Review of Running Time Analysis

What is the Time Complexity of Bubble Sort?

How do we define this?

What is the Time Complexity of Bubble Sort?

Informal Definition of Worst-Case Time Complexity

The maximum number of "steps" an algorithm takes on inputs of "size" n

What do we mean by a "step"?

- Arithmetic operations: +, -, *, /, ...
- Data Movement operations: load, store, copy, ...
- Comparison operations: > , < , ==

•

•

•

Each operation takes a **constant** amount of time.

What do we mean by a "step"?

- Arithmetic operations: +, -, *, /, ...
- Data Movement operations: load, store, copy, ...
- Comparison operations: > , < , ==

Each operation takes a **constant** amount of time.

•

•

•

Strictly speaking, we have to fix a model of computation— One processor RAM model (Refer CLRS section 2.2)

What do we mean by input "size"?

- It could be
 - Number of elements in the input array (e.g. sorting algorithms)
 - Number of edges and vertices of the input graph (e.g. graph algorithms)
 - Number of bits used to represent the input
 (e.g. algorithms to test if the input number is a prime)

• Often, we would like to have "worst-case guarantees" on the time complexity of the algorithms we design.

Example of a Worst-Case guarantee –

"For every input of size n, Algorithm A takes at most 7n³ steps"

Definition of Worst-Case Time Complexity

Let A be an algorithm (e.g. Bubble Sort)

t(x) = Number of steps taken by A on input x

<u>Worst-Case Time Complexity</u> of A is a function $T : \mathbb{N} \rightarrow \mathbb{N}$ of input size n

$$T(n) = \max_{\substack{\text{All input x} \\ \text{of size } n}} t(x) = \max_{\substack{\text{toput x} \\ \text{of size } n}}} t(x) = \max_{\substack{\text{toput x} \\ \text{of size } n}} t(x) = \max_{\substack{\text{toput x} \\ \text{of size } n}}} t(x) = \max_{\substack{\text{toput x} \\ \text{of size } n}} t(x) = \max_{\substack{\text{toput x} \\ \text{of size } n}}} t(x) = \max_{\substack{\text{toput x} \\ \text{of size } n}}} t(x) = \max_{\substack{\text{toput x} \\ \text{of size } n}}} t(x) = \max_{\substack{\text{toput x} \\ \text{of size } n}}} t(x) = \max_{\substack{\text{toput x} \\ \text{of size } n}}} t(x) = \max_{\substack{\text{toput x} \\ \text{of size } n}}} t(x) = \max_{\substack{\text{toput x} \\ \text{of size } n}}} t(x) = \max_{\substack{\text{toput x} \\ \text{of size } n}}} t(x) = \max_{\substack{\text{toput x} \\ \text{of size } n}}} t(x) = \max_{\substack{\text{toput x} \\ \text{of size } n}}} t(x) = \max_{\substack{\text{toput x} \\ \text{of size } n}}} t(x) = \max_{\substack{\text{toput x} \\ \text{of size } n}}} t(x) = \max_{\substack{\text{toput x} \\ \text{of size } n}}} t(x) = \max_{\substack{\text{toput x} \\ \text{of size } n}}} t(x) = \max_{\substack{\text{toput x} \\ \text{of size } n}}} t(x) = \max_{\substack{\text{toput x} \\ \text{of size } n}}} t(x) = \max_{\substack{\text{toput x} \\ \text{of size } n}}} t(x) = \max_{\substack{\text{toput x} \\ \text{of size } n}}} t(x) = \max_{\substack{\text{toput x} \\ \text{of size } n}}} t(x) = \max_{$$

 $T(n) = \max_{\substack{\text{All input x} \\ \text{of size } n}} t(x) = \max_{\substack{\text{t(x)} | x \text{ is an input of size } n}} t(x)$

Input of size n	# steps A takes
x_1	t(x ₁)
x_2	$t(x_2)$
Xi	t(x _i)

$$T(n) = max \{t(x_1), t(x_2), ..., t(x_i), ... \}$$

$$T(n) = \max_{\substack{\text{All input x} \\ \text{of size } n}} t(x) = \max_{\substack{\text{t(x)} | x \text{ is an input of size } n}} t(x)$$

Input of size n	# steps A takes
x_1	$t(x_1) = k_1$
\mathbf{x}_{2}	$t(x_2) = k_2$
Xi	$t(x_i) = k_i$

