Programmi ed esercizi per il Senior

I programmi sono descritti sinteticamente all'inizio, come linee guida. Il testo successivo serve per specificare alcuni dettagli e come controllo per non dimenticare niente per chi fa lezione.

1 Programmi Basic

1.1 GB - 1 [Metodi Algebrici]

Luoghi di punti con la geometria analitica (classiconi: apollonio, luogo degli ortocentri) e scelte opportune di coordinate; distanze con i prodotti scalari e scrittura di vari punti con i vettori; rette e circonferenze con i complessi (e corde e tangenti); applicazioni della trigonometria.

1.2 GB - 2 [Trasformazioni]

Isometrie: Traslazione, Simmetria, Rotazione. Similitudine. Scrittura di queste trasformazioni in complessi. $[\bigstar$ Affinità] Inversione Circolare. Inversione + Simmetria in un triangolo.

Isometrie. Le isometrie sono trasformazioni che conservano la distanza. Le figure mantengono la stessa forma: le rette vanno in rette, circonferenze in circonferenze, poligoni in poligoni, gli angoli mantengono la misura. Le isometrie più importanti sono traslazione, riflessione e rotazione.

La traslazione si definisce con un vettore \vec{v} , che manda ogni punto P in $P + \vec{v}$ (in cartesiane e in complessi).

La rotazione si definisce tramite un centro C e un angolo α tra 0 e 360. In complessi, se il centro è l'origine, il punto z viene mandato in $z \cdot e^{i\alpha}$; se il centro è un altro punto, allora bisogna fare una traslazione, rotazione e traslare indietro: $z \to (z-c) \cdot e^{i\alpha} + c$.

La riflessione si definisce tramite una retta r, ogni punto viene mandato nel suo simmetrico rispetto a questa retta. La riflessione inverte l'orientazione a differenza della traslazione e della rotazione.

Come per la rotazione, per scrivere in complessi la riflessione si compongono tre trasformazioni: si sceglie un punto c sulla retta e sia α l'angolo che forma con l'asse reale, allora z va in $\overline{(z-c)e^{-i\alpha}} \cdot e^{i\alpha} + c = \overline{(z-c)} \cdot e^{2i\alpha} + c$. Esempio easy: ABC triangolo, H ortocentro, AH interseca BC in D e la circonferenza circoscritta in N. Dimostrare DH = HN.

[★ Fatti sparsi:

- 1) ogni isometria è composizione di al massimo tre riflessioni.
- 2)Si possono dividere in due gruppi, a seconda se mantengono l'orientamento oppure no. Quelle che mantengono l'orientamento sono traslazione e rotazione, quelle che lo invertono sono riflessione e glissoriflessione (=traslazione lungo una retta e riflessione lungo quella retta), questa sono tutte le isometrie possibili
- 3) rotazione di α +rotazione di β = rotazione di $\alpha + \beta$ se $\alpha + \beta \neq 0$, altrimenti è traslazione. Traslazione+rotazione di α =rotazione di α con un altro centro. analogamente per rotazione+traslazione]

Affinità

Inversione. A ogni punto P associa P' tale che $OP \cdot OP' = R^2$. Costruzione con le tangenti (per punto esterno) e al contrario per punto interno. È involutiva, scambia interno ed esterno, i punti sulla circonferenza di inversione rimangono gli stessi.

Le rette per l'origine rimangono rette per l'origine, circonferenze per l'origine diventano rette non per l'origine [questo si può dimostrare], circonferenze non per l'origine diventano circonferenze non per l'origine. Calcolo di

 $A'B' = \frac{AB \cdot R^2}{OA \cdot OB}$, dire che OAB e OB'A' sono simili. L'inversione conserva gli angoli tra le curve, ma non gli angoli tra punti.

Esempio Teorema di Tolomeo.

In complessi, l'inversione nell'origine di raggio Rmanda z in $R^2\cdot \overline{z}^{-1}.$

[★ Si può fare un ponte tra potenze e inversione: una circonferenza γ è invariata per inversione in O di raggio R se $pow_{\gamma}(O) = R^2$. er esempio γ circoscritta ad ABC, P è l'intersezione della tangente in A con BC, allora l'inversione in P di raggio PA scambia B e C e di conseguenza lascia invariata γ]

Inversione + Simmetria

1.3 GB - 3 [Sintetica]

Circonferenza di Apollonio. Circonferenza di Feuerbach. Simmediana. Segmenti di tangenza di Incerchi/Excerchi, punti di Gergonne e Nagel. Retta di simson. Applicazioni di potenze e assi radicali.

2 Programmi Medium

2.1 GM - 1 [Numeri complessi e coordinate baricentriche]

Numeri complessi nella geometria euclidea. Si assume che si possegga una discreta maneggevolezza con il piano complesso. Rapido ripasso sulla forma polare dei numeri complessi e significato geometrico delle operazioni.

Condizione di allineamento e scrittura dell'equazione di una retta per due punti. Condizione di parallelismo e scrittura della parallela ad una retta passante per un punto ad essa esterno. Condizione di perpendicolarità e scrittura della perpendicolare ad una retta passante per un punto ad essa esterno. Birapporto fra 4 numeri complessi e condizione di ciclicità.

Equazione di una generica circonferenza. Scelta classica delle coordinate: circonferenza circoscrita \equiv circonferenza unitaria. Punti notevoli nella scelta classica delle coordinate. Esempio di quanto si semplificano i conti: intersezione di due corde generiche. Coordinate u, v, w per l'incentro.

Definizione di coordinate baricentriche.

Come verificare l'allineamento di tre punti ed equazione di una retta generica. Intersezione di due rette. Area di un triangolo di cui si conoscono le coordinate dei vertici. Punto all'infinito di una retta. Quando due rette sono parallele?

Punti notevoli e notazione di Conway: baricentro, incentro, ortocentro, circocentro, excentri, nagel, gergonne, lemoine... Coniugati isogonali e coniugati isotomici.

Equazione della circonferenza circoscritta (come coniugato isogonale della retta all'infinito). Equazione di una circonferenza in posizione generale. Equazione dell'asse radicale fra una circonferenza in posizione generale e la circonferenza circoscritta al triangolo referenziale: relazione di tale equazione con le potenze dei vertici del triangolo referenziale rispetto alla circonferenza in posizione generale. Formula di sdoppiamento per la tangente e la polare.

2.2 GM - 2, [Geometria proiettiva, poli e polari, quadrilateri armonici]

Lunghezze con segno (velocemente). Birapporto tra 4 punti su una retta. Proiezione del birapporto, quindi birapporto tra 4 rette o 4 punti su circonferenza. Quaterna Armonica. Teorema di Desargues.

