

Inventor: Harry B. Smith Serial No.: 09/453,526 Docket No.: 802.0002

2/26

Customer No.: 25534 Atty: Kevin M. Barner

θ=Target Angle Relative to Array Broadside

FIG. 2A

Inventor: Harry B. Smith Serial No.: 09/453,526 Docket No.: 802.0002

Customer No.: 25534 Atty: Kevin M. Barner

FIG. 2B

FIG. 3B

Inventor: Harry B. Smith Serial No.: 09/453,526 Docket No.: 802.0002

Customer No.: 25534 Atty: Kevin M. Barner

4/26

FIG. 3C

FIG. 4B

FIG. 4A

Inventor: Harry B. Smith Serial No.: 09/453,526 Docket No.: 802.0002

Customer No.: 25534 Atty: Kevin M. Barner

Inventor: Harry B. Smith Serial No.: 09/453,526 Docket No.: 802.0002

6/26

Customer No.: 25534 Atty: Kevin M. Barner

FIG. 6A

FIG. 6B

FIG. 6C

FIG. 6D

Inventor: Harry B. Smith Serial No.: 09/453,526 Docket No.: 802.0002 **7/26**

Atty: Kevin M. Barner

Customer No.: 25534

FIG. 7A

FIG. 7B

FIG. 8C

Vector Phasors

Inventor: Harry B. Smith Serial No.: 09/453,526 Docket No.: 802.0002

Customer No.: 25534 Atty: Kevin M. Barner

Inventor: Harry B. Smith Serial No.: 09/453,526 Docket No.: 802.0002

Customer No.: 25534 Atty: Kevin M. Barner

10/26

FIG. 9B

FIG. 9C

Inventor: Harry B. Smith Serial No.: 09/453,526 Docket No.: 802.0002

Customer No.: 25534 Atty: Kevin M. Barner

11/26

	20 M/2	$\lambda/2$				-
19	20	21	-		 -	ت ت
16	17	18	>	-		nulatic
13	14	15	} ∓	-γ-	3	r In Sin
10	,11	12	1-2/2-1-2/2-1	*	 	7x3 Array Used In Simulation
7	8	တို	, -γ/2	_γ	٧_	Array
4	2	9	-	<u>↓</u>	(C)	7x3,
_	2	ွက	>		 	

Reference

			Z = 100			-2. 152* -0. 312*	-1. 271*	-3. 734*	-1. 245
		LEFT	RIGHT			500			
		1. 7902	1. 2718 RIGHT	٠.		16 -0. 4199 17 0. 5505	-2. 2936	-2. 1629	-0. /210
						97	3		
data ===		0.3856	0.3127			3 -0. 5273 1 -1. 9065	2319	6657	2000
p - #	٠	0.8836	2. 1521			⇔		4,	-
11			2			€ <u>4</u> ;	"		
		0.7478	2. 2936			10 1. 7061 11 2. 3004	2. 3358	6. 3422	2. 1141
16 =		1.0919	-0. 5505		٠	2 29	. 12		
: Trial	ž				į	3839 3836 3856	7902	0593	28
 		1.4339	0.4199		. !	00		ლ,	
 			_	pesi	ser	~∞0	ဘ		
dB ====	ay	←,ς	2. 2319	ments reversed:	I values	1. 4339	0. /4/8	3. 2737	1.0912
0 ====	iginal I an	1.3760	1. 9065	ight I efer	İ	4w	ထ		
	Contents of original I arr	7349	0. 5273	After signs of right I eler		0. 7349	1. 1123	3. 2232	
	Conte		-0	After	٠	~ α		Sum	SA Y

Title: Receiving System with Improved Directivity and Signal to Noise Ratio Inventor: Harry B. Smith
Serial No.: 09/453,526 Customer No.: 25534

Docket No.: 802.0002

Atty: Kevin M. Barner

======== 0 dB =	=== ====== Trial 17	Group 2		=== Q data =	=======	· ===
Avg Q for sextet (w/ si	gns reversed) = 0.4769	ì	### Actual	noise avg = .	-0.2302 # #	##
4 0.0209 -0.4 5 0.3602 -0.1	s DA 560 167 * 342		• :			
16 0.0031 -0.4 17 -0.2578 -0.7	738	,	. :	~		
Left Right Pair Avg(A)			Delta A(E)	Col 1 -0.1217	Col 2	Col 3
4 16 0.0089 4 17 0.1394	0.0120 b -0.4649 -0.1185 -0.5954	0.0031 -0.2578	<u>-0.5867</u> -0.8476	-0.1217	-0.2522	
4 18 -1.0016	1.0225 0.5455	2.0240	1.4342	-0.2914		<u>0.8887</u>
5 16 0.1786 5 17 0.3090	0.1817 b -0.2953 0.0512 -0.4257	0.0031 -0.2578	-0.58 6 7 -0.8476	-0.2914	-0.4218	
5 18 -0.8319	1.1921 0.7152	2.0240	1.4342		2	<u>0.7191</u>
6 16 0.3540	0.3571 x -0.1198	0.0031	-0.5867	-0.4668		. •
6 17 0.4844	0.2267 -0.2503	-0.2578	-0.8476	· .	-0.5973	0.5400
6 18 -0.6565	1.3676 # 0.8906	2.0240	1.4342	-	•	<u>0.5436</u>
Sum = -1.0157	4.2923 -0.0000	5.3079	0.0000	-0.8800	-1.2714	2.1514
Avg = -0.1129	0.4769 -0.0000	0.5898	0.0000	-0.2933	-0.4238	0.7171
Dispersion = 2.393 :	· 1	Compariso	on value =	-0.2933		
Dispersion sum = Dispersion dif = Dispersion ratio =	-0.4131 -0.1697 0.1369> divided by 3	i =	•		rageable; lo	non key entries) w dispersion ratio
	0	.0456	Case 1	-		
	•	+30) Case 2	Average bet		
(Expected A1) Process A1	POLARITY of noise	is: -	ī	Comparison		

FIG. 11A

Inventor: Harry B. Smith Serial No.: 09/453,526 Docket No.: 802.0002

Customer No.: 25534 Atty: Kevin M. Barner

13/26

======= 0 dB	3 ===== Trial 2	Group 3	. ========	== Q data		===
Avg Q for sextet (w/	signs reversed) = 0.1035	-	###. Actu	al noise avg	= -0.2625	###
8 1.0595 0 9 -0.6877 -0 13 -1.7936 -1 14 -0.5530 -0	A's QA .2375 .9560).7912 I.8971 J.6565 *					
Left Right Pair Avg(/ 7 13 1.5673		Delta(D) -1.7936	Delta A(E) -1.4297	Col 1	Col 2	Col 3 -1.0999
7 14 0.9470 7 15 0.0430	0.3940 b 0.2905 1.2980 1.1945	-0.5530 1.2550	<u>-0.1891</u> 1.6189	-0.4796	0.4244	
8 13 1.4266 8 14 0.8063		-1.7936 -0.5530	-1.4297 -0.1891	-0.3389		-0.9592
8 15 -0.0977 9 13 0.5530		1.2550 -1.7936	1.6189 -1.4297		<u>0.5651</u>	-0.0856
9 14 -0.0673 9 15 -0.9713		-0.5530 1.2550	-0.1891 1.6189	0.5348	1.4388	••
Sum = 4.2066 Avg = 0.4674		-3.2748 -0.3639	0.0000 0.0000	-0.2837	2.4283 0.8094	-2.1446 -0.7149
Dispersion = -1.115	: 1	Compariso	on value =	-0.2837		· .
Dispersion sum =	0.0552		(Inherently	Bb combina	tion)	
Dispersion dif = Dispersion ratio =	1.0144 0.0544		One odd p	olarity, 🖫 use	s <u>sum</u> : dispe	rsion ratio low
Dispersion ratio =	0.0014		Case 1 Case 2	Σ less than presence of		
(Expected B1) Process B1	POLARITY of noise is	: -		67% of # invalue of pola	IA' column,	

