Velocity

A vector from A to B; a speed with direction. The first derivative of position:

$$v = \dot{s} = \frac{\mathrm{d}s}{\mathrm{d}t} = \frac{\Delta s}{\Delta t} = \frac{s_2 - s_1}{t_2 - t_1}$$

Acceleration

The first derivative of velocity, second derivative of position:

$$a = \ddot{s} = \frac{\mathrm{d}^2 s}{\mathrm{d}t^2} = \frac{\Delta v}{\Delta t} = \frac{v_2 - v_1}{t_2 - t_1}$$

Examples

A ball is thrown up with $v = 40 \,\text{m/s}$. The velocity is recorded in 1 second increments as: $\{40, 30, 20, 10, 0\}$. What is the acceleration?

We set $v_2 = 0$ as it's the last velocity and $v_1 = 40$ as it's the first velocity.

$$N = 5, \Delta t = 1:$$
 $v_1 = 0,$ $t_2 = \sum_{i=1}^{N-1} \Delta t = 4$
$$\frac{v_2 - v_1}{t_2 - t_1} \implies \frac{0 - 40}{4 - 0} = -10$$

Therefore, the acceleration is: $a = -10 \,\mathrm{m/s^2}$