TP555 - Inteligência Artificial e Machine Learning: *Redes Neurais Artificiais (Parte II)*

Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

- Em termos gerais, uma rede neural nada mais é do que uma combinação de neurônios conectados entre si através de ligações direcionadas (ou seja, as conexões têm uma direção associada).
- As propriedades da rede neural são determinadas por sua topologia (i.e., como os neurônios estão conectados, camadas, etc.) e pelas propriedades dos neurônios (e.g., função de ativação e pesos).
- Algumas das *limitações dos perceptrons* (e.g., classificação apenas de classes linearmente separáveis) podem ser *eliminadas adicionando-se camadas intermediárias* (também chamadas de ocultas ou escondidas) de *perceptrons*.
- A RNA resultante é denominada Perceptron de Múltiplas Camadas (do inglês, Multilayer Perceptron - MLP).

Cada ligação tem um peso (sináptico) associado.

Nó, unidade ou neurônio.

→ Ligação entre i-ésimo e j-ésimo nó.

 $W_{i,i}$ Peso da ligação entre *i*-ésimo e *j*-ésimo nó.

OBS.: Neurônios também são chamados de *nós* ou *unidades*.

- Uma rede MLP é sempre *densamente* conectada.
 - Cada saída de um nó em uma camada se conecta a todos os nós da camada seguinte através de pesos sinápticos.
- Um exemplo de rede *MLP com duas camadas intermediárias* é mostrado na figura ao lado.
- As RNAs são o coração do Deep Learning.
 - Quando uma RNA tem duas ou mais camadas escondidas, ela é chamada de rede neural profunda (ou em inglês Deep Neural Network - DNN).
- **OBS**.: Em particular, uma MLP pode resolver o problema da lógica XOR.
 - Lembrem-se que um único perceptron não é capaz de realizar essa tarefa.

Ligação entre i-ésimo e j-ésimo nó.

Wi j Peso da ligação entre i-ésimo e j-ésimo nó.

- A *camada de entrada* é o ponto de transferência dos *atributos* à rede.
- As *camadas intermediárias* realizam *mapeamentos não-lineares* que, idealmente, vão tornando a informação contida nos dados mais *"explícita"* do ponto de vista da tarefa que se deseja realizar.
 - Os mapeamentos são não-lineares devido às funções de ativação utilizadas não serem lineares, e.g., função logística, tangente hiperbólica, etc.
- Por fim, os neurônios da camada de saída combinam a informação que lhes é oferecida pela última camada intermediária para formar as saídas.
- Redes MLPs são formadas por *múltiplas camadas de Perceptrons*:
 - Portanto, tais redes têm por base o *modelo de neurônio do Perceptron*.
- Esse modelo, discutido anteriormente, é mostrado na figura seguinte.

- A *ligação* do *nó* i para o *nó* j é feita através do *peso* w_{ij} e serve para *propagar o sinal de ativação* do *nó* i para o *nó* j.
- O valor do *peso* determina a *força* e o *sinal* da *ligação*.
- Cada $n\acute{o}$ tem a entrada x_0 (i.e., o atributo de bias) sempre com valor igual a 1 e um peso associado w_{0j} .
 - Ou seja, esta entrada não está conectada a nenhum outro nó.
- Cada nó j, calcula a soma ponderada de suas entrada da seguinte forma

$$g(\pmb{x}) = \sum_{i=0}^K w_{ij} x_i$$
. $g(\pmb{x})$ é também chamada de **ativação** do nó.

• Em seguida, o $n\acute{o}$ aplica uma função de ativação (i.e., de limiar), f(.), ao somatório acima para obter sua saída

$$y_j = f(g(\mathbf{x})) = f(\sum_{i=0}^N w_{ij} x_i) = f(\mathbf{w}^T \mathbf{x}).$$

- Existem vários tipos de funções de ativação que podem ser utilizadas pelos nós de uma rede MLP.
- Cada camada pode usar funções de ativação diferentes, mas, em geral, a mesma camada usa a mesma função.

$$y_j = f(g(\textbf{\textit{x}})) = f\left(\sum_{i=0}^K w_{ij}x_i\right),$$
 onde x_i é a saída do nó i e w_{ij} é o peso conectando a saída do nó i para este nó, o nó j .

- Devido a suas características, não se utiliza a *função degrau* como função de ativação em MLPs.
 - Derivada sempre igual a zero, exceto na origem, onde é indeterminada.
- Até o surgimento das redes neurais profundas, a regra era utilizar as funções logística ou tangente hiperbólica, que são versões suavizadas da função degrau.
 - Essas funções são contínuas e possuem derivada definida e diferente de 0 em todos os pontos.
- A *função logística* tem a seguinte expressão:

$$y_j = f(z_j) = \frac{e^{z_j}}{e^{z_j} + 1} = \frac{1}{1 + e^{-z_j}},$$

onde z_i é a **combinação linear das entradas do nó**, i.e., g(x).

• Sua derivada é dada por

$$\frac{dy_j}{dz_i} = \frac{df(z_j)}{dz_i} = y_j(1 - y_j) \ge 0.$$

• A derivada será importante durante o processo de aprendizado da rede neural.

- A função logística e sua derivada são mostradas nas figuras abaixo.
- O valor da derivada, d, sempre será menor do que 1, sendo no máximo igual a 0.25 quando g(x) = 0.
 - Isso causa um problema no aprendizado de redes com muitas camadas, i.e., redes profundas, chamado de *dissipação do gradiente*.
- Quando z se torna muito grande (negativo ou positivo), a função satura em 0 ou 1, e o valor da derivada tende a 0.

• A função tangente hiperbólica tem sua expressão dada por:

$$y_j = f(z_j) = \tanh(z_j) = \frac{e^{z_j} - e^{-z_j}}{e^{z_j} + e^{-z_j}}.$$

onde z_i é a combinação linear das entradas do nó, i.e., g(x).

• Sua derivada é dada por

$$\frac{dy_j}{dz_j} = \frac{df(z_j)}{dz_j} = 1 - \tanh^2(z_j) \ge 0.$$

A derivada é no máximo igual a 1 quando z, g(x), é exatamente igual a 0.

• A função e sua derivada são mostradas nas figuras abaixo.

- É um problema encontrado quando treinamos *redes neurais profundas*, ou seja, com muitas camadas escondidas, com *métodos de aprendizado baseados no gradiente* e *funções de ativação sigmoide ou tangente hiperbólica*.
- Ocorre devido à natureza do *algoritmo de retropropagação*, que é usado para treinar a rede neural.
 - Para atualizar os pesos de nós das camadas ocultas, calcula-se a derivada do erro de saída em relação àquele peso e, para isso, usamos a regra da cadeia.

Ou seja, o algoritmo propaga o erro de saída para as camadas ocultas usando a regra da cadeia.

Em suma, o gradiente se torna cada vez menor nas camadas próximas à entrada, levando a uma atualização muito pequena ou até inexistente nos pesos destas camadas.

- Lembrem-se que as funções de ativação, como tangente hiperbólica ou logística, têm derivadas parciais no intervalo de 0 até 1.
- Durante o treinamento, para atualizar os pesos de cada camada da rede neural, o algoritmo de retropropagação calcula os gradientes dos pesos das camadas ocultas através do uso da regra da cadeia (exemplo abaixo).

$$x \longrightarrow h(.) \xrightarrow{h(x)} g(.) \xrightarrow{g(h(x))} f(.) \longrightarrow y = f(g(h(x)))$$

$$\frac{\partial y}{\partial x} = \frac{\partial f(g(h(x)))}{\partial x} = \frac{\partial f(g(h(x)))}{\partial g(h(x))} \frac{\partial g(h(x))}{\partial h(x)} \frac{\partial h(x)}{\partial x}$$

OBS.: As funções $f(.), g(.), e\ h(.)$ podem ser interpretadas como sendo as funções de ativação dos nós.

