

IT 1313-13-9, uses and miscellaneous
RL: PRP (Properties)
(effect of, on electrochem. oxidation of aluminon and crystal violet)
IT 548-62-9 569-58-4
RL: RCT (Reactant); RACT (Reactant or reagent)
(electrochem. oxidation of, effect of manganese dioxide on)

L16 ANSWER 20 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1985:28334 CAPLUS
DOCUMENT NUMBER: 102:28334

TITLE: Electrochemical reactivity of aromatic compounds for use in lithium cells

AUTHOR(S): Tobishima, Shinichi; Yamaki, Junichi; Yamaji, Akihiko
CORPORATE SOURCE: Ibaraki Electr. Commun. Lab., Nippon Telegr. and

TELEPH. Public Corp., Tokai, 319-11, Japan

SOURCE: Journal of Applied Electrochemistry (1984) 14(6),
721-9

CODEN: JAELBJ; ISSN: 0021-891X

DOCUMENT TYPE: Journal
LANGUAGE: English

AB The electrochem. reactivity of aromatic compds. coupled with Li in LiClO₄-propylene carbonate was studied. Simple aromatic compds., Ph₃CH compds., and quinone imine dyes were used. Discharge results for aromatic cathode-Li cells indicated that the relation between discharge voltage measured and reduction potential reported was approx. linear, which suggested that the discharge products were ion complexes. Also, the discharge voltage increased with an increase of their electron-accepting groups and with a decrease of the electron-donating strength of alkyl groups in their amino end groups. Among these compds., rosaniline derivs., bromo-substituted phenol red and thiazine dyes showed discharge voltages of 2.5 V. Methylene blue (MB) [61-73-4] showed the largest energy d., 363 W·h/kg. Details of MB charge-discharge behavior were examined. The dynamic charge-discharge tests and cyclic voltammetry results suggested that the MB-Li cell could be cycled at <2 electrons/mol of MB depth. A direct reaction between the Li anode and dissolved MB is small, as indicated by the Li⁺ conductive film formation on the Li anode.

IT 603-45-2

RL: USES (Uses)
(cathode active material, lithium battery, performance of)

RN 603-45-2 CAPLUS

CN 2,5-Cyclohexadien-1-one, 4-[bis(4-hydroxyphenyl)methylene] - (9CI) (CA INDEX NAME)

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 25, 41, 72
ST lithium battery arom compd; rosaniline deriv lithium
battery; bromophenol red lithium battery; thiazine dye
lithium battery; methylene blue lithium battery;
cathode arom compd lithium battery; triphenylmethane compd
lithium battery; quinone imine dye compd battery
IT Cathodes
(battery, aromatic compound active material-containing, performance of
lithium-)
IT 61-73-4 76-59-5 76-60-8 85-01-8, uses and miscellaneous 91-20-3,
uses and miscellaneous 92-24-0 115-39-9 120-12-7, uses and
miscellaneous 129-00-0, uses and miscellaneous 143-74-8 198-55-0
548-62-9 553-24-2 581-64-6 596-27-0 603-45-2 632-99-5
633-03-4 1733-12-6 1787-57-1 2381-85-3 2679-01-8 6104-59-2
12768-78-4 37251-80-2
RL: USES (Uses)
(cathode active material, lithium battery, performance of)

L16 ANSWER 21 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
ACCESSION NUMBER: 1983:512850 CAPLUS
DOCUMENT NUMBER: 99:112850
TITLE: The reduction mechanism at the mercury electrode in
neutral and alkaline mediums of an acid hydroxy
triphenylmethane dye: Chromazurol S
AUTHOR(S): Bootts, J. F. C.; Rudnytskij, R.; Romero, J. R.
CORPORATE SOURCE: Fac. Filosofia, Cienc. Letras, Univ. Sao Paulo,
Ribeirao Preto, 14100, Brazil
SOURCE: Journal of Electroanalytical Chemistry and Interfacial
Electrochemistry (1983), 149(1-2), 139-52
CODEN: JEIEBC; ISSN: 0022-0728
DOCUMENT TYPE: Journal
LANGUAGE: English
AB The reduction mechanism at a Hg electrode of Chromazurol S [1667-99-8
investigated by several electrochem. techniques. The radical,
formed after the 1st one-electron uptake, dimerizes. The results of the
cyclic voltammetric investigation demonstrated the intrinsic
quasi-reversible nature of the electron transfer. The apparent
irreversible polarog. behavior of the 2nd wave is a result of the

existence of a fast protonation following the 2nd electron transfer. Adsorption of the Ox and Red form of Chromazurol S as well as of the radical formed was demonstrated by a.c. polarog. measurements. On the basis of the exptl. data a reduction mechanism is proposed.

- IT 1667-99-8
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (reduction of, electrochem., on mercury in weakly and strongly alkaline solns.)
- RN 1667-99-8 CAPLUS
 CN Benzoic acid, 5-[(3-carboxy-5-methyl-4-oxo-2,5-cyclohexadien-1-ylidene)(2,6-dichloro-3-sulfophenyl)methyl]-2-hydroxy-3-methyl-, trisodium salt (9CI) (CA INDEX NAME)

●3 Na

- CC 72-2 (Electrochemistry)
 Section cross-reference(s): 22, 41
- ST Chromazurol S electroredn mercury; dimerization Chromazurol S electroredn
- IT Adsorption
 (in Chromazurol S electrochem. reduction on mercury)
- IT Reduction, electrochemical
 (of Chromazurol S, on mercury in neutral and alkaline solns.)
- IT Reduction, electrochemical
 (of Chromazurol S, on mercury in neutral and alkaline solns., dimerization in relation to)
- IT Dyes
 (triphenylmethane, reduction of, electrochem., on mercury in neutral and alkaline solution)
- IT Dimerization
 Kinetics of dimerization
 (electrochem., reductive, of Chromazurol S on mercury in neutral and alkaline solns.)
- IT 87046-87-5
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (electrochem. formation and dimerization of)
- IT 7439-97-6, uses and miscellaneous

RL: USES (Uses)
 (electrodes, adsorption by, in Chromazurol S electrochem.
 reduction in neutral and alkaline solution)

IT 87046-88-6P
 RL: FORM (Formation, nonpreparative); PREP (Preparation)
 (formation of, electrochem. reductive)

IT 1667-99-8
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (reduction of, electrochem., on mercury in weakly and strongly
 alkaline solns.)

L16 ANSWER 22 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1981:628002 CAPLUS

DOCUMENT NUMBER: 95:228002

TITLE: Lithium battery

PATENT ASSIGNEE(S): Nippon Telegraph and Telephone Public Corp., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 7 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----
JP 5610871	A2	19810819	JP 1980-5769	19800123
JP 63013308	B4	19880324	JP 1980-5769	19800123

PRIORITY APPLN. INFO.: JP 1980-5769 19800123

AB In a battery employing a triphenylmethane dye as the cathode active material and Li as the anode active material, the electrolyte is chemical inert towards the cathode active material and Li and Li⁺ is transported during the electrochem. reaction.

IT 603-45-2

RL: DEV (Device component use); USES (Uses)
 (cathodes containing, for lithium batteries)

RN 603-45-2 CAPLUS

CN 2,5-Cyclohexadien-1-one, 4-[bis(4-hydroxyphenyl)methylene]- (9CI) (CA
 INDEX NAME)

IC H01M004-60

CC 72-2 (Electrochemistry)
ST lithium anode triphenylmethane dye cathode; battery lithium
triphenylmethane dye
IT Carbon black, uses and miscellaneous
RL: DEV (Device component use); USES (Uses)
(cathodes containing, for lithium batteries)
IT Batteries, primary
(lithium-triphenylmethane dyes)
IT Dyes
(triphenylmethane, cathodes containing, for lithium batteries)
IT 7439-93-2, uses and miscellaneous
RL: USES (Uses)
(anodes, in primary batteries with triphenylmethane dyes)
IT 548-62-9 569-61-9 603-45-2 3571-36-6 12768-78-4
79990-81-1
RL: DEV (Device component use); USES (Uses)
(cathodes containing, for lithium batteries)

L16 ANSWER 23 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1981:577670 CAPLUS

DOCUMENT NUMBER: 95:177670

TITLE: An electrochemical and spectrophotometric investigation of the reduction mechanism of chromazurol S

AUTHOR(S): Boodts, Julien F. C.; Romero, Jose R.; Rudnytskij, Roberto

CORPORATE SOURCE: Fac. Fylosophy, Sci. Letters, Ribeirao Preto-Sao Paulo State Univ., Ribeirao Preto, 14100, Brazil

SOURCE: An. Simp. Bras. Eletroquim. Eletroanal., 2nd (1980), 21-8. Editor(s): Rabockai, Tibor; Neves, Eduardo Almeida. Inst. Quim. Univ. Sao Paulo: Sao Paulo, Brazil.

DOCUMENT TYPE: CODEN: 46KNAF

LANGUAGE: Conference English

AB Electrochem. and spectrophotometric measurements were used in the title study of the reduction of this triphenylmethane dye. The chromazurol S (I) [1667-99-8] was purified by known procedures and the purity determined potentiometrically. The d.c. polarograms showed 2 waves for the reduction of I and the possibility of a 3rd much smaller wave was conjectured. In a.c. polarog. only 1 distinct wave with a much smaller 2nd wave was found. A reversible electron transfer was indicated. A reduction mechanism is proposed.

