2. Transition Systems

José Proença

System Verification (CC4084) 2024/2025

CISTER - U.Porto, Porto, Portugal

https://fm-dcc.github.io/sv2425

Syllabus

- Introduction to model-checking
- CCS: a simple language for concurrency
 - Syntax
 - Semantics
 - Equivalence
 - mCRL2: modelling
- Dynamic logic
 - Syntax
 - Semantics
 - Relation with equivalence
 - mCRL2: verification

- Timed Automata
 - Syntax
 - Semantics (composition, Zeno)
 - Equivalence
 - UPPAAL: modelling
- Temporal logics (LTL/CTL)
 - Syntax
 - Semantics
 - UPPAAL: verification
- Probabilistic and stochastic systems
 - Going probabilistic
 - UPPAAL: monte-carlo

Why transition systems?

A Sprinkle of Linguistics

During the module we will encounter two linguistic concepts that every programmer should know:

- syntax the rules used for determining whether a sentence is valid (in a language)
 or not
- semantics the meaning of valid sentences

Ex. 2.1: Syntax

The sentence/program $\mathbf{x} := \mathbf{p}$; \mathbf{q} is forbidden by the syntactic rules of most programming languages

Ex. 2.2: Semantics

The sentence/program $\mathbf{x} := \mathbf{1}$ has the meaning "writes 1 in the memory address corresponding to \mathbf{x} "

The need for Semantics in Formal Analysis

How can one prove that a program does what is supposed to do if its semantics (i.e. its meaning) is not established *a priori*?

Ex. 2.3:

What is the end result of running
$$x:=2$$
 ; ($x:=x+1 \parallel x:=0$) ?

Ex. 2.4: Value of *y*?

int
$$x = 0$$
; int $f()\{x++; return x; \}$ int $g()\{x--; return x; \}$ int $y = f()+g();$

Widely used programming languages still lacks a formal semantics

Defining Transition System with

Functors

Preliminaries pt. I

Definition (Functor)

A functor F sends a set X into a new set FX and a function $f: X \to Y$ into a new function $Ff: FX \to FY$ such that

$$F(id) = id$$
 $F(g \cdot f) = Fg \cdot Ff$

Fix a set A. The following two functors then naturally arise

- product $X \mapsto A \times X$, $f \mapsto id \times f$
- exponential $X \mapsto X^A$, $f \mapsto (g \mapsto f \cdot g)$

The list functor -
$$[X] \mapsto X^*, \quad [f] \mapsto \operatorname{map} f$$
 applies f to every element of a given list

The powerset functor - almost like the list functor; the difference is that we do not look at the order in which elements appear and how many times they repeat. Formally,

$$P(X) \mapsto ?$$

,
$$P(f) \mapsto ?$$

The list functor -
$$[X] \mapsto X^*, \quad [f] \mapsto \operatorname{map} f$$
 applies f to every element of a given list

The powerset functor - almost like the list functor; the difference is that we do not look at the order in which elements appear and how many times they repeat. Formally,

$$P(X) \mapsto \{A \mid A \subseteq X\}, \qquad P(f) \mapsto ?$$

The list functor -
$$[X] \mapsto X^*, \quad [f] \mapsto \operatorname{map} f$$
 applies f to every element of a given list

The powerset functor - almost like the list functor; the difference is that we do not look at the order in which elements appear and how many times they repeat. Formally,

$$P(X) \mapsto \{A \mid A \subseteq X\}, \qquad P(f) \mapsto (A \mapsto \{f(a) \mid a \in A\})$$

The list functor -
$$[X]\mapsto X^*,\ [f]\mapsto \mathrm{map}\ f$$
 applies f to every element of a given list

The powerset functor - almost like the list functor; the difference is that we do not look at the order in which elements appear and how many times they repeat. Formally,

$$P(X) \mapsto \{A \mid A \subseteq X\}, \qquad P(f) \mapsto (A \mapsto \{f(a) \mid a \in A\})$$

Ex. 2.5: Powerset on Booleans

$$P(Bool) \mapsto$$

$$P(not) \mapsto$$

The list functor -
$$[X]\mapsto X^*, \ [f]\mapsto \mathrm{map}\ f$$
 applies f to every element of a given list

The powerset functor - almost like the list functor; the difference is that we do not look at the order in which elements appear and how many times they repeat. Formally,

$$P(X) \mapsto \{A \mid A \subseteq X\}, \qquad P(f) \mapsto (A \mapsto \{f(a) \mid a \in A\})$$

