Université de Genève Section de Mathématiques

A. Karlsson

Analyse Complexe 2015 - 2016

Série d'exercices 18 : Différentes notions de convergence et polynômes d'Hermite

Si vous avez des questions ou des remarques, vous pouvez nous écrire à : Maxime.Gagnebin@unige.ch ou Jhih-Huang.Li@unige.ch. Il n'y a pas de bonus, mais nous vous encourageons à faire les exercices et nous rendre dans nos casiers. Les exercices avec une étoile sont pour votre entraînement et ne seront pas corrigés.

Définition. Soit $(u_n) \in \mathbb{C}^{\mathbb{N}^*}$ une suite de nombres complexes. On définit

$$s_n = \sum_{k=1}^n u_k$$
 et $\sigma_n = \sum_{k=1}^n s_k$

sommes partielles de (u_n) et de (s_n) . On dit que la série $\sum u_n$ converge (ou est sommable) vers l

- (1) au sens habituel si les sommes partielles s_n converge vers l;
- (2) au sens de Cesàro $si \sigma_n/n$ converge vers l;
- (3) au sens d'Abel si la série

$$S(r) = \sum_{k=1}^{\infty} u_k r^k$$

est bien définie pour $0 \le r < 1$ et

$$\lim_{r \to 1} S(r) = l.$$

- 1. Dire dans quel sens converge la série $\sum u_n$ pour les suites suivantes :
 - (a) $(u_n) = (1, 0, 0, 0, \dots)$;
- (c) $\forall n \in \mathbb{N}^*, \quad u_n = (-1)^n$;
- (a) $(u_n) = (1, 0, 0, 0, \dots);$ (b) $\forall n \in \mathbb{N}^*, \quad u_n = (1/2)^n;$
- (d) $\forall n \in \mathbb{N}^*, \quad u_n = (-1)^n \cdot n.$
- 2. Soit (u_n) une suite de nombres complexes.
 - (a) Montrer que si la série $\sum u_n$ converge, alors elle converge aussi au sens de Cesàro vers la même limite.
 - (b) A-t-on la réciproque?
 - (c) Montrer que si $\sum u_n$ converge au sens de Cesàro, alors s_n/n et u_n/n tendent tous les deux vers 0.
 - (d) Montrer que si $\sum u_n$ converge au sens de Cesàro vers σ , alors elle converge aussi au sens d'Abel vers la même limite.

Indication: Établir l'identité en utilisant deux fois la sommation d'Abel

$$\sum_{n=1}^{\infty} c_n r^n = (1-r)^2 \sum_{n=1}^{\infty} \sigma_n r^n$$

où on suppose que $\sigma = 0$.

(e) Pourquoi la réciproque est fausse?

3. Soit $\phi : \mathbb{R} \to \mathbb{R}$ une fonction donnée par $\phi(t) = e^{-t^2/2}$. On lui associe l'espace de fonctions suivant

$$E = \left\{ f : \mathbb{R} \to \mathbb{R} \text{ continue}, \int_{-\infty}^{\infty} f(t)^2 \phi(t) \mathrm{d}t < \infty \right\}.$$

On définit aussi une application sur $E \times E$

$$\langle f, g \rangle = \int_{-\infty}^{\infty} f(t)g(t)\phi(t)dt.$$

- (a) Montrer que $\langle \cdot, \cdot \rangle$ définit un produit scalaire sur E.
- (b) Pour tout $n \in \mathbb{N}$, on définit le polynôme $H_n(x)$ par

$$H_n(x)\phi(x) = (-1)^n \phi^{(n)}(x).$$

Montrer que les H_n sont bien définis. Donner les degrés de H_n ainsi que leurs coefficients dominants. Calculer H_0 , H_1 , H_2 et H_3 .

Indication: Établir la formule de Rodrigues pour $n \in \mathbb{N}$

$$H_{n+1}(x) = xH_n(x) - H'_n(x).$$

Ces polynômes s'appellent les polylômes d'Hermite.

(c) Montrer la formule de récurrence suivante pour $n \ge 1$

$$H_{n+1}(x) + nH_{n-1}(x) = xH_n(x).$$

En déduire l'équation différentielle satisfaite par H_n :

$$H_n''(x) - xH_n'(x) + nH_n(x).$$

- (d) Calculer $\langle H_m, H_n \rangle$ pour $m, n \in \mathbb{N}$. En déduire que (H_m) forme une famille orthogonale. C'est aussi la famille qu'on aurait obtenue avec la méthode de Gram-Schmidt si on avait commencé avec la famille $(\widetilde{H}_n = x^n)_{n \in \mathbb{N}}$.
- (e) La fonction de génératrice de H_m s'écrit comme

$$G(x,t) = \sum_{n=0}^{\infty} H_n(x) \frac{t^n}{n!}.$$

Regarder le développement en série de Taylor de $\phi(x-t)$ avec $t \to 0$, montrer que $G(x,t) = \exp(xt - t^2/2)$.

4. (*) On définit l'espace de fonctions suivant

$$E = \left\{ f : \mathbb{R} \to \mathbb{R}, \int_{-\infty}^{\infty} f(t)^2 e^{-|t|} dt < \infty \right\}.$$

(a) Vérifier que $\langle \cdot, \cdot \rangle$ définit un produit scalaire

$$\forall f, g \in E, \quad \langle f, g \rangle = \int_{-\infty}^{\infty} f(t)g(t)e^{-|t|}dt.$$

- (b) Appliquer la méthode de Gram-Schmidt à la famille $(\widetilde{P}_n = x^n)$ pour définir une famille de polynômes orthogonaux (P_n) . Calculer P_0 , P_1 , P_2 et P_3 . Quel est le degré de chaque P_n ?
- (c) Montrer par induction que pour tout n, le polynôme P_n ne contient que des monômes dont le degré est de la même parité que celle de n.