Association Rule Mining (Market Basket Analysis)

Data Mining

Prof. Sujee Lee

Department of Systems Management Engineering

Sungkyunkwan University

Association Rule Mining

Association Rule Mining

- Association Rule Mining is a data mining technique used to find patterns and relationships in large datasets.
- Often used in market basket analysis
- Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction
 - Market-Basket (POS) transactions

TID	Items	
1	Bread, Milk	
2	Bread, Diaper, Beer, Eggs	
3	Milk, Diaper, Beer, Coke	
4	Bread, Milk, Diaper, Beer	
5	Bread, Milk, Diaper, Coke	

Examples of Association Rules

$${ ext{Diaper}} \rightarrow { ext{Beer}}$$

 ${ ext{Milk, Bread}} \rightarrow { ext{Eggs, Coke}}$
 ${ ext{Beer, Bread}} \rightarrow { ext{Milk}}$

Key Concepts

Itemset

- A collection of one or more items
 - e.g. {Milk, Bread, Diaper}
- k-itemset: An itemset that contains k items

Support Count (sc)

- Number of occurrence of an itemset
- e.g. sc({Milk, Bread, Diaper})=2

Support (supp)

- Fraction of transactions that contain an itemset
- e.g. supp({Milk, Bread, Diaper})=2/5

Frequent Itemset

An itemset whose support is greater than or equal to a minsup threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Key Concepts

- Association Rule
 - If X, then Y. (X → Y)
 - X : Antecedent
 - Y: Consequent
 - Many rules are possible
 - For the itemset {Bread, Milk}:
 - Bread → Milk
 - Milk → Bread
 - For the itemset {Bread, Milk, Diaper}:
 - Bread, Milk → Diaper
 - Bread, Diaper → Milk
 - ..

TID	Items		
1	Bread, Milk		
2	Bread, Diaper, Beer, Eggs		
3	Milk, Diaper, Beer, Coke		
4	Bread, Milk, Diaper, Beer		
5	Bread, Milk, Diaper, Coke		

Rule Evaluation Metrics

Support (supp)

Fraction of transactions that contain both X and Y

$$supp(X \to Y) = \frac{sc(\{X,Y\})}{N}, N = number of total transactions$$

- Confidence (conf)
 - Measures how often items in Y appear in transactions that contain X.

$$\operatorname{conf}(X \to Y) = P(Y \mid X) = \frac{\operatorname{sc}(X,Y)/N}{\operatorname{sc}(X)/N} = \frac{\operatorname{sc}(X,Y)}{\operatorname{sc}(X)}$$

- Lift (lift) {=1, independent; >1, positive relationship; <1, negative relationship}</p>
 - Measure of how much more likely items X and Y are to occur together than expected by chance.
 - Ratio of observed support to that expected if X and Y were independent.

$$lift(X \to Y) = \frac{conf(X \to Y)}{P(Y)} = \frac{supp(X, Y)}{supp(X) \times supp(Y)}$$

Rule Evaluation Metrics

Example

Rule: {Milk, Diaper} → {Beer}

supp({Milk, Diaper}
$$\rightarrow$$
 {Beer})
$$= \frac{\text{sc}(\{\text{Milk}, \text{Diaper}, \text{Beer}\})}{5} = \frac{2}{5} = 0.4$$

TID	Items	
1	Bread, Milk	
2	Bread, Diaper, Beer, Eggs	
3	Milk, Diaper, Beer, Coke	
4	Bread, Milk, Diaper, Beer	
5	Bread, Milk, Diaper, Coke	

conf({Milk, Diaper}
$$\rightarrow$$
 {Beer})
$$= \frac{\text{sc}(\{\text{Milk, Diaper, Beer}\})}{\text{sc}(\{\text{Milk, Diaper}\})} = \frac{2}{3} = 0.67$$

lift({Milk, Diaper}
$$\rightarrow$$
 {Beer})
= $\frac{\text{supp}(\{\text{Milk, Diaper, Beer}\})}{\text{supp}(\{\text{Milk, Diaper}\}) \times \text{supp}(\{\text{Beer}\})} = \frac{2/5}{3/5 \times 3/5} = 1.11$

Rule Evaluation Metrics

Support

- A measure of significance (importance) of an itemset.
- "Larger is better" does not hold always: Rare item problem

Confidence

- Different values for the rules X → Y and Y → X
- Sensitive to the frequency of Y
- Caused by the way confidence is calculated, Y with a high support will automatically produce a high confidence value even if there exist no association between X and Y.

Lift

- Measures how many times more often X and Y occur together.
- Useful rules have the lift values greater than 1.

