1-VisionCtrlDemos 基础功能性实验

本文件夹中的所有实验均为本讲中基础性的功能实验,用户可快速上手熟悉一些简单的功能性实验。

序号	实验名称	简介	文件地址	版本
1	轻量级无人机模型 视觉穿环实验	基于质点模型的穿环实验例程。	e1_CrossRingNoPX4\Readme.pdf	免费版
2	基础功能性实验	本文件夹中的所有实验均为本讲中基础性 的功能实验,用户可快速上手熟悉一些简 单的功能性实验。	e2_CameraKeyDemoOnWindows\Readme.pdf	免费版
3	共享内存方式吊舱 视觉控制键盘仿真 实验	通过平台接口上(↑)下(↓)键控制俯仰角 (pitch); 左(←)右(→)键控制偏航角(yaw);右 Ctrl 建 + 左(←)右(→) 控制横滚角(roll); 焦距操作 alt+上, alt+下进行吊舱视觉的控制。	e2_CameraKeyDemoOnWindows\BaseVersion\Readme.pdf	免费版
4	无人机跟踪小球实 验	通过平台接口进行图像的获取,然后通过 运行"ShootBall3.py"程序。在前方生成一个 红色球体,让飞机飞到靠左后方一段距离, 并开启视觉跟踪,飞到小球面前停止。	e3_ShootBall\Readme.pdf	免费版
5	无人机穿环实验	通过平台接口进行图像的获取,然后通过运行"CrossRing3.py"程序,飞机起飞后并开启视觉跟踪,按照照顺序穿过三个环,最后自动降落。	e4_CrossRing\Readme.pdf	免费版

6	基础功能性实验	本文件夹中的所有实验均为本讲中基础性	e5_ScreenCapAPI\Readme.pdf	免费版
		的功能实验,用户可快速上手熟悉一些简		
		单的功能性实验。		
7	屏幕截图接口、撞击	双击 ShootBall3SITL.bat ,后会打开一个	e5_ScreenCapAPI\1-ShootBall\Readme.pdf	免费版
	小球实验	CopterSim 飞机的仿真闭环,同时打开两		
		个 RflySim3D 窗口,通过平台接口进行图		
		像的获取,一个用于显示前置摄像头,一		
		个用于全局观察。运行"ShootBall3.py",开		
		始视觉处理,然后控制无人机撞向小球。		
8	无人机穿环实验	通过平台接口进行图像的获取,然后通过	e5_ScreenCapAPI\2-CrossRing\Readme.pdf	免费版
		运行"CrossRing3.py"程序,飞机起飞后并		
		开启视觉跟踪,按照照顺序穿过三个环,		
		最后自动降落。		
9	无人机跟随圆形案	该例程通过生成一块圆形案板并用按键控	e6_Circle-follow\Readme.pdf	免费版
	板移动实验	制圆形案板移动方向。通过使用平台接口		
		进行图像的获取,并通过视觉处理控制无		
		人机跟随圆形案板移动。		
10	双目视觉人脸识别	通过平台 Config.json 配置文件配置好双目	e7_ManDetect\Readme.pdf	免费版
	实验	视觉灰度相机传感器,然后通过平台接口		
		进行图像的获取,并在飞机起飞后开启人		
		脸识别算法,双目框选出人脸。		
11	轻量级无人机模型	基于质点模型的穿环实验例程。	e1_CrossRingNoPX4\Readme.pdf	免费版
	视觉穿环实验			
12	基础功能性实验	本文件夹中的所有实验均为本讲中基础性	e2_CameraKeyDemoOnWindows\Readme.pdf	免费版
		的功能实验,用户可快速上手熟悉一些简		
		单的功能性实验。		

