Интегралы и дифференциальные уравнения

Рубежный контроль

2 семестр | Модуль №1

GitHub: malyinik

Содержание

1	Воп	росы, оцениваемые в 1 балл	2	
	1.1	Сформулировать определение первообразной	2	
	1.2	Сформулировать определение неопределённого интеграла	2	
	1.3	Сформулировать определение определённого интеграла	2	
	1.4	Сформулировать определение интеграла с переменным верхним пределом .	3	
	1.5	Сформулировать определение несобственного интеграла 1-го рода	3	
	1.6	Сформулировать определение несобственного интеграла 2-го рода	4	
	1.7	Сформулировать определение сходящегося несобственного интеграла 1-го рода	1	
	1.8	Сформулировать определение абсолютно сходящегося несобственного инте-	7	
	1.0	грала 1-го рода	4	
	1.9	Сформулировать определение условно сходящегося несобственного интегра-	_	
	1.10	ла 1-го рода	5	
		рода	5	
	1.11	Сформулировать определение абсолютно сходящегося несобственного инте-		
		грала 2-го рода	5	
	1.12	Сформулировать определение условно сходящегося несобственного интегра-		
		ла 2-го рода	5	
2	Воп	Вопросы, оцениваемые в 3 балла		
	2.1	Сформулировать и доказать теорему об оценке определённого интеграла	6	
	2.2 2.3	Сформулировать и доказать теорему о среднем	6	
		верхним пределом	7	
	2.4	Сформулировать и доказать теорему Ньютона - Лейбница	8	
	2.5	Сформулировать и доказать теорему об интегрировании по частям в определённом интеграле	9	
	2.6	Сформулировать и доказать признак сходимости по неравенству для несобственных интегралов 1-го рода	10	
	2.7	Сформулировать и доказать предельный признак сравнения для несобствен-		
	2.8	ных интегралов 1-го рода	11	
		ственных интегралов 1-го рода	12	
	2.9	Вывести формулу для вычисления площади криволинейного сектора, огра-		
		ниченного лучами $\varphi = \alpha, \ \varphi = \beta$ и кривой $\rho = \rho(\varphi)$	13	
	2.10	Вывести формулу для вычисления длины дуги графика функции $y = f(x)$, отсечённой прямыми $x = a$ и $x = b$	13	
3	Исп	OTESVENDE TEODEND	15	

1 Вопросы, оцениваемые в 1 балл

1.1 Сформулировать определение первообразной

Определение 1. Функция F(x) называется **первообразной** функции f(x) на интервале (a;b), если F(x) дифференцируема на (a;b) и $\forall x \in (a;b)$:

$$F'(x) = f(x) \tag{1}$$

1.2 Сформулировать определение неопределённого интеграла

Определение 2. Множество первообразных функции f(x) на (a;b) называется **неопределённым интегралом**.

$$\int f(x) dx = F(x) + C$$
 (2)

∫ — знак интеграла

f(x) — подынтегральная функция

f(x) dx — подынтегральное выражение

x — переменная

F(x) + C — множество первообразных

C — произвольная константа

1.3 Сформулировать определение определённого интеграла

Пусть функция y = f(x) определена на [a; b]. Рассмотрим произвольное разбиение [a; b]. В каждом из отрезков разбиения $[x_{i-1}; x_i]$ выберем точку ξ_i , $i = \overline{1, n}$. Составим сумму

$$S_n = \sum_{i=1}^n f(\xi_i) \cdot \Delta x_i$$
 (3)

Определение 3. Определённым интегралом от функции y = f(x) на [a; b] называется конечный предел интегральной суммы (3), когда число отрезков разбиения растёт, а их длины стремятся к нулю.

$$\int_{a}^{b} f(x) dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}) \cdot \Delta x$$
 (4)

Предел (4) не зависит от способа разбиения отрезка [a;b] и выбора точек ξ_i , $\overline{1,n}$.

