

ECEN 403 Final Presentation Team 70: VFD Motor Controller

Team Mackenzie Miller Andrew Nguyen Aidan Rader Ryan Regan Sponsor: John Lusher

Overview

- Problem Statement: A motor control system is needed for an AC induction motor. Traditional motor control systems cannot adjust to varying load demands, resulting in poor energy efficiency, excessive heat generation, and premature component failure.
- Solution Proposal: Develop a Variable Frequency Drive (VFD) motor control system to adjust frequency and voltage to load demands, resulting in improved motor controllability, optimized energy efficiency, enhanced safety, and extended component lifespan.

Overview

Microcontroller

Finished PCB and schematic designs

MCU Continued

- Practiced soldering using soldering kit while I waited for parts come in
- Ran simulations on schematic
- Began code for final demo

Power

Aidan Rader

Task	Status
PCB Fabrication	Complete
Rectifier 5VAC to 6.1VDC	Complete
Fuse < 0.5Ω	Complete

Power

Aidan Rader

Firmware

- Firmware for development board to produce three-phase PWM signals completed.
- Potentiometer can change the frequency of the PWM wave by increasing the code's step size while iterating through sine wave table.

Firmware Continued

Optoelectronics

- Assembled 1/3 of PCB board
- Tested for continuity at low power
- Remaining 2/3 to be assembled this week

Optoelectronics Continued

Task	Status
PCB Fabrication	Complete
PCB Assembly	In progress

	E	xexcu	tion F	lan 8/	20/20	024-1	2/5/2	024									
	8/20	8/27	9/3	9/10	9/17	9/24	10/1	10/8	10/15	10/22	10/29	11/5	11/12	11/19	11/26	12/3	Date
CONOPS Report																	9/15
FSR, ICD, Milestones, & Validation Plan													Not St	arted			9/26
Firmware: GUI Development/Testing													In Progress				9/24
Project Introduction Presentation													Completed				9/30
Optoelectronics: Subsystem Introduction Project														d Sche	dule		10/7
Microcontroller: Subsystem Introduction Project																	10/7
Parts Order 1																	10/8
Power: Subsystem Introduction Project																	10/14
Firmware: Subsystem Introduction Project																	10/15
Firmware: Develop Outline																	10/15
Project Update Presentation																	10/21
Firmware: Add Debug Print Statements to Outline																	10/22
Firmware: Write to Demo Each Component Needed																	10/22
Firmware: Single-Phase Potentiometer Duty Cycle Control																	10/29
Optoelectronics: Schematic Layout																	10/29
Power: DC Link Schematic Layout																	11/2
Power: Rectifier Schematic Layout																	11/3
Power: Power Control Schematic Layout																	11/4
Microcontroller: Schematic Layout																	11/4
Optoelectronics: PCB Layout																	11/5
Microcontroller: PCB Layout																	11/5
Power: PCB Layout																	11/5
Optoelectronics: Order PCB																	11/5
Microcontroller: Order PCB																	11/5
Power: Order PCB																	11/5
Parts Order 2																	11/12
Optoelectronics: PCB Assembly																	11/18
Microcontroller: PCB Assembly																	11/18
Power: PCB Assembly																	11/18
Firmware: Convert PWM signal to three-phase																	11/18
Final Presentation																	11/18
Optoelectronics: Validation/Debugging																	11/26
Microcontroller: Validation/Debugging																	11/26
Power: Validation/Debugging																	11/26
Firmware: Validation/Debugging																	11/26
Project Subsystem Demonstration																$ldsymbol{ldsymbol{eta}}$	11/26
Final Report																	12/5

