Fondamenti di elettronica

Corso di laurea in Ingegneria Biomedica – Canale 1 - Meneghesso

Compitino 2 Simulazione n. 2

N.B. le domande nel 2 compitino saranno 20, in questa simulazione ne ho messe di più

- 1) Uno stadio elementare a source comune è caratterizzato da:
 - a) Guadagno di corrente circa unitario
 - b) Guadagno di corrente negativo
 - c) Guadagno di corrente positivo
- 2) Il guadagno di un amplificatore lineare:
 - a) Deve essere necessariamente maggiore di 1
 - b) Deve essere necessariamente positivo
 - c) Può avere qualsiasi valore
- 3) Un amplificatore differenziale ideale:
 - a) La tensione di uscita è direttamente proporzionale alla differenza dei segnali di ingresso
 - b) La tensione di uscita è inversamente proporzionale alla differenza dei segnali di ingresso
 - c) La tensione di uscita è proporzionale alla derivata del segnale di ingresso
- 4) Il guadagno di modo differenziale in un amplificatore differenziale è definito come il rapporto tra la tensione di uscita e la differenza degli ingressi, applicando agli ingressi:
 - a) Un segnale di solo modo comune
 - b) Un segnale di solo modo differenziale
 - c) Un segnale di modo differenziale sovrapposto a un segnale di modo comune di valore arbitrario
- 5) Il guadagno di tensione di uno stadio elementare a source comune con resistenza al source è (in modulo):
 - a) Maggiore del guadagno di tensione di uno stadio a source comune senza resistenza al source.
 - b) Minore del guadagno di tensione di uno stadio a source comune senza resistenza al source.
 - c) Uguale al guadagno di tensione di uno stadio a source comune senza resistenza al source.
- 6) Uno stadio elementare a drain comune è caratterizzato da:
 - a) Guadagno di tensione circa unitario ma inferiore a 1.
 - b) Guadagno di tensione circa unitario ma superiore a 1.
 - c) Guadagno di tensione elevato
- 7) In uno stadio elementare a gate comune:
 - a) La resistenza di ingresso è elevata
 - b) La resistenza di ingresso è bassa
 - c) La resistenza di ingresso è elevata se la resistenza di carico è elevata
- 8) Uno stadio elementare a drain comune:
 - a) La resistenza di uscita è elevata
 - b) La resistenza di uscita è bassa
 - c) La resistenza di uscita è elevata se la resistenza di carico è elevata
- 9) Per realizzare un amplificatore di tensione a due stadi, quali delle seguenti alternative è la migliore
 - a) Primo stadio a source comune, secondo stadio a gate comune
 - b) Primo stadio a source comune, secondo stadio a drain comune
 - c) Primo stadio a gate comune, secondo stadio a drain comune
- 10) Mettendo in cascata amplificatori di corrente di guadagno a vuoto A₁, A₂ e A₃, a causa dell'effetto di carico, il guadagno di corrente complessivo A dei tre stadi è tale che:
 - a) $|A| < |A_1A_2A_3|$
 - b) $|A| = |A_1A_2A_3|$
 - c) $|A| > |A_1A_2A_3|$
- 11) Se mettiamo in cascata due amplificatori di corrente è richiesto che:
 - a) La resistenza di uscita del primo stadio sia molto maggiore della resistenza di ingresso del secondo
 - b) La resistenza di uscita del primo stadio sia molto minore della resistenza di ingresso del secondo
 - c) La resistenza di uscita del secondo stadio sia molto minore della resistenza di ingresso del primo

- 12) Il guadagno di modo comune in un amplificatore differenziale è definito come:
 - a) Il rapporto tra la tensione di uscita e la differenza degli ingressi quando agli ingressi è applicato un segnale di solo modo comune
 - b) Il rapporto tra la tensione di uscita e la differenza degli ingressi quando agli ingressi è applicato un segnale di solo modo differenziale
 - c) Il rapporto tra la tensione di uscita e il valore medio degli ingressi
- 13) Dati due segnali $v_1 = 4V$ e $v_2 = 1V$, la componente di modo comune è:
 - a) 1.5V
 - b) 3V
 - c) 2.5V
- 14) Dati due segnali $v_1 = -3V$ e $v_2 = 4V$, la componente di modo comune è:
 - a) 3.5V
 - b) 1.0V
 - c) 0.5V
- 15) In un AO reale il principio del cortocircuito virtuale si verifica con buona probabilità:
 - a) Se l'AO ha guadagno molto elevato e lavora con retroazione negativa
 - b) Se l'AO ha guadagno molto elevato e lavora con retroazione positiva
 - c) Se l'AO ha guadagno molto elevato e lavora in saturazione
- 16) L'uscita di un operazionale ideale e schematizzabile mediante:
 - a) Un generatore di tensione costante
 - b) Un generatore di tensione pilotato dalla differenza di potenziale tra gli ingressi
 - c) Un generatore di corrente pilotato dalla differenza di potenziale tra gli ingressi
- 17) Dato il circuito in figura realizzato con un operazionale ideale e una resistenza di $2k\Omega$. Se I_S = 4mA, la tensione di uscita vale:

b) -8

c) -2V

18) Dato il circuito in figura realizzato con un operazionale ideale e due resistenze

