appendix

October 2, 2025

0.1 Introduction

This is the notebook file to replicate our macroeconometrics approach. This notebook does not contain the blackmarblepy application. Source data is from blackmarblepy for nightlight, and BPS. If you happens to find any issues, you can find Krisna via krisna@dewanekonomi.go.id

You will see the following sections in this notebook:

- 1. Real GDP and quarterly night light index (NTL) graph;
- 2. OLS and residuals:
- 3. ADF test and Johansen Cointegration test;
- 4. VECM graph;
- 5. VAR graph; and
- 6. ARDL graph.

We do those steps for both quarterly dataset and growth dataset.

We only print the regression summary for a panel results that are best fit.

Note that you're going to need Stata to run the VAR regression. I somehow cannot get the VARMAX from statsmodels to converge unfortunately.

0.2 some Packages

```
[1]: import pandas as pd
from pandas.tseries.offsets import QuarterEnd
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
from statsmodels.tsa.vector_ar.vecm import VECM, select_order, select_coint_rank
from statsmodels.tsa.api import VAR
from statsmodels.tsa.attools import adfuller
from statsmodels.tsa.ardl import ARDL
from sklearn.metrics import mean_squared_error
import statsmodels.formula.api as smf
from statsmodels.tsa.ardl import ardl_select_order
pd.options.display.max_seq_items = 4000 ## This is only for cosmetics.
```

0.3 Growth Regression

0.3.1 The GDP and night light growth dataset

Turn on the last line of the first codeblock to see the dataframe

```
[2]: ## Data prep
     ### Creating data
     ntl=pd.read_csv('ntl_monthly_avg_2012-2024.csv')
     gdp=pd.read_excel('GDP_YoY_Quarterly_12_24.xlsx')
     ### Make time index
     ntl.Date=pd.to datetime(ntl['Date'])
     ntl['qtr']=ntl['Date'].dt.quarter
     ntl['year']=ntl['Date'].dt.year
     ### Averaging the radiance into quarterly, make it yoy quarterly growth
     ntl=ntl.groupby(['year','qtr'])['NTL_Radiance'].mean().reset_index()
     ntl['Date']=pd.date_range(start='2012-01-01', periods=len(ntl), freq='QE')
     ntl=ntl[['Date','NTL_Radiance']]
     ntl['g']=(gdp['Real GDP YoY Growth Indonesia'])
     ntl['ntlg']=(ntl['NTL_Radiance'])
     ntl['NTL_Radiancelag'] = ntl['NTL_Radiance'].shift(4)
     ntl['ntlg'] = ((ntl['NTL_Radiance'] - ntl['NTL_Radiancelag']) /__
      →ntl['NTL_Radiancelag']) * 100
     ### Creating dummy quarterly and dummy covid
     ntl['q1']=np.where(ntl['Date'].dt.quarter==1,1,0)
     ntl['q2']=np.where(ntl['Date'].dt.quarter==2,1,0)
     ntl['q3']=np.where(ntl['Date'].dt.quarter==3,1,0)
     ntl['q4']=np.where(ntl['Date'].dt.quarter==4,1,0)
     ntl['covid']=np.where((ntl['Date'].dt.year>=2020) & (ntl['Date'].dt.
      \Rightarrowyear<=2022),1,0)
     ntl['scar']=np.where((ntl['Date'].dt.year>=2020) ,1,0)
     ### Back to making time index
     ntl=ntl.dropna().reset_index(drop=True)
     ntl['qtr']=ntl['Date'].dt.quarter
     ntl['year']=ntl['Date'].dt.year
    ntl['qqq']= ntl['year'].astype(str)+'q' + ntl['qtr'].astype(str) ## This is for
      \hookrightarrowStata time index for tsset.
     ntl=ntl.set_index('Date')
     ntl=ntl.asfreq('QE-DEC')
     #ntlm=ntlm[['g','ntlg']]
     ### Creating dummy quarterly and dummy covid
     ## OLS-ing
     mod=sm.OLS(ntl['g'], sm.add_constant(ntl['ntlg'])).fit()
     ntl['resid']=mod.resid
     ntl['ols']=mod.predict()
```

0.3.2 Plot the growth dataset

```
[3]: # Plotting GDP Growth and Night light growth side by side
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))
ntlm=ntl[4:]
ax1.plot(ntlm['g'],color='#845B24',marker='o', linestyle='-')
ax1.set_title('(a) Quarterly GDP growth')

ax2.plot(ntlm['ntlg'], linestyle='-', color='#845B24',marker='o')
ax2.set_title('(b) Quarterly night light growth')

plt.tight_layout()
plt.savefig("fig/fig.png")
plt.show()
```


0.3.3 OLS and residuals

OLS Regression Results

			LS Regre	ession F	lesults 		
Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Typ	ons:	Wed, 01	2015 Squares Oct 2025 22:02:59 48 46 1000000000000000000000000000000000000	Adj. F-st Prob Log- AIC: BIC:		:	0.150 0.132 8.126 0.00651 -104.61 213.2 217.0
=========			err	t	P> t	[0.025	0.975]
					0.000 0.007	0.014	
Omnibus: Prob(Omnibus): Skew: Kurtosis:			42.129 0.000 -2.449 9.260	Jaro Prob	oin-Watson: que-Bera (JB): o(JB): l. No.		0.736 126.380 3.61e-28 22.9

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0.3.4 ADF test

```
[5]: ## ADF Test for q, ntlq and OLS residuals
     def adf_test(series, name=""):
         11 11 11
        Perform ADF test and print results
        result = adfuller(series.dropna(), autolag="BIC")
        print(f"ADF Test for {name}")
        print(f" Test Statistic : {result[0]:.4f}")
        print(f" p-value : {result[1]:.4f}")
        print(f" #Lags Used
                                : {result[2]}")
        print(f" #Observations : {result[3]}")
        for key, value in result[4].items():
            print(f" Critical Value {key} : {value:.4f}")
        if result[1] <= 0.05:</pre>
            print(f" ==> {name} is stationary\n (reject HO of unit root)\n")
            print(f" ==> {name}) is non-stationary\n (fail to reject H0)\n")
     # Run ADF tests for both series
     adf_test(ntlm["g"], "GDP YoY Growth")
     adf_test(ntlm["ntlg"], "NTL YoY Growth")
     adf test(ntlm["resid"], "OLS Residuals")
    ADF Test for GDP YoY Growth
      Test Statistic: -2.7478
      p-value
                    : 0.0661
                    : 0
      #Lags Used
      #Observations : 43
       Critical Value 1%: -3.5925
       Critical Value 5% : -2.9315
       Critical Value 10%: -2.6041
      ==> GDP YoY Growth is non-stationary
     (fail to reject HO)
    ADF Test for NTL YoY Growth
      Test Statistic: -4.2533
      p-value
                    : 0.0005
                     : 0
      #Lags Used
      #Observations : 43
       Critical Value 1%: -3.5925
       Critical Value 5%: -2.9315
       Critical Value 10%: -2.6041
      ==> NTL YoY Growth is stationary
     (reject HO of unit root)
```

ADF Test for OLS Residuals
Test Statistic : -2.9893
p-value : 0.0359
#Lags Used : 0
#Observations : 43

Critical Value 1%: -3.5925
Critical Value 5%: -2.9315
Critical Value 10%: -2.6041
==> OLS Residuals is stationary
(reject HO of unit root)

0.3.5 Johansen Cointegration test

VECM Order Selection (* highlights the minimums)

	AIC	BIC	FPE	HQIC
0	7.167	7.537*	1300.*	7.288
1	7.384	7.939	1627.	7.565
2	7.552	8.292	1950.	7.793
3	7.303	8.228	1557.	7.604
4	7.103	8.214	1324.	7.465
5	7.182	8.477	1513.	7.604
6	7.367	8.847	1972.	7.849
7	7.216	8.882	1896.	7.759
8	7.469	9.320	2854.	8.072
9	7.035	9.070	2303.	7.698
10	6.595	8.815	2040.	7.318
11	6.339	8.745	2570.	7.123
12	5.159*	7.750	1815.	6.004*

Johansen cointegration test using trace test statistic with 5% significance level

r_0 r_1 test statistic critical value

0	2	27.82	15.49
1	2	7.259	3.841

0.3.6 VECM with growth dataset

Note that I save the graph in a folder called fig. Please create the folder first before running the code. If you're not planning to save the graph, you can comment out the plt.savefig line.

```
[7]: en=ntl[['g','ntlg']]
     exc=ntl[['covid']]
     exs=ntl[['scar']]
     exq=ntl[['q1','q2','q3']]
     exqc=ntl[['q1','q2','q3','covid']]
     exqs=ntl[['q1','q2','q3','scar']]
     lag=lag order.aic
     ve = VECM(en,k_ar_diff=lag, coint_rank=1, deterministic="ci").fit()
     vec = VECM(en,k_ar_diff=lag, coint_rank=1, exog=exc,deterministic="ci").fit()
     ves = VECM(en,k_ar_diff=lag, coint_rank=1, exog=exs,deterministic="ci").fit()
     veq = VECM(en,k_ar_diff=lag, coint_rank=1, exog=exq,deterministic="ci").fit()
     veqc = VECM(en,k_ar_diff=lag, coint_rank=1, exog=exqc,deterministic="ci").fit()
     veqs = VECM(en,k_ar_diff=lag, coint_rank=1, exog=exqs,deterministic="ci").fit()
     models = {'fve': ve, 'fvec': vec, 'fves': ves, 'fveq': veq, 'fveqc': veqc, __
      results = {}
     for name, model in models.items():
        fitted = pd.DataFrame(model.fittedvalues, columns=en.columns)
        fitted.index = pd.date_range(end='2024-12-31', periods=31, freq='QE')
        merged = pd.merge(en, fitted, left_index=True, right_index=True,__
      ⇔suffixes=('', f'_fitted'))
        results[name] = merged
     fig, ax = plt.subplots(3,2,figsize=(12, 12))
     ax[0,0].plot(results['fve']['g'],color='#845B24',linestyle='-',label="Actual_1
      →GDP Growth")
     ax[0,0].plot(results['fve']['g_fitted'], linestyle='--', color='#EECO51',_
      →label="Fitted GDP Growth")
     ax[0,0].set title('(a) VECM')
     ax[0,0].legend()
```

```
ax[0,1].plot(results['fvec']['g'],color='#845B24',linestyle='-',label="Actual__
 →GDP Growth")
ax[0,1].plot(results['fvec']['g_fitted'], linestyle='--', color='#EEC051',_
⇒label="Fitted GDP Growth")
ax[0,1].set title('(b) VECM+Covid')
ax[0,1].legend()
ax[1,0].plot(results['fves']['g'],color='#845B24',linestyle='-',label="Actual__
 →GDP Growth")
ax[1,0].plot(results['fves']['g_fitted'], linestyle='--', color='#EECO51',
 ⇔label="Fitted GDP Growth")
ax[1,0].set_title('(c) VECM+Scarring')
ax[1,0].legend()
ax[1,1].plot(results['fveq']['g'],color='#845B24',linestyle='-',label="Actual"
 →GDP Growth")
ax[1,1].plot(results['fveq']['g_fitted'], linestyle='--', color='#EECO51',
 ⇔label="Fitted GDP Growth")
ax[1,1].set_title('(d) VECM+Q')
ax[1,1].legend()
ax[2,0].plot(results['fveqc']['g'],color='#845B24',linestyle='-',label="Actualu
→GDP Growth")
ax[2,0].plot(results['fveqc']['g_fitted'], linestyle='--', color='#EEC051',_
 ⇔label="Fitted GDP Growth")
ax[2,0].set title('(e) VECM+Q+C')
ax[2,0].legend()
ax[2,1].plot(results['fveqs']['g'],color='#845B24',linestyle='-',label="Actual_1
→GDP Growth")
ax[2,1].plot(results['fveqs']['g fitted'], linestyle='--', color='#EEC051', __
 ⇒label="Fitted GDP Growth")
ax[2,1].set title('(f) VECM+Q+S')
ax[2,1].legend()
plt.tight layout()
plt.savefig("fig/VECM.png")
plt.show()
```


