# Teoría de Aproximación



### **Ejemplo**

**Descripción** 

**Objetivos** 

**Temario** 

- Ensayos en laboratorio que miden, con un cierto error, la permeabilidad de un material para diferentes presiones
- Estimar su permeabilidad para presiones intermedias



### **Aproximación**

- **Descripción**
- **Objetivos**
- **☐** Temario
- 🗅 Bibliografía

- Aprender los diferentes tipos de aproximación dependiendo de la "medida" y su interpretación geométrica
- Entender la similitud entre el planteamiento de la minimización del error continua y discreta
- Comprender la generación de la aproximación por mínimos cuadrados y los cambios de variable para linealizar el problema

### Aproximación por mínimos cuadrados discretos

Supongamos calcular valores en puntos intermedios no tabulados







- Distancias
- Mínimos cuadrados Aprox. Uniforme
- <u> 🗀 Bibliografía</u>



Pero es poco probable una función que pase por todos esos puntos



### Aproximación por mínimos cuadrados discretos

El procedimiento consiste en encontrar un polinomio P(x) de grado adecuado que aproxime a los puntos dados con el menor error posible

**☐ Descripción** 

<u> Dbjetivos</u>

**Temario**Introducción

- Distancias

- Mínimos cuadrados Aprox. Uniforme

🗀 Bibliografía

Para ello realizamos las derivadas respecto a las incógnitas del polinomio y despejamos las mismas con un determinado criterio que maximice o minimice la función buscada

#### **Minimax**

$$\max_{1 \le i \le n} \{ |f(x_i) - P(x_i)| \} = minimo$$

#### Desviación absoluta

$$\sum_{i=1}^{n} |f(x_i) - P(x_i)| = \sum_{i=1}^{n} d_i = minimo$$

#### Desviación cuadrática

$$\sum_{i=1}^{n} |f(x_i) - P(x_i)|^2 = \sum_{i=1}^{n} d_i^2 = minimo$$

### Aproximación por mínimos cuadrados discretos

Supongamos calcular valores en puntos intermedios no tabulados

| _ | D   | •    | • /   |
|---|-----|------|-------|
| ╛ | Des | crij | oción |
|   |     | _    |       |





Introducción

- Distancias
- Mínimos cuadrados Aprox. Uniforme
- 🗀 Bibliografía

| $x_i$ | $y_i$ | $x_i$ | $y_i$ |
|-------|-------|-------|-------|
| 1     | 1.3   | 6     | 8.8   |
| 2     | 3.5   | 7     | 10.1  |
| 3     | 4.2   | 8     | 12.5  |
| 4     | 5.0   | 9     | 13.0  |
| 5     | 7.0   | 10    | 15.6  |



Aparentemente la relación entre x e y es una línea recta...

Pero es poco probable una función que pase por todos esos puntos

### Aproximación por mínimos cuadrados discretos

Supongamos calcular valores en puntos intermedios no tabulados







Aparentemente la relación entre x e y es una linea recta...

Pero es poco probable una función que pase por todos esos puntos sin introducir errores significativos

Sea la ecuacion  $a_1x_i + a_0$  que representa el *i-esimo* valor en la recta de aproximacion e  $y_i$  es el *i-esimo* valor dado de y

¿Cuál es la mejor recta que aproxima a esos puntos?

### Aproximación por mínimos cuadrados discretos

**Minimax**: Consiste en hacer que la máxima distancia entre un punto y la recta de aproximación sea mínima:

$$\max_{1 \le i \le n} \{ |y_i - (a_1 x_i + a_0) \}$$

Desviación absoluta

$$\sum_{i=1}^{n} |y_i - (a_1 x_i - a_0)| = \sum_{i=1}^{n} d_i = minimo$$

Para minimizar esta expresión debemos igualar sus derivadas a cero y resolver las ecuaciones

$$\frac{\partial}{\partial a_0} \sum_{i=1}^n |y_i - (a_1 x_i - a_0)| = 0$$

$$\frac{\partial}{\partial a_1} \sum_{i=1}^n |y_i - (a_1 x_i - a_0)| = 0$$

El problema que la función valor absoluto no es diferenciable en cero



Función y = |x|

### **Descripción**





Introducción

- Distancias
- Mínimos cuadrados Aprox. Uniforme
- 🗀 Bibliografía

### Aproximación por mínimos cuadrados discretos

**Minimos Cuadrados** Consiste en hacer que la sumatoria de las distancias al cuadrado entre un punto y la recta de aproximación sea mínima:

