GO TO TOP

PREDICTIVE AUTO ARIMA

STATIONARITY & DIFFERENTIATIONS

SEASONNALITY & TREND

DECOMPOSION & BOXCOX TRANSF.

MOVING AVERAGE & DATA CLEANING

PREDICTIONS

CONCLUSION

CONSUMER HISTORY: Predicting USA Gros Domestic Product (GDP)

Code **▼**

Author: Thiago Tanure Andozia

GO TO TOP

In this document, you will find time series models to predict USA Gros Domestic Product (GDP).

The time series will be generated by the column "GDP".

Also, we will try to extrapolate with the data from the Unemployment column.

Important:

We will create the time series ending in late 2019.

What we will have:

The extrapolation of the expectation of GPD by it-self and with a scenario with unemployment as a predictor.

Code

The first time serie and some informations about it.

[1] "Median: 3851380"

[1] "length: 288"

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 265742 789765 3851380 6279516 10692458 21729124

Graphics

Code

Code

Code

Code

Gros Domestic Product

Gros Domestic Product

Code

Gros Domestic Product

Note: FUN is the aggregation function. Softened data that is very seasonal.

PREDICTIVE AUTO ARIMA

Residuals ARIMA GPD

Code

Residuals ARIMA GPD

Self-correlation (ACF) Residuals ARIMA GPD

Code

Partial auto-correlation (PACF) Residuals ARIMA GPD

As we can see, just white noise.

Here we can see another way to analyze residuals:

ARIMA (1, 2, 2) means that this has:

- 1 auto-regressive parameter;
- 2 differentiations from the original series;
- 2 parameters of moving averages.

To see if are normally distributed:

```
##
## Shapiro-Wilk normality test
##
## data: prev$residuals
## W = 0.82394, p-value < 2.2e-16
```

The data does not come from a normal distribution

STATIONARITY & DIFFERENTIATIONS STATIONARITY

This series has a tendency. Probably not stationary.

The test is greater than 0.05. It shows us that this series is not stationary.

DIFFERENTIATIONS

It transforms from non-stationary to stationary

Function to know how many differentiations are needed

```
Code
## [1] "It is necessary to do 2 differentiations"
                                                       Code
##
## # KPSS Unit Root / Cointegration Test #
##
## The value of the test statistic is: 3.5597
                                                       Code
##
## # KPSS Unit Root / Cointegration Test #
##
## The value of the test statistic is: 0.0127
```

After 2 differentiation processes, we managed to transform it into a stationary one.

Visually analyzing both (original and after 2 differentiations)

Code

Gros Domestic Product

Gros Domestic Product | 2 differentiations

SEASONNALITY & TREND

Code

Gros Domestic Product

Gros Domestic Product | 2 differentiations

DECOMPOSION & BOXCOX TRANSF. CLASSICAL DECOMPOSION

Code

Classical Decompose TS Gros Domestic Product | 2 differentiations

MSTL DECOMPOSION

Code

MSTL Decompose TS Gros Domestic Product | 2 differentiations

BOXCOX TRANSFORMATION

We will generate automatic logarithmic labda

Code

TS Gros Domestic Product | BoxCox transformation | 2 differentiations

PLOTS TO COMPARE

Code

Gros Domestic Product

Gros Domestic Product | BoxCox

Code

Gros Domestic Product | 2 differentiations

Code

Gros Domestic Product | 2 differentiations BoxCox

MOVING AVERAGE & DATA CLEANING

Code

Code

COMPARING

Code

GDP | BoxCox | cleaned

GDP | BoxCox | 2 diffs. | cleaned

PREDICTIONS

MODEL 1

TIME SERIES AFTER BOXCOX AND CLEANING PROCESS

Code

ARIMA BOXCOX

ACCURACY

ME RMSE MAE MPE MAPE ACF1
Test set -0.1384159 0.1494275 0.1384159 -0.1176566 0.1176566 0.04204106
Theil's U
Test set 0.7293204

The Mean Absolute Percent Error was 12%

MODEL 2

REGRESSION WITH 1 COLUMN + TREND

Code

Code

The range of the unemployment variable from 1948 to 2019 will be used in xreg when creating the model. Then we will extract the period from 2017 to 2019 (8 in total) to use forecast function

