Formelsammlung Mathematik

August 2019

Dieses Buch steht unter der Lizenz Creative Commons CC0 1.0.

0 1 2 3	0000 0001 0010 0011	0 1 2 3	0 1 2 3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	8	10
9	1001	9	11
10	1010	A	12
11	1011	B	13
12	1100	C	14
13	1101	D	15
14	1110	E	16
15	1111	F	17

$$\sin(-z) = -\sin z$$

$$\cos(-z) = \cos z$$

$$\sin(x + y) = \sin x \cos y + \cos x \sin y$$

$$\sin(x - y) = \sin x \cos y - \cos x \sin y$$

$$\cos(x + y) = \cos x \cos y - \sin x \sin y$$

$$\cos(x - y) = \cos x \cos y + \sin x \sin y$$

$$\sin(2x) = 2\sin x \cos x$$

$$\cos(2x) = 1 - 2\sin^2 x = 2\cos^2 x - 1$$

$$\sin(3x) = 3\sin x - 4\sin^3 x$$

$$\cos(3x) = 4\cos^3 x - 3\cos x$$

$$\sin^2 z + \cos^2 z = 1$$

$$e^{iz} = \cos z + i\sin z$$

$$e^z = \cosh z + \sinh z$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Polarkoordinaten

$$x = r \cos \varphi$$
$$y = r \sin \varphi$$
$$\varphi \in (-\pi, \pi]$$
$$\det J = r$$

Zylinderkoordinaten

$$x = r_{xy} \cos \varphi$$
$$y = r_{xy} \sin \varphi$$
$$z = z$$
$$\det J = r_{xy}$$

Kugelkoordinaten

$$x = r \sin \theta \cos \varphi$$

$$y = r \sin \theta \sin \varphi$$

$$z = r \cos \theta$$

$$\varphi \in (-\pi, \pi], \ \theta \in [0, \pi]$$

$$\det J = r^2 \sin \theta$$

$$\theta = \beta - \pi/2$$

$$\beta \in [-\pi/2, \pi/2]$$

$$\cos \theta = \sin \beta$$

$$\sin \theta = \cos \beta$$

Inhaltsverzeichnis

1 (Grundlagen	5	2.2	Zahlentheoretische Funktionen	19
1.1	Arithmetik	5		2.2.1 Eulersche Phi-Funktion	19
	1.1.1 Zahlenbereiche	5		2.2.2 Carmichael-Funktion	19
	1.1.2 Intervalle	5			
	1.1.3 Summen	5	3 A	Analysis	20
	1.1.4 Produkte	5	3.1	Ungleichungen	20
	1.1.5 Binomischer Lehrsatz	6		3.1.1 Dreiecksungleichung	20
	1.1.6 Potenzgesetze	6		3.1.2 Bernoullische Ungleichung	20
1.2	Gleichungen	6	3.2	Konvergenz	20
	1.2.1 Äquivalenzumformungen	6		3.2.1 Beschränkte Folgen	20
	1.2.2 Quadratische Gleichungen	7			20
1.3	Komplexe Zahlen	7		3.2.3 Konvergente Folgen	20
	1.3.1 Rechenoperationen	7		3.2.4 Häufungspunkte	21
	1.3.2 Betrag	7		3.2.5 Cauchy-Folge	21
	1.3.3 Konjugation	7	3.3	Reihen	21
	1.3.4 Darstellungen	7		3.3.1 Absolute Konvergenz	21
1.4	Logik	7		3.3.2 Konvergenzkriterien	21
	1.4.1 Aussagenlogik	7		3.3.3 Cauchy-Produkt	21
	1.4.2 Prädikatenlogik	10	3.4	Reelle Funktionen	22
1.5	Mengenlehre	11	J	3.4.1 Monotone Funktionen	22
1.5	1.5.1 Definitionen	11			22
	1.5.2 Boolesche Algebra	11		3.4.3 Stetige Funktionen	22
	1.5.3 Teilmengenrelation	11	3.5	Differentialrechnung	22
	1.5.4 Natürliche Zahlen	11	3.3	3.5.1 Differential quotient	22
	1.5.5 ZFC-Axiome	11		3.5.2 Ableitungsregeln	22
1.6	Funktionen	12			22
1.0	1.6.1 Injektionen	12		3.5.4 Taylorreihe	22
	-	12		3.5.5 Kurvendiskussion	23
		12	3.6	Integralrechnung	23
	•	12	3.0	3.6.1 Regelfunktionen	23
	•	12			23
	1.6.5 Einschränkung	13			23
	1.6.7 Urbild	13		3.6.3 Hauptsatz	23
1 7		13			23
1.7	Kardinalzahlen			3	24
	1.7.1 Definitionen zur Mächtigkeit	13 13	2.7	3	
	3		3.7		25
1.0		14			25
1.8	Formale Systeme	15		3.7.2 Gradient	25
	1.8.1 Formale Sprachen	15	2.0		25
	1.8.2 Formale Grammatiken	15	3.8	Vektorfelder	25
	1.8.3 Formale Systeme	15			25
1.0	1.8.4 Semantik		2.0	3.8.2 Richtungsableitung	25
1.9	Mathematische Strukturen	16	3.9	Variationsrechnung	25
	1.9.1 Algebraische Strukturen	16		3.9.1 Fundamentallemma	25
	1.9.2 Relationen, Ordnungsstrukturen	16			25
1.10	Zahlenbereiche	17	3.10		26
	1.10.1 Natürliche Zahlen	17		3.10.1 Fourierreihen	26
	1.10.2 Rationale Zahlen	17			
	1.10.3 Reelle Zahlen	17			27
			4.1	Grundbegriffe	27
	unktionen	18		4.1.1 Norm	27
2.1	Elementare Funktionen	18		4.1.2 Skalarprodukt	27
	2.1.1 Exponentialfunktion	18	4.2		28
	2.1.2 Logarithmusfunktion	18		4.2.1 Koordinatenraum	28
	2.1.3 Winkelfunktionen	18		4.2.2 Kanonisches Skalarprodukt	28

4 Inhaltsverzeichnis

	4.2.3 Vektorprodukt	28	9 Algebra	40
4.3	Matrizen	29	9.1 Gruppentheorie	40
	4.3.1 Quadratische Matrizen	29	9.1.1 Grundbegriffe	40
	4.3.2 Matrixfunktionen	30	9.1.2 Gruppenaktionen	40
4.4	Lineare Gleichungssysteme	31	9.2 Ringe	40
4.5	Multilineare Algebra	31	9.2.1 Polynome	40
	4.5.1 Äußeres Produkt	31	9.3 Körper	41
4.6	Analytische Geometrie	32		
	4.6.1 Geraden	32	10 Wahrscheinlichkeitsrechnung	42
	4.6.2 Ebenen	32	10.1 Diskrete Verteilungen	42
			10.1.1 Diskreter Wahrscheinlichkeitsraum	42
5 I	Differentialgeometrie	33	10.1.2 Axiome von Kolmogorow	42
5.1	Kurven	33	10.1.3 Rechenregeln	42
	5.1.1 Parameterkurven	33	10.1.4 Bedingte Wahrscheinlichkeit	42
	5.1.2 Differenzierbare Parameterkurven	33	10.1.5 Unabhängige Ereignisse	43
5.2	Koordinatensysteme	33	10.1.6 Gleichverteilung	43
	5.2.1 Polarkoordinaten	33	10.1.7 Zufallsvariablen	43
5.3	Mannigfaltigkeiten	33		
	5.3.1 Grundbegriffe	33	11 Tabellen	44
	5.3.2 Skalarfelder	34	11.1 Lineare Algebra	44
	5.3.3 Vektorfelder	34	11.1.1 Lineare Abbildungen	44
	5.3.4 Kovariante Ableitung	34	11.2 Kombinatorik	45
5.4	Riemannsche Geometrie	34	11.2.1 Binomialkoeffizienten	45
			11.2.2 Stirling-Zahlen erster Art	46
	unktionentheorie	35	11.2.3 Stirling-Zahlen zweiter Art	46
6.1	Holomorphe Funktionen	35	11.3 Zahlentheorie	47
6.2	Harmonische Funktionen	35	11.3.1 Primzahlen	47
6.3	Wegintegrale	36	12 Anhang	48
7 [Dynamische Systeme	37	12.1 Griechisches Alphabet	48
, . 7.1	Grundbegriffe	37	12.2 Frakturbuchstaben	48
7.1 7.2	Iterationen	37 37	12.3 Mathematische Konstanten	48
7.2	terationen	51	12.4 Physikalische Konstanten	48
8 I	Kombinatorik	38	12.5 Einheiten	49
8.1	Kombinatorische Funktionen	38	12.5.1 Vorsätze	49
	8.1.1 Faktorielle	38	12.5.2 SI-System	49
	8.1.2 Binomialkoeffizienten	38	12.5.3 Nicht-SI-Einheiten	49
8.2	Differenzenrechnung	38	12.5.4 Britische Einheiten	49
8.3	Endliche Summen	38	12.6 Abkürzungsverzeichnis	50
8.4	Formale Potenzreihen	39	12.6.1 Alphabetisches Verzeichnis	50
	8.4.1 Ring der formalen Potenzreihen	39	12.6.2 Thematisches Verzeichnis	50
	8 4 2 Binomische Reihe	39	12.7 Mathematische Zeichen	51

1 Grundlagen

1.1 Arithmetik

1.1.1 Zahlenbereiche

Natürliche Zahlen ab null:

$$\mathbb{N}_0 := \{0, 1, 2, 3, 4, \ldots\}.$$

Natürliche Zahlen ab eins:

$$\mathbb{N} := \{1, 2, 3, 4, 5, \ldots\}.$$

Ganze Zahlen:

$$\mathbb{Z} := \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}.$$

Rationale Zahlen:

$$\mathbb{Q} := \{ \frac{z}{n} \mid z \in \mathbb{Z}, n \in \mathbb{N} \}.$$

Reelle Zahlen:

$$\mathbb{R} := \text{Vervollständigung von } \mathbb{Q}.$$

Positive reelle Zahlen:

$$\mathbb{R}^+ := \{ x \in \mathbb{R} \mid x > 0 \}.$$

Nichtnegative reelle Zahlen:

$$\mathbb{R}_0^+ := \{ x \in \mathbb{R} \mid x \ge 0 \}.$$

Negative reelle Zahlen:

$$\mathbb{R}^- := \{ x \in \mathbb{R} \mid x < 0 \}.$$

Nichtpositive reelle Zahlen:

$$\mathbb{R}_0^- := \{ x \in \mathbb{R} \mid x \le 0 \}.$$

Komplexe Zahlen:

$$\mathbb{C}:=\{a+b\mathrm{i}\mid a,b\in\mathbb{R}\}.$$

Quaternionen:

$$\mathbb{H} := \{ a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \mid a, b, c, d \in \mathbb{R} \}.$$

Algebraische Zahlen:

$$\mathbb{A} := \{ a \in \mathbb{C} \mid \exists P \in \mathbb{Q}[X] \colon P(a) = 0 \}.$$

Irrationale Zahlen:

$$\mathbb{R} \setminus \mathbb{Q} = \{\sqrt{2}, \sqrt{3}, \pi, e, \ldots\}.$$

Transzendente Zahlen:

$$\mathbb{R} \setminus \mathbb{A} = \{\pi, e, \ldots\}.$$

Es gelten die folgenden Teilmengenbeziehungen:

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}\subset\mathbb{H}.$$

Es gilt die folgende Abstufung der Mächtigkeit:

$$|\mathbb{N}|=|\mathbb{Z}|=|\mathbb{Q}|=|\mathbb{A}|<|\mathbb{R}|=|\mathbb{C}|.$$

1.1.2 Intervalle

Abgeschlossene Intervalle:

$$[a,b] := \{x \in \mathbb{R} \mid a \le x \le b\}.$$
 (1.17)

(1.1) Offene Intervalle:

(1.4)

(1.11)

(1.12)

(1.13)

$$(a,b) := \{ x \in \mathbb{R} \mid a < x < b \}. \tag{1.18}$$

(1.2) Halboffene Intervalle:

$$(a,b] := \{ x \in \mathbb{R} \mid a < x \le b \}, \tag{1.19}$$

$$(1.3) [a,b) := \{x \in \mathbb{R} \mid a \le x < b\}. (1.20)$$

Unbeschränkte Intervalle:

$$[a, \infty) := \{ x \in \mathbb{R} \mid a \le x \}, \tag{1.21}$$

$$(a, \infty) := \{ x \in \mathbb{R} \mid a < x \}, \tag{1.22}$$

$$(-\infty, b] := \{ x \in \mathbb{R} \mid x \le b \},\tag{1.23}$$

$$(1.5) (-\infty, b) := \{ x \in \mathbb{R} \mid x < b \}. (1.24)$$

1.1.3 Summen

(1.6) **Definition. Summe.**

Für eine Folge (a_n) :

(1.7)
$$\sum_{k=0}^{m-1} a_k := 0, \quad \text{(leere Summe)}$$
 (1.25)

(1.8)
$$\sum_{k=m}^{n} a_k := a_n + \sum_{k=m}^{n-1} a_k. \qquad (n \ge m)$$
 (1.26)

(1.9) Für eine Konstante c gilt:

(1.10)
$$\sum_{k=m}^{n} c = (n-m+1) c.$$
 (1.27)

Der Summierungsoperator ist linear:

$$\sum_{k=m}^{n} (a_k + b_k) = \sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k,$$
(1.28)

$$\sum_{k=1}^{n} c a_k = c \sum_{k=1}^{n} a_k. {(1.29)}$$

Indexverschiebung ist möglich:

(1.14)
$$\sum_{k=m}^{n} a_k = \sum_{k=m-j}^{n-j} a_{k+j} = \sum_{k=m+j}^{n+j} a_{k-j}.$$
 (1.30)

(1.15) Aufspaltung ist möglich:

(1.16)
$$\sum_{k=m}^{n} a_k = \sum_{k=m}^{p} a_k + \sum_{k=p+1}^{n} a_k.$$

Vertauschung der Reihenfolge bei Doppelsummen:

$$\sum_{i=p}^{m} \sum_{i=a}^{n} a_{ij} = \sum_{i=a}^{n} \sum_{i=p}^{m} a_{ij}.$$
(1.32)

1.1.4 Produkte

Definition. Produkt.

6 1 Grundlagen

Für eine Folge (a_n) :

$$\prod_{k=m}^{m-1} a_k := 1, \qquad \text{(leeres Produkt)} \tag{1.33}$$

$$\prod_{k=m}^{n} a_k := a_n \prod_{k=m}^{n-1} a_k. \qquad (n \ge m)$$
(1.34)

Für eine Konstante c gilt:

$$\prod_{k=m}^{n} c = c^{n-m+1}.$$

Unter Voraussetzung des Kommutativgesetzes gilt

$$\prod_{k=m}^{n} (a_k b_k) = \left(\prod_{k=m}^{n} a_k\right) \left(\prod_{k=m}^{n} b_k\right),\,$$

$$\prod_{k=m}^{n} a_{k}^{c} = \left(\prod_{k=m}^{n} a_{k}\right)^{c}. \qquad (c \in \mathbb{N}_{0})$$

Formel (1.37) gilt auch für $a_k \in \mathbb{R}^+$ und $c \in \mathbb{C}$. Formel (1.36) ist ein Spezialfall von

$$\prod_{i=p}^{m} \prod_{j=q}^{n} a_{ij} = \prod_{j=q}^{n} \prod_{i=p}^{m} a_{ij}.$$

Indexverschiebung ist möglich:

$$\prod_{k=m}^{n} a_k = \prod_{k=m-j}^{n-j} a_{k+j} = \prod_{k=m+j}^{n+j} a_{k-j}.$$

Aufspaltung ist möglich:

$$\prod_{k=m}^{n} a_k = \left(\prod_{k=m}^{p} a_k\right) \left(\prod_{k=n+1}^{n} a_k\right).$$

Für $a_{\nu} \in \mathbb{R}^+$ gilt

$$\prod_{k=m}^{n} a_k = \exp\bigg(\sum_{k=m}^{n} \ln(a_k)\bigg).$$

1.1.5 Binomischer Lehrsatz

Sei R ein unitärer Ring, z. B. $R = \mathbb{R}$ oder $R = \mathbb{C}$. Für $a, b \in R$ mit ab = ba gilt:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

und

$$(a-b)^n = \sum_{k=0}^n \binom{n}{k} (-1)^k a^{n-k} b^k.$$

Die ersten Formeln sind:

$$(a+b)^2 = a^2 + 2ab + b^2$$
.

$$(a-b)^2 = a^2 - 2ab + b^2$$
.

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$
,

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$
,

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4,$$

$$(a-b)^4 = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4$$

1.1.6 Potenzgesetze

Definition. Potenz.

Für a aus einem Monoid:

$$a^0 := 1, (1.50)$$

$$a^{n} := a^{n-1} \cdot a. \quad (n \in \mathbb{N})$$

$$\text{Für } a \in \mathbb{R}, \, a > 0 \text{ und } x \in \mathbb{C}:$$

$$(1.50)$$

$$a^x := \exp(\ln(a) x). \tag{1.52}$$

Für $a \in \mathbb{R}$, a > 0 und $x, y \in \mathbb{C}$ gilt: (1.35)

$$a^{x+y} = a^x a^y$$
, $a^{x-y} = \frac{a^x}{a^y}$, $a^{-x} = \frac{1}{a^x}$. (1.53)

1.2 Gleichungen

Definition. Bestimmungsgleichung.

Sind f, g auf der Grundmenge G definierte Funktionen, so

$$f(x) = g(x) \tag{1.54}$$

eine Bestimmungsgleichung, wenn die Lösungemenge

$$L = \{ x \in G \mid f(x) = g(x) \} \tag{1.55}$$

gesucht ist. (1.38)

(1.36)

(1.37)

Bei den $x \in G$ kann es sich auch um Tupel $x = (x_1, x_2)$ oder $x = (x_1, x_2, x_3)$ usw. handeln. Man spricht in diesem Fall von einer Gleichung in mehreren Variablen.

Handelt es sich bei den Funktionswerten von f, g um Tupel, (1.39)dann spricht man von einem Gleichungssystem.

1.2.1 Äquivalenzumformungen

Äquivalenzumformungen lassen die Lösungsmenge einer Gleichung unverändert. Seien A(x), B(x) zwei Aussagefor-(1.40)men bzw. zwei Gleichungen. Aus

$$\forall x \in G [A(x) \iff B(x)] \tag{1.56}$$

folgt

$$(1.41) \{x \in G \mid A(x)\} = \{x \in G \mid B(x)\}. (1.57)$$

Aus

(1.42)

(1.43)

(1.44)

(1.45)

(1.49)

$$\forall x \in G [A(x) \Longrightarrow B(x)] \tag{1.58}$$

folgt jedoch nur noch

$$\{x \in G \mid A(x)\} \subseteq \{x \in G \mid B(x)\}.$$
 (1.59)

Seien f, g, h Funktionen mit Definitionsmenge G und Zielmenge $Z = \mathbb{R}$ oder $Z = \mathbb{C}$.

Für alle x gilt:

$$f(x) = g(x) \Longleftrightarrow f(x) + h(x) = g(x) + h(x), \tag{1.60}$$

$$f(x) = g(x) \Longleftrightarrow f(x) - h(x) = g(x) - h(x). \tag{1.61}$$

Besitzt h(x) keine Nullstellen, dann gilt für alle x:

$$f(x) = g(x) \iff f(x)h(x) = g(x)h(x), \tag{1.62}$$

$$f(x) = g(x) \iff \frac{f(x)}{h(x)} = \frac{f(x)}{h(x)}.$$
 (1.63)

(1.46)
$$h(x) = h(x)$$
(1.47) Besitzt $h(x)$ aber Nullstellen, dann gilt immerhin noch für alle x :

(1.48)
$$f(x) = g(x) \implies f(x)h(x) = g(x)h(x). \tag{1.64}$$

1.3 Komplexe Zahlen 7

Sei $f,g\colon G\to Z$. Sei $\varphi_x\colon Z\to Z'$ eine Injektion für jedes $x\in G$. Es gilt

$$f(x) = g(x) \iff \varphi_x(f(x)) = \varphi_x(g(x))$$
 (1.65)

für alle $x \in G$.

Bei einer Kette von Äquivalenzumformungen wird links das Äquivalenzzeichen geschrieben, in der Mitte die Gleichung und rechts hinter einem senkrechten Strich die Operation $\varphi_x(t)$, welche als nächstes auf beide Seiten der Gleichung angwendet werden soll.

Beispiel:

$$2x + 4 = 2x^{2} - 8x + 2 \qquad | t/2$$

$$\iff x + 2 = x^{2} - 4x + 1 \qquad | t - 2$$

$$\iff x = x^{2} - 4x - 1 \qquad | t - x$$

$$\iff 0 = x^{2} - 7x - 1.$$

Am Anfang befinden sich eventuell Bedingungen für x. Bei Fallunterscheidungen wird eine Verschärfung der Bedingungen vorgenommen, so dass es zur Verkleinerung der Grundmenge kommt. Nach einer Fallunterscheidung ergeben sich unter Umständen neue Injektionen.

Eine Gleichung impliziert immer auch Gleichheit nach Anwendung einer beliebigen Abbildung φ auf beide Seiten, d. h.

$$f(x) = g(x) \implies \varphi(f(x)) = \varphi(g(x)).$$
 (1.66)

Bei einem nichtinjektiven φ handelt es sich jedoch nicht mehr um eine Äquivalenzumformung, wodurch es zur Vergrößerung der Lösungsmenge kommt.

Die tatsächliche Lösungsmenge lässt sich finden, indem für alle Lösungen die Probe durch Einsetzen in die ursprüngliche Gleichung gemacht wird, wodurch sich die Scheinlösungen abscheiden lassen.

1.2.2 Quadratische Gleichungen

Definition. Quadratische Gleichung.

Eine Gleichung der Form $ax^2 + bx + c = 0$ mit $a \ne 0$ heißt quadratische Gleichung.

Wegen $a \neq 0$ lässt sich die Gleichung durch a dividieren und es ensteht die äquivalente Normalform $x^2 + px + q = 0$ mit p := b/a und q := c/a.

Lösung. Seien nun die *a, b, c* reelle Zahlen. Die Zahl

$$D = p^2 - 4q (1.67)$$

heißt Diskriminante. Für D > 0 gibt es zwei reelle Lösungen:

$$x_1 = \frac{-p - \sqrt{D}}{2} = \frac{-b - \sqrt{b^2 - 4ac}}{2a},\tag{1.68}$$

$$x_2 = \frac{-p + \sqrt{D}}{2} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}.$$
 (1.69)

Für D=0 fallen beiden Lösungen zu einer doppelten Lösung zusammen:

$$x_1 = x_2 = -\frac{p}{2} = -\frac{b}{2a}. (1.70)$$

Für D < 0 gibt es keine reelle Lösung. Aber es gibt zwei komplexe Lösungen, die zueinander konjugiert sind:

$$x_1 = \frac{-p - i\sqrt{|D|}}{2}, \quad x_2 = \frac{-p + i\sqrt{|D|}}{2}.$$
 (1.71)

In jedem Fall gelten die Formeln von Vieta:

$$p = -(x_1 + x_2), q = x_1 x_2.$$
 (1.72)

1.3 Komplexe Zahlen

1.3.1 Rechenoperationen

Siehe Tabelle 1.1. Für die Division gilt

$$\frac{z_1}{z_2} = \frac{z_1 \overline{z}_2}{z_2 \overline{z}_2} = \frac{z_1 \overline{z}_2}{|z_2|^2},\tag{1.73}$$

$$\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{\overline{z}}{|z|^2}.\tag{1.74}$$

1.3.2 Betrag

Für alle $z_1, z_2 \in \mathbb{C}$ gilt:

$$|z_1 z_2| = |z_1| |z_2|, (1.75)$$

$$z_2 \neq 0 \implies \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|},\tag{1.76}$$

$$z\,\overline{z} = |z|^2. \tag{1.77}$$

1.3.3 Konjugation

Für alle $z_1, z_2 \in \mathbb{C}$ gilt:

$$\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2, \qquad \overline{z_1 - z_2} = \overline{z}_1 - \overline{z}_2, \tag{1.78}$$

$$\overline{z_1 z_2} = \overline{z_1} \, \overline{z_2}, \qquad z_2 \neq 0 \implies \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}, \qquad (1.79)$$

$$\overline{\overline{z}} = z, \qquad |\overline{z}| = |z|, \qquad z\,\overline{z} = |z|^2,$$
 (1.80)

$$Re(z) = \frac{z + \overline{z}}{2}, \qquad Im(z) = \frac{z - \overline{z}}{2i}, \qquad (1.81)$$

$$\overline{\cos(z)} = \cos(\overline{z}), \qquad \overline{\sin(z)} = \sin(\overline{z}), \qquad (1.82)$$

$$\overline{\exp(z)} = \exp(\overline{z}). \tag{1.83}$$

Ist f holomorph auf ganz \mathbb{C} und $f(\mathbb{R}) \subseteq \mathbb{R}$, dann gilt

$$\overline{f(z)} = f(\overline{z}). \tag{1.84}$$

1.3.4 Darstellungen

Die Darstellung der komplexen Zahlen als Matrizen ermöglicht der Körperisomorphismus

$$\Phi: \mathbb{C} \to \Phi(\mathbb{C}), \quad \Phi(a+bi) := \begin{bmatrix} a & -b \\ b & a \end{bmatrix}.$$
(1.85)

Hierbei gilt $\Phi(\mathbb{C} \setminus \{0\}) \subset GL(\mathbb{R}, 2)$. Gemäß

$$\Phi(re^{i\varphi}) = r \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}$$
 (1.86)

ist $\mathbb{C}\setminus\{0\}$ isomorph zu \mathbb{R}^+ SO(2), der Gruppe der Drehskalierungen.

Es gilt

$$\Phi(\bar{z}) = \Phi(z)^T, \qquad \Phi(z^{-1}) = \Phi(z)^{-1}, \qquad (1.87)$$

$$|z|^2 = \det(\Phi(z)), \qquad \Phi(e^z) = \exp(\Phi(z)).$$
 (1.88)

1.4 Logik

1.4.1 Aussagenlogik

1.4.1.1 Boolesche Algebra

Distributivgesetze:

$$A \lor (B \land C) \iff (A \lor B) \land (A \lor C),$$
 (1.89)

$$A \wedge (B \vee C) \iff (A \wedge B) \vee (A \wedge C).$$
 (1.90)

1.4.1.2 Zweistellige Funktionen

Es gibt 16 zweistellige boolesche Funktionen. Die wichtigsten sind in Tabelle 1.3 definiert. Tabelle 1.4 gibt eine Übersicht über alle 16.

8 1 Grundlagen

Tabelle 1.1: Rechnen mit komplexen Zahlen

Name	Operation	Polarform	kartesische Form
Identität	z	$= r e^{i\varphi}$	= a + bi
Realteil	Re(z)	$= r \cos \varphi$	= <i>a</i>
Imaginärteil	Im(z)	$= r \sin \varphi$	= <i>b</i>
Addition	$z_1 + z_2$		$= (a_1 + a_2) + (b_1 + b_2)i$
Subtraktion	$z_1 - z_2$		$= (a_1 - a_2) + (b_1 - b_2)i$
Multiplikation	$z_1 z_2$	$= r_1 r_2 e^{i(\varphi_1 + \varphi_2)}$	$= (a_1a_2 - b_1b_2) + (a_1b_2 + a_2b_1)i$
Division	$\frac{z_1}{z_2}$	$=\frac{r_1}{r_2}\mathrm{e}^{\mathrm{i}(\varphi_1-\varphi_2)}$	$= \frac{a_1a_2 + b_1b_2}{a_2^2 + b_2^2} + \frac{a_2b_1 - a_1b_2}{a_2^2 + b_2^2}i$
Kehrwert	$\frac{1}{z}$	$=\frac{1}{r}e^{-i\varphi}$	$= \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}i$
Konjugation	\overline{z}	$= re^{-\varphi i}$	=a-bi
Betrag	z	= <i>r</i>	$=\sqrt{a^2+b^2}$
Argument	arg(z)	$= \varphi$	$= s(b) \arccos\left(\frac{a}{r}\right)$
(.	1		

$$s(b) := \begin{cases} +1 & \text{wenn } b \ge 0, \\ -1 & \text{wenn } b < 0 \end{cases}$$

Tabelle 1.2: Boolesche Algebra

Disjunktion	Konjunktion	Bezeichnung
$A \vee A \equiv A$	$A \wedge A \equiv A$	Idempotenzgesetze
$A \vee 0 \equiv A$	$A \wedge 1 \equiv A$	Neutralitätsgesetze
$A \vee 1 \equiv 1$	$A \wedge 0 \equiv 0$	Extremalgesetze
$A \vee \overline{A} \equiv 1$	$A \wedge \overline{A} \equiv 0$	Komplementärgesetze
$A \vee B \equiv B \vee A$	$A \wedge B \equiv B \wedge A$	Kommutativgesetze
$(A \lor B) \lor C \equiv A \lor (B \lor C)$	$(A \land B) \land C \equiv A \land (B \land C)$	Assoziativgesetze
$\overline{A \vee B} \equiv \overline{A} \wedge \overline{B}$	$\overline{A \wedge B} \equiv \overline{A} \vee \overline{B}$	De Morgansche Regeln
$A \lor (A \land B) \equiv A$	$A \wedge (A \vee B) \equiv A$	Absorptionsgesetze

Tabelle 1.3: Wahrheitstafel

A	B	Wert	$A \wedge B$	$A \vee B$	$A \Rightarrow B$	$A \Leftrightarrow B$
0	0	a	0	0	1	1
0	1	b	0	1	1	0
1	0	С	0	1	0	0
1	1	d	1	1	1	1

1.4.1.3 Darstellung mit Negation, Konjunktion und Disjunktion

$$(A \Rightarrow B) \equiv \overline{A} \lor B, \tag{1.91}$$

$$(A \Leftrightarrow B) \equiv (\overline{A} \wedge \overline{B}) \vee (A \wedge B), \tag{1.92}$$

$$A \oplus B \equiv (\overline{A} \wedge B) \vee (A \wedge \overline{B}). \tag{1.93}$$

Tabelle 1.4: Große Wahrheitstafel

Nr.	dcba	Funktion	Name
0	0000	0	Kontradiktion
1	0001	$\neg (A \lor B)$	NOR
2	0010	$\neg (B \Rightarrow A)$	
3	0011	$\neg A$	
4	0100	$\neg(A \Rightarrow B)$	
5	0101	$\neg B$	
6	0110	$A \oplus B$	Kontravalenz
7	0111	$\neg(A \land B)$	NAND
8	1000	$A \wedge B$	Konjunktion
9	1001	$A \Leftrightarrow B$	Äquivalenz
10	1010	B	Projektion
11	1011	$A \Rightarrow B$	Implikation
12	1100	A	Projektion
13	1101	$B \Rightarrow A$	Implikation
14	1110	$A \vee B$	Disjunktion
15	1111	1	Tautologie

9 1.4 Logik

(1.94)

(1.96)

(1.97)

(1.98)

1.4.1.4 Tautologien

Modus ponens:

$$(A \Rightarrow B) \land A \implies B.$$

Modus tollens:

$$(A \Rightarrow B) \wedge \overline{B} \implies \overline{A}.$$

Modus tollendo ponens:

$$(A \vee B) \wedge \overline{A} \implies B.$$

Modus ponendo tollens:

$$\overline{A \wedge B} \wedge A \implies \overline{B}.$$

Kontraposition:

$$A \Rightarrow B \iff \overline{B} \Rightarrow \overline{A}.$$

Beweis durch Widerspruch:

$$(\overline{A} \Rightarrow B \wedge \overline{B}) \implies A. \tag{1.99}$$

Zerlegung einer Äquivalenz:

$$(A \Leftrightarrow B) \iff (A \Rightarrow B) \land (B \Rightarrow A).$$
 (1.100)

Kettenschluss:

$$(A \Rightarrow B) \land (B \Rightarrow C) \implies (A \Rightarrow C).$$
 (1.101)

Ringschluss:

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

$$\Rightarrow (A \Leftrightarrow B) \land (A \Leftrightarrow C) \land (B \Leftrightarrow C).$$
 (1.102)

Ringschluss, allgemein:

$$(A_1 \Rightarrow A_2) \land \dots \land (A_{n-1} \Rightarrow A_n) \land (A_n \Rightarrow A_1)$$

$$\Rightarrow \forall i, j [A_i \Leftrightarrow A_j].$$
 (1.103)

Für jede Funktion $P: \{0, 1\} \rightarrow \{0, 1\}$ gilt:

$$P(A) \wedge (A \Leftrightarrow B) \implies P(B).$$
 (1.104)

Regel zur Implikation:

$$A \wedge B \Rightarrow C \iff A \Rightarrow (B \Rightarrow C).$$
 (1.105)

Vollständige Fallunterscheidung:

$$(A \Rightarrow C) \land (B \Rightarrow C) \implies (A \oplus B \Rightarrow C),$$
 (1.106)

$$(A \Rightarrow C) \land (B \Rightarrow C) \iff (A \lor B \Rightarrow C).$$
 (1.107)

Vollständige Fallunterscheidung, allgemein:

$$\forall k[A_k \Rightarrow C] \implies (\bigoplus_{k=1}^n A_k \Rightarrow C), \tag{1.108}$$

$$\forall k[A_k \Rightarrow C] \iff (\exists k[A_k] \Rightarrow C). \tag{1.109}$$

$$\forall k[A_k \Rightarrow C] \iff (\exists k[A_k] \Rightarrow C). \tag{1.109}$$

1.4.1.5 Schlussregeln

Ersetzungsregel. Sei $F(\varphi)$ eine aussagenlogische Formel in expliziter Abhängigkeit von der Formelvariablen φ . Ist $\varphi \leftrightarrow \psi$, dann darf φ gegen ψ ersetzt werden:

$$\{F(\varphi), \varphi \leftrightarrow \psi\} \vdash F(\psi).$$
 (1.110)

Beispiel. Betrachte $\varphi \wedge A \rightarrow B$ mit $\varphi := (A \rightarrow B)$, was expandiert wird zu

$$(A \rightarrow B) \land A \rightarrow B.$$
 (s. (1.94))

Nun gilt nach (1.91) aber

$$(1.95) A \to B \leftrightarrow \overline{A} \vee B.$$

Daher lässt sich folgern:

$$(\overline{A} \vee B) \wedge A \rightarrow B$$
.

