CONSTANTES

Constante de Avogadro = $6.02 \times 10^{23} \text{ mol}^{-1}$

Constante de Faraday (F) = $9,65 \times 10^4 \text{ C mol}^{-1} = 9,65 \times 10^4 \text{ A s mol}^{-1} = 9,65 \times 10^4 \text{ J V}^{-1} \text{ mol}^{-1}$

Volume molar de gás ideal = 22,4 L (CNTP) Carga elementar = $1,602 \times 10^{-19} \text{ C}$

Constante dos gases (R) = 8.21×10^{-2} atm L K⁻¹ mol⁻¹ = 8.31 J K^{-1} mol⁻¹ = $62.4 \text{ mmHg L K}^{-1}$ mol⁻¹ = 1.98 cal K^{-1} mol⁻¹

Constante gravitacional (g) = 9.81 m s^{-2}

DEFINIÇÕES

Pressão de 1 atm = $760 \text{ mmHg} = 101325 \text{ N m}^{-2} = 760 \text{ Torr}$

 $1 \text{ N} = 1 \text{ kg m s}^{-2}$

Condições normais de temperatura e pressão (CNTP): 0 °C e 760 mmHg

Condições ambientes: 25 °C e 1 atm.

Condições-padrão: 25 °C, 1 atm, concentração das soluções: 1 mol L⁻¹ (rigorosamente: atividade unitária das espécies), sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.

(s) ou (c) = sólido cristalino; (l) ou (ℓ) = líquido; (g) = gás; (aq) = aquoso; (graf) = grafite; (CM) = circuito metálico;

(conc) = concentrado; (ua) = unidades arbitrárias; [A] = concentração da espécie química A em mol L⁻¹.

MASSAS MOLARES

Elemento Químico	Número Atômico	Massa Molar (g mol ⁻¹)	Elemento Químico	Número Atômico	Massa Molar (g mol ⁻¹)
Н	1	1,01	Fe	26	55,85
Не	2	4,00	Ni	28	58,69
Li	3	6,94	Cu	29	63,55
C	6	12,01	Zn	30	65,40
N	7	14,01	Ge	32	72,64
O	8	16,00	As	33	74,92
Ne	10	20,18	Br	35	79,90
Na	11	22,99	Kr	36	83,80
Mg	12	24,31	Ag	47	107,87
Al	13	26,98	Cd	48	112,41
Si	14	28,09	Sn	50	118,71
S	16	32,07	I	53	126,90
Cl	17	35,45	Xe	54	131,29
Ar	18	39,95	Cs	55	132,91
K	19	39,10	Ba	56	137,33
Ca	20	40,08	Pt	78	195,08
Cr	24	52,00	Pb	82	207,2
Mn	25	54,94	Ra	86	222

Questão 1. Uma mistura sólida é composta de carbonato de sódio e bicarbonato de sódio. A dissolução completa de 2,0 g dessa mistura requer 60,0 mL de uma solução aquosa 0,5 mol L⁻¹ de HCl. Assinale a opção que apresenta a massa de cada um dos componentes desta mistura sólida.

A()
$$m_{Na_2CO_3} = 0.4g$$
; $m_{NaHCO_3} = 1.6g$

$$\mathbf{B}$$
 () $m_{\text{Na}_2\text{CO}_3} = 0.7\,\text{g}$; $m_{\text{NaHCO}_3} = 1.3\,\text{g}$

$$C()$$
 $m_{Na_2CO_3} = 0.9 g$; $m_{NaHCO_3} = 1.1 g$

$$\mathbf{D}$$
 () $m_{\text{Na}_2\text{CO}_3} = 1.1\text{g}$; $m_{\text{NaHCO}_3} = 0.9\text{g}$

$${f E}$$
 () $m_{{
m Na_2CO_3}}=1,3\,{
m g}$; $m_{{
m NaHCO_3}}=0,7\,{
m g}$

Questão 2. No ciclo de Carnot, que trata do rendimento de uma máquina térmica ideal, estão presentes as seguintes transformações:

- **A** () duas adiabáticas e duas isobáricas.
- **B**() duas adiabáticas e duas isocóricas.
- C () duas adiabáticas e duas isotérmicas.
- **D**() duas isobáricas e duas isocóricas.
- E () duas isocóricas e duas isotérmicas.