IT 1667-99-8
RL: RCT (Reactant); RACT (Reactant or reagent)
(reduction of, electrochem.)

RN 1667-99-8 CAPLUS

CN Benzoic acid, 5-[(3-carboxy-5-methyl-4-oxo-2,5-cyclohexadien-1-ylidene)(2,6-dichloro-3-sulfophenyl)methyl]-2-hydroxy-3-methyl-, trisodium salt (9CI) (CA INDEX NAME)

●₃ Na

CC 72-11 (Electrochemistry)
Section cross-reference(s): 22
ST chromazurol S electrochem redn
IT Reduction, **electrochemical**
(of chromazurol S)
IT 1667-99-8
RL: RCT (Reactant); RACT (Reactant or reagent)
(reduction of, **electrochem.**)

=>

=> file reg
FILE 'REGISTRY' ENTERED AT 12:23:44 ON 10 JUN 2004
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2004 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file
provided by InfoChem.

STRUCTURE FILE UPDATES: 9 JUN 2004 HIGHEST RN 691352-46-2
DICTIONARY FILE UPDATES: 9 JUN 2004 HIGHEST RN 691352-46-2

TSCA INFORMATION NOW CURRENT THROUGH JANUARY 6, 2004

Please note that search-term pricing does apply when
conducting SmartSELECT searches.

Crossover limits have been increased. See HELP CROSSOVER for details.

Experimental and calculated property data are now available. For more
information enter HELP PROP at an arrow prompt in the file or refer
to the file summary sheet on the web at:
<http://www.cas.org/ONLINE/DBSS/registryss.html>

=> file caplus
FILE 'CAPLUS' ENTERED AT 12:23:47 ON 10 JUN 2004
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2004 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is
held by the publishers listed in the PUBLISHER (PB) field (available
for records published or updated in Chemical Abstracts after December
26, 1996), unless otherwise indicated in the original publications.
The CA Lexicon is the copyrighted intellectual property of the
American Chemical Society and is provided to assist you in searching
databases on STN. Any dissemination, distribution, copying, or storing
of this information, without the prior written consent of CAS, is
strictly prohibited.

FILE COVERS 1907 - 10 Jun 2004 VOL 140 ISS 24
FILE LAST UPDATED: 9 Jun 2004 (20040609/ED)

This file contains CAS Registry Numbers for easy and accurate
substance identification.

=> d que 116
L1 STR

NODE ATTRIBUTES:

CONNECT IS E3 RC AT 7
DEFAULT MLEVEL IS ATOM
DEFAULT ELEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED
NUMBER OF NODES IS 8

STEREO ATTRIBUTES: NONE

L2 (116972)SEA FILE=CAPLUS ABB=ON PLU=ON BATTER?
L3 SEL PLU=ON L2 1-50000 RN : 50192 TERMS (TERM LIMIT E
XCEEDED)
L4 SEL PLU=ON L2 50001-100000 RN : 31181 TERMS
L5 SEL PLU=ON L2 100001-116972 RN : 3551 TERMS
L6 (50190)SEA FILE=REGISTRY ABB=ON PLU=ON L3
L7 (31143)SEA FILE=REGISTRY ABB=ON PLU=ON L4
L8 (4248)SEA FILE=REGISTRY ABB=ON PLU=ON L5
L9 (76571)SEA FILE=REGISTRY ABB=ON PLU=ON (L6 OR L7 OR L8)
L10 4 SEA FILE=REGISTRY SUB=L9 SSS FUL L1
L11 1192 SEA FILE=CAPLUS ABB=ON PLU=ON L10
L16 23 SEA FILE=CAPLUS ABB=ON PLU=ON L11 AND (BATTER? OR ELECTROCHEM
? OR GALVANIC? OR DRY CELL)

=> d ti 1-23 116

L16 ANSWER 1 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
TI On the Mechanism of Onset of Polarographic Catalytic Hydrogen Currents in
Solutions of Ruthenium (IV)

L16 ANSWER 2 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
TI Electrolyte solution and battery

L16 ANSWER 3 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
TI Dye-adsorbed semiconductor, photoelectric conversion device using it, and
solar cell using the device

L16 ANSWER 4 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
TI A study on water treatment induced by plasma with contact glow discharge
electrolysis

- L16 ANSWER 5 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
TI Synthesis and stabilization of α -polymorph of aluminum hydride for use in rocket propellants
- L16 ANSWER 6 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
TI Microanalysis of Al in Pb-Sn-Ca-Al alloy
- L16 ANSWER 7 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
TI Determination of europium(II) in the presence of Chrome Azurol S by alternating-current polarography
- L16 ANSWER 8 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
TI The use of triarylmethane dyes on aluminum
- L16 ANSWER 9 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
TI Secondary batteries with nonaqueous electrolytes
- L16 ANSWER 10 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
TI New nanocomposites of polypyrrole including γ -Fe₂O₃ particles: electrical and magnetic characterizations
- L16 ANSWER 11 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
TI Studies on electrochemical behavior of some light lanthanide ions in nonaqueous solution, flow injection determination and photochemical characterization of heavy metal ion chelate eight coordinated complexes. (Part 2). Determination of some light lanthanide ions by flow injection analysis using Chrome Azurol S in the presence of surfactant
- L16 ANSWER 12 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
TI Determination of traces of iron by thin-layer spectroelectrochemistry
- L16 ANSWER 13 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
TI Ion transfer of Chrome Azurol S across the liquid-liquid interface
- L16 ANSWER 14 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
TI Ion transfer of dyes across the liquid-liquid interface
- L16 ANSWER 15 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
TI Cyclic voltammetry of dye-modified BLMs
- L16 ANSWER 16 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
TI Fountain pens for multicolor writings
- L16 ANSWER 17 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
TI Electrochemical oxidation of coloring impurities in an aqueous suspension of manganese dioxide
- L16 ANSWER 18 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
TI Polarography of Chrome Azurol S
- L16 ANSWER 19 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN

TI Electrooxidation of crystal violet and aluminon in a manganese dioxide aqueous suspension
L16 ANSWER 20 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
TI Electrochemical reactivity of aromatic compounds for use in lithium cells
L16 ANSWER 21 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
TI The reduction mechanism at the mercury electrode in neutral and alkaline mediums of an acid hydroxy triphenylmethane dye: Chromazurol S
L16 ANSWER 22 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
TI Lithium battery
L16 ANSWER 23 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
TI An electrochemical and spectrophotometric investigation of the reduction mechanism of chromazurol S

=> d ibib abs hitstr ind total 116

L16 ANSWER 1 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
ACCESSION NUMBER: 2002:967349 CAPLUS
DOCUMENT NUMBER: 138:345240
TITLE: On the Mechanism of Onset of Polarographic Catalytic Hydrogen Currents in Solutions of Ruthenium (IV)
AUTHOR(S): Vrublevs'ka, T. Ya.; Tymoshuk, O. S.
CORPORATE SOURCE: Franko Lviv National University, Lvov, Ukraine
SOURCE: Materials Science (New York, NY, United States) (Translation of Fiziko-Khimichna Mekhanika Materialiv) (2002), 38(3), 399-406
CODEN: MSCIEQ; ISSN: 1068-820X
PUBLISHER: Kluwer Academic/Consultants Bureau
DOCUMENT TYPE: Journal
LANGUAGE: English
AB Using the oscillovoltammetric method, we study the nature of the current and the character of reduction of aqueous ruthenium solns. in the presence of organic addends and without them. The process of reduction of Ru(IV) solns. exhibits an irreversible character and is preceded by a chemical reaction. The electrochem. reaction proceeds on the surface of the dropping mercury electrode. The catalytic action of organic reagents is not connected with the regeneration of depolarizer. Finally, we propose a scheme for the mechanism of onset of voltammetric catalytic hydrogen currents.
IT 1667-99-8, Chromeazurol S
RL: NNU (Other use, unclassified); USES (Uses)
(of electroreducn. of aqueous ruthenium(IV) solns. in presence of organic addends and without them)
RN 1667-99-8 CAPLUS
CN Benzoic acid, 5-[(3-carboxy-5-methyl-4-oxo-2,5-cyclohexadien-1-ylidene)(2,6-dichloro-3-sulfophenyl)methyl]-2-hydroxy-3-methyl-, trisodium salt (9CI) (CA INDEX NAME)

●3 Na

- CC 72-2 (Electrochemistry)
Section cross-reference(s) : 29, 78
- ST electroredundn ruthenium IV hydrogen current org addends
- IT Reaction mechanism
(mechanism of onset of polarog. catalytic hydrogen currents in solns.
of ruthenium (IV))
- IT Voltammetry
(of Ru(IV) in NaClO₄ solution with mercury electrode)
- IT Reduction, electrochemical
(of aqueous ruthenium solns. in presence of organic addends and without
them)
- IT Reduction potential
(of aqueous ruthenium(IV) solns. in presence of organic addends and without
them)
- IT Polarography
(of electroredundn. of aqueous ruthenium solns. in presence of organic addends
and without them)
- IT Current density
(of electroredundn. of aqueous ruthenium(IV) solns. in presence of organic
addends and without them)
- IT Transport properties
(of ions during electroredundn. of ruthenium(IV) in presence of organic
addends and without them in aqueous solns.)
- IT 22541-58-8, Ru 4+, reactions
RL: CPS (Chemical process); PEP (Physical, engineering or chemical
process); RCT (Reactant); PROC (Process); RACT (Reactant or reagent)
(electroredundn. of aqueous ruthenium solns. in presence of organic addends and
without them)
- IT 127-09-3, Sodium acetate 7631-99-4, Sodium nitrate, uses 7647-14-5,
Sodium chloride, uses
RL: NUU (Other use, unclassified); USES (Uses)
(electroredundn. of ruthenium(IV) in presence of organic addends and without
them in aqueous solns. containing)

