BÁO CÁO PHÂN TÍCH TÍN HIỆU (Nhóm 15)

Danh sách các thành viên nhóm:

1. Họ và tên: Trần Phú Quy

MSSV: 102160258

Phân công nhiệm vụ: viết thuật toán, code, xử lý dữ liệu đầu vào.

2. Họ và tên: Nguyễn Trường Sơn

MSSV: 102160261

Phân công nhiệm vụ: Thu âm, tìm các sai sót.

3. Họ và tên: Nguyễn Thị Anh Thư

MSSV: 102160267

Phân công nhiệm vụ: Chỉnh sửa, viết báo cáo, làm slide.

- 1. Thu âm tín hiệu (signal acquisition)
- 2. Phân tích tín hiệu thủ công (manual signal analysis)

^{*}Tín hiệu thu được của bạn Trần Phú Quy: âm A

Đoạn tín hiệu mẫu: 30ms

Chu kì T đo được:

00h00m00.008s

Tín hiệu lấy từ giọng nói của bạn Quy có chu kì T = 0.008s → tần số f = 125Hz

*Tín hiệu thu được của bạn Nguyễn Trường Sơn: âm O

Đoạn tín hiệu mẫu: 30ms

Chu kì T đo được:

00h00m00.009s

Tín hiệu lấy từ giọng nói của bạn Sơn có chu kì T = 0.009s → tần số f = 111,11Hz

* Tín hiệu thu được của bạn Nguyễn Thị Anh Thư: âm E

Đoạn tín hiệu mẫu: 30ms

Chu kì T đo được:

00h00m00.005s

Tín hiệu lấy từ giọng nói của bạn Thư có chu kì $T = 0.005s \rightarrow t$ ần số f = 200Hz

Ta có: fSơn < fQuy < fThư

Từ đó ta kết luận: tần số của bạn nam thấp hơn tần số của bạn nữ

Nghe

- 3. Phân tích tín hiệu tự động (automatic signal analysis):
 - 3.1 Phần code MatLab:
 - Vẽ đồ thị sóng dạng Waveform:

%% Sử dụng hàm audioread để đọc file âm thanh .wav, lưu các giá trị của Voiced Speech waveform vào vector y, tần số lấy mẫu vào Fs

• Vẽ đồ thị sóng dạng line spectrum:

```
%%Sử dụng hàm fft xử lí Fast Fourier Transform lưu vào vector dfty
>> dfty=abs(fft(y));
>> dfty=dfty(1:(length(dfty)/2));
    %%Vector tần số tt
>> tt=linspace(1/Fs,Fs/2,length(dfty));
>> plot(tt,dfty);
```

3.2 Đồ thị thu được:

3.3 Nhận xét:

end

- Ta thu được tần số f0 của các bạn Quy Sơn Thư lần lượt là 125Hz, 112Hz, 201Hz khá sát với tần số f0 lấy thủ công (125Hz, 111Hz, 200Hz).

