

LINEAR DIFFERENTIAL EQUATIONS OF SECOND AND HIGHER ORDER

2.1 DEFINITION

An equation of the form $\frac{d^n y}{dx^n} + P_1(x) \frac{d^{n-1} y}{dx^{n-1}} + P_2(x) \frac{d^{n-2} y}{dx^{n-2}} + \dots + P_n(x) y = Q(x)$ where $P_1(x), P_2(x), \dots, P_n(x)$ and Q(x) are all continuous and real valued functions of x is called a linear differential equation of order n.

2.2 LINEAR DIFFERENTIAL EQUATION WITH CONSTANT COEFFICIENTS

Def. An equation of the form
$$\frac{d^n y}{dx^n} + P_1 \frac{d^{n-1} y}{dx^{n-1}} + \dots + P_n y = Q(x)$$
 ...(1)

where $P_1, P_2, ..., P_n$ are real constants and Q(x) is a continuous function of x is called an ordinary linear equation of order n with constant coefficients. We now state a theorem without proof.

Theorem 1: If y_1 and y_2 are two solutions of the equation

$$\frac{d^n y}{dx^n} + P_1 \frac{d^{n-1} y}{dx^{n-1}} + P_2 \frac{d^{n-2} y}{dx^{n-2}} + \dots + P_n y = 0$$
 ...(1)

then $c_1y_1 + c_2y_2$ is also its solution, where c_1 and c_2 are constants.

The general solution of a differential equation of nth order contains n arbitrary constants.

If $y_1, y_2, ..., y_n$ are *n* independent solutions of (1) then $c_1y_1 + c_2y_2 + ... + c_ny_n$ is the most general solution of (1). Let us denote this with *u*.

If
$$y = v$$
 is any particular solution of
$$\frac{d^n y}{dx^n} + P_1 \frac{d^{n-1} y}{dx^{n-1}} + P_2 \frac{d^{n-2} y}{dx^{n-2}} + \dots + P_n y = Q$$

then y = u + v is the most general solution of the above equation. The part 'u' is called the "Complementary Function" (C.F.) and the part v is called the Particular Integral (P.I.) of (1). The complete solution of (1) is given by y = C.F. + P.I.

1. Operator D

Let us denote $\frac{d}{dx}$, $\frac{d^2}{dx^2}$, $\frac{d^3}{dx^3}$,... with D, D^2, D^3 ,... so that $Dy = \frac{d}{dx}(y)$, $D^2y = \frac{d^2}{dx^2}(y)$,

 $D^3y = \frac{d^3}{dx^3}(y)$ The equation (1) can now be written in the symbolic form as

$$(D^n + P_1 D^{n-1} + P_2 D^{n-2} + \dots + P_n)y = Q(x)$$
 (i.e.) $f(D)y = Q(x)$

where $f(D) = D^n + P_1 D^{n-1} + P_2 D^{n-2} + + P_n$ is a polynomial in D. The symbol D stands for the operation of differentiation.

It can be seen that this operator D or more generally, the above f(D) follows the usual algebra (with the understanding that the use of the operator is interpreted properly).

2. To find the General solution (complementary function) of f(D)y = 0

The algebraic equation f(m) = 0 (i.e.) $m^n + P_1 m^{n-1} + P_2 m^{n-2} + ... + P_n = 0$ where P_1 , P_2 are real constants, is called the auxiliary equation (A.E.) of f(D)y = 0. Since the A.E., f(m) a polynomial equation of degree n, it will have n roots $m_1, m_2, ..., m_n$

Case (i). Let α be a real root of f(m) = 0 and that α be non repeated. Then $c e^{\alpha t}$, whan arbitrary constant, is the corresponding part of the complementary function.

If $m_1, m_2, ..., m_n$ are all real and distinct then the solution is $c_1 e^{m_1 t} + c_2 e^{m_2 t} + ... + c_n e^{m_n t}$ Case (ii). Let α be a real root of f(m) = 0 which is repeated r times, $f(m) = (m - \alpha)^r Q(m)$ where $Q(\alpha) \neq 0$.

Then the corresponding part of the complementary function is $(c_1 + c_2x + c_3x^2 + ... + c_rx^r)$. Case (iii). Let $\alpha + i\beta$ be a non-repeated complex root of f(m) = 0.

