Relativamente às questões deste grupo indique, justificando, se a afirmação é verdadeira ou falsa

1. Se $f: [a, +\infty[\longrightarrow \mathbb{R} \text{ \'e contínua então}]$

$$\frac{d}{dx}\left[\int_a^x f(t)\,dt\right] = \int_a^x \frac{d}{dt}f(t)\,dt.$$

A afirmação é falsa. Pela 1.ª parte do TFC

$$\frac{d}{dx}\left[\int_{a}^{x}f(t)\,dt\right] = \frac{d}{dx}F(x) = f(x)$$

enquanto, pela fórmula de Barrow

$$\int_a^x \frac{d}{dt} f(t) dt = \int_a^x f'(t) dt = \left[f(t) \Big|_{t=a}^x = f(x) - f(a) \right]$$

2. Se $f: [a,b] \longrightarrow \mathbb{R}$ é contínua e tal que $\int_a^b f(x) \, dx = 0$, então existe $c \in [a,b]$ tal que f(c) = 0.

A afirmação é verdadeira. Pelo Teorema do Valor Médio para integrais, nas condições do enunciado, existe $c \in [a, b]$ tal que

$$\int_a^b f(x) dx = f(c)(b-a) \Longleftrightarrow 0 = f(c)(b-a)$$

Assumindo $a \neq b$, pela lei do anulamento do produto, resulta $f(c) \equiv 0$.

3.
$$\int_{-1}^{1} \frac{1}{x^2} dx = -2.$$

A afirmação é falsa. A função integranda não está definida para $x \equiv 0$ que é um ponto do intervalo de integração. Assim, está-se perante um integral impróprio do tipo 2. Uma vez que a função integranda é par e que o intervalo de integração é simétrico relativamente à origem pode-se escrever

$$\int_{-1}^{1} \frac{1}{x^2} dx = 2 \int_{0}^{1} \frac{1}{x^2} dx = \lim_{a \to 0^{+}} \int_{a}^{1} \frac{1}{x^2} dx = \lim_{a \to 0^{+}} \left[-\frac{1}{x} \Big|_{x=a}^{1} = \lim_{a \to 0^{+}} \left[-\frac{1}{a} + 1 \right] \right]$$

como o limite não existe, o integral é divergente.

4. Se $\lim_{n} (u_1 + u_2 + \cdots + u_n) = 1$, então $\sum_{n \ge 1} u_n$ é divergente.

A afirmação é falsa. Por definição, a série $\sum_{n\geq 1}u_n$ é convergente se existir o limite da sucessão das somas parciais, isto é, se existir $\lim(u_1+u_2+\cdots+u_n)$. Ora, neste caso, o limite existe (e é igual a 1).

5. Se $\sum_{n\geq 0} a_n x^n$ converge quando x= 2, então converge quando x= 1.

A afirmação é verdadeira. Esta é uma série de potências em x e existe sempre um R, $R \ge 0$ ou $R = +\infty$, tal que o intervalo de convergência desta serie é da forma -R < x < R (podendo ou não convergir para $x = \pm R$). Ora se a série converge quando x = 2, então 2 < R e como 1 < 2 < R a série também converge quando x = 1.

$$\cosh^2 x - \sinh^2 x = 1$$

Universidade do Minho

Dep. de Matemática e Aplicações

MIEInf 05 de Janeiro de 2017 (duração 2h)

Cálculo Teste 2

Nome completo PROPOSTA DE RESOLUÇÃO Número

Grupo I (15 valores)

JUSTIFIQUE CUIDADOSAMENTE TODAS AS SUAS RESPOSTAS.

1. (2 valores)

Considere a região plana cuja área se pode calcular por $\int_0^1 x^2 dx$. Nestas condições,

- (a) forme a soma de Riemann para f, onde $f(x)=x^2$, relativa à partição $\mathcal{P}=\{0,\frac{1}{4},\frac{1}{2},\frac{3}{4},1\}$ do intervalo [0,1] e com $\tilde{x}_1=\frac{1}{8}$, $\tilde{x}_2=\frac{3}{8}$, $\tilde{x}_3=\frac{5}{8}$ e $\tilde{x}_4=\frac{7}{8}$.
- (b) esboce uma figura que ilustre o que representa a soma de Riemann da alínea anterior.

