PATENT SPECIFICATION

1.110.360

DRAWINGS ATTACHED

1,110,360

Inventors: ROLAND-YVES MAUVERNAY and NORBERT BUSCH

Date of Application and filing Complete Specification: 6 Feb., 1967.

No. 5586/67.

Application made in Monaco (No. 608) on 16 Feb., 1966.

Complete Specification Published: 18 April, 1968.

© Crown Copyright 1968.

Index at acceptance:—C2 C(1F4C2, 1F4D3, 1F4F5, 1G5B, 1G6B3, 1G6B4, 1G6B5, 1Q1A, 1Q2, 1Q4, 1Q6B1, 1Q6C, 1Q8A, 1Q9D1, 1Q9F1, 1Q9L, 1Q11D, 1Q11G, 3A13C1C, 3A13C2C, 3A13C3C, 3A13C7, 3A13C10F, 3A13C10H, B4A1, B4A2, B4B, B4C, B4D, B4H, B4L)

Int. Cl.:—C 07 d 99/02

COMPLETE SPECIFICATION

Piperazine Derivatives and preparation thereof

I, ROLAND-YVES MAUVERNAY, a French citizen of 63 Riom, France, do hereby declare the invention for which I pray that a patent may be granted to me, and the method by which it is to be performed to be particularly described in and by the following statement:—

ment:—

The present invention is concerned with a novel class of piperazine derivatives and with a process for their preparation.

I have mound that piperazine derivatives of the formula

in which R_1 is a phenyl, 4-fluorophenyl, 3,4,5-trimethoxyphenyl, furyl, thienyl, 3-pyridyl or 4-pyridyl group; R_2 is a phenyl, 4-chlorophenyl, 2-fluorophenyl, 4-fluorophenyl, a phenyl-alkoxyethyl group of the formula

(in which R is an alkyl group containing 1 to 4 carbon atoms, particularly methyl, ethyl or isobutyl), or a benzyl group; and n is 1, 2 or 3, and their addition salts with physiologically acceptable acids, have valuable anti-inflammatory and analgesic properties.

According to the present invention, therefore, there are provided, as new compounds, piperazine derivatives of the above formula and their physiologically acceptable acid

and their physiologically acceptable acid

addition salts. The present invention also comprises pharmaceutical compositions comprising one or more of the compounds according to the invention and an inert, physiologically acceptable carrier.

The present invention further comprises a process for the preparation of the novel piperazine derivatives, which comprises condensing a substituted piperazine of the formula

in which R₂ has the above-stated meaning, with a 1,2,4 - oxadiazole of the formula

in which R_1 and n have the above-stated 45 meanings.

The 1,2,4-oxadiazole starting materials for this process can be prepared by the process described by G Palazzo et al f. Med. Pharm. Chem., 4, No. 2, (1961). In the case in which n is 2, it is preferred to use a variant of the above-described process in which the starting material is not a 1,2,4-oxadiazole but the corresponding acrylylamidoxime of the formula

50

55

[Price 4s. 6d.]

20

35

40

45

15

30

in which R₁ has the above-stated meaning, this compound being reacted with the appropriate substituted piperazine in an organic solvent, suitably toluene, at an elevated temperature.

In order that the invention may be more fully understood, the following examples are given by way of illustration only:—

Example 1

1 - (2 - Phenyl - 2 - ethoxy) - ethyl - 4 - [.3 - (3,4,5 - trimethoxyphenyl) - 1,2,4 - oxadiazole(5)] - methylpiperazine dihydrochloride.

23.4 g (0.1 Mole) of 1-(2-phenyl-2-ethoxy) - ethylpiperazine were heated for 2 hours under reflux with 28.55 g (0.1 mole) of 3-(3,4,5-trimethoxyphenyl) - 5-chloromethyl - 1,2,4-oxadiazole (m.p. 91—92°C) in the presence of 8.5 g of NaHCO₃ and 150 ml of n-butanol. After cooling, the NaCl formed was filtered off and the butanol was evaporated in vacuo. The residue was taken up in absolute ethanol, the solution was filtered and acidified with HCl-saturated absolute ethanol. The dihydrochloride crystallised out. After two recrystallisations, the product was obtained as white crystals, m.p. 176° C.

EXAMPLE 2

1 - Phenyl - 4 - {2 - [3 - (4 - fluoro phenyl) - 1,2,4 - oxadiazole (5)] - ethyl} - piperazine.

