1.6. Funciones continuas, crecientes e inversas

Las funciones continuas desempeñarán una importante función en la mayor parte del estudio del cálculo. Cualquier función y = f(x) cuya gráfica puede trazarse sobre su dominio con un movimiento ininterrumpido, es decir, sin levantar el lápiz de la hoja de papel, es un ejemplo de función continua.

Definición 1.9. (Continuidad en un punto). Una función y = f(x) es continua en un punto interior c de su dominio sí

$$\lim_{x \to c} f(x) = f(c).$$

Condiciones para la continuidad:

Una función f(x) es continua en x=c si y sólo si se cumplen las siguientes condiciones:

- 1. f(c) existe.
- 2. $\lim_{x \to c} f(x)$ existe.
- $3. \lim_{x \to c} f(x) = f(c).$

Una función es continua en un intervalo sí y sólo sí es continua en todos los puntos del mismo.

Teorema 1.10. Si las funciones f y g son continuas en x = c, entonces las combinaciones siguientes son continuas en x = c

- 1. $f \pm g$
- 2. $f \cdot g$
- 3. f/g

Ejemplo 26. Las funciones polinomiales y racionales son continuas.

(a) Cualquier función polinomial $P(x) = a_x x^n + a_{n-1} x^{n-1} + \cdots + a_0$ es continua por que $\lim_{x \to c} P(x) = P(c)$.

(b) Si P(x) y Q(x) son polinomios, entonces la función racional R(x) = P(x)/Q(x) es continua en todo punto x donde $Q(x) \neq 0$.

Funciones crecientes y decrecientes

Definición 1.11. Se dice que una función f es **creciente** en el intervalo I, si para dos números cualesquiera $x_1, x_2 \in I$, donde $x_1 < x_2$, se cumple que $f(x_1) < f(x_2)$. Una función f es **decreciente** en el intervalo I, donde $x_1 < x_2$, entonces $f(x_1) > f(x_2)$.

Criterios en terminos de la derivada para funciones crecientes o decrecientes:

- Si $\frac{df}{dx}(x) > 0$ para cada valor de x en un intervalo (a, b), entonces f es creciente en (a, b).
- Si $\frac{df}{dx}(x) < 0$ para cada valor de x en un intervalo (a, b), entonces f es decreciente en (a, b).
- Si $\frac{df}{dx}(x) = 0$ para cada valor de x en un intervalo (a, b), entonces f es constante en (a, b).

Definición 1.12. Sea f diferenciable en el intervalo (a, b). Entonces se dice que f es **cóncava hacia arriva [cóncava hacia abajo]** en (a, b), si f' es creciente [decreciente] en (a, b).

Criterio de la derivada para funciones Concavas hacia arriba o hacia abajo:

- 1. Si $\frac{d^2f}{dx^2}(x) > 0$ para cada valor de x en (a,b), entonces f es cóncava hacia arriba en (a,b).
- 2. Si $\frac{d^2f}{dx^2}(x) < 0$ para cada valor de x en (a,b), entonces f es cóncava hacia abajo en (a,b).

Funciones inversas y sus derivadas

Como cada valor (salida) de una función, uno a uno proviene de una y sólo una entrada, el efecto de la función puede ser invertido, enviando la salida de regreso a la entrada de la que vino bajo la función.

Definición 1.13. (Función inversa) Suponga que f es una fucnión inversa en un dominio D con rango R. La función inversa f^{-1} se define como

$$f^{-1}(a) = b \text{ si } f(b) = a.$$

El dominio de f^{-1} es R y su rango es D.

El proceso de pasar de f a f^{-1} puede realizarse en dos pasos.

- 1. Despejar x en la ecuación y = f(x). Esto proporciona una fórmula $x = f^{-1}(y)$ en donde x se expresa como una función de y.
- 2. Intercambiar x y y para obtener una fórmula $y = f^{-1}(x)$ en donde f^{-1} se expresa en el formato convencional, con x en la variable independiente y y como la variable dependiente.

Ejemplo 27. Determinar la inversa de $y = \frac{1}{2}x + 1$, expresada como función de x.

Solución:

1. Despejese x en términos de y:

$$y = \frac{1}{2}x + 1$$
$$2y = x + 2$$
$$x = 2y - 2$$

2. Intercambie x y y: y = 2x - 2

La inversa de la función $f(x) = \frac{1}{2}x + 1$ es la función $f^{-1}(x) = 2x - 2$. Para comprobarlo, hay que revisar si las dos funciones compuestas producen la función identidad.

$$f^{-1}(f(x)) = 2\left(\frac{1}{2}x + 1\right) - 2 = x + 2 - 2 = x$$
$$f(f^{-1}(x)) = \frac{1}{2}(2x - 2) + 1 = x - -1 + 1 = x.$$

El siguiente resultado proporciona las condiciones en las que f^{-1} es diferenciable en su dominio, que es el mismo que el rango de f.

Teorema 1.14. Si f tiene un intervalo I como dominio y f'(x) existe y nunca es cero en I, entonces f^{-1} es derivable en cada punto de su dominio. El valor de $(f^{-1})'$ en un punto b del dominio de f^{-1} es el recíproco del valor de f' en el punto $a = f^{-1}(b)$:

$$(f^{-1})(b) = \frac{1}{f'(f^{-1}(b))}$$

$$o$$

$$\frac{df^{-1}}{dx}\Big|_{x=b} = \frac{1}{\frac{df}{dx}\Big|_{x=f^{-1}(b)}}$$

Ejemplo 28. La función $f(x) = x^2$, $x \ge 0$ y su inversa $f^{-1}(x) = \sqrt{x}$ tienen derivadas f'(x) = 2x y $(f^{-1})'(x) = 1/(2\sqrt{x})$. Por el teorema 1.14 tenemos:

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$
$$= \frac{1}{2(f^{-1}(x))}$$
$$= \frac{1}{2\sqrt{x}}.$$

Teorema 1.15. (El teorema del valor intermedio) Si f es una función continua en un intervalo cerrado [a,b] y M es cualquier número entre f(a) y f(b), entonces existe al menos un número c en [a,b] tal que f(c)=M

Ejemplo 29. Sea $f(x) = x^3 + x + 2$. Puesto que f(-2) = -8 y f(1) = 4, es decir, f(-2) y f(1) tienen signos opuestos, por el teorema 1.15, hay al menos un punto x = c, con -2 < c < 1 tal que f(c) = 0. (Ver figura 14)

