ДИСКРЕТНИ СТРУКТУРИ II ТЕОРИЯ II

37. Краен ориентиран (мулти)граф.

Нека $V=\{v_1,v_2,\ldots,v_n\}$ е крайно множество, елементите на което ще наричаме върхове, а $E=\{e_1,e_2,\ldots,e_m\}$ е крайно множество, елементите на което ще наричаме ребра. Функцията $f_G:E\to V\times V$, съпоставяща на всяко ребро – **наредена** двойка от върхове, наричаме краен ориентиран (мулти)граф. Записваме $G(V,E,f_G)$ и четем: "краен ориентиран (мулти)граф G с върхове V, ребра E и свързваща функция f_G ".

38. Краен ориентиран граф.

Нека $G(V,E,f_G)$ е краен ориентиран мултиграф и функцията f_G е инекгтивна. Тогава $G(V,E,f_G)$ наричаме краен ориентиран граф и бележим само с G(V,E), където $E\subset V\times V$.

39. Краен неориентиран граф (или само граф).

Нека G(V,E) е краен ориентиран граф, такъв че релацията $E\subseteq V\times V$ е антирефлексивна и симетрична. Тогава G(V,E) наричаме краен неориентиран граф илои просто граф.

40. Краен неориентиран мултиграф.

Крайният неориентиран граф G(V,E) може да превърнем в краен неориентиран мултиграф, ако позволим повече от едно неориентирано ребро да свързва два върха от V, както и наличието на примки. Тоест ако вместо множеството $E\subseteq V\times V$ вземем мултимножеството от елементите на $V\times V$.

41. Подмултиграф на краен мултиграф.

Нека $G(V,E,f_G)$ е краен мултиграф и $V'\subseteq V$. Тогава подмултиграф $G'(V',E',f_G')$ породен от V' се нарича мултиграфът G', за който E' се състои от всички ребра от E, на които краищата им са във V'. Функцията f_G' е рестрикцията на f_G върху E'.

42. Път в краен ориентиран граф.

Нека G(V,E) е краен ориентиран граф. Път в G се нарича всяка крайна редица $v_{i_0},v_{i_1},\ldots,v_{i_n}$ от върхове, такава че $(v_{i_{p-1}},v_{i_p})\in E,v_{i_{p-1}}\neq v_{i_{p+1}},v_{i_p}\neq v_{i_{p-1}},i=\overline{1,n}.$ n е дължината на пътя, а v_{i_0} и v_{i_n} са съответно началото и края му.

43. Маршрут в краен (мулти)граф.

Нека $G(V,E,f_G)$ е краен (мулти)граф. Редицата от редуващи се върхове и ребра на G: $v_{i_0},e_{l_1},v_{i_1},e_{l_2},v_{i_2},\ldots,v_{i_{k-1}},e_{l_k},v_{i_k}$, в която $f_G(e_{l_j})=(v_{i_{j-1}},v_{i_j}), j=\overline{1,k}$ наричаме маршрут в G от v_{i_0} до v_{i_k} . Числото k наричаме дължина на маршрута. Ако $v_{i_0}=v_{i_k}$, редицата (маршрута) наричаме контур.

44. Матрица на съседства.

Матрицата на съседства на крайния ориентиран мултиграф $G(V,E,f_G)$, наричаме матрицата $M=\|a_{ij}\|$ с размери $\|V\|\times\|V\|$, ако за всеки връх $v_i,v_j\in V$ е в сила равенството: $a_{ij}=\|\{e\,|\,e\in E,f_G(e)=(v_i,v_j)\}\|$.

45. Теоремата за броя на маршрутите между два върха чрез матрица на съседство. Нека $G(V,E,f_G)$ е краен ориентиран мултиграф и нека $M=\|a_{ii}\|$ е матрицата му на

съседства. Нека $M^k = \|a_{ij}^{(k)}\|\,$ е $k^{ ext{-TA}}$ степен на M при целочислено умножение на матрици. Тогава $a_{ij}^{(k)}$ е равно на броят на маршрутите с дължина k от v_i до v_j в G.