Polo e Polare. Teorema di La Hire. Lemma della polare. Teorema di Pappo. Teorema di Pascal. Dualità polo-polare.

Lunghezze con segno. Definizione di birapporto fra 4 punti (A,B;C,D) su una retta e quando si dicono coniugati armonici. Conservazione del birapporto fra punti per proiezione da un punto esterno. Discussione del caso in cui, proiettando da un punto esterno su una retta, un punto va nel punto all'infinito: cosa diventa il birapporto nel caso in cui un punto sia all'infinito? Unicità del quarto armonico. Definizione di birapporto fra 4 rette e relazione con gli angoli che queste formano. Definizione di birapporto fra 4 punti su una circonferenza. Teorema di Pappo e Teorema di Pascal.

Definizione proiettiva di polare: data una circonferenza (o due rette) e punto P, si traccino le rette che passano per P e secano lo circonferenza (o incontrano le rette) in due punti A e B. Il luogo dei punti X tali che (A, B; P, X) = -1 è una retta detta polare di P rispetto alla circonferenza (o alle due rette). Proprietà geometriche nel caso della circonferenza.

Dualità poli-polari. Lemma della polare: Dato un punto P e una circonferenza (o due rette), se traccio due rette secanti che tagliano la circonferenza (o le rette) in due coppie di punti A, B e C, D dimodoché i punti siano nell'ordine P, A, B e P, C, D, allora $AD \cap BC$ e $AC \cap BD$ sono sulla polare di P rispetto alla circonferenza (o alle due rette). Teorema di Brianchion.

Definizione di quadrilatero armonico con i birapporti. In un quadrilatero armonico una diagonale e la tangenti alla circonferenza in cui è inscritto condotte per gli altri due punti concorrono.

Versione estesa

Il setting della geometria proiettiva è quello della retta euclidea a cui viene aggiunto un punto all'infinito, o del piano euclideo in cui viene aggiunta una retta all'infinito.

Lunghezze con segno Su una retta r sono presenti alcuni punti A, B, C... Si scelga un verso sulla retta e si considerino i segmenti su di essa come vettori, con segno positivo se orientati nel verso scelto e negativo altrimenti. Il vantaggio di questo è che vale $\overline{AC} = \overline{AB} + \overline{BC}$ per qualsiasi posizione reciproca di A, B, C.

Birapporto Dati 4 punti A, B, C, D su una retta, si definisce il birapporto è la seguente quantità:

$$(A,B;C,D) = \frac{\frac{AC}{AD}}{\frac{BC}{BD}} = \frac{AC \cdot BD}{BC \cdot AD}$$

dove le lunghezze sono prese con segno.

Se (A, B; C, D) = k, qual è il valore del birapporto se si permuta l'ordine in cui si prendono i punti? Le 4! = 24 possibilità si dividono in 6 gruppi in ciascuno dei quali il birapporto è lo stesso. Se si scambiano le due coppie oppure si inverte l'ordine in entrambe il birapporto non cambia: (A, B; C, D) = (C, D; A, B) = (B, A; D, C).

Se si scambiano i primi due o gli ultimi due, il birapporto diventa reciproco: (A, B; D, C) = (B, A; C, D) = 1/k.

Se si scambia il secondo e il terzo $B \leftrightarrow C$, si ottiene (A, C; B, D) = 1 - k.

Se si scambia il primo e il terzo $A \leftrightarrow C$, si ottiene $(C, B; A, D) = \frac{k}{k-1}$.

Combinando queste trasformazioni, si possono ottenere i valori di $(A,C;D,B)=\frac{1}{1-k}$ e $(A,D;B,C)=\frac{k-1}{k}$. Un'altra cosa interessante è fissare i punti A,B,C e vedere come varia il birapporto (A,B;C,D) al variare di D sulla retta. Questa è una funzione biettiva dalla retta proeittiva in $\mathbb{R} \cup \infty$, nei casi degeneri in cui D coincide con uno dei punti assume i valori degeneri di $0,1,\infty$; se $D=\infty$, il birapporto vale AC/BC.

Quaterna Armonica Quattro punti su una retta si dicono una quaterna armonica se (A, B; C, D) = -1. Per quanto detto sulle permutazioni, una quaterna è armonica se e solo se non è degenere e (A, B; C, D) = (B, A; C, D). Una quaterna armonica dev'essere "incatenata": fissati A, B, uno tra C e D deve stare all'interno del segmento AB e uno all'esterno. Analogamente si avrà che uno tra A e B sta all'interno del segmento CD e uno all'esterno.

2.3 GM - 3 [Configurazione di Miquel, rotomotetia, qualcosa sulle mistilinee e inversioni sintetiche]

Angoli orientati, Miquel su triangolo e su quadrilatero. Lemma della rotomotetia. Quadrilatero completo e rotomotetie presenti nella configurazione. Altre applicazioni di inversione. mistilinei,

Angoli orientati ed esercizi/complementi sui quadrilateri ciclici.

Punto di Miquel riferito a una terna di punti presi sui lati di un triangolo. Punto di Miquel riferito a un quadrilatero. Facendo opportuno riferimento all'esercizio 2 della sezione **GM-1**, osservare che il punto di Miquel di un quadrilatero ABCD è il centro della *spilar similarity* che manda AB in DC o AD in BC. Il quadrilatero ABCD è ciclico se e solo se il punto di Miquel M sta su QR, dove $Q = AB \cap CD$ e $R = AD \cap BC$. Nel caso di ciclicità:

- OM è perpendicolare a QR, essendo O il circocentro di ABCD;
- $A, C, M, O \in B, D, M, O$ sono conciclici;
- AC, BD e OM sono concorrenti in P;
- MO biseca $\angle CMA$ e $\angle BMD$;
- P e M sono inversi rispetto alla circonferenza circoscritta al quadrilatero ABCD.

Un'avventura mistilinea: considerati quattro punti in senso antiorario su una circonferenza Γ (A, B, C, D) ed essendo $P = AC \cap BD$, considero ω tangente ai segmenti AP e BP e a Ω rispettivamente in E, F e T. Provare le seguenti:

- TE biseca l'arco AC che contiene D;
- $\bullet\,$ Detto I l'incentro di $ABC,\,IFTB$ è ciclico e $I\in EF$
- Detto J l'incentro di APB allora TJFB è ciclico e TJ biseca $\angle ATB$.

Ripasso delle proprietà base riguardanti l'inversione. \sqrt{bc} -inversione più simmetria: risoluzione di alcuni problemi.