Validation Plan

Paragraph #	Test Name	Success Criteria	Methodology	Status	Responsible Engineer(s)
3.2.1.1	Speed and Torque	Motor shall operate within speed range of ORPM to 1800RPM	Input motor with voltage and check if it achieves ORPM and Olb-ft . Repeat for	Untested	Andrew, Ryan
	Requirement	and tor que range of Olb-ft to 0.729lb-ft.	300RPM, 600RPM, 900RPM, 1200RPM, 1500RPM, 1800RPM.		
3.2.1.2	Frequency	System shall operate within frequency range of 5Hz to 60Hz.	Input system with frequency generator set to 5Hz and check if the motor runs	Untested	All
	Requirement		smoothly. Repeat for 10Hz, 20Hz, 30Hz, 40Hz, 50Hz, 60Hz.		
3.2.1.3	Temperature	System shall operate within temperature range of 0 °C to 70 °C.	Place system in freezer set to 0 °C and check if the motor runs smoothly. Repeat	Untested	All
	Requirement		with oven set to 70° C.		
3.2.3.2	Input Voltage Level	System input voltage shall be 208V _{AC} .	Measure with multimeter and check if the voltage is 208V _{AC} .	Untested	Aidan
3.2.3.3	Input Noise and	System shall not exceed ripple range of 0V to 0.165V.	Measure with multimeter and check if the voltage exceeds 0V to 0.165V.	Untested	Andrew
	Ripple				
3.2.3.4	ExternalCommands	External commands shall be documented in appropriate ICD.	Show to teaching team and check with them for approval.	Untested	All
3.2.3.5	VisualOutput	System shall display output measurements on GUI.	Input system with known values and check if the output measurements match.	Untested	Ryan
			Repeat for six additional sets of known values.		
3.2.3.6	Connectors	System shall use terminal blocks for power and signal	Observe power and signal connections and check if they are are terminal blocks.	Untested	Mackenzie,
		connections.			Andrew, Aidan
3.2.3.7	Overtemperature	System shall automatically shut down if sensor exceeds	Place sensor in freezer set to -1" C and check if sensor is triggered. Repeat with oven	Untested	Mackenzie
	Shutdown	temperature range of 0 °C to 70 °C.	set to 71 °C.		
3.2.3.8	Built in Test	System shall generate and evaluate test signals to assess	Compare generated values with known values and check if the failure statuses	Untested	All
		failure status.	match. Repeat for six additional sets of values.		
TBD	Inputs	The parameters are within the expected range.	Confirm that all electrical para meters (voltage, current, power) remain within safe	Untested	All
			and expected ranges under varying conditions.		
TBD	Communication	Firmware is successfully uploaded, and system can	Verify that data transfer between the VFD controller and the PC is reliable and	Untested	Andrew, Ryan
	Testing	communicate to PC.	supports functions like setting parameters and uploading firmware.		
TBD	Controller	Motor spins according to user defined parameters.	Validate that the system operates efficiently and delivers accurate motor control	Untested	All
	Performance		across the expected range of operating conditions.		
TBD	MCU Voltage Step	MCU converts the voltage it is given to 3.3V.	Measure the voltage of the signals being sent to the MCU and measure that the MCU	Untested	Mackenzie,
	Down		converts it to 3.3V.		Andrew
TBD	Rectifier Full System	System input voltage shall be rectified from $208V_{AC}$ to $295V_{DC}$.	Measure with multimeter and check if the voltage after the rectifier is $295V_{DC}$.	Untested	Aidan
TBD	Rectifier Power	System input voltage shall be rectified from 5V _{AC} to 7.1 V _{DC} .	Input 5V AC at differing angles of 120" on three waveform generators. Measure with	Untested	Aidan
	Subsystem		multimeter and check if the voltage after the rectifier is 7.1 V _{DC} .		
TBD	Isolated 15V	System shall convert 15V _{DC} to isolated 15V _{DC} .	Input 15V _{DC} on a dc power supply. Measure with multimeter and check if the voltage	Untested	Aidan
	Conversion		after the converter is 15V _{DC} .		
TBD	Isolated 5V	System shall convert 3.3V _{DC} to isolated 5V _{DC} .	Input 3.3V _{DC} on a dc power supply. Measure with multimeter and check if the	Untested	Aidan
	Conversion		voltage after the converter is 5V _{DC} .		

Remaining Tasks

- Microcontroller: Solder parts onto PCB, debug PCB, prepare for demo. For 404: ensure connections are correct to put all PCBs together, may need to redesign pcb/schematic to align with the other PCBs
- Firmware: Before project demo, figure out proper scale for PWM signal, and add more debugging tools for future use and to ensure code is running exactly as intended. For 404: test dev board code with motor, then alter the firmware to work with our own microcontroller

Remaining Tasks Continued

 Optoelectronics: Finish assembling PCB, test at full power, make sure PCB connectors are compatible with the other PCBs. For 404: implement tachometer on motor – connections are currently routed on PCB

Power Aidan Rader

Remaining Tasks Continued

403 Tasks	Status				
15V to Isolated 15V	assembled, not successfully validated				
3.3V to Isolated 5V	assembled, not successfully validated				
DC Link	not assembled, not validated				
Power Control PWM Signals	not simulated				
Power Control	not assembled, not validated (needs PWM signals)				

 404 Tasks: simulate circuit, redesign PCB (connectors facing outwards, fuse clip spacing, MCU 3 phase connector, increase PCB density), full motor control at 208VAC