i	大 连 理 工 大 学
姓名:i	

学号:____

院系: ;

级班

岌

汀

戋

课程名称: <u>复变函数</u> 试卷: <u>A</u> 考试形式: <u>闭卷</u>

授课院 (系): <u>数学</u> 考试日期: <u>2020 年 8 月 20 日</u> 试卷共<u>6</u>页

	_]]]	四	五	六	七	八	总分
标准分	36	24	18	22	/	/	/	/	100
得 分									

一. 单项选择题(每小题 3 分, 共 36 分)

1. 计算复数(1+i)²⁰²⁰ 的值:

B. 1 C. 2¹⁰¹⁰ D. -2¹⁰¹⁰ A. 0

2. 关于 f(z) = u(x, y) + iv(x, y) 在 $z_0 = x_0 + iy_0$ 处可导的说法正确的是:

A. $u, v 在(x_0, y_0)$ 处可微; B. $f(z) 在 z_0$ 处解析;

C. u, v 关于(x, y)连续可微; D. u 一定不是常数;

3. 关于辐角主值函数 arg(z)的说法不正确的是:

A. 在 0 点取值没意义; B. 在复平面连续;

C. 是单值函数; D. arg(1)=arg(2020);

4. 复值函数 $w = e^z$ 把 Z 平面上虚轴映射为 W 平面何种图像:

A. 负实轴; B. 正实轴;

C. 虚轴; D. 单位圆周;

- 5. 函数 $\frac{1}{\tan(z)}$ 在 z=0 处的留数是:
- A. -1; B. 1; C. 0; D. i;

- 6. 沿 y=x 计算积分 $\int_0^{1+i} (6x^2 + 6yi) dz$:

- A. -3+5i; B. -1+5i; C. -2+5i; D. -6+5i;
- 7. 计算积分 $\oint_{|z|=2} \frac{z^3}{z^2-5} dz$ 的值:

- A. i; B. 0; C. 1; D. 2;
- 8. 计算积分 $\oint_{|z|=3} \frac{z^3+2z+3}{2(z+1)^4} dz$ 的值:

- A. 0; B. πi ; C. $2\pi i$; D. $3\pi i$;
- 9. 设 $z_n = \frac{2020^n}{n!} i^n$,则 $\lim_{n \to \infty} z_n$ 为:

- A. 1; B. 0; C. i; D. 不存在;
- 10. 幂级数 $\sum_{n=0}^{\infty} \frac{(1+i)^n z^{2n}}{4^n}$ 的收敛半径是:

- A. $\sqrt{2}$; B. $\sqrt[4]{2}$; C. 2; D. $2^{\frac{3}{4}}$;
- 11. 幂级数 $\sum_{r=0}^{\infty} c_n z^r$ 在 3+4i 处收敛,则下述说法错误的是:

- A. 在 z=1 处肯定收敛; B. 在 z=2 处肯定收敛;
- C. 在 z=5 处可能收敛; D. 在 z=6 处不收敛;
- 12. 设函数 $f(z) = \frac{z^2 1}{z^2 \sin(z)}$, 则其在 z=0 处的留数是:

- A. 0; B. πi ; C. $\frac{5}{6}$; D. $\frac{2}{3}$;
- 二. 多项选择题(每小题 3 分, 共 24 分)
 - 1. 下列关于复函数的说法中,正确的是().
 - A. $\lim_{z\to\infty} e^z = \infty$
 - B. |cos(z)|≤1未必成立;
 - C. 函数 f(z) = Re(z) 在复平面内处处关于 z 可微;
 - D. 已知函数 $f(z) = \frac{e^z}{\sin(\pi z)}$ 在点 $z = \frac{1}{3}$ 处展开成泰勒级数的收敛 半径是 R, 则 $R = \frac{1}{3}$
 - 2. 三点 3+i, 6, 4+4i 两两连线构成的图形是:

 - A. 等边三角形 B. 直角三角形
 - C. 等腰三角形 D. 直线
- - 3. 关于序列极限 $z_n = a_n + ib_n \rightarrow 0$ 的说法不正确的是:
 - A. $\overline{z_n} \to 0$;
- B. $|z_n| \rightarrow 0$;
- C. $(a_n)^2 \rightarrow 0$ 未必成立; D. $(b_n + 2a_n)^2 \rightarrow 0$ 未必成立;

- 4. 关于方程 $(\overline{z})^2 = z^2$ 的解说法不正确的是:
- A. z 一定为实数; B. z 可能是纯虚数;
- C. z 可能是 1+i; D. 没有解;
- 5. 设函数 f(z)在区域 D 内解析,则下列说法不正确的是:
- A. Re(f(z))为常数,则 f(z)恒为常数;
- B. Im(f(z))为常数,则 f(z)未必为常数;
- C. f(z)在 D 内的每一点邻域可展开成幂级数;
- D. |f(z)|为常数,则 f(z)未必为常数;
- 6. 对于非零的复数 z, z, 与z, 下列表述错误的是 :
- A. $Ln(z_1z_2) = Ln(z_1) + Ln(z_2)$; B. $Ln(z^2) = 2Ln(z)$;

- C. $Ln(z^3) = 3Ln(z)$; D. $Ln(\sqrt{z}) = \frac{1}{2}Ln(z)$;
- 7. 关于奇点的说法不正确的是:
- A. 复平面上可去奇点处的留数为零;
- B. ∞点作为可去奇点时, 留数为零;
- C. 0 为 $e^{\frac{1}{z}}$ 的本性奇点;
- D. 0 为 $(\sin(\frac{1}{z}))^{-1}$ 的本性奇点;
- 8. 设函数 f(z)在复平面内解析, 且不为常数, 则下列说法不正 确的是:

- A. f(z)的共轭函数也在复平面内解析;
- B. f(z)在复平面内是无界函数;
- C. f(z)的模长最大值在一个有限点 z_0 取到;
- D. f(z)的模长最小值不可能在一个有限点 z_0 取到;

三、填空题(每小题3分,共18分)

- 1. 复数(-2) 的辐角主值是。
- 2. 复数 e^{(1+2i)²} 的模长是______。_
- 4. 函数 $\frac{3z-2}{z^2-z}$ 沿圆周|z|=3 的负方向积分,积分值为______。
- 5. 设函数 $g(z) = \oint_{|z|=2} \frac{\varsigma^4 + 2\varsigma^2}{(\varsigma z)^2} d\varsigma$,则 g(1+i)=______

四、 简答题: (共22分)

1、(10 分)分别求函数 $f(z) = \frac{1}{(z-1)(z-2)}$ 在区域|z| < 1 与|z| > 3 内的 洛朗展式。

2、(12 分)设实函数 $u(x,y) = x^3 - 3xy^2 + y$,证明其为调和函数,并求u(x,y)的共轭调和函数v(x,y)使得解析函数 f(z)=u+iv 满足 f(i)=1-i