

TD - Segmentation d'un réseau

BTS - SN 1

Séquence 2

Exercices

Exo 1

Découpage en sous réseaux

On désire réaliser un réseau (classe C) constitué de 5 sous réseaux. L'administrateur utilise l'adresse réseau : 192.168.5.0

Quelle est la solution optimale (la plus proche des 5 sous réseaux) ? Donner le masque de sous réseau, les adresses IP des sous réseaux, les plages d'adresses ainsi que les adresses de broadcast.

Combien de machines chaque sous réseau peut-il comporter ?

Pour segmenter un réseau :

- 1) On regarde le masque de départ. Ici on est en classe C donc le masque est 255.255.255.0.
- 2) On trouve le nombre de bits de la partie hôte : ici 8 bits (cf masque).
- 3) On a donc hhhhhhhh pour la partie hôte.

Si on veut 5 sous réseaux, combien de bits a-t-on besoin pour les identifier ? On résout $2^n >= 5 => n = 3$.

On doit donc réserver 3 bits pour le SUBNET-ID.

La partie hôte se transforme donc en : ssshhhhh où s représente le subnet.

Au total, notre réseau ressemble donc à : nnnnnnnnnnnnnnnnnnnnnnnnnnnnssshhhhh

- 5) On va maintenant remplir un tableau pour identifier tous les sous-réseaux :

@ du sous réseau	@ du premier hôte	@ du dernier hôte	@ de diffusion	# max hôtes
<mark>192.168.5.0</mark>	<mark>192.168.5.1</mark>	<mark>192.168.5.30</mark>	192.168.5.31	<mark>30</mark>
192.168.5.32	192.168.5.33	192.168.5.62	192.168.5.63	<mark>30</mark>
192.168.5.64	192.168.5.65	192.168.5.94	192.168.5.95	<mark>30</mark>
192.168.5.96	192.168.5.97	192.168.5.126	192.168.5.127	<mark>30</mark>
192.168.5.128	192.168.5.129	<mark>192.168.5.158</mark>	192.168.5.159	<mark>30</mark>
192.168.5.160	192.168.5.161	192.168.5.190	192.168.5.191	30
192.168.5.192	192.168.5.193	192.168.5.222	192.168.5.223	30
192.168.5.224	192.168.5.225	192.168.5.254	192.168.5.255	30

Procédures :

Pour trouver les adresses de sous réseau :

On a trois bits réservés au subnet-ID : ssshhhhh

- 1) On met les bits de la partie hôte à 0
- 2) On fait toutes les combinaisons pour les trois bits de la partie subnet :

```
00000000 => 0
00100000 => 32
01000000 => 64
01100000 => 96
10000000 => 128
10100000 => 160
11000000 => 192
11100000 => 224
```

- Pour trouver la plage (@ du premier hôte et @ du dernier hôte) :

C'est la même procédure qu'appris lors de la première activité

- 1) Pour la première adresse : en partant de l'adresse de sous réseau, on conserve la partie network (ou subnetwork) et on met tous les bits à 0 + 1
- 2) Pour la dernière adresse : en partant de l'adresse de sous réseau, on conserve la partie network (ou subnetwork) et on met tous les bits à 1-1.

Exemple pour le premier sous réseau :

Exo 2

Découpage en sous réseaux

On désire réaliser un réseau (classe B) constitué de 18 sous réseaux. L'administrateur utilise l'adresse réseau : 172.16.0.0

Quel est la solution optimale (la plus proche des 18 sous réseaux) : donner le masque de sous réseau, les adresses IP des sous réseaux, les plages d'adresses ainsi que les adresses de broadcast. Combien de machines chaque sous réseau peut-il comporter ?

Pour segmenter un réseau :

- 6) On regarde le masque de départ. Ici on est en classe B donc le masque est 255.255.0.0.
- 7) On trouve le nombre de bits de la partie hôte : ici 16 bits (cf masque).
- 8) On a donc hhhhhhhh.hhhhhhhh pour la partie hôte. Si on veut 18 sous réseaux, combien de bits a-t-on besoin pour les identifier ? On résout 2^n >= 18 => n = 32.

On doit donc réserver 32 bits pour le SUBNET-ID.

