Math 5364 Homework 4

- 1. Produce a data set called exdata similar to the one on p. 42 of the Chapter 4 slides.
 - There are 1800 black points, whose x and y coordinates were generated from a uniform distribution on [0, 20]. (Hint: runif command.)
 - There are three sets with 400 red points each that were obtained from normal distributions, with these parameters: $(\mu_X, \mu_Y) = (10, 5)$, $(\mu_X, \mu_Y) = (5, 15)$, and $(\mu_X, \mu_Y) = (15, 15)$. All of these normal distributions have $\sigma_X = \sigma_Y = 2$. (Hint: rnorm command.)
 - The dataframe exdata should have three columns, x, y, and class.
 - Class labels for the black points are 0, and the labels for the red points are 1.
- 2. This problem reconstructs some of the results from the slides for exdata.
 - (a) Create a scatterplot for exdata like the one on p. 42 of the slides.
 - (b) Randomly split exdata into a training set containing 30% of the records, and a test set containing 70% of the records.
 - (c) Use rpart to fit a decision tree called extree to the training data, and find the training error and testing error for this tree. Also, plot extree with the plot command.
 - (d) Construct trees with maxdepth = 1, 2, ..., 6. For each tree, store its training error, test error, and number of nodes in a matrix (note that you can expedite this task with a for-loop).
 - (e) Construct trees with minsplit = 1 and cp = $10^{-2.0}$, $10^{-2.1}$, $10^{-2.2}$, ..., $10^{-2.9}$, $10^{-3.0}$, and store their training error, test error, and number of nodes in a matrix.
 - (f) Use the information in this matrix to reproduce the plot of training/test error vs. number of nodes, as given on p. 54 of the slides.
 - (g) Let extree2 be the tree with minsplit = 1 and cp = $10^{-3.0}$, and plot this tree.
 - (h) Use McNemar's test to determine if there is a statistically significant difference between the accuracies of extree and extree2.
- 3. Write a function called zcritical that accepts inputs alpha and numtails and returns z_{α} when numtails=1 and $z_{\alpha/2}$ when numtails=2. Verify that zcritical (0.05,2)=1.96 and zcritical (0.05,1)=1.645. The qnorm function will be helpful on this problem.
- 4. Write a function called accuracyconfint that accepts inputs accuracy, n, and alpha and returns the confidence interval for accuracy given on p. 62 of the slides. Use this function to find a confidence interval for the accuracy of extree.
- 5. Randomly split kyphosis into about 70% training data and about 30% test data.
 - (a) Use rpart to fit a tree called ktree to the training data, and find the training and test error rates.
 - (b) Find an exact binomial confidence interval for the accuracy of ktree.