Clustering: k-Means

Ali Akbar Septiandri

September 20, 2017

Universitas Al Azhar Indonesia

Daftar isi

- 1. Clustering
- 2. Mengevaluasi Clustering
- 3. Aplikasi

• Unsupervised learning

- Unsupervised learning
- Subpopulasi apa yang ada dalam data?

- Unsupervised learning
- Subpopulasi apa yang ada dalam data?
- Apa kesamaan dari elemen di tiap subpopulasi?

- Unsupervised learning
- Subpopulasi apa yang ada dalam data?
- Apa kesamaan dari elemen di tiap subpopulasi?
- Bisa digunakan untuk menemukan pencilan

Contoh Data

Figure 1: Contoh data dalam 2D [VanderPlas, 2016]

Subpopulasi

Figure 2: Subpopulasi dari algoritma k-Means [VanderPlas, 2016]

Tetangga dalam satu kompleks, tanpa memedulikan kelasnya Berapa jumlah subpopulasi (klaster) yang ingin kita cari?

Data Iris

Klaster

Figure 3: k-Means dengan k = 2

Klaster

Figure 4: k-Means dengan k = 3

Klaster

Figure 5: k-Means dengan k = 4

k-Means

- Jumlah k ditentukan dari awal
- Tidak memerlukan label
- Menggunakan centroid, i.e. rata-rata nilai dari objek yang masuk dalam cluster tersebut
- Mencari centroid terdekat dari tiap objek

Algoritma: Expectation-Maximization

- 1. Inisialisasi k centroid secara acak
- 2. Ulangi hingga konvergen
 - A. E-step: Masukkan tiap titik/objek ke centroid terdekat

$$\arg\min_{j} D(x_i, c_j)$$

B. M-step: Ubah nilai *centroid* menjadi rata-rata dari tiap titik/objek

$$c_j(a) = \frac{1}{n_j} \sum_{x_i \to c_j} x_i(a), \text{ for } a = 1..d$$

Visualisasi EM

Figure 6: Konvergensi klaster tercapai hanya dalam tiga iterasi [VanderPlas, 2016]

Algoritma ini sangat bergantung pada inisialisasi *centroid*!

Berapa nilai k yang optimal?

Menentukan Nilai k

- Gunakan label kelas, e.g. 10 untuk MNIST
- Gunakan V untuk menggambarkan scree plot

$$V = \sum_{j} \sum_{x_i \to c_j} D(c_j, x_i)^2$$

lalu gunakan *elbow method*, i.e. nilainya dapat dicari dengan menggunakan nilai optimal turunan kedua

Scree Plot

Figure 7: Secara visual, scree plot menunjukkan nilai optimal k=4

Mengevaluasi Clustering

Evaluasi Intrinsik: Klaster ~ **Kelas**

- Klaster $c_1, c_2, ..., c_K$
- Kelas $R_1, R_2, ..., R_N$
- ullet Cocokkan R_i dengan c_j , hitung akurasinya

Contoh Evaluasi Intrinsik

Figure 8: Confusion matrix dari MNIST clustering [VanderPlas, 2016]

Contoh Evaluasi Intrinsik

	G1	G2	G3	G4	G5	G6
C1	1	7	0	1	4	0
C2 C3	0	0	0	0	2	7
C3	0	0	2	0	0	0
C4	3	1	0	0	1	0

Figure 9: Klaster karakter dalam Julius Caesar

Aplikasi

Aplikasi Clustering

- Representasi gambar: bag of cluster id atau fitur lain (lihat [Coates, 2012])
- Kompresi gambar
- Sistem rekomendasi

Aplikasi: Kompresi gambar

Figure 10: Gambar yang akan dikompresi dengan *clustering* [VanderPlas, 2016]

Klaster warna

Figure 11: Clustering warna dengan kompresi [VanderPlas, 2016]

Klaster warna

Figure 11: Clustering warna dengan kompresi [VanderPlas, 2016]

Hasil kompresi gambar

Figure 12: Kompresi dengan faktor hingga 1 juta dengan *clustering* [VanderPlas, 2016]

Ikhtisar

- Clustering merupakan salah satu tugas unsupervised learning,
 i.e. tidak memerlukan label
- Nilai k merupakan jumlah klaster dalam algoritma k-Means
- k-Means sangat bergantung pada inisialisasi centroid

Pertemuan berikutnya

- Kuliah tamu: nodeflux.io
- Penggunaan Al untuk computer vision

Referensi

Jake VanderPlas (2016)

In Depth: k-Means Clustering

https://jakevdp.github.io/

PythonDataScienceHandbook/05.11-k-means.html

Adam Coates & Andrew Y. Ng (2012)

Learning feature representations with k-means.

Neural networks: Tricks of the trade (pp. 561-580). Springer Berlin Heidelberg.

Terima kasih