- IT 1333-74-0, Hydrogen, processes
 RL: CPS (Chemical process); FMU (Formation, unclassified); PEP (Physical, engineering or chemical process); FORM (Formation, nonpreparative); PROC (Process)
 (mechanism of onset of polarog. catalytic hydrogen currents in solns. of ruthenium (IV))
- IT 115-41-3, Pyrocatechin violet 1611-35-4, Xylenol orange
 1667-99-8, Chromeazurol S 79920-73-3, Eriochromecyanine
 RL: NNU (Other use, unclassified); USES (Uses)
 (of electroredn. of aqueous ruthenium(IV) solns. in presence of organic addends and without them)
- IT 7647-01-0, Hydrochloric acid, uses
 RL: NNU (Other use, unclassified); USES (Uses)
 (voltammetry of Ru(IV) in HCl solution with mercury electrode)
- IT 7601-89-0, Sodium perchlorate
 RL: NNU (Other use, unclassified); USES (Uses)
 (voltammetry of Ru(IV) in NaClO₄ solution with mercury electrode)
- REFERENCE COUNT: 9 THERE ARE 9 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L16 ANSWER 2 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 2002:735453 CAPLUS
 DOCUMENT NUMBER: 137:281824
 TITLE: Electrolyte solution and battery
 INVENTOR(S): Adachi, Momoe
 PATENT ASSIGNEE(S): Sony Corp., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 15 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

- | PATENT NO. | KIND | DATE | APPLIC NO. | DATE |
|------------------------|------|----------|---------------|----------|
| JP 2002280064 | A2 | 20020927 | JP 2001-76726 | 20010316 |
| PRIORITY APPLN. INFO.: | | | JP 2001-76726 | 20010316 |
- AB The electrolyte solution contains a Al compound and/or an Al adsorbing compound Preferably, the Al compound is Li aluminite, LiAlH₄, Al acetylacetone, and/or their derivs.; and the Al-adsorbing compound is aluminon and/or its derivative The electrolyte solution also contains a Li salt and a solvent mixture
 The mass of the Al and Al-adsorbing compds. are preferably 0.01-10 % of the solvent mixture The battery has a light metal intercalating and depositing anode and the electrolyte solution
- IT 569-58-4, Aluminon
 RL: DEV (Device component use); USES (Uses)
 (Li salt electrolyte solns. containing Al compds. for secondary lithium batteries)
- RN 569-58-4 CAPLUS
- CN Benzoic acid, 5-[{(3-carboxy-4-hydroxyphenyl)(3-carboxy-4-oxo-2,5-cyclohexadien-1-ylidene)methyl]-2-hydroxy-, triammonium salt (9CI) (CA

INDEX NAME)

●3 NH₃

IC ICM H01M010-40
 ICS H01M004-02
 CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 ST Li secondary battery electrolyte Al compd additive
 IT **Battery electrolytes**
 (Li salt electrolyte solns. containing Al compds. for secondary lithium batteries)
 IT 105-58-8, Diethyl carbonate 108-32-7, Propylene carbonate
 569-58-4, Aluminon 13963-57-0, Aluminum acetylacetone
 14283-07-9, Lithium tetrafluoroborate 16853-85-3, Lithium aluminum hydride 21324-40-3, Lithium hexafluorophosphate 37220-89-6, Lithium aluminate 90076-65-6, Lithium bis(trifluoromethanesulfonylimide)
 RL: DEV (Device component use); USES (Uses)
 (Li salt electrolyte solns. containing Al compds. for secondary lithium batteries)

L16 ANSWER 3 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
 ACCESSION NUMBER: 2002:193351 CAPLUS
 DOCUMENT NUMBER: 136:250257
 TITLE: Dye-adsorbed semiconductor, photoelectric conversion device using it, and solar cell using the device
 INVENTOR(S): Okubo, Kimihiko; Kita, Hiroshi
 PATENT ASSIGNEE(S): Konica Co., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 34 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----

JP 2002075475
PRIORITY APPLN. INFO.:A2 20020315
OTHER SOURCE(S): MARPAT 136:250257JP 2000-257211 20000828
JP 2000-257211 20000828

AB The semiconductor adsorbs a dye D[LB(ORA)n]k (D = dye residue; k = 1-10; L = none, divalent linkage group; Ra = H, substituent; n = 2, 3; B = anion if n = 3 to have counter cation). The photoelec. conversion device comprises an elec. conductive support laminated with a photosensitive layer containing the above dye-adsorbed semiconductor. The solar cell has the above photoelec. conversion device, a charge-transfer layer, and a counter electrode. The solar cell shows improved durability and high photoelec. conversion efficiency.

IT 403739-15-1P

RL: DEV (Device component use); PNU (Preparation, unclassified); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (photoelec. conversion device having photosensitive layer containing dye-adsorbed semiconductor for solar cell)

RN 403739-15-1 CAPLUS

CN Boronic acid, [(3-borono-4-oxo-2,5-cyclohexadien-1-ylidene)methylene]bis(6-hydroxy-3,1-phenylene)bis- (9CI) (CA INDEX NAME)

IC ICM H01M014-00
ICS H01L031-04CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 41, 76ST methine dye adsorption semiconductor photoelec conversion device;
azomethine dye adsorption semiconductor solar cell; azo dye adsorption semiconductor solar battery; triphenylmethane dye adsorption semiconductor photoelec device; acridine dye adsorption semiconductor solar cellIT Photoelectric devices
Semiconductor materials
Solar cells

(photoelec. conversion device having photosensitive layer containing dye-adsorbed semiconductor for solar cell)

IT 403739-12-8P 403739-13-9P 403739-14-0P **403739-15-1P**
403739-16-2P 403739-17-3P 403845-21-6P 403845-28-3P 403847-96-1P
RL: DEV (Device component use); PNU (Preparation, unclassified); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (photoelec. conversion device having photosensitive layer containing dye-adsorbed semiconductor for solar cell)

IT 403845-23-8 403845-24-9 403845-25-0 403845-27-2
RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
(photoelec. conversion device having photosensitive layer containing dye-adsorbed semiconductor for solar cell)

IT 159614-36-5P 403739-20-8P 403739-22-0P **403739-24-2P** 403739-26-4P
RL: PNU (Preparation, unclassified); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)
(photoelec. conversion device having photosensitive layer containing dye-adsorbed semiconductor for solar cell)

IT 121-43-7, Trimethoxyborane 149-73-5, Trimethyl orthoformate 606-46-2
1762-95-4, Ammonium thiocyanate 2892-51-5 10049-08-8, Ruthenium chloride 18511-71-2 403739-18-4 403739-19-5 403739-21-9
403739-23-1 403739-25-3 403739-27-5 403739-28-6
RL: RCT (Reactant); RACT (Reactant or reagent)
(photoelec. conversion device having photosensitive layer containing dye-adsorbed semiconductor for solar cell)

L16 ANSWER 4 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
ACCESSION NUMBER: 2002:38081 CAPLUS
DOCUMENT NUMBER: 136:283684
TITLE: A study on water treatment induced by plasma with contact glow discharge electrolysis
AUTHOR(S): Hu, Zhong-ai; Wang, Xiao-yan; Gao, Jin-zhang; Deng, Hua-ling; Hou, Jing-guo; Lu, Xiao-quan; Kang, Jing-wan
CORPORATE SOURCE: Department of Chemistry, Northwest Normal University, Lanzhou, 730070, Peop. Rep. China
SOURCE: Plasma Science & Technology (Hefei, China) (2001), 3(5), 927-932
CODEN: PSTHC3; ISSN: 1009-0630
PUBLISHER: Chinese Academy of Sciences, Institute of Plasma Physics
DOCUMENT TYPE: Journal
LANGUAGE: English
AB Oxidative degradation of 8 dyes induced by plasma in aqueous solution by contact glow discharge electrolysis (CGDE) was studied. These 8 dyes were degraded by CGDE, where Fe²⁺ was used to improve dye degradation efficiency.
IT 1667-99-8, Chrome Azurol S
RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); POL (Pollutant); REM (Removal or disposal); OCCU (Occurrence); PROC (Process)
(voltage and reaction time effect on ferrous iron catalyzed oxidation of wastewater dyes by plasma using contact glow discharge electrolysis)

RN 1667-99-8 CAPLUS

CN Benzoic acid, 5-[(3-carboxy-5-methyl-4-oxo-2,5-cyclohexadien-1-ylidene)(2,6-dichloro-3-sulfophenyl)methyl]-2-hydroxy-3-methyl-, trisodium salt (9CI) (CA INDEX NAME)

●3 Na

CC 60-2 (Waste Treatment and Disposal)

Section cross-reference(s): 41, 52, 67

ST contact glow discharge electrolysis wastewater treatment; dye oxidn
contact glow discharge electrolysis; ferrous iron catalyzed oxidn dye
wastewater treatment

IT Plasma
(contact glow discharge electrolysis; voltage and reaction time effect
on ferrous iron catalyzed oxidation of wastewater dyes by plasma using
contact glow discharge electrolysis)

