Вариационное исчисление. Неофициальный конспект

Лектор: Роман Владимирович Романов Конспектировал Леонид Данилевич

IV семестр, весна 2024 г.

Содержание

1	Что мы будем изучать	2
	1.1 Интегральные функционалы	3
2	Формула первой вариации. Уравнение Эйлера — Лагранжа 2.1 Лемма Дюбуа-Реймона	4
	2.2 Формула первой вариации	
	2.3 Уравнение Эйлера — Лагранжа	
	2.4 Случай свободных концов	
3	Условные экстремумы	7
	3.1 Случай нескольких условий	8
4	Функционалы на кривых	10
5	Условия трансверсальности. Задача Лагранжа	12
6	Инвариантность уравнения Эйлера — Лагранжа	14
7	Прямые методы вариационного исчисления	15

Лекция I

15 февраля 2023 г.

1 Что мы будем изучать

Вариационное исчисление занимается поиском экстремумов в задаче, где число переменных бесконечно.

Рассмотрим конечномерную ситуацию. Пусть имеется $f:M\to\mathbb{R}$, где M — какое-то многообразие.

При поиске экстремумов формируеются следующие направления:

- 1. Необходимое условие: $(\operatorname{grad} f)(x) = 0$.
- 2. Достаточное: форма $(D^2f)(x)$ знакоопределён (>< 0).
- 3. Поиск экстремумов сужения $f|_{N}$ на подмногообразие (метод множителей Лагранжа).

В случае вариационного исчисления вместо M стоит некоторое бесконечномерное пространство, например, пространство функций. В основном мы будем заниматься аналогами 1 и 3 пунктов.

Функция, которая в свою очередь задана на пространстве функций часто называется функционал. Чтобы визуально различать «обычные» функции, и функционалы, образ точки f под действием функционала J будем обозначать J[f].

Пускай X — (пока произвольное) метрическое пространство, $J:X \to \mathbb{R}$ — функция.

Определение 1.1 $(x \in X$ — строгий локальный минимум). $\exists \delta > 0 : \forall y \in U_{\delta}(x) : J[y] > J[x]$. Квадратные скобочки — косметическое.

Аналогично определяются нестрогий минимум и максимумы. Также стоит вспомнить про существование глобальных строгих и нестрогих минимумов и максимумов.

Пример (Чего такого особенного в бесконечномерии?). Пусть $X=\{f\in C[0,1]|f(0)=f(1)=1\},$ норма на C[0,1] определена формулой $\|f\|=\max_{x\in[0,1]}|f(x)|.$

Пусть $J[f] \coloneqq \int\limits_0^1 f^2(x) \,\mathrm{d}x$. Очевидно, J непрерывен.

Ясно, что $\forall f \in X: J[f] > 0.$ С другой стороны, $\inf_{f \in X} J[f] = 0$ — можно рассматривать функции вида

C третьей стороны, X замкнуто: равномерный предел равномерных непрерывен, и условия на значения на концах уважают предел. Получается, в данном случае теорема Кантора не работает. В чём дело?

Оказывается, проблема в том, что нет компактности: в бесконечномерном пространстве замкнутое ограниченное множество необязательно компактно.

1.1 Интегральные функционалы

В дальнейшем мы будем рассматривать не произвольные функционалы, а ограничимся некоторым их подмножеством.

Пусть задано непрерывное $L:[a,b]\times\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}$, положим $J[u]:=\int\limits_a^b L(t,u(t),\dot{u}(t))\,\mathrm{d}t$. Мы будем заниматься множеством $X=C^1[a,b]=C^1([a,b]\to\mathbb{R}^n)$ (далее не будем указывать область значений, ясно из контекста) и его замкнутыми подмножествами.

Такие J называются *интегральные функционалы*. Мы их изучаем, так как на них возможна богатая теория, и вместе с тем, интегральные функционалы часто встречаются в приложениях.

Примеры.

- $X = \left\{u \in C^1[a,b] \middle| u(a) = u_a, u(b) = u_b\right\}, J[u] = \int\limits_a^b \sqrt{1+(u')^2} \,\mathrm{d}x$ функционал длин графиков кривых.
- $J=\int\limits_a^b(rac{\dot{u}^2}{2}-V(u))\,\mathrm{d}x$, где V заданная функция. В механике называется действием.

Сначала убедимся, что они непрерывны.

Замечание (О норме). Для $f \in C^1[a,b]$: $\|f\| = \max_{x \in [a,b]} |f(x)| + \max_{x \in [a,b]} |f'(x)|$ — очевидно норма. В дальнейшем мы всегда будем использовать такую норму для C^1 .

Предложение 1.1. Пусть $X = C^1[a,b], L \in C([a,b] \times \mathbb{R}^n \times \mathbb{R}^n)$. Тогда интегральный функционал J непрерывен на X.

Доказательство. Пусть $u, \widetilde{u} \in X, ||u - \widetilde{u}|| < \delta < 1$.

$$|J[u] - J[\widetilde{u}]| = \left| \int_{a}^{b} L(x, \widetilde{u}(x), \dot{\widetilde{u}}(x)) - L(x, u(x), \dot{u}(x)) \, \mathrm{d}x \right| \leqslant$$

Заметим, что $\|(x,\widetilde{u}(x),\dot{\widetilde{u}}(x))-(x,u(x),\dot{u}(x))\|_{\mathbb{R}^{2n+1}}<\delta$

Рассмотрим $K=[a,b] imes\overline{B_{\|u\|_X+1}} imes\overline{B_{\|u\|_X+1}}$ — компакт в $\mathbb{R}^{2n+1}.$

$$\bigotimes \int_{a}^{b} \omega_{L|_{K}}(\delta) \, \mathrm{d}x = (b-a)\omega_{L|_{K}}(\delta) \underset{\delta \to 0}{\longrightarrow} 0$$

где ω — модуль непрерывности. Он определён, так как $L|_{K}$ непрерывна на компакте.

Пусть X — нормированное пространство (необязательно замкнутое), $J: X \to \mathbb{R}$.

Определение 1.2 (Производная функционала J в точке x по направлению $h \in X$).

$$\delta J[x,h] = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} J[x+th]$$

Иначе эту штуку называют вариация J по направлению h.

Свойства (Вариация).

- Однородность: $\delta J[x,ch] = c \cdot \delta J[x,h]$.
- Не следует ожидать аддитивность. Так, $\exists \delta J[x,h_1], \delta J[x,h_2]$ не влечёт существование $\delta J[x,h_1+h_2]$, а если последнее и существует, то не обязано быть суммой.

Примеры этого были в анализе, здесь бесконечномерной специфики нет.

• Как и в конечномерном анализе, в критической (экстремальной) точке вариация (коли ∃) должна обращаться в нуль.

А именно, $x \in X$ — локальный экстремум J, тогда $\forall h : \exists \delta J[x,h] \Rightarrow \delta J[x,h] = 0$.

Доказательство. Сужение $\alpha(t) = J[x+th]$ тоже имеет локальный экстремум, значит, если производная в t=0 есть, то нуль.

2 Формула первой вариации. Уравнение Эйлера — Лагранжа

2.1 Лемма Дюбуа-Реймона

Лемма 2.1 (Дюбуа-Реймон). Пускай $f \in C[a,b]$, и для всех $\omega \in C^1[a,b]$, таких, что $\omega(a) = \omega(b) = 0$, известно, что $\int\limits_a^b f\omega' = 0$.

Тогда $f \equiv \text{const.}$

Доказательство. Если бы f сама была гладкой, то можно было бы интегрировать по частям. $\int f'\omega = 0 \Rightarrow f' \equiv 0$ — можно взять ω , сосредоточенную там, где f' одного знака.

Мы надеемся, что f — константа, то есть равна своему среднему $\overline{f} \stackrel{def}{=} \frac{1}{b-a} \int\limits_a^b f$.

Проинтегрируем $f-\overline{f}$: $\omega(x)\coloneqq\int\limits_a^x\left(f(x')-\overline{f}\right)\mathrm{d}x'$. Понятно, что $\omega\in C^1$. Более того, несложно видеть, что $\omega(a)=\omega(b)=0$.

Подставим данную ω в посылку теоремы.

$$0 = \int_{a}^{b} f\omega' = \int_{a}^{b} (f - \overline{f})\omega' = \int_{a}^{b} (f - \overline{f})^{2} dx$$

Так как интеграл нуль, то получаем $f \equiv \overline{f}$.

2.2 Формула первой вариации

Опять $X=C^1[a,b]$, и функционал того же самого вида $J[u]=\int\limits_a^b L(t,u(t),\dot{u}(t))\,\mathrm{d}t.$

Лемма 2.2 (Формула первой вариации). Пусть $L \in C^1([a,b] \times \mathbb{R}^n \times \mathbb{R}^n)$. Градиент L по второму и третьему аргументам будем обозначать $\nabla_u L$ и $\nabla_u L$ соответственно, это векторы из \mathbb{R}^n .

