Tema 3 Tercera Parte

Relación entre el modelo E/R y el modelo relacional: Paso a Tablas

Tema 3 Introducción

Datos generales sobre una organización concreta

Datos operativos que se manejan en la organización

Esquema conceptual de la base de datos

Modelo lógico de la base de datos

Implementación de la base de datos en un DBMS

Atributo 1	Atributo 2	Atributo 3		Atributo n	ı	
					ı	
		Atributo 1	Atribu	to 2		Atributo n

Tema 3 Introducción

Tema 3

Conjuntos de entidades

Traducción de un Conjunto de Entidades Fuerte

Sea E un conjunto de entidades fuerte con atributos a_1 , a_2 , ..., a_n . Representamos dicho conjunto por medio de una tabla llamada E, donde cada tupla es una ocurrencia del conjunto de entidades y está caracterizada por n columnas distintas, una por cada atributo.

Claves

La clave primaria de la tabla correspondiente está constituida por los atributos que forman la clave primaria en el conjunto de entidades.

ASIGNATURAS(<u>Cod-Asig</u>, Nombre, Creditos, Caracter, Curso)

ALUMNOS(<u>DNI</u>, Nombre, Fecha-Nac, Direccion, Beca)

AULAS(<u>Cod-Aula</u>, Capacidad)

PROFESORES(<u>NRP</u>, Nombre, Categoria, Area)

DEPARTAMENTOS(<u>Cod-Dep</u>, Nombre)

Conjuntos de entidades

Traducción de un conjunto de entidades débil

Sea A un tipo de entidad débil con atributos a_1 , a_2 , ..., a_n . Sea B el conjunto de entidades fuerte del que A depende, y sean b_1 , b_2 , ..., b_m los atributos de la clave primaria de B. Representamos A por una tabla con una columna por cada atributo del conjunto siguiente:

$$\{a_1,a_2,...,a_n\} \cup \{b_1,b_2,...,b_m\}$$

Claves

La clave primaria de la tabla correspondiente está constituida por los atributos que forman la clave primaria en el conjunto de entidades del que depende, más los campos necesarios del conjunto de entidades débil del que deriva la tabla.

Hay que generar también una clave externa.

Tema 3 Conjuntos de entidades

Cod-asig	Cod-grup	Max-al	Tipo
BD1	A	125	Teoria
SO1	A	100	Teoria
BD1	A	25	Practica
BD1	В	25	Practica
SO1	В	100	Teoria
BD1	С	32	Practica

Traducción de una relación

Sea R una relación que conecta los tipos de entidad E₁, ..., E_m. Entonces, la tabla para R contiene n columnas donde: $n=n_1+n_2+...+n_m+n_R$, con $n_i=n$ úmero de atributos de la clave primaria del conjunto de entidades E_i.

n_R=número de atributos propios de la relación.

Si un tipo de entidad interviene varias veces, hay que cambiar el nombre de los atributos para evitar ambigüedad.

Claves

La clave primaria de la tabla correspondiente depende de las cardinalidades:

Caso 1: Relaciones muchos a muchos

La clave primaria está formada por la unión de todos los atributos que forman las claves primarias de los conjuntos de entidades que intervienen en la relación. En su caso puede que haya que añadir algunos atributos de la relación.

Caso 2: relaciones muchos a uno

La clave primaria está formada por la unión de todos los atributos que forman las claves primarias de los conjuntos de entidades que intervienen en la relación con cardinalidad muchos.

Caso 3: relaciones uno a uno

En este caso tiene dos claves candidatas formadas cada una de ellas por los atributos clave de cada conjunto de entidades que intervienen. Hay que elegir como clave primaria una de ellas y la otra mantenerla como clave candidata.

En cualquier caso los atributos que identifican a las claves de las entidades que participan en la relación hay que establecerlos como claves externas a las CP de dichas entidades.

