

10/576618

Docket No.: KUK-06101

AP20 REC'D BY PTO 21 APR 2006

C E R T I F I C A T I O N

I, the below named translator, hereby declare that: my name and post office address are as stated below; that I am knowledgeable in the English and German languages, and that I believe that the attached text is a true and complete translation of PCT/EP2004/011788, filed with the European Patent Office on October 19, 2004.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Hollywood, Florida

Rebekka Pierre

April 21, 2006

Lerner Greenberg Stemer LLP
P.O. Box 2480
Hollywood, FL 33022-2480
Tel.: (954) 925-1100
Fax.: (954) 925-1101

AP20060421/021 APR 2006

1 **Process and Bioreactor for the Cultivation and Stimulation
2 of Three-dimensional, Vitaly and Mechanically Resistant
3 Cell-Transplants**

4

5 The invention relates to a process and an arrangement for
6 the cultivation of three-dimensional, vital and
7 mechanically-resistant cell cultures, preferably cartilage-
8 cell constructs which can hereby be cultivated and
9 stimulated in a locked mini-bioreactor simultaneously,
10 consecutively or within a time-controlled process according
11 to GMP guidelines. These transplants which are cultivated in
12 this manner are then available as replacement tissue
13 material for the therapy of connective and supporting tissue
14 defects, direct joint traumas, rheumatism and degenerative
15 joint disease, for example and can with an arthrosis of the
16 knee joint present an alternative to the conventional
17 (operative) therapy approaches, such as micro fracturing or
18 drill perforation, for example.

19

20 With Tissue Engineering which above all concerns itself with
21 the in-vitro reproduction of endogenic, so-called autologous
22 cell material, one attempts to cultivate functional
23 replacement cell and tissue structures which could be
24 inserted into the defective tissue during a transplantation
25 phase.

26

27 To this end, cell cultures (e.g. joint cartilage cells) are
28 routinely reproduced in the laboratory. The actual
29 reproduction of these cells (e.g. chondrocytes) takes place
30 in a monolayer culture on the bottom of a coated cell
31 culture flask or dish in accordance with standard protocols
32 which also include the addition of tissue-related growth
33 factors, mediators and inductors.

34

35 The objective of these additive factors is for example, the
36 stimulation of the special ability which cartilage cells

1 have to synthesise a sufficient number of extracellular
2 matrix components (ECM), in order to achieve a mass ratio of
3 1% chondrocytes to 99% extracellular matrix components
4 during the in-vitro reproduction, this being the ratio which
5 exists in functional joint cartilage (Stockwell RA: The cell
6 density of human articular and costal cartilage. J Anat.
7 1967;101(4):753-763; Hamerman D, Schubert M: Diarthrodial
8 joints, an essay. Amer J Med. 1962;33:555-590).

9 As this does not appear to be possible by simply adding
10 medium supplements, an attempt is made to affect or
11 stimulate these cartilage cells by applying various ways and
12 means in order to render it possible to cultivate suitable
13 replacement autologous (hyaline) cartilage with a high
14 degree of differentiation in the laboratory.

15

16 The described reproduction of cell cultures and the
17 cultivation of replacement tissue structures has numerous
18 disadvantages.

19

20 This passive cultivation of cartilage cell cultures in a
21 two-dimensional surface culture on a simple culture dish
22 which is coated with a culture medium does not produce an
23 active stimulation of the cartilage cells which are capable
24 of differentiation.

25

26 From Minuth, W. W., Kloth S., Aigner J., Steiner P.:
27 MINUSHEET-Perfusionskultur: Stimulierung eines
28 gewebetypischen Milieus. Bioscope 1995; 4:20-25 a concept is
29 known which attempts to avoid this disadvantage in that one
30 places the cell material taken from the patient in an
31 artificial carrier structure which has biophysical
32 properties which are similar to those of the cartilage
33 tissue and which permits a network-type connection between
34 the multilayer arranged cells and which then carries out a
35 perfusion cultivation in a suitable bioreactor. Numerous
36 experiments show an increased cell differentiation

1 capability as a result of an increase in synthesized ECM
2 which results from this three-dimensional cultivation of
3 chondrocytes in the most differentiated biocompatible and
4 bio absorbable matrixes, e.g. the hydrogels, alginates,
5 agaroses (Benya and Shaffer: Dedifferentiated chondrocytes
6 reexpress the differentiated collagen phenotype when
7 cultured in agarose gels. Cell. 1982;30:215-224.) of various
8 concentrations.

9

10 This spatial dimension which is thereby created therefore
11 simulates the original ratios of the chondrocytes in living
12 tissue such as in knee and hip joints, for example and
13 therefore represents an advantageous adaptation of in-vivo
14 situations.

15

16 With the adherent surface cultivation of the cells, the
17 satisfactory supply of medium supplements is relatively
18 simple as these cultures are situated immediately on or
19 under the cells respectively, thereby permitting an
20 unimpaired material exchange via diffusion.

21

22 Contrary to this, when using three-dimensional matrixes with
23 imbedded cells in a static cultivation schema, it comes to
24 the formation of concentration inclines or gradients which
25 can limit the transportation of the material in medial
26 construct regions, thereby having a negative effect on the
27 optimal culture offer for the cell layers.

28

29 This impairment during the cultivation of cell material in
30 spatial carrier matrix is counteracted by the induction of
31 medium perfusion or transfusion through the construct.

32

33 This active process through this carrier structure ensures a
34 homogenous nutrient supply in the cells and results in a
35 continuous metabolite removal of the chondrocytes. In
36 addition, the dynamic cultivation schema guarantees a higher

1 gas entry and mechanically stimulates the cell layers
2 subject to the selected medium perfusion flow resulting in a
3 shearing force in μ Pa. (Raimondi, M. T., F. Boschetti, et
4 al.: Mechanobiology of engineered cartilage cultured under a
5 quantified fluid-dynamic environment. Biomechan Model
6 Mechanobiol. 2002;1:69 - 82)

7

8 An additional disadvantage with the reproduction of cells
9 and a transplant results from the fact that the "cell
10 culture flask" is not absolutely sterile. Even routine tasks
11 such as changing the media, seeding the cell and even the
12 harvesting of it result in a risk of the cell culture in it
13 being infected, as the corresponding culture vessels have to
14 be opened and the working in a laminar flow workbench does
15 not enable the 100% sterility of the working environment
16 within the meaning of the "Basic Rules of the World Health
17 Organisation for the Manufacturing of Pharmaceutical
18 Products and the Assurance of their Quality " (Good
19 Manufacturing Practice - WHO directive) to be guaranteed.