35

40

45

65

a) First stage: preparation of acrylyl - 4 - fluoro - phenyl - amidoxime.

110 g of 4 - fluoro - phenyl - amidoxime, 360 ml acetone and 60 g of anhydrous K₂CO₃ were introduced into a 3-necked flask having a mechanical agitator, a thermometer, a CaCl₂ tube and a bromine funnel. The flask was placed in an ice bath and a solution of 70 g of acrylic acid chloride in 80 ml of acetone was introduced into it with agitation and while maintaining the temperature between 5° and 10°C. Upon completion of the addition, the ice bath was removed and agitation was continued at ambient temperature for from 3 to 4 hours. Under these conditions there was partial precipitation of the product and the precipitate was washed with cold water. The remainder of the product was recovered by evaporation of the acetone. The two portions were combined and then washed first with cold 5% aqueous Na2CO3 solution, and then with water. Crystallisation in acetone gave the required intermediate product, m.p. 99°—100°C.

b) Second stage: preparation of end 60 product.

10.4 g. (0.05 Mole) of acrylyl - 4 - fluorophenylamidoxime and 8.1 g of 1 - phenylpiperazine were heated under reflux in the presence of 80 ml of toluene in a flask surmounted with a Dean-Stark decanter and an ascending condenser. Upon completion of the reaction as determined by the amount of water collected, which took about 5 to 6 hours, the toluene was evaporated off leaving a residue which crystallised. After two recrystallisations in ethanol, white needles of the end product were obtained, m.p. 101°C

50

55

70

Example 3

1 - (4 - Fluoro - phenyl) - 4 - {3 - [3 - phenyl - 1,2,4 - oxadiazole (5)] - propyl} - piperazine.

22.25 g (0.1 Mole) of 3-phenyl-5-(3-chloro-propyl) - 1,2,4 exadiazole and 18 g (0.1 mole) of 1-(4-fluoro-phenyl)-piperazine were heated under reflux for 10 hours with agitation in the presence of 8.5 g of sodium bicarbonate and 151 ml of n-butanol. The NaCl formed was filtered off and after the solvent had been removed in vacuo, a thick oil was obtained which crystallised slowly. After two recrystallisations in methanol, white crystals of the desired product were obtained, m.p. 67°C.

EXAMPLE 4

3 - (2 - Thienyl) - 5 - {3 - [4 - (4 - fluoro - phenyl) - piperazine] propyl} - 1,2,4 - oxadiazole dihydrochloride.

20

A. Preparation of 3 - chloro - butyryl - 2 - thienyl amidoxime

0.2 Mole of 2 - thienyl - amidoxime in 200 ml of acetone and 0.1 of anhydrous potassium carbonate were introduced into a 3-nicked flask provided with a mechanical agitator, a thermometer, a CaCl₂ tube and a bromine funnel. The temperature was maintained at around 5°C while 0.22 mole of γ-chlorobutyryl chloride in 50 ml of acetone was added drop by drop. The mixture was agitated at ambient temperature for 2 hours, the precipitate was filtered off, washed first with ether and then with NaHCO₃ - saturated water. The amidoxime product was recrystallised in acetone; m.p. 120°C.

3 - Chloro - butyryl - 2 - furyl - amidoxime, m.p. 130°C. (dec.); 3 - chloro - butyryl - 3 - pyridyl - amidoxime, m.p. 125°C. (dec.); and 3 - chloro - butyryl - 4 - pyridyl - amidoxime, m.p. 130°C. were obtained similarly.

B. Preparation of 3 - (2 - thienyl) - 5 - (3 - chloro - propyl) - 1,2,4 - oxadiazole.

0.15 Mole of the amidoxime product prepared as described under heading A was heated under reflux in 100 ml of toluene in a flask provided with a Dean-Stark decanter and a reflux condenser. Upon completion of the reaction as determined by the quantity of water collected, the toluene was evaporated off and the residue was distilled in vacuo to give the desired 1,2,4 - oxadiazole.

$$b.p._2 = 144$$
°C n_D^{22} ° = 1.5670

3 - Chlorobutyryl - 2 - furyl - amidoxime, 3 - chlorobutyryl - 3 - pyridyl - amidoxime, and 3 - chlorobutyryl - 4 - pyridyl - amidoxime were cyclised similarly to obtain the corresponding 1,2,4 - oxadiazoles, which are non-distillable products and are used in the crude state for the condensation reaction with piperazines.

