Capacity Simulator Hardware Gain

Authors: Ana Bertran and Lauren Valdivia

For App CPU:

For each pod we can fit a linear model regression line for each of the asset types found in that pod. We take a weeks worth of data (4/21st till 4/27th) to avoid picking changes that would affect the continuity of our model (site switches, hardware refreshes, code regressions, ...). We also check for as many possible such changes (for example site switches) within a pod each week and don't process that pod. The ratio of the fitted slopes will give us the hardware gain. We remove the weekends from our data. In the future we need to investigate whether focusing on prime hours improves our fit. Below you can find an example for APO.

For APO shown above the slope for the SSKUB6 model is 6.59e-5, the intercept is 4.08 with a R squared of 0.95; the slope for the SSKUC model is 4.95e-5 and the intercept is 3.07 with an R squared of 0.96. The ratio between the two models (hardware gain) is 1.33

Running this analysis for all pods for the week from 4/21st till 4/27th we have found consistency in the ratio. For example going from SSKUB6 to SSKUC we see an improvement ranging between 30% and 40% across all kinds of pods across different regions (AP, NA, GS, ...), even pods with significantly different slopes. [Note that the R squared for some pods and thus the fit - GS0, GS1 - is low; we need to zoom in to those pods to see what happened]

We have seen three groups of hardware gains, one at around 1.35, another at 1.51 and a third at 2.03

	А	В	С	D	E	F	G	Н	
1	podName	model_from	asset_type_fr om	model_to	asset_type_t o	ratio	R_squared_fr om	R_squared_t o	Mii
2	NA7	DL360	SSKUC	R430	17.2 SSKUC	1.04356	0.82818	0.81726	
3	NA44	DL360 Gen9	2670v3 128GB 4TB 480GB SSD	R430	17.1 SSKUB6	1.00547	0.94208	0.94137	
4	NA55	R430	17.2 SSKUC	DL360	SSKUC	1.05941	0.92778	0.91207	
5	EU11	R430	17.2 SSKUC	R430	SSKUC	1.03237	0.90805	0.90193	
6	EU6	R430	SSKUC	R430	17.2 SSKUC	1.02434	0.93955	0.9257	
7	NA35	R430	SSKUC	R430	17.2 SSKUC	1.02975	0.94414	0.94756	
8	NA29	R620	2NL 256GB IVY	R620	2NL 128G IVY	1.00323	0.93291	0.93898	
9	NA30	R620	2NL 256GB IVY	R620	2NL 128G IVY	1.00364	0.93997	0.92972	
10	NA31	R620	2NL 256GB IVY	R620	2NL 128G IVY	1.01443	0.92629	0.92917	
11	NA6	R620	2NL 256GB IVY	R620	2NL 128G IVY	1.00009	0.94576	0.94241	
13	AP0	R430	17.1 SSKUB6	R430	17.2 SSKUC	1.33063	0.95408	0.95521	
14	AP1	R430	17.1 SSKUB6	R430	17.2 SSKUC	1.40672	0.91001	0.8752	
15	AP3	R430	17.1 SSKUB6	R430	17.2 SSKUC	1.33758	0.96738	0.96491	
16	AP4	R430	17.1 SSKUB6	R430	17.2 SSKUC	1.30784	0.90754	0.91205	
17	AP5	R430	17.1 SSKUB6	R430	17.2 SSKUC	1.29054	0.83202	0.82499	
18	AP6	R430	17.1 SSKUB6	R430	17.2 SSKUC	1.33138	0.91142	0.91492	
19	AP7	R430	17.1 SSKUB6	R430	17.2 SSKUC	1.36315	0.93447	0.91793	
20	EU4	R430	17.1 SSKUB6	R430	17.2 SSKUC	1.30377	0.94982	0.94474	
21	EU9	R430	17.1 SSKUB6	R430	17.2 SSKUC	1.37489	0.73575	0.93693	
22	GS0	R430	17.1 SSKUB6	R430	17.2 SSKUC	1.4061	0.45587	0.27884	
23	NA32	R430	17.1 SSKUB6	R430	17.2 SSKUC	1.34004	0.90844	0.93205	
24	NA37	R430	17.1 SSKUB6	R430	17.2 SSKUC	1.35582	0.86635	0.88358	
25	NA40	R430	17.1 SSKUB6	R430	17.2 SSKUC	1.5065	0.75234	0.78139	<-
26	NA44	R430	17.1 SSKUB6	R430	17.2 SSKUC	1.31736	0.94137	0.92124	
27	NA47	R430	17.1 SSKUB6	R430	17.2 SSKUC	1.34133	0.87487	0.83039	
28	NA48	R430	17.1 SSKUB6	R430	17.2 SSKUC	1.32291	0.87651	0.884	
29	NA51	R430	17.1 SSKUB6	R430	17.2 SSKUC	1.32639	0.93502	0.95051	
30	NA52	R430	17.1 SSKUB6	R430	17.2 SSKUC	1.34678	0.91975	0.93204	
31	NA54	R430	17.1 SSKUB6	R430	17.2 SSKUC	1.39394	0.92883	0.93623	
32	NA55	R430	17.1 SSKUB6	R430	17.2 SSKUC	1.34771	0.79928	0.92778	
33	NA58	R430	17.1 SSKUB6	R430	17.2 SSKUC	1.34614	0.92572	0.91839	
34	NA61	R430	17.1 SSKUB6	R430	17.2 SSKUC	1.32133	0.97272	0.88566	
35	NA63	R430	17.1 SSKUB6	R430	17.2 SSKUC	1.27985	0.91113	0.88197	
36	NA74	R430	17.1 SSKUB6	R430	17.2 SSKUC	1.34474	0.93568	0.91572	
37	NA88	R430	17.1 SSKUB6	R430	17.2 SSKUC	1.34057	0.89833	0.85359	
38	EU1	DL360 Gen9	2670v3 128GB 4TB 480GB SSD	R430	17.2 SSKUC	1.36841	0.91847	0.89857	
39	NA38	DL360 Gen9	2670v3 128GB 4TB 480GB SSD	R430	17.2 SSKUC	1.39845	0.95208	0.95739	
40	NA42	DL360 Gen9	2670v3 128GB 4TB 480GB SSD	R430	17.2 SSKUC	1.47081	0.72243	0.91684	
			2670v3 128GR //TR		47000000				