Tema 3 Diagrama E/R

Claves Relación R: {e1} y {e2}

Claves de las relaciones en función de la cardinalidad y de los atributos identificadores en las relaciones

NRP	Cod-Dep
ECA-123456	CCIA
ECA-345678	CCIA
ECA-231222	LSI

NRP	Cod-Dep	
ECA-123456	CCIA	
ECA-345678	LSI	
ECA-098788	AC	

ASIGNATURAS(Cod-Asig, Nombre, Creditos, Caracter, Curso) ALUMNOS(DNI, Nombre, Fecha-Nac, Direccion, Beca) AULAS(COD-AULA, CAPACIDAD) PROFESORES(NRP, Nombre, Categoria, Area) DEPARTAMENTOS(Cod-Dep,Nombre) MATRICULA(Cod-Asig,Cod-Grup,Tipo,DNI,Convocatoria,Calificacion) PERTENECE(NRP,COD-DEP) DIRIGE(NRP,Cod-Dep) GRUPOS(COD-ASIG,COD-GRUP,TIPO,MAX-AL)IMPARTE(Cod-Asig,Cod-Grup,Tipo,NRP) CLASE(COD-ASIG, COD-GRUP, TIPO, AULA, DIA, HORA) CC

Traducción de relaciones de HERENCIA

- Dos alternativas:
 - Crear una tabla por cada conjunto de entidades del diagrama.
 - El conjunto de entidades más general pasa a ser una tabla según el criterio empleado para los conjuntos de entidades.
 - Cada uno de los conjuntos de entidades de nivel inferior:
 - Tabla constituida por todos los atributos propios más la clave primaria del conjunto de entidades superior.
 - Crear una tabla por cada caso particular.
 - Desaparece el conjunto de entidades de nivel superior o generalización.
 - Los atributos se añaden a las tablas inferiores.

Claves

La clave primaria de cualquiera de las tablas está constituida por los atributos que forman la clave primaria en el conjunto de entidades de nivel superior.

FUNCIONARIO(NRP, Nombre, Direccion, Nivel, Fecha-Alta) LABORAL(NRP, Nombre, Direccion, Grupo, Especialidad)

- La segunda opción no es frecuente:
 - Se pierde la jerarquía que subyace en el diagrama de partida.
 - En algunos casos no resulta adecuado o no se puede utilizar:
 - Si existen entidades del conjunto de entidades general que no pertenecen a ninguna de las especializaciones.
 - Si existen conexiones propias del conjunto de entidades genérico o superclase.

Traducción de agregaciones

- La agregación como tal no se refleja en una tabla específica en la base de datos.
- Su significado está ya reflejado en la relación que engloba la propia agregación.

Relaciones n-arias

Las relaciones n-arias señalan zonas complejas de nuestro diagrama.

- El paso de relaciones n-arias a tablas no suele ser tan directo como en los casos anteriores.
- Una misma relación (desde el punto de vista del diagrama) puede tener varias interpretaciones.

Ejemplo: Cardinalidad muchos a muchos a muchos

Cualquier proveedor puede suministrar cualquier tipo y número de piezas a cualquier proyecto y éste, a su vez, puede recibir piezas, iguales o distintas, de cualquier proveedor...

Ejemplo: Cardinalidad muchos a muchos a uno

Un proyecto puede estar asociado a varias parejas (Proveedor-Pieza) pero que dos proyectos diferentes no pueden estar ligados a una misma pareja (Proveedor-Pieza)....

SUMINISTRO(Cod-Pro,Cod-Pie,Cod-PJ)

Ejemplo: Cardinalidad muchos a muchos a uno

El diseño resultaría poco adecuado si quisiéramos reflejar la lista de piezas que puede suministrar cada proveedor independientemente de que éstas hayan sido ya enviadas a un proyecto.

Ejemplo: Cardinalidad muchos a uno a uno

- Situación controvertida:
 - A priori no existe una única interpretación posible.
 - El esquema inicial no se ha refinado lo suficiente.

Ejemplo: Cardinalidad muchos a uno a uno

- Un proyecto utiliza muchas piezas en exclusiva.
- El suministro de una pieza a un proyecto (en las condiciones anteriores) no puede realizarse a través de diferentes proveedores.
- La agregación no es estrictamente necesaria.

Ejemplo: Cardinalidad muchos a uno a uno

Interpretación 2:

- Un proveedor suministra muchas piezas en exclusiva.
- Los proyectos usan muchas piezas, cada una con su proveedor.
- La agregación no es estrictamente necesaria.

Ejemplo: Cardinalidad muchos a uno a uno

- Interpretación 3:
 - Proveedores y proyectos se relacionan en exclusiva.
 - El proveedor suministra muchas piezas al proyecto fruto de esa relación.
 - La agregación no es estrictamente necesaria.

