Chapter 3: Linear Regression Study Notes (Based on ISLP)

Tanmay Chopra

Linear regression is a foundational tool in **statistical learning**. It is a **supervised learning** approach used for predicting a **quantitative response**. A strong understanding of linear regression is crucial because many advanced statistical learning methods are extensions or generalisations of it.

1 Simple Linear Regression (SLR)

SLR predicts a quantitative response Y based on a single predictor X.

1.1 The Model and Estimation

1. **Model Form:** Assumes an approximately linear relationship:

$$Y \approx \beta_0 + \beta_1 X$$

Or, including error:

$$Y = \beta_0 + \beta_1 X + \epsilon$$

- β_0 is the **intercept**, and β_1 is the **slope**; together they are the **model coefficients** or **parameters**.
- \bullet (the error term) accounts for the true relationship not being linear, unmeasured variables, and measurement error.
- 2. Estimation using Least Squares: The coefficients $(\hat{\beta}_0, \hat{\beta}_1)$ are estimated by minimizing the Residual Sum of Squares (RSS):

RSS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

- The values that minimize RSS define the least squares line.
- The least squares estimators $(\hat{\beta}_0, \hat{\beta}_1)$ are **unbiased**; their average over many datasets would equal the true parameters (β_0, β_1) .

1.2 Assessing the Accuracy of Coefficients

- 1. **Standard Errors (SE):** The SE of a coefficient estimate measures the average amount that the estimate deviates from the actual value.
 - $SE(\hat{\beta}_1)$ is smaller when the predictor values x_i are more spread out.
- 2. Confidence Intervals (CI): A 95% CI defines a range of values that, with 95% probability, contains the true unknown parameter value.

CI for
$$\beta_1 \approx \hat{\beta}_1 \pm 2 \cdot SE(\hat{\beta}_1)$$

- 3. **Hypothesis Testing:** Used to test the null hypothesis (H_0) that there is **no relationship** between X and Y $(H_0: \beta_1 = 0)$.
 - The **t-statistic** is computed as:

$$t = \frac{\hat{\beta}_1}{\text{SE}(\hat{\beta}_1)}$$

• The **p-value** is the probability of observing a t-statistic equal to or larger than |t| assuming H_0 is true. A **small p-value** (e.g., < 5%) suggests an association exists, leading to the rejection of H_0 .

1.3 Assessing the Accuracy of the Model

- 1. **Residual Standard Error (RSE):** This is an estimate of the standard deviation (σ) of the error term (ϵ) .
 - It is the average amount that the response will deviate from the true regression line.

 $RSE = \sqrt{RSS/(n-2)}$

It is a measure of the lack of fit.

- 2. R^2 Statistic: The proportion of variance explained.
 - It takes a value between 0 and 1, independent of the scale of Y.

 $R^2 = \frac{\text{TSS} - \text{RSS}}{\text{TSS}} = 1 - \frac{\text{RSS}}{\text{TSS}}$

where TSS (Total Sum of Squares) measures total variance in Y before regression.

• A value close to 1 indicates a large proportion of variability is explained. In SLR, R^2 is the square of the **correlation** between X and Y.

2 Multiple Linear Regression (MLR)

MLR extends SLR to accommodate multiple predictors (p predictors) simultaneously.

2.1 Model Form and Interpretation

 $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$

- Crucial Interpretation: β_j is the average effect on Y of a one-unit increase in X_j , holding all other predictors fixed.
- MLR coefficients may differ greatly from SLR coefficients if predictors are **correlated** (collinearity/confounding).

2.2 Important Questions in MLR

- 1. Is at least one predictor useful?
 - Test the null hypothesis $H_0: \beta_1 = \beta_2 = \cdots = \beta_p = 0$.
 - This is done using the **F-statistic**. If H_0 is true, F is expected to be close to 1. If F is significantly greater than 1, we reject H_0 .
- 2. Which predictors are useful?
 - Individual **t-statistics** and associated **p-values** are calculated to assess if each predictor is related to Y after adjusting for others.
 - Variable Selection Methods: When dealing with many predictors, approaches like Forward Selection, Backward Selection, or examining statistics like Mallow's C_p , AIC, BIC, and Adjusted R^2 are used.
- 3. How well does the model fit?
 - R^2 always increases when more variables are added to the model.
 - In MLR, R^2 is the square of the correlation between the response Y and the fitted values \hat{Y} : $R^2 = \text{Cor}(Y, \hat{Y})^2$.
- 4. Prediction Accuracy:
 - Prediction intervals estimate uncertainty for an individual response $(Y = f(X) + \epsilon)$ and are always wider than confidence intervals, which estimate uncertainty for the average response (f(X)).

3 Other Considerations in the Regression Model

3.1 Qualitative Predictors

- Qualitative (categorical) variables are incorporated using dummy variables.
- For a qualitative variable with K levels, K-1 dummy variables are created. The excluded level is the baseline.

3.2 Extensions of the Linear Model

The standard linear model makes two key assumptions that can be relaxed: additivity and linearity.

- 1. Interaction Terms (Removing Additivity):
 - An interaction term (e.g., X_1X_2) is introduced:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$$

- This allows the effect of X_1 on Y to depend on the value of X_2 (i.e., $\tilde{\beta}_1 = \beta_1 + \beta_3 X_2$).
- Hierarchical Principle: If an interaction term is included, the main effects must also be included.
- 2. Polynomial Regression (Removing Linearity):
 - This is relaxed by including transformed versions of the predictors (e.g., X^2, X^3).
 - Example:

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \epsilon$$

3.3 Potential Problems

- 1. Non-linearity: Detectable by a pattern (e.g., U-shape) in the residual plot.
- 2. Correlated Errors: Often found in time series data.
- 3. Non-constant Variance (Heteroscedasticity): Detected by a funnel shape in residual plots. Solution: transform the response variable Y (e.g., log(Y)).
- 4. Outliers: Observations far from the estimated line. Identified by large studentized residuals.
- 5. **High Leverage Points:** Observations with unusual predictor values (x_i) . Quantified using the **leverage statistic** (h_i) .
- 6. Collinearity: Two or more predictors are highly correlated.
 - Detection: Calculate the Variance Inflation Factor (VIF):

$$VIF(\hat{\beta}_j) = \frac{1}{1 - R_{X_j|X_{\backslash j}}^2}$$

4 Comparison of Linear Regression with K-Nearest Neighbors

Feature	Linear Regression	K-Nearest Neighbo
Type	Parametric (assumes $f(X)$ is linear)	Non-parametric (m
Advantages	Easy to fit, coefficients interpretable, better when true $f(X)$ is close to linear.	Highly flexible, perfor
Disadvantages	Poor performance if true $f(X)$ is non-linear (high bias).	Performance degrades

4.1 Key Takeaway

If the true relationship f(X) is nearly linear, the parametric approach (linear regression) is usually superior. If f(X) is highly non-linear and p is small, the non-parametric approach (KNN) may be superior.

5 Lab: Linear Regression (Practical Skills)

- ullet Model Fitting and Summarizing: Using sm.OLS() to fit models and view coefficients, standard errors, and p-values.
- \bullet $\bf Diagnostic$ $\bf Tools:$ Plotting leverage statistics and calculating $\bf VIFs.$
- Model Extensions: Including interaction terms and non-linear transformations (e.g., poly('horsepower', 2)).