SEGUNDO PARCIAL - 4 DE JULIO DE 2014. DURACIÓN: 3 HORAS Y MEDIA

N° de parcial	Cédula	Apellido y nombre	Salón			

[A	В	С	D	Е	F	G	Н	Ι	J	K	L	М	N	Ñ	0	P	Q	R	S	Т	U	V	W	Х	Y	Z	J
	О	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

Ejercicio 1.

- **a**. Sea $n \in \mathbb{Z}^+$, y g un entero coprimo con n. Probar que si a es el orden de \overline{g} en $U(n^2)$ y b es el orden de \overline{g} en U(n), entonces $b \mid a$.
- **b**. Sea p = 19.
 - i) Probar que 10 es raíz primitiva módulo p.
 - ii) ¿Es 10 raíz primitiva módulo p^2 ? Pueden utilizar los siguientes datos: $10^5 \equiv 3 \pmod{p^2}$ y $3p^2 = 1083$.
 - iii) Para cada $k \in \mathbb{Z}^+$ hallar una raíz primitiva módulo $2p^k$.

Ejercicio 2.

- a. Si $f: G \to K$ es un homomorfismo de grupos probar que $o(f(g)) \mid o(g)$ para todo $g \in G$.
- **b.** En cada parte, hallar todos los homomorfismos $f: G \to K$ justificando debidamente.
 - i) $G = S_4$ con la composición como operación y $K = \mathbb{Z}_{35}$ con la suma de clases como operación.
 - ii) $G = \mathbb{Z}_{15}$ y $K = \mathbb{Z}_6$, ambos grupos con la suma de clases como operación.

Ejercicio 3. Sea G un grupo y $g \in G$ de orden finito. Probar que:

- **a.** Si $k \in \mathbb{Z}^+$, entonces $o(g^k) = \frac{o(g)}{\operatorname{mcd}(o(g), k)}$.
- **b.** Si $H = \langle g \rangle$, entonces existen $\varphi(o(g))$ elementos en H que generan H.

Ejercicio 4.

- a. Ana y Bruno quieren acordar una clave común usando el protocolo Diffie-Hellman. Para ello eligen el primo p=1009 y la raíz primitiva g=11. Ana elige el número m=260 le envía a Bruno el número 1005. Bruno elige el entero n=8. ¿Cuál es la clave k común que acordaron Ana y Bruno?.
- b. Ahora Ana quiere comunicarse con Bruno través de un sistema Vigenere donde la palabra clave consiste de 3 letras de la siguiente manera: se toma la clave k común acordada en la parte anterior y se la escribe en base 28:

$$k = L_2 28^2 + L_1 28 + L_0.$$

Luego la clave común resulta de sustituir en $L_2L_1L_0$ por sus respectivas letras (por ejemplo si $k = 25 \cdot 28^2 + 0 \cdot 28 + 2$ entonces la clave común será YAC).

- i) Calcular la clave k como $L_2L_1L_0$.
- ii) Usando la clave anterior descifrar el siguiente mensaje: WUFAGHFCWÑKZBXHEÑ_DXMUG.

Ejercicio 5. Enunciar y demostrar el Teorema de Lagrange para grupos.