Aprendizado Profundo 1

Conexões Residuais

Professor: Lucas Silveira Kupssinskü

Contexto

- Até agora vimos que:
 - MLPs são bons para resolver problemas de regressão e classificação
 - Camadas convolucionais são boas para trabalhar com imagens
 - Aumentar a profundidade da rede melhora os resultados
 - Gradiente que se dissipa e gradiente explosivo são problemas
 - Principalmente em redes neurais mais profundas

Contexto

- O que vamos ver agora
 - Modificações aditivas possibilitam treinar redes mais profundas
 - Isso: $h_2 = h_1 + f_2[h_1, \theta_2], h_1 = x + f_1[x, \theta_1]$
 - Ao invés de: $h_2 = f_2[f_1[x, \theta_1], \theta_2]$
 - Esses "caminhos alternativos" recebem o nome de conexões residuais ou *skip* connections
 - Introduzimos batch norm para evitar gradiente explosivo

- Tanto as CNNs quanto os MLPs que vimos até agora processam sequencialmente cada uma das suas camadas
- $h_1 = f_1[x, \theta_1]$
- $h_2 = f_2[h_1, \theta_2]$
- $h_3 = f_3[h_2, \theta_3]$
- •
- $h_n = f_n[h_{n-1}, \theta_n]$

- Uma forma alternativa de pensar é escrever a mesma expressão como uma composição de funções
- $h_1 = f_1[x, \theta_1]$
- $h_n = f_n[...f_3[f_2[f_1[x,\theta_1],\theta_2],\theta_3],\theta_n]$

- AlexNet
 - 8 camadas
 - Acurácia 84.7%
- VGG-16
 - 16 camadas
 - Acurácia 92.7%
- Por que n\u00e3o aumentar a profundidade?
 - Pois a acurácia começa a piorar...

- Esse fenômeno não é completamente compreendido/explicado
- A hipótese mais aceita é a do "gradiente quebrado" (shattered gradient)
- Pequenas mudanças nos pesos causam mudanças erráticas nas camadas seguintes
 - A diferença do passo "infinitesimal" das equações para o passo utilizado fazem mais diferença

$$\bullet \frac{\partial f_4}{\partial f_1} = \frac{\partial f_4}{\partial f_3} \frac{\partial f_3}{\partial f_2} \frac{\partial f_2}{\partial f_1}$$

• Repare que uma mudança em f_1 altera todas as funções subsequentes

BALDUZZI, David et al. The shattered gradients problem: If resnets are the answer, then what is the question? In: International Conference on Machine Learning. PMLR, 2017. p. 342-350.

Conexões Residuais (Residual ou Skip Connections)

- Criamos ramos no grafo computacional
 - Adicionamos uma mudança a entrada
 - $h_4 = h_3 + f_4[h_3, \theta_4]$
 - $h_3 = h_2 + f_3[h_2, \theta_3]$
 - $h_2 = h_1 + f_2[h_1, \theta_2]$
 - $h_1 = x + f_1[x, \theta_1]$
 - O temo que está sendo adicionado é a conexão residual
 - Repare que agora temos a restrição da saída ter o mesmo tamanho da entrada
 - Cada mudança aditiva que realizamos é conhecida como residual block ou residual layer

Conexões Residuais (Residual ou Skip Connections)

Abrindo as expressões anteriores temos:

•
$$y = x + f_1[x]$$

 $+f_2[x + f_1[x]]$
 $+f_3[x + f_1[x] + f_2[x + f_1[x]]]$
 $+f_4[x + f_1[x] + f_2[x + f_1[x]] + f_3[x + f_1[x] + f_2[x + f_1[x]]]$

Quantos caminhos temos desde a entrada até a saída?

