Sunday, August 25, 2024 10:47 PM
$$\beta = \frac{S_{XY}}{S_{XX}} = n\left(\frac{Z_{XY}}{S_{XY}}\right) - \left(\frac{Z_{X}}{S_{XY}}\right) = n\left(\frac{Z_{XY}}{S_{XY}}\right) - \left(\frac{Z_{XY}}{S_{XY}}\right) = n\left(\frac{Z_{XY}}{S_{XY}}\right) = n\left(\frac{Z_{XY}}{S$$

Multiple Linear Reg.

$$\overrightarrow{\beta} = (X^T \times)^{-1} \times^T y$$

For simple Rey. MSE & SSE

For multiple MSE 7 SSE

$$Y = \beta_0 + \beta_1 \times 1 + \beta_2 \times 2 + \beta_3 \times 3$$

$$k=3$$

$$b=3+1$$

$$3 \text{ tests} \qquad H_0: \beta_1=3 \text{ , } H_1: \beta_1 \neq 3$$

$$C \text{ Marginal} \qquad t=\frac{\beta_1}{2}$$

$$C \text{ Test on single } \beta_1 \text{).} \qquad Se(\beta_1)$$

$$C \text{ Test magnal} \qquad Y = \beta_0 + \beta_1 \times 1 + \beta_2 \times 2 + \beta_3 \times 3$$

$$C \text{ test.} \qquad G \text{ is unknown} \qquad Use \text{ MSE}$$

$$C \text{ (X'X)}^{-1} = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}$$

$$Se(\beta_1) = \sqrt{MSE} \times C.$$

Test if all
$$\beta$$
's is zero.

ANOVA

$$\begin{cases}
H_0: \beta_0 = \beta_1 = \beta_2 = \beta_3 = 0
\end{cases}$$

$$\begin{cases} H_0: \beta_0 = \beta_1 = \beta_2 = \beta_3 = 0 \\ H_1: \text{ At least one } \beta_5 \neq 0, \\ j-0,l.2,3 \end{cases}$$

Test stat.

Ho:
$$\beta_2 = \beta_3 = 0$$
, H; At least one $\beta_3 \neq 0$, $\beta_5 \neq$

$$\frac{SS_{E}(B) - SS_{E}(A)}{SS_{E}(B)} = \frac{37(220)}{30.83 + 37}$$

$$= |20.0059|,$$

$$F_{2} = \frac{SS_{E}(B) - |30.0059|}{SS_{E}(C) / (40-3-1)}$$

$$= \frac{SS_{E}(C) / 36}{SS_{E}(C) / 36}$$

$$= |SS_{E}(C) / (40-3-1)$$

$$= \frac{SS_{E}(C) / (40-3-1)}{SS_{E}(C) / (40-3-1)}$$

$$\frac{SS_{E}(c)/(40-3-1)}{SS_{E}(c)/2}$$
=\frac{SS_{E}(c)/3\delta}{SS_{E}(c)/3\delta}

$$C = (x^{7}x)^{-1} = \begin{bmatrix} 188.9832 & C_{22} \\ 0.25 & \\ & 5.0625 \end{bmatrix}$$

$$\beta$$
, \pm $t_{0.05}$, $25-2-1$ Se (β_1)

$$(1.5)$$
 (1.5) (1.5) (1.5) (1.5) (1.5)

$$\frac{7}{1.5} = \frac{1.5}{3.27} = \frac{4.047}{0.14}$$

$$= 1 \times (-4.04) + 1.5(0.4)$$

+ 3. 2(0.45)

$$95\% PI$$

$$-2.39 \pm t_{0.05}$$

$$2.074$$

$$-2.39 \pm t_{0.05}$$

$$25-2-1$$

$$H_0: \beta_z = 2$$
, $H_1: \beta_z \neq 2$.
 $F_z = \frac{\beta_z - 2}{\beta_z - 2} = -3.6257$

$$\beta = \begin{bmatrix} 95 \\ 15 \\ 55 \\ -1 \end{bmatrix}, \chi'_{k} = \begin{bmatrix} 1 & 25 & 1.5 & 51.5 \end{bmatrix}$$

$$E(Y_{h}) = \chi'_{h} \beta$$

$$= \begin{bmatrix} 1 & 25 & 1.5 & 37.5 \end{bmatrix} \begin{bmatrix} 95 \\ 15 \\ 55 \\ -1 \end{bmatrix}$$

$$= 515.$$
2. 999_{0} PT on γ_{h} ,
$$\chi'_{h} (\chi^{7} \chi)^{-1} \chi_{h} = 1.8.$$

$$Se(\gamma_{h}) = \sqrt{MS_{E}(1+0.8)}$$

$$MS_{E} = 7.$$

$$L = 3$$

$$\begin{array}{c} SS_{E} = SS_{7} - SS_{R} \\ = 688.2 - 213.6 \end{array}$$

$$MS_{E} = \frac{85E}{1 - 3 - 1} = 14.0118$$

Ho:
$$\beta_0 = \beta_1 = \beta_2 = \beta_3 = 0$$

H: At least one $\beta_5 \neq 0$,
 $j = 0, 1, 2, 3$.

Source	5 ₂ .	ν1	59.	
Regression	213.6	3	213.1	
Erron	688. 2-2 13.4 = 474.6	32-3-1	MSE=16.95	-
Treatment	58-Z	31		

$$F^* = \frac{MSR}{MSE} = \frac{71.2}{16.95} = 4.2006$$

Reject Ho

4.
$$R^{2}_{1} = 1 S_{E}/(n-k-1)$$

Quick Notes Page 10

4.
$$R_{AJ}^{2} = 1 - \frac{SS_{E}/(n-k-1)}{SS_{T}/(n-1)}$$

$$= 1 - \frac{474.6/(32-3-1)}{688.2/(32-1)}$$

$$R_{AJ}^{2} = 0.2365$$

$$R^2 = 1 - \frac{2SE}{SST} = 0.689625$$

Radi < R2. No extra predictors
need to be add.

$$\frac{\partial x}{\partial x_1} = 15(1) + 0 - x_2$$

$$= 15 - x_2$$

$$\frac{\partial x}{\partial x_1} (tan plane)$$

$$x_1$$

$$t^* = \frac{\beta_3}{Se(\beta_3)} = -1$$

$$t_{\frac{0.01}{2}}$$
: 28. = 2.7633

$$|t^*| = |-2.857| = 2.857|$$
 $> t_{0.01}; 28 = 2.7633$

Reject Ho. ..