Final de Lógica 2007

- 1. V o F, justifique.
 - (a) En el algebra de Lindenbaum $\mathcal{A}_{(\emptyset,(\emptyset,\emptyset,\emptyset,\emptyset))}$ se tiene que $[\varphi] \leq [\psi]$ se da cuando $\{\mathbf{A}: \mathbf{A} \models \varphi\} \subseteq \{\mathbf{A}: \mathbf{A} \models \psi\}.$
 - (b) Sean A y B τ -álgebras, y supongamos A es subálgebra de B. Sea $\varphi = \varphi(v) \in F^{\tau}$, y supongamos que A $\models \exists v \ \varphi(v)$. Entonces B $\models \exists v \ \varphi(v)$.
 - (c) Si no se da que $(\Sigma, \tau) \vdash \varphi$, entonces $A \nvDash \varphi$, para cada modelo A de (Σ, τ) .
 - (d) Sean A y B τ -álgebras. Si S es subuniverso de A \times B entonces hay S_1 y S_2 subuniversos de A y B respectivamente tales que $S = S_1 \times S_2$.
- 2. Sea $\tau = (\{0, 1\}, \{s^2, i^2\}, \emptyset, a)$. Sea $A = \{1, 2, ..., 10\}$. Definances: $x s^A y = \max(x, y)$ $x i^A y = \min(x, y)$ $0^A = 0$

 $1^{A} = 10$

De una descripción de las congruencias del algebra A, en particular, diga cuantas hay.

3. Sea $\tau=(\{c\},\{f^1\},\emptyset,z)$ y sea Σ el conjunto formado por los axiomas:

$$\forall x_1, x_2 \ (f(x_1) \equiv f(x_2) \to x_1 \equiv x_2)$$

$$f(c) = c$$

Calcule cuantos modelos no isomorfos de la teoría (Σ, τ) hay con universo $\{0, 1, 2, 3\}$. Justifique.

4. Sea $\tau = (\emptyset, \{\cdot^2, g^2\}, \emptyset, a)$ y sea Σ el siguiente conjunto de axiomas:

$$\forall x, y \ g(x, y) \cdot x = x \cdot g(x, y)$$

$$\forall x, z \exists y \ g(x, y) = z$$

De una prueba de $(\Sigma, \tau) \vdash \forall x, y \ x \cdot y = y \cdot x$.