The SAT Problem

Informal definition

• The SAT problem

Assignment Project Exam Help

SAT algorithms

Applications

https://tutorcs.com WeChat: cstutorcs

The Boolean Satisfiability Problem

the set of all NP problems

Why is SAT important?

In theory

Canonical NP-Complete problem

In practice

Applied in many Computer Science problems: Assignment Project Exam Help

- reachability analysis
- planning https://tutorcs.com
- > analysis of gene regulatory network
- > fault diagnosis

SAT 2016 competition										
Organizers	Marijn Heule, Matt	<u>Marijn Heule,</u> <u>Matti Järvisalo</u> <u>Tomáš Balyo</u>								
Proceedings	Descriptions of th	Descriptions of the solvers and benchmarks								
Benchmarks	Available here	Available here								
Solvers	Available here									
	Gold	Silver	Bronze	Gold	Silver	Bronze	Gold	Silver	Bronze	
		Agile Track			Main Track			Random Track		
SAT+UNSAT	Riss	TB_Glucose	CHBR_Glucose	MapleCOMSPS	Riss	Lingeling	Dimetheus	CSCCSat	DCCAlm	
		Parallel Track		No-Limit	Track		Increment	al Library T	rack	
SAT+UNSAT	Treengeling	Plingeling	CryptoMiniSat	BreakIDCOMiniSatPS	Lingeling	abcdSAT	CryptoMiniSat	Glucose	Riss	
	Best Application E	Benchmark Solv	er in the Main Track	Best Crafted Benchmark	Solver in the	Main Track	Best Glucose H	ack in the I	/lain Track	
SAT+UNSAT	MapleCOMSPS			TC Glucose			Kiel			

What is the Boolean Satisfiability problem?

Informally

Given a propositional formula φ , the Boolean satisfiability (SAT) problem posed on φ means to determine whether there exists a variable assignment under which φ evaluates to true.

Formally Assignment Project Exam Help

Let X be a set of propositional variables. Let F be a set of clauses over X.

- > F is Satisfiable wife there exists on $X \rightarrow \{0,1\}$ s.t. $v \models F$
- ➤ F is Unsatisfiable iff $v \neq F$, for all $v: X \rightarrow \{0,1\}$

Example

C1 =
$$\{\neg x_1 \lor x_2, \neg x_2 \lor x_3\} = (\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3)$$
 Sat(C1) = Yes $x_1 = 0, x_3 = 1,$ C2 = C1 $\cup \{x_1, \neg x_3\} = (x_3 \land \neg x_3)$ Sat(C2) = No

Why in CNF?

• There are efficient algorithms that can transform formulae into CNF.

Assignment Project Exam Help

https://tutorcs.com

- Most SAT swiggerst can exploit CNF
 - Easy to detect a conflict
 - Easy to remember partial assignments that don't work (just add 'conflict' clauses)

It's a hard problem..!

A k-SAT problem with input in CNF with at most k literals in each clause...

- Complexity for different values of k:
 - 2-SAT: in https://tutorcs.com
 - 3-SAT: in NP ConfigNetworcs
 - ->3-SAT: is also NP-complete

A classification of SAT algorithms

- Complete algorithms
 - Proof systems natural deduction, tableau, etc..
 - Davis-Putman (DP)
 - based ssignment Project Exam Help
 - Stalmarck's the three com
 - Davis-Logemann-Loveland (DLL/DPLL)
 - search-based, basis for most successful solvers
 - Conflict-Driven Clause Learning (CDCL)
- Incomplete algorithms
 - Local search /hill climbing
 - Genetic algorithms

Notation and Terminology

Polarity of a variable in a clause

The "sign" with which the variable appears in the clause:

 $x_1 \lor \neg x_2$ x_1 positive polarity, x_2 negative polarity Assignment Project Exam Help

- Clause shorthand notations https://tutorcs.com Let $C = x_1 \lor x_2 \lor \neg x_3 \lor \neg x_4$, we can write it $x_1x_2\neg x_3\neg x_4$ or we chat: Hestûtorcs or as $\{x_1, x_2, \neg x_3, \neg x_4\}$
- Resolution:

Two clauses C1 and C2 that contain a variable x with opposite polarities, implies a new clause C3 that contains all literals except x and $\neg x$.

$$\{x_1, \neg x_2\} \ \{x_2, \neg x_3\} \longrightarrow \{x_1, \neg x_3\}$$

Davis-Putman (DP) Algorithm

Give a set S of clauses

For every variable in S

- for every clause C_j containing the variable and every clause C_j containing the hegation of the variable C_j containing the hegation of the variable C_j containing the hegation of
- add the resolvent to the set S of clauses
- 3. remove from S all original clauses containing the variable or its negation.

