



MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A





## STATIC STABILITY TEST OF THREE ELLIPTIC MISSILE BODY CONFIGURATIONS

Marvin E. Sellers
Calspan Corporation/AEDC Division

SEP6 1985

May 1985

Final Report for Period April 18, 1985

Approved for public release; distribution unlimited.

OTIC FILE COPY

ARNOLD ENGINEERING DEVELOPMENT CENTER
ARNOLD AIR FORCE STATION, TENNESSEE
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE

85 9 05 053

#### **NOTICES**

When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.

#### APPROVAL STATEMENT

This report has been reviewed and approved.

NORMAN M. SCHMOEKER, 2LT, USAF

Norman M. Somosker

Aeronautical Systems Branch

Directorate of Aersp Flt Dyn Test

Deputy for Operations

Approved for publication:

FOR THE COMMANDER

Actg Dir, Aerosp Flt Dyn Test

Deputy for Operations

#### UNCLASSIFIED

### AD-A158718

| SECURITY CLASSIFICATION OF THIS TAGE                                                                                                              | REPORT DOCUME                                  | NTATION PAGE                                                        |                                           |                                           |                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------|
| 1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED                                                                                                   |                                                | 16. RESTRICTIVE M                                                   |                                           |                                           |                         |
| 28. SECURITY CLASSIFICATION AUTHORITY                                                                                                             |                                                | 3. DISTRIBUTION/A                                                   |                                           |                                           |                         |
| 2b. DECLASSIFICATION/DOWNGRADING SCHED                                                                                                            | DULE                                           | Approved fo unlimited.                                              | or public re                              | elease; dist                              | tribution               |
| 4. PERFORMING ORGANIZATION REPORT NUM                                                                                                             | BER(S)                                         | 5. MONITORING OR                                                    | GANIZATION RE                             | PORT NUMBER                               | 3)                      |
| AEDC-TSR-85-P8                                                                                                                                    |                                                |                                                                     |                                           |                                           |                         |
| 64 NAME OF PERFORMING ORGANIZATION Arnold Engineering                                                                                             | 6b. OFFICE SYMBOL (If applicable)              | 7a. NAME OF MONI                                                    | TORING ORGANI                             | ZATION                                    |                         |
| Development Center                                                                                                                                | DO DO                                          |                                                                     |                                           |                                           |                         |
| 6c. ADDRESS (City, State and ZIP Code)                                                                                                            |                                                | 7b. ADDRESS (City,                                                  | State and ZIP Cod                         | e)                                        |                         |
| Air Force Systems Command<br>Arnold Air Force Station, TN 3                                                                                       | 7389-5000                                      |                                                                     |                                           |                                           |                         |
| Se NAME OF FUNDING SPONSORING ORGANIZATION ATT FORCE Wright                                                                                       | 8b. OFFICE SYMBOL<br>(If applicable)           | 9. PROCURÉMENT I                                                    | NSTRUMENT IO                              | ENTIFICATION N                            | UMBER                   |
| Aeronautical Laboratories                                                                                                                         | FIMG                                           |                                                                     |                                           |                                           |                         |
| 8c. ADDRESS (City, State and ZIP Code)                                                                                                            |                                                | 10. SOURCE OF FUR                                                   | PROJECT                                   | TASK                                      | WORK UNIT               |
| Wright-Patterson AFB, OH 45433                                                                                                                    | -6523                                          | ELEMENT NO.                                                         | NO.                                       | NO.                                       | NO.                     |
| 11. TITLE (Include Security Classification) SEE REVERSE OF THIS PAGE                                                                              |                                                | 62201F                                                              | CD48PB                                    |                                           |                         |
| 12 PERSONAL AUTHOR(S) Sellers, Marvin E., Calspan Co                                                                                              |                                                |                                                                     |                                           | <del></del>                               | _                       |
| Final 136. TIME C                                                                                                                                 | OVERED<br>8/85 TO 4/18/85                      | 14. DATE OF REPOR                                                   |                                           |                                           | OUNT<br>25              |
| 16. SUPPLEMENTARY NOTATION                                                                                                                        |                                                |                                                                     |                                           |                                           |                         |
| Available in Defense Technical                                                                                                                    | Information Ce                                 | nter (DTIC).                                                        |                                           |                                           |                         |
| 17. COSATI CODES                                                                                                                                  | 18. SUBJECT TERMS (C                           |                                                                     |                                           | fy by block number                        | r)                      |
| FIELD GROUP SUB. GR.                                                                                                                              | elliptic bodies<br>power law bodie             |                                                                     | amic forces<br>nnel test                  |                                           |                         |
|                                                                                                                                                   | static stabili                                 |                                                                     |                                           |                                           |                         |
| A wind tunnel test was conthree elliptic missile body conumbers from 0.4 to 1.3 at a comilion per ft. The angle-of-4 deg. Only sample tabulations | nducted to obtainfigurations. constant nominal | in data on the<br>The test was p<br>free-stream u<br>s -4 to 20 dec | performed a<br>unit Reynol<br>g at sidesl | t nominal M<br>ds number o<br>ip angles o | ach<br>f 2.4<br>f 0 and |
| 20. DISTRIBUTION/AVAILABILITY OF ABSTRAC                                                                                                          | т                                              | 21. ABSTRACT SECU                                                   |                                           | CATION                                    | -                       |
| UNCLASSIFIED/UNLIMITED - SAME AS RPT.                                                                                                             | DTIC USERS                                     | UNG                                                                 | CLASSIFIED                                |                                           |                         |
| 226. NAME OF RESPONSIBLE INDIVIDUAL                                                                                                               |                                                | 22b. TELEPHONE NI<br>linclude Area Co                               | de)                                       | 22c. OFFICE SYM                           | BOL                     |
| W. O. Cole                                                                                                                                        |                                                | (615) 454-78                                                        | 13                                        | DOS                                       |                         |