PREDICT

Code Point Forecast ## Lo 80 Hi 80 Lo 95 Hi 95 ## 2018 Q1 116.6549 116.5159 116.7939 116.4424 116.8675 ## 2018 Q2 116.8942 116.6878 117.1006 116.5785 117.2099 ## 2018 Q3 117.1277 116.8604 117.3950 116.7189 117.5365 117.3309 117.0070 117.6547 116.8356 117.8262 ## 2018 Q4 ## 2019 Q1 117.5089 117.1270 117.8908 116.9248 118.0930 ## 2019 Q2 117.7752 117.3369 118.2136 117.1048 118.4457 ## 2019 Q3 117.9713 117.4755 118.4670 117.2131 118.7294 ## 2019 Q4 118.2052 117.6528 118.7576 117.3603 119.0500

Code

ARIMA BOXCOX

Code

##			Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
##	2018	Q1	-103.1729	-388.0749	181.7291	-538.8929	332.5470
##	2018	Q2	-139.8941	-424.8057	145.0174	-575.6288	295.8405
##	2018	Q3	-114.1542	-400.3811	172.0727	-551.9005	323.5921
##	2018	Q4	-115.8717	-402.2513	170.5079	-553.8515	322.1081
##	2019	Q1	-113.8635	-400.3846	172.6576	-552.0597	324.3327
##	2019	Q2	-105.6083	-392.1757	180.9592	-543.8754	332.6589
##	2019	Q3	-104.3169	-390.9084	182.2745	-542.6207	333.9869
##	2019	Q4	-100.6827	-387.2842	185.9187	-539.0018	337.6363

ARIMA BOXCOX | DIFFERENTIATIONS

Code

ARIMA BOXCOX

Code

ARIMA BOXCOX | DIFFERENTIATIONS

ACCURACY

ME RMSE MAE MPE MAPE ACF1 Theil's U
Test set -0.214725 0.2222662 0.214725 -0.1827175 0.1827175 0.06874263 1.057604

The Mean Absolute Percent Error was 18%

Code

ME RMSE MAE MPE MAPE ACF1 Theil's U
Test set -42.30404 300.9591 269.594 25.69617 233.415 -0.2784379 18.1507

The model with the series after 2 differentiations was not efficient.

MODEL 3

ARIMA WITH 1 COLUMN + TREND

Code

PREDICT

Code

ARIMA BOXCOX + UNEMP

Code

ARIMA BOXCOX DIFFS. + UNEMP

ACCURACY

ME RMSE MAE MPE MAPE ACF1 Theil's U
Test set 0.214725 0.2222662 0.214725 0.1823607 0.1823607 0.06874263 0.9323222

Code

ME RMSE MAE MPE MAPE ACF1 Theil's U
Test set 16.19244 234.4263 192.607 23.73014 105.9712 0.1462585 0.4740075

MODEL 4

RECURRENT NEURAL NETWORK (RNN)

Code

ACCURACY

ME RMSE MAE MPE MAPE ACF1 Theil's U
Test set 0.8996696 1.001543 0.8996696 0.7630121 0.7630121 0.5943856 4.208843

Code

ME RMSE MAE MPE MAPE ACF1 Theil's U
Test set -78.39287 295.7262 256.973 171.9638 171.9638 0.2009339 3.189306

COMPARING ARIMA AND RNN

CPMPARING MODELS

Code

COMPARING MODELS DIFFS.

MODEL 5

REGRESSION FOR TIME SERIES (TSLM)

ACCURACY

ME RMSE MAE MPE MAPE ACF1 Theil's U
Test set -2.763548 2.76512 2.763548 -2.348766 2.348766 0.624693 10.9208

Code

ME RMSE MAE MPE MAPE ACF1 Theil's U
Test set -89.28551 237.5145 212.8591 95.24695 95.24695 0.1239704 1.298814

COMPARING 3 BEST MODELS

ARIMA, RNN AND TSLM

COMPARING MODELS

Code

COMPARING MODELS DIFFS.

CONCLUSION

The best model was the first one (MODEL 1). it is a Forecast, applied in ARIMA (2,2,1), built with a set of data after BoxCox transformation and process of cleaning outliers. Its Mean Absolute Percent Error was 12%. Below is a model's summary:

ARIMA BOXCOX

ACCURACY

ME RMSE MAE MPE MAPE ACF1
Test set -0.1384159 0.1494275 0.1384159 -0.1176566 0.04204106
Theil's U
Test set 0.7293204