Lycée Technique Mohammedia

Logique Séquentielle

1^{ère} STE Unité ATC

Professeur: MAHBAB

1STE	IDENTIFIER LES FONCTIONS DE BASE DES CIRCUITS SEQUENTIELS	L.T Mohammedia
F.Cours n°14	NOTION DE MEMOIRE Prof : MAHBAB	Page 1 / 2

1. INTRODUCTION:

A la différence d'un circuit combinatoire, l'état d'un circuit séquentiel dépend de l'état de ses entrées et de l'état précédent de ses sorties ; il doit donc "se rappeler" ou avoir de la "mémoire". Par mémoire, on exprime le phénomène qui consiste à conserver l'effet d'un événement après sa disparition.

L'état des sorties ne dépend que de l'état des entrées

L'état des sorties dépend de l'état des entrées et de l'état précédent de ses sorties

2. CIRCUIT MEMOIRE EN TECHNOLOGIE ELECTRIQUE :

Exemple : Circuit de la commande d'un moteur d'une perceuse

- Le bouton "m" permet de mettre en marche le moteur.
- Le bouton "a" permet de l'arrêter.
- Quand on appuie sur le bouton m, le moteur démarre ; quand on relâche le bouton, le moteur continue à tourner. L'ordre de mise en marche a donc été mémorisé ;
- Il en est de même pour le bouton a ;
- L'action arrêt est prioritaire : si m et a sont appuyés en même temps, on arrête le moteur.
- Quand l'utilisateur appuie sur m, la bobine du relais est alimentée. Les contacts K associés se ferment. Si l'utilisateur relâche m, le courant continue à circuler par K; le relais est alors auto-alimenté et le moteur continue à tourner. L'équation du relais K et du moteur M est :

<u>Circuit mémoire élémentaire en</u> technologie électrique

Q

3. CIRCUIT MEMOIRE EN TECHNOLOGIE ELECTRONIQUE :

Le circuit mémoire élémentaire en électronique est appelé BASCULE RS.

- S (Set) est l'entrée de mise à 1 de la sortie Q;
- R (Reset) est l'entrée de mise à 0 de la sortie Q;
- Q sortie de la bascule.

3.1. Approche 1 :

On part de l'équation d'auto-alimentation du relais et on fait la correspondance logique : S correspond à m, R correspond à a et Q correspond à K. On en déduit alors l'équation de la bascule SR avec Reset prioritaire, ainsi que son logigramme :

S

Ce circuit est plus connu par sa réalisation simplifiée avec l'utilisation de portes NOR.

1STE	IDENTIFIER LES FONCTIONS DE BASE DES CIRCUITS SEQUENTIELS	L.T Mohammedia
F.Cours n°14	NOTION DE MEMOIRE Prof : MAHBAB	Page 2 / 2

q indique l'état précédent (0 ou 1) (*) Etat indéterminé si on passe à SR=00

3.2. Approche 2:

Dans cette approche, on raisonne comme pour un circuit combinatoire. Il est donc nécessaire de connaître l'état de Q pour connaître l'état de la sortie lorsque les deux entrées sont à 0 (état de mémoire). On introduit alors une variable supplémentaire qui indique l'état précédent de Q. On note "q" cette variable.

S	R	q	Q
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	•••
1	0	1	
1	1	0	
1	1	1	•••

1STE	IDENTIFIER LES FONCTIONS DE BASE DES CIRCUITS SEQUENTIELS	L.T Mohammedia
F.Cours n°15	LES BASCULES Prof : MAHRAR	Page 1 / 5

1. INTRODUCTION:

Les Bascules, également connues sous le nom de flip-flop, sont des circuits logiques à deux états stables en sortie. Les bascules RS, D et JK sont décrites par des tables de vérité, dont la connaissance *doit devenir instinctive* si l'on veut pouvoir maîtriser des interfaces complexes.

A l'instar des opérateurs logiques élémentaires en logique combinatoire, les bascules (flip-flop) sont les éléments de base de la logique séquentielle.