 Em outras palavras, devido à regra da cadeia, o gradiente para a atualização dos pesos de uma dada camada da rede neural inclui o produto das derivadas das funções de ativação dos nós desde a camada de saída até a camada desejada.

- Em uma rede com *M* camadas, a *retropropagação* tem o efeito de multiplicar até *M* valores pequenos (i.e., derivadas parciais) para calcular os gradientes das primeiras camadas.
- O que significa que o gradiente diminui exponencialmente com <math>M.

 Isso significa que os nós das camadas iniciais aprendem muito mais lentamente do que os nós das camadas finais, pois o valor do gradiente é muito pequeno, fazendo com que a atualização dos pesos também seja pequena (i.e., lenta).

Exemplo: vanishing gradientsv3.ipynb

- Esse problema foi uma das razões pelas quais as *redes neurais profundas* foram *abandonadas por um longo tempo*, voltando à cena em *2010, quando se fez um progresso significativo em sua compreensão* [1].
- Os autores de [1] mostraram que com funções de ativação sigmoide ou tangente hiperbólica e um esquema de inicialização usando distribuição normal com média zero e variância unitária, a variância das saídas de cada camada é muito maior do que a variância de suas entradas.
- Indo em direção à saída da rede, a variância continua aumentando após cada camada até que as funções de ativação de camadas posteriores saturem.
- Um dos insights de [1] foi que os problemas da dissipação e explosão dos gradientes são em parte causados pela escolha inadequada da função de ativação.
- Funções de ativação que não saturem e inicialização adequada dos pesos são formas de mitigar o problema.

 [1] Xavier Glorot and Yoshua Bengio, "Understanding the Difficulty of Training Deep Feedforward Neural Networks", January 2010.

- Com o surgimento das redes neurais profundas, uma outra função, conhecida como função retificadora, passou a ser a bastante utilizada por questões numéricas e computacionais.
- A *função retificadora* tem sua expressão dada por

$$y_j = f(z_j) = \max(0, z_j).$$

Sua derivada é dada por

$$\frac{dy_j}{dz_j} = \frac{df(z_j)}{dz_j} = \begin{cases} 0, \text{ se } z_j < 0 \\ 1, \text{ se } z_j > 0 \end{cases}$$
 Função degrau

e é indefinida para $z_j=0$, porém o valor da derivada em zero pode ser arbitrariamente escolhido como 0 ou 1.

- Um *nó* que emprega uma *função de ativação retificadora* é chamado de *rectified linear unit* (ReLU)
- A *função retificadora* e sua derivada são mostradas nas figuras ao lado.

- Vantagens da *função retificadora*:
 - A função e sua derivada são mais rápidas de se calcular do que as funções logística e tangente hiperbólica.
 - Não satura para ativações, z_j , positivas, minimizando o problema da dissipação do gradiente.
 - O gradiente para valores positivos é sempre igual a 1, assim, se vários gradientes de várias camadas forem multiplicados, não haverá diminuição do seu valor.
- Infelizmente, a função ReLU não é perfeita. Ele sofre de um problema conhecido como *ReLUs agonizantes*:
 - Durante o treinamento, alguns nós com função de ativação ReLU "morrem", ou seja, seus pesos não são mais atualizados, permanecendo inalterados.
 - Isso ocorre porque a ativação, z_j , tem valor negativo, fazendo com que a derivada parcial seja igual a 0.

- Para resolver o problema das *ReLUs agonizantes*, usa-se variantes da função ReLU que possuem gradiente diferente de zero para $z_i < 0$:
 - Leaky ReLU: $f(z_i) = \max(0.01z_i, z_i)$.
 - Randomized leaky ReLU: $f(z_j) = \max(\alpha z_j, z_j)$, onde α é um valor aleatório.
 - Parametric leaky ReLU: $f(z_j) = \max(\alpha z_j, z_j)$, onde α deve ser aprendido durante o treinamento.
- Outras funções de ativação são:
 - Exponential linear unit (ELU): supera ReLU e suas variantes em vários experimentos.
 - Scaled ELU (SELU): possui a propriedade de auto-normalização, onde a saída de cada camada tende a preservar a média e o desvio padrão dos sinais de entrada, minimizando os problemas da dissipação e da explosão do gradiente.
 - https://en.wikipedia.org/wiki/Activation function#Table of activation functions

Evitando a dissipação e explosão do gradiente

- Algumas formas de se evitar os problemas da dissipação e explosão do gradiente são:
 - Inicialização dos pesos: heurísticas de inicialização criadas para garantir que a variância da saída de cada camada seja similar à variância de sua entrada. As heurísticas também devem garantir que os gradientes tenham a mesma variância antes e depois de fluírem através de uma camada na direção reversa (mitiga ambos os problemas).
 - Normalização de mini-batches: consiste em adicionar uma operação imediatamente antes ou depois da função de ativação de cada camada oculta, que padroniza (remove média e divide pelo desvio padrão) cada entrada e, em seguida, escalona e desloca o resultado usando dois novos parâmetros, γ e β , por camada (mitiga ambos os problemas).
 - Limitar/podar o gradiente: consiste em limitar/podar os gradientes durante a retropropagação do erro para que eles nunca excedam algum limite pré-definido (resolve apenas o problema da explosão do gradiente).

Conectando Neurônios

- Existem basicamente duas maneiras distintas para se conectar os nós de uma rede neural, direta e reversa.
- Na figura ao lado, os nós da rede têm conexões em apenas uma única direção.
- Esse tipo de rede é conhecida como *rede de alimentação direta* (do inglês, *feedforward*) ou *sem realimentação*.
- O sinal percorre a rede em uma única direção, da entrada para a saída.
- Os nós da mesma camada não são conectados entre si.
- Esse tipo de rede representa uma função de suas entradas atuais e, portanto, não possui um estado interno além dos próprios pesos.

Nó, unidade ou neurônio

→ Ligação entre i-ésimo e j-ésimo nó.

 W_{ij} Peso da ligação entre \emph{i} -ésimo e \emph{j} -ésimo nó.

$$\mathbf{y} = f(\mathbf{x}, \mathbf{W})$$

OBS.: A informação se move em apenas uma direção: da entrada, passando pelos nós ocultos indo em direção aos nós de saída. Não há ciclos ou loops neste tipo de rede.

Conectando Neurônios

- Na figura ao lado, os nós da rede têm conexões em 2 direções, desta forma, o sinal percorre a rede nas direções direta e reversa.
- Este tipo de rede é conhecida como *rede recorrente* ou *rede com realimentação*.
- Nessas redes, a saída dos nós alimentam nós da mesma camada (inclusive o próprio nó) ou de camadas anteriores.
- Isso significa que a rede forma um sistema dinâmico que pode atingir um estado estável, exibir oscilações ou mesmo um comportamento caótico, ou seja, divergir.
- Além disso, a saída da rede é função da entrada atual e de seu estado interno, ou seja, de entradas anteriores.
- Portanto, redes recorrentes possuem memória.
- Essas redes são úteis para o *processamento de dados sequenciais*, como séries temporais (e.g., sons, preços de ações, padrões cerebrais, etc.) ou linguagem natural (e.g., escrita e fala).

