SOLUTIONS TO QUESTIONS IN CHAPTER 6

five vertices. There are five binary trees with four leaves: These are the binary trees with seven vertices.

4.3 (a)

Right subtree

(b) Left subtree

Right subtree

Right subtree

- 4.4 The depth of the left subtree is d-1 or less.
- 4.5 From Theorem 4.1, a full binary tree has 2^k vertices at depth k. In particular, a full binary tree with n or more leaves and depth k must have $n \le 2^k$ or $\log(n) \le \lceil \log(n) \rceil = k$. Thus a full binary tree of depth $\lceil \log(n) \rceil$ will have n or more leaves and by Corollary 4.2 will contain exactly $2^{\lceil \log n \rceil} + 1 1$ vertices.

4.6	n	$k = \lfloor \log(n) \rfloor + I$	$n'=2^k-1$
	15 26 31	$[\log(15)] + 1 = 4$ $[\log(26)] + 1 = 5$ $[\log(31)] + 1 = 5$	$2^{4} - 1 = 15$ $2^{5} - 1 = 31$ $2^{5} - 1 = 31$

We must show in general that $n' \ge n$. We know that $n < 2^k$, or

$$n \le 2^k - 1 = 2^{(\lfloor \log(n) \rfloor + 1)} - 1 = n'.$$

4.7 For convenience, we replace the label a_i with i. A binary search tree for a 23-element array follows. Note that the tree must have 31 vertices (see Question 4.6).

4.8 Labeled tree after the second execution of step 7:

Labeled tree after the third execution of step 7:

Labeled tree after the fourth execution of step 7:

Labeled tree after the fifth execution of step 7:

Result: $B = \langle b_1, b_2, b_3, b_4, b_5, b_6 \rangle = (7.9, 13, 16.20.41).$

SECTION 5

5.1 There are 3! = 6 orderings of the array $A = \langle a_1, a_2, a_3 \rangle$, one for each permutation on three elements, and $\binom{3}{2} = 3$ possible pairwise comparisons. For an array with four distinct elements, there are 4! = 24 possible orderings with $\binom{4}{2} = 6$ possible pairwise comparisons. Finally, an array with five distinct elements can be ordered in 5! = 120 different ways with $\binom{5}{2} = 10$ possible pairwise comparisons.

5.3 The graph shows a subtree of the binary search tree for a four-element array as specified by Example 5.3. In particular, the root of the subtree is labeled with a_4 : a_2 and we have assumed that $a_1 \le a_2 \le a_3$. If the whole binary search tree were drawn, it would look like the tree in Figure 6.6, only this subtree would be hanging in place of the leaf labeled "al $\le a_2 \le a_3$." And a similar subtree would be hanging under every other leaf. In the worst case five comparisons will be made.

5.4 A total of $5n \log(n)$ comparisons are made or roughly 27,000 comparisons when n = 600, roughly 61,000 comparisons with n = 1200, and roughly 97,000 comparisons with n = 1800.

SECTION 6

6.1 Trace of procedure MIN on the array <4,3,2,1, 5):

Step No.	n	k	a ,	a_{n+1}	
1	5				
2	4				
3	{Call MIN $(\langle 4, 3, 2, 1 \rangle, 4, k)$ }				(A)
1	4				(A)
2	3				
3	{Call MIN $((4, 3, 2), 3, k)$ }				(B)
1	3				(<i>D</i>)
2 3	2				
3	{Call MIN($(4, 3), 2, /c$)}				(c)
1	2				(0)
2 3	1				
3	{Call MIN($\langle 4 \rangle, 1, k$)}				(D)
1	1	1			(D)
5	{Return to (D)}				
	1	1	4	3	
4	1	2		5	
5	{Return to (C) }				
	2	2	3	2	
4	2	3		-	
5	{Return to (<i>B</i>)}				
	3	3	2	1	
4	3	4		•	
5	{Return to (A)}				
	4	4	1	5	
4	4	4	•	3	
5	{Return with $k = 4$ }				

6.2 Trace of procedure GCD run on b = 13 and c = 21:

Step No.	b	c	r	9	
1	13	21	?	?	
2	13	21	8	•	
3	$\{Call\ GCD(8,13,g)\}$				(A)
2	8	13	5		(21)
3	$\{\text{Call GCD } (5,8,g)\}$				(B)
2	5	8	3		(<i>D</i>)
3	{Call GCD $(3,5,g)$ }				(c)
2	3	5	2		(0)
3	$\{Call\ GCD(2,3,g)\}$				(D)
2	2	3	1		(2)
3	{Call GCI	(1, 2, g)	}		(E)
2	1	2	0		()
3	$\{\operatorname{Call}\ \operatorname{GCD}(0,1,g)\}$				(F)
1				1	()
	$\{Return to (F)\}\$				
				1	
	{Return to (E) }				
				1	
	$\{\text{Return to }(D)\}$				
				1	
	{Return to (C)}				
				1	
	{Return to (B) }				
	(D) ((A))			1	
	{Return to (A) }				
				1	

Result: gcd(13, 21) = 1. Note that the procedure GCD is called six times.

SOLUTIONS TO QUESTIONS IN CHAPTER 6

6.3 Trace of MIN on the array .4 = (-1,0.333,5.2, -10,6.001, 17)(a) With start =2, finish = 3

Step No.	start	finish	a_{finish}	k	$a_{\mathbf{k}}$	
1	2	3				
2	$\{\text{Call MIN}(A, 2, 2, k)\}$					(A)
1	2	2		2		
4	{Return to (A) }					
	2	3	5.2	2	0.333	
3	2	3	5.2	2	0.333	
4	{Return with $k = 2$ }					

Result: The index of the smallest entry in $\langle a_2, a_3 \rangle$ is 2. **(b)** With start =3, finish =6, A = (-1,0.333,5.2, -10,6.001, 17)

Step No.	start	finish	a_{finish}	k	'k	
1	3	6				
2	$\{Call MIN (A, 3, 5, k)\}$					(A)
1	3	5				
2	{Call MIN $(A, 3, 4, k)$ }					(B)
1	3	4				
2	$\{\text{Call MIN}(A, 3, 3, k)\}$					(c)
1	3	3		3		
4	{Return to (<i>C</i>)}					
	3	4	 10	3	5.2	
3	3	4	- 10	4	- 10	
4	{Return to (<i>B</i>)}					
	3	5	6.001	4	– to	
3	3	5	6.001	4	- 10	
4	{Return to (A)}					
	3	6	17	4	- 10	
3	3	6	17	4	-1o	
4	{Return with $k = 4$ }					

Result: The index of the smallest entry in $\langle a_3, a_4, a_5, a_6 \rangle$ is 4.

