Gümnaasiumi matemaatika kitsa kursuse õppeprotsessi kirjeldus

1. Üldisi märkusi

Gümnaasiumi matemaatika kitsa kursuse õppeprotsessi korraldamisel tuleb lähtuda **ainekavas** märgitud kahest põhiseisukohast¹:

- 1) kitsa kava läbimine võimaldab jätkata õpinguid aladel, kus matemaatikal ei ole olulist tähtsust ja seda ei õpetata iseseisva ainena;
- 2) kitsa kava eesmärk on õpetada aru saama matemaatikakeeles esitatud teabest, kasutada matemaatikat igapäevaelus esinevates olukordades, tagades sellega sotsiaalse toimetuleku. Kitsa kava järgi õpetatakse kirjeldavalt ja näitlikustavalt, matemaatiliste väidete põhjendamine toetub intuitsioonile ning analoogiale.

Neist lähtekohtadest tulenevalt on kitsa kursuse **ainekava** üldisteks õppe-eesmärkideks taotlus, et õpilane:

- 1) saab aru matemaatika keeles esitatud teabest;
- 2) tõlgendab erinevaid matemaatilise informatsiooni esituse viise;
- 3) kasutab matemaatikat igapäevaelus esinevates olukordades;
- 4) väärtustab matemaatikat, tunneb rõõmu matemaatikaga tegelemisest;
- 5) arendab oma intuitsiooni, arutleb loogiliselt ja loovalt;
- 6) kasutab matemaatilises tegevuses erinevaid teabeallikaid;
- 7) kasutab arvutiprogramme matemaatika õppimisel.

Nagu toodud viidetest näha, on kitsa kursusega loodud eesti koolimatemaatikas uus paradigma. Selles seatakse varasemast praktikast erinevalt matemaatika õppeprotsessi põhiülesandeks mitte matemaatika kui teadusharu enese tundmaõppimine vaid peamine on matemaatika rakenduste vaatlemine inimest ümbritseva maailma teaduspõhiseks kirjeldamiseks ning elus toimetuleku tagamiseks. Selleks vajalik keskkond luuakse muidugi matemaatika mõistete, sümboolika, omaduste ja seoste, reeglite ja protseduuride käsitlemise ning intuitsioonil ja loogilisel arutelul põhinevate mõttekäikude esitamise kaudu.

Alljärgnevas esitatakse mõned võimalikud soovitused kitsa kursuse teemade käsitlemiseks. Kuna eesti koolimatemaatikas puudub niisuguse kursuse õpetamise kogemus, siis tuleb toodut vaadelda eelkõige kui matemaatika ainekavakomisjoni ettekujutust selle uue kursuse ülesehitusest ja põhilistest rõhuasetustest. Kursuse viimistletud esitused tekkivad muidugi alles aastate jooksul vastavate õpikute ja õppematerjalide autorite, õpetajate ning õppijate koostöö tulemusel.

¹ Siin ja edaspidi on väljavõtted ainekava tekstist esitatud *kursiivkirjas*.

Kursuse teemadele juurdeminekul ning aine käsitlemisel tuleb niipalju kui võimalik lähtuda reaalset konteksti sisaldavatest ülesannetest. Ainekavas rõhutatud rakendusliku sisuga ülesannete lahendamine on enamasti töömahukas, aegaviitev ning seotud funktsionaalse lugemise oskusega. Seetõttu tuleb nende lahendamiseks varuda piisavalt õppeaega. Samuti on vaja õppeprotsessis kasutada võimalikult palju IKT vahendeid ja võimalusi. Ainekavas ja allpool toodud soovitustes näidatud ainese esitamise järjestus on vaid soovituslik.

I kursus. Arvuhulgad. Avaldised. Võrrandid ja võrratused

Kursus on põhilisi algebraoskusi kordav ja süvendav baaskursus. Selles käsitletava omandatus määrab suures osas kogu edasise matemaatikakursuse läbimise edukuse. Samuti tuleb kursuse õppeprotsessi korraldamisel pidada silmas nende õpilaste vajadusi, kes leiavad kursuse käigus, et soovivad edasises üle minna laia matemaatikakursuse õppimisele. Nende vajadusi silmas pidades võiks õppematerjalidesse olla lisatud ka ainekavast mõnevõrra väljuvaid, kuid laiale kursusele üleminekuks vajalikke ülesandeid. Need peavad olema muidugi õppija jaoks kohustuslikustmaterjalist eristatavad.

Õppesisu	Õpitulemused	Soovitusi
	Kursuse lõpul õpilane:	
Naturaalarvude hulk N,	eristab ratsionaal-, irratsionaal- ja	Käsitlus tugineb arvuhulkade esitlemisele neisse kuuluvate arvude loetlemise
täisarvude hulk Z ja	reaalarve;	või kirjeldamise abil. Tuuakse illustreeriv joonis arvuhulkade vahelise seose
ratsionaalarvude hulk Q.		kohta. Reaalarvude piirkondi arvteljel vaadeldakse võrratuste lahendamise
Irratsionaalarvude hulk I.		esimese kontsentri kontekstis. Arvu absoluutväärtuse definitsioon kujul
Reaalarvude hulk R.		$ a = \begin{cases} a, kui \ a \ge 0 \\ -a, kui \ a < 0 \end{cases}$ küll esitatakse, kuid rõhutatakse arvu absoluutväärtust
Reaalarvude piirkonnad		a = 1 $-a$, $kui a < 0$ Kuii esitatakse, kuid ronutatakse arvu absoluutvaartust
arvteljel. Arvu		kui selle kaugust arvtelje nullpunktist. Ainete integratsiooni huvides on vaja
absoluutväärtus.		korrata arvu standardkuju koos mõningate standardkujul antud arvudega
Ratsionaalavaldiste		teostatavate korrutamis- ja jagamistehete näidetega.
lihtsustamine. Arvu n-es juur.	eristab, võrdust, samasust, võrrandit ja	Loetletud mõisted ei pea õppija oskama defineerida kuid peab nendega
Astme mõiste üldistamine:		määratud kirjutisi ära tundma, õigesti nimetama ning kasutama
täisarvulise ja	selgitab samasusteisendusi võrrandite ja	, , ,
ratsionaalarvulise astendajaga	võrratuste lahendamisel;	
aste. Murdvõrrand. Arvu juure	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		Lineaar- ja ruutvõrrandeid lahendatakse kordavalt. Kuna põhikoolis ei
astendajaga astmena. Tehted	,	tegeleta uue ainekava kohaselt enam murdvõrrandite lahendamisega, siis
astmetega ja tehete näiteid	· ·	tuleb viimaste lahendamist alustada kõige lihtsamatest. Lahendatavate
		murdvõrrandite keerukus võiks olla piiratud peamiselt tekstülesannete

