Model-based causal estimation: From outcome models to treatment weighting

lan Lundberg Sociol 114 soc114.github.io

Winter 2025

Learning goals for today

At the end of class, you will be able to

- ▶ estimate average causal effects with a parametric model
 - ▶ for the outcome $E(Y \mid A, \vec{L})$
 - ▶ for the treatment $P(A \mid \vec{L})$

Optional reading:

► Hernán and Robins 2020 Chapter 12.1–12.5, 13, 15.1

Nonparametric estimation

Causal assumptions

$$\vec{L} \xrightarrow{A \to Y} Y$$

Nonparametric estimator

$$\hat{E}(Y^a) = \frac{1}{n} \sum_{i=1}^n \hat{E}(Y \mid \vec{L} = \vec{\ell}_i, A = a)$$

For every unit i,

- find units who look like them on confounders \vec{L}
- ightharpoonup who actually got treatment A = a
- ► take the average among those units

Then average over all units

Nonparametric estimation breaks down

Nonparametric estimation breaks down

Hispanic		Non-Hispanic Black		Non-Hispanic Non-Black			
No College	No College		No College	No College	No College	No dad	
No College	No College	No College	No College	No College	No College	No dad	No mom
No College	No College	la College No	College	No College	No College	< HS	No mom
No College	No College	No College	No College	No College	No College	High school	No mom
No College	No College	No College	No College	No College	No College	Some college	No mom
- College	No College	No College	No College	No College	College No College	College	No mom
No College	No College	No College	No College	No College	No College	No dad	< HS
No College	No College	No College	No College	No College	No College	< HS	< HS
No College	No College	No College	No College	No College	No College	High school	≺ HS
No College	No College	No College	No College	No College	No College	Some college	< HS
No College	No College			College No College	No College	College	< HS
No College	No College	No College	No College	No College	No College	No dad	High school
No College	No College	No College	No College	No College	No College	< HS	High school
No College	No College	No College	No College	No College	No College	High school	High school
No College	No College	No College	No College	No College	No College	Some college	High school
No College	No College	No College	No College	College No College	College No College	College	High school
No College	No College	No College	No College	No College	No College	No dad	Some college
No College	No College	No College	No College	No College	No College	< HS	Some college
No College	No College	No College	No College	No College	No College	High school	Some college
No College	No College	No College	No College	No College	No College	Some college	Some college
College No College	No College	No College	No College	No College	College No College	College	Some college
No College	No College	College No College	No College	College No College	No College	No dad	College
No Ci	ologo	No College	GREAL	No College	No College	< HS	College
College No College	No College	No College	No College	Cglege No College	No College	High school	College
No College	No College	No College	No College	College No College	No College	Some college	College
- NoToStege	College No College	College E College	No College	College MG (Shifter	- No College	College	College

Parametric estimation: Outcome model

Causal assumptions

$$\vec{L} \xrightarrow{A \to Y} Y$$

Parametric estimator

$$\hat{E}(Y^a) = \frac{1}{n} \sum_{i=1}^n \hat{E}(Y \mid \vec{L} = \vec{\ell}_i, A = a)$$

Parametric estimation: Outcome model

Causal assumptions

$$\vec{L} \xrightarrow{A \to Y} Y$$

Parametric estimator

$$\hat{E}(Y^a) = \frac{1}{n} \sum_{i=1}^n \hat{E}(Y \mid \vec{L} = \vec{\ell_i}, A = a)$$

Where \hat{E} is a model-based prediction

$$\hat{\mathsf{E}}(\mathsf{Y}\mid\vec{\mathsf{L}},\mathsf{A}) = \hat{\alpha} + \vec{\mathsf{L}}'\hat{\vec{\gamma}} + \mathsf{A}\hat{\beta}$$

Parametric estimation: Outcome model

Causal assumptions

$$\vec{L} \xrightarrow{A \to Y} Y$$

Parametric estimator

$$\hat{E}(Y^a) = \frac{1}{n} \sum_{i=1}^n \hat{E}(Y \mid \vec{L} = \vec{\ell_i}, A = a)$$

