目次

はじめに		2									
第 1 章	数学的準備	7									
1.1	複素数	7									
1.2	複素平面	12									
1.3	指数関数と三角関数	14									
1.4	オイラーの公式	16									
1.5	複素数の極座標表現・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18									
1.6	単位円上の等間隔の点: $e^{\frac{2\pi m}{N}i}$	19									
付録 1.A 複素数を項とする無限級数											
付録 1.1	3 複素平面と複素数全体の集合・実数の集合の直積	23									
付録 1.0	こ オイラーの公式を用いた三角関数導出	24									
第2章	信号とシステム	25									
2.1	信号	25									
	2.1.1 信号の分類	25									
	2.1.2 基本的な信号	26									
	2.1.3 周期信号	30									
	2.1.4 信号の操作	31									
	2.1.5 サンプリング:連続時間信号から離散時間信号をつくる	33									
2.2	システム	35									
	2.2.1 離散時間システムと連続時間システム	35									
	2.2.2 インパルス応答	35									
	2.2.3 システムの重要なクラス:線形と時不変	36									
	2.2.4 そのほかの特徴的なシステム	37									
第3章	離散時間 線形時不変システム –時間領域表現–										
3.1	単位インパルス信号による信号の分解表現	41									
3.2	線形時不変システムのインパルス応答による表現4										
3.3	LTI システムの再帰方程式表現										
3.4	差分方程式の回路実現	52									

	3.4.1	基本演算素	子					 	 	 	 	 •	53
	3.4.2	回路実現 .						 	 	 	 		53
付録 3.	A 再帰	景方程式にお り	ける線形時	不変性の)証明			 	 	 	 	 •	56
第 4 章	フーリ	工級数											59
4.1	三角関	数のたしあわ	せ					 	 	 	 		59
4.2	フーリ	エ級数(連続	時間).					 	 	 	 	 •	62
4.3	複素フ	ーリエ級数(連続時間)					 	 	 	 	 •	66
4.4	離散時	間フーリエ級	数					 	 	 	 	 •	70
4.5	区間限	定の非周期関	数					 	 	 	 		75
4.6	連続時	間と離散時間	のフーリコ	に級数の	関係			 	 	 	 		75
付録 4.	A フー	-リエ級数の4	又東性					 	 	 	 		77
付録 4.	B 積分)など						 	 	 	 		78
第5章	フーリ	工変換											81
5.1	フーリ	工変換(連続	時間).					 	 	 	 		81
5.2	離散時	間フーリエ変	換					 	 	 	 		88
5.3	フーリ	工変換の性質	. • • • • •					 	 	 	 		94
5.4	離散フ	ーリエ変換:	DFT					 	 	 	 		98
5.5	高速フ	ーリエ変換:	FFT					 	 	 	 		103
付録 5.	A フー	-リエ変換が存	孝在しない	信号列				 	 	 	 	 •	112
付録 5.	B フー	-リエ変換の反	え転公式					 	 	 	 	 •	112
付録 5.	C 離散	は時間フーリコ	こ変換の導	出				 	 	 	 	 •	113
付録 5.	D フー	- リエ変換の性	生質					 	 	 	 	 •	114
第6章	離散時	間 線形時不変	愛システム	–周波数	領域	表現	<u>,</u>						115
6.1	z変換							 	 	 	 		115
	6.1.1	z変換とその)収束領域					 	 	 	 		115
	6.1.2	z変換の収束	〔領域の特征	數				 	 	 	 		123
	6.1.3	逆 z 変換						 	 	 	 		126
	6.1.4	z変換の性質	ĺ					 	 	 	 	 •	128
6.2	伝達関	数と z 領域で	のシステム	公表現 .				 	 	 	 		130
6.3	周波数	伝達関数と周	波数領域で	でのシス	テムま	表現		 	 	 	 		135
付録 6.	A べき	・級数展開に 。	よる逆z変	換の計算	Į.,			 	 	 	 		142
付録 6.	B z 変	を換の性質						 	 	 	 	 •	143
第7章	連続時	間 線形時不変	『システム										145
7.1	連続時	間信号の短冊	関数近似					 	 	 	 		145
7.2	ディラ	ックのデルタ	関数					 	 	 	 		147
7.3	連続時	間 LTI システ	・ムのたた。	みこみに	よる	表現		 	 	 	 		149

7.4	ラプラス変換	152				
7.5	伝達関数と s 領域でのシステム記述	157				
7.6	周波数領域でのシステム記述	158				
7.7	フーリエ変換の拡張	158				
付録 7.	A ラプラス変換補足	160				
付録 7.	B 連続時間 LTI システムの微分方程式による表現	164				
付録 7.	C 離散時間周期信号のフーリエ変換	166				
<i>**</i> • **	U > →° U > ↓ \$^+ т⊞	400				
第8章	サンプリング定理	169				
8.1	帯域制限信号					
8.2	サンプリング定理					
8.3	带域制限補間					
8.4	AD 変換と DA 変換					
付録 8.						
付録 8.	B ラプラス変換と z 変換の関係	180				
第9章	フィルタ初歩	183				
9.1	信号の切り出し:時間領域におけるフィルタ	183				
	9.1.1 窓関数					
	9.1.2 代表的な窓関数					
9.2	デジタルフィルタ	189				
	9.2.1 周波数に関する制約					
	9.2.2 デジタルフィルタの分類					
	9.2.3 実現可能なフィルタ					
	9.2.4 直線位相フィルタ					
9.3	デジタルフィルタの設計	202				
	9.3.1 窓関数法による FIR フィルタの設計	202				
	9.3.2 インパルス応答不変変換による IIR フィルタの設計	203				
9.4	デジタルフィルタの回路実現	206				
付録 9.	A 代表的なアナログフィルタ	209				
<i></i>						
第 10 章	システムの状態空間表現	213				
10.1	離散時間 LTI システムの状態空間表現					
10.2	連続時間 LTI システムの状態空間表現	219				
参考文献		225				
. •						
演習解答例						
索引		254				