ASSIGNMENT 2

ASSIGNMENT DATE	24 SEPTEMBER 2020
STUDENT NAME	THANISH MALAI P
STUDENT ROLL NUMBER	2019504598
MAXIMUM MARKS	2 MARKS

Data Visualization and Pre-processing

Perform Below Tasks to complete the assignment:- Tasks:-

- 1. Download the dataset
- 2. Load the dataset.
- 3. Perform Below Visualizations. Univariate Analysis Bi Variate Analysis Multi Variate Analysis
- 4. Perform descriptive statistics on the dataset.
- 5. Handle the Missing values.
- 6. Find the outliers and replace the outliers
- 7. Check for Categorical columns and perform encoding.
- 8. Split the data into dependent and independent variables.
- 9. Scale the independent variables
- 10. Split the data into training and testing

```
In [ ]: import numpy as np
import pandas as pd

In [ ]: df = pd.read_csv("Churn_Modelling.csv")

In [ ]: df
```

ut[]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Bal
	0	1	15634602	Hargrave	619	France	Female	42	2	
	1	2	15647311	Hill	608	Spain	Female	41	1	8380
	2	3	15619304	Onio	502	France	Female	42	8	1596€
	3	4	15701354	Boni	699	France	Female	39	1	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	1255
	•••									
	9995	9996	15606229	Obijiaku	771	France	Male	39	5	
	9996	9997	15569892	Johnstone	516	France	Male	35	10	5736
	9997	9998	15584532	Liu	709	France	Female	36	7	
	9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	7507
	9999	10000	15628319	Walker	792	France	Female	28	4	13014
	10000	****** 14 **	l							

10000 rows × 14 columns

→

3. Visualizations

In []: import matplotlib.pyplot as plt

In []: import seaborn as sns

In []: %matplotlib inline

Out[

i)Univariate Analysis

In []: df[['CustomerId','Surname','CreditScore','Geography','Age','Tenure']].describe()

]:		CustomerId	CreditScore	Age	Tenure
	count	1.000000e+04	10000.000000	10000.000000	10000.000000
	mean	1.569094e+07	650.528800	38.921800	5.012800
	std	7.193619e+04	96.653299	10.487806	2.892174
	min	1.556570e+07	350.000000	18.000000	0.000000
	25%	1.562853e+07	584.000000	32.000000	3.000000
	50%	1.569074e+07	652.000000	37.000000	5.000000
	75%	1.575323e+07	718.000000	44.000000	7.000000
	max	1.581569e+07	850.000000	92.000000	10.000000

```
In [ ]: sns.histplot(df.Age,kde=True)
```

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7ffa2c5af410>

In []: # plot count plot for the gender column
sns.countplot(df.Gender)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: P ass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7ffa2c06c650>

ii)Bivariate Analysis

Out[]:		CustomerId	CreditScore	Age
	CustomerId	1.000000	0.005308	0.009497
	CreditScore	0.005308	1.000000	-0.003965
	Age	0.009497	-0.003965	1.000000

```
In [ ]: sns.scatterplot(df.CreditScore,df.Age)
    plt.ylim(0,100)
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: P ass the following variables as keyword args: x, y. From version 0.12, the only val id positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[]: (0.0, 100.0)

iii)Multivariate Analysis

In []: sns.pairplot(data =df[['CustomerId','Geography','Gender','CreditScore','Age','Balar

Out[]: <seaborn.axisgrid.PairGrid at 0x7ffa2bbc9250>

4.Descriptive Statistics

