Raport Excel Projekt nr 20

Mieczkowski Jakub, Kulczyk Paulina, Madej Mateusz

Naszym zadaniem było napisanie funkcji aproksymującej dowolną całkę metodą Romberga i przeanalizowanie wyników. W tym celu użyliśmy funkcji, których potrafimy policzyć wartości całek na danych przedziałach. Wybraliśmy funkcje:

- $f(x) = \sin(x)$
- $f(x) = x\cos(x)$
- $f(x) = (x^2 1) \exp(\frac{-x}{2})$
- f(x) = x ln(x)

W prostych słowach metoda Romberga polega na przybliżaniu wartości całki oznaczonej poprzez dzielenie przedziału całkowania na mniejsze kawałki i szacowanie pola pod wykresem funkcji polami trapezów. Metoda Romberga korzysta z aproksymacji uzyskanych w poprzednich krokach za każdym razem podwajając liczbę węzłów. W jej wyniku otrzymujemy Tabelę Romberga. Aby przybliżona całka była jak najdokładniejsza dążymy do ustabilizowania Tablicy, tzn żeby wartość |R(i,i)-R(i-1,i-1)| którą oznaczymy przez ϵ była możliwie mała. W naszym rozwiązaniu zaimplementowaliśmy możliwość zwrócenia Tablicy Romberga dla danego żądanego ϵ . Dla wygody użytkownika w naszej funkcji podaje się rząd - N, gdzie $\epsilon = 10^{-N}$.

Przykłady wyników dla naszych ustalonych funkcji i N = 10:

• $f(x) = \sin(x)$

i-ty krok metody Romberga	Romberg sin(x)									
1	1,92367E-16	0	0	0	0	0				
2	1,570796327	2,094395102	0	0	0	0				
3	1,896118898	2,004559755	1,998570732	0	0	0				
4	1,974231602	2,00026917	1,999983131	2,00000555	0	0				
5	1,993570344	2,000016591	1,999999752	2,00000016	1,999999995	0				
6	1,998393361	2,000001033	1,999999996	2	2	2				

• $f(x) = x\cos(x)$

i-ty krok metody Romberga	Romberg x*cos(x)									
1	2,634025864	0	0	0	0	0	0	0		
2	-1,179868087	-2,451166071	0	0	0	0	0	0		
3	-4,84814473	-6,070903612	-6,312219448	0	0	0	0	0		
4	-5,63840626	-5,901826769	-5,89055498	-5,883861893	0	0	0	0		
5	-5,829557968	-5,893275204	-5,892705099	-5,892739228	-5,892774041	0	0	0		
6	-5,876964005	-5,892766017	-5,892732072	-5,8927325	-5,892732473	-5,892732433	0	0		
7	-5,888791928	-5,892734569	-5,892732472	-5,892732479	-5,892732479	-5,892732479	-5,892732479	0		
8	-5,891747439	-5,892732609	-5,892732478	-5,892732479	-5,892732479	-5,892732479	-5,892732479	-5,892732479		

• $f(x) = (x^2 - 1)exp(\frac{-x}{2})$

i-ty krok metody Romberga		Romberg $(x^2 - 1) \exp(\frac{-x}{2})$										
1	L	18,51696762	0	0	0	0	0	0				
2	2	7,258483809	3,505655873	0	0	0	0	0				
3	3	3,629241904	2,419494603	2,347083852	0	0	0	0				
4	ļ	2,659415233	2,336139676	2,330582681	2,330320758	0	0	0				
5	5	2,412836564	2,330643674	2,330277274	2,330272426	2,330272237	0	0				
6	5	2,350930765	2,330295498	2,330272286	2,330272207	2,330272206	2,330272206	0				
7	7	2,335437939	2,330273663	2,330272207	2,330272206	2,330272206	2,330272206	2,330272206				

• f(x) = x ln(x)

