Olimpiada Națională de Matematică

Etapa Județeană și a Municipiului București, 9 Martie 2013

SOLUŢII ŞI BAREME ORIENTATIVE - CLASA a VII-a

Problema 1. Arătați că ecuația:

$$\frac{1}{\sqrt{x} + \sqrt{1006}} + \frac{1}{\sqrt{2012 - x} + \sqrt{1006}} = \frac{2}{\sqrt{x} + \sqrt{2012 - x}}$$

are 2013 soluții în mulțimea numerelor întregi.

Gazeta Matematică

$$\frac{\sqrt{x} - \sqrt{1006}}{x - 1006} + \frac{\sqrt{2012 - x} - \sqrt{1006}}{1006 - x} = \frac{2(\sqrt{x} - \sqrt{2012 - x})}{2x - 2012}$$

$$\frac{1}{a+b} + \frac{1}{c+b} = \frac{2}{a+c},$$

egalitate echivalentă cu $(a+c)(b+c)+(a+b)(a+c)=2(a+b)(b+c) \Leftrightarrow a^2+c^2=2b^2....$ **4p** Deci ecuația are 2013 soluții întregi, și anume 0,1,2,...,2012...... **1p**

Problema 2. Determinați perechile de numere reale (a, b) pentru care egalitatea

$$|ax + by| + |bx + ay| = 2|x| + 2|y|$$

este adevărată pentru orice numere reale x și y.

Soluție. Pentru x=y=1 rezultă că |a+b|=2, deci $a+b\in\{-2;2\}$ (1)

Pentru x = 1, y = -1 rezultă că |a - b| = 2, deci $a - b \in \{-2, 2\}$ (2) 3p

Din aceste relații se obține că $(a,b) \in \{(2,0); (0,2); (-2,0); (0,-2)\}$ 2p

Notă. Se acordă 2 puncte pentru obținerea uneia dintre relațiile (1) și (2)

Problema 3. Pe laturile (AB) şi (AC) ale triunghiului ABC se consideră punctele M si respectiv N astfel încât $\triangleleft ABC \equiv \triangleleft ANM$. Punctul D este simetricul punctului A față de B, iar P şi Q sunt mijloacele segmentelor [MN] şi respectiv [CD].

Demonstrați că punctele A, P și Q sunt coliniare dacă și numai dacă $AC = AB\sqrt{2}$.

Solutia 1.

"

"Triunghiurile AMN şi ACB sunt asemenea, deci $\frac{AM}{AC} = \frac{AN}{AB}$, rezultă că $\frac{AM}{AN} = \sqrt{2}$... 1p

Cum $\frac{AD}{AC} = \frac{2AB}{AC} = \sqrt{2}$, rezultă că $\frac{AM}{AN} = \frac{AD}{AC} \Leftrightarrow \frac{AM}{AD} = \frac{AN}{AC}$... 1p

Ca urmare, $MN\|CD$, de unde rezultă că A, P şi Q sunt coliniare. ... 1p

"

"

"Vom arăta că $MN\|CD$. Presupunând contrariul, fie $N' \in (AC)$, $N' \neq N$ astfel încât
 $MN'\|CD$ şi $\{P'\} = MN' \cap AQ$. Atunci P' este mijlocul lui [MN'], deci [PP'] este linie mijlocie

în triunghiul MNN'. Rezultă că $PP'\|NN'$, absurd, deoarece $PP' \cap NN' = \{A\}$ 2p

Din $MN\|CD$ rezultă că $\frac{AM}{AD} = \frac{AN}{AC} \Leftrightarrow \frac{AM}{AN} = \frac{2AB}{AC}$.

Dar $\Delta AMN \sim \Delta ACB$, rezultă că $\frac{AM}{AC} = \frac{AN}{AB} \Rightarrow \frac{AM}{AN} = \frac{AC}{AB}$.

Rezultă că $\frac{2AB}{AC} = \frac{AC}{AB}$, de unde $AC = AB\sqrt{2}$ 2p

Soluția 2.

Fie $G = AP \cap BC$. Deoarece $\triangle AMN \sim \triangle ACB$, rezultă $\frac{AN}{AM} = \frac{AB}{AC}$.

Deoarece P este mijlocul segmentului [MN], rezultă că $\mathcal{A}_{AMP} = \mathcal{A}_{ANP}$, de unde $\frac{d(P,AB)}{d(P,AC)} = \frac{AN}{AM} = \frac{AB}{AC}$.

Pe de altă parte $\frac{AP}{AG} = \frac{d(P,AB)}{d(G,AB)} = \frac{d(P,AC)}{d(G,AC)}$, deci $\frac{d(G,AB)}{d(G,AC)} = \frac{d(P,AB)}{d(P,AC)} = \frac{AB}{AC}$. De aici $\frac{BG}{CG} = \frac{ABBG}{AAGC} = \frac{AB^2}{AC^2}$. $AC = AB\sqrt{2} \Leftrightarrow \frac{AB^2}{AC^2} = \frac{1}{2} \Leftrightarrow \frac{BG}{CG} = \frac{1}{2} \Leftrightarrow G$ este centrul de greutate al triunghiului $ACD \Leftrightarrow A$, P şi Q sunt coliniare.

Problema 4. Se consideră pătratul ABCD și punctul E în interiorul unghiului $\triangleleft CAB$, astfel încât măsura unghiului $\triangleleft BAE$ este de 15°, iar dreptele BE și BD sunt perpendiculare. Demonstrați că AE = BD.

Soluţia 1.

Cum unghiurile $\triangleleft ACB$ și $\triangleleft CBE$ au măsurile de 45°, rezultă că dreptele	AC și BE sunt
paralele	1p
Fie F proiecția lui E pe AC . Atunci $EF = BO = \frac{BD}{2}$	
Triunghiul FAE este dreptunghic în F și are unghiul $\triangleleft FAE$ de 30°.	
Deducem că $AE = 2EF = BD$	4p

Soluția 2.

Fie $F \in DB$ astfel încât (AB este bisectoarea unghiului $\triangleleft FAE$.

Soluţia 3.

Fie F în interiorul pătratului astfel încât triunghiul CFD este echilateral. În triunghiul isoscel DAF unghiul $\triangleleft ADF$ este de 30° , deci $m(\triangleleft FAB) = 15^{\circ}$, ca urmare $F \in AE$.