1.4.1.6 Metatheoreme

Korrektheit der Aussagenlogik.

Für die Aussagenlogik gilt:

$$(\Gamma \vdash \psi) \implies (\Gamma \models \psi). \tag{1.111}$$

Vollständigkeit der Aussagenlogik.

Für die Aussagenlogik gilt:

$$(\Gamma \models \psi) \implies (\Gamma \vdash \psi). \tag{1.112}$$

Deduktionstheorem (syntaktisch).

Für die Aussagenlogik gilt:

$$(\Gamma \cup \{\varphi\} \vdash \psi) \iff (\Gamma \vdash \varphi \to \psi). \tag{1.113}$$

Infolge gilt auch:

$$(\{\varphi_1, \dots, \varphi_n\} \vdash \psi) \iff (\vdash \varphi_1 \land \dots \land \varphi_n \to \psi).$$

$$(1.114)$$

Deduktionstheorem (semantisch).

Für die Aussagenlogik gilt:

$$(\Gamma \cup \{\varphi\} \models \psi) \iff (\Gamma \models \varphi \rightarrow \psi). \tag{1.115}$$

Infolge gilt auch:

$$(\{\varphi_1, \dots, \varphi_n\} \models \psi) \iff (\models \varphi_1 \land \dots \land \varphi_n \to \psi).$$

$$(1.116)$$

Einsetzungsregel. Sei *v* eine metasprachliche Variable, die für eine beliebige objektsprachliche Variable steht. Dann

$$(\models \varphi) \implies (\models \varphi[v := \psi]).$$
 (1.117)

D. h. wenn in der tautologischen Formel φ jedes auftreten der Variable v gegen die Formel ψ ersetzt wird, ergibt sich wieder eine tautologische Formel.

1.4.1.7 Regeln zum Tableaukalkül

$$\begin{array}{c|c} -\frac{\varphi \wedge \psi}{\varphi} & \frac{\neg (\varphi \wedge \psi)}{\neg \varphi \mid \neg \psi} & \frac{\varphi \vee \psi}{\varphi \mid \psi} & \frac{\neg (\varphi \vee \psi)}{\neg \varphi} \\ \end{array}$$

1.4.1.8 Natürliches Schließen

$$\frac{A, B}{A \wedge B} \quad \frac{A \wedge B}{A} \quad \frac{A}{A \vee B} \quad \frac{A \vee B, A \vdash C, B \vdash C}{C}$$

$$\frac{A \vdash B}{A \to B} \quad \frac{A, A \to B}{B} \quad \frac{A \vdash 0}{\neg A} \quad \frac{\neg \neg A}{A}$$

$$\frac{A(u)}{\forall x \colon A(x)} \quad \frac{\forall x \colon A(x)}{A(t)} \quad \frac{A(t)}{\exists x \colon A(x)} \quad \frac{\exists x \colon A(x), A(u) \vdash B}{B}$$

10 1 Grundlagen

1.4.2 Prädikatenlogik

1.4.2.1 Rechenregeln

Verneinung (De Morgansche Regeln):

$$\overline{\forall x [P(x)]} \equiv \exists x [\overline{P(x)}], \tag{1.118}$$

$$\overline{\exists x [P(x)]} \equiv \forall x [\overline{P(x)}]. \tag{1.119}$$

Verallgemeinerte Distributivgesetze:

$$P \vee \forall x [Q(x)] \equiv \forall x [P \vee Q(x)], \tag{1.120}$$

$$P \wedge \exists x [Q(x)] \equiv \exists x [P \wedge Q(x)], \tag{1.121}$$

$$P \wedge \forall x[Q(x)] \equiv \forall x[P \wedge Q(x)], \quad (U \neq \emptyset)$$
 (1.122)

$$P \vee \exists x [Q(x)] \equiv \exists x [P \vee Q(x)]. \quad (U \neq \emptyset)$$
 (1.123)

Verallgemeinerte Idempotenzgesetze:

$$\exists x \in M [P] \equiv (M \neq \{\}) \land P$$

$$\equiv \begin{cases} P & \text{wenn } M \neq \emptyset, \\ 0 & \text{wenn } M = \emptyset. \end{cases}$$

 $\forall x \in M [P] \equiv (M = \{\}) \vee P$

$$\equiv \begin{cases} P & \text{wenn } M \neq \emptyset, \\ 1 & \text{wenn } M = \emptyset. \end{cases}$$
 (1.125)

Äquivalenzen:

$$\forall x \forall y [P(x, y)] \equiv \forall y \forall x [P(x, y)], \tag{1.126}$$

$$\exists x \exists y [P(x, y)] \equiv \exists y \exists x [P(x, y)], \tag{1.127}$$

$$\forall x [P(x) \land Q(x)] \equiv \forall x [P(x)] \land \forall x [Q(x)], \tag{1.128}$$

$$\exists x [P(x) \lor Q(x)] \equiv \exists x [P(x)] \lor \exists x [Q(x)], \tag{1.129}$$

$$\exists x [I(x) \lor Q(x)] = \exists x [I(x)] \lor \exists x [Q(x)], \tag{1.125}$$

$$\forall x[P(x) \Rightarrow Q] \equiv \exists x[P(x)] \Rightarrow Q,$$
 (1.130)

$$\forall x[P \Rightarrow Q(x)] \equiv P \Rightarrow \forall x[Q(x)], \tag{1.131}$$

$$\exists x [P(x) \Rightarrow Q(x)] \equiv \forall x [P(x)] \Rightarrow \exists x [Q(x)].$$
 (1.132)

Implikationen:

$$\exists x \forall y [P(x, y)] \Rightarrow \forall y \exists x [P(x, y)], \tag{1.133}$$

$$\forall x [P(x)] \lor \forall x [Q(x)] \Rightarrow \forall x [P(x) \lor Q(x)], \tag{1.134}$$

$$\exists x [P(x) \land Q(x)] \Rightarrow \exists x [P(x)] \land \exists x [Q(x)], \tag{1.135}$$

$$\forall x[P(x) \Rightarrow Q(x)] \Rightarrow (\forall x[P(x)] \Rightarrow \forall x[Q(x)]),$$
 (1.136)

$$\forall x [P(x) \Leftrightarrow Q(x)] \Rightarrow (\forall x [P(x)] \Leftrightarrow \forall x [Q(x)]). \tag{1.137}$$

1.4.2.2 Endliche Mengen

Sei $M = \{x_1, \ldots, x_n\}$. Es gilt:

$$\forall x \in M [P(x)] \equiv P(x_1) \wedge \ldots \wedge P(x_n), \tag{1.138}$$

$$\exists x \in M [P(x)] \equiv P(x_1) \vee \ldots \vee P(x_n). \tag{1.139}$$

1.4.2.3 Beschränkte Quantifizierung

$$\forall x \in M [P(x)] :\equiv \forall x [x \notin M \lor P(x)]$$

$$\equiv \forall x [x \in M \Rightarrow P(x)],$$
 (1.140)

$$\exists x \in M \ [P(x)] :\equiv \exists x [x \in M \land P(x)]. \tag{1.141}$$

1.4.2.4 Quantifizierung über Produktmengen

$$\forall (x, y) [P(x, y)] \equiv \forall x \forall y [P(x, y)], \tag{1.142}$$

$$\exists (x, y) [P(x, y)] \equiv \exists x \exists y [P(x, y)]. \tag{1.143}$$

Analog gilt

$$\forall (x, y, z) \equiv \forall x \forall y \forall z, \tag{1.144}$$

$$\exists (x, y, z) \equiv \exists x \exists y \exists z \tag{1.145}$$

usw.

1.4.2.5 Alternative Darstellung

Sei $P: G \to \{0, 1\}$ und $M \subseteq G$. Mit P(M) ist die Bildmenge von P bezüglich M gemeint. Es gilt

$$\forall x \in M [P(x)] \iff P(M) = \{1\}$$

$$\iff M \subseteq \{x \in G \mid P(x)\}$$
(1.146)

und

$$\exists x \in M [P(x)] \iff \{1\} \subseteq P(M)$$

$$\iff M \cap \{x \in G \mid P(x)\} \neq \emptyset.$$
(1.147)

1.4.2.6 Eindeutige Existenz

Definition. Quantor für eindeutige Existenz.

$$\exists! x [P(x)] :\equiv \exists x [P(x) \land \forall y [P(y) \Rightarrow x = y]]$$

$$\equiv \exists x [P(x)] \land \forall x \forall y [P(x) \land P(y) \Rightarrow x = y].$$
 (1.148)

(1.124) Es gilt:

$$\exists! x [P \land Q(x)] \equiv P \land \exists! x [Q(x)]. \tag{1.149}$$

1.5 Mengenlehre 11

(1.151)

(1.154)

(1.155)

(1.162)

(1.166)

1.5 Mengenlehre

1.5.1 Definitionen

Aufzählende Angabe einer Menge:

$$a \in \{x_1, \ldots, x_n\} : \Leftrightarrow a = x_1 \lor \ldots \lor a = x_n.$$

Beschreibende Angabe einer Menge:

$$a \in \{x \mid P(x)\} : \iff P(a),$$

$$\{x\in M\mid P(x)\}:=\{x\mid x\in M\wedge P(x)\},$$

$$\{f(x) \mid P(x)\} := \{y \mid \exists x (y = f(x) \land P(x))\}.$$

Teilmengenrelation:

$$A \subseteq B :\iff \forall x (x \in A \implies x \in B).$$

Gleichheit:

$$A = B : \iff \forall x (x \in A \iff x \in B).$$

Vereinigungsmenge:

$$A \cup B := \{x \mid x \in A \lor x \in B\}.$$

Schnittmenge:

$$A \cap B := \{x \mid x \in A \land x \in B\}.$$

Differenzmenge:

$$A \setminus B := \{ x \mid x \in A \land x \notin B \}.$$

Symmetrische Differenz:

$$A \triangle B := \{ x \mid x \in A \oplus x \in B \}.$$

Komplementärmenge:

$$A^{c} := G \setminus A.$$
 (*G*: Grundmenge)

Vereinigung über indizierte Mengen:

$$\bigcup_{i \in I} A_i := \{ x \mid \exists i \in I (x \in A_i) \}.$$

Schnitt über indizierte Mengen:

$$\bigcap_{i \in I} A_i := \{ x \mid \forall i \in I (x \in A_i) \}.$$

1.5.2 Boolesche Algebra

Distributivgesetze:

$$M \cup (A \cap B) = (M \cup A) \cap (M \cup B),$$

$$M \cap (A \cup B) = (M \cap A) \cup (M \cap B).$$

1.5.3 Teilmengenrelation

Zerlegung der Gleichheit:

$$A = B \iff A \subseteq B \land B \subseteq A.$$

Umschreibung der Teilmengenrelation:

$$A \subseteq B \iff A \cap B = A$$
$$\iff A \cup B = B$$
$$\iff A \setminus B = \{\}.$$

Kontraposition:

$$A \subseteq B \iff B^{c} \subseteq A^{c}.$$
 (1.167)

1.5.4 Natürliche Zahlen

1.5.4.1 Von-Neumann-Modell

Mengentheoretisches Modell der natürlichen Zahlen:

$$0 := \emptyset, \quad 1 := \{0\}, \quad 2 := \{0, 1\},$$

 $3 := \{0, 1, 2\}, \quad \text{usw.}$ (1.168)

(1.150) Nachfolgerfunktion:

$$x' := x \cup \{x\}. \tag{1.169}$$

(1.152) 1.5.4.2 Vollständige Induktion

(1.153) Ist A(n) mit $n \in \mathbb{N}$ eine Aussageform, so gilt:

$$A(n_0) \wedge \forall n \ge n_0 [A(n) \Rightarrow A(n+1)]$$

$$\Rightarrow \forall n \ge n_0 [A(n)].$$
(1.170)

Die Aussage $A(n_0)$ ist der *Induktionsanfang*.

Die Implikation

$$A(n) \Rightarrow A(n+1) \tag{1.171}$$

heißt Induktionsschritt. Beim Induktionsschritt muss A(n+1)

(1.156) gezeigt werden, wobei A(n) als gültig vorausgesetzt werden darf

1.5.5 ZFC-Axiome

(1.157) Axiom der Bestimmtheit:

$$\forall A \forall B [A = B \iff \forall x [x \in A \Leftrightarrow x \in B]]. \tag{1.172}$$

(1.158) Axiom der leeren Menge:

$$\exists M \forall x [x \notin M]. \tag{1.173}$$

(1.159) Axiom der Paarung:

$$\forall x \forall y \exists M \forall a [a \in M \iff x = a \lor y = a]. \tag{1.174}$$

(1.160) Axiom der Vereinigung:

$$\forall S \exists M \forall x [x \in M \iff \exists A \in S [x \in A]]. \tag{1.175}$$

(1.161) Axiom der Aussonderung:

$$\forall A \exists M \forall x \left[x \in M \iff x \in A \land \varphi(x) \right]. \tag{1.176}$$

Axiom des Unendlichen:

$$\exists M \, [\emptyset \in M \land \forall x \in M \, [x \cup \{x\} \in M]]. \tag{1.177}$$

Axiom der Potenzmenge:

$$\forall A \exists M \forall T [T \in M \iff T \subseteq A]. \tag{1.178}$$

Axiom der Ersetzung:

(1.163)
$$\forall a \in A \ \exists^{-1}b \ [\varphi(a,b)]$$
(1.164)
$$\Longrightarrow \exists B \ \forall b \ [b \in B \iff \exists a \in A \ [\varphi(a,b)]].$$
(1.179)

Axiom der Fundierung:

$$\forall A [A \neq \emptyset \implies \exists x \in A [x \cap A = \emptyset]]. \tag{1.180}$$

Auswahlaxiom:

(1.165)
$$\forall x, y \in A [x \neq y \implies x \cap y = \emptyset]$$

$$\wedge \forall x \in A [x \neq \emptyset] \qquad (1.181)$$

$$\implies \exists M \ \forall x \in A \ \exists^{=1} u \in x [u \in M].$$

12 1 Grundlagen

Tabelle 1.5: Boolesche Algebra

Vereinigung	Schnitt	Bezeichnung
$A \cup A = A$ $A \cup \emptyset = A$ $A \cup G = G$ $A \cup A^{c} = G$	$A \cap A = A$ $A \cap G = A$ $A \cap \emptyset = \emptyset$ $A \cap A^{c} = \emptyset$	Idempotenzgesetze Neutralitätsgesetze Extremalgesetze Komplementärgesetze
$A \cup B = B \cup A$ $(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cup B)^{c} = A^{c} \cap B^{c}$ $A \cup (A \cap B) = A$	$A \cap B = B \cap A$ $(A \cap B) \cap C = A \cap (B \cap C)$ $(A \cap B)^{c} = A^{c} \cup B^{c}$ $A \cap (A \cup B) = A$	Kommutativgesetze Assoziativgesetze De Morgansche Regeln Absorptionsgesetze

G: Grundmenge

1.6 Funktionen

1.6.1 Injektionen

Definition. Injektion.

Eine Funktion $f: A \rightarrow B$ heißt *injektiv*, wenn

$$\forall x_1, x_2 \in A[f(x_1) = f(x_2) \implies x_1 = x_2]$$
 (1.182)

gilt.

Definition. Linksinverse.

Sei $f: A \to B$. Eine Funktion $g: B \to A$ mit

$$g \circ f = \mathrm{id}_A \tag{1.183}$$

 $g \circ f = \mathrm{id}_A$ heißt *Linksinverse* von f.

Eine Funktion ist genau dann injektiv, wenn sie eine Linksinverse besitzt. Zu einer Injektion kann es aber mehrere unterschiedliche Linksinverse geben.

1.6.2 Surjektionen

Definition. Surjektion.

Eine Funktion $f: A \rightarrow B$ heißt *surjektiv*,

wenn f(A) = B ist. Damit ist gemeint, dass jedes Element der Zielmenge wenigstens einmal der Funktionswert von einem Element der Definitionsmenge ist.

Definition. Rechtsinverse.

Sei $f: A \rightarrow B$. Eine Funktion $g: B \rightarrow A$ mit

$$f \circ g = \mathrm{id}_B \tag{1.184}$$

heißt Rechtsinverse von f.

Eine Funktion ist genau dann surjektiv, wenn sie eine Rechtsinverse besitzt. Zu einer Surjektion kann es aber mehrere unterschiedliche Rechtsinverse geben.

1.6.3 Bijektionen

Definition. Bijektion.

Eine Funktion $f: A \rightarrow B$ heißt *bijektiv*, wenn sie injektiv und surjektiv ist.

Eine Funktion $f:A\to B$ ist genau dann bijektiv, wenn es ein g mit

$$g \circ f = \mathrm{id}_A \quad \text{und} \quad f \circ g = \mathrm{id}_B$$
 (1.185)

gibt. Wenn f bijektiv ist, so gibt es g genau einmal und g wird die *Umkehrfunktion* oder *Inverse* von f genannt und als f^{-1} notiert.

1.6.4 Komposition

Definition. Komposition.

Für zwei Funktionen $f: A \rightarrow B$ und $g: B \rightarrow C$ ist die *Komposition* (g nach f) durch

$$g \circ f : A \to C$$
, $(g \circ f)(x) := g(f(x))$ (1.186)

definiert.

Für die Komposition gilt das Assozativgesetz:

$$(f \circ g) \circ h = f \circ (g \circ h). \tag{1.187}$$

Die Komposition von Injektionen ist eine Injektion.

Die Komposition von Surjektionen ist eine Surjektion.

Die Komposition von Bijektionen ist eine Bijektion.

Sind f, g Bijektionen, so gilt

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}. \tag{1.188}$$

Ist $g \circ f$ injektiv, so ist f injektiv.

Ist $g \circ f$ surjektiv, so ist g surjektiv.

Ist $g \circ f$ bijektiv, so ist f injektiv und g surjektiv.

Definition. Iteration.

Für eine Funktion $\varphi \colon A \to A$ wird

$$\varphi^0 := \mathrm{id}_A, \quad \varphi^{n+1} := \varphi^n \circ \varphi$$
 (1.189)

Iteration von φ genannt.

1.6.5 Einschränkung

Definition. Einschränkung.

Sei $f: A \to B$ und $M \subseteq A$. Die Funktion g(x) = f(x) mit $g: M \to B$ wird *Einschränkung* von f genannt und mit $f|_M$ notiert.

Sei $f:A\to B$ und $M\subseteq A$. Mit der Inklusionsabbildung i(x):=x mit $i:M\to A$ gilt:

$$f|_{M} = f \circ i. \tag{1.190}$$

Es gilt

$$g \circ (f|_{M}) = (g \circ f)|_{M}.$$
 (1.191)

1.7 Kardinalzahlen 13

(1.193)

(1.196)

(1.200)

(1.201)

(1.204)

(1.207)

(1.208)

(1.209)

1.6.6 Bild

Definition. Bild.

Für $f: A \rightarrow B$ und $M \subseteq A$ wird $f(M) := \{ f(x) \mid x \in M \}$ $= \{ y \mid \exists x (x \in M \land y = f(x)) \}$

das Bild von M unter f genannt. Genauer:

Es gilt

$$f(M \cup N) = f(M) \cup f(N),$$

$$f(M \cap N) \subseteq f(M) \cap f(N),$$

$$f\left(\bigcup_{i \in I} M_i\right) = \bigcup_{i \in I} f(M_i),$$

$$I \neq \emptyset \implies f\left(\bigcap_{i \in I} M_i\right) \subseteq \bigcap_{i \in I} f(M_i),$$

$$M \subseteq N \implies f(M) \subseteq f(N),$$

$$f(\emptyset) = \emptyset,$$

$$(g \circ f)(M) = g(f(M)),$$

$$f(M) = \bigcup_{x \in M} \{f(x)\}.$$

Ist f injektiv, dann gilt auch

$$f(M \cap N) = f(M) \cap f(N),$$

$$f(M \setminus N) = f(M) \setminus f(N).$$

1.6.7 **Urbild**

Definition. Urbild.

Für $f: A \rightarrow B$ wird $f^{-1}(M) := \{ x \in A \mid f(x) \in M \}$ das *Urbild* von *M* unter *f* genannt.

Es gilt

$$f^{-1}(M \cup N) = f^{-1}(M) \cup f^{-1}(N),$$

$$f^{-1}(M \cap N) = f^{-1}(M) \cap f^{-1}(N),$$

$$f^{-1}\left(\bigcup_{i \in I} M_i\right) = \bigcup_{i \in I} f^{-1}(M_i),$$

$$I \neq \emptyset \implies f^{-1}\left(\bigcap_{i \in I} M_i\right) = \bigcap_{i \in I} f^{-1}(M_i),$$

$$M \subseteq N \implies f^{-1}(M) \subseteq f^{-1}(N),$$

$$f^{-1}(\emptyset) = \emptyset,$$

$$f^{-1}(B) = A,$$

$$f^{-1}(M \setminus N) = f^{-1}(M) \setminus f^{-1}(N),$$

$$f^{-1}(B \setminus M) = B \setminus f^{-1}(M),$$

$$(g \circ f)^{-1}(M) = f^{-1}(g^{-1}(M)),$$

$$(f|_M)^{-1}(N) = M \cap f^{-1}(N),$$

$$f(f^{-1}(N) \subseteq N.$$
Ist $N \subseteq f(A)$ und $f : A \to B$, dann gilt

 $f(f^{-1}(N)) = N.$

(1.210)

(1.215)

(1.214)

Antisymmetrie (Satz von Cantor-Bernstein).

 $|A| \le |B| \land |B| \le |A| \implies |A| = |B|.$

Transitivität. Es gilt: (1.216)

 $|A| \le |B| \land |B| \le |C| \implies |A| \le |C|$. Totalität (Vergleichbarkeitssatz). Es gilt:

 $|A| \le |B| \lor |B| \le |A|.$ (1.222)

(1.220)

(1.221)

1.7 Kardinalzahlen

1.7.1 Definitionen zur Mächtigkeit

Definition. Gleichmächtigkeit.

Zwei Mengen A, B heißen gleichmächtig, notiert als |A| = (1.192)|B|, wenn es eine bijektive Abbildung $f: A \to B$ gibt.

Gleichmächtigkeit ist eine Äquivalenzrelation.

Definition. Kardinalzahl. Die Äquivalenzklassen

$$|M| := \{A \mid A \text{ ist gleichmächtig zu } M\}$$
 (1.217)

heißen Kardinalzahlen. (1.194)

Definition. Höchstens gleichmächtig. (1.195)

Eine Menge A heißt höchstens gleichmächtig zu B, notiert als $|A| \leq |B|$, wenn es eine injektive Abbildung $f: A \to B$

(1.197)Definition. Weniger mächtig.

(1.198)Eine Menge A heißt weniger mächtig als B, notiert als |A| < |B|, wenn es eine injektive Abbildung $f: A \to B$ gibt, aber (1.199)keine bijektive Abbildung $g: A \rightarrow B$ existiert.

Definition. Abzählbar unendlich.

Eine Menge heißt abzählbar unendlich, wenn sie gleichmächtig zu den natürlichen Zahlen ist.

(1.202)Definition. Höchstens abzählbar.

> Eine Menge heißt höchstens abzählbar, wenn sie höchstens gleichmächtig zu den natürlichen Zahlen ist.

Definition. Überabzählbar.

Eine Menge heißt überabzählbar, wenn die Menge der na-(1.203)türlichen Zahlen weniger mächtig als diese Menge ist.

Definition. Endliche Menge.

Eine Menge heißt endlich, wenn sie weniger mächtig als die Menge der natürlichen Zahlen ist.

(1.205)1.7.2 Sätze zur Mächtigkeit

Satz von Cantor. (1.206)

Jede Menge ist weniger mächtig als ihre Potenzmenge:

$$|M| < |2^M|. (1.218)$$

Ist *M* endlich, dann gilt $|M| = 2^{|M|}$.

Satz von Cantor-Bernstein.

Aus $|A| \le |B|$ und $|B| \le |A|$ folgt |A| = |B|.

Totalordnung der Kardinalzahlen. Die Kardinalzahlen (1.211)sind total geordnet, da die folgenden Axiome erfüllt sind.

(1.212)Reflexivität. Es gilt:

$$|A| \le |A|. \tag{1.219}$$

14 1 Grundlagen

Weitere Regeln.

Es gilt:

$$A \subseteq B \implies |A| \le |B|. \tag{1.223}$$

Wenn es surjektive Abbildung $g: A \rightarrow B$ gibt, dann ist B höchstens gleichmächtig zu A:

$$\exists g \in B^A(B \subseteq g(A)) \implies |B| \le |A|. \tag{1.224}$$

Aus |A| = |B| folgt immer $|A| \le |B|$, denn jede Bijektion ist auch injektiv.

Nach Definition gilt:

$$|A| < |B| \iff |A| \le |B| \land |A| \ne |B|, \tag{1.225}$$

$$|A| \le |B| \iff |A| < |B| \lor |A| = |B|. \tag{1.226}$$

Nach den Axiomen gilt:

$$\neg(|A| \le |B|) \iff |B| < |A|,\tag{1.227}$$

$$\neg(|A| < |B|) \iff |B| \le |A|. \tag{1.228}$$

Die Relation |A| < |B| erfüllt die Axiome einer strengen Totalordnung.

1.7.3 Kardinalzahlarithmetik

Definition. Summe von Kardinalzahlen.

Die Summe von zwei Kardinalzahlen ist die Mächtigkeit der disjunkten Vereinigung der Repräsentanten:

$$|A| + |B| := |A \sqcup B|. \tag{1.229}$$

Definition. Produkt von Kardinalzahlen.

Das Produkt von zwei Kardinalzahlen ist die Mächtigkeit des kartesischen Produktes der Repräsentanten:

$$|A| \cdot |B| := |A \times B|. \tag{1.230}$$

Definition. Potenz von Kardinalzahlen.

Die Potenz von zwei Kardinalzahlen ist die Mächtigkeit der Menge der Abbildungen von einem Exponent-Repräsentant zu einem Basis-Repräsentant:

$$|B|^{|A|} := |B^A|. (1.231)$$

Für Kardinalzahlen a, b, c gilt:

$$a + b = b + a, (1.232)$$

$$ab = ba, (1.233)$$

$$(a+b)+c=a+(b+c),$$
 (1.234)

$$(ab)c = a(bc), (1.235)$$

$$a(b+c) = ab + ac, (1.236)$$

$$(a+b)c = ac + bc. (1.237)$$

Sind a, b, c Kardinalzahlen und ist $a \le b$, dann gilt:

$$a + c \le b + c,\tag{1.238}$$

$$ac \le bc,$$
 (1.239)

$$a^c \le b^c. \tag{1.240}$$

Wenn zusätzlich $b \neq 0$ oder $a \neq 0$ ist, dann gilt auch

$$c^a \le c^b. \tag{1.241}$$

Für Kardinalzahlen a, b, c gilt:

$$a^{b+c} = a^b a^c, (1.242)$$

$$(ab)^c = a^c b^c, (1.243)$$

$$(a^b)^c = a^{bc}. (1.244)$$

Für eine unendliche Kardinalzahl a gilt:

$$a + a = aa = a, \tag{1.245}$$

$$|\mathbb{N}| \cdot a = a. \tag{1.246}$$

Für Kardinalzahlen a, b mit $|\mathbb{N}| \leq \max(a, b)$ gilt:

$$a + b = \max(a, b). \tag{1.247}$$

Ist zusätzlich $a \neq 0$ und $b \neq 0$, dann gilt auch:

$$ab = \max(a, b). \tag{1.248}$$

Für eine unendliche Menge A und $U \subseteq A$ mit |U| < |A| gilt:

$$|A \setminus U| = |A|. \tag{1.249}$$

Sind a, b Kardinalzahlen mit $2 \le b \le a$ und $|\mathbb{N}| \le a$, dann gilt:

$$b^a = 2^a. (1.250)$$

Spezielle Kardinalitäten. Es gilt

$$|\mathbb{P}| = |\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}| = |\mathbb{A}| < |\mathbb{R}| = |\mathbb{C}|, \tag{1.251}$$

wobei mit $\mathbb P$ die Menge der Primzahlen und mit $\mathbb A$ die Menge der algebraischen Zahlen gemeint ist. Es gilt

$$|\mathbb{R}^{\mathbb{R}}| = n^{|\mathbb{R}|} = |2^{\mathbb{R}}|. \quad (n \in \mathbb{N}, n \ge 2)$$
 (1.252)

Es gilt

$$|\mathbb{R}^{\mathbb{N}}| = |\mathbb{R}^n| = |\mathbb{R}|. \quad (n \in \mathbb{N}, n \ge 1)$$

$$(1.253)$$

1.8 Formale Systeme 15

1.8 Formale Systeme

1.8.1 Formale Sprachen

Definition. Formale Sprache.

