Pronósticos de inflación en Guatemala: ¿Modelos de series de tiempo o algoritmos de *machine learning*?*

Gabriel A. Fuentes[†]

17 de marzo, 2022

Resumen

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque nibh ex, mollis nec turpis ac, ultrices mollis quam. Aliquam sed tortor eget dolor dignissim ornare quis in nibh. Duis non nisl convallis, ornare erat et, sagittis mauris. Mauris sit amet sapien vehicula, volutpat mi laoreet, viverra tellus. Aliquam id placerat risus, sed convallis urna. Phasellus varius iaculis tellus ac venenatis. Pellentesque molestie libero orci, in hendrerit dolor semper quis. Nunc sed dolor facilisis, faucibus odio semper, accumsan tellus. Proin pretium felis et urna commodo, in tempor sapien iaculis. Quisque feugiat tincidunt porta. Nulla vestibulum vel nibh non rhoncus. Nunc eu urna velit. In imperdiet magna eget ex auctor, porta aliquam lorem cursus. Nullam et commodo mauris. In ullamcorper egestas erat, quis faucibus lectus. Nullam pellentesque quam eget nibh condimentum, in vestibulum neque posuere. Sed sed lorem vitae lacus laoreet aliquet. Curabitur egestas enim a odio lacinia sodales. Vestibulum fermentum, dui.

Palabras clave: Machine learning, deep learning, series de tiempo, pronósticos, inflación

Clasificación JEL: E31, C22, C45, C53

^{*}Con el propósito de maximizar la reproducibilidad del presente estudio, las bases de datos utilizadas y el código en R se encuentran disponibles en: https://github.com/gafnts/Inflation-forecasting

[†]Séptimo semestre, Teoría y Política Monetaria. Correo electrónico: gafnts@gmail.com

1 Introducción

El artículo número 3 de la ley orgánica del Banco de Guatemala establece que su objetivo fundamental consiste en propiciar las condiciones monetarias, cambiarias y crediticias que promuevan la estabilidad en el nivel general de precios. En el 2005, como parte de su esfuerzo por lograr este fin, dicha entidad optó por conducir sus acciones a través de un esquema de metas inflacionarias.

Debido a que naturalmente existe un periodo de tiempo entre el ajuste de las condiciones en el mercado de dinero y el efecto que este cambio genera en las variables del sector real, la autoridad monetaria—bajo un régimen de metas explícitas de inflación—actúa en el presente considerando sus pronósticos sobre el comportamiento de los precios en el futuro.

Concretamente, un cambio en la tasa de interés de política monetaria puede demorar entre 12 y 24 meses en ejercer una influencia en la demanda agregada y, por tanto, en tener un impacto en la evolución del ritmo inflacionario interno. En consecuencia, el banco central deberá pronosticar esta variable durante dicho horizonte temporal y efectuar sus decisiones de política monetaria de modo que pueda estar seguro de que los pronósticos y expectativas de inflación se mantendrán anclados a la meta establecida durante el mediano plazo (Moenjak, 2014).

En este sentido, los pronósticos de variables macroeconómicas pueden llevarse a cabo por medio de dos enfoques distintos: Métodos estructurales y métodos no estructurales (Diebold, 1998). Los primeros informan a la especificación de sus modelos a través de una teoría económica determinada, mientras que los últimos se valen de las correlaciones en forma reducida que subyacen en las series de tiempo, sin depender explícitamente de una teoría económica (Pratap & Sengupta, 2019).

Este estudio en particular se ocupará del segundo enfoque, que al mismo tiempo puede ser subdividido en dos metodologías diferentes. Por un lado se encuentran los métodos econométricos de series de tiempo, los cuales son considerados como modelos relativamente tradicionales, de los que sobresalen los modelos univariados autorregresivos integrados de medias móviles (ARIMA) y los modelos multivariados de vectores autorregresivos (VAR).

Por el otro, algoritmos de aprendizaje estadístico¹ comienzan a ser cada vez más populares, principalmente por la creciente disponibilidad de grandes bases de datos y poder de cómputo, así como un mayor acceso a *software* especializado (Rodríguez-Vargas, 2020), aunque—tal y como mencionan Coulombe et al. (2020)—los métodos de aprendizaje de máquina en realidad tienen una historia dentro de la literatura macroeconométrica que se remonta a inicios de la década de los noventas.

