

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Cornélio Procópio

AULA 11

EIXO E ARVORES - CRITÉRIO DE FALHA

Professor: Dr. Paulo Sergio Olivio Filho

CONTEÚDO DA AULA

EIXOS E EIXOS-ÁRVORES

- 1. Critério de Falha
- 2. Tensões principais e conversão de tensões
- 3. Aplicações em projetos

OBJETIVO DE AULA

- O principal objetivo nesse estudo é o pré-dimensionamento de eixos e árvores.
- Analisar as condições de carregamento e contorno, e definir critérios para o projeto: material e dimensões da seção transversal.
- Os carregamentos normalmente variam com o tempo, o que implica em solicitações que induzem o problema de fadiga.

FLEXÃO E TORÇÃO - CRITÉRIOS DE FALHA @ CONTROL DE FALHA

Flexão Pura

Então:

$$\sigma_m = M \cdot \frac{c}{I}$$

Para eixos com raio r:

$$\sigma_m = M \cdot \frac{c}{I}$$
 $\sigma_m = M \cdot \frac{r}{I}$

Torção Pura

De maneira análoga pode-se deduzir que:

$$\tau_m = T \cdot \frac{r}{J}$$

FLEXÃO E TORÇÃO - CRITÉRIOS DE FALHA UITPR

Existem várias teorias de falha. Entretanto, uma única teoria não deve ser aplicada a um material específico porque o material pode se comportar de forma dúctil ou frágil dependendo da

- (1) temperatura, (2) carregamento ou
- (3) eventuais reações químicas (mudam o material)

Materiais dúcteis

- Teoria da máxima tensão de cisalhamento (Tresca)
- Teoria da máxima energia de distorção (von Mises)

Materiais frágeis

- Teoria da máxima tensão normal
- Critério de falha de Mohr

CRITÉRIO DE FALHA

- Teoria da tensão máxima de cisalhamento
- Teoria da energia de distorção
- Teoria da máxima tensão normal

CRITÉRIO DE FALHA

Escoamento ($\sigma_c = \sigma_0$)

- Aço Ni-Cr-Mo
- Aço AISI 1023
- 2024-T4 AI
- 3S-H AI

$$\frac{\text{Ruptura } (\sigma_{c} = \sigma_{ut})}{\Delta \text{ Ferro fundido cinzento}}$$

Teoria da tensão normal:

Não utilizar em materiais dúcteis.

FLEXÃO E TORÇÃO - CRITÉRIO DE TRESCA UITPR

Estabelece que a tensão de falha é igual a tensão cisalhante máxima.

Pelo circulo de Mohr pode-se encontrar o valor de tensão de cisalhamento máxima:

$$\left(\tau_{m\acute{a}x} = \sqrt{\left|\frac{\sigma_{m}}{2}\right|^{2} + (\tau_{m})^{2}}\right)$$

Substituindo σ_m e τ_m pelas equações apresentadas anteriormente, tem-se:

$$\left(\tau_{m\acute{a}x} = \sqrt{\left|\frac{M.r}{2.I}\right|^2 + \left|\frac{T.r}{J}\right|^2}\right)$$

Como, para seções transversais circulares ou anelares, 2I = J:

FLEXÃO E TORÇÃO - CRITÉRIO DE TRESCA @ CRITÉRIO DE TRESCA

$$\tau_{m\acute{a}x} = \frac{r}{J} \cdot \sqrt{M^2 + T^2}$$

$$\tau_{m\acute{a}x} = \frac{r}{J} \cdot \sqrt{M^2 + T^2} \quad \text{ou} \quad \left[\frac{J}{r} = \frac{1}{\tau_{adm}} \cdot \left(\sqrt{M^2 + T^2} \right)_{m\acute{a}x} \right]$$

Substituindo o momento M pelas componente M_{ν} e M_{z} , então:

$$\frac{J}{r} = \frac{1}{\tau_{adm}} \cdot \left(\sqrt{M_y^2 + M_z^2 + T^2} \right)_{m\acute{a}x}$$

