TEMA 2 O calor e sua propagação

O domínio do fogo foi um grande passo na história da humanidade. Além de iluminar as cavernas e ajudar a proteger os hominídeos, o fogo possibilitou a produção de calor, fundamental para a sobrevivência em climas frios, além da preparação de alimentos e a produção de utensílios, inicialmente de cerâmica e, mais tarde, de metal.

Neste tema, você vai estudar o conceito físico de calor e como ele se propaga.

? O QUE VOCÊ JÁ SABE?

A imagem a seguir mostra uma pessoa se aquecendo perto de uma fogueira. Sobre esta e outras situações cotidianas, responda a seguir:

- As pessoas conseguem se aquecer mesmo sem encostar as mãos no fogo?
- Como você acha que o calor do fogo chega até as pessoas, se elas não encostam nele?
- As roupas usadas para proteger do frio esquentam? Elas produzem calor?

Depois de estudar o tema, releia seus apontamentos e pense se você alteraria suas respostas.

Calor

A energia térmica pode ser transferida de um corpo para outro. Quando ela está passando de um corpo ou de um lugar para outro, ela recebe o nome de calor. Na linguagem da Física, calor é a forma pela qual a energia é transmitida de um corpo ou de um lugar para outro em função da diferença de temperatura entre eles.

Como o calor também é uma forma de energia, sua unidade de medida no Sistema Internacional (SI) é o Joule (J). Contudo, historicamente, a unidade mais utilizada de calor é a caloria (cal) ou também a quilocaloria (kcal), que equivale a mil calorias.

Atualmente, com a globalização e a necessidade de padronização imposta pelo comércio internacional, o Joule ou o quilojoule (kJ) vêm sendo cada vez mais utilizados. Na prática, adota-se que 1 cal equivale a aproximadamente 4 J (mais exatamente: 4,18 J). Assim, uma refeição que forneça 2.500 cal, ou 2,5 kcal, tem aproximadamente 10.000 J, ou 10 kJ de energia.

Princípio fundamental da termologia

Quando dois ou mais corpos com temperaturas diferentes são postos em contato, o sistema formado por eles tende ao equilíbrio, ou seja, naturalmente ocorre uma transferência de energia térmica entre eles, na forma de calor, até que todos os corpos fiquem com a mesma temperatura.

A temperatura dos corpos determina a direção do fluxo de calor entre eles. O calor sempre flui espontaneamente do mais quente (de temperatura mais alta) para o mais frio (de temperatura mais baixa). Por isso, a energia térmica só pode ser chamada de calor **enquanto flui de um corpo para o outro**. Depois de transferida, volta a ser energia térmica, não podendo mais ser chamada de calor.

Equilíbrio térmico

O princípio fundamental da termologia afirma que, quando dois ou mais corpos que estão a temperaturas diferentes são postos em contato (a), a energia térmica flui na forma de calor, dos corpos de maior temperatura para os de menor temperatura até que elas se igualem. Quando isso acontece, diz-se que os corpos estão em equilíbrio térmico (b).

A propagação do calor

Quando dois corpos ou dois pontos do espaço estão com temperaturas diferentes, o calor se propaga de um corpo para o outro. Essa propagação pode ocorrer de três formas: por **condução**, **convecção** ou **radiação**.

Condução

A condução só ocorre em meios materiais. A energia térmica é transferida de uma partícula (átomo, molécula etc.) para aquelas que estão a sua volta por meio da colisão entre elas. Por isso, a parte do objeto que está próxima da fonte de calor (do fogo, por exemplo) fica mais quente do que aquela que está mais afastada.

Quanto à condução térmica, classificam-se os materiais em **condutores**: aqueles que transmitem facilmente o calor por condução; ou **isolantes térmicos**: aqueles que não transmitem bem o calor.

As roupas que são usadas em dias frios são feitas de isolantes térmicos (lã, náilon, lona etc.) a fim de minimizar as perdas de calor para o meio externo (já que nosso corpo está mais quente que o ambiente). Já as panelas são feitas de metal, um bom condutor térmico. A grandeza física que caracteriza essa propriedade (ser bom ou mau condutor térmico) é a **condutibilidade térmica** do material. Quanto maior o valor da condutibilidade térmica do material, com mais facilidade o calor é transmitido por ele.

ATIVIDADE 1 Condutibilidade térmica

1 O quadro a seguir mostra a condutibilidade térmica de alguns materiais.

Materiais	Condutibilidade térmica W/m⋅K	
Concreto	1,75	
Concreto celular	0,22	
Tijolo maciço	0,70	
Tijolo furado	0,55	
Terra crua (adobe)	0,14	
Pedra (calcário médio)	1,00	
Vidro	1,10	
Aço	52,00	
Alumínio	230,00	
Argamassa de cimento	1,15	
Estuque (gesso)	0,35	
Madeira (pinho)	0,15	
Aglomerado negro de cortiça	0,045	
Poliestireno expandido moldado	0,04	
Solo (pesado)	1,39	
Água	0,58	

Fonte: PROTOLAB. Disponível em: http://www.protolab.com.br/Artigos_Tecnicos.htm. Acesso em: 17 out. 2014.

