Lab3 DSS2 Team2

A. ER Diagram Design:

*The diagram shows our final version of ER diagram design, some minor adjustments were made for simplification and clarity.

B. Generation of Normalised Database Schemas

Notes:

- 1. Explanation of acronyms: BCNF stands for Boyce-Codd Normal Form, 3NF stands for Third Normal Form, FD stands for Functional Dependancy.
- 2. Given BCNF is stricter than 3NF, if a relation is in BCNF, then it must be in 3NF. We will use the property directly in the "Check 3NF" portion.
- 3. We omitted the SPID and OPID for structural clarity since the subclass entities could be fully defined using existing attributes.

USERS (user id, name)

Keys	user_id, user_name
Primary Key	user_id
Non-trivial FDs	user_id → user_name

The relation is in BCNF as USERS only has two attributes. Hence, it is 3NF.
SINF.

SHOPS (shop_name)

Keys	shop_name
Primary Key	shop_name
Non-trivial FDs	None
Check 3NF	The relation is in BCNF as there is no FD associated with it. Hence, it is 3NF.

PRODUCTS (product name, maker, category)

Assumption for products:

1. product_name is unique for every different product (e.g. apple fruit and apple phone)

Keys	product_name
Primary Key	product_name
Non-trivial FDs	product_name → maker, category
Check 3NF	The relation is in BCNF as every LHS of every non-trivial FD is a superkey.

ORDERS (<u>order_id</u>, shipping_cost, shipping_addr, order_timestamp, user_id) Assumptions for orders:

- 1. Users may ask for products to be delivered at multiple different addresses so user_id cannot determine shipping_addr.
- 2. At one order timestamp, a user can click the button and place only one order so user_id and Date-time can imply order_id. (timestamp is similar to unix epoch time)
- 3. shipping_addr alone cannot determine shipping_cost as the shipping cost depends on type of product (product_name), the location of the warehouse of shop (shop_name).

Keys	[order_id, {user_id, order_timestamp}]
Primary Key	order_id
Non-trivial FDs	order_id → shipping_cost, shipping_addr, Date-time, user_id {user_id, order_timestamp} → order_id {user_id, order_timestamp} → shipping_cost, shipping_addr

The relation is in BCNF as every LHS of every non-trivial FD is a
superkey, hence it is 3NF.

COMPLAINTS (<u>complaint_id</u>, description, filing_timestamp, complaint_status, employee_id, handling_timestamp, user_id)

Assumptions for complaints:

1. We assume that each user can only file one complaint at one timestamp, and each employee can only handle one complaint at one timestamp. (Timestamp is the unix epoch time)

Keys	[complaint_id, {user_id, filing_timestamp}, {employee_id, handling_timestamp}]
Primary Key	complaint_id
Non-trivial FDs	complaint_id → description, filing_timestamp, complaint_status, employee_id, Handled-date-time, user_id {user_id, filing_timestamp} → complaint_id {employee_id, handling_timestamp} → complaint_id
Check 3NF	All left hand sides of the nontrivial FDs contain a key, hence, the table is in 3NF.

COMPLAINTS-ON-SHOPS (complaint id, shop_name)

Keys	complaint_id
Primary Key	complaint_id
Non-trivial FDs	complaint_id → shop_name
Check 3NF	The relation is in BCNF as it only contains 2 attributes. Hence, it is 3NF.

COMPLAINTS-ON-PRODUCTS (complaint id, product_name, order_id, shop_name)

Keys	complaint_id
Primary Key	complaint_id
Non-trivial FDs	complaint_id → order_id, product_name, shop_name
Check 3NF	The relation is in BCNF as every LHS of every non-trivial FD is a superkey. Hence, it is 3NF.

EMPLOYEES (employee_id, employee_name, salary)

Keys	employee_id
Primary Key	employee_id
Non-trivial FDs	employee_id → employee_name, salary
Check 3NF	The relation is in BCNF as every LHS of every non-trivial FD is a superkey. Hence, it is 3NF.

PRODUCTS-IN-SHOPS (product_name, shop_name, price, quantity_in_stock)

Keys	{product_name, shop_name}
Primary Key	{product_name, shop_name}
Non-trivial FDs	{product_name, shop_name} → price, quantity_in_stock
Check 3NF	The relation is in BCNF as every LHS of every non-trivial FD is a superkey. Hence, it is 3NF.

PRODUCTS-IN-ORDERS* (<u>product_name</u>, <u>shop_name</u>, <u>order_id</u>, user_id, price, status, quantity_on_order, delivery_date, feedback_rating_score, feedback_comment, feedback_timestamp)

Assumptions for products-in-orders*:

1. Based on real life scenario, we assume that each user can only provide feedback one time on the products they purchased to prevent "click farming". Thus, feedback is considered as a many-to-one relation between user and product-in-order. And the attributes of feedback and the key of user (user_id) are merged into the product-in-order schema.

