# CS 3502 Operating Systems

### Interrupt

#### **Kun Suo**

Computer Science, Kennesaw State University

https://kevinsuo.github.io/

### **Outline**

- What is interrupt?
  - Interrupt vs Polling
  - Advanced programmable interrupt controller
  - Interrupt processing

- Interrupt types and affinity
  - Hardware and software interrupt
  - Interrupt affinity

### How can the processor work with hardware



When event happens
When task finishes
When job is ready
When user inputs something
When something is broken

...



- How can the processor work with hardware without impacting the machine's overall performance?
  - Polling: repeatedly check whether the hardware is ready or not

# **Polling**





# **Polling Drawbacks**

- How can the processor work with hardware without impacting the machine's overall performance?
  - Polling: repeatedly check whether the hardware is ready or not

Polling: overhead

Randomly Every Ns/min

1, Increase system overhead. Whether it is <u>task polling</u> or <u>timer polling</u>, it needs to consume the corresponding system resources.



- How can the processor work with hardware without impacting the machine's overall performance?
  - Polling: repeatedly check whether the hardware is ready or not

#### Polling: (timely)

2, Unable to sense device status changes <u>in a timely manner</u>. Device state changes during the polling interval can only be discovered on the next poll, which will not be able to meet real-time sensitive applications.



- How can the processor work with hardware without impacting the machine's overall performance?
  - Polling: repeatedly check whether the hardware is ready or not

Polling: resource efficiency

3, <u>waste CPU resources</u>. Polling is always in progress regardless of whether the device has changed state. In the real world, the state change of most devices is usually not so frequent, and polling idle will waste CPU time slices.



- How can the processor work with hardware without impacting the machine's overall performance?
  - Polling: repeatedly check whether the hardware is ready or not

#### Polling:

- 1, increase system overhead
- 2, cannot detect in time
- 3, waste of CPU resources



### What is interrupt?

- How can the processor work with hardware without impacting the machine's overall performance?
  - Polling: repeatedly check whether the hardware is ready or not
  - Interrupt: hardware signals to the kernel when attention is needed

#### Polling:

- 1, increase system overhead
- 2, cannot detect in time
- 3, waste of CPU resources



### Interrupt





# Interrupt vs. Polling

### Example for Polling and Interrupt



CPU (Mario)



I/O Device (Princess Peach)

Unregistered PowerVideoMaker

Reference: <a href="https://www.youtube.com/watch?v=M3nXI\_86ule">https://www.youtube.com/watch?v=M3nXI\_86ule</a>

# Interrupt vs. Polling

### Polling:

- increase system overhead
- cannot detect in time
- waste of CPU resources

### Interrupt

- lightweight and save CPU resources
- handle in time

# What will happen if you have too many phone calls?



- do not have time to work on valuable things
- might miss some important calls and tasks
- 3. loss data

### Interrupt problem



#### Interrupt:

Too many interrupt

- -> Less resources for IRQ handler
- -> miss some interrupt and data

#### **Phone sounds**

#### **Answer the call**





# **Combine Interrupt & Polling**



#### Interrupt:

Too many interrupt

- -> Less resources for IRQ handler
- -> miss some interrupt and data



NAPI: network receiving

# **Combine Interrupt & Polling**

#### Benefits

- Avoid frequent interruptions when receiving large amounts of data or requests
- No need to spend a lot of CPU resources for polling



## **Interrupt: Quick look**

\$ cat /proc/interrupts

\$ watch -n 1 cat /proc/interrupts

|   |     | CPU0 | CPU1    |         |             |                  |
|---|-----|------|---------|---------|-------------|------------------|
|   | 0:  | 1    | 0       | IO-APIC | 2-edge      | timer            |
|   | 1:  | 0    | 77      | IO-APIC | 1-edge      | i8042            |
|   | 8:  | 1    | 0       | IO-APIC | 8-edge      | rtc0             |
|   | 9:  | 0    | 0       | IO-APIC | 9-fasteoi   | acpi             |
|   | 12: | 15   | 0       | IO-APIC | 12-edge     | i8042            |
|   | 14: | 0    | 0       | IO-APIC | 14-edge     | ata_piix         |
|   | 15: | 0    | 1028751 | IO-APIC | 15-edge     | ata_piix         |
|   | 16: | 1    | 218     | IO-APIC | 16-fasteoi  | ∨mwgfx           |
|   | 17: | 0    | 477023  | IO-APIC | 17-fasteoi  | ioc0             |
|   | 24: | 0    | 0       | PCI-MSI | 344064-edge | PCIe PME, pciehp |
|   | 25: | 0    | 0       | PCI-MSI | 346112-edge | PCIe PME, pciehp |
| - | 26: | 0    | 0       | PCI-MSI | 348160-edge | PCIe PME, pciehp |
| ) | 27: | 0    | 0       | PCI-MSI | 350208-edae | PCIe PME, pciehp |

