

Prof. Rilder S. Pires

MBA em Ciência de Dados

Ementa:

► Conceitos de Axiomas da Probabilidade

- ► Conceitos de Axiomas da Probabilidade
- ▶ Atribuições das Probabilidades

- ► Conceitos de Axiomas da Probabilidade
- ► Atribuições das Probabilidades
- O que é uma variável aleatória?

- Conceitos de Axiomas da Probabilidade
- ► Atribuições das Probabilidades
- ▶ O que é uma variável aleatória?
- ▶ Distribuição de Probabilidade Discretas:
 - Distribuição de Bernoulli,
 - Distribuição Binomial,
 - Distribuição de Poisson,
 - Distribuição Geométrica e Hipergeométrica

- ► Conceitos de Axiomas da Probabilidade
- ► Atribuições das Probabilidades
- ▶ O que é uma variável aleatória?
- ▶ Distribuição de Probabilidade Discretas:
 - ▶ Distribuição de Bernoulli,
 - Distribuição Binomial,
 - Distribuição de Poisson,
 - Distribuição Geométrica e Hipergeométrica
- Distribuições Contínuas:
 - ▶ Distribuição Uniforme,
 - Distribuição Exponencial,
 - Distribuição Normal ou Gaussiana,
 - Cálculo de Probabilidade em Distribuições Normais e Funções lineares de Distribuições Normais.

- ► Conceitos de Axiomas da Probabilidade
- ► Atribuições das Probabilidades
- ▶ O que é uma variável aleatória?
- ▶ Distribuição de Probabilidade Discretas:
 - Distribuição de Bernoulli,
 - Distribuição Binomial,
 - Distribuição de Poisson,
 - Distribuição Geométrica e Hipergeométrica
- Distribuições Contínuas:
 - ▶ Distribuição Uniforme,
 - Distribuição Exponencial,
 - Distribuição Normal ou Gaussiana,
 - Cálculo de Probabilidade em Distribuições Normais e Funções lineares de Distribuições Normais.
- Inferência Estatística: Noções de amostragem e estimação.

Encontros:

Encontros:

 \blacktriangleright Módulo 1: 09, 10 e 11 de dezembro de 2021

Encontros:

- ▶ Módulo 1: 09, 10 e 11 de dezembro de 2021
- ▶ Módulo 2: 13, 14 e 15 de janeiro de 2022

Encontros:

- ▶ Módulo 1: 09, 10 e 11 de dezembro de 2021
- ▶ Módulo 2: 13, 14 e 15 de janeiro de 2022
- ▶ Módulo 3: 27, 28 e 29 de janeiro de 2022

Encontros:

- ▶ Módulo 1: 09, 10 e 11 de dezembro de 2021
- ▶ Módulo 2: 13, 14 e 15 de janeiro de 2022
- ▶ Módulo 3: 27, 28 e 29 de janeiro de 2022

Encontros:

- ▶ Módulo 1: 09, 10 e 11 de dezembro de 2021
- ▶ Módulo 2: 13, 14 e 15 de janeiro de 2022
- ▶ Módulo 3: 27, 28 e 29 de janeiro de 2022

Observações:

▶ Aulas remotas, híbridas ou presenciais

Encontros:

- ▶ Módulo 1: 09, 10 e 11 de dezembro de 2021
- ▶ Módulo 2: 13, 14 e 15 de janeiro de 2022
- ▶ Módulo 3: 27, 28 e 29 de janeiro de 2022

- Aulas remotas, híbridas ou presenciais
- ► Aulas teóricas e práticas

Encontros:

- ▶ Módulo 1: 09, 10 e 11 de dezembro de 2021
- ▶ Módulo 2: 13, 14 e 15 de janeiro de 2022
- ▶ Módulo 3: 27, 28 e 29 de janeiro de 2022

- Aulas remotas, híbridas ou presenciais
- Aulas teóricas e práticas
- ► Conclusão da disciplina: Projeto Final

Encontros:

- ▶ Módulo 1: 09, 10 e 11 de dezembro de 2021
- ▶ Módulo 2: 13, 14 e 15 de janeiro de 2022
- ▶ Módulo 3: 27, 28 e 29 de janeiro de 2022

- Aulas remotas, híbridas ou presenciais
- Aulas teóricas e práticas
- ▶ Conclusão da disciplina: Projeto Final
- ► Linguagem utilizada: Python

Projeto Final

Projeto Final

► Análise de Dados Sócio-Econômicos das Mesoregiões Cearenses

Projeto Final

► Análise de Dados Sócio-Econômicos das Mesoregiões Cearenses

Pergunta Norteadora:

Projeto Final

► Análise de Dados Sócio-Econômicos das Mesoregiões Cearenses

Pergunta Norteadora:

▶ Quão diferente são as Mesoregiões Cearenses?

