

Electrónica de Potência

Sérgio Manuel Salazar dos Santos, Nº: 1020881

2 de Julho de 2020

Conteúdo

Ι	Problema 2 - A1 1 Corrente Alternada circuito <i>RLE</i> com interruptor	2 3
II	Problema 2 - A2 1 Corrente Alternada circuito <i>RLE</i> com tirístor	1 2
II	I Equações	1

Parte I Problema 2 - A1

.1 Corrente Alternada circuito *RLE* com interruptor.

Considere o circuito da Figura 1 Suponha V_s = tensão da rede eléctrica nacional (240V 50Hz).

1. O interruptor é fechado em t = 0, quando a fase da sinusoide apresenta o ângulo α . (α é também conhecido como ângulo de disparo, nomeadamente quando se utiliza um tirístor no lugar do interruptor).

Figura 1: Circuito RLE comutado

(a) Deduza as expressões genéricas*(1) para $V_R(\omega t)$, $V_L(\omega t)$ e $I_o(\omega t)$, especificando as componentes no regime transitório $(i_n(\omega t))$ e permanente $(i_p(\omega t))$.

Equação do circuito:

$$V_{m\acute{a}x} \sin(\omega t + \alpha) = R i(t) + L \frac{di(t)}{dt} + E$$
 (1)

Sabendo que,

$$i(t) = C_T e^{-\frac{R}{L}t} + \frac{V_{m\acute{a}x}}{\overline{Z}}\sin(\omega t + \alpha - \phi_p) - \frac{E}{R}$$
 (2)

mas queremos que as funções deduzidas sejam dependente de ot temos que recorrer a mudança de variável

$$I(\omega t) = C_T e^{-\frac{R}{L\omega}\omega t} + \frac{V_{m\acute{a}x}}{\overline{Z}}\sin(\omega t + \alpha - \phi_p) - \frac{E}{R}$$
(3)

tomamos em conta que as condições iniciais são nulas, isto é, $I_{0^-} = 0$, que é o mesmo que $\omega t = 0$.

$$C_T = \frac{E}{R} - \frac{V_{m\acute{a}x}}{\overline{Z}} \sin(\alpha - \phi) \tag{4}$$

$$\phi_p = \arctan\left(\frac{\omega L}{R}\right)$$
 (5)

também

$$C_T = \frac{V_{m\acute{a}x}}{R^2 + (\omega L)^2} (L\omega \cos(\alpha) - R\sin(\alpha)) + \frac{E}{R}$$
 (6)

logo,

$$V_R(\omega t) = R \times I_o(\omega t) \tag{7}$$

$$V_{L}(\omega t) = L \frac{dI_{o}(\omega t)}{d\omega t} \times \omega$$

$$= \frac{\omega L V_{m\acute{a}x}}{\overline{Z}} \cos(\omega t + \alpha - \phi_{p}) - R C_{T} e^{\frac{-R}{\omega L}\omega t}$$
(8)

$$I_o(\omega t) = C_T e^{-\frac{R}{L\omega}\omega t} + \frac{V_{m\acute{a}x}}{\overline{Z}}\sin(\omega t + \alpha - \phi) - \frac{E}{R}$$
 (9)

$$i_n(\omega t) = C_T e^{-\frac{R}{L\omega}\omega t}$$
 (10)

$$i_p(\omega t) = \frac{V_{m\acute{a}x}}{\overline{Z}}\sin(\omega t + \alpha - \phi_p) - \frac{E}{R}$$
 (11)

(12)

(b) Determine a constante de tempo do circuito (τ) .

$$\tau = \frac{L}{R} = \frac{22 \times 10^{-3}}{12} \approx 0.001833$$
 sec,

 $\tau = \frac{L}{R} = \frac{22 \times 10^{-3}}{12} \approx 0.001833 \cdot sec,$ e o seu período da fonte sinusoidal, $T_o = \frac{1}{f} = \frac{1}{50} = 0.02 sec$

