3 Incorporating life cycle dynamics into the model

Households enter the economy at time t aged 24 years old and are endowed with an education level $e \in \{D, HS, C\}$, and initial permanent income level \mathbf{p}_0 , and a capital stock k_0 . The life cycle version of household income is given by:

$$y_t = \xi_t \mathbf{p}_t = (1 - \tau)\theta_t \mathbf{p}_t,$$

where $\mathbf{p}_t = \psi_t \bar{\psi}_{es} \mathbf{p}_{t-1}$ and $\bar{\psi}_{es}$ captures the age-education-specific average growth factor. Households that have lived for s periods have permanent shocks drawn from a lognormal distribution with mean 1 and variance $\sigma_{\psi s}^2$ and transitory shocks drawn from a lognormal distribution with mean $\frac{1}{\mathcal{B}}$ and variance $\sigma_{\theta s}^2$ with probability $\mathcal{B} = (1 - \mathcal{V})$ and μ with probability \mathcal{V} .

The normalized version of the age-education-specific consumption-saving problem for households is given by

$$v_{es}(m_t) = \max_{c_t} u(c_t(m_t)) + \beta \mathcal{D}_{es} \mathbb{E}_t [\psi_{t+1}^{1-\rho} v_{es+1}(m_{t+1})]$$
s.t.
$$a_t = m_t - c_t,$$

$$k_{t+1} = \frac{a_t}{\psi_{t+1}},$$

$$m_{t+1} = (\neg + r_t) k_{t+1} + \xi_{t+1},$$

$$a_t \geq 0.$$

3.1 Results

The additional parameters necessary to calibrate the life cycle version of the model are given in table 1.

Description	Parameter	Value
Population growth rate	N	0.0025
Technological growth rate	Γ	0.0037
Rate of high school dropouts	$ heta_D$	0.11
Rate of high school graduates	θ_{HS}	0.55
Rate of college graduates	$ heta_C$.34
Average initial permanent income, dropout	\mathbf{p}_{D0}^{-}	5000
Average initial permanent income, high school	\mathbf{p}_{HS0}^{-}	7500
Average initial permanent income, college	\mathbf{p}_{C0}^{-}	12000
Unempl. insurance payment	μ	0.15
Labor income tax rate	au	0.0942

Table 1 Parameter values (quarterly frequency) for the life cycle model.

The estimation procedure finds this optimal value to be R=1.0078 for the R-point model in this setting. The estimation procedure for the R-dist model in the life cycle setting finds optimal values of R=1.0005 and $\nabla=0.01836$. Notice the improved performance of the estimation in matching the data displayed in figure 1.

Figure 1 Life cycle lorenz curve v.s. data