FLUID MECHANICS LAB 8

Power plants © Vol. 57/Photo Disc.

Wind turbines © Vol. 17/Photo Disc.

Boats © Vol. 5/Photo Disc.

Human body © Vol. 110/Photo Disc.

Piping and plumbing systems Photo by John M. Cimbala.

Aircraft and spacecraft © Vol. 1/Photo Disc.

Cars Photo by John M. Cimbala.

Industrial applications Courtesy UMDE Engineering, Contracting, and Trading. Used by permission.

FLUID MECHANICS

- Reynolds Number
- Bernoulli Equation
- Head Loss

• Goal: To explore the basic principles of the fluid mechanics of: 1) The difference between laminar flow and turbulent flow in circular pipe through Reynolds experiment, and measure the corresponding Reynolds number; 2) The fluid velocity measurement in the circular pipe through the Pitot tube; 3) The head loss measurement due to the contraction at the inlet and the expansion at the outlet.

OSBORNE REYNOLDS

- British engineer and physicist
- Fellow of the Royal Society (1877)
- Heat transfer between solids and fluids
- 1883

REYNOLDS NUMBER

REYNOLDS NUMBER

• Reynolds number

$$Re = \frac{\rho V_{avg} D}{\mu} = \frac{V_{avg} D}{\nu}$$

• Critical Reynolds number internal flow in a circular pipe

$$Re_{cr} = 2300(2320, 2000)$$

• Hydraulic diameter

$$D_h = \frac{4A_0}{p}$$

Square duct:

Rectangular duct:

$$D_h = \frac{4ab}{2(a+b)} = \frac{2ab}{a+b}$$

REYNOLDS NUMBER

 $Re \lesssim 2300$

laminar flow

 $2300 \lesssim \text{Re} \lesssim 4000$

transitional flow

Re ≥ 4000

turbulent flow

ENTRANCE REGION & VELOCITY PROFILE

$$\frac{L_{h,laminar}}{D} \cong 0.05 \text{Re}; \quad \frac{L_{h,tubulent}}{D} \cong 1.359 \text{Re}^{1/4}$$

$$u(r) = 2V_{\text{avg}} \left(1 - \frac{r^2}{R^2} \right)$$

BERNOULLI EQUATION

Conservation of mass, energy and momentum

The sum of the kinetic, potential, and flow energies of a fluid particle is constant along a streamline during steady flow when the compressibility and frictional effects are negligible.

Steady, incopressible flow:
$$\frac{P}{\rho} + \frac{V^2}{2} + gz = \text{constant}$$

BERNOULLI EQUATION

$$P + \rho \frac{V^2}{2} + \rho gz = \text{constant (along a streamline)}$$

- P: static pressure
- $\rho \frac{V^2}{2}$: dynamic pressure
- ρgz : hydrostatic pressure

$$P_{\text{stag}} = P + \rho \frac{V^2}{2}$$

$$V = \sqrt{\frac{2(P_{\text{stag}} - P)}{\rho}}$$

WATER DISCHARGE

Bernoulli equation

$$\frac{P_1}{\rho g} + \frac{V_1^2}{2g} + z_1 = \frac{P_2}{\rho g} + \frac{V_2^2}{2g} + z_2 \xrightarrow{0} z_1 = \frac{V_2^2}{2g}$$

Toricelli equation.

$$V_2 = \sqrt{2gz_1} = \sqrt{2(9.81 \text{ m/s}^2)(5 \text{ m})} = 9.9 \text{ m/s}$$

LIMITATIONS ON THE USE OF THE BERNOULLI EQUATION

- Steady flow
- Frictionless flow
- No shaft work
- Incompressible flow
- No heat transfer
- Flow along a streamline

PRESSURE DROP AND HEAD LOSS

Pressure loss

$$\Delta P = f \frac{L}{D} \frac{\rho V_{\text{avg}}^2}{2}$$

Darcy friction factor, circular pipe, laminar

$$f = \frac{64\mu}{\rho DV_{\text{avg}}} = \frac{64}{\text{Re}}$$

Head loss (equivalent fluid height)

$$h_L = \frac{\Delta P_L}{\rho g} = f \frac{L}{D} \frac{V_{\text{avg}}^2}{2g}$$

MOODY CHART

The friction factor in fully developed turbulent pipe flow depends on the Reynolds number and the relative roughness ${\cal E}/D$