[8]: print(veqc.summary())

Det. terms outside the coint. relation & lagged endog. parameters for equation g

	coef	std err	z	P> z	[0.025	0.975]
exog1	-13.7498	0.227	-60.601	0.000	-14.195	-13.305
exog2	-2.7412	0.064	-42.647	0.000	-2.867	-2.615
exog3	5.8433	0.099	58.801	0.000	5.649	6.038
exog4	68.6318	1.148	59.794	0.000	66.382	70.881
L1.g	-15.5121	0.264	-58.768	0.000	-16.029	-14.995
L1.ntlg	-3.4491	0.059	-58.655	0.000	-3.564	-3.334
L2.g	-19.1633	0.325	-59.010	0.000	-19.800	-18.527

L2.ntlg	-4.5342	0.075	-60.759	0.000	-4.680	-4.388
L3.g	0.6169	0.032	18.982	0.000	0.553	0.681
L3.ntlg	-4.2461	0.072	-59.303	0.000	-4.386	-4.106
L4.g	-8.4759	0.144	-59.006	0.000	-8.757	-8.194
L4.ntlg	-5.3860	0.089	-60.210	0.000	-5.561	-5.211
L5.g	-10.4198	0.180	-57.801	0.000	-10.773	-10.066
L5.ntlg	-1.7644	0.031	-57.153	0.000	-1.825	-1.704
L6.g	-9.9096	0.169	-58.518	0.000	-10.241	-9.578
L6.ntlg	-3.9247	0.064	-60.903	0.000	-4.051	-3.798
L7.g	13.6827	0.216	63.422	0.000	13.260	14.106
L7.ntlg	-4.5100	0.074	-60.714	0.000	-4.656	-4.364
L8.g	-4.7570	0.081	-58.519	0.000	-4.916	-4.598
L8.ntlg	-4.1480	0.068	-61.272	0.000	-4.281	-4.015
L9.g	0.4382	0.025	17.493	0.000	0.389	0.487
L9.ntlg	-0.2571	0.006	-40.641	0.000	-0.269	-0.245
L10.g	-3.1649	0.060	-52.575	0.000	-3.283	-3.047
L10.ntlg	-2.4267	0.040	-61.389	0.000	-2.504	-2.349
L11.g	9.5875	0.154	62.396	0.000	9.286	9.889
L11.ntlg	-2.6394	0.044	-60.432	0.000	-2.725	-2.554
L12.g	-0.2446	0.018	-13.615	0.000	-0.280	-0.209
L12.ntlg	-3.8172	0.061	-62.070	0.000	-3.938	-3.697

Det. terms outside the coint. relation & lagged endog. parameters for equation ntlg

	coef	std err	z	P> z	[0.025	0.975]
exog1	33.5604	7.749	4.331	0.000	18.372	48.748
exog2	1.7441	2.195	0.794	0.427	-2.559	6.047
exog3	-11.8698	3.394	-3.497	0.000	-18.522	-5.218
exog4	-158.4618	39.201	-4.042	0.000	-235.294	-81.629
L1.g	40.9036	9.015	4.537	0.000	23.235	58.573
L1.ntlg	8.2881	2.008	4.127	0.000	4.352	12.224
L2.g	44.9582	11.091	4.054	0.000	23.220	66.696
L2.ntlg	10.0932	2.549	3.960	0.000	5.098	15.089
L3.g	9.6145	1.110	8.662	0.000	7.439	11.790
L3.ntlg	9.9316	2.445	4.061	0.000	5.139	14.724
L4.g	25.4385	4.906	5.185	0.000	15.823	35.054
L4.ntlg	10.9218	3.055	3.575	0.000	4.934	16.910
L5.g	27.7443	6.157	4.506	0.000	15.677	39.811
L5.ntlg	4.7112	1.054	4.468	0.000	2.645	6.778
L6.g	21.2026	5.784	3.666	0.000	9.867	32.538
L6.ntlg	8.6960	2.201	3.951	0.000	4.382	13.010
L7.g	-19.2247	7.368	-2.609	0.009	-33.666	-4.783
L7.ntlg	9.8645	2.537	3.888	0.000	4.892	14.837
L8.g	11.8049	2.776	4.252	0.000	6.363	17.246
L8.ntlg	7.9601	2.312	3.443	0.001	3.428	12.492
L9.g	1.4561	0.856	1.702	0.089	-0.221	3.133
L9.ntlg	1.3154	0.216	6.089	0.000	0.892	1.739

L10.g	6.9053	2.056	3.359	0.001	2.876	10.935
L10.ntlg	5.1242	1.350	3.795	0.000	2.478	7.770
L11.g	-14.4932	5.248	-2.762	0.006	-24.779	-4.208
L11.ntlg	5.7904	1.492	3.882	0.000	2.867	8.714
L12.g	1.5383	0.614	2.507	0.012	0.336	2.741
L12.ntlg	7.3177	2.100	3.484	0.000	3.201	11.434
	Loading	g coefficie	ents (alpha)) for equat	ion g	
	coef				[0.025	
ec1					20.369	
	_		nts (alpha)	_	_	
		std err		P> z	[0.025	
ec1	-52.7266				-76.645	-28.808
	Cointegration	relations	for loading	g-coefficie	nts-column 1	
	coef	std err	z	P> z	[0.025	0.975]
beta.1	1.0000	0	0	0.000	1.000	1.000
beta.2	0.1978	nan	nan	nan	nan	nan
const	-6.0585	nan	nan	nan	nan	nan
=======	==========				========	========

c:\Users\imed\AppData\Local\Programs\Python\Python313\Lib\site-packages\statsmodels\tsa\vector_ar\vecm.py:1582: RuntimeWarning: invalid value encountered in sqrt

last_rows_1d = np.sqrt(np.diag(mat1.dot(mat2)))

0.3.7 VAR with growth dataset

Please note that I am using Stata to run the VAR regression. I call Stata to this notebook using magic command, and stata_setup and pystata package have to be installed prior. See this documentation for more information. Obviously you can just run this code in Stata directly. Running Stata on a Jupyter Notebook can be a bit clunky. If you are not very familiar with running Stata on Jupyter Notebook, I suggest you to run the VAR regression directly in Stata.

VAR results are not as good as VECM results. I include this section just for the sake of completeness.

[9]: import stata_setup stata_setup.config("C:/program files/statanow19/","mp") # Change this to your →Stata installation directory ## If this line runs correctly, you will see the Stata logo printed out in the →output just like on the Stata IDE.

___ ®

```
/__ / ___/ StataNow 19.5
                                        MP-Parallel Edition
      Statistics and Data Science
                                        Copyright 1985-2025 StataCorp LLC
                                        StataCorp
                                        4905 Lakeway Drive
                                        College Station, Texas 77845 USA
                                        800-782-8272
                                                            https://www.stata.com
                                        979-696-4600
                                                            service@stata.com
     Stata license: Single-user 4-core, expiring 24 Dec 2025
     Serial number: 501909221392
       Licensed to: Krisna Gupta
                    Politeknik APP Jakarta
     Notes:
           1. Unicode is supported; see help unicode_advice.
           2. More than 2 billion observations are allowed; see help obs_advice.
           3. Maximum number of variables is set to 5,000 but can be increased;
               see help set_maxvar.
[10]: %%stata -d ntl
      gen qdate = quarterly(qqq, "YQ")
      format qdate %tq
      tsset qdate
     . gen qdate = quarterly(qqq, "YQ")
     . format qdate %tq
     . tsset qdate
     Time variable: qdate, 2014q1 to 2024q4
             Delta: 1 quarter
[11]: | %%stata
      var g ntlg, lags(1/8)
      predict r_g
      tsline g r_g, xtitle("") title("(a) VAR") lcolor("#845B24" "#EEC051")_{\sqcup}
      □ lpattern(solid shortdash) xlabel(, format(%ty)) legend(order(1 "Observed" 2
      →"Predicted")) lwidth(0.6 0.6)
      graph save gl.gph, replace
      var g ntlg, lags(1/8) exog(covid)
      drop r_g
      predict r_g
```

```
tsline g r_g, xtitle("") title("(b) VAR+Covid") lcolor("#845B24" "#EEC051")
 →lpattern(solid shortdash) xlabel(, format(%ty)) legend(order(1 "Observed" 2⊔
 →"Predicted")) lwidth(0.6 0.6)
graph save g2.gph, replace
var g ntlg, lags(1/8) exog(scar)
drop r g
predict r g
tsline g r_g, xtitle("") title("(c) VAR+Scarring") lcolor("#845B24" "#EECO51")__
 →lpattern(solid shortdash) xlabel(, format(%ty)) legend(order(1 "Observed" 2
 →"Predicted")) lwidth(0.6 0.6)
graph save g3.gph, replace
var g ntlg, lags(1/8) exog(q1 q2 q3)
drop r_g
predict r_g
tsline g r_g, xtitle("") title("(d) VAR+Quarter") lcolor("#845B24" "#EEC051")
 ⇔lpattern(solid shortdash) xlabel(, format(%ty)) legend(order(1 "Observed" 2⊔
 →"Predicted")) lwidth(0.6 0.6)
graph save g4.gph, replace
var g ntlg, lags(1/8) exog(q1 q2 q3 covid)
drop r_g
predict r_g
tsline g r_g, xtitle("") title("(e) VAR+Q+C") lcolor("#845B24" "#EEC051")
 ⇒lpattern(solid shortdash) xlabel(, format(%ty)) legend(order(1 "Observed" 2⊔
 →"Predicted")) lwidth(0.6 0.6)
graph save g5.gph, replace
var g ntlg, lags(1/8) exog(q1 q2 q3 scar)
drop r_g
predict r_g
tsline g r_g, xtitle("") title("(f) VAR+Q+S") lcolor("#845B24" "#EEC051")
 ⇔lpattern(solid shortdash) xlabel(, format(%ty)) legend(order(1 "Observed" 2⊔
 →"Predicted")) lwidth(0.6 0.6)
graph save g6.gph, replace
graph combine g1.gph g2.gph g3.gph g4.gph g5.gph g6.gph, rows(3) cols(2)
 →imargin(2 2 2 2)
graph export "fig/VARstata.png", width(2400) height(3200) replace
. var g ntlg, lags(1/8)
Vector autoregression
Sample: 2016q1 thru 2024q4
                                                Number of obs
                                                                            36
Log likelihood = -194.5246
                                                AIC
                                                                      12.69581
FPE
                  1316.685
                                                                      13.21779
                                                HQIC
```

