Métodos Numéricos

Primer Cuatrimestre 2016

Práctica 2

Eliminación Gaussiana y Factorización. Normas y número de condición.

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

1. Triangular la matriz de Hilbert de orden 4. Usando operaciones con fracciones en forma exacta en (a) y usando aritmética de punto decimal flotante con tres dígitos con redondeo en (b):

(a)
$$H = \begin{pmatrix} 1 & 1/2 & 1/3 & 1/4 \\ 1/2 & 1/3 & 1/4 & 1/5 \\ 1/3 & 1/4 & 1/5 & 1/6 \\ 1/4 & 1/5 & 1/6 & 1/7 \end{pmatrix}$$
, (b) $H = \begin{pmatrix} 1,000 & 0,500 & 0,333 & 0,250 \\ 0,500 & 0,333 & 0,250 & 0,200 \\ 0,333 & 0,250 & 0,200 & 0,167 \\ 0,250 & 0,200 & 0,167 & 0,143 \end{pmatrix}$

Analizar por qué se obtienen diferentes resultados.

2. Resolver por eliminación Gaussiana sin intercambio de filas o columnas el sistema lineal Ax = b donde

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 9 & 16 \\ 1 & 8 & 27 & 64 \\ 1 & 16 & 81 & 256 \end{pmatrix}, \qquad b = \begin{pmatrix} 2 \\ 10 \\ 44 \\ 190 \end{pmatrix}$$

Dar la factorización LU de A y calcular det(A).

3. Calcular la factorización LU y resolver usando aritmética de punto decimal flotante de tres dígitos con redondeo

$$\left(\begin{array}{cc} 0,003 & 0,217 \\ 0,277 & 0,138 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 0,437 \\ 0,553 \end{array}\right)$$

4. Calcular la inversa A^{-1} de $A=\begin{pmatrix}2&1&2\\1&2&3\\4&1&2\end{pmatrix}$ de las siguientes maneras:

- a) Resolviendo el sistema matricial AX = I por pivoteo parcial.
- b) Calculando la factorización LU de A, calculando las inversas de L y U, y aplicando la identidad $A^{-1}=U^{-1}L^{-1}$.
- c) Calculando la factorización LU de A y resolviendo los sistemas $Ax_i = e_i, i = 1, \ldots, n$, con n-3
- 5. Sean $A_1, \ldots, A_k \in \mathbb{R}^{n \times n}$ tales que la factorización LU de A_h es L_hU para $h = 1, \ldots, k$, donde L_h tiene unos en la diagonal y U es la misma para toda A_h . Sea $A = \sum_{h=1}^k A_h$. Probar:
 - a) A tiene factorización LU, L con unos en la diagonal.
 - b) Para $1 \leq j < i \leq n$, el multiplicador m_{ij} de la triangulación gaussiana de A es el promedio de los multiplicadores de la posición (i,j) en las triangulaciones de las A_h . Es decir, $m_{ij} = \frac{1}{k} \sum_{h=1}^{k} m_{ij}^h$, con m_{ij}^h el multiplicador de la posición (i,j) en la triangulación de A_h .
- 6. Sea $A \in \mathbb{R}^{n \times n}$ y sea $A^{(k)}$ la matriz que se obtiene a partir de A por el método de eliminación Gaussiana cuando las primeras k columnas ya han sido trianguladas.

- a) Hallar la matriz M_k de tal forma que $M_k A^{(k-1)} = A^{(k)}$.
- b) Probar que A es no singular si y sólo si $A^{(k)}$ es no singular.
- c) Si A es simétrica, demostrar que la submatriz de $A^{(k)}$ que aún no ha sido triangulada sigue siendo simétrica (es decir, que $a_{ij}^{(k)} = a_{ji}^{(k)}$, para $k < i, j \le n$).
- 7. Probar que si $A \in \mathbb{R}^{n \times n}$ tiene todas sus (sub)matrices principales no singulares (es decir, toda submatriz que consiste de las primeras i filas y columnas de A), entonces A tiene factorización LU sin pivoteo. Además esa factorización es única.
- 8. Supongamos que una matriz $A \in \mathbb{R}^{n \times n}$ tiene una factorización A = LU y que L y U son conocidas. Describir un algoritmo que calcule el elemento (i,j) de A^{-1} en aproximadamente $(n-j)^2 + (n-i)^2$ flops (operaciones de punto flotante).

