Marking Trees

Lab Report: Marking Trees

by Stefan Eng, name, name and name.

Results

For $i \in \{1,2,3\}$, the number of rounds R_i spent until the tree is completely marked in process i is given in the following table. The table shows the result of 24 repeated trails.

In the last column, report the expected value of R_1 for each N, using the formula derived from your theoretical analysis in the following section

N	R_1	R_2	R_3	$\mathbf{E}[R_1]$
3	2.40e+00 ± 8.00e-01	2.00e+00	2.00e+00	0.00e+00
7	$5.60e+00 \pm 1.85e+00$	$5.00e+00\pm 8.94e-01$	4.00e+00	3.50e+00
15	$2.48e+01 \pm 1.00e+01$	$9.80e+00 \pm 1.17e+00$	8.00e+00	1.38e+01
31	$3.90e+01 \pm 9.94e+00$	$2.06e+01 \pm 1.36e+00$	1.60e+01	4.02e+01
63	1.01e+02 \pm 2.01e+01	$4.82e+01 \pm 7.47e+00$	3.20e+01	1.05e+02
127	$2.57e+02 \pm 2.69e+01$	$1.08\text{e}+02 \pm 4.82\text{e}+00$	6.40e+01	2.56e+02
255	$6.92e+02 \pm 2.43e+02$	2.20e+02 \pm 1.08e+01	1.28e+02	6.03e+02
511	$1.52e+03 \pm 2.37e+02$	$4.69e+02 \pm 5.61e+00$	2.56e+02	1.39e+03
1023	$3.23e+03 \pm 4.80e+02$	$9.63e+02 \pm 4.91e+01$	5.12e+02	3.13e+03
2047	$7.36e+03 \pm 1.68e+03$	$1.96\text{e}+\text{o}3 \pm 5.15\text{e}+\text{o}1$	1.02e+03	6.97e+03
4095	$1.82e+04 \pm 3.27e+03$	$3.98e+03 \pm 3.25e+01$	2.05e+03	1.54e+04
8191	$3.73e+04 \pm 3.78e+03$	$8.00e+03 \pm 1.01e+02$	4.10e+03	3.36e+04
16383	$7.58e+04 \pm 4.11e+03$	$1.61e+04 \pm 1.98e+02$	8.19e+03	7.29e+04
32767	$1.41e+05 \pm 1.31e+04$	$3.24e+04 \pm 2.19e+02$	1.64e+04	1.57e+05
65535	$3.23e+05 \pm 2.61e+04$	$6.51e+04 \pm 1.66e+02$	3.28e+04	3.37e+05
131071	$7.38e+o5 \pm 8.30e+o4$	$1.31e+05 \pm 2.71e+02$	6.55e+04	7.19e+05
262143	$1.39e+06 \pm 1.12e+05$	$2.61e+05 \pm 4.98e+02$	1.31e+05	1.53e+06
524287	2.93e+06 ± 1.59e+05	$5.23e+05 \pm 4.30e+02$	2.62e+05	3.24e+06
1048575	$6.74e+06 \pm 5.83e+05$	1.05e+06 ± 4.51e+02	5.24e+05	6.84e+06

Analysis

Values for algorithm R1

Values for algorithm R2

Values for algorithm R3

Our experimental data indicates that $\mathbf{E}[R_1] = 2\frac{1}{4} \cdot nH_n = \frac{n}{2}H_n$ $\mathbf{E}[R_2]$ is bounded by: $\frac{n}{2} \leq \mathbf{E}[R_2] \leq n$, and $\mathbf{E}[R_3] = \frac{n}{2}$.

Theoretically, the behaviour of R_1 can be explained as follows: \cdots