# National Vater Quality Network

ANNUAL COMPILATION OF DATA October 1, 1960 - September 30, 1961

> 752,844,000 Detail Later the duty 3 × 9 ;

N, AND WELFARE blic Health Service



# National Water Quality Network

### ANNUAL COMPILATION OF DATA

October 1, 1960-September 30, 1961

A Federal, State and local cooperative report on water quality determinations of surface waters at selected locations throughout the United States

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE
Public Health Service, Division of Water Supply and Pollution Control • Washington 25, D.C.

#### **RELATED PUBLICATIONS:**

National Water Quality Network
Annual Compilation of Data, October 1, 1957-September 30, 1958
Public Health Service Publication No. 663 (1958 Edition)

National Water Quality Network
Statistical Summary of Selected Data, October 1, 1957-September 30, 1958
Public Health Service Publication No. 663—Supplement I

National Water Quality Network Annual Compilation of Data, October 1, 1958-September 30, 1959 Public Health Service Publication No. 663 (1959 Edition)

National Water Quality Network Annual Compilation of Data, October 1, 1959-September 30, 1960 Public Health Service Publication No. 663 (1960 Edition)

National Water Quality Network
Plankton Population Dynamics, July 1, 1959–June 30, 1961
Public Health Service Publication No. 663—Supplement 2

PUBLIC HEALTH SERVICE PUBLICATION NO. 663
(1961 Edition)

#### **ACKNOWLEDGMENT**

To increase the usefulness of the water quality data, annual compilations since 1958, including this one, have presented preliminary and unadjusted flow data for gauging stations at or near most of the National Water Quality Network sampling points. Final data may be obtained directly from the agency concerned. Any studies using the provisional flow data herein compiled should verify the data prior to completion of reports on such studies. For making the flow information available for this publication, grateful acknowledgment is made by the Public Health Service to:

The International Boundary and Water Commission, United States and Mexico

The U.S. Department of the Interior

Bureau of Reclamation • Geological Survey

The U.S. Department of the Army

Corps of Engineers • Lake Survey



#### **FOREWORD**

This is the fourth annual compilation of data from the National Water Quality Network of the Public Health Service. Again the data have revealed some very interesting findings which can be usefully applied to facilitate water quality evaluation.

As in each of the years the Network has functioned, an increasing number of State and other non-Federal agencies have taken an active interest in the field of water quality measurement. This is directly attributable to the mounting need for nationwide conservation of water resources. Our own Network was increased from 72 to 93 stations during this data year, and continual expansion is planned toward a goal of 300 stations.

The Public Health Service gratefully acknowledges the assistance to our Network of the many local, State, interstate, and Federal agencies concerned with water quality management. The success of this program depends, in large measure, upon their continued interest and support.

GORDON E. McCallum, D. Sc.,

Assistant Surgeon General,

Chief, Division of Water Supply and Pollution Control

# CONTENTS

| (アナル)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 7×10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 7-67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| COS B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| # 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1) #/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| \ (!/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| fco).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 1/ 1/ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 1 . 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 14-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Toward Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 1 ) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Language Common  |  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 11 15 15 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| ا ا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1./~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1 2 7 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 14 (0.03)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| \ o_i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| مهللاش مستدر                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| \ <b>X</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Ydhi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| C>3/\s\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 7/SCTA \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| A 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| IFA LUA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| W 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Y(***)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Yan K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $R_{\rm e}H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 他                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| <b>X</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| \\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| $M(X) \rightarrow X$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| The same of the sa |  |

|                                                                                                                                                    | Pε  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| FOREWORD                                                                                                                                           |     |
| ACKNOWLEDGMENT                                                                                                                                     |     |
| NATIONAL WATER QUALITY NETWORK                                                                                                                     |     |
| ANALYTICAL METHODS AND RELIABILITY OF DATA                                                                                                         |     |
| WATER QUALITY PARAMETERS                                                                                                                           |     |
| Radioactivity Plankton Populations Organic Chemicals Chemical, Physical and Bacteriological Examinations _ Trace Elements and Other Determinations |     |
| STREAM FLOW                                                                                                                                        |     |
| MAP OF NETWORK OF SAMPLING STATIONS                                                                                                                |     |
| SAMPLING STATIONS, COOPERATING AGENCIES, AND AVAILABLE STREAM FLOW RECORDS                                                                         | .3- |
| BIBLIOGRAPHY                                                                                                                                       |     |
| EXPLANATION OF ANALYTICAL DATA                                                                                                                     |     |
| ANALYTICAL AND FLOW DATA (See Station Index pages y-ix)                                                                                            |     |

### ANALYTICAL AND FLOW DATA INDEX

| STATION                                                                                                                          | Radioactivity<br>Determinations         | Plankton<br>Populations         | Organic<br>Chemicals            | Chemical, Physical<br>and Bacteriological<br>Analyses | Flow Data                       | Strontium<br>90                 | Trace<br>Elements               |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------|---------------------------------|-------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|
|                                                                                                                                  | Page No.                                | Page No.                        | Page No.                        | Page No.                                              | Page No.                        | Page No.                        | Page No.                        |
| Allegheny River at Pittsburgh, Pa.                                                                                               | 27                                      | 28                              | 29                              | 30–31                                                 | 32                              | 535                             | 541                             |
| Animas River<br>at Cedar Hill, N. Mex.                                                                                           | 33-34                                   | 35                              | 36                              | 37–38                                                 | 39                              | <b>5</b> 35                     | 541                             |
| Apalachicola River at Chattahoochee, Fla.                                                                                        | 40                                      | 41                              | 42                              | . 43                                                  | 44                              | 535                             | 541                             |
| Arkansas River<br>at Pendelton Ferry, Ark.<br>near Ponca City, Okla.<br>at Coolidge, Kans.                                       | 45<br>49<br>54                          | 46<br>50<br>55                  | _                               | 47<br>51–52<br>56–57                                  | 48<br>53<br>58                  | 535<br>535<br>535               | 541<br>541<br>541               |
| Big Sioux River below Sioux Falls, S. Dak.                                                                                       | 59                                      | 60                              |                                 | 61                                                    | 62                              | 535                             | 541                             |
| Chattahoochee River at Columbus, Ga. at Atlanta, Ga.                                                                             | 63<br>69                                | 64<br>70                        | 65<br>71                        | 66-67<br>72-73                                        | 68<br>74                        | 535<br>535                      | 541<br>541                      |
| Colorado River<br>at Yuma, Ariz.<br>above Parker Dam, Ariz-                                                                      | 75                                      | 76                              | 77                              | 78–79                                                 | 80                              | 535                             | 541                             |
| Calif. near Boulder City, Nev. at Page, Ariz. at Loma, Colo.                                                                     | 81<br>87<br>93–94<br>100                | 82<br>88<br>95<br>101           | 83<br>89<br>96<br>102           | 84-85<br>90-91<br>97-98<br>103                        | 86<br>92<br>99<br>104           | 535<br>535<br>535<br>535        | 541<br>541<br>541<br>541        |
| Columbia River<br>at Clatskanie, Oreg.<br>at Bonneville, Oreg.<br>at McNary Dam, Oreg.<br>at Pasco, Wash.<br>at Wenatchee, Wash. | 105-106<br>112<br>117<br>121-122<br>128 | 107<br>113<br>118<br>123<br>129 | 108<br>114<br>119<br>124<br>130 | 109-110<br>115<br><br>125-126<br>131-132              | 111<br>116<br>120<br>127<br>133 | 535<br>535<br>535<br>535<br>535 | 541<br>541<br>541<br>541<br>541 |

Dash (—) indicates no determination made.

| CTATION                                                                            | Radioactivity<br>Determinations | Plankton<br>Populations | Organic<br>Chemicals | Chemical, Physical<br>and Bacteriological<br>Analyses | Flow Data  | Strontium<br>90 | Trace<br>Elements |
|------------------------------------------------------------------------------------|---------------------------------|-------------------------|----------------------|-------------------------------------------------------|------------|-----------------|-------------------|
| STATION                                                                            | Page No.                        | Page No.                | Page No.             | Page No.                                              | Page No.   | Page No.        | Page No.          |
| Connecticut River below Northfield, Mass.                                          | 134                             | 135                     | 136                  | 137                                                   | 138        | 535             | 542               |
| Cumberland River at Clarksville, Tenn.                                             | 139                             | 140                     |                      | 141                                                   | 142        | 535             | _                 |
| Delaware River<br>at Philadelphia, Pa.<br>at Martins Creek, Pa.                    | 143<br>149                      | 144<br>150              | 145<br>—             | 146–147<br>151–152                                    | 148<br>153 | 535<br>535      | 542<br>542        |
| Escambia River at Century, Fla.                                                    | 154                             | 155                     | 156                  | 157                                                   | 158        | 535             | 542               |
| Great Lakes Lake Erie at Buffalo, N.Y.                                             | 159                             | 160                     | * 161                | 162–163                                               | 164        | 535             | 542               |
| Lake Huron, Detroit River at Detroit, Mich.                                        | 165                             | 166                     | 167                  | 168-169                                               | 170        | 535             | 542               |
| Lake Huron, St. Clair River<br>at Port Huron, Mich.<br>Lake Michigan at Gary, Ind. | 171–172<br>178                  | 173<br>179              | 174<br>180           | 175–176<br>181–182                                    | 177<br>183 | 535<br>535      | 542<br>542        |
| Lake Michigan at Milwaukee,<br>Wis.                                                | 184–185                         | 186                     | 187                  | 188–189                                               | 190        | 535             | 542               |
| Lake Superior, St. Mary's River at Sault Ste. Marie, Mich.                         | 191                             | 192                     | 193                  | 194–195                                               | 196        | 535             | 542               |
| Lake Superior at Duluth, Minn.                                                     | 197                             | 198                     | 199                  | 200–201                                               | 202        | 535             | 542               |
| Hudson River below Poughkeepsie, N.Y.                                              | 203                             | 204                     | 205                  | 206–207                                               | 208        | 535             | 542               |
| Illinois River at Peoria, Ill.                                                     | 209                             | 210                     | 211                  | 212                                                   | 213        | 535             | 542               |
| Kanawha River at Winfield Dam, W. Va.                                              | 214                             | 215                     | 216                  | 217–218                                               | 219        | 535             | 542               |

