A Visual Introduction to Linear Algebra From Vectors to Data Reduction

Prepared by Gangeshwar Lohar

August 3, 2025

What is Linear Algebra?

The Study of Grids and Transformations

Linear Algebra is the study of **vectors**, **vector spaces**, and **linear transformations**.

At its core, it's about what happens when you transform space in a way that keeps grid lines parallel and evenly spaced.

Why is it important?

It's the language of data science, computer graphics, machine learning, physics simulations, and much more.

Core Concept: Vector Spaces

Definition: Vector Space

A vector space is a collection of objects called **vectors** that can be added together and multiplied by **scalars** (numbers), and the result stays within the collection (this is called **closure**).

Example (The 2D Plane: \mathbb{R}^2)

The familiar 2D Cartesian plane is a vector space.

• Addition: You can add any two vectors, and the result is still a 2D vector.

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

• Scalar Multiplication: You can scale any vector, and the result is still a 2D vector.

$$2\cdot \begin{pmatrix} 1\\2 \end{pmatrix} = \begin{pmatrix} 2\\4 \end{pmatrix}$$

Core Concept: Linear Transformations

Definition: Linear Transformation

A transformation (or function) T is **linear** if it preserves vector operations:

- **4 Additivity:** $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$
- **2** Homogeneity: $T(c\vec{v}) = cT(\vec{v})$

Key Idea: The Matrix Representation

A linear transformation can be fully described by a matrix. The columns of the matrix show where the basis vectors land.

$$A = \begin{pmatrix} 1 & 3 \\ -2 & 0 \end{pmatrix}$$

This matrix transforms $\hat{\imath}$ to $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ and $\hat{\jmath}$ to $\begin{pmatrix} 3 \\ 0 \end{pmatrix}$.

Core Concept: Eigenvalues & Eigenvectors

Definition

An **eigenvector** of a square matrix A is a non-zero vector \vec{v} that, when transformed by A, only changes in scale, not direction. The scaling factor λ is the **eigenvalue**.

$$A\vec{\mathbf{v}} = \lambda\vec{\mathbf{v}}$$

Example (Intuition)

Eigenvectors are the "axes of transformation." They are the vectors that stay on their own span during the transformation, only being stretched, shrunk, or flipped.

Core Concept: Singular Value Decomposition (SVD)

Theorem (SVD)

Any $m \times n$ matrix A can be factored into the product of three matrices:

$$A = U\Sigma V^T$$

where:

- U is an m × m orthogonal matrix (a rotation/reflection).
- Σ is an $m \times n$ diagonal matrix of singular values (scaling).
- V^T is the transpose of an $n \times n$ orthogonal matrix (another rotation/reflection).

Intuition

Any linear transformation is just a combination of a rotation, a scaling, and another rotation.

Engineering Application: PCA

Principal Component Analysis (PCA)

PCA is a data reduction technique that transforms a high-dimensional dataset into a lower-dimensional one while preserving as much variance as possible.

Example (How it Works)

- Compute the covariance matrix of the data.
- Find the eigenvectors and eigenvalues of this matrix.
- The eigenvector with the largest eigenvalue is the first principal component—the direction of maximum variance.
- Reduce dimensionality by projecting the data onto the first few principal components.

Worked Problem: Finding Eigenvalues

Problem

Find the eigenvalues and eigenvectors for the matrix $A = \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$.

1 Find eigenvalues (λ): Solve $det(A - \lambda I) = 0$.

$$\det\begin{pmatrix} 4-\lambda & -2\\ 1 & 1-\lambda \end{pmatrix} = (4-\lambda)(1-\lambda) - (-2)$$
$$0 = \lambda^2 - 5\lambda + 6$$
$$0 = (\lambda - 2)(\lambda - 3)$$

The eigenvalues are $\lambda_1 = 2$ and $\lambda_2 = 3$.

- **2** Find eigenvectors (\vec{v}): For each λ , solve $(A \lambda I)\vec{v} = \vec{0}$.
 - For $\lambda_1=2$, we get $2x-2y=0 \implies x=y$. Eigenvector: $\vec{v_1}=\begin{pmatrix}1\\1\end{pmatrix}$.
 - For $\lambda_2=3$, we get $x-2y=0 \implies x=2y$. Eigenvector: $\vec{v}_2=\begin{pmatrix} 2\\1 \end{pmatrix}$.