2. LA BASCULE SR :

2.1. Bascule SR Asynchrone:

Les bascules RS sont à la base de tous les éléments de mémorisation. Il s'agit d'un montage utilisant deux portes NAND et capable de mémoriser un niveau logique choisi à l'aide de deux sorties complémentaires.

Symbole:

Table de vérité :

S	R	Q	/Q	Commentaires
	• • •		•••	
	•••		• • •	
	•••		•••	
•••	•••	•••	• • •	

Logigramme avec portes NAND:

Remarque:

Cette bascule présente deux inconvénients majeurs :

- Sensibilité de la sortie Q aux changements indésirables (parasites) des entrées S et R;
- La configuration S = R = 1 est à éviter parce qu'elle conduit à l'égalité entre les deux sorties et donc il n'y a plus complémentarité comme c'est indiqué dans la définition de la bascule;

2.2. Bascule SR Synchrone statique:

Elle dispose d'une entrée de validation de la programmation en R et S. Ce signal appelé **HORLOGE** est actif sur **niveau haut** ou sur **niveau bas**. Donc, les ordres Set et Reset ne changent l'état de la sortie qu'après l'autorisation d'un signal de commande **H**.

Table de vérité (H active sur niveau haut) :

Н	S	R	Q	/Q	Commentaires
	• • •		•••	•••	
	•••	•••	• • •	•••	
•••	•••	•••	• • •	• • •	
				•••	•••••
			•••	• • •	•••••

Logigramme avec portes NAND:

q indique l'état précédent de Q

C'est une bascule R S dont la prise en compte de l'état des entrées est synchronisée par une d'horloge. L'horloge est active sur *front montant* ou sur *front descendant*.

Table de vérité (H active sur front montant) :

Н	S	R	Q	/Q	Commentaires
	•••	•••	•••	•••	
	•••	• • •	•••	•••	
	•••	•••	•••	•••	• • • • • • • • • • • • • • • • • • • •
		•••	•••		
	•••	• • •	•••	•••	
				•••	
	•••				

Fonctionnement:

- Signal d'horloge actif → bascule RS
- Absence de signal actif d'horloge →
 mémoire.

Symbole:

Bascule D dynamique:

Table de vérité (H active sur front montant):

Н	D	Q	/Q	Commentaires
•••	••		•••	
•••	•••		• • •	
• • •	•••		• • •	
•••	•••		• • •	
•••	•••	•••	• • •	

Fonctionnement:

- signal actif, la sortie recopie l'entrée $D \rightarrow Fonction\ Ecriture$;
- Signal inactif → Fonction Mémoire.

Symbole:

4. LA BASCULE JK :

C'est une bascule synchrone, offrant les fonctions *mémorisation*, *mise à 0*, *mise à 1* (les 3 fonctions de la bascule D), et assurant en plus la fonction *basculement*. Donc, la bascule JK permet en plus de lever l'ambiguïté qui existe pour l'état S=R=1 d'une bascule SR.

Table de vérité (H active sur front montant) :

Н	J	K	Q	/Q	Commentaires
	•••	• • •		•••	
	•••	•••		•••	
	•••	•••		• • •	•••••
	•••	•••		• • •	
	•••	• • •		•••	
	•••	•••			
				•••	

Symbole:

Si on utilise la bascule JK avec J = K = 1, on obtient l'une des principales applications de la bascule JK à savoir le diviseur de fréquence par 2.

5. Fonctionnement forcé des bascules :

Il est parfois nécessaire d'affecter le niveau de sortie d'une bascule de manière non synchrone, c'est-à-dire indépendamment de l'horloge. C'est le rôle des entrées de forçage asynchrone Preset (Set) et Clear (Clr) qui permettent d'initialiser la bascule :

Bascule JK avec entrées de forçage :

Bascule SR avec entrées de forçage :

Circuits intégrés à bascules (exercice):

- Brochage et table de vérité du 74 279
- Brochage et table de vérité du 74 LS 75
- Brochage et table de vérité du 74 LS 76

1STE	IDENTIFIER LES FONCTIONS DE BASE DES CIRCUITS SEQUENTIELS	L.T Mohammedia
F.Cours n°16	LES COMPTEURS Prof: MAHBAB	Page 1 / 4

