Amendments to the Claims

1. (Currently amended) Compound of the general formula

where

X is $-CH_2-or > CH-OH$;

(A) R¹, where X is hydroxymethylene, is an optionally substituted heterocyclyl radical or an optionally substituted polycyclic, unsaturated hydrocarbon radical; or

(B) R¹- is a heterocyclyl radical or a polycyclic, unsaturated hydrocarbon radical each of which is substituted by one to four radicals selected from C₁- C₆-alkyl, C_{2.8}-cycloalkyl, C_{3.8}-cycloalkoxy, C_{2.8}-cycloalkoxy, C_{4.6}-alkyl, C_{2.8}-cycloalkoxy, C_{4.6}-alkyl, C_{2.8}-cycloalkoxy, C_{4.6}-alkyl, C_{4.6}-alkyl, C_{4.6}-alkyl, C_{4.6}-alkyl, polyhalo C_{4.6}-alkyl, polyhalo C_{4.6}-alkoxy, nitro, amino, oxo, oxide, C₄-C₆-alkenyl, C₄-C₆-alkoxy, C₄-C₆-alkanoyloxy, hydroxy, halogen, cyano, carbamoyl, carboxyl, C₄-C₆-alkylenedioxy, phenyl, phenoxy, phenylthio, phenyl C₄-C₆-alkoxy C_{4.6}-alkoxy, pyridylcarbonylamino C_{4.6}-alkyl, C_{2.7}-alkenyloxy, C_{4.6}-alkoxy C_{4.6}-alkoxy, C_{4.6}-alkoxy, C_{4.6}-alkoxy, C_{4.6}-alkoxy, C_{4.6}-alkoxy, C_{4.6}-alkoxy, C_{4.6}-alkoxy, C_{4.6}-alkoxy, cycloalkyl C_{4.6}-alkyl, C_{2.8}-cycloalkyl C_{4.6}-alkyl, C_{2.8}-cycloalkyl C_{4.6}-alkyl, C_{4.6}-alkyl-carbamoyloxy C_{2.7}-alkoxy, cycloalkyl C_{4.6}-alkyl-carbamoyloxy C_{4.6}-alkyl, C_{4.6}-alkyl, C_{4.6}-alkyl-carbonylamino, C_{4.6}-alkyl, C_{4.6}-alkyl, C_{4.6}-alkyl-carbonylamino C_{4.6}-alkyl, (N C_{4.6}-alkyl) C_{4.6}-alkyl-carbonylamino C_{4.6}-alkoxy, C_{4.6}-alkox

