Trabajo Práctico: Unidad 3

Farizano, Juan Ignacio Mellino, Natalia

Ejercicio 1:

Definimos el experimento ϵ : probar un programa Con los siguientes sucesos:

- A_1 : Encontrar errores importantes al correr por primera vez el programa.
- B_1 : Encontrar errores menores al correr por primera vez el programa.
- C_1 : No encontrar errores al correr por primera vez el programa.
- A_2 : Encontrar errores importantes al correr el programa por segunda vez.
- B_2 : Encontrar errores menores al correr el programa por segunda vez.
- C_2 : No encontrar errores al correr el programa por segunda vez.

Dados los sucesos definidos y tomando los datos que se presentan en el enunciado podemos decir que :

$$P(A_1) = 0.6, P(B_1) = 0.3, P(C_1) = 0.1$$

Apartado a):

Para hallar las intersecciones de los sucesos pedidas, realizaremos los siguientes cálculos, con la información provista de la tabla presente en el enunciado y utilizando la fórmula de probabilidad condicional.

$$P(A_1 \cap A_2) = P(A_2/A_1) * P(A_1) = 0.3 * 0.6 = 0.18$$

$$P(A_1 \cap B_2) = P(B_2/A_1) * P(A_1) = 0.5 * 0.6 = 0.3$$

$$P(A_1 \cap C_2) = P(C_2/A_1) * P(A_1) = 0.2 * 0.6 = 0.12$$

$$P(B_1 \cap A_2) = P(A_2/B_1) * P(B_1) = 0.1 * 0.3 = 0.03$$

$$P(B_1 \cap B_2) = P(B_2/B_1) * P(B_1) = 0.3 * 0.3 = 0.09$$

$$P(B_1 \cap C_2) = P(C_2/B_1) * P(B_1) = 0.6 * 0.3 = 0.18$$

$$P(C_1 \cap A_2) = P(A_2/C_1) * P(C_1) = 0 * 0.1 = 0$$

$$P(C_1 \cap B_2) = P(B_2/C_1) * P(C_1) = 0.2 * 0.1 = 0.02$$

$$P(C_1 \cap C_2) = P(C_2/C_1) * P(C_1) = 0.8 * 0.1 = 0.08$$

Entonces la tabla nos queda de la siguiente manera:

	A_2	B_2	C_2
A_1	0.18	0.30	0.12
B_1	0.03	0.09	0.18
C_1	0.00	0.02	0.08

Apartado b):

Observemos que los sucesos A_1 , B_1 y C_1 son mutuamente excluyentes entre sí y además conforman una partición del espacio muestral A ya que:

- Todas sus intersecciones son vacías dos a dos $(A_1 \cap B_1 = \emptyset, A_1 \cap C_1 = \emptyset, B_1 \cap C_1 = \emptyset)$
- $P(A_1) + P(B_1) + P(C_1) = 0.6 + 0.3 + 0.1 = 1$
- Las probabilidades de todos los sucesos son mayores a 0.

Luego podemos describir al suceso A_2 como la unión de sucesos mutuamente excluyentes:

$$A_2 = (A_2 \cap A1) \cup (A_2 \cap B_1) \cup (A_2 \cap C_1)$$

Y por lo tanto:

$$P(A_2) = P(A_2 \cap A_1) + P(A_2 \cap B_1) + P(A_2 \cap C_1) = 0.18 + 0.03 + 0 = 0.21$$

Apartado c):

Utilizando la fórmula de probabilidad condicional basta plantear:

$$P(B_1/A_2) = P(B_1 \cap A_2)/P(A_2) = 0.03/0.21 = 1/7$$

Por lo tanto, la probabilidad de encontrar un error menor en la primera prueba sabiendo que el de la segunda fue importante es de 1/7.

