Sparse Autoencoders Find Highly Interpretable Features in Language Models (arxiv)

Key Highlights

問題

- 這篇論文旨在解決哪個問題? 這篇論文旨在解決神經網路中的多義性問題,即個別神經元在多個語義不同的上下文中被激活,這使得研究人員無法找到簡明、人類可理解的解釋來說明神經網路在內部做什麼。
- 現有方法是什麼,有哪些限制? 現有方法包括分析個別神經元,但它們受到多義性 影響,即神經元在幾個不相關的特徵下激活。替代解構方法如PCA和ICA也未能提 供可解釋的特徵。核心限制在於這些方法無法解決**疊加問題**,即神經網路用過度完 備的非正交方向集來表示比神經元多的特徵。

解決方案

- 這篇論文提出的解決方案是什麼?這篇論文提出使用**稀疏自編碼器**來學習字典特徵,通過稀疏線性組合可解釋方向來重構內部激活。自編碼器使用ReLU激活函數、綁定權重,並最小化重構損失加上L1稀疏懲罰。
- 這個想法受到什麼啟發?是否受到其他論文影響?這種方法建立在Sharkey等人(2023)的工作基礎上,類似於Yun等人(2021)。受Elhage等人(2022b)提出的假設啟發,即多義性源於疊加,並與經典的稀疏字典學習(Olshausen & Field, 1997)相關。
- 這種方法有理論基礎支持嗎?該方法基於稀疏字典學習理論,目標是找到方向,使 得激活向量可以由稀疏線性組合重構。L1懲罰促進稀疏性,並且可以通過實驗和理 論證明,使用L1懲罰的重構可以恢復真實特徵。

實驗

- 實驗表現如何?稀疏自編碼器特徵在自解釋性評分上顯著優於基線(神經元、隨機 方向、PCA、ICA),尤其是在早期層。在間接賓語識別任務上,所需的字典特徵 比PCA解構所需的特徵更少,以達到相同的KL散度。個案研究顯示高度單義的特徵 (例如撇號檢測)。
- 這種方法有什麼限制或假設?該方法無法達到零重構損失,表明層信息捕捉不完全。用重構替代層激活會提高困惑度(在Pythia-70M的第二層中從25增至40)。該方法在殘差流上效果最好,但在MLP層上效果有限,很多"死特徵"從不激活。

創新

 此篇論文做了什麼重要或新穎的發現?這篇論文表明可以使用可擴展的非監督方法 解決語言模型中的疊加問題。它顯示所學的特徵比替代方法更單義,並能夠實現更 細粒度的因果分析。該工作引入跨層的自動電路檢測,並通過自動評分和手動個案 研究驗證可解釋性。

評論/批判

- 這篇論文有什麼限制? 有幾個限制:(1)重構不完全導致信息丟失,(2)方法在 MLP層上效果不佳,有許多死特徵,(3)在後期層性能下降,(4)目前的自解釋 性方法可能無法捕捉所有類型的特徵,(5)僅在一個特定任務(IOI)上進行有限 的評估。
- 論文是否有效地證明了它的主張?論文通過多種評估方法提供了強有力的證據:自動解釋性評分、因果干預實驗和詳細的個案研究。然而,評估範圍有些受限(主要是單一模型家族和單一行為任務),且自解釋性方法存在已知的限制,可能會影響結論。

Comprehensive Analysis

ABSTRACT

- 本論文探討了理解神經網絡內部運作的挑戰,特別是多語義性 (polysemanticity)問題——即個別神經元在多個語義不同的上下文中被激 活,使得解釋網絡內部操作變得困難。
- **主要問題**:作者假設多語義性源自於**疊加(superposition)**——神經網絡通過將 特徵編碼為高維激活空間中的方向,而不是在個別神經元中,從而表示比可用神經 元更多的特徵。
- 提出的解決方案:研究人員使用稀疏自編碼器(sparse autoencoders)來重構語言模型的內部激活,並識別這些特徵方向。他們的方法發現了稀疏激活的特徵,這些特徵相比其他方法更加可解釋且單一語義(monosemantic)。
- 主要結果:
 - 。 通過自動化方法測量,學到的特徵顯示出更好的可解釋性。
 - 。與以前的方法相比,該方法能夠更精確地識別間接賓語識別任務中的因果特 徵。
 - 證明了語言模型中的疊加問題可以使用可擴展的無監督技術來解決。
- **意義**:這項工作為機械可解釋性研究提供了基礎,可能在神經網絡中實現更大的模型透明性和可控性。