(c) With start = 1, finish = 6

Step No.	start	finish	'finish	k	$\mathbf{a}_{_{\mathbf{k}}}$	
1	1	6				
2	$\{\text{Call MIN } (A, 1, 5, k)\}$					(A)
1	1	5				
2	{Call MIN $(A, 1,4, k)$ }					(B)
1	1	4				
2	$\{\text{Call MIN}(A, 1, 3, k)\}$					(c)
1	1	3				
2	$\{Call MIN(A, 1, 2, k)\}$					(D)
1	1	2				
2	$\{\operatorname{Call} \mathbf{MIN}(A, 1, 1, k)\}$					(E)
1	1	1		1		
4	{Return to (E) }					
	ī	2	0.333	1	-1	
3	1	2	0.333	1	-1	
4	{Return to (D) }					
	1	3	5.2	1	-1	
3	1	3	5.2	1	-1	
4	{Return to (C) }					
	1	4	-1 o	1	-1	
3	1	4	– 10	4	- 10	
4	{Return to (B) }					
	1	5	6.001	4	- 10	
3	1	5	6.001	4	– 10	
4	{Return to (A) }					
	1	6	17	4	- 10	
3	1	6	17	4	- 10	
4	{Return with $k = 4$ }					

Result: The index of the smallest entry in the array A is 4.

SECTION 7

7.1 Each vertex of the following tree is labeled with the subarray of *A* to be sorted at that vertex.

The tree above has depth 3 and 15 vertices. Every vertex except the root corresponds with one assistant.

7.2 Trace of MERGE run on C = (0.1, 0.2, 0.3, 0, 0.09, 0.19, 0.29, 0.39, 0.49) with start = 1, mid = 3, and finish = 9.

Step No.	i	j	k	D
1	1	4	1	
3	1	5	2	$\langle 0, \dots$
	1	6	3	(o, 0.09,
	2	6	4	<0,0.09,0.1,
	2	7	5	<0,0.09,0.1,0.19,,
	3	7	6	(0,0.09, 0.1,0.19,0.2,
	3	8	7	(0, 0.09,0.1,0.19,0.2,0.29, .
	4	8	8	(O, 0.09,0.1,0.19,0.2,0.29, 0.3,
10				(0, 0.09, 0.1, 0.19, 0.2, 0.29, 0.3, 0.39, 0.49)
15		C = (0,0)	0.09,0.1,	0.19, 0.2, 0.29, 0.3, 0.39, 0.49).

7.3 (a) Trace of procedure MERGESORT run on the array C = (1, O) with start = 1 and finish = 2:

Step No.	c	start	mid	finish	
1,2	(1,0)	1	1	2	
3	$\{Call MERGESORT(C, 1, 1)\}$				(A)
1,2	(1)	1		1	, ,
	Return to (A)}	1	1	2	
4	{Call MERGESORT(C,2, 2)}				(B)
1,2	(0)	2		2	,
	{Return to (B) }	1	1	2	
5	{Call MERGE (C, 1, 1,2)}	1	1	2	
	(o, 1)				
6	Return.				

(b) Trace of procedure MERGESORT run on the array C = (22,24, 23) with start = 1 and finish = 3:

Step No.	c	start	mid	finish	
1,2	<22,24, 23)	1	2	3	
3	{Call MERGESORT(C, 1, 2)				(A)
1,2	(22, 24)	1	1	2	()
3	{Call MERGESORT(C, 1, 1)}				(B)
1,2	(22)	1		1	(-)
	{Return to (B)}	1	1	2	
4	{Call MERGESORT $(C, 2, 2)$ }			_	(C)
1,2	<24)	2		2	(0)
	{Return to (C)}	1	1	2	
5	{Call MERGE (C, 1,1, 2)}	1	1	2	
	(22, 24)				
	{Return to $(,4)$ }	1	?	3	
4	{Call MERGESORT (C, 3, 3)}	1	2	3	(D)
1,2	(23)	3		3	(-)
	{Return to (D) }	1	2	3	
5	{Call MERGE (C, 1,2, 3)}	1	2	3	
	(22, 23, 24)				
6	Return.				

(c) Trace of procedure MERGESORT run on the array C = (1.1, 3.3, 2.2, 4.4) with start = 1 and finish = 4:

Step No.	c	start	mid	finish	
1,2	(1.1,3.3,2.2,4.4)	1	2	4	
3	{Call MERGESORT(C, 1,2)}				(A)
1,2	<1.1,3.3)	1	1	2	()
3	{Call MERGESORT (C, 1, 1)}				(B)
1,2	<1.1)	1		1	()
	{Return to (B)}	1	1	2	
4	{Call MERGESORT(C,2,2)}	1	1	2	(c)
1,2	(3.3)	2		2	. ,
	{Return to (C)}	1	1	2	
5	{Call MERGE(C, 1, 1,2)}	1	1	2	
	(1.1,3.3)				
	{Return to (A)}	1	2	4	
4	{Call MERGESORT(C, 3,4)}				(D)
1,2	(2.2, 4.4)	3	3	4	()
3	{Call MERGESORT(C, 3, 3)}				(E)
1,2	⟨2.2⟩	3		3	()
,	Return to (E)	3	3	4	
4	{Call MERGESORT (C, 4, 4)}				(F)
1,2	(4.4)	4		4	()
	{Return to (F)}	3	3	4	
5	{Call MERGE (C, 3, 3,4)}	3	3	4	
	(2.2, 4.4)				
	{Return to (D) }	1	2	4	
5	{Call MERGE (C, 1,2, 4)}	1	2	4	
	<1.1,2.2,3.3,4.4)				
6	Return.				

- 7.4 (a) Since Mergesort was called three times and Merge once on an array of size $2, 3 + 3 \cdot 2 = 9$ comparisons were performed. $9 = 3 \cdot 2 \cdot \log(2) + 2 \cdot 2 1$.
 - (c) Since Mergesort was called seven times and Merge three times on arrays of sizes 2, 2, and 4, 7 + 3(2 + 2 + 4) = 31 comparisons were performed.
 - $31 = 3 \cdot 4 \cdot \log(4) + 2 \cdot 4 1.$
- 7.5 As in Question 7.3 (b) Mergesort is called five times and Merge is called twice on arrays of sizes 2 and 3. Thus 5 + 3(2 + 3) = 20 comparisons are performed. $3 \cdot 3 \cdot \log(3) + 2 \cdot 3 1 < 20 < 6 \cdot 3 \cdot \log(3) + 10 \cdot 3 1$.

