Advanced Programming in R

Dries Debeer & Benjamin Becker

15. October 2021

Zurich R Courses

Introduction

Introduction

Who are we?

_	•	_		
1) 1	ies	$1 \sim$	$h \circ c$	V
111		∟	··⊢⊢	, [
ν		\mathcal{L}	$\mathcal{L} \subset \mathcal{L}$. I

Senior Researcher at itec (imec research group at KU Leuven)

scDIFtest, permimp, eatATA, mstDIF

dries.debeer@kuleuven.be

Benjamin Becker

Researcher at IQB (Statistics Department)

eatGADS, eatDB, eatATA, pisaRT

b.becker@iqb.hu-berlin.de

Introduction

Who are you?

- 1. Occupation, employer?
- 2. Previous knowledge and experience
 - · with R?
 - · with other statistical software?
 - with other programming languages?
- 3. Specific interest/motivation for this workshop?

What do we expect from you?

You ...

- are a frequent R user (e.g. for data wrangling/analyses/plots)
- have a rough understanding of R as a programming language
 - ightarrow e.g. you have already written some R functions yourself
- · are interested in learning more about the intricacies of R

Goal of this workshop

A deeper dive into R as a Programming language

- Better understanding of how R works as a programming language
- Better understanding of how larger programming projects can/should be structured
- · Practical Git skills
- Practical R package building skills

Agenda

- Scoping & Environments
- · Functionals & Split-Apply Paradigm
- Object Orientation (S3)
- · Packages & Version Controlling

Understanding environments is key to understanding how R behaves, how R finds stuff.

- Scoping
- Closures
- Namespaces

An environment = "a bag of objects".

It differs from a list with respect to four key points:

- 1. All elements have names
- 2. The elements do not have an order
- 3. Environments are not copied when modified
- 4. Each environment has an enclosing environment

Each environment consists of two parts:

- 1. a **frame**: a collection of named objects.
 - the objects can be of any type (like in lists)
 - the objects have to be named (unlike in lists)
- 2. an **enclosing environment**: a reference or link to another environment.
 - · the link goes in one direction
 - · determines the search path

Environments - frame

The frame is a "bag" of named objects.

- · Actually, it is a bag of bindings between names and objects
- The combination environment + name points to a specific object (a location in memory)
- · The names in the bag have no order

Environments - frame

An environment can containt itself!

Environments - Reference Semantics

How lists work:

```
original <- list(a = 15, b = "original", c = mean)</pre>
copy <- original
copy$b <- "new"
c(original$b, copy$b)
> [1] "original" "new"
original$a <- NULL
names(original)
> [1] "b" "c"
```

Environments - Refernce Semantics

How environments work:

```
original <- rlang::env(a = 15, b = "original", c = mean)
copy <- original
copy$b <- "new"
c(original$b, copy$b)
> [1] "new" "new"
original$a <- NULL
names(original)
> [1] "a" "b" "c"
```

Environments - enclosing environment

The link is used for lexical scoping:

If the reference to an object is not found in the environment, R starts searching in the enclosing environment

- the link goes in **one** direction
- · an environment has only one enclosing environment
- an environment can enclose multiple environments (but it is hard to find out if so, and which)

Exercises

Environments - scoping

?exists returns a logical if a reference if found in an
environment. The search jumps to the enclosing environment
until the object is found when inherits = TRUE (the
default).

?get returns an object based on a name and an environment.
The search jumps to the enclosing environment until the
object is found when inherits = TRUE (the default).

?assign assigns an object to a name in an environment.

If the reference to an object is not found in the environment, R starts searching in the enclosing environment

Some important environments:

- the global environment (.GlobalEnv or globalenv())
- the empty enviornment (emptyenv())
- the package-environment
- the namespace-environment
- the **imports**-environment

The global enviroment

- · the user's work space
- · first item on the search path
- .GlobalEnv or globalenv()

The empty environment

- · An "empty bag"
- · last item on the search path
- · has no enclosing environment
- · emptyenv()

Search path

Where does R find objects during interactive use? ?search()

package:<name> environments have bindings to the exported objects (functions) of the package.

Search path

Where does R find objects during interactive use?

Newly attached packages get a specific place in the search path. They become the enclosing environment of the global environment, and they are enclosed by the previously installed package.

Four environments are related to functions:

- 1. the environment that **binds** the function
- 2. the environment in which the body of the function is **executed**
- 3. the environment from which the function is called
- 4. the **enclosing** environment

1. the environment that binds the function

```
?find (can be misleading)
?pryr::where
```

```
add_10 <- function(x) x + 10
find("add_10")
> [1] ".GlobalEnv"
find("sd")
> [1] "package:stats"
```

1. the environment that binds the function

Functions (objects) can have references in more than one environment!