INTRODUCTION

綜述

- 這篇介紹了一篇關於使用稀疏自編碼器來解析神經網絡機制的論文。
- 主要要點是:

問題:

- AI 系統通過我們無法理解的過程做出決策,這引起了信任和安全問題。
- 。傳統上通過分析單個神經元來解釋神經網絡的方法面臨多語義性的挑戰,即神 經元對多個無關特徵激活。

核心假設:

- 。作者基於疊加的概念,認為神經網絡學習的特徵比層中的維度更多,並將它們 作為在超完備基中存儲的非正交向量。
- 當特徵稀疏激活時,這是可能的。

建議的解決方案:

- 。該論文使用稀疏自編碼器通過學習稀疏字典表示來恢復神經網絡激活中的有意 義特徵。
- 。這將可解釋性問題框定為稀疏字典學習,激活向量可以從學習到的方向的稀疏 線性組合中重構。

驗證方法:

- 。 作者通過三種主要技術檢驗他們的方法:
 - 1. 比較神經元和其他分解方法的可解釋性分數。
 - 2. 展示特定任務的更精確特徵識別。
 - 3. 案例研究顯示特徵是單義的,對模型輸出有可預測的影響。
- 該工作旨在通過找到語義上有意義的特徵分解來提供更有原則的方法來理解神經網絡內部。
- 圖像綜述:
 - 。 沒有附圖。

"Mechanistic interpretability seeks to mitigate such risks through understanding how neural networks calculate their outputs, allowing us to reverse engineer parts of their internal processes and make targeted changes to them"

機械解釋性通過理解神經網絡如何計算其輸出來減輕這種風險,從而使我們能夠逆向工程其內部過程的部分並對其進行針對性更改。

"They call this phenomenon superposition. Since a vector space can only have as many orthogonal vectors as it has dimensions, this means the network would learn an overcomplete basis of non-orthogonal features."

他們稱這種現象為重疊。由於向量空間只能有其維度那麼多正交向量,這意味著網絡將學 習到一個非正交特徵的過完備基。

"This suggests that we may be able to recover the network's features by finding a set of directions in activation space such that each activation vector can be reconstructed from a sparse linear combinations of these directions. This is equivalent to the well-known problem of sparse dictionary learning"

這表明我們可以通過在激活空間中找到一組方向來恢復網絡的特徵,以便每個激活向量可以從這些方向的稀疏線性組合中重建出來。這等同於眾所周知的稀疏字典學習問題。

TAKING FEATURES OUT OF SUPERPOSITION WITH SPARSE DICTIONARY LEARNING

- 本節描述了一種使用稀疏字典學習從神經網絡中提取可解釋特徵的方法。
- 作者討論了"疊加"問題,這是一種神經網絡以重疊方式編碼多個特徵,使其難以解釋的情況。

核心方法: - 使用稀疏字典學習將神經網絡激活(來自如 Pythia-70M 模型)分解為可解釋的組成部分。 - 訓練一個具有綁定權重和 ReLU 激活函數的稀疏自編碼器。 - 自編碼器有一個隱藏層,其大小是輸入維度的 R 倍,其中 R 是一個超參數。

技術細節: - 編碼器學習一個字典矩陣 M,其中每一行代表一個"字典特徵"。 - 隱藏層激活 c 表示用於重建輸入的稀疏係數。 - 損失函數結合了重建誤差(L2)和稀疏懲罰(對係數的 L1)。 - L1 懲罰鼓勵字典特徵的稀疏組合,理論上證明可以恢復真實特徵。

目標: - 學習一個可解釋特徵的字典,這些特徵可以近似表示神經網絡內部表示中編碼的 真實基本特徵,使網絡的計算變得更加透明和易於理解。

"To take network features out of superposition, we employ techniques from sparse dictionary learning"