Questão 3. Suponha que um metal alcalino terroso se desintegre radioativamente emitindo uma partícula alfa. Após três desintegrações sucessivas, em qual grupo (família) da tabela periódica deve-se encontrar o elemento resultante deste processo?

A() 13(III A)

B() 14(IV A)

C() 15(V A)

D() 16(VIA)

E() 17(VII A)

Questão 4. Um estudante mergulhou uma placa de um metal puro em água pura isenta de ar, a 25 °C, contida em um béquer. Após certo tempo, ele observou a liberação de bolhas de gás e a formação de um precipitado. Com base nessas informações, assinale a opção que apresenta o metal constituinte da placa.

A () Cádmio

B() Chumbo

C() Ferro

D() Magnésio

E() Níquel

Questão 5. Qual o gráfico que apresenta a curva que melhor representa o decaimento de uma amostra contendo 10,0 g de um material radioativo ao longo dos anos?

A () 10,0 - So So W Tempo (anos)

B() 10,0 Reserved Framework (anos)

C() 10,0 Sign asser Tempo (anos)

D() 10,0 Ress W

E() 10,0 Tempo (anos)

Questão 6. Num experimento, um estudante verificou ser a mesma a temperatura de fusão de várias amostras de um mesmo material no estado sólido e também que esta temperatura se manteve constante até a fusão completa. Considere que o material sólido tenha sido classificado como:

I. Substância simples pura

III. Mistura homogênea eutética

II. Substância composta pura

IV. Mistura heterogênea

Então, das classificações acima, está(ão) ERRADA(S)

A() apenas I e II.

B() apenas II e III.

C() apenas III.

D() apenas III e IV.

E() apenas IV.

Questão 7. Assinale a afirmação CORRETA a respeito do ponto de ebulição normal (PE) de algumas substâncias.

A () O 1-propanol tem menor PE do que o etanol.

B () O etanol tem menor PE do que o éter metílico.

 $\boldsymbol{C}\left(\ \right)$ O n-heptano tem menor PE do que o n-hexano.

 ${f D}$ () A trimetilamina tem menor PE do que a propilamina.

 ${f E}$ () A dimetilamina tem menor PE do que a trimetilamina.

Questão 8. O diagrama temperatura (T) versus volume (V) representa hipoteticamente as transformações pelas quais um gás ideal no estado 1 pode atingir o estado 3. Sendo ΔU a variação de energia interna e q a quantidade de calor trocado com a vizinhança, assinale a opção com a afirmação ERRADA em relação às transformações termodinâmicas representadas no diagrama.

A()
$$|\Delta U_{12}| = |q_{12}|$$

$$\mathbf{B}\left(\ \right)\ \left|\Delta \mathbf{U}_{13}\right| = \left|\Delta \mathbf{U}_{23}\right|$$

$$\mathbf{C}() |\Delta U_{23}| = |q_{23}|$$

$$\mathbf{D}(\) \ |\Delta U_{23}| > |\Delta U_{12}|$$

$$\mathbf{E}(\)\ \mathbf{q}_{23} > 0$$

Questão 9. Considere os átomos hipotéticos neutros V, X, Y e Z no estado gasoso. Quando tais átomos recebem um elétron cada um, as configurações eletrônicas no estado fundamental de seus respectivos ânions são dadas por:

$$V^{-}(g)$$
: [gás nobre] $ns^{2}np^{6}nd^{10}(n+1)s^{2}(n+1)p^{6}$

$$X^{-}(g)$$
: [gás nobre] ns^2np^6

$$Y^{-}(g)$$
: [gás nobre] $ns^{2}np^{6}nd^{10}(n+1)s^{2}(n+1)p^{3}$

$$Z^{-}(g)$$
: [gás nobre] ns^2np^3

Nas configurações acima, [gás nobre] representa a configuração eletrônica no diagrama de Linus Pauling para o mesmo gás nobre, e n é o mesmo número quântico principal para todos os ânions. Baseado nessas informações, é CORRETO afirmar que

- **A** () o átomo neutro V deve ter a maior energia de ionização entre eles.
- **B**() o átomo neutro Y deve ter a maior energia de ionização entre eles.
- C () o átomo neutro V deve ter maior afinidade eletrônica do que o átomo neutro X.
- **D**() o átomo neutro Z deve ter maior afinidade eletrônica do que o átomo neutro X.
- **E** () o átomo neutro Z deve ter maior afinidade eletrônica do que o átomo neutro Y.