2. the environment in which the body is executed
environment(NULL)

```
get_executing_env <- function() environment()
get_executing_env()

> <environment: 0x00000000162bcd00>
get_executing_env() # always new

> <environment: 0x00000000163210b0>
```

The execution environment disappears when the body is executed. Unless it becomes the enclosing environment of another function.

3. the environment from which the function is called ?parent.frame

```
print_calling_env <- function() parent.frame()
print_calling_env()

> <environment: R_GlobalEnv>

other_fun <- function() print_calling_env()
other_fun()

> <environment: 0x00000000146ea810>
```

3. the environment from which the function is called

This environment is often a execution environment of another function.

- To get the calling function use ?sys.call.
- To get the complete call stack use ?sys.calls.

3. the environment from which the function is called
?sys.calls

```
print_calling_funs <- function() sys.calls()
print_calling_funs()
other_fun <- function() print_calling_funs()
other_fun()</pre>
```

4. the enclosing environment
environment(function)

```
get_enclosing_env <- function() parent.env(environment())
get_enclosing_env()
> <environment: R_GlobalEnv>
```

4. the enclosing environment environment(function)

```
make adder <- function(add = 0) {</pre>
  print(environment())
  return(function(x) x + add)}
add_5 <- make_adder(5)
> <environment: 0x0000000162ca1e0>
environment(add 5)
> <environment: 0x0000000162ca1e0>
```

The execution environment disappears when the body is executed. Unless it becomes the enclosing environment of another function

4. the enclosing environment

When a function is created, the binding environment and the enclosing environment are typically equal. But the enclosing environment can be changed (using environment <-)

```
strange_mean <- function(x, ...) mean(x, ...)
strange_mean(1:3)

> [1] 2

env1 <- rlang::env(mean = function(x, ...) "Strange!")
environment(strange_mean) <- env1
strange_mean(1:3)

> [1] "Strange!"
```

Four environments are related to functions:

- 1. the environment that **binds** the function
- 2. the environment in which the body of the function is **executed**
- 3. the environment from which the function is called
- 4. the **enclosing** environment

Where does R find stuff?

From inside functions?

- 1. the execution environment
- 2. the enclosing environment
- 3. the enclosing environment of that environment
- 4. ...
- 5. the empty environment

Where does R find stuff?

From inside functions defined in the global environment?

- 1. the executing environment
- 2. the global environment (i.e., the enclosing environment)
- 3. the package:<name> environment of the last attached package
- 4. ...
- 5. the empty environment

From inside functions defined in packages?

- 1. the executing environment
- 2. the namespace: < name > environment
- 3. the imports:<name> environment
- 4. the namespace:base environment
- 5. the global environment (i.e., the enclosing environment)
- the package:<name> environment of the last attached package
- 7. ...
- 8. the empty environment

Exported functions from packages have two binding environments!

- the namespace: < name > environment
- the package:<name> environment

Both :: and ::: work.

But, only one enclosing environment: the namespace:<name> environment!

Thus, first the imported and exported functions of that package are found!

Unexported functions from packages one binding environment: the namespace:<name> environment

Which is also the enclosing environment

Only ::: works.

Where does R find functions from packages?

Enviroments

You can do crazy things with environments.

If you want to make use of reference semantic (i.e., modify objects in place), use R6

Programming advice

Keep it simple, avoid chaos!

Exercises

Functionals

Higher Order Functions

Higher order functions are functions that either take functions as input or return functions as output.

Functionals

As defined by Hadley Wickham: A **functional** is a function that takes another function as an input. Common argument names are **FUN** or **f**.

Examples

- apply-family
- · Reduce, Filter
- · nlm
- · optimize
- ...

The apply-family applies a function repeatedly. This can be seen as an abstraction of a for loop, with the following advantages:

- · requires less code to write
- · can be easier to read / understand
- · does not store intermediate results
- no need to replace / grow

The members of the apply-family in Base R are:

- lapply vector / list \rightarrow list
- sapply vector / list → vector (matrix)
- apply matrix / array / data.frame → vector (matrix)
- · tapply, by
- · mapply, Map
- · rapply, eapply, vapply

A popular alternative from the tidyverse: purrr

- map vector / list \rightarrow list
- $\cdot \ map 2 \ multiple \ vectors \ / \ lists \rightarrow list$
- ..

Our focus: lapply and Map

Why?