- 10) On va maintenant remplir un tableau pour identifier tous les sous-réseaux :

@ du sous réseau	@ du premier hôte	@ du dernier hôte	@ de diffusion	# max hôtes
172.16.0.0	<mark>172.16.0.1</mark>	172.16.7.254	172.16.7.255	<mark>2046</mark>
172.16.8.0	<mark>172.16.8.1</mark>	172.16.15.254	172.16.15.255	2046
172.16.16.0	172.16.16.1	172.16.23.254	172.16.23.255	<mark>2046</mark>
172.16.24.0	172.16.24.1	172.16.31.254	172.16.31.255	<mark>2046</mark>
172.16.32.0	172.16.32.1	172.16.39.254	172.16.39.255	2046
<mark>172.16.40.0</mark>	<mark>172.16.40.1</mark>	172.16.47.254	172.16.47.255	<mark>2046</mark>
172.16.48.0	<mark>172.16.48.1</mark>	172.16.55.254	<mark>172.16.55.255</mark>	<mark>2046</mark>
172.16.56.0	172.16.56.1	172.16.63.254	172.16.63.255	2046
172.16.64.0	172.16.64.1	172.16.71.254	172.16.71.255	2046
172.16.72.0	172.16.72.1	172.16.79.254	172.16.79.255	2046
<mark>172.16.80.0</mark>	172.16.80.1	172.16.87.254	172.16.87.255	2046
<mark>172.16.88.0</mark>	<mark>172.16.88.1</mark>	<mark>172.16.95.254</mark>	<mark>172.16.95.255</mark>	<mark>2046</mark>
<mark>172.16.96.0</mark>	<mark>172.16.96.1</mark>	172.16.103.254	172.16.103.255	<mark>2046</mark>
<mark>172.16.104.0</mark>	<mark>172.16.104.1</mark>	<mark>172.16.111.254</mark>	<mark>172.16.111.255</mark>	<mark>2046</mark>
172.16.112.0	172.16.112.1	172.16.119.254	172.16.119.255	2046
<mark>172.16.120.0</mark>	<mark>172.16.120.1</mark>	172.16.127.254	172.16.127.255	<mark>2046</mark>
172.16.128.0	172.16.128.1	172.16.135.254	172.16.135.255	2046
172.16.136.0	172.16.136.1	172.16.143.254	172.16.143.255	2046
172.16.144.0	172.16.144.1	172.16.151.254	172.16.151.255	2046
172.16.152.0	172.16.152.1	172.16.159.254	172.16.159.255	2046
172.16.160.0	172.16.160.1	172.16.167.254	172.16.167.255	2046

Procédures:

- Pour trouver les adresses de sous réseau :

- 3) On met les bits de la partie hôte à 0
- 4) On fait toutes les combinaisons pour les trois bits de la partie subnet :

```
0000 0000.00000000.00000000 => 0
00100000 => 32
01000000 => 64
01100000 => 96
10000000 => 128
10100000 => 160
11000000 => 192
11100000 => 224
```

- Pour trouver la plage (@ du premier hôte et @ du dernier hôte) :

C'est la même procédure qu'appris lors de la première activité

3) Pour la première adresse : en partant de l'adresse de sous réseau, on conserve la partie network (ou subnetwork) et on met tous les bits à 0 + 1

4) Pour la dernière adresse : en partant de l'adresse de sous réseau, on conserve la partie network (ou subnetwork) et on met tous les bits à 1-1.

Exemple pour le premier sous réseau :

Exo 3

Découpage en sous réseaux

Une entreprise composée de 10 départements se voit affecter l'adresse IP 196.179.110.0.

L'administrateur souhaite affecter un sous-réseau à chaque département.

De quelle classe d'adressage s'agit-il?

Combien de machines cela permet-il d'adresser?

En supposant que le nombre de départements de l'entreprise ne va pas tellement évoluer, quel est le masque de sous-réseau optimal ?

Combien de départements peuvent être ajoutés ?

Combien de machines chaque département peut-il comporter ?

Quelle est l'adresse de broadcast du 3^{ième} sous-réseau ?

Exo 4

Découpage en sous réseaux

On désire réaliser un réseau (classe B) constitué de 35 sous réseaux. L'administrateur utilise l'adresse réseau : 10.0.0.0

Quel est la solution optimale (la plus proche des 35 sous réseaux) : donner le masque de sous réseau, les adresses IP des sous réseaux, les plages d'adresses ainsi que les adresses de broadcast.

Combien de machines chaque sous réseau peut-il comporter ?