C. Preparation of 3 - (2 - thienyl) - 5 - 65 {3 - [4 - (4 - fluoro - phenyl - piperazine] - propyl } - 1,2,4 - oxadiazole dihydrochloride.

0.1 Mole of the oxadiazole prepared as described above under heading B, 0.1 mole of 4 - (4 - fluoro - phenyl) piperazine, and 0.11 mole of NaHCO₃ in 150 ml of n butanol were heated under reflux for 10 hours. The mixture was filtered and the solvent was removed in vacuo. A residue was obtained which crystallised. The product, which was the free base, was recrystallised twice in methanol; m.p. 67°C .

N % calculated : 15.08 N % found : 15.00

The dihydrochloride was prepared conventionally in absolute ethanol plus dry gaseous HCl. Recrystallisation is effected in ethanol, $m.p. = 170^{\circ}C$.

HCl calculated : 15.9 85 HCl found : 18.85

All the compounds according to the invention and presented in Table I can be prepared by processes similar to those described. The dihydrochlorides can be prepared by the addition of HCl - saturated ethanol.

Table 1 of the accompanying drawings gives the meanings of the substituents R₁, R₂ and n for a number of compounds according to the invention which have been prepared and lists the melting points of these compounds in their free base and hydrochloride forms.

The toxicity, anti-inflammatory, analgesic activity and other properties of compounds according to the invention have been evaluated by conventional test procedures, namely:

45

a) Acute toxicity: LD 50 per os in mice

— BEHRENS and KARBER'S method
(Arch. Exp. Path. Pharm., 177, 379, 1935);
results expressed in mg/kg.

b) Analgesia:

1. Thermal stimulus: methods of EDDY and LEIMOACH (J. Pharm. Exp. Ther., 107, 385, 1953) and of CHEN (Science, 113, 631, 1951); results expressed in mg/kg (ED 50).

2. Chemical stimulus: methods of KOSTER (Fed. Proc., 18, 412, 1959) and WITKIN (J. Pharm. Exp. Ther., 133, 400, 1961); results (ED 50) expressed in mg/kg.

c) Anti - inflammatory activity: WIL-HELMT and DOMENJOZ's method (Arz. Forsch., 1, 151, 1951).

The results given are the planimetric values obtained by using does equal to 10% of the LD 50.

d) General effects: they were investigated for a 5 mg/kg intravenous dose in narcotised dogs:

X=study of the cardiomoderation caused by excitation of the peripheral end of the pneumo-gastric nerve.

A=study of the adrenalinic hypertension. NA=study of noradrenalinic hypertension. (values expressed as percentage reductions).

e) Action on central nervous system: This was investigated by study of spontaneous motility using doses equal to 10% of the LD 50.

The results are expressed as follows:

40 All these results, evaluated for the 35 compounds of Table I, are combined and shown in Table II of the accompanying drawings.

WHAT I CLAIM IS:—

1. Piperazine derivatives of the formula

$$\bigcap_{N} \bigcap_{\text{R2}} (\text{CH}_2)_{n} \bigcap_{\text{R1}} \bigcap_{\text{R1}} \bigcap_{\text{R2}} \bigcap_{\text{R2}} \bigcap_{\text{R3}} \bigcap_{\text{R4}} \bigcap_{\text$$

in which R_1 is a phenyl, 4-fluorophenyl, 3,4,5-trimethoxyphenyl, furyl, thienyl, 3-pyridyl or 4-pyridyl group; R_2 is a phenyl, 4-chlorophenyl, 2-fluorophenyl, 4-fluorophenyl, a phenyl-alkoxyethyl group of the formula

$$C_6H_5$$
— CH — CH_2 —

OR

(in which R is an alkyl group containing 1 to 4 carbon atoms), or a benzyl group; and n is 1, 2 or 3, and their physiologically acceptable acid addition salts.

2. The compounds of the formula specified in claim 1 herein specifically described.

3. A pharmaceutical composition comprising one or more compounds as claimed in claim 1 or 2 and an inert, physiologically acceptable carrier.

