Álgebra lineal I, Grado en Matemáticas

Septiembre 2017

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora.

Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

Importante: utilice una única cara para las cuatro definiciones. Si utiliza más espacio no se tendrá en cuenta.

- (a) Matriz escalonada.
- (b) Matriz de cambio de base.
- (c) Rango de un conjunto de vectores y rango de una matriz.
- (d) Espacio dual.

Ejercicio 1: (2 puntos)

Utilice las propiedades de la traza para demostrar las siguientes afirmaciones:

- (a) Dos matrices semejantes tienen la misma traza.
- (b) No existen matrices A y B de orden n tales que $AB BA = I_n$.

Ejercicio 2: (3 puntos)

Dados los siguientes subespacios vectoriales de \mathbb{R}^6

$$\begin{array}{lcl} U & \equiv & \{\,x_1+x_2+x_3+x_4+x_5+x_6=0\,\} \\ W_a & \equiv & \{\,ax_1=x_2=x_3=x_4=x_5=x_6\,\}, \,\, a \in \mathbb{R} \end{array}$$

Determine una base y unas ecuaciones implícitas de los subespacios suma $U+W_a$ e intersección $U\cap W_a$ para los distintos valores de a. Explique si en algún caso se tiene la suma directa $\mathbb{R}^6 = U \oplus W_a$.

Ejercicio 3: (3 puntos)

Sean V y W dos \mathbb{K} -espacios vectoriales, $\mathcal{B} = \{v_1, v_2, v_3\}$ una base de V y $\mathcal{B}' = \{w_1, w_2\}$ una base de W.

(a) Determine la matriz respecto de las bases \mathcal{B} y \mathcal{B}' de la aplicación lineal $f:V\longrightarrow W$ tal que

$$f(v_1 + 2v_2) = w_1 + w_2, \ f(v_2 - v_3) = 0, \ f(v_1 - 2v_3) = 2w_1 - w_2$$

(b) Sea P el plano generado por los vectores $v_1 + v_2 + v_3$ y $v_1 + 2v_3$. Determine unas ecuaciones implícitas del subespacio vectorial f(P), respecto de la base $\mathcal{B}'' = \{w_1 - 2w_2, w_2\}$ de W.

Soluciones

Ejercicio 1:

Utilice las propiedades de la traza para demostrar las siguientes afirmaciones:

- (a) Dos matrices semejantes tienen la misma traza.
- (b) No existen matrices A y B de orden n tales que $AB BA = I_n$.

Solución: Sean A y B dos matrices cuadradas de orden n. Utilizaremos las propiedades:

(1)
$$tr(AB) = tr(BA)$$
, (2) $tr(A+B) = tr(A) + tr(B)$

(a) Sean A y B matrices semejantes, entonces existe P invertible de orden n tal que $B = PAP^{-1}$

$$\operatorname{tr}(B) = \operatorname{tr}(PAP^{-1}) = \operatorname{tr}((P)(AP^{-1})) \underset{(2)}{=} \operatorname{tr}((AP^{-1})(P)) = \operatorname{tr}(AP^{-1}P) = \operatorname{tr}(A)$$

(b) Procedemos por reducción al absurdo: supongamos que existen matrices A y B tales que $AB - BA = I_n$, entonces $tr(AB - BA) = tr(I_n) = n$. Por otro lado, aplicando las propiedades (1) y (2):

$$\operatorname{tr}(AB - BA) = \operatorname{tr}(AB) - \operatorname{tr}(BA) = 0$$

y llegamos a una contradicción, que viene de suponer la existencia de tales matrices.

Ejercicio 2: Ejercicio F5.9, 2ª PEC 2015

Dados los siguientes subespacios vectoriales de \mathbb{R}^6

$$\begin{array}{rcl} U & \equiv & \{\,x_1+x_2+x_3+x_4+x_5+x_6=0\,\} \\ W_a & \equiv & \{\,ax_1=x_2=x_3=x_4=x_5=x_6\,\}, \,\, a \in \mathbb{R} \end{array}$$

Determine una base y unas ecuaciones implícitas de los subespacios suma $U+W_a$ e intersección $U\cap W_a$ para los distintos valores de a. Explique si en algún caso se tiene la suma directa $\mathbb{R}^6=U\oplus W_a$.

Solución: El subespacio U es un hiperplano de \mathbb{R}^6 por estar determinado por una única ecuación implícita. Una base de U es

$$\{(1, -1, 0, 0, 0, 0), (0, 1, -1, 0, 0, 0), (0, 0, 1, -1, 0, 0), (0, 0, 0, 1, -1, 0), (0, 0, 0, 0, 1, -1)\}$$

El subespacio W_a está determinado por 5 ecuaciones implícitas:

$$\begin{cases} ax_1 & -x_2 & = 0 \\ x_2 & -x_3 & = 0 \\ x_3 & -x_4 & = 0 \\ x_4 & -x_5 & = 0 \\ x_5 & -x_6 = 0 \end{cases}$$

y por tanto tiene dimensión 1 y una base de W_a está formada por el vector (1, a, a, a, a, a).