$$\frac{\partial y}{\partial f_1} = \frac{\partial f_1}{\partial f_1} + \cdots$$

$$\frac{\partial y}{\partial f_1} = I + \cdots$$

$$\frac{\partial y}{\partial f_1} = I + \frac{\partial f_2}{\partial f_1} + \cdots$$

$$\frac{\partial y}{\partial f_1} = I + \frac{\partial f_2}{\partial f_1} + \left(\frac{\partial f_3}{\partial f_1} + \frac{\partial f_3}{\partial f_2} \frac{\partial f_2}{\partial f_1}\right) + \cdots$$

$$\frac{\partial y}{\partial f_1} = I + \frac{\partial f_2}{\partial f_1} + \left(\frac{\partial f_3}{\partial f_1} + \frac{\partial f_3}{\partial f_2} \frac{\partial f_2}{\partial f_1}\right) + \left(\frac{\partial f_4}{\partial f_1} + \frac{\partial f_4}{\partial f_2} \frac{\partial f_2}{\partial f_1}\right) + \left(\frac{\partial f_4}{\partial f_2} \frac{\partial f_2}{\partial f_2}\right) + \left(\frac{\partial f_4}{\partial f_2}\right) + \left(\frac{\partial f_4}{\partial f_2}\right) + \left(\frac{\partial f_4}{\partial f_2}\right) + \left(\frac{$$

- Até agora parece que $f_i[x]$ poderia ser uma camada qualquer
 - Tecnicamente é verdade, mas na prática podemos fazer algumas mudanças para obter um resultado melhor
- Abaixo uma ilustração do que seria uma conexão residual em uma camada típica
 - Repare que nessa configuração a conexão residual só consegue aumentar o valor da representação recebida como entrada, nunca diminuir

- Inverter a ordem da ativação e da transformação linear possibilita que a representação sofra adições e subtrações
 - Porém agora temos um outro problema, se a entrada chegar toda negativa vamos "matar" a propagação forward

- Inverter a ordem da ativação e da transformação linear possibilita que a representação sofra adições e subtrações
 - Porém agora temos um outro problema, se a entrada chegar toda negativa vamos "matar" a propagação forward
 - Solução: Começamos a rede com uma transformação linear antes dos blocos residuais

 Podemos adicionar mais de uma transformação no mesmo bloco residual

Aumentando a profundidade da rede

- Ao adicionar conexões residuais conseguimos dobrar a profundidade das redes convolucionais e ainda assim manter o aumento de performance
 - Mas ainda existem fenômenos que nos impedem de ir mais profundamente
 - Para compreender isso, precisamos estudar a variância das ativações em redes com skip connections

 A inicialização He garante que a variância de uma variável aleatória após uma transformação linear + ReLU não será modificada

- A inicialização He garante que a variância de uma variável aleatória após uma transformação linear + ReLU não será modificada
 - Porém agora temos a skip connection
 - Como a variância da saída se comporta?

• Back to basics ©

$$Var[X] = E[(X - E[X])^{2}]$$

$$Var[X + Y] = E[((X + Y) - E[X + Y])^{2}]$$

• Back to basics [⊙]

$$Var[X] = E[(X - E[X])^{2}]$$

$$Var[X + Y] = E[((X + Y) - E[X + Y])^{2}]$$

$$Var[X + Y] = E[(X + Y - E[X] - E[Y])^{2}]$$

$$Var[X + Y] = E[((X - E[X]) + (Y - E[Y]))^{2}]$$

$$Var[X + Y] = E[((X - E[X])^{2} + 2((X - E[X])((Y - E[Y]) + ((Y - E[Y])^{2}))^{2}]$$

$$Var[X + Y] = E[((X - E[X])^{2}) + 2E[(((X - E[X])((Y - E[Y])) + ((((Y - E[Y]))^{2}))^{2}]$$

$$Var[X + Y] = Var[X] + 2Cov((X, Y) + Var[Y]$$

• Back to basics ©

$$Var[X + Y] = Var[X] + 2Cov(X,Y) + Var[Y]$$

$$Var[X + Y] = Var[X] + Var[Y]$$

A variância vai dobrar depois de cada bloco residual

$$2\sigma_{in}^2 = \sigma_{out}^2$$

- Em uma rede com muitas camadas rapidamente podemos exceder a precisão de ponto flutuante
 - Solução é usar batch norm

- É uma normalização aplicada a ativações em camadas ocultas da rede
 - Desloca e reescala média e desvio padrão dos batchs para valores aprendidos durante o treinamento
- Necessita que utilizemos batch size > 1

- Como funciona:
- Computar a média e o desvio padrão empíricos do mini batch atual

•
$$\mu_h = \frac{1}{|B|} \sum_{i \in B} h_i$$

•
$$\sigma_h = \sqrt{\frac{1}{|B|} \sum_{i \in B} (h_i - \mu_h)^2}$$

• Repare que todas as quantidades aqui são escalares

- Como funciona:
- Padronizamos as ativações para ter media 0 e desvio padrão igual a 1