f(x) — подынтегральная функция

f(x) dx — подынтегральное выражение

∫^b — знак определённого интеграла

а— нижний предел интегрирования

b — верхний предел интегрирования

1.4 Сформулировать определение интеграла с переменным верхним пределом

Пусть f(x) непрерывна на [a;b]. Рассмотрим $\int_a^b f(x) \, dx$. Закрепим нижний предел интегрирования a. Изменяем верхний предел интегрирования b, чтобы подчеркнуть изменение верхнего предела интегрирования.

$$b \longrightarrow x \quad x \in [a; b] \quad [a; x] \subset [a; b] \quad I(x) = \int_a^x f(t) dt.$$

Определение 4. Определённым интегралом с переменным верхним пределом интегрирования от непрерывной функции f(x) на [a;b] называется интегралвида

$$I(x) = \int_a^x f(t) dt$$
, где $x \in [a; b]$

I(x) — переменная площадь криволинейной трапеции с основанием $[a;x]\subset [a;b].$

1.5 Сформулировать определение несобственного интеграла 1-го рода

Пусть y = f(x) определена на $[a; +\infty)$, интегрируема на $[a; b] \subset [a; +\infty)$. Тогда определена функция

$$\Phi(b) = \int_{a}^{b} f(x) dx \quad \text{Ha } [a; +\infty)$$
 (5)

как определённый интеграл с переменным верхним пределом интегрирования.

Определение 5. Предел функции $\Phi(b)$ при $b \to +\infty$ называется несобственным интегралом от функции f(x) по бесконечному промежутку $[a; +\infty)$ или **несобственным интегралом 1-го рода** и обозначается

$$\int_{a}^{+\infty} f(x) dx = \lim_{b \to +\infty} \Phi(b) = \lim_{b \to +\infty} \int_{a}^{b} f(x) dx$$
 (6)

1.6 Сформулировать определение несобственного интеграла 2-го рода

Пусть функция f(x) определена на полуинтервале [a;b), а в точке x=b терпит разрыв 2-го рода. Предположим, что функция f(x) интегрируема на $[a;\eta]\subset [a;b)$. Тогда на [a;b) определена функция

$$\Phi(\eta) = \int_{a}^{\eta} f(x) \, dx \tag{7}$$

как интеграл с переменным верхним пределом.

Определение 6. Предел функции $\Phi(\eta)$ при $\eta \to b-$ называется несобственным интегралом от неограниченной функции f(x) на [a;b) или **несобственным интегралом** 2-го рода и обозначается

$$\left| \int_{a}^{b} f(x) dx = \lim_{\eta \to b^{-}} \Phi(\eta) = \lim_{\eta \to b^{-}} \int_{a}^{\eta} f(x) dx \right|$$
 (8)

1.7 Сформулировать определение сходящегося несобственного интеграла 1-го рода

Определение 7.

$$\int_{a}^{+\infty} f(x) dx = \lim_{b \to +\infty} \Phi(b) = \lim_{b \to +\infty} \int_{a}^{b} f(x) dx$$

Если предел в правой части равенства существует и конечен, то несобственный интеграл в левой части равенства **сходится**.

1.8 Сформулировать определение абсолютно сходящегося несобственного интеграла 1-го рода

Определение 8. Если наряду с несобственным интегралом от функции f(x) по бесконечному промежутку $[a; +\infty)$ сходится и несобственный интеграл от функции |f(x)| по этому же промежутку, то первый несобственный интеграл называется **сходящимся абсолютно**.

1.9 Сформулировать определение условно сходящегося несобственного интеграла 1-го рода

Определение 9. Если несобственный интеграл от функции f(x) по бесконечному промежутку $[a;+\infty)$ сходится, а несобственный интеграл от функции |f(x)| по этому же промежутку расходится, то первый несобственный интеграл называется сходящимся условно.

