MANY-ELECTRON ATOMS

General Chemistry I, Lecture Series 7
Pengxin Liu

Reading:

OGB8 §5.2, §5.3

Outline

- Interactions in many-electron atoms
 - Hartree-Fock Equations are Solved by the Self-Consistent Field Method
- Repulsion between electrons
- Aufbau principle
- Electron configurations

Hydrogen-Like Ions

₃Li²⁺

Coulomb potential *V*

$$-\frac{1}{4\pi\varepsilon_0}\frac{e^2}{r}$$

$$-\frac{1}{4\pi\varepsilon_0}\frac{Ze^2}{r}$$

1s orbital $\psi_{1s} \propto \exp(-r/a_0)$

 $\exp(-\mathbf{Z}r/a_0)$

Orbital radius r_n

$$n^2a_0$$

$$Ry = 13.6 eV$$

 $a_0 = 53 \text{ pm}$

 $\frac{n^2}{Z}a_0$

Orbital energy *E*_n

$$-\frac{Ry}{n^2}$$

 $-\mathbf{Z}^2 \frac{\mathbf{R}\mathbf{y}}{n^2}$

Single- vs. Many-Electron Atoms

	H, He+, Li ²⁺	He, Li,	
Interactions	Z-e attraction	Z-e attraction e-e repulsion electron spins	
Orbitals	e in a single orbital	e in multiple orbitals	
Coordinates	Zat O, e at r	Z at O , e_1 at r_1 , e_2 at r_2 ,	
Schrödinger Eqn.	Analytical solutions	Approximate solutions	

An electron is attracted by +Z but repelled by -(Z-1)e

Chemistry and Mathematics

Paul A. M. Dirac (1902–1984)

The fundamental laws necessary for the mathematical treatment of a large part of physics and the whole of chemistry are thus completely known, and the difficulty lies only in the fact that application of these laws leads to equations that are too complex to be solved.

The many-electron Schrödinger Equation can only be solved approximately.

Outline

- Interactions in many-electron atoms
- Repulsion between electrons
 - Electrons with same n and I
 - Electrons with different n
 - Electrons with the same n but different I
- Aufbau principle
- Electron configurations

Self-Consistent Field 自洽场

He: $\psi(r_1, r_2)$

He: $\varphi_{1s}(r_1) \cdot \varphi'_{1s}(r_2)$

Repeated trials until $\varphi_{1s}(r_1) = \varphi'_{1s}(r_2)$

Douglas Hartree (Cambridge, 1897–1958)

 $\varphi_{1s}(r) \propto \exp(-Z_{\text{eff}}r/a_0), Z_{\text{eff}}$ is effective nuclear charge

SCF Example: Helium

$$Z_{\text{eff}} = 2 - 0.76$$

= 1.24

$$Z_{\text{eff}}(\text{He 1s}) = 2 - 0.32 = 1.68$$

Screening effect (Shielding effect) 屏蔽效应

Screening effect

Consequence

 $\cdot Z_{\rm eff}$

•
$$V = -\frac{1}{4\pi\varepsilon_0} \frac{Z_{\text{eff}}e^2}{R}$$

• Orbital energy $E_n = -\frac{Z_{eff}^2}{n^2}$

• Orbital radius $r_n = \frac{n^2}{7} a_0$

Outline

- Interactions in many-electron atoms
- Repulsion between electrons
 - Electrons with same n and I
 - Electrons with different n
 - Electrons with the same n but different I
- Aufbau principle
- Electron configurations

The Shell Model for Li

The Shell Model

$$F = -\frac{1}{4\pi\epsilon_0} \frac{Ze^2}{R^2} + \frac{1}{4\pi\epsilon_0} \frac{q_1e^2}{R^2} + \frac{1}{4\pi\epsilon_0} \frac{q_2e^2}{R^2}$$

$$= -\frac{1}{4\pi\epsilon_0} \frac{(Z-q_1-q_2)e^2}{R^2}$$

$$= -\frac{1}{4\pi\epsilon_0} \frac{Z_{\text{eff}}e^2}{R^2}$$

$$V = -\frac{1}{4\pi\varepsilon_0} \frac{Z_{\text{eff}} e^2}{R}, Z_{\text{eff}} = Z - q$$

 $Z_{\rm eff}$ is effective nuclear charge.

2p: Overlap of p Orbitals

The three *p* orbitals occupy separate parts of the space.

3d: Overlap of d Orbitals

3d: Overlap of d Orbitals

3d: Overlap of d Orbitals

X

Outline

- Interactions in many-electron atoms
- Repulsion between electrons
 - Electrons with same n and I
 - Electrons with different n
 - Electrons with the same n but different I
- Aufbau principle
- Electron configurations

The Penetration Effect 钻穿效应

Distance from nucleus (r)

Overlap of Orbital Shells

1s-2p and 2p-3d: Some overlap. 1s-3d: Very little overlap

The Shell Model - hartree orbitals

Revised Energy Levels

(OGC7 p.215)

$$E = 0$$

Orbital Energies (×13.6 eV)

	₁ H	₂ He ⁺	₃ Li ²⁺	₄ Be ³⁺	₅ B ⁴⁺
1 <i>s</i>	-1	-2 ²	-3 ²	-4 ²	-5 ²
2 s, 2 p	-1/2 ²	-(<mark>2/2</mark>) ²	-(3/2) ²	-(4/2) ²	-(5/2) ²

	Н	He	Li	Be	В
1 <i>s</i>	-1	-1.7 ²	-2.7 ²	-3.72	-4.7 ²
2 s			-(1.3/ <mark>2</mark>) ²	-(1.9/ <mark>2</mark>) ²	-(2.6/ <mark>2</mark>) ²
2 p					$-(2.4/2)^2$

Outline

- Interactions in many-electron atoms
- The Shell Model
 - Orbital approximation
 - Effective nuclear charge Z_{eff}
- Aufbau principle
- Electron configurations
 - Li through Ne
 - Transition metals

Aufbau Principle 构造原理

Pauli 1925: Each orbital holds ≤2 electrons, one spin up ↑ and the other spin down ↓.

Hund 1925: Electrons in degenerate orbitals prefer different *m* but the same spin.

Wolfgang Pauli (1900–1958)

Friedrich Hund (1896–1997)

Order of Orbital Energies

3d

$$=\frac{-Z_{\text{eff}}^2}{1}$$

3p

$$n = 2$$

$$n = 3$$

$$n = 6$$

$$n = 7$$

E = 0

Outline

- Interactions in many-electron atoms
- The Shell Model
 - Orbital approximation
 - Effective nuclear charge $Z_{\rm eff}$
- Aufbau principle
- Electron configurations
 - Li through Ne
 - Transition metals

Electron Configurations of H thru Ar

Core and Valence Electrons

Electron Configurations of K thru Zn

Energy

Summary

- Electrons in many-electron atoms can be approximated by independent (sub)shells.
- Each subshell experiences an effective nuclear charge Z_{eff} .
- The order of the subshell energies is $1s < 2s < 2p < 3s < 3p < 4s \leq 3d \dots$
- Aufbau principle determines how electrons fill into these subshells.

Next: Periodic Trends

- Reading:
- OGB8 §3.2, §§3.4–3.6, §5.5

