Corrigé de la feuille d'exercices 1

Exercice 1. 1.

2.

```
((P \text{ ou } Q) \implies R) est équivalente à (\text{non}(P \text{ ou } Q) \text{ ou } R) est équivalente à ((\text{non}(P) \text{ et } \text{non}(Q)) \text{ ou } R) est équivalente à ((\text{non}(P) \text{ ou } R) \text{ et } (\text{non}(Q) \text{ ou } R)) est équivalente à ((P \implies R) \text{ et } (Q \implies R))
```

Exercice 2. 1. Faux. Contre exemple : Posons x = y = 1, $x + y^2 \neq 0$.

- 2. Faux. Posons x = 1, on a alors : $\forall y \in \mathbb{R}, y^2 \neq -1$.
- 3. Faux. Par l'absurde. Supposons qu'il existe $x \in \mathbb{R}$ tel que $\forall y \in \mathbb{R}, x + y^2 = 0$. Ainsi, pour tout $y \in \mathbb{R}, x = -y^2$. Ainsi, En prenant $y_1 = 1$ et $y_2 = 2$, on obtiendrait : x = -1 = -4 Absurde.
- 4. Vrai. Posons x = -1 et y = 1. On a $x + y^2 = 0$.
- 5. Vrai. Soit $y \in \mathbb{R}$, on pose $x = -y^2 \in \mathbb{R}$. On a alors $x + y^2 = 0$

Exercice 3. 1. $\forall x \in \mathbb{R}, x^2 \geq 0$.

- 2. $\exists ! x \in \mathbb{R}, \ x^3 + x + 1 = 0$
- 3. $\forall x \in \mathbb{R}, x^2 + x + 1 \neq 0$
- 4. $\exists ! x \in \mathbb{R}, \ln(x) = 1$

Exercice 4.

1.	(a) $\forall n \in \mathbb{N}, \ u_n \leq u_{n+1}$	Négation : $\exists n \in \mathbb{N}, \ u_n > u_{n+1}$
	(b) $\exists M \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ u_n \leq M$	Négation : $\forall M \in \mathbb{R}, \ \exists n \in \mathbb{N}, \ u_n > M$
	(c) $\forall n \in \mathbb{N}, \ u_n = u_{n+1}$	Négation : $\exists n \in \mathbb{N}, \ u_n \neq u_{n+1}$
2.	(a) $\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ x \le y \Longrightarrow f(x) \le f(y)$	Négation : $\exists x \in \mathbb{R}, \ \exists y \in \mathbb{R}, \ x \leq y \text{ et } f(x) > f(y)$
	(b) $\exists M \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ f(x) \le M$	Négation : $\forall M \in \mathbb{R}, \ \exists x \in \mathbb{R}, \ f(x) > M$
	(c) $\exists C \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ f(x) = C$	Négation: $\forall C \in \mathbb{R}, \ \exists x \in \mathbb{R}, \ f(x) \neq C$
	(d) $\forall x \in \mathbb{R}, \ f(x) = 0$	Négation : $\exists x \in \mathbb{R}, \ f(x) \neq 0$
	(e) $\forall x \in \mathbb{R}, \ f(x) \neq 0$	Négation : $\exists x \in \mathbb{R}, \ f(x) = 0$
	(f) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, \left(x \neq y \Longrightarrow f(x) \neq f(y)\right)$	Négation : $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, \left(x \neq y \text{ et } f(x) = f(y)\right)$
	(g) $\forall n \in \mathbb{N}, \exists x \in \mathbb{R}, f(x) = n$	Négation : $\exists n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ f(x) \neq n$
	(h) $\exists x \in \mathbb{R}, \ f(x) > g(x)$	Négation : $\forall x \in \mathbb{R}, \ f(x) \leq g(x)$

Exercice 5. Raisonnons par l'absurde.

