

1, 2, 3...Sciences

Année académique 2017-2018

EXERCICES DE MATHÉMATIQUE EXERCICES RÉCAPITULATIFS : CORRECTION

Exercices divers

1. Résoudre les équations et inéquations suivantes (pour (c) et (d), on suppose que $x \in [2\pi, 3\pi]$)

(a)
$$2x(x-1) = |x-1|$$

(b)
$$\frac{|2-x|}{x^2-4} \ge x-2$$

(c)
$$\sin(2x)\cos(x) = \sin(x)$$

(d)
$$\cos(2x) \le \cos(x)$$

Solution. Les ensembles S de solutions sont les suivants :

(a)
$$S = \{1, -1/2\}$$

(b)
$$S =]-\infty, -2[\cup [-\sqrt{3}, \sqrt{3}] \cup [2, \sqrt{5}]$$

(c)
$$S = \left\{ 2\pi, \ 3\pi, \ \frac{9\pi}{4}, \ \frac{11\pi}{4} \right\}$$

(d)
$$S = \left[2\pi, \frac{8\pi}{3}\right]$$

2. Si c'est possible, simplifier au maximum les expressions suivantes :

(a)
$$\sin(\ln(e^{-\pi/6})) + \cos(\operatorname{tg}(-\pi/3))$$

(b)
$$\arccos(1 - \sin(5\pi/6)) + \arcsin(\sin(7\pi/6))$$

Solution. La première expression vaut $-\frac{1}{2} + \cos(\sqrt{3})$ et la deuxième vaut $\frac{\pi}{6}$.

3. Dans un repère orthonormé, on donne les points A,B,C dont les coordonnées sont $A(1,-1,3),\ B(-1,2,1)$ et C(3,2,-1). Calculer

(a)
$$2\overrightarrow{AB}.\overrightarrow{BC}$$

(b) les composantes de
$$\overrightarrow{AC} \wedge \overrightarrow{BC}$$

(c) les composantes de la projection orthogonale de
$$\overrightarrow{BC}$$
 sur \overrightarrow{AC} .

Solution. Le produit scalaire vaut -8, les composantes du produit vectoriel sont (-6, -12, -12) et les composantes de la projection orthogonale de \overrightarrow{BC} sur \overrightarrow{AC} sont $\frac{16}{29}(2, 3, -4)$.

4. Résoudre les équations suivantes dans \mathbb{C} .

(a)
$$x^2 + 3 = 2ix$$

(b)
$$8 - x^3 = 0$$

Solution. Les ensembles S de solutions sont les suivants :

(a)
$$S = \{-i, 3i\}$$

(b)
$$S = \{2, -1 - i\sqrt{3}, -1 + i\sqrt{3}\}\$$

5. Représenter dans un repère orthonormé l'ensemble dont une description analytique est la suivante

$$\{(x,y) \in \mathbb{R}^2 : 4x^2 - 1 \ge y^2 \ge 4 - x^2\}.$$

Solution. On note $d_1: y = 2x, \ d_2: y = -2x, \ \mathcal{C}: x^2 + y^2 = 4$ et $\mathcal{H}: 4x^2 - y^2 = 1$.

Les points des bords sont compris dans l'ensemble.

- 6. Décrire analytiquement l'ensemble fermé hachuré ci-contre
 - (a) en commençant par l'ensemble de variation des abscisses puis, à abscisse fixée, l'ensemble de variation des ordonnées
 - (b) en commençant par l'ensemble de variation des ordonnées puis, à ordonnée fixée, l'ensemble de variation des abscisses

Solution. Les sommets du parallélogramme étant les points A(3,2), B(2,-1), C(-2,-1) et D(-1,2), les bords sont les droites d'équation $AB: y=3x-7 \Leftrightarrow x=\frac{y+7}{3}, BC: y=-1, CD: y=3x+5 \Leftrightarrow x=\frac{y-5}{3}$ et DA: y=2.

