Legend: Everything in *green* is from the Bergman's Companion to Lang's Algebra.

In this chapter we will study the core of Galois theory, the group of automorphisms of a finite (and sometimes infinite) Galois extension at length.

1 Galois extensions

Definition 1.1. Let K be a field and let G be a group of automorphisms of K. We let

$$K^G = \{x \in K \mid x^{\sigma} = x \text{ for all } \sigma \in G\}$$

We call this the **fixed field** of G.

Definition 1.2. An algebraic extension K of a field k is called **Galois** if it is normal and separable.

The group of automorphisms of K over k is called the **Galois group** of K over k, and is denoted G(K/k), $G_{K/k}$, Gal(K/k) or simply G.

This is the main theorem of the Galois theory or finite Galois extensions.

Theorem 1. Let K be a finite Galois extension of k, with Galois group G. There is a bijection between the set of subfields E of K, containing K and the set of subgroups H of G, given by $E = K^H$. The field E is Galois over k if and only if H is normal in G, and if that is the case, then the map $\sigma \to \sigma|_E$ induces an isomorphism of G/H onto the Galois group of E over E.

Theorem 2. Let K be a Galois extension of k. Let G be its Galois group. Then $k = K^G$. If F is an intermediate field, $k \subseteq F \subseteq K$, then K is Galois over F. The map

$$F \to Gal(K/F)$$

from the set of intermediate fields into the set of subgroups of G is injective.

Proof. Let $\alpha \in K^G$. Let σ be any embedding of $k(\alpha)$ in K^a , inducing the identity on k. Extend σ to an embedding of K into K^a , we also call this extension σ . Note since K is normal, σ is an automorphisms of K over k it is an element of G. Since $\alpha \in K^G$, σ leaves α fixed. Therefore there is actually only one extension of σ to an embedding of K in K^a (the identity). So:

$$[k(\alpha):k]_{\alpha}=1$$

Since α is separable over k, $[k(\alpha):k]=[k(\alpha):k]_s=1$, so $\alpha\in k$. This proves the first assertion.

Let F be an intermediate field. Then K is normal and seperable over F by previous theorems from chapter five. Hence K is Galois over F. If $H = \operatorname{Gal}(K/F)$ then by what we have proved above we conclude that $F = K^H$. Now we will show that the map defined in our statement is injective. Let F, F' be intermediate fields such that $F \to \operatorname{Gal}K/F = H$ and $F' \to \operatorname{Gal}K/F' = H'$.

Assume that H = H', then:

$$F = K^H = K^{H'} = F'$$

Definition 1.3. We shall call the group Gal(K/F) of an intermediate field the group **associated** with F. We say that a subgroup H of G belongs to an intermediate field F if H = Gal(K/F)

Bergman 1. Note this does not mean that H is the Galois group of F. For example the Galois group of the whole extension K is Gal(K/F), $\{1\}$ is the subgroup belonging to K, since $\{1\} = Gal(K/K)$.

Corollary 2.1. Let K/k be Galois with group G. Let F, F' be two intermediate fields, and let H, H' be the subgroups of G belonging to F, F' respectively. Then $H \cap H'$ belongs to FF'.

Proof. Note every element of $H \cap H'$ leaves FF' fixed (basically from how FF' is constructed), and every element of G which also leaves FF' fixed also leaves F and F' fixed so lies in $H \cap H'$.

Corollary 2.2. The fixed field of the smallest subgroup of G containing H and H' is $F \cap F'$.

Proof. Let E be the smallest subgroup of G containing H and H'. Note this means that $E = \langle H \cup H' \rangle$.

Let $x \in K^E$. This means that

$$\sigma(x) = x$$
 for all $\sigma \in E$

Since $H, H' \subseteq E$ we see that $x \in K^H = F$ and $x \in K^{H'} = F'$. So $x \in F \cap F'$. On the other hand, if $x \in F \cap F'$, then for $\sigma \in E$ we have $\sigma = \tau_1 \cdots \tau_n$, where $\tau_i \in H \cup H'$. So

$$\sigma(x) = \tau_1 \circ \cdots \circ \tau_{n-1} \circ \tau_n(x) = \tau_1 \circ \cdots \circ \tau_{n-1}(x) = \ldots = x$$

Since $\tau_i(x) = x$ for all i,

Therefore we indeed see that $F \cap F' = K^E$.

