MATH 108B - Study Guide

Vincent La

January 8, 2018

MATH 8 Review

FIII	bianks	with	iogicai	symbols	

- 1. If $P \to Q$, then the converse is ______.
- 2. If $P \to Q$, then the contrapositive is ______.
- 3. The converse of $P \to Q$ is true if P_____Q.

5. Eigenvalues, Eigenvectors, and Invariant Subspaces

Fill in the Blank

1.

$$\begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

This is a ______, and _____, and _____.

- 2. We say a subspace U is **invariant** under some linear operator T, if T maps U back to itself. More formally, for a $T \in \mathcal{L}$, U is invariant under T if for any $u \in U$, $Tu \in \underline{\hspace{1cm}}$.
- 3. Eigenvectors corresponding to distinct eigenvalues are ______.
- 4. Suppose we have an operator $T \in \mathcal{L}(V)$ and $v_1, ..., v_n$ is a basis for V. Now, suppose

$$Tv_1 \in \operatorname{span}(v_1)$$

 $Tv_2 \in \operatorname{span}(v_1, v_2)$
...
 $Tv_n \in \operatorname{span}(v_1, v_2, ..., v_n)$

Thus, the matrix of T with respect to $v_1, ..., v_n$ is _____

- 5. Suppose V is finite-dimensional. Then $T \in \mathcal{L}(V)$ has at most ______ eigenvalues.
- 6. Let $T \in \mathcal{L}(V)$, then $T^0 = \underline{\hspace{1cm}}$.
- 7. Let p(z) be a polynomial over the complex numbers. If $p(z) = a_0 + a_1 z + a_2 z^3$ then,

$$p(T) =$$

True or False

- 1. _____ Some operator $T \in \mathcal{L}(V)$ is invertible if and only if some matrix of T has distinct values on its diagonal.
- 2. _____ Suppose $T \in \mathcal{L}(V)$ has an upper triangular matrix with respect to some basis of V. Then, T is diagonalizable if and only all the entries on the diagonal are nonzero.
- 3. Let $T \in \mathcal{L}(V)$ with V finite-dimensional. Then,

$$E(\lambda_1, T) \cap ... \cap E(\lambda_n, T) = 0$$

6. Inner Product Spaces

Fill in the Blank

- 1. Suppose $\langle v, v \rangle = 0$. Then, $v = \underline{0}$.
- 2. Suppose $U \subset V$. The _____ of U, denoted U^{\perp} is the set

$$\{v \in V | \langle v, u \rangle = 0 \forall u \in U\}$$

3. Let $v_1, ..., v_n$ be a linearly independent list of vectors where each $||v_i|| = 1$ for i = 1, ...n. Then, $v_1, ..., v_n$ is a(n) ______.

6A. Inner Products and Norms

Inner Products An inner product on V is a function which maps ______ to a number in \mathbb{F} .

Cauchy-Schwarz Inequality Suppose $u, v \in V$. Then

$$|\langle u, v \rangle| \le ||u|| \, ||v||$$

where

$$|\langle u, v \rangle| = ||u|| \, ||v||$$

if and only if u is a scalar multiple of v.

6B. Orthonormal Bases

Orthonormal A **list of vectors** is orthonormal if each vector in the list has length 1 (normal) and is orthogonal to every other vector in the list.

Example Consider the standard basis of \mathbb{R}^3 (1,0,0),(0,1,0),(0,0,1). Turn this basis into an orthonormal basis.

Proof - An orthonormal list is linearly independent From Theorem 6.25, we know that

$$||a_1e_1 + \dots + a_me_m||^2 = |a_1|^2 + \dots + |a_m|^2$$

Use this to prove that orthonormal lists are linearly independent.

Theorem 6.30 – Writing a vector as linear combination of orthonormal basis Suppose $e_1, ..., e_n$ is an orthonormal basis of V and $v \in V$. Then

$$v = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_n \rangle e_n$$

and

$$||v||^2 = |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e \rangle|^2$$

This is a rewrite of a proof in the book

Proof. Let $e_1, ..., e_n$ be an orthonormal basis of V and $v \in V$ be arbitrary. First, because $e_1, ..., e_n$ is a basis for V there are some scalars $a_1, ..., a_n \in \mathbb{F}$ such that

$$v = a_1 e_1 + \dots + a_n e_n$$

Now, notice for the inner product $\langle v, e_i \rangle$ for $i \in 1, ...n$

$$\begin{split} \langle v,e_i\rangle &= \langle a_1e_1+\ldots+a_ie_i+\ldots+a_ne_n,e_i\rangle \\ &= \langle a_1e_1,e_i\rangle+\ldots+\langle a_ie_i,e_i\rangle+\ldots+\langle a_ne_n,e_i\rangle & \text{By additivity} \\ &= a_1\,\langle e_1,e_i\rangle+\ldots+a_i\,\langle e_i,e_i\rangle+\ldots+a_n\,\langle e_n,e_i\rangle & \text{By homogeneity in the first slot} \\ &= 0+\ldots+a_i\,\langle e_i,e_i\rangle+\ldots+0 & \text{By orthogonality} \\ &= a_i & \text{Because } e_i \text{ is normal} \end{split}$$

