

Le cas d'usage

Détection automatique de personnes (braconniers) via un détection embarquée dans des drones, fonctionnant sur la ou les caméras du drone.

Pourquoi le choix de l'IA?

- Difficulté de la tâche pour des non experts
- Pénibilité, caractère répétitif de la tâche
- Scalabilité de la solution

Pourquoi le vecteur drone ?

- Facilité et coût de déploiement
- Zones difficiles d'accès
- Angle de vue
- Scalabilité

Fonctionnement envisagé

Fonctionnement envisagé

Fonctionnement envisagé: embarqué

- Le drone possèdera une raspberry 4
- Il doit pouvoir effectuer au minimum 1 détection par seconde.
- On veut louper le moins possible de braconniers.
- Détecter un seul braconnier s'il y en a plusieurs est suffisant

- Un opérateur pourra suivre jusqu'à 2 drones.
- Il peut prendre 10 secondes pour vérifier une image.
- Pour qu'il ne soit pas submergé par les fausses alertes, on souhaite moins de 5% de fausses alertes.

Les données

- Pas de données disponibles en conditions réelles.
- Objectif: prouver la faisabilité et une estimation de performance en milieu différent, mais en tâche, angle de vue et distance similaires.
- Deux jeux de données fournis labélisés.
- Vous n'êtes pas obligés d'utiliser toutes les données !

Les données: Okutama

- Ensemble de vidéos au format mp4
- 1 fichier de label video_name.txt par video.
- 1 line = 1 détection (bounding box), composée de 10+ colonnes, séparées par des espaces :

Colonne (dans l'ordre)	Description
Track ID	Id de la personne détectée (constant pour les détections d'une même personne dans différentes frames)
Xmin	X du coin haut gauche
ymin	Y du coin haut gauche
xmax	X du coin bas droit
ymax	Y du coin bas droit
frame	La frame dans laquelle la détection a lieu
lost	1 si la détection est en dehors de la partie visible dans la vidéo
occluded	1 si la personne est masquée dans la frame
generated	1 si la détection a été automatiquement interpolée (non manuelle)
label	« person »
(+) actions	Chaque colonne suivante est une action

Les données : aiskeye

- 1 dossier contenant un ensemble d'images par video (le nom indique l'ordre) : 0000001.jpg, 0000002.jpg,...
- 1 fichier sequence_name.txt par sequence d'images.
- 1 line = 1 détection (bounding box), composée de 10 colonnes, séparées par des virgules :

Colonne (dans l'ordre)	Description
frame	La frame dans laquelle la détection a lieu
Track ID	Id de la personne détectée (constant pour les détections d'une même personne dans différentes frames)
left	X du coin haut gauche
top	Y du coin haut gauche
W	Taille en x
h	Taille en y
score	1 si la détection est valide
labels	1 ou 2 si personne, 3 : vélo, au dessus: véhicule
truncation	1 si la personne est tronquée (partiellement masquée, en bord de frame,)
occlusion	1 si la personne est masquée dans la frame

Spécifités	Contrainte
Temps réduit pour le projet : 3 jours	Solution qui ne doit pas prendre une semaine à implémenter ni à entraîner.
« Peu » de data et peu de diversité dans les data	Probablement pas de quoi entraîner à partir de zéro les plus gros réseaux de neurones
Louper le moins possible de situation avec au moins un	Taux de fausse alerte <5%. Choisir une métrique
braconnier sans surcharger l'opérateur de fausses alertes	adéquate pour évaluer les performances et optimiser le modèle.
Solution embarquée à 1 fps sur raspberry 4.	Modèle « pas trop long » en temps de prédiction. 1fps sur raspberry 4 a peu prés égal à 15fps sur pc.

- Vous êtes libres de faire comme vous voulez!
- Conseil : se définir dés le départ des objectifs pour chaque jour, quitte à les adapter au fur et à mesure de l'avancement.

Exemple:

- **Jour 1**: Comprendre le sujet, recherche et choix de la ou les techniques à utiliser, exploration des données. Choix des métriques de performances et séparation train/valid et test à l'issue de l'exploration.
- **Jour 2** : Implémentation du modèle, premiers entrainements triviaux pour vérifier le fonctionnement.
- Jour 3: Entrainements longs, optimisation des paramètres, slides pendant les entrainements.