Where \hat{E} is a model-based prediction

$$\hat{\mathsf{E}}(\mathsf{Y}\mid\vec{\mathsf{L}},\mathsf{A}) = \hat{\alpha} + \vec{\mathsf{L}}'\hat{\vec{\gamma}} + \mathsf{A}\hat{\beta}$$

- Untreated
- Treated

- Untreated
- Treated

Propensity score:
$$\pi_i = P(A = A_i \mid L = L_i)$$

- Untreated
- **Treated**

Propensity score:
$$\pi_i = P(A = A_i \mid L = L_i)$$

Inverse probability weight:

$$w_i = \frac{1}{\pi_i}$$

- Untreated
- Treated

Propensity score:
$$\pi_i = P(A = A_i \mid L = L_i)$$

Inverse probability weight: $w_i = \frac{1}{\pi_i}$

Propensity score:
$$\pi_i = P(A = A_i \mid L = L_i)$$

Inverse probability weight: $w_i = \frac{1}{\pi_i}$

 L_1

Model the treatment assignment

$$\hat{\mathsf{P}}(\mathsf{A}=1\mid ec{\mathcal{L}}) = \mathsf{logit}^{-1}\left(\hat{lpha}+\hat{ec{\gamma}}ec{\mathcal{L}}
ight)$$

Predict the propensity score for each unit

$$\hat{\pi}_{i} = \begin{cases} \mathsf{logit}^{-1} \left(\hat{\alpha} + \hat{\vec{\gamma}} \vec{L} \right) & \text{if } A_{i} = 1 \\ 1 - \mathsf{logit}^{-1} \left(\hat{\alpha} + \hat{\vec{\gamma}} \vec{L} \right) & \text{if } A_{i} = 0 \end{cases}$$

Estimate by inverse probability weighting

$$\hat{\mathsf{E}}(Y^a) = \frac{1}{N} \sum_{i=1}^{N} \frac{Y_i}{\hat{\pi}_i}$$

Learning goals for today

At the end of class, you will be able to

- ▶ estimate average causal effects with a parametric model
 - ▶ for the outcome $E(Y \mid A, \vec{L})$
 - ▶ for the treatment $P(A \mid \vec{L})$

Optional reading:

► Hernán and Robins 2020 Chapter 12.1–12.5, 13, 15.1

Suppose a stratum $\vec{L} = \vec{\ell}$ contains

- ▶ 100 untreated units
- ▶ 1 treated unit

Suppose a stratum $\vec{L} = \vec{\ell}$ contains

- ► 100 untreated units
- ▶ 1 treated unit

The treated unit gets a weight of 100.

Suppose a stratum $\vec{L} = \vec{\ell}$ contains

- ▶ 100 untreated units
- ▶ 1 treated unit

The treated unit gets a weight of 100.

The estimate depends heavily on which treated unit happens to be included in the sample \rightarrow high-variance estimator

Suppose a stratum $\vec{L} = \vec{\ell}$ contains

- ▶ 100 untreated units
- ▶ 1 treated unit

The treated unit gets a weight of 100.

The estimate depends heavily on which treated unit happens to be included in the sample \rightarrow high-variance estimator

Two solutions

- 1. Trim the weights
- 2. Truncate the weights

Suppose a stratum $\vec{L} = \vec{\ell}$ contains

- ▶ 100 untreated units
- ▶ 1 treated unit

The treated unit gets a weight of 100.

The estimate depends heavily on which treated unit happens to be included in the sample \rightarrow high-variance estimator

Two solutions

- 1. Trim the weights
- 2. Truncate the weights

Both solutions accept bias in order to reduce variance

Drop units with extreme weights

Drop units with extreme weights

Drop units with extreme weights

Changes target population
— Biased for full population

Truncate values of extreme weights

Truncate values of extreme weights

Truncate values of extreme weights

Biased: Ignores some confounding

Learning goals for today

At the end of class, you will be able to

- ▶ estimate average causal effects with a parametric model
 - ▶ for the outcome $E(Y \mid A, \vec{L})$
 - ▶ for the treatment $P(A \mid \vec{L})$

Optional reading:

► Hernán and Robins 2020 Chapter 12.1–12.5, 13, 15.1