Combo 4 de definiciones y convenciones notacionales

Emanuel Nicolás Herrador - November 2024

1 $(L, s, i, {}^{c}, 0, 1)$ subreticulado complementado de $(L', s', i', {}^{c'}, 0', 1')$

Defina " $(L,s,i,\ ^c,0,1)$ es subreticulado complementado de $(L',s',i',\ ^{c'},0',1')$ "

Dados reticulados complementados $(L, s, i, {}^c, 0, 1)$ y $(L', s', i', {}^{c'}, 0', 1')$ diremos que $(L, s, i, {}^c, 0, 1)$ es un subreticulado complementado de $(L', s', i', {}^{c'}, 0', 1')$ si se dan las siguientes condiciones:

- 1. $L \subseteq L'$
- 2. L es cerrado bajo las operaciones s', i', c'
- 3. 0 = 0' y 1 = 1'
- 4. $s = s'|_{L \times L}$, $i = i'|_{L \times L}$ y $^{c} = ^{c'}|_{L}$

2 $\mathbf{A} \models \varphi[\vec{a}]$

Defina $\mathbf{A} \models \varphi[\vec{a}]$ (versión absoluta, no dependiente de una declaración previa, i.e., $\vec{a} \in A^N$. No hace falta definir $t^{\mathbf{A}}[\vec{a}]$)

Sea **A** una estructura de tipo τ , \vec{a} una asignación y $\varphi \in F^{\tau}$, definiremos recursivamente la relación $\mathbf{A} \models \varphi[\vec{a}]$ (escribiremos $\mathbf{A} \nvDash \varphi[\vec{a}]$ para expresar que no se da $\mathbf{A} \models \varphi[\vec{a}]$):

- 1. Si $\varphi = (t \equiv s)$: $\mathbf{A} \models \varphi[\vec{a}] \text{ sii } t^{\mathbf{A}}[\vec{a}] = s^{\mathbf{A}}[\vec{a}]$
- 2. Si $\varphi = r(t_1, \dots, t_m)$: $\mathbf{A} \models \varphi[\vec{a}] \text{ sii } (t_1^{\mathbf{A}}[\vec{a}], \dots, t_m^{\mathbf{A}}[\vec{a}]) \in i(r)$
- 3. Si $\varphi = (\varphi_1 \wedge \varphi_2)$: $\mathbf{A} \models \varphi[\vec{a}]$ sii $\mathbf{A} \models \varphi_1[\vec{a}]$ y $\mathbf{A} \models \varphi_2[\vec{a}]$
- 4. Si $\varphi = (\varphi_1 \vee \varphi_2)$: $\mathbf{A} \models \varphi[\vec{a}]$ sii $\mathbf{A} \models \varphi_1[\vec{a}]$ o $\mathbf{A} \models \varphi_2[\vec{a}]$
- 5. Si $\varphi = (\varphi_1 \to \varphi_2)$: $\mathbf{A} \vDash \varphi[\vec{a}] \text{ sii } \mathbf{A} \nvDash \varphi_1[\vec{a}] \text{ o } \mathbf{A} \vDash \varphi_2[\vec{a}]$
- 6. Si $\varphi = (\varphi_1 \leftrightarrow \varphi_2)$: $\mathbf{A} \vDash \varphi[\vec{a}]$ sii se dan $(\mathbf{A} \vDash \varphi_1[\vec{a}] \lor \mathbf{A} \vDash \varphi_2[\vec{a}])$ o se dan $(\mathbf{A} \nvDash \varphi_1[\vec{a}] \lor \mathbf{A} \nvDash \varphi_2[\vec{a}])$
- 7. Si $\varphi = \neg \varphi_1$: $\mathbf{A} \vDash \varphi[\vec{a}] \text{ sii } \mathbf{A} \nvDash \varphi_1[\vec{a}]$
- 8. Si $\varphi = \forall x_i \varphi_1 : \mathbf{A} \vDash \varphi[\vec{a}] \text{ sii } \forall a \in A, \mathbf{A} \vDash \varphi_1[\downarrow_i^a(\vec{a})]$
- 9. Si $\varphi = \exists x_i \varphi_1$: $\mathbf{A} \vDash \varphi[\vec{a}]$ sii $\exists a \in A : \mathbf{A} \vDash \varphi_1[\downarrow_i^a(\vec{a})]$

Cuando se de $\mathbf{A} \models \varphi[\vec{a}]$ diremos que la estructura \mathbf{A} satisface φ en la asignación \vec{a} y en tal caso diremos que φ es verdadera en \mathbf{A} para la asignación \vec{a} .

Cuando no se de $\mathbf{A} \models \varphi[\vec{a}]$ diremos que la estructura \mathbf{A} no satisface φ en la asignación \vec{a} y en tal caso diremos que φ es falsa en \mathbf{A} para la asignación \vec{a} .

3 v ocurre libremente en φ a partir de i

Defina la relación "v ocurre libremente en φ a partir de i"

Dadas palabras $\alpha, \beta \in \Sigma^*$, con $|\alpha|, |\beta| \ge 1$ y un natural $i \in \{1, \dots, |\beta|\}$, se dice que α ocurre a partir de i en β cuando se de que existan palabras δ, γ tales que $\beta = \delta \alpha \gamma$ y $|\delta| = i - 1$.

Definamos recursivamente la relación "v ocurre libremente en φ a partir de i", donde $v \in Var, \varphi \in F^{\tau}$ e $i \in \{1, \dots, |\varphi|\}$, de la siguiente manera:

1. Si φ es atómica (i.e., de la forma $(t \equiv s)$ o $r(t_1, \ldots, t_n)$), entonces v ocurre libremente en φ a partir de i sii v ocurre en φ a partir de i

- 2. Si $\varphi = (\varphi_1 \eta \varphi_2)$ con $\eta \in \{\land, \lor, \rightarrow, \leftrightarrow\}$, entonces v ocurre libremente en φ a partir de i sii se da alguna de las siguientes:
 - (a) v ocurre libremente en φ_1 a partir de i-1
 - (b) v ocurre libremente en φ_2 a partir de $i-|(\varphi_1\eta)|$
- 3. Si $\varphi = \neg \varphi_1$, entonces v ocurre libremente en φ a partir de i sii v ocurre libremente en φ_1 a partir de i-1
- 4. Si $\varphi = Qw\varphi_1$, con $Q \in \{\forall, \exists\}$, entonces v ocurre libremente en φ a partir de i sii $v \neq w$ y v ocurre libremente en φ_1 a partir de i |Qw|

4 Reticulado cuaterna

Defina reticulado cuaterna

Por un reticulado cuaterna entenderemos una 4-upla (L, s, i, \leq) tal que L es un conjunto no vacío, s e i son operaciones binarias sobre L, \leq es una relación binaria sobre L y se cumplen las siguientes propiedades:

- 1. $\forall x \in L, \qquad x \leq x$
- 2. $\forall x, y, z \in L, \quad x \le y \land y \le z \Rightarrow x \le z$
- $3. \quad \forall x,y \in L, \qquad x \leq y \land y \leq x \Rightarrow x = y$
- 4. $\forall x, y \in L$, $x \leq x \ s \ y \land y \leq x \ s \ y$
- 5. $\forall x, y, z \in L$, $x \le z \land y \le z \Rightarrow x \ s \ y \le z$
- 6. $\forall x, y \in L$, $x i y \leq x \land x i y \leq y$
- 7. $\forall x, y, z \in L$, $z \le x \land z \le y \Rightarrow z \le x \ i \ y$