Práctica 3

Sistemas Numéricos

Luis Eduardo Galindo Amaya (1274895)

Asignatura	Organización de Computadoras (331)
Docente	Arturo Arreola Alvarez

Fecha 2022-09-05

Sistemas Numéricos

Luis Eduardo Galindo Amaya (1274895)

2022-09-05

Ejercicio 1

Realice las siguientes conversiones de sistema decimal a sistema binario. Muestre el procedimiento utilizado:

a) 200

	n	200	100	50	25	12	6	3	1
_	n/2	100	50	25	12	6	3	1	0
	n %2	0	0	0	1	0	0	1	1
		R	esulta	do: 1	.1001	000			

b) 680

n	680	340	170	85	42	21	10	5	2	1
n/2	340	170	85	42	21	10	5	2	1	0
n %2	0	0	0	1	0	1	0	1	0	1
		Res	sultado	o: 10	1010	1000				

c) 76.375

Parte entera

n	76	38	19	9	4	2	1
n/2	38	19	9	4	2	1	0
n %2	0	0	1	1	0	0	1

Parte decimal

Resultado: 1001100.011

d) 0.34375

Resultado: 0.01011

Ejercicio 2

Realice las siguientes conversiones de sistema decimal a sistema hexadecimal. Muestre el procedimiento utilizado:

a) 1536

Resultado: 600

b) 5000

n	5000	312	19	1
n/16	312	19	1	0
n %16	8	8	3	1
hex(n %16)	8	8	3	1
Resu	ultado:	1388		

c) 856

n	856	53	3
n/16	53	3	0
n %16	8	5	3
hex(n %16)	8	5	3
Resulta	ıdo: 35	58	

d) 128

n	128	8
n/16	8	0
n %16	0	8
hex(n %16)	0	8
Resultado	o: 80	

Ejercicio 3

Realice las siguientes conversiones de sistema hexadecimal a sistema decimal. Muestre el procedimiento utilizado:

a) 0xB4

$$11 * 16 + 4 = 180$$

b) 0x123

$$1 * 16^2 + 2 * 16 + 3 = 291$$

c) 0xA5A5

$$10 * 16^3 + 5 * 16^2 + 10 * 16 + 5 = 42405$$

d) F001

$$15 * 16^3 + 0 + 0 + 1 = 61441$$

Ejercicio 4

Realice las siguientes conversiones de sistema binario a sistema decimal. Muestre el procedimiento utilizado:

a) 10011010

$$128 + 6 + 8 + 2 = 154$$

b) 00110111

$$32 + 16 + 4 + 2 + 1 = 55$$

c) 11100001

$$128 + 64 + 32 + 1 = 225$$

d) 10111100

$$128 + 32 + 16 + 8 + 4 = 188$$

Ejercicio 5

Realice las siguientes conversiones de sistema hexadecimal a sistema binario. Muestre el procedimiento utilizado:

a) BA

Resultado: 10111010

b) D5

Resultado: 11010101

c) 9E

Resultado: 10011110

d) 32D8

Resultado: 11001011011000

Ejercicio 6

Realice las siguientes conversiones de sistema binario a sistema hexadecimal. Muestre el procedimiento utilizado:

a) 10011010

b) 00110111

c) 01011000

d) 11100001

Ejercicio 7

Represente los siguientes números en su formato signo-magnitud (8 bits):

a) +58

n	58	29	14	7	3	1
n/2	29	14	7	3	1	0
n %2	0	1	0	1	1	1

Resultado: 0011 1010

b) +37

Resultado: 00100101

c) -101

								_
n	101	50	25	12	6	3	1	
n/2	50	25	12	6	3	1	0	
n %2	1	0	1	0	0	1	1	

Resultado: 11100101

d) -68

signo magnitud 1 1000100

Resultado: 11000100

Ejercicio 8

Represente los siguientes números en su formato signo-magnitud (8 bits):

a) + 128

n	128	64	32	16	8	4	2	1
n/2	64	32	16	8	4	2	1	0
n %2	0	0	0	0	0	0	0	1

	MSB	Numero
bin	1	000'0000
cmp_1	0	111'1111
cmp_2	1	000'0000

Resultado: 1000'0000

Es posible aplicar el complemento dos al numero, sin embrago la representacion de 128 requiere del bit mas significativo por lo que no es posible registrar el valor junto con su signo.

b) +24

n	24	12	6	3	1
n/2	12	6	3	1	0
n %2	0	0	0	1	1

stp	MSB	Numero
bin	0	001'1000
cmp_1	1	110'0111
cmp_2	1	110'1000

Resultado: 1110'1000

c) -53

n	53	26	13	6	3	1
n/2	26	13	6	3	1	0
n %2	1	0	1	0	1	1

stp	MSB	Numero
bin	0	011'0101
cmp_1	1	100'1010
cmp_2	1	100'1011

Resultado: 1100'1011

d) -24

n	24	12	6	3	1	
n/2	12	6	3	1	0	
n %2	0	0	0	1	1	

stp	MSB	Numero
bin	0	001'1000
cmp_1	1	110'0111
cmp_2	1	110'1000

Resultado: 1110'1000

Conclusiones y comentarios

Cada sistema numérico es util en diferentes contextos, por ejemplo la conversion de deciminal a hexadecimal o binario es muy tardada de hacer y requiere de muchas diviciones, por otro lado hexadecimal y binario con muy faciles de convetir, si conoce como representar el numero en binario solo hace esa conversion y las añade una tras de otra.