Reibungskräfte

- Reibungskräfte sind bewegungshemmende Kräfte
- treten an Grenzflächen zwischen zwei Körpern auf

Haftreibung

Haftreibung verhindert, dass die Räder auf der Straße gleiten (rutschen).

keine Bewegung

Gleitreibung

Eiskunstläufer gleiten mit Schlittschuhen auf einer Eisfläche. Die bewegungshemmende Kraft ist die Gleitreibungskraft

Rollreibung

Die bewegungshemmende Kraft, die zwischen Rädern und der Straße auftritt, wird als Rollreibung bezeichnet. Sie ist der Drehbewegung der Räder entgegengerichtet.

Bewegungsrichtung

Zusammenhang zwischen Haft- und Gleitreibung

F_{HR} – maximale Haftreibung

- die Haftreibung hindert einen Körper daran sich in Bewegung zu versetzen
- die Haftreibungskraft $\vec{F}_{\rm hr}$ ist immer so groß wie die Zugkraft $\vec{F}_{\rm Z}$ mit der an einem Körper gezogen wird
- die Haftreibungskraft besitzt einen maximalen Wert $F_{\rm HR}$
- wird dieser maximale Wert überschritten, setzt sich der Körper in Bewegung und fängt an zu gleiten

Normalkraft

Ist die Kraft, mit der einer Körper auf seine Unterlage wirkt (drückt). Dabei stehen Normalkraft und Unterlage senkrecht zueinander. $F_{\rm N} = F_{\rm G} - F_{\rm Z}$ $\vec{F}_{\rm N} = \vec{F}_{\rm G}$ $\vec{F}_{\rm N} \neq \vec{F}_{\rm G}$

Reibungskraft

Formel:

$$F_{\rm R} = \mu \cdot F_{\rm N}$$

 $F_{\rm R}$ - Reibungskraft

 $F_{\rm N}$ - Normalkraft

μ - Reibungszahl(Materialabhängigkeit)

- Haft- und Gleitreibung sind direkt proportional zur Normalkraft
- Haft- und Gleitreibungskraft sind abhängig von den Materialien, die aneinander reiben
- Haft- und Gleitreibungskraft sind von der Größe der Auflagefläche eines Körpers unabhängig

