TUTORIAL SHEET NO.2

- 1. Convert each of the following binary numbers to octal, decimal, and hexadecimal formats.
 - i. (111011101.001)2
 - ii (101010101111)₂
- iii. (111100000)2

- Ans. (735.1)₈ =(1DD.2)₁₆=(477.125)₁₀
- Ans. $(2527)_8 = (11367)_{10} = (557)_{16}$
- Ans. $(740)_8 = (480)_{10} = (1E0)_{16}$
- 2. Convert each of the following octal numbers to binary, decimal, and hexadecimal formats.
 - i. (3754)₈
 - ii. (7777)₈
 - iii. (247.4)₈

- Ans. (11111101100)₂ =(7EC)₁₆=(2028)₁₀
- Ans. (111111111111)₂ =(FFF)₁₆=(4095)₁₀
- Ans. $(10100111.100)_2 = (A7.8)_{16} = (167.5)_{10}$
- 3. Convert each of the following decimal numbers to binary, octal, and hexadecimal formats.
 - i. (3479.25)10
 - ii. (642)₁₀
 - iii. (555)₁₀

- Ans. (110110010111.01)₂ =(D97.4)₁₆=(6627.2)₈
- Ans. $(1010000010)_2 = (282)_{16} = (1202)_8$
- Ans. $(1000101011)_2 = (22B)_{16} = (1053)_8$
- 4. Convert each of the following hexadecimal numbers to binary, octal, and decimal formats.
 - i. (4FB2)16
 - ii. (88BAE)₁₆
 - iii. (DC4.7)16

- Ans. $(1001111110110010)_2 = (47662)_8 = (20402)_{10}$
- Ans. $(100010001011101011110)_2 = (2105656)_8 = (560046)_{10}$
- Ans. (110111000100.0111)2=(6704.34)8=(3524.4375)10
- 5. Perform each of the addition operations indicated below.
 - i. $(1001011)_2 + (11101)_2$
 - ii. $(4556)_8 + (1245)_8$
 - iii. $(BCD)_{16} + (A34)_{16}$

- Ans. (1101000)₂
- Ans. (6023)8
- Ans. (1601)16
- 6. Form the two's complement of each of the following binary numbers.
 - i. (11101110i1:0)2
 - ii. (11111111000100)2
 - iii. (100000000)2
 - iv. (1010101010111)2

- 15. 000100010010
- Ans.00000000111100
- Ans. 100000000
- Ans. 0101010101001
- 17. Perform each of the subtraction using two's complement.
 - i. (100101)₂ (11011)₂
 - ii. (1101011)₂ (111010)₂
 - iii. (1110111)₂ (10110111)₂

- Ans. (001010)2
- Ans. (0110001)2
- Ans. (1000000)2

8. Simplify the following:

- i. XY+XYZ+XYZ'+X'YZ=Y(X+Z)
- ii. A'B'C'+A'BC'+A'BC=A'(C'+B)
- iii. A'BC'D+A'BCD+ABD=BD
- iv. A+A'B+AB'≈A+B
- v. AB+(AC)'+AB'C(AB+C)=1
- vi. AB+AB'A+AB'C=A
- vii. AB'C'+AB'C'D+AC'=AC'
- viii. (A+B)(AC+C)(B+AC)'=A'B
 - ix. AB+AC+ABC(AB+C)=1
 - x. C(B+C)(A+B+C)=C
 - xi. (A+B)(A+B')(A'+B)=AB
- xii. A+AB+AB'C=A

9. Realize XOR and XNOR gate using

- i. NAND gate only
- ii. NOR gate only

10. Find the complement

- i. Y=AB'C+A'B'C'
- ii. Y=A(BC+B'C')

11. Design a logic circuit using basic gates only, using NAND gates only and using NOR gates only

- i. Y=(A+B+C'D)+A'BC'
- ii. Y=ABC+B'C+CD
- iii. Y=(A+B)(A+C'+D)+(B'+C)

12. Convert the following into canonical form and write their minterms and maxterms

- i. AB+BC
- ii. AB+ABC+BCD
- iii. (A+B)(B+C)
- iv. (A+C'+D)(A+B)(C'+L)

13. Develop the truth table of the following function

- T. F=AB+AB'+B'C
- ii. AB+BC'D+A'D