Machine Learning and Computational Statistics Linear Regression

Nhung Le

Note: This document consists of concepts and exercises related to Linear Regression.

1 Concepts

- 7. Regularization.
- F.s Norms Ls Losso regularitation.
 - 7 Objective junction:

P We do the Hotal square loss smet however

For the ang square loss,

ŵ € argmi 1∑(hw(x;)-y;)2 + thw 1/2.

=) the Objects part: run $J(\theta) = A(XW - y)^T(XW - y) + A ||W||_L$ run or $J(\theta) = (XW - y)^T(XW - y) + A ||W||_L$

For w = the minimumer of J(B).

- a) The basso objective punct is not disperentiable (IIIIII, non disperentials)

 no ue con't simply apply gradient descent to and the

 coef W. ⇒ Use encoting algorith
- , Shooting algorithm / Coordinate descent for Lasso.
 - -) Obj: At each step we optimize over one component of the unknown parameter vector, juxus all other components.
 - we can and a closed form solut not ophimizate over a single component gixing all other components.

7 Lasso properties.

- If λmax : $J(w) = 11 \times w y \cdot 11^2 + \lambda \cdot 11 \cdot w \cdot 1_1$.

 If $J(w) = 11 \times w y \cdot 11^2 + \lambda \cdot 11 \cdot w \cdot 1_1$.
 - The one-ended directral derivative of J(w). $J'(w, v) = \lim_{h \to 0} \frac{J(w + hv) J(w)}{h}$
-) w* is the nunimizer of J(w) \Rightarrow the directural derivative $J'(w'; v) > 0 + v \neq 0$.

 Thus $\forall v \neq 0$, $J'(0, v) > 0 \Leftrightarrow \lambda > C$ for $C = \frac{Q(v)^{T}y}{||v||_{1}}$
-) how = 211 xt y 11 to.

 I max is the maximum of the lover bounds of 1.
- 2) Feature correlate.

 If Xi and Xj are the same, Lano would devide the weight arbitrary.
 - 4) symptomize when Xi and Xi are highly correlated,
 It regularitation chooser bor up larger scale, O
 veget to other

Lasso gives sparse solutions

.) le content | | | + | wz | = r (In 2-dimension space)

 $A_{i}^{*} = \underset{w \in \mathbb{R}^{2}}{\operatorname{argmin}} \quad \frac{1}{n} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$

s. World to Iw, I + Iw2 | < r.

area salusyring 14,1+luz1 & r

(contistur of Rn(w) = (w^Tx; - y;)²

.) $\hat{R}_{n}(w) = \frac{1}{n} || Xw - y||^{2}, \hat{R}_{n}(\hat{w}) = \frac{1}{n} (-y^{T}X\hat{w} + y^{T}y).$ Ro(w) is minimed by w = (xTx) - XTy.

for $\hat{R}_{n}(w) = \frac{1}{n} (w - \hat{\omega})^{T} k^{T} k (w - \hat{\omega}) + \hat{R}_{n}(\hat{\omega})$

11 dll, 6 M d(11) (My 1+11w21.50)

·) If X is orthogonal, the XTX = I a and writing are wiles

-) Then OLS solut in green/ red regions amples le contrainted solut will be

at corner => shorror 1 coey is set to ve 0!!

