Discrete Mathematics with Applications I COMPSCI&SFWRENG 2DM3

McMaster University, Fall 2019

Wolfram Kahl

2019-09-24

Calculation: p p p g("Golden rule") p v p How can the Golden rule have been applied here? Calculation: true = p = ¬ p g((3.15) `¬ p = p = false`) false Calculation: p = ¬ q = p v q g((3.32)) ¬ p v ¬ q

Plan for Today

- Natural Numbers and **Induction** (ctd.)
- Textbook Chapter 3: Propositional Calculus
 - CALCCHECK-checked mystery steps
 - Implication

Natural Numbers — Rigorous Definition

- The set of all **natural numbers** is written \mathbb{N} .
- Zero "0" is a natural number.
- If n is a natural number, then its <u>successor</u> "suc n" is a natural number, too.
- Nothing else is a natural number.
- Two natural numbers are equal if and only if they are constructed in the same way.

```
Example: suc suc suc 0 \neq suc suc suc suc 0
```

This is an inductive definition.

(Like the definition of expressions...)

Every inductive definition gives rise to an induction principle

— a way to prove statements about the inductively defined elements

Natural Numbers — Induction Proofs

Induction principle for the natural numbers:

• if P[m := 0]

If *P* holds for 0

• and if we can obtain P[m := suc m] from P,

and whenever P holds for m, it also holds for suc m

• then *P* holds.

then *P* holds for all natural numbers.

An induction proof using this looks as follows:

```
Theorem: P Proof:
```

By induction on $m : \mathbb{N}$:

Base case:

Proof for P[m := 0]Induction step:

Proof for P[m := suc m]

using Induction hypothesis P

P[m := 0] P[m := suc m] P

Factorial — Inductive Definition

The <u>factorial</u> operator " $_{-}$!" on \mathbb{N} can be defined as follows:

- The factorial of a natural number is a natural number again: $\underline{}!: \mathbb{N} \to \mathbb{N}$
- 0! = 1
- For every $n : \mathbb{N}$, we have: $(\operatorname{suc} n)! = (\operatorname{suc} n) \cdot (n!)$

```
Declaration: _! : \mathbb{N} \to \mathbb{N}

Axiom "Definition of ! for 0": 0 ! = 1

Axiom "Definition of ! for `suc`": (suc n) ! = (suc n) · n !
```

_! is an inductively-defined function.

Why does this define _! for all possible arguments?

Because:

- _! takes **one** argument of type $\mathbb N$
- That argument is **always** either 0, or suc k; for some **smaller** $k : \mathbb{N}$
- Both cases are covered by the definition.
- The second clause "builds up" the domain of definition of _! from smaller to larger *n*.

Natural Number Addition — Inductive Definition

Addition on \mathbb{N} can be defined as follows:

• The (infix) **addition operator** "+", when applied to two natural numbers, produces again a natural number:

```
\_+\_: \mathbb{N} \to \mathbb{N} \to \mathbb{N}
```

• For every $q : \mathbb{N}$, we have: • 0 + q = q

• For every $n : \mathbb{N}$ we have: $(\operatorname{suc} n) + q = \operatorname{suc} (n + q)$

```
Axiom "Definition of + for 0": 0 + n = n
Axiom "Definition of + for `suc`": (suc m) + n = suc (m + n)
```

+ is an inductively-defined function.

Why does this define _+_ for all possible arguments?

Because:

- _+_ takes **two** arguments of type ℕ
- Each of these arguments is always either 0, or suc k for some smaller $k : \mathbb{N}$
- The second argument is in both clauses the variable *q*

— all cases covered.

- For the first argument, each clause covers one case.
- The second clause "builds up" the domain of definition of _+_ from smaller to larger m.

Even Natural Numbers — Inductive Definition

• The predicates even and odd are declared as Boolean-valued functions:

```
Declaration: even, odd : \mathbb{N} \to \mathbb{B}
```

- Function application of function f to argument a is written as **juxtaposition**: f a
- Function application associates to the left: f a b = (f a) b
- The definition provided in Homework 5 is by **mutual recursion**:

```
Axiom "Zero is even": even \theta
Axiom "Odd is not even": odd n \equiv \neg (even n)
Axiom "Even successor": even (suc n) \equiv odd n
```

• This is clearly equivalent to an inductive definition for even that is independent from the definition of odd

```
Axiom "Zero is even": even \theta
Axiom "Even successor (direct)": even (suc n) \equiv \neg (even n)
Axiom "Odd is not even": odd n \equiv \neg (even n)
```

even is an inductively-defined function.

Why does this define even for all possible arguments?