Regressão Não-Linear

escondida

saída

Entrada

A rede MLP ao lado tem sua saída definida por

$$y = f(\mathbf{w}^T f(\mathbf{W}^T \mathbf{x})),$$

 $y=fig(m{w}^T f(m{W}^T m{x}) ig),$ onde f(.) é a **função de ativação** escolhida, $m{W}=egin{bmatrix} w_{11} & w_{12} \ w_{21} & w_{22} \end{bmatrix}$ e $m{w}=m{w}_1 \ w_2 \end{bmatrix}.$

- Percebam que a saída da rede é dada pelo *aninhamento* das saídas de *funções de ativação* não-lineares.
- Sendo assim, as funções que uma rede neural pode representar podem ser *altamente não-lineares* dependendo da quantidade de camadas e nós.
- Portanto, redes neurais podem ser vistas como ferramentas para a realização de *regressão* não-linear, mas também podemos resolver problemas de classificação.
- Com uma única camada oculta suficientemente grande, é possível representar qualquer função contínua das entradas com uma precisão arbitrária (depende da topologia).
- Com duas camadas ocultas, até funções descontínuas podem ser representadas.
- Portanto, dizemos que as redes neurais possuem capacidade de aproximação universal de funções.
- Veremos alguns exemplos desta capacidade de aproximação a seguir.

Aproximação universal de funções

- Fig. 1: Um nó aproxima uma função de limiar suave.
- Fig. 2: Combinando duas funções de limiar suave com direções opostas, podemos obter uma função em formato de onda.
- Fig. 3: Combinando duas ondas perpendiculares, nós obtemos uma função em formato cilíndrico.

Função XOR: MLP com 1

Exemplo: FunctionApproximationWithMLP.ipynb

Círculos concêntricos: MIP com 1 camada escondida com 4 nós.

Aproximação universal de funções

• Redes neurais podem ser usadas, para aproximar funções como as, mostradas abaixo:

$$f(x) = x^2, -1 \le x \le 1,$$

■
$$f(x) = \frac{1}{x}$$
, $1 \le x \le 100$,

•
$$f(x) = \sin(x)$$
, $1 \le x \le 2\pi$.

Exercício: usar as classes
 <u>MLPRegressor</u> e <u>GridSearchCV</u>
 da biblioteca SciKit-Learn para
 encontrar o número de nós
 necessários na camada
 escondida para que uma rede
 neural aproxime estas funções.

- Consideramos agora, o processo de otimização, ou seja, de atualização dos pesos sinápticos.
- Assim como vimos anteriormente, o processo de otimização corresponde a um problema de minimização de uma função de erro (ou de custo ou perda), J(w), com respeito a um vetor de pesos w.
- Portanto, o problema de aprendizado em redes neurais pode ser formulado como

$$\min_{\mathbf{w}} J(\mathbf{w})$$

- Normalmente, esse processo de otimização é *conduzido de forma iterativa*, o que dá um *sentido mais natural à noção de aprendizado* (i.e., um processo gradual).
- Existem *vários métodos de otimização* aplicáveis, mas, sem dúvida, *os mais utilizados são aqueles baseados nas derivadas da função custo*, J(w).

- Dentre esses métodos, existem os de *primeira ordem* e os de *segunda ordem*.
- Os métodos de primeira ordem são baseados nas derivadas parciais de primeira ordem da função custo, agrupadas no vetor gradiente:

$$\nabla J(\mathbf{w}) = \begin{bmatrix} \frac{\partial J(\mathbf{w})}{\partial w_1} \\ \frac{\partial J(\mathbf{w})}{\partial w_2} \\ \vdots \\ \frac{\partial J(\mathbf{w})}{\partial w_K} \end{bmatrix}$$

 Como já vimos, o gradiente aponta na direção de maior crescimento da função e portanto, caminhar em sentido contrário a ele é uma forma adequada de se buscar iterativamente a minimização da função de custo.

• Desta maneira, temos a seguinte equação de atualização dos pesos

$$\mathbf{w}(k+1) \leftarrow \mathbf{w}(k) - \alpha \nabla J(\mathbf{w}(k)),$$

onde α é o *passo de aprendizagem* e k é a iteração de atualização.

• Já os métodos de **segunda ordem**, são baseados na informação trazida pela **derivada parcial de segunda ordem da função custo**. Essa informação está contida na **matriz Hessiana**, **H**:

$$\boldsymbol{H}(\boldsymbol{w}) = \nabla^2 J(\boldsymbol{w}) = \begin{bmatrix} \frac{\partial^2 J(\boldsymbol{w})}{\partial w_1^2} & \frac{\partial^2 J(\boldsymbol{w})}{\partial w_1 \partial w_2} & \cdots & \frac{\partial^2 J(\boldsymbol{w})}{\partial w_1 \partial w_K} \\ \frac{\partial^2 J(\boldsymbol{w})}{\partial w_2 \partial w_1} & \frac{\partial^2 J(\boldsymbol{w})}{\partial w_2^2} & \cdots & \frac{\partial^2 J(\boldsymbol{w})}{\partial w_2 \partial w_K} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 J(\boldsymbol{w})}{\partial w_K \partial w_1} & \frac{\partial^2 J(\boldsymbol{w})}{\partial w_K \partial w_2} & \cdots & \frac{\partial^2 J(\boldsymbol{w})}{\partial w_K^2} \end{bmatrix}.$$

OBS.: A matriz Hessiana é uma matriz quadrada com dimensões $K \times K$.

• De posse da *matriz Hessiana*, é possível fazer uma *aproximação de Taylor de segunda ordem* da *função de custo*, o que leva à seguinte expressão para adaptação dos pesos:

$$\mathbf{w}(k+1) \leftarrow \mathbf{w}(k) - \alpha \mathbf{H}^{-1}(\mathbf{w}(k)) \nabla J(\mathbf{w}(k)).$$

- Essa expressão requer que a *matriz Hessiana* seja *inversível* e *definida positiva* a cada iteração, k, i.e., $\mathbf{z}^T H \mathbf{z} > 0$, $\forall \mathbf{z} \neq \mathbf{0}$ (vetor nulo).
- A aproximação de Taylor com informação de segunda ordem é mais precisa que a fornecida por métodos de primeira ordem.
- Portanto, a tendência é que métodos de segunda ordem convirjam em menos passos que métodos de primeira ordem.
- Entretanto, o cálculo exato da *matriz Hessiana* pode ser complicado em vários casos práticos.
 - Por exemplo, se tivermos 10 pesos para otimizar, a matriz Hessiana teria 10x10 elementos. Portanto, essa abordagem direta não é eficiente se o número de pesos for muito grande.
- Porém, há um conjunto de métodos de segunda ordem que evitam esse cálculo direto, como os métodos *quasi-Newton* ou os métodos de *gradiente escalonado*, os quais aproximam a matriz Hessiana.

Mínimos Locais, Globais, Pontos de Sela e Platôs

- É importante ressaltarmos que todos esses métodos são métodos de *busca local*, ou seja, eles têm *convergência assegurada para mínimos locais*.
- Um *mínimo* (local ou global) sempre *atrai* o vetor de pesos quando este se encontra em sua vizinhança.
- Para relembrarmos o que é um mínimo local, vejamos a figura ao lado onde existem dois mínimos:
 - Um deles é uma solução ótima em relação apenas a seus vizinhos, ou seja, um mínimo local.
 - O outro também é uma solução ótima em relação a seus vizinhos (mínimo local), mas também em relação a todo o domínio da função de custo. Este é um mínimo global.
- Por serem formadas pela combinação de vários nós com funções de ativação não-lineares, as superfícies de erro de redes neurais não são convexas, ou seja, são altamente irregulares, podendo conter vários mínimos locais.