Supposons qu'il existe $n \in \mathbb{N}^*$ tel que $\sqrt{n^2+1} \in \mathbb{N}$. Posons $p=\sqrt{n^2+1}$. On a : $n^2+1=p^2$. D'où $p^2-n^2=1$. Ainsi 1=(p-n)(p+n). Or, $(p-n) \in \mathbb{Z}$ et $(p+n) \in \mathbb{N}$ et ils divisent tous deux 1. Ainsi, p-n=1 et p+n=1. En soustrayant ces deux inégalités, on obtient n=0 ce qui contredit l'hypothèse $n \in \mathbb{N}^*$. Finalement, on peut conclure que : $\forall n \in \mathbb{N}^*$, $\sqrt{n^2+1} \notin \mathbb{N}$

Exercice 6. Raisonnons par contraposée.

La contraposée est : si $a \neq b$ ou $c \neq d$ alors $a + c \neq b + d$. Supposons que $a \neq b$ ou $c \neq d$.

- Si $a \neq b$ alors comme $a \leq b$, on a a < b. Ainsi, a + c < b + d donc en particulier, $a + c \neq b + d$.
- De même, si $c \neq d$ alors comme $c \leq d$, on a c < d. Ainsi, a + c < b + d donc en particulier, $a + c \neq b + d$.

On a donc montré que si $a \neq b$ ou $c \neq d$ alors $a + c \neq b + d$.

Comme une proposition est équivalente à sa contraposée, on a également prouvé que si a + c = b + d alors a = b et c = d.

Exercice 7. 1. Soit $n \in \mathbb{N}$. Raisonnons par double implication.

Montrons tout d'abord que : si n est pair alors n^2 est pair :

Supposons n pair. Alors, il existe donc $p \in \mathbb{N}$ tel que n = 2p. Ainsi, $n^2 = 4p^2 = 2 \times (2p^2)$ avec $2p^2 \in \mathbb{N}$ donc n^2 est pair.

On a donc : si n est pair alors n^2 est pair.

Montrons désormais que si n^2 est pair alors n est pair. On raisonne par contraposée.

La contraposée est : si n est impair alors n^2 est impair.

Supposons n impair. Il existe donc $p \in \mathbb{N}$ tel que n = 2p + 1. Ainsi, $n^2 = 4p^2 + 4p + 1 = 2(2p^2 + 2p) + 1$ avec $(2p^2 + 2p) \in \mathbb{N}$ donc n^2 est impair. Ainsi, si n est impair alors n^2 est impair.

Une proposition et sa contraposée étant équivalente, on a aussi : si n^2 est pair alors n est pair.

Finalement, on a bien montré que pour tout $n \in \mathbb{N}$, n est pair si et seulement si n^2 est pair.

2. Raisonnons par l'absurde.

Supposons que $\sqrt{2}$ est rationnel. Alors, il existe $p \in \mathbb{N}$ et $q \in \mathbb{N}^*$ tels que $\sqrt{2} = \frac{p}{q}$ avec $\frac{p}{q}$ irréductible.

On en déduit, en élevant au carré, que $2q^2=p^2$ avec $q^2\in\mathbb{N}$. Ainsi, p^2 est pair donc d'après la question précédente, p est pair. Ainsi, il existe $u\in\mathbb{N}$ tel que p=2u. En remplaçant dans l'équation $2q^2=p^2$, on obtient : $2q^2=4u^2$ ce qui s'écrit encore $q^2=2u^2$. Ainsi, q^2 est pair (car $u^2\in\mathbb{N}$) donc q également. On a ainsi montré que p et q sont pairs ce qui contredit le fait que la fraction $\frac{p}{q}$ soit irréductible.

Ainsi, $\sqrt{2}$ est irrationnel.

Exercice 8. Raisonnons par double implication.

Montrons tout d'abord que $(\forall x \in \mathbb{R}, ax + be^x = 0) \implies a = b = 0.$

Supposons que : $\forall x \in \mathbb{R}, ax + be^x = 0.$

En prenant x = 0, on obtient b = 0 puis en prenant x = 1, on obtient a + be = 0 donc a = 0 car b = 0.

Réciproquement, supposons a = b = 0. Alors, on a directement que : $\forall x \in \mathbb{R}, (ax + be^x = 0)$.

