An introduction to quadratic equations

Three methods

Zhao Tang December 2, 2024

Table of Content

- What is a Quadratic Equation?
- Three Methods of Solving Them
- Easter Egg: Out of Real

Table of Content

- What is a Quadratic Equation?
- Three Methods of Solving Them
- Easter Egg: Out of Real

Table of Content

- What is a Quadratic Equation?
- Three Methods of Solving Them
- Easter Egg: Out of Real

Introduction

What is a Quadratic Function?

• A quadratic function is:

$$y = ax^2 + bx + c$$

where $a \neq 0$.

- Common examples:
- $y = x^2 + 2x + 1$
- $y = 3x^2 2$

A Quick Test

Which of the following is a quadratic function?

- A. y = 3x + 2
- B. $y = -x^2 + 1$
- C. $y = e^{2t} + e^t + 3$.
- D. $y = x^3 x^2 + 1$

Answer

- A. No. It is a linear one.
- B. Yes.
- C. No. Let $x = e^t$, then $y = x^2 + x + 3$
- D. No. It is a cubic one.

Graph of a Quadratic Function

The graph of a quadratic function is a parabola.

- Line of symmetry: $x = -\frac{b}{2a}$
- If a > 0, the parabola opens upward.
- If a < 0, the parabola opens downward.

$$Parabola \quad y = ax^2 + bx + c$$

A Quadratic Equation

• A quadratic equation is:

$$ax^2 + bx + c = 0$$

- Geometrically the intersection of the graph and the x-axis.
- How to solve it?

Three methods

1. Factorizing

Factorizing

A simple example. Given $x^2 - 5x + 6 = 0$:

- Principle: 6 = 1 * 6 = 2 * 3
- $x^2 5x + 6 = (x 2)(x 3) = 0$
- Roots: $x_1 = 2$, $x_2 = 3$

Factorizing

Another example: Given $2x^2 + x - 6 = 0$:

•
$$2x^2 + x - 6 = (2x - 3)(x + 2)$$

• Roots:
$$x_1 = \frac{3}{2}$$
, $x_2 = -2$

Principle

In order to have $x^2 + bx + c = (x + m)(x + n)$

- c = m * n
- b = m + n
- A quick calculation of m and n

For general $ax^2 + bx + c = (a_1x + m)(a_2x + n)$

- $a = a_1 * a_2$
- c = m * n
- Remember the signs \pm .

Exercises

Solve the following equations:

• 1.
$$x^2 - 8x + 12 = 0$$

• 2.
$$2x^2 - 7x + 6 = 0$$

• 3.
$$6x^2 - x - 1 = 0$$

Answer

• 1.
$$(x-6)(x-2) = 0$$
. $x = 6$ or $x = 2$

• 2.
$$(2x-3)(x-2) = 0$$
. $x = \frac{3}{2}$ or $x = 2$

• 3.
$$(3x+1)(2x-1) = 0$$
. $x = -\frac{1}{3}$ or $x = \frac{1}{2}$

2. Completing the square

Completing the square

Example. Solve the equation $x^2 - 4x - 2 = 0$

$$x^{2} - 4x + 4 - 2 = 4$$

$$x^{2} - 4x + 4 = 4 + 2$$

$$x^{2} - 4x + 4 = 6$$

$$(x - 2)^{2} = 6$$

$$x - 2 = \pm \sqrt{6}$$

$$x = 2 \pm \sqrt{6}$$

The roots are $x_1 = 2 - \sqrt{6}$, $x_2 = 2 + \sqrt{6}$

Completing the square

Another example. Solve the equation $x^2 + 2x - 2 = 0$

$$x^{2} + 2x + 1 - 2 = 1$$

$$x^{2} + 2x + 1 = 3$$

$$(x - 1)^{2} = 3$$

$$x - 1 = \pm\sqrt{3}$$

$$x = 1 \pm\sqrt{3}$$

The roots are $x_1 = 1 - \sqrt{3}$, $x_2 = 1 + \sqrt{3}$

Exercises

Solve the following equations:

• 1.
$$x^2 - 8 = 0$$

• 2.
$$x^2 - 6x + 6 = 0$$

• 3.
$$4x^2 - 16x + 8 = 0$$

Answer

- 1. $x^2 = 8$. So $x = \pm 2\sqrt{2}$.
- 2. $x^2 6x + 9 = 3$ and $(x 3)^2 = 3$ So $x = 3 + \sqrt{3}$ or $x = 3 - \sqrt{3}$
- 3. $x^2 4x + 2 = 0$ and $x^2 4x + 4 = 2$ Then $(x - 2)^2 = 2$ So $x = 2 + \sqrt{2}$ or $x = 2 - \sqrt{2}$

3. The roots formula

Roots of a Quadratic Equation

The roots formula of a quadratic equation $ax^2 + bx + c = 0$ is:

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

Steps:

- 1. Find a, b, and c.
- 2. Compute: $\Delta = b^2 4ac$.
- 3. Δ determines the nature of roots:
 - $\Delta > 0$: 2 distinct real roots.
 - $\Delta = 0$: 1 repeated real root.
 - $\Delta < 0$: 0 real roots.

0 > 0

Example

Given
$$x^2 - 5x + 6 = 0$$
:

- Find: a = 1, b = -5, c = 6.
- Compute: $\Delta = 5^2 4 * 1 * 6 = 25 24 = 1$.
- Formula:

$$x = \frac{-(-5) \pm \sqrt{1}}{2 * 1} = \frac{5 \pm 1}{2}$$

Roots:

$$x_1 = 3, \quad x_2 = 2$$

Another Example

Given
$$x^2 - 6x + 9 = 0$$
:

- Find: a = 1, b = -6, c = 9.
- Compute: $\Delta = (-6)^2 4 * 1 * 9 = 36 36 = 0$.
- Formula:

$$x = \frac{-(-6) \pm 0}{2 * 1} = \frac{6}{2}$$

• One root:

$$x = 3$$

Exercises

Solve the following equations:

• 1.
$$2x^2 + 7x - 15 = 0$$

• 2.
$$4x^2 + 5x + 1 = 0$$

• 3.
$$2x^2 - 8x + 8 = 0$$

Answer

• 1.
$$x = -\frac{3}{2}$$
 or $x = -5$

• 2.
$$x = -\frac{1}{4}$$
 or $x = -1$

• 3. One root x = 2

Summary

Summary

- A Quadratic Equation $ax^2 + bx + c = 0$, where $a \neq 0$.
- Three Methods:
 - 1. Factorizing
 - 2. Completing the Square
 - 3. The Roots Formula
- Easter Egg

Easter Egg

What if $\Delta < 0$ in the roots formula ?

• Example.
$$x^2 + x + 1 = 0$$

•
$$\Delta = 1 - 4 = -3 < 0$$

•

$$x = \frac{-1 \pm \sqrt{-3}}{2}$$

Easter Egg

Let
$$i = \sqrt{-1}$$

$$x = \frac{-1 \pm \sqrt{3} * \sqrt{-1}}{2}$$
$$= \frac{-1 \pm \sqrt{3} * i}{2}$$

The complex roots are:

$$x_1 = \frac{-1 + \sqrt{3}i}{2}$$

$$x_2 = \frac{-1 - \sqrt{3}i}{2}$$

Thank You!