Therefore, it is true that $a_i e_i = \langle v, e_i \rangle e_i$ for $i \in 1, ..., n$ and we can write

$$v = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_n \rangle e_n$$

as desired. Furthermore, we can get the second equation by applying Theorem 6.25 to the previous equation. \Box

6C. Orthogonal Complements

Prove or give a counterexample Suppose $U \subset V$. Then, U^{\perp} is a subset of V.

Fill in the Blank Suppose U is a finite-dimensional subspace of V, and $v \in V$. Suppose $w \in U$ is such that

$$||v - w|| \le ||v - u||$$

for any $u \in U$. Then, it must be that $w = \underline{\hspace{1cm}}$.

7. Operators on Inner Product Spaces

7A. Self-Adjoint and Normal Operators

Adjoint Given $T \in \mathcal{L}(V, W)$, the adjoint is the function $T^*: W \to V$ such that

$$\langle Tv, w \rangle = \langle v, T^*w \rangle$$

True or False Suppose $T \in \mathcal{L}(V, W)$. Then, $T^*(0) = 0$.

Matrix of the Adjoint Suppose

$$\mathcal{M}(T) = \begin{bmatrix} i & 1-i \\ 2-3i & 4 \end{bmatrix}$$

then,

$$\mathcal{M}(T^*) = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$$

Fill in the Blank

- 1. An operator $T \in \mathcal{L}(V, W)$ is called ______ if $T = T^*$.
- 2. Suppose $T \in \mathcal{L}(V)$ is self-adjoint with some eigenvalue λ . The following equation

$$\lambda \|v\|^2 = \langle \lambda v, v \rangle = \langle Tv, v \rangle = \langle v, Tv \rangle = \langle v, \lambda v \rangle = \overline{\lambda} \|v\|^2$$

shows that the eigenvalues of T

3. Whenever we are discussing the adjoint of $T \in \mathcal{L}(V, W)$, V, W are presumed to be

True or False

- 1. _____ All self-adjoint operators are normal.
- 2. _____ An operator can be normal but not self-adjoint.

7B. The Spectral Theorem

The Real Spectral Theorem Suppose V is a vector space over the reals and $T \in \mathcal{L}(V)$. Then, TFAE:

- a. T is self-adjoint
- b. V has an orthonormal basis consisting of eigenvectors of T
- c. T has a diagonal matrix with respect to some orthonormal basis of V

The following is a proof of $(a) \implies (b)$

Proof. We will prove this using induction. For the base case, let n = 1. Clearly, if T is an operator on a one-dimensional subspace V, then it maps vectors to scalar multiples of themselves, i.e. V has an orthonormal basis of eigenvectors of T as desired.

Now, for the inductive step assume that $T \in \mathcal{L}(V)$ is self-adjoint and that (a) implies (b) for all $n < \dim V$. By Theorem 7.27, we know that there is some $u \in U$ such that u is an eigenvector of T. Specifically, choose u such that ||u|| = 1. As a result, $T|_U$ is a one-dimensional invariant subspace of V. Furthermore, this implies that $T|_U^{\perp} \in \mathcal{L}(U^{\perp})$ is self-adjoint. Furthermore, by the inductive hypothesis.

Recalling that Theorem 6.47 states that $V = U \oplus U^{\perp}$, this implies that adding u to the _____ of U^{\perp} gives an orthonormal basis for V as desired.

8. Operators on Complex Vector Spaces

8A. Generalized Eigenvectors and Nilpotent Operators

Why do we care about generalized eigenspaces? As you may recall, we can already decompose some $T \in \mathcal{L}(V)$ into the direct sum of one-dimensional invariant subspaces, i.e.

$$V = U_1 \oplus ... \oplus U_n$$

Specifically, each of these U_i is an eigenspace of V. So why do we care about generalized eigenspaces, and how do they extend this idea?

True or False

- 1. If v is an eigenvector of T, then it is also an generalized eigenvector of T.
- 2. It's _____ that the differentiation operator is nilpotent because _____

8B. Decomposition of an Operator

True or False Each generalized eigenspace $(T - \lambda_j I)|_{G(\lambda_J, T)}$ is nilpotent.

8D. Jordan Form

True or False A matrix is said to be in Jordan Form if it is zero everywhere for square matrices along its diagonal, where all of these square matrices are of the same dimension.