1.10 Сформулировать определение сходящегося несобственного интеграла 2-го рода

Определение 10.

$$\int_a^b f(x) dx = \lim_{\eta \to b-} \Phi(\eta) = \lim_{\eta \to b-} \int_a^{\eta} f(x) dx$$

Если предел в правой части равенства существует и конечен, то несобственный интеграл от неограниченной функции f(x) по [a;b) **сходится**.

1.11 Сформулировать определение абсолютно сходящегося несобственного интеграла 2-го рода

Определение 11. Если несобственный интеграл от неограниченной функции f(x) при $x \to b-$ по промежутку [a;b) сходится и несобственный интеграл функции |f(x)| по этому же промежутку сходится, то первый из несобственных интегралов **сходится** абсолютно.

1.12 Сформулировать определение условно сходящегося несобственного интеграла 2-го рода

Определение 12. Если несобственный интеграл от неограниченной функции f(x) при $x \to b-$ по промежутку [a;b), сходится, а несобственный интеграл от функции |f(x)| по этому же промежутку расходится, то первый из несобственных интегралов сходится условно.

2 Вопросы, оцениваемые в 3 балла

2.1 Сформулировать и доказать теорему об оценке определённого интеграла

Теорема 1 (Об оценке определённого интеграла).

Пусть функции f(x) и g(x) интегрируемы на [a;b] и $\forall x \in [a;b]\colon m\leqslant f(x)\leqslant N,\ g(x)\geqslant 0.$ Тогда

$$\int_{a}^{b} g(x) dx \leqslant \int_{a}^{b} f(x) g(x) dx \leqslant M \int_{a}^{b} g(x) dx$$

Доказательство.

Так как $\forall x \in [a;b]$ верны неравенства

$$m \leqslant f(x) \leqslant M \quad | \cdot g(x)$$

$$g(x) \geqslant 0 \qquad m, M \in \mathbb{R}$$

$$m \cdot g(x) \leqslant f(x) \cdot g(x) \leqslant M \cdot g(x)$$

По теореме 11 и 10:

$$m \int_a^b g(x) \leqslant \int_a^b f(x) g(x) dx \leqslant M \int_a^b g(x) dx$$

2.2 Сформулировать и доказать теорему о среднем

Теорема 2 (О среднем значении для определённого интеграла). Если f(x) непрерывна на [a;b], то

$$\exists c \in [a;b] \colon f(c) = \frac{1}{b-a} \int_a^b f(x) \, dx$$

Доказательство.

Так как функция y = f(x) непрерывна на [a;b], то по теореме $Be\~uepumpacca$ она достигает своего наибольшего и наименьшего значения.

To есть $\exists m, M \in \mathbb{R}, \ \forall x \in [a;b] : m \leqslant f(x) \leqslant M$

По теореме 11:

$$\int_{a}^{b} m \, dx \leqslant \int_{a}^{b} f(x) \, dx \leqslant \int_{a}^{b} M \, dx$$

По теореме 10:

$$m \int_{a}^{b} dx \leqslant \int_{a}^{b} f(x) dx \leqslant M \int_{a}^{b} dx$$

По теореме 9:

$$m(b-a) \leqslant \int_a^b f(x) dx \leqslant M(b-a) \mid : (b-a)$$

Так как функция y = f(x) непрерывна на [a; b], то по теореме *Больцано-Коши* она принимает все свои значения между наибольшим и наименьшим значением.

$$m \leqslant \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \leqslant M$$

По теореме *Больцано-Коши* $\exists c \in [a; b]$:

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

2.3 Сформулировать и доказать теорему о производной интеграла с переменным верхним пределом

Теорема 3 (О производной I(x)).

