Problem Statement:

To help Delhivery process and understand the data coming from their data engineering pipelines and suggesting a structured approach that involves data cleaning, feature creation, data exploration, and visualization.

```
# Importing required Packages
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import scipy.stats as stats
from scipy.stats import ttest_ind
from sklearn.preprocessing import MinMaxScaler, StandardScaler

# Loading the data

df = pd.read_csv("/kaggle/input/delhivery-data/delhivery_data.csv")
df.head()
```

₹	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_center	source_name	destination_
	0 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886
	1 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886
	2 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886
	3 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886
	4 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886

5 rows × 24 columns

Basic Data Cleaning and Exploration

Handling Missing Values

Identify and handle missing values in the dataset.

```
# Check for missing values
length_of_df = len(df)
missing_values = df.isnull().sum()
print(missing_values)

data
    trip_creation_time
    route_schedule_uuid
```

~	uata	U
	trip_creation_time	0
	route_schedule_uuid	0
	route_type	0
	trip_uuid	0
	source_center	0
	source_name	293
	destination_center	0
	destination_name	261
	od_start_time	0
	od_end_time	0
	start_scan_to_end_scan	0
	is_cutoff	0
	cutoff_factor	0
	cutoff_timestamp	0
	<pre>actual_distance_to_destination</pre>	0
	actual_time	0
	osrm_time	0
	osrm_distance	0
	factor	0
	segment_actual_time	0

```
segment_osrm_time
     segment_osrm_distance
                                         0
     segment\_factor
     dtype: int64
total_missing_values = max(missing_values)
print(f"Percentage of missing values: {(total_missing_values*100)/length_of_df}")
→ Percentage of missing values: 0.20225448169700483
#Due to low missing value percentage, to the categorical data, solution is to drop the rows
df.dropna(inplace=True, axis=0)
df.isnull().sum()
→ data
     trip_creation_time
     route_schedule_uuid
     route_type
     trip_uuid
     source center
     source_name
    destination center
     destination_name
     od start time
     od end time
     start_scan_to_end_scan
     is_cutoff
     cutoff_factor
     cutoff_timestamp
     actual_distance_to_destination
     actual_time
    osrm time
    osrm distance
     factor
     segment actual time
     segment_osrm_time
     segment_osrm_distance
                                       0
     segment\_factor
     dtype: int64
```

Analyzing Dataset Structure

```
# Data structure
df.info()
    <class 'pandas.core.frame.DataFrame'>
     Index: 144316 entries, 0 to 144866
     Data columns (total 24 columns):
      # Column
                                            Non-Null Count Dtype
      a
          data
                                            144316 non-null object
                                          144316 non-null object
144316 non-null object
          trip_creation_time
          route_schedule_uuid
                                           144316 non-null object
144316 non-null object
144316 non-null object
144316 non-null object
      3
          route type
          trip uuid
          source_center
      6
          source name
                                         144316 non-null object
144316 non-null object
          destination_center
          destination_name
      8
          od_start_time
                                           144316 non-null object
144316 non-null object
      10 od_end_time
      11 start_scan_to_end_scan 144316 non-null float64
      12 is_cutoff
                                            144316 non-null bool
      13 cutoff_factor
                                           144316 non-null int64
      14 cutoff_timestamp
                                            144316 non-null
                                                               object
      15 actual_distance_to_destination 144316 non-null float64
                                            144316 non-null float64
      16 actual time
                                            144316 non-null float64
      17 osrm_time
                                           144316 non-null float64
144316 non-null float64
      18 osrm_distance
      19 factor
                                         144316 non-null float64
144316 non-null float64
      20 segment_actual_time
          segment_osrm_time
      22 segment_osrm_distance
                                           144316 non-null float64
      23 segment_factor
                                             144316 non-null float64
     dtypes: bool(1), float64(10), int64(1), object(12)
     memory usage: 26.6+ MB
df['cutoff_timestamp'] = pd.to_datetime(df['cutoff_timestamp'], format='%Y-%m-%d %H:%M:%S', errors='coerce')
df.info()
```

