Kapittel 8: Mer mengdelære

Nettkurs

Boka

Den universelle mengden

- ullet Vi antar at det i alle kontekster er en underliggende **universell mengde** (universal set) og at U står for denne mengden. Hvis ingenting annet er spesifisert, antar vi at U står for en vilkårlig universell mengde.
- Hva som er den universelle mengden varierer fra sammenheng til sammenheng
- I definisjonene av de andre operasjonene på mengder er den universelle mengden ikke nødvendig.

Mengdekomplementet

- Hvis M er en mengde, og U er den universelle mengden, er **komplementet** (complement) til M mengden av alle elementer i U som ikke er med i M. Komplementet til M skrives som \overline{M} .
- $\overline{M} = U \setminus M$
- Når vi skriver \overline{M} , må den universelle mengden være kjent eller vi må anta at det finnes en vilkårlig universell mengde.

Regne med Venn-diagrammer

Venn-diagrammer for flere mengder

• Tre mengder

• Fire mengder

• Fem mengder

Potensmengder

- ullet Hvis M er en mengde, er **potensmengden** (power set) til M mengden av alle delmengder av M.
- ullet Vi skriver $\mathcal{P}(M)$ for potensmengden til M.

- Hvis en endelig mengde har n elementer, så har potensmengden alltid 2^n elementer.
- Eksempler:
 - \circ Potensmengden til \emptyset er $\{\emptyset\}$.
 - Potensmengden til $\{1\}$ er $\{\emptyset, \{1\}\}$.
 - $\circ \ \ \text{Potensmengden til } \{1,2\} \text{ er } \{\emptyset,\{1\},\{2\},\{1,2\}\}.$
 - \circ Potensmengden til $\{1,2,3\}$ er $\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}.$

Kardinalitet

- To mengder M og N har lik **kardinalitet** (same cardinality) hvis det finnes en en-til-en korrespondanse mellom elementene i M og N.
- Det skrives som |M| = |N|.
- ullet Mengden M har **kardinalitet mindre eller lik** N hvis det finnes en en-til-en korrespondanse mellom M og en delmengde av N.
- ullet Det skrives som $|M|\leqslant |N|$.
- |M| står for antall elementer i M, fordi hvis M er en endelig mengde, så er kardinalitet til M lik antall elementer i M.

Tellbarhet

- ullet En uendelig mengde M er **tellbar** (countable) hvis det er en en-til-en korrespondanse mellom elementene i M og de naturlige tallene. Hvis ikke, er M overtellbar (uncountable).
- Alle endelige mengder er tellbare.
- Mengden av heltall, \mathbb{Z} , er tellbar. For å bevise dette, må vi lage en en-til-en korrespondanse mellom \mathbb{Z} og \mathbb{N} :

Overtellbarhet

- Det finnes mengder så store at de er ikke tellbare
- Cantors diagonalbevis er en måte å bevise dette på.

•	Generelt er det slik at potensmengden til en mengde alltid har større kardinalitet
	enn mengden selv.

• Potensmengder er også definert for uendelige mengder, og vi kan bevise at det aldri eksisterer en surjektiv funksjon fra en mengde til dens potensmengden.