

Afin d'étudier quantitativement un phénomène à $p \geq 1$ variables d'entrée $X = (X^{(1)}, X^{(2)}, \dots, X^{(p)})$ et une variable de sortie Y, il est bien pratique de construire un modèle g qui explique par une relation mathématique les valeurs observées de Y en fonction des variables d'entrée :

$$Y = g\left(X^{(1)}, X^{(2)}, \dots, X^{(p)}\right)$$
.

On distingue deux types de modèles :

- 1. Modèles déterministes : C'est une équation ou un ensemble d'équations qui émanent souvent de lois physiques, chimiques, économiques, ..., et représentent le comportement attendu du phénomène.
- 2. Modèles statistiques : Souvent, il est difficile de développer un modèle théorique car le phénomène étudié est trop complexe. On a alors recours à un modèle statistique basé non pas sur une théorie, mais sur des données observées.

On connait les notes de *n* élèves au cours de l'année scolaire 2020-2021 ainsi que leur notes à un concours de fin d'année.

On aimerait prédire les notes au concours des élèves de la promotion 2021-2022 en fonction de leurs notes au cours de l'année.

	Maths	Info	Français
Elève 1	12	15	09
Elève 2	05	09	12
 Elève <i>i</i>	x_i^1	x_i^2	x_i^3
Elève n			
	10	12	15

Maths Info Français
Nouvel élève 13 14 11

Concours

?

On connait les notes de *n* élèves au cours de l'année scolaire 2020-2021 ainsi que leur notes à un concours de fin d'année.

On aimerait prédire les notes au concours des élèves de la promotion 2021-2022 en fonction de leurs notes au cours de l'année.

	Maths	Info	Français
Elève 1	12	15	09
Elève 2	05	09	12
 Elève <i>i</i>	x_i^1	x_i^2	x_i^3
Elève n			
	10	12	15

Concours	
14	
07	
\mathcal{Y}_i	
 11	

Nouvel élève

Maths	Info	Français
13	14	11

Concours ?

Posons les notations :

- . Notes de l'élève $i\in\{1,...,n\}$ durant l'année 2020-2021 : $x_i=\left(x_i^1,x_i^2,...,x_i^p\right)\in\mathbb{R}^p$
- Notes de l'élève i au concours 2020-2021 : $y_i \in \mathbb{R}$
- Prédiction de y_{new} pour l'élève new en fonction des notes x_{new} : $\widehat{y_{new}} = h_{\Theta}(x_{new})$

Prédiction de y_{new}

Fonction $\mathbb{R}^p \to \mathbb{R}$ Paramètres Θ appris avec les $(x_i, y_i)_{i=1,...,n}$

• Utilisons un modèle très simple : La régression linéaire !

$$\widehat{y_i} = h_{\Theta}(x_i) = w_0 + \sum_{j=1}^p w_j x_i^j \qquad \text{dont les paramètres sont } \Theta = \{w_0, w_1, \dots, w_p\}$$

• Prédiction de note au concours pour un élève ayant les notes x_{new} au cours de l'année ?

Maths	Info	Français	Concours
13	14	11	?

Prenons
$$w_0=0$$
. , $w_1=0.33$, $w_2=0.33$ et $w_3=0.33$ \longrightarrow Alors $\widehat{y_{new}}=12.54$

Les meilleurs paramètres $\hat{\Theta}$ minimisent un **risque empirique** sur les $(x_i, y_i)_{i=1,...,n}$, par exemple :

$$\hat{\Theta} = \arg\min_{\Theta = \{w_0, \dots, w_p\}} \frac{1}{n} \sum_{i=1}^n loss \left(h_{\Theta}(x_i), y_i \right)$$

$$= \arg\min_{\Theta = \{w_0, \dots, w_p\}} \frac{1}{n} \sum_{i=1}^n \left(h_{\Theta}(x_i) - y_i \right)^2$$

$$= \arg\min_{\Theta = \{w_0, \dots, w_p\}} \frac{1}{n} \sum_{i=1}^n \left(w_0 + \sum_{j=1}^p w_j x_i^j - y_i \right)^2$$
Risque empirique $R_{\Theta}((x_i, y_i)_{i=1, \dots, n})$

Les meilleurs paramètres $\hat{\Theta}$ minimisent un **risque empirique** sur les $(x_i, y_i)_{i=1,...,n}$, par exemple :

Les meilleurs paramètres $\hat{\Theta}$ minimisent un **risque empirique** sur les $(x_i, y_i)_{i=1,...,n}$, par exemple :

Les meilleurs paramètres $\hat{\Theta}$ minimisent un **risque empirique** sur les $(x_i, y_i)_{i=1,...,n}$, par exemple :

Coeur de ce cours :

- Comprendre la modélisation Statistique de tels problèmes.
- Résoudre les problèmes en pratique (avec le modèle linéaire).
- Poser les bases de l'apprentissage automatique avec un oeil critique sur ce que représentent les données.
- Etendre et assimiler les modèles élémentaires.

