Controle 2 LM121

1. Soit \mathcal{P} le plan donné par la paramétrisation

$$x = 3s +2t +1$$

$$y = s - t$$

$$z = 2s + t - 1$$

et \mathcal{D} la droite donnée par

$$x + y + z = 1$$

Déterminer les points d'intersections de \mathcal{P} et \mathcal{D} .

- 2. Soit A=(1,1,1) , B=(1,2,3) et C=(0,1,2). Ces points sont-ils alignés? Si non, donner une équation du plan (ABC).
- 3. Pour quelle(s) valeur(s) de a les vecteurs (1,3,5) , (-2,1,4) et (3,a,2)sont-ils libres?
- 4. Soit $A = \begin{pmatrix} 1 & 2 \\ 3 & -2 \end{pmatrix}$
 - (a) Trouver $\lambda \in \mathbb{R}$ tel que $A^2+A+\lambda I_2=0$. (On rappelle que $I_2=\begin{pmatrix} 1&0\\0&1 \end{pmatrix}$)
 - (b) En déduire que pour tout $n \in \mathbb{N}$ il existe a_n et $b_n \in \mathbb{R}$ tels que $A^n = a_n A + b_n I_2.$
 - (c) trouver a_4 et b_4 .