Corollary 2.3. $F \subseteq F'$ if and only if $H' \subseteq H$

Proof. If $F \subseteq F'$ and $\sigma \in H'$ leaves F' fixed, then σ leaves F fixed, so $\sigma \in H$. So $H' \subseteq H$.

Conversely if
$$H' \subseteq H$$
, then $F = K^H \subseteq K^{H'} = F'$.

Corollary 2.4. Let E be a finite seperable extension of a field k. Let K be the smallest normal extension of k containing E. Then K is finite Galois over k. There is only a finite number of intermediate fields F such that $k \subseteq F \subseteq E$.

Proof. Note K is the compositum of a the finite number of conjugates of E, i.e

$$K = (\sigma_1 E) \cdots (\sigma_n E)$$
 where σ_i are the distinct embeddings of E into E^a

Therefore it is normal(by definition), separable(since E is) and it is finite over k.

The Galois group K/k has only a finite number of subgroups. So there is only a finite number of subfields of K containing k, so a finite number of subfields of E containing k.

Lemma 3. Let E be an algebraic seperable extension of k. Assume that there is an integer $n \ge 1$ such that every element $\alpha \in E$ is of degree $\le n$ over k. Then E is finite over k and $[E:k] \le n$.

Proof. Let $\alpha \in E$ be such that $m = [k(\alpha): k] \le n$ is maximal. Assume that, there exists $\beta \in E \setminus k(\alpha)$, then since $k(\alpha, \beta)$ is separable and finite over k by the primitive element theorem there is a $\gamma \in k(\alpha, \beta) \subseteq E$ such that:

$$[k(\gamma):k] = [k(\alpha,\beta):k] > m$$

Which contradicts our assumption that α had maximal degree in E. Therefore $E \setminus k(\alpha) = \emptyset \Rightarrow E = k(\alpha)$, So it is finite over k and $[E:k] \leq n$.

Theorem 4. Artin Let K be a field and let G be a finite group of automorphisms of K, of order n. Let $k = K^G$ be the fixed field. Then K is a finite Galois extension of k, and its Galois group is G. We have [K:k] = n,

Proof. Let $\alpha \in K$ and let $\sigma_1, \ldots, \sigma_r$ be a maximal set of elements of G such that $\sigma_1 \alpha, \ldots, \sigma_r \alpha$ are distinct. If $\tau \in G$ then for all i, there is a $\xi \in S_r$ such that

$$\tau \sigma_i \alpha = \sigma_{\xi(i)} \alpha$$

Indeed $\tau \sigma_i \alpha \in {\sigma_1 \alpha, ..., \sigma_r \alpha}$, by maximality. And since τ is injective, $\tau \sigma_i \alpha = \tau \sigma_j \alpha \iff \sigma_i \alpha = \sigma_j \alpha$. So not only is α the root of a polynomial

$$f(X) = \prod_{i=1}^{r} (X - \sigma_i \alpha)$$
 and $\forall \tau \in G, f^{\tau} = f$

So the coefficients of f are in $K^G = k$. Furthermore, f is seperable since all the $\sigma_i \alpha$ are distinct. So every element $\alpha \in K$ is the root of a seperable polynomial of degree $\leq n$ with coeffs in k. We also see that this polynomial splits into linear factors in K, so K is seperable and normal (hence Galois) over k.

By lemma 3 we see that $[K:k] \le n$. But recall from chapter 5, the Galois group of K over k has order $\le [K:k]$. Since $G \subseteq \operatorname{Gal}(K/k)$, but $n = |G| \le |\operatorname{Gal}(K/k)| \le [K:k] \le n$, we see that $G = \operatorname{Gal}(K/k)$, and [K:k] = n.

\mathbf{Index}

associated, 1

belongs to, 1

fixed field, 1

Galois group, 1