Questão 10. Considere a reação de dissociação do $N_2O_4(g)$ representada pela seguinte equação:

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

Assinale a opção com a equação CORRETA que relaciona a fração percentual (α) de $N_2O_4(g)$ dissociado com a pressão total do sistema (P) e com a constante de equilíbrio em termos de pressão (K_p) .

$$\boldsymbol{A}$$
 () $\alpha = \sqrt{\frac{K_p}{4P + K_p}}$

$$\mathbf{B}\left(\ \right)\ \alpha = \sqrt{\frac{4P + K_p}{K_p}}$$

$$C()$$
 $\alpha = \frac{K_p}{2P + K_p}$

$$\mathbf{D}\left(\ \right)\ \alpha = \frac{2P + K_p}{K_p}$$

$$\mathbf{E}\left(\ \right) \ \alpha = \frac{K_p}{2+P}$$

Questão 11. Considere a reação química representada pela seguinte equação:

$$4\,\mathrm{NO}_2\big(\mathrm{g}\big)\,+\mathrm{O}_2(\mathrm{g})\to 2\mathrm{N}_2\mathrm{O}_5(\mathrm{g})$$

Num determinado instante de tempo t da reação, verifica-se que o oxigênio está sendo consumido a uma velocidade de $2,4 \times 10^{-2} \, \text{mol} \, L^{-1} \, \text{s}^{-1}$. Nesse tempo t, a velocidade de consumo de NO_2 será de

$$\mathbf{A}$$
 () 6,0 x 10⁻³ mol L⁻¹ s⁻¹.

$$\mathbf{B}$$
 () 1,2 x 10⁻² mol L⁻¹ s⁻¹.

$$\mathbf{C}$$
 () 2,4 x 10⁻² mol L⁻¹ s⁻¹.

$$\mathbf{D}$$
 () $4.8 \times 10^{-2} \text{ mol L}^{-1} \text{ s}^{-1}$.

$$\mathbf{E}() 9,6 \times 10^{-2} \text{ mol L}^{-1} \text{ s}^{-1}.$$

radioativa predominantemente de Iodo-131 e Césio respectivos períodos de tempo para que a radioativa	ernobyl (Ucrânia), em abril de 1986, provocou a emissão -137. Assinale a opção CORRETA que melhor apresenta os dade provocada por esses dois elementos radioativos decaia dere o tempo de meia-vida do Iodo-131 igual a 8,1 dias e do n $2 = 0,69$.						
A () 45 dias e 189 anos. C () 61 dias e 235 anos. E () 74 dias e 296 anos.	B () 54 dias e 201 anos. D () 68 dias e 274 anos.						
Questão 13. Assumindo um comportamento ideal dos gases, assinale a opção com a afirmação CORRETA.							
 A () De acordo com a Lei de Charles, o volume de um gás torna-se maior quanto menor for a sua temperatura. B () Numa mistura de gases contendo somente moléculas de oxigênio e nitrogênio, a velocidade média das moléculas de oxigênio é menor do que as de nitrogênio. C () Mantendo-se a pressão constante, ao aquecer um mol de gás nitrogênio sua densidade irá aumentar. D () Volumes iguais dos gases metano e dióxido de carbono, nas mesmas condições de temperatura e pressão, apresentam as mesmas densidades. E () Comprimindo-se um gás a temperatura constante, sua densidade deve diminuir. 							
Questão 14. Um estudante imergiu a extremidade de um fio de níquel-crômio limpo em uma solução aquosa de ácido clorídrico e, a seguir, colocou esta extremidade em contato com uma amostra de um sal iônico puro. Em seguida, expôs esta extremidade à chama azulada de um bico de Bunsen, observando uma coloração amarela na chama. Assinale a opção que contém o elemento químico responsável pela coloração amarelada observada.							
A() Bário. B() Cobre. C() Lítio. D () Potássio. E () Sódio.						
Questão 15. Considere os seguintes sais:							
I. Al(NO ₃) ₃ II. NaCl	III. ZnCl ₂ IV. CaCl ₂						
Assinale a opção que apresenta $o(s)$ sal(is) que causa(m) a desestabilização de uma suspensão coloidal estável de sulfeto de arsênio (As_2S_3) em água.							
 A () Nenhum dos sais relacionados. C () Apenas os sais I e II. E () Todos os sais. 	B() Apenas o sal I. D() Apenas os sais II, III e IV.						
Questão 16. Uma solução aquosa de um ácido fraco monoprótico é mantida à temperatura de 25 °C. Na condição de equilíbrio, este ácido está 2,0 % dissociado. Assinale a opção CORRETA que apresenta, respectivamente, os valores numéricos do pH e da concentração molar (expressa em mol L^{-1}) do íon hidroxila nesta solução aquosa. Dados: pKa (25 °C) = 4,0 ; log 5 = 0,7.							
\mathbf{A} () 0,7 e 5,0x10 ⁻¹⁴	\mathbf{B} () 1,0 e 1,0 x 10 ⁻¹³						
$\mathbf{C}() 1,7 \text{ e } 5,0 \times 10^{-13}$	$\mathbf{D}(\)\ 2,3\ e\ 2,0 \times 10^{-12}$						
$\mathbf{E}(\)\ 4.0\ e\ 1.0 \times 10^{-10}$							
Questão 17. Foi observada a reação entre um composto X e uma solução aquosa de permanganato de potássio, a quente, ocorrendo o aumento do pH da solução e a formação de um composto Y sólido. Após a separação do composto Y e a neutralização da solução resultante, verificou-se a formação de um composto Z pouco solúvel em água. Assinale a opção que melhor representa o grupo funcional do composto orgânico X.							