Tогда производная J в точке u по направлению h существует, u равна

$$\int_{a}^{b} \left[\left\langle (\nabla_{u}L)(t, u(t), \dot{u}(t)), h(t) \right\rangle + \left\langle (\nabla_{\dot{u}}L)(t, u(t), \dot{u}(t)), \dot{h}(t) \right\rangle \right] dt$$

Доказательство. $J[u+\tau h]-J[u]=\int\limits_a^b\left[L(t,u(t)+\tau h(t),\dot{u}(t)+\tau\dot{h}(t))-L(t,u(t),\dot{u}(t))
ight]\mathrm{d}t.$

Применяя формулу Лагранжа, получаем для некой $au_* = au_*(t) \in [0, au]$:

$$J[u+\tau h] - J[u] = \tau \int_{a}^{b} \left[\left\langle (\nabla_{u}L)(t, u(t) + \tau_{*}h(t), \dot{u}(t) + \tau_{*}\dot{h}(t)), h(t) \right\rangle + \left\langle (\nabla_{\dot{u}}L)(t, u(t) + \tau_{*}\dot{h}(t), \dot{u}(t) + \tau_{*}\dot{h}(t)), \dot{h}(t) \right\rangle \right] dt$$

Поделив на au, получаем $\frac{J[u+ au h]-J[u]}{ au}=\int\limits_a^b\dots$ вот тот, что выше.

Сперва разберёмся с первым слагаемым. Покажем, что

$$\underbrace{\int\limits_{a}^{b}\left\langle (\nabla_{u}L)(t,u(t)+\tau_{*}h(t),\dot{u}(t)+\tau_{*}\dot{h}(t)),h(t)\right\rangle \mathrm{d}t}_{I} \xrightarrow[\tau \to 0]{} \underbrace{\int\limits_{a}^{b}\left\langle (\nabla_{u}L)(t,u(t),\dot{u}(t)),h(t)\right\rangle \mathrm{d}t}_{I}$$

Модуль разности аргументов не превосходит $\tau_*\|h\|_X$. Отсюда $\|\nabla_u L(\dots) - \nabla_u L(\dots)\|_{\mathbb{R}^n} \leqslant \omega_{L_K}(\tau_*\|h\|_X)$, здесь $K \coloneqq [a,b] \times \overline{B_{\|u\|+\|h\|}} \times \overline{B_{\|u\|+\|h\|}}$ (мы считаем, что $\tau \leqslant 1$, откуда $\tau_* \leqslant 1$).

Значит,
$$|(I)-(I\!\!I)|\leqslant \int\limits_a^b\omega_{L_{K}}(\tau_*\|h\|)\,\mathrm{d}t\leqslant (b-a)\omega_{L_{K}}(\tau\|h\|)\,\mathrm{d}t\underset{\tau\to 0}{\longrightarrow}0.$$

Таким образом, у первого слагаемого под интегралом — естественный предел. Аналогично со вторым слагаемым, получаем утверждение леммы.

2.3 Уравнение Эйлера — Лагранжа

Пусть $u \in X$ — экстремум. Тогда $\forall h \in X : \delta J[u,h] = 0$

Условие обнуления градиента — некое уравнение на точку. Мы хотим уравнение на u(t), избавимся от h. Подгоним под лемму Дюбуа-Реймона (лемма 2.1).

Введём
$$R(x) \coloneqq \int\limits_a^x (\nabla_u L)(t,u(t),\dot{u}(t))\,\mathrm{d}t.$$
 Тогда $\delta J[x,h] = \int\limits_a^b \left\langle \dot{R}(t),h(t) \right\rangle + \left\langle (\nabla_{\dot{u}}L)(t,u(t),\dot{u}(t)),\dot{h}(t) \right\rangle \mathrm{d}t$ Интегируя по частям, получим (поскольку $R(a)=0$) $\langle R(b),h(b) \rangle + \int\limits_a^b \left\langle \underbrace{(\nabla_{\dot{u}}L)(t,u(t),\dot{u}(t))-R(t)}_{a},\dot{h}(t) \right\rangle \mathrm{d}t$

И это равно нулю $\forall h \in C^1[a,b]$. Рассмотрим h, обращающийся на концах в ноль: h(a)=h(b)=0. Теперь $\int\limits_a^b \left\langle \xi(t),\dot{h}(t)\right\rangle \mathrm{d}t=0$, и мы покомпонентно можем применить лемму Дюбуа-Реймона, получая $\xi(t)=C\equiv \mathrm{const.}$ Но $R(t)\in C^1$, значит, $\nabla_{\dot{u}}L(t,u(t),\dot{u}(t))\in C^1$ тоже.

Дифференцируя ξ , получаем уравнение: $\frac{\mathrm{d}}{\mathrm{d}t}(\nabla_{\dot{u}}L)(t,u(t),\dot{u}(t))-(\nabla_{u}L)(t,u(t),\dot{u}(t))=0$. Оно называется уравнение Эйлера — Лагранжа, это основное уравнение вариационного исчисления.

Замечание. В случае общего положения уравнение Эйлера — Лагранжа — дифференциальное второго порядка, что соответствует $u \in C^2$: при вычислении $\frac{\mathrm{d}}{\mathrm{d}t}(\nabla_{\dot{u}}L)(t,u(t),\dot{u}(t))$ появится в общем случае вторая производная u. Такая ситуация, на самом деле, довольно общая: экстремаль «регулярнее», чем произвольный элемент своего пространства.

2.4 Случай свободных концов

Теперь рассмотрим совсем произвольную $h \in C^1$, и получим уравнение на вариацию

$$0 = \delta J[u, h] = \langle R(b), h(b) \rangle + \int_{a}^{b} \left\langle C, \dot{h}(t) \right\rangle dt = \langle R(b), h(b) \rangle + \langle C, h(b) \rangle - \langle C, h(a) \rangle$$

- 1. Рассмотрим такую h, что h(b)=0, h(a)=C. Для неё $\delta J[u,h]=-\|C\|^2$, значит, $\xi=C=0$. Подставляя в определение ξ , получаем R(a)=0, то есть $(\nabla_{\dot{u}}L)(a,u(a),\dot{u}(a))=0$.
- 2. Теперь рассмотрим такую h, что h(b) = R(b). В этом случае $\delta J[u,h] = \|R(b)\|^2 \Rightarrow R(b) = 0$. Получили $(\nabla_{\dot{u}} L)(b,u(b),\dot{u}(b)) = 0$.

Итак, помимо уравнения Эйлера — Лагранжа, мы получили два условия (но в разных точках) на уравнение второго порядка, можно надеяться, что хватит, чтобы найти решения (но это совсем не факт — так, может существовать одно решение, а может их вовсе не быть, или быть бесконечно много).

Подытожим в теорему.

Теорема 2.1 (Задача со свободными концами). Пусть $L \in C^1([a,b] \times \mathbb{R}^n \times \mathbb{R}^n)$, пусть $X = C^1[a,b]$, пусть u — локальный экстремум J.

Тогда

- 1. $(\nabla_{\dot{u}}L)(t, u(t), \dot{u}(t)) \in C^1[a, b].$
- $2. \frac{\mathrm{d}}{\mathrm{d}t} \nabla_{\dot{u}} L = \nabla_u L$ уравнение Эйлера Лагранжа.
- 3. $(\nabla_{\dot{u}}L)(a, u(a), \dot{u}(a)) = 0$
- 4. $(\nabla_{\dot{u}}L)(b, u(b), \dot{u}(b)) = 0$

2.5 Случай фиксированных концов

Теперь обсудим, что происходит, если концы несвободны.

Рассмотрим $X = \{f \in C^1[a,b] | f(a) = f_a, f(b) = f_b\}$. Это не подпространство (не имеет линейной структуры), нельзя определить производную по направлению.

Функционал $J:X \to \mathbb{R}$ задан той же формулой.

Какая здесь характеризация локальных экстремумов?

Рассмотрим $\widetilde{J}:C^1[a,b]\to\mathbb{R}$ — с той же формулой, что и J. Тогда $\forall u,h:\exists\delta\widetilde{J}[u,h].$

С другой стороны, если $h\in C^1[a,b], h(a)=h(b)=0$, то $\forall u\in X, t\in \mathbb{R}: u+th\in X$ Имеем право рассмотреть J[u+th]. Если u- локальный экстремум, то $\frac{\mathrm{d}}{\mathrm{d}t}\big|_{t=0}J[u+th]=0$. Она существует, так как это $\frac{\mathrm{d}}{\mathrm{d}t}\widetilde{J}[u+th]$.

Тем самым, такие функции h прибавлять можно, будем это тоже называть вариацией: $\delta J[u,h]$ задаётся той же формулой. Дальше работает то же самое рассуждение, все действия те же самые, только при интегрировании по частям внеинтегральный член занулится, никаких дополнительных соотношений не возникнет.

Теорема 2.2 (Задача с фиксированными концами). Пусть $L \in C^1([a,b] \times \mathbb{R}^n \times \mathbb{R}^n)$, пусть $X = \{f \in C^1[a,b] | f(a) = f_a, f(b) = f_b\}$, пусть u — локальный экстремум J. Тогда

- 1. $(\nabla_{\dot{u}}L)(t, u(t), \dot{u}(t)) \in C^1[a, b].$
- $2. \frac{\mathrm{d}}{\mathrm{d}t} \nabla_{\dot{u}} L = \nabla_{u} L$ уравнение Эйлера Лагранжа.

