Overview

overview2.2

Introduction

Modelling parallel systems

Transition systems

Modeling hard- and software systems

Parallelism and communication

Linear Time Properties

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

- communication over shared variables
- synchronous message passing communication asynchronous message passing over channels

- communication over shared variables
- synchronous message passing \ communication
 asynchronous message passing \ over channels

- communication over shared variables
- synchronous message passing \ communication
 asynchronous message passing \ over channels
- P_3 C_2 shared variables

channel types: synchronous or FIFO

- communication over shared variables
- synchronous message passing \(\) communication
- asynchronous message passing ∫ over channels

channel types: synchronous or FIFO

- communication over shared variables
- synchronous message passing ← capacity 0
- asynchronous message passing ← capacity ≥ 1

- communication over shared variables
- synchronous message passing \ communication
- asynchronous message passing \(\) over channels

formalization through program graphs for $\mathcal{P}_1, ..., \mathcal{P}_n$

- communication over shared variables
- synchronous message passing \ communication
- asynchronous message passing) over channels

formalization through program graphs for $\mathcal{P}_1, ..., \mathcal{P}_n$

• with conditional transitions $\ell_i \stackrel{g:\alpha}{\longleftrightarrow} \ell'_i$ (as before)

- communication over shared variables
- synchronous message passing \ communicationasynchronous message passing \ over channels

formalization through program graphs for $\mathcal{P}_1, \dots, \mathcal{P}_n$

- with conditional transitions $\ell_i \stackrel{g:\alpha}{\longleftrightarrow} \ell_i'$ (as before)
- and communication actions

$$\ell_i \stackrel{c!v}{\longleftrightarrow} \ell'_i$$
 sending value v via channel c
 $\ell_i \stackrel{c?x}{\longleftrightarrow} \ell'_i$ receiving a value for variable x via channel c

typed variable: variable x with data domain Dom(x) evaluation for a set Var of typed variables: type-consistent function $\eta: Var \rightarrow Values$ i.e., $\eta(x) \in Dom(x)$

typed variable: variable x with data domain Dom(x) evaluation for a set Var of typed variables: type-consistent function $\eta: Var \rightarrow Values$ i.e., $\eta(x) \in Dom(x)$

typed channel: channel c with capacity $cap(c) \in \mathbb{N} \cup \{\infty\}$ and domain Dom(c) evaluation for a set Chan of typed channels: type-consistent function $\xi : Chan \rightarrow Values^*$

s.t. $\xi(c)$ is a word over Dom(c) of length $\leq cap(c)$

 $\left[\begin{array}{c|c} \mathcal{P}_1 & \mathcal{P}_2 & \dots & \mathcal{P}_n \end{array} \right]$ where \mathcal{P}_i are program graphs

$$\left[\left. \mathcal{P}_1 \left| \left. \mathcal{P}_2 \right| ... \left| \left. \mathcal{P}_n \right. \right| \right] \right.$$

 $[P_1 | P_2 | ... | P_n]$ where P_i are program graphs over a pair (Var, Chan)

```
[\mathcal{P}_1 | \mathcal{P}_2 | ... | \mathcal{P}_n] where \mathcal{P}_i are program graphs over a pair (Var, Chan)
```

Var set of typed variables
 Chan set of typed channels with capacities cap(⋅) and domains Dom(⋅)

```
[\mathcal{P}_1 \mid \mathcal{P}_2 \mid ... \mid \mathcal{P}_n] \quad \text{where } \mathcal{P}_i \text{ are program graphs} \\ \text{over a pair } (\textit{Var}, \textit{Chan})
\begin{matrix} Var \quad \text{set of typed variables} \\ \textit{Chan} \quad \text{set of typed channels with} \\ \text{capacities } \textit{cap}(\cdot) \text{ and domains } \textit{Dom}(\cdot) \end{matrix}
```

program graphs $\mathcal{P}_i = (Loc_i, Act_i, Effect_i, \hookrightarrow_i, Loc_{0,i}, g_0)$ with conditional transitions