IMPORTANTE: Para muitos problemas envolvendo redes neurais, quase todos os mínimos locais têm um valor muito semelhante ao do mínimo global e, portanto, encontrar um mínimo local já é bom o suficiente para um dada problema.

Mínimos Locais, Globais, Pontos de Sela e Platôs

- Outra irregularidade que podemos encontrar são os chamados pontos de sela:
 - Um ponto que é um mínimo ao longo de um eixo, mas um máximo ao longo de outro.
 - Em algumas direções são *atratores* (i.e., alta declividade), mas em outras não.
- O algoritmo de minimização da função de custo pode passar um longo período de tempo sendo atraído por eles, o que prejudica seu desempenho.
- Para escapar destes pontos, usa-se métodos de segunda ordem ou versões ruidosas do gradiente descendente, como, por exemplo, o Gradiente Descendente Estocástico.

Mínimos Locais, Globais, Pontos de Sela e Platôs

- Outro tipo de irregularidade são os platôs: regiões planas, mas com erro elevado.
 - Como a inclinação nesta região é próxima de zero (consequentemente o gradiente é próximo de zero) o algoritmo pode levar muito tempo para atravesá-la.
- Para se escapar destas regiões, usa-se métodos de aprendizado adaptativo como AdaGrad, RMSProp, Adam, etc.
- Portanto, como garantir que o mínimo encontrado é bom o suficiente?
 - Treina-se o modelo várias vezes, sempre inicializando os *pesos aleatoriamente*, com a esperança de que em alguma dessas vezes ele inicialize mais próximo do mínimo global ou de um bom mínimo local.

- Conforme nós discutimos anteriormente, os métodos fundamentais de aprendizado para redes neurais são baseados no cálculo das derivadas parciais da função de erro (ou de custo/perda) com relação aos pesos sinápticos.
- Esses métodos têm como objetivo encontrar o *conjunto de pesos sinápticos* que minimize a *métrica (função) de erro* escolhida.
- Para isso, é necessário encontrar uma maneira de se calcular o vetor gradiente da função de custo com respeito aos pesos sinápticos das várias camadas de uma rede neural.
- Essa tarefa pode parecer óbvia, mas não é o caso.
 - Como podemos calcular a influência dos pesos das camadas ocultas no erro da camada de saída?
- Foram necessários 17 anos desde a criação do Perceptron até que se "descobrisse" uma forma de treinar RNAs.

- Para que entendamos melhor o porquê de não ser uma tarefa trivial, nós iremos considerar a notação abaixo, a qual será muito útil a seguir.
 - O peso sináptico, $w_{i,j}^m$, corresponde ao j-ésimo peso do i-ésimo nó da m-ésima camada da rede neural e W^m é a matriz com todos os pesos da m-ésima camada.
 - O peso de bias, b_i^m , corresponde ao peso do i-ésimo $noldsymbol{o}$ da m-ésima camada da $rede\ neural\ e\ b^m$ é o vetor com todos os pesos de bias da m-ésima camada.
 - A ativação, u_i^m , corresponde à combinação linear das entradas do i-ésimo nó da m-ésima camada da rede neural e u^m é o vetor de ativações com as combinações lineares das entradas de todos os nós da m-ésima camada.
 - $f^m(.)$ é a função de ativação da m-ésima camada da rede neural.
 - Com essa notação, obter o *vetor gradiente* significa calcular, de maneira genérica, $\frac{\partial J(w)}{\partial w_{i,i}^{m}}$, ou seja, calcular essa derivada para todos os pesos de todos os *nós*.

 A figura abaixo apresenta um exemplo de como uma rede MLP pode ser descrita segundo essa notação.

OBS.: Para facilitar nossa análise, não vamos considerar as entradas como uma camada, apenas as camadas ocultas e de saída.

• O mapeamento realizado pela rede MLP acima é dado por:

$$y^{3} = f^{3} \left(W^{3} f^{2} \left(W^{2} \underbrace{f^{1}(W^{1}x + b^{1}) + b^{2}}_{y^{2}} + b^{3} \right) + b^{3} \right)$$

 Para facilitar nosso trabalho, iremos supor, sem nenhuma perda de generalidade, que a função de custo escolhida é o erro quadrático médio (MSE).

• Nós vamos assumir que a *última camada da rede MLP* (definida como a M-ésima camada) tenha uma quantidade genérica, N_M , de *nós*. Assim, o MSE é dado por

$$J(\mathbf{w}) = \frac{1}{N_{\text{dados}} N_M} \sum_{n=1}^{N_{\text{dados}}} \sum_{j=1}^{N_M} e_j^2(n)$$
$$= \frac{1}{N_{\text{dados}} N_M} \sum_{n=1}^{N_{\text{dados}}} \sum_{j=1}^{N_M} \left(d_j(n) - y_j^M(n) \right)^2,$$

onde $N_{\rm dados}$ é o número de exemplos, $d_j(n)$ e $y_j^M(n)$ são o valor desejado da j-ésima saída (i.e., rótulo) e a saída do j-ésimo nó da M-ésima camada, respectivamente, ambos correspondentes ao n-ésimo exemplo de entrada.

- Para treinar a rede (i.e., atualizar os pesos), devemos derivar a função custo com respeito aos pesos sinápticos.
- Porém, percebam que os *pesos das camadas ocultas não aparecem explícitamente* na expressão do erro, J(w), apenas os da camada de saída, como veremos a seguir.

- Para fazer com que a dependência dos pesos apareça de maneira clara na expressão do erro, nós precisamos recorrer a aplicações sucessivas da regra da cadeia.
- Usando a notação de *Leibniz*, essa regra nos mostra que:

$$\frac{\partial f(g(h(x)))}{\partial x} = \frac{\partial f(g(h(x)))}{\partial g(h(x))} \frac{\partial g(h(x))}{\partial h(x)} \frac{\partial h(x)}{\partial x}.$$

- Por exemplo, vamos considerar que $f(g(x)) = e^{x^2}$ e que queremos obter $\frac{\partial f(g(x))}{\partial x}$.
- Nós podemos fazer $g(x) = x^2$ e usar a **regra da cadeia**:

$$\frac{\partial f(g(x))}{\partial x} = \frac{\partial f(g(x))}{\partial g(x)} \frac{\partial g(x)}{\partial x} = e^{g(x)} 2x = 2xe^{x^2}.$$

$$J(w) = \frac{1}{N_{\text{dados}} N_M} \sum_{n=1}^{N_{\text{dados}}} \sum_{j=1}^{N_M} \left(d_j(n) - y_j^M(n) \right)^2$$

- Agora voltamos à equação do MSE e vemos que as saídas da M-ésima camada (i.e., saída) da rede aparecem de maneira direta na equação.
- Isso significa que é *simples se obter as derivadas com respeito aos pesos desta camada*.
- Porém, quando precisamos avaliar as *derivadas com respeito aos pesos das camadas anteriores (i.e., ocultas)*, a situação fica mais complexa, pois não existe uma dependência direta.
- Portanto surge a pergunta, como podemos atribuir a cada **nó** de uma camada oculta da rede, e, consequentemente a seus pesos, sua devida influência na composição dos valores de saída e, consequentemente, do erro?
 - Propaga-se o erro calculado na saída da rede neural para suas camadas anteriores até a primeira camada oculta usando-se um algoritmo, baseado na regra da cadeia, conhecido como backpropagation ou retropropagação do erro.

