# Breast Cancer Detection Project

Reem El-Habbaa



### **Table of contents**







01

#### Introduction

This project is dedicated to the early detection of breast cancer through the application of machine learning techniques, Which focuses on constructing a predictive model that evaluates various indicators to accurately distinguish between:

- Benign Tumors (Non-Cancerous)
- Malignant Tumors (cancerous)

# 02 Dataset



For this machine learning project, we are utilizing a comprehensive breast cancer dataset sourced from **Kaggle**. This dataset is instrumental in training our model to identify patterns and make accurate predictions.

#### The dataset includes

- Target: Diagnosis
- Variety of Features: Revealing generally the tumor size, shape, and cell characteristics

Having Zero null or duplicate values

### 03 Preprocessing



#### **Normalization**

To ensure that our model treats all features equally, we've applied MinMaxScaler to normalize the dataset.



### **Encoding**

Since our features are floating-point numbers, KBinsDiscretizer is used to encode them into discrete intervals.



# 04 Model

In this project, we've implemented **Logistic Regression** to predict breast cancer occurrences (Categorical target: Diagnosis), the result can be one of 2 classes: Benign or Malignant.

Having an **Accuracy score equals 97.37%** and performance as the following metrics:

| • • •         |        |           |
|---------------|--------|-----------|
| Class         | Benign | Malignant |
| Precisio<br>n | 99%    | 95%       |
| Recall        | 97%    | 98%       |



### **Thank You**

Reem El-Habbaa