Para eixos maciços de raio /; tem-se:

$$\frac{J}{r} = \frac{\pi}{16} \cdot d^{3} \xrightarrow{\text{Assim:}} \left[d = \left[\frac{16}{\pi} \cdot \frac{1}{\tau_{adm}} \left(\sqrt{M_{y}^{2} + M_{z}^{2} + T^{2}} \right)_{m\acute{a}x} \right]^{\frac{1}{3}} \right]$$

Fonte: Berr e Johnston (1982)

FLEXÃO E TORÇÃO - CRITÉRIO DE TRESCA UITPR

CRITÉRIO PARA TENSÃO ADMISSÍVEL PELA TEORIA DA TENSÃO

MÁXIMA DE CISALHAMENTO (TRESCA)

A teoria afirma que a falha ocorre quando a tensão máxima de cisalhamento em uma região excede a tensão máxima de cisalhamento de um corpo de prova sob tração em escoamento (metade da tensão normal de escoamento).

Fonte: Norton (2004)

Para tensão de escoamento:

$$\tau_{max} = \frac{\sigma_{esc}}{2}$$

FLEXÃO E TORÇÃO - CRITÉRIO DE TRESCA @ CRITÉRIO DE TRESCA

Pela teoria da tensão máxima de cisalhamento (Tresca)

$$d = \left[\frac{16}{\pi} \cdot \frac{1}{\tau_{max}} \sqrt{M_y^2 + M_z^2 + T^2}\right]^{\frac{1}{3}} \qquad \Rightarrow \qquad \tau_{max} = \frac{\sigma_{esc}}{2N}$$

Considerando um fator de segurança, N:

$$d = \left[\frac{32}{\pi} \cdot \frac{N}{\sigma_{esc}} \sqrt{M_y^2 + M_z^2 + T^2}\right]^{\frac{1}{3}}$$

$$N = \frac{\sigma_{esc}}{\sigma_{adm}} > 1$$

FLEXÃO E TORÇÃO - CRITÉRIOS DE FALHA UNIT

Existem várias teorias de falha. Entretanto, uma única teoria não deve ser aplicada a um material específico porque o material pode se comportar de forma dúctil ou frágil dependendo da

- (1) temperatura, (2) carregamento ou
- (3) eventuais reações químicas (mudam o material)

Materiais dúcteis

- Teoria da máxima tensão de cisalhamento (Tresca)
- Teoria da máxima energia de distorção (von Mises)

Materiais frágeis

- Teoria da máxima tensão normal
- Critério de falha de Mohr

Um material quando se deforma armazena energia internamente.

A tensão equivalente de von Mises (σ') é definida como a tensão de tração uniaxial que criaria a mesma energia de distorção que é criada pela combinação atual das tensões aplicadas.

Para o caso mais geral de tensões o critério de von Mises (ou teoria da máxima energia de distorção) é dado por:

$$\sigma_{max} = \frac{1}{\sqrt{2}} \sqrt{(\sigma_x - \sigma_y)^2 + (\sigma_y - \sigma_z)^2 + (\sigma_z - \sigma_x)^2 + 6(\tau_{xy}^2 + \tau_{yz}^2 + \tau_{xz}^2)}$$

$$\sigma_{max} = \frac{1}{\sqrt{2}} \sqrt{(\sigma_x - \sigma_y)^2 + (\sigma_y - \sigma_z)^2 + (\sigma_z - \sigma_x)^2 + 6(\tau_{xy}^2 + \tau_{yz}^2 + \tau_{xz}^2)}$$

Pode ser expressa em termos das tensões aplicadas:

$$\sigma' = \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \cdot \sigma_y + 3 \cdot \tau_{xy}^2}$$

Para o caso em questão:

$$\sigma' = \sqrt{\sigma_m^2 + 3.\tau_m^2}$$

Como:

$$\sigma_m = M \cdot \frac{r}{I}$$

e

$$\tau_m = T \cdot \frac{r}{J}$$

Então:

$$\left(\sigma' = \sqrt{\left|M.\frac{r}{I}\right|^2 + 3.\left|T.\frac{r}{J}\right|^2}\right)$$

