Гармонизация решений в управлении и проектировании

И. В. Герасимов

Санкт-Петербургский электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина) IVGerasimov-45@yandex.ru

И. Г. Анкудинов

Caнкт-Петербургский горный университет ivgank@rambler.ru

Аннотация. Пространство комплексных решений, имеющих иерархическую структуру, формируется на основе морфологического подхода. Задача оптимизации решений сформулирована как многокритериальная нелинейная задача дискретного программирования, в которой целевая функция в форме взвешенного степенного среднего обеспечивает требуемую степень пропорциональности критериальных показателей, заданную их эталонными (целевыми) значениями.

Ключевые слова: взвешенное степенное среднее; декомпозиция; агрегирование; иерархическая система; многокритериальная оценка; схема компромисса

Развитие и управление сложными системами связано с анализом и оптимизацией иерархической структуры таких систем и, в частности, с необходимостью использования иерархии показателей эффективности [5]. Для сложных систем целесообразно использовать многоуровневый подход, использующий как декомпозицию (построение иерархии показателей «сверху-вниз»), так и агрегирование показателей (построение системы показателей «снизуверх»). Агрегирование показателей заключается в следующем. Функция свертки в форме взвешенного степенного среднего (ВСС) [2] позволяет достаточно просто агрегировать (объединять) часть показателей в один укрупненный критерий:

$$M_r(w, y) = \left(\sum_{i=1}^{i=n} w_i y_i^r\right)^{1/r},$$

где $y=(y_1,\ldots,y_n)$, $y_i\geq 0$ – нормированное значение i показателя, $w_i\geq 0$ – вес i показателя, $\sum_{i=1}^{i=n}w_i=1$, r – показатель степени ВСС $r\in (-\infty,+\infty)$.

Веса w_i ($i \in 1:n$) имеют нормированное значение, и позволяют рассматривать «степень важности локального критерия» для каждого узла иерархии [4].

Абсолютное значение степени ВСС определяет среднее значение допустимых целевых уступок (близость интегрального критерия к минимаксу или максимину), а вес — распределение значений уступок между показателями [1].

Наряду с целевым значением каждого показателя от лица принимающего решение необходимо получить максимально допустимые потери, которые могут быть компенсированы за счет идеальных значений других показателей [3, 4].

Для комплексной оценки сложных иерархически организованных объектов целесообразно использовать иерархическую композицию сверток в форме ВСС. Для обозначения конкретного показателя используем иерархический индекс α , который имеет вид цепочки

$$\alpha = i_0 i_1 \dots i_{j-1} i_j i_{j+1} \dots i_{|\alpha|},$$

где | α | - число индексов в цепочке α, за исключением нулевого индекса $i_0 = 0$, соответствующего целостному образу объекта (гештальту); i_i – натуральное число, представляющее относительный номер j-го показателя, являющегося непосредственным результатом декомпозиции показателя-родителя индексом c $i_0i_1\ldots i_{i-1}$. Если все относительные номера одноразрядные, точки в записи иерархического индекса можно опускать. Условимся также, что значение 0 индекса i_0 можно опускать, если это не ведет к неоднозначности. Гештальт относится к нулевому уровню иерархии, показатель y_{α} – к уровню $|\alpha|$. Множество всевозможных индексов иерархии обозначим А. Глубина декомпозиции $N = \max_{\alpha \in A} \mid \alpha \mid$ зависит от возможности получения количественных оценок для свойств объекта, получаемых в результате декомпозиции. Число показателей, на которое разбивается показатель с индексом α , обозначим n_a . Показатели, у которых $n_{\alpha}=0$, назовем атомарными. Множество индексов атомарных показателей $T = \{\alpha \mid \alpha \in A, n_{\alpha} = 0\}$. Узел $\alpha \in A \setminus T$ имеет n_{α} потомков $\alpha 1, \dots, \alpha n_{\alpha}$. Например, показатель y_{α} для узла α может быть представлен сверткой показателей $(y_{\alpha 1}, ..., y_{\alpha n_{\alpha}})$.

