Welcome to the course!

LINEAR CLASSIFIERS IN PYTHON

Michael (Mike) Gelbart
Instructor, The University of British
Columbia

Assumed knowledge

In this course we'll assume you have some prior exposure to:

- Python, at the level of *Intermediate Python for Data Science*
- scikit-learn, at the level of Supervised Learning with scikit-learn
- supervised learning, at the level of Supervised Learning with scikit-learn

Fitting and predicting

```
import sklearn.datasets
newsgroups = sklearn.datasets.fetch_20newsgroups_vectorized()
X, y = newsgroups.data, newsgroups.target
X.shape
(11314, 130107)
y.shape
(11314,)
```


Fitting and predicting (cont.)

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(X,y)

y_pred = knn.predict(X)
```


Model evaluation

```
knn.score(X,y)
```

0.99991

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y)

knn.fit(X_train, y_train)

knn.score(X_test, y_test)
```

0.66242

Let's practice!

LINEAR CLASSIFIERS IN PYTHON

Applying logistic regression and SVM

LINEAR CLASSIFIERS IN PYTHON

Michael (Mike) Gelbart
Instructor, The University of British
Columbia

Using LogisticRegression

from sklearn.linear_model import LogisticRegression

```
lr = LogisticRegression()
lr.fit(X_train, y_train)
lr.predict(X_test)
lr.score(X_test, y_test)
```


LogisticRegression example

```
import sklearn.datasets
wine = sklearn.datasets.load_wine()
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(wine.data, wine.target)
lr.score(wine.data, wine.target)
```

```
0.972
```

```
lr.predict_proba(wine.data[:1])
```

```
array([[ 9.951e-01, 4.357e-03, 5.339e-04]])
```


Using LinearSVC

LinearSVC works the same way:

```
import sklearn.datasets
wine = sklearn.datasets.load_wine()
from sklearn.svm import LinearSVC

svm = LinearSVC()

svm.fit(wine.data, wine.target)
svm.score(wine.data, wine.target)
```

0.893

Using SVC

```
import sklearn.datasets
wine = sklearn.datasets.load_wine()
from sklearn.svm import SVC
svm = SVC() # default hyperparameters
svm.fit(wine.data, wine.target);
svm.score(wine.data, wine.target)
```

1.

Model complexity review:

- Underfitting: model is too simple, low training accuracy
- Overfitting: model is too complex, low test accuracy

Let's practice!

LINEAR CLASSIFIERS IN PYTHON

Linear decision boundaries

LINEAR CLASSIFIERS IN PYTHON

Michael (Mike) Gelbart
Instructor, The University of British
Columbia

Linear decision boundaries

Definitions

Vocabulary:

- classification: learning to predict categories
- decision boundary: the surface separating different predicted classes
- **linear classifier**: a classifier that learns linear decision boundaries
 - e.g., logistic regression, linear SVM
- **linearly separable**: a data set can be perfectly explained by a linear classifier

Linearly separable data

not linearly separable

linearly separable

Let's practice!

LINEAR CLASSIFIERS IN PYTHON