Note as unidades:

- W (Watt) é o mesmo que J/s (energia por unidade de tempo);
- m (metro) mede a espessura do material;
- K (Kelvin) mede a diferença de temperatura.

a)	Se você fosse construir uma casa com bom isolamento térmico, qual material
se	ria melhor para revestir as paredes? Justifique.

2 Se dois blocos idênticos de gelo que estejam à mesma temperatura forem expostos ao Sol, estando um deles embrulhado num cobertor e o outro totalmente exposto, qual deles derreterá mais rápido? Por quê?

Convecção

Assim como a condução, a **convecção** é uma forma de transmissão do calor que só ocorre em meios materiais – no caso deste tipo de transmissão, entre fluidos (líquidos e gases) –, mas, diferentemente do que ocorre na condução, na **convecção** a propagação do calor se dá por meio do movimento do fluido envolvendo também o movimento de matéria.

Durante o aquecimento da água na panela, o líquido que está mais perto da fonte de calor se aquece mais rápido do que aquele que está na superfície. Uma vez aquecido, o líquido quente fica menos denso e se desloca para cima, carregando uma quantidade de calor que vai aquecer a parte superior da panela.

Ao mesmo tempo, a água mais fria que está na superfície desce, ocupando o lugar da água quente que subiu. Esse processo é chamado de convecção e ocorre de maneira semelhante na atmosfera, onde o ar quente sobe e o ar frio desce, distribuindo o calor, gerando os ventos e movendo o ciclo da água.

Isso também explica por que os aquecedores são colocados no chão, mas aparelhos de ar-condicionado ficam na parte superior do ambiente, e congeladores, na parte superior da geladeira.

ATIVIDADE 2 Convecção térmica

Leia o texto abaixo e responda às questões que seguem.

Inversão térmica traz riscos para o coração, diz especialista

Com as bruscas mudanças de temperatura nos grandes centros urbanos, entre o outono e o inverno, as inversões térmicas são cada vez mais frequentes em metrópoles como São Paulo. Caracterizado por uma troca na ordem das camadas de ar quente e frio na atmosfera, o fenômeno, ocorrido principalmente no inverno, compromete bastante a qualidade do ar ao impedir a dispersão de poluentes através das camadas atmosféricas mais elevadas. "Isso potencializa não só a ocorrência de doenças respiratórias, mas também de problemas cardiovasculares, já que a poluição do ar é um importante fator de risco para as doenças do coração", diz Abrão Cury, cardiologista do Hospital do Coração.

Segundo o médico, a concentração de poluentes no ambiente causada pelas inversões térmicas afeta o organismo, ocasionando aumento da coagulação do sangue, tromboses, aumento na propensão a arritmias cardíacas, vasoconstricção aguda das artérias, reações inflamatórias em diferentes partes do corpo, além do desenvolvimento de aterosclerose crônica. "Isso ocorre porque a poluição do ar afeta de maneira significativa a pressão arterial, principalmente no caso de hipertensos e idosos. Tanto que em períodos de maior concentração de poluentes no ar, como no inverno, o atendimento a pacientes hipertensos triplica", observa o cardiologista.

Cury explica que o crescente número de veículos nas grandes capitais só agrava o problema, já que isso aumenta a concentração de gases nocivos à saúde na atmosfera, como é o caso do monóxido de carbono. Considerado como um dos principais poluentes emitidos pelos automóveis, o gás altera o endotélio (camada de revestimento interno) das artérias e, também, afeta o coração. "Já é possível associar a liberação dessa e de outras substâncias, como o óxido de nitrogênio e o dióxido de enxofre, provocada pelos automóveis, com o aumento dos casos de hipertensão arterial

registrados no país. A doença afeta de 30% a 35% da população brasileira e é um dos principais fatores de risco para a ocorrência de derrames e infartos do miocárdio", alerta o cardiologista.

Cuide do coração e da saúde. Nos meses mais frios do ano, as inversões térmicas fazem com que o ar fique ainda mais seco e poluído. Por isso, confira algumas dicas do cardiologista do HCor para cuidar da saúde e do coração nos períodos mais frios do ano:

- procure evitar locais e horários onde se pode encontrar maior quantidade de poluentes no ar, como os engarrafamentos, por exemplo;
- evite correr, andar de bicicleta ou caminhar perto de vias congestionadas ou com muito trânsito;
- sempre que possível, visite locais mais distantes das grandes cidades, onde o ar é menos poluído;
- feche as janelas para proteger o ambiente da poluição;
- se for hipertenso, mantenha-se aquecido para manter a pressão arterial em níveis saudáveis;
- monitore e controle a pressão nessa época do ano. Se possível, consulte um especialista para fazer um *check-up*.

INVERSÃO térmica traz riscos para o coração, diz especialista. *Jornal da Manhã*, 22 jun. 2014. Disponível em: http://www.jmonline.com.br/novo/?noticias,7,SAUDE,97208. Acesso em: 17 out. 2014.

