

Método de Newton-Raphson

Disciplina: Métodos Numéricos Professor: Gibson Barbosa

Email: gibson.barbosa@unicap.br

Método de Newton-Raphson

Série de Taylor

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

$$p(x) = f(a) + f'(a) rac{(x-a)^1}{1!} + f''(a) rac{(x-a)^2}{2!} + \ldots + f^{(n)}(a) rac{(x-a)^n}{n!}$$

Método de Newton-Raphson

- Seja f(x) uma função contínua no intervalo [a,b] que possui uma única raiz para f(x) = 0 nesse intervalo.
 - o f'(x) e f''(x), também devem ser contínuas nesse intervalo
 - \circ f'(x) \neq 0
- A aproximação x_k para a raiz é obtida tomando como base uma série de Taylor para f (x) = 0

$$f(x) = f(x_k) + f'(x_k) \cdot (x - x_k)$$

Dado que x_{k+1} é raiz da equação

$$f(x_{k+1}) = 0 \Rightarrow f(x_k) + f'(x_k) \cdot (x_{k+1} - x_k) = 0$$

$$f(x_k) = -f'(x_k) \cdot (x_{k+1} - x_k)$$

$$(x_{k+1} - x_k) = -\frac{f(x_k)}{f'(x_k)}$$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Exercício 1

- Determinar uma aproximação para a raiz, usando o método de Newton-Raphson, da equação x² + ln (x) = 0, tendo como aproximação inicial x₀ = 0,5
 - Tolerância e ≤ 10⁻²
 - Critério de parada: $|f(x_{k+1})| \le e, k = 0,1,2,3,...,n$
 - Utilizar o método de arredondamento

Exercício 2

- Equação $x^3 + 2x^2 + x 1 = 0$, determinar uma aproximação para a raiz pelo método de Newton-Raphson,
 - Precisão e ≤ 10⁻².
 - Utilizar arredondamento

k	$\mathbf{X}_{\mathbf{k}}$	f(x _k)	СР
0	0,6250	0,6504	6,5040×10 ⁻¹
1	0,4858	0,0725	$7,2500\times10^{-2}$
2	0,4660	0,0015	$1,5000\times10^{-3}$
3	0,4656	0,0001	1,0000×10 ⁻⁴

Convergência

- 1. A função f (x) é contínua no intervalo [a,b] e as derivadas f '(x) e f "(x) devem ser não nulas e preservar o sinal no intervalo dado
- 2. A escolha do valor inicial x_0 deve ser tal que:

$$f(x_0) \cdot f''(x_0) > 0$$

- O método de Newton-Raphson é um dos métodos mais eficientes para resolver o problema de encontrar as raízes de uma equação
 - Deve atender às condições de convergências, ou seja, deve ter uma boa aproximação inicial
 x₀
 - Acelera a convergência da sequência de aproximações {x_k} para a raiz exata da equação.
- Requer cálculos mais elaborados, pois envolve derivadas de funções

Obrigado!