Sugerencia: si $a_{ij} = fila_i(L) \cdot col_j(U)$, deducir cómo obtener $(A^{-1})_{ij}$ en función de una fila o columna en particular de L^{-1} y U^{-1} , y determinar qué es lo mínimo que se necesita calcular de L^{-1} y U^{-1} .

- 9. Sea $A \in \mathbb{R}^{n \times n}$ inversible tal que A = TS donde $T \in \mathbb{R}^{n \times n}$ es triangular inferior y $S \in \mathbb{R}^{n \times n}$ es triangular superior. Probar:
 - a) T v S son inversibles, usando propiedades de determinantes.
 - b) A tiene factorización LU (con unos en la diagonal de L).
- 10. Con las mismas notaciones que en el ejercicio 6, sea $A^{(k)} = (a_{ij}^{(k)})_{1 \le i,j \le n}$ y sea $a_k := \max_{1 \le i,j \le n} |a_{ij}^{(k)}|$; es decir, a_k es el elemento máximo en módulo de la matriz que se obtiene luego de que la primeras k columnas han sido trianguladas. Si se aplica el método de eliminación Gaussiana **con pivoteo parcial**, probar que:
 - a) $a_k \leq 2^k a_0, \ k = 1, \dots, n-1$ para A arbitraria.
 - b) $a_k \leq (k+1)a_0, k=1,\ldots,n-1$ para matrices de Hessenberg¹.
 - c) $a = \max_{1 \le k \le n-1} a_k \le 2a_0$ para matrices tridiagonales

Analizar e interpretar los tres resultados.

Sugerencia: aplicar inducción en k, y suponer que al comienzo de cada paso ya se ha realizado el intercambio de filas correspondientes al pivoteo parcial.

11. Sea $A \in \mathbb{R}^{n \times n}$ una matriz de la forma $A = I + uu^t$, con $u \in \mathbb{R}^n$. Luego de realizar el primer paso de la factorización LU (eliminando la primera columna) se obtiene

$$A^{(1)} = \begin{pmatrix} a_{11}^{(1)} & A_{12}^{(1)} \\ 0 & A_{22}^{(1)} \end{pmatrix}$$

con $A_{22}^{(1)} \in \mathbb{R}^{(n-1)\times(n-1)}$. Demostrar:

- a) $A_{22}^{(1)} = I_{n-1} + \tilde{u}\tilde{u}^t$, donde $\tilde{u}^t = (u_2, \dots, u_n)/(\sqrt{1+u_1^2})$, siendo I_{n-1} la matriz identidad de la misma dimensión que $A_{22}^{(1)}$.
- b) A tiene factorización LU sin pivoteo, para cualquier $u \in \mathbb{R}^n$. Sugerencia: inducción en la dimensión de la matriz.

¹Una matriz A es de Hessenberg si todos sus coeficientes debajo de la primer subdiagonal son nulos, es decir, si $a_{ij} = 0$ para todo (i, j) tal que $i \ge j + 2$.