 $A\left(\ \right)$ álcool $B\left(\ \right)$ amida $C\left(\ \right)$ amina $D\left(\ \right)$ éster $E\left(\ \right)$ éter

Questão 18. Nos gráficos abaixo, cada eixo representa uma propriedade termodinâmica de um gás que se comporta idealmente.

Com relação a estes gráficos, é CORRETO afirmar que

- **A** () I pode representar a curva de pressão versus volume.
- **B**() II pode representar a curva de pressão versus inverso do volume.
- **C**() II pode representar a curva de capacidade calorífica versus temperatura.
- **D**() III pode representar a curva de energia interna versus temperatura.
- **E** () III pode representar a curva de entalpia versus o produto da pressão pelo volume.

Questão 19. A 20 °C, a pressão de vapor da água em equilíbrio com uma solução aquosa de açúcar é igual a 16,34 mmHg. Sabendo que a 20 °C a pressão de vapor da água pura é igual a 17,54 mmHg, assinale a opção com a concentração CORRETA da solução aquosa de açúcar.

A () 7% (m/m)

C() 0,93 mol L⁻¹

D() A fração molar do açúcar é igual a 0,07

E () A fração molar do açúcar é igual a 0,93

Questão 20. Um elemento galvânico é constituído pelos eletrodos abaixo especificados, ligados por uma ponte salina e conectados a um voltímetro de alta impedância.

Eletrodo I: fio de platina em contato com 500 mL de solução aquosa 0,010 mol L⁻¹ de hidróxido de potássio; fio de platina em contato com 180 mL de solução aquosa 0,225 mol L⁻¹ de ácido perclórico adicionado a 320 mL de solução aquosa 0,125 mol L⁻¹ de hidróxido de sódio.

Admite-se que a temperatura desse sistema eletroquímico é mantida constante e igual a 25 °C e que a pressão parcial do oxigênio gasoso (P_{O_2}) dissolvido é igual a 1 atm. Assinale a opção CORRETA com o valor calculado na escala do eletrodo padrão de hidrogênio (EPH) da força eletromotriz, em volt, desse elemento galvânico. Dados: $E_{O_2/H_2O}^o = 1,23 \, V \, (EPH)$; $E_{O_2/OH^-}^o = 0,40 \, V \, (EPH)$

A() 1,17

B() 0,89

 $\mathbf{C}(\)\ 0.75$ $\mathbf{D}(\)\ 0.53$ $\mathbf{E}(\)\ 0.46$

AS QUESTÕES DISSERTATIVAS, NUMERADAS DE 21 A 30, DEVEM SER RESPONDIDAS NO CADERNO DE SOLUÇÕES.

