

```
<110>
        Myers, Alan M.
        James, Martha G.
        dull1 Coding for a Novel Starch Synthase and Uses
<120>
        Thereof
<130>
        D6036PCT
        PCT/US98/24225
<140>
<141>
        1998-11-12
<150>
        US 08/062,102
        1997-11-12
<151>
<160>
        37
<210>
<211>
        6027
<212>
        DNA
<213>
        maize
<220>
        cDNA sequence corresponding to the gene encoding the
<223>
        starch synthase enzyme DU1.
<400>
```

gaattcccta gttcagagaa agaaagaagt tgagaatgag aagcaagtga ggcgcgtttg ctgggaagtg gttcttgtga ggtttaggag ttcacccttc ttttcttccc cttctagaaa 120 tggagatggt cctacggtcg cagagccctc tctgccttcg gagtgggccg gtgctcattt 180 ttcgaccaac cgtcgcgggc ggaggagggg gcactcagtc tttgttgagg actaccagat 240 300 ttgcgagaag aagggtcatt cgatgcgttg tagcaagtcc aggttgtcct aataggaaat ctaggacage gtctcccaac gtaaaagtag ctgcttatag caactatgcg ccaagactce 360 420 tcqttqaqtc aagctccaag aagagcgaac accatgatag cagcagacac cgtgaagaaa ctattgatac atacaatggg ctgtcaggtt ctgatgcagc agaattgaca agtaatagag 480 atgtagaaat tgaagtggat ttgcagcaca tttctgagga ggaattgcca ggaaaagtat 540 cgattaatgc atcattagga gaaatggaaa cagtggatga agctgaggtc gaggaggata 600 660 agtttgaggt agatacctca ggaattgtat tgcgcaatgt tgcagttcgg gaagtggatc caaaggatga acataatgct aaagatgtat ttgtggtaga ttcgtcagga actgcaccag 720 ataatgctgc agtggaggaa gtggtagatg aagctgaggt tgaagaggat atggttgatg 780 tggatatett gggaettgae ttgaataatg caacgatega ggaaattgat ttgatggaag aggetttaet ggagaactte gaegtggatt caccaggeaa tgettetagt ggtegaacet 840 900 atgggggtgt ggatgagttg ggtgagctgc cttcaacatc cgtggattgc atcgccatta acggaaaacg tagaagtttg aagcctaagc ccttgccaat tgtcaggttc caggaacaag 1020 aacaqataqt tttaagcatt gttgacgaag aagggttgat tgctagttca tgtgaagaag 1080 gccaaccggt ggtagattac gataagcaag aggaaaactc taccgctttc gatgaacaga 1140 agcaattaac tgatgatttc cctgaagaag gcatatctat agttcacttc cctgagccaa 1200 acaatgatat tgttggatcc tcaaaattct tggagcaaaa acaagaattg gatggttctt 1260 ataaacaaga togatcaaco actggattgo atgaacaaga toagtotgtt gttagttoac 1320 acggacaaga taaatcaatt gttggtgtgc ctcagcaaat ccagtacaat gatcaatcta 1380 ttgctggttc tcatagacaa gatcaatcaa ttgccggtgc acctgagcaa atccaatccg 1440 ttgctggcta tataaaacca aatcaatcta ttgttggttc ttgtaaacaa catgaattga 1500 ttattcctga gcctaagaaa atcgaatcca tcatcagtta caatgaaata gatcaatcta 1560 ttgttagtca cagcaaacca aatcaatcta ctgttgattc ttatagacaa gctgaatcaa 1680 ttattggtgt gcctgagaaa gtccaatcca tcaccagtta cgataaacta gaccagtcca 1740 ttgtccatta cactaaacca aatcagtcta ttgttggctt gcccaaacaa caacaatcaa 1860 ttgttcatat cgttgaacca aaacagtcca tagatggttt ccctaaacaa gatctatcaa 1920 tcgttggtat ctccaatgag tttcaaacaa agcaactggc tactgttggg actcatgatg 1980 gattgcttat gaagggtgtg gaagctaagg agacatctca aaagactgaa ggggatacac 2040 ttcaggcaac gttcaatgtc gacaacttgt cacagaaaca ggaaggctta actaaagaag 2100 cagacgagat aacaattatt gagaaaatca atgatgaaga ccttgtgatg attgaagaac 2160 agaaaagcat agccatgaat gaagaacaga cgattgttac cgaagaagac attccaatgg 2220 ctaaggttga gataggaatt gacaaggcca aatttttaca tctgctttct gaagaagaga 2280 gttcatggga tgaaaatgaa gtgggaataa ttgaggctga tgaacagtat gaagtcgatg 2340 agacatctat gtccactgaa caagatatcc aggaatcacc taatgatgat ttggatccac 2400 aagcactatg gagtatgctt caagagcttg ctgaaaaaaa ttattcgctg ggaaacaagt 2460 tgtttactta tccagatgta ttgaaagctg attcaacaat tgatctctat ttcaatcgtg 2520