Projeto Final

► Análise de Dados Sócio-Econômicos das Mesoregiões Cearenses

Pergunta Norteadora:

▶ Quão diferente são as Mesoregiões Cearenses?

Projeto Final

▶ Análise de Dados Sócio-Econômicos das Mesoregiões Cearenses

Pergunta Norteadora:

▶ Quão diferente são as Mesoregiões Cearenses?

Observações:

▶ Dados da Plataforma SIDRA-IBGE

Projeto Final

► Análise de Dados Sócio-Econômicos das Mesoregiões Cearenses

Pergunta Norteadora:

▶ Quão diferente são as Mesoregiões Cearenses?

- ▶ Dados da Plataforma SIDRA-IBGE
- ➤ Produção Agrícola Municipal (https://sidra.ibge.gov.br/tabela/5457)

Projeto Final

▶ Análise de Dados Sócio-Econômicos das Mesoregiões Cearenses

Pergunta Norteadora:

▶ Quão diferente são as Mesoregiões Cearenses?

- ▶ Dados da Plataforma SIDRA-IBGE
- ➤ Produção Agrícola Municipal (https://sidra.ibge.gov.br/tabela/5457)
- ➤ Produto Interno Bruto dos Municípios (https://sidra.ibge.gov.br/tabela/5938)

Projeto Final

▶ Análise de Dados Sócio-Econômicos das Mesoregiões Cearenses

Pergunta Norteadora:

▶ Quão diferente são as Mesoregiões Cearenses?

- ▶ Dados da Plataforma SIDRA-IBGE
- ➤ Produção Agrícola Municipal (https://sidra.ibge.gov.br/tabela/5457)
- ➤ Produto Interno Bruto dos Municípios (https://sidra.ibge.gov.br/tabela/5938)
- Estimativas de População: (https://sidra.ibge.gov.br/tabela/6579)

Projeto Final

► Análise de Dados Sócio-Econômicos das Mesoregiões Cearenses

Pergunta Norteadora:

▶ Quão diferente são as Mesoregiões Cearenses?

- ▶ Dados da Plataforma SIDRA-IBGE
- ➤ Produção Agrícola Municipal (https://sidra.ibge.gov.br/tabela/5457)
- ➤ Produto Interno Bruto dos Municípios (https://sidra.ibge.gov.br/tabela/5938)
- Estimativas de População: (https://sidra.ibge.gov.br/tabela/6579)
- Entregar os notebooks com códigos e explicações.

Estatística Básica:

▶ Medidas de Tendência Central:

- ▶ Medidas de Tendência Central:
 - ► Média

- ▶ Medidas de Tendência Central:
 - ► Média
 - ► Mediana

- ▶ Medidas de Tendência Central:
 - ► Média
 - ► Mediana
 - ► Moda

- ▶ Medidas de Tendência Central:
 - ► Média
 - Mediana
 - ► Moda
- ► Medidas de Variabilidade:

- ► Medidas de Tendência Central:
 - ► Média
 - ► Mediana
 - ► Moda
- ► Medidas de Variabilidade:
 - Desvio padrão

- ► Medidas de Tendência Central:
 - ► Média
 - ► Mediana
 - ► Moda
- ► Medidas de Variabilidade:
 - Desvio padrão
 - ▶ Valor mínimo

- ► Medidas de Tendência Central:
 - ► Média
 - Mediana
 - ► Moda
- ► Medidas de Variabilidade:
 - Desvio padrão
 - ► Valor mínimo
 - ▶ Valor máximo

Revisão

Estatística Básica:

- ▶ Medidas de Tendência Central:
 - ► Média
 - ► Mediana
 - ► Moda
- ► Medidas de Variabilidade:
 - Desvio padrão
 - ► Valor mínimo
 - ▶ Valor máximo
- ▶ Quantils:

Revisão

Estatística Básica:

- ▶ Medidas de Tendência Central:
 - ► Média
 - ► Mediana
 - ► Moda
- ► Medidas de Variabilidade:
 - Desvio padrão
 - ► Valor mínimo
 - ▶ Valor máximo
- ▶ Quantils:
 - ► Quartis

Revisão

Estatística Básica:

- ▶ Medidas de Tendência Central:
 - ► Média
 - Mediana
 - ► Moda
- ► Medidas de Variabilidade:
 - Desvio padrão
 - ► Valor mínimo
 - ▶ Valor máximo
- ▶ Quantils:
 - ▶ Quartis
 - Percentis

Introdução:

O que é Probabilidade?

