Track reconstruction optimization

for Triplet Track Trigger.

Pre-Selection Cuts

- 1. Transverse barrel cut : $|\phi_{13}| < \phi_{13_cut} \ rad$
- 2. Longitudinal barrel cut : $|z_{13}| < z_{13_cut} \ mm$
- 3. Transverse residual cut : $|d\phi_2| < d\phi_{2_cut} \ rad$
- 4. Longitudinal residual cut : $|dz_2| < dz_{2_const} * sin(\theta_{013})^{dz_{2_exp}} mm$

Final - Selection Cuts

- 1. Minimum momentum : $pt_{013} > 2GeV/c$
- 2. Longitudinal acceptance : $|\eta_{013}| < 2.5$
- 3. Luminous region : $|Z_{013}| < 100mm$
- 4. Momentum consistency:

$$\begin{split} |\kappa_{123} - \kappa_{013}|/\sigma_{\kappa} &< 5 * \sigma &\rightarrow \text{loose cut} \\ |\kappa_{123} - \kappa_{013}|/\sigma_{\kappa} &< 4 * \sigma &\rightarrow \text{medium cut} \\ |\kappa_{123} - \kappa_{013}|/\sigma_{\kappa} &< 3 * \sigma &\rightarrow \text{tight cut} \end{split}$$

$$|\kappa_{123} - \kappa_{013}|/\sigma_{\kappa} < 4 * \sigma \rightarrow \text{medium cut}$$

$$\kappa_{123} - \kappa_{013} | / \sigma_{\kappa} < 3 * \sigma \rightarrow \text{tight cut}$$

where, $\sigma \sim 1$ and σ_{κ} is defined below.

Pull distribution

$$Pull = \frac{\kappa_{123} - \kappa_{013}}{\sigma_{\kappa}} \tag{1}$$

$$\sigma_{\kappa}^{2} = \left(\frac{\sqrt{6} * \sigma_{t}}{d^{2}}\right)^{2} + \frac{t}{X_{0} * sin(\theta_{013})} * \left(\frac{13.6 MeV * \kappa_{013}}{0.3 * B * d}\right)^{2}$$
 (2)

substituting the uncertainty in the transverse direction, $\sigma_t = \frac{w}{\sqrt{12}}$

$$\sigma_{\kappa}^{2} = 0.5 * \left(\frac{w}{d^{2}}\right)^{2} + \frac{t}{X_{0} * sin(\theta_{013})} * \left(\frac{13.6 MeV * \kappa_{013}}{0.3 * B * d}\right)^{2}$$
(3)

where, κ_{013} & κ_{123} are in mm,

 $w = 40 * 10^{-3}$ mm is the pixel width,

d = 20/25/30/35/40 mm is the spacing between the layers in the triplet,

 $\frac{t}{X_0} = 0.015$ relative radiation length in the middle layer &

B=4T is the magnetic field

$$\begin{split} hit_{const} &= 0.5*(\frac{w}{d^2})^2 \\ \sigma_{MS}^2 &= \frac{t}{X_0*sin(\theta_{013})}*(\frac{13.6MeV*\kappa_{013}}{0.3*B*d})^2 \\ &= MS_{const}*\frac{\kappa_{013}^2}{sin(\theta_{013})} \end{split}$$

Cuts gap size	20mm	25mm	$30\mathrm{mm}$	$35 \mathrm{mm}$	$40\mathrm{mm}$
ϕ_{13_cut}	-	0.018	0.021	0.025	0.028
z_{13_cut}	-	320	380	430	480
$d\phi_{2_cut}$	-	3.0e-4	3.0e-4	3.0e-4	3.0e-4
dz_{2_exp}	-	-1.1	-1.13	-1.18	-1.3
dz_{2_const}	-	0.12	0.13	0.15	0.16
hit_{const}	-	2.048e-09	9.87654e-10	5.33111e-10	3.125e-10
MS_{const}	-	0.0030876	0.00214417	0.00157531	0.00120609