Then $\alpha - i\beta$ is also a non-repeated complex root of f(m) = 0. Then the corresponding the complementary function is $e^{\alpha x}(c_1 \cos \beta x + c_2 \sin \beta x)$

Note: If $\alpha + i\beta$ and $\alpha - i\beta$ are repeated twice and the remaining roots of f(m) = 0 are and distinct, then the solution is $e^{\alpha x} \left[(c_1 + c_2 x) \cos \beta x + (c_3 + c_4 x) \sin \beta x \right] + c_5 e^{m_3 x} + ... + c_n e^m_3 + ... + c$

Case (iv). If $(\alpha + i\beta)$ is a root repeated r times, then $\alpha - i\beta$ is also a root repeated r times corresponding part of the complementary function is given by

$$e^{\alpha x}(c_1 \cos \beta x + d_1 \sin \beta x) + x e^{\alpha x}(c_2 \cos \beta x + d_2 \sin \beta x) \dots + x^{r-1} e^{\alpha x}(c_r \cos \beta x + d_r \sin \beta x)$$

or $e^{\alpha x}[(c_1 + c_2 x + c_3 x^2 + \dots + c_r x^{r-1}) \cos \beta x + (d_1 + d_2 x + d_3 x^2 + \dots + d_r x^{r-1}) \sin \beta x]$

Table 8.1

S.N	To. Roots of A.E. $f(m) = 0$	C.F. (Complementary Function)
1.	$m_1, m_2, m_3,, m_n$ are real and distinct.	$c_1 e^{m_1 x} + c_2 e^{m_2 x} + + c_n e^{m_n x}$
2.	$m_1, m_1, m_3,, m_n$ (i.e., two roots are real and equal and rest are real and different).	$(c_1 + c_2 x)e^{m_1 x} + c_3 e^{m_1 x} + + c_n e^{m_n x}$
3.	m_1, m_1, m_1, m_4,m_n (i.e., three roots are real and equal and rest are real and different).	$(c_1 + c_2 x + c_3 x^2)e^{m_1 x} + c_4 e^{m_4 x} + \dots + c_n e^{m_n x}$
4.	Two roots of A.E. are complex say $\alpha + i\beta$ and $\alpha - i\beta$ and the remaining roots are real and different.	$e^{\alpha x}(c_1 \cos \beta x + c_2 \sin \beta x) + c_3 e^{m_1 x} + \dots + c_n e^{m_n x}$
5.	A pair of conjugate complex roots $\alpha \pm i\beta$ are repeated twice and the remaining roots are real and different.	$e^{\alpha x}[(c_1 + c_2 x)\cos\beta x + (c_3 + c_4 x)$ $\sin\beta x] + c_5 e^{m_5 x} + + c_n e^{m_n x}$
	A pair of conjugate complex roots $\alpha \pm i\beta$ are repeated thrice and the remaining roots are real and different.	$e^{\alpha x}[(c_1 + c_2 x + c_3 x^2)\cos\beta x + (c_4 + c_5 x + c_6 x^2)\sin\beta x] + c_7 e^{m_7 x} + c_8 e^{m_8 x} + + c_n e^{m_8 x}$

EXAMPLES

Example 1: Solve $\frac{d^2y}{dx^2} - a^2y = 0$, $a \ne 0$

Solution: Given equation in the operator form is

$$(D^2 - a^2)y = 0 (1)$$

Let $f(D) = D^2 - a^2$. Then the AE is f(m) = 0 $\Rightarrow m^2 - a^2 = 0$ $\therefore m = \pm a$.

The roots are real and different.

The general solution of (1) is $y = c_1 e^{ax} + c_2 e^{-ax}$

where c_1 , c_2 are arbitrary constants.

Note: The above solution can be also written as $y = c_1 \cosh ax + c_2 \sinh ax$

Example 2: Solve
$$\frac{d^3y}{dx^3} - 9\frac{d^2y}{dx^2} + 23\frac{dy}{dx} - 15y = 0$$

Solution: Given equation in the operator form is
$$(D^3 - 9D^2 + 23D - 15)y = 0$$
 ...(1)

Let
$$f(D) \equiv D^3 - 9D^2 + 23D - 15$$

Auxiliary equation is
$$f(m) = 0 \implies m^3 - 9m^2 + 23m - 15 = 0$$

 $\implies (m-1)(m-3)(m-5) = 0$...(2)

The roots are 1, 3, 5. The roots are real and different and hence the general solution is $\frac{3x}{3x} = \frac{5x}{5x}$

$$y = c_1 e^x + c_2 e^{3x} + c_3 e^{5x}$$

where c_1 , c_2 , c_3 are arbitrary constants.

