후판공정 Scale 불량 핵심 요인 분석 및 개선안 제시

문제 정의 및 목표

- Scale 불량 발생 증가라는 이슈 발생
 - 압연 공정에서 Scale 불량이 급증한 것을 확인
 - 스케일이 발생하면 제품의 품질이 저하될 수 있음
- 후판 제품 Scale 불량의 핵심 요인 도출 필요
- 근본 원인을 찾아 개선된 프로세스와 사전 조치를 통해 불량 발생률 저하 및 품질 향상

1. 데이터 구성 및 품질 확인

데이터 구성

기간: 2023/01/03 ~ 2023/01/10(총 1000개 데이터)

목표 변수

- scale: 스케일(산화철)의 불량 여부

설명 변수

- plate_no: 제품 번호

- rolling_date: 열연작업시각

- spec_long: 제품 규격

- spec_country: 제품 규격 기준국

- steel_kind: 강종(탄소강(C), 티타늄강(T))

- pt_thick: 후판 지시 두께

- pt_width: 후판 지시 폭

- pt_length: 후판 지시 길이

- hsb: Hot Scale Braker(열간 스케일 파쇄기) 적용 여부

- fur_no: 가열로 호기

- fur_input_row: 가열로 장입열

- fur_heat_temp: 가열로의 가열대 소재온도

- fur_heat_time: 가열로의 가열대 재로시간(분)

- fur_soak_temp: 가열로의 균열대 소재온도

- fur_soak_time: 가열로의 균열대 재로시간(분)

- fur_total_time: 가열로 총 재로시간(예열대+가열대+균열대)

- fur_ex_temp: 가열로 추출온도(계산치)

- rolling_method: 압연 방법(TMCP, CR)

- rolling_temp: 압연 온도(압연 과정 동안 유지되는 주변 온도)

- descaling_count: 압연 디스케일링 횟수

- work_group: 작업조(4조 2교대 - 07시/19시 기준)

목표변수 Scale의 기술통계량

count	1000
unique	2
top	양품
freq	690

- 고유값이 두 개 존재(양품/불량)
- 1000개의 데이터 중 690개의 양품이 존재

결측치 확인

df_raw.isnull().sum()

plate_no	0	fur_input_row	0
rolling_date	0	fur_heat_temp	0
scale	0	fur_heat_time	0
spec_long	0	fur_soak_temp	0
spec_country	0	fur_soak_time	0
steel_kind	0	fur_total_time	0
pt_thick	0	fur_ex_temp	0
pt_width	0	rolling_method	0
pt_length	0	rolling_temp	0
hsb	0	descaling_count	0
fur_no	0	work_group	0

- 결측값은 존재하지 않음

1. 데이터 구성 및 품질 확인

이상치 확인

- Boxplot으로 데이터를 확인한 결과, rolling_temp에서 이상치를 발견했다.

2. EDA - 변수들 간의 상관관계

- 산점도를 통해 완전한 선형 관계를 띄는 두 변수 발견 (fur_soak_temp & fur_ex_temp)

- fur_soak_temp와 fur_ex_temp의 상관계수는 1.000로 나타남(완전한 양의 상관관계)
 두 변수 간의 상관계수가 높으면 모델링 시다중공선성이 발생할 수 있음
- ⇒ fur_ex_temp(가열로 추출 온도)는 후판의 최 종 온도이므로 scale 불량에 직접적인 영향이 덜 하다고 판단하여 제거

2. EDA - 설명변수와 범주형 변수

- 범주형 변수들만 추출해서 카이제곱 검정(유의수준 0.05)

2. EDA - 설명변수와 연속형 변수

- 연속형 변수들만 추출해서 Histogram으로 표현함

불량 경향 🛈

- plate_thick(판의 두께)가 얇을수록
- plate_width(판의 폭)가 작을수록
- fur_soak_temp(가열로 균열대 온도)가 높을수록
- fur_total_time(가열로 총 재로시간)이 짧을수록
- rolling_temp(압연온도)가 높을수록

[로지스틱 회귀분석]

