» Search Results

IEEE Xplore®
I Million Documents
I Million Users

| Access the EEE Member Digital Library                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        | Journals     Mapazines     Conference     Proceedings     Standards                                                                                                                                                                                                                                            | Help FAQ Terms IEEE.P                                                                                                                                                                   | Membership Publications    The Company of the Compa |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 Target tracking in open world scenes using motion cues and target dynamics Teal, M.K.; Ellis, T.J.; Image Processing and its Applications, 1995., Fifth International Conference on , 4 6 Jul 1995 Pages: 276 - 280 | 1 A diffusion mechanism for obstacle detection from size-change information  Ringach, D.L.; Baram, Y.;  Pattern Analysis and Machine Intelligence, IEEE Transactions on , Volume: 16, Issue: 1, Jan. 1994  Pages:76 - 80  [Abstract] [PDf Full-Text (484 KB)] IEEE JNL | You may refine your search by editing the current search expression or entering a new one in the text box.  (frame or image) and difference <and>motion and difference<and>search  Check to search within this result set  Results Key:  JNL = Journal or Magazine CNF = Conference STD = Standard</and></and> | Your search matched <b>110</b> of <b>1064971</b> documents.  A maximum of <b>500</b> results are displayed, <b>15</b> to a page, sorted by <b>Relevance</b> in <b>Descending</b> order. | Services Standards Conferences Careers Jobs  Services Standards Conferences Careers Jobs  Welcome  Wel |

Print Formet

[Abstract] [PDF Full-Text (276 KB)] IEE CNF

3 Edge and motion controlled spatial upconversion

Salonen, J.;

Pages:225 - 233 Consumer Electronics, IEEE Transactions on , Volume: 40 , Issue: 3 , Aug 1994

Abstract] [PDF Full-Text (1184 KB)] IEEE JNL

4 A new motion-adaptive video processing system for TV receivers and

Tanaka, S.; Mawatari, M.; Koga, T.; Kurihara, K.; Mizusawa, T.;

Consumer Electronics, IEEE Transactions on , Volume: 38 , Issue: 3 , Aug 1992

Pages:504 - 511

[Abstract] [PDF Full-Text (656 KB)] IEEE JNL

5 Motion detection from the raw data in projection reconstruction MR imaging

Van de Walle, R.; Lemahieu, I.;

Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE, Volume: 2, 31 Oct.-3 Nov. 1996

Pages:702 - 704 vol.2

[Abstract] [PDF Full-Text (584 KB)] IEEE CNF

compression 6 Contour-based hybrid displacement estimation for image sequence

Huang, J.; Mersereau, R.M.;

Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993 IEEE International Conference on , Volume: 5 , 27-30 April 1993

Pages:433 - 436 vol.5

[Abstract] [PDF Full-Text (316 KB)] IEEE CNF

Zheng, Q.; Chellappa, R.; 7 Motion detection in image sequences acquired from a moving platform

Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993 IEEE

Vi

Pages: 201 - 204 vol. 5 International Conference on , Volume: 5 , 27-30 April 1993

[Abstract] [PDF Full-Text (264 KB)] **IEEE CNF** 

#### cineangiograms Estimation of the left ventricle 3-D motion from single plane

Pages:515 - 518 Meunier, J.; Sehboub, Z.; Bertrand, M.; Lesperance, J.; Computers in Cardiology 1992. Proceedings. , 11-14 Oct. 1992

[Abstract] [PDF Full-Text (272 KB)] **IEEE CNF** 

# Detection of moving objects in natural scenes by a stochastic multi-

Hotter, M.; Mester, R.; Meyer, M.;

feature analysis of video sequences

Engineers 29th Annual 1995 International Carnahan Conference on , 18-20 Oct. Security Technology, 1995. Proceedings. Institute of Electrical and Electronics

Pages:47 - 52

#### Abstract [PDF Full-Text (1028 KB)] IEEE CNF

10 Computer vision issues during eye-in-hand robotic tasks

Papanikolopoulos, N.P.; Smith, C.E.;

