HW5_Do_Quyen

Quyen Do

September 21, 2018

Problem 3

I believe a good figure should provide us with an overall impression about the data like its size, structure, relationship between variables. It should also provide insight into the data and inform the next steps in the analysis process. Some important aspects of a good figures are reasonable scaling, interpretability, size and the use of colors.

Problem 4

a. A function computing the proportion of successes in a vector

```
count_success <- function (vect, value = 1) {
    # Compute the proportion of successes in a vector

# Args:
    # vect: the vector on which the proportion of successes will be computed
    # value: the value presented "success" value in the vector. Default value is 1

#Return:
    # A real number from 0 to 1

length(vect[which(vect==value)])/length(vect)
}</pre>
```

b. Create a simuluated matrix

```
set.seed(12345)
P4b_data <- matrix(rbinom(10,1,prob =(30:40)/100),nrow = 10, ncol =10)</pre>
```

c. Checking the proportion of success

```
d.
```

p=1 to all the rows instead.

```
simulate_binom <- function(probability) {
    # Simulate 10 random binomial variables</pre>
```

```
# of n = 10 and given probability
  # Args:
  # probability: the probability for the binomial distribution
  # a vector containing 10 RVs drawn from binomial distribution
  return(rbinom(10, 1, prob = probability))
# A vector of probability
prob_vect <- (31:40)/100
# apply simulate_binom on each element of prob_vect
correct_mat <- sapply(prob_vect,simulate_binom)</pre>
# Calculate the proportion of success
# across rows and columns of correct_mat
prop_row2 <- apply(correct_mat,1,count_success)</pre>
prop_col2 <- apply(correct_mat,2,count_success)</pre>
prop_mat2 <- matrix(c(prob_vect,prop_row2,prop_col2),nrow=3,ncol=10,byrow = TRUE, dimnames = list(c("Tr</pre>
prop_mat2
##
                             2
                                  3
                                       4
                                            5
## True probability 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4
                    0.70 0.30 0.50 0.50 0.30 0.10 0.80 0.40 0.10 0.2
## By Row
## By Col
                    0.20 0.30 0.40 0.30 0.40 0.60 0.30 0.30 0.50 0.6
```

To fix the code in b, I created a vector of probabilities, then used the sapply on each element of that vector and pasted it onto simulation function. "sapply" on the probability vector return a matrix of data whose columns are 10 random data points drawn from the binomial distribution having corresponding probability from the vector.

The "By col" information tell us the probabilities of success for each true probability. Compared with the true probability, we saw that they are pretty close. Any difference is due to randomization.

Problem 5

```
#Import raw data from url
url <- "https://www2.isye.gatech.edu/~jeffwu/book/data/starch.dat"
starch.dat <- read.csv(url, header=TRUE,sep="")

#Summary
str(starch.dat)

## 'data.frame': 49 obs. of 3 variables:
## $ starch : Factor w/ 3 levels "CA","CO","PO": 1 1 1 1 1 1 1 1 1 1 1 1 ...
## $ strength : num 792 610 710 941 990 ...
## $ thickness: num 7.7 6.3 8.6 11.8 12.4 12 11.4 10.4 9.2 9 ...
starch.dat$starch <- factor(starch.dat$starch)
knitr::kable(summary(starch.dat))</pre>
```

starch	strength	thickness
CA:13	Min.: 306.4	Min.: 5.300
CO:19	1st Qu.: 508.8	1st Qu.: 6.700
PO:17	Median: 735.4	Median: 9.500
NA	Mean: 737.0	Mean: 9.388
NA	3rd Qu.: 924.4	3rd Qu.:12.000
NA	Max. $:1660.0$	Max. :14.100

```
#Multipane plot using ggplot and ggpubr
p1 <- ggplot(starch.dat,aes(x=strength)) + geom_histogram(colour= "black",bins=10,fill="darkred")
p2 <- ggplot(starch.dat,aes(x=starch,y=strength ,group=starch,fill=starch))</pre>
p2 <- p2 + geom_boxplot() + guides(fill=FALSE) + labs(x="starch")</pre>
p3 <- ggplot(starch.dat,aes(x=thickness)) + geom_histogram(colour= "black",bins=10,fill="darkgreen")
p4 <- ggplot(starch.dat,aes(x=starch,y=thickness ,group=starch,fill=starch))
p4 <- p4 + geom_boxplot() + guides(fill=FALSE) + labs(x="starch")
p5 <- ggplot(starch.dat,aes(thickness,strength,colour=starch)) + geom_point() + labs(x="thickness",y="s
ggarrange(ggarrange(p1,p2,p3,p4,ncol = 2,nrow=2), p5, nrow = 2)
    12.5 -
10.0 -
7.5 -
5.0 -
2.5 -
0.0 -
                                                     strength
1200 -
800 -
400 -
 count
                                                                                 co
                500
                            1000
                                         1500
                                                                    ĊA
                                                                                              PO
                         strength
                                                                               starch
                                                     thickness
 7.5 -
5.0 -
2.5 -
                                                        12.5 -
10.0 -
                                                         7.5 -
    0.0 -
                                                         5.0 -
                                                                                 co
                               10
                                                                    CA
                6
                        8
                                       12
                                                                                              PO
                                               14
                        thickness
                                                                               starch
    1600 -
    1200 -
 strength
     800 -
     400 -
         5.0
                                  7.5
                                                         10.0
                                                                                  12.5
                                                   thickness
```