ASIGNATURAS(Cod-Asig, Nombre, Creditos, Caracter, Curso) ALUMNOS(DNI, Nombre, Fecha-Nac, Direccion, Beca) AULAS(COD-AULA, CAPACIDAD) PROFESORES(NRP, Nombre, Categoria, Area) DEPARTAMENTOS(Cod-Dep,Nombre) MATRICULA(Cod-Asig,Cod-Grup,Tipo,DNI,Convocatoria,Calificacion) PERTENECE(NRP,COD-DEP) DIRIGE(NRP,CoD-DEP) GRUPOS(COD-ASIG,COD-GRUP,TIPO,MAX-AL)IMPARTE(Cod-Asig,Cod-Grup,Tipo,NRP) CLASE(COD-ASIG, COD-GRUP, TIPO, AULA, DIA, HORA) CC

- ¿Es el conjunto de tablas obtenido el mejor posible?
 - Reducción del número de tablas
 - Sin pérdida de información (de datos o de restricciones).
 - Mejoramos la eficiencia
 - Almacenamiento
 - Rendimiento del sistema

Forma:

- Fusión de tablas
- Condición necesaria:
 - Misma clave primaria (candidata)
 - Que no procedan de herencia.

¿Conviene?

- Análisis profundo de los dominios de los datos y de sus relaciones.
- Evaluación objetiva del espacio ocupado y/o desperdiciado.

- Ejemplo:
 - PROFESORES(<u>NRP</u>, NOMBRE, CATEGORIA, AREA)
 - PERTENECE(NRP,COD-DEP)
 - ¿PROF-PERT(NRP, NOMBRE, CATEGORIA, AREA, COD-DEP)?
- Fusión acertada porque:
 - Misma información
 - Llenado razonable de la columna COD-DEP

- Ejemplo:
 - DEPARTAMENTOS(COD-DEP, NOMBRE)
 - DIRIGE(NRP, COD-DEP)
 - ¿DEP-DIR(COD-DEP, NOMBRE, NRP)?
- Fusión acertada:
 - Todo departamento tendrá un director

Ejemplo:

- DIRIGE(NRP, COD-DEP1)
- PROF-PERT(NRP, NOMBRE, CATEGORIA, AREA, COD-DEP2)
- ¿PROF-PERT-DIR(NRP,COD-DEP1,NOMBRE,CATEGORIA, AREA, COD-DEP2)?
- Fusión inadecuada:
 - Cod-Dep1 (proveniente de DIRIGE), tomará el valor nulo en la mayoría de las tuplas

Tema 3 Otras mejoras

Hay ocasiones en que un diagrama E/R no es lo suficientemente expresivo como para permitir plasmar cualquier restricción del problema.

MATRICULA(COD-ASIG,COD-GRUP,TIPO,DNI,CONVOCATORIA,CALIFICACION)

- Permitiría que un alumno estuviera matriculado en dos grupos distintos de la misma asignatura para una misma convocatoria
- Se hace necesario un examen exhaustivo de dicho esquema desde un punto de vista más formal:
 - Dependencias entre los atributos

Conjuntos de entidades PACIENTES(DNI, Nombre, Telef, Direc) H-CLINICAS(Num-H, Fecha) HABITACIONES(Num-Hab, Servicio, Camas) PRUEBAS(CODIGO, NOMBRE, APARATO, SALA) ESPECIALISTAS(COLEGIADO, NOMBRE, ESPECIALIDAD) Conjuntos de entidades débiles CAMAS(NUM-HAB, NUM-CAMA, TIPO) INGRESOS(Num-H, Num-Ing, Causa) Conexiones CC $REALIZA(\underline{Num-H,Num-Ing,Codigo},\overline{Dia,Hora,Colegiado})$ Ocupa(Num_H, Num_Cama, Num_H, Num_Ing) TIENE(<u>DNI,Num-H</u>) CC ORIGINA(Num-H,Num-Ing,Codigo)

Conjuntos de entidades

VEHICULOS(MATRICULA, MARCA, MODELO, CC)

POLIZAS(NUM-POLIZA, TIPO)

CLIENTES(NUM-CLI, FECHA)

ACCIDENTES(CODIGO, DESCRIPCION, TIPO)

Conexiones

TIENE(MATRICULA, NUM-POLIZA, PRECIO)

ASEGURA(MATRICULA, NUM-CLI, F-ALTA)

CAUSA(Matricula, Dia, Hora, Codigo, Cuantia, Lugar, Causa)

TIENE-ASEGURA(Matricula, Num-Poliza, Precio, Num-Cli, F-Alta)

VEH-TIENE-ASEGURA(Matricula, Marca, Modelo, Cc, Num-Poliza, Precio, Num-

Cli,F-Alta)