Ceci prouve l'équivalence voulue.

Exercice 9. Méthode 1:

Raisonnons par analyse-synthèse.

Analyse : Supposons qu'il existe $x \in \mathbb{R}_+$, tel que $x + \sqrt{x} - 2 = 0$. Alors, on en déduit donc que x vérifie $\sqrt{x} = 2 - x$. En élevant cette égalité au carré, on aboutit finalement à l'équation : $x^2 - 5x + 4 = 0$. Le discriminant de cette équation vaut 9. Cette équation admet donc deux solutions distinctes 1 et 4.

Synthèse : $1 + \sqrt{1} - 2 = 0$. Donc 1 est bien solution de $x + \sqrt{x} - 2 = 0$. En revanche, $4 + \sqrt{4} - 2 = 4 \neq 0$ donc 4 n'est pas solution.

Conclusion : 1 est l'unique réel vérifiant $x + \sqrt{x} - 2 = 0$.

Méthode 2:

Soit $x \in \mathbb{R}_+$.

$$x + \sqrt{x} - 2 = 0 \iff \sqrt{x} = 2 - x$$

$$\iff \begin{cases} 2 - x \ge 0 \\ x = (2 - x)^2 \end{cases}$$

$$\iff \begin{cases} 2 - x \ge 0 \\ x = 4 - 4x + x^2 \end{cases}$$

$$\iff \begin{cases} x \le 2 \\ x^2 - 5x + 4 = 0 \end{cases}$$

L'équation $x^2 - 5x + 4 = 0$ admet deux solutions distinctes qui sont 1 et 4. Ainsi,

$$x + \sqrt{x} - 2 = 0$$
 \iff
$$\begin{cases} x \le 2 \\ x = 1 \text{ ou } x = 4 \end{cases}$$
$$\iff x = 1$$

Conclusion : Par équivalence, l'équation de départ admet une unique solution dans \mathbb{R}_+ .

Exercice 10. Méthode 1:

Raisonnons par analyse-synthèse : Analyse : Supposons qu'il existe $x \in \mathbb{R}$ tel que $x = \sqrt{2+x}$. Alors en élevant au carré l'égalité, on obtient $x^2 - x - 2 = 0$. Le discriminant de l'équation $x^2 - x - 2 = 0$ vaut 9. Ainsi, l'équation admet deux solutions distinctes 2 ou -1.

Synthèse : $2 = \sqrt{4}$ donc 2 est bien solution. En revanche, $\sqrt{2-1} = 1$. Donc x = -1 n'est pas solution de l'équation. Conclusion : l'équation admet une unique solution réelle qui est 2.

Méthode 2:

L'équation a un sens pour $x \in]-2, +\infty[$. Soit $x \in]-2, +\infty[$. On a:

$$x = \sqrt{2 + x} \iff \begin{cases} x \ge 0 \\ x^2 = 2 + x \end{cases}$$

$$\iff \begin{cases} x \ge 0 \\ x^2 - x - 2 = 0 \end{cases}$$

$$\iff \begin{cases} x \ge 0 \\ x = -1 \text{ ou } x = 2 \end{cases}$$

$$\iff x = 2$$

L'équation admet donc une unique solution qui est 2.

Exercice 11. Raisonnons par analyse-synthèse:

Analyse: Supposons qu'il existe $x \in \mathbb{R}$ tel que $e^x + e^{-x} = \frac{5}{2}$. Alors $e^{2x} - \frac{5}{2}e^x + 1 = 0$. Posons $X = e^x$. On a donc $X^2 - \frac{5}{2}X + 1 = 0$. Ainsi, $X = \frac{1}{2}$ ou X = 2. D'où , $e^x = \frac{1}{2}$ ou $e^x = 2$. Donc $x = \ln\left(\frac{1}{2}\right) = -\ln(2)$ ou $x = \ln(2)$.

Synthèse : on a $e^{\ln(2)} + e^{-\ln(2)} = 2 + \frac{1}{2} = \frac{5}{2}$. Ainsi, $\ln(2)$ est bien solution de l'équation.

