Podstawy Fizyki

dla Informatyki

Stanisław Drożdż Katedra Informatyki PK

Liczby zespolone

Płaszczyzna liczb zespolonych

Definicje

Liczba zespolona z ma postać:

$$z = a + ib$$
,

gdzie a, b są rzeczywiste,

i jest liczbą urojoną: $i^2 = -1$

 z^* — liczba sprzężona do z:

$$z^* = a - ib$$

Wartość bezwzględna liczby z:

$$|z| = \sqrt{z z^*}$$

•
$$|z|^2 = (a+ib)(a-ib) = a^2 + b^2$$

Postać geometryczna:

$$z = |z|(\cos\theta + i\sin\theta) = |z|e^{i\theta}$$

np. pierwiastki liczby -1:

$$i = e^{i\pi/2}, \qquad -i = e^{-i\pi/2}$$

Funkcja falowa

- Fale materii opisywane są przez funkcję falową $\Psi(\vec{r},t)$, która jest zwykle funkcją zespoloną.
- Funkcja Ψ nie ma zatem bezpośredniego sensu fizycznego, natomiast

Interpretacja Maxa Borna:

Prawdopodobieństwo znalezienia cząstki w małej objętości dV wokół punktu \vec{r} jest równe $|\Psi(\vec{r},t)|^2$ dV.

• Funkcja $|\Psi(\vec{r},t)|^2$ jest gęstością prawdopodobieństwa.

Normalizacja funkcji falowej

 Prawdopodobieństwo znalezienia cząstki w dopuszczalnej przestrzeni V jest równe jedności

$$\sum_{i} |\Psi(\vec{r}_i, t)|^2 dV_i = 1.$$

Jest to tzw. normalizacja Ψ do jedności.

• W granicy $dV_i \rightarrow 0$ otrzymujemy całkę objętościową (potrójną):

$$\lim_{\mathrm{d}V_i\to 0}\sum_i |\Psi|^2 \mathrm{d}V_i = \iiint_V |\Psi|^2 \mathrm{d}V.$$

Równanie Schrödingera

 Fale materii spełniają równanie falowe wprowadzone przez Erwina Schrödingera w 1926 r.

Równanie falowe dla cząstki o masie m:

$$\mathcal{H}\psi(\vec{r},t) = i\hbar \frac{\partial}{\partial t} \psi(\vec{r},t),$$

gdzie
$$\mathscr{H} = -\frac{\hbar^2}{2m} \nabla^2 + U(\vec{r}, t).$$

- $-\hbar^2\nabla^2/(2m)$ operator energii kinetycznej cząstki.
- $\vec{p} = -i\hbar\nabla$ operator pędu cząstki $(E_k = p^2/2m)$.

Rozdzielenie zmiennych \vec{r} i t

Metoda rozdzielenia zmiennych:

Jeśli energia potencjalna nie zależy jawnie od czasu, to rozwiązania równania Schrödingera szukamy w postaci:

$$\Psi(\vec{r},t) = f(t)\psi(\vec{r}).$$

 Wtedy równanie Schrödingera można przekształcić do postaci:

$$i\hbar \frac{1}{f(t)} \frac{\mathrm{d}f(t)}{\mathrm{d}t} = \frac{1}{\psi(\vec{r})} \mathcal{H}(\vec{r})\psi(\vec{r}).$$

 Ta równość jest spełniona jeśli funkcje po prawej i lewej stronie są równe pewnej stałej E!

Zależność czasowa funkcji falowej

Zatem

$$i\hbar \frac{\mathrm{d}f(t)}{\mathrm{d}t} = Ef(t) \quad \text{oraz} \quad \mathscr{H}\psi(\vec{r}) = E\psi(\vec{r}).$$

ullet Równanie dla funkcji f(t) możemy zapisać w formie

$$\frac{1}{f} df = -i \frac{E}{\hbar} dt.$$

Całkując obustronnie mamy:

$$\int \frac{1}{f} df = -i \frac{E}{\hbar} \int dt,$$

$$\ln f = -i \frac{E}{\hbar} t + C'.$$

Stąd
$$f(t) = \exp(C') \exp(-iEt/\hbar) = C \exp(-iEt/\hbar)$$
.

• $|f(t)|^2 = |C|^2 \Rightarrow |f(t)|^2$ nie zależy od czasu!

Niezależne od czasu równanie Schrödingera

 Rozwiązanie równania Schrödingera, gdy operator energii potencjalnej U nie zależy od czasu, przyjmuje postać:

$$\Psi(\vec{r},t) = \psi(\vec{r}) C \exp(-iEt/\hbar) = \psi(\vec{r}) \exp(-iEt/\hbar),$$
gdzie stałą C włączamy do definicji funkcji $\psi(\vec{r})$.

• Funkcja $\psi(\vec{r})$ spełnia

Niezależne od czasu równanie Schrödingera:

$$\mathcal{H}\psi(\vec{r}) = E\psi(\vec{r}).$$

- Jest to tak zwane równanie własne dla operatora energii \(\mathcal{H} \).
- ullet jest rzeczywistą wartością własną operatora ${\mathscr H}$.
- W fizyce kwantowej wartości własne są wartościami, które obserwujemy w doświadczeniach.