20

21 Furthermore, this passive system does not permit a maximum
22 gas exchange through the diffusion-permeable cover and
23 between the culture media and the cell layer on the bottom.
24 In order to avoid these disadvantages of the culture flask,
25 one has in recent years increasingly accelerated the
26 development of automated, self-contained bioreactor systems
27 for the generation of replacement tissue structures. They
28 can then (Freed und Vunjak-Novakovic: Microgravity tissue
29 engineering. In Vitro Cell Dev Biol Anim. 1997;33:381-385)
30 offer the advantage of sterile, controllable cultivation and
31 stimulation of three-dimensional transplants. By combining
32 the Tissue Engineering with the possibilities provided by
33 process technology and biotechnology, the steering and
34 control of selected cultivation parameters such as the
35 gassing with CO₂ or O₂ respectively, temperature control, the
36 exchanging of culture media, the taking of samples etc. in

1 the bioreactor system are rendered possible. (Obradovic,
2 Carrier, Vunjak-Novakovic and Freed: Gas exchange is
3 essential for bioreactor cultivation of tissue engineered
4 cartilage. Biotechnol Bioeng. 1999;63:197-205).

5

6 When designing bioreactors, a well thought-out system must
7 always be created, in which it is possible to regulate the
8 processes by artificial means. When it comes to cultivating a
9 particular tissue, the bioreactor system must be able to
10 reproduce the physiological conditions and processes in-vivo
11 as accurately as possible. All of the bioreactor systems work
12 on the cultivated material with at least one kind of
13 mechanical stimulation.

14

15 The lining of the positive features of a controlled
16 bioreactor cultivation of autologous replacement tissue
17 materials in a biogenous matrix under perfusion stimulation
18 with a culture medium therefore represents the logical
19 consequence of guaranteeing automated sterile or GMP-
20 suitable transplant cultivation for the cultivation vital
21 cartilage cells for example, with an increased ECM-synthesis
22 performance.

23

24 A perfusion reactor is known from DE 4306661A1 and from
25 Sittinger M, Bujia J, Minuth WW, Hammer C, Burmester GR:
26 Engineering of cartilage tissue using bioresorbable polymer
27 carriers in perfusion culture. Biomaterials. 1994;15(6):451-
28 456, by which the cells are embedded in a polymer layer and
29 is additionally encased in an agarose capsule. An artificial
30 culture media flows through the cylindrical glass reactor
31 with a flow rate of 0.016 ml/min. The reactor itself is
32 situated in a corresponding tissue incubator with
33 standardised conditions. Sterile filters on the culture
34 medium depot enable a gas exchange to take place with the
35 outside environment.

36

1 Continuative experiments carried out with this type of
2 reactor by Bujia J, Rotter N, Minuth W, Burmester G, Hammer
3 C, Sittinger M: Cultivation of human cartilage tissue in a
4 3-dimensional perfusion culture chamber: characterization of
5 collagen synthesis. Laryngorhinootologie. 1995;74(9): 559-
6 563 und Kreklau B, Sittinger M, Mensing MB, Voigt C, Berger
7 G, Burmester GR, Rahmazadeh R, Gross U: Tissue engineering
8 of biphasic joint cartilage transplants. Biomaterials.

9

10 1999;20(18):1743-1749 used co-polymer tissues of
11 vicryldiaxonon layers and polydioxanon layers, which have
12 been soaked in Poly-L-Lysine or collagen fibres of type II.
13 Human chondrocytes are imbedded in these layers and
14 cultivated under perfusion for a period of two weeks. Under
15 use of a two-phase model of a co-polymer, one polyglycolic
16 acid and a poly-L-lactic acids (Ethicon), which was attached
17 to a calcium-carbonate product, the period was extended to
18 70 days.

19

20 An additional system which is very similar to the above
21 perfusion bioreactor was constructed by Mizuno S, Allemann F,
22 Glowacki J: Effects of medium perfusion on matrix production
23 by bovine chondrocytes in three-dimensional collagen
24 sponges. J Biomed Mater Res. 2001;56(3):368-375. Contrary to
25 the reactor which has already been described, this has a
26 closed area for the artificial culture media. The main part
27 of the cultivated material is situated in a cylindrical
28 glass column which is 1 cm wide and 10 cm long. The column is
29 filled with numerous cell/polymer frameworks, each having a
30 size of 7 x 15 mm, these not being additionally encapsulated.
31 The artificial culture medium is led from a depot through the
32 column and the complete system at a speed of 300 µl/min. This
33 system was used to examine bovine chondrocyte frames in
34 collagen sponges with regard to their reaction to perfusion
35 during a cultivation period of 15 days.

36

1 A bioreactor device is also known from the US-patent
2 5,928,945 in which the adherent cartilage cells are
3 subjected to defined flows or shearing force in a growth
4 chamber which resulted in the detection of an increased
5 collagen type II synthesis.

6

7 Parallel to the development of perfusion bioreactors,
8 research groups concerned themselves with the design of
9 bioreactors which exercise diverse mechanical load processes
10 in explants, cell samples or cell/polymer frames. When
11 constructing bioreactors for the stimulation of cartilage
12 cells, their design orients itself to the implementation of
13 mechanical plungers, etc, as these apply uniaxial pressure
14 to cartilage transplants in order to imitate the most
15 important form of load applied to human cartilage tissue.

