Modelli di Sistemi Biologici a.a. 2020/21

Paolo Magni

Esercitazione 5 - Simulazione di reazioni enzimatiche

Si supponga che l'enzima E interagisca con il substrato S per formare inizialmente un complesso C e che successivamente C si separi per formare uno o più prodotti P liberando l'enzima. Siano k_{+1} e k_{-1} rispettivamente le costanti di velocità di formazione e dissociazione del composto C a partire da E e S; siano inoltre k_{+2} , k_{-2} rispettivamente le costanti di dissociazione del composto e formazione del prodotto P e di ricombinazione prodotto enzima. Siano s_0 , e_0 , e_0 e p_0 le concentrazioni iniziali rispettivamente di S, E, C, P. Generalmente si suppone e_0 0 e e_0 1 e e_0 2 e e_0 3.

Si scriva il modello in termini di equazioni differenziali ordinarie e si simuli l'evoluzione del sistema nel tempo imponendo le condizioni sotto riportate. Si grafichino in particolare gli andamenti nel tempo della concentrazione del substrato, dell'enzima, del composto e del prodotto. Si grafichi anche l'andamento nel tempo della velocità di formazione del prodotto (dp/dt).

- 1. Porre $k_{+1} = 1 \ mM^{-1} \cdot sec^{-1}$, $k_{-1} = 1 \ sec^{-1}$, $k_{+2} = 1 \ sec^{-1}$, $k_{-2} = 1 \ mM^{-1} \cdot sec^{-1}$ e $s_0 = 1 \ mM$, $e_0 = 100 \ mM$.
 - (a) Che tipo di crescita (lineare, esponenziale, ecc.) del prodotto e decrescita del substrato si osserva?
 - (b) Si raggiunge un valore di regime? In quanto tempo? In che rapporto si trovano le diverse concentrazioni?
 - (c) A regime in che forma si trova l'enzima?
- 2. Porre $k_{+1} = 1 \ mM^{-1} \cdot sec^{-1}$, $k_{-1} = 1 \ sec^{-1}$, $k_{+2} = 1 \ sec^{-1}$, $k_{-2} = 1 \ mM^{-1} \cdot sec^{-1}$ e $s_0 = 100 \ mM$, $e_0 = 1 \ mM$.
 - (a) Che tipo di crescita del prodotto e decrescita del substrato si osserva?
 - (b) Si raggiunge un valore di regime? In quanto tempo? In che rapporto si trovano le diverse concentrazioni?
 - (c) A regime in che forma si trova l'enzima?
 - (d) Quali sono le differenze che si evidenziano rispetto la situazione precedente?
- 3. Spesso è sostanzialmente assente la ricombinazione del prodotto con l'enzima per la formazione del composto. Un esempio è dato dalla idratazione della CO_2 durante il trasferimento dai tessuti al sangue e da questo all'aria alveolare. La reazione è catalizzata da un enizma (carbonicanhydrase). In questo caso i parametri assumono i seguenti valori $k_{+1} = 75e3 \ mM^{-1} \cdot sec^{-1}$, $k_{-1} = 75 \ sec^{-1}$, $k_{+2} = 600e3 \ sec^{-1}$, $k_{-2} = 0 \ sec^{-1}$ e $s_0 = 100$, $e_0 = 1$.
 - (a) Che tipo di crescita del prodotto e decrescita del substrato si osserva?
 - (b) Si raggiunge un valore di regime? In quanto tempo? In che rapporto si trovano le diverse concentrazioni?
 - (c) A regime in che forma si trova l'enzima?
 - (d) Su che scala temporale posso valutare l'andamento a "regime"? Quante fasi transitorie posso individuare?

- (e) Verificare se $\tau_0 = (k_{+1}s_0 + k_{-1} + k_{+2})^{-1}$ è effettivamente la costante di tempo del transitorio necessario affinchè dc/dt diventi circa uguale a zero (c costante).
- (f) Verificare la legge di Michaelis-Menten al variare di s_0 ($V = dp/dt = V_{max}s_0/(k_m + s_0)$, con $V_{max} = k_{+2}e_0$ e $k_m = (k_{-1} + k_{+2})/k_{+1}$).
- 4. Si consideri la reazione al punto precedente. E si supponga che esista un altro substrato (I) capace di interagire con l'enzima in questione. Supponiamo che i parametri della reazione siano i seguenti $k_{+1} = 75e2 \ mM^{-1} \cdot sec^{-1}$, $k_{-1} = 75 \ sec^{-1}$, $k_{+2} = 600e3 \ sec^{-1}$, $k_{-2} = 0 \ sec^{-1}$.
 - (a) Si simulino i diversi comportamenti che si potrebbero osservare al variare della concentrazione iniziale di I (tra 0 e 1000).
 - (b) Come cambia la velocità iniziale di formazione del prodotto al variare della concentrazione iniziale di I?
 - (c) Come cambiano le considerazioni precedenti al variare del parametero k_{+1} (analisi di sensitività)?