3 Esercizi Basic

3.1 GB-1, Esercizi

Analitica

1. Dimostrare la formula distanza di un punto di coordinate (p,q) dalla retta di equazione Ax + By + C = 0:

distanza =
$$\frac{Ap + Bq + C}{\sqrt{A^2 + B^2}}$$

2. Potenza di un punto rispetto a una circonferenza

Trigonometria

3. Calcolare, in termini dei lati e degli angoli del triangolo ABC, le seguenti lunghezze:

$$AH, HH_a, BH_a, H_bH_c, OM_a, OH, AI, IA', IO$$

dove H è l'ortocentro, O è il circocentro, I l'incentro, H_a la proiezione di H su BC (e similmente sono definiti H_b e H_c), M_a il punto medio di BC, A' il punto medio dell'arco BC che non contiene A nella circonferenza circoscritta ad ABC.

Vario

- 4. Teoremi di Napoleone e Vecten (enunciato in G2)
- 5. Sia Γ una circonferenza fissa e sia BC una corda. Sia A un punto su Γ e sia H l'ortocentro di ABC. Determinare al variare di A su Γ il luogo geometrico descritto da H.
- 6. Esistenza della circonferenza di Apollonio.

3.2 GB-2, Esercizi

1. Fare i conti per traslazioni, rotazioni, riflessioni, inversione in complessi.

Simmetrie

2. **Problema di Fagnano** Sia ABC un triangolo acutangolo, P, Q, R tre punti variabili sui lati BC, AC, AB rispettivamente. Per quale posizione dei tre punti il perimetro del triangolo PQR è minimo?

Soluzione: Sia P_1 il simmetrico di P rispetto AB e P_2 rispetto AC. Allora il perimetro $PR + RQ + QP = P_1R + RQ + QP_2$ è la lunghezza della spezzata P_1RQP_2 , fissato P è minimo se i quattro punti sono allineati. Inoltre $\widehat{P_1AP_2} = 2 \cdot \widehat{BAC}$ e $AP_1 = AP_2 = AP$, quindi $P_1P_2 = AP\sin\widehat{BAC}$ è minimo quando è minimo AP. Quindi P è piede dell'altezza da A, e in tale caso anche Q e R lo sono

Rotazioni

3. Teorema di Napoleone Sia ABC un triangolo e si costruisca un triangolo equilatero su ciascuno dei lati di ABC, esterno ad esso. Chiamati O_A, O_B, O_C i centri dei tre triangoli, dimostrare che $O_AO_BO_C$ è un triangolo equilatero.

Soluzione: Siano A_1, B_1, C_1 i vertici dei triangoli equilateri. $BA = \sqrt{3}BO_C$ e analogamente per gli altri lati. Una rotazione di 30 centrata in B manda BO_C in BA e BO_A in BA_1 . Il triangolo $BO'_CO'_A$ è simile a BAA_1 , quindi per Talete $O_CO_A = O'_CO'_A = \frac{1}{\sqrt{3}}AA_1 = O_BO_C$. Quindi i tre lati sono uguali.

Si fa benissimo in complessi (per G1). Su cut-the-knot ci sono tanti approcci.[10]

- 4. **Teorema di Vecten** Sia ABC un triangolo e si costruisca un quadrato su ciascuno dei lati di ABC, esterno ad esso. Chiamati O_A, O_B, O_C i centri dei tre quadrati, dimostrare che $O_AO_BO_C$ è un triangolo equilatero.
- 5. Eserciziario Senior 17, G2 -10 Siano ABMN e BCQP i quadrati costruiti sui lati AB e BC di un triangolo, esternamente al triangolo stesso. Dimostrare che i centri di tali quadrati ed i punti medi di AC e MP sono i vertici di un quadrato.

Soluzione: sia L il centro di ABMN e R di BCQP, J il punto medio di AC. LJ è parallelo a MC per omotetia di centro B e fattore 2, inoltre dopo una rotazione di 90° va in BP che è parallelo a JR. Da questo si deduce che LJ = JR e sono ortogonali. Analogamente si fa per il punto medio di MP

6

Omotetia

- 6. Sia ABC un triangolo, ω la circonferenza inscritta tangente a BC in D. Sia M il punto medio di BC e E il simmetrico di D rispetto a M. Sia T il diametralmente opposto a D in ω . Dimostrare che A, T, E sono allineati.
- 7. Siano Γ e ω due circonferenza tangenti internamente in P, con ω all'interno di Γ . Sia AB una corda di Γ tangente a ω in un punto T.

 Dimostrare che PT è la bisettrice di APB.

Omotetia+Simmetria

8. [Lemma della *simmediana*] Sia ABC un triangolo inscritto in una circonferenza γ . Le tangenti a γ in B e C si intersecano in P.

Mostrare che AP è simmediana relativa a BC, i.e. simmetrica della mediana relativa a BC rispetto alla bisettrice dell'angolo $\angle BAC$.

Soluzione: Sia ω la circonferenza di centro P e raggio PB. $\Omega \cap AB = D$, $\Omega \cap AC = E$. Per angle chasing DPE allineati è DE è antiparallelo a BC, quindi simmetria+omotetia manda ABC in AED e AM in AP in quanto mediane, da cui AP simmediana.

Inversione

- 9. Data l'inversione di centro O e raggio R, due punti A e B vanno in A' e B'. Determinare la lunghezza di A'B' conoscendo le lunghezze di OA, OB, AB.
- 10. **Teorema di Tolomeo** Sia ABCD un quadrilatero, $AC \cdot BD \leq AD \cdot BC + AB \cdot CD$ e l'uguale vale sse ABCD è ciclico.
- 11. [Teorema di Feuerbach] Mostrare che la circonferenza di Feuerbach è tangente alla circonferenza inscritta e alle circonferenze exinscritte.

Soluzione: Sia M il punto medio di BC e D e G rispettivamente i punti in cui la circonferenza inscritta e quella ex-inscritta opposta ad A incontrano BC. Invertire in M con raggio MD.

Per prima cosa si nota che il piede della perpendicolare e il piede della bisettrice su BC si scambiano perché $MH \cdot MI = MD^2$. Inoltre si mostra passando per la circoscritta che la retta immagine della circonferenza dei nove punti fa un angolo di beta - gamma con BC. Dunque la cfr dei nove punti va nella simmetrica della retta BC rispetto alla bisettrice che tange entrambe le circonferenze inscritta ed exinscritta. Inoltre queste due si scambiano

Inversione+Simmetria

12. [Lemma della *simmediana*] Sia ABC un triangolo inscritto in una circonferenza γ . Le tangenti a γ in B e C si intersecano in P.

Mostrare che AP è simmediana relativa a BC, i.e. simmetrica della mediana relativa a BC rispetto alla bisettrice dell'angolo $\angle BAC$.

