第1章 测地线

1.1 测地线

Example 1.1 圆柱 考虑

$$C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}$$

它的外向向量场为 N(x,y,z)=(x,y,0). 考虑曲线 $\gamma(t)=(\cos t,\sin t,ct)$, 则 $\gamma''(t)=-N(\gamma(t))$, 故 $\gamma(t)$ 是圆柱的测地线.

它的起点为 $p=\gamma(0)=(1,0,0)$, 初速度为 $\gamma'(0)=(0,1,c)$, 通过调整 c 或让 $\gamma(t)$ 转向, 可以使得 γ 以 T_pC 中任意除了 $(0,0,\pm 1)$ 以外的单位向量为初速度.

定理 1.1 (Clairaut)

设 S 是旋转曲面. $\beta:I\to S$ 是 S 上的单位速度曲线. 对于每个 $s\in I$, $\rho(s)$ 表示 $\beta(s)$ 到旋转轴的距离, $\psi(s)\in[0,\pi]$ 表示 $\beta'(s)$ 与过 $\beta(s)$ 的经线的夹角, 则

- 1. 若 β 是测地线, 则 $\rho(s)\sin(\psi(s))$ 在 I 上取常值.
- 2. 若 $\rho(s)\sin(\psi(s))$ 在 I 上取常值, 且 β 的任何子段不与任何纬线子段重合, 则 β 是一个测地线.

Proof 考虑旋转曲面的参数表示

$$\sigma(\theta, t) = (x(t)\cos\theta, x(t)\sin\theta, z(t))$$

则 σ_{θ} 是纬线的方向, σ_{t} 是经线的方向. 第一基本形式为

$$(x'(t)^2 + z'(t)^2) dt^2 + x(t)^2 d\theta^2$$

并且 σ_{θ} 与 σ_{t} , $\sigma_{\theta\theta}$, σ_{tt} 均正交. 存在函数 $\theta(s)$, t(s), 使得

$$\beta(s) = \sigma(\theta(s), t(s))$$

用 $^{\prime}$ 表示关于s的导数,则

$$\beta' = \sigma_{\theta}\theta' + \sigma_{t}t', \quad \beta'' = (\sigma_{\theta\theta}\theta' + \sigma_{\theta t}t')\theta' + \sigma_{\theta}\theta'' + (\sigma_{tt}t' + \sigma_{\theta t}\theta')t' + \sigma_{t}t''$$

由于 β 是测地线,

$$0 = \langle \beta'', \sigma_{\theta} \rangle = \theta'' \langle \sigma_{\theta}, \sigma_{\theta} \rangle + 2\theta' t' \langle \sigma_{\theta}, \sigma_{\theta t} \rangle$$

其中, 由于

$$G' = \theta' G_{\theta} + t' G_t = t' G_t = 2t' \langle \sigma_{\theta}, \sigma_{\theta t} \rangle$$

所以

$$0 = \theta'' \langle \sigma_{\theta}, \sigma_{\theta} \rangle + 2\theta' t' \langle \sigma_{\theta}, \sigma_{\theta t} \rangle = \theta'' G + \theta' G' = (\theta' G)'$$

由于 $\rho(s)^2 = x(t(s))^2 = G$, 我们有

$$\theta'(s) \rho(s)^2$$

是一个常数. 注意到

$$\sin(\psi(s)) = \langle \beta', \sigma_{\theta} \rangle = \rho \theta'$$

因此

$$\rho(s)\sin(\psi(s)) = \theta'(s)\rho(s)^2$$

是一个常数. 这就说明了第一个断言.

反之, 若 $\rho(s)\sin(\psi(s))$ 取常值. 上面的论证过程表明

$$\langle \beta'', \sigma_{\theta} \rangle = 0$$

只需要证明第二个测地线方程

$$\langle \beta'', \sigma_t \rangle = (\theta')^2 \langle \sigma_{\theta\theta}, \sigma_t \rangle + (t')^2 \langle \sigma_{tt}, \sigma_t \rangle + t'' \langle \sigma_t, \sigma_t \rangle = 0$$

即

$$(\theta')^{2} (-x'x) + (t')^{2} (x''x' + z''z') + t'' (x'x' + z'z') = 0$$

设

$$(\theta'G) = \theta'x^2 = C$$

注意到

$$E_t = 2x'x'' + 2z'z''$$

原测地线方程化为

$$(\theta')^{2} (-x'x) + \frac{1}{2} (t')^{2} E_{t} + t''E = 0$$

ヌ

$$((t')^2 E)' = 2t't''E + (t')^2 E_t t'$$

如果 $t' \neq 0$, 方程化为

$$\left(\theta'\right)^2(-x'x) + \frac{1}{2}\frac{1}{t'}\left(\left(t'\right)^2E\right)' = 0$$

