Problem 1 (7.14). 1. Let R be a commutative ring with $1 \neq 0$ and I_1, \ldots, I_n pairwise comaximal ideals of R. Prove that

$$(R/(I_1 \dots I_n))^X \cong (R/I_1)^X \times \dots \times (R/I_n)^X$$

as groups.

2. Let m, n be relatively prime positive integers. Prove that

$$(\mathbb{Z}_{mn})^X \cong (\mathbb{Z}_m)^X \times (\mathbb{Z}_n)^X$$

as groups.

3. Solve the system of congruences:

$$x \equiv 2 \mod 9$$

 $x \equiv 3 \mod 5$
 $x \equiv 1 \mod 7$
 $x \equiv 5 \mod 11$

 \square

Problem 2 (8.1). Prove that the division algorithm holds for any polynomial ring over a field.

Proof.

Problem 3 (8.2). 1. Prove that a|b iff $b \in (a)$ iff $(b) \subseteq (a)$.

- 2. If a|b and a|c, prove that a|(bx+cy) for all $x,y \in R$.
- 3. Suppose $b \neq 0$. If a|b and b|c, then a|c.
- 4. If d is a greatest common divisor of a, b then du is also a greatest common divisor of a, b for any unit u of R.

Proof.

Problem 4 (8.3). An element p in an integral domain R is prime if, and only if, p|ab implies p|a or p|b for any $a, b \in R$.

Proof.

Problem 5 (8.4). Let R be a UFD and $a, b \in R \setminus \{0\}$. Then a, b has a greatest common divisor in R. If a, b are relatively priem and a|bc for some $c \in R$, then a|c.

Proof.

 Problem 6 (G1). Let H be a normal subgroup of a group G, and let K be a subgroup of H. 1. Give an example of this situation where K is not a normal subgroup of G. 2. Prove that if the normal subgroup H is cyclic, then K is normal in G. Proof. 	
Problem 7 (G2). Prove that every finite group of order at least three has a nontrivial automorphism.	r-
Proof.	
 Problem 8 (R1). Let R = Z[√-3] = {a + b√-3 a, b ∈ Z}. 1. Why is R an integral domain? 2. What are the units in R? 3. Is the element 2 irreducible in R? 4. If x, y ∈ R, and 2 xy, does it follow that 2 divides either x or y? Justify your answer. Proof. 	
Problem 9 (R2). 1. Give an example of an integral domain with exactly 9 elments. 2. Is there an integral domain with exactly 10 elements? Justify your answer. Proof.	
Problem 10 (R3). Let $F = \left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} a, b \in \mathbb{Q} \right\}$ 1. Prove that F is a field under the usual matrix operations of addition and multiplication.	

2. Prove that F is isomorphic to the field $\mathbb{Q}(\sqrt{2})$.

Proof.