Robotics and Automation, 1995. Proceedings., 1995 IEEE International Conference

Pages:2989 - 2994 vol.3 on , Volume: 3 , 21-27 May 1995

#### [PDF Full-Text (852 KB)] IEEE CNF

## 11 Design of MPEG-2 video test bitstreams

Chul-Min Kim; Byung-Uk Lee; Rae-Hong Park;

Consumer Electronics, IEEE Transactions on , Volume: 45 , Issue: 4 , Nov 1999

Pages:1213 - 1220

#### [Abstract] [PDF Full-Text (876 KB)] IEEE JNL

12 Recurrent nasal tumor detection by dynamic MRI

Engineering in Medicine and Biology Magazine, IEEE , Volume: 18 , Issue: 4 , July-Wen-Chen Huang; Cheng Chung Hsu; Chungnan Lee; Ping-Hong Lai;

Pages: 100 - 105 Aug. 1999

[Abstract] [PDF Full-Text (1540 KB)] TEEE JNL

### 13 Very low bit-rate wavelet video coding

Cinkler, K.;

Selected Areas in Communications, IEEE Journal on , Volume: 16 , Issue: 1 , Jan.

Pages:4 - 11

Abstract [PDF Full-Text (232 KB)] IEEE JNL

### synthetic aperture radar imaging 14 Moving target detection in foliage using along track monopulse

Soumekh, M.;

Image Processing, IEEE Transactions on , Volume: 6 , Issue: 8 , Aug. 1997

Pages:1148 - 1163

[Abstract] [PDF Full-Text (500 KB)] IEEE JNL

### object-oriented coding 15 Hybrid mapping parameter estimation using hierarchical structure in

Chang-Bum Lee; Rae-Hong Park;

Consumer Electronics, IEEE Transactions on , Volume: 43 , Issue: 4 , Nov. 1997

Pages:1213 - 1219

Abstract [PDF Full-Text (472 KB)] IEEE JNL

N S co

だって知り Log-out | Journals | Conference Proceedings | Standards | Search by Author | 記念に ふまだめ | Advanced Search | Join IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | Ernall Alerting | No Robots Please | Release Notes | IEEE Online Publications | Help. | FAQ | Terms | おおかわら Fig.

Copyright © 2004 IEEE — All rights reserved



Subscribe (Full Service) Register (Limited Service, Free) Login

Search: The ACM Digital Library € The Guide

US Patent & Trademark Office

THE ACM DIGITAL LIBRARY

Feedback Report a problem Satisfaction survey

Terms used frame or image and difference and motion and detect

Found 37,654 of 141,345

Display results expanded form Sort results by relevance 

2 Search Tips Save results to a Binder

> Try this search in The ACM Guide Try an Advanced Search

Results 1 - 20 of 200

Result page: 1 Open results in a new window w حندا C O 100 10

5

next

Relevance scale 🗀 🔜 📟 🗱

Ross Brown, Binh Pham, Anthony Maeder Level of detail: Visual importance-biased image synthesis animation

February 2003 Proceedings of the 1st international conference on Computer graphics and interactive techniques in Austalasia and South East Asia

Full text available: odi(429 09 KS)

Additional Information: full citation, abstract, references, index terms

savings by modulating the supersampling rates in an image by the visual importance of the region being attention to progressive and adaptive ray-tracing techniques. The approach facilitates large computationa scenes. Our previous work has dealt with the development of an overall approach to the application of visual rendered. This paper extends the approach by incorporating temporal change ... Present ray tracing algorithms are computationally intensive, requiring hours of computing time for complex

Keywords: animation techniques, image synthesis, motion importance

2 Projection detecting filter for video cut detection

Kiyotaka Otsuji, Yoshinobu Tonomura

September 1993 Proceedings of the first ACM international conference on Multimedia