En general, al emplear modelos de series de tiempo, se asume que las variables utilizadas durante la estimación de los parámetros se vinculan entre sí a través de una dinámica intrínseca regida por relaciones lineales que únicamente conducen a soluciones que oscilan periódicamente o que exhiben un comportamiento exponencial, de modo que la totalidad en la conducta irregular del sistema es atribuida únicamente a una entrada que es tanto exógena como estocástica (Kantz & Schreiber, 2004).

Sin embargo, esta entrada aleatoria puede no ser la fuente exclusiva de irregularidad. Evidencia apunta que tanto series macroeconómicas como datos financieros exhiben interesantes estructuras no-lineales que se originan debido al impacto de perturbaciones durante las fases del ciclo económico (Granger et al., 1993; LeBaron, 1994).

¹A lo largo de la presente investigación los términos "aprendizaje estadístico," "aprendizaje de máquina" y "aprendizaje automático" serán empleados indistintamente.

Dada la posible naturaleza no-lineal entre la relación de las variables económicas, existe cada vez un mayor énfasis en la aplicación de modelos de aprendizaje automático, los cuales—a diferencia de sus contrapartes—son particularmente buenos para explotar este tipo de relaciones (así como interacciones de alto orden) durante el proceso de predicción de nuevos valores basados en los valores de sus regresores (Athey & Imbens, 2019). Precisamente, tal es el propósito del presente estudio.

Mediante una competencia de pronósticos fuera de muestra (pseudo out-of-sample) del ritmo inflacionario en Guatemala, esta investigación buscará evaluar si modelos de aprendizaje estadístico como bosques aleatorios (random forest), k vecinos más cercanos (k-NN), máquinas de vectores de soporte (SVM), algoritmos de potenciación de gradiante (XGB), redes neuronales multicapa (MLP) y redes neuronales de larga memoria de corto plazo (LSTM) son capaces de generar pronósticos más eficientes en distintos horizontes temporales—comparados con la ayuda de tres criterios de evaluación (RMSE, sMAPE y MASE)—al contrastarlos con las predicciones de un repertorio de modelos estimados a partir de métodos econométricos tales como un modelo de camina aleatoria (RW), uno autorregresivo (AR), uno autorregresivo de medias móviles (ARMA), un modelo de suavizamiento exponencial (ETS), uno autorregresivo integrado de medias móviles estacionales (SARIMA) y un modelo de vectores autorregresivos (VAR).

El resto del documento será organizado de la siguiente manera. La siguiente sección hace un repaso de la literatura correspondiente al uso y evaluación de modelos paramétricos y no paramétricos en tareas de predicción para series de tiempo. La sección 3 se ocupa de presentar un resumen estadístico de la base de datos, la configuración computacional de los modelos empleados y la metodología de evaluación para las predicciones de los mismos. Por último, la sección 4 y 5 se enfocan en discutir los resultados y conclusiones del estudio, respectivamente.

2 Revisión de la literatura

Algunos autores afirman que la literatura dedicada a la comparación de pronósticos entre modelos econométricos y de aprendizaje de máquina es relativamente reciente. Por ejemplo, Rodríguez-Vargas (2020) observa que, si bien desde inicios de los años noventas ha habido diferentes estudios en los que variables como tasas de inflación y tipos de cambio son pronosticadas utilizando k-NN y redes neuronales, en ningún momento estos autores se enfocaron en producir evaluaciones de las propiedades de sus predicciones de manera sistemática.

No obstante, un análisis más detenido permite apreciar que ya desde esa década diversos estudios evalúan los resultados de pronósticos generados con redes neuronales artificiales al contrastarlos con las predicciones obtenidas por medio de modelos autorregresivos integrados de medias móviles y modelos de suavizamiento exponencial para series de tiempo en ámbitos micro y macroeconómicos.

Kang (1991) encuentra que las predicciones de modelos ARIMA son iguales o superiores a las de 18 redes neuronales con arquitecturas diferentes. Foster et al. (1992) obtienen resultados similares: modelos de suavizamiento exponencial y de mínimos cuadrados ordinarios producen pronósticos más eficientes que redes neuronales en series de tiempo anuales y mensuales, aunque semejantes en series trimestrales. Mientras tanto, Hill et al. (1996) concluyen que los pronósticos generados por redes neuronales son comparables con las predicciones de modelos econométricos tradicionales para series anuales e incluso superiores en series mensuales y trimestrales.