Page 1

```
atctatcage tgtggccaat gageetgatg tacttatcaa aggageatte aatgggtgga 2580
agtggagatt tttcactgaa aaattgcaca agagcgagct ggcaggggac tggtggtgct 2640
gcaaactata cattcctaag caggcataca gaatggactt tgtgtttttt aacggacaca 2700
cggtatatga aaataataac aataatgatt tcgtgataca aatagaaagc accatggatg 2760
aaaatttatt tgaggatttc ttggctgaag aaaagcaacg agaacttgag aaccttgcaa 2820
atgaggaagc tgaaaggagg agacaaactg atgagcagcg gcgaatggag gaagaaaggg 2880
ccgcagataa agctgacagg gtacaagcca aggttgaggt agagacgaag aagaataaat 2940
tgtgcaatgt attgggttta gccagagctc ctgttgataa tttatggtac attgagccca 3000
tcacgactgg acaagaggct actgtcagat tgtattataa cataaactca agacctctag 3060
ttcacaqtac tgagatatgg atgcatggtg gctataacaa ttggattgat ggactctctt 3120
ttgctgaaag gcttgttcat catcatgaca aagattgtga ttggtggttt gcagatgttg 3180
tcgtgcctga aagaacatat gtattggact gggtttttgc tgacggccca ccagggagtg 3240
caaggaatta tgacaacaat ggaggacatg attttcatgc tacccttcca aataacatga
ctgaggaaga gtattggatg gaagaagaac aaaggatcta tacaaggctt caacaagaga 3360
ggagggaaag ggaggaggct attaaaagga aggctgagag aaatgcaaaa atgaaagctg 3420
agatgaagga aaagactatg agaatgttcc tggtttctca gaaacacatt gtttacaccg 3480
aaccacttga aatacatgct ggaactacta ttgatgtgct ttataatcct tctaatacag 3540
ttctaactgg aaagccagag gtttggtttc gatgttcctt taatcgttgg atgtatccag 3600
gtggggtgtt gccacctcag aagatggtac aagcagaaaa tggttcacac ctaaaagcaa 3660
cagtitacgt tocacgagat gootatatga tggacttogt tttotoggag toagaagaag 3720
gtggaattta tgataacaga aatgggttag actatcatat tcctgttttt gggtcaattg 3780
caaaggaacc acctatgcac attgtccaca ttgctgttga gatggcacca atcgcaaagg 3840
ttggaggtct tggtgatgtt gtcactagtc tttcacgtgc tgtgcaagat ttaggacaca 3900
atgtggaggt tattcttcca aagtacggtt gcttgaatct aagcaatgtc aagaatctac 3960
aaatccatca gagtttttct tggggtggtt ctgaaataaa tgtgtggcgt ggactagtcg 4020
aaggcctttg tgtttacttc ctggaacctc aaaatgggat gtttggagtc ggatatgtat 4080
atggcaggga cgatgaccgc cgatttggct tcttctgtcg ttctgctcta gagtttctcc 4140
tccaaagtgg atcttctccg aacataatac attgccatga ttggtcaagt gctcctgttg 4200
cctggctaca caaggaaaac tacgcgaagt ctagcttggc aaacgcacgg gtggtattca 4260
ccatccacaa tcttgaattt ggagcgcatc atattggcaa agcaatgaga tattgtgata 4320
aagcaacaac tgtctctaat acatattcaa aggaagtgtc aggtcatggt gccatagttc 4380
ctcatcttgg gaaattctat ggcattctca atggaattga tccggatata tgggatccgt 4440
acaatgacaa ctttatcccg gtccactaca cttgtgagaa tgtggttgaa ggcaagaggg 4500
ctgctaagag ggcactgcag cagaagtttg ggttacagca aatcgatgtc cccgtcgtag 4560
gaatcgtcac tcgcctgaca gcccaaaagg ggatccacct gatcaagcat gcgattcacc 4620
gtacactcga acggaacgga caggtggttt tgcttggttc agcgccggac tctcgaatcc 4680
aagctgattt tgtcaacctg gcgaatacgc tccacggcgt aaaccatggg caagtgaggc 4740
tttccttgac ctacgacgag cctctctcgc atctgatata cgctggctct gacttcattc 4800
tggtcccatc tatatttgag ccttgcggcc taactcagct cgtcgccatg cggtatggaa 4860
ccatcccgat tgtccgcaag actggagggc tcttcgacac tgtcttcgat gtggacaatg 4920
acaaggaacg agcccgagat cgaggccttg agcccaacgg gtttagcttt gacggagctg 4980
atagcaacgg tgttgactac gcgctgaaca gggcgatctc agcttggttc gatgcccgga 5040
gctggttcca ctccctttgc aagagagtca tggagcagga ctggtcgtgg aaccgacctg 5100
ccctcgacta catcgagete taccgtteag egteeaaatt gtaataatee aaacaaegge 5160
caatgtagtg tgttgtctgc aggtctcaga tgcagccatt cagcttttgc aggttcctgg 5220
qcattgctgt acagectect tgtetttagt tagetecatt eccegaggag cacagtgcaa 5280
ttttttatcc tcagttatta tgcatagatt gtctcagtag aatgctttct tcgggcatgt 5340
atgtttgttt cctctgttgt tgaattctgg tgttaagtcg cgtataggaa tctacaggaa 5400
atgaaaaagt ccatttcctg cgtcaacctt ttagggctac catgcacatg agacctttca 5460
agtgcaaaga atattaggac tagactacta gtatgtgaac tctatttttc caagagattt 5520
caatttttcc aatgaaaaat aaactaattt ttcttggaaa aatggaaatc ccttggaaaa 5580
atggggttcc caaactagcc cgtagagtat agatcataga attggtctag tggttcctcg 5640
agagagaaaa aaacatagac ttttcttgtc atatgcttat ttaagtttat tttgtacaaa 5700
ctttgagaac cttcaaaaac accccaatgg ctggttaagt gaccagggaa ataaagagga 5760
tctataggga ggaatccccc gcctctctct cacagatgtt gcctagcacc ggccagcctc 5820
atccgtccag tggaattaag gttggttgcg acgacagccc atcaatggaa accaacctcg 5880
tgccccgtgc cgggatctac cttccttcct caccaccacg ccgatctcac cttccatagg 5940
agetteetat geactgttae etattatagg tacatgaeat tgtacatett tgtatgaact 6000
                                                                   6027
tacatcaatg ccaaaaatcc ggaattc
```

```
<210> 2
<211> 21
<212> DNA
<213> artificial sequence
```

```
<220>
        <221>
                primer bind
                Primer dul-sp1 used to amplify fragment F500 from pJW3
        <223>
        <400>
                                           21
gtacaatgac aactttatcc c
        <210>
        <211>
                23
        <212>
                DNA
                artificial sequence
        <213>
        <220>
        <221>
                primer bind
                Primer dul-sp2 used to amplify fragment F500 from pJW3
        <223>
        <400>
                                           23
cattctcaca agtgtagtgg acc
        <210>
                20
        <211>
        <212>
                DNA
        <213>
                artificial sequence
        <220>
        <221>
                primer bind
                Primer dul-sp4 used to amplify cloned BamHI fragment.
        <223>
        <400>
                                           20
gtcgtaggaa tcgtcactcg
        <210>
                5
        <211>
                20
        <212>
                DNA
                artificial sequence
        <213>
        <220>
                primer bind
        <221>
                 (1030 primer located 19 bp proximal to EcoRI cloning
        <223>
                 site in the left arm in (gtll phage DNA used to
                amplify cDNA inserts
        <400>
                                           20
attggtggcg acgactcctg
        <210>
                 20
        <211>
        <212>
                DNA
        <213>
                artificial sequence
        <220>
        <221>
                primer_bind
                 (1356 primer located 281 bp distal to EcoRI cloning
        <223>
                 site in the LacZ' region in the right arm in (gt11
                phage DNA used to amplify cDNA inserts.
        <400>
gtgtgggggt gatggcttcc
                                           20
        <210>
                 7
                 20
        <211>
        <212>
        <213>
                 artificial sequence
        <220>
        <221>
                 primer bind
                 Primer du-F3 used to amplify Dul mRNA
        <223>
        <400>
                                           20
ataaatgtgt ggcgtggact
        <210>
        <211>
                 20
                 DNA
        <212>
        <213>
                 artificial sequence
```