Because:

• even takes **one** argument of type \mathbb{N}

```
Proving "Even double"
Theorem "Even double": even (n + n)
Proof:
   By induction on n : \mathbb{N}:
     Base case:
          even (0 + 0)
        ≡( ? )
     Induction step:
          even (suc n + suc n)
        ≡( ? )
An induction proof looks as follows:
    Theorem: P
    Proof:
       By induction on m : \mathbb{N}:
                                                                                         ^{\Gamma}P^{\gamma}
         Base case:
           Proof for P[m := 0]
                                                          P[m := 0]
                                                                                   P[m := \operatorname{suc} m]
         Induction step:
            Proof for P[m := suc m]
              using Induction hypothesis P
```

Proving "Even double" Theorem "Even double": even (n + n)Proof: By induction on $n : \mathbb{N}$: Base case: even (0 + 0)≡⟨ "Definition of + for 0" ⟩ even 0 ≡("Zero is even") true Induction step: even (suc n + suc n)≡("Definition of + for `suc`") even (suc (n + suc n))≡⟨ "Even successor" ⟩ odd (n + suc n)**≡**⟨ "Adding the successor" ⟩ odd (suc (n + n)) ≡("Odd successor") even (n + n)**≡**⟨ Induction hypothesis ⟩ true

```
Proving "Even double" — Using "— This is ..."
Theorem "Even double": even (n + n)
Proof:
 By induction on n : \mathbb{N}:
    Base case:
        even (0 + 0)
      ≡( "Definition of + for 0" )
                          - This is "Zero is even"
    Induction step:
        even (suc n + suc n)
      ≡( "Definition of + for `suc`" )
       even (suc (n + suc n))
      ≡⟨ "Even successor" ⟩
       odd (n + suc n)
      ≡( "Adding the successor" )
       odd (suc (n + n))
      ≡⟨ "Odd successor" ⟩

    This is induction hypothesis

        even (n + n)
```

```
Proving "Even double" — With Explicit Details
Theorem "Even double": even (n + n)
Proof:
  By induction on n : \mathbb{N}:
    Base case 'even (0 + 0)':
        even (0 + 0)
      ≡⟨ "Definition of + for 0" ⟩
                          - This is "Zero is even"
        even 0
   Induction step `even (suc n + suc n)`:
        even (suc n + suc n)
      ≡( "Definition of + for `suc`" )
        even (suc (n + suc n))
      ≡( "Even successor" )
       odd (n + suc n)
      ≡( "Adding the successor" )
       odd (suc (n + n))
      ≡( "Odd successor" )
        even (n + n)
      - This is induction hypothesis `even (n + n)`
```

Defining Subtraction Inductively

```
Axiom "Subtraction from zero": 0 - n = 0 Axiom "Subtraction of zero from successor": (suc\ m) - 0 = suc\ m Axiom "Subtraction of successor from successor": (suc\ m) - (suc\ n) = m - n
```

Why does this define _-_ for all possible arguments?

Because:

- _-_ takes **two** arguments of type ℕ
- Each of these arguments is always either 0, or suc k for some smaller $k : \mathbb{N}$
- Of the four possible combinations, two are covered by "Subtraction from zero"
- The remaining two clauses cover one of the remaining cases each.
- The third clause "builds up" the domain of definition of _-_ from smaller to larger *m* and *n*.

Defining Subtraction Inductively Using Three Clauses

```
Axiom "Subtraction from zero": 0 - n = 0 Axiom "Subtraction of zero from successor": (suc m) - 0 = suc m Axiom "Subtraction of successor from successor": (suc m) - (suc n) = m - n
```

- ⇒ Some properties of subtraction need nested induction proofs!
- ⇒ Inside nested induction steps, used induction hypotheses <u>must</u> be made explicit!

How?

$$p \wedge p$$
= $\langle (3.35) \text{ Golden rule } p \wedge q \equiv p \equiv q \equiv p \vee q \rangle$
 $p \vee p$
= $\langle (3.26) \text{ Idempotency of } \vee \rangle$

How can the Golden rule have been applied here?