L'ensemble hachuré est donc décrit par

(a)
$$\{(x,y) \in \mathbb{R}^2 : x \in [-2,-1], y \in [-1,3x+5]\} \cup \{(x,y) \in \mathbb{R}^2 : x \in [-1,2], y \in [-1,2]\}$$

$$\cup \{(x,y) \in \mathbb{R}^2 : x \in [2,3], \ y \in [3x-7,2]\}$$

(b)
$$\{(x,y) \in \mathbb{R}^2 : y \in [-1,2], x \in \left[\frac{y-5}{3}, \frac{y+7}{3}\right]\}$$

7. Calculer l'aire de la partie du plan dont une description analytique est la suivante

$$\{(x,y) \in \mathbb{R}^2 : -|2x| \ge y \text{ et } y^2 \le 5 + x\}.$$

Donner aussi une représentation graphique de l'ensemble.

Solution. Voici une représentation graphique de l'ensemble :

Les abscisses des points d'intersection des courbes s'obtiennent à partir du système d'équations $\left\{\begin{array}{l} y^2=5+x\\ y=-|2x| \end{array}\right. \text{ On trouve } -1 \text{ et } \frac{5}{4}.$

Les fonction $x \mapsto 2x - (-\sqrt{5+x})$ et $x \mapsto -2x - (-\sqrt{5+x})$ sont continues sur $[-5, +\infty[$ donc respectivement sur [-1, 0] et sur [0, 5/4], fermés bornés. Ells y sont donc intégrables. Dès lors, l'aire recherchée est donnée par

$$A = \int_{-1}^{0} (2x + \sqrt{5+x}) dx + \int_{0}^{5/4} (-2x + \sqrt{5+x}) dx$$
$$= \left[x^{2} + \frac{2}{3} (5+x)\sqrt{5+x} \right]_{-1}^{0} + \left[-x^{2} + \frac{2}{3} (5+x)\sqrt{5+x} \right]_{0}^{5/4}$$
$$= \frac{121}{48}.$$

3

8. Si elles existent, déterminer les limites suivantes

(a)
$$\lim_{x \to 3} \frac{\ln(x-2)}{x-3}$$

- (b) $\lim_{x \to -\infty} \frac{|1-x|}{\sqrt{1+x^2}}$
- (c) $\lim_{x \to 1^+} \arctan\left(\frac{2x}{x^2 1}\right)$
- (d) $\lim_{x \to 0^{-}} \frac{\exp(2x) 1}{x}$
- (e) $\lim_{x \to -\infty} (\ln(2x+5) \ln(2x))$ et $\lim_{x \to +\infty} (\ln(2x+5) \ln(2x))$

Solution. Les limites peuvent toutes être envisagées sauf $\lim_{x\to -\infty} (\ln(2x+5) - \ln(2x))$ puisque le domaine de définition de la fonction est minoré.

Elles valent respectivement 1, 1, $\left(\frac{\pi}{2}\right)^-$, 2 et 0^+ .

9. Où la fonction $x \mapsto \arcsin(\sqrt{1-4x^2})$ est-elle définie? dérivable? En déterminer la dérivée première.

Solution. La fonction est définie sur [-1/2, 1/2] et dérivable sur $]-1/2, 0[\cup]0, 1/2[$; sa dérivée première est la fonction

 $x \mapsto \begin{cases} \frac{2}{\sqrt{1 - 4x^2}} \text{ si } x \in]-1/2, 0[\\ \frac{-2}{\sqrt{1 - 4x^2}} \text{ si } x \in]0, 1/2[\end{cases}$

10. Si elles existent, déterminer la valeur des intégrales suivantes et simplifier la réponse au maximum.

(a)
$$\int_1^e \frac{\ln(4x)}{x} \ dx$$

(b)
$$\int_{-\infty}^{0} x e^{2x} dx$$

(c)
$$\int_{-2}^{+\infty} \frac{1}{2+x} \, dx$$

(d)
$$\int_{-1/2}^{1/2} \sqrt{1-x^2} \ dx$$

(e)
$$\int_4^5 \frac{2}{x(x^2-4x+4)} dx$$

Solution. Toutes les fonctions sont intégrables sur l'intervalle considéré sauf la fonction $x\mapsto \frac{1}{2+x}$ qui n'est ni intégrable en $+\infty$, ni intégrable en -2. Les intégrales valent respectivement