13	无人机跟踪小球实 验	通过平台接口进行图像的获取,然后通过 运行"ShootBall3.py"程序。在前方生成一个 红色球体,让飞机飞到靠左后方一段距离,	e3_ShootBall\Readme.pdf	免费版
		并开启视觉跟踪,飞到小球面前停止。		
14	无人机穿环实验	通过平台接口进行图像的获取,然后通过运行"CrossRing3.py"程序,飞机起飞后并开启视觉跟踪,按照照顺序穿过三个环,最后自动降落。	e4_CrossRing\Readme.pdf	免费版
15	基础功能性实验	本文件夹中的所有实验均为本讲中基础性 的功能实验,用户可快速上手熟悉一些简 单的功能性实验。	e5_ScreenCapAPI\Readme.pdf	免费版
16	无人机跟随圆形案 板移动实验	该例程通过生成一块圆形案板并用按键控制圆形案板移动方向。通过使用平台接口进行图像的获取,并通过视觉处理控制无人机跟随圆形案板移动。	e6_Circle-follow\Readme.pdf	免费版
17	双目视觉人脸识别 实验	通过平台 Config.json 配置文件配置好双目 视觉灰度相机传感器,然后通过平台接口 进行图像的获取,并在飞机起飞后开启人 脸识别算法,双目框选出人脸。	e7_ManDetect\Readme.pdf	免费版

所有文件列表

序号	实验名称	简介	文件地址	版本
1	基础功能性实验	本文件夹中的所有实验均为本讲中基础 性的功能实验, 用户可快速上手熟悉一些 简单的功能性实验。	Readme.pdf	免费版
2	轻量级无人机模型 视觉穿环实验	基于质点模型的穿环实验例程。	e1_CrossRingNoPX4\Readme.pdf	免费版
3	基础功能性实验	本文件夹中的所有实验均为本讲中基础性的功能实验,用户可快速上手熟悉一些简单的功能性实验。	e2_CameraKeyDemoOnWindows\Readme.pdf	免费版
4	无人机跟踪小球实 验	通过平台接口进行图像的获取,然后通过 运行"ShootBall3.py"程序。在前方生成一 个红色球体,让飞机飞到靠左后方一段距 离,并开启视觉跟踪,飞到小球面前停止。	e3_ShootBall\Readme.pdf	免费版
5	无人机穿环实验	通过平台接口进行图像的获取,然后通过 运行"CrossRing3.py"程序,飞机起飞后并 开启视觉跟踪,按照照顺序穿过三个环, 最后自动降落。	e4_CrossRing\Readme.pdf	免费版
6	基础功能性实验	本文件夹中的所有实验均为本讲中基础 性的功能实验,用户可快速上手熟悉一些 简单的功能性实验。	e5_ScreenCapAPI\Readme.pdf	免费版
7	无人机跟随圆形案 板移动实验	该例程通过生成一块圆形案板并用按键 控制圆形案板移动方向。通过使用平台接	e6_Circle-follow\Readme.pdf	免费版

		口进行图像的获取,并通过视觉处理控制		
		无人机跟随圆形案板移动。		
8	双目视觉人脸识别	通过平台 Config.json 配置文件配置好双	e7_ManDetect\Readme.pdf	免费版
	实验	目视觉灰度相机传感器, 然后通过平台接		
		口进行图像的获取,并在飞机起飞后开启		
		人脸识别算法,双目框选出人脸。		
9	轻量级无人机模型	基于质点模型的穿环实验例程。	e1_CrossRingNoPX4\Readme.pdf	免费版
	视觉穿环实验			
10	基础功能性实验	本文件夹中的所有实验均为本讲中基础	e2_CameraKeyDemoOnWindows\Readme.pdf	免费版
		性的功能实验, 用户可快速上手熟悉一些		
		简单的功能性实验。		
11	共享内存方式吊舱	通过平台接口上(↑)下(↓)键控制俯仰角	e2_CameraKeyDemoOnWindows\BaseVersion\Readme.pdf	免费版
	视觉控制键盘仿真	(pitch); 左(←)右(→)键控制偏航角(yaw);		
	实验	右 Ctrl 建 + 左(←)右(→) 控制横滚角		
		(roll);焦距操作 alt+上, alt+下进行吊舱视		
		觉的控制。		
12	共享内存方式吊舱	通过平台接口上(↑)下(↓)键控制俯仰角	e2_CameraKeyDemoOnWindows\BaseVersion\Readme.pdf	免费版
	视觉控制键盘仿真	(pitch);左(←)右(→)键控制偏航角(yaw);		
	实验	右 Ctrl 建 + 左(←)右(→) 控制横滚角		
		(roll);焦距操作 alt+上, alt+下进行吊舱视		
		觉的控制。		
13	无人机跟踪小球实	通过平台接口进行图像的获取, 然后通过	e3_ShootBall\Readme.pdf	免费版
	验	运行"ShootBall3.py"程序。在前方生成一		
		个红色球体, 让飞机飞到靠左后方一段距		
		离,并开启视觉跟踪,飞到小球面前停止。		
14	无人机穿环实验	通过平台接口进行图像的获取, 然后通过	e4_CrossRing\Readme.pdf	免费版