- · Consistent output
- Fast
- · No dependencies
- · We want to understand R basics

lapply takes mainly two arguments

X the input list/vector

FUN the function that should be repeatedly applied

```
example_list <- list(vec1 = c(1, 3, 4),
                      vec2 = c(4, 2, 10),
                     vec3 = c(2, NA, 1))
lapply(example_list, FUN = mean)
> $vec1
> [1] 2.666667
>
> $vec2
> [1] 5.333333
>
> $vec3
> [1] NA
```

Other arguments can be passed through lapply via '...'.

```
example list \leftarrow list(vec1 = c(1, 3, 4),
                      vec2 = c(4, 2, 10),
                      vec3 = c(2, NA, 1))
lapply(example_list, FUN = mean, na.rm = TRUE)
> $vec1
> [1] 2.666667
>
> $vec2
> [1] 5.333333
>
> $vec3
> [1] 1.5
```

We can use our own functions as input.

```
dropNAs <- function(x) {</pre>
  x[!is.na(x)]
lapply(example_list, FUN = dropNAs)
> $vec1
> [1] 1 3 4
>
> $vec2
> [1] 4 2 10
>
> $vec3
> [1] 2 1
```

Anonymous functions can be used as input.

```
lapply(example_list, FUN = function(x) x[!is.na(x)])
> $vec1
> [1] 1 3 4
>
> $vec2
> [1] 4 2 10
>
> $vec3
> [1] 2 1
```

Data.frames are lists, too.

```
lapply(iris, FUN = class)
> $Sepal.Length
> [1] "numeric"
>
> $Sepal.Width
> [1] "numeric"
>
> $Petal.Length
> [1] "numeric"
>
> $Petal.Width
> [1] "numeric"
>
> $Species
> [1] "factor"
```

Atomic vectors can be used as input, but often vectorization could be used instead.

```
lapply(c(1, 2, 3), FUN = function(x) {
  paste0("ID", x)
})
> [[1]]
> [1] "ID1"
>
> [[2]]
> [1] "ID2"
>
> [[3]]
> [1] "ID3"
```

Limitation of lapply:

Only a single list/vector can be supplied as input. Map is a generalization of lapply! It is usually needed less often but a very powerful tool.

Works very similar to lapply, with a few differences:

- Multiple input lists/vectors
- · The list input should be named explicitly
- The order of the function and the list-input is switched

```
list1 <- list(mtcars[1:2, 1:3], iris[1:2, c(1, 2, 5)])
list2 <- list(mtcars[3:4, 1:3], iris[3:4, c(1, 2, 5)])
Map(rbind, x = list1, y = list2)</pre>
```

```
> [[1]]
                 mpg cyl disp
>
> Mazda RX4
                21.0
                       6
                          160
> Mazda RX4 Wag 21.0
                       6 160
> Datsun 710 22.8
                       4 108
> Hornet 4 Drive 21.4
                       6 258
>
> [[2]]
   Sepal.Length Sepal.Width Species
>
> 1
            5.1
                        3.5 setosa
> 2
            4.9
                        3.0 setosa
> 3
            4.7
                        3.2 setosa
> 4
            4.6
                        3.1 setosa
```

Again, anonymous functions can be supplied as input:

```
list1 <- list(mtcars[1:2, 1:3], iris[1:2, c(1, 2, 5)])
list2 <- list(mtcars[3:4, 1:3], iris[3:4, c(1, 2, 5)])

Map(function(x, y) {
  rbind(x, y)
  },
  x = list1, y = list2)</pre>
```

A common use case for the apply-family is the Split & Apply & Combine paradigm. Here, we want to perform the same analyses for various subgroups in our data set:

- split a data.frame or vector (?split)
- apply computations on each split (?lapply)
- combine the results (?sapply, ?do.call)


```
head(iris)
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
>
> 1
                                        1.4
                                                     0.2 setosa
             5.1
                          3.5
> 2
             4.9
                          3.0
                                        1.4
                                                     0.2
                                                          setosa
> 3
             4.7
                          3.2
                                        1.3
                                                     0.2 setosa
> 4
             4.6
                          3.1
                                        1.5
                                                     0.2
                                                          setosa
> 5
             5.0
                          3.6
                                        1.4
                                                     0.2 setosa
> 6
             5.4
                          3.9
                                        1.7
                                                     0.4 setosa
table(iris$Species)
>
>
      setosa versicolor virginica
          50
                      50
                                  50
>
```

Splitting the data set via a single (or multiple) grouping variables

```
data_list <- split(iris, f = iris$Species)
class(data_list)
> [1] "list"
length(data_list)
> [1] 3
```

Apply the same computation to all data sets

```
out_list <- lapply(data_list, function(subdat) {
  mod <- lm(Sepal.Length ~ Sepal.Width, data = subdat)
  sum_mod <- summary(mod)
  out <- c(Intercept = coef(mod)[[1]],
     Slope = coef(mod)[[2]],
     r2 = sum_mod$r.squared)
  round(out, 3)
})</pre>
```

Combine the results

Exercises

Object Oriented Programming (S3)

Object Oriented Programming

Why?