**DD FORM 1473, 83 APR** 

EDITION OF 1 JAN 73 IS OBSOLETE

<u>Linci assififi</u>

| HN | ۲l        | ASS: |      |
|----|-----------|------|------|
| un | \llcorner | nou. | <br> |

SECURITY CLASSIFICATION OF THIS PAGE

11. TITLE

Static Stability Test of Three Elliptic Missile Body Configurations.

| Accession For      | _ |
|--------------------|---|
| NTIS GRASI         |   |
| DTIO TAB           |   |
| Uniminumed 🔲       |   |
| - Justification    | _ |
|                    | - |
| . 07.              | _ |
| Distriction/       |   |
| Aveilability Colos |   |
| west1 and/or       |   |
| Dist Special       |   |
|                    |   |
| 4.1                |   |
|                    |   |
|                    |   |

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

#### **CONTENTS**

|                            |                                                                                                                                       | <u>Page</u>               |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                            | NOMENCLATURE                                                                                                                          | 2                         |
| 1.0                        | INTRODUCTION                                                                                                                          | 4                         |
| 2.0                        | APPARATUS                                                                                                                             |                           |
|                            | 2.1 Test Facility                                                                                                                     | 4<br>5<br>5               |
| 3.0                        | TEST DESCRIPTION                                                                                                                      |                           |
|                            | 3.1 Test Conditions and Procedures                                                                                                    | 5<br>6<br>6<br>6          |
| 4.0                        | DATA PACKAGE PRESENTATION                                                                                                             | 7                         |
| 5.0                        | REFERENCES                                                                                                                            | 7                         |
|                            | APPENDIXES                                                                                                                            |                           |
| I.                         | Illustrations                                                                                                                         |                           |
| <u>Figu</u>                | <u>re</u>                                                                                                                             |                           |
| 1.<br>2.<br>3.<br>4.<br>5. | Model Installation  Model Details  Base Pressure Orifice Location  Typical Data Plot  Estimated Uncertainties in 4T Tunnel Parameters | 9<br>11<br>14<br>15<br>16 |
| II.                        | Tables                                                                                                                                |                           |
| Tab1                       | <u>e</u>                                                                                                                              |                           |
| 1.<br>2.<br>3.<br>4.       | Model Configuration Designation Nominal Test Conditions Test Run Number Summary Estimated Uncertainties                               | 18<br>19<br>20<br>21      |
| III.                       | Sample Tabulated Data                                                                                                                 |                           |
| Samp                       | <u>le</u>                                                                                                                             |                           |
| 1.<br>2.                   | Body- and Stability-Axes Data                                                                                                         | 24<br>25                  |

CONTRACTOR OF THE PROPERTY OF

Ċ

S

#### NOMENCLATURE

| Α | Reference | area, | 0.18896 | ft <sup>2</sup> |
|---|-----------|-------|---------|-----------------|
|---|-----------|-------|---------|-----------------|

AB Base area, 0.18896 ft<sup>2</sup>

AFA Flow correction angle in pitch, deg

ALPHA Angle of attack, deg

a Semimajor (horizontal) span at X, in.

amax Semimajor span at model base, in. (See Table 1)

BETA Sideslip angle, deg

b Semiminor (vertical) height at X, in.

b<sub>max</sub> Semiminor height at model base, in. (See Table 1)

CA Forebody axial-force coefficient, body axes, CAT-CAB

CAB Base axial-force coefficient, body axes, -(PBA-P)AB/Q·A

CAT Total axial-force coefficient, body axes, total axial

force/Q-A

CDS Forebody drag coefficient, stability axes

CLL Rolling-moment coefficient, body axes, rolling moment/Q.A.L

CLM Pitching-moment coefficient, body axes, pitching moment/Q.A.L

CLM-AO Slope of CLM versus ALPHA curve at ALPHA = 0,  $deg^{-1}$ 

CLN Yawing-moment coefficient, body axes, yawing moment/Q.A.L

CLS Forebody lift coefficient, stability axes

CN Normal-force coefficient, body axes, normal force/Q·A

CN-AO Slope of CN versus ALPHA curve at ALPHA = 0,  $deq^{-1}$ 

CONFIG Model configuration designation

CY Side-force coefficient, body axes, side force/Q.A

Reference length, in. (See Table 1)

(L/D)S Lift-to-drag ratio, stability axes

LM Model length, 36.000 in.