Objectif:

Vous donner les clés pour utiliser les outils d'apprentissage de manière pertinente.

Expérience

- Chaque étudiant de la classe tire n=10 fois une pièce à pile ou face avec et compte le nombre de fois que la pièce est tombée sur pile. Pile correspond alors à $X_i=1$ et face à $X_i=0$.
- On suppose que $\mathbb{P}(X=1)=0.5$ et $\mathbb{P}(X=0)=0.5$, ce qui est sans doute très proche de la réalité. Ainsi l'espérance (moyenne) de X est m=0.5 et son écart type est s=0.5.
- On va dessiner un graphique dans lequel l'abscisse représente le nombre de 'piles' potentiellement obtenus par un étudiant (entre 0 et 10) et l'ordonnée représente le nombre d'étudiant qui ont obtenus ce nombre de 'piles' divisé par le nombre total d'étudiants.
- On constatera que cette courbe approche la densité de la loi normale de moyenne 10m et d'écart type $s\sqrt{10}$ (voir appendice A).

Variable aléatoire Une variable aléatoire (v.a.) X est une application définie sur l'ensemble des résultats possibles d'une expérience aléatoire. Dans le cadre de ce cours ses résultats possibles seront toujours dans \mathbb{R} ou un sous-ensemble de \mathbb{R} . On distinguera en particulier le cas continu, par exemple si X représente l'incertitude sur une estimation de la température et le cas discret, par exemple $X \in \{0,1\}$ pour modéliser le résultat lorsque l'on joue à pile ou face.

Exemples:

- Cas discret : Pile ou face dans un jeu, client Homme/Femme, patient jeune/adulte/âgé, ...
- Cas continu : Age d'un client, taille d'un patient, ...

Variable aléatoire Une variable aléatoire (v.a.) X est une application définie sur l'ensemble des résultats possibles d'une expérience aléatoire. Dans le cadre de ce cours ses résultats possibles seront toujours dans \mathbb{R} ou un sous-ensemble de \mathbb{R} . On distinguera en particulier le cas continu, par exemple si X représente l'incertitude sur une estimation de la température et le cas discret, par exemple $X \in \{0,1\}$ pour modéliser le résultat lorsque l'on joue à pile ou face.

Loi de probabilité discrète Par exemple si l'on joue à pile ou face avec une pièce parfaitement équilibrée, on a $\mathbb{P}(X=0)=1-p=0.5$ et $\mathbb{P}(X=1)=p=0.5$. On remarquera que la somme des probabilités de tous les résultats possibles dans le cas discret est toujours 1.

Variable aléatoire Une variable aléatoire (v.a.) X est une application définie sur l'ensemble des résultats possibles d'une expérience aléatoire. Dans le cadre de ce cours ses résultats possibles seront toujours dans \mathbb{R} ou un sous-ensemble de \mathbb{R} . On distinguera en particulier le cas continu, par exemple si X représente l'incertitude sur une estimation de la température et le cas discret, par exemple $X \in \{0,1\}$ pour modéliser le résultat lorsque l'on joue à pile ou face.

Loi de probabilité continue Dans le cas continu, écrire $\mathbb{P}(X=x)$ n'a aucun sens puisque la probabilité d'une valeur exacte est infinitésimale. On pourra par contre utiliser la fonction de répartition $F_X(x) = \mathbb{P}(X \leq x)$ pour représenter comment se répartissent les probabilités des différents résultats de X. Il sera alors possible de quantifier les chances que X soit sur une certaine gamme de valeurs $\mathbb{P}(x_1 < X \leq x_2) = F_X(x_2) - F_X(x_1)$. Naturellement, on aura toujours $F_X(-\infty) = 0$ et $F_X(+\infty) = 1$.