$$\ell \stackrel{g:\alpha}{\longrightarrow}_{i} \ell'$$
 guarded command
 $\ell \stackrel{c!v}{\longleftrightarrow}_{i} \ell'$ sending value v via channel c
 $\ell \stackrel{c?x}{\longleftrightarrow}_{i} \ell'$ receiving a value for variable x via channel c

asynchronous message passing via channels of capacity ≥ 1

	enabled if	effect
sending c!v		
receiving c?x		

asynchronous message passing via channels of capacity ≥ 1

	enabled if	effect
sending c!v	channel <i>c</i> not full	add(c, v)
receiving c?x	channel c not empty $v = front(c)$	x := v $remove(c)$
v ₁	$ v_r $ $ v_1 $	$\dots \mid v_r \mid v \mid$
1	<u> </u>	
v v ₂	v _r <u>c?x</u>	v ₂ v _r
1		1

asynchronous message passing via channels of capacity ≥ 1

	enabled if	effect
sending c!v	channel $oldsymbol{c}$ not full	add(c, v)
receiving c?x	channel c not empty $v = front(c)$	x := v $remove(c)$

synchronous message passing via channels of capacity 0

- c!v and c?x are executed at the same time
- effect x := v

variable valuation

TS-semantics of channel systems

```
states \langle \ell_1, ..., \ell_n, \eta, \xi \rangle where \ell_i location of program graph \mathcal{P}_i, \eta \in Eval(Var) variable evaluation \xi \in Eval(Chan) channel evaluation
```

```
states \langle \ell_1, ..., \ell_n, \eta, \xi \rangle where \ell_i location of program graph \mathcal{P}_i, \eta \in Eval(Var) variable evaluation \xi \in Eval(Chan) channel evaluation
```

variable evaluation:

$$\eta: Var \longrightarrow \bigcup_{x \in Var} Dom(x)$$
 with $\eta(x) \in Dom(x)$

channel evaluation:

$$\xi: Chan \to \bigcup_{c \in Chan} Dom(c)^* \text{ with } \xi(c) \in Dom(c)^*$$
 and $|\xi(c)| \leq cap(c)$

```
states \langle \ell_1, ..., \ell_n, \eta, \xi \rangle where \ell_i location of program graph \mathcal{P}_i, \eta \in Eval(Var) variable evaluation \xi \in Eval(Chan) channel evaluation
```

variable evaluation:

$$\eta: Var \longrightarrow \bigcup_{x \in Var} Dom(x)$$
 with $\eta(x) \in Dom(x)$

channel evaluation:

$$\xi: Chan \to \bigcup_{\substack{c \in Chan}} Dom(c)^* \text{ with } \xi(c) \in Dom(c)^*$$
 and $|\xi(c)| \le cap(c)$

only channels c with $cap(c) \ge 1$ are relevant

states
$$\langle \ell_1, ..., \ell_n, \eta, \xi \rangle$$
 where $\ell_i \in Loc_i$, $\eta \in Eval(Var)$, $\xi \in Eval(Chan)$

states
$$\langle \ell_1, ..., \ell_n, \eta, \xi \rangle$$
 where $\ell_i \in Loc_i$, $\eta \in Eval(Var)$, $\xi \in Eval(Chan)$

transition relation \longrightarrow is given by SOS-rules:

- interleaving rules for $\alpha \in Act_i$
- rules for message passing along channels

states
$$\langle \ell_1, ..., \ell_n, \eta, \xi \rangle$$
 where $\ell_i \in Loc_i$, $\eta \in Eval(Var)$, $\xi \in Eval(Chan)$

transition relation \longrightarrow is given by SOS-rules:

- interleaving rules for $\alpha \in Act_i$
- rules for message passing along channels

interleaving rule for actions $\alpha \in Act_i$:

$$\frac{\ell_{i} \stackrel{\mathbf{g}:\alpha}{\longleftrightarrow}_{i} \ell'_{i} \land \eta \models \mathbf{g}}{\langle \ell_{1},..,\ell_{i},...,\ell_{n},\eta,\xi \rangle \stackrel{\alpha}{\longleftrightarrow} \langle \ell_{1},..,\ell'_{i},...,\ell_{n}, \textit{Effect}_{i}(\alpha,\eta),\xi \rangle}$$

states
$$\langle \ell_1, ..., \ell_n, \eta, \xi \rangle$$
 where $\ell_i \in Loc_i$, $\eta \in Eval(Var)$, $\xi \in Eval(Chan)$

transition relation \longrightarrow is given by SOS-rules:

- interleaving rules for $\alpha \in Act_i$
- rules for message passing along channels

interleaving rule for actions $\alpha \in Act_i$:

$$\frac{\ell_{i} \stackrel{\mathbf{g}:\alpha}{\longleftrightarrow}_{i} \ell'_{i} \land \eta \models \mathbf{g}}{\langle \ell_{1},..,\ell_{i},...,\ell_{n}, \eta, \xi \rangle \stackrel{\alpha}{\longleftrightarrow} \langle \ell_{1},..,\ell'_{i},...,\ell_{n}, \mathsf{Effect}_{i}(\alpha,\eta), \xi \rangle}$$

does not affect the channel evaluation ξ

receiving a message:

$$\frac{\ell_{i} \stackrel{C?X}{\longleftrightarrow}_{i} \ell'_{i} \land \xi(c) = v_{1}v_{2}...v_{k} \land k \geq 1}{\langle \ell_{1},...,\ell_{i},...,\ell_{n},\eta,\xi \rangle \xrightarrow{\mathcal{T}} \langle \ell_{1},...,\ell'_{i},...,\ell_{n},\eta',\xi' \rangle}$$

receiving a message:

$$\ell_{i} \stackrel{c?x}{\longleftrightarrow}_{i} \ell'_{i} \wedge \xi(c) = v_{1}v_{2}...v_{k} \wedge k \geq 1$$

$$\langle \ell_{1}, ..., \ell_{i}, ..., \ell_{n}, \eta, \xi \rangle \stackrel{\mathcal{T}}{\longleftrightarrow} \langle \ell_{1}, ..., \ell'_{i}, ..., \ell_{n}, \eta', \xi' \rangle$$
where $\eta' = \eta[x := v_{1}]$

$$\eta[x := v_{1}](y) = \begin{cases} \eta(y) & \text{if } y \neq x \\ v_{1} & \text{if } y = x \end{cases}$$

receiving a message:

$$\ell_{i} \stackrel{c?x}{\longleftrightarrow}_{i} \ell'_{i} \wedge \xi(c) = v_{1}v_{2}...v_{k} \wedge k \geq 1$$

$$\langle \ell_{1},...,\ell_{i},...,\ell_{n},\eta,\xi \rangle \stackrel{\mathcal{T}}{\longrightarrow} \langle \ell_{1},...,\ell'_{i},...,\ell_{n},\eta',\xi' \rangle$$
where $\eta' = \eta[x:=v_{1}]$ and $\xi' = \xi[c:=v_{2}...v_{k}]$

$$\eta[x:=v_{1}](y) = \begin{cases} \eta(y) & \text{if } y \neq x \\ v_{1} & \text{if } y = x \end{cases}$$

$$\xi[c:=v_{2}...v_{k}](d) = \begin{cases} \xi(d) & \text{if } d \neq c \\ v_{2}...v_{k} & \text{if } d = c \end{cases}$$

receiving a message:

$$\frac{\ell_{i} \stackrel{c?x}{\longleftrightarrow}_{i} \ell'_{i} \land \xi(c) = v_{1}v_{2}...v_{k} \land k \ge 1}{\langle \ell_{1}, ..., \ell_{i}, ..., \ell_{n}, \eta, \xi \rangle \xrightarrow{\mathcal{T}} \langle \ell_{1}, ..., \ell'_{i}, ..., \ell_{n}, \eta', \xi' \rangle}$$