Introdução:

O que é Probabilidade?

▶ Probabilidade é uma forma matemática de quantificar a incerteza.

Espaço Amostral e Eventos:

ightharpoonup O espaço amostral Ω é o conjunto de todos os resultados possíveis de um experimento.

Espaço Amostral e Eventos:

▶ O espaço amostral Ω é o conjunto de todos os resultados possíveis de um experimento. Pontos ω em Ω são chamados de resultados, realizações ou elementos.

Espaço Amostral e Eventos:

▶ O espaço amostral Ω é o conjunto de todos os resultados possíveis de um experimento. Pontos ω em Ω são chamados de resultados, realizações ou elementos. Subconjuntos de Ω são chamados de Eventos.

- ▶ O espaço amostral Ω é o conjunto de todos os resultados possíveis de um experimento. Pontos ω em Ω são chamados de resultados, realizações ou elementos. Subconjuntos de Ω são chamados de Eventos.
- Exemplo 1: Se jogarmos uma moeda uma vez, então $\Omega = \{H, T\}$. O evento em que o resultado do lance é cara é $A = \{H\}$.

- ▶ O espaço amostral Ω é o conjunto de todos os resultados possíveis de um experimento. Pontos ω em Ω são chamados de resultados, realizações ou elementos. Subconjuntos de Ω são chamados de Eventos.
- Exemplo 1: Se jogarmos uma moeda uma vez, então $\Omega = \{H, T\}$. O evento em que o resultado do lance é cara é $A = \{H\}$.
- Exemplo 2:
 Se jogarmos uma moeda duas vezes, então Ω =?.
 O evento em que o primeiro lance é cara é A =?.

- ▶ O espaço amostral Ω é o conjunto de todos os resultados possíveis de um experimento. Pontos ω em Ω são chamados de resultados, realizações ou elementos. Subconjuntos de Ω são chamados de Eventos.
- Exemplo 1: Se jogarmos uma moeda uma vez, então $\Omega = \{H, T\}$. O evento em que o resultado do lance é cara é $A = \{H\}$.
- Exemplo 2: Se jogarmos uma moeda duas vezes, então $\Omega = \{HH, HT, TH, TT\}.$ O evento em que o primeiro lance é cara é A = ?.

- ▶ O espaço amostral Ω é o conjunto de todos os resultados possíveis de um experimento. Pontos ω em Ω são chamados de resultados, realizações ou elementos. Subconjuntos de Ω são chamados de Eventos.
- Exemplo 1: Se jogarmos uma moeda uma vez, então $\Omega = \{H, T\}$. O evento em que o resultado do lance é cara é $A = \{H\}$.
- Exemplo 2: Se jogarmos uma moeda duas vezes, então $\Omega = \{HH, HT, TH, TT\}.$ O evento em que o primeiro lance é cara é $A = \{HH, HT\}.$

Definição:

Definição:

▶ Uma função \mathbb{P} que atribui um número real $\mathbb{P}(A)$ a cada evento A é uma **distribuição de probabilidade** ou uma **medida de probabilidade** se satisfizer os três axiomas a seguir:

Definição:

▶ Uma função \mathbb{P} que atribui um número real $\mathbb{P}(A)$ a cada evento A é uma distribuição de probabilidade ou uma medida de probabilidade se satisfizer os três axiomas a seguir:

Axioma 1: $\mathbb{P}(A) \geq 0$ para todo A

Definição:

▶ Uma função \mathbb{P} que atribui um número real $\mathbb{P}(A)$ a cada evento A é uma distribuição de probabilidade ou uma medida de probabilidade se satisfizer os três axiomas a seguir:

Axioma 1: $\mathbb{P}(A) \geq 0$ para todo A

Axioma 2: $\mathbb{P}(\Omega) = 1$

Definição:

▶ Uma função \mathbb{P} que atribui um número real $\mathbb{P}(A)$ a cada evento A é uma distribuição de probabilidade ou uma medida de probabilidade se satisfizer os três axiomas a seguir:

Axioma 1: $\mathbb{P}(A) \geq 0$ para todo A

Axioma 2: $\mathbb{P}(\Omega) = 1$

Axioma 3: Se A_1, A_2, \dots são disjuntos então

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$$

Interpretações:

Interpretações:

 \blacktriangleright Existem muitas interpretações para $\mathbb{P}(A).$

Interpretações:

- ightharpoonup Existem muitas interpretações para $\mathbb{P}(A)$.
 - ▶ Interpretação da frequência: $\mathbb{P}(A)$ é a proporção de longo prazo de vezes que A é verdadeiro nas repetições.