M Free-stream Mach number

NCP Normal-force center-of-pressure location, body axes, inches
from nose; XMRP-(CLM·L/CN) or XMRP-(CLM-AO·L/CN-AO) for ALPHA

P Free-stream static pressure, psfa

PBA Average base pressure, (PBT + PBB + PBL + PBR)/4, psfa

PBi Base pressure, i = T, B, L, and R, where T, B, L, and R are top, bottom, left, and right looking upstream, respectively, psfa

PHI Roll angle, deg

PN Data point number

PT Tunnel-stilling chamber pressure, psfa

Q Free-stream dynamic pressure, psf

RE Free-stream unit Reynolds number. ft<sup>-1</sup>

RUN Data set identification number

T Free-stream static temperature, °R

TT Tunnel-stilling chamber temperature, °R

X Axial location from nose of model, in.

XMRP Axial distance from model nose to model moment-reference location, 24.000 in.

YCP Side-force center-of-pressure location, body axes, inches from nose. XMRP-(CLN·L/CY)

#### 1.0 INTRODUCTION

The work reported herein was conducted by the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), under Program Element 62201F, Control Number 2404, at the request of Air Force Wright Aeronautical Laboratories (AFWAL/FIMG), Wright-Patterson AFB, Ohio. The AFWAL/FIMG project manager was Mr. Don Shereda. The results were obtained by Calspan Corporation, AEDC Division, operating contractor for the aerospace flight dynamics testing facilities at the AEDC, AFSC, Arnold Air Force Station, Tennessee. The test was conducted in the Aerodynamic Wind Tunnel (4T) of the Propulsion Wind Tunnel (PWT) Facility on April 18, 1985, under AEDC Project Number CD48PB, PWT Test No. TC-793.

The purpose of the test was to obtain data on the aerodynamic characteristics of elliptic missile body configurations with ellipticity ratios of 2.0, 2.5, and 3.0 to 1.0. The test was performed at nominal Mach numbers from 0.4 to 1.3 at a constant nominal free-stream unit Reynolds number of 2.4 million per ft. The angle-of-attack range was -4 to 20 deg at sideslip angles of 0 and 4 deg.

The purpose of this report is to document the test and to describe the test parameters. The report provides information to permit use of the data but does not include any data analysis, which is beyond the scope of this report.

The final data package from the test has been transmitted to AFWAL/FIMG. Request for these data should be addressed to AFWAL/FIMG, Wright-Patterson AFB, OH 45433. A copy of the final tabulated data package is on file on microfilm at the AEDC.

#### 2.0 APPARATUS

#### 2.1 Test Facility

The AEDC Aerodynamic Wind Tunnel (4T) is a closed-loop continuous flow, variable-density tunnel in which the Mach number can be varied from 0.1 to 1.3 and can be set at discrete Mach numbers of 1.6 and 2.0 by placing nozzle inserts over the permanent sonic nozzle. At all Mach numbers, the stagnation pressure can be varied from 300 to 3,400 psfa. The test section is 4-ft square and 12.5 ft long with perforated, variable porosity (0.5- to 10- percent open) walls. It is completely enclosed in a plenum chamber from which air can be evacuated, allowing part of the tunnel airflow to be removed through the perforated walls of the test section. The model support system consists of a sector and sting attachment which has a pitch angle capability of -8 to 27 deg with respect to the tunnel centerline and a roll capability of  $\pm$ 180 deg about the sting centerline. A more complete description of the tunnel may be found in Ref. 1.

#### 2.2 Test Articles

The installation of the test articles in Tunnel 4T is shown in Figure 1. The test articles were elliptic missile body configurations with ellipticity ratios of 2.0, 2.5, and 3.0 to 1.0. The models were power-law bodies with an exponent of 0.5 and had the same longitudinal distribution of cross-sectional area. The semi-major and semiminor axis ordinates were derived from the following equations:

For horizontal projection (semimajor axis)

$$a = \frac{a_{\text{max}}}{r^{0.5}} \cdot x^{0.5}$$

and for vertical projection (semiminor axis)

$$b = \frac{b_{\text{max}}}{r.0.5} \cdot x^{0.5}$$

Details of the models are given in Figure 2 and the model configuration designation is presented in Table 1.

#### 2.3 Test Instrumentation

The aerodynamic forces and moments were measured using an internally-mounted, six-component strain-gage balance. Pressures were measured at the base of the model. The radial location of the pressure orifices are shown in Figure 3. The pressures were measured using 15 PSID pressure transducers which are part of the 4T standard pressure system.

#### 3.0 TEST DESCRIPTION

#### 3.1 Test Conditions and Procedures

Measurements of the model steady-state forces and moments were obtained at Mach numbers from 0.4 to 1.3. The nominal test conditions established during the test are given in Table 2. Tunnel conditions were held constant while varying model attitude. Data were recorded at selected angles using the pitch/roll-pause technique. Data were obtained at angles-of-attack from -4 to 20 deg at sideslip angles of 0 and 4 deg. A test run number summary is presented in Table 3.

