Node Embeddings

Content

- 1) Node embeddings
 - Map nodes to low-dimensional embeddings.
- 2) Graph neural networks
 - Deep learning architectures for graphstructured data
- 3) Applications

Using talk "Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018"

Embedding Nodes

Intuition: Find embedding of nodes to d-dimensions so that "similar" nodes in the graph have embeddings that are close together.

Setup

- Assume we have a graph G:
 - V is the vertex set.
 - A is the adjacency matrix (assume binary).
 - No node features or extra information is used!

Embedding Nodes

 Goal is to encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the original network

original network

embedding space

Embedding Nodes

Learning Node Embeddings

- **1. Define an encoder** (i.e., a mapping from nodes to embeddings)
- **2. Define a node similarity function** (i.e., a measure of similarity in the original network).
- 3. Optimize the parameters of the encoder so that:

similarity
$$(u, v) \approx \mathbf{z}_v^{\top} \mathbf{z}_u$$

Two Key Components

Encoder maps each node to a low-dimensional vector.

$$\operatorname{ENC}(v) = \mathbf{z}_v$$
 embedding node in the input graph

 Similarity function specifies how relationships in vector space map to relationships in the original network.

 $\operatorname{similarity}(u,v) pprox \mathbf{Z}_v^{ op} \mathbf{Z}_u$ Similarity of u and v dot product between node in the original embeddings

 Simplest encoding approach: encoder is just an embedding-lookup

$$\text{ENC}(v) = \mathbf{Z}\mathbf{v}$$

$$\mathbf{Z} \in \mathbb{R}^{d imes |\mathcal{V}|}$$
 matrix, each column is node embedding [what we learn!] $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ indicator vector, all zeroes except a one in column indicating

node v

 Simplest encoding approach: encoder is just an embedding-lookup

Simplest encoding approach: encoder is just an embedding-lookup.

i.e., each node is assigned a unique embedding vector.

E.g., node2vec, DeepWalk, LINE

- Simplest encoding approach: encoder is just an embedding-lookup.
- We will focus on shallow encoding in this section...
- After that we will discuss more encoders based on deep neural networks.

How to Define Node Similarity?

- Key distinction between "shallow" methods is how they define node similarity.
- E.g., should two nodes have similar embeddings if they....
 - are connected?
 - share neighbors?
 - have similar "structural roles"?
 - **—** ...?

Outline of This Section

- 1. Adjacency-based similarity
- 2. Multi-hop similarity
- 3. Random walk approaches

High-level structure and material from:

• <u>Hamilton et al. 2017</u>. Representation Learning on Graphs: Methods and Applications. *IEEE Data Engineering Bulletin on Graph Systems*.

Adjacency-based Similarity

Material based on:

• Ahmed et al. 2013. <u>Distributed Natural Large Scale Graph</u> Factorization. *WWW.*

Adjacency-based Similarity

- Similarity function is just the edge weight between u and v in the original network.
- Intuition: Dot products between node embeddings approximate edge existence.

Adjacency-based Similarity

$$\mathcal{L} = \sum_{(u,v)\in V\times V} \|\mathbf{z}_u^{\top}\mathbf{z}_v - \mathbf{A}_{u,v}\|^2$$

- Find embedding matrix $\mathbf{Z} \in \mathbb{R}^{d \times |V|}$ that minimizes the loss \mathcal{L}
 - Option 1: Use stochastic gradient descent (SGD) as a general optimization method.
 - Highly scalable, general approach
 - Option 2: Solve matrix decomposition solvers (e.g., SVD or QR decomposition routines).
 - Only works in limited cases.

Adjacency-based Similarity

$$\mathcal{L} = \sum_{(u,v)\in V\times V} \|\mathbf{z}_u^{\top}\mathbf{z}_v - \mathbf{A}_{u,v}\|^2$$

Drawbacks:

- $-O(|V|^2)$ runtime. (Must consider all node pairs.)
 - Can make O([E]) by only summing over non-zero edges and using regularization (e.g., Ahmed et al., 2013)
- -O(|V|) parameters! (One learned vector per node).
- Only considers direct, local connections.

e.g., the blue node is obviously more similar to green compared to red node, despite none having direct connections.