6-alkyl, hydroxy-C₁₋₆-alkyl, hydroxy-C₁₋₇-alkoxy-C₁₋₆-alkyl, hydroxy-C₂₋₇-alkoxy-C₁₋₆-alkoxy, C₁₋₆-alkoxycarbonylamino-C₁₋₆-alkyl, C₁₋₆-alkoxycarbonylamino-C₂₋₇-alkoxy, C₁₋₆alkylaminocarbonylamino-C₁₋₆-alkyl, C₁₋₆-alkylaminocarbonylamino-C₂₋₇-alkoxy, C₁₋₆alkylaminocarbonyl-C₁₋₆-alkyl, C₁₋₆-alkylaminocarbonyl-C₁₋₆-alkoxy, C₁₋₆-alkylaminocarbonyl-C₁₋₆-alkoxy-C₁₋₆-alkyl, di-C₁₋₆-alkylaminocarbonyl-C₁₋₆-alkyl, di-C₁₋₆-alkylaminocarbonyl-C₁₋₆alkoxy, C₁₋₆-alkylcarbonyloxy-C₁₋₆-alkyl, C₁₋₆-alkylcarbonyloxy-C₂₋₆-alkoxy, cyano-C₁₋₆-alkyl, cyano-C₁₋₆-alkoxy, 2-oxooxazolidinyl-C₁₋₆-alkyl, 2-oxooxazolidinyl-C₁₋₆-alkoxy, C₁₋₆-alkoxycarbonyl-C₁₋₆-alkyl, C₁₋₆-alkoxycarbonyl-C₁₋₆-alkoxy, C₁₋₆-alkylsulphonylamino-C₁₋₆alkyl, C₁₋₆-alkylsulphonylamino-C₁₋₆-alkoxy, (N-C₁₋₆-Alkyl)-C₁₋₆-alkylsulphonylamino-C₁₋₆alkyl, (N-C₁₋₆-alkyl)-C₁₋₆-alkylsulphonylamino-C₂₋₇-alkoxy, C₁₋₆-alkylamino-C₁₋₆-alkyl, C₁₋₆-alkylamino-C₂₋₇-alkoxy, di-C₁₋₆-alkylamino-C₁₋₆-alkylamino-C₂₋₇-alkoxy, C₁₋₆-alkylamino-C₂₋₇-alkoxy, C₁₋₆-alkylamino-C₂₋₇-alkyl alkylsulphonyl-C₁₋₆-alkyl, C₁₋₆-alkylsulphonyl-C₁₋₆-alkoxy, carboxy-C₁₋₆-alkyl, carboxy-C₁₋₆alkoxy, carboxy-C₁₋₆-alkoxy-C₁₋₆-alkyl, C₁₋₆-alkoxy-C₁₋₆-alkylcarbonyl, acyl-C₁₋₆-alkoxy-C₁₋₆alkyl, (N-C₁₋₆-alkyl)-C₁₋₆-alkoxycarbonylamino, (N-hydroxy)-C₁₋₆-alkylaminocarbonyl-C₁₋₆alkyl, (N-hydroxy)-C₁₋₆-alkylaminocarbonyl-C₁₋₆-alkoxy, (N-hydroxy)aminocarbonyl-C₁₋₆-alkyl, (N-hydroxy)aminocarbonyl-C₁₋₆-alkoxy, C₁₋₆-alkoxyaminocarbonyl-C₁₋₆-alkyl, 6alkoxyaminocarbonyl-C₁₋₆-alkoxy, (N-C₁₋₆-alkoxy)-C₁₋₆-alkylaminocarbonyl-C₁₋₆-alkyl, (N-C₁₋₆-alkylaminocarbonyl-C₁₋₆-alkyl, (N-C₁₋₆-alkylaminocarbonyl-C₁₋₆-al alkoxy)-C₁₋₆-alkylaminocarbonyl-C₁₋₆-alkoxy, (N-acyl)-C₁₋₆-alkoxy-C₁₋₆-alkylamino, C₁₋₆alkoxy-C₁₋₆-alkylcarbamoyl, (N-C₁₋₆-alkyl)-C₁₋₆-alkoxy-C₁₋₆-alkylcarbamoyl, C₁₋₆-alkoxy-C₁₋₆-alkylcarbonyl, C₁₋₆-alkoxy-C₁₋₆-alkylcarbonylamino, (N-C₁₋₆-alkyl)-C₁₋₆-alkoxy-C₁₋₆-alkylcarbonylamino, 1-C₁₋₆-alkoxy-C₁₋₆-alkylimidazol-2-yl, 1-C₁₋₆-alkoxy-C₁₋₆-alkyltetrazol-5-yl, 5-C₁₋₆-alkoxy-C₁₋₆-alkyltetrazol-1-yl, 2-C₁₋₆-alkoxy-C₁₋₆-alkyl-4-oxoimidazol-1-yl, carbamoyl-C₁₋₆alkyl, carbamoyl, C₁₋₆-alkylcarbamoyl, di-C₁₋₆-alkylcarbamoyl, C₁₋₆-alkylsulphonyl, C₁₋₆-alkylamidinyl, acetamidinyl-C₁₋₆-alkyl, O-methyloximyl-C₁₋₆-alkyl, O,N-dimethylhydroxylamino-C₁₋₆-alkyl, C₂₋₆-cycloalkyl-C₁₋₆-alkanoyl, aryl-C₁₋₆-alkanoyl or heterocyclyl-C₁₋₆-alkanoyl, each of which is optionally substituted by halogen, C₁-C₆-alkyl, C₁₋₆alkoxy, hydroxy, C₁-C₆-alkylamino, di-C₁-C₆-alkylamino, C₁₋₆-alkoxycarbonyl, hydroxy-C₁₋₆alkyl or trifluoromethyl, and also pyridyl, pyridyloxy, pyridylthio, pyridylamino, pyridyl-C₁₋₆alkyl, pyridyl-C₁₋₆-alkoxy, pyrimidinyl, pyrimidinyloxy, pyrimidinylthio, pyrimidinylamino, pyrimidinyl-C₁₋₆-alkyl, pyrimidinyl-C₁₋₆-alkoxy, thienyl, thienyl-C₁₋₆-alkyl, thienyl-C₁₋₆-alkoxy, furyl, furyl-C₁₋₆-alkyl or furyl-C₁₋₆-alkoxy, piperidinoalkyl, piperidinoalkoxy,