FIG. 11B

Inventor: Harry B. Smith Serial No.: 09/453,526 Docket No.: 802.0002

Customer No.: 25534 Atty: Kevin M. Barner

======== 0 dB =	======= Trial	1 Group 3	· ========	=== Q data	=======	-==
Avg Q for sextet (w/ sig		•		-,	= 0.7660	###
Sextet QA's	5				•	
Q QA	4				-	
7 1.6680 0.58			•		•	
8 0.2348 -0.89 9 0.6360 -0.49						
13 2.2163 1.08					•	•
14 0.8563 -0.27	-	,		~		
15 1.1806 0.04	l86 _. *					•
Left Right Pair Avg(A)	B Q'A (C)	Delta(D)	Delta A(E)	Col 1	Col 2	Col 3
7 13 -0.2742	1.9422 b 0.8101	2.2163	0.7986	<u>-0.0116</u>		
7 14 0.4059	1.2622 0.1301 1.4243 0.2923	0.8563	-0.5614		-0.6916	0.5204
7 15 0.2437 8 13 -0.9908	1.4243 0.2923 1.2256 x 0.0935	1.1806 2.2163	<u>-0.2371</u> 0.7986	0.7050	•	<u>-0.5294</u>
8 14 -0.3108	0.5456 # -0.5865	0.8563	-0.5614	0.7000	0.0250	•
8 15 -0.4729	0.7077 -0.4243	1.1806	-0.2371			0.1872
9 13 -0.7901	1.4262 b 0.2941	2.2163	0.7986	0.5044		. •
9 14 -0.1102 9 15 -0.2723	0.7462 -0.3859 0.9083 -0.2237	0.8563 1.1806	-0.5614		-0.1756	0.0124
9 15 -0.2723	0.9003 -0.2237	1.1606	-0.2371		•	0.0134
	10.1880 -0.0000	12.7596	0.0000	1.1979	· -0.8421	-0.3557
Avg = -0.2857	1.1320 -0.0000	1.4177	0.0000			•
Dispersion = -43.547 :	1	Compariso	on value =	0.7050		-
Dispersion sum =	0.4928		(Inherently	bb or BB)	•	
Dispersion dif =	0.5160		Use key o	r * entry; higi	h dispersion	ratio
Dispersion ratio =	0.9551	•	Case 1	less than .7		•
			Case 2	greater tha	n :83	
(Expected C1)				Compariso	n value is * i	ndex entry
Process C1	POLARITY of noise i	s: +		•		,

FIG. 11C

Inventor: Harry B. Smith Serial No.: 09/453,526 Docket No.: 802.0002

Customer No.: 25534 · Atty: Kevin M. Barner

=========	0 dB =====	===== Trial 4	Group 1	=======	=== Q data	========	· === _/
Avg Q for sex	tet (w/ signs reve	rsed) = 1.1629	•	### Actu	ıal noise avg	= . 0.1628 #	###
Se	xtet QA's			•			
Q	QA						
1 2.662		•	•		-		
2 1.909			•		•		•
3 1.016							
19 1.926 20 0.168							•
21 -0.705					•		
	-1.0000				•		•
	r Avg(A) B	Q'A (C)	Delta(D)	Delta A(E)	Col 1	Col 2	Col 3
	0.3681 2.2945		1.9264	1.4634			<u>0.3318</u>
	1.2471 1.4155		0.1684		x -0.5472	0.0040	
	1.6842 0.9783 0.0086 1.9178		-0.7059 1.9264	-1.1689 1.4634		-0.9843	0.7005
	0.8704 1.0388		0.1684	-0.2946	-0.1705		<u>0.7085</u>
	1.3075 0.6016		-0.7059	-1.1689	-0.1703	-0.6076	
	0.4549 1.4715		1.9264	1.4634		0.0070	1.1548
	0.4241 0.5925		0.1684	-0.2946	0.2758		
3 21	0.8613 0.1554	-1.0075	-0.7059	-1.1689		-0.1614	
C:	C 0000 40 40E7	0.0000	4.4007		0.4440	4 7500	. 0.4050
· ·	6.2990 10.4657 0.6999 1.1629		4.1667 0.4630	0.0000 0.0000	-0.4418	-1.7533	2.1952 0.7317
Avg =	0.0959 1.1029	-0.0000	0.4630	0.0000		-0.5844	. 0.7317
Dispersion =	-1.984 : 1		Compariso	on value =	0.1053		
Dispersion su				(Inherently	y bB) high	dispersion ra	atio
Dispersion d				Eliminate	B When Σ <	abs 11.31	
Dispersion rat	tio = 0.3298			Fliminate	(b) When Σ >	- 11.31	
				Case 1	less than .7		
,				Case 2		=	
(Expected D		ARITY of noise is	. т	Case 2	greater tha	11 .03	
Process D	i POL	WELL & OF LIGHTSE IS	, T	•			

FIG. 11D

Inventor: Harry B. Smith Serial No.: 09/453,526 Docket No.: 802.0002

Customer No.: 25534 Atty: Kevin M. Barner

17/26

Block Diagram Iterative Processing Scheme

FIG. 12B

Regular & Reverse "Scans"