Page 3

```
<220>
                primer bind
        <221>
                Primer du-R1 used to amplify Du1 mRNA
        <223>
        <400>
                                          20
cgttccttgt cattgtccac
                9
        <210>
        <211>
                6
        <212>
                PRT
        <213>
                maize
        <220>
                REPEAT
        <222>
                Six residue M-box sequence in first half-
        <223>
                                                                 repeat of ten
                residue sequence of SBE-repeat in DU1.
        <400>
Asp Gln Ser Ile Val Gly
                 5
        <210>
                10
        <211>
                 4
                PRT
        <212>
                maize
        <213>
        <220>
                REPEAT
        <222>
                Four residue sequence of second half-repeat of
        <223>
                 ten residue SBE-repeat sequence in DU1.
        <400>
Ser His Lys Gln
        <210>
                 11
        <211>
                 6
        <212>
                 PRT
        <213>
                 unknown
        <220>
                 REPEAT
        <222>
                 M-box sequence in SBEI enzyme.
        <223>
        <400>
                 11
Asp Gln Ala Leu Val Gly
                  5
        <210>
                 12
                 1674
        <211>
        <212>
                 PRT
        <213>
                 maize
        <220>
                 Deduced amino acid sequence of starch synthase DU1.
        <223>
        <400>
Met Glu Met Val Leu Arg Ser Gln Ser Pro Leu Cys Leu Arg Ser
Gly Pro Val Leu Ile Phe Arg Pro Thr Val Ala Gly Gly Gly
Gly Thr Gln Ser Leu Leu Arg Thr Thr Arg Phe Ala Arg Arg Arg
                                                           45
Val Ile Arg Cys Val Val Ala Ser Pro Gly Cys Pro Asn Arg Lys
                                                           60
Ser Arg Thr Ala Ser Pro Asn Val Lys Val Ala Ala Tyr Ser Asn
Tyr Ala Pro Arg Leu Leu Val Glu Ser Ser Ser Lys Lys Ser Glu
                                      8.5
                 80
                                        Page 4
```

His	His	Asp	Ser	Ser 95	Arg	His	Arg	Glu	Glu 100	Thr	Ile	Asp	Thr	Tyr 105
Asn	Gly	Leu	Ser	Gly 110	Ser	Asp	Ala	Ala	Glu 115	Leu	Thr	Ser	Asn	Arg 120
Asp	Val	Glu	Ile	Glu 125	Val	Asp	Leu	Gln	His 130	Ile	Ser	Glu	Glu	Glu 135
Leu	Pro	Gly	Lys	Val 140	Ser	Ile	Asn	Ala	Ser 145	Leu	Gly	Glu	Met	Glu 150
Thr	Val	Asp	Glu	Ala 155	Glu	Val	Glu	Glu	Asp 160	Lys	Phe	Glu	Val	Asp 165
Thr	Ser	Gly	Ile	Val 170	Leu	Arg	Asn	Val	Ala 175	Val	Arg	Glu	Val	Asp 180
Pro	Lys	Asp	Glu	His 185	Asn	Ala	Lys	Asp	Val 190	Phe	Val	Val	Asp	Ser 195
Ser	Gly	Thr	Ala	Pro 200	Asp	Asn	Ala	Ala	Val 205	Glu	Glu	Val	Val	Asp 210
Glu	Ala	Glu	Val	Glu 215	Glu	Asp	Met	Val	Asp 220	Val	Asp	Ile	Leu	Gly 225
Leu	Asp	Leu	Asn	Asn 230	Ala	Thr	Ile	Glu	Glu 235	Ile	Asp	Leu	Met	Glu 240
Glu	Ala	Leu	Leu	Glu 245	Asn	Phe	Asp	Val	Asp 250	Ser	Pro	Gly	Asn	Ala 255
Ser	Ser	Gly	Arg	Thr 260	Tyr	Gly	Gly	Val	Asp 265	Glu	Leu	Gly	Glu	Leu 270
Pro	Ser	Thr	Ser	Val 275	Asp	Cys	Ile	Ala	Ile 280	Asn	Gly	Lys	Arg	Arg 285
Ser	Leu	Lys	Pro	Lys 290	Pro	Leu	Pro	Ile	Val 295	Arg	Phe	Gln	Glu	Gln 300
Glu	Gln	Ile	Val	Leu 305	Ser	Ile	Val	Asp	Glu 310	Glu	Gly	Leu	Ile	Ala 315
Ser	Ser	Cys	Glu	Glu 320	Gly	Gln	Pro	Val	Val 325	Asp	Tyr	Asp	Lys	Gln 330
Glu	Glu	Asn	Ser	Thr 335	Ala	Phe	Asp	Glu	Gln 340	Lys	Gln	Leu	Thr	Asp 345
Asp	Phe	Pro	Glu	Glu 350	Gly	Ile	Ser	Ile	Val 355	His	Phe	Pro	Glu	Pro 360
Asn	Asn	Asp	Ile	Val 365	Gly	Ser	Ser	Lys	Phe 370	Leu	Glu	Gln	Lys	Gln 375
Glu	Leu	Asp	Gly	Ser 380		Lys	Gln	Asp	Arg 385	Ser	Thr	Thr	Gly	Leu 390
His	Glu	Gln	Asp	Gln	Ser	Val	Val	Ser		His age S		Gln	Asp	Lys

