Endogenous Stratification in Randomized Experiment

Gaojia Xu, Guanqi Zeng

1. Introduction

- Endogenous Stratification
 - In-sample data
 - Predicted outcome without treatment
 - Stratify by intervals of pred outcome
 - ATE for each stratus
- Bias with predicted pattern!

Project Outline

- Demonstration & comparison of the bias problem using STAR data
 - Full sample
 - Leave-one-out
 - Sample splitting
 - o 10 Fold
- Test the bias problem using STAR-based simulation
- Explore the bias problem & compare the properties of the estimators by computer-generated simulation
 - Sample size (200, 1000, 5000)
 - Number of covariates (10, 20, 40)

2.1 Method - Algorithms

Full sample ATE estimation

$$\widehat{\beta} = \left(\sum_{i=1}^{N} x_i (1 - w_i) x_i'\right)^{-1} \sum_{i=1}^{N} x_i (1 - w_i) y_i$$

Leave-one-out ATE estimation

$$\widehat{\boldsymbol{\beta}}_{(-i)} = \left(\sum_{j \neq i} \boldsymbol{x}_j (1 - w_j) \boldsymbol{x}_j'\right)^{-1} \sum_{j \neq i} \boldsymbol{x}_j (1 - w_j) y_j$$

Sample splitting ATE estimation

$$\widehat{\boldsymbol{\beta}}_{m} = \left(\sum_{i=1}^{N} \boldsymbol{x}_{i} (1 - w_{i})(1 - v_{im}) \boldsymbol{x}_{i}'\right)^{-1} \times \sum_{i=1}^{N} \boldsymbol{x}_{i} (1 - w_{i})(1 - v_{im}) \boldsymbol{y}_{i}.$$

2.1 Method - Algorithms

Full sample ATE estimation

$$\widehat{\tau}_{k} = \frac{\sum_{i=1}^{N} y_{i} I_{[w_{i}=1,c_{k-1} < \mathbf{x}_{i}'\widehat{\boldsymbol{\beta}} \leq c_{k}]}}{\sum_{i=1}^{N} I_{[w_{i}=1,c_{k-1} < \mathbf{x}_{i}'\widehat{\boldsymbol{\beta}} \leq c_{k}]}} - \frac{\sum_{i=1}^{N} y_{i} I_{[w_{i}=0,c_{k-1} < \mathbf{x}_{i}'\widehat{\boldsymbol{\beta}} \leq c_{k}]}}{\sum_{i=1}^{N} I_{[w_{i}=0,c_{k-1} < \mathbf{x}_{i}'\widehat{\boldsymbol{\beta}} \leq c_{k}]}}$$

Leave-one-out ATE estimation

$$\widehat{\tau}_{k}^{LOO} = \frac{\sum_{i=1}^{N} y_{i} I_{[w_{i}=1,c_{k-1} < \mathbf{x}_{i}'\widehat{\boldsymbol{\beta}} \leq c_{k}]}}{\sum_{i=1}^{N} I_{[w_{i}=1,c_{k-1} < \mathbf{x}_{i}'\widehat{\boldsymbol{\beta}} \leq c_{k}]}} - \frac{\sum_{i=1}^{N} y_{i} I_{[w_{i}=0,c_{k-1} < \mathbf{x}_{i}'\widehat{\boldsymbol{\beta}}_{(-i)} \leq c_{k}]}}{\sum_{i=1}^{N} I_{[w_{i}=0,c_{k-1} < \mathbf{x}_{i}'\widehat{\boldsymbol{\beta}}_{(-i)} \leq c_{k}]}}$$

Sample splitting ATE estimation

$$\widehat{\tau}_{km}^{SS} = \frac{\sum_{i=1}^{N} y_{i} I_{[w_{i}=1,c_{k-1} < \mathbf{x}_{i}'\widehat{\boldsymbol{\beta}}_{m} \leq c_{k}]}}{\sum_{i=1}^{N} I_{[w_{i}=1,c_{k-1} < \mathbf{x}_{i}'\widehat{\boldsymbol{\beta}}_{m} \leq c_{k}]}} - \frac{\sum_{i=1}^{N} y_{i} I_{[w_{i}=0,v_{im}=1,c_{k-1} < \mathbf{x}_{i}'\widehat{\boldsymbol{\beta}}_{m} \leq c_{k}]}}{\sum_{i=1}^{N} I_{[w_{i}=0,v_{im}=1,c_{k-1} < \mathbf{x}_{i}'\widehat{\boldsymbol{\beta}}_{m} \leq c_{k}]}} \quad \widehat{\tau}_{k}^{RSS} = \frac{1}{M} \sum_{m=1}^{M} \widehat{\tau}_{km}^{SS}$$