Composite "V" Scan & "A" Scan

Inventor: Harry B. Smith Serial No.: 09/453,526 Docket No.: 802.0002

Customer No.: 25534 Atty: Kevin M. Barner

APR 1 8 200

==	= Ida	ta ==	=		G	roup 1		Noise	Avera	gės#	##	###A	vgs S	cannec	l in Op	posite	Sense	###
, i	Min IA	-0.9v	-0.85v	-0.80v	-0.75∨	-0.70v	-0.65v	-0.60v	-0.55v	-0.50v	-0.45v	-0.40v	-0.35v	-0.30v	-0.25v	-0.20v	-0.15v	-Ö.1v
Avg	0.041	1.206	1.156	1.106	1.056	1.006	1.956	0.906	0.856	0.806	0.756	0.706	0.656	0.606	0.556	0.506	0.456	0.406
20B		-0.552	-0.502	-0.452	-0.402	-0.352	-0.302	-0.252	-0.202	-0.152	-0.102	-0.052	0.002	0.048	0.098	0.148	0.198	0.248
Avg	-0.052	-0.691	0.641	0.591	0.541	0.491	0.441	0.391	0.341	0.291	0.241	0.191	0.141	0.091	0.041	0.009	-0.059	-0.109
21Å		-1.161	-1.111	-1.061	-1.011	961	-0.911	-0.861	-0.811	-0.761	-0.711	-0.661	-0.611	-0.561	-0.511	-0.461	-0.411	-0.361
Avg	0.060	0.735	0.685	0.635	0.585	0.535	0.485	0.435	0.385	0.335	0.285	0.235	0.185	0.135	0.085	0.035	0.015	-0.065
22A		-1.005	-0.955	-0.905	-0.855	-0.805	-0.755	-0.705	-0.655	-0.605	-0.555	-0.505	-0.455	-0.405	-0.355	-0.305	-0.255	-0.205
Avg	0.022	0.654	0.604	0.554	0.504	0.454	0.404	0.354	0.304	0.254	0.204	0.154	0.104	0.054	0.004	-0.046	-0.096	-0.146
23A		-1.124	-1.074	-1.024	-0.974	-0.924	-0.874	-0.824	-0.774	-0.724	-0.674	-0.624	-0.574	-0.524	-0.474	-0.424	-0.374	-0.324
Avg	-0.002	1.166	1.116	1.066	1.016	0.966	0.916	0.866	0.816	0.766	0.716	0.666	0.616	0.566	0.516	0.466	0.416	0.366
24A		-0.637	-0.587	-0.537	-0.487	-0.437	-0.387	-0.337	-0.287	-0.237	-0.187	-0.137	-0.087	-0.037	0.013	0.063	0.113	0.163
Avg	-0.032	1.100	1.050	1.000	0.950	0.900	0.850	0.800	0.750	0.700	0.650	0.600	0.550	0.500	0.450	0.400	0.350	0.300
25B		-0.732	-0.682	-0.632	-0.582	-0.532	-0.482	-0.432	-0.382	-0.332	-0.282	-0.232	-0.182	-0.132	-0.082	-0.032	0.018	0.068
Avg	Q.169	0.487	0.437	0.387	0.337	0.287	0.237	0.187	0.137	0.087	0.037	0.013	-0.063	-0.113	-0. 1 63	-0.213	-0.263	-0.313
26B		-1.481	-1.431	-1.381	-1.331	-1.281	-1.231	-1.181	-1.131	-1.081	-1.031	0.981	-0.931	-0.881	-0.831	-0.781	-0.731	-0.681
Avg	0.120	0.924	0.874	0.824	0.774	0.724	0.674	0.624	0.574	0.524	0.474	0.424	0.374	0.324	0.274	0.224	0.174	0.124
27Å		-0.756	-0.706	-0.656	-0.606	-0.556	-0.506	-0.456	-0.406	-0.356	-0.306	-0.256	-0.206	-0.156	-0.106	-0.056	0.006	0.044
Avg	0.178	0.782	0.732	0.682	0.632	0.582	0.532	0.482	0.432	0.382	0.332	0.282	0.232	0.182	0.132	0.082	0.032	0.018
28C		-0.840	-0.790	-0.740	-0.690	-0.640	-0.590	-0.540	-0.490	-0.440	-0.390	-0.340	-0290.	-0.240	-0.190	-0.140	-0.0 9 0	-0.040
Avg 29C	0.129	-0.683	-0.633	-0.583	-0.533	-0.483	-0.433	-0.383	-0.333	-0.283	-0.233	-0.183	-0.133	-0.083	-0.033	0.017	0.067	
Avg 30B	0.032	-0.921	-0.871	-0.821	-0.771	-0.721	-0.671	-0.621	-0.571	-0.521	-0.471	-0.421	-0.371	-0.321	-0.271	-0.221	-0.171	0.048 -0.121
Avg 31C	0.174	-1.187	-1.137	-1.087	-0.037	-0.987	-0.937	-0.887	-0.837	-0.787	-0.737	-0.687	-0.637	-0.587	-0.537	-0.487	-0.437	
Avg	-0.015	1.060	1.010	0.960	0.910	0.860	0.810	0.760	0.710	0.660	0.610	0.560	0.510	0.460	0.410	0.360	0.310	0.260
32C		-0.755	-0.705	-0.655	-0.605	-0.555	-0.505	-0.455	-0.405	-0.355	-0.305	-0.255	-0.205	-0.155	-0. 1 05	-0.055	0.005	0.045
Avg 33C	-0.080	-0.887	-0.837	-0.787	-0.737	-0.687	-0.637	-0.587	-0.537	-0.487	-0.437	-0.387	-0.337	-0.287	-0.237	-0.187	-0.137	
Avg 34A	0.203	-1.479	-1.429	-1.379	-1.329	-1.279	-1.229	-1.179	-1.129	-1.079	-1.029	-0.979	0.929	-0.879	-0.829	-0.779	-0.729	-0.270 -0.679
Ava		1.035 -0.848	0.985 -0.798	0.935 -0.748	0.885 -0.698	0.835 -0.648	0.785 -0.598	0.735 -0.548	0.685 -0.498	0.635 -0.448	0.585 -0.398	0.535 -0.348	0.485 0.298	0.435 -0.248	0.385 -0.198	0.335 -0.148	0.285 -0.098	0.235 -0.048
Avg 36B	0.212	-0.841	-0.791	-0.741	-0.691	-0.641	-0.591	-0.541	-0.491	-0.441	-0.391	-0.341	-0.291	-0.241	-0.191	-0.141	-0.091	0.371 -0.041
Avg 37C	0.015	-0.761	-0.711	-0.661	-0.611	-0.561	-0.511	-0.461	-0.411	-0.361	-0.311	-0.261	-0.211	-0.161	-0.111	-0.061	-0.011	0.224 0.039
Avg	0.003	0.616	0.566	0.516	0.466	0.416	0.366	0.316	0.266	0.216	0.166	0.116	0.066	0.016	0.034	-0.084	-0.134	-0.184
38B		-1.181	-1.131	-1.081	-1.031	-0.981	-0.931	-0.881	-0.831	-0.781	-0.731	-0.681	-0.631	-0.581	-0.531	-0.481	-0.431	-0.381

Title: Receiving System with Improved Directivity and Signal to Noise Ratio O I P Inventor: Harry B. Smith Serial No.: 09/453,526 Customer No.: 25534

Docket No.: 802.0002

Customer No.: 25534 Atty: Kevin M. Barner

APR 1 8 2005

=== I data === Group 1 ###Noise Averages###																
_==:	= I dat	a = = =	=		Gro	oup 1	###N	loise A	verage	s###						
-0.05∨	0.00V	0.05V	0.10V	0.15V	0.20V	0.25V	0.30V	0.35V	0.40V	0.45V	0.50V	0.55∨	0.60V	0.65V	0.70∨	0.75∨
0.356	0.306	0.256	0.206	0.156	0.106	0.056	0.006	-0.044	-0.094	-0.144	-0.194	-0.244	-0.294	-0.344	-0.394	-0.444
0.298	0.348	0.398	0.448	0.498	0.548	0.598	0.648	0.698	0.748	0.798	0.848	0.898	0.948	0.998	1.048	1.098
-0.159	-0.209	-0.259	-0.309	-0.359	-0.409	-0.459	-0.509	-0.559	0.609	-0.659	-0.709	-0.759	-0.809	-0.859	-0.909	-0.959
-0.311	-0.261	-0.211	-0.161	-0.111	-0.061	-0.011	0.039	0.089	0.139	0.189	0.239	0.289	0.339	0.389	0.439	0.489
-0.115	-0.165	-0.215	-0.265	-0.315	-0.365	-0.415	-0.465	-0.515	-0.565	-0.615	-0.665	-0.715	-0.765	-0.815	-0.865	-0.915
-0.155	-0.105	-0.055	-0.005	0.045	0.095	0.145	0.195	0.245	0.295	0.315	0.395	0.445	0.495	0.545	0.595	0.645
-0.196	-0.246	-0.296	-0.346	-0.396	-0,446	-0.496	-0.546	-0.596	-0.646	-0.696	-0.746	-0.796	-0.846	-0.896	-0.946	-0.996
-0.274	-0.224	-0.174	-0.124	-0.074	-0,024	0.026	0.076	0.126	0.176	0.226	0.276	0.326	0.376	0.426	0.476	0.526
0.316	0.266	0.216	0.166	0.116	0.066	0.016	-0.034	-0.084	-0.134	-0.184	-0.234	-0.284	-0.334	-0.384	-0.434	-0.484
0.213	0.263	0.313	0.363	0.413	0.463	0.513	0.563	0.613	0.663	0.713	0.763	0.813	0.863	0.913	0.963	1.013
0.250	0.200	0.150	0.100	0.050	0.000	-0.050	-0.100	-0.150	-0.200	-0.250	-0.300	-0.350	-0.400	-0.450	-0.500	-0.550
0.118	0.168	0.218	0.268	0.318	0.368	0.418	0.468	0.518	0.568	0.618	0.668	0.718	0.768	0.818	0.868	0.918
-0.363	-0.413	-0.463	-0.513	-0.563	-0.613	-0.663	-0.713	-0.763	-0.813	-0.863	-0.913	-0.963	-1.013	-1.063	-1.113	-1.163
-0.631	-0.581	-0.531	-0.481	-0.431	-0.381	-0.331	-0.281	-0.231	-0.181	-0.131	-0.081	-0.031	0.019	0.069	0.119	0.169
0.074	0.024	-0.026	-0.076	-0.126	-0.176	-0.226	-0.276	-0.326	-0.376	-0.426	-0.476	-0.526	-0.576	-0.626	-0.676	-0.726
0.094	0.144	0.194	0.244	0.294	0.344	0.394	0.444	0.484	0.544	0.594	0.644	0.684	0.744	0.784	0.844	0.884
0.010		0.110	0.160	0.210	0.260	0.310	0.360	0.410	0.460	0.510	0.560	0.610	0.660	0.710	0.760	0.810
0.396		0.296	0.246	0.196	0.146	0.096	0.046	0.004	-0.054	-0.104	-0.154	-0.204	-0.254	-0.304	-0.354	-0.404
0.167		0.267	0.317	0.367	0.417	0.467	0.517	0.567	0.617	0.667	0.717	0.767	0.817	0.867	0.917	0.967
0.002	-0.052	-0.102	-0.152	-0.202	-0.252	-0.302	-0.352	-0.402	-0.452	-0.502	-0.552	-0.602	-0.652	-0.702	-0.752	-0.802
-0.071	-0.021	0.029	0.079	0.129	0.179	0.229	0.279	0.329	0.379	0.429	0.479	0.529	0.579	0.629	0.679	0.729
-0.064 -0.337	-0.114 -0.287	-0.237	-0.187	-0.137	-0.087	-0.037	(0.013)	0.063	0.113	0.163	0.213	0.263	0.313	0.363	0.413	0.463
	0.145	0.195	0.245	0.295	0.345	0.395	0.445	0.495	0.545	0.595		0.695	0.745	0.795	0.845	0.895
-0.037	0.093 0.013	0.063	0.113	0.163	0.213	0.263	0.313	0.363	0.413	0.463	0.513	0.563	0.613	0.663	0.713	0.763
-0.320 -0.629														 		-1.120 0.171
0.185 0.002	0.052	0.102	0.152	0.202	0.252	0.302	0.352	0.402	0.452	0.502		0.602	0.652	0.702	0.752	0.802
0.321 0.009												-				-0.479 0.809
	0.139	0.189	0.239	0.289	0.339	0.389	0.439	0.489	0.539	0.589		0.689	0.739	0.789	0.839	0.889
-0.234	-0.284	-0.334	-0.384	-0.434	-0.484	-0.534	-0.584	-0.634	-0.684	-0.734	-0.784	-0.834	-0.884	-0.934	-0.984	-1.034
-0.331	-0.281	-0.231	-0.181	-0.131	-0.081	-0.031	(0.019	0.069	0.119	0.169	0.219	0.269	0.319	0.369	0.419	0.469

