simsem: SIMulated Structural Equation Modeling in R

Alexander M. Schoemann Sunthud Pornprasertmanit

Patrick J. Miller

IMPS 2012 Lincoln, Nebraska

College of Liberal Arts
& Sciences

Monte Carlo Simulations

- Monte Carlo simulations are a popular tool for methodologists with many uses
 - □ Determine the accuracy of new methods
 - □ Compare different methods
 - □ Perform power analyses
 - Determine model fit in SEM

Monte Carlo Simulations

- General steps in a Monte Carlo Simulation
 - Specify population parameters
 - Create a sample of size N, based on population parameters
 - 3. Analyze sample data from step 2 with chosen statistical method(s).
 - 4. Repeat steps 2 and 3 for each of r replications.

100

Software Options for Monte Carlo Simulations with SEM

- Mplus
- EQS
- PRELIS/LISREL
- SAS
- lavaan
- Other R packages (sem, OpenMx)
- Others?

simsem

- A new R package designed to automate Monte Carlo Simulations using SEM
- simsem can:
 - □ Generate data
 - Modify generated data
 - □ Analyze data
 - □ Summarize results
 - □ Use multiple processors across simulations

- Data generation
 - Currently only continuous data are generated.
 - By default data are generated from a multivariate normal distribution
 - Both manifest and latent variables can have nonnormal distributions
 - Data can be generated from a covariance matrix and mean vector or through a series of linear equations.

- Data generation (continued)
 - □ Data can be generated with population misfit
 - Data can be generated with continuously varying parameters
 - □ Generating and analysis models are specified using LISREL matrices

- Data modification
 - Many type of missing data mechanisms can be simulated
 - MCAR
 - MAR
 - Planned missing data designs
 - □ "3" Form Design
 - □ "2" Method Design

- Data analysis
 - □ All models are fit using lavaan (Rosseel, 2012)
 - Robust ML estimators are available
 - Equality constraints can be included
 - FIML is used when data are missing
 - Multiple imputation of missing data is performed with Amelia (Honaker, King & Blackwell, 2011)
 - Data are imputed, analyzed and results are combined with Rubin's Rules for each replication

- Summarizing Results
 - □ Results from a simulation can be automatically summarized
 - □ Results for each model parameter include:
 - Parameter bias
 - Standard error bias
 - Confidence interval coverage
 - Power

- Given population parameters, what sample size will result in a given level of power (e.g., .80)?
 - Continuously varying sample size approach
 - Specify model and a range of sample sizes
 - Generate 3000 replications varying sample size across replications
 - Record each parameter's significance for each replication (0 not sig., 1 sig.)

м

Example 1: Power Analysis

- Given population parameters, what sample size will results in a given level of power (e.g., .80)?
 - Use logistic regression to predict a parameter's significance (across all replications) from the sample size of each replication.
 - □ The predicted probability from the logistic regression at a given N is power for that parameter at that N

$$p = \frac{e^{\frac{B_0 + B_1 N}{1 + e^{B_0 + B_1 N}}}$$

12

$$LY = \begin{pmatrix} 0.7 & 0 \\ 0.7 & 0 \\ 0 & 0.7 \\ 0 & 0.7 \\ 0 & 0.7 \\ 0 & 0.7 \\ 0 & 0.7 \end{pmatrix} PS = \begin{pmatrix} 1 & 0.1 \\ 0.1 & 1 \\ 0.51 & 0 & 0 & 0 & 0 \\ 0 & 0.51 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.51 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.51 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.51 & 0 \\ 0 & 0 & 0 & 0 & 0.51 & 0 \end{pmatrix}$$

- Results: What sample size results in power for the latent correlation of .80?
 - □ 3000 replications, randomly varying N between 100-2000
 - \square logit(power) = $\beta_0 + \beta_1 N$
 - \square Power = .80 when N = 1436

Example 2: Planned Missing Data Design

Investigate power and bias in a 3 form planned missing data design

Form	Common Set X	Variable Set A	Variable Set B	Variable Set C
1	1/4 of items	1/4 of items	1/4 of items	Missing
2	1/4 of items	1/4 of items	Missing	1/4 of items
3	1/4 of items	Missing	1/4 of items	1/4 of items

Example 2: Planned Missing Data

Design

re.