Если функция y = f(x) непрерывна на [a; b], то $\forall x \in [a; b]$ верно равенство

$$(I(x))' = \left(\int_a^x f(t) dt\right)' = f(x)$$

Доказательство.

$$(I(x))' = \lim_{\Delta x \to 0} \frac{\Delta I(x)}{\Delta x} \xrightarrow{\text{T12}} \lim_{\Delta x \to 0} \frac{f(c) \cdot \Delta x}{\Delta x} = \lim_{\Delta x \to 0} f(c) \xrightarrow{*} f(x)$$

*:
$$a$$
 при $\Delta x \to 0$ $x + \Delta x \to x$ $c \to x$

Следствие 3.1. Функция I(x) — первообразная функции f(x) на [a;b], так как по теореме $3 \ \big(I(x)\big)' = f(x).$

2.4 Сформулировать и доказать теорему Ньютона - Лейбница

Теорема 4.

Пусть функция f(x) — непрерывна на [a;b]. Тогда

$$\left| \int_a^b f(x) \, dx = F(x) \right|_a^b = F(b) - F(a)$$

где F(x) — первообразная f(x).

Доказательство.

Пусть F(x) первообразная f(x) на [a;b]. По следствию из теоремы 3 I(x) — первообразная f(x) на [a;b].

По свойству первообразной:

$$I(x)-F(x)=C$$

$$I(x)=F(x)+C, \text{ где } C-const$$

$$\int_a^x f(t)\,dt=F(x)+C, \text{ где } C-const \tag{\lor}$$

 $\bullet \ x = a$

$$\int_{a}^{a} f(t) dt = F(a) + C$$
$$0 = F(a) + C$$
$$C = -F(a)$$

C = -F(a) подставим в (\vee):

$$\int_{a}^{x} f(t) dt = F(x) - F(a)$$

 $\bullet \ r = b$

$$\int_{a}^{b} f(t) dt = F(b) - F(a)$$

2.5 Сформулировать и доказать теорему об интегрировании по частям в определённом интеграле

Теорема 5.

Пусть функции u=u(x) и v=v(x) непрерывно дифференцируемы на [a;b]. Тогда имеет место равенство

$$\left| \int_a^b u \, dv = u \, v \right|_a^b - \int_a^b v \, du$$

Доказательство.

Рассмотрим произведение функций $u \cdot v$.

Дифференцируем:

$$d(u \cdot v) = v \, du + u \, dv$$
$$u \, dv = d(uv) - v \, du$$

Интегрируем:

$$\int_a^b u \, dv = \int_a^b \left(d(uv) - v \, du \right) = \int_a^b d(uv) - \int_a^b v \, du - u \, v \bigg|_a^b - \int_a^b v \, du$$

2.6 Сформулировать и доказать признак сходимости по неравенству для несобственных интегралов 1-го рода

Теорема 6 (Признак сходимости по неравенству).

Пусть функции f(x) и g(x) интегрируемы на $[a;b]\subset [a;+\infty)$, причём

$$\forall x \geqslant a \colon 0 \leqslant f(x) \leqslant g(x)$$

Тогда:

- 1. Если $\int_a^{+\infty} g(x) dx$ сходится, то $\int_a^{+\infty} f(x) dx$ сходится
- 2. Если $\int_a^{+\infty} f(x) dx$ расходится, то $\int_a^{+\infty} g(x) dx$ расходится

Доказательство.

 $\int_a^{+\infty} g(x) \, dx$ — сходится \Rightarrow по определению несобственного интеграла 1-го рода

$$\int_{a}^{+\infty} g(x) \, dx = \lim_{b \to +\infty} \int_{a}^{b} g(x) \, dx = C \quad C - \text{ число}$$

Так как $\forall x \geqslant a \colon g(x) \geqslant 0$

$$\Phi(b) = \int_{a}^{b} g(x) \, dx \leqslant C, \quad b > a$$

По условию: $\forall x \geqslant a : 0 \leqslant f(x) \leqslant g(x)$

Интегрируем:

$$\int_{a}^{b} f(x) \, dx \leqslant \int_{a}^{b} g(x) \, dx \leqslant C$$

Так как $f(x) \geqslant 0$, $\forall x \geqslant a$ и b > a, то функция

$$\Psi(b) = \int_a^b f(x) \, dx$$
 монотонно возрастает и ограничена сверху

Утверждение: монотонная и ограниченная сверху функция при $x \to +\infty$ имеет конечный предел.

