Accelerating Code Search with Deep Hashing and Code Classification

王焱林

wangylin36@mail.sysu.edu.cn

2022.11.27 MLNLP

Accelerating Code Search with Deep Hashing and Code Classification

Wenchao Gu¹*, Yanlin Wang^{2,†}, Lun Du², Hongyu Zhang³, Shi Han², Dongmei Zhang², and Michael R. Lyu¹

- ¹ Department of Computer Science and Engineering, The Chinese University of Hong Kong, China.
 - ² Microsoft Research Asia, Beijing, China
 - ³ The University of Newcastle, Australia

What is code search? (in a narrow sense)

 Code search aims to retrieve the code snippets according to the natural language query/description given by users.

Query: how to sort an array with bubble sort?

Answer:

```
void BubbleSort(int arr[], int n) {
   int i, j, flag,temp;
   for(i = 0; i < n-1; i++) {
      flag = 0;
      for(j = 0; j < (n-i-1); j++) {
        if(arr[j] > arr[j+1]) {
            flag = 1;
            temp = arr[j];
            arr[j] = arr[j+1];
            arr[j+1] = temp;
        }
      }
      if(flag == 0)
            break;
    }
}
```

What is code search?

• Given a query, return its corresponding code

No.	Code Search Task	Query	Codebases	#Studies	Percent
1	Text-Based Code Search	Text	Source Code	34	51%
2	Code Clone Search	Source Code	Source Code	9	14%
3	I/O Example Code Search	Input/Output Example	Source Code	8	12%
4	API-Based Code Search	API	Source Code	7	11%
5	Binary Clone Search	Binary Code	Binary Code	5	7%
6	UI Code Search	UI Sketch	UI Code	3	4%
7	Programming Video Search	Text	Code in Video	1	1%
-	Total	-	-	67	100%

Opportunities and Challenges in Code Search Tools. Liu et. al. ACM Computing Surveys. 2020.

Why is it important?

- Code search is a frequent developer activity in software development practices.
- It improves programming productivity as developers' time and energy can be saved by reusing existing code.
- On Google Code Search, a developer composes 12 search queries per weekday on average [Sadowski et al.].

C. Sadowski, K. T. Stolee, and S. Elbaum, "How developers search for code: a case study," FSE 2015.

Existing approaches

- Information Retrieval-based
 - BOW, Jaccard, TF-IDF, BM25, etc
- Deep Learning-based
 - Cross-encoder paradigm
 - CODEnn
 - biRNN, SelfAtt
 - CodeBERT
 - ...
 - Bi-encoder paradigm
 - GraphCodeBERT
 - CoCLR
 - ...

Limitations

IR-based: Fast but not accurate

query codebase

Similarity

Code

Encoder

Query

Encoder

DL-based:

Accurate but slow, especially for the cross-encoder paradigm!

Model	MRR	Need training	Per query time / s	R@1	R@5	R@10	R@100	R@1000
Text matching IR mode	l							
Jaccard	0.2425	No	0.0130 ± 0.0004	17.7	30.7	36.7	59.4	83.0
BOW	0.2220	No	0.0011 ± 0.0000	16.1	28.1	33.6	56.6	82.6
TFIDF	0.2397	No	0.0011 ± 0.0001	16.9	30.8	37.1	62.9	87.1
BM25	0.4523	No	0.0062 ± 0.0003	35.6	56.4	63.4	81.0	92.0
Bi-encoder DL model								
CODEnn	0.1775	Yes	0.0033 ± 0.0001	11.1	23.9	30.7	57.3	82.3
CodeBERT-bi	0.6669	Yes	0.0021 ± 0.0003	57.4	77.9	83.3	94.6	98.8
GraphCodeBERT	0.6948	Yes	0.0048 ± 0.0002	59.3	82.1	87.3	96.5	99.1
Cross-encoder DL mode	l							
CodeBERT	0.7015	Yes	802.43 ± 51.29	62.4	79.2	83.7	94.5	98.7
CoCLR	0.6349	Yes	766.27 ± 47.79	51.6	78.3	84.6	95.7	99.0

Classification score

Cross-modal
Encoder

Query

Code

Cross-encoder

Revisiting Code Search in a Two-Stage Paradigm, Hu et. al., WSDM 2023.

Previous research on code search mainly focuses on accuracy but neglects the retrieval efficiency.