1. Définition :

Un compteur est un ensemble de n bascules interconnectées par des portes logiques. Ils peuvent décrire, au rythme d'un signal de commande appelé horloge, une suite d'états binaires. Il ne peut y avoir au maximum que 2ⁿ combinaisons et le nombre total N des combinaisons successives est appelé le modulo du compteur. Les compteurs binaires peuvent être classés en deux catégories :

- Les compteurs asynchrones;
- Les compteurs synchrones ;

2. Compteur asynchrone modulo $N = 2^n$:

Ce type de compteur est constitué de n bascules JK fonctionnant en mode T (Toggle) : J=K=1. Ces bascules sont montées en cascade c'est-à-dire le signal d'horloge commande uniquement la première bascule tandis que pour chacune des autres bascules le signal d'horloge est fourni par la sortie de la bascule de rang immédiatement inférieur.

Exemple : Compteur asynchrone modulo $16 = 2^4$

R	Н	q ₃	q ₂	q_1	\mathbf{q}_0	Q ₃	Q ₂	Q_1	\mathbf{Q}_{0}
1	Х	Х	Х	Х	Х	0	0	0	0
0	+	0	0	0	0	0	0	0	1
0	+								
0	+								
0	+								
0	+								
0	\leftarrow								
0	\leftarrow								
0	+								
0	\leftarrow								
0	\leftarrow								
0	\								
0	+								
0	+								
0	+								
0	+								
0	\rightarrow								

Il faut

1STE	IDENTIFIER LES FONCTIONS DE BASE DES CIRCUITS SEQUENTIELS	L.T Mohammedia
F.Cours n°16	LES COMPTEURS Prof : MAHBAB	Page 2 / 4

3. Compteur asynchrone modulo $N \neq 2^n$:

Exemple: Compteur asynchrone modulo $10 (2^3 < 10 < 2^4)$

Pour le réaliser, il y a deux étapes :

- On cherche d'abord la puissance de 2 immédiatement supérieure à N.
- L'exposant de cette puissance de 2 donne le nombre de bascules JK à monter en cascade.
- Ton détecte ensuite l'état N qui remettra le compteur à 0.

R	Н	q_3	\mathbf{q}_{2}	\mathbf{q}_1	\mathbf{q}_0	Q_3	Q_2	Q_1	\mathbf{Q}_{0}
1	Х	Х	Х	Х	Х	0	0	0	0
0	\rightarrow	0	0	0	0	0	0	0	1
0	\rightarrow								
0	\rightarrow								
0	\rightarrow								
0	\rightarrow								
0	\rightarrow								
0	\downarrow								
0	\rightarrow								
0	\rightarrow								
0	\leftarrow								

On relie les sorties Q₁ et Q₃ (=1 pour N=10) aux entrées d'une porte AND dont la sortie commandera l'entrée CLR de chaque bascule.

4. Compteur synchrone modulo N:

Dans un compteur synchrone toutes les bascules reçoivent en parallèle le même signal d'horloge. Pour faire décrire au compteur une séquence déterminée il faut à chaque impulsion d'horloge définir les entrées synchrones J et K.

Pour cela on utilise la table de transition de la bascule J-K ainsi que la table de vérité décrivant la séquence du compteur.

Exemple: Compteur asynchrone modulo $8 = 2^3$

	R	Н	q ₂	q ₁	\mathbf{q}_0	Q_2	Q ₁	\mathbf{Q}_{0}
	1	Х	Х	Х	Х	0	0	0
	0	\rightarrow						
	0	\rightarrow						
	0	\rightarrow						
	0	\rightarrow						
	0	\rightarrow						
	0	\rightarrow						
Ī	0	\rightarrow						
	0	V						

q	ď	J	K
0	0		
0	1		
1	0		
1	1		

Il faut

Table d'excitation de la bascule JK

La résolution du problème consiste à chercher les équations des entrées J et K de chaque bascule à l'aide de la table des états recherchés.

q ₂	q ₁	q o	Q ₂	Q ₁	Q_0	J ₂	K ₂	J ₁	K ₁	Jo	Ko

1STE	ANALYSER LES MONTAGES À BASE DU CIRCUITS INTEGRÉ NE 555	L.T Mohammedia
F. Cours n° 17	TEMPORISATEURS A BASE DE CIRCUITS INTEGREES DOG . MANDAD	Page 1/3

1. INTRODUCTION:

Dans les systèmes numériques, on a souvent besoin qu'une action soit effectuée pendant une durée déterminée; on parle de temporisation. Aussi, on a besoin d'un signal périodique qui synchronise ou cadence les opérations d'un système séquentiel; on parle de base de temps ou d'horloge (Clock).

