Performance Curves

A Methodology for Evaluation in Ad-Tech Andres Corrada-Emmanuel Head of Optimization @ Swoop

Swoop

- Founded 2011 by Ron Elwell and Sim Simeonov
- Ad-network:
 - Users/Publishers/Advertisers part of the eco-system.
 - Context = Search
 - No RTB, just-in-time ad insertion.
 - Strong view signal
- Mike Baker advisor.

A Personal Focus on Measurement not Models

- ICML 2008: Autonomous geometric precision error estimation in low-level computer vision tasks
 - We can measure precision (not accuracy!) without knowing ground truth of terrain elevations (real variable)
- Patent 2010: Polynomial approach to ground truth inference of classifiers (class labels).
- Patent 2014: Measuring Web Browser Tag Properties Without True Unique Tags
 - We can measure error rates of a unique id identifier system without knowing true identity of users.

What is mostly wrong with ROC/AUC?

- Wrong: Costs/Benefits are not included in the assessment.
- Wrong: Difficult to generalize to tasks that are not classification and/or do not have just false positive/ false negative errors (e.g. a unique id system, speech recognition).
- More Wrong: Papers by David Hand (see Wikipedia article on ROC).
- **Right**: It compares detectors via a ranking procedure.

The Problem of Offline Evaluation in Ad-Tech

Counterfactuals:

- You must pay for all your evidence.
- You don't know what would have happened if a different course was taken. As opposed to, say, financial stock picking.
- Machine Learning a small portion of what ad-serving engines do. Other parts of the system can help/hinder an ML model's job.
- All offline evaluation methods have this problem.
- Bottou et al: Counterfactual reasoning and learning systems (MLJ).

The Performance Curve Methodology I

- Inspired by comment by Beth.
- KPIs rule the land: $\sum_{i} x_i / \sum_{i} y_i$

Requirements

- x_i: Numerator of KPI for i-th decision.
- y_i: Denominator of KPI for i-th decision
- s_i: Ranking score
- xAxis_i: KPI versus cumulative of x-axis variable

The Performance Curve Methodology II

· Algorithm

- Sort by s_i, usually descending.
- Start at the top and at each decision:
 - Compute KPI.
 - Accumulate x-axis variable
- Plot

A Toy Example

n	score	cost	actions	
1	0.75	10	4	
2	0.55	5	2	
3	0.8	3	3	
4	0.3	7	5	

n	score	cost	action	С	A	V	A/C
1	0.8	3	3	3	3	1	3/3=1
2	0.75	10	4	3+10=13	3+4=7	1+1=2	7/13
3	0.55	5	2	18	9	3	9/18
4	0.3	7	5	25	14	4	14/25

Actions / View Example

Much better now

Auto Vertical, Action Campaigns Actions/View By LibFM Component Score: 2017–06–08 to 2017–06–11

What can we learn from data?

- Evaluation data limits the conclusions you can make.
- Consider the time period for an evaluation.

One Week of Data Is Not Enough

Feature oracles below max oracle (view level granularity)

Two Weeks Seems Enough

Feature oracles below max oracle (view level granularity)

Comparing Different Steps in Production

Topics not discussed

- A single figure of merit can be derived as the average KPI over the performance curve
 - Measured in units that make sense KPI.
 - Can be used to automate model selection.
- Precision of models
 - Create random envelopes for equally scored decisions.
- Sorting by 2nd price very illuminating in an RTB setting
 - below random performance
 - not a "rational" market

Thank You

• github.com/andrescorrada/performance-curves