Geometría Diferencial

Abraham Rojas

Índice general

T	Dasics	ี่					
1.	Introducción	7					
2.	Variedades diferenciales						
3.	Espacio tangente 3.1. Campos vectoriales	11 11					
4.	Algunas aplicaciones 4.1. Subvariedades	13 13 13 13 13 13					
5.	Formas diferenciales 5.1. Derivada (exterior)	15 15 15 15 15					
6.	Integración 6.1. Teorema de Stokes	17 17 17					
7.	Formas Diferenciales 7.1. Género	19 19					
II	Geometría Riemannian	21					
II	I Geometría Simpléctica	23					

4 ÍNDICE GENERAL

Parte I

Basics

Capítulo 1 Introducción

Variedades diferenciales

Sea M un espacio topológico Hausdorff y segundo contable.

M es una variedad topológica de dimensión n si existe un atlas, que es una colección \mathfrak{A} de pares $(U_i, \varphi_i)_{i \in I}$, donde

- 1. $\{U_i\}$ es un cubrimiento abierto de M,
- 2. para cada $i \in I$, φ_i es un homeomorfismo entre U_i y un abierto de \mathbb{R}^n .

Los elementos de un atlas son llamados cartas.

M es una variedad diferenciable si, para cada $i, j \in I$,

$$\varphi_i \circ \varphi_i^{-1}|_{\varphi_i(U_i \cap U_i)}$$
 es de clase C^{∞} .

Un mapa diferenciable es una función continua $f:M\to N$ entre variedades suaves tal que, para todo par de cartas (U,φ) y (V,ψ) de M y N, respectivamente, tenemos que

$$\psi \circ f \circ \varphi^{-1}|_{f^{-1}(V) \cap U}$$
 es de clase C^{∞} .

Proposición 1 Las variedades diferenciables forman una categoría, tomando como morfismos los mapas diferenciables.

Los isomorfismos en esta categoria son llamados difeomorfismos.

Ejemplo 1

Una variedad compleja de dimensión (compleja) n

Espacio tangente

3.1. Campos vectoriales

Algunas aplicaciones

- 4.1. Subvariedades
- 4.2. Grupos y Álgebras de Lie
- 4.3. Propiedades de las variedades
- 4.3.1. Orientación
- 4.3.2. Partición de la unidad
- 4.3.3. Preludios...

Formas diferenciales

- 5.1. Derivada (exterior)
- 5.2. Caso complejo
- 5.3. El Complejo de De Rham
- 5.3.1. La sequencia de Mayer-Vietoris

Integración

- 6.1. Teorema de Stokes
- 6.2. Dualidad de Poincaré
- 6.3. Género
- 6.4. Teoría de grado en variedades

Parte II Geometría Riemannian

Parte III Geometría Simpléctica