võrdsete juurijatega juurtega. Võrratuse mõiste ja omadused.		lahendamisel tekkivate murdvõrranditega. Näiteks $\frac{6}{x} + \frac{6}{x+5} = 1$ või ka
Lineaar- ja ruutvõrratused.		2 x x
Lihtsamate, sealhulgas		$\frac{2}{x-2} - \frac{x}{2} = \frac{x}{x-2}$.
tegelikkusest tulenevate	socrital tableid astronto is invertors	Põhiliseks võtteks juurtega töötamisel on nende teisendamine murrulisele
tekstülesannete lahendamine		, ,
võrrandite abil.		astendajale ning astmete omaduste rakendamine koos saadud vastuse
vorranatte abit.		kirjutamisega juurena. Lihtsamatel juhtudel võib muidugi kasutada ka juurte
		omadusi. Näiteks $\sqrt{a^3} \cdot \sqrt{a} = \sqrt{a^3 a} = \sqrt{a^4} = a^2$.
		Kuna põhikoolis on senist ratsionaalavaldiste teisendamisega seonduvat
	juuravaldisi;	ainest oluliselt lihtsustatud, siis tuleb siin kõnealust temaatikat kaunis
		põhjalikult käsitleda. Avaldiste kindel teisendusoskus on aluseks kogu
		järgneva kursuse õppimisele. Samuti on kõnealune baasoskus eriti vajalik
		õpilastele, kes pärast kitsa kursuse esimese osakursuse läbimist otsustavad
		matemaatikaõpikute jätkamiseks valida laia kursuse. Teisendatavate
		ratsionaalavaldiste keerukusaste võiks olla ülalt piiratud avaldistega, mille
		näitena esitame siin järgmise: $\left(\frac{x+1}{2x-2} + \frac{6}{2x^2-2} - \frac{x+3}{2x+2}\right) \cdot \frac{4x^3-4x}{5}$
		` '
		Juuravaldiste teisendamisel võiks võimekama klassi korral jõuda teisendust
		$a-b=(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})$ nõudvate avaldisteni. Näiteks
		$\left(\begin{array}{ccc} \frac{1}{a^2} + \frac{1}{b^2} & a - b \end{array}\right)$
		$\left(\frac{a^{\frac{1}{2}} + b^{\frac{1}{2}}}{a - b} - \frac{a - b}{a^{\frac{1}{2}} - b^{\frac{1}{2}}}\right) \cdot (\sqrt{a} - \sqrt{b}).$
		(u -v)
	,	Kuna põhikoolist on võrratuste lahendamine uue ainekavaga täielikult välja
	1	viidud, on mõistlik käsitleda lineaarvõrratusi siin kahes kontsentris. Esimene,
	süsteeme;	lineaarvõrratusi ja nende põhiomadusi tutvustavat laadi käsitlus esitatakse
		koos arvuhulkade kui võrratuste lahendite kujutamisega arvteljel. Hiljem
		tullakse teema juurde aga tagasi lineaarvõrratuste käsitluse süvendamisega
		ruutvõrratuste ja lineaarvõrratuste süsteemide käsitlemise eel. Võrratuste ja
		eriti nende süsteemide lahendamisel on oluline kujutada nende lahendihulki
		arvteljel. Ruutvõrratuste lahendamine toimub neile vastavate paraboolide
		skitseerimise kaudu. Paraboolide skitseerimisel võib mõislikkuse piires

kasutada ka arvutiprogramme.

lahendab lihtsamaid, sh tegelikkusest	Kogu kitsa matemaatika kursuses peab olema erilisel kohal ning pideva
tulenevaid tekstülesandeid võrrandite j	a tähelepanu all reaalsete kontekstidega seotud protsentülesannete
võrrandisüsteemide abil.	lahendamine. Vaadeldavas kursuses lisanduvad neile uue ainekava järgi
	põhikoolis mittekäsitletavad murdvõrrandite ning võrrandisüsteemide
	lahendusoskust nõudvad nn liikumisülesanded ning lihtsamad nn
	koostöötamise ülesanded.

II kursus. Trigonomeetria

Põhikooli uues ainekavas piirdub trigonomeetria käsitlus vaid siinuse, koosinuse ja tangensi mõistetega täisnurkses kolmnurgas. Põhikooli matemaatika õppeprotsessi kirjelduses märgitakse seejuures vaid kaht õpitulemust: 1) õpilane leiab taskuarvutil teravnurga trigonomeetriliste funktsioonide väärtusi ning 2) trigonomeetriat kasutades leiab täisnurkse kolmnurga joonelemendid. Kursuse võiks üles ehitada järgmise üldskeemi kohaselt:

- 1. Kordamine
- 2. Nurga mõiste üldistamine
- 3. Mistahes nurga trigonomeetrilised funktsioonid
- 4. Ringjoone kaare pikkus ja ringi sektori pindala
- 5. Kolmnurga pindala valemid
- 6. Siinusteoreem ja koosinusteoreem
- 7. Kordamine

Õppesisu	Õpitulemused	Soovitusi
	Kursuse lõpul õpilane:	
Nurga mõiste üldistamine,	teisendab kraadimõõdus antud nurga	Üleminekuid radiaan- ja kraadimõõdu vahel on mõistlik korraldada
radiaanmõõt Mis tahes	radiaanmõõtu ja vastupidi;	võrdega. Näiteks: Mitu kraadi on nurk $\frac{3\pi}{2}$? Koostame võrde
nurga trigonomeetrilised funktsioonid $(\sin \alpha, \cos \alpha, \tan \alpha)$		$\pi = 180^{0}$
), nende väärtused nurkade		$\frac{3\pi}{2} = x.$
$0^{0}, 30^{0}, 45^{0}, 60^{0}, 90^{0}, 180^{0},$		$\frac{1}{2}$ - λ .
270°, 360° korral. Negatiivse		Siit
nurga trigonomeetrilised		$3\pi_{100}$
funktsioonid. Funktsioonide		$x = \frac{\frac{3\pi}{2} \cdot 180^0}{2} = 270^0$
$y = \sin x$, $y = \cos x$, $y = \tan x$		π