SOLUTIONS TO QUESTIONS IN CHAPTER 7

SECTION 1

- 1.1 (a) 64, (b) 21, (c) 13, (d) 217, (e) 17.
- 1.2 (a) $S_4: f_n = n!$, (b) $S_5: g_n = {n \choose 2}$ (c) $S_6: h_n = 2^n 1$,

$$\text{(d)} \quad S_7: j_n \begin{cases} n+1 & \text{if } 1 \leq n \leq 2 \\ 2\,n-1 & \text{if } 3 \leq n \leq 4 \\ 2n+1 & \text{if } 5 \leq n \leq 6 \\ 2n+3 & \text{if } n=7 \end{cases}$$

is one of many "creative" solutions to the problem of finding a function that generates the first seven prime numbers. (e) S_8 : $k_n = n^2$,

(f)
$$S_9: m_n = (-1)^{n-1} 3^{n-1}$$

- 1.3 The functions $f_n = 2^{n+1} + 1$ and $g_n = 2n^2 2n + 5$ are two of many that produce the values $f_1 = g_1 = 5$, $f_2 = g_2 = 9$ and $f_3 = g_3 = 17$.
- 1.4 $S_1: a_n = a_{n-1} + 1$ with $a_1 = 1$ $S_2: a_n = 2a_{n-1}$ with $a_1 = 2$
- 1.5 n = 1 2 3 4 5 6 7 8 $a_n = 0$ 1 3 6 10 15 $M_n = 1$ 2 2 3 3 3 3 4

1.6 n=l 2 3 4 5

$$H'_n = 1$$
 $\frac{3}{2}$ $\frac{11}{6}$ $\frac{25}{12}$ $\frac{137}{60}$
 $H''_n = 1$ $\frac{3}{2}$ $\frac{11}{6}$ $\frac{25}{12}$ $\frac{137}{60}$

We see that for $n = 1, 2, ..., 5, H'_n = H''_n$.

1.7
$$n = 1 \ 2 \ 3 \ 4 \ 5$$

 $C_n = 1 \ 1 \ 2 \ 5 \ 14$

SECTION 2

- 2.1 S_6 satisfies $a_n = 2a_{n-1} + 1$ as does 9, 19, 39, 79, 159, S_9 satisfies $a_n = (-3)a_{n-1}$ as does -6, 18, -54, 162, -486, . . .
- 2.2 If one of a_1 and a_3 is unspecified, then a_5 and all subsequent "odd entries of the sequence will be undefined. Similarly, if one of a_2 and a_4 is unspecified, then a_6 and all subsequent "even" entries will be undefined.

$$n = 1$$
 2 3 4 5 6 7 8 9 10
 $a_n = 1$ 1 1 1 2 2 3 3 5 5

The sequence listed above can be obtained from the Fibonacci sequence by listing each term twice. Since, by Theorem 4.3.1,

$$F_{n} = \frac{\phi^{n} - {\phi'}^{n}}{\sqrt{5}} \qquad .$$

where

$$\phi = \frac{1 + \sqrt{5}}{2} \text{ and } \phi' = \frac{1 - \sqrt{5}}{2},$$

$$a_n = F_{\lfloor n/2 \rfloor} = \frac{\phi^{\lfloor n/2 \rfloor} - \phi'^{\lfloor n/2 \rfloor}}{\sqrt{5}}$$

2.3 (i) 2, (ii) 3, and (iii) 1.

2.4 (i)
$$a_n = na_{n-1} = n(n-1)a_{n-2} = n(n-1)(n-2)a_{n-3} = .$$

= $n(n-1)(n-2)\cdots(n-(n-2))a_1 = n(n-1)(n-2)\cdots \cdot 2 \cdot 1 = n!.$

(ii)
$$b_n = b_{n-1} + 2 = b_{n-2} + 2 + 2 = b_{n-3} + 2 + 2 + 2 = \cdots$$

= $b_{n-(n-1)} + 2 + 2 + \cdots + 2$ { $n - 1 \ 2 \ s$ }
= $b_1 + (n-1)2 = 1 + 2n - 2 = 2n - 1$.

2.5 (i) For the base case we have $a_1 = 1! = 1$. Then

$$a_{k+1} = (k+1)a_k$$

= $(k+1)k!$ by the inductive hypothesis
= $(k+1)!$, as desired.

(ii) For the base case we have $b_1 = 2.1 - 1 = 1$. Then

$$b_{k+1} = b_k + 2$$

= $(2k-1) + 2$ by the inductive hypothesis
= $2k + 1 = 2(k+1) - 1$, as desired.

2.6 The relations $a_n = na_{n-2}$, $a_n = a_{n-1} + a_{n-3}$, $a_n = 2a_{\lfloor n/2 \rfloor}$, and $a_n = na_{n-1}$ are all homogeneous, since each is satisfied by the sequence that is identically O. The relation $b_n = b_{n-1} + 2$ is inhomogeneous, since when we replace each b_i with O, the result, O = O + 2, is not valid.

SECTION 3

- 3.1 (i) Not: inhomogeneous; (ii) not: not linear and (iii) not:inhomogeneous.
- 3.2 (i) The characteristic equation is x 2 = 0 and the characteristic root is $q_1 = 2$. (ii) The characteristic equation is $x^2 x 6 = 0$ and the characteristic roots are $q_1 = 3$ and $q_2 = -2$. (iii) The characteristic equation is $X^2 2x + 1 = 0$ and the characteristic root is $q_1 = 1$.
- 3.3 The base cases are $a_1 = 2^1 1 = 1$ and $a_2 = 2^2 1 = 3$. The inductive hypothesis is that $a_k = 2^k 1$. We substitute this in the given recurrence relation

$$a_{k+1} = 3a_k - 2a_{k-1}$$

$$= 3(2^k - 1) - 2(2^{k-1} - 1)$$

$$= 3 \cdot 2^k - 3 - 2^k + 2$$

$$= 2^k(3 - 1) - 1$$

$$\cdot 2^{k+1} - 1$$
 as desired.

3.4 (i) $a_0 = 0$, (ii) $a_0 = 1$, and (iii) $a_0 = 0$.

3.5 (i) From Question 3.2 the characteristic equation for $an = an - + 6a_{n-2}$ is $X^2 - x - 6 = 0$ with characteristic roots $q_1 = 3$ and $q_2 = -2$. Thus the general formula that solves this recurrence relation is given by an $= c3^n + d(-2)^n$ for some constants c and d. We determine the constants c and d from the initial conditions:

$$2 = a_0 = c3^0 + d(-2)^0 = c + d$$

$$1 = a_1 = c3^1 + d(-2)^1 = 3c - 2d.$$

Adding twice the first equation to the second, we obtain 5c = 5. Thus c = 1 and then d = 1 by substitution. Thus $a_n = 3^* + (-2)^n$.

(ii) We have accomplished most of the work for this part of the problem above; the only difference is in the initial conditions. Hence we have

$$1 = a_0 = c3^0 + d(-2)^0 = c + d$$

$$3 = a_1 = c3^1 + d(-2)^1 = 3c - 2d.$$

Again adding twice the first equation to the second we obtain 5C = 5. Thus c = 1 and d = 0. Thus $a_n = 3^n$.

(iii) From Question 3.2, the characteristic equation for $a_n = 2a_{n-1} - a_{n-2}$ is $x^2 - 2x + 1 = 0$, which has a root of multiplicity 2.

SECTION 4

4.1 For the base cases we have $b_1 = 1$ and $b_2 = 2$. Then

$$b_{k+1} = 2b_k - b_{k-1}$$
 the given recurrence
= $2k - (k-1)$ by the inductive hypothesis
= $k+1$, as desired.