Two possible termination cases:

- Derive the empty clause (conclude UNSAT)
- All variables have been selected

Davis-Putman (DP): Example

```
Let S = \{\{p,q\} \{p,\neg q\} \{\neg p,q\} \{\neg p,\neg q\} \} choose p
S' = \{\{p,q\} \{p,\neg q\} \{\neg p,\neg q\} \{q\} \{q,\neg q\} \{\neg q\} \}\}
S' = \{\{q\} \{q,\neg q\} \{\neg p,\neg q\} \{\neg p,\neg q\} \{q\} \{q,\neg q\} \{\neg q\} \}\}
S'' = \{\{q\} \{q, \neg q\} \{\neg p,\neg q\} \{\neg p,\neg q\} \{q\} \{q,\neg q\} \{\neg q\} \}
S'' = \{\{q\} \{q, \neg q\} \{\neg p,\neg q\} \{\neg p,\neg q\} \{\neg q\} \{\neg q\} \}
S'' = \{\{q\} \{q, \neg q\} \{\neg p,\neg q\} \{\neg p,\neg q\} \{\neg q\} \{\neg q\} \}
S'' = \{\{q\} \{q, \neg q\} \{\neg p,\neg q\} \{\neg p,\neg q\} \{\neg q\} \{\neg q\} \}
S'' = \{\{q\} \{q, \neg q\} \{\neg p,\neg q\} \{\neg p,\neg q\} \{\neg q\} \{\neg q\} \{\neg q\} \}
S'' = \{\{q\} \{q, \neg q\} \{\neg p,\neg q\} \{\neg p,\neg q\} \{\neg q\} \{\neg q\} \{\neg q\} \}
S'' = \{\{q\} \{q, \neg q\} \{\neg p,\neg q\} \{\neg p,\neg q\} \{\neg q\} \{\neg q\} \{\neg q\} \}
S'' = \{\{q\} \{q, \neg q\} \{\neg p,\neg q\} \{\neg p,\neg q\} \{\neg q\} \{\neg q\} \{\neg q\} \}
S'' = \{\{q\} \{q, \neg q\} \{\neg p,\neg q\} \{\neg p,\neg q\} \{\neg q\}
```

Davis-Putman (DP): Example 1

Let
$$S = \{\{p,q\} \{p,\neg q\} \{\neg p,q\} \{\neg p,\neg q\} \}$$
 choose p
$$S' = \{\{p,q\} \{p,\neg q\} \{\neg p,q\} \{\neg p,\neg q\} \{q\} \{q,\neg q\} \{\neg q\} \}$$

$$S' = \{\{q\} \{q,\neg q\} \{\neg p,\neg q\} \{\neg p,\neg q\} \{q\} \{q,\neg q\} \{\neg q\} \}$$

$$S'' = \{\{q\} \{q, \neg q\} \{\neg p,\neg q\} \{\neg p,\neg q\} \{q\} \{q,\neg q\} \{\neg q\} \}$$
 What about tautologies?
$$S'' = \{\{q\} \{q\} \{\neg p,\neg q\} \{\neg p,\neg q\} \{\neg p,\neg q\} \{\neg q\} \{\neg q\} \}$$
 We Chat: cstutorcs

Eliminate tautologies first

$$S'' = \{ \{q\} \{ \neg q\} \}$$

choose q

$$S" = \{ \{ \} \}$$

EMPTY CLAUSE: UNSAT

Davis-Putman (DP): Example II

Let
$$S = \{ \{p, \neg q\} \{q\} \} \}$$
 choose q

$$S' = \{ \{p, \neg q\} \{q\} \{p\} \} \}$$

$$S' = \{ \{p\} \}$$
 No further variable can be chosen Assignment Project Exam Help Satisfiable and any assignment MUST make p true https://tutprex.com