Como I = J/2:

$$\sigma' = \frac{r}{J} \cdot \sqrt{4 \cdot M^2 + 3 \cdot T^2}$$

Para eixos maciços de raio *r*, tem-se:

$$\left(\frac{r}{J} = \frac{16}{\pi \cdot d^3}\right)$$

Assim:

$$\sigma' = \frac{16}{\pi \cdot d^3} \cdot \sqrt{4 \cdot M^2 + 3 \cdot T^2} = \frac{32}{\pi \cdot d^3} \cdot \sqrt{M^2 + \frac{3}{4} \cdot T^2}$$

Para um coeficiente de segurança N, tem-se:

$$N = rac{\sigma_{esc}}{\sigma_{x}}$$

$$\frac{\sigma_{esc}}{N} = \frac{32}{\pi \cdot d^3} \cdot \sqrt{M^2 + \frac{3}{4} \cdot T^2}$$

Portanto:

$$d = \left[\frac{32}{\pi} \cdot \frac{N}{\sigma_{esc}} \sqrt{M^2 + \frac{3}{4} \cdot T^2} \right]^{\frac{1}{3}}$$

Exemplo 1.3

 Determinar o diâmetro necessário para a árvore da transmissão mostrada na figura:

- Para a polia B, a força menor na correia é 15% da força maior
- Aço trabalhado a frio, UNS G10180
- Um fator de segurança de 1,9

CUIDADO: nesta resolução a redução da resistência pela fadiga (flexão alternada) não está sendo considerada.

Exemplo 1.3 (continuação)

ANÁLISE DAS FORÇAS EXTERNAS ATUANTES

FORÇAS NA CORREIA

CORNÉLIO PROCÓPIO

Exemplo 1.3 (continuação)

CÁLCULO DAS FORÇAS NAS CORREIAS DA POLIA B

CONDIÇÃO

$$T_2 = 0.15.T_1$$

$$T_A = T_B$$

EQUILÍBRIO

$$T_1 \cdot \frac{250}{2} - T_2 \cdot \frac{250}{2}$$

$$T_1 \cdot \frac{250}{2} - T_2 \cdot \frac{250}{2} = 270 \cdot \frac{300}{2} - 50 \cdot \frac{300}{2}$$

FORÇAS

$$T_1 \approx 310 \quad N \qquad T_2 \approx 47 \quad N$$

$$T_2 \approx 47 N$$

RESULTANTE

$$F_B = T_1 + T_2$$

$$F_B = 357 N$$

Exemplo 1.3 (continuação)

DETERMINAÇÃO DAS SOLICITAÇÕES INTERNAS

Exemplo 1.3 (continuação)

DETERMINAÇÃO DAS SOLICITAÇÕES INTERNAS

CÁLCULO DAS REAÇÕES

$$\sum_{B} M_0 = 0 \downarrow^+ \to F_B.(300) - F_A.(700) - R_{EZ}.(850) = 0$$

$$R_{EZ} \approx -138 \ N$$

$$\sum_{A} F_{Z} = 0 \uparrow^{+} \rightarrow R_{OZ} - F_{B} + F_{A} + R_{EZ} = 0$$

$$R_{OZ} \approx 175 N$$

Exemplo 1.3 (continuação)

MÉTODO DAS SEÇÕES

Exemplo 1.3 (continuação)

MÉTODO DAS SEÇÕES SEÇÃO II

$$\sum F = 0 \uparrow + 175 - 357 - V = 0$$

$$V = -182 \ N$$

$$\sum M = 0 \uparrow + M + 357.(x - 300) - 175.x = 0$$

$$M = -182.x + 107100$$

SEÇÃO III

Exemplo 1.3 (continuação) SOLICITAÇÕES INTERNAS - DIAGRAMAS

Exemplo 1.3 (continuação)

DIMENSIONAMENTO DO EIXO

REGIÃO MAIS SOLICITADA

PONTO B

M = 52,5 N.m

T = 33,0 N.m

(TABELA A.17 – Shigley)

UNS G 10180

 σ_{esc} = 372 MPa

Exemplo 1.3 (continuação)