Eine formale Sprache L ist eine Teilmenge der kleenschen Hülle über einer Menge Σ , kurz $L \subseteq \Sigma^*$. Die Menge Σ wird Alphabet genannt, ihre Elemente heißen Symbole.

Die kleensche Hülle Σ^* besteht aus allen möglichen Konkatenationen von Symbolen aus Σ . Die Konkatenationen von Σ^* heißen Wörter. Die leere Konkatenation ist zulässig und wird mit ε notiert. Die Elemente von L heißen wohlgeformte Wörter oder wohlgeformte Formeln, engl. well formed formulas, kurz wff.

Ein Wort a ist ein Tupel

$$a = (a_1, \dots, a_m).$$
 $(a_k \in \Sigma)$ (1.254)

Sind a, b zwei Wörter, dann ist mit ab deren Konkatenation gemeint:

$$ab := (a_1, \dots, a_m, b_1, \dots b_n).$$
 (1.255)

Es gilt $\varepsilon a=a$ und $a\varepsilon=a$. Bei ε handelt es sich um das leere Tupel.

Definition. Konkatenation von Sprachen.

Konkatenation von L_1 und L_2 :

$$L_1 \circ L_2 := \{ab \mid a \in L_1, b \in L_2\}.$$
 (1.256)

Definition. Potenz einer Sprache.

Potenzen von L:

$$L^0 := \{ \varepsilon \}, \tag{1.257}$$

$$L^n := L^{n-1} \circ L. {(1.258)}$$

Definition. Kleensche Hülle einer Sprache.

Kleensche Hülle von L:

$$L^* := \bigcup_{k \in \mathbb{N}_0} L^k. \tag{1.259}$$

Positive Hülle von *L*:

$$L^+ := \bigcup_{k \in \mathbb{N}_1} L^k. \tag{1.260}$$

1.8.2 Formale Grammatiken

Definition. Formale Grammatik.

Eine formale Grammatik ist ein Tupel (N, Σ, P, S) , wobei N die Nonterminalsymbolen, Σ die Terminalsymbolen, P die Produktionsregeln sind und S ein Startsymbol ist. Die Mengen N, Σ, P müssen endlich sein. Die Mengen N und Σ müssen disjunkt sein. Bei Σ handelt es sich um ein Alphabet. Das Startsymbol ist ein Element $S \in N$.

Bei P handelt es sich um eine Relation

$$P \subseteq N \times (N \cup \Sigma)^* \tag{1.261}$$

oder allgemeiner

$$P \subseteq (N \cup \Sigma)^* \setminus \Sigma^* \times (N \cup \Sigma)^*. \tag{1.262}$$

Produktionsregeln werden in der Form $n \to w$ notiert und drücken aus, dass in jedem Wort das Nonterminalsymbol n durch das Wort w ersetzt werden darf. Allgemeiner bedeutet $t \to w$, dass ein Teilwort t durch w ersetzt werden darf.

Die Produktionsregeln werden ausgehend vom Startsymbol immer weiter angewendet bis keine Nonterminalsymbole mehr vorhanden sind. Die Menge aller möglichen Pro-

duktionen bildet eine formale Sprache $L \subseteq \Sigma^*$.

Für Produktionsregeln der Form (1.261) wurde eine Kurznotation geschaffen, die EBNF:

Symbol	Nonterminalsymbol
"Symbol"	Terminalsymbol
w1, w2	w_1w_2 (Konkatenation)
$n = w1 \mid w2.$	$n \to w_1, n \to w_2$
$n = \{w\}.$	$n \to \varepsilon, \ n \to wn$
n = [w].	$n \to w, n \to wn$

1.8.3 Formale Systeme

Definition. Formales System.

Ein formales System ist ein Tupel (Σ, L, A, R) , wobei Σ ein Alphabet, L eine formale Sprache über dem Alphabet, A eine Menge von Axiomen und R eine Menge von Ableitungsrelationen ist. Die Menge der Axiome ist eine beliebige Teilmenge von L. Eine Ableitungsrelation ist eine zwei oder mehrstellige Relation über L, die

$$a_1, \dots, a_n \vdash b \tag{1.263}$$

geschrieben wird. Eine wohlgeformte Formel wird *Satz* genannt, wenn sie ein Axiom ist oder über eine Kette von Ableitungen aus den Axiomen folgt.

1.8.4 Semantik

Definition. Interpretation (Aussagenlogik).

Eine *Interpretation I*: $V \rightarrow \{0,1\}$ ist eine Abbildung, welche jeder logischen Variablen einen Wahrheitswert zuordnet.

Eine Interpretation $I \colon F \to \{0,1\}$ erweitert den Definitionsbereich einer Interpretation wie folgt auf die Menge aller wohlgeformten Formeln:

$$I(0) = 0, (1.264)$$

$$I(1) = 1, (1.265)$$

$$I(\neg \varphi) = (\neg I(\varphi)), \tag{1.266}$$

$$I(\varphi \wedge \psi) = (I(\varphi) \wedge I(\psi)), \tag{1.267}$$

$$I(\varphi \vee \psi) = (I(\varphi) \vee I(\psi)), \tag{1.268}$$

$$I(\varphi \to \psi) = (I(\varphi) \to I(\psi)),$$
 (1.269)

$$I(\varphi \leftrightarrow \psi) = (I(\varphi) \leftrightarrow I(\psi)).$$
 (1.270)

Die rechten Seite der jeweiligen Zeile wird hierbei entsprechend ihrer Wahrheitstabelle ausgewertet.

Definition. Modell.

Eine Interpretation I wird Modell von φ genannt, wenn $I(\varphi)=1$ ist. Man schreibt dafür auch $I\models\varphi$.

Eine Interpretation I wird Modell der Formelmenge $M = \{\varphi_1, \ldots, \varphi_n\}$ genannt, wenn sie für jede Formel der Menge ein Modell ist:

$$(I \models M) :\iff \forall \varphi \in M \ (I \models \varphi). \tag{1.271}$$

Definition. Modellrelation.

Sei $M = \{\varphi_1, \dots, \varphi_n\}$ eine endliche Menge von Formeln und sei ψ eine Formel. Die Formelmenge M modelliert ψ , wenn jedes Modell von M auch auch ein Modell von ψ ist. Kurz:

$$(M \models \psi) :\iff \forall I[(I \models M) \Rightarrow (I \models \psi)].$$
 (1.272)

Die Modellrelation wird auch als *metasprachliche semanti*sche Implikation bezeichnet. 16 1 Grundlagen

Definition. Tautologie.

Eine Formel φ heißt tautologisch, wenn jede Interpretation auch ein Modell von φ ist:

$$(\models \varphi) :\iff \forall I(I(\varphi) = 1).$$
 (1.273)

Definition. Äquivalente Formeln.

Zwei Formeln φ, ψ heißen äquivalent, wenn $\varphi \Leftrightarrow \psi$ tautologisch ist, kurz

$$(\varphi \equiv \psi) :\iff (\models \varphi \Leftrightarrow \psi). \tag{1.274}$$

Äquivalenz von Formeln ist eine Äquivalenzrelation.

1.9 Mathematische Strukturen

1.9.1 Algebraische Strukturen

Axiome

E: Abgeschlossenheit.

Die Verknüpfung führt nicht aus der Menge heraus.

A: Assoziativgesetz.

 $\forall a, b, c [(a * b) * c = a * (b * c)].$

N: Existenz des neutralen Elements.

 $\exists e \forall a [e * a = a * e = a].$

I: Existenz der inversen Elemente.

 $\forall a \exists b [a * b = b * a = e].$

K: Kommutativgesetz.

 $\forall a, b [a * b = b * a].$

I*: Existenz der multiplikativ inversen Elemente.

 $\forall a \neq 0 \ \exists b \ [a * b = b * a = 1].$

DI: Linksdistributivgestz.

 $\forall a, x, y [a * (x + y) = a * x + a * y].$

Dr: Rechtsdistributivgesetz.

 $\forall a, x, y [(x + y) * a = x * a + y * a].$

D: Distributivgesetze.

Dl und Dr.

T: Nullteilerfreiheit.

 $\forall a, b [a \neq 0 \land b \neq 0 \implies a * b \neq 0]$

bzw. die Kontraposition

 $\forall a, b [a * b = 0] \implies a = 0 \lor b = 0].$

U: Unterscheibarkeit von Null- und Einselement.

Die neutralen Elemente bezüglich Addition und Multiplikation sind unterschiedlich.

Strukturen

Strukturen mit einer inneren Verknüpfung:

EA Halbgruppe
EAN Monoid
EANI Gruppe
EANIK abelsche Gru

EANIK | abelsche Gruppe Strukturen mit zwei inneren Verknüpfungen:

EANIK, EA, D..... | Ring

EANIK, EAK, D kommutativer Ring unitärer Ring EANIK, EANK, DTU EANIK, EANI*K, DTU Körper

1.9.2 Relationen, Ordnungsstrukturen Axiome für Relationen

R: Reflexivität.

 $\forall a (aRa).$

S: Symmetrie.

 $\forall a, b (aRb \iff bRa).$

T: Transitivität.

 $\forall a, b, c (aRb \land bRc \implies aRc).$

An: Antisymmetrie.

 $\forall a, b (aRb \land bRa \implies a = b).$

L: Linearität.

 $\forall a, b (aRb \lor bRa).$

Ri: Irrreflexivität.

 $\forall a (\neg aRa).$

A: Asymmetrie.

 $\forall a, b (aRb \implies \neg bRa).$

Min: Existenz der Minimalelemente.

 $\forall T \subseteq M, T \neq \emptyset \ \exists x \in T \ \forall y \in T \setminus \{x\} \ (x < y).$

Relationen

RANT.... Äquivalenzrelation
RANTL... Halbordnung
RIAT.... Strenge Halbordnung
RIATL... strenge Totalordnung
RIATLMIN Wohlordnung

1.10 Zahlenbereiche

1.10 Zahlenbereiche

1.10.1 Natürliche Zahlen

Definition. Natürliche Zahlen (Peano-Axiome).

Unter den natürlichen Zahlen versteht man eine Menge N, die als dynamisches System (N, s) mit s(n) = n' die folgenden Axiome erfüllt:

$$(P1) \quad 0 \in N, \tag{1.275}$$

$$(P2) \quad \forall n \in N \ (n' \in N), \tag{1.276}$$

(P3)
$$\forall n \in N \ (n' \neq 0),$$
 (1.277)

$$P4) \quad \forall m, n \in N \ (n' = m' \implies m = n) \tag{1.278}$$

und

(P5) $\forall M(0 \in M \land$

$$\forall n \in N \ (n \in M \implies n' \in M)$$
 (1.279)
$$\implies N \subseteq M)$$

Axiom (P2) besagt, dass s eine Selbstabbildung $s: N \to N$ ist und Axiom (P4), dass s injektiv ist. Die Axiome (P1) bis (P5) charakterisieren die Struktur der natürlichen Zahlen, so dass N als \mathbb{N}_0 und s als Nachfolgerfunktion s(n) = n + 1 interpretiert werden kann.

Die Addition wir rekursiv definiert:

$$a + 0 := a,$$
 $a + s(b) := s(a + b).$ (1.280)

Die Multiplikation wird ebenfalls rekursiv definiert:

$$a \cdot 0 := 0, \qquad a \cdot s(b) := a + a \cdot b.$$
 (1.281)

Von-Neumann-Modell der natürlichen Zahlen.

Eine Menge M heißt induktiv, wenn gilt:

$$0 \in M \land \forall n (n \in M \implies s(n) \in M).$$
 (1.282)

Sei $0 := \emptyset$ und $s(n) := n \cup \{n\}$. Sei

$$\mathbb{N} := \bigcap \{ M \mid M \text{ ist induktiv} \}. \tag{1.283}$$

Bei $(\mathbb{N}, s, 0)$ handelt es sich um ein Modell natürlichen Zahlen, das die Peano-Axiome (P1) bis (P5) erfüllt.

Es ergibt sich

$$0 = \emptyset,$$

$$1 = \{0\} = \{\emptyset\},$$

$$2 = \{0, 1\} = \{\emptyset, \{\emptyset\}\},$$

$$3 = \{0, 1, 2\},$$

$$4 = \{0, 1, 2, 3\}$$

usw.

1.10.2 Rationale Zahlen

Definition. Rationale Zahlen.

Die rationalen Zahlen sind die Quotientenmenge

$$\mathbb{Q} := (\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})) / \sim \tag{1.284}$$

bezüglich der Äquivalenzrelation

$$(a,b) \sim (c,d) \iff ad = bc.$$
 (1.285)

Wohldefiniert (unabhängig von den Repräsentanten) ist

$$[(a,b)] + [(c,d)] := [(ad+bc,bd)], \tag{1.286}$$

$$[(a,b)] \cdot [(c,d)] := [(ac,bd)].$$
 (1.287)

Die Einbettung von \mathbb{Z} in \mathbb{Q} ist gegeben durch

$$\varphi \colon \mathbb{Z} \to \mathbb{Q}, \quad \varphi(z) := [(z, 1)].$$
 (1.288)

Bei φ handelt es sich um einen Monomorphismus bezüglich der grundlegenden Rechenoperationen, so dass $\mathbb Z$ und $\varphi(\mathbb Z)$ miteinander identifiziert werden können.

1.10.3 Reelle Zahlen

Definition. Reelle Zahlen.

Unter den reellen Zahlen versteht man eine Menge \mathbb{R} , die folgende Axiome erfüllt:

- 1. $(\mathbb{R}, +, \cdot)$ ist ein Körper.
- 2. R ist total geordnet, wobei die Ordnungsrelation mit Addition und Multiplikation verträglich ist.
- 3. Jede nach oben beschränkte nichtleere Teilmenge von $\mathbb R$ hat ein Supremum in $\mathbb R.$

Konstruktion der reellen Zahlen. Sei $C(\mathbb{Q})$ die Menge der Cauchyfolgen mit Werten in \mathbb{Q} . Für $x_n, y_n \in C(\mathbb{Q})$ ist

$$(x_n) \sim (y_n) : \iff x_n - y_n \to 0.$$
 (1.289)

eine Äquivalenzrelation. Man setzt nun

$$\mathbb{R} := C(\mathbb{Q})/\sim. \tag{1.290}$$

Wohldefiniert (unabhängig von den Repräsentanten) ist

$$[(x_n)] + [(y_n)] := [(x_n + y_n)],$$
 (1.291)

$$[(x_n)] \cdot [(y_n)] := [(x_n y_n)] \tag{1.292}$$

und

$$[(x_n)] \le [(y_n)] :\iff (x_n) \sim (y_n) \lor \exists n_0 \ \forall n > n_0 \ (x_n \le y_n).$$
(1.293)

2 Funktionen

2.1 Elementare Funktionen

2.1.1 Exponentialfunktion

Definition. Exponentialfunktion.

Für $x \in \mathbb{C}$ als $\mathbb{C} \to \mathbb{C}$:

$$\exp(x) := \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots$$
 (2.1)

Eigenschaften. Die Einschränkung von exp auf \mathbb{R} ist injektiv und besitzt die Bildmenge \mathbb{R}^+ .

Die Exponentialfunktion ist holomorph auf ganz \mathbb{C} und stimmt mit ihrer eigenen Ableitung überein:

$$\exp'(x) = \exp(x). \tag{2.2}$$

Für $x, y \in \mathbb{C}$ gilt:

$$\exp(x + y) = \exp(x) \exp(y), \tag{2.3}$$

$$\exp(x - y) = \frac{\exp(x)}{\exp(y)},\tag{2.4}$$

$$\exp(-x) = \frac{1}{\exp(x)}.$$

Eulersche Formel. Für $x \in \mathbb{C}$ gilt:

$$e^{ix} = \cos x + i \sin x. \tag{2.6}$$

2.1.2 Logarithmusfunktion

Definition. Natürlicher Logarithmus.

Für $x \in \mathbb{R}^+$ als $\mathbb{R}^+ \to \mathbb{R}$:

$$ln(x) := exp^{-1}(x).$$
(2.7)

Für $z \in \mathbb{C} \setminus \{0\}$, $z = re^{i\varphi}$ als $\mathbb{C} \setminus \{0\} \to \mathbb{C}$:

$$ln(z) := ln(r) + i\varphi. \tag{2.8}$$

Eigenschaften. Für $x \in \mathbb{R}^+$ gilt:

$$ln(x) := \int_1^x \frac{1}{t} dt.$$
(2.9)

Für $z \in \mathbb{C} \setminus \{0\}$ gilt:

$$ln(z) = \lim_{h \to 0} \frac{z^h - 1}{h}.$$

Die Logarithmusfunktion ist auf $\mathbb{C}\backslash\mathbb{R}_0^-$ holomorph.

2.1.3 Winkelfunktionen

Definition. Winkelfunktionen.

Sinus: $\mathbb{C} \to \mathbb{C}$,

$$\sin(x) := \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$$
 (2.1)

Kosinus: $\mathbb{C} \to \mathbb{C}$.

$$\cos(x) := \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$$
 (2.12)

Tangens: $\mathbb{C} \setminus \{k\pi + \pi/2 \mid k \in \mathbb{Z}\} \to \mathbb{C}$,

$$\tan(x) := \frac{\sin(x)}{\cos(x)}.\tag{2.13}$$

Kotangens:
$$\mathbb{C} \setminus \{k\pi \mid k \in \mathbb{Z}\} \to \mathbb{C}$$
,

$$\cot(x) := \frac{\cos(x)}{\sin(x)}.$$
 (2.14)

Sekans: $\mathbb{C} \setminus \{k\pi + \pi/2 \mid k \in \mathbb{Z}\} \to \mathbb{C}$,

$$\sec(x) := \frac{1}{\cos(x)}.\tag{2.15}$$

Kosekans: $\mathbb{C} \setminus \{k\pi \mid k \in \mathbb{Z}\} \to \mathbb{C}$,

$$\csc(x) := \frac{1}{\sin(x)}.\tag{2.16}$$

Darstellung durch die Exponentialfunktion:

Für $x \in \mathbb{C}$ gilt:

$$\cos x = \text{Re}(e^{ix}) = \frac{e^{ix} + e^{-ix}}{2},$$
 (2.17)

$$\sin x = \text{Im}(e^{ix}) = \frac{e^{ix} - e^{-ix}}{2i}.$$
 (2.18)

Die Funktionen sin, cos sind holomorph auf ganz \mathbb{C} . Die Ableitungen sind

$$\sin' x = \cos x,\tag{2.19}$$

$$\cos' x = -\sin x. \tag{2.20}$$

2.1.3.1 Symmetrie und Periodizität

Für $x \in \mathbb{C}$ gilt:

(2.5)

$$\sin(-x) = -\sin x$$
, (Punktsymmetrie) (2.21)

$$cos(-x) = cos x$$
, (Achsensymmetrie) (2.22)

$$\sin(x + 2\pi) = \sin x,\tag{2.23}$$

$$\cos(x + 2\pi) = \cos x,\tag{2.24}$$

$$\sin(x+\pi) = -\sin x,\tag{2.25}$$

$$\cos(x+\pi) = -\cos x,\tag{2.26}$$

$$\sin\left(x + \frac{\pi}{2}\right) = \cos x = -\sin\left(x - \frac{\pi}{2}\right),\tag{2.27}$$

$$\cos\left(x + \frac{\pi}{2}\right) = -\sin x = -\cos\left(x - \frac{\pi}{2}\right). \tag{2.28}$$

(2.10) 2.1.3.2 Additionstheoreme

Für $x, y \in \mathbb{C}$ gilt:

$$\sin(x+y) = \sin x \cos y + \cos x \sin y, \tag{2.29}$$

$$\sin(x - y) = \sin x \cos y - \cos x \sin y, \tag{2.30}$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y, \tag{2.31}$$

$$\cos(x - y) = \cos x \cos y + \sin x \sin y. \tag{2.32}$$

2.1.3.3 Trigonometrischer Pythagoras

Für $x \in \mathbb{C}$ gilt:

$$\sin^2 x + \cos^2 x = 1. \tag{2.33}$$

2.1.3.4 Produkte

Für $x, y \in \mathbb{C}$ gilt:

$$2\sin x \sin y = \cos(x - y) - \cos(x + y), \tag{2.34}$$

$$2\cos x \cos y = \cos(x - y) + \cos(x + y), \tag{2.35}$$

$$2\sin x \cos y = \sin(x - y) + \sin(x + y). \tag{2.36}$$

2.1.3.5 Summen und Differenzen

Für $x, y \in \mathbb{C}$ gilt:

$$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2},$$
 (2.37)

$$\sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2},$$
 (2.38)

$$\cos x + \cos y = 2\cos \frac{x+y}{2}\cos \frac{x-y}{2},$$
 (2.39)

$$\cos x - \cos y = 2\sin\frac{x+y}{2}\sin\frac{y-x}{2}.$$
 (2.40)

Abbildung 2.1: $y = \sin(x)$

2.1.3.6 Winkelvielfache

Für $x \in \mathbb{C}$ gilt:

$$\sin(2x) = 2\sin x \cos x,\tag{2.41}$$

$$\cos(2x) = \cos^2 x - \sin^2 x, \tag{2.42}$$

$$\sin(3x) = 3\sin x - 4\sin^3 x,\tag{2.43}$$

$$\cos(3x) = 4\cos^3 x - 3\cos x. \tag{2.44}$$

Zusätzlich gilt:

$$\cos(2x) = 1 - 2\sin^2 x = 2\cos^2 x - 1. \tag{2.45}$$

Rekursionsformeln für $x, n \in \mathbb{C}$:

$$\cos(nx) = 2\cos x \cos((n-1)x) - \cos((n-2)x), \tag{2.46}$$

$$\sin(nx) = 2\cos x \sin((n-2)x) - \sin((n-2)x). \tag{2.47}$$

Abbildung 2.2: $y = \cos(x)$

2.2 Zahlentheoretische Funktionen

2.2.1 Eulersche Phi-Funktion

Definition. Eulersche Phi-Funktion.

Für $n \in \mathbb{N}$:

$$\varphi(n) := |\{a \in \mathbb{N} \mid 1 \le a \le n \land ggT(a, n) = 1\}|. \tag{2.48}$$

Für zwei teilerfremde Zahlen *m*, *n* gilt:

$$\varphi(mn) = \varphi(m)\,\varphi(n). \tag{2.49}$$

Für jede Primzahlpotenz p^k mit $k \in \mathbb{Z}$ und $k \ge 1$ gilt:

$$\varphi(p^k) = p^k - p^{k-1}. (2.50)$$

Für eine Zahl n mit der Primfaktorzerlegung

$$n = \prod_{p|n} p^{k_p} \tag{2.51}$$

gilt:

$$\varphi(n) = \prod_{p|n} (p^{k_p} - p^{k_p - 1}) = n \prod_{p|n} \left(1 - \frac{1}{p}\right).$$
 (2.52)

2.2.2 Carmichael-Funktion

Definition. Carmichael-Funktion.

Für $n \in \mathbb{N}$:

$$\lambda(n) := \min\{m \mid \forall a(ggT(a, n) = 1) \\ \implies a^m \equiv 1 \mod n\}.$$
 (2.53)

Abbildung 2.3: $y = \tan(x)$

Abbildung 2.4: $y = \tanh(x)$

3 Analysis

3.1 Ungleichungen

3.1.1 Dreiecksungleichung

In einem metrischen Raum (X, d) gilt axiomatisch für $x, y, z \in X$ die allgemeine Dreiecksungleichung:

$$d(x, z) \le d(x, y) + d(y, z).$$
 (3.1)

Infolge gilt auch die umgekehrte Dreiecksungleichung:

$$|d(x, y) - d(y, z)| \le d(x, z).$$
 (3.2)

Ist X ein normierter Raum, so wird durch d(x, y) := ||x - y|| eine Metrik induziert. Somit gilt

$$||x - z|| \le ||x - y|| + ||y - z||, \tag{3.3}$$

$$|||x - y|| - ||y - z||| \le ||x - z||. \tag{3.4}$$

Wird nun $x := x_1$, $z := -x_2$ und y := 0 gesetzt, so ergibt sich die Dreiecksungleichung für normierte Räume:

$$||x_1 + x_2|| \le ||x_1|| + ||x_2||, \tag{3.5}$$

und die umgekehrte Dreiecksungleichung:

$$|||x_1|| - ||x_2||| \le ||x_1 - x_2||. \tag{3.6}$$

Normen sind z.B. ||x|| = |x| für $x \in \mathbb{R}$ und ||z|| = |z| für $z \in \mathbb{C}$. Allgemeiner

$$\|v\|^2 = \sum_{k=1}^n v_k^2 \tag{3.7}$$

für einen Koordinatenvektor $v \in \mathbb{R}^n$, $v = (v_k)_{k=1}^n$. Ist $\langle v, w \rangle$ ein Skalarprodukt, so wird durch

$$||v|| := \sqrt{\langle v, v \rangle} \tag{3.8}$$

eine Norm induziert.

3.1.2 Bernoullische Ungleichung

Für $x \in \mathbb{R}$, $x \ge -1$ und $n \in \mathbb{Z}$, $n \ge 1$ gilt

$$(1+x)^n \ge 1 + nx. \tag{3.9}$$

Die Ungleichung wird nur für n=1 oder x=0 zu einer Gleichung.

3.2 Konvergenz

3.2.1 Beschränkte Folgen

Definition. Beschränkte Folge.

Eine Teilmenge $M \subseteq \mathbb{R}$ heißt nach oben beschränkt, wenn

$$\exists S_o \ \forall x \in M \colon \ x \le S_o. \tag{3.10}$$

und nach unten beschränkt, wenn

$$\exists S_u \, \forall x \in M \colon x \ge S_u. \tag{3.11}$$

Die Zahl S_o heißt *obere Schranke* und S_u heißt *untere Schranke*. Eine Folge heißt *beschränkt*, wenn sowohl eine untere als auch eine obere Schranke existiert.

Definition. Supremum, Infimum.

Supremum:

$$\sup(M) := \min\{S_o \mid \forall x \in M (x \le S_o)\}. \tag{3.12}$$

Infimum:

$$\inf(M) := \max\{S_u \mid \forall x \in M (x \ge S_u)\}. \tag{3.13}$$

Definition. Supremum, Infimum einer Folge.

Bei einer Folge (a_n) : $\mathbb{N} \to \mathbb{R}$ sind die Begriffe (3.10) bis (3.13) bezüglich der Bildmenge von (a_n) definiert.

Jede nach oben beschränkte nichtleere Teilmenge $M\subseteq\mathbb{R}$ besitzt ein Supremum. Jede nach unten beschränkte nichtleere Teilmenge $M\subseteq\mathbb{R}$ besitzt ein Infimum. Jede beschränkte nichtleere Teilmenge $M\subseteq\mathbb{R}$ besitzt ein Infimum und ein Supremum.

3.2.2 Umgebungen

Sei (X, d) ein metrischer Raum und $p \in X$.

Definition. Offene r-Umgebung.

Offene r-Umgebung von p:

$$U_r(p) := \{ q \mid d(p,q) < r \}.$$
 $(r > 0)$ (3.14)

Standardmetrik:

$$d(p,q) := |p-q|, \quad (X = \mathbb{R}, X = \mathbb{C})$$
 (3.15)

$$d(p,q) := ||p - q||. \quad \text{(normierte Räume)} \tag{3.16}$$

3.2.3 Konvergente Folgen

Definition. Konvergente Folge.

Eine Folge $(a_n): \mathbb{N} \to X$ heißt konvergent gegen g, wenn

$$\forall r > 0 \ \exists n_0 \ \forall n > n_0 \colon a_n \in U_r(g). \tag{3.17}$$

Man schreibt dann $\lim_{n\to\infty} a_n = g$ bzw. $a_n\to g$ und bezeichnet g als den *Grenzwert* von (a_n) . Hierbei gilt

$$a_n \in U_r(g) \iff d(a_n, g) < r.$$
 (3.18)

Einschnürungssatz. Seien (a_n) und (b_n) reelle Folgen mit $a_n \to g$ und $b_n \to g$. Gilt $a_n \le c_n \le b_n$ für fast alle n, so konvergiert (c_n) auch gegen g.

Vergleichssatz. Seien (a_n) und (b_n) konvergente Folgen mit $a_n \to a$ und $b_n \to b$. Ist $a_n \le b_n$ für alle $n \ge n_0$, dann gilt auch $a \le b$.

Folgerung: Sei (a_n) eine konvergente Folge mit $a_n \to a$ und seien A, B reelle Zahlen mit $A \le B$. Ist $A \le a_n \le B$ für alle $n \ge n_0$, dann gilt auch $A \le a \le B$.

Grenzwertsätze. Sind (a_n) und (b_n) konvergente Folgen mit $a_n \to a$ und $b_n \to b$, dann gilt:

$$\lim_{n \to \infty} (a_n + b_n) = a + b,\tag{3.19}$$

$$\lim_{n \to \infty} (a_n - b_n) = a - b,$$
(3.20)

$$\lim_{n \to \infty} (a_n b_n) = ab.$$
(3.21)

Ist zusätzlich für $n \ge n_0$ immer $b_n \ne 0$, dann gilt auch

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}.\tag{3.22}$$

Bemerkung: Die Regeln gelten speziell, wenn (a_n) oder (b_n) eine konstante Folge ist, denn eine konstante Folge ist auch konvergent.

3.3 Reihen 21

Allgemeine Grenzwertsätze.

Sei $f: U \to \mathbb{R}$ mit $U \subseteq \mathbb{R}$ und (a_n) eine konvergente Folge von Werten in U mit $a_n \to a \in U$. Die Funktion f ist genau dann stetig, wenn für jede solche Folge gilt:

$$\lim_{n \to \infty} f(a_n) = f(\lim_{n \to \infty} a_n) = f(a). \tag{3.23}$$

Sei $f: U \to \mathbb{R}$ mit $U \subseteq \mathbb{R}^2$. Seien $(a_n), (b_n)$ konvergente Folgen von Werten in U mit $a_n \to a \in U$ und $b_n \to b \in U$. Die Funktion f ist genau dann stetig, wenn für alle solche Folgen gilt:

$$\lim_{n \to \infty} f(a_n, b_n) = f(\lim_{n \to \infty} a_n, \lim_{n \to \infty} b_n) = f(a, b).$$
 (3.24)

Beschränkte Folgen. Ist (a_n) konvergent und gilt für alle $n \ge n_0$ immer $a_n \le s$, dann ist auch $\lim a_n \le s$.

Monotoniekriterium. Jede streng monoton wachsende nach oben beschränkte Folge ist konvergent. Jede streng monoton fallende nach unten beschränkte Folge ist konvergent.

Cauchy-Kriterium. Jede reelle Cauchy-Folge ist konvergent.

3.2.4 Häufungspunkte

Definition. Häufungspunkt.

Eine Punkt h heißt $H\ddot{a}ufungspunkt$ einer Folge (a_n) , wenn

$$\forall r > 0 \ \forall n_0 \ \exists n > n_0 \colon \ a_n \in U_r(h). \tag{3.25}$$

In Worten: Ein Punkt h heißt Häufungspunkt, wenn in jeder Umgebung von *h* unendlich viele Werte der Folge liegen.

Besitzt eine Folge (a_n) einen Grenzwert g, so ist g auch ein Häufungspunkt von (a_n) .

3.2.5 Cauchy-Folge

Definition. Cauchy-Folge, vollständiger Raum.

Sei (X, d) ein metrischer Raum. Eine Folge (a_n) heißt Cauchy-Folge, wenn

$$\forall r > 0 \ \exists N \in \mathbb{N} \ \forall m > N, n > N : \ d(a_m, a_n) < r. \tag{3.26}$$

Ein metrischer Raum (X, d) heißt vollständig, wenn jede Cauchy-Folge von Punkten aus X einen Grenzwert g mit $g \in X$ besitzt. Ein vollständiger normierter Raum heißt Banachraum.

3.3 Reihen

Definition. Reihe.

Sei (a_n) eine Folge. Die Folge (s_n) von Partialsummen

$$s_n = \sum_{k=0}^{n} a_k (3.27)$$

wird Reihe genannt. Der Grenzwert

$$\sum_{k=0}^{\infty} a_k := \lim_{n \to \infty} \sum_{k=0}^{n} a_k \tag{3.28}$$

wird als Summe der Reihe bezeichnet.

Jede beliebige Folge (a_n) lässt sich durch

$$b_0 := a_0, \quad b_k := a_k - a_{k-1}$$
 (3.29)

als Reihe

$$a_n = \sum_{k=0}^{n} b_k = a_0 + \sum_{k=1}^{n} (a_k - a_{k-1})$$
(3.30)

darstellen. Die Summe auf der rechten Seite von (3.30) wird als Teleskopsumme bezeichnet.

3.3.1 Absolute Konvergenz

Definition. Absolute Konvergenz.

Sei X ein normierter Raum. Eine Reihe $s_n = \sum_{k=0}^n a_k$ mit $a_k \in X$ heißt *absolut konvergent*, wenn

$$\sum_{k=0}^{\infty} \|a_k\| < \infty. \tag{3.31}$$

Es gilt: X ist ein Banachraum gdw. jede absolut konvergente Reihe konvergent ist.

Ist X ein Banachraum und $s_n = \sum_{k=0}^n a_k$ eine absolut konvergente Reihe mit $a_k \in X$, so gilt:

$$\sum_{k=0}^{\infty} a_k = \sum_{k=0}^{\infty} a_{\sigma(k)}, \quad \sigma \in \text{Sym}(\mathbb{N}_0).$$
 (3.32)

Eine konvergente Reihe, für die (3.32) gilt, heißt unbedingt konvergent.

3.3.2 Konvergenzkriterien

3.3.2.1 Nullfolgenkriterium

Wenn $\lim_{n\to\infty} a_n \neq 0$, dann divergiert $s_n = \sum_{k=0}^n a_k$.

3.3.2.2 Quotientenkriterium

Gegeben ist eine unendliche Reihe $s_n = \sum_{k=0}^n a_k$, wobei die a_k reelle oder komplexe Zahlen sind und $a_k \neq 0$ ab einem gewissen k ist. Gilt

$$\exists q < 1 \ \exists k_0 \ \forall k > k_0 : \ \left| \frac{a_{k+1}}{a_k} \right| \le q,$$
 (3.33)

so ist (s_n) absolut konvergent. S. (3.31). Gilt jedoch

$$\exists k_0 \ \forall k > k_0 \colon \left| \frac{a_{k+1}}{a_k} \right| \ge 1, \tag{3.34}$$

so ist (s_n) divergent.

Existiert der Grenzwert

$$g = \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right|,\tag{3.35}$$

$$g < 1 \implies (s_n)$$
 ist absolut konvergent, (3.36)

$$g > 1 \implies (s_n)$$
 ist divergent, (3.37)

$$g = 1 \implies \text{keine Aussage.}$$
 (3.38)

3.3.3 Cauchy-Produkt

$$A_m := \sum_{n=0}^m a_n, \quad A := \lim_{m \to \infty} A_m, \tag{3.39}$$

$$A_{m} := \sum_{n=0}^{m} a_{n}, \quad A := \lim_{m \to \infty} A_{m},$$

$$B_{m} := \sum_{n=0}^{m} b_{n}, \quad B := \lim_{m \to \infty} B_{m},$$

$$C_{m} := \sum_{n=0}^{m} c_{n}, \quad C := \lim_{m \to \infty} C_{m}.$$
(3.39)
(3.39)

$$C_m := \sum_{n=0}^{m} c_n, \quad C := \lim_{m \to \infty} C_m.$$
 (3.41)

Definition. Cauchy-Produkt.

Das Cauchy-Produkt von zwei Reihen (A_m) und (B_m) ist definiert durch

$$C_m := \sum_{n=0}^{m} c_n \quad \text{mit } c_n := \sum_{k=0}^{n} a_k b_{n-k}.$$
 (3.42)

Das Cauchy-Produkt von zwei reellen oder komplexen absolut konvergenten Reihen ist absolut konvergent und es

$$C = AB. (3.43)$$

22 3 Analysis

Satz von Mertens. Das Cauchy-Produkt von reellen oder komplexen konvergenten Reihen, eine davon absolut konvergent, ist konvergent und es gilt (3.43).

3.4 Reelle Funktionen

Definition. Reelle Funktion.

Eine Funktion $f: D \to \mathbb{R}$ mit $D \subseteq \mathbb{R}$ heißt reelle Funktion.

3.4.1 Monotone Funktionen

Jede streng monotone reelle Funktion ist injektiv.

3.4.2 Grenzwert einer Funktion

Ist $f: I \to \mathbb{R}$ eine reelle Funktion, I eine offenes Intervall und $x_0 \in I$, so gilt:

$$g = \lim_{x \to x_0} f(x)$$

$$\iff g = \lim_{x \uparrow x_0} f(x) \land g = \lim_{x \downarrow x_0} f(x).$$
(3.44)

3.4.3 Stetige Funktionen

Sei $f: I \to \mathbb{R}$ eine reelle Funktion und I ein offenes Intervall. Die Funktion f ist stetig bei $x_0 \in I$ gdw.

$$\lim_{x \to x_0} f(x) = f(x_0). \tag{3.45}$$

Sind f, g stetige Funktion, so ist auch $g \circ f$ stetig.

Zwischenwertsatz. Sei $f:[a,b] \to \mathbb{R}$ eine stetige Funktion und sei a < b. Bei f(a) < f(b) gilt:

$$\forall y \in [f(a), f(b)] \ \exists x \in [a, b]: \ y = f(x).$$
 (3.46)

Bei f(a) > f(b) gilt:

$$\forall y \in [f(b), f(a)] \ \exists x \in [a, b]: \ y = f(x).$$
 (3.47)

Mit $[a, b]_s := [\min(a, b), \max(a, b)]$ lässt sich der Satz kompakter formuliern.

Zwischenwertsatz. Sei $f \colon [a,b] \to \mathbb{R}$ eine stetige Funktion, dann gilt

$$[a,b]_s \subseteq f([a,b]). \tag{3.48}$$

3.5 Differential rechnung

3.5.1 Differential quotient

Definition. Differential quotient.

Sei $U\subseteq\mathbb{R}$ ein offenes Intervall und sei $f\colon U\to\mathbb{R}$. Die Funktion f heißt differenzierbar an der Stelle $x_0\in U$, falls der Grenzwert

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 (3.49)

existiert. Dieser Grenzwert heißt Differentialquotient oder Ableitung von f an der Stelle x_0 . Notation:

$$f'(x_0),$$
 $(Df)(x_0),$ $\frac{\mathrm{d}f(x)}{\mathrm{d}x}\Big|_{x=x_0}$. (3.50)

3.5.2 Ableitungsregeln

Sind f, g, h an der Stelle x differenzierbare Funktionen, ist $h(x) \neq 0$ und ist a eine reelle Zahl, so gilt

$$(af)'(x) = af'(x), \tag{3.51}$$

$$(f+g)'(x) = f'(x) + g'(x), (3.52)$$

$$(f - g)'(x) = f'(x) - g'(x), (3.53)$$

$$(fg)'(x) = f'(x)g(x) + g'(x)f(x), (3.54)$$

$$\left(\frac{f}{h}\right)'(x) = \frac{f'(x)h(x) - h'(x)f(x)}{h(x)^2}.$$
 (3.55)

Tabelle 3.1: Ableitungen elementarer Funktionen

f(x)	f'(x)	D(f)	D(f')
$x^n, n \in \mathbb{N}$	nx^{n-1}	$ \mathbb{R} $	D(f)
$x^r, r \in \mathbb{R}$	rx^{r-1}	$(0,\infty)$	D(f)
$\frac{1}{x}$	$-\frac{1}{x^2}$	$\mathbb{R}\setminus\{0\}$	D(f)
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	[0,∞)	$(0,\infty)$
$\sqrt[n]{x}$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$	[0,∞)	$(0,\infty)$
e ^x	e ^x	R	D(f)
$a^x, a>0$	$a^x \ln a$	\mathbb{R}	D(f)
$\ln x$	$\frac{1}{x}$	$(0, \infty)$	D(f)
$\log_a x$	$\frac{1}{x \ln a}$	$(0,\infty)$	D(f)
sin x	$\cos x$	$ \mathbb{R} $	D(f)
cos x	$-\sin x$	\mathbb{R}	D(f)
tan x	$1 + \tan^2 x$	$\{x \mid x \neq k\pi + \frac{\pi}{2}\}$	D(f)
cot x	$-1 - \cot^2 x$	$ \{x \mid x \neq k\pi\} $	D(f)
$\arcsin x$	$ \frac{\frac{1}{\sqrt{1-x^2}}}{-\frac{1}{\sqrt{1-x^2}}} $	[-1, 1]	(-1, 1)
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$	[-1, 1]	(-1, 1)
arctan x	$\frac{1}{1+x^2}$	\mathbb{R}	D(f)
$\operatorname{arccot} x$	$-\frac{\frac{1}{1+x^2}}{\frac{1}{1+x^2}}$	\mathbb{R}	D(f)
sinh x	cosh x	R	D(f)
cosh x	sinh x	\mathbb{R}	D(f)
tanh x	$1 - \tanh^2 x$	\mathbb{R}	D(f)
$\coth x$	$1 - \coth^2 x$	$\mid \mathbb{R} \backslash \{0\}$	D(f)
arsinh x	$\frac{1}{\sqrt{1+x^2}}$	R	D(f)
$\operatorname{arcosh} x$	$\frac{1}{\sqrt{x^2-1}}$	[1,∞)	$(1,\infty)$
artanh <i>x</i>	$\frac{1}{1-x^2}$	(-1,1)	D(f)
arcoth x	$ \frac{\frac{1}{\sqrt{x^2 - 1}}}{\frac{1}{1 - x^2}} \frac{1}{1 - x^2} $	$(-\infty,-1)\cup(1,\infty)$	D(f)

Kettenregel. Ist g differenzierbar an der Stelle x_0 und f differenzierbar an der Stelle $g(x_0)$, dann ist $f \circ g$ differenzierbar an der Stelle x_0 und es gilt

$$(f \circ g)'(x_0) = (f' \circ g)(x_0) \cdot g'(x_0). \tag{3.56}$$

Für die Ableitung elementarer Funktionen, siehe Tabelle 3.1.

3.5.3 Tangente und Normale

Funktionsgleichung der Tangente an den Graphen von f an der Stelle x_0 :

$$T(x) = f(x_0) + f'(x_0)(x - x_0). (3.57)$$

Funktionsgleichung der Normale an den Graphen von f an der Stelle x_0 :

$$N(x) = f(x_0) + \frac{1}{f'(x_0)}(x - x_0).$$
 (3.58)

3.5.4 Taylorreihe

Sei f eine an der Stelle a unendlich oft differenzierbare reelle Funktion.

3.6 Integralrechnung 23

Definition. Taylorreihe.

Taylorreihe von f an der Stelle a:

$$f[a](x) := (\exp((x-a)D)f)(a)$$

$$= \sum_{k=0}^{\infty} \frac{(D^k f)(a)}{k!} \cdot (x-a)^k$$

$$= f(a) + f'(a) \cdot (x-a) + \frac{f''(a)}{2} \cdot (x-a)^2 + \dots$$
(3.59)

$$mit f^{(k)}(a) = (D^k f)(a)$$

Für Polynomfunktionen und für exp, sin, cos gilt

$$\forall x \in \mathbb{R} \colon f[a](x) = f(x). \tag{3.60}$$

3.5.5 Kurvendiskussion

3.5.5.1 Extrempunkte

Definition. Lokaler Extremwert.

Sei D eine offene Menge und $f: D \to \mathbb{R}$. Ein Wert $f(x_0)$ heißt *lokales Maximum*, wenn

$$\exists r > 0 \ \forall x (x \in U_r(x_0) \implies f(x) \le f(x_0)).$$
 (3.61)

Ein Wert $f(x_0)$ heißt *lokales Minimum*, wenn

$$\exists r > 0 \ \forall x (x \in U_r(x_0) \implies f(x) \ge f(x_0)). \tag{3.62}$$

Ist $f(x) = f(x_0)$ nur bei $x = x_0$, dann spricht man von einem *strengen* lokalen Minimum bzw. Maximum.

3.6 Integralrechnung

3.6.1 Regelfunktionen

Ist T eine Treppenfunktion mit $T(x) := t_k$ für $x \in (x_k, x_{k+1})$, dann gilt:

$$\int_{a}^{b} T(x) dx = \sum_{k=0}^{n-1} (x_{k+1} - x_k) t_k.$$
 (3.63)

Definition. Regelfunktion.

Eine Funktion $f\colon [a,b]\to \mathbb{R}$ heißt Regelfunktion, wenn es eine Folge von Treppenfunktionen gibt, die gleichmäßig gegen f konvergiert.

Ist (T_n) eine gleichmäßig gegen die Regelfunktion f konvergente Folge von Treppenfunktionen, dann gilt:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} T_n(x) dx.$$
 (3.64)

Jede stückweise stetige Funktion ist eine Regelfunktion.

3.6.2 Stetige Funktionen

Sei $f:[a,b]\to\mathbb{R}$ eine stetige, monoton steigende Funktion mit $f(x)\geq 0$ auf dem gesamten Definitionsbereich.

Untersumme:

$$\underline{A}_{n} := \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right) \frac{b-a}{n}.$$
 (3.65)

Obersumme:

$$\overline{A}_n := \sum_{k=1}^n f\left(a + k \frac{b-a}{n}\right) \frac{b-a}{n}.$$
 (3.66)

Es gilt:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \underline{A}_{n} = \lim_{n \to \infty} \overline{A}_{n}.$$
 (3.67)

3.6.3 Hauptsatz

Sei I ein Intervall, offen, halboffen, geschlossen oder unendlich. Sei $f: I \to \mathbb{R}$ stetig.

Definition. Integralfunktion.

Integralfunktion:

$$F(x) := \int_{a}^{x} f(x) \, \mathrm{d}x, \quad F \colon I \to \mathbb{R}. \tag{3.68}$$

Definition. Stammfunktion.

Gilt F' = f, so wird F Stammfunktion von f genannt.

Hauptsatz. Die Integralfunktion ist differenzierbar und es gilt F' = f. Ist $f: I \to \mathbb{R}$ stetig und F eine Stammfunktion von f, dann gilt

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$
 (3.69)

für $a, b \in I$.

3.6.4 Integrationsregeln

3.6.4.1 Linearität

Für integrierbare Funktionen $f,g:[a,b]\to\mathbb{R}$ und eine Konstante $c\in\mathbb{R}$ gilt die Additivität:

$$\int_{a}^{b} f(x) + g(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$
 (3.70)

und die Homogenität:

$$\int_{a}^{b} c f(x) \, \mathrm{d}x = c \int_{a}^{b} f(x) \, \mathrm{d}x. \tag{3.71}$$

3.6.4.2 Substitutionsregel

Für $f \in C(I \to \mathbb{R})$ und $\varphi \in C^1([a, b] \to \mathbb{R})$ mit $\varphi([a, b]) \subseteq I$ gilt

$$\int_{a}^{b} f(\varphi(t)) \varphi'(t) dt = \int_{\varphi(a)}^{\varphi(b)} f(x) dx.$$
 (3.72)

3.6.4.3 Partielle Integration

Für $f, g \in C^1([a, b] \to \mathbb{R})$ gilt

$$\int_{a}^{b} f(x) g'(x) dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} g(x)f'(x) dx.$$
 (3.73)

3.6.5 Integral bei Polstellen

Bei Polstellen im Integrationsintervall ist Vorsicht geboten. Man könnte z.B. auf die Idee kommen, dass einfach

$$\int_{-1}^{1} \frac{1}{x^3} \, \mathrm{d}x = \left[-\frac{1}{2x^2} \right]_{-1}^{1} = 0 \tag{3.74}$$

gerechnet werden kann. Die Funktion $f(x) := x^{-3}$ besitzt jedoch eine Polstelle bei x = 0, ist dort somit nicht definiert und die Lücke ist auch nicht stetig behebbar. Der Hauptsatz (3.69) setzt aber einen stetigen Integranden voraus.

Um solche Situationen angehen zu können, ist eine Erweiterung des Integralbegriffs notwendig.

24 3 Analysis

Definition. Cauchy-Hauptwert.

Cauchy-Hauptwert (kurz CH, engl. PV für principial value) bei einer Definitionslücke x=c:

$$PV \int_{a}^{b} f(x) dx := \lim_{\varepsilon \to 0} \left(\int_{a}^{c-\varepsilon} f(x) dx + \int_{c+\varepsilon}^{b} f(x) dx \right).$$
 (3.75)

Nun gilt:

$$PV \int_{-1}^{1} \frac{1}{x^3} \, \mathrm{d}x = 0. \tag{3.76}$$

Die Flächeninhalte auf beiden Seiten der Polstelle sind von unterschiedlichem Vorzeichen und heben sich gegenseitig auf.

Eine alternative Erweiterung ist die Erweiterung des Integranden auf einen komplexen Definitionsbereich. Da die Funktion $f(z) := z^{-3}$ meromorph ist, lässt sich der Integrationsweg um die Polstelle herumführen und es gilt

$$\int_{-1}^{1} \frac{1}{z^3} \, \mathrm{d}z = 0. \tag{3.77}$$

Zu beachten ist aber, dass z. B.

$$\int_{-1}^{1} \frac{1}{z^2} \, \mathrm{d}z = -2 \tag{3.78}$$

ist, obwohl

$$PV \int_{-1}^{1} \frac{1}{x^2} \, \mathrm{d}x \tag{3.79}$$

nicht existiert.

Man beachte auch, dass in der komplexen Ebene der Umlaufsinn um die Polstelle unter Umständen eine Rolle spielt, denn die Wegunabhängigkeit des Integrals für einen holomorphen Integranden ist nur für einfach zusammenhängende Gebiete gesichert. Z. B. ist

$$\int_{-1}^{1} \frac{1}{z} dz = -\pi i \tag{3.80}$$

für den Integrationsweg oberhalb der Polstelle,

$$\int_{-1}^{1} \frac{1}{z} dz = +\pi i \tag{3.81}$$

für den Integrationsweg unterhalb der Polstelle und

$$PV \int_{-1}^{1} \frac{1}{x} \, \mathrm{d}x = 0. \tag{3.82}$$

3.6.6 Sigmoidfunktionen

Tabelle 3.2: Sigmoidfunktionen

Nr.	Glockenkurve	Sigmoidfunktion
1	$f(x) = \frac{1}{(x +1)^2}$	$F(x) = \frac{x}{ x + 1}$
2	$f(x) = \frac{1}{(x^2 + 1)^{3/2}}$	$F(x) = \frac{x}{\sqrt{x^2 + 1}}$
3	$f(x) = \frac{1}{(x ^a + 1)^{1/a + 1}}$	$F(x) = \frac{x}{(x ^a + 1)^{1/a}}$
4	$f(x) = \frac{4}{(\pi x)^2 + 4}$ $f(x) = \exp(-\frac{\pi}{4}x^2)$	$F(x) = \frac{2}{\pi} \arctan(\frac{\pi}{2}x)$
5	$f(x) = \exp(-\frac{\pi}{4}x^2)$	$F(x) = \operatorname{erf}(\frac{1}{2}\sqrt{\pi}x)$
6	$f(x) = 1 - \tanh(x)^2$	$F(x) = \tanh(x)$
7	$f(x) = \frac{1}{\cosh(\pi x/2)}$	F(x) = gd(x)
8	$f(x) = \exp(-(\Gamma(\frac{1}{a})\frac{x}{a})^a)$	$F(x) = \frac{\gamma(\frac{1}{a}, (\Gamma(\frac{1}{a})\frac{x}{a})^a)}{\Gamma(1/a)}$
9	f(x) = rect(x/2)	F(x) = clamp(x, -1, 1)

(3.77)
$$\operatorname{erf}(x) := \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$
, $\operatorname{gd}(x) := 2 \arctan(\tanh(\frac{x}{2}))$, $\operatorname{clamp}(x, a, b) := \max(a, \min(x, b))$

Eine Funktion F(x) heißt Sigmoidfunktion in Normalform, wenn gilt:

- \blacksquare F ist streng monoton steigend,
- F ist differenzierbar mit F'(0) = 1,

3.7 Skalarfelder 25

3.7 Skalarfelder

Sei $x := (x_k)_{k=1}^n$ und $a := (a_k)_{k=1}^n$. Sei $f : G \to \mathbb{R}$ wobei $G \subseteq \mathbb{R}^n$ eine offene Menge ist.

3.7.1 Partielle Ableitungen

Definition. Partielle Ableitung.

Die partiellen Ableitungen von f an der Stelle $a \in G$ sind definiert durch

$$\frac{\partial f(x)}{\partial x_k}\bigg|_{x=a} := \frac{\mathrm{d}f(a_1, \dots, t, \dots, a_n)}{\mathrm{d}t}\bigg|_{t=a_k}$$

$$= \lim_{h \to 0} \frac{f(a_1, \dots, a_k + h, \dots, a_n) - f(a)}{h}.$$
(3.83)

Kurzschreibweisen:

$$(D_k f)(a), \quad (\partial_k f)(a).$$
 (3.84)

3.7.2 Gradient

Sei $(e_k)_{k=1}^n$ die kanonische Basis des \mathbb{R}^n .

Definition. Gradient.

An der Stelle *a*:

$$(\nabla f)(a) := \sum_{k=1}^{n} e_k(D_k f)(a) = ((D_1 f)(a), \dots, (D_n f)(a)).$$
 (3.85)

Formale Schreibweise:

$$\nabla := \sum_{k=1}^{n} e_k D_k. \tag{3.86}$$

Ist $(\nabla f)(x)$ stetig bei x = a, so ist f bei a differenzierbar.

3.7.2.1 Tangentialraum

Ist $f:G\to\mathbb{R}$ in einer Umgebung von $x_0\in G$ differenzierbar, so existiert bei x_0 auf eindeutige Art ein Tangentialraum, der durch

$$T(x) = f(x_0) + \langle (\nabla f)(x_0), x - x_0 \rangle \tag{3.87}$$

beschrieben wird.

3.7.3 Richtungsableitung

Definition. Richtungsableitung.

An der Stelle a in Richtung v:

$$(D_{v}f)(a) := \frac{d}{dt}f(a+tv)\Big|_{t=0}$$

$$= \lim_{h \to 0} \frac{f(a+hv) - f(a)}{h}.$$
(3.88)

Die partiellen Ableitungen sind die Richtungsableitungen bezüglich der Standardbasis (e_k) :

$$(D_{e_k} f)(a) = (D_k f)(a).$$
 (3.89)

Ist f an der Stelle a differenzierbar, so gilt:

$$(D_{\nu}f)(a) = \langle \nu, (\nabla f)(a) \rangle = \sum_{k=1}^{n} \nu_k(D_k f)(a).$$
 (3.90)

Sind f, g an der Stelle a differenzierbar, so gilt dort:

$$D_{\nu}(f+g) = D_{\nu}f + D_{\nu}g, \tag{3.91}$$

$$\forall r \in \mathbb{R} \colon D_{\nu}(rf) = rD_{\nu}f,\tag{3.92}$$

$$D_{\nu}(fg) = gD_{\nu}f + fD_{\nu}g, \tag{3.93}$$

$$D_{v+w}f = D_v f + D_w f. (3.94)$$

3.8 Vektorfelder

Sei $f: G \to \mathbb{R}^m$ wobei $G \subseteq \mathbb{R}^n$ eine offene Menge ist.

Definition. Jacobi-Matrix.

An der Stelle *a*:

$$(J[f](a))_{ij} := (D_j f_i)(a). \tag{3.95}$$

Schreibweisen:

$$J[f](a) = (Df)(a) = (\nabla \otimes f)^{T}(a)$$
(3.96)

und

$$J[f](x) = \frac{\partial f(x)}{\partial x} = \frac{\partial (f_1, \dots, f_m)}{\partial (x_1, \dots, x_n)}.$$
 (3.97)

3.8.1 Tangentialraum

Ist $f:(G\subseteq\mathbb{R}^n)\to\mathbb{R}^m$ bei $x_0\in G$ differenzierbar, so gibt es dort einen Tangentialraum, der durch

$$T(x) = f(x_0) + (Df)(x_0)(x - x_0)$$
(3.98)

beschrieben wird.

3.8.2 Richtungsableitung

Definition. Richtungsableitung.

An der Stelle *a* in Richtung *v*:

$$(D_{\nu}f)(a) := \frac{\mathrm{d}}{\mathrm{d}t}f(a+t\nu)\Big|_{t=0}.$$
 (3.99)

Ist $f: (G \subseteq \mathbb{R}^n) \to \mathbb{R}^m$ bei $a \in G$ differenzierbar, so gilt:

$$(D_{\mathcal{V}}f)(a) = (\langle \mathcal{V}, \nabla \rangle f)(a) = J[f](a)\,\mathcal{V},\tag{3.100}$$

kurz $D_v = \langle v, \nabla \rangle$.

3.9 Variationsrechnung

3.9.1 Fundamentallemma

Sei I := [a, b] kompakt und sei $g : I \to \mathbb{R}$ stetig. Wenn

$$\int_{a}^{b} g(x)h(x) \, \mathrm{d}x = 0 \tag{3.101}$$

für jede unendlich oft differenzierbare Funktion $h: I \to \mathbb{R}$ mit h(a) = h(b) = 0 gilt, so ist g(x) = 0 für alle x.

3.9.2 Euler-Lagrange-Gleichung

Sei I := [a, b] kompakt. Sei

$$F: I \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \tag{3.102}$$

zweimal stetig differenzierbar. Gesucht ist eine zweimal stetig differenzierbare Funktion $f: I \to \mathbb{R}$ mit fixen Randwerten f(a) = A und f(b) = B, für die

$$J(f) := \int_{a}^{b} F(x, f(x), f'(x)) dx$$
 (3.103)

einen Extremwert annimmt.

Die Euler-Lagrange-Gleichung

$$\frac{\partial F(x, y, y')}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial F(x, y, y')}{\partial y'} = 0 \tag{3.104}$$

mit y = f(x) und y' = f'(x) ist eine notwendige Bedingung dafür

26 3 Analysis

3.10 Fourier-Analysis

3.10.1 Fourierreihen

3.10.1.1 Fourier-Skalarprodukt

Definition. Fourier-Skalarprodukt.

Für periodische Funktionen $f,g\colon\mathbb{R}\to\mathbb{C}$ mit Periodendauer $T\colon$

$$\langle f, g \rangle := \frac{1}{T} \int_{t_0}^{t_0 + T} \overline{f(t)} g(t) \, \mathrm{d}t. \tag{3.105}$$

Speziell für $T = 2\pi$ und $t_0 = -\pi$:

$$\langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} \overline{f(t)} g(t) \, \mathrm{d}t. \tag{3.106}$$

Für rein reelle Funktionen ist die Konjugation wirkungslos und entfällt daher.

Das Fourier-Skalarprodukt ist ein Skalarprodukt auf dem Hilbertraum $L^2([t_0,t_0+T])$. Wie jedes Skalarprodukt induziert es eine Norm:

$$||f||^2 = \langle f, f \rangle = \frac{1}{T} \int_{t_0}^{t_0 + T} |f(t)|^2 dt.$$
 (3.107)

Man nennt ||f|| auch das *quadratische Mittel* von f. Die Definition des Skalarproduktes ist so gewählt, dass es sich bei ||f|| um den Effektivwert des Signals f handelt.

3.10.1.2 Fourier-Koeffizienten

Komplexe Fourier-Koeffizienten:

$$c_k[f] := \frac{1}{T} \int_{t_0}^{t_0+T} e^{-ki\omega t} f(t) dt.$$
 (3.108)

Für $T = 2\pi$ und $t_0 = -\pi$ gilt speziell:

$$c_k[f] = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-kit} f(t) dt.$$
 (3.109)

Es gilt (λ : eine Konstante):

$$c_k[f+g] = c_k[f] + c_k[g],$$
 (3.110)

$$c_k[\lambda f] = \lambda c_k[f]. \tag{3.111}$$

Reelle Fourier-Koeffizienten:

$$a_k[f] := \frac{2}{T} \int_{t_0}^{t_0+T} \cos(k\omega t) f(t) dt,$$
 (3.112)

$$b_k[f] := \frac{2}{T} \int_{t_0}^{t_0 + T} \sin(k\omega t) f(t) dt.$$
 (3.113)

Für $T = 2\pi$ und $t_0 = -\pi$ gilt speziell:

$$a_k[f] = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(kt) f(t) dt,$$
 (3.114)

$$b_k[f] = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(kt) f(t) dt.$$
 (3.115)

Es gilt (λ : eine Konstante):

$$a_k[f+g] = a_k[f] + a_k[g],$$
 (3.116)

$$b_k[f+g] = b_k[f] + b_k[g], (3.117)$$

$$a_k[\lambda f] = \lambda a_k[f],\tag{3.118}$$

$$b_k[\lambda f] = \lambda b_k[f]. \tag{3.119}$$

Umrechnung zwischen den reellen und den komplexen Koef-

fizienten für k > 0:

$$c_0 = \frac{1}{2}a_0, a_0 = 2c_0, (3.120)$$

$$c_k = \frac{1}{2}(a_k - b_k i),$$
 $a_k = c_k + c_{-k},$ (3.121)

$$c_{-k} = \frac{1}{2}(a_k + b_k i),$$
 $b_k = (c_k - c_{-k})i.$ (3.122)

3.10.1.3 Fourierreihe

Reelles Fourier-Polynom:

$$p_n(t) := \frac{a_0}{2} + \sum_{k=1}^{n} [a_k \cos(k\omega t) + b_k \sin(k\omega t)].$$
 (3.123)

Komplexes Fourier-Polynom:

$$p_n(t) := \sum_{k=-n}^{n} c_k e^{ik\omega t}.$$
 (3.124)

Definition. Fourierreihe.

Sind $c_k[f]$ die Fourierkoeffizienten zu f und ist p_n das daraus gebildete Fourierpolynom, dann bezeichnet man die Folge (p_n) als Fourierreihe von f.

Ist f stetig differenzierbar, dann gilt

$$f(t) = \lim p_n(t) \tag{3.125}$$

für alle t. Ist $f \in L^2([t_0, t_0 + T])$, dann gilt

$$f = \lim_{n \to \infty} p_n,\tag{3.126}$$

bezüglich (3.129). Das heißt, es liegt Konvergenz im quadratischen Mittel vor:

$$\lim_{n \to \infty} ||f - p_n|| = 0. (3.127)$$

3.10.1.4 Raum der quadratintegrablen Funktionen

Sei $I = [t_0, t_0 + T]$. Man definiert zunächst

$$\mathcal{L}^{2}(I) := \{ f : I \to \mathbb{C} \mid ||f|| < \infty \}, \tag{3.128}$$

wobei ||f|| gemäß (3.107) definiert ist. Für zwei Funktionen $f, g \in \mathcal{L}^2(I)$ ist wie folgt eine Äquivalenzrelation gegeben:

$$f \sim g :\iff ||f - g|| = 0. \tag{3.129}$$

Man sagt, die Funktionen stimmen *im quadratischen Mittel* überein. Der Quotientenraum

$$L^{2}(I) := \mathcal{L}^{2}(I) / \sim \tag{3.130}$$

bildet bezüglich (3.105) einen Hilbertraum, welcher als *Raum* der quadratintegrablen Funktionen bezeichnet wird.

Die Fourier-Basis

$$B := \{e_k \mid k \in \mathbb{Z}\}, \quad e_k(t) := e^{ik\omega t}$$
 (3.131)

ist eine Orthonormalbasis von $L^2(I)$. Die gegen f konvergente Fourier-Reihe (3.126) bekommt nun die Form

$$f = \sum_{k \in \mathbb{Z}} \langle e_k, f \rangle \, e_k. \tag{3.132}$$

Hierbei gilt $c_k[f] = \langle e_k, f \rangle$

4 Lineare Algebra

4.1 Grundbegriffe

4.1.1 Norm

Definition. Norm.

Eine Abbildung $v \mapsto ||v||$ von einem Vektorraum V über dem Körper K in die nichtnegativen reellen Zahlen heißt *Norm*, wenn für alle $v, w \in V$ und $a \in K$ die drei Axiome

$$||v|| = 0 \implies v = 0, \tag{4.1}$$

$$||av|| = |a| \, ||v||, \tag{4.2}$$

$$||v + w|| \le ||v|| + ||w|| \tag{4.3}$$

erfüllt sind.

Eigenschaften:

$$||v|| = 0 \iff v = 0, \tag{4.4}$$

$$||-v|| = ||v||, \tag{4.5}$$

$$||v|| \ge 0. \tag{4.6}$$

Dreiecksungleichung nach unten:

$$|||v|| - ||w||| \le ||v - w||. \tag{4.7}$$

4.1.2 Skalarprodukt

Ein Vektorraum über dem Körper $\mathbb R$ heißt reeller Vektorraum, einer über dem Körper $\mathbb C$ heißt komplexer Vektorraum.

4.1.2.1 Definition

Sei V ein reeller Vektorraum. Eine Abbildung $f: V^2 \to \mathbb{R}$ mit $f(x, y) = \langle x, y \rangle$ heißt *Skalarprodukt*, wenn folgende Axiome erfüllt sind. Für $v, w \in V$ und $\lambda \in \mathbb{R}$ gilt:

$$\langle v, w \rangle = \langle w, v \rangle, \tag{4.8}$$

$$\langle v, \lambda w \rangle = \lambda \langle v, w \rangle, \tag{4.9}$$

$$\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle, \tag{4.10}$$

$$\langle v, v \rangle \ge 0, \tag{4.11}$$

$$\langle v, v \rangle = 0 \iff v = 0.$$
 (4.12)

Sei V ein komplexer Vektorraum und $f: V^2 \to \mathbb{C}$. Für $v, w \in V$ und $\lambda \in \mathbb{R}$ gilt:

$$\langle v, w \rangle = \overline{\langle w, v \rangle},\tag{4.13}$$

$$\langle \lambda v, w \rangle = \overline{\lambda} \langle v, w \rangle, \tag{4.14}$$

$$\langle v, \lambda w \rangle = \lambda \langle v, w \rangle, \tag{4.15}$$

$$\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle, \tag{4.16}$$

$$\langle v, v \rangle \ge 0, \tag{4.17}$$

$$\langle v, v \rangle = 0 \iff v = 0. \tag{4.18}$$

4.1.2.2 Eigenschaften

Das reelle Skalarprodukt ist eine symmetrische bilineare Abbildung.

4.1.2.3 Winkel und Längen

Definition. Winkel, orgthogonale Vektoren.

Der Winkel φ zwischen v und w ist definiert durch die Beziehung:

$$\langle v, w \rangle = ||v|| \, ||w|| \cos \varphi. \tag{4.19}$$

Orthogonal:

$$v \perp w :\iff \langle v, w \rangle = 0. \tag{4.20}$$

Ein Skalarprodukt $\langle v,w\rangle$ induziert die Norm

$$||v|| := \sqrt{\langle v, v \rangle}. \tag{4.21}$$

4.1.2.4 Orthonormalbasis

Sei $B=(b_k)_{k=1}^n$ eine Basis eines endlichdimensionalen Vektorraumes über den reellen oder komplexen Zahlen.

Definition. Orthogonalbasis.

Gilt $\langle b_i, b_j \rangle = 0$ für alle i, j mit $i \neq j$, so wird B Orthogonalbasis genannt. Ist B nicht unbedingt eine Basis, so spricht man von einem Orthogonalsystem.

Definition. Orthonormalbasis.

Ist B eine Orthogonalbasis und gilt zusätzlich $\langle b_k, b_k \rangle = 1$ für alle k, so wird B Orthonormalbasis (ONB) genannt. Ist B nicht unbedingt eine Basis, so spricht man von einem Orthonormalsystem.

Sei $v = \sum_k v_k b_k$ und $w = \sum_k w_k b_k$. Mit \sum_k ist immer $\sum_{k=1}^n$ gemeint.

Ist *B* eine Orthonormalbasis, so gilt:

$$\langle v, w \rangle = \sum_{k} \overline{v_k} \, w_k. \tag{4.22}$$

Ist *B* nur eine Orthogonalbasis, so gilt:

$$\langle v, w \rangle = \sum_{k} \langle b_k, b_k \rangle \overline{v_k} w_k$$
 (4.23)

Allgemein gilt:

$$\langle v, w \rangle = \sum_{i,j} g_{ij} \overline{v_i} w_j \tag{4.24}$$

mit $g_{ij} = \langle b_i, b_j \rangle$. In reellen Vektorräumen ist die komplexe Konjugation wirkungslos und kann somit entfallen.

Ist B eine Orthogonalbasis und $v = \sum_k v_k b_k$, so gilt:

$$v_k = \frac{\langle b_k, v \rangle}{\langle b_k, b_k \rangle}. (4.25)$$

Ist *B* eine Orthonormalbasis, so gilt speziell:

$$v_k = \langle b_k, v \rangle. \tag{4.26}$$

4.1.2.5 Orthogonale Projektion

Orthogonale Projektion von v auf w:

$$P[w](v) := \frac{\langle v, w \rangle}{\langle w, w \rangle} w. \tag{4.27}$$

4.1.2.6 Gram-Schmidt-Verfahren

Für linear unabhängige Vektoren v_1, \ldots, v_n wird durch

$$w_k := v_k - \sum_{i=1}^{k-1} P[w_i](v_k)$$
 (4.28)

ein Orthogonalsystem w_1, \ldots, w_n berechnet.

Speziell für zwei nicht kollineare Vektoren v_1 , v_2 gilt

$$w_1 = v_1, (4.29)$$

$$w_2 = v_2 - P[w_1](v_2). (4.30)$$

28 4 Lineare Algebra

4.1.2.7 Musikalische Isomorphismen

Definition. Musikalische Isomorphismen.

Sei V ein eindlichdimensionaler Vektorraum mit Skalarprodukt und V^* sein Dualraum. Die lineare Abbildung

$$\Phi \colon V \to V^*, \quad \Phi(u)(v) := \langle u, v \rangle$$
 (4.31)

ist ein kanonischer Isomorphismus. Man nennt $u^{\flat} := \Phi(u)$ und $\omega^{\sharp} := \Phi^{-1}(\omega)$ die *musikalischen Isomorphismen*.

4.2 Koordinatenvektoren

4.2.1 Koordinatenraum

Addition von $a, b \in K^n$:

$$\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} + \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} := \begin{bmatrix} a_1 + b_1 \\ \vdots \\ a_n + b_n \end{bmatrix}. \tag{4.32}$$

Subtraktion:

$$\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} - \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} := \begin{bmatrix} a_1 - b_1 \\ \vdots \\ a_n - b_n \end{bmatrix}. \tag{4.33}$$

Skalarmultiplikation von $\lambda \in K$ mit $a \in K^n$:

$$\lambda \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} := \begin{bmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{bmatrix}. \tag{4.34}$$

Ist *K* ein Körper, so bildet die Menge

 $e_n := (0, 0, 0, 0, \dots, 1)$

$$K^n = \{(a_1, \dots, a_n) \mid \forall k \colon a_k \in K\}$$
 (4.35)

bezüglich der Addition (4.32) und der Multiplikation (4.34) einen Vektorraum, der Koordinatenraum genannt wird. Das Tupel $E_n=(e_1,\ldots,e_n)$ mit

$$e_1 := (1, 0, 0, 0, \dots, 0),$$

 $e_2 := (0, 1, 0, 0, \dots, 0),$
 $e_3 := (0, 0, 1, 0, \dots, 0),$
 \dots (4.36)

bildet eine geordnete Basis von K^n , die kanonische Basis genannt wird. Es gilt

$$a = (a_1, \dots, a_n) = a_1 e_1 + \dots + a_n e_n.$$
 (4.37)

4.2.2 Kanonisches Skalarprodukt

Definition. Kanonisches Skalarprodukt.

Für $a, b \in \mathbb{R}^n$:

$$\langle a, b \rangle := \sum_{k=1}^{n} a_k b_k. \tag{4.38}$$

Für $a, b \in \mathbb{C}^n$:

$$\langle a, b \rangle := \sum_{k=1}^{n} \overline{a_k} \, b_k. \tag{4.39}$$

Die kanonische Basis (4.36) ist eine Orthonormalbasis bezüglich diesem Skalarprodukt, s. 4.1.2.4. Das Skalarprodukt induziert die Norm

$$|a| := \sqrt{\langle a, a \rangle} = \sqrt{\sum_{k=1}^{n} |a_k|^2}, \tag{4.40}$$

die Vektorbetrag genannt wird.

Jedem Koordinatenvektor $a \neq 0$ lässt sich ein Einheitsvektor $\hat{a} := \frac{a}{|a|}$ zuordnen, der in Richtung von a zeigt und die Eigenschaft $|\hat{a}| = 1$ besitzt.

Es gilt

$$a \perp b \iff \langle a, b \rangle = 0,$$
 (4.41)

$$a \uparrow \uparrow b \iff \langle a, b \rangle = |a| |b|,$$
 (4.42)

$$a \uparrow \downarrow b \iff \langle a, b \rangle = -|a||b|.$$
 (4.43)

Allgemein gilt

$$\langle a, b \rangle = |a| |b| \cos \varphi.$$
 $(\varphi = \angle (a, b))$ (4.44)

4.2.3 Vektorprodukt

Für $a, b \in \mathbb{R}^3$:

$$a \times b = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} \times \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = \begin{bmatrix} e_x & a_x & b_x \\ e_y & a_y & b_y \\ e_z & a_z & b_z \end{bmatrix} = \begin{bmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{bmatrix}.$$

$$(4.45)$$

Rechenregeln für $a, b, c \in \mathbb{R}^3$ und $r \in \mathbb{R}$:

$$a \times (b+c) = a \times b + a \times c, \tag{4.46}$$

$$(a+b) \times c = a \times c + b \times c, \tag{4.47}$$

$$(ra) \times b = r(a \times b) = a \times (rb), \tag{4.48}$$

$$a \times b = -b \times a,\tag{4.49}$$

$$a \times a = 0. \tag{4.50}$$

Für den Betrag gilt:

$$|a \times b| = |a| |b| \sin \varphi.$$
 $(\varphi = \angle(a, b))$ (4.51)

Beziehung zur Determinante:

$$\langle a, b \times c \rangle = \det(a, b, c).$$
 (4.52)

Jacobi-Identität:

$$a \times (b \times c) = b \times (a \times c) - c \times (a \times b). \tag{4.53}$$

Graßmann-Identität:

$$a \times (b \times c) = b\langle a, c \rangle - c\langle a, b \rangle. \tag{4.54}$$

Cauchy-Binet-Identität:

$$\langle a \times b, c \times d \rangle = \langle a, c \rangle \langle b, d \rangle - \langle b, c \rangle \langle a, d \rangle. \tag{4.55}$$

Lagrange-Identität:

$$|a \times b|^2 = |a|^2 |b|^2 - \langle a, b \rangle^2.$$
 (4.56)

4.3 Matrizen 29

4.3 Matrizen

4.3.1 Quadratische Matrizen

4.3.1.1 Matrizenring

Mit $K^{n\times n}$ wird die Menge quadratischen Matrizen

$$(a_{ij}) = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \dots & \ddots & \dots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}$$
(4.57)

mit Einträgen a_{ij} aus dem Körper K bezeichnet.

Die Menge $K^{n \times n}$ bildet bezüglich Addition und Multiplikation von Matrizen einen Ring (s. 1.9).

Das neutrale Element der Multiplikation ist die Einheitsmatrix

$$E_n = (\delta_{ij}), \quad \delta_{ij} := \begin{cases} 1 & \text{wenn } i = j, \\ 0 & \text{sonst.} \end{cases}$$
 (4.58)

Das sind

$$E_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \text{usw.}$$
 (4.59)

4.3.1.2 Symmetrische Matrizen

Eine quadratiche Matrix $A = (a_{ij})$ heißt symmetrisch, falls gilt $a_{ij} = a_{ji}$ bzw. $A^T = A$.

Jede reelle symmetrische Matrix besitzt ausschließlich reelle Eigenwerte und die algebraischen Vielfachheiten stimmen mit den geometrischen Vielfachheiten überein.

Jede reelle symmetrische Matrix A ist diagonalisierbar, d. h. es gibt eine invertierbare Matrix T und eine Diagonalmatrix D, so dass $A = TDT^{-1}$ gilt.

Sei V ein K-Vektorraum und $(b_k)_{k=1}^n$ eine Basis von V. Für jede symmetrische Bilinearform $f:V^2\to K$ ist die Darstellungsmatrix

$$A = (f(b_i, b_i)) \tag{4.60}$$

symmetrisch. Ist $A \in K^{n \times n}$ eine symmetrische Matrix, so ist

$$f(x, y) = x^T A y. (4.61)$$

eine symmetrische Bilinearform für $x, y \in K^n$. Ist $K = \mathbb{R}$ und A positiv definit, so ist (4.61) ein Skalarprodukt auf \mathbb{R}^n .

4.3.1.3 Reguläre Matrizen

Definition. Reguläre Matrix, singuläre Matrix.

Eine quadratische Matrix $A \in K^{n \times n}$ heißt *regulär* oder *invertierbar*, wenn es eine inverse Matrix A^{-1} gibt, so dass

$$A^{-1}A = E_n \quad (\iff AA^{-1} = E_n)$$
 (4.62)

gilt, wobei mit E_n die Einheitsmatrix gemeint ist. Eine quadratische Matrix die nicht regulär ist, heißt singulär.

Kriterien. Für eine Matrix $A \in K^{n \times n}$ gilt:

$$A \text{ ist regul\"ar } \iff \exists B(BA = E_n)$$
 (4.63)

$$\iff \det(A) \neq 0 \iff \operatorname{rk}(A) = n$$
 (4.64)

$$\iff$$
 0 ist kein Eigenwert von *A* (4.65)

$$\iff \ker(A) = \{0\}. \tag{4.66}$$

Eigenschaften. Jede reguläre Matrix besitzt genau eine inverse Matrix. Die Menge der regulären Matrizen bildet bezüglich Matrizenmultiplikation eine Gruppe, die *allgemeine lineare Gruppe*

$$GL(n, K) := \{ A \in K^{n \times n} \mid \det(A) \neq 0 \}.$$
 (4.67)

Ist V ein Vektorraum über dem Körper K, so bilden die Automorphismen bezüglich Verkettung eine Gruppe, die Automorphismengruppe

$$GL(V) = Aut(V). (4.68)$$

Ein *Endomorphismus* ist eine lineare Abbildung, welche eine Selbstabbildung ist. Ein *Automorphismus* ist eine bijektiver Endomorphismus.

Wählt man auf V eine Basis B, so ist die Zuordnung der Darstellungsmatrix

$$M_B^B : \operatorname{Aut}(V) \to \operatorname{GL}(\dim V, K)$$
 (4.69)

eine Gruppenisomorphismus.

Endomorphismen die nicht bijektiv sind, bzw. singuläre Matrizen, lassen die Dimension ihrer Definitionsmenge schrumpfen:

$$f \in \operatorname{End}(V) \setminus \operatorname{Aut}(V) \iff \dim f(V) < \dim V.$$
 (4.70)

Für Matrizen $A \in K^{n \times n}$ bedeutet das, dass sie nicht den vollen Rang besitzen:

$$\det A = 0 \iff \operatorname{rk}(A) < n = \dim K^{n}. \tag{4.71}$$

Bestimmung der inversen Matrix.

Für eine Matrix $A \in K^{2\times 2}$ gilt:

$$A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}, \tag{4.72}$$

wenn det $A \neq 0$ mit det A = ad - bc.

Definition. Streichungsmatrix.

Wird in der Matrix A die Zeile i und die Spalte j entfernt, so entsteht eine neue Matrix $[A]_{ij}$, die *Streichungsmatrix* von A genannt wird.

Laplacescher Entwicklungssatz:

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det([A]_{ij}), \tag{4.73}$$

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det([A]_{ij}). \tag{4.74}$$

4.3.1.4 Determinanten

Für Matrizen $A, B \in K^{n \times n}$ und $r \in K$ gilt:

$$\det(AB) = \det(A)\det(B),\tag{4.75}$$

$$\det(A^T) = \det(A),\tag{4.76}$$

$$\det(rA) = r^n \det(A), \tag{4.77}$$

$$\det(A^{-1}) = \det(A)^{-1}. (4.78)$$

Für eine Diagonalmatrix $D = diag(d_1, ..., d_n)$ gilt:

$$\det(D) = \prod_{k=1}^{n} d_k. \tag{4.79}$$

Eine linke Dreiecksmatrix ist eine Matrix der Form (a_{ij}) mit $a_{ij} = 0$ für i < j. Eine rechte Dreiecksmatrix ist die Transponierte einer linken Dreiecksmatrix.

Für eine linke oder rechte Dreiecksmatrix $A = (a_{ij})$ gilt:

$$\det(A) = \prod_{k=1}^{n} a_{kk}.$$
 (4.80)

30 4 Lineare Algebra

4.3.1.5 Eigenwerte

Eigenwertproblem: Für eine gegebene quadratische Matrix A bestimme

$$\{(\lambda, \nu) \mid A\nu = \lambda \nu, \ \nu \neq 0\}. \tag{4.81}$$

Das homogene lineare Gleichungssystem

$$Av = \lambda v \iff (A - \lambda E_n)v = 0$$
 (4.82)

besitzt Lösungen $v \neq 0$ gdw.

$$p(\lambda) := \det(A - \lambda E_n) = 0. \tag{4.83}$$

Bei $p(\lambda)$ handelt es sich um ein normiertes Polynom vom Grad n, das *charakeristisches Polynom* genannt wird.

Eigenraum:

$$\operatorname{Eig}(A, \lambda) := \{ v \mid Av = \lambda v \}. \tag{4.84}$$

Die Dimension dim $\mathrm{Eig}(A,\lambda)$ wird geometrische Vielfachheit von λ genannt.

Spektrum:

$$\sigma(A) := \{ \lambda \mid \exists v \neq 0 \colon Av = \lambda v \}. \tag{4.85}$$

4.3.1.6 Nilpotente Matrizen

Definition. Nilpotente Matrix.

Eine quadratische Matrix $A \in K^{n \times n}$ heißt *nilpotent*, wenn es eine Zahl $k \in \mathbb{N}, k \ge 1$ gibt, so dass gilt:

$$A^k = 0. (4.86)$$

Die erste solche Zahl heißt *Nilpotenzgrad* der Matrix *A*. Eine äquivalente Bedingung ist:

$$p_A(\lambda) := \det(\lambda E - A) = \lambda^n.$$
 (4.87)

Eigenschaften. Sei *A* eine nilpotente Matrix. Es gilt:

- *A* besitzt nur den Eigenwert $\lambda = 0$.
- $\bullet \det(A) = \operatorname{tr}(A) = 0.$
- E A ist invertierbar.

4.3.2 Matrixfunktionen

4.3.2.1 Matrixexponential

Definition. Matrixexponential.

Für eine beliebige Matrix $X \in \mathbb{C}^{n \times n}$ konvergiert

$$\exp(X) := \sum_{k=0}^{\infty} \frac{X^k}{k!}.$$
 (4.88)

Für jede Matrix X und $a, b \in \mathbb{C}$ gilt

$$\exp(-X) = \exp(X)^{-1},$$
 (4.89)

$$\exp(X^H) = \exp(X)^H,\tag{4.90}$$

$$\exp((a+b)X) = \exp(aX)\exp(bX),\tag{4.91}$$

$$\exp(\text{diag}(d_1, \dots, d_n)) = \text{diag}(e^{d_1}, \dots, e^{d_n}),$$
 (4.92)

$$\det(\exp(X)) = e^{\operatorname{tr}(X)}. (4.93)$$

Für XY = XY gilt

$$\exp(X+Y) = \exp(X)\exp(Y). \tag{4.94}$$

Das Exponential einer Matrix ist immer invertierbar und jede Matrix aus $GL(n, \mathbb{C})$ kann als Matrixexponential dargestellt werden. D. h. exp: $\mathbb{C}^{n \times n} \to GL(n, \mathbb{C})$ ist surjektiv.

4.3.2.2 Allgemein

Matrizen bilden bezüglich Matrizenmultiplikation zusammen mit der Frobeniusnorm oder einer Operatornorm eine assoziative Banachalgebra mit Einselement. Man betrachte nun die formale Potenzreihe

$$f(X) := \sum_{k=0}^{\infty} a_k X^k, \quad a_k \in \mathbb{C}. \tag{4.95}$$

Besitzt die Einsetzung f(z) für $z \in \mathbb{C}$ den Konvergenzradius r>0 und ist A ein Element einer Banachalgebra mit Einselement mit $\|A\|< r$, dann ist f(A) absolut konvergent. Gemäß

$$f: \{\|A\| < r \mid A \in \mathbb{C}^{n \times n}\} \to \mathbb{C}^{n \times n} \tag{4.96}$$

ist daher eine Matrixfunktion definiert.

Ist A diagonalisierbar mit $A = TDT^{-1}$, dann gilt

$$f(A) = T f(D) T^{-1}, (4.97)$$

wobei f(D) gemäß

$$f(\text{diag}(d_1, \dots, d_n)) = \text{diag}(f(d_1), \dots, f(d_n))$$
 (4.98)

berechnet wird.

Sylvesters Formel. Allgemein gilt

$$f(A) = \sum_{i=1}^{s} A_i \sum_{k=0}^{m_i - 1} \frac{f^{(k)}(\lambda_i)}{k!} (A - \lambda_i E)^k$$
 (4.99)

mit

$$A_i := \prod_{j=1, \ j \neq i}^{s} \frac{1}{\lambda_i - \lambda_j} (A - \lambda_j E). \tag{4.100}$$

Hierbei ist s die Anzahl der unterschiedlichen Eigenwerte und m_i die algebraische Vielfachheit von λ_i .

Bei einer diagonalisierbaren Matrix vereinfacht sich die

$$f(A) = \sum_{i=1}^{n} A_i f(\lambda_i). \tag{4.101}$$

Speziell für 2 × 2-Matrizen gilt

$$f(A) = pA + qE \tag{4.102}$$

mit

$$p = \frac{f(\lambda_2) - f(\lambda_1)}{\lambda_2 - \lambda_1},\tag{4.103}$$

$$q = f(\lambda_1) - p\lambda_1 = f(\lambda_2) - p\lambda_2. \tag{4.104}$$

Im Fall $\lambda_1 = \lambda_2$ ist $p = f'(\lambda_1)$.

Als Cauchy-Integral. Sei $f\colon U\to\mathbb{C}$ holomorph und $G\subseteq U$ abgeschlossen und einfach zusammenhängend. Liegen alle Eigenwerte von A im Inneren von G, dann gilt

$$f(A) = \frac{1}{2\pi i} \int_{\partial G} f(z)(zE - A)^{-1} dz.$$
 (4.105)

Die Formeln (4.99) und (4.105) liefern außerdem zwei miteinander verträgliche Verallgemeinerungen der Definition der Matrixfunktion.

4.4 Lineare Gleichungssysteme

Ein lineares Gleichungssystem mit m Gleichungen und n Unbekannten hat die Form:

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1,$$

$$a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2,$$

$$\vdots$$
(4.106)

$$a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_n.$$

Das System lässt sich durch

$$A := \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m1} & \dots & a_{mn} \end{bmatrix}$$

$$(4.107)$$

und

$$x := \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad b := \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

zusammenfassen.

Äquivalente Matrixform von (4.106):

$$Ax = b. (4.109)$$

Erweiterte Koeffizientenmatrix:

$$(A \mid b) := \begin{bmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} & b_n \end{bmatrix}. \tag{4.110}$$

Lösungskriterium:

$$\exists x[Ax = b] \iff \operatorname{rg}(A) = \operatorname{rg}(A \mid b). \tag{4.111}$$

Eindeutige Lösung (bei n Unbekannten):

$$\exists! x[Ax = b] \iff \operatorname{rg}(A) = \operatorname{rg}(A \mid b) = n. \tag{4.112}$$

Im Fall m = n gilt:

$$\exists! x [Ax = b] \iff A \in GL(n, K)$$

$$\iff rg(A) = n \iff \det(A) \neq 0.$$
(4.113)

4.5 Multilineare Algebra

4.5.1 Äußeres Produkt

Sei V ein Vektorraum und sei $v_k \in V$ für alle k.

Sind $a = \sum_{k=1}^{n} a_k v_k$ und $b = \sum_{k=1}^{n} b_k v_k$ beliebige Linear-kombinationen, so gilt

$$a \wedge b = \sum_{i,j} a_i b_j \, v_i \wedge v_j$$

$$= \sum_{1 \le i \le j \le n} (a_i b_j - a_j b_i) \, v_i \wedge v_j$$
(4.114)

und

$$a \wedge b = a \otimes b - b \otimes a$$

$$= \sum_{i,j} (a_i b_j - a_j b_i) v_i \otimes v_j$$

$$= \sum_{i,j} a_i b_j (v_i \otimes v_j - v_j \otimes v_i).$$
(4.115)

4.5.1.1 Alternator

Für $a_k \in V$ ist $Alt_p : T^p(V) \to T^p(V)$ mit

$$Alt_{p}(a_{1} \otimes \ldots \otimes a_{p})$$

$$:= \frac{1}{p!} \sum_{\sigma \in S_{p}} sgn(\sigma) (a_{\sigma(1)} \otimes \ldots \otimes a_{\sigma(p)}). \tag{4.116}$$

Mit $A^p(V)$ wird die Bildmenge des Alternators bezeichnet. Der Raum $\Lambda^p(V)$ wird kanonisch mit $A^p(V)$ identifiziert, indem

$$a_1 \wedge \ldots \wedge a_p = p! \operatorname{Alt}_p(a_1 \otimes \ldots \otimes a_p)$$
 (4.117)

gesetzt wird. Hierdurch wird ein kanonischer Isomorphismus zwischen den Algebren $\Lambda(V)$ und A(V) induziert. Speziell gilt

$$Alt_2(a \otimes b) := \frac{1}{2}(a \otimes b - b \otimes a). \tag{4.118}$$

und

(4.108)

$$a \wedge b = 2 \operatorname{Alt}_2(a \otimes b). \tag{4.119}$$

4.5.1.2 Äußere Algebra

Darstellung als Quotientenraum:

$$\Lambda^{2}(V) = T^{2}(V) / \{ v \otimes v \mid v \in V \}. \tag{4.120}$$

Dimension: Ist dim(V) = n, so gilt

$$\dim(\Lambda^k(V)) = \binom{n}{k}.\tag{4.121}$$

32 4 Lineare Algebra

4.6 Analytische Geometrie

4.6.1 Geraden

4.6.1.1 Parameterdarstellung

Die Punktrichtungsform ist

$$p(t) = p_0 + t\mathbf{v},\tag{4.122}$$

wobei p_0 der Stützpunkt und v der Richtungsvektor ist. Die Gerade ist dann die Menge $g = \{p(t) \mid t \in \mathbb{R}\}$. Der Vektor v repräsentiert außerdem die Geschwindigkeit, mit der diese Parameterdarstellung durchlaufen wird: $p'(t) = \mathbf{v}$.

Gerade durch zwei Punkte: Sind zwei Punkte p_1 , p_2 mit $p_1 \neq p_2$ gegeben, so ist durch die beiden Punkte eine Gerade gegeben. Für diese Gerade ist

$$p(t) = p_1 + t(p_2 - p_1) (4.123)$$

eine Punktrichtungsform. Durch Umformung ergibt sich die Zweipunkteform:

$$p(t) = (1 - t)p_1 + tp_2. (4.124)$$

Bei (4.124) handelt es sich um eine Affinkombination. Gilt $t \in [0, 1]$, so ist (4.124) eine Konvexkombination: eine Parameterdarstellung für die Strecke von p_1 nach p_2 .

4.6.1.2 Parameterfreie Darstellung

Hesse-Form:

$$g = \{ p \mid \langle \mathbf{n}, p - p_0 \rangle = 0 \},$$
 (4.125)

*p*₀: Stützpunkt, **n**: Normalenvektor.

Die Hesse-Form ist nur in der Ebene möglich. Form (4.125) hat in Koordinaten die Form

$$g = \{(x, y) \mid n_x(x - x_0) + n_y(y - y_0) = 0\}$$

= \{(x, y) \left| n_x x + n_y y = n_x x_0 + n_y y_0\}. (4.126)

Hesse-Normalform: (4.125) mit $|\mathbf{n}| = 1$.

Sei v ∧ w das äußere Produkt.

Plückerform:

$$g = \{ p \mid (p - p_0) \land \mathbf{v} = 0 \}. \tag{4.127}$$

Die Größe $\mathbf{m} = p_0 \wedge \mathbf{v}$ heißt Moment. Beim Tupel ($\mathbf{v} : \mathbf{m}$) handelt es sich um Plückerkoordinaten für die Gerade.

In der Ebene gilt speziell:

$$g = \{(x, y) \mid (x - x_0)\Delta y = (y - y_0)\Delta x\}$$
 (4.128)

mit $v = (\Delta x, \Delta y)$.

Sei $a := \Delta y$ und $b := -\Delta x$ und $c := ax_0 + by_0$. Aus (4.128) ergibt sich:

$$g = \{(x, y) \mid ax + by = c\}. \tag{4.129}$$

Im Raum ergibt sich ein Gleichungssystem:

$$g = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| \begin{cases} (x - x_0)\Delta y = (y - y_0)\Delta x \\ (y - y_0)\Delta z = (z - z_0)\Delta y \\ (x - x_0)\Delta z = (z - z_0)\Delta x \end{cases} \right\}$$
(4.130)

mit $v = (\Delta x, \Delta y, \Delta z)$.

4.6.1.3 Abstand Punkt zu Gerade

Sei $p(t) := p_0 + t\mathbf{v}$ die Punktrichtungsform einer Geraden und sei q ein weiterer Punkt. Bei $\mathbf{d}(t) := p(t) - q$ handelt es sich um den Abstandsvektor in Abhängigkeit von t.

Ansatz: Es gibt genau ein t, so dass gilt:

$$\langle \mathbf{d}, \mathbf{v} \rangle = 0. \tag{4.131}$$

Lösung:

$$t = \frac{\langle \mathbf{v}, q - p_0 \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle}.$$
 (4.132)

4.6.2 Ebenen

4.6.2.1 Parameterdarstellung

Seien u. v zwei nicht kollineare Vektoren.

Punktrichtungsform:

$$p(s,t) = p_0 + s\mathbf{u} + t\mathbf{v}.$$
 (4.133)

4.6.2.2 Parameterfreie Darstellung

Seien v, w zwei nicht kollineare Vektoren. Durch

$$E = \{ p \mid (p - p_0) \land \mathbf{v} \land \mathbf{w} = 0 \}. \tag{4.134}$$

wird eine Ebene beschrieben.

Hesse-Form:

$$E = \{ p \mid \langle \mathbf{n}, p - p_0 \rangle = 0 \}, \tag{4.135}$$

p₀: Stützpunkt, n: Normalenvektor. Die Hesse-Form einer Ebene ist nur im dreidimensionalen Raum möglich. Den Normalenvektor bekommt man aus (4.133) mit $\mathbf{n} = \mathbf{u} \times \mathbf{v}$.

$$\langle \mathbf{n}, p - p_0 \rangle \iff \langle \mathbf{n}, p \rangle = \langle \mathbf{n}, p_0 \rangle.$$
 (4.136)

Über den Zusammenhang $\mathbf{n} = (a, b, c), p = (x, y, z)$ und $d = \langle \mathbf{n}, p_0 \rangle$ ergibt sich die

Koordinatenform:

$$E = \{(x, y, z) \mid ax + by + cz = d\}. \tag{4.137}$$

4.6.2.3 Abstand Punkt zu Ebene

Sei $p(s, t) := p_0 + s\mathbf{u} + t\mathbf{v}$ die Punktrichtungsform einer Ebene und sei q ein weiterer Punkt. Bei $\mathbf{d}(s,t) := p - q$ handelt es sich um den Abstandsvektor in Abhängigkeit von (s, t).

Ansatz: Es gibt genau ein Tupel (s, t), so dass gilt:

$$\langle \mathbf{d}, \mathbf{u} \rangle = 0 \text{ und } \langle \mathbf{d}, \mathbf{v} \rangle = 0.$$
 (4.138)

Dieser Ansatz führt zum LGS

$$\begin{bmatrix} \langle \mathbf{u}, \mathbf{v} \rangle & \langle \mathbf{v}, \mathbf{v} \rangle \\ \langle \mathbf{v}, \mathbf{v} \rangle & \langle \mathbf{u}, \mathbf{v} \rangle \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix} = \begin{bmatrix} \langle \mathbf{v}, q - p_0 \rangle \\ \langle \mathbf{u}, q - p_0 \rangle \end{bmatrix}. \tag{4.139}$$

Bemerkung: Die Systemmatrix g_{ij} ist der metrische Tensor für die Basis $B = (\mathbf{u}, \mathbf{v})$. Die Lösung des LGS ist

$$s = \frac{\langle g_{12}\mathbf{v} - g_{12}\mathbf{u}, q - p_0 \rangle}{g_{11}^2 - g_{12}^2},\tag{4.140}$$

$$s = \frac{\langle g_{12}\mathbf{v} - g_{12}\mathbf{u}, q - p_0 \rangle}{g_{11}^2 - g_{12}^2},$$

$$t = \frac{\langle g_{12}\mathbf{u} - g_{12}\mathbf{v}, q - p_0 \rangle}{g_{11}^2 - g_{12}^2}.$$
(4.141)

5 Differentialgeometrie

5.1 Kurven

5.1.1 Parameterkurven

Definition. Parameterkurve, Weg, einfacher Weg.

Sei X ein topologischer Raum und I ein reelles Intervall, auch offen oder halboffen, auch unbeschränkt. Eine stetige Funktion

$$\gamma \colon I \to X \tag{5.1}$$

heißt Parameterdarstellung einer Kurve, kurz Parameterkurve. Die Bildmenge $\gamma(I)$ heißt Kurve.

Eine Parameterdarstellung mit einem kompakten Intervall I = [a, b] heißt Weg.

Für einen Weg mit I = [a, b] heißt f(a) Anfangspunkt und $\gamma(b)$ Endpunkt. Ein Weg mit $\gamma(a) = \gamma(b)$ heißt geschlossen. Ein Weg, dessen Einschränkung auf [a, b) injektiv ist, heißt einfach, auch doppelpunktfrei oder Jordan-Weg.

Beispiele.

Bsp. für einen einfachen geschlossenen Weg:

$$\gamma(t) := \begin{bmatrix} \cos t \\ \sin t \end{bmatrix}, \quad \gamma \colon [0, 2\pi] \to \mathbb{R}^2.$$
(5.2)

Die Kurve ist der Einheitskreis.

Bsp. für einen geschlossenen Weg mit Doppelpunkt:

$$\gamma(t) := \begin{bmatrix} 2\cos t \\ \sin(2t) \end{bmatrix}, \quad \gamma : [0, 2\pi] \to \mathbb{R}^2.$$
(5.3)

Die Kurve ist eine Achterschleife.

5.1.2 Differenzierbare Parameterkurven

Definition. Differenzierbare Parameterkurve, Tangentialvektor, glatt, regulär.

Eine Parameterkurve $\gamma\colon (a,b)\to\mathbb{R}^n$ heißt differenzierbar, wenn die Ableitung $\gamma'(t)$ an jeder Stelle t existiert. Die Ableitung $\gamma'(t)$ wird Tangentialvektor an die Kurve an der Stelle t genannt.

Ein C^k -Kurve ist eine Parameterkurve, deren k-te Ableitung eine stetige Funktion ist. Eine unendlich oft differenzierbare Parameterkurve heißt glatt.

Eine Parameterkurve heißt regulär, wenn:

$$\forall t \colon \gamma'(t) \neq 0. \tag{5.4}$$

Bogenlänge. Die Bogenlänge einer stetig differenzierbaren Parameterkurve $\gamma\colon [a,b]\to\mathbb{R}^n$ lässt sich mit der Formel

$$L(\gamma) = \int_{a}^{b} |\gamma'(t)| dt$$
 (5.5)

mit

$$|\gamma'(t)| := \sqrt{\gamma_1'(t)^2 + \ldots + \gamma_n'(t)^2}$$
 (5.6)

berechnen.

5.2 Koordinatensysteme

5.2.1 Polarkoordinaten

Polarkoordinaten r,φ sind gegeben durch die Abbildung

$$\begin{bmatrix} x \\ y \end{bmatrix} = f(r, \varphi) := \begin{bmatrix} r \cos \varphi \\ r \sin \varphi \end{bmatrix}$$
 (5.7)

mit r > 0 und $0 \le \varphi < 2\pi$.

Umkehrabbildung für $(x, y) \neq (0, 0)$:

$$\begin{bmatrix} r \\ \varphi \end{bmatrix} = f^{-1}(x, y) = \begin{bmatrix} r \\ s(y) \arccos\left(\frac{x}{r}\right) \end{bmatrix}$$
 (5.8)

 $mit r = \sqrt{x^2 + y^2}$

und s(y) = sgn(y) + 1 - |sgn(y)|.

Jacobi-Determinante:

$$\det J = \det((Df)(r,\varphi)) = r. \tag{5.9}$$

Darstellung des metrischen Tensors in Polarkoordinaten:

$$(g_{ij}) = J^T J = \begin{bmatrix} 1 & 0 \\ 0 & r^2 \end{bmatrix}.$$
 (5.10)

5.3 Mannigfaltigkeiten

5.3.1 Grundbegriffe

Definition. Reguläre Abbildung.

Seien $U \subseteq \mathbb{R}^n$ und $V \subseteq \mathbb{R}^m$ offene Mengen. Eine Abbildung $\varphi \colon U \to V$ heißt $regul\ddot{a}r$, wenn

$$\forall u \in U \colon \operatorname{rg}((D\varphi)(u)) = \min(m, n) \tag{5.11}$$

gilt. Mit $(D\varphi)(u)$ ist dabei die Jacobi-Matrix an der Stelle u gemeint:

$$((D\varphi)(u))_{ij} := \frac{\partial \varphi_i(u)}{\partial u_i}.$$
 (5.12)

Für $(D\varphi)(u) \colon \mathbb{R}^n \to \mathbb{R}^m$ gilt:

$$n \ge m \implies \forall u : (D\varphi)(u) \text{ ist surjektiv},$$
 (5.13)

$$n < m \implies \forall u : (D\varphi)(u) \text{ ist injektiv.}$$
 (5.14)

Definition. Karte, lokale Karte.

Sei $m, n \in \mathbb{N}, n < m$ und sei $M \subseteq \mathbb{R}^m$. Eine Abbildung φ von einer offenen Menge $U' \subseteq \mathbb{R}^n$ in eine offene Menge $U \subseteq M$ heißt *Karte*, wenn φ ein Homöomorphismus und $\varphi \colon U' \to \mathbb{R}^m$ eine reguläre Abbildung ist. Ist U eine offene Umgebung von $p \in M$, so heißt φ *lokale Karte* bezüglich p.

Definition. Untermannigfaltigkeit des \mathbb{R}^m .

Sei $m, n \in \mathbb{N}$ mit n < m. Eine Menge $M \subseteq \mathbb{R}^m$ heißt n-dimensionale Untermannigfaltigkeit des \mathbb{R}^m , wenn es zu jedem Punkt $p \in M$ eine lokale Karte

$$\varphi \colon U' \to U, \quad U' \subseteq \mathbb{R}^n, \quad U \subseteq M$$
 (5.15)

gibt.

Definition. Atlas.

Ein Atlas für eine Mannigfaltigkeit M ist eine Menge von Karten, deren Bildmengen M überdecken.

Definition. Differenzierbare Abbildung.

Sei M eine glatte Mannigfaltigkeit. Eine Abbildung $f:M\to\mathbb{R}$ ist (k mal) (stetig) differenzierbar gdw. für jede Karte $\varphi\colon U'\to U\subseteq M$ das Kompositum $f\circ\varphi$ (k mal) (stetig) differenzierbar ist. Es genügt der Nachweis für alle Karten aus einem Atlas.

34 5 Differentialgeometrie

Definition. Glatte Abbildung.

Seien M, N zwei glatte Mannigfaltigkeiten. Eine Abbildung $f\colon M \to N$ heißt glatt gdw. für alle Karten $\varphi\colon U' \to U \subseteq \mathcal{C}$ M und $\psi: V' \to V \subseteq N$ das Kompositum $\psi^{-1} \circ f \circ \varphi$ eine glatte Abbildung ist. Es genügt bereits der Nachweis für alle Karten aus jeweils einem Atlas für M und N.

5.3.2 Skalarfelder

5.3.2.1 Totales Differential

Definition. Totales Differential.

Man nennt $f: M \to \mathbb{R}$ am Punkt p total differezierbar, wenn für eine lokale Karte φ die Darstellung $f \circ \varphi$ total differenzierbar ist. Ist das der Fall, existiert eine Linearform

$$\mathrm{d}f_p:T_pM\to\mathbb{R},$$

die totales Differential genannt wird.

Definition. Richtungsableitung.

Sei $f: M \to \mathbb{R}$ ein total differenzierbares Skalarfeld, sei $p \in M$ ein Punkt und $v \in T_pM$ ein Vektor. Sei $\gamma(t)$ eine Parameterkurve in *M* mit $p = \gamma(0)$ und $v = \gamma'(0)$. Die Zahl

$$(f \circ \gamma)'(0) = \mathrm{d}f_p(\nu). \tag{5.16}$$

heißt Richtungsableitung von f am Punkt p in Geschwindigkeit v.

Sei (g_k) ein Rahmen und (dx^k) der dazu gehörige Korahmen. Unter den partiellen Ableitungen versteht man die Richtungsableitungen in Richtung der Basisvektoren:

$$\frac{\partial f}{\partial x^k}(p) := \mathrm{d}f_p(g_k). \tag{5.17}$$

Sei $\varphi \colon U \to V \subseteq M$ eine lokale Karte und (g_k) der gemäß

$$g_k(u) = \frac{\partial \varphi}{\partial u_k} \tag{5.18}$$

induzierte lokale Rahmen. Es gilt

$$\frac{\partial f}{\partial x^k}(p) = \frac{\partial \tilde{f}}{\partial u_k}(u),\tag{5.19}$$

wobei $\tilde{f} := f \circ \varphi$ die lokale Darstellung von f ist. Für ein total differenzierbares f gilt daher die Formel

$$\mathrm{d}f_p(v) = \sum_{k=1}^n \frac{\partial f}{\partial x^k}(p) \, v^k = \sum_{k=1}^n \frac{\partial \hat{f}}{\partial u_k}(u) \, v^k, \tag{5.20}$$

wobei $p = \varphi(u)$ und $v = \sum_{k=1}^{n} v^k g_k(u)$. Dem Prinzip der dualen Paarung nach schreibt man auch

$$df_p = \sum_{k=1}^n \frac{\partial f}{\partial x^k}(p) dx^k, \quad dx^i(g_j) = \delta_{ij}.$$
 (5.21)

Oder kurz d $f = \partial_k f dx^k$ und $v = v^k g_k$.

5.3.3 Vektorfelder

5.3.3.1 Tangentialräume

Tangentialbündel:

$$TM := \bigsqcup_{p \in M} T_p M = \bigcup_{p \in M} \{p\} \times T_p M. \tag{5.22}$$

Kotangentialbündel:

$$T^*M := \bigsqcup_{p \in M} T_p^*M,\tag{5.23}$$

wobei T_p^*M eine andere Schreibweise für $(T_pM)^*$ ist. Natürliche Projektion:

$$\pi(p, v) := p, \quad \pi : TM \to M. \tag{5.24}$$

Das Tangentialbündel einer glatten Mannigfaltigkeit ist eine glatte Mannigfaltigkeit.

5.3.4 Kovariante Ableitung

Definition. Kovariante Ableitung.

Sei $X: M \to TM$ ein Vektorfeld und γ eine Kurve in M mit $p = \gamma(t)$ und $v = \gamma'(t)$. Für eine eingebettete Mannigfaltigkeit M sei Π_p die orthogonale Projektion eines Vektors auf den Tangentialraum T_pM . Man nennt

$$(\nabla_{\nu} X)(p) = \Pi_{p}((X \circ \gamma)'(0)) \tag{5.25}$$

die kovariante Ableitung von X am Punkt p bezüglich v.

Sei φ eine lokale Karte und $X = \tilde{X} \circ \varphi$ wobei $a^k(u)$ die Komponentenfunktionen sind, so dass $\hat{X}(u) = \sum_k a^k(u)g_k(u)$. Sei $v = \sum_{k} v^{k} g_{k}(u)$. Die lokale Darstellung der kovarianten Ab-

$$(\nabla_{\nu} X)(p) = \sum_{k=1}^{n} w^{k}(u) g_{k}(u), \tag{5.26}$$

$$w^{k} = \sum_{j=1}^{n} \frac{\partial a^{k}}{\partial u^{j}} v^{j} + \sum_{i=1}^{n} \sum_{j=1}^{n} \Gamma_{ij}^{k} a^{i} v^{j},$$
 (5.27)

kurz $w^k = v^j \partial_j a^k + \Gamma_{ij}^k a^i v^j$. Die Funktionen $\Gamma_{ij}^k(u)$ mit

$$\Pi_p\left(\frac{\partial^2 \varphi}{\partial u^i \partial u^j}(u)\right) = \sum_{k=1}^n \Gamma_{ij}^k(u) g_k(u). \tag{5.28}$$

heißen Christoffel-Symbole.

5.4 Riemannsche Geometrie

5.4.0.1 Christoffel-Symbole

Sei (M, g) eine pseudo-riemannsche Mannigfaltigkeit. Die Christoffel-Symbole sind durch die Metrik induziert. Es gilt

$$\Gamma_{ab}^{k} = \frac{1}{2}g^{kc}(\partial_{a}g_{bc} + \partial_{b}g_{ac} - \partial_{c}g_{ab}), \tag{5.29}$$

$$\Gamma_{cab} = \frac{1}{2} (\partial_a g_{bc} + \partial_b g_{ac} - \partial_c g_{ab}), \tag{5.30}$$

$$\partial_a g_{bc} = \Gamma_{bac} + \Gamma_{cab},\tag{5.31}$$

$$\Gamma_{ab}^k = \Gamma_{ba}^k. \tag{5.32}$$

6 Funktionentheorie

6.1 Holomorphe Funktionen

Definition. Holomorphe Funktion.

Sei $U \subseteq \mathbb{C}$ eine offene Menge und $f: U \to \mathbb{C}$. Die Funktion f wird holomorph an der Stelle $z_0 \in U$ genannt, wenn der Grenzwert

$$f'(z_0) := \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$
(6.1)

existiert.

Das Argument und Bild von f werden nun in Real- und Imaginärteil zerlegt. Das sind die Zerlegungen z = x + yi und f(z) = u(x, y) + v(x, y)i. Die Funktion f(z) ist genau dann holomorph an der Stelle $z_0 = x_0 + y_0i$, wenn bei (x_0, y_0) die partiellen Ableitungen stetig sind und die *Cauchy-Riemann-Gleichungen*

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \quad \text{bei } (x_0, y_0)$$
 (6.2)

gelten. Sind die beiden partiellen Dgln. erfüllt, dann lässt sich die Ableitung auch über die Formel

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y}, \tag{6.3}$$

bzw.

$$f'(z) = \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x}$$
 (6.4)

bestimmen. Für die Polarform $r^{i\varphi}$ mit den Polarkoordinaten (r,φ) gemäß

$$x = r\cos\varphi,\tag{6.5}$$

$$y = r\sin\varphi \tag{6.6}$$

bekommen die Gleichungen (6.2) die Form

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \varphi}, \quad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \varphi}.$$
 (6.7)

Auf dem Koordinatenraum ist gemäß

$$\mathbf{F} := (u, -v) = (F_x, F_v) = F_x \mathbf{e}_x + F_v \mathbf{e}_v \tag{6.8}$$

ein Vektorfeld definiert. Die Gleichungen (6.2) sind hiermit als Quellenfreiheit

$$0 = \langle \nabla, \mathbf{F} \rangle = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y}$$
 (6.9)

und Rotationsfreiheit

$$0 = \nabla \wedge \mathbf{F} = \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right) \mathbf{e}_x \wedge \mathbf{e}_y \tag{6.10}$$

interpretierbar.

Für das totale Differential

$$\mathrm{d}f = \frac{\partial f}{\partial x} \mathrm{d}x + \frac{\partial f}{\partial y} \mathrm{d}y \tag{6.11}$$

gibt es die Umformulierung

$$\mathrm{d}f = \frac{\partial f}{\partial z}\mathrm{d}z + \frac{\partial f}{\partial \overline{z}}\mathrm{d}\overline{z}.\tag{6.12}$$

Hierbei ist dz = dx + i dy und $d\overline{z} = dx - i dy$.

Die Ableitungsoperatoren

$$\frac{\partial f}{\partial z} := \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right), \tag{6.13}$$

$$\frac{\partial f}{\partial \overline{z}} := \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) \tag{6.14}$$

mit $\partial f = \partial u + i \partial v$ heißen Wirtinger-Operatoren.

Die Gleichungen (6.2) lassen sich nun zur Gleichung

$$\frac{\partial f}{\partial \overline{z}}(z_0) = 0 \tag{6.15}$$

zusammenfassen. Für holomorphe Funktionen reduziert sich das Differential (6.12) wegen (6.15) auf die Form

$$\mathrm{d}f = \frac{\partial f}{\partial z} \mathrm{d}z. \tag{6.16}$$

6.2 Harmonische Funktionen

Definition. Harmonische Funktion.

Sei $U \subseteq \mathbb{R}^2$ eine offene Menge. Eine Funktion $\Phi \colon U \to \mathbb{R}$ heißt harmonisch an der Stelle (x_0, y_0) , wenn die Laplace-Gleichung $(\Delta \Phi)(x_0, y_0) = 0$ mit dem Laplace-Operator

$$\Delta\Phi := \frac{\partial^2 \Phi}{\partial x \partial x} + \frac{\partial^2 \Phi}{\partial y \partial y} \tag{6.17}$$

erfüllt ist.

Ist f = u + vi an der Stelle z_0 holomorph, so sind der Realteil u und der Imaginärteil v an der Stelle $(x_0, y_0) = (\text{Re } z_0, \text{Im } z_0)$ harmonisch. Das heißt es gilt

$$(\Delta u)(x_0, y_0) = 0, \quad (\Delta v)(x_0, y_0) = 0.$$
 (6.18)

Ist eine Funktion u auf einem einfach zusammenhängenden Gebiet harmonisch, so lässt sich stets eine harmonische Funktion v finden, so dass f=u+vi holomorph ist. Die Funktion v ist bis auf eine additive reelle Konstante c eindeutig bestimmt. Das heißt, v darf auch durch v+c ersetzt werden.

Die Funktion v wird die *harmonisch Konjugierte* zu u genannt. An jeder Stelle (x_0, y_0) treffen die Linien

$$\{(x, y) \mid u(x, y) = u(x_0, y_0)\},\tag{6.19}$$

$$\{(x, y) \mid v(x, y) = v(x_0, y_0)\}$$
(6.20)

senkrecht aufeinander.

Ist eine harmonische Funktion u(x, y) gegeben, lässt sich v(x, y) durch Integration von (6.2) bestimmen:

$$v = \int \frac{\partial u}{\partial x} dy = F(x, y) + \Phi(x), \tag{6.21}$$

$$v = -\int \frac{\partial u}{\partial y} dx = -G(x, y) - \Psi(y). \tag{6.22}$$

Die Funktionen $\Phi(x)$ und $\Psi(y)$ sind zunächst unbekannt. Der Vergleich bringt nun aber

$$\Phi(x) = -F(x, y) - G(x, y) - \Psi(y). \tag{6.23}$$

Da $\Phi(x)$ nicht von y abhängig sein darf, kann man sich ein beliebiges festes y_0 aussuchen. Demnach ergibt sich eine Konstante $C = \Psi(y_0)$, wobei man auch C = 0 setzen darf, da v(x, y) nur bis auf eine additive Konstante bestimmt ist.

36 6 Funktionentheorie

6.3 Wegintegrale

Integral einer komplexwertigen Funktion.

Für $f: [a, b] \to \mathbb{C}$ mit f = u + iv ist

$$\int_{a}^{b} f(t) dt = \int_{a}^{b} u(t) dt + i \int_{a}^{b} v(t) dt,$$
 (6.24)

wenn u und v integrierbar sind.

Definition. Kurvenintegral.

Für $f: U \to \mathbb{C}$ mit $U \subseteq \mathbb{C}$:

$$\int_{\gamma} f(z) dz := \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt, \qquad (6.25)$$

wobe
i $\gamma\colon [a,b]\to U$ ein (zumindest stückweise) differenzierbarer Weg
 (5.1) ist.

Integralsatz von Cauchy. Ist U ein einfach zusammenhängendes Gebiet und $f\colon U\to \mathbb{C}$ holomorph, so gilt für jeden Weg γ von $\gamma(a)$ nach $\gamma(b)$ die Formel

$$\int_{\gamma} f(z) dz = F(\gamma(b)) - F(\gamma(a)), \tag{6.26}$$

wobei die Funktion F nicht vom gewählten Weg abhängig ist. Außerdem ist F eine Stammfunktion zu f, das heißt es gilt F'(z) = f(z) für alle $z \in U$.

Sind die Voraussetzungen für den Integralsatz erfüllt, dann motiviert Wegunabhängigkeit die Definition

$$\int_{z_1}^{z_2} f(z) dz := F(z_2) - F(z_1), \tag{6.27}$$

bei der auf Wege gänzlich verzichtet wird.

7 Dynamische Systeme

7.1 Grundbegriffe

Definition. Dynamisches System.

Ein Tupel (T, M, Φ) mit $\Phi \colon T \times M \to M$ heißt *dynamisches System*, wenn für alle $t_1, t_2 \in T$ und $x \in M$ gilt:

$$\Phi(0, x) = x,\tag{7.1}$$

$$\Phi(t_2, \Phi(t_1, x)) = \Phi(t_1 + t_2, x). \tag{7.2}$$

Die Menge T heißt Zeitraum. Ein System mit $T=\mathbb{N}_0$ oder $T=\mathbb{Z}$ heißt zeitdiskret, eines mit $T=\mathbb{R}_0^+$ oder $T=\mathbb{R}$ heißt zeitkontinuierlich. Ein System mit $T=\mathbb{Z}$ oder $T=\mathbb{R}$ heißt invertierbar.

Die Menge M heißt Zustandsraum, ihre Elemente werden Zustände genannt.

Für ein invertierbares System handelt es sich bei Φ um eine Gruppenaktion (s. 9.1.2) der additiven Gruppe (T, +). Die Menge

$$\Phi(T, x) := \{ \Phi(t, x) \mid t \in T \}$$
(7.3)

heißt *Orbit* von x. S. a. (9.9).

7.2 Iterationen

Definition. Iteration.

Für eine Selbstabbildung $\varphi \colon M \to M$ lassen sich die Iterationen gemäß

$$\varphi^0 := \mathrm{id}, \quad \varphi^n := \varphi^{n-1} \circ \varphi$$
 (7.4)

formulieren. Mit id ist die identische Abbildung

$$id: M \to M, \quad id(x) := x \tag{7.5}$$

und mit $g \circ f$ die Komposition (1.186) gemeint. Für ein bijektives φ wird zusätzlich

$$\varphi^{-n} := (\varphi^{-1})^n \tag{7.6}$$

definiert.

Die Iterationen bilden ein dynamisches System gemäß

$$\Phi(n,x) := \varphi^n(x), \quad \Phi \colon \mathbb{N}_0 \times M \to M. \tag{7.7}$$

Bei einem bijektiven φ lässt sich das System zum invertierbaren System

$$\Phi(n,x) := \varphi^n(x), \quad \Phi \colon \mathbb{Z} \times M \to M \tag{7.8}$$

erweitern.

Definition. Kompositionsoperator.

Für eine Funktion $\varphi \colon A \to A$ wird der Operator

$$C_{\varphi}(g) := g \circ \varphi, \quad C_{\varphi} \colon B^A \to B^A$$
 (7.9)

Kompositionsoperator genannt.

Wenn B^A ein Funktionenraum ist, dann ist der Kompositionsoperator ein linearer Operator.

Kombinatorik 8

Kombinatorische Funktionen

8.1.1 Faktorielle

8.1.1.1 Fakultät

Definition. Fakultät.

Für $n \in \mathbb{Z}$, $n \geq 0$:

$$n! := \prod_{k=1}^{n} k. \tag{8.1}$$

Rekursionsgleichung:

$$(n+1)! = n! (n+1) \tag{8.2}$$

Die Gammafunktion ist eine Verallgemeinerung der Fakultät:

$$n! = \Gamma(n+1). \tag{8.3}$$

8.1.1.2 Fallende Faktorielle

Definition. Fallende Faktorielle.

Für $a \in \mathbb{C}$ und $k \geq 0$:

$$a^{\underline{k}} := \prod_{j=0}^{k-1} (a-j). \tag{8.4}$$
 Für $a, k \in \mathbb{C}$:

$$a^{\underline{k}} := \lim_{x \to a} \frac{\Gamma(x+1)}{\Gamma(x-k+1)}.$$

Für $n \ge k$ und $k \ge 0$ gilt:

$$n^{\underline{k}} = \frac{n!}{(n-k)!}.$$

8.1.1.3 Steigende Faktorielle

Definition. Steigende Faktorielle.

Für $a \in \mathbb{C}$ und $k \ge 0$:

$$a^{\overline{k}}:=\prod_{j=0}^{k-1}(a+j).$$
 Für $a,k\in\mathbb{C}$:

$$a^{\overline{k}} := \lim_{x \to a} \frac{\Gamma(x+k)}{\Gamma(x)}.$$

Für $n \ge 1$ und $n + k \ge 1$ gilt:

$$n^{\overline{k}} = \frac{(n+k-1)!}{(n-1)!}.$$

8.1.2 Binomialkoeffizienten

Definition. Binomialkoeffizient.

Für $a \in \mathbb{C}$ und $k \in \mathbb{Z}$:

$$\begin{pmatrix} a \\ k \end{pmatrix} := \begin{cases} \frac{a^k}{k!} & \text{wenn } k > 0, \\ 1 & \text{wenn } k = 0, \\ 0 & \text{wenn } k < 0. \end{cases}$$

Für $a, b \in \mathbb{C}$:

$$\begin{pmatrix} a \\ b \end{pmatrix} := \lim_{x \to a} \lim_{y \to b} \frac{\Gamma(x+1)}{\Gamma(y+1)\Gamma(x-y+1)}.$$
 (8.11)

Für $0 \le k \le n$ gilt die Symmetriebeziehung

$$\binom{n}{k} = \binom{n}{n-k} \tag{8.12}$$

und die Rekursionsgleichung

$$\binom{n+1}{k+1} = \binom{n}{k+1} + \binom{n}{k}.$$
 (8.13)

$$\binom{-a}{k} = (-1)^k \binom{a+k-1}{k}.$$
 (8.14)

8.2 Differenzenrechnung

Definition. Differenzoperator.

