Syntactic and Referential Cues to the Identification of Generic Statements

Phil Crone

pcrone@stanford.edu
Department of Linguistics
Stanford University

Michael C. Frank

mcfrank@stanford.edu
Department of Psychology
Stanford University

Abstract

Generic sentences (e.g. "Birds fly.") express generalizations about kinds, as opposed to non-generic sentences that are about specific individuals or groups of individuals (e.g. "All birds fly."). We investigate how language users use morphosyntactic and pragmatic cues to determine whether naturalistic sentences should receive generic interpretations. Experiment 1 demonstrates the effect of morphosyntactic features of a sentence's subject noun phrase (NP) on generic interpretation. Experiments 2 and 3 reveal that when a sentence's subject NP does not have an obvious reference in context, the sentence is more likely to receive a generic interpretation.

Keywords: pragmatics; generics

Introduction

Generic sentences differ from non-generic sentences in that they express generalizations about kinds rather than properties of specific individuals or sets of individuals. For example, the sentence "Birds fly" express a general property of the kind *bird*, whereas the sentence "All birds fly" states that for every member *x* of the set consisting of all birds, *x* flies. A key difference between generic and non-generic statements is that generics allow for exceptions. "Birds fly" is true despite the fact that some birds do not fly. "All birds fly" is false in virtue of the fact that there are individuals that are birds and do not fly (Prasada, 2000).

We can identify two distinct puzzles that generics pose for the study of natural language semantics and pragmatics. The first is how to provide adequate truth conditions for generic sentences. These truth conditions must account for the fact that generics allow for exceptions and other peculiarities, such as the fact that generics may be judged true even when the generalization does not hold for most members of the kind. A second puzzle is how language users solve the problem of identifying whether a sentence should receive a generic or non-generic interpretation; this problem arises because sentences are often ambiguous between generic and non-generic interpretations. The current study is concerned with the second puzzle.

Individuals use three types of cues to guide their interpretation of sentences as generic or non-generic: morphosyntactic features, pragmatic cues, and world knowledge (Cimpian & Markman, 2008; Cimpian, Meltzer, & Markman, 2011; Gelman & Raman, 2003). In English, the subject NP of a generic sentence is often a bare plural ("Birds fly."), but indefinite singular ("A bird has wings.") and definite singular ("The bird is a warm-blooded animal.") NPs can also serve as subjects of generic sentences. Definite plural NPs ("The birds have feathers.") are generally thought to force non-generic interpretations. Tense and aspect also cue whether it is to

be interpreted generically. Generic sentences tend to use the simple present tense ("Birds fly."), as opposed to the present progressive ("Birds are flying overhead."), past tense ("Birds flew past my window."), or tense/aspect categories (Krifka et al., 1995; Lyons, 1977).

In addition to these morphosyntactic cues, the preceding discourse and nonlinguistic factors may influence whether a sentence is interpreted as generic or non-generic. For example, if a unique bird is present in the context of an utterance of a sentence with the subject NP "the bird," a non-generic interpretation in which this NP refers to the bird in context may be more likely. Conversely, if no such bird exists in the context, a generic interpretation may be preferred. Finally, world knowledge about the properties shared by members of a kind will influence the interpretation of potentially generic sentences. The sentence "A bird does not fly" is interpreted as a non-generic sentence about some particular bird (e.g. a penguin), given world knowledge that, in general, birds fly.

Previous experimental work has demonstrated the relevance of these three factors to the identification of generic sentences. Gelman and Raman (2003) show that adults and children as young as 3 show a preference for interpreting bare plurals as generic, as compared to definite plurals, and are more likely to interpret sentences as generic when the subject NP has no available referent in context. Cimpian and Markman (2008) demonstrate that by age 3 children are less likely to assign a generic interpretation to a sentence when its subject NP has a possible referent in the preceding linguistic context. In addition, they show that children as young as 3 use knowledge about whether properties are generalizable to kinds as evidence about whether to interpret sentences as generic or not. Finally, Cimpian et al. (2011) show that 3year-olds use definiteness of subject NPs as a cue to identifying generics and that adults and children as young as 4 use tense and aspect to identify generics.

The present study differs from previous work in several respects. The majority of previous work on the identification of generics has focused on children's abilities, whereas the current study is primarily concerned with how adults identify generics. The focus on children's identification of generics stems in part from the fact that children face an inductive problem not faced by adult language users regarding which types of NPs refer to kinds. However, recent work emphasizing the probabilistic nature of language comprehension (Frank & Goodman, 2012; Levy, 2008) suggests that adults face a similar problem. On this view, language users resolve uncertainty in language comprehension via probabilistic inference to the most likely interpretation. In the specific

case of identifying generics, we can view adults as reasoning about the likelihood of an utterance being generic given morphosyntactic features of the sentence, features of the context, and the listeners' world knowledge.

