PRUEBA DE ACCESO (LOGSE)

UNIVERSIDAD DE CASTILLA Y LEÓN

SEPTIEMBRE - 2004

MATEMÁTICAS II

Tiempo máximo: 1 horas y 30 minutos

<u>Criterios generales de evaluación de la prueba</u>: Se observarán fundamentalmente los siguientes aspectos: correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones.

<u>Datos o tablas (si ha lugar):</u> Podrá utilizarse una calculadora "en línea". No se admitirá el uso de memoria para texto, ni las prestaciones gráficas.

Optatividad: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos problemas y cuatro cuestiones. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, con un punto. El alumno deberá escoger una de las pruebas, A o B, y desarrollar las preguntas de la misma.

PRUEBA A

PROBLEMAS

- 1°) Sea m un número real y sean r y π la recta y el plano dados respectivamente por las ecuaciones $r = \begin{cases} 2x my + z = 2 m \\ x + 2y + z = 0 \end{cases}$ y $\pi = 3x + 2z = 2 m$. Se pide:
- a) Estudiar la posición relativa de r
 y π en función del valor de m.
- b) Para el valor de m=1, hallar la ecuación del plano π' que pasa por el punto de corte de r y π y es perpendicular a la recta $t\equiv x=y=z$.
- 2°) Sea f la función dada por $f(x) = x^2 3|x| + 2$, $x \in R$.
- a) Estudiar la derivabilidad de f en x = 0 mediante la definición de derivada.
- b) Determinar los intervalos de monotonía de f y sus extremos relativos.
- c) Esbozar la gráfica de f.

CUESTIONES

1^a) Sea A una matriz cuadrada de orden 4 cuyo determinante vale 3, y sea la matriz $B = \sqrt[3]{3} A$. Calcular el determinante de B.

- 2^a) Calcular la distancia entre las rectas $r = \begin{cases} x = 1 + 2\lambda \\ y = 0 \\ z = -\lambda \end{cases}$ $y \ s = \frac{x}{-1} = \frac{y 3}{1} = \frac{z 2}{-1}$.
- 3^a) Calcular el valor de $\frac{lím}{x \to \frac{\pi}{2}} \frac{tag(2x)}{tag(6x)}.$
- 4^a) Hallar el área del recinto limitado por las parábolas $y = 6x x^2$ e $y = x^2 2x$.

PRUEBA B

PROBLEMAS

- 1°) Se considera el sistema de ecuaciones lineales: $\begin{cases} x + 2y + 3z = 1 \\ x + ay + 3z = 2 \\ 2x + (2 + a)y + 6z = 3 \end{cases}$
- a) ¿Existe algún valor del parámetro a para el cual el sistema es incompatible?
- b) ¿Existe algún valor del parámetro a para el cual el sistema sea compatible determinado?
- c) Resolverlo para a = 0.

2°)

- a) Dada la función $f:[1, e] \to R$ definida por $f(x) = \frac{1}{x} + Lx$, determinar de entre todas las rectas tangentes a la gráfica de f la que tiene máxima pendiente. Escribir la ecuación de dicha recta.
- b) Calcular la función primitiva de f(x) que pase por el punto P(e, 2).

CUESTIONES

- 1a) Dadas las matrices $P = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}$ $y A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$, hallar la matriz B sabiendo que $P^{-1} \cdot B \cdot P = A$.
- 2^a) Hallar la ecuación general del plano α que pasa por los puntos A(2, 2, -1), B(4, 0, 2) y es perpendicular al plano $\pi = x 5y + 2z 6 = 0$.
- 3^a) Hallar el área limitada por las gráficas de las funciones $y = 3x x^2$ e y = 2x 2.
- 4^a) Determinar el valor de a para que se verifique $\lim_{x \to +\infty} \left(\sqrt{x^2 + ax + 1} x \right) = 2.$
