PATENT ABSTRACTS OF JAPAN

(11) Publication number:

11-354800

(43) Date of publication of application: 24.12.1999

(51)Int.Cl.

H01L 29/786 H01L 21/336

(21)Application number: 10-

(71)Applicant: HITACHI LTD

155586

(22) Date of filing:

04.06.1998 (72) Inventor: SATO TAKESHI

KAWACHI GENSHIRO

(54) THIN-FILM TRANSISTOR, ITS FORMING METHOD, AND LIQUID CRYSTAL DISPLAY DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a reliable thin-film transistor due to a high On current with a low-resistance LDD region. SOLUTION: A thin-film transistor consists of a gate 5, a gate insulation layer 6, a channel 3, a source 1, a drain 2, and an LDD region 4. At this time, the channel 3 is formed by a polycrystalline Si film with an average particle diameter of 1/10 or less of the channel length. Also, the LDD region consists of an Si film where a crystal grain boundary does not cross a current path from the channel 3 and that is regarded nearly as a single crystal in a current flowing direction.

IFGAL STATUS

[Date of request for examination] Date of sending the examiner's decision of rejection] Kind of final disposal of application other than the examiner's decision of rejection or application converted

registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本PBB部ド(19) (12) 公開特許公報(A)

(11)特許出願公開基号

特開平11-354800

(43)公開日 邓茂11年(1989)12月24日

(51) Int CL*

質別配号

FI

HO 1 L 201/86

HOIL 29/78

616A

21/336

618D

6276

審査請求 未請求 適求項の数4 OL (全 5 頁)

(21) 相賴番号

特顯平10-155586

(71)出職人 000005168

株式会社日立製作所

():2)出頭目

平成10年(1998) 6月4日

東京都千代田区韓田駿河台四丁目6番池

(72) 発明者 佐藤 健史

茨城県日立市大みか町七丁目1番1号 株

式会社自立製作所自立研究所内

(72) 発明者 河内 玄土朋

茨城県日立市大岛が町七丁目1番1号 株

式会社自立製作所自立研究所内

(74)代理人 奔棄上 小川 勝男

(54) 【発明の名称】 | 跡膜トランジスタ及びその形成方法並びに被局表示装度

Sec. (1984)

(百正有)

【課題】既把成立、自自潛域を有し、高いすい電流によ る高信報性の薄輳しランンスタを提供する。

【解決もほ】と「15」で一十絶縁層ら、チャネル3。 ペップエートレイーは、1000領域4からなる薄騰トラ しょうかんち ペーチャネルは、チャネル裏のイブ10 17年の4つ投資を育する多結膜の主願で形成され、LD - 海域は、結晶抗学がチャネルからの電流経路を横切ら コー目の基施が同時に戦力単結罷よみなせるS・噂からな ٨.,

【持計論:2016前旬】

(環状晦) 17 (15

前記と、「下りにケート絶縁層を介して形成され、且つ .治療時の見折1111的域される半導体験からなるチャネル

前部ともそっから今離された素濃体膜からなり。ドイブ 多数是一个一种的事业子运动。

商記ととくも1面記で、以間並びに、面記ティスルと前 記上)(「間に節記つ・でゆむ」前語とレインより低濃 度にトーニスれた主導体機がれなる計画問題域とからな。10、を特先せ、低強機鏈域から高磁度鏈域に何かってほぼ学 る薄糠】としてつてあって。

前記されて重ね、「トイル長の!」「自以下の平均技隆 を含する多点結合・膜で化められ、前記しり負鐘域は、 諸晶は壁が前続さずすいからの電滴経路を護切らず、且 一環流力のに触れ時結晶とらなせるの主膜がちなる薄膜 F2 25 17.

【護す項は】語す項1のわらず。

前記さ、主論護婦を行いて前記セートが運われた多緒島 アン鰻がわかることとした

前記されていた前記マース間並びは、前記ギャイ外に前。20 **東ラレイ 問力前記り 上途縁膜に覆われ 且つ前記が** (主) [後ょ注: 1 いかい 結晶性の) 膜がらなるし自負鎖機 もと音は必得勝 ベイン・スペン

【語の項3】語も項目において

トーマード連体膜に前部ケート絶縁膜をマスタとし ガイオート・フルカ前記 10 スペン前記ドレインとなる anter 1 1.