Ex. 2.5: Powerset on Booleans

$$P(\texttt{Bool}) \mapsto \{\emptyset, \{\top\}, \{\bot\}, \{\top, \bot\}\}$$
$$P(\texttt{not}) \mapsto Bools \mapsto \{not(b) \mid b \in Bools\}$$

A (Generalised) Notion of a Transition System

Definition (Transition system)

Let F be a functor. An F-transition system is a map $X \to FX$

Some famous examples of F-transition systems

- Moore machine $X \rightarrow N \times X$
- Deterministic automata $X \rightarrow Bool \times X^N$
- Non-deterministic automata $X o exttt{Bool} imes exttt{P}(X)^N$
- Markov chain $X \to D(X)$ Powerset functor

Exercise

Recall functors

$$X \mapsto A \times X$$
 $X \mapsto P(X)$ $X \mapsto X^A$ $X \mapsto D(X)$

Ex. 2.6: Formalise as an F-transition system

Our First encounter with Coalgebra

Indeed the idea of working at the level of

Functors as Transition Types

is a very fruitful one; and which we only barely grasped —

in essence, it provides a universal theory of transition systems that can be instantiated to most kinds of transition system we will encounter in our life

CCS Process algebra

CCS Process algebra

Sequential CCS - Syntax

$$\mathcal{P} \ni P, Q ::= K \mid \alpha.P \mid P+Q \mid \mathbf{0} \mid P[f] \mid P \setminus L \mid P|Q$$

where

- $\alpha \in \mathbb{N} \cup \{\tau\}$ is an action
- K s a collection of process names or process constants
- $L \subseteq N$ is a set of labels
- f is a function that renames actions s.t. $f(\tau) = \tau$
- notation:

$$[f] = [a_1 \mapsto b_1, \dots, a_n \mapsto b_n]$$

CCS Process algebra

Syntax

$$\mathcal{P} \ni P, Q ::= K \mid \alpha.P \mid P+Q \mid \mathbf{0} \mid P[f] \mid P \setminus L \mid P|Q$$

Ex. 2.7: Which are NOT syntactically correct? Why?

$$a.b.A + B \tag{1}$$

$$a.(a+b).A$$

$$(a.0 + b.A) \setminus \{a, b, c\}$$
 (2)

$$(a.B + b.B)[a \mapsto a, \tau \mapsto b] \tag{7}$$

$$(a.\mathbf{0} + b.A) \setminus \{a, \tau\} \tag{3}$$

$$(a.B + \tau.B)[b \mapsto a, a \mapsto a]$$

$$\rightarrow a$$
] (8)

$$a.B + [b \mapsto a]$$

$$(a.b.A + b.0).B$$

$$\tau$$
. τ . $B + 0$

$$(a.b.A + b.0) + B$$

(6)

CCS semantics - building a transition system

Every P yields a transition system $X \rightarrow ???$ with transitions prescribed by the rules below.

$$\begin{array}{c} \text{(act)} & \text{(sum-1)} \\ P_1 \xrightarrow{\alpha} P'_1 \\ \hline \rho_1 + P_2 \xrightarrow{\alpha} P'_1 \\ \hline \\ P > L \xrightarrow{\alpha} P' \setminus L \end{array} \begin{array}{c} \text{(sum-2)} \\ P_2 \xrightarrow{\alpha} P'_2 \\ \hline \\ P_1 + P_2 \xrightarrow{\alpha} P'_2 \\ \hline \\ P(f) \xrightarrow{f(\alpha)} P'[f] \end{array}$$

- Initial states: the process being translated
- Final states: all states are final
- Language: possible sequences of actions of a process

CCS semantics - building a transition system

Every P yields a transition system $X \rightarrow ???$ with transitions prescribed by the rules below.

$$\begin{array}{c} \text{(act)} & \text{(sum-1)} \\ P_1 \xrightarrow{\alpha} P'_1 \\ \hline \rho_1 + P_2 \xrightarrow{\alpha} P'_1 \\ \hline \\ P > L \xrightarrow{\alpha} P' \setminus L \end{array} \begin{array}{c} \text{(sum-2)} \\ P_2 \xrightarrow{\alpha} P'_2 \\ \hline \\ P_1 + P_2 \xrightarrow{\alpha} P'_2 \\ \hline \\ P(f) \xrightarrow{f(\alpha)} P'[f] \end{array}$$