DIMENSIONAMENTO DO EIXO

Pela teoria da tensão máxima de cisalhamento (Tresca)

$$d = \left[\frac{32}{\pi} \cdot \frac{N}{S_y} \sqrt{M^2 + T^2} \right]_3^{\frac{1}{3}} = \left[\frac{32}{\pi} \cdot \frac{1,9}{372.000.000} \sqrt{52,5^2 + 33,0^2} \right]_3^{\frac{1}{3}}$$

$$d \approx 14,78$$
mm

Pela teoria da tensão da energia de distorção (von Mises-Hencky)

$$d = \left[\frac{32}{\pi} \cdot \frac{N}{S_y} \sqrt{M^2 + \frac{3}{4} \cdot T^2} \right]^{\frac{1}{3}} = \left[\frac{32}{\pi} \cdot \frac{1,9}{372.000.000} \sqrt{52,5^2 + \frac{3}{4} \cdot 33,0^2} \right]^{\frac{1}{3}}$$

$$d \approx 14,59$$
mm

Exemplo 1.4 — Determine os coeficientes de segurança para o suporte do tirante mostrado na Figura 5-9, baseado tanto na teoria da energia de distorção como na teoria da máxima tensão de cisalhamento, e compare-os. O material é alumínio 2024-T4 com tensão de escoamento de 47000 psi. O comprimento da haste é I = 6 in e do braço a = 8 in. O diâmetro externo da haste é d = 1,5 in. A força é F = 1000 lb.

Hipóteses - O carregamento é estático e o conjunto está a temperatura ambiente. Considere o cisalhamento devido à força cortante, assim como outras tensões.

Exemplo 1.4

(a) Dois pontos de interesse para cálculos de tensões

(b) Elemento inifinitesimal de tensão no ponto A

$$\sigma_x = \frac{Mc}{I} = \frac{(Fl)c}{I} = \frac{1000(6)(0,75)}{0,249} = 18108 \text{ psi}$$

$$\tau_{xz} = \frac{Tr}{J} = \frac{(Fa)r}{J} = \frac{1000(8)(0,75)}{0,497} = 12072 \text{ psi}$$

$$\tau_{max} = \sqrt{\left(\frac{\sigma_x - \sigma_z}{2}\right)^2 + \tau_{xz}^2} = \sqrt{\left(\frac{18108 - 0}{2}\right)^2 + 12072^2} = 15090 \text{ psi}$$

$$\sigma_1 = \frac{\sigma_x + \sigma_z}{2} + \tau_{max} = \frac{18108 + 0}{2} + 15090 = 24144 \text{ psi}$$

$$\sigma_2 = 0$$

$$\sigma_3 = \frac{\sigma_x + \sigma_z}{2} - \tau_{max} = \frac{18108 + 0}{2} - 15090 = -6036 \text{ psi}$$

$$\sigma' = \sqrt{\sigma_1^2 - \sigma_1 \sigma_3 + \sigma_3^2}$$

$$\sigma' = \sqrt{24144^2 - 24144(-6036) + (-6036)^2} = 27661 \text{ psi}$$

Exemplo 1.4

(c) Elemento inifinitesimal de tensão no ponto B

$$N = \frac{S_y}{\sigma'} = \frac{47000}{27661} = 1,7$$

$$N = \frac{0.50 \, S_y}{\tau_{max}} = \frac{0.50 (47000)}{15090} = 1.6$$

$$\tau_{flexão} = \frac{4V}{3A} = \frac{4(1000)}{3(1,767)} = 755 \text{ psi}$$

$$\tau_{\text{max}} = \tau_{\text{torção}} + \tau_{\text{flexão}} = 12072 + 755 = 12827 \text{ psi}$$

$$N = \frac{S_{ys}}{\tau_{max}} = \frac{0.577 \, S_{y}}{\tau_{max}} = \frac{0.577 \left(47000\right)}{12827} = 2.1$$

$$N = \frac{S_{ys}}{\tau_{max}} = \frac{0.50 \, S_{y}}{\tau_{max}} = \frac{0.50 \left(47000\right)}{12827} = 1.8$$

