Monash University Faculty of Information Technology

Lecture 5 Regular Expressions

Slides by David Albrecht (2011), modified by Graham Farr (2013).

FIT2014 Theory of Computation

Overview

- Some Problems
- Applications of Regular Expressions
- Simple Languages
- Regular Expressions
- Regular Languages

Some Problems

- Find all the files which contain old subject course codes.
- Find all the e-mail addresses in a set of mail
- Change the way comments in C programs are formatted in your web pages.
- Using web server access files, record how many times each page is visited, and how many times each link is used.

Applications of Regular Expressions

- Useful way to describe simple patterns.
- Used in several programs:
 - Editors: vi, emacs
 - Filters: egrep, sed, gawk
 - Programming languages: JFlex, CUP, Perl

Filters

egrep

- A program which searches a file for a pattern described by a regular expression.
- sed
- $^{\circ}$ A program which enables stream editing of files.
- awk, nawk, gawk
- Programming languages which enable text manipulation.

Programming Languages

- JFlex, flex, lex
 - $^{\circ}$ Languages used to generate lexical analysers.
- CUP, bison, yacc
 - · Languages used to generate compilers.
- Perl
 - A powerful scripting language, developed in the 1980s by Larry Wall.

Regular Expressions for Small Languages

- Language φ with no words:
 - ф
- Language ε consisting only of the empty word:
- Language $\{w\}$ consisting only of the single word w:
- E.g.: the language {abbab} consisting only of the single word abbab:

abbab

Alternatives

Alternatives are indicated by \cup , e.g. 1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9

is a regular expression for:

{1, 2, 3, 4, 5, 6, 7, 8, 9}

Groupings

Groupings are indicated by (), e.g.

 $(ab \cup ba)(e \cup g)$

is a regular expression for:

{abe, abg, bae, bag}

This uses the principle that:

if

- R_1 is a regular expression for language L_1 , and
- R_2 is a regular expression for language L_2 , then the concatenation R_1R_2 is a regular expression for the language

 $\{x_1x_2 : x_1 \text{ is in } L_1 \text{ and } x_2 \text{ is in } L_2\}$

Finite Languages

- consist of finite number of words.
- E.g.

{abaaba, abbbba, abbaba}

- Regular Expression:
 - abaaba ∪ abbbba ∪ abbaba
- alternatively,

 $ab(aa \cup bb \cup ba)ba$

alternatively,

 $ab(a \cup b)aba \cup abb(b \cup a)ba$

Kleene Star

- Zero or more times is indicated by *
- For example:
- a* represents

 $\{\varepsilon, a, aa, aaa, aaaa, ...\}$

(ab)* represents

{ε, ab, abab, ababab, ...}

Some infinite languages

• Strings which start with **a** and whose remaining letters (if any) are **b**.

{a, ab, abb, abbb, abbbb, ...}

Regular Expression

ab*

Zero or more

• Note: **ab*** ≠ **(ab)***

Definition

- 1. ε and ϕ are regular expressions
- 2. All letters in the alphabet are regular expressions.
- 3. If **R** and **S** are regular expressions, then so are:
 - (i) **(R)**
 - (ii) RS
 - (iii) R∪S
 - (iv) **R***

This is an example of an inductive definition, also known as a recursive definition.

Regular Language

- A language which can be described by a Regular Expression is called a Regular Language.
- If a word belongs to the language described by a regular expression, then we say it is matched by the regular expression.

Example: EVEN-EVEN

All the strings that contain an even number of **a**'s and an even number of **b**'s.

 $\{\, arepsilon\, ,\, \mathsf{aa},\, \mathsf{bb},\, \mathsf{aaaa},\, \mathsf{aabb},\, \mathsf{abab},\, \mathsf{abba},\, \ldots \}$

Regular Expression
(aa ∪ bb ∪ (ab ∪ ba)(aa ∪ bb)*(ab ∪ ba))*

Things to think about ...

Is the set of all English words (in some standard dictionary) a regular language? Is DOUBLEWORD (see Lecture 1) a regular language?

Is PALINDROME a regular language?
Is the set of all grammatical English sentences a regular language?

How would you determine, for a given string and regular expression, whether the string matches the regular expression?

Example: Floating Point Number

A floating point number has one or more digits, which may begin with a minus sign (-), and which may contain a decimal point.

E.g.

0 1.2 -3 -4.675 002 023.50

Sequence of Digits

- One Digit
- 0 U 1 U 2 U 3 U 4 U 5 U 6 U 7 U 8 U 9
- Two Digits
- (0 U1U2U3U4U5U6U7U8U9)(0U1U2 U3U4U5U6U7U8U9)
- Three Digits
- (0 U1 U2 Ū3 U4 U5 U6 U7 U8 U9)(0 U1 U2 U3 U4 U5 U6 U7 U8 U9) (0 U1 U2 U3 U4 U5 U6 U7 U8 U9)
- One or more Digits
- (0 U1 U2 U3 U4 U5 U6 U7 U8 U9)(0 U1 U2 U3 U4 U5 U6 U7 U8 U9)*

Sequence of Digits

- Digit
- $D = (0 \cup 1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9)$
- Two Digits

DD or D²

- Three Digits
- DDD or D3
- One or more Digits

DD*

Numbers

- One Digit
 - $D = (0 \cup 1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9)$
- Positive Integers
 - N = DD* e.g. 1 123 1209 002 020
- Integers

 $Z = N \cup (-N)$

Floating Point Number

 $\mathsf{F} = \mathsf{Z} \cup (\mathsf{Z}.) \cup (.\mathsf{N}) \cup (.\mathsf{N}) \cup (\mathsf{Z}.\mathsf{N})$

Other Notations

R | S means R U S

[0-9] means

0 U 1 U 2 U 3 U 4 U 5 U 6 U 7 U 8 U 9

[a-z] means any letter a to z

R+ means RR*

R? means $\varepsilon \cup R$

Additional Reading

Jeffrey E.F. Friedl, "Mastering Regular Expressions: Powerful Techniques for Perl and Other Tools", O' Reilly, 1997.

Revision

- Regular Expressions
 Definition.
- How to use them to define languages
- read Sipser, section 1.3, pp 63-66

Preparation

 Read Sipser, , "Introduction to the Theory of Computation", Chapter 1.