piperidinoalkoxyalkyl, morpholinoalkyl, morpholinoalkoxy, morpholinoalkoxyalkyl, piperazinoalkyl, piperazinoalkoxy, piperazinoalkoxyalkyl, [1,2,4]triazol-1-ylalkyl, [1,2,4]triazol-1-ylalkoxy, [1,2,4]triazol-4-ylalkyl, [1,2,4]triazol-4-ylalkoxy, [1,2,4]oxadiazol-5-ylalkyl, [1,2,4]oxadiazol-5-ylalkoxy, 3-methyl[1,2,4]oxadiazol-5-ylalkyl, 3-methyl[1,2,4]oxadiazol-5ylalkoxy, 5-methyl[1,2,4]oxadiazol-3-ylalkyl, 5-methyl[1,2,4]oxadiazol-3-ylalkoxy, tetrazol-1ylalkyl, tetrazol-1-ylalkoxy, tetrazol-2-ylalkyl, tetrazol-2-ylalkoxy, tetrazol-5-ylalkyl, tetrazol-5ylalkoxy, 5-methyltetrazol-1-ylalkyl, 5-methyltetrazol-1-ylalkoxy, thiazol-4-ylalkyl, thiazol-4ylalkoxy, oxazol-4-ylalkyl, oxazol-4-ylalkoxy, 2-oxopyrrolidinylalkyl, 2-oxopyrrolidinylalkoxy, imidazolylalkyl, imidazolylalkoxy, 2-methylimidazolylalkyl, 2-methylimidazolylalkoxy or N-methylpiperazinoalkyl, N-methylpiperazinoalkoxy, N-methylpiperazinoalkoxyalkyl, dioxolanyl, dioxanyl, dithiolanyl, dithianyl, pyrrolidinyl, piperazinyl, pyrrolyl, 4methylpiperazinyl, morpholinyl, thiomorpholinyl, 2-hydroxymethylpyrrolidinyl, 3-hydroxypyrrolidinyl, 3,4-dihydroxypyrrolidinyl, 3-acetamidomethylpyrrolidinyl, 3-C₁₋₆-alkoxy-C₁₋₆-alkylpyrrolidinyl, 4-hydroxypiperidinyl, 4-oxopiperidinyl, 3.5-dimethylmorpholinyl, 4.4dioxothiomorpholinyl, 4-oxothiomorpholinyl, 2,6-dimethylmorpholinyl, 2-oxoimidazolidinyl, 2oxooxazolidinyl, 2-oxopyrrolidinyl, 2-oxo[1,3]oxazinyl, 2-oxotetrahydropyrimidinyl, each of which is optionally substituted by halogen, C₁₋₆-alkyl, C₁₋₆-alkoxy or dihydroxy-C₁₋₆-alkylaminocarbonyl, and the -O-CH2CH(OH)CH2NR* radical where NR* is a mono-or di-C₁₋₆-alkylamino, piperidino, morpholino, piperazino or N-methylpiperazino radical,

where, in the case that R¹ is naphthyl or cyclohexenophenyl, at least the ring of said R¹ radicals not bonded directly to X is substituted as specified; or

(C) R^4 is pyrazinyl, triazolyl, imidazolyl, benzothiazolyl, pyranyl, tetrahydropyranyl, azetidinyl, morpholinyl, quinazolinyl, quinoxalinyl, isoquinolyl, benzo[b]thienyl, isobenzofuranyl, benzimidazolyl, 2-oxobenzimidazolyl, oxazolyl, thiazolyl, pyrrolyl, pyrazolyl, triazinyl, dihydrobenzofuranyl, 2-oxodihydrobenzo[d][1,3]oxazinyl, 4-oxodihydroimidazolyl, 5-oxo-4H-[1,2,4]triazinyl, 3-oxo-4H-benzo[1,4]thiazinyl, tetrahydroquinoxalinyl, 1,1,3-trioxodihydro-2H- $1\lambda^6$ -benzo[1,4]thiazinyl, 1-oxo-pyridyl, dihydro-3H-benzo[1,4]oxazinyl, 2-oxotetrahydrobenzo[e][1,4]diazepinyl, 2-oxodihydrobenzo[e][1,4]diazepinyl, 1H-pyrrolizinyl, phthalazinyl, 1-oxo-3H-isobenzofuranyl, 4-oxo-3H-thieno[2,3-d]pyrimidinyl, 3-oxo-4H-

