02.10.2019

Dr hab. Anna Dembińska mini.pw.edu.pl/~dembinsk

3 kolokwia 3 kartkowki

45+ punktów - zwolnienie z egzaminu (cz. zadaniowa)

Literatura:

- 1. Dembińska, Karpińska, Kotus Analiza matematyczna I dla studentów informatyki PW
- 2. Gewert , Skoczylas Analiza matematyczna I /Definicje twierdzenia wzory / Przykłady i zadania / Kolokwia i egzaminy GIS
- 3. Leja Rachunek różniczkowy i całkowy PWN

OZNACZENIA

- 1. N := 1, 2, 3...
- 2. $N_0 := 0, 1, 2, 3...$
- 3. $\mathbb{Z} := \dots -1, 0, 1, \dots$
- 4. $\mathbb{Q} := \{ \frac{m}{n} \text{ gdzie } n \in \mathbb{N}, m \in \mathbb{Z} \}$
- 5. $\mathbb{R} := \text{rzeczywiste}$
- 6. \forall dla każdego $\forall_{x \in R} x^2 \ge 0$
- 7. ∃- istnieje
- 8. ← wtedy i tylko wtedy
- 9. $(a,b] := \{x \in \mathbb{R} : a < x \le b\}$
- 10. [x] część całkowita x : $x-1 < [x] \le x$, $[7\frac{1}{3}] = 7$, $[-2\frac{1}{3}] = -3$

LICZBY RZECZYWISTE I ICH PODZBIORY.

- 1. Def. Zbiór \mathbb{R} , dwa wyróżnione w nim elementy 0 i 1, relacja < oraz dwa działania $+\times$ to tak zwane pojęcia pierwotne, które przyjmujemy bez definicji. Ponadto przyjmujemy bez dowodu, że te pojęcia pierwotne mają pewne własności zwane aksjomatami (lub pewnikami)
- 2. Def. Zbiór $A \subset \mathbb{R}$ jest ograniczony z dołu $\iff \exists_{m \in \mathbb{R}} \forall_{a \in A} a \geq m$ Wtedy m nazywamy ograniczeniem dolnym zbioru A
 - (a) Zbiór A $\subset \mathbb{R}$ jest ograniczony z góry $\iff \exists_{M \in \mathbb{R}} \forall_{a \in A} a \leq M$ Wtedy M nazywamy ograniczeniem górnym zbioru
 - (b) Zbiór $A \subset \mathbb{R}$ jest ograniczony \iff jest ograniczony z góry i z dołu $\iff \exists_{m,M \in \mathbb{R}} \forall_{a \in A} m \leq a \leq M \iff \exists_{K \in \mathbb{R}} \forall_{a \in A} |a| \leq K$. Przykład: A = (-1,2]- przykładowe ograniczenia dolne $\{-10,-1.5,-1\}$, ograniczenia górne $\{3,100,2\} \implies$ zbiór A jest ograniczony
- 3. Def. Niech $\emptyset \neq A \subset \mathbb{R}$ będzie ograniczony z dołu. Wtedy kresem dolnym zbioru A (oznaczanym inf A) nazywamy największe ograniczenie dolne zbioru A
 - (a) To znaczy $\inf A = \alpha \iff (\forall_{a \in A} a \ge \alpha \ (\alpha \text{ jest ograniczeniem dolnym}) \text{ oraz } \forall_{\epsilon > 0} \exists_{a_0 \in A} a_0 < \alpha + \epsilon$
- 4. Def. Niech $\emptyset \neq A \subset \mathbb{R}$ będzie ograniczony z góry. Wtedy kresem górnym zbioru A (oznaczamy supA) nazywamy najmniejsze ograniczenie górne zbioru A.
 - (a) $\sup A = \beta \iff (\forall_{a \in A} a \le \beta \text{ or az } \forall_{\epsilon > 0} \exists_{a_0 \in A} a_0 > \beta \epsilon)$
- 5. Jeśli zbiór A nie jest ograniczony z dołu, to inf $A = -\infty$, jeśli nie jest ograniczony z góry, to sup $A = +\infty$
 - (a) $\inf(\emptyset) = +\infty$, $\sup(\emptyset) = -\infty$
 - (b) Przykład: A = (-1, 2]
 - i. $\inf(A) = -1$
 - ii. $\sup(A) = 2$
- 6. Aksjomat ciągłości Każdy zbiór $\emptyset \neq A \subset \mathbb{R}$ ograniczony z dołu/góry ma skonczony kres dolny/górny $\in \mathbb{R}$
 - (a) dla \mathbb{Q} tego nie ma: $B = \{q \in \mathbb{Q} : q^2 < 2 \text{ i } q > 0\}$ kres górny to $\sqrt{2} \notin \mathbb{Q}$

