CS 253: Algorithms

Chapter 22

Graphs

Graphs

Definition = a set of nodes (vertices) with edges (links) between them.

- G = (V, E) graph
- V = set of vertices |V| = n
- E = set of edges |E| = m
 - Subset of V x V = $\{(u,v): u \in V, v \in V\}$

Directed graphs (digraphs)

(ordered pairs of vertices)

in-degree of v: # edges enetring v
out-degree of v: # edges leaving v

Undirected graphs

(unordered pairs of vertices)

degree of v: # edges incident on v

Applications

Applications that involve not only a set of items, but also the connections between them

Maps

Computer networks

Hypertext

Circuits

Terminology

- Complete graph
 - A graph with an edge between each pair of vertices
- Subgraph
 - A graph (V', E') such that $V' \subseteq V$ and $E' \subseteq E$
- Path from v to w
 - A sequence of vertices $\langle v_0, v_1, ..., v_k \rangle$ such that $v_0 = v$ and $v_k = w$
- Length of a path
 - Number of edges in the path

- w is **reachable** from v
 - If there is a path from v to w
- Simple path
 - All the vertices in the path are distinct
- Cycles
 - A path $\langle v_0, v_1, ..., v_k \rangle$ forms a cycle if $v_0 = v_k$ and $k \ge 2$
- Acyclic graph
 - A graph without any cycles

cycle from v_1 to $v_1 < v_1$, v_2 , v_3 , $v_1 >$

undirected graphs

connected: every pair of vertices is connected by a path

connected components: all possible connected subgraphs

connected components: {a,b,c} {d} {e,f}

directed graphs

strongly connected: every two vertices are reachable from each other

strongly connected components : all possible strongly connected subgraphs

strongly connected components: {a,b,c,d} { e} {f}

A tree is a connected, acyclic undirected graph

A bipartite graph is an undirected graph
 G = (V, E) in which V = V₁ + V₂ and there are edges only between vertices in V₁ and V₂

**here Graph Representation

- Adjacency list representation of G = (V, E)
 - An array of | V | lists, one for each vertex in V
 - Each list Adj[u] contains all the vertices v that are adjacent to u
 (i.e., there is an edge from u to v)
 - Can be used for both directed and undirected graphs

Undirected graph

Properties of Adjacency-List Representation

- Sum of "lengths" of all adjacency lists
 - Directed graph: |E|
 - edge (u, v) appears only once (i.e., in the list of u)
 - Undirected graph: 2 E
 - edge (u, v) appears twice (i.e., in the lists of both u and v)

Directed graph

Undirected graph

Properties of Adjacency-List Representation

- Memory required = $\Theta(V + E)$
- Preferred when
 - The graph is sparse: $|E| \ll |V|^2$
 - We need to quickly determine the nodes adjacent to a given node.
- Disadvantage
 - No quick way to determine whether there is an edge between node u and v
- Time to determine if $(u, v) \in E$:
 - O(degree(u))
- Time to list all vertices adjacent to u:
 - \circ $\Theta(degree(u))$

Undirected graph

Directed graph

Graph Representation

- Adjacency matrix representation of G = (V, E)
 - Assume vertices are numbered 1, 2, ... | V |
 - The representation consists of a matrix $A_{|V|x|V|}$:

$$a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$$

Undirected graph

	l		<u> </u>		<u> </u>
	0	I	0	0	I
•	I	0	I	I	ı
	0	I	0	I	0
	0	Ι	I	0	I
	I	I	0	I	0
	<u> </u>				

For undirected graphs, matrix A is symmetric:

$$a_{ij} = a_{ji}$$

 $A = A^T$

5

Properties of Adjacency Matrix Representation

- Memory required
 - \circ $\Theta(V^2)$, independent on the number of edges in G
- Preferred when
 - The graph is **dense:** |E| is close to $|V|^2$
 - We need to quickly determine if there is an edge between two vertices
- Time to determine if $(u, v) \in E \rightarrow \Theta(1)$
- Disadvantage
 - No quick way to list all of the vertices adjacent to a vertex
- Time to list all vertices adjacent to $\mathbf{u} \rightarrow \Theta(\mathbf{V})$