graafikud. Trigonomeetria		Trigonomeetriakursuse järgnevates osades ja järgnevates kursustes ei
1		
$p\tilde{o}hiseosed \tan \alpha = \frac{\sin \alpha}{\cos \alpha},$		nõuta õpilastelt kindlasti ühe või teise nurgamõõdusüsteemi kasutamist.
		Õigeks loetakse nii kraadi- kui radiaanmõõdu kasutamine. Õpilaste
$\sin^2\alpha + \cos^2\alpha = 1,$		silmaringi laiendamiseks on mõistlik tutvustada ka detsimaalkraadimõõtu.
$\cos \alpha = \sin(90^{\circ} - \alpha)$,		Ülesannete lahendamise leitakse trigonomeetrilise funktsiooni argument,
$\sin \alpha = \cos(90^{\circ} - \alpha)$,		nurk funktsiooni väärtuse abil enamasti arvutit kasutades ligikaudse
1		väärtusena. Kraadi murdosi sisaldava nurga esitamisel ei ole kohustuslik
$\tan \alpha = \frac{1}{\tan(90^0 - \alpha)},$		selle väljendamine minutites ja sekundites. Näiteks leides võrdest
$\sin(-\alpha) = -\sin(\alpha)$		$\sin \alpha = 0.6$ nurga, piisab selle esitusest kujul $\alpha = 36.869 \approx 36.7^{\circ}$.
$\cos(-\alpha) = \cos \alpha$	defineerib mis tahes nurga siinuse,	Nurga mõiste laiendamist on tark alustada eelmise ainekava kohaselt juba
$\tan(-\alpha) = -\tan \alpha$	koosinuse ja tangensi	põhikoolis käsitletud täiendusnurga ja vastavate trigonomeetriliste
$\sin(\alpha + k \cdot 360^{\circ}) = \sin \alpha,$		funktsioonide vaheliste seoste vaatlemisega. Positiivse ja negatiivse nurga
		ning suvalise suurusega nurga mõiste käsitlemisel võiks aluseks olla
$\cos(\alpha + k \cdot 360^{\circ}) = \cos \alpha,$		alghaara pöörlemise vaatlemine. Käsitleda tuleks ka täispöördest
$\tan(\alpha + k \cdot 360^{\circ}) = \tan \alpha.$		suuremate nurkade taandamist täispöördest väiksemateks nurkadeks.
Siinus- ja koosinusteoreem.		Nurga taandamine teravnurgale ei ole kitsa kursuse ainekava nõutav
Kolmnurga pindala valemid,		õpitulemus. Mistahes nurga trigonomeetrilised funktsioonid
nende kasutamine hulknurga		defineeritakse nurga lõpphaara suvalise punkti kaudu.
pindala arvutamisel.	loeb trigonomeetriliste funktsioonide	Trigonomeetriliste funktsioonide graafikute käsitlemise aluseks on nende
Kolmnurga lahendamine.	graafikuid;	konstrueerimine mingi arvutiprogrammiga. Valmisgraafikult loetavateks
Ringjoone kaare kui		parameetriteks on määramispiirkond, muutumispiirkond, etteantud
ringjoone osa pikkuse ja		argumendile vastavad funktsiooni väärtused, nullkohad, positiivsus- ja
ringi sektori kui ringi osa		negatiivsuspiirkonnad ning perioodilisus. Valdavalt võiks piirduda
pindala arvutamine.		vahemikuga -2π , 2π
Rakendussisuga ülesanded.	teisendab lihtsamaid trigonomeetrilisi	Õpilastele esitatakse teisendamiseks vaid ainekavas toodud seostele
	avaldisi;	tuginevaid. Trigonomeetriliste funktsioonide väärtused teravnurkadest
		30° , 45° ja 60° ning teljenurkadest memoreeritakse. Rakenduslikes
		ülesannetes leitakse trigonomeetriliste funktsioonide väärtusi ja
		argumente (nurki) siiski enamasti ligikaudsetena, arvutilt. Teisendatavate
		avaldiste keerukus võiks piirduda näiteks järgmise avaldisega
		$(\sin \alpha + 1)^2 + (\sin \alpha - 1)^2$
		$\frac{(\sin \alpha + i) + (\sin \alpha - i)}{2 - \cos^2 \alpha}$.
		$2-\cos \alpha$

rakendab kolmnurga pindala valemeid,	Ringjoone kaare pikkuse ja sektori pindala valemid võidakse küll tuletada
siinus- ja koosinusteoreemi;	kuid ülesannete lahendamisel on tark leida need suurused võrde abil kui
lahendab kolmnurki, arvutab	osa ringjoone pikkusest või ringi pindalast. Kolmnurga pindala valemitest
kolmnurga, rööpküliku ja hulknurga	tuletatakse meelde valem $S = \frac{ah}{2}$ ning vaadeldakse kolmnurga pindala
pindala, arvutab ringjoone kaare kui	2
ringjoone osa pikkuse ja ringi sektori	leidmist kahe külje ja nende vahelise nurga siinuse kaudu. Kasulik on
kui ringi osa pindala;	vaadelda ka segmendi pindala kui sektori ja kolmnurga pindala vahet ning
lahendab lihtsamaid rakendussisuga	rööpküliku pindala kahe külje ja nende vahelise nurga siinuse kaudu.
planimeetriaülesandeid.	Hulknurga pindala leitakse selle tükeldamisega neli- või kolmnurkadeks.
	Siinusteoreem on soovitav tuletada, koosinusteoreem võetakse teadmiseks
	tõestuseta. Vaadeldav kursuse osa võimaldab lahendada arvukalt
	reaalsetest kontekstidest tulenevaid ülesandeid. Seda tuleb ka teha.

III kursus. Vektorid. Joone võrrand.

Kursuse käsitlus võiks koosneda järgmistest osasdest.

- 1. Lõigu keskpunkt. Kahe punkti vaheline kaugus.
- 2. Vektor. Tehted vektoritega.
- 3. Sirge tasandil.
- 4. Ringjoone võrrand. Kõvera ja sirge lõikepunktide leidmine

Õppesisu	Õpitulemused	Soovitusi
	Kursuse lõpul õpilane:	
Punkti asukoha määramine	selgitab vektori mõistet ja vektori	Koordinaadistiku ja punkti koordinaatide kordaval ja süvendaval
tasandil. Kahe punkti	koordinaate;	käsitlemisel on kasulik vaadelda lõigu keskpunkti leidmist lõigu
vaheline kaugus. Vektori	liidab ja lahutab vektoreid ning	otspunktide koordinaatide kaudu. Vastavas tuletuskäigus kasutatavate
mõiste ja tähistamine.	korrutab vektorit arvuga nii	projektsioonlõikude vaatlemine on eeltöö vektori koordinaatide mõiste
Vektorite võrdsus. Nullvektor,	geomeetriliselt kui ka koordinaatkujul;	sissetoomiseks. Kahe punkti vahelise kauguse valem tuletatakse esialgu
ühikvektor, vastandvektor,		ilma vektori mõistet kasutamata Pythagorase teoreemi abil. Hiljem,
seotud vektor, vabavektor.		vektori pikkuse käsitlemisel seotakse see kaugust mõõtva lõigu kui
Jõu kujutamine vektorina.		vektori pikkuse arvutamisega. Vektorite liitmise lähtekohaks võiks olla