IT Wastewater treatment
(decolorization; voltage and reaction time effect on ferrous iron
catalyzed oxidation of wastewater dyes by plasma using contact glow
discharge electrolysis)

IT Wastewater treatment
(electrochem., contact glow discharge; voltage and reaction
time effect on ferrous iron catalyzed oxidation of wastewater dyes by
plasma using contact glow discharge electrolysis)

IT Oxidation catalysts
(ferrous iron; voltage and reaction time effect on ferrous iron
catalyzed oxidation of wastewater dyes by plasma using contact glow
discharge electrolysis)

IT Wastewater treatment
(oxidation, iron catalyzed electrolysis; voltage and reaction time effect
on ferrous iron catalyzed oxidation of wastewater dyes by plasma using
contact glow discharge electrolysis)

IT Dyes
(voltage and reaction time effect on ferrous iron catalyzed oxidation of
wastewater dyes by plasma using contact glow discharge electrolysis)

IT 15438-31-0, uses

RL: CAT (Catalyst use); USES (Uses)

(voltage and reaction time effect on ferrous iron catalyzed oxidation of wastewater dyes by plasma using contact glow discharge electrolysis)

IT 65-61-2, Acridine orange 81-88-9, Rhodamine B 547-58-0, Methyl orange 1667-99-8, Chrome Azurol S 6416-66-6, Weak Acid Brilliant Red B 14254-17-2 28983-56-4, Methyl blue 406675-78-3, Weak Acid Flavine G

RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); POL (Pollutant); REM (Removal or disposal); OCCU (Occurrence); PROC (Process)

(voltage and reaction time effect on ferrous iron catalyzed oxidation of wastewater dyes by plasma using contact glow discharge electrolysis)

REFERENCE COUNT: 9 THERE ARE 9 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L16 ANSWER 5 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 2000:900566 CAPLUS

DOCUMENT NUMBER: 134:58752

TITLE: Synthesis and stabilization of α -polymorph of aluminum hydride for use in rocket propellants

INVENTOR(S): Petrie, Mark A.; Bottaro, Jeffrey C.; Penwell, Paul E.; Bomberger, David C.; Schmitt, Robert J.

PATENT ASSIGNEE(S): SRI International, USA

SOURCE: PCT Int. Appl., 24 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
------------	------	------	-----------------	------

-----	-----	-----	-----	-----
-------	-------	-------	-------	-------

WO 2000076913	A1	20001221	WO 2000-US16137	20000612
---------------	----	----------	-----------------	----------

W: CA, JP

RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
PT, SE

US 6228338	B1	20010508	US 1999-334359	19990616
------------	----	----------	----------------	----------

US 2001038821	A1	20011108	US 2001-823379	20010329
---------------	----	----------	----------------	----------

US 6617064	B2	20030909		
------------	----	----------	--	--

PRIORITY APPLN. INFO.: US 1999-334359 A 19990616

AB α -AlH₃ (as the α polymorph) is prepared by: (1) reacting an alkali metal hydride with AlCl₃ in di-Et ether solution to form an initial AlH₃ product, (2) filtering off the alkali metal chloride byproduct, (3) adding excess toluene to the filtrate from step (2), (4) heating and distilling the di-Et ether-toluene solution to reduce the amount of di-Et ether,

until a precipitate is formed, (5) isolating the precipitate, (6) adding the precipitate to an acidic solution to dissolve and remove other impurities. and (7) separating α -AlH₃ from the acidic solution. The acidic solution in step (6) contains a stabilizing agent for α -AlH₃ (e.g., aluminon, 8-hydroxyquinoline, catechol, or an electron donor or electron acceptor). AlH₃ has application as an energetic component in rocket propellants, a reducing

agent in organic synthesis, a hydride donor for polymerization catalysts, as a hydrogen storage material (especially in an alkaline **battery**), and a hydrogen source for fuel cells.

IT 569-58-4, Aluminon

RL: NUU (Other use, unclassified); USES (Uses)
(stabilizer; synthesis and stabilization of α -polymorph of aluminum hydride for use in rocket propellants)

RN 569-58-4 CAPLUS

CN Benzoic acid, 5-[(3-carboxy-4-hydroxyphenyl)(3-carboxy-4-oxo-2,5-cyclohexadien-1-ylidene)methyl]-2-hydroxy-, triammonium salt (9CI) (CA INDEX NAME)

●3 NH₃

IC ICM C01B006-06

CC 50-1 (Propellants and Explosives)

Section cross-reference(s): 21, 35, 49, 52

ST aluminum hydride synthesis propellant fuel; stabilizer aluminum hydride manuf; hydrogen source aluminum hydride manuf

IT Electron acceptors

Electron donors

(stabilizers; synthesis and stabilization of α -polymorph of aluminum hydride for use in rocket propellants)

IT Fuel cells

(synthesis and stabilization of α -polymorph of aluminum hydride as hydrogen source for fuel cells and alkali storage **batteries**)

IT Polymerization catalysts

(synthesis and stabilization of α -polymorph of aluminum hydride for use in hydride donor in polymerization catalysts)

IT Reducing agents

(synthesis and stabilization of α -polymorph of aluminum hydride for use in hydride donors for organic redns.)

IT Polymorphism (crystal)

Propellants (fuels)

(synthesis and stabilization of α -polymorph of aluminum hydride

for use in rocket propellants)
IT 7446-70-0, Aluminum chloride (AlCl₃), reactions
RL: RCT (Reactant); RACT (Reactant or reagent)
(aluminum source, reduction of; synthesis and stabilization of
 α -polymorph of aluminum hydride for use in rocket propellants)
IT 7647-01-0, Hydrogen chloride, uses
RL: NUU (Other use, unclassified); USES (Uses)
(aqueous, purification solvent; synthesis and stabilization of α -polymorph
of aluminum hydride for use in rocket propellants)
IT 13770-96-2, Sodium aluminum hydride 16853-85-3, Lithium aluminum hydride
16940-66-2, Sodium borohydride 16949-15-8, Lithium borohydride
RL: RCT (Reactant); RACT (Reactant or reagent)
(hydride source; synthesis and stabilization of α -polymorph of
aluminum hydride for use in rocket propellants)
IT 1333-74-0, Hydrogen, uses
RL: FMU (Formation, unclassified); NUU (Other use, unclassified); FORM
(Formation, nonpreparative); USES (Uses)
(in-situ formation of, aluminum hydride source for; synthesis and
stabilization of α -polymorph of aluminum hydride for use in
rocket propellants)
IT 7784-21-6P, Aluminum hydride
RL: CAT (Catalyst use); IMF (Industrial manufacture); NUU (Other use,
unclassified); PRP (Properties); PREP (Preparation); USES (Uses)
(manufacture of; synthesis and stabilization of α -polymorph of
aluminum hydride for use in rocket propellants)
IT 60-29-7, Diethyl ether, uses 108-88-3, Toluene, uses
RL: NUU (Other use, unclassified); USES (Uses)
(solvent; synthesis and stabilization of α -polymorph of aluminum
hydride for use in rocket propellants)
IT 118-75-2, Tetrachlorobenzoquinone, uses 120-80-9, Catechol, uses
122-39-4, Diphenylamine, uses 148-24-3, 8-Hydroxyquinoline, uses
569-58-4, Aluminon 670-54-2, Tetracyanoethylene, uses
996-70-3, Tetrakis(dimethylamino)ethylene 1518-16-7 31366-25-3,
Tetrathiafulvalene
RL: NUU (Other use, unclassified); USES (Uses)
(stabilizer; synthesis and stabilization of α -polymorph of
aluminum hydride for use in rocket propellants)
REFERENCE COUNT: 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS
RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L16 ANSWER 6 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
ACCESSION NUMBER: 1999:405240 CAPLUS
DOCUMENT NUMBER: 131:164752
TITLE: Microanalysis of Al in Pb-Sn-Ca-Al alloy
AUTHOR(S): Liu, Haifeng; Cao, Ying; Chen, Changping
CORPORATE SOURCE: Wuhan Institute of Material Protection, Wuhan, 430030,
Peop. Rep. China
SOURCE: Cailiao Baohu (1999), 32(5), 17-18
CODEN: CAIBE3; ISSN: 1001-1560
PUBLISHER: Cailiao Baohu Zazhishe
DOCUMENT TYPE: Journal
LANGUAGE: Chinese

- AB The alloy sample is dissolved in hot HNO₃ followed by adding HClO₄, heating to fume, and precipitating Pb with Na₂SO₄. Al content in Pb-Sn-Ca-Al alloy used in battery manufacture was determined by spectrophotometry using chrome azurol S in pH 5.1 solution at 546.2 nm. Impurities (such as Cu, Fe, etc.) were masked by Zn-EDTA.
- IT 1667-99-8, Chrome azurol S
RL: ARG (Analytical reagent use); ANST (Analytical study); USES (Uses)
(microanal. of Al in Pb-Sn-Ca-Al alloy by spectrophotometry)
- RN 1667-99-8 CAPLUS
- CN Benzoic acid, 5-[(3-carboxy-5-methyl-4-oxo-2,5-cyclohexadien-1-ylidene)(2,6-dichloro-3-sulfophenyl)methyl]-2-hydroxy-3-methyl-, trisodium salt (9CI) (CA INDEX NAME)

