Epipolar

Name	Dharini Baskaran
Identity Key	dhba5060

	Level	Completed
0	Beginner	12
	Intermediate	7
♦	Advanced	
	Expert	

Goal		
4722	16	
5722	18	
Total Completed		
20		

¹ ✓ Apply the intrinsic matrix

$$^{C}P = (4, 2, 2)$$
 $^{P}P = (16, 4)$
 $f = 2$

Flip y: Yes 2 pixels / unit x 2 pixels / unit y

Offset:

$$(8, 8)$$
 $0x^{-8}$
 $0y^{-8}$

$$S_x = 2$$

$$S_y = -2$$

$$S_{y} = \frac{-2}{-2}$$

$$S_{x}f = \frac{4}{-4}$$

$$S_{y}f = \frac{-4}{-4}$$

$$S_y f = \underline{-4}$$

$$M^{I}$$

4		8
	A	00
		1

$$C\mathbf{p}$$

² Apply the intrinsic matrix

$$^{C}P = (2, 4, 2)$$
 $^{P}P = (16, 0)$
 $f = 4$

Flip y: Yes 2 pixels / unit x 4 pixels / unit y

Offset: (8, 32)

$$S_{x} = 2$$
 $S_{y} = -4$
 $S_{x}f = 8$
 $S_{y}f = -16$

CP

3 Apply the intrinsic matrix

$$^{C}P = (2, 4, 4)$$
 $^{P}P = (2, 2)$
 $f = (4, 2)$

Flip y: Yes 2 pixels / unit x 4 pixels / unit y

Offset: (-2, 8)

$$S_{x} = 2$$
 $S_{y} = 4$
 $S_{x}f = 8$
 $S_{y}f = -8$

 $^{\mathbf{C}}\mathbf{P}$

PP

Projections on virtual image planes

Suppose P₁, P₂, P₃ are co-planar

 \square Draw b₂ = P₂ \downarrow B

 \square Draw $a_3 = P_3 + A$

□ Draw epipolar lines

☐ Draw the epipolar line on B corresponding to P₁, P₂

 \square Draw b₂ = P₂ \downarrow B

You can either draw directly or drag this dotted line

Hint: Epipolar lines must go through the epipole.

⁶✓ □ Draw epipolar lines

You can either draw directly or drag this dotted line

Note that P₃ and P₄ are a plane "above" P₁ and P₂

☐ Draw the epipolar line on B corresponding to P₃, P₄

 \square Draw b₄ = P₄ \downarrow B

Hint: Epipolar lines must go through the epipole.

¬✓ ○ Translation → Cross-product Matrix

$$T = [t_x, t_y, t_z]$$

$$T = [2, 3, -1]$$

$$T = [5, -2, 4]$$

$$Tx = \begin{bmatrix} -t_z & t_y \\ t_z & -t_x \end{bmatrix}$$

$$-t_y & t_x$$

$$Tx = \begin{bmatrix} 1 & 3 \\ -1 & -2 \\ -3 & 2 \end{bmatrix}$$

$$Tx = \begin{bmatrix} -4 & -2 \\ 4 & -5 \\ 2 & 5 \end{bmatrix}$$

⁸
✓ O Derive [Tx] and [R]

Camera Rotates 90° (X->Z)

Z

⁹✓ ○ Epipolar Constraint leftP₁ → rightP₂

Given $^{\text{left}}P_1 = (2, 3, 4)$ and $^{\text{right}}P_2 = (2, 2, 1)$. Verify that the epipolar constraint is satisfied by multiplying from left to right.

	-1			-1		2
1		-2	1			2
	2				1	1

$$12 - 6 - 6 = 0$$

¹⁰ □ Epipolar Constraint ^{left}P₁ ← ^{right}P₂

Given $^{\text{left}}P_1 = (2, 3, 4)$ and $^{\text{right}}P_2 = (2, 2, 1)$. Verify that the epipolar constraint is satisfied by multiplying from right to left (i.e, transposed from top down).