FLEXÃO E TORÇÃO – CRITÉRIOS DE FALHA

Existem várias teorias de falha. Entretanto, uma única teoria não deve ser aplicada a um material específico porque o material pode se comportar de forma dúctil ou frágil dependendo da

- (1) temperatura, (2) carregamento ou
- (3) eventuais reações químicas (mudam o material)

Materiais dúcteis

- Teoria da máxima tensão de cisalhamento (Tresca)
- Teoria da máxima energia de distorção (von Mises)

Materiais frágeis

- Critério de falha de Mohr
- Teoria da máxima tensão normal

Aplicado a materiais frágeis onde as propriedades de tração e compressão são diferentes:

- o ensaio de tração uniaxial,
- o ensaio de compressão uniaxial;
- o ensaio de torção.

Pelo circulo de Mohr pode-se encontrar o valor de tensão de cisalhamento máxima:

$$\sigma_1 = \frac{\sigma_m}{2} + \sqrt{\left|\frac{\sigma_m}{2}\right|^2 + (\tau_m)^2}$$

$$\sigma_2 = \frac{\sigma_m}{2} - \sqrt{\left|\frac{\sigma_m}{2}\right|^2 + (\tau_m)^2}$$

Exemplo 1.5

Um eixo maciço AB gira a 480rpm, transmitindo 30kW do motor M às máquinas conectadas por engrenagens em G e H. Em G são transmitidos 20kW e em H 10kW. Determinar o menor diâmetro permitido para AB, sendo τ_{ab} =50MPa.

<u>Dados</u>: Material dúctil

Considere:

1)as linhas de ação das forças tangenciais nas engrenagens entre (C e D) e E perpendiculares;

- 2) Dimensões em [mm]
- 3) Mancais sem atrito em A e B

Considere o critério da máxima tensão cisalhante

CUIDADO: nesta resolução a redução da resistência pela fadiga (flexão alternada) não está sendo considerada.

Exemplo 1.5 (continuação)

Com a rotação, pode-se determinar o torque atuante em G:

$$f = 480 \text{rpm} = 8 \text{Hz}$$

$$T_E = \frac{P}{2.\pi.f} = \frac{30 \text{kW}}{2.\pi.(8 \text{Hz})} = 597 \text{N.m}$$

Determina-se, então a força tangencial correspondente que atua na engrenagem:

$$F_E = \frac{T_E}{r_E} = \frac{597 \text{N.m}}{0.16 \, m} = 3,73 \, kN$$

Exemplo 1.5 (continuação)

Analogamente:

$$T_C = \frac{20 \text{kW}}{2.\pi.(8 \text{Hz})} = 398 \text{N.m}$$
 $F_C = 6,63 \text{kN}$

$$T_D = \frac{10 \text{kW}}{2.\pi.(8 \text{Hz})} = 199 \text{N.m}$$
 $F_D = 2,49 \text{kN}$

Exemplo 1.5 (continuação)

Pode-se, então calcular as reações nos mancais A e B, resultando nos seguintes diagramas de momentos fletores e de momentos torçores.

Exemplo 1.5 (continuação)

(continuação) Calculando, em todas as seções potencialmente críticas, o

valor:

$$\sqrt{M_z^2 + M_y^2 + T^2}$$

$$\sqrt{186^2 + 1244^2 + 398^2} = 1319$$
N.m Ponto C

$$\sqrt{373^2 + 1160^2 + 597^2} = 1357$$
N.m Ponto D

$$\sqrt{560^2 + 580^2 + 597^2} = 1003$$
N.m Ponto E

Conclui-se que o valor máximo ocorre à direita do ponto D.

Exemplo 1.5 (continuação)

Assim, o diâmetro mínimo do eixo para τ_{adm} =50MPa:

$$d = \left[\frac{16}{\pi} \cdot \frac{1}{\tau_{adm}} \cdot \left(\sqrt{M_y^2 + M_z^2 + T^2} \right)_{m\acute{a}x} \right]^{\frac{1}{3}}$$

$$\left[d = \left[\frac{16}{\pi} \cdot \frac{1357 \text{N.m}}{50.000.000 \text{Pa}} \right]^{\frac{1}{3}} \approx 51,7 \text{mm} \right]$$