- (c) Supondo que o interruptor é fechado 6ms após o início da sinusóide, determine o ângulo de disparo α ; $\alpha = \omega \times 6 \times 10^{-3} \ rad$ $\alpha = 108^{\circ}$
- (d) Para o ângulo α determinado em c) e socorrendo-se do **Excel** (ou equivalente, **Open Office**), obtenha um gráfico que inclua as formas de onda de $V_s(\omega t)$, $V_R(\omega t)$, $V_L(\omega t)$ e E, e um outro gráfico com a forma de onda de $I_o(\omega t)$, e com as componentes no regime transitório $(i_n(\omega t))$ e permanente $(i_n(\omega t))$.

$$V_s(\omega t) = \frac{V_{m\acute{a}x}}{\overline{Z}} \sin(\omega t + \alpha); \quad V_R(\omega t) = R I_o(\omega t); \quad V_L(\omega t) = L \frac{dI_o(\omega t)}{d\omega t} \times \omega; \quad E = 180$$

Figura 2: Tensões

Figura 3: Correntes

- 2. Suponha agora que entre A e B é colocado um díodo, com o ânodo ligado a A, e ainda que E=0.
 - (a) Socorrendo-se do **Excel** determine o tempo de condução t_c do díodo; e o ângulo correspondente de condução γ ;

O díodo esta em condução pelos valores aproximados da tabela do **LibreOffice** nos intervalos de $\omega t = 0$ rad até $\omega t \approx 1,7303419$ rad e de $\omega t \approx 4,39946745$ rad até $\omega t = 2\pi$ rad

Portanto este conduz no total $\omega t \approx 3,614059757 \ rad$ que da o total de $\gamma \approx 207,070371^o$ (graus) em condução durante um periodo.

Como $\omega t \approx 3,614 \ rad$ o tempo de condução $t_c = \frac{\omega t}{\omega}$, ou seja, $t_c = \frac{3,614}{2\pi 50} \approx 11,50 ms$

- (b) Obtenha um gráfico que inclua as formas de onda de $V_s(\omega t)$, $V_R(\omega t)$, $V_L(\omega t)$ e E, e outro gráfico com a forma de onda de $I_o(\omega t)$ e com as componentes no regime transitório $(i_n(\omega t))$ e permanente $(i_p(\omega t))$.
 - Condições iniciais para $\omega t = 0$ rad até $\omega t \approx 1,7303419$ rad e $\omega t \approx 4,39946745$ rad até $\omega t = 2\pi$ rad, Sabendo que para condições iniciais nulas, $i_p(0^-) = -i_n(0^-)$, e $\phi_n \approx 0,474$, isto é o avanço da corrente transitório.

Figura 4: Tensões

Figura 5: Correntes

(c) Calcule*(2) os valores médios da tensão e da corrente na carga V_{oAV} e I_{oAV} ; Cálculos efetuados utilizando a ferramenta **wxMaxima**.

Intervalo $[0; 2\pi]$

$$\omega t = 0; \rightarrow \omega t \approx 1,730; \ \alpha \approx 1,885;$$

$$\omega t = 4,399; \rightarrow \omega t = 2\pi; \ \alpha \approx 1.885;$$

$$V_{oAV} = \frac{1}{2\pi} \left(\int_0^{1,730} \sqrt{2} \, 240 \sin(\omega t + \alpha) \, d\omega t + \int_{4,399}^{2\pi} \sqrt{2} \, 240 \sin(\omega t + \alpha) \, d\omega t \right)$$

$$= 102.097$$
(13)

$$\omega t = 0; \rightarrow \omega t \approx 1,730; \ \alpha \approx 1,885;$$

$$\omega t = 0; \rightarrow \omega t \approx 1,885; \ \alpha = 0;$$

$$I_{oAV} = \frac{1}{2\pi} \left(\int_0^{1,730} I_o(\omega t) d\omega t \Big|_{\alpha=1,885} + \int_0^{1,885} I_o(\omega t) d\omega t \Big|_{\alpha=0} \right)$$

$$=6,266$$
(14)