Example 2: Planned Missing Data Design

- Planned missing design:
 - □ X block:Y1 and Y4
 - □ A block: Y2 and Y5
 - □ B block: Y3
 - □ C Block: Y4
- Missing data is handled through 5 imputations in Amelia
- N = 500
- 1000 replications

Example 2: Results

```
Fit Indices Cutoffs
                      0.05
                                0.01
                                         0.001
                                                    Mean
            0.1
         14.793
                   18.995
                             27.851
                                        43.315
                                                   5.420
Chi.
ATC:
       7962.256
                7986.963
                           8049.541
                                      8076.073
BIC
       8042.333
                 8067.041
                                      8156.151
RMSEA
          0.041
                    0.052
                               0.070
                                         0.094
                                                   0.010
CFT
          0.984
                    0.974
                               0.949
                                         0.881
                                                   0.996
          0.970
                    0.951
                               0.905
                                         0.776
                                                   1.014
                    0.044
                               0.050
                                         0.056
                                                   0.032
SRMR
          0.041
```


	•							
====== Parameter Estimates and Standard Errors ========								
	Estimate.Average	Estimate.SD	Average.SE	PowerNot.equal.0.	Std.Est	Std.Est.SD		
LY1_1	0.699	0.063	0.060	1.000	0.700	0.055		
LY2 1	0.703	0.066	0.067	1.000	0.704	0.055		
LY3 1	0.701	0.068	0.067	1.000	0.702	0.056		
LY4 2	0.699	0.060	0.061	1.000	0.700	0.052		
LY5 2	0.701	0.069	0.067	1.000	0.704	0.057		
LY6 2	0.704	0.068	0.067	1.000	0.703	0.055		
PS2 1	0.098	0.068	0.067	0.317	0.098	0.068		
TE1 1	0.503	0.077	0.073	0.994	0.506	0.078		
TE2 2	0.499	0.078	0.076	1.000	0.502	0.077		
TE3 3	0.502	0.080	0.076	0.999	0.504	0.079		
TE4 4	0.505	0.075	0.073	0.995	0.507	0.074		
TE5 5	0.496	0.078	0.076	1.000	0.501	0.079		
TE6 6	0.501	0.076	0.077	0.999	0.502	0.077		
TY1	0.000	0.045	0.045	0.052	0.000	0.045		
TY2	0.001	0.055	0.053	0.061	0.001	0.055		
TY3	0.000	0.052	0.053	0.052	0.000	0.052		
TY4	0.000	0.044	0.045	0.051	0.000	0.044		
TY5	0.000	0.055	0.053	0.061	0.000	0.055		
TY6	0.001	0.052	0.053	0.049	0.001	0.052		

_	•							
	Average.Param	Average.Bias	Coverage	Average.FMI1	SD.FMI1	Average.FMI2	SD.FMI2	
LY1_1	0.70	-0.001	0.939	0.325	0.160	0.356	0.177	
LY2_1	0.70	0.003	0.936	0.443	0.168	0.485	0.182	
LY3 1	0.70	0.001	0.928	0.446	0.175	0.487	0.190	
LY4 2	0.70	-0.001	0.949	0.327	0.163	0.358	0.180	
LY5 2	0.70	0.001	0.927	0.447	0.174	0.489	0.188	
LY6_2	0.70	0.004	0.936	0.445	0.174	0.487	0.188	
PS2_1	0.10	-0.002	0.944	0.218	0.117	0.237	0.131	
TE1_1	0.51	-0.007	0.945	0.432	0.181	0.472	0.195	
TE2 2	0.51	-0.011	0.941	0.496	0.175	0.541	0.186	
TE3 3	0.51	-0.008	0.928	0.498	0.179	0.543	0.191	
TE4 4	0.51	-0.005	0.947	0.434	0.185	0.474	0.200	
TE5_5	0.51	-0.014	0.918	0.491	0.178	0.535	0.190	
TE6 6	0.51	-0.009	0.943	0.499	0.179	0.544	0.191	
TY1	0.00	0.000	0.948	0.000	0.000	0.000	0.000	
TY2	0.00	0.001	0.939	0.265	0.135	0.290	0.151	
TY3	0.00	0.000	0.948	0.267	0.132	0.292	0.148	
TY4	0.00	0.000	0.949	0.000	0.000	0.000	0.000	
TY5	0.00	0.000	0.939	0.273	0.133	0.299	0.149	
TY6	0.00	0.001	0.951	0.271	0.131	0.296	0.147	

Some Future Plans

- Multiple group models (coming soon!)
- Categorical indicators
- Multilevel SEM
- Non-linear constraints
- Additional analysis (e.g., OpenMx) and imputation packages (e.g, Mice)
- Latent interactions
- Syntax entry

Also...

- Another R package that may interest R users familiar with SEM
- semTools
 - □ Useful tools for conducting SEM in R
 - e.g., runMI, imputes missing data, runs each imputed data set, and combines results
 - □ An open source, community supported package
 - Have an idea for a function? Or a way to improve an existing function? Let us know!

Thank you. Questions?

- Thanks to
 - □ Paul Johnson
 - □ Todd Little
 - ☐ Yves Rosseel

simsem: simsem.org example code available at: simsem.org email: schoemann@ku.edu

Partial support provided by NSF grant 1053160 (Wei Wu & Todd D. Little, co-Pls)