4. A process for the preparation of piperazine derivatives of the formula specified in claim 1, which comprises condensing a substituted piperazine of the formula

in which R₂ has the meaning specified in claim 1, with a 1,2,4-oxadiazole of the formula

in which R_1 and n have the meanings specified in claim 1.

5. A modification of the process claimed in claim 4 for the preparation of compounds according to claim 1 in which n is 2, in which the substituted piperazine is reacted with an acrylyl-amidoxime of the formula

in which R₁ has the meaning specified in claim 1, in the presence of an organic solvent at an elevated temperature.

- 6. A process for the preparation of piperazine derivatives of the formula specified in claim 1 substantially as herein described in any of Examples 1 to 4.
- A. A. THORNTON & CO., Chartered Patent Agents, Northumberland House, 303/306 High Holborn, London, W.C.1.

Printed for Her Majesty's Stationery Office by the Courier Press, Leamington Spa, 1968. Published by the Patent Office, 25 Southampton Buildings, London, W.C.2, from which copies may be obtained.

TABLE I - EXAMPLES OF DEL

		INDLL	٠	-/W 1/#11	LLJ UI UL
compound No.	R ₁	R ₂	n	M.P. OF BASE (°C)	M.P. OF DI- HYDROCHLORIDE (°C)
î	\bigcirc	○ -	3	_	148
5	○ -	F -	3	67	160 .
3	○ -	F	3	72	168
4	<u></u>	cı 🔷 ·	2	112	172
5	\Diamond	CL -O-	3	81	172
6	\Diamond	CH-CH ₂ - OC ₂ H ₅	1	_	158
7	\Diamond	OC4Hg(i)	3		166
8	. 🗢	€ -CH ₂ -	3	_	182
9	F —	·	2	101	161
10	F -<->	€ CH-CH2- 0C2H5	1	_	153

COMPLETE SPECIFICATION

3 SHEETS

This drawing is a reproduction of the Original on a reduced scale

Sheet 1

EC OF DEDUKATIVEC

ES OF DE	ERIVATIVES	•				
I.P. OF DI- IYDROCHLORIDE (°C)	COMPOUND NO.	R ₁	R_2	n	M.P. OF BASE (°C)	M.P. OF DI- HYDROCHLORIDE (°C)
148	17	CH3O CH3O CH3O	○	2	103	162
160	12	СН ₃ 0 СН ₃ 0 СН ₃ 0		3	_	165
168	13	CH30 CH30 — CH30	F -<->	2	118	170
172	14	CH ₃ 0 CH ₃ 0 — CH ₃ 0		2	112	161
172	15	CH ₃ 0 CH ₃ 0 ————————————————————————————————————	F -	3	_	169
158	16	CH ₃ 0 CH ₃ 0 — CH ₃ 0	<i>✓</i> ^F	3.	87	167
166	17	CH ₃ 0 CH ₃ 0 - CH ₃ 0	СН-СН ₂ − ОСН3	1	_	194
182	18	СН ₃ 0 СН ₃ 0 — СН ₃ 0	ОСН ₃	2		172
161	19	CH ₃ 0 CH ₃ 0	CH-CH ₂ -0C ₂ H ₅	1	-	176
153	20	CH ₃ O CH ₃ O	C4H9(i)	1		16/
	J L					

1110360 COMPLETE SPECIFICATION
3 SHEETS the Original on a reduced scale
Sheet 1

1 1200	M.P. OF M.P. OF DI- BASE HYDROCHLORIDE (°C) (°C)	162	165	170	191	169	167	194	172	921	191
	M.F. OF M BASE HI (°C)	103		811	112	1	87	ı	ı	1	1
	2	2	m	2	2	, m	e,	-	~		~
	R2		\Diamond	F 🔷	Ġ.	F	. \$\frac{1}{2}	$ \bigcirc \begin{matrix} \bigcirc \begin{matrix} CH - CH_2 - \\ OCH_3 \end{matrix} . $	⟨\rightarrow \cquad \c	()-CH-CH2- OC2H5	(2) -CH-CH2-
	R ₁	CH3O CH3O CH3O	CH30 CH30 CH30	$CH_3O \\ CH_3O \\ CH_3O$	$CH_3O \longrightarrow CH_3O \longrightarrow CH_3$	$CH_3O < CH_3O < CH_3O$	$CH_3 O < CH_3 O < C$	CH_3O CH_3O CH_3O	CH_3O CH_3O CH_3O	CH_3O CH_3O CH_3O CH_3O	CH30 CH30
VATIVES	COMPOUND NO.	11	72	13	74	15	91	21	18	62	20
E											
EXAMPLES OF DERIVATIVES	M.R. OF M.R. OF DI- BASE HYDROCHLORIDE (°C)	148	160	168	172	172	158	991	182	191	153
EXAMP	M.R. OF PASE (°C)	ı	29	22	112	18	ı	ı	1	101	ı
t	2	m m	rs)	m	~	m	-	m	m m	~	-
TABLE I	R ₂	0	\$	<u>"</u>	a 🖒 .	a 🖒	O-CH-CH2-	(1) -CH-CH2- OC4 H9 (1)	-2H2	. 🖒	-4n-ch²-
•	R	\$	0	0	\$	\Diamond	0	0	\$	\$	4
	COMPOUND NO.		~	m	4	8	. 9	. ~	∞	6	10