Interpretações:

- ightharpoonup Existem muitas interpretações para $\mathbb{P}(A)$.
 - ▶ Interpretação da frequência: $\mathbb{P}(A)$ é a proporção de longo prazo de vezes que A é verdadeiro nas repetições.

Interpretações:

- ightharpoonup Existem muitas interpretações para $\mathbb{P}(A)$.
 - ▶ Interpretação da frequência: $\mathbb{P}(A)$ é a proporção de longo prazo de vezes que A é verdadeiro nas repetições.
 - ▶ Interpretação do grau de crença: $\mathbb{P}(A)$ mede a grau de crença de um observador de que A é verdadeiro.

Interpretações:

- ightharpoonup Existem muitas interpretações para $\mathbb{P}(A)$.
 - ▶ Interpretação da frequência: $\mathbb{P}(A)$ é a proporção de longo prazo de vezes que A é verdadeiro nas repetições.
 - ▶ Interpretação do grau de crença: $\mathbb{P}(A)$ mede a grau de crença de um observador de que A é verdadeiro.
- ► Em qualquer das interpretações, os axiomas de 1 a 3 devem ser válidos.

Interpretações:

- ightharpoonup Existem muitas interpretações para $\mathbb{P}(A)$.
 - ▶ Interpretação da frequência: $\mathbb{P}(A)$ é a proporção de longo prazo de vezes que A é verdadeiro nas repetições.
 - ▶ Interpretação do grau de crença: $\mathbb{P}(A)$ mede a grau de crença de um observador de que A é verdadeiro.
- ► Em qualquer das interpretações, os axiomas de 1 a 3 devem ser válidos.
- ▶ A diferença na interpretação não importará muito até que lidemos com **inferência estatística**. Lá, as diferentes interpretações levam a duas escolas de inferência: a **escola frequentista** e a **escola bayesiana**.

Propriedades:

 \blacktriangleright Pode-se derivar muitas propriedades de $\mathbb P$ dos axiomas, tais como:

- \blacktriangleright Pode-se derivar muitas propriedades de $\mathbb P$ dos axiomas, tais como:
- $\blacktriangleright \ \mathbb{P}(\emptyset) = 0$

- ightharpoonup Pode-se derivar muitas propriedades de $\mathbb P$ dos axiomas, tais como:
- $ightharpoonup \mathbb{P}(\emptyset) = 0$
- $A \subset B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$

- ightharpoonup Pode-se derivar muitas propriedades de $\mathbb P$ dos axiomas, tais como:
- $ightharpoonup \mathbb{P}(\emptyset) = 0$
- $A \subset B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$
- $ightharpoonup 0 \le \mathbb{P}(A) \le 1$

- ▶ Pode-se derivar muitas propriedades de \mathbb{P} dos axiomas, tais como:
- $ightharpoonup \mathbb{P}(\emptyset) = 0$
- $A \subset B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$
- $ightharpoonup 0 \le \mathbb{P}(A) \le 1$
- $\triangleright \mathbb{P}(A^c) = 1 \mathbb{P}(A)$

- ▶ Pode-se derivar muitas propriedades de \mathbb{P} dos axiomas, tais como:
- $ightharpoonup \mathbb{P}(\emptyset) = 0$
- $A \subset B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$
- $ightharpoonup 0 \le \mathbb{P}(A) \le 1$
- $ightharpoonup \mathbb{P}(A^c) = 1 \mathbb{P}(A)$
- $A \cap B = \emptyset \Rightarrow \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$

Propriedades:

- ightharpoonup Pode-se derivar muitas propriedades de $\mathbb P$ dos axiomas, tais como:
- $ightharpoonup \mathbb{P}(\emptyset) = 0$
- $A \subset B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$
- $ightharpoonup 0 \le \mathbb{P}(A) \le 1$
- $A \cap B = \emptyset \Rightarrow \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$

