Session 7: Spectral Theorem, PCA and SVD

Optimization and Computational Linear Algebra for Data Science

Contents

- 1. The Spectral Theorem
- 2. Principal Component Analysis
- 3. Singular Value Decomposition

Midterm

- The Midterm exam is in 2 weeks.
- **Scope:** everything that we have seen so far (this week's video included).
- Knowing is not enough! You need to practice: review problems available on the course's webpage.
- Past years midterms also available, with solutions.
- Important: when working on a problem, take at least 10min on it before looking at the solution (in case you are stuck).
- The midterm is open books/notes, but if you think that you need them for the exam, this probably means that you are not prepared enough.

The Spectral Theorem

The Spectral Theorem 1/18

The spectral theorem

Theorem

Ida = 1.2

Let $A \in \mathbb{R}^{n \times n}$ be a **symmetric** matrix. Then there is a orthonormal basis of \mathbb{R}^n composed of eigenvectors of A.

$$\mathcal{D} = \begin{pmatrix} \langle o \rangle & \rangle^{\nu} \\ \sqrt{\nu} & \langle o \rangle \end{pmatrix}$$

Theorem (Matrix formulation)

Let $A \in \mathbb{R}^{n \times n}$ be a **symmetric** matrix. Then there exists an orthogonal matrix P and a diagonal matrix D of sizes $n \times n$ such that

 $A = PDP^{\mathsf{T}}$

The Spectral Theorem 2/18

Geometric interpretation

The Spectral Theorem

The Theorem behind PCA

Theorem

Let A be a $n \times n$ symmetric matrix and let $\lambda_1 \ge \cdots \ge \lambda_n$ be its n eigenvalues and v_1, \ldots, v_n be an associated orthonormal family of eigenvectors. Then

$$\lambda_1 = \max_{\|v\|=1} \underbrace{v^\mathsf{T} A v}_{}$$

envectors. Then
$$\lambda_1 = \max_{\|v\|=1} v^\mathsf{T} A v \quad \text{and} \quad v_1 = \underbrace{\arg\max_{\|\underline{v}\|=1}} v^\mathsf{T} A v \,.$$

Moreover, for $k = 2, \ldots, n$:

$$\lambda_k = \max_{\|v\|=1, v \perp v_1, \dots, v_{k-1}} v^{\mathsf{T}} A v, \quad \text{and} \quad v_k = \argmax_{\|v\|=1, v \perp v_1, \dots, v_{k-1}} v^{\mathsf{T}} A v.$$

$$k=2$$
 $\lambda_2 = \max_{\|\nabla x\|=1} \nabla^T A \nabla C$
 $\nabla L \nabla_L C$

The Spectral Theorem

Proof

· det or GR such that holl=1. Let [az...an) be

the coordinates of σ in $B = (\sigma_1, -- \sigma_n)$.

$$= \alpha_1 A v_1 + \dots + \alpha_n A v_n$$

$$= \alpha_1 \lambda_1 v_1 + \dots + \alpha_n \lambda_n v_n \rightarrow (\alpha_1 \lambda_1) \text{ are the coords.}$$

$$\forall A v$$

•
$$\nabla^T A v = v \cdot (Av) = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \cdot \begin{pmatrix} \alpha_4 \lambda_1 \\ \vdots \\ \alpha_n \lambda_n \end{pmatrix}$$

$$= \alpha_1^2 \lambda_1 + \cdots + \alpha_n^2 \lambda_n - 1$$

The Spectral Theorem 5/18

Proof

- Since 11 7 12 7 == 3 /y() the matalinamic
- achieved for $d_1 = 1$, $d_2 = --d_n = 0$.
- . This corresponds to $\sigma = \sigma_1$
- . The corresponding value of $re^{T}Art$ is then $1^{2} \cdot \lambda_{1} = \lambda_{1}$

The Spectral Theorem 5/18

Proof

The Spectral Theorem

Principal Component Analysis

Empirical mean and covariance

We are given a dataset of n points $a_1, \ldots, a_n \in \mathbb{R}^d$

$$d=1$$

Mean

$$\mu = \frac{1}{n} \sum_{i=1}^{n} a_i \in \mathbb{R}$$

Variance

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (a_i - \mu)^2 \in \mathbb{R}$$

Empirical mean and covariance

We are given a dataset of n points $a_1, \ldots, a_n \in \mathbb{R}^d$

$$d = 1$$

Mean

$$\mu = \frac{1}{n} \sum_{i=1}^{n} a_i \in \mathbb{R}$$

Variance

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (a_i - \mu)^2 \in \mathbb{R}$$

$\underline{d \geq 2}$

Mean

$$\mu = \frac{1}{n} \sum_{i=1}^{n} a_i \ \left(\in \mathbb{R}^d \right)$$

Covariance matrix

$$S = \frac{1}{n} \sum_{i=1}^{n} (a_i - \mu)(a_i - \mu)^{\mathsf{T}} \in \mathbb{R}^{d \times d}$$
$$= \frac{1}{n} \sum_{i=1}^{n} a_i a_i^{\mathsf{T}} \quad \text{if } \mu = 0.$$

PCA

- We are given a dataset of n points $a_1, \ldots, a_n \in \mathbb{R}^d$, where d is «large».
- **Goal:** represent this dataset in lower dimension, i.e. find $\widetilde{a}_1, \ldots, \widetilde{a}_n \in \mathbb{R}^k$ where $k \ll d$.
- Assume that the dataset is centered: $\sum_{i=1}^{n} a_i = 0$.
- Then, S can be simply written as:

Cov. anothix without the
$$1/n$$
 $S = \sum_{i=1}^{n} a_i a_i^{\mathsf{T}} = A^{\mathsf{T}} A$. $= BB^{\mathsf{T}}$

where A is the $n \times d$ "data matrix":

$$B = \begin{pmatrix} 1 & --a_n \\ 1 & --a_n \end{pmatrix} = A^T \qquad A = \begin{pmatrix} -a_1^T \\ \vdots \\ -a_n^T - \end{pmatrix}$$

Direction of maximal variance

Direction of maximal variance

Mean:
$$\frac{d_1 + \dots + d_n}{n} = \frac{\langle \sigma, a_1 \rangle + \dots + \langle \sigma, a_n \rangle}{n}$$

$$= \langle \sigma, \frac{a_1 + \dots + a_n}{n} \rangle = 0$$
Variance:
$$\frac{1}{k} \sum_{i=1}^{k} \langle \sigma, a_i \rangle^2 = \frac{1}{n} \sum_{i=1}^{n} \sigma^{T_i} a_i a_{i}^{T_i} a_i^{T_i}$$

$$= \frac{1}{n} \sigma^{T} \sum_{i=1}^{n} a_i a_{i}^{T_i}$$

$$= \frac{1}{n} \sigma^{T} \sum_{i=1}^{n} a_i a_{i}^{T_i}$$

$$= \frac{1}{n} \sigma^{T} \sum_{i=1}^{n} a_i a_{i}^{T_i}$$

Direction of maximal variance

Good news: $S = A^T A$ is symmetric. $S = A^T A$ $S = A^T A$ **Spectral Theorem:** $let \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ be the eigenvalues of S and (v_1, \ldots, v_n) an associated orthonormal basis of eigenvectors.

By the theorem we saw before a vector or that maximises $\sigma^T S \sigma$ is $\sigma = \sigma_1$ o and the corresponding Thursday of Sor is

equal to 1/2.

2nd direction of maximal variance

· We would like to find another vector vo, such that the variance of (00,an) --- (00,an) is large.

$j^{ m th}$ direction of maximal variance

The « j^{th} direction of maximal variance » is v_j since v_j is solution of

maximize
$$v^\mathsf{T} S v$$
, subject to $\|v\| = 1, v \perp v_1, v \perp v_2, \ldots, v \perp v_{j-1}$.

The dimensionally reduced dataset is then

$$\begin{pmatrix} \langle v_1, a_1 \rangle \\ \langle v_2, a_1 \rangle \\ \vdots \\ \langle v_k, a_1 \rangle \end{pmatrix}, \begin{pmatrix} \langle v_1, a_2 \rangle \\ \langle v_2, a_2 \rangle \\ \vdots \\ \langle v_k, a_2 \rangle \end{pmatrix}, \begin{pmatrix} \langle v_1, a_3 \rangle \\ \langle v_2, a_3 \rangle \\ \vdots \\ \langle v_k, a_3 \rangle \end{pmatrix} \cdots \begin{pmatrix} \langle v_1, a_n \rangle \\ \langle v_2, a_n \rangle \\ \vdots \\ \langle v_k, a_n \rangle \end{pmatrix} \cdot \mathcal{C}_{\mathbf{Q}}$$

Recap

- (1) Center your dataset -> get a dataset such that & a: =0.
- (2) Compute the cavaliance matrix $S = \sum_{i=1}^{n} a_i a_i^T$
- 3 Computs the eigenvalues of _ \lambda d of S and associated eigenvectors of _ 15d of S.
- G Sort eigenvalues/eigenvectors
- (5) Select some k. (6) Compute & &

Principal Component Analysis

Which value of k should we take?

1st way Ween using the & first principal components we capture a fraction $\frac{\lambda_1 + \lambda_2 + \dots + \lambda_k}{\lambda_1 + \lambda_2 + \dots + \lambda_k}$ of the total variance.

Choose & such that fl >, 80%

Which value of k should we take?

Singular Value Decomposition

S	in	g	ul	ar values					S	/vectors					

16/18

Singular Value Decomposition

Singular Value decomposition

Theorem

Let $A\in\mathbb{R}^{n\times m}$. Then there exists two orthogonal matrices $U\in\mathbb{R}^{n\times n}$ and $V\in\mathbb{R}^{m\times m}$ and a matrix $\Sigma\in\mathbb{R}^{n\times m}$ such that $\Sigma_{1,1}\geq \Sigma_{2,2}\geq \cdots \geq 0$ and $\Sigma_{i,j}=0$ for $i\neq j$, that verify

$$A = U\Sigma V^{\mathsf{T}}.$$

Geometric interpretation of $U\Sigma V^{\mathsf{T}}$

Questions?

Questions?

$$\frac{dxd}{dx} \left(\begin{array}{c} A^{T}A \stackrel{?}{=} \\ \stackrel{?}{=} \\ 1 \end{array} \right) \begin{array}{c} \sum_{i=1}^{n} a_{i} a_{i} \end{array} \begin{array}{c} a_{i} \\ A^{T}A \end{array} \begin{array}{c} A_{i} \\ 1 \end{array} \begin{array}{c} A_{i} \\ 1 \end{array} \begin{array}{c} A_{i} \\ 2 \end{array} \begin{array}{c} A_{i} \\ 3 \end{array} \begin{array}{c} A_{i} \\ 4 \end{array}$$

