ÚNG DỤNG HÌNH HỌC CỦA TÍCH PHẨN KÉP TÀI LIỆU SƯU TẬP BỞI HCMUT-CNCP

NỘI DUNG

- Tính diện tích miền phẳng
- Tính thể tích vật thể trong R₃
- Tính diện tích mặt cong

TÍNH DIỆN TÍCH MIỀN PHẨNG

D là miền đóng và bị chận trong R₂:

$$S(D) = \iint_{D} dxdy$$

Có thể dùng cách tính của tp xác định trong GT1 cho những bài không đổi biến.

Ví dụ

1/ Tính diện tích miền D giới hạn bởi:

$$y = x^2, y = \sqrt{x}$$

2/ Tính diện tích miền D là phần nằm ngoài

đường tròn $x^2 + y^2 = 1$ và nằm trong đường tròn

$$x^2 + y^2 = \frac{2}{\sqrt{3}}x$$

0.5

Đổi biến: $x = r\cos\varphi$, $y = r\sin\varphi$

Tọa độ giao điểm

$$\Rightarrow \begin{cases} \mathbf{x}^2 + \mathbf{y}^2 = 1 \\ \mathbf{x}^2 + \mathbf{y}^2 = \frac{2}{\sqrt{3}} \mathbf{x} \end{cases}$$

$$\begin{cases} x^2 + y^2 = 1 \\ x^2 + y^2 = \frac{2}{\sqrt{3}}x \end{cases} \Leftrightarrow \begin{cases} r = 1 \\ \cos \varphi = \frac{\sqrt{3}}{2} \end{cases} \Leftrightarrow \begin{cases} r = 1 \\ \varphi = \pm \frac{\pi}{6} \end{cases}$$

$$D: \begin{cases} -\frac{\pi}{6} \le \varphi \le \frac{\pi}{6} \end{cases} \text{ or the property of the prop$$

$$S(D) = \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} d\varphi \int_{1}^{\frac{2}{\sqrt{3}}} \cos\varphi \, r dr = \frac{\sqrt{3}}{6} - \frac{\pi}{18}$$

BACHKHOACNCP.COM

Nếu sử dụng tính đối xứng của D

Miền D đối xứng qua Ox

$$D_{1} = D \cap \{x,y\}/y \ge 0\} \xrightarrow{ACA} S(D) = 2S(D_{1})$$

$$D_{1} : \begin{cases} 0 \le \varphi \le \frac{\pi}{6} \end{cases}$$

$$1 \le r \le \frac{2}{\sqrt{3}} \cos \varphi$$

$$S(D) = 2 \int_0^{\frac{\pi}{6}} d\varphi \int_1^{\frac{2}{\sqrt{3}} \cos\varphi} r dr$$

BÀI TOÁN THỂ TÍCH

Xét vật thế hình trụ Ω được giới hạn trên bởi mặt cong $z = f_2(x, y)$, mặt dưới là $z = f_1(x, y)$, bao xung quanh là mặt trụ có đường sinh // Oz và đường chuẩn là biên của miền D đóng và bị chận trong Oxy. Tập

$$V(\Omega) = \iint_{D} [f_2(x, y) - f_1(x, y)] dxdy$$

Khi đó, hình chiếu của Ω lên Oxy là D.

Cách xác định hàm tính tích phân và hình chiếu D

$\underline{\mathbf{B}}_1$: Chọn hàm tính tích phân:

Chọn hàm tương ứng với biến chỉ xuất hiện 2 lần trong các pt giới hạn miền tính thể tích (Ω) .

VD:
$$z$$
 chỉ xuất hiện 2 lần: $z = f_1(x, y)$, $z = f_2(x, y)$, hàm tính tp là TAI LIỆU SƯU TẬP

$$z = |f_2(x, y) - f_1(x, y)|$$

Cách xác định hàm tính tích phân và hình chiếu D

B₂: Xác định miền tính tp D

Gs hàm tính tp là z = f(x, y), D là hình chiếu của Ω lên mp Oxy và được xác định từ các yếu tố sau:

- 1. Điều kiện xác định của hàm tính tp
- 2. Các pt không chứa z giới hạn của miền Ω.
- 3. Hình chiếu giao tuyến của $z = f_1(x, y)$ và $z = f_2(x, y)$ (có thể không sử dụng)

Hình chiếu giao tuyến

- 1.Được tìm bằng cách khử z từ các pt chứa z.
- 2. Các TH sử dụng hc giao tuyến.

