Cal State Long Beach

- 1. Consider the veracity or falsehood of each of the following statements. For bonus, argue for those that you believe are true while providing a counterexample for those that you believe are false.
 - 1 There is an integral domain with 6 elements.

Let k be a positive integer. Let $\bar{z} \to \mathbb{Z}_k$ be the mod function. Thus, e.g., if k=7, then $\overline{25}=4$. This leads naturally to a homomorphism $\bar{z} \to \mathbb{Z}_k[x]$. Thus, e.g., if k=7, then $\overline{25x^2+12}=4x^2+5=-3x^2-2$. Consider the veracity or falsehood of each of the following statements. For those that are true give an argument, for those that are false, give a counterexample. Let $p(x) \in \mathbb{Z}[x]$ be monic.

- (2) If p(x) has a root in \mathbb{Z} , then $\overline{p}(x)$ has a root in \mathbb{Z}_k .
- (3) If $\overline{p}(x)$ has a root in \mathbb{Z}_k , then p(x) has a root in \mathbb{Z} .
- 4 If p(x) is irreducible, then so is $\overline{p}(x)$.
- (5) If $\overline{p}(x)$ is irreducible, then so is p(x).

Solution.

1 False.

Proof. Assume to the contrary that R is an integral domain with 6 elements. Since R is finite it follows that it is a field, a contradiction since 6 cannot be written as a positive power of any prime; thus R is not an integral domain.

For the remaining problems, let

$$p(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{Z}[x].$$

(2) True.

Proof. Suppose that $c \in \mathbb{Z}$ is a root of p(c). It follows immediately that \overline{c} is also a root of $\overline{p}(x)$ because

$$\overline{p}(\overline{c}) = \overline{a_0} + \overline{a_1} \cdot \overline{c} + \dots + \overline{a_n} \cdot \overline{c}^n$$

$$= \overline{a_0 + a_1 c + \dots + a_n c^n}$$

$$= \overline{p(c)} = \overline{0}.$$

(3) False.

Counterexample. Let $p(x) = x^2 + 1$. Then $\overline{p}(x)$ has a root, $\overline{1}$, in \mathbb{Z}_2 but p(x) has no root in \mathbb{Z} .

(4) False.

Counterexample. Let $p(x) = x^2 + 1$. Then p(x) is irreducible in $\mathbb{Z}[x]$ but $\overline{p}(x) = (x+1)^2$ is not irreducible in $\mathbb{Z}_2[x]$.

(5) False.

Proof. Let $p(x) = 49x^2 + 14x + 1$. Then $\overline{p}(x) = \overline{1}$ is irreducible in $\mathbb{Z}_7[x]$ but $p(x) = (7x + 1)^2$ is not irreducible in $\mathbb{Z}[x]$.

- 2. Consider the integral domain $R = \mathbb{Z}[\sqrt{3}]$. Let $A = \begin{pmatrix} 5 & 3 \\ 9 & 5 \end{pmatrix}$.
 - (1) Find a nontrivial unit, and show it has infinite order.
 - ② Compute $\frac{A}{\begin{pmatrix} 20 & 6 \\ 18 & 20 \end{pmatrix}}$ and its reciprocal $\frac{\begin{pmatrix} 20 & 6 \\ 18 & 20 \end{pmatrix}}{A}$. These elements may not be in the domain, but they are certainly in the field of quotients.
 - (3) Decide if A and $\begin{pmatrix} 19 & 11 \\ 33 & 19 \end{pmatrix}$ are associates.
 - (4) Is $\begin{pmatrix} 7789 & 4488 \\ 13464 & 7789 \end{pmatrix} \equiv \begin{pmatrix} 57 & 24 \\ 72 & 57 \end{pmatrix} \mod A$? Give reasons for your answer.

Solution.

- ① The matrix $B = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$ is a unit in $\mathbb{Z}[\sqrt{3}]$ because $B^{-1} = \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix} \in \mathbb{Z}[\sqrt{3}]$. Let n be a positive integer. Observe that the integer in the first row and first column of B^n will never be less than 2 because all the entries in B are positive integers. Thus $B^n \neq I$, so that $|B| = \infty$.
- (2) We have

$$\frac{A}{\begin{pmatrix} 20 & 6\\ 18 & 20 \end{pmatrix}} = \frac{1}{146} \begin{pmatrix} 23 & 15\\ 45 & 23 \end{pmatrix} \text{ and } \frac{\begin{pmatrix} 20 & 6\\ 18 & 20 \end{pmatrix}}{A} = \begin{pmatrix} -23 & 15\\ 45 & -23 \end{pmatrix}.$$

(3) A and $\begin{pmatrix} 19 & 11 \\ 33 & 19 \end{pmatrix}$ are associates if and only if there exists a unit $X = \begin{pmatrix} a & b \\ 3b & a \end{pmatrix} \in \mathbb{Z}[\sqrt{3}]$ such that

$$AX = \begin{pmatrix} 19 & 11 \\ 33 & 19 \end{pmatrix}.$$

Multiplying A and X and equating corresponding entries will yield the equations 3a + 5b = 11 and 5a + 9b = 19, and whose solution is a = 2 and b = 1. Since $\det(X) = a^2 - 3b^2 = 1$, it follows that X is a unit. Thus A and $\begin{pmatrix} 19 & 11 \\ 33 & 19 \end{pmatrix}$ are associates.

(4) A quick computation will show us that

$$\begin{pmatrix} 7789 & 4488 \\ 13464 & 7789 \end{pmatrix} \equiv \begin{pmatrix} 57 & 24 \\ 72 & 57 \end{pmatrix} \mod A$$

because

$$\begin{pmatrix} 7789 & 4488 \\ 13464 & 7789 \end{pmatrix} - \begin{pmatrix} 57 & 24 \\ 72 & 57 \end{pmatrix} = \begin{pmatrix} 7732 & 4464 \\ 13392 & 7732 \end{pmatrix} = A \begin{pmatrix} 758 & 438 \\ 1314 & 758 \end{pmatrix}$$

- 3. Consider the following element $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ of $GL(3, \mathbb{Z}_2)$.
 - (1) Compute all of its powers.
 - (2) How many elements would you have to add for this set of powers to be closed under addition?
 - (3) Find the characteristic polynomial of each of the powers.
 - (4) Find the lowest degree polynomial that all of the powers satisfy.
 - (5) Have you constructed a field?

Bonus. Show that every irreducible cubic over \mathbb{Z}_2 has a root among these powers.

Solution.

(1) a

4. On $\mathbb{Z}_2[x]$. Consider the ring of polynomials $\mathbb{Z}_2[x]$ with coefficients in \mathbb{Z}_2 ,

$$p(x) = a_0 + a_1 x + \dots + a_n x^n.$$

- 1 How many polynomials of degree n are there? **Hint.** Consider $n = 1, 2, 3, \ldots$
- (2) Consider the function $E: \mathbb{Z}_2[x] \to \mathbb{Z}_2$ that sends any polynomial p(x) to p(1). Decide if it is a (ring) homomorphism or not. Decide if it is one-to-one and onto. Argue your case.
- (3) Consider the function $S: \mathbb{Z}_2[x] \to \mathbb{Z}_2[x]$ that sends any polynomial p(x) to $p^2(x)$, it square. Decide if it is a (ring) homomorphism or not. Decide if it is one-to-one and onto. Argue your case.
- (4) Count the number of irreducible quadratics in $\mathbb{Z}_2[x]$.
- 5 Count the number of irreducible cubics in $\mathbb{Z}_2[x]$.
- (6) Count the number of irreducible quartics in $\mathbb{Z}_2[x]$.

Solution.

1 a