Real Analysis I: Continuity

Arjun Vardhan

† Created: 25th February 2022 Last updated: 4th April 2022

Limits of Functions

- Let X and Y be metric spaces. Suppose $E \subset X$, f maps E into Y, and p is a limit point of E. Then, $\lim_{x \to 0} f(x) = q$ if there exists a point $q \in Y$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that $d_X(x,p) < \delta \implies d_Y(f(x),q) < \epsilon$, where $x \in E$. Restated in terms of \mathbb{R} : Let $f: D \to \mathbb{R}$, where D is a non-empty subset of \mathbb{R} . $\lim_{x\to p} f(x) = q$ if for every $\epsilon > 0$, there exists a $\delta > 0$ such that $x \in D, |x - p| < \delta \implies |f(x) - q| < \epsilon.$
- $\lim_{x\to p} f(x) = q$ if and only if $\lim_{n\to\infty} f(p_n) = q$ for every sequence $\{p_n\}$ in E such that $p_n \neq p$ and $p_n \to p$. Proof: Suppose $\lim_{x\to p} f(x) = q$. Choose an appropriate $\{p_n\}$ in E. Then, there exists $\delta > 0$ such that $d_Y(f(x),q) < \epsilon$ if $x \in E$ and $0 < d_X(x,p) < \delta$. Also there exists N such that $n \geq N$ implies $0 < d_X(p_n, p) < \delta$. Therefore, for $n \geq N$, $d_Y(f(p_n), q) < \epsilon$, and thus $f(p_n) \to q$. Conversely, suppose $\lim_{x\to p} f(x) \neq q$. Then there exists an $\epsilon > 0$ such that for every $\delta > 0$, there exists an $x \in E$ such that $d_Y(f(x), q) \ge \epsilon$ but $0 < d_X(x, p) < \delta$. Let $\delta_n = \frac{1}{n}$, $n \in \mathbb{N}$. Then the corresponding x_n is a sequence in E which converges to p and $x_n \neq p$, but $f(x_n)$ does not converge
- If f has a limit at p, then this limit is unique.
- Algebra of Limits: Let $E \subset X$ be a metric space and f,g be complex functions on E. Let p be a limit point of E, $\lim_{x\to p} f(x) = A$, and $\lim_{x\to p} g(x) = B$. Then,

 - 1. $\lim_{x \to p} (f+g)(x) = A + B$. 2. $\lim_{x \to p} (fg)(x) = AB$.
 - 3. $\lim_{x \to p} \left(\frac{f}{g}\right)(x) = \frac{A}{B}$, if $B \neq 0$.

These properties follow from the analogous properties of sequences.

$\mathbf{2}$ **Continuous Functions**

- Let X and Y be metric spaces. Suppose $E \subset X$, f maps E into Y, and p is a limit point of E. Then, f is said to be continuous at p if for every $\epsilon > 0$, there exists $\delta > 0$ such that $d_X(x,p) < \delta \implies d_Y(f(x),f(p)) < \epsilon$, i.e, $\lim_{x \to p} f(x) = f(p)$.
- If f is continuous at every point of E, then it is said to be continuous on E.
- Suppose X,Y,Z are metric spaces, $E \subset X$, $f:E \to Y$, $g:f(E) \to Z$, and $h:E \to Z$, h(x) = g(f(x)). If f is continuous at $p \in E$ and g is continuous at f(p), then h is **continuous at** p. Proof: Let $\epsilon > 0$ be given. Since g is continuous at f(p), there exists $\eta > 0$ such that $d_Z(g(y), g(f(p))) < \epsilon$ if $d_Y(y, f(p)) < \eta$ and $y \in f(E)$. Since f is continuous at p, there exists $\delta > 0$ such that $d_Y(f(x), f(p)) < \epsilon$ if $d_X(x, p) < \delta$ and $x \in E$. It follows that $d_Z(h(x),h(p)) = d_Z(g(f(x)),g(f(p))) < \epsilon$ if $d_X(x,P) < \delta$. Thus h is continuous at p.
- If f, g are continuous at a limit point p, then so are f + g, fg,, and $\frac{f}{g}$ if $g(p) \neq 0$. This follows from the algebra of limits.

- 3 Continuity and Compactness
 - •
- 4 Continuity and Connectedness
 - .
- 5 Discontinuities
 - •
- 6 Monotonic Functions
 - •
- 7 Infinite Limits and Limits at Infinity
 - •