i-ty krok metody Romber ga								xln(x)									
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0,173286 795	0,231049 06	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	- 0,227227 184	0,245207 313	- 0,246151 197	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	- 0,243405 267	- 0,248797 961	- 0,249037 338	- 0,249083 149	0	0	0	0	0	0	0	0	0	0	0	0	0
5	- 0,248125 746	0,249699 239	- 0,249759 325	- 0,249770 785	- 0,249773 481	0	0	0	0	0	0	0	0	0	0	0	0
6	0,249475 032	0,249924 794	0,249939 831	0,249942 696	0,249943 37	0,249943 536	0	0	0	0	0	0	0	0	0	0	0
7	0,249854 656	0,249981 198	0,249984 958	0,249985 674	0,249985 843	- 0,249985 884	- 0,249985 894	0	0	0	0	0	0	0	0	0	0
8	0,249960 139	0,249995 299	0,249996 239	0,249996 419	0,249996 461	- 0,249996 471	0,249996 474	0,249996 474	0	0	0	0	0	0	0	0	0
9	0,249989 153	0,249998 825	0,249999 06	0,249999 105	0,249999 115	- 0,249999 118	- 0,249999 118	0,249999 119	0,249999 119	0	0	0	0	0	0	0	0
10	0,249997 068	- 0,249999 706	- 0,249999 765	0,249999 776	- 0,249999 779	- 0,249999 779	- 0,249999 78	- 0,249999 78	- 0,249999 78	- 0,249999 78	0	0	0	0	0	0	0
11	0,249999 212	- 0,249999 927	- 0,249999 941	0,249999 944	0,249999 945	0,249999 945	- 0,249999 945	- 0,249999 945	- 0,249999 945	- 0,249999 945	- 0,249999 945	0	0	0	0	0	0
12	- 0,249999 789	- 0,249999 982	0,249999 985	0,249999 986	0,249999 986	- 0,249999 986	- 0,249999 986	- 0,249999 986	0,249999 986	0,249999 986	0,249999 986	0,249999 986	0	0	0	0	0
13	0,249999 944	0,249999 995	0,249999 996	- 0,249999 997	- 0,249999 997	- 0,249999 997	- 0,249999 997	0,249999 997	- 0,249999 997	0,249999 997	0,249999 997	0,249999 997	0,249999 997	0	0	0	0
14	0,249999 985	0,249999 999	- 0,249999 999	0,249999 999	0,249999 999	0,249999 999	0,249999 999	0,249999 999	0	0	0						
15	0,249999 996	-0,25	-0,25	-0,25	-0,25	-0,25	-0,25	-0,25	-0,25	-0,25	-0,25	-0,25	-0,25	-0,25	- 0,2 5	0	0
16	0,249999 999	-0,25	-0,25	-0,25	-0,25	-0,25	-0,25	-0,25	-0,25	-0,25	-0,25	-0,25	-0,25	-0,25	- 0,2 5	- 0,2 5	0
17	-0,25	-0,25	-0,25	-0,25	-0,25	-0,25	-0,25	-0,25	-0,25	-0,25	-0,25	-0,25	-0,25	-0,25	- 0,2 5	- 0,2 5	- 0,2 5

Zauważmy że w przypadku różnych funkcji do ustabilizowania ich tablic Romberga dla ustalonego ε potrzebowaliśmy niekoniecznie tej samej ilości kroków. To oznacza że w przypadku niektórych funkcji dużo szybciej uzyskujemy dokładne przybliżenie ich całek niż innych. Zobrazowaliśmy to funkcją porównującą ilość wymaganych kroków do uzyskania ε -ustabilizowanej całki z naszych przykładowych funkcji:

	Ile	ość kroków w metodzie ror	nberga	
rzad epsilona	sin(x)	xcos(x)	(x^2 -1)e^(-x/2)	xln(x)
1	3	5	4	3
2	4	5	5	4
3	5	6	5	5
4	5	6	5	7
5	5	7	6	9
6	6	7	6	10
7	6	7	6	12
8	6	8	7	14
9	7	8	7	15
10	7	8	7	17
11	7	9	7	19
12	8	9	8	20
13	8	9	8	22
14	8	9	8	23
15	8	9	8	25

Z powyższych danych możemy wywnioskować, że dla uzyskania dokładniejszej stabilizacji Tabeli Romberga potrzeba wykonać więcej kroków, oraz że zdecydowanie najwięcej kroków wymaga przybliżenie całki funkcji $f(x) = x \ln(x)$.

Na początku naszych rozważań przyjęliśmy tezę, że lepiej ustabilizowana Tablica Romberga wskazuje nam na dokładniejsze przybliżenie całki. Teraz potwierdzimy tą tezę zestawiając wartości błędów przybliżeń naszych poszczególnych całek w zależności od wybranego rzędu ϵ .

Błąd przybliżenia metodą romberga										
rzad epsilona	sin(x)		xcos(x)	$(x^2-1)\exp(\frac{-x}{2})$	xln(x)					
	1	5,54998E-06	4,57894E-08	3,06687E-08	0,000916851					
	2	5,41271E-09	4,57894E-08	4,43912E-12	0,000226519					
	3	1,32117E-12	1,21414E-11	4,43912E-12	5,64636E-05					
	4	1,32117E-12	1,21414E-11	4,43912E-12	3,52574E-06					
	5	1,32117E-12	0	2,66454E-15	2,20346E-07					
	6	8,88178E-16	0	2,66454E-15	5,50864E-08					
	7	8,88178E-16	0	2,66454E-15	3,4429E-09					
	8	8,88178E-16	8,88178E-16	1,77636E-15	2,15182E-10					
	9	0	8,88178E-16	1,77636E-15	5,37954E-11					
	10	0	8,88178E-16	1,77636E-15	3,36484E-12					

Zauważmy, że istotnie dla rzędów 1, 2 błędy są dość duże, natomiast dla rzędu 10 są sporo mniejsze. W naszych wynikach pojawiły się podejrzane "0". Podejrzewamy że są one wynikiem błędów zaokrągleń w obliczeniach programu Excel. Jak widzimy błędy przybliżeń metodą Romberga są bardzo małe, więc można stwierdzić, że jest to dobra metoda przybliżania całek.