1.1 Problem Set

A small grocery store has only one checkout counter. Customers arrive at this checkout counter at random from 1 to 8 minutes apart. Each possible value of inter arrival time has the same probability of occurrence. The service times vary from 1 to 6 minutes with the probabilities shown in table 2. The problem is to analyze the system by simulating the arrival and service of 6 customers.

Table.1 Distribution of arrived time

Interarrival time (Min)	1	2	3	4	5	6	7	8
Probability	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125

Table-2 Distribution of service time

Service time (Min)	1	2	3	4	5	6
Probability	0.20	0.10	0.30	0.15	0.20	0.05

Calculate the following:

- i. The average waiting time for a customer
- ii. The probability that a customer has to wait in the queue
- iii. The fraction of idle time of the server
- iv. The average service time
- v. The average time between arrivals
- vi. The average waiting time of those who wait
- vii. The average time a customer spends in the system.

Use the following sequence of random number,

Random digit for arrival are: 905, 727, 125, 848, 609.

Random digit for service time are: 14, 30, 94, 53, 37, 79.

1.2 Solution:

Calculate arrival time distribution and assign a random number,

Time between arrival	Probability	Cumulative probability	Random digit assignment
1	0.125	0.125	00 – 125
2	0.125	0.250	126 – 250
3	0.125	0.375	251 – 375
4	0.125	0.500	376 - 500
5	0.125	0.625	501 - 625
6	0.125	0.750	626 – 750
7	0.125	0.875	751 – 875
8	0.125	1.000	876 - 000

Calculate service time distribution and assign a random number,

Service time	Probability	Cumulative probability	Random digit assignment
1	0.20	0.20	00 - 20
2	0.10	0.30	21 – 30
3	0.30	0.60	31 – 60
4	0.15	0.75	61 – 75
5	0.20	0.95	76 - 95
6	0.05	1.00	96 - 00

Determining time between arrival,

Customer	Random Digit	IAT
1	-	-
2	905	8
3	727	6
4	125	1
5	848	7
6	609	5

Determining service time,

Customer	Random Digit	Service time
1	14	1
2	30	2
3	94	5
4	53	3
5	37	3
6	79	5

Simulation Table

Customer	IAT	Arrival Time	Service time	Time service begins	Waiting time	Time service ends	Time spent in system	Idle time of server
1	-	0	1	0	0	1	1	0
2	8	8	2	8	0	10	2	7
3	6	14	5	14	0	19	5	4
4	1	15	3	19	4	22	7	0
5	7	22	3	22	0	25	3	0
6	5	27	5	27	0	32	5	2

Here,

 $Total\ number\ of\ customer=6,$

 $Cumulative\ IAT = 27$,

 $Total\ service\ time=19,$

Number of customers waiting in queue = 1,

Total time customer wait in queue = 4,

 $Total\ idle\ time\ of\ server\ =\ 13,$

 $Total\ run\ time\ of\ server\ =\ 32,$

 $Total\ time\ spent\ in\ system=23$

Therefore,

i. The average waiting time for a customer = $\frac{\textit{Total time customer wait in queue}}{\textit{Total number of customer}}$

$$=\frac{4}{6}=0.67 \, mins$$

ii. The probability that a customer has to wait in the queue

$$= \left(\frac{Number\ of\ customers\ waiting\ in\ queue}{Total\ number\ of\ customer}\right) \times 100 = \frac{1}{6} \times 100 = 16.67\%$$

iii. The fraction of idle time of the server $=\left(\frac{Total\ idle\ time\ of\ server}{Total\ run\ time\ of\ server}\right)\times 100$

$$=\frac{13}{32}\times100=40.625\%$$

- iv. The average service time $=\frac{Total\ service\ time}{Total\ number\ of\ customer}=\frac{19}{6}=3.17\ mins$
- v. The average time between arrivals = $\frac{Cumulative\ IAT}{Total\ number\ of\ customer-1} = \frac{27}{5} = 5.4\ mins$
- vi. The average waiting time of those who wait $=\frac{Total\ time\ customer\ wait\ in\ queue}{Number\ of\ customers\ waiting\ in\ queue}$