(d) Calcule*(2) os valores eficazes da tensão e da corrente na carga V_{oRMS} e I_{oRMS} ;

Intervalo $[0; 2\pi]$

$$\omega t = 0; \rightarrow \omega t \approx 1,730; \ \alpha \approx 1,885;$$

$$\omega t = 4,399; \rightarrow \omega t = 2\pi; \ \alpha \approx 1.885;$$

$$V_{ORMS} = \sqrt{\frac{1}{2\pi} \left(\int_0^{1,730} (\sqrt{2} \, 240 \sin(\omega t + \alpha))^2 \, d\omega t + \int_{4,399}^{2\pi} (\sqrt{2} \, 240 \sin(\omega t + \alpha))^2 \, d\omega t \right)}$$

$$= 171,523$$
(15)

$$\omega t = 0; \rightarrow \omega t \approx 1,730; \ \alpha \approx 1,885;$$

$$\omega t = 0; \rightarrow \omega t \approx 1,885; \alpha = 0;$$

$$I_{oRMS} = \sqrt{\frac{1}{2\pi} \left(\int_0^{1,730} I_o^2(\omega t) d\omega t \Big|_{\alpha=1,885} + \int_0^{1,885} I_o^2(\omega t) d\omega t \Big|_{\alpha=0} \right)}$$

$$= 9,746$$
(16)

(e) Calcule*(2) a potência entregue à carga RLE.

Intervalo $[0; 2\pi]$

$$\omega t = 0; \rightarrow \omega t \approx 1,730; \ \alpha \approx 1,885;$$

$$\omega t = 0; \rightarrow \omega t \approx 1,885; \ \alpha = 0;$$

$$P_{oAV} = \frac{1}{2\pi} \left(\int_0^{1,730} V_o(\omega t) I_o(\omega t) d\omega t \bigg|_{\alpha=1,885} + \int_0^{1,885} V_o(\omega t) I_o(\omega t) d\omega t \bigg|_{\alpha=0} \right)$$
(17)

 $P_{01} = 4286.89493572789$

 $P_{o2} = 5125.162040769396$

 $P_o = 9412.056976497286$

 $P_{oAV} = 1497.975392472102$

Resumo
Foi deduzido as expressão matemáticas complexas como demonstra a Parte III, também foi feito uma analise rigorosa ecorrendo ao LibreOffice obtendo as formas de ondas, observando seu comportamento quanto aos desfazamentos e condução, e os valores calculados são próximos dos obtidos pelo simulador PSIM .

Parte II Problema 2 - A2

.1 Corrente Alternada circuito RLE com tirístor.

Recorrendo ao **PSIM**, confirme todas as formas de onda e valores obtidos na Parte I
 1d)

Figura 6: Tensões

Figura 7: Corrente

2b)

Figura 8: Tensões

Figura 9: Corrente

Considere agora o circuito da Figura 10 Suponha Vs = tensão da rede eléctrica nacional. O tirístor é disparado para o ângulo α .

Figura 10: Circuito RLE tirístorizado

2. Considere $\alpha = 60$

(a) Obtenha, socorrendo-se do **Excel**, as formas de onda para as grandezas $I_o(\omega t)$, $V_s(\omega t)$, $V_o(\omega t)$, $V_R(\omega t)$ e $V_L(\omega t)$;

Figura 11: Tensões

Figura 12: Correntes

(b) Repita a alínea b), mas com $\alpha = 90$;

Figura 13: Tensões

Figura 14: Correntes

(c) Repita a alínea b), mas com $\alpha = 120$;

Figura 15: Tensões

Figura 16: Correntes

(d) Repita a alínea b), mas com $\alpha = 30$;

Figura 17: Tensões

Figura 18: Correntes

3. Socorrendo-se do **PSIM***(3), obtenha as formas de onda para as mesmas grandezas e mesmos ângulos α , de disparo.

a)

Figura 19: Tensões

Figura 20: Correntes

Figura 21: Tensões

Figura 22: Correntes

Figura 23: Tensões

Figura 24: Correntes

d)

Figura 25: Tensões

Figura 26: Correntes

• Para efeitos de simulação, utilize para disparo do tirístor o elemento Gating Block, em que o impulso de disparo tem a duração de 1º. (Quanto vale 1º em termos de tempo ?)

