Алгебра 12

Igor Engel

1

Определение 1.1. R - кольцо, $I \subset R$, I называется идеалом R, если

- 1. $u, v \in I \implies u + v \in I$
- $2. u \in I, r \in R, ru \in I$
- 3. $0 \in I$

Лемма 1.1.1. Если I - идеал в R, то I - подгруппа аддитивной группы R.

Доказательство. Замкнутость и наличие нетрального гарантиуется свойствами. Заметим, что $-1 \in R$, тогда $\forall u \in I \quad -1 \cdot u = -u \in I$.

Определение 1.2. Идеал, порождённый элементами a_1, \ldots, a_n :

$$I = \{a_1x_1 + a_2x_2 + \ldots + a_nx_n \mid \forall i \quad x_i \in R\}.$$

Определение 1.3. Главный идеал - идеал, порождённый одним элементом.

$$dR = \{ dx \mid x \in R \}.$$

Теорема 1.1. K - поле, тогда $\forall I \leq K[x] \quad \exists d \in K[x] \quad I = dK[x].$

Доказательство. Если $I = \{0\}$, то I = 0K[x].

Пусть $I \neq \{0\}$: Рассмотрим ненулевой многочлен $d \in I$, $\deg d$ - минимальна. Покажем, что I = dK[x].

Рассмотрим $a \in I$, тогда a = dq + r, $\deg r < \deg d$.

 $dq\in I,\ a-dq=r,\ r\in I,\ \deg r<\deg d\implies r=0,\ a\in dK[x],\ I\subset dK[x].$ По воторому свойству, $dK[x]\subset I,$ значит I=dK[x]

Лемма 1.1.1. K - поле, $f, g \in K[x]$. Тогда $\exists (f, g)$, и $(f, g)K[x] = \langle f, g \rangle$.

Доказательство. Пусть $\langle f, g \rangle = dK[x]$.

Заметим, что $f,g \in dK[x]$, значит f : d и g : d.

Возьмём произвольный общий делитель f, g назовём d'.

$$d = fu + gv$$
.

fu : d', gv : d', знаит d : d'.

Лемма 1.3.1. Пусть $p \in K[x]$.

р прост только тогда, когда неприводим.

Доказательство. Рассмотрим (a, p).

Есть два случая: $(a, p) \in K[x]^*, (a, p) \equiv p.$

Разберём второй случай:

$$(a,p)$$
: p .

Ho a : (a, p), значит a : p.

Рассмотрим первый случай: НОД определёни с точностью до ассоциированности, значит можно считать что (a,p)=1.

$$T$$
огда $1 = ax + py$

Теорема 1.2.

$$\forall f \in K[x] \quad \exists p_1, \dots, p_n \quad \in K[x] \exists \varepsilon \in K^* \quad \varepsilon \prod_{i=1}^n p_i.$$

Это разложение единственно, с точностью до порядка и ассоцированности.

Доказательство. Если f неприводим, то, n = 1 $p_1 = f$.

Если f обратим, то n = 0, $\varepsilon = f$.

Иначе существует разложение f = gh, степени g, h меньше степени f, раскладываем по индукции.

Докажем единственность:

$$\varepsilon_1 \prod_{i=1}^n p_i = \varepsilon_2 \prod_{i=1}^n q_i.$$

Левая часть делится на p_1 , значит, правая часть делится на p_1 , значит какое-то q_i ассоциированно с p_1 , делим, переходим по индукции.

Лемма 1.2.1. R - кольцо, $f \in R[x], f : (x - a) \iff f(a) = 0.$

Определение 1.4. R - область целостности. Тогда $a \in R$ является корнем $f \in R[x]$ кратнсоти $k \ge 1$, если $f : (x-a)^k$ и $f \not (x-a)^{k+1}$.

Теорема 1.3. K - поле, $f \in K[x]$, тогда кол-во корней f с учётом кратности не больше степени f.

Доказательство. Перечислим все корни $\lambda_1, \ldots, \lambda_s$ и их кратность r_1, \ldots, r_s .

Тогда кол-во корней - $\sum_{i=1}^{s} r_i$.

Заметим, что многочлен $x - \lambda_i$ неприводим.

Заметим, что $(x - \lambda_i) \not\sim (x - \lambda_j)$. Разложим f на множители:

$$f = \varepsilon (x - \lambda_1)^{r_1} \dots (x - \lambda_s)^{r_s} g.$$

$$\deg f = r_1 + \dots + r_s + \deg g.$$

$$\deg g \ge 0.$$

Лемма 1.3.1. $f, g \in K[x], \deg f, \deg g \leq n$, и есть попарно различные $\lambda_0, \ldots, \lambda_n$, такие, что $\forall i \quad f(\lambda_i) = g(\lambda_i)$, тогда f = g.

Доказательство. Рассмотрим h=f-g. Тогда λ_i - корни. Но тогда у h есть n+1 корень, значит h(x)=0.

Теорема 1.4 (Теорема о формальном и функциональном равенстве многочленов). $f, g \in K[x], K$ - бесконечное, если $\forall \lambda \in K \quad f(\lambda) = g(\lambda)$, то f = g.

Доказательство. Пусть $n = \max(\deg f, \deg g)$. Выберем n+1 точку из K. По предыдущей лемме, многочлены равны.

Теорема 1.5 (Теорема Вильсона). $p \in \mathbb{Z}$ - простое, тогда и только тогда, когда $(p-1)! \equiv -1 \mod p$.