Deep Learning

Summer Term 2024

http://ml3.leuphana.de/lectures/summer24/DL Machine Learning Group, Leuphana University of Lüneburg

Soham Majumder (soham.majumder@leuphana.de)

Exercise 6

Due on: Thursday, 13.06.2024

Task 15 Kullback–Leibler divergence

The Kullback-Leibler divergence (or short KL divergence) is a measure of distance between two probability distributions. Let p(x) and q(x) be two probability distributions on the same probability space \mathcal{X} . Then, the Kullback-Leibler divergence is given by

$$D_{\mathrm{KL}}(q||p) = \int_{\mathcal{X}} q(x) \log \left(\frac{q(x)}{p(x)}\right) \mathrm{d}x.$$

- (i) Using the inequality $\log(t) \le t 1$ for t > 0, show that the KL divergence is non-negative. Hint: Start with $-D_{\text{KL}}(q||p)$.
- (ii) In mathematics, a metric or distance function measures the distance between two objects. The definition is as follows. Let \mathcal{X} be a set. A function $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a metric on \mathcal{X} if it satisfies for any three objects x, y, and z of \mathcal{X} the following three properties:
 - (a) $d(x,y) \ge 0$ and $d(x,y) = 0 \iff x = y$
 - (b) d(x, y) = d(y, x)
 - (c) $d(x,y) \le d(x,z) + d(z,y)$

Is the Kullback–Leibler divergence a metric?

(iii) We often need the KL divergence between two Gaussians. Let \mathcal{N}_i be a Gaussian with mean $\mu_i \in \mathbb{R}^d$ and covariance matrix $\Sigma_i \in \mathbb{R}^{d \times d}$. Then, the KL divergence is given by

$$D_{\mathrm{KL}}\left(\mathcal{N}_{0} \| \mathcal{N}_{1}\right) = \frac{1}{2} \left(\operatorname{tr}\left(\Sigma_{1}^{-1} \Sigma_{0}\right) + \left(\mu_{1} - \mu_{0}\right)^{\top} \Sigma_{1}^{-1} \left(\mu_{1} - \mu_{0}\right) - d + \ln\left(\frac{\det \Sigma_{1}}{\det \Sigma_{0}}\right) \right).$$

Assume that \mathcal{N}_0 has an arbitrary mean $\mu_0 \in \mathbb{R}^d$ and a diagonal covariance matrix $\Sigma_0 = \operatorname{diag}(\sigma_1^2, \ldots, \sigma_d^2)$ and that \mathcal{N}_1 is a standard Gaussian, *i.e.*, \mathcal{N}_1 has a mean of zero and the covariance matrix is the identity.

Show that the KL divergence between \mathcal{N}_0 and \mathcal{N}_1 is given by

$$D_{\mathrm{KL}}(\mathcal{N}_{0}||\mathcal{N}_{1}) = \frac{1}{2} \left(\sum_{j=1}^{d} \sigma_{j}^{2} + \mu_{j}^{2} - 1 - \ln \sigma_{j}^{2} \right).$$

Task 16 Autoencoder

- (i) Define encoder and decoder networks for the MNIST data set. Use the MSE loss and think about proper activation functions for the last layers of both networks.
 - *Hint:* A ReLU activation in the last layer of the decoder is a bad choice if the input data is within $[-1,1]^d$.
- (ii) Experiment with some latent dimensionalities, but make sure to also try a two-dimensional latent space.
- (iii) Train the autoencoder and show the two-dimensional latent space. Color the data points according to their label. You can use matplotlib.pyplot.scatter for that.
- (iv) Pick two points and linearly interpolate them in latent space. Show the decoded interpolation path. Use at least five intermediate points.