3.3 GB-3, Esercizi

1. [Copiato da GM] Sia ABC un triangolo con ortocentro H e siano D, E e F i piedi delle altezze che cadono sui lati BC, CA e AB rispettivamente. Sia $T = EF \cap BC$.

Mostrare che TH è perpendicolare alla mediana condotta da A.

Soluzione: Oltre alla soluzione per inversione, pensavo anche qualcosa con gli assi radicali: il centro radicale delle circonferenze per AEFH, BCH, ABEF è T, quindi TH passa per l'intersezione di AEFH e BCH che chiamo P. Allora APH è retto in quanto diametro

inversione di centro A e raggio $AH \cdot HD$. La tesi diventa equivalente a mostrare che la circonferenza per D (immagine di H), per l'intersezione della circoscritta con AEF (immagine di T) e A ha la retta AM come diametro. Questo segue perché in effetti M, T', A, D sono ciclici

2. Sia ABC un triangolo, E, F i piedi delle altezze su AC, AB. Sia H l'ortocentro, M il punto medio di BC e Q l'intersezione più vicina ad A di HM con la circoscritta Γ . Sia $T = EF \cap BC$. Dimostrare che T, Q, A sono allineati.

Soluzione: Usare due fatti 1) Il punto Q è l'intersezione di Γ con la circonferenza di diametro AH ed è allineato con H,M e il simmetrico di A rispetto O 2) Assi radicali di AQH, ABC, BCEF.

3. Sia ABC un triangolo con I incentro e I_A centro della circonferenza ex-inscritta relativa ad A. Sia Γ la circonferenza circoscritta ad ABC e sia M il punto medio dell'arco BC non contenente A.

Dimostrare che B,I,C,I_A si trovano su una stessa circonferenza di centro ${\cal M}$

Soluzione: Calcolare i segmenti di tangenza di inscritta ed ex-inscritta, poi omotetia in A

4. Proprietà varie della circonferenza di Feuerbach.

4 Esercizi Medium

4.1 GM - 1, Esercizi

1. [Scrittura del coniugato isogonale in complessi] Dimostrare che in un triangolo abc inscritto in una circonferenza unitaria centrata nell'origine, il coniugato isogonale di p è

$$q = \frac{-p+a+b+c-\overline{p}(ab+bc+ca)+\overline{p}^2abc}{(1-p\overline{p})}.$$
 (1)

2. [Seconda intersezione di due circonferenze in complessi] Siano dati 4 punti a, b, c, d nel piano complesso che non formano un parallelogrammo.

Mostrare che esiste una e una sola rotomotetia che manda a in b e c in d. Detto x il centro di tale rotomotetia e α la ragione, si ha

$$c = \frac{ad - bc}{a - b - c + d}$$
$$\alpha = \frac{b - d}{a - c}.$$

Mostrare che l'intersezione delle circonferenze circoscritte a ABX e CDX dove AC e BD sono segmenti non paralleli le cui rette si intersecano in X, è il centro della rotomotetia che manda A in B e C in D.

- 3. [Una caratterizzazione della polare come luogo dei quarti armonici] Sia γ la circonferenza unitaria centrata nell'origine e sia P un punto qualsiasi. Siano r ed s la polare di P rispetto a Γ e una retta passante per P rispettivamente.
 - \bullet Mostrare che r ha equazione

$$x\bar{p} - 2 + \bar{x}p = 0 \tag{2}$$

dove p è il numero complesso associato a P.

- Supponiamo che s intersechi γ in A_1, A_2 , ed r in Q. Mostrare che $(P, Q; A_1, A_2) = -1$.
- 4. [Scrittura del circocentro di un triangolo generico in complessi] Mostrare che il circocentro del triangolo $z_1z_2z_3$ è

$$\frac{z_{1}\bar{z_{1}}(z_{2}-z_{3})+z_{2}\bar{z_{2}}(z_{3}-z_{1})+z_{3}\bar{z_{3}}(z_{1}-z_{2})}{\begin{vmatrix} z_{1} & \bar{z_{1}} & 1\\ z_{2} & \bar{z_{2}} & 1\\ z_{3} & \bar{z_{3}} & 1 \end{vmatrix}}.$$
(3)

- 5. [Teorema di Brocard] Sia ABCD un quadrilatero inscritto in una circonferenza di centro O. Le rette AB e CD si intersecano in E, le rette AD e BC si intersecano in F e le rette AC e BD si intersecano in G. Mostrare che O è ortocentro di EFG.
- 6. Sia ABC un triangolo di ortocentro H. Da A si conducano le due tangenti alla circonferenza di diametro BC che la intersecano in P e Q.

 Mostrare che $H \in PQ$.

Soluzione: la circonferenza unitaria è quella di diametro BC. I punti x che stanno su tale circonferenza e per cui $AX \perp OX$ soddisfano una quadratica. Sia H' l'intersezione di AH con PQ. Basta mostrare che $CH' \perp AB$.

7. [Una caratterizzazione del *punto di Lemoine*] Sia ABC un triangolo e siano D, E e F i punti medi di BC, CA e AB rispettivamente. Siano X, Y e Z i punti medi delle altezze condotte da A, B e C rispettivamente.

Mostrare che DX, EY e FZ si intersecano in un punto di coordinate baricentriche $[a^2:b^2:c^2]$. Chi è tale punto nel triangolo referenziale?

- (\star) Mostrare che tale punto (il *punto di Lemoine*) è l'unico punto ad essere baricentro del proprio triangolo pedale.
- 8. [Coordinate dei vertici del triangolo tangenziale in baricentriche] Dato un triangolo ABC referenziale in un sistema di coordinate baricentriche, mostrare che la tangente condotta da A alla circonferenza circoscritta ad ABC ha equazione

$$c^2y + b^2z = 0. (4)$$

Ciclando opportunamente, calcolare le coordinate dei vertici del triangolo tangenziale (i.e. il triangolo formato dalle intersezione delle tangenti condotte da $A, B \in C$ alla circonferenza circoscritta ad ABC).

- 9. Sia dato un triangolo ABC e un punto P di coordinate baricentriche [u:v:w] scegliendo come triangolo referenziale ABC.
 - [Proiezione di un punto sui lati in baricentriche] Mostra che, dette P_A , P_B e P_C le proiezioni di P sui lati BC, CA e AB, si ottiene

$$P_A = [0: S_C u + a^2 v: S_B u + a^2 w]$$

$$P_B = [S_C v + b^2 u : 0 : S_A v + b^2 w]$$

$$P_C = [S_B w + c^2 u : S_A w + c^2 v : 0]$$

dove
$$S_A = \frac{b^2 + c^2 - a^2}{2}$$
 e cicliche.