46. Кореново дърво (индуктивна дефиниция).

 $T(\{r\}, \emptyset)$ е дърво с корен r и единствено листо r. Нека T(V, E) е дърво с корен r и листа l_1, l_2, \ldots, l_n . Нека $v \in V$ и $u \notin V$. Тогава $T'(V \cup \{u\}, E \cup \{(v, u)\})$ е дърво с корен r. Ако $v = l_i$ за някое $i = \overline{1, n}$, то листата на T' са $l_1, \ldots, l_{i-1}, u, l_{i+1}, \ldots, l_n$. Ако $v \neq l_i$ за всяко $i = \overline{1, n}$, то листата на T' са l_1, \ldots, l_n, u .

47. Дърво чрез граф. Характеризация на дървета.

Следните твърдения са еквивалентни:

- Графът G е дърво.
- Дървото е свързан граф без цикли.
- Всеки два върха на графа G са свързани с точно един прост път (прост или нормален път е този път, в който не се повтарят нито ребра нито върхове).
- Графът G е свързан (има точно една компонента на свързаност) и броя на ребрата му е с единица по-малък от броя на върховете му: |E| = |V| 1.
- Графът G е свързан и минимален отностно свързаността. Тоест ако махнем някое ребто от G той ще престане да бъде свързан и ще се разбие на две компоненти на свързаност.
- Графът G е ацикличен и максимален отностно ацикличността. Тоест ако добавим каквото и да е ново ребро в G ще се образува цикъл.

48. Височина на кореново дърво.

Нека T(V,E) е кореново дърво и $v \in V$. Височината на върха v се нарича дължината на единствения път от корена на дървото T до върха v. Височината на дървото T се нарича максимума от височините на всички върхове на T.

49. Разклоненост на кореново дърво.

Нека T(V,E) е кореново дърво и $v\in V$. Разклоненост на върха v се нарича броя на синовете на върха v (броя на съседите на върха vv минус 1 – бащата на върха v). Разклоненост на дървото T наричаме максимума от разклоненостите на всички върхове на T.

50. Твърдението кога един граф има покриващо дърво.

Всеки свързан граф G(V,E) притежава поне едно покриващо дърво G'(V,E'), където $E'\subseteq E$.

51. Ойлеров път в граф.

Път в сързания граф G, който минава през всяко ребро на G, но ТОЧНО ВЕДНЪЖ, наричаме Ойлеров път.

52. Твърденията за Ойлеров път.

В един свързан граф G има Ойлеров път, който не е Ойлеров цикъл тогава и само тогава, когато G има точно два върха от нечетна степен.

53. Теорема за Ойлеров граф.

Един граф G е Ойлеров, тоест има Ойлеров път, който е цикъл тогава и само тогава, когато G е свързан и всеки негов връх е от четна степен.

54. Хамилтонов път в граф.

Път в свързания граф G, който минава през всеки връх на G, но ТОЧНО ВЕДНЪЖ, наричаме Хамилтонов път.

55. Хамилтонов граф.

графът G е Хамилтонов, когато G е свързан и в него има Хамилтонов път, който е цикъл. Тоест път в който само началото и краят учатват повече от един път (точно два пъти), тъй като съвпадат.

56. Твърдението за Хамилтонови графи.

Графът $B_n(J_2^n,E_n), n\geq 1$, с върхове n-мерните двоични вектори (J_2^n) и ребра $E_n=\{(\alpha_i,\alpha_j)\,|\, \rho(\alpha_i,\alpha_j)=1\}$ е Хамилтонов. Тоест n-мерните двойчни кубове са Хамилтонови графи.