Variable aléatoire Une variable aléatoire (v.a.) X est une application définie sur l'ensemble des résultats possibles d'une expérience aléatoire. Dans le cadre de ce cours ses résultats possibles seront toujours dans \mathbb{R} ou un sous-ensemble de \mathbb{R} . On distinguera en particulier le cas continu, par exemple si X représente l'incertitude sur une estimation de la température et le cas discret, par exemple $X \in \{0,1\}$ pour modéliser le résultat lorsque l'on joue à pile ou face.

Remarque : Idée largement utilisé (même si ce n'est pas sous la forme de courbe)

Variable aléatoire Une variable aléatoire (v.a.) X est une application définie sur l'ensemble des résultats possibles d'une expérience aléatoire. Dans le cadre de ce cours ses résultats possibles seront toujours dans \mathbb{R} ou un sous-ensemble de \mathbb{R} . On distinguera en particulier le cas continu, par exemple si X représente l'incertitude sur une estimation de la température et le cas discret, par exemple $X \in \{0,1\}$ pour modéliser le résultat lorsque l'on joue à pile ou face.

Loi de probabilité continue Dans le cas continu, écrire $\mathbb{P}(X=x)$ n'a aucun sens puisque la probabilité d'une valeur exacte est infinitésimale. On pourra par contre utiliser la fonction de répartition $F_X(x) = \mathbb{P}(X \leq x)$ pour représenter comment se répartissent les probabilités des différents résultats de X. Il sera alors possible de quantifier les chances que X soit sur une certaine gamme de valeurs $\mathbb{P}(x_1 < X \leq x_2) = F_X(x_2) - F_X(x_1)$. Naturellement, on aura toujours $F_X(-\infty) = 0$ et $F_X(+\infty) = 1$.

de répartition $p_X(x)$, la densité de probabilité pourra de même représenter la loi de probabilité d'une v.a. X suivant :

$$p_X(x) = \frac{\partial F_X}{\partial x}(x)$$

En utilisant les densités de probabilités, les chances que X tombe sur une gamme de valeurs $[x_1, x_2]$ sera alors

$$\mathbb{P}(x_1 < X \le x_2) = \int_{x_1}^{x_2} p_X(x) dx.$$

Variable aléatoire Une variable aléatoire (v.a.) X est une application définie sur l'ensemble des résultats possibles d'une expérience aléatoire. Dans le cadre de ce cours ses résultats possibles seront toujours dans \mathbb{R} ou un sous-ensemble de \mathbb{R} . On distinguera en particulier le cas continu, par exemple si X représente l'incertitude sur une estimation de la température et le cas discret, par exemple $X \in \{0,1\}$ pour modéliser le résultat lorsque l'on joue à pile ou face.

Maintenant que les concepts mathématiques sont posés, revenons à l'exemple des « piles ou faces » avec le théorème central limite.

Afin de montrer l'importance de la loi Normale en probabilités/statistique, ainsi que de manipuler les concepts énoncés ci-dessus, il est intéressant de présenter maintenant le Théorème Central Limite (TCL).

Supposons que n variables aléatoires X_1, X_2, \ldots, X_n indépendantes mais suivant une même loi de probabilité soient tirés. L'espérance (ou moyenne) m et l'écart type s de leur loi est connue. Le nombre d'observations n est aussi supposé grand (typiquement n > 30). Alors, la somme des X_i peut être approchée par une loi normal de moyenne nm et d'écart type $s\sqrt{n}$, i.e.:

$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(nm, s^2 n),$$

où la densité de probabilité de la loi normale $\mathcal{N}(\mu, \sigma^2)$ est (voir aussi appendice A):

$$f_{\theta=\{\mu,\sigma\}}(X_i) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Au delà de la connaissance du TCL lui même et de l'illustration des notions de la section 1.2.1, cet exemple nous amène un enseignement qui est (à mes yeux) l'essence de la modélisation statistique. En assemblant plusieurs variables aléatoires, nous avons créé un modèle aléatoire dont on peut étudier les propriétés statistiques telles que la moyenne mais aussi d'une certaine manière la précision/étendue/sensibilité. Ce type de modélisation se distingue alors de la modélisation déterministe qui ne s'intéresse qu'à l'équivalent de la moyenne ici.

Nous avons vu ce qu'est une variable aléatoire et sa loi.

Nous avons aussi vu qu'assembler plusieurs variables permet de créer un autre objet avec ses propres propriétés en terme d'aléa (et qu'elles peuvent être étudiées).

Voyons maintenant comment *estimer les paramètres d'un modèle* supposé représenter un phénomène observé *à partir d'observations* de ce phénomène.

