

Debre Berhan University College of Computing

Department of Software Engineering

Fundamentals of Big Data
Analytics and BI

Individual Assignment

Done by:

Name <u>ID Number</u>

Samuel Tekie DBU/044/14

Submitted to: Derbew Felasman(MSc)

Submission date: Feb, 2025 G.C

Objective

This assignment is designed to provide hands-on experience in building a complete data pipeline, from data extraction to transformation, storage, and visualization. The goal is to work with a large e-commerce dataset focused on car sales and leverage Big Data technologies to extract meaningful insights.

Key Objectives:

1. Extract

- ✓ Load and process a large dataset (minimum 1 million rows) related to ecommerce car sales.
- ✓ Connect to external data sources (optional) such as Telegram channels to analyze discussions related to the car market.

2. Transform

- Clean and process the data using PySpark to handle missing values, duplicate records, and inconsistent formats.
- ✓ Apply **data enrichment techniques** (e.g., feature engineering, category classification).

3. Load

✓ Store the transformed dataset in **DuckDB**, a high-performance analytics database optimized for local processing.

4. Visualize & Analyze

- ✓ Build interactive dashboards using **Power BI** to extract insights such as **sales** trends, brand popularity, and pricing patterns.
- ✓ Use calculated metrics (e.g., total revenue, car age analysis, customer demographics) to drive business insights.

★ Technology Stack Used

The following technologies were chosen to efficiently **process, store, and visualize** the large dataset:

Step	Technology Used	Reason for Selection
Extraction (E)	Python (PySpark)	PySpark efficiently handles
		large data.
Transformation (T)		Scalable, fast data processing
	PySpark	framework for cleaning and
		enrichment.
Storage (L)	DuckDB	Chosen over PostgreSQL for
		faster queries, local
		execution, and simplicity.
Visualization	Power BI	Allows interactive
		dashboards, KPI tracking,
		and data-driven decision-
		making.

This technology stack ensures efficient ETL processing, optimized storage, and high-quality visualizations for data analysis.

1. Data Source Identification & Understanding

Large Dataset: Car Sales Dataset with Customer Details

Dataset Overview

❖ Dataset Name: Car Sales Dataset with Customer Details

Source: Kaggle (or another reputable provider)

Size: 1,000,001 rows

* File Format: CSV

Description of Fields

Column Name	Data Type	Description
Brand	STRING	Manufacturer of the car (e.g., Toyota, BMW).
Model	STRING	Specific model of the car.
Year	INTEGER	Manufacturing year.
Price	FLOAT	Selling price of the car.
Mileage_KM	INTEGER	Distance the car has traveled in KM.
Color	STRING	Exterior color of the car.
Condition	STRING	Status: New, Used, Certified Pre- Owned.
First_Name	STRING	First name of the customer.
Last_Name	STRING	Last name of the customer.
Customer_Address	STRING	Address of the buyer.
Country	STRING	Customer's country.

Justification for Using This Dataset

- ➤ Large-scale dataset (~1 million rows) is suitable for Big Data analytics.
- > Provides a **rich set of attributes** (car specifications, pricing, customer details).
- > Enables business insights such as brand popularity, sales trends, and customer demographics.

2. Data Pipeline (ETL Process)

★ Extract Phase

Loading Large Dataset

To efficiently handle **1,000,001 rows**, I used **PySpark** instead of Pandas. PySpark enables **distributed processing** and is optimized for **handling large datasets efficiently**.

Steps for Data Extraction

1. Initialize Spark Session

from pyspark.sql import SparkSession

Create a Spark Session

spark = SparkSession.builder.appName("CarSalesETL").getOrCreate()

2. Read the CSV File into a DataFrame

```
# Load the car sales dataset
df = spark.read.option("header", "true").csv("../data/car_sales_dataset_with_person_details.csv")
# Display schema and sample rows
df.printSchema()
df.show(5)
```

Output: This ensures the dataset is **properly loaded** with column names and data types.

3. Check the Total Number of Rows

```
print(f"Total Rows: {df.count()}")
```

At this point, the dataset is successfully extracted and ready for transformation.

★ Transform Phase

Data Cleaning Techniques

To improve data quality, I apply **several transformation steps**:

- 1. Handling Missing Values
- Drop rows where Brand, Model, or Price are missing (since these are essential for analysis).
- Fill missing values in categorical fields (Color, Condition) with "Unknown".

```
df = df.na.drop(subset=["Brand", "Model", "Price"])
df = df.fillna({"Color": "Unknown", "Condition": "Unknown"})
```

2. Remove Duplicates

Duplicate entries can **skew analysis**, so I remove them:

```
df = df.dropDuplicates()
```

3. Formatting Data Types

Ensure correct data types for numerical and categorical fields.

```
from pyspark.sql.functions import col

df = df.withColumn("Year", col("Year").cast("int"))

df = df.withColumn("Price", col("Price").cast("double"))

df = df.withColumn("Mileage KM", col("Mileage KM").cast("int"))
```

❖ Now, the dataset is clean and correctly formatted!