```
In [ ]: #mode
         df['Age'].mode()
Out[ ]: 0
              37
         dtype: int64
In [ ]: #calculation of the mean (for Age)
         df["Age"].mean()
Out[]: 38.9218
In [ ]: #calculation of the mean and round the result(for Age)
         round(df["Age"].mean(), 2)
Out[]: 38.92
In [ ]: #calculation of the median(for Age)
         df["Age"].median()
Out[]: 37.0
In [ ]: df.columns
Out[ ]: Index(['RowNumber', 'CustomerId', 'Surname', 'CreditScore', 'Geography',
                'Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'EstimatedSalary', 'Exited'],
               dtype='object')
In [ ]: df["NumOfProducts"].value_counts()
              5084
Out[ ]: 1
         2
              4590
         3
               266
         4
                60
         Name: NumOfProducts, dtype: int64
In [ ]: df.dtypes
Out[]: RowNumber
                               int64
         CustomerId
                               int64
         Surname
                              object
         CreditScore
                               int64
         Geography
                              object
         Gender
                              object
         Age
                               int64
         Tenure
                               int64
         Balance
                             float64
         NumOfProducts
                               int64
         HasCrCard
                               int64
         IsActiveMember
                               int64
         EstimatedSalary
                             float64
         Exited
                               int64
         dtype: object
In [ ]: df.head()
```

Out[]:	Row	/Number Cu	stomerId	Surnan	ne CreditSco	ore	Geography	Gender	Age	Tenure	Balance	
	0	1 '	15634602	Hargra	ve 6	519	France	Female	42	2	0.00	
	1	2	15647311	Н	Iill 6	508	Spain	Female	41	1 8	33807.86	
	2	3	15619304	On	io 5	502	France	Female	42	8 15	59660.80	
	3	4	15701354	Во	ni 6	599	France	Female	39	1	0.00	
	4	5	15737888	Mitche	ell 8	350	Spain	Female	43	2 12	25510.82	
4											>	
											,	
In []:	df.des	cribe()										
Out[]:	RowNumber		Custor	ustomerId CreditScore			Age Tenure		ure	Balance Nu		
	count 10000.00000		1.000000	e+04 1	10000.000000	10	0000.00000	10000.000000		10000.00000	00 1	
	mean 5000.50000 1.56		1.569094	4e+07 650.528800			38.921800 5.01280		800	76485.889288		
	std 2886.89568 7.193		7.193619	e+04	96.653299		10.487806	2.892	174	62397.40520)2	
	min	1.00000	1.556570	e+07	350.000000		18.000000	0.000	000	0.00000	00	
	25%	2500.75000	1.562853	Be+07	584.000000	84.000000		3.000	000	0.00000)0	
	50%	5000.50000	1.569074	le+07	652.000000		37.000000 5.000		000	97198.54000)0	
	75%	7500.25000	1.575323	Be+07			44.000000	7.000	000	127644.24000)0	
	max	10000.00000	1.581569	e+07			92.000000	0000 10.000000		250898.09000)0	
4											•	
	5.Handling Missing value										,	
In []:	df.isn	a().any()										
Out[]:			False False									

```
CustomerId
                             False
         Surname
                             False
         CreditScore
                             False
                             False
         Geography
         Gender
                             False
         Age
                             False
         Tenure
                             False
         Balance
                             False
         NumOfProducts
                             False
         HasCrCard
                             False
         {\tt IsActive Member}
                             False
         {\sf EstimatedSalary}
                             False
         Exited
                             False
         dtype: bool
In [ ]: df.isnull().sum()
```