4.2 For $p(x) = X^2 - 2x + 1$, we construct D(x) as follows:

$$D(x) = \frac{\int_{-x}^{2} -2x + 1 - (q^{2} - 2q + 1)}{x - q}$$

$$-\frac{(x^{2} - q^{2}) - 2(x - q) + (1 - 1)}{x - q}$$
 by regrouping
$$-\frac{(x - q)(x + q) - 2(x - q)}{x - q}$$
 by algebra
$$= x + q - 2$$
 by division.

4.3 The characteristic equation of $b_n = 4b_{n-1} - 4b_n - 2$ is $x^2 - 4x + 4 = 0$ and its characteristic root is $q_1 = 2$. If $b_k = 2^k$, then

$$4b_{n-1} - 4b_{n-2} = 4 \cdot 2^{n-1} - 4 \cdot 2^{n-2}$$
$$2^{n+1} - 2^n = 2^n(2-1) = 2^n = b_n$$

If $b_k = k2^k$, then

$$4b_{n-1} - 4b_{n-2} = 4(n-1)2^{n-1} - 4(n-2)2^{n-2}$$
$$= 2^{n}[2(n-1) - (n-2)] = n2^{n} = b_{n}.$$

4.4 The characteristic equation of $c_n = -3c_{n-1} - 3c_{n-2} - c_{n-3}$ is

$$x^3 + 3x^2 + 3x + 1 = (x + 1)^3 = 0$$

and the characteristic root is $q_1 = -1$ which has multiplicity y 3. If $c_k = (-1)^k$, then

$$-3c_{n-1} - 3c_{n-2} - c_{n-3} = -3(-1)^{n-1} - 3(-1)^{n-2} - (-1)^{n-3}$$

$$= (-1)^{n-3} [-3(-1)^2 - 3(-1) - 1]$$

$$= (-1)^{n-3} [-3 + 3 - 1]$$

$$= (-1)^{n-3} (-1) = (-1)^{n-2} = (-1)^n = c_n.$$

If
$$c_k = k(-1)^k$$
, then
$$-3c_{n-1} - 3c_{n-2} \cdot e \cdot n - 3$$

$$= -3(n-1)(-1)^n - 1 - 3(n-2)(-1)^{n-2} - (n-3)(-1)^n - 3$$

$$= (-1)^{n-3} [-3(n-1)(-1)^2 - 3(n-2)(-1) - (n-3)]$$

$$= (-1)^{n-3} [-3n+3+3n-6-n+3]$$

$$= (-1)^{n-3} [-n] = n(-1)^{n-2} = n(-1)^n = c_n.$$

Finally, if
$$c_k = k^2(-1)^k$$
, then
$$-3c_{n-1} - 3c_{n-2} - c_{n-3}$$

$$= -3(n-1)^2(-1)^{n-1} - 3(n-2)^2(-1)^{n-2} - (n-3)^2(-1)^{n-3}$$

$$= (-1)^{n-3} [-3(n^2 - 2n + 1) + 3(n^2 - 4n + 4) - (n^2 - 6n + 9)]$$

$$= (-1)^{n-3} [-3n^2 + 6n - 3 + 3n^2 - 12n + 12 - n^2 + 6n - 9]$$

$$= (-1)^{n-3} [-n^2] = (-1)^{n-2}n^2 = n^2(-1)^n = c_n.$$

4.5 From Theorem 4.2, a solution of the recurrence relation given in Question 4.3 is of the form

$$a_n = c_1(-1)^n + c_2 n(-1)^n + c_3 n^2 (-1)^n.$$

With the initial conditions a. = 1, $a_1 = -2$ and $a_2 = 1$, we can solve for the constants cl, C_2 , and C_3 :

$$1 = a_0 = c_1 + 0c_2 + 0c_3$$
$$-2 = a_1 = -c_1 - c_2 - c_3$$
$$1 = a_2 = c_1 + 2c_2 + 4c_3$$

The solution to this system of equations is $c_1 = 1$, $c_2 = 2$, and $C_3 = -1$. Thus a solution to the recurrence relation with the given initial conditions is $a_n = (-1)^n + 2n(-1)^n - n^2(-1)^n$.

SECTION 5

5.1 Reread Section 6.2.

$$n = 2 \ 3 \ 4 \ 5$$

 $B_n = 7 \ 7 \ 10 \ 10$

We note for n = 2, 3, 4, and 5 that $B_n = 3[\log(n)] + 4$.

5.2 Reread Exercise 7 in Chapter 6, Section 7.

$$n=2$$
 4 8
 $M_n = 9$ 31 87
 $3n \log(n) + 2n - 1 = 9$ 31 87

- 5.3 (a) k = 1, d = 2, c = 0 and e = 3. (b) k = 1, d = 2, c = 0 and e = 2. (c) k = 2, d = 2, c = 3 and e = 1.
- 5.4 1 initial condition. If $a_0 = 1$, then

$$n = 1$$
 2 3 4 5 6 7
 $a_n = 2$ 2 3 3 3 3 3

5.5 The proof is by induction on *i*, where $n = 2^i$. The base case is i = 0: $a_{20} = a_1 + \log(1)c = a_1 + 0 = a_1$. Assuming the result for i = k, let i = k + 1.

$$a_n = a_{2^{k+1}}$$
 since $n = 2^i = 2^{k+1}$
 $= a_{\lfloor n/2 \rfloor} + c$ by the recurrence relation
 $= a_{2^k} + c$ since $n/2 = 2^k$
 $= a_1 + \log(2^k)c + c$ by the inductive hypothesis
 $= a_1 + kc + c = a_1 + (k+1)c$
 $= a_1 + \log(2^{k+1})c$ by properties of $\log a_1 + \log(n)c$.

5.6 With c = 2, Theorem 5.1 implies that $C_n \le 2\lfloor \log(n) \rfloor + 4$. This is the same result as Theorem 3.1 from Chapter 6.

Since $\log(2^k) = k$ and $n = 2^k$, the previous expression can be rewritten as $nM_1 + 4n \log(n)$. Next we verify this formula by induction on k, where $n = 2^k$. That is, if $n = 2^k$ and M_n satisfies (C'), then we must show that $M_n \le 4n \log(n) + M_1 n$. For the base case $k = \text{Oandn} = 2^{\circ} = 1$. Then $M_1 = M_1 \le 4 \cdot 1 \cdot 0 + M_1 \cdot 1 = M_1$. We assume the result for $n = 2^k$ and check $n = 2^{k+1}$:

$$\begin{split} M_n &= M_{2^{k+1}} \\ &\leq 2M_{2^k} + 4 \cdot 2^{k+1} \quad \text{by (C')} \\ &\leq 2(4 \cdot 2^k k + M_1 2^k) + 4 \cdot 2^{k+1} \quad \text{by the inductive hypothesis} \\ &= 4 \cdot 2^{k+1} k + M_1 2^{k+1} + 4 \cdot 2^{k+1} \\ &= 4 \cdot 2^{k+1} (k+1) + M_1 2^{k+1} \\ &= 4n \log(n) + Min. \end{split}$$

SOLUTIONS TO QUESTIONS IN CHAPTER 8

SECTION 1

1.1 The union of shortest paths forms a minimum-distance spanning tree, shown in (a). With the root specified to be 5, we obtain the different tree shown in (b).