Заметим, что у нас по-прежнему два условия (теперь уже данные в самой задаче) и уравнение второго порядка, значит, по-прежнему, данных для решения задачи как раз столько, что стоит надеяться на получение решения.

Лекция II

29 февраля 2023 г.

Распишем чуть подробнее уравнение Эйлера — Лагранжа, пусть для определённости d=1.

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{u}} = \frac{\partial^2 L}{\partial t \partial \dot{u}} + \frac{\partial^2 L}{\partial u \partial \dot{u}}\dot{u} + \frac{\partial^2 L}{\partial \dot{u}^2}\ddot{u} \tag{*}$$

Общая теорема говорит, что $\nabla_{\dot{u}}L$ имеет C^1 гладкость, однако совсем не утверждается, что при разложении (*) каждое слагаемое будет гладким, или даже просто будет существовать. И правда, такого и не наблюдается.

Контрпример. Рассмотрим функционал $J[u] = \int\limits_{-1}^1 u^2 (\dot{u} - 2x)^2 \,\mathrm{d}x$, где $X = \left\{ u \in C^1[-1,1] \middle| egin{array}{c} u(-1) = 0 \\ u(1) = 1 \end{array} \right\}$

и функцию $u\in X, u(t)=\begin{cases} 0, & x\in [-1,0]\\ x^2, & x\in [0,1] \end{cases}$. u — экстремаль, например, потому что это глобальный минимум. При этом $u\notin C^2$, хотя $\frac{\partial L}{\partial \dot{u}}=2u^2(\dot{u}-2x)\equiv 0$ — бесконечно гладкая.

Что нужно потребовать, чтобы все слагаемые (*) существовали?

В примере сам лагранжиан $L(x,u,\dot{u})=u^2(\dot{u}-2x^2)$ — бесконечно гладкий. Но \ddot{u} можно выразить из (*) только если $\frac{\partial^2}{\partial \dot{u}^2}L \neq 0$.

Следующее предложение формулируется в случае, когда L задан на $[a,b] \times \mathbb{R}^d \times \mathbb{R}^d$; в общем случае сужения L на некоторое подмножество принципиально ничего не поменяется.

Предложение 2.1. Пусть $L\in C^2(\Omega)$, где $\Omega=[a,b] imes\mathbb{R}^d imes\mathbb{R}^d$, пусть $\det \mathrm{d}_v^2L \neq 0$ везде в Ω .

Пусть u — локальный экстремум функционала J. Утверждается, что $u \in C^2[a,b]$.

Доказательство. Введём функцию

$$\xi: [a, b] \times \mathbb{R}^d \to \mathbb{R}^d$$
$$(t, v) \mapsto (\nabla_{\dot{u}} L)(t, u(t), \dot{u}(t)) - (\nabla_{\dot{u}} L)(t, u(t), v)$$

Согласно посылке теоремы, $\mathrm{d}_v \xi \neq 0$ для всех t,v. Так как u — экстремум, то $\xi \in C^1$.

По теореме о неявной функции $\forall t_0 \in (a,b): \exists \delta > 0: \{(t,v)|\xi(t,v)=0, |t-t_0|<\delta\}$ — график некоторой функции $v \in C^1\left((t_0-\delta,t_0+\delta)\to\mathbb{R}^d\right)$. Но $v\equiv \dot{u}\big|_{(t_0-\delta,t_0+\delta)}$. Значит, $u\in C^2(a,b)$.

Случай концов
$$(t_0=a,b)$$
— упражнение.

3 Условные экстремумы

Согласно полу-исторической, полулегендарной справке, некогда Дидона прибыла на берег некоего африканского государства, и потребовала, на основании своего высокого происхождения, выделить ей столько земли, сколько можно опоясать ремешком из шкуры одного быка...

Напоминание конечномерного случая: пусть $\Omega \subset \mathbb{R}^d$ — область, $f,g \in C^1(\Omega)$, $\mathcal{M} = \{x \in \Omega | g(x) = 0\}$.

Заинтересуемся экстремумами сужения $f\big|_{\mathcal{M}}$. Пусть $x_0\in\Omega$ – экстремум. Построим кривую $x:(-arepsilon,arepsilon)\to\Omega$ так, что $x(0)=x_0$. Условие $g(x(t))\equiv 0$ влечёт, что f(x(t)) имеет локальный экстремум в нуле. Другими словами, $\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0}f(x(t))=\langle(\nabla f)(x_0),\dot{x}(t)\rangle=0$.

Поскольку кривую можно выбрать с любым вектором скорости, то $(\nabla f)(x_0) \perp T_{x_0} \mathcal{M}$. Если $(\nabla g)(x_0) \neq 0$ в x_0 , то $T_{x_0} \mathcal{M}$ — пространство коразмерности 1. Найдём какой-нибудь вектор, перпендикулярный \mathcal{M} . Это как раз градиент: $g(x(t)) = 0 \Rightarrow \langle (\nabla g)(x_0), \dot{x} \rangle = 0$.

Иными словами $\exists \lambda \in \mathbb{R} : \nabla (f - \lambda g) = 0$. Далее для поиска экстремумов ищут критические точки $f - \lambda g$, выделяют те, которые в \mathcal{M} , а с обнулениями градиента g разбираются отдельно.

Пускай X — нормированное замкнутое пространство, $G \in C^1(X)$ — задающий условие функционал. Расшифруем условие $G \in C^1(X)$:

- $\forall x \in X: \exists G'(x) \in X^*: |G(x+s) G(x) G'(x)s| = o(\|s\|)$ сильная дифференцируемость в точке x.
- $G': X \to X^*$ непрерывно.

Для применения метода множителей Лагранжа нам понадобится лемма, что в направлении всякого вектора из $\operatorname{Ker} G'(x_0)$ можно пустить путь, аналогичная конечномерному случаю.

Лемма 3.1. Пусть $x_0 \in \mathcal{M} := \{x \in X | G(x) = 0\}$. Пусть $G'(x_0) \neq 0$.

Тогда $\forall h \in \text{Ker } G'(x_0) : \exists x \in C^1((\delta, \delta) \to \mathcal{M}) : x(0) = x_0, \dot{x}(0) = h.$

Доказательство. Зафиксируем произвольный $\xi \notin \operatorname{Ker} G'(x_0)$. Определим $r(t,\tau) \coloneqq G[x_0 + t\xi + \tau h]$. Ясно, что $r \in C^1([-\varepsilon,\varepsilon] \times [-\varepsilon,\varepsilon])$.

 $r(0,0)=0, \ rac{\partial r}{\partial t}(0,0)=G'[x_0]\xi
eq 0.$ Применяя теорему о неявной функции, получаем $\exists \delta>0:\{(t,\tau)|\tau\in(-\delta,\delta), r(t,\tau)=0\}$ — график C^1 функции $t=t(\tau)$, где $t:(\delta,\delta)\to\mathbb{R}.$

Проверим, что $x: \tau \mapsto x_0 + t(\tau)\xi + \tau h$ — искомая кривая:

- 1. По построению $x:(-\delta,\delta)\to\mathcal{M}$ класса C^1 .
- 2. Дифференцируя тождество G[x(t)] = 0, получаем $G'[x(0)] \cdot \dot{x}(0) = 0$, значит, $\dot{x}(0) \in \operatorname{Ker} G'[x_0]$. С другой стороны, $\dot{x}(0) = \dot{t}(0)\xi + h$, откуда $\dot{t}(0) = 0$ (ведь $\xi \notin \operatorname{Ker} G'[x_0]$). Тем самым, $\dot{x}(0) = h$.

Пускай $F \in C^1(X), x_0 \in \mathcal{M}$ — точка локального экстремума сужения $F|_{\mathcal{M}}$.

Рассмотрим только что построенную кривую $x(\tau)$. Так как x_0 — экстремаль, то в частности должно быть $\frac{\mathrm{d}}{\mathrm{d}\tau}\Big|_{\tau=0}F(x(\tau))=0$. С другой стороны, это равно $F'(x_0)\cdot h$.

Значит, $\ker G'[x_0] \subset \ker F'[x_0]$, причём $\exists \lambda \in \mathbb{R} : (F'(x_0) - \lambda G'(x_0)) = 0 - \mathsf{u} \ F'$, $\mathsf{u} \ G'$ обнуляются на пространстве коразмерности 1. Формальнее $\exists \eta \notin \ker G'(x_0), \forall h \in X : h = \underbrace{\left(h - \frac{G'(x_0)h}{G'(x_0)\eta}\eta\right)}_{\in \ker G'[x_0]} + \underbrace{\frac{G'(x_0)h}{G'(x_0)\eta}\eta}_{\in \ker G'[x_0]}$.

Значит, $(F' - \lambda G')(h) = F'(x_0)\eta - \lambda G'(x_0)\eta$. Подойдёт $\lambda = \frac{F'(x_0)\eta}{G'(x_0)\eta}$.

Получилась теорема:

Теорема 3.1. Пускай $F,G \in C^1(X)$, пускай x_0 — точка локального экстремума F на $\mathcal{M} := \{x \in X | G[x] = 0\}$, пусть $G'[x_0] \neq 0$.