2. LE CIRCUIT DE BASE-(Circuit RC) :

Dans un circuit RC, avec C déchargé (Vc = 0V), alimenté par une tension continue E, la tension Vc aux bornes de C augmente; on dit que C se charge.

La loi de variation de Vc est de la forme : $Vc = E. (1-e^{-t/RC})$

$$Vc = E. (1-e^{-t/RC})$$

- Pour $t = 0 \rightarrow Vc = 0V$;
- ❖ Pour $t \rightarrow + \infty Vc \rightarrow E$;
- Pour t = τ Vc = 0.63E avec τ = RC.

Dans un circuit RC, avec C déjà chargé (Vc = E), la tension aux bornes de C diminue; on dit que C se décharge. la loi de variation de Vc est de la forme :

$$Vc = E. (e^{-t/RC})$$

- Pour $t = 0 \rightarrow Vc = E$;
- Pour t \rightarrow + ∞ Vc \rightarrow 0;
- Pour t = τ Vc = 0.37E avec τ = RC.

On démontre que pour atteindre une certaine valeur VcX, il faut un certain temps tX, tel que :

In est le logarithme népérien ;

- R est la valeur de la résistance ;
- C est la capacité du condensateur.

F. Cours n° 17 TEMPORISATEURS A BASE DE CIRCUITS INTEGREES Prof : MAHBA

3. LE TEMPORISATEUR NE555 :

Comme l'indique son schéma interne, le NE555 est constitué de :

- ❖ 2 comparateurs dont les seuils sont fixés par le pont des 3 résistances R;
- d'une bascule SR, avec une entrée de forçage à 0 (RESET);
- d'un transistor pour la décharge de condensateur externe.

3.1. FONCTIONNEMENT EN MONOSTABLE:

- ❖ On suppose qu'au démarrage, le condensateur C est déchargé et la sortie Vs à 0 ;
- L'entrée Vt est au repos au niveau logique 1 ; alors les variables du montage sont positionnées ainsi :
 - Les entrées de la bascule (S=0) et (R=0) → Etat mémoire de la bascule et Vs reste à 0;
 - Le transistor est saturé ; c'est l'état stable du monostable.

1STE	ANALYSER LES MONTAGES À BASE DU CIRCUITS INTEGRÉ NE 555	L.T Mohammedia
F.Cours n°17	TEMPORISATEURS A BASE DE CIRCUITS INTEGREES Prof : MAHBAB	Page 3/3

- Si Vt passe à 0 pendant une durée très courte par rapport à la durée qu'on veut du monostable, alors :
 - (S=1) et $(R=0) \rightarrow la$ sortie Vs est à 1;
 - Le transistor est bloqué, ce qui permet au condensateur C de se charger à travers R.
- Quand Vc, après un temps qui dépend de R et C, atteint 2/3 de E, on a :
 - (S=0) et $(R=1) \rightarrow la$ sortie Vs est à 0;
 - Le transistor est saturé ; on revient à l'état de repos.
- L'expression de la durée de temporisation T_W est :

$$T_W = R.C.ln3$$
 \rightarrow $T_W = 1,1.R.C$

3.2. FONCTIONNEMENT EN ASTABLE:

Il y a plusieurs variantes de cette fonction; on va étudier la plus courante.