Intercept	Current function value: 0.300917 Iterations: 35 Function evaluations: 36 Gradient evaluations: 36 Logit Regression Results							
Method: MLE Date: Mon, 21 Oct 2024 Or: 04:57 Pseudo R-squ.: 0.5139 Time: 07:04:57 Cop_Liketinood: -300.92 converged: False LL-Null: -619.10 Covariance Type: nonrobust LLR p-value: 4.372e-125 Intercept -1.9140 0.689 -2.77 0.005 -3.264 -0.564 C(steel_kind)[T.2] 1.0608 1.088 0.975 0.330 -1.071 3.193 C(steel_kind)[T.2] 14.0791 15.723 0.895 0.371 -16.738 44.896 C(rolling_method)[T.2] -0.8540 0.756 -1.30 0.259 -2.336 0.628 C(work_group)[T.2] 0.0937 0.288 0.326 0.745 -0.470 0.658 C(work_group)[T.3] -0.3892 0.322 -1.208 0.227 -1.020 0.247 C(work_group)[T.4] -0.5844 0.342 -1.710 0.087 -1.254 0.085 pt_thick -0.4918 0.371 1.325 0.185 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>:</td><td></td><td></td></t<>						:		
Date: Mon, 21 Oct 2024			_					
Time:								1
Converged:					and the same of th			
Covariance Type: nonrobust LLR p-value: 4.372e-125 coef std err z P> z [0.025 0.975] Intercept -1.9140 0.689 -2.77 0.005 -3.264 -0.564 C(steel_kind) [T.2] 1.0608 1.088 0.975 0.330 -1.071 3.193 C(hsb) [T.2] 14.0791 15.723 0.895 0.371 -16.738 44.896 C(rolling_method) [T.2] -0.8540 0.756 -1.30 0.259 -2.336 0.628 C(work_group) [T.2] 0.0937 0.288 0.326 0.745 -0.470 0.658 C(work_group) [T.3] -0.3892 0.322 -1.208 0.227 -1.020 0.242 C(work_group) [T.4] -0.5844 0.342 -1.710 0.087 -1.254 0.085 pt_thick -0.4918 0.371 1.325 0.185 -1.219 0.236 pt_thick -0.4918 0.371		07				/		_
Coef std err z P> z [0.025 0.975]		non				/		
Intercept	covariance Type.			======	va tue. ========		4.3726-123	
C(steel_kind)[T.2] 1.0608 1.088 0.975 0.330 -1.071 3.193 C(hsb)[T.2] 14.0791 15.723 0.895 0.371 -16.738 44.896 C(rolling_method)[T.2] -0.8540 0.756 -1.30 0.259 -2.336 0.628 C(work_group)[T.2] 0.0937 0.288 0.326 0.745 -0.470 0.658 C(work_group)[T.3] -0.3892 0.322 -1.208 0.227 -1.020 0.242 C(work_group)[T.4] -0.5844 0.342 -1.710 0.087 -1.254 0.085 pt_thick -0.4918 0.371 1.325 0.185 -1.219 0.236 pt_width -0.5749 0.138 -4.174 0.000 -0.845 -0.305 pt_length -0.6131 0.254 -2.417 0.016 -1.110 -0.116 fur_heat_time 0.6187 0.225 2.751 0.006 0.178 1.066 fur_soak_time -0.0378 0.225 -0.168 0.866 -0.478 0.402 fur_total_time -0.2245		со	ef st	d err	z	P> z	[0.025	0.975]
C(hsb)[T.2] 14.0791 15.723 0.895 0.371 -16.738 44.896 C(rolling_method)[T.2] -0.8540 0.756 -1.130 0.259 -2.336 0.628 C(work_group)[T.2] 0.0937 0.288 0.326 0.745 -0.470 0.658 C(work_group)[T.3] -0.3892 0.322 -1.208 0.227 -1.020 0.247 C(work_group)[T.4] -0.5844 0.342 -1.710 0.087 -1.254 0.085 pt_thick -0.4918 0.371 1.325 0.185 -1.219 0.236 pt_width -0.5749 0.138 -4.174 0.000 -0.845 -0.305 pt_length -0.6131 0.254 -2.417 0.016 -1.110 -0.116 fur_heat_temp 0.4254 0.256 1.664 0.096 -0.076 0.927 fur_soak_temp 1.0411 0.417 2.497 0.013 0.224 1.858 fur_soak_time -0.0378 0.225 -0.168 0.866 -0.478 0.402 fur_total_time -0.2245	Intercept	-1.91	10	0.689	-2.77	0.005	-3.264	-0.564
C(rolling_method)[T.2]	C(steel_kind)[T.2]	1.06	8	1.088	0.975	0.330	-1.071	3.193
C(work_group) [T.2] 0.0937 0.288 0 326 0.745 -0.470 0.658 C(work_group) [T.3] -0.3892 0.322 -1.208 0.227 -1.020 0.242 C(work_group) [T.4] -0.5844 0.342 -1.710 0.087 -1.254 0.085 pt_thick -0.4918 0.371 1.325 0.185 -1.219 0.236 pt_width -0.5749 0.138 -4.174 0.000 -0.845 -0.305 pt_length -0.6131 0.254 -2.417 0.016 -1.110 -0.116 fur_heat_temp 0.4254 0.256 1.664 0.096 -0.076 0.927 fur_soak_temp 1.0411 0.417 2.497 0.013 0.224 1.858 fur_soak_time -0.0378 0.225 -0.168 0.866 -0.478 0.402 fur_total_time -0.2245 0.269 -0.836 0.403 -0.751 0.302 rolling_temp 1.7317 0.255 6.795 0.000 1.232 2.232	C(hsb)[T.2]	14.07	91 1	5.723	0.895	0.371	-16.738	44.896
