

CONCEPT

Build the SDRX shield

Last time

- We learned about the Bandpass SDR design
- We studied the actual 40m SDRX design
- Now we build it Kit 4

Kit 4

PCB	x
2 x 100pF	x
1 x 120pF	x
1 x 1500pF	x
3 x 10nF	x
3 x 100nF	x
2 x 220nF	x
1 x 10uF	x
2 x 100pF	x
1 x 10uH	x
2 x T30-6 Toroids	x
Wire 28swg 50 & 60 cm	x
2 x 39R	x
3 x 1k	x
2 x 3k9	x
2 x 22k	x
Right Angle header 3 pin	x
2x6 & 3x8 pin header kit	x
FST3253	x
TLV2462	x

The BIG kit!!!

Schematic

Warning

- The FST3552 is a CMOS device
- You MUST take care to handle this and protect against static electricity

The PCB

VFO IQ

Antenna

Band Pass Filter

Wind the coils

T30-6 cores (0.3" Yellow)

- 4.2uH = 34 turns
 - 50cm of 28 swg wire
- 0.35uH trifiler = $3 \times 10t$
 - 60cm of 28swg (0.3mm) wire
 - cut into 3 and twist together

See web site toroids.info

SMD part

- FST3253
- Ink the pads with flux
- Position the part, very carefully
- Pins 1 & 16 at the top
- Tack one lead, to hold in position
- Solder the other leads
- Comeback and solder the tacked lead

Mount resistors

Name	Value
R1	39
R3	39
R2	3k9
R4	3k9
R9	1k
R5	1k
R7	1k
R6	22k
R8	22k

Mount capacitors

Name	Value	
C13	1500p	152
C14	120p	121
C10	10n	103
C1	100n	104
C5	100n	104
C3	100n	104
C7	10n	103
C6	10n	103
C4	10u	+left
C11	100p	101
C12	100p	101
C8	220n	224
C9	220n	224

So far, so good?

Mount coils & TLV2462

All most finished

Mount headers

To get them vertical, plug in a board above

Final shield

Carefully check ALL soldered joints under a magnifier

Testing & operation

Connect it up

SDR software

HDSDR hdsdr.de DSP Radio dl2sdr.homepage.t-online.de

Windows

Mac

HDSDR

Set centre frequency on scale

SDR freq

Start the SDR

Other software

DFCW & QRSS

WSPR

ARGO www.weaksignals.com

physics.princeton.edu/pulsar/K1JT/wspr.html

Windows

Windows/Mac

The Future?

- Hardware
 - DCRX beginners direct conversion RX
 - Low Pass Filter(s) and antenna TX/RX switching
 - SDR based TX
 - Low power PA
 - Antenna analyser

• GPS for Location display, time calibration

The End. Have fun

Do we want a last session next week to debug our stuff?