Vektori koordinaadid. Vektori pikkus. Vektori korrutamine arvuga. Vektorite liitmine ja lahutamine (geomeetriliselt ja koordinaatkujul). Kahe vektori vaheline nurk. Kahe vektori skalaar-korrutis, selle rakendusi. Vektorite kollineaarsus ja ristseis. Sirge võrrand (tõusu ja algordinaadiga, kahe punktiga, punkti ja tõusuga määratud sirge). Kahe sirge vastastikused asendid tasandil. Nurk kahe sirge vahel. Parabooli võrrand. Ringjoone võrrand. Joonte lõikepunktide leidmine. Kahe	leiab vektorite skalaarkorrutise, rakendab vektorite ristseisu ja kollineaarsuse tunnuseid; tunneb sirget, ringjoont ja parabooli ning nende võrrandeid, teab sirgete vastastikuseid asendeid tasandil; koostab sirge võrrandi, kui sirge on määratud punkti ja tõusuga, tõusu ja algordinaadiga, kahe punktiga; määrab sirgete vastastikused asendid tasandil; joonestab sirgeid nende	kolmnurgareegel. Vektorite lahutamist käsitletakse loomulikult vastandvektori liitmise kaudu. Rööpkülikureegli juures tuleb näidata selle seost kolmnurgareegliga. Rakenduslike ülesannete lahendamiseks on vajalik käsitleda vektori esitamist etteantud sihiga komponentideks. Vektorite liitmine koordinaatkujul ei pruugi olla teema oluline komponent. Seda võiks vaadelda vaid kaunis lühidalt, etteantud valemi (võtte) rakendamisena. Vektorite skalaarkorrutise mõiste käsitlemine on mõistlik siduda mehhaanilise töö kui jõuvektori ja nihkevektori skalaarkorrutise leidmisega. Kõrvuti sirgete käsitsi skitseerimisega koordinaattasandil tuleb selleks kasutada ka arvutit. Sirgetepaaride vastastikuseid asendeid tasandil uuritakse sirgete võrranditest koostatud süsteemi lahendamise teel. Algebralist uuringut saatku vaadeldavate sirgete kujutamine teljestikus. Seda võib teha ka arvutil. Eraldi tähelepanu tuleb muidugi pöörata telgedega paralleelsete sirgete võrranditele.
tundmatuga lineaarvõrrandist ning lineaarvõrrandist ja	võrrandite	
ruutvõrrandist koosnev võrrandisüsteem. Rakendussisuga ülesanded.	koostab ringjoone võrrandi keskpunkti ja raadiuse järgi; joonestab ringjooni ja paraboole nende võrrandite järgi	Paraboolide käsitsi joonestamisel kasutatakse neile vastavate funktsioonide nullkohti ja paraboolide varemõpitud omadusi. Omandatakse ka parabooli joonistusoskus arvutil. Ringjoonte joonistamine toimub peamiselt arvutil.
	leiab kahe joone lõikepunktid (üks joontest on sirge):	Kahe joone lõikepunkte leitakse vastava võrrandisüsteemi lahendamise teel. Algebralist lahendamist saadetakse kindlasti arvutijoonistega, Parabooli ja sirge lõikepunktide leidmist võidakse assisteerida ka käsitsi valmistatud joonistega. Teretulnud on samuti võrrandite ja võrrandisüsteemide graafilise lahendamise tähenduse käsitlemine arvutijooniste vaatlemise alusel.

kasutab vektoreid ja joone võrrandeid	Rakenduslike sisuga ülesannete lahendamine on enamasti töömahukas,
rakendussisuga ülesannetes.	aegaviitev ning seotud funktsionaalse lugemise oskusega. seetõttu tuleb
	nendele varuda piisavalt õppeaega

IV kursus. Tõenäosus ja statistika

Kõnealune kursus kannab väga suurt õppija isiksuse arendamise koormust ja on eriti oma statistikaosaga üks olulisi vahendeid gümnaasiumi õppeprotsessi lõimimisel. Statistikaosa sisaldab ka üht eesti koolimatemaatika jaoks täiesti uut teemat - üldkogumi arvkarakteristikute tõenäosuslik hindamine valimi ühe arvkarakteristiku, aritmeetilise keskmise kasutamise näitel.

Kursus esitatakse kahes osas

- 1. Tõenäosus
- 2. Statistika

.....

Õppesisu	Õpitulemused	Soovitusi
	Kursuse lõpul õpilane:	
Sündmus. Sündmuste liigid. Suhteline sagedus, statistiline tõenäosus. Klassikaline tõenäosus. Geomeetriline tõenäosus. Sündmuste korrutis. Sõltumatute sündmuste korrutise tõenäosus.	eristab juhuslikku, kindlat ja võimatut sündmust; selgitab sündmuse tõenäosuse mõistet ning sõltumatute sündmuste korrutise ja välistavate sündmuste summa tähendust;	Klassikalise tõenäosuse käsitlemisel lähtutakse elementaarsündmuse mõistest ning sündmuse A klassikaline tõenäosus defineeritakse soodsate elementaarsündmuste arvu S ja kõikide elementaarsündmuste arvu k suhtena $P(A) = \frac{s}{k}$. Kohe seejärel vaadeldakse võimatu, kindla ja vastandsündmuse mõistet ning sündmuse ja selle vastandsündmuse summa
Sündmuste summa. Välistavate sündmuste summa tõenäosus. Faktoriaal. Permutatsioonid. Kombinatsioonid. Binoomkordaja. Diskreetne juhuslik suurus, selle jaotusseadus, jaotuspolügoon ja arvkarakteristikud		tõenäosust. Statistilise tõenäosuse käsitlemisel peaks olema arvestataval kohal Eesti Statistikaameti polt avaldatavad nn oodatava eluea tabelid (vt. http://pub.stat.ee/px-web.2001/Database/Rahvastik/databasetree.asp) ning neil põhinevad ülesanded. Geomeetrilise tõenäosuse käsitlemisel vaadelgem kaht tüüpi ülesandeid (1) pindalade suhete leidmisel ja (2) ajatelje kasutamisel põhinevaid.