C(work_group) [T.3] -0.3892 0.322 -1.208 0.227 -1.020 0.242 C(work_group) [T.4] -0.5844 0.342 -1.710 0.087 -1.254 0.085 pt_thick -0.4918 0.371 1.325 0.185 -1.219 0.236 pt_width -0.5749 0.138 -4.174 0.000 -0.845 -0.305 pt_length -0.6131 0.254 -2.417 0.016 -1.110 -0.116 fur_heat_temp 0.4254 0.256 1.664 0.096 -0.076 0.927 fur_heat_time 0.6187 0.225 2.751 0.006 0.178 1.066 fur_soak_temp 1.0411 0.417 2.497 0.013 0.224 1.858 fur_soak_time -0.0378 0.225 -0.168 0.866 -0.478 0.402 fur_total_time -0.2245 0.269 -0.836 0.403 -0.751 0.302 rolling_temp 1.7317 0.255 6.795 0.000 1.232 2.233	5—							0.628
C(work_group) [T.4] -0.5844 0.342 -1.710 0.087 -1.254 0.085 pt_thick -0.4918 0.371 1.325 0.185 -1.219 0.236 pt_width -0.5749 0.138 -4.174 0.000 -0.845 -0.305 pt_length -0.6131 0.254 -2.417 0.016 -1.110 -0.116 fur_heat_temp 0.4254 0.256 1.664 0.096 -0.076 0.927 fur_heat_time 0.6187 0.225 2.751 0.006 0.178 1.066 fur_soak_temp 1.0411 0.417 2.497 0.013 0.224 1.858 fur_soak_time -0.0378 0.225 -0.168 0.866 -0.478 0.402 fur_total_time -0.2245 0.269 -0.836 0.403 -0.751 0.302 rolling_temp 1.7317 0.255 6.795 0.000 1.232 2.233								0.658
pt_thick -0.4918 0.371 1.325 0.185 -1.219 0.236 pt_width -0.5749 0.138 -4.174 0.000 -0.845 -0.305 pt_length -0.6131 0.254 -2.417 0.016 -1.110 -0.116 fur_heat_temp 0.4254 0.256 1.664 0.096 -0.076 0.927 fur_heat_time 0.6187 0.225 2.751 0.006 0.178 1.066 fur_soak_temp 1.0411 0.417 2.497 0.013 0.224 1.858 fur_soak_time -0.0378 0.225 -0.168 0.866 -0.478 0.402 fur_total_time -0.2245 0.269 -0.836 0.403 -0.751 0.302 rolling_temp 1.7317 0.255 6.795 0.000 1.232 2.233								0.242
pt_width -0.5749 0.138 -4.174 0.000 -0.845 -0.305 pt_length -0.6131 0.254 -2.417 0.016 -1.110 -0.116 fur_heat_temp 0.4254 0.256 1.664 0.096 -0.076 0.927 fur_heat_time 0.6187 0.225 2.751 0.006 0.178 1.066 fur_soak_temp 1.0411 0.417 2.497 0.013 0.224 1.858 fur_soak_time -0.0378 0.225 -0.168 0.866 -0.478 0.402 fur_total_time -0.2245 0.269 -0.836 0.403 -0.751 0.302 rolling_temp 1.7317 0.255 6.795 0.000 1.232 2.233								0.085
pt_length -0.6131 0.254 -2.417 0.016 -1.110 -0.116 fur_heat_temp 0.4254 0.256 1.664 0.096 -0.076 0.927 fur_heat_time 0.6187 0.225 2.751 0.006 0.178 1.060 fur_soak_temp 1.0411 0.417 2.497 0.013 0.224 1.858 fur_soak_time -0.0378 0.225 -0.168 0.866 -0.478 0.402 fur_total_time -0.2245 0.269 -0.836 0.403 -0.751 0.302 rolling_temp 1.7317 0.255 6.795 0.000 1.232 2.233								
fur_heat_temp 0.4254 0.256 1.664 0.096 -0.076 0.927 fur_heat_time 0.6187 0.225 2.751 0.006 0.178 1.060 fur_soak_temp 1.0411 0.417 2.497 0.013 0.224 1.858 fur_soak_time -0.0378 0.225 -0.168 0.866 -0.478 0.402 fur_total_time -0.2245 0.269 -0.836 0.403 -0.751 0.302 rolling_temp 1.7317 0.255 6.795 0.000 1.232 2.233								
fur_heat_time 0.6187 0.225 2.751 0.006 0.178 1.060 fur_soak_temp 1.0411 0.417 2.497 0.013 0.224 1.858 fur_soak_time -0.0378 0.225 -0.168 0.866 -0.478 0.402 fur_total_time -0.2245 0.269 -0.836 0.403 -0.751 0.302 rolling_temp 1.7317 0.255 6.795 0.000 1.232 2.233	5							
fur_soak_temp 1.0411 0.417 2.497 0.013 0.224 1.858 fur_soak_time -0.0378 0.225 -0.168 0.866 -0.478 0.402 fur_total_time -0.2245 0.269 -0.836 0.403 -0.751 0.302 rolling_temp 1.7317 0.255 6.795 0.000 1.232 2.233								
fur_soak_time -0.0378 0.225 -0.168 0.866 -0.478 0.402 fur_total_time -0.2245 0.269 -0.836 0.403 -0.751 0.302 rolling_temp 1.7317 0.255 6.795 0.000 1.232 2.233								
fur_total_time -0.2245 0.269 -0.836 0.403 -0.751 0.302 rolling_temp 1.7317 0.255 6.795 0.000 1.232 2.232								
rolling_temp 1.7317 0.255 6.795 0.000 1.232 2.233								
DESCALIND COUNT = 1 1333 N //N =3 /3/ N NNN = 1 586 = N //	<u> </u>							
-1.1555 0.220 -5.257 0.000 -1.500 -0.725	descating_count	-1.15)) 	0.220	-5.25/	0.000	-1.586	-0.725

