Model building

Feature engineering Prof. Dr. Jan Kirenz The following content is based on Mine Çetinkaya-Rundel's excellent book Data Science in a Box

Feature engineering

Feature engineering

- We prefer simple models when possible, but parsimony does not mean sacrificing accuracy (or predictive performance) in the interest of simplicity
- Variables that go into the model and how they are represented are just as critical to success of the model
- Feature engineering allows us to get creative with our predictors in an effort to make them more useful for our model (to increase its predictive performance)

Same training and testing sets as before

```
# Fix random numbers by setting the seed
# Enables analysis to be reproducible when random numbers are used
set.seed(1116)

# Put 80% of the data into the training set
email_split <- initial_split(email, prop = 0.80)

# Create data frames for the two sets:
train_data <- training(email_split)
test_data <- testing(email_split)</pre>
```

A simple approach: mutate()

```
train_data %>%
  mutate(
    date = date(time),
    dow = wday(time),
    month = month(time)
    ) %>%
  select(time, date, dow, month) %>%
  sample_n(size = 5) # shuffle to show a variety
```

Modeling workflow, revisited

- Create a recipe for feature engineering steps to be applied to the training data
- Fit the model to the training data after these steps have been applied
- Using the model estimates from the training data, predict outcomes for the test data
- Evaluate the performance of the model on the test data

Building recipes

Initiate a recipe

```
## # A tibble: 21 x 4
     variable
                  tvpe
                          role
                                    source
     <chr>
                  <chr> <chr>
                                    <chr>
## 1 to multiple numeric predictor original
## 2 from
                  numeric predictor original
## 3 cc
                  numeric predictor original
## 4 sent email
                  numeric predictor original
## 5 time
                          predictor original
## 6 image
                  numeric predictor original
                  numeric predictor original
## 7 attach
## 8 dollar
                  numeric predictor original
## 9 winner
                  nominal predictor original
## 10 inherit
                  numeric predictor original
## 11 viagra
                  numeric predictor original
                  numeric predictor original
## 12 password
## 13 num char
                  numeric predictor original
## 14 line breaks numeric predictor original
                  numeric predictor original
## 15 format
## 16 re subj
                  numeric predictor original
## 17 exclaim subj numeric predictor original
## 18 urgent subj numeric predictor original
## 19 exclaim mess numeric predictor original
## 20 number
                  nominal predictor original
## 21 spam
                  nominal outcome original
```

Remove certain variables

```
email_rec <- email_rec %>%
  step_rm(from, sent_email)
```

```
## Data Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 20
##
## Operations:
##
## Delete terms from, sent_email
```

Feature engineer date

```
email_rec <- email_rec %>%
   step_date(time, features = c("dow", "month")) %>%
   step_rm(time)

## Data Recipe
####
```

```
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 20
##
## Operations:
##
## Delete terms from, sent_email
## Date features from time
## Delete terms time
```

Discretize numeric variables

```
email_rec <- email_rec %>%
  step_cut(cc, attach, dollar, breaks = c(0, 1)) %>%
  step_cut(inherit, password, breaks = c(0, 1, 5, 10, 20))
```

```
## Data Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 20
##
## Operations:
##
## Delete terms from, sent_email
## Date features from time
## Delete terms time
## Cut numeric for cc, attach, dollar
## Cut numeric for inherit, password
```

Create dummy variables

```
email_rec <- email_rec %>%
  step_dummy(all_nominal(), -all_outcomes())
```

```
## Data Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 20
##
## Operations:
##
## Delete terms from, sent_email
## Date features from time
## Delete terms time
## Cut numeric for cc, attach, dollar
## Cut numeric for inherit, password
## Dummy variables from all_nominal(), -all_outcomes()
```

Remove zero variance variables

Variables that contain only a single value

```
email_rec <- email_rec %>%
  step_zv(all_predictors())
```

```
## Data Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 20
##
## Operations:
##
## Delete terms from, sent_email
## Date features from time
## Delete terms time
## Cut numeric for cc, attach, dollar
## Cut numeric for inherit, password
## Dummy variables from all_nominal(), -all_outcomes()
## Zero variance filter on all_predictors()
```

All in one place

```
email_rec <- recipe(spam ~ ., data = email) %>%
  step_rm(from, sent_email) %>%
  step_date(time, features = c("dow", "month")) %>%
  step_rm(time) %>%
  step_cut(cc, attach, dollar, breaks = c(0, 1)) %>%
  step_cut(inherit, password, breaks = c(0, 1, 5, 10, 20)) %>%
  step_dummy(all_nominal(), -all_outcomes()) %>%
  step_zv(all_predictors())
```

Building workflows

Define model

Computational engine: glm

```
email_mod <- logistic_reg() %>%
   set_engine("glm")
email_mod

## Logistic Regression Model Specification (classification)
##
```

Define workflow

Workflows bring together models and recipes so that they can be easily applied to both the training and test data.

```
email wflow <- workflow() %>%
   add_model(email_mod) %>%
   add_recipe(email_rec)
## == Workflow =======
## Preprocessor: Recipe
## Model: logistic reg()
## — Preprocessor —
## 7 Recipe Steps
## • step rm()
## • step date()
## • step rm()
## • step cut()
## • step cut()
## • step dummy()
## • step zv()
## — Model -
## Logistic Regression Model Specification (classification)
## Computational engine: qlm
```