Recientemente, Ülke et al. (2018) evalúan la eficiencia de 2 modelos de series de tiempo univariados (RW y AR), 2 multivariados (VAR y ARDL) y 3 modelos de aprendizaje estadístico (k-NN, ANN y SVR) en la predicción de tasas de inflación en Estados Unidos para el periodo de 1984 a 2014.

Los autores pronostican dicha variable en 4 horizontes temporales (3, 6, 9 y 12 meses) para luego comprar los resultados mediante la raíz del error cuadrático medio (RSME) y el coeficiente de determinación (R^2) de cada uno de los modelos. Los resultados les permiten concluir que la regresión de vectores de soporte (SVR) supera al resto de métodos al pronosticar el ritmo de inflación subyacente medido con el índice de precios de gastos de consumo personal (PCE), mientras que el modelo autorregresivo distribuido rezagado (ARDL) proporciona la mayor precisión en la predicción de la inflación subyacente medida a través del índice de precios al consumidor (CPI).

Makridakis et al. (2018) también contrastan la eficiencia de pronóstico entre 8 algoritmos de aprendizaje automático y 8 modelos estadísticos—utilizando un modelo de caminata aleatoria (RW) como punto de referencia—al generar predicciones para 3003 series que proceden de dominios micro y macroeconómicos. Los autores concluyen que los métodos econométricos tradicionales son más precisos que los de *machine learning*.

Sin embargo, Cerqueira et al. (2019) consideran que este último estudio se encuentra sesgado en lo que respecta al tamaño de muestra, debido a que la duración promedio de las series es de 116 observaciones. Curvas de aprendizaje elaboradas por medio de procedimientos precuenciales les permiten determinar que a medida que el tamaño de muestra se amplía, los pronósticos generados por modelos de aprendizaje de máquina superan en términos de eficiencia a los métodos tradicionales.

Por otra parte, Parmezan et al. (2019) realizan un meta-análisis de la literatura y concluyen que los 2 modelos más utilizados en 29 estudios que involucran métodos econométricos y de aprendizaje automático a lo largo de la última década son redes neuronales artificiales (ANN) y modelos ARIMA. Posteriormente, comparan 7 modelos estadísticos con 4 modelos de aprendizaje de máquina durante la predicción de 40 series temporales sintéticas y 55 series reales. Los resultados les permiten concluir que tanto SARIMA, SVM y k-NN son los métodos más efectivos para el modelado y predicción de series de tiempo, en ese orden.

Katris (2020) evalúa el desempeño de 3 modelos estadísticos (ARIMA, ARFIMA y ARFIMA/GARCH) con relación a 3 modelos de aprendizaje de máquina (ANN, SVM y MARS) al pronosticar las tasas de desempleo mensual para 22 economías desarrolladas en 3 horizontes temporales distintos. El autor concluye que los modelos autorregresivos fraccionalmente integrados de medias móviles (ARFIMA) resultan ser los procedimientos más adecuados durante pronósticos de un paso hacia adelante (one-step ahead), mientras que, para el horizonte más largo (12 meses), redes neuronales logran resultados comparables con modelos ARFIMA. Puesto que ningún modelo es aceptado globamente (en términos de RMSE y MAE), el autor recomienda tener en cuenta tanto el horizonte de pronóstico como la ubicación geográfica de la serie durante la selección de un enfoque.

A nivel latinoamericano, Rodríguez-Vargas (2020) pronostica la tasa de variación interanual del índice de precios al consumidor en Costa Rica con cuatro modelos de aprendizaje estadístico (RF, k-NN, XGB y LSTM) y contrasta sus resultados con el promedio de las predicciones de un conjunto de métodos econométricos univariantes. De tal forma, el autor encuentra que la combinación de pronósticos generados por los métodos de aprendizaje de máquina mejora la precisión al compararla con las predicciones individuales de cada uno de ellos y, al mismo tiempo, supera a los resultados producidos por los métodos univariados tradicionales.