Resumo

Nesta Parte II através do **libreOffive** foi representado as formas de onda para diversos disparos do tirístor, os resultados pela folha de calculo so próximos dos adquiridos pelo simulador **PSIM**. O tirístor tem que respeitar certos requisitos para funcionar, tal como a corrente tem que ser positiva de Ânodo a Catodo, e os disparos tem que ocorrer quando a condição inicial apresentar uma corrente positiva imediatamente após o disparo. No **PSIM** a largura dos disparos podem ser definidos ao nosso crer.

Parte III

Equações

Corrente Continua Condições iniciais nulas.

Circuito LC em C.C:

•
$$i(t) = \frac{V_{DC}\sqrt{LC}}{L} \sin\left(\frac{t}{\sqrt{LC}}\right) \times u(t)$$

•
$$V_L(t) = V_{DC} \cos\left(\frac{t}{\sqrt{LC}}\right) \times u(t)$$

•
$$V_c(t) = V_{DC}$$
 $\left(1 - \cos\left(\frac{t}{\sqrt{LC}}\right)\right) \times u(t)$

•
$$\omega_n = \frac{1}{\sqrt{LC}}$$

•
$$\overline{Z} = \sqrt{(\omega_n L - \frac{1}{\omega_n C})^2}$$

•
$$\phi_p = \frac{\pi}{2}$$
porque, $\sin(\omega_n t) = \cos(\omega_n t - \pi/2)$

Circuito RLC em C.C:

1. Para $C(CR^2 - 4L) > 0$ (Raízes reais diferentes) Sobreamortecido.

•
$$i(t) = \frac{2V_{DC}Ce^{\frac{-tR}{2L}}\sinh\left(\frac{t\sqrt{C(CR^2-4L)}}{2CL}\right)}{\sqrt{C(CR^2-RL)}} \times u(t)$$

•
$$V_R(t) = R \times i(t)$$

•
$$V_L(t) = L \frac{di(t)}{dt}$$

$$L\left(\frac{Vdc e^{-\frac{tR}{2L}}\cosh\left(\frac{t\sqrt{C(CR^2-4L)}}{2CL}\right)}{L} - \frac{Vdc CR e^{-\frac{tR}{2L}}\sinh\left(\frac{t\sqrt{C(CR^2-4L)}}{2CL}\right)}{L\sqrt{C(CR^2-4L)}}\right)$$

$$\bullet \ V_C(t) = \frac{1}{C} \int_0^t i(t)$$

$$\frac{2 \text{ Vdc} \left(\frac{\sqrt{C^2 R^2 - 4 C L}}{2} - \frac{\left(\sqrt{C^2 R^2 - 4 C L} \left(\frac{t \sqrt{C^2 R^2 - 4 C L}}{c L} + 1\right) + C R \$e^{\frac{t \sqrt{C^2 R^2 - 4 C L}}{c L}} - C R\right) \$e^{-\frac{t \sqrt{C^2 R^2 - 4 C L}}{2 C L} - \frac{t R}{2 L}} \right)}}{4}$$

2. Para $C(CR^2 - 4L) = 0$ (Raízes iguais) Amortecimento crítico.

•
$$i(t) = \frac{V_{DC}}{L}$$
 t $e^{\frac{-Rt}{2L}} \times u(t)$

•
$$V_R(t) = R \times i(t)$$

•
$$V_L(t) = L \frac{di(t)}{dt}$$

$$L\left(\frac{\frac{-\frac{t\,R}{2\,L}}{Vdc\,\$e^{\frac{2\,L}{2\,L}}}-\frac{t\,Vdc\,R\,\$e^{\frac{2\,L}{2\,L}}}{2\,L^2}\right)$$