			305				15	SU-00 400	ЗАХ	Seq			405
Ser Il	e Val	. Gly	395 Val	Pro	Gln	Gln	Ile		Tyr	Asn	Asp	Gln	Ser
Ile Al			410					415					420
			425					430					435
Glu Gl	n Ile	Gln	Ser 440	Val	Ala	Gly	Tyr	11e 445	Lys	Pro	Asn	Gln	Ser 450
Ile Va	l Gly	/ Ser	Cys 455	Lys	Gln	His	Glu	Leu 460	Ile	Ile	Pro	Glu	Pro 465
Lys Ly	s Ile	e Glu	Ser 470	Ile	Ile	Ser	Tyr	Asn 475	Glu	Ile	Asp	Gln	Ser 480
Ile Va	l Gly	/ Ser	His 485	Lys	Gln	Asp	Lys	Ser 490	Val	Val	Ser	Val	Pro 495
Glu Gl	n Ile	e Gln	Ser 500	Ile	Val	Ser	His	Ser 505	Lys	Pro	Asn	Gln	Ser 510
Thr Va	l Asp	Ser	Tyr 515	Arg	Gln	Ala	Glu	Ser 520	Ile	Ile	Gly	Val	Pro 525
Glu Ly	s Val	l Gln	Ser 530	Ile	Thr	Ser	Tyr	Asp 535	Lys	Leu	Asp	Gln	Ser 540
Ile Va	al Gl	y Ser	Leu 545	Lys	Gln	Asp	Glu	Pro 550	Ile	Ile	Ser	Val	Pro 555
Glu Ly	s Ile	e Gln	Ser 560	Ile	Val	His	Tyr	Thr 565	Lys	Pro	Asn	Gln	Ser 570
Ile Va	al Gl	y Leu	Pro 575	Lys	Gln	Gln	Gln	Ser 580	Ile	Val	His	Ile	Val 585
Glu Pr	o Ly	s Gln	Ser 590	Ile	Asp	Gly	Phe	Pro 595	Lys	Gln	Asp	Leu	Ser 600
Ile Va	al Gl	y Ile	Ser 605	Asn	Glu	Phe	Gln	Thr 610	Lys	Gln	Leu	Ala	Thr 615
Val G	Ly Th	r His	Asp 620	Gly	Leu	Leu	Met	Lys 625		Val	Glu	Ala	Lys 630
Glu Th	nr Se	r Gln	Lys 635	Thr	Glu	Gly	Asp	Thr 640	Leu	Gln	Ala	Thr	Phe 645
Asn Va	al As	p Asn	Leu 650	Ser	Gln	Lys	Gln	Glu 655		Leu	Thr	Lys	Glu 660
Ala As	sp Gl	u Ile	Thr 665	Ile	Ile	Glu	Lys	Ile 670		Asp	Glu	Asp	Leu 675
Val M	et Il	e Glu	Glu 680	Gln	Lys	Ser	Ile	Ala 685		Asn	Glu	Glu	Gln 690
Thr I	le Va	l Thr	Glu 695	Glu	Asp	Ile	Pro	Met 700		Lys	Val	Glu	Ile 705
Gly I	le As	p Lys	a Ala	Lys	Phe	Leu	His		Leu age		Glu	Glu	Glu

				710				IS	5U-00 715	ЗАХ	Seq			720
Ser	Ser	Trp	Asp	Glu 725	Asn	Glu	Val	Gly	Ile 730	Ile	Glu	Ala	Asp	Glu 735
Gln	Tyr	Glu	Val	Asp 740	Glu	Thr	Ser	Met	Ser 745	Thr	Glu	Gln	Asp	Ile 750
Gln	Glu	Ser	Pro	Asn 755	Asp	Asp	Leu	Asp	Pro 760	Gln	Ala	Leu	Trp	Ser 765
Met	Leu	Gln	Glu	Leu 770	Ala	Glu	Lys	Asn	Tyr 775	Ser	Leu	Gly	Asn	Lys 780
Leu	Phe	Thr	Tyr	Pro 785	Asp	Val	Leu	Lys	Ala 790	Asp	Ser	Thr	Ile	Asp 795
Leu	Tyr	Phe	Asn	Arg 800	Asp	Leu	Ser	Ala	Val 805	Ala	Asn	Glu	Pro	Asp 810
Val	Leu	Ile	Lys	Gly 815	Ala	Phe	Asn	Gly	Trp 820	Lys	Trp	Arg	Phe	Phe 825
Thr	Glu	Lys	Leu	His 830	Lys	Ser	Glu	Leu	Ala 835	Gly	Asp	Trp	Trp	Cys 840
Cys	Lys	Leu	Tyr	Ile 845	Pro	Lys	Gln	Ala	Tyr 850	Arg	Met	Asp	Phe	Val 855
Phe	Phe	Asn	Gly	His 860	Thr	Val	Tyr	Glu	Asn 865	Asn	Asn	Asn	Asn	Asp 870
Phe	Val	Ile	Gln	Ile 875	Glu	Ser	Thr	Met	Asp 880	Glu	Asn	Leu	Phe	Glu 885
Asp	Phe	Leu	Ala	Glu 890	Glu	Lys	Gln	Arg	Glu 895	Leu	Glu	Asn	Leu	Ala 900
Asn	Glu	Glu	Ala	Glu 905	Arg	Arg	Arg	Gln	Thr 910	Asp	Glu	Gln	Arg	Arg 915
Met	Glu	Glu	Glu	Arg 920	Ala	Ala	Asp	Lys	Ala 925	Asp	Arg	Val	Gln	Ala 930
Lys	Val	Glu	Val	Glu 935	Thr	Lys	Lys	Asn	Lys 940	Leu	Cys	Asn	Val	Leu 945
Gly	Leu	Ala	Arg	Ala 950	Pro	Val	Asp	Asn	Leu 955	Trp	Tyr	Ile	Glu	Pro 960
Ile	Thr	Thr	Gly	Gln 965	Glu	Ala	Thr	Val	Arg 970		Tyr	Tyr	Asn	Ile 975
Asn	Ser	Arg	Pro	Leu 980		His	Ser	Thr	Glu 985	Ile	Trp	Met	His	Gly 990
Gly	Tyr	Asn	Asn	Trp 995		Asp	Gly	Leu	Ser 1000		Ala	Glu	Arg	Leu 1005
Val	His	His	His	Asp 1010		Asp	Cys	Asp	Trp 1015		Phe	Ala	Asp	Val 1020