1 Q	uais são as consequências da inversão térmica para a saúde?
2 0	que poderia ser feito para minimizar tais consequências?

Radiação

A radiação é um processo de transferência de calor no qual a energia térmica transita de uma região do espaço para outra por meio de ondas eletromagnéticas, chamadas de radiação infravermelha. Diferente da condução e da convecção, a radiação é uma forma de transmissão de calor que não precisa de meios materiais para ocorrer. Como se dá por ondas eletromagnéticas, ela acontece também no vácuo.

Devido à agitação térmica de suas moléculas, todos os corpos emitem continuamente ondas eletromagnéticas na frequência do infravermelho, também denominadas radiação ou irradiação térmica.

O Sol irradia calor para a Terra. A luz e o calor gerados se propagam pelo espaço vazio (vácuo) entre ambos os astros por meio de ondas eletromagnéticas.

A imagem é a composição de duas fotos produzidas com uma máquina comum (a metade da esquerda) e uma máquina infravermelha (a metade da direita). As cores mais claras na foto da direita indicam as partes que mais irradiam calor para o exterior da casa.

A garrafa térmica

As garrafas térmicas são recipientes que minimizam a troca de calor entre o líquido que está em seu interior e o meio externo por condução e por radiação. Para refletir a radiação, elas têm uma dupla parede interna de vidro, espelhada, com ar rarefeito entre as duas camadas, o que diminui a transmissão de calor por condução. A tampa evita as trocas de calor com o meio externo por ambas as formas.

Esquema simplificado de uma garrafa térmica.

DESAFIO

Numa área de praia, a brisa marítima é uma consequência da diferença no tempo de aquecimento do solo e da água, apesar de ambos estarem submetidos às mesmas condições de irradiação solar. No local (solo) que se aquece mais rapidamente, o ar fica mais quente e sobe, deixando uma área de baixa pressão, provocando o deslocamento do ar da superfície que está mais fria (mar).

À noite, ocorre um processo inverso ao que se verifica durante o dia

Como a água leva mais tempo para esquentar (de dia), mas também leva mais tempo para esfriar (à noite), o fenômeno noturno (brisa terrestre) pode ser explicado da seguinte maneira:

- a) O ar que está sobre a água se aquece mais; ao subir, deixa uma área de baixa pressão, causando um deslocamento de ar do continente para o mar.
- b) O ar mais quente desce e se desloca do continente para a água, a qual não conseguiu reter calor durante o dia.
- c) O ar que está sobre o mar se esfria e dissolve-se na água; forma-se, assim, um centro de baixa pressão, que atrai o ar quente do continente.
- d) O ar que está sobre a água se esfria, criando um centro de alta pressão que atrai massas de ar continental.
- e) O ar sobre o solo, mais quente, é deslocado para o mar, equilibrando a baixa temperatura do ar que está sobre o mar.

HORA DA CHECAGEM

Atividade 1 - Condutibilidade térmica

- a) Pensando apenas no isolamento térmico, o melhor material seria aquele que apresenta MENOR condutibilidade térmica, ou seja, o poliestireno expandido moldado. Porém, ele é inflamável. Considerando isso, como também não se quer que a parede pegue fogo, poderia ser utilizada a terra crua (adobe), o estuque (gesso) ou o concreto celular (já que a madeira pinho também poderia pegar fogo).
- b) O corpo da panela é de alumínio, pois, além de leve e relativamente barato, é um excelente condutor térmico, o que permite o rápido aquecimento dos alimentos em seu interior. Já o cabo da panela é de madeira ou de plástico justamente por serem bons isolantes térmicos, impedindo que a pessoa que estiver cozinhando se queime.
- O cobertor é feito de um material isolante térmico (lã ou flanela, por exemplo). Portanto, ele impede o fluxo de calor de um lado para o outro. Num dia frio, o cobertor não permite que o calor saia do corpo e vá para o meio externo. Se o gelo estiver no cobertor, este não permitirá que o calor externo, do Sol, "entre" no cobertor, mantendo o gelo mais tempo frio. Portanto, ele vai demorar mais para derreter. O cobertor não produz energia térmica; ele apenas isola termicamente aquilo que está cobrindo. Assim, o gelo que não está coberto derreterá mais rapidamente.

Atividade 2 - Convecção térmica

- 1 Doenças respiratórias e problemas cardiovasculares.
- 2 Evitar locais e horários onde se pode encontrar maior quantidade de poluentes no ar; evitar correr, andar de bicicleta ou caminhar perto de vias congestionadas ou com muito trânsito; sempre que possível, visitar locais mais distantes das grandes cidades, onde o ar é menos poluído; fechar as janelas para proteger o ambiente da poluição; se for hipertenso, manter-se aquecido para manter a pressão arterial em níveis saudáveis e monitorar e controlar a pressão nessa época do ano.

Desafio

Alternativa correta: a. À noite, a água demora mais para esfriar do que o continente, ficando mais quente. O ar que está em contato com a água também fica mais quente e menos denso, portanto sobe, dando espaço para o ar frio que vem do continente e gera a brisa noturna, do continente para o mar.

Registro de dúvidas e comentários	