SBIC

14.19136

 $Det(Sigma_ml) = 169.2144$

Equati	.on	Parms	RMSE	R-sq	chi2	P>chi2	
g		17	2.14914	0.6468	65.92458	0.0000	
ntlg		17	12.7098	0.7111	88.63131	0.0000	
		Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
	۱	 					
g	ا س ا						
	g L1.	.8663179	.1783422	4.86	0.000	.5167735	1.215862
	L2.		.2240817	0.45	0.656	3394483	.5389358
	L3.		.2366989	-1.04	0.300	7092982	.2185446
	L4.	4127796	.2229512	-1.85	0.064	849756	.0241967
	L5.	.6120339	.213067	2.87	0.004	.1944304	1.029637
	L6.		.2352451	-0.90	0.366	673561	.2485827
	L7.		. 2332431	-0.48	0.634	5964151	.3630954
	L8.	.0061414	.1973451	0.03	0.975	3806479	.3929307
	ntlg						
	L1.		.0256126	-0.41	0.684	0606129	.0397866
	L2.	0177145	.0271547	-0.65	0.514	0709367	.0355077
	L3.	.0241892	.0261618	0.92	0.355	027087	.0754654
	L4.		.0260909	0.52	0.591	0371345	.06514
	L5.		.0261414	-1.68	0.092	0952683	.0072041
	L6.	.0135243	.0201414	0.50	0.620	0399865	.067035
				-0.06	0.020		
			.0245472			0497042	.0465191
	L8.	.0020723	.0239029	0.09	0.931	0447766	.0489211
	_cons	1.799064	.8364123	2.15	0.031	.1597264	3.438402
		+					
ntlg							
	g l						
	L1.	1.594895	1.054701	1.51	0.130	4722801	3.662071
	L2.	-2.074009	1.3252	-1.57	0.118	-4.671354	.5233348
	L3.	2.67042	1.399817	1.91	0.056	0731709	5.414012
	L4.	-2.642794	1.318514	-2.00	0.045	-5.227035	0585537
	L5.	2.559623	1.26006	2.03	0.042	.0899513	5.029295
	L6.	-4.200308	1.391219	-3.02	0.003	-6.927048	-1.473569
	L7.		1.447594	1.97	0.049	.0167592	5.691223
	L8.		1.167082	-1.25	0.213	-3.740616	.8342614
	_3.			2.20			
	ntlg						
	L1.		.1514705	3.20	0.001	.1883849	.7821385
	L2.		.1605905	0.67	0.505	2077506	.4217527
	L3.		. 1547187	0.51	0.610	2244109	.3820755
	L4.		.1542995	-4.76	0.000	-1.036544	4317009

```
L5. |
      . 2344589
               . 1545979
                         1.52 0.129
                                       -.0685475 .5374654
 L6. | .1423958 .1614611
                          0.88 0.378 -.1740621
                                                 .4588537
 L7. | .2404539
                          1.66 0.098
               . 14517
                                       -.0440741
                                                  .5249819
 L8. | -.429755
                .1413598 -3.04 0.002 -.7068152 -.1526948
_cons |
       8.35872 4.94647
                          1.69 0.091
                                       -1.336184
                                                 18.05362
```

. predict r_g

(option xb assumed; fitted values)

- $(8 \ \text{missing values generated})$
- . tsline g r_g, xtitle("") title("(a) VAR") lcolor("#845B24" "#EEC051") lpatter
- > n(solid shortdash) xlabel(, format(%ty)) legend(order(1 "Observed" 2 "Predict
- > ed")) lwidth(0.6 0.6)
- . graph save g1.gph, replace file g1.gph saved
- . var g ntlg, lags(1/8) exog(covid)

Vector autoregression

Sample: 2016q1 thru 2024q4 Number of obs = 36 Log likelihood = -176.8813 AIC = 11.82674 FPE = 571.4691 HQIC = 12.37943 Det(Sigma_ml) = 63.49656 SBIC = 13.41026

Equation	Parms	RMSE	R-sq	chi2	P>chi2
g ntlg	18 18			233.9757 110.0895	

	 	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
g	, 						
	g						
	L1.	.1748662	.1416427	1.23	0.217	1027485	.4524808
	L2.	.1876639	.1381561	1.36	0.174	0831171	.458445
	L3.	2937638	.1455721	-2.02	0.044	5790798	0084478
	L4.	7381607	.143352	-5.15	0.000	-1.019125	457196
	L5.	.2962851	.1371812	2.16	0.031	.0274148	.5651554
	L6.	.0453428	.1483668	0.31	0.760	2454508	.3361364
	L7.	5001959	.1584252	-3.16	0.002	8107035	1896883
	L8.	265034	.1262614	-2.10	0.036	5125017	0175662
	ı						

```
ntlg |
        L1. |
                 .0222343
                          .0162978
                                       1.36
                                               0.172
                                                       -.0097088
                                                                     .0541775
        L2.
               -.0219189
                           .0166938
                                       -1.31
                                               0.189
                                                        -.054638
                                                                     .0108003
        L3.
                .0011994
                                       0.07
                                               0.942
                           .0163494
                                                        -.0308448
                                                                     .0332436
        L4.
                .0280034
                          .0161339
                                       1.74
                                               0.083
                                                        -.0036184
                                                                     .0596253
        L5. |
               -.0170172
                           .0164405
                                       -1.04
                                               0.301
                                                          -.04924
                                                                     .0152057
        L6.
               -.0052964
                          .0169522
                                      -0.31
                                               0.755
                                                        -.0385222
                                                                     .0279293
        L7. |
               -.0000298
                           .0150841
                                       -0.00
                                               0.998
                                                        -.0295941
                                                                     .0295344
        L8. | -.0012635
                          .0146932
                                       -0.09
                                               0.931
                                                        -.0300617
                                                                     .0275347
                                       -7.70
                                               0.000
      covid | -5.749207
                           .7462348
                                                          -7.2118
                                                                    -4.286613
       cons
                10.56008
                           1.247899
                                        8.46
                                               0.000
                                                         8.114245
                                                                     13.00592
ntlg
          g |
        L1. | -.3914979
                           1.259204
                                       -0.31
                                               0.756
                                                        -2.859493
                                                                     2.076497
        L2. |
              -1.821434
                          1.228209
                                       -1.48
                                               0.138
                                                        -4.228679
                                                                     .5858115
        L3.
                                       1.96
                                               0.050
               2.531415
                           1.294136
                                                        -.0050458
                                                                     5.067876
                            1.2744
                                       -2.81
                                               0.005
        L4. | -3.577545
                                                        -6.075323
                                                                    -1.079767
        L5. |
                1.652544
                           1.219542
                                       1.36
                                               0.175
                                                                    4.042802
                                                        -.7377142
        L6.
               -3.459612
                           1.318982
                                       -2.62
                                               0.009
                                                        -6.044769
                                                                    -.8744555
        L7.
                1.752174
                           1.4084
                                       1.24
                                               0.213
                                                        -1.00824
                                                                     4.512588
        L8. | -2.232207
                           1.122464
                                       -1.99
                                               0.047
                                                        -4.432196
                                                                    -.0322169
       ntlg |
        L1. |
                           .1448879
                                        4.00
                                               0.000
                                                        . 2950759
                .579051
                                                                     .8630261
        L2.
                                        0.64
                                               0.522
                .0949228
                           .1484076
                                                        -.1959508
                                                                     .3857964
        L3. |
                .0127875
                           .1453463
                                        0.09
                                               0.930
                                                        -.272086
                                                                      .297661
        L4. |
               -.6939012
                           .1434304
                                       -4.84
                                               0.000
                                                        -.9750196
                                                                    -.4127829
        L5.
                .3120671
                           .1461563
                                        2.14
                                               0.033
                                                          .025606
                                                                    .5985282
        L6.
                                        0.59
                                               0.558
                 .088328
                           .1507054
                                                        -.2070491
                                                                     .3837051
        L7.
                .2449432
                           .1340974
                                       1.83
                                               0.068
                                                        -.0178828
                                                                     .5077693
        L8.
               -.4393379
                           .1306227
                                       -3.36
                                               0.001
                                                        -.6953538
                                                                    -.1833221
                           6.634031
                                       -2.49
                                               0.013
       covid |
               -16.51624
                                                        -29.51871
                                                                    -3.513781
       _cons |
                33.52725
                           11.09383
                                        3.02
                                               0.003
                                                         11.78375
                                                                     55.27076
```

[.] drop r_g

[.] predict r_g
(option xb assumed; fitted values)
(8 missing values generated)

[.] tsline g r_g, xtitle("") title("(b) VAR+Covid") lcolor("#845B24" "#EEC051") l
> pattern(solid shortdash) xlabel(, format(%ty)) legend(order(1 "Observed" 2 "P
> redicted")) lwidth(0.6 0.6)

