

GCE

Edexcel GCE

Mathematics

Core Mathematics C1 (6663)

June 2006

Mark Scheme

advancing learning, changing lives

June 2006 6663 Core Mathematics C1 Mark Scheme

Question number	Scheme	Marks
1.	$\frac{6x^{3}}{3} + 2x + \frac{x^{\frac{1}{2}}}{\frac{1}{2}} (+c)$ $= 2x^{3} + 2x + 2x^{\frac{1}{2}}$	M1
	$=2x^3 + 2x + 2x^{\frac{1}{2}}$	A2/1/0
	+c	B1
		4
	M1 for some attempt to integrate $x^n \to x^{n+1}$ $1^{st} A1$ for either $2x^3$ or $2x^{\frac{1}{2}}$ $2^{nd} A1$ for all terms in x correct as printed B1 for $+ c$.	

Question number	Scheme	Marks
2.	Critical Values $(x-9)(x+2) > 0$ or $= 0$	M1
	x = -2 or 9 both	A1
	Solving Inequality $x > 9$ or $x < -2$ Choosing "outside"	M1
		A1 4
	1 st M1 For attempting to find critical values. Full Method leading to $x =$	
	2 nd M1 For choosing outside region. Can f.t. their critical values.	
	-2 > x > 9 is M1A0	

Question number	Scheme	Marks
3.	(a) y_{\blacktriangle} U shape touching x-axis	B1
	(-3,0)	B1
	(0,9)	B1
	-3 x	(3)
	(b) y A Translated parallel to y-axis up or down	M1
	$9+k \qquad (0,9+k)$	B1f.t.
		(2)
	\longrightarrow x	5
	(b) M1 Follow their curve in (a) up or down only	
	B1f.t. Follow through their 9	

Question number	Scheme	Marks	
4. (a)	$a_2 = 4$ $a_3 = 3 \times a_2 - 5 = 7$ $a_4 = 3a_3 - 5(=16)$ and $a_5 = 3a_4 - 5(=43)$	B1 B1f.t. (2)	
(b)	$a_4 = 3a_3 - 5(=16)$ and $a_5 = 3a_4 - 5(=43)$	M1	
	3+4+7+16+43	M1	
	= 73	A1c.a.o.	(3)
			5
(a)	2^{nd} B1f.t. Follow through their a_2 but it must be a value		
(b)	1 st M1 For two further uses of $a_{n+1} = 3a_n - 5$		
	2^{nd} M1 For attempting to add 5 relevant terms or an expression. Follow through their values for $a_2 - a_5$		

Question number	Scheme		Marks	
5. (a)	$(y = x^4 + 6.$	$x^{\frac{1}{2}} \Rightarrow y' =) 4x^3 + 3x^{-\frac{1}{2}}$	M1A1A1	(3)
(b)	$\left(x+4\right)^2 = x$	$x^2 + 8x + 16$	M1	
	$\frac{\left(x+4\right)^2}{x} = 0$	$x^{\frac{1}{2}} \Rightarrow y' = 3 4x^{3} + 3x^{-\frac{1}{2}}$ $x^{2} + 8x + 16$ $x + 8 + 16x^{-1}$	A1	
		$\frac{y'}{y'} \Rightarrow y' = 1 - 16x^{-2}$	M1A1	(4) 7
(a)	M1	For some attempt to differentiate $x^n \to x^{n-1}$	•	
	1 st A1	For one correct term as printed.		
	$2^{nd} A1$	For both terms correct as printed.		
		$4x^3 + 3x^{-\frac{1}{2}} + c$ scores M1A1A0		
(b)	1 st M1	For attempt to expand $(x+4)^2$, must have 3 terms and at least 2 co	rrect	
	1 st A1	Correct expression.		
	2 nd M1	For some correct differentiation. Can follow through their simplifi	cation.	
ALT	Product or	Quotient rule		
	M2	For correct use of product or quotient rule		
	1 st A1	For $\frac{2(x+4)}{x}$		
	2 nd A1	For $\frac{2(x+4)}{x}$ for $-\frac{(x+4)^2}{x^2}$		

