Computation of LTI system responses directly from input/output data

Ivan Markovsky, Jan C. Willems, Paolo Rapisarda, and Bart De Moor K.U.Leuven, ESAT/SCD (SISTA)

23rd Benelux Meeting on Systems and Control, Helvoirt, The Netherlands, March 17-18, 2004

Motivation: find models from data

in this talk, the data $\tilde{w}=(\tilde{u},\tilde{y})$ is an exact I/O traj. of an LTI system \mathcal{S} (think of deterministic subspace identification: from \tilde{w} to (A,B,C,D))

the impulse response H of $\mathcal S$ is a particular representation of $\mathcal S$ \Rightarrow an algorithm that computes H from w is an identification algorithm to go from H to (A,B,C,D) is realization (e.g., Kung's algorithm)

in subspace identification, sequential free responses of $\mathcal S$ are computed \leadsto oblique projection

the oblique proj. is equivalent of the block algorithm, presented here

Outline

- Motivation: system identification
- The fundamental lemma
- Block algorithm
- Iterative algorithm
- Sequential free responses (oblique projection)
- Simulation example
- Conclusions

23rd Benelux Meeting on Systems and Control, Helvoirt, The Netherlands, March 17-18, 2004

The fundamental lemma

the proposed algorithm is based on the following fundamental fact:

(under reasonable assumptions, stated latter) the l samples long windows of \tilde{w} span the set of all l samples long trajectories of \mathcal{S}

notation:

 $\mathcal{H}_l(\bullet)$ is a Hankel matrix with l block-rows, e.g., with $\tilde{u}(1), \ldots, \tilde{u}(T)$,

$$\mathcal{H}_{l}(\tilde{u}) = \begin{bmatrix} \tilde{u}(1) & \tilde{u}(2) & \cdots & \tilde{u}(T-l+1) \\ \tilde{u}(2) & \tilde{u}(3) & \cdots & \tilde{u}(T-l+2) \\ \vdots & \vdots & & \vdots \\ \tilde{u}(l) & \tilde{u}(l+1) & \cdots & \tilde{u}(T) \end{bmatrix}$$

 n_{max} is an upper bound on the order n of S

2

The fundamental lemma

persistency of excitation plays an important role in system identification \tilde{u} is persistently exciting of order $l:\iff \mathcal{H}_l(\tilde{u})$ is of full row rank

the assumptions needed in the fundamental lemma are: (i) \tilde{u} is persistently exciting of order l + n, and (ii) S is controllable

define: $U_p \in \mathbb{R}^{n_{\max}m \times \bullet} U_f \in \mathbb{R}^{lm \times \bullet}$, $Y_p \in \mathbb{R}^{n_{\max}p \times \bullet}$, $Y_f \in \mathbb{R}^{lp \times \bullet}$ by

$$\mathcal{H}_{\mathtt{n}_{\max}+l}(ilde{u}) =: egin{bmatrix} U_{\mathsf{p}} \ U_{\mathsf{f}} \end{bmatrix} \qquad \mathsf{and} \qquad \mathcal{H}_{\mathtt{n}_{\max}+l}(ilde{y}) =: egin{bmatrix} Y_{\mathsf{p}} \ Y_{\mathsf{f}} \end{bmatrix}$$

23rd Benelux Meeting on Systems and Control, Helvoirt, The Netherlands, March 17-18, 2004

The fundamental lemma

Theorem 1. Let $\tilde{w}=(\tilde{u},\tilde{y})$ be a trajectory of a controllable LTI system \mathcal{S} of order $n \leq n_{\max}$ and let \tilde{u} be persistently exciting of order $l+2n_{\max}$. Then the system of equations

$$\begin{bmatrix} U_{\mathsf{p}} \\ U_{\mathsf{f}} \\ Y_{\mathsf{p}} \end{bmatrix} g = \begin{bmatrix} 0 \\ u_{\mathsf{f}} \\ 0 \end{bmatrix},$$

is solvable for any $u_{\rm f}$ and any particular solution \bar{g} allows the computation of the response $y_{\rm f}$ of ${\mathcal S}$ due to the input $u_{\rm f}$ and zero initial conditions as $y_{\rm f}=Y_{\rm f}\bar{q}$.

23rd Benelux Meeting on Systems and Control, Helvoirt, The Netherlands, March 17-18, 2004

Б

Block algorithm

Theorem 1 gives a block algorithm for the computation of the response y_f if $u_f = \delta(t)e_i$, where e_i is the *i*th unit vector, $y_f = H(:,i)$

let \tilde{w} be finite, e.g., $\tilde{w} = (\tilde{w}(1), \dots, \tilde{w}(T))$

the persistency of excitation assumption implies that

$$l \le \frac{T+1}{\mathtt{m}+1} - 2\mathtt{n}_{\max}$$

 \Rightarrow using the block algorithm, we are limited in the length of the response $y_{\rm f}$ that can be computed from \tilde{w}

it is possible, however, to find an arbitrary many samples of the response

Iterative algorithm

input: $\tilde{w} = (\tilde{u}, \tilde{y})$, $u_{\rm f}$, $n_{\rm max}$

- 1. initialization: choose l and set k:=0, $f_{\mathsf{u}}^{(0)}:=\left[\begin{smallmatrix}0\\u_{\mathsf{f}}(1:l)\end{smallmatrix}\right]$, $f_{\mathsf{y},\mathsf{p}}^{(0)}:=0$
- 2. repeat

$$2.1. \ \mathsf{solve} \left[\begin{smallmatrix} U_\mathsf{p} \\ U_\mathsf{f} \\ Y_\mathsf{p} \end{smallmatrix} \right] g^{(k)} = \left[\begin{smallmatrix} f_\mathsf{u}^{(k)} \\ f_\mathsf{y,p}^{(k)} \end{smallmatrix} \right] \ \mathsf{and} \ \mathsf{let} \ y_\mathsf{f}^{(k)} := Y_\mathsf{f} g^{(k)}$$

