Exercise 4 for Metric Space

Yifan Li

March 23, 2024

These is my personal solution to the exercises 4 of Metric Space. They are only one of the ways to look at the problems, and in particular, all errors are almost surely mine.

Exercise 1. For a subset $W \subseteq (X, d)$ of a metric space, prove that

1.
$$W^{\circ} = X \setminus \left(\overline{X \setminus W}\right);$$

2.
$$\overline{W} = X \setminus (X \setminus W)^{\circ}$$
.

Proof. Before we start, we need to know about two properties of the closure and interior of a set: the closure of a set is the smallest closed set containing the set, and the interior of a set is the largest open set contained in the set.

Given a set W, for any open set $U \subseteq W$, we have

$$\forall x \in U, \exists r > 0 \ (B_r(x) \subseteq U \subseteq W).$$

Thus, $U \subseteq W^{\circ}$. In this case, W° is the largest open set contained in W. Similarly, for any closed set $V \supseteq W$, we have

$$\forall x \in \overline{W}, \ \forall r > 0 \ (B_r(x) \cap V \supset B_r(x) \cap W \neq \varnothing).$$

Thus, $\overline{W} \subseteq V$. In this case, \overline{W} is the smallest closed set containing W.

Now we prove the two equations. Since $\overline{X\backslash W}$ is the smallest closed set containing $X\backslash W$, we know that its complement is the largest open set contained in W. Thus, $W^{\circ} = X\backslash \left(\overline{X\backslash W}\right)$.

Also, since $(X\backslash W)^{\circ}$ is the largest open set contained in $X\backslash W$, we know that its complement is the smallest closed set containing W. Thus, $\overline{W} = X\backslash (X\backslash W)^{\circ}$.

Exercise 2. Is \mathbb{Q}^n dense in \mathbb{R}^n ?

Proof. Note that there is a equivalent definition of dense set: a set is dense in a space if every open ball contains at least one point of the set.

In \mathbb{R}^n , consider d_1 metric, we know that its open balls have the form $B_{r_1}(x) = \prod (x_i - r_1, x_i + r_1)$. For each dimension, we can find a rational number p_i such that $x_i - r_1 < p_i < x_i + r_1$. Thus, we can find a point $p = (p_1, \dots, p_n) \in \mathbb{Q}^n$ such that $p \in B_{r_1}(x)$. Thus, \mathbb{Q}^n is dense in \mathbb{R}^n . \square