Optimization in Machine Learning

First order methods: SGD Further Details

Learning goals

- Decreasing step size for SGD
- Stopping rules
- SGD with momentum

SGD WITH CONSTANT STEP-SIZE

Example: SGD with constant step size.

Fast convergence of SGD at beginning, erratic behavior later on (variance too big).

SGD WITH DECREASING STEP-SIZE

- **Idea:** Decrease step size to reduce magnitude of steps of erratic behavior.
- Consider trade-off:
 - if step size $\alpha^{[t]}$ decreases slowly, the variance of $\nabla_x g_i(\mathbf{x})$ decreases slowly too.
 - if step size decreases too fast, we reach optimum slowly.
- SGD converges to stationary point if ratio of sum of squared step-sizes over the sum of step-sizes converges to 0:

$$\frac{\sum_{t=1}^{\infty} \left(\alpha^{[t]}\right)^2}{\sum_{t=1}^{\infty} \alpha^{[t]}} = 0$$

("how much noise affects you" vs. "how far you can get").

SGD WITH DECREASING STEP-SIZE

ullet Popular solution: step size fulfilling $lpha^{[t]} \in \mathcal{O}(\frac{1}{t})$.

Example continued. Step size $\alpha^{[t]} = \frac{0.2}{t}$.

- Often not working well in practice: Step size really small really fast.
- Alternative: $\alpha^{[t]} \in \mathcal{O}(\sqrt{t})$

ADVANCED STEP-SIZE CONTROL

Why not Armijo-based step-size control?

 Backtracking line search or other rules based on the Armijo-condition are usually not suitable: A check of Armijo condition

$$f(\mathbf{x} + \alpha \mathbf{d}) \le f(\mathbf{x}) + \gamma \alpha \nabla g(\mathbf{x})^{\top} \mathbf{d}$$

requires evaluating the full gradient.

- But: SGD is particularly used to avoid expensive evaluations of gradient!
- Recent research aims at finding approximate line-search methods that provide better convergence methods, e.g., Vaswani et al., Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates (NeurIPS 2019).

MINI-BATCHES

• Reduce noise by increasing batch size *m* for better approximation

$$\hat{\boldsymbol{d}} = \frac{1}{m} \sum_{i \in J} \nabla_{\mathbf{x}} g_i(\mathbf{x}) \approx \frac{1}{n} \sum_{i=1}^n \nabla_{\mathbf{x}} g_i(\mathbf{x}) = \boldsymbol{d}$$

 Usually, the batch size is limited by computational resources (e.g., how much data you can load into the memory)

Example continued. Batch size m = 1 vs. m = 5.

STOPPING RULES FOR SGD

- For GD: We usually stop when gradient is close to 0 (i.e., we are close to a stationary point)
- For SGD: individual gradients do not necessarily go to zero, and we cannot access full gradient.
- Practicable solution for ML:
 - Measure the validation set error after T iterations
 - Stop, if validation set error is not improving

SGD AND ML

General remarks:

- SGD is a simplification of GD
- SGD particularly suitable for large-scale ML when the evaluating the gradient is too expensive / restricted by computational resources
- SGD and variants are the most commonly used methods in modern ML, for example:
 - Linear models
 - Note that even for the linear model and quadratic loss, where a closed form solution is available, SGD might be used if the size *n* of the dataset is too large and the design matrix does not fit into memory.
 - Neural networks
 - Support vector machines
 - **.**...

SGD WITH MOMENTUM

SGD is usually used with momentum due to reasons mentioned in previous chapters.

Algorithm 1 Stochastic gradient descent with momentum

- 1: **require** learning rate α and momentum φ
- 2: **require** initial parameter ${m x}$ and initial velocity ${m
 u}$
- 3: while stopping criterion not met do
- 4: Sample a minibatch of m examples from the training set $\{\tilde{x}^{(1)}, \dots, \tilde{x}^{(m)}\}$
- 5: Compute gradient estimate: $\nabla \hat{f}(\mathbf{x})$
- 6: Compute velocity update: $\boldsymbol{\nu} \leftarrow \varphi \boldsymbol{\nu} \alpha \nabla \hat{f}(\boldsymbol{x})$
- 7: Apply update: $\mathbf{x} \leftarrow \mathbf{x} + \mathbf{\nu}$
- 8: end while