

2). Preprocessing the data using both ris and yis (training) Right way: for each choice: for each fold: preprocessing here on the remaining folds ?

N=50 X_i are Gaussians $Y=0.X_1+0X_2+0X_{500}+E$ $X_i\perp Y$

Create bootstrap Samples.

Estimate Err
$$\left[\begin{array}{c} E_{Z} E_{Pxy} \left[\left(\hat{f}_{z}(x) - Y \right)^{2} \right] \\ = E_{Z} E_{Pxy} \left[\left(\hat{f}_{z}(x) - Y \right)^{2} \right] \end{array} \right] \quad \text{Tw}(P_{xy})^{H}$$

For each obsit

pick the ones it is not part of. $\left[x_{i}, y_{i}, y_{i-1}^{n} \rightarrow \hat{f} \right]$
 $C_{i} = \left[y_{i} + y_{i} \right] \quad \left[y_{i} + y_{i} \right$

7~(Pxy)"

Understanding:

MLE.

likelihood g deta for a given parameter.

$$\hat{\lambda} = \frac{1}{2} \frac{1}{3}$$

 $LL = \sum_{i=1}^{N} \left(-\left(\underline{3}i - R \right)^{2} \right) + C$

least squares: MLE interpretation.

$$P(Y|X=x) \sim N(\beta^T x, \delta^2)$$

$$\frac{\beta x}{\{24^r, 9^i\}_{i=1}^N}$$

$$T = \sum_{i=1}^{N} X + \sum_{i=1}^{N}$$

LL
$$\propto \sum_{i=1}^{N} log \left(exy \left(- \left(\frac{\beta^{T} \pi_{i} - y_{i}}{2 g^{2}} \right) \right) + C(3)$$

$$\max_{\beta} LL \approx \sum_{i=1}^{18} (S_i)^{(N)} \left(\frac{1}{2 g^2} \right)^2$$

$$\max_{\beta} LL = \min_{i=1}^{18} \left(\frac{1}{2 g^2} \right)^2$$

Ridge regression.

MAP estimation

max
$$P(\beta|data) \propto P(data|\beta) \cdot P(\beta)$$

max $P(\beta|data) \propto P(data|\beta) + los P(\beta)$

max $P(\beta|data) \propto los P(data|\beta) + los P(\beta)$

The max log $P(\beta|data) \propto los P(data|\beta) + los P(\beta)$

The max log $P(\beta|data) \propto los P(data|\beta) + los P(\beta)$

The max log $P(\beta|data) \propto los P(data|\beta) + los P(\beta)$

The max log $P(\beta|data) \propto los P(data|\beta) + los P(\beta)$

The max log $P(\beta|data) \propto los P(data|\beta) + los P(\beta)$

The max log $P(\beta|data) \propto los P(\beta|data) + los P(\beta)$

The max log $P(\beta|data) \propto los P(\beta|data) + los P(\beta)$

The max log $P(\beta|data) \propto los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data) \propto los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data) \propto los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data) \propto los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data) \propto los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data) \propto los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data) \propto los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data) \propto los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data) \sim los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data) \sim los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data) \sim los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data) \sim los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data) \sim los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data) \sim los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data|\beta) \sim los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data|\beta) \sim los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data|\beta) \sim los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data|\beta) \sim los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data|\beta) \sim los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data|\beta) \sim los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data|\beta) \sim los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data|\beta) \sim los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data|\beta) \sim los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data|\beta) \sim los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data|\beta) \sim los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data|\beta) \sim los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data|\beta) \sim los P(\beta|data|\beta) + los P(\beta)$

The max log $P(\beta|data|\beta) \sim los P(\beta|data|\beta)$

$$P(\beta) \sim N(0, z^{2}I)$$

$$\frac{1}{\sqrt{2\pi}} \det(z^{2}I) \cdot \exp(-\frac{1}{2}(\beta - 0)^{T} Z^{-1}(\beta - 0))$$

$$\frac{1}{\sqrt{2}I} \frac{1}{z^{2}I}$$

(1) LASSO: Belief on
$$\beta$$
 each coordinate is Laplace distributed.
 β with 0 mean.
 β [β] β] β [β] β] β (β) β) β exp $\left(-\frac{|\beta|}{C}\right)$

Naive Bayes. for classification: MLE
$$p(xi|gi) = \frac{f}{f}p(xij|gi)$$

$$\frac{1}{f} = \frac{2}{f}$$

$$\hat{P}(G=1) = \frac{\# \text{ Cless } 1}{N}$$

$$K=\{1,2\}$$

$$P(x^{test}|G=k) P(G=k)$$