- p appears only positively instheasiven set S of clauses.
- we could remove the clause that includes p from the beginning and "remember" that p has to be true.

$$S = \{ \{p, \neg q\} \{q\} \}$$
 [p]
 $S = \{ \{q\} \}$ [p, q]
 $S = \{ \}$

Basic Rules

Pure Literal rule

• Given a CNF formula F, expressed as a set S of clauses, a literal is pure in F if it only occurs only as a positive or as a negative literal in S.

$$S = Assignment_X Project_X Exam Help_{X_4}$$

https://dutoacs.pore literals

• Clauses containing pure literals can be removed from the formula (i.e. assign pure literals to the values that satisfy the clauses)

$$S = \{\{\neg x_1, x_2\} \{x_3, \neg x_2\} \{x_4, \neg x_5\} \{x_5, \neg x_4\}\}$$

$$S' = \{\{x_4, \neg x_5\} \{x_5, \neg x_4\}\}$$
Remember $[\neg x_1, x_3]$

Assignment must make x_1 = false and x_3 = true

Basic Rules

Unit clause

Clause with a single literal. It is satisfied by assuming the literal to be true.

Unit propagation rule

Once a literal has been assigned its assignment people to be propagated to other clauses:

- Every clause (othetphan the unit clause, is removed
- In every clause that contains the negation of the unit clause, this negated literal is deleted

$$\begin{split} S &= \{ \ \{x_1, x_2\} \ \ \{\neg x_1 \ x_3\} \ \ \{\neg x_3 \ x_4\} \ \ \ \{x_1\} \} \} \\ & \text{removed} \quad \neg x_1 \text{ deleted unchanged unchanged} \\ S' &= \{ \ \{x_3\} \ \ \{\neg x_3 \ x_4\} \ \ \ \{x_1\} \} \} \\ & X_1 \text{ become then pure literal} \end{split}$$

Using a partial assignment: a clause can be unit clause when all literal except one are assigned based on a given partial assignment.

Improved Davis-Putman (DP) Algorithm

DP(M, S): M is a partial model of clauses processed so far S is set of clauses still to process

DP([], S) (At the beginning) Assignment Project Exam Help Iteratively apply the following steps:

- > Select a variablettps://tutorcs.com
- Apply resolution rule between every pair of clauses of the form $(x \lor \alpha)$ and $(\neg x \lor \beta)$ in S
- \triangleright Remove all clauses containing either x or $\neg x$
- Apply the pure literal rule and unit propagation

Terminate when either the empty clause or empty formula (equivalently, a formula containing only pure literals) is derived

Davis-Putman (DP) Algorithm II: example

Satisfiable provided that x_3 is true.

Improved Davis-Putman (DP) Algorithm

Key ideas:

- Resolution eliminates 1 variable at each step Assignment Project Exam Help
- > Use of pure literal rule and unit propagation

WeChat: cstutorcs

But still inefficient.....

DLL (or DPLL) Algorithm

Basic idea:

- Instead of eliminating variables Help split on a given variable at each step https://tutorcs.com
- Also apply the pure literal rule and unit propagation

Basic Rules and Notations for DLL

Let F be the initial set of clauses and let $M = \{\}$ be initial assignment. Let Sc be the current set of clauses:

UNSAT(Sc)	ssignment Project Exama infelbe
SAT(Sc)	If Sc = {} then F is satisfiable
MULT(L, Sc)	https://tutorcs.com If a literal occurs more than once in a clause in Sc, then all
	but one can be deleted WeChat: CStutorcs
SUB(C, Sc)	A clause C in Sc can be deleted, if it is a superset of another clause in Sc
TAUT(C, Sc)	Delete from Sc any clause that contains a literal L and its negation ¬L
PURE(L, Sc)	If L is a pure literal in Sc, delete all clauses that contain L, and add L to M (i.e. $M = M \cup \{L\}$).