- User-friendly: same function for different objects (summary())
- · Coder-friendly: implementation can depends on object
- · Coder-friendly: easier to maintain, extend

Object Oriented Programming

Basics

- a class is a definition
- an object is an **instance** of a class.
- a method is specific implementation of procedure, and is associated to classes.
- inheritance: classes are organized in hierarchy. "is-a-type-of"-relation.
- method-dispatch: the process of finding the correct method to apply for a specific object.

Object Oriented Programming

Encapsulated OOP

- methods belong to objects or classes
- method calls look like object.method(arg1, arg2)
- · most popular
- · python, R6

Object Oriented Programming

Functional OOP

- methods belong generics (or generic functions)
- method calls look like generic(object, arg1, arg2)
- looks like a normal function
- internally build on functions
- · S3

Object Oriented Programming in R

- · S3
- · S4
- · RC
- R6
- ...

Compromise between interactive use, functional programming and object-oriented programming.

- "naming conventions"
- · used in base R
- · flexible: new classes, new methods, new generics

- · class-attribute
- generics and methods
- inheritance and dispatch

S3 - class

A new class is made by adding an arbitrary **class** attribute to an object.

```
object <- 1:10
class(object) <- "myClass"
attributes(object)

> $class
> [1] "myClass"
```

Very flexible! Use it wisely!

S3 - class

```
class(iris)
> [1] "data.frame"
iris[1:4, 1:3]
    Sepal.Length Sepal.Width Petal.Length
>
> 1
             5.1
                         3.5
                                      1.4
> 2
             4.9
                         3.0
                                      1.4
> 3
             4.7
                       3.2
                                      1.3
                         3.1
                                      1.5
> 4
             4.6
```

S3 - class

Changing the class changes the behavior!

```
class(iris) <- "no data.frame"
class(iris)
> [1] "no data.frame"
iris[1:4, 1:3]
> Error in iris[1:4, 1:3]: incorrect number of dimensions
```

Good practice: constructor function

- defines the structure of the class
- should be used to create objects of that class

Write a separate validation-function for computationally intensive validation.

- · methods for a class belong to generics
- when a generic is called for a specific class, the corresponding method for that class will be used. common generics are: print(), plot(), summary(), anova()
- same function, but different computation depending on object-class

```
body(print)
> UseMethod("print")
```

Creating a new method (for an existing generic):

```
print.myClass <- function(x, ...){</pre>
  cat("This is a myClass-print:\n")
  cat(round(c(nValues = length(x),
                 mean = mean(x).
                 SD = sd(x)), 3), ...)
my object <- 1:5
class(my object) <- "myClass"</pre>
print(my_object)
> This is a myClass-print:
> 5 3 1.581
```

Good practices (enforced for packages on CRAN):

- A method must have all the arguments of the generic, including . . . if the generic does.
- A method must have arguments in exactly the same order as the generic.
- If the generic specifies defaults, all methods should use the same defaults.

Inspect the generic!

```
formalArgs(print)
> [1] "x" "..."

formalArgs(summary)
> [1] "object" "..."
```

Creating a new generic:

```
center <- function(x, ...)</pre>
  UseMethod("center")
center.myClass <- function(x, ...){</pre>
  print("centering myClass:\n")
  return(x - mean(x))
center(my_object)
> [1] "centering myClass:\n"
> This is a myClass-print:
> 5 0 1.581
```

S3 - Inheritance and Dispatch

Objects can have more than one class

```
my model <- glm(as.factor(books) ~ pared, data = pisa,
                family = "binomial")
class(my_model)
> [1] "glm" "lm"
class(my model) == "lm"
> [1] FALSE TRUE
inherits(my model, "lm")
> [1] TRUE
```

Good practice: hierachical inheritance (subclass and superclass)

S3 - Inheritance and Dispatch

When a method is not available for a (sub)class, the next available method (i.e., for the supperclass) will be used.

```
"variable.names.glm" %in% methods(class = "glm")
> [1] FALSE
"variable.names.lm" %in% methods(class = "lm")
> [1] TRUE
variable.names(my model)
> [1] "(Intercept)" "pared"
```

Exercises

Version Controlling (Git + Github)

Version Controlling

- Motivation
- Setup
- · Work flow
- Recommendations
- Resources

Motivation

SIMPLY EXPLAINED

Motivation

- · Implementation of long term change history
 - · No ridiculous file names
 - · No archive subfolder
 - · Always perfect overview of file history and changes
- Collaborations
 - · What has changed?
 - · Who has changed it?
 - · Documentation of changes
 - Parallel working possible (merging)

But...