16 Many of these pressure systems have great design
17 similarities.

18

19 The pressure chamber of a system developed by Steinmeyer J,
20 Torzilli PA, Burton-Wurster N, Lust G: A new pressure
21 chamber to study the biosynthetic response of articular
22 cartilage to mechanical loading. Res Exp Med (Berl).
23 1993, 193(3):137-142 comprising a titanium housing which is
24 coated by a polyethylene layer on the inside. The experiment
25 sample with a maximum diameter of 10 mm can be placed on the
26 floor of the chamber and covered with around 7 ml of an
27 artificial culture media. As the model does not have an
28 artificial culture medium perfusion system, only pressure
29 generations in phases with short cultivation times are
30 possible. The load system which exercises the corresponding
31 pressure on the experiment sample comprises a porous pressure
32 crucible which leads through the chamber lock and is either
33 moved by means of simple weights or an air cylinder with
34 pressure cylinder which is mounted above the chamber.

35

36 The system published by Lee DA, Bader DL: Compressive

1 strains at physiological frequencies influence the
2 metabolism of chondrocytes seeded in agarose. J Orthop Res.
3 1997;15(2):181-188 which is set in motion by a drive is
4 capable of being able to exercise pressure on 24 test
5 samples simultaneously. The drive is mounted on a frame
6 which leads around the incubator and transfers the force
7 down to the loading plate inside the sterile box. The steel
8 loading plate has 24 steel bolts with a Plexiglas
9 indentation with a diameter of 11 mm. The drive provides
10 various loads which depend on the degree of deformation.
11 This system is used for the cultivation of bovine
12 chondrocyte/agarose frames for a period of two days. Static
13 and additional cyclic loads (0.3 - 3 Hz) with a maximum
14 tension amplitude of 15 % are generated.

15

16 The disadvantage of numerous pressure stimulation reactors
17 is that the cell culture constructs cannot be perfused with
18 a culture media during a pressure load so that the effect of
19 a multiple cell stimulation cannot be tested. Furthermore,
20 this lack of culture supply is opposed by an optimal
21 metabolism exchange and the maximum synthesis of
22 extracellular matrix components in cartilage cells, for
23 example.

24

25 Pressure and perfusion systems such as those which are
26 described in the US-patent 6,060,306 and the DE-patent 198
27 08 055 enable a simultaneous multiple stimulation with
28 parameters such as perfusion flow, the resulting induced
29 shearing forces and an uniaxial pressure load.

30

31 The disadvantage of reactors which enable a pressure
32 stimulation to take place is above all that they necessitate
33 the entering of the bioreactor space which preferentially
34 contains an autologous transplant by pressure mediators,
35 mainly plungers and pistons, etc. which are driven by
36 servomotors, or similar and that a defined pressure load is

1 then applied to the cell construct. The insertion of these
2 pressure applicators into the sterile system renders the
3 designing of self-contained pressure application reactors
4 extremely difficult so that these systems are of an
5 increased complexity. A usage of the (potentially non-
6 sterile) systems is therefore only given in basic research
7 as an application of these devices and process in the
8 medical sector contradicts parts of the directives in the
9 existing Medical Preparations Act.

10

11 All of the bioreactor apparatuses used for the cultivation
12 and stimulation of replacement autologous tissue structures
13 therefore serve the WHO Good Manufacturing Practice
14 Directive ("Basic Rules for the Manufacturing of
15 Pharmaceutical Products and the Securing of their Quality")
16 and the German Pharmaceuticals Act (Arzneimittelgesetz)
17 (AMG), the "Pharmaceutical Inspections Convention" and GMP-
18 Directive 91/356/EEC. The risk of an infection or the
19 impossibility of it being possible to fully guarantee the
20 sterility of the systems therefore constitutes no grounds
21 for the issuing of a manufacturing license pursuant to
22 Section 13 AMG.

23

24 The task of the invention is the creation of a process and a
25 bioreactor for the manufacturing of three-dimensional, vital
26 and mechanically-resistant cell cultures, by which they can
27 be cultivated and stimulated within a short time of each
28 other or simultaneously. The bioreactor should permit GMP-
29 conform transplant cultivation under guaranteed sterile
30 conditions.

31

32 The invention fulfils the task with the process described in
33 Claim 1 and the bioreactor described in Claim 13.
34 Advantageous forms of the process are described in Claims 2-
35 12; Claims 14-57 describe other forms of the bioreactor.

36

1 The invented process and the invented bioreactor combines
2 the cultivation and stimulation of GMP-conform manufactured,
3 three-dimensional vital and mechanically-resistant cell
4 cultures, preferably cartilage cell constructs, in a single
5 reactor. Hereby, the stimulation and cultivation can take
6 place simultaneously, consecutively or in accordance with a
7 time-controlled process. The transplants cultivated in this
8 manner are available as replacement tissue material for the
9 therapy of connective and supporting tissue defects, direct
10 joint traumas, rheumatism and degenerative joint disease,
11 for example.

12

13 The fundamental characteristic feature of the invented
14 process and the invented bioreactor is that a transplant is
15 in a self-contained reactor chamber which can be subjected
16 to in-vivo-adaptive stimulus in many regards. This includes
17 the perfusion of the spatial culture construct with a
18 conditioned culture media which evokes organotypical
19 shearing forces on the cell membranes and additionally
20 permit an increased metabolic exchange to take place. A
21 magnetic, piston-like pressure stamp which acts as a load
22 applicator to the cell culture is situated above the
23 transplant in this self-contained bioreactor. The stamp is
24 controlled by the bioreactor chamber in a contactless form,
25 the tissue transplant being subjected to directed uniaxial
26 pressure stimulation. The contactless controlling of the
27 mini-actuator is carried out by externally arranged control
28 magnets whose directed (electro-)magnetic filed brings about
29 a change of the stamp position within the bioreactor,
30 resulting in an organotypical dynamic or static pressure
31 stimulation, respectively.

32

33 The process and the bioreactor have the advantage which has
34 already been described that a stimulation of the cell
35 cultures can also take place during cultivation. The
36 cultivation or regeneration of connective and supporting

1 tissue structures and functional tissue systems (cartilage,
2 bones, etc.) are especially possible.