Material based on:

- Cao et al. 2015. <u>GraRep: Learning Graph Representations with Global Structural Information</u>. *CIKM*.
- Ou et al. 2016. <u>Asymmetric Transitivity Preserving Graph Embedding</u>. *KDD*.

- **Idea:** Consider k-hop node neighbors.
 - E.g., two or three-hop neighbors.

- Red: Target node
- Green: 1-hop neighbors
 - A (i.e., adjacency matrix)
- Blue: 2-hop neighbors
 - A^2
- Purple: 3-hop neighbors
 - A³

• Basic idea:
$$\mathcal{L} = \sum_{(u,v) \in V imes V} \|\mathbf{z}_u^ op \mathbf{z}_v - \mathbf{A}_{u,v}^k\|^2$$

- Train embeddings to predict k-hop neighbors.
- In practice (GraRep from Cao et al, 2015):
 - Use log-transformed, probabilistic adjacency matrix:

$$\tilde{\mathbf{A}}_{i,j}^{k} = \max \left(\log \left(\frac{(\mathbf{A}_{i,j}/d_i)}{\sum_{l \in V} (\mathbf{A}_{l,j}/d_l)^k} \right)^k - \alpha, 0 \right)$$
node degree constant shift

Train multiple different hop lengths and concatenate output.

 Another option: Measure overlap between node neighborhoods.

- Example overlap functions:
 - Jaccard similarity
 - Adamic-Adar score

$$\mathcal{L} = \sum_{\substack{(u,v) \in V \times V \\ \text{embedding} \\ \text{similarity}}} |\mathbf{z}_{v} - \mathbf{S}_{u,v}||^{2}$$
 $\sum_{\substack{(u,v) \in V \times V \\ \text{embedding} \\ \text{similarity}}} |\mathbf{z}_{v} - \mathbf{S}_{u,v}||^{2}$

- $S_{u,v}$ is the neighborhood overlap between u and v (e.g., Jaccard overlap or Adamic-Adar score).
- This technique is known as <u>HOPE (Yan et al.,</u>
 2016).

Summary so far

Basic idea so far:

- 1) Define pairwise node similarities.
- 2) Optimize low-dimensional embeddings to approximate these pairwise similarities.

Issues:

- **Expensive:** Generally $O(|V|^2)$, since we need to iterate over all pairs of nodes.
- Brittle: Must hand-design deterministic node similarity measures.
- Massive parameter space: O(|V|) parameters

Random Walk Approaches

Material based on:

- Perozzi et al. 2014. <u>DeepWalk: Online Learning of Social Representations</u>. *KDD*.
- Grover et al. 2016. <u>node2vec: Scalable Feature Learning for Networks</u>. *KDD*.

Random-walk Embeddings

$$\mathbf{z}_u^{ op}\mathbf{z}_v pprox$$
 probability that u and v co-occur on a random walk over the network

Random-walk Embeddings

 Estimate probability of visiting node von a random walk starting from node u using some random walk strategy R.

2. Optimize embeddings to encode these random walk statistics.

Why Random Walks?

- Expressivity: Flexible stochastic definition of node similarity that incorporates both local and higher-order neighborhood information.
- 2. Efficiency: Do not need to consider all node pairs when training; only need to consider pairs that co-occur on random walks.

- 1. Run short random walks starting from each node on the graph using some strategy *R*.
- 2. For each node u collect $N_R(u)$, the multiset* of nodes visited on random walks starting from u.
- 3. Optimize embeddings to according to:

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

* $N_R(u)$ can have repeat elements since nodes can be visited multiple times on random walks.

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

- Intuition: Optimize embeddings to maximize likelihood of random walk co-occurrences.
- Parameterize $P(v|\mathbf{z}_n)$ using softmax:

$$P(v|\mathbf{z}_u) = \frac{\exp(\mathbf{z}_u^{\top} \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^{\top} \mathbf{z}_n)}$$

Putting things together:

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log \left(\frac{\exp(\mathbf{z}_u^\top \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^\top \mathbf{z}_n)} \right)$$
sum over all sum over nodes v predicted probability nodes u seen on random of u and v cowalks starting occurring on random from u walk

Optimizing random walk embeddings =

Finding embeddings \mathbf{z}_n that minimize L

But doing this naively is too expensive!!

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log \left(\frac{\exp(\mathbf{z}_u^\top \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^\top \mathbf{z}_n)} \right)$$

Nested sum over nodes gives $O(|V|^2)$ complexity!!