Экспертная оценка векторов целевых значений и предельно допустимых проигрышей выполняется отдельно для каждого узла иерархии и позволяет получить

соответствующий вектор ПК-значений $(\tilde{y}_{\alpha 1}, ..., \tilde{y}_{\omega n_{\alpha}})$. Корневому узлу соответствует ВСС $y_0 = \left(\sum_{\beta=1}^{\beta=n} w_{\beta} y_{\beta}^r\right)^{1/r}$,

а всю иерархию показателей можно представить системой выражений вида

$$y_{\alpha} = \left(\sum_{\beta=\alpha 1}^{\beta=\alpha n_{\alpha}} w_{\beta} y_{\beta}^{r_{\alpha}}\right)^{1/r_{\alpha}}, \alpha \in T$$
,

где $r_{\!_{lpha}}$ – степень свертки вектора показателей $(y_{\!_{lpha 1}}, \dots, y_{\!_{lpha n_{\!_{lpha}}}})$.

Для каждого узла $\alpha \in T$ определяется показатель r_{α} , решением уравнения

$$\sum_{\beta \in \{\alpha_1, \dots, \alpha_{n_\alpha}\}} 1/\tilde{y}_{\beta}^{r_{\alpha}} = 1,$$

а для определения весовых коэффициентов используем соотношения

$$w_{\beta} = 1/\tilde{y}_{\beta}^{r_{\alpha}}, \beta \in \{\alpha 1, \dots, \alpha n_{\alpha}\}.$$

ПК-значения \tilde{y}_{α} имеют локальный характер, поскольку относятся к конкретному уровню свертывания. В то же время, для каждого атомарного показателя y_{α} , $\alpha \in T$, можно найти внешнее (глобальное) ПК-значение $\tilde{\tilde{y}}_{\alpha}$, представляющее наихудшее значение y_{α} , которое может быть скомпенсировано за счет идеальных значений остальных атомарных показателей $T \setminus \{\alpha\}$.

Можно показать, что для иерархии ВСС глобальное ПК-значение $\tilde{\tilde{y}}_a$ для атомарного показателя y_a равно произведению локального ПК-значения \tilde{y}_a и ПК-значений всех показателей, расположенных выше y_a :

$$\tilde{\tilde{\mathbf{y}}}_{\boldsymbol{\alpha}} = \tilde{\mathbf{y}}_{i_0 i_1 i_2 \dots i_{|\boldsymbol{\alpha}|-1} i_{|\boldsymbol{\alpha}|}} \times \tilde{\mathbf{y}}_{i_0 i_1 i_2 \dots i_{|\boldsymbol{\alpha}|-2} i_{|\boldsymbol{\alpha}|-1}} \times \dots \tilde{\mathbf{y}}_{i_0 i_1 i_2} \times \tilde{\mathbf{y}}_{i_0 i_1}$$

Если мощность множества V альтернативных вариантов построения иерархического объекта велика, то можно использовать существующие численные методы для получения приближенного решения задачи гармонизации объекта, если унифицировать параметр выпуклости на всех уровнях иерархии и заменить иерархическую систему одной сверткой атомарных показателей

$$y_0 = M_s(p, z) = \left(\sum_{\alpha \in T} p_{\alpha} z_{\alpha}^s\right)^{1/s}.$$

Унификация позволяет использовать s -ю степень ВСС в качестве линейной целевой функции

$$y_0^s = \sum_{\alpha \in T} p_\alpha z_\alpha^s.$$

Рассмотрим унификацию относительно атомарных показателей. Для получения параметров свертки $M_s(p,z)$, унифицированной относительно атомарных показателей, в качестве ПК-значений используем $\widetilde{\widetilde{y}}_{\alpha}$, $\alpha \in T$. Недостатком унификация относительно атомарных

показателей является отклонение локальных ПК-значений промежуточных узлов, полученных в результате обратного агрегирования показателей, от их исходных значений.

В качестве примера рассмотрим иерархию ВСС:

$$y_0 = (w_1 y_1^r + w_2 y_2^r)^{1/r}, \quad y_1 = (w_{11} y_{11}^{r_1} + w_{12} y_{12}^{r_1})^{1/r_1}.$$

Граф этой иерархии представлен на рис. 1. Вершины графа помечены обозначениями соответствующих показателей. Узловые вершины y_0 и y_1 помечены также обозначением степени, а нисходящие ребра — весами показателей соответствующей свертки.

Пусть на основе экспертной оценки получены ПК-значения:

$$\tilde{y}_{11} = \tilde{y}_{12} = 0.7$$
; $\tilde{y}_1 = \tilde{y}_2 = 0.87$.