(keskväärtus, mood, mediaan, standardhälve). Üldkogum ja valim. Andmete kogumine ja nende süstematiseerimine.
Statistilise andmestiku analüüsimine ühe tunnuse järgi. Normaaljaotus (kirjeldavalt). Statistilise otsustuse usaldatavus keskväärtuse usaldusvahemiku näitel. Andmetöötluse projekt, mis realiseeritakse arvutiga (soovitatavalt koostöös mõne teise õppeainega).

selgitab faktoriaali, permutatsioonide ja binoomkordaja mõistet; arvutab sündmuse tõenäosust ja rakendab seda lihtsamaid elulisi ülesandeid lahendades; Eelmisest ainekavast erinevalt piirdutakse sündmustega tehtavate tehete ning vastavate tõenäosuste arvutamisel sõltumatute sündmuste korrutisega ning välistavate sündmuste summaga

Permutatsioonide ja faktoriaali mõiste käsitlemisel võiks lähtuda järjestikuste, üksteisest sõltumatute valikute arvu leidmiseks kasutatavast korrutamislausest.

Kombinatsioonide arvu valemi juurde minnakse läbi binoomkordaja

käsilemise. Konkreetsete näidete vaatlemise kaudu tuletatakse valem

 $\frac{n \cdot (n-1) \cdot ... \cdot (n-(k-1))}{k!}$. Vaid näidete põhjal võetakse ka teadmiseks, et

Eelmisest ainekavast erinevalt ei käsitleta variatsioone ja nende arvu leidmist.

selgitab juhusliku suuruse jaotuse olemust ning juhusliku suuruse arvkarakteristikute tähendust; arvutab juhusliku suuruse jaotuse arvkarakteristikud ning teeb nendest järeldusi uuritava probleemi kohta; Juhusliku suuruse mõiste esitatakse statistilise andmestiku esitamise ja põhiliste arvkarakteristikute käsitlemise kokkuvõttena. Sellele võiks kohe järgneda normaaljaotuse kirjeldav esitlemine. Statistika osade alateemade üks võimalik esitusjärjekord võiks olla selline:

- Üldkogum ja valim.
- Statistiline andmestik
- Statistilise rea korrastamine, esitamine ja illustreerimine
- Statistilise rea arvnäitajad, nende sisuline tõlgendamine (aritmeetiline keskmine, dispersioon, standardhälve, variatsioonikordaja)

Kuigi ainekava seda ei nõua, on õpilaste üldise silmaringi laiendamiseks mõistlik vaadelda ka korrelatsioonivälja, regressioonijoone ning lineaarse korrelatsioonikordaja mõisteid. Sellega seonduva nagu ka kogu muu statistikaainese käsitlemine tuginegu mingi tabelarvutussüsteemi (Excel, OpenOffice Calc) laialdasele rakendamisele.

selgitab valimi ja üldkogumi mõistet ning andmete süstematiseerimise ja statistilise otsustuse usaldatavuse tähendust; leiab valimi järgi üldkogumi keskmise usalduspiirkonna Eesti koolimatemaatika jaoks täiesti uudne pala on üldkogumi arvnäitajate tõenäosuslik hindamine valimi arvnäitajate abil (selle kohta vt täpsemalt näiteks Hiob, Kadri Matemaatiline statistika: algkursus koolidele.

Tallinn: Avita, 1995). Teema käsitlemisel on vaja esitada usalduspiiride, usaldusvahemiku (usalduspiirkonna), usaldus- ja olulisusnivoo mõisted. Usaldusvahemike leidmist illustreeritakse vaid ühe näitega - üldkogumi keskmise usaldusvahemiku leidmisega. Vastav arvutuslik aparatuur esitatakse valmiskujul. Mõistlik on näidete alusel vaadelda ka usaldusvahemike ühisosade hindamisel põhinevat võimalust erinevate üldkogumite (mehed - naised; noored-vanad jne) keskmiste erinevuse hindamiseks. Rõhutame veelkord, et kogu selle ainese käsitlus realiseeritakse mingi tabelarvutusüsteemi rakendades.

kogub andmestikku ja analüüsib seda arvutil statistiliste vahenditega Siin on eriti vajalik otsida lõimimisvõimalusi teiste ainetega (loodusteadused, ühiskonnaõpetus, kehakultuur jt)

2.6. V kursus. Funktsioonid I

Kursuse põhiteemadeks on põhiliste elementaarfunktsioonide ja nende graafikute tundmaõppimine. Funktsioonide käsitlemise põhiliseks viisiks on nende arvutiga joonistatud graafikute lugemine. Koos eksponentfunktsiooni vaatlemisega on oluline osa liitprotsendilise muutumisega seotud majandus- ja rahandusülesannetel. Koos logaritmfunktsiooni vaatlemisega käsitletakse ka arvu logaritmi põhilisi omadusi. Lahendatakse lihtsamaid eksponent ja logaritmvõrrandeid

Õppesisu	Õpitulemused	Soovitusi
	Kursuse lõpul õpilane:	
Funktsioonid $y = ax + b$,	selgitab funktsiooni mõistet ja	Funktsioonide käsitlemist alustatakse põhikoolis õpitud lineaar- ja
$y = ax^2 + bx + c, y = \frac{a}{x}$	üldtähist ning funktsiooni käigu uurimisega seonduvaid mõisteid,	ruutfunktsiooni ning funktsiooni $y = \frac{a}{x}$ ning nende graafikute
(kordavalt). Funktsiooni	pöördfunktsiooni mõistet, paaritu ja	käsitlemisest. Funktsiooni üldine mõiste kui seos $y = f(x)$, milles iga
mõiste ja üldtähis. Funktsiooni	paarisfunktsiooni mõistet;	sõltumatu muutuja väärtusele x vastab üks kindel sõltuva
esitusviisid. Funktsiooni	skitseerib ainekavaga fikseeritud	muutuja väärtus y esitatakse eelnevas vaadeldud konkreetsete
määramis- ja	funktsioonide graafikuid (käsitsi ning	funktsioonide käsitluse laiendusena. Funktsiooni esitusviisidest
muutumispiirkond. Paaris- ja	arvutil); kirjeldab funktsiooni	vaadeldakse valemit, tabelit ja graafikut. Funktsiooni määramispiirkonna
paaritu funktsioon.	graafiku järgi funktsiooni peamisi	leidmine seotakse võrratuste lahendamisega. Funktsiooni paarsust
Funktsiooni nullkohad,	omadusi;	vaadeldakse vastavat omadust omavate konkreetsete funktsioonide
positiivsus- ja		graafikutest lähtudes kuid esitatakse ka vastavad algebralised seosed.
negatiivsuspiirkond.		Funktsiooni nullkohtade, positiivsus-, negatiivsus-, kasvamis- ja
Funktsiooni kasvamine ja		kahanemispiirkondade ja ekstreemumkohtade leidmiseks kasutatakse
kahanemine. Funktsiooni		funktsioonide valmisgraafikuid. Seal kus võimalik, leitakse vastavad
ekstreemum. Funktsioonid		punktid ja piirkonnad ka algebraliselt, lahendades vastavaid võrrandeid ja
$y = ax^n (n = 1, 2, -1, -2).$		võrratusi.
Arvu logaritmi mõiste.		Funktsioonidest $y = ax^n$ vaadeldakse lisaks varemkäsitletutele funktsioone
Korrutise, jagatise ja astme		$y = x^3$ ja $y = \frac{1}{x^2}$. Nende omadusi selgitatakse valmisgraafikute põhjal.
logaritm. Logaritmimine ja		$y = x$ ja $y = \frac{1}{x^2}$. Nehde omadusi seigitatakse vaimisgraafikute pohjai.
potentseerimine (mahus, mis		Eksponentfunktsioonile juurdeminek võiks toimuda liitprotsendilise
võimaldab lahendada		muutumise käsitlemise kaudu. Kõigist eksponentfunktsioonidest pööratagu
lihtsamaid eksponent- ja		olulist tähelepanu funktsioonile $y = e^x$. Logaritmfunktsiooni käsitlemise
logaritmvõrrandeid).		eel on mõistlik esitleda pöördfunktsiooni ja defineerida logaritmfunktsioon