| STATION                                                                                                                                                                                                                     | Radioactivity<br>Determinations               | Plankton<br>Populations                              | Organic<br>Chemicals                                 | Chemical, Physical<br>and Bacteriological<br>Analyses                                                 | Flow Data                                            | Strontium<br>90                                      | Trace<br>Elements                           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------|--|
|                                                                                                                                                                                                                             | Page No.                                      | Page No.                                             | Page No.                                             | Page No.                                                                                              | Page No.                                             | Page No.                                             | Page No.                                    |  |
| Klamath River at Keno, Oreg.                                                                                                                                                                                                | 220-221                                       | 222                                                  | 223                                                  | 224                                                                                                   | 225                                                  | 536                                                  | 542                                         |  |
| Little Miami River at Cincinnati, Ohio                                                                                                                                                                                      | 226-227                                       | 228                                                  | 229                                                  | 230–231                                                                                               | 232                                                  | 536                                                  | 543                                         |  |
| Merrimack River above Lowell, Mass.                                                                                                                                                                                         | 233                                           | 234                                                  | 235                                                  | 236                                                                                                   | 237                                                  | 536                                                  | 543                                         |  |
| Mississippi River at New Orleans, La. at Vicksburg, Miss. at Delta, La. at West Memphis, Ark. at Cape Girardeau, Mo. at East St. Louis, Ill. at Burlington, Iowa at Dubuque, Iowa at Lock & Dam No. 3 below St. Paul, Minn. | 238<br>————————————————————————————————————   | 239<br>247<br>252<br>258<br>264<br>270<br>274<br>279 | 240<br>244<br>248<br>253<br>259<br>265<br>271<br>275 | $\begin{array}{r} 241-242 \\ -249 \\ 254-255 \\ 260-261 \\ 266-267 \\ -276 \\ \\ 281-282 \end{array}$ | 243<br>245<br>250<br>256<br>262<br>268<br>272<br>277 | 536<br>536<br>536<br>536<br>536<br>536<br>536<br>536 | 543<br>———————————————————————————————————— |  |
| Missouri River<br>at St. Louis, Mo.<br>at Kansas City, Kans.<br>at St. Joseph, Mo.<br>at Omaha, Nebr.<br>at Bankton, S. Dak.<br>at Yismarck, N. Dak.<br>at Williston, N. Dak.                                               | 284<br>290<br>296<br>303<br>309<br>315<br>321 | 285<br>291<br>297<br>304<br>310<br>316<br>322        | 286<br>292<br>298<br>305<br>311<br>317<br>323        | 287-288<br>293-294<br>299-301<br>306-307<br>312-313<br>318-319<br>324-325                             | 289<br>295<br>302<br>308<br>314<br>320<br>326        | 536<br>536<br>536<br>536<br>536<br>536<br>536        | 543<br>543<br>543<br>543<br>543<br>543      |  |
| Monongahela River at Pittsburgh, Pa.                                                                                                                                                                                        | 327                                           | 328                                                  | 329                                                  | 330                                                                                                   | 331                                                  | 536                                                  | <b>54</b> 3                                 |  |
| North Platte River above Henry, Nebr.                                                                                                                                                                                       | 332                                           | 333                                                  | 334                                                  | 335                                                                                                   | 336                                                  | 536                                                  | 543                                         |  |

| STATION                                                                                                                                               | Radioactivity<br>Determinations        | Plankton<br>Populations                | Organic<br>Chemicals Chemical, Physical<br>and Bacteriological<br>Analyses |                                                 | Flow Data                              | Strontium<br>90                        | Trace<br>Elements                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
|                                                                                                                                                       | Page No.                               | Page No.                               | Page No.                                                                   | Page No.                                        | Page No.                               | Page No.                               | Page No.                               |
| Ohio River<br>at Cairo, Ill.<br>at Evansville, Ind.<br>at Louisville, Ky.<br>at Cincinnati, Ohio.<br>at Huntington, W. Va.<br>at East Liverpool, Ohio | 337<br>343<br>349<br>354<br>360<br>367 | 338<br>344<br>350<br>355<br>361<br>368 | 339<br>345<br>351<br>356<br>362<br>369                                     | 340–341<br>346–347<br>352<br>357–358<br>363–365 | 342<br>348<br>353<br>359<br>366<br>370 | 536<br>536<br>536<br>536<br>536<br>536 | 544<br>544<br>544<br>544<br>544<br>544 |
| Ouachita River at Bastrop, La.                                                                                                                        | 371                                    | 372                                    |                                                                            | 373                                             | 374                                    | 536                                    | 544                                    |
| Platte River above Plattsmouth, Nebr.                                                                                                                 | 375                                    | 376                                    | _                                                                          | 377                                             | 378                                    | 536                                    | 544                                    |
| Potomac River at Great Falls, Md. at Williamsport, Md.                                                                                                | 379<br>385                             | 380<br>386                             | 381<br>387                                                                 | 382–383<br>388–389                              | 384<br>390                             | 536<br>536                             | 544<br>544                             |
| Rainy River at Baudette, Minn.                                                                                                                        | 391                                    | 392                                    |                                                                            |                                                 | 393                                    | 536                                    |                                        |
| Red River (North) at Grand Forks, N. Dak.                                                                                                             | 394                                    | 395                                    | 396                                                                        | 397–398                                         | 399                                    | 536                                    | 544                                    |
| Red River (South) at Alexandria, La. at Index, Ark. at Denison, Tex.                                                                                  | 400<br>404<br>409                      | 401<br>405<br>410                      | <br>411                                                                    | 402<br>406–407<br>412–414                       | 403<br>408<br>415                      | 536<br>536<br>536                      | 544<br>544<br>544                      |
| Rio Grande<br>at Brownsville, Tex.<br>at Laredo, Tex.<br>at El Paso, Tex.<br>below Alamosa, Colo.                                                     | 416<br>422<br>428<br>433               | 417<br>423<br>429<br>434               | 418<br>424<br>430                                                          | 419-420<br>425-426<br>431<br>435                | 421<br>427<br>432<br>436               | 536<br>536<br>536<br>536               | 544<br>544<br>544<br>544               |

|                                                                    | Radioactivity  | Plankton    | Organic    | Chemical, Physical              | Flow Data  |                 |                   |  |
|--------------------------------------------------------------------|----------------|-------------|------------|---------------------------------|------------|-----------------|-------------------|--|
| STATION                                                            | Determinations | Populations | Chemicals  | and Bacteriological<br>Analyses | riow Data  | Strontium<br>90 | Trace<br>Elements |  |
|                                                                    | Page No.       | Page No.    | Page No.   | Page No.                        | Page No.   | Page No.        | Page No.          |  |
| Roanoke River<br>at John H. Kerr Dam and<br>Reservoir, Va.         | 437            | 438         | 439        |                                 |            |                 |                   |  |
| Sabine River<br>near Ruliff, Tex.                                  | 441-442        | 443         | 444        | 445                             | 440<br>446 | 537<br>537      | 545               |  |
| St. Lawrence River at Massena, N.Y.                                | 447            | 448         | 449        | 450                             | 451        | 537             | 545<br>542        |  |
| San Juan River<br>at Shiprock, N. Mex.                             | 452            | 453         | 454        | 455                             | 456        | 537             | 548               |  |
| Savannah River<br>at Port Wentworth, Ga.<br>at North Augusta, S.C. | 457–458<br>464 | 459<br>465  | 460<br>466 | 461–462<br>467–468              | 463<br>469 | 537<br>537      | 545<br>545        |  |
| Schuylkill River<br>at Philadelphia, Pa.                           | 470            | 471         | 472        | 473-474                         | 475        | 537             | 545               |  |
| Shenandoah River<br>ut Berryville, Va.                             | 476            | 477         | _          | 478                             | 479        | 537             | 545               |  |
| Snake River<br>ut Wawawai, Wash.<br>ut Weiser, Idaho               | 480<br>486     | 481<br>487  | 482        | 483–484<br>488                  | 485<br>489 | 537<br>537      | 545<br>545        |  |
| South Platte River at Julesburg, Colo.                             | 490            | 491         | 492        |                                 | 493        | 537             | 545               |  |
| Susquehanna River<br>at Conowingo, Md.<br>at Sayre, Pa.            | 494<br>500     | 495<br>501  | 496<br>502 | 497–498<br>503–504              | 499<br>505 | 537<br>537      | 545<br>545        |  |

| CTATION                                                                                                     | Radioactivity<br>Determinations | Plankton<br>Populations | Organic<br>Chemicals | Chemical, Physical<br>and Bacteriological<br>Analyses | Flow Data  | Strontium<br>90 | Trace<br>Elements |
|-------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------|----------------------|-------------------------------------------------------|------------|-----------------|-------------------|
| STATION                                                                                                     | Page No.                        | Page No.                | Page No.             | Page No.                                              | Page No.   | Page No.        | Page No.          |
| Tennessee River<br>at Bridgeport, Ala.<br>at Chattanooga, Tenn.                                             | 506<br>511                      | 507<br>512              | 508<br>513           | 509<br>514–515                                        | 510<br>516 | 537<br>537      | 545<br>545        |
| $\begin{array}{c} \textbf{Tombigbee River} \\ \textbf{\textit{below Columbus}, \textit{Miss}.} \end{array}$ |                                 |                         | 517                  | <del></del>                                           | 518        | 537             |                   |
| Truckee River<br>at Farad, Calif., below Calif<br>Nev. Border                                               | 519                             | 520                     | . —                  |                                                       | 521        | 537             | 545               |
| Yakima River at Richland, Wash.                                                                             | 522                             | 523                     | 524                  | 525                                                   | 526        | 537             | 545               |
| Yellowstone River near Sidney, Mont.                                                                        | 527                             | 528                     | 529                  | 530-531                                               | 532        | 537             | 545               |

# The National Water Quality Network

The Public Health Service program for providing fundamental information on the quality of the Nation's waters stems from Public Law 660, approved July 9, 1956, as amended by Public Law 87–88, July 20, 1961. Section 4(c) thereof states: ". . . the Secretary (of Health, Education, and Welfare) shall in cooperation with other Federal, State, and local agencies having related responsibilities, collect and disseminate basic data on chemical, physical, and biological water quality insofar as such data or other information relate to water pollution and the prevention and control thereof."

To fulfill this responsibility, the National Water Quality Network collects, interprets, and disseminates:

- a. Information on changes in water quality at key points in river systems, as such quality may be affected by changes in water use and development.
- b. Continuous information on the nature and extent of pollutants affecting water quality.
- c. Data which will be useful in the development of comprehensive water resources programs.
- d. Data which will assist State, interstate, and other agencies in their water pollution control programs, and in the selection of sites for legitimate water uses.

Some 50 sampling stations were established when the program started, October 1, 1957. By September 30, 1961, the number had grown to 93.

Each sampling location satisfies one or more of the following criteria:

- a. Major waterways used for public water supply, propagation of fish and wildlife, recreational purposes, and agricultural, industrial, and other legitimate uses.
  - b. Interstate, coastal, and international boundary waters.
- c. Waters on which activities of the Federal Government may have an impact.

Sampling station sites are fixed only after consultation with local, State, Federal and other agencies having related interests.

Active local participation is important in this operation. It assures maximum development of all information valuable both locally and nationally. Program costs are shared by the Federal Government and state and local agencies, those of the latter through contributions of laboratory and sampling manpower. Specifically, the State and local agencies perform certain of the conventional chemical analyses and collect samples for the newer, more complex examinations. The Public Health Service, in turn, performs the more complex determinations and makes the results available to the participants and to the public. In addition, the consultation, training facilities, and other resources of the Public Health Service are available to the cooperating agencies.

