기초컴퓨터그래픽스 과제 4

학번 : 20171663

이름 : 이도훈

$$\mathbf{c} = \mathbf{e}_{cm} + \mathbf{a}_{cm} * \mathbf{a}_{cs} + \sum_{i=0}^{n-1} (att_i)(spot_i) [\mathbf{a}_{cm} * \mathbf{a}_{ch} + (\mathbf{n} \odot \overrightarrow{\mathbf{VP}}_{pli}) \mathbf{d}_{cm} * \mathbf{d}_{ch} + (f_i)(\mathbf{n} \odot \mathbf{\hat{h}}_i)^{s_{sm}} \mathbf{s}_{cm} * \mathbf{s}_{ch}]$$

1. e_{cm}

물질의 방사 색깔을 나타낸다.

2. att_i

i번째 광원과 물체 간의 거리에 따른 빛의 밝기 조절을 하는 감쇠효과를 표현한다.

$$att_i = \begin{cases} \frac{1}{k_{0i} + k_{1i} \|\mathbf{V}\mathbf{P}_{pli}\| + k_{2i} \|\mathbf{V}\mathbf{P}_{pli}\|^2}, & \mathbf{P}_{pli} \text{'s } w \neq 0, \\ 1.0, & \text{ot herwise} \end{cases}$$

위와 같이 표현되고 P_{pli} 의 w 좌표가 0인 경우(평행 광원을 사용할 경우) $att_i=1$ 이 되어 빛의 감쇠효과가 일어나지 않는다.

3. spot;

i번째 광원이 spot 광원일 경우를 처리하는 변수다.

$$spot_i = \begin{cases} (\overrightarrow{\mathbf{P}_{pli}}\overrightarrow{\mathbf{V}} \odot \widehat{\mathbf{s}}_{dli})^{s_{rli}}, & c_{rli} \neq 180.0 \ \& \ \overrightarrow{\mathbf{P}_{pli}}\overrightarrow{\mathbf{V}} \odot \widehat{\mathbf{s}}_{dli} \geq \cos c_{rli}, \\ \\ 0.0, & c_{rli} \neq 180.0 \ \& \ \overrightarrow{\mathbf{P}_{pli}}\overrightarrow{\mathbf{V}} \odot \widehat{\mathbf{s}}_{dli} < \cos c_{rli}, \\ \\ 1.0, & c_{rli} = 180.0 \end{cases}$$

위와 같이 표현되고 spot광원 절단 각도 (C_{rli}) 가 180°인 경우와 $C_{rli} \neq 180$ °인 경우로 나누어 생각을 한다. 180°인 경우에는 점 광원을 사용하는 것이고 180°가 아닐 경우에는 spot 광원을 사용하는 것을 의미한다. 이때 바라보는 눈의 위치 V가 절단 각도 범위 내에 들어올 경우 $\overline{P_{pli}V} \cdot \hat{S}_{dli} \geq \cos(C_{rli})$ 가 되며 주변으로 갈수록 어두운 효과를 내기 위해 $(\overline{P_{pli}V} \cdot \hat{S}_{dli})^{s_{rli}}$ 를 사용하여 spot 조명 효과를 내준다. $\overline{P_{pli}V} \cdot \hat{S}_{dli} < \cos(C_{rli})$ 인 경우(spot 조명 밖에 V가 위치한 경우) $spot_i$ 는 0이 되고 광원은 이 지점에 대하여 아무런 기여를 하지 않게 된다.

4. Ambient Reflection(부분)

OpenGL에서는 각 광원에 대한 ambient reflection 색깔로서 광원들이 종합적으로 물체에 미치는 영향을 나타내는 전역 ambient reflection과 n개의 광원에 대해 i번째 광원($0 \le i \le n-1$)를 나타내는 지역 ambient reflection으로 나누어 생각을 한다.