- On suppose qu'au démarrage, le condensateur C est déchargé et la sortie Vs à 1 ; alors les variables du montage sont positionnées ainsi :
 - Les entrées de la bascule (S=0) et (R=0) → Etat mémoire de la bascule et Vs reste à 1;
 - Le transistor est bloqué, ce qui permet au condensateur C de se charger à travers (R_A + R_B).
- Quand Vc, après un temps qui dépend de (R_A + R_B) et C, atteint 2/3 de E, on a :
 - (S=0) et $(R=1) \rightarrow la$ sortie Vs est à 0;
 - Le transistor est saturé ; ce qui permet au condensateur C de se décharger à travers la résistance R_B. La tension Vc diminue alors.
- Quand Vc, après un temps qui dépend de R_B et C, atteint 1/3 de E, on a :
 - (S=1) et $(R=0) \rightarrow la$ sortie Vs est à 1;
 - Le transistor est bloqué ; le cycle recommence. Il s'agit bien d'un oscillateur.
- L'expression de la période est T = T_L + T_H, avec :

$$TL = R_B.C.\ln 2$$
 et $TH = (R_A + R_B).C.\ln 2 \rightarrow T = 0.7(R_A + 2.R_B).C$

1STE	IDENTIFIER LES FONCTIONS DE BASE DES CIRCUITS SEQUENTIELS	L.T Mohammedia
F.Cours n°18	LES REGISTES Prof: MAHBAB	Page 1 / 2

1. Présentation :

Un registre est constitué d'un assemblage de n bascules D permettant la mémorisation temporaire de n bits avec ou sans décalage. L'information est emmagasinée sur un signal de commande et ensuite conservée et disponible en lecture.

2. Le registre de mémorisation :

Les quatre bits D_0 , D_1 , D_2 et D_3 sont mémorisés dans les 4 bascules sur la même impulsion d'horloge, le mot binaire présenté en entrée est donc mémorisé.

Le signal d'horloge permet l'écriture (Write) des données D_0 , D_1 , D_2 et D_3 , dans les 4 bascules.

3. Les registres à décalage :

Dans un registre à décalage les bascules sont interconnectées de façon à ce que l'état logique de la bascule de rang i puisse être transmis à la bascule de rang i+1 (ou i-1) quand un signal d'horloge est appliqué à l'ensemble des bascules.

L'information peut être chargée de deux manières :

- Entrée parallèle : comme dans le cas d'un registre de mémorisation ;
- Entrée série : l'information est présentée séquentiellement bit après bit à l'entrée de la première bascule. Le décalage peut alors être vers la gauche ou la droite.

De même, l'information peut être lue en série ou en parallèle.

3.1. Les modes de fonctionnement d'un registre à décalage :

3.2. Exemple de registre à décalage :

L'information entrante qui est insérée bit par bit (en série) est reconstituée au rythme du signal d'horloge sur un format parallèle.

Exemple de registre à écriture série avec décalage à droite :

Un registre à décalage universel aura donc la structure suivante :

Parmi les registres universels, on trouve le 74194 qui est un registre à chargement parallèle ou série, avec la possibilité d'un déplacement de l'information vers la droite (Q_{Δ} vers Q_{D}) ou la gauche (Q_{D} vers Q_{A}).

Registres intégrés (exercice):

Brochage et table de vérité du 74 194

1STE	IDENTIFIER LES FONCTIONS DE BASE DES CIRCUITS SEQUENTIELS	L.T Mohammedia
F.Cours n°19	Les mémoires électroniques Prof : MAHBAB	Page 1 / 2

1. Présentation :

Une cellule mémoire est un élément bistable capable d'emmagasiner puis de restituer un bit d'information ('0' ou '1'). EX : bascule, Disquette...

2. Mémoires électroniques :

2.1. Mémoire morte (ROM):

C'est une mémoire à lecture seule, son contenu est non modifiable, elle reste inchangée même s'il y a coupure d'alimentation. On dit alors qu'elle est non volatile.

Les ROM sont utilisées pour stocker des informations figées telles que des programmes fixes dans des machines programmées ou les tables de conversion de données. Le contenu est fixé à la construction ou par l'utilisateur et la disparition de l'alimentation électrique n'altère pas le contenu.

2.2. Mémoire vive (RAM):

C'est une mémoire à accès aléatoire, on peut à chaque instant changer son contenu. Les RAM perdent leurs informations si on coupe l'alimentation, on dit qu'elles sont volatiles.