	-1		-2
1			2
		1	1

-2

-1

¹¹ Calculate the Essential Matrix (E)

Between the two cameras:

Rotation: 90° (Y->Z)

Translation: [-2, 3, 1]

1. Calculate TxR

Hint: Verify | P * E * rP = 0

IX		
	-1	3
1		2
-3	-2	

lP

-2+5-3

Calculate the Essential Matrix (E)

Between the two cameras:

Rotation: 90° (X->Y)

Translation: [2, 0, 1]

- 1. Calculate Tx
- 2. Calculate R
- 3. Calculate TxR

Hint: Verify | P * E * rP = 0

Tx		
	-1	0
ı		-2,
0	2,	
1	1	1

lP

Derive M_I and M_I⁻¹

Hint: Verify $P * M_1 * M_1^{-1} = P$

Left Camera:

$$Sx = 2$$

$$Sy = 1$$

 ${}^{l}P_{1}$

Right Camera:

$$Sx = 1$$

$$Sy = 2$$

 $^{r}P_{1}$

 $^{\mathsf{left}}\mathsf{M}_{\mathsf{I}}$

12

 $^{A}P_{1}$

 ${}^{l}P_{1}$

10

right**M**,

2		
	4	
		l

 $^{B}P_{1}$

 $^{r}P_{1}$

32

 $^{\mathsf{left}}\mathsf{M}_{\mathsf{l}}^{-1}$

 $^{\mathsf{right}}\mathsf{M}_{\mathsf{I}}^{\mathsf{-1}}$

¹⁴ Infer Sx and Sy and Derive M₁-1

Hint: Verify $P * M_1 * M_1^{-1} = P$

Left Camera:

$$f = 4$$

 $^{l}P_{1}$

$$Sx = 2$$

Right Camera:

 $^{r}P_{1}$

12		
	20	
		1

36
100
1

6	$^{B}P_{1}$
72	
1	

$^{\mathrm{left}}M_{I}^{-1}$	-12		
		12	

Calculate the Fundamental Matrix (F)

Left Camera:

$$f = 2$$

$$Sx = 1$$

$$Sy = 1$$

Right Camera:

$$Sx = 1$$

$$Sy = 1$$

<u>E</u>		
-8		
	-8	16
	16	

	_ <u>_</u>	
1/2		
	1/2	
		1

_ _			
	1/2		
		1/2	
			1

lofts a -1

-2		
	2	00
	8	0

7			2
	-2	8	-3
	80	0	1

Hint: Verify AP * F * BP = 0

F

Bp

Calculate the Fundamental Matrix (F)

Left Camera:

Right Camera:

$$f = 2$$

-8		
	-8	
	16	

1/4		
	12	
		1

16

-1		
	1	4
	B	

	1	
-1 4	-1	-2 -6
8	1	+8

Hint: Verify AP * F * BP = 0

B**p**

Given a pixel location in the <u>left</u> image:

Fundamental Matrix

3 5 U

^BP

0

1

2

2 1 1

AP

4 11 15

The epipolar line on the <u>right</u> image is

Hint: You may not need to use all the cells to calculate.

¹⁸ Epipolar Line

AP

3

0

BP

Given a pixel location in the <u>right</u> image:

(2, 3)

Fundamental Matrix

The epipolar line on the <u>left</u> image is

Hint: You may not need to use all the cells to calculate.

19 Estimate F's paramete

Suppose the pixel location (2, 7) in the left image corresponds to the pixel location (2, 4) in the right image. Estimate the missing parameter of the Fundamental Matrix.

Hint: Solve one linear equation involving a

7r	
31	2
	4
atrix	

Bp

Fundamental Ma

0	a	3	4n+ 3
1	0	0	2
0	-1	0	-4

$$8a + 6 + 14 - 4 = 0$$

 $8a = -16$
 $a = -2$

Answer:

$$a = -2$$

Estimate F's parameters BP1

Suppose we know two pairs of pixel-to-pixel correspondences between the left and right images. Estimate the two missing parameters of the Fundamental Matrix.

Hint: Solve a system of two linear equations involving *a* and *b*

	1	1
	1	-1
	1	1
triv		

Fundamental Matrix

0	а	b
1	0	0
0	3	0

$$a+b-1+3 = a+b = 2$$
 $b-a+3-3=0$
 $a=b$

Answer: