

CENTRO PAULA SOUZA

18/08/2022 29/08/2022

MAG004 — ÁLGEBRA LINEAR MAT006 — MATEMÁTICA DISCRETA

HENRIQUE FURIA SILVA

Aula 02

Grupos, Anéis e Corpos

I — Grupos algébricos

[1] **Definição**: Seja (G) um conjunto não vazio e (*) uma operação binária em (G):

*:	$\mathbb{G} \times \mathbb{G}$	\rightarrow	G	
	(a, b)	↦	$*(a,b) \stackrel{\text{def}}{=} a * b$	

Observe que uma operação binária é simplesmente uma função de duas variáveis em que cada elemento na entrada está no conjunto (G), e o resultado da operação também está no conjunto.

O par $(\mathbb{G},*)$ é denominado um grupo se para cada para cada $\{a;b;c\}\subset\mathbb{G}$, a operação (*) satisfizer os axiomas:

(G1)	Associatividade	a*(b*c) = (a*b)*c		
(G2)	Existência do elemento neutro $(e_{\mathbb{G}})$	$e_{\mathbb{G}}*a=a$	&	$a*e_{\mathbb{G}}=a$
(G3)	Existência do elemento inverso (h_a)	$a*h_a=e_{\mathbb{G}}$	&	$h_a*a=e_{\mathbb{G}}$

[2] **Definição**: Um grupo é dito ser **abeliano** se for comutativo, isto é:

(G4)	Comutatividade	a * b = b * a	
------	----------------	---------------	--

[3] **Observação**: Grupos abelianos são representados por $(\mathbb{G}, +)$, seu elemento neutro é representado por $(0_{\mathbb{G}})$, o elemento inverso de cada $(a \in \mathbb{G})$ é representado por (-a) e a sua operação (+) satisfaz às propriedades:

(A1)	Associatividade da soma	a + (b+c) = (a+b) + c		
(A2)	Existência do elemento neutro $(0_{\mathbb{G}})$	$0_{\mathbb{G}} + a = a$	&	$a + 0_{\mathbb{G}} = a$
(A3)	Existência do elemento oposto $(-a)$	$a + (-a) = 0_{\mathbb{G}}$	&	$(-a) + a = 0_{\mathbb{G}}$
(A4)	Comutatividade da soma	a+b=b+a		

II — Anéis algébricos

Seja (\mathbb{A}) um conjunto não vazio, munido de duas operações binárias (+, -):

Adição		Adição soma		Multiplicação			produto	
+:	$\mathbb{A}\times\mathbb{A}$	\rightarrow	A		••	$\mathbb{A} \times \mathbb{A}$	\rightarrow	A
	(a,b)	↦	$+(a,b)\stackrel{\text{def}}{=} a+b$			(a,b)	\mapsto	$\cdot (a,b) \stackrel{\text{\tiny def}}{=} a \cdot b$

Isto significa que ao grupo comutativo $(\mathbb{A}, +)$ acrescenta-se outra operação denotada por (\cdot) , obtendo-se a dupla $((\mathbb{A}, +), \cdot)$ usualmente representada pela tripla $(\mathbb{A}, +, \cdot)$.

[4] Definição: A tripla $(\mathbb{A}, +, \cdot)$ é denominada um **anel** se para cada para cada $\{a; b; c\} \subset \mathbb{A}$, a operação (+) satisfizer os axiomas de grupos comutativos e se as operações $\{+, \cdot\}$ satisfizerem os seguintes axiomas:

(A5)	Associatividade do produto	$a \cdot (b \cdot c) = (a \cdot b) \cdot c$	
(A6)	Distributiva à esquerda	$a \cdot (b+c) = a \cdot b + a \cdot c$	
(A7)	Distributiva à direita	$(a+b)\cdot c = a\cdot c + b\cdot c$	

Assim, um anel $(A, +, \cdot)$ é um conjunto não vazio que satisfaz os (7) axiomas anteriormente apresentados.