where
$$\eta' = \eta[x:=v_1]$$
 and $\xi' = \xi[c:=v_2...v_k]$

sending a message:

$$\frac{\ell_{i} \stackrel{c!v}{\longleftrightarrow}_{i} \ell'_{i} \land \xi(c) = v_{1}...v_{k} \land k < cap(c)}{\langle \ell_{1},...,\ell_{i},...,\ell_{n},\eta,\xi \rangle \stackrel{\mathcal{T}}{\to} \langle \ell_{1},...,\ell'_{i},...,\ell_{n},\eta,\xi[c:=v_{1}...v_{k}v] \rangle}$$

for synchronous channel c:

$$\begin{array}{cccc}
\ell_{i} & \stackrel{\boldsymbol{c}?x}{\longleftrightarrow}_{i} \ell'_{i} & \wedge & \ell_{j} & \stackrel{\boldsymbol{c}!v}{\longleftrightarrow}_{j} \ell'_{j} & \wedge & i \neq j \\
\hline
\langle \ell_{1}, ..., \ell_{i}, ..., \ell_{j}, ..., \ell_{n}, \eta, \xi \rangle & \stackrel{\boldsymbol{\tau}}{\to} \langle \ell_{1}, ..., \ell'_{i}, ..., \ell'_{j}, ..., \ell_{n}, \eta', \xi' \rangle
\end{array}$$

for synchronous channel c:

$$\frac{\ell_{i} \stackrel{c?x}{\longleftrightarrow}_{i} \ell'_{i} \wedge \ell_{j} \stackrel{c!v}{\longleftrightarrow}_{j} \ell'_{j} \wedge i \neq j}{\langle \ell_{1}, ..., \ell_{i}, ..., \ell_{j}, ..., \ell_{n}, \eta, \xi \rangle \xrightarrow{\tau} \langle \ell_{1}, ..., \ell'_{i}, ..., \ell'_{j}, ..., \ell_{n}, \eta', \xi' \rangle}$$

where
$$\eta' = \eta[x:=v]$$

for synchronous channel c:

$$\begin{array}{c}
\ell_{i} \stackrel{\boldsymbol{c}?x}{\longleftrightarrow}_{i} \ell'_{i} \wedge \ell_{j} \stackrel{\boldsymbol{c}!v}{\longleftrightarrow}_{j} \ell'_{j} \wedge i \neq j \\
\langle \ell_{1}, ..., \ell_{i}, ..., \ell_{j}, ..., \ell_{n}, \eta, \xi \rangle \stackrel{\mathcal{T}}{\to} \langle \ell_{1}, ..., \ell'_{i}, ..., \ell'_{j}, ..., \ell_{n}, \eta', \xi' \rangle
\end{array}$$

where
$$\eta' = \eta[x:=v]$$
 and $\xi' = \xi$

- 2 processes with 2 locations each
- 2 Boolean variables
- 2 channels of capacity 10 and Boolean values

- 2 processes with 2 locations each
- 2 Boolean variables
- 2 channels of capacity 10 and Boolean values

answer:

$$2*2*2*2*(2^{11}-1)*(2^{11}-1)$$

note: $2^{11}-1=1+2+2^2+...+2^{10}$

- 2 processes with 2 locations each
- 2 Boolean variables
- 2 channels of capacity 10 and Boolean values

answer:

$$2*2*2*2*(2^{11}-1)*(2^{11}-1) > 2^{24} > 25$$
 mio note: $2^{11}-1 = 1 + 2 + 2^2 + ... + 2^{10}$

- 2 processes with 2 locations each
- 2 Boolean variables
- 2 channels of capacity 10 and Boolean values

answer:

$$2*2*2*2*(2^{11}-1)*(2^{11}-1) > 2^{24} > 25$$
 mio note: $2^{11}-1 = 1 + 2 + 2^2 + ... + 2^{10}$

... with an unbounded channel?