1.2 Here is a trace of DIJKSTRA on the weighted graph from Figure 8.4.

Step	No.	j	z	V(T)	E(T)
2		?	?	$\{r\}$	Ø
4		1	t		·
5		1	t	$\{r, t\}$	$\{(\mathbf{r},t)\}$
4		2	b		
5		2	b	$\{r, t, b\}$	$\{(r, t), (r, b)\}$
4		3	S		
5		3	S	$\{\mathbf{r}, \mathbf{t}, \mathbf{b}, \mathbf{s}\}$	$\{(r,t), (r,b), (t,s)\}$
4		4	C		
5		4	С	$\{r, t, b, s, c\}$	$\{(\mathbf{r}, \mathbf{t}), (\mathbf{r}, b), (t, \mathbf{s}), (\mathbf{r}, c)\}$
4		5	a		
5		5	a	$\{r, t, b, s, c, a\}$	$\{(r, t), (r, b), (t, s), (r, c), (b, a)\}$
4		6	q		
5		6	q	$\{r, t, b, s, c, a, q\}$	$\{(r, t), (r, b), (t, s), (r, c), (b, a), (a, q)\}$
4		7	p		
5		7	p	$\{r, t, b, s, c, a, q, p\}$	$\{(r, t), (r, b), (t, s), (r, c), (b, a), (a, q), (q, p)\}$

1.3 If G is not connected, then step 4 cannot be executed V-1 times as required. If some edge weights were negative, then the minimum distance from the root to the first attached vertex x might be less than the weight of the first edge e = (r, x). Thus the tree T in the base case might not have a shortest path in it. Later in the proof, when we add the edge (u, x), we claim that x is closer to the root than u. This would not be true if the weight of (u, x) were negative. If DIJKSTRA is run on the graph in Figure 8.5, then the distance from the root to any of the other vertices is not well defined, since every time you traverse a cycle around the triangle you add a total of -1 to your path length.

SECTION 2

2.1 The graph shown in (a) is the only Eulerian graph with four vertices. The graph in (b) has an Eulerian path from x to y but is not Eulerian. The simplest such graph would just be a path with eight vertices.

- 2.2 The first and last graphs are Eulerian (See Theorem 2.1). The second and fourth contain Eulerian paths but not Eulerian cycles.
- 2.3 A graph with four vertices all of whose degrees are even must have every degree either O or 2. To be connected there cannot be any vertices of degree O. There is only one graph, the 4-cycle, which is Eulerian. Similarly, a graph with five vertices must have every degree either 2 or 4. We list them together with one Eulerian cycle.

<1,2, 4, 5, 3, 1, 4,3,2,5, 1>

<1,2,4,3,5, 1>

<1,2, 3, 5, 2,4, 1>

<1,3,2,4, 1, 5,2, 1>

2.5 The vertices 3 and 4 have odd degree. To construct G' we create vertex r. adjacent to 3 and 4 as shown in the following figure.

(4, r, 3,6,7,5,2,1,5,4,7,3, 1, 4) is an Eulerian cycle in G'. Removing r and its incident edges produces an Eulerian path from 3 to 4.

2.6 For convenience we label the graph.

Step No.	х	С	D
1	1	⟨1⟩	
3	1	(1)	
4	1		
6		⟨1, 2, 3, 1, 4, 6, 7, 8, 1⟩	$\langle 1, 2, 3, 1, 4, 6, 7, 8, 1 \rangle$
3	2	(1, 2, 3, 1, 4, 0, 7, 8, 1)	,
4	2		
6		(1,2,4,8,6,2,3 > 1,4,6,7 > 8 > 1)	(2,4,8,6,2)
3	3	(1,2,1,6,6,2,6 > 1,1,6,7 > 0 > 1)	
4			
6		(1,2,4,8> 6,2,3,5,7,3,1,4,6,7,8,1)	(3, 5, 7, 3)

2.7 (1, 2,4, 3,1) is an Eulerian cycle in the first graph. The second graph does not contain an Eulerian path or cycle. (2,3, 1,2,4,3) is an Eulerian path in the third graph as is (2,4,3, 1,2, 3). The fourth graph contains lots of Eulerian cycles, for example, (1, 2,1,3,4,2,4,3,1).

SECTION 3

- 3.1 The first and third do; (1, 4, 2, 3, 1) and (1,2,3,4,5,1), respectively.
- 3.2

SOLUTIONS TO QUESTIONS IN CHAPTER 8

3.3	Step No.	z	P	c
	2		0	
	4	\boldsymbol{x}	$\langle x, v, t, w, y \rangle$	
	5			(x, v, t, w, y, x)
	4	и	$\langle u, v, t, w, y, x \rangle$	
	5			$\langle u, t, w, y, x, v, u \rangle$

3.4 First graph

Step No.	J	K	T	E(T)
1	1		{1}	Ø
3	1	2	()	~
4–6	2	2	{1,2}	{(1,2)}
3	2	3		
4-6	3	3	{1,2,3}	$\{(1,2), (2, 3)\}$
3	3	4		
4-6	4	4	{1,2,3,4}	$\{(1,2), (2, 3), (3,4)\}$
3	4	{no <i>K</i> }	, ,	
7	3	, ,		
3	3	$\{\text{no }K\}$		
7	2			
3	2	5		
4-6	5	5	{1,2,3,4,5}	$\{(1,2), (2,3), (3,4), (2,5)\}$
9 STC)P			

Second graph

Step No.	J	K	T	E(T)
1	1		{1}	Ø
3	1	2		
4-6	2	2	{1,2}	{(1,2)}
3 4-6	2 6	6 6	{1, 2, 6}	{(1,2), (2, 6)}
3	6	{no <i>K</i> }	,	((-,-,,(2,0))
7	2			
3	2	$\{no\ K\}$		
7	1			
3	1	(no <i>K</i>)		
8 STO	P		{1.2,6}	$\{(1,2), (2,6)\}$

3.5 First graph

Step No.	J	K	FOR WARD	PATH
Main 1	2		TRUE	(1,0,0,0,0)
Build 1	2	2		
3-5	3	2	TRUE	$\langle 1, 2, 0, 0, 0 \rangle$
Build 1	3	3		(-, -, -, -, -,
3-5	4	3	TRUE	(1,2,3,0,0)
Build 1,2	4	{no K}	FALSE	
Main 4, 5	3			(1,2,3,0,0)
Build 1	3	4		
3–5	4	4	TRUE	$\langle 1, 2, 4, 0, 0 \rangle$
Build 1, 2	4	{no <i>K}</i>	FALSE	
Main 4, 5	3			$\langle 1, 2, 4, 0, 0 \rangle$
Build 1, 2	3	{no <i>K</i> }	FALSE	
Main 4, 5	2			$\langle 1, 2, 0, 0, 0 \rangle$
Build 1	2	3		
3–5	3	3	TRUE	(1,3,0,0,0)
Build 1	3	2		
3-5	4	2	TRUE	<1,3,2,0,0)
Build 1	4	4		
3-5	5	4	TRUE	(1,3,2,4,0)
Main 7, 8				(1,3,2,4,1)
Main 9 ST	OP			