#### 3.2 Data Acquisition and Reduction

All steady-state measurements were sequentially recorded by the facility on-line computer system and reduced to the desired final form. The data were then tabulated in the Tunnel 4T control room, recorded on magnetic tape, and transmitted to the AEDC central computer file. The data stored in the central computer file were generally available for plotting and analysis on the PWT Interactive Graphics System within 30 seconds after data acquisition. The immediate availability of the tabulated data permitted continual on-line monitoring of the test results. A typical data plot generated on the PWT Interactive Graphics System is shown in Figure 4.

The model force and moment data were reduced to coefficient form in the body- and stability-axes systems. The model reference area is given in the Nomenclature and the reference lengths are given in Table 1. The moment reference point is shown in Figure 2. The stability-axis system coefficients (CLS and CDS) were calculated using the forebody axial-force coefficient (CA) and the normal force coefficient (CN). The base pressure and its area (given in Nomenclature) were used to calculate the base axial-force.

#### 3.3 Corrections

The aircraft angles of attack and sideslip were corrected for sting deflections caused by aerodynamic loads. The flow angularity (AFA) in the tunnel pitch plane was determined by testing the aircraft model upright and inverted, and the flow angularity corrections were then applied to the data. Corrections for the components of model weight, normally termed static tares, were also accounted for before the measured loads were reduced to coefficient form.

#### 3.4 Uncertainty of Measurements

Uncertainties (combinations of system and random errors) of the basic tunnel parameters, shown in Figure 5, were estimated from repeat calibrations of the instrumentation and from the repeatability and uniformity of the test section flow during tunnel calibration. Uncertainties in the instrumentation systems were estimated from repeat calibration of the systems against secondary standards whose uncertainties are traceable to the National Bureau of Standards calibration equipment. The tunnel parameter and instrument uncertainties, for a 95-percent confidence level, were combined using the Taylor series method of error propagation described in Ref. 2 to determine the uncertainties of the parameters in Table 4.

#### 4.0 DATA PACKAGE PRESENTATION

The final data package contained, 1) tabulated data summaries listing specific parameters, 2) digital magnetic computer tapes containing summary data, 3) test article installation photographs, 4) test run number summary, 5) model configuration identification, and 6) model sketches. Sample tabulated data are presented in Appendix III.

#### 5.0 REFERENCES

- 1. <u>Test Facilities Handbook</u> (Twelfth Edition). "Propulsion Wind Tunnel Facility, Vol. 4." Arnold Engineering Development Center, March 1984.
- 2. Abernethy, R.B. and Thompson, J. W., Jr. "Handbook Uncertainty in Gas Turbine Measurements." AEDC-TR-73-5 (AD755356), February 1973.

APPENDIX I

Illustrations



K



8

7

[;]

F.

b. Configuration B20 Figure 1. Concluded

į.

6

**(**::

1



a. B20 Configuration Figure 2. Model Details

DIMENSIONS IN INCHES



b. B25 Configuration Figure 2. Continued

F.

(E)



1

(3

(·:

c. B30 Configuration Figure 2. Concluded



X

(

Looking Upstream (PHI = 0)

Figure 3. Base Pressure Orifice Location





Figure 5. Estimated Uncertainties in 4T Tunnel Parameters

APPENDIX II

Tables

#### Table 1. Model Configuration Designation

| CONFIG | <u>Description</u>                         |
|--------|--------------------------------------------|
| B20    | 2:1 elliptic body, $a_{max} = 4.162$ in.   |
|        | $b_{max} = 2.081 \text{ fm.}$              |
|        | L = 8.323 in.                              |
| B25    | 2.5:1 elliptic body, $a_{max} = 4.654$ in. |
|        | b <sub>max</sub> = 1.862 in.               |
|        | L = 9.307 in.                              |
| B30    | 3:1 elliptic body, amax = 5.098 in.        |
|        | $b_{max} = 1.699 in.$                      |
|        | L = 10.195 in.                             |

Table 2. Nominal Test Conditions

| М    | РТ   | Р    | Q   | RE x 10- <b>6</b> |
|------|------|------|-----|-------------------|
| 0.4  | 2090 | 1872 | 210 | 2.37              |
| 0.55 | 1625 | 1324 | 281 | 2.40              |
| 0.8  | 1265 | 829  | 372 | 2.41              |
| 0.95 | 1174 | 659  | 414 | 2.39              |
| 1.05 | 1120 | 584  | 451 | 2.46              |
| 1.1  | 1120 | 524  | 444 | 2.36              |
| 1.2  | 1120 | 462  | 466 | 2.38              |
| 1.3  | 1120 | 405  | 479 | 2.37              |
| 1.3* | 1170 | 424  | 500 | 2.47              |

<sup>\*</sup> For CONFIG B30 only.

Table 3. Test Run Number Summary

Ė

Į

17.