• [Punto all'infinito della retta perpendicolare in baricentriche] Usando il punto precedente mostrare che il punto all'infinito di una retta perpendicolare a px + qy + rz = 0 è

$$[S_Bg - S_Ch : S_Ch - S_Af : S_Af - S_Bg] \tag{5}$$

dove [f:g:h] = [q-r:r-p:p-q] è il punto all'infinito della retta.

10. [Intersezione delle ceviane per un punto P con la circoscritta in baricentriche] Sia P = [u:v:w], dove le coordinate baricentriche sono riferite ad ABC. Dette P^A , P^B e P^C rispettivamente le intersezioni di AP, BP e CP con la circonferenza circoscritta, mostrare che

$$P^A = \left[\frac{-a^2vw}{c^2v + b^2w} : v : w \right]$$

$$P^B = \left[u: \frac{-b^2uw}{a^2w + c^2u}:w\right]$$

$$P^C = \left[u : v : \frac{-c^2 uv}{a^2 v + b^2 u} \right].$$

11. Ricordiamo il seguente fatto noto di geometria elementare: un punto P sta sulla circonferenza circoscritta ad un triangolo ABC se e solo se le sue proiezioni sui lati AB, BC e CA sono allineate (su quella che si chiama retta di Simson).

Usando questo fatto e l'esercizio 9 mostrare che l'equazione della circonferenza circoscritta al triangolo referenziale è

$$a^2yz + b^2xz + c^2xy = 0. (6)$$

- 12. Mostrare che l'asse radicale fra la circonferenza circoscritta al triangolo referenziale e
 - la circonferenza di Feuerbach è $S_A x + S_B y + S_C z = 0$.
 - la circonferenza inscritta è $(p-a)^2x + (p-b)^2y + (p-c)^2z = 0$, essendo $p = \frac{a+b+c}{2}$.
- 13. [Distanza fra due punti in baricentriche] Siano P = [u : v : w] e Q = [u' : v' : w'] le coordinate baricentriche esatte di due punti rispetto a un triangolo referenziale ABC.
 - Mostrare che

$$PQ^{2} = S_{A}(u - u')^{2} + S_{B}(v - v')^{2} + S_{C}(w - w')^{2}.$$
(7)

• Dato un generico punto P = [u:v:w], mostrare che

$$AP^{2} = \frac{c^{2}v^{2} + 2S_{A}vw + b^{2}w^{2}}{(u+v+w)^{2}}$$
(8)

e dedurre, ciclicamente, le espressioni per BP^2 e CP^2 .

4.2 GM - 2, Esercizi

1. Siano γ_1 e γ_2 due circonferenze di centri O_1 e O_2 rispettivamente. Siano S_1 e S_2 rispettivamente il centro di similitudine interno ed esterno di γ_1 e γ_2 .

Mostrare che
$$(O_1, O_2; S_1, S_2) = -1$$
.

2. Siano A, C, B e D allineati in quest'ordine su una retta. Siano M e N i punti medi dei segmenti CD e AB rispettivamente.

Mostrare che sono equivalenti le seguenti proprietà:

- (A, B; C, D) = -1;
- $\bullet \ \frac{2}{AB} = \frac{1}{AC} + \frac{1}{AD};$
- $MA \cdot MB = MC^2$;
- $CA \cdot CB = CD \cdot CN$:
- $\bullet \ AB^2 + CD^2 = 4MN^2.$
- 3. Siano γ_1 e γ_2 due circonferenze *ortogonali* di centri O_1 e O_2 rispettivamente. Una generica retta passante per O_1 interseca γ_1 in A e B e interseca γ_2 in C e D.

Mostrare che
$$(A, B; C, D) = -1$$
.

4. [Conservazione del birapporto per inversione] Assumiamo che A, B, C e D siano allineati o conciclici. Siano A', B', C' e D' (allineati o conciclici) le immagini dei precedenti punti tramite un'inversione circolare di centro $O \notin \{A, B, C, D\}$ qualsiasi. Allora

$$(A, B; C, D) = (A', B'; C', D').$$
(9)

Cosa succede se $O \in \{A, B, C, D\}$?

- 5. [Unicità del quarto armonico] Assumiamo che A, B, C, D_1 e D_2 siano conciclici o allineati. Mostrare che se $(A, B; C, D_1) = (A, B; C, D_2)$ allora $D_1 \equiv D_2$.
- 6. Sia ABC un triangolo e M un punto sul segmento BC. Sia N preso sulla retta di BC dimodoché $\angle MAN = 90$. Mostrare che (B, C; M, N) = -1 se e solo se AM è bisettrice dell'angolo $\angle BAC$.
- 7. Sia ABC un triangolo scaleno e sia $D \in AC$ tale che BD è la bisettrice di $\angle ABC$. Siano E ed F i piedi delle perpendicolari tracciate rispettivamente da A e da C sulla retta BD e sia $M \in BC$ tale che $DM \perp BC$. Mostrare che $\angle EMD = \angle DMF$.
- 8. [Teorema della farfalla] Sia MN una corda di una circonferenza γ e sia P il suo punto medio. Siano AB e CD due corde qualsiasi di γ che si intersecano in P dimodoché A e C siano nello stesso semipiano generato dalla retta su cui giace MN.

Mostrare che AD e BC intersecano la corda MN in due punti equidistanti da P.

9. Sia ABCD un quadrilatero circoscritto a una circonferenza e siano M, N, P e Q i punti di tangenza di AB, BC, CD e DA con la circonferenza rispettivamente.

Mostrare che AC, BD, MP e NQ sono concorrenti.

10. [Copiato in GB] [Lemma della simmediana] Sia ABC un triangolo inscritto in una circonferenza γ . Le tangenti a γ in B e C si intersecano in P.

Mostrare che AP è simmediana relativa a BC, i.e. simmetrica della mediana relativa a BC rispetto alla bisettrice dell'angolo $\angle BAC$.

- 11. Sia ABCD un quadrilatero ciclico. Le rette AB e CD si intersecano in un punto E e le diagonali AC e BD si intersecano in un punto F. Sia H l'intersezione delle circonferenze circoscritte ai triangoli AFD e BFC. Mostrare che $\angle EHF = 90^{\circ}$.
- 12. Sia ABCD un quadrilatero armonico inscritto in una circonferenza γ di centro O con diagonali AB e CD. Sia M il punto medio di AB.

Mostrare MA è la bisettrice dell'angolo $\angle CMD$.