		运行"CrossRing3.py"程序,飞机起飞后并 开启视觉跟踪,按照照顺序穿过三个环, 最后自动降落。		
15	三无人机分布式控 制实验	通过三个 python 运行文件,使得三架飞机分布进行穿环。	e4_CrossRing\ThreeUAVDemo\Readme.pdf	免费版
16	双无人机分布式控 制实验	通过两个 python 运行文件,使得两架飞机分布进行穿环。	e4_CrossRing\TwoUAVDemo\Readme.pdf	免费版
17	基础功能性实验	本文件夹中的所有实验均为本讲中基础性的功能实验,用户可快速上手熟悉一些简单的功能性实验。	e5_ScreenCapAPI\Readme.pdf	免费版
18	屏幕截图接口、撞击 小球实验	双击 ShootBall3SITL.bat ,后会打开一个CopterSim 飞机的仿真闭环,同时打开两个RflySim3D窗口,通过平台接口进行图像的获取,一个用于显示前置摄像头,一个用于全局观察。运行"ShootBall3.py",开始视觉处理,然后控制无人机撞向小球。	e5_ScreenCapAPI\1-ShootBall\Readme.pdf	免费版
19	无人机穿环实验	通过平台接口进行图像的获取,然后通过 运行"CrossRing3.py"程序,飞机起飞后并 开启视觉跟踪,按照照顺序穿过三个环, 最后自动降落。	e5_ScreenCapAPI\2-CrossRing\Readme.pdf	免费版
20	屏幕截图接口、撞击 小球实验	双击 ShootBall3SITL.bat ,后会打开一个CopterSim 飞机的仿真闭环,同时打开两个RflySim3D窗口,通过平台接口进行图像的获取,一个用于显示前置摄像头,一个用于全局观察。运行"ShootBall3.py",	e5_ScreenCapAPI\1-ShootBall\Readme.pdf	免费版

		开始视觉处理,然后控制无人机撞向小 球。		
21	无人机穿环实验	通过平台接口进行图像的获取,然后通过 运行"CrossRing3.py"程序,飞机起飞后并 开启视觉跟踪,按照照顺序穿过三个环, 最后自动降落。	e5_ScreenCapAPI\2-CrossRing\Readme.pdf	免费版
22	无人机跟随圆形案 板移动实验	该例程通过生成一块圆形案板并用按键控制圆形案板移动方向。通过使用平台接口进行图像的获取,并通过视觉处理控制无人机跟随圆形案板移动。	e6_Circle-follow\Readme.pdf	免费版
23	双目视觉人脸识别 实验	通过平台 Config.json 配置文件配置好双目视觉灰度相机传感器,然后通过平台接口进行图像的获取,并在飞机起飞后开启人脸识别算法,双目框选出人脸。	e7_ManDetect\Readme.pdf	免费版

备注

注 1: 各版本区别说明详见: http://rflysim.com/doc/RflySimVersions.xlsx。更高版本获取请见: https://rflysim.com/download.html, 或咨询service@rflysim.com。