Solución 1: Dado que dim U=5 y dim $W_a=1$, entones la suma de ambos subespacios es directa si y solo si $U\cap W_a=0$, lo que en este caso equivale a decir: $(1,a,a,a,a,a)\notin U$. Sustituyendo las coordenadas del vector en las ecuaciones de U se tiene que

$$(1, a, a, a, a, a) \in U \quad \Leftrightarrow \quad a = -\frac{1}{5}$$

Luego:

- Si $a \neq -\frac{1}{5}$, entonces $U \cap W_a = 0$ y se tiene $\mathbb{R}^6 = U \oplus W_a$. La intersección $U \cap W_a = 0$ tiene dimensión 0 y no tiene base, mientras que sus ecuaciones implícitas son $x_1 = \cdots = x_6 = 0$. El subespacio suma es el espacio total \mathbb{R}^6 que no tiene ecuaciones implícitas, y una base es cualquier base de \mathbb{R}^6 , por ejemplo la formada por la unión de la base de U y la base $\{(1, a, a, a, a, a, a)\}$ de W_a .
- Si $a = -\frac{1}{5}$, entonces $U \cap W_{-\frac{1}{5}} = W_{-\frac{1}{5}}$, es decir $W_{-\frac{1}{5}} \subset U \Rightarrow U + W_{-\frac{1}{5}} = U$ y sus ecuaciones y base son las dadas anteriormente

Solución 2: Un sistema generador del subespacio suma $U+W_a$ se obtiene uniendo dos bases: una de U y otra de W_a :

$$U + W_a = L((1, -1, 0, 0, 0, 0), (0, 1, -1, 0, 0, 0), (0, 0, 1, -1, 0, 0), (0, 0, 0, 1, -1, 0), (0, 0, 0, 0, 1, -1), (1, a, a, a, a, a))$$

y se tendrá la suma directa $\mathbb{R}^6 = U \oplus W_a$ si y sólo si se cumple

$$6 = \dim(U + W_a) = \dim U + \dim W_a$$

lo que es equivalente a decir que los vectores del sistema generador sean base, o también, que el rango de la matriz de coordenadas (por filas o columnas) de dichos vectores sea 6.

$$\operatorname{rg}\left(\begin{array}{cccccc} 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 1 & a & a & a & a & a \end{array}\right) = 6 \iff a \neq -\frac{1}{5}$$

y se continuaría razonando igual que en la solución anterior.

Ejercicio 3:

Sean V y W dos \mathbb{K} -espacios vectoriales, $\mathcal{B} = \{v_1, v_2, v_3\}$ una base de V y $\mathcal{B}' = \{w_1, w_2\}$ una base de W.

(a) Determine la matriz respecto de las bases \mathcal{B} y \mathcal{B}' de la aplicación lineal $f: V \longrightarrow W$ tal que

$$f(v_1 + 2v_2) = w_1 + w_2, \ f(v_2 - v_3) = 0, \ f(v_1 - 2v_3) = 2w_1 - w_2$$

(b) Sea P el plano generado por los vectores $v_1 + v_2 + v_3$ y $v_1 + 2v_3$. Determine unas ecuaciones implícitas del subespacio vectorial f(P), respecto de la base $\mathcal{B}'' = \{w_1 - 2w_2, w_2\}$ de W.

Solución:

a) Llamamos \mathcal{B}^* a la base de V formada por los vectores del enunciado

$$\mathcal{B}^* = \{v_1 + 2v_2, v_2 - v_3, v_1 - 2v_3\}$$

Conocemos las imágenes de dichos vectores y sus coordenadas en la base \mathcal{B}' de W

$$f(v_1+2v_2)=w_1+w_2=(1,1)_{\mathcal{B}'},\ f(v_2-v_3)=0=(0,0)_{\mathcal{B}'},\ f(v_1-2v_3)=2w_1-w_2=(2,-1)_{\mathcal{B}'}$$

por lo que automáticamente tenemos la matriz de la aplicación lineal en las bases \mathcal{B}^* y \mathcal{B}' :

$$\mathfrak{M}_{\mathcal{B}^* \, \mathcal{B}'}(f) = \left(\begin{array}{ccc} 1 & 0 & 2 \\ 1 & 0 & -1 \end{array} \right)$$

