Устюжанина Екатерина

13 октября 2014 г.

1) Постоить обыкновенную грамматику в нормальном виде Хомского для языка Дика $D = \{\varepsilon, ab, aabb, abab, aaabbb, \ldots\}$ над алфавитом $\{a, b\}$. Для этой грамматики и для входной строки $w = abaabba \notin D$, построить таблицу разбора $T_{i,j}$, как в алгоритме Кокка–Касами–Янгера.

грамматика языка Дика без н. ф.

$$S \to \varepsilon \mid SS \mid aSb$$

приведем к н.ф.

$$S \rightarrow \varepsilon \mid KK \mid LB$$

$$B \to b$$

$$K \to KK \mid LB$$

$$L \to a \mid AK$$

$$A \to a$$

	a	b	a	a	b	b	a
a	A, L	S, K	Ø	Ø	Ø	S, K	Ø
b		В	Ø	Ø	Ø	Ø	Ø
a			A, L	Ø	L	S, K	Ø
a				A, L	S, K	Ø	Ø
b					В	Ø	Ø
b						В	Ø
a							A, L

2)

3)

4) Построить линейную грамматику для языка $f(L_0)$, где $L_0 = \{w\$w^R \mid w \in \{a,b\}^*\}$ $f(L) = \{[w_{1,1}\# \dots \# w_{1,k_1}] \dots [w_{m,1}\# \dots \# w_{m,k_m}] \mid \exists i_1, \dots, i_m : w_{1,i_1}w_{2,i_2}\dots w_{m,i_m} \in L\}$

$$S \to [A]$$

$$F \to R \mid P \mid T$$

$$R \rightarrow \$R \mid aR \mid bR \mid \#A$$

$$P \rightarrow A \# \mid P\$ \mid Pa \mid Pb$$

$$T \rightarrow \$ \mid aTa \mid bTb \mid O\# \mid \#Q \mid \ I][|\][D$$

$$O \rightarrow I][\mid Oa \mid Ob \mid O\$ \mid O\#$$

$$Q \rightarrow][D \mid aQ \mid bQ \mid \$Q \mid \#Q]$$

$$I \to B \mid T$$

$$B \to Ba \mid Bb \mid B\$ \mid I\#$$

$$D \to L \mid T$$

$$L \rightarrow \$L \mid aL \mid bL \mid \#D$$

- 5) Разрешима ли такая задача: «по данной обыкновенной грамматике, определить, порождает ли она хотя бы одну строку чётной длины»? Если разрешима, привести алгоритм, а если неразрешима, доказать это с помощью методов лекции 15 (использовав язык VALC в готовом виде, или же определив новый его вариант).
 - 1. Приведем нашу грамматику к н.ф. Хомского
 - 2. Будем помечать те нетерминалы, которые пораждают строки четной длины флагом четности а , флагом нечетности , если они пораждают строки нечетной длины
 - 3. рассмотрим правила вида $A \to MN$ если M и N уже рассмотренны и оба помеченны флагом четности или оба помеченны флагами нечетности, то значит A помечаем флагом четности, в противном случае флагом нечетности правил конечное число => алгоритм завершится задача разрешима
- 6) Разрешима ли такая задача: «по данной обыкновенной грамматике, определить, порождает ли она хотя бы одну строку-палиндром w, т.е., строку, для которой $w = w^R$ »?

Рассмотрим две грамматики : G_1 и G_2 , которые пораждают языки L_1 и L_2 , G_2 пораждает все перевернутые слова в языке $L_2 = >$ перевернем все правила из грамматики G_1

Рассмотрим грамматику G_3 , которая пораждает слова, принадлежающие языку L_3 с помощью правила $S \to A$ symb B, symb - символ, не принадлежащий алфавитам языков : L_1, L_2 . Тогда грамматика G_3 будет содержать палиндром, если пересечение языков L_1 и L_2 не пусто. А это не разрешимая задача