Exercice 1

- **1.** Soit f la fonction définie sur I = [0; 40] par $f(x) = (10x 10)e^{-0.1x}$.
 - **a.** Calculer f(0) et f(40).
 - **b.** Démontrer que pour tout $x \in I$, $f'(x) = (11 x)e^{-0.1x}$.
 - **c.** Dresser le tableau de variations de la fonction f sur I = [0; 40].
 - **d.** Démontrer que l'équation f(x) = 20 admet exactement deux solutions sur l'intervalle [0; 40].

a.
$$f(0) = (10 \times 0 - 10)e^{-0.1 \times 0}$$

= -10×1
= -10

$$f(40) = (10 \times 40 - 10)e^{-0.1 \times 40}$$
$$= (400 - 10)e^{-4}$$
$$= 390e^{-4}$$
$$\approx 7.14$$

b. Soit
$$x \in [0; 40]$$

$$f'(x) = 10e^{-0.1x} + (10x - 10) \times (-0.1)e^{-0.1x}$$

$$= 10e^{-0.1x} + (-x + 1)e^{-0.1x}$$

$$= (10 - x + 1)e^{-0.1x}$$

$$= (11 - x)e^{-0.1x}$$

c. Pour tout $x \in [0; 40]$, $e^{-0.1x} > 0$. Donc f'(x) est du signe de (11 - x).

$$f(11) = (10 \times 11 - 10)e^{-0.1 \times 11}$$
$$= 100e^{-1.1}$$
$$\approx 33,287$$

x	0		11		40
Signe de $f'(x)$		+	0	_	
Variations de f	-10	1	$00e^{-1}$,1	$390e^{-4}$

d. Sur l'intervalle [0; 11], la fonction f est continue et strictement croissante.

De plus f(0) = -10 < 20 et $f(11) = 100e^{-1.1} > 20$, donc d'après le théorème des valeurs intermédiaires pour les fonctions strictement monotones, l'équation f(x) = 20 admet une unique solution α_1 sur l'intervalle [0; 11].

Sur l'intervalle [11 ; 40], la fonction f est continue et strictement décroissante.

De plus $f(11) = 100e^{-1.1} > 20$ et $f(40) = 390e^{-4} < 20$, donc d'après le théorème des valeurs intermédiaires pour les fonctions strictement monotones, l'équation f(x) = 20 admet une unique solution α_2 sur l'intervalle [11 ; 40].

On en déduit que l'équation f(x)=20 admet (exactement) deux solutions $lpha_1$ et $lpha_2$ sur

l'intervalle *I*.

À l'aide de la calculatrice, on trouve $\alpha_1 \approx 3,98$ et $\alpha_2 \approx 24,74$.

- 2. Une entreprise fabrique x centaines d'ordinateurs, où x appartient à l'intervalle [0; 40]. On suppose que toute la production de l'entreprise est vendue et que le bénéfice, en milliers d'euros, de cette entreprise peut être modélisé par la fonction f définie sur [0; 40] par $f(x) = (10x 10)e^{-0.1x}$.
 - a. Déterminer la perte de l'entreprise lorsqu'il n'y a pas de production.
 - **b.** Déterminer le bénéfice maximal de l'entreprise. À quel nombre d'ordinateurs produits cela correspond-il?
 - **c.** L'entreprise souhaite réaliser un bénéfice d'au moins 20 000 euros. Pour quel nombre d'ordinateurs produits cela est-il possible?
 - a. La perte de l'entreprise lorsqu'il n'y a pas de production est f(0) = -10 milliers d'euros.
 - **b.** D'après le tableau de variations de la fonction f, le maximum de la fonction f sur [0; 40] est atteint en 11.

Le bénéfice maximal de l'entreprise est $f(11)=100e^{-1,1}\approx 33,287$ milliers d'euros. Cela correspond à la production de 1100 ordinateurs.

c. L'entreprise souhaite réaliser un bénéfice d'au moins 20 000 euros.

On cherche donc l'intervalle solution de l'inéquation $f(x) \ge 20$.

D'après la question **1.d**, l'intervalle solution est $[\alpha_1; \alpha_2]$.

Donc l'entreprise réalise un bénéfice d'au moins 20 000 € pour un nombre d'ordinateurs produits compris entre 398 et 2474.

Exercice 2

On définit la fonction g sur $]1\ ;\ +\infty[$ par $g(x)=\frac{x^2+3}{x-1}.$

- **1.** Montrer que pour tout $x \in]1 \; ; \; +\infty[\; , \quad g'(x) = \frac{x^2 2x 3}{(x 1)^2}.$
- **2.** Calculer la limite de la fonction g en $+\infty$.
- 3. Calculer la limite de la fonction g en 1.
- **4.** Étudier le signe de x^2-2x-3 pour x appartenant à $]1\;;\;+\infty[$ puis dresser le tableau de variations de g.

2

1. Soit $x \in]1 ; +\infty[$

$$g(x) = \frac{u(x)}{v(x)} \qquad \text{avec } u(x) = x^2 + 3 \qquad \text{ et } \qquad v(x) = x - 1$$

$$u'(x) = 2x \qquad \qquad \text{et} \qquad v'(x) = 1$$

$$g'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2}$$

$$= \frac{2x(x-1) - (x^2+3)}{(x-1)^2}$$

$$= \frac{2x^2 - 2x - x^2 - 3}{(x-1)^2}$$

$$= \frac{x^2 - 2x - 3}{(x-1)^2}$$

2. Soit $x \in]1 ; +\infty[$

$$g(x) = \frac{x^2 + 3}{x - 1}$$

$$= \frac{x^2 \left(1 + \frac{3}{x^2}\right)}{x \left(1 - \frac{1}{x}\right)}$$

$$= \frac{x \left(1 + \frac{3}{x^2}\right)}{1 - \frac{1}{x}}$$

$$\lim_{x\to +\infty}1+\frac{3}{x^2}=1 \text{ et } \lim_{x\to +\infty}x=+\infty$$
 Donc par produit :
$$\lim_{x\to +\infty}x\left(1+\frac{3}{x^2}\right)=+\infty$$

- 3. $\lim_{x\to 1}x^2+3=4$ et $\lim_{x\to 1+}x-1=0+$ Donc par quotient $\lim_{x\to 1}g(x)=+\infty$
- **4.** On calcule le discriminant de $x^2 2x 3$:

$$\Delta = (-2)^2 - 4 \times 1 \times (-3)$$
= 4 + 12
= 16

On a $\Delta>0$, donc x^2-2x-3 admet deux racines réelles distinctes :

$$x_1 = \frac{+2 - \sqrt{16}}{2 \times 1}$$
 et $x_2 = \frac{+2 + \sqrt{16}}{2 \times 1}$
= $\frac{2 - 4}{2}$ = $\frac{2 + 4}{2}$

Donc $x^2 - 2x - 3 > 0$ pour $x \in]3$; $+\infty[$ et $x^2 - 2x - 3 < 0$ pour $x \in]1$; 3[.

Pour $x \in]1$; 3[, $(x-1)^2 > 0$ donc g'(x) est du signe de $x^2 - 2x - 3$. On obtient donc le tableau de variations suivant :

x	1		3		$+\infty$
Signe de $g'(x)$		_	0	+	
Variations de g	+∞		6		$+\infty$