Pöördfunktsioon. Funktsioonid $y = a^x$ ja $y = \log_a x$.		eksponentfunktsiooni pöördfunktsioonina
Liitprotsendiline kasvamine ja		
kahanemine. Näiteid mudelite kohta, milles esineb e ^{ax} . Lihtsamad eksponent- ja logaritmvõrrandid. Mõisted arcsin m, arccos m ja arctan m. Näiteid trigonomeetriliste põhivõrrandite lahendite leidmise kohta.	selgitab arvu logaritmi mõistet ja selle omadusi ning logaritmib ja potentseerib lihtsamaid avaldisi; lahendab lihtsamaid eksponent- ja logaritm võrrandeid astme ning logaritmi definitsiooni vahetu rakendamise teel;	Arvu logaritmi mõiste ja korrutise, jagatise ning astme logaritmimise reeglid võib esitada enne logaritmfunktsiooni käsitlemist. Logaritmitakse ja potentseeritakse avaldisi, milledega opereerimise oskus on vajalik vaid lihtsaid võrrandeid lahendades. Näiteks: Logaritmida järgmisi avaldisi alusel a , kui $x > 0$, $y > 0$: $2e^3xy^3$, kui $a = e$ või Leida x , 1) $\ln x = 5\ln 2 + 3\ln t$ 2) $\log 20 - \log x = \log 2$. Võrrandite lahendamisel võiks olla lahendatavate ülesannete keerukus ülalt piiratud näiteks võrranditega $\log^2 x - 5\log x - 6 = 0$ ja $3^{4x+1} - 3^{2x+1} - 18 = 0$.
	selgitab liitprotsendilise kasvamise ja kahanemise olemust ning lahendab selle abil lihtsamaid reaalsusega seotud ülesandeid; tõlgendab reaalsuses ja teistes õppeainetes esinevaid protsentides väljendatavaid suurusi, sh laenudega seotud kulutusi ja ohte;	Liitprotsendilise muutumise, eksponent- ja logaritmvõrrandite käsitlemisel lahendatagu ohtralt rahandusülesandeid. Näiteks: Panka, milles aasta intressimäär on 3%, pandi hoiule 5000 eurot. Mitme aasta pärast ületab hoiustatud summa 6500 eurot? või 1990. aasta algul oli riigi elanike arv 100 miljonit ja rahvastiku aastane juurdekasv 1,0%, Ühe teise riigi elanike arv oli 20 miljonit ja rahvastiku iga-aastane juurdekasv 2,5%. Oletades, et selline rahvastiku juurdekasv on muutumatu, kirjeldab esimese riigi elanike arvu funktsioon $y = 100e^{x\ln 1,01}$ ja teise riigi elanike arvu funktsioon $y = 20e^{x\ln 1,025}$, kus x on aastad ja y elanike arv miljonites. Mitme aasta pärast on nende riikide elanike arv võrdne?
	lahendab graafiku järgi trigonomeetrilisi põhivõrrandeid etteantud lõigul.	Mõistete <i>arcsin m, arccos m ja arctan m</i> käsitlemist võib seostada vastavate trigonomeetriliste funktsioonide pöördfunktsioonide arvutil koostatud graafikute vaatlemisega . Võrrandite lahendeid etteantud lõigul leitakse üldlahenditest sobivate väärtuste väljaotsimisega. Seda tegevust saadetakse vastava, arvutil konstrueeritud joonise kasutamisega. Lahendatavate võrrandite keerukus ei tohiks ületada näiteks järgmises ülesandes toodut: Lahendada trigonomeetriline võrrand $2\sin^2 x + 7\sin x = 4$ lõigul $x \in [0^0; 360^0]$

2.7. VI kursus. Funktsioonid II

Kursuse põhiteemadeks on

- 1) Aritmeetiline ja geomeetriline jada
- 2) Funktsiooni tuletis ja selle kasutamine funktsiooni uurimiseks ning ekstreemumülesannete lahendamiseks.

Kursuse suurimaks eripäraks on funktsiooni tuletise mõiste käsitlemine piirväärtuse mõistet rakendamata.