Experiment 1

First level headings should be in 12 point, initial caps, bold and centered. Leave one line space above the heading and 1/4 line space below the heading.

Method

Participants

Stimuli

Procedure

Data Analysis

Results & Discussion

Experiment 2A

First level headings should be in 12 point, initial caps, bold and centered. Leave one line space above the heading and 1/4 line space below the heading.

Method

Participants

Stimuli

Procedure

Data Analysis

Results & Discussion

Experiment 2B

First level headings should be in 12 point, initial caps, bold and centered. Leave one line space above the heading and 1/4 line space below the heading.

Method

Participants

Stimuli

Procedure

Data Analysis

Results & Discussion

Experiment 3

First level headings should be in 12 point, initial caps, bold and centered. Leave one line space above the heading and 1/4 line space below the heading.

Method

Participants

Stimuli

Procedure

Data Analysis

Results & Discussion

General Discussion

Use standard APA citation format. Citations within the text should include the author's last name and year. If the authors' names are included in the sentence, place only the year in parentheses, as in ? (?), but otherwise place the entire reference in parentheses with the authors and year separated by a comma (?, ?). List multiple references alphabetically and separate them by semicolons. Use the "et al." construction only after listing all the authors to a publication in an earlier reference and for citations with four or more authors.

Footnotes

Indicate footnotes with a number¹ in the text. Place the footnotes in 9 point type at the bottom of the column on which they appear. Precede the footnote block with a horizontal rule.²

Tables

Number tables consecutively. Place the table number and title (in 10 point) above the table with one line space above the caption and one line space below it, as in Table 1. You may float tables to the top or bottom of a column, or set wide tables across both columns.

Table 1: Sample table title.

Error type	Example
Take smaller	63 - 44 = 21
Always borrow	96 - 42 = 34
0 - N = N	70 - 47 = 37
0 - N = 0	70 - 47 = 30

Figures

All artwork must be very dark for purposes of reproduction and should not be hand drawn. Number figures sequentially, placing the figure number and caption, in 10 point, after the figure with one line space above the caption and one line space below it, as in Figure 1. If necessary, leave extra white space at the bottom of the page to avoid splitting the figure and figure caption. You may float figures to the top or bottom of a column, or set wide figures across both columns.

CoGNiTiVe ScIeNcE

Figure 1: This is a figure.

¹Sample of the first footnote.

²Sample of the second footnote.

Acknowledgments

Place acknowledgments (including funding information) in a section at the end of the paper.

References Instructions

Follow the APA Publication Manual for citation format, both within the text and in the reference list, with the following exceptions: (a) do not cite the page numbers of any book, including chapters in edited volumes; (b) use the same format for unpublished references as for published ones. Alphabetize references by the surnames of the authors, with single author entries preceding multiple author entries. Order references by the same authors by the year of publication, with the earliest first.

Use a first level section heading, "**References**", as shown below. Use a hanging indent style, with the first line of the reference flush against the left margin and subsequent lines indented by 1/8 inch. Below are example references for a conference paper, book chapter, journal article, dissertation, book, technical report, and edited volume, respectively.

References

- Cimpian, A., & Markman, E. (2008). Preschool children's use of cues to generic meaning. *Cognition*, 107(1), 19–53.
- Cimpian, A., Meltzer, T. J., & Markman, E. (2011). Preschoolers' use of morphosyntactic cues to identify generic sentences: Indefinite singular noun phrases, tense, and aspect. *Child Development*, 82(5), 1561–1578.
- Frank, M. C., & Goodman, N. D. (2012). Predicting pragmatic reasoning in language games. *Science*, *336*(6084), 998.
- Gelman, S. A., & Raman, L. (2003). Preschool children use linguistic form class and pragmatic cues to interpret generics. *Child Development*, 74(1), 308–325.
- Krifka, M., Pelletier, F. J., Carlson, G. N., ter Meulen, A., Link, G., & Chierchia, G. (1995). Genericity: An introduction. In *The Generic Book* (pp. 1–124). Chicago: The University of Chicago Press.
- Levy, R. (2008). Expectation-based syntactic comprehension. *Cognition*, *106*(3), 1126–1177.
- Lyons, J. (1977). *Semantics: Volume 1*. New York: Cambridge University Press.
- Prasada, S. (2000). Acquiring generic knowledge. *Trends in Cognitive Science*, 4(2), 66–72.