Processo de Poisson

Definições e relação com a distribuição Exponencial

Referências: Ross, *Intr.Probab. Models* - §5.3 Grimmett & Stirzaker - §6.8

Definição e notação preliminares

Um processo $\{N((0,t]); t>0\}$ em que N((0,t]) representa o número de ocorrências de um determinado **evento** no intervalo de tempo (0,t], é chamado de **processo de contagem**, se

- ullet assume valores em $\{0,1,\ldots\}$
- para s < t, $N((0,s]) \le N((0,t])$ $(N(\cdot)$ é não decrescente)
- N((s,t]) = N((0,t]) N((0,s]) representa o número de ocorrências no intervalo (s,t]

Adotaremos indistintamente a notação N(t) := N((0, t]), logo

$$N((s,t]) = N((0,t]) - N((0,s]) = N(t) - N(s)$$

neste curso, nos restringiremos ao caso em que o processo é homogêneo (no tempo), para s,u>0:

$$N((s, s + u]) = N(s + u) - N(s) \stackrel{homog.}{=} N(u) = N((0, u])$$

2/11

Exemplos

Considere que o instante t=0 é pré-determinado, como um tempo de referência.

Discuta se os exemplos abaixo podem ser considerados um processo de contagem. Descreva o "evento" de interesse.

- (a) N((0,t]) = número de pessoas diagnosticadas com covid-19 até o tempo t, na cidade de SP.
- (c) N((0,t])= número de clientes que entram em uma agência bancária até o tempo t.
- (d) N((0,t]) = número de clientes que saem em uma agência bancária até o tempo t.
- (e) N((0,t])= número de clientes que estão em uma agência bancária até o tempo t.

Incrementos estacionários e independentes

O número de ocorrências N(s+u)-N(s)=N((s,s+u]) é denominado de incremento no intervalo (s,s+u], para s>0,u>0.

Incrementos estacionários

Dizemos que o processo $\{N(t)\}_t$ tem incrementos estacionários, se a distribuição de N((s,s+u]) é a mesma para todo s.

Note que se o processo for homogêneo (no tempo) então ele tem incrementos estacionários.

Incrementos independentes

Dizemos que o processo $\{N(t)\}_t$ tem incrementos independentes se as ocorrências em intervalos disjuntos são independentes.

Discuta se os exemplos dados possuem incrementos estacionários e/ou independentes \longrightarrow na lousa

Definição de o-pequeno

Definição: Uma função g é o(h) se

$$\lim_{h \to 0} \frac{g(h)}{h} = 0 \;,$$

isto é, a função g vai para 0 mais rápido do que h quando $h \to 0$.

Exemplos:

- $g(x) = x^2 \, \text{\'e} \, o(h)$
- g(x) = x não é o(h)
- combinação linear de funções o(h) é o(h).

Processo de Poisson - definição ${\cal A}$

Processo de Poisson - via taxas infinitesimais

Um processo de Poisson homogêneo com intensidade ou taxa λ , $\lambda>0$, é um processo de contagem $N=\{N(t);t\geq0\}$ assumindo valores em $S=\{0,1,2,\ldots\}$ tal que

- (a) N(0) = 0;
- (b) o processo $\{N(t), t \ge 0\}$ tem incrementos independentes;
- (c) para todo $t \ge 0$ e para h > 0 pequeno

$$P(N(t+h) = n+k \mid N(t) = n) = \left\{ \begin{array}{ll} \lambda h + o(h) & \text{se } k = 1, \\ o(h) & \text{se } k \geq 2, \end{array} \right.$$

Interpretação de (c): para todo instante de tempo t, num intervalo de tempo pequeno h pode haver no máximo uma ocorrência (0 ou 1 ocorrência).

Processo de Poisson - definição B

Processo de Poisson - via distribuição Poisson

Um processo de Poisson homogêneo com intensidade ou taxa λ , $\lambda>0$, é um processo de contagem $N=\{N(t);t\geq0\}$ assumindo valores em $S=\{0,1,2,\ldots\}$ tal que

- (a) N(0) = 0;
- (b) o processo $\{N(t), t \ge 0\}$ tem incrementos independentes;
- (c) N(s+t)-N(s) tem distribuição de Poisson com parâmetro λt , isto é,

$$P(N(s+t) - N(s) = k) = e^{-\lambda t} \frac{(\lambda t)^k}{k!}, \quad k = 0, 1, 2, \dots$$

A condição (c), em ambas as definições, implica que os incrementos também são estacionários.

Prova da equivalência das definições → na lousa

Tempo das ocorrências e tempo entre ocorrências

• No processo de Poisson (homogêneo) denote por S_0, S_1, S_2, \ldots $(S_0 < S_1 < S_2 \cdots)$ os instantes (aleatórios) de ocorrências do evento ou das chegadas, isto é S_k é o instante da k-ésima chegada/ocorrência, definido por

$$S_0 = 0$$
 e $S_k = \inf\{t > 0 : N(t) = k\}$

• Então, os tempos entre ocorrências/chegadas são denotados por $\{T_1,T_2,\ldots,\}$, ou seja, $T_k=S_k-S_{k-1}$.

Ver diagramas na lousa

Relação do Processo de Poisson e a distribuição Exponencial

Teorema

As variáveis aleatórias T_1,T_2,\ldots que representam os tempos entre ocorrências de uma processo de Poisson com intensidade λ são independentes e têm distribuição exponencial com parâmetro (taxa) λ .

Prova: lousa

Corolário

Os tempos de ocorrência de um processo de Poisson $\{S_1, S_2, \ldots\}$ satisfazem

$$S_k \sim \operatorname{Gama}(k, \lambda) \quad k = 1, 2, \dots$$

Note que $S_k = T_1 + \cdots + T_k$

Prova: via função geradora de momentos

Uma terceira "definição" do processo de Poisson

Seja $\{T_1,T_2,\ldots\}$ uma sequência de variáveis aleatórias representando os tempos entre ocorrências em um processo de contagem e defina $S_n=T_1+\cdots+T_n$.

Processo de Poisson - construção

Se T_1, T_2, \ldots são independentes e identicamente distribuídas com distribuição Exponencial de parâmetro (taxa) λ , então o processo definido por

$$Y(t) = \max\{n \ge 1 : S_n \le t\}$$

é um Processo de Poisson com intensidade λ .

Note a relação

$$\{Y(t) \ge k\} \iff \{S_k \le t\}$$

Observação da abordagem construtiva

Seja $\{T_1,T_2,\ldots\}$ uma sequência de variáveis aleatórias representando os tempos entre ocorrências de um processo de contagem.

Os tempos das ocorrências são representados pela sequência de variáveis aleatórias definidas por $S_n=T_1+\ldots+T_n,\,n\geq 1.$ Considere o processo de contagem definido por

$$X(t) = \max\{n \ge 1 : S_n \le t\}$$

Processo de Renovação

Se T_k' s são **independentes e identicamente distribuídas** com uma função de distribuição (acumulada) F, qualquer, então $\{X(t)\}_t$ é um processo de renovação.

Note que $\{X(t)\}_t$ é um processo de Poisson se e só se T_k 's são independentes e identicamente distribuídas de acordo com uma Exponencial de taxa λ .