National Institute of Technology Hamirpur (H.P.)

Examination: B. Tech. End Semester Examination, December-2021

Branch: Electrical Engineering Semester: IIIrd
Course: Electromagnetic Field Theory Code: EE-212

Time: 02:00 Hours Maximum Marks: 50

Instruction: Attempt all the questions.

- Q.1. (a) A circle of radius 4 is centered at the origin of the xyz axes and rests in yz plane. If $A = 6y^2a_x + 4z a_y + 12y a_z$, find $\oint A \cdot dl$ where the contour is the circumference of the circle. Verify this by using Stokes's Theorem. [05]
 - (b) State and explain the Laplace's and Poison's equations in details and describe its applications. [05]

[Total = 10 Marks]

- **Q.2.** (a) Given that $H_1 = -3a_x + 10a_y + 5a_z$ A/m in region $y x 4 \le 0$, where $\mu_1 = 7\mu_0$, calculate
 - (i) M_1 and B_1

(ii)
$$M_2$$
 and B_2 in region $y - x - 4 \ge 0$, where $\mu_2 = 4\mu_0$ [05]

(b) A uniform plane wave propagating in a medium has

$$E = 4e^{-\alpha z}\sin(10^7 t - \beta z) a_y V/m$$

If medium is characterized by $\varepsilon_r = 1$, $\mu_r = 10$, & $\sigma = 5$ S/m, find $\alpha, \beta, \& H$. [05]

[Total = 10 Marks]

Q.3. (a) Given a uniform plane wave in air as

$$E_i = 20\cos(\omega t - \beta z) a_x + 10\sin(\omega t - \beta z) a_y V/m$$

- (i) Find H_i
- (ii) If the wave encounters a perfectly conducting plate normal to the z axis at z = 0, find the reflected wave E_r and H_r

(iii) What are the total
$$E$$
 and H fields for $z \le 0$? [05]

(b) In a nonmagnetic material,

$$E = 8\sin(2\pi \times 10^6 t - 0.6x) \, a_z \, V/m$$

Find:

- (i) ε_r , and the intrinsic impedance η
- (ii) The time-average power carried by the wave
- (iii) Total power crossing 200 cm^2 of plane 3x + y = 7

[05]

- **Q.4.** (a) A distortionless line has $Z_0 = 50\Omega$, $\alpha = 10 \frac{mNp}{m}$, u = 0.4c, where c is the speed of light in a vacuum. Find R, L, G, C, and λ at 200 MHz. [04]
 - (b) A load of $100 + j150 \Omega$ is connected to a 75 Ω lossless line. Calculate:
 - (i) Reflection coefficient Γ (ii) Standing wave ratio s (iii) The load admittance Y_L (iv) Z_{in} at 0.4 λ from the load (v) The location of V_{max} and V_{min} with respect to the load if the line is 0.6 λ long (vi) Z_{in} at the generator. [06]

[Total = 10 Marks]

Q.5. (a) In a rectangular waveguide for which a = 2.5 cm, b = 0.4 cm, $\sigma = 0$, $\mu = \mu_0$ and $\varepsilon = 5\varepsilon_0$,

$$H_x = 6\sin(\frac{\pi x}{a})\cos(\frac{2\pi y}{b})\sin(\pi \times 10^{12}t - \beta z)A/m$$

Find:

- (i) The mode of operation
- (ii) The cutoff frequency
- (iii) The phase constant β
- (iv) The propagation constant γ
- (v) The intrinsic wave impedance η

[05]

(b) An air-filled resonant cavity with dimensions a = 10 cm, b = 7 cm, and c = 15 cm is made of copper ($\sigma_c = 5.8 \times 10^7 S/m$). Find the five lowest-order modes. [05] [Total = 10 Marks]

~~ All The Best ~~