而考虑单位速度方程

$$\left(\left(\theta' \right)^2 G + \left(t' \right)^2 E \right) = 1$$

求导, 得到

$$\left(\left(t' \right)^2 E \right)' = - \left(\left(\theta' \right)^2 G \right)'$$

方程化为

$$\left(\theta'\right)^2(-x'x) + \frac{1}{2}\frac{1}{t'}\left(\left(\theta'\right)^2G\right)' = 0$$

由于

$$G_t = 2x'x$$

方程进一步化为

$$- (\theta')^{2} G_{t} + \frac{1}{t'} \left((\theta')^{2} G \right)' = 0$$

其中

$$\left((\theta')^2 G \right)' = (\theta' C)' = C\theta''$$

方程进一步化为

$$\left(-\theta'\right)^2 G_t + \frac{1}{t'} C\theta'' = 0$$

即

$$C\theta'' - t' \left(\theta'\right)^2 G_t = 0$$

我们只需要证明 $t' \neq 0$ 和这个方程都成立即可. 由于

$$(\theta'G)' = \theta''G + \theta't'G_t = 0$$

两边乘以 θ' , 结合 $\theta'G = C$, 带入即得所需方程成立.

最后, 只需要说明 $t' \neq 0$ 只在孤立点成立, 这由 β 的子段不是纬线段所保证. \square

1.2 曲线的测地曲率

定义 1.1 (测地曲率)

设 (M,g) 是 (伪)Riemann 子流形, $\gamma:I\to M$ 是 M 上的光滑单位速度曲线. 定义 γ 的 (测地) 曲率为加速度场的模长, 即函数 $\kappa:I\to\mathbb{R}$

$$\kappa(t) := |D_t \gamma'(t)|$$
.

对于一般的参数曲线,对 M 分情况定义:

1. M 是黎曼流形, 则任取 γ 是 M 上的任意正则曲线, 可以找到它的单位速度 重参数化 $\tilde{\gamma}=\gamma\circ\varphi$, 我们定义 γ 在 t 处的 (测地) 曲率为 $\tilde{\gamma}$ 在 $\varphi^{-1}(t)$ 处的

(测地) 曲率.

2. 若 M 是伪黎曼流形, 需要限制 γ 为使得 $|\gamma'(t)|$ 处处非零的曲线, 做类似地定义.

⁴描述了曲线偏离测地线的程度.

*

命题 1.1

单位速度曲线有退化的 (测地) 曲率, 当且仅当它是测地线.

定义 1.2

设 $\left(\tilde{M}, \tilde{g} \right)$ 是 (伪)Riemann 流形, (M,g) 是它的 Riemann 子流形. 每个 $\gamma: I \to M$ 都有两种测地曲率.

- 1. γ 视为 M 上的光滑曲线时, 它的测地曲率 κ 称为內蕴曲率;
- 2. γ 视为 $ilde{M}$ 上的光滑曲线时, 它的测地曲率 $ilde{\kappa}$ 称为**外蕴曲率**.

引理 1.1 (超曲面曲线的 Gauss 公式)

若 $\gamma:I \to M$ 是一个光滑曲线, $X:I \to TM$ 是沿 γ 的光滑向量场, 则

$$\tilde{D}_t X = D_t X + h\left(\gamma', X\right) N$$

命题 1.2 (Ⅲ 的几何解释)

设 (M,g) 是 (伪)Riemann 流形 $\left(ilde{M}, ilde{g}
ight)$ 的嵌入 Riemann 子流形, $p \in M, v \in T_pM$.

- 1. $\Pi(v,v)$ 是 g-测地线 γ_v 在 p 处的 \tilde{g} -加速度.
- 2. 若 v 是单位向量, 则 |II(v,v)| 是 γ_v 在 p 处的 \tilde{q} -曲率.

Proof 设 $\gamma:(-\varepsilon,\varepsilon)\to M$ 是使得 $\gamma(0)=p$, $\gamma'(0)=v$ 的正则曲线. 对 γ' 应用沿 γ 的 Gauss 公式, 得到

$$\tilde{D}_t \gamma' = D_t \gamma' + \mathrm{II}(\gamma', \gamma')$$

若 γ 是 M 上的 g-测地线, 则上述公式化为

$$\tilde{D}_t \gamma' = \mathrm{II} (\gamma', \gamma')$$

在零处取值得到所需的两个结论.

定理 1.2 (Liouvill)

设 (u,\overline{v}) 是曲面 S 的正交参数, $I=E\,du^2+G\,dv^2$; C:u=u(s),v=v(s) 是曲面上一条弧长参数曲线. 设 C 与 u 线的夹角为 θ , 则 C 的测地曲率为

$$k_g = \frac{d\theta}{ds} - \frac{1}{2\sqrt{G}} \frac{\partial \ln E}{\partial v} \cos \theta + \frac{1}{2\sqrt{E}} \frac{\partial \ln G}{\partial u} \sin \theta.$$