Locations of sampling stations in operation as of September 30, 1961 are shown on page 12. Descriptions of the stations, participating agencies, and other pertinent information are presented on pages 13 through 20.

Only after careful screening of needs in water resource development was a pattern set for analyses of water samples.



All Network samples are examined for:

- a. Radioactivity.
  - (1) Gross alpha.
  - (2) Gross beta.
  - (3) Strontium 90.
- b. Plankton populations.
- c. Coliform organisms.
- d. Organic chemicals.
- e. Biochemical, chemical, and physical measurements, including biochemical oxygen demand (BOD), dissolved oxygen (DO), chemical oxygen demand (COD), chlorine demand, ammonia nitrogen, hydrogen ion concentration (pH), color turbidity, temperature, alkalinity (or acidity), hardness, chloride, sulfate, phosphates and total dissolved solids.
- f. Sodium, potassium, boron, selenium and trace elements.

Samples for groups c and e, above, were collected and

analyzed weekly. Samples for organic chemicals were collected and analyzed monthly and plankton organism examinations were conducted semimonthly. Water samples for analysis of suspended and dissolved alpha and beta radioactivity were submitted every second week during the first eleven months of the 1960-61 water year from those stations at which counts were close to background. Samples were submitted weekly from all new stations and from those stations at which counts were significantly above background. During the month of September, 1961 samples were collected weekly at all stations. Strontium 90 analyses were made on composites of samples accumulated over 3-month periods, except where indicated otherwise. Generally, one-fourth of the stations were scheduled for this determination during each 3-month period. The stations were selected so that at least one analysis was obtained for each river basin during each quarter, with at least one analysis at each station during the water year. Sodium. potassium, boron, selenium and trace metals were determined on 4-month composites of weekly samples. New parameters which are developed and found significant will be included as the program continues.

# Analytical Methods and Reliability of Data

The physical, chemical, and biochemical data included in this publication are the result of cooperative efforts of the agencies listed in column 6, pages 13–20. In general, most of these measurements were contributed by their laboratories. While it is recognized that individual laboratories make minor modifications to meet local conditions, the methods used in most cases are those published in the 11th edition, "Standard Methods for the Examination of Water and Wastewater." For uniformity, the chlorine demand test is reported on the basis of the starch-iodide titration procedure, and the chemical oxygen demand test is restricted to the use of 0.025 N reagents.

To assure continued reliability in the published data, frequent analysis of reference samples by each cooperating

laboratory constitutes an integral part of the overall program. Periodically a synthetic standard sample is provided to each participant for reference analysis. The reported results are reviewed. Any significant errors are called to the attention of the reporting laboratory and, after the cause of the errors has been determined, the previously submitted data are either corrected or discarded. From these findings, the analyses reported in this compilation are believed to be accurate to  $\pm 10$  percent of the reported values.

The analytical methods used by the Public Health Service laboratories are described in the discussion of water quality parameters which follows, and are covered by several of the references listed in the Bibliography.

# Water Quality Parameters

In the assessment of water quality all of the legitimate purposes for which raw waters can be used, and which may be affected by pollution, must be considered. These may range from the minimum requirements necessary for navigation to the ultimate in water quality demanded for special industrial processing. Quality needs differ considerably, therefore, according to water use.

For domestic use, water must be free of disease organisms, clear, colorless, taste- and odor-free, and have a relatively low dissolved mineral content. Agricultural water is judged primarily on its mineral content, especially with respect to the ratio of sodium to other cations, and the presence of boron. Water for fish propagation and recreational purposes must be relatively free from domestic and industrial pollution and must be able to sustain an active flora of the smaller aquatic organisms on which fish and wildlife feed. Industrial water quality demands run the gamut from the complete absence of minerals to a requirement of low temperature, the critical factor in water used for cooling. The effects of radioactive materials on these uses have not yet been fully appraised.

The various laboratory examinations made as part of this program are discussed below.

### Radioactivity

Radioactivity, long recognized as a contaminant of water from natural sources, has continued to grow in importance and health significance with the development of nuclear energy for both military and peaceful uses. Consequently, levels must be measured continually as new sources are established.

Gross alpha and beta measurements are made on both suspended and dissolved solids in the raw surface water samples. The total radioactivity in the dissolved solids provides a rough measure of the levels which may be found in a treated water, where water treatment removes substantially all of the suspended matter.

Alpha levels reflect largely the activity added by uranium and thorium daughters. Beta activity levels generally reflect the variable contamination resulting from fallout and discharges from nuclear energy installations, institutions utilizing radioactive materials, and other manmade sources.

Gross levels are most informative in evaluating long-term trends or changes in water quality. By themselves, however, they are of limited value in assessing radiation exposure. Where gross results are consistently over the maximum permissible concentrations for mixed fission products, the identity of the specific radionuclides involved must be established.

Because of its significance in the environment, the concentration of Strontium 90 in the total solids is also reported. The levels found were all low and considerably less than the limit (10  $\mu\mu$ c/1) specified in the Public Health Service Drinking Water Standards (22, 23). Decreases in Strontium 90 levels were observed at all stations of the National Water Quality Network with the exception of one Mississippi River station where very slight increases were observed. The period (1960–61 water year) may be used to establish a base line for Strontium 90 levels for the National Water Quality Network.

### Populations of Plankton

Many aquatic organisms are sensitive to the various substances which enrich or pollute water. Some of these develop only in relatively clean water, while others may be stimulated to live and multiply in the presence of certain types of pollutants, especially household sewage and certain kinds of industrial wastes. On the other hand, excessive toxic substances may reduce or eradicate planktonic crops. Large populations of algae are sometimes induced to develop by mineralized products of sewage decomposition when nitrates and phosphates are made available as nutrients. Planktonic organisms are also important because of their ability to concentrate a wide variety of radionuclides. Impoundment of water by navigation or hydroelectric dams often increases the density of planktonic blooms.

The plankton data give the numbers, kinds and occurrences of algae and other aquatic microorganisms in the water. This information is useful in determining the pollutional status of any water resource, and in indicating the relative numbers of organisms which may cause problems in the treatment and use of water.

These organisms interfere with water use through shortening of filter runs in treatment plants, and by causing tastes, odors, coloration and various chemical and physical changes in the water environment. By regular and frequent reference to the plankton counts, it is possible to determine the procedures that will be required in treating the water for use.

In the stream or lake itself, many planktonic organisms are known to improve water quality by providing food and oxygen for desirable aquatic life and by aiding in the recovery of polluted water. They may form unsightly blooms, mats and slime growths; release toxic products which kill fish and other animals; and, upon dying and decomposing, exert a biochemical oxygen demand which uses up all oxygen in the water.

Domestic and industrial wastes influence the kinds and numbers (or diversity) of organisms. Hence, plankton may reflect changes in water quality resulting from changes in the wastes containing suspended and dissolved substances. In addition, each geologic area of the United States has a distinctive phytoplankton flora.

Relatively low phytoplankton counts ordinarily occur at sampling stations on the Great Lakes, the Columbia River, and on many rivers in the Southeast. Such stations as Ponca City, Okla., Peoria, Ill., and Minneapolis, Minn., show extremely high counts, but with lower species diversity. Waters receiving heavy organic waste loads at Winfield, W. Va., on the Kanawha River and on the upper Ohio River, however, show low plankton counts, probably resulting from toxic effects.

Data on plankton dynamics will be particularly useful in water quality evaluation when they have been recorded over a long period to indicate variations in kinds and numbers from month to month and from year to year.

#### Counting Procedures

The identification and enumeration procedures aim for maximum accuracy in the data reported. They strive to simplify and standardize methods of enumerating each of the many organisms observed. The volume of samples analyzed is relatively large, which tends to produce greater accuracy. Organisms are identified to genus or generic group; the diatoms are further identified to species.

Sampling is conducted semi-monthly. Each sample consists of three liters of raw water, collected directly from the stream or a treatment plant intake. The sample is preserved during shipment by adding 100 ml. of preservative solution (0.16 percent Thimerosal plus 1 percent Lugol's solution).

Phytoplankters are counted on the Sedgwick-Rafter slide. The analysis for nannoplankton is made by counting a 100-mm. strip on the Sedgwick-Rafter slide, using a 200× mag-

nification. The tiny centric and pennate diatoms (those not forming filaments or colonies) are identified from specially prepared hyrax slides using  $900 \times$  magnification and apochromatic resolution.

Rotifers, crustacea and other microinvertebrates are enumerated under a compound microscope at  $100 \times$  magnification. A raw liter sample is settled and the sediment, when necessary, is washed of colloidal material and tiny silt particles. These microinvertebrates are counted in a special slide measuring  $80 \times 50 \times 2$  mm. These animals are known to be heavy consumers of phytoplankton and organic detritus, and they are an important link in the food chain supporting fish populations.

Identification of diatom species and their proportional census is done from incinerated frustules of diatoms settled and washed from a liter of sample. The washed sediment containing the diatoms is dried on a warming table on a number one coverglass, and this sediment is ashed in place on the coverslip on a red-hot hotplate. This method does not appear to change the minute identification markings of the siliceous cell walls and enables the two valves (epitheca and hypotheca), as well as the groups of cells attached to one another to remain in a natural grouping, so that Sedgwick-Rafter counts and proportional counts can be matched. Chemical cleaning was abandoned because bubbling separated the valves and distorted natural cell grouping and tended to inflate the actual count. Permanent slide mounts are made with hyrax medium. The technique of settling, washing in distilled water and mounting does not appear to alter the uniformity of the diatom species composition. Proportional counts are made with 90-power oil immersion apochromatic objectives and 10-power oculars containing a Whipple micrometer grid. Random strip counts are made until the total number of units reaches two hundred to three hundred.

Proportional counting of diatoms from permanent slides is on a modified unit-area basis, in which each single cell or each portion of a natural aggregate occupying up to 300 square microns  $(\mu^2)$  is tallied as one unit, cells or aggregates occupying

from 300 to 1,000  $\mu^2$  as two, those 1,000 to 2,500  $\mu^2$  as three, those 2,500 to 5,000  $\mu^2$  as four and those over 5,000  $\mu^2$  as five. The Whipple grid makes this scaling simple. This system gives a slight weighting to the larger specimens and colonies, which are seldom numerically abundant, but it is basically the same as the Sedgwick-Rafter count used for enumerating the other phytoplankters. About 95 percent of the cells or clumps naturally fall into size class one or two.

### Organic Chemicals

The Nation's water resources continue to receive increasing quantities of organic contaminants. Since 1940 the chemical industry, particularly in the manufacture of synthetic and petrochemicals, has experienced an enormous expansion that shows every sign of continuing. Each year millions of pounds of synthetic detergents, insecticides, herbicides, and similar domestic products find their way into our streams from household sewers, industrial waste discharges, and land runoff.

