

ARQUITECTURA Y SISTEMAS OPERATIVOS

Profesor: Pablo Andres Gonzales Camargo

- Un Bus es una vía de comunicación formado por un conjunto de líneas que conecta dos o más módulos dentro de la computadora.
- Es un medio de transmisión compartido o del tipo "Broadcast".
- En función al tipo de información que se transmite, se tienen buses de: CONTROL, DIRECCIÓN y DATOS

Bus de DIRECCIÓN:

- Las líneas de este Bus se utilizan para indicar la ubicación en memoria de los datos que se transmitirán por el bus de Datos.
- Los Bits transmitidos forman una dirección de memoria FÍSICA
- Es un bus Unidireccional (desde el uP hacia la memoria y no al revés)
- El ancho "M" suele ser de 8,16, 32 bits
- La cantidad de líneas "M" define la cantidad de memoria direccionable: 2^M

Bus de DATOS:

- Las líneas de este bus se usan para mover datos entre distintos módulos del sistema
- Es Bidireccional
- Los bits transmitidos pueden ser datos o instrucciones
- El ancho N suele ser de 8, 16, 32 bits

Bus de CONTROL:

- Las líneas de este bus se utilizan para controlar el acceso y el uso de los datos y las líneas de dirección.
- Transmiten señales de control que especifican las operaciones a realizarse a los distintos módulos.
- Ejemplos de señales: Lectura (R),
 Escritura (W), Clock, interrupciones
 E/S, Reinicialización.
- Es un bus Bidireccional

EJEMPLOS VELOCIDADES DE TRANSFERENCIA

Notar las diferencias de velocidades desde el procesador y memoria hasta los periféricos

Device	Data rate
Keyboard	10 bytes/sec
Mouse	100 bytes/sec
56K modem	7 KB/sec
Scanner at 300 dpi	1 MB/sec
Digital camcorder	3.5 MB/sec
4x Blu-ray disc	18 MB/sec
802.11n Wireless	37.5 MB/sec
USB 2.0	60 MB/sec
FireWire 800	100 MB/sec
Gigabit Ethernet	125 MB/sec
SATA 3 disk drive	600 MB/sec
USB 3.0	625 MB/sec
SCSI Ultra 5 bus	640 MB/sec
Single-lane PCIe 3.0 bus	985 MB/sec
Thunderbolt 2 bus	2.5 GB/sec
SONET OC-768 network	5 GB/sec

Figure 5-1. Some typical device, network, and bus data rates.

En función a un orden jerárquico, los buses pueden clasificarse en:

 System bus: Bus principal utilizado para transferir información entre CPU y Memoria principal, de mayor velocidad de transferencia.

• **I/O bus:** Dedicado a dispositivos periféricos. Debido a que cada dispositivo tiene su propio protocolo de transferencia, se tienen distintos tipos de adaptadores I/O.

DMA (Direct Memory ACcess)

MEMORIA

La memoria es aquella parte del sistema computacional que se utiliza para el almacenamiento y la recuperación subsiguiente de datos e instrucciones.

En función a su localización la memoria puede ser **Interna** (RAM, ROM, Registros, Cache) o **Externa** (Discos SSD o HDD, Unidades extraíbles)

Para la **memoria Interna** su capacidad se define en base al tamaño de la **Palabra** (es la unidad mínima direccionable) y el **número de palabras** que caben en la memoria (Cantidad de unidades direccionables).

La longitud de la Palabra generalmente es de 1 byte, también puede ser de 2 o 4 bytes (depende de cómo está construida la memoria)

Capacidad de la memoria: C = 2^{M líneas de dirección}. Longitud Palabra

TIPOS Y JERARQUÍA DE MEMORIAS

¿SDR o DDR? (RAM)

- Single Data Rate o SDR usa solo un impulso de subida (flanco de subida) para realizar un transferencia (MB/s)
- Double Data Rate usa ambos impulsos tanto de subida como de bajada.
- Permite realizar dos transferencias por cada ciclo del clock (MB/s)

Por cada nueva generación DDR: aumenta la velocidad de transferencia así como la capacidad de almacenamiento, y por otro lado el consumo de energía tiende a reducirse

BIOS (ROM)

- BIOS Basic Input Output System
- Es un Firmware que se encarga de la identificación y configuración del hardware del sistema en el arranque de la PC
- Dicho Firmware esta en un chip EEPROM
- Electrically Erasable Programmable ROM (Read Only Memory)