Тогда $\exists \lambda \in \mathbb{R} : \forall h \in X : \delta(F - \lambda G)[x_0, h] = 0$ (отметим, что так как $F, G \in C^1$, то $\exists \delta(F - \lambda G)$.)

Упражнение 3.1. Задача с фиксированными концами

3.1 Случай нескольких условий

Даны $F, G_1, \dots, G_n \in C^1(X), \mathcal{M} = \{x \in X | G_1[x] = \dots = G_n[x] = 0\}.$

Образуем линейный оператор $\mathbb{G}'(x_0)=egin{pmatrix} G'_1(x_0)\\ \vdots\\ G'_n(x_0) \end{pmatrix}:X\to\mathbb{R}^n$ по правилу $\mathbb{G}'(x_0)h=egin{pmatrix} G'_1(x_0)h\\ \vdots\\ G'_n(x_0)h \end{pmatrix}.$

Теорема 3.2. Пусть x_0 — точка локального экстремума F на \mathcal{M} , пусть $\operatorname{Ran} \mathbb{G}'(x_0) = \mathbb{R}^n$ (иными словами $\sum\limits_{j=1}^n c_j G'_j(x_0) = 0 \Rightarrow \forall j: c_j = 0$).

Тогда $\exists \lambda_1,\dots,\lambda_n \in \mathbb{R}: \forall h \in X: \delta(F-\sum \lambda_i G_i)[x_0,h]=0$

Доказательство.

Лемма 3.2. В тех же предположениях невырожденности $\operatorname{Ran} \mathbb{G}'(x) = \mathbb{R}^n$ Пусть $\forall j: h \in \operatorname{Ker} G'_i(x_0)$. Тогда $\exists x: (-\delta, \delta) \to \mathcal{M}, x \in C^1, x(0) = x_0, \dot{x}(0) = h$.

Доказательство леммы.

Аналогично (лемма 3.1), тоже теорема о неявной функции.

Полностью аналогично скалярному случаю n=1.

Замечание. Можно попробовать применить скалярную теорему с n=1 к функционалу $G[x]=\sum_{i=1}^n G_i^2[x]$. Однако это ничего не даст, так как G'[x]=0 везде на \mathcal{M} .

Упражнение 3.2. Доказать аналогичное утверждение для задачи с фиксированными концами. Теперь применим (теорема 3.2) к случаю интегральных функционалов.

Пускай
$$L, r_1, \dots, r_n \in C^1([a,b] \times \mathbb{R}^d \times \mathbb{R}^d)$$
, $J[u] \coloneqq \int\limits_a^b L(t,u(t),\dot{u}(t)) \,\mathrm{d}t$, $R_j[u] \coloneqq \int\limits_a^b r_j(t,u(t),\dot{u}(t)) \,\mathrm{d}t$.

Пусть
$$u_0$$
 — точка локального экстремума $J|_{\bigcap R_j}$; оператор $\mathbb{R}(u_0)\coloneqq\begin{pmatrix} R'_1(u_0)\\ \vdots\\ R'_n(u_0)\end{pmatrix}$ имеет полный ранг.

Тогда

- 1. $\exists \lambda_1, \dots, \lambda_n : \nabla_{\dot{u}}(L \sum \lambda_j r_j)(t, u_0(t), \dot{u}_0(t)) \in C^1[a, b].$
- 2. Выполнено уравнение Эйлера Лагранжа: $\frac{\mathrm{d}}{\mathrm{d}t} \nabla_{\dot{u}} (L \sum \lambda_j R_j) = \nabla_u (L \sum \lambda_j R_j)$

3.
$$\nabla_{\dot{u}}(L - \sum \lambda_j r_j)\Big|_{t=a} = \nabla_{\dot{u}}(L - \sum \lambda_j r_j)\Big|_{t=b} = 0.$$

Доказательство. Вытекает из доказательства (теорема 2.1) (там использовалось только то, что вариация обращается в нуль, а не то, что u_0 — экстремаль) и (теорема 3.1).

Пример. Пускай $\Omega \subset \mathbb{R}^3$ — ограниченная односвязная область, граница которой — поверхность класса C^1 . Введём пространство функций $X = C(\partial \Omega)$.

Заведём
$$J[\sigma] = \iint\limits_{\partial\Omega} \frac{\sigma(x)\sigma(y)\,\mathrm{d}S(x)\,\mathrm{d}S(y)}{|x-y|}.$$

J непрерывен на $X \colon \xi \colon y \mapsto \int\limits_{\partial\Omega} \frac{\sigma(x)}{|x-y|} \, \mathrm{d}S(x)$ непрерывно.

$$J[\sigma + s] - J[\sigma] = 2 \iint_{\partial\Omega} \frac{s(x)\sigma(y)}{|x - y|} dS(x) dS(y) + \mathcal{O}(\|s\|_C^2)$$

Значит, $s\mapsto\int\limits_{\partial\Omega}s(x)\xi(x)\,\mathrm{d}x$ непрерывен, откуда J — даже функционал класса $C^1(X)$.

Лекция III

14 марта 2023 г.

Заинтересуемся экстремумами с постоянным значением $G[\sigma] = \int\limits_{\partial\Omega} \sigma(x) \,\mathrm{d}x$. Решение будет отвечать распределению зарядов на поверхности, минимизирующее энергию системы — физический принцип говорит, что конечное положение экстремально.

Уже проверили, что $J, G \in C^1(X)$.

Пусть σ — экстремаль $J\big|_{\sigma \in X}G(\sigma) = Q.$ Тогда $\forall h \in X \colon \delta(J-\lambda G)[\sigma,h] = 0.$ Посчитаем

$$\begin{split} \delta(J-\lambda G)[\sigma,h] &= \delta(J-\lambda G)[\sigma+h] - \delta(J-\lambda G)[\sigma] = \\ &= 2\int\limits_{\partial\Omega}\int\limits_{\partial\Omega}\frac{\sigma(x)h(y)}{|x-y|}\,\mathrm{d}S(x)\,\mathrm{d}S(y) - \lambda\int\limits_{\partial\Omega}h(y)\,\mathrm{d}S(y) + \int\limits_{\partial\Omega}\int\limits_{\partial\Omega}\frac{h(x)h(y)}{|x-y|}\,\mathrm{d}S(x)\,\mathrm{d}S(y) \end{split}$$

Третье слагаемое $\mathcal{O}(\|h\|_X^2)$: $\iint \frac{1}{|x-y|}$ сходится. Заметим, что остальная часть — линейный функционал от h, где коэффициент непрерывен от σ . Это в точности значит, что $J \in C^1$.

$$J[\sigma+h]-J[\sigma]=l_{\sigma}(h)+o(\|h\|)$$
, где $l_{\sigma}:h\mapsto\int rac{\sigma(x)h(y)}{|x-y|}\,\mathrm{d}S(y)=\int \xi(y)h(y)\,\mathrm{d}S(y)$

Запишем условие экстремальности:

$$\forall h : \delta(J - \lambda G)[\sigma, h] = 2 \int h(y) \, dS(y) \left(2 \int \frac{\sigma(x) \, dS(x)}{|x - y|} - \lambda \right) = 0$$

По «нулевой лемме Дюбуа-Реймона», выражение в скобочках должен быть всегда нулём.

Получили

$$\lambda = 2 \int \frac{\sigma(x) \, \mathrm{d}S(x)}{|x - y|}$$

Экстремаль σ ищется, как решение «интегрального уравнения»: $K: f \mapsto \int \frac{f(x) \, \mathrm{d} S(x)}{|x-y|}$, это ограниченный непрерывный интегральный оператор. Таким образом, σ — решение $K\sigma = \frac{\lambda}{2}\mathbb{1}$.

Иными словами, потенциал, создаваемый распределением заряда на самой поверхности постоянен. Такая постановка задачи не очень естественна — например, бывают точечные заряды. Естественнее было бы рассматривать задачи вида σ — борелевская мера на $\partial\Omega$, $J[\sigma]=\int \frac{\mathrm{d}\sigma(x)\,\mathrm{d}\sigma(y)}{|x-y|}$. Тут уже уместно задавать вопросы о существовании интеграла, сходимости, и прочем, мы не будем это выяснять по причине нехватки аппарата.

4 Функционалы на кривых

В зависимости от того, как выбрать параметр, ответ — кривая — может не реализовываться, как график функции. С другой стороны, хотим независимость от параметризации, потому что зачем.

Определение 4.1 (Кривая $\gamma \in C$). Непрерывное отображение $\gamma : [a,b] \to \mathbb{R}^n$.

Определение 4.2 (Параметризованная кривая γ). $\forall x \in [a, b] : \gamma'(x) \neq 0$.

Определение 4.3 (Кривая $\gamma \in C^j$). Кривая $\gamma \in C^j$.

Пусть $\gamma_1 : [a_1, b_1] \to \mathbb{R}^n, \gamma_2 : [a_2, b_2] \to \mathbb{R}^n$.

Определение 4.4 (Эквивалентность кривых γ_1 и γ_2). Диффеоморфтизм $\kappa \in C^j([a_1,b_1] \to [a_2,b_2])$, такой, что $\gamma_1 = \gamma_2 \circ \kappa$ и $\forall x : \kappa'(x) > 0$. Класс эквивалентности относительно данного отношения зовётся *ориентированная кривая*.