前額サットがクリケといない。東アニールれ、ディネル 力性の主導は嫌の控離して コース 砂砂トレイン むチャネ ルとり境時の・「上終縁層に覆われた丰濃体膜をトーフ」 3) を形成する方法がある。 1 ミロロ 知識さりる薄膜トランドスタ形成方法。

(誰中的す) ファリカスドに形成された画家をスインチ はる縄の原しまんはじの磷燐料ランプスタモ.

前認適勝し、ことなを監動する駆動回路の一部または 全部の間、星級上に形成された薄膜トランジスタ星板

前副薄肥1・・・・マ基拠と対抗する対抗基板の間に液 点を挟むした異晶腫とを育する液晶表示装置。

(克)明() 計劃立[原明]

-0001;

(欧明ル書するが高分野) 本発明は液晶素示装置。特に 部動師監が出職した液晶井平接層に用いられる薄膜トラ 1000年12日間本本。

\$ 1000 S.

(直上の技術)公園を主軸置は高画層化、低価格化か求 さいわしいん 薄膜ト モンススタにより駆動回路を形成 これは基拠し日常しの接続点数を増加させることなく配 認知を増加える。高精細化が可能となる。また『駆動回 ¥377間記載を削減すぎ、明つスト比が図れる。駆動回路 (1) ビデか吸じす。直接が得られる薄膜トランジスタを形 55 DD 領域から注入されるホットキャリアが水幅に指摘する。

「蚊するには、高い結晶性を持ったらし鱗を用いる毛根の」 ある。しかし、滋晶基本装置に用いる耐熱性の低いカラ ス基板上には単結晶のS i 襞を均一に形成するでとは過 難であるため、レーサによりアモルファスの(鰻肉アニ - 中して結晶化した結晶性の名も多結晶の、膿を用いた 薄膿トランシスタが手に明いられている。しょせを聞い たアニートではレーサ光の強度により得られる多結晶と → 職の粒径を制御できることが知られている。また、ま りら、腹の結晶性を改善するにはし、サガの強度に今命 結晶とみなせるS・腰の海域を依要させる方法が知られ 71.30

【自身自身】また、ヒースの自身上面に占ける中央の外の様 舞び、フィス及76トリインより紙機度がトップされた。 DD語域を鉄け、キャイルをトレインの境界の審問をし D D 質域に分担して駆動回路に必要な耐圧を得ることか 行われている。従来機の薄機トランジスタの上面四を図 3に、新面図を図すに示す。チャネル3をカート語縁膜 も及びゲートをによりマスクして低と一つ置てする。 「マワーによりトーコル」さらに負担負額減すをボトリン により形成したもって下をマスクしたでリードと発力す トイン2に高トース置てイオンコトローです。 ジストを除去してアニールによりオープした!。 を活性化してペーストととしているかのしじご類域すを 形成する。OVDによりますの、からなる層間絶縁膜で を裏板の耐熱温度500℃以下で推構し、層間絶緯膜で にボトロリを明いストーホール!ごを開門した多金属膜 |を維護し、ホトリリにより||10-12萬種とと上、イト高松| 9に施工して、四多をか価4の構造の薄膜トラップで

(00004)

【発明が解決しようとする課題】従来の管膜上で、ここ **すではLSD海域は多結晶S・膜により形成されてあ** り、抵抗が高くキャネルといって及びかして、介閣の統 抗かできいたが、オン電流が少ない問題がある。アニー **共時のレーザ光の強度を上げて多結晶の、膜で症菌を特** 大きせるとも00領域の抵抗は低減されるか。*; マ゚・ 内の結晶粒の数の減少し、薄膜トランシスクの特性のは らつきが大きくなる問題がある。また。レード海魚守育 45 により形成された概ね単結晶顕微を用いる方法では一層 膜トランシスタを形成するのに必要な大きな領域を得る のが困難であるという問題がある。

【うりりち】本発明の目的は、耐圧、物・能をお化させ ることなり、低低抗なとDD鎖域を買り高いすご常識が 得られる薄膜トラントス々を提供することにある。

【りらりも】また図4の作曲の薄膜トラントでようは、 上DD領域はほんVDでものもつけずの低温で強捷され たらもり。からなる層間絶縁膜でにより緩われている。 むかり、低温形成されたSiO、膜には実幅が多く。)。

六、層間が減費に蓄積された電荷がしむり鎖域4を望乏 1b.1. 7.等抗抗化! 十二電流を低下させる問題かあっ

【ロ・ロ・7】 大意明の夢との目的は、LDD鎖域を窺う ・治療機の腕質が自好な薄膜トランシスズを影威が、しむ。 遠域の抵抗増加を抑制してする電流の減少もない高信 福門の藩服士・1000円を提供することにある。

