Azzolini Riccardo 2019-03-18

Visita di grafi

1 Attraversamento in ampiezza

Problema:

- Input: Un grafo $G = \langle V, E \rangle$, non orientato e connesso, e un nodo di partenza $s \in V$.
- Output: Una sequenza che contiene, una e una sola volta, tutti i nodi del grafo, ordinati rispetto alla distanza da s (cioè prima s, poi i nodi adiacenti a s, poi quelli adiacenti a questi ultimi, ecc.). A parità di distanza, l'ordine non è specificato, quindi è determinato dall'implementazione.

Soluzione:

- si sceglie di rappresentare G tramite liste di adiacenza, ordinate per etichette (in questo modo viene fissato anche l'ordine dei nodi alla stessa distanza);
- si usa una coda in cui salvare i nodi da visitare.

1.1 Implementazione

```
public void Ampiezza(s) {
    Queue<Nodo> q = new Queue<Nodo>();
    List<Lato> u = new List<Lato>();

    for (v in V) nuovo[v] = 1;
    q.enqueue(s); nuovo[s] = 0;

while (!q.isEmpty()) {
        v = q.front(); q.dequeue();
        v.visita();

    for (w in L(v))
        if (nuovo[w]) {
            q.enqueue(w); nuovo[w] = 0;
            u.insert({v, w}, 1);
        }
    }
}
```

- s è il nodo di partenza.
- q è la coda in cui vengono salvati i nodi da visitare.
- u è una lista contenente i lati "percorsi" durante l'attraversamento, che formano un *albero di copertura* del grafo. Poiché questa lista rappresenta un insieme, l'ordine degli elementi è irrilevante, quindi l'inserimento viene effettuato in testa per minimizzarne il costo.
- nuovo è un vettore che contiene 1 per i nodi ancora da visitare, e 0 in corrispondenza dei nodi già visitati, o anche solo inseriti nella coda (per i quali è stata "prenotata" la visita).
- V è l'insieme dei nodi del grafo.
- L(v) è la lista di adiacenza del nodo v.

1.2 Complessità

Dato il grafo $G = \langle V, E \rangle$, siano n = |V| e m = |E|.

- Lo spazio richiesto, senza contare la rappresentazione del grafo, è $\Theta(n)$, perché
 - il vettore nuovo ha n elementi: $\Theta(n)$
 - la lista u contiene, alla fine dell'attraversamento, gli n-1 lati di un albero con n nodi: $\Theta(n)$
 - la coda q assume durante l'esecuzione una lunghezza massima che varia da 1 (nel caso migliore, l'attraversamento di un albero degenere) a n (nel caso peggiore di un grafo a stella, in cui tutti i nodi sono adiacenti a s): O(n)
 - e, in totale, $\Theta(n) + \Theta(n) + O(n) = \Theta(n)$.
- Il tempo (numero di istruzioni) necessario è $\Theta(n+m)$, che si può considerare equivalente a $\Theta(m)$ perché, in un grafo connesso, si ha sempre $m \geq n-1 \implies m = \Omega(n)$.

Le operazioni che contribuiscono alla complessità sono principalmente:

- il ciclo di inizializzazione del vettore nuovo: $\Theta(n)$;
- la visita di ciascun nodo, $O(1) \cdot n = \Theta(n)$ in totale, e la lettura della sua lista di adiacenza, che complessivamente (su tutti i nodi) ha costo $\Theta(m)$.

1.3 Esempio

nuovo			
Visitato	1 2 3 4 5 6 7 8 9	Coda q	
	0,1,1,1,1,1,1,1,1	1	
1	0,0,0,1,1,1,1,1,1	2,3	
2	0,0,0,0,1,0,1,1,1	3,4,6	
3	0,0,0,0,1,0,1,1,1	4,6	
4	0,0,0,0,0,0,0,1,1	6,5,7	
6	0,0,0,0,0,0,0,1,1	5,7	
5	0,0,0,0,0,0,0,1,1	7	
7	0,0,0,0,0,0,0,0,1	8	
8	0,0,0,0,0,0,0,0,0	9	
9	0,0,0,0,0,0,0,0,0		

2 Attraversamento in profondità

A ogni passo si cerca di prolungare il cammino (semplice) corrente, visitando un nodo non ancora visitato. Se tutti i nodi adiacenti a quello corrente sono già stati visitati, si torna indietro di un passo e si riprova.

Solutione:

- come per l'attraversamento in ampiezza, si rappresenta G tramite liste di adiacenza;
- si utilizza la ricorsione, oppure una pila in cui salvare i nodi da visitare.