Õppesisu	Õpitulemused	Soovitusi
	Kursuse lõpul õpilane:	
Õppesisu Arvjada mõiste, jada üldliige. Aritmeetiline jada, selle üldliikme ja summa valem. Geomeetriline jada, selle üldliikme ja summa valem. Funktsiooni tuletise geomeetriline tähendus. Joone puutuja tõus, puutuja võrrand. Funktsioonide $y = x^n (n \in Z)$, $y = e^x$, $y = \ln x$ tuletised. Funktsioonide summa, vahe, korrutise ja jagatise tuletised. Funktsiooni teine tuletis. Funktsiooni kasvamise ja kahanemise uurimine ning ekstreemumite leidmine	1 -	Arvjada mõiste esitamisel piirdutakse mõnede konkreetsete jadade esitlemisega. Tuuakse sisse terminid <i>jada, jada liige, indeks</i> kui jada liikme järjekorranumber, <i>jada üldliige, üldliikme valem</i> . Ei käsitleta jada piirväärtust. Aritmeetilise ja geomeetrilise jada käsitlus on traditsiooniline. Esitatakse üldliikme ja summa valemid. Geomeetrilise jada summa valem võetakse kasutusele tuletamiseta. Ei käsitleta hääbuvat geomeetrilist jada. Funktsiooni tuletise vaatlemine ilma piirväärtuse ning funktsiooni muudu ja argumendi muudu esitlemiseta võiks toimuda näiteks järgmiselt: Funktsiooni tuletise mõistele juurdeminek toimub funktsiooni kasvu kiiruse vaatlemise kaudu. Alustatakse mõnede konkreetsete funktsioonide arvutiga joonestatud graafikute vaatlemisest ja nende erinevates punktides kasvamise kiiruse võrdlemisest. Viimane seotakse kohe võrreldavatesse punktidesse (arvutiga) joonestatud puutujate asendite võrdlemisega. Seejärel vaadeldakse funktsiooni kasvu antud kohal kui vastava puutuja (kui sirge) tõusu ja tõusunurka. Kohe seejärel defineeritakse tuletis antud
tuletise abil. Lihtsamad ekstreemumülesanded.		kohal x_0 kui vastava puutuja tõus ($f'(x_0) = k$). Kui klassi tase seda võimaldab ja õpetajal tahtmist on, võib funktsiooni tuletise mõisteni jõuda ka vanal tuttaval viisil, funktsiooni ja argumendi muutude suhte ja selle piirväärtuse kaudu. Kuigi ainekava nimetab vaid funktsiooni tuletise geomeetrilist tähendust, on ainete lõimimise huvides mõistlik eraldi tähelepanu juhtida ka funktsiooni tuletise füüsikalisele tähendusele. Õpilaste üldist silmaringi laiendaks ka majandusteaduses laialdaselt kasutatava marginaalfunktsiooni

	kui sisuliselt tuletisfunktsiooni mõiste lühitutvustus.
leiab ainekavaga määratud funktsioonide tuletisi; koos funktsiooni graafiku puutuja antud puutepunktis;	1
selgitab funktsiooni kasvam kahanemise seost funktsioon tuletisega, funktsiooni ekstre mõistet ning ekstreemumi le eeskirja;	Funktsiooni kasvamine ja kahanemine ning ekstreemumi seotakse tuletisega mingi mitme vastava piirkonnaga funktsiooni arvutil koostatud valmisgraafiku käigu vaatlemise kaudu. Ekstreemumid määratletakse kui
leiab lihtsamate funktsioonid nullkohad, positiivsus- ja negatiivsuspiirkonnad, kasv kahanemisvahemikud, maks miinimumpunktid ning skitse nende järgi funktsiooni grad	esile kordavas plaanis. Algebraliselt, võrrandite ning võrratuste lahendamisega leitud piirkondi illustreeritakse funktsiooni arvutil koostatavate
lahendab lihtsamaid ekstreemumülesandeid	Kontekstiga seotud ekstreemumülesannete lahendamisel määratakse ekstreemumi liik peamiselt teise tuletise märgi abil.

2.8. VII kursus. Tasandilised kujundid. Integraal.

Kursuse esimene osa mõeldud põhikoolis läbitud vastava materjali kordamiseks ja süvendamiseks. Seejuures lahendatakse ohtralt elulise sisuga, kontekstis esitatud ülesandeid. Tasandiliste kujundite vaatlemine on ühtlasi ettevalmistuseks VIII, stereomeetria kursuse käsitlemisele. Kursuse teises osas jõutakse integraali mõiste kaudu lihtsamate kõverate ja sirgetega piiratud kujundite pindalade arvutamiseni.

Õppesisu	Õpitulemused	Soovitusi
----------	--------------	-----------

	Kursuse lõpul õpilane:	
Kolmnurgad, nelinurgad, korrapärased hulknurgad, ringjoon ja ring. Nende kujundite omadused, elementide vahelised seosed, ümbermõõdud ja pindalad rakendusliku sisuga ülesannetes. Algfunktsioon ja määramata	defineerib ainekavas nimetatud geomeetrilisi kujundeid ja selgitab kujundite põhiomadusi;	Kursuse teoreetilise materjali käsitlemisel pööratakse tähelepanu vaadeldavate kujundite ja kujundite klasside korrektse defineerimise küsimustele. Kujundite põhiomadustest võidakse mõned ka tõestada. Esitatakse Heroni valem kolmnurga pindala arvutamiseks. Hulknurkade pindalasid leitakse nende tükeldamisega neli- ja kolmnurkadeks.
integraal. Määratud integraal. Newtoni-Leibnizi valem. Kõvertrapets, selle pindala. Lihtsamate funktsioonide integreerimine. Tasandilise kujundi pindala arvutamine määratud integraali alusel. Rakendusülesanded.	kasutab geomeetria ja trigonomeetria mõisteid ning põhiseoseid elulisi ülesandeid lahendades;	Lahendatavad ülesanded võiksid olla suunatud eelkõige funktsionaalse lugemise oskuse kujundamisele. Toome siin paar näidet niisugustest ülesannetest. 1. Ilma soojenemisel pikendab metalli soojuspaisumine raudteerööpaid. Varem jäeti pikenemise kompenseerimiseks rööbaste otste vahele väikesed vahed ning rööpad ühendati nende otste nihkumist võimaldavate eriliste ühendusplaatidega. Rööpavahed põhjustasid vagunitesse kuulduvat rataste kolksumist. Tänapäeval keevitatakse rööbaste otsad teineteise külge kinni ning rööbaste kinnitused liipritele tehakse varasemast tugevamad. Oletame, et soojenemine pikendab kahest 60 meetri pikkusest rööpast jätkatud teeosa 2 cm võrra ning tekkinud jõudude mõjul annavad rööbaste kinnitused järele ja nende omavaheline keevituskoht paindub läbi. Kui kõrgele tõuseb see paindunud keevituskoht liiprite tasapinnast? 2. Peaaegu silindrikujulisest palgist, mille läbimõõt on 32 cm, saetakse välja võimalikult jäme ruudukujulise ristlõikega tala. Kui jäme see tala on?
	selgitab algfunktsiooni mõistet ja leiab määramata integraale (polünoomidest);	Teema käsitlemine algab muidugi tuletise kordamisest. Algfunktsiooni mõiste juurde on kasulik jõuda läbi mingi