【津脳を転出するための手段】※発明は、上記目的の) 1. すった トト方はゲート終縁層を介して形成さ。 17 日の経済が7月 基板上に利益される半導体膜からなる とうには、 面部とドネルケル分離された半導体機から なり、下につきねんが一てかび下がインと、前記チャネ ルと前が、 く物ながに、前記チャネルと前記とレイン 間切削部として近り、前記トレイにより低濃度に下って された手度は躁からなるしむじ鎖域とからなる薄膜トラ こいくがでも、で、前駆きしず小は、チャネル長の上ア しの上下の年的な存を有する多緒語の主膜で形成され、 前続見() SBUR() 結晶弦符が前記チャネルからの電像(25)50)のパケーにを形成する。内に図りたりに下すまで 言語を描切れず、自じ高速方向に微粒単結晶とみなせる 三十輪がれなり薄膜下ランプである。

1 (1012年17 - 44) 1.00番城が、電流が癒れ え方向に高温売号かない構成から、薄膜トランジスタの 新村の(で)、ショニ神え 1. 0.0領域の重抗を低く出来 20

There I ...

《范围(4) 等标》上"够"。[2] 字 字 空明 小害 総方法 空説明 支

!(+ + 1 + 1) (g) (d も発師の→ 基施例である薄膜トラン フマロー 記す IDOはその衝面図を示す。

【10112】そ結構の、贈りおなるチャネルのと、チャ マル支援れる電流の何さらいに成長した結晶粒としから たるとも現代出版されたし食り鎖域すを有する薄膜上ラ 、アクラもそ、チャイル3の多結晶の主腹は、平均粒 置かりゃく (おか) ロテカトは上では藤原トランジスタ の特性の・いけきかださくなるため、平均の結晶粒径が 3 F A R 3 G B 3 G L O 号の上げ下、望まむくば20 G に、密接で修わる方向には結晶投界がなり、概和単結晶 しさなぜった。嫌り形成されている。このためしDD鎖 何の承抗は結晶性がよらたがほぼ単結晶の場合と同じ程 | 用もう例 | 1 | 1 | 2 | 高点が改善されている。

[ロー・)をなりな発験の管膜トランジスタでは、1 中中海峡(はこう)、からなるが三十絶縁膜もに覆わっ 4. トードはおよど主願からなるか。下方に緩われてい。 かい海峡におんされたいる。たい土絶縁膜6は層間絶縁 履じより着したが、「ユーコットをあまり低下させるこ 人以、明清沖縄トラけるなどかでき、層間絶縁襲でより、55、制されて高い信頼性が得られる。

低欠陥に形成できる。とDD鎖糖4か層間絶縁嫌で心臓 われる従来構造に対し、ケート通縁競りに覆われた客発 明の構造では絶縁膜中の欠陥によるホットキャリアの蓄 積が抵減されるためし自身領域すの空間よか従来領荷に 比べ緩和され 信頼性が向上する。

【のの14】図5と図6は本発明による薄膜し ・・ ご タの形成法の例である。

【30】5】図5alに多結晶3)襞の形成法を示す。 カラスからなる透明経縁基拠しり上に合い的。からなる つきまた。10般許するものであり、その特徴は、ケー、10、保護験11を介して、コチリファブラ(願ここを广ソウ 法により推論する。ペルスエキーマレーサを母いし、ザ 光400を走塗して結晶化と、多結晶の主膜ででしまる。 ことで、一分強度は得られる多層品に下腹の平均で活品 粒径がチャネル長の10分の1別下さなるように調整さ れる。次にボトリンをあたいて多結晶ミュを島ばら"加工 1. その上に多すり、及びサントープされたアモルファ スSi腹をGVPにより維護する。ホトリッを用いてミ 10、からなるユート絶縁瞬間とリントーフされたアモ ルファスミ・鰻からなるゲートををそれぞれが吹りて図 にゲート経縁機らをマスさとしてイオンしゃソールトに より、ソース(砂ひトレイン会にサンモトーフとする。 その後、再びレーザドニールを行う。四631にお、こ で、ゲートもをマスクと別でレーサ光40を定費が、。 ~スト、トレインは最終は砂鎖域4を溶験する。。 こ 1及びトレインとよりLDD顕繊さいキーバッとである リンが拡散し、トープきれる。きた、溶融したしもり道 域はは溶融していないチャダ(りから熱を奪むれるん) め、チャネル側から凝固してツーの1至の下に // []の 36、向けて結晶成長し、フェストとトレインでの間がキャイ の3を介して流れる電流方向に微ね単結晶とみなせる鎖 域からなるしDD鎖域すり形成される。なお、ユギアン 一川により、リントープき動んでモルファスミイケらな るテート与も結晶化され、低抵抗の電硬になる。されば 図らりに示す様に、カート絶縁膜らをマスカとれた子 オンシャワー4(により、バーズ)助かしに子に合を築 議僚にリントープにも後、400円の原製処理によりトー パントを活性化しょ。スト、トレインと参びしり到過期 すを形成する。最後に図るととに示すように含まり。か ロロとからようがフェールされる。また、LDD超域は、40~名なる層間絶縁嫌子をCVDにより逆情ルーチトリアに よりつンタクトホール)とを閉回りた(p)。 全属競毛堆積 して裏び本本リコにより施工してコード高幅と呼呼上い イン電極のを形成し、薄膜トラットの次を得る。 【うり16】本形成法によれば、「、DP領域(多量う)

