HOMEWORK 2 MATH 104, SECTION 2

Some ground rules:

- You have to submit your homework via Gradescope to the corresponding assignment. The submission should be a single PDF file.
- Make sure the writing in your submission is clear enough! Answers which are illegible for the reader won't be given credit.
- Write your argument as clear as possible. Mastering mathematical writing is one of the goals of this course.
- Late homework will not be accepted under any circumstances.
- You're allowed to use any result that is proved in the lecture; but if you'd like to use other results, you have to prove them before using them.

PROBLEM SET (6 PROBLEMS; DUE FEBRUARY 2 AT 11AM PT)

- (1) Determine each of the following sequences is convergent or divergent. For convergent sequences, find the limit and prove it. For divergent sequences, prove that they are divergent.
 - (a) $a_n = (\frac{2}{3})^n$.
 - (b) $b_n = 2^n$.
 - (c) $c_n = \frac{\sin(2n)}{\sqrt{n}}$.
 - (d) $d_n = \sin(\frac{n\pi}{2})$.
 - (e) $e_n = \sqrt{n^2 + 4n} n$.
 - (f) $f_n = \frac{2^n}{n!}$.
- (2) (Squeeze lemma, **very useful**) Let (a_n) , (b_n) , (c_n) be three sequences satisfying $a_n \leq b_n \leq c_n$ for all n. Suppose that (a_n) and (c_n) both converge with $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = a$. Prove that $\lim_{n\to\infty} b_n = a$.
- (3) Let $a_n = \frac{n-\sin(n)}{n}$. Use the squeeze lemma to show that a_n converges and find the limit.
- (4) Let $a_1 = 3$ and $a_{n+1} = \sqrt{3a_n + 10}$ for $n \ge 1$. Prove that (a_n) converges, and find the limit.
- (5) Show that if (a_n) converges to a, then the sequence of absolute values $(|a_n|)$ converges to |a|. Is the converse statement true?
- (6) Let (a_n) be a sequence of nonzero real numbers. Suppose that $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = b$ exists and is less than 1. Prove that $\lim_{n\to\infty} a_n = 0$. (Hint: Choose any c so that b < c < 1 and show that there exists N > 0 such that $|a_{n+1}| < c|a_n|$ for all n > N.)