Ĺ

| BETA |   |     |      |     | Σ    |      |     |     |     |
|------|---|-----|------|-----|------|------|-----|-----|-----|
|      |   | 0.4 | 0.55 | 0.8 | 0.95 | 1.05 | 1.1 | 1.2 | 1.3 |
| 0    |   | 47  | 90   | 54  | 22   | 09   | 63  | 99  | 20  |
|      |   | 72  |      |     |      |      |     |     |     |
| 4    |   | 48  | 51   | 55  | 58   | 61   | 64  | 67  | 71  |
| 0    |   | 82  | 84   | 86  | 88   | 06   | 92  | 94  | 96  |
| 4    |   | 83  | 85   | 87  | 89   | 91   | 93  | 95  | 97  |
| 0    | _ | 106 | 108  | 111 | 113  | 115  | 118 | 120 | 122 |
|      | - |     |      |     |      |      |     |     | 123 |
| 4    |   | 107 | 109  | 112 | 114  | 116  | 119 | 121 | 124 |

Notes: ALPHA Schedule: Al= -4,-3,-2,-1,0,1,2,3,4,6,8,10,12,16,20 deg

Table 4, Estimated Uncertainties

d. CONFIG BZU

| 0.4         0.55         0.8         0.95         1.05         1.1           0.0/0         0.060         0.038         0.034         0.032         0.031           0.029         0.025         0.015         0.014         0.013         0.013           0.039         0.034         0.022         0.019         0.019         0.019           0.020         0.017         0.011         0.0099         0.0095         0.0063           0.014         0.0076         0.0068         0.0065         0.0063           0.016         0.0040         0.0040         0.0043         0.0070           0.008         0.0086         0.0075         0.0032         0.0032                                     | a il impada |        |        |        | Σ      |        |        |        |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.0/0         0.060         0.038         0.034         0.032         0.031           0.029         0.025         0.015         0.014         0.013         0.013           0.039         0.034         0.022         0.020         0.019         0.019           0.032         0.028         0.018         0.016         0.015         0.015           0.020         0.017         0.011         0.0099         0.0096         0.0093           0.014         0.012         0.0076         0.0068         0.0065         0.0063           0.016         0.014         0.0046         0.0076         0.0070         0.0070           0.008         0.008         0.0032         0.0032         0.0032 |             | 0.4    | 0.55   | 0.8    | 96.0   | 1.05   | 1.1    | 1.2    | 1.3    |
| 0.029         0.025         0.015         0.014         0.013         0.013           0.039         0.034         0.022         0.020         0.019         0.019           0.032         0.028         0.016         0.015         0.015           0.020         0.017         0.011         0.0099         0.0096         0.0093           0.014         0.012         0.0076         0.0068         0.0065         0.0063           0.016         0.014         0.0086         0.0076         0.0073         0.0070           0.008         0.0086         0.0035         0.0032         0.0032                                                                                                    | <b>Z</b>    | 0.00   | 090.0  | 0.038  | 0.034  | 0.032  | 0.031  | 0.030  | 0.029  |
| 0.039         0.034         0.022         0.020         0.019         0.019           0.032         0.028         0.018         0.016         0.015         0.015           0.020         0.017         0.011         0.0099         0.0096         0.0093           0.014         0.012         0.0076         0.0068         0.0065         0.0063           0.016         0.014         0.0086         0.0076         0.0073         0.0070           0.0088         0.0080         0.0035         0.0032         0.0032                                                                                                                                                                           | CIM         | 0.029  | 0.025  | 0.015  | 0.014  | 0.013  | 0.013  | 0.012  | 0.012  |
| 0.032         0.028         0.018         0.016         0.015         0.015           0.020         0.017         0.011         0.0099         0.0096         0.0093           0.014         0.012         0.0076         0.0068         0.0065         0.0063           0.016         0.014         0.0086         0.0076         0.0073         0.0070           0.0088         0.0089         0.0041         0.0035         0.0032         0.0032                                                                                                                                                                                                                                                  | ک           | 0.039  | 0.034  | 0.022  | 0.020  | 0.019  | 0.019  | 0.018  | 0.017  |
| 0.020         0.017         0.011         0.0099         0.0096         0.0093           0.014         0.012         0.0076         0.0068         0.0065         0.0063           0.016         0.014         0.0086         0.0076         0.0073         0.0070           0.0088         0.0080         0.0041         0.0035         0.0032         0.0032                                                                                                                                                                                                                                                                                                                                        | CLN         | 0.032  | 0.028  | 0.018  | 0.016  | 0.015  | 0.015  | 0.014  | 0.014  |
| 0.014         0.012         0.0076         0.0068         0.0065         0.0063           0.016         0.014         0.0086         0.0076         0.0073         0.0070           0.0088         0.0089         0.0041         0.0035         0.0032         0.0032                                                                                                                                                                                                                                                                                                                                                                                                                                 | CI.1        | 0.020  | 0.017  | 0.011  | 0.0099 | 0.0096 | 0.0093 | 0.0089 | 0.0086 |
| 0.016         0.014         0.0086         0.0076         0.0073         0.0070           0.0088         0.0080         0.0041         0.0035         0.0032         0.0032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CAT         | 0.014  | 0.012  | 0.0076 | 0.0068 | 0.0065 | 0.0063 | 0900.0 | 0.0059 |
| 0.0088 0.0080 0.0041 0.0035 0.0032 0.0032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ر<br>د      | 0.016  | 0.014  | 0.0086 | 0.0076 | 0.0073 | 0.0070 | 0.0067 | 0.0066 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CAB         | 0.0088 | 0800.0 | 0.0041 | 0.0035 | 0.0032 | 0 0032 | 0.0030 | 0.0030 |

