

SOLVING RECURRENCE RELATIONS

Example: mergesort recurrence

Assignment Project Exam Help $T(n) \le 2T(n/2) + n$, T(1) = 0 https://tutorcs.com

- We can represent the quantities involved by a tree:
 - Each node is labeled with the size of the problem being solved
 - Each level is labeled with the number of steps (excluding recursive calls)
 - Total running time of the algorithm is the sum of all the steps in each level
- In the next slide, we will see this example as a tree

RECURSION TREE METHOD

ANOTHER EXAMPLE

$$T(n) \leq 2T(n/2) + n^2$$

Assignment Project Exam Help Without drawing a tree, let's do the same kind of analysis

- - Top level:

sn²/tutores.com

Second level:

WeChatizestutores
$$2(\frac{1}{2})^2 = \frac{1}{2}$$

• Third level:

$$4(\frac{n}{4})^2 = \frac{n^2}{4}$$

Levels are contributing terms in a geometric series with terms decreasing by half. What is the sum? $\mathit{O}(n^2)$

THREE MAIN CASES

For recurrences of form:

Contribution from levels can be: https://tutorcs.com

- Decreasing geometric series
- 2. Increasing geometric series
- 3. Equal for all levels

Solution: root level

Solution: leaf level

Multiply by number of levels

Neatly captured by Master Theorem

THREE MAIN CASES (CONTINUED)

Let us understand these cases a little more...

- Root level contributes n^c Assignment Project Exam Help
- Second level? https://tutorcs.com
 - ...There are a nodes, each contributing $(\frac{n}{b})^c$ cstutores
 - Total is $\frac{a}{b^c}n^c$
- $\frac{a}{b^c}$ is the ratio between successive levels
- The 3 cases correspond to this ratio being < 1, > 1, = 1 respectively.

NUMBER OF LEAVES

- If solution is contribution from leaf level:
 - Each leaf contributes 1 (if problem is small enough then we can solve it in constant time)
 Assignment Project Exam Help
 - Number of leaves?

https://tutorcs.com

- Number of levels: $\log_b n$
- Number of nodes: multiplie to that crostal torcs
- Number of leaves: $a^{\log_b n} = n^{\log_b a}$
- ullet Total contribution of leaves is $n^{\log_b a}$

MASTER THEOREM

• Theorem: the recurrence $T(n) \leq aT\left(\frac{n}{b}\right) + n^c$ has solution

Assignment Project Exam Help
$$\begin{array}{ccc}
O(n^c) & \text{if } a < b^c \\
T(h) \text{typs:} & \text{typesagom}_{\text{if } a > b^c} \\
We Chat: cstutorcs & \text{if } a = b^c
\end{array}$$

Example...

mergesort recurrence:
$$a=2, b=2, c=1$$
: $a=b^c$
Solution: $T(n)=O(n\log n)$

MASTER THEOREM (CONTINUED)

This is a very useful theorem for understanding the running time of standard divide and conquer algorithms

Assignment Project Exam Help
We will see more examples in the next segment

https://tutorcs.com

WeChat: cstutorcs