### **Exceptions**

An exception indicates that code running on the CPU
has created a situation that the processor needs help to
address.

- Can you think of examples of software exceptions?
  - Divide by zero -- probably kills the process.
  - Attempt to use a privileged instruction - also probably kills the process.
  - Attempt to use a virtual address that the CPU does not know how to translate -- a common exception handled transparently as part of virtual memory management.

## **Exceptions example**

```
Java - Example/src/com/tryDemo/ExcepHandlingDemo.java - Eclipse - /Users/sunitha/Documents/workspace/demo
                                                                                                                         🖺 🥦 Java EE 🐉 Java

■ ExcepHandlingDemo.java 

□ *Untitled 1
■ Package Explorer 🖾
▼ 😂 Example
                                    1 package com.tryDemo;
 ▼ # src
   ▼ ⊞ com.tryDemo
                                      public class ExcepHandlingDemo {
     ExcepHandlingDemo.java
  ▶ ■ JRE System Library [JavaSE-1.6]
                                           public static void main(String□ args) {
                                    6
                                                int value1 =4, value2=0, div=0;
                                                div = value1/value2;
                                    9
                                   10
                                                System.out.println("div value="+div);
                                   11
                                   12
                                                System.out.println("execution completed")
                                   13
                                   14
                                   15
                                   16
                                                                                                         🙎 Problems @ Javadoc 🚇 Declaration 💂 Console 🔀
                                  <terminated> ExcepHandlingDemo [Java Application] /System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home/bin/java (Nov 25, 2014, 11:51:44 AM)
                                  Exception in thread "main" java.lang.ArithmeticException: / by zero
                                           at com.tryDemo.ExcepHandlingDemo.main(ExcepHandlingDemo.java:9)
                                                                          Writable
                                                                                      Smart Insert
                                                                                                13:51
```

### **Exceptions example**







### **Exceptions example**

```
7331
                                       Python
ksuo@Kevins-MacBook-Pro-2017 ~> python
Python 2.7.10 (default, Feb 22 2019, 21:55:15)
[GCC 4.2.1 Compatible Apple LLVM 10.0.1 (clang-1001.0.37.14)] on darwi
Type "help", "copyright", "credits" or "license" for more information.
>>> ||
```

### Interrupt vs. Exception

- Interrupts are voluntary.
  - "The process actively asks for assistance."

- Exceptions are non-voluntary.
  - "It just tried to divide by zero, and I think it needs to be terminated. I need some help with this process."

### **Outline**

- What is interrupt?
  - Interrupt vs Polling
  - Advanced programmable interrupt controller
  - Interrupt processing
- Interrupt types and affinity
  - Hardware and software interrupt
  - Interrupt affinity



- Responsible for telling the CPU when a specific external device wishes to 'interrupt'
  - Needs to tell the CPU which one among several devices is the one needing service



### **APIC: Advanced progra**

# 2. APIC translates IRQ to interrupt number

- Raises interrupt to CPU
- Interrupt # available in register

| Resource | Device                                         | Status |
|----------|------------------------------------------------|--------|
| IRQ 0    | System timer                                   | OK     |
| IRQ 3    |                                                | OK     |
| IRQ 4    | Communications Port (COM1)                     | OK     |
| IRQ 6    | Standard floppy disk controller                | OK     |
| IRQ 8    | System CMOS/real time clock                    | OK     |
| IRQ 10   | NVIDIA nForce PCI System Management            | OK     |
| IRQ 10   | Multimedia Audio Controller                    | OK     |
| IRQ 13   | Numeric data processor                         | OK     |
| IRQ 14   | ATA Channel 0                                  | OK     |
| IRQ 15   | ATA Channel 1                                  | OK     |
| IRO 18   | Realtak RTI 8130/810v Family Fact Ethernat NIC | OK     |