Sử dụng để xác định dấu của f₂ - f₁

Ví dụ

1/ Tính thể tích của vật thể giới hạn bởi:

$$y = \sqrt{x}$$
, $y = 0$, $z = 0$, $x + z = 1$

Cách 1: z xuất hiện 2 lần nên hàm lấy tp là

z = 1 - x và z = 0 (các hàm xác định trên R_2)

các pt không chứa z

$$y = 0, y = \sqrt{x}$$

 $D = hc \Omega$

•Hc giao tuyến: 1 - x = 0

$$V(\Omega) = \iint_{D} [(1-x) - 0] dxdy$$

$$= \int_{0}^{1} dy \int_{y^{2}}^{1} (1 - x) dx$$
TÀI LIỆU SƯU TẬP

$$= \int_{0}^{1} dy \int_{v^{2}}^{1} (1-x) dx = \frac{4}{15}$$

BổI HCMUT-CNCP

$$\Omega: y = \sqrt{x}, y = 0, z = 0, x + z = 1$$

Cách 2: y xuất hiện 2 lần, chọn hàm tính tp là

$$y = 0, y = \sqrt{x}$$

$$D = hc \Omega$$

$$V(\Omega) = \iint_{D} [\sqrt{x} - 0] dx dz$$

$$= \int_{0}^{1} dx \int_{0}^{1-x} x dz$$

$$= \int_{0}^{1} dx \int_{0}^{1-x} x dz$$

$$= \int_{0}^{1} (x^{1/2} - x^{83/2})^{\text{UT-CNCP}} \frac{4}{15}$$

$\Omega: y = \sqrt{x}, y = 0, z = 0, x + z = 1$

Cách 3: x xuất hiện 2 lần, chọn hàm tính tp là

$$y = \sqrt{x} \Rightarrow x = y^2$$
, $x = 1 - z$

1

 $z = 1 - y^2$

D = $hc \Omega$

Oyz

D = $hc \Omega$

Oyz

TAI LIÊU SƯU TÂP

BOI HO Cắc pt không chứa x:

 $y = 0, z = 0$

Ho giao tuyến: $1 - z = y^2$

BACHKHOACNCP.COM

$$V(\Omega) = \iint_{D} [(1-z) - y^2] dydz$$

$$= \int_{0}^{1-y^2} dy \int_{0}^{1-y^2} (1-y^2) dz = \frac{4}{15}$$
TÀI LIỆU SƯU TẬP

$$y = \sqrt{x}$$
, $y = 0$, $z = 0$, $x + z = 1$

$$y = \sqrt{x}$$
, $y = 0$, $z = 0$, $x + z = 1$

$$y = \sqrt{x}$$
, $y = 0$, $z = 0$, $x + z = 1$

$$y = \sqrt{x}$$
, $y = 0$, $z = 0$, $x + z = 1$

$$y = \sqrt{x}$$
, $y = 0$, $z = 0$, $x + z = 1$

$$y = \sqrt{x}$$
, $y = 0$, $z = 0$, $x + z = 1$

$$y = \sqrt{x}$$
, $y = 0$, $z = 0$, $x + z = 1$

$$y = \sqrt{x}$$
, $y = 0$, $z = 0$, $x + z = 1$

2/ Tính thể tích của vật thể giới hạn bởi:

$$z = 4 - x^2 - y^2, z = 0, x^2 + y^2 \le 2$$

z xuất hiện 2 lần nên hàm lấy tp là:

$$V(\Omega) = \iint_{D} [(4 - x^{2} - y^{2}) - 0] dxdy$$

$$= \int_{0}^{2\pi} d\varphi \int_{0}^{\sqrt{2}} (4 - r^{2}) r dr$$
TAI LIỆU SƯU TẬP

$$=6\pi$$

3/ Tính thế tích của vật thế giới hạn bởi:

$$z = 4 - x^2 - y^2$$
, $2z = x^2 + y^2 + 2$

Hàm tính tp:
$$z = 4 - x_{N_{C_A}}^2 - y^2$$
, $z = 1 + \frac{x^2 + y^2}{2}$

Hàm tính tp:
$$z = 4 - x^2 - y^2$$
, $z = 1 + \frac{x^2 + y^2}{2}$

$$D = hc \Omega: 4 - x^2 - y^2 = x^2 + y^2 + y^2 + 1 \text{ (hc giao tuyến)}$$

$$\Leftrightarrow x^2 + y^2 = 2^{-NCP}$$

$$V(\Omega) = \iint_{\Omega} \left((4 - x^2 - y^2) - \left(1 + \frac{x^2 + y^2}{2} \right) \right) dxdy$$