 0
 data
 144316 non-null object

 1
 trip_creation_time
 144316 non-null object

 2
 route_schedule_uuid
 144316 non-null object

 3
 route_type
 144316 non-null object

 4
 trip_uuid
 144316 non-null object

 5
 source_enter
 144316 non-null object

 6
 source_name
 144316 non-null object

 7
 destination_center
 144316 non-null object

 8
 destination_name
 144316 non-null object

 9
 od_start_time
 144316 non-null object

 10
 od_end_time
 144316 non-null object

 11
 start_scan_to_end_scan
 144316 non-null object

 12
 is_cutoff
 144316 non-null object

 12
 is_cutoff
 144316 non-null object

 13
 cutoff_factor
 144316 non-null object

 14
 cutoff_timestamp
 140909 non-null object

 15
 actual_distance_to_destination
 144316 non-null float64

 16
 actual_time
 144316 non-null float64

 17
 osrm_time

16 actual_time 144316 non-null float64
17 osrm_time 144316 non-null float64
18 osrm_distance 144316 non-null float64
19 factor 144316 non-null float64
20 segment_actual_time 144316 non-null float64
21 segment_osrm_time 144316 non-null float64
22 segment_osrm_distance 144316 non-null float64
23 segment_factor 144316 non-null float64
dtypes: bool(1), datetime64[ns](1), float64(10), int64(1), object(11)

memory usage: 26.6+ MB

df.head()

→		data	trip creation time	route schedule uuid	route type	trip uuid
			. ,			. ,
	0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
	1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
	2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
	3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
	4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320

5 rows × 24 columns

Statistical summary df.describe()

₹					
<u> </u>		start_scan_to_end_scan	cutoff_factor	cutoff_timestamp	actual_distance_to_d
	count	144316.000000	144316.000000	140909	144
	mean	963.697698	233.561345	2018-09-23 03:15:10.623693568	
	min	20.000000	9.000000	2018-09-12 00:10:27	
	25%	161.000000	22.000000	2018-09-17 19:18:34	
	50%	451.000000	66.000000	2018-09-22 21:15:24	
	75%	1645.000000	286.000000	2018-09-28 06:12:35	
	max	7898.000000	1927.000000	2018-10-06 23:44:12	,
	std	1038.082976	345.245823	NaN	

Feature Creation and Aggregation

Feature Extraction

Extract useful features from existing columns:

- · Trip Creation Time: Extract year, month, and day.
- Source Name and Destination Name: Split into city and state.

```
# Extract features from trip_creation_time
df['trip_creation_year'] = pd.to_datetime(df['trip_creation_time']).dt.year
df['trip_creation_month'] = pd.to_datetime(df['trip_creation_time']).dt.month
df['trip_creation_day'] = pd.to_datetime(df['trip_creation_time']).dt.day
# Function to handle splitting and ensuring two parts
def split_and_expand(column):
    split_col = column.str.split('_', n=1, expand=True)
split_col.columns = ['city', 'state']
    split_col['state'] = split_col['state'].fillna('Unknown') # Fill missing parts with 'Unknown'
    return split_col
# Apply the function to source_name and destination_name
df[['source_city', 'source_state']] = split_and_expand(df['source_name'])
df[['destination_city', 'destination_state']] = split_and_expand(df['destination_name'])
df.head()
\overline{2}
           data trip_creation_time
                                        route_schedule_uuid route_type
                                                                                      trip_uuid
                                       thanos::sroute:eb7bfc78-
                           2018-09-20
                                                                                             trip-
      0 training
                                              b351-4c0e-a951-
                                                                    Carting
                      02:35:36.476840
                                                                           153741093647649320
                                                    fa3d5c3...
                                       thanos::sroute:eb7bfc78-
                           2018-09-20
                                                                                            trip-
                                              b351-4c0e-a951-
      1 training
                                                                    Carting
                                                                            153741093647649320
                      02:35:36.476840
                                                    fa3d5c3...
                                       thanos::sroute:eb7bfc78-
                           2018-09-20
                                                                                            trip-
      2 training
                                              b351-4c0e-a951-
                                                                    Carting
                                                                            153741093647649320
                      02:35:36.476840
                                       thanos::sroute:eb7bfc78-
                           2018-09-20
                                                                                            trip-
      3 training
                                              b351-4c0e-a951-
                                                                            153741093647649320
                      02:35:36 476840
                                                    fa3d5c3...
```

thanos::sroute:eb7bfc78-

b351-4c0e-a951-

fa3d5c3

Carting

153741093647649320

5 rows × 31 columns

4 training

```
# Calculate time taken between od_start_time and od_end_time
df['od_start_time'] = pd.to_datetime(df['od_start_time'])
df['od_end_time'] = pd.to_datetime(df['od_end_time'])
df['time_taken'] = (df['od_end_time'] - df['od_start_time']).dt.total_seconds()

# Drop the original columns
df.drop(columns=['od_start_time', 'od_end_time'], inplace=True)

# Compare the difference between calculated time and start_scan_to_end_scan
df['time_difference'] = df['time_taken'] - df['start_scan_to_end_scan']
```

2018-09-20

02:35:36.476840

Aggregating Data

Aggregate data based on trip_uuid, source_center, and destination_center.

```
# Group by trip_uuid and aggregate
aggregated_df = df.groupby('trip_uuid').agg({
    # Keep sum for continuous
    'actual_time': 'sum',
    'osrm_time': 'sum',
    'actual_distance_to_destination': 'sum',
    'osrm_distance': 'sum',
    'start_scan_to_end_scan': 'sum',
    'time_taken': 'sum',
    # Keep First occurence for categorical
    'route_type': 'first',
    'source_center': 'first',
    'destination_center': 'first',
    'trip_creation_year': 'first',
    'trip_creation_month': 'first',
    'trip_creation_day': 'first',
    'source_state': 'first',
    'destination state': 'first',
}).reset_index()
aggregated_df.head()
₹
```

trip_uuid actual_time osrm_time actual_distance_to_destination osrm_c 15682.0 7787.0 8860.812105 10 153671041653548748 trip-399.0 210.0 240.208306 153671042288605164 trip-112225.0 65768.0 68163.502238 89 153671043369099517 82.0 28.529648 24.0 153671046011330457 556.0 207.0 239.007304 153671052974046625

Visual Analysis

Univariate Analysis

```
def plot_continuous_variable(data, variable):
           # Histogram
           sns.histplot(data[variable].dropna(), color='blue', kde=True)
           plt.title(f'Histogram of {variable}')
           plt.tight_layout()
def plot_categorical_variable(data, category, rotation=0):
           if len(data[category].value_counts()) > 5:
                       top_5_categories = data[category].value_counts().nlargest(5).index
           # Filter the data to include only the top 5 categories
                      filter_data = data[data[category].isin(top_5_categories)]
                       sns.countplot(data=filter_data, x=category, palette='Set2', order=filter_data[category].value_counts().index)
                      plt.xticks(rotation=rotation)
           else:
                      sns.countplot(data=data, x=category, palette='Set2')
           plt.title(f'Barplot of {category}')
           plt.xlabel(category)
numeric_columns = ['start_scan_to_end_scan', 'cutoff_factor','actual_distance_to_destination', 'actual_time', 'osrm_time','osrm_distance_to_destination', 'actual_time', 'osrm_time','osrm_distance_to_destination', 'actual_time', 'osrm_time','osrm_distance_to_destination', 'actual_time', 'osrm_time', 'osr
numeric_data = df[numeric_columns]
plt.figure(figsize=(24, 24))
for cat in numeric_columns:
           plt.subplot(4, 4, i)
           plot_continuous_variable(df, cat)
           i += 1
plt.show()
```


While most numerical data has huge range, this is highly caused due to the influence of outliers as mean and median of the data is far smaller than max_values.

```
categorical_columns = ['route_type', 'source_center', 'destination_center', 'source_city', 'source_state', 'destination_city','destinat:

i = 1
plt.figure(figsize=(30, 24))
for cat in categorical_columns:
    plt.subplot(4, 4, i)
    plot_categorical_variable(df, cat, rotation=45)
    i += 1
plt.show()
```


- Majority of the categorical values have uneven distribution among its groups.
- Bi-variate Analysis

```
# Define a function to create the required bivariate plots for continuous-categorical variables
def plot_bivariate_plot_NC(data, category, variable):
    \verb|sns.violinplot(x=df[category].dropna(), y=df[variable].dropna())|\\
    \verb|plt.title(f'Boxplot(Boxenplot for better understanding) of {variable}| by {category}')|
   plt.xlabel(category)
   plt.ylabel(variable)
   plt.tight_layout()
   plt.show()
def plot_bivariate_plot_CC(data, category_1, category_2, rotation=0):
    # Grouped Baxplot
    if len(data[category_1].value_counts()) > 5:
       top_5_categories = data[category_1].value_counts().nlargest(5).index
    # Filter the data to include only the top 5 categories
        filter_data = data[data[category_1].isin(top_5_categories)]
    if len(data[category_2].value_counts()) > 5:
       top_5_categories = data[category_2].value_counts().nlargest(5).index
    # Filter the data to include only the top 5 categories
       filter_data = data[data[category_2].isin(top_5_categories)]
    sns.countplot(data=filter_data, x=category_1, hue=category_2, palette='Set2', order=data[category_1].value_counts().nlargest(5).inde
   plt.xticks(rotation=rotation)
   plt.title(f'Grouped Barplot of {category_1} and {category_2}')
   plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
# Define a function to create the required bivariate plots for continuous-continuous variables
def plot_bivariate_plot_NN(data, variable_1, variable_2):
    # Scatterplot
    sns.scatterplot(x=variable_1, y=variable_2, data=data)
   plt.title(f'scatterPlot of {variable_1} by {variable_2}')
   plt.xlabel(variable_1)
   plt.ylabel(variable_2)
```

```
select_num_cols = [ 'actual_time', 'start_scan_to_end_scan', 'cutoff_factor', 'actual_distance_to_destination', 'osrm_time', 'osrm_distance
select_cat_cols = ['route_type', 'source_state', 'destination_state']
```

```
i = 1
plt.figure(figsize=(20, 15))
for col in select_num_cols[1:]:
    plt.subplot(2, 3, i)
    plot_bivariate_plot_NN(df, select_num_cols[0], col)
    i += 1
plt.show()
```


Double-click (or enter) to edit

```
i = 1
plt.figure(figsize=(15, 15))
for col in select_cat_cols[1:]:
    plt.subplot(2, 1, i)
    plot_bivariate_plot_CC(df, select_cat_cols[0], col, rotation=45)
    i += 1
plt.show()
```


→ Correlation

```
correlation_matrix = numeric_data.corr()
plt.figure(figsize=(15, 15))
sns.heatmap(correlation_matrix, annot=True, cmap="YlGnBu")
plt.xlabel('Features')
plt.ylabel('Features')
plt.show()
```


Features 'start_scan_to_end_scan', 'cutoff_factor','actual_distance_to_destination', 'osrm_time','osrm_distance' all have high positive correlation among them

```
# Distribution of actual time
sns.histplot(aggregated_df['actual_time'])
plt.title('Distribution of Actual Time')
plt.show()
```

/opt/conda/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_with pd.option_context('mode.use_inf_as_na', True):

Hypothesis Testing

```
# Perform hypothesis testing/visual analysis between calculated time and start_scan_to_end_scan
# H0 (Null Hypothesis): There is no significant difference between the means of time_taken and start_scan_to_end_scan.
# Ha (Alternative Hypothesis): There is a significant difference between the means of time_taken and start_scan_to_end_scan.
sns.histplot(df['time_difference'], kde=True)
plt.title('Difference between Calculated Time and start_scan_to_end_scan')
plt.show()

ttest_result_1 = ttest_ind(df['time_taken'], df['start_scan_to_end_scan'])
print(f'T-test result between time_taken and start_scan_to_end_scan: {ttest_result_1}')
```

/opt/conda/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_ with pd.option_context('mode.use_inf_as_na', True):

 $\hbox{$T$-test result between time_taken and start_scan_to_end_scan: T-testResult(statistic=34) and the start_scan_to_end_scan=34) and the start_scan_to_end_scan=34) and the start_scan_to_end_scan=34) and the start_scan=34) and the start_scan$

Since the p-value (0.0) is less than 0.05, we reject the null hypothesis (H0). This suggests that there is a significant difference between the means of time_taken and start_scan_to_end_scan.

```
# H0 (Null Hypothesis): There is no significant difference between the means of actual_time and osrm_time.
# Ha (Alternative Hypothesis): There is a significant difference between the means of actual_time and osrm_time.

ttest_result_2 = ttest_ind(aggregated_df['actual_time'], aggregated_df['osrm_time'])
print(f'T-test result between actual_time and osrm_time: {ttest_result_2}')
# Relationship between actual_time and osrm_time
sns.scatterplot(x=aggregated_df['actual_time'], y=aggregated_df['osrm_time'])
plt.title('Actual Time vs OSRM Time')
plt.show()
```

T-test result between actual_time and osrm_time: TtestResult(statistic=14.05476572196