Dès qu'un système doit conserver temporairement des informations, la RAM trouve sa place. En informatique, elles sont largement mises en œuvre en quantités importantes (plus de 16 Mo en micro informatique et plusieurs centaines de méga octets en mini informatique).

2.3. Les mémoires programmables et effaçables par l'utilisateur :

Les mémoires programmables sont intermédiaires entre les RAM et les ROM. Leur contenu peut être défini par l'utilisateur et subsister sans alimentation électrique. On en rencontre de différentes familles :

- Les **PROM** (Programmable ROM) : sont composées de fusibles que l'on peut détruire une seule fois ;
- Les **EPROM** (Erasable PROM) : ce sont des mémoires effaçables par ultraviolet et programmables électriquement ;
- Les **EEPROM** (Electrical Erasable PROM) : ce sont des mémoires effaçables et programmables électriquement.

3. Organisation interne :

3.1. Capacité:

C'est la quantité d'information qui peut être stockée dans la mémoire. Elle s'exprime en bits ou en mots de n bits. Par exemple :

64b, 4Kb, 8Ko (o : octet) avec 1o = 8bits; $1K = 2^{10} = 1024$; $1M = 2^{20} = 1048576$

3.2. Longueur de mot :

C'est la façon avec laquelle les bits sont organisés ou rangés, en général par mot de 8 bits ou de 4 bits.

Un mot de 8bits :1 Octet

Un mot de 4bits : 1 Quartet

3.3. Adresse:

Pour identifier les mots on donne à chacun une adresse, on dit alors case mémoire d'adresse 40, case mémoire d'adresse FFetc.

3.4. Le temps d'accès :

C'est le temps qui s'écoule entre une demande d'information et le moment où elle est effectivement disponible.

1STE	IDF	JTIFIE	D I F	S FON	JCTION	IS DE BA	NSF D	FS CI	R∕III	TS SF	OUF	NTIFI	ις	П	T Mohammedia
F.Cours n°19	IDLI	1				es élect					.QULI	NIIL.			Page 2 / 2
	7 6 5							1	1						1
	4 1	0	1	0		3 2 1	x	x	х	х	x	Х	Х	х	
	2 1 0 x	х	х	х		0									I
	8 mots de 4 bits ou 8 quartets 8 mots de 4 bits = 32 bits 4 mots de 8 bits ou 4 octets 4 mots de 8 bits = 32 bits														
3.5.	Décodag	e d'a	idres	se :	,										
DATA: Donnée IN/OUT: Entrée/Sortie															
D ₃ , D ₂ , D R/W : sig	A ₂ , A ₁ , A ₀ : lignes d'adresse ou Bus d'adresse D ₃ , D ₂ , D ₁ , D ₀ : lignes de données ou Bus de données R/W: signal de lecture/écriture CS: signal de sélection du boitier R/W /CS R/W /CS D ₃ D ₂ D ₁ D ₀ DATA I/O														
Pour l'exem					ité = 2 ³	d'adresse ³ x 4 bit cité = 8	:s = 8	x 4 b	its =			lonn	ées		
On peut dor lecture Appli Sélect Sélect	: quer le r tionner	not a le boî	dress tier r	e sur némo	soit er le bus oire en	n: d' <mark>adre</mark> appliqu	esse ; uant (un niv	veau	_	•			_	•
écritureAppliAppliSélecSélec	quer le r quer le r tionner	not d le boî	e dor tier r	née : némo	sur le I pire en	bus de (appliqı	donn uant i	é <mark>es</mark> ; un niv		_	•			_	•
	d'adresse rectionne		p,		2 ^p do	MEMOI nnées c		·	\	n	\Rightarrow		s de d direc		

Read/Write

Schéma fonctionnel d'une mémoire

Chip select

1STE	IDENTIFIER LES FONCTIONS DE BASE DES CIRCUITS SEQUENTIELS	L.T Mohammedia							
TD	LES COMPTEURS Prof : MAHBAB	Page 1 / 5							
1. Exercice 'compteur synchrone modulo 16' :									