Looking at the variables individually, "strength" skews slightly to the right, while "thickness"'s distribution is a little more uniformly. When contrasting the "strength" and "thickness" between categories of starch, we

see that "CO" starch stands out as having the lowest values in both "thickness" and strength.

The scatterplot between strength and thickness does show a linear relationship between the two variable with an increase in thickness resulting in an increase in the mean of strength. However, there seems to be a shift in slopes in the relationship around thickness = 8. The rate of increase in mean strength clearly reduces after this point. Coincidently, when "starch" type is taken into account, a majority of the datapoint from "CO" starch lie in the region of low thickness, low strength and bigger slope. "CA" and "PO" scatter more randomly together in the smaller slope region with "PO" starch accounts more on the biggest values of "thickness"

```
#Pairs plot
pairs(starch.dat)
```



```
# Scatter plot by starch
ggplot(starch.dat,aes(thickness,strength)) + geom_point() + facet_wrap(~starch)
```


When plotting three different scatter plot according the "starch" type, our observations from the general scatter plot were confirmed. In "CO", the linear relationship between "thickenss" and "strength" seems to have a much steepr slopes than the two remaining categories.

Problem 6

```
##
  Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
##
##
       between, first, last
##
  The following object is masked from 'package:purrr':
##
##
       transpose
Part b. A summmary table of the number of cities included by state
#The number of cities included by states
#knitr::kable(t(table(cities$state_code)),caption = "Number of cities by state")
t(table(cities$state_code))
##
                                             CT
##
                                  CA
                                        CO
                                                   DC
                                                        DE
                                                              FL
                                                                   GA
                                                                        ΗI
                                                                              ΙA
             AK
                  AL
                        AR
                             ΑZ
##
     [1,]
            273
                 838
                       709
                            532 2651
                                       659
                                            438
                                                  284
                                                        98 1487
                                                                  972
                                                                        139 1060
##
##
             ID
                  ΙL
                        IN
                             KS
                                  ΚY
                                        LA
                                             MA
                                                   MD
                                                        ME
                                                              ΜI
                                                                   MN
                                                                        MO
                                                                              MS
```

```
##
     [1,] 325 1587 989 756 961 725 703 619 489 1170 1031 1170 533
##
##
            MT
                  NC
                       ND
                            NE
                                 NH
                                       NJ
                                            NM
                                                  NV
                                                       NY
                                                             OH
                                                                  OK
                                                                       OR
                                                                             PA
##
     [1,]
           405 1090
                      407
                           620
                                 284
                                      733
                                                 253 2207 1446
                                                                 774
                                                                      484 2208
                                           426
##
##
            PR
                                       TX
                                            UT
                                                  VA
                                                       VT
                                                                       WV
                                                                             WY
                 R.T
                       SC
                            SD
                                 TN
                                                            WΑ
                                                                  WΤ
                      539
                           394 795 2650 344 1238
                                                     309
                                                           732
                                                                      859
##
          176
                                                                 898
                                                                           195
city count data <- as.data.frame(table(cities$state code))</pre>
names(city_count_data) <- c("state_code", "city_count")</pre>
Part c. Function that counts occurances of a letter in a string
count.occurances <- function(string, letter){</pre>
  #Count the occurance of a letter from a given string
  #Arqs:
  # string: the string from which the letter will be calculated from
  # letter: the letter whose occurances in the string will be calculated
  #Returns:
  # the number of occurances of the letter in the string
  # Split the string into a vector of characters
  char.vect <- strsplit(string,split = NULL)[[1]]</pre>
  # Ensure lower case is across the two variables
  char.vect <- tolower(char.vect)</pre>
  letter <- tolower(letter)</pre>
 return (sum(char.vect==letter))
}
letter count <- data.frame(matrix(NA,nrow=51,ncol=26))</pre>
for (i in 1:51){
  letter_count[i,] <- sapply(LETTERS,count.occurances,string=states$state_name[i])</pre>
names(letter_count) <- LETTERS</pre>
```

```
#Merge the information from states data.frame onto letter_count
letter_count$state_name <- states$state_name</pre>
```