- 12. Una matriz A de $\mathbb{R}^{n \times n}$ se dice estrictamente diagonal dominante por columnas si $|a_{jj}| > \sum_{i=1, i \neq j}^{n} |a_{ij}|$ para $j = 1, \ldots, n$. Demostrar que la matriz A tiene descomposición LU sin pivoteo.
- 13. Sea A una matriz no singular de $\mathbb{R}^{n \times n}$ escrita en forma de bloques de la siguiente manera, donde A_{11} es una matriz de tamaño $m \times m$ y A_{22} es de tamaño $(n-m) \times (n-m)$:

$$A = \left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right]$$

a) Verificar la siguiente fórmula para la eliminación del bloque A_{21} :

$$\begin{bmatrix} I & 0 \\ -A_{21}A_{11}^{-1} & I \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} - A_{21}A_{11}^{-1}A_{12} \end{bmatrix}$$

La matriz $A_{22} - A_{21}A_{11}^{-1}A_{12}$ es conocida como complemento de Schur de A_{11} en A_{12}

- b) Hallar la matriz que realiza un primer paso de triangulación de tal forma que elimine la primera fila de A_{21} . Sugerencia: considerar una combinación lineal apropiada de las filas de A_{11} .
- c) Considerar los n-m pasos de triangulación (eliminando una fila de A_{21} en cada paso), y mostrar que el bloque (2,2) de la matriz resultante de aplicar el proceso de eliminación Gaussiana es igual a $A_{22} A_{21}A_{11}^{-1}A_{12}$.
- 14. Sean $\|\cdot\|_1, \|\cdot\|_2, \|\cdot\|_\infty : \mathbb{R}^n \to \mathbb{R}$ las normas vectoriales 1, 2 e infinito respectivamente, y sea $x \in \mathbb{R}^n$. Demostrar:
 - $a) ||x||_{\infty} \le ||x||_{1}.$
 - $b) ||x||_1 \le n||x||_{\infty}.$
 - $c) ||x||_{\infty} \le ||x||_2.$
- 15. Sea $A = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$. Graficar los siguientes conjuntos de puntos:
 - a) $A_1 = \{Ax / x \in \mathbb{R}^2 \land ||x||_1 = 1\}$
 - $b) \ A_2 = \left\{ Ax \ /x \in \mathbb{R}^2 \ \wedge \|x\|_{\infty} = 1 \right\}$
 - c) $A_3 = \{Ax / x \in \mathbb{R}^2 \land ||x||_2 = 1\}$
 - d) Interpretar geométricamente $\left\|A\right\|_{1},\ \left\|A\right\|_{\infty},\ \left\|A\right\|_{2}$
- 16. Sea $\|\cdot\|: \mathbb{R}^{n \times n} \to \mathbb{R}$ una norma matricial inducida, $A, B \in \mathbb{R}^{n \times n}$ y $x \in \mathbb{R}^n$. Demostrar:
 - $a) \parallel \cdot \parallel$ es una norma.
 - b) ||I|| = 1.
 - c) $||Ax|| \le ||A|| ||x||$.
 - $d) \ \|AB\| \le \|A\| \|B\|.$
- 17. Probar:
 - a) $||A||_1 = \max_j \sum_{i=1}^n |a_{ij}|$. (Probar " \leq " acotando $||Ax||_1$ con $\max_j \sum_{i=1}^n |a_{ij}|$ para todo $x: ||x||_1 = 1$. Probar " \geq " utilizando los vectores canónicos.)

