

SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds

Qingyong Hu¹, Bo Yang², Guangchi Fang³, Yulan Guo³, Ales Leonardis⁴, Niki Trigoni¹, Andrew Markham¹

1 University of Oxford, ²Hongkong PolyU, ³Sun Yat-sen University, ⁴Huawei Noah's Ark Lab

Motivation:

Reducing Labeling Efforts!

Exploring weak supervision:

- Reducing the annotated points from 100% to 1‱
- Dense annotations are unnecessary & redundant
- Indicate the critical point (1‰) for weak supervision

Random Sparse Annotation Tool

- Segmentation (QNI) (pol)(gratic selection)
 Left clift: add contour points language alice classes
 - Segmentation (ON) (polygonial selection)

 Left digit: add contour points it signs alone.
- ✓ Offers great error tolerance to avoid annotating boundary areas
- ✓ Save up to 98% annotation cost for large-scale 3D point clouds

SQN Architecture:

- ✓ Leverage the strong local semantic homogeneity of point neighbors
- ✓ Allow training signals shared and back-propagated to relevant points
- ✓ Query point can be arbitrary points in 3D space

Qualitative Comparison:

Quantitative Comparison:

Settings	Methods-	DALES [57]		SensatUrban [21]			Toronto3D [48]		SemanticKITTI [3]
		OA(%)	mIoU(%)	OA(%)	mAcc (%)	$\mathrm{mIoU}(\%)$	OA(%)	$\mathrm{mIoU}(\%)$	$\mathrm{mIoU}(\%)$
Full supervision	PointNet [38]	-	-	80.8	30.3	23.7	-	-	14.6
	PointNet++ $[39]$	95.7	68.3	84.3	40.0	32.9	84.9	41.8	20.1
	PointCNN [30]	97.2	58.4	-	-	-	-	-	-
	TangentConv [52]	-	-	77.0	43.7	33.3	-	-	40.9
	ShellNet [82]	96.4	57.4	-	-	-	-	-	-
	DGCNN [65]	-	-	-	-	-	94.2	61.8	-
	SPG [28]	95.5	60.6	85.3	44.4	37.3	-	-	17.4
	SparseConv [15]	-	-	88.7	63.3	42.7	-	-	-
	KPConv [55]	97.8	81.1	93.2	63.8	57.6	95.4	69.1	58.1
	ConvPoint [5]	97.2	67.4	-	-	-	-	-	-
	RandLA-Net [22]	97.1	80.0	89.8	69.6	52.7	92.9	77.7	53.9
Weak	Ours (0.1%)	97.0	72.0	91.0	70.9	54.0	96.7	77.7	50.8
supervision	Ours (0.01%)	95.9	60.4	85.6	49.4	37.2	94.2	68.2	39.1

Highlights

- We propose a new weakly supervised method that leverages a point neighbourhood query to fully utilize the sparse training signals.
- We observe that existing fully-supervised methods degrade slowly until 1% point annotations, showing that dense labelling is redundant and unnecessary.
- Random sparse annotation tool & annotation cost for reference

Demo