Araujo & Gaglianone (2020), por otro lado, comparan los pronósticos de la tasa de inflación en Brasil para 16 modelos distintos—de los que sobresalen ARMA y VAR en la categoría de modelos econométricos y bosques aleatorios (RF) y modelos lineales generalizados (GLM) en la categoría de aprendizaje de máquina. Los autores encuentran que algunos algoritmos de aprendizaje automático superan consistentemente a los métodos tradicionales en términos de error cuadrático medio (MSE).

Por último, Peirano et al. (2021) evalúan los resultados de modelos SARIMA y LSTM durante la predicción del ritmo inflacionario mensual en Brasil, México, Chile, Colombia y Perú. Los autores concluyen que es posible alcanzar una mayor eficiencia en el pronóstico ensamblando ambos modelos (en lugar de solamente obtener un promedio de sus predicciones), por lo que proponen un enfoque híbrido SARIMA-LSTM con el propósito de conservar los beneficios de SARIMA como un método lineal; capturando los fenómenos no-lineales por vía de una red neuronal recurrente con arquitectura LSTM. Sin embargo, observan los autores, la metodología propuesta únicamente mejora el desempeño de las predicciones en algunos casos.

3 Datos y metodología

3.1 Análisis de datos

Con el objeto de pronosticar la tasa de variación interanual del índice de precios al consumidor en Guatemala, la especificación de los regresores ha sido propuesta a partir de un procedimiento en el que a 36 series de tiempo—escogidas considerando el canal de demanda agregada, el canal de tipo de cambio y las variables del sector externo del mecanismo de transmisión de política monetaria (Castillo, 2014)—les son aplicadas pruebas de causalidad de Wiener-Granger respecto a la variable objetivo para cada uno de los rezagos de mediano plazo y en el que, posteriormente, son filtradas tomando en cuenta (a) la cantidad de retardos que causan (en el sentido de Granger) al ritmo inflacionario de la economía y (b) la magnitud en el nivel de significancia del estadístico F de los tests previamente mencionados.

El cuadro 1 muestra a las 13 variables cuyos valores pasados son los más útiles, dado el conjunto inicial de posibles predictores, para pronosticar los valores futuros de la variación en el nivel de precios de la economía. Los datos corresponden al periodo que abarca de enero del 2005 a diciembre del año 2021.

Cuadro 1: Variables empleadas durante el proceso de predicción

Variable	Descripción	Fuente
ipc	Tasa de variación interanual del índice de precios al consumidor	SECMCA
$_{ m tpm}$	Tasa de interés de política monetaria	SECMCA
m0	Tasa de variación interanual de la base monetaria restringida	SECMCA
m1	Tasa de variación interanual del medio circulante	SECMCA
imae	Tasa de variación interanual del índice mensual de actividad económica	SECMCA
rev	Tasa de variación interanual de los ingresos totales del gobierno central	BANGUAT
debt	Tasa de variación interanual del saldo de la deuda pública externa	BANGUAT
exports	Tasa de variación interanual del valor (FOB) de las exportaciones totales	SECMCA
bananas	Tasa de variación interanual del valor promedio (dólares por tonelada) de las exportaciones de banano	SECMCA
hydro	Tasa de variación interanual del valor promedio (dólares por barril) de las importaciones de hidrocarburos	SECMCA
lendrate	Tasa de interés activa (real) en moneda nacional	SECMCA
deprate	Tasa de interés pasiva (nominal) en moneda nacional	SECMCA
itcer	Tasa de variación interanual del índice de tipo de cambio efectivo real (global)	SECMCA
cpi	Tasa de variación interanual del índice de precios al consumidor en Estados Unidos	FRED

Figura 1: Variable objetivo y predictores seleccionados

El cuadro 2 presenta estadísticas descriptivas para cada una de las variables. En ellas se incluyen el primer, tercer y cuarto momentos de sus funciones de densidad de probabilidad (PDF), así como la raíz cuadrada del segundo—para evidenciar la volatilidad de las series. En este último sentido, es posible observar que tanto el cambio interanual en el valor promedio de las importaciones de hidrocarburos, las exportaciones totales y los ingresos del gobierno central son aquellas variables que exhiben una mayor volatilidad durante el periodo del análisis.