Second graph

Step No.	J	K	FOR WARD	PATH
Main 1	2		TRUE	(1.0,0,0,0)
Build 1	2	2		
3-5	3	2	TRUE	$\langle 1, 2, 0, 0, 0 \rangle$
Build I	3	3		, , , ,
3–5	4	3	TRUE	(1,2,3,0,0)
Build 1,2	4	$\{\operatorname{no} K\}$	FALSE	
Main 4, 5	3	,		(1,2,3,0.0)
Build 1	3	4		,
3-5	4	4	TRUE	<1,2,4,0,0)
Build 1, 2	4	{no K}	FALSE	
Main 4, 5	3	, ,		$\langle 1, 2, 4, 0, 0 \rangle$
Build 1,2	3	$\{\operatorname{no} K\}$	FALSE	• , , , .
Main 4, 5	2	,		(1,2,0,0,0)

continued

Second graph (continued)

Step No.	J	K	FOR WARD	PATH
Build 1	2	4		
3-5	3	4	TRUE	<1,4,0,0,0)
Build 1	3	2		
3-5	4	2	TRUE	(1,4,2,0,0)
Build 1	4	3		
3-4	5	3	TRUE	<1,4,2,3,0)
Main 7, 8			FALSE	
Main 4, 5	4			(1,4,2,3,0)
Build 1,2	4	{no <i>K</i> }	FALSE	
Main 4, 5	3			(1,4,2,0,0)
Build 1,2	3	{ no <i>K</i> }	FALSE	
Main 4, 5	2	,		<1,4,0,0,0)
Build 1, 2	2	{no <i>K</i> }	FALSE	
Main 4, 5	1	, ,		(1,0,0,0,0)
Main 6 NO	HAM C	YCLE, STO	P	

SECTION 4

4.1 Denote the locations by O = (0, O), P = (1, O), Q = (O, 1), and R = (1, 1). Since the drill must start and end at O, there are 3! = 6 possible drilling sequences: OPRQ and OQRP have total distance 4, OPQR and ORQP have total distance $2 + 2\sqrt{2}$ as do ORPQ and OQPR. Note that the second sequence of each of the preceding pairs is the reverse of the first.

4.3 D might consist of $\langle O, P, O, Q, O, S, O, R, O \rangle$.

4.4 The Hamiltonian cycle C produced from D is <0, P, Q, S, R, O). $W(C) = 6 + 2\sqrt{2} = w(H(G))$.

SECTION 5

5.1 See Figure 8.26: Each interfering pair of variables is represented by an edge of this graph. Sets of four mutually interfering variables: {L, W, Wt, A}, {Wt, Vol, A, Cl}, {Ht, A, Cl, Vol}, {Wt, Vol, Cl, C2}. There is no set of five mutually interfering variables.

- 5.3 Adding edges may increase the chromatic number: If x and y are not adjacent in H, but are adjacent in G, then a coloring of H is a coloring of G unless X and Y are assigned the same color. In that case, an additional color may be needed to color G. If the compiler assigns K = X(G) memory locations to a program based on a coloring of G, then no two variables, joined by an edge in G, receive the same color and so are not assigned to the same memory location. Edges join every pair of "truly" interfering variables and maybe more.
- 5.4 (i) $\chi(G) = \text{cl }(G) = 2$; (ii) $\chi(G) = \text{cl }(G) = 3$; (iii) $\chi(G) = \text{cl }(G) = 3$; (iv) $\chi(G) = \text{cl }(G) = 3$; (iv) $\chi(G) = \text{cl }(G) = 3$.
- 5.5 A graph is 1-colorable if and only if it does not contain an edge. An algorithm to 1-color could check that the graph contains no edges and then assign the color 1 to every vertex.

5.6	<i>(a)</i>	Step	No.	I	c_I J	L_{J}
		5	1	1		
		7	1	•	2	⟨2⟩
		7	1		6	(2, 3, 4, 5, 6)
		7	1		7	<2,3,4,5,6, 7)
		5	?	2		
		7	2 2		3	(1,3)
		7	2		7	<3,4,5,6, 7>
		5	3	1		
		7	3		4	(2,3,4)
		7	3		7	$\langle 3, 4, 5, 6, 7 \rangle$
		5	4	2		
		7	4		5	(1,3,4,5)
		7	4		7	(3,4,5,6,7)
		5	5	1		
		7	5		6	(2, 3, 4, 5, 6)
		7	5		7	(3,4>5,6,7)
		5	6	2		
	•	7	6		7	(3,4,5,6,7)
		5	7	3		

(b)	Step	No.	I	c_{I} J	L_{J}
	5	1	1		
	7	1		2	$\langle 2 \rangle$
	7	1		5	(2, 3, 4, 5)
	7	1		6	<2,3,4, 5,6)
	5	2	2		,
	7	2 2		3	$\langle 1, 3 \rangle$
	7	2		4	<1,3,4)
	7	2		5	(3,4,5)
	7	2 2		6	(3,4, 5,6)
	7	2		7	<1,3,4,5,6,7)
	5	3	1		, , , , , , , , , ,
	7	3		4	(3, 4)
	7	3		7	(3,4,5,6,7)
	5	4	3		(-, ,-,-,-,
	7	4	-	5	<4, 5)
	5	5	4		, -,
	5	6	3		
	7	6	3	7	<4,5,6, 7)
	5	7	4	,	, . , 0, 7)

5.7 Here is a trace of BACKTRACKCOLOR applied to K_4 with N = 3. Let the vertices be x_1, x_2, x_3 , and x_4 .

Step No.	J	K	FOR WARD	C[1, 2, 3,4]
Main 1	2		TRUE	[1,0,0,0]
Color 1	2	2		
3-5	3	2	TRUE	[1,2,0,0]
Color 1	3	3		
3-5	4	3	TRUE	[1,2,3,0]
Color 1	4	4		
6	4	4	FALSE	
Main 4,5	3			[1, 2, 3, 0]
Color 1	3	4		
6	3	4	FALSE	
Main 4,5	2			[1,2,0,0]
Color 1	2	3		
3-5	3	3	TRUE	[1,3,0,0]
Color 1	3	2		
3-5	4	2	TRUE	[1,3,2,0]
Color 1	4	4		
6	4	4	FALSE	
Main 4,5	3			[1,3,2,0]
Color 1	3	4		
6	3	4	FALSE	
Main 4,5	2			[1,3,0,0]
Color 1	2	4		
6	2	4	FALSE	
Main 4,5	1			[1,0,0,0]
6 T	HERE IS	NO 3-C	OLORING OF G	, STOP