Fit model to training data

```
email_fit <- email_wflow %>%
  fit(data = train_data)
```

```
tidy(email_fit) %>% print(n = 31)
```

```
## # A tibble: 31 x 5
                         estimate std.error statistic p.value
##
      term
##
      <chr>
                            <dbl>
                                        <dbl>
                                                  <dbl>
                                                           <dbl>
                                               -3.35
                                                        7.94e- 4
   1 (Intercept)
                         -0.900
                                      0.268
                                      0.452
##
   2 to multiple
                         -3.15
                                               -6.97
                                                        3.25e-12
   3 image
                         -1.02
                                      0.665
                                                        1.23e- 1
##
                                               -1.54
                                      0.0293
##
   4 num char
                          0.0408
                                                1.39
                                                        1.64e- 1
##
   5 line breaks
                         -0.00591
                                      0.00163
                                               -3.63
                                                        2.89e- 4
                         -0.788
                                      0.161
                                                        1.01e- 6
##
   6 format
                                               -4.89
                         -3.02
                                      0.441
                                               -6.86
                                                        7.00e-12
##
   7 re subi
                          0.0856
                                      0.268
   8 exclaim subi
                                                0.319
                                                        7.50e- 1
   9 urgent_subj
                          3.80
                                      1.03
                                                        2.30e- 4
                                                3.68
## 10 exclaim mess
                          0.0112
                                      0.00221
                                                5.07
                                                        3.99e - 7
                         -0.0264
                                      0.454
                                               -0.0581
                                                        9.54e- 1
## 11 cc X.1.68.
                          1.84
                                      0.398
                                                4.62
                                                        3.86e- 6
## 12 attach X.1.21.
## 13 dollar X.1.64.
                         -0.00909
                                      0.230
                                               -0.0395
                                                        9.69e- 1
## 14 winner ves
                          2.08
                                      0.408
                                                5.10
                                                        3.36e- 7
## 15 inherit X.1.5.
                                   1479.
                                               -0.00703 9.94e- 1
                        -10.4
## 16 inherit X.5.10.
                          1.90
                                      1.27
                                                1.49
                                                        1.36e- 1
## 17 password X.1.5.
                         -2.48
                                      1.03
                                               -2.41
                                                        1.59e- 2
                                               -0.0163
                                                        9.87e- 1
## 18 password X.5.10.
                        -13.3
                                    816.
## 19 password X.10.20. -15.1
                                  1149.
                                               -0.0131
                                                        9.90e- 1
## 20 password X.20.28. -14.9
                                  1329.
                                               -0.0112
                                                        9.91e- 1
## 21 number small
                         -0.662
                                      0.168
                                               -3.94
                                                        8.31e-5
## 22 number big
                          0.133
                                      0.249
                                                0.533
                                                        5.94e- 1
                         -0.350
                                      0.319
                                                        2.72e- 1
## 23 time dow Mo
                                               -1.10
## 24 time dow Di
                          0.101
                                      0.283
                                                0.357
                                                        7.21e- 1
## 25 time_dow_Mi
                         -0.258
                                      0.284
                                                        3.64e- 1
                                               -0.909
## 26 time dow Do
                         -0.123
                                      0.285
                                               -0.431
                                                        6.66e- 1
                          0.131
                                      0.278
                                                0.473
                                                        6.36e- 1
## 27 time dow Fr
                          0.259
                                      0.298
                                                0.869
                                                        3.85e- 1
## 28 time dow Sa
## 29 time month Feb
                          0.851
                                      0.181
                                                4.70
                                                        2.55e- 6
                          0.471
                                      0.184
                                                2.56
                                                        1.05e- 2
## 30 time month Mär
## 31 time month Apr
                        -14.0
                                    990.
                                               -0.0141
                                                        9.89e- 1
```

Make predictions for test data

line breaks <int>, format <dbl>, re subj <dbl>,

exclaim subj <dbl>, urgent subj <dbl>, exclaim mess <dbl>,

#

#

number <fct>

```
email pred <- predict(email fit, test data, type = "prob") %>%
  bind cols(test data)
email pred
## # A tibble: 784 x 23
##
    .pred_0 .pred_1 spam to_multiple from cc sent_email
## <dbl> <dbl> <dbl> <int>
                                                   <dbl>
## 1 0.957 0.0428 0
## 2 0.934 0.0664 0
## 3 0.920 0.0803 0
## 4 0.999 0.00149 0
## 5 0.903 0.0971 0
## 6 0.908 0.0925 0
## # ... with 778 more rows, and 16 more variables: time <dttm>,
      image <dbl>, attach <dbl>, dollar <dbl>, winner <fct>,
## #
      inherit <dbl>, viagra <dbl>, password <dbl>, num_char <dbl>,
## #
```

Evaluate the performance

```
email_pred %>%
  roc_curve(
    truth = spam,
    .pred_1,
    event_level = "second"
) %>%
  autoplot()
```


Evaluate the performance

```
email_pred %>%
  roc_auc(
    truth = spam,
    .pred_1,
    event_level = "second"
)
```


Making decisions

Cutoff probability: 0.5

Output Code

Suppose we decide to label an email as spam if the model predicts the probability of spam to be more than 0.5.

	Email is not spam	Email is spam
Email labelled not spam	702	68
Email labelled spam	5	9

Cutoff probability: 0.25

Output Code

Suppose we decide to label an email as spam if the model predicts the probability of spam to be more than 0.25.

	Email is not spam	Email is spam
Email labelled not spam	662	40
Email labelled spam	45	37

Cutoff probability: 0.75

Output Code

Suppose we decide to label an email as spam if the model predicts the probability of spam to be more than 0.75.

	Email is not spam	Email is spam
Email labelled not spam	706	72
Email labelled spam	1	5