Modeling Earthquake Damage

Emily G., Jack R., Tamara F. & Marva L.

Overview

Background

Problem Statement

This project will predict the level of damage a structure endured using data from the 2015 Gorkha earthquake in Nepal, a dataset which includes, but is not limited to, details regarding building location, construction materials, and building age.

About the Data

Collection

- Kathmandu Living Labs
- Central Bureau of Statistics

Dataset Size

- Information on 260,000+ damaged buildings
- 39 features

Features

- Geographic region
- Building age
- Number of floors, and more

Damage Grade

Grade 1: Low Damage

Grade 2: Medium Damage

Grade 3: Almost complete

destruction

Our Features

Categorical

Numerical

Initial Observations

- Age is less indicative for buildings older than 100 years
- Buildings made from reinforced engineered concrete have the lowest relative damage grade compared to other buildings
- Buildings made from mud mortar and stone have a higher average damage grade than other types.

Initial Modeling

Model Comparison

KNN Performance

Feature Importance

Feature	Coefficient
area_percentage	0.189
ground_floor_type_v	0.131
roof_type_x	0.103
foundation_type_i	0.081
has_superstructure_cement_mortar_brick	0.080

Questions?