Local descriptors: Difference of Gaussians (DoG) Course: Computer Vision

E. Francisco Roman-Rangel. francisco.roman@itam.mx

Digital Systems Department. Instituto Tecnológico Autónomo de México, ITAM.

September 2nd, 2020.

Last time

- Local descriptors.
- ▶ Points of interest.
- Harris corner detector.

Introduction

Scale-space

Laplacian of Gaussian (LoG)

Difference of Gaussians (DoG)

Blob-like structure

Blob: An approximately uniform region.

Regions with smooth borders, i.e., no sharp corners \implies circular-like regions.

Q: At which location [x, y] is the PoI defined?

Blob-like structure

Blob: An approximately uniform region.

Regions with smooth borders, i.e., no sharp corners ⇒ circular-like regions.

Q: At which location [x, y] is the PoI defined? A: The center of the blob.

Blob detection

- 1. Build a scale-space image representation.
- 2. Detect points-of-interest (Pol) in space and scale.
- 3. Assign characteristic scale to each Pol (its region of interest).
- 4. Assign an orientation to each Pol.

Final representation: $p_i \leftarrow [x_i, y_i, \sigma_i, \theta_i]$,

where each Pol p_i is represented by:

- lts spatial position $(x_i, y_i,)$.
- \triangleright A characteristic scale σ_i .
- \triangleright A local orientation θ_i .

Outline

Introduction

Scale-space

Laplacian of Gaussian (LoG)

Difference of Gaussians (DoG)

Gaussian kernel

For one variable x:

$$g(x;\sigma) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^2}{2\sigma^2}}.$$

1D Gaussians with $\sigma = [0.3, 1, 2]$.

For two variables [x, y]:

$$g(x, y; \sigma) = \frac{1}{2\pi\sigma} e^{-\frac{x^2 + y^2}{2\sigma^2}}.$$

2D Gaussians of varying σ .

Top view of 2D Gaussians.

Scale-space

Used to find the characteristic scale for a point of interest.

Characteristic scale (relates two concepts)

- Region of interest: spatial span used for local description.
- The need to get descriptors that are robust to scale variations.

The scale-space is constructed by convolving the input image I with a series of Gaussian kernels $g[\sigma]$ of increasing width (σ) .

The output is a tensor of shape $[H \times W \times K]$,

where, H: height; W: width; K: number of kernels.

Methods

Most popular methods:

- ► Laplacian-of-Gaussian (LoG).
- Difference-of-Gaussian (DoG).
- Determinant of the Hessian.
- Hessian-Laplacian.

All based on the scale-space approach.

Outline

Introduction

Scale-space

Laplacian of Gaussian (LoG)

Difference of Gaussians (DoG)

Consider the center of a blob: (x_b, y_b) .

Compute the average of the intensity values among all pixels within this blob (μ_b) .

Consider the center of a blob: (x_b, y_b) .

Compute the average of the intensity values among all pixels within this blob (μ_b) .

Now compute the average of the intensity values among all pixels within a smaller region inside the blob (μ_b^-) .

Q: What is the difference between μ_b and μ_b^- ?

Consider the center of a blob: (x_b, y_b) .

Compute the average of the intensity values among all pixels within this blob (μ_b) .

Now compute the average of the intensity values among all pixels within a smaller region inside the blob (μ_b^-) .

Q: What is the difference between μ_b and μ_b^- ?

A:=0.

Consider the center of a blob: (x_b, y_b) .

Compute the average of the intensity values among all pixels within this blob (μ_b) .

Now compute the average of the intensity values among all pixels within a smaller region inside the blob (μ_b^-) .

Q: What is the difference between μ_b and μ_b^- ?

A:=0.

Now compute the average of the intensity values among all pixels within a region slightly larger than the blob (μ_b^+) .

Q: What is the difference between μ_b and μ_b^+ ?

Consider the center of a blob: (x_b, y_b) .

Compute the average of the intensity values among all pixels within this blob (μ_b) .