Effective and economical treatment methods for most of the complex organic materials remain to be developed. Even where treatment exists, residues may remain in sufficient quantity to cause water damage. These stable residues persist through sewage treatment, biological and chemical action of the stream, and water treatment processes, and finally reach the consumer in drinking water.

The presence of some of these materials, even at concentrations considerably less than 1 part per million, may impair water quality, most noticeably in production of tastes and odors. Fishflesh tainting, also quickly noticed by the consumer, is another damage. Effects on water treatment, many of which are ill-defined at present, and impairment of water quality for industrial uses are being reported with increasing frequency. Essentially nothing is known of the possible immediate or long-term effects of these materials on human health. Such information is urgently needed.

The usual sanitary analyses are not effective in measuring

these newer organic contaminants. Yet it is essential to know something of their concentrations and character. A method known as the "Carbon Adsorption Technique," developed by the Public Health Service, permits the concentration of these organic compounds from a large volume of water. Elution of the adsorbed materials with organic solvents, followed by chemical separation and testing, provides useful information concerning organic pollution and for assaying river systems for these substances.

Field studies, replicate samples taken simultaneously from the same source, and subsequent replicate analysis, indicate a reproducibility for a single source, of ±10 percent. Moreover, experiments conducted in the laboratory with known solutions of organic substances indicate that adsorption efficiencies may approach 100 percent under carefully controlled conditions. However, data from many individual samples collected on different river systems strongly suggest that the adsorption efficiency may vary because of differences in the adsorbability of the particular substances present at a sampling site. The results of desorption efficiency tests run in the laboratory range from 50 to 90 percent. Therefore, comparison of results on a quantitative basis should be approached with caution.

Following continuous flow of about 5,000 gallons of water through the carbon adsorption column over a 7- to 10-day period, material on the carbon adsorption column is extracted with two solvents, chloroform and alcohol.

The extracts are weighed, and the concentration of these materials in the water sampled is then computed. Results are recorded in parts per billion (micrograms per liter). Clean waters may contain 20 to 50 ppb. of chloroform extractables and 50 to 100 ppb. of alcohol extractables. Polluted waters contain several times these concentrations.

#### Chloroform Extracts

The organic residue recovered from the carbon adsorp-

tion column by chloroform is very complex. It is desirable to separate the crude extract into certain broad chemical classes, and this can be done on the basis of solubility differences. The various classes or groups and their general significance are discussed briefly below.

#### Ether Insolubles

This group is usually a brown, humus-like powder, apparently composed to a large extent of carboxylic acids, ketones, and alcohols of complicated structure. Origin of the group, which is an indicator of "old" pollution, is believed to be partially oxidized sewage and industrial wastes. For example, the Ohio River at Cincinnati has been exposed to much industrial and sewage pollution, and hence large amounts of ether insoluble materials are found. Streams with little or no pollution history have little or no ether insolubles. Chloroform extracts contain from 0 to 30 percent of ether insoluble material.

#### Water Solubles

These substances are largely acidic and undistillable at moderate temperatures, but their solubility in ether indicates that the molecules are smaller and probably simpler than the ether-solubles. On the other hand, their water solubility practically requires the presence of several functional groups, such as hydroxy-acid, keto-acid, and keto-alcohol. Such compounds probably originate from partial oxidation of hydrocarbons or they may be natural substances. They have very little odor. These materials usually make up 10 to 20 percent of the total extract.

#### Weak Acids

This group is characterized by being removed from ether solution with sodium hydroxide but not with sodium bicarbonate. Phenols are the best known weak acids, and if present in the water, appear in this group. Other weakly acidic com-

pounds include certain enols, imides, sulfonamides, and some sulfur compounds. This group of materials also occurs in nature. The weak acids are odorous, and commonly constitute 5 to 20 percent of the chloroform extract.

#### Strong Acids

These acids are usually carboxylic acids such as acetic, benzoic, salicylic, or butyric. Although classified as strong in reference to carbonic acid, they are actually weak when compared with a mineral acid, such as sulfuric. Many of the compounds are used industrially, but may also be produced by natural processes, such as fermentation. Some of the materials are highly odorous. This fraction makes up from 5 to 20 percent of the total. The significance of the strong acids can be interpreted only in the light of stream pollution conditions.

#### **Bases**

These compounds are organic amines. Such materials as aniline and pyridine are amines of commerce. Lower amines may occur as a result of decomposition. Although odorous, the low concentrations found are not likely to cause objectionable conditions. However, in the case of specific amine-containing wastes the compounds can be of considerable significance. Generally, only 1 or 2 percent of the total extract is made up of the bases.

#### Neutrals

This group frequently constitutes the major portion of the chloroform extract. Neither basic nor acidic, the materials are less reactive and tend to persist in streams longer than many other types. Hydrocarbons, aldehydes, ketones, esters, and ethers are examples of neutral materials. The group lends itself to further fractionation by means of chromatographic separation into aliphatic, aromatic, and oxygenated subgroups: Aliphatics: This portion represents petroleum type hydrocarbons in a considerable state of purity, and is usually made up of mineral oil type of material. The percentage of aliphatics present yields important information about the possible source of pollution, since petroleum is the most likely source.

Aromatics: These are principally the coal tar hydrocarbons such as benzene, toluene, and a host of others, and their presence in any significant amount is a reliable indication of industrial pollution. Further, the materials can frequently be identified by infrared spectrophotometry. Some aromatic compounds which have been found in our rivers—and in our drinking water—include DDT, aldrin, phyenyl ether, orthonitrochlorobenzene, pyridine, phenol, and others. The materials are highly odorous, and may also be toxic. Their appearance in any quantity as pollutants should receive careful evaluation.

Oxygenated compounds (Oxys): These are the neutral compounds containing oxygen, such as aldehydes, ketones, and esters. They may have originated by direct discharge or may represent oxidation products from both natural and industrial materials. They help to indicate the "age" of the pollution, since pollution exposed to oxidation forces for a long time would be expected to contain large amounts of oxys. The oxy materials are odorous.

#### Losses

Manipulative losses inherent in this type of separation may amount to 10 to 15 percent. Losses greater than this may indicate that volatile components were lost from the sample. Such volatiles may have significance as pollutants.

#### Alcohol Extracts

The alcohol extractables generally consist of materials more polar than the chloroform extractables. They often

contain synthetic detergents, carboxylic acids and humic materials which may originate naturally or from oxidized products of domestic and industrial wastes. These classes of substances are not quantitatively recovered by the alcohol extraction. For example, this extraction recovers only 20 to 30 percent of the synthetic detergents present. On waters of mixed industrial and domestic pollution, the chloroform and alcohol extractables may be about equal. On some streams where the industrial pollution is rather low and much natural pollution or sewage is present, the alcohol extractables may exceed the chloroform extractables by a factor of 4 to 6.

The alcohol extract is usually only partially soluble in water and most ordinary solvents. Very little further chemical separation of this material is currently practical. However, tests have revealed that synthetic detergents may make up 1 to 12 percent of the alcohol extract.

#### Other Tests

Infrared spectra are routinely run on the total chloroform and alcohol extracts as well as the neutral, aliphatic,
aromatic and oxygenated groups which are usually the most
significant. Spectra of other groups are obtained when there
is an indication that they may be significant. These spectra
reveal something of the chemical structure of the materials,
indicate differences and in certain instances provide a definite
identification. In the case of the alcohol extracts, the infrared
spectra will indicate the presence of synthetic detergents if the
materials constitute a significant portion.

#### Composite Analysis

Samples from certain locations have been selected for analysis on a quarterly composite basis. Stations that have collected at least twelve samples in a nearly consecutive manner and averaged 100 ppb. or less of chloroform extractables are selected for such analysis when certain other conditions are met. However, samples falling in this category are analyzed individ-

ually when the recovery of the chloroform extract is exceptionally high and/or it is unusual in its infrared spectrum or some other physical characteristic.

#### Specific Identifications

Among 72 stations equipped with the carbon adsorption apparatus the highest single, and station average, values were noted on the Kanawha River at Winfield, W. Va. The highest single and station average values for alcohol extractables were found on the Ohio River at East Liverpool. The samples taken on the Animas River at Cedar Hill, N. Mex., recorded the lowest single and station average values for alcohol as well as chloroform extractables.

In spite of the fact that alcoholic extraction recovers only 20 to 30 percent of the detergents adsorbed on the carbon, detergents were identified in samples from 29 (40%) active stations. At 14 stations (19%) every sample collected contained detergents.

In December, 1960, alpha-conidendrin was identified in a sample collected on the Snake River at Wawawai, Wash. This material is a relatively innocuous natural constituent of coniferous trees and can, of course, be a by-product of the pulping process. This compound was not found in subsequent samples.

Infrared spectra of samples from stations on the Colorado River at Yuma, Ariz., Parker Dam and Hoover Dam indicated the presence of an unsaturated aliphatic compound which was not detected further upstream and which presumably persisted as far as Yuma, Ariz.

# Chemical, Physical, and Bacteriological Examinations

The various biochemical, chemical, physical, and bacteriological examinations generally performed by the participating laboratories are discussed below.

### Ammonia Nitrogen and Chlorine Demand

The cost of water treatment for domestic use is affected by the consumption of chlorine, with ammonia nitrogen being responsible for a large portion of the chlorine demand. The greater this demand, the more expensive is the treatment. The ammonia may originate from unstabilized domestic pollution, from industrial waste discharges, from run-off containing fertilizers used in farming operations or from all three. The presence of measurable quantities of nitrogen compounds, not necessarily ammonia, is also an indication of the fertility of the stream toward both macro- and micro-biological forms.

#### Color

Color in domestic water supplies is undesirable. Its removal in the water treatment process, whether it be from natural or industrial sources, may require large doses of chemicals and be expensive.

# Dissolved Oxygen, Biochemical and Chemical Oxygen Demands

Biochemical processes, in which aquatic organisms attack and stabilize the organic matter present, require dissolved oxygen. If unstable oxidizable organic matter is present in excess, the organisms will multiply rapidly, consuming the oxygen present in the water, and bring about a foul, septic stream condition. The dissolved oxygen level thus serves to indicate the

biochemical activity of the stream. High activity, resulting in low dissolved oxygen levels, will drive out game fish in favor of scavengers. Very low or zero oxygen levels will kill all fish and aquatic organisms dependent on dissolved oxygen for life. Temperature and reaeration rates also affect dissolved oxygen levels.

The 5-day biochemical oxygen demand (BOD) indicates the degree of unstabilized organic pollution from either domestic or industrial sources, to which the stream is being subjected. A significant demand will affect the fish and macroorganism population, and waters carrying a high BOD seldom contain game fish. On the other hand, game fish will thrive in streams in which the oxygen demand has been stabilized, as this condition is usually favorable for the growth of organisms on which fish feed.