為了解析網絡特徵,我們使用稀疏字典學習的技術。

"We train an autoencoder with a sparsity penalty term on its hidden activations... The autoencoder is a neural network with a single hidden layer of size dhid = Rdin, where din is the dimension of the language model internal activation vectors, and R is a hyperparameter that controls the ratio of the feature dictionary size to the model dimension"

我們訓練了一個自編碼器,并在其隱藏層激活上加入稀疏懲罰項... 自編碼器是一個具有單一隱藏層的神經網絡,隱藏層的大小為 dhid = Rdin,其中 din 是語言模型內部激活向量的維度,R 是控制特徵字典大小與模型維度比率的超參數。

"It can be shown empirically (Sharkey et al., 2023) and theoretically (Wright & Ma, 2022) that reconstruction with an $\ell 1$ penalty can recover the ground-truth features that generated the data"

經驗上(Sharkey 等,2023 年)和理論上(Wright & Ma,2022 年)都表明,使用 ℓ1 懲罰進行重建可以恢復生成數據的真實特徵。

INTERPRETING DICTIONARY FEATURES

以下段落描述了作者如何評估稀疏自動編碼器在語言模型中所學習的字典特徵的可解釋 性。

重點:

- **自動化可解釋性測量**:作者採用了Bills等人(2023)的自動化方法來進行大規模的可解釋性評估。這種方法包括以下步驟:
 - 。 抽樣激活特徵的文本
 - ∘ 使用語言模型(GPT-4)生成人類可讀的描述
 - 。 測試這些描述在新文本上的特徵激活預測能力
 - 使用預測激活與實際激活之間的相關性作為可解釋性評分
- **比較結果**:稀疏字典特徵在可解釋性評分上明顯優於基線方法(默认基礎,隨機方向,PCA,ICA),特別是在早期層。然而,這種優勢在後期層中減弱,可能是由於特徵的複雜性增加或是自動解釋的限制。
- **特徵範例**:表1展示了來自第1層的樣本特徵,包括姓氏檢測器(得分: 0.33)、字母 'W'(得分: 0.55)、以及數字 '5'(得分: 0.57)。
- **限制**:作者承認,目前用於解釋的LLM在識別模式方面存在侷限,並且無法通過檢查對模型輸出的因果影響來驗證輸出,儘管他們在後續部分中解決了這些限制中的一些問題。

"We use the automated approach introduced in Bills et al. (2023) because it scales well to measuring interpretability on the thousands of dictionary features our autoencoders learn... The correlation between the model's predicted activations and the actual activations is that feature's interpretability score."

我們使用Bills et al. (2023) 中介紹的自動化方法,因為它在我們的自動編碼器學習的數千個字典特徵上進行解釋性測量時具有良好的擴展性...模型預測的激活與實際激活之間的相關性就是該特徵的解釋性得分。

"Figure 2 shows that our dictionary features are far more interpretable by this measure than dictionary features found by comparable techniques."

圖2顯示,我們的字典特徵通過這種測量方式比類似技術找到的字典特徵更具解釋性。

"We find that the strength of this effect declines as we move through the model, being comparable to ICA in layer 4 and showing minimal improvement in the final layer."

我們發現,隨著模型層次的推進,這種效果的強度逐漸減弱,在第四層與獨立成分分析 (ICA)相當,在最後一層顯示出最小的改進。

IDENTIFYING CAUSALLY-IMPORTANT DICTIONARY FEATURES FOR INDIRECT OBJECT IDENTIFICATION

- 本部分評估學習到的字典特徵是否比PCA分解更有效於通過**激活修補**來定位特定模型行為 一種因果干預技術。
- 任務: 間接賓語識別 (IOI) 完成類似 "Alice gave a snack to " 的句子。
- **方法**: 研究者通過將"目標"句子(間接賓語已改變)的特徵替換到"基礎"句子中來修補模型激活,然後使用KL散度測量這對模型輸出的影響。
- 特徵選擇: 使用自動電路發現 (ACDC) 算法根據其因果重要性對特徵進行排序。
- **主要發現**: 相比PCA,字典特徵需要更少的修補次數就可以達到相同的行為改變水 準,這表明它們更能夠捕捉與因果相關的模型組件。
- 技術過程: 將模型運行於基礎和反事實句子 → 提取編碼特徵 → 通過替換選定特徵來 修補殘差流 → 通過KL散度測量修補後和目標預測之間的輸出相似度。
- 核心貢獻是證明了與傳統維度縮減方法相比,字典學習能產生更具因果集中性的特徵,用於理解模型行為。