- . graph save g2.gph, replace file g2.gph saved
- . var g ntlg, lags(1/8) exog(scar)

Vector autoregression

Sample: 2016q1	thr	u 2024q4	Number of obs	=	36
Log likelihood	= -	-189.8773	AIC	=	12.54874
FPE	=	1176.393	HQIC	=	13.10143
<pre>Det(Sigma_ml)</pre>	=	130.7103	SBIC	=	14.13226

Equation	Parms	RMSE	R-sq	chi2	P>chi2
g ntlg	18 18			80.47556 91.00461	

		 Coefficient	Gtd orr		D>1-1	 [95% conf.	
			err.		F/ Z 		Intervarj
g							
	g						
L1	L.	.7040603	. 1815356	3.88	0.000	.3482571	1.059864
L2	2.	.0867605	.2096962	0.41	0.679	3242365	.4977574
L3	3.	2524857	.221443	-1.14	0.254	686506	.1815346
L4	1.	5769612	.2207766	-2.61	0.009	-1.009675	1442471
L5	5.	.5367678	.2020604	2.66	0.008	.1407367	.9327989
Lθ	3.	2136082	.2200613	-0.97	0.332	6449204	.217704
L7	7.	1776302	.230552	-0.77	0.441	6295038	. 2742434
L8	3.	1008588	.1905452	-0.53	0.597	4743206	.2726029
ntl	Lg						
L1	L.	.0059384	.0250215	0.24	0.812	0431028	.0549796
L2	2.	0119651	.0255282	-0.47	0.639	0619995	.0380693
L3	3.	.0308067	.0246466	1.25	0.211	0174998	.0791132
L4	1.	.0339879	.0259501	1.31	0.190	0168733	.0848492
L5	5.	0319976	.0250236	-1.28	0.201	0810429	.0170478
Lθ	3.	.0165408	.0255743	0.65	0.518	0335839	.0666655
L7	7.	.0144886	.0240334	0.60	0.547	0326161	.0615932
L8	3.	.0155112	.0231325	0.67	0.503	0298277	.0608502
sca	ar	-1.959583	.864382	-2.27	0.023	-3.65374	2654249
_con	ıs	4.668403	1.487997	3.14	0.002	1.751983	7.584822
	+	+					
ntlg							
	g						
L1	L.	1.966019	1.13689	1.73	0.084	2622455	4.194283

L2.	-2.044313	1.31325	-1.56	0.120	-4.618235	.5296086
L3.	2.68668	1.386816	1.94	0.053	0314283	5.404789
L4.	-2.26727	1.382642	-1.64	0.101	-4.977199	.4426585
L5.	2.731775	1.26543	2.16	0.031	.251579	5.211972
L6.	-4.197749	1.378163	-3.05	0.002	-6.898898	-1.4966
L7.	2.993445	1.443862	2.07	0.038	.1635275	5.823363
L8.	-1.208441	1.193314	-1.01	0.311	-3.547294	1.130411
1						
ntlg						
L1.	.4478616	.1567003	2.86	0.004	.1407346	.7549886
L2.	.0938507	.1598739	0.59	0.557	2194963	.4071978
L3.	.0636964	. 1543527	0.41	0.680	2388293	.3662221
L4.	7798334	.1625159	-4.80	0.000	-1.098359	461308
L5.	.206933	.1567136	1.32	0.187	1002199	.514086
L6.	.1354962	.1601623	0.85	0.398	1784161	.4494086
L7.	.2036724	.1505124	1.35	0.176	0913266	.4986713
L8.	4604932	.1448704	-3.18	0.001	7444341	1765524
scar	4.482049	5.413305	0.83	0.408	-6.127834	15.09193
_cons	1.795834	9.318773	0.19	0.847	-16.46863	20.06029

. drop r_g

```
. predict r_g
(option xb assumed; fitted values)
(8 missing values generated)
```

- . tsline g r_g, xtitle("") title("(c) VAR+Scarring") lcolor("#845B24" "#EEC051"
 >) lpattern(solid shortdash) xlabel(, format(%ty)) legend(order(1 "Observed" 2
 > "Predicted")) lwidth(0.6 0.6)
- . graph save g3.gph, replace file g3.gph saved
- . var g ntlg, lags(1/8) exog(q1 q2 q3)

Vector autoregression

Sample: 2016q1 thru 2024q4 Number of obs = 36 Log likelihood = -191.6514 AIC = 12.86952 FPE = 1767.061 HQIC = 13.48362 Det(Sigma_ml) = 144.2499 SBIC = 14.62899

Equation	Parms	RMSE	R-sq	chi2	P>chi2
g	20	2.30201	0.6587	 69.49338	0.0000
ntlg	20	13.0642	0.7430	104.0788	0.0000

		Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
g		' 					
	g						
	L1.	.8962666	.177863	5.04	0.000	.5476616	1.244872
	L2.	.0401729	.2293531	0.18	0.861	409351	.4896968
	L3.	1990741	.2388743	-0.83	0.405	6672591	.2691109
	L4.	4328902	.2201139	-1.97	0.049	8643056	0014748
	L5.	.6254389	.2102942	2.97	0.003	.21327	1.037608
	L6.	2399995	.2334913	-1.03	0.304	6976341	.2176351
	L7.	076091	. 2442846	-0.31	0.755	5548799	.402698
	L8.	0146556	.1955946	-0.07	0.940	3980139	.3687028
	ntlg						
	L1.	0103255	.0256241	-0.40	0.687	0605477	.0398967
	L2.	0138605	.0269382	-0.51	0.607	0666584	.0389373
	L3.	.0209709	.0261749	0.80	0.423	0303308	.0722727
	L4.	.014378	.0258757	0.56	0.578	0363375	.0650935
	L5.	0450308	.0258525	-1.74	0.082	0957007	.005639
	L6.	.0181309	.027204	0.67	0.505	0351879	.0714497
	L7.	0076532	.0252032	-0.30	0.761	0570507	.0417442
	L8.	.0058271	.0241967	0.24	0.810	0415977	.0532518
	q1	 5793154	.7797105	-0.74	0.457	-2.10752	.9488892
	q2	2083088	.748542	-0.28	0.781	-1.675424	1.258807
	q3	7893143	.754274	-1.05	0.295	-2.267664	.6890355
	_cons	2.167526 	.9281164	2.34	0.020	.3484515 	3.986601
ntlg							
	g						
	L1.	1.574456	1.009395	1.56	0.119	4039209	3.552834
	L2.	-1.996616	1.301608	-1.53	0.125	-4.547721	.5544888
	L3.		1.355642	1.83	0.067	176774	5.137244
	L4.		1.249174	-2.10	0.035	-5.07558	1789066
	L5.		1.193446	2.21	0.027	. 2940039	4.972226
	L6.	-4.127914	1.325093	-3.12	0.002	-6.725048	-1.53078
	L7.	2.785948	1.386346	2.01	0.044	.0687603	5.503136
	L8.	-1.421732 	1.110024	-1.28	0.200	-3.597339	.7538747
	ntlg						
	L1.	.4941087	.1454198	3.40	0.001	.2090912	.7791262
	L2.	.1330393	.1528776	0.87	0.384	1665953	.4326739
	L3.	.0866928	.1485456	0.58	0.559	2044512	.3778368
	L4.	7689953	.1468481	-5.24	0.000	-1.056812	4811782
	L5.	.2261249	.1467159	1.54	0.123	0614331	.5136828

L6.	.1711385	.1543859	1.11	0.268	1314524	.4737294
L7.	.2595371	.1430315	1.81	0.070	0207994	.5398736
L8.	4628727	.1373195	-3.37	0.001	7320139	1937315
1						
q1	6163833	4.424956	-0.14	0.889	-9.289137	8.05637
q2	-6.727303	4.24807	-1.58	0.113	-15.05337	1.598761
q3	-6.343294	4.2806	-1.48	0.138	-14.73312	2.046528
_cons	11.71167	5.267178	2.22	0.026	1.38819	22.03515

. drop r_g

. predict r_g
(option xb assumed; fitted values)
(8 missing values generated)

- . tsline g r_g, xtitle("") title("(d) VAR+Quarter") lcolor("#845B24" "#EECO51")
- > lpattern(solid shortdash) xlabel(, format(%ty)) legend(order(1 "Observed" 2
- > "Predicted")) lwidth(0.6 0.6)
- . graph save g4.gph, replace file g4.gph saved $\,$
- . var g ntlg, lags(1/8) exog(q1 q2 q3 covid)

Vector autoregression

Sample: 2016q1 thru 2024q4 Number of obs = 36 Log likelihood = -173.6235 AIC = 11.97908 FPE = 765.0942 HQIC = 12.62389 Det(Sigma_ml) = 52.98437 SBIC = 13.82652

Equation	Parms	RMSE	R-sq	chi2	P>chi2
g ntlg	21 21	1.45277 12.2611		246.5356 133.632	