letter_count\$state_code <- states\$state_code</pre>

#Exclude "district of columbia"

letter_city_total <- merge(letter_count,city_count_data,by="state_code")</pre>

#letter city total <- letter city total[letter city total\$state code != "DC",]

Part d.

```
#https://cran.r-project.org/web/packages/fiftystater/vignettes/fiftystater.html
library(ggplot2)
library(fiftystater)
#Create US map colored by city count
data("fifty_states") # this line is optional due to lazy data loading
```

```
# Set up dataset to make sure state_names match that of fifty_states
letter_city_total$state_code <- tolower(letter_city_total$state_code)</pre>
letter_city_total$state_name <- tolower(letter_city_total$state_name)</pre>
# Color for the map
\#(reference: https://medium.com/@NickDoesData/visualizing-geographic-data-in-r-fb2e0f5b59c5)
low color='#ccdbe5'
high color="#114365"
legend_title = 'City counts'
# US Maps colored with city counts
# map_id creates the aesthetic mapping to the state name column in your data
p <- ggplot(letter_city_total, aes(map_id = state_name))</pre>
# map points to the fifty_states shape data
p <- p + geom_map(aes(fill = city_count), map = fifty_states)</pre>
p <- p + expand_limits(x = fifty_states$long, y = fifty_states$lat) + coord_map()</pre>
p <- p + scale_x_continuous(breaks = NULL) + scale_y_continuous(breaks = NULL)
#Set gradient color for city counts
p <- p + scale_fill_continuous(low = low_color, high = high_color, guide = guide_colorbar(title = legen
p <- p + labs(x = "", y = "") + theme(legend.position = "bottom", panel.background = element_blank())
```



```
#Create a new variable signaled state_name with more than 3 occurances of any letter
letter_city_total$more_than_3 <- c()</pre>
for (i in 1:51) {
  letter_city_total$more_than_3[i] <- ifelse(sum(letter_city_total[i,2:27]>3) >=1,1,0)
  if (sum(letter_city_total[i,2:27]>3))
    print(letter_city_total[i,"state_name"])
}
## [1] "alabama"
## [1] "massachusetts"
## [1] "mississippi"
## [1] "tennessee"
# US Maps highlighted by states that have more than 3 occurrences of any letter in their name
high color <- "darkred"
legend_title <- "State with name having 3 or more occurances of some letter"</pre>
# map id creates the aesthetic mapping to the state name column in your data
letter_city_total$id <- letter_city_total$state_name</pre>
p <- ggplot(letter_city_total, aes(map_id = state_name))</pre>
# map points to the fifty_states shape data
p <- p + geom_map(aes(fill = more_than_3), map = fifty_states,color = "#ffffff")</pre>
p <- p + expand_limits(x = fifty_states$long, y = fifty_states$lat) + coord_map()</pre>
```

```
# ATTEMPT TO ADD STATE ABBREVIATION - NOT WORKING!
# letter_city_total$id <- letter_city_total$state_name
# p <- p + geom_text(data = fifty_states %>%
# group_by(id) %>%
# summarise(lat = mean(c(max(lat), min(lat))),
# long = mean(c(max(long), min(long)))) %>%
# mutate(state = id) %>%
# left_join(letter_city_total, by = "id"), aes(x = long, y = lat, label = state_code ))

p <- p + scale_x_continuous(breaks = NULL) + scale_y_continuous(breaks = NULL)
#Set gradient color for city counts
p <- p + scale_fill_continuous(high = high_color, guide = guide_colorbar(title = legend_title),labels = p <- p + labs(x = "", y = "") + theme(legend.position = "bottom", panel.background = element_blank())
p</pre>
```


State with name having 3 or more occurances of some letter No Yes