Las estadísticas descriptivas también demuestran que esta investigación lidia mayoritariamente con variables que no se distribuyen normalmente, de las cuales 9 presentan distribuciones leptocúrticas, 2 platicúrticas y 3 una distribución aproximadamente normal, en términos de exceso de curtosis. Además, el estadístico de asimetría comprueba que 4 series se encuentran sesgadas hacia la izquierda y el resto de ellas hacia la derecha (exceptuando a la tasa de variación de los ingresos del gobierno central, cuya asimetría es cercana a 0).

Cuadro 2: Estadísticas descriptivas

Variable	Media	Mediana	Mínimo	Máximo	Desv. Est.	Asimetría	Curtosis	Obs.
ipc	4.92	4.36	-0.73	14.16	2.64	0.99	1.55	204
$_{ m tpm}$	4.05	4.50	1.75	7.25	1.44	0.21	-0.77	204
m0	10.37	10.09	-1.32	26.52	5.04	0.30	0.05	204
m1	9.89	8.36	-1.25	24.74	5.13	0.76	0.14	204
imae	3.60	3.76	-10.10	16.21	2.94	-0.24	6.94	204
rev	7.35	7.14	-31.33	50.37	11.64	0.09	1.95	204
debt	6.35	6.14	-3.19	26.00	5.47	0.66	0.69	204
exports	5.85	3.65	-22.12	39.77	12.03	0.38	-0.08	204
bananas	2.69	1.27	-28.25	52.15	9.70	1.22	4.95	204
hydro	3.86	4.29	-94.99	88.91	36.00	-0.33	-0.36	204
lendrate	7.90	8.34	-0.59	14.79	2.72	-0.54	0.85	204
deprate	5.14	5.26	3.99	6.07	0.42	-0.81	0.05	204
itcer	-2.83	-3.11	-11.93	14.04	4.04	1.16	3.20	204
cpi	2.12	1.99	-1.98	6.86	1.46	0.31	0.73	204

Cuadro 3: Pruebas estadísticas

Variable	Autocorrelación	Normalidad	No-linealidad	Raíz unitaria	Hurst
ipc	850.5 (0.0000)	55.55 (0.0000)	0.78 (0.4611)	-4.52 (0.0100)	0.7883
$_{ m tpm}$	1887.78 (0.0000)	$6.21 \ (0.0448)$	$0.46 \ (0.6350)$	-3.94 (0.0133)	0.8425
m0	$607.64 \ (0.0000)$	$3.18 \; (0.2036)$	$0.87 \ (0.4223)$	-2.21 (0.4863)	0.7836
m1	$1024.67 \ (0.0000)$	20.03 (0.0000)	2.2 (0.1130)	$-2.46 \ (0.3823)$	0.8171
imae	$326.83 \ (0.0000)$	$422.88 \ (0.0000)$	$5.68 \; (0.0040)$	-3.82 (0.0190)	0.6823
rev	$125.43 \ (0.0000)$	$34.34 \ (0.0000)$	$1.59 \ (0.2069)$	$-3.52 \ (0.0423)$	0.6729
debt	363.96 (0.0000)	$19.53 \ (0.0001)$	$6.06 \ (0.0028)$	$-3.72 \ (0.0242)$	0.6636
exports	$272.33 \ (0.0000)$	4.97 (0.0831)	$3.25 \ (0.0408)$	-3.54 (0.0402)	0.7240
bananas	568.35 (0.0000)	$265.96 \ (0.0000)$	$4.38 \; (0.0137)$	-5.68 (0.0100)	0.6513
hydro	576.63 (0.0000)	$4.61 \ (0.0998)$	$0.07 \; (0.9365)$	-3.69 (0.0266)	0.7236
lendrate	881.26 (0.0000)	$16.9 \ (0.0002)$	$0.55 \ (0.5790)$	-4.17 (0.0100)	0.7952
deprate	1566.44 (0.0000)	$22.71 \ (0.0000)$	$12.7 \ (0.0000)$	$0.07 \ (0.9900)$	0.8337
itcer	648.31 (0.0000)	136.98 (0.0000)	$0.25 \ (0.7801)$	-4.9 (0.0100)	0.6709
cpi	561.14 (0.0000)	8.36 (0.0153)	0.37 (0.6916)	-2.22 (0.4819)	0.7720

^{*} Nivel de significancia entre paréntesis.