	 	Coefficient		z	P> z		interval]
g	İ						
	g						
	L1.	.1960951	.1411607	1.39	0.165	0805748	.4727651
	L2.	.1551976	.1409251	1.10	0.271	1210106	.4314057
	L3.	2740683	.1462824	-1.87	0.061	5607766	.0126399
	L4.	7451766	.1403728	-5.31	0.000	-1.020302	4700509
	L5.	.3097424	.134766	2.30	0.022	.0456059	.573879

```
L6.
                                                                 .3169346
              .0291779
                         .1468174
                                     0.20
                                            0.842
                                                     -.2585788
        L7. | -.4772831
                         .1579417
                                     -3.02 0.003
                                                     -.7868432
                                                                 -.1677231
        L8. | -.2713279
                                            0.029
                          .1239958
                                     -2.19
                                                     -.5143552
                                                                 -.0283005
       ntlg |
               .0228612
        L1. |
                          .0162292
                                      1.41
                                             0.159
                                                      -.0089476
                                                                  .0546699
        L2.
                          .016474
                                     -1.16
                                            0.248
                                                      -.0513279
                                                                  .0132491
              -.0190394
        L3. | -.0005367
                          .0162317
                                     -0.03
                                            0.974
                                                      -.0323503
                                                                  .0312768
        L4. |
              .0270265
                         .0158949
                                     1.70
                                            0.089
                                                      -.0041269
                                                                  .0581799
                                     -1.09
        L5. | -.0176457
                          .0161852
                                            0.276
                                                     -.0493682
                                                                  .0140767
        L6. | -.0017395
                         .0168184
                                     -0.10
                                            0.918
                                                      -.034703
                                                                  .0312239
        L7. | -.003062
                          .0154117
                                     -0.20
                                             0.843
                                                      -.0332684
                                                                  .0271445
                                             0.981
        L8. | -.0003618
                          .0148068
                                     -0.02
                                                      -.0293827
                                                                   .028659
         q1 | -.3934526
                          .477041
                                     -0.82
                                             0.409
                                                     -1.328436
                                                                 .5415305
                                     -0.78
         q2 | -.3562299
                         .4577915
                                            0.436
                                                     -1.253485
                                                                 .5410249
         q3 | -.5884998
                         .4616218
                                            0.202
                                                     -1.493262
                                                                  .3162624
                                     -1.27
                                     -7.77
      covid | -5.703467
                          .7337732
                                            0.000
                                                      -7.141636
                                                                 -4.265298
               10.8049
                          1.247584
                                     8.66
                                            0.000
                                                      8.359679
                                                                  13.25012
      _cons |
ntlg
          g |
        L1. | -.5207465
                         1.191368
                                     -0.44
                                            0.662
                                                      -2.855784
                                                                  1.814291
                                                                 .6787258
        L2. | -1.652415
                         1.189379
                                     -1.39
                                            0.165
                                                     -3.983555
        L3. |
              2.255821
                         1.234594
                                     1.83
                                            0.068
                                                     -.1639379
                                                                  4.67558
        L4. | -3.561734
                                     -3.01
                                             0.003
                                                                 -1.239729
                         1.184718
                                                     -5.883738
                                     1.48
        L5. |
               1.68842
                          1.137398
                                             0.138
                                                      -.5408381
                                                                 3.917679
        L6. | -3.322423
                         1.239108
                                     -2.68
                                             0.007
                                                     -5.751031
                                                                 -.8938156
        L7.
               1.585415
                          1.332996
                                     1.19
                                             0.234
                                                     -1.027208
                                                                 4.198038
              -2.189802
                          1.046499
                                     -2.09
                                             0.036
                                                     -4.240903
                                                                 -.1387009
        L8. |
       ntlg |
        L1. |
              .593417
                          .1369715
                                     4.33
                                             0.000
                                                      .3249577
                                                                 .8618762
        L2.
                                                                  .3900504
               .1175421
                          .1390374
                                      0.85
                                             0.398
                                                      -.1549662
                          .1369923
        L3.
                .022333
                                     0.16
                                             0.870
                                                     -.2461669
                                                                  . 2908329
        L4.
              -.7311457
                          .1341494
                                     -5.45
                                             0.000
                                                      -.9940737
                                                                 -.4682177
        L5.
              .3080725
                           . 1366
                                     2.26
                                             0.024
                                                      .0403413
                                                                 .5758037
        L6. |
               .1116778
                                      0.79
                                                                 .3898823
                         . 1419437
                                             0.431
                                                      -.1665267
        L7. |
              .2732761
                         .1300718
                                     2.10
                                            0.036
                                                       .01834
                                                                 .5282122
                                                                 -.2364627
        L8. | -.4813924
                          .1249664
                                     -3.85
                                             0.000
                                                      -.7263221
           q1 | -.0602049
                         4.026128
                                     -0.01
                                             0.988
                                                     -7.951271
                                                                 7.830861
                                                                  .402703
         q2 |
              -7.169945
                          3.863667
                                     -1.86
                                             0.063
                                                     -14.74259
         q3 | -5.742374
                          3.895994
                                     -1.47
                                             0.141
                                                      -13.37838
                                                                 1.893634
                          6.192896
                                      -2.76
                                            0.006
                                                      -29.20499
                                                                 -4.929284
      covid | -17.06714
               37.55826
                          10.52935
                                      3.57
                                             0.000
                                                                 58.19542
                                                      16.92111
      _cons |
```

- . drop r_g
- . $predict r_g$

(option xb assumed; fitted values)

(8 missing values generated)

- . tsline g r_g, xtitle("") title("(e) VAR+Q+C") lcolor("#845B24" "#EEC051") lpa
- > ttern(solid shortdash) xlabel(, format(%ty)) legend(order(1 "Observed" 2 "Pre
- > dicted")) lwidth(0.6 0.6)
- . graph save g5.gph, replace file g5.gph saved
- . var g ntlg, lags(1/8) exog(q1 q2 q3 scar)

Vector autoregression

Sample: 2016q1 thru 2024q4 Number of obs = 36 Log likelihood = -186.7339 AIC = 12.70744 FPE = 1585.023 HQIC = 13.35225 Det(Sigma_ml) = 109.7661 SBIC = 14.55488

Equation	Parms	RMSE	R-sq	chi2	P>chi2
g ntlg	21 21			85.33334 106.7755	

| Coefficient Std. err. z P>|z| [95% conf. interval]

		Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
g		 					
_	g						
	L1.	.7328852	.1801209	4.07	0.000	.3798548	1.085916
	L2.	.0283356	.2139194	0.13	0.895	3909388	.44761
	L3.	2070082	.2227629	-0.93	0.353	6436155	.2295991
	L4.	5980777	.2171936	-2.75	0.006	-1.023769	1723861
	L5.	.5493809	. 1987975	2.76	0.006	.1597449	.9390169
	L6.	2402603	.2177175	-1.10	0.270	6669787	.1864582
	L7.	1377798	.2293217	-0.60	0.548	5872421	.3116826
	L8.	1226894	.1882073	-0.65	0.514	4915689	.24619
n	tlg						
	L1.	.00593	.024895	0.24	0.812	0428632	.0547233
	L2.	0080181	.0252437	-0.32	0.751	0574948	.0414587
	L3.	.027813	.0245834	1.13	0.258	0203695	.0759954
	L4.	.034373	.0256146	1.34	0.180	0158307	.0845767
:	L5.	0330882	.0246472	-1.34	0.179	0813957	.0152194

```
L6.
                                          0.83
                                                 0.404
                 .0212037
                            .0254006
                                                          -.0285805
                                                                        .0709879
                                                 0.722
         L7.
                 .0087137
                            .0245323
                                          0.36
                                                          -.0393687
                                                                        .0567962
         L8. |
                                          0.83
                                                 0.408
                 .0192792
                            .0232922
                                                          -.0263726
                                                                        .0649311
          q1 |
                -.5557772
                            .7271065
                                        -0.76
                                                 0.445
                                                          -1.98088
                                                                       .8693254
                                        -0.30
                                                 0.762
          q2 |
                -.2117284
                            .6979747
                                                          -1.579734
                                                                       1.156277
          q3 |
                -.8140489
                            .7033983
                                        -1.16
                                                0.247
                                                          -2.192684
                                                                       .5645865
        scar |
                 -1.96991
                             .8472875
                                         -2.32
                                                 0.020
                                                          -3.630563
                                                                       -.3092573
                                         3.34
                                                 0.001
                                                           2.088003
                                                                        8.02106
       _cons |
                 5.054532
                            1.513563
ntlg
           g |
         L1. |
                 1.927133
                            1.085867
                                         1.77
                                                 0.076
                                                          -.2011264
                                                                       4.055393
         L2.
                -1.971064
                            1.289623
                                         -1.53
                                                 0.126
                                                          -4.498678
                                                                       .5565502
         L3. |
                 2.497362
                            1.342936
                                         1.86
                                                 0.063
                                                          -.1347446
                                                                       5.129468
                                        -1.73
                                                 0.083
         L4. |
               -2.270668
                            1.309361
                                                          -4.836968
                                                                       .2956331
         L5.
                 2.797295
                            1.19846
                                         2.33
                                                 0.020
                                                          .4483568
                                                                       5.146232
         L6. |
                                        -3.14
                                                 0.002
                -4.127351
                            1.312519
                                                          -6.699842
                                                                       -1.55486
         L7.
                                        2.11
                                                 0.035
                  2.91911
                            1.382476
                                                          .2095069
                                                                       5.628713
         L8. |
               -1.188529
                            1.134616
                                        -1.05
                                                 0.295
                                                                       1.035277
                                                          -3.412335
        ntlg |
        L1.
                 .4590193
                            .1500804
                                          3.06
                                                 0.002
                                                           .1648671
                                                                       .7531715
         L2.
                                                 0.429
                 .1204277
                            .1521829
                                          0.79
                                                          -.1778453
                                                                       .4187007
         L3.
                                         0.49
                                                 0.627
                                                          -.2185467
                 .0719235
                            .1482018
                                                                       .3623937
         L4.
               -.8121567
                            .1544186
                                        -5.26
                                                 0.000
                                                          -1.114812
                                                                      -.5095017
         L5.
                 .2003453
                            .1485865
                                         1.35
                                                 0.178
                                                          -.090879
                                                                       .4915695
         L6.
                 .1645056
                            .1531284
                                         1.07
                                                 0.283
                                                          -.1356206
                                                                       .4646318
         L7.
                 .2242071
                             .1478941
                                         1.52
                                                 0.130
                                                          -.0656601
                                                                        .5140743
         L8. |
                -.4919108
                            .1404179
                                        -3.50
                                                 0.000
                                                          -.7671247
                                                                      -.2166968
          q1 |
                            4.383393
                                        -0.15
                                                 0.879
                                                          -9.258486
                                                                         7.9241
                -.667193
          q2 |
                -6.719922
                            4.207771
                                        -1.60
                                                 0.110
                                                            -14.967
                                                                       1.527157
                                        -1.48
          q3 |
                -6.289902
                            4.240468
                                                 0.138
                                                          -14.60107
                                                                       2.021262
                                         0.83
                                                 0.405
                                                          -5.759048
        scar
                  4.25227
                            5.107909
                                                                       14.26359
       _cons |
                 5.479746
                             9.12458
                                          0.60
                                                 0.548
                                                           -12.4041
                                                                       23.36359
```

[.] drop r_g

[.] predict r_g

⁽option xb assumed; fitted values)

⁽⁸ missing values generated)

[.] tsline g r_g, xtitle("") title("(f) VAR+Q+S") lcolor("#845B24" "#EEC051") lpa > ttern(solid shortdash) xlabel(, format(%ty)) legend(order(1 "Observed" 2 "Pre

> dicted")) lwidth(0.6 0.6)

```
. graph save g6.gph, replace file g6.gph saved
```

. graph combine g1.gph g2.gph g3.gph g4.gph g5.gph g6.gph, rows(3) cols(2) imar > gin(2 2 2 2)

. graph export "fig/VARstata.png", width(2400) height(3200) replace file fig/VARstata.png written in PNG format

.

