Semblanza de...

Arthur Cayley y el álgebra de matrices

Arthur Cayley
(Library of Congress)

Arthur Cayley (1821-1895), un matemático inglés, desarrolló en 1857 el álgebra de matrices, es decir, las reglas que ilustran la forma en la cual se suman y multiplican las matrices. Nació en Richmond, en Surrey (cerca de Londres) y fue educado en el Trinity College, Cambridge, donde se graduó en 1842. Ese mismo año obtuvo el primer lugar en la difícil prueba para obtener el premio Smith. Durante varios años estudió y ejerció la carrera de leyes,

pero nunca dejó que su práctica en la abogacía interfiriera con su trabajo en las matemáticas. Siendo estudiante de leyes viajó a Dublín y asistió a las conferencias de Hamilton sobre cuaterniones. Cuando se estableció la cátedra Sadlerian en Cambridge en 1863, le ofrecieron el puesto a Cayley, quien lo aceptó, renunciando a un lucrativo futuro como abogado a cambio de la modesta remuneración de la vida académica. Pero fue entonces que pudo dedicar *todo* su tiempo a las matemáticas.

Cayley está clasificado como el tercer matemático más prolífico en la historia; lo sobrepasan sólo Euler y Cauchy. Comenzó a publicar siendo todavía estudiante de la universidad en Cambridge. Durante sus años de abogado publicó entre 200 y 300 artículos y continuó su copioso trabajo a lo largo de toda su vida. La colección masiva *Collected Mathematical Papers* de Cayley contiene 966 artículos y consta de 13 grandes volúmenes con un promedio de 600 páginas cada uno. Es casi imposible hallar un área dentro de las matemáticas puras que Cayley no haya estudiado y enriquecido.

Además de desarrollar la teoría de matrices, Cayley fue pionero en sus contribuciones a la geometría analítica, la teoría de determinantes, la geometría de *n* dimensiones, la teoría de curvas y superficies, el estudio de formas binarias, la teoría de funciones elípticas y el desarrollo de la teoría de invariantes.

El estilo matemático de Cayley refleja su formación legal ya que sus artículos son severos, directos, metódicos y claros. Poseía una memoria fenomenal y parecía nunca olvidar nada que hubiera visto o leído alguna vez. Tenía además un temperamento singularmente sereno, calmado y amable. Se le llamaba "el matemático de los matemáticos".

Cayley desarrolló un interés poco común por la lectura de novelas. Las leía mientras viajaba, mientras esperaba que una junta comenzara y en cualquier momento que considerara oportuno. Durante su vida leyó miles de novelas, no sólo en inglés, sino también en griego, francés, alemán e italiano. Disfrutaba mucho pintar, en especial con acuarela y mostraba un marcado talento como especialista de esta técnica. También era un estudiante apasionado de la botánica y la naturaleza en general.

Cayley era, en el verdadero sentido de la tradición inglesa, un alpinista amateur e hizo viajes frecuentes al continente para

realizar caminatas y escalar montañas. Cuenta la historia que decía que la razón por la que se unió al alpinismo fue que, aunque sentía que el ascenso era arduo y cansado, la gloriosa sensación de goce que lograba cuando conquistaba una cima era como el que experimentaba cuando resolvía un problema difícil de matemáticas o cuando completaba una teoría matemática intrincada

Las matrices surgieron con Cayley, relacionadas con las transformaciones lineales del tipo

$$x' = ax + by$$

 $y' = cx + dy$ (2.2.17)

donde a, b, c, d son números reales, y donde puede pensarse que son funciones que convierten al vector (x, y) en el vector (x', y'). Las transformaciones se estudiarán con detalle en el capítulo 7. Aquí se observa que la transformación (2.2.17) está completamente determinada por los cuatro coeficientes a, b, c, d y por lo tanto puede simbolizarse por el arreglo matricial cuadrado

$$\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}$$

al que se ha dado el nombre de matriz 2×2 . Como dos transformaciones del tipo de (2.2.17) son idénticas si y sólo si tienen los mismos coeficientes, Cayley definió que dos matrices

$$\begin{pmatrix}
a & b \\
c & d
\end{pmatrix} y \begin{pmatrix}
e & f \\
g & h
\end{pmatrix}$$

eran iguales si y sólo si a = e, b = f, c = g y d = h.

Ahora suponga que la transformación (2.2.17) va seguida de la transformación

$$x'' = ex' + fy'$$

 $y'' = gx' + hy'$
(2.2.18)

Entonces

$$x'' = e(ax + by) + f(cx + dy) = (ea + fc)x + (eb + fd)y$$

 $y'' = g(ax + by) + h(cx + dy) = (ga + hc)x + (gb + hd)y$

Esto llevó a Cayley a la siguiente definición para el producto de dos matrices:

$$\begin{pmatrix} e & f \\ g & h \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} ea + fc & eb + fd \\ ga + hc & gb + hd \end{pmatrix}$$

que es, por supuesto, un caso especial de la definición general del producto de dos matrices que se dio en la página 65.

Es interesante recalcar cómo, en matemáticas, observaciones muy sencillas pueden llevar a definiciones y teoremas importantes.