Example 3: Solve
$$\frac{d^3x}{dt^3} - 2\frac{d^2x}{dt^2} - 3\frac{dx}{dt} = 0$$

Solution: Given equation can be written as
$$(D^3 - 2D^2 - 3D)x = 0$$
 ...(1)

where
$$D \equiv \frac{d}{dt}$$
. Let $f(D) = D^3 - 2D^2 - 3D$

Auxiliary equation is
$$m^3 - 2m^2 - 3m = 0$$
 ...(2)

$$\implies m(m^2 - 2m - 3) = 0 \implies m(m - 3)(m + 1) = 0$$

The roots are m = 0, 3, and -1. The general solution of (1) is $x = c_1 + c_2 e^{3t} + c_3 e^{-t}$

Example 4: Solve
$$\frac{d^3y}{dx^3} - 3\frac{dy}{dx} + 2y = 0$$

Solution: Given equation in the operator form is
$$(D^3 - 3D + 2)y = 0$$
 ...(1)

Let
$$f(D) = D^3 - 3D + 2$$

The AE is
$$f(m) = 0 \implies m^3 - 3m + 2 = 0$$

 $\Rightarrow (m-1)(m^2 + m - 2) = 0$
 $\Rightarrow (m-1)(m-1)(m+2) = 0$

The roots of (2) are m = 1, 1, -2

Since two roots of f(m) = 0 are equal, the general solution of (1) is $y = (c_1 + c_2 x) e^x + c_3 e^{-2x}$

Example 5: Solve
$$(D^4 - 2D^3 - 3D^2 + 4D + 4)y = 0$$

Solution: Given equation is
$$(D^4 - 2D^3 - 3D^2 + 4D + 4)y = 0$$
 ... (1)

Let
$$f(D) = D^4 - 2D^3 - 3D^2 + 4D + 4$$

The AE is
$$f(m) = 0$$
 (i.e.) $m^4 - 2m^3 - 3m^2 + 4m + 4 = 0$
 $\Rightarrow (m+1)(m^3 - 3m^2 + 4) = 0 \Rightarrow (m+1)(m+1)(m^2 - 4m + 4) = 0$
 $\Rightarrow (m+1)^2(m-2)^2 = 0$
The roots are $m = -1$, -1 , 2, 2. Hence the general solution of (1) is $y = (c_1 + c_2 x)e^{-x} + (c_3 + c_4 x)e^{2x}$

Example 6: Solve
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$$

Solution: Given equation in operator form is $(D^2 + D + 1)y = 0$

Let
$$f(D) = D^2 + D + 1$$

A.E. is
$$f(m) = 0$$
 (i.e.) $m^2 + m + 1 = 0 \implies m = \frac{-1 \pm \sqrt{1 - 4}}{2} = \frac{-1 \pm i\sqrt{3}}{2}$

The roots are
$$m = \frac{-1 + i\sqrt{3}}{2}$$
 and $m = \frac{-1 - i\sqrt{3}}{2}$.

$$\therefore \text{ The general solution of (1) is } y = e^{\frac{-x}{2}} \left(c_1 \cos \frac{x\sqrt{3}}{2} + c_2 \sin \frac{x\sqrt{3}}{2} \right)$$

Example 7: Solve
$$(D^4 + 8D^2 + 16)y = 0$$

Solution: Given equation is
$$(D^4 + 8D^2 + 16)y = 0$$

Let
$$f(D) = D^4 + 8D^2 + 16$$

The AE is
$$f(m) = 0$$
 (i.e.) $m^4 + 8m^2 + 16 = 0$
 $\Rightarrow (m^2 + 4)^2 = 0 \Rightarrow (m - 2i)^2 (m + 2i)^2 = 0$

The roots of (2) are m = 2i, 2i, -2i, where 2i, -2i, are occurring twice.