Setup

See the workshop preparation materials

Work flow 1

Creating a repository

- · Create an **online repository** (e.g. on Github)
 - · Use an R specific .gitignore
 - Initialize with a short readme (.md)
- · Clone the repository to your local machine
- An R-Project is added automatically to the existing repository

Excursion: gitignore

- · Plain text file
- Which files should not be tracked by git?
 - \rightarrow These then only exist locally in their current version!
- · Options
 - · Single files
 - Folder
 - · Specific data types
 - · Combinations of the above
- Use cases
 - · Large files (Data, images, ...)
 - · Auxiliary files (e.g. created during latex compilation)

Work flow 2

Working with an existing repository

- · Before working: Synch your local repo (Pull or clone)
- Perform changes in your local repository
 - → Create/modify/delete files
- · Stage your changes
- Commit your changes (aka new version)
- Push your changes (online repository is updated)

Excursion: mergen

Conflicts between different updated versions

- · Common when working collaborativley
- Discrepancies between your own different local repos ightarrow Git communicates these and indicates conflicts
- Select the desired changes
- · Stage selection, commit and push

Excursion: Branches

Multiple parallel versions of a project within one repository

- · e.g. one stable and one development branch
- Only certrain modifications should be made in the stable branch
- · Note: RStudio GUI has limited support for this

Recommendations

- · Keep it simple!
 - $\boldsymbol{\cdot}$ If not necessary, no branches/forks/pull requests
- Have meaningful commits
- Keep it lean (no big files)

Resources

Git (+ R) Resources

- · Small Intro
 (https://r-bio.github.io/intro-git-rstudio/)
- Happy Git with R (https://happygitwithr.com/)
- R Packages and Git (https://r-pkgs.org/git.html)
- Git Book (http://git-scm.com/book/en/v2)

R Packages

Motivation

- · It is incredibly easy!
- It makes your code easier accessible (for others and yourself)
- · It provides a great framework for documenting your code
- It provides great tools for testing your code
- It is a form of scientific output (packages can be cited)

Setup

Use usethis and/or RStudio to set up everything.

- Create a regular Github Repository
- Clone the repository regularly
- Use usethis::use_package(getwd()) to create the minimal package structure
- Use usethis if you want to add more specific architecture

R functions

Your actual code lives in the R folder.

- · Write small functions which do one specific thing
- Organize your functions logically
- Avoid very long scripts

Using other packages

If you want to use another package in your source code, add it to the Imports-Field in your description file and use its functions using package::function.

Documentation

Use **roxygen2** to document your code and to manage your namespace.

Testing

Use **testthat** for automated testing. This has multiple advantages:

- Good test coverage serves as a quality attribute of a good and stable package
- · Modifying existing code becomes much easier
- · Your code becomes more robust
- · It helps you sleep at night

Resources

Writing R packages

- Writing R Extensions (https://cloud.r-project. org/doc/manuals/r-release/R-exts.html)
- R Packages (https://r-pkgs.org/)

Wrap Up

General Advice

- Try to always learn new things about R and / or programming
- Try to automate as much as possible
- If you are re-using code regularly, write a package!
- Learn from masters
- Rewrite important code the first attempt is usually not the best approach

Literature Recommendations

R Resources

- Advanced R Ed. 1 (http://adv-r.had.co.nz/)
- Advanced R Ed. 2 (https://adv-r.hadley.nz/)
- Notes on Functionals (https://www.stat.umn.edu/ geyer/8054/notes/functional.html)
- R language definition (https://cloud.r-project. org/doc/manuals/r-release/R-lang.html)
- R Inferno (https://www.burns-stat.com/pages/ Tutor/R_inferno.pdf)
- R Packages (https://r-pkgs.org/)
- Clean Code (https://enos.itcollege.ee/~jpoial/ oop/naited/Clean%20Code.pdf)

Thank you for your attention!

Thank you for your attention!

Questions? Remarks?