Como nos piden la matriz de f en las bases \mathcal{B} y \mathcal{B}' , tenemos que hacer el cambio de coordenadas de \mathcal{B} a \mathcal{B}^* en el espacio vectorial de partida V:

$$\mathfrak{M}_{\mathcal{B}\mathcal{B}'}(f) = \mathfrak{M}_{\mathcal{B}^*\mathcal{B}'}(f) \cdot \mathfrak{M}_{\mathcal{B}\mathcal{B}^*}$$

El producto matricial se corresponde con la composición de aplicaciones

$$\begin{array}{cccc} V & \xrightarrow{\text{cambio coordenadas}} & V \xrightarrow{f} & W \\ \mathcal{B} & \longrightarrow & \mathcal{B}^* \xrightarrow{f} & \mathcal{B}' \end{array}$$

La matriz de cambio de coordenadas de \mathcal{B}^* a \mathcal{B} , que denotamos por $\mathfrak{M}_{\mathcal{B}^*\mathcal{B}}$, que es inversa de $\mathfrak{M}_{\mathcal{B}\mathcal{B}^*}$ es inmediata pues

$$\mathcal{B}^* = \{v_1 + 2v_2 = (1, 2, 0)_{\mathcal{B}}, v_2 - v_3 = (0, 1, -1)_{\mathcal{B}}, v_1 - 2v_3 = (1, 0, -2)_{\mathcal{B}}\}$$

de donde

$$\mathfrak{M}_{\mathcal{B}^* \, \mathcal{B}} = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & -1 & -2 \end{array} \right)$$

Entonces, la matriz pedida es:

$$\mathfrak{M}_{\mathcal{B}\,\mathcal{B}'}(f) = \mathfrak{M}_{\mathcal{B}^*\,\mathcal{B}'}(f) \cdot \mathfrak{M}_{\mathcal{B}^*\,\mathcal{B}}^{-1} = \left(\begin{array}{ccc} 1 & 0 & 2 \\ 1 & 0 & -1 \end{array}\right) \left(\begin{array}{ccc} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & -1 & -2 \end{array}\right)^{-1} = \left(\begin{array}{ccc} 3/2 & -1/4 & -1/4 \\ 0 & 1/2 & 1/2 \end{array}\right)$$

Método alternativo: se calculan las coordenadas de $f(v_1)$, $f(v_2)$ y $f(v_3)$ en \mathcal{B}' , que son las columnas de la matriz pedida, aplicando la linealidad de f a los datos del enunciado:

$$f(v_1) + 2f(v_2) = w_1 + w_2, \ f(v_2) - f(v_3) = 0, \ f(v_1) - 2f(v_3) = 2w_1 - w_2$$

La segunda ecuación implica $f(v_2) = f(v_3)$ que sustituido en la primera y la segunda hacen:

$$\begin{cases} f(v_1) + 2f(v_2) = w_1 + w_2 \\ f(v_1) - 2f(v_2) = 2w_1 - w_2 \end{cases} \Rightarrow 4f(v_2) = -w_1 + 2w_2 \Rightarrow f(v_2) = -\frac{1}{4}w_1 + \frac{1}{2}w_2 = (-\frac{1}{4}, \frac{1}{2})_{\mathcal{B}'}$$

que es la segunda columna de la matriz pedida, y también la tercera. Continuando de igual modo se calcula $f(v_1)$ obteniendo la primera columna.

b) Sea $P = L(v_1 + v_2 + v_3, v_1 + 2v_3)$, entonces la imagen es $f(P) = L(f(v_1 + v_2 + v_3), f(v_1 + 2v_3))$. Calculamos estas imágenes con la matriz del apartado anterior y obtenemos

$$f(v_1 + v_2 + v_3) = (1, 1)_{\mathcal{B}'}, \ f(v_1 + 2v_3) = (1, 1)_{\mathcal{B}'}$$

luego f(P) es la recta generada por el vector $u = (1,1)_{\mathcal{B}'} = 1 \cdot w_1 + 1 \cdot w_2$. Como nos piden las ecuaciones de este subespacio en la base $\mathcal{B}'' = \{w_1 - 2w_2, w_2\}$ de W, entonces hay que expresar el vector u en coordenadas en \mathcal{B}'' :

$$u = w_1 + w_2 = (a, b)_{\mathcal{B}''} = a(w_1 - 2w_2) + b(w_2) \Rightarrow a = 1, b = 3$$

es decir $u = (1,3)_{\mathcal{B}''}$.

Una ecuación implícita de la recta f(P) en \mathcal{B}'' viene determinada por la condición siguiente: un vector genérico de coordenadas $(y_1, y_2)_{\mathcal{B}''}$ pertenece a f(P) si y solo si es combinación lineal de $u = (1, 3)_{\mathcal{B}''}$ si y sólo si

$$\operatorname{rg}\left(\begin{array}{cc} 1 & y_1 \\ 3 & y_2 \end{array}\right) = 1 \ \text{si y solo si} \ y_2 - 3y_1 = 0$$