0.3.8 ARDL with growth dataset

```
[12]: ## ARDL with growth

en=ntl[['g']]
ex=ntl[['ntlg']]
exc=ntl[['ntlg','covid']]
exs=ntl[['ntlg','scar']]
exq=ntl[['ntlg','q1','q2','q3']]
exqc=ntl[['ntlg','q1','q2','q3','covid']]
exqs=ntl[['ntlg','q1','q2','q3','scar']]
```

```
lags = ardl_select_order(endog=en, exog=ex, maxlag=8,maxorder=8,_
 ⇔ic='aic',seasonal=False)
ve = ARDL(endog=en,lags=lags.ar_lags,exog=ex,order=lags.dl_lags,trend='ct').
lags = ardl_select_order(endog=en, exog=exc, maxlag=8,maxorder=8,_
 ⇔ic='aic',seasonal=False)
vec= ARDL(endog=en,lags=lags.ar_lags,exog=exc,order=lags.dl_lags,trend='ct').
 ⇒fit()
lags = ardl_select_order(endog=en, exog=exs, maxlag=8,maxorder=8,_
 ⇔ic='aic',seasonal=False)
ves= ARDL(endog=en,lags=lags.ar_lags,exog=exs,order=lags.dl_lags,trend='ct').
⇔fit()
lags = ardl select order(endog=en, exog=exq, maxlag=4,maxorder=4,,
 veq= ARDL(endog=en,lags=lags.ar_lags,exog=exq,order=lags.dl_lags,trend='ct').
 →fit()
lags = ardl_select_order(endog=en, exog=exqc, maxlag=4,maxorder=4,_u
 veqc= ARDL(endog=en,lags=lags.ar_lags,exog=exqc,order=lags.dl_lags,trend='ct').
 →fit()
lags = ardl_select_order(endog=en, exog=exqs, maxlag=4,maxorder=4,_
⇔ic='aic',seasonal=False)
veqs= ARDL(endog=en,lags=lags.ar_lags,exog=exqs,order=lags.dl_lags,trend='ct').
 →fit()
models = {'fve': ve, 'fvec': vec,'fves': ves}
results = {}
for name, model in models.items():
   fitted = pd.DataFrame(model.predict(), columns=en.columns)
   fitted.index = pd.date_range(end='2024-12-31', periods=44, freq='QE')
   merged = pd.merge(en, fitted, left_index=True, right_index=True,__
 ⇔suffixes=('', f'_fitted'))
   results[name] = merged
models = {'fveq': veq,'fveqc': veqc, 'fveqs': veqs}
result = {}
for name, model in models.items():
   fitted = pd.DataFrame(model.predict(), columns=en.columns)
   fitted.index = pd.date_range(end='2024-12-31', periods=44, freq='QE')
   merged = pd.merge(en, fitted, left_index=True, right_index=True,__
 ⇔suffixes=('', f'_fitted'))
   result[name] = merged
```

```
fig, ax = plt.subplots(3,2,figsize=(12, 12))
ax[0,0].plot(results['fve']['g'],color='#845B24',linestyle='-',label="Actual__
 →GDP Growth")
ax[0,0].plot(results['fve']['g fitted'], linestyle='--', color='#EEC051', |
 ⇔label="Fitted GDP Growth")
ax[0,0].set_title('(a) ARDL')
ax[0,0].legend()
ax[0,1].plot(results['fvec']['g'],color='#845B24',linestyle='-',label="Actual__
 →GDP Growth")
ax[0,1].plot(results['fvec']['g_fitted'], linestyle='--', color='#EECO51', 
→label="Fitted GDP Growth")
ax[0,1].set_title('(b) ARDL+Covid')
ax[0,1].legend()
ax[1,0].plot(results['fves']['g'],color='#845B24',linestyle='-',label="Actualu
→GDP Growth")
ax[1,0].plot(results['fves']['g_fitted'], linestyle='--', color='#EEC051', __
 ⇔label="Fitted GDP Growth")
ax[1,0].set title('(c) ARDL+Scarring')
ax[1,0].legend()
ax[1,1].plot(result['fveq']['g'],color='#845B24',linestyle='-',label="Actualu
→GDP Growth")
ax[1,1].plot(result['fveq']['g_fitted'], linestyle='--', color='#EECO51',_
 ⇔label="Fitted GDP Growth")
ax[1,1].set title('(d) ARDL+Quarterly')
ax[1,1].legend()
ax[2,0].plot(result['fveqc']['g'],color='#845B24',linestyle='-',label="Actual_1
→GDP Growth")
ax[2,0].plot(result['fveqc']['g_fitted'], linestyle='--', color='#EECO51',
 ⇔label="Fitted GDP Growth")
ax[2,0].set title('(e) ARDL+Q+C')
ax[2,0].legend()
ax[2,1].plot(result['fveqs']['g'],color='#845B24',linestyle='-',label="Actualu
GDP Growth")
ax[2,1].plot(result['fveqs']['g_fitted'], linestyle='--', color='#EEC051',__
 ⇒label="Fitted GDP Growth")
ax[2,1].set title('(f) ARDL+Q+S')
ax[2,1].legend()
plt.tight_layout()
plt.savefig("fig/ARDL.png")
```

plt.show()

c:\Users\imed\AppData\Local\Programs\Python\Python313\Lib\sitepackages\statsmodels\tsa\ardl\model.py:455: SpecificationWarning: exog contains
variables that are missing from the order dictionary. Missing keys: q2, q3, q1.
 return _format_order(self.data.orig_exog, order, self._causal)
c:\Users\imed\AppData\Local\Programs\Python\Python313\Lib\sitepackages\statsmodels\tsa\ardl\model.py:455: SpecificationWarning: exog contains
variables that are missing from the order dictionary. Missing keys: ntlg, q2,
q1, q3.

return _format_order(self.data.orig_exog, order, self._causal)
c:\Users\imed\AppData\Local\Programs\Python\Python313\Lib\sitepackages\statsmodels\tsa\ardl\model.py:455: SpecificationWarning: exog contains
variables that are missing from the order dictionary. Missing keys: ntlg, q3.
 return _format_order(self.data.orig_exog, order, self._causal)

[13]: print(ves.summary())

V D D I	M - J - 7	Results
ARIJI.	™oaeı	Kesiiits

		ARDL	Model Res 	sults 		
Dep. Variable	e:	ARDL(7, 8,	0	Observations: Likelihood		44 61.267
Method:	C	onditional l	MLE S.D.	of innovatio	ns	0.046
Date:	We	ed, 01 Oct 20	025 AIC			-72.534
Time:		22:03	:15 BIC			-32.261
Sample:		03-31-20	016 HQIC	2		-58.336
-		- 12-31-20	024			
========	coef	std err	z	P> z	[0.025	0.975]
const	7.0042	0.122	57.419	0.000	6.741	7.268
trend	-0.0058	0.005	-1.242	0.236	-0.016	0.004
g.L1	-0.3732	0.022	-17.270	0.000	-0.420	-0.326
g.L2	-0.0345	0.020	-1.696	0.114	-0.078	0.009
g.L3	-0.0170	0.018	-0.923	0.373	-0.057	0.023
g.L4	0.0309	0.015	2.042	0.062	-0.002	0.064
g.L5	0.1009	0.014	7.210	0.000	0.071	0.131
g.L6	-0.0235	0.016	-1.464	0.167	-0.058	0.011
g.L7	-0.0387	0.014	-2.847	0.014	-0.068	-0.009
ntlg.L0	0.0004	0.002	0.188	0.854	-0.004	0.004
ntlg.L1	0.0027	0.002	1.682	0.116	-0.001	0.006
ntlg.L2	-0.0009	0.001	-0.655	0.524	-0.004	0.002
ntlg.L3	0.0008	0.001	0.576	0.574	-0.002	0.004
ntlg.L4	0.0007	0.002	0.327	0.749	-0.004	0.006
ntlg.L5	-0.0020	0.001	-1.372	0.193	-0.005	0.001
ntlg.L6	-0.0028	0.001	-1.945	0.074	-0.006	0.000
ntlg.L7	-0.0009	0.001	-0.641	0.533	-0.004	0.002
ntlg.L8	-0.0027	0.002	-1.622	0.129	-0.006	0.001
scar.L0	-2.1390	0.099	-21.515	0.000	-2.354	-1.924
scar.L1	-8.8914	0.147	-60.691	0.000	-9.208	-8.575
scar.L2	-1.2987	0.209	-6.205	0.000	-1.751	-0.847
scar.L3	1.6116	0.197	8.178	0.000	1.186	2.037
scar.L4	2.0640	0.212	9.715	0.000	1.605	2.523
scar.L5	8.8103	0.198	44.540	0.000	8.383	9.238

0.3.9 OLS Regression

0.4 Quarterly Real GDP vs Quarterly NTL.

0.4.1 Dataset

turn on the last line to see the dataframe.

```
[14]: ## Data prep
      ### Creating data
      ntl=pd.read_csv('ntl_monthly_avg_2012-2024.csv')
      gdp=pd.read_excel('GDP_YoY_Quarterly_12_24.xlsx')
      ### Make time index
      ntl.Date=pd.to datetime(ntl['Date'])
      ntl['qtr']=ntl['Date'].dt.quarter
      ntl['year']=ntl['Date'].dt.year
      ### Averaging the radiance into quarterly, make it yoy quarterly growth
      ntl=ntl.groupby(['year','qtr'])['NTL Radiance'].mean().reset index()
      ntl['Date']=pd.date_range(start='2012-01-01', periods=len(ntl), freq='QE')
      ntl=ntl[['Date','NTL_Radiance']]
      ntl['g']=np.log(gdp['GDP'])
      ntl['ntlg']=np.log(ntl['NTL_Radiance'])
      #ntl['NTL_Radiancelag'] = ntl['NTL_Radiance'].shift(4)
      #ntl['ntlq'] = ((ntl['NTL_Radiance'] - ntl['NTL_Radiancelag']) /__
       ⇔ntl['NTL_Radiancelag']) * 100
      ### Creating dummy quarterly and dummy covid
      ntl['q1']=np.where(ntl['Date'].dt.quarter==1,1,0)
      ntl['q2']=np.where(ntl['Date'].dt.quarter==2,1,0)
      ntl['q3']=np.where(ntl['Date'].dt.quarter==3,1,0)
      ntl['q4']=np.where(ntl['Date'].dt.quarter==4,1,0)
      ntl['covid']=np.where((ntl['Date'].dt.year>=2020) & (ntl['Date'].dt.
       \Rightarrowyear<=2022),1,0)
      ntl['scar']=np.where((ntl['Date'].dt.year>=2020) ,1,0)
      ### Back to making time index
      ntl=ntl.dropna().reset index(drop=True)
      ntl=ntl.set index('Date')
      ntl=ntl.asfreq('QE-DEC')
      #ntlm=ntlm[['g', 'ntlg']]
      ### Creating dummy quarterly and dummy covid
      ## OLS-ing
      mod=sm.OLS(ntl['g'], sm.add_constant(ntl['ntlg'])).fit()
      ntl['resid']=mod.resid
      ntl['ols']=mod.predict()
      #ntl
```