$$\int_{0}^{y} \left(x_{1}^{2}\right) = \sum_{i=0}^{\infty} f\left(x_{i}\right) \Delta x_{i} = f\left(x_{4}\right) \Delta x_{1} + \frac{1}{4} \left(x_{2}^{2}\right) \Delta x_{2} + \frac{1}{4} \left(x_{3}^{2}\right) \Delta x_{3} + \frac{1}{4} \left(x_{4}^{2}\right) \Delta x_{4} = \frac{1}{4} \left(x_{4}^{2}\right) \left(x_{4}^{2}\right) + \frac{1}{4} \left(x_{4}^{2}\right) \left(x_{4}^{2}\right) + \frac{1}{4} \left(x_{4}^{2}\right) \left(x_{4}^{2}\right) + \frac{1}{4} \left(x_{4}^{2}\right) \left(x_{4}^{2}\right) + \frac{1}{4} \left(x$$

2. (3 valores)

Calcule
$$\int_{1}^{2} x \sqrt{x-1} dx$$
, usando $t^{2} = x-1$ $\Rightarrow x = t^{2}+1$, $\frac{dx}{dt} = 2t$ $\Rightarrow dx = 2t$ dt

$$Se = x = 1 \Rightarrow t = 0$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

$$Se = x = 1 \Rightarrow t = 1$$

Seja ${\mathcal A}$ a região plana limitada pelas curvas definidas por $x=y^2$ e $2y^2=x+4$.

(a) Recorrendo a integrais definidos, exprima de duas formas distintas— integrando em ordem em x e integrando em

Intersection does curron:

$$x = y$$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \\ 2y^2 = x + 4 \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \\ 2y = x + 4 \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \\ 2y = x + 4 \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \\ 2y = x + 4 \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = (4, k) \in P_2(y, -2) \end{cases}$
 $\Rightarrow \begin{cases} y = \pm 2, \quad P_1 = ($

4. (3 valores)

Qual o comprimento de uma catenária -definida por
$$y = \cosh x$$
 $\left(= \frac{e^{x} + e^{-x}}{2} \right)$ - entre os pontos de abcissas $-1 e 17$

$$y' = \operatorname{Seuh} x$$

$$y' = \operatorname{Seuh} x$$

$$= \int_{-1}^{1} \sqrt{1 + \operatorname{Seuh}^{2} x} \, dx = \int_{-1}^{1} \sqrt{\cosh^{2} x} \, dx = \int_{-1}^{1} \cosh x \, dx$$

$$= \left(\operatorname{Seuh} x \right)_{-1}^{1} = \left(\operatorname{e} - \frac{1}{e} + e \right) = \frac{1}{2} \left(\operatorname{e} - \frac{2}{e} \right)$$

$$= e - \frac{1}{2}$$

5. (2 valores)

Estude a natureza de

(a)
$$\int_{1}^{+\infty} \frac{1}{x^{2}+1} dx$$
: Integral

(b) $\sum_{n\geq 1} \frac{1}{n^{2}+1}$: Soine Numerica

a) $\int_{1}^{+\infty} \frac{1}{x^{2}+1} dx$: Integral

(b) $\sum_{n\geq 1} \frac{1}{n^{2}+1}$: Soine Numerica

1. Integral

(c) $\sum_{n\geq 1} \frac{1}{n^{2}+1}$: Soine Numerica

(d) $\int_{1}^{+\infty} \frac{1}{x^{2}+1} dx$: Integral

(e) $\int_{1}^{+\infty} \frac{1}{x^{2}+1} dx$: Integral

(e) $\int_{1}^{+\infty} \frac{1}{x^{2}+1} dx$: Integral

(for e) $\int_{1}^{+\infty} \frac{1}{x^{2}+1} dx$: Integral

(for

a sobrie 2 1 converge tambén **6.** (3 valores)

Considere a série de potências

$$\sum_{n\geq 1}\frac{(2x)^n}{n}\left(\varkappa\right)$$

Determine o raio e o intervalo de convergência desta série.

Seja

$$u_n = (2x)^n$$
 $u_n = (2x)^n$
 $u_n = (2x$

Donde Para 12x/<1, a se'm'e converge $|x| \langle \frac{1}{2} \rangle \times \epsilon \left[-\frac{1}{2}, \frac{1}{2} \right]$, a se'vie converge

Para $x = -\frac{1}{2}$ tem-se n>1 n que converge

Para x = 1 tem 2 1 que é a se'ne harmonica que diverge (pelo critetio de integral)

Eu suma: o rais de convergencia da sehet*) e' 1 e o intervalo de convergência da sobie (+) é [-1,1]