Association Rule Mining Task

Association Rule Mining Task

- Given a set of transactions, the goal of association rule mining is to find all rules having
 - supp ≥ *minsup* threshold
 - conf ≥ *minconf* threshold

Brute-force approach

- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the minsup and minconf thresholds
- Computationally expensive!

Mining Association Rules

Two-step approach

1. Frequent Itemset Generation

• Generate all itemsets whose supp ≥ minsup

2. Rule Generation

- Generate high confidence rules (conf ≥ minconf) from each frequent itemset, where
 each rule is a binary partitioning of a frequent itemset
- Frequent Itemset Generation is computationally expensive.

Possible Candidate Itemsets

- Apriori principle
 - If an itemset is frequent, then all of its subsets must also be frequent. (Apriori property)

Apriori principle holds due to the following property of the support measure

$$\forall X, Y : \text{if } X \subset Y, \text{ then supp}(Y) \leq \text{supp}(X)$$

- supp of an itemset never exceeds the supp of its subsets.
- This is known as the anti-monotone property of support.

• Illustrating apriori algorithm

Item	Count	
Bread	4	
Coke	2	
Milk	4	
Beer	3	
Diaper	4	
Eggs	1	

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

TID	Items		
1	Bread, Milk, Diaper		
2	Bread, Beer, Eggs		
3	Milk, Diaper, Beer, Coke		
4	Bread, Milk, Diaper, Beer		
5	Bread, Milk, Diaper, Coke		

^{*} Revised example

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum support count = 3

Itemset	Count	
{Bread,Milk,Diaper}	3	

Frequent Itemset Generation

- Let k=1
- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent

• Illustrating apriori algorithm

Rule Generation

- 1. All the high-confidence rules, satisfying the greater-than-or-equal-to-minconf, that have only one item in the rule consequent are extracted. (1-item consequent rules)
- 2. These rules are then used to generate new candidate rules. (2-item consequent rules)
 - The new candidate rule is generated by merging the consequents of two rules.
- 3. Repeat the procedure until (g-1)-item consequent rules are generated, where g is the number of items in a frequent itemset.
- Example

a frequent itemset:
$$\{A,B,C\}$$

 $\{B,C\} \rightarrow \{A\}$ $\{A,C\} \rightarrow \{B\}$ $\{A,B\} \rightarrow \{C\}$
 $\{C\} \rightarrow \{A,B\}$ $\{B\} \rightarrow \{A,C\}$ $\{A\} \rightarrow \{B,C\}$

Rule Generation

- For the rules generated from the same frequent itemset Y, the following theorem holds.
- If a rule $X \to Y X$ does not satisfy the confidence threshold, then any rule $X' \to Y X'$, where X' is a subset of X, must not satisfy the confidence threshold as well.

$$conf(X \to Y - X) = \frac{supp(Y)}{supp(X)} = \frac{sc(Y)}{sc(X)}$$

$$conf(X' \to Y - X') = \frac{supp(Y)}{supp(X')} = \frac{sc(Y)}{sc(X')}$$

By anti-monotone property

$$X' \subset X \longrightarrow supp(X') \ge supp(X) \text{ or } sc(X') \ge sc(X)$$

 $\therefore conf(X \to Y - X) \ge conf(X' \to Y - X')$

• Illustrating apriori algorithm

Rule generation

Rule Generation

- From the previous example
 - Frequent itemsets -

item	SC	item	SC
Bread	4	Bread, Milk	3
Milk	4	Bread, Diaper	3
Beer	3	Milk, Diaper	3
Diaper	4	Beer, Diaper	3

item	SC
Bread, Milk, Diaper	3

- Example rules (minconf=1) -

Bread
$$\rightarrow$$
 Milk, conf(Bread \rightarrow Milk) = $\frac{\text{supp}(\text{Bread}, \text{Milk})}{\text{supp}(\text{Bread})} = \frac{3}{4}$ X

Milk \rightarrow Bread, conf(Milk \rightarrow Bread) = $\frac{\text{supp}(\text{Bread}, \text{Milk})}{\text{supp}(\text{Milk})} = \frac{3}{4}$ X

Beer \rightarrow Diaper, conf(Beer \rightarrow Diaper) = $\frac{\text{supp}(\text{Beer}, \text{Diaper})}{\text{supp}(\text{Beer})} = \frac{3}{3}$ O

Bread, Milk \rightarrow Diaper, conf(Bread, Milk \rightarrow Diaper) = $\frac{\text{supp}(\text{Bread}, \text{Milk}, \text{Diaper})}{\text{supp}(\text{Bread}, \text{Milk})} = \frac{3}{3}$ C