Question number	Scheme	Marks	
6. (a)	$16+4\sqrt{3}-4\sqrt{3}-\left(\sqrt{3}\right)^2 \text{ or } 16-3$ = 13	M1 A1c.a.o	(2)
(b)	$\frac{26}{4+\sqrt{3}} \times \frac{4-\sqrt{3}}{4-\sqrt{3}}$	M1	
	$16+4\sqrt{3}-4\sqrt{3}-(\sqrt{3}) \text{ or } 16-3$ $= 13$ $\frac{26}{4+\sqrt{3}} \times \frac{4-\sqrt{3}}{4-\sqrt{3}}$ $= \frac{26(4-\sqrt{3})}{13} = \frac{8-2\sqrt{3}}{13}$	A1	(2) 4
(a)	M1 For 4 terms, condone 1 sign error		
(b)	M1 For a correct attempt to rationalise the denominator		

Question number	Scheme	Marks
7.	$(u_{11} =) a + 10d = 9$	M1A1
	$(S_{11} =) \frac{11}{2}(2a+10d) = 77$ or $\frac{(a+9)}{2} \times 11 = 77$	M1A1
	e.g. $a+10d = 9$ a+5d = 7 or $a+9 = 14$	M1
	a = 5 and $d = 0.4$	A1 A1 7
	1 st M1 Use of u_n to form a linear equation in a and d .	
	2^{nd} M1 Use of S_{11} to form an equation for a and d (LHS) or in a (RHS)	
	2 nd A1 Either correct equation	
	3^{rd} M1 Solving (LHS simultaneously) or (RHS a linear equation in a)	
	Must lead to $a = \dots$ or $d = \dots$	
	3^{rd} A1 for $a = 5$	
	4^{th} A1 for $d = 0.4$ (o.e.)	

Question number	Scheme	Marks	
8. (a)	$b^2 - 4ac = 4p^2 - 4(3p + 4) = 4p^2 - 12p - 16 (=0)$	M1, A1	
	$b^{2} - 4ac = 4p^{2} - 4(3p+4) = 4p^{2} - 12p - 16 (=0)$ or $(x+p)^{2} - p^{2} + (3p+4) = 0 \implies p^{2} - 3p - 4 (=0)$ $(p-4)(p+1) = 0$		
	(p-4)(p+1)=0	M1	
	p = (-1 or) 4	A1 (4)	
(b)	$x = \frac{-b}{2a}$ or $(x+p)(x+p) = 0 \implies x =$	M1	
	x (=-p) = -4	A1f.t. (2)	
		6	
(a)	1 st M1 For use of $b^2 - 4ac$ or a full attempt to complete the square	are leading to a 3TQ in p.	
	1 st A1 For a correct 3TQ in p . Condone missing "=0" but all 3 to	erms must be on one side.	
	2^{nd} M1 For attempt to solve their 3TQ leading to $p =$		
	2^{nd} A1 For $p = 4$ (ignore $p = -1$).		
(b)	M1 For a full method leading to $x =$		
	A1f.t. For $x = -4$ (- their p)		

Question number	Scheme	Marks
9. (a)	$f(x) = x[(x-6)(x-2)+3]$ or $x^3 - 6x^2 - 2x^2 + 12x + 3x = x()$	M1
	$f(x) = x(x^2 - 8x + 15)$ $b = -8 \text{ or } c = 15$	A1
	both and $a = 1$	A1 (3)
(b)	$(x^2 - 8x + 15) = (x - 5)(x - 3)$	M1
	f(x) = x(x-5)(x-3)	A1 (2)
(c)		
	Shape	B1
	their 3 or their 5	B1f.t.
	$\frac{\text{both their 3 and their 5}}{\text{and (0,0) by implication}}$	B1f.t. (3)
		8
(a)	M1 for a correct method to get the factor of <i>x</i>	
	$1^{\text{st}} \text{ A1 for } b = -8 \text{ or } c = 15$	
	2^{nd} A1 for $a = 1$, $b = -8$ and $c = 15$.	
(b)	M1 for attempt to factorise their quadratic from part (a).	
	A1 for all 3 terms correct.	
(c)	1 st B1 for correct shape (i.e. from bottom left to top right and two turning	points.)
	2 nd B1f.t. for crossing at their 3 or their 5 indicated on graph or in text.	
	3 rd B1f.t. if graph passes through (0, 0) [needn't be marked] and both their 3	3 and their 5.