### 3. Interrupts can have varying priorities

APIC also needs to prioritize multiple requests



4. Possible to "mask" (disable) interrupts at PIC or CPU



- Responsible for telling the CPU when a specific external device wishes to 'interrupt'
  - Needs to tell the CPU which one among several devices is the one needing service
- 2. APIC translates IRQ to interrupt number
  - Raises interrupt to CPU
  - Interrupt # available in register
- Interrupts can have varying priorities
  - APIC also needs to prioritize multiple requests
- 4. Possible to "mask" (disable) interrupts at PIC or CPU

# APIC: cat /proc/interrupts



Kennesaw State

CS 3502

```
1. ec2-user@ip-172-31-36-115:~ (ssh)
   fish /home/pi/D... 9 %1
                             ec2-user@ip-172-... #2
Fec2-user@ip-172-31-36-115 ~\$ cat /proc/interrupts
           CPU0
  0:
             47
                   IO-APIC
                             2-edge
                                          timer
                             1-ioapic-edge
                 xen-pirq
                                            i8042
                             4-ioapic-edge
           2599
                 xen-pirq
                                            ttyS0
  8:
                 xen-pirq
                             8-ioapic-edge
                                             rtc0
                             9-ioapic-level acpi
  9:
                 xen-pirq
 12:
                            12-ioapic-edae
                 xen-pirq
                                            i8042
                  IO-APIC
                            14-edae
                                          ata_piix
 14:
                  IO-APIC 15-edge
 15:
                                         ata_piix
 48:
                 xen-percpu
                                -vira
                                            timer0
 49:
                                -ipi
                 xen-percpu
                                            resched0
                                            callfunc0
 50:
                                -ipi
                 xen-percpu
 51:
                                -vira
                                            debug0
                 xen-percpu
 52:
                                -ipi
                                            callfuncsingle0
                 xen-percpu
 53:
                                -ipi
                                            spinlock0
                 xen-percpu
 54:
                                         xenbus
            254
                  xen-dyn
                              -event
 55:
          19103
                  xen-dyn
                                          eth0
                              -event
           6784
                   xen-dyn
                              -event
                                         blkif
                  Non-maskable interrupts
MMI:
LOC:
                  Local timer interrupts
SPU:
                   Spurious interrupts
PMI:
                  Performance monitoring interrupts
IWI:
                  IRO work interrupts
                  APIC ICR read retries
RTR:
RES:
                  Rescheduling interrupts
CAL:
                  Function call interrupts
TLB:
                  TLB shootdowns
TRM:
                  Thermal event interrupts
THR:
                  Threshold APIC interrupts
DFR:
                  Deferred Error APIC interrupts
MCE:
                  Machine check exceptions
MCP:
                  Machine check polls
HYP:
                  Hypervisor callback interrupts
          32046
ERR:
              0
MIS:
              0
                  Posted-interrupt notification event
PIN:
              0
NPI:
                   Nested posted-interrupt event
                   Posted-interrupt wakeup event
PIW:
```

# **APIC:** cat /proc/interrupts



### **Outline**

- What is interrupt?
  - Interrupt vs Polling
  - Advanced programmable interrupt controller
  - Interrupt processing
- Interrupt types and affinity
  - Hardware and software interrupt
  - Interrupt affinity

### Similar as System call table

- There are approximately 300 system-calls in Linux 2.6.
- An array of function-pointers (identified by the ID number)
- This array is named
   'sys\_call\_table[]' in Linux
   https://elixir.bootlin.com/lin
   ux/v5.0/source/arch/x86/en
   try/syscall\_64.c



The 'jump-table' idea

# Interrupt Descriptor Table (IDT)

- IDT is in memory, initialized by OS at boot
- IDT associates with each interrupt vector and stores the entry address of the corresponding interrupt handler