										ЗАХ					
Val	Val	Pro		Arg 1025	Thr	Tyr	Val	Leu 1	Asp 030	Trp	Val	Phe	Ala 1	Asp 035	
Gly	Pro	Pro		Ser 1040	Ala	Arg	Asn	Tyr 1	Asp 045	Asn	Asn	Gly	Gly 1	His 050	
Asp	Phe	His		Thr L055	Leu	Pro	Asn	Asn 1	Met 060	Thr	Glu	Glu	Glu 1	Tyr 065	
Trp	Met	Glu		Glu 1070	Gln	Arg	Ile	Tyr 1	Thr 075	Arg	Leu	Gln	Gln 1	Glu 080	
Arg	Arg	Glu		Glu 1085	Glu	Ala	Ile	Lys 1	Arg 090	Lys	Ala	Glu	Arg 1	Asn 095	
Ala	Lys	Met		Ala 1100	Glu	Met	Lys	Glu 1	Lys 105	Thr	Met	Arg	Met 1	Phe 110	
Leu	Val	Ser		Lys 1115	His	Ile	Val	Tyr 1	Thr 120	Glu	Pro	Leu	Glu 1	Ile 125	
His	Ala	Gly		Thr 1130	Ile	Asp	Val	Leu 1	Tyr 135	Asn	Pro	Ser	Asn 1	Thr .140	
Val	Leu	Thr		Lys 1145	Pro	Glu	Val	Trp	Phe 150	Arg	Cys	Ser	Phe 1	Asn 155	
Arg	Trp	Met		Pro 1160	Gly	Gly	Val	Leu 1	Pro 165	Pro	Gln	Lys	Met 1	Val 170	
Gln	Ala	Glu		Gly 1175	Ser	His	Leu	Lys 1	Ala 180	Thr	Val	Tyr	Val	Pro 185	
Arg	Asp	Ala		Met 1190	Met	Asp	Phe	Val 1	Phe 195	Ser	Glu	Ser	Glu 1	Glu 1200	
Gly	Gly	Ile		Asp 1205	Asn	Arg	Asn	Gly 1	Leu L210	Asp	Tyr	His	Ile	Pro L215	
Val	Phe	Gly		Ile 1220	Ala	Lys	Glu	Pro 1	Pro L225	Met	His	Ile	Val	His 1230	
Ile	Ala	Val		Met 1235		Pro	Ile	Ala 1	Lys L240	Val	Gly	Gly	Leu	Gly 1245	
Asp	Val	Val		Ser 1250	Leu	Ser	Arg	Ala	Val 1255	Gln	Asp	Leu	Gly	His 1260	
Asn	Val	Glu		Ile 1265		Pro	Lys	Tyr	Gly 1270	Cys	Leu	Asn	Leu	Ser 1275	
Asn	Val	Lys	Asn	Leu 1280	Gln	Ile	His	Gln	Ser 1285	Phe	Ser	Trp	Gly	Gly 1290	
Ser	Glu	Ile	. Asn	Val 1295		Arg	Gly	Leu	Val 1300	Glu	Gly	Leu	Cys	Val 1305	
Tyr	Phe	Leu	ı Glu	Pro 1310		Asn	Gly	Met	Phe 1315		Val	Gly	Tyr	Val 1320	
Tyr	Gly	Arg	Asp	Asp 1325		Arg	Arg	Phe	Gly 1330	Phe	Phe	Cys	Arg	Ser 1335	

Ala	Leu	Glu	Leu 1340	Gln	Ser	Ser L345	Ser	Pro	Asn	Ile 1350

His Cys His Asp Trp Ser Ser Ala Pro Val Ala Trp Leu His Lys 1355 1360 1365

Glu Asn Tyr Ala Lys Ser Ser Leu Ala Asn Ala Arg Val Val Phe \$1370\$ \$1375\$ \$1380

Thr Ile His Asn Leu Glu Phe Gly Ala His His Ile Gly Lys Ala 1385 1390 1395

Met Arg Tyr Cys Asp Lys Ala Thr Thr Val Ser Asn Thr Tyr Ser 1400 1405 1410

Lys Glu Val Ser Gly His Gly Ala Ile Val Pro His Leu Gly Lys 1415 1420 1425

Phe Tyr Gly Ile Leu Asn Gly Ile Asp Pro Asp Ile Trp Asp Pro 1430 1435

Tyr Asn Asp Asn Phe Ile Pro Val His Tyr Thr Cys Glu Asn Val 1445 1450 1455

Val Glu Gly Lys Arg Ala Lys Arg Ala Leu Gln Gln Lys Phe \$1460\$ \$1465\$ \$1470

Gly Leu Gln Gln Ile Asp Val Pro Val Val Gly Ile Val Thr Arg 1475 1480 1485

Leu Thr Ala Gln Lys Gly Ile His Leu Ile Lys His Ala Ile His $1490 \hspace{1.5cm} 1495 \hspace{1.5cm} 1500 \hspace{1.5cm}$

