Analysis: Simple Polygon

According to Pick's theorem, the area of a simple polygon having integer vertex coordinates is $Area=i+\frac{b}{2}-1$, where i is the number of integer points inside the polygon and b is the number of integer points on its border. If we double this area, as in our problem statement, it follows that $\mathbf{A}=2\times Area=2i+b-2$. Since $i\geq 0$ and $b\geq \mathbf{N}$, a lower bound on the 'doubled-area' \mathbf{A} of a polygon with \mathbf{N} vertices is $\mathbf{A}=2i+b-2\geq \mathbf{N}-2$. Therefore, if $\mathbf{A}<\mathbf{N}-2$, the answer is <code>IMPOSSIBLE</code>. In what follows, we will show that this is a tight lower bound by constructing an \mathbf{N} vertex simple polygon having a 'doubled-area' \mathbf{A} for any given $\mathbf{A}\geq \mathbf{N}-2$.

Test Set 1

There are many ways to construct the necessary polygons. The following drawing shows possible constructions for 3 < N < 5.

These polygons have no internal integer points, therefore, by Pick's theorem, their 'doubled-area' is b-2. For example, for ${\bf N}=5$, we can verify that $b={\bf A}+2$ by counting the integer points on the border. Therefore, the 'doubled-area' is $b-2={\bf A}+2-2={\bf A}$, which validates our construction. Similarly, it can be verified that we have achieved the desired area for ${\bf N}=3$ and ${\bf N}=4$ as well.

The time complexity of the construction is O(1).

Test Set 2

For ${f N}>5$, the construction is a little more involved. Let us start with the base case, where the 'doubled-area' of the polygon is the smallest possible, namely, ${f N}-2$. The following drawing illustrates the construction for $6\leq {f N}\leq 10$, but it can be generalized for arbitrary ${f N}$ by extending the zig-zag shape to the right.

The base polygon has ${\bf N}$ integer points on the border and no internal integer points, therefore, its 'doubled-area' is ${\bf N}-2$. If ${\bf A}>{\bf N}-2$, we just need to introduce ${\bf A}-{\bf N}+2$ more points on the border by say, lifting the top-left vertex up ${\bf A}-{\bf N}+2$ units as shown in the following drawing for ${\bf N}=10$ and ${\bf A}=10$.

The time complexity of the construction is $O(\mathbf{N})$.