T(n) = max {t(x₁), t(x₂), ..., t(x_i), ...}
$$T(n) = max \{k_1, k_2, ..., k_i, ...\}$$

Rephrasing Worst-Case guarantee using our definition of T(n)

"For every input of size n, Algorithm A takes at most 7n³ steps"

Rephrasing Worst-Case guarantee using our definition of T(n)

"
$$T(n) <= 7n^3$$
"

Rephrasing Worst-Case guarantee using our definition of T(n)

```
"T(n) \le 7n^3" (Upper Bound)
```


Rephrasing Worst-Case guarantee using our definition of T(n)

```
"T(n) \le 7n^3" (Upper Bound)
```

We would like to have both upper and lower bounds

Rephrasing Worst-Case guarantee using our definition of T(n)

"
$$T(n) \le 7n^3$$
" (Upper Bound)

We would like to have both upper and lower bounds:

```
"T(n) <= 7n^3" (upper bound)

AND

"T(n) >= 3n^2" (lower bound)
```


How do we show the following?

```
T(n) \le 7n^3 (upper bound)
AND
T(n) \ge 3n^2 (lower bound)
```


Let S be a set of integers Max(S): maximum element of S

Let c be some constant How would you prove the following?

$$Max(S) \le c$$

Let S be a set of integers Max(S): maximum element of S

Let c be some constant

$$Max(S) \le c$$

$$\Leftrightarrow$$
 \forall e \in S : e $<=$ c

Let S be a set of integers Max(S): maximum element of S

Let c be some constant How would you prove the following?

$$Max(S) >= c$$

Let S be a set of integers Max(S): maximum element of S

Let c be some constant

$$Max(S) >= c$$

$$\Leftrightarrow$$
 \exists e \in S : e $>=$ c

Let S be a set of integers Max(S): maximum element of S

Let c be some constant

$$Max(S) \le c$$

$$Max(S) >= c$$

$$\Leftrightarrow$$

$$\Leftrightarrow$$
 \forall e \in S : e $<=$ c

$$\Leftrightarrow$$
 \exists e \in S : e $>=$ c

Recall that $T(n) = max \{t(x) \mid x \text{ is an input of size } n\}$

How do we show the following? $T(n) \le 7n^3$ (upperbound)

Recall that

$$T(n) = max \{t(x) \mid x \text{ is an input of size } n\}$$

How do we show the following? $T(n) \le 7n^3$ (upperbound)

 $max \{t(x) \mid x \text{ is an input of size n}\} <= 7n^3$

Recall that

$$T(n) = max \{t(x) \mid x \text{ is an input of size } n\}$$

How do we show the following? $T(n) \le 7n^3$ (upperbound)

 $max \{t(x) \mid x \text{ is an input of size n}\} <= 7n^3$

For **every** input of size n, A takes at most 7n³ steps.

Recall that $T(n) = max \{t(x) \mid x \text{ is an input of size } n\}$

How do we show the following? $T(n) \ge 3n^2$ (lowerbound)

Recall that

$$T(n) = max \{t(x) \mid x \text{ is an input of size } n\}$$

How do we show the following?

$$T(n) >= 3n^2$$
 (lowerbound)

 $max \{t(x) \mid x \text{ is an input of size n}\} >= 3n^2$

Recall that

$$T(n) = max \{t(x) \mid x \text{ is an input of size } n\}$$

How do we show the following?

$$T(n) >= 3n^2$$
 (lowerbound)

 $max \{t(x) \mid x \text{ is an input of size n}\} >= 3n^2$

For **some** input of size n, A takes at least 3n² steps.

In Summary,

For **every** input of size n, A takes at most 7n³ steps.

$$T(n) >= 3n^2$$
 (lowerbound)

For **some** input of size n, A takes at least 3n² steps.