(3.35) Axiom, Golden rule:

$$p \wedge q \equiv p \equiv q \equiv p \vee q$$

Can be used as:

•
$$p \wedge q = (p \equiv q \equiv p \vee q)$$
 — Definition of \wedge

$$\bullet \ (p \land q \equiv p \equiv q) = (p \lor q)$$

$$\bullet \ (p \land q \equiv p) = (q \equiv p \lor q)$$

Three Steps!

$$p \wedge p$$

= $\langle (3.35)$ Golden rule $(p \land q) = (p \equiv q \equiv p \lor q) \rangle$

$$p \equiv p \equiv p \vee p$$

= (Adding parentheses)

$$p \equiv (p \equiv p \lor p)$$

= $\langle (3.35)$ Golden rule $(p \land q \equiv p) = (q \equiv p \lor q) \rangle$

$$p \equiv (p \equiv p \land p)$$

= (Removing parentheses)

$$p \equiv p \equiv p \wedge p$$

= $\langle (3.35)$ Golden rule $(p \land q \equiv p \equiv q) = (p \lor q) \rangle$

$$p \vee p$$

= \langle (3.26) Idempotency of \vee \rangle

р

(3.35) Axiom, Golden rule:

$$p \wedge q \equiv p \equiv q \equiv p \vee q$$

What Equivalences/Equalities are in the Golden Rule?

 $p \land q \equiv p \equiv q$ is not a consequence of (3.35) Golden rule!

 $p \wedge q \equiv p \vee q$ is not a consequence of (3.35) Golden rule!

Equality versus Equivalence

The operators = (as Boolean operator) and \equiv

- have the same meaning (represent the same function),
- but are used with different notational conventions:
 - different precedences (≡ has lowest)
 - different chaining behaviour:

$$(p \equiv q \equiv r) = ((p \equiv q) \equiv r) = (p \equiv (q \equiv r))$$

• = is conjunctional:

$$(p=q=r) = ((p=q) \land (q=r))$$

(3.35) Axiom, Golden rule:

$$p \wedge q \equiv p \equiv q \equiv p \vee q$$

What Equivalences/Equalities are in the Golden Rule?

$$p \wedge q \equiv p \equiv q$$
 is not a consequence of (3.35) Golden rule!
 $p \wedge q \equiv p \vee q$ is not a consequence of (3.35) Golden rule!

Equality versus Equivalence — in other words

- Writing p = q = r is the same as writing $(p = q) \land (q = r)$
- Writing $p \equiv q \equiv r$ is the same as writing $p \equiv (q \equiv r)$ and the same as writing $(p \equiv q) \equiv r$
- Writing $p \equiv q \equiv r$ can also be seen to be

the same as writing
$$p = (q = r)$$

and the same as writing
$$(p = q) = r$$

— but only for Boolean expression p, q, r

CALCCHECK-checked Mystery Steps

Calculation:

Calculation:

$$p \equiv \neg q \equiv p \lor q$$

$$\equiv \langle (3.32) \rangle$$

$$\neg p \lor \neg q$$

• If you don't understand it, don't submit it!

(Understand the precise way in which the rule has been applied!)

• If you encounter such "mystery steps", report!

(E.g. in Avenue discussions)

• When reporting such cases or asking questions about CALCCHECK,

include (plain UTF8) text, not images!

Implication

(3.57) Axiom, Definition of Implication:

$$p \Rightarrow q \equiv p \lor q \equiv q$$

(3.58) Axiom, Definition of Consequence:

$$p \leftarrow q \equiv q \Rightarrow p$$

Rewriting Implication:

(3.59) (Alternative) **Definition of Implication**:

$$p \Rightarrow q \equiv \neg p \lor q$$

(3.60) (Dual) **Definition of Implication**:

$$p \Rightarrow q \equiv p \land q \equiv p$$

(3.61) Contrapositive:

$$p \Rightarrow q \equiv \neg q \Rightarrow \neg p$$

All Propositional Axioms of the Equational Logic E

- **1** (3.1) Axiom, Associativity of **=**
- \bigcirc (3.2) Axiom, Symmetry of \equiv
- \odot (3.3) Axiom, Identity of \equiv
- **1** (3.8) **Axiom, Definition of** *false*
- **(3.9)** Axiom, Commutativity of ¬ with ≡
- **6** (3.10) Axiom, Definition of \neq
- ② (3.24) Axiom, Symmetry of ∨
- **③** (3.25) Axiom, Associativity of ∨
- **②** (3.26) Axiom, Idempotency of ∨
- **(3.27)** Axiom, Distributivity of \vee over \equiv
- (3.28) Axiom, Excluded Middle
- (2) (3.35) Axiom, Golden rule
- (3.57) Axiom, Definition of Implication
- (3.58) Axiom, Definition of Consequence

The "Golden Rule" and Implication

(3.35) Axiom, Golden rule:

 $|p \wedge q| \equiv p \equiv q \equiv p \vee q$

Can be used as:

- $\bullet \ p \land q = (p \equiv q \equiv p \lor q)$
- $\bullet \ (p \equiv q) = (p \land q \equiv p \lor q)$
- . .
- $\bullet \ (p \land q \equiv p) \equiv (q \equiv p \lor q)$
- (3.57) Axiom, Definition of Implication:

$$p \Rightarrow q \equiv p \lor q \equiv q$$

(3.60) (Dual) **Definition of Implication**:

$$p \Rightarrow q \equiv p \land q \equiv p$$

Implication as Order on Propositions

" $p \Rightarrow q$ " can be read "p is stronger-than-or-equivalent-to q"

— similar to "
$$x \le y$$
" as " x is less-or-equal y " — similar to " $x \ge y$ " as " x is greater-or-equal y "

" $p \Rightarrow q$ " can be read "p is at least as strong as q"

— similar to "
$$x \le y$$
" as " x is at most y "

— similar to "
$$x \ge y$$
" as " x is at least y "

(3.57) **Axiom, Definition of** \Rightarrow from disjunction:

$$p \Rightarrow q \equiv p \lor q \equiv q$$

— defines the order from maximum:
$$p \Rightarrow q \equiv ((p \lor q) = q)$$

— analogous to:
$$x \le y \equiv ((x \uparrow y) = y)$$

— analogous to:
$$k \mid n \equiv ((lcm(k, n) = n))$$

(3.60) (Dual) **Definition of**
$$\Rightarrow$$
 from conjunction:

$$p \Rightarrow q \equiv p \land q \equiv p$$

— defines the order from minimum:
$$p \Rightarrow q \equiv ((p \land q) = p)$$

— analogous to:
$$x \le y \equiv ((x \downarrow y) = y)$$

Weakening/Strengthening Theorems

" $p \Rightarrow q$ " can be read "p is stronger-than-or-equivalent-to q"

" $p \Rightarrow q$ " can be read "p is at least as strong as q"

$$(3.76a) p \Rightarrow p \vee q$$

$$(3.76b) p \land q \Rightarrow p$$

$$(3.76c) \quad p \land q \qquad \Rightarrow p \lor q$$

$$(3.76d) \ p \lor (q \land r) \quad \Rightarrow p \lor q$$

$$(3.76e) \ p \land q \qquad \Rightarrow p \land (q \lor r)$$

Implication Theorems 2

$$(3.62) \quad p \Rightarrow (q \equiv r) \quad \equiv \quad p \land q \quad \equiv \quad p \land r$$

(3.63) **Distributivity of**
$$\Rightarrow$$
 over \equiv :

$$p \Rightarrow (q \equiv r) \equiv p \Rightarrow q \equiv p \Rightarrow r$$

(3.64) Self-distributivity of
$$\Rightarrow$$
:

$$p \Rightarrow (q \Rightarrow r) \equiv (p \Rightarrow q) \Rightarrow (p \Rightarrow r)$$

$$p \land q \Rightarrow r \equiv p \Rightarrow (q \Rightarrow r)$$

Some Property Names

Let \odot and \oplus be binary operators and \square be a constant.

(⊙ and ⊕ and □ are metavariables for operators.)

• "
$$\odot$$
 is symmetric": $x \odot y = y \odot x$

• "
$$\odot$$
 is associative": $(x \odot y) \odot z = x \odot (y \odot z)$

$$(x \odot y) \oplus z = x \odot (y \oplus z)$$

For example:

$$(x+y)-z = x+(y-z)$$

$$(5-2)+3 \neq 5-(2+3)$$

Some Property Names (ctd.)

Let \odot and \oplus be binary operators and \square be a constant.

(\odot and \oplus and \Box are **metavariables** for operators.)

• "
$$\odot$$
 is symmetric": $x \odot y = y \odot x$

• "
$$\odot$$
 is associative": $(x \odot y) \odot z = x \odot (y \odot z)$

• "⊙ is mutually associative with ⊕ (from the left)":

$$(x \odot y) \oplus z = x \odot (y \oplus z)$$

• "
$$\odot$$
 is idempotent": $x \odot x = x$

• "
$$\Box$$
 is a unit/identity of \odot ": $\Box \odot x = x$ and $x \odot \Box = x$

$$\square \odot x = \square$$
 and $x \odot \square = \square$

• "⊙ distributes over ⊕ from the left":

$$x \odot (y \oplus z) = (x \odot y) \oplus (x \odot z)$$

• "⊙ distributes over ⊕ from the right":

$$(y \oplus z) \odot x = (y \odot x) \oplus (z \odot x)$$

• " \odot distributes over \oplus ":

 \odot distributes over \oplus from the left **and**

⊙ distributes over ⊕ from the right