But doing this naively is too expensive!!

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log \left(\frac{\exp(\mathbf{z}_u^\top \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^\top \mathbf{z}_n)} \right)$$

The normalization term from the softmax is the culprit... can we approximate it?

Negative Sampling

Solution: Negative sampling

$$\log \left(\frac{\exp(\mathbf{z}_{u}^{\top} \mathbf{z}_{v})}{\sum_{n \in V} \exp(\mathbf{z}_{u}^{\top} \mathbf{z}_{n})} \right)$$

$$\approx \log(\sigma(\mathbf{z}_{u}^{\top} \mathbf{z}_{v})) - \sum_{i=1}^{k} \log(\sigma(\mathbf{z}_{u}^{\top} \mathbf{z}_{n_{i}})), n_{i} \sim P_{V}$$
sigmoid function

random distribution

over all nodes

i.e., instead of normalizing w.r.t. all nodes, just normalize against k random "negative samples"

Negative Sampling

$$\log \left(\frac{\exp(\mathbf{z}_u^{\top} \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^{\top} \mathbf{z}_n)} \right) \quad \text{random distribution} \\ \approx \log(\sigma(\mathbf{z}_u^{\top} \mathbf{z}_v)) - \sum_{i=1}^{k} \log(\sigma(\mathbf{z}_u^{\top} \mathbf{z}_{n_i})), n_i \sim P_V$$

- Sample negative nodes proportional to degree.
- Two considerations for k (# negative samples):
 - 1. Higher k gives more robust estimates.
 - 2. Higher k corresponds to higher prior on negative events.

Random Walks: Stepping Back

- Run short random walks starting from each node on the graph using some strategy R.
- 2. For each node u collect $N_R(u)$, the multiset of nodes visited on random walks starting from u.
- 3. Optimize embeddings to according to:

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

We can efficiently approximate this using negative sampling!

How should we randomly walk?

- So far we have described how to optimize embeddings given random walk statistics.
- What strategies should we use to run these random walks?
 - Simplest idea: Just run fixed-length, unbiased random walks starting from each node (i.e., <u>DeepWalk from</u> <u>Perozzi et al., 2013</u>).
 - But can we do better?

node2vec: Biased Walks

Idea: use flexible, biased random walks that can trade off between **local** and **global** views of the network (<u>Grover and Leskovec, 2016</u>).

node2vec: Biased Walks

Two classic strategies to define a neighborhood $N_R(u)$ of a given node u:

$$N_{BFS}(u) = \{ s_1, s_2, s_3 \}$$

 $N_{DFS}(u) = \{ s_4, s_5, s_6 \}$

Local microscopic view

Global macroscopic view

Interpolating BFS and DFS

Biased random walk R that given a node u generates neighborhood $N_R(u)$

- Two parameters:
 - Return parameter p:
 - Return back to the previous node
 - In-out parameter q:
 - Moving outwards (DFS) vs. inwards (BFS)

Biased Random Walks

Biased 2nd-order random walks explore network neighborhoods:

- Rnd. walk started at u and is now at w
- Insight: Neighbors of w can only be:

Idea: Remember where that walk came from

Biased Random Walks

Walker is at w. Where to go next?

1/p, 1/q, 1 are unnormalized probabilities

- p, q model transition probabilities
 - p ... return parameter
 - q ... "walk away" parameter

Biased Random Walks

Walker is at w. Where to go next?

- BFS-like walk: Low value of p
- DFS-like walk: Low value of q

Unnormalized transition prob.

 $N_{\rm S}(u)$ are the nodes visited by the walker

BFS vs. DFS

BFS:

Micro-view of neighbourhood

DFS:

Macro-view of neighbourhood

Experiments: Micro vs. Macro

Interactions of characters in a novel:

p=1, q=2
Microscopic view of
 the network
 neighbourhood

p=1, q=0.5
Macroscopic view of
 the network
 neighbourhood

Other random walk ideas (not covered in detail here)

Different kinds of biased random walks:

- Based on node attributes (<u>Dong et al., 2017</u>).
- Based on a learned weights (<u>Abu-El-Haija et al., 2017</u>)

Alternative optimization schemes:

 Directly optimize based on 1-hop and 2-hop random walk probabilities (as in LINE from Tang et al. 2015).