... The general solution of (1) is
$$y = (c_1 + c_2 x) \cos 2x + (c_3 + c_4 x) \sin 2x$$

Note: If $\alpha + \sqrt{\beta}$ is a real irrational root of f(m) = 0, $\alpha - \sqrt{\beta}$ is also a root of the equation. The part of the complementary function corresponding to these roots can also be put in the form $e^{\alpha x} (c_1 \cosh \sqrt{\beta} x + d_1 \sinh \sqrt{\beta} x)$

Example 8: Solve
$$(D^3 - 14D + 8) y = 0$$

Solution: Given equation is
$$D^3 - 14D + 8 = 0$$

Let
$$f(D) = D^3 - 14D + 8$$

AE is $f(m) = 0$ i.e. $m^3 - 14m + 8 = 0$
 $\Rightarrow (m+4)(m^2 - 4m + 2) = 0$
 $\therefore m = -4$ and $m = 2 \pm \sqrt{2}$

The general solution of (1) is
$$y = c_1 e^{-4x} + e^{2x} \left[c_2 \cosh(x\sqrt{2}) + c_3 \sinh(x\sqrt{2}) \right]$$

Example 9: Find the general solution of (i) y'' + 2y' = 0

[JNTU 2001]

(ii) Solve y'' + 6y' + 9y = 0, y(0) = -4, y'(0) = 14. **Solution**: (i) Given equation in the standard form is $(D^2 + 2D)y = 0$ The A.E. is $m^2 + 2m = 0$

i.e.,
$$m(m+2) = 0 \implies m = 0, -2,$$

. The general solution is

$$y = c_1 e^{0.x} + c_2 e^{-2x} = c_1 + c_2 e^{-2x}$$

where c_1 , c_2 are constants.

(ii) Given equation in the standard form is $(D^2 + 6D + 9)y = 0$ The A.E. is $(m + 3)^2 = 0$

$$m = -3, -3$$

The general solution is $y = (c_1 + c_2 x) e^{-3x}$...(1)

Diff. w.r.t. x,

$$y' = (c_1 + c_2 x) (-3 e^{-3x}) + e^{-3x} (c_2)$$

Given

$$y'(0) = 14$$

and

$$y(0) = -4 - 4 = c_1 \tag{3}$$

From (2) and (3), we get $c_1 = -4$, $c_2 = 2$

Substituting the values of c_1 and c_2 in (1), we get $y = (-4 + 2x) e^{-3x}$.

Example 10 : Solve y'' - y' - 2y = 0

[JNTU 2000S]

Solution: Given D.E. can be written in operator form as $(D^2 - D - 2) y = 0$

Auxiliary equation is f(m) = 0

$$\Rightarrow m^2 - m - 2 = 0 \Rightarrow m^2 - 2m + m - 2 \Rightarrow (m+1)(m-2) = 0$$

$$\Rightarrow m = 2, -1$$

Roots are real and different

General solution is $y = c_1 e^{2x} + c_2 e^{-x}$ where c_1 and c_2 are constants.

Example 11: Solve y'' + y' - 2y = 0. y(0) = 4, y'(0) = 1 [JNTU 2000S]

Solution : Given D.E. can be written in operator form as $(D^2 + D - 2) y = 0$... (1)

Auxiliary equation is f(m) = 0

$$\Rightarrow$$
 $m^2 + 2m - m - 2 = 0 \Rightarrow (m - 1)(m + 2) = 0$

$$\Rightarrow$$
 $m=1,-2$

.. Roots are real and different.

General solution is $y = c_1 e^x + c_2 e^{-2x}$ where c_1 and c_2 are constants ... (3)

Differentiating (1) w.r.t. to 'x'

Using the data y(0) = 4, y'(0) = 1 we get

$$c_1 + c_2 = 4$$
$$c_1 - 2c_2 = 1$$

Solving these equations, we get $c_1 = 3$ and $c_2 = 1$

The solution is $y = 3e^x - 2e^{-2x}$.

Example 12 : Solve 4y''' + 4y'' + y' = 0

[JNTU 2003]

Solution: Writing in operator form $(4D^3 + 4D^2 + D)y = 0$

A.E. is
$$4m^3 + 4m^2 + m = 0 \implies m(4m^2 + 4m + 1) = 0$$

$$\Rightarrow m(2m+1)^2=0$$