3

4 When used in a sterile process, the apparatus enables cell
5 transplants to be cultivated which are characterised in that
6 they are especially synchronously perfused and pressure-
7 loaded, this resulting in an increased production of matrix
8 components (e.g. cartilage cell cultures). Due to its degree
9 of automation, this device minimises the number of stages,
10 thereby reducing the risk of infecting the cell culture. The
11 automated cultivation and stimulation of the transplants
12 also guarantees defined and reproducible process cycles. Due
13 to the design characteristics of the invented bioreactor, a
14 self-contained bioreactor circulation is guaranteed and this
15 therefore enables a stringent autologous cultivation or
16 stimulation of replacement tissue structures under adherence
17 to the GMP-directives.

18

19 An additional field of use of the bioreactor is the
20 pharmaceutical active ingredient testing for the
21 characterization of proliferation and differentiation-
22 relevant ingredients or ingredient combinations on
23 transplants.

24

25 An explanation of the invented process and the invented
26 bioreactor now follows execution examples. The corresponding
27 illustrations show:

28

29 Fig. 1: Process for manufacturing transplants

30 Fig. 2: GMP-Bioreactor system schema

31 Fig. 3: Single-chamber bioreactor schema

32 Fig. 4: Double-chamber bioreactor schema

33 Fig. 5: Design and form of executions of the mini
34 actuator

35 Fig. 6: Schema showing the construct manufacture and
36 seeding of the construct in the bioreactor

1 Fig. 7: Schema showing the technical equipment for
2 construct perfusion and media blending in a
3 single-chamber reactor

4 Fig. 8: Schema showing the technical equipment for
5 construct perfusion and media blending in a
6 double-chamber reactor

7

8 Fig. 9: Schema showing the fixation of the transplant in
9 the bioreactor

10 Fig. 10: Magnet systems for controlling the mini actuator

11 Fig. 11: Schema showing the stimulation in the double-
12 chamber reactor

13

14 Example 1

15 Process for manufacturing transplants

16

17 Figure 1 shows the use of the bioreactor for the synchronous
18 cultivation and stimulation of three-dimensional cell
19 transplants, taking the cartilage tissue transplantation as
20 an example.

21

22 To this end, the patient first of all (I) as healthy cell
23 material (e.g. articular cartilage) and blood taken from him
24 by minimal invasive means. The attained cells are separated
25 and counted under enzymatic digestion, they then being
26 either sown out in monolayer flasks (II) according to
27 standard tissue engineering methods, where they multiply in
28 a stringently analogous manner or they are immediately used
29 for the manufacturing of the construct (III). Hereby, the
30 cells are added top a three-dimensional transplant structure
31 of biocompatible or absorbable carrier materials (e.g.
32 hydrogels, agaroses, collagens, hydroxylapatites, polymer
33 complexes etc.). The suspended cells (e.g. chondrocytes) are
34 mixed with the biogenic support structure (e.g. agarose),
35 placed in a seeding piston and hardened into a cylindrical
36 transplant form, for example (e.g. cartilage-agarose-

1 matrix). This in-vivo adaptive, three-dimensional structure
2 especially results in a (re-)differentiation and resulting
3 synthesis of tissue-typical substances and matrix components
4 (e.g. collagens, proteoglycane) in connective and supporting
5 tissue cells (e.g. chondrocytes).

6

7 This seeding piston with the spatial cell transplant inside
8 it is inserted into the bioreactor (IV), the transplant then
9 being pressed out and positioned in the bioreactor. The GMP-
10 suitable cultivation and stimulation of this cell construct
11 takes place in the newly developed bioreactor apparatus (V)
12 GMP-conform simultaneously, consecutively or time-
13 controlled. During this phase, the cell transplant can be
14 caused to create an increased differentiation and expression
15 of organotypical markers (stimuli such as shearing force,
16 perfusion, deformation, mechanical load) by means of this
17 multiple in-vivo-similar stimulation.

18

19 A highly-vital, matrix-rich cell culture construct
20 regenerates in the bioreactor after a short amount of time.
21 This autologous transplant is removed (VI), adapted to the
22 geometry of the tissue defect if necessary and subsequently
23 transplanted into the defective connective or supporting
24 tissue.

25

26 Example 2

27 Bioreactor system schema

28

29 Figure 2 illustrates a form of execution of the bioreactor
30 system (with the double-chamber bioreactor) for the
31 autologous cultivation and multiple stimulation of cell
32 transplants in a self-contained reactor structure with a
33 GMP-conform process method.

34

35 In this execution example, the complete equipment for
36 guaranteeing an optimal temperature, air humidity and

1 composition is situated in a temperature-controlled and gas-
2 regulated incubator. A separate design is also possible, in
3 that the bioreactor 1 and the medium are situated in the
4 incubator, the other technical components being situated
5 outside the incubator.

6

7 The bioreactor 1 itself and the components used therein are
8 biologically and chemically inert and can be treated by
9 autoclave. Furthermore, the bioreactor carcass and the
10 screw-on cover are of materials which are either non-
11 magnetic (e.g. synthetic materials) or weak-magnetic (e.g.
12 vanadium-4-steel).

13 The culture medium is fed to the bioreactor 1 after being
14 taken from the medium reservoir 2 and passing through the
15 hose system 4 with the 3-way valve 6 and the 4-way valve 7
16 by means of the circulation pump 5. This culture medium can
17 be enriched with autologous additive factors taken from the
18 supplement reservoir 3 (growth factors, mediators, etc.)
19 which were obtained from the patient's blood. The medium is
20 added to bioreactor 1 and therefore the transplant 11 in a
21 batch, fed-batch or continuous process.

22

23 When the circulation is closed, the medium then enters the
24 medium reservoir 2 via hose system 4, the reservoir being
25 equipped with measuring probes for controlling the
26 physicochemical parameters, e.g. pH, pCO₂ and pO₂. If the
27 medium is seen to be used, it can be drained off into an
28 external locked waste vessel via hose system 4. In both
29 cases there is the possibility of deviating a sterile medium
30 sample from the reactor circulation to a sample taking
31 section 8 via the valve device 7 for further analysis.

