← Homework for Module 3 Part 1

Quiz, 9 questions

✓ Congratulations! You passed!

Next Item

points

1.

(Difficulty: \star) Write out the phase of the complex numbers $a_1=1-{f j}$ and $a_2=-1-{f j}$.

Express the phase in degrees and separate the two phases by a single white space. Each phase should be a number in the range [-180, 180].

1/1 points

2

(Difficulty: \star) Let $W_N^k=e^{-\mathrm{j} \frac{2\pi}{N} k}$ and N>1. Then $W_N^{N/2}$ is equal to...

poir

3.

(Difficulty: ★) Which of the following signals (continuous- and discrete-time) are periodic signals?

Note that $t \in \mathbb{R}$ and $n \in \mathbb{Z}$.

2/2 points

4.

(Difficulty: $\star\star\star$) Choose the correct statements from the choices below.

1/1

5.

(Difficulty: \star) Consider the Fourier basis $\{\mathbf{w}^k\}_{k=0,\dots,N-1}$, where $\mathbf{w}^k[n]=e^{-j\frac{2\pi}{N}nk}$ for $0\leq n\leq N-1$.

Select the correct statement below.

0.75 / 1

points

6.

(Difficulty: $\star\star$) Consider the three sinusoids of length N=64 as illustrated in the above figure; note that the signal values are shown from n=0 to n=63.

Call $y_1[n]$ the blue signal, $y_2[n]$ the green and $y_3[n]$ the red. Further, define $x[n]=y_1[n]+y_2[n]+y_3[n]$.

Choose the correct statements from the list below. Note that the capital letters indicate the DFT vectors.

1/1

7.

(Difficulty: $\star\star\star$) Consider the length- $\!N$ signal

$$x[n] = \cos\left(2\pi rac{L}{M} n
ight)$$

where M and L are integer parameter with $0 < L \leq N-1$, $0 < M \leq N$.

Choose the correct statements among the choices below.

1/1 points

8.

(Difficulty: \star) Consider an orthogonal basis $\{\phi_i\}_{i=0,\dots,N-1}$ for \mathbb{R}^N . Select the statements that hold for any vector $\mathbf{x}\in\mathbb{R}^N$.

1/1 points

9

(Difficulty: $\star\star$) Pick the correct sentence(s) among the following ones regarding the DFT ${\bf X}$ of a signal ${\bf x}$ of length N, where N is

Remember the following definitions for an arbitrary signal (asterisk denotes conjugation):

hermitian-symmetry: x[0] real and $x[n] = x[N-n]^*$ for $n=1,\dots,N-1$.

hermitian-antisymmetry: x[0]=0 and $x[n]=-x[N-n]^*$ for $n=1,\dots,N-1$.

Homework for Module 3 Part 1

Quiz, 9 questions