# The process of interrupt





# The process of interrupt

Take the *time interrupt* as an example











# Interrupt vs. Exception vs. System call

|                | Source                                     | Handling                          | Mechanism                                                                                                                                                                                                                                                                                                                                                                         |
|----------------|--------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Interrupt      | Device, etc.                               | Asynchronous                      | Interrupts are handled by the processor after finishing the current instruction. If it finds a signal on its interrupt pin, it will look up the address of the interrupt handler in the interrupt table and pass that routine control. After returning from the interrupt handler routine, it will resume program execution at the instruction after the interrupted instruction. |
| Exception      | Application or kernel unexpected behaviors | Synchronous                       | Exceptions on the other hand are divided into three kinds. These are Faults, Traps and Aborts. Faults are detected and serviced by the processor before the faulting instructions. Traps are serviced after the instruction causing the trap. Aborts are used only to signal severe system problems, when operation is no longer possible.                                        |
| System<br>call | Application requests                       | Asynchronous<br>or<br>Synchronous | A way for programs to interact with the operating system. A computer program makes a system call when it makes a request to the operating system's kernel. System call provides the services of the operating system to the user programs via API.                                                                                                                                |

#### **Outline**

- What is interrupt?
  - Interrupt vs Polling
  - Advanced programmable interrupt controller
  - Interrupt processing
- Interrupt types and affinity
  - Hardware and software interrupt
  - Interrupt affinity

#### **Hardware interrupt**

- Hardware interrupts are used to signal that a particular device needs attention:
  - a disk read completed, or
  - a network was connected, or
  - a timer is ready





#### Hardware interrupt: cat /proc/interrupts

|         |             |              |             | 1. f    | sh /home/pi/Downloads (ssh) |                       |                  |
|---------|-------------|--------------|-------------|---------|-----------------------------|-----------------------|------------------|
| fish /h | nome/pi/Dow | <b>%</b> 1   |             |         |                             |                       |                  |
| pi@rasp | berrypi ~/D | ownloads> co | t /proc/int | errupts |                             |                       |                  |
|         | CPU0        | CPU1         | CPU2        | CPU3    |                             |                       |                  |
| 16:     | 0           | 0            | 0           | 0       | bcm2836-timer 0 Edge        | arch_timer            |                  |
| 17:     | 21666       | 63962        | 23766       | 9395    | bcm2836-timer 1 Edge        | arch_timer            |                  |
| 21:     | 0           | 0            | 0           | 0       | bcm2836-pmu 9 Edge          | arm-pmu               |                  |
| 23:     | 3600        | 0            | 0           | 0       | ARMCTRL-level 1 Edge        | 3f00b880.mailbox      |                  |
| 24:     | 29          | 0            | 0           | 0       | ARMCTRL-level 2 Edge        | VCHIQ doorbell        |                  |
| 46:     | 0           | 0            | 0           | 0       | ARMCTRL-level 48 Edge       | bcm2708_fb dma        |                  |
| 48:     | 0           | 0            | 0           | 0       | ARMCTRL-level 50 Edge       | DMA IRQ               |                  |
| 50:     | 0           | 0            | 0           | 0       | ARMCTRL-level 52 Edge       | DMA IRQ               |                  |
| 51:     | 360         | 0            | 0           | 0       | ARMCTRL-level 53 Edge       | DMA IRQ               |                  |
| 54:     | 4908        | 0            | 0           | 0       | ARMCTRL-level 56 Edge       | DMA IRQ               |                  |
| 59:     | 0           | 0            | 0           | 0       | ARMCTRL-level 61 Edge       | bcm2835-auxirq        |                  |
| 62:     | 139344      | 0            | 0           | 0       | ARMCTRL-level 64 Edge       | dwc_otg, dwc_otg_pcd, | dwc_otg_hcd:usb1 |
| 86:     | 870         | 0            | 0           | 0       | ARMCTRL-level 88 Edge       | mmc0                  |                  |
| 87:     | 7237        | 0            | 0           | 0       | ARMCTRL-level 89 Edge       | uart-pl011            |                  |
| 92:     | 101080      | 0            | 0           | 0       | ARMCTRL-level 94 Edge       | mmc1                  |                  |
| 169:    | 0           | 0            | 0           | 0       | lan78xx-irqs 17 Edge        | usb-001:004:01        |                  |
| FIQ:    |             | usb_fiq      |             |         |                             |                       |                  |
| IPI0:   | 0           | 0            | 0           | 0       | CPU wakeup interrupts       |                       |                  |
| IPI1:   | 0           | 0            | 0           | 0       | Timer broadcast interrupt   | :s                    |                  |
| IPI2:   | 7855        | 81594        | 13799       | 6452    | Rescheduling interrupts     |                       |                  |
| IPI3:   | 10          | 6            | 9           | 8       | Function call interrupts    |                       |                  |
| IPI4:   | 0           | 0            | 0           | 0       | CPU stop interrupts         |                       |                  |
| IPI5:   | 7342        | 26013        | 5157        | 2072    | IRQ work interrupts         |                       |                  |
| IPI6:   | 0           | 0            | 0           | 0       | completion interrupts       |                       |                  |
| Err:    | 0           |              |             |         |                             |                       |                  |