По утверждению функция $\Psi(b)$ имеет конечный предел при $x \to +\infty$, то есть

$$\int_a^{+\infty} f(x)\,dx = \lim_{b\to +\infty} \Psi(b) = \lim_{b\to +\infty} \int_a^b f(x)\,dx \,- \, \text{конечный предел}$$

Доказательство (Метод от противного).

Дано: $\int_a^{+\infty} f(x) dx$ — расходится

Предположим, что $\int_a^{+\infty} g(x) dx$ — сходится

Тогда по первой части теоремы:

$$\int_{a}^{+\infty} f(x) \, dx \, - \text{сходится}$$

А это противоречит условию теоремы $\Rightarrow \int_a^{+\infty} g(x) \, dx$ — расходится

2.7 Сформулировать и доказать предельный признак сравнения для несобственных интегралов 1-го рода

Теорема 7 (Предельный признак сходимости).

Пусть f(x) и g(x) интегрируемы на $[a;b] \subset [a;+\infty)$ и $\forall x \geqslant a \colon f(x) \geqslant 0, \ g(x) > 0.$ Если существует конечный предел:

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lambda > 0 \tag{9}$$

то $\int_a^{+\infty} f(x) dx$ и $\int_a^{+\infty} g(x) dx$ сходятся или расходятся одновременно.

Доказательство.

Из (5) ⇒ по определению предела:

$$\forall \varepsilon > 0, \ \exists M(\varepsilon) > 0 \colon \forall x > M \ \Rightarrow \left| \frac{f(x)}{g(x)} - \lambda \right| < \varepsilon$$

$$-\varepsilon < \frac{f(x)}{g(x)} - \lambda < \varepsilon$$

$$\lambda - \varepsilon < \frac{f(x)}{g(x)} < \lambda + \varepsilon$$

$$(\lambda - \varepsilon) \cdot g(x) < f(x) < (\lambda + \varepsilon) \cdot g(x) \quad \forall x > M$$
(*)

1 шаг Рассмотрим $f(x) < (\lambda + \varepsilon)g(x)$

Интегрируем:

$$\int_{a}^{+\infty} f(x) \, dx < (\lambda + \varepsilon) \int_{a}^{+\infty} g(x) \, dx$$

Число $(\lambda + \varepsilon)$ не влияет на сходимость/расходимость несобственного интеграла.

Пусть $\int_a^{+\infty} g(x) \, dx$ — сходится, тогда:

$$(\lambda + \varepsilon) \int_a^{+\infty} g(x) dx$$
 — сходится

По теореме 6 $\int_a^{+\infty} f(x) \, dx$ — сходится.

Пусть $\int_a^{+\infty} f(x) \, dx$ расходится, тогда по теореме 6

$$(\lambda + \varepsilon) \int_a^{+\infty} g(x) \, dx$$
 — расходится $\Rightarrow \int_a^{+\infty} g(x) \, dx$ — расходится

 $\boxed{2}$ шаг Рассмотрим $(\lambda - \varepsilon) \cdot g(x) < f(x)$

Интегрируем:

$$(\lambda - \varepsilon) \int_{a}^{+\infty} g(x) dx < \int_{a}^{+\infty} f(x) dx$$

 $(\lambda-arepsilon)$ не влияет на сходимость/расходимость несобственного интеграла

Пусть $\int_{a}^{+\infty} f(x) dx$ — сходится, тогда по теореме 6

$$(\lambda - \varepsilon) \int_a^{+\infty} g(x) \, dx - \text{сходится} \Rightarrow \int_a^{+\infty} g(x) \, dx - \text{сходится}$$

Пусть $(\lambda - \varepsilon) \int_a^{+\infty} g(x) \, dx$ — расходится, тогда $\int_a^{+\infty} g(x) \, dx$ — расходится

По теореме 6 $\int_a^{+\infty} f(x) \, dx$ расходится, тогда

$$\int_a^{+\infty} f(x) \, dx$$
 и $\int_a^{+\infty} g(x) \, dx$ сходятся и расходятся одновременно

2.8 Сформулировать и доказать признак абсолютной сходимости для несобственных интегралов 1-го рода

Теорема 8 (Признак абсолютной сходимости).