Conclusion, il existe bien $x \in \mathbb{R}$, $e^x + e^{-x} = \frac{5}{2}$, $\ln(2)$ et $-\ln(2)$ conviennent.

Exercice 12. Analyse : supposons qu'il existe f solution du problème.

- 1. En prenant, x = y = 0, on a: $f(0)^2 f(0) = 0$ i.e $f(0) \times (f(0) 1) = 0$ donc f(0) = 1 ou f(0) = 0. Or, si f(0) = 0 alors en prenant x = 0 et y = 1, on obtiendrait : 0 - 0 = 1 Absurde. Ainsi, f(0) = 1.
- 2. D'après la question précédente, f(0) = 1. En prenant y = 0, on obtient : $\forall x \in \mathbb{R}, f(x) 1 = 0$. Donc :

 $\forall x \in \mathbb{R}, \ f(x) = x + 1.$ Synthèse : on pose $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto x + 1.$

Soit $x, y \in \mathbb{R}$. On a f(x)f(y) - f(xy) = (x+1)(y+1) - (xy+1) = xy + x + y + 1 - xy - 1 = x + y donc f est bien solution.

Conclusion : on a prouvé par analyse synthèse que le problème possède pour unique solution la fonction $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto x+1$

Exercice 13. On raisonne par analyse/synthèse.

Analyse: Supposons qu'il existe $(a,b) \in \mathbb{R}^2$ tel que : $\forall x \in \mathbb{R}, f(x) = ax + b$. Alors b = f(0) et a = f(1) - f(0).

Synthèse : Posons b = f(0) et a = f(1) - f(0).

Soit $x \in \mathbb{R}$. Si x = 0 ou x = 1, on a alors f(x) = ax + b.

Supposons maintenant $x \neq 0$ et $x \neq 1$. Par hypothèse, on a alors $\frac{f(x)-f(0)}{x} = \frac{f(x)-f(1)}{x-1}$, donc $\frac{f(x)-b}{x} = \frac{f(x)-(a+b)}{x-1}$. D'où (x-1)(f(x)-b) = x(f(x)-a-b). Ainsi, xf(x)-f(x)-bx+b = xf(x)-ax-bx. D'où f(x)=ax+b.

Donc: $\forall x \in \mathbb{R}, f(x) = ax + b.$

Conclusion : on a montré que : $\exists !(a,b) \in \mathbb{R}^2, \forall x \in \mathbb{R}, f(x) = ax + b$.

Exercice 14. Soit $x \in \mathbb{R}$.

 $\max(x^2,(x-2)^2) \ge 1$ si et seulement si $x^2 \ge 1$ ou $(x-2)^2 \ge 1$.

Montrons que $x^2 \ge 1$ ou $(x-2)^2 \ge 1$.

Supposons que $x^2 < 1$. On a alors -1 < x < 1, donc -3 < x - 2 < -1. Comme la fonction carrée est décroissante sur \mathbb{R}_- , on en déduit que $(x-2)^2 \ge (-1)^2 = 1$. On peut donc conclure que $x^2 \ge 1$ ou $(x-2)^2 \ge 1$ puis que $\max(x^2, (x-2)^2) \ge 1$. Ainsi : $\forall x \in \mathbb{R}, \max(x^2, (x-2)^2) \ge 1$.

Exercice 15. Montrons par récurrence que : $\forall n \in \mathbb{N}, 0 \leq u_n \leq 1$.

- Pour n = 0: $u_0 = 1$. La propriété est vraie pour n = 0.

• Soit $n \in \mathbb{N}$, supposons que $0 \le u_n \le 1$. Alors , $1 \le u_n + 1 \le 2$ puis $0 < \frac{1}{2} \le \frac{u_n + 1}{2} \le 1$. En appliquant la fonction racine carrée (strictement croissante sur \mathbb{R}_+), on obtient $0 \le u_{n+1} \le 1$.

• On a donc montré par récurrence que : $\forall n \in \mathbb{N}, \ 0 \le u_n \le 1$.

Exercice 16. Montrons, par récurrence, que : $\forall n \in \mathbb{N}^*, \ 2^n > n$.