41	NA44	DL360 Gen9	480GB SSD	R430	17.2 SSKUC	1.32456	0.94208	0.92124	
42	NA79	DL360 Gen9	2670v3 128GB 4TB 480GB SSD	R430	17.2 SSKUC	1.27332	0.93133	0.66786	
43	EU7	R430	17.1 SSKUB6	DL360	SSKUC	1.23585	0.94105	0.78547	
44	NA55	R430	17.1 SSKUB6	DL360	SSKUC	1.42777	0.79928	0.91207	
45	NA39	DL360 Gen9	2670v3 128GB 4TB 480GB SSD	DL360	SSKUC	1.41051	0.7396	0.92504	
46	EU1	DL360P	4NL 128GB 2X480SSD	DL360 Gen9	2670v3 128GB 4TB 480GB SSD	1.50183	0.90723	0.91847	
47	NA42	DL360P	4NL 128GB 2X480SSD	DL360 Gen9	2670v3 128GB 4TB 480GB SSD	1.40456	0.95229	0.72243	
48	NA45	DL360P	4NL 128GB 2X480SSD	DL360 Gen9	2670v3 128GB 4TB 480GB SSD	1.4884	0.86979	0.90254	
49	NA79	DL360P	4NL 128GB 2X480SSD	DL360 Gen9	2670v3 128GB 4TB 480GB SSD	1.5218	0.9026	0.93133	
50	EU4	DL360P	4NL 128GB 2X480SSD	R430	17.1 SSKUB6	1.54578	0.8973	0.94982	
51	NA32	DL360P	4NL 128GB 2X480SSD	R430	17.1 SSKUB6	1.50232	0.93662	0.90844	
52	NA7	DL360P	4NL 128GB 2X480SSD	DL360	SSKUC	1.89047	0.80666	0.82818	
53	EU1	DL360P	4NL 128GB 2X480SSD	R430	17.2 SSKUC	2.05512	0.90723	0.89857	
54	EU4	DL360P	4NL 128GB 2X480SSD	R430	17.2 SSKUC	2.01533	0.8973	0.94474	
55	NA32	DL360P	4NL 128GB 2X480SSD	R430	17.2 SSKUC	2.01317	0.93662	0.93205	
56	NA33	DL360P	4NL 128GB 2X480SSD	R430	17.2 SSKUC	2.16045	0.94777	0.93624	
57	NA34	DL360P	4NL 128GB 2X480SSD	R430	17.2 SSKUC	2.0303	0.91686	0.90747	
58	NA42	DL360P	4NL 128GB 2X480SSD	R430	17.2 SSKUC	2.06583	0.95229	0.91684	
59	NA59	DL360P	4NL 128GB 2X480SSD	R430	17.2 SSKUC	1.7789	0.48678	0.50807	<
60	NA7	DL360P	4NL 128GB 2X480SSD	R430	17.2 SSKUC	1.97282	0.80666	0.81726	
61	NA79	DL360P	4NL 128GB 2X480SSD	R430	17.2 SSKUC	1.93774	0.9026	0.66786	
62	NA8	DL360P	4NL 128GB 2X480SSD	R430	17.2 SSKUC	2.09027	0.91275	0.9105	

The input data for the linear regressions is formed by getting transaction, app cpu, tech asset and active host information from Horizon. The queries used for this analysis are below.