Ex. 2.8: Build a derivation tree to prove the transitions below

- 1. $(a.A + b.B) \xrightarrow{b} B$
- 2. $(a.b.A + (b.a.B + c.a.C)) \xrightarrow{b} a.B$
- 3. $((a.B + b.A)[a \mapsto c]) \setminus \{a, b\} \xrightarrow{c} (B[a \mapsto c]) \setminus \{a, b\}$

Exercise

Ex. 2.9: Draw the automata

$$CS = pub.(coin.coffee.CS + coin.tea.CS)$$

Ex. 2.10: What is the language of the process A?

$$A = goLeft.A + goRight.B$$

$$B = \text{rest.} \mathbf{0}$$

Exercise

Ex. 2.11: Write the process of the flowchart above

P = powerOn.Q

Q = selMocha.addChocolate.Mk + selLatte.Mk + . . .

Mk = addMilk...

Concurrent Process algebra

Overview

Recall

1. Non-deterministic Finite Automata $(X \to Bool \times P(X)^N)$:

$$\longrightarrow \overbrace{q_1} \qquad \stackrel{\mathsf{a}}{\longrightarrow} \overbrace{q_2} \qquad \flat$$

- 2. (Sequential) Process algebra: P = a.Q Q = b.Q
- 3. Meaning of (2) using (1)

Still missing

- Interaction between processes
- Enrich (2) and (3)

Process algebras

CCS - Updated Syntax

$$\mathcal{P} \ni P, Q ::= K \mid \alpha.P \mid P+Q \mid \mathbf{0} \mid P[f] \mid P \setminus L \mid P|Q$$

where

- $\alpha \in \mathbb{N} \cup \mathbb{N} \cup \{\tau\}$ is an action
- K s a collection of process names or process constants
- $L \subseteq N$ is a set of labels
- f is a function that renames actions s.t. $f(\tau) = \tau$ and $f(\overline{a}) = \overline{f(a)}$
- notation:

$$[f] = [a_1 \mapsto b_1, \dots, a_n \mapsto b_n]$$
 where $a_i, b_i \in N \cup \{\tau\}$

Process algebras

Syntax

$$\mathcal{P} \ni P, Q ::= K \mid \alpha.P \mid P+Q \mid \mathbf{0} \mid P[f] \mid P \setminus L \mid P|Q$$

Ex. 2.12: Which are syntactically correct?

$$a.\overline{b}.A + B \qquad (11) \qquad (a.B + b.B)[a \mapsto a, \tau \mapsto b] \qquad (17)$$

$$(a.\mathbf{0} + \overline{a}.A) \setminus \{\overline{a}, b\} \qquad (12) \qquad (a.B + \tau.B)[b \mapsto a, b \mapsto a] \qquad (18)$$

$$(a.\mathbf{0} + \overline{a}.A) \setminus \{a, \tau\} \qquad (13) \qquad (a.B + b.B)[a \mapsto b, b \mapsto \overline{a}] \qquad (19)$$

$$(a.\mathbf{0} + \overline{\tau}.A) \setminus \{a\} \qquad (14) \qquad (a.b.A + \overline{a}.\mathbf{0})|B \qquad (20)$$

$$\tau.\tau.B + \overline{a}.\mathbf{0} \qquad (15) \qquad (a.b.A + \overline{a}.\mathbf{0}).B \qquad (21)$$

(16)

(0|0) + 0

 $(a.b.A + \overline{a}.\mathbf{0}) + B$

(22)

CCS semantics - building an NFA

$$\begin{array}{c} \text{(act)} & \text{(sum-1)} & \text{(sum-2)} \\ P_1 \xrightarrow{\alpha} P'_1 & P'_1 & P_2 \xrightarrow{\alpha} P'_2 \\ \hline \alpha.P \xrightarrow{\alpha} P & P_1 & P_1 & P_2 \xrightarrow{\alpha} P'_2 \\ \hline P_1 + P_2 \xrightarrow{\alpha} P'_1 & P_1 + P_2 \xrightarrow{\alpha} P'_2 \\ \hline P_1 + P_2 \xrightarrow{\alpha} P'_2 & P_2 & P_2 & P_2 & P_2 \\ \hline P_1 + P_2 \xrightarrow{\alpha} P'_2 & P_2 & P_2 & P_2 & P_2 & P_2 \\ \hline P_1 + P_2 \xrightarrow{\alpha} P'_2 & P'_2 & P_2 & P'_2 & P'_2$$

