

Context

UWV coordinates the distribution of almost 20 billion euro spread over 600.000 clients annually.

All forms of interaction are (becoming) digital-first.

UWV is a governmental organization:

- Purchases, CR, CLTV or growth are no success metrics
- Primary KPI's are customer satisfaction and UX focused

CSat score, UWV's #1 KPI

A costly, extensive, outsourced 62 item questionnaire performed twice a year by Ipsos.

- internal evaluation and monitoring of progress
- hard target set by dutch parliament

Context

Duration

- 3 weeks (pilot)
- 4 weeks
- 11 weeks (3rd validation)
- little dev time (bottleneck)

My role

- Self started project
- Excitement for xfn collab
- Planning & coordination
- Problem solving
- Implementation
- Validation
- Sharing & Visibility

Collaboration

- Front end developer
- Web Data Analysts
- Web Data Monitors
- UI designer
- Graphic Designer
- Product Owner
- Manager & Management Team
- Copywriters
- Content specialist
- Market researcher
- Portal Manager

Goals

1) Increase the cadence of CSat KPI without increasing costs

Goals

2) Make the CSat KPI usable as OEC for website optimization (e.g. as guard rail metric for A/B testing)

Goals

3) Improve our understanding of customer satisfaction changes in relation to the dimension underlying customer satisfaction

The main challenge

Limiting loss when reducing 62 items to a maximum of 8* i.e. how to pick the 'most valuable' items?

picking the 'most valuable' items & remodelling

- 1) Exploratory factor analysis
 - a) first l'identified dimensions underlying CSat
 - b) within each dimension I ranked items based on factor loading
 - c) finally I reduced dimensions based on explained variance

- 2) Multiple linear regression (with CSat score as dep. var)
 - I ranked items based on regression coefficient

$Y = \beta_0 + \beta_1 X_1 +$	$\beta_2 X_2 + + \beta_i X$	i
-------------------------------	-----------------------------	---

- 3) Reduce total items
 - I selected items based on combined rank scores from step 1 and 2

	DimFL_rank	RC_rank	Rank	Selected
item 1	A1	4	A5	'Yes
item 2	А3	3	A6	'No
item 3	A2	1	А3	Yes
item 4	B2	6	B8	'No
item 5	B1	5	B6	Yes
item 6	В3	2	B5	Yes
in				

- 4) Validation & (pilot) Implementation
 - a) I used a 10% fold (hold-out from step 2) to validate the regression model
 - b) I compared 'predicted' CSat (from new data) against new CSat scores from Ipsos
 - c) I performed a final sanity check using a temporary surveyed single item CSat score

picking the 'most valuable' items & remodelling

Exploratory factor analysis

- a) I identified dimensions underlying CSat using EFA & b) secondly I ranked items based on factor loadings

	'A'	<i>B</i> '	\mathcal{C}'
	Speed	Trust/Privacy	Info Qual
item 1	.699	.093	
item 2	.582	.111	
item 3	.672	.043	
item 4	.103	.586	
item 5	.211	.621	
item 6	.031	.574	
in			

\mathcal{I})imFL_	.Rank'
	'A_	1'
	'A_	3'
	' A_	2'
	\mathcal{B}_{-}	2'
	\mathcal{B}_{-}	1'
	\mathcal{B}_{-}	.3'

Limiting loss in item reduction picking the 'most valuable' items & remodelling

- Exploratory factor analysis
 - c) now I reduced dimensions based on explained variance

				Total Var	iance Explained				
	e -	Initial Eigenvalu	ies	Extractio	n Sums of Squar	ed Loadings	Rotation	n Sums of Square	ed Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1 <i>'A'</i>	7.831	22.375	22.375	7.831	22.375	22.375	3.170	9.057	9.057
2 <i>B</i> '	2.845	8.129	30.504	2.845	8.129	30.504	2.998	8.567	17.624
3 °C'	2.602	7.434	37.938	2.602	7.434	37.938	2.986	8.532	26.156
4 Etc'	2.440	6.973	44.911	2.440	6.973	44.911	2.974	8.498	34.654
5	2.326	6.647	51.557	2.326	6.647	51.557	2.527	7.220	41.875
6	2.130	6.085	57.642	2.130	6.085	57.642	2.499	7.140	49.014
7	1.951	5.574	63.216	1.951	5.574	63.216	2.481	7.089	56.103
8	1.777	5.078	68.294	1.777	5.078	68.294	2.470	7.058	63.161
9	1.616	4.616	72.911	1.616	4.616	72.911	2.412	6.893	70.054
10	1.411	4.030	76.941	1.411	4.030	76.941	2.411	6.887	76.941
11	.719	2.055	78.996						

Limiting loss in item reduction picking the 'most valuable' items & remodelling

- Exploratory factor analysis
 - c) now I reduced dimensions based on explained variance

picking the 'most valuable' items & remodelling

2) Multiple linear regression (with CSat score as dep. var)

As second step I ranked individual items based on regression coefficient

	Speed	Trust/Privacy	Info Qual	<u>CSat</u>	'RC_Rank'
item 1	.699	.093		.431	<u>'4'</u>
item 2	.582	.111		.532	"3" ——
item 3	.672	.043		.611	'1'
item 4	.103	.586		.123	·6'
item 5	.211	.621		.342	
item 6	.031	.574		.604	<u>'2'</u>
in					

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_i X_i$$

Limiting loss in item reduction picking the 'most valuable' items & remodelling

Reduce total items

Here I selected items based on combination of previous steps (rankings)

	DimFL_rank	RC_rank	
item 1	A_1	4	
item 2	A_3	3	
item 3	A_2	1	
item 4	B_2	6	
item 5	B_1	5	
item 6	B_3	2	
in			

picking the 'most valuable' items & remodelling

4) Validation

- a) I validated the foundations by using the 10% holdout, running this through the regression model and comparing the 'predicted' CSat score with the Ipsos CSat score
- b) After this I started (pilot) implementation using Usabilla VoC tooling, this let me compare the 'predicted' CSat scores of new data against new CSat scores from Ipsos
- c) A third and optional check* can be performed by adding a 9th item, a 10 point scale item surveying overall satisfaction and comparing this with the models predicted CSat score. (will contain error as a fuzzy, multidimensional construct like overall customer satisfaction simply cannot reliably be measured through a single item construct)

picking the 'most valuable' items & remodelling

- 5) Implementation
 - Usabilla (front end)
 - A/B test
 - type
 - progress bar
 - button

(response rate and attrition)

- 3% random sample (spread over 7 days)

Impact

Factor Analysis + multiple linear regression = continuous, KPI aligned, CSat insights

- predicted CSat score with 97% precision
 - 42% increased response rate
 - 65% lower attrition
- provided granularity and link to logged on-site behavior
 - underlying dimension of (changes in) customer satisfaction
 - differentiate customer journeys based on onsite behavior (cohorts & segments)
 - added value as optional guard rail metrics for larger A/B tests
- no more CSat surprises for management & xfn after 6 months of 'blind optimization'
 - Implemented as 'hero KPI' on UWV's Management Dashboard
 - Implemented as KPI on the optimization department's 24/7 live dashboard
- considered for adoption by other governmental departments (werk.nl & DUO.nl)

Closing notes

Concrete learnings

- A/B test your surveys!
- my mistake in communicating validityaudience
- my mistake in planning
 - share progress frequently vs start & finish
 - timing: Ipsos hard date (validation)
- impact through others