Problem 3.42. Let G be a group and let $H \leq G$. Define $C(H) = \{x \in G | xh = hx \text{ for all } h \in H\}$. Prove that C(H) is a subgroup of G.

Solution:

Clearly $e \in C(H)$. Now suppose that $a, b \in C(H)$. Let $h \in H$ be arbitrary. Since H is a subgroup, we know that $h^{-1} \in H$. Hence,

$$(ab^{-1})h = a(b^{-1}h) = a(h^{-1}b)^{-1} = a(bh^{-1})^{-1} = ahb^{-1} = h(ab^{-1})$$

Thus $ab^{-1} \in C(H)$ and by Theorem 3.1, C(H) is a subgroup.

Problem 3.52. Consider the elements $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$ from $SL(2, \mathbb{R})$. Find |A|, |B|, and |AB|.

Solution:

We'll just do the computations and see what we get:

$$A^{2} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$A^{4} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

So that |A| = 4. Now for B:

$$B^{2} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}$$
$$B^{3} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Hence |B|=3. Now $AB=\begin{bmatrix}0 & -1\\1 & 0\end{bmatrix}\begin{bmatrix}0 & 1\\-1 & -1\end{bmatrix}=\begin{bmatrix}1 & 1\\0 & 1\end{bmatrix}$. We will use the following claim to show that AB has infinite order.

SOLUTION KEY

Produced by: Kyle Dahlin

Claim: $(AB)^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$.

Proof: We proceed by induction. The base case, $(AB)^1 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, is clear. Now suppose that $(AB)^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$. Then

$$(AB)^{n+1} = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1+n \\ 0 & 1 \end{bmatrix}$$

Hence since $n+1 \neq 0$ for any $n \in \mathbb{N}$, the order of AB is infinite.

Comment: Checking that $A^3 \neq I$ is actually not necessary. Why is it sufficient to check that $A^4 = (A^2)^2 = I$ in order to prove that |A| = 4.

If instead A and B have elements from a group with finite order, say $A, B \in SL(2, \mathbb{Z}_{12})$, what would the order of AB be?

Problem 3.58. U(15) has six cyclic subgroups. List them.

Solution:

The elements of U(15) are 1, 2, 4, 7, 8, 11, 13, 14. The cyclic subgroups generated by a single element are:

- 1. {1}, the trivial subgroup
- 2. $\langle 2 \rangle = \{1, 2, 4, 8\} = \langle 8 \rangle$
- 3. $\langle 4 \rangle = \{1, 4\}$
- 4. $\langle 7 \rangle = \{1, 4, 7, 13\} = \langle 13 \rangle$
- 5. $\langle 11 \rangle = \{1, 11\}$
- 6. $\langle 14 \rangle = \{1, 14\}$

Problem 4.2. Suppose that $\langle a \rangle$, $\langle b \rangle$, and $\langle c \rangle$ are cyclic groups of order 6, 8, and 20, respectively. Find all generators of $\langle a \rangle$, $\langle b \rangle$, and $\langle c \rangle$.

Solution:

Corollary 1 on page 79 tells us that if $|\langle a \rangle| = 6$ then |a| = 6. Then by Corollary 3 on page 81, $\langle a \rangle = \langle a^i \rangle$ if and only if $\gcd(6, i) = \gcd(6, 1) = 1$. The set of numbers less than 6 that are relatively prime to 6 are 1 and 5. Hence

$$\langle a \rangle = \langle a^5 \rangle$$
.

We can follow the same process for b and c to get

$$\langle b \rangle = \langle b^3 \rangle = \langle b^5 \rangle = \langle b^7 \rangle$$

SOLUTION KEY

Produced by: Kyle Dahlin

and

$$\langle c \rangle = \langle c^3 \rangle = \langle c^7 \rangle = \langle c^9 \rangle = \langle c^{11} \rangle = \langle c^{13} \rangle = \langle c^{17} \rangle = \langle c^{19} \rangle.$$

Comment: Notice that the powers of a for the generators of $\langle a \rangle$, $\langle b \rangle$, and $\langle c \rangle$ have exponents that belong to U(6), U(8), and U(20), respectively.

Problem 4.8. Let a be an element of a group G and let |a| = 15. Compute the orders of the following elements of G.

a.
$$a^3$$
, a^6 , a^9 , a^{12}

b.
$$a^5$$
, a^{10}

c.
$$a^2$$
, a^4 , a^8 , a^{14}

Solution:

a.
$$a^3$$
, a^6 , a^9 , a^{12}

Notice that each of these elements, a^i , have the property that gcd(15, i) = gcd(15, 3) = 3. Thus they must all have the same order as a^3 , by Corollary 2 on page 81. Therefore they all have order 15/gcd(15, 3) = 5 by Theorem 4.2.

b.
$$a^5$$
, a^{10}

As above, these both have the same order as a^5 : $|a^5| = 15/\gcd(15, 5) = 3$.

c.
$$a^2$$
, a^4 , a^8 , a^{14}

As above, these all have the same order as a^2 : $|a^2| = 15/\gcd(15,2) = 15$

Problem 4.10. In Z_{24} , list all generators for the subgroup of order 8. Let $G = \langle a \rangle$ and let |a| = 24. List all generators for the subgroup of order 8.