- 2 processes with 2 locations each
- 2 Boolean variables
- 2 channels of capacity 10 and Boolean values

answer:

$$2*2*2*2*(2^{11}-1)*(2^{11}-1) > 2^{24} > 25$$
 mio note: $2^{11}-1 = 1 + 2 + 2^2 + ... + 2^{10}$

... with an unbounded channel ?

answer: ∞

Alternating bit protocol (ABP)

PC2.2-32

Alternating bit protocol (ABP)

Alternating bit protocol (ABP)

Goal: design a comm. protocol that ensures any distinct transmitted datum by S to be delivered to R


```
LOOP FOREVER

(1) send message + bit y and activate timer

(2) AWAIT timeout or acknowledgement DO

IF timeout THEN goto (1)

ELSE turn off timer; y:=¬y

OD
```

return the received bit y via a reliable channel

sender receiver

send message + bit y via unreliable channel

```
LOOP FOREVER

(1) send message + bit y and activate timer

(2) AWAIT timeout or acknowledgement DO

IF timeout THEN goto (1)

ELSE turn off timer; y:=¬y

OD
```

If both channels are unreliable ...

PC2.2-33

(2) AWAIT timeout or acknowledgement x DO

IF timeout THEN goto (1)

ELSE IF x=y THEN turn off timer; y:=¬y

ELSE ignore x

FI

OD

FI

synchronous message passing between

Timer and Sender

asynchronous message passing between

Receiver and Sender


```
synchronous message passing between

*Timer* and *Sender* ← channels *e* and *f*

*asynchronous message passing between

*Receiver* and *Sender* ← channels *c*, *d*
```


actions of Sender:
:
e!timer_on
e!timer_off
f?z'
.

specify the sender by a program graph using

- asynchronous channels c and d
- synchronous channels e and f

specify the sender by a program graph using

- asynchronous channels c and d
- synchronous channels e and f
 simply write !timeout
 ?timer_on
 ?timer_off

specify the sender by a program graph using

- asynchronous channels c and d
- synchronous channels e and f
- Boolean variable x for the acknowledgement bit sent by the receiver

Generate(0) off Wait(0) $d=\varepsilon$ $c=\varepsilon$ Send(0)off Wait(0 $d=\varepsilon$ message 0 sent $c=\varepsilon$ $d=\varepsilon$ $Timer_on(0)$ off Wait(0 c=0Wait(0) $d=\varepsilon$ Wait(0 c=0timeout on Send(0) off Wait(0 c=0 $d=\varepsilon$ 0 sent again $Timer_on(0)$ off c = 00 $d=\varepsilon$ Wait(0) off Timer_on(0 Proc(0 $d=\varepsilon$ message received

 $d=\varepsilon$ Generate(0) off Wait(0) $c=\varepsilon$ Send(0)off $d=\varepsilon$ Wait(0) message 0 sent $c=\varepsilon$ $Timer_on(0)$ off $d=\varepsilon$ Wait(0 c=0Wait(0)Wait(0 c=0 $d=\varepsilon$ timeout on Send(0)off Wait(0 c=0 $d=\varepsilon$ 0 sent again $Timer_on(0)$ off Wait(0) c = 00 $d=\varepsilon$ off Timer_on(0) Proc(0)c=0 $d=\varepsilon$ message received off Ack(0)send ack via d Timer_on(0 c=0

 $Timer_on(0)$ off Wait(0 c = 00 $d=\varepsilon$ Timer_on(0) off c=0 $d=\varepsilon$ message received Proc(0 $Timer_on(0)$ off Ack(0)c=0 $d=\varepsilon$ send ack via d d=0Timer_on(0) off Wait(1)receiver changes its mode

95 / 131

Alternating bit protocol (ABP)

 $_{\rm PC2.2\text{--}37C}$

number of states in the TS:

10 · 2 · 6 · #channel evaluations

Alternating bit protocol (ABP)

PC2.2-37C

number of states in the TS:

10 · 2 · 6 · #channel evaluations

 $> 10^8$ for FIFOs with capacity 10

• conditional communication actions $\ell \stackrel{g:c?x}{\longrightarrow} \ell'$

