Notes for Operations Research

Lan Peng, PhD Student

Department of Industrial and Systems Engineering University at Buffalo, SUNY lanpeng@buffalo.edu

June 8, 2019

Contents

1	Preliminary Topics	7
1	Review of Linear Algebra	9
2	Polyhedron Analysis	11
тт		10
II	Linear Programming	13
3	Introduction	15
4	Formulation Skills	17
5 ′	The Simplex Method	19
6	Artificial Variable	21
7	Duality Theory	23
8	Sensitivity Analysis	25
9	Ellipsoid Algorithm	27
10	Projective Algorithm	29
11	Interior-Point Algorithm	31
12]	Exercises	33
III	Graph and Network Theory	35
	Introduction	37
	Paths, Trees, and Cycles	39
	Shortest-Path Problem	41
	Minimum Spanning Tree Problem	43
17 .	Maximum Flow Problem	45
18	Minimum Cost Flow Problem	47
19	Assignment and Matching Problem	49
20]	Exercises	51
IV	Integer and Combinatorial Programming	53
	Introduction	
4 1.	miroduction	55

4	CONTENTS
---	----------

22 Formulation Skills	57
23 Branch and Bound	59
24 Branch and Cut	61
25 Packing and Matching	63
26 Traveling Salesman Problem	65
27 Knapsack Problem	67
28 Exercises	69
V Dynamic Programming	71
29 Introduction	73
30 Exercises	75
VI Nonlinear Programming	77
31 Introduction	79
32 Exercises	81
VII Heuristics ans Meta-heuristics	83
33 Introduction	85
34 Exercises	87
VIII Computational Complexity	89
35 Introduction	91
36 Exercises	93
IX Game Theory	95
37 Introduction	97
38 Exercises	99
X Decision Analysis	101
39 Introduction	103
40 Exercises	105
XI Probability and Stochastic Processes	107
41 Introduction	109
42 Exercises	111

CONTENTS 5

XII Markov Chains	113
43 Introduction	115
44 Discrete-Time Markov Chains	117
45 Continuous-Time Markov Chains	119
46 Exercises	121
XIII Queuing Theory	123
47 Introduction	125
48 Queuing Model	127
49 Birth-Death Process and $M/M/C/K$	129
50 Phase-Type Queue	131
51 Bulk Queue	133
$52~\mathrm{M/G/1}$ and $\mathrm{G/M/1}$	135
53 Queuing Network	137
54 Exercises	139
XIV Inventory Theory	141
55 Introduction	143
56 Exercises	145
XV Reliability Theory	147
57 Introduction	149
58 Exercises	151
XVI Bayesian Statistic	153
59 Introduction	155
60 Exercises	157
XVII Classical Statistic	159
61 Introduction	161
62 Exercises	163
XVIII Simulation	165
63 Introduction	167
64 Exercises	169

6 CONTENTS

Part I Preliminary Topics

Review of Linear Algebra

Polyhedron Analysis

Part II Linear Programming

Introduction

Formulation Skills

The Simplex Method

Artificial Variable

Duality Theory

Sensitivity Analysis

Ellipsoid Algorithm

Projective Algorithm

Interior-Point Algorithm

Exercises

Part III Graph and Network Theory

Introduction

Paths, Trees, and Cycles

Shortest-Path Problem

Minimum Spanning Tree Problem

Maximum Flow Problem

Minimum Cost Flow Problem

Assignment and Matching Problem

Exercises

Part IV

Integer and Combinatorial Programming

Introduction

Formulation Skills

Branch and Bound

Branch and Cut

Packing and Matching

Traveling Salesman Problem

Knapsack Problem

Exercises

Part V Dynamic Programming

Part VI Nonlinear Programming

Part VII Heuristics ans Meta-heuristics

Part VIII Computational Complexity

Part IX Game Theory

Part X Decision Analysis

Part XI Probability and Stochastic Processes

Exercises

Part XII Markov Chains

Discrete-Time Markov Chains

Continuous-Time Markov Chains

Exercises

Part XIII Queuing Theory

Queuing Model

Birth-Death Process and M/M/C/K

Phase-Type Queue

Bulk Queue

Chapter 52

M/G/1 and G/M/1

Queuing Network

Exercises

Part XIV Inventory Theory

$\begin{array}{c} {\rm Part~XV} \\ {\rm Reliability~Theory} \end{array}$

Part XVI Bayesian Statistic

Part XVII Classical Statistic

Part XVIII

Simulation