ST340 Lab 2: SVD & PCA

2020 - 21

1: A simple singular value decomposition

(a) Generate a realization of a 4×5 Gaussian random matrix G.

```
set.seed(5)
G = matrix(nrow = 4, ncol = 5)
for(j in 1:5){
 for(i in 1:4){
   G[i,j] = rnorm(1)
}
 (b) Look at ?svd.
 (c) Set U, d, and V by using svd.
svd_G = svd(G, nv = 5)
print(svd_G)
  [1] 2.9179553 2.2422189 1.8845677 0.9448286
##
## $u
##
                     [,2]
                               [,3]
           [,1]
                                        [,4]
## [1,] 0.3437357 -0.87424173 0.32926491 0.09556026
## [2,] -0.8106523 -0.46050166 -0.34436523 -0.11042471
## [3,] 0.4406251 -0.14544590 -0.87870654 0.11211533
## [4,] -0.1747515  0.04985085  0.02953019  0.98290629
##
## $v
##
           [,1]
                     [,2]
                              [,3]
                                       [,4]
                                                  [,5]
0.3358571 -0.52696553 0.6193840 -0.47344657 0.041463612
## [3,] 0.1613625 -0.01439958 -0.6601293 -0.73346320 -0.003978202
## [5,]
U = svd_G$u
d = svd_G$d
V = svd_G$v
L = diag(svd_G$d)
L = cbind(L, rep(0,4))
```

(d) Check that G is equal to U%*%Sigma%*%t(V) (to machine precision).

```
SVD_calc = (U)%*%L%*%t(V)
all.equal(G, SVD_calc)
```

[1] TRUE

(e) Plot the singular values.

```
plot(x = c(1,2,3,4), y = d, main = "Singular values")
```

Singular values

(f) Compute G_2 , the 2-rank approximation of G, and also compute $||G - G_2||_F$.

```
G_2 = d[1]*(U[,1])%*%t(V[,1]) + d[2]*(U[,2])%*%t(V[,2])
G_G_2_frobenius = sqrt(sum((G-G_2)^2))
```

(g) Does the value agree with the theory?

```
all.equal(G_G_2_frobenius, sqrt(sum(d[3:4]^2)))
```

[1] TRUE

2: Image compression via the singular value decomposition

```
load("pictures.rdata")
source("svd.image.compression.R")
```

Take a look at svd.image.compression.R and understand what the code is doing. Then run image.compression() here to see how well we can compress our images.

I have commented on the r file that creates the functions.

3: PCA: Crabs

(a) Load the MASS library to access the crabs data.

```
library(MASS)
library(factoextra)
```

```
## Loading required package: ggplot2
```

Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa

(b) Read ?crabs.

```
head(crabs)
```

```
## sp sex index FL RW CL CW BD
## 1 B M 1 8.1 6.7 16.1 19.0 7.0
## 2 B M 2 8.8 7.7 18.1 20.8 7.4
## 3 B M 3 9.2 7.8 19.0 22.4 7.7
## 4 B M 4 9.6 7.9 20.1 23.1 8.2
## 5 B M 5 9.8 8.0 20.3 23.0 8.2
## 6 B M 6 10.8 9.0 23.0 26.5 9.8
```

(c) Read in the FL, RW, CL, CW, and BD measurements.

```
Crabs <- crabs[,4:8]
Crabs.class <- factor(paste(crabs[,1],crabs[,2],sep=""))
# Creating factor that combines the species with the sex
plot(Crabs,col=Crabs.class,pch=20)</pre>
```


(d) Read ?prcomp and use it to obtain the principal components of a centred and scaled version of Crabs. Call the output of prcomp Crabs.pca'.

(e) If you plot(Crabs.pca) it visualizes the variances associated with the components. plot(Crabs.pca)

Crabs.pca

(f) Plot PC2 against PC1.

