# Homework 12: Boundary Value Problems

#### Bhishan Poudel

#### Nov 28,2015

## Contents

| 1                         | Question 1: Legendre Polynomial                                                                                                                   |                    |  |  |  |  |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|
| 2                         | Question 2: 3D Isotropic Harmonic Oscillator         2.1 part 2.1: Solving radial equation         2.2 part 2.4: Perturbed 3d harmonic oscillator | <b>4</b><br>4<br>6 |  |  |  |  |
| $\mathbf{L}^{\mathrm{i}}$ | st of Figures                                                                                                                                     |                    |  |  |  |  |
|                           | 1 Legendre Polynomials                                                                                                                            | 3<br>5             |  |  |  |  |
|                           | 3 Perturbed 3d harmonic oscillator                                                                                                                | 6                  |  |  |  |  |

#### 1 Question 1: Legendre Polynomial

In this question I calculated the values of Legendre polynomials of first kind of order three, four, and five. I chose the range of x-values from -0.9999 to 0.9999 and relative precision 1e-6. We can see in the data files that all three polynomials converges to 1.0000 when x=1. I also compared some of the values from my data and the Abramovich-Stegun Table (page 342) for n=3. We can also check other values in Wolfram Alpha, which are pretty much accurate.

| x        | 0.250        | 0.500        | 0.750        | 1.000 |
|----------|--------------|--------------|--------------|-------|
| table    | -0.33 59 375 | -0.43 75 000 | -0.07 03 125 | 1.000 |
| mv value | -0.33 59 367 | -0.43 74 972 | -0.07 03 093 | 1.000 |

The table shows values are accurate upto third decimal points. For the order four and five I used Wolfram Alpha to find the values. command: legendre p(n, x).

| X        | my p(4,x)    | wolfram p(4,x) | my p(5,x)    | wolfram $p(5,x)$ |
|----------|--------------|----------------|--------------|------------------|
| 0.701001 | -0.374935221 | -0.41130010    | -0.366720672 | -0.366725162     |
| 0.801001 | -0.229389047 | -0.2300239     | -0.398291064 | -0.3982963965    |
| 0.901001 | 0.159050061  | 0.213968570    | -0.034653366 | -0.0346544594    |

The solution directory is:

location : hw12/qn1/
source code : hw12qn1.f90
plots : hw12qn1.eps

datafiles : n3.dat, n4.dat, n5.dat

datafiles : n3compare.dat, n4compare.dat, n5compare.dat (for comparison)

provided subroutines : rk4.f90

The figures are shown below:

# Plot of legendre polynomials



Figure 1: Legendre Polynomials

#### 2 Question 2: 3D Isotropic Harmonic Oscillator

The potential of 3D harmonic oscillator is given by:

$$V(r) = \frac{1}{2}m\omega^2 r^2 \tag{1}$$

Where, m is mass of oscillator,  $\omega$  is angular frequency and r is radial distance. The energy of three dimensional oscillator is:

$$E_n = (n + \frac{3}{2})\hbar\omega \tag{2}$$

The energy state n is given by:

$$n = 2k + l \tag{3}$$

Here, k = no. of nodes.

l= angular momentum quantum number.

 $hbar = \frac{h}{2\pi}$  = reduced planck's constant.

The radial schrodinger equation is:

$$-\frac{\hbar^2}{2m}u'' + \left[V + \frac{\hbar^2}{2m}\frac{l(l+1)}{r^2}\right]u = Eu \tag{4}$$

Rearranging yields:

$$u'' = \left[\frac{l(l+1)}{r^2} - \frac{2m}{\hbar^2}(E-V)\right]u\tag{5}$$

#### 2.1 part 2.1: Solving radial equation

In this part I solved the radial differential equation using a subroutine from the internet mentioned below. I calculated the ground state energy and its value is:

The solution directory is:

location : hw12/qn2/ source code : hw12qn2.f90

plots : hw12qn2.eps, hw12qn2d.eps

datafiles : hw12qn2.dat, hw12qn2d.dat downloded subroutine : nsolve.f90 and ho.f90

reference : http://infty.net/nsolve/nsolve.html

The figures are shown below:

### 3d Harmonic Oscillator wavections



Figure 2: 3d harmonic oscillator

#### 2.2 part 2.4: Perturbed 3d harmonic oscillator

In this part I added a quartic perturbation term  $\lambda \rho^4$  to the potential of the oscillator and calculated the ground state energy and wavefunction for l=0. I chose  $\lambda=0.1$ .

The value of perturbed ground state energy is :

 $E_{0(perturbed)} = 7.899$ 

The plot of wavefunction is shown below:

### 3d Harmonic Oscillator with perturbation



Figure 3: Perturbed 3d harmonic oscillator