DOES GENRE AFFECT A MOVIE'S EARNING POTENTIAL (DOMESTIC GROSS)?

KATHERINE PULLY JULY 15, 2016

MOVIELENS DATASET

- 1. Animation
 - 2. Drama
- 3. Adventure
 - 4. Children
 - 5. Sci-Fi
 - 6. Horror
 - 7. Comedy
- 8. Romance
 - 9. Drama

- 10.Thriller
- 11.Mystery
- 12.Fantasy
- 13.Documentary
 - 14.Musical
 - 15.Western
 - **16.War**
 - 17.Crime
 - 18.Film-Noir

FIRST PASS RESULTS

Dep. Variable:	dgross	R-squared:	0.012
Model:	OLS	Adj. R-squared:	0.007
Method:	Least Squares	F-statistic:	2.249
Date:	Fri, 15 Jul 2016	Prob (F-statistic):	0.0169
Time:	00:04:04	Log-Likelihood:	-32264.
No. Observations:	1638	AIC:	6.455e+04
Df Residuals:	1628	BIC:	6.460e+04
Df Model:	9		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	8.878e+07	5.31e+06	16.717	0.000	7.84e+07 9.92e+07
thriller	-1.419e+06	6.6e+06	-0.215	0.830	-1.44e+07 1.15e+07
comedy	-8.559e+05	5.61e+06	-0.153	0.879	-1.19e+07 1.02e+07
drama	-6.953e+06	5.39e+06	-1.291	0.197	-1.75e+07 3.61e+06
documentary	1.496e+06	1.33e+07	0.113	0.910	-2.45e+07 2.75e+07
action	4.727e+06	6.55e+06	0.722	0.471	-8.12e+06 1.76e+07
animation	2.249e+07	1.42e+07	1.589	0.112	-5.26e+06 5.02e+07
horror	3.11e+07	9.95e+06	3.127	0.002	1.16e+07 5.06e+07
fantasy	-1.118e+07	1.88e+07	-0.595	0.552	-4.8e+07 2.57e+07
romance	-3.577e+06	6.17e+06	-0.579	0.562	-1.57e+07 8.53e+06

FIRST PASS RESULTS

Dep. Variable:	dgross	R-squared:	0.012
Model:	OLS	Adj. R-squared:	0.007
Method:	Least Squares	F-statistic:	2.249
Date:	Fri, 15 Jul 2016	Prob (F-statistic):	0.0169
Time:	00:04:04	Log-Likelihood:	-32264.
No. Observations:	1638	AIC:	6.455e+04
Df Residuals:	1628	BIC:	6.460e+04
Df Model:	9		
Covariance Type:	nonrobust		

		coef	std err	t	P> t	[95.0% Conf. Int.]
	Intercept	8.878e+07	5.31e+06	16.717	0.000	7.84e+07 9.92e+07
	thriller	-1.419e+06	6.6e+06	-0.215	0.830	-1.44e+07 1.15e+07
\bigcirc	comedy	-8.559e+05	5.61e+06	-0.153	0.879	-1.19e+07 1.02e+07
	drama	-6.953e+06	5.39e+06	-1.291	0.197	-1.75e+07 3.61e+06
	documentary	1.496e+06	1.33e+07	0.113	0.910	-2.45e+07 2.75e+07
	action	4.727e+06	6.55e+06	0.722	0.471	-8.12e+06 1.76e+07
	animation	2.249e+07	1.42e+07	1.589	0.112	-5.26e+06 5.02e+07
	horror	3.11e+07	9.95e+06	3.127	0.002	1.16e+07 5.06e+07
	fantasy	-1.118e+07	1.88e+07	-0.595	0.552	-4.8e+07 2.57e+07
	romance	-3.577e+06	6.17e+06	-0.579	0.562	-1.57e+07 8.53e+06

SECOND ATTEMPT – LOG TRANSFORMATION

Dep. Variable:	log_gross	R-squared:	0.014
Model:	OLS	Adj. R-squared:	0.009
Method:	Least Squares	F-statistic:	2.596
Date:	Fri, 15 Jul 2016	Prob (F-statistic):	0.00566
Time:	00:11:45	Log-Likelihood:	-2578.9
No. Observations:	1638	AIC:	5178.
Df Residuals:	1628	BIC:	5232.
Df Model:	9		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	17.7862	0.072	248.645	0.000	17.646 17.926
thriller	0.0282	0.089	0.318	0.751	-0.146 0.203
comedy	0.0290	0.076	0.383	0.702	-0.119 0.177
drama	-0.0512	0.073	-0.705	0.481	-0.194 0.091
documentary	0.1214	0.179	0.679	0.497	-0.229 0.472
action	0.1036	0.088	1.174	0.241	-0.069 0.277
animation	0.1550	0.191	0.813	0.416	-0.219 0.529
horror	0.4648	0.134	3.470	0.001	0.202 0.728
fantasy	-0.0239	0.253	-0.094	0.925	-0.520 0.472
romance	-0.1482	0.083	-1.783	0.075	-0.311 0.015

