CSCI-4116 Assignment 2

Anas Alhadi B00895875

January 24, 2025

Question 1

Part a)

We know that a residue class $a + m\mathbb{Z}$ is invertible iff gcd(a, m) = 1. Thus only the classes represented by $\{1, 3, 5, 7, 9, 11, 13, 15\}$ are invertible.

Given a residue class $a + m\mathbb{Z}$ the inverse is a residue class $a^{-1} + m\mathbb{Z}$ such that $a \times a^{-1} \equiv 1 \pmod{16}$. So we have it that:

- 1×1 $\equiv 1 \pmod{16}$
- $3 \times 11 \equiv 1 \pmod{16}$
- $5 \times 13 \equiv 1 \pmod{16}$
- $7 \times 7 \equiv 1 \pmod{16}$
- $9 \times 9 \equiv 1 \pmod{16}$
- $15 \times 15 \equiv 1 \pmod{16}$

aside: The format $x \times y \equiv 1 \pmod{m}$ just means that $y + m\mathbb{Z}$ is the inverse of $x + m\mathbb{Z}$ and vise versa. Since $(\mathbb{Z}/m\mathbb{Z},\cdot)$ is a commutative monoid we know that $a\cdot a^{-1}=a^{-1}\cdot a$.

 $^{^{-1}}$ I'm using the euclidean algorithm to find a^{-1} but immiting the steps

Part b)

Group of Units

The group of units is the group of all invertible residue classes, and thus, is the group of all residue classes $a + 15\mathbb{Z}$ where gcd(a, 15) = 1. Then given the inverses(similar to partA):

- $1 \times 1 \equiv 1 \pmod{15}$
- $2 \times 8 \equiv 1 \pmod{15}$
- $4 \times 4 \equiv 1 \pmod{15}$
- $7 \times 13 \equiv 1 \pmod{15}$
- $11 \times 11 \equiv 1 \pmod{15}$
- $14 \times 14 \equiv 1 \pmod{15}$

We have it that $(\mathbb{Z}/15\mathbb{Z})^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$

Zero Divisors:

We know that the zero divisors of $\mathbb{Z}/m\mathbb{Z}$ are the residue classes where 1 < gcd(a, m) < m. This means that the zero divisors is the set of all residue classes that are not in $(\mathbb{Z}/m\mathbb{Z})^*$ and not the class $0 + m\mathbb{Z}$. For m = 15 the zero divisors are:

- $3+15\mathbb{Z}$
- $5 + 15\mathbb{Z}$
- $6 + 15\mathbb{Z}$
- $9 + 15\mathbb{Z}$
- $10 + 15\mathbb{Z}$
- $12 + 15\mathbb{Z}$

Question 2

b) is cryptosystem while a) is not.

Reason:

Recall that one properity of a cryptosystem is that for all encryption keys in the keyspace there must exist a decryption key such that decrypting the encryption returns the original plain text.

In the context of the provided scheme, the mapping from $x \pmod{m} \mapsto kx \pmod{m}$ can be reversed by multiplying k with its inverse in modulo m.

Since scheme a) puts no restrictions on k this means that all keys in the keyspace must be invertible in m, which is only true when m is a prime number, and 26 is clearly not. Thus there exists a key where its inverse, k^{-1} , is not uniquely identifiable. Therefore there is no gaurentee that $\mathcal{D}_{k^{-1}}(\mathcal{E}_k(p)) = p$, thus the properity is not satisfied. (The restriction in scheme b gaurentees that all keys are invertible).

Cryptosystem's details: (scheme b)

• Plaintext Space: \mathbb{Z}_{26}

• Ciphertext Space: \mathbb{Z}_{26}

• Key Space: $\{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25\}$.

Question 3

```
1. \varphi(2024) = 880
```

2. $\varphi(2025) = 1080$

3. $\varphi(8958) = 2984$

3

²any value in $(\mathbb{Z}/26\mathbb{Z})^*$ is a valid key for the mapping.

³I wrote a C++ program to calculate Question 3 for me

Question 4

Plain and Cipher Spaces:

The plain and cipher text can be any string over Σ . Thus the Plain text and Cipher text space is the set of all possible strings over the alphabet, denoted as Σ^*

aside:

The alphabet $\Sigma = \{A..Z\}$ can be mapped to integers $\mathbb{Z}_{26} = \{0..25\}$ in lexigraphical order.

Encryption and Decryption Functions

The described encryption and decryption procedures can each be represented as the composition of 2 functions:

- Encryption: function \mathcal{E}' that shifts symbols and a function R that reverses a sequence
- Decryption: function R that reverses a sequence and a function \mathcal{D}' that shifts symbols

First, let a string/sequence $X = \{x_i\}_{i=1}^n$

We now define the functions $\mathcal{E}', \mathcal{D}'$ and R as follows:

$$\mathcal{E}'_{k_1,k_2}(X)$$
: $x_i + k_2 \pmod{26}$, $i|2$
 $x_i + k_1 \pmod{26}$, otherwise

$$\mathcal{D}'_{k_1,k_2}(X)$$
: $x_i - k_2 \pmod{26}$, $i|2$
 $x_i - k_1 \pmod{26}$, otherwise

$$R(X)$$
: $x_i = x_{n-i+1}$

We can now write the Encryption and Decryption functions as:

$$\mathcal{E}=\mathcal{E}'_{k_1,k_2}\circ R$$

$$\mathcal{D} = R \circ \mathcal{D}'_{k_1, k_2}$$

Key Space:

Observe that the symbols and the operations \mathcal{E}' and \mathcal{D}' that we perform on them is just the group $(\mathbb{Z}/m\mathbb{Z}, +)$ with m = 26. So the inverse of any $k \pmod{26}$ is $-k \pmod{26}$. This means that any integer value of k is a valid key. Thus the keyspace is \mathbb{Z}_{26} .

Conclusion:

Since the procedure has:

- 1. a Plain text space
- 2. a Cipher text space
- 3. a Key space

- 4. an Encryption Function
- 5. a Decryption Function
- 6. Satisfies that $\mathcal{D}(\mathcal{E}(p)) = p$ (since all keys are invertible)

This means that it is a valid cryptosystem as it satisfies all the properities of one.

Question 5

Given the encryption function:

$$\mathcal{E}(x) = ax + b \pmod{m}$$

And the restriction that a needs to have a multiplicative inverse in m, we have it that for:

• m=30:

```
b \in \mathbb{Z}_{30} so b can have 30 different values a \in (\mathbb{Z}/30\mathbb{Z})^* so a can have \varphi(30) = 8
```

Thus there are 30 * 8 = 240 possible keys

• m=29:

```
b \in \mathbb{Z}_{29} so b can have 29 different values a \in (\mathbb{Z}/29\mathbb{Z})^* so a can have \varphi(29) = 28
```

Thus there are 29 * 28 = 812 possible keys