TABLE I (CONT

COMPOUND NO.	R ₁	R ₂	n	M.P. OF BASE (°C)	M.P. OF DI- HYDROCHLORIDE (°C)
21	S		2		168
22	S	\bigcirc	3	60	182
23	5	F—	2		175
24	S	F —	3	67	170
25	[s]	cı —	3	86	180
26	s	CH ₂ −	3	liquid	195
27	\[\s\]	СН-СН ₂ - осн ₃	1		174
28	T _s	СН-СН ₂ - осн ₃	3		186

1110360 CON

COMPLETE SPECIFICATION

3 SHEETS

This drawing is a reproduction of the Original on a reduced scale Sheet 2

LE I (CONTD.)

M.P. OF DI- HYDROCHLORIDE (°C)
168
182
175
170
180
195
174
186

COMPOUND NO,	R ₁	R ₂	n	M.P. OF BASE (°C)	M.P. OF DI- HYDROCHLORIDE (°C)
29			1	98	148
30			3	-	170
31		F -	1	- 115	157
32	~_>		3		Trichlorhydrate 175
33	<i>N</i>	F—	3	-	Trichlorhydrate 183
34	N-		3	76	Trichlorhydrate 188
35	~ <u>~</u>	F -	3	82	Trichlorhydrate 189

1110360 COMPLETE SPECIFICATION
3 SHEETS This drowing is a reproduction of the Original on a reduced scale
5heet 2

TABLE I (CONTD.)

R

COMPOUND NO.

								-			
	R ₂	긛	M.R. OF BASE (°C)	M.P. OF M.P. OF DI- BASE HYPROCHLORIDE (°C) (°C)	COMPOUND NO.	ND R1	R2	5	BASE (°C)	BASE HYPROCHLORIDE (°C)	
ļ ,	\Diamond	~		168	53				88	148	
1	Ó	m	09	182	8			ري _		170	
,		7		17.5	33		F	~	-115	157	
		m	29	170	32	Q		m		Trichlorhydrafe 175	
	a C	m	86	180	88		F	£.		Trichlorhydrafe 183	
	CH2- 3 liquid	<u>س</u>	liquid	195	34			უ	76	Trichkrhydate 188	
	CH-CH-CH ₂ -	<u> </u>		17.4	33			ო	82	Trichlorhydrafe 189	
	CH-CH ₂ -	<i>w</i>		186						-	

TABLE II

Z	1								·								
ACT. ON	CN.S.	+	+++	· · · · · ·	+ +	0			0				+	•		+++	•
EFFECTS	NA	inhiB.	80	20	20	!	20	I	35	22	1	20	09	50	20	202	
GENERAL EFI	A	імнів.	80	65	09	ı	. 02	15	9	46	ī	імнів	INVERS.	09	92	85	
GEN	·×	1	1	į	ı	i	ŀ	. 26	ı	ł	1	ı	1.	ı	1	1	
ANTI-INFLAM-	ACTION	328	485	.262	172	365	131	286	245	103	250	160	359	137	1	474	
	CHEMICAL STIM.	150	40	50	ı	17.5	•	200	20	Ţ	62,5	110	20	ı	· J	8	
ANALGESIA	THERMAL STIM. CHEMICAL STIM	011	20	80	٠.	140	Ţ	ı	09	'n	130	425	75.	-1-4	1		
ACUTE	TOXICITY	2500	1500	2000	>3000	>3000	3000	> 3000	200	>3000	1500	> 3000	> 3000	> 3000	> 3000	2000	
COMPOUND	No.	-	~	س	4	ۍ	9	_	∞	<u>ნ</u>	02	11	12	. 73	14	25	•

