Some useful facts about divisibility and modulo arithmetic

Divisibility

- D1. If $a \mid b$ and $b \mid c$, then $a \mid c$.
- D2. If $a \mid b$ and $a \mid c$, then $a \mid sb + tc$ for all s and t.
- D3. For all $c \neq 0$, $a \mid b$ if and only if $ca \mid cb$.

Greatest common divisor

- G1. $gcd(ka, kb) = k \cdot gcd(a, b)$ for all k > 0.
- G2. If gcd(a, b) = 1 and gcd(a, c) = 1, then gcd(a, bc) = 1.
- G3. If $a \mid bc$ and gcd(a, b) = 1, then $a \mid c$.
- G4. If $m \mid a$ and $m \mid b$, then $m \mid \gcd(a, b)$.

Modulo arithmetic

- M1. $a \equiv a \pmod{n}$
- M2. $a \equiv b \pmod{n}$ implies $b \equiv a \pmod{n}$
- M3. $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ implies $a \equiv c \pmod{n}$
- M4. $a \equiv b \pmod{n}$ implies $a + c \equiv b + c \pmod{n}$
- M5. $a \equiv b \pmod{n}$ implies $ac \equiv bc \pmod{n}$
- M6. $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ imply $a + c \equiv b + d \pmod{n}$
- M7. $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ imply $ac \equiv bd \pmod{n}$

Warning: it is *not* the case that $ak \equiv bk \pmod{n}$ implies $a \equiv b \pmod{n}$ in general. It is true however if gcd(n,k) = 1; in particular, if n is prime and k is not a multiple of n.