benzo[1,4]oxazinyl, [1,5]naphthyridyl, dihydro-2H-benzo[1,4]thiazinyl, 1,1-dioxodihydro-2Hbenzo[1,4]thiazinyl, 2-oxo-1H-pyrido[2,3-b][1,4]oxazinyl, dihydro-1H-pyrido[2,3b][1,4]oxazinyl, 1H-pyrrolo[2,3-b]pyridyl, benzo[1,3]dioxolyl, benzooxazolyl, 2-oxobenzooxazolyl, 2-oxo-1,3-dihydroindolyl, 2,3-dihydroindolyl, indazolyl, benzofuranyl, dioxolanyl, dioxanyl, dithiolanyl, dithianyl, pyrrolidinyl, piperidinyl, piperazinyl, 4-methylpiperazinyl, morpholinyl, thiomorpholinyl, 2-hydroxymethylpyrrolidinyl, 3-hydroxypyrrolidinyl, 3,4-dihydroxypyrrolidinyl, 4-hydroxypiperidinyl, 4-oxopiperidinyl, 3,5-dimethylmorpholinyl, 4,4-dioxothiomorpholinyl, 4-oxothiomorpholinyl, 2,6-dimethylmorpholinyl, tetrahydropyranyl, 2-oxoimidazolidinyl, 2-oxooxazolidinyl, 2-oxopiperidinyl, 2-oxopyrrolidinyl, 2-oxo[1,3]oxazinyl, 2-oxoazepanyl, or 2-oxotetrahydropyrimidinyl; R² is C₁-C₆-alkyl or C₂-C₆-cycloalkyl: R³ are each independently H, C₁-C₆-alkyl, C₁₋₆-alkoxycarbonyl or C₁-C₆-alkanoyl; R⁴ is C₁-C₆-alkyl, C₂-C₆-eyeloalkyl, C₂-C₆-alkenyl or unsubstituted or substituted aryl-C₁-C₆-alkyl; R⁵ is C₁-C₆-alkyl, C₁-C₆-hydroxyalkyl, C₁-C₆-alkoxy-C₁-C₆-alkyl, C₁-C₆-alkanoyloxy-C1-C6-alkyl, C1-C6-aminoalkyl, C1-C6-alkylamino-C1-C6-alkyl, C1-C6-dialkylamino-C1-C6-alkyl, C1-C4-alkanovlamido-C1-C4-alkvl, HO(O)C-C1-C4-alkvl, C1-C4-alkvl, C1-C4-alkvl, O(O)C-C1-C4-alkvl, H2N-C(O)-C1-C6-alkyl, C1-C6-alkyl-HN-C(O)-C1-C6-alkyl, (C1-C6-alkyl)2N-C(O)-C1-C6-alkyl, C2-C8-alkenyl, C2-C8-alkynyl, eyano-C1-C6-alkyl, halo-C1-C6-alkyl, optionally substituted aryl-C₀-C₆-alkyl, optionally substituted C₂-C₈-cycloalkyl-C₀-C₆-alkyl or optionally substituted heterocyclyl-Co-Co-alkyl, or a prodrug thereof, which, on in vivo application, release a compound of formula (I) by a chemical or physiological process,

is a radical selected from the group consisting of benzoimidazolyl, di-C₁₋₆-alkoxypyrimidinyl, 2- or 5-benzo[b]thienyl, 6- or 7-isoquinolyl, 6- or 7-tetrahydroquinolyl, 6- or 7-tetrahydroisoquinolyl, 6-quinoxalinyl, 6- or 7-quinazolinyl, dihydro-3H-benzo[1,4]oxazinyl, 3,4-dihydro-2H-benzo[1,4]oxazinyl, 3-oxo-4H-benzo[1,4]oxazinyl, 2-oxobenzooxazolyl, 2-oxo-1,3-dihydroindolyl, 2,3-dihydroindolyl, indazolyl, benzofuranyl, 6- or 7-quinolyl, 6- or 7-tetrahydroquinolyl, oxotetrahydroquinolyl, 6- or 7-tetrahydroisoquinolyl,

