Université Libre de Bruxelles - Département de Mathématique

Titulaire: Guillaume Dujardin

Assistants: Thibaut Grouy et Robson Nascimento

Exercices de Calcul Différentiel et Intégral 2 - 2016/2017

Séance 9 - Séries de Fourier

Exercice 1. Calculer les coefficients de Fourier de la fonction 2π -périodique f lorsque :

a) $\forall x \in]-\pi,\pi], \quad f(x) = |x|.$

b)
$$\forall x \in]-\pi,\pi], \quad f(x) = \begin{cases} 0 & \text{si } -\pi < x \le 0 \\ x & \text{si } 0 < x \le \pi \end{cases}$$
.

c) $\forall x \in \mathbb{R}, \quad f(x) = |\sin(x)|^3.$

d) $\forall x \in \mathbb{R}, \quad f(x) = \max(0, \sin(x)).$

Exercice 2. a) Existe-t-il une fonction $f : \mathbb{R} \to \mathbb{R}$ continue sur \mathbb{R} et 2π -périodique telle que les coefficients de Fourier soient $a_n(f) = 1/2^n$ pour tout $n \ge 0$ et $b_n(f) = 0$ pour tout $n \ge 1$?

b) À l'aide de l'exponentielle complexe, réécrire la somme de la série $\sum_{n=0}^{\infty} \frac{\cos nx}{2^n} - \frac{1}{2}$ et en déduire la valeur de l'intégrale

$$\int_0^\pi \frac{1}{5 - 4\cos t} dt.$$

Exercice 3. Soient a et b deux nombres réels tels que a < b, et $(a_n)_{n \ge 1}$ et $(b_n)_{n \ge 1}$ deux suites réelles. On suppose que la série trigonométrique de terme général $x \mapsto a_n \cos(nx) + b_n \sin(nx)$ converge uniformément sur [a, b]. Montrer que les suites $(a_n)_{n \ge 1}$ et $(b_n)_{n \ge 1}$ tendent vers 0.

Exercice 4. On fixe $a \in]-1,1[$ et l'on pose

$$\forall x \in \mathbb{R}, \qquad g(x) = \frac{1 - a\cos(x)}{1 - 2a\cos(x) + a^2}.$$

- a) Montrer que la fonction g est de classe \mathcal{C}^{∞} sur \mathbb{R} , et qu'elle est 2π -périodique.
- b) Montrer que la série de fonctions de terme général $u_n : x \mapsto a^n \cos(nx)$ est normalement convergente sur \mathbb{R} .
- c) Montrer que

$$\forall x \in \mathbb{R}, \qquad g(x) = \sum_{n=0}^{\infty} u_n(x).$$