●3 Na

- CC 79-6 (Inorganic Analytical Chemistry)
Section cross-reference(s): 56
- ST aluminum calcium lead tin microanalysis spectrophotometry
- IT Spectrophotometry
(microanal. of Al in Pb-Sn-Ca-Al alloy by spectrophotometry)
- IT 89741-43-5
RL: AMX (Analytical matrix); ANST (Analytical study)
(microanal. of Al in Pb-Sn-Ca-Al alloy by spectrophotometry)
- IT 1667-99-8, Chrome azurol S
RL: ARG (Analytical reagent use); ANST (Analytical study); USES (Uses)
(microanal. of Al in Pb-Sn-Ca-Al alloy by spectrophotometry)
- IT 60-00-4, EDTA, analysis 7439-89-6, Iron, analysis 7440-50-8, Copper,
analysis 7440-66-6, Zinc, analysis
RL: ARU (Analytical role, unclassified); ANST (Analytical study)
(microanal. of Al in Pb-Sn-Ca-Al alloy by spectrophotometry)
- L16 ANSWER 7 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
ACCESSION NUMBER: 1998:745615 CAPLUS
DOCUMENT NUMBER: 130:32393
TITLE: Determination of europium(II) in the presence of
Chrome Azurol S by alternating-current polarography

AUTHOR(S): Levitskaya, G. D.; Pyastka, L. O.; Dubas, L. Z.
 CORPORATE SOURCE: Department of Chemistry, Franko State University,
 Lvov, 290005, Ukraine
 SOURCE: Journal of Analytical Chemistry (Translation of
Zhurnal Analiticheskoi Khimii) (1998), 53(11),
 1024-1027
 CODEN: JACTE2; ISSN: 1061-9348
 PUBLISHER: MAIK Nauka/Interperiodica Publishing
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB The behavior of Eu(III) was studied by alternating-current polarog. in the presence of the triphenylmethane dye Chrome Azurol S (CAS) in an NH₃ buffer solution in a wide range of pH and concns. The mechanism of CAS reduction

at a dropping Hg electrode was suggested. The studies performed by the saturation curve method and by the method of isomolar series indicate that the ratio of components in the complex formed is 1:1. The determination limit for Eu(III) in a 0.1M NH₄Cl solution (pH 7.0) in the presence of CAS is 2.2 + 10-6M.

IT 1667-99-8, Chrome Azurol S

RL: ARG (Analytical reagent use); ANST (Analytical study); USES (Uses)
 (determination of europium(II) in the presence of Chrome Azurol S by alternating-current polarog.)

RN 1667-99-8 CAPLUS

CN Benzoic acid, 5-[(3-carboxy-5-methyl-4-oxo-2,5-cyclohexadien-1-ylidene)(2,6-dichloro-3-sulfophenyl)methyl]-2-hydroxy-3-methyl-, trisodium salt (9CI) (CA INDEX NAME)

●3 Na

CC 79-6 (Inorganic Analytical Chemistry)

Section cross-reference(s): 72

ST europium detn alternating current polarog; Chrome Azurol S reagent
 europium detn polarog

IT Polarography
 (a.c.; determination of europium(II) in the presence of Chrome Azurol S by

alternating-current polarog.)
IT Reduction, electrochemical
(of Chrome Azurol S at dropping Hg electrode)
IT 7440-53-1, Europium, analysis
RL: ANT (Analyte); ANST (Analytical study)
(determination of europium(II) in the presence of Chrome Azurol S by
alternating-current polarog.)
IT 1667-99-8, Chrome Azurol S
RL: ARG (Analytical reagent use); ANST (Analytical study); USES (Uses)
(determination of europium(II) in the presence of Chrome Azurol S by
alternating-current polarog.)

REFERENCE COUNT: 11 THERE ARE 11 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L16 ANSWER 8 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
ACCESSION NUMBER: 1996:246918 CAPLUS
DOCUMENT NUMBER: 124:327154
TITLE: The use of triarylmethane dyes on aluminum
AUTHOR(S): Tsangarakis-Kaplanoglou, I.; Moshohoritou, R.;
Kallithrakas-Kontos, N.
CORPORATE SOURCE: Dept. of Sciences, Technical University of Crete,
Chania, 73100, Greece
SOURCE: Journal of the Society of Dyers and Colourists (1996),
112(4), 127-31
PUBLISHER: Society of Dyers and Colourists
DOCUMENT TYPE: Journal
LANGUAGE: English

AB Coatings were formed on the surface of unanodized aluminum
electrolytically treated in an aqueous solution of tin sulfate and a
triarylmethane dye. The coatings produced had a good decorative
appearance, good adhesion and were 3-5 μm thick. The colored films had
excellent light fastness but poor resistance to corrosion resistance. The
dyes showing the most promise for this application were Cl Acid Blue 9 and
Cl Acid Green 5. These dyes interfered in the current flow, in so doing
modifying the surface topog. and the semiconductive properties of the
superficial aluminum oxide film formed during the coloring treatment. The
dye fragmentation, cyclization and dimerization products derived during
the electrolytic treatment gave organotin compds.

IT 1667-99-8, C.I. Mordant Blue 29
RL: PEP (Physical, engineering or chemical process); PRP (Properties);
PROC (Process)
(electrolytically coloring of aluminum in aqueous solution of tin sulfate
and
triarylmethane dye using a.c.)
RN 1667-99-8 CAPLUS
CN Benzoic acid, 5-[(3-carboxy-5-methyl-4-oxo-2,5-cyclohexadien-1-
ylidene)(2,6-dichloro-3-sulfophenyl)methyl]-2-hydroxy-3-methyl-, trisodium
salt (9CI) (CA INDEX NAME)

●3 Na

- CC 72-2 (Electrochemistry)
Section cross-reference(s): 41, 56
- ST electrocoloring aluminum tin sulfate triarylmethane dye; alternating current coloring aluminum tin dye
- IT Dyeing
(electrolytically coloring of aluminum in aqueous solution of tin sulfate and triarylmethane dye using a.c.)
- IT Anodization
(in electrolytically coloring of aluminum in aqueous solution of tin sulfate and triarylmethane dye using a.c.)
- IT Electrodeposition and Electroplating
(of tin in electrolytically coloring of aluminum in aqueous solution of tin sulfate and triarylmethane dye using a.c.)
- IT Dyes
(triarylmethane; electrolytically coloring of aluminum in aqueous solution of tin sulfate and triarylmethane dye using a.c.)
- IT Electric current
(alternating, electrolytically coloring of aluminum in aqueous solution of tin sulfate and triarylmethane dye using a.c.)
- IT Coloring
(electrochem., of aluminum in aqueous solution of tin sulfate and triarylmethane dye using a.c.)
- IT 7440-31-5, Tin, properties
RL: FMU (Formation, unclassified); PEP (Physical, engineering or chemical process); PRP (Properties); FORM (Formation, nonpreparative); PROC (Process)
(deposition in electrolytically coloring of aluminum in aqueous solution of tin sulfate and triarylmethane dye using a.c.)
- IT 7429-90-5, Aluminum, properties
RL: PEP (Physical, engineering or chemical process); PRP (Properties); PROC (Process)

(electrolytically coloring in aqueous solution of tin sulfate and triarylmethane dye using a.c.)

IT 129-17-9, C.I. Acid Blue 1 1667-99-8, C.I. Mordant Blue 29
1694-09-3, C.I. Acid Violet 49 3844-45-9 5141-20-8, C.I. Acid Green 5
6104-59-2, C.I. Acid Blue 83 10031-62-6, Tin sulfate 67763-24-0
RL: PEP (Physical, engineering or chemical process); PRP (Properties);
PROC (Process)

and (electrolytically coloring of aluminum in aqueous solution of tin sulfate and triarylmethane dye using a.c.)

IT 1344-28-1, Alumina, properties
RL: FMU (Formation, unclassified); PEP (Physical, engineering or chemical process); PRP (Properties); FORM (Formation, nonpreparative); PROC (Process)

tin (formation in electrolytically coloring of aluminum in aqueous solution of sulfate and triarylmethane dye using a.c.)

L16 ANSWER 9 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1995:547774 CAPLUS

DOCUMENT NUMBER: 123:61297

TITLE: Secondary batteries with nonaqueous electrolytes

INVENTOR(S): Tanaka, Mitsutoshi

PATENT ASSIGNEE(S): Fuji Photo Film Co., Ltd., Japan; UBE Industries, Ltd.

SOURCE: Jpn. Kokai Tokkyo Koho, 13 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 07065863	A2	19950310	JP 1993-209669	19930824
JP 3475449	B2	20031208		
JP 2004006410	A2	20040108	JP 2003-283639	20030731

PRIORITY APPLN. INFO.: JP 1993-209669 A3 19930824

GI For diagram(s), see printed CA Issue.

AB The batteries contain I [Z1-2 = groups forming (substituted)

N-containing heterocycle; Z1 and Z2 may form (substituted) N-containing heterocycle], cyclic tetrapyrroles, II [Z3 = Z1; Z4 = (substituted) aromatic ring; X = H, OH, SH, amino, sulfo (salt), phospho (salt), arseno (salt), carboxy (salt)], III [Z5-6 = Z4; Y = N, CH; X1-2 = OH, hydroxy salt, SH, sulfo (salt), carboxy (salt), arseno (salt), phospho (salt)], IV (Z7-9 = Z4), amino polyacids, quinoline, or quinoline derivs. Marked drop in capacity is prevented.