SECOND ATTEMPT – LOG TRANSFORMATION

Dep. Variable:	log_gross	R-squared:	0.014
Model:	OLS	Adj. R-squared:	0.009
Method:	Least Squares	F-statistic:	2.596
Date:	Fri, 15 Jul 2016	Prob (F-statistic):	0.00566
Time:	00:11:45	Log-Likelihood:	-2578.9
No. Observations:	1638	AIC:	5178.
Df Residuals:	1628	BIC:	5232.
Df Model:	9		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	17.7862	0.072	248.645	0.000	17.646 17.926
thriller	0.0282	0.089	0.318	0.751	-0.146 0.203
comedy	0.0290	0.076	0.383	0.702	-0.119 0.177
drama	-0.0512	0.073	-0.705	0.481	-0.194 0.091
documentary	0.1214	0.179	0.679	0.497	-0.229 0.472
action	0.1036	0.088	1.174	0.241	-0.069 0.277
animation	0.1550	0.191	0.813	0.416	-0.219 0.529
horror	0.4648	0.134	3.470	0.001	0.202 0.728
fantasy	-0.0239	0.253	-0.094	0.925	-0.520 0.472
romance	-0.1482	0.083	-1.783	0.075	-0.311 0.015

LOG TRANSFORMATION + REGULARIZATION

L1

12

LOG TRANSFORMATION + REGULARIZATION

```
model lasso = linear model.Lasso()
model lasso.fit(X, y)
model lasso.coef
model lasso.score(X, y)
```

12

```
model ridge = linear model.Ridge()
model ridge.fit(X, y)
model ridge.coef
                 , 0.02758377, 0.02763372, -0.05264566, 0.11724253,
array([[ 0.
        0.10228963, 0.15008299, 0.45839441, -0.02333363, -0.14812609]])
model_ridge.score(X, y)
```

0.014146680619607666

NOW WHAT?

NOW WHAT?

NOW WHAT?

Does genre AND budget affect a movie's earning potential?

FIRST LOOK

FIRST LOOK

LOG TRANSFORMATION

LOG TRANSFORMATION

Better?

REGULARIZATION + CROSS-VALIDATION

REGULARIZATION + CROSS-VALIDATION

REGULARIZATION + CROSS-VALIDATION

FINAL MODEL

```
y, X = dmatrices('log_gross ~ log_budget + thriller + comedy + drama + documentary + action + animation + horror + fantasy + romand
import sklearn
#X = sklearn.preprocesnormalize(X, axis=0)
#y = sklearn.preprocesnormalize(y, axis=0)
x train, x test, y train, y test = cv.train_test_split(X, y, test_size=0.20, random_state=1234)
model_lasso1 = linear_model.LassoCV(eps=0.001, n_alphas=100, cv=10, normalize=True).fit(x_train, sklearn.utils.column_or_1d(y_train
#model lasso1.predict(x test,y test)
print(metrics.mean squared error(y train, model lasso1.predict(x train)))
print(metrics.mean squared error(y test, model lasso1.predict(x test)))
print('alpha=', model lasso1.alpha )
m_alphas = model_lasso1.alphas_
print model_lasso1.coef_
1.14681260853
0.988424954023
('alpha=', 0.0007107861854551182)
.0 1
              0.94557742 -0.
                                                 -0.00890781 0.
                                                                          0.1060979
  0.
              0.1477817 -0.
                                     -0.03913985]
```

APPENDIX

DATA SOURCES

Numbers

Movielens

```
In [141]: len(set1.union(set2))
Out[141]: 6743
```

FEATURES

1. Genres

- 1. Drama
- 2. Comedy
- 3. Thriller

2. Production budget

1. For top 6000 movies

MOVIELENS DATASET

- 1. Animation
 - 2. Drama
- 3. Adventure
 - 4. Children
 - 5. Sci-Fi
 - 6. Horror
 - 7. Comedy
- 8. Romance
 - 9. Drama

- 10.Thriller
- 11. Mystery
- 12.Fantasy
- 13. Documentary
 - 14. Musical
 - 15. Western
 - 16.War
 - 17. Crime
 - 18.Film-Noir