За Γ^j обозначим множество ориентированных кривых, представители которых — кривые класса C^j . Ещё используют $\Gamma^j[a,b]$.

Пускай $\mathcal{F} \in C(\mathbb{R}^n \times \mathbb{R}^n)$, пусть она однородна порядка 1 по второму аргументу:

$$\mathcal{F}(\lambda, zw) = \forall \lambda > 0 : \lambda \mathcal{F}(z, w)$$

Пусть $\gamma:[a_\gamma,b_\gamma] o\mathbb{R}^d$ — кривая класса $C^1.$ Определим $J[\gamma]=\int\limits_{a_\gamma}^{b_\gamma}\mathcal{F}[\gamma(t),\dot{\gamma(t)}]\,\mathrm{d}t.$

Предложение 4.1. B этой ситуации J задаёт функционал на Γ^1 .

Доказательство. Пусть $\gamma_1: [a_1,b_1] \to \mathbb{R}^n, \gamma_2: [a_2,b_2] \to \mathbb{R}^n$ — два эквивалентных представителя.

$$J[\gamma_{1}] = \int \mathcal{F}[\gamma_{1}(t), \dot{\gamma}_{1}(t)] dt = \int \mathcal{F}[\gamma_{2}(\kappa(t)), \dot{\kappa}(t) \cdot \dot{\gamma}_{2}(\kappa(t))] dt =$$

$$= \int \mathcal{F}[\gamma_{2}(\kappa(t)), \dot{\gamma}_{2}(\kappa(t))] \dot{\kappa}(t) dt = \left\| \begin{array}{c} \tau = \kappa(t) \\ d\tau = \dot{\kappa}(t) dt \end{array} \right\| = \int \mathcal{F}[\gamma_{1}(\tau), \dot{\gamma}_{1}(\tau)] d\tau \quad \Box$$

Примеры.

- $\mathcal{F}(z,w)=|w|$. Функционал J длина кривой
- $\mathcal{F}(z,w)=|w|\cdot f(z)$, где, например, $n=2,\ f(z)=z_2^{\alpha}$ (здесь $z=\begin{pmatrix} z_1\\z_2\end{pmatrix}$).

- При $\alpha = 0$ это предыдущий случай.
- При $\alpha=-1$ это длина в гиперболической плоскости (в модули Пуанкаре в верхней полуплоскости).
- При $\alpha=1$ это координата центра масс кривой, а ещё площадь поверхности вращения.
- При $\alpha = -\frac{1}{2}$ это время, требуемое шарику, чтобы скатиться по жёлобу данной формы.

Пусть $L \in C([a,b] \times \mathbb{R}^n \times \mathbb{R}^n)$, $X = C^1[a,b]$, $J[u] = \int\limits_a^b L(t,u(t),\dot{u}(t))\,\mathrm{d}t$. Превратим его в функционал на кривой. Заведём $\mathcal{F}: \mathbb{R}^{n+1} \times \mathbb{R}^{n+1}, \mathcal{F}(z,w) = L(z_1,z_2,\ldots,z_{n+1},\frac{w_2}{|w_1|},\ldots,\frac{w_{n+1}}{|w_1|})|w_1|$. Она имеет требуемую однородность. Типа сопоставим функции u(t) кривую $\gamma_u: t \mapsto (t,u(t))$.

Рассмотрим $\widetilde{J}[\gamma]\coloneqq\int \mathcal{F}(\gamma(t),\dot{\gamma}(t))\,\mathrm{d}t$ — если L «разумная», то \widetilde{J} — функционал на кривых.

Предложение 4.2. $\mathcal{F}[\gamma_u] = J[u]$.

Доказательство.
$$\dot{\gamma}_u(t)=(1,\dot{u}(t)).$$

Утверждение 4.1. Пусть $\mathcal{F} \in C^2(\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\}))$ (требование непрерывности по совокупности переменных $\mathcal{F} \in C(\mathbb{R}^n \times \mathbb{R}^n)$ накладывается всегда в данной теории).

Пусть
$$\forall \lambda > 0 : \mathcal{F}(z, \lambda w) = \lambda \mathcal{F}(z, w)$$
.

 $E\{\gamma\}=(\nabla_z\mathcal{F})(\gamma,\dot{\gamma})-\frac{\mathrm{d}}{\mathrm{d}t}\nabla_w\mathcal{F}(\gamma,\dot{\gamma})$, еде $J=\int\mathcal{F}[\gamma,\dot{\gamma}]\,\mathrm{d}t$ — определение осмысленно, так как кривая параметризована, и $\dot{\gamma}\neq 0$, а $\mathcal{F}\in C^2(\dots)$. Пусть $\gamma\in\Gamma^2$, $\gamma:[a,b]\to\mathbb{R}^d$.

Теперь пусть $s \in C^2[a,b] \times [-\varepsilon,\varepsilon] \to \mathbb{R}^n$, и пусть $s(_,\tau)$ — кривая (производная ненулевая). $\frac{\mathrm{d}}{\mathrm{d}\tau} J[s(_,\tau)] = \int\limits_a^b E\{s(x,\tau)\}\,\mathrm{d}x + \left\langle (\nabla_w \mathcal{F})(s(x,\tau),\tfrac{\partial s}{\partial x}(x,\tau)),\tfrac{\partial s}{\partial \tau}\right\rangle \Big|_a^b$

Доказательство. Упражнение.

Лемма 4.1. Пусть $\gamma_1 \sim \gamma_2 - n$ редставители кривой $\gamma \in \Gamma^2$ ($\gamma_1 = \gamma_2 \circ \kappa$). Тогда $E\{\gamma_1\} = \kappa' E\{\gamma_2\}$. Подробнее $(E\{\gamma_1\})(x) = \kappa'(x) \, (E\{\gamma_2\}) \, (\kappa(x))$.

Доказательство.

$$E\{\gamma_1\}(x) = (\nabla_z)\mathcal{F}(\underbrace{\gamma_1(x)}_{\kappa'(x)\gamma_2'(\kappa(x))}, \dot{\gamma}_1(x)) - \frac{\mathrm{d}}{\mathrm{d}x}(\nabla_w\mathcal{F})(\gamma_1(x), \dot{\gamma}_1(x)) = \kappa'(x)(\nabla_z\mathcal{F})\left[\gamma_2(\kappa(x)), \gamma_2'(\kappa(x))\right] - \frac{\mathrm{d}}{\mathrm{d}x}(\dots)$$

Дифференцируя $\mathcal{F}(z,\lambda w)=\lambda\mathcal{F}(z,w)$, получаем $\lambda(\nabla_w\mathcal{F})(z,\lambda w)=\lambda(\nabla_w\mathcal{F})(z,w)$

$$(\dots) - \frac{\mathrm{d}}{\mathrm{d}s} \Big|_{s=\kappa(x)} (\nabla_w \mathcal{F})(\gamma_2(s), \gamma_2'(s)) = \kappa'(x) \cdot (E\{\gamma_2\})(\kappa(x))$$

Следствие 4.1. $E\{\gamma_1\}\equiv 0\iff E\{\gamma_2\}\equiv 0$ при $\gamma_1\sim\gamma_2$.

Заведём метрику на Γ^2 , чтобы определить экстремумы

 $\xi, \nu: [a,b] o \mathbb{R}^d$ — представители $\gamma_{\xi}, \gamma_{\nu} \in \Gamma^2$.

Пусть $|\dot{\xi}| \equiv c_{\mathcal{E}}, |\dot{\nu}| \equiv c_{\nu}$

Положим $\|\gamma_{\xi} - \gamma_{\nu}\| = \|\xi - \nu\|_{C^{2}[0,1]}$.

Упражнение 4.1. Проверить, что это метрика на Γ^2 .

С метрикой также пришли всевозможные локальные, глобальные, строгие, нестрогие, минмимумы и максимумы.

Теорема 4.1. Пусть γ — локальный максимум Γ^2 , $\mathcal{F} \in C^2(\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\}))$, $\mathcal{F}(z, \lambda w) = \lambda \mathcal{F}(z, w)$, $\lambda > 0$.

Пусть $\gamma_a, \gamma_b \in \mathbb{R}^n, \mathcal{D} = \{ \gamma \in \Gamma^2 | \gamma(a_\gamma) = \gamma_a, \gamma(b_\gamma) = \gamma_b \}$. Тогда $E\{\gamma\} = 0$.

Доказательство. $\gamma+\tau h, h(a_{\gamma})=h(b_{\gamma})=0, \ h:[a_{\gamma},b_{\gamma}]\to\mathbb{R}^d, h\in C^2$

Существует $\frac{\mathrm{d}}{\mathrm{d}\tau}J[\gamma+\tau h]=0$, так как $\dot{\gamma}(s)\neq0$, значит, $\|\dot{\gamma}(s)\|\neq0$, и при достаточно малых $\tau:\min\|\dot{\gamma}+\tau\dot{h}\|>\varepsilon$. Значит, при подстановке мы попадём в область, где $\mathcal{F}\in C^2$.

