#### Лабораторная работа №3

### Метод барьеров

# 1. Вспомогательная функция $f_t(x, u)$

Для задачи LASSO, минимизируемой методом барьеров, вспомогательная функция имеет вид:

$$f_t(x, u) = \frac{1}{2} |Ax - b|^2 + \lambda \langle \mathbf{1_n}, u \rangle - \ln u + x - \ln(u - x)$$

где A — матрица коэффициентов, b — вектор наблюдений,  $\lambda$  — коэффициент регуляризации,  $\mathbf{1}_{\mathbf{n}}$  — вектор единиц.

#### 1.1 Система линейных уравнений

Ньютоновское направление  $d_k = (d_k^x, d_k^u)$  задается следующей системой линейных уравнений:

$$\nabla^2 f_t(x_k, u_k) d_k = -\nabla f_t(x_k, u_k)$$

где градиенты и Гессиан вычисляются следующим образом:

Градиенты:

$$\nabla_{x} f_{t}(x, u) = A^{T} (Ax - b) - \frac{1}{u + x} + \frac{1}{u - x}$$
$$\nabla_{u} f_{t}(x, u) = \lambda \mathbf{1}_{n} - \frac{1}{u + x} - \frac{1}{u - x}$$

Гессиан:

$$\nabla^2 f_t(x, u) = \begin{pmatrix} \nabla_{xx}^2 f_t(x, u) & \nabla_{xu}^2 f_t(x, u) \\ \nabla_{ux}^2 f_t(x, u) & \nabla_{uu}^2 f_t(x, u) \end{pmatrix}$$

где

$$\nabla_{xx}^{2} f_{t}(x, u) = A^{T} A + \text{Diag}\left(\frac{1}{(u+x)^{2}} + \frac{1}{(u-x)^{2}}\right)$$
$$\nabla_{uu}^{2} f_{t}(x, u) = \text{Diag}\left(\frac{1}{(u+x)^{2}} + \frac{1}{(u-x)^{2}}\right)$$

$$\nabla_{xu}^2 f_t(x, u) = \text{Diag}\left(\frac{1}{(u+x)^2} - \frac{1}{(u-x)^2}\right)$$

1.2 Максимальная допустимая длина шага α

Максимальная допустимая длина шага определяется с учетом ограничений задачи. Для текущей точки  $(x_k, u_k)$  и направления  $d_k$  ограничения могут быть заданы как  $|x| \le u$ .

Максимальная длина шага  $\alpha^{max}$  определяется следующим образом:

1. Если  $x_k \ge 0$ :

$$lpha \leq rac{u_k - x_k}{d_k^x - d_k^u}$$
, при  $d_k^x - d_k^u > 0$ 

2. Если  $x_k < 0$ :

$$lpha \leq -rac{u_k+x_k}{d_k^x+d_k^u}$$
, при  $d_k^x+d_k^u<0$ 

В результате, выбираем  $\alpha < \alpha^{max}$  и начинаем с  $\alpha^0 = \min(1,0.99 \cdot \alpha^{max})$ .

1.3 Начальная точка  $(x_0, u_0)$ 

Для метода барьеров можно выбрать начальную точку  $(x_0, u_0)$ , удовлетворяющую ограничениям:

$$Q = \{(x, u) \in R^n : |x| - u \le 0\}$$

Рекомендуется выбирать  $(x_0, u_0)$  в пределах области допустимых решений, например, с маленькими положительными значениями для  $u_0$  и  $x_0$ , чтобы обеспечить соблюдение ограничений.

## 2. Эксперимент a. Варьирование $\gamma$ и $\varepsilon_{inner}$

В этом эксперименте исследуется влияние параметров  $\gamma$  и  $\varepsilon_{inner}$  на эффективность метода.

Мы используем следующие параметры:

$$n = 300$$
$$m = 600$$
$$\lambda = 1 \times 10^{-4}$$

Элементы матрицы A и вектора b создаются на основе стандартного нормального распределения.

В качестве метода линейного поиска для метода Ньютона применяется метод Армихо с бектрекингом, где параметр равен  $\frac{1}{2}$  и коэффициент  $c_1 = 1 \times 10^{-4}$ .

Для эксперимента выбираем значения

$$\begin{split} \gamma \in (2,4,8,16,32,64,128) \\ \varepsilon_{inner} \in (1\times 10^{-9},1\times 10^{-8},1\times 10^{-7},1\times 10^{-6},1\times 10^{-5},1\times 10^{-4},1\\ \times 10^{-3},1\times 10^{-2},1\times 10^{-1}) \end{split}$$



Увеличение параметра  $\gamma$  значительно ускоряет сходимость метода, как в плане реального времени, так и по количеству итераций. Это свидетельствует о том, что более высокие значения  $\gamma$  способствуют более быстрому достижению результата.

Влияние  $\varepsilon_{inner}$  на время выполнения метода заметно, однако это значение не влияет на количество итераций, необходимых для достижения требуемой точности.

#### 3. Эксперимент b. Варьирование $n, m, \lambda$

В этом разделе мы исследуем чувствительность метода к размерности задачи n, количеству наблюдений m и коэффициенту регуляризации λ.

Для анализа фиксируем

$$\varepsilon = 1 \times 10^{-5}$$
  

$$\varepsilon_{inner} = 1 \times 10^{-8}$$
  

$$\gamma = 10$$

Линейный поиск выполняется методом Армихо.

Анализ влияния размерности n:

$$m = 600$$

$$\lambda = 1 \times 10^{-4}$$

$$n \in (2, 4, 8, 16, 32, 64, 128)$$

Влияние количества наблюдений т:

$$n = 300$$

$$\lambda = 1 \times 10^{-4}$$

$$m \in (10, 100, 500, 1000, 5000, 10000)$$

Влияние коэффициента регуляризации λ:

$$n = 300$$
 
$$m = 600$$
 
$$\lambda \in (1 \times 10^{-9}, 1 \times 10^{-8}, 1 \times 10^{-7}, 1 \times 10^{-6}, 1 \times 10^{-5}, 1 \times 10^{-4}, 1 \times 10^{-3}, 1 \times 10^{-2}, 1 \times 10^{-1}, 1)$$





С увеличением размерности п наблюдается резкий рост количества необходимых итераций, однако при больших п вариация итераций становится незначительной (от 7 до 9). Размерность также значительно влияет на время выполнения: чем больше п, тем больше время работы метода.

Количество наблюдений m не влияет на количество итераций, необходимых для сходимости, но время работы метода возрастает с увеличением m, аналогично влиянию размерности.

При очень малом  $\lambda$  метод сходится быстро (за две итерации) и требует минимального времени. С увеличением  $\lambda$  количество итераций увеличивается, но при этом оно становится независимым от значения  $\lambda$ .