6-quinoxalinyl, 6- or 7-quinazolinyl, indolyl, 3-oxo-3,4-dihydro-2H-benzo[1,4]oxazinyl, 2-oxo-2,3-dihydrobenzooxazolyl, 2,3-dihydrobenzothiazinyl, imidazolyl, pyridinyl, pyrrolo[2,3b]pyridinyl, pyrrolo[3,2-c]pyridinyl, pyrrolo[2,3-c]pyridinyl, pyrrolo[3,2-b]pyridinyl, [1,2,3]triazolo[1,5-a]pyridinyl, [1,2,4]triazolo[4,3-a] pyridinyl, imidazo[1,5-a]pyridinyl and imidazo[1,2-a]pyrimidinyl, each of which is substituted by from one to four radicals selected from hydroxy, halogen, oxo, oxide, carbamoyl, carboxyl, cyano, trifluoromethyl, C₁₋₆-alkyl, C₁₋₆alkoxy, hydroxy-C₁₋₆-alkoxy, C₁₋₆-alkoxy-C₁₋₆-alkoxy-C₁₋₆-alkoxy, di-C₁₋₆alkylamino, 2,3-dihydroxypropoxy, 2,3-dihydroxypropoxy-C₁₋₆-alkoxy, 2,3-dimethoxypropoxy, methoxybenzyloxy, hydroxybenzyloxy, phenethyloxy, methylenedioxybenzyloxy, dioxolanyl-C₁₋₆-alkoxy, cyclopropyl-C₁₋₆-alkoxy, pyridylcarbamoyloxy-C₁₋₆-alkoxy, 3-morpholino-2hydroxypropoxy, benzyloxy-C₁₋₆-alkoxy, picolyloxy, C₁₋₆-alkoxycarbonyl, C₁₋₆-alkoxy-C₁₋₆alkoxy-C₁₋₆-alkyl, C₁₋₆-alkylcarbonylamino, C₁₋₆-alkylcarbonylamino-C₁₋₆-alkyl, C₁₋₆alkylcarbonylamino-C₁₋₆-alkoxy, (N-C₁₋₆-alkyl)-C₁₋₆-alkylcarbonylamino-C₁₋₆-alkyl, (N-C₁₋₆alkyl)-C₁₋₆-alkylcarbonylamino-C₁₋₆-alkoxy, C₃₋₆-cycloalkylcarbonylamino-C₁₋₆-alkyl, C₃₋₆cycloalkylcarbonylamino-C₁₋₆-alkoxy, C₁₋₆-alkoxy-C₁₋₆-alkyl, hydroxy-C₁₋₆-alkyl, alkoxy-C₁₋₆-alkyl, hydroxy-C₁₋₆-alkoxy-C₁₋₆-alkoxy, C₁₋₆-alkoxycarbonylamino-C₁₋₆-alkyl, C₁₋₆alkoxycarbonylamino-C₁₋₆-alkoxy, C₁₋₆-alkylaminocarbonylamino-C₁₋₆-alkyl, C₁₋₆alkylaminocarbonylamino-C₁₋₆-alkoxy, C₁₋₆-alkylaminocarbonyl-C₁₋₆-alkyl, C₁₋₆alkylaminocarbonyl-C₁₋₆-alkoxy, C₁₋₆-alkylaminocarbonyl-C₁₋₆-alkoxy-C₁₋₆-alkyl, di-C₁₋₆alkylaminocarbonyl-C₁₋₆-alkyl, di-C₁₋₆-alkylaminocarbonyl-C₁₋₆-alkoxy, C₁₋₆-alkylcarbonyloxy-C₁₋₆-alkyl, C₁₋₆-alkylcarbonyloxy-C₁₋₆-alkoxy, cyano-C₁₋₆-alkyl, cyano-C₁₋₆-alkoxy, 2-oxooxazolidinyl-C₁₋₆-alkyl, 2-oxooxazolidinyl-C₁₋₆-alkoxy, C₁₋₆-alkoxycarbonyl-C₁₋₆-alkyl, C₁₋₆alkoxycarbonyl-C₁₋₆-alkoxy, C₁₋₆-alkylsulphonylamino-C₁₋₆-alkyl, C₁₋₆-alkylsulphonylamino-C₁₋ 6-alkoxy, (N-C₁₋₆-alkyl)-C₁₋₆-alkylsulphonylamino-C₁₋₆-alkyl, (N-C₁₋₆-alkyl)-C₁₋₆alkylsulphonylamino-C₁₋₆-alkoxy, C₁₋₆-alkylamino-C₁₋₆-alkylamino-C₁₋₆-alkoxy, di- $\underline{C_{1-6}}$ -alkylamino- $\underline{C_{1-6}}$ -alkyl, di- $\underline{C_{1-6}}$ -alkylamino- $\underline{C_{1-6}}$ -alkylsulphonyl- $\underline{C_{1-6}}$ -alkyl, $\underline{C_{1-6}}$ -alkylamino- $\underline{C_{$ alkylsulphonyl-C₁₋₆-alkoxy, carboxy-C₁₋₆-alkyl, carboxy-C₁₋₆-alkoxy, carboxy-C₁₋₆-alkoxy alkyl, C₁₋₆-alkoxy-C₁₋₆-alkyl-carbonyl, acyl-C₁₋₆-alkoxy-C₁₋₆-alkyl, (N-C₁₋₆-alkyl)-C₁₋₆alkoxycarbonylamino, (N-hydroxy)-C₁₋₆-alkylaminocarbonyl-C₁₋₆-alkyl, (N-hydroxy)-C₁₋₆alkylaminocarbonyl-C₁₋₆-alkoxy, (N-hydroxy) aminocarbonyl-C₁₋₆-alkyl, (N-hydroxy)aminocarbonyl-C₁₋₆-alkoxy, C₁₋₆-alkoxy-aminocarbonyl-C₁₋₆-alkyl, 6-alkoxyaminocarbonyl-C₁₋₆-

