Familienname:	Bsp.	1	2	3	4	$\sum /40$
Vorname:						
Matrikelnummer:						
Studienkennzahl(en):		Note:				

Einführung in die Analysis

Roland Steinbauer, Sommersemester 2012

2. Prüfungstermin (28.9.2012)

Gruppe A

1. Formulierungen.

- (a) Definiere die folgenden Begriffe (je 1 Punkt): Häufungswert einer Folge, Grenzwert einer Funktion, die Sinusfunktion
- (b) Formuliere und beweise das Intervallschachtelungsprinzip. (6 Punkte)
- (c) Definiere den (natürlichen) Logarithmus und gib drei seiner grundlegenden Eigenschaften an. (3 Punkte)

$2. \ \textit{Begriffe & Ideen}.$

- (a) (Stetigkeit vs. gleichmäßige Stetigkeit) (5 Punkte) Für eine Funktion $f: \mathbb{R} \supseteq D \to \mathbb{R}$ definiere die Begriffe Setigkeit (auf D) und gleichmäßige Stetigkeit. Erkläre die Bedeutung dieser Begriffe und diskutiere das Verhältnis dieser Begriffe zueinander.
- (b) (Konvergenz vs. absolute Konvergenz) (3 Punkte)
 Für (reelle) Reihen definiere die Begriffe Konvergenz und absolute Konvergenz.
 Diskutiere das Verhältnis dieser Begriffe zueinander.
- (c) (Umkehrsatz) (2 Punkte) Formuliere den Umkehrsatz für streng monotone und stetige Funktionen. Für welche der Aussagen im Satz ist die Stetigkeit notwendige Bedingung?

3. Vermischtes.

- (a) Sei $f: \mathbb{R} \supseteq D \to \mathbb{R}$ und sei $a \in D$. Zeige, dass f stetig in a ist, falls für jede Folge $(x_n)_n \in D$ mit $x_n \to a$ gilt, dass $f(x_n) \to f(a)$. (4 Punkte)
- (b) Gib je ein Beispiel einer stetigen Funktion auf $\mathbb{R} \setminus \{1\}$ an, die stetig nach $x_0 = 1$ fortgesetzt, bzw. *nicht* stetig nach $x_0 = 1$ fortgesetzt werden kann. (2 Punkte)
- (c) Berechne $\lim_{x\to\infty}\frac{e^x}{x^k}$ $(k\in\mathbb{N})$ und interpretiere das Ergebnis. (2 Punkte)
- (d) Untersuche auf Konvergenz und berechne den Grenzwert, falls er existiert. (je 2 Punkte)

(i)
$$\sum_{k=1}^{\infty} \frac{1}{3^k}$$
 (ii) $\sqrt{9n^2 + 2n + 1} - 3n$

Bitte umblättern!

4. Richtig oder falsch?

Sind die folgenden Aussagen richtig oder falsch? Gib jeweils eine kurze Begründung oder ein Gegenbeispiel an. (Je 3 Punkte)

- (a) Jede beschränkte Folge mit genau einem Häufungswert konvergiert.
- (b) Die Funktion $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, $f(x) = 1/x^2$ ist stetig in $x_0 = 0$.