- A seguir, veremos de maneira mais sistemática como a retropropagação do erro é realizada.
- Inicialmente, nós devemos observar um fato fundamental. O cálculo da derivada do MSE com respeito a um peso qualquer é dada por:

$$\frac{\partial J(w)}{\partial w_{i,j}^m} = \frac{\partial \sum_{n=1}^N \operatorname{dados} \sum_{k=1}^{N_M} e_k^2(n)}{\partial w_{i,j}^m} = \sum_{n=1}^N \operatorname{dados} \sum_{k=1}^{N_M} \frac{\partial e_k^2(n)}{\partial w_{i,j}^m}.$$
 OBS.: mudei o indice do erro de j para k .

- OBS.1: Operação da derivada parcial é *distributiva*.
- OBS.2: A divisão pelo número de amostras é omitida, pois não afeta a otimização.
- A equação acima mostra que é necessário se calcular a derivada parcial apenas do quadrado do erro associado ao n-ésimo exemplo de entrada da k-ésima saída, pois o gradiente será a *média destes gradientes* particulares (ou *locais*).

Retropropagação: Algumas noções básicas

• Considerando a derivada geral $\frac{\partial J(w)}{\partial w_{i,j}^m}$ (i.e., derivada para um peso genérico) e usando a **regra da cadeia**, podemos reescrevê-la como:

Ativação do nó ao Ativação do nó ao $\frac{\partial J(\mathbf{w})}{\partial w_{i..i}^m} = \frac{\partial J(\mathbf{w})}{\partial u_i^m} \frac{\partial u_i^m}{\partial w_{i..i}^m}.$ Ativação do nó ao qual o peso pertence.

$$\frac{\partial J(\mathbf{w})}{\partial w_{i,j}^m} = \frac{\partial J(\mathbf{w})}{\partial u_i^m} \frac{\partial u_i^m}{\partial w_{i,j}^m}.$$

- A primeira derivada após a igualdade é a derivada da **função de custo** com respeito à **ativação**, u_i^m , do i-ésimo **nó** da m-ésima camada.
- Essa grandeza será chamada de **sensibilidade** e é denotada pela letra grega δ . Desta forma:

$$\delta_i^m = rac{\partial J(w)}{\partial u_i^m}$$
. Sensibilidade do i -ésimo nó da m -ésima camada.

- O termo δ_i^m é único para cada **nó** da m-ésima camada.
- O outro termo, por sua vez, varia ao longo das entradas do $n\acute{o}$ em questão. Como adotamos nós do tipo perceptron, a ativação, u_i^m , é uma combinação linear das entradas:

$$u_i^m = \sum_{j \in \text{entradas}} w_{i,j}^m y_j^{m-1} + b_i^m.$$

Retropropagação: Algumas noções básicas

Assim

Saída da camada anterior conectada ao
$$i$$
-ésimo nó da m -ésima camada através do peso $w_{i,j}^m$.
$$\frac{\partial u_i^m}{\partial w_{i,j}^m} = y_j^{m-1}.$$

• Caso a derivada seja em relação ao termo de **bias**, b_i^m , teremos o seguinte resultado $\frac{\partial u_i^m}{\partial b_i^m}=1$.

• Desta forma, vemos que todas as derivadas da função de custo em relação aos pesos (sinápticos/bias) são produtos de uma sensibilidade, δ_i^m , por uma entrada do i-ésimo nó da rede (ou, no caso dos termos de bias, pela unidade). $\frac{\partial J(w)}{\partial w_{i,j}^m} = \frac{\partial J(w)}{\partial u_i^m} \frac{\partial u_i^m}{\partial w_{i,j}^m} = \delta_i^m y_j^{m-1},$

$$\frac{\partial J(\mathbf{w})}{\partial w_{i,j}^m} = \frac{\partial J(\mathbf{w})}{\partial u_i^m} \frac{\partial u_i^m}{\partial w_{i,j}^m} = \delta_i^m y_j^{m-1}$$

ou, para o peso de bias, b_i^m

$$\frac{\partial J(\mathbf{w})}{\partial b_i^m} = \frac{\partial J(\mathbf{w})}{\partial u_i^m} \frac{\partial u_i^m}{\partial b_i^m} = \delta_i^m.$$

• São os valores de *sensibilidade*, δ_i^m , que trazem mais dificuldades em seu cálculo, pois a derivada $\frac{\partial u_i^m}{\partial w_{i,j}^m}$ é trivial (ela é apenas o valor de uma entrada daquele nó).

Retropropagando o erro

- Portanto, a estratégia de otimização adotada para atualização dos pesos (sinápticos e de bias) da rede neural é a seguinte:
 - 1. Começa-se pela saída, onde o erro é calculado.
 - Etapa chamada de *direta*, pois aplica-se as entradas à rede e calcula-se o erro de saída.
 - 2. Encontra-se uma *regra recursiva* que gere os valores de *sensibilidade* para os *nós* das camadas anteriores até a primeira camada oculta.
 - Etapa chamada de reversa, pois calcula-se a contribuição de cada nó das camadas ocultas no erro de saída.
- Esse processo é chamado de retropropagação do erro ou backpropagation.
- Para facilitar a *retropropagação do erro*, nós vamos inicialmente agrupar todas as *sensibilidades* da m-ésima camada, δ_i^m , $\forall i$, em um vetor, δ^m .
- Em seguida, vamos encontrar uma regra que fará a transição $\boldsymbol{\delta}^m \to \boldsymbol{\delta}^{m-1}$.
- Ou seja, a partir da **sensibilidade** da camada m, iremos encontrar a **sensibilidade** da camada anterior, m-1.

Retropropagando o erro

- Em resumo, o processo de *retropropagação do erro* é iniciado calculando-se o **vetor de sensibilidades** da última camada, δ^M , e, de maneira **recursiva**, obtémse os **vetores de sensibilidades** de todas as camadas anteriores.
- Para calcular δ^M (vetor de sensibilidades da camada de saída) consideramos N_M saídas e, assim, temos que o j-ésimo elemento de δ^M é dado por:

$$\delta_{M}^{M}$$
 saídas e, assim, temos que o j -ésimo elemento de δ^{M} é dado por:
$$\delta_{j}^{M} = \frac{\partial e_{j}^{2}}{\partial u_{j}^{M}} = \frac{\partial \left(d_{j} - y_{j}^{M}\right)^{2}}{\partial u_{j}^{M}} \stackrel{\text{Regra da}}{=} \frac{\partial \left(d_{j} - y_{j}^{M}\right)^{2}}{\partial y_{j}^{M}} \frac{\partial y_{j}^{M}}{\partial u_{j}^{M}} = -2\left(d_{j} - y_{j}^{M}\right) \frac{\partial y_{j}^{M}}{\partial u_{j}^{M}} = -$$

onde

$$y_j^M = f^M(u_j^M),$$

$$f'^M(u_j^M) = \frac{\partial f^M(u_j^M)}{\partial u_i^M}.$$

Função logistica $\frac{\partial f(u)}{\partial u} = f(u) (1 - f(u))$

Função tangente hiperbólica $\frac{\partial f(u)}{\partial u} = (1 - \tanh^2(u))$

$$\frac{\partial f(u)}{\partial u} = (1 - \tanh^2(u))$$

Retropropagando o erro

• Matricialmente nós podemos expressar δ^M como:

$$\boldsymbol{\delta}^{M} = -2\boldsymbol{F}^{\prime M}(\boldsymbol{u}^{M})(\boldsymbol{d} - \boldsymbol{y}),$$

onde a matriz
$$\mathbf{F}'^M(\mathbf{u}^M)$$
 é uma matriz diagonal com as derivadas das funções de ativação em relação às ativações dos N_M nós da M -ésima camada,
$$\mathbf{F}'^M(\mathbf{u}^M) = \begin{bmatrix} f'^M(u_1^M) & 0 & \cdots & 0 \\ 0 & f'^M(u_2^M) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f'^M(u_{N_M}^M) \end{bmatrix},$$

d e y são vetores de dimensão $N_M \times 1$ com os valores esperados e de saída da redé neural, respectivamente.