32

33 The transplant 11 which is to be cultivated and stimulated
34 is positioned in a medial position on the bottom of the
35 reactor. A second, smaller chamber can be situated
36 underneath the transplant 11. The flow space is supplied

1 with the media via the hose system 4 and can be filled with
2 a strongly porous but thin sinter material 16. This lower
3 chamber can be sealed off by a thin sheet of transparent
4 glass 17 and serve as a microscopy opening for inverse
5 microscopes.

6

7 In addition to the biosensors 9 which are inserted in the
8 bioreactor cover, the upper chamber of the bioreactor 1 also
9 includes the mini actuator 14. This mini actuator 14 which
10 is designed as a magnetic stamp serves as a contactless
11 pressure applicator and is controlled by the control magnets
12 or the coil 15.

13

14 Example 3

15 Single-chamber bioreactor schema

16

17 Figure 3 shows a possible form of execution of the
18 bioreactor 1 comprising a culture chamber which serves the
19 implementation of the contactless controllable mini actuator
20 14.

21

22 The bioreactor 1 which is designed as a single-chamber
23 bioreactor comprises a carcass and the bioreactor lock 21
24 which is additionally sealed by a pinch ring 20. Biosensors
25 9 are integrated in the cover construction which serves to
26 take on-line measurements of glucose and lactate
27 concentrations, among others. An exactly fitting integrated
28 mini actuator 14 is situated above the transplant 11 in the
29 reactor chamber, the transplant resting on a special reactor
30 floor with an inserted transparent glass plate 17.

31

32 For the supplying of the transplant 11 with the medium, a
33 minimum of one feed and one discharge penetrate the
34 bioreactor 1 via Luer connectors 19. A sample taking section
35 8 is integrated at least one of the discharges 19 via a 3-
36 way valve 6.

1
2 Example 4
3

Double-chamber reactor schema

4

5 Figure 4 shows an additional form of execution of a
6 bioreactor 1 comprising two chambers, whereby the upper
7 comprises the pressure stamp 14, the lower serving the
8 flowing against underneath the transplant 11. The function,
9 character and requirement of the components 1, 6, 8, 9, 14,
10 19-21 in this form of execution do not differ from those in
11 the bioreactor 1 described in example 3.

12

13 At least one feed and one discharge 19 are integrated in the
14 upper and lower reactor chambers in order to achieve a
15 valve-controlled flowing against in the individual chamber
16 and the transplant 11.

17

18 The dimension of the lower chamber is of a diameter which is
19 smaller than that of the transplant 11. This chamber
20 includes a flat exact-matching plate of a porous sinter
21 material 16 which enables an inverse microscopy to be
22 carried out through the flush glass plate 17 and the
23 membrane 18 to the transplant 11 without impairment. This
24 plate of a sintered material 16 in the lower reactor chamber
25 has an additional important function in this apparatus. When
26 the transplant 11 is subjected to mechanical load by the
27 pressure stamp 14, it prevents an undesirable pressing of
28 the gel-like cell construct 11 into the chamber space.
29 Depending on the user's support matrix and its viscosity,
30 the use of a fluid-permeable membrane 18 between the sinter
31 material 16 and the transplant 11 is intended in order to
32 avoid a blending of the carrier material with the sinter
33 material 16.

34

35 Example 5

36 Design and form of execution of the mini actuator 14

1
2 Figure 5 shows the design, geometry and different forms of
3 the mini actuator 14 which slides into the reactor chamber
4 it hereby having a perfect fit (shown here in a double-
5 chamber model as an example), it here asserting axial
6 pressure forces on the transplant 11 which is lying on the
7 floor of the reactor.

8
9 This magnetic pressure applicator 14 is controlled in its
10 vertical position in the bioreactor 1 contactless by means
11 of externally arranged control magnets 15 in accordance with
12 the invention (see Fig. 5a). An absolutely vertical
13 compression can be ensured on the one hand by medially
14 positioning the transplant 11 in the bioreactor 1. On the
15 other, an exact fit dimensioning of the pressure stamp
16 diameter D2 to the internal bioreactor D2 must also take
17 place. This enables the mini actuator 14 to be inserted into
18 the bioreactor 1 without the stamp jamming or inclining. In
19 all bioreactor models, this diameter D2 is to be dimensioned
20 larger than the external diameter D1 of the transplant 11.

21
22 Figure 5b shows the characteristic design of this pressure
23 unit 14. It has an extremely powerful permanent magnet 2,
24 preferably of a neodymium-iron-boron compound which, upon
25 the existence of the slightest magnetic and electromagnetic
26 fields moves in the direction of the corresponding field.
27 This permanent magnet 22 is of a varnished or galvanized
28 form and encapsulated in a biological inert synthetic
29 material - the enveloping body 23 -. This preferably
30 cylindrical enveloping body 23 with its exactly fitting
31 external diameter slides into the bioreactor cylinder with
32 low friction and exactly vertically. The underside of the
33 plastic enveloping body 23 can in addition to a level
34 surface, have other organotypical negative forms as a stamp
35 surface 24 impressed on it, so as to reproduce in-vivo
36 adaptive positive forms (including curves, arches, etc.).

1
2 The novel actuator geometry which exists here without any
3 flow channels 33 in the enveloping body 23, also provides a
4 pump function resulting from a cyclical magnetic field
5 generation. An upward movement of the mini activator 14
6 enables medium to be sucked into the reactor chamber as a
7 result of the pressure and valve ratios which exist in the
8 bioreactor 1. A downward movement or pressure compression
9 ion the transplant 11 results in this medium being pressed
10 out of the bioreactor 1.

