Flerdimensjonal analyse (MA1103)

Øving 12

Oppgave 1 (6.5: 4)

Regn ut arealet avgrenset av kurven $\mathbf{r}(t) = (a\cos^3(t), b\sin^3(t)), t \in [0, 2\pi], \text{ der } a \text{ ob } b \text{ er to positive tall.}$

Oppgave 2 (6.5: 7)

La D være området i \mathbb{R}^2 som består av punkter (x,y) som oppfyller ulikhetene $x^2+y^2\leq 1$ og $y\geq 0$. La C være randen til D orientert mot urviseren. Finn verdien av kurveintegralet

$$\int_C \mathbf{F} \cdot d\mathbf{r},$$

 $\operatorname{der} \mathbf{F}(x, y) = (xy + \ln(x^2 + 1), 4x + e^{y^2} + 3\arctan(y))$

Oppgave 3 (6.5: 12)

En ellipse har ligningen

$$9x^2 + 4y^2 - 18x + 16y = 11$$

- a) Finn sentrum og halvaksene til ellipsen, og lag en skisse av ellipsen i koordinatsystemet.
- b) Vis at $\mathbf{r}(t) = (1 + 2\cos(t), -2 + 3\sin(t)), t \in [0, 2\pi)$, er en parametrisering av ellipsen. Regn ut $\int_C \mathbf{F} \cdot d\mathbf{r}$ der

$$\mathbf{F}(x,y) = (y^2, x)$$

og C er ellipsen med positv orientering.

c) Regn ut

$$\iint_{\mathcal{B}} (1 - 2y) \, d(x, y),$$

der R er området avgrenset av ellipsen.

Oppgave 4 (6.5: 13)

Det er en nær sammenheng mellom Greens teorem og teorien for konservative vektorfelt i seksjon 3.5. Bruk Greens teorem til å vise at dersom \mathbf{F} er et konservativt felt, så er $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for alle enkle, lukkede, stykkevis glatte kurver C.

Oppgave 5 (6.9: 1,2)

Beregne trippelintegralene:

- i) $\iiint_A xyz \, d(x, y, z)$ når $A = [0, 1] \times [0, 1] \times [0, 1]$.
- ii) $\iiint_A (xy+z) d(x,y,z)$ når $A = \{(x,y,z) \in \mathbb{R}^3 \mid 0 \le x \le 1, 0 \le y \le 2, 0 \le z \le x^2y\}.$

Oppgave 6 (6.10: 5)

Regn ut

$$\iiint_{R} \sqrt{x^2 + y^2} \, d(x, y, z),$$

 $der R = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 4\}.$

Oppgave 7 (6.11: 3)

Finn volumet av den delen av kulen $x^2+y^2+z^2=R^2$ som ligger over kjegleflaten $z=\sqrt{\frac{x^2+y^2}{3}}$.

Oppgave 8 (6.11: 11)

R er området i \mathbb{R}^3 avgrenset av flatene $z=6-x^2-y^2$ og $z=x^2-4x+y^2$.

a) Vis at integralet $I = \iiint_R y \, d(x, y, z)$ er lik

$$\iint_{S} (6y - 2x^{2}y - 2y^{3} + 4xy) d(x, y)$$

 $der S = \{(x, y) \in \mathbb{R}^2 \mid (x - 1)^2 + y^2 \le 4\}.$

- b) Regn ut integralet i a)
- c) C er skjæringskurven mellom flatene $z=6-x^2-y^2$ og $z=x^2-4x+y^2$, og den er orientert mot klokken sett ovenfra. Vis at C har parametriseringen

$$\mathbf{r}(t) = (1 + 2\cos(t), 2\sin(t), 1 - 4\cos(t))$$

og regn ut kurveintegralet $\int_C \mathbf{F} \cdot d\mathbf{r}$ der $\mathbf{F}(x,y,z) = (z,y,x).$

Oppgavene finnes i boka Flervariabel analyse med lineær algebra av T.Lindstrøm og K.Hveberg. Se henvisningen i parentes.