Full text available: 🛜 pdf(83.01 KB) 🎇 ps (1.12 MB)

Additional Information: full citation, references, citings, index terms

ယ New enhancements to cut. fade, and dissolve detection processes in video segmentation

October 2000 Proceedings of the eighth ACM international conference on Multimedia Ba Tu Truong, Chitra Dorai, Svetha Venkatesh

Full text available: pdf(733\_18 KB)

Additional Information: full citation, abstract, references, index terms

of detected candidate transitions. In our detailed study of these gradual ... algorithms for fade and dissolve detection, and introduce a method for eliminating false positives from a list video analysis. In particular, we propose a new adaptive threshold determination method that is shown to We present improved algorithms for cut, fade, and dissolve detection which are fundamental steps in digital reduce artifacts created by noise and motion in scene cut detection. We also describe new two-step

Computational Approaches to Image Understanding

January 1982 ACM Computing Surveys (CSUR), Volume 14 Issue 1

Full text available: ndf(10.04 MS)

Additional Information: full citation, references, citings, lindex terms

G On motion and noise detection in digital video

A. Angelopoulos, E. A. Yfantis, A. Popovich, T. Lazarakis

March 2001 Proceedings of the 2001 ACM symposium on Applied computing

Full text available: odf(219.53 KB)

Additional Information: full cliation, references, index terms

Keywords: motion compensation, motion detection, noise detection

တ A feature-based algorithm for detecting and classifying scene breaks January 1995 Proceedings of the third ACM international conference on Multimedia Ramin Zabih, Justin Miller, Kevin Mai

Keywords: content-based indexing and retrieval, video processing

Full text available: (4) htm(58.14 KB)

Additional Information: fall citation, citags, index terms

A survey of image registration techniques December 1992 ACM Computing Surveys (CSUR), Volume 24 Issue 4 Lisa Gottesfeld Brown

Full text available: pdf(5,20 M8

Additional Information: full citation, abstract, references, citings, index terms, review

example, at different times, from different sensors, or from different viewpoints. Virtually all large systems step. Specific examples of systems where image registration is a significant component include matching a which evaluate images require the registration of images, or a closely related operation, as an intermediate target with a real-time image of a scene for target recognition, mon ... Registration is a fundamental task in image processing used to match two or more pictures taken, for

Keywords: image registration, image warping, rectification, template matching

 $\infty$ Surveillance: Invariance in motion analysis of videos

Cen Rao, Mubarak Shah, Tanveer Syeda-Mahmood

November 2003 Proceedings of the eleventh ACM international conference on Multimedia

Full text available: 📆 pdf(539 14 K9)

Additional Information: full citation, abstract, references, index terms

a view invariant similarity measure. Our system is able to incrementally learn different a ... dynamic time warping of view invariant characteristics. The motion is represented as a sequence of dynamic trajectory of moving object in the videos. Dynamic Time Warping (DTW) method matches trajectories using instants and intervals, which are automatically computed using the spatiotemporal curvature of the In this paper, we propose an approach that retrieves motion of objects from the videos based on the

invariant dynamic time warping, view-invariant measure Keywords: human actions, learning, spatiotemporal curvature, view-invariant action representation, view-

9 Motion recovery for video content classification

Nevenka Dimitrova, Forouzan Golshani

October 1995 ACM Transactions on Information Systems (TOIS), Volume 13 Issue 4

Full text available: 📆 pdf(2.74 MB)

Additional Information: full citation, abstract, references, citings, index terms

contents. A more-precise and completer extraction of semantic information will result in a more-effective must be able to deal with motion. Particularly, we need the ability to classi ... movements and variations. Thus, to go from the realm of still-image repositories to video databases, we classification. The most-discernible difference between still images and moving pictures stems from Like other types of digital information, video sequences must be classified based on the semantics of their

Keywords: MPEG compressed video analysis, content-based retrieval of video, motion recovery, video databases, video retrieval