Solution:

By the Corollary on page 84, the set $\langle 24/8 \rangle = \langle 3 \rangle$ is the unique subgroup of Z_{24} of order 8. By Corollary 2 on page 81, this subgroup is also generated by the numbers i such that $\gcd(24, i) = \gcd(24, 3)$, namely $\{3, 9, 15, 21\}$.

Since G is cyclic of order $24 = 8 \times 3$, by Theorem 4.3 it has exactly one subgroup of order 8, namely $\langle a^3 \rangle$. By Corollary 2 on page 81, the other generators are given by a^i where $\gcd(24,i) = \gcd(24,3)$, that is a^3, a^9, a^{15}, a^{21} .

Problem 4.41. Suppose that a and b are group elements that commute and have orders m and n. If $\langle a \rangle \cap \langle b \rangle = \{e\}$, prove that the group contains an element whose order is the least common multiple of m and n. Show that this need not be true if a and b do not commute.

Produced by: Kyle Dahlin

Solution:

Consider the element ab. Since a and b commute, powers of ab have the form a^ib^i for $i \in \mathbb{Z}$. Let l = lcm(m, n) and let r = |ab|. We will show that l = r.

Since $(ab)^r = a^r b^r = e$, we have that $a^r = b^{-r}$ and hence $a^r = e$ because

$$a^r \in \langle a \rangle \cap \langle b \rangle = \{e\}.$$

So |a| = m divides r and, by a similar argument, n divides r. Hence r is a common multiple of m and n, so that l divides r.

Now since l = jm = kn for some $j, k \in \mathbb{Z}$, we get that

$$(ab)^l = a^l b^l = a^{jm} b^{kn} = (a^m)^j (b^n)^k = e.$$

Hence r = |ab| divides l and because r, l > 0, we have that r = l.

Consider now the group D_3 , where F is a reflection. We have shown before that |F| = 2, $|R_{120}| = 3$, and $FR_{120} = R_{240}F$, so that these elements do not commute. We know that $|D_3| = 6 = \text{lcm}(2,3)$ but that D_3 is not cyclic, meaning there can be no element of D_3 of order 6.

Problem 4.62. Given the fact that U(49) is cyclic and has 42 elements, deduce the number of generators that U(49) has without actually finding any of the generators.

Solution:

Let a be an arbitrary generator of U(49). For $j \in \mathbb{N}$, $\langle a^j \rangle = \langle a \rangle = U(49)$ if and only if gcd(42, j) = 1 by Corollary 3 on page 81. Since U(49) is cyclic with order 42, we only need find the number of values of j less than 42 and relatively prime to 42. This is exactly $\phi(42) = \phi(7)\phi(3)\phi(2) = 6 \cdot 2 \cdot 1 = 12$.

The list of possible values of j is: 1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41.

Problem 4.64. Let a and b belong to a group. If |a| and |b| are relatively prime, show that $\langle a \rangle \cap \langle b \rangle = \{e\}$.

Solution:

Let $c \in \langle a \rangle \cap \langle b \rangle$. Then $c = a^j = b^k$ for some $j, k \in \mathbb{Z}$. Now $c^{|a|} = (a^j)^{|a|} = (a^{|a|})^j = e$ and similarly $c^{|b|} = e$. Hence |c| divides both |a| and |b|. Since |a| and |b| are relatively prime, |c| = 1 and therefore c = e.

Comment: Alternately, since there exist $s, t \in \mathbb{Z}$ with |a|s + |b|t = 1, we immediately get that

$$c = c^{|a|s+|b|t} = (c^{|a|})^s (c^{|b|})^t = e$$

.

Problem 4.72. Let a be a group element such that |a| = 48. For each part, find a divisor k of 48 such that

a.
$$\langle a^{21} \rangle = \langle a^k \rangle$$
;

b.
$$\langle a^{14} \rangle = \langle a^k \rangle$$
;

c.
$$\langle a^{18} \rangle = \langle a^k \rangle$$
.

SOLUTION KEY

Produced by: Kyle Dahlin

Solution:

We will use Corollary 2 on page 81 throughout this problem. This Corollary tells us that $\langle a^i \rangle = \langle a^j \rangle$ if and only if $\gcd(48, i) = \gcd(48, j)$.

- a. $\langle a^{21} \rangle = \langle a^k \rangle$; We seek numbers k such that $\gcd(48, k) = \gcd(48, 21) = 3$. Clearly k = 3 works.
- b. $\langle a^{14} \rangle = \langle a^k \rangle$; We seek numbers k such that $\gcd(48, k) = \gcd(48, 14) = 2$. Clearly k = 2 works.
- c. $\langle a^{18} \rangle = \langle a^k \rangle$. We seek numbers k such that gcd(48, k) = gcd(48, 18) = 6. Clearly k = 6 works.

Problem 4.85. Prove that for any prime p and positive integer n, $\phi(p^n) = p^n - p^{n-1}$.

Solution:

Since p is prime, the only positive integers $k < p^n$ with $gcd(p^n, k) \neq 1$ are integers of the form mp where $0 < m \leq p^{n-1} - 1$. There are precisely $p^{n-1} - 1$ such integers. There are exactly $p^n - 1$ integers strictly between 0 and p^n . Hence $\phi(p^n)$, the number of positive integers less than and relatively prime to p^n , must be: $p^n - 1 - (p^{n-1} - 1) = p^n - p^{n-1}$.