

AT+GPIOC0310 // 10s 后,设置 GPIO03 为低电平

OK+Set:1 // 这里返回的是当前的状态,当前 **GPIO03** 为高电平, 10S

后 GPIO03 设置为低。

深圳市科名科技有限公司

27.AT+GPIOT 设置模块指定 GPIO 口电平翻转

AT+GPIOT	
执行指令	响应
AT+GPIOT <gpio><time></time></gpio>	OK+Set: <value></value>

翻转 GPIO 电平用在需要设置 GPIO 口由高变低或者由低变高的的情况

参数

<GPIO> GPIO 口 可以设置的 GPIO 口如下表 蓝色加粗

取值: 00, 03, 04, 06, 07 (实际上是蓝牙芯片对的 IO 口)

<TIME> 可选参数,这个是延时时间,用于延时一段时间后再翻转指定

GPIO, 取值范围 1-99999 单位: 秒(s); 如果不设置这个参数,

指令立即执行

示例

AT+GPIOT00	// 设置 GPI00 电平翻转,立即执行	
OK+Set:0		
AT+GPIOT00	// GPI00 再翻转	
OK+Set:1		

示例

AT+GPIOT0310	// 10s 后,设置 GPIO03 电平翻转
OK+Set:0	//获取到当前 GPI003 为低电平, 10s 后翻转

28.AT+GPIOR 读取 GPIO 的输入状态

AT+GPIOR	
执行指令	响应
AT+GPIOR <gpio></gpio>	OK+Set: <value></value>

参数

<GPIO> GPIO 口 可以读取的 GPIO 口如上表 蓝色加粗

取值: 00, 03, 04, 06, 07 (实际上是蓝牙芯片对的 IO 口)

 AT+GPIOR00
 // 读取 GPIO 0 的输入状态

 OK+Get:0
 // 读取到 GPIO0 的输入电平是 0

29.AT+GPIOG 查询 GPIO 的输出状态

AT+GPIOG	
执行指令	响应
AT+GPIOG <gpio></gpio>	OK+Set: <value></value>
AT+GPIOG <gpio></gpio>	OK+Set: <value></value>

参数

<GPIO> GPIO 口 可以查询的 GPIO 口如上表 蓝色加粗

取值: 00, 03, 04, 06, 07 (实际上是蓝牙芯片对的 IO 口)

示例

AT+GPIOG00 // 查询到 GPIO 0 的输出状态为低电平

OK+Get:0