$$V(\Omega) = \iint_{D} \left((4 - x^{2} - y^{2}) - \left(1 + \frac{x^{2} + y^{2}}{2} \right) \right) dxdy$$

$$=\frac{1}{2}\iint_{D}\left(6-3x^{2}-3y^{2}\right)dxdy$$

$$= \int_{0}^{2\pi} d\varphi \int_{0}^{\sqrt{2}} (2 - r^2) r dr = 3\pi$$

Hình chiếu: $x^2 + y^2 \le 2$

4/ Tính thể tích của vật thể giới hạn bởi:

$$z=2x^2+y^2+1$$
, $x+y=1$ và các mặt tọa độ.

Các mặt tọa độ bao gồm: x = 0, y = 0, z = 0

Hàm tp:
$$z = 2x^2 + y^2 + 1, z = 0$$

$$D = hc \Omega: \quad x + y = 1, x = 0, y = 0$$
(Không có gt của 2 mặt

(Không có gt của 2 mặt cong tính tp)

BổI HCMUT-CNCP

$$V(\Omega) = \iint_{D} \left(1 + 2x^2 + y^2\right) dxdy = \frac{3}{4}$$

5/ Tính thế tích của vật thế cho bởi:

$$x^2 + y^2 + z^2 \le 4$$
, $x^2 + y^2 \le 2y$, $z \ge 0$

Hàm tp:

$$z = \sqrt{4 - x^2 - y^2}, z = 0$$

$$D = hc \Omega$$
:

$$x^2 + y^2 \le 4, x^2 + y^2 \le 2y$$

sử dụng tính đối xứng của D:

$$V(\Omega) = 2\int_{\text{BACH KHOACNCP.COM}}^{\pi/2} d\boldsymbol{\varphi} \int_{0}^{2\sin\boldsymbol{\varphi}} \sqrt{4 - r^2} r dr = \frac{8\pi}{3}$$

6/ Tính thể tích của vật thể cho bởi:

$$z = 1 - x^2 - y^2, y = x, y = \sqrt{3}x, z = 0; x, y, z \ge 0$$

Bài tập:

Bài 1: Tính diện tích miền phẳng:

1.
$$D: x + y^2 = 1$$
, $y + x = 1$, $x = 0$

2.
$$D: y = x^2, y = 2 + x^2$$

3.
$$D: x^2 + y^2 = 2x, x^2 + y^2 = 4x, y \le x$$

4.
$$D: x^2 + y^2 = 2y, +x^2 + y^2 = 6y, y \ge \sqrt{3}x, x \ge 0$$

5.
$$D: \{|x| + |y| \ge 1, x^2 + y^2 \le 1\}$$

- 1. 19/6, 2. 8/3, 3. $3/2+9\pi/4$,
- 4. $4\pi/3+2\sqrt{3}$, 5. $\pi-2$

BACHKHOACNCP.COM

Bài 2: Tinh thể tích vật thể

1.
$$\Omega$$
: $z = 16 - x^2 - 2y^2$, $y = 2$, $y = 0$, $x = 2$, $x = 0$, $z = 0$

2.
$$\Omega$$
: $z = x^2 + y^2$, $y = 2x$, $y = x^2$, $z = 0$

3.
$$\Omega: z = 0, z = 1 - x^2 + y^2 + c$$

4.
$$\Omega: z = 4 - x^2 - y^2, z = 2$$

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

1.
$$V_1 = 48$$
, 2. $V_2 = 216/35$

3.
$$V_3 = \pi / 2$$
, 4. $V_4 = 2\pi$

TÍNH DIỆN TÍCH MẶT CONG

Mặt cong S có phương trình: z = f(x, y), bị chắn trong mặt trụ có đường chuẩn là biên của D (trong Oxy) và đường sinh // Oz.

$$D = hc S_{\text{SUSUUTÂP}}$$

Diện tích của S tính bởi công thức

$$S = \iint\limits_{D} \sqrt{1 + (f_x')^2 + (f_y')^2} dxdy$$

Cách tính diện tích mặt cong

Giả sử S có pt tổng quát F(x,y,z)=0

1. Chọn cách viết tp mặt cong S(tương ứng với biến xuất hiện ít nhất trong pt các mặt chắn và pt của S)

TAI LIỆU SƯU TẬP

BŐI HCMUT-CNCP

- 2. Tính phần vi phân mặt cho hàm lấy tp.
- 3. Tìm hình chiếu D(giống như tính thể tích)