57. Линейна булева функция и полином на Жегалкин. Полином на Жегалкин за n променливи:

$$\begin{split} f(x_1, x_3, \dots, x_n) &= a_0 \oplus a_1 x_1 \oplus a_2 x_2 \oplus \dots \oplus a_n x_n \oplus \\ &\oplus a_{12} x_1 x_2 \oplus a_{13} x_1 x_3 \oplus \dots \oplus a_{n-1,n} x_{n-1} x_n \oplus \\ &\oplus a_{123} x_1 x_2 x_3 \oplus \dots \oplus a_{n-2,n-1,n} x_{n-2} x_{n-1} x_n \oplus \\ &\oplus a_{1,2,\dots,n} x_1 x_2 \dots x_n = \\ &= a_0 \oplus \bigoplus_{1 \leq i \leq n} a_i x_i \bigoplus_{1 \leq i \leq j \leq n} a_{ij} x_i x_j j \oplus \dots \oplus a_{1,2,\dots,n} x_1 x_2 \dots x_n, \text{ където } a_i \in \{0,1\} \end{split}$$

Всяка булева функция има единствен полином на Жегалкин. казваме, че една булева функция е линейна, ако нейният полином на Жегалкин е линеен: $a_0 \oplus a_1 x_1 \oplus \ldots \oplus a_n x_n$.

- 58. Монотонна булева функция и подходящата наредба за тази дефиниция. Булевата функция $f(x_1, x_2, \dots, x_n)$ наричаме монотонна, ако $\forall \alpha, \beta \in J_n^2, \alpha \leq \beta$ (където с \leq означаваме лексикографска наредба) е в сила $f(\alpha) \leq f(\beta)$.
- 59. Шеферова булева функция. Булевата функция f наричаме Шеферова, ако $\left[\{f\}\right]=\mathscr{F}_2$. Тоест f сама образува пълно множество от двоични функции ($\mathscr{F}_2=\{f\,|\,f$ е двоична функция $\}$). Съгласно теоремата на Пост, това означава, че $f\not\in T_0\cup T_1\cup S\cup M\cup L$.
- 60. Предпълно множество от функции.
 Казваме, че едно множество от двоични функции е предпълно, ако не е пълно, но добавяйки към него произволна двоична функция, която не е от това множество, то множеството ще стане пълно.

Тоест
$$F \in \mathcal{F}_2$$
 : $[F] \neq \mathcal{F}_2 \land (\forall f \not\in F \land f \in \mathcal{F}_2) \Rightarrow \big[F \cup \{f\}\big] = \mathcal{F}_2$.

61. Принцип на Дирихле.

Нека A и B са крайни множества и |A| > B. Тогава за всяко изображение $f: A \to B$ (за всяка тотална функция) съществуват елементи $a, b \in A, a \neq b$ и f(a) = f(b).

62. Принцип на чекмеджетата (Pigeonhole principle). Нека имаме p на брой предмета и r на брой чекмеджета. Ако r < p, то както и да поставим всички предмети в чекмеджетата, ПОНЕ в едно чекмедже ще има ПОНЕ два предмета.

63. Принцип на биекцията.

Нека A и B са крайни множества. Съществува биекция $f:A\to B$ тогава и само тогава, когато |A|=|B|.

64. Принцип на събирането (Принцип на разбиването).

Нека A е крайно множество, а $R = \{S_1, S_2, \dots, S_n\}$ е разбиване на A . Тогава $|A| = \sum_{i=1}^n |S_i|$.

65. Принцип на разликата.

Нека A и B са крайни множества и $A \in B$. Тогава $|B \setminus A| = |B| - |A|$.

66. Принцип на умножението (принцип на декартовото произведение). Нека A и B са крайни множества. Тогава $|A \times B| = |A| \times |B|$.

67. Принцип на делението.

Нека A е крайно множество е $B=A\times C$, където C също е крайно и $C\neq\emptyset$. Тогава $|A|=|B|\div|C|$.

68. Принцип на включването и изключването.

Нека A е крайно и $A_1, A_2, \ldots, A_n \subseteq A$. С \overline{A}_i^A отбелязваме допълнението на множеството A_i спрямо множеството A.