Now compute the average of the intensity values among all pixels within a smaller region inside the blob (μ_b^-) .

Q: What is the difference between μ_b and μ_b^- ?

A:=0.

Now compute the average of the intensity values among all pixels within a region slightly larger than the blob (μ_b^+) .

Q: What is the difference between μ_b and μ_b^+ ?

 $A: \neq 0.$

Definition

Q: What does the convolution $G_{\sigma}(I) = g[x, y; \sigma] * I[x, y]$ produce?

Definition

Q: What does the convolution $G_{\sigma}(I) = g[x, y; \sigma] * I[x, y]$ produce? A: A sort of weighted average.

Q: Do you remember the definition of the Laplacian operator? A: $\nabla^2 I = I_{xx} + I_{yy}$

where, I_{aa} denotes the second partial derivative in the a direction.

Q: What does the Laplacian-of-Gaussian $(\nabla^2 G_{\sigma}(I))$ represent?

Definition

Q: What does the convolution $G_{\sigma}(I) = g[x, y; \sigma] * I[x, y]$ produce? A: A sort of weighted average.

Q: Do you remember the definition of the Laplacian operator?

A: $\nabla^2 I = I_{xx} + I_{yy}$,

where, I_{aa} denotes the second partial derivative in the a direction.

Q: What does the Laplacian-of-Gaussian $(\nabla^2 G_{\sigma}(I))$ represent?

A: The local difference of average intensities.

Laplacian-of-Gaussian (LoG)

Q: What is the implication of $\nabla^2 G_{\sigma}(I) \approx 0$?

A: A uniform region.

 ${\bf Q}:$ How does the LoG(I) look like for a non-uniform regions?

A: Far from 0.

Q: What does it mean if the LoG(I) is local maximum/minimum?

A: The center of a blob with radius $r = \sqrt{2\sigma}$.

LoG(I) >> 0, for dark blobs, and LoG(I) << 0, for bright blobs.

Scale invariance

Same numerical description at different scales.

- Strong dependence between size of blob and kernel.
- Decorrelate them to detect blobs at different scales.
- Apply Gaussians $G_{\sigma}(I)$ of increasing amplitude σ .

Scale-normalized LoG

$$\nabla_n^2 G_{\sigma_{(k)}}(I) = \sigma_{(k)}(\nabla^2 G_{\sigma_k}(I)).$$

Characteristic scale

Span of the blob: region of interest around a Pol.

Q: Is it possible to have more than 1 characteristic scale per point?

Characteristic scale

Span of the blob: region of interest around a Pol.

Q: Is it possible to have more than 1 characteristic scale per point?

A: Yes. Concentric circular patterns.

Outline

Introduction

Scale-space

Laplacian of Gaussian (LoG)

Difference of Gaussians (DoG)

Efficient approximation to LoG.

$$DoG_k(I) = G_{\sigma_{(k)}}(I) - G_{\sigma_{(k-1)}}(I).$$

Octaves

- ▶ 4 octaves,
- 5 levels per octave,
- $ightharpoonup \sigma_0 = 1.6$,
- $ightharpoonup k = \sqrt{2}$.

Local orientation

Canonical orientation θ per point is required to be robust against rotation transforms.

Q: Remember what is the "orientation" of a pixel?

Final point representation:

$$p = (x, y, \sigma, \theta)$$

Remember: one point might be associated with several characteristic scales \rightarrow set of Pol might have repeated points with different scales.

Harris-Laplace

Combines Harris corner detector with the Gaussian scale-space.

$$M = \sigma_D^2 g(\sigma_I) * \begin{bmatrix} L_x^2(I, \sigma_D) & L_x L_y(I, \sigma_D) \\ L_x L_y(I, \sigma_D) & L_y^2(I, \sigma_D) \end{bmatrix}.$$

Note:

- ▶ Derivation scale σ_D .
- ▶ Integration scale σ_I .

Parameters to be adjusted, smoothing and normalization spans are not necessarily the same.

Q&A

Thank you!

francisco.roman@itam.mx