7.1 (Using H_{poly} with power-of-2 modulus). We can adapt the definition of H_{poly} in (7.3) so that instead of working in \mathbb{Z}_p we work in \mathbb{Z}_{2^n} (i.e., work modulo 2^n). Show that this version of H_{poly} is not a good UHF, and in particular an attacker can find two messages m_0, m_1 each of length two blocks that are guaranteed to collide.

Hooly $(k, (\alpha_1, \dots \alpha_V)) = K^V + Q, K^{V-1} + Q, K^{V-2} + \dots + \alpha_{V-1} \cdot K + Q_V \cdot mod Z_p$ (, adapt to \mathcal{F}_{2^n} , $GF(2^n)$ Proof idea: observing that calculating $K \mod Q^n$ is

essentially gatting the least = n - 5; quificant bit of K.

e.g. $K = 101101_2$, n = 3, Then $K \mod 3^n = 101$.

80, if one could manipute mo, m, S.t. Their least n bit after heshing is distinguishable, Then we've broken the UHF.

Prof: let mo=(1,1); m,=(1,0)

UHF $(K, m_b) = K^2 + K \cdot \alpha_1 + \alpha_2 = K(K + \alpha_1) + \alpha_2 \mod d^n$. Since $\alpha_1 = 1$, $K(K + 1) \mod d^n$ will definitely ends up who a remainder whose L818 = 1.

∫ if kis even. K(K+1) û odd | Kis odd | SB[K(K+1) mod 2"]=1

So LSB (H(K.Mo)) = 0, LSB (H(K,M,)=1 for all K&K.

L) adversary has perfect advantage of 1.

7.3 (On the alternative characterization of the ϵ -UHF property). Let H be a keyed hash function defined over $(\mathcal{K}, \mathcal{M}, \mathcal{T})$. Suppose that for some pair of distinct messages m_0 and m_1 , we have $\Pr[H(k, m_0) = H(k, m_1)] > \epsilon$, where the probability is over the random choice of $k \in \mathcal{K}$. Give an adversary \mathcal{A} that wins Attack Game 7.1 with probability greater than ϵ . Your adversary is not allowed to just have the values m_0 and m_1 "hardwired" into its code, but it may be very inefficient.

Chal $K \subset K \qquad mo, m, ell$ $H(K,mo) \neq H(K,mi)$

randomly select mez pairs?

6-bounded

Pr[H(,m)=H(·,m)] > e.

dow't know

7.27 (XOR-hash analysis). Generalize Theorem 7.6 to show that for every Q-query UHF adversary A, there exists a PRF adversary B, which is an elementary wrapper around A, such that

$$\mathrm{MUHFadv}[\mathcal{A}, F^{\oplus}] \leq \mathrm{PRFadv}[\mathcal{B}, F] + \frac{Q^2}{2|\mathcal{Y}|}.$$

Moreover,
$$\mathcal{B}$$
 makes at most $Q\ell$ queries to F .

chal-
$$b \in \{0, 1\}, k \in \mathbb{R}$$

$$if b = 0, f \in \mathbb{R}$$

$$b = 1, f \in \text{fans}[K, X]$$

$$(a_{11}, a_{12}, \dots a_{1V})$$

$$(a_{s_{1}}, a_{s_{2}} \dots a_{s_{V}}) \rightarrow (0.1) \text{ queries}$$

$$t_{i} = (t) \text{ Aim} \quad (i = 1, 2, \dots, s)$$

Game 0:
$$f \in F(k, \cdot)$$
 $Pr[W_0] = UHFadv[U, F^{\oplus}]$
Game 1: $f \in Func[K, \tilde{\chi}]$ $Pr[W_0] - Pr[W_0] \leq PKFadv[B, F]$

$$Pr[W_1] \leq \frac{6(0-1)}{2} \cdot \frac{1}{|Y|} \quad (similar to proof of Theorem 7.4)$$