FIG. 13B

Title: Receiving System with Improved Directivity and Signal to Noise Ratio Inventor: Harry B. Smith
Serial No.: 09/453,526 Customer No.: 25534
Docket No.: 802.0002 Atty: Kevin M. Barner

Atty: Kevin M. Barner

=== data === 0 dB === Group 1 Average Values ### Avgs Scanned in Opposite Sense ###																		
	Min IA	9v	85v	8v	75v	7v	65v	6v	55v	5v	45v	4v	35v	3v	25v	2v	15v	1v
Avg 20B	0.041	2.431 0.672		2.331 0.772	2.281 0.822	2.231 0.872	2.181 0.922	2.131 0.972	2.081 1.022	2.031 1.072	1.981 1.122	1.931 1.172	1.881 1.222	1.831 1.272	1.781 1.322	1.731 1.372	1.681 <u>1.422</u>	1.631 1.472
Avg 21A	-0.052	1.916 0.064	1.866 0.114	1.816 0.164	1.766 0.214	1.716 0.264	1.666 0.314	1.616 0.364	1.566 0.414	1.516 0.464	1.466 0.514	1.416 0.564	1.366 0.614	1.316 0.664	1.266 0.714	1.216 0.764	1.166 0.814	1.116 0.864
Avg 22A	0.060	1.960 0.220	1.910 0.270	1.860 0.320	1.810 0.370	1.760 0.420	1.710 0.470	1.660 0.520	1.610 0.570	1.560 0.620	1.510 0.670	1.460 0.720	1.410 0.770	1.360 0.820	1.310 0.870	1.260 0.920	1.210 0.970	1.160 1.020
Avg 23A	0.022	1.878 0.101	1.828 0.151	1.778 0.201	1.728 0.251	1.678 0.301	1.628 0.351	1:578 0.401	1.528 0.451	1.478 0.501	1.428 0.551	1.378 0.601	1.328 0.651	1.278 0.701	1.228 1.751	1.178 0.801	1.128 0.851	1.078 0.901
Avg 24A	-0.002	2.390 0.588		2.290 0.688	2.240 0.738	2.190 0.788	2.140 0.838	2.090 0.888	2.040 0.938	1.990 0.988	1.940 1.038	1.890 1.088	1.840 1.138	1.790 1.188	1.740 <u>1.238</u>	1.690 1.288	1.640 1.338	
Avg 25B	-0.032				2.175 -0.643	2.125 0.693	2.075 0.743	2.025 0.793	1.975 0.843		1.875 0.943	1.825 0.993	1.775 1.043	1.725 1.093	1.675 1.143	1.625 1.193		1.525 1.293
Avg 26B	-0.169	1.712 -0.257	1.662 -0.207	1.612 -0.157	1.562 -0.107	1.512 -0.057	1.462 -0.007	1.412 0.043	1.362 0.093	1.312 0.143	1.262 0.193	1.212 0.243	1.162 0.293	1.112 0.343	1.062 0.393	0.012 0.443	0.962 0.493	0.912 0.543
Avg 27Å	0.120	2.149 0.468	2.099 0.518	2.049 0.568	1.999 0.618	1.949 0.668	1.899 0.718	1.849 0.768	1.799 0.818	1.749 0.868	1.699 0.918	1.649 0.968	1.599 1.018	1.549 1.068	1.499 1.118	1.449 1.168	1.399 1.218	1.349 1.268
Avg 28C	0.178	2.007 0.385	1.957 0.435	1.907 0.485		1.807 0.585	1.757 0.635	1.707 0.685	1.657 0.735	1.607 0.785	1.557 0.835	1.507 0.885	1.457 0.935	1.407 0.985	1.357 1.035	1.307 1.085	1.257 1.135	1.207 1.185
Avg 29C	-0.129	2.471 0.542	2.421 0.592	2.371 0.642	2.321 0.692	2.271 0.742	2.221 0.792	2.171 0.842	2.121 0.892	2.071 0.942	2.021 0.992	1.971 1.042	1.921 1.092	1.871 1.142	1.821 1.192	1.771 <u>1.242</u>	1.721 1.292	1.671 1.342
Avg 30B	0.032	2.073 0.304	2.023 0.354	1.973 0.404	1.923 0.454	1.873 0.504	1.823 0.554	1.773 0.604	1.723 0.654	1.673 0.704	1.623 0.754	1.573 0.804	1.523 0.854	1:473 0.904	1.423 0.954	1.373 1.004	1.323 1.054	1.273 1.104
Avg 31C	-0.174	2.011 0.037	1.961 0.087	1.911 0.137		1.811 0.237	1.761 0.287	1.711 0.337	1.661 0.387	1.611 0.437	1.561 0.487	1.511 0.537	1.461 0.587	1.411 0.637	1.361 0.687	1.311 0.737		1.211 0.837
Avg 32C	-0.015	2.285 0.470	2.235 0.520	2.185 0.570	2.135 0.620	2.085 0.670	2.035 0.720	1.985 0.770	1.935 0.820	1.885 0.870	1.835 0.920	1.785 0.970	1.735 1.020	1.685 1.070	1.635 1.120	1.585 1.170	1.535 1.220	1.485 1.270
Avg 33C	-0.080	0.338	0.388	0.438	0.488	0.538	0.588	0.638	0.688	0.738	0.788	0.838	0.888	0.938	0.988	1.038	1.468 1.088	1.138
Avg 34A	-0.209	-0.255	-0:205	-0.155	-0.105	-0.055	-0.005	0.045	0.095	0.145	0.195	0.245	0.295	0.345	0.395	0.445		0.545
	-0.083	0.377	0.427	0.477	0.527	0.577	0.627	0.677	0.727	0.777	0.827	0.877	0.927	0.977	1.027	1.077		1.177
Avg 36B	-0.212	0.384	0.434	0.484	0.534	0.584	0.634	0.684	0.734	0.784	0.834	0.884	0.934	0.984	1.034	1.084	1.646 1.134	1.184
Avg 37C		2.249 0.463	2.199 0.513	2.149 0.563	2.099 0.613	2.049 0.663	1.999 0.713	1.949 0.763	1.899 0.813	1.849 0.863	1.799 0.913	1.749 0.963	1.699 1.013	1.649 1.063	1.599 1.113	1.549	1.499 1.213	1.449
Avg 38B	0.003	1.841 0.044	1.791 0.094	1.741 0.144	1.691 0.194	1.641 0.244	1.591 0.294	1.541 0.344	1.491 0.394	1.441 0.444	1.391 0.494	1.341 0.544	1.291 0.594	1.241 0.644	1.191 0.694	1.141 0.744	1.091 0.794	1.041 0.844