11
12 Figure 5c shows an additional example of a form of execution
13 of the mini actuator 14 which also includes a strong
14 permanent magnet 22 and an enveloping body 23 with an
15 individual stamp surface 24. This model has so-called flow
16 channels 33 at the edge of its enveloping body 23 for flow
17 optimization. This enables a medium flow of the mini
18 actuator 14 to be carried out in the bioreactor chamber, so
19 that less positioning force is required to overcome the
20 media resistance. The enveloping body 23 must have at least
21 3 guide projections with an exactly matching external
22 diameter D2 in order to ensure a planar positioning of the
23 complete mini actuator 14 on the transplant 11.

24
25 Figure 5d shows a modified pressure stamp 14 which is based
26 on Figure 5b but which has an extension nosepiece 34',
27 designed to create a spatial distance between the permanent
28 magnet 22 and the cell culture construct 11. The cause of
29 this distancing of the permanent magnet 22 in the upper
30 cylinder head from the transplant 11 is the minimisation of
31 any field influences on the cell cultures 11.

32
33 Figure 5e shows a mini actuator 14 based on figure 5d which
34 has at least 3 flow channels 33 and 3 guide projections with
35 an outside diameter D2.

36

1 Example 6

2 Schema showing the construct manufacture and seeding of the
3 construct in the bioreactor 1

4

5 Figure 6 shows the process and the equipment for
6 manufacturing and seeding three-dimensional, preferably
7 cylindrical cell matrix constructs.

8

9 In figure 6a (cell matrix seeding) multiplied (see Fig. 1,
10 II) or freshly isolated (see Fig. 1, III) and prepared cells
11 12 are mixed with the biogen carrier structure 13, suspended
12 to homogeneity and injected into the seeding piston 25.
13 The exactly fitting seeding piston 25 has an internal
14 diameter D1 which corresponds to the future external
15 diameter of the transplant 11 and an external diameter D2
16 which corresponds to an internal diameter of the bioreactor
17 1.

18

19 Figure 6b (stamp insert) shows the stamp insert 26 in the
20 seeding piston 25. The exactly fitting planar stamp 26 with
21 the outside diameter D1 is inserted in the hollow piston
22 cylinder on the level sliding plate 27 during the hardening
23 out or polymerisation of the corresponding cell matrix in
24 the reactor piston 25.

25

26 The underside of this stamp 26 can be embossed with
27 organotypical structures analogous to the stamp surfaces 24
28 of the mini actuator 14.

29

30 Figure 6c (stamp application) shows the application of the
31 stamp 26 on the transplant 11 in the seeding piston 25. The
32 stamp 26 is placed on the cell frame with a slight assertion
33 of application pressure in order to counteract a meniscus
34 formation or curving of the upper side of the matrix of the
35 transplant 11, in order to obtain a cylindrical transplant
36 form, etc.

1
2 If an in-vivo adaptive surface is to be impressed on the
3 transplant 11, this stamp application 26 must take place
4 during the hardening out or polymerization phase
5 respectively.

6
7 In Figure 6d (removing the sliding plate), the applied stamp
8 26 is raised after the forming of the transplant 11 and the
9 sliding plate 27 which should be preferably hydrophobic and
10 is situated at the bottom of the seed piston is removed. In
11 order to prevent a gel-type cell construct 11 adhering to
12 the sliding plate 27 and the seeding piston, and inert foil
13 or inert polymer fleece for example are used to line the
14 surface.

15
16 Figure 6e (construct seeding in the bioreactor) shows the
17 seed of a cylindrical construct, taking the double-chamber
18 bioreactor as an example. Hereby, the exactly matching
19 seeding piston 25 is implemented in the bioreactor 1, the
20 cell construct then being positioned medially in the
21 prepared reactor by mean of the pressure stamp 26, the
22 seeding device then being removed from the bioreactor 1.
23 This prepared bioreactor 1 contains the porous sinter
24 material 16 and a diffusion-permeable membrane 18, if
25 required.

26
27 Example 7
28 Schema showing the technical equipment for construct
29 perfusion and media blending in a single-chamber bioreactor
30

31 Figure 7 shows the design and construction of the single-
32 chamber reactor carcass and its effect on the diffusion and
33 perfusion in transplant 11.

34
35 In the form of execution shown in Figure 7a, four feeds and
36 discharges with an integrated Luer connector 19 run into the

1 bioreactor 1. Both their locations and positions can differ
2 in order to optimize the flow, this therefore meaning that
3 they can also enter the bioreactor carcass tangentially. A
4 minimum of two feeds or discharges respectively enter the
5 bioreactor 1. A sample taking section 8 can be installed at
6 each discharging Luer connection 19 by means of a 3-way
7 valve 6, for example.

8

9 A static cultivation method in the bioreactor especially
10 results in a diffusion of the media in the upper and side
11 edge areas of the cylindrical tissue transplant 11, for
12 example and provides the cell culture with nutrients, among
13 others whilst simultaneously transporting metabolic end
14 products from the carrier matrix.

15

16 Figure 7b shows a continuous feed of the culture medium from
17 the medium reservoir 2 with the optional supplement
18 reservoir 3 (not shown) behind it. The culture medium enters
19 the bioreactor 1 through a minimum of one feed 19 after
20 passing through the hose system 4 by means of a circulation
21 pump 5 which is capable of apportioning.

22

23 The medium is discharged via a minimum of one discharge 19,
24 where it enters the hose system 4 which enables a separate
25 sample taking section 8 to be integrated at least one
26 position by means of a 3-way valve 6.

27

28 The used medium can remain in the circulation as shown here,
29 in that it enters the medium reservoir 2, from where it is
30 extracted for a repeated continuous perfusion of the
31 transplant 11. It can also be completely removed from the
32 circulation. The transplant 11 is then cultivated by means
33 of a batch or fed-batch process respectively.

34

35 A targeted continual feeding of the culture medium into the
36 reactor chamber can result in a clear approach and through

1 flowing of the transplant 11, when compared with the static
2 schema shown in Figure 7a. The induced perfusion results in
3 deeper construct regions being thoroughly rinsed with the
4 medium. This results in an optimization of the material
5 exchange and in turn, an increased cell differentiation.
6 This version of the construct approach flow exercises
7 shearing force stimulation on the embedded cells.