Раз γ — экстремум, то производная равна нулю.

$$J[\gamma + \tau h] - J[\gamma] = \tau \int \langle (\nabla_z \mathcal{F})(\gamma, \dot{\gamma}), h \rangle + \langle (\nabla_w \mathcal{F})(\gamma, \dot{\gamma}), h' \rangle dt + \mathcal{O}(\tau^2)$$

Интегрируя по частям, получаем $\int\limits_a^b \langle E\{\gamma\},h\rangle\,\mathrm{d}t + 0 + \mathcal{O}(\tau^2)$. Применяя «нулевую лемму Дюбуа-Реймона», получаем $E\{\gamma\}=0$.

Лекция IV _{28 марта 2024 г.}

5 Условия трансверсальности. Задача Лагранжа

Пусть J — функционал на кривой, концы которой должны находиться на двух заданных многообразиях $M_1, M_2 \subset \mathbb{R}^n$. Считаем, что $J[\gamma], M_1, M_2 \in C^1$. Рассматриваем функционал на пространство $X = \left\{\gamma \in \Gamma^2 \middle| \gamma(a_\gamma) \in M_1, \gamma(b_\gamma) \in M_2\right\}$.

$$J[\gamma] = \int \mathcal{F}[\gamma,\dot{\gamma}] dt$$
, где $\mathcal{F} \in C^2(\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})) \cap C(\mathbb{R}^n \times \mathbb{R}^n)$.

Пусть γ_0 — локальный экстремум J на X. Тогда γ_0 — экстремум на $\{\gamma \in X | \gamma(a_\gamma) = \gamma_0(a_{\gamma_0}), \gamma(b_\gamma) = \gamma_0(b_{\gamma_0})\}$, следовательно, $E\{\gamma_0\} = 0$.

Изучим граничные условия. Теперь кривая вида $\gamma + \tau h$ не лежит в X, поэтому просто изучить вариацию не получится.

Попробуем подвигать один из концов кривой так, чтобы он оставался на многообразии, и через некоторое расстояние подвинутая кривая сливалась с изначальной.

$$a := a_{\gamma_0}, b := b_{\gamma_0}.$$

Пусть $r:(-arepsilon,arepsilon) o M_1, r\in C^2, r(0)=\gamma_0(a)$. Пусть $\delta>0$ мало, $c\in\mathbb{R}$ — какое-то. Рассмотрим $s(t,\tau)=egin{cases} \gamma_0(t)+r(\tau)-\gamma_0(a), & t\in[a,a+\delta)\\ \gamma_0(t), & t\in[b-c,b] \end{cases}$ Потребуем $s(t,0)=\gamma_0(t), \ s\in C^2([a,b]\times(-arepsilon,arepsilon), s(t,_)\in X$. Также потребуем, чтобы $\forall t,\tau:\frac{\partial s}{\partial t}\neq 0$, чтобы кривая была регулярной.

 $\ensuremath{\textit{Пример.}}\ s(t, au) = \gamma_0(t) + (\ensuremath{\textit{правая}}\ \ensuremath{\textit{половина}}\ \ensuremath{\textit{шапочки от }}\ a\ \ensuremath{\textit{a}}\ \ensuremath{\textit{a}}\ \ensuremath{\textit{a}}\ \ensuremath{\textit{b}}\ \ensuremath{\textit{)}}\cdot (r(au) - r(0)).$

 $J[s(_, \tau)]$ имеет локальной минимум при $\tau = 0$. Положим $f(\tau) = J[s(_, \tau)]$, и посчитаем $f'(\tau)$.

$$f(\tau) - f(0) = \int \langle \nabla_u \mathcal{F}, s - \gamma_0 \rangle + \langle \nabla_{\dot{u}} \mathcal{F}, \dot{s} - \dot{\gamma}_0 \rangle + \mathcal{O}(\|s(\underline{\ }, \tau) - \gamma_0\|_{\Gamma^2})$$

Далее считаем, что всё перепараметризовано так, что все кривые определены на [0,1], так что ли.

$$f(\tau) - f(0) = \int \langle \nabla_u \mathcal{F}, s - \gamma_0 \rangle + \langle \nabla_{\dot{u}} \mathcal{F}, \dot{s} - \dot{\gamma}_0 \rangle + \mathcal{O}(\|s(\underline{\ }, \tau) - \gamma_0\|_{C^2})$$

Также считаем, что $||s(-,\tau)||$ что?

$$\tau \int \left\langle \nabla_u \mathcal{F}, \frac{\partial s}{\partial \tau}(\underline{\ }, 0) \right\rangle + \left\langle \nabla_{\dot{u}} \mathcal{F}, \frac{\partial s}{\partial \tau}(\underline{\ }, 0) \right\rangle + \mathcal{O}(\tau^2) = \tau \int \left\langle E\{\gamma_0\} + \frac{\partial s}{\partial \tau}(\underline{\ }, 0) \right\rangle + s(t, \tau) = \gamma_0(t) - \left\langle (\nabla_{\dot{u}} \mathcal{F}(\gamma_0)(a), \frac{\partial s}{\partial \tau}(a, 0)) \right\rangle + s(t, \tau) = \gamma_0(t) - \left\langle (\nabla_{\dot{u}} \mathcal{F}(\gamma_0)(a), \frac{\partial s}{\partial \tau}(a, 0)) \right\rangle + s(t, \tau) = \gamma_0(t) - \left\langle (\nabla_{\dot{u}} \mathcal{F}(\gamma_0)(a), \frac{\partial s}{\partial \tau}(a, 0)) \right\rangle + s(t, \tau) = \gamma_0(t) - \left\langle (\nabla_{\dot{u}} \mathcal{F}(\gamma_0)(a), \frac{\partial s}{\partial \tau}(a, 0)) \right\rangle + s(t, \tau) = \gamma_0(t) - \left\langle (\nabla_{\dot{u}} \mathcal{F}(\gamma_0)(a), \frac{\partial s}{\partial \tau}(a, 0)) \right\rangle + s(t, \tau) = \gamma_0(t) - \left\langle (\nabla_{\dot{u}} \mathcal{F}(\gamma_0)(a), \frac{\partial s}{\partial \tau}(a, 0)) \right\rangle + s(t, \tau) = \gamma_0(t) - \left\langle (\nabla_{\dot{u}} \mathcal{F}(\gamma_0)(a), \frac{\partial s}{\partial \tau}(a, 0)) \right\rangle + s(t, \tau) = \gamma_0(t) - \left\langle (\nabla_{\dot{u}} \mathcal{F}(\gamma_0)(a), \frac{\partial s}{\partial \tau}(a, 0)) \right\rangle + s(t, \tau) = \gamma_0(t) - \left\langle (\nabla_{\dot{u}} \mathcal{F}(\gamma_0)(a), \frac{\partial s}{\partial \tau}(a, 0)) \right\rangle + s(t, \tau) = \gamma_0(t) - \left\langle (\nabla_{\dot{u}} \mathcal{F}(\gamma_0)(a), \frac{\partial s}{\partial \tau}(a, 0)) \right\rangle + s(t, \tau) = \gamma_0(t) - \left\langle (\nabla_{\dot{u}} \mathcal{F}(\gamma_0)(a), \frac{\partial s}{\partial \tau}(a, 0)) \right\rangle + s(t, \tau) = \gamma_0(t) - \left\langle (\nabla_{\dot{u}} \mathcal{F}(\gamma_0)(a), \frac{\partial s}{\partial \tau}(a, 0)) \right\rangle + s(t, \tau) = \gamma_0(t) - \left\langle (\nabla_{\dot{u}} \mathcal{F}(\gamma_0)(a), \frac{\partial s}{\partial \tau}(a, 0)) \right\rangle + s(t, \tau) = \gamma_0(t) - \left\langle (\nabla_{\dot{u}} \mathcal{F}(\gamma_0)(a), \frac{\partial s}{\partial \tau}(a, 0)) \right\rangle + s(t, \tau) = \gamma_0(t) - \left\langle (\nabla_{\dot{u}} \mathcal{F}(\gamma_0)(a), \frac{\partial s}{\partial \tau}(a, 0)) \right\rangle + s(t, \tau) = \gamma_0(t) - \left\langle (\nabla_{\dot{u}} \mathcal{F}(\gamma_0)(a), \frac{\partial s}{\partial \tau}(a, 0)) \right\rangle + s(t, \tau) = \gamma_0(t) - s(t, \tau) = \gamma_0(t, \tau) = \gamma_0(t) - s(t, \tau) = \gamma_0(t) - s(t, \tau) = \gamma_0(t) - s(t, \tau)$$

Точку b опускаем, так как $\frac{\partial s}{\partial \tau}(b,0)=0$ по построению.

Итак,

$$f'(\tau) = 0 \Rightarrow \left\langle \nabla_{\dot{u}} \mathcal{F}(\gamma_0(a)), \frac{\partial r}{\partial \tau}(0) \right\rangle$$

Так как r — любая кривая, то $(\nabla_{\dot{u}}\mathcal{F})(\gamma_0)(a) \perp T_{\gamma_0(a)}M$.

Аналогично со вторым концом.