- Pour n = 1 : 2 > 1. La propriété est vraie pour n = 1.
- Soit $n \in \mathbb{N}^*$, supposons que $2^n > n$. Alors $2^{n+1} = 2 \times 2^n > 2n$. Or, $n \ge 1$ donc $n+n \ge n+1$. Ainsi, $2^{n+1} > n+1$.
- On a donc montré par récurrence que : $\forall n \in \mathbb{N}^*, \ 2^n > n$.

Exercice 17. On pose, pour tout $n \in \mathbb{N}$, $\mathcal{P}(n) : \ll u_n = (n+1) \times 3^n \gg$.

Montrons, par récurrence d'ordre 2 que $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}$.

- On a $u_0 = 1 = 3^0$ et $u_1 = 6 = 2 \times 3$ donc $\mathcal{P}(0)$ et $\mathcal{P}(1)$ sont vraies.
- Soit $n \in \mathbb{N}$, supposons que $\mathcal{P}(n)$ et $\mathcal{P}(n+1)$ sont vraies.

Alors , par hypothèse de récurrence, on a $u_n = (n+1) \times 3^n$ et $u_{n+1} = (n+2) \times 3^{n+1}$. On en déduit donc que $u_{n+2} = 6 \times (n+2) \times 3^{n+1} - 9 \times (n+1) \times 3^n = 3^{n+2} \times (2n+4-n-1) = 3^{n+2}(n+3)$. Ainsi, $\mathcal{P}(n+2)$ est vraie.

• On a donc montré par récurrence que, pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie donc : $\forall n \in \mathbb{N}$, $u_n = (n+1) \times 3^n$.

Exercice 18. On pose, pour tout $n \in \mathbb{N}$, $\mathcal{P}(n) : \ll u_n \leq \left(\frac{5}{3}\right)^n \gg$.

Montrons, par récurrence d'ordre 2 que $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}$.

- On a $u_0 = 1 = \left(\frac{5}{3}\right)^0$ et $u_1 = 1$ donc $u_1 \le \left(\frac{5}{3}\right)^1$. Ainsi, $\mathcal{P}(0)$ et $\mathcal{P}(1)$ sont vraies.
- Soit $n \in \mathbb{N}$, supposons que $\mathcal{P}(n)$ et $\mathcal{P}(n+1)$ sont vraies.

Alors, par hypothèse de récurrence, on a $u_n \leq \left(\frac{5}{3}\right)^n$ et $u_{n+1} \leq \left(\frac{5}{3}\right)^{n+1}$. On a alors :

$$u_{n+2} = u_{n+1} + u_n$$

$$\leq \left(\frac{5}{3}\right)^n + \left(\frac{5}{3}\right)^{n+1}$$

$$\leq \left(\frac{5}{3}\right)^n \left(1 + \frac{5}{3}\right)$$

$$\leq \frac{8}{3} \left(\frac{5}{3}\right)^n$$

De plus, $\left(\frac{5}{3}\right)^2 - \frac{8}{3} = \frac{25 - 24}{9} \ge 0$. Ainsi, $\frac{8}{3} \le \left(\frac{5}{3}\right)^2$ donc $u_{n+2} \le \left(\frac{5}{3}\right)^2 \left(\frac{5}{3}\right)^n = \left(\frac{5}{3}\right)^{n+2}$. Ainsi, $\mathcal{P}(n+2)$ est vraie.

• On a donc montré par récurrence que, pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie donc : $\forall n \in \mathbb{N}, u_n \leq \left(\frac{5}{2}\right)^n$

Exercice 19. On pose, pour tout $n \in \mathbb{N}$, $\mathcal{P}(n) : \ll u_n = n(n-1) \gg$.

Montrons, par récurrence d'ordre 3 que $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}$.

- On a $u_0 = 0$, $u_1 = 0$ et $u_2 = 2 = 2 \times 1$ donc $\mathcal{P}(0)$, $\mathcal{P}(1)$ et $\mathcal{P}(2)$ sont vraies.
- Soit $n \in \mathbb{N}$, supposons que $\mathcal{P}(n)$, $\mathcal{P}(n+1)$ et $\mathcal{P}(n+2)$ sont vraies.

