ME 460/660, Mechanical Vibration

Exam 2, Fall 2001

Closed book, closed notes. Use one $8\frac{1}{2} \times 11$ formula sheet, front and back. Test books will be provided.

Problems are 10 points each. Problem 4 is required for graduate students, bonus for undergraduates

1. Derive the equation of motion for the following system where $y(t) = Y \sin(\omega_b t)$:

2. Find the response of the the system governed by the following equation of motion. Sketch its nondimensionalized magnitude and phase versus r for multiple values of ζ , and label the values in simplest terms at r = 0, r = 1, and $r = \infty$.

$$m\ddot{x} + c\dot{x} + kx = c\dot{y}$$

where $y(t) = Y \cos(\omega_b t)$.

- 3. A Coulomb damped SDOF system is released from rest with a displacement of 10 cm. If m = 5 kg, k = 1000 N/m, determine the ensuing motion for
 - (a) $\mu_s = \mu_k = .1$,
 - (b) $\mu_s = \mu_k = .3$
- 4. Find the natural frequency of a shaft (torsion) if it is clamped at x=0 and if a disk with $J_0=10~{\rm kg/m^2}$ is attached to the other end of the shaft (x=l). Assume l=0.5 m, $J=5~{\rm m}^4$, $G=2.5\times 10^9~{\rm Pa}$, $\rho=2700~{\rm kg/m^3}$.