0.4.2 OLS and residuals

```
[16]: ## OLS results and plotting residuals
ntl=ntlm
print(mod.summary())
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))

ax1.plot(ntlm['g'],color='#845B24',linestyle="-",label="observed GDP Growth")
ax1.plot(ntlm['ols'],color='#EECO51',linestyle="--",label="OLS-fitted GDP_U
Growth")
ax1.set_title('(a) GDP Growth')
ax1.legend()

ax2.plot(ntlm['resid'], linestyle='-', color='#845B24')
ax2.set_title('(b) OLS Residuals')
```

```
plt.tight_layout()
plt.savefig("fig/Qols.png") # Turn off to not save, or change file name to save_
 ⇒in your preferred location
plt.show()
```

		OLS Re	gress	ion Re	sults		
Dep. Variabl	e:		g	R-squ	ared:		0.737
Model:			OLS	Adj.	R-squared:		0.731
Method:		Least Squa	ares	F-sta	itistic:		139.9
Date:	W∈	ed, 01 Oct 2	2025	Prob	(F-statistic):	1	4.20e-16
Time:		22:03	3:16	Log-I	ikelihood:		57.804
No. Observat	ions:		52	AIC:			-111.6
Df Residuals	:		50	BIC:			-107.7
Df Model:			1				
Covariance T	ype:	nonrob	oust				
========			=====	=====			
	coef	std err		t	P> t	[0.025	0.975]
const	15.4614	0.062	250	.049	0.000	15.337	15.586
ntlg	0.5232	0.044	11	.829	0.000	0.434	0.612
Omnibus:		0.	458	===== Durbi	n-Watson:		0.829
Prob(Omnibus):	0.	795	Jarqu	ue-Bera (JB):		0.591
Skew:		0.	000	Prob((JB):		0.744
Kurtosis:			478	Cond.	No.		11.5

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0.4.3 ADF test of the series and residuals.

We don't first diff in this step cuz we do another ADF test on the growth dataset.

```
[17]: ## ADF Test for g, ntlg and OLS residuals
      def adf_test(series, name=""):
         Perform ADF test and print results
         result = adfuller(series.dropna(), autolag="BIC")
         print(f"ADF Test for {name}")
         print(f" Test Statistic : {result[0]:.4f}")
                              : {result[1]:.4f}")
         print(f" p-value
         print(f" #Lags Used : {result[2]}")
         print(f" #Observations : {result[3]}")
         for key, value in result[4].items():
             print(f" Critical Value {key} : {value:.4f}")
         if result[1] <= 0.05:</pre>
             print(f" ==> {name} is stationary\n (reject HO of unit root)\n")
         else:
             print(f" ==> \{name\} is non-stationary\n (fail to reject H0)\n")
      # Run ADF tests for both series
      adf_test(ntlm["g"], "GDP YoY Growth")
      adf_test(ntlm["ntlg"], "NTL YoY Growth")
      adf_test(ntlm["resid"], "OLS Residuals")
     ADF Test for GDP YoY Growth
       Test Statistic: -0.4807
       p-value
                     : 0.8957
       #Lags Used
                     : 4
       #Observations : 43
        Critical Value 1%: -3.5925
        Critical Value 5%: -2.9315
        Critical Value 10%: -2.6041
       ==> GDP YoY Growth is non-stationary
      (fail to reject HO)
     ADF Test for NTL YoY Growth
       Test Statistic: -2.3235
       p-value
                      : 0.1645
                     : 0
       #Lags Used
       #Observations : 47
        Critical Value 1%: -3.5778
        Critical Value 5%: -2.9253
        Critical Value 10%: -2.6008
       ==> NTL YoY Growth is non-stationary
      (fail to reject HO)
```

ADF Test for OLS Residuals
Test Statistic : -3.1182
p-value : 0.0252
#Lags Used : 0
#Observations : 47

Critical Value 1%: -3.5778
Critical Value 5%: -2.9253
Critical Value 10%: -2.6008
==> OLS Residuals is stationary

(reject HO of unit root)

0.4.4 Johansen cointegration test

```
[18]: # Select optimal lag order
ntlm=ntl[['g','ntlg']]
lag_order = select_order(ntlm, maxlags=12, deterministic="ci")
print(lag_order.summary())

# Select cointegration rank
coint_rank = select_coint_rank(ntlm, det_order=0, k_ar_diff=lag_order.bic)
print(coint_rank.summary())
```

VECM Order Selection (* highlights the minimums)

	AIC	BIC	FPE	HQIC
0	-11.94	-11.58*	6.547e-06	-11.82
1	-11.86	-11.33	7.124e-06	-11.67
2	-12.00	-11.29	6.265e-06	-11.75
3	-12.42*	-11.53	4.188e-06*	-12.11*
4	-12.27	-11.20	4.989e-06	-11.90
5	-12.12	-10.88	5.971e-06	-11.69
6	-12.11	-10.69	6.377e-06	-11.62
7	-12.18	-10.58	6.353e-06	-11.63
8	-12.19	-10.42	6.919e-06	-11.58
9	-12.27	-10.31	7.310e-06	-11.59
10	-12.22	-10.09	9.146e-06	-11.48
11	-12.09	-9.782	1.318e-05	-11.30
12	-12.34	-9.849	1.448e-05	-11.48

Johansen cointegration test using trace test statistic with 5% significance

r_0	r_1	test	statistic	critical	value
0	2		19.26		15.49
1	2		0.1092		3.841

0.4.5 VECM with quarterly dataset

```
[19]: en=ntl[['g','ntlg']]
      exc=ntl[['covid']]
      exs=ntl[['scar']]
      exq=ntl[['q1','q2','q3']]
      exqc=ntl[['q1','q2','q3','covid']]
      exqs=ntl[['q1','q2','q3','scar']]
      lag=lag_order.aic
      ve = VECM(en,k_ar_diff=lag, coint_rank=1, deterministic="cili").fit()
      vec = VECM(en,k ar diff=lag, coint rank=1, exog=exc,deterministic="cili").fit()
      ves = VECM(en,k_ar_diff=lag, coint_rank=1, exog=exs,deterministic="cili").fit()
      veq = VECM(en,k_ar_diff=lag, coint_rank=1, exog=exq,deterministic="cili").fit()
      veqc = VECM(en,k_ar_diff=lag, coint_rank=1, exog=exqc,deterministic="cili").
      ⇔fit()
      veqs = VECM(en,k_ar_diff=lag, coint_rank=1, exog=exqs,deterministic="cili").
       →fit()
      models = {'fve': ve, 'fvec': vec, 'fves': ves, 'fveq': veq, 'fveqc': veqc, |
       results = {}
      for name, model in models.items():
         fitted = pd.DataFrame(model.fittedvalues, columns=en.columns)
         fitted.index = pd.date range(end='2024-12-31', periods=44, freq='QE')
         merged = pd.merge(en, fitted, left_index=True, right_index=True,__
       ⇔suffixes=('', f'_fitted'))
         results[name] = merged
      fig, ax = plt.subplots(3,2,figsize=(12, 12))
      ax[0,0].plot(results['fve']['g'],color='#845B24',linestyle='-',label="Actual__
       →GDP Growth")
      ax[0,0].plot(results['fve']['g fitted'], linestyle='--', color='#EEC051', |
      →label="Fitted GDP Growth")
      ax[0,0].set_title('(a) VECM')
      ax[0,0].legend()
      ax[0,1].plot(results['fvec']['g'],color='#845B24',linestyle='-',label="Actualu
       →GDP Growth")
      ax[0,1].plot(results['fvec']['g_fitted'], linestyle='--', color='#EECO51',
       ⇔label="Fitted GDP Growth")
```

```
ax[0,1].set_title('(b) VECM+Covid')
ax[0,1].legend()
ax[1,0].plot(results['fves']['g'],color='#845B24',linestyle='-',label="Actual_
 →GDP Growth")
ax[1,0].plot(results['fves']['g fitted'], linestyle='--', color='#EEC051', |
→label="Fitted GDP Growth")
ax[1,0].set_title('(c) VECM+Scarring')
ax[1,0].legend()
ax[1,1].plot(results['fveq']['g'],color='#845B24',linestyle='-',label="Actual_
 →GDP Growth")
ax[1,1].plot(results['fveq']['g_fitted'], linestyle='--', color='#EEC051',__
⇔label="Fitted GDP Growth")
ax[1,1].set_title('(d) VECM+Q')
ax[1,1].legend()
ax[2,0].plot(results['fveqc']['g'],color='#845B24',linestyle='-',label="Actualu
→GDP Growth")
ax[2,0].plot(results['fveqc']['g_fitted'], linestyle='--', color='#EEC051',u
 ⇔label="Fitted GDP Growth")
ax[2,0].set title('(e) VECM+Q+C')
ax[2,0].legend()
ax[2,1].plot(results['fveqs']['g'],color='#845B24',linestyle='-',label="Actualu
→GDP Growth")
ax[2,1].plot(results['fveqs']['g_fitted'], linestyle='--', color='#EECO51',
 →label="Fitted GDP Growth")
ax[2,1].set title('(f) VECM+Q+S')
ax[2,1].legend()
plt.tight_layout()
plt.savefig("fig/VECMQ.png")
plt.show()
```


[20]: print(veqs.summary())