Keys	{product_name, shop_name, order_id}
Primary Key	{product_name, shop_name, order_id}
Non-trivial FDs	{order_id, product_name, shop_name} → user_id, price, delivery_date, quantity_on_order, status, feedback_rating_score, feedback_comment, feedback_timestamp order_id →user_id

Check 3NF	order_id →user_id indicates a violation of 3NF. Therefore, we need to perform 3NF normalization.
Step 1: Derive Minimal Basis	1. Transform FDs: {order_id, product_name, shop_name} → user_id, {order_id, product_name, shop_name} → price, {order_id, product_name, shop_name} → delivery_date, {order_id, product_name, shop_name} → quantity_on_order, {order_id, product_name, shop_name} → status, {order_id, product_name, shop_name} → feedback_rating_score, {order_id, product_name, shop_name} → feedback_comment, {order_id, product_name, shop_name} → feedback_timestamp, order_id → user_id 2. Remove redundant FDs Except for {order_id, product_name, shop_name} → user_id is implied by order_id → user_id, all FDs are not redundant
	3. Remove redundant attributes on left hand side No redundancies Final minimal basis: { {order_id, product_name, shop_name} → price, {order_id, product_name, shop_name} → delivery_date, {order_id, product_name, shop_name} → quantity_on_order, {order_id, product_name, shop_name} → status, {order_id, product_name, shop_name} → feedback_rating_score, {order_id, product_name, shop_name} → feedback_comment, {order_id, product_name, shop_name} → feedback_timestamp, order_id → user_id }
Step 2: Combine FDs in the minimal basis	The minimal basis becomes: { {order_id, product_name, shop_name} → price, delivery_date, quantity_on_order, status, feedback_rating_score, feedback_comment, feedback_timestamp, order_id →user_id }
Step 3: Create table for remained FDs	The following two tables are formed: PRODUCTS-IN-ORDERS (product_name, shop_name, order_id, price, status, quantity_on_order, delivery_date, feedback_rating_score, feedback_comment, feedback_timestamp) ORDER-USER (order_id, user_id)
Step 4: Check if original keys are contained	The original key {product_name, shop_name, order_id} is contained in the schema PRODUCTS-IN-ORDERS .

Step 5: Remove redundant tables	The schema ORDER-USER (<u>order_id</u> , user_id) is deemed <u>redundant</u> since the relation is completely included in the aforementioned schema ORDERS . Hence, the table is removed from our final result.
Result	The original table PRODUCTS-IN-ORDERS* is decomposed to the following table:
PRODUCTS-IN-ORDERS (<u>product_name</u> , <u>shop_name</u> , <u>order_</u> price, status, quantity_on_order, delivery_date, feedback_rating_score, feedback_comment, feedback_times	

PRODUCTS-IN-ORDERS (<u>product_name</u>, <u>shop_name</u>, <u>order_id</u>, price, status, quantity_on_order, delivery_date, feedback_rating_score, feedback_comment, feedback_timestamp)

Note: The relation is generated due to the normalization of the original relation **PRODUCTS-IN-ORDERS***.

Keys	{product_name, shop_name, order_id}
Primary Key	{product_name, shop_name, order_id}
Non-trivial FDs	{order_id, product_name, shop_name} → price, delivery_date, quantity_on_order, status, feedback_rating_score, feedback_comment, feedback_timestamp
Check 3NF	The relation is in 3NF since the left hand side of the only nontrivial FD contains the key.

PRICE-HISTORY (<u>product_name</u>, <u>shop_name</u>, <u>start_date</u>, end_date, price) Assumptions for price-history:

1. For simplicity, we assume that the price of a product sold in a shop can only be changed at the start of each day (i.e. the price of a product will remain the same throughout one day)

Keys	[{product_name, shop_name, start_date}, {product_name, shop_name, end_date}]	
Primary Key	{product_name, shop_name, start_date}	
Non-trivial FDs	Ds {product_name, shop_name, start_date} → price, end_date {product_name, shop_name, end_date} → price, start_date	
Check 3NF	The relation is in BCNF as every LHS of every non-trivial FD is a superkey.	

APPENDIX C: INDIVIDUAL CONTRIBUTION FORM

Name	Individual Contribution to Submission 1 (Lab 1)	Percentage of	Signature
		Contribution	
cheng zhengxing	join group discussion, suggest possible improvements, modify the details of ER graphics	16.66%	MAZ.
zhang tianyu	join group discussion, suggest possible improvements, modify the details of ER graphics	16.66%	Bak
zhou runbing	join group discussion, suggest possible improvements, modify the details of ER graphics	16.66%	Bilars
chirstopher arif setiadharma	double-checking the relationships and entity attributes	16.66%	Cry
an ruyi	design the ER relation, create skeleton of design, create ER diagram, write report, join group discussion	16.66%	₩.
peng wenxuan	design the ER relation, create skeleton of design, create ER diagram, write report, join group discussion	16.66%	支5文54
			-

Name	Individual Contribution to Submission 2 (Lab 3)	Percentage of	Signature
		Contribution	
cheng zhenxing	Write up for entities sets, analyze their attributes and FDs, join group discussion	16.66%	PROFES
zhang tianyu	Write up for entities sets, analyze their attributes and FDs, join group discussion	16.66%	JETRE
zhou runbing	Write up for entities sets, analyze their attributes and FDs, join group discussion	16.66%	and
chirstopher arif setiad	harma Write up for entities sets, analyze their attributes and FDs, join group discussion	16.66%	Cey
an ruyi	Write up for entities sets, analyze their attributes and FDs, join group discussion	16.66%	*
peng wenxuan	Write up for entities sets, analyze their attributes and FDs, join group discussion	16.66%	努文紹
			,]

Name	Individual Contribution to Submission 3 (Lab 5)	Percentage of	Signature
		Contribution	