$$\sum_{i=1}^{n} [y_i - (a_1 x_i - a_0)]^2 = \sum_{i=1}^{n} d_i^2 = minimo$$

Para minimizar esta expresión debemos igualar sus derivadas a cero y resolver las ecuaciones

$$\frac{\partial}{\partial a_0} \sum_{i=1}^n [y_i - (a_1 x_i - a_0)]^2 = 0$$

$$\frac{\partial}{\partial a_1} \sum_{i=1}^n [y_i - (a_1 x_i - a_0)]^2 = 0$$

**☐** Descripción



**Temario**Introducción

- Distancias

- Mínimos cuadrados

**Aprox.** Uniforme

### Aproximación por mínimos cuadrados discretos

$$0 = \frac{\partial}{\partial a_0} \sum_{i=1}^{m} \left[ (y_i - (a_1 x_i - a_0))^2 = 2 \sum_{i=1}^{m} (y_i - a_1 x_i - a_0)(-1) \right]$$

$$0 = \frac{\partial}{\partial a_1} \sum_{i=1}^{m} [y_i - (a_1 x_i + a_0)]^2 = 2 \sum_{i=1}^{m} (y_i - a_1 x_i - a_0)(-x_i).$$

Esto se simplifica en las ecuaciones sigientes

$$a_0 \cdot m + a_1 \sum_{i=1}^m x_i = \sum_{i=1}^m y_i$$
 y  $a_0 \sum_{i=1}^m x_i + a_1 \sum_{i=1}^m x_i^2 = \sum_{i=1}^m x_i y_i$ .

$$a_0 = \frac{\sum_{i=1}^m x_i^2 \sum_{i=1}^m y_i - \sum_{i=1}^m x_i y_i \sum_{i=1}^m x_i}{m \left(\sum_{i=1}^m x_i^2\right) - \left(\sum_{i=1}^m x_i\right)^2} \qquad a_1 = \frac{m \sum_{i=1}^m x_i y_i - \sum_{i=1}^m x_i \sum_{i=1}^m y_i}{m \left(\sum_{i=1}^m x_i^2\right) - \left(\sum_{i=1}^m x_i\right)^2}.$$

### **□** Descripción

Introducción

- Distancias
- Mínimos cuadrados

**Aprox.** Uniforme

### Ejemplo: Aproximación por mínimos cuadrados

| <u> </u> | Descri | pción |
|----------|--------|-------|
|          | Objeti | vos   |

<u> Temario</u>

Introducción

- Mínimos cuadrados

**Aprox. Uniforme** 

- Distancias

|       |       | $x_i^2$     | Y 11      | P(r) = 1.539r = 0.360                               |
|-------|-------|-------------|-----------|-----------------------------------------------------|
| $x_i$ | $y_i$ | $\lambda_i$ | $x_i y_i$ | $P(x_i) = 1.538x_i - 0.360$                         |
| 1     | 1.3   | 1           | 1.3       | 1.18                                                |
| 2     | 3.5   | 4           | 7.0       | 2.72                                                |
| 3     | 4.2   | 9           | 12.6      | 4.25                                                |
| 4     | 5.0   | 16          | 20.0      | 5.79                                                |
| 5     | 7.0   | 25          | 35.0      | 7.33                                                |
| 6     | 8.8   | 36          | 52.8      | 8.87                                                |
| 7     | 10.1  | 49          | 70.7      | 10.41                                               |
| 8     | 12.5  | 64          | 100.0     | 11.94                                               |
| 9     | 13.0  | 81          | 117.0     | 13.48                                               |
| 10    | 15.6  | 100         | 156.0     | 15.02                                               |
| 55    | 81.0  | 385         | 572.4     | $E = \sum_{i=1}^{10} (y_i - P(x_i))^2 \approx 2.34$ |

$$a_0 = \frac{385(81) - 55(572.4)}{10(385) - (55)^2} = -0.360$$
  $a_1 = \frac{10(572.4) - 55(81)}{10(385) - (55)^2} = 1.538$ 

$$P(x) = 1.538x - 0.360$$

# Ejemplo: Aproximación por mínimos cuadrados



- <u> Objetivos</u>
- <u> Temario</u>

Introducción

- Distancias
- Mínimos cuadrados

**Aprox. Uniforme** 



### Aproximación por mínimos cuadrados Polinomiales

El problema consiste en aproximar un conjunto de datos  $\{(x_i, y_i) | i = 1, 2, \dots, m\}$  con un polinomio algebraico de la forma:

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

de grado n < m - 1 por un procedimiento de mínimos cuadrados de manera similar a lo visto anteriormente. Seleccionamos las constantes  $a_0, a_1, \ldots, a_n$ , para minimizar el error medio cuadrático E

$$E = \sum_{i=1}^{m} (y_i - P_n(x_i))^2$$

$$= \sum_{i=1}^{m} y_i^2 - 2 \sum_{i=1}^{m} P_n(x_i) y_i + \sum_{i=1}^{m} (P_n(x_i))^2$$

$$= \sum_{i=1}^{m} y_i^2 - 2 \sum_{i=1}^{m} \left( \sum_{j=0}^{n} a_j x_i^j \right) y_i + \sum_{i=1}^{m} \left( \sum_{j=0}^{n} a_j x_i^j \right)^2$$

$$= \sum_{i=1}^{m} y_i^2 - 2 \sum_{j=0}^{n} a_j \left( \sum_{i=1}^{m} y_i x_i^j \right) + \sum_{j=0}^{n} \sum_{k=0}^{n} a_j a_k \left( \sum_{i=1}^{m} x_i^{j+k} \right)$$

☐ Descripción

<u> Dbjetivos</u>

- Distancias

- Mínimos cuadrados

**Aprox.** Uniforme

### Aproximación por mínimos cuadrados Polinomiales

Como el caso lineal par minimizar E es necesario realizar  $\frac{\partial E}{\partial a_j} = 0$  para cada  $j = 0, 1, 2, \dots, n$ 

Por lo tanto para cada *j* debemos tener

$$0 = \frac{\partial E}{\partial a_j} = -2\sum_{i=1}^m y_i x_i^j + 2\sum_{k=0}^n a_k \sum_{i=1}^m x_i^{j+k}$$

Esto nos da n + 1 ecuaciones para las n + 1 constantes  $a_i$ 

$$a_0 \sum_{i=1}^m x_i^0 + a_1 \sum_{i=1}^m x_i^1 + a_2 \sum_{i=1}^m x_i^2 + \dots + a_n \sum_{i=1}^m x_i^n = \sum_{i=1}^m y_i x_i^0$$

$$a_0 \sum_{i=1}^m x_i^1 + a_1 \sum_{i=1}^m x_i^2 + a_2 \sum_{i=1}^m x_i^3 + \dots + a_n \sum_{i=1}^m x_i^{n+1} = \sum_{i=1}^m y_i x_i^1$$

 $a_0 \sum_{i=1}^m x_i^n + a_1 \sum_{i=1}^m x_i^{n+1} + a_2 \sum_{i=1}^m x_i^{n+2} + \dots + a_n \sum_{i=1}^m x_i^{2n} = \sum_{i=1}^m y_i x_i^n$ 

Introducción

- Distancias

- Mínimos cuadrados

**Aprox.** Uniforme

## Ejemplo: Aproximación por mínimos cuadrados



### <u> Objetivos</u>

### <u> Temario</u>

Introducción

- Distancias

- Mínimos cuadrados

**Aprox.** Uniforme

| i | $x_i$ | $y_i$  |
|---|-------|--------|
| 1 | 0     | 1.0000 |
| 2 | 0.25  | 1.2840 |
| 3 | 0.50  | 1.6487 |
| 4 | 0.75  | 2.1170 |
| 5 | 1.00  | 2.7183 |
|   |       |        |

$$n = 2$$
  
 $m = 5$ 



$$5a_0 + 2.5a_1 + 1.875a_2 = 8.7680,$$
  $a_0 = 1.005075519,$   $2.5a_0 + 1.875a_1 + 1.5625a_2 = 5.4514,$   $a_1 = 0.8646758482,$   $1.875a_0 + 1.5625a_1 + 1.3828a_2 = 4.4015.$   $a_2 = 0.8431641518.$ 