•
$$V_C(t) = \frac{1}{C} \int_0^t i(t)$$

$$\frac{Vdc \left(\frac{4 L^{2}}{R^{2}} - \frac{(2 t L R + 4 L^{2}) e^{-\frac{t R}{2 L}}}{R^{2}}\right)}{C L}$$

3. Para $C(CR^2 - 4L) < 0$ (Raízes complexas) Amortecido.

$$\bullet \ i(t) = \frac{2V_{DC}Ce^{\frac{-tR}{2L}}sin\left(\frac{t\sqrt{-C(CR^2-4L)}}{2CL}\right)}{\sqrt{-C(CR^2-4L)}} \times u(t)$$

•
$$V_R(t) = R \times i(t)$$

•
$$V_L(t) = L \frac{di(t)}{dt}$$

$$L\left(\frac{Vdc e^{-\frac{tR}{2L}}\cos\left(\frac{t\sqrt{-C\left(CR^{2}-4L\right)}}{2CL}\right)}{L}-\frac{Vdc CR e^{-\frac{tR}{2L}}\sin\left(\frac{t\sqrt{-C\left(CR^{2}-4L\right)}}{2CL}\right)}{L\sqrt{-C\left(CR^{2}-4L\right)}}\right)$$

•
$$V_C(t) = \frac{1}{C} \int_0^t i(t)$$

$$\frac{2 \ Vdc \left(\frac{\sqrt{4 \ C \ L - C^2 \ R^2}}{2} - \frac{\frac{t \ R}{2 \ L} \left(C \ R \sin \left(\frac{t \sqrt{4 \ C \ L - C^2 \ R^2}}{2 \ C \ L} \right) + \sqrt{4 \ C \ L - C^2 \ R^2} \cos \left(\frac{t \sqrt{4 \ C \ L - C^2 \ R^2}}{2 \ C \ L} \right) \right) \right)}{\sqrt{-C \ (C \ R^2 - 4 \ L)}}$$

•
$$|\omega_n| = \sqrt{\frac{4L-R^2C}{4L^2C}}$$

•
$$\overline{Z} = \sqrt{R^2 + (\omega_n L - \frac{1}{\omega_n C})^2}$$

•
$$\phi_p = \arctan\left(\frac{\omega_n L - \frac{1}{\omega_n C}}{R}\right)$$

•
$$\tau = \frac{2L}{R}$$

Corrente Alternada condições iniciais nulas .

Circuito RLE em C.A:

•
$$i(t) = C_T e^{-\frac{R}{L}t} + \frac{V_{m\acute{a}x}}{\overline{Z}}\sin(\omega t + \alpha - \phi_p) - \frac{E}{R}$$

 $i(t) = C_T e^{-\frac{R}{L}t} + C_1\cos(\omega t) + C_2\sin(\omega t) - \frac{E}{R}$

•
$$I(\omega t) = C_T e^{-\frac{R}{L\omega}\omega t} + \frac{V_{m\acute{a}x}}{Z}\sin(\omega t + \alpha - \phi_p) - \frac{E}{R}$$

•
$$\overrightarrow{Z} = R + j\omega L$$

 $\overline{Z} = \sqrt{R^2 + (\omega L)^2}$

•
$$\phi_p = \arctan(\frac{\omega L}{R})$$

•
$$C_T = \frac{E}{R} - \frac{V_{m\acute{a}x}}{\overline{Z}} \sin(\alpha - \phi_p)$$

•
$$C_T = \frac{V_{m\acute{\alpha}x}}{R^2 + (\omega L)^2} (L\omega \cos(\alpha) - R\sin(\alpha)) + \frac{E}{R}$$