모델의 설명력은 51.39%

[의사결정나무]

- GridSerachCV로 찾은 최적의 파라미터

- 최적의 파라미터로 생성한 모델의 정확도 확인

train accuracy: 0.9914

f1-score: 0.9846

test accuracy: 0.9900

⇒ Train은 99.14%, Test는 99%

[랜덤포레스트]

- GridSerachCV로 찾은 최적의 파라미터

```
param_grid=[{'min_samples_leaf': range(5,50,10),
            'max_depth':range(3,12,3),
           'min_samples_split': range(5,50,10)}]
rf_temp=GridSearchCV(RandomForestClassifier(random_state=456), param_grid)
rf_temp.fit(X_train, y_train)
{'max_depth': 9, 'min_samples_leaf': 5, 'min_samples_split': 15}
- 최적의 파라미터로 생성한 모델의 정확도 확인
rf=RandomForestClassifier(max_depth=9,
                          min_samples_leaf=5,
                          min_samples_split=15,
                          random_state=456)
rf.fit(X_train, y_train)
train accuracy: 0.9643
f1-score: 0.9355
test accuracy: 0.9600
         ⇒ Train은 96.43%, Test는 96%
```

[그래디언트 부스팅]

- GridSerachCV로 찾은 최적의 파라미터

```
param_grid=[{'min_samples_leaf': range(5,50,10),
           'max_depth':range(3,12,3),
           'min_samples_split': range(5,50,10)}]
gb_temp=GridSearchCV(GradientBoostingClassifier(random_state=456), param_grid)
gb_temp.fit(X_train, y_train)
{'max_depth': 3, 'min_samples_leaf': 15, 'min_samples_split': 5}
- 최적의 파라미터로 생성한 모델의 정확도 확인
gb=GradientBoostingClassifier(max_depth=3,
                              min_samples_leaf=15,
                              min_samples_split=5,
                              random_state=456)
gb.fit(X_train, y_train)
train accuracy: 0.9943
f1-score: 0.9898
test accuracy: 0.9933
             ⇒ Train은 99.43%, Test는 99.33%
```

[XGBoost]

- GridSerachCV로 찾은 최적의 파라미터

```
param_grid=[{'min_samples_leaf': range(5,50,10),
           'max_depth':range(3,12,3),
           'min_samples_split': range(5,50,10)}]
xgb_temp=GridSearchCV(XGBClassifier(random_state=456), param_grid)
xgb_temp.fit(X_train, y_train)
{'max_depth': 3, 'min_samples_leaf': 5, 'min_samples_split': 5}
- 최적의 파라미터로 생성한 모델의 정확도 확인
xgb=XGBClassifier(max_depth=3,
                  min_samples_leaf=5,
                  min_samples_split=5,
                   random_state=456)
xgb.fit(X_train, y_train)
train accuracy: 1.0000
f1-score: 0.9846
test accuracy: 0.9900
         ⇒ Train은 100%, Test는 99%
```