alkoxy, (N-C₁₋₆-alkoxy)-C₁₋₆-alkylaminocarbonyl-C₁₋₆-alkyl, (N-C₁₋₆-alkoxy)-C₁₋₆-alkylaminocarbonyl-C₁₋₆-alkoxy, (N-acyl)-C₁₋₆-alkoxy-C₁₋₆-alkylamino, C₁₋₆-alkoxy-C₁₋₆-alkylcarbamoyl, $(N-C_{1-6}-alkyl)-C_{1-6}-alkoxy-C_{1-6}-alkylcarbamoyl, C_{1-6}-alkoxy-C_{1-6}-alkylcarbonyl, C_{1-6}-alkoxy-C_{1-6}$ 6-alkylcarbonylamino, (N-C₁₋₆-alkyl)-C₁₋₆-alkoxy-C₁₋₆-alkylcarbonylamino, 1-C₁₋₆-alkoxy-C₁₋₆alkylimidazol-2-yl, 1-C₁₋₆-alkoxy-C₁₋₆-alkyltetrazol-5-yl, 5-C₁₋₆-alkoxy-C₁₋₆-alkyltetrazol-1-yl, 2-C₁₋₆-alkoxy-C₁₋₆-alkyl-4-oxoimidazol-1-yl, carbamoyl-C₁₋₆-alkyl, carbamoyl-C₁₋₆-alkoxy, C₁₋₆alkylcarbamoyl, di-C₁₋₆-alkylcarbamoyl, C₁₋₆-alkylsulphonyl, piperidinoalkyl, piperidinoalkoxy, piperidinoalkoxyalkyl, morpholinoalkyl, morpholinoalkoxy, morpholinoalkoxyalkyl, piperazinoalkyl, piperazinoalkoxy, piperazinoalkoxyalkyl, [1,2,4]triazol-1-ylalkyl, [1,2,4]triazol-1-ylalkoxy, [1,2,4]triazol-4-ylalkyl, [1,2,4]triazol-4-ylalkoxy, [1,2,4]oxadiazol-5-ylalkyl, [1,2,4]oxadiazol-5-ylalkoxy, 3-methyl[1,2,4]oxadiazol-5-ylalkyl, 3-methyl[1,2,4] oxadiazol-5ylalkoxy, 5-methyl[1,2,4]oxadiazol-3-ylalkyl, 5-methyl[1,2,4]oxadiazol-3-ylalkoxy, tetrazol-1ylalkyl, tetrazol-1-ylalkoxy, tetrazol-2-ylalkyl, tetrazol-2-ylalkoxy, tetrazol-5-ylalkyl, tetrazol-5vlalkoxy, 5-methyltetrazol-1-vlalkyl, 5-methyltetrazol-1-vlalkoxy, thiazol-4-vlalkyl, thiazol-4-vlalkoxy, oxazol-4-ylalkyl, oxazol-4-ylalkoxy, 2-oxopyrrolidinylalkyl, 2-oxopyrrolidinylalkoxy, imidazolylalkyl, imidazolylalkoxy, 2-methylimidazolylalkyl, 2-methylimidazolylalkoxy, N-methylpiperazinoalkyl, N-methylpiperazinoalkoxy, N-methylpiperazinoalkoxyalkyl, pyrrolidinyl, piperidinyl, piperazinyl, pyrrolyl, 4-methylpiperazinyl, morpholinyl, thiomorpholinyl, 2-hydroxymethylpyrrolidinyl, 3-hydroxypyrrolidinyl, 3,4-dihydroxypyrrolidinyl, 3-acetamidomethylpyrrolidinyl, 3-C₁₋₆-alkoxy-C₁₋₆-alkylpyrrolidinyl, 4-hydroxypiperidinyl, 4-oxopiperidinyl, 3,5-dimethylmorpholinyl, 4,4-dioxothiomorpholinyl, 4-oxothiomorpholinyl, 2,6-dimethylmorpholinyl, 2-oxoimidazolidinyl, 2-oxooxazolidinyl, 2-oxopyrrolidinyl, 2-oxo-[1,3]oxazinyl and 2-oxotetrahydropyrimidinyl;