IT 1667-99-8

RL: MOA (Modifier or additive use); USSES (Uses)
(nonaq. secondary batteries containing)

RN 1667-99-8 CAPLUS

CN Benzoic acid, S-[(3-carboxy-5-methyl-4-oxo-2,5-cyclohexadien-1-

ylidene) (2,6-dichloro-3-sulfophenyl)methyl]-2-hydroxy-3-methyl-, trisodium salt (9CI) (CA INDEX NAME)

●3 Na

IC ICM H01M010-40
ICS H01M004-02
CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
ST battery nonaq additive nitrogen heterocycle
IT Batteries, secondary
(nonaq.; containing nitrogen-containing additives)
IT 91-22-5, Quinoline, uses 885-04-1 979-88-4 1571-36-4, Stilbazo
1667-99-8 2113-70-4 3547-38-4 22243-63-6 28048-33-1
36951-72-1 40386-51-4 53611-17-9 53744-42-6 69458-20-4
87035-60-7 91599-24-5 132097-27-9 132097-29-1 143205-66-7
164581-17-3 164581-18-4 164581-19-5 164581-20-8 164581-21-9
164581-22-0 164581-23-1 164581-24-2 164581-25-3 164581-26-4
164581-27-5 164581-28-6 164581-29-7 164581-30-0 164581-31-1
164581-32-2 164581-33-3 164581-34-4
RL: MOA (Modifier or additive use); USES (Uses)
(nonaq. secondary batteries containing)

L16 ANSWER 10 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
ACCESSION NUMBER: 1995:463606 CAPLUS
DOCUMENT NUMBER: 123:22946
TITLE: New nanocomposites of polypyrrole including
γ-Fe2O3 particles: electrical and magnetic
characterizations
AUTHOR(S): Jarjayes, O.; Fries, P. H.; Bidan, G.
CORPORATE SOURCE: Department de de Recherche Fondamentale sur la Matiere
Condensee, CEA, Grenoble, 38054, Fr.
SOURCE: Synthetic Metals (1995), 69(1-3), 343-4
CODEN: SYMEDZ; ISSN: 0379-6779
PUBLISHER: Elsevier
DOCUMENT TYPE: Journal
LANGUAGE: English

- AB The authors present the elec. and magnetic characterizations of electrochem. films of polypyrrole including γ -Fe₂O₃ grains of a few nanometers in size. The magnetization of one of this composite material (PPy-FF/Cit) was measured at several temps. as a function of the external magnetic field H. The theor. treatment of the data shows that the grains in the polymer behave as independent monodomains and are fairly dispersed. The particle size distributions are nearly the same in the polymer and in the ferrofluid solution used for the electrochem. inclusion. These results are also consistent with TEM expts.
- IT 1667-99-8, Chrome Azurol S
RL: NUU (Other use, unclassified); USES (Uses)
(chelating agent for including γ -Fe₂O₃ particles in polypyrrole matrix)
- RN 1667-99-8 CAPLUS
- CN Benzoic acid, 5-[{(3-carboxy-5-methyl-4-oxo-2,5-cyclohexadien-1-ylidene)(2,6-dichloro-3-sulfophenyl)methyl]-2-hydroxy-3-methyl-, trisodium salt (9CI) (CA INDEX NAME)

●3 Na

- CC 76-1 (Electric Phenomena)
Section cross-reference(s): 36, 77
- ST polypyrrole iron oxide composite cond magnetization
- IT Electric conductivity and conduction
Magnetic induction and Magnetization
(elec. and magnetic characterizations of composite electrochem . polypyrrole films with included nanometer γ -Fe₂O₃ particles)
- IT 68-04-2, Sodium citrate 1667-99-8, Chrome Azurol S 3737-95-9, Calconcarboxylic acid
RL: NUU (Other use, unclassified); USES (Uses)
(chelating agent for including γ -Fe₂O₃ particles in polypyrrole matrix)
- IT 1309-37-1, Ferric oxide, properties 30604-81-0, Polypyrrole
RL: PRP (Properties); TEM (Technical or engineered material use); USES (Uses)
(elec. and magnetic characterizations of composite electrochem

· polypyrrole films with included nanometer γ -Fe₂O₃ particles)

L16 ANSWER 11 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1994:181990 CAPLUS

DOCUMENT NUMBER: 120:181990

TITLE:

Studies on electrochemical behavior of some light lanthanide ions in nonaqueous solution, flow injection determination and photochemical characterization of heavy metal ion chelate eight coordinated complexes. (Part 2). Determination of some light lanthanide ions by flow injection analysis using Chrome Azurol S in the presence of surfactant

AUTHOR(S): Kang, Sam Woo; Chang, Choo Hwan; Kim, Kwang, II; Han, Hong Seock; Cho, Kwang Hee

CORPORATE SOURCE: Dep. Chem., Han Nam Univ., Taejon, 300-791, S. Korea

SOURCE: Journal of the Korean Chemical Society (1994), 38(1), 50-4

DOCUMENT TYPE: CODEN: JKCSEZ; ISSN: 1017-2548

LANGUAGE: Journal

AB Spectrophotometric determination of some light lanthanide ions by flow injection

method is described. Chrome Azurol S forms H₂O soluble complex with lanthanide ions in the presence of DTAB. The absorption maximum of the complexes are from 650 nm to 655 nm and the molar absorptivities were .apprx.1.6 + 105 L mol⁻¹ cm⁻¹ in Tris buffer (pH 10.5). The calibration curves for Nd(III), Eu(III) and Sm(III) obtained by FIA are at 0.1-0.6 ppm and the correlation coefficient were .apprx.0.9993. The detection limits (S/N) were from 10 ppm for Nd(III) and Eu(III) to 20 ppb for Sm(III). The relative standard deviations was \pm 1.2% for 0.4 ppm sample. The samples throughput was .apprx.50 cm⁻¹.

IT 1667-99-8, Chrome Azurol S

RL: ANST (Analytical study)

(in light lanthanide determination by flow-injection spectrophotometry)

RN 1667-99-8 CAPLUS

CN Benzoic acid, 5-[{(3-carboxy-5-methyl-4-oxo-2,5-cyclohexadien-1-ylidene)(2,6-dichloro-3-sulfophenyl)methyl]-2-hydroxy-3-methyl-, trisodium salt (9CI) (CA INDEX NAME)

● 3 Na

CC 79-6 (Inorganic Analytical Chemistry)
ST light lanthanide detn flow injection spectrophotometry; Chrome Azurol S
reagent lanthanide detn
IT Rare earth metals, analysis
RL: ANST (Analytical study)
(light, determination of, by flow-injection spectrophotometry)
IT 7440-00-8, Neodymium, analysis 7440-19-9, Samarium, analysis
7440-53-1, Europium, analysis
RL: ANT (Analyte); ANST (Analytical study)
(determination of, by flow-injection spectrophotometry)
IT 1119-94-4, Dodecyltrimethylammonium bromide 1667-99-8, Chrome
Azurol S
RL: ANST (Analytical study)
(in light lanthanide determination by flow-injection spectrophotometry)
IT 3564-17-8D, lanthanide complexes
RL: PRP (Properties)
(visible spectra of, in presence of surfactant)
IT 7440-00-8D, Neodymium, Chrome Azurol S complex 7440-19-9D, Samarium,
Chrome Azurol S complex 7440-53-1D, Europium, Chrome Azurol S complex
RL: PRP (Properties)
(visible spectrum of, in presence of surfactant)

L16 ANSWER 12 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
ACCESSION NUMBER: 1993:246497 CAPLUS
DOCUMENT NUMBER: 118:246497
TITLE: Determination of traces of iron by thin-layer
spectroelectrochemistry
AUTHOR(S): Xie, Qingji; Kuang, Weidong; Nie, Lihua; Yao, Shouzhuo
CORPORATE SOURCE: Department of Chemistry and Chemical Engineering,
Hunan University, Changsha, Peop. Rep. China
SOURCE: Analytica Chimica Acta (1993), 276(2), 411-17
CODEN: ACACAM; ISSN: 0003-2670
DOCUMENT TYPE: Journal
LANGUAGE: English

- AB The complex of iron with Chrome Azurol S (I) was studied using a long path-length thin-layer spectroelectrochem. cell with dual working electrodes. A method for the determination of traces of iron is proposed, based on the variation in the absorbance between the oxidized and reduced state of the complex (ΔA). ΔA Was proportional to iron concentration over the range 0-3 $\mu\text{g mL}^{-1}$. Compared with the conventional spectrophotometric determination of iron using I, the selectivity was improved because the anal. signal here depended on both the spectral and the electrochem. behavior of the tested species. Iron was determined in water samples by this method. A concept characterizing the sensitivity of the spectroelectrochem. signals is also presented.
- IT 1667-99-8, Chrome Azurol S
 RL: ANST (Analytical study)
 (in iron trace determination by thin-layer electrospectrophotometry)
- RN 1667-99-8 CAPLUS
- CN Benzoic acid, 5-[(3-carboxy-5-methyl-4-oxo-2,5-cyclohexadien-1-ylidene)(2,6-dichloro-3-sulfophenyl)methyl]-2-hydroxy-3-methyl-, trisodium salt (9CI) (CA INDEX NAME)

●₃ Na

- CC 79-6 (Inorganic Analytical Chemistry)
 Section cross-reference(s): 61, 72
- ST iron trace detn thin layer spectroelectrochemistry; Chrome Azurol S reagent iron detn
- IT 7439-89-6, Iron, analysis
 RL: ANST (Analytical study)
 (determination of trace, by thin-layer electrospectrophotometry)
- IT 1667-99-8, Chrome Azurol S
 RL: ANST (Analytical study)
 (in iron trace determination by thin-layer electrospectrophotometry)
- IT 7732-18-5, Water, analysis
 RL: ANST (Analytical study)
 (iron trace determination in, by thin-layer electrospectrophotometry)
- IT 3564-17-8D, iron complex 7439-89-6D, Iron, Chrome Azurol S complex

