LAB 3.1

La regione ammissibile si identifica inequivocabilmente come il trapezio con i vertici situati nei punti A, B, C, D. Il punto massimo, individuato nelle coordinate (1, 1) e rappresentato nel disegno come D (ovvero l'intersezione delle rette relative ai vincoli v1 e v2 critici, che determina il punto massimizzante della funzione), è caratterizzato dalla retta appartenente al fascio.

PRIMO CASO:

Di seguito si analizza come l'algoritmo LVIncrementalLP risolve il problema quando si campiona v1 da $\{v1, v2, v3\}$ e v2 da $\{v2, v3\}$:

- Inizialmente, l'algoritmo viene chiamato sull'intero insieme di vincoli V di partenza. Tuttavia, non entra nell'istruzione condizionale poiché il numero di vincoli n è 2 e il numero di variabili decisionali m è 3. Successivamente, viene campionato v1 e l'algoritmo LVIncrementalLP(V{v1}) viene chiamato.
- L'esecuzione di LVIncrementalLP($V\{v1\}$) avviene con l'insieme di vincoli $V\{v1\}$, il quale si riduce a $\{v2, v3\}$. In questo caso, l'algoritmo non entra nell'istruzione condizionale poiché il numero di variabili decisionali m è 2. Successivamente, viene campionato v2 e l'algoritmo LVIncrementalLP($\{v3\}$) viene chiamato.
- L'esecuzione di LVIncrementalLP($\{v3\}$) si verifica con l'insieme di vincoli $\{v3\}$. In questo caso, l'algoritmo entra nell'istruzione condizionale poiché il numero di

variabili decisionali m è 1. Successivamente, determina il valore ottimale di x attraverso il vincolo y3: $y + x - 4 \le 0$.

A questo punto, la regione ammissibile è definita dai vincoli finora considerati, e il processo di campionamento e chiamata dell'algoritmo continua seguendo la logica delineata. La regione ammissibile è quindi quella che è stata evidenziata fino a questo punto nell'esecuzione dell'algoritmo

- Abbiamo quindi restituito al chiamante il punto ottimo di coordinate (0,4), il quale aveva inizialmente invocato la funzione LVIncrementalLP($\{v2, v3\}$).
- Successivamente, la funzione LVIncrementalLP({v2, v3}) ha restituito l'appena ottenuto punto ottimo, portandoci al passo 4. A questo punto, entriamo nel blocco condizionale "if": il punto ottimo viola il vincolo relativo a v2? La risposta è affermativa, poiché dovrebbe trovarsi al di sotto della retta azzurra con equazione v-1=0.
- Successivamente, procediamo all'else e proiettiamo i vincoli in $|V\setminus\{v2\}|$ (quindi, in questo caso, solo il vincolo v3) su v2, ottenendo $\{v2, v3\}'$.
- Successivamente, viene richiamata la funzione LVIncrementalLP($\{v2, v3\}'$).

• Dentro LVIncrementalLP($\{v2, v3\}'$), entriamo nel blocco condizionale "if" poiché n=1. Successivamente, determiniamo x_* considerando sia v2 che v3, giunti a questo punto, la regione ammissibile sarà:

L'ottimo individuato è il punto di coordinate (0,1). Lo restituiamo quindi al chiamante, che aveva inizialmente invocato la funzione LVIncrementalLP($\{v2, v3\}$). Il chiamante ora riceve l'ottimo "aggiornato", poiché ci troviamo al passo 4. Il punto x=(0,1) non viola il vincolo relativo a v2. Pertanto, procediamo nell'istruzione condizionale "if" e restituiamo x=(0,1).

- Al chiamante LVIncrementalLP($\{v1, v2, v3\}$) è stato quindi restituito x*=(0,1). Ora, al passo 4, verifichiamo se x*=(0,1) viola il vincolo v1. La risposta è affermativa, poiché non può trovarsi al di sopra della retta rossa con equazione y-x=0.
- Di conseguenza, entriamo nell'istruzione "else" e proiettiamo i vincoli in $V \{v1\}$ (quindi i vincoli v2, v3) su v1, ottenendo $\{v1, v2, v3\}'$.
- Successivamente, viene richiamata la funzione LVIncrementalLP({v1, v2, v3}').
- Dentro LVIncrementalLP($\{v1, v2, v3\}'$), entriamo nel blocco condizionale "if" poiché n=0. Successivamente, determiniamo x* considerando sia v1 che v2 che v3.

• Giunti a questo punto, la regione ammissibile sarà quella evidenziata:

L'ottimo individuato è il punto di coordinate (1,1). Lo restituiamo quindi al chiamante. Adesso, al passo 4, non stiamo violando alcun vincolo, e quindi il processo è completo.

SECONDO CASO:

- Inizialmente, l'algoritmo viene chiamato su tutto l'insieme $V=\{v1,v2,v3\}$ di vincoli di partenza.
 - Non entrando nell'istruzione condizionale "if", si procede direttamente al passo 2, campionando v2.
 - Successivamente, viene chiamato LVIncrementalLP({v1, v3}).
- LVIncrementalLP({v1, v3}).
 - Non entrando nell'istruzione condizionale "if", si passa direttamente al passo 2, campionando $\overline{v1}$.
 - Successivamente, viene chiamato LVIncrementalLP({v3}).
- LVIncrementalLP({v3}).
 - Entrando nell'istruzione condizionale "if", si determina e restituisce x = (0,4) attraverso il vincolo $v3:y+x-4 \le 0$.
- Ritornato a LVIncrementalLP({v1, v3}).
 - Siamo dentro la condizionale "if-else", poiché x = (0,4) viola il vincolo v1, si eseguono le istruzioni dell'else, proiettando v3 su v1 e ottenendo v3.
 - Viene quindi richiamato LVIncrementalLP({v1, v3}').
- LVIncrementalLP({v1, v3}').
 - Determinando e restituendo x = (2,2).
- LVIncrementalLP({v1, v3}),
 - Dentro la condizionale "if-else", poiché x = (2,2) non viola il vincolo v1, si esegue l'istruzione dell'if e x viene restituito.
- LVIncrementalLP({*v*1, *v*2, *v*3}).
 - Dentro la condizionale "if-else", Poiché x*=(2,2) viola il vincolo v2, si eseguono le istruzioni dell'else, proiettando v1,v3 su v2 e ottenendo $\{v1,v2,v3\}'$.
- Viene quindi richiamato LVIncrementalLP({v1, v2, v3}').
 - 1. Determinando e restituendo x = (1,1).
- Ritornato a LVIncrementalLP({v1, v2, v3}), si procede al passo 4 dell'istruzione condizionale "if-else".
 - Dentro la condizionale "if-else", poiché x = (1,1) non viola il vincolo v2, x viene restituito, e il processo è completato.