The Harmonic Oscillator

Anthony Mezzacappa

September 1, 2020

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$$
$$= \frac{1}{2m} \left[p^2 + (m\omega x)^2 \right]$$

This has the form $u^2 + v^2$, which can be written as

$$u^{2} + v^{2} = (iu + v)(-iu + v)$$

Classically, we are dealing with functions. Quantum mechanically we are dealing with operators, so we have to be careful about ordering.

The Hamiltonian operator is

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2$$

Define the operators

$$\hat{a} \equiv \frac{1}{\sqrt{2m\omega}} (m\omega \hat{x} + i\hat{p})$$
$$\hat{a}^{\dagger} \equiv \frac{1}{\sqrt{2m\omega}} (m\omega \hat{x} - i\hat{p})$$

Now consider the product

$$\hat{a}^{\dagger}\hat{a} = \frac{1}{\sqrt{2m\omega}}(m\omega\hat{x} - i\hat{p})(m\omega\hat{x} + i\hat{p})$$
$$= \frac{1}{\sqrt{2m\omega}}\left\{m^2\omega^2\hat{x}^2 + im\omega[\hat{x}, \hat{p}] + \hat{p}^2\right\}$$

and the product

$$\hat{a}\hat{a}^{\dagger} = \frac{1}{\sqrt{2m\omega}} (m\omega\hat{x} - i\hat{p})(m\omega\hat{x} + i\hat{p})$$
$$= \frac{1}{\sqrt{2m\omega}} \left\{ m^2\omega^2\hat{x}^2 - im\omega[\hat{x}, \hat{p}] + \hat{p}^2 \right\}$$

The sum

$$\hat{a}^{\dagger}\hat{a} + \hat{a}\hat{a}^{\dagger} = m\omega^2 \hat{x}^2 + \frac{\hat{p}^2}{m\omega}$$
$$= \frac{2}{\omega}\hat{H}$$

Then

$$\hat{H} = \frac{1}{2}\omega(\hat{a}^{\dagger}\hat{a} + \hat{a}\hat{a}^{\dagger})$$

Let's consider the commutator of the operators \hat{a} and \hat{a}^{\dagger} . $(\hbar = 1)$

$$[\hat{a}, \hat{a}^{\dagger}] = \frac{1}{2m\omega} \left\{ (m\omega \hat{x} + i\hat{p})(m\omega \hat{x} - i\hat{p}) - (m\omega \hat{x} - i\hat{p})(m\omega \hat{x} + i\hat{p}) \right\}$$

$$= \frac{1}{2m\omega} \left\{ m^2 \omega^2 \hat{x}^2 - im\omega [\hat{x}, \hat{p}] + \hat{p}^2 - (m^2 \omega^2 \hat{x}^2 + im\omega [\hat{x}, \hat{p}] + \hat{p}^2) \right\}$$

$$= -i(i)$$

$$= +1$$

That is

$$[\hat{a}, \hat{a}^{\dagger}] = 1$$
 \Rightarrow $\hat{a}\hat{a}^{\dagger} = 1 + \hat{a}^{\dagger}\hat{a}$

and of course

$$\begin{aligned} [\hat{a}, \hat{a}] &= 0 \\ [\hat{a}^{\dagger}, \hat{a}^{\dagger}] &= 0 \end{aligned}$$

Then

$$\begin{split} \hat{H} &= \tfrac{1}{2}\omega(\hat{a}^{\dagger}\hat{a} + \hat{a}\hat{a}^{\dagger}) \\ &= \tfrac{1}{2}\omega(\hat{a}^{\dagger}\hat{a} + 1 + \hat{a}^{\dagger}\hat{a}) \\ &= \omega(\hat{a}^{\dagger}\hat{a} + \tfrac{1}{2}) \end{split}$$

Now look at

$$\begin{split} [\hat{H},\hat{a}] &= \omega \left\{ (\hat{a}^{\dagger}\hat{a} + \frac{1}{2})\hat{a} - \hat{a}(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}) \right\} \\ &= \omega (\hat{a}^{\dagger}\hat{a}\hat{a} - \hat{a}\hat{a}^{\dagger}\hat{a}) \\ &= \omega [\hat{a}^{\dagger}\hat{a}\hat{a} - (1 + \hat{a}^{\dagger}\hat{a})\hat{a}] \\ &= -\omega \hat{a} \end{split}$$

and

$$\begin{split} [\hat{H}, \hat{a}^{\dagger}] &= \omega \left\{ (\hat{a}^{\dagger} \hat{a} + \frac{1}{2}) \hat{a}^{\dagger} - \hat{a}^{\dagger} (\hat{a}^{\dagger} \hat{a} + \frac{1}{2}) \right\} \\ &= \omega (\hat{a}^{\dagger} \hat{a} \hat{a}^{\dagger} - \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a}) \\ &= \omega [\hat{a}^{\dagger} \hat{a} \hat{a}^{\dagger} - \hat{a}^{\dagger} (\hat{a} \hat{a}^{\dagger} - 1)] \\ &= \omega \hat{a}^{\dagger} \end{split}$$

