Exercice 1

Soient G, H deux groupes multiplicatifs. On munit $G \times H$ de l'opération :

$$\forall g, g' \in G, \ \forall h, h' \in H, \ (g, h) \cdot (g', h') = (gg', hh').$$

Montrer que \cdot définit une loi de groupe sur $G \times H$.

Exercice 2

Soit G un groupe multiplicatif et H une partie finie de G non vide, stable par multiplication. Montrer que H est un sous-groupe de G.

Exercice 3

Soit G un groupe multiplicatif.

On note $Z(G) = \{a \in G \text{ tel que } \forall b \in G, \text{ on a } ab = ba\} \ (\{centre \ de \ G), \ et \ pour \ a \in G \ on \ note : C(a) = \{b \in G \text{ tel que } ab = ba\} \ (commutant \ de \ a \}).$

Montrer que Z(G) et C(a) sont des sous-groupes de G.

Exercice 4

Les opérations suivantes sont-elles des lois de groupe?

Exercice 5 (Groupe d'exposant 2)

Soit G un groupe fini tel que : $\forall x \in G, x^2 = e$.

- 1. Montrer que G est commutatif (considérer (xy)(xy)).
- 2. Donner l'exemple d'un tel groupe de cardinal infini.

Exercice 6

Un élément x d'un anneau A est dit nilpotent s'il existe un entier $n \ge 1$ tel que $x^n = 0$. On suppose que A est commutatif, et on fixe a, b deux éléments nilpotents.

- 1. Montrer que ab est nilpotent.
- 2. Montrer que a + b est nilpotent.
- 3. Montrer que $1_A a$ est inversible.
- 4. Dans cette question, on ne suppose plus que A est commutatif. Soit $u, v \in A$ tels que uv est nilpotent. Montrer que vu est nilpotent.

Exercice 7

On considère $Z[\sqrt{2}] = a + b\sqrt{2}; a, b \in \mathbb{Z}.$

- 1. Montrer que $(\mathbb{Z}[\sqrt{2}], +, \tilde{A})$ est un anneau.
- 2. On note $N(a+b\sqrt{2})=a^2-2b^2$. Montrer que, pour tous x,y de $\mathbb{Z}[\sqrt{2}]$, on a N(xy)=N(x)N(y)
- 3. En déduire que les éléments inversibles de $\mathbb{Z}[\sqrt{2}]$ sont ceux s'écrivant $a+b\sqrt{2}$ avec $a^2-2b^2=1$

Exercice 8

- a. Montrer que les seuls idéaux d'un corps K sont $\{0_K\}$ et K.
- b. On dit qu'un idéal est premier si $\forall (x,y) \in I : xy \in I \implies x \in I \text{ ou } y \in I$. Montrer qu'un idél de $\mathbb{Z}/n\mathbb{Z}$ est premier ssi p est premier.