Possible improvements

Our Exploration on the Deep Hashing Approach:

CoSHC: Accelerating Code Search with Deep Hashing and Code Classification (ACL'22)

 We adopt the recall and re-rank mechanism with the integration of code clustering and deep hashing to improve the retrieval

efficiency.

• Offline stage + Online stage

Framework - Offline Stage

Combines both code and description similarity matrix:

$$\tilde{S} = \beta S_C + (1 - \beta) S_D$$

Involves $\tilde{S}\tilde{S}^T$ to describe a high order neighborhood similarity information:

$$S = (1 - \eta)\tilde{S} + \frac{\tilde{S}\tilde{S}^T}{m}$$

Sets diagonal elements of the joint-similarity matrix to be 1:

$$S_{F_{ij}} = \begin{cases} 1, & i = j \\ S_{ij}, & \text{otherwise} \end{cases}$$

Hash code alignment

The loss function of alignment is

$$\mathcal{L}(\theta) = \min_{B_{C}, B_{D}} \left\| \min(\mu S_{F}, 1) - \frac{B_{C} B_{D}^{T}}{d} \right\|_{F}^{2} + \lambda_{1} \left\| \min(\mu S_{F}, 1) - \frac{B_{C} B_{D}^{T}}{d} \right\|_{F}^{2} + \lambda_{2} \left\| \min(\mu S_{F}, 1) - \frac{B_{D} B_{D}^{T}}{d} \right\|_{F}^{2}$$

s. t.
$$B_C, B_D \in \{-1, +1\}^{m \times d}$$

Framework – Online Stage

Evaluation 1: Time efficiency

Dataset: CodeSearchNet

	Python	Java
	Total	Time
CodeBERT	572.97s	247.78s
CoSHC	33.87s (\$\dagge 94.09%)	15.78s (\$\dagge 93.51\%)
	arity Calculation	
CodeBERT	531.95s	234.08s
CoSHC	14.43s (\$\dagge 97.29\%)	7.25s (\$\dig 96.90\%)
	(2) Arra	y Sorting
CodeBERT	41.02s	13.70s
CoSHC	19.44s (\$\dagger\$53.61%)	8.53s (\$\dagger37.74\%)

COSHC can greatly reduce the cost of similarity calculation. Besides, COSHC can also reduce the cost of sorting by dividing a large code dataset into several small code datasets

