Introducción

Fernando Lozano

Universidad de los Andes

30 de julio de 2013

• Reconocimiento de caracteres, voz, objetos en imágenes, video...

- Reconocimiento de caracteres, voz, objetos en imágenes, video...
- Predicción de series de tiempo.

- Reconocimiento de caracteres, voz, objetos en imágenes, video...
- Predicción de series de tiempo.
- Procesamiento de texto, procesamiento de lenguaje natural.

- Reconocimiento de caracteres, voz, objetos en imágenes, video...
- Predicción de series de tiempo.
- Procesamiento de texto, procesamiento de lenguaje natural.
- Bioinformática, astronomía, economía...

- Reconocimiento de caracteres, voz, objetos en imágenes, video...
- Predicción de series de tiempo.
- Procesamiento de texto, procesamiento de lenguaje natural.
- Bioinformática, astronomía, economía...
- Ranking, sistemas de recomendación.

- Reconocimiento de caracteres, voz, objetos en imágenes, video...
- Predicción de series de tiempo.
- Procesamiento de texto, procesamiento de lenguaje natural.
- Bioinformática, astronomía, economía...
- Ranking, sistemas de recomendación.
- Robótica, navegación autónoma.

- Reconocimiento de caracteres, voz, objetos en imágenes, video...
- Predicción de series de tiempo.
- Procesamiento de texto, procesamiento de lenguaje natural.
- Bioinformática, astronomía, economía...
- Ranking, sistemas de recomendación.
- Robótica, navegación autónoma.
- •

• Estudio e implementación de algoritmos que aprenden a partir de su experiencia pasada.

- Estudio e implementación de algoritmos que aprenden a partir de su experiencia pasada.
- Experiencia:

- Estudio e implementación de algoritmos que aprenden a partir de su experiencia pasada.
- Experiencia:
 - Datos
 - Sensores

- Estudio e implementación de algoritmos que aprenden a partir de su experiencia pasada.
- Experiencia:
 - Datos
 - Sensores
- Cuando se usa?

- Estudio e implementación de algoritmos que aprenden a partir de su experiencia pasada.
- Experiencia:
 - Datos
 - Sensores
- Cuando se usa?
 - Solución analítica no es posible.

- Estudio e implementación de algoritmos que aprenden a partir de su experiencia pasada.
- Experiencia:
 - Datos
 - Sensores
- Cuando se usa?
 - Solución analítica no es posible.
 - ▶ No es programable directamente.

- Estudio e implementación de algoritmos que aprenden a partir de su experiencia pasada.
- Experiencia:
 - ▶ Datos
 - Sensores
- Cuando se usa?
 - Solución analítica no es posible.
 - ▶ No es programable directamente.
 - Es posible recolectar datos.

• Cómo sabemos si funciona?

- Cómo sabemos si funciona?
- \bullet Machine learning estadístico.

- Cómo sabemos si funciona?
- Machine learning estadístico.
- Machine learning computational.

- Cómo sabemos si funciona?
- Machine learning estadístico.
- Machine learning computational.
- Algoritmos de optimización.

- Cómo sabemos si funciona?
- Machine learning estadístico.
- Machine learning computational.
- Algoritmos de optimización.
- Implementación.

- Cómo sabemos si funciona?
- Machine learning estadístico.
- Machine learning computational.
- Algoritmos de optimización.
- Implementación.
- Preprocesamiento.

- Cómo sabemos si funciona?
- Machine learning estadístico.
- Machine learning computational.
- Algoritmos de optimización.
- Implementación.
- Preprocesamiento.
- Evaluación.

• Aprender a resolver problemas prácticos usando machine learning.

- Aprender a resolver problemas prácticos usando machine learning.
- 2 Lograr entender los principios teóricos básicos:

- Aprender a resolver problemas prácticos usando machine learning.
- 2 Lograr entender los principios teóricos básicos:
 - Leer papers.

- Aprender a resolver problemas prácticos usando machine learning.
- 2 Lograr entender los principios teóricos básicos:
 - Leer papers.
 - 2 Research!

• Aunque en teoría, la teoría y la práctica son lo mismo, en la práctica son diferentes.

- Aunque en teoría, la teoría y la práctica son lo mismo, en la práctica son diferentes.
- Teoría \Rightarrow Matemáticas.

- Aunque en teoría, la teoría y la práctica son lo mismo, en la práctica son diferentes.
- Teoría ⇒ Matemáticas.
- "El mejor algoritmo es una buena teoría" , Vapnik

- Aunque en teoría, la teoría y la práctica son lo mismo, en la práctica son diferentes.
- Teoría ⇒ Matemáticas.
- "El mejor algoritmo es una buena teoría" , Vapnik
- Balancear Teoría/Práctica.

- Aunque en teoría, la teoría y la práctica son lo mismo, en la práctica son diferentes.
- Teoría ⇒ Matemáticas.
- "El mejor algoritmo es una buena teoría" , Vapnik
- Balancear Teoría/Práctica.

Aprendizaej Supervisado : Aprender y = f(x) a partir de datos $\{x,y\}_{i=1}^n$.

Aprendizaej Supervisado : Aprender y=f(x) a partir de datos $\{x,y\}_{i=1}^n.$

Aprendizaje No Supervisado : Aprender similaridades en datos $\{x\}_{i=1}^n$

Aprendizaej Supervisado : Aprender y = f(x) a partir de datos $\{x, y\}_{i=1}^n$.

Aprendizaje No Supervisado: Aprender similaridades en datos $\{x\}_{i=1}^n$ Aprendizaje Semi Supervisado: Aprender y = f(x) a partir de datos $\{x,y\}_{i=1}^n$ y $\{x\}_{i=1}^n$.

```
Aprendizaej Supervisado : Aprender y=f(x) a partir de datos \{x,y\}_{i=1}^n.
```

Aprendizaje No Supervisado : Aprender similaridades en datos $\{x\}_{i=1}^n$

Aprendizaje Semi Supervisado :Aprender y = f(x) a partir de datos $\{x, y\}_{i=1}^n$ y $\{x\}_{i=1}^n$.

Aprendizaje Transductivo .

```
Aprendizaej Supervisado : Aprender y=f(x) a partir de datos \{x,y\}_{i=1}^n.
```

Aprendizaje No Supervisado : Aprender similaridades en datos $\{x\}_{i=1}^n$

Aprendizaje Semi Supervisado :Aprender y = f(x) a partir de datos $\{x, y\}_{i=1}^n$ y $\{x\}_{i=1}^n$.

Aprendizaje Transductivo .

```
Aprendizaej Supervisado : Aprender y = f(x) a partir de datos \{x, y\}_{i=1}^n.
```

Aprendizaje No Supervisado : Aprender similaridades en datos $\{x\}_{i=1}^n$

Aprendizaje Semi Supervisado :Aprender y = f(x) a partir de datos $\{x,y\}_{i=1}^n$ y $\{x\}_{i=1}^n$.

Aprendizaje Transductivo .

Aprendizaje por refuerzo