[SVM]

- GridSerachCV로 찾은 최적의 파라미터

```
param_grid=[{'C': [0.1, 1, 10],
            'kernel':['linear', 'poly', 'rbf', 'sigmoid'],
            'gamma': ['scale', 'auto', 0.1, 1]}]
svm_temp=GridSearchCV(SVC(random_state=456), param_grid)
svm_temp.fit(X_train, y_train)
{'C': 1, 'gamma': 0.1, 'kernel': 'poly'}
- 최적의 파라미터로 생성한 모델의 정확도 확인
svm=SVC(C=1,
        qamma=0.1,
        kernel='poly',
        random_state=456)
svm.fit(X_train, y_train)
train accuracy: 0.9371
f1-score: 0.8191
test accuracy: 0.8867
```

⇒ Train은 93.71%, Test는 88.67%

모델별 Accuracy와 F1-score 비교

	train accuracy	test accuracy	f1-score
model			
Logistic	0.8814	0.8567	0.7772
Decision Tree	0.9914	0.9900	0.9846
Random Forest	0.9643	0.9600	0.9355
Gradient Boosting	0.9943	0.9933	0.9898
XGBoost	1.0000	0.9900	0.9846
SVM	0.9371	0.8867	0.8191

⇒ Accuracy와 F1-score 모두 가장 높은 모델은 Gradient Boosting

최종 모델 생성 - Gradient Boosting

[최종 모델의 confusion maxtrix 확인]

```
Confusion Matrix:
[[201 0]
 [ 2 97]]
Accuracy: 0.9933
Classification Report:
                           recall f1-score
              precision
                                              support
                                                  201
                             1.00
                                       1.00
                   0.99
                   1.00
                                       0.99
                             0.98
                                                   99
                                       0.99
                                                  300
    accuracy
                             0.99
                                       0.99
                                                  300
   macro avq
                   1.00
weighted avg
                   0.99
                             0.99
                                       0.99
                                                  300
```

- 양품에 속하는 201개의 샘플 정확하게 예측 불량품에 속하는 2개의 샘플 오분류, 97개는 정확하게 예측
- 99.33%의 높은 정확도를 보임
 Precision, Recall, F1-score 모두 1 또는 1에 가까운 값을 보이므로 데이터셋에 대한 일반화 성능이 좋다고 판단됨

 □ 실무에서도 사용 가능

4. 핵심 요인 도출 및 기대 효과

[설명변수 중요도]

	feature	importance
8	rolling_temp	0.5500
11	hsb	0.1740
5	fur_soak_temp	0.1580
9	descaling_count	0.0790
0	pt_thick	0.0340
7	fur_total_time	0.0020
1	pt_width	0.0010
6	fur_soak_time	0.0010
2	pt_length	0.0010
3	fur_heat_temp	0.0010
4	fur_heat_time	0.0000
13	work_group	0.0000
12	rolling_method	0.0000
10	steel_kind	0.0000

[상위 5개 핵심 요인 Histogram]

- 1. rolling_temp(압연 온도): 압연은 철강을 필요한 두께와 너비로 압착하는 과정으로 올바른 압연 온도 유지가 중요 □ 압연 온도 낮춤
- 2. hsb(열간 스케일 파쇄기): HSB는 공정 중 표면의 스케일을 고압수만으로 파쇄하는 장치로 후판의 표면 품질에 영향

 ➡ HSB 적용
- 3. fur_soak_temp(가열로 균열대 소재온도): 가열대는 압연할 재료를 가열하는 영역으로 온도가 가장 높음 > 예열대 균열대 가열대 순으로 온도가 높으므로 가열대의 온도는 예열대와 균열대보다 높게 온도를 낮춰야 함

 □ 가열로 균열대 온도를 낮춤
- 4. **descaling_count**: 디스케일링은 철강 표면의 스케일을 제거하는 과정으로 적절한 디스케일링은 후판의 표면 품질에 영향 **압연 중 디스케일링 횟수 증가**

[기대 효과]

적절한 압연 온도 설정, 적절한 가열로 온도 설정, 스케일 제거 기술 개선을 통한 표면 처리 등 생성된 모델을 통해 불량률 예측하여 스케일 발생률을 낮추고 품질 향상을 도모할 수 있을 것이다.

THANK YOU

감사합니다

