National University of Singapore Department of Computer Science CS1231 Discrete Structures

2021/22 (Sem.1)

Tutorial 4

- 1. Let $A = \{0, 1\}$, $B = \{a, b, c\}$ and $C = \{01, 10\}$. Determine the following:
 - (a) $B \times C$;
- (b) $A \times B \times C$;
- (c) $\varnothing \times A$;
- (d) $\mathcal{P}(\{\varnothing\}) \times A$.
- 2.* Consider a probabilistic experiment like the following: first toss a coin; if the toss is head, then pick a ball from a box with 2 black balls and 3 white balls; if the toss is tail, then pick a ball from a box with 4 red balls and 5 white balls. An **outcome** of such an experiment may be, say, a tail followed by a red ball.
 - (a) Use an ordered pair to represent each possible outcome of the experiment; the set of all such ordered pairs is called the **sample space**.
 - (b) An **event** for this experiment may be "the toss is tail" or "a white ball is picked". How can these events be represented as subsets of the sample space?

[This is an example of mathematical **modeling**, which is ubiquitous in Computer Science; here, sets and ordered pairs are used to model the experiment.]

- 3. Let $A = \{1, 2, 3, 4\}$, $B = \{-1, 0, 1\}$, $C = \{2, 3, 5, 7\}$, $R = \{(a, b) \in A \times B : ab \text{ is even}\}$ and $S = \{(b, c) \in B \times C : b + 2c \text{ is odd}\}$.
 - (a) Draw arrow diagrams for $R, S, S \circ R$ and their inverses R^{-1}, S^{-1} and $(S \circ R)^{-1}$.
 - (b) Verify that $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$.
- 4. Recall the database relations in Figure 5.1 of the lecture notes. Draw arrow diagrams for SN, SM and $SM \circ (SN)^{-1}$.
- 5. Let $Y = \{a, b, c, d, e\}$ and $Z = \{1, 2, 3, 4, 5\}$, and the arrow diagram of the relation R from Y to Z be as shown on the right.

(b) Determine $R^{-1} \circ R$.

- 6. Consider the relation $S = \{(m, n) \in \mathbb{Z}^2 : m^3 + n^3 \text{ is even}\}$ on \mathbb{Z} . Determine S^{-1} , $S \circ S$ and $S \circ S^{-1}$.
- 7.* A predicate P(x, y) can be represented by a relation R, so that P(x, y) is true if and only if $(x, y) \in R$. For example, if the domains of x and y are $B = \{2, 3, 5, 7, 11, 13\}$ and $C = \{0, 2, 4, 6, 8\}$ respectively, then one can represent the predicate x = y + 1 by the relation $\{(3, 2), (5, 4), (7, 6)\}$ over B and C.
 - (a) For the domains B for x and C for y above, determine the relations that represent the predicates (i) x < y; (ii) x divides y (see Tutorial 2, Problem 2); (iii) $x y \in C$.
 - (b) In general, what can you say about the relation R over X and Y that represents a predicate P(x,y) if
 - (i) $\forall x \in X \ \forall y \in Y \ P(x, y)$ is true?
- (ii) $\exists x \in X \ \exists y \in Y \ P(x, y)$ is true?
- (c) In (b), viewing $X \times Y$ as the universal set, and what is P(x,y) when $(x,y) \in \overline{R}$?
- 8. Let A, B, C, D be sets and $R \subseteq A \times B, S \subseteq B \times C$ and $T \subseteq C \times D$. Prove that $T \circ (S \circ R) = (T \circ S) \circ R$ (i.e. composition is associative for relations).

9. The directed graph (A, D) and the undirected graph (B, E) are shown below:

Determine A, D, B and E.

- 10.* Let $A = \{a, b, c, d, e\}$ and $R = \{(b, b), (b, e), (c, c), (c, d), (d, d), (d, e), (e, a), (e, e)\}$, considered as a relation on A.
 - (a) Draw an arrow diagram for R.
 - (b) Determine R^{-1} .
 - (c) Determine $R \circ R$.
- 11. Draw the following directed graphs:
 - (a) $(\mathcal{P}(\{a,b,c\}),\subseteq)$ where \subseteq is the "subset" relation;
 - (b) $(\{2,3,4,5,6,12,13,14,15,16,17,18,19,20\}, |)$, where | is the "divides" relation (from Tutorial 2, Problem 2).
- 12.* Let $C = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$ and $R = \{(x, y) \in C^2 : y = x^2 1\}$, considered as a relation on C.
 - (a) Draw an arrow diagram for R.
 - (b) Determine $R \circ R$.
- 13. A $C \times C$ chessboard is a square divided into C rows of C unit squares, where $C \in \mathbb{Z}^+$. For example, the usual chessboard is a $2^3 \times 2^3$ chessboard. An L-tile is a $2^1 \times 2^1$ chessboard with one unit square missing (as shown).

Given a $C \times C$ chessboard and any one of its unit squares singled out (like the black one below), can the rest of the chessboard can be covered by non-overlapping L-tiles? (See the example below.)

Investigate into the cases C = 4, C = 5 and C = 6. (To be continued in Tutorial 5.)

L-tile

