

LIMERICK INSTITUTE OF TECHNOLOGY

SUMMER EXAMINATIONS 2019/2020

MODULE: COMP08064-Concurrent & Distributed Systems

PROGRAMME(S):

LC_KGDVM_KTH Bachelor of Science (Honours) Games Design and

Development

YEAR OF STUDY: 4

EXAMINER(S):

Eugene Kenny (Internal) Mr. Damien Costello (External)

TIME ALLOWED: 2 HOURS

INSTRUCTIONS: Answer 4 questions. All questions carry equal marks.

PLEASE DO NOT TURN OVER THIS PAGE UNTIL YOU ARE INSTRUCTED TO DO SO.

The use of programmable or text storing calculators is expressly forbidden. Please note that where a candidate answers more than the required number of questions, the examiner will mark all questions attempted and then select the highest scoring ones.

Requirements for this paper:

1. Calculators

QUESTION 1 [25 Marks]

(a) Explain what is meant by the term *interference* when applied to **[10 marks]** concurrent programs and how problems of interference can be overcome using mutual exclusion protocols.

(b) In general, statements in a high-level programming language are not [15 marks] atomic - they expand into fine grained actions which are atomic.

In the above example Process 1 is adding two integer variables while Process 2 is assigning to those variables. Variable x is local to Process 1, while variables y and z are shared between the two processes. Assume that:

- values are manipulated by loading them into registers, operating on them there and storing the results back into memory;
- the usual load, store and arithmetic operations are available;
- each process has its own set of registers; and
- any intermediate results that occur when a complex expression is evaluated are stored in registers or in memory private to the process.

At the end of the program fragment, what are the possible values of x?

QUESTION 2 [25 Marks] (a) What is the difference between *deadlock* and *livelock*? [10 marks] (b) Outline *Peterson's* algorithm for ensuring mutual exclusion. What are [15 marks] the practical advantages and disadvantages of applying this algorithm. **QUESTION 3** [25 Marks] Explain the differences between *semaphores* and *monitors*. [10 marks] (b) Outline a monitor based solution to the single producer - single [15 marks] consumer problem using a bounded buffer. **QUESTION 4** [25 Marks] Outline three types of distributed system. [10 marks] **(b)** There has been a tremendous growth in the development of peer-to-[15 marks] peer decentralized systems. Describe the main peer-to-peer architectural configurations.

(a) Outline how Distributed Hash Tables (DHT) work.

(b) Describe how Lamport's logical clocks work.

QUESTION 5

[25 Marks]

[15 marks]

[10 marks]