Question number	Scheme	Marks
10.(a)	$f(x) = \frac{2x^2}{2} + \frac{3x^{-1}}{-1}(+c)$	M1A1
	$(3,7\frac{1}{2})$ gives $\frac{15}{2} = 9 - \frac{3}{3} + c$	M1A1f.t.
	$c = -\frac{1}{2}$	A1 (5)
(b)	$f(-2) = 4 + \frac{3}{2} - \frac{1}{2} \qquad (*)$	B1c.s.o. (1)
(c)	$m = -4 + \frac{3}{4}$, = -3.25	M1,A1
	Equation of tangent is: $y - 5 = -3.25(x + 2)$ 4y + 13x + 6 = 0 o.e.	M1 A1 (4)
		10
(a)	1^{st} M1 for some attempt to integrate $x^n \to x^{n+1}$ 1^{st} A1 for both x terms as printed or better. Ignore $(+c)$ here. 2^{nd} M1 for use of $(3,7\frac{1}{2})$ to form an equation for c . No $+c$ is M0. 2^{nd} A1 for a correct equation for c . Follow through their integration.	
(c)	1 st M1 for attempting $m = f'(-2)$	
	$1^{\text{st}} A1$ for $-\frac{13}{4}$ or -3.25	
	2^{nd} M1 for attempting equation of tangent at (-2, 5), f.t. their m .	
	2^{nd} A1 o.e. must have a , b and c integers.	

Question number	Scheme	Mark	S
11.(a)	$m = \frac{8-2}{11+1} (=\frac{1}{2})$	M1 A1	
	$y - 2 = \frac{1}{2}(x1)$	M1	
	$y = \frac{1}{2}x + \frac{5}{2}$	A1c.a.o.	(4)
(b)	Gradient of $l_2 = -2$	M1	
	Equation of l_2 : $y - 0 = -2(x - 10)$ [$y = -2x + 20$]	M1	
	$\frac{1}{2}x + \frac{5}{2} = -2x + 20$	M1	
	x = 7 and $y = 6$	A1, A1	(5)
(c)		M1	
	$RS = \sqrt{45} = 3\sqrt{5} (*)$	A1c.s.o.	(2)
(d)	~	M1,A1	
	Area = $\frac{1}{2}PQ \times RS = \frac{1}{2}6\sqrt{5} \times 3\sqrt{5}$	M1	
	<u>= 45</u>	A1	(4)
			15
(a)	1 st M1 for attempting $\frac{y_1 - y_2}{x_1 - x_2}$, must be y over x but condone one sign slip.		
	1^{st} A1 for a fully correct expression, needn't be simplified. 2^{nd} M1 for attempting to find equation of l_1 .		
(b)	1^{st} M1 for using the perpendicular gradient rule 2^{nd} M1 for attempting to find equation of l_2 . Follow their gradient provided	l different.	
	3^{rd} M1 for forming a suitable equation to find S .		
(c)	M1 for expression for RS or RS^2 .		
(d)	$1^{\text{st}} M1$ for expression for PQ or PQ^2		
	2 nd M1 for a full, correct attempt at area of triangle		

GENERAL PRINCIPLES FOR C1 MARKING

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = \dots$
 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = \dots$

2. Formula

Attempt to use correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $(x \pm p)^2 \pm q \pm c$, $p \ne 0$, $q \ne 0$, leading to $x = ...$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \to x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but will be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> gain no credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

Misreads

A misread must be consistent for the whole question to be interpreted as such.

These are not common. In clear cases, please deduct the <u>first</u> 2 A (or B) marks which <u>would have been lost by following the scheme</u>. (Note that 2 marks is the <u>maximum</u> misread penalty, but that misreads which alter the nature or difficulty of the question cannot be treated so generously and it will usually be necessary here to follow the scheme as written).

Sometimes following the scheme as written is more generous to the candidate than applying the misread rule, so in this case use the scheme as written.