Data Stream Mining Based on Ant Colony Behaviour

Shengxiang Yang

Centre for Computational Intelligence (CCI) School of Computer Science and Informatics De Montfort University, Leicester LE1 9BH, UK

Email: syang@dmu.ac.uk

http://www.tech.dmu.ac.uk/~syang

Outline of the Talk

- Introduction to data stream
 - Concept drift and evolution
- Clustering for data stream
 - ➤ Ant Colony Stream Clustering (ACSC)
 - Multi-density Stream Clustering (MDSC)
- Classification in dynamic streams
 - Clustering and One Class Ensemble Learning (COCEL)
- Summary

Data Stream Formally

- Stream $S = [i^t]_{t=0}^{\infty}$, where $i^t = (x^t, y^t)$
- Point x in d dimensions, $x^t = \{v_1, ..., v_d\}$, describes concept y at time t where $y \in Y$
- Using probability notation: $P(y^t|x^t)$

Data Stream Mining

- Given a data stream S, extract information from S
- Challenges:
 - > Time Constraints
 - Points should be processed in a single pass
 - Memory Constraints
 - Stream potentially infinite, memory finite
 - Dynamic
 - Characteristics of data can change in unforeseen ways

Types of Change in Data Streams

- Concept Drift
 - \triangleright Virtual drift: Change in P(x)
 - \triangleright Real drift: Change in P(y|x)
- Concept Evolution
 - \triangleright New concepts appear in stream, $y^t \notin Y$

Concept Drift: Virtual vs Real

Concept before change

Virtual Concept Drift

• Change in X (i.e., P(x) change) but no change in decision boundary

Real Concept Drift

• Change in decision boundary, i.e., P(y|x) change

Concept Drift Examples

- Virtual drift: Change in P(x)
 - ➤ Change in source distribution, decision boundary unaffected

- Real drift: Change in P(y|x)
 - Decision boundary changes

Concept Evolution

New class appears after time t

Detecting Changes

Supervised methods

Assuming labels for incoming points are available and inexpensive to collect

Unsupervised methods

- Labels not immediately available or labels are expensive
- One possible way is to identify clusters in the stream and track these clusters over-time to detect underlying change

Clustering with ACO

- Clustering problem framed as an optimisation problem
- Usually, cluster centres are optimised and points clustered using k-means
 - ➤ Useful in static clustering (Nikham,2010; Shelokar et al., 2004)
- Problematic in stream clustering:
 - How many centres to find? K can change...
 - Iterative, population-based searching can be slow
- Ant Colony Stream Clustering (ACSC) (Fahy et al., 2019)
 - Density based clustering
 - Nest building and nest sorting behaviour of ants

C. Fahy, S. Yang, M. Gongora. Ant colony stream clustering: A fast density clustering algorithm for dynamic data streams. IEEE Transactions on Cybernetics, 49(6): 2215-2228, 2019

Density Based Clustering

- Clusters identified as areas of high density separated by areas of low density
 - K doesn't need to be specified

- Micro-clusters
 - > Summarise similar points

Micro-cluster summarises points

Density Based Clustering

 Two micro-clusters are 'connected' if the distance from their centres is less than ε

Connected micro-clusters form the cluster

Two clusters composed of micro-clusters

ACSC Overview

Stream

- Read stream in windows
- Cluster each window
- Summarise each window

ACSC Overview

Stream

- Two steps to clustering:
 - Initial clusters identified in a single pass of the window – nest building
 - 2) Initial clusters are refined nest sorting

Nest Building

- Incoming stream → Read Window
- Each point is an 'ant' → ants form nests with similar ants
- First ant forms first nest

Subsequent ants can join existing nest or start new nest

Nest Building

- Similarity score with each nest is recorded: pheromone trails
- Pheromone trail between nests a and b is the average similarity of each ant in a with nest b:

$$ph(a,b) = \frac{1}{n} \sum_{i=1}^{n} Sim(a_i,b)$$

 At the end of this step, a set of Nests and similarity between each pair of nests

$$\begin{bmatrix} ph(nest_1, nest_1) & \cdots & ph(nest_1, nest_n) \\ \vdots & \ddots & \vdots \\ ph(nest_n, nest_1) & \cdots & ph(nest_n, nest_n) \end{bmatrix}$$

- Points in each nest are merged to form micro-clusters
- Based on observed sorting behaviour of ants: the pickand-drop model (Lumar and Faieta, 1994)
- Ants pick-up isolated items and drop in locations where similar items are present.
- Biologically: corpses, eggs etc.
- Here, micro-clusters...