	konkreetse näite vaatlemise. Näiteks niisugune: Veepuhastusjaamas suunatakse vesi põhiseadme
	remondi ajaks tagavarapaaki. Selle täitumise kiirust kirjeldab funktsioon $v(t) = 60t + 120$ kus t on
	täitmise aeg ($0 \le t \le 2$) tundides ja $v(t)$ ajaühiku,
	tunni jooksul lisandunud vee kogus kuupmeetrites. Täitmise algul, hetkel $t = 0$ oli tagavarapaagis juba
	1000 kuupmeetrit vett. Leida funktsioon $V(t)$ mis
	kirjeldab ajahetkel t tagavarapaaki kogunenud vee
	kogust kuupmeetrites.
	Pärast niisugust juurdeminekut esitatakse algfunktsioon tähendus
	üldkujul. Siit jõutakse kohe määramata integraali mõiste juurde. Tuletise leidmise pöördtehtena esitatakse valem
	1
	$\int x^a dx = \frac{x^{a+1}}{a+1} + C \text{ ning vaadeldakse määratud integraali}$
	omadusi $\int cf(x)dx = c \int f(x)dx$ ja
	$\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx$. Edasises
	lahendatavate pindalaülesannete baasi laiendamiseks võidakse
	vaadelda ka määramata integraali leidmist funktsioonidest
	$y = \frac{1}{x}, y = e^x, y = \sin x \text{ ja } y = \cos x$
selgitab kõvertrapetsi mõistet ning	Määratud integraali mõiste juurde jõudmiseks võidakse alustada
rakendab Newtoni-Leibnizi valemit	mingi lineaarfunktsiooni $y = ax$ graafiku, x -telje ning sirgega
määratud integraali arvutades; arvutab määratud integraali abil	<i>x</i> = <i>a</i> määratud, I koordinaatveerandis asetseva kolmnurga pindala seostamisest vastava lineaarfunktsiooni tuletisega ning
tasandilise kujundi pindala.	selle kaudu algfunktsiooni ja määramata integraaliga. Siit ei ole
J	enam raske jõuda määratud integraali kui funktsiooni graafiku
	aluse pindala ning Newton-Leibnizi valemi juurde. Kujundite
	pindalade arvutamisel võiks olla üldiselt taotletavaks õpitulemuseks funktsiooni graafiku, x -telje ning sirgete $X = a$ ja
	x = b vahelise pinnatüki pindala arvutamise oskus. Kui klassi
	tase seda võimaldab ning õpetajal tahtmist on, siis võiks vaadelda
	ka pinnatükke rajajoontega $y = f(x)$, $y = g(x)$, $x = a$ ja

	x = b kus lõigul [a, b] on f(x) > g(x).

2.9. VIII kursus. Stereomeetria (sünteetiline käsitlus)

Õppesisu	Õpitulemused	Soovitusi
	Kursuse lõpul õpilane:	
Ristkoordinaadid ruumis. Punkti	selgitab punkti koordinaate ruumis,	Ruumilise ristkoordinaadistiku vaatlemise põhiliseks eesmärgiks
koordinaadid. Kahe punkti vaheline		on õpilaste matemaatilise silmaringi laiendamine. Põhitähelepanu
kaugus. Kahe sirge vastastikused		on siin pööratud ruumilise teljestiku tasandilisele kujutamisel
asendid ruumis. Nurk kahe sirge		ning koordinaatidega antud punkide kujutamisele teljestikus.
vahel. Sirge ja tasandi vastastikused	kirjeldab sirgete ja tasandite	Käsitledes sirgete ja tasandite vastastikuseid asendid ruumis,
asendid ruumis. Sirge ja tasandi	vastastikuseid asendeid ruumis, selgitab	hoitakse silme ees eelkõige vastavate definitsioonide ja omaduste
vaheline nurk. Sirge ja tasandi	kahe sirge, sirge ja tasandi ning kahe	rakendamist kehadega seotud ülesannete lahendamisel. Nii on
ristseisu tunnus. Kahe tasandi	tasandi vahelise nurga mõistet;	kahe tasandi vahelise nurga käsitlemise eesmärgiks anda õppijale
vastastikused asendid ruumis. Kahe		vahend näiteks nelinurkse püramiidi külg- ja põhitahu vahelise
tasandi vaheline nurk. Prisma ja		nurga leidmiseks. Sirge ja tasandi vahelise nurga olemuse
püramiid. Püstprisma ning		mõistmine on aga näiteks vajalik püramiidi külgserva ja põhja
korrapärasepüramiidi täispindala ja		vahelise nurga leidmist nõudvate ülesannete juures.
ruumala. Silinder, koonus ja kera,		Ruuminurkade vaatlemisel piirdutakse kahetahulise nurgaga.
nende täispindala ning ruumala.	selgitab ainekavas nimetatud tahk- ja	Eesmärgiks peaks siin olema kehade ja nende elementide
Näiteid ruumiliste kujundite lõikamise	pöördkehade omadusi ning nende	äratundmise ja nimetamise kindla oskuse saavutamine. Tähtis on
kohta tasandiga. Praktilise sisuga	pindala ja ruumala arvutamist; kujutab	ka kehade tasandilise kujutamise, skitseerimise oskuse
ülesanded hulktahukate (püstprisma	tasandil ruumilisi kujundeid ning nende	saavutamisele suunatud töö. Seejuures tuleb arvestada, et
ja püramiidi) ning pöördkehade	lihtsamaid lõikeid tasandiga;	korralike skitside tegemine võib olla paljude õpilaste jaoks nende
kohta.		kaasasündinud käelise võimekuse poolt objektiivselt piiratud.

arvutab ainekavas nõutud kehade pindala ja ruumala; rakendab trigonomeetria- ja planimeetriateadmisi lihtsamaid stereomeetriaülesandeid lahendades; kasutab ruumilisi kujundeid kui mudeleid, lahendades tegelikkusest tulenevaid ülesandeid. Käsitletavate kehade pind- ja ruumalad esitatakse kordavalt. Mõnede kehade pindalade ja ruumalade valemeid võidakse ka tuletada. Kui klassi tase seda võimaldab ja õpetajal tahtmist on, võidakse demonstreerida pöördkeha ruumala leidmist integraali

abil ($V = \pi \int_{a}^{b} f^{2}(x)dx$). Selle alusel võiks näiteks tuletada

koonuse ruumala valemi. Tahkkehade pindalade arvutamise peamiseks teeks on vastavate tahkude üksikpindalade summeerimine, mitte valmisvalemite kasutamine. Kujundite lõigetest tasandiga vaadeldakse vaid lihtsamaid: tahkkeha tippe ja/või servi läbivaid, pöördkeha telg- või ristlõikeid.