b. CONFIG B25

| a 11 1WV aVa      |        |        |        | Σ      |        |        |        |        |
|-------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| L VINVIAR I F. V. | 0.4    | 0.55   | 8.0    | 96.0   | 1.05   | 1.1    | 1.2    | 1.3    |
| S                 | 0.0/3  | 0.063  | 0.039  | 0.035  | 0.033  | 0.032  | 0.030  | 0.029  |
| WTO .             | 0.028  | 0.023  | 0.015  | 0.013  | 0.012  | 0.012  | 0.011  | 0.011  |
|                   | 0.039  | 0.034  | 0.022  | 0.020  | 0.019  | 0.018  | 0.018  | 0.017  |
| CLN               | 0.032  | 0.028  | 0.018  | 0.016  | 0.015  | 0 015  | 0.014  | 0.014  |
| CI-I              | 0.020  | 0.017  | 0 011  | 6600 0 | 9600 0 | 0 0093 | 0.0088 | 0.0086 |
| CAT               | 0.014  | 0.012  | 92000  | 0.0068 | 0.0065 | 0.0063 | 09000  | 0.0059 |
| CA.               | 0.016  | 0.014  | 0.0086 | 9/00.0 | 0.0073 | 0.00.0 | 0.0067 | 0.0066 |
| CAB               | 0.0088 | 0,0000 | 0.0041 | 0.0035 | 0.0032 | 0.0032 | 0.0030 | 0.0030 |

lable 4. Concluded

•

c. CONFIG B30

| 0.4          |          |        | Σ      |        |        |        |        |
|--------------|----------|--------|--------|--------|--------|--------|--------|
|              | 0.55     | 8.0    | 96.0   | 1.05   | 1.1    | 1.2    | 1.3    |
| CN 0.077     | 0.065    | 0.041  | 0.036  | 0.034  | 0.033  | 0.031  | 0.030  |
| :<br>!       | 0        | 0.014  | 0.012  | 0.012  | 0.011  | 0.011  | 0.010  |
|              | <u> </u> | 0.022  | 0.020  | 0.019  | 0.018  | 0.018  | 0.017  |
| :            | 0.028    | 0.018  | 0.016  | 0.015  | 0.015  | 0.014  | 0.014  |
| <u> </u>     | 0        | 0.011  | 0.0099 | 0.0096 | 0.0093 | 0.0088 | 0.0086 |
| <u> </u><br> |          | 0.0076 | 0.0068 | 0.0065 | 0.0063 | 0,0060 | 0.0059 |
| i<br>:       | 0.014    | 0.0086 | 0.0076 | 0.0073 | 0.0070 | 0.0067 | 0.0066 |
| CAB 0.0088   | 0.0080   | 0.0041 | 0.0035 | 0.0032 | 0.0032 | 0.0030 | 0.0030 |