The chemical oxygen demand analysis serves to support the findings of the biochemical oxygen demand test. It too may indicate to what extent the waste load of the stream has been stabilized, or it may indicate the presence of organic and inorganic pollution which is not readily oxidized by biological processes. Because the chemical oxygen demand can be determined quickly in comparison to the biochemical oxygen demand, the establishment of a correlation between the two parameters serves to reduce the number of the latter determinations required. The chemical demand results are nearly always higher than the biochemical demand.

#### Temperature

Temperature is particularly important to conservation and industry. A few degrees elevation in temperature due to cooling water discharges may seriously limit the capacity of a stream to support fish life. Also, high water temperatures increase the cost of cooling water for industrial operations. Cooling towers and other equipment for handling cooling water must be engineered to the temperature levels normally encountered.

#### Mineral Constituents

These determinations include alkalinity, hydrogen-ion concentration (pH), hardness, chlorides, sulfates, and total dissolved solids. The pH indicates whether water is acidic or alkaline, corrosive or passive. Alkalinity is a measure of the neutralization reserve present, or the extent to which the water can resist a change from an alkaline to an acid condition upon addition of acidic chemicals. This information is important to the water treatment plant operator and to many other water users.

Hardness is not only a measure of the soap consuming property, but is also of importance in the treatment of boiler waters, where removal of hardness is one of the most important functions. Chloride, sulfate, and total dissolved solids add further information on the gross dissolved mineral content carried by the stream. These are of great importance when considering the taste or palatability of water. They are also important when the water is being demineralized for specific industrial processes, since the cost of demineralization is a direct function of the dissolved solids content of the water. In addition, waters of high saline content are less desirable and may at times even be unfit for municipal, irrigation, and other uses.

#### Turbidity

Turbidity of water is due to the suspension of clay, silt, finely divided organic matter, microscopic organisms, and other similar materials. Its presence is of particular importance in water treatment processes and in the propagation of fish and other aquatic life.

#### Coliform Organisms

Information regarding fecal pollution is essential to water quality measurements. Data on coliforms help to point up the trends in the effectiveness of control of domestic waste discharges.

The delayed incubation membrane filter technique is used for the coliform examinations, instead of the fermentation tube (MPN) method. The latter would necessitate transport of water samples to the laboratory for examination, resulting in a time lapse between collection and examination which significantly changes the microbial content of the samples. Also, some of the many other bacteria present in raw water might overgrow or otherwise inhibit the demonstration of the coliforms. In the delayed incubation membrane filter procedure, the bacterial organisms are removed from the fluid sample immediately after collection and sent to the laboratory on a preservative medium. Thus, the resulting coliform count approaches very closely the actual number of coliform bacteria present in the water sample at the time of collection.

# Trace Elements and Other Determinations

This year's data include the examination of two series of composite samples of raw water from each station for the dissolved constituents likely to be present in trace quantities or whose significance does not warrant more frequent analysis. Twice during the year, 4-month composites of the weekly samples were prepared and subjected to analysis. Examinations covered those elements which were considered to have possible physiological or toxicological significance to biological life and for which a reliable method was available. As new methods are developed, other determinations will be included. The ultimate goal of this phase of the program will be to provide background data on all elements which may be found in water and which may be of significance in water quality management.

In carrying out the spectrographic examination, the sample is first passed through a membrane filter to remove all suspended matter. An aliquot of the sample is then taken,

acidified with hydrochloric acid, and evaporated to a concentration containing 2 mg. of solids in 0.1 ml. of sample (20,000 ppm.). A 0.5-ml. portion of the concentrated sample is then placed on the electrode and arced to completion. Sample exposure is made through a stepped sector disc. The exposed plate is compared to a standard plate prepared under identical conditions.

Waters with low dissolved solids content can be concentrated to a greater degree than those having a high dissolved solids content, thus accounting for the apparently variable sensitivity shown in the tabulation. Values followed by an asterisk (\*) show the limits of sensitivity at which the test was performed, and indicate that the ion being measured was not detected at that level. It is known that trace concentrations of many ions are subject to precipitation and adsorption on container surfaces during storage. This especially applies to iron and manganese which are particularly subject to oxi-

dation and precipitation during storage. Hence, all the values reported by spectrographic method represent the quantity of the particular metal in solution at the time of analysis. It should be emphasized that the spectrographic analyses are semi-quantitative and represent an approximation of the actual value.

The measurement of potassium, sodium, fluoride, selenium and boron are performed according to flame or colorimetric procedures and are quantitative. The results, however, are rounded off to the significant figures reported.

The Cheng method, as given in Analytical Chemistry, 28:1738(1956) was used for the selenium measurement. Fluoride examinations were made by the SPADNS procedure described by Bellack and Shouboe in Analytical Chemistry, 30:2032 (1958). Boron was measured by the curcumin procedure outlined in Standard Methods for the Examination of Water and Wastewater. Eleventh Edition, 1960.

### Stream Flow

Stream flow data have a most important role in the utilization of water quality parameters such as are included in this report. For this reason, average daily flow records are reported for most of the sampling stations in the Network.

All flow data included in this compilation are provisional data furnished by the agencies credited, and are subject to revision by such agencies prior to any final publication. With the exceptions mentioned below, the flows are given as furnished to the Public Health Service.

The data were generally furnished in units of cubic feet per second. In general only the first three digits were considered significant. Because of machine limitations the data are reported here in thousand cubic feet per second. Even though three zeros may appear after the decimal, no artificial accuracy of measurement is implied. Only the first

three digits should be considered significant. There are two exceptions: (1) When the flow was over 1 million cubic feet per second, the first four digits are reported, and (2) at times when the Rio Grande flows were extremely low, the data were reported to tenths of a cubic foot per second. These figures are published showing 4 decimal places.

Flow data for sampling stations on the rivers of the Great Lakes system are reported as the monthly mean flow, as computed by the U.S. Lake Survey. In certain other rivers, flow data were computed by the Public Health Service from information supplied by the gauging agency. This was done for sampling stations on the Columbia River at Clatskanie and Bonneville Dam, Oreg., and Pasco, Wash.; for Northfield, Mass., on the Connecticut River; for Williamsport, Md., on the Potomac; and for Brownsville, Tex., on the Rio Grande.

# PHS National Water Quality Network



|                                              | MILES          |                                                                                           |                                                                               |                                                                                      |                                                                                          | STRE                      | AM FLOW RECORDS                                                    |                            |
|----------------------------------------------|----------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------|----------------------------|
| STATION                                      | ABOVE<br>MOUTH | DESCRIPTION                                                                               | SAMPLED BY                                                                    | FIELD ANALYSES BY                                                                    | OTHER<br>COOPERATING AGENCIES                                                            | NEAREST<br>GAGING STATION | OPERATED BY                                                        | PERIOD OF<br>RECORD        |
| ALLEGHENY RIVER<br>at Pitteburgh, Pa.        | 8              | Pittsburgh Filtration<br>Plant Intake                                                     | Pittsburgh Dept, of Water                                                     | Pittsburgh Dept. of Water                                                            | Pennsylvania Dept, of Health                                                             | Natrona, Pa.              | U.S. Geological Survey                                             | 1938 to date               |
| ANIMAS RIVER<br>at Cedar Hill, N. Mex.       | 33             | Heizer Ranch at natural gas<br>pipeline crossing                                          | San Juan County Health<br>Dept.                                               | San Juan County Health<br>Dept.                                                      | New Mexico Dept. of Public<br>Health                                                     | Near Cedar Hill, N. Mex.  | U.S. Geological Survey                                             | 1936 to date               |
| APALACHICOLA RIVER<br>at Chattahoochee, Fla. | 105            | Jim Woodruff Dam Powerhouse                                                               | U.S. Army Corps of Engineers<br>Florida State Hospital<br>Chattahoochee, Fla. | Florida State Hospital                                                               | Florida State Board of<br>Health                                                         | Chattahoochee, Fla.       | U.S. Geological Survey                                             | 1928 to date               |
| ARKAMSAS RIVER<br>at Pendleton Ferry, Ark.   | 45             | Ferry Landing, South Shore                                                                | Arkansas State Water<br>Follution Control<br>Commission                       | Arkunsas State Water<br>Pollution Control<br>Commission                              | Arkansas State Board of<br>Realth                                                        | Little Rock, Arkansas     | U.S. Gnological Survey                                             | 1927 to date               |
| near Ponca City, Okla.                       | 646            | Old U.S. Highway No.60 Bridge<br>(formerly at Osage Station,<br>Okla. Cas & Electric Co.) | Ponca City Water Dept.                                                        | Ponca City Water Dept.<br>U.S. Public Health<br>Service                              | Oklahoma State Dept. of<br>Health                                                        | Ralston, Oklahoma         | U.S. Geological Survey                                             | 1938 to date               |
| at Coolidge, Kansas                          | 1,099          | U.S. Geological Survey<br>Stream Gaging Station                                           | U.S. Geological Survey                                                        | U.S. Public Health<br>Service                                                        | Kansas State Board of<br>Health<br>Colorado State Dept. of<br>Health                     | near Coolidge, Kansas     | U.S. Geological Survey                                             | 1903, 1921<br>1950 to date |
| BIG SIOUX RIVER<br>below Sioux Falls, S.D    | 158            | lst bridge east of U.S. Hgwy.<br>#229 below Sioux Falls                                   | Sioux Falls Sewage<br>Treatment Plant                                         | Sioux Falls Sewage<br>Treatment Plant                                                | South Dekota Dept. of<br>Health                                                          | Brandon, S. D.            | U.S. Geological Survey                                             | 1959 to date               |
| CHATTAHOOCHER RIVER<br>at Columbus, Georgia  | 160            | Columbus Water Dept. Plant<br>Intake                                                      | Columbus Water Dept.                                                          | Columbus Water Dept.                                                                 | Georgia Dept. of Public<br>Health                                                        | Columbus, Georgia         | U.S. Geological Survey                                             | 1929 to date               |
| at Atlanta, Georgia                          | 303            | Atlanta Water Dept. Plant<br>Intake                                                       | Atlanta Water Dept.                                                           | Atlanta Water Dept.                                                                  | Georgia Dept. of Public<br>Health                                                        | Atlanta, Georgia          | U.S. Geological Survey                                             | 1928, 1931<br>1936 to date |
| COLORADO RIVER<br>at Yuma, Arizona           | 91             | Arizona Water Co. Intake                                                                  | Arizona Water Co.                                                             | Arizona Water Co.                                                                    | Arizona State Dept. of<br>Health                                                         | Below Yuma, Arizona       | U.S. Geological Survey                                             | 1878 to date               |
| above Parker Dam,<br>Arizona-California      | 258            | Aqueduct Intake, Metropolitan<br>Water District of Southern<br>Galifornia                 | Metropolitan Water District<br>of Southern California                         | Metropolitan Water Distr.<br>of Southern California<br>U.S. Public Health<br>Service | California State Dept. of<br>Health<br>California State Water<br>Pollution Control Board | Below Parker Dam          | U.S. Geological Survey                                             | 1934 to date               |
| near Boulder City,<br>Nevada                 | 413            | Boulder City (Nevada)<br>Water Flant Intake                                               | Boulder City Water Dept.                                                      | Boulder City Water Dept.                                                             | Nevada State Dept. of<br>Public Health<br>U.S. Bureau of Reclamation                     | Below Hoover Dam          | Through U.S. Geological<br>Survey<br>U.S. Bureau of<br>Reclamation | 1935 to date               |