Questão 21. Escreva a equação química balanceada da combustão completa do iso-octano com o ar atmosférico. Considere que o ar é seco e composto por 21% de oxigênio gasoso e 79% de nitrogênio gasoso.

Questão 22. São fornecidas as seguintes informações relativas aos cinco compostos amínicos: A, B, C, D e E. Os compostos A e B são muito solúveis em água, enquanto que os compostos C, D, e E são pouco solúveis. Os valores das constantes de basicidade dos compostos A, B, C, D e E são, respectivamente, 1,0 x 10⁻³; 4,5 x 10⁻⁴; 2.6×10^{-10} ; 3.0×10^{-12} e 6.0×10^{-15} .

Atribua corretamente os dados experimentais apresentados aos seguintes compostos:

2-nitroanilina, 2-metilanilina, 2-bromoanilina, metilamina e dietilamina.

Justifique a sua resposta.

Questão 23. A 25 °C, realizam-se estes dois experimentos (Exp I e Exp II) de titulação ácido-base medindo-se o pH da solução aquosa em função do volume da base adicionada:

Exp I: Titulação de 50 mL de ácido clorídrico 0,10 mol L^{-1} com hidróxido de sódio 0,10 mol L^{-1} . Exp II: Titulação de 50 mL de ácido acético 0,10 mol L^{-1} com hidróxido de sódio 0,10 mol L^{-1} .

- a) Esboce em um mesmo gráfico (pH versus volume de hidróxido de sódio) a curva que representa a titulação do Exp I e a curva que representa a titulação do Exp II. Deixe claro no gráfico os valores aproximados do pH nos pontos de equivalência.
- b) O volume da base correspondente ao ponto de equivalência de uma titulação ácido-base pode ser determinado experimentalmente observando-se o ponto de viragem de um indicador. Em laboratório, dispõem-se das soluções aquosas do ácido e da base devidamente preparados nas concentrações propostas, de indicador, de água destilada e dos seguintes instrumentos: balão volumétrico, bico de Bunsen, bureta, cronômetro, dessecador, erlenmeyer, funil, kitassato, pipeta volumétrica, termômetro e tubo de ensaio. Desses instrumentos, cite os três mais adequados para a realização desse experimento.

Questão 24. Um elemento galvânico é constituído por uma placa de ferro e por uma placa de estanho, de mesmas dimensões, imersas em uma solução aquosa $0,10 \text{ mol } L^{-1}$ de ácido cítrico. Considere que esta solução: contém íons ferrosos e estanosos; é ajustada para pH = 2; é isenta de oxigênio; e é mantida nas condições ambientes. Sabendo-se que o ânion citrato reage quimicamente com o cátion $\text{Sn}^{2+}(\text{aq})$, diminuindo o valor do potencial de eletrodo do estanho, determine o valor numérico da relação entre as concentrações dos cátions $\text{Sn}^{2+}(\text{aq})$ e $\text{Fe}^{2+}(\text{aq})$, $\left([\text{Sn}^{2+}]/[\text{Fe}^{2+}]\right)$, a partir do qual o estanho passa a se comportar como o anodo do par galvânico.

Dados: Potenciais de eletrodo em relação ao eletrodo padrão de hidrogênio nas condições-padrão:

$$E^{o}_{Fe^{2+}/Fe} = -0.44 \,V$$
; $E^{o}_{Sn^{2+}/Sn} = -0.14 \,V$

Questão 25.

- a) Considerando que a pressão osmótica da sacarose (C₁₂H₂₂O₁₁) a 25 °C é igual a 15 atm, calcule a massa de sacarose necessária para preparar 1,0 L de sua solução aquosa a temperatura ambiente.
- b) Calcule a temperatura do ponto de congelamento de uma solução contendo 5,0 g de glicose ($C_6H_{12}O_6$) em 25 g de água. Sabe-se que a constante do ponto de congelamento da água é igual a 1,86 °C kg mol⁻¹.
- c) Determine a fração molar de hidróxido de sódio em uma solução aquosa contendo 50% em massa desta espécie.