Apartado d):

Sabemos que dos sucesos son independientes sí y sólo sí:

$$P(A \cap B) = P(A) * P(B)$$

Por lo tanto basta plantear las siguientes igualdades:

$$P(A_1 \cap A_2) = 0.18$$

 $P(A_1) * P(A_2) = 0.6 * 0.21 = 0.126$

 $0.18 \neq 0.126$ por lo tanto A_1 y A_2 no son independientes.

$$P(A_1 \cap B_2) = 0.03$$

Necesitamos hallar $P(B_2)$, procedemos de la misma forma que en el apartado b)

$$P(B_2) = P(B_2 \cap A_1) + P(B_2 \cap B_1) + P(B_2 \cap C_1) = 0.03 + 0.09 + 0.18 = 0.41$$

 $P(A_1) * P(B_2) = 0.6 * 0.41 = 0.246$

 $0.03 \neq 0.246$ por lo tanto $A_1 y B_2$ no son independientes.

$$P(A_1 \cap C_2) = 0.12$$

$$P(C_2) = P(C_2 \cap A_1) + P(C_2 \cap B_1) + P(C_2 \cap C_1) = 0.12 + 0.18 + 0.08 = 0.38$$

$$P(A_1) * P(C_2) = 0.6 * 0.38 = 0.228$$

 $0.12 \neq 0.228$ por lo tanto A_1 y C_2 no son independientes.

$$P(B_1 \cap A_2) = 0.03$$

 $P(B_1) * P(A_2) = 0.3 * 0.21 = 0.063$

 $0.03 \neq 0.063$ por lo tanto B_1 y A_2 no son independientes.

$$P(B_1 \cap B2) = 0.09$$

 $P(B_1) * P(B_2) = 0.3 * 0.41 = 0.123$

 $0.09 \neq 0.123$ por lo tanto B_1 y B_2 no son independientes.

$$P(B1 \cap C2) = 0.18$$

 $P(B_1) * P(C_2) = 0.3 * 0.38 = 0.114$

 $0.18 \neq 0.114$ por lo tanto B_1 y C_2 no son independientes.

$$P(C_1 \cap A_2) = 0$$

 $P(C_1) * P(A_2) = 0.1 * 0.21 = 0.021$

 $0 \neq 0.021$ por lo tanto C_1 y A_2 no son independientes.

$$P(C_1 \cap B_2) = 0.02$$

 $P(C_1) * P(B_2) = 0.1 * 0.41 = 0.041$

 $0.02 \neq 0.041$ por lo tanto C_1 y B_2 no son independientes.

$$P(C_1 \cap C_2) = 0.08$$

 $P(C_1) * P(C_2) = 0.1 * 0.38 = 0.038$

 $0.08 \neq 0.038$ por lo tanto C_1 y C_2 no son independientes.

En conclusión: los resultados de la primera prueba, no son independientes con los resultados de la segunda.

Ejercicio 2:

Definimos el experimento ϵ : se realiza una transmisión.

Con los siguientes sucesos:

 A_i : Recibir i, i = 0, 1

 B_i : Enviar i, i = 0, 1

Sabemos que tenemos la misma probabilidad de enviar un 0 que de enviar un 1, observemos que los sucesos B_0 y B_1 conforman una partición del espacio muestral asociado a ϵ . Por lo tanto: $P(B_0) + P(B_1) = 1$ y como ambos sucesos tienen la misma probabilidad se deduce que $P(B_i) = 0.5$. i, i = 0, 1

Ahora, queremos hallar la probabilidad de cometer un error en la transmisión. Por lo tanto este suceso lo podemos describir como:

 $(A_0 \cap B1) \cup (A_1 \cap B_0) \rightarrow$ Observemos que estos sucesos $((A_0 \cap B_1) \ y \ (A_1 \cap B_0))$ son mutuamente excluyentes y por lo tanto su intersección es vacía. Entonces la probabilidad la podemos expresar como:

$$P(A_0 \cap B_1) + P(A_1 \cap B_0) = P(A_0/B_1)P(B_1) + P(A_1/B_0)P(B_0)$$

Ahora supongamos que las probabilidades $P(A_0/B_1)$ y $P(A_1/B_0)$ son ϵ_1 y ϵ_2 respectivamente, para algún $0 \le \epsilon_i \le 1, i = 1, 2$.