- 13. Usando gli argomenti della lezione **G2 Medium** mostrare il **Teorema di Brocard** contenuto nella raccolta degli esercizi relativi alla lezione **G1 Medium**.
- 14. Sia ω la circonferenza inscritta in un triangolo ABC e sia I il suo centro. ω interseca BC, CA e AB rispettivamente in D, E e F. BI interseca EF in K.

 Mostrare che $BK \perp CK$.
- 15. Sia ABC un triangolo la cui circonferenza inscritta, di centro I, tange BC,CA e AB in D,E e F rispettivamente. Siano N l'intersezione di ID con EF e M il punto medio di BC.

 Mostrare che A, N e M sono allineati.

4.3 GM - 3, Esercizi

1. Sia ABCD un quadrilatero ciclico di circocentro O. Le rette AB e CD si intersecano in E, le rette AD e BC si intersecano in F e le rette AC e BD si intersecano in P. Sia K l'intersezione di EP e AD e M la proiezione di O su AD.

Mostrare che BCMK è ciclico.

2. [Fatti su triangolo con mistilinea] Sia ABC un triangolo iscritto in una circonferenza Γ e sia γ la circonferenza tangente ai segmenti AB, AC e a Γ rispettivamente in E, F e T. Sia I l'incentro di ABC. Sia M il punto medio dell'arco BC che non contiene A. Sia V l'intersezione di AT con EF.

Mostrare che:

- $I \in EF \in IE = IF$;
- MT, EF e BC sono concorrenti;
- $\angle BVE = \angle CVF$.
- 3. [Teorema di Sawyama-Thébault] Sia ABC un triangolo di incentro I e sia D un punto sul lato BC. Sia P (rispettivamente Q) il centro della circonferenza che tange i segmenti AD e DC (rispettivamente DB) e la circonferenza circoscritta ad ABC.

Mostrare che P, Q e I sono allineati.

4. [NUSAMO 2015/2016 - 5] Sia ABC un triangolo, I_A l'excentro opposto ad A e I il suo incentro. Sia M il circocentro del triangolo BIC e sia G la proiezione di I_A su BC. Sia, infine, P l'intersezione fra la circonferenza circoscritta di ABC e la circonferenza di diametro AI_A .

Mostrare che M, G e P sono allineati. Soluzione: Inversione nella circonferenza circoscritta a BIC che ha centro in M

5. [Copiato in GB] Siano A, B e C tre punti allineati e supponiamo che P sia un punto qualsiasi del piano distinto dai precedenti 3.

Mostrare che i circocentri dei triangoli PAB, PAC, PBC e P sono conciclici.

6. [Copiato in GB] Sia ABC un triangolo con ortocentro H e siano D, E e F i piedi delle altezze che cadono sui lati BC, CA e AB rispettivamente. Sia $T = EF \cap BC$.

Mostrare che TH è perpendicolare alla mediana condotta da A.

7. [Teorema di Feuerbach] [Copiato in GB] Mostrare che la circonferenza di Feuerbach è tangente alla circonferenza inscritta e alle circonferenze exinscritte.

Suggerimento: Sia M il punto medio di BC e D e G rispettivamente i punti in cui la circonferenza inscritta e quella ex-inscritta opposta ad A incontrano BC. Invertire in M con raggio MD.

8. La circonferenza inscritta nel triangolo ABC è tangente a BC, CA e AB in M, N e P rispettivamente.

Mostrare che il circocentro e l'incentro di ABC sono allineati con l'ortocentro di MNP.

5 Problemi Basic

5.1 GB - 1, Problemi

• EGMO 2013 - 1 Nel triangolo ABC, si prolunghi il lato BC dalla parte di C di un segmento CD tale che CD = BC. Si prolunghi poi il lato CA dalla parte di A di un segmento AE tale che AE = 2CA. Dimostrare che, se AD = BE, allora il triangolo ABC è rettangolo

5.2 GB - 2, Problemi

• IMOSL2013 - G2 Sia ABC un triangolo, e sia ω la sua circonferenza circoscritta. Siano M il punto medio di AB, N il punto medio di AC, T il punto medio dell'arco BC di ω che noncontiene A. La circonferenza circoscritta al triangolo AMT interseca l'asse di AC in un punto X interno al triangolo ABC. La circonferenza circoscritta al triangolo ANT interseca l'asse di AB in un punto Y interno al triangolo ABC. Le rette MN e XY si intersecano in K.

Dimostrare che KA = KT.

Soluzione: La simmetria rispetto all'asse di AT manda M in X e N in Y, quindi K rimane fisso e sta sull'asse.

• EGMO 2016 - 4 Due circonferenze aventi lo stesso raggio, ω_1 e ω_2 , si intersecano in due punti distinti X_1 and X_2 . Si consideri una circonferenza ω tangente esternamente a ω_1 nel punto T_1 e internamente a ω_2 nel punto T_2 . Si dimostri che il punto d'intersezione fra le rette X_1T_1 e X_2T_2 giace su ω .

Soluzione: Inversione in X_1

• IMOSL2011 - G4 Sia ABC un triangolo acutangolo e Γ la sua circonferenza circoscritta. Sia B_0 il punto medio di AC e C_0 il punto medio di AB. Sia D il piede dell'altezza da A su BC e sia G il baricentro di ABC. Sia ω la circonferenza passante per B_0 , C_0 e tangente a Γ in un punto $X \neq A$.

Dimostrare che D, X, G sono allineati.

Soluzione: nota: la soluzione proposta è basic difficile/medium facile

Inversione + simmetria di centro A e raggio $\sqrt(AB * AB_0)$, scambia B e B_0 , C e C_0 , manda D nel centro di Γ O e ω in una circonferenza per B e C tangente all'immagine di Γ , B_0C_0 , in un punto Y. Poiché BC e B_0C_0 sono paralleli, Y sta sull'asse di BC, quindi OY è perpendicolare a B_0C_0 .

Sia T l'intersezione delle tangenti a Γ per A,X e di B_0C_0 , è centro radicale di Γ , ω e la circoscritta a AB_0C_0 . ATXYO è ciclico, l'immagine sotto inversione è la retta XDY. Ora basta mostrare DY intersecato la mediana AA_0 è G, ma AD è il doppio di XA_0 e sono paralleli, quindi l'intersezione è proprio G.

5.3 GB - 3, Problemi

1. Polish MO 2018 - 5 Sia ABC un triangolo acutangolo con $AB \neq AC$ e siano E, F i piedi delle altezze su AC e AB. La tangente in A alla circoscritta interseca BC in P. La retta parallela a BC passante per A interseca EF in Q.