 $R_1 = 12 \text{ k}\Omega \text{ e } R_2 = 36 \text{ k}\Omega$. Il guadagno è:

- a) -0.3333
- b) 12.0
- c) -3.0
- 19) Dato il circuito in figura realizzato con un operazionale ideale e resistenze R₁ = $1k\Omega$ e $R_2 = 2k\Omega$. Se $v_1 = 2V$ e $v_2 = -2V$, l'uscita v_0 è:

- a) 0V
- b) 4V
- c) -4V
- 20) Dato il circuito in figura realizzato con un operazionale reale con IBIAS = 200nA,

 $R_1 = 1k\Omega$, $R_2 = 10k\Omega$. Se $v_I = 0$, il modulo della tensione di uscita vale:

- b) 0.2mV
- c) 0V

21) Dato il circuito in figura realizzato con un operazionale reale con $V_{OS} = 0.01V$, $R_1 =$ $1k\Omega$, $R_2 = 10k\Omega$. Se $v_1 = 0V$, $v_2 = 0.2V$ la tensione di uscita vale:

- b) 2.11V
- c) 2.0V

- 22) Dato il circuito in figura realizzato con un operazionale ideale in tutto tranne che per la tensione di offset che è pari a 10 mV. Se v_I = 10 mV, quanto vale v_O ?
 - a) 0 mV
 - b) 10 mV
 - c) 20 mV

-	o il circuito in figura realizzato con un operazionale ideale e R = $2k\Omega$. So	$e v_A = 5 V$, $v_A \longrightarrow$
	orrente i _o vale:	5MM-1-3
,	+ 2.5mA	\downarrow R $i_o \downarrow \geqslant_{R_L}$
•	- 2.5mA	
•	Dipende dal valore di RL	- 10kO
-	o il circuito in figura realizzato con un operazionale ideale e $R_1 = 1 k \Omega$, $R_2 = 5 V$, e CMRR = 100, quanto vale V_O ?	$= 10KS2, R_2$
	+ 55.55 V	R_1 $\lceil \checkmark \lor \lor \lor \rceil$
•		└WV─ - - <u></u> -
-	+ 55,05 V	$v_{I} \rightarrow v_{O}$
c)	+ 55.00 V	
	unzione di trasferimento del filtro mostrato in figura presenta:	Г ∕‱́\
-	Un solo polo reale negativo	$\vdash\vdash\vdash$
	Uno zero nell'origine e un solo polo reale negativo	$v_I \longrightarrow V_I$
c)	Uno zero nell'origine e due poli reali negativi	**************************************
26) Ch	e funzione svolge il circuito in figura?	., г///
a)	Filtro passa-basso	$v_l + v_o$
b)	Filtro passa-banda	+ 10
c)	Filtro passa-alto	~
27) La	funzione di trasferimento del filtro mostrato in figura presenta:	Γ √ ,∕⁄,√J
a)	Un solo polo reale negativo	., HH
b)	Uno zero nell'origine e un solo polo reale negativo	$v_I + v_O$
c)	Uno zero nell'origine e due poli	₽ I±
28) Da	ta la funzione di trasferimento il cui diagramma di bode del modulo	<u> </u>
èn	nostrato in figura. Quanti poli ha in totale:	60dB
a)	2	40dB
b)	3	20dB
c)	Nessuno, ha solo zeri	OdB decadi
29) Da	ta la funzione di trasferimento il cui diagramma di bode del modulo	<u> </u>
è n	nostrato in figura. Essa ha:	60dB
a)	Un polo e uno zero, nessuno dei quali nell'origine	40dB
b)	Un polo nell'origine e uno zero reale negativo	20dB
c)	Uno zero nell'origine e un polo reale negativo	0dB decadi
	data la funzione di trasferimento il cui diagramma di bode della	180°
fas	e è rappresentato in figura. Essa ha:	135°
a)	·	90°
b)	Un polo a 10 ³ rad/s	45°
c)	Un polo o uno zero a 10 ³ rad/s	0° 10 10 ² 10 ³ 10 ⁴ 10 ⁵ 10 ⁶

- a) Filtro passa-basso
- b) Filtro passa-banda
- c) Filtro passa-alto
- 32) Data la funzione di trasferimento il cui diagramma di bode del modulo è mostrato in figura. Essa ha:

- b) Due poli nessuno dei quali nell'origine
- c) Un polo e uno zero