- b) $\|A\|_{\infty} = \max_i \sum_{j=1}^n |a_{ij}|$. (Hallar un x^* de norma ∞ igual a 1 tal que $\|Ax\|_{\infty} \le \|Ax^*\|_{\infty} = \max_i \sum_{j=1}^n |a_{ij}|$ para todo $x: \|x\|_{\infty} = 1$)
- 18. Sea $A \in \mathbb{R}^{n \times n}$ y definimos $||A||_M = \max_{1 \le i,j \le n} |a_{ij}|$. Probar:
 - $a) \parallel \cdot \parallel_M$ es una norma.
 - b) $||A||_M \le ||A||_2 \le n||A||_M$.
- 19. Sea $\kappa(A)$ el número de condición de una matriz, calculado a partir de una norma matricial submultiplicativa.
 - a) Probar que si $||I|| \ge 1$ entonces $\kappa(A) \ge 1$.
 - b) Probar que para una norma dada, $\kappa(AB) \leq \kappa(A)\kappa(B)$ y $\kappa(\alpha A) = \kappa(A)$: $\forall \alpha \neq 0$.
- 20. Sea x la solución del sistema Ax = b. En muchos casos se desea conocer distintos comportamientos del sistema lineal al variar levemente el valor de la matriz A o del vector de solución b. Se denomina matriz de perturbación o vector de perturbación (según corresponda) a δA y δb .
 - a) Sea $x + \delta x$ la solución del sistema $Ax = b + \delta b$. Acotar la norma de δx .
 - b) Idem si $x + \delta x$ es la solución de $(A + \delta A)x = b$.
- 21. Sea $R \in \mathbb{R}^{n \times n}$ tal que ||R|| < 1 e I la matriz identidad en $\mathbb{R}^{n \times n}$, siendo $||\cdot||$ inducida por una norma vectorial.
 - a) Probar que I + R es inversible. (Ver que suponiendo (I + R)x = 0 para algún $x \neq 0$ se llega a ||Rx||/||x|| = 1)
 - b) Probar que $\|(I+R)^{-1}\| \leq \frac{1}{1-\|R\|}.$ (Usar la igualdad $(I+R)^{-1} = I R(I+R)^{-1})$
 - c) Sea $A \in \mathbb{R}^{n \times n}$ una matriz inversible y $\delta A \in \mathbb{R}^{n \times n}$ tal que $\|\delta A\| < \frac{1}{\|A^{-1}\|}$. Probar que $A + \delta A$ es inversible y vale

$$\|(A + \delta A)^{-1}\| \le \frac{\|A^{-1}\|}{1 - \|A^{-1}\| \|\delta A\|}$$

- 22. Supongamos que $x = A^{-1}b$.
 - a) Con $\|\cdot\|$ se designa una norma vectorial y la norma matricial inducida, según corresponda. Probar que si $e = x \hat{x}$ (el error) y $r = b A\hat{x}$ (el residuo, \hat{x} es el valor calculado), entonces

$$\frac{\|r\|}{\|A\|} \le \|e\| \le \|A^{-1}\| \|r\|.$$

b) Analizar el caso $\|\cdot\|_{\infty}$ con

$$A = \begin{bmatrix} 1 & 2 \\ 1,0001 & 2 \end{bmatrix}, \ b = \begin{bmatrix} 3 \\ 3 \end{bmatrix}, \ \hat{x} = \begin{bmatrix} 1,01 \\ 1 \end{bmatrix}$$

Resolver en computadora

- I Describir e implementar un algoritmo que calcule un vector no nulo $z \in \mathbb{R}^n$ tal que Uz = 0, donde $U \in \mathbb{R}^{n \times n}$ es una matriz triangular superior con $u_{n,n} = 0$ y $u_{1,1} \dots u_{n-1,n-1} \neq 0$.
- II Consideramos una familia de matrices $A_n \in \mathbb{R}^{n \times n}$, $n \ge 2$ con una estructura particular que depende de n. Para el caso n = 5, la matriz en cuestión es la siguiente:

- a) Analizar qué sucede al aplicar el método de eliminación gaussiana con pivoteo parcial a A_6 . Generalizar el resultado para n genérico.
- b) Implementar un algoritmo que resuelva el sistema de ecuaciones $A_n x = b$.
- c) Variando el n, considerar vectores $b \in \mathbb{R}^n$ para los cuales la solución al sistema $A_n x = b$, sea conocida. Llamemos x^* a la solución exacta del sistema y \bar{x} a la solución obtenida por el algoritmo del punto anterior. ¿Es \bar{x} una buena aproximación?
- d) Graficar como evoluciona el $||x^* \bar{x}||_2$ en función del tamaño de la matriz.
- III Sea x la solución del sistema Ax = b. En el contexto del ejercicio 20, resolver si

$$A = \begin{bmatrix} 1 & 2 \\ 1,0001 & 2 \end{bmatrix}, \ b = \begin{bmatrix} 3,1 \\ 5,9 \end{bmatrix}, \ \delta A = \begin{bmatrix} 0 & 0 \\ 0 & 0,0001 \end{bmatrix}, \ \delta b = \begin{bmatrix} 0 \\ 0,1 \end{bmatrix}$$