"We find that our dictionary features require fewer patches to reach a given level of KL divergence on the task studied than comparable decompositions"

我們發現,我們的字典特徵需要較少的補丁即可在所研究的任務中達到給定的KL散度水平,這比可比較的分解方法效果更好。

"We perform the following procedure... replace the residual stream vector xi with the patched vector $xi = xi + X \in F$ (ci,j - ci,j)fj where F is the subset of the features which we intervene on"

我們進行以下程序……用修補後的向量x'i替換剩餘流向量xi,即 $x'i = xi + X j \in F$ ($\neg ci, j \in T$) $\neg ci, j$ ($\neg ci, j \in T$) $\neg ci, j$ ($\neg ci, j \in T$) $\neg ci, j \in T$ ($\neg ci, j \in T$) $\neg ci, j \in T$

"We use the Automated Circuit Discovery (ACDC) algorithm of Conmy et al. (2023)... treating them as a flat computational graph in which every feature contributes an independent change to the DKL output metric"

我們使用Conmy等人(2023)的自動電路發現(ACDC)算法……將它們視為一個扁平的計算圖,其中每個特徵對DKL輸出指標做出獨立的改變。

CASE STUDIES

- 本節展示了分析神經網絡中的"字典特徵"的案例研究,以確定它們是否具有單一語 義(具有單一且可解釋的意義)。
- 研究人員使用了三種互補的分析方法:
 - 。 輸入分析:
 - 他們檢查哪些標記激活了特定的字典特徵,並找到高度單義的例子,例 如:
 - 主要在撇號上激活的特徵
 - 用於句號、"the"標記和換行符的特徵
 - 用於不同上下文的多種專門的撇號特徵(例如,像"I'll"與"won't"這樣的縮寫)
 - 。輸出分析:
 - 他們測試移除(消融)特徵如何影響模型的下一個標記預測。
 - 撇號特徵的例子顯示出直覺行為 當移除時,它主要降低了預測撇號後常見的"s"標記的概率(例如所有格和縮寫中的"s")。
 - 。中間特徵分析:
 - 他們開發了一種自動化方法,用以在各層之間追踪字典特徵之間的因果關係,創建"因果樹"來顯示上游特徵如何觸發下游特徵。
 - 這技術有助於識別模型內的計算電路。
- 主要發現是,相較於模型默認的內部表示,字典特徵表現出更清晰的單義行為,模型的內部表示更傾向於多義(編碼多個不相關的概念)。
- 這表明字典學習能夠成功從神經網絡中提取可解釋的、單一目的的特徵。

"We perform three analyses of our dictionary features to determine their semantic meanings: (1) Input: We identify which tokens activate the dictionary feature and in which contexts, (2) Output: We determine how ablating the feature changes the output logits of the model, and (3) Intermediate features: We identify the dictionary features in previous layers that cause the analysed feature to activate."

我們對詞典特徵進行三種分析以確定其語義: (1) 輸入:我們識別哪些tokens激活詞典特徵以及在何種上下文中激活,(2) 輸出:我們確定去除該特徵如何改變模型的輸出 logits, (3) 中間特徵:我們識別前一層中導致所分析特徵激活的詞典特徵。

"We find dictionary features that only activate on apostrophes (Figure 4); periods; the token \"the\"; and newline characters. The apostrophe feature in Figure 4 stands in contrast to the default basis for the residual stream, where the dimension that most represents an apostrophe is displayed in Figure 11 in Appendix D.1; this dimension is polysemantic since it represents different information at different activation ranges."