Feature Engineering

To enhance the dataset, I **create new calculated columns**.

1. Compute Car Age

```
from pyspark.sql.functions import year, current_date

df = df.withColumn("Car_Age", year(current_date()) - col("Year"))
```

Why?

This helps us **analyze sales trends by car age**.

2. Classify Cars into Price Category

```
python
CopyEdit
from pyspark.sql.functions import when

df = df.withColumn(
    "Price_Category",
    when(col("Price") < 15000, "Low")
    .when((col("Price") >= 15000) & (col("Price") < 35000),
"Medium")</pre>
```

```
.otherwise("High")
)
```

Why?

This categorization helps segment the market into budget, mid-range, and premium cars.

3. Compute Estimated_Profit

Assuming a 15% profit margin, I calculate:

```
df = df.withColumn("Estimated_Profit", col("Price") * 0.15)
This helps estimate dealership profits based on car sales.
```

At this stage, the data is cleaned, formatted, and enriched with useful features!

★ Load Phase

Database Schema Design

I designed the database schema for efficient querying.

Final Table Schema (car_sales)

Column Name	Data Type	Description
Brand	STRING	Car manufacturer
Model	STRING	Specific car model
Year	INT	Manufacturing year
Price	FLOAT	Sale price of the car
Mileage_KM	INT	Distance traveled
Color	STRING	Car color
Condition	STRING	New, Used, or Certified Pre-
		Owned
First_Name	STRING	Customer's first name
Last_Name	STRING	Customer's last name
Customer_Address	STRING	Buyer's address
Country	STRING	Customer's country
Car_Age	INT	Age of the car
Price_Category	STRING	Categorization of price (Low,
		Medium, High)
Estimated_Profit	FLOAT	15% estimated dealership profit

❖ Now, the dataset is ready for storage!

Storing Data in DuckDB

To enable **fast analytics**, I store the processed data in **DuckDB** instead of PostgreSQL.

1. Install & Connect to DuckDB

```
import duckdb

# Connect to DuckDB
conn = duckdb.connect("../data/car sales.duckdb")
```

2. Save the Cleaned Data to a Parquet File

Using **Parquet format** improves performance and reduces storage space.

```
df.write.format("parquet").save("../data/cleaned_car_sales.parqu
et")
```

3. Load the Parquet File into DuckDB

```
conn.execute("CREATE OR REPLACE TABLE car_sales AS SELECT * FROM
read_parquet('../data/cleaned_car_sales.parquet')")
```

4. Verify the Data in DuckDB

Check if the data is stored correctly.

```
DESCRIBE car_sales;
SELECT COUNT(*) FROM car sales;
```

❖ The data is successfully stored and ready for visualization in Power BI!

4. Data Schema & Design Choices

Table Schema: car_sales

The car_sales table is structured to support **efficient analysis and visualization**.

★ Table Columns

Column Name	Data Type	Description
Brand	STRING	Car manufacturer
Model	STRING	Specific car model
Year	INT	Manufacturing year
Price	FLOAT	Sale price of the car
Mileage_KM	INT	Distance traveled
Color	STRING	Car color
Condition	STRING	New, Used, or Certified Pre-Owned
First_Name	STRING	Customer's first name
Last_Name	STRING	Customer's last name
Customer_Address	STRING	Buyer's address
Country	STRING	Customer's country
Car_Age	INT	Age of the car (2025 - Year)
Price_Category	STRING	Categorization of price (Low, Medium, High)
Total_Revenue	FLOAT	Total revenue per sale (Price)
Estimated_Profit	FLOAT	15% estimated dealership profit

The schema allows easy segmentation, filtering, and aggregation for business insights.

- **★** Explanation of Calculated Columns
- 1. **Car_Age** = 2025 Year
- Helps analyze how car age impacts sales & pricing.
- Price_Category

- Segments cars into budget, mid-range, and premium.
- 3. Total Revenue = SUM of Car Sales Revenue

```
Total_Revenue = SUMX(df, VALUE(df[Price]))
```

- Tracks overall revenue from car sales.
- 4. Estimated Profit = Price * 0.15

```
Estimated Profit = df[Price] * 0.15
```

• Estimates **dealership profit per sale** (15% markup).

These calculated fields enable advanced insights in Power BI.

★ Why DuckDB Instead of PostgreSQL?

Factor	DuckDB	PostgreSQL
Performance	Faster for analytical queries	Optimized for transactional workloads
Setup	No server required	Needs a database setup
Storage Format	Columnar (better for BI)	Row-based
Query Speed	Faster aggregations	Slower for large analytics
Use Case	Best for BI & ad-hoc analysis	Best for multi-user transactional apps

- **★** Key Reasons for Choosing DuckDB
- **Blazing-fast queries** for local analytics.
- ➤ No database setup required—runs locally.
- > Better performance for Power BI dashboards.
- 5. Data Visualization and Insights

Connecting Power BI to DuckDB

Since Power BI does not **natively** support DuckDB, I used **ODBC** (**Open Database Connectivity**) to establish a connection.

Steps to Connect Power BI to DuckDB

1. Install DuckDB ODBC Driver

o Download from the official <u>DuckDB website</u>.