Dimostrare che PQ è perpendicolare alla mediana passante per A del triangolo ABC

Soluzione: Assi radicali swag: 1) La circonferenza degenere di centro A, la circoscritta a AEF e a BCEF hanno Q come centro radicale (in quanto sta su EF per le ultime due e AQ tange la circoscritta AEF per le prime due). 2) $PA^2 = PB \cdot PC$, quindi P sta sull'asse radicale tra A e la circoscritta a BCEF. Dunque PQ è asse radicale delle due circonferenze ed è perpendicolare alla congiungente dei centri, che è AM

6 Problemi Medium

6.1 GM - 1, Problemi

1. [BMO 2009 - 2] Sia MN una segmento parallelo al lato BC del triangolo ABC, con M sul lato AB e N sul lato AC. Le rette BN e CM si incontrano in P. Le circonferenze circoscritte a BMP e CNP si incontrano in due punti distinti P e Q.

Mostrare che $\angle BAQ = \angle CAP$.

2. [RMM 2012 - 2] Sia ABC un triangolo non isoscele e siano D, E e F rispettivamente i punti medi dei lati BC, CA e AB. La circonferenza BCF e la retta BE si intersecano nuovamente in P e la circonferenza ABE e la retta AD in Q. Le rette DP e FQ si incontrano in R.

Mostrare che il baricentro G del triangolo ABC giace sulla circonferenza circoscritta al triangolo PQR.

3. [USAMO 2016 - Day 2 - 2] Un pentagono equilatero AMNPQ è inscritto in un triangolo ABC in modo che $M \in AB$, $Q \in AC$ e $N, p \in BC$. Sia S l'intersezione di MN e PQ e denotiamo con l la bisettrice di $\angle MSQ$.

Mostrare che, detto I l'incentro di ABC, OI è parallelo a l.

4. [IMO 2008 - 6] Sia ABCD un quadrilatero convesso con $BA \neq BC$. Siano ω_1 e ω_2 le circonferenze inscritte ai triangoli ABC e ADC rispettivamente. Supponiamo che esista una circonferenza ω tangente alla retta BA oltre A, alla retta BC oltre C, alla retta AD e alla retta CD.

Mostrare che le tangenti esterne comuni a ω_1 e ω_2 si intersecano su ω .

5. [BMO 2015 - 2] Sia ABC un triangolo scaleno con incentro I e circonferenza circoscritta ω . AI, BI e CI intersecano ω di nuovo nei punti D, E e F rispettivamente. Le rette parallele a BC, CA e AB condotte da I intersecano EF, DF e DE rispettivamente nei punti K, L e M.

Mostrare che K, L e M sono allineati.

6. [IMO 2012 - 1] Dato un triangolo ABC, sia J il centro della circonferenza ex-inscritta opposta al vertice A, la quale tange BC in M e le rette AB e AC in K e L rispettivamente. Le rette LM e BJ si intersecano in F e le rette KM e CJ si intersecano in G. Sia S il punto d'intersezione fra AF e BC e sia T il punto d'intersezione fra AG e BC.

Mostrare che M è il punto medio di ST.

- 7. [IMO SL 2011 4] Sia ABC un triangolo acutangolo scaleno, e sia γ la sua circonferenza circoscritta. Siano A_0 il punto medio di BC, B_0 il punto medio di AC e C_0 il punto medio di AB. Sia D il piede dell'altezza uscente da A, D_0 la proiezione di A_0 sulla retta B_0C_0 e G il baricentro di ABC. Sia γ_1 la circonferenza passante per B_0 e C_0 , e tangente a γ in un punto P diverso da A.
 - Dimostrare che la retta B_0C_0 e le tangenti a γ nei punti A e P sono concorrenti.
 - Dimostrare che i punti D_0 , G, D, e P sono allineati.
- 8. [USA TST 2012 December Test 1] In un triangolo acutangolo ABC si ha $\angle A < \angle B$ e $\angle A < \angle C$. Sia P un punto variabile su BC. I punti D e E giacciono su AB e AC rispettivamente in modo che BP = PD e CP = PE.

Mostrare che al variare di P sul segmento BC, la circonferenza circoscritta al triangolo ADE passa per un punto fisso oltre A.

6.2 GM - 2, Problemi

1. [China NMO 2017 - 2] Siano ω e Ω di centro I e O rispettivamente la circonferenza inscritta e circoscritta a un triangolo acutangolo ABC. La circonferenza ω interseca BC in D e le tangenti a Ω passanti per B e C si intersecano in L. Siano AH l'altezza condotta da A a BC e X l'intersezione di AO con BC. Siano P e Q le intersezioni di OI con Ω .

Mostrare che PQXH è ciclico se e solo se A, D e L sono allineati.

2. [IMO 2014 - 4] Siano $P \in Q$ punti su un segmento BC di un triangolo acutangolo ABC tali che $\angle PAB = \angle BCA$ e $\angle CAQ = \angle ABC$. Siano $M \in N$ punti su $AP \in AQ$ rispettivamente tali che P è punto medio di $AM \in Q$ è punto medio di AN.

Mostrare che l'intersezione di BM e CN giace sulla circonferenza circoscritta di ABC.

3. [Iran TST 2007 - Day 2 - 3] Sia ω la circonferenza inscritta ad un triangolo ABC che tange AB e AC rispettivamente in F e E. Siano P e Q su AB e AC rispettivamente in modo che PQ sia parallelo a BC e tangente ad ω . Siano T l'intersezione di EF con BC e M il punto medio di PQ.

Mostrare che TM tange ω .

Soluzione: Se $X = AD \cap \omega$, TX tange ω per quadrilateri armonici. Poi (XDAY)=-1 e proiettando da T su PQ ottengo che l'intersezione di TX con PQ è il suo punto medio

4. [Iran TST 2009 - Day 2 - 3] In un triangolo ABC è inscritta una circonferenza ω di centro I che interseca i lati BC, CA e AB rispettivamente in D, E e F. Sia M il piede della perpendicolare da D a EF. Sia P il punto medio di DM e H l'ortocentro del triangolo BIC.

Mostrare che PH biseca EF.

5. [Romania TST 2007 - Day 7 - 2] La circonferenza inscritta al triangolo ABC è tangente ad AB e AC in F ed E rispettivamente. Sia M il punto di BC e N l'intersezione di AM con EF. La circonferenza di diametro BC interseca BI e CI in X e Y rispettivamente.

Mostrare che
$$\frac{NX}{NY} = \frac{AC}{AB}$$
.