Entonces la probabilidad de cometer un error en la transmisión es:

$$\epsilon_1 * 0.5 + \epsilon_2 * 0.5 = 0.5 * (\epsilon_1 + \epsilon_2)$$

Ejercicio 3:

Definimos el experimento ϵ : se realiza una transmisión.

Con los siguientes sucesos:

 A_i : La entrada fue i, i = 0, 1

 B_i : La salida fue i, i = 0, 1

Sabemos que $P(A_0) = (1 - p)$ y $P(A_1) = p$

Apartado a):

Dado que la probabilidad de tomar decisiones erróneas es ϵ , podemos deducir que la probabilidad de tomar una desición correcta es $1 - \epsilon$. Entonces utilizando la fórmula de probabilidad condicional nos queda:

$$P(A_0 \cap B_0) = P(B_0/A_0)P(A_0) = (1 - \epsilon) * (1 - p)$$

$$P(A_0 \cap B_1) = P(B_1/A_0)P(A_0) = \epsilon * (1 - p)$$

$$P(A_1 \cap B_0) = P(B_0/A_1)P(A_1) = \epsilon * p$$

$$P(A_1 \cap B_1) = P(B_1/A_1)P(A_1) = (1 - \epsilon) * p$$

Apartado b):

De las igualdades obtenidas en el apartado anterior podemos deducir lo siguiente:

$$P(A_0 \cap B_0) = P(B_0)P(A_0) = (1 - \epsilon) * (1 - p)$$

$$P(A_1 \cap B_1) = P(B_1)P(A_1) = (1 - \epsilon) * p$$

$$P(A_0 \cap B_1) = P(B_1)P(A_0) = \epsilon * (1 - p) \Rightarrow P(B_1) * (1 - p) = \epsilon * (1 - p) \Rightarrow P(B_1) = \epsilon$$

$$P(A_1 \cap B_0) = P(B_0)P(A_1) = \epsilon * p \Rightarrow P(B_0) * p = \epsilon * p \Rightarrow P(B_0) = \epsilon$$

Luego:

$$P(B_0) + P(B_1) = \epsilon + \epsilon = 2 * \epsilon$$

Como B_0 y B_1 conforman una partición del espacio muestral asociado al experimento deben ser mutuamente excluyentes y $P(B_0) + P(B_1) = 1 = 2 * \epsilon \Rightarrow \epsilon = \frac{1}{2}$

Apartado c):

Los sucesos que resultan ser mutuamente excluyentes son los sucesos A_0 y A_1 , y B_0 y B_1 , pues observemos que es imposible que ambos puedan suceder al mismo tiempo.

Apartado d):

Utilizando el Teorema de Bayes calculamos las probabilidades condicionales:

$$P(A_0/B_1) = \frac{P(B_1 \cap A_0)}{P(B_1/A_0)P(A_0) + P(B_1/A_1)P(A_1)} = \frac{\epsilon * (1-p)}{\epsilon * (1-p) + (1-e) * p} = \frac{\epsilon - p * \epsilon}{\epsilon + p - 2 * \epsilon * p}$$

$$P(A_1/B_1) = \frac{P(B_1 \cap A_1)}{P(B_1/A_0)P(A_0) + P(B_1/A_1)P(A_1)} = \frac{(1-\epsilon) * p}{\epsilon * (1-p) + (1-e) * p} = \frac{p - p * \epsilon}{\epsilon + p - 2 * \epsilon * p}$$

Luego, observemos que:

$$P(A_0/B_1) < P(A_1/B_1) \iff \frac{\epsilon - p * \epsilon}{\epsilon + p - 2 * \epsilon * p} < \frac{p - p * \epsilon}{\epsilon + p - 2 * \epsilon * p} \iff \epsilon - p * \epsilon < p - p * \epsilon \iff \epsilon < p - \epsilon \iff \epsilon < \epsilon < \epsilon < \epsilon < \epsilon < \epsilon$$

Entonces si $\epsilon < p$ la entrada más probable va a ser 1. Análogamente, si $\epsilon > p$ la entrada más probable va a ser 0.