Uma propriedade menos óbvia é dada por:

Propriedades:

- ▶ Pode-se derivar muitas propriedades de \mathbb{P} dos axiomas, tais como:
- $ightharpoonup \mathbb{P}(\emptyset) = 0$
- $A \subset B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$
- $ightharpoonup 0 \le \mathbb{P}(A) \le 1$
- $ightharpoonup \mathbb{P}(A^c) = 1 \mathbb{P}(A)$
- $A \cap B = \emptyset \Rightarrow \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$

Uma propriedade menos óbvia é dada por:

- **Exemplo:** Duas moedas foram lançadas. Seja H_1 o evento em que cara ocorre no lance 1 e seja H_2 o evento em que cara ocorre no lance 2.

$$\mathbb{P}(H_1 \cup H_2) = \mathbb{P}(H_1) + \mathbb{P}(H_2) - \mathbb{P}(H_1 H_2) = 1/2 + 1/2 - 1/4 = 3/4.$$

Probabilidade em Espaços Amostrais Finitos:

▶ Suponha que o espaço amostral $\Omega = \{\omega_1, \dots, \omega_n\}$ seja finito.

- ▶ Suponha que o espaço amostral $\Omega = \{\omega_1, \dots, \omega_n\}$ seja finito.
- ▶ Por exemplo, se lançarmos um dado duas vezes, então Ω terá 36 elementos: $\Omega = \{(i, j); i, j \in \{1, \dots 6\}\}.$

- ▶ Suponha que o espaço amostral $\Omega = \{\omega_1, \dots, \omega_n\}$ seja finito.
- ▶ Por exemplo, se lançarmos um dado duas vezes, então Ω terá 36 elementos: $\Omega = \{(i,j); i,j \in \{1,\dots 6\}\}.$
- ▶ Se cada resultado for igualmente provável, então P(A) = |A|/36 onde |A| denota o número de elementos em A.

- ▶ Suponha que o espaço amostral $\Omega = \{\omega_1, \dots, \omega_n\}$ seja finito.
- ▶ Por exemplo, se lançarmos um dado duas vezes, então Ω terá 36 elementos: $\Omega = \{(i,j); i,j \in \{1,\dots 6\}\}.$
- ▶ Se cada resultado for igualmente provável, então P(A) = |A|/36 onde |A| denota o número de elementos em A.
- ➤ A probabilidade de que a soma dos dados seja 11 é 2/36, uma vez que existem dois resultados que correspondem a este evento.

Probabilidade em Espaços Amostrais Finitos:

- ▶ Suponha que o espaço amostral $\Omega = \{\omega_1, \dots, \omega_n\}$ seja finito.
- ▶ Por exemplo, se lançarmos um dado duas vezes, então Ω terá 36 elementos: $\Omega = \{(i,j); i,j \in \{1,\dots 6\}\}.$
- ▶ Se cada resultado for igualmente provável, então P(A) = |A|/36 onde |A| denota o número de elementos em A.
- ➤ A probabilidade de que a soma dos dados seja 11 é 2/36, uma vez que existem dois resultados que correspondem a este evento.
- ightharpoonup Se Ω for finito e cada resultado for igualmente provável, então

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|},$$

que é chamada de distribuição uniforme de probabilidade.

Eventos Independentes:

Eventos Independentes:

▶ Se jogarmos uma moeda justa duas vezes, a probabilidade de duas caras é $\frac{1}{2} \times \frac{1}{2}$.

Eventos Independentes:

- ▶ Se jogarmos uma moeda justa duas vezes, a probabilidade de duas caras é $\frac{1}{2} \times \frac{1}{2}$.
- Multiplicamos porque consideramos as duas jogadas independentes.

Eventos Independentes:

- ▶ Se jogarmos uma moeda justa duas vezes, a probabilidade de duas caras é $\frac{1}{2} \times \frac{1}{2}$.
- Multiplicamos porque consideramos as duas jogadas independentes.
- ▶ Definição:

Dois eventos A e B são **independentes** se

$$\mathbb{P}(AB) = \mathbb{P}(A)\mathbb{P}(B)$$

Um conjunto de eventos $\{A_i : i \in I\}$ é independente se

$$\mathbb{P}\left(\bigcap_{i\in J}A_i\right) = \prod_{i\in J}\mathbb{P}(A_i)$$

para cada subconjunto finito J de I.

Fim

Obrigado pela atenção!