4. Phân tích tín hiệu tự động (automatic signal analysis):

4.1 Phân tích tín hiệu trên miền tần số

*Code MATLAB

```
%Ham main tinh F0 theo FFT - thuat toan tu nghien cuu
    function [e] = main_findF0_FFT(dfty, tt)
          a = findF0s(dfty, tt);
          b = sortZA(a, 1);
          c = getTop3Rows(b);
          d = sortZA(c, 2);
          e = getfO(d);
    end
%Hàm sử dụng các hàm con sau đây
%findF0s: Lấy tất cả các điểm có thể là đỉnh của đồ thị đó
    function [A] = findF0s(dfty, t)
           A = zeros(14, 2);
           count = 1;
     for e = 2 : (length(dfty))
            last = dfty(e);
           fist = dfty(e-1);
    if count == 15
      break;
    end
    if (last < fist)</pre>
      continue;
    elseif last>fist
             A(count, 1) = dfty(e);
             A(count, 2) = t(e);
             count = count +1;
        end
      end
```

```
%sortZA: sort trên a, b binding theo a
    function [S] = sortZA(a, choose)
              S = a;
      if choose == 1
              for i = 1: length(a)-1
              for j = i+1 : length(a)
                    if S(j, 1)>S(i, 1)
                            temp = S(i, 1);
                             temp2 = S(i, 2);
                             S(i, 1) = S(j, 1);
                             S(i, 2) = S(j, 2);
                             S(j, 1) = temp;
                             S(j, 2) = temp2;
                      end
               end
         end
      elseif choose == 2
                for i =1: length(a)-1
                for j = i+1: length(a)
                           if S(j, 2) > S(i, 2)
                                     temp = S(i, 2);
                                    temp2 = S(i, 1);
                                     S(i, 2) = S(j, 2);
                                     S(i, 1) = S(j, 1);
                                     S(j, 2) = temp;
                                     S(j, 1) = temp2;
                            end
                         end
                 end
          end
    end
%getTop3Rows: Lấy 3 đỉnh
    function [S] = getTop3Rows(a)
      S = [a(1,1), a(1,2); a(2,1), a(2,2); a(3,1), a(3,2)];
    End
%getf0
    function [f0] = getf0(a)
      f1 = round(a(3, 2)/(a(1,2)-a(2,2)));
      f0 = a(3, 2) / f1;
    end
```

* Kết quả

```
>> fft_Quy = main_findF0_FFT(dfty,tt)

fft_Quy =
    125.0001

>> fft_Son = main_findF0_FFT(dfty2,tt2)

fft_Son =
    112.0449

>> fft_Thu = main_findF0_FFT(dfty3,tt3)

fft_Thu =
    201.6808
```

*So sánh

$$\triangle$$
f0_{Quy} = 0.0001
 \triangle f0_{Sơn} = 0.9349 Sai số bé
 \triangle f0_{Thư} = 1.6808

*Kết luận

Tính toán thủ công có sai số bé, không đáng kể

4.2 Phân tích tín hiệu trên miền thời gian *Code MATLAB

```
function [F0] = main_findF0(y, Fs)
         count = 0;
          pk = getPeaks(y);
         S = findf1_2(pk);
          f1 = S(1);
         f2 = S(2);
 for i = 1 : length(y)
            if y(i) == f1
              count = count +1;
              z = i;
            end
            if count > 0
              if y(i) == f2
                break;
              else
                count = count +1;
               end
         end
 end
         F0 = 1/((count)/Fs);
          count2 = count;
          s3 = S(3) + 1;
          if F0 > 210
            for e = 1 : length(y)
              if y(e) == pk(s3)
                break;
              else
                count2 = count2 +1;
              end
            end
            F02 = 1/((count2-count-z)/Fs);
            fprintf('Maybe f0 = %f\n', F02);
          end
```

end

*Kết quả

```
time_Quy =
    123.0769

>> time_Son = main_findF0(y2,Fs2)
Maybe f0 = 115.942029

time_Son =
    250

>> time_Thu = main_findF0(y3,Fs3)

time_Thu =
    200
```

*So sánh

```
\trianglef0<sub>Quy</sub> = 1.9231 \trianglef0<sub>Sơn</sub> = 4.832029 Sai số khá lớn với một số tín hiệu \trianglef0<sub>Thư</sub> = 0
```

*Kết luận

Từ 3 kết quả f đo được ở trên, ta được kết quả

```
\begin{aligned} & f0_{Quy} \approx 124.36 \text{Hz} \\ & f0_{So'n} \approx 112.88 \text{Hz} \\ & f0_{Thu'} \approx 200 \text{Hz} \end{aligned}
```

5. Đánh giá

Thuật toán trên miền tần số đưa ra kết quả có sai số bé hơn so với thuật toán dựa trên miền thời gian

→ Thuật toán trên miền tần số đưa ra kết quả chính xác hơn

*Các yếu tố ảnh hưởng đến độ chính xác của thuật toán

- 1. Âm thu vào không được rõ ràng, có tạp âm
- 2. Tín hiệu không nhìn rõ được đỉnh