Пусть функция f(x) знакопеременна на $[a; +\infty)$. Если функции f(x) и |f(x)| интегрируемы на любом отрезке $[a; b] \subset [a; +\infty)$ и несобственный интеграл от функции |f(x)| по бесконечному промежутку $[a; +\infty)$ сходится, то сходится и несобственный интеграл от функции f(x) по $[a; +\infty)$, причём абсолютно.

Доказательство.

Так как $\forall x \in [a; +\infty)$ верно неравенство

$$-|f(x)| \leqslant f(x) \leqslant |f(x)| \quad \Big| + |f(x)|$$
$$0 \leqslant f(x) + |f(x)| \leqslant 2|f(x)|$$

По условию $\int_a^{+\infty} |f(x)| dx$ сходится $\Rightarrow 2 \int_a^{+\infty} |f(x)| dx$ сходится.

По теореме 6 (признак сходимости по неравенству):

$$\int_{a}^{+\infty} (f(x) + |f(x)|) dx - \text{сходится}$$

Рассмотрим

$$\int_{a}^{+\infty} f(x) \, dx = \underbrace{\int_{a}^{+\infty} \left(f(x) + |f(x)| \right) dx}_{\text{CX-CS IIO TG}} - \underbrace{\int_{a}^{+\infty} |f(x)| \, dx}_{\text{CX-CS IIO VCJOBHIO}}$$

По определению сходящегося несобственного интеграла $\Rightarrow \int_a^{+\infty} f(x) dx$ сходится По определению абсолютной сходимости $\Rightarrow \int_a^{+\infty} f(x) dx$ сходится абсолютно

2.9Вывести формулу для вычисления площади криволинейного сектора, ограниченного лучами $\varphi = \alpha, \ \varphi = \beta$ и кривой $\rho = \rho(\varphi)$

- 1. Разбиваем сектор A_0OA_n лучами $\alpha=\varphi_0<\varphi_1<\ldots<\varphi_n=\beta$ на углы $\angle A_0OA_1,$ $\angle A_1OA_2, \ldots, \angle A_{n-1}OA_n$ $\Delta \varphi_i = \varphi_i - \varphi_{i-1}$ — величина $\angle A_{i-1}OA_1$ в радианах $\lambda = \max \Delta \varphi_i, \ i = \overline{1, n}$
- 2. \forall выберем и проведём Ψ_i , $\Psi_i \in \angle A_{i-1}OA_i$ Находим $\rho = \rho(\Psi_i)$ $M_i(\Psi_i, r(\Psi_i)), M_i \in \angle A_{i-1}OA_i, M_i \in r = r(\varphi)$
- 3. Заменяем каждый i-ый криволинейный сектор на круговой сектор $R=\rho(\Psi_i),\ i=\overline{1,n}$ $S_i = \frac{1}{2}R^2 \cdot \Delta \varphi_i$ — площадь *i*-го кругового сектора

$$\sum_{i=1}^{n} S_i = \sum_{i=1}^{n} \frac{1}{2} \rho^2(\Psi_i) \cdot \Delta \varphi_i = \frac{1}{2} \sum_{i=1}^{n} \rho^2(\Psi_i) \cdot \Delta \varphi_i$$

4. Вычисляем предел

$$\lim_{\lambda \to 0} \frac{1}{2} \sum_{i=1}^{n} \rho^{2}(\Psi_{i}) \cdot \Delta \varphi_{i} = \boxed{\frac{1}{2} \int_{\alpha}^{\beta} \rho^{2} d\varphi = S}$$

2.10Вывести формулу для вычисления длины дуги графика функции y = f(x), отсечённой прямыми x = a и x = b

Пусть y = f(x) непрерывна на [a; b].