Since the p-value (1.003515078231707e-44) is less than 0.05, we reject the null hypothesis (H0). This indicates that there is a significant difference between the means of actual_time and osrm_time.

```
# Hypothesis testing/visual analysis for other comparisons
def hypothesis_test_and_plot(dataframe, col1, col2):
    sns.scatterplot(x=dataframe[col1], y=dataframe[col2])
    plt.title(f'{col1} vs {col2}')
   plt.show()
    ttest_result = ttest_ind(dataframe[col1], dataframe[col2])
    print(f'T-test result between {col1} and {col2}: {ttest_result}')
# Apply the function to required comparisons
# H0 (Null Hypothesis): There is no significant difference between the means of actual_time and time_taken.
# Ha (Alternative Hypothesis): There is a significant difference between the means of actual_time and time_taken.
hypothesis_test_and_plot(aggregated_df, 'actual_time', 'time_taken')
# H0 (Null Hypothesis): There is no significant difference between the means of osrm_distance and actual_distance_to_destination.
# Ha (Alternative Hypothesis): There is a significant difference between the means of osrm_distance and actual_distance_to_destination.
hypothesis_test_and_plot(aggregated_df, 'osrm_distance', 'actual_distance_to_destination')
# H0 (Null Hypothesis): There is no significant difference between the means of osrm_time and time_taken.
# Ha (Alternative Hypothesis): There is a significant difference between the means of osrm_time and time_taken.
hypothesis_test_and_plot(aggregated_df, 'osrm_time', 'time_taken')
```


• Since the p-value (6.859303598499063e-244) is less than 0.05, we reject the null hypothesis (H0). This suggests that there is a significant difference between the means of actual_time and time_taken.

- Since the p-value (1.4486329729906885e-05) is less than 0.05, we reject the null hypothesis (H0). This indicates that there is a significant difference between the means of osrm_distance and actual_distance_to_destination.
- Since the p-value (1.3861868853733896e-245) is less than 0.05, we reject the null hypothesis (H0). This suggests that there is a significant difference between the means of osrm_time and time_taken.

Finding Outliers and Treatment

```
# Detect outliers
aggregated_df_num = aggregated_df.select_dtypes(include=np.number)
aggregated_df_num = aggregated_df_num[aggregated_df_num.columns[:-3]]
plt.figure(figsize=(10, 10))
for var in aggregated_df_num.columns:
    sns.boxplot(x=var, data=df)
    plt.title(f'Boxplot of Count by {var}')
    plt.show()
```


Boxplot of Count by osrm_time

Boxplot of Count by actual_distance_to_destination

0 250 500 750 1000 1250 1500 1750 2000 actual_distance_to_destination

Boxplot of Count by osrm_distance

Boxplot of Count by start_scan_to_end_scan

Boxplot of Count by time_taken


```
# Find outliers using the IQR method
def find_and_handle_outliers(dataframe, columns):
    for col in columns:
        Q1 = dataframe[col].quantile(0.25)
        Q3 = dataframe[col].quantile(0.75)
        IQR = Q3 - Q1
        lower_bound = Q1 - 1.5 * IQR
        upper_bound = Q3 + 1.5 * IQR
        dataframe = dataframe[(dataframe[col] >= lower_bound) & (dataframe[col] <= upper_bound)]</pre>
    return dataframe
numerical_columns = ['actual_time', 'osrm_time', 'actual_distance_to_destination', 'osrm_distance', 'time_taken']
filtered_df = find_and_handle_outliers(aggregated_df, numerical_columns)
filtered_df.head()
<del>_</del>
                  trip_uuid actual_time osrm_time actual_distance_to_destination osrm_c
                        trip-
                                    399.0
                                               210.0
                                                                           240.208306
         153671042288605164
                                     82.0
                                                                            28.529648
                                                24.0
         153671046011330457
                                    556.0
                                               207.0
                                                                            239.007304
         153671052974046625
                        trip-
                                     92.0
                                                 30.0
                                                                            34.407865
         153671055416136166
                                                                             9.100510
                                     24.0
                                                13.0
         153671066201138152
```

Encoding Categorical Variables

```
filtered_df.select_dtypes(include='object').nunique()

trip_uuid 10148
    route_type 2
    source_center 739
    destination_center 898
    source_state 655
    destination_state 801
    dtype: int64

# One-hot encoding
encoded_df = pd.get_dummies(filtered_df, columns=['route_type'])
```