Запишем всё это в теорему:

Теорема 5.1. Пускай J — функционал на кривой ($\mathcal{F} \in C(\mathbb{R}^n \times \mathbb{R}^n) \cap C^2(\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\}))$), $M_1, M_2 \subset \mathbb{R}^n$ — многообразия класса C^1 , пусть γ_0 — локальный экстремум J на X.

Тогда

1. $E\{\gamma_0\} = 0$.

$$2. \begin{tabular}{ll} & \left\{ (\nabla_{\dot{u}} \mathcal{F})(\gamma_0)(a) \perp T_{\gamma_0(a)} M_1 \\ & (\nabla_{\dot{u}} \mathcal{F})(\gamma_0)(b) \perp T_{\gamma_0(b)} M_2 \\ \end{tabular} \right. - \mbox{условия трансверсальности}.$$

Примеры.

- $\mathcal{F}(z,w)=|w|$. Минимум этого функционала расстояние от M_1 до M_2 . Условия из теоремы означают, что $\dot{\gamma}_0(a)\perp T_{\gamma(a)}M_1,\dot{\gamma}_0(b)\perp T_{\gamma(b)}M_1$, то есть... $\nabla_u\mathcal{F}=\frac{w}{|w|}\Rightarrow \frac{\mathrm{d}}{\mathrm{d}t}(\frac{\dot{\gamma}_0}{|\dot{\gamma}_0|})=0$. Экстремаль отрезок, соединяющий два многообразия, и перпендикулярный обоим многообразиям.
- $\mathcal{F}(z,w)=g(z)|w|$. $z=\binom{z_1}{z_2}$; мы видели, что тут масса полезностей при разных g. $\nabla_w\mathcal{F}=g(z)\frac{w}{|w|}$. В этом случае условия трансверсальности тоже сводятся к условиям ортогональности $\dot{\gamma}(a)\perp M_1, \dot{\gamma}(b)\perp M_1.$

Рассмотрим частный случай: $n=2, J[y]=\int\limits_{a_y}^{b_y}L(x,y(x),y'(x))\,\mathrm{d}x,\, L$ — гладкая (везде, где нужно) на $\mathbb{R}^3,\,\phi,\psi\in C^2$ таковы, что $y(a_y)=\phi(a_y),y(b_y)=\psi(b_y).$ Пусть $y\in C^2.$ Таким образом, многообразия— графики функций, и концы y лежат на этих графиках.

Сведёмся к уже доказанной теореме. Подберём $\mathcal{F}(z,w) \in C(\mathbb{R}^2 \times \mathbb{R}^2)$ так, что $\mathcal{F}(z,w) = L\left(z_1,z_2,\frac{w_2}{|w_1|}\right)|w_1|$. Если y — экстремаль для J, то (x,y(x)) — экстремаль для \mathcal{F} .

$$M_1 = \{(x, \phi(x)) | x \in \mathbb{R} \}, M_2 = \{(x, \psi(x)) | x \in \mathbb{R} \}.$$

Пусть $w_1 > 0$ (на интересующей нас кривой $w_1 \equiv 1$). Условия трансверсальности:

$$\mathcal{F} = \left(L\left(z_1, z_2, \frac{w_2}{w_1}\right) - \frac{w_2 w_1}{w_1^2} \frac{\partial L}{\partial \dot{u}} \left(z_1, z_2, \frac{w_2}{w_1}\right) \frac{\partial L}{\partial \dot{u}} \left(z_1, z_2, \frac{w_2}{w_1}\right)\right)$$

$$\gamma(t) = (t,y(t)), \ \dot{\gamma}(t) = (1,\dot{y}(t)). \ \text{Tem самым,} \ (\nabla_w \mathcal{F})(\gamma)(a) \perp \begin{pmatrix} 1 \\ \dot{\phi}(a) \end{pmatrix} \text{ и } (\nabla_w \mathcal{F})(\gamma)(b) \perp \begin{pmatrix} 1 \\ \dot{\psi}(b) \end{pmatrix}.$$

Распишем это через скалярное произведение: $(L-\dot{y}\frac{\partial L}{\partial \dot{y}})(a)\cdot 1+\frac{\partial L}{\partial \dot{y}}\dot{\phi}(a)=0$. Аналогично со вторым концом, это часто записывают в виде

$$\begin{cases} L(a, y(a), \dot{y}(a)) + \frac{\partial L}{\partial \dot{y}} (\dot{\phi}(a) - \dot{y}(a)) = 0 \\ L(b, y(b), \dot{y}(b)) + \frac{\partial L}{\partial \dot{y}} (\dot{\psi}(b) - \dot{y}(b)) = 0 \end{cases}$$

Продемонстрируем элементарный вывод этого факта

$$J[\tilde{y}] - J[y] = \int_{x_0 + \delta x_0}^{x_1 + \delta x_1} L(x, \tilde{y}, \dot{\tilde{y}}) - \int_{x_0}^{x_1} L(x, y, \dot{y}) = \int_{x_0}^{x_1} (L(\tilde{x}) - L(\tilde{y})) - \int_{x_0}^{x_0 + \delta x_0} L(\tilde{x}) + \int_{x_1}^{x_1 + \delta x_1} L(\tilde{x}) =$$

$$= \int_{x_0}^{x_1} \left(\frac{\partial L}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial L}{\partial \dot{y}} \right) h \, \mathrm{d}x + L(x_1, y(x_1), \dot{y}(x_1)) \delta x_1 - L(x_0, y(x_0), \dot{y}(x_0)) \delta x_0 +$$

$$+ \mathcal{O}(\|h\|_C^2) + o(\delta x_1) + o(\delta x_2) + \frac{\partial L}{\partial \tilde{y}} h|_{x_0}^{x_1} (\tilde{x})$$

Рассматривая финитные h, получаем, что первый член $\left(\frac{\partial L}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial L}{\partial \dot{y}}\right) = 0.$

 $h(x_0) = \delta y_0 - \dot{y}(x_0)\delta x_0 + o(\delta x_0) + o(\|h\|)$ — уравнение касательной.

$$= L(x_1,y(x_1),\dot{y}(x_1))\delta x_1 - L(x_0,y(x_0),\dot{y}(x_0))\delta x_0 + \frac{\partial L}{\partial \dot{y}}(x_1)[\delta y_1 - \dot{y}(x_1)\delta x_1] - \frac{\partial L}{\partial \dot{y}}[x_0,y(x_0),\dot{y}(x_0)] \cdot [\delta y_0 - \dot{y}(x_0)\delta x_0] = 0$$

C точностью до некоторых малых поправок, $\delta y_1 = \dot{\psi}(x_1)\delta x_1$ и $\delta y_0 = \dot{\phi}(x_0)\delta x_0$.

Ура, вроде вывели.

6 Инвариантность уравнения Эйлера — Лагранжа

«Если сделать замену переменной в уравнении Эйлера — Лагранжа, то решение будет решением задачи, в которой так же заменили переменные»

Пусть $T:\mathbb{R}^n \to \mathbb{R}^n$ — диффеоморфизм, $J[\gamma]=\int \mathcal{F}(\gamma,\dot{\gamma})\,\mathrm{d}t, \mathcal{F}(z,\lambda w)=\lambda \mathcal{F}(z,w), \lambda>0$ (это и раньше требовалось, надо дописать).

Пусть γ — ориентированная кривая, $T\circ\gamma$ — также ориентированная кривая. $J_T[\gamma]\coloneqq J[T\circ\gamma]$, то есть $J_T[\gamma]=\int \mathcal{F}[T(\gamma(t)),T'(\gamma(t))\cdot\dot{\gamma}(t)]\,\mathrm{d}t.$

$$J_T[\gamma] = \int \mathcal{F}_T[\gamma, \dot{\gamma}]$$

Функция $\mathcal{F}_T(z,w) = \mathcal{F}[T(z),T'(z)w]$ имеет ту же однородность. Пусть E_T-E , построенная по \mathcal{F}_T .

Пусть задача — с фиксированными концами. Согласно когда-то проделанной выкладке: $\delta J_T[\gamma,h] = \int \langle E_T\{\gamma\},h\rangle \,\mathrm{d}t.$

$$J_{T}[\gamma+h] - J_{T}[\gamma] = J[T(\gamma) + T'(\gamma)h + r] - J_{T}[\gamma] = \int \left\langle \frac{\partial \mathcal{F}}{\partial \gamma}, T'(0)h + r \right\rangle + \left(\frac{\partial \mathcal{F}}{\partial \dot{\gamma}}(T'(\gamma)h + r)'\right) + o(\|h\|_{C^{1}}) = \int \left\langle \frac{\partial \mathcal{F}}{\partial \gamma}, T'(\gamma)h \right\rangle - \left(\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial \mathcal{F}}{\partial \dot{\gamma}}, T'(\gamma)h\right) = \left\langle T'(\gamma)^{t} E\{T(\gamma)\}, h \right\rangle + o(\|h\|_{C^{1}})$$

Итак, $E_T\{\gamma\} = T'(\gamma)E(T(\gamma))$ — заявленная инвариантность.

Лекция V 11 апреля 2024 г.

7 Прямые методы вариационного исчисления

У уравнения Эйлера — Лагранжа есть некоторые недостатки — так, выявление характера экстремума является отдельной, зачастую весьма сложной, задачей.

