(Cognome)	(Nome)	(Corso di laurea)

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \min \ 4 \ y_1 + y_2 + 26 \ y_3 + 13 \ y_4 + 16 \ y_5 + 17 \ y_6 \\ -3 \ y_1 - 5 \ y_2 + 3 \ y_3 - y_4 + 3 \ y_5 - 2 \ y_6 = -1 \\ -4 \ y_1 - y_2 + 4 \ y_3 + 3 \ y_4 - y_5 - 2 \ y_6 = 3 \\ y \ge 0 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
		(81/110)	(81/110)
$\{1, 2\}$	x =		
$\{2, 4\}$	y =		

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	{3,6}					
2° iterazione						

Esercizio 3. Un'azienda produce olio extravergine (E) e olio di oliva (O) i cui prezzi di vendita al chilo sono rispettivamente di 5.30 euro e di 3.95 euro. La produzione di olio richiede due tipi di olive (O1 e O2) che l'azienda acquista rispettivamente al costo di 2.40 euro/kg e 2.20 euro/kg. La manodopera è disponibile in al più 600 ore-uomo con un costo di 15 euro/ora. La tabella seguente indica i kg di olive e le ore di manodopera necessarie per la produzione di un litro di ciascun tipo di olio.

	O1	O2	manodopera
Ε	0.8	0.5	0.08
Ο	0.7	0.4	0.04

Sapendo che il budget disponibile per l'acquisto delle olive e della manodopera è pari a 110000 euro e supponendo che tutto l'olio prodotto sia venduto, si determini la produzione di olio EV e di olio OO che massimizzi il profitto dell'azienda.

variabili decisionali e modello:

	COMANDI DI MATLAB	
C=	intcon=	

 c=
 intcon=

 A=
 b=

 Aeq=
 beq=

 lb=
 ub=

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (1,3) (3,6)				
(4,6) (5,6)	(3,5)	x =		
(1,3) $(2,3)$ $(2,4)$				
(3,5)(4,6)	(3,4)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,2) (2,3) (2,6) (3,4) (3,5)	
Archi di U	(5,6)	
x		
π		
Arco entrante		
ϑ^+, ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter 1		ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s = N_t = N_t$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 12 x_1 + 8 x_2 \\ 19 x_1 + 14 x_2 \le 69 \\ 12 x_1 + 18 x_2 \le 59 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P)$ =

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_I(P)$ =

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	10	41	62	92
2		27	54	56
3			11	13
4				94

a) Trovare una valutazione inferiore del valore ottimo calcolando il 3-albero di costo minimo.

•	3–albero:	I(P) =
b	o) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo	o 4.

ciclo: $v_S(P) =$ c) Applicare il metodo del Branch and Bound, utilizzando il 3-albero di costo minimo come rilassamento di ogni

c) Applicare il metodo del Branch and Bound, utilizzando il 3-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{15} , x_{35} , x_{45} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1^2 + x_2^2 + 2x_1 - 2x_2$ sull'insieme

$$\{x \in \mathbb{R}^2 : x_1 + x_2^2 - 9 \le 0, -x_1 \le 0\}.$$

Soluzioni de	Massimo		Mini	Sella			
x	λ	μ	globale	locale	globale	locale	

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min -2 \ x_1^2 - 6 \ x_1 \ x_2 - 4 \ x_2^2 - 6 \ x_1 - x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (1,3), (5,3), (2,-3) e (-2,1). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	-	Passo	Nuovo punto
				possibile		
$\left(\frac{11}{3},3\right)$						

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \min \ 4 \ y_1 + y_2 + 26 \ y_3 + 13 \ y_4 + 16 \ y_5 + 17 \ y_6 \\ -3 \ y_1 - 5 \ y_2 + 3 \ y_3 - y_4 + 3 \ y_5 - 2 \ y_6 = -1 \\ -4 \ y_1 - y_2 + 4 \ y_3 + 3 \ y_4 - y_5 - 2 \ y_6 = 3 \\ y \ge 0 \end{cases}$$

Base	Soluzione di base	Ammissibile	Degenere
		(si/no)	(si/no)
$\{1, 2\}$	x = (0, -1)	SI	NO
$\{2, 4\}$	y = (0, 0, 0, 1, 0, 0)	SI	SI

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	{3, 6}	$\left(-60, \frac{103}{2}\right)$	$\left(0,\ 0,\ 4,\ 0,\ 0,\ \frac{13}{2}\right)$	2	$1, \frac{13}{17}$	6
2° iterazione	{2, 3}	$\left(-\frac{30}{17}, \frac{133}{17}\right)$	$\left(0, \ \frac{13}{17}, \ \frac{16}{17}, \ 0, \ 0, \ 0\right)$	4	1, 1	2

Esercizio 3.

$$\begin{cases} \max\left(5.3x_E+3.95x_O\right)-\left(1.2x_E+0.6x_O\right)-\left(1.92x_E+1.68x_O\right)-\left(1.10x_E+0.88x_O\right)\\ 0.08x_E+0.04x_O\leq 600\\ \left(1.2x_E+0.6x_O\right)+\left(1.92x_E+1.68x_O\right)+\left(1.10x_E+0.88x_O\right)\leq 110000 \end{cases}$$

Il primo addendo dell'ultimo vincolo é il costo della manodopera.