Label the states by

$$|n\rangle$$
 $E_n = (n + \frac{1}{2})\omega$ $\hat{H} |n\rangle = (n + \frac{1}{2})\omega |n\rangle$

and look at

$$\begin{split} \hat{H}\hat{a} \left| n \right\rangle &= \omega (\hat{a}^{\dagger}\hat{a} + \frac{1}{2})\hat{a} \left| n \right\rangle \\ &= \omega (\hat{a}^{\dagger}\hat{a}\hat{a} + \frac{1}{2}\hat{a}) \left| n \right\rangle \\ &= \omega \left[(\hat{a}\hat{a}^{\dagger} - 1)\hat{a} + \frac{1}{2}\hat{a} \right] \left| n \right\rangle \\ &= \omega \hat{a} (\hat{a}^{\dagger}\hat{a} + \frac{1}{2} - 1) \left| n \right\rangle \\ &= \hat{a} (\hat{H} - \omega) \left| n \right\rangle \\ &= \hat{a} \left[(\hat{n} + \frac{1}{2})\omega - \omega \right] \left| n \right\rangle \\ &= (n - \frac{1}{2})\omega \hat{a} \left| n \right\rangle \\ \Rightarrow &\quad \hat{a} \left| n \right\rangle \propto \left| n - 1 \right\rangle \end{split}$$

What is the constant of proportionality?

From

$$\hat{H}\left|n\right\rangle = (\hat{a}^{\dagger}\hat{a} + \frac{1}{2})\omega\left|n\right\rangle = (n + \frac{1}{2})\omega\left|n\right\rangle$$

we see that the number operator is

$$\hat{N} = \hat{a}^{\dagger} \hat{a}$$

Then

$$\langle n|\hat{a}^{\dagger}\hat{a}|n\rangle = n$$

But

$$\hat{a} |n\rangle = c |n-1\rangle$$

and

$$\langle n | \hat{a}^{\dagger} = c^* \langle n - 1 |$$

Then

$$n = \langle n | \hat{a}^{\dagger} \hat{a} | n \rangle = |c|^2 \langle n - 1 | n - 1 \rangle = |c|^2$$

and

$$c = \sqrt{n}$$

That is

$$\hat{a} |n\rangle = \sqrt{n} |n-1\rangle$$

Now look at

$$\begin{split} \hat{H}\hat{a}^{\dagger} &| n \rangle = \omega(\hat{a}^{\dagger}\hat{a} + \frac{1}{2})\hat{a}^{\dagger} &| n \rangle \\ &= \omega(\hat{a}^{\dagger}\hat{a} + \frac{1}{2})\hat{a}^{\dagger} &| n \rangle \\ &= \omega(\hat{a}^{\dagger}\hat{a}\hat{a}^{\dagger} + \frac{1}{2}\hat{a}^{\dagger}) &| n \rangle \qquad \qquad \hat{a}\hat{a}^{\dagger} - \hat{a}^{\dagger}\hat{a} = 1 \\ &= \omega\hat{a}^{\dagger}[(1 + \hat{a}^{\dagger}\hat{a}) + \frac{1}{2}] &| n \rangle \\ &= \hat{a}^{\dagger}(\hat{H} + \omega) &| n \rangle \\ &= \hat{a}^{\dagger}(n + \frac{1}{2} + 1)\omega &| n \rangle \\ &= (n + \frac{1}{2} + 1)\omega\hat{a}^{\dagger} &| n \rangle \\ \Rightarrow \qquad \hat{a}^{\dagger} &| n \rangle \propto | n + 1 \rangle \end{split}$$

But

$$\langle n+1|\hat{a}^{\dagger}\hat{a}|n+1\rangle = n+1$$

and

$$n+1=\left\langle n+1|\hat{a}^{\dagger}\hat{a}|n+1\right\rangle =\left|c\right|^{2}\left\langle n+1|n+1\right\rangle =\left|c\right|^{2}$$

Then

$$\hat{a}^{\dagger}\left|n\right\rangle = \sqrt{n+1}\left|n+1\right\rangle$$

One of the modt important aspects of the spectrum of states of the quantized harmonic oscillator is that its energy levels are separated by a uniform amount: $\hbar\omega$. The state $|n\rangle$ has energy $n\hbar\omega$ and the state $|n+1\rangle$ has energy $(n+1)\hbar\omega$.

With

$$\hat{H}|n\rangle = \left(n + \frac{1}{2}\right)\hbar\omega|n\rangle$$

we have the vacuum state $|0\rangle$ with energy $\frac{1}{2}\hbar\omega$. Then we can think of the state $|n\rangle$ as a state of n quanta each of energy $\hbar\omega$ – i.e., we can think of it as a multiparticle state.

With this interpretation, the operator \hat{a}^{\dagger} is a <u>creation operator</u> that creates a quantum of energy $\hbar\omega$, whereas \hat{a} is a <u>annihilation operator</u> that annihilates a quantum of energy $\hbar\omega$.

Now we can generate all of the states beginning with the vacuum state defined by

$$\hat{a}|0\rangle = 0$$

Then

$$|n\rangle = \frac{1}{\sqrt{n!}} \left(\hat{a}^{\dagger}\right)^n |0\rangle$$

 $\frac{1}{\sqrt{n!}}$ cancels out the $\sqrt{n!}$ that appears when the \hat{a}^{\dagger} act n times.

For example,

$$\begin{aligned} |2\rangle &= \frac{1}{\sqrt{2}} \hat{a}^{\dagger} \left(\hat{a}^{\dagger} | 0 \right) \right) \\ &= \frac{1}{\sqrt{2}} \hat{a}^{\dagger} \left(\sqrt{1} | 1 \right) \right) \\ &= \frac{1}{\sqrt{2}} \sqrt{1+1} | 2 \rangle \\ &= |2\rangle \end{aligned}$$