Здесь пойдёт речь о методах, пытающихся построить точки максимума или минимума непосредственно. Платой за такое удобство будет общность.

Здесь всё будет одномерно и скалярно: пусть $p \in C^1[a,b], q \in C[a,b]$. Рассмотрим задачу с фиксиро-

ванными концами для функционала
$$J[u] = \int\limits_a^b (pu'^2 + qu^2) \,\mathrm{d}x$$
, где $X \coloneqq \left\{ u \in C^1[a,b] \middle| u(a) = u(b) = 0, \int\limits_a^b u^2 = 1 \right\}$.

Последнее условие — нормировочное, если бы его не было, то всегда (ввиду однородности по u) инфимумом J был бы либо 0, либо $-\infty$.

В рамках ранее рассмотренной теории это является задачей на условный экстремум (при $G[u] = \int\limits_a^b u^2 = 1$). Уравнение Эйлера — Лагранжа для $J - \lambda G$ получится

$$2(pu')' + qu = \lambda u \tag{*}$$

Из общей теории (и C^1 -гладкости p) следует, что Для экстремума u: $pu' \in C^1$, то есть $u \in C^2$ вне окрестности тех точек, где p обращается в 0. Потребуем, чтобы этих точек не было: $\forall x \in [a,b]: p(x) > 0$.

Задача поиска минимума уравнения (*) при условиях $\begin{cases} \alpha_a u(a) + \beta_a u'(a) = 0 \\ \alpha_b u(b) + \beta_b u'(b) = 0 \end{cases}$ считается, что $\begin{cases} \alpha_u^2 + \beta_a^2 \neq 0 \\ \alpha_b^2 + \beta_b^2 \neq 0 \end{cases}$ называется задачей Штурма — Лиувилля.

Положим $\lambda_J \coloneqq \inf_{\mathbf{v}} J$.

1.
$$\lambda_J \geqslant \min_{x \in [a,b]} q(x)$$

2. Из однородности
$$\forall u \in C^1[a,b], u(a) = u(b) = 0 \Rightarrow J[u] \geqslant \lambda_J \int\limits_0^b u^2 \,\mathrm{d}x.$$

Пускай $u_n \in X$ — минимизирующая последовательность, такая, что $J[u_n] \searrow \lambda_J$. Мы докажем, что из соображений компактности можно выбрать равномерно сходящуюся подпоследовательность, и что предел обладает свойствами, которые от него ожидаются.

Итак, имеется последовательность $u_n\in X$, такая, что $\int\limits_a^b pu_n'^2+qu_n^2 \underset{n\to\infty}{\longrightarrow} \lambda_J$. Оценим $J[f]\geqslant$

$$\underbrace{\min_{[a,b]} p}_{>0} \cdot \int\limits_a^b f'^2 - \max_{[a,b]} q \cdot \int\limits_a^b f^2.$$
 Из ограниченности $J[u_n]$ получаем, что $\sup_n \int\limits_a^b u'_n < \infty.$

Отсюда сразу следует равностепенная непрерывность: $|u_n(x)-u_n(x')|=\left|\int\limits_x^{x'}u_n'^2\right|\leqslant \sqrt{|x-x'|}$.

$$\binom{x'}{b} u'^2$$
 . Эта же оценка показывает равномерную ограниченность: принимая $x=b$, получаем $|u_n(x)| \leqslant \sqrt{b-a} \cdot C$.

Тем самым, $\{u_n\}$ лежит в компакте внутри C, откуда имеется сходящаяся подпоследовательность; без потери общности, эта последовательность совпадает с исходной: $\exists u = \lim_{n \to \infty} u_n$, где предел берётся в C[a,b].

Эта предельная u — кандидат на минимизирующую функцию. Но пока u даже в интеграл не подставить: про гладкость ничего не известно. Тем не менее, конечно, $\int\limits_a^b u^2 = 1$.

Теорема 7.1. Так построенное $u \in C^2$ (в том числе $u \in X$), выполнено $-(pu')' + qu = \lambda_J u$, и $J[u] = \lambda_J$.

Доказательство. Сначала докажем в слабом смысле: убедимся, что

$$\forall h \in C^{2}[a, b] : h(a) = h(b) = 0 \Rightarrow \int_{a}^{b} (-(ph')' + qh)u = \lambda_{J} \int_{a}^{b} hu \tag{**}$$

если бы можно было проинтегрировать по частям.

$$J[u_n+\varepsilon h] = \underbrace{\int\limits_a^b p u_n'^2 + q u_n^2 + 2\varepsilon \int\limits_a^b (p u h h' + q u_h h) + \varepsilon^2 J[h]}_{J[u_n]}.$$
 Интегрируя по частям, получаем $-2\varepsilon \int\limits_a^b u_n (-(ph')' + u_h h) + \varepsilon^2 J[h]$.

qh), внеинтегральные члены обнулились.

Здесь, хотя совсем необязательно $u_n + \varepsilon h \in X$, так как нормировка не выполнены, мы подставили в J на X_0 , заданный той же формулой.

 $J[\lambda_n+\varepsilon h]\geqslant \lambda_J\int\limits_a^b(u_n+\varepsilon h)^2=\lambda_J+2\varepsilon\lambda_J\int\limits_a^bu_nh+\varepsilon^2\lambda_J\int\limits_a^bh^2$. Переходя к пределу в неравенствах, и сокращая λ_J , получаем

$$2\varepsilon \int_{a}^{b} u(-(pu')' + qh) + \varepsilon^{2} J[h] \geqslant 2\varepsilon \lambda_{J} \int_{a}^{b} uh + \varepsilon^{2} \int_{a}^{b} h^{2}$$

Так как можно выбирать ε разных знаков, то (**) выполнено.

Выберем $h(x) \coloneqq \int\limits_a^x \frac{1}{p(t)} \left(\int\limits_a^t \xi(s) \,\mathrm{d}s + C\right) \mathrm{d}t$, где C выбрана так, что h(b) = 0, где $\xi = -(ph')'$. А именно, $C = \int\limits_a^b \frac{\mathrm{d}t}{p(t)} \int\limits_a^t \xi / \int\limits_a^b \frac{1}{p}$

По построению $h \in C^2, h(a) = h(b) = 0.$

$$0 = \int_{a}^{b} \xi u - \int_{a}^{b} (q(x) - \lambda_{J}) \int_{a}^{x} \frac{1}{p(t)} \left(\int_{a}^{t} \xi(s) \, ds + C \right) dt = \int_{a}^{b} \xi a - \int_{a}^{b} \xi(s) \, ds \int_{s}^{b} \frac{dt}{p(t)} \int_{t}^{b} (q(x) - \lambda_{J}) \, dx + \frac{1}{\int_{a}^{b} \frac{1}{p}} \int_{a}^{b} \xi(s) \int_{s}^{b} \frac{dt}{p(t)} \int_{a}^{b} (q(x) - \lambda) \int_{a}^{x} \frac{1}{p}$$

Выкладки 100% неправильные, так что дальше не переписываю Итак, $0=\int\limits_a^b\xi(s)\,[\cdots]$, откуда по лемме Дюбуа-Реймона выражение в скобках равно нулю везде, $u\in C^1$.

Значит, u можно продифференцировать, получим u' = ..., откуда $u \in C^2$. Тем самым, $(p(s)u'(s))' = q(s) - \lambda_J$, значит, $u \in X$, $J[u] = \int\limits_a^b pu'^2 + qu^2$. Интегрируя по частям, получаем ровно $\lambda_J \int\limits_a^b u^2$.

Следствие 7.1. u — нестрогий локальный минимум. причём если $J[u] = \lambda_J = J[\widetilde{u}] \Rightarrow u = \pm \widetilde{u}$. Это следует из того, что u — решение соответствующего диффура, то есть лежит в одномерном \mathbb{R} -пространстве.

Пусть u_n — минимизирующая последовательность. Выберем $c \in [a,b]$ так, что $|u|(c) \neq 0$ (между прочим, конечный перебор). (|u| находим, как предел $|u_n|$)

Подправим u_n так, что $u_n(c) \geqslant 0$. Теперь $u_n \longrightarrow u$.

Пусть $u \in X$ — минимизирующая $J[u] = \lambda_J \eqqcolon \lambda_1$.

Пусть
$$X^{(1)}=\left\{f\in X\left|\int\limits_0^1 fu=0
ight\}$$
 Обозначим $\lambda_2\coloneqq\inf\limits_{X^{(1)}}J.$ Ясно, что $\lambda_2\geqslant\lambda_1.$

Рассуждая аналогично, построим $u_2 \in C[a,b]: \int\limits_a^b u_2^2 = 1, u_2(a) = u_2(b) = 0, \int\limits_a^b u_2 u = 0.$ Аналогично, $\forall h \in C^2: h(a) = h(b) = 0, \int\limits_a^b h u = 0 \Rightarrow \lambda_2 \int\limits_a^b u h = \int\limits_a^b u_2(-(ph')' + qh).$ Отсюда следует, что $u_2 \in C^2[a,b].$

//// Ну, там, короче, я что-то пропустил, но мы получили, что $\lambda_2 > \lambda_1.$