#### APPENDIX III

Sample Tabulated Data

| 25. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Column   C   | ST        | EST 1C-793 | SUMMARY          | AARY 1               |              |                   |             |          |               |           |         |                    |             |           |        |       |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|------------------|----------------------|--------------|-------------------|-------------|----------|---------------|-----------|---------|--------------------|-------------|-----------|--------|-------|--------|
| Secondary   Seco    | Section   Part   |           |            |                  | 1                    |              |                   |             |          |               |           |         |                    |             |           |        |       |        |
| 0.1896 8.223 36.000  1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.18896 8.223 38.000  0.18896 8.223 38.000  0.18896 8.223 38.000  0.18896 8.223 38.000  0.1889 0.181 0.18 0.18 0.18 0.18 0.18 0.18 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 O       | M<br>0.550 | PT<br>1625.0     | 1 -1                 | 1 •1         | REX 10-6<br>2.399 | 557.7       | • • •    | AFA<br>-0.002 |           | WIND/   |                    | ONSET<br>19 |           |        |       |        |
| ## BETA PHI CN CL# ***** BODY AND STABILITY ARES DATA ****  ## BETA PHI CN CL# ***** CL*** CL***  ## CY CL*** CL***    C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ## BETA PHI CM CLM CLM CCM AND STABILITY ARES DATA ***  ## CAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B20       |            | 896<br>896       | 323                  | LM<br>36.000 |                   | AFW         | AL ELLIP | TIC 8001      | ES FORCE  | TEST    |                    |             |           |        |       |        |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 Sample 1. Body - and Stability - Axes Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | AUG IA     | 4130             | 100                  | 2            |                   | : 3         | ON A     | STABILIT      | Y AXES DI | ATA *** | 3                  | 1,000       | 4 / 0 / > | 0.5    | ğ     | 3(0/1) |
| Sample 1. Body— and Stability—Axes Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000 0.1 0.133 0.133 0.000 0.001 0.000 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.10 | <b> '</b> | 8.8        | 0.0              | 0 0                  | -0.271       |                   | 8 8         | -0.0016  | -0.0003       | 0.2289    | 66      | 0.0089             | 0.4939      | 0.7651    | -0.270 | 0.028 | -9.701 |
| Sample 1. Body— and Stability—Axes Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample 1. Body- and Stability-Axes Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Π'        | 20.5       | 88               | 0                    | -0.133       |                   | 88          | 200      | 0003          | i         |         | 0.0102             | 0.4860      | 0.8010    | -0.133 | 0.015 | -8.899 |
| -0.00 -0.1 0.015 0.0939 0.003 -0.0001 0.2255 0.2051 0.0164 0.5146 0.6187 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.003 0.003 0.003 0.0002 0.0001 0.0225 0.2051 0.0045 0.018 0.018 0.023 0.003 0.003 0.0002 0.0001 0.0002 0.0018 0.018 0.018 0.018 0.023 0.023 0.003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0  | 8 Constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | '         | 0.02       | 88               | -<br>0<br>0          | 0.00         |                   | 88          | 0.000    | -0.0003       |           |         | 0.0134             | 0.4953      | 0.7282    | 00.0   | 0.0   | 0.238  |
| 8 Sample 1. Body- and Stability-Axes Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample 1. Body— and Stability—Axes Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | 1.02       | 88               | 9                    | 0.075        |                   | 8 8         | 0000     | 000           | - 1       |         | 0.0164             | 0.5146      | 0.6767    | 0.074  | 0.018 | 4. 198 |
| 9 -0.01 -0.1 0.281 0.186 0.004 0.0005 0.2100 0.0009 0.2009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0000  | 9 - 0.01 - 0.1 0 - 2391 0 - 0.00 0 - 0.000 0 - 0.200 0 - 0.200 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - 0.000 0 - |           | 2.98       | 9.0              | 9 9                  | 0.213        |                   | 98          | 0.002    | 0.00          |           |         | 0.0181             | 0.5045      | 0.6587    | 0.212  | 0.029 | 7.255  |
| 0.01 0.1 0.568 0.3879 0.003 0.0016 0.0004 0.2652 0.0014 0.5656 0.5656 0.065<br>1 -0.02 -0.1 0.746 0.5000 0.001 0.0016 0.0004 0.2422 0.0019 0.516 0.0319 0.142 0.0017 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 | 8-0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | 4. n       | 000              | <del>,</del>         | 0.281        |                   | 9 8         | 0.0010   | 0.0002        |           |         | 0.0093             | 0.5035      | 0.6092    | 0.279  | 0.029 | 9.663  |
| 1 -0.02 -0.1 0.746 0.5003 0.001 0.0011 0.0006 0.2853 0.2956 0.5116 0.3293 0.1912 0.0007 0.0011 0.0012 0.0013 0.2956 0.5116 0.5019 1.3169 0.952 0.1047 0.003 0.0001 0.0016 0.003 0.0017 0.2031 0.0017 0.2037 0.0017 0.2037 0.0017 0.2037 0.0017 0.3244 0.1197 0.5399 0.8753 1.502 0.308 0.003 0.0037 0.0037 0.0017 0.3441 -0.1735 0.5452 0.9349 2.167 0.606 0.00504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 -0.02 -0.1 0.746 0.5006 0.0010 0.00010 0.00006 0.2323 0.2956 0.0432 0.047 1 -0.03 -0.1 0.748 0.5009 0.0010 0.00010 0.2422 0.0991 -0.0669 0.5219 1.3169 0.952 0.134 1 -0.03 -0.1 1.529 0.6800 -0.004 0.0037 0.0017 0.2097 0.2094 -0.1197 0.5399 0.8753 1.502 0.308 1 -0.03 -0.1 2.244 1.1789 -0.003 0.0037 0.0017 0.2097 0.3394 -0.1195 0.5452 0.9349 2.167 0.606 2 CLW-AD  Sample 1. Body- and Stability-Axes Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ĺ         | 7.99       | -0.01            | -0                   | 0.569        |                   | 0.003       | 0.0015   | 0.0004        | 1         |         | -0.0142            | 0.5051      | 0.5621    | 0.566  | 0.065 | 8.699  |
| CLW-AD  CLW-AD  Sample 1. Body— and Stability—Axes Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample 1. Body- and Stability-Axes Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1,       | 0.03       | 9                | -<br>0               | 0.746        |                   | 9.8         | 0.0011   | 0.0006        | - 1       |         | -0.0432            | 0.5116      | 0.3293    | 0.742  | 0.087 | 8.494  |
| 1 -0.03 -0.1 2.244 i.1789 -0.003 0.0037 0.0036 0.1707 0.3441 -0.1735 0.5452 0.9349 2.167 0.606 0.0604 0.0604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0504  CLW-AD  CLW-AD  O_0504  Sample 1. Body— and Stability—Axes Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | 6.07       | 9 9              | <br>-<br>-<br>-<br>- | 1.529        |                   | \$ 8<br>9 9 | 0.001    | 9.6           |           |         | -0.0669<br>-0.1197 | 0.5399      | 0.8753    | 1.502  | 0.308 | 4.874  |
| 0.0504 0.0504 Sample 1. Body- and Stability-Axes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0504 Sample 1. Body- and Stability-Axes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14        | 0.03       | -0.03            | -0.1                 | 2.244        |                   | -0.003      | 0.0037   | 0.0035        | ı         |         | -0.1735            | 0.5452      | 0.9349    | 2.167  | 909.0 | 3.578  |
| Sample 1. Body- and Stability-Axes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sample 1. Body- and Stability-Axes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10        | 1          | CLM-A0<br>0.0504 |                      |              |                   |             |          |               |           |         |                    |             |           |        |       |        |
| e 1. Body- and Stability-Axes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e 1. Body- and Stability-Axes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |            |                  |                      |              |                   |             |          |               |           |         |                    |             |           |        |       |        |
| e 1. Body- and Stability-Axes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e 1. Body- and Stability-Axes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 1       |            |                  |                      |              |                   |             |          |               |           |         |                    |             |           |        |       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1       |            |                  |                      |              | Samp              | a)          | Body     | - and         | Stabil    | ity-Ay  | ,                  | ta          |           |        |       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 1     |            |                  |                      |              |                   | ,           |          |               |           |         | 1 1 1              |             |           |        |       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | }         |            |                  |                      |              |                   |             |          |               |           |         |                    |             |           |        |       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |            |                  |                      |              |                   |             | 1        |               |           |         |                    |             |           |        |       |        |