Evaluation 2: Overall performance

Model		Python		Java		
Model	R@1	R@5	R@10	R@1	R@5	R@10
UNIF CoSHC _{UNIF} -w/o classification -one classification -ideal classification	$ \begin{array}{c} 0.071 \\ \hline 0.072 \ (\uparrow 1.4\%) \\ 0.071 \ (0.0\%) \\ 0.069 \ (\downarrow 2.8\%) \\ \hline 0.077 \ (\uparrow 6.9\%) \\ \end{array} $	0.174 (†0.6%) 0.163 (↓5.8%)	$\begin{array}{c} 0.236 \\ \hline 0.241 \ (\uparrow 2.1\%) \\ 0.236 \ (0.0\%) \\ 0.216 \ (\downarrow 8.5\%) \\ \hline 0.277 \ (\uparrow 17.4\%) \end{array}$	0.085 (†1.2%) 0.083 (↓1.2%)	0.193 0.198 (†2.6%) 0.193 (0.0%) 0.183 (\$\dagger\$5.2%) 0.222 (†15.0%)	0.254 0.264 († 3.9%) 0.254 (0.0%) 0.236 (\(\pi\)7.1%) \(\bar{0}\).\(\bar{2}\)9\(\bar{6}\)(†\(\bar{1}\)6.5\(\bar{8}\))
$\begin{array}{c c} \hline RNN \\ \hline CoSHC_{RNN} \\ -w/o \ classification \\ -one \ classification \\ -ideal \ classification \\ \end{array}$		0.254 (†0.4%) 0.243 (↓4.0%)	0.333 0.343 (↑5.0%) 0.335 (↑0.6%) 0.311 (↓6.6%) 0.385 (↑15.6%)	0.073 (0.0%) 0.075 (†2.7%)		0.253 (†1.2%)
CodeBERTa CoSHC _{CodeBERTa} -w/o classification -one classification -ideal classification	$ \begin{array}{c} 0.124 \\ \hline 0.123 \ (\bar{\downarrow} 0.8 \%) \\ 0.122 \ (\downarrow 1.6 \%) \\ 0.116 \ (\downarrow 6.5 \%) \\ \hline 0.135 \ (\bar{\uparrow} 8.9 \%) \\ \end{array} $	0.242 (\dagger3.2%) 0.221 (\dagger11.6%)	0.302 (\dagger3.8%) 0.271 (\dagger13.7%)	0.089 (0.0%) 0.085 (\dagger4.5%)	0.201 (\dagger 1.0%) 0.189 (\dagger 6.9%)	$\begin{array}{c} 0.264 \\ \hline 0.272 \ \overline{((\uparrow \mathbf{3.0\%})} \\ 0.258 \ (\downarrow 2.3\%) \\ 0.238 \ (\downarrow 9.8\%) \\ \hline 0.\overline{305} \ \overline{(\uparrow \mathbf{15.5\%})} \end{array}$
CodeBERT CoSHCCodeBERT -w/o classification -one classification -ideal classification	$\begin{array}{c} 0.451 \\ \hline 0.451 \ (\overline{0}.\overline{0}\overline{\%}) \\ 0.449 \ (\downarrow 0.4\%) \\ 0.425 \ (\downarrow 5.8\%) \\ \hline 0.460 \ (\uparrow 2.\overline{0}\%) \end{array}$	0.673 (\dagger 1.5%) 0.613 (\dagger 10.2%)	$\begin{array}{c} 0.759 \\ \hline 0.750 (\downarrow 1.2 \%) \\ 0.742 (\downarrow 2.2 \%) \\ 0.665 (\downarrow 12.4 \%) \\ 0.775 (\uparrow 2.1 \%) \end{array}$	0.316 (\doldon 0.9%) 0.304 (\doldon 4.7%)	0.527 (\1.9%)	0.593 (\dagger 2.5%) 0.532 (\dagger 12.5%)
$\begin{array}{c} GraphCodeBERT\\ \hline CoSHC_{GraphCodeBERT}\\ -w/o\ classification\\ -one\ classification\\ -ideal\ classification \end{array}$	0.485 0.483 (\$\sqrt{0.4\cdot{8}}\) 0.481 (\$\sqrt{0.8\cdot{8}}\) 0.459 (\$\sqrt{5.4\cdot{8}}\) 0.494 (\$\sqrt{1.9\cdot{8}}\)	0.713 (\dagger 1.8%) 0.653 (\dagger 10.1%)	0.774 (\dagger 2.3%) 0.698 (\dagger 11.9%)	0.347 (\pm1.7%) 0.329 (\pm7.8%)	0.571 0.561 (\$\sqrt{1.8\%}\$) 0.553 (\$\sqrt{3.2\%}\$) 0.505 (\$\sqrt{11.6\%}\$) 0.585 (\$\sqrt{2.5\%}\$)	0.616 (\dagger3.7%) 0.551 (\dagger13.9%)

CoSHC can retain original model performance well.

(e.g., at least 99.2%, 98.2% and 97.7% accuracy of GraphCodeBERT on Java in terms of R@1, R@5 and R@10, respectively).

