General Assignment Template

Leo Duncan ldun202, 657579290

xxth Month 202x

1 General Math

Basic math examples for convenient copy-pasting

1.1 (a)

Basic multiline equation example.

$$a = b + c$$
$$= (b + c)$$

1.2 (b)

Vectors and matrices.

Column vector square brackets: $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, round brackets: $\vec{v} = \begin{pmatrix} 4 \\ 5 \\ 6 \\ 7 \end{pmatrix}$.

Column vector square brackets: $u = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$;

Round brackets: $\vec{w} = \begin{pmatrix} 4 & 5 & 6 & 7 \end{pmatrix}$.

$$\text{Matrix } A = \left[\begin{array}{cccc} a & b & c & d \\ e & f & g & h \\ i & j & k & l \end{array} \right].$$

Another example $B = \left[\begin{array}{cc|c} a & b & c & d \\ e & f & g & h \\ i & j & k & l \end{array} \right].$

1.3 (c)

 $Sums,\ limits,\ integration$

$$\sum \frac{1}{k + \sqrt{k}}$$

$$\sum_{k=2}^{\infty} \frac{3^k - 1}{4^k}$$

$$\lim_{k \to \infty} \frac{k^2 + k + 1}{2k^2}$$

$$\int_{-1}^{1} e^x \, dx$$

1.4 (d)

Using $\backslash frac$ and $\backslash dfrac$.

Using \frac $\frac{k^2+1}{k^3+1}$ and using \dfrac $\frac{k^2+1}{k^3+1}$ and using \tfrac $\frac{k^2+1}{k^3+1}$.

Note that when in "big" equation environment, \$\$, they give the same result. Avoid using δc unless necessary.

2 Graphics

Pictures and everything so exciting

Here is an example of an image with a caption.

Figure 1: Clownfish model starting at population 31 (thousand).

Here is an example of two images side-by-side, with captions.

Figure 2: Updated model cobweb plots.

3 Tables

Yep, tables, as the title would suggest

4 Code

Code code code code

Z_1	Z_0	
0	0	
0	1	
1	0	
1	1	

	QA/L1	QB/L2	QC/L3	QD/L4
Starting State	0	1	0	1
After 1 clock pulse	1	0	1	0
After 2 clock pulses	1	1	0	1
After 3 clock pulses	1	1	1	0

```
Seq = randi(2,1,1000); % generate random sequence of coin flips

k = 0;

while-loop that runs until the desired sequence, THH, is found

while(Seq(k+1)~=2 || Seq(k+2)~=1 || Seq(k+3)~=1)

k = k + 1;

end

disp(k) % output how many flips before the sequence THH
```

5 Academic Writing

How to format big chunks of writing

6 Bibliography

Referencing, footnotes, etc