III — Anéis com unidade

[5] Definição: Um anel $(\mathbb{A}, +, -)$ é dito possuir **unidade** se existir um elemento neutro para a multiplicação:

(A8)	Existência do elemento neutro $(1_{\mathbb{A}})$	$1_{\mathbb{A}} \cdot a = a$	&	$a \cdot 1_{\mathbb{A}} = a$	
------	--	------------------------------	---	------------------------------	--

IV — Anéis com divisão

Para poder estabelecer as condições para a divisão, é necessário estabelecer-se a seguinte notação:

$$\mathbb{A}^* \stackrel{\scriptscriptstyle \mathrm{def}}{=} \mathbb{A} - 0_{\mathbb{A}}$$

Ou seja, representa-se por (\mathbb{A}^*) ao conjunto (\mathbb{A}) removendo-se o elemento neutro da adição $(0_{\mathbb{A}})$.

[6] Definição: Um anel $(\mathbb{A}, +, -)$ é dito **possuir divisão** se o par (\mathbb{A}^*, \cdot) é um grupo. Neste caso, para cada elemento $(a \in \mathbb{A})$ com $(a \neq 0_{\mathbb{A}})$, isto é, para cada $(a \in \mathbb{A}^*)$, o seu elemento inverso é representado por (a^{-1}) :

(A5)	Associatividade do produto	$a \cdot (b \cdot c) = (a \cdot b) \cdot c$		
(A8)	Existência do elemento neutro $(1_{\mathbb{A}})$	$1_{\mathbb{A}}\cdot a=a$	&	$a\cdot 1_{\mathbb{A}}=a$
(A9)	Para cada $(a \in \mathbb{A} - \{0_{\mathbb{A}}\})$ há a existência do elemento inverso $(a^{-1} \in \mathbb{A}^*)$	$a \cdot a^{-1} = 1_{\mathbb{A}}$	&	$a^{-1}\cdot a=1_{\mathbb{A}}$

Observe a correspondência dos axiomas da definição [1] de grupo com as propriedades acima.

IV — Corpos algébricos

No caso particular em que o grupo (\mathbb{A}^*,\cdot) for abeliano, acrescenta-se a comutatividade do produto às propriedades do anel $(\mathbb{A},+,\cdot)$ com divisão.

(A10) Comutatividade do produto	a+b=b+a
•	

[7] **Definição**: O trio $(A, +, \cdot)$ formado por conjunto não vazio (A) munido das operações (+) de adição e (\cdot) de multiplicação é um **corpo** se o par (A, +) é um grupo comutativo e se o par (A^*, \cdot) for um grupo comutativo.

Isto significa que as operações satisfazem às seguintes propriedades preteritamente apresentadas:

Propriedades da soma:

11	i Topi icuaucs da soma.							
	(A1)	Associatividade da soma	a + (b + c) = (
	(A2)	Existência do elemento neutro $(0_{\mathbb{G}})$	$0_A + a = a$	&	$a + 0_A = a$			
	(A3)	Existência do elemento oposto $(-a)$	$a + (-a) = 0_{\mathbb{A}}$	&	$(-a) + a = 0_{\mathbb{A}}$			
	(A4)	Comutatividade da soma	a+b=b) + a				

Propriedades do produto:

(A5)	Associatividade do produto	$a \cdot (b \cdot c) = (a \cdot b) \cdot c$		
(A8)	Existência do elemento neutro $(1_{\mathbb{A}})$	$1_{\mathbb{A}} \cdot a = a$	&	$a\cdot 1_{\mathbb{A}}=a$
(A9)	Existência do elemento inverso (a^{-1})	$a \cdot a^{-1} = 1_{\mathbb{A}}$	&	$a^{-1} \cdot a = 1_{\mathbb{A}}$
(A10)	Comutatividade do produto	$a \cdot b = b \cdot a$		

Propriedade distributiva, que relaciona as operações de adição e multiplicação.

(A6)	Distributiva à esquerda	$a \cdot (b+c) = a \cdot b + a \cdot c$	
(A7)	Distributiva à direita	$(a+b)\cdot c = a\cdot c + b\cdot c$	