Evaluation 2: Overall performance

Model		Python		Java		
Widel	R@1	R@5	R@10	R@1	R@5	R@10
UNIF	0.071	0.173	0.236	0.084	0.193	0.254
$\overline{\text{CoSHC}_{\text{UNIF}}}$	0.072 (†1.4%)		0.241 (†2.1%)		$0.198(\dot{7}2.6\%)$	
-w/o classification	0.071 (0.0%)	V /	0.236 (0.0%)	0.085 (†1.2%)	0.193 (0.0%)	0.254 (0.0%)
-one classification -ideal classification	$-\frac{0.069}{0.077} (\ 10.069)$	$0.163 (\downarrow 5.8\%)$		$0.083 (\downarrow 1.2\%)$	$0.183 (\downarrow 5.2\%)$ $0.2\overline{2}2 (\uparrow 15.0\%)$	$0.236 (\downarrow 7.1\%)$
	0.077 (0.376)	0.202 (10.8 %)	0.277 (17.470)	0.093 (10.776)	0.222 (13.070)	0.290 (10.370)
RNN	0.111	0.253	0.333	0.073	_0.184	0.250
$\overline{\text{CoSHC}_{RNN}}$	- 1				0.194 (†5.4%)	
-w/o classification	× 1	0.254 (†0.4%)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.073 (0.0%)	0.186 (†1.1%)	0.253 (†1.2%)
-one classification		0.243 (\\ 4.0\%)		0.075 (†2.7%)		
-ideal classification	0.123 (†10.8%)	0.289 (†14.2%)	0.385 (†15.6%)	0.084 (†15.1%)	0.221 (†20.1%)	0.302 (†20.8%)
CodeBERTa	0.124	0.250	0.314	0.089	0.203	0.264
$\overline{\text{CoSHC}_{\text{CodeBERTa}}}$	$0.1\overline{23}(10.8\%)$	$0.\overline{247} (\downarrow \overline{1.2\%})$	0.309 (1.6%)	$\bar{0}.\bar{0}9\bar{0} \ (\uparrow \bar{1}.\bar{1}\%)$	$0.2\overline{10}(\uparrow 3.4\%)$	$\overline{0.\overline{272}}$ $\overline{((\uparrow \overline{3}.\overline{0}\%)}$
-w/o classification	0.122 (\1.6%)	$0.242 (\downarrow 3.2\%)$	0.302 (\\dagger3.8%)	0.089 (0.0%)	0.201 (\1.0%)	0.258 (\\dagge2.3\%)
one classification	0.116 (\\$4.5%)		0.271 (\13.7%)			0.238 (\$\dagge 9.8%)
-ideal classification	0.135 (†8.9%)	$0.\overline{276}$ ($\uparrow \overline{10.4\%}$)	0.346 (†10.2%)	$0.\overline{100} \ (\uparrow 12.4\%)$	0.235 (†15.8%)	$0.\overline{305} \ (\uparrow 15.\overline{5\%})$
CodeBERT	0.451	0.683	0.759	0.319	0.537	0.608
$\overline{\text{CoSHC}_{\text{CodeBERT}}}$	0.451(0.0%)	$0.\overline{679} (\downarrow \overline{0.6\%})$	0.750 (1.2%)	$0.\overline{3}1\overline{8} \ (\downarrow 0.\overline{3}\%)$	$0.5\bar{3}3(\sqrt{0.7}\%)$	$\overline{0.602}$ ($\downarrow \overline{1.0\%}$)
-w/o classification	0.449 (\\$0.4%)	0.673 (\1.5%)	0.742 (\12.2%)	0.316 (\dagger*0.9%)	0.527 (\1.9%)	0.593 (\\2.5\%)
one classification	$0.425~(\downarrow 5.8\%)$		0.665 (\12.4%)		0.483 (\10.1%)	0.532 (\12.5%)
-ideal classification	$0.4\overline{60} \ (\uparrow 2.0\%)$	$0.703 (\uparrow 2.9\%)$	$0.775(\uparrow 2.1\%)$	$0.\overline{3}2\overline{9} \ (\uparrow 3.1\%)$	$[0.5\overline{5}5(73.4\%)]$	$0.\overline{6}2\overline{7} \ (\uparrow 3.1\%)$
GraphCodeBERT	0.485	0.726	0.792	0.353	0.571	0.640
$\overline{\text{CoSHC}}_{\text{GraphCodeBERT}}$	0.483 (\$\sqrt{0.4}\%)	$0.719 (\downarrow 1.0\%)$	0.782 (\$\frac{1}{3}\)\[\infty\]		$0.5\overline{6}1(1.8\%)$	$\overline{0.625}$ $(\downarrow \overline{2.3\%})$
-w/o classification	0.481 (\\$\d\ 0.8\%)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.774 (\\dagge2.3\%)	0.347 (\1.7%)	$0.553 (\downarrow 3.2\%)$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
-one classification	0.459 (\\$5.4%)		0.698 (\11.9%)			$0.551 (\downarrow 13.9\%)$
-ideal classification	0.494 (†1.9%)	$0.741 (\uparrow 2.1\%)$	$0.803 \ (\uparrow 1.4\%)$	$0.\overline{3}6\overline{1} \ (\uparrow 2.\overline{3}\%)$	$-0.585(\div 2.5\%)$	0.649 (†1.4%)

CoSHC even outperforms the original baseline model when the performance of the baselines are not so good.