Basic Rules and Notations for DLL

Let F be the initial set of clauses and let $M = \{\}$ be initial assignment. Let Sc be the current set of clauses:

UNIT(L, Sc)	IAssignment careject, Exameled plauses in Sc that include L, remove the element ¬L from the remaining clauses, and adhlttps://itutorcyleom).
SPLIT(L,Sc)	 If Sc contains two clauses of the form {{C.WeCtat:Lcstutoros} the computation. One branch has M = M ∪ {L} and Sc is generated as in UNIT rule assuming L to be the fact. Other branch has M = M ∪ {¬L} and Sc is generated as in UNIT rule assuming ¬L to be the fact.

DLL Procedure (pseudo code)

DLL(M, S): boolean;

%M is a (partial) model so far and S are clauses still to process

- 1. If SAT(S) return true; %M is a (partial) model
- 2. If UNSAT(S) return false ment projected am Help
- 3. If SUB(C, S) return $DLL(M, S \setminus C)$;
- 4. If PURE(L, S) return $\frac{\text{ttpsi/tutossscops}}{\text{tutossscops}} \{ C_i \mid L \text{ in } C_i \}; %Make L true$
- 5. If UNIT(L, S) return We(hat. S') S' generated from S by removing clauses containing L, and removing ¬L from rest.
- 6. If UNIT(¬L, S) return DLL([¬L | M], S'), S' generated from S by removing clauses containing ¬L, and removing L from rest.
- 7. Otherwise, SPLIT(L, S) return DLL([L | M], S') \vee DLL([¬L | M], S"), S' formed as in Step 5, and S" formed as in Step 6.

DLL Example

$$S = \{\{x_{1},x_{2}\} \ \{x_{4}, \neg x_{2}, \neg x_{3}\} \ \{\neg x_{1}, x_{3}\} \ \{\neg x_{4}\} \ \} \qquad M = \{\} \\ \qquad \qquad \qquad \qquad \qquad \qquad M = \{\neg x_{4}\} \\ S_{1} = \{\{x_{1},x_{2}\} \ \{\neg x_{2}, \neg x_{3}\} \ \{\neg x_{1}, x_{3}\} \} \\ S_{2} = \{\{x_{1},x_{2}\} \ \{\neg x_{2}, \neg x_{3}\} \ \{\neg x_{1}, x_{3}\} \} \\ S_{3} = \{\{x_{1},x_{2}\} \ \{\neg x_{2}, \neg x_{3}\} \ \{\neg x_{1}, x_{3}\} \} \\ M = \{x_{1},\neg x_{4}\} \qquad M = \{\neg x_{1},\neg x_{4}\} \\ S_{1} = \{\{x_{2}\} \ \{\neg x_{2}, \neg x_{3}\} \} \\ We Chat: cstutorcs \qquad M = \{\neg x_{2}, \neg x_{3}\} \} \\ UNIT(x_{2}, x_{1}) \qquad M = \{x_{2}, \neg x_{1}, \neg x_{4}\} \\ S_{2} = \{\{\neg x_{2}\}\} \qquad S_{2} = \{\{\neg x_{3}\}\} \\ M = \{\neg x_{2},x_{3},x_{1},\neg x_{4}\} \qquad S_{3} = \{\} \\ S_{3} = \{\} \qquad S_{3} = \{\} \\ Satisfiable \qquad Satisfiable$$

Properties of DLL

• MULT, SUB, TAUT, UNIT rules are equivalence preserving

$$S' \equiv S$$

- Assignment Project Exam Help.
 PURE and SPLIT are unsatisfiability preserving.
 - PURE: S is https://tutorcs.com
 is unsatisfiable = S is unsatisfiable
 - SPLIT: S is unsatisfiable and S" is unsatisfiable.

Theorem

- DLL(M, S) halts with False if S has no models.
- DLL(M, S) halts with True and returns at least one (partial) model of S if S is satisfiable.

Summary

- Introduced the notion of satisfiability (SAT)
- > Described simple Perigorithm, passed of propsolutions
- > Introduced simpletsimplification oules
 - · TAUT, SUBPEURE: IRSTUKORCS
- Unit propagation and SPLIT rules
- > DLL/DPLL algorithm