我們發現詞典特徵只在撇號(圖4)、句號、token "the" 以及换行字符上激活。圖4中的撇號特徵與殘差流的默認基礎形成對比,其中最能代表撇號的維度顯示在附錄D.1的圖11中;這個維度是多語義的,因為它在不同的激活範圍內表示不同的信息。

"To automatically detect the relevant dictionary features, we choose a target dictionary feature such as layer 5's feature for tokens in parentheses which predicts a closing parentheses (Figure 5). For each dictionary feature in the previous layer, we rerun the model while ablating this feature and sort the previous-layer features by how much their ablation decreased the target feature."

為了自動檢測相關的詞典特徵,我們選擇一個目標詞典特徵,例如第5層中針對括號中的 tokens的特徵,這些特徵預測閉合括號(圖5)。對於前一層中的每個詞典特徵,我們在 去除該特徵的情況下重新運行模型,並根據其去除對目標特徵減少的程度對前一層的特徵 進行排序。

DISCUSSION

這個討論部分涵蓋三個主要區域: - 相關工作 (6.1): - 作者將他們的工作定位於現有的稀疏特徵詞典學習的有限研究中。 - 與之前在訓練過程中強加稀疏性的方法(通過架構改變、L1懲罰或者修剪)不同,他們的方法是在訓練後施加稀疏性。 - 他們指出,使用稀疏性約束訓練基礎模型是具有挑戰性的,而且並不總是能改善可解釋性。 - 限制與未來工作 (6.2): - 作者承認了幾個主要限制: - 他們的詞典無法達到完美重建(在用重建激活替代時困惑度從25增加到40)。 - 該方法在殘差流上效果最佳,但在MLP中間層表現不佳。 - 他們提議未來的改進包括探索不同的架構,整合模型權重,以及追踪層之間特徵的因果依賴性。 - 結論 (6.3): - 作者提出稀疏自編碼器作為一種用於解解神經網絡特徵的可伸縮、無監督方法。 - 他們強調計算效率(比原始訓練少數量級的計算量)和他們所學特徵的可解釋性增強。 - 該工作旨在實現"枚舉安全",即提供完整、易於人類理解的模型計算解釋,以保證安全行為並防止欺騙等問題。 - 整體主題是在稀疏特徵學習中發展可解釋的人工智能,同時認識到當前的限制並勾書出改進的路徑。

"While we have presented evidence that our dictionary features are interpretable and causally important, we do not achieve 0 reconstruction loss (Equation 4), indicating that our dictionaries fail to capture all the information in a layer's activations."

儘管我們已提供證據表明我們的字典特徵是可解釋且具有因果重要性,但我們未達到0重 建損失(方程式4),表明我們的字典無法捕捉該層激活的所有資訊。

"Sparse autoencoders are a scalable, unsupervised approach to disentangling language model network features from superposition. Our approach requires only unlabelled model activations and uses orders of magnitude less compute than the training of the original models."

稀疏自動編碼器是一種可擴展的、無監督的方法,用於將語言模型網路特徵從重疊中解離。我們的方法僅需未標籤的模型激活,使用的計算量比訓練原始模型少數個量級。

"An ambitious dream in the field of interpretability is enumerative safety (Elhage et al., 2022b): producing a human-understandable explanation of a model's computations in terms of a complete list of the model's features and thereby providing a guarantee that the model will not perform dangerous behaviours such as deception."

解釋領域的一個雄心壯志的夢想是列舉性安全(Elhage等,2022b):以模型特徵的完整列表來產生人類可理解的計算解釋,從而保證模型不會進行諸如欺騙等危險行為。

ACKNOWLEDGMENTS

摘要

這個致謝部分感謝了對研究項目作出貢獻的各個機構、個人和資助來源:

主要貢獻者: - 計算資源: OpenAI研究者訪問計劃(模型使用權),CoreWeave/EleutherAI(計算基礎設施) - 研究合作: 來自OpenAI自動解釋性小組和其他機構的多位研究人員,提供了實驗設計見解和論文反饋 - 個人支持: 多位研究人員提供了討論、審閱和校對協助

資助來源: - 長期未來基金(支持作者LR) - Open Philanthropy資助(支持作者RH) - 通過AI安全支持的MATS計劃(支持作者HC)

這些致謝表明這是一個涉及AI安全和解釋性研究的合作項目,得到了主要AI研究機構的重大支持。

References

No references found.