02156 - Logical Systems and Logic Programming Fall 2021

DTU - Technical University of Denmark

Date submitted: September 23, 2021

Assignment 1

Daniel F. Hauge (s201186)

Problem 1

Question 1.1

Truth table is constructed using semantics written in the assignment description.

A	$\mid B \mid$	$\neg A$	$A \wedge B$	$A \lor B$	$A \rightarrow B$	$A \leftrightarrow B$
Τ	Т	F	Т	Т	Τ	Т
Τ	F	F	F	Т	\mathbf{F}	F
Τ	X	F	X	Т	X	X
F	T	Т	F	Т	Τ	F
F	F	Т	F	F	Τ	Γ
F	X	Т	F	X	${ m T}$	¬ X
X	T	¬ X	X	Т	${ m T}$	X
X	F	¬ X	F	X	$\neg X$	¬ X
X	X	¬ X	X	X	Τ	T

The lack of semantics for X will make some cases just terminate with $\neg X$. An interesting observation from comparison is that some logical operations disregard or will work just fine without classical truth values. Like implication $X \to X$ will give True, as with implication it does not matter what value it is operating with.

Question 1.2

When p is T:

$$\neg T \wedge T = F \wedge T = \underline{F}$$

When p is F:

$$\neg F \wedge F = T \wedge F = \underline{F}$$

When p is X:

$$\neg X \wedge X = \underline{\underline{F}}$$

As there is no semantics for the negation of X, there is no better evaluation of $\neg X$. Hence we conclude the X case to be false, as the values is not equal and neither of them is T.

Problem 2

Question 2.1

Refuting the validity of the proposition, we negate the formular and try to find counter example:

Concluding with a complete closed tableau, thus we can say that the formula is valid hence we can say the propositional formular is a tautology.

Question 2.2

Considering the logical equivalence, we observe that it can be used to argument for the following:

$$s \to p \equiv \neg p \to \neg s$$

and

$$\neg p \to \neg t \equiv t \to p$$

Therefor we can "swap" the parts marked with underline below to show equivalence with the formular:

$$((s \to p) \land ((\neg s \to t) \land (\neg p \to \neg t))) \to p$$

1 Problem 3

1.1 Question 3.1

See the prolog file for the predicate.

The predicate should fail when Elem is not occuring twice.

```
?- member2(1,[1,2,3,4]).
false.
```

The predicate should succed when 2 occurences of Elem are present in List.

```
?- member2(1,[1,2,3,4,1]).
true;
false.
```

The predicate can be used as quiery to find elements occurring twice in List.

```
?- member2(X,[1,2,3,4,2,4]).
X = 2;
X = 4;
false.
```

The predicate will give multiple answers on backtracking.

```
?- member2(3, [3,3,3]).
true;
true;
true;
false.
```

The predicate can give potentially infinite answers for lists which has Elem twice occuring.

```
?- member2(1,X).
X = [1, 1|_358];
X = [1, _1022, 1|_1036].
```

The predicate can used in a query with variables only. Although is seems pointless to do so.

```
?- member2(X,A).
A = [X, X|_2830];
A = [X, _3564, X|_3578].
```

1.2 Question 3.2

See the prolog file for the predicate. All tests from Question 3.1 has been done with member 2a. All tests give identical results (apart from generic values).