Arg Thr Leu Glu Arg Asn Gly Gln Val Val Leu Leu Gly Ser Ala 1505 1510 1515

Pro Asp Ser Arg Ile Gln Ala Asp Phe Val Asn Leu Ala Asn Thr 1520 1525 1530

Leu His Gly Val Asn His Gly Gln Val Arg Leu Ser Leu Thr Tyr 1535 1540 1545

Asp Glu Pro Leu Ser His Leu Ile Tyr Ala Gly Ser Asp Phe Ile 1550 1555 1560

Leu Val Pro Ser Ile Phe Glu Pro Cys Gly Leu Thr Gln Leu Val 1565 1570 1575

Ala Met Arg Tyr Gly Thr Ile Pro Ile Val Arg Lys Thr Gly Gly
1580 1585 1590

Leu Phe Asp Thr Val Phe Asp Val Asp Asn Asp Lys Glu Arg Ala 1595 1600 1605

Arg Asp Arg Gly Leu Glu Pro Asn Gly Phe Ser Phe Asp Gly Ala 1610 1615 1620

Asp Ser Asn Gly Val Asp Tyr Ala Leu Asn Arg Ala Ile Ser Ala 1625 1630 1635

Trp Phe Asp Ala Arg Ser Trp Phe His Ser Leu Cys Lys Arg Val

```
Met Glu Gln Asp Trp Ser Trp Asn Arg Pro Ala Leu Asp Tyr Ile
               1655
                                    1660
Glu Leu Tyr Arg Ser Ala Ser Lys Leu
               1670
        <210>
                13
        <211>
                60
        <212>
                PRT
        <213>
                maize
        <220>
                418..477
        <221>
        <222>
                REPEAT
                First 60 amino acid residue SBE-superrepeat of 180
        <223>
                amino acid repeat residue in DU1.
        <400>
Asp Gln Ser Ile Ala Gly Ser His Arg Gln Asp Gln Ser Ile Ala
Gly Ala Pro Glu Gln Ile Gln Ser Val Ala Gly Tyr Ile Lys Pro
Asn Gln Ser Ile Val Gly Ser Cys Lys Gln His Glu Leu Ile Ile
Pro Glu Pro Lys Lys Ile Glu Ser Ile Ile Ser Tyr Asn Glu Ile
        <210>
                14
        <211>
                60
        <212>
                PRT
        <213>
                maize
        <220>
        <222>
                REPEAT
        <221>
                 478..537
                 Second 60 amino acid residue SBE-superrepeat of 180
        <223>
                 amino acid repeat residue in DU1.
        <400>
                 14
Asp Gln Ser Ile Val Gly Ser His Lys Gln Asp Lys Ser Val Val
Ser Val Pro Glu Gln Ile Gln Ser Ile Val Ser His Ser Lys Pro
Asn Gln Ser Thr Val Pro Ser Tyr Arg Gln Ala Glu Ser Ile Ile
Gly Val Pro Glu Lys Val Gln Ser Ile Thr Ser Tyr Asp Lys Leu
                  50
        <210>
                 15
        <211>
                 60
        <212>
                 PRT
        <213>
                 maize
        <220>
        <222>
                 REPEAT
        <221>
                 438..597
                 Third 60 amino acid residue SBE-superrepeat of 180
        <223>
                 amino acid repeat residue in DU1.
Asp Gln Ser Ile Val Gly Ser Leu Lys Gln Asp Glu Pro Ile Ile
                                       10
```

```
ISU-003AX Seq
Ser Val Pro Glu Lys Ile Gln Ser Ile Val His Tyr Thr Lys Pro
                  20
                                       25
Asn Gln Ser Ile Val Gly Leu Pro Lys Gln Gln Gln Ser Ile Val
His Ile Val Glu Pro Lys Gln Ser Ile Asp Gly Phe Pro Lys Gln
                 50
                                       55
        <210>
                 16
        <211>
                10
        <212>
                PRT
        <213>
                maize
        <220>
                 478..487
        <221>
        <222>
                REPEAT
        <223>
                 Sequence of SBE-repeat in DU1.
        <400>
                 16
Asp Gln Ser Ile Val Gly Ser His Lys Gln
1
                 5
        <210>
                 17
        <211>
                 10
        <212>
                PRT
        <213>
                maize
        <220>
                 538..547
        <221>
                 REPEAT
        <222>
        <223>
                 Sequence of SBE-repeat in DU1.
        <400>
                 17
Asp Gln Ser Ile Val Gly Ser Leu Lys Gln
        <210>
                 18
        <211>
                 10
        <212>
                 PRT
        <213>
                maize
        <220>
        <221>
                 448.457
        <222>
                 REPEAT
        <223>
                 Sequence of SBE-repeat in DU1.
        <400>
Asn Gln Ser Ile Val Gly Ser Cys Lys Gln
                 19
        <210>
                 10
        <211>
        <212>
                 PRT
        <213>
                 maize
        <220>
                 568..577
        <221>
        <222>
                 REPEAT
        <223>
                 Sequence of SBE-repeat in DU1.
        <400>
                 19
Asn Gln Ser Ile Val Gly Leu Pro Lys Gln
                  5
 1
        <210>
                 20
        <211>
                 10
                 PRT
        <212>
        <213>
                 maize
        <220>
                 418..427
        <221>
        <222>
                 REPEAT
                 Sequence of SBE-repeat in DU1.
        <223>
        <400>
                 20
Asp Gln Ser Ile Ala Gly Ser His Arg Gln
                                       Page 11
```

```
ISU-003AX Seq
 1
                  5
                                       10
        <210>
                 21
        <211>
                 10
        <212>
                 PRT
        <213>
                 maize
        <220>
        <221>
                 428..437
        <222>
                 REPEAT
        <223>
                 Sequence of SBE-repeat in DU1.
        <400>
                 21
Asp Gln Ser Ile Ala Gly Ala Pro Glu Gln
                  5
        <210>
                 22
        <211>
                 10
        <212>
                 PRT
        <213>
                maize
        <220>
                 404..413
        <221>
                 REPEAT
        <222>
        <223>
                 Sequence of SBE-repeat in DU1.
        <400>
                 22
Asp Lys Ser Ile Val Gly Val Pro Gln Gln
                  5
        <210>
                 23
                 10
        <211>
        <212>
                 PRT
        <213>
                maize
        <220>
        <221>
                 598..607
        <222>
                 REPEAT
        <223>
                 Sequence of SBE-repeat in DU1.
        <400>
                 23
Asp Leu Ser Ile Val Gly Asn Glu Phe Gln
                  5
        <210>
                 24
        <211>
                 25
        <212>
                 PRT
        <213>
                maize
        <220>
        <221>
                 529..553
        <222>
                 REPEAT
        <223>
                 Conserved M-box sequence in maize SBEI.
        <400>
                 24
Lys Cys Ile Ala Tyr Ala Glu Ser His Asp Gln Ser Ile Val Gly
                                                            15
Asp Lys Thr Ile Ala Phe Leu Leu Met Asp
                  20
        <210>
                 25
                 25
        <211>
                 PRT
        <212>
        <213>
                 pea
        <220>
        <221>
                 529..553
        <222>
                 REPEAT
        <223>
                 Conserved M-box sequence in pea SBEII.
        <400>
                 25
Lys Cys Val Ser Tyr Ala Glu Ser His Asp Gln Ser Ile Val Gly
                                       10
                                       Page 12
```

```
Asp Lys Thr Ile Ala Phe Leu Leu Met Asp
                  20
        <210>
                 26
        <211>
                 25
        <212>
                PRT
        <213>
                wheat
        <220>
                 529..553
        <221>
        <222>
                REPEAT
        <223>
                 Conserved M-box sequence in wheat SBEI.
        <400>
                 26
Lys Cys Ile Ala Tyr Ala Glu Ser His Asp Gln Ser Ile Val Gly
Asp Lys Thr Met Ala Phe Leu Leu Met Asp
                  20
        <210>
                 27
        <211>
                 25
        <212>
                 PRT
        <213>
                maize
        <220>
        <221>
                 572..596
        <222>
                 REPEAT
                 Conserved M-box sequence in maize SBEIa.
        <223>
        <400>
                 27
Lys Cys Val Thr Tyr Cys Glu Ser His Asp Gln Ala Leu Val Gly
Asp Lys Thr Ile Ala Phe Trp Leu Met Asp
                  20
                 28
        <210>
         <211>
                 15
        <212>
                 PRT
        <213>
                 maize
        <220>
         <221>
                 572..596
                 REPEAT
         <222>
                 Conserved M-box sequence in maize SBEIIb.
         <223>
         <400>
                 28
Lys Cys Val Thr Tyr Ala Glu Ser His Asp Gln Ala Leu Val Gly
         <210>
                 29
                 25
         <211>
                 PRT
         <212>
         <213>
                 pea
         <220>
                 572..596
         <221>
                 REPEAT
         <222>
                 Conserved M-box sequence in pea SBEI.
         <223>
                 29
Lys Cys Val Val Tyr Cys Glu Ser His Asp Gln Ala Leu Val Gly
                                       10
                  5
Asp Lys Thr Met Ala Phe Leu Leu Met Asp
                                        25
                  20
                 30
         <210>
         <211>
                 25
         <212>
                 PRT
         <213>
                 yeast
```

```
<220>
                477..501
        <221>
        <222>
                REPEAT
                Conserved M-box sequence in yeast GLC3 glycogen
        <223>
                 synthase.
        <400>
                 30
Lys Val Val Ala Tyr Cys Glu Ser His Asp Gln Ala Leu Val Gly
                                       10
                  5
Asp Lys Ser Leu Ala Phe Trp Leu Met Asp
                  20
        <210>
                 31
        <211>
                 25
        <212>
                 PRT
        <213>
                Homo sapiens
        <220>
        <221>
                 477..501
        <222>
                 REPEAT
                 Conserved M-box sequence in human liver glycogen
        <223>
                 synthase.
        <400>
                 31
Lys Cys Ile Ala Tyr Ala Glu Ser His Asp Gln Ala Leu Val Gly
                                       10
Asp Lys Thr Leu Ala Phe Trp Leu Met Asp
                  20
                 32
        <210>
        <211>
                 28
        <212>
                 PRT
        <213>
                 maize
        <220>
        <221>
                 150..177
        <222>
                 REPEAT
                 Second 28 amino acid residue repeat of 85 residue
        <223>
                 repeat in N-terminus of DU1.
        <400>
                 32
Glu Thr Val Asp Glu Ala Glu Val Glu Glu Asp Lys Phe Glu Val
Asp Thr Ser Gly Ile Val Leu Arg Asn Val Ala Val Arg
                  2.0
         <210>
                 33
         <211>
                 29
         <212>
                 PRT
                 artificial sequence
         <213>
         <220>
                 178..205
         <221>
         <222>
                 REPEAT
                 Second 28 amino acid residue repeat of 85 residue
         <223>
                 repeat in N-terminus of DU1.
         <400>
                 33
Glu Val Asp Pro Lys Asp Glu His Asn Ala Lys Asp Val Phe Val
 1
Val Asp Ser Ser Gly Thr Ala Pro Asp Asn Ala Ala Val Glu
                  20
         <210>
                 34
         <211>
                 27
         <212>
                 PRT
         <213>
                 maize
         <220>
```