2.1 Method - Algorithm

10 Fold ATE Estimation

$$\hat{\boldsymbol{\beta}}_{f=j} = (\sum_{i=1}^{N} \boldsymbol{x}_i (1-w_i) I(i \notin fold_j) \boldsymbol{x}_i^{'})^{-1} \sum_{i=1}^{N} \boldsymbol{x}_i (1-w_i) I(i \notin fold_j) y_i$$

$$\hat{\tau_k}^{10fold} = \frac{\sum_{i=1}^{N} y_i I_{[w_{i=1}, c_{k-1} < \boldsymbol{x}_i' \hat{\boldsymbol{\beta}} \leq c_k]}}{\sum_{i=1}^{N} I_{[w_{i=1}, c_{k-1} < \boldsymbol{x}_i' \hat{\boldsymbol{\beta}} \leq c_k]}} - \frac{\sum_{i=1}^{N} y_i I_{[w_{i=0}, c_{k-1} < \boldsymbol{x}_i' \hat{\boldsymbol{\beta}}_{(10fold)} \leq c_k]}}{\sum_{i=1}^{N} I_{[w_{i=0}, c_{k-1} < \boldsymbol{x}_i' \hat{\boldsymbol{\beta}}_{(10fold)} \leq c_k]}}$$

2.2 Method - Data sets & Simulation

STAR

- Outcome Variables: Math test score
- Treatment: Class type (small class vs. regular-sized class)
- Other covariates: African-American, female, eligibility for the free lunch program, and school attended
- Simulation Data Sets
 - STAR-based simulation
 - Computer-generated simulation

2.2 Method - Simulation: Computer-generated Simulation

$$y_i = 1 + \sum_{l=1}^{40} z_{li} + v_i$$

 z_{li} has independent standard normal distributions

 v_i has independent normal distribution with var=60

3. Results and Conclusion - STAR estimation

STAR Default Estimation Results

	Unadjusted	Adjusted
$\hat{ au}$	0.1659	0.1892
se $\hat{ au}$	0.0334	0.0295

STAR Estimation Results

	Unadj low	Unadj medium	Unadj high	Adj low	Adj medium	Adj high
$\hat{ au}_k$	0.3705	0.2688	-0.1330	0.3908	0.3023	-0.1242
se $\hat{ au}_k$	0.0593	0.0618	0.0636	0.0562	0.0621	0.0583
$\hat{ au}_k^{LOO}$	0.3277	0.2499	-0.0486	0.3440	0.2730	-0.0660
se $\hat{ au}_k^{LOO}$	0.0603	0.0659	0.0661	0.0565	0.0648	0.0611
$\hat{ au}_k^{RSS}$	0.1829	0.2083	0.2203	0.1737	0.1933	0.2754
se $\hat{ au}_k^{RSS}$	0.0446	0.0429	0.0427	0.0389	0.0363	0.0365
$\hat{ au}_k^{10fold}$	0.3226	0.2809	-0.0440	0.3201	0.2789	-0.0586
se $\hat{ au}_k^{10fold}$	0.0611	0.0634	0.0649	0.0569	0.0613	0.0604

3. Results and Conclusion - STAR-based simulation

3. Results and Conclusion - STAR-based simulation

Bias in STAR Simulations

	U	nadjusted				
	Low	Medium	High	Low	Medium	High
$\hat{ au}_k$	0.04	0.00	-0.05	0.04	0.00	-0.05
$\hat{ au}_k^{LOO}$	-0.01	0.00	0.01	0.00	-0.01	-0.01
$\hat{ au}_k^{RSS}$	-0.01	-0.01	0.00	0.00	-0.01	0.00
$\hat{ au}_k^{10fold}$	-0.01	0.00	0.01	0.00	-0.01	-0.01

Coverage in STAR Simulations

	U	Inadjusted		Adjusted					
	Low	Medium	High	Low	Medium	High			
$\hat{ au}_k$	0.86	0.94	0.80	0.88	0.94	0.80			
$\hat{ au}_k^{LOO}$	0.96	0.94	0.93	0.98	0.96	0.94			
$\hat{ au}_k^{RSS}$	0.90	0.92	0.93	0.95	0.98	0.96			
$\hat{ au}_k^{10fold}$	0.94	0.96	0.93	0.98	0.96	0.94			

