In [5]:

```
import pandas as pd
import numpy as np
```

In [9]:

```
pdata= pd.read_csv('C:\\Users\\Jai mata di\\Downloads\\diabetes.csv')
pdata.head()
```

Out[9]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.62
1	1	85	66	29	0	26.6	0.35
2	8	183	64	0	0	23.3	0.672
3	1	89	66	23	94	28.1	0.16 ⁻
4	0	137	40	35	168	43.1	2.28
4							•

In [12]:

pdata.dtypes

Out[12]:

int64
int64
int64
int64
int64
float64
float64
int64
int64

```
In [15]:
```

```
pdata.describe()
```

Out[15]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabete
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	

spliting data

In [16]:

```
from sklearn.model_selection import train_test_split
x=pdata.drop("Outcome",axis=1)
y=pdata[["Outcome"]]
```

In [17]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y, test_size=0.3,random_state=1)
```

In [20]:

```
from sklearn.naive_bayes import GaussianNB
model=GaussianNB()
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
```

C:\Users\Jai mata di\anaconda3\lib\site-packages\sklearn\utils\validation.p
y:72: DataConversionWarning: A column-vector y was passed when a 1d array wa
s expected. Please change the shape of y to (n_samples,), for example using
ravel().
 return f(**kwargs)

In [22]:

```
from sklearn import metrics
print("Accuracy:",metrics.accuracy_score(y_test,y_pred))
```

Accuracy: 0.7835497835497836

In [23]:

```
test_pred=model.predict(x_test)
print(metrics.classification_report(y_test,test_pred))
print(metrics.confusion_matrix(y_test,test_pred))
```

	precision	recall	f1-score	support
0	0.80	0.88	0.84	146
1	0.75	0.62	0.68	85
accuracy			0.78	231
macro avg	0.77	0.75	0.76	231
weighted avg	0.78	0.78	0.78	231
[[120 10]				

[[128 18] [32 53]]