Page 14

```
206..233
        <221>
        <222>
                REPEAT
                Third 28 amino acid residue repeat of 85 residue
        <223>
                repeat in N-terminus of DU1.
        <400>
                34
Glu Val Val Asp Glu Ala Glu Val Glu Glu Asp Met Val Asp Val
                 5
Asp Ile Leu Gly Leu Asp Leu Asn Asn Ala Thr Ile
                 20
        <210>
                35
                1230
        <211>
        <212>
                PRT
        <213>
                potato
        <220>
                Deduced amino acid sequence of potato starch synthase
        <223>
                SSIII.
        <400>
                35
Met Asp Val Pro Phe Pro Leu His Arg Ser Leu Ser Cys Thr Ser
                                     10
                 5
Val Ser Asn Ala Ile Thr His Leu Lys Ile Lys Pro Ile Leu Gly
                                                         30
Phe Val Ser His Gly Thr Thr Ser Leu Ser Val Gln Ser Ser
Trp Arg Lys Asp Gly Met Val Thr Gly Val Ser Phe Ser Ile Cys
Ala Asn Phe Ser Gly Arg Arg Arg Lys Val Ser Thr Pro Arg
Ser Gln Gly Ser Ser Pro Lys Gly Phe Val Pro Arg Lys Pro Ser
Gly Met Ser Thr Gln Arg Lys Val Gln Lys Ser Asn Gly Asp Lys
                                     100
Glu Ser Lys Ser Thr Ser Thr Ser Lys Glu Ser Glu Ile Ser Asn
                                     115
                110
Gln Lys Thr Val Glu Ala Arg Val Glu Thr Ser Asp Asp Thr
                                                         135
                                     130
Lys Gly Val Val Arg Asp His Lys Phe Leu Glu Asp Glu Asp Glu
                                     145
                140
Ile Asn Gly Ser Thr Lys Ser Ile Ser Met Ser Pro Val Arg Val
Ser Ser Gln Phe Val Glu Ser Glu Glu Thr Gly Gly Asp Asp Lys
                                                         180
                                     175
Asp Ala Val Lys Leu Asn Lys Ser Lys Arg Ser Glu Glu Ser Gly
                                     190
                                                         195
                 185
Phe Ile Ile Asp Ser Val Ile Arg Glu Gln Ser Gly Ser Gln Gly
                                                         210
Glu Thr Asn Ala Ser Ser Lys Gly Ser His Ala Val Gly Thr Lys
Leu Tyr Glu Ile Leu Gln Val Asp Val Glu Pro Gln Gln Leu Lys
                                      Page 15
```