# \$ watch -n 1 -d cat /proc/interrupts

|     |                        |                        |                         |                         | watch /home/ksuo                       |
|-----|------------------------|------------------------|-------------------------|-------------------------|----------------------------------------|
| ery | 1.0s: cat /            | /proc/inter            | rupts                   |                         | LinuxKernel2: Sun Feb 16 23:21:05 2020 |
|     | CDUO                   | CDUIA                  | CDUO                    | CDUS                    |                                        |
|     | CPU0                   | CPU1                   | CPU2                    | CPU3                    | TO ADTC 2 adas liman                   |
|     | 33                     | 0                      | 0                       | 0                       | IO-APIC 2-edge timer                   |
|     | 0                      | 9                      | 0                       | 0                       | IO-APIC 1-edge i8042                   |
|     | 0                      | 0                      | 3                       | 0                       | IO-APIC 6-edge floppy                  |
|     | 0                      | 0                      | 1                       | 0                       | IO-APIC 8-edge rtc0                    |
|     | 0                      | 0                      | 0                       | 0                       | IO-APIC 9-fasteoi acpi                 |
|     | 0                      | 0                      | 0                       | 0                       | IO-APIC 10-fasteoi virtio0             |
|     | 0                      | 0                      | 0                       | 0                       | IO-APIC 11-fasteoi uhci_hcd:usb1       |
|     | 15                     | 0                      | 0                       | 0                       | IO-APIC 12-edge i8042                  |
|     | 0                      | 0                      | 0                       | 0                       | IO-APIC 14-edge ata_piix               |
|     | 0                      | 0                      | 0                       | 0                       | IO-APIC 15-edge ata_piix               |
|     | 0                      | 0                      | 0                       | 0                       | PCI-MSI 81920-edge virtio2-config      |
|     | 31                     | 0                      | 0                       | 0                       | PCI-MSI 81921-edge virtio2-virtqueues  |
| :   | 0                      | 0                      | 0                       | 0                       | PCI-MSI 98304-edge virtio3-config      |
| :   | 0                      | 0                      | 877586                  | 0                       | PCI-MSI 98305-edge virtio3-req.0       |
| :   | 0                      | 0                      | 0                       | 0                       | PCI-MSI 65536-edge virtio1-config      |
| :   | 568                    | 0                      | 0                       | 102729 <mark>21</mark>  | PCI-MSI 65537-edge virtio1-input.0     |
| :   | 0                      | 3                      | 0                       | 0                       | PCI-MSI 65538-edge virtio1-output.0    |
|     | 0                      | 0                      | 0                       | _0                      | Non-maskable interrupts                |
|     | 325915 <mark>83</mark> | 226112 <mark>90</mark> | 1431215 <mark>61</mark> | 262749 <mark>9</mark> 0 | Local timer interrupts                 |
|     | 0                      | 0                      | 0                       | 0                       | Spurious interrupts                    |
|     | 0                      | 0                      | 0                       | ØĴ                      | Performance monitoring interrupts      |
|     | 0                      | 0                      | 1                       | 0                       | IRQ work interrupts                    |
|     | <u>Ø</u>               | <u>Ø</u>               | _0                      | _0                      | APIC ICR read retries                  |
|     | 769119 <mark>5</mark>  | 766568 <mark>6</mark>  | 13406 <mark>45</mark>   | 96270 <mark>71</mark>   | Rescheduling interrupts                |
|     | 269029                 | 290892                 | 63368                   | 263701                  | Function call interrupts               |
|     | 11652                  | 12950                  | 12247                   | 13551                   | TLB shootdowns                         |
|     | 0                      | 0                      | 0                       | 0                       | Thermal event interrupts               |
| :   | 0                      | 0                      | 0                       | 0                       | Threshold APIC interrupts              |
|     | 0                      | 0                      | 0                       | 0                       | Deferred Error APIC interrupts         |
| :   | 0                      | 0                      | 0                       | 0                       | Machine check exceptions               |
| :   | 42203                  | 42203                  | 42203                   | 42203                   | Machine check polls                    |
| :   | 0                      | 0                      | 0                       | 0                       | Hypervisor callback interrupts         |
|     | 0                      |                        |                         |                         |                                        |
|     | 0                      |                        |                         |                         |                                        |
|     | 0                      | 0                      | 0                       | 0                       | Posted-interrupt notification event    |
|     | 0                      | 0                      | 0                       | Ø                       | Nested posted-interrupt event          |
| 1:  | 0                      | 0                      | 0                       | 0                       | Posted-interrupt wakeup event          |