Undirected graph

Directed graph

Weighted Graphs

- Given an adjacency-list representation, how long does it take to compute the out-degree of every vertex?
 - For each vertex u, search Adj[u] $\rightarrow \Theta(V+E)$

- How about using an adjacency-matrix representation?
 - $\rightarrow \Theta(V^2)$

How long does it take to compute the in-degree of every vertex?

• For each vertex u, search entire list of edges $\rightarrow \Theta(V+E)$

- The transpose of a graph G=(V,E) is the graph $G^T=(V,E^T)$, where $E^T=\{(v,u)\in V \times V: (u,v)\in E\}$. Thus, G^T is G with all edges reversed.
- (a) Describe an efficient algorithm for computing G^T from G, both for the adjacency-list and adjacency-matrix representations of G.
- (b) Analyze the running time of each algorithm.

Problem 3 (cont'd)

Adjacency matrix

```
for (i=1; i \le V; i++)
    for(j=i+1; j \le V; j++)
    if(A[i][j] && !A[j][i]) {
        A[i][j]=0;
        A[j][i]=1;
    }
```

O(V²) complexity

_	1	2	3	4	5
ı	0	ı	0	0	I
2	0	0	0	I	ı
3	0	Ι	0	0	0
4	0	ı	I	0	Ι
5	0	0	0	I	0

Problem 3 (cont'd)

Adjacency list

When adjacency-matrix representation is used, most graph algorithms require time Ω(V²), but there are some exceptions.
 Show that determining whether a directed graph G contains a universal sink – a vertex of in-degree |V|-1 and out-degree 0 – can be determined in time O(V).

Example:

I	2	3	4	5
0	0	0	I	0
I	0	0	I	0
I	0	0	I	0
0	0	0	0	0
0	0	0	I	0

- How many sinks could a graph have?
 - 0 or 1
- How can we determine whether a given vertex u is a universal sink?
 - The u-row must contain 0's only
 - The u-column must contain 1's only
 - \circ A[u][u]=0
- How long would it take to determine whether a given vertex u is a universal sink?
 - O(V) time

A SIMPLE ALGORITHM TO CHECK FOR UNIVERSAL SINK:

```
Is-SINK (A, k)

let A be |V| \times |V|

for j \leftarrow 1 to |V| \triangleright Check for a 1 in row k

do if a_{kj} = 1

then return FALSE

for i \leftarrow 1 to |V| \triangleright Check for an off-diagonal 0 in column k

do if a_{ik} = 0 and i \neq k

then return FALSE

return TRUE
```

How long would it take to determine whether a given graph contains a universal sink if you were to check every single vertex in the graph?

 $O(V^2)$

- Can you come up with a O(V) algorithm?
- Observations
 - If A[u][v]=1, then u cannot be a universal sink
 - If A[u][v]=0, then v cannot be a universal sink

```
UNIVERSAL-SINK (A)

let A be |V| \times |V|

i \leftarrow j \leftarrow 1

while i \leq |V| and j \leq |V|

do if a_{ij} = 1

then i \leftarrow i + 1

else j \leftarrow j + 1

s \leftarrow 0

if i > |V|

then return "there is no universal sink" elseif Is-SINK (A, i) = FALSE

then return "there is no universal sink" else return i "is a universal sink"
```

←Why do we need this check?

ANSWER: see the last slide

- Loop terminates when i > |V| or j > |V|
- Upon termination, the only vertex that could be a sink is i
 - If i > |V|, there is no sink
 - If i < |V|, then j > |V|
 - * vertices k where $1 \le k < i$ can not be sinks Why?
 - * vertices k where $i \le k \le |V|$ can not be sinks Why?