Vorwärtsdifferenz:

$$(\Delta f)(x) := f(x+1) - f(x), \tag{8.15}$$

$$(\Delta_h f)(x) := f(x+h) - f(x).$$
 (8.16)

Rückwärtsdifferenz:

$$(\nabla_h f)(x) := f(x) - f(x - h). \tag{8.17}$$

Für $n \in \mathbb{N}_0$ und $x \in \mathbb{C}$ gilt:

$$\Delta(x^{\underline{n}}) = nx^{\underline{n-1}}. ag{8.18}$$

Die Formel gilt auch für $n \in \mathbb{C}$, dann aber (8.5) $x \in \mathbb{C} \setminus \{k \in \mathbb{Z} \mid k < 0\}$, da auf dem Streifen unter Umständen Polstellen sind.

Für $n \in \mathbb{Z}$, $n \ge 0$ gilt:

(8.6)
$$\sum_{x=a}^{b-1} x^{\underline{n}} = \frac{1}{n+1} \left[x^{\underline{n+1}} \right]_{x=a}^{x=b}.$$
 (8.19)

Die Formel gilt auch für $a, b \ge 0$ und $n \in \mathbb{C} \setminus \{-1\}$.

Für a > 0 und $x \in \mathbb{C}$ gilt:

$$\Delta(a^x) = (a-1)a^x. \tag{8.20}$$

(8.7)8.3 Endliche Summen

Summe der Dreieckszahlen:

(8.8)
$$\sum_{k=1}^{n} k = \frac{n}{2}(n+1), \tag{8.21}$$

$$\sum_{k=m}^{n} k = \frac{1}{2}(n-m+1)(n+m). \tag{8.22}$$

(8.9)Partialsumme der geometrischen Reihe:

(8.10)

$$\sum_{k=m}^{n-1} q^k = \frac{q^n - q^m}{q - 1}, \qquad (q \neq 1)$$
 (8.23)

$$\sum_{k=m}^{n-1} k^p q^k = \left(q \frac{d}{dq} \right)^p \frac{q^n - q^m}{q - 1}. \quad (q \neq 1)$$
 (8.24)

Verallgemeinerung von $a^2 - b^2 = (a - b)(a + b)$:

$$a^{n} - b^{n} = (a - b) \sum_{k=0}^{n-1} a^{n-1-k} b^{k}.$$
 (8.25)

8.4 Formale Potenzreihen 39

8.4 Formale Potenzreihen

8.4.1 Ring der formalen Potenzreihen

Definition. Formale Potenzreihe.

Ein Ausdruck der Form

$$\sum_{k=0}^{\infty} a_k X^k := (a_k)_{k=0}^{\infty} = (a_0, a_1, a_2, \dots)$$
 (8.26)

heißt formale Potenzreihe. Mit R[[X]] wird die Menge der formalen Potenzreihen in der Variablen X mit Koeffizienten $a_k \in R$ bezeichnet, wobei R ein kommutativer Ring mit Einselement ist.

Die Menge R[[X]] bildet bezüglich der Addition

$$\sum_{k=0}^{\infty} a_k X^k + \sum_{k=0}^{\infty} b_k X^k := \sum_{k=0}^{\infty} (a_k + b_k) X^k$$
 (8.27)

und der Multiplikation

$$\left(\sum_{i=0}^{\infty} a_i X^i\right) \left(\sum_{i=0}^{\infty} b_j X^j\right) := \sum_{k=0}^{\infty} \left(\sum_{i=0}^{k} a_i b_{k-i}\right) X^k \tag{8.28}$$

einen kommutativen Ring.

Koeffizientenvergleich. Weil formale Potenzreihen Folgen entsprechen, sind sie genau dann gleich, wenn sie komponentenweise gleich sind:

$$\sum_{k=0}^{\infty} a_k X^k = \sum_{k=0}^{\infty} b_k X^k \iff \forall k (a_k = b_k). \tag{8.29}$$

Division. Eine formale Potenzreihe B besitzt höchstens eine Inverse B^{-1} , so dass $BB^{-1}=1$ gilt. Da der Ring kommutativ ist, darf die Division

$$\frac{A}{B} := AB^{-1} = B^{-1}A \tag{8.30}$$

definiert werden, falls B invertierbar ist.

8.4.2 Binomische Reihe

Definition. Binomische Reihe.

Für $a \in \mathbb{C}$

$$(1+X)^{a} := \sum_{k=0}^{\infty} {a \choose k} X^{k}$$
 (8.31)

Es gilt:

$$(1+X)^{a+b} = (1+X)^a (1+X)^b (8.32)$$

und

$$(1+X)^{ab} = ((1+X)^a)^b. (8.33)$$

9 Algebra

9.1 Gruppentheorie

9.1.1 Grundbegriffe

Definition. Gruppenhomomorphismus.

Sind (G,*) und (H,*') zwei Gruppen, so heißt $\varphi\colon G\to H$ Gruppenhomomorphismus, wenn

$$\forall g_1, g_2 \in G \colon \varphi(g_1 * g_2) = \varphi(g_1) *' \varphi(g_2)$$
 (9.1)

gilt. Ein *Gruppenisomorphismus* ist ein bijektiver Gruppenhomomorphismus, da die Umkehrabbildung auch wieder ein Gruppenhomomorphismus ist.

Definition. Direktes Produkt.

Direktes Produkt:

$$G \times H := \{ (g, h) \mid g \in G, h \in H \},$$
 (9.2)

$$(g_1, h_1) * (g_2, h_2) := (g_1 * g_2, h_1 * h_2).$$
 (9.3)

Satz von Lagrange. Für Gruppen G, H gilt:

$$H \le G \implies |G| = |G/H| \cdot |H|.$$
 (9.4)

9.1.2 Gruppenaktionen

Definition. Gruppenaktion.

Eine Funktion $f: G \times X \to X$ heißt *Gruppenaktion*, wenn

$$\forall g_1, g_2 \in G, x \in X \colon f(g_1, f(g_2, x)) = f(g_1 g_2, x), \tag{9.5}$$

$$\forall x \in X \colon f(e, x) = x \tag{9.6}$$

gilt, wobei mit e das neutrale Element von G gemeint ist. Anstelle von f(g, x) wird üblicherweise kurz gx (oder g + x bei einer Gruppe (G, +)) geschrieben.

Anstelle von Linksaktionen kommen auch Rechtsaktionen vor, die sich von Linksaktionen in der Reihenfolge unterscheiden. Eine Rechtsaktion $f\colon X\times G\to X$ genügt den Regeln

$$\forall g_1, g_2 \in G, x \in X \colon f(f(x, g_1), g_2) = f(x, g_1 g_2), \tag{9.7}$$

$$\forall x \in X \colon f(x, e) = x. \tag{9.8}$$

Definition. Orbit, Stabilisator.

Für ein $x \in X$ wird

$$Gx := \{gx \mid g \in G\} \tag{9.9}$$

Bahn oder Orbit genannt. Die Menge

$$G_x := \{ g \in G \mid gx = x \} \tag{9.10}$$

wird Fixgruppe oder Stabilisator genannt. Die Menge

$$X^g := \{ x \in X \mid gx = x \} \tag{9.11}$$

heißt Fixpunktmenge.

Fixgruppen sind immer Untergruppen:

$$\forall x \colon G_x \le G. \tag{9.12}$$

Bahnen sind Äquivalenzklassen, die Quotientenmenge

$$X/G := \{Gx \mid x \in X\} \tag{9.13}$$

wird Bahnenraum genannt.

Bahnformel. Ist *G* eine endliche Gruppe, so gilt:

$$|G| = |Gx| \cdot |G_x|. \tag{9.14}$$

Lemma von Burnside. Für eine endliche Gruppe G gilt:

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|. \tag{9.15}$$

9.2 Ringe

Ist (R, +, *) ein Ring, so gilt für alle $a, b \in R$:

$$0 * a = a * 0 = 0, (9.16)$$

$$(-a) * b = a * (-b) = -(a * b),$$
 (9.17)

$$(-a) * (-b) = -(a * b). (9.18)$$

Definition. Ringhomomorphismus.

Sind (R, +, *) und (R', +', *') Ringe, so wird $\varphi \colon R \to R'$ als *Ringhomomorphismus* bezeichnet, wenn

$$\varphi(a+b) = \varphi(a) +' \varphi(b), \tag{9.19}$$

$$\varphi(a*b) = \varphi(a)*'\varphi(b), \tag{9.20}$$

für alle $a, b \in R$ gilt und $\varphi(1) = 1$ ist.

9.2.1 Polynome

Definition. Polynom, Polynomring, Koeffizienten.

Sei R ein kommutativer unitärer Ring. Mit R[X] bezeichnen wir die Menge der unendlichen Folgen

$$(a_k) = (a_0, a_1, \dots, a_n, 0, 0, 0, \dots)$$
 (9.21)

mit $a_k \in R$, bei denen ab einem Index alle Folgenglieder null sind.

Für zwei Folgen aus R[X] wird nun die Addition

$$(a_k) + (b_k) := (a_k + b_k)$$
 (9.22)

und die Multiplikation

$$(a_i) * (b_j) = \left(\sum_{i=0}^k a_i b_{k-i}\right)$$
 (9.23)

erklärt. In der Form (9.23) wird die Operation auch *Faltung* der Folgen (a_i) und (b_j) genannt.

Die Menge R[X] bildet mit der Addition und Multiplikation einen kommutativen unitären Ring, den *Polynomring* mit Koeffizienten in R. Ein Element von R[X] wird *Polynom* genannt.

Man definiert nun

$$X := (0, 1, 0, 0, 0, \ldots),$$
 (9.24)

womit sich jedes Polynom in der Form

$$(a_k) = \sum_{k=0}^{n} a_k X^k (9.25)$$

schreiben lässt. Die a_k nennt man Koeffizienten des Polynoms

Die Addition bekommt nun die Form

$$\sum_{k=0}^{m} a_k X^k + \sum_{k=0}^{n} b_k X^k := \sum_{k=0}^{p} (a_k + b_k) X^k.$$
 (9.26)

mit $p = \max(m, n)$. Die Multiplikation lässt sich nun in der Form

$$\left(\sum_{i=0}^{m} a_i X^i\right) \left(\sum_{i=0}^{n} b_j X^i\right) := \sum_{k=0}^{m+n} \left(\sum_{i=0}^{k} a_i b_{k-i}\right) X^k. \tag{9.27}$$

9.3 Körper 41

schreiben. Die Multiplikation von Polynomen ist das gewöhnlichen Ausmultiplizieren der Polynome, wobei $X^iX^j=X^{i+j}$ gilt.

Die X^k können als Vektorraumbasis betrachtet werden und dienen dabei dazu, die a_k auseinanderzuhalten. Zwei Polynome $\sum_{k=0}^m a_k X^k$ und $\sum_{k=0}^n b_k X^k$ sind genau dann gleich, wenn $a_k = b_k$ für alle $k \le \max(m,n)$ gilt.

Da R[X] wieder ein kommutativer unitärer Ring ist, ist auch R[X][Y] ein Polynomring. Man definiert

$$R[X,Y] := R[X][Y].$$
 (9.28)

Polynome aus R[X, Y] lassen sich in der Form

$$\sum_{i=0}^{n} \left(\sum_{i=0}^{m} a_{ij} X^{i} \right) Y^{j} = \sum_{i=0}^{m} \sum_{j=0}^{n} a_{ij} X^{i} Y^{j}$$
 (9.29)

mit $a_{ij} \in R$ schreiben.

Allgemein ist die Menge

$$R[X_1, \dots, X_q] := X[X_1, \dots, X_{q-1}][X_q]$$
 (9.30)

ein kommutativer unitärer Ring. Die Polynome lassen sich in der Form

$$\sum_{k \in \mathbb{N}_0^q} a_k X^k \quad (a_k \in R) \tag{9.31}$$

mit

$$k = (k_1, ..., k_q)$$
 und $X^k := \prod_{i=1}^q X_i^{k_i}$

schreiben.

Definition. Grad.

Für ein Polynom $f = \sum_{k=0}^{n} a_k X^k$ mit $a_n \neq 0$ wird n als Grad von f bezeichnet. Man schreibt $n = \deg f$.

Für ein Monom $a_{ij}X^iY^j$ mit $a_{ij} \neq 0$ heißt i+j Totalgrad. Der Grad eines Polynoms

$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} X^{i} Y^{j} \tag{9.32}$$

ist der maximale Totalgrad aller Monome mit $a_{ij} \neq 0$. Für Polynome in mehr als zwei Variablen ist die Definition analog.

Regeln.

Für zwei Polynome $f, g \in R[X_1, ..., X_q]$ gilt:

$$\deg(f+g) \le \max(\deg f, \deg g),\tag{9.33}$$

$$\deg(fg) \le (\deg f)(\deg g). \tag{9.34}$$

Für zwei Polynome f, g mit deg $f \neq \deg g$ gilt:

$$\deg(f+g) = \max(\deg f, \deg g). \tag{9.35}$$

Ist R ein Integritätsring, so gilt für $f, g \in R[X_1, ..., X_q]$:

$$\deg(fg) = (\deg f)(\deg g). \tag{9.36}$$

Jeder Körper, z. B. $\mathbb R$ oder $\mathbb C$ ist ein Integritätsring. Auch die ganzen Zahlen $\mathbb Z$ bilden einen Integritätsring. Ein Polynomring ist genau dann ein Integritätsring, wenn die Koeffizienten aus einem Integritätsring entstammen.

Definition. Einsetzungshomomorphismus.

Seien R,R' kommutative unitäre Ringe. Sei R' eine Ringerweiterung von R und sei $r \in R'$. Die Abbildung $\varphi_r \colon R[X] \to R'$ mit

$$\varphi_r(p) = p(r) := \sum_{k=0}^{n} a_k r^k$$
 (9.37)

für jedes Polynom

$$p = \sum_{k=0}^{n} a_k X^k$$

ist ein Ringhomomorphismus. Man bezeichnet p(r) als *Einsetzung* von r in p und φ_r als *Einsetzungshomomorphismus*.

Man kann auch R' = R und r = X setzen, dann gilt p = p(X). Ein Polynom stimmt also mit der Einsetzung seiner eigenen formalen Variablen überein.

Definition. Polynomfunktion.

Für ein festes $p \in R[X]$ wird die Funktion

$$f: R' \to R', \quad f(x) := p(x)$$
 (9.38)

als Polynomfunktion bezeichnet.

In einigen Ringen können unterschiedliche Polynome zur selben Polynomfunktion führen. Handelt es sich bei R jedoch um einen unendlichen Körper, z. B. $R = \mathbb{R}$ oder $R = \mathbb{C}$, dann gibt es zu jeder Polynomfunktion nur ein einziges Polynom.

9.3 Körper

Definition. Körperhomomorphismus.

Sind $(K, +, \bullet)$ und $(K', +', \bullet')$ Körper, so wird $\varphi \colon K \to K'$ als *Körperhomomorphismus* bezeichnet, wenn

$$\varphi(a+b) = \varphi(a) + '\varphi(b), \tag{9.39}$$

$$\varphi(a \bullet b) = \varphi(a) \bullet' \varphi(b) \tag{9.40}$$

für alle $a, b \in K$ gilt und $\varphi(1) = 1$ ist.

10 Wahrscheinlichkeitsrechnung

10.1 Diskrete Verteilungen

10.1.1 Diskreter Wahrscheinlichkeitsraum

Definition. Ergebnis, Ereignis, Ergebnismenge, Ereignisraum, unmögliches Ereignis, sicheres Ereignis.

Eine abzählbare $Ergebnismenge\ \Omega$ ist eine endliche (oder abzählbar unendliche) Menge, die als Grundmenge verwendet wird. Ein Element von Ω heißt Ergebnis oder Elementarereignis.

Die Potenzmenge 2^{Ω} heißt *Ereignisraum*, die Elemente heißen *Ereignisse*. Man nennt die leere Menge \emptyset das *unmögliche* und Ω das *sichere* Ereignis.

Definition. Diskreter Wahrscheinlichkeitsraum, Wahrscheinlichkeitsmaß.

Ein Paar (Ω, P) heißt diskreter Wahrscheinlichkeitsraum, wenn Ω eine abzählbare Ergebnismenge ist und

$$P(A) := \sum_{\omega \in A} P(\{\omega\}), \quad P \colon 2^{\Omega} \to [0, 1]$$
 (10.1)

die Eigenschaft

$$\sum_{\omega \in \Omega} P(\{\omega\}) = 1 \tag{10.2}$$

besitzt. Die Abbildung P heißt (das von den Einzelwahrscheinlichkeiten induzierte) $Wahrscheinlichkeitsma\beta$. Man spricht auch von einer Verteilung auf Ω .

10.1.2 Axiome von Kolmogorow

Definition. Wahrscheinlichkeitsmaß (Axiome von Kolmogorow).

Gegeben ist ein Messraum (Ω, Σ) . Man nennt P ein Wahrscheinlichkeitsma β , wenn gilt:

- 1. *P* ist eine Funktion $P: \Sigma \to [0, 1]$.
- 2. $P(\Omega) = 1$.
- 3. Ist I eine abzählbare Indexmenge und sind die A_i für $i \in I$ paarweise disjunkte Ereignisse, so gilt

$$P\Big(\bigcup_{i\in I} A_i\Big) = \sum_{i\in I} P(A_i). \tag{10.3}$$

Bei einem diskreten Wahrscheinlichkeitsraum (Ω, P) mit $\Sigma = 2^{\Omega}$ sind die Axiome erfüllt.

10.1.3 Rechenregeln

Aus den Axiomen von Kolmogorow folgen folgende Rechenregeln für ein Wahrscheinlichkeitsmaß P:

$$P(\emptyset) = 0, (10.4)$$

$$P(\Omega) = 1, (10.5)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B). \tag{10.6}$$

Man nennt $A^c := \Omega \setminus A$ das komplementäre Ereignis zu A. Es gilt:

$$A \cup A^{\mathsf{c}} = \Omega, \tag{10.7}$$

$$A \cap A^{\mathsf{c}} = \emptyset, \tag{10.8}$$

$$P(A \cup A^{c}) = P(A) + P(A^{c}) = 1.$$
 (10.9)

Mehrstufige Experimente. Ein zweistufiges Zufallsexperiment mit einem ersten Ergebnis aus Ω_1 und einem zweiten aus Ω_2 lässt sich als Zufallsexperiment modellieren, bei dem

die Ergebnismenge das kartesische Produkt $\Omega = \Omega_1 \times \Omega_2$ ist. Bei einem n-stufigen Experiment gilt

$$\Omega = \Omega_1 \times \ldots \times \Omega_n. \tag{10.10}$$

Erste Pfadregel. Sei $a \in \Omega_1$, $b \in \Omega_2$, $A = \{a\} \times \Omega_2$ und $B = \Omega_1 \times \{b\}$. Es gilt

$$P(\{(a,b)\}) = P(A \cap B) = P(A)P(B \mid A). \tag{10.11}$$

Das Ereignis $\{(a,b)\}$ tritt ein, wenn zuerst der Pfad A eingetreten ist, und dann auch der Pfad B. Die Wahrscheinlichkeit ist das Produkt der Pfadwahrscheinlichkeiten P(A) und $P(B \mid A)$.

Zweite Pfadregel. Sind $a,b \in \Omega$ zwei unterschiedliche Ergebnisse, dann gilt

$$P(\{a\} \cup \{b\}) = P(\{a\}) + P(\{b\}). \tag{10.12}$$

Wenn die Teilexperimente eines mehrstufigen Experiments stochastisch unabhängig sind, dann gilt nach der ersten Pfadregel die Formel

$$P(\{(a_1,\ldots,a_n)\}) = \prod_{k=1}^n P(A_k), \tag{10.13}$$

wobei A_k der Pfad zu a_k ist. Für den Fall, dass die einzelnen Experimente alle Laplace-Experimente sind, gilt speziell

$$P(\{(a_1, \dots, a_n)\}) = \frac{1}{|\Omega|} = \prod_{k=1}^n \frac{1}{|\Omega_k|}$$
 (10.14)

mit $\Omega = \Omega_1 \times \ldots \times \Omega_n$ und $(a_1, \ldots, a_n) \in \Omega$.

Führt man immer wieder dasselbe Laplace-Experiment aus, gilt mit $t\in\Omega$ und $\Omega=\Omega_1^n$ die Regel

$$P(t) = \frac{1}{|\Omega|} = \frac{1}{|\Omega_1|^n}.$$
 (10.15)

Würfelt man z. B. n-mal hintereinander, dann gibt es 6^n Pfade und für jeden Pfad ergibt sich eine Wahrscheinlichkeit von $(1/6)^n$.

10.1.4 Bedingte Wahrscheinlichkeit

Definition. Bedingte Wahrscheinlichkeit.

Für zwei Ereignisse A, B mit P(B) > 0 nennt man

$$P(A \mid B) := \frac{P(A \cap B)}{P(B)} \tag{10.16}$$

die bedingte Wahrscheinlichkeit von A, vorausgesetzt B.

Bei

$$P'(A) := P(A \mid B), \quad P' : 2^B \to [0, 1]$$
 (10.17)

handelt es sich wieder um ein Wahrscheinlichkeitsmaß.

Satz von Bayes. Für P(A) > 0 und P(B) > 0 gilt

$$P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}.$$
 (10.18)

Gesetz der totalen Wahrscheinlichkeit. Bilden die B_i eine Zerlegung des Wahrscheinlichkeitsraums, dann gilt

$$P(A) = \sum_{i \in I} P(A \mid B_i) P(B_i).$$
 (10.19)

Das Gesetz kann als eine Form zweiten in Verbindung mit der ersten Pfadregel betrachtet werden.

10.1.5 Unabhängige Ereignisse

Definition. Stochastische Unabhängigkeit.

Zwei Ereignisse A, B heißen stochastisch unabhängig, wenn

$$P(A \cap B) = P(A)P(B) \tag{10.20}$$

gilt

10.1.6 Gleichverteilung

Definition. Gleichverteilung (Laplace-Verteilung).

Sei Ω eine endliche Ergebnismenge. Mann nennt P eine Gleichverteilung oder Laplace-Verteilung, wenn

$$P(\{\omega\}) = \frac{1}{|\Omega|} \tag{10.21}$$

für alle Ergebnisse $\omega \in \Omega$ gilt.

Für eine Gleichverteilung gilt

$$P(A) = \frac{|A|}{|\Omega|}. (10.22)$$

10.1.7 Zufallsvariablen

Definition, Zufallsvariable.

Sei (Ω, P) ein diskreter Wahrscheinlichkeitsraum. Jede Funktion

$$X:\Omega\to\mathbb{R}$$
 (10.23)

heißt Zufallsvariable. Die Funktionswerte $x=X(\omega)$ heißen Realisationen der Zufallsvariable.

Eine Zufallsvariable X ordent dem Raum (Ω, P) einen neuen Wahrscheinlichkeitsraum (\mathbb{R}, P_X) zu, wobei

$$P_X: 2^{X(\Omega)} \to [0, 1], \ P_X(A) := P(X^{-1}(A))$$
 (10.24)

definiert wird. Mit

$$X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}$$
 (10.25)

ist das Urbild von A gemeint. Die folgenden Kurzschreibweisen haben sich eingebürgert:

$$P(X \in A) := P(\{\omega \mid X(\omega) \in A\}), \tag{10.26}$$

$$P(X = x) := P(\{\omega \mid X(\omega) = x\}),$$
 (10.27)

$$P(X \le x) := P(\{\omega \mid (X\omega) \le x\}).$$
 (10.28)

Definition. Verteilungsfunktion.

Für eine Zufallsvariable X wird

$$F(x) := P(X \le x), \quad F : \mathbb{R} \to [0, 1]$$
 (10.29)

Verteilungsfunktion von *X* genannt.

Eigenschaften von Verteilungsfunktionen.

Für eine Verteilungsfunktion *F* gilt:

$$\blacksquare$$
 F ist monoton wachsend, (10.30)

$$\blacksquare$$
 F ist rechtsseitig stetig, (10.31)

$$\lim_{x \to -\infty} F(x) = 0, \tag{10.32}$$

$$\blacksquare \lim_{x \to \infty} F(x) = 1,$$
(10.33)

$$P(a < X \le b) = F(b) - F(a).$$
 (10.34)

Definition. Zufallszahlengenerator.

Sei (X_k) eine Folge von unabhängigen und identisch verteilten Zufallsgrößen. Eine Folge (x_k) von Realisierungen $x_k = X_k(\omega_k)$ wird Zufallszahlengenerator (kurz RNG, engl. random number generator) genannt.

Bemerkung: Die x_k werden durch Auswürfeln oder algorithmisch ermittelt, wobei die ω_k unbekannt bleiben und auch mathematisch keine Rolle spielen.

Inversionsmethode. Die uniforme Verteilung ist definiert durch die Verteilungsfunktion

$$U \colon \mathbb{R} \to [0, 1], \quad U(x) := \begin{cases} 0 \text{ wenn } x < 0, \\ x \text{ wenn } x \in [0, 1], \\ 1 \text{ wenn } x > 1. \end{cases}$$
 (10.35)

Hat man nur einen Generator (u_k) zur Verfügung, der uniform verteilte Zufallszahlen erzeugt, möchte aber Zufallszahlen x_k mit Verteilungsfunktion F erzeugen, dann lassen sich diese gemäß

$$x_k = F^{-1}(u_k) (10.36)$$

ermitteln. Ist F stetig und streng monoton steigend, dann ist F^{-1} die Umkehrfunktion von F, andernfalls setzt man

$$F^{-1}(u) := \inf\{x \in \mathbb{R} \mid F(x) \ge u\}. \tag{10.37}$$

Gesetz der totalen Wahrscheinlichkeit. Für eine Zufallsgröße X mit Verteilungsfunktion F gilt

$$P(A) = \int_{-\infty}^{\infty} P(A \mid X = x) \, dF(x).$$
 (10.38)

11 Tabellen

11.1 Lineare Algebra

11.1.1 Lineare Abbildungen

Endomorphismus	Matrix	Inverse	Eigenwerte
Identität	$E = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$E^{-1} = E$	+1, +1
Skalierung	$rE = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix}$	$(rE)^{-1} = \frac{1}{r}E = \begin{bmatrix} 1/r & 0\\ 0 & 1/r \end{bmatrix}$	r, r
Skalierung der x-Achse	$V_x = \begin{bmatrix} r & 0 \\ 0 & 1 \end{bmatrix}$	$V_x^{-1} = \begin{bmatrix} 1/r & 0\\ 0 & 1 \end{bmatrix}$	r, 1
Skalierung der y-Achse	$V_{y} = \begin{bmatrix} 1 & 0 \\ 0 & r \end{bmatrix}$	$V_{y}^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1/r \end{bmatrix}$	r, 1
Spiegelung an der x-Achse	$S_x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	$S_x^{-1} = S_x$	±1
Spiegelung an der y-Achse	$S_{y} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$	$S_y^{-1} = S_y$	±1
Spiegelung an der Achse des Vektors $v = (a, b)$	$S_{v} = \frac{1}{a^{2} + b^{2}} \begin{bmatrix} a^{2} - b^{2} & 2ab \\ 2ab & b^{2} - a^{2} \end{bmatrix}$	$S_{\nu}^{-1} = S_{\nu}$	±1
Spiegelung am Ursprung	$S_0 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$	$S_0^{-1} = S_0$	-1, -1
Projektion auf die <i>x</i> -Achse	$P_x = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$	nicht vorhanden	0, +1
Projektion auf die <i>y</i> -Achse	$P_{y} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$	nicht vorhanden	0, +1
Projektion auf die Achse des Vektors $v = (a, b)$	$P_{v} = \frac{1}{a^2 + b^2} \begin{bmatrix} a^2 & ab \\ ab & b^2 \end{bmatrix}$	nicht vorhanden	0, +1
Scherung an der x-Achse	$M_{X} = \begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix}$	$M_x^{-1} = \begin{bmatrix} 1 & -m \\ 0 & 1 \end{bmatrix}$	+1, +1
Scherung an der y-Achse	$M_{y} = \begin{bmatrix} 1 & 0 \\ m & 1 \end{bmatrix}$	$M_{y}^{-1} = \begin{bmatrix} 1 & 0 \\ -m & 1 \end{bmatrix}$	+1, +1
Rotation um den Winkel φ gegen den Uhrzeigersinn	$R(\varphi) = \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \cos \varphi & \sin \varphi \end{bmatrix}$	$R(\varphi)^{-1} = R(\varphi)^T = R(-\varphi)$	$\cos \varphi \pm i \sin \varphi$
Rotation um 90° gegen den Uhrzeigersinn	$R(\frac{\pi}{4}) = \begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix}$	$R(\frac{\pi}{4})^{-1} = R(-\frac{\pi}{4})$	±i
Rotation um 90° im Uhrzeigersinn	$R(-\frac{\pi}{4}) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$	$R(-\frac{\pi}{4})^{-1} = R(\frac{\pi}{4})$	±i
Drehskalierung, entspricht der komplexen Zahl $a + bi$	$Z = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$	$Z^{-1} = \frac{1}{a^2 + b^2} \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$	$a \pm b$ i
Drehskalierung, entspricht der komplexen Zahl $r\mathrm{e}^{\mathrm{i} arphi}$	$Z = rR(\varphi)$	$Z^{-1} = \frac{1}{r}R(-\varphi)$	$r\cos\varphi\pm\mathrm{i}r\sin\varphi$
Allgemeiner Endomorphismus	$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$	$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$	$\frac{a+d\pm\sqrt{(a-d)^2+4bc}}{2}$