E. Lumar, B. Faieta. Diversity and adaptation in populations of clustering ants. Proc. 3rd Int. Conf. on Simulation of Adaptive Behavior: From Animals to Animats, vol. 3, pp. 489–508, 1994

- Each nest is assigned a sorting ant
- Ant picks up a micro-cluster

$$P_{pick} = 1 - \frac{numConnectedMCs}{Samples}$$

- Each nest is assigned a sorting ant
- Ant picks up a micro-cluster

$$P_{pick} = 1 - \frac{numConnectedMCs}{Samples}$$

If pick is successful, ant moves to similar nest and attempts to drop in new nest:

$$P_{drop} = \frac{numConnectedMCs}{Samples}$$

- Each nest is assigned a sorting ant
- Ant picks up a micro-cluster

$$P_{pick} = 1 - \frac{numConnectedMCs}{Samples}$$

If pick is successful, ant moves to similar nest and attempts to drop in new nest:

$$P_{drop} = \frac{numConnectedMCs}{Samples}$$

- Each nest is assigned a sorting ant
- Ant picks up a micro-cluster

$$P_{pick} = 1 - \frac{numConnectedMCs}{Samples}$$

If pick is successful, ant moves to similar nest and attempts to drop in new nest:

$$P_{drop} = \frac{numConnectedMCs}{Samples}$$

- Non empty nests are clusters
- Clusters are summarised by their micro-clusters (number of micro-clusters and their centres)
- Summaries stored off-line and next window evaluated
- New clusters or a change in micro-cluster centres signal change in stream...

ACSC Comparative Results – Quality

- Compared with peer stream-clustering algorithms
 - ➤ Performance: Cluster Purity, F1 Score, Rand Index

	Den Stream	CluStream	ClusTree	ACSC			
	P F R	P F R	P F R	P F R			
1CDT	0.99 0.82 0.77	1.0 0.88 0.80	1.0 0.89 0.82	0.99(s-) 0.99 (s+) 0.99 (s+)			
2CHT	0.43 0.27 0.53	0.24 0.23 0.55	0.22 0.24 0.58	0.81 (s+) 0.42 (s+) 0.55(s-)			
4CR	1.00 0.67 0.71	1.00 0.89 0.89	1.00 0.89 0.89	0.99(s-) 0.95 (s+) 0.97 (s+)			
4CE1CF	0.99 0.35 0.56	0.99 0.86 0.89	0.99 0.86 0.89	0.96(s-) 0.76(s-) 0.90 (s+)			
Network	1.00 0.80 0.81	0.35 0.13 0.36	0.36 0.16 0.3	1.0 (=) 0.95 (s+) 0.95 (s+)			
$CoverTyp\epsilon$	0.89 0.10 0.51	0 0 0	0 0 0	0.88(s-) 0.59 (s+) 0.64 (s+)			
Average	0.88 0.50 0.64	0.59 0.49 0.58	0.59 0.51 0.58	0.93 0.77 0.83			

ACSC Comparative Results – Time

	Den Stream		Clu	Stream	Cl	usTree	ACSC		
	Total,	Window	Total,	Window	Total,	Window	Total,	Window	
1CDT	05.74	0.38(0.06)	01.69	0.11(0.02)	01.22	0.07(0.01)	0.71 (0.01)	0.05 (0.02)	
2CHT	05.61	0.37(0.05)	01.67	0.11 (0.02)	01.38	0.09 (0.02)	0.62 (0.06)	0.05 (0.02)	
4CR	50.62	0.29(0.04)	11.78	0.09(0.01)	12.11	0.09(0.01)	09.28 (0.1)	0.06 (0.01)	
4CE1CF	55.06	0.38(0.03)	14.64	008(0.01)	12.96	0.08 (0.41)	16.85(0.3)	0.09(0.01)	
Network	94.41	0.19(0.77)	106.21	0.22(0.18)	22.11	0.06(0.3)	20.63 (0.3)	0.04 (0.02)	
CoverType	278.5	0.56(0.09)	26.62	0.04(0.02)*	22.07	0.03(0.02)*	49.53 (1.07)	0.08 (0.02)	

^{*} Did not return a clustering solution

ACSC: Better performance and faster

ACSC Drawbacks

- E determines maximum radius of micro-cluster
- Manually tuned, very sensitive parameter
- E is global so restricts the algorithm to a single level of density

Micro-cluster with radius *r*

- Clusters not 'online'
- Windowing model used behaviour of dynamic clusters cannot be tracked over time

Multi Density Stream Clustering (MDSC)

MDSC extends ACSC concepts

	E Parameter	Clustering Process	Density		
ACSC	Manually Tuned	Two-Phase: Online and Offline	Single density		
MDSC	Adaptive	Single Phase: Online	Multi-density		

C. Fahy, S. Yang. Finding and Tracking Multi-Density Clusters in Dynamic Data Streams. IEEE Transactions on Big Data, in press, 2019 (DOI: 10.1109/TBDATA.2019.2922969).

