

Agrupamento (clustering) - Discussão Geral

Tarefa de aprendizado não-supervisionado:

 Exemplos não estão rotulados – não existe um atributo especial conhecido como "atributo meta"

Cliente 1		renda		dívida		classe	/	C(onhecida
XXX		50		10		bom			
				-					
exemplo	tempo	t	temperatura	umidade	vento	10	lasse		•

HAC

IA

3

Agrupamento (clustering) - Discussão Geral

 Objetivo: agrupar objetos em *clusters* (grupos) de modo que objetos pertencentes a um mesmo *cluster* são mais similares entre si de acordo com alguma medida de similaridade pré-definida, enquanto que objetos pertencentes a clusters diferentes têm uma similaridade menor.

HAC

4

Encontrar grupos de documentos sobre um mesmo assunto

Descobrir funções de genes encontrando grupos de genes com características semelhantes

HAC

IA2022

5

Agrupamento (clustering) - Aplicações

Encontrar grupos de usuários (visitantes) de um site e identificar suas características

Encontrar sub-populações de consumidores ou padrões de consumo por região

HAC

IA202

6

Agrupamento (clustering) - Discussão Geral

• Representação Gráfica – gráfico de dispersão

HAC IA2022

7

Agrupamento (clustering) - Discussão Geral

• Representação Gráfica - gráfico de dispersão

HAC

Agrupamento (clustering) - Discussão Geral

- Questões fundamentais para agrupamento:
 - O que é similaridade?
 - Como escolher uma medida de similaridade?
 - Qual o número ideal de grupos?
 - Como escolher um algoritmo?
 - Como validar e interpretar o resultado de um agrupamento?

HAC

IA2022

9

Questões fundamentais para o agrupamento

• O que é similaridade?

HAC

IA2022

10

- Como escolher uma medida de similaridade?
- Medidas de proximidade:
- São medidas de similaridade ou de dissimilaridade entre objetos
- Os algoritmos de agrupamento podem utilizar medidas de similaridade ou medidas de dissimilaridade
- Devem ser escolhidas de acordo com:
 - o tipo dos atributos envolvidos (contínuo, categórico)
 - a esparsidade dos dados

HAC

IA2022

11

Questões fundamentais para o agrupamento

- Como escolher uma medida de proximidade?
 - São medidas de dissimilaridade ou similaridade

Entre objetos com atributos contínuos:

Medidas de distância (dissimilaridade)

Medidas de correlação (similaridade)

Correlação de Pearson

Entre objetos com atributos discretos:

Coeficiente de casamento simples (CCS) (similaridade)

Coeficiente de Jaccard(similaridade)

(São muitas as medidas definidas na literatura)

HAC

A2022

Medida de cosseno

12

Medidas de dissimilaridade

Medidas de distância

- atributos dos exemplos são considerados como dimensões de um espaço multidimensional
- cada exemplo corresponde a um ponto no espaço
- similaridade entre dois pontos é inversamente proporcional a distância entre eles

HAC

IA2022

13

13

Medidas de dissimilaridade

- Medidas de distância
 - Distância Euclidiana

$$d(x,y) = \sum_{i=1}^{n} (x_i - y_i)^2$$

	potência	peso	aceleração	consumo
E1	130	3504	12	18
E2	165	3693	11,5	15
E3	150	3436	11	18

$$d(\text{E1, E2}) = \operatorname{sqrt}((130-165)^2 + (3504-3693)^2 + (12-11,5)^2 + (18-15)^2)$$

Sim(E1, E2) = 1 - d(E1, E2)

HAC

IA2022

Medidas de dissimilaridade

- Similaridade para variáveis nominais
 - Transformar cada valor do atributo nominal em uma variável binária fictícia.

	tempo	temperatura	umidade	vento
E1	sol	amena	alta	forte
E2	nublado	frio	média	forte
E3	sol	frio	alta	fraco

HAC

15

Questões fundamentais para o agrupamento

- Qual o número ideal de grupos?
 - A noção de grupo não é determinística

• Para um mesmo conjunto de dados, podemos encontrar números diferentes

de grupos

Em quantos grupos esses dados podem ser separados?

HAC

IA202

- Qual o número ideal de grupos?
 - A noção de grupo não é determinística

• Para um mesmo conjunto de dados, podemos encontrar números

diferentes de grupos

Em quantos grupos esses dados podem ser separados?

HAC

IA2022

17

Questões fundamentais para o agrupamento

- Qual o número ideal de grupos?
 - A noção de grupo não é determinística

• Para um mesmo conjunto de dados, podemos encontrar números

diferentes de grupos

Em quantos grupos esses dados podem ser separados?

enput variable

HAC

IA2022

- Qual o número ideal de grupos?
 - A noção de grupo não é determinística
 - Para um mesmo conjunto de dados, podemos encontrar números

diferentes de grupos

Em quantos grupos esses dados podem ser separados?