• What if

$$T(n) \le 7n^3$$
 NOT TRUE

What if

$$T(n) \le 7n^3$$
 NOT TRUE
 $T(n) \le 100n^3$ TRUE

What if

$$T(n) \le 7n^3$$
 NOT TRUE
 $T(n) \le 100n^3$ TRUE

What if

$$T(n) >= 3n^2$$
 NOT TRUE
 $T(n) >= n^2/10$ TRUE

We would like to say something like

Issue 2: Quantifying over n

• What if

For every n, $T(n) \le 7n^3$ **NOT TRUE**

Issue 2: Quantifying over n

What if

```
For every n, T(n) \le 7n^3 NOT TRUE
For sufficiently large n, T(n) \le 7n^3 TRUE
```


Issue 2: Quantifying over n

```
• What if Say, n \ge 200
For every n, T(n) <= 7n^3 NOT TRUE
For sufficiently large n, T(n) <= 7n^3 TRUE
```


Issue 2: Quantifying over n

• What if $Say, n \ge 200$ For every n, $T(n) \le 7n^3$ NOT TRUE For sufficiently large n, $T(n) \le 7n^3$ TRUE

What if

For every n, $T(n) >= 3n^2$ **NOT TRUE** For *sufficiently large* n, $T(n) >= 3n^2$ **TRUE**

Combining Issues 1 and 2

We would like to say something like

```
T(n) <= n<sup>3</sup>
within a constant factor
& for sufficiently large n
```


Combining Issues 1 and 2

We would like to say something like


```
T(n) is O(g(n))

Intuitively

Means

T(n) <= g(n)

within a
constant
factor

for
sufficiently
large n
```


$$T(n) \text{ is } O(g(n)) \qquad \text{Intuitively} \quad T(n) <= g(n) \\ \text{Within a} \\ \text{constant} \\ \text{factor} \\ \text{g} \\ \text{for} \\ \text{sufficiently} \\ \text{large n} \\ \\ T(n) \text{ is } O(g(n)) \qquad \Longleftrightarrow \qquad \exists \ c > 0, \ \exists \ n_0 > 0, \ \text{such that } \forall \ n >= n_0: \\ T(n) <= c \cdot g(n) \\ \end{cases}$$

Formally,

T(n) is O(g(n))
$$\Leftrightarrow$$
 $\exists c > 0, \exists n_0 > 0$, such that $\forall n >= n_0$:
T(n) <= c . g (n)

$$\Leftrightarrow$$
 $\exists c > 0, \exists n_0 > 0$, such that $\forall n >= n_0$:
For **every** input of size n ,
the algorithm takes
at most c . $g(n)$ steps

$$T(n) \text{ is } \Omega(g(n)) \qquad \text{Intuitively} \qquad T(n) \ >= \ g(n) \\ \text{Within a constant factor} \\ \text{for sufficiently large n} \\ T(n) \text{ is } \Omega(g(n)) \qquad \Leftrightarrow \qquad \exists \ c > 0, \ \exists \ n_0 > 0, \ \text{such that } \forall \ n >= n_0: \\ T(n) >= c \ . \ g(n) \\ \end{cases}$$

Formally,

T(n) is
$$\Omega(g(n))$$
 \Leftrightarrow $\exists c > 0, \exists n_0 > 0$, such that $\forall n >= n_0$:
T(n) >= c . g (n)

$$\Leftrightarrow$$
 $\exists c > 0, \exists n_0 > 0$, such that $\forall n >= n_0$:
For **some** input of size n ,
the algorithm takes
at least c . $g(n)$ steps

T(n) is $\Theta(g(n)) \iff T(n)$ is O(g(n)) AND T(n) is $\Omega(g(n))$

T(n) is $\Theta(g(n)) \iff T(n)$ is O(g(n)) AND T(n) is $\Omega(g(n))$

T(n) is $\Theta(g(n)) \Leftrightarrow T(n)$ is O(g(n)) AND T(n) is $\Omega(g(n))$

T(n) is $\Theta(g(n)) \Leftrightarrow T(n)$ is O(g(n)) AND T(n) is $\Omega(g(n))$

T(n) is $\Theta(g(n)) \Leftrightarrow T(n)$ is O(g(n)) AND T(n) is $\Omega(g(n))$

$$\Theta(n^2)$$

(ROUGHLY STATED) For **every** input of size n, the algorithm takes at most c_1 . n^2 steps.

(ROUGHLY STATED) FOR **some** input of size n, the algorithm takes at least c_2 . n^2 steps.

There exists $c_1 > 0$, $c_2 > 0$, such that for sufficiently large n

For **every** input of size n, the algorithm takes at most c_1 . n^2 steps.

FOR **some** input of size n, the algorithm takes at least c_2 . n^2 steps.