Inventor: Harry B. Smith Serial No.: 09/453,526 Docket No.: 802.0002

Customer No.: 25534 Atty: Kevin M. Barner

==	= I da	ta ==:	= 0 d	B ==:	= Gro	oup 1		Avera	age I Va	alues	+	· · · · · ·				
05 V	0 V	.05 V	.1 V	.15 V	.2 V	`.25 V	.3 V	.35 V	.4 V	.45 V	.5 V	.55 V	.6 V	.65 V	.7 V	.75 V
1.581 1.522	1.531 1.572	1.481 1.622	1.431 1.672	1.381 1.722	1.331 1.772	1.281 1.822	1.231 1.872	1.181 1.922	1.131 1.972	1.081 2.022	1.031 2.072	0.981 <u>2.122</u>	0.931 2.172	0.861 2.222		0.781 2.322
1.066 0.914	1.016 0.964	0.966 1.014	0.916 1.064	0.866 1.114		0.766 1.214	0.716 1.264			0.566 1.414			0.416 1.564	0.366 1.614		
1.110 1.070	1.060 1.120		0.960 <u>1.220</u>	0.910 1.270		0.810 1.370	0.760 1.420		0.660 1.520			0.510 1.670	0.460 1.720	0.410 1.770		0.310 1.870
1.028 0.951	0.978 1.001	0.928 1.051	0.878 1.101	0.828 1.151	0.778 <u>1.201</u>	0.728 <u>1.251</u>	0.678 1.301			0.528 1.451		0.428 1.551	0.378 1.601	0.328 1.651	0.278 1.701	0.228 1.751
1.540 1.438	1.490 1.488	1.440 1.538	1.390 1.588	1.340 1.638	1.290 1.688	1.240 1.738	1.190 1.788	1.140 1.838		1.040 1.938		0.940 2.038	0.890 2.088	0.840 2.138	0.790 2.188	0.740 2.238
1.475 1.343	1.425 1.393	1.375 1.443	1.325 1.493	1.275 1.543	1.225 1.593	1.175 1.643	1.125 1.693	1.075 1.743	1.025 1.793	0.975 1.843	0.925 1.893	0.875 1.943	0.825 1.993	0.775 2.043	0.725 2.093	0.675 2.143
	0.812 0.643		0.712 0.743		0.612 0.843	0.562 .0.893	0.512 0.943	0.462 0:993	0.412 1.043	0.362 1.093		0.262 1.193	0.212 <u>1.243</u>	0.162 1.293		0.062 1.393
1.299 1.318	1.249 1.368	1.199 1.418	1.149 1.468	1.093 1.518	1.049 1.568	0.999 1.618	0.949 1.668	0.899 1.718	0.849 1.768	0.799 1.818		0.699 1.918	0.649 1.968	0.599 2.018	0.549 2.068	0.499 2.118
1.157 1.235	1.107 1.285	1.057 1.335	1.007 1.385	0.957 1.435	0.907 1.485	0.857 1.535	0.807 1.585	0.757 1.635	0.707 1.685	0.657 1.735	0.607 1.785	0.557 1.835	0.507 1.885	0.457 1.935	0.407 1.985	0.357 2.035
1.621 1.392	1.571 1.442	1.521 1.492	1.471 1.542	1.421 1.592	1.371 1.642	1.321 1.692	1.271 1.742	1.221 1.792	1.171 1.842	1.121 1.892	1.071 1.942	1.021 1.992	0.971 2.042	0.921 2.092	0.871 2.142	0.821 2.192
1.223 1.154	1.173 <u>1.204</u>	1.123 1.254	1.073 1.304	1.023 1.354	0.973 1.404		0.873 1.504	0.823 1.554	0.773 1.604		0.673 1.704	0.623 1.754	0.573 1.804	0.523 1.854	0.473 1.904	0.423 1.954
1.161 0.887	1.111 0.937	1.061 0.987		0.961 1.087	0.911 1.137	0.861 1.187	0.811 <u>1.237</u>	0.761 1.287	0.711 1.337	0.661 1.387	0.611 1.437	0.561 1.487	0.511 1.537	0.461 1.587	0.411 1.637	0.361 1.687
1.435 1.320	1.385 1.370	1.335 1.420	1.285 1.470	1.235 1.520	1.185 1.570	1.135 1.620	1.085 1.670	1.035 1.720	0.985 1.770		0.885 1.870	0.835 1.920	0.785 1.970	0.735 2.020	0.685 2.070	0.635 2.120
1.368 <u>1.188</u>	1.318 1.238	1.268 1.288	1.218 1.338	1.168 1.388	1.118 1.438		1.018 1.538	0.968 1.588	0.918 1.638	0.868 1.688	0.818 1.738	0.768 1.788	0.718 1.838	0.668 1.888	0.618 1.938	0.568 1.988
0.905 0.595	0.855 0.645	0.805 0.695	0.755 0.745	0.705 0.795	0.655 0.845	0.605 0.895	0.555 0.945	0.505 0.995	0.455 1.045	0.405 1.095	0.355 1.145	0.305 1.195	0.255 <u>1.245</u>		0.155 1.345	
1.410 1.227	1.360 1.277	1.310 1.327	1.260 1.377	1.210 1.427	1.160 1.477		1.060 1.577		0.960 1.677	0.910 1.727	0.860 1.777	0.810 1.827			0.660 1.977	0.610 2.027
1.546 1.234	1.496 1.284	1.446 1.334	1.396 1.384	1.346 1.434	1.296 1.484	1.246 1.534	1.196 1.584	1.146 1.634	1.096 1.684		0.996 1.784	0.946 1.834	0.896 1.884		0.796 1.984	0.746 2.034
1.399 1.313	1.349 1.363	1.299 1.413	1.249 1.463	1.199 1.513	1.149 1.563	1.099 1.613	1.049 1.663	0.999 1.713	0.949 1.763	0.899 1.813	0.849 1.863	0.799 1.913	0.749 1.963		0.649 2.063	0.599 2.113
0.991 0.894		0.891 0.994		0.791 1.094		0.691 1.194	0.641 <u>1.244</u>	0.591 1.294	0.541 1.344	0.491 1.394	0.441 1.444	0.391 1.494	0.341 1.544	0.291 1.594	0.241 1.644	0.191 1.694

FIG. 13D

Title: Receiving System with Improved Directivity and Signal to Noise Ratio Inventor: Harry B. Smith Serial No.: 09/453,526 Customer No.: 25534 Docket No.: 802.0002 Atty: Kevin M. Barner