RL: PRP (Properties)
(spectra of, visible)

L16 ANSWER 13 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
ACCESSION NUMBER: 1989:619880 CAPLUS
DOCUMENT NUMBER: 111:219880
TITLE: Ion transfer of Chrome Azurol S across the liquid-liquid interface
AUTHOR(S): Sun, Zhisheng; Wang, Erkang
CORPORATE SOURCE: Changchun Inst. Appl. Chem., Acad. Sin., Changchun, Peop. Rep. China
SOURCE: Huaxue Xuebao (1989), 47(7), 644-9
DOCUMENT TYPE: CODEN: HHHPA4; ISSN: 0567-7351
LANGUAGE: Journal Chinese

AB The ion transfer of Chromazural S (CAS) across the interface of W/NB and W/1,2-DCE was studied by cyclic voltammetry and chronopotentiometry with linear current scanning. The transfer mechanism of CAS was proposed in terms of its electrochem. behavior and equilibrium of dissociation. The exptl. data obtained for half-wave potential $\Delta 0w\phi_{1/2}$ and pH in W phase are in agreement with the theor. equation based on the mechanism proposed. The standard potential differences $\Delta 0w\phi_0$ and standard Gibbs energy of Chrom Azurol S across the interface were calculated

IT 1667-99-8

RL: PRP (Properties)
(ion transfer of, across liquid-liquid interface, cyclic voltammetry and chronopotentiometry in determination of)

RN 1667-99-8 CAPLUS

CN Benzoic acid, 5-[{3-carboxy-5-methyl-4-oxo-2,5-cyclohexadien-1-ylidene}(2,6-dichloro-3-sulfophenyl)methyl]-2-hydroxy-3-methyl-, trisodium salt (9CI) (CA INDEX NAME)

●3 Na

CC 66-2 (Surface Chemistry and Colloids)
Section cross-reference(s): 72

ST ion transfer Chrome Azurol liq interface
IT 1667-99-8
RL: PRP (Properties)
(ion transfer of, across liquid-liquid interface, cyclic voltammetry and chronopotentiometry in determination of)

L16 ANSWER 14 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
ACCESSION NUMBER: 1988:494733 CAPLUS
DOCUMENT NUMBER: 109:94733
TITLE: Ion transfer of dyes across the liquid-liquid interface
AUTHOR(S): Sun, Zhisheng; Wang, Erkang
CORPORATE SOURCE: Changchun Inst. Appl. Chem., Chin. Acad. Sci., Jilin, 130021, Peop. Rep. China
SOURCE: Electrochimica Acta (1988), 33(5), 603-11
CODEN: ELCAAV; ISSN: 0013-4686
DOCUMENT TYPE: Journal
LANGUAGE: English
AB The transfer behavior of both acidic and basic dyes at the interface between water and some organic solvents was studied in detail by electrochem. methods, and a transfer mechanism proposed for both acidic and basic dyes. The equations of interfacial half-wave potentials for both dyes were deduced in terms of the mechanism and are consistent with the exptl. data. Apparent standard transfer potentials and Gibbs energies were calculated. The effect of dye structure and the nature of organic solvent on the transfer of dye are discussed in detail and a linear empirical relationship between interfacial half-wave potential and dielec. constant of organic phase is inferred for both acidic and basic dyes.
IT 1667-99-8
RL: PRP (Properties)
(ion transfer of, across liquid-liquid interface)
RN 1667-99-8 CAPLUS
CN Benzoic acid, 5-[(3-carboxy-5-methyl-4-oxo-2,5-cyclohexadien-1-ylidene)(2,6-dichloro-3-sulfophenyl)methyl]-2-hydroxy-3-methyl-, trisodium salt (9CI) (CA INDEX NAME)

●3 Na

- CC 41-1 (Dyes, Organic Pigments, Fluorescent Brighteners, and Photographic Sensitizers)
Section cross-reference(s): 72
ST acid dye ion transfer; basic dye ion transfer; ion transfer dye liq interface
IT Ions in liquids
(dye transfer across liquid-liquid interface in)
IT Dyes
(acid, ion transfer of, across liq-liquid interface)
IT Dyes
(basic, ion transfer of, across liq-liquid interface)
IT Interface
(liquid-liquid, ion transfer of dyes across)
IT 7732-18-5, Water, uses and miscellaneous
RL: USES (Uses)
(interface with organic solvents, ion transfer of dyes across)
IT 98-95-3, Nitrobenzene, uses and miscellaneous 107-06-2,
1,2-Dichloroethane, uses and miscellaneous
RL: USES (Uses)
(interface with water, ion transfer of dyes across)
IT 76-59-5, Bromothymol blue 76-60-8, Bromocresol green 77-09-8,
Phenolphthalein 81-88-9, Rhodamine B 115-39-9, Bromophenol blue
115-40-2, Bromocresol purple 115-41-3, Pyrocatechol violet 130-22-3,
Alizarin red S 143-74-8, Phenol red 1141-59-9 1667-99-8
1787-61-7, Eriochrome black T 3564-14-5, Eriochrome blue black B
3564-18-9, Eriochrome cyanine R 3618-63-1, Eriochrome red B
16574-43-9, Bromopyrogallol red
RL: PRP (Properties)
(ion transfer of, across liquid-liquid interface)
IT 108-90-7, Chlorobenzene, uses and miscellaneous
RL: USES (Uses)
(nitrobenzene mixts., interface with water, ion transfer of dyes across)

L16 ANSWER 15 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
 ACCESSION NUMBER: 1987:403618 CAPLUS
 DOCUMENT NUMBER: 107:3618
 TITLE: Cyclic voltammetry of dye-modified BLMs
 AUTHOR(S): Kutnik, Jan; Tien, H. Ti
 CORPORATE SOURCE: Dep. Physiol., Michigan State Univ., East Lansing, MI,
 48824-1101, USA
 SOURCE: Bioelectrochemistry and Bioenergetics (1986), 16(3),
 435-47
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB An investigation of dye-modified bilayer lipid membranes (BLMs) using the cyclic voltammetry method is described. A number of organic dyes interact on BLM, changing its electrochem. properties, which reflects in registered voltammograms. Elec. parameters of the dye in the BLM system were determined by measuring the current peaks and the peak potentials of obtained voltammograms. The number of charges transferred per mol. of the dye, concentration of the dye in the membrane phase and the aqueous phase/membrane phase partition coefficient were calculated using thin-layer voltammetry description. Obtained results proved that thin-layer voltammetry description is appropriate to this BLM system. Agents influencing the dye-modified BLM voltammograms were also investigated. Dependencies on lipid content of the membrane-forming solution, on pH of the bathing solution, on the dye concentration and on the presence of redox substances have been determined

IT 1667-99-8
 RL: PROC (Process)
 (cyclic voltammetry of)

RN 1667-99-8 CAPLUS

CN Benzoic acid, 5-[(3-carboxy-5-methyl-4-oxo-2,5-cyclohexadien-1-ylidene)(2,6-dichloro-3-sulfophenyl)methyl]-2-hydroxy-3-methyl-, trisodium salt (9CI) (CA INDEX NAME)

●3 Na

CC 9-7 (Biochemical Methods)
Section cross-reference(s): 6
ST bilayer lipid membrane dye voltammetry; cyclic voltammetry bilayer membrane dye
IT Phosphatidylcholines, biological studies
Phosphatidylserines
RL: BIOL (Biological study)
(bilayer lipid membrane containing, dye-modified, cyclic voltammetry of)
IT Dyes
Stains, biological
(bilayer lipid membrane modified with, cyclic voltammetry of)
IT Lipids, biological studies
RL: BIOL (Biological study)
(bilayer membranes, dye-modified, cyclic voltammetry of)
IT Staining, biological
(cyclic voltammetry in study of)
IT Partition
(of dyes)
IT Membrane, biological
(bilayer, lipid, dye-modified, cyclic voltammetry of)
IT Voltammetry
(cyclic, of dye-modified bilayer lipid membrane)
IT Voltammetry
(thin-layer, of dye-modified bilayer lipid membranes)
IT 57-88-5D, oxidized
RL: ANST (Analytical study)
(bilayer lipid membrane containing, dye-modified, cyclic voltammetry of)
IT 7775-14-6 13746-66-2 13943-58-3 27600-99-3 50-81-7, Ascorbic acid, uses and miscellaneous
RL: ANST (Analytical study)
(crystal violet-bilayer lipid membrane voltammograms response to)
IT 61-73-4, Methylene Blue 65-61-2, Acridine Orange 92-31-9, Toluidine Blue O 129-17-9 477-73-6 531-53-3, Azure A 548-62-9, Crystal Violet 569-64-2, Malachite Green 573-58-0, Congo Red 581-64-6, Thionine 632-99-5, Fuchsin Basic 633-03-4, Brilliant Green 1324-96-5 1667-99-8 1829-00-1, Clayton Yellow 1910-42-5, Methyl Viologen 2185-86-6, Victoria Blue R 2381-85-3, Nile Blue A 2390-59-2, Ethyl violet 2580-56-5 2650-17-1, Xylene Cyanole FF 2650-18-2, Erioglaucine 2869-83-2, Janus Green B 3087-16-9, Wool Green S 4196-99-0, Biebrich Scarlet 5141-20-8, Light Green SF 8004-87-3, Methyl Violet 2B 10127-36-3 14855-76-6 28631-66-5
RL: PROC (Process)
(cyclic voltammetry of)

L16 ANSWER 16 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1986:628701 CAPLUS

DOCUMENT NUMBER: 105:228701

TITLE:

Fountain pens for multicolor writings

INVENTOR(S):

Ishii, Koichi

PATENT ASSIGNEE(S):

Pilot Pen Co., Ltd., Japan

SOURCE:

Jpn. Tokkyo Koho, 7 pp.