조명 공식에서 $a_{cm}*a_{cs}$ 가 전역 ambient reflection 색깔을 나타낸다. 이때 a_{cs} 는 전반적인 조명 모델을 나타내는 인자로서, scene의 전역 ambient 광원 색깔을 나타낸다. a_{cm} 은 물질의 ambient 색깔을 나타낸다.

 $a_{cm}*a_{cli}$ 은 조명 공식에서 i번 광원에 대한 지역 ambient reflection 색깔이 된다. a_{cm} 은 위에서와 마찬가지로 물질의 ambient 색깔을 의미하고 a_{cli} 는 i번 광원의 ambient 색깔을 나타낸

5. Diffuse Reflection(난반사, 부분)

Diffuse Reflection은 입사 광선을 사방으로 고르게 동일한 밝기로 반사시킨다. 따라서 바라 보는 지점을 고정한 상태에서 시점을 옮겨도 동일한 밝기로 보인다.

n은 물체의 법선 벡터이고 $\overrightarrow{VP_{pli}}$ 는 광원에서 빛이 들어오는 방향의 반대방향에 대한 길이가 1인 단위벡터(L)를 나타낸다(V는 눈의 위치, P_{pli} 는 i번 광원의 위치). 따라서 $n\odot \overrightarrow{VP_{pli}}$ 는 $N \cdot L$ 을 나타낸다. 램버트의 코사인 법칙이 여기에 적용되는데, 두 벡터 사이의 각이 클수록 반사되는 빛의 에너지의 양이 적어져 난반사 효과는 작아진다. d_{cm} 은 물질의 난반사 색깔, d_{cli} 는 i번째 광원의 난반사 색깔을 나타낸다.

만약 $n \odot \overrightarrow{VP_{pli}}$ 의 값이 음수라면 내적의 값은 0이 된다. 물체의 뒤에서 들어오는 빛은 무시한다는 뜻이다.

6. Specular Reflection(정반사, 부분)

Specular reflection은 입사 광선을 특정 방향을 중심으로 집중적으로 반사시킨다. halfway vector를 뜻하는 h_i 는

$$h_i = egin{dcases} \overrightarrow{VP_{pli}} + \overrightarrow{VP_e}, & v_{bs} = TRUE \ \overrightarrow{VP_{pli}} + (0010)^t, & v_{bs} = FALSE \end{cases}$$
 와 같이 나타난다.

halfway vector는 광원에 대한 방향과 관찰자 방향의 중간 방향으로의 단위 벡터이다. $(\frac{L+V}{|L+V|})$

위의 식에서 v_{bs} 는 지역관찰자의 유무를 나타낸다. 만약 지역관찰자를 사용한다면 $(v_{bs} = \text{TRUE})$ 인 경우) 는 좌표계의 원점이 $P_e = (0001)^t$ 에 있는 상황이므로 꼭짓점 좌표 V에서 원점으로 향한 $\overrightarrow{VP_e}$ 가 관찰자 방향이 된다. 만약 무한관찰자를 사용한다면 $(v_{bs} = \text{FALSE0})$ 경우) 는 좌표계에서 z_e 축 방향인 $(0010)^t$ 이 관찰자 방향으로 사용되고 halfway vector는 단위 벡터여야하므로 \hat{h}_i 가 실제로 사용하는 halfway vector가 된다. 연산 속도를 높이기 위해서 halfway vector를 사용한다.

 $(n \cdot \hat{h}_i)^{S_{rm}}$ 은 물질의 정반사 계수 S_{rm} 을 이용하여 표현한 식으로 h_i 방향으로 반사된 빛이 집중되는 것을 나타낸다. 물질의 정반사 색을 나타내는 S_{cm} 과 i번 광원의 정반사 색 S_{cli} 를 곱해서 i번 광원에 대한 정반사 색을 계산한다.

이때 $f_i = egin{cases} 0 & n & V_{pli} \leq 0 \\ 1 & n & V_{pli} > 0 \end{cases}$ 로 정의되는데 물체의 뒤에서 들어오는 빛을 무시한다는 것을 의미한다.