|                                              | MILES          |                                                                            |                                                                             |                                                                       | OTUER                                                                                                                         | STR                              | EAM FLOW RECORDS       |                            |
|----------------------------------------------|----------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------|----------------------------|
| STATION                                      | ABOVE<br>MOUTH | DESCRIPTION                                                                | SAMPLED BY                                                                  | FIELD ANALYSES BY                                                     | OTHER<br>COOPERATING AGENCIES                                                                                                 | NEAREST<br>GAGING STATION        | OPERATED BY            | PERIOD OF<br>RECORD        |
| COLORADO RIVER (Cont'd.)<br>at Page, Arizona | 775            | Page Water Plant Intake                                                    | U.S. Bureau of Reclamation                                                  | U.S. Bureau of Reclamation                                            | Arizona State Dept. of<br>Health<br>Utah State Dept. of Health                                                                | Lees Ferry, Arizona              | U.S. Geological Survey | 1911 to date               |
| at Loma, Colorado                            | 1,150          | Pumping Station at E. R.<br>Smith Farm                                     | Hesa County (Colorado) Dept. of Public Health                               | Grand Junction (Colorado)<br>Water Dept.                              | Colorado State Dept. of<br>Public Health                                                                                      | Near Colorado-Utah<br>State Line | U.S. Geological Survey | 1951 to date               |
| COLUMBIA RIVER<br>at Clatekanie, Oregon      | 53             | Beaver Army Terminal<br>U.S. Army Transp., Supply &<br>Maintenance Command | U.S. Army<br>U.S. Public Health Service                                     | Oregon State Sanitary<br>Authority<br>U.S. Public Health<br>Service   | ·                                                                                                                             | Clatskanie, Oregon *             | U.S. Geological Survey | 1926 to date               |
| at Bonneville, Oregon                        | 145            | Bonneville Dam Powerhouse                                                  | U.S. Army Corps of<br>Engineers                                             | Crown Zellerbach Corp.                                                | Oregon State Sanitary<br>Authority<br>Washington State Dept. of<br>Health<br>Washington State Pollution<br>Control Commission | Bonneville, Oregon *             | U.S. Geological Survey | 1928 to date               |
| at McNary Dam, Oregon                        | 292            | U.S. Army Engineer Project<br>McNary Dam                                   | U.S. Corps of Engineers<br>Washington State Pollution<br>Control Commission | U.S. Geological Survey                                                | Washington State Dept. of<br>Realth                                                                                           | Below McNary Dam, Oregon         | U.S. Geological Survey | 1951 to date               |
| at Pasco, Washington                         | 327            | Municipal Water Plant Intake                                               | Pasco Water Dept.                                                           | Pasco Water Dept.                                                     | Washington State Dept. of<br>Health<br>Washington State Pollution<br>Control Commission                                       | Pasco, Washington *              | U.S. Geological Survey | 1933 to date               |
| at Wenatchee, Wash.                          | 465            | Plant Intake, Aluminum Co. of America                                      | Aluminum Co. of America                                                     | Aluminum Co. of America                                               | Washington State Dept. of<br>Health<br>Washington State Pollution<br>Control Commission                                       | Trinidad, Washington             | U.S. Geological Survey | 1913 to date               |
| CONNECTICUT RIVER below Northfield, Mass.    | 138            | Central Vermont R.R. Bridge                                                | Massachusetts State Dept.<br>of Public Health                               | Massachusetts State Dept.<br>of Public Health<br>(Amherst Laboratory) |                                                                                                                               | Vernon, Vermont ♥                | U.S. Geological Survey | 1936, 1938<br>1944 to date |
| CUMBERLAND RIVER<br>at Clarksville, Tenn.    | 120            | Olarksville Water Treatment<br>Plant Intake                                | Clarksville Gas & Water<br>Dept.                                            | Clarksville Gas & Water<br>Dept.                                      | Tennessee Dept. of Fublic<br>Health                                                                                           | Dover, Tennessee                 | U.S. Geological Survey | 1939 to date               |
| DELAWARE RIVER<br>at Philadelphia, Pa.       | 110            | Municipal Water Flant Intake<br>(Torresdale Plant)                         | Philadelphia Water Dept.                                                    | Philadelphia Water Dept.                                              | Pennsylvania State Dept. of<br>Health                                                                                         | Trenton, New Jersey              | U.S. Geological Survey | 1913 to date               |
| at Martins Greek, Pa.                        | 191            | at Martins Creek Steam<br>Electric Station                                 | Pennsylvania Power &<br>Light Company                                       | Pennsylvania Power &<br>Light Company                                 | Pennsylvania State Dept. of<br>Health                                                                                         | Belwidere, New Jersey            | U.S. Geological Survey | 1922 to date               |
| ESCAMBIA RIVER<br>at Century, Florida        | 51             | Highway Bridge on State<br>Route #4                                        | Florida State Board of<br>Health                                            | Florida State Board of<br>Health                                      |                                                                                                                               | Near Century, Florida            | U.S. Geological Survey | 1934 to date               |

\*Computed Data

|                                                     | MILES          |                                                        |                                                                                           |                                                                     | OTHER                                                                                                             | STRE                                           | AM FLOW RECORDS        |                           |
|-----------------------------------------------------|----------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------|---------------------------|
| STATION                                             | ABOVE<br>MOUTH | DESCRIPTION                                            | SAMPLED BY                                                                                | FIELD ANALYSES BY                                                   | OTHER<br>COOPERATING AGENCIES                                                                                     | NEAREST<br>GAGING STATION                      | OPERATED BY            | PERIOD OF<br>RECORD       |
| REAT LAKES<br>Lake Erie at Buffalo,<br>New York     | -              | Municipal Water Plant Intake                           | Buffalo Water Dept.<br>Brie County (N.Y.) Health<br>Dept.                                 | Erie County (N.Y.) Health<br>Dept.                                  | New York State Dept. of<br>Health                                                                                 | Cleveland, Ohio<br>(Water Stages only)         | U.S. Lake Survey       | 1900 to date              |
| Detroit River at<br>Detroit, Michigan               | 29             | Municipal Water Plant Intake<br>(Water Works Park)     | Detroit Board of Water<br>Commissioners                                                   | Detroit Board of Water<br>Commissioners                             | Michigan State Dept. of<br>Health<br>Michigan State Water<br>Resources Commission                                 | Detroit, Michigan                              | U.S. Lake Survey       | 1936 to date              |
| St. Clair River at<br>Port Huron, Michigan          | 38             | Municipal Water Plant Intake                           | City of Port Huron, Mich.                                                                 | City of Port Ruron, Mich.                                           | Michigan State Dept. of<br>Health<br>International Joint<br>Commission<br>Michigan State Water<br>Resources Board | Ft. Gratiot, Michigan                          | U.S. Leke Survey       | 1900 to date              |
| Lake Michigan at<br>Gary, Indiana                   | -              | Gary-Hobart Water Corp. Intake                         | Gary-Hobert Water Corp.                                                                   | Gary-Hobart Water Corp.                                             | Indiana State Board of<br>Health                                                                                  | Milwaukee, Wisconsin<br>(Water Stages only)    | U.S. Leke Survey       | 1905 to date              |
| Lake Michigan at<br>Milwaukee, Wisconsin            | -              | Municipal Water Plant Intake                           | City of Milwaukee, Wisconsin                                                              | City of Milwaukee, Wisc.                                            | Wisconsin State Board of<br>Health                                                                                | Milwaukee, Wisconsin                           | U.S. Lake Survey       | 1860 to date              |
| St. Marys River at<br>Sault Ste. Marie,<br>Michigan | 48             | Municipal Water Plant Intake                           | Sault Ste. Marie Water<br>Dept.                                                           | Sault Ste. Marie Water<br>Dept.                                     | Michigan State Dept. of<br>Health                                                                                 | Sault Ste. Marie, Mich.                        | U.S. Lake Survey       | 1900 to date              |
| Lake Superior at<br>Duluth, Minnesota               | -              | Municipal Water Plant Intake                           | Duluth Water, Gas & Sewage<br>Treatment Dept.                                             | Duluth Water, Gas &<br>Sewage Treatment Dept.                       | Minnesota State Dept. of<br>Health                                                                                | Marquette, Michigan                            | U.S. Lake Survey       | 1900 to date              |
| HUDSON RIVER<br>below Poughkeepsie,<br>New York     | 70<br>(est.)   | International Business Machine Corp. Flant Intake      | International Business Machine Corp.                                                      | International Eusiness Machine Corp. Hew York State Dept. of Health | New York State Dept. of<br>Health                                                                                 | Green Island, New York                         | U.S. Geological Survey | 1946 to date              |
| ILLINOIS RIVER<br>at Peoria, Illinois               | 166            | Peoria Water Works Company<br>Plant Intake             | Peoria Water Works Company                                                                | Pecria Mater Works Co.                                              | Illinois Dept. of Public<br>Health                                                                                | Kingeton Mines, Illinois                       | U.S. Geological Survey | 1939 to date              |
| KANAWHA RIVER<br>at Winfield Dam,<br>West Virginia  | 30             | Winfield Dam Power Plant                               | West Virginia Water<br>Resources Commission                                               | West Virginia Water<br>Resources Commission                         | Kanawha Valley Power Company<br>West Virginia State Dept.<br>of Health                                            | Charleston, West Virginia                      | U.S. Geological Survey | 1939 to date              |
| KLAMATH RIVER<br>at Keno, Oregon                    | 220            | below Big Bend Plant of<br>California Oregon Power Co. | California Oregon Power Co.<br>City of Klamath Falls,Orego<br>Klamath County Health Dept. |                                                                     | Oregon State Board of<br>Health                                                                                   | Below Big Rend Power Plan<br>near Keno, Oregon | U.S. Geological Survey | 1904-1913<br>1930 to date |
| LITTLE MIAMI RIVER<br>at Cincinnati, Ohio           | 2              | at Beechmont Leves and U.S.<br>State Highway #125      | U.S. Public Health Service                                                                | U.S. Putlic Health Service                                          | City of Cincinnati, Ohio<br>Ohio Department of Health                                                             | Milford, Ohio                                  | U.S. Geological Survey | 1915 to date              |