2.1 Implementazione ricorsiva

```
public void ProfondRic(v) {
    v.visita(); nuovo[v] = 0;
```

```
for (w in L(v))
    if (nuovo[w]) {
        u.insert({v, w}, 1);
        ProfondRic(w);
    }
}
```

- v è il nodo corrente, e L(v) è la sua lista di adiacenza.
- Come nell'attraversamento in ampiezza, nuovo è un vettore che indica i nodi ancora da visitare e u è una lista che memorizza i lati dell'albero di copertura risultante. In quest'implementazione, però, tali variabili devono essere definite e inizializzate fuori dalla funzione ProfondRic, dato che essa viene eseguita più volte.

2.1.1 Complessità

Dato il grafo $G = \langle V, E \rangle$, siano n = |V| e m = |E|.

- Lo spazio necessario è $\Theta(n)$, composto da:
 - $-\Theta(n)$ per il vettore nuovo;
 - $-\Theta(n)$ per la lista u;
 - -O(n) per lo stack delle chiamate.
- Il tempo impiegato è $\Theta(n+m)$, equivalente a $\Theta(m)$ perché $m=\Omega(n)$.

Siccome ogni nodo viene visitato una e una sola volta, vengono eseguite n chiamate. Ciascuna chiamata effettua

- alcune operazioni di costo O(1) per la visita del nodo, che sommando tutte le chiamate hanno costo complessivo $\Theta(n)$
- una lettura della lista di adiacenza del nodo, che ha costo variabile, ma la somma su tutte le chiamate è $\Theta(m)$

per un costo totale di $\Theta(n+m)$.

2.2 Implementazione iterativa

```
public void ProfondIt(v) {
    Stack<Nodo> s = new Stack<Nodo>();
    List<Lato> u = new List<Lato>();
    for (x in V) nuovo[x] = 1;
    v.visita(); nuovo[v] = 0;
    s.push(v);
    do {
        while (esiste w in L(v) && nuovo[w]) {
            w.visita(); nuovo[w] = 0;
            u.insert({v, w}, 1);
            s.push(w); v = w;
        }
        s.pop();
        if (!s.isEmpty()) v = s.top();
    } while (!s.isEmpty());
}
```

- v è il nodo corrente.
- s è la pila che tiene traccia del cammino dal nodo di partenza a quello corrente, sostituendo la ricorsione.
- nuovo, u e L(v) hanno il solito significato.
- La condizione esiste w in L(v) && nuovo[w] del ciclo while cerca tra i nodi adiacenti a v uno che non sia ancora stato visitato:
 - se esiste, viene assegnato alla variabile w e si esegue il corpo del ciclo;
 - altrimenti, il ciclo termina.

2.2.1 Complessità

La complessità è pari alla versione ricorsiva, sia per quanto riguarda il tempo, $\Theta(n+m)$, $m=\Omega(n) \implies \Theta(m)$, che per lo spazio, $\Theta(n)$: la pila occupa una quantità di memoria asintoticamente uguale ai record di attivazione per le chiamate ricorsive.

2.3 Esempio

		nuovo	Chiamate
Vis	sitato	1 2 3 4 5 6 7 8 9	o pila s
		1,1,1,1,1,1,1,1,1	
	1	0,1,1,1,1,1,1,1,1	1
	2	0,0,1,1,1,1,1,1,1	1,2
	4	0,0,1,0,1,1,1,1,1	1,2,4
	3	0,0,0,0,1,1,1,1,1	1,2,4,3
		0,0,0,0,1,1,1,1,1	1,2,4
	5	0,0,0,0,0,1,1,1,1	1,2,4,5
		0,0,0,0,0,1,1,1,1	1,2,4
	7	0,0,0,0,0,1,0,1,1	1,2,4,7
	6	0,0,0,0,0,0,1,1	1,2,4,7,6
		0,0,0,0,0,0,1,1	1,2,4,7
	8	0,0,0,0,0,0,0,0,1	1,2,4,7,8
	9	0,0,0,0,0,0,0,0,0	1,2,4,7,8,9
		0,0,0,0,0,0,0,0,0	1,2,4,7,8
		0,0,0,0,0,0,0,0,0	1,2,4,7
		0,0,0,0,0,0,0,0,0	1,2,4
		0,0,0,0,0,0,0,0,0	1,2
		0,0,0,0,0,0,0,0,0	1
		0,0,0,0,0,0,0,0,0	