VÍ DỤ

1/ Tính diện tích của

$$z = \sqrt{4 - x^2 - y^2}$$

bị chắn trong mặt trụ

$$x^2 + y^2 = 2y$$

Pt mặt cong:

$$z = \sqrt{4 - x^2 - y^2}$$

$$D = \underset{Oxy}{hc} \Omega:$$

BỞI HCMUT-CNCP

$$x^2 + y^2 \le 4, x^2 + y^2 \le 2y$$

$$z'_{x} = \frac{-x}{\sqrt{4 - x^2 - y^2}}, z'_{y} = \frac{-y}{\sqrt{4 - x^2 - y^2}}$$

$$S = \iint_{D} \sqrt{1 + (z'_{x})^{2} + (z'_{y})^{2}} dxdy$$

$$= \iint_{D} \frac{2}{\sqrt{4 - x^2 - y^2}} dxdy$$

$$= 2 \int_{0}^{\pi/2} d\varphi \int_{0}^{2\sin\varphi} \frac{2rdr}{\sqrt{4 - r^2}} \frac{1}{\sqrt{4 - r^2}} dxdy$$

$$=4\pi - 8$$

BACHKHOACNCP.COM

$$z = \sqrt{4 - x^2 - y^2}$$

$$x^2 + y^2 = 2y$$

2/ Tính diện tích của phần mặt trụ:
$$2z = x^2$$
 bị chắn bởi các mặt $x - 2y = 0, y - 2x = 0, x = 2\sqrt{2}$

$$S = \iint_{D} \sqrt{1 + (f'_{x})^{2} + (f'_{y})^{2}} dxdy$$

$$= \iint_{D} \sqrt{1 + x^{2}} dxdy$$

$$= \int_{D} \sqrt{1 + x^{2}} dx dy$$

$$= \int_{0}^{2\sqrt{2}} dx \int_{x/2}^{2x} \sqrt{1 + x^{2}} dy = 13 \text{U TÂP}$$

$$z = \frac{x^2}{2}$$

3/ Tính diện tích của phần mặt nón:

$$z = \sqrt{x^2 + y^2}$$
 bị chắn bởi mặt cầu:

$$x^2 + y^2 + z^2 = 2$$

$$D = \underset{Oxy}{hc} \Omega: \quad x^2 + y^2 = 1$$

$$S = \iint_{D} \sqrt{1 + (f_x')^2 + (f_y')^2} dxdy = \iint_{D} \sqrt{2}dxdy$$

$$=\sqrt{2}S(D)=\sqrt{2}\pi$$

(S(D) là diện tích hình tròn có R = 1)

4/ Tính diện tích của phần mặt cầu:

$$x^2 + y^2 + z^2 = 4$$
 bị chắn bởi các mặt:

$$x = z, \ z = \sqrt{3}x, \ x \ge 0$$

Phần mặt cầu gồm 2 nửa S_1 và S_2 :

$$y_{1,2} = \pm \sqrt{4 - x^2 - z^2}$$

Hình chiếu của S₁ và S Ulên Ox giống nhau và xác định bởi:

$$D: \begin{cases} 4 - x^2 - z^2 \ge 0, \\ z = x, z = \sqrt{3}x, x \ge 0 \end{cases} \Rightarrow S = S_1 + S_2$$

$$D: \begin{cases} 4 - x^2 - z^2 \ge 0, \\ z = x, z = \sqrt{3}x, x \ge 0 \end{cases}$$
TAILIÊUS UT 77/4

-0.5 BOT FICH OF TOTAL TOTAL

$$S_{1} = S_{2} = \iint_{D} \sqrt{1 + (y'_{x})^{2} + (y'_{z})^{2}} dxdz$$

$$= \iint_{D} \frac{2dxdz}{\sqrt{4 - x^{2} + z^{2}}} \qquad y = \sqrt{4 - x^{2} - z^{2}}$$

$$= \int_{D} \sqrt{4 - x^{2} + z^{2}} d\varphi \int_{0}^{2\pi} \frac{12rdr_{U}}{\sqrt{4 - r^{2}}} \frac{\sqrt{4 - x^{2} - z^{2}}}{\sqrt{4 - r^{2}}} dxdz$$

$$S = S_1 + S_2 = \frac{\pi}{6}$$