INDEX

Acyclic graph, 253	Array, 33
Adjacency matrix, 268	2-dimensional, 289
Adjacent transportation, 160	ASCII code, 222
Adjacent vertices, 242	
Algorithm, 8. See also Algorithms and	Backtracking, 439
Procedures following Index.	Bad algorithm, 120
approximation, 389	Ballot problem, 387
bad, 120	Base case of proof by induction, 72
complexity, 119, 186-187	Basic solution of recurrence relation, 356
correct, 12	Base 3 representation, 20
cubic, 104, 469	Bernoulli numbers, 345, 386-387
divide-and-conquer, 325	"Big oh" notation:
efficient, 118	definition 1, 103
exponential, 120	definition 2, 108
good, 11-12, 120	Binary:
greedy, 273	coded decimal, 61
input to, 11	fraction, 8, 20
linear, 95, 104	notation, 6
logarithmic, 95, 108	number, 6
output, 11	tree, 303
polynomial. 120	full, 305
quadratic, 104	Binomial coefficient, 134
recursive, 318	Binomial theorem, 169
relative efficiency, 119	Bipartite graph, 247
All Pairs Problem, 399	complete, 247
Arithmetic:	Bit (binary digit), 17
congruence, 211	vector, 33
modular, 211	Boolean function, 51
modulo n, 211	AND, 51
Arithmetic progression, 124	associative law, 54

commutative law, 54	Depth:
distributive law, 54	of tree, 304
NOT, 51	of vertex, 304
OR, 51	Depth-first search, 414
satisfiable, 56	spanning tree, 415
variable, 148	Diameter of graph, 277
XOR (exclusive or), 52	Difference quotient, 366
Breadth-first-search, 395, 436	Directed graph, 406
spanning tree, 395	Disjoint union, 28
Busy Beaver N-game, 63	Disjunctive normal form (DNF), 58
, g,	Distance:
C	in graph, 253
Cartesian product, 31	in weighted graph, 272
Catalan numbers, 342, 387-388	Divisor, 182
Ceiling function, 94	Do loop, 83
Center of a tree, 272	nested, 145
Characteristic equation, 355	Domain of function, 40
Characteristic function, 33, 49	Dual graph, 446
Characteristic polynomial, 355	Duai grupii, 440
Characteristic root, 355	
Chromatic number of graph, 434	Eccentricity of vertex, 272
Clause, 55	Edge of graph, 241
Clique:	Encryption, 223
in graph, 246	Equivalence class:
number of graph, 434	of equivalence relation, 214
Collatz problem, 11	modulo n, 211–212
Complement of graph, 277	Equivalence relation, 213
Complete bipartite graph, 247	Euclidean algorithm, 190-193, 223
Complete graph, 246	Euclidean equations, 192
Complete residue system, 220	Eulerian cycle, 400
Complexity of algorithm, 119, 186-187	in directed graph, 406, 426
Component of graph, 251, 253	Eulerian graph, 400
Composite number, 140	arbitrarily traceable, 407
Composition of functions, 45	Eulerian path:
Conclusion, 112	in directed graph, 406
Congruent numbers, 211	Euler phi function, 238
Conjunctive normal form (CNF), 55	Euler's formula, 446
Connected directed graph, 410	Euler's theorem, 238, 401
strongly, 410	Exclusive or (XOR), 52
weakly, 410	Exponent of encryption scheme, 224
Connected graph, 251, 253	Exponential algorithm, 120
Contradiction, 56	Exponentiation, 68
Contrapositive, 115	
Converse, 116	Factorial function, 134
Cube, generalized, 251	Factorial representation, 140
Cycle, 252	Fermat's last theorem, 71-72
in directed graph, 406	Fermat's little theorem, 218-219, 238
	Fibonacci numbers, 198, 360
Decimal number, 6	and complexity of Euclidean algorithm, 206-
Decrypting key, 228	210
Decryption, 223	File, 286
Degree of vertex, 243	Floor function, 94
De Morgan's laws, 52	For do loop, 83

INDEX

For down to do, 156 Forest, 253 Four Color Problem, 433 Function(s), 40 characteristic, 33, 49 domain, 40 equal, 42 image, 40 inverse, 46 one-to-one (or 1-1), 43 onto, 42 range, 40 target, 40	Induction, 72 complete, 198 Inductive hypothesis, 73 Inductive step, 73 Information theoretic bound (on sorting), 314 Integers modulo n, 215 Interference graph, 433 Intractable problem, 120 Inverse function, 46 Isomorphic graphs, 244 Isomorphism: of graphs, 244 of labeled graphs, 278
Congreting function 174	Iteration, 348
Generating function, 174 Geometric series, 74 alternating, 74	j-subset, 30
Good algorithm, 11-12, 120	Key, 286
Graph, 241	Kruskal's algorithm, 264, 426
connected, 251, 253	Kluskai s argoriumi, 204, 420
directed, 406	Lamé's theorem, 208
Eulerian, 406	Leaf (in a tree), 272
grid, 242	Least common multiple (lcm), 185
Hamiltonian, 411	Level of vertex, 304
	Lexicographic ordering, 145-148
isomorphism, 244	LHRRWCC (linear homogeneous recurrence
k-colorable, 434	`
k-colored, 434	relation with constant coefficients), 353
perfect, 443	Linear combination, 194, 357
planar, 446 regular, 249	Linear ordering, 221
-	Line graph, 424
2-colorable, 247, 435	Literal, 55
Greatest common divisor (gcd), 182, 185 Grid:	Local area network (LAN), 239
graph, 242	Logarithm (to the base 2), 92
	Logically equivalent, 115
rectangular, 129	Loglog(n), 102
Hamiltonian avala 411	Loop, 9
Hamiltonian cycle, 411	do, 83
minimum-weight, 425	nested, 145
Hamiltonian graph, 411	for do, 83
Hamiltonian path, 411	down to, 156
Harmonic numbers, 342	repeat . until, 164
Hereditary property, 273	while do, 69
Hierarchy of functions, 108	Lucas numbers. 364
Hilbert's tenth problem, 205	M : 1 1
Hypothesis, 112	Magic trick, 1
$i(\sqrt{-1}),358$	Mastermind, 161
	Mathematical induction, 72
Identity map (or permutation), 45	complete, 198
If and only if, 59, 116	Matrix, 268
Incident vertex and edge, 242	Maximal subset, 273
Independence number, 280	Minimum-distance spanning tree, 390
Independent set of vertices, 280 Induced subgraph, 262	Minimum-weight matching problem, 405 Minimum-weight spanning tree, 258, 264