Alors par hypothèse de récurrence, on a $u_n = n(n-1)$, $u_{n+1} = (n+1)n$ et $u_{n+2} = (n+2)(n+1)$. On en déduit donc que:

$$u_{n+3} = 3(n+2)(n+1) - 3n(n+1) + n(n-1)$$

$$= 3n^2 + 9n + 6 - 3n^2 - 3n + n^2 - n$$

$$= n^2 + 5n + 6$$

$$= (n+3)(n+2)$$

• On a donc montré par récurrence que, pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie donc : $\forall n \in \mathbb{N}, u_n = n(n-1)$

Exercice 20. On pose, pour tout $n \in \mathbb{N}$, $\mathcal{P}(n) : \ll u_n = n \gg$.

Montrons par récurrence forte que $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}$.

- Pour n = 0: on a $u_0 = 0$ donc $\mathcal{P}(0)$ est vraie.
- \bullet Soit $n\in\mathbb{N},$ supposons que pour tout $k\in[\![0,n]\!],\,\mathcal{P}(k)$ est vraie. Alors :
 - Si n est pair, on a $u_{n+1}=2u_{\frac{n}{2}}+1.$ Or, $u_{\frac{n}{2}}=\frac{n}{2}$ par hypothèse de récurrence car $\frac{n}{2}\in \llbracket 0,n \rrbracket.$ Ainsi, $u_{n+1} = 2 \times \frac{n}{2} + 1 = n + 1$.
- Si n est impair, on a $u_{n+1} = u_n + 1$. Or, $u_n = n$ par hypothèse de récurrence car $n \in [0, n]$. Ainsi, $u_{n+1} = n + 1$. Donc, $\mathcal{P}(n+1)$ est vraie.
- On a donc montré par récurrence que, pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie donc : $\forall n \in \mathbb{N}$, $u_n = n$

Exercice 21. On pose, pour tout $n \in \mathbb{N}$, $\mathcal{P}(n) : \ll x^n + \frac{1}{x^n} \in \mathbb{Z} \gg$.

Montrons par récurrence d'ordre 2 que $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}$.

- On a $x^0 + \frac{1}{x^0} = 1 + 1 = 2 \in \mathbb{Z}$ et $x + \frac{1}{x} \in \mathbb{Z}$ par hypothèse sur x. Ainsi, $\mathcal{P}(0)$ et $\mathcal{P}(1)$ sont vraies. Soit $n \in \mathbb{N}$, supposons que $\mathcal{P}(n)$ et $\mathcal{P}(n+1)$ sont vraies.
- Alors, on a : On a :

$$\left(x^{n+1} + \frac{1}{x^{n+1}}\right)\left(x + \frac{1}{x}\right) = x^{n+2} + \frac{x^{n+1}}{x} + \frac{x}{x^{n+1}} + \frac{1}{x^{n+2}}$$
$$= x^{n+2} + \frac{1}{x^{n+2}} + x^n + \frac{1}{x^n}$$

D'où:

$$x^{n+2} + \frac{1}{x^{n+2}} = \left(x^{n+1} + \frac{1}{x^{n+1}}\right)\left(x + \frac{1}{x}\right) - \left(x^n + \frac{1}{x^n}\right)$$

Or, par hypothèse de récurrence, on a : $x^{n+1} + \frac{1}{x^{n+1}} \in \mathbb{Z}$, $x^n + \frac{1}{x^n} \in \mathbb{Z}$. De plus, $x + \frac{1}{x} \in \mathbb{Z}$ par hypothèse sur x. Ainsi, $x^{n+2} + \frac{1}{x^{n+2}} \in \mathbb{Z}$ et $\mathcal{P}(n+2)$ est vraie.

• On a donc montré par récurrence que, pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie donc : $\forall n \in \mathbb{N}$, $x^n + \frac{1}{x^n} \in \mathbb{Z}$