 $M_0(x_0, y_0) \quad M(x, y)$

 Δx — приращение x Δy — приращение y

$$x \to x + \Delta x$$

 $y \to x + \Delta y$ $M(x, y) \to M_1(x + \Delta x, y + \Delta y)$

$$l_0 - \widehat{M_0 M}$$
 — дуга кривой Δl — приращение дуги кривой $\Delta l = \widehat{M M_1}$

Найдём
$$l_x' - ?$$

$$l_x' = \lim_{\Delta x \to 0} \frac{\Delta l}{\Delta x}$$

$$\triangle MM_1A \quad MA = \Delta x \quad AM_1 = \Delta y$$

$$MM_1^2 = \Delta x^2 + \Delta y^2 \quad |\cdot \Delta l^2| : \Delta l^2$$

$$\left(\frac{MM_1}{\Delta l}\right)^2 \cdot (\Delta l)^2 = \Delta x^2 + \Delta y^2 \quad |: \Delta x^2$$

$$\left(\frac{MM_1}{\Delta l}\right)^2 \cdot \left(\frac{\Delta l}{\Delta x}\right)^2 = 1 + \left(\frac{\Delta y}{\Delta x}\right)^2$$

Вычислим предел при $\Delta x \to 0$.

Левая часть:

$$\lim_{\Delta \to 0} \left(\frac{M M_1}{\Delta l}\right)^2 \cdot \left(\frac{\Delta l}{\Delta x}\right)^2 = \begin{vmatrix} \text{при } \Delta x \to 0 & M \to M_1 \\ \Delta l \to M M_1 & \text{дуга } \to \text{ хордe} \end{vmatrix} = \lim_{\Delta x \to 0} 1^2 \cdot \left(\frac{\Delta l}{\Delta x}\right)^2 = (l_x')^2$$

Правая часть:

$$\lim_{\Delta x \to 0} \left(1 + \left(\frac{\Delta y}{\Delta x} \right)^2 \right) = 1 + \lim_{\Delta x \to 0} \left(\frac{\Delta y}{\Delta x} \right)^2 = 1 + (y_x')^2$$

Получаем:

$$(l'_x)^2 = 1 + (y'_x)^2$$

$$l'_x = \sqrt{1 + (y'_x)^2} \quad | \cdot dx$$

$$l'_x dx = \sqrt{1 + (y'_x)^2} dx$$

$$dl = \sqrt{1 + (y'_x)^2} dx \qquad (\vee)$$

$$l = \int_{a}^{b} \sqrt{1 + (y_x')^2} \, dx$$
 (10)

3 Используемые теоремы

Теорема 9.

Если C-const, то

$$\int_{a}^{b} c \, dx = c \cdot (b - a)$$

Теорема 10.

Если функции $f_1(x)$, $f_2(x)$ интегрируемы на [a;b], то их линейная комбинация

$$\lambda_1 f_1(x) + \lambda_2 f_2(x)$$
, где $\lambda_1, \ \lambda_2 \in \mathbb{R}$

интегрируема на [a;b] и верно равенство:

$$\int_a^b \left(\lambda_1 f_1(x) + \lambda_2 f_2(x)\right) dx = \lambda_1 \int_a^b f_1(x) dx + \lambda_2 \cdot \int_a^b f_2(x) dx$$

Теорема 11 (Об интегрировании неравенства).

Пусть функции f(x) и g(x) интегрируемы на [a;b] и $\forall x \in [a;b] \colon f(x) \geqslant g(x),$ то

$$\int_{a}^{b} f(x) \, dx \geqslant \int_{a}^{b} g(x) \, dx$$

Теорема 12 (Henpepuвность I(x)).

Если функция f(x) на [a;b] непрерывна, то $I(x) = \int_a^x f(x) dt$ — непрерывна на [a;b].