

Impianti Informatici

Affidabilità Cenni di statistica

Approccio probabilistico

- I meccanismi che determinano il comportamento di un impianto informatico sono complessi e dipendono da fattori diversi:
 - umani, tecnologici, ambientali, ...
- Le grandezze relative all'affidabilità e alle prestazioni di un sistema non posso essere descritte da leggi deterministiche
 - si è obbligati a considerare queste grandezze in termini statistici
 - le leggi che le governano sono leggi di tipo probabilistico

Probabilità: eventi indipendenti

Indichiamo con E_1 e E_2 due eventi **indipendenti**

Indichiamo

- con P(E₁) la probabilità che si verifichi l'evento E₁
- con P(E₂) la probabilità che si verifichi l'evento E₂

La probabilità che i due eventi si verifichino **contemporaneamente** è data da

•
$$P(E_1 \cap E_2) = P(E_1) \cdot P(E_2)$$

Probabilità: eventi mutuamente esclusivi

Indichiamo con E_1 e E_2 due eventi **mutuamente esclusivi**

Indichiamo

- con P(E₁) la probabilità che si verifichi l'evento E₁
- con $P(E_2)$ la probabilità che si verifichi l'evento E_2

La probabilità che si verifichi uno qualsiasi dei due eventi è data da

•
$$P(E_1 \cup E_2) = P(E_1) + P(E_2)$$

Probabilità condizionata e teorema di Bayes

Indichiamo con E_1 e E_2 due eventi **qualsiasi**

- La probabilità che si verifichi l'evento E_1 nel caso in cui si sia verificato l'evento E_2 è data da
 - $P(E_1|E_2) = P(E_1 \cap E_2) / P(E_2)$
- Si noti che se due eventi sono indipendenti
 - $P(E_1 \cap E_2) = P(E_1) \cdot P(E_2)$
- quindi
 - $P(E_1|E_2) = P(E_1)$

PDF: Probability Density Function

Proprietà della PDF

CDF: Cumulative Distribution Function

$$F(x) \equiv \mathbf{P}(X \le x)$$

La cumulative distribution function F(x) rappresenta la probabilità *P* che la variabile *X* assuma un valore minore o uguale a x

$$f(x) = \frac{\mathrm{d}F(x)}{\mathrm{d}x}$$

$$\int_{0}^{x} f(t) \mathrm{d}t = F(x)$$

Proprietà della CDF

$$F(b) - F(a) = P(a < X \le b)$$

$$\lim_{x\to -\infty} F(x) = 0$$

$$\lim_{x\to +\infty} F(x) = 1$$

Media e Percentile

Il valore medio μ è calcolato come media della variabile x pesata con la $\mu = E[X] = \int x f(x) dx$ probabilità f

$$\mu = E[X] = \int_{-\infty}^{-\infty} x f(x) dx$$

Il percentile μ_{p} è il valore assunto dalla variabile x al di sotto del quale cade una determinata percentuale p della distribuzione

$$F(\mu_p) = p$$

Distribuzione esponenziale

Proprietà memoryless dell'esponenziale

Il futuro non dipende dal passato

$$P(T > t + \Delta t \mid T > t) = \frac{P(T > t + \Delta t \cap T > t)}{P(T > t)} =$$

$$= \frac{P(T > t + \Delta t)}{P(T > t)} = \frac{1 - F(t + \Delta t)}{1 - F(t)} =$$

$$= \frac{e^{-\lambda(t + \Delta t)}}{e^{-\lambda t}} = e^{-\lambda \Delta t} = 1 - F(\Delta t) = P(T > \Delta t)$$

Un oggetto che segue una distribuzione esponenziale non ha memoria di quanto tempo ha funzionato, cioè non è soggetto a invecchiamento

Distribuzione di Weibull a tre parametri

Generalizzazione dell'esponenziale

$$f(t) = \frac{\beta}{\alpha} \left(\frac{t - \gamma}{\alpha} \right)^{\beta - 1} e^{-\left(\frac{t - \gamma}{\alpha} \right)^{\beta}}$$

$$t \ge \gamma$$

$$F(t) = 1 - e^{-\left(\frac{t - \gamma}{\alpha} \right)^{\beta}}$$

- α è detto parametro di scala o vita caratteristica
- β è detto parametro di forma
- γ è detto vita minima

Distribuzione di Weibull (2)

$$E[t] = \gamma + \alpha \Gamma \left(\frac{1}{\beta} + 1\right)$$

$$E_p[t] = \gamma + \alpha \left[-\ln(1-p)\right]^{1/\beta}$$

$$\Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt$$

