Started on	Wednesday, 1 May 2024, 12:06 PM
State	Finished
Completed on	Wednesday, 1 May 2024, 12:23 PM
Time taken	16 mins 30 secs
Marks	5.00/5.00
Grade	50.00 out of 50.00 (100 %)

INFORMATION

Considere la función $f: \{0, 1\}^5 \longrightarrow \{0, 1\}$ que se construye de la siguiente manera:

Para conocer el valor de $f(\mathbf{x})$ se toma \mathbf{x} que es una cadena de 0's y 1's y se convierte de binario al decimal n. Luego se tienen en cuenta las siguientes instrucciones:

Si n = 0, entonces f(00000) = 0,

Y, para $n \ge 1$:

 $f(\mathbf{x}) = \begin{cases} 1, & \text{si alguno de los números 3, 5, u 11 es un factor de } n \\ 0, & \text{de lo contrario} \end{cases}$

QUESTION 1

Correct

Mark 1.00 out of 1.00

¿De qué tipo es esta función f?

Select one:

- a. Balanceada
- b. Ni constante ni balanceada
- c. Constante

QUESTION 2

Correct

Mark 1.00 out of 1.00

¿Cuál será el estado de los η qubits de arriba después de correr el algoritmo de Deutsch-Jozsa para f?

Select one:

- $^{\circ}$ a. Algunos de los η qubits de arriba se encontrarán estado $|0\rangle$ y otros en estado $|1\rangle$
- \circ b. Los η qubits de arriba se encontrarán todos en estado $|1\rangle$
- \circ c. Los η qubits de arriba se encontrarán todos en estado 0

QUESTION 3

Correct

Mark 1.00 out of 1.00

¿Cuál es el (mínimo) número de qubits que se necesitarían para correr el algoritmo de Deutsch-Jozsa para f?

Answer: 6

QUESTION 4

Correct

Mark 2.00 out of 2.00

Considere la siguiente función $f : \{0,1\}^3 \longrightarrow \{0,1\}^s$

Si \boldsymbol{x} representa una cadena de 0's y 1's de longitud 3, entonces:

$$f(x) = \begin{cases} 0, \text{ si } x \text{ tiene ms } 0' \text{s que } 1' \text{s} \\ 1, \text{ si } x \text{ tiene ms } 1' \text{s que } 0' \text{s} \end{cases}$$

Si llamamos $U\,f$ a la correspondiente matriz unitaria, entonces:

- El valor de la componente $U_f[0,0]$ es igual a
- El valor de la componente $U_f[3,5]$ es igual a \circ
- El valor de la componente $U_f [6,7]$ es igual a
- El valor de la componente $U_f [7,6]$ es igual a $^{\scriptscriptstyle 1}$
- El valor de la componente $U_f[9,8]$ es igual a \circ
- El valor de la componente $U_f [9,9]$ es igual a