(a)
$$\frac{1}{2} + 2 \ln(2)$$

(b)
$$-\frac{1}{4}$$

(d)
$$\frac{\pi}{6} + \frac{\sqrt{3}}{4}$$

(a)
$$\frac{1}{2} + 2\ln(2)$$
 (b) $-\frac{1}{4}$ (d) $\frac{\pi}{6} + \frac{\sqrt{3}}{4}$ (e) $\frac{1}{2}\ln\left(\frac{5}{6}\right) + \frac{1}{6}$

11. Résoudre l'équation suivante en spécifiant dans quel intervalle on travaille

$$D^{2}f(x) + f(x) = x + \sin(x) + \frac{1}{\cos(x)}$$

Solution. Les solutions sont les fonctions

$$f(x) = (C_1 + \ln(|\cos(x)|))\cos(x) + (C_2 + x)\sin(x) + x - \frac{x}{2}\cos(x), \ x \in \left] - \frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \left[(k \in \mathbb{Z}) + k\pi, \frac{\pi}{2} + k\pi \right] \right]$$

 C_1 et C_2 étant des constantes complexes arbitraires.

Problèmes élémentaires

1. La distance de freinage (en mètres) d'une voiture roulant à v km/h sur sol sec est donnée par

4

- (a) $\left(\frac{v}{10}\right)^2 + \frac{v}{2}$ si cette voiture est équipée de freins normaux
- (b) v si cette voiture est équipée de freins ABS spéciaux.

Déterminer les vitesses pour lesquelles la voiture équipée de freins ABS est plus performante quant à la distance de freinage.

Solution. La voiture équipée de freins ABS est plus performante pour des vitesses strictement supérieures à 50 km/h.

2. Un homme se promenant sur une route vit venir à lui d'autres hommes et il leur dit "J'aurais aimé que vous soyez deux fois autant que vous êtes, plus la moitié de la moitié de ce double, plus la moitié de ce dernier nombre. Ainsi avec moi vous seriez 100."

Qu'il dise celui qui le peut, combien étaient les hommes qu'il a vu venir à lui. (Alcuin, 8 ème siècle)

Solution. L'homme qui se promène a vu venir à lui 36 hommes.

QCM

- 1. Le carré d'un nombre complexe est toujours
 - (a) un nombre positif
 - (b) un nombre négatif
 - (c) un nombre imaginaire pur
 - A aucune réponse correcte
- 2. La partie réelle du produit de deux nombres complexes est toujours égale
 - (a) au produit des parties réelles de ces nombres
 - (b) à la somme des parties réelles de ces nombres
 - (c) à la somme de la partie réelle de l'un et de la partie imaginaire de l'autre
 - (d) au produit de la partie réelle de l'un et de la partie imaginaire de l'autre
 - A aucune réponse correcte
- 3. La valeur absolue de la somme de deux réels est toujours
 - (a) inférieure ou égale à la différence entre les valeurs absolues de ces réels
 - 🌲 inférieure ou égale à la somme des valeurs absolues de ces réels
 - (c) supérieure ou égale à la somme des valeurs absolues de ces réels
 - (d) supérieure ou égale à la moitié du produit de ces réels
 - (e) aucune réponse correcte
- 4. Si f est définie sur \mathbb{R} , le graphique de $F(x) = f(-x), x \in \mathbb{R}$ est
 - (a) le symétrique du graphique de f par rapport à la première bissectrice
 - (b) le symétrique du graphique de f par rapport à l'axe X
 - \clubsuit le symétrique du graphique de f par rapport à l'axe Y
 - (d) le symétrique du graphique de f par rapport à l'origine
 - (e) aucune réponse correcte
- 5. L'ensemble des solutions de l'inéquation $|x|^3 < |x|^2$ est l'ensemble
 - (a) [-1,1[
 - (b) $\{x \in \mathbb{R} : |x| < 1\}$
 - $-1,1[\setminus \{0\}]$
 - (d) $]-\infty,-1[$
 - (e) aucune réponse correcte
- 6. Dans le plan muni d'un repère, une droite a toujours une équation cartésienne du type y = mx + p, $(m, p \in \mathbb{R})$
 - (a) vrai

