Grau InterUniversitari d'Estadística UB-UPC

Teoria de Cues i Simulació

2on Examen Parcial. Curs 2012-13

P1 [6 punts] Pel trasllat de passatgers des d'una terminal d'aeroport a un altre terminal s'ha habilitat un sistema de micro-busos que opera des de la sortida de la terminal de l'aeroport fins al centre de la ciutat formant-se una línia punt a punt sense parades enmig. L'afluència dels passatgers per usar el sistema de trasllat és aleatòria seguint una distribució Poissoniana, es manté regular durant tots els dies de l'any i és de 20 passatgers per minut en promig. Es disposa de dos parades que operen en paral·lel. Els micro-busos no surten de les parades fins que estan plens amb 10 passatgers. En marxar un micro-bus d'una de les dues parades n'arriba un altre per substituir-lo en 29 segons (temps constant)

- a) [2 punts] Identifiqueu un model de cues per modelitzar el número de grups de 10 pax. presents a la terminal, el valor mig del temps que tarden 10 passatgers en arribar i la seva desviació estàndar i determineu el factor de càrrega del model de cues.
- b) [1,5 punts] Calculeu, utilitzant una aproximació, el número mig de grups de 10 passatgers presents en la terminal esperant a un micro-bus.
- c) [0,5 punts] Calculeu el número mig de micro-busos que surten de la terminal per unitat de temps
- d) [2 punts] En un instant determinat només pot habilitar-se una parada. Com altera això l'anterior model de cues? Calculeu la probabilitat de que un micro-bus que arriba a la terminal hagi d'esperar per carregar els 10 passatgers corresponents. Repetiu l'apartat b) per aquesta situació.

P2. [4 punts]

0.1319	0.2803	0.2061	0.9608	0.4167	0.3831	0.3340	0.7509	0.3359	0.8669
0.9992	0.9590	0.4232	0.1480	0.6077	0.3465	0.1932	0.5370	0.1072	0.7807
0.2400	0.6771	0.7164	0.1821	0.6170	0.9245	0.5791	0.3453	0.8305	0.6658
0.7220	0.3688	0.7989	0.1439	0.9171	0.6567	0.6899	0.7151	0.9439	0.6219
0.3253	0.7880	0.1782	0.2299	0.4181	0.8936	0.1243	0.9390	0.7819	0.0884

Pel sistema de trasllat de passatgers del problema anterior, considereu ara que només hi ha operativa una parada i que l'afluència dels passatgers a la parada és de 60 passatgers per hora, sent aquesta quantitat aleatòria i seguint una distribució de Poisson; pot acceptar-se que el temps entre dues arribades consecutives està exponencialment distribuït. Els mini-busos tenen una capacitat per 4 passatgers i no abandonen la parada fins que poden estar complets amb tots 4 passatgers per transportar. El temps per pujar els 4 passatgers en un micro-bus pot considerar-se negligible. Una vegada s'ha emplenat un micro-bus pot considerar-se que n'arriba un altre instantàniament a la parada.

- a) [2,5 punts] Escriviu un pseudocodi que permeti avaluar per n micro-busos arribats: a) l'ocupació temporal mitjana de la parada de micro-busos i b) el temps mig que esperen els passatgers a la parada. Utilitzeu les variables: Tck = instant de rellotge, t1,t2,t3,t4 = instant d'arribada pax 1, 2, 3, 4. X =número de passatgers en la parada, T instant de partida del micro-bus W temps mig esperat pels 4 passatgers d'un microbus.
- b) [1,5 punts] Utilitzant la taula de números aleatoris entre 0 i 1 de la capçalera reporteu per n=3 el valor de les magnituds t1,t2,t3,t4,T, W.

E10/D/2 E[x]=295 0x = 0 b) aller Cureza 0 = sp = 0'96 Lg = C(S,O) { (22+ 62) ((S,0)= 2 1-P 0'9043 1+8+02) 1'96+0'9043 = 013147 02 = 0'96 2 = 0'9043 2(1-6) = 2(1-0,483) = 0,4043 1+0 = 11096 = 192 19 = 0'3149 0'483 1 = 0'0147 9) >= 130 5 -> 2 busos ger mint. d/ P= 29 = 096 Killerskin Ego/018 Lg = G2+ 62 Cx2 - 1/10 + 0.092 = 1/451 Pa-1-P'= 003

Tok = 0; X=0; K=4; +1=+2=+3=+4=0; Per i=1... n fer fenera v Z; +1 = Tac + Z; L = L + Zz fenera Zz; +2 = +1 + Zz; L = L + Zz genera Zz; +3 = +2 + Zz; L = L + ZZz general Zy +4= +3+Zy L= L+3Z W=((+1-+1)+(+1-+2)+(+1-+3))/4; L= L/(tr-tas) = T= +4; X= X+4; eserione \$1, \$2, \$3, \$4, w; Fac = \$4 Rizer general 2 Z= - /2 hu u ; d = 1 minut -1 n=1 rge=0 2, = - lu 0'1319 = 2'025 > t1 = 2'025 Z2 = - h 0 2803 = 1'271 ; +2 = 3'297 Z3 = - lu 0'2061 - 1'579; +3 = 4'877 Z4= - lu 0'9608 = 0'039; +4 = 4'917 L= (=2+23+34)/(912-0) = 0'924 W= 1'138 wints tex = 4'917 = - h 0'4167 = 0'875; fi = 5.792 72=- L-0'3831 = 0'959; t2=6'751 73 = - h 0'3340 = 1'096 / t3 = 7'848 74 = - h 0'7505 = 0'286 / t4 = 8'135 L= 4/009/8/135-4917) = (245 W= 4014/4=10038