2.3 Interacting With Data (RDB)

Database

- Computer based record keeping system
 - Record keeping system: A manual or automated system that collects, organise and categorise records, facilitating their preservation, retrieval, use and disposition
- Collection of data to meet an organisation's information needs
- Computer files that are optimised to store data in a structured way
- Organisation of files helps to ensure that data is accurate
- Properties of a relational table:
 - 1. Values are atomic: columns are non-repeating
 - 2. Each row is unique
 - 3. Column values are of the same kind: all values come from the same domain (i.e. integers/strings)
 - 4. Sequence of columns is insignificant
 - 5. Sequence of columns is insignificant
 - 6. Each column has a unique name
- Examples:
 - Library system:
 - Location of books
 - Students' and teachers' details
 - Loaning history
 - Student system
 - Students' particulars
 - Results and grades
 - Resource booking system
 - Booking of venues and facilities
 - Details of booking: location, time slot
 - O Human resource system
 - Workers' details
 - ◆ Leave information
 - Payroll
 - Inventory system
 - Items in warehouse
 - Stock level
- Flat-file Database: Holds all data in an unstructured table

- Each file consists a table of related information defined by Rows and Columns
 - Rows: "Records"Columns: "Fields"
- Drawbacks:
 - Duplicated data is unnecessarily entered
 - Database space is wasted with this duplicated data
 - Duplicated data takes a long time to enter and update (unnecessary)
 - Data redundancy
- Relational Database: Stores data and how the data are related
 - Organises data into one or more tables
 - Each table represents one entity type
 - Reduces redundancy
 - Types of relationship:
 - One to one
 - One to many
 - Many to many
 - Entity Relationship Diagram (ER):
 - Visual representation of different data using conventions that describe how these data are related
 - Shows structure of data in a database
 - ◆ Building blocks:
 - ◆ Entity: Rectangle
 - Relationship: Diamond
 - Fields: Circles (not required)
 - Shows 1 to 1, 1 to many, many to many relationships between entities

Shorthand Notation:

- E.g. Student (<u>Student ID</u>, Name, NRIC, Address, Telephone)
- ◆ Key Field / Primary Key:
 - Underlined (Student ID)
 - Unique, used to identify a particular Record
- Composite Key:
 - Primary Key that consists more than one field
 - E.g. Name + Surname
- Candidate Keys:
 - Table may have one or more choices for primary key
 - Collectively known as candidate key
 - Table can choose which key to be used as primary key, other key becomes secondary key
- ◆ Foreign key:
 - A column/columns in a table that draws values from a primary key in another table
 - Assists in ensuring the data integrity of a table
 - Not required to be unique

O Normalisation:

- To process data to more efficiently manage data
- To isolate data so that additions/deletions/modifications of a field can be made in just one table and then propagated through the rest of the database using defined relationships

- First Normal Form:
 - Make sure that any attributes with multiple values are removed so that records are of the same length
- Second Normal Form (assume relation in first normal form):
 - All attributes in an entity must be functionally dependent (unique association) with the primary key for the purpose of identification
 - Each field is unique to its key field
- Third Normal Form (assume relation in second normal form):
 - ◆ There is no transitive functional dependency
 - All non-key attributes are fully functional dependent only on the primary key
 - There isn't an extra table to describe relationship between the non-key attributes