Normalization/Standardization

```
from sklearn.preprocessing import StandardScaler

# Standardize numerical features
scaler = StandardScaler()
numerical_columns = ['actual_time', 'osrm_time', 'actual_distance_to_destination', 'osrm_distance']
encoded_df[numerical_columns] = scaler.fit_transform(encoded_df[numerical_columns])

# Display the processed DataFrame
encoded_df.head()
```

₹

₹		trip_uuid	actual_time	osrm_time	actual_distance_to_destination	osrm_c
	1	trip- 153671042288605164	0.557651	0.798465	1.338076	
	3	trip- 153671046011330457	-0.824265	-0.958499	-0.826426	-
	4	trip- 153671052974046625	1.242071	0.770127	1.325795	
	5	trip- 153671055416136166	-0.780672	-0.901823	-0.766319	-
	6	trip- 153671066201138152	-1.077108	-1.062405	-1.025097	-

Business Insights and Recommendations

busiest_corridors = encoded_df.groupby(['source_state', 'destination_state']).size().reset_index(name='counts').sort_values(by='counts').busiest_corridors.head(10)

```
\overline{\mathcal{F}}
                        source_state
                                             destination_state counts
      825
               Nelmngla_H (Karnataka)
                                         KGAirprt_HB (Karnataka)
      140
             Bomsndra_HB (Karnataka)
                                         KGAirprt_HB (Karnataka)
                                                                      121
      545
              KGAirprt_HB (Karnataka)
                                         Nelmngla_H (Karnataka)
                                                                      108
      704
             Mankoli HB (Maharashtra)
                                                        Unknown
                                                                      105
      821
               Nelmngla_H (Karnataka)
                                       Bomsndra HB (Karnataka)
                                                                      102
             Chndivli_PC (Maharashtra)
                                       Mankoli_HB (Maharashtra)
      290
                                                                       99
      1077
             Tathawde H (Maharashtra)
                                                        Unknown
                                                                       92
      540
              KGAirprt_HB (Karnataka) Bomsndra_HB (Karnataka)
                                                                       86
      695
             Mankoli_HB (Maharashtra)
                                         MiraRd_IP (Maharashtra)
                                                                       78
      143
             Bomsndra_HB (Karnataka)
                                         Nelmngla_H (Karnataka)
                                                                       76
```

data = busiest_corridors.head(30)
data = data[~((data['source_state']=='Unknown') | (data['destination_state']=='Unknown'))]
data.head(10)

```
source_state
                                      destination_state counts
825
        Nelmngla_H (Karnataka)
                                  KGAirprt HB (Karnataka)
                                                              151
140
      Bomsndra_HB (Karnataka)
                                  KGAirprt_HB (Karnataka)
                                                              121
545
        KGAirprt_HB (Karnataka)
                                  Nelmngla_H (Karnataka)
                                                              108
821
                                Bomsndra_HB (Karnataka)
                                                              102
        Nelmngla_H (Karnataka)
290
      Chndivli_PC (Maharashtra)
                                Mankoli_HB (Maharashtra)
                                                               99
540
        KGAirprt HB (Karnataka)
                                Bomsndra HB (Karnataka)
                                                               86
      Mankoli_HB (Maharashtra)
                                  MiraRd_IP (Maharashtra)
                                                               78
695
      Bomsndra_HB (Karnataka)
143
                                  Nelmngla H (Karnataka)
                                                               76
850
               Okhla_PC (Delhi)
                                    Bilaspur_HB (Haryana)
                                                               75
      Tathawde_H (Maharashtra) Mankoli_HB (Maharashtra)
1073
                                                               64
```

```
# Bar plot

plt.figure(figsize=(12, 6))
sns.barplot(data=data, x='source_state', y='counts', hue='destination_state', dodge=False)
plt.xticks(rotation=90)
plt.title('Counts of Routes by Source and Destination')
plt.ylabel('Counts')
plt.xlabel('Source State')
plt.legend(loc='upper right')
plt.show()
```



```
# Pivot table for heatmap
pivot_df = data.pivot_table(index='source_state', columns='destination_state', values='counts', fill_value=0)
# Heatmap
plt.figure(figsize=(15, 15))
sns.heatmap(pivot_df, annot=True, cmap="YlGnBu")
plt.title('Heatmap of Route Counts')
plt.xlabel('Destination State')
plt.ylabel('Source State')
plt.show()
```