|                                          | MILES |                                                                                                  | ]                                                                         |                                                                   | OTHER                                                                    | STRI                                            | EAM FLOW RECORDS       |                           |
|------------------------------------------|-------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------|------------------------|---------------------------|
| STATION                                  | MOUTH |                                                                                                  | SAMPLED BY                                                                | FIELD ANALYSES BY                                                 | COOPERATING AGENCIES                                                     | NEAREST<br>GAGING STATION                       | OPERATED BY            | PERIOD OF<br>RECORD       |
| MERRIMACK RIVER<br>above Lowell, Mass.   | 42    | Old Municipal Water Flant<br>Intake                                                              | Lowell Water Dept.                                                        | Massachusetts State Dept. of Health (Lawrence Experiment Station) |                                                                          | Below Concord River at<br>Lowell, Massachusetts | U.S. Geological Survey | 1923 to date              |
| MISSISSIPPI RIVER at New Orleans, La.    | 105   | Municipal Water Plant Intake                                                                     | New Orleans Sewage and<br>Water Board                                     | Louisiana State Dept. of<br>Health                                | Louisiana State Dept. of<br>Health                                       | Red River Landing, La.                          | U.S. Geological Survey | 1928 to date              |
| at Vicksburg, Miss.                      | 431   | Municipal Water Plant Intake                                                                     | Vicksburg Water Dept.                                                     | Mississippi State Board<br>of Health                              |                                                                          | Vicksburg, Mississippi                          | U.S. Geological Survey | 1931 to date              |
| at Delta, Louisiana                      | 433   | River Landing, Delta Casting<br>Yard, U.S. Corps of<br>Engineers                                 | Mississippi State Board of Health                                         | Mississippi State Soard of Health                                 | Louisiana State Dept. of<br>Health                                       | Vickeburg, Mississippi                          | U.S. Geological Survey | 1931 to date              |
| at West Memphis, Ark.                    | 726   | Barge Terminal, Oklahoma-<br>Mississippi River Products<br>Lines, Inc.                           | Memphis (Tennessee) Light,<br>Gas & Water Division                        | Memphis (Tennessee)Light,<br>Gas & Water Division                 | Arkansas State Board of<br>Health<br>Tennessee Dept. of Public<br>Health | Memphis, Tennessee                              | U.S. Geological Survey | 1934 to date              |
| at Cape Girardeau, Mo.                   | 1,020 | Missouri Utilities Co. Water<br>Intake                                                           | Missouri Utilities Co.                                                    | Missouri Utilities Co.                                            | Missouri Division of Health<br>Missouri Water Pollution Board            | Thebes, Illinois                                | U.S. Geological Survey | 1933-1938<br>1939 to date |
| at East St. Louis, Ill.                  | 1,166 | East St. Louis Water Co.<br>Intake                                                               | East St. Louis Water Co.                                                  | East St. Louis Water Co.                                          | Illinois State Dept. of<br>Public Health                                 | Alton, Illinois                                 | U.S. Geological Survey | 1933-1938<br>1939 to date |
| at Burlington, Iowa                      | 1,369 | Municipal Water Plant Intake                                                                     | Burlington Water Dept.                                                    | Burlington Water Dept.                                            | Iowa State Dept. of Health                                               | Keokuk, Iowa                                    | U.S. Geological Survey | 1878 to date              |
| at Dubuque, Iowa                         | 1,549 | U.S. Army Corps of Engineers<br>Lock & Dam # 11                                                  | Dubuque Water Dept.                                                       | Dubuque Water Dept.                                               | Iowa State Dept. of Health                                               | McGregor, Icwa                                  | U.S. Geological Survey | 1936 to date              |
| Lock & Dam # 3 below<br>St. Faul, Minn.  | 1.757 | U.S. Army Corps of Engineers<br>Lock & Dam # 3                                                   | U.S. Army Corps of<br>Engineers, Minneapolis-<br>St. Paul Sanitary Distr. | Minneapolis-St. Paul<br>Sanitary District                         | Minnesota State Dept. of<br>Health                                       | Prescott, Wisconsin                             | U.S. Geological Survey | 1928 to date              |
| MISSOURI RIVER<br>at St. Louis, Missouri | .36   | Water Plant Intake, St. Louis<br>County Water Co. and Howard<br>Bend Plant, City of St.<br>Louis | St. Louis County Water<br>Company<br>St. Louis Water Dept.                | St. Louis County Water<br>Company<br>St. Louis Water Dept.        | Missouri Division of Health<br>Missouri Water Pollution Board            | Hermann, Missouri                               | U.S. Geological Survey | 1897 to date              |
| at Kansas City, Kansas                   | 385   | Municipal Water Flant Intake                                                                     | Kansas City (Kansas) Board of Public Utilities                            | Kansas City (Kansas)<br>Board of Public<br>Utilities              | Kansas State Board of<br>Health                                          | Kansas City, Missouri                           | U.S. Geological Survey | 1897 to date              |
| at St. Joseph, Missouri                  | 471   | St. Joseph Water Co. Intake                                                                      | St. Joseph Water Co.                                                      | St. Joseph Water Co.                                              | Missouri Division of Health<br>Missouri Water Pollution Board            | St. Joseph, Missouri                            | U.S. Geological Survey | 1927 to date              |
| at Omaha, Nebraska                       | 642   | Metropolitan Utilities Distr.<br>Water Plant Intake                                              | Metropolitan Utilities<br>District                                        | Metropolitan Utilities<br>District                                | Nebraska State Dept. of<br>Health                                        | Omuha, Nebraska                                 | U.S. Geological Survey | 1928 to date              |
| at Yankton,<br>South Dakota              | 841   | Municipal Water Plant Intake                                                                     | Yankton Water Dept.                                                       | Yankton Water Dept.                                               | Scuth Dakota State Board of Health                                       | Yankton, South Dakota                           | U.S. Geological Survey | 1930 to date              |
| at Bismarck,<br>North Dakota             | 1,377 | Municipal Water Plant Intake                                                                     | Bismarck Water Dept.                                                      | Bismarck Water Dept.<br>North Dakota State<br>Dept. of Health     |                                                                          | Bismarck, North Dakota                          | U.S. Geological Survey | 1927 to date              |

|                                                           | MILES          |                                                      |                                                                |                                              |                                                                              | STREAM FLOW RECORDS                   |                        |                     |  |
|-----------------------------------------------------------|----------------|------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------|---------------------------------------|------------------------|---------------------|--|
| 3.5                                                       | ABOVE<br>MOUTH | DESCRIPTION                                          | SAMPLED BY                                                     | FIELD ANALYSES BY                            | OTHER<br>COOPERATING AGENCIES                                                | NEAREST<br>GAGING STATION             | OPERATED BY            | PERIOD OF<br>RECORD |  |
| MISSOURI RIVER (Contid.)<br>at Williston,<br>North Dakota | 1,644          | Municipal Water Plant Intake                         | Williston Water Dept.                                          | Williston Water Dept.                        | North Dakota State Dept. of<br>Health                                        | Near Williston, North<br>Dakota       | U.S. Geological Survey | 1928 to date        |  |
| MONONGAHELA RIVER<br>at Pittsburgh, Pa.                   | 4              | Hayes Mine Filter Plant                              | South Pittsburgh Water Co.                                     | South Pittaburgh Water<br>Go.                | Commonwealth of Pennsylvania                                                 | Braddock, Pa.                         | U.S. Geological Survey | 1938 to date        |  |
| NORTH PLATTE RIVER<br>above Henry, Nebraska               | 500            | Above Henry, Nebraska at<br>irrigation diversion dam | West Nebraska Branch Lab.<br>Nebraska State Dept. of<br>Health | West Webraska Branch Lab.                    | Nebraska State Dept. of<br>Health<br>Mitchell Irrigation District            | Wyoming-Nebraska State<br>Line        | U.S. Geological Survey | 1929 to date        |  |
| OHIC RIVER<br>at Cairo, Illinois                          | 3              | Cairo Water Co. Intake                               | Cairo Water Co.                                                | Cairo Water Co.                              | Illinois State Dept. of<br>Public Health                                     | Metropolis, Illinois                  | U.S. Geological Survey | 1934 to date        |  |
| at Evansville, Indiana                                    | 190            | Municipal Water Plant Intake                         | Evansville Water Dept.                                         | Evansville Water Dept.                       | Indiana State Board of<br>Health                                             | Evansville, Indiana                   | U.S. Geological Survey | 1936 to date        |  |
| at Louisville, Kentuck                                    | 370            | Louisville Water Co. Filter<br>Plant                 | Louisville Water Co.                                           | Louisville Water Co.                         |                                                                              | Louisville, Kentucky                  | U.S. Geological Survey | 1928 to date        |  |
| at Cincinnati, Ohio                                       | 518            | Municipal Water Plant Intake                         | Cincinnati Water Dept.                                         | Cincinnati Water Dept.                       | Ohio State Dept. of Health                                                   | Cincinuati, Ohio                      | U.S. Geological Survey | 1936 to date        |  |
| at Huntington, West                                       | 677            | Huntington Water Corp.                               | Huntington Water Corp.                                         | Huntington Water Corp.                       | West Virginia State Dept.<br>of Health                                       | Runtington, West Virginia             | U.S. Geological Survey | 1934 to date        |  |
| Virginia<br>at East Liverpool,<br>Ohio                    | 941            | Municipal Water Plant Intake                         | East Liverpool Water Dept.                                     | East Liverpool Water<br>Dept.                | Chio State Dept. of Health                                                   | Sewickley, Pennsylvania               | U.S. Geological Survey | 1933 to date        |  |
| OUACHITA RIVER<br>at Bastrop, Louisiana                   | 215            | River Bank Seven Miles<br>West of Bastrop, La.       | Louisiana Wildlife &<br>Fisheries Commission                   | Louisiana Wildlife &<br>Fisheries Commission | Louisiana Stream Control<br>Commission<br>Louisiana State Board of<br>Health | Near Arkansas-Louisiana<br>State Line | U.S. Geological Survey | 1958 to date        |  |
| PLATTE RIVER above Pluttemouth, Nebraska                  | 2              | at U.S. Highway # 73 Bridge                          | Nebraska State Dept. of<br>Health<br>City of Plattsmouth       | Nebraska State Dept. of<br>Health            |                                                                              | Louisvilla, Nebraska                  | U.S. Geological Survey | 1953 to date        |  |
| POTOMAC RIVER<br>at Great Falls, Md.                      | 126            | Washington, D.C. Water Plant<br>Intake               | U.S. Army Corps of<br>Engineers                                | U.S. Army Corps of<br>Engineers              | Maryland State Dept. of<br>Health                                            | Near Washington, D.C.                 | U.S. Geological Survey | 1930 to date        |  |
| at Williamsport, Md.                                      | 212            |                                                      | Hagerstown Water Dept.                                         | Hagerstown Water Dept.                       | Maryland State Dept. of<br>Health                                            | Williamsport, Maryland *              | U.S. Geological Survey | 1928 to date        |  |