Для показателя y_1 получаем параметры ВСС: $r_1=-1,943$; $w_{11}=w_{12}=1/\ \tilde{y}_{11}^{r_1}=0,500$.

Для показателя y_0 получаем параметры BCC: r=-4,977 ; $w_1=w_2=1$ / $\tilde{y}_1^r=0,500$.

Введем одноуровневую нумерацию атомарных показателей:

$$z_1 = y_{11}; \ z_2 = y_{12}; \ z_3 = y_2.$$

Глобальные ПК-значение для атомарных показателей:

$$\begin{split} \tilde{z}_1 &= \tilde{\tilde{y}}_{11} = \tilde{y}_{11} \tilde{y}_1 = 0,7 \times 0,87 = 0,609 \; ; \; \tilde{z}_2 = \tilde{z}_1 \; ; \\ \tilde{z}_3 &= \tilde{\tilde{y}}_2 = \tilde{y}_2 = 0,87 \; . \end{split}$$

Для $\widetilde{z}=(\widetilde{z}_1,\widetilde{z}_2,\widetilde{z}_3)=(0,609;\ 0,609;\ 0,870)$ находим s=-3,375 . Находим веса показателей: $p_1=1/\widetilde{z}_1^s=0,1875$; $p_2=p_1$; $p_3=1/\widetilde{z}_3^s=0,625$.

Результирующая свертка имеет вид

$$y_0 = (p_1 z_1^s + p_2 z_2^s + p_3 z_3^s)^{1/s}$$
.

Для того, чтобы определить, как изменяются ПКзначения и соответствующие допустимые проигрыши,

Рис. 1. Пример иерархии ВСС

выполним обратное агрегирование показателей так, чтобы сохранилась структура исходной иерархии.

Для этого вводим новые обозначения с иерархическими индексами таким образом, что u_0 соответствует y_0 , u_1 соответствует y_1 и т. д. Объединим p_1 и p_2 в виде

$$u_1 = (v_{11}y_{11}^s + v_{12}y_{12}^s)^{1/s},$$

где
$$v_{11} = p_1/(p_1 + p_2) = 0.5$$
, $v_{12} = p_2/(p_1 + p_2) = v_{11}$.

Верхнему уровню иерархии будет соответствовать ВСС

$$u_0 = (v_1 u_1^s + v_2 u_2^s)^{1/s}$$
,

где
$$v_1 = p_1 + p_2 = 0.375$$
, $v_2 = p_3 = 0.625$.

По формуле $\tilde{u}_{a}=1/\,\nu_{a}^{\mathrm{I}/s} \quad \text{находим} \quad \text{локальные} \quad \Pi \text{K-}$ значения

$$\begin{split} \tilde{u}_1 &= 1/v_1^{1/s} = 0,748 \,, \\ \tilde{u}_2 &= 1/v_2^{1/s} = 0,8748 \,, \\ \tilde{u}_{11} &= \tilde{u}_{12} = 1/v_{11}^{1/s} = 0,814 \,. \end{split}$$

Пример демонстрирует изменение ПК-значений и, соответственно, допустимых проигрышей, полученных в результате обратного агрегирования, для показателей

верхнего уровня иерархии. В рассмотренном примере ПК-значение показателя y_1 уменьшилось с 0,87 до 0,748 и соответственно увеличился нормированный допустимый проигрыш с 0,13 до 0,252.

Список литературы

- [1] Оценка параметров модели предпочтения нечеткий максимин / И.Г. Анкудинов, И.В. Герасимов // Сб. докл. Международной конф. по мягким вычислениям и измерениям SCM2016, СПб, 25-27 мая 2016. Т.2. Секции 4-7. СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2016. С 43-46
- [2] Харди Г.Г., Литтльвуд Д.Е., Полиа Г. Неравенства. М.: Иностр.литра, 1948. 456 с.
- [3] Анкудинов И.Г. Автоматизация структурного синтеза и принятия решений в управлении и проектировании. СПб.: Изд-во Политехн. ун-та, 2008. 202 с.
- [4] Ankoudinov G.I., Ankoudinov I.G., Strizhachenko A.I. Goal functions from minimax to maximin in multicriteria choice and optimization // Innovations and Advanced Techniques in Systems, Computing Sciences and Software Engineering. ed. Kh. Elleithy. Springer, 2008, pp. 192-197.
- [5] M. Ehrgott, Multicriteria Optimization. Springer, 2000. 323 p.