Network preprocessing techniques:

 Run random walks on modified versions of the original network (e.g., <u>Ribeiro et al. 2017's struct2vec</u>, <u>Chen et al.</u> <u>2016's HARP</u>).

Summary so far

- Basic idea: Embed nodes so that distances in embedding space reflect node similarities in the original network.
- Different notions of node similarity:
 - Adjacency-based (i.e., similar if connected)
 - Multi-hop similarity definitions.
 - Random walk approaches.

Summary so far

- So what method should I use..?
- No one method wins in all cases....
 - e.g., node2vec performs better on node classification while multi-hop methods performs better on link prediction (<u>Goyal and Ferrara, 2017 survey</u>).
- Random walk approaches are generally more efficient (i.e., O(|E|) vs. $O(|V|^2)$)
- In general: Must choose def'n of node similarity that matches application!

Multilayer Networks

Material based on:

• Zitnik and Leskovec. 2017. <u>Predicting Multicellular Function</u> through Multilayer Tissue Networks. *ISMB*.

Multilayer Networks

Let's generalize to multilayer networks!

Multilayer Networks

- Each network is a layer $G_i = (V_i, E_i)$
- Similarities between layers are given in hierarchy M, map π encodes parentchild relationships

Multilayer Network Embeddings

- lacksquare Given: Layers $\{G_i\}$, hierarchy ${\mathcal M}$
 - Layers $\{G_i\}_{i=1..T}$ are in leaves of \mathcal{M}
- Goal: Learn functions: $f_i: V_i \to \mathbb{R}^d$

Nodes have different embeddings in different layers, but we want these embeddings to be related!

Multilayer Network Embeddings

- Approach has two components:
 - Per-layer objectives: Standard node embedding objective (e.g., node2vec).
 - Hierarchical dependency objectives: Nodes in nearby layers in hierarchy are encouraged to share similar features

Interdependent Layers

- How do we incorporate the hierarchy \mathcal{M}
- Per-layer node2vec objectives are learned independently of each other

How to model dependencies between layers when learning node features?

Interdependent Layers

- Let Ti be the set of all leaves in the sub-hierarchy rooted at i. We assume that each layer Gi is attached to one leaf in the hierarchy. As a result, the hierarchy M has exactly K leaves.
- Let Ci denote the set of all children of element i in the hierarchy.

Interdependent Layers

$$c_i(u) = \frac{1}{2} ||f_i(u) - f_{\pi(i)}(u)||_2^2$$

$$C_i = \sum_{u \in L_i} c_i(u)$$
where $L_i = \bigcup_{j \in T_i} V_j$

OhmNet: Final Model

Learning node features in multi-layer networks

Algorithm 1. The OhmNet algorithm

Input: Multi-layer network, $(G_1, G_2, ..., G_K)$ with $G_i = (V_i, E_i)$, Hierarchy, M, Feature representation size, d, Network neighborhood strategy, S, Regularization strength, λ for i ∈ T do for $u \in V$, do 3: $N_i(u) = \text{Node2vecWalk}(G_i, u, S)$ (Grover and Leskovec, 2016) end for 450 50 end for while f_1, f_2, \dots, f_{DM} not converged do 6: for $i \in M$ do 7: if $i \in T$ then 8:

 9_{2} for $u \in V_i$ do $f_i(u) = SGD1(N_i(u), d, \lambda)$ by Equation (5) 10: 11: end for

12: class for $u \in \bigcup_{i \in T_i} V_i$ do $f_i(u) = \frac{1}{|C_i|+1} \left(f_{\pi(i)}(u) + \sum_{c \in C_i} f_c(u) \right)$ 13: 14: 1.5zend for

> end if end for

end while

1.6: 17:

18:

19: return $f_1, f_2, ..., f_{[M]}$

Experiments: Biological Nets

- Proteins are worker molecules
- Understanding protein function has great biomedical and pharmaceutical implications

Channels and pumps
PROTENS
Hormones
Acti-base
Basines
Print
Basines

107 genome-wide tissue-specific protein interaction networks

- 584 tissue-specific cellular functions
- Examples (tissue, cellular function):
 - (renal cortex, cortex development)
 - (artery, pulmonary artery morphogenesis)

Brain Tissues

Meaningful Node Embeddings