CODEN: JAXXAD

DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 61023119	B4	19860604	JP 1977-2159	19770112
PRIORITY APPLN. INFO.:			JP 1977-2159	19770112

AB A fountain pen, equipped with an ink reservoir, a pen tip, and an ink channel which has an electrode connected to the pen tip (used as another electrode), is filled with an redox dye-containing ink to give a multicolor mark by applying d.c. which may be supplied by a built-in battery. Thus, a mixture of 2.5 parts Na molybdophosphate and 0.5 part glycerin in 7 parts ink changed color from yellow to blue upon application of 2 V.

IT 1667-99-8

RL: USES (Uses)

(inks containing, for writing pens equipped with batteries, in multicolor writings)

RN 1667-99-8 CAPLUS

CN Benzoic acid, 5-[(3-carboxy-5-methyl-4-oxo-2,5-cyclohexadien-1-ylidene)(2,6-dichloro-3-sulfophenyl)methyl]-2-hydroxy-3-methyl-, trisodium salt (9CI) (CA INDEX NAME)

●3 Na

IC ICM B41M005-20
ICS B43K008-00

CC 42-12 (Coatings, Inks, and Related Products)

ST sodium molybdophosphate ink formation pen; EDTA metal complex ink pen; redox dye ink fountain pen

IT Pens
(formation, equipped with batteries, redox inks for, for multicolor writings)

IT Dyes

(redox, inks containing, for writing pens equipped with batteries
, in multicolor writings)

IT 64-02-8D, metal complex 115-41-3 523-44-4 573-58-0 1667-99-8
59088-14-1 105521-68-4 105521-69-5 105521-70-8
RL: USES (Uses)
(inks containing, for writing pens equipped with batteries, in
multicolor writings)

L16 ANSWER 17 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
ACCESSION NUMBER: 1985:583079 CAPLUS
DOCUMENT NUMBER: 103:183079
TITLE: Electrochemical oxidation of coloring
impurities in an aqueous suspension of manganese
dioxide

AUTHOR(S): Mumina, O. A.; Matskevich, E. S.
CORPORATE SOURCE: Inst. Kolloidn. Khim. Khim. Vody im. Dumanskogo, Kiev,
USSR
SOURCE: Khimiya i Tekhnologiya Vody (1985), 7(4), 35-8
CODEN: KTVODL; ISSN: 0204-3556
DOCUMENT TYPE: Journal
LANGUAGE: Russian

AB Electrochem. decolorization of aqueous solns. of peat exts., crystal
violet (I) [548-62-9], and aluminon (II) [569-58-4] in the
presence of MnO₂ suspensions showed that the decolorization efficiency is
influenced by sorption of organic mols. on the particles of MnO₂.
Electrochem. oxidation of solns. of I and II with and without MnO₂
suspensions and in the presence of Cl⁻ and SO₄²⁻ showed faster oxidation in
the presence of Cl⁻. The oxidation of II was more influenced by MnO₂ than
the oxidation of I. A comparison of electrochem. decolorization
with chemical oxidation (chlorination) showed the former to be more energy and
time efficient.

IT 569-58-4
RL: REM (Removal or disposal); PROC (Process)
(removal of, from water, by electrochem. oxidation, in presence
of manganese dioxide suspension)

RN 569-58-4 CAPLUS
CN Benzoic acid, 5-[(3-carboxy-4-hydroxyphenyl)(3-carboxy-4-oxo-2,5-
cyclohexadien-1-ylidene)methyl]-2-hydroxy-, triammonium salt (9CI) (CA
INDEX NAME)

● 3 NH₃

- CC 60-2 (Waste Treatment and Disposal)
Section cross-reference(s): 61
- ST decolorization water manganese dioxide suspension; **electrochem**
oxidn decolorization org water
- IT Peat
(decolorization of aqueous exts. of, **electrochem.** oxidation in)
- IT Chlorides, uses and miscellaneous
Sulfates, uses and miscellaneous
RL: USES (Uses)
(in **electrochem.** decolorization of waters and wastewaters)
- IT Humic acids
RL: REM (Removal or disposal); PROC (Process)
(removal of, from water, by **electrochem.** oxidation, in presence
of manganese dioxide suspension)
- IT Water purification
(chlorination, of aqueous solns. of aluminon and crystal violet, for
decolorization)
- IT Water purification
(decolorization, of aqueous solns. of aluminon and crystal violet and peat
exts., in presence of manganese dioxide)
- IT Wastewater treatment
Water purification
(oxidation, **electrochem.**, decolorization of aqueous solns. of
aluminon and peat exts. and crystal violet by, in presence of manganese
dioxide)
- IT 7722-84-1, uses and miscellaneous
RL: USES (Uses)
(decolorization by, of aqueous solns. of aluminon and crystal violet)
- IT 1313-13-9, uses and miscellaneous
RL: USES (Uses)
(in **electrochem.** decolorization of aqueous solns. of aluminon and
crystal violet and peat exts.)
- IT 548-62-9 569-58-4
RL: REM (Removal or disposal); PROC (Process)

(removal of, from water, by electrochem. oxidation, in presence
of manganese dioxide suspension)

L16 ANSWER 18 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
 ACCESSION NUMBER: 1985:568563 CAPLUS
 DOCUMENT NUMBER: 103:168563
 TITLE: Polarography of Chrome Azurol S
 AUTHOR(S): Liu, Yanmin; Yu, Zemu; Wang, Erkang
 CORPORATE SOURCE: Dep. Chem., Shanxi Univ., Taiyuan, Peop. Rep. China
 SOURCE: Gaodeng Xuexiao Huaxue Xuebao (1985), 6(1), 23-8
 CODEN: KTHPDM; ISSN: 0251-0790
 DOCUMENT TYPE: Journal
 LANGUAGE: Chinese

AB Electroredund. of Chrome Azurol S was studied by polarog., differential pulse polarog., and cyclic voltammetry. In Britton-Robinson buffers, Chrome Azurol S is reduced in 2 diffusion-controlled, 1-electron steps over the pH range 4-11, in which the 1st step corresponds to the reduction from oxidized form to an intermediate and the 2nd step to irreversible reduction from intermediate to reduced form. The height of both steps is independent of pH. The E_{1/2} of the 2nd step is independent of pH, while the 1st step moves toward more neg. potential with increasing pH with the slope of -30 mV/pH (pH 2-6), and -60 mV/pH (pH 6-11). From exptl. results, a mechanism for the electroredund. of Chrome Azurol S is suggested.

IT 1667-99-8

RL: PRP (Properties)
(polarog. of)

RN 1667-99-8 CAPLUS

CN Benzoic acid, 5-[(3-carboxy-5-methyl-4-oxo-2,5-cyclohexadien-1-ylidene)(2,6-dichloro-3-sulfophenyl)methyl]-2-hydroxy-3-methyl-, trisodium salt (9CI) (CA INDEX NAME)

●3 Na

CC 72-2 (Electrochemistry)

ST Chrome Azurol S electrochem redn; polarog Chrome Azurol S redn;
voltammetry Chrome Azurol S redn

IT Reduction, electrochemical
(of Chrome Azurol S)
IT 1667-99-8
RL: PRP (Properties)
(polararcg. of)

L16 ANSWER 19 OF 23 CAPLUS COPYRIGHT 2004 ACS on STN
ACCESSION NUMBER: 1985:61644 CAPLUS
DOCUMENT NUMBER: 102:61644
TITLE: Electrooxidation of crystal violet and aluminon in a manganese dioxide aqueous suspension
AUTHOR(S): Matskevich, E. S.; Munina, O. A.; Kul'skii, L. A.
CORPORATE SOURCE: Inst. Kolloidn. Khim. Khim. Vody im. Dumanskogo, Kiev, USSR
SOURCE: Ukrainskii Khimicheskii Zhurnal (Russian Edition)
(1984), 50(10), 1091-3
CODEN: UKZHAU; ISSN: 0041-6045
DOCUMENT TYPE: Journal
LANGUAGE: Russian
AB The differences in optical d. changes during the electrooxidn. of crystal violet and aluminon were smaller in the presence of MnO₂.
IT 569-58-4
RL: RCT (Reactant); RACT (Reactant or reagent)
(electrochem. oxidation of, effect of manganese dioxide on)
RN 569-58-4 CAPLUS
CN Benzoic acid, 5-[(3-carboxy-4-hydroxyphenyl)(3-carboxy-4-oxo-2,5-cyclohexadien-1-ylidene)methyl]-2-hydroxy-, triammonium salt (9CI) (CA INDEX NAME)

●₃ NH₃

CC 22-7 (Physical Organic Chemistry)
Section cross-reference(s): 72
ST electrochem oxidn crystal violet aluminon; manganese oxide
electrooxidn dye aluminon
IT Oxidation, electrochemical