

Исследование возможности применения методов объединения пространственно-разнесенных сигналов в беспроводных сенсорных сетях

Выполнил: студент 516 группы

Захаров Павел Сергеевич

Научный руководитель: Владимиров Леонид Леонидович

Москва, 20 июня 2019 г.

Структура доклада

- 1. Введение
- 2. Постановка задачи
- 3. Восходящая линия связи
- 4. Нисходящая линия связи
- 5. Итоги

Введение. Мир IoT

Введение. Беспроводные сенсорные сети.

Рисунок 2

Введение. Мультиантенные технологии в WSN.

Рисунок 3

Постановка задачи

- 1. Отбор и теоретическая оценка методов
- Оценка возможности реализации алгоритма, требований к сети
- 3. Построение экспериментальной установки
- 4. Проведение экспериментов
- 5. Сравнение результатов с теорией, уточнение требований

Восходящая линия связи. MRC и EGC.

Пусть
$$h_i(\tau) = \alpha_i \delta(\tau)$$

Объединение с максимальным отношением:

$$s(t) = \sum_{i=1}^{N} \alpha_i^* s_i(t)$$
$$\Gamma = \sum_{i=1}^{N} \Gamma_i$$

Объединение с единичным усилением:

$$s(t) = \sum_{i=1}^{N} \frac{\alpha_i^*}{|\alpha_i|} s_i(t)$$
$$\Gamma = \frac{(\sum_{i=1}^{N} \sqrt{\Gamma_i})^2}{N}$$

Восходящая линия связи. Соответствие с теорией.

Ö

Восходящая линия связи. Дисбаланс каналов.

Нисходящая линия связи.

Рисунок 9

Нисходящая линия связи. Разность фаз и усиление.

Нисходящая линия связи. Алгоритмы.

Метод	Усиление сигнала
Когерентная передача	$\frac{P}{P_0} \le N^2$
Подбор фазы, k пилотов	$\frac{P}{P_0} \le N + (N-1)(N-2) \left(\frac{k}{\pi}\right)^2 \sin^2\left(\frac{\pi}{k}\right) + 2(N-1)\frac{k}{\pi} \sin\left(\frac{\pi}{k}\right)$
Некогерентная передача	$\frac{P}{P_0} \le N$

Нисходящая линия связи. Результаты эксперимента.

Нисходящая линия связи. Зависимость от временной синхронизации.

Рисунок 12

Нисходящая линия связи. Результаты измерений.

Рисунок 13

Нисходящая линия связи. Результаты измерений.

Рисунок 14

Нисходящая линия связи. Результаты измерений.

Заключение

Восходящая линия связи:

- 1. Обработка данных в цифровой области после получения
- 2. Относительно слабые требования к инфраструктуре
- 3. Рост производительности линейный по количеству антенн Нисходящая линия связи:
 - 1. Сложение сигналов на антенне
 - 2. Плохая синхронизация ухудшает производительность
 - 3. Теоретический рост мощности квадратичный; для реализуемых вариантов линейный.

Спасибо за внимание!

Экспериментальная установка

- Базовая станция
- Узел 4502

- ▲ Узел 4504
- ∗ Узел 4508

Экспериментальная установка

Рисунок 4

Экспериментальная установка

Рисунок 5

Восходящая линия связи. Схема обработки данных.

