

İletim Temellleri

Elektromanyetik İşaret

- Zamana bağlı bir fonksiyon
- Ayrıca frekansa bağlı olarak da ifade edilebilir.
 - İşaret farklı frekanslı bileşenlerden oluşur.

Zaman Bölgesi Kavramları

- Analog İşaret İşaret yoğunluğu zaman içerisinde düzgün ve yavaş bir değişim gösterir.
 - Kırılmalar ve ani değişimler olmaz
- Sayısal İşaret İşaret yoğunluğu belirli bir sürede kaldıktan sonra başka bir seviyede geçiş yapar.
- Periyodik İşaret Analog veya sayısal işaret zaman içerisinde kendi örüntüsünü tekrarlar.
 - $s(t+T) = s(t) -\infty < t < +\infty$
 - T, işaretin periyodudur.

Zaman Bölgesi Kavramları

- Periyodik olmayan analog veya sayısal işaret zaman içerisinde kendi örüntüsünü tekrarlamaz.
- **Tepe Genliği** (A) İşaretin en büyük değeri veya zaman içerisinde aldığı güç; genelde volt olarak belirtilir.
- **■** Frekans (*f*)-
 - Saniyedeki çevrim oranıdır. Hertz (Hz) işaretin saniyedeki tekrarlama sayısıdır.

Zaman Bölgesi Kavramları

- **Periyot** (*T*) İşaretin bir tekrarı yapması için gereken zaman
 - T = 1/f
- Faz (φ) İşaretin bir periyodundaki göreceli bir noktaya göre kayma miktarı.
- Dalga Boyu (λ) İşaretin bir çevriminin yer kapladığı mesafe.
 - veya, iki ardışık çevrimin aynı faz değişimlerini gösterdiği iki nokta arası mesafe
 - $\lambda=v*T$ $v=c=3*10^8 \text{m/s} \rightarrow \text{İşaretin Hızı}$

Sinüs Dalga Parametreleri

- Genel Sinüs Dalgaıs
 - $s(t) = A \sin(2\pi f t + \phi)$
- Şekil üç parametrenin etkisinin nasıl değiştirdiğini göstermektedir.
 - (a) A = 1, f = 1 Hz, $\phi = 0$; (T = 1s)
 - (b) Azaltılmış Tepe Genliği; A=0.5
 - (c) Artırılmış frekans; f = 2, $(T = \frac{1}{2})$
 - (d) Faz Kayması; $\phi = \pi/4$ radyan (45 derece)
- Not: 2π radyan = 360° = 1 periyot

Zaman – Uzaklık Kavramı

- Şekildeki yatay eksen zaman alınırsa, grafik zamanın bir fonksiyonu olarak işaretin uzayda bir noktadaki değerini gösterir.
- Uzayda yatay eksen ile grafik uzaklığın bir fonksiyonu olarak verilen bir zamanda işaretin değerini gösterir.
 - Zamanın bir anında, işaretin yoğunluğu kaynak uzaklığının bir fonksiyonu olarak değişir.

Frekans Bölgesi Kavramları

- **Temel Frekans** Bir işaretin bütün frekansları bir frekansın tam sayı ile çarpımından elde edilebiliyorsa, bu temel frekansa işaret eder.
- **Spektrum** Bir işaretin bütün frekansları.
- Mutlak Bat Genişliği Bir işaretin spektrumunun genişliğidir.
- Etkin Bant Genişliği (veya sadece Bant Genişliği) İşaretin enerjisinin bulunduğu frekanslarını çoğunluğunun bulunduğu bant.

Frekans Bölgesi Kavramları

- Herhangi bir elektromanyetik işaret farklı genlik, frekans ve fazda periyodik analog işaretlerin (sinüs dalgalarının) bir koleksiyonu olarak gösterilebilir.
- Toplam işaretin periyodu temel frekansın periyoduna eşittir.

Veri Oranı ve Bant Genişli Arasındaki İlişki

- Daha büyük bant genişliği daha fazla bilgi barındırır. (Taşıma kapasitesi.)
- Değerlendirme
 - Herhangi bir sayısal dalga biçimi sonlu bant genişliğine sahip olacaktır.
 - FAKAT iletim sistemi iletim bant genişliğinin sınırlayacaktır.
 - VE, verilen herhangi bir ortam için, daha geniş iletim bandı daha fazla maliyet demektir.
 - BUNUNLA BERABER, sınırlı bant genişliği bozulma oluşturur.

Veri Haberleşmesi Terimleri

- Veri Anlam ve bilgi iletenler
- **İşaret** Verinin elektriksel veya elektro manyetik sunumudur.
- İletim İşaretlerin işlenmesi ve yayılması ile veri haberleşmesi.

