Analog Electronic Circuits (EC2.103): Quiz-2

Instructor: Prof. Abhishek Srivastava, CVEST, IIIT Hyderabad Date: 19th May, 2023, Duration: 45 minutes, Max. Marks: 10

Instructions:

· Clearly write your valid assumptions (if any)

• You are only allowed to use own handwritten single A-4 sheet (both sides) as short notes

· Mobile phone, computers can not be used during the exam

1. As shown in figure 1, derive the expression for small signal input resistance R_{in} and fill in the blanks. Consider that both transistors $(Q_1 \& Q_2)$ are in active mode and symbols have their usual meanings. (Hint: Draw small signal equivalent, apply v_{in} , measure i_{in} , then $R_{in} = \frac{v_{in}}{i_{in}}$) [4 Mark]

$$R_{in} = (---)r_{\pi 1} + (----)r_{\pi 2} + (----)R_E$$

Figure 1

2. For the amplifier topology shown in figure 2, it is given that $\beta = 100$, $I_S = 6 \times 10^{-16}$ A and $V_A = \infty$.

Figure 2

(a) Draw small signal equivalent and derive voltage gain $(A_v = \frac{v_{out}}{v_{in}})$.

[1 Mark]

(b) Derive the expressions for R_{in} and R_{out} .

[1 Mark]

(c) Design the amplifier to achieve following specifications: $A_v \geq 8$, $R_{out} = 1 \ k\Omega$, $R_{in} \geq 5 \ k\Omega$, $V_{CC} = 2.5 \ V$, lowest signal frequency of interest $(f_{in_{min}})$ is 100 Hz and overall power dissipation $P_DC \leq 1 \ mW$. Tabulate the final design parameters $(A_v, R_{in}, R_{out}, P_{DC})$ achieved in your design. (Hint: Design means you need to find R_C , $R_B \& C_B$ values to satisfy the requirements. $I_C = I_{Sexp}(\frac{V_{BE}}{V_T})$, $I_C = \beta I_B$) [4 Mark]