Questão 26. São dadas as seguintes informações:

- I. O polietileno é estável até aproximadamente 340 °C. Acima de 350 °C ele entra em combustão.
- II. Para reduzir ou retardar a propagação de chama em casos de incêndio, são adicionados retardantes de chama à formulação dos polímeros.
- III. O Al(OH)₃ pode ser usado como retardante de chama. A aproximadamente 220 °C, ele se decompõe, segundo a reação $2 \text{Al(OH)}_3(s) \rightarrow \text{Al}_2\text{O}_3(s) + 3\text{H}_2\text{O}(g)$, cuja variação de entalpia (ΔH) envolvida é igual a 1170 J g⁻¹.
- IV. Os três requisitos de combustão de um polímero são: calor de combustão, combustível e oxigênio. Os retardantes de chama interferem no fornecimento de um ou mais desses requisitos.

Se Al(OH)₃ for adicionado a polietileno, cite um dos requisitos de combustão que será influenciado por cada um dos parâmetros abaixo quando a temperatura próxima ao polietileno atingir 350 °C. Justifique resumidamente sua resposta.

- a) Formação de Al₂O₃(s)
- b) Formação de H₂O(g)
- c) ΔH de decomposição do Al(OH)₃

Questão 27. Sabendo que a constante de dissociação do hidróxido de amônio e a do ácido cianídrico em água são, respectivamente, $K_b = 1,76 \times 10^{-5}$ (p $K_b = 4,75$) e $Ka = 6,20 \times 10^{-10}$ (p $K_a = 9,21$), determine a constante de hidrólise e o valor do pH de uma solução aquosa 0,1 mol L^{-1} de cianeto de amônio.

Questão 28. Considere duas reações químicas (I e II) envolvendo um reagente X. A primeira (I) é de primeira ordem em relação a X e tem tempo de meia-vida igual a 50 s. A segunda (II) é de segunda ordem em relação a X e tem tempo de meia-vida igual à metade da primeira reação. Considere que a concentração inicial de X nas duas reações é igual a 1,00 mol L⁻¹. Em um gráfico de concentração de X (mol L⁻¹) versus tempo (de 0 até 200 s), em escala, trace as curvas de consumo de X para as duas reações. Indique com I a curva que representa a reação de primeira ordem e, com II, a que representa a reação de segunda ordem.

Questão 29. Um tanque de estocagem de produtos químicos foi revestido internamente com níquel puro para resistir ao efeito corrosivo de uma solução aquosa ácida contida em seu interior. Para manter o líquido aquecido, foi acoplado junto ao tanque um conjunto de resistores elétricos alimentados por um gerador de corrente contínua. Entretanto, uma falha no isolamento elétrico do circuito dos resistores promoveu a eletrificação do tanque, ocasionando um fluxo de corrente residual de intensidade suficiente para desencadear o processo de corrosão eletrolítica do revestimento metálico.

Admitindo-se que a superfície do tanque é constituída por uma monocamada de níquel com densidade atômica igual a $1,61 \times 10^{19}$ átomos m⁻² e que a área superfícial do tanque exposta à solução ácida é de $5,0 \text{ m}^2$, calcule:

- a) a massa, expressa em gramas, de átomos de níquel que constituem a monocamada atômica do revestimento metálico
- b) o tempo necessário, expresso em segundos, para que a massa de níquel da monocamada atômica seja consumida no processo de dissolução anódica pela passagem da densidade de corrente de corrosão de $7.0~\mu A\,cm^{-2}$.

Questão 30. É descrita uma sequência de várias etapas experimentais com suas respectivas observações:

- I. Dissolução completa de um fio de cobre em água de bromo em excesso com formação de uma solução azulada A.
- II. Evaporação completa da solução A e formação de um sólido marrom B.
- III. Aquecimento do sólido B a 500 °C, com formação de um sólido branco de CuBr e um gás marrom C.
- IV. Dissolução de CuBr em uma solução aquosa concentrada de ácido nítrico, formando uma nova solução azulada D e liberação de dois gases: C e E.
- V. Evaporação da solução azulada D com formação de um sólido preto F e liberação de dois gases: E e G.
- VI. Reação a quente do sólido F com hidrogênio gasoso e na ausência de ar, formando um sólido avermelhado H e liberando água.

Baseando-se nesta descrição, apresente as fórmulas moleculares das substâncias B, C, E, F, G e H.