Fiches 1 à 7

Devoir Surveillé 1

1e EDS

7 Conditions d'évaluation

Calculatrice: autorisée. Durée: 100min

Compétences évaluées :

- □ Déterminer si une fonction est polynomiale de degré 2.
- ☐ Donner la forme canonique d'un trinôme.
- ☐ Étudier les variations d'un trinôme.
- ☐ Calculer un taux de variation.
- ☐ Calculer un nombre dérivé.
- □ Déterminer graphiquement un nombre dérivé.
- □ Déterminer l'équation réduite de la tangente.

Exercice 1 QCM (9 points)

Pour chacune des questions, indiquer **en justifiant** la (ou les) bonne(s) réponse(s). Pour les questions 1. à 4., on considère la fonction f définie sur $\mathbb R$ par $f(x)=5x^2+1$. On note $\mathcal C_f$ sa courbe représentative. Enfin, h désigne un réel non nul.

	a	6	C
1. Le taux de variation $\tau(h)$ de f entre 1 et 1+ h est égal à :	$\frac{f(1+h)+f(1)}{h}$	f'(1)	$\frac{f(1+h)-f(1)}{h}$
2. Pour tout réel h non nul, $\tau(h)$ est égal à :	5 <i>h</i> + 10	h-10	$\frac{5h^2+10h-5}{h}$
3. f est dérivable en 1 et $f'(1)$ est égal à :	5	6	10
4. On admet que $f'(2) = 20$. La tangente à \mathcal{C}_f au point d'abscisse 2 :	passe par le point de coordonnées (2;20)	passe par le point de coordonnées (2;21)	admet pour coefficient directeur 20
5. On donne ci-dessous la représentation d'une fonction g ainsi que certaines de ses tangentes. y B g_1 1 1 g_2 g_3 g_4 g_5	g'(0) = -2	g'(0) = 1	g'(2) = 0

Exercice 2 Équations du second degré

(12 points)

On cherchera à résoudre deux équations du second degré.

- 1. On considère la fonction f définie, sur \mathbb{R} , par $f(x) = x^2 + 6x 7$.
 - (a) Justifier que la forme canonique de f est $f(x) = (x+3)^2 16$
 - (b) A l'aide de la forme canonique de f, résoudre l'équation $x^2+6x-7=0$
- 2. En procédant de façon similaire, résoudre l'équation $3x^2 12x + 17 = 8$. (Indication : On commencera par donner une forme canonique de $3x^2 12x + 17$.)

Exercice 3 Angry Birds (19 points)

Dans un jeu sur smartphone, le joueur utilise un lance-pierre pour lancer des oiseaux sur des cochons verts. Chaque oiseau lancé suit une trajectoire parabolique et a le pouvoir d'accélérer en ligne droite (tangente à la parabole) dès que le joueur tape sur l'écran.

Ci-dessus, la trajectoire de l'oiseau est donnée par la fonction f définie par :

$$f(x) = -0.28x^2 + 2.56x$$

L'oiseau est situé au point O(0,0) et le cochon au point C(10,95,0).

Partie 1 Altitude maximale

On cherche, dans un premier temps à déterminer l'altitude maximale de l'oiseau.

- 1. Donner la forme canonique de la fonction f.
- 2. En déduire le tableau de variation de f.
- 3. Sachant que 1 unité = 1 mètre, quelle sera l'altitude maximale de l'oiseau

Partie 2 Objectif: cochon

Le joueur choisi de toucher l'écran lorsque l'oiseau se situe au point T(6,5;4,81). À partir de ce point, l'oiseau suivra donc la tangente à la courbe au point C. On va chercher à déterminer si l'oiseau arrivera à toucher le cochon ou non.

- 1. Déterminer f(6,5).
- 2. Justifier que le taux de variation de f en 6,5 est de :

$$T_{f.6.5}(h) = -0.28h - 1.08$$

- 3. En déduire le nombre dérivé de f pour x = 6, 5. (Autrement dit, déterminer f'(6, 5).)
- 4. Justifier que l'équation réduite de la tangente T_T est :

$$T_T: y = -1,08x + 11,83$$

5. En déduire que l'oiseau arrivera bien à toucher le cochon.