Soluzione: Usa l'esercizio 13 e nota che DXY è simile ad ABC e ID è bisettrice di YDX. Oppure semplicemente formula seni-lati su IXY e un po' di trigonometria

6. [IMO SL 2007 - G8] Sul lato AB di un quadrilatero convesso ABCD è preso un punto P. Sia ω la circonferenza inscritta al triangolo CPD e sia I il suo centro. Supponiamo che ω sia tangente alle circonferenze inscritte ai triangoli APD e BPC in K e L rispettivamente. Siano E l'intersezione delle rette AC e BD e F l'intersezione delle rette AK e BL.

Mostrare che E, I e F sono allineati.

6.3 GM - 3, Problemi

1. [USA TST 2007 - 5] Il triangolo ABC è inscritto in una circonferenza Γ . Le tangenti a Γ condotte da B e C si intersecano in T. Il punto S è sulla retta BC dimodoché $AS \perp AT$. Siano B_1 e C_1 sulla retta ST dimodoché $B_1T = BT = C_1T$.

Mostrare che ABC e AB_1C_1 sono simili.

2. [IMO 2005 - 5] Sia ABCD un quadrialtero convesso con BC = DA e BC non parallelo a DA. Siano E e F su BC e DA rispettivamente tali che BE = DF. Siano P l'intersezione di AC e BD, Q l'intersezione di BD e EF e R l'intersezione di EF e AC.

Mostra che, al variare di E e F, la circonferenza circoscritta al triangolo PQR passa per un punto fisso (oltre P).

3. [?] Sia ABC un triangolo e siano D e E i piedi delle altezze relative ad A e B, rispettivamente, le quali siintersecano in H. Sia M il punto medio di AB e supponiamo che le circonferenze circoscritte a ABH e DEM si intersechino nei punti P e Q (con P e A sullo stesso lato di CH).

Mostrare che le rette PH e MQ si incontrano sulla circonferenza circoscritta ad ABC.

4. [IMO SL 2006 - 9] Sui lati BC, CA e AB di un triangolo ABC si scelgano tre punti A_1 , B_1 e C_1 rispettivamente. Le circonferenze circoscritte a AB_1C_1 , BC_1A_1 e CA_1B_1 intersecano la circonferenza circoscritta ad ABC in A_2 , B_2 e C_3 rispettivamente. Siano, inoltre, A_3 , B_3 e C_3 rispettivamente i simmetrici di A_1 , B_1 e C_1 rispetto ai punti medi dei lati del triangolo su cui giacciono.

Mostrare che i triangoli $A_2B_2C_2$ e $A_3B_3C_3$ sono simili.

Soluzione: A_2 è il centro della spilar similiarity che porta BC_1 in CB_1 quindi $A_2C/A_2B=B_1C/C_1B=AB_3/AC_3$ da cui A_2BC è simile ad AC_3B_3 e da qui sono angoli

5. [EGMO 2013 - 5] Sia Ω la circonferenza circoscritta ad un triangolo ABC. La circonferenza ω è tangente ai lati AC e BC e internamente alla circonferenza Ω in un punto P. Una retta parallela ad AB che interseca l'interno del triangolo ABC è tangente a ω in Q.

Mostrare che $\angle ACP = \angle QCB$.

6. [IMO SL 2003 - 4] Siano Γ_1 , Γ_2 , Γ_3 , Γ_4 circonferenze distinte tali che Γ_1 e Γ_3 (così come Γ_2 e Γ_4) siano tangenti esternamente in P. Supponiamo che Γ_1 e Γ_2 , Γ_2 e Γ_3 , Γ_3 e Γ_4 , Γ_4 e Γ_1 si intersechino in A, B, C e D rispettivamente e che nessuno di questi punti sia P.

Mostrare che

$$\frac{AB \cdot BC}{AD \cdot DC} = \frac{PB^2}{PD^2}.$$

7. [IMO 2015 - 3] Sia ABC un triangolo acutangolo con AB > AC. Sia Γ la sua circonferenza circoscritta, H il suo ortocentro, e F il piede dell'altezza condotta da A. Sia M il punto medo di BC. Sia Q il punto su Γ tale che $\angle HQA = 90^{\circ}$ e sia K il punto su Γ tale che $\angle HKQ = 90^{\circ}$. Assumiamo che A, B, C, K e Q sono tutti distinti e giacciono su Γ in quest'ordine.

Mostrare che le circonferenze circoscritte ai triangoli KQH e FKM sono fra loro tangenti. Soluzione: Inversione di centro H che fissa la circonferenza circoscritta ad ABC. K'Q' diviene perpendicolare ad AK' che è l'asse di F'M' e dunque K'Q' è la tangente a K' nella circonferenza circoscritta a F'M'K'.

17

Riferimenti bibliografici

- [1] Gunmay Anda, Inversion on the fly, http://services.artofproblemsolving.com/download.php? id=YXROYWNobWVudHMvNy85LzRiMmFiYzk1NTgxNjQyZGNhNjEzZDkxOGQ00TFmN2UyYWF1MDc3LnBkZg==&rn= SW52ZXJzaW9uLnBkZg==
- [2] Dušan Djukić, Inversion, http://memo.szolda.hu/feladatok/inversion_ddj.pdf
- [3] Paul Yiu, Introduction to the geometry of the triangle, http://math.fau.edu/yiu/YIUIntroductionToTriangleGeometry121226.pdf
- [4] Marko Radovanović, Complex numbers in geometry, http%3A%2F%2Fservices.artofproblemsolving.com% 2Fdownload.php%3Fid%3DYXROYWNobWVudHMvOS9iLzZhNGM2M2YONzZiNGY3MWE3ZTIOZTRiY2Y4OGIwMzhiN2IyNzFhLnBkZg% 3D%3D%26rn%3DbWFya28tcmFkb3Zhbm92aWMtY29tcGxleC1udW1iZXJzLWluLWdlb21ldHJ5LnBkZg%3D%3D&usg= AFQjCNFBeoyb2eMJWQnC3Q7qMMS3okG1Kw
- [5] Milivoje Lukić, Projective geometry, http://memo.szolda.hu/feladatok/projg_ml.pdf
- [6] Ercole Suppa, Divisione armonica, http://www.dma.unifi.it/~mugelli/Incontri_Olimpici_2010/ 19-Geometria-Testi/02-Ercole_Suppa-Divisione_Armonica.pdf
- [7] Yufei Zaho, Cyclic quadrilaterals the big picture, http://yufeizhao.com/olympiad/cyclic_quad.pdf
- [8] Yufei Zaho, Circles, http://yufeizhao.com/olympiad/imo2008/zhao-circles.pdf
- [9] Mathlinks, https://artofproblemsolving.com/wiki/index.php?title=MathLinks
- [10] Cut the Knot Napoleon Theorem Proof with complex numbers https://www.cut-the-knot.org/proofs/napoleon_complex2.shtml