$$P_2(x) = 1.0051 + 0.86468x + 0.84316x^2$$

Algunas veces podemos asumir que los datos presentan una forma siguiente

- Exponencial  $y = be^{ax}$
- Potencial  $y = bx^a$

La dificultad radica cuando queremos minimizar el error medio cuadrático E

$$E = \sum_{i=1}^{m} (y_i - be^{ax_i})^2$$

$$0 = \frac{\partial E}{\partial b} = 2\sum_{i=1}^{m} (y_i - be^{ax_i})(-e^{ax_i})$$

$$0 = \frac{\partial E}{\partial a} = 2\sum_{i=1}^{m} (y_i - be^{ax_i})(-bx_ie^{ax_i})$$

$$E = \sum_{i=1}^{m} (y_i - bx_i^a)^2$$

$$0 = \frac{\partial E}{\partial b} = 2\sum_{i=1}^{m} (y_i - bx_i^a)(-x_i^a)$$

$$0 = \frac{\partial E}{\partial a} = 2\sum_{i=1}^{m} (y_i - bx_i^a)(-b(\ln x_i)x_i^a)$$

### ☐ Descripción

Introducción Mínimos cuadrados

- No lineal

En general es difícil de resolver estas ecuaciones por lo que se recurre a la **linealización** de estas ecuaciones

- Exponencial  $y = be^{ax}$   $\ln y = \ln b + ax$
- Potencial  $y = bx^a$   $\ln y = \ln b + a \ln x$

Ahora parece un problema lineal y las soluciones para ln *b* y *a* se obtienen modificando adecuadamente las ecuaciones obtenidas anteriormente

- <u> Descripción</u>
- <u> Dbjetivos</u>
- <u>Temario</u> Introducción Mínimos cuadrados

- No lineal

### Ejemplo: Aproximación por mínimos cuadrados





**Temario** 

Introducción

- Distancias

- Mínimos cuadrados

| i | $x_i$ | $y_i$ |
|---|-------|-------|
| 1 | 1.00  | 5.10  |
| 2 | 1.25  | 5.79  |
| 3 | 1.50  | 6.53  |
| 4 | 1.75  | 7.45  |
| 5 | 2.00  | 8.46  |

$$y = be^{ax}$$

$$\ln y = \ln b + ax$$



$$a = \frac{(5)(14.422) - (7.5)(9.404)}{(5)(11.875) - (7.5)^2} = 0.5056$$

$$a = \frac{(5)(14.422) - (7.5)(9.404)}{(5)(11.875) - (7.5)^2} = 0.5056 \qquad \ln b = \frac{(11.875)(9.404) - (14.422)(7.5)}{(5)(11.875) - (7.5)^2} = 1.122$$

| i | $x_i$ | $y_i$ | $3.071e^{0.5056x_i}$ | $ y_i - 3.071e^{0.5056x_i} $ |
|---|-------|-------|----------------------|------------------------------|
| 1 | 1.00  | 5.10  | 5.09                 | 0.01                         |
| 2 | 1.25  | 5.79  | 5.78                 | 0.01                         |
| 3 | 1.50  | 6.53  | 6.56                 | 0.03                         |
| 4 | 1.75  | 7.45  | 7.44                 | 0.01                         |
| 5 | 2.00  | 8.46  | 8.44                 | 0.02                         |

$$y = 3.071e^{0.5056x_i}.$$

En general es difícil de rersolver estas ecuaciones por lo que se recurre a la **linealización** de estas ecuaciones

- Exponencial  $y = be^{ax}$   $\ln y = \ln b + ax$
- Potencial  $y = bx^a$   $\ln y = \ln b + a \ln x$

Ahora parece un problema lineal y las soluciones para ln *b* y *a* se obtienen modificando adecuadamente las ecuaciones obtenidas anteriormente

### GeoGebra

https://www.geogebra.org/m/cBhW72bE

- **Descripción**
- **Objetivos**
- Temario
  Introducción
  Mínimos cuadrados

- No lineal