INF5620 Lecture: Analysis of finite difference schemes for diffusion processes

Hans Petter Langtangen^{1,2}

 $^1{\rm Center}$ for Biomedical Computing, Simula Research Laboratory $^2{\rm Department}$ of Informatics, University of Oslo

Aug 18, 2014

Contents

1	Ana	lysis of schemes for the diffusion equation
	1.1	Properties of the solution
	1.2	Example
	1.3	Visualization of the damping in the diffusion equation
	1.4	Damping of a discontinuity; problem and model
	1.5	Damping of a discontinuity; Backward Euler simulation
	1.6	Damping of a discontinuity; Forward Euler simulation
	1.7	Damping of a discontinuity; Crank-Nicolson simulation
	1.8	Fourier representation
	1.9	Analysis of the finite difference schemes
	1.10	Analysis of the Forward Euler scheme
	1.11	Results for stability
	1.12	Analysis of the Backward Euler scheme
	1.13	Stability
	1.14	Analysis of the Crank-Nicolson scheme
	1.15	Stability
	1.16	Summary of accuracy of amplification factors; large time steps
	1.17	Summary of accuracy of amplification factors; time steps around the Forward Euler
		stability limit
	1.18	Summary of accuracy of amplification factors; small time steps
	1.19	Observations

1 Analysis of schemes for the diffusion equation

1.1 Properties of the solution

The PDE

$$u_t = \alpha u_{xx} \tag{1}$$

admits solutions

$$u(x,t) = Qe^{-\alpha k^2 t} \sin(kx) \tag{2}$$

Observations from this solution:

- The initial shape $I(x) = Q \sin kx$ undergoes a damping $\exp(-\alpha k^2 t)$
- The damping is very strong for short waves (large k)
- \bullet The damping is weak for long waves (small k)
- \bullet Consequence: u is smooth ened with time

1.2 Example

Test problem:

$$\begin{array}{ll} u_t = u_{xx}, & x \in (0,1), \ t \in (0,T] \\ u(0,t) = u(1,t) = 0, & t \in (0,T] \\ u(x,0) = \sin(\pi x) + 0.1\sin(100\pi x) \end{array}$$

Exact solution:

$$u(x,t) = e^{-\pi^2 t} \sin(\pi x) + 0.1e^{-\pi^2 10^4 t} \sin(100\pi x)$$
(3)

1.3 Visualization of the damping in the diffusion equation

1.4 Damping of a discontinuity; problem and model

Problem.

Two pieces of a material, at different temperatures, are brought in contact at t=0. Assume the end points of the pieces are kept at the initial temperature. How does the heat flow from the hot to the cold piece?

Solution.

Assume a 1D model is sufficient (insulated rod):

$$u(x,0) = \left\{ \begin{array}{ll} U_L, & x < L/2 \\ U_R, & x \ge L/2 \end{array} \right.$$

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}, \quad u(0,t) = U_L, \ u(L,t) = U_R$$

 $1.5 \quad \text{Damping of a discontinuity; Backward Euler simulation}$

Movie¹

 ${\bf 1.6}\quad {\bf Damping\ of\ a\ discontinuity;\ Forward\ Euler\ simulation}$

 $Movie^2$

1.7 Damping of a discontinuity; Crank-Nicolson simulation

 $Movie^3$

1.8 Fourier representation

Represent I(x) as a Fourier series

$$I(x) \approx \sum_{k \in K} b_k e^{ikx}$$
 (4)

The corresponding sum for u is

$$u(x,t) \approx \sum_{k \in K} b_k e^{-\alpha k^2 t} e^{ikx}$$
 (5)

Such solutions are also accepted by the numerical schemes, but with an amplification factor A different from $\exp(-\alpha k^2 t)$:

$$u_q^n = A^n e^{ikq\Delta x} = A^n e^{ikx} \tag{6}$$

1.9 Analysis of the finite difference schemes

Stability:

- |A| < 1: decaying numerical solutions (as we want)
- A < 0: oscillating numerical solutions (as we do not want)

Accuracy:

• Compare numerical and exact amplification factor: A vs $A_e = \exp(-\alpha k^2 \Delta t)$

¹http://tinyurl.com/k3sdbuv/pub/mov-diffu/BE_CO.5/index.html

²http://tinyurl.com/k3sdbuv/pub/mov-diffu/FE_CO.5/index.html

³http://tinyurl.com/k3sdbuv/pub/mov-diffu/CN_C5/index.html

1.10 Analysis of the Forward Euler scheme

$$[D_t^+ u = \alpha D_x D_x u]_q^n$$

Inserting

$$u_q^n = A^n e^{ikq\Delta x}$$

leads to

$$A = 1 - 4C\sin^2\left(\frac{k\Delta x}{2}\right), \quad C = \frac{\alpha\Delta t}{\Delta x^2}$$
 (7)

The complete numerical solution is

$$u_q^n = (1 - 4C\sin^2 p)^n e^{ikq\Delta x}, \quad p = k\Delta x/2 \tag{8}$$

1.11 Results for stability

We always have $A \leq 1$. The condition $A \geq -1$ implies

$$4C\sin^2 p \le 2$$

The worst case is when $\sin^2 p = 1$, so a sufficient criterion for stability is

$$C \le \frac{1}{2} \tag{9}$$

or:

$$\Delta t \le \frac{\Delta x^2}{2\alpha} \tag{10}$$

Implications of the stability result.

Less favorable criterion than for $u_{tt}=c^2u_{xx}$: halving Δx implies time step $\frac{1}{4}\Delta t$ (not just $\frac{1}{2}\Delta t$ as in a wave equation). Need very small time steps for fine spatial meshes!

1.12 Analysis of the Backward Euler scheme

$$[D_t^- u = \alpha D_x D_x u]_q^n$$

$$u_q^n = A^n e^{ikq\Delta x}$$

$$A = (1 + 4C\sin^2 p)^{-1} \tag{11}$$

$$u_q^n = (1 + 4C\sin^2 p)^{-n} e^{ikq\Delta x}$$
(12)

1.13 Stability

We see from (11) that |A| < 1 for all $\Delta t > 0$ and that A > 0 (no oscillations).

1.14 Analysis of the Crank-Nicolson scheme

The scheme

$$[D_t u = \alpha D_x D_x \overline{u}^x]_q^{n + \frac{1}{2}}$$

leads to

$$A = \frac{1 - 2C\sin^2 p}{1 + 2C\sin^2 p} \tag{13}$$

$$u_q^n = \left(\frac{1 - 2C\sin^2 p}{1 + 2C\sin^2 p}\right)^n e^{ikp\Delta x} \tag{14}$$

1.15 Stability

The criteria A > -1 and A < 1 are fulfilled for any $\Delta t > 0$.

1.16 Summary of accuracy of amplification factors; large time steps

1.17 Summary of accuracy of amplification factors; time steps around the Forward Euler stability limit

1.18 Summary of accuracy of amplification factors; small time steps

1.19 Observations

- \bullet Crank-Nicolson gives oscillations and not much damping of short waves for increasing C.
- \bullet These waves will manifest themselves as high frequency oscillatory noise in the solution.
- All schemes fail to dampen short waves enough

The problems of correct damping for $u_t=u_{xx}$ is partially manifested in the similar time discretization schemes for $u'(t)=-\alpha u(t)$.