#### Hardware interrupt feature

- Definition: raised by hardware
- Nest: hardirq in Linux can be nested
- Interrupt controller: IRQ number is provided by APIC



### Hardware interrupt feature

- Mask: hardirq can be masked
- Top/Bottom: hardirq handler (small) ensures that it completes the task quickly
- Preemption: harding has priority and can preempt over softing



#### Software interrupt feature

Definition: raised by software or execution



#### Software interrupt feature

- Definition: raised by software or execution
- Nest: softirq in Linux cannot be nested
- Interrupt controller: softirq does not have IRQ number
- Mask: softirq cannot be masked
- Top/Bottom: softirq is responsible the bottom-half work of the interrupt
- Preemption: softirg cannot preempt with each other

# Software interrupt: cat /proc/softirqs

| fish /home/pi/Dow<br>pi@raspberrypi ^ |              | cat /proc/ | softiras |       |  |
|---------------------------------------|--------------|------------|----------|-------|--|
| red dopoet type                       | CPU0         | CPU1       | CPU2     | CPU3  |  |
| HI:                                   | 1395         | 2          | 0        | 0     |  |
| TIMER:                                | 21725        | 85514      | 19664    | 14288 |  |
| NET_TX:                               | 1            | 1          | 0        | 0     |  |
| NET_RX:                               | 414          | 929        | 427      | 147   |  |
| BLOCK:                                | 0            | 0          | 0        | 0     |  |
| <pre>IRQ_POLL:</pre>                  | 0            | 0          | 0        | 0     |  |
| TASKLET:                              | 125911       | 11838      | 219      | 103   |  |
| SCHED:                                | 21969        | 85269      | 19362    | 14124 |  |
| HRTIMER:                              | 0            | 0          | 0        | 0     |  |
| RCU:                                  | 17461        | 26668      | 15148    | 12011 |  |
| oi@raspberrypi -                      | ~/Downloads> |            |          |       |  |
|                                       |              |            |          |       |  |

# \$ watch -n 1 -d cat /proc/softirqs



# Hardware IRQ vs. Software IRQ

|                         | Hardware IRQ                                               | Software IRQ                                                     |  |  |
|-------------------------|------------------------------------------------------------|------------------------------------------------------------------|--|--|
| Definition              | raised by hardware                                         | raised by software or execution                                  |  |  |
| Nest                    | can be nested                                              | cannot be nested                                                 |  |  |
| Interrupt<br>controller | IRQ number is provided by APIC                             | softirq does not have IRQ number                                 |  |  |
| Mask                    | can be masked                                              | cannot be masked                                                 |  |  |
| Top/Bottom              | hardirq handler ensures that it completes the task quickly | softirq is responsible the bottom-<br>half work of the interrupt |  |  |
| Preemption              | hardirq has priority and can preempt over softirq          | softirq cannot preempt with each other                           |  |  |

### **Interrupt Affinity**

- IRQ affinity determines the CPU cores that are allowed to execute the processing for that IRQ
- IRQ affinity can be used to improve application performance (e.g., for multi CPU system like NUMA)



