MAC338 - Análise de Algoritmos

Segundo semestre de 2021

Lista 1

Todos os exercícios são importantes para o aprendizado da disciplina

Vocês devem entregar os exercícios 2c, 2e e 5 até 3 de setembro

- 1. Lembre-se que lg n denota o logaritmo na base 2 de n. Usando a definição de notação O, prove que
 - (a) 3^n não é $O(2^n)$
 - (b) $\log_{10} n \notin O(\lg n)$
 - (c) $\lg n \in O(\log_{10} n)$
- 2. Usando a definição de notação O, prove que
 - (a) $n^2 + 10n + 20 = O(n^2)$
 - (b) $\lceil n/3 \rceil = O(n)$
 - (c) $\lg n = O(\log_{10} n)$
 - (d) $n = O(2^n)$
 - (e) n/1000 não é O(1)
 - (f) $n^2/2$ não é O(n)
- 3. Prove ou dê um contra-exemplo para as afirmações abaixo:
 - (a) $\lg \sqrt{n} = O(\lg n)$
 - (b) Se f(n) = O(g(n)) e g(n) = O(h(n)) então f(n) = O(h(n)).
 - (c) Se f(n) = O(g(n)) e $g(n) = \Theta(h(n))$ então $f(n) = \Theta(h(n))$.
 - (d) Suponha que $\lg(g(n)) > 0$ e que $f(n) \ge 1$ para todo n suficientemente grande. Neste caso, se f(n) = O(g(n)) então $\lg(f(n)) = O(\lg(g(n)))$.
 - (e) Se $f(n) = \mathcal{O}(g(n))$ então $2^{f(n)} = \mathcal{O}(2^{g(n)})$.
- 4. Prove que
 - (a) $\sum_{i=1}^{n} i^k \in \Theta(n^{k+1})$

(b) $\sum_{i=1}^{n} \frac{i}{2^{i}} \leq 2$.

5. Considere o algoritmo abaixo, que recebe um vetor v com n elementos e um elemento x e devolve um índice i do vetor tal que v[i] = x ou o valor NIL se o elemento não ocorrer no vetor.

Algoritmo BuscaLinear(v, n, x)

- 1. $j \leftarrow 1$
- 2. enquanto $j \leq n$ e $v[j] \neq x$
- 3. $j \leftarrow j + 1$
- 4. se $j \leq n$
- 5. então devolva j
- 6. senão devolva NIL
- a. Quantos elementos do vetor serão analisados em média, assumindo que o elemento que está sendo procurado aparece no vetor com igual probabilidade em cada posição?
- b. Qual o pior caso?
- c. Qual o pior caso e caso médio usando a notação Θ ?