- conditional communication actions $\ell \stackrel{g:c?x}{\longrightarrow} \ell'$
- generalized sending instructions clexpr instead of clv

- conditional communication actions $\ell \stackrel{g:c?x}{\longrightarrow} \ell'$
- generalized sending instructions clexpr instead of clv

• communication as conditions $\ell \stackrel{c?x:\alpha}{\longrightarrow} \ell'$

- conditional communication actions $\ell \stackrel{g:c?x}{\longleftarrow} \ell'$
- generalized sending instructions c!expr instead of c!v

- communication as conditions $\ell \stackrel{c?x:\alpha}{\longrightarrow} \ell'$
 - → more compact TS-representations

- conditional communication actions $\ell \stackrel{g:c?x}{\longrightarrow} \ell'$
- generalized sending instructions clexpr instead of clv
- communication as conditions $\ell \stackrel{c?x:\alpha}{\longleftrightarrow} \ell'$
- open channel systems $\mathcal{P}_1 \mid \ldots \mid \mathcal{P}_n$ instead of closed channel systems $[\mathcal{P}_1 \mid \ldots \mid \mathcal{P}_n]$

- conditional communication actions $\ell \stackrel{g:c?x}{\longrightarrow} \ell'$
- generalized sending instructions clexpr instead of clv
- communication as conditions $\ell \stackrel{c?x:\alpha}{\longleftrightarrow} \ell'$
- open channel systems $\mathcal{P}_1 | \dots | \mathcal{P}_n$ instead of closed channel systems $[\mathcal{P}_1 | \dots | \mathcal{P}_n]$

Summary: parallel operators

(pure) interleaving for TS $T_1 \parallel T_2$

- only concurrency, no communication
- not applicable for competing systems

Summary: parallel operators

(pure) interleaving for TS $T_1 \parallel T_2$

- only concurrency, no communication
- not applicable for competing systems

synchronous message passing for TS $T_1 \parallel_{Syn} T_2$

- interleaving for concurrent actions
- synchronization via actions in Syn

Summary: parallel operators

(pure) interleaving for TS $T_1 \parallel T_2$

- only concurrency, no communication
- not applicable for competing systems

synchronous message passing for TS $T_1 \parallel_{Syn} T_2$

- interleaving for concurrent actions
- synchronization via actions in Syn

interleaving for program graphs $\mathcal{P}_1 \parallel \mid \mathcal{P}_2$

- interleaving for concurrent actions
- communication via shared variables

```
(pure) interleaving for TS T_1 \parallel T_2
```

- only concurrency, no communication
- not applicable for competing systems

```
synchronous message passing for TS T_1 \parallel_{Syn} T_2
```

- interleaving for concurrent actions
- synchronization via actions in Syn

```
interleaving for program graphs \mathcal{P}_1 \ ||| \ \mathcal{P}_2
```

- interleaving for concurrent actions
- communication via shared variables

```
channel systems: open \mathcal{P}_1 \mid \ldots \mid \mathcal{P}_n or closed [\mathcal{P}_1 \mid \ldots \mid \mathcal{P}_n]
```

• interleaving, shared variables, message passing

(pure) interleaving for TS $T_1 \parallel T_2$

only concurrency, no communication

synchronous message passing for TS $T_1 \parallel_{Syn} T_2$

interleaving, synchronization via actions in Syn

interleaving for program graphs $\mathcal{P}_1 \parallel \mid \mathcal{P}_2$

interleaving, shared variables

channel systems: open $\mathcal{P}_1 \mid \ldots \mid \mathcal{P}_n$ or closed $[\mathcal{P}_1 \mid \ldots \mid \mathcal{P}_n]$