### **Interrupt Affinity**

|         |             |              |             | 1. f    | ish /home/pi/Downloads (ssh) |                                       |
|---------|-------------|--------------|-------------|---------|------------------------------|---------------------------------------|
| fish /h | nome/pi/Dow | <b>%</b> 1   |             |         |                              |                                       |
| ,:0     |             | ownloads> co | t /proc/int | errupts |                              |                                       |
|         | CPU0        | CPU1         | CPU2        | CPU3    |                              |                                       |
| 16:     | 0           | 0            | 0           | 0       | bcm2836-timer 0 Edge         | arch_timer                            |
| 17:     | 21666       | 63962        | 23766       | 9395    | bcm2836-timer 1 Edge         | arch_timer                            |
| 21:     | 0           | 0            | 0           | 0       | bcm2836-pmu 9 Edge           | arm-pmu                               |
| 23:     | 3600        | 0            | 0           | 0       | ARMCTRL-level 1 Edge         | 3f00b880.mailbox                      |
| 24:     | 29          | 0            | 0           | 0       | ARMCTRL-level 2 Edge         | VCHIQ doorbell                        |
| 46:     | 0           | 0            | 0           | 0       | ARMCTRL-level 48 Edge        | bcm2708_fb dma                        |
| 48:     | 0           | 0            | 0           | 0       | ARMCTRL-level 50 Edge        | DMA IRQ                               |
| 50:     | 0           | 0            | 0           | 0       | ARMCTRL-level 52 Edge        | DMA IRQ                               |
| 51:     | 360         | 0            | 0           | 0       | ARMCTRL-level 53 Edge        | DMA IRQ                               |
| 54:     | 4908        | 0            | 0           | 0       | ARMCTRL-level 56 Edge        | DMA IRQ                               |
| 59:     | 0           | 0            | 0           | 0       | ARMCTRL-level 61 Edge        | bcm2835-auxirq                        |
| 62:     | 139344      | 0            | 0           | 0       | ARMCTRL-level 64 Edge        | dwc_otg, dwc_otg_pcd, dwc_otg_hcd:usb |
| 86:     | 870         | 0            | 0           | 0       | ARMCTRL-level 88 Edge        | mmc0                                  |
| 87:     | 7237        | 0            | 0           | 0       | ARMCTRL-level 89 Edge        | uart-pl011                            |
| 92:     | 101080      | 0            | 0           | 0       | ARMCTRL-level 94 Edge        | mmc1                                  |
| 169:    | 0           | 0            | 0           | 0       | lan78xx-irqs 17 Edge         | usb-001:004:01                        |
| IQ:     |             | sb_fiq       |             |         |                              |                                       |
| PIØ:    | 0           | 0            | 0           | 0       | CPU wakeup interrupts        |                                       |
| PI1:    | 0           | 0            | 0           | 0       | Timer broadcast interrupt    | S                                     |
| PI2:    | 7855        | 81594        | 13799       | 6452    | Rescheduling interrupts      |                                       |
| PI3:    | 10          | 6            | 9           | 8       | Function call interrupts     |                                       |
| PI4:    | 0           | 0            | 0           | 0       | CPU stop interrupts          |                                       |
| PI5:    | 7342        | 26013        | 5157        | 2072    | IRQ work interrupts          |                                       |
| IPI6:   | 0           | 0            | 0           | 0       | completion interrupts        |                                       |
| rr:     | 0           |              |             |         |                              |                                       |



### **Interrupt Affinity**

Read the IRQ affinity of specific hardIRQ

```
f = 1111, means all 4 CPU cores
will receive the interrupt
```

```
# cat /proc/irq/32/smp_affinity f
```

Set the IRQ affinity to specific hardIRQ

```
Interrupt from IRQ32 will only go to CPU core 1
```

```
# echo 1 >/proc/irq/32/smp_affinity
# cat /proc/irq/32/smp_affinity
1
```

- SoftIRQ will execute on the core which it is raised and cannot be set with affinity
  - SoftIRQ can be scaled with RPS/RFS in the kernel settings (irq migration)

#### **Conclusion**

- What is interrupt?
  - Interrupt vs Polling
  - Advanced programmable interrupt controller
  - Interrupt processing

- Interrupt types and affinity
  - Hardware and software interrupt
  - Interrupt affinity