RSK bumping trees and a fast RSK algorithm

Vasilii Duzhin¹, Artem Kuzmin¹, Nikolay Vassiliev^{1,2}

¹Saint Petersburg Electrotechnical University "LETI"

²Saint Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

Polynomial Computer Algebra '19 April 20, 2019

Overview

- Robinson-Schensted-Knuth algorithm
- Bumping routes, bumping trees & bumping forest
- A fast RSK algorithm
- 4 The comparison of efficiency of RSK algorithms

Robinson-Schensted-Knuth (RSK) correspondence

The Robinson-Schensted-Knuth correspondence is a bijection between a set of permutations of integers and a set of pairs of Young tableaux of the same shape: insertion tableau P and recording tableau Q.

For example, the permutation

$$(13, 2, 16, 4, 7, 9, 12, 1, 3, 20, 11, 6, 18, 14, 5, 19, 17, 10, 8, 15)$$

corresponds to the following pair of Young tableaux:

RSK algorithm

A permutation $(s_1, s_2, ..., s_n)$ generates a <u>tableau P</u> consisting of columns $(P_1, P_2, ..., P_m)$ of heights $(h(P_1), h(P_2), ..., h(P_m))$ as follows.

$$P = s_1$$

For $s_i, i \in [2, m]$:

If
$$s_{i-1} > \max_{1 \le k \le h(P_i)} \{P_{i,k}\}$$
, $s_i \longrightarrow$ the top of P_i . $i = i + 1$.

Else $k = \min_{1 \le k \le h(P_i)} \{P_{i,k} > s_i\}; s_i \longrightarrow P_{i,k}. P_{i,k}$ is bumped to the column P_{i+1} by the same principle.

Tableau Q records the changes of shapes of the intermediate tableaux P.

RSK algorithm: an example

See RSKexample.pdf

RSK: finding the nearest larger value

A problem: low efficiency of the standard algorithm (the complexity of search of position for bumping is proportional to the column heights).

25						
17						
16	26	30				
14	23	28	31			
10	19	20	21			
6	7	9	18	29		
2	5	8	12	15	24	
1	3	4	11	13	22	27

Motivation

- There are various problems that need to be computed on a large number of very long permutations (10^5 numbers and more).
- The performance of the standard RSK is not enough to solve many computational tasks.
- The computational costs of the standard RSK are mainly caused by searching a position where the next number should be bumped in tableau P.
- The **goal** of this work is to implement a special variant of RSK which works significantly faster than the original algorithm.

Bumping routes

A bumping route is a sequence of positions in insertion tableau where bumping occures during the RSK transformation.

The idea: to remember all bumping routes of tableau in advance. In that case, we do not need to search a position where the next number should be bumped.

Bumping forest

A bumping forest is a union of all possible bumping routes of a tableau.

Bumping forest

A bumping forest is a union of all possible bumping routes of a tableau.

A fast RSK algorithm

Fast RSK is based on maintaining the structure of the bumping forest. The following actions are performed to insert a value s_i in a tableau P:

- Place s_i in the first column (samely as in the standard algorithm).
- While the shape of tableau P has not expanded,
 - Follow the link and write there the bumped value of s'. Put the old value into the buffer b.
 - Consequently compare b with the values in the previous column, starting at s_i and upper.
 - Check the references for all values < b.

Tableau Q is constructed as in the standard algorithm.

A fast RSK algorithm: an example

See FastRSK.avi

Bumping routes

Some bumping routes of the random Young tableau of size 10^8 .

Limit shapes of bumping routes

The asymptotic behaviour of limit shapes of bumping routes was studied in [Romik, Śniady '14].

The comparison of efficiency of RSK algorithms

Blue curve is the running time of standard algorithm, Red curve is the running time of fast algorithm.

The comparison of efficiency of RSK algorithms

Permutation size	Elapsed time by	Elapsed time by	
	standard RSK (in sec)	fast RSK (in sec)	
100.000	4.78	0.49	
200.000	14.90	1.32	
300.000	28.69	2.41	
400.000	47.34	3.70	
500.000	72.03	5.26	
600.000	102.37	6.93	
700.000	137.873	8.78	
800.000	178.28	10.79	
900.000	223.23	12.96	
1.000.000	272.63	15.35	

The speed of the fast RSK algorithm

Fast RSK: pros and cons

- No need to search the places for bumping.
- A bumping forest of an insertion tableau is provided.

- Need to maintain the structure of a bumping forest.
- A bumping forest consumes extra memory.

Future plans

- Implementation of the fast inverse RSK algorithm.
- Theoretical estimation of speed of fast algorithms.
- Massive computations using developed algorithms.

Thanks for your attention!