Ĩ

|                         |                     |        |                   |             |            |                                  |                   |              | 1   |
|-------------------------|---------------------|--------|-------------------|-------------|------------|----------------------------------|-------------------|--------------|-----|
| TEST TC-793 S           | SUMMARY 2           |        |                   |             |            |                                  |                   |              |     |
| M PT<br>0.550 1625.0    | PT P<br>15.0 1322.8 | 280.4  | REX 10-6<br>2.399 | TT<br>557.7 | T<br>525.8 | AFA<br>-0.002                    | WIND/OFF<br>43/ 1 | CONSET<br>19 |     |
| CONFIG A<br>B20 0.18896 | 8.323               | 18.000 |                   | AFWAI       | L ELLIPT   | AFWAL ELLIPTIC BODIES FORCE TEST | CE TEST           |              |     |
|                         | ĺ                   | - (    |                   | - 1         | PBL/P      | PBA/P                            |                   |              |     |
| -3.03                   | 0.00                | 0.9610 | 0.9485            | 0.9598      | 0.9476     | 0.9534<br>0.9543<br>0.9583       |                   |              |     |
| 1                       |                     | 1      |                   |             | 0.9489     | 0.9557                           |                   |              |     |
| ]                       |                     | i      | 1                 |             | 0.9494     | 0.9565                           |                   |              | 1   |
| 1                       |                     | i      |                   |             | 0.9491     | 0.9559                           |                   |              |     |
| Ì                       |                     | 1      |                   | 1           | 0.9433     | 0.9492                           |                   |              |     |
| ]                       |                     | 1      | - 1               | - 1         | 0.9354     | 0.9374                           |                   |              |     |
| 1                       |                     | - 1    |                   | - 1         | 0.9218     | 0.9346                           |                   |              | -   |
| - 1                     | 1                   | - 1    | - 1               |             | 0.9159     | 0.9301                           |                   |              |     |
|                         |                     |        |                   |             |            |                                  |                   |              | - 1 |
|                         |                     |        |                   |             |            |                                  |                   |              |     |
|                         |                     |        |                   |             |            |                                  |                   |              |     |
|                         |                     |        |                   |             |            |                                  |                   |              |     |
|                         |                     |        |                   |             |            | ļ                                |                   |              |     |
| ŀ                       |                     |        |                   |             |            |                                  |                   |              |     |
|                         |                     |        |                   |             |            |                                  |                   |              |     |
|                         |                     |        |                   |             |            |                                  |                   |              | į   |
|                         |                     |        |                   |             |            |                                  |                   |              | 1   |
|                         | ,                   |        | Š.                | Sample ?    | 2. Ba      | Base Pressure                    | re Data           |              |     |
|                         |                     |        |                   |             |            |                                  |                   |              |     |
|                         |                     |        |                   |             |            |                                  |                   |              |     |
|                         |                     |        |                   |             |            |                                  |                   |              |     |
|                         |                     |        |                   |             |            |                                  |                   |              | - 1 |

# END

# FILMED

10-85

DTIC