\*Commuted Data

| SAMPLING STATIONS, COOPERATING AGENCIES, AND STREAM FLOW RECORDS |                |                                                                              |                                                                                               |                                                                                                                  |                                                          |                                                        |                                                            |                           |  |
|------------------------------------------------------------------|----------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|---------------------------|--|
|                                                                  | MILES          |                                                                              |                                                                                               |                                                                                                                  | OTHER                                                    | STREAM FLOW RECORDS                                    |                                                            |                           |  |
| STATION                                                          | ABOVE<br>MOUTH | DESCRIPTION                                                                  | SAMPLED BY                                                                                    | FIELD ANALYSES BY                                                                                                | OTHER<br>COOPERATING AGENCIES                            | NEAREST<br>GAGING STATION                              | OPERATED BY                                                | PERIOD OF<br>RECORD       |  |
| RAINY BIVER<br>at Baudette, Minnesota                            | 9              | Intake at east end of<br>wooden pier of Canadian<br>National Railroad Bridge | Baudette Light & Fower<br>Dept.                                                               | U.S. Public Health<br>Service                                                                                    | Minnesota State Dept. of<br>Health                       | Manitou Rapids,<br>Minnesota                           | U.S. Geological Survey                                     | July, 1928<br>to date     |  |
| RED RIVER (North)<br>at Grand Forks,<br>North Dakota             | 296            | Municipal Water Plant Intake                                                 | Grand Forks City Water<br>Dept.                                                               | Grand Forks City Water<br>Dept.                                                                                  | North Dakota State Dept.<br>of Health                    | Grand Forks, North<br>Dakota                           | U.S. Geological Survey                                     | 1901–1957                 |  |
| RED RIVER (South)<br>at Alexandria,<br>Louisiana                 | 122            | Pumping Station on Levee<br>Near City Wells                                  | Alexandria Water Dept.                                                                        | Louisiana State Dept. of Health (New Orleans Laboratory) Louisiana State Dept. of Health (Alexandria Laboratory) | Louisiana State Dapt. of<br>Health                       | Alexandria, Louisiana                                  | Mississippi River Comm.<br>U.S. Army Corps of<br>Engineers | 1928-1938<br>1938 to date |  |
| at Index, Arkansas                                               | 485            | U.S. Highway No. 71 Bridge                                                   | Texarkana Water & Sewar<br>Systems<br>Arkansas State Water<br>Pollution Control<br>Commission | Arkansas State Mater<br>Pollution Control<br>Commission                                                          | Arkansas State Board of<br>Health                        | Index, Arkansas                                        | U.S. Geological Survey                                     | 1936 to date              |  |
| at Denison, Taxas                                                | 726            | Denison Dam Power House                                                      | U.S. Army Corps of<br>Engineers                                                               | Denison Water Dept.                                                                                              | Texas State Dept. of<br>Health                           | Colbert, Oklahoma                                      | U.S. Army Corps of<br>Engineers                            | 1923 to date              |  |
| RIO GRANDE<br>at Brownsville, Texas                              | 40             | Brownsville Filtration Plant<br>Plant # 1 Intake                             | Brownsville Water Dept.                                                                       | Brownsville Water Dept.                                                                                          | Texas State Dept. of<br>Health                           | Lower Brownsville,<br>Texas *                          | International Boundary<br>& Water Commission               | 1934 to date              |  |
| at Laredo, Texas                                                 | 356            | Municipal Water Plant Intake                                                 | Laredo Water Dept.                                                                            | Laredo Water Dept.                                                                                               | Texas State Dept. of<br>Health                           | Laredo, Texas                                          | International Boundary<br>& Water Commission               | 1923 to date              |  |
| at El Paso, Texas                                                | 1,234          | Municipal Water Plant Intake                                                 | El Puso Public Service<br>Board                                                               | El Paso Public Service<br>Eoard                                                                                  | Texas State Dept. of<br>Health                           | Below Caballo Dam,<br>New Mexico                       | U.S. Bureau of<br>Reclamation                              | 1933 to date              |  |
| below Alamosa, Colo.                                             | 1,755          | Below Alamosa at State<br>Highway # 142 Bridge                               | Colorado State Dept. of<br>Public Health                                                      | Colorado State Dept.<br>of Public Health                                                                         |                                                          | Near Lobatos, Colorado                                 | U.S. Geological Survey                                     | 1953 to date              |  |
| ROANOKE RIVER<br>at John H. Kerr<br>Reservoir & Dam,<br>Virginia | 151            | at John H. Kerr Dam and<br>Reservoir                                         | U.S. Army Corps of<br>Engineers                                                               | U.S. Army Corps of<br>Engineers                                                                                  | Virginia State Water<br>Control Eoard                    | Bugge Island, Virginia                                 | U.S. Geological Survey                                     | 1953 to date              |  |
| SABINE RIVER<br>near Ruliff, Texas                               | 40             | Sabine River Authority<br>Pumping Plant                                      | Sabine River Authority                                                                        | U.S. Public Health<br>Service                                                                                    | U.S. Geological Survey<br>Texas State Dept. of<br>Health | Near Ruliff, Texas                                     | U.S. Geological Survey                                     | 1924 to date              |  |
| ST. LAWRENCE RIVER<br>at Massena, New York                       | 422            | Aluminum Foundry Plant<br>Intake                                             | Chevrolet Motor Div.<br>General Motors Corp.<br>Aluminum Foundry                              | Chevrolet Motor Div.<br>General Motors Corp.<br>Aluminum Foundry                                                 | New York State Dept. of<br>Health                        | International Rapids Section (St. Lawrence Power Pool) | U.S. Army Corps of<br>Engineers                            | 1860 to date              |  |

\*Computed Data

|                                                 | _                                                                                              |                                                  | G STATIONS, COOPE                                                 |                                                                   |                                         | STREA                                          | M FLOW RECORDS                                |                                        |  |
|-------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|-----------------------------------------------|----------------------------------------|--|
| STATION                                         | MILES<br>ABOVE<br>MOUTH                                                                        | DESCRIPTION                                      | SAMPLED BY                                                        | FIELD ANALYSES BY                                                 | OTHER<br>COOPERATING AGENCIES           | NEAREST<br>GAGING STATION                      | OPERATED BY                                   | PERIOD OF<br>RECORD                    |  |
| AN JUAN RIVER<br>at Shiprock, New<br>Mexico     | UAN RIVER Shiprock, New 208 At U.S. Eureau of Mines San Juan County Health Shiprock, New Dept. |                                                  | San Juan County Health<br>Dept.                                   | San Juan County Health Dept.  Hew Mexico Dept. of Public Shiproof |                                         | Shiprock, New Mexico U.S. Geological Survey    |                                               | 1912 to date                           |  |
| AVANNAH RIVER<br>at Port Wentworth,<br>Georgia  | 22                                                                                             | State Highway No. 17 Bridge                      | Union Eag-Camp Paper Co.<br>U.S. Army Corps of<br>Engineers       | U.S. Army Corps of U.S. Pastic meaton                             |                                         | Clyo, Georgia                                  | U.S. Geological Survey                        | 1930, 1933<br>1937 to date             |  |
| at Horth Augusta, South Carolina                | 217                                                                                            | Municipal Water Flant Intake                     | Engineers Chatham County Health Dept North Augusta Water Dept.    | North Augusta Water Dept                                          | South Carolina State Dept.<br>of Health | Augusta, Georgia                               | U.S. Geological Survey                        | 1898-1906<br>1927-1931<br>1938 to date |  |
| SOHUYLKILL RIVER<br>at Philadelphia, Pa.        | 10                                                                                             | Municipal Water Flant Intake                     | Philadelphia Water Dept.                                          | Philadelphia Water Dept.                                          | Pennsylvania Dapt. of<br>Health         | Philadelphia,<br>Pennsylvania                  | U.S. Geological Survey                        | 1931 to date                           |  |
| SHENANDOAH RIVER<br>at Berryville,<br>Virginia  |                                                                                                |                                                  |                                                                   | U.S. Army Corps of<br>Engineers                                   |                                         | Millville, West Virginia                       | U.S. Geological Survey                        | 1928 to date                           |  |
| SNAKE RIVER<br>at Wawawai, Washington           | 111<br>(est.)                                                                                  | Pumping Station at I. E. Wilson Farm             | Washington State<br>University                                    | Washington State<br>University                                    | Washington State Dept. of<br>Health     | Near Clarkston,<br>Washington<br>Waiser, Idaho | U.S. Geological Survey                        | 1915 to date                           |  |
| at Weiser, Idaho                                | 354                                                                                            | Municipal Water Flant Intake                     | Weiser Water Dept.                                                | Weiser Water Dept.                                                | Idaho State Board of<br>Health          | Walser, Idamo                                  |                                               |                                        |  |
| SOUTH PLATTE RIVER<br>at Julesburg,<br>Colorado | 87                                                                                             | At Julesburg Sewage<br>Treatment Plant           | Northeast Colorado Health<br>Dept.                                | Northeast Colorado<br>Health Dept.                                | Colorado State Dept. of<br>Health       | Julesturg, Colorado                            | State of Colorado Dept.<br>of Water Resources | 1902-1906<br>1908-1921<br>1925 to date |  |
| SUSQUEHANNA RIVER<br>at Conowingo,<br>Maryland  | 10                                                                                             | Conowingo Hydro Electric<br>Plant, Conowingo Dam | Ealtimore Eureau of Water<br>Supply<br>Philadelphia Electric Co   | water supply                                                      | Maryland State Dept. of<br>Health       | Marietta, Pennsylvania                         | U.S. Geological Survey                        | 1931 to date                           |  |
| at Sayre, Pennsylvani                           | .a 286                                                                                         | Sayre Water Co. Flant Intake                     | Sayre Water Company                                               | Sayre Water Company                                               | Pennsylvania Dept. of<br>Health         | Near Waverly, New York                         | U.S. Geological Survey                        | 1937 to date                           |  |
| TENNESSET RIVER<br>at Bridgeport, Alaban        |                                                                                                | at TVA Widows Creek Steam<br>Electric Plant      | Stream Pollution Control<br>Section Tennessee<br>Valley Authority | TVA Stream Pollution<br>Laboratory                                | Tennessee Dept. of Public<br>Health     | Hales Har, near<br>Chattanooga, Tenn.          | U.S. Gaological Survey                        | 1930 to dat                            |  |

|                                                                             | MILES          |                                                                    |                                        |                                                                      | OTHER                                                                                                | STREAM FLOW RECORDS                          |                                                  |                                        |  |  |
|-----------------------------------------------------------------------------|----------------|--------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------|----------------------------------------|--|--|
| STATION                                                                     | ABOVE<br>MOUTH | DESCRIPTION                                                        | SAMPLED BY                             | FIELD ANALYSES BY                                                    | COOPERATING AGENCIES                                                                                 | NEAREST<br>GAGING STATION                    | OPERATED BY                                      | PERIOD OF<br>RECORD                    |  |  |
| EMNESSEE RIVER (Cont'd.)<br>at Chattanoga,<br>Tennessee                     | 467<br>(est.)  | City Water Company Intuke                                          | City Water Company of<br>Chattanooga   | City Water Company of<br>Chattanoga<