• Desta forma, a aplicação sucessiva da regra da cadeia leva a uma recursão que, em termos matriciais, é simples e dada por

$$\boldsymbol{\delta}^{m-1} = \boldsymbol{F}'^{m-1}(\boldsymbol{u}^{m-1})(\boldsymbol{W}^m)^T \boldsymbol{\delta}^m.$$

Tarefa

• Encontrem o vetor gradiente para todos os pesos do nó 1 (camada 1) da

rede neural do próximo slide.

$$\begin{vmatrix} \frac{\partial J(\mathbf{w})}{\partial w_{1,1}^{1}} \\ \frac{\partial J(\mathbf{w})}{\partial w_{1,2}^{1}} \\ \frac{\partial J(\mathbf{w})}{\partial b_{1}^{1}} \end{vmatrix} = 0$$

 OBS.: Podem deixar as derivadas da função de ativação em relação às ativações de forma genérica, ou seja, sem assumir um tipo específico de função de ativação.

- Considerem uma rede MLP com uma camada oculta com dois nós e uma camada de saída com um único nó, portanto M=2.
- Devemos começar calculando δ^2 .
- Percebam que essa sensibilidade é um escalar pois há apenas um nó na camada de saída.
- Vamos considerar um exemplo de entrada $x = [x_1, x_2]$ e saída desejada d.
- Supomos que os pesos de todos os nós têm uma certa configuração inicial (e.g., dist. normal).
- Assim, quando a entrada, x, é apresentada à rede, é possível calcular todos os valores de interesse ao longo dela até sua saída.
- Essa é a etapa *direta* (ou do inglês, *forward*).

- Portanto, temos então a saída y_1^2 , onde o erro pode ser calculado como $e=d-y_1^2$.
- De posse do erro, podemos calcular a sensibilidade do **nó** da camada de saída $\delta^2 = -2(d-y_1^2)f'^2(u_1^2).$
- Temos, portanto, nossa primeira *sensibilidade*. Agora, usamos a equação de recursão para *retropropagar* o erro até a camada anterior. A fórmula nos diz:

$$\boldsymbol{\delta}^1 = \boldsymbol{F}^{\prime 1}(\boldsymbol{u}^1)(\boldsymbol{W}^2)^T \delta^2,$$

onde
$$(\mathbf{W}^2)^T = [w_{1,1}^2, w_{1,2}^2]^T$$
e

$$\mathbf{F}^{\prime 1}(\mathbf{u}^1) = \begin{bmatrix} f^{\prime 1}(u_1^1) & 0 \\ 0 & f^{\prime 1}(u_2^1) \end{bmatrix}.$$

OBS.: Notem que $.^2$ aqui não significa "ao quadrado", mas sim a indicação de que se trata de uma saída da camada m=2.

Portanto,

$$\boldsymbol{\delta}^{1} = \begin{bmatrix} \delta_{1}^{1} \\ \delta_{2}^{1} \end{bmatrix} = \begin{bmatrix} w_{1,1}^{2} f'^{1}(u_{1}^{1}) \\ w_{1,2}^{2} f'^{1}(u_{2}^{1}) \end{bmatrix} \delta^{2}.$$

- Agora, para obtermos o vetor gradiente, multiplicamos as *sensibilidades* pelas entradas correspondentes.
- Por exemplo, as derivadas parciais com relação aos pesos do $\emph{n\'o}~i=1$ da camada m=1 são mostradas abaixo

$$\begin{bmatrix} \frac{\partial J(\boldsymbol{w})}{\partial w_{1,1}^1} \\ \frac{\partial J(\boldsymbol{w})}{\partial w_{1,2}^1} \\ \frac{\partial J(\boldsymbol{w})}{\partial b_1^1} \end{bmatrix} = \delta_1^1 \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix} = \delta^2 w_{1,1}^2 f'^1(u_1^1) \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix} = -2(d-y_1^2) f'^2(u_1^2) w_{1,1}^2 f'^1(u_1^1) \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}.$$
Os pesos de **bias**
estão ligados a
entradas com valores
constantes iguais a 1.

 Se fôssemos calcular as derivadas aplicando a regra da cadeia diretamente, elas seriam calculadas como mostrado abaixo.

$$\frac{\partial J(\mathbf{w})}{\partial w_{1,1}^{1}} = \underbrace{\frac{\partial \left(d - f^{2}(u_{1}^{2})\right)^{2}}{\partial f^{2}(u_{1}^{2})} \frac{\partial f^{2}(u_{1}^{2})}{\partial u_{1}^{2}}}_{\delta^{2}} \underbrace{\frac{\partial u_{1}^{2}}{\partial f^{1}(u_{1}^{1})} \frac{\partial u_{1}^{1}}{\partial u_{1}^{1}}}_{\delta^{2}} \underbrace{\frac{\partial u_{1}^{1}}{\partial f^{1}(u_{1}^{1})} \frac{\partial u_{1}^{1}}{\partial u_{1}^{1}}}_{\delta^{2}} \underbrace{\frac{\partial u_{1}^{1}}{\partial u_{1}^{1}}}_{\kappa_{1}}$$

• Resolvendo as derivadas parciais, temos

$$\frac{\partial J(\mathbf{w})}{\partial w_{1,1}^{1}} = \delta_{1}^{1} x_{1} = \delta^{2} w_{1,1}^{2} f^{\prime 1}(u_{1}^{1}) x_{1}$$
$$= -2(d - y_{1}^{2}) f^{\prime 2}(u_{1}^{2}) w_{1,1}^{2} f^{\prime 1}(u_{1}^{1}) x_{1}$$

• Aplicando-se o mesmo procedimento aos outros pesos, temos:

$$\frac{\partial J(\mathbf{w})}{\partial w_{1,1}^{1}} = \frac{\partial e^{2}}{\partial w_{1,1}^{1}} = \frac{\partial \left(d - f^{2}(u_{1}^{2})\right)^{2}}{\partial f^{2}(u_{1}^{2})} \frac{\partial f^{2}(u_{1}^{2})}{\partial u_{1}^{2}} \frac{\partial u_{1}^{2}}{\partial f^{1}(u_{1}^{1})} \frac{\partial f^{1}(u_{1}^{1})}{\partial u_{1}^{1}} \frac{\partial u_{1}^{1}}{\partial w_{1,1}^{1}}
\frac{\partial J(\mathbf{w})}{\partial w_{1,2}^{1}} = \frac{\partial e^{2}}{\partial w_{1,2}^{1}} = \frac{\partial \left(d - f^{2}(u_{1}^{2})\right)^{2}}{\partial f^{2}(u_{1}^{2})} \frac{\partial f^{2}(u_{1}^{2})}{\partial u_{1}^{2}} \frac{\partial u_{1}^{2}}{\partial f^{1}(u_{1}^{1})} \frac{\partial f^{1}(u_{1}^{1})}{\partial u_{1}^{1}} \frac{\partial u_{1}^{1}}{\partial w_{1,2}^{1}}
\frac{\partial J(\mathbf{w})}{\partial b_{1}^{1}} = \frac{\partial e^{2}}{\partial b_{1}^{1}} = \frac{\partial \left(d - f^{2}(u_{1}^{2})\right)^{2}}{\partial f^{2}(u_{1}^{2})} \frac{\partial f^{2}(u_{1}^{2})}{\partial u_{1}^{2}} \frac{\partial u_{1}^{2}}{\partial f^{1}(u_{1}^{1})} \frac{\partial f^{1}(u_{1}^{1})}{\partial u_{1}^{1}} \frac{\partial u_{1}^{1}}{\partial b_{1}^{1}}$$

- Podemos dizer que os elementos básicos do aprendizado de máquina através de redes neurais foram apresentados até aqui.
- Porém, existem importantes aspectos práticos que devem ser comentados de modo que vocês fiquem mais familiarizados com as práticas atuais.
- Começamos falando da questão do cálculo do vetor gradiente.