RMSE in STAR Simulations

	U	Inadjusted				
	Low	Medium	High	Low	Medium	High
$\hat{ au}_k$	0.06	0.05	0.07	0.06	0.05	0.07
$\hat{ au}_k^{LOO}$	0.05	0.05	0.05	0.04	0.05	0.05
$\hat{ au}_k^{RSS}$	0.07	0.06	0.06	0.06	0.05	0.05
$\hat{ au}_k^{10fold}$	0.05	0.05	0.05	0.04	0.05	0.05

3. Results and Conclusion - Computer-generated simulation

Bias in Simulations Using Artificial Data

	K = 10					K = 20						K = 40					
	Unadjusted			Adjusted		U	Unadjusted		Adjusted			Unadjusted		d	Adjusted		
	Low	Medium High	Low	Medium	High	Low	Medium	High	Low	Medium H	ligh	Low	Medium	High	Low	Medium	High
N=200 $\hat{ au}_k$	2.54	-0.24 -2.38	2.52	-0.30	-2.32	3.37	0.12	-2.92	3.19	-0.15 -	2.80	4.72	-0.08	-4.08	4.34	0.01	-3.83
N=200 $\hat{ au}_k^{LOO}$	-0.17	-0.01 0.11	0.13	-0.08	-0.02	-0.01	-0.05	0.55	0.31	0.08 -	0.10	0.47	0.25	-0.20	1.24	0.15	-1.10
N=200 $\hat{ au}_k^{RSS}$	-0.01	-0.08 0.13	-0.08	-0.03	0.16	0.32	0.21	0.43	0.25	0.07	0.15	0.14	0.16	0.34	0.19	-0.10	0.11
N=200 $\hat{ au}_k^{10fold}$	-0.12	-0.19 0.29	0.38	-0.22	-0.16	-0.21	0.15	0.64	0.38	-0.11 -	0.15	0.09	0.28	0.05	1.40	0.52	-1.42
N=1000 $\hat{ au}_k$	0.34	-0.22 -0.43	0.36	-0.22	-0.45	0.78	-0.11	-0.73	0.76	-0.17 -	0.76	0.83	0.02	-0.94	0.83	0.05	-0.88
N=1000 $\hat{ au}_k^{LOO}$	-0.30	-0.21 0.22	-0.27	-0.21	0.19	0.01	-0.04	-0.02	-0.02	-0.10 -	0.06	0.01	0.00	-0.14	0.04	0.04	-0.10
N=1000 $\hat{ au}_k^{RSS}$	0.06	-0.08 -0.20	0.07	-0.10	-0.19	0.04	0.10	-0.15	0.09	0.02 -	0.20 -	0.17	-0.13	0.04	-0.09	-0.09	-0.05
N=1000 $\hat{ au}_k^{10fold}$	-0.35	-0.16 0.20	-0.27	-0.14	0.13	-0.04	-0.06	0.03	0.02	-0.12 -	0.08 -	0.04	0.00	-0.05	0.04	0.01	-0.08
N=5000 $\hat{ au}_k$	0.06	-0.01 -0.06	0.06	-0.02	-0.05	0.11	-0.05	-0.11	0.11	-0.06 -	0.12	0.21	-0.01	-0.26	0.22	0.00	-0.23
N=5000 $\hat{ au}_k^{LOO}$	-0.06	-0.01 0.06	-0.06	-0.02	0.07	-0.05	-0.05	0.04	-0.05	-0.05	0.03	0.05	-0.01	-0.09	0.06	-0.01	-0.06
N=5000 $\hat{ au}_k^{RSS}$	0.01	-0.03 -0.04	0.03	-0.03	-0.02	-0.02	-0.08	0.02	-0.04	-0.11	0.02 -	0.05	-0.07	0.00	-0.01	-0.07	-0.04
N=5000 $\hat{ au}_k^{10fold}$	-0.08	0.01 0.06	-0.07	0.00	0.06	-0.05	-0.07	0.07	-0.04	-0.07	0.05	0.05	-0.03	-0.08	0.06	-0.01	-0.06

4. Discussion and Limitations

- Performance of 10 Fold ATE estimation
 - Compared with LOO & Sample Splitting
 - Sample size
 - Number of covariates
- Data Generation Process for Simulation
- Sample Splitting & Bootstrap

Reference

Abadie, Chingos, and West (2018)

Thank you for your time~