MDSC Comparative Results

- Compared with ACSC and three other peer clustering algorithms on three metrics
 - Cluster Purity, F1 Score, Rand Index

	DenStream		MuDi		CEDAS			ACSC			MDSC			
	P F	\overline{R}	\overline{P}	F	R	\overline{P}	F	R	\overline{P}	F	R	\overline{P}	F	R
Network	1.00 0.61 0	0.80	0.97	0.87	0.81	0.99	0.95	0.96	1.00	0.95	0.94	0.99(s-)	0.93(s-)	0.94(s-)
Forest	0.79 0.10 0	0.51	0.73	0.47	0.52	0.86	0.48	0.59	0.88	0.59	0.64	0.89(s+)	0.61(s+)	0.66(s+)
KeySroke	0.86 0.16 0).54	0.61	0.46	0.70	0.87	0.61	0.67	0.88	0.56	0.68	0.88(=)	0.65 (s+)	0.77 (s+)
COIL	0.00 0.00 0	0.00	0.84	0.67	0.64	0.50	0.17	0.23	0.86	0.76	0.74	0.92 (s+)	0.81(s+)	0.81 (s+)
2CSurr	0.88 0.22 0	0.51	0.90	0.76	0.67	0.97	0.61	0.61	0.97	0.62	0.60	0.97(=)	0.89 (s+)	0.80(s+)
4CR	1.00 0.67 0	0.71	0.94	0.94 (0.91	0.98	0.95	0.96	1.00	0.95	0.97	1.00(=)	0.98(s+)	0.98 (s+)
20D	0.84 0.22 0	0.23	0.92	0.87	0.94	0.98	0.79	0.93	0.96	0.77	0.93	0.99 (s+)	0.94 (s+)	0.97 (s+)
Average	0.76 0.2 0).47	0.84	0.72	0.74	0.87	0.65	0.7	0.93	0.74	0.78	0.94	0.83	0.84

 ACSC is faster but is restricted to a single level of density and requires careful manual tuning. MDSC is better for multi-density data

29

MDSC Comparison with ACSC

- Example Synthetic Stream: 2CR
 - > Two classes in two dimensions
 - One class non-stationary
 - Two levels of density (multi-density clusters)

- * Score is average of Purity, Rand Index and F1
- ACSC performance degrades in case of multi-density

MDSC Comparison with ACSC

- Cluster behaviour can be tracked and monitored with MDSC
- Blue cluster is stationary and red cluster drifts in the direction of arrow
- Centers of clusters are recorded every time-step and the drift is captured and tracked

Classification in Dynamic Streams

- Scarcity of labels
 - Most incoming points will not have labels
 - ➤ How to Train? Test?
- Clustering and classification ensemble

COCEL

 Clustering and One Class Ensemble Learning (COCEL)

• Key Idea:

Stream Clustering and an ensemble of One Class Classifiers with Active Learning

C. Fahy, S. Yang, M. Gongora. Classification in dynamic data streams with a scarcity of labels. IEEE Transactions on Knowledge and Data Engineering, submitted in March 2020.

One Class Classification

- Trained to recognise ONE particular class
- Examples:
 - Support vector domain description
 - Neural network auto-encoder
 - Principle Component Analysis (PCA)
 - Micro-classifiers
- Usually trained with only positive examples

One Class Classification

Find a boundary around positive class

Support Vector Domain Description OCC

Active Learning

- Model requests a label for a specific sample
- Only give model samples that are useful
- Hugely reduces labelling costs

COCEL Framework

- Incoming point passed to Ensemble (E) of One Class Classifiers (OCCs)
- If point is recognised, prediction is made
- If point is not recognised, it is passed to stream clustering alg (CL)

COCEL Framework

- If a new cluster is discovered, representative samples passed to user for labelling
- New OCC trained on latest cluster and added to E
- Old OCCs which no longer make predictions are deleted from E

COCEL Experimental Study

- COCEL implementation:
 - Micro-classifiers as OCC (like micro-clusters but with an associated label)
 - MDSC as stream clustering algorithm
- COCEL compared with static ensemble
 - Static ensemble is trained but never updated as stream progresses

Demo: Synthetic Data

- Synthetic data stream, 4 classes in 2D
- 100K samples
- Simple but not trivial!
- Virtual Drift leading to Real Drift

Demo: Synthetic Data

~96% accuracy; 560/100,000 labels

Demo: Network Intrusion

- Network Intrusion Data, 42 dimensions
- 1 "normal" class, 4 malicious classes
- Real Drift, Concept Evolution
- First 1,000 samples used as training set

Demo: Network Intrusion

~96% accuracy; 1102/200k labels (0.005%)

Demo: Network Intrusion No Training

~85% accuracy; 156/200k labels

Summary

- Data stream mining: interesting trend
- Stream clustering: Using ant colony behaviour
 ACSC and MDSC
- Clustering and classification ensemble learning
 COCEL