一ト絶縁膜もは関わるとが示すようがしゃサアニーの時 に溶融した上DD鎖域 4により加熱されても1900以上 の高温でアニールされ、アート絶縁襞も中の内陥が低減 される。これによりケート絶縁膜もへのボットキャリア の蓄積が防止され、しDD海域の空流化、高級抗化が押。

(ロロ)で入りては水発明による液晶表示接置の薄膜上 テートでは基拠の例である。薄膜トランシスタ重複30 上に説明高極からなる画素電極させかマトリカス状に形 成され、歯を頂切り5カ形成されている。画素奪極34 エトレイー認っじかれる信号電圧をゲート線31の電圧 |ぶもり || || || || イモディ・そこなる薄膜トランシスタ3 3ケ北城されている。さん。カート練る手を駆動するか ※下駆動回端さり、行びとしてい線3をを駆動するとい イン製動内容なこれ薄膜トランジスタ基板の画素領域3 ちと周辺に、大衆則の薄鱗トランシスタを用いて形成さし10。 打ている。 もの明の十二盛流が改善された薄膜トランジ こうを用いることにもの、ピット線31及ひトレイン線 当じも駆動するのに十分な高い駆動力が得られ、駆動回 *結ち適時十つ コイン基物上に形成できる。これによる。 り、画学し、土た高精細化でき、また製造コストが低減 できる。さん。で発明の薄膜トランジスタは、画素スイ → 47 (夢)とるれるで→な特性に徹底に優れ低いオブ電流 か得られらんが、画家雑様3寸をフィーサする薄鱗トラ こう スタッハが年、ることもできる。これにより画案鎖 報告での薄膜・・・ニタケ網ープロセスで形成でき、 工資料を仰えるたとかできより低コスト化が図れる。 [40 (1 %)

【意明の時間】下発明によれば、均一に高いすい電流を 真する論時、情報性にすぐおた薄膜トランシスタが得ら 五 高面目 光 ・「上なる晶素子装置が得られる。

水(図面の簡単な説明)

【図1】本発明の薄膜トナンバスタの一系統勝り上面図 を示す図である。

【図2】本発明の薄膜トランシックの一套施例の集面区 を示す図である。

【図3】従来の薄膜トラッンコロの一実施例の上面図を 示す図である。

【四4】従来の薄膜トラントのタモー事権例に断面図を 示す図である。

【図も】本発明の薄膜トウ ペニクの 形成もまを下す 図である。

【図る】体発明の薄膜トラントではの他の形成方法が下 す図である。

【図7】本発明による液晶素士装置の薄膜トランドです 基板の一葉施例を示す図である。

【符号の説明】

1...ローブ、全日本1 イン ローキャルル・4、ビスの 鎖域 ちっケート モーヤ 上陸縁騎 7・陰間絶縁 腹、8 - 1 - 2 電極 (5) トレイン電極 (19) 原拠。 戦ぶりと同じいで、主観動詞鑑さ6なかもいイン駆動回し35、上1一保護膜に上立していまり下手一耳により、落濱方 向しなり、結晶統一となってモルファクラ・鱧しなり 多結晶S(騏=3)、一灣鹽トランミスタ基板。3)、ケ - 下線、38~トレイン線、33・藤勝トラーン39。 34・画素電極 35…画素組織 36~~ ト駆動団 路 37 16イン範動回路 はい 1 … サモ 41. イオンシャサー。

[32]

[34]

 $\{ \geq r^{-1}$