- Conforme vimos nos slides anteriores, a base para o aprendizado em redes MLP é a obtenção do vetor gradiente e o estabelecimento de um processo iterativo de busca dos pesos sinápticos que minmizem a função de custo.
- Vimos que a obtenção do *vetor gradiente* se dá através de um processo de *retropropagação do erro* em que existem duas etapas:
 - Etapa direta (*forward*) onde se apresenta um exemplo de entrada, x, e obtém-se a resposta da rede, ou seja, o *erro de saída*.
 - Etapa reversa (*retropropagação/backpropagation*) em que se calculam as derivadas parciais necessárias ao longo das camadas anteriores da rede.

Versões Online, Batch e Minibatch

• Vimos também que se calcula o gradiente associado a cada exemplo de entrada e que a combinação de todos esses *gradientes locais* leva ao gradiente estimado para o conjunto total de exemplos.

$$\frac{\partial J(\boldsymbol{w})}{\partial w_{i,j}^{m}} = \frac{1}{N_{\text{dados}} N_{M}} \sum_{n=1}^{N_{\text{dados}}} \sum_{j=1}^{N_{M}} \frac{\partial e_{j}^{2}(n)}{\partial w_{i,j}^{m}}$$

 No entanto, surge aqui um questionamento interessante: o que é melhor, usar o gradiente local e já dar um passo de otimização, ou seja, atualizar os pesos, ou reunir o gradiente completo e então dar um passo único e mais preciso?

- Nesse questionamento, existem duas abordagens: o cálculo *online* do gradiente (ou seja, exemplo-a-exemplo) e o cálculo em batelada (*batch*) do gradiente.
- Vejamos inicialmente a noção geral de adaptação dos pesos sinápticos com o cálculo online do gradiente, como expressa o algoritmo abaixo com um método clássico de primeira ordem.
 - ightharpoonup Defina valores iniciais para o vetor de pesos $oldsymbol{w}$ e um passo de aprendizagem lpha pequeno.
 - Faça k = 0 (épocas), t = 0 (iterações) e calcule J(w(k)).
 - > Enquanto o critério de parada não for atendido, faça:
 - Ordene aleatoriamente os exemplos de entrada/saída.
 - Para *l* variando de 1 até *N*, faça:
 - Apresente o exemplo l de entrada à rede.
 - Calcule $J_l(\mathbf{w}(t))$ e $\nabla J_l(\mathbf{w}(t))$.
 - $w(t+1) = w(t) \alpha \nabla J_l(w(t)); t = t+1.$
 - \circ k = k + 1.
 - \circ Calcule J(w(k)).

- O outro extremo seria utilizar todo o conjunto de dados para estimar o gradiente antes de atualizar os pesos sinápticos.
- Essa é a ideia por trás da abordagem em **batelada** (**batch**). O algoritmo abaixo ilustra a operação correspondente (novamente considerando um método de **primeira ordem**).
 - ightharpoonup Defina valores iniciais para o vetor de pesos w e um passo de aprendizagem α pequeno.
 - Faça k = 0 (épocas) e calcule J(w(k)).
 - > Enquanto o critério de parada não for atendido, faça:
 - Para *l* variando de 1 até *N*, faça:
 - lacktriangle Apresente o exemplo l de entrada à rede.
 - Calcule $J_l(\mathbf{w}(k))$ e $\nabla J_l(\mathbf{w}(k))$.
 - $\circ \mathbf{w}(k+1) = \mathbf{w}(k) \frac{\alpha}{N} \sum_{l=1}^{N} \nabla J_{l}(\mathbf{w}(k)).$
 - o k = k + 1.
 - \circ Calcule $J(\mathbf{w}(k))$.

- Nas modernas *redes neurais profundas* (ou *deep learning*), usadas com muita frequência em problemas com enormes conjuntos de dados, a regra é adotar o caminho do meio, usando a abordagem com *mini-batches*.
- Nesse caso, a adaptação dos pesos é realizada com um gradiente calculado a partir de um meio-termo entre um exemplo e o número total de exemplos (em geral, este é um valor relativamente pequeno em métodos de primeira ordem).
- As amostras que devem compor o *mini-batch* são *aleatoriamente* tomadas do conjunto de dados. O algoritmo abaixo ilustra isso.
 - \triangleright Defina valores iniciais para o vetor de pesos w e um passo de aprendizagem α pequeno.
 - Faça k = 0 e calcule J(w(k)).
 - > Enquanto o critério de parada não for atendido, faça:
 - Para l variando de 1 até m, faça:
 - Apresente o exemplo l de entrada, amostrado aleatóriamente sem reposição para compor um *minibatch*, à rede.
 - Calcule $J_l(\mathbf{w}(k))$ e $\nabla J_l(\mathbf{w}(k))$.
 - $o w(k+1) = w(k) \frac{\alpha}{m} \sum_{l=1}^{m} \nabla J_l(w(k)).$
 - o k = k + 1.
 - o Calcule J(w(k)).

- Existem vários algoritmos baseados no *gradiente* que podem ser empregados para otimizar os *pesos sinápticos* de uma rede neural.
- Aqui, vamos nos ater a alguns métodos muito usuais na literatura moderna, que se encontra bastante focada no apredizado profundo.
- ➤ Método do Gradiente Estocástico (Stochastic Gradient Descent, SGD)
 - Nos slides anteriores, nós vimos que o método online utiliza um único exemplo (que deve ser tomado aleatóriamente) para estimar o gradiente da função custo.
 - Este tipo de estimador é o que gera a noção de gradiente estocástico. Caso utilizemos mini-batches, também teremos uma estimativa do gradiente, o qual, a rigor, seria determinístico apenas se usássemos todos os dados (no caso do batch).
 - Por esse motivo, esses métodos de *primeira ordem*, como o *online*, são conhecidos como métodos de *gradiente descendente estocástico*.

- A escolha do passo de aprendizagem é complicada e nos remete ao conhecido compromisso entre velocidade de convergência e estabilidade/precisão.
- Pode-se usar um valor fixo, mas geralmente, se adota uma variação decrescente de um valor α_0 a um valor α_{τ} (i.e., da iteração 0 à iteração τ):

$$\alpha_j = \left(1 - \frac{j}{\tau}\right)\alpha_0 + \frac{j}{\tau}\alpha_\tau,$$

onde j é o número da iteração de treinamento.

- Após a τ -ésima iteração, pode-se deixar o valor do passo de aprendizagem fixo, como mostrado na figura ao lado.
- Naturalmente, a definição dos hiperparâmetros necessários, α_0 e α_τ , é mais um problema **a ser tratado caso-a-caso**.

Momentum

- O termo momento é adicionado à equação de atualização dos pesos para trazer informação de gradientes anteriores acumulados ao ajuste de pesos.
- Esse termo tem o potencial de melhorar a convergência das versões online e em mini-lotes do gradiente descendente.
- A atualização dos pesos com o termo momento é dada por

$$w \leftarrow w + v$$

onde $oldsymbol{v}$ é a $oldsymbol{velocidade}$, a qual é atualizada da seguinte forma

$$\boldsymbol{v} \leftarrow \mu \boldsymbol{v} - \alpha \boldsymbol{q}$$

g é o vetor gradiente, α é o passo de aprendizagem e $\mu \in [0,1)$ é o coeficiente de momento e determina com que rapidez as contribuições de gradientes anteriores decaem (ou seja, μ é um termo de memória).