2.2. shift
$$f_{\mathsf{u}}^{(k+1)} := \begin{bmatrix} \sigma^l f_{\mathsf{u}}^{(k)} \\ u(kl+1:(k+1)l) \end{bmatrix}$$
, $f_{\mathsf{y},\mathsf{p}}^{(k+1)} := \sigma^l \begin{bmatrix} f_{\mathsf{y},\mathsf{p}}^{(k)} \\ y_{\mathsf{f}}^{(k)} \end{bmatrix}$

2.3.
$$k:=k+1$$
 until $t < kl$ $(t:=\# \text{ of samples in } u_{\mathrm{f}})$ output $y_{\mathrm{f}}:=\operatorname{col} \left(y_{\mathrm{f}}^{(0)},\ldots,y_{\mathrm{f}}^{(k-1)}\right)$

6

4

Iterative algorithm

the iterative algorithm works by matching the initial conditions of the responses $y_{\rm f}^{(0)}, y_{\rm f}^{(1)}, \ldots$, so that they become sequential pieces of $y_{\rm f}$

the parameter \emph{l} can be chosen between 1 and $(T+1)/(\mathtt{m}+1)-2\mathtt{n}_{\max}$

different values affect the numerical stability, efficiency, and sensitivity to noise in the data (illustrated by simulation example)

the freedom to choose the parameter l allows to relax the persistency of excitation condition of Theorem 1

23rd Benelux Meeting on Systems and Control, Helvoirt, The Netherlands, March 17-18, 2004

Sequential free responses

sequential free resp.—a sequence of free responses with a corresponding sequence of initial conditions being a valid state sequence of $\mathcal S$

free responses can be computed from \tilde{w} by solving the system

$$\begin{bmatrix} U_{\mathsf{p}} \\ Y_{\mathsf{p}} \\ U_{\mathsf{f}} \end{bmatrix} G = \begin{bmatrix} U_{\mathsf{p}} \\ Y_{\mathsf{p}} \\ 0 \end{bmatrix}, \quad \text{and setting } Y_0 = Y_{\mathsf{f}}G \tag{1}$$

moreover, the Hankel structure of $U_{\rm p}$ and $Y_{\rm p}$ implies sequentiality of Y_0 this gives a block algorithm for the computation of Y_0 the general iterative algorithm can be used for the computation of Y_0 (with a small modification for the initial conditions)

23rd Benelux Meeting on Systems and Control, Helvoirt, The Netherlands, March 17-18, 2004

0

Link with the oblique projection

consider the least squares least norm solution of (1)

$$\bar{G} = \begin{bmatrix} W_{\mathsf{p}}^\top & U_{\mathsf{f}}^\top \end{bmatrix} \begin{bmatrix} W_{\mathsf{p}} W_{\mathsf{p}}^\top & W_{\mathsf{p}} U_{\mathsf{f}}^\top \\ U_{\mathsf{f}} W_{\mathsf{p}}^\top & U_{\mathsf{f}} U_{\mathsf{f}}^\top \end{bmatrix}^+ \begin{bmatrix} W_{\mathsf{p}} \\ 0 \end{bmatrix}, \quad W_{\mathsf{p}} := \begin{bmatrix} U_{\mathsf{p}} \\ Y_{\mathsf{p}} \end{bmatrix}$$

 $\Rightarrow Y_{\rm f} \bar{G} = Y_{\rm f}/_{U_{\rm f}} W_{\rm p}$, the oblique projection of $Y_{\rm f}$ along $U_{\rm f}$ on $W_{\rm p}$

 \Rightarrow the oblique projection is an implementation of the block algorithm for the computation of the matrix Y_0 of sequential free responses

Simulation example

 ${\mathcal S}$ is of order $3,\quad \tilde u$ is a unit variance white noise, T=100 $\tilde w=(\tilde u,\tilde y) \text{ is a trajectory of } {\mathcal S}+\text{ white noise with std. deviation } \sigma$ $e:=||Y_0-\hat Y_0||_F,\quad Y_0-\text{ exact},\quad \hat Y_0-\text{ estimated from data}$ f— amount of operations in mega flops

	$\sigma = 0.0$		$\sigma = 0.2$		$\sigma = 0.4$	
Method	e	f	e	f	e	f
Iterative alg. with QR	10^{-14}	130	2.5257	132	4.7498	132
Obl. proj. from def.	10^{-10}	182	3.2063	187	6.0915	189
Obl. proj. with QR	10^{-14}	251	3.2063	251	6.0915	252

10

Conclusions

we presented:

- an algorithm for computation of an arbitrary response of an LTI system from an exact finite I/O trajectory of the system
- the algorithm is based on a fundamental fact + a refinement that allows to construct a long response from several short ones
- a special case of the block version of the algorithm corresponds to the oblique projection
- the parameter l of the iterative alg. allows to relax the persistency of excitation condition and to gain numerical and statistical efficiency

23rd Benelux Meeting on Systems and Control, Helvoirt, The Netherlands, March 17-18, 2004