Modular arithmetic, 211	divide-and-conquer, 373
Modulon, 211	homogeneous, 349
Multigraph, 408	inhomogeneous, 349
Multiple:	initial conditions, 347
of an integer, 182	linear, 353
root, 358	order, 353
Multiplication principle, 2	Recursive algorithm, procedure, 318
generalization, 87	Reducing modulo n, 225
Multiplicative inverse modulo n, 217	Reflexive property of relation, 213
Multiplicity of root, 358	Relation, 212-213
Multiset, 35, 164	graph of symmetric, 245
	Relatively prime integers, 218
Natural numbers, 21	Remainder, 191
Negation, 111	Repeat until, 164
NP-Complete problem, 420	
n-set, 29	Residue, least nonnegative, 214
*	Root of tree, 303
n-tuple, 32	RSA scheme. 223
Null set, 21	a
0 1 5 1 12	Satisfiability problem, 57, 122
One-to-one function, 43	Search tree, 303
Onto function, 42	binary, 311
Ordered pair, triple, 32	Sequence, 339
	integer, 339
Pancake problem, 338	nth term, 340
Partition, 28, 214	symmetric, 140
Pascal's triangle, 133-134	unimodal, 140
Path, 252	Set(s), 21
in directed graph, 406	cardinality, 35
length, 252, 390	complement, 22
Permutation(s), 44, 153	difference, 25
distance between, 160	disjoint, 25
and English change ringing, 159- 160	element, 21
even, 160	empty, 21
identity, 45	equality, 21
inversions, 180	finite, 35
odd, 160	intersection, 22
Pigeonhole principle, 44	null, 21
Polynomial algorithm, 120	relative complement, 25
Polynomial identity, 74	subset(s), 21
Prime number, 21	number, 80
Principle of inclusion and exclusion, 38	number of j-subsets of n-set, 142
Procedure, 296	union, 22
Proof by contradiction, 110	Sieve of Eratosthenes, 236
Public key encryption scheme, 223	Simplified fraction, 181
,, <u></u>	Spanning forest, 257
Quadratic formula, 362	Spanning in-tree, 410
Quotient, 191	Spanning subgraph, 256
Quotient, 191	Spanning stree, 256
Radius of graph, 398	
Range of function, 40	Stable sorting algorithm, 334
Record, 286	Stirling's formula, 158
Recurrence relation, 346	Storage allocation scheme, 432-433
constant coefficient, 353	Subgraph, 256
Constant Coefficient, 555	induced, 262

INDEX

Subtrees (left and right), 303 Trivial programming language, 62-63 Symmetric property of relation, 213 Universe, 20 Target of function, 40 Tautology, 56 Variables: Ternary representation, 20 Boolean, 148 Total ordering, 221 interfering, 432 Towers of Hanoi. 382 noninterfering, 432 Trace of an algorithm, 17 Vector, 33 Transitive closure of a graph, 282 Venn diagram, 26 Transitive property of a relation, 213 Vertex of a graph, 241 Trapdoor function, 223 Traveling Salesrepresentative Problem, 274 Weighted graph, 257 Tree, 253 Well defined operation, 215 binary, 303 planted planar, 388 While do, 69 Wilson's theorem, 238 search, 303 Worst-case analysis, 92

ALGORITHMS AND PROCEDURES

ADDRACT1, 482 APPROXHAM, 428

BACKTRACKCOLOR, 440-441
BADMINTREE, 258
BINARYSEARCH, 291
BINARYSORT, 297
BININSERT, 296
Borůvka's algorithm, 280
BREADTHFIRSTSEARCH (BFS), 395
BtoD, 16
BUBBLES, 87
BUBBLESORT, 288
BUCKETSORT, 332, 338

COLLATZ, 11

DEPTHFIRSTSEARCH (**DFS**), 415 DFS-HAMCYCLE, 418-419 DIJKSTRA, 392 **DIJKSTRA2**, 398-399 DIVISORSEARCH, 234 DtoB, 18, 84, 89

EUCLID, 195 EULER, 408-409 EXPONENT, 68, 82, 188-189

FASTEXP, 91, 187 FIB, 319 FIB2, 323 FOURSUM, 85 FUN, 15

GCD, 320 GCD1, 183, 187-188 GCD3, 335 GREEDYCYCLE, 501 GREEDYMAX, 501 GREEDYMIN, 273

HAMCYCLE, 413 HAMCYCLE2, 422-423

IND, 281 INDUCTION, 73 INDUCTION, 199 INSERTIONSORT, 334

JSET, 148

KRUSKAL, 264, 426

LABGPHISO, 278

MAX, S6 MERGE, 326 MERGESORT, 327

ALGORITHMS AND PROCEDURES

MIN, 318, 320 R-SELECTSORT, 321 MYSTERY, 337 R-SUBSET, 324

ODDSUM, 85 SELECTSORT, 285 SEQSEARCH. 284

SEQUENTIALCOLOR, 436-437

PAIR, 145
PERM, 156
POSTAGE, 432
Prim's, 280

SIMPLIFY, 184
SPEEDY, 118
SPTREE, 262-263
SQUARESUM, 86
SUBSET, 30-31
SUM, 83

R-DEPTHFIRSTSEARCH, 417-418

R-DtoB, 335 R-JSET, 324 RSA, 232 TREESORT, 307

VOLUME, 431

NOTATIONS

☐ end of proof, 27-28	- NOT, 51 ⊕ XOR, 53
Algorithmic:	[] ceiling function, 94
: = assignment statement, 15	X _s characteristic function, 49
* multiplication symbol, 15	$(g \circ f)$ composition of functions, 45
/ division symbol, 15	$f^2, f^3, f^{"}, 49-50$
	n! factorial function, 134
Set theory:	[] floor function, 94
$A \times A$, $An A \times B$ Cartesian product, 31-	log(n) logarithm to the base, 2, 92
33	$log_{,}(n)$ logarithms to the base d , 124, 376
⊆ containment, 21	O(g) big oh of g, 103, 108
A' the complement of A , 22	
{} curly brace notation for sets, 21	Number theory:
A-B difference, 25	$a \equiv b \pmod{n}$ equivalence modulo n, 211
∈ element of, 21	[x] equivalence class modulo n , 211
\emptyset empty set, null set, 21	F_k kth Fibonacci number, 198
n intersection, 22	gcd(b,c) greatest common divisor, 182
(a_1,a_2,\ldots,a_n) <i>n</i> -tuple, 31	$\gcd(a,b,c),185$
(a,b) ordered pair, 31	lcm(b,c) least common multiple, 185
(a,b,c) ordered triple, 31	φ phi, 202
() permutation, 153	φ', 203
array, 284	$\phi(m)$ Euler phi function. 238
u union, 22	- relation, 212–213
T. C	Z_n integers modulo n . 215
Functions:	C. ab the same
(*) binomial coefficient. 135	Graph theory: a(G) independence number of G, 280
Boolean functions:	A(G) adjacency matrix, 268
A AND, 51	C_k k-cycle, 253
,	$\chi(G)$ chromatic number of G, 434
v OR, 51	χ(G) chromatic number of G, 434

NOTATIONS

Graph theory (Continued)

cl(G) clique number of G, 434

deg(x), deg(x, G) degree of vertex x, 243

d(G) diameter of the graph G, 398

d(x,y) distance from x toy, 253, 272

E(G) the set of edges of the graph G, 242

G^c the complement of G, 277

K. the complete graph on r vertices, 246

K_{p,q} the complete bipartite graph, 247

L(G) line graph of G, 424
Nbor(v) neighbor of the vertex u, 408
P_k k-path, 253
Q_n generalized cube or n-cube, 251
r(G) radius of G, 398
V(G) the set of vertices of the graph G, 242
w(e) weight of an edge e, 257
w(T) weight of a tree T, 257