To get model, asset type information for all hosts we do the following query from **Tech Asset Force** (fact_tech_asset):

SELECT discovered_host_name__c, asset_type_asset_type__c, asset_type_category__c, asset_type_make__c, asset_type_manufacturer__c, asset_type_model__c, asset_type_configuration__c FROM infra_analytics.fact_tech_asset WHERE (discovered_host_name__c LIKE 'ap%-app%' OR discovered_host_name__c LIKE 'eu%-app%' OR discovered_host_name__c LIKE 'gs%-app%') and date_key=20180424 AND gus_source_tstamp>1524268800

[Note that these are just samples and ..]

To get a list of active pods we do the following query for idb data:

SELECT name FROM idb.idb_cluster WHERE cluster_type = 'POD' AND operational_status = 'ACTIVE' AND is_dr=FALSE AND build_type IN ('RELEASED', 'NEW') AND environment IN ('PRODUCTION') AND (name LIKE 'EU%' OR name LIKE 'AP%' OR name LIKE 'GS%') ORDER BY name;

Then for each active pod we get the app cpu and transaction data using the queries below:

To get app cpu and transactions data for each pod from **Horizon** we do the following queries: SELECT date_key,hour_key,datacenter,superpod,pod,hostname,avg_app_cpu FROM agg_application_host_hourly WHERE date_key >= 20180421 AND date_key <= 20180427 AND pod ={pod_Name}

SELECT date_key,hour_key,datacenter,superpod,pod,hostname,total_transactions FROM infra_analytics.agg_business_host_hourly WHERE date_key >= 20180421 AND date_key <= 20180427 AND pod = {pod_Name}

We merge the results from app cpu and transaction queries based on date_key, hour_key, datacenter, superpod, pod, hostname and timestamp.

We then merge with tech asset force results based on hostname.

For DB:

As shown in the chart below for DB different hardware models typically don't co-exist within a pod, so in that case we need to do the analysis using data before a hardware refresh vs data after a hardware refresh. The following pods have undergone recent hardware refreshes:

Eu6 LON 11/30/17 refresh done. 1st a refresh happened then cap add a month

EU6 FRF (DR) 12/15/17 refresh done

Na30 CHI 11/22/2017 [changepoint]

NA30 WAS (DR) 12/7/2017 refresh done 12/14/2017 capadd done

Na35 12/17/2017 [changepoint]

Na44 1/14/2018 [changepoint] should it be 1/20/2018?

NA44 (DR) 1/6/2018

Na6 2/17/2018? or 2/24/2018?

NA6 (DR) 2/2/2018

Na24 3/16/2018?

A calendar of refreshes can be found here:

■ DB CPU Capacity Add and Refresh Schedule

Eu11 will be refreshing soon

SELECT discovered_host_name__c, asset_type_asset_type__c, asset_type_category__c, asset_type_make__c, asset_type_manufacturer__c, asset_type_model__c, asset_type_configuration__c FROM infra_analytics.fact_tech_asset WHERE (discovered_host_name__c LIKE 'ap%-db%' OR discovered_host_name__c LIKE 'eu%-db%' OR discovered_host_name__c LIKE 'gs%-db%') and date_key>=20171120 and date_key<=20171215 and gus_source_tstamp >= 1511136000 and gus_source_tstamp <= 1513296000

The query for sql executions in Argus is:

 $SUM(DOWNSAMPLE(1519862400:1520294400:db...na6:Executions_ps\{source=OEM, device=db1-*\}:max:1m-avg, \#1h-p91\#), \#UNION\#)$

Hardware distribution

We can look at the distribution of hardware across pods as of now for app:

Num app hosts per Pod and SKU

and for DB:

Num db hosts per Pod and SKU

The charts above were generated using the following query in Deep Sea:

WHERE role IN ('app','db') AND (pod LIKE "NA%" OR pod LIKE "AP%" OR pod LIKE "EU%") AND host_ope_status ='ACTIVE' AND status='Active' AND (host LIKE "eu%" or host LIKE "&

Dataset as of 25/3

Note: there is some data included for decommed hosts but that should be resolved when we join with transacting host data. For now, excluding this list manually ['EU0','EU5000','NA26','NA28','NA41','EU5'] + ['NA21'] (gov pod).

KLT

• We are using current transaction pipeline - but it has missing data - future switch to trust transactions - need to watch it.

Notes for db cpu:

We are doing at the pod level to avoid partition movement right before refresh date.

We are using sql executions vs cpu instead of request_cnt vs oraclecputime because some requests do not touch the db.

For na6 the ratio between slopes for those two pairs of metrics was found to be different: 0.25 vs 0.35