•
$$\operatorname{sa} n = 3$$
:
$$\left| \overline{A}_1^A \cap \overline{A}_2^A \cap \overline{A}_3^A \right| =$$

$$= |A| - \left(|A_1| + |A|_2| + |A_3| \right) + |A_1 \cap A_2| + |A_2 \cap A_3| +$$

$$+ |A_3 \cap A_1| - |A_1 \cap A_2 \cap A_3|.$$

• an = 4:

$$\begin{split} \left| \overline{A}_{1}^{A} \cap \overline{A}_{2}^{A} \cap \overline{A}_{3}^{A} \cap \overline{A}_{4}^{A} \right| &= |A| - \left(|A_{1}| + |A|_{2}| + |A_{3}| + |A_{4}| \right) + \\ &+ |A_{1} \cap A_{2}| + |A_{1} \cap A_{3}| + |A_{1} \cap A_{4}| + |A_{2} \cap A_{3}| + |A_{2} \cap A_{4}| + |A_{3} \cap A_{4}| - \\ &- |A_{1} \cap A_{2} \cap A_{3}| + |A_{1} \cap A_{2} \cap A_{4}| + |A_{1} + A_{3} + A_{4}| + |A_{2} \cap A_{3} \cap A_{4}| + \\ &+ |A_{1} \cap A_{2} \cap A_{3} \cap A_{4}| \,. \end{split}$$

• Обобщено:

$$\left| \bigcap_{i=1}^{n} \overline{A}_{i}^{A} \right| = \left| S - \bigcup_{i=1}^{n} A_{i} \right| =$$

$$= \left| S \right| - \sum_{i=1}^{n} \left| A_{i} \right| + \sum_{1 \le i < j \le n} \left| A_{i} \cap A_{j} \right| - \dots + (-1)^{n} \left| A_{1} \cap \dots \cap A_{n} \right|.$$

69. Критерият за затвореност на едно множество от двоични булеви функции.

Нека $F \subseteq \mathcal{F}_2$ е такова, че:

•
$$f(x) = x, f \in F$$

•
$$\forall f, g_1, g_2, \dots, g_n \in F \Rightarrow h = f(g_1, g_2, \dots, g_n) \in F$$

Тогава F е затворено.

- 70. Критерият (теоремата) за пълнота на Пост-Яблонски за множество от булеви функции. Нека $F \in \mathscr{F}_2$. Тогава F е пълно тогава и само тогава, когато $F \nsubseteq T_0$, $F \nsubseteq T_1$, $F \nsubseteq L$, $F \nsubseteq S$ и $F \nsubseteq M$. Казано по друг еквивалентен начин, $F \nsubseteq T_0 \cup T_1 \cup L \cup S \cup M$.
- 71. Критерий за шеферовост на една булева функция.

Ако
$$f\in \mathcal{F}_2, f\not\in T_0, f\not\in T_1, f\not\in S$$
, то f е шеферова.

72. Пълно множество от двоични функции.

Казваме, че едно множество от двоични функции е пълно, ако затварянето му съвпада с всички двоични функции: $[F] = \mathscr{F}_{\gamma}$.

73. Суперпозиция.

Нека
$$f(x_1, x_2, \dots, x_n) \in \mathcal{F}_q^n$$
 и $g_i(y_1, y_2, \dots, y_m) \in \mathcal{F}_q^m$, $i = \overline{1, n}$. Функцията $h(y_1, y_2, \dots, y_m) = f\left(g_1(y_1, \dots, y_m), g_2(y_1, \dots, y_m), \dots, g_n(y_1, \dots, y_m)\right)$

наричаме суперпозиция на g_1,g_2,\ldots,g_n въвf.

- 74. Предпълни множества и твърденията за тях. Множествата T_0, T_1, S, M, L и само те са предпълни в \mathscr{F}_2 .
- 75. Теорема на Бул. Множеството $\{x \lor y, xy, \overline{x}\}$ е пълно.