11.2 Kombinatorik 45

 $\binom{n}{k}$

11.2 Kombinatorik

11.2.1 Binomialkoeffizienten

	k = 0	<i>k</i> = 1	k = 2	<i>k</i> = 3	k = 4	<i>k</i> = 5	<i>k</i> = 6	<i>k</i> = 7	<i>k</i> = 8	<i>k</i> = 9	k = 10
n = 0	1	0	0	0	0	0	0	0	0	0	0
n = 1	1	1	0	0	0	0	0	0	0	0	0
n = 2	1	2	1	0	0	0	0	0	0	0	0
n = 3	1	3	3	1	0	0	0	0	0	0	0
n = 4	1	4	6	4	1	0	0	0	0	0	0
n = 5	1	5	10	10	5	1	0	0	0	0	0
n = 6	1	6	15	20	15	6	1	0	0	0	0
n = 7	1	7	21	35	35	21	7	1	0	0	0
n = 8	1	8	28	56	70	56	28	8	1	0	0
n = 9	1	9	36	84	126	126	84	36	9	1	0
n = 10	1	10	45	120	210	252	210	120	45	10	1
n = 11	1	11	55	165	330	462	462	330	165	55	11
n = 12	1	12	66	220	495	792	924	792	495	220	66
n = 13	1	13	78	286	715	1287	1716	1716	1287	715	286
n = 14	1	14	91	364	1001	2002	3003	3432	3003	2002	1001
n = 15	1	15	105	455	1365	3003	5005	6435	6435	5005	3003
n = 16	1	16	120	560	1820	4368	8008	11440	12870	11440	8008
n = 17	1	17	136	680	2380	6188	12376	19448	24310	24310	19448
n = 18	1	18	153	816	3060	8568	18564	31824	43758	48620	43758
<i>n</i> = 19	1	19	171	969	3876	11628	27132	50388	75582	92378	92378

	k = 0	k = 1	k = 2	k = 3	k = 4	<i>k</i> = 5	<i>k</i> = 6	k = 7	<i>k</i> = 8	k = 9
n = -15	1	-15	120	-680	3060	-11628	38760	-116280	319770	-817190
n = -14	1	-14	105	-560	2380	-8568	27132	-77520	203490	-497420
n = -13	1	-13	91	-455	1820	-6188	18564	-50388	125970	-293930
n = -12	1	-12	78	-364	1365	-4368	12376	-31824	75582	-167960
n = -11	1	-11	66	-286	1001	-3003	8008	-19448	43758	-92378
n = -10	1	-10	55	-220	715	-2002	5005	-11440	24310	-48620
n = -9	1	-9	45	-165	495	-1287	3003	-6435	12870	-24310
n = -8	1	-8	36	-120	330	-792	1716	-3432	6435	-11440
n = -7	1	-7	28	-84	210	-462	924	-1716	3003	-5005
n = -6	1	-6	21	-56	126	-252	462	-792	1287	-2002
n = -5	1	-5	15	-35	70	-126	210	-330	495	-715
n = -4	1	-4	10	-20	35	-56	84	-120	165	-220
n = -3	1	-3	6	-10	15	-21	28	-36	45	-55
n = -2	1	-2	3	-4	5	-6	7	-8	9	-10
n = -1	1	-1	1	-1	1	-1	1	-1	1	-1
n = 0	1	0	0	0	0	0	0	0	0	0

$$\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1},$$

$$\binom{n}{k} = \binom{n}{n-k} = \frac{n!}{k!(n-k)!}$$

$$(0 \le k \le n)$$

46 11 Tabellen

11.2.2 Stirling-Zahlen erster Art

 $\begin{bmatrix} n \\ k \end{bmatrix}$

	k = 0	k = 1	k = 2	k = 3	k = 4	k = 5	k = 6	k = 7	k = 8	k = 9
n = 0	1	0	0	0	0	0	0	0	0	0
n = 1	0	1	0	0	0	0	0	0	0	0
n = 2	0	1	1	0	0	0	0	0	0	0
n = 3	0	2	3	1	0	0	0	0	0	0
n=4	0	6	11	6	1	0	0	0	0	0
n = 5	0	24	50	35	10	1	0	0	0	0
n = 6	0	120	274	225	85	15	1	0	0	0
n = 7	0	720	1764	1624	735	175	21	1	0	0
n = 8	0	5040	13068	13132	6769	1960	322	28	1	0
n = 9	0	40320	109584	118124	67284	22449	4536	546	36	1
n = 10	0	362880	1026576	1172700	723680	269325	63273	9450	870	45
n = 11	0	3628800	10628640	12753576	8409500	3416930	902055	157773	18150	1320

11.2.3 Stirling-Zahlen zweiter Art

	k = 0	k = 1	k = 2	k = 3	k = 4	k = 5	k = 6	k = 7	k = 8	k = 9
n = 0	1	0	0	0	0	0	0	0	0	0
n = 1	0	1	0	0	0	0	0	0	0	0
n = 2	0	1	1	0	0	0	0	0	0	0
n = 3	0	1	3	1	0	0	0	0	0	0
n=4	0	1	7	6	1	0	0	0	0	0
n = 5	0	1	15	25	10	1	0	0	0	0
n = 6	0	1	31	90	65	15	1	0	0	0
n = 7	0	1	63	301	350	140	21	1	0	0
n = 8	0	1	127	966	1701	1050	266	28	1	0
n = 9	0	1	255	3025	7770	6951	2646	462	36	1
n = 10	0	1	511	9330	34105	42525	22827	5880	750	45
n = 11	0	1	1023	28501	145750	246730	179487	63987	11880	1155

11.3 Zahlentheorie 47

11.3 Zahlentheorie

11.3.1 Primzahlen

0	40	80	120	160	200	240	280	320	360	400	440	480	520	
2	179	419	661	947	1229	1523	1823	2131	2437	2749	3083	3433	3733	1
3	181	421	673	953	1231	1531	1831	2137	2441	2753	3089	3449	3739	2
5	191	431	677	967	1237	1543	1847	2141	2447	2767	3109	3457	3761	3
7	193	433	683	971	1249	1549	1861	2143	2459	2777	3119	3461	3767	4
11	197	439	691	977	1259	1553	1867	2153	2467	2789	3121	3463	3769	5
13	199	443	701	983	1277	1559	1871	2161	2473	2791	3137	3467	3779	6
17	211	449	709	991	1279	1567	1873	2179	2477	2797	3163	3469	3793	7
19	223	457	719	997	1283	1571	1877	2203	2503	2801	3167	3491	3797	8
23	227	461	727	1009	1289	1579	1879	2207	2521	2803	3169	3499	3803	9
29	229	463	733	1013	1291	1583	1889	2213	2531	2819	3181	3511	3821	10
31	233	467	739	1019	1297	1597	1901	2221	2539	2833	3187	3517	3823	11
37	239	479	743	1021	1301	1601	1907	2237	2543	2837	3191	3527	3833	12
41	241	487	751	1031	1303	1607	1913	2239	2549	2843	3203	3529	3847	13
43	251	491	757	1033	1307	1609	1931	2243	2551	2851	3209	3533	3851	14
47	257	499	761	1039	1319	1613	1933	2251	2557	2857	3217	3539	3853	15
53	263	503	769	1049	1321	1619	1949	2267	2579	2861	3221	3541	3863	16
59	269	509	773	1051	1327	1621	1951	2269	2591	2879	3229	3547	3877	17
61	271	521	787	1061	1361	1627	1973	2273	2593	2887	3251	3557	3881	18
67	277	523	797	1063	1367	1637	1979	2281	2609	2897	3253	3559	3889	19
71	281	541	809	1069	1373	1657	1987	2287	2617	2903	3257	3571	3907	20
73	283	547	811	1087	1381	1663	1993	2293	2621	2909	3259	3581	3911	21
79	293	557	821	1091	1399	1667	1997	2297	2633	2917	3271	3583	3917	22
83	307	563	823	1093	1409	1669	1999	2309	2647	2927	3299	3593	3919	23
89	311	569	827	1097	1423	1693	2003	2311	2657	2939	3301	3607	3923	24
97	313	571	829	1103	1427	1697	2011	2333	2659	2953	3307	3613	3929	25
101	317	577	839	1109	1429	1699	2017	2339	2663	2957	3313	3617	3931	26
103	331	587	853	1117	1433	1709	2027	2341	2671	2963	3319	3623	3943	27
107	337	593	857	1123	1439	1721	2029	2347	2677	2969	3323	3631	3947	28
109	347	599	859	1129	1447	1723	2039	2351	2683	2971	3329	3637	3967	29
113	349	601	863	1151	1451	1733	2053	2357	2687	2999	3331	3643	3989	30
110	0 17	001	000	1101	1101	1,00		2007	200,	-///	0001	0010	0,0,	
127	353	607	877	1153	1453	1741	2063	2371	2689	3001	3343	3659	4001	31
131	359	613	881	1163	1459	1747	2069	2377	2693	3011	3347	3671	4003	32
137	367	617	883	1171	1471	1753	2081	2381	2699	3019	3359	3673	4007	33
139	373	619		1181				2383						34
149	379	631	907	1187	1483	1777	2087	2389	2711	3037	3371	3691	4019	35
= -	- * -													
151	383	641	911	1193	1487	1783	2089	2393	2713	3041	3373	3697	4021	36
157	389	643	919	1201	1489	1787	2099	2399	2719	3049	3389	3701	4027	37
163	397	647	929	1213	1493	1789	2111	2411	2729	3061	3391	3709	4049	38
167	401	653	937	1217	1499	1801	2113	2417	2731	3067	3407	3719	4051	39
173	409	659	941	1223	1511	1811	2129	2423	2741	3079	3413	3727	4057	40
														<u> </u>

12 Anhang

12.1 Griechisches Alphabet

Α	$egin{array}{c} lpha \ eta \ \gamma \ \delta \end{array}$	Alpha	N	ν	Ny
Β		Beta	Е	ξ	Xi
Γ		Gamma	О	ο	Omikron
Δ		Delta	П	π	Pi
Ε Ζ Η Θ	$egin{array}{c} arepsilon \ \zeta \ \eta \ heta \end{array}$	Epsilon Zeta Eta Theta	R Σ Τ Υ	$egin{array}{c} arrho \ \sigma \ \ au \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Rho Sigma Tau Ypsilon
I	ι	Jota	Φ	φ χ ψ ω	Phi
Κ	κ	Kappa	Χ		Chi
Λ	λ	Lambda	Ψ		Psi
Μ	μ	My	Ω		Omega

12.2 Frakturbuchstaben

A a B b C c D d	A a	O o	O o
	B b	P p	P p
	C c	Q q	Q q
	D d	R r	R r
E e	Ee	S s	S s
F f	Ff	T t	T t
G g	Gg	U u	U u
H h	Sh	V v	V v
I i	3 i	Ww	W w x x y y y 3 3
J j	3 i	Xx	
K k	8 f	Yy	
L l	2 I	Zz	
M m N n	M m N n		

12.3 Mathematische Konstanten

- 1. Kreiszahl
 - $\pi = 3.14159\ 26535\ 89793\ 23846\ 26433\ 83279\dots$
- 2. Eulersche Zahl
 - $e = 2,71828 \ 18284 \ 59045 \ 23536 \ 02874 \ 71352 \dots$
- 3. Euler-Mascheroni-Konstante
 - $\gamma = 0,57721$ 56649 01532 86060 65120 90082...
- 4. Goldener Schnitt, $(1 + \sqrt{5})/2$
 - $\varphi = 1,61803\ 39887\ 49894\ 84820\ 45868\ 34365\dots$
- 5. 1. Feigenbaum-Konstante
 - $\delta = 4,66920\ 16091\ 02990\ 67185\ 32038\ 20466\dots$
- 6. 2. Feigenbaum-Konstante
 - $\alpha = 2,50290 78750 95892 82228 39028 73218...$

12.4 Physikalische Konstanten

- 1. Lichtgeschwindigkeit im Vakuum c = 299792458 m/s
- 2. Elementarladung $e = 1,602 \ 176 \ 634 \times 10^{-19} \ C$
- 3. Avogadro-Konstante $N_A = 6{,}022\ 140\ 76 \times 10^{23}/\text{mol}$
- 4. Boltzmann-Konstante $k_B = 1,380 649 \times 10^{-23} \text{ J/K}$
- 5. Universelle Gaskonstante R = 8,314 462 618 153 24 J/(mol K)
- 6. Plancksches Wirkungsquantum h = 6,626 070 15×10^{-34} Js
- 7. Reduziertes plancksches Wirkungsquantum $\hbar = h/(2\pi)$
- 8. Elektrische Feldkonstante, rel. U. 1,5 × 10⁻¹⁰ $\varepsilon_0=8,854$ 187 8128(13) × 10⁻¹² F/m
- 9. Magnetische Feldkonstante, rel. U. 1,5 × 10⁻¹⁰ μ_0 = 1,256 637 062 12(19) × 10⁻⁶ H/m $\approx 4\pi \times 10^{-7}$ H/m
- 10. Gravitationskonstante, rel. U. 2.2×10^{-5} $G = 6,674 \ 30(15) \times 10^{-11} \ \text{m}^3/(\text{kg s}^2)$
- 11. Masse des Elektrons, rel. U. 3.0×10^{-10} $m_e = 9.109$ 383 $7015(28) \times 10^{-31}$ kg
- 12. Masse des Neutrons, rel. U. 5.7×10^{-10} $m_n = 1,674 927 498 04(95) \times 10^{-27} \text{ kg}$
- 13. Masse des Protons, rel. U. 3.1×10^{-10} $m_p = 1,672 \ 621 \ 923 \ 69(51) \times 10^{-27} \ \text{kg}$

12.5 Einheiten 49

12.5 Einheiten

12.5.1 Vorsätze

Vorsatz	Abk.	Faktor	Zahlwort
Exa	Е	10^{18}	Trillion
Peta	P	10^{15}	Billiarde
Tera	T	10^{12}	Billion
Giga	G	10 ⁹	Milliarde
Mega	M	10^{6}	Million
Kilo	k	10^{3}	Tausend
Hekto	h	10^{2}	Hundert
Deka	da	10^{1}	Zehn
Dezi	d	10^{-1}	Zehntel
Zenti	c	10^{-2}	Hunderstel
Milli	m	10^{-3}	Tausenstel
Mikro	μ	10^{-6}	Millionstel
Nano	n	10^{-9}	Milliardstel
Pico	р	10^{-12}	Billionstel
Femto	f	10^{-15}	Billiardstel
Atto	a	10^{-18}	Trillionstel

Binärpräfixe

Vorsatz Abk. Fak Yobi Yi 280 Zebi Zi 270 Exbi Ei 260 Pebi Pi 250 Tebi Ti 240	_
	tor
Exbi Ei 2 ⁶⁰ Pebi Pi 2 ⁵⁰	
Pebi Pi 2 ⁵⁰	
1001 11 2	
Tebi Ti 2 ⁴⁰	
Gibi Gi 2 ³⁰	
Mebi Mi 2 ²⁰	
Kibi Ki 2 ¹⁰	

12.5.2 SI-System

Newton (Kraft):

$$N = kg m/s^2. (12.1)$$

Watt (Leistung):

$$W = kg m^2/s^3 = VA.$$
 (12.2)

Joule (Energie):

$$J = kg m^2/s^2 = Nm = Ws = VAs.$$
 (12.3)

Pascal (Druck):

$$Pa = N/m^2 = 10^{-5} bar.$$
 (12.4)

Hertz (Frequenz):

$$Hz = 1/s.$$
 (12.5)

Coulomb (Ladung):

$$C = As. (12.6)$$

Volt (Spannung):

$$V = kg m^2/(A s^3)$$
 (12.7)

Tesla (magnetische Flussdichte):

$$T = N/(A m) = Vs/m^2$$
. (12.8)

12.5.3 Nicht-SI-Einheiten

Einheit	Symbol	Umrechnung
Zeit:		
Minute	min	= 60 s
Stunde	h	$= 60 \min = 3600 s$
Tag	d	= 24 h = 86 400 s
Jahr	a	= 356,25 d
Druck:		
bar	bar	$= 10^5 \text{Pa}$
mmHg	mmHg	= 133,322 Pa
Fläche:		
Ar	a	$= 100 \mathrm{m}^2$
Hektar	ha	$= 100 a = 10 000 m^2$
Masse:		
Tonne	t	= 1000 kg
Länge:		
Liter	L	$= 10^{-3} \mathrm{m}^3$

12.5.4 Britische Einheiten

Einheit	Abk.	Umrechnung
inch	in.	= 2,54 cm
foot	ft.	= 12 in. = 30,48 cm
yard	yd.	= 3 ft. = 91,44 cm
chain	ch.	= 22 yd. = 20,1168 m
furlong	fur.	= 10 ch. = 201,168 m
mile	mi.	= 1760 yd. = 1609,3440 m

50 12 Anhang

12.6 Abkürzungsverzeichnis

12.6.1 Alphabetisches Verzeichnis

Abb. Abbildung abs absolut Aut Automorphismus

AWP Anfangswertproblem

Def. Definition
det Determinante
Dgl. Differentialgleichung

dim Dimension

DNF disjunktive Normalform FFT fast fourier transform

Fkt. Funktion

GDG gewöhnliche Differentialgleichung

gcd greatest common divisor gdw. genau dann, wenn

ggT größter gemeinsamer Teiler

Gl. Gleichung glm. gleichmäßig grad Gradient

hom Homomorphismen IA Induktionsanfang imp. impliziert

IS Induktionsschritt

IV Induktionsvoraussetzung

kgV kleinstes gemeinsames Vielfaches

KNF konjunktive Normalform lcm least common multiple LGS lineares Gleichungssystem

lin. linear

Ma. Mathematik

ma. mathematisch

max Maximum

Mfkt. Mannigfaltigkeit

min Ninimum

NAND not and

NOR not or NB Nebenbedingung NR Nebenrechnung

o.B.d.A. ohne Beschränkung der Allgemeinheit

ONB Orthonormalbasis ONS Orthonormalsystem

Op. Operator

PDG partielle Differentialgleichung

pktw. punktweise

q. e. d. quot erat demonstrandum

S. Seite
s. siehe
s. a. siehe auch
Ungl. Ungleichung
VR Vektorraum

w.z.b.w. was zu beweisen war

XOR exclusive or

12.6.2 Thematisches Verzeichnis

Allgemeine Abkürzungen

Def. Definition Subs. Substitution Abb. Abbildung Fkt. Funktion Trafo. Transformation Gl. Gleichung Ungl. Ungleichung NR Nebenrechnung imp. impliziert

gdw. genau dann, wenn IA Induktionsanfang IS Induktionsschritt

IV Induktionsvoraussetzung

Ma. Mathematik ma. mathematisch Add. Addition Mul. Multiplikation

Lineare Algebra

lin. linear

LGS lineares Gleichungssystem

VR Vektorraum
dim Dimension
hom Homomorphismen
det Determinante
ONS Orthonormalsystem
ONB Orthonormalbasis

Analysis

Fkt. Funktion
lim Limes
pktw. punktweise
glm. gleichmäßig
min Minimum
max Maximum
Mfkt. Mannigfaltigkeit

Differentialgleichungen

Dgl. Differentialgleichung

GDG gewöhnliche Differentialgleichung
PDG partielle Differentialgleichung
ODG ordinary differential equation
PDG partial differential equation
AWP Anfangswertproblem
RWP Randwertproblem
FEM Finite Elemente Methode

Zahlentheorie

ggT größter gemeinsamer Teiler kgV kleinstes gemeinsames Vielfaches gcd greatest common divisor lcm least common multiple

--- 1 ---- 1--1-

mod modulo

Logik und Schaltalgebra

gdw. genau dann, wenn imp. impliziert NAND not and

NOR not or XOR exclusive or

KNF konjunktive Normalform DNF disjunktive Normalform

12.7 Mathematische Zeichen 51

12.7 Mathematische Zeich	hen

Logik	
$\varphi, \overline{\psi}$	Formelvariablen, 15
A, B	Aussagenvariablen, 7
P,Q	Prädikatvariablen, 10
$\vdash \varphi$	φ ist ableitbar, 15
$M \vdash \varphi$	φ ist aus M ableitbar
$\models \varphi$	φ ist tautologisch, 16
$M \models \varphi$	M impliziert φ semantisch, 15
$\varphi \equiv \psi$	φ und ψ sind äquivalent, 16
$\neg A$	Negation, nicht A
$A \wedge B$	Konjunktion, <i>A</i> und <i>B</i> , 8
$A \vee B$	Disjunktion, <i>A</i> oder <i>B</i> , 8
$A \Rightarrow B$	Implikation, wenn <i>A</i> , dann <i>B</i> , 8
$A \Leftrightarrow B$	Äquivalenz, A genau dann, wenn B, 8
$\forall x \in M : P(x)$	Für alle x in M gilt: $P(x)$
$\exists x \in M : P(x)$	Es gibt ein x in M , für das gilt: $P(X)$

Mengenlehre

2111 C
<i>x</i> ist ein Element von <i>A</i>
<i>x</i> ist kein Element von <i>A</i>
A ist eine Teilmenge von B
A ist eine echte Teilmenge von B
Vereinigung von A und B
Schnitt von <i>A</i> und <i>B</i>
Vereinigung der A_i
Schnitt der A_i
Differenzmenge, A ohne B
symmetrische Differenz von <i>A</i> und <i>B</i>
Komplement von <i>A</i>
kartesisches Produkt von A und B
disjunkte Vereinigung von <i>A</i> und <i>B</i>
Menge der Abbildungen von A nach B
Potenzmenge von A
Potenzmenge von A
Kardinalität von A
kartesisches Produkt der A_i
kartesisches Produkt der A_i

Spezielle Mengen

9	ilene i lengen
Ø	die leere Menge
\mathbb{N}	die Menge der natürlichen Zahlen
\mathbb{N}_0	natürliche Zahlen einschließlich null
\mathbb{N}_1	natürliche Zahlen ohne null
$\mathbb Z$	die Menge der ganze Zahlen
\mathbb{Q}	die Menge der rationalen Zahlen
\mathbb{R}	die Menge der reellen Zahlen
\mathbb{C}	die Menge der komplexen Zahlen
\mathbb{H}	die Menge der Quaternionen
\mathbb{P}	die Menge der Primzahlen

Relationen

Kelatio	IICII
a := b	sei a per Definition gleich b
a = b	a ist gleich b
$a \neq b$	a ist ungleich b
$a \approx b$	a ist ungefähr gleich b
a < b	<i>a</i> ist kleiner als <i>b</i>
a > b	a ist größer als b
$a \leq b$	<i>a</i> ist kleiner als oder gleich <i>b</i>
$a \ge b$	a ist größer als oder gleich b

Reelle Analysis $\sum_{k=1}^{n} a_k$ die Su

$\sum_{k=1}^{n} a_k$	die Summe $a_1 + a_2 + \ldots + a_n$
$\prod_{k=1}^n a_k$	das Produkt $a_1 \cdot a_2 \cdot \ldots \cdot a_n$
$\lim_{n\to\infty}a_n$	Grenzwert der Folge (a_n) für $n \to \infty$
$\lim_{x \to a} f(x)$	Grenzwert der Funktion f für $x \to a$
$\lim_{x \nearrow a} f(x)$	linksseitiger Grenzwert
$\lim_{x \searrow a} f(x)$	rechtsseitiger Grenzwert
$f \sim g$ $f \in O(g)$ $f'(a)$ $f''(a)$	f und g sind asymptotisch gleich f wächst nicht wesentlich schneller als g Ableitung von f an der Stelle a Zweite Ableitung von f bei a
$f^{(n)}(a)$	n-te Ableitung von f bei a
Df(a)	Ableitung von f bei a
$\frac{\mathrm{d}f(x)}{\mathrm{d}x}\Big _{x=a}$	Ableitung von f bei a
$\frac{\mathrm{d}}{\mathrm{d}x}f(x)$	Ableitung des Terms $f(x)$ nach x
$D_x f(x)$	Ableitung des Terms $f(x)$ nach x
$\int_{a}^{b} f(x) \mathrm{d}x$	Integral von f für $a \le x \le b$
$\int f(x) \mathrm{d}x$	unbestimmtes Integral von f
Vektorana $\partial_k f(a)$	llysis partielle Ableitung von f nach x_k

$o_k f(a)$	partielle Ableitung von J nach x_k
$\frac{\partial f(x,y)}{\partial x}$	partielle Ableitung von $f(x, y)$ nach x
$\nabla f^{\partial x}(a)$	Gradient von f bei a
$\langle \nabla, F \rangle (a)$	Divergenz von F bei a
$(\nabla \times F)(a)$	Rotation von F bei a
$D_{v}f(p)$	Richtungsableitung von f in Richtung v
$\int_{\gamma} f \mathrm{d}s$	Wegintegral des Skalarfeldes f
$\int_C f \mathrm{d}s$	Wegintegral von f , orientierte Kurve
$\int_{\gamma} \langle F(\mathbf{x}), d\mathbf{x} \rangle$	Wegintegral des Vektorfeldes ${\cal F}$
$\iint_{S} f dS$	Oberflächen integral von \boldsymbol{f}
$\iint_{S} \langle F, d\Sigma \rangle$	Oberflächenintegral von F

Differentialgeometrie

df(p)	totales Differential von f bei p
$\nabla_{\nu}X(p)$	kovariante Ableitung von X bei p
$d\omega(p)$	Differential der Form ω bei p
$\int_{\Omega} \omega$	Integral der Differenzialform ω

Lineare Algebra

A^T	transponierte Matrix zu A
A^H	adjungierte Matrix zu A
A^{-1}	inverse Matrix zu A
$\det A$	Determinante der Matrix A
tr A	Spur der Matrix A
$\ v\ $	Norm von <i>v</i>
$\langle v, w \rangle$	Skalarprodukt von v und w
$v \wedge w$	äußeres Produkt von v und w
$v \times w$	Vektorprodukt von <i>v</i> und <i>w</i>
$v \otimes w$	Tensorprodukt von <i>v</i> und <i>w</i>
span M	lineare Hülle der Vektoren in M
P[w](v)	Projektion von <i>v</i> auf <i>w</i>
hom(V, W)	lineare Abbildungen $V \to W$
$K^{m \times n}$	Matrizenraum
GL(n, K)	allgemeine lineare Gruppe

Literatur

Formelsammlungen

- [1] I. N. Bronstein, K. A. Semendjadjew, G. Musiol, H. Mühlig et al.: »Taschenbuch der Mathematik«. Verlag Harri Deutsch, 7. Auflage 2008.
- [2] Frank W. J. Olver (Hg.) et al.: »NIST Handbook of Mathematical Functions«. Cambridge University Press, 2010.

Kombinatorik

[3] Ronald L. Graham, Donald E. Knuth, Oren Patashnik: »Concrete Mathematics«. Addison-Wesley, 1989, 2. Auflage 1994.

Index

Ableitung, 22	Fourier-Skalarprodukt, 26
absolut konvergent, 21	Fourierreihe, 26
Additionstheoreme, 18	Fundamentallemma, 25
	rundamentanenina, 23
allgemeine lineare Gruppe, 29	
Alternator, 31	geometrische Vielfachheit, 30
Aussagenlogik, 7	Gerade, 32
äußere Algebra, 31	Gleichungssystem, 6
Automorphismus	Gleichverteilung, 43
auf einem Vektorraum, 29	Graßmann-Identität, 28
Axiome von Kolmogorow, 42	Gradient, 25
Timonic von Romogorow, 12	Grenzwert, 20
Bahn, 40	
	Gruppenaktion, 40
Bahnenraum, 40	Gruppenhomomorphismus, 40
Bahnformel, 40	770 0 1 2
Banachraum, 21	Häufungspunkt, 21
bedingte Wahrscheinlichkeit, 42	Hauptsatz der Analysis, 23
Bestimmungsgleichung, 6	holomorph, 35
Betrag	1 ,
einer komplexen Zahl, 7	Identität
·	Cauchy-Binet-Identität, 28
bijektiv, 12	
Bild, 13	Graßmann-Identität, 28
Binomialkoeffizient, 38	Jacobi-Identität, 28
Tabelle, 45	Lagrange-Identität, 28
binomische Formeln, 6	injektiv, 12
binomischer Lehrsatz, 6	Interpretation, 15
boolesche Algebra, 7	inverse Matrix, 29
boolesene riigebru, r	Isomorphismus
Cauchy Hauntwort 24	
Cauchy Hauptwert, 24	zwischen Gruppen, 40
Cauchy-Binet-Identität, 28	Iteration, 12
Cauchy-Folge, 21	
Cauchy-Produkt, 21	Jacobi-Identität, 28
charakteristisches Polynom, 30	Jacobi-Matrix, 25
Christoffel-Symbole, 34	
Cosinus, 18	kanonischer Isomorphismus
	Alternator, 31
Determinante, 29	musikalische Isomorphismen, 28
Differentialquotient, 22	komplementäres Ereignis, 42
Differentialrechnung, 22	komplexe Zahl, 7
differenzierbar, 22	Komposition, 12
direktes Produkt, 40	Kompositionsoperator, 37
Disjunktion, 8	Konjugation
dynamisches System, 37	einer komplexen Zahl, 7
,	Konjunktion, 8
Ebene, 32	Kontraposition, 9
Eigenraum, 30	Kontravalenz, 8
e ·	
Eigenwert, 30	konvergente Folge, 20
Einheitsvektor, 28	Konvergenzkriterium, 21
Einschränkung, 12	Kosekans, 18
Einsetzungshomomorphimus, 41	Kosinus, 18
Endomorphismus	Kotangens, 18
auf einem Vektorraum, 29	Kotangentialbündel, 34
Ereignisraum, 42	Kurve, 33
Ergebnismenge, 42	1101 (0, 00
	Lagranga Idantität 28
erweiterte Koeffizientenmatrix, 31	Lagrange-Identität, 28
Euler-Lagrange-Gleichung, 25	Laplace-Verteilung, 43
T 1 11	Lemma von Burnside, 40
Faktorielle, 38	lineares Gleichungssytem, 31
Fakultät, 38	
Faltung	Matrix, 29
von zwei Folgen, 40	quadratische, 29
Fixgruppe, 40	reguläre, 29
Fourier-Koeffizient, 26	singuläre, 29
,	

54 Index

symmetrische, 29	Treppenfunktion, 23
Matrizenring, 29	
Modell, 15	Umgebung, 20
Modellrelation, 15	Umkehrfunktion, 12
musikalische Isomorphismen, 28	unbedingt konvergent, 21
(" 1: 1 D : 1 (' 04	unmögliches Ereignis, 42
natürliche Projektion, 34	Urbild, 13
Nonterminalsymbol, 15	Variationsrechnung, 25
Norm, 27	Vektorbetrag, 28
Orbit	Vektorfeld
unter einem dynamischen System, 37	auf dem Koordinatenraum, 25
unter einer Gruppenaktion, 40	Vektorprodukt, 28
Orthogonal, 27	Verteilung
Orthogonalbasis, 27	diskrete Wahrscheinlichkeitsverteilung, 42
Orthogonalsystem, 27	vollständig, 21
Orthonormalbasis, 27	
Orthonormalsystem, 27	Wahrscheinlichkeitsmaß
	Axiome von Kolmogorow, 42
Parameterdarstellung	diskretes, 42
einer Ebene, 32	Wahrscheinlichkeitsraum
einer Geraden, 32	diskreter, 42
Partialsumme, 21	Weg, 33
partielle Ableitung, 25 Polarkoordinaten, 33	Widerspruch, 9 Winkelfunktion, 18
Polynom, 40	Whitehuliktion, 16
Primzahlen	Zustand, 37
Tabelle, 47	Zustandsraum, 37
principial value, 24	Zwischenwertsatz, 22
Produktionsregel, 15	
Punktrichtungsform, 32	
0 ,	
quadratische Matrix, 29	
Quotientenkriterium, 21	
11 F 14' 00	
reelle Funktion, 22	
Regelfunktion, 23	
reguläre Matrix, 29 Reihe, 21	
Ring, 40	
Matrizenring, 29	
Wattizelling, 27	
Sekans, 18	
sicheres Ereignis, 42	
singuläre Matrix, 29	
Sinus, 18	
Skalarfeld	
auf dem Koordinatenraum, 25	
Skalarprodukt, 27	
Fourier-Analysis, 26	
Spektrum, 30	
Stabilisator, 40	
Startsymbol, 15	
Stirling-Zahlen Tabelle, 46	
stochastisch unabhängig, 43	
Streichungsmatrix, 29	
surjektiv, 12	
symmetrische Bilinearform, 29	
symmetrische Matrix, 29	
Tangens, 18	
Tangentialbündel, 34	
Tautologie, 16	
Teleskopsumme, 21	
Terminalsymbol, 15	