plot(((Crabs.pca)\$x)[,'PC1'], ((Crabs.pca)\$x)[,'PC2'], col=Crabs.class)

str(Crabs.pca)

```
## List of 5
              : num [1:5] 2.1883 0.3895 0.2159 0.1055 0.0414
   $ rotation: num [1:5, 1:5] 0.452 0.428 0.453 0.451 0.451 ...
     ..- attr(*, "dimnames")=List of 2
##
     ....$ : chr [1:5] "FL" "RW" "CL" "CW" ...
##
     ....$ : chr [1:5] "PC1" "PC2" "PC3" "PC4" ...
##
##
    $ center : Named num [1:5] 15.6 12.7 32.1 36.4 14
     ..- attr(*, "names")= chr [1:5] "FL" "RW" "CL" "CW" ...
##
             : Named num [1:5] 3.5 2.57 7.12 7.87 3.42
##
     ..- attr(*, "names")= chr [1:5] "FL" "RW" "CL" "CW" ...
##
              : num [1:200, 1:5] -4.92 -4.38 -4.12 -3.87 -3.82 ...
     ..- attr(*, "dimnames")=List of 2
##
     ....$ : chr [1:200] "1" "2" "3" "4" ...
##
     ....$ : chr [1:5] "PC1" "PC2" "PC3" "PC4" ...
##
   - attr(*, "class")= chr "prcomp"
```

(g) Read ?pairs and use it to find a pair of components with good separation of the classes.

```
pairs(Crabs.pca$x, col=Crabs.class)
```


(h) Read ?scale. Check that you can obtain the principal components by using the singular value decomposition on a centred and scaled version of Crabs.

4: PCA: Viruses

This is a dataset on 61 viruses with rod-shaped particles affecting various crops (tobacco, tomato, cucumber and others) described by Fauquet *et al.* (1988) and analysed by Eslava-Gómez (1989). There are 18 measurements on each virus, the number of amino acid residues per molecule of coat protein.

```
load("viruses.rdata")
```

(a) Obtain the principal components of a centred and scaled version of allviruses.

```
groups <- rep(0,61)
groups[1:3] <- 1
groups[4:9] <- 2
groups[10:48] <- 3
groups[49:61] <- 4
group.names <- c("Hordeviruses", "Tobraviruses", "Tobamoviruses", "furoviruses")</pre>
head(allviruses)
##
         [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
           25
                 9
                                 12
                                        8
                                            20
                                                               0
                                                                            21
                                                                                    8
## [1,]
                       9
                            19
                                                   0
                                                        10
                                                                                          7
## [2,]
           26
                            20
                                                        10
                                                               0
                                                                            21
                                                                                    8
                                                                                          7
                 9
                       9
                                 13
                                        8
                                            20
                                                   0
                                                                      6
                            22
                                            23
                                                                                    5
##
   [3,]
           25
                 9
                       9
                                 10
                                       10
                                                   0
                                                        13
                                                               0
                                                                      6
                                                                            19
                                                                                          6
## [4,]
           15
                10
                      21
                            13
                                 18
                                       12
                                            22
                                                         9
                                                               2
                                                                            11
                                                                                    5
                                                                                         10
```

```
## [5,]
           17
                      22
                            15
                                                                 2
                                                                                            9
                 11
                                  14
                                       10
                                             23
                                                    1
                                                         11
                                                                        4
                                                                             11
                                                                                     5
##
   [6,]
           22
                 17
                      17
                            16
                                  10
                                       15
                                             13
                                                    1
                                                          7
                                                                 2
                                                                        3
                                                                             14
                                                                                     9
                                                                                            9
               [,16] [,17] [,18]
##
         [,15]
## [1,]
             4
                    7
                          17
                    7
   [2,]
             4
                          17
                                  5
##
##
   [3,]
             4
                    8
                          16
                                  5
## [4,]
                                  2
             1
                   14
                           8
## [5,]
                           9
             1
                   13
                                  1
## [6,]
             2
                   12
                           6
allviruses.PCA = prcomp(allviruses, center = T, scale. = T)
```

If you colour by groups (i.e. col=groups in plot) then black is horde, red is tobra, green is tobamo, blue is furo.

(b) Do the principal components show some separation between the viruses?

fviz_eig(allviruses.PCA)

pairs(allviruses.PCA\$x[,1:5], col = groups)

(c) The largest group of viruses is the tobamoviruses. Does a principal component analysis suggest there might be subgroups within this group of viruses?

```
tobamoviruses.PCA = prcomp(tobamoviruses, center = T, scale. = T)
fviz_eig(tobamoviruses.PCA)
```


plot(tobamoviruses.PCA\$x[,1], tobamoviruses.PCA\$x[,2])

pairs(tobamoviruses.PCA\$x[,1:3])

From the plot it looks like we have 3 clusters, meaning that there are maybe groups that have different characteristics within the Tobamoviruses group of viruses.