El cuadro 3 muestra un panel de pruebas estadísticas en las cuales se incluyen un test de Ljung–Box para autocorrelación, uno de Jarque–Bera para normalidad, una prueba de red neuronal de White para comprobar si las variables exhiben comportamientos no-lineales, una prueba de Dickey–Fuller aumentada para verificar si existen raíces unitarias y la estimación del exponente de Hurst para medir la memoria de largo plazo de las series.

Como es de esperar, todas las variables exhiben correlación serial y—tal como demuestra el cuadro de estadísticas descriptivas—la mayor parte de estas no se distribuyen normalmente. La prueba de White confirma que 5 de las series (la tasa de interés pasiva nominal y las tasas de variación del índice mensual de actividad económica, del saldo de la deuda pública externa, de las exportaciones totales y del valor promedio de las exportaciones de banano) presentan un comportamiento no-lineal.

Además, los resultados de la prueba de raíz unitaria evidencian que la variación de la base monetaria restringida, del medio circulante, del índice de precios al consumidor en Estados Unidos, así como la tasa de interés pasiva nominal, no son estacionarias. Por último, el exponente de Hurst demuestra que todas las series exhiben memoria de largo plazo.

3.2 Validación de modelos

La validación empírica de los modelos es una preocupación constante en la literatura de *machine learning*. Tal y como observan Kuhn & Silge (2022), debido a que la implementación de estos métodos conlleva una serie de pasos (estimación de parámetros, calibración de hiperparámetros, selección del modelo y evaluación de su desempeño) pero una muestra finita de observaciones, es una práctica común y recomendada dividir al conjunto de datos existente en un subconjunto de observaciones de entrenamiento (el cual es utilizado para optimizar al modelo) y un subconjunto de datos de evaluación (que se mantiene en reserva hasta que el método que tiene más probabilidades de éxito sea finalmente seleccionado).

Sin embargo, el investigador necesita entender qué tan efectivo es su modelo antes de poder emplear el conjunto de observaciones de evaluación. En este sentido, Gareth et al. (2021) mencionan que

los métodos de remuestreo se han convertido en una herramienta esencial durante la aplicación de técnicas de aprendizaje estadístico. Básicamente, estos procedimientos consisten en la extracción repetida de muestras aleatorias al conjunto de datos de entrenamiento con el fin de reajustar al modelo en cada una de ellas para obtener información adicional sobre el modelo en cuestión.

Ahora bien, cuando los datos tienen un fuerte componente temporal, los métodos usuales de remuestreo tales como validación cruzada y bootstraping no pueden emplearse debido a que el orden de las observaciones tiene que ser preservado ya que las series se encuentran autocorrelacionadas y el modelo necesitar aprender los distintos patrones cíclicos y tendenciales que subyacen en la información: una versión más sofisticada de métodos de remuestreo es necesaria.

En este estudio la metodología de remuestreo empleada será rolling forecast origin resampling. Este es un procedimiento en el que el conjunto de datos de entrenamiento es nuevamente dividido en dos subconjuntos de análisis/evaluación con tamaños específicos. Una primera iteración utiliza estos tamaños, comenzando desde el inicio de la serie. La segunda iteración utiliza los mismos tamaños pero se desplaza por un número determinado de muestras. El proceso continúa hasta que el conjunto de datos de entrenamiento es agotado por completo, por lo que el origen en el que se basan los pronósticos va avanzando en el tiempo (Hyndman & Athanasopoulos, 2018). Así, el método entrena iterativamente al modelo con datos históricos, lo evalúa con datos cada vez más recientes y la precisión en el pronóstico es calculada promediando los subconjuntos de evaluación.

3.3 Medidas de precisión

$$RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_t - \hat{y}_t)^2}$$

$$sMAPE = \frac{2}{k} \sum_{t=1}^{k} \frac{y_t - \hat{y}_t}{|y_t| + |\hat{y}_t|} * 100\%$$

$$MASE = \frac{1}{k} \frac{\sum_{t=1}^{k} |y_t - \hat{y}_t|}{\frac{1}{n-m} \sum_{t=1}^{k} |y_t - \hat{y}_{t-m}|}$$