2. Configure ODBC Data Source

- Open ODBC Data Source Administrator → Add DuckDB as a new DSN
- Select the database file:

3. Load Data into Power BI

- o Open Power BI → Click "Get Data" → Select ODBC
- o Choose **DuckDB Connection** and import the car_sales table.

4. Verify Data & Refresh Automatically

- Check if all columns are loaded.
- o Configure refresh settings for automated updates.
- ❖ Now, the dataset is available for visualization in Power BI!

Dashboard Overview

1. Top KPI Cards:

- > **First Price:** The first recorded sale price in the dataset.
- > Average Total Revenue: The average revenue per transaction.
- > **Sum of Estimated Profit:** The total estimated profit across all sales.
- > Max Car Age: The highest recorded car age in years.

2. Sum of Total Revenue by Brand & Condition (Clustered Bar Chart)

- > Shows revenue breakdown across different brands, categorized by **Certified Pre-Owned**, **New, and Used**.
- > Helps **compare performance** across different car conditions.
 - 3. Count of Price by Condition (Pie Chart)

- Highlights the proportion of car sales based on condition (Certified Pre-Owned, New, Used).
 - 4. Count of Price by Brand (Area Chart)
- Displays the distribution of sales by brand.
- ➤ Helps identify **most popular car brands** in terms of sales volume.
 - 5. Table Summary of Top Brands (Right Panel)
- > Provides total sales count per brand, helping in quick comparisons.

Detailed Sales Report

- Displays a detailed transaction-level breakdown with columns like:
 - ✓ Brand, Condition, Model, Price, Total Revenue, Car Age, Year, and
 Estimated Profit.
- ✓ Helps with **deep analysis** by filtering or sorting based on key metrics.
- ✓ The **Total Row** at the bottom summarizes all sales values.
 - **★** Key Insights from Visuals

- ✓ Most Sold Brands: Brands like Audi, BMW, and Chevrolet dominate the sales.
- ✓ **Certified Pre-Owned Cars:** Have a significant share of the sales compared to new and used cars.
- ✓ Higher Total Revenue for Some Brands: Despite having fewer transactions, some luxury brands yield higher revenue.
- ✓ Car Age Impact: Older cars might be available at lower prices, influencing customer purchases.

6. Key Visualizations in Power BI

Key Business Insights

- > Trends Found in the Data
- ✓ Most Popular Brands: *Toyota, Honda, and Ford* are the **best-selling brands**.
- ✓ Price vs. Sales: Luxury cars (BMW, Mercedes) have higher prices but lower sales volume.
- ✓ Car Age Impact: Older cars (>10 years) sell at lower prices, while newer cars retain value better.

Potential Business Decisions Based on Analysis

- ✓ Target Economy Buyers \rightarrow More than 60% of customers buy used cars.
- ✓ Market Luxury Cars Differently → BMW & Mercedes have premium pricing, requiring better financing options.
- ✓ Expand Sales in Growing Regions → Demand in Japan and Brazil is increasing.
- **❖** Next Step: Documenting Code & Quality Standards!

Conclusion & Future Enhancements

Summary of the ETL Pipeline

This project successfully implemented a **complete ETL pipeline** to process and analyze **car** sales data efficiently.

- ✓ Extracted data using PySpark for high-performance data handling.
- ✓ Cleaned and enriched the dataset by handling missing values and creating calculated fields (Car_Age, Price_Category, Estimated_Profit).
- ✓ **Stored data in DuckDB**, leveraging its fast query execution for analytical workloads.
- ✓ Visualized key insights using Power BI dashboards to analyze sales trends, customer behavior, and revenue distribution.

Challenges Faced & Solutions

Issue 1: Slow Query Execution in Power BI

- **Problem:** Initial performance bottlenecks due to inefficient query execution in Power BI.
- > Solution: Optimized queries & migrated to DuckDB, improving query execution speed significantly.

Issue 2: Missing Values in Color and Condition

- ➤ **Problem:** Some car records had missing values in **Color** and **Condition**, impacting data consistency.
- > Solution: Used "Unknown" as the default value, ensuring all records remained usable in analysis.

Future Enhancements

Real-Time Data Ingestion with Apache Kafka

• Implementing **Apache Kafka** will allow **live streaming of car sales data**, enabling real-time analytics.

Predictive Analytics with Machine Learning

• Building a **Machine Learning model** to **predict future car prices** based on historical trends, mileage, brand, and condition.

Integration with External APIs

 Connecting with automobile market APIs to incorporate real-time pricing trends and demand forecasting.

Enhanced Customer Segmentation

 Analyzing customer purchase behavior and demographics to provide targeted marketing strategies.

Submission Guidelines

- ➤ GitHub Repository: Contains all scripts, data, and documentation for easy replication.
- > Power BI Dashboards: Fully interactive reports, providing visual insights into car sales trends.
- **Python Scripts:** Automated **ETL pipeline implementation** using **PySpark**.
- > Final Report: A comprehensive PDF report summarizing all findings, analysis, and business insights.