											.21	26			•							1
*		.85v	0.166	1.864	0.110	1.820	0.125	1.851	0.640	2.338	0.575	2.293	-0.035 1.497	1.647	0.399	2.118	0.257 2.135	1.935	0.521	2.442	0.323	2.001
Sense		.89	0.216 1.764	1.814	0.160	1.870	0.175	1.801	0.690	2.288	0.625 2.193	2.243	0.012	1.597	0.449	2.068	0.307	1.885	0.571	2.392	0.373	1.951
osite :		.75v	0.266	1.764	0.210	1.720	0.225	1.751	0.740	2.238	0.675	2.193	0.062	1.547	2.118	2.018	0.357	1.835	0.621 2.192	2.342	0.423	1.901
ido ri		Š.	0.316	1.714	0.260	1.770	1.701	1.701	0.790	2.188	0.725	2.143	0.112	1.497	0.549	1.968	1.985	1.785	0.671 2.142	2.292	1.904	1.851
anned		.65v	0.366	1.664	0.310	1.720	0.325 (1.651	1.651	0.840	2.138	0.775	2.093	0.162	1.447	0.599	1.918	0.457	1.735	2.092	2.242	0.523	1.801
Avgs Scanned in Opposite		- 6	0.416	1.614	0.360	1.670	1.601	1.601	0.890 2.088	2.088	0.825	2.043	272	1.397	1.968	1.868	0.507	1.685	2.042	2.192	0.573	1.751
###		.55v	0.466	1.564	0.410	1.620	0.425	1.551	0.940	2.038	0.875	1.993	0.262	1.347	1.918	1.818	0.557 1.835	1.635	0.821	2,142	0.623	1.701
lues		.50	0.516 1.464	1.514	0.460 1.620	1.570	0.475 1.501	1.501	0.990 1.988	1.988	0.925 1.893	1.943	0.312	1.297	0.749 1.868	1.768	0.607	1.585	0.871	2.092	0.673	1.651
Average i Values		.45v	0.566	1.464	0.510	1.520	0.525	1.451	1.938	1.938	0.975	1.893	0.362 1.097	1242	0.799 1.818	1.718	0.657 1.735	1.535	0.921 1.892	2.042	0.723 1.654	1.601
Avera		.404	0.616 1.364	1.414	0.560 1.520	1.470	0.575 1.401	1.401	1.090	1.888	1.025 1.793	1.843	0.412 1.047	181	0.849 1.768	1.768	0.707 1.685	1.485	0.971	1.992	0.773 1.604	1.551
p 1		.35v	0.666 1.314	1.364	0.610 1.470	1.420	0.625 1.351	1.351	1.140 1.838	1.838	1.075 1.743	1.793	0.462 0.997	1,147	0.899 1.718	1.618	0.757 1.635	1.435	78/-1 128/-1	1.942	0.823 1.554	1.501
Group		.30v	0.716 1.264	Left 1.314	0.660 1.420	Right 1.370	0.675 1.301	Height 1.301	1.190 1.788	to the Height 1.738 1.788	1.125 1.693	Left 1.743	0.512 0.947	eft 1.097	0.949 1.668	to the Right 1.518 1.568	0.807 1.585	to the Right 1.335 1.385	1.742	to the Left 1.842 1.892	0.873	to the Right 1.401 1.451
		.25v	912	to the Left 1.264 1.3	0.710 1.370	to the Right 1.320 1.37	1225 1255	to the			1.175 1.643	to the 1.693	0.562 0.897	to the Left 1.047 1.0	0.999 1.618	to the 1.518	0.857 1.535	to the 1.335	1,594 1,692		0.923	to the Right 1.401 1.45
0dB ==		.20v	0.816	hirthe AliālA Line ** Places 4 1.084 1114 1.104 (213	0.760	in Line " Places	0.775	FIGURE Places	1.688	Shift the Minita Line "Places 88 1.538 1588 1.638 1.698	1.593	** Places	8.847 8.847	ញ្ចុំដ្ រី Ling ** Places to the Left 0្និនទវ 0.947 0.997 1.047 1.097	1.049	Shift the Min Line " Places to the Right 68 1.318 1.368 1.518 1.56	0.907 1.485	1.135 1 18 85 1.285	1.042	in I.A Line "Places 1692 1.742 1.792	0.973	(intering " Places
0		.i5v	0.866	9 <u>.</u>	0.810	e (2)	0.825	ine :: 1.151	1.248 T.638	ine ". 1.638	1.543	Shift the MinitA Line ** 6 43 1.493 1543 1.593	8.987 8.787	.ne 10.947	1.099 1.518	ine ". 1.418	0.957 1.435	ine 233	1.321 1.692	Shift the Minita Line ** Places 92 1.642 1982 1.742 1.792	1.023	ine 7.301
data =			0!916 1:064	MOINT 1314			0.875 <u>13101</u>		983.7 002.7	Minja l 11588	S B	Minita L 11543	0717		1149	Min IA 1	1,385	1.135 1185	1542	Minjia I 11692	1073 1304	the Minita Line 2017 (253) 1.3
-		.05v	1.034	Shii r the A 1.014 1.064	0.910	Smit कहा। 1.070 1.120	0.925 1.051	भ <u>ार कर १४</u> 1.051	1,538	Shift the M 488 1.538	1375	ift the I	0.697 0.697	Shift the M 0.797 0.847	1.199	iff the M 1.318	1.057		1.432	iff the M 1.642	73	121
Ŀ		<u>Ş</u>	1016 0.964	1.014	0.960 1.120	1.070	1.00.1	Shift 1.00.1	1.488 1.488	1.488	1.425	Shif 1.443	0.647	S 0.797	(3°)-	S S S	1.107	STI	1.471	Shi 1.592		1.151
#		05v	990	0.964	##	1.020	951	0.951	327	1.438	1.475	1.393	0.597	0.747	विह	1.218	145	1.035	1.521	1.542		1.101
## # #		. 10v	न्व इस्ट	914 0.9	77 92 93 93	970 1.0	2000	.901 0.	388	388 1.	525 1.	343 1.	012 D	697 0.	349	.168 1.2	307	.985 1.(571 1.	492 1.	25 44	.051
ြိ		15v	0.814 U.	0.864 0.		0.920 0.	13C1 0.837 0.837	0.851 0.	1.640 1.	1.338	豫	1.293 1.	0 063 0 0 701 0	0		1.118 1.		0.935 0.	1.621 1.292	1.442 1.	1.323 1.	1.001
## Avgs Scanned in Opposite		20v	976	0.814 0	1.260	0.870	0.801	0.801	1,690 1.	1.288	1.625	123	0.447	0.497 0.547 0.597 0.647	1.449	1.068	1.307	0.885 0	1997	1.392	1.373	0.951
peuu		-25v	1.266 3	0.764 0	1.310	0.820	0.751	0.751 0	128 128 128 128 128 128 128 128 128 128	(Z)	1,675 1	1.193	0.397 t	.547	1.499 1.118	1.018	1.357 1	0.835	1.721	1.342	1.423 0.954	
gs Sca		30v	1.316 0.664	0.714 0	1.360 0.820	0.770	1.275 0.701	0.701	1.790	1.188	1.725	1.143	0.347	.497	1.549 1	0.968	1,407 0,985	0.785	1.771	1 767-1	1.473	9.851
### Av		35v	1.366 0.614	0.664 (1.410	0.720	1.325 0.651	0.651	1.840	1.138	1.775	1.093	0.297	0447 (1.599	0.918	1.457 0.935	0.735	1.821	(22)	1.523 0.854	0.751 0.801 0.851 0.901
*		40c	1.416 0.564	0.614	1.460	0.670	1.375	0.601	1.890	1.088	1.825 0.993	1.043	1212		1.649 0.968	0.868	1.507 0.885	0.685	1.871	1.192	1.573	0.751
		45v	1.466 0.514	0.564	1.510	0.620	1.425 0.551	0.551	1.940	1.038	1.875	0.993	1.262 0.197	0.347 0.397	1.699 0.918	0.818	1.557 0.835	0.635	1.921 0.992	1,142	1.623 0.754	0.701
Values		50v	1.516 0.464	0.514	1.560 0.620	0.570	1.475 0.501	0.501	1.990 0.988	0.988	1.925 0.893	0.943	1.312	0.297	1.749 0.868	0.768	1.607 0.785	0.585	1.971 0.942	1.092	1.673 0.704	0.651
Average I Values		55v	1.566 0.414	0.464	1.810	0.520	1.525 0.451	0.451	2.040 0.938	0.938	1.975 0.843	0.893	1.362 0.097	0.247 0.297	1.799 0.818	0.718	1.657 0.735	0.535	2.021 0.892	1.042	1.723 0.854	0.601
Å		60v	1.616 0.364	.eft 0.414	1.660 0.520	Right 0.470	1.575 0.401	Height 0.401	2.090 0.888	Height 0.888		Left 0.843	1.412 0.047	Left 0.197	1.849 0.768	Right 0.668	1.707 0.685	Places to the Right 0.385 0.435 0.485	2.071 0.842	Left 0.992	1.773 0.604	Right 0.551
Group 1		65v	1.666 0.314	to the 0.364	1.710 0.470	to the 0.420	1.625 0.351	to the 0.351	2.140 0.838	to the 0.838	2.075 0.743	to the 0.793	1.462 0.007	to the 0.147	1.899 0.718	to the 0.618	1.757 0.835	to the 0.435	2.121 0.792	to the 0.942	1.823 0.554	to the 0.501
ຮັ		70v	1.716 0.264	Places 0.314	1.760 1.710 0.420 0.470	Ptaces 0.370	1.675 0.301	Places 0.301	2.190 0.788	Places 0.788	2.175 2.125 2.075 2.025 0.643 0.693 0.743 0.793	Places 0.743	1.512 -0.057	Places 0.097	1.949 0.668	Places 0.568	1.857 1.807 1.757 0.535 0.585 0.635	Places 0.385	2.171 0.742	Places 0.892	1.873 0.504	Places 0.451
		75v	1.766 0.214	ne " 0.264	1.810 0.370	ft the Min IA Line - Places to the Right 0.220 0.270 0.320 0.370 0.420 0.470	1.725 1.675 0.251 0.301	0.151 0.201 0.251 0.301 0.351 0.401	2.240 0.738	1 the Min IA Line " Places to the Height 0.638 0.688 0.738 0.788 0.838 0.888	2.175	0.593 0.643 0.693 0.743 0.793 0.843	1.562 1.512 -0.107 -0.057	fithe Min IA Line ** Places to the Left -0.057 -0.007 0.047 0.097 0.147 0.197	2.049 1.999 1.949 0.568 0.618 0.668	R the Min IA Line ** Places to the Right 0.468 0.518 0.568 0.618 0.668	1.857 0.535	\$	0.592 0.642 0.692 0.742 0.792	fi the Min IA Line ** Places to the Left 0.742 0.792 0.842 0.892 0.942 0.992	1.923 0.454	0.301 0.351 0.401 0.451 0.501 0.551
odB =		80v	1.816 0.164	in IA L 0.214	1.860 0.320	Ain IA L 0.270	1,775	Jin IA L 0.201	2.290 0.688	Ain IA L 0.688	2.225 0.593	Min IA L 0.643	1.612	din IA L -0.007	2.049 0.568	din IA L 0.468	1.907 0.485	din IA L	2.371	Viin IA L 0.792	1.973	din IA L
8 0		85v	1.866	nft the N 0.164	1.910		1.825 0.151		2.340	nt the A 0.638	2.275	Shift the Min IA Line '' Places to the Left 43 0.593 0.643 0.693 0.743 0.793 0.8	1.662	ft the 7	2.099	If the !	1.957	Shift the Min IA Line	2.421 0.592	0.742	2.023	
data		90v	1.916	Sh 0.114	1.960	హ	1.875	Sh 0.101	2.390	Sh 0.588	2.325	Sh 0.543	1.712 9-0.257	Sh -0.107	2.149	ร	2.007	ຜົ	7 0.542	Sh 0.692	2.073	ર્જ
		Min 1A	3 -0.062		0.040		{ 0.022		-0.002		3 0.032		3-0.169		₹ 0.120		3 0.178		3-0.127		9 0.032	
			Avg 21Å		Awg 22A		Awg 23Å		Avg 24Å	L	Avg 258	L	Avg 268		Avg 27Å		Avg 28C	<u> </u>	Av9 29Ĉ	<u>.</u>	Avg 30B	