CCS semantics - building an NFA

$$\begin{array}{c} \text{(act)} & \text{(sum-1)} & \text{(sum-2)} \\ P_1 \stackrel{\alpha}{\rightarrow} P_1' & P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline \alpha.P \stackrel{\alpha}{\rightarrow} P & P_1 + P_2 \stackrel{\alpha}{\rightarrow} P_1' & P_1 + P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_1 + P_2 \stackrel{\alpha}{\rightarrow} P_1' & P_1 + P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_1 + P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_1' & P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_3 \stackrel{\alpha}{\rightarrow} P_1' & Q \stackrel{\alpha}{\rightarrow} Q_1' & P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\overline{\rightarrow}}{\rightarrow} P_2' & P_$$

Ex. 2.13: Draw the transition systems

$$CM = \text{coin.}\overline{\text{coffee}}.CM$$
 $CS = \text{pub.}\overline{\text{coin.}}\text{coffee}.CS$
 $SmUni = (CM|CS) \setminus \{\text{coin, coffee}\}$

Exercises

Ex. 2.14: Let A = b.a.B. Show that:

- 1. $(A \mid \overline{b}.\mathbf{0}) \setminus \{b\} \xrightarrow{\tau} (a.B \mid \mathbf{0}) \setminus \{b\}$
- 2. $(A \mid b.a.B) + ((b.A)[b \mapsto a]) \xrightarrow{a} A[b \mapsto a]$

Ex. 2.15: Draw the NFAs A and D

$$A = x.B + x.x.C$$

$$B = x.x.A + y.C$$

$$C = x \cdot A$$

$$D = x.x.x.D + x.E$$

$$E = x.F + v.F$$

$$F = x.D$$

mCRL2 Tools – generate automata

Slides 3:

https://fm-dcc.github.io/sv2425/slides/3-mcrl2.pdf

Observational Equivalence

Overview

Recall

1. F-transition systems, e.g., Non-deterministic Finite Automata:

- 2. Process algebra: P = a.Q Q = b.Q P|Q
- 3. Interaction between processes
- 4. Meaning of CCS using transition systems

Still missing

- When is a process *P* equivalent to a process *Q*?
- When can a process P be safely replaced by a process Q?

Observational Equivalence Informally

Two programs are observationally equivalent if it is impossible to observe any difference in their behaviour

Here behaviour is described in terms of transition systems

... and therefore behaviour/equivalence needs to be pinned down to them

EQ1 – Language equivalence

Language equivalence

Definition

Two automata A, B are language equivalent iff $L_A = L_B$

(i.e. if they can perform the same finite sequences of transitions)

Example

Language equivalence applies when one can neither interact with a system, nor distinguish a slow system from one that has come to a stand still.

Ex. 2.16: Find pairs of automata with the same language

Exercise

Ex. 2.17: Check if the processes are language equivalent

$$P = coin.(\overline{coffee}.P + \overline{tea}.P)$$

$$P = coin.(\overline{coffee}.P + \overline{tea}.P)$$
 $Q = coin.\overline{coffee}.Q + coin.\overline{tea}.Q$

EQ2 – Similarity

Simulation

the quest for a behavioural equality:

able to identify states that cannot be distinguished by any realistic form of observation

Simulation

A state q simulates another state p if

every transition from q is corresponded by a transition from p and

this capacity is kept along the whole life of the system to which state space \emph{q} belongs to.

Simulation of NFA $(X \rightarrow P(X)^N)$

Definition

Given NFA A_1 and A_2 over N with states S_1 and S_2 respectively, a relation $R \subseteq S_1 \times S_2$ is a simulation iff, for all $\langle p, q \rangle \in R$ and $a \in N$,

$$(1) p \xrightarrow{a}_{1} p' \Rightarrow \langle \exists q' : q' \in S_{2} : q \xrightarrow{a}_{2} q' \land \langle p', q' \rangle \in R \rangle$$

Example

Ex. 2.18: Find simulations

Example

Ex. 2.18: Find simulations

$$q_0 \lesssim p_0$$
 cf. $\{\langle q_0, p_0 \rangle, \langle q_1, p_1 \rangle, \langle q_4, p_1 \rangle, \ldots\}$

Similarity

Definition

$$p \lesssim q \equiv \langle \exists \ R :: R \text{ is a simulation and } \langle p, q \rangle \in R \rangle$$

We say p is simulated by q.