A- Table de vérité :

q ₃	q ₂	q_1	q 0	Q_3	Q_2	Q_1	Q_0	J_3	K ₃	J_2	K ₂	J_1	K ₁	J_0	Ko
0	0	0	0	0	0	0	1								
0	0	0	1	0	0	1	0								
0	0	1	0	0	0	1	1								
0	0	1	1	0	1	0	0								
0	1	0	0	0	1	0	1								
0	1	0	1	0	1	1	0								
0	1	1	0	0	1	1	1								
0	1	1	1	1	0	0	0								
1	0	0	0	1	0	0	1								
1	0	0	1	1	0	1	0								
1	0	1	0	1	0	1	1								
1	0	1	1	1	1	0	0								
1	1	0	0	1	1	0	1								
1	1	0	1	1	1	1	0								
1	1	1	0	1	1	1	1	-							
1	1	1	1	0	0	0	0								

q	Q	J	K
0	0		
0	1		
1	0		
1	1		

Table d'excitation de la bascule JK

B- Tableau de Karnaugh:

Il faut

 $J_1 = \dots$

01

11

10

00

K₂ =

 $Q_1.Q_0$

00

01

11

10

 $Q_3.Q_2$

J₀ =

 $K_1 = \dots$

 $Q_1.Q_0$ $Q_3.Q_2$ 00 01 11 10 00 01

 J ₃ =

11

10

00	01	11	10
	00	00 01	00 01 11

$Q_1.Q_0$				
Q_3,Q_2	00	01	11	10
Q ₃ .Q ₂				
01				
11				
10				

1	1STE IDENTIFIER LES FONCTIONS DE BASE DES CIRCUITS SEQUENTIELS L.T Mohammedia															
	TD		LES COMPTEURS Prof: MAHBAB Page 3 / 5													
C- Compléter le tableau suivant :																
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
	Remise à 0 ou 8 ^{ème} impulsion	J ₃ K ₃	J ₂ K ₂	J ₁ K ₁	J _o K _o	1 ^{ère} impulsion	J ₃ K ₃	J ₂ K ₂	J ₁ K ₁	J ₀ K ₀						
	ion	Q ₃	Q ₂	Q ₁	Q ₀	ion	Q_3	Q ₂	Q_1	Q ₀						
	2 ^{ème} impulsion	J ₃ K ₃	J ₂ K ₂	J ₁ K ₁	1 J ₀ K ₀		J ₃ K ₃	J ₂ K ₂	J ₁ K ₁	J _o K _o						
	4 ^{ème} impulsion	J ₃ K ₃	J ₂ K ₂	J ₁ K ₁	J ₀ K ₀	5 ^{ème} impulsion	J ₃ K ₃	J ₂ K ₂	J ₁ K ₁	J _o K _o						
	ion	Q ₃	Q ₂	Q_1	Q ₀	7 ^{ème} impulsion	Q_3	Q ₂	Q_1	Q_0						
	6 ^{ème} impulsion	J ₃ K ₃	J ₂ K ₂	J ₃ K ₃	J ₂ K ₂	J ₁ K ₁	J ₀ K ₀									
D- Logigramme :																
E- (C) H (Q) (Q) (Q) (Q) (Q)		ogramme		,	•	V					<u>t</u>					
Q ₁											t					

t

1STE	IDENTIFIER LES FONCTIONS DE BASE DES CIRCUITS SEQUENTIELS	L.T Mohammedia
TD	LES COMPTEURS Prof : MAHBAB	Page 4 / 5

3. Exercice 'compteur synchrone modulo 10' :

A- Table de vérité:

q 3	q ₂	q_1	q 0	Q ₃	Q_2	Q_1	Q°	J_3	K ₃	J ₂	K ₂	J_1	K ₁	Jo	Ko
0	0	0	0	0	0	0	1								
0	0	0	1	0	0	1	0								
0	0	1	0	0	0	1	1								
0	0	1	1	0	1	0	0								
0	1	0	0	0	1	0	1								
0	1	0	1	0	1	1	0								
0	1	1	0	0	1	1	1								

q	Q	J	K
0	0		
0	1		
1	0		
1	1		

Table d'excitation de la bascule JK

B- Tableau de Karnaugh:

Il faut

 $\sqrt{Q_1.Q_0}$ Q_3,Q_2 00 01 11 10 00 01 11 10

 $J_2 = \dots$

$Q_1.Q_0$ $Q_3.Q_2$				
Q_3,Q_2	00	01	11	10
00				
01				
11				
10				
J_3	=			•••

$Q_1.Q_0$				
$Q_1.Q_0$ $Q_3.Q_2$	00	01	11	10
00				
01				
11				
10				
ν	_			

C- Compléter le tableau suivant :

n u	G) 3	G) 2	G	Q_1	C) o	
0 o ulsic	()	()	()	(
Remise à 0 ou 10 ^{ème} impulsion	J ₃ K ₃		J ₂	K ₂	J_1	K ₁	Jo	K ₀	
kemi O ^{ème}									, Oro
F #									(

С С	Q	3	Q	2	G) 1	$Q_{\scriptscriptstyle{0}}$		
1 ^{ère} impulsion									
ηD	J_3	K ₃	J_2	K_2	$J_1 K_1$		J_0	Ko	
. =									
1 _è									

1	STE																			
	TD							LES	CON	APTE	JRS	Prof: MAHBAB					Page 5 / 5			
İ			Q ₃			Q_2	(Q_1		_	()2	() 2	(Q_1	(Q o		
	ulsior	Q ₃ Q ₂ Q ₁ Q ₀							ulsior	Q ₃		72								
	2 ^{ème} impulsion	J	3	K ₃	J ₂	K ₂	J_1	K ₁	Jo	K ₀	imp	J_3	K ₃	J ₂	K ₂	J_1	K ₁	Jo	K ₀	
	2 èте										3èте									
	_) 3	C) 2		Q_1	Q_0		
	ulsior	upotstyle in Q_3 Q_2 Q_1 Q_0 Q_1 Q_1 Q_0 Q_1 Q_1 Q_0 Q_1 Q_1 Q_0 Q_1									ulsior	•	(3	•	\ 2		K 1	9	(0	
	impi	J	3	K ₃	J ₂	K ₂	J_1	K ₁	Jo	K ₀	5 ^{ème} impulsion	J_3	K ₃	J ₂	K ₂	J_1	K ₁	Jo	K ₀	
	4èте										5 èте									
	_													۱) 2		Q_1	٥) o	
	ulsio	Q ₃ Q ₂ Q ₁ Q ₀ J ₃ K ₃ J ₂ K ₂ J ₁ K ₁ J ₀ K ₀) 3							
	_{не} ітр	J	3	K ₃	J_2	K ₂	J_1	K ₁	Jo	K ₀	7 ^{ème} impulsion	J ₃	K ₃	J ₂	K ₂	J_1	K ₁	J ₀	K ₀	
	e gue									7èr										
	E Q ₃ Q ₂ Q ₁ Q ₀											G) 3	G) 2	(Q_1	G	(o	
	Q ₃ Q ₂ Q ₁ Q ₀										9 ^{ème} impulsion				,					
	J ₃ K ₃ J ₂ K ₂ J ₁ K ₁ J ₀ K ₀								ne im	J ₃	K ₃	J ₂	K ₂	J_1	K ₁	Jo	Ko			
	So e mix										9è		-		1		-			
D-	Logign	am	me	:																
- <u>Н</u>	_ → н		Q ₀		_	_	 Н			_	_	—	J ₂			_	—	J ₃		
	$ K_0$	Clr	$\overline{\mathbf{Q}}_{0}$			•	K₁	Clr	$\overline{\mathbf{Q}}_{1}$			1	K ₂ Cli	$\overline{\mathbf{Q}}_{2}$				K ₃ Cli	\overline{Q}_3	
R																				
		•						•					•					•		
	Chron	ogr	amı	me																
н/														ţ						
/	Q ₃																			\rightarrow
																				ţ
/	Q ₂																			\rightarrow
	,																			<u>†</u>
/	↑ Q₁																			<u>†</u>
/	∖ Q ₀																			
																				† →