Analog ve Sayısal Veri Örnekleri

- Analog
 - Video
 - Ses
- Sayısal
 - Metin
 - Tamsayılar

Analog İşaretler

- Frekansına göre çeşitli ortamlarda yayılabilen sürekli değişen bir elektromanyetik dalgadır.
- Ortam Örnekleri:
 - Bakır kablo ortamı (Bükülü kablo çifti veya koaksiyel kablo)
 - Fiber optik kablo
 - Atmosfer veya Uzay Yayılımı
- Analog işaretler, analog veya sayısal veri yayabilirler.

Sayısal İşaretler

- Bakır ortamda yayılabilen voltaj darbelerinin bir dizisidir.
- Genellikle analog işaretten daha ucuzdur.
- Gürültü girişimine daha az duyarlıdır.
- Zayıflamadan daha fazla muzdariptir.
- Sayısal işaretler analog veya sayısal ver yayabilirler.

Veri ve İşaret Kombinasyonu Seçimi için Nedenler

- Sayısal Veri , Sayısal İşaret
 - Kodlama için ekipman, sayısal-analog ekipmanından daha ucuzdur.
- Analog Veri , Sayısal İşaret
 - Çevrim modern sayısal iletim ve anahtarlama ekipmanlarının kullanımına izin verir.
- Sayısal Veri , Analog İşaret
 - Bazı iletim ortamları sadece analog işaretlerin yayılımına izin verir.
 - Örneğin, optik kablolar veya uydular
- Analog Veri , Analog İşaret
 - Analog Veri kolayca analog işarete çevrilebilir.

Analog İletim

- Analog işaretler içeriğine bakılmaksızın iletilir.
- Zayıflama iletim hattının uzunluğunu sınırlar.
- Kaskad yükselticiler işaretin enerjisinin daha uzak mesafeleri için artırırken bozulmaya neden olur.
 - Analog veri bozulmayı tolore edebilir.
 - Sayısal işaretlerde hatalara neden olur.

Sayısal İletim

- İşaretin içeriği ile ilgilenir.
- Zayıflama veri bütünlüğünü tehlikeye atar.
- Sayısal İşaret
 - Tekrarlayıcılar daha uzak mesafelere erişebilir.
 - Tekrarlayıcılar işareti kurtarıp yeniden iletir.
- Sayısal İşaret Taşıyan Analog İşaretler
 - Yeniden iletim cihazları sayısal veriyi analog veriden cıkarır.
 - Yeni ve temiz analog işaret üretir.

Kanal Kapasitesi

- Gürültü, erişilebilecek sınırlı veri gibi kusurlar
- Sayısal veri için, sınırlı veri oranı kusurunu gidermek için ne yapılabilir?
- Kanal Kapasitesi Verilen bir haberleşme yolunda, veya kanalında verilen şartlar altında en yüksek iletim oranıdır.

Kanal Kapasitesi ile İlintili Kavramlar

- Veri oranı Haberleşmede kullanılan veri oranı.
 (bps: bits per second)
- Bant Genişliği İletici ve iletim ortamının doğası tarafından kısıtlanan iletilen işaretin bant genişliği (Hertz).
- Gürültü Haberleşme yolu üzerindeki ortalama gürültü seviyesi.
- Hata Oranı Hata oluşma oranı
 - Hata = iletilen 1 ve alınan 0; iletilen 0 ve alınan 1

Nyquist Bant Genişliği

- İkili işaretler için (iki gerilim seviyesi)
 - C = 2B
- Çok seviyeli işaret için
 - $C = 2B \log_2 M$
 - M =ayrık işaret sayısı veya voltaj seviyesi

Shannon Kapasite Formülü

• Eşitlik:

$$C = B \log_2(1 + SNR)$$

- Teorik olarak erişilebilecek en büyük değeri belirtir.
- Pratikte, sadece çok daha düşük oranlar elde edilir.
 - Formül beyaz gürültü olduğunu kabul eder. (termal gürültü)
 - Darbe gürültüsü hesaba katılmaz.
 - Zayıflama bozulması veya gecikme bozulması hesaba katılmaz.

İşaret Gürültü Oranı

- İşaret gücünün iletimde belirli bir noktadaki gürültü gücüne oranıdır.
- Tipik olarak alıcıda ölçülür
- Signal-to-noise ratio (SNR, or S/N)

$$(SNR)_{dB} = 10 \log_{10} \frac{\text{signal power}}{\text{noise power}}$$

- Yüksek SNR'nin anlamı yüksek kalite, düşük değer ara tekrarlayıcı gerektiğini ifade eder.
- SNR erişilebilecek veri oranını sınırını belirler.

Nyquist ve Shannon Formülüne Örnekler

3 MHz and 4 MHz arası kanal spektrumu;
 SNR_{dB} = 24 dB

$$B = 4 \text{ MHz} - 3 \text{ MHz} = 1 \text{ MHz}$$

$$SNR_{dB} = 24 dB = 10 \log_{10}(SNR)$$

$$SNR = 251$$

Shannon formülü kullanımı ile;

$$C = 10^6 \times \log_2(1 + 251) \approx 10^6 \times 8 = 8$$
Mbps

Nyquist ve Shannon Formülleri Örneği

• Kaç işaretleme seviyesi gereklidir?

$$C = 2B \log_2 M$$

$$8 \times 10^6 = 2 \times (10^6) \times \log_2 M$$

$$4 = \log_2 M$$

$$M = 16$$

Güdümsüz Ortam

- İletim ve alım bir anten ile elde yapılır.
- Kablosuz haberleşme konfigürasyonları
 - Yönlü
 - Çok yönlü

İletim Ortamlarının Sınıflandırılması

- İletim Ortamı
 - İletici (Gönderici) ve alıcı arasındaki fiziksel yoldur.
- Güdümlü (Yönlendirilmiş) Ortam
 - Dalgalar sağlam bir ortam boyunca güdümlenir/yönlendirilir..
 - Örneğin bakır bükülü çift, bakır koaksiyet kablo, optik fiberler.
- Güdümsüz (Yönlendirilmemiş) Ortam
 - İletim aracı sağlar fakat elektromanyetik dalgayı yönlendirmez.
 - Örneğin atmosfer veya dış uzay.

Genel Frekans Aralıkları

- Mikrodalga frekans aralığı
 - 1 GHz 40 GHz
 - Yönlü ışıma mümkün
 - Bir noktadan diğer bir noktaya iletim için uygun
 - Uydu haberleşmesi için kullanılır.
- Radyo frekans aralığı
 - 30 MHz 1 GHz
 - Çok yönlü uygulamalar için uygun
- Kızıl ötesi frekans aralığı
 - Kabaca, 3x10¹¹ 2x10¹⁴ Hz
 - Kapalı alanlarda yerel noktadan-noktaya çoklu uygulamalarda faydalı

Karasal Mikrodalga

- Ortak mikrodalga anten tanımı
 - Parabolik "çanak", çapı 3 m
 - Katı bir sabitleme ve dar ışımaya odaklanır.
 - Görüş açık iletim ile alıcı antene erişilir.
 - Yerden önemli derecede yükseğe yerleştirilir.
- Uygulamalar
 - Uzun mesafeli haberleşme hizmeti
 - Binalar arasında kısa noktadan noktaya bağlantılar.

Broadcast Radio

- Description of broadcast radio antennas
 - Omnidirectional
 - Antennas not required to be dish-shaped
 - Antennas need not be rigidly mounted to a precise alignment
- Applications
 - Radyo yayını (Broadcast radio)
 - VHF ve UHF bandının bir kısmı; 30 MHZ 1GHz
 - FM radyo ile UHF ve VHF televizyon yayınlarını capsar

Uydu Mikrodalga

- Uydu haberleşme tanımı
 - Mikrodalga röle istasyonu
 - İki veya daha fazla yer tabanlı mikrodalga verici/alıcıyı bağlamak için kullanılır.
 - Bir frekans bandından (uplink) yayınlar alır, güçlendirir veya işareti tekrarlar, ve bir başka frekanstan iletir (downlink).
- Uygulamalar
 - Televizyon yayın dağıtımı
 - Uzak mesafe telefon haberleşmesi
 - Özel iş ağları

Çoğullama

- İletim ortamının kapasitesi genellikle, bir işaret için gerekli kapasiteye ulaşır.
- Çoğullama bir ortamda birden çok işaretin taşınmasıdır.
 - İletim ortamının daha etkin kullanımı.

Çoğullamanın Yaygın Kullanım Nedenleri

- Veri oranındaki artış ile kbps başına iletim tesisi maliyeti düşer.
- Artan veri oranı ile iletim ve alım ekipmanlarının maliyeti düşer.
- Çoğu bağımsız veri haberleşme cihazı göreceli olarak mütevazi veri oranı desteği gerektirir.

Çoğullama Teknikleri

• Frekans Bölmeli Çoğullama

(Frequency-division multiplexing :FDM))

- Ortamın bant genişliğinin verilen işaret için gerekli bant genişliğine ulaşma gerçeğinden faydalanır.
- Zaman Bölmeli Çoğullama

(Time-division multiplexing: TDM)

 Ortamın erişilebilir bir oranının verilen sayısal işaretin gerekli veri oranına erişebileceği gerçeğinden faydalanır.