- (b) Twierdzenie: jeśli $\emptyset \neq A \subset B \subset \mathbb{R}$ to
 - i. inf $A \ge \inf B$
 - A. Dowód: Jeśli B nie jest ograniczony z dołu, to inf $B = -\infty$, więc i. jest spełniona
 - B. Jeśli B jest ograniczony z dołu, to z aksojomatu ciagłości B ma skończony kres dolny. Ponadto A też jest ograniczony z dołu, więc też ma skończony kres dolny. Oznaczmy inf $A = \alpha$ i inf $B = \beta$. Wtedy mamy :

```
\forall_{a \in A} a \ge \alpha
```

$$\forall_{\epsilon>0}\exists_{a_0\in A}a_0<\alpha+\epsilon$$

$$\forall_{b \in B} b \ge \beta$$

$$\forall_{\epsilon>0}\exists_{b_0\in B}b_0<\beta+\epsilon$$

Chcemy pokazać że
$$\alpha \geq \beta$$

$$A \subset B \implies (a \in A \implies a \in B) \implies \alpha \geq \beta$$
, czyli β jest ograniczeniem dolnym zbioru A

- ii. sup A ≤sup B
 - A. Dowodzimy analogicznie

7. LICZBY NATURALNE I ZASADA INDUKCJI MATEMATYCZNEJ

- (a) Zdefiniowaliśmy $\mathbb{N} = \{1, 2, ...\}$. Definicja ta nie jest matematycznie precyzyjna, bo nie zdefiniowaliśmy "...". Podamy definicję liczb naturalnych odwołującą się jedynie do pojęć pierwotnych i do pojęć zdefiniowanych wcześniej. Def. Zbiór $A \subset \mathbb{R}$ nazywamy induktywnym jeśli spełnia następujące dwa warunki
 - i. $1 \in A$
 - ii. $\forall_{a \in A} a + 1 \in A$
 - A. $[1,\infty)$
 - В. ℝ
 - $C. \mathbb{Q}$
 - D. N
 - iii. Def. Zbiór liczb naturalnych $\mathbb N$ to zbiór zawarty w każdym zbiorze induktywnym tzn. $\mathbb N = \cap_{A \in I} A$ gdzie I to rodzina wszystkich zbiorów induktywnych
- (b) Twierdzenie Zasada indukcji matematycznej
 - i. Jeśli $A \subset \mathbb{N}$ spełnia warunki

$$1 \in A$$

$$\forall_{n \in \mathbb{N}} (n \in A \implies n+1 \in A)$$

- ii. to $A = \mathbb{N}$
- iii. Zbiór A jest induktywny, bo $1 \in A$ oraz $\forall_{n \in A} n + 1 \in A$ Zatem $\mathbb{N} \subset A$
- iv. Skoro $A \subset \mathbb{N}$ oraz $\mathbb{N} \subset A$ to $A = \mathbb{N}$
- (c) Przykład dowód tego, że $\forall_{n\in\mathbb{N}}1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{n}}\geq\sqrt{n}$ (**)
 - i. Niech $A = \{n \in \mathbb{N} : 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \ge \sqrt{n}\}$
 - ii. Potrzebujemy pokazać,
że $1\in A$ oraz, że $\forall_{n\in\mathbb{N}}(n\in A\implies n+1\in A)$ To znaczy,
że
 - A. Dla n=1 wzór (**) jest spełniony $(1+1 \ge \sqrt{1})$
 - B. Zakładamy,
że wzór (**) jest prawdziwy dla n i dowodzimy jego prawdziwości dla
 $\rm n+1$

Zakładamy, że
$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \ge \sqrt{n}$$
. Chcemy pokazać, że $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}} \ge \sqrt{n+1}$

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}} \ge^{zal.ind.} \sqrt{n} + \frac{1}{\sqrt{n+1}} = \frac{\sqrt{n^2+n}+1}{\sqrt{n+1}} \ge \frac{\sqrt{n^2+1}}{\sqrt{n+1}} = \sqrt{n+1}$$
 co kończy dowód.

- (d) Twierdzenie:
 - i. Zbiór ℕ nie jest ograniczony z góry
 - A. Dowód nie wprost. Zakładamy,
że zbiór $\mathbb N$ jest ograniczony z góry. Wtedy $\exists_{M \in \mathbb N} \forall_{n \in \mathbb N} n \leq M \implies n+1 \leq M \implies n \leq M-1 \implies M-1$ też jest ograniczeniem górnym \implies zbiór $\mathbb N$ nie ma najmniejszego ograniczenia górnego. Z drugiej strony. $\mathbb N$ jako zbiór niepusty i ograniczony z góry ma kres górny, czyli najmniejsze ograniczenie górne. Skoro założenie implikuje sprzeczność to założenie jest nieprawdziwe więc zbiór $\mathbb N$ nie jest ograniczony z góry
 - ii. Zbiór $\mathbb Q$ jest gęsty w $\mathbb R$,
to znaczy $\forall_{x,y\in\mathbb R,x< y}\exists_{q\in\mathbb Q}x< q< y$ (pomiędzy dowolnymi dwoma rzeczywistymi istnie
je liczba wymierna)
 - iii. Zbiór $\mathbb{R} \setminus \mathbb{Q}$ (zbiór liczb niewymiernych) jest gęsty w \mathbb{R} , to znaczy $\forall_{x,y \in \mathbb{R}, x < y} \exists_{z \notin \mathbb{Q}} x < z < y$
- (e) Dowód indukcyjny tego, że wszystkie koty są tego samego koloru. Indukcja e względu na n-liczba kotów.
 - i. Dla n=1 OK
 - ii. Zakładamy że fakt jest prawdziwy dla n, i dowodzimy dla n+1