faux 7. Le cube d'un réel non nul et de son opposé sont toujours égaux (a) vrai ♣ faux 8. Etant donné deux vecteurs non nuls, tout autre vecteur du plan peut se décomposer de manière unique comme combinaison linéaire de ceux-ci. (a) vrai A faux 9. Le produit de deux fonctions croissantes est une fonction croissante (a) vrai A faux 10. Le domaine de la fonction donnée par $\cos(\cos x)$ est l'intervalle [-1,1] (a) vrai A faux 11. La racine carrée de $(-2)^2$ est égale à (a) ± 2 **4** 2 (c) -2(d) aucune des réponses précédentes n'est correcte 12. Le sinus du réel 7 (a) n'existe pas (b) est un nombre négatif plus grand que -1(c) est un nombre défini à un multiple de 2π près A aucune des réponses précédentes n'est correcte 13. Quand on dit que la radiation en UV a augmenté de 60%, cela signifie que la radiation a été (a) multipliée par 3/5 (b) divisée par 8/5 ♣ divisée par 5/8 (d) aucune des réponses précédentes n'est correcte 14. Un terrain carré a une aire égale à 81 m². Son périmètre est alors égal à (a) 20,25 m ♣ 36 m (c) 40,50 m(d) aucune des réponses précédentes n'est correcte 15. La valeur absolue de la somme de deux réels est (a) égale à la somme des valeurs absolues de chacun d'eux (b) égale à la différence des valeurs absolues de chacun d'eux (c) égale à la somme des carrés de chacun d'eux aucune des réponses précédentes n'est correcte 16. Si a est un nombre réel, alors la racine carrée de a^2 est égale à (a) a

6

A aucune des réponses précédentes n'est correcte

17. Le cosinus du carré d'un nombre réel

(b) -a (c) \sqrt{a}

- (a) est égal au carré du cosinus du réel
- (b) est égal au double du cosinus du réel
- (c) est égal au double du produit du sinus et du cosinus du réel
- A aucune des réponses précédentes n'est correcte
- 18. Un rectangle a une aire de $60~\mathrm{m}^2$. Sa longueur est $4~\mathrm{m}$ plus grande que sa largeur. Le périmètre du rectangle vaut alors
 - (a) 6 m
 - (b) 28 m
 - ♣ 32 m
 - (d) aucune des réponses précédentes n'est correcte
- 19. Si le carré d'un réel négatif r est un réel plus grand ou égal à 1, alors ce réel
 - (a) est toujours plus grand ou égal à 1
 - \clubsuit est toujours plus petit ou égal à -1
 - (c) est toujours plus grand ou égal à -1 et plus petit ou égal à 1
 - (d) aucune des réponses précédentes n'est correcte
- 20. Si x est un réel strictement positif, alors la valeur absolue de $-2x+x^2$ vaut toujours
 - (a) $2x x^2$
 - (b) $x^2 2x$
 - (c) $2x + x^2$
 - A aucune des réponses précédentes n'est correcte
- 21. Si y désigne un réel, alors l'inégalité $y^2 > |y|$
 - (a) est équivalente à dire que la valeur du réel y est strictement supérieure à 1
 - (b) est une condition suffisante pour que le réel y soit strictement supérieur à 1
 - \clubsuit est une condition nécessaire au fait que le réel y soit strictement supérieur à 1
 - (d) aucune des réponses précédentes n'est correcte