•
$$C_1 = \frac{V_{m\acute{\alpha}x}}{R^2 + (\omega L)^2} (R \sin(\alpha) - L\omega \cos(\alpha))$$

•
$$C_2 = \frac{V_{m\acute{a}x}}{R^2 + (\omega L)^2} (R\cos(\alpha) + L\omega\sin(\alpha))$$

Definição 1 Capacitância

$$Q_c(t) = \int_0^t i(t) dt$$

$$= Q_c(0^-) + \int_{0^-}^t i(t) dt$$

$$V_c(t) = \frac{Q_c(t)}{C}$$

$$= \frac{1}{C} \int_0^t i_c(t) dt$$

$$= \frac{Q_c(0^-)}{C} + \frac{1}{c} \int_0^t i_c(t) dt$$

$$= V(0^-) + \frac{1}{c} \int_0^t i_c(t) dt$$

$$i_c(t) = C \frac{dV_c(t)}{dt}$$

Definição 2 Indutância

$$\begin{split} \psi_L(t) &= \int^t V_L(t) \quad dt \\ &= \psi_L(0^-) + \int_{0^-}^t V_L(t) \quad dt \\ V_L(t) &= L \quad \frac{di_L(t)}{dt} \\ i_L(t) &= \frac{\psi_L(t)}{L} \\ &= \frac{1}{L} \quad \int^t V_L(t) \quad dt \\ &= \frac{\psi_L(0^-)}{L} + \frac{1}{L} \quad \int_0^t V_L(t) \quad dt \\ &= i_L(0^-) + \frac{1}{L} \quad \int_0^t V_L(t) \quad dt \end{split}$$

Definição 3 Resistência

$$V_R(t) = R \quad i_R(t)$$
 $i_R(t) = \frac{V_R(t)}{R}$

Definição 4 Valor Médio

$$X_{av} = \frac{1}{T} \int_0^T X(t) dt$$

Definição 5 Valor Eficaz

$$X_{ef} = \sqrt{\frac{1}{T} \int_0^T X(t) dt}$$

Lista de Figuras

1	Circuito <i>RLE</i> comutado
2	Tensões
3	Correntes
4	Tensões
5	Correntes
6	Tensões
7	Corrente
8	Tensões
9	Corrente
10	Circuito RLE tirístorizado
11	Tensões
12	Correntes
13	Tensões
14	Correntes
15	Tensões
16	Correntes
17	Tensões
18	Correntes
19	Tensões
20	Correntes
21	Tensões
22	Correntes
23	Tensões
24	Correntes
25	Tensões
26	Correntes

Bibliografia

- [1] Curso de Introduo ao LATEX.
- [2] Electrónica Analógica. McGraw Hill, 1993.
- [3] Cálculo Diferencial e Integral em \mathbb{R} e \mathbb{R}^n . McGraw Hill, 1995.
- [4] Power Electronic Converter Harmonics. IEEE Press Editorial Board, 1996.
- [5] Cálculo Diferencial e Integral. Lopes da Silva Editora, 1997.
- [6] electromagnetismo. McGraw Hill, 1999.
- [7] Power Electronic Control in Electrical Systems. Newnes Power Engeneering Series, 2002.
- [8] The Maxima Book., 2004.
- [9] HIGHER ENGINEERING MATHEMATICS. Published by Elsevier Ltd, 2006.
- [10] PSIM Users Guide. Powersim Inc., 2009.
- [11] Analog and Digital Control System Design: Transfer-Function, State-Space, and Algebraic Methods. Harcourt Brace Jovanovich College Publishers, .
- [12] Teach Yourself Electricity and Electronics. McGraw-Hill, .
- [13] Fidalgo, André: Sistemas Eléctricos de Corrente Alternada. Em Unidade de Ensino 2.
- [14] Fidalgo, André: Sistemas Eléctricos de Corrente Contínua. Em Unidade de Ensino 1.

¹Apontamentos Electrónica de Potência