1110360 COMPLETE SPECIFICATION

3 SHEETS This drawing is a reproduction of the Original on a reduced scale Sheet 3

																							
+			+ +	+++			++		+ + +	+		+++		+	++++	+	+			+++	++++	++++	
09	50	20	20	20	i	40	1	11	30	62		42		80	1	1	i	09 .				43	27
INVERS.	09	92	85	inv.	1	65	I _.	23	jwv.	85		20	30	80	40	30	i	83				79	52
1 -	ı	ı	1	1	ī	34	1	ı	22	i		1	88	1	40	1	28	ı				1	28
359	137	ı	474	359	ī	11	253	7.1	753	240	203	367	174	Ţ			137	279				392	i
20	1	·T	8	001	110	-1	87,5	1	200	175	30	30	17.5	•~		200	ı	80	1	. 52	15	40	37,5
75	•4	1		37	100	. ~	125	210	250	150	1	120	100	ı		425	I	ı	l	.1	37.5	100	50
> 3000	> 3000	> 3000	2000	> 3000	> 2500	009	> 3000	7 3000	1600	> 3000	> 2000	2000	> 2000	415	2000	> 1000	2500	1300	> 1000	1500	1000	1500	400
12	22	14	25	91	17	18	19	20	12	22	23	24	25	56	27	82	53	30	33	32	33	34	35

PHARMACODYNAMIC EFFECTS OF THE DERIVATIVES OF TABLE I

	22	76	07 [5(10			
, .		25	82	-	SZE	0.5	· 00#	35
++++	€⊅	64	- 1	268	07	001	0051	34
++++					SI	síę	0001	5.5
+++					<i>52</i> .		0051	32
					-		0001 <	18
	09 '	68	-	67S	08	_	0081	90
++		-	87	7.51	_		. 2002	58
+		90			200	52 <i>t</i>	> 1000	82
++++		. 05	07				2000	52
+	08	08	-	Į	Į		SIV	56
		90	88	カムし	<i>૬૮ા</i>	001	> 5000	52
+++	75	02	-	∠9€	96	JSO	2000	54
				203	οε	-	> 2000	23
+	79	28	-	07Z	SLL	051	000€ <	55
+++	30	ΆN/.	SZ	દરા	002	SSO	0091	IZ
	и	£S	-	12	_	OIS	000€ <	50
+++	-	<u> </u>		253	S Ź8	เรอ	≥ 3000	61
	04	59	≯ €	IL	Į	Į	009	81
	-	-	-	-	011	001	00SZ <	ZL
+++	OL	,VN\		େଟେ	001	16	000€ <	91
+++	OL	28	-	<i></i> ተረታ	06		2000	SI
	05	94	-		Į	_	000€ <	tl
	05	09	-	281		Į	000€ <	81
++	09	invers.	÷	65E	05	· S Z	000€ <	15
	05	В іниі		091	ou	4 52	000E <	l II
	-		-	S20	62,5	0.51	0051	Ol
	22	9†	-	EOI	Į	Į	0008<	6
0	35	07	- '	242	SO	09	005	8
	-	SI	92 ·	286	200	' -	000€ <	L
	20	. 07	-	151	Į	Į	3000	9
0	_		-	ક્રકદ	SLI	041	000€<	S
++	05	09	-	172	-	ĮĮ	000€<	7
1	05	59	-	2 92	05	08	5000	٤
+++	08	08	_	58 7	0#	05	0051	5
++	.BiHNi	.BiHNİ	-	828	osi	011	5200	ı
CWS.	AN	V	- x	ACTION	CHEMICAL STIM.	THERMAL STIM.	TOXICITY	.ON
NO TOA	:ECTS	EKAL EFF	nN∃Đ	-Maithi-itha Yaotam	AISE	YNYFE	∃TN2A	GNUMPHYOD
7 77	DAI 7	INED C	IHAIN-		0 (17)		ANT TUDO PAY	LUND

1110360 COMPLETE SPECIFICATION
3 SHEETS This drawing is a reproduction of the Original on a reduced scale
Sheet 3