Evaluation 2: Effectiveness of Code Classification

Model		Python		Java		
nade:	R@1	R@5	R@10	R@1	R@5	R@10
UNIF CoSHC _{UNIF} -w/o classification -one classification	0.071 0.072 (†1.4%) 0.071 (0.0%) 0.069 (12.8%)	0.173 0.177 (†2.3%) 0.174 (†0.6%) 0.163 (↓5.8%)	0.236 0.241 (\frac{1}{2}.1 %) 0.236 (0.0%) 0.216 (\lapsa 5%)	0.084 0.086 († 2.4 %) 0.085 (†1.2%) 0.083 (†1.2%)	0.193 0.198 (\(\frac{1}{2}\).6\(\frac{1}{6}\)\(\frac{1}{6}\) 0.193 (0.0\(\frac{1}{6}\) 0.183 (\(\frac{1}{6}\).2\(\frac{1}{6}\)	0.254 0.264 († 3.9%) 0.254 (0.0%) 0.236 (17.1%)
-ideal classification			0.277 (†17.4%)	01005 (011270)		
$\begin{array}{c} \rm RNN \\ \rm CoSHC_{RNN} \\ -w/o \ classification \\ -one \ classification \\ -ideal \ classification \end{array}$	0.112 (†0.9%) 0.112 (†0.9%)	0.254 (†0.4%) 0.243 (↓4.0%)	0.333 0.343 (†5.0%) 0.335 (†0.6%) 0.311 (46.6%) 0.385 (†15.6%)	0.073 (0.0%) 0.075 (†2.7%)	0.186 (†1.1%) 0.182 (↓1.1%)	0.253 (†1.2%) 0.240 (J4.0%)
$ \begin{array}{c} {\rm CodeBERTa} \\ {\rm CoSHC_{CodeBERTa}} \\ {\rm -w/o~classification} \\ {\rm -one~classification} \\ {\rm -ideal~classification} \end{array} $	0.124 0.123 (\$\bar{\pi}0.8\bar{\pi})\$ 0.122 (\$\pi1.6\pi)\$ 0.116 (\$\pi6.5\pi)\$ 0.135 (\$\pi8.9\pi)\$	$0.242 (\downarrow 3.2\%) 0.221 (\downarrow 11.6\%)$	0.314 0.309 (\$\sqrt{1.6}\%) 0.302 (\$\sqrt{3.8}\%) 0.271 (\$\sqrt{13.7}\%) 0.346 (\$\gamma 10.2\%)	0.089 (0.0%) 0.085 (\dagger4.5%)	0.201 (\1.0%) 0.189 (\16.9%)	0.258 (\(\pm2.3\%\)) 0.238 (\(\pm9.8\%\))
CodeBERT CoSHC _{CodeBERT} -w/o classification -one classification -ideal classification	0.451 0.451 (0.0%) 0.449 (\psi.0.4%) 0.425 (\psi.5.8%) 0.460 (\psi.0.0%)	0.673 (\1.5%)	0.759 0.750 (\$\sqrt{1.2\%}) 0.742 (\$\sqrt{2.2\%}) 0.665 (\$\sqrt{12.4\%}) 0.775 (\$\sqrt{2.1\%})	0.316 (\dagger 0.9%)	0.527 (\1.9%)	0.608 0.602 (\$\sqrt{1.0}\%) 0.593 (\$\sqrt{2.5}\%) 0.532 (\$\sqrt{12.5}\%) 0.627 (\$\sqrt{3.1}\%)
GraphCodeBERT CoSHC _{GraphCodeBERT} -w/o classification -one classification -ideal classification	0.485 0.483 (\$\sqrt{0.4\%}) 0.481 (\$\sqrt{0.8\%}) 0.459 (\$\sqrt{5.4\%}) 0.494 (\$\sqrt{1.9\%})	0.713 (\1.8%) 0.653 (\10.1%)	0.792 0.782 (\$\sqrt{1.3\%}) 0.774 (\$\sqrt{2.3\%}) 0.698 (\$\sqrt{11.9\%}) 0.803 (\$\sqrt{1.4\%})	0.347 (\1.7%) 0.329 (\17.8%)	0.571 0.561 (\$\sqrt{1.8}\%) 0.553 (\$\sqrt{3.2}\%) 0.505 (\$\sqrt{11.6}\%) 0.585 (\$\sqrt{2.5}\%)	0.616 (\\dagger3.7%)

With the ideal category labels, CoSHC can even outperform all baseline models.