4 Resultados

5 Conclusiones

6 Referencias

- Araujo, G. S., & Gaglianone, W. P. (2020). Machine learning methods for inflation forecasting in brazil: New contenders versus classical models. Mimeo.
- Athey, S., & Imbens, G. W. (2019). Machine learning methods that economists should know about. Annual Review of Economics, 11(1), 685–725. https://doi.org/10.1146/annurev-economics-080217-053433
- Castillo, C. (2014). Inflation targeting and exchange rate volatility smoothing: A two-target, two-instrument approach. *Economic Modelling*, 43, 330–345. https://doi.org/10.1016/j.econmod. 2014.08.011
- Cerqueira, V., Torgo, L., & Soares, C. (2019). Machine learning vs statistical methods for time series forecasting: Size matters. arXiv:1909.13316 [Cs, Stat]. http://arxiv.org/abs/1909.13316
- Coulombe, P. G., Leroux, M., Stevanovic, D., & Surprenant, S. (2020). How is machine learning useful for macroeconomic forecasting? arXiv:2008.12477 [Econ, Stat]. http://arxiv.org/abs/2008.12477
- Diebold, F. X. (1998). The Past, Present, and Future of Macroeconomic Forecasting. *Journal of Economic Perspectives*, 12(2), 175–192. https://doi.org/10.1257/jep.12.2.175
- Foster, W. R., Collopy, F., & Ungar, L. H. (1992). Neural network forecasting of short, noisy time series. Computers & Chemical Engineering, 16(4), 293–297. https://doi.org/10.1016/0098-1354(92)80049-F
- Gareth, J., Daniela, W., Trevor, H., & Robert, T. (2021). An introduction to statistical learning: With applications in r. Spinger.
- Granger, C. W., Teräsvirta, T., & Anderson, H. M. (1993). Modeling nonlinearity over the business cycle. Business Cycles, Indicators and Forecasting, NBER Chapters, 311–326.
- Hill, T., O'Connor, M., & Remus, W. (1996). Neural Network Models for Time Series Forecasts. Management Science. https://doi.org/10.1287/mnsc.42.7.1082
- Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and practice. OTexts.
- Kang, S. Y. (1991). An investigation of the use of feedforward neural networks for forecasting [PhD thesis]. Kent State University.
- Kantz, H., & Schreiber, T. (2004). *Nonlinear time series analysis* (Vol. 7). Cambridge university press.
- Katris, C. (2020). Prediction of Unemployment Rates with Time Series and Machine Learning Techniques. *Computational Economics*, 55(2), 673–706. https://doi.org/10.1007/s10614-019-09908-9
- Kuhn, M., & Silge, J. (2022). Tidy modeling with r. O'Reilly Media, Inc.
- LeBaron, B. (1994). Chaos and nonlinear forecastability in economics and finance. *Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences*. https://doi.org/10.1098/rsta.1994.0099
- Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Statistical and Machine Learning fore-casting methods: Concerns and ways forward. *PLOS ONE*, 13(3), e0194889. https://doi.org/10.1371/journal.pone.0194889
- Moenjak, T. (2014). Central banking: Theory and practice in sustaining monetary and financial stability. John Wiley.
- Parmezan, A. R. S., Souza, V. M. A., & Batista, G. E. A. P. A. (2019). Evaluation of statistical and machine learning models for time series prediction: Identifying the state-of-the-art and the best conditions for the use of each model. *Information Sciences*, 484, 302–337. https://doi.org/10.1016/j.ins.2019.01.076
- Peirano, R., Kristjanpoller, W., & Minutolo, M. C. (2021). Forecasting inflation in Latin American

- countries using a SARIMA–LSTM combination. Soft Computing, 25(16), 10851-10862. https://doi.org/10.1007/s00500-021-06016-5
- Pratap, B., & Sengupta, S. (2019). Macroeconomic Forecasting in India: Does Machine Learning Hold the Key to Better Forecasts? https://doi.org/10.2139/ssrn.3852945
- Rodríguez-Vargas, A. (2020). Forecasting Costa Rican inflation with machine learning methods. Latin American Journal of Central Banking, 1(1), 100012. https://doi.org/10.1016/j.latcb.2020. 100012
- Ülke, V., Sahin, A., & Subasi, A. (2018). A comparison of time series and machine learning models for inflation forecasting: empirical evidence from the USA. *Neural Computing and Applications*, 30(5), 1519–1527. https://doi.org/10.1007/s00521-016-2766-x