Det. terms outside the coint. relation & lagged endog. parameters for equation ${\bf g}$

	coef	std err	z	P> z	[0.025	0.975]
exog1	-0.0101	0.005	-1.860	0.063	-0.021	0.001
exog2	0.0065	0.006	1.120	0.263	-0.005	0.018
exog3	0.0180	0.004	4.128	0.000	0.009	0.026
exog4	-0.0596	0.007	-7.979	0.000	-0.074	-0.045
L1.g	-0.1187	0.079	-1.505	0.132	-0.273	0.036
L1.ntlg	0.0075	0.014	0.546	0.585	-0.019	0.034
L2.g	-0.0404	0.088	-0.461	0.645	-0.212	0.131

LZ.IICIB	0.0132	0.010	1.105	0.244	0.032	0.013
L3.g	-0.0434	0.107	-0.407	0.684	-0.252	0.166
L3.ntlg	-0.0229	0.015	-1.500	0.134	-0.053	0.007
Det. term	s outside the	coint. rel	ation & lagge	ed endog.	parameters for	equation
ntlg						
=======			========	=======		=======
	coef	std err	z	P> z	[0.025	0.975]
exog1	-0.0020	0.057	-0.035	0.972	-0.114	0.110
exog2	-0.0041	0.061	-0.068	0.946	-0.124	0.115
exog3	-0.0214	0.046	-0.466	0.642	-0.111	0.069
exog4	-0.1394	0.079	-1.770	0.077	-0.294	0.015
L1.g	1.1129	0.832	1.338	0.181	-0.517	2.743
L1.ntlg	-0.3544	0.145	-2.448	0.014	-0.638	-0.071
L2.g	-1.8351	0.925	-1.985	0.047	-3.647	-0.023
L2.ntlg	-0.0595	0.174	-0.342	0.732	-0.400	0.282
L3.g	1.7605	1.124	1.566	0.117	-0.443	3.964
L3.ntlg	0.0294	0.161	0.183	0.855	-0.286	0.345
	Loadin	ng coeffici	ents (alpha)	for equat	ion g	
=======						
	coef	std err	z	P> z	[0.025	0.975]
ec1	-0.7240	0.092		0.000	-0.905	-0.543
	-		nts (alpha) f	-	•	
=======					-	
	coef	std err	Z	P> z	[0.025	0.975]
		0.070				
ec1	-1.6220	0.972	-1.668	0.095	-3.528	0.284
	Cointegration		for loading-			
_=======	_	std err		P> z	[0.025	0.975]
	coef 	sia ett	z 	F/ Z	LO.UZO	
beta.1	1.0000	0	0	0.000	1.000	1.000
beta.2	-0.0231	0.022	-1.070	0.285	-0.065	0.019
const	-14.5487	0.038	-385.056	0.000	-14.623	-14.475
lin_trend		0.000	-27.535	0.000	-0.013	-0.011
=========		=======	=========	=======	:========	=======

0.5 ARDL with quarterly dataset

L2.ntlg

-0.0192

0.016

-1.165

0.244

-0.052

0.013

```
[21]: en=ntl[['g']]
    ex=ntl[['ntlg']]
    exc=ntl[['ntlg','covid']]
    exs=ntl[['ntlg','scar']]
    exq=ntl[['ntlg','q1','q2','q3']]
    exqc=ntl[['ntlg','q1','q2','q3','covid']]
    exqs=ntl[['ntlg','q1','q2','q3','scar']]
```

```
lags = ardl_select_order(endog=en, exog=ex, maxlag=4,maxorder=4,_

→ic='aic',seasonal=False)
ve = ARDL(endog=en,lags=lags.ar lags,exog=ex,order=lags.dl lags,trend='ct').
 ⇒fit()
lags = ardl_select_order(endog=en, exog=exc, maxlag=4,maxorder=4,_
 ⇔ic='aic',seasonal=False)
vec= ARDL(endog=en,lags=lags.ar lags,exog=exc,order=lags.dl lags,trend='ct').
 ⇔fit()
lags = ardl_select_order(endog=en, exog=exs, maxlag=4,maxorder=4,_
 ⇔ic='aic',seasonal=False)
ves= ARDL(endog=en,lags=lags.ar_lags,exog=exs,order=lags.dl_lags,trend='ct').
lags = ardl_select_order(endog=en, exog=exq, maxlag=4,maxorder=4,_
 ⇔ic='aic',seasonal=False)
veq= ARDL(endog=en,lags=lags.ar_lags,exog=exq,order=lags.dl_lags,trend='ct').
 →fit()
lags = ardl_select_order(endog=en, exog=exqc, maxlag=4,maxorder=4,_
⇔ic='aic',seasonal=False)
veqc= ARDL(endog=en,lags=lags.ar_lags,exog=exqc,order=lags.dl_lags,trend='ct').
⇔fit()
lags = ardl select order(endog=en, exog=exqs, maxlag=4,maxorder=4,,,
 →ic='aic',seasonal=False)
veqs= ARDL(endog=en,lags=lags.ar_lags,exog=exqs,order=lags.dl_lags,trend='ct').
 →fit() # This looks too good to be true
models = {'fve': ve, 'fvec': vec, 'fves': ves, 'fveq': veq, 'fveqc': veqc, u
 results = {}
for name, model in models.items():
   fitted = pd.DataFrame(model.predict(), columns=en.columns)
   fitted.index = pd.date_range(end='2024-12-31', periods=48, freq='QE')
   merged = pd.merge(en, fitted, left_index=True, right_index=True,_
 ⇔suffixes=('', f'_fitted'))
   results[name] = merged
fig, ax = plt.subplots(3,2,figsize=(12, 12))
ax[0,0].plot(results['fve']['g'],color='#845B24',linestyle='-',label="Actual__
→GDP Growth")
ax[0,0].plot(results['fve']['g_fitted'], linestyle='--', color='#EEC051',u
 ⇔label="Fitted GDP Growth")
ax[0,0].set_title('(a) ARDL')
ax[0,0].legend()
```

```
ax[0,1].plot(results['fvec']['g'],color='#845B24',linestyle='-',label="Actual__
 →GDP Growth")
ax[0,1].plot(results['fvec']['g_fitted'], linestyle='--', color='#EEC051',_
 ⇔label="Fitted GDP Growth")
ax[0,1].set title('(b) ARDL+Covid')
ax[0,1].legend()
ax[1,0].plot(results['fves']['g'],color='#845B24',linestyle='-',label="Actualu
 →GDP Growth")
ax[1,0].plot(results['fves']['g_fitted'], linestyle='--', color='#EECO51',
 ⇔label="Fitted GDP Growth")
ax[1,0].set_title('(c) ARDL+Scarring')
ax[1,0].legend()
ax[1,1].plot(results['fveq']['g'],color='#845B24',linestyle='-',label="Actual_

→GDP Growth")
ax[1,1].plot(results['fveq']['g_fitted'], linestyle='--', color='#EEC051',_
 ⇔label="Fitted GDP Growth")
ax[1,1].set_title('(d) ARDL+Quarterly')
ax[1,1].legend()
ax[2,0].plot(results['fveqc']['g'],color='#845B24',linestyle='-',label="Actualu

→GDP Growth")
ax[2,0].plot(results['fveqc']['g_fitted'], linestyle='--', color='#EECO51',
 ⇔label="Fitted GDP Growth")
ax[2,0].set title('(e) ARDL+Q+C')
ax[2,0].legend()
ax[2,1].plot(results['fveqs']['g'],color='#845B24',linestyle='-',label="Actualu
 →GDP Growth")
ax[2,1].plot(results['fveqs']['g_fitted'], linestyle='--', color='#EEC051', u
 ⇒label="Fitted GDP Growth")
ax[2,1].set title('(f) ARDL+Q+S')
ax[2,1].legend()
plt.tight_layout()
plt.savefig("fig/ARDLQ.png") # Turn off to not save, or change file name to⊔
 ⇔save in your preferred location
plt.show()
```

c:\Users\imed\AppData\Local\Programs\Python\Python313\Lib\sitepackages\statsmodels\tsa\ardl\model.py:455: SpecificationWarning: exog contains
variables that are missing from the order dictionary. Missing keys: ntlg.
 return _format_order(self.data.orig_exog, order, self._causal)
c:\Users\imed\AppData\Local\Programs\Python\Python313\Lib\sitepackages\statsmodels\tsa\ardl\model.py:455: SpecificationWarning: exog contains
variables that are missing from the order dictionary. Missing keys: q1.

return _format_order(self.data.orig_exog, order, self._causal)
c:\Users\imed\AppData\Local\Programs\Python\Python313\Lib\sitepackages\statsmodels\tsa\ardl\model.py:455: SpecificationWarning: exog contains
variables that are missing from the order dictionary. Missing keys: ntlg, q1.
 return _format_order(self.data.orig_exog, order, self._causal)
c:\Users\imed\AppData\Local\Programs\Python\Python313\Lib\sitepackages\statsmodels\tsa\ardl\model.py:455: SpecificationWarning: exog contains
variables that are missing from the order dictionary. Missing keys: q2.
 return _format_order(self.data.orig_exog, order, self._causal)

ARDL Model Results

Dep. Variable:	g	No. Observations:	48
Model:	ARDL(4, 0, 0, 0, 4)	Log Likelihood	199.333
Method:	Conditional MLE	S.D. of innovations	0.003
Date:	Wed, 01 Oct 2025	AIC	-368.665
Time:	22:03:23	BIC	-341.902
Sample:	03-31-2014	HQIC	-358.740

- 12-31-2024

		=======	========			=======
	coef	std err	Z	P> z	[0.025	0.975]
const	39.5332	5.680	6.960	0.000	27.932	51.134
trend	0.0335	0.005	6.926	0.000	0.024	0.043
g.L1	-0.6836	0.122	-5.583	0.000	-0.934	-0.434
g.L2	-0.4758	0.139	-3.423	0.002	-0.760	-0.192
g.L3	-0.5943	0.128	-4.633	0.000	-0.856	-0.332
g.L4	0.0250	0.068	0.366	0.717	-0.115	0.165
ntlg.L0	0.0128	0.005	2.495	0.018	0.002	0.023
q1.L0	-0.0110	0.003	-4.274	0.000	-0.016	-0.006
q3.L0	0.0087	0.003	3.125	0.004	0.003	0.014
scar.L0	-0.0210	0.004	-5.829	0.000	-0.028	-0.014
scar.L1	-0.0946	0.005	-17.540	0.000	-0.106	-0.084
scar.L2	-0.0448	0.013	-3.426	0.002	-0.071	-0.018
scar.L3	-0.0293	0.012	-2.347	0.026	-0.055	-0.004
scar.L4	-0.0325	0.011	-3.058	0.005	-0.054	-0.011
=========						=======