Probabilités avancées

Martingales à temps

discret

Question 1/9

Martingale

Réponse 1/9

$$(X_n)$$
 est une martingale par rapport à (\mathcal{F}_n) si (X_n) est adaptée à (\mathcal{F}_n) et $\mathbb{E}(X_{n+1} \mid \mathcal{F}_n) = X_n$

Question 2/9

Stabilités des sous/sur/Ø-martingales

Réponse 2/9

Si (X_n) et (Y_n) sont deux sous/sur/ \emptyset -martingales alors $(X_n + Y_n)$ aussi Si (X_n) et (Y_n) sont des sous-martingales (resp. sur-martingale) alors $(\max(X_n, Y_n))$ (resp. $(\min(X_n, Y_n))$ aussi Si (X_n) est une martingale et φ est convexe telle que $\mathbb{E}(|\varphi(X_n)|) < +\infty$ alors $(\varphi(X_n))$ est une sous-martingale

Question 3/9

Processus adapté à une filtration (\mathcal{F}_n)

Réponse 3/9

 (X_n) une suite de variables aléatoires avec X_n qui est \mathcal{F}_n -mesurable

Question 4/9

Filtration

Réponse 4/9

 (\mathcal{F}_n) une suite croissante de sous-tribus de \mathcal{F}

Question 5/9

Sous-martingale

Réponse 5/9

$$(X_n)$$
 est une sous-martingale par rapport à (\mathcal{F}_n) si (X_n) est adaptée à (\mathcal{F}_n) et $\mathbb{E}(X_{n+1} \mid \mathcal{F}_n) \geqslant X_n$

Question 6/9

Processus prévisible

Réponse 6/9

 $(H_n)_{n\in\mathbb{N}^*}$ est un processus prévisible par rapport à $(X_n)_{n\in\mathbb{N}}$ adapté à \mathcal{F}_n si H_n est \mathcal{F}_{n-1} -mesurable

Question 7/9

Sur-martingale

Réponse 7/9

$$(X_n)$$
 est une sur-martingale par rapport à (\mathcal{F}_n) si (X_n) est adaptée à (\mathcal{F}_n) et $\mathbb{E}(X_{n+1} \mid \mathcal{F}_n) \leqslant X_n$

Question 8/9

Intégrales stochastiques de sous/sur/Ø-martingales

Réponse 8/9

Si (X_n) est une martingale et (H_n) est un processus prévisible de L^{∞} alors $((H \cdot X)_n)$ est une martingale Si (X_n) est une sous/sur-martingale et (H_n) est un processus prévisible positif de L^{∞} alors $((H \cdot X)_n)$ est une sous/sur-martingale Si (X_n) est dans L^2 alors on peut avoir (H_n)

dans L^2

Question 9/9

Intégrale stochastique (discrète)

Réponse 9/9

Soit (X_n) un processus adapté à \mathcal{F}_n et (H_n) un processus prévisible, l'intégrale stochastique de (H_n) par rapport à (X_n) est

$$(H \cdot X)_n = \sum_{k=1}^n H_k(X_k - X_{k-1})$$