Name: Chirag A Choudhary

Class: D15A

Roll no.: 10

Experiment – 6: MongoDB

1) Aim: To study CRUD operations in MongoDB

2) Problem Statement:

- A) Create a database, create a collection, insert data, query and manipulate data using various MongoDB operations.
 - 1. Create a database named "inventory".
 - 2. Create a collection named "products" with the fields: (ProductID, ProductName, Category, Price, Stock).
 - 3. Insert 10 documents into the "products" collection.
 - 4. Display all the documents in the "products" collection.
 - 5. Display all the products in the "Electronics" category.
 - 6. Display all the products in ascending order of their names.
 - 7. Display the details of the first 5 products.
 - 8. Display the categories of products with a specific name.
 - 9. Display the number of products in the "Electronics" category.
 - 10. Display all the products without showing the " id" field.
 - 11. Display all the distinct categories of products.
 - 12. Display products in the "Electronics" category with prices greater than 50 but less than 100.
 - 13. Change the price of a product.
 - 14. Delete a particular product entry.

3) **Theory**:

- A. Describe some of the features of MongoDB?
 - **Flexible Schema:** MongoDB is schema-less, meaning it can store documents with different structures in the same collection.
 - Scalability: It supports horizontal scaling using sharding.
 - **High Performance:** Efficient for read and write operations.
 - **Replication:** Provides data redundancy and high availability using replica sets.
 - **Indexing:** Supports various types of indexes for efficient query execution.
 - **Aggregation Framework:** Allows powerful data aggregation and transformation.
- B. What are Documents and Collections in MongoDB?
 - **Document:** A document in MongoDB is a JSON-like data structure called BSON (Binary JSON). It consists of field-value pairs, similar to a row in a relational database.
 - **Collection:** A collection is a group of MongoDB documents, equivalent to a table in relational databases. Documents within a collection can have varying structures.

C. When to use MongoDB?

- When dealing with large volumes of unstructured or semi-structured data.
- For applications requiring horizontal scalability.
- When frequent schema changes are expected.
- For real-time analytics and content management systems.

D. What is Sharding in MongoDB?

- **Sharding** is a method of horizontally partitioning data across multiple servers to handle large datasets.
- MongoDB uses shards to store subsets of data, ensuring improved read and write performance.
- A **Shard Key** is used to distribute data evenly across shards.

4) Output:

1) Create a database and collection

Collection Name

Products

☐ Time-Series

Time-series collections efficiently store sequences of measurements over a period of time. Learn More C

Additional preferences (e.g. Custom collation, Clustered collections)

Cancel

Create Collection

2) Insert Data

Insert Document

To collection Inventory.products

VIEW {}

×

Cancel

Insert

3) Display all Documents

4) Display all Products in the Electronics Category

5) Display Products in Ascending Order of Names

6) Display First 5 Products

7) Display Products with a Specific Name

8) Count Products in Electronics Category

9) Hide the "_id" Field

10) Display Distinct Categories

11) Display Products in Electronics Category with Price > 50 and < 100

12) Change the Price of a Product

13) Delete a Product

