Advanced Topics in Statistics 2020/2021 Homework set 1

- 1. Show that convergence in the rth mean implies convergence in the sth mean if $r > s \ge 1$:
 - (a) Recall Jensen's inequality and use the fact that $x \mapsto |x|^p$ $(p \ge 1)$ is a convex function in \mathbb{R} (no need to prove these facts) to show that as long as all moments exist,

$$E[|X|^r] \ge (E[|X|^s])^{r/s}$$
.

- (b) Conclude the result.
- 2. Consider the situation where $\Omega=(0,1)$ and P is such that $P(A)=\int_A d\omega$. Let α be a real number and $X_n:\Omega\to\mathbb{R},\ n\in\mathbb{N}$, be given by

$$X_n(\omega) = \begin{cases} \alpha^n & \text{if } \omega < 2^{-n} \\ 0 & \text{if } \omega \ge 2^{-n} \end{cases}.$$

- (a) Verify using the definition that
 - i. $X_n \stackrel{as}{\to} 0$.
 - ii. $X_n \stackrel{P}{\to} 0$.
 - iii. $X_n \stackrel{d}{\to} 0$.
- (b) Show that $X_n \stackrel{r}{\to} 0$ iff $|\alpha| < 2^{1/r}$, where $r \geq 1$. Conclude that almost sure convergence does not imply convergence in the rth mean.
- (c) Show that, if $1 \le r < s$, convergence in the rth mean does not imply convergence in the sth mean.
- 3. For $n \geq 1$ consider the sample space $\Omega_n = \{1, 2, ..., n\}$ with $P_n(A) = \frac{\#A}{n}$ for any $A \subset \Omega_n$. Let $X_n : \Omega_n \to \mathbb{R}$ be given by $X_n(\omega) = \omega/n$.
 - (a) Show that $X_n \stackrel{d}{\to} X$ where $X \sim U(0,1)$.
 - (b) Does it make sense to investigate whether $X_n \stackrel{P}{\to} X$? Why?
- 4. Let $\{X_n\}$ be a sequence of random variables defined on the same probability space and c a real number. Show that if $X_n \stackrel{d}{\to} c$ then $X_n \stackrel{P}{\to} c$.