Inventor: Harry B. Smith Serial No.: 09/453,526 Docket No.: 802.0002

Customer No.: 25534 Atty: Kevin M. Barner

23/26

RÁNDOM 1 data

	Orig		Mars	Noise Ave			Equiv	Last	Ratio
Trial	Noise		INGM	NOISE AVE	raye	•	Voltage	Noise	Orig
Group	Avg	1_	2	3	4	5	Added	Avg	Last
205 1	0.1481	0.0686	-0.1814	0.0686	-0.0564	0.0061	-0.1233	-0.0252	5.9
205 2	0.5426	0.3662	0.1162	-0.1338	-0.0088	0.0532	-0.5201	0.0225	-4.1
205 3	0.6213	0.5002	0.2502	0.0002	-0.1248	-0.0623 0.0117	-0.6524 0.2313	-0.0311 -0.0196	20.0 12.8
206 1 206 2	-0.2508 0.1813	-0.0508 -0.1142	0.1992 0.1358	-0.0508 -0.1142	0.0942 0.0108	-0.0517	-0.2017	-0.0205	8.9
206 2 206 3 207 1	-0.4060	0.3165	-0.0565	0.1835	0.0585	-0.0040	-0.2017 0.4332	0.0272	14.9 223.5
207 1	-0.2893	-0.0300	0.2200	-0.0800	0.0950	0.0825	0.2906	0.0013	223.5
207 2	-0.0591	0.1268	-0.1232	0.1266	0.0018	-0.0602 0.1029	0.0296 -0.7300	-0.0295 0.0716	2.0
207 3 208 1	0.8016 -0.3269	0.7904 -0.1255	0.5404 0.1245	0.2904 -0.1255	0.1654 -0.0005	0.1029	0.7500 0.3577	0.0716 0.0308	11.2 10.6
208 2	-0.5892	-0.4528	-0.2026	0.0472	-0.0778	0.0620 -0.0153	0.6052	0.0160	36.9
208 3	-0.5162	-0.3509	-0.1009	0.0472 0.1491 -0.2315	0.0241	-0.0884	0.5090	-0.0071	72.4
209 1	-0.3328	-0.2315	0.0185	-0.2315	-0.1065 0.0036	-0.0440 -0.0589	0.8200	-0.0128	26.1 28.5
209 2 209 3	0.7883 -0.3146	0.6286 -0.1996	0.3786 0.0504	0.1286 -0.1996	-0.0746	-0.0369	-0.8160 0.3338	-0.0277 0.0192	26.5 16.4
210 1	-0.4353	-0.2432	0.0066	-n 2432	-0.1182	-0.0557	0.4109	-0.0244	16.4 17.8
210 2	-0.1066	0.1332	-0.1168	0.1332 0.0257	0.0082	-0.0543	0.0836	-0.0230	4.8
210 3	0.2597	0.0257	-0.2246	0.0257	-0.0993 0.1030	-0.0366	-0.2652 0.2569	-0.0055	46.9 26.7
211 1 211 2	-0.2477 -0.2277	-0.0226 -0.2138	0.2280 0.0362	-0.0220 -0.2138	-0.1030	0.0405 -0.0263	0.2827	0.0093 0.0049	-46.0
211 3	0.6775	0.5916	0.3446	-0.2138 0.0948	-0.0304	0.0321	-0.6767	0.0008	820.7
212 1 212 2	0.1145	-0.2323	0.0122	-0.2323	-0.1073	-0.0446	-0.1280	-0.0138	8.4
212 2 212 3 213 1	0.3209	0.2503	0.0003	-0.2497	-0.1247	-0.0622	-0.3518 -0.2624	-0.0309	10.4
212 3 213 1 213 2	0.2695 0.4217	0.2159 0.2221	-0.0341 -0.0279	0.2159 ⁻ 0.2221	0.0909 0.0971	0.0284 0.0846	0.4183	-0.0029 0.0034	90.1 123.8
213 2	-0.5357	-0.3012	-0.0512	0.1988	0.0738	0.0116	0.5167	-0.0199	26.9
213 3	-0.2945	-0.2948	-0.0248	0.2232	0.1002	0.0557	0.3008	0.0065	48.8
214 1 214 2	-0.6983	-0.5029	-0.2529	-0.0029 0.2016	0.1221 0.0766	0.0596	0.7267 -0.7836	0.0288 -0.0171	24.6 44.9
214 2 214 3	07664 0.3609	0.7016 0.2281	0.4516 -0.0219	0.2281	0.1031	0.0141 0.0406	-0.7636 -0.3516	0.0098	38.9
215 1	-0.5990	-0.3920	-0.1420	0.1080	-0.0170	0.0455	0.6132	0.0142	42.1
215 2 215 3	-0.6418	-0.6169	-0.3669	-0.1169	0.0081	-0.0544	0.6187	-0.0231	27.8
215 3 216 1	-0.2020 0.2267	-0.0166	0.2334	-0.0166	0.1084 0.1241	0.0459 0.0616	0.2166 -0.1964	0.0146 0.0303	13.8
216 1 216 2	0.2267 -0.7869	-0.0009 -0.7607	0.2491 -0.5107	-0.0009 -0.2607	-0.1357	-0.0732	0.9450	-0.0419	18.8
216 3 217 1	-0.3518	-0.0994	0.1506	-0.0994	0.0256	-0.0369	0.3462	-0.0057	61.9
217 1	-0.3168	-0.0968	0.1532	-0.0968	0.0282	-0.0343	0.3138	-0.0031	13.8 7.5 18.8 61.9 103.9 12.3
217 2 217 3	0.3848 0.3492	0.3126 0.2517	0.0626	-0.1874 -0.2483	-0.0624 -0.1233	· 0.0001 -0.0608	-0.4160 -0.3788	-0.0312 -0.0296	12.3 11.8
218 1	0.3492	0.0254	0.0017 -0.2246	0.0254	-0.1233 -0.0996	-0.0371	-0.3766 -0.2253	-0.0250 -0.0059	37.2
218 2	-0.6434	-0.5998	-0.3498	-0.0998	0.0252	-0.0373	0.6393	-0.0061	106.0
218 3 219 1	0.2516	0.1355	-0.1145	0.1855	0.0105	-0.0520	-0.2724	-0.0207	12.1
219 1 219 2	-0.8197 -0.1859	-0.5113	-0.2613 -0.2359	-0.0113 0.0141	0.1139 -0.1109	0.0612 -0.0484	0.8396 0.1688	0.0200 -0.0172	41.1 10.8
219 2 219 3	-0.1659	0.0141 -0.1231	0.1269	-0.1231	0.0019	-0.0608	0.1086	-0.0294	9.5
220 1	-0.2296 -0.2729	-0.0756	0.1944	-0.0956	0.0494	-0.0181	0.2477	0.0181	-12.7
220 2	-0.2729	-0.1909	0.0991	-0.1909	-0.0439	0.0186	0.2582	-0.0146	18:6
220 3 221 1	-0.0854 -0.3921	-0.0404 -0.2118	0.2098 0.0882	-0.0404 -0.2118	0.0848 -0.0883	0.0221 -0.0248	0.0963 0.3990	-0.0091 0.0069	9.4 58.8
221 2	0.8987	0.7852	0.0662 0.8852	0.2852	0.1602	0.0423	-0.8323	0.0664	13.8
221 3	-0.3528	-0.3370	0.0870	0.1680	0.0880	-0.0243	0.8556	0.0068	52.0