Lemma

The similarity relation is a preorder

(ie, reflexive and transitive)

EQ3 – Bisimilarity

Bisimulation

Definition

Given NFA A_1 and A_2 over N with states S_1 and S_2 respectively, relation $R \subseteq S_1 \times S_2$ is a bisimulation iff both R and its converse R° are simulations.

I.e., whenever $\langle p, q \rangle \in R$ and $a \in N$,

$$(1) \ p \stackrel{a}{\longrightarrow}_1 p' \ \Rightarrow \ \langle \exists \ q' \ : \ q' \in S_2 : \ q \stackrel{a}{\longrightarrow}_2 q' \ \land \ \langle p', q' \rangle \in R \rangle$$

$$(2) \ q \xrightarrow{a}_2 q' \ \Rightarrow \ \langle \exists \ p' \ : \ p' \in S_1 : \ p \xrightarrow{a}_1 p' \ \land \ \langle p', q' \rangle \in R \rangle$$

$$\begin{array}{cccc}
p & R & q & & q \\
\downarrow a & \Rightarrow & & \downarrow a \\
p' & p' & R & q'
\end{array}$$

Examples

Ex. 2.19: Find bisimulations that include $\langle q_1, m \rangle$

Ex. 2.20: Find bisimulations that include $\langle q_1, h \rangle$

Bisimilarity

Definition

$$p \sim q \equiv \langle \exists R :: R \text{ is a bisimulation and } \langle p, q \rangle \in R \rangle$$

We say p is bisimilar to q.

Lemma

Two processes P and Q are bisimilar if there is a bisimulation that includes $\langle P, Q \rangle$.

Lemma

The bisimilarity relation is an equivalence relation

(ie, symmetric, reflexive and transitive)

Exercises

Ex. 2.21: Check if there is a bisimulation that include $\langle q_1, p_1 \rangle$

Ex. 2.22: Check if there is a bisimulation that include $\langle P, Q \rangle$

$$P = coin.(\overline{coffee}.P + \overline{tea}.P)$$
 $Q = coin.\overline{coffee}.Q + coin.\overline{tea}.Q$

Ex. 2.23: Check if there is a bisimulation that include $\langle q_1, p_1 \rangle$

Ex. 2.24: Check if, for any process P

$$P \sim P + \mathbf{0}$$

mCRL2 Tools – check bisimilarity

Slides 3:

https://fm-dcc.github.io/sv2425/slides/3-mcrl2.pdf

Generalising Observational

Equivalences

F-Transition Systems and Observational Equivalence

Definition

Fix a functor F and consider two transition systems $f: X \to FX$ and $g: Y \to FY$. Two states $x \in X$, $y \in Y$ are observationally equivalent if

- there exists a relation $R \subseteq X \times Y$ with $(x, y) \in R$ and
- there exists a transition system $b:R\to FR$ such that the diagram below commutes

$$X \stackrel{\pi_1}{\longleftarrow} R \stackrel{\pi_2}{\longrightarrow} Y$$

$$f \downarrow \qquad \qquad \downarrow g$$

$$FX \stackrel{F}{\longleftarrow} FR \stackrel{F}{\longrightarrow} FY$$

If such is the case we write $x \sim y$

Observational Equivalence for Moore Machine

Given $\langle o_1, n_1 \rangle : X \to A \times X$ and $\langle o_2, n_2 \rangle : Y \to A \times Y$ we obtain from the previous slide that $x \sim y$ iff

- $o_1(x) = o_2(y)$
- $n_1(x) \sim n_2(y)$

Observational Equivalence for Labelled Transition Systems

Recall that we used systems of type $X \to P(X)^N$ for establishing the semantics of CCS processes. This means that . . .

notions of observational behaviour/equivalence for such transition systems directly impact our concurrent language

Given $\overline{t_1}:X\to \mathrm{P}(X)^N$ and $\overline{t_2}:Y\to \mathrm{P}(Y)^N$, $x\sim y$ iff for all $I\in N$

- $\forall x' \in t_1(x, n). \ \exists y' \in t_2(y, n). \ x' \sim y'$
- $\forall y' \in t_2(y, n). \ \exists x' \in t_1(x, n). \ x' \sim y'$