Thr Gly Asp Ser Ser Leu Asn Leu Arg Leu Glu Met Glu Ala Asn 305 310 315

Asp Leu Ile Glu Glu Asp Glu Pro Leu Ala Ala Gly Thr Val Glu

295

Leu Arg Arg Gln Ala Ile Glu Arg Leu Ala Glu Glu Asn Leu Leu 320 325 330

Gln Gly Ile Arg Leu Phe Cys Phe Pro Glu Val Val Lys Pro Asp 335 340 345

Glu Asp Val Glu Ile Phe Leu Asn Arg Gly Leu Ser Thr Leu Lys 350 355 360

Asn Glu Ser Asp Val Leu Ile Met Gly Ala Phe Asn Glu Trp Arg 365 370 375

Tyr Arg Ser Phe Thr Thr Arg Leu Thr Glu Thr His Leu Asn Gly 380 385

Asp Trp Trp Ser Cys Lys Ile His Val Pro Lys Glu Ala Tyr Arg 395 400 400

Ala Asp Phe Val Phe Phe Asn Gly Gln Asp Val Tyr Asp Asn Asn 410 415 420

Asp Gly Asn Asp Phe Ser Ile Thr Val Lys Gly Gly Met Gln Ile 425 430 435

Ile Asp Phe Glu Asn Phe Leu Leu Glu Glu Lys Trp Arg Glu Gln 440 445 450

Glu Lys Leu Ala Lys Glu Gln Ala Glu Arg Glu Arg Leu Ala Glu 455 460 465

Glu Gln Arg Arg Ile Glu Ala Glu Lys Ala Glu Ile Glu Ala Asp 470 475 480

Arg Ala Gln Ala Lys Glu Glu Ala Ala Lys Lys Lys Lys Val Leu 485 490 490

Arg Glu Leu Met Val Lys Ala Thr Lys Thr Arg Asp Ile Thr Trp 500 505

Tyr Ile Glu Pro Ser Glu Phe Lys Cys Glu Asp Lys Val Arg Leu 515 520 525

Tyr Tyr Asn Lys Ser Ser Gly Pro Leu Ser His Ala Lys Asp Leu 530 535 540

Trp Ile His Gly Gly Tyr Asn Asn Trp Lys Asp Gly Leu Ser Ile Page 16

Val	Lys	Lys	Leu	Val 560	Lys	Ser	Glu	Arg	Ile 565	Asp	Gly	Asp	Trp	Trp 570
Tyr	Thr	Glu	Val	Val 575	Ile	Pro	Asp	Gln	Ala 580	Leu	Phe	Leu	Asp	Trp 585
Val	Phe	Ala	Asp	Gly 590	Pro	Pro	Lys	His	Ala 595	Ile	Ala	Tyr	Asp	Asn 600
Asn	His	Arg	Gln	Asp 605	Phe	His	Ala	Ile	Val 610	Pro	Asn	His	Ile	Pro 615
Glu	Glu	Leu	Tyr	Trp 620	Val	Glu	Glu	Glu	His 625	Gln	Ile	Phe	Lys	Thr 630
Leu	Gln	Glu	Glu	Arg 635	Arg	Leu	Arg	Glu	Ala 640	Ala	Met	Arg	Ala	Lys 645
Val	Glu	Lys	Thr	Ala 650	Leu	Leu	Lys	Thr	Glu 655	Thr	Lys	Glu	Arg	Thr 660
Met	Lys	Ser	Phe	Leu 665	Leu	Ser	Gln	Lys	His 670	Val	Val	Tyr	Thr	Glu 675
Pro	Leu	Asp	Ile	Gln 680	Ala	Gly	Ser	Ser	Val 685	Thr	Val	Tyr	Tyr	Asn 690
Pro	Ala	Asn	Thr	Val 695	Leu	Asn	Gly	Lys	Pro 700	Glu	Ile	Trp	Phe	Arg 705
Cys	Ser	Phe	Asn	Arg 710	Trp	Thr	His	Arg	Leu 715	Gly	Pro	Leu	Pro	Pro 720
Gln	Lys	Met	Ser	Pro 725	Ala	Glu	Asn	Gly	Thr 730	His	Val	Arg	Ala	Thr 735
Val	Lys	Val	Pro	Leu 740	Asp	Ala	Tyr	Met	Met 745	Asp	Phe	Val	Phe	Ser 750
Glu	Arg	Glu	Asp	Gly 755	Gly	Ile	Phe	Asp	Asn 760	Lys	Ser	Gly	Met	Asp 765
Tyr	His	Ile	Pro	Val 770	Phe	Gly	Gly	Val	Ala 775	Lys	Glu	Pro	Pro	Met 780
His	Ile	Val	His	Ile 785	Ala	Val	Glu	Met	Ala 790	Pro	Ile	Ala	Lys	Val 795
Gly	Gly	Leu	Gly	Asp 800	Val	Val	Thr	Ser	Leu 805	Ser	Arg	Ala	Val	Gln 810
Asp	Leu	Asn	His	Asn 815	Val	Asp	Ile	Ile	Leu 820	Pro	Lys	Tyr	Asp	Cys 825
Leu	Lys	Met	Asn	Asn 830	Val	Lys	Asp	Phe	Arg 835	Phe	His	Lys	Asn	Tyr 840
Phe	Trp	Gly	Gly	Thr 845	Glu	Ile	Lys	Val	Trp 850	Phe	Gly	Lys	Val	Glu 855

Cl w	Ton	Sor	Val	Tur	Dhe	T.A11	Glu	IS Pro	SU-00	3AX Asn	Seq Glv	Leu	Phe	Ser
				860					865					870
Lys	Gly	Cys	Val	Tyr 875	Gly	Cys	Ser	Asn	Asp 880	Gly	Glu	Arg	Phe	Gly 885
Phe	Phe	Cys	His	Ala 890	Ala	Leu	Glu	Phe	Leu 895	Leu	Gln	Gly	Gly	Phe 900
Ser	Pro	Asp	Ile	Ile 905	His	Cys	His	Asp	Trp 910	Ser	Ser	Ala	Pro	Val 915
Ala	Trp	Leu	Phe	Lys 920	Glu	Gln	Tyr	Thr	His 925	Tyr	Gly	Leu	Ser	Lys 930
Ser	Arg	Ile	Val	Phe 935	Thr	Ile	His	Asn	Leu 940	Glu	Phe	Gly	Ala	Asp 945
Leu	Ile	Gly	Arg	Ala 950	Met	Thr	Asn	Ala	Asp 955	Lys	Ala	Thr	Thr	Val 960
Ser	Pro	Thr	Tyr	Ser 965	Gln	Glu	Val	Ser	Gly 970	Asn	Pro	Val	Ile	Ala 975
Pro	His	Leu	His	Lys 980	Phe	His	Gly	Ile	Val 985	Asn	Gly	Ile	Asp	Pro 990
Asp	Ile	Trp	Asp	Pro 995	Leu	Asn	Asp		Phe 1000	Ile	Pro	Ile	Pro	Tyr 1005
Thr	Ser	Glu		Val 1010	Val	Glu	Gly		Thr 1015	Ala	Ala	Lys	Glu	Ala 1020
Leu	Gln	Arg		Leu 1025	Gly	Leu	Lys	Gln	Ala 1030	Asp	Leu	Pro	Leu	Val 1035
Gly	Ile	Ile		Arg 1040	Leu	Thr	His	Gln	Lys 1045	Gly	Ile	His	Leu	Ile 1050
Lys	His	Ala		Trp 1055	Arg	Thr	Leu	Glu	Arg 1060	Asn	Gly	Gln	Val	Val 1065
Leu	Leu	Gly		Ala 1070		Asp	Pro	Arg	Val 1075	Gln	Asn	Asn	Phe	Val 1080
Asn	Leu	Ala		Gln 1085	Leu	His	Ser		Tyr 1090	Asn	Asp	Arg	Ala	Arg 1095
Leu	Cys	Leu	Thr	Tyr 1100		Glu	Pro		Ser 1105		Leu	Ile	Tyr	Ala 1110
Gly	Ala	Asp	Phe	Ile 1115		Val	Pro	Ser	Ile 1120		Glu	Pro	Cys	Gly 1125
Leu	Thr	Gln	. Leu	Thr 1130		Met	Arg	Tyr	Gly	Ser	Ile	Pro	Val	Val 1140
Arg	Lys	Thr	Gly	Gly		Tyr	: Asp	Thr	Val	Phe	Asp	Val	Asp	His 1155
Asp	Lys	: Glu	ı Arç	Ala 1160		ı Glm	n Cys	Gly	1165			Asn	Gly	Phe 1170

	Ala Asp Ala Gly	Gly Val Asp Tyr Ala	Leu Asn							
	1175	1180	1185							
_	Ala Trp Tyr Asp	Gly Arg Asp Trp Phe	Asn Ser							
	1190	1195	1200							
	Val Met Glu Gln	Asp Trp Ser Trp Asn	Arg Pro							
	1205	1210	1215							
	Leu Glu Leu Tyr	His Ala Ala Arg Lys	Leu Glu							
	1220	1225	1230							
<210> <211> <212> <213> <220> <222> <223>	-	ence nine base pair dire n cloned fragment.	ct repeats flanking							
gtgagaatg	9									
<210> 37 <211> 32 <212> DNA <213> artificial sequence <221> primer <223> Primer containing restriction sites										
<400> 37 aaacccgggaattcgatggagatggtcctacg										