2.2

Opérations sur les suites

Maths Spé terminale - JB Duthoit

2.2.1 Addition

Propriété

		$\lim_{n o +\infty} u_n$				
	Somme	l	$+\infty$	$-\infty$		
$\lim_{n \to +\infty} v_n$	l'	l + l'	$+\infty$	$-\infty$		
	$+\infty$	$+\infty$	$+\infty$	FI		
	$-\infty$	$-\infty$	FI	$-\infty$		

Remarque

FI signifie que la forme est une **forme indéterminée**, c'est-à-dire que l'on ne peut pas conclure directement sur le résultat. Il faut approfondir l'étude (en transformant l'écriture par exemple)

Exercice 2.19

Déterminer si possible les limites suivantes :

1. Pour tout
$$n \in \mathbb{N}$$
, $u_n = n^2 + n$

2. Pour tout
$$n \in \mathbb{N}$$
, $u_n = n^2 - n$

3. Pour tout
$$n \in \mathbb{N}$$
, $u_n = n^3 + n^2 + n$

4. Pour tout
$$n \in \mathbb{N}$$
, $u_n = n^2 + \frac{1}{n}$

5. Pour tout
$$n \in \mathbb{N}$$
, $u_n = \sqrt{n} + n$

6. Pour tout
$$n \in \mathbb{N}$$
, $u_n = n^2 + 5$

7. Pour tout
$$n \in \mathbb{N}$$
, $u_n = n^2 - 4000$

8. Pour tout
$$n \in \mathbb{N}$$
, $u_n = n^2 - n + 1$

2.2.2 Produit

Les résultats associés à le produit des suites (u_n) et (v_n) sont :

Propriété

		$\lim_{n\to +\infty} u_n$				
	Produit	$l, l \neq 0$	0	$+\infty$	$-\infty$	
$\lim_{n \to +\infty} v_n$	$l', l' \neq 0$	$l \times l'$	0	$\pm \infty$	$\pm \infty$	
	0	0	0	+FI	FI	
	$+\infty$	$\pm \infty$	FI	$+\infty$	$-\infty$	
	$-\infty$	$\pm \infty$	FI	$-\infty$	$+\infty$	

• Exercice 2.20

Soit la suite (u_n) définie par $u_n = n^2 - n$ pour $n \ge 0$.

- 1. Montrer qu'il s'agit d'une forme indéterminée
- 2. Factoriser u_n

3. En déduire la limite de la suite (u_n) .

Exercice 2.21

On considère la suite (u_n) définie pour tout entier naturel n par $u_n = (n^2 - 1)(-n + 7)$. Déterminer la limite de le suite (u_n) .

Exercice 2.22

On considère la suite (u_n) définie pour tout entier naturel n par $u_n = 3^n - 4^n$. Déterminer la limite à l'infini de (u_n) .

Exercice 2.23

Déterminer, dans chacun des cas, la limite de la suite (u_n) définie par :

- 1. Pour tout $n \in \mathbb{N}$, $u_n = 2n^2 + 3n + 1$
- 2. Pour tout $n \in \mathbb{N}$, $u_n = 3n^2 4n + 2$

2.2.3 Quotient

Les résultats associés au quotient des suites (u_n) et (v_n) sont :

Propriété

		$\lim_{n o +\infty} u_n$				
	Quotient	$l, l \neq 0$	0	$+\infty$	$-\infty$	
$\lim_{n \to +\infty} v_n$	$l', l' \neq 0$	$rac{l}{l'}$	0	$\pm \infty$	$\pm \infty$	
	0	$\pm \infty$	FI	$\pm \infty$	$\pm \infty$	
	$+\infty$	0	0	FI	FI	
	$-\infty$	0	0	FI	FI	

Exercice 2.24

Soit la suite (u_n) définie par $u_n = \frac{1}{n^2 + 1}$ pour $n \ge 0$. Déterminer la limite de la suite (u_n) .

Savoir-Faire 2.3

SAVOIR DÉTERMINER LA LIMITE D'UNE SUITE EN UTILISANT LES OPÉRATIONS SUR LES SUITES Déterminer, dans chacun des cas, la limite de la suite (u_n) définie par :

- 1. Pour tout $n \in \mathbb{N}$, $u_n = 3n^2 + n 5$
- 2. Pour tout $n \in \mathbb{N}$, $u_n = 3n^2 n 5$
- 3. Pour tout $n \in \mathbb{N}$, $u_n = \frac{2n+3}{-n-5}$

Exercice 2.25

Déterminer la limite de le suite (u_n) dans chacun des cas suivants :

1.
$$(u_n)$$
 est définie pour tout entier naturel $n \ge 1$ par $u_n = \frac{5n^2 + n}{n^3 + 4n}$.

2.
$$(u_n)$$
 est définie pour tout entier naturel $n \ge 1$ par $u_n = \frac{6n+5}{2n-7}$.

3.
$$(u_n)$$
 est définie pour tout entier naturel $n \ge 1$ par $u_n = \frac{\frac{5}{n} + 7}{8 + \frac{2}{n}}$

4.
$$(u_n)$$
 est définie pour tout entier naturel $n \ge 1$ par $u_n = \frac{n^3 + 2n}{8n^2}$

Exercice 2.26

Déterminer
$$\lim_{n \to +\infty} \frac{\sqrt{n}-1}{n^2+n+1}$$

• Exercice Python 2.27

On considère la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = 3n^2 - 4n + 2$.. Écrire un programme python qui permet de déterminer à partir de quel rang $u_n \geq 10^6$.