$$= \frac{4}{1} = 4 \ mins$$

vii. The average time a customer spends in the system = $\frac{\text{Total time spent in system}}{\text{Total number of customer}}$

$$=\frac{23}{6}=3.83$$
 mins

1.3 Simulation in Excel:

Simulation Table,

Serial	random_ number_ for_IAT	inter_arrivel _time	arrival_time	random_ number_ for_servi ce_time	service_time	time_service _begins	waiting_tim e	time-service _end	time_spent_ in_system	
1	0	0	0	97	6	0	0	6	6	0
2	479	4	4	36	3	6	2	9	5	0
3	990	8	12	46	3	12	0	15	3	3
4	92	1	13	47	3	15	2	18	5	0
5	917	8	21	80	5	21	0	26	5	3
6	202	2	23	16	1	26	3	27	4	0
6					21		7		28	6

Value calculation,

		total number of customer	Cumulative IAT	total service time	number of customer waiting in queue	total time customer wait in queue	total idle time of server
		6	23	21	3	7	6
The average waiting time for a customer	1.17 mins						
The probability that a customer has to wait in the queue	50 %						
The fraction of idle time of the server	21 %						
The average service time	3.5 mins						
The average time between arrivals	4.6 mins						
The average waiting time of those who wait	2.33 mins						
The average time a customer spends in the system	4.67 mins						

1.4 Simulation using python:

Code:

```
from random import randrange
customer_in\_server = []
ultimate_customer_info = []
customer_in_queue = []
rn_iat = 0
iat = 0
rn_st = 0
st = 0
stb = 0
wt = 0
its = 0
def inter_arrival_time(k):
 for i in range(k):
   if (i == 0):
     customer_in_queue = [i, 0, 0, 0]
   else:
     global stb, wt, its
     rn_iat = randrange(1000)
     if (rn_iat < 126):
       iat = 1
     elif(rn_iat < 251):
       iat = 2
     elif(rn_iat < 376):
       iat = 3
     elif(rn_iat < 501):
       iat = 4
     elif(rn_iat < 626):
       iat = 5
     elif(rn_iat < 751):
       iat = 6
     elif(rn_iat < 876):
       iat = 7
     elif(rn_iat < 1001):
       iat = 8
```

```
customer_in_server = customer_in_queue.copy()
     customer_in_queue = [i, rn_iat, iat]
     at = customer_in_server[3] + customer_in_queue[2]
     customer_in_queue.append(at)
     stb = max(customer_in_server[8], customer_in_queue[3])
     wt = customer_in_server[8] - at
     if wt < 0:
       wt = 0
     its = at - customer_in_server[8]
     if its < 0:
       its = 0
   a, b = server\_time()
   customer_in_queue.append(a)
   customer_in_queue.append(b)
   customer_in_queue.append(stb)
   customer_in_queue.append(wt)
   tse = customer_in_queue[5] + customer_in_queue[6]
   customer_in_queue.append(tse)
   tsis = customer_in_queue[8] - customer_in_queue[3]
   customer_in_queue.append(tsis)
   customer_in_queue.append(its)
   ultimate_customer_info.append(customer_in_queue)
def server_time():
 rn_st = randrange(100)
 if (rn_st < 21):
   st = 1
 elif(rn_st < 31):
   st = 2
 elif(rn_st < 61):
   st = 3
 elif(rn_st < 76):
   st = 4
 elif(rn_st < 96):
   st = 5
 elif (rn_st < 101):
   st = 6
```

Output:

(-/	rn-iat	iat	at	rn_st	st	stb	wt	tse	tsis	its
Customer no.										
0	0	0	0	90	5	0	0	5	5	0
1	487	4	4	40	3	5	1	8	4	0
2	946	8	12	7	1	12	0	13	1	4
3	900	8	20	75	4	20	0	24	4	7
4	869	7	27	5	1	27	0	28	1	3
5	603	5	32	49	3	32	0	35	3	4
(dip) PS E:\S	tudy\Fall 202	1\Simulat	ion and	modeling se	ssional\	MID\Code>				