IV Considere el sistema lineal Ax = b, con

$$A = \begin{bmatrix} 0.835 & 0.667 \\ 0.333 & 0.266 \end{bmatrix}, b = \begin{bmatrix} 0.168 \\ 0.067 \end{bmatrix}$$

La solución exacta es x=(1,-1). Consideremos también los vectores $x_1=(0,998,-1,002)$ y $x_2=(-666,834)$.

- a) Calcular los residuos $r(x_1), r(x_2)$. El vector x_1 , ¿tiene residuo menor?
- b) Modificar el término independiente por $b=(0.168,0.067-\epsilon)$, con $\epsilon=0.001,0.002$, y resolver nuevamente el sistema en cada caso. ¿Qué sucede con las distintas soluciones?
- c) Calcular el número de condición $\kappa(A)$.
- d) Interpretar gráficamente los resultados de los items a) y b).

Funciones útiles

• Operaciones en Matlab/Octave:

```
% (Nota: se puede agregar un 2do parametro k para incluir mas o menos
  % diagonales en las funciones triu y tril)
  % Normas vectoriales
 norm(x, p)
                   % norma p del vector x
 \mathbf{norm}(\mathbf{x}, 'inf') % norma infinito del vector \mathbf{x}, equivalente a max(abs(\mathbf{x}))
  % Resolucion de sistemas y determinantes
 A \setminus b
           \% solution del sistema Ax = b, con A matrix y b vector
           \% matriz solution del sistema AX = B, con A y B matrices.
  [L, U, P] = lu(A) % factorization PA = LU
  det(A) % determinante de la matriz A
  % Numero de Condicion segun norma p
  c = cond(X, p)
• Operaciones en Python con Numpy:
 \# Imports
 from numpy import *
 from numpy.linalg import *
 # Inicializaciones
 A = matrix([[1,2],[3,4]], float) \# matriz 2x2
 B = matrix([[5,6],[7,8]], float) \# matriz 2x2
 b = matrix([[1],[2]], float) \# vector columna en R2
 # Distintas partes de una matriz
              # primer fila de A, notar que indexa desde cero
 A[0,:]
 A[:,0]
              \# primer columna de A
 A[0:k,0:k] \# k-esima \quad submatriz \quad principal \quad de \quad A
           \# parte triangular superior de la matriz A
  triu (A)
  tril (A)
              \# parte triangular inferior de la matriz A
  \# Resolucion de sistemas y determinantes
  solve(A,b)
                   \# solution del sistema Ax = b, con A matrix y b vector
                   \# matriz solution del sistema AX = B, con A y B matrices
  solve (A,B)
  \det\left(\mathbf{A}\right) # \det rminante \det la matriz A
 # Normas vectoriales
  c = array([1,2,3,4], float) \# para normas vectoriales usamos array
  norm(c,2) # norma 2
  norm(c, p) # norma p, con p entero
  \operatorname{norm}\left(\begin{smallmatrix} \operatorname{c} \end{smallmatrix}, \operatorname{inf} \right) \ \# \ \operatorname{norma} \ infinito
  \# Numero de condicion para diferentes normas matriciales
  cond(A,2)
  cond(A, inf)
  cond(A, 'fro')
```

Referencias

- [1] R.L. Burden and J.D. Faires. Numerical Analysis. Brooks/Cole, Cengage Learning, 2005.
- [2] D.R. Kincaid and E.W. Cheney. *Numerical Analysis: Mathematics of Scientific Computing*. Pure and applied undergraduate texts. American Mathematical Society, 2002.
- [3] C. Meyer. Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematics, 2000.
- [4] D.S. Watkins. Fundamentals of Matrix Computations. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley, 2010.