

Max Domagk

Fakultät Elektrotechnik und Informationstechnik Lehrstuhl für Elektroenergieversorgung

Prognose von Langzeitmessungen der Elektroenergiequalität

AK Netzrückwirkungen // 25. März 2023

Inhalt

Motivation

Grundlagen

Prognoseverfahren

Anwendung

Motivation

Langzeitmessungen der Elektroenergiequalität

 Qualitative Hinweise auf zukünftige Entwicklungen der Qualitätskenngrößen

Spannungsverzerrung (wöch. 95-%-Quantile der 10-Minuten-Mittelwerte)

Zielstellung

 Belastbare Prognosen über zukünftige Entwicklung der Strom- und Spannungsqualität

Herausforderungen

- Flexible und robuste Verfahren für zuverlässige Anwendung
- Große Datenmengen (z.B. Messdaten für 100+ Messungen und 30+ Qualitätskenngrößen)
- Geringer manueller Aufwand (u.a. automatisierte Parametrierung der Verfahren)
- Aufbereitung und Interpretation der Ergebnisse

Zeitreihen

Zeitreihe

$$y_t = y_1, y_2, \dots, y_N$$

als zeitliche geordnete Folge von Messwerten für die gilt, dass

- zu jedem Zeitpunkt (t = 1, 2, ..., N) ein Messwert existiert und
- die Zeitpunkte äquidistant verteilt sind.

Beispiele

Kontinuierlich erfasste Qualitätskenngrößen

- Erfassung der
 10-Perioden-Messwerte
- Aggregierung zu
 10-Minuten-Mittelwerten
- Bewertung der wöch. 95-%-Quantile

Spannungsverzerrung (wöch. 95-%-Quantile der 10-Minuten-Mittelwerte)

Additives Komponentenmodell

Berücksichtigung verschiedener Einflüsse in der klassischen Zeitreihenanalyse:

- Trendkomponente (mehrere Jahre)
- Konjunkturkomponente (mehrere Monate bis Jahre)
- Saisonkomponente (mehrere Wochen bis Monate)
- Periodische Komponente (mehrere Tage bis Wochen)
- Restkomponente (z.B. Ausreißer, Unregelmäßigkeiten)
- •

Vereinfachtes Komponentenmodell für wochenweise berechnete Werte:

$$y_t = T_t + S_t + R_t$$

 T_t ... Trendkomponente

 S_t ... Saisonkomponente

 R_t ... Restkomponente

Zeitreihenzerlegung

STL-Verfahren

(engl. Seasonal and Trend decomposition using Loess)

Zerlegung der **Zeitreihe** in:

- Trend-,
- Saison- und
- Restkomponente

durch zweifache Glättung mittels lokal gewichteter Regression (LOESS):

- 1. Eliminierung der Saisonkomponente
- 2. Glättung der Trendkomponente

Begriffe und Definitionen

Zeitreihenprognose

Prozess der Vorhersage auf Grundlage vergangener und aktueller Daten

Prognosehorizont

Zeitraum für den künftige Werte zu den Zeitpunkten

$$h = 1, 2, ..., H$$

vorhergesagt werden

Prognosefehler

Differenz zwischen

- beobachtetem Wert y_{T+h}
- vorhergesagtem Wert $\hat{y}_{T+h|T}$

Unterteilung in **Trainings-** und **Testdaten**

$$y_t = y_1, y_2, ..., y_T, y_{T+1}, ..., y_{T+H}$$

Prognosegenauigkeit

$$\mathsf{RMSE} = \sqrt{\frac{1}{T} \sum_{h=1}^{H} (y_{T+h} - \hat{y}_{T+h|T})^2} \qquad \mathsf{sMAPE} = 200 \cdot \frac{1}{H} \sum_{h=1}^{H} \left| \frac{|y_{T+h} - \hat{y}_{T+h|T}|}{y_{T+h} + \hat{y}_{T+h|T}} \right|$$

Übersicht

Zeitreihenprognose (engl. Forecasting)

• eigener Fachbereich der Statistik mit Vielzahl an Modellen und Verfahren

Prognoseverfahren

- **Einfache Verfahren** z.B. Regressionsverfahren
- Zeitreihenzerlegung zur Prognose der Einzelkomponenten
- **Exponentielle Glättung** (engl. Exponential Smoothing) z.B. Holt-Winters-Verfahren
- ARIMA (engl. Auto-Regressive Integrated Moving Average) z.B. Saisonale ARIMA-Modelle (benötigen stationäre Zeitreihen, Parameterbestimmung u.U. nicht trivial)
- **Dedizierte Verfahren** u.a. Quantile Regression (Regressionmodelle für Quantile), Maschinelles Lernen (z.B. Neuronale Netze)
- •

Einfache Verfahren (1)

Naiver Ansatz

Alle prognostizierten Werte werden auf die letzte Beobachtung gesetzt

Mittelwert

Alle zukünftigen Werte entsprechen dem Mittelwert historischer Daten

Drift

Variante der naiven Prognose mit Extrapolation der Linie zwischen erster und letzter Beobachtung

Regression

Extrapolation einer Geraden

Einfache Verfahren (2)

Naiver Ansatz

Alle prognostizierten Werte werden auf die letzte Beobachtung gesetzt

Mittelwert

Alle zukünftigen Werte entsprechen dem Mittelwert historischer Daten

Drift

Variante der naiven Prognose mit Extrapolation der Linie zwischen erster und letzter Beobachtung

Regression

Extrapolation einer Geraden

Saisonal naiver Ansatz

Prognosewert entspricht der letzten Beobachtung aus derselben Jahreszeit (z.B. derselben Woche des Vorjahres)