- interleaving, shared variables
- synchronous and asynchronous message passing

synchronous product for TS $T_1 \otimes T_2$

no interleaving, "pure" synchronization

for parallel systems with fully synchronized processes

$$T_1 = (S_1, Act_1, \longrightarrow_1, ...)$$

 $T_2 = (S_2, Act_2, \longrightarrow_2, ...)$ two TS

synchronous product:

$$T_1 \otimes T_2 = (S_1 \times S_2, Act, \longrightarrow, ...)$$

for parallel systems with fully synchronized processes

$$T_1 = (S_1, Act_1, \longrightarrow_1, ...)$$

 $T_2 = (S_2, Act_2, \longrightarrow_2, ...)$ two TS

synchronous product:

$$T_1 \otimes T_2 = (S_1 \times S_2, Act, \longrightarrow, ...)$$

where the action set **Act** is given by a function

$$Act_1 \times Act_2 \longrightarrow Act, \quad (\alpha, \beta) \mapsto \alpha * \beta$$

action name for the concurrent execution of α and β

for parallel systems with fully synchronized processes

$$T_1 = (S_1, Act_1, \longrightarrow_1, ...)$$

 $T_2 = (S_2, Act_2, \longrightarrow_2, ...)$ two TS

synchronous product:

$$T_1 \otimes T_2 = (S_1 \times S_2, Act, \longrightarrow, ...)$$

where the action set Act is given by a function

$$Act_1 \times Act_2 \longrightarrow Act, \quad (\alpha, \beta) \mapsto \alpha * \beta$$

action name for the concurrent execution of α and β

if action names are irrelevant: $Act_1 = Act_2 = Act = \{\tau\}$

for parallel systems with fully synchronized processes

$$egin{aligned} & \mathcal{T}_1 = (S_1, Act_1, \longrightarrow_1, ...) \ & \mathcal{T}_2 = (S_2, Act_2, \longrightarrow_2, ...) \end{aligned} \end{aligned} \}$$
 two TS

synchronous product:

$$T_1 \otimes T_2 = (S_1 \times S_2, Act, \longrightarrow, ...)$$

transition relation \longrightarrow :

$$\frac{s_1 \xrightarrow{\alpha}_1 s_1' \land s_2 \xrightarrow{\beta}_2 s_2'}{\langle s_1, s_2 \rangle \xrightarrow{\alpha * \beta} \langle s_1', s_2' \rangle}$$

2 sequential circuits

Synchronous product: example

Synchronous product: example

initially:

$$r_1 = 0$$

transition function:

$$\delta_{r_1} = \neg r_1$$

Synchronous product: example

initially:

$$r_1 = 0$$

transition function:

$$\delta_{r_1} = \neg r_1$$

transition function:

$$\delta_{r_2} = r_2 \vee x$$

PC2.2-52

PC2.2-52

PC2.2-52

- infinite for systems with
 - * variables of infinite domains, e.g., N
 - * infinite data structures, e.g., stacks, queues, lists,...

- infinite for systems with
 - * variables of infinite domains, e.g., N
 - * infinite data structures, e.g., stacks, queues, lists,...
- if finite: exponential growth in

- infinite for systems with
 - * variables of infinite domains, e.g., N
 - * infinite data structures, e.g., stacks, queues, lists,...
- if finite: exponential growth in
 - * number of parallel components, e.g., state space of $T_1 \parallel ... \parallel T_n$ is $S_1 \times ... \times S_n$

- infinite for systems with
 - * variables of infinite domains, e.g., N
 - * infinite data structures, e.g., stacks, queues, lists,...
- if finite: exponential growth in
 - * number of parallel components, e.g., state space of $T_1 \parallel ... \parallel T_n$ is $S_1 \times ... \times S_n$
 - * number of variables and channels

- infinite for systems with
 - * variables of infinite domains, e.g., N
 - * infinite data structures, e.g., stacks, queues, lists,...
- if finite: exponential growth in
 - * number of parallel components, e.g., state space of $T_1 \parallel ... \parallel T_n$ is $S_1 \times ... \times S_n$
 - * number of variables and channels

e.g., for channel systems: size of the state space is

$$|Loc_1| \cdot ... \cdot |Loc_n| \cdot \prod_{x \in Var} |Dom(x)| \cdot \prod_{c \in Chan} |Dom(c)|^{cap(c)}$$