Comme nous le verrons, cette technique est une généralisation de ce qui permet d'apprendre les paramètres d'un modèle d'apprentissage automatique (cf l'exemple sur la prédiction des notes au concours).

Exemple 1 : On suppose que la pièce lancée suit une loi de Bernoulli de paramètre p. Estimons p à partir de plusieurs lancés de pièces pour savoir si elle est bien équilibrée

Exemple 2 : On suppose que la taille des élèves de CM2 à Toulouse suit une loi normale de moyenne m et d'écart type σ . Estimons ces paramètres à partir d'un sous-échantillon des élèves.

Exemple 3 : On suppose que le nombre de personnes devant nous à la caisse au magasin de journaux du quartier suit une loi de Poisson de paramètre λ . Estimons ce paramètre en observant sur quelques mois combien de personnes on avait devant nous.

$$\mathbb{P}(Pile) = p$$
$$\mathbb{P}(Face) = 1 - p$$

Exemple 1 : On suppose que la pièce lancée suit une loi de Bernoulli de paramètre p. Estimons p à partir de plusieurs lancés de pièces pour savoir si elle est bien équilibrée

Exemple 2 : On suppose que la taille des élèves de CM2 à Toulouse suit une loi normale de moyenne m et d'écart type σ . Estimons ces paramètres à partir d'un sous-échantillon des élèves.

Exemple 3 : On suppose que le nombre de personnes devant nous à la caisse au magasin de journaux du quartier suit une loi de Poisson de paramètre λ . Estimons ce paramètre en observant sur quelques mois combien de personnes on avait devant nous.

Pourquoi ces estimations?

- Comprendre les phénomènes
- Prédire ce qui peut se passer si l'expérience est reproduite

FS-AA - chapitre 1 : Introduction ightarrow 1.3 Estimation empirique des paramètres d'une loi

On dénote X une variable aléatoire (v.a.) supposée suivre une loi discrète (e.g. Bernoulli) ou continue (e.g. Normale) de paramètres θ . On note aussi $x_1, \ldots, x_i, \ldots, x_n$ les observations de X.

Pour une observation x_i donnée, on modélise alors la loi de X avec la fonction $f(x_i; \theta)$. Cette fonction vaut $f(x_i; \theta) = \mathbb{P}_{\theta}(X = x_i)$ si X est une v.a. discrète et $f(x_i; \theta) = f_{\theta}(x_i)$ si X est continue, où $f_{\theta}(x_i)$ est la densité de la loi en fonction de ses paramètres θ .

Pour des paramètres θ donnés (ex : moyenne et écart type d'une loi normale), $f(x_i; \theta)$ sera alors d'autant plus élevée que x_i a des chances d'être tirée en fonction des θ .

La vraisemblance des paramètres θ en fonction des observations x_1, \ldots, x_n est alors :

$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta)$$

Dans l'exemple de pile ou face, supposons que l'on souhaite vérifier empiriquement si une pièce est équilibrée ou non. On modélisera $\mathbb{P}(X=1)=f(X_i=1;\theta=\{p\})=p$ et $\mathbb{P}(X=0)=f(X_i=0;\theta=\{p\})=1-p$, puis on réalisera n observations de X en tirant à pile ou face. La vraisemblance sera alors $L(\theta=\{p\})=\prod_{i=1}^{n}(1_{X_i=1}p+1_{X_i=0}(1-p))$.

Supposons que sur n = 10

tirages, on observe 4 'piles' et 6 'faces'. En simplifiant légèrement les notations, la vraisemblance du paramètre p par rapport à notre modèle et nos observations empiriques sera alors $L(p) = p^4(1-p)^6$. Calculons alors la vraisemblance pour plusieurs valeurs de p: L(0.2) = 0.00042, L(0.5) = 0.00098, L(0.8) = 0.00002. De ces trois valeurs, p = 0.5 semble le plus vraisemblable.

FS-AA - chapitre 1 : Introduction ightarrow 1.3 Estimation empirique des paramètres d'une loi

De manière générale, on calculera le maximum de vraisemblance :

$$\hat{\theta} = \arg\max_{\theta} L(\theta) \,,$$

Pour des raisons numériques, il est aussi bien pratique de maximiser la logvraisemblance au lieu de la vraisemblance brute :

$$\hat{\theta} = rg \max_{\theta} \log (L(\theta))$$

$$= rg \max_{\theta} \log \left(\prod_{i=1}^{n} f(x_i; \theta) \right)$$

$$= rg \max_{\theta} \sum_{i=1}^{n} \log f(x_i; \theta)$$

Vu que la fonction log est strictement croissante les paramètres optimum $\hat{\theta}$ seront les mêmes avec la log-vraisemblance ou la vraisemblance.