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (1,3) (3,6)				
(4,6) (5,6)	(3,5)	x = (-3, 6, 0, 0, 0, 0, 7, 6, -3, 5)	NO	SI
(1,3) $(2,3)$ $(2,4)$				
(3,5)(4,6)	(3,4)	$\pi = (0, 0, 10, 7, 15, 10)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,2) (2,3) (2,6) (3,4) (3,5)	(1,3) (2,3) (2,6) (3,4) (3,5)
Archi di U	(5,6)	(5,6)
x	(3, 0, 3, 0, 3, 3, 7, 0, 0, 5)	(0, 3, 0, 0, 3, 3, 7, 0, 0, 5)
π	(0, 7, 17, 20, 22, 14)	(0, 0, 10, 13, 15, 7)
Arco entrante	(1,3)	(2,4)
ϑ^+,ϑ^-	7,3	6,0
Arco uscente	(1,2)	(2,3)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter	1	iter	2	iter	. 3	iter	4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		3		2		5		4	Į.	(j	7	7
nodo 2	18	1	12	3	12	3	12	3	12	3	12	3	12	3
nodo 3	4	1	4	1	4	1	4	1	4	1	4	1	4	1
nodo 4	$+\infty$	-1	$+\infty$	-1	29	2	27	5	27	5	27	5	27	5
nodo 5	$+\infty$	-1	23	3	15	2	15	2	15	2	15	2	15	2
nodo 6	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	30	4	30	4	30	4
nodo 7	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	31	5	31	5	31	5	31	5
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2,	3	2,	5	4,	5	4,	7	6,	7	7	7	Q)

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 2 - 5 - 7	5	(5, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0)	5
1 - 3 - 5 - 7	8	(5, 8, 0, 5, 0, 8, 0, 0, 13, 0, 0)	13
1 - 3 - 2 - 5 - 7	1	(5, 9, 0, 6, 1, 8, 0, 0, 14, 0, 0)	14

Taglio di capacità minima: $N_s = \{1, 2, 3, 4, 5, 6\}$ $N_t = \{7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 12 x_1 + 8 x_2 \\ 19 x_1 + 14 x_2 \le 69 \\ 12 x_1 + 18 x_2 \le 59 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(\frac{69}{19}, 0\right)$$
 $v_S(P) = 43$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(3,0)$$

c) Calcolare un taglio di Gomory.

$$r = 1$$
 $x_1 \le 3$ $7 \cdot x_1 + 5 \cdot x_2 \le 25$

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	10	41	62	92
2		27	54	56
3			11	13
4				94

a) Trovare una valutazione inferiore del valore ottimo calcolando il 3-albero di costo minimo.

3-albero:
$$(1,2)(2,4)(2,5)(3,4)(3,5)$$
 $v_I(P)=144$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 4.

ciclo:
$$4 - 3 - 5 - 2 - 1$$
 $v_S(P) = 152$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 3-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{15} , x_{35} , x_{45} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1^2 + x_2^2 + 2x_1 - 2x_2$ sull'insieme

$${x \in \mathbb{R}^2 : x_1 + x_2^2 - 9 \le 0, -x_1 \le 0}.$$

Soluzioni del sist	Massimo		Mini	Sella			
x	λ	μ	globale	locale	globale	locale	
(0, 1)	(0,2)		NO	NO	SI	SI	NO
(-0.0526, 8.99)	(-2.1052,0)		SI	SI	NO	NO	NO
(0, 3)	$\left(\frac{2}{3}, -\frac{4}{3}\right)$		NO	NO	NO	NO	SI
(0, -3)	$\left(-\frac{2}{3},\frac{4}{3}\right)$		NO	NO	NO	NO	SI

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min -2 \ x_1^2 - 6 \ x_1 \ x_2 - 4 \ x_2^2 - 6 \ x_1 - x_2 \\ x \in P \end{cases}$$

 $\mathrm{dove}\;P\;\grave{\mathrm{e}}\;\mathrm{il}\;\mathrm{poliedro}\;\mathrm{di}\;\mathrm{vertici}\;(1,3)\;,\,(5,3)\;,\,(2,-3)\;\mathrm{e}\;(-2,1).\;\mathrm{Fare}\;\mathrm{una}\;\mathrm{iterazione}\;\mathrm{del}\;\mathrm{metodo}\;\mathrm{del}\;\mathrm{gradiente}\;\mathrm{proiettato}.$

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
$\left(\frac{11}{3},3\right)$	(0,1)	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	$\left(\frac{116}{3},0\right)$	$\frac{1}{29}$	$\frac{1}{29}$	(5,3)