Evaluation 3: Ablation Study

Model		Python		Java		
	R@1	R@5	R@10	R@1	R@5	R@10
UNIF	0.071	0.173	0.236	0.084	0.193	0.254
$egin{array}{ll} { m CoSHC_{UNIF}} \\ -{ m w/o~classification} \\ -{ m one~classification} \\ -{ m ideal~classification} \end{array}$	0.072 (†1.4%) 0.071 (0.0%) 0.069 (\pm2.8%) 0.077 (†6.9%)	0.174 (\(\dagger\)0.6%) 0.163 (\(\dagger\)5.8%)	0.241 (†2.1%) 0.236 (0.0%) 0.216 (\$\dagger*s.5%) 0.277 (†17.4%)	0.085 (†1.2%) 0.083 (↓1.2%)	0.193 (0.0%) 0.183 (\$\d\dagger\$5.2%)	0.264 (†3.9%) 0.254 (0.0%) 0.236 (\psi,7.1%) 0.296 (†16.5%)
RNN	0.111	0.253	0.333	0.073	0.184	0.250
CoSHC _{RNN} -w/o classification -one classification -ideal classification				0.076 (†4.1%) 0.073 (0.0%) 0.075 (†2.7%) 0.084 (†15.1%)		0.265 (\(\frac{1}{6.0\%}\)) 0.253 (\(\frac{1}{1.2\%}\)) 0.240 (\(\frac{1}{4.0\%}\)) 0.302 (\(\frac{2}{0.8\%}\))
CodeBERTa	0.124	0.250	0.314	0.089	0.203	0.264
CoSHC _{CodeBERTa} -w/o classification -one classification -ideal classification	0.123 (\dold 0.8 %) 0.122 (\dold 1.6 %) 0.116 (\dold 6.5 %) 0.135 (\dold 8.9 %)	0.242 (\dagger33.2%) 0.221 (\dagger11.6%)	0.309 (\pm\) 1.6%) 0.302 (\pm\)3.8%) 0.271 (\pm\)13.7%) 0.346 (\pm\)10.2%)	0.089 (0.0%) 0.085 (\dag4.5%)	0.189 (\(\dagger 6.9\% \))	0.272 ((†3.0%) 0.258 (\pm2.3%) 0.238 (\pm9.8%) 0.305 (†15.5%)
CodeBERT	0.451	0.683	0.759	0.319	0.537	0.608
$egin{array}{l} { m CoSHC_{CodeBERT}} \ -{ m w/o~classification} \ -{ m one~classification} \ -{ m ideal~classification} \end{array}$	0.451 (0.0%) 0.449 (\pu0.4%) 0.425 (\pu5.8%) 0.460 (\partial 2.0%)	0.673 (\dagger 1.5%) 0.613 (\dagger 10.2%)	0.750 (\pm\1.2%) 0.742 (\pm\2.2%) 0.665 (\pm\12.4%) 0.775 (\pm\2.1%)	0.318 (\psi 0.3%) 0.316 (\psi 0.9%) 0.304 (\psi 4.7%) 0.329 (\psi 3.1%)		
GraphCodeBERT	0.485	0.726	0.792	0.353	0.571	0.640
$ m CoSHC_{GraphCodeBERT} - w/o$ classification - one classification - ideal classification	0.483 (\dold 0.4%) 0.481 (\dold 0.8%) 0.459 (\dold 5.4%) 0.494 (\dold 1.9%)	0.713 (\dagger 1.8%) 0.653 (\dagger 10.1%)	0.782 (↓ 1.3 %) 0.774 (↓2.3%) 0.698 (↓11.9%) 0.803 (↑1.4%)	0.347 (\1.7%) 0.329 (\17.8%)	0.553 (\13.2%)	0.551 (\13.9%)

CoSHC outperforms all the variants

Evaluation 4: Classification Accuracy

Model	Python Acc.	Java Acc.
CoSHC _{UNIF} CoSHC _{RNN} CoSHC _{CodeBERTa} CoSHC _{CodeBERT} CoSHC _{GraphCodeBERT}	0.558 0.610 0.591 0.694 0.713	0.545 0.535 0.571 0.657 0.653

The retrieval accuracy of the original code search models is higher, the prediction accuracy also tends to be higher.

Ongoing/Future work

Similarity

Query

Code

Further improvements

Onging/Future work

1. Improvement on CoSHC with segmented hashing

Promising preliminary results

Onging/Future work

- 2. Combination of IR & DL based approaches
 - Preliminary results are promising, both in accuracy and efficiency.

Onging/Future work

?

- Multi-stage retrieval
- Better evaluation metrics for code search
- Larger and more practical datasets
- Human in the loop: Interactive multi-turn code search

Thanks!

Open for discussion and collaboration: wangylin36@mail.sysu.edu.cn

https://yanlin.info