Colebrook equation

$$\frac{1}{\sqrt{f}} = -2.0 \log(\frac{\frac{\varepsilon}{D}}{3.7} + \frac{2.51}{\text{Re}\sqrt{f}})$$

MINOR LOSSES

Minor loss

$$h_L = K_L \frac{V^2}{2g}$$

- Fittings, Valves, Bends...
- Total head loss

$$h_{L,\text{total}} = \sum_{i} f_i \frac{L_i}{D_i} \frac{V_i^2}{2g} + \sum_{j} K_{L,j} \frac{V_j^2}{2g}$$

MINOR LOSSES

MINOR LOSSES

Sudden expansion

$$K_L = \left(1 - \frac{A_{small}}{A_{large}}\right)^2 = \left(1 - \frac{d^2}{D^2}\right)^2$$

Loss coefficients K_L of various pipe components for turbulent flow (for use in the relation $h_L = K_L V^2/(2g)$, where V is the average velocity in the pipe that contains the component)*

Pipe Inlet

Reentrant: $K_L = 0.80$ ($t \ll D$ and $I \approx 0.1D$)

Sharp-edged: $K_I = 0.50$

Well-rounded (r/D > 0.2): $K_L = 0.03$ Slightly rounded (r/D = 0.1): $K_L = 0.12$ (see Fig. 8–36)

Pipe Exit

Reentrant: $K_I = \alpha$

Sharp-edged:
$$K_1 = \alpha$$

Rounded:
$$K_I = \alpha$$

Note: The kinetic energy correction factor is $\alpha = 2$ for fully developed laminar flow, and $\alpha \approx 1$ for fully developed turbulent flow.

Sudden Expansion and Contraction (based on the velocity in the smaller-diameter pipe)

Bends and Branches

90° smooth bend:

Flanged: $K_L = 0.3$

Threaded: $K_i = 0.9$

90° miter bend (without vanes): $K_t = 1.1$

90° miter bend (with vanes): $K_L = 0.2$

 45° threaded elbow: $K_{I} = 0.4$

180° return bend:

Flanged: $K_L = 0.2$

Threaded: $K_l = 1.5$

Tee (branch flow):

Flanged: $K_I = 1.0$

Threaded: $K_I = 2.0$

Tee (line flow):

Flanged: $K_I = 0.2$

Threaded: $K_L = 0.9$

Threaded union:

$$K_L = 0.08$$

Valves

Globe valve, fully open: $K_L = 10$

Angle valve, fully open: $K_L = 5$

Ball valve, fully open: $K_L = 0.05$

Swing check valve: $K_L = 2$

Gate valve, fully open: $K_L = 0.2$

 $\frac{1}{4}$ closed: $K_L = 0.3$

 $\frac{1}{2}$ closed: $K_L = 2.1$

 $\frac{3}{4}$ closed: $K_L = 17$

STUDIO

A 6-cm-diameter horizontal water pipe expands gradually to a 9-cm-diameter pipe. The walls of the expansion section are angled 30° from the horizontal. The average velocity and pressure of water before the expansion section are 7 m/s and 150 kPa, respectively. Determine the head loss in the expansion section and the pressure in the larger-diameter pipe.

Gradual Expansion and Contraction (based on the velocity in the smaller-diameter pipe)

Expansion:

$$K_L = 0.02 \text{ for } \theta = 20^{\circ}$$

 $K_L = 0.04 \text{ for } \theta = 45^{\circ}$
 $K_L = 0.07 \text{ for } \theta = 60^{\circ}$

Contraction (for $\theta = 20^{\circ}$):

$$K_L = 0.30$$
 for $d/D = 0.2$
 $K_L = 0.25$ for $d/D = 0.4$
 $K_L = 0.15$ for $d/D = 0.6$
 $K_L = 0.10$ for $d/D = 0.8$

