CALCULO INFINITESIMAL II

ECUACIONES DE RECTAS, PARABOLAS, ELIPSES E HIPERBOL

RECTAS EN EL PLANO

Las rectas en el plano se pueden clasificar en

- . RECTAS VERTICALES
- · RECTAS HORIZONTALES
- . RECTAS OBLICUAS

ECUACIÓN DE UNA RECTA VERTICAL

Es de la forma

ECUACION DE UNA RECTA HORIZONTAL

Es de la forma

ECUACIÓN DE UNA RECTA OBLICUA

Punde morterse de dos maneres.

Lie occusión de la recta que pesas por un purez $P_{\chi} = \{ x_{k}, y_{k} \}$ y force personante m es

La pandiente m se calcula sui

the Sentra Abdat Maco.

Se toman dos puntos pertenecientes a la recta, por ejemplo; $P_{\phi} = (x_0, y_0) y P_{\gamma} = (x_1, y_1)$

Entances

$$\omega = \frac{x^i - x^0}{\lambda^i - \lambda^0}$$

ECUACIÓN DE LA PARÁBOLA DE EJE VERTICAL

Puede expresarse de dos maneras

Primera forma. Recibe el nombre de forma polinómica. Su ecuación es

y = 0 x2 + 0 x + c

Para graficaria, se busca el vértice y los puntos donde la parábola corta al eje x:

Coordenadas del vértice.

Donde

Puntos donde la parábola corta at ele «.

Para hallarios, se resuelve la ecuación cuadrática a $x^2+b\cdot x+c=0$ apticando, por ejemplo, la fórmula cuadrática

Segunda forma. Recibe el nombre de forma candinica. Su ecuación es-

Donde (x_0-y_0) son las coordenadas del vértice de la parábola. El valor de "a" se calcula tomando un punto $P=(x_0,y_0)$ perteneciente a la parábola y reamplazando sua coordenadas en la ecuación de la parábola. Es decir se despesa "a" de la ecuación

ECUACIÓN DE LA CIRCUNFERENCIA

Es de la forma

Donde

C= (x₀ y₁) es el centro de la circunferencia

R es su radio

ECUACIÓN DE LA ELIPSE

Es de la forma

$$\frac{(x-x_y)^2}{a^2} + \frac{(y-y_x)^2}{b^2} = 1$$

Dande

C= (x₀, y₀) es el centro de la elipse

a es el semieje x de la elipse.

b, es el semieje y de la elipsa.

ECUACIÓN DE LA HIPÉRBOLA

Puede ser de dos formas

Hipérbola de ele transversal horizontal.

$$\frac{(x-x_a)^2}{a^2} \cdot \frac{(y-y_a)^2}{b^2} = 1$$

Donda

C= (r₀, y₀) ex el centro de la hipérbola

 $V = (x_0 + a, y_0)$ as all vertices de la repériode

$$-\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$$

Donde

C= (xo. yo) es el centro de la hiperbola

V = (xo, yo = b) es el vértice de la hipérbola

La ecuación de sus esintotas es

$$y=y_{e}\pm\frac{b}{a}\left(x\cdot x_{e}\right)$$

