Structure of pHs RLC

Antoine Falaize¹ and Thomas Helie²

 $^1\mathrm{Project\text{-}team}$ S3*, , STMS, IRCAM-CNRS-UPMC (UMR 9912), , 1 Place Igor-Stravinsky, 75004 Paris, France $^2\mathrm{Project\text{-}team}$ S3†, , STMS, IRCAM-CNRS-UPMC (UMR 9912), , 1 Place Igor-Stravinsky, 75004 Paris, France

November 12, 2016

1 System netlist

line label dictionary.component nodes parameters

```
\dim(\mathbf{x}) = n_{\mathbf{x}} = 2;

\dim(\mathbf{w}) = n_{\mathbf{w}} = 1;

\dim(\mathbf{y}) = n_{\mathbf{y}} = 1;

\dim(\mathbf{p}) = n_{\mathbf{p}} = 0;
```

2 System variables

State variable $\mathbf{x} = \begin{pmatrix} x_{\mathrm{L}} \\ x_{\mathrm{C}} \end{pmatrix}$; Dissipation variable $\mathbf{w} = (w_{\mathrm{R}})$; Input $\mathbf{u} = (u_{\mathrm{out}})$; Output $\mathbf{y} = (y_{\mathrm{out}})$;

^{*}http://s3.ircam.fr

[†]http://s3.ircam.fr

Figure 1: Graph of system RLC.

3 Constitutive relations

$$\begin{split} & \text{Hamiltonian } \mathbf{H}(\mathbf{x}) = \frac{x_{\mathrm{L}}^2}{2 \cdot \mathrm{L}} + \frac{x_{\mathrm{C}}^2}{2 \cdot \mathrm{C}}; \\ & \text{Hamiltonian gradient } \nabla \mathbf{H}(\mathbf{x}) = \left(\begin{array}{c} \frac{x_{\mathrm{L}}}{\mathrm{L}} \\ \frac{x_{\mathrm{C}}}{\mathrm{C}} \end{array} \right); \end{split}$$

Dissipation function $\mathbf{z}(\mathbf{w}) = (\mathbf{R} \cdot w_{\mathbf{R}});$ Jacobian of dissipation function $\mathcal{J}_{\mathbf{z}}(\mathbf{w}) = (\mathbf{R});$

4 System parameters

4.1 Constant

parameter	value (SI)
C:	2e-09
R:	1000.0
L:	0.05