FS-AA - chapitre 1 : Introduction ightarrow 1.4 Estimation empirique des paramètres d'un modèle

Retournons maintenant à notre exemple 'notes au concours' avec un regard de 'statisticien' :

Utilisons une modélisation qui plus flexible sur l'erreur

FS-AA - chapitre 1 : Introduction ightarrow 1.4 Estimation empirique des paramètres d'un modèle

On suppose disposer d'observations $\{y_i\}_{i=\{1,...,n\}}$ que l'on souhaite prédire/deviner à partir de observations correspondantes $\{x_i\}_{i=\{1,...,n\}}$, où chaque y_i correspond à x_i (voir l'exemple introductif par exemple). Dans ce cours, et très souvent en apprentissage automatique, on va alors optimiser les paramètres θ d'un modèle f_{θ} pour prédire au mieux les y_i avec $\hat{y_i} = f_{\theta}(x_i)$.

On suppose disposer d'observations $\{y_i\}_{i=\{1,...,n\}}$ que l'on souhaite prédire/deviner à partir de observations correspondantes $\{x_i\}_{i=\{1,...,n\}}$, où chaque y_i correspond à x_i (voir l'exemple introductif par exemple). Dans ce cours, et très souvent en apprentissage automatique, on va alors optimiser les paramètres θ d'un modèle f_{θ} pour prédire au mieux les y_i avec $\hat{y_i} = f_{\theta}(x_i)$.

Faisons l'hypothèse que les erreurs d'approximation du modèle $e_i = y_i - f_{\theta}(x_i)$ suivent une loi normale centrée, i.e. $e_i \sim \mathcal{N}(0, \sigma)$. Ce choix par défaut est commun et semble raisonnable quand f_{θ} est bien calibré. Nous pouvons alors utiliser le principe de maximum de vraisemblance pour estimer les paramètres θ du modèle f_{θ} .

$$\hat{\theta} = rg \max_{\theta} \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{e_i^2}{2\sigma^2}\right)$$

On suppose disposer d'observations $\{y_i\}_{i=\{1,...,n\}}$ que l'on souhaite prédire/deviner à partir de observations correspondantes $\{x_i\}_{i=\{1,...,n\}}$, où chaque y_i correspond à x_i (voir l'exemple introductif par exemple). Dans ce cours, et très souvent en apprentissage automatique, on va alors optimiser les paramètres θ d'un modèle f_{θ} pour prédire au mieux les y_i avec $\hat{y_i} = f_{\theta}(x_i)$.

Faisons l'hypothèse que les erreurs d'approximation du modèle $e_i = y_i - f_{\theta}(x_i)$ suivent une loi normale centrée, i.e. $e_i \sim \mathcal{N}(0, \sigma)$. Ce choix par défaut est commun et semble raisonnable quand f_{θ} est bien calibré. Nous pouvons alors utiliser le principe de maximum de vraisemblance pour estimer les paramètres θ du modèle f_{θ} .

$$\hat{\theta} = \arg\max_{\theta} \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{e_i^2}{2\sigma^2}\right)$$

$$= \arg\max_{\theta} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} e_i^2\right)$$

$$= \arg\min_{\theta} \sum_{i=1}^{n} e_i^2$$

$$= \arg\min_{\theta} \sum_{i=1}^{n} (y_i - f_{\theta}(x_i))^2$$

Cette technique d'estimation est celle dite au sens des moindres carrés. Nous la retrouvons très couramment en apprentissage automatique et son interprétation est particulièrement intuitive. Elle doit notamment sa popularité au fait qu'il est aisé de calculer son gradient par rapport aux paramètres θ si on sais calculer le gradient de f_{θ} par rapport à θ :

$$\nabla_{\theta} e_i^2 = 2(y_i - f_{\theta}(x_i)) \nabla_{\theta} f_{\theta}(x_i)$$

Cela ouvre la porte aux techniques d'optimisation par descente de gradient qui sont quasi systématiques en apprentissage automatique.

Pour un public avisé, il faudra se souvenir du fait que la pertinence de l'estimation de paramètres d'un modèle au sens des moindres carrés repose sur une hypothèse de normalité de l'erreur.