•
$$h_i \leftarrow \frac{h_i - \mu_h}{\sigma_h + \epsilon}$$
, $\forall i \in B$

- Por último reescalamos as ativações por γ e deslocamos por β
 - $h_i \leftarrow \gamma h_i + \beta, \forall i \in B$

- Existe um γ , um β , um μ e um σ por unidade oculta em uma camada densa
 - 4 parâmetros por unidade oculta, dois deles são treináveis

- Como funciona:
- Importante:
 - existe um γ , um β , um μ e um σ por unidade oculta em uma camada densa
 - 4 parâmetros por unidade oculta
 - existe um γ , um β , um μ e um σ por canal em uma camada convolucional
 - Apenas γ e δ são parâmetros aprendidos, μ e σ são calculados
 - γ e δ são inicializados com 1 e 0 respectivamente

Batch Norm - Exemplo

• Vamos começar com um *mini batch*

- Vamos começar com um *mini batch*
 - A media μ e o desvio padrão de cada feature do mini batch σ

- Vamos começar com um *mini batch*
 - μ e σ são usados para padronizar os dados do *minibatch* $h=rac{n-\mu}{\sigma+\epsilon}$

- Existem dois parâmetros treináveis na camada de batch norm que são:
 - a nova média β e o novo desvio padrão γ

• Os dados padronizados são atualizados conforme a media e desvio padrão aprendidos $h=h\gamma+\beta$

- Isso funciona bem em treinamento, quando temos *mini batchs*
 - Em inferência (sem mini batchs), precisamos ter uma média e um desvio padrão para atualizar os dados

- Mantemos uma média móvel das médias e dos desvios padrão calculados durante o treino
 - Mais precisamente seria uma média exponencial móvel (EMA)

$$\mu_{mov} = \alpha \mu_{mov} + (1 - \alpha)\mu$$
 e $\sigma_{mov} = \alpha \sigma_{mov} + (1 - \alpha)\sigma$

Batch Norm

• Com *Batch Norm* ativo, conseguimos treinar redes muito mais profundas sem explosão nem dissipação de gradiente

Batch Norm

- Torna a rede invariante a mudanças de escala nos parâmetros
 - Se os parâmetros dobrarem de magnitude as ativações também dobram e a variância também dobra (a primeira etapa do batch norm compensa esse aumento)
- Forward mais estável
- Taxas de Aprendizado (η) mais elevadas
- Regulariza o processo de treinamento

Skip Connections + Batch Norm

- Usando skip connections e batch norm temos redes convolucionais com aplicações em praticamente todas as áreas de visão computacional
 - Permitem treinamento de redes com ~1000 camadas ocultas
- Ainda hoje são o padrão para a maioria das atividades de visão computacional, apesar do recente sucesso de transformers
- Vamos as arquiteturas

ResNet

- Redes convolucionais constituídas de blocos residuais
 - Cada bloco foi projetado por "tentativa e erro"
 - Apresenta resultados bons, mas tem um elevado número de parâmetros

ResNet

- Bloco residual com gargalo
 - Bottleneck Residual Block
- Foi introduzido para diminuir o número de parâmetros treináveis
 - A primeira conv 1x1 reduz o número de canais
 - A segunda conv 1x1 aumenta o número de canais para possibilitar a adição no final do bloco

ResNet-200

- 4.8% de erro no ImageNet
- Números entre parênteses representam a quantidade de canais depois da conv 1x1
- Utiliza o bloco residual com gargalo

DenseNet

- Ao invés de adicionar a representação da entrada com a saída podemos fazer a concatenação dos canais de entrada aos canais de saída
 - Menos comum que ResNet mas atinge resultados similares
 - Quando ocorre downsampling a representação não é concatenada

U-Net

- Arquitetura encoder-decoder com skip connections
 - Como a convolução foi feita sem *padding* foi necessário cortar a imagem original antes de concatenar

Referências:

- Sugere-se *fortemente* a leitura de:
 - Capítulo 11 de Understanding Deep Learning
 - https://udlbook.github.io/udlbook/
- Sugere-se também ler o artigo abaixo sobre conexões residuais:
 - HE, Kaiming et al. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. p. 770-778.