В базе данных содержатся 4 таблицы, в которых содержится информация о миссиях, диалогах, персонажах и картах в игре.

1) Таблица missions содержит основную информацию об игре: наименования миссий, для какой фракции в игре проходят данные миссии, оценку пользователей данных миссий, карты, на которых происходит выполнение миссий. Таблица состоит из следующих колонок: mission_name - названиях миссий в игре, name_fraction - наименование фракции, рейтинг - оценка игроков данной миссии, карта, id - идентификатор миссии, fraction - вид фракции, rating - оценка пользователей миссии, map - наименование карты, id _ map - идентификатор карты.

Пример:

mission_name	name_fraction	id	fraction	rating	map	id_map
mis1-2C (2)	Confederation	1	f.1	5	map.1	1

2) Таблица dialogs содержит тексты диалогов персонажей в игре. Она состоит из следующих колонок: id_person название миссий, id_person - идетификатор персонажа, который произносит диалог, string - поле для программистов для идентификации уникального диалога, text - текст диалога.

mission_name	id_person	string	text
			С прибытием, капитан! Вы попали в самое пекло! Мы
			уже отразили несколько атак повстанцев и готовимся
mis1-1C (1)	П	10000	к новым

3) Таблица persons содержит список персонажей в игре, которые дают задания игрокам через диалоги. Она состоит из следующих колонок: string - поле для программистов для идентификации уникального персонажа, fraction - код фракции, к которой принадлежит персонаж, id_person - идетификатор персонажа, который произносит диалог, name_person - имя персонажа, english_name - имя персонажа на английском языке

string	fraction	id_person	name_person	english_name
4980	С	Н	Неизвестный	John Doe

4) Таблица maps содержит информацию о картах в игре, их размере, местонахождении файла с картами, а также о кол-ве героев, задействованных в данной карте (герои это не персонажи, это что-то вроде бойцов на карте)

Она состоит из следующих колонок: id - идентификатор карты, width - ширина карты, height - высота карты, file - название файла, содержащего карту, area - площадь карты, heros - количество героев на карте.

id	width	height	file	area	heros
0	50	50	data/maps/1_1	2500	4

Схема Таблиц

Запросы sql:

1) Посчитать кол-во карт с размерами 50*50

SELECT COUNT(id) FROM maps WHERE width=50 AND height=50;

2) Посчитать кол-во площадей, кол-во уникальных площадей, отношение уникальных площадей к общем числу записей.

SELECT COUNT(area) as count, COUNT(DISTINCT area) as count_distinct, COUNT(DISTINCT area)/CAST(COUNT(area) as float) unique_fraction FROM maps;

3) Вывести топ-5 id карт, у которых площадь меньше средней площади, отсортированные по возрастанию id.

SELECT DISTINCT id FROM maps WHERE area < (SELECT AVG(area) from maps) ORDER BY id ASC LIMIT 5;

4) Вывести список карт с площадью меньше 4900.

SELECT mission_name FROM missions JOIN maps ON missions.id_map=maps.id WHERE area<4900;

5) Выбрать из таблицы maps всё записи, у которых heros содержит "1", а поле area между 2500 и 6400.

SELECT * FROM maps WHERE heros::text LIKE '%1%' AND area BETWEEN 2500 AND 6400;

6) Вывести названия миссий и посчитать кол-во персонажей, задействованных в миссиях.

SELECT mission_name, count(distinct id_person) as count_id_person FROM dialogs GROUP BY mission_name;

- 7) Вывести список (Id_person) персонажей, у которых нет диалогов таблице dialogs SELECT Id_person FROM persons EXCEPT SELECT Id_person FROM dialogs;
- 8) Вывести список миссий (mission_name) с максимальным количеством героев на карте SELECT tm.mission_name FROM (SELECT t.mission_name, t.sum_heros, max(t.sum_heros) OVER () FROM (SELECT d.mission_name, sum(e.heros) as sum_heros

FROM missions as d JOIN maps as e ON d.id_map=e.id GROUP BY d.mission_name) as t) as tm WHERE tm.sum_heros = tm.max;

9) Вывести количество миссий и среднюю площадь карт в миссиях, с кол-во героем больше четырех на карте

SELECT COUNT(mission_name), AVG(area) FROM missions JOIN maps ON missions.id_map=maps.id WHERE heros>4;

10) Вывести отклонение рейтинга миссии от среднего рейтинга фракции

SELECT mission_name, name_fraction, rating, rating - AVG(rating) OVER (PARTITION BY fraction) rating_deviance_simplex FROM missions;

Запросы pandas:

1) Посчитать кол-во карт с размерами 50*50.

 $maps_df[(maps_df['widht'] == 50)&(maps_df['height'] == 50)].count()$

2) Вывести названия миссий и посчитать кол-во персонажей, задействованных в миссиях.

dialogs_df.groupby(['mission_name'])['id_person'].count()

- 3) Вывести количество миссий с кол-во героем больше четырех на карте.
- dr=missions_df.merge(maps,how='inner', left_on='id_map', right_on='id').head()

dr.groupby(['heros'>4])['mission_name','area'].describe(percentiles=[])

4) Вывести список карт с площадью меньше 4900.

dm=missions_df.merge(maps,how='inner', left_on='id_map', right_on='id').head()
dm.groupby(['area']<4900)['id_map'].count()

5) Вывести топ-5 id карт, у которых площадь меньше средней площади, отсортированные по возрастанию id.

maps_df.groupby(['area']<5050)['id']. sort_values(['id'], ascending=True).tail(5)