- Quanto maior for μ , maior será a influência de gradientes anteriores na direção atual.
- lacktriangledown v dá a direção e a velocidade na qual os pesos se movem pelo espaço de pesos.

Momentum

- *Momento* em física é igual a *massa de uma partícula vezes* sua velocidade. No algoritmo do momento, assumimos que a massa é unitária, então o vetor velocidade v também pode ser considerado como o momento da partícula.
- O termo momento adiciona uma fração μ de atualizações anteriores dos pesos à atualização corrente.
 - Quando o gradiente aponta na mesma direção por várias iterações, isso aumenta o tamanho dos passos dados em direção ao mínimo.
 - Quando o gradiente muda de direção a cada nova iteração, o termo momento suaviza as variações.
 - Como resultado, temos convergência mais rápida e oscilação reduzida.
- O efeito do algoritmo do momentum no GDE é ilustrado na figura ao lado.

➤ Momento de Nesterov

- O método do *momento de Nesterov* pode ser visto, essencialmente, como uma variação do *método do momento* em que o cálculo do *vetor gradiente* não é feito sobre o vetor de pesos w, mas sim sobre $w + \varphi v$.
- Esse termo adicional funciona como um fator de correção que pode aumentar, em alguns casos, a velocidade de convergência.

➤ Modelos com Passo de Aprendizagem Adaptativo

- O passo de aprendizagem é um hiperparâmetro difícil de se ajustar otimamente e bastante relevante para o sucesso do treinamento de uma rede neural.
- Isso motivou o surgimento de um conjunto de métodos com mecanismos capazes de modificá-lo dinamicamente.
- O passo é ajustado de acordo com o desempenho da rede e, além disso, pode-se ter passos diferentes para cada peso do modelo, os quais são atualizados de forma independente.
- Dentre as técnicas mais populares dessa classe estão AdaGrad, RMSProp e Adam.

Inicialização dos Pesos

https://www.deeplearning.ai/ai-notes/initialization/

- Uma vez que os métodos de treinamento de *redes neurais MLP* são iterativos, eles dependem de uma *inicialização dos pesos*.
- Como os métodos são de busca local, a inicialização pode afetar drasticamente a qualidade da solução obtida.
- O *ponto de inicialização* pode determinar se o algoritmo converge, sendo alguns pontos iniciais tão instáveis que o algoritmo encontra dificuldades numéricas e falha completamente em convergir (e.g., desaparecimento e explosão dos gradientes).
- Também pode haver variações expressivas na *velocidade de convergência* (e.g., platôs, pontos de sela).
- Um ponto importante da inicialização é "quebrar a simetria" entre os nós, ou seja, nós com a mesma função de ativação e conectados às mesmas entradas, devem ter pesos iniciais diferentes.
- Isso, portanto, sugere uma abordagem aleatória.

Inicialização dos Pesos

- Os pesos iniciais são tipicamente obtidos a partir de *distribuições gaussianas* ou *uniformes*.
- A ordem de grandeza desses pesos levanta algumas discussões:
 - Pesos de maior magnitude criam maior distinção entre nós (i.e., a quebra de simetria). Por outro lado, isso pode causar problemas de instabilidade.
 - Pesos de maior magnitude favorecem a propagação de informação, porém, por outro lado, causam preocupações do ponto de vista de regularização.
 - Pesos de magnitude elevada podem levar os nós (no caso de funções de ativação do tipo sigmóide como a tangente hiperbólica e a função logística) a operarem numa região de saturação, comprometendo a convergência do algoritmo.
 - Por outro lado, pesos de magnitude muita reduzida podem reduzir drasticamente o aprendizado das redes neurais.
- Portanto, na sequência listamos algumas heurísticas para inicialização dos pesos.

Inicialização dos Pesos

• Considerando uma camada com m entradas e n saídas, temos as seguintes heurísticas para inicializar os pesos de seus nós.

Inicialização	Funções de ativação	Distribuição Uniforme $U(-r,r)$	Distribuição Normal $N(0,\sigma^2)$
Xavier/Glorot	Nenhuma, Tanh, Logística, Softmax	$r = \sqrt{\frac{6}{m+n}}$	$\sigma^2 = \frac{2}{m+n}$
He	ReLU e variantes	$r = \sqrt{\frac{6}{m}}$	$\sigma^2 = \frac{2}{m}$
LeCun	SELU	$r = \sqrt{\frac{3}{m}}$	$\sigma^2 = \frac{1}{m}$

 Uma heurística para a inicialização dos termos de bias é inicializá-los com valores nulos. Esta heurística se mostra bastante eficiente na maioria dos casos.

Redes Neurais MLP com SciKit-Learn

- A biblioteca SciKit-Learn disponibiliza algumas classes para o treinamento de redes neurais multi-layer perceptron.
- Entretanto, as implementações desta biblioteca não se destinam a aplicações de larga escala.
- Em particular, a biblioteca SciKit-Learn não oferece suporte a GPUs.
- Para implementações muito mais rápidas, baseadas em GPU, bem como estruturas que oferecem muito mais flexibilidade para criar arquiteturas de aprendizado profundo, por exemplo, devemos utilizar outras bibliotecas como:
 - *Tensorflow*: biblioteca para desenvolvimento de aplicações eficientes e escaláveis de machine learning.
 - *keras*: biblioteca de alto-nível para desenvolvimento de aplicações Deep Learning de forma simples. É capaz de rodar sobre TensorFlow, Theano ou Apache MXNet.
 - **skorch**: biblioteca para a criação de redes neurais compatíveis com o SciKit-Learn que encapsula a biblioteca PyTorch.
 - Entre outras: https://scikit-learn.org/stable/related-projects.html#related-projects

Detecção de símbolos QPSK com MLPClassifier

- As fronteiras de decisão do detector com classificador MLP se aproximam das fronteiras do detector ótimo.
- Qual seria a vantagem em se utilizar um detector baseado em MLP?
 - Se existe um algoritmo ótimo conhecido, uma rede neural treinada nunca poderá superá-lo.

Exemplo: SciKitMLPQPSKClassifierv1.ipynb

Estimação de fase com MLPRegressor

- Os símbolos QPSK têm sua fase variada por um desvio de fase aleatório.
- Fase aleatório varia entre -40 a +40 graus.

0.25

-0.25

0.00

- Além disto, tem-se adição de ruído, onde a relação Es/N0 = 27 dB.
- O MLP estima a relação entre a fase do sinal recebido e a fase adicionada ao símbolo transmitido.
- De posse da relação, pode-se desfazer o efeito da fase aleatória.

Exemplo: SciKitMLPRegression_v4.ipynb

Avisos

- Vocês já podem resolver os exercícios da lista #12.
- Apresentação dos trabalhos finais: 06 e 08/12/2022

Obrigado!

People with no idea about AI, telling me my AI will destroy the world

Me wondering why my neural network is classifying a cat as a dog..

Figuras

$$y = f(g(x)) = \begin{cases} 1 \text{ se } g(x) \ge \theta \\ 0 \text{ se } g(x) < \theta \end{cases}$$

onde θ é o limiar de decisão.

→ Ligação entre *i*-ésimo e *j*-ésimo nó.

 w_{ij} Peso da ligação entre *i*-ésimo e *j*-ésimo nó.

