

A gentle Introduction to deep learning with JAX

BAMB! Summer School Tutorial 5

We fill focus on regression models From inputs to outputs

Learning by minimizing a loss

$$l(\theta) = \sum_{n} ||y_{n} - f(x, \theta)||^{2}$$

We will work with different models

- Linear / Logistic Regression (as a warm up)
- Neural networks (NN) for image classification
- Convolutional neural networks (CNN)

Let's get started coding!

What is JAX for?

- Perform Gradient Based optimization ...
- ... in LARGE models (millions of parameters)

•

A bit about JAX

JAX is a library

- * in Python
- * ... made to be very close to the python library numpy
- * that computes gradient automatically for you (automatic differentiation)
- * that can compile code on demand to be very fast (just in time [or jit] compilation)
- * that has useful features to 'vectorize' function : **vmap** (apply a function designed for scalars to vectors or tensors)

Some resources for the less experienced coders

A course on using python for scientific computing

http://ucl-cs-grad.github.io/scipython/

Numpy for matlab (by Numpy creators)

https://numpy.org/doc/stable/user/numpy-for-matlab-users.html

Numpy for matlab users cheat sheet:

https://mas-dse.github.io/DSE200/cheat_sheets/1_python/6_2_NumPy_for_MATLAB_users.pdf

Tutorial on github

https://github.com/vincentadam87/intro_to_jax