Proof of Exercise 2.2

Let A be a symmetric matrix with distinct eigenvalues. Show that the eigenvector matrix of A is orthogonal.

Let λ_i be the *i*th eigenvalue and v_i the corresponding eigenvector of a $p \times p$ matrix A. The goal is to show that $v_i^{\top}v_j = 0$, $i \neq j$. We can order the eigenvalues such that $\lambda_1 > \lambda_2 > \ldots > \lambda_p$. The eigenvalues and -vectors satisfy:

$$\begin{cases} Av_i = \lambda_i v_i \\ Av_j = \lambda_j v_j. \end{cases}$$

First, we multiply the first equation with v_i^{\top} from the left side,

$$v_j^{\top} A v_i = \lambda_i v_j^{\top} v_i$$

$$v_j^{\top} A^{\top} v_i = \lambda_i v_j^{\top} v_i$$

$$(A v_j)^{\top} v_i = \lambda_i v_j^{\top} v_i$$

$$\lambda_j v_j^{\top} v_i = \lambda_i v_j^{\top} v_i$$

$$\Rightarrow (\lambda_j - \lambda_i) v_j^{\top} v_i = 0.$$

Since $\lambda_i \neq \lambda_j$, vectors v_j and v_i have to be orthogonal: $v_j^T v_i = 0$, $i \neq j$. Hereby, the eigenvector matrix V of A satisfies $VV^T = I$, if we choose the eigenvectors of A that have length 1.