8

9 Example 8

10 Schema showing the technical equipment for construct
11 perfusion and media blending in a double-chamber reactor

12

13 Figure 8 shows a double-chamber bioreactor which permits an
14 optimized flow, diffusion and perfusion of the transplant,
15 thereby helping to improve the quality of the replacement
16 tissue.

17

18 A version with static cultivation and diffusion is shown in
19 Figure 8a. The feeds or discharges 19 respectively which run
20 into the bioreactor 1 number two as a minimum, whereby at
21 least one of them must run into the lower and the upper
22 reactor chamber. The positions, locations and densities of
23 the two feeds or discharges 19 shown here for each chamber
24 can differ in order to achieve a flow optimization.

25

26 The sample taking section 8 can be connected to any of the
27 discharge oriented Luer connections 19 in both of the
28 chambers by means of a 3-way valve 6, or similar.

29

30 In addition to a media diffusion of the upper and side
31 transplant areas, the chamber in this design which have been
32 set-up for the first time results in a diffusion of the
33 culture medium from the porous sinter material in the region
34 close to the floor of the carrier structure, the diffusion
35 being underneath the transplant 11 during the static
36 cultivation, this resulting in an improved metabolism

1 throughout the transplant 11.

2

3 Figure 8b shows a continuous feed of the culture medium from
4 the medium reservoir 2 with the optional supplement
5 reservoir 3 (not shown) behind it. The culture medium enters
6 the upper and lower chambers of the bioreactor 1 through a
7 minimum of one feed 19 after passing thorough the hose
8 system 4 by means of a circulation pump 5 which is capable
9 of apportioning.

10

11 The medium is discharged via a minimum of one discharge 19
12 per chamber, where it enters the hose system 4 which enables
13 a separate sample taking section 8 to be integrated at least
14 one position by means of a 3-way valve 6.

15

16 The used medium can remain in the circulation as shown here,
17 in that it enters the medium reservoir 2, from where it is
18 extracted for a repeated continuous perfusion of the
19 transplant 11. It can also be completely removed from the
20 circulation. The transplant 11 is then cultivated by means
21 of a batch or fed-batch process respectively.

22

23 The integration of a second chamber in the invention, shown
24 here as being underneath the transplant 11, especially shows
25 its positive feature in a targeted approach flowing of the
26 biological construct. If the media flow from media reservoir
27 2 is switched to the lower chamber by means of the 3-way
28 valve 6, an induced upwards-oriented perfusion of the
29 transplant 11 takes place whilst the lower discharge is
30 closed due to the medium only being able to leave the
31 reactor chamber via the upper discharge.

32

33 Analogous to this schema, a switching over of the 3-way
34 valve 6 results in a transplant through-flow from the upper
35 to the lower chamber through the construct 11. The
36 arrangement described here results not only in a complete

1 perfusion, but also in an additional cell stimulation via an
2 induced shearing force which is asserted on the cells and
3 can be adjusted via the volume flow of the circulation pump
4 5. A partial or complete opening of the 3-way valve 6 is
5 also possible in order to achieve a faster medium exchange
6 in the bioreactor 1.

7

8 Example 9

9 Schema showing the fixation of the transplant 11 in the
10 bioreactor 1

11

12 Figures 9 are schemas showing the fixation of the transplant
13 11 in bioreactor 1, irrespective of whether it is the
14 single-chamber or the double-chamber version.

15

16 Figure 9a shows the transplant which is to be stimulated 11
17 which is medially fixated above the transparent glass 17 in
18 the single-chamber bioreactor 1. With a minimum of 3 of
19 these fixation walls 28, a horizontal movement of the
20 transplant 11 on the reactor floor as a result of the
21 incoming medium flow should avoided in order to enable an
22 optimal perfusion and pressure stimulation. These
23 biocompatible fixation walls 28 which are inserted in the
24 reactor 1 must be of a height which is lower than the
25 pressure amplitude which is to be applied to the transplant
26 11.

27

28 Figure 9b shows the use of at least 3 of these fixation
29 walls 28 in a double-chamber bioreactor in order to achieve
30 a horizontal fixation of the transplant 11 in diverse flow
31 situations, thereby enabling an ideal vertical perfusion and
32 a mechanical pressure application to take place.

33

34 Example 10

35 Magnet systems for controlling the mini actuator 14

36

1 Figures 10 show characteristic devices and apparatus
2 arrangement (shown in a single-chamber bioreactor) for a
3 contactless controllable stimulation process for the mini
4 actuator 14 on the transplant 11.

5

6 Figure 10 (magnetic control effect - magnet attraction)
7 shows the characteristic arrangement and principle of the
8 contactless controlling of the magnetic mini actuator 14 in
9 the bioreactor 1 for the pressure deformation of the
10 transplant 11. The alignment of the permanent magnets in the
11 mini actuator 14 is carried out in accordance with the
12 predominant magnetic field direction which is generated by
13 externally situated control magnets 15. These control
14 magnets 15 which is at least a permanent magnet or at least
15 a coil generates a defined (electro-)magnetic field which
16 protrudes into the complete bioreactor chamber 1 with its
17 field lines and triggers a field direction-related movement
18 of the mini actuator 14 pressure stamp. In the example shown
19 in Figure 10a, the control magnets 15 show the principle of
20 the magnet attraction, taking an arrangement from above as
21 an example.

22

23 In the example execution shown in Figure 10b (magnetic
24 control effect - pushing off of the magnet) the pushing off
25 of the magnet represents the second magnetic control effect
26 between the magnetic control system 15 and the mini actuator
27 14. A changing of the magnetic field direction of the
28 control magnets 15 results in an alteration of the direction
29 of movement of the mini actuator 14 which is now steered in
30 the direction of the transplant 11 with an upwards
31 orientation. By increasing the performance or magnetic flow
32 density from the control magnets 15, the pressure load
33 applied to the transplant 11 is increased until it reaches
34 the target value of the in-vivo adaptive stimulation.

