Assignment 3 Problem 1

Michael Cai

February 15, 2016

1. Find the area of the region bounded by $y = \frac{3x^2+x}{(x^2+1)(x+1)}$, y=0, x=0, and x=1.

For the integral $\int_0^1 \frac{3x^2+x}{(x^2+1)(x+1)}$ we first use partial fraction decomposition because the integrand is a rational function (a ratio of polynomials). Thus $\int_0^1 \frac{3x^2+x}{(x^2+1)(x+1)} = \frac{Ax+B}{x^2+1} + \frac{C}{x+1}$ We then cross multiply and consider the equality of the numerator of the integrand with

Thus
$$\int_0^1 \frac{3x^2 + x}{(x^2 + 1)(x + 1)} = \frac{Ax + B}{x^2 + 1} + \frac{C}{x + 1}$$

the cross-multiplied terms of the partial fractions.

$$3x^2 + x = (Ax + B)(x + 1) + C(x^2 + 1)$$

If
$$x = -1$$
 then $C = 1$.

We then expand the RHS to solve for the match the coefficients on the LHS and the RHS.

$$3x^2 + x = Ax^2 + Ax + Bx + B + Cx^2 + C$$

$$3x^2 + x = (A+C)x^2 + (A+B)x + B + C$$

Since the constant term on the LHS is 0, then $B+C=0 \rightarrow B=-1$

Since the coefficient of the linear term, x, on the LHS = 1 then $1 = A + B \rightarrow A = 2$

Therefore:
$$\frac{3x^2+x}{(x^2+1)(x+!)} = \frac{2x-1}{x^2+1} + \frac{1}{x+1}$$

Therefore:
$$\frac{3x^2+x}{(x^2+1)(x+!)} = \frac{2x-1}{x^2+1} + \frac{1}{x+1}$$
$$\int_0^1 \frac{3x^2+x}{(x^2+1)(x+1)} = \int_0^1 \frac{2x-1}{x^2+1} + \int_0^1 \frac{1}{x+1}$$
$$= \int_0^1 \frac{2x}{x^2+1} - \int_0^1 \frac{1}{x^2+1} + \int_0^1 \frac{1}{x+1}$$

Consider the $\int_0^1 \frac{2x}{x^2+1}$ term:

We use u-substitution and set $u = x^2 + 1$ and thus du = 2xdx and the limits become u = 2and u = 1.

Consider the $\int_0^1 \frac{1}{x+1}$ term:

Here we also use u-substitution and set u = x + 1 and thus du = dx with the limits becoming u = 2 and u = 1.

Now if we integrate all 3 of the separate terms, we get get two with natural logs and one with arctan.

with arctan.
=
$$ln|u||_1^2 - tan^{-1}(x)|_0^1 + ln|u||_1^2$$

= $2ln|2| - \frac{\pi}{4}$

$$=2ln|2|-\tfrac{\pi}{4}$$