Zeitreihenzerlegung (1)

1. Zeitreihenzerlegung in Einzelkomponenten mittels STL-Verfahren

Zeitreihenzerlegung (2)

1. Zeitreihenzerlegung in Einzelkomponenten

mittels STL-Verfahren

2. Prognose der Saisonkomponente

z.B. mit saisonal naivem Ansatz

Zeitreihenzerlegung (3)

1. Zeitreihenzerlegung in Einzelkomponenten mittels STL-Verfahren

2. Prognose der Saisonkomponente

z.B. mit saisonal naivem Ansatz

3. Prognose der saisonbereinigten Komponente

(Trend- und Restkomponente) z.B. mit naivem Ansatz

Zeitreihenzerlegung (4)

1. Zeitreihenzerlegung in Einzelkomponenten mittels STL-Verfahren

2. Prognose der Saisonkomponente

z.B. mit saisonal naivem Ansatz

3. Prognose der saisonbereinigten Komponente

(Trend- und Restkomponente) z.B. mit naivem Ansatz

4. Kombination der Einzelprognosen zur Gesamtprognose

Vielzahl an Kombinationsmöglichkeiten für Prognose der Einzelkomponenten

Exponentielle Glättung (1)

Einfache exponentielle Glättung (ES)

"Niveau" mit Gegenwartsorientierung (jüngere Beobachtungen stärker gewichtet als ältere)

Exponentielle Glättung (2)

Einfache exponentielle Glättung (ES)

"Niveau" mit Gegenwartsorientierung (jüngere Beobachtungen stärker gewichtet als ältere)

Holt-Verfahren

Erweiterung von ES um "Trend" mit Gegenwartsorientierung

Exponentielle Glättung (3)

Einfache exponentielle Glättung (ES)

"Niveau" mit Gegenwartsorientierung (jüngere Beobachtungen stärker gewichtet als ältere)

Holt-Verfahren

Erweiterung von ES um "Trend" mit Gegenwartsorientierung

Holt-Winters-Verfahren

Erweiterung des Holt-Verfahrens um "Saison" mit Gegenwartsorientierung

Identifikation geeigneter Verfahren

Zusammenstellung ausgewählter Verfahren

- SNAIVE (Referenzverfahren)
 Saisonal naiver Ansatz
- STL_DRIFT
 Zeitreihenzerlegung mit
 Drift-Verfahren
- STL_ES
 Zeitreihenzerlegung mit exponentieller Glättung
- STL_HOLT
 Zeitreihenzerlegung mit Holt-Verfahren
- HW Holt-Winters-Verfahren

Einflussgrößen auf Prognosegenauigkeit (1)

- Prognosehorizont
 (Fehler größer je größer Horizont)
- Qualitätskenngrößen (genaue Prognosen mgl. u.a. für Verzerrung)

Mittlerer Prognosefehler aller Verfahren für verschiedene Spannungs- und Stromqualitätskenngrößen

Einflussgrößen auf Prognosegenauigkeit (2)

- Prognosehorizont
 (Fehler größer je größer Horizont)
- Qualitätskenngrößen (genaue Prognosen mgl. u.a. für Verzerrung)
- Trainings- vs. Testdaten
 (Signifikante Änderungen in Testdaten nicht prognostizierbar)

Einflussgrößen auf Prognosegenauigkeit (3)

- Prognosehorizont
 (Fehler größer je größer Horizont)
- Qualitätskenngrößen (genaue Prognosen mgl. u.a. für Verzerrung)
- Trainings- vs. Testdaten
 (Signifikante Änderungen in Testdaten nicht prognostizierbar)

Zukünftige Forschung

- Prognostizierbarkeit

 (z.B. statistische Parameter zur Abschätzung einer guten bzw. schlechten Prognostizierbarkeit)
- Erprobung weiterer Verfahren (u.a. Ensemble-Prognosen)

Vielen Dank für Ihre Aufmerksamkeit

max.domagk@tu-dresden.de

+49 351 463 35223

maxdomagk.de

GrundlagenZeitliche Variationen

KB - kurze Beobachtungsdauer (*Tage bis Wochen*) MB - mittlere Beobachtungsdauer (*Wochen bis Monate*) LB - lange Beobachtungsdauer (*Monate bis Jahre*)

hoch

(Abnehmerverhalten)

mittel bis hoch

(z.B. saisonale Unterschiede im Abn.-Verhalten)

mittel

(z.B. Einsatz neuer Gerätetechnologien)

hoch

(Erzeugungsverhalten)

mittel bis hoch

(z.B. saisonale Unterschiede im Erz.-Verhalten)

mittel

(z.B. Einsatz neuer Gerätetechnologien)

praktisch nicht vorhanden

niedrig

(z.B. verschiedene Schaltzustände)

niedrig bis mittel

(z.B. Änderungen in der Betriebsführung)

Additives Komponentenmodell

Vorhersageintervall

Vorhersageintervall um Unsicherheit der Prognose einzuschätzen

(z.B. Wahrscheinlichkeit, dass z.B. 95% aller prognostizierten Werte innerhalb des Intervalls liegen)

Verteilungsbasiert

- Annahme: prognostizierte Werte sind normalverteilt
- Schätzung der Standardabweichung

Stichprobenbasiert

- Annahme:
 Prognosefehler unkorreliert
 und in Varianz konstant
- Wiederholtes Ziehen aus historischen Fehlern der Trainingsdaten

Einflussgrößen auf Prognosegenauigkeit

Prognosehorizont
 (Fehler größer je größer Horizont)

Prognosegenauigkeit in Abhängigkeit des Prognosehorizonts

