RECEIVED
CENTRAL FAX CENTER

JUL 2 4 2007

Listing of Claims

- 1. (Original) A composition comprising an aqueous dispersion of at least one conductive polymer and at least one colloid-forming polymeric acid, wherein the electrically conducting polymer is doped with at least one non-polymeric organic acid anion, and wherein the conductive polymer is selected from a polythiophene, a polypyrrole, a polyaniline, and combinations thereof.
- 2. (Original) A composition according to claim 1, wherein pH of the dispersion is between 1 and 8.
- 3. (Original) A composition according to Claim 1, wherein the polythiophene comprises Formula I:

$$\mathbb{R}^1$$
 \mathbb{R}^1 \mathbb{R}^1 \mathbb{R}^1 \mathbb{R}^1

wherein:

R¹ is independently selected so as to be the same or different at each occurrence and is selected from hydrogen, alkyl, alkenyl, alkoxy, alkanoyl, alkythio, aryloxy, alkylthioalkyl, alkylaryl, arylalkyl, amino, alkylamino, dialkylamino, aryl, alkylsulfinyl, alkoxyalkyl, alkylsulfonyl, arylthio, arylsulfinyl, alkoxycarbonyl, arylsulfonyl, acrylic acid, phosphoric acid, phosphoric acid, halogen, nitro, cyano, hydroxyl, epoxy, silane, siloxane, alcohol, benzyl, carboxylate, ether, ether carboxylate, amidosulfonate, ether sulfonate, and urethane; or both R¹ groups together may form an alkylene or alkenylene chain completing a 3, 4, 5, 6, or 7-membered aromatic or alicyclic ring, which ring may optionally include one or more divalent nitrogen, sulfur or oxygen atoms, and n is at least about 4.

4. (Original) A composition according to Claim 1, wherein the polypyrrole comprises Formula II:

wherein:

n is at least about 4;

R¹ is independently selected so as to be the same or different at each occurrence and is selected from hydrogen, alkyl, alkenyl, alkoxy, alkanoyl, alkythio, aryloxy, alkylthioalkyl, alkylaryl, arylalkyl, amino, alkylamino, dialkylamino, aryl, alkylsulfinyl, alkoxyalkyl, alkylsulfonyl, arylthio, arylsulfinyl, alkoxycarbonyl, arylsulfonyl, acrylic acid, phosphoric acid, phosphonic acid, halogen, nitro, cyano, hydroxyl, epoxy, silane, siloxane, alcohol, benzyl, carboxylate, ether, ether carboxylate, amidosulfonate, ether sulfonate, and urethane; or both R¹ groups together may form an alkylene or alkenylene chain completing a 3, 4, 5, 6, or 7-membered aromatic or alicyclic ring, which ring may optionally include one or more divalent nitrogen, sulfur or oxygen atoms; and R² is independently selected so as to be the same or different at each occurrence and is selected from hydrogen, alkyl, alkenyl, aryl, alkanoyl, alkylthioalkyl, alkylaryl, arylalkyl, amino, epoxy, silane, siloxane, alcohol, benzyl, carboxylate, ether, ether carboxylate, amidosulfonate, ether sulfonate, and urethane.

5. (Original) A composition according to Claim 1, wherein the polyaniline comprises Formula III or Formula IV:

JUL. 24. 2007 4:36PM

Application No.: 10/814,917 Docket No.: UC0420 US NA

$$\begin{array}{c|c}
(R^3)_p & H \\
\downarrow & \downarrow & \downarrow \\
(H)_{m-1} & n
\end{array}$$
(III)

$$(R^3)_p \qquad (R^3)_p \qquad (IV)_{m-1} \qquad (IV)_{m-1$$

wherein:

n is at least about 4;

p is an integer from 0 to 4;

m is an integer from 1 to 5, with the proviso that p + m = 5; and

R³ is independently selected so as to be the same or different at each occurrence and is selected from alkyl, alkenyl, alkoxy, cycloalkyl, cycloalkenyl, alkanoyl, alkythio, aryloxy, alkylthioalkyl, alkylaryl, arylalkyl, amino, alkylamino, dialkylamino, aryl, alkylsulfinyl, alkoxyalkyl, alkylsulfonyl, arylthio, arylsulfinyl, alkoxycarbonyl, arylsulfonyl, carboxylic acid, halogen, cyano, or alkyl substituted with one or more of sulfonic acid, carboxylic acid, halo, nitro, cyano or epoxy moieties; or any two R³ groups together may form an alkylene or alkenylene chain completing a 3, 4, 5, 6, or 7-membered aromatic or alicyclic ring, which ring may optionally include one or more divalent nitrogen, sulfur or oxygen atoms.

6. (Original) A composition according to Claim 1, wherein the non-polymeric organic acid anion is selected from acetate, p-toluenesulfonate, camphorsulfonate, p-

dodecylbenzenesulfonate, methanesulfonate, trifluoromethanesulfonate, and mixtures thereof.

- 7. (Original) A composition according to Claim 1, wherein said colloid-forming polymeric acid is selected from polymeric sulfonic acids, polymeric phosphoric acids, polymeric phosphoric acids, polymeric acids, polymeric acids, and mixtures thereof.
- 8. (Original) A composition according to Claim 7, wherein said colloid-forming polymeric acid comprises a fluorinated polymeric sulfonic acid.
- 9. (Original) A composition according to Claim 8, wherein said polymeric sulfonic acid is perfluorinated.
 - 10 12. (Canceled)
- 13. (Original) An electrically conductive or semiconductive layer deposited from a composition according to Claim 1.
 - 14. (Original) A buffer layer deposited from a composition according to Claim 1.
- 15. (Original) A buffer layer according to claim 14 wherein said colloid-forming polymeric acid is perfluoroethylenesulfonic acid.
- 16. (Original) A buffer layer made from an aqueous dispersion comprising electrically conductive polypyrrole/non-polymeric acid dopant and polymeric perfluroethylenesulfonic acid, wherein the aqueous dispersion has a pH greater than 2 and a weight ratio of polymeric perfluroethylenesulfonic acid to polypyrrole +non-polymeric acid anion greater than 1.
- 17. (Original) An electronic device or other applications comprising at least one layer comprising at least one composition of Claim 1.

- 18. (Original) A device according to Claim 17, wherein the device or application is selected from devices that convert electrical energy into radiation, devices that detect signals through electronics processes, that convert radiation into electrical energy, devices having at least one electronic component, memory storage devices, energy storage devices, antistatic films, biosensor devices, electrochromic devices, and electromagnetic shielding applications.
- 19. (Original) A method of making the composition of Claim 1, the method comprising one of the following:
- (a) dispersing doped conductive polymer solids in an aqueous dispersion of colloid-forming polymeric acid;
- (b) dispersing colloid-forming polymeric acid solids in an aqueous dispersion of doped conductive polymer; and
- (c) combining the dispersion of doped conductive polymer with an aqueous dispersion of colloid-forming polymeric acid.
- 20. (Previously Presented) A method of making the composition of Claim 1 comprising,

doping the at least one conductive polymer with the at least one non-polymeric organic acid anion; and

then combining the doped conductive polymer with the at least one colloid-forming polymeric acid.