```
Out[]: RowNumber
                            0
                            0
        CustomerId
        Surname
                            0
        CreditScore
                            0
        Geography
                            0
        Gender
                            0
        Age
                            0
        Tenure
                            0
        Balance
                            0
        NumOfProducts
                            0
        HasCrCard
                            0
        IsActiveMember
                            0
        EstimatedSalary
                            0
        Exited
                            0
        dtype: int64
```

In []: df.isnull()

Out[]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balan
	0	False	False	False	False	False	False	False	False	Fal
	1	False	False	False	False	False	False	False	False	Fal
	2	False	False	False	False	False	False	False	False	Fal
	3	False	False	False	False	False	False	False	False	Fal
	4	False	False	False	False	False	False	False	False	Fal
	•••									
	9995	False	False	False	False	False	False	False	False	Fal
	9996	False	False	False	False	False	False	False	False	Fal
	9997	False	False	False	False	False	False	False	False	Fal
	9998	False	False	False	False	False	False	False	False	Fal
	9999	False	False	False	False	False	False	False	False	Fal

10000 rows × 14 columns

In []: df.notnull()

Out[]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balanc
	0	True	True	True	True	True	True	True	True	Trı
	1	True	True	True	True	True	True	True	True	Tru
	2	True	True	True	True	True	True	True	True	Trı
	3	True	True	True	True	True	True	True	True	Tru
	4	True	True	True	True	True	True	True	True	Trı
	•••									
	9995	True	True	True	True	True	True	True	True	Trı
	9996	True	True	True	True	True	True	True	True	Tru
	9997	True	True	True	True	True	True	True	True	Trı
	9998	True	True	True	True	True	True	True	True	Tru
	9999	True	True	True	True	True	True	True	True	Trι

10000 rows × 14 columns

6. Finding and replacing the outliers

```
In [ ]: import seaborn as sns
sns.boxplot(x=df['Age'])
```

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7fe6dd978fd0>


```
In [ ]: sns.boxplot(x=df['Tenure'])
```

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7fe6d8dca710>

7.Check for categorical columns and perform encoding

In []: y.head()

```
In [ ]: import pandas as pd
         df = pd.read_csv("Churn_Modelling.csv", header=None)
In [ ]: cols = df.columns
         num_cols = df._get_numeric_data().columns
In [ ]: num_cols
Out[ ]: Int64Index([], dtype='int64')
In [ ]: list(set(cols) - set(num_cols))
Out[]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
         8. Split the data into dependent and independent variables
In [ ]: # x -Independent
         # y -Dependent
         x =df.drop('Exited',axis=1)
         y=df['Exited']
In [ ]: x.head()
Out[ ]:
            RowNumber Customerld Surname CreditScore
                                                         Geography
                                                                    Gender Age
                                                                                Tenure
                                                                                           Balance
         0
                                                    619
                                                                                      2
                                                                                              0.00
                     1
                          15634602
                                    Hargrave
                                                             France
                                                                    Female
                                                                              42
                     2
                          15647311
                                         Hill
                                                    608
                                                              Spain
                                                                     Female
                                                                              41
                                                                                      1
                                                                                          83807.86
         2
                     3
                          15619304
                                       Onio
                                                    502
                                                                    Female
                                                                              42
                                                                                      8 159660.80
                                                             France
         3
                          15701354
                                                    699
                                                             France
                                                                     Female
                                                                              39
                                                                                              0.00
                                        Boni
                          15737888
                                     Mitchell
                                                    850
                                                              Spain
                                                                     Female
                                                                              43
                                                                                      2 125510.82
```

```
Out[]: 0
             1
        2
             1
        3
             0
        4
        Name: Exited, dtype: int64
        9. Scale the independent variables
In [ ]: from sklearn import linear_model
        from sklearn.preprocessing import StandardScaler
        scale = StandardScaler()
In [ ]: X = df[['Balance', 'Tenure']]
        scaledX = scale.fit_transform(X)
        print(scaledX)
        [[-1.22584767 -1.04175968]
         [ 0.11735002 -1.38753759]
         [-1.22584767 0.68712986]
         [-0.02260751 -0.69598177]
         [ 0.85996499 -0.35020386]]
        10. Split the data into training and testing
In [ ]: from sklearn.model_selection import train_test_split
In [ ]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=0)
In [ ]: print('X Train shape:{},Y.Train SHape:{}'.format(x_train.shape,y_train.shape))
        X Train shape:(8000, 13),Y.Train SHape:(8000,)
In [ ]: print('X Test Shape :{},Y Test Shape:{}'.format(x_test.shape,y_test.shape))
        X Test Shape :(2000, 13),Y Test SHape:(2000,)
```