FIG. 14A

Title: Receiving System with Improved Directivity and Signal to Noise Ratio Inventor: Harry B. Smith
Serial No.: 09/453,526 Customer No.: 25534
Docket No.: 802.0002 Atty: Kevin M. Barner

.

RANDOM Q data

T-1-1	Orig Noise		New Noise Average				Equiv	Last Noise	Ratio
Trial Group	Avg	1_	2	3	4	5	Voltage Added	Avg	Orig Last
Group 123522056 3123123123123123123123123123123123123123	Avg 0.4440 0.1928 0.2307 0.6667 -0.0969 0.0218 0.7412 -0.2973 0.3831 0.2198 -0.1523 -0.3033 -0.0808 -0.0148 0.2507 0.2427 0.0961 0.2869 0.4865 -0.7412 0.5287 -0.0208 -0.02570 -0.0246 -0.1596 0.1216 -0.3403 -0.1557 -0.5943 0.1557 -0.5943 0.1557 -0.5943 0.1557 -0.5943 0.1557 -0.5943 0.1557 -0.5943 0.1557 -0.5943 0.1557 -0.5943 0.1557 -0.5943 0.1566 -0.4485 0.0983 0.0171 0.0508 -0.2792 0.6507 0.6336 -0.1340 -0.3141	0.3970 0.0077 0.5649 0.1153 -0.2565 0.7194 -0.2522 -0.0517 0.1728 0.3966 -0.0900 -0.2685 0.1385 0.1607 0.2049 -0.0761 0.2232 0.2534 -0.7089 0.3926 0.0830 0.1420 -0.3200 0.1703 -0.0218 -0.0218 -0.0243 -0.0243 -0.0243 -0.0249 -0.0249 -0.0218 -0.0249 -0.0218 -0.0249 -0.0218 -0.0249 -0.0249 -0.0218 -0.0249 -0.0218 -0.0249 -0.0218 -0.0249 -0.0249 -0.0218 -0.0249 -0.0218 -0.0249 -0.02497 0.2497 0.2169 -0.01111 0.0668 -0.1891 0.6095 0.3617 0.1748 -0.1141	0.1470 -0.2423 -0.2198 0.3149 -0.1347 -0.0065 0.4694 -0.0022 0.1983 -0.0772 0.1466 0.1600 -0.0185 -0.1972 -0.1115 -0.0893 -0.0739 -0.04589 0.1679 -0.1080 -0.1679 -0.1080 -0.1	-0.1030 0.0777 0.05077 0.05077 0.0649 0.1158 0.2435 0.2194 0.2478 -0.05177 0.1728 -0.1034 -0.0900 0.2315 0.1687 0.2049 -0.2761 0.2232 -0.2456 -0.2039 -0.1652 0.1800 0.1420 -0.0830 0.1420 -0.0243 -0.0243 0.	4 	5-0.0405 -0.0548 -0.0318 -0.0528 -0.0560 -0.0560 -0.0147 -0.0409 -0.0275 -0.0490 -0.0268 -0.0136 -0.0136 -0.0136 -0.0136 -0.01357 -0.0490 -0.0255 -0.0490 -0.0255 -0.0490 -0.0255 -0.0315 -0.0172 -0.0382 -0.0382 -0.0383 -0.0383 -0.0581 -0.0581 -0.0586 -0.00490 -0.0565 -0.0490 -0.0490 -0.0565 -0.0490 -0.0490 -0.0565 -0.0490 -0.0490 -0.0490 -0.0565 -0.0490 -0.0490 -0.0490 -0.0565 -0.0490 -0.0490 -0.0565 -0.0490 -0.0490 -0.0490 -0.0565 -0.0490 -0.0490 -0.0565 -0.0490 -0.0490 -0.0565 -0.0490 -0.0565 -0.0490 -0.0565 -0.0490 -0.0565 -0.0490 -0.0565 -0.0490 -0.0565 -0.0565 -0.0490 -0.0565 -0.	-0.4532 -0.2163 -0.2313 -0.2313 -0.2313 -0.2313 -0.4030 -0.3263 -0.4033 -0.4295 -0.2566 -0.0784 -0.2325 -0.2566 -0.0784 -0.2325 -0.5143 -0.2325 -0.5421 -0.1624 -0.2325 -0.1627 -0.1627 -0.1627 -0.1627 -0.1627 -0.1628 -0.1627 -0.1638 -0.4253 -0.4253 -0.1627 -0.1627 -0.1627 -0.1638 -0.1628 -0.2938 -0.2938 -0.2938 -0.2938 -0.2938 -0.2938 -0.2938 -0.2938 -0.2938 -0.2938	Avg -0.0092 -0.0235 -0.0006 -0.0248 0.00215 0.0248 0.00290 -0.0295 0.0166 -0.0097 0.0038 0.0127 0.00144 -0.0139 0.0177 0.0044 -0.0139 0.0148 -0.0107 -0.0142 -0.01090 -0.000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.00	
221 2 221 3	-0.0350 0.1035	0.1447 -0.1367	-0.1056 0.1144	0.1447 -0.1367	0.0197 0.0117	-0.0428 0.0508	0.0235 -0.0839	-0.0116 0.0196	5.3

FIG. 14B

Inventor: Harry B. Smith Serial No.: 09/453,526 Docket No.: 802.0002

Customer No.: 25534 Atty: Kevin M. Barner

APR 1 8 2005

& TRADEM

FIG. 15A

Illustration of Comparative Improvement

FIG. 15B

Inventor: Harry B. Smith Serial No.: 09/453,526 Docket No.: 802.0002

Customer No.: 25534 Atty: Kevin M. Barner

APR 1 8 2005

Channel Phase Dispersion as Function of n

FIG. 16A

FIG. 16B

Contiguous Phase Gates

FIG. 16C