浙江强基联盟 2023 学年第一学期高三年级 9 月联考 化学试题

可能用到的相对原子质量: H 1 Li 7 C 12 N 14 O 16 Na 23 Mg 24 Al 27 Si 28 S 32 Cl 35, 5 K 39 Ca 40 Fe 56 Cu 64 Br 80 Ag 108 I 127 Ba 137

- 一、选择题(本大题共 16 小题,每小题 3 分,共 48 分,每小题列出的四个备选项中只有一个是符 合题目要求的,不选、多选、错选均不得分)
- 1. 下列物质属于纯净物的是
 - A. 酒精
- B. 酚醛树脂
- C. Fe(OH)3 胶体
- D. 汽油

- 2. 下列化学用语表示正确的是
 - A. 羟基的电子式: [: O:H]

B. s−p 轨道形成 σ 键的电子云图: \bigcirc

D. 钡离子无毒, BaSO4 可用作"钡餐"

- C. SF₆ 的空间构型:正八面体形
- D. 第一电离能: N>S>P
- 3. BaSO₄ 是重晶石的主要成分,下列说法不正确的是
 - A. 硫酸钡属于强电解质

 - C. 硫酸钡可以制备白色颜料
- 4. 物质的性质决定用途,下列说法正确的是
 - A. 银氨溶液具有弱还原性,可用于制银镜
 - C. 干冰升华能吸收大量热,可用于人工降雨
- B. CO有可燃性,可用于炼铁

B. 钡元素位于周期表的 s 区

D. Al 性质稳定,可用铝制槽车运输浓硫酸

5. 下列说法正确的是

- A. 装置甲中光照时,试管内壁有油状液滴,说明甲烷和氯气发生了反应
- B. 装置乙在滴定过程中应挤压玻璃珠下半部分(a 部位)
- C. 装置丙可用于实验室配制银氨溶液
- D. 装置丁中若将 ZnSO4 溶液替换成 CuSO4 溶液,将无法形成原电池
- 6. 法医常采用马氏试砷法鉴定砒霜(As₂O₃)中毒。检验时将盐酸、锌粉、试样混合,发生反应 $As_2O_3+6Zn+12HCl = 2AsH_3 \uparrow +6ZnCl_2+3H_2O$ 。将生成的气体导入热的石英管中,若 管壁上有亮黑色砷镜产生,则证明试样中含有砒霜。下列说法正确的是
 - A. 盐酸、锌粉、试样混合生成 AsH₃ 的反应中, As₂O₃ 是还原剂
 - B. 产生 2. 24 mL AsH₃ 气体,反应转移 6. 0×10⁻⁴ mol 电子
 - C. 若盐酸、锌粉、试样反应温度过高,可能会降低石英管中检测的效果
 - D. 石英管中通人样品产生的气体之前无需排出内部空气,但需要预热

- 7. N_A 为阿伏加德罗常数的值,下列说法正确的是
 - A. 等物质的量的 Na_2O_2 和 Na_2O 中所含阴离子数均为 N_A
 - B. 1 mol MgCl₂ 中 Cl—Cl 键个数为 N_A
 - C. 标准状况下, 0.1 mol C_3 H_6 中一定含有 $0.8N_A$ \uparrow σ 键
 - D. 0. 1 mol FeCl₃ 水解制得的 Fe(OH)₃ 胶体中胶粒数小于 0. 1N_A
- 8. 下列说法不正确的是
 - A. 苯甲酸重结晶过程中,加热、玻璃棒搅拌均能提高苯甲酸的溶解度
 - B. 利用质谱仪可区分乙醇和二甲醚
 - C. 研究有机物的一般步骤:分离、提纯→确定实验式→确定化学式→确定结构式
 - D. 用苯萃取溴水时有机层应从上口倒出
- 9. 下列反应的离子方程式正确的是
 - A. 向 FeBr₂ 溶液中通人足量 Cl₂:2Fe²⁺+2Br⁻+2Cl₂ ===2Fe³⁺+Br₂+4Cl⁻
 - B. 向 CaCl₂ 溶液中通人 CO₂: Ca²⁺+H₂O+CO₂ =—CaCO₃ ↓ +2H⁺
 - C. 向 NH₄Al(SO₄)₂ 溶液中滴入 Ba(OH)₂ 溶液使 SO₄²⁻ 完全沉淀: NH₄⁺ +Al³⁺ +2SO₄²⁻ +2Ba²⁺ +4OH⁻ →Al(OH)₃ ↓ +2BaSO₄ ↓ +NH₃ H₂O
 - D. 实验室用 FeS 制取少量 H₂S₁S²⁻+2H⁺──H₂S↑
- 10. 羟醛缩合的关键在于攫取 $\alpha-H$,使其转化成 H^+ 离去,其反应机理如图所示:

$$\begin{array}{c} O \\ CH_3-C-H+CH_3CHO \end{array} \xrightarrow{\text{催化剂}} \begin{array}{c} OH \\ |\beta \alpha \rangle \\ CH_3-C-H+CH_3CHO \end{array} \xrightarrow{\text{催化剂}} \begin{array}{c} CH_3-CH-CHCHO+H_2O \\ |\beta \rangle \\$$

下列说法不正确的是

- A. 该反应可用碱作催化剂
- B. 两分子苯甲醛可发生羟醛缩合反应
- C. 乙醛中— CH_3 的 C—H 的极性强于丙酮中— CH_3 的 C—H 的极性
- D. CH3—CH—CHO中存在单双键交替的结构体系,稳定性增加
- 11. 三聚 SO₃ 的结构如图所示,下列关于三聚 SO₃ 的推测合理的是
 - A. S原子的杂化方式与 SO。分子中 S原子的杂化方式相同
 - B. S 原子与 O 原子间的键长均相同
 - C. SO₃ 自发转变为三聚 SO₃ 的过程放热
 - D. 在水中的溶解度较小
- 12. 零下 40 ℃时,F₂ 可与冰反应生成 HFO 和 HF,下列说法不正确的是
 - A. HFO 中 F 为+1 价
 - C. HFO 的酸性强于 HClO
- 13. 锌碘双离子二次电池的示意图如图所示,下列说法不正确的是
 - A. 增加电解液的浓度可提升该电池存储的能量
 - B. 充电时, I_2 可与 I^- 进一步反应生成多碘化物,不利于 I_2 的沉积

D. HFO可与水反应生成 H₂O₂

- C. 放电时,溶液中离子的数目增大
- D. 防止多碘化物与 Zn 接触反应,应采用阴离子交换膜
- 14. 二十世纪初,工业上以 CO₂ 和 NH₃ 为原料在一定温度和压强下合成尿素。反应均可逆且分两步进行:①CO₂ 和 NH₃ 生成 NH₂COONH₄;②NH₂COONH₄分解生成原素。反应过程能量变化关系如图所示。将一定量的CO₂ 和 NH₃ 投入密闭容器中反应,下列说法正确的是

- A. 反应①限度更大, NH₂COONH₄ 含量会持续增大
- B. 合成尿素反应的 $\Delta H = E_1 E_4$
- C. 降低温度,可分离得到含量更高的 NH₂COONH₄
- D. 升高温度,反应②速率和限度均增加,有利于提高尿素的平衡产率
- 15. 碳酸盐存在条件下, Mg^{2+} 可转化为 $Mg(OH)_2$ 沉淀或 $MgCO_3$ 沉淀。图 1 为 0.1 $mol \cdot L^{-1}$ Na_2CO_3 溶液中含碳粒子物质的量分数一pH 关系曲线图,图 2 中的曲线满足 Mg^{2+} 在图 1 对应 Na_2CO_3 溶液在不同 pH 环境下,形成 $Mg(OH)_2$ 或 $MgCO_3$ 的溶解平衡关系。

下列说法不正确的是

- A. 图 2 中曲线 I 为 Mg(OH)2 溶解平衡曲线
- B. 由图 1 可知 2HCO₃ ← → H₂CO₃ + CO₃ − 的平衡常数为 10^{-3.88}
- C. 由图 1、图 2,初始状态 $c(Mg^{2+})=0.01 \text{ mol} \cdot L^{-1}$,pH=8.5 的该 Na_2CO_3 溶液中 Mg^{2+} 主要转化为 $MgCO_3$ 沉淀
- D. 由图 1 和图 2,增大 pH, Mg²⁺ −Na₂CO₃ 溶液体系中均可发生反应: MgCO₃(s)+2OH⁻(aq) → Mg(OH)₂(s)+CO₃²⁻(aq)
- 16. 下列方案设计、现象和结论正确的是

	方案设计	现象	结论
A	室温下将 TiCl4 液体和 AlCl3 固体分别暴露在潮湿的空气中	只有前者会冒"白烟"	水解能力: TiCl ₄ > AlCl ₃
В	将银粉分别加入硫酸和 HI 溶液中	前者无明显现象,后者生成无色 气体和黄色沉淀	氧化性:H ₂ SO ₄ <hi< td=""></hi<>
С	在浑浊的蛋清液中滴加少量 NaCl 的 稀溶液	蛋清液变澄清	氯化钠不能使蛋白质 发生盐析反应
D	向有机物样品中加入过量 NaOH 后, 再加入新制 Cu(OH) ₂	加热后产生砖红色沉淀	该有机物为醛

非选择题部分

=	、非选择题(本大题共 5 小题,共 52 分)
17.	(10分)卤素及其化合物在生产生活中应用广泛。请回答:
	(1)基态 Cl 原子的价层电子轨道表示式为。
	(2) 卤族元素可与其他元素形成多种化合物。
	①下列说法不正确的是。
	A. 能量最低的 F ⁺ 的 2p 轨道有一个成单电子
	B. 得到一个电子释放的能量:Cl(g)>Br(g)
	C. 化学键的极性: HBr>HI
	D. O ₂ F ₂ 分子的空间构型:直线形
	②BF ₃ 中 B 原子的杂化方式是,预测该分子可与 NH ₃ 、AlCl ₃ 中的发
	生化学反应,预测依据是。
	③HF 分子之间形成的氢键强于 H ₂ O 分子之间形成的氢键,
	但在压力相同时 H ₂ O 的沸点仍高于 HF,解释原因:
	。 ●阴离子
	(3)金属元素 M 与 F 形成的氟化物晶胞结构如图。已知该物质中
	M 的配位数为 8,则氟化物的化学式是,F 的配位数 ♥
	为。
18.	(10分)氮及其化合物的相互转化对生命、生产生活意义重大。NH3是重要的化工原料,可
	发生如下转化:
	NH_2OH NH_3 NH_3 NH_2OCOL_2 NH_2OCOC
	已知: N ₂ H ₄ 可被弱氧化剂氧化,但是其盐性质稳定。请回答:
	(1)写出过量 NH ₃ 发生转化 I 的化学反应方程式:
	(2)下列说法正确的是
	A. 上述转化均属于氮的固定
	B. 实验室可借助浓氨水和生石灰反应快速制取少量氨气
	C. 液态 N ₂ H ₄ 是良好的溶剂,推测 CH ₄ 易溶于其中
	D. 硝酸工业排放的 NO _x 尾气可用 NH ₃ 处理生成无污染的物质
	(3)NH ₂ OH、N ₂ H ₄ 与NH ₃ 类似,具有碱性,NH ₂ OH、N ₂ H ₄ 中碱性较弱的是,
	原因是
	(4)转化Ⅲ消耗 N ₂ H ₄ 与 HNO ₂ 的物质的量相等,产物 A 不含氧元素。则 A 的化学式为
	•
	(5)反应Ⅱ在碱性条件下按方程式计量数之比投料,反应进行完全。请设计实验检验反应还
	原产物的阴离子:。
19.	(10分)甲烷催化重整是工业制氢的重要途径。涉及的主要反应如下:
	①甲烷部分氧化反应: $CH_4(g) + \frac{1}{2}O_2(g) \Longrightarrow CO(g) + 2H_2(g)$ $\Delta H = -35.7 \text{ kJ} \cdot \text{mol}^{-1}$
	②甲烷水蒸气重整反应:CH ₄ (g)+H ₂ O(g)──CO(g)+3H ₂ (g) △H=+206.2 kJ·mol ⁻¹
	③水气转换反应: $CO(g) + H_2O(g) \longrightarrow CO_2(g) + H_2(g)$ $\Delta H = -41.2 \text{ kJ} \cdot \text{mol}^{-1}$
	请回答:
	(1)甲烷水蒸气重整-水气变换耦合反应为 $CH_4(g)+2H_2O(g)$ $\longrightarrow CO_2(g)+4H_2(g)$,该

【高三化学 第5页(共6页)】

(3)整个制备过程中多次提到了趁热过滤,但在普通过滤操作的过程中由于过滤时间长,往 往在过滤的过程中产品或杂质由于冷却而析出,从而影响了产品的质量和产量,某小组

B. 由固体 X 制得 CaO₂,为了得到颗粒较细的产品,一般采用高温烘干

D. 操作 [[冰水浴是为了防止反应过于剧烈,同时减少反应物的损失

将过滤装置进行如下调整,以达到快速过滤的目的,设备 X 的名称是

C. 步骤二中为了使 CaCO₃ 充分溶解,一般加入过量的盐酸

1-布氏漏斗(可承受加大压强) 2-橡皮塞(起到密封效果)

3-吸滤瓶(玻璃材质) 4-橡皮管(带阀门)

(4)CaO2 含量的测定

准确称取 0.1000 g CaO_2 样品于 250 mL 锥形瓶中,加入 50 mL 水和 15 mL 2 mol·L⁻¹ HCl 溶液振荡溶解,再加入 3 滴 0.05 mol·L⁻¹ MnSO₄ 溶液,立即用 0.02500 mol·L⁻¹ KMnO₄ 溶液滴定,平行测定三次,平均消耗 KMnO₄ 溶液 20.00 mL。

- ①样品中 CaO₂ 的质量分数为 (高锰酸钾浓度较低时不能氧化 Cl⁻)。
- ②滴定过程中加入 MnSO4 溶液的作用是______。
- 21. (12分)某研究小组按下列路线合成胃动力药酒石酸唑吡坦。

已知:
$$2RCOOH \xrightarrow{Cl_2CHCHCl_2} \xrightarrow{Q} \xrightarrow{Q} + H_2O_0$$

请回答:

- (1)化合物 D 的含氧官能团名称是。
- (2)下列说法不正确的是。

A. A+B→C 的转变属于"原子经济性反应"

- B. C→D 的转变需使用 FeBr₃ 作催化剂
- C. 化合物 F 可在酸性或碱性条件下发生水解反应
- D. 化合物 G 中含有两个相同的手性碳原子
- (3)化合物 C 的结构简式是。
- (4)写出 D→E 的化学方程式: 。
- (5)设计以HC=CH为原料合成 B 的路线(用流程图表示,无机试剂任选)。
- (6)写出 4 种同时符合下列条件的化合物 E 的同分异构体的结构简式: 。
 - ①分子含有两个取代基数目相同的苯环,且苯环间不直接相连,无其他环,无顺反异构;
 - ②¹H-NMR 谱和 IR 谱检测表明:分子中 N 元素及 O 元素的化学环境完全相同,有与

○ ‖ 苯环直接相连的—C—NH₂。