HAC

IA2022

19

Questões fundamentais para o agrupamento

- Qual o número ideal de grupos?
- O número de grupos encontrados, muitas vezes deve ser definido antes da aplicação do algoritmo de agrupamento (é um parâmetro do algoritmo).
- A forma do grupo está relacionada com a medida de similaridadeou dissimilaridade escolhida.
- O melhor número de grupos de um agrupamento em geral é encontrado por meio de experimentos

HAC

IA2022

• Como escolher um algoritmo?

21

HAC

Questões fundamentais para o agrupamento

- Como validar e interpretar o resultado de um agrupamento?
- Todos os algoritmos de agrupamento, quando aplicados a dados, vão produzir grupos, independente dos dados possuírem grupos ou não.

22

- Como validar e interpretar o resultado de um agrupamento?
 - Uma estrutura é considerada válida se pode-se afirmar que não foi obtida por acaso ou por meio de artifícios do algoritmo;
 - Na interpretação dos grupos é feita a rotulação dos clusters, definindo sua natureza por meio da análise de seus objetos típicos;
 - Na interpretação, o papel do especialista é fundamental.

HAC

IA2022

23

Tipos de agrupamento

 Agrupamento particional – divide os dados em grupos sem sobreposição, de tal forma que cada dado pertence a apenas um grupo.

 Agrupamento hierárquico – divide os dados em grupos aninhados, que podem ser representados em uma estrutura de árvore chamada dendrograma

HAC

IA2022

25

Agrupamento hierárquico

• Seleção de um agrupamento

O corte do dendrograma em um determinado nível define um agrupamento em particular

26

HAC

Agrupamento particional

• Dado um conjunto de dados finito X o problema de agrupamento em X consiste em encontrar vários centros de grupos (clusters) que possam caracterizar adequadamente categorias relevantes de X.

27

HAC

Agrupamento particional

- Gera uma única partição nos dados.
- Vantagem:
 - mais eficiente para conjunto de dados grande.
- Desvantagem:
 - é necessário definir previamente o número de grupos desejável.
- Gera grupos pela otimização de uma função critério (objetivo).

HAC

IA2022

28

Agrupamento particional de erro quadrático

- A função critério mais utilizada em algoritmos de agrupamento particionais é o erro quadrático
- O erro quadrático de um agrupamento C com k clusters de um conjunto de padrões E é:

$$err2(E,C) = \sum_{j=1}^{k} \sum_{i=1}^{n_j} ||x_i^{(j)} - c_j||^2$$

onde x_i^(j) é o i-ésimo exemplo pertencente ao j-ésimo cluster
 e c_i é o centroide do j-ésimo cluster

HAC

20

29

Agrupamento k-means (k-médias)

IA2022

- Mais simples e mais conhecido algoritmo de erro quadrático.
- É fácil de implementar e sua complexidade é O(n) com n sendo o número de exemplos;
- O usuário define previamente o número de grupos *k*;
- Na versão original e na maioria das aplicações usa distância euclidiana quadrática para calcular similaridade entre os elementos;
- Problema: é sensível à partição inicial e pode convergir para um mínimo local do valor da função critério se a partição inicial não for escolhida apropriadamente.

HAC

IA2022

Agrupamento k-means (k-médias)

Parâmetros de entrada:

- Conjunto de N exemplos não rotulados x_i , i=1,...,N
- k número de grupos
- dist medida de distância

Parâmetros de saída:

k vetores que representam centroides de grupos

HAC

IA2022

31

Agrupamento k-means (k-médias)

Escolha aleatoriamente um conjunto de vetores distintos para representar os centroides c_j , j = 1, ..., k

Repeat

```
For i=1 to N
Calcule a distância dist(\mathbf{x}_{i}, \mathbf{c}_{j}) de x_{i} a cada centroide \mathbf{c}_{j}, i=1,...,k
Associe x_{i} ao centroide \mathbf{c}_{j} que minimiza dist(\mathbf{x}_{i}, \mathbf{c}_{j})
End {For}
```

For j=1 to k

Atualize os centroides c_j calculando a média dos exemplos que pertencem ao grupo com centro c_j End $\{For\}$

Until nenhuma mudança nos c_i ocorra entre duas iterações sucessivas

HAC

IA2022

Considere os exemplos:

$$X_1 = [2, 5]$$

$$\mathbf{x}_2 = [6, 4]$$

$$\mathbf{x}_3 = [5, 3]$$

$$\mathbf{x}_4 = [2, 2]$$

$$\mathbf{x}_5 = [1, 4]$$

$$\mathbf{x}_6 = [5, 2]$$

$$\mathbf{x}_7 = [3, 3]$$

$$\mathbf{x}_8 = [2, 3]$$

$$\mathbf{x}_{0} = [4, 5]$$

$$\mathbf{x}_{10} = [4, 6]$$

$$\mathbf{x}_{11} = [5, 6]$$

n

A distância entre exemplos é calculada com a distância euclidiana

33

HAC

IA2022

33

Agrupamento k-means - Exemplo

- Aplicar o algoritmo k-means para k = 3
 - Gerar aleatoriamente o vetor de centróides inicial:

$$\Theta = \{\mathbf{x}_1, \, \mathbf{x}_2, \, \mathbf{x}_6\}$$

HAC

IA2022

• Gerar aleatoriamente o vetor de centróides inicial:

$$\Theta = \{\mathbf{x}_1, \, \mathbf{x}_2, \, \mathbf{x}_6\}$$

• Calcular a distância de cada exemplo para cada centróide:

	c1	c2	c3
x1	0	4,1	4,2
x2	4,1	0,0	2,2
х3	3,6	1,4	1,0
х4	3,0	4,5	3,0
х5	1,4	5,0	4,5
х6	4,2	2,2	
х7	2,2	3,2	2,2
х8	2,0	4,1	3,2
х9	2,0	2,2	3,2
x10	2,2	2,8	4,1
x11	3,2	2,2	4,0

HAC

35

Agrupamento k-means - Exemplo

• Atribuir cada exemplo a um cluster, pela menor distância ao centróide:

	c1	c2	с3	grupo
x1	0	4,1	4,2	c1
x2	4,1	0,0	2,2	c2
х3	3,6	1,4	1,0	c3
х4	3,0	4,5	3,0	c1
х5	1,4	5,0	4,5	c1
х6	4,2	2,2	0,0	c3
х7	2,2	3,2	2,2	c1
х8	2,0	4,1	3,2	c1
х9	2,0	2,2	3,2	c1
x10	2,2	2,8	4,1	c1
x11	3,2	2,2	4,0	c2

HAC

IA2022

• Recalcular os centróides:

A	
ハモロコ	
Atual	١.
	0,0,0

c1	2	5
c2	6	4
c3	5	2

Novo:

11010.					
c1	2,6	4			
c2	5,5	5			
с3	5	2,5			

HAC

IA2022

37

Agrupamento k-means - Exemplo

- Calcular a distância de cada exemplo para cada centróide:
- Atribuir cada exemplo a um cluster, pela menor distância ao centróide:

	c1	c2	c3	
x1	1,2	3,5	3,9	c1
x2	3,4	1,1	1,8	c2
х3	2,6	2,1	0,5	c3
х4	2,1	4,6	3,0	c1
х5	1,6	4,6	4,3	c1
х6	3,1	3,0	0,5	с3
х7	1,1	3,2	2,1	c1
х8	1,2	4,0	3,0	c1
х9	1,7	1,5	2,7	c2
x10	2,4	1,8	3,6	c2
x11	3,1	1,1	3,5	c2

HAC

IA2022

• Atribuir cada exemplo a um cluster, pela menor distância ao centróide:

	c1	c2	c3	
x1	1,2	3,5	3,9	c1
x2	3,4	1,1	1,8	c2
х3	2,6	2,1	0,5	c3
х4	2,1	4,6	3,0	c1
х5	1,6	4,6	4,3	c1
х6	3,1	3,0	0,5	с3
х7	1,1	3,2	2,1	c1
x8	1,2	4,0	3,0	c1
х9	1,7	1,5	2,7	c2
x10	2,4	1,8	3,6	c2
x11	3,1	1,1	3,5	c2

HAC

39

IA2022

Agrupamento k-means - Exemplo

• Recalcular os centróides:

Atual	
ntuai	

c1	2,6	4
c2	5,5	5
c3	5	2,5

Novo:

c1	2,0	3,4
c2	4,8	5,3
с3	5	2,5

HAC

IA2022

40

- Calcular a distância de cada exemplo para cada centróide:
- Atribuir cada exemplo a um cluster, pela menor distância ao centróide:

	c1	c2	c3	
x1	1,6	2,8	3,9	c1
x2	4,0	1,77	1,80	c2
х3	3,0	2,3	0,5	с3
х4	1,4	4,3	3,0	c1
х5	1,2	4,0	4,3	c1
х6	3,3	3,3	0,5	с3
х7	1,1	2,9	2,1	c1
х8	0,4	3,6	3,0	c1
х9	2,6	0,9	2,7	c2
x10	3,3	1,1	3,6	c2
x11	4,0	0,7	3,5	c2

HAC

IA2022

41

Agrupamento k-means - Exemplo

• Atribuir cada exemplo a um cluster, pela menor distância ao centróide:

	c1	c2	с3	
x1	1,6	2,8	3,9	c1
x2	4,0	1,77	1,80	c2
х3	3,0	2,3	0,5	с3
х4	1,4	4,3	3,0	c1
х5	1,2	4,0	4,3	c1
х6	3,3	3,3	0,5	с3
х7	1,1	2,9	2,1	c1
х8	0,4	3,6	3,0	c1
х9	2,6	0,9	2,7	c2
x10	3,3	1,1	3,6	c2
x11	4,0	0,7	3,5	c2

HAC

IA2022