 R^2 is C_1 - C_6 -alkyl;

 $[\]mathbb{R}^3$ is H;

 $[\]underline{R}^4$ is \underline{C}_1 - \underline{C}_6 -alkyl;

is C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, C_2 - C_8 -alkynyl, cyano- C_1 - C_6 -alkyl, optionally substituted C_3 - C_6 -cycloalkyl, C_3 - C_8 -cycloalkyl- C_1 - C_6 -alkyl, optionally substituted aryl, optionally substituted heterocyclyl- C_0 - C_6 -alkyl which, for C_0 -alkyl, is bonded via a carbon atom or H_2N -C(O)- C_1 - C_6 -alkyl;

or in which one or more atoms have been replaced by their stable non-radioactive isotopes, or a salt thereof, in particular a pharmaceutically usable acceptable salt thereof.

2-6. (Cancelled)

- 7. (Currently amended) Pharmaceutical A pharmaceutical preparation comprising, as an active pharmaceutical ingredient, a compound according to Claim 1 or 2 in free form or as a pharmaceutically usable acceptable salt, and a pharmaceutically inert excipient.
- 8. (Currently amended Withdrawn) Use of a compound according to Claim 1 or 2 for preparing a medicament for the treatment or prevention of hypertension, heart failure, and glaucoma, myocardial infarction, kidney failure or restenoses.
- 9. (Withdrawn) Use according to Claim 8, characterized in that the preparation is effective additionally with one or more agents having cardiovascular action, for example α - and β-blockers such as phentolamine, phenoxybenzamine, prazosin, terazosin, tolazine, atenolol, metoprolol, nadolol, propranolol, timolol, carteolol etc.; vasodilators such as hydralazine, minoxidil, diazoxide, nitroprusside, flosequinan etc.; calcium antagonists such as amrinone, bencyclan, diltiazem, fendiline, flunarizine, nicardipine, nimodipine, perhexilene, verapamil, gallopamil, nifedipine etc.; ACE inhibitors such as cilazapril, captopril, enalapril, lisinopril etc.; potassium activators such as pinacidil; anti-serotoninergics such as ketanserin; thromboxanesynthetase inhibitors; neutral endopeptidase inhibitors (NEP inhibitors); angiotensin II antagonists; and also diuretics such as hydrochlorothiazide, chlorothiazide, acetazolamide, amiloride, bumetanide, benzthiazide, ethacrynic acid, furosemide, indacrinone, metolazone, spironolactone, triamteren, chlorthalidone etc.; sympatholytics such as methyldopa, clonidine, guanabenz, reserpine; and other agents which are suitable for the treatment of hypertension, heart failure or vascular diseases in humans and animals which are associated with diabetes or renal disorders such as acute or chronic renal failure.
- 10. (Currently amended Withdrawn) A method for the treatment or prevention of hypertension, heart failure, and also glaucoma, myocardial infarction, kidney failure or

restenoses, characterized in that the human or animal body is treated with an effective amount of a compound according to Claim 1-or 2.