35

36 The figures 10c-10e show arrangements of control elements

1 which can be used to steer the mini actuator 14 in a self-
2 contained bioreactor 1 in a cyclic manner and with a high
3 frequency.

4

5 Figure 10c (controlling the mini actuator 14 by means of a
6 control magnet guide plate) shows a form of execution of a
7 permanent magnetic control system. In this magnetic field
8 version, an arrangement of numerous permanent magnets 32 of
9 various sizes and with various polarities and therefore
10 field strengths and directions works on a linear-controlled
11 guide plate 31, this being shown here as being positioned
12 above the reactor prototype as an example.

13

14 Hereby, a linear motor 29 drives a guide rail 30 with the
15 permanent magnets 32 which are situated in the magnet holder
16 31. This mobile phase of the magnet system renders a
17 movement of the bioreactor 1 unnecessary.

18

19 The control system in Figure 10d (controlling the mini
20 actuator 14 by means of rotating permanent magnets) is also
21 based on a controlling of the magnetic pressure stamp 14 by
22 means of an arrangement of permanent magnets on a rotating
23 disk.

24

25 Hereby, a servomotor 29 drives a magnet holder 31 containing
26 adapted permanent magnets 32 with alternating polarities.
27 This rotating magnet holder can include four alternating
28 polarized magnets 32 and as a result they bring about a full
29 rotation of two complete pressure applications to the
30 transplant 11. The combination of this occupancy of the
31 rotating discs with magnets and the rotary speed of the
32 servomotor 29 produce a magnetic field alteration with a
33 greater frequency and therefore a highly dynamic stimulation
34 pattern on the transplant 11. The front view makes both of
35 the magnet effects on the rotation system clear, taking two
36 bioreactors 1 as an example. The form of execution of this

1 arrangement is suitable for numerous bioreactors 1 as long
2 as these can be exactly positioned above or underneath the
3 centre of the control magnet.

4

5 Figure 10e (controlling the mini actuator 14 by means of an
6 iron core coil 35) shows a magnet device based on a coil
7 arrangement.

8

9 This magnet coil system works with an induction coil 35,
10 which is fixated above the bioreactor 1 with generation of a
11 defined electromagnetic field which can be invariably
12 adjusted via the supplied electrical power, thereby enabling
13 the mini actuator 14 to be positioned anywhere in the
14 bioreactor carcass. A pole reversal of the direction of
15 current results in a reversal of the existing field
16 direction and the electromagnetic effect. The used iron core
17 coils 35 generates its electrical field vertical to the coil
18 winding and has both an attracting and push off effect on
19 the static permanent magnets of the mini actuator 14.

20

21 An automated station of this system comprises a powerful
22 coil 35 with a low heat generation and a connected
23 adjustable transformer, the capacity of which being
24 monitored by a multimeter measuring device. Furthermore, the
25 use of a microcontroller triggers a relay which switches the
26 current in the required direction, ensuring the required
27 effect of an intermittent pressure application to the cell
28 construct.

29

30 Example 11

31 Stimulation schema in a double-chamber reactor

32

33 Figures 11 show the complete stimulation schema of the novel
34 GMP-conform bioreactor 1. Hereby, the mechanical pressure
35 stimulation, perfusion and the shearing force-induced flow
36 takes place parallel in the three-dimensional transplant.

1
2 In Figure 11a (perfusion stimulation without mechanical
3 load), a stimulation of the cell construct 11 only takes
4 place via a targeted approach flow of the media, resulting
5 in a construct perfusion with an assertion of the shearing
6 force in a μ Pa-range. This process example shows a
7 continuous feeding of culture media in two feeds 19 so that
8 a supply is provided to each of the reactor chambers
9 initially adjusts itself to a concentration equalization in
10 transplant 11 and thereafter generates an upper and a lower
11 perfusion zone on the construct in relation to the selected
12 volume flows. This used medium leaves the reactor chamber
13 via two additional discharges 19. No pressure is applied
14 during this flow stimulation as the pressure stamp 14 is
15 held in a higher position in the bioreactor 1 by the control
16 magnet system 15.

17
18 In Figure 11b (perfusion stimulation and stamp application)
19 shows the second step which is a multiple stimulation of
20 replacement tissue materials 11 in the bioreactor 1. As is
21 shown in this example, the flow conditions are initially
22 modified. Via the 3-way valve 6, the culture medium flow is
23 only fed into the lower reactor chamber, from where it is
24 perfused through the transplant 11, the material exchange
25 induced and it can then leave the upper reactor chamber via
26 a discharge. By reversing the poles of the control magnet
27 system, this being an iron core coil 35 with a low power
28 induction in this case, the magnetic mini actuator 14 is
29 placed on the cylindrical replacement tissue 11, for
30 example. This stamp placement with a 0% construct
31 deformation marks a return point of the mini actuator 14
32 with a dynamically high-frequency deformation of the cell
33 matrix 11.

34
35 In the next step of the stimulation process, the magnetic
36 field strength generated by the coil 35 is increased as

1 shown in Figure 11c (perfusion stimulation and mechanical
2 load). The result of this increased magnetic flow density is
3 an increased compression of the transplant 11 to the
4 required target deformation which preferably imitates
5 process which is similar to in-vivo processes. After this
6 pressure stimulation has been carried out, a change can be
7 made between cell stimulation and stamp application in an
8 intermittent manner.

9

10 A static compression of the replacement material is also
11 possible with the cited apparatus and the described process.
12 During this mechanical load, a targeted construct perfusion
13 can be inserted through the carrier matrix which supplies
14 the cells with the required nutrients and metabolites
15 removed which are especially exchanged, e.g. during the
16 proliferation and differentiation (extracellular matrix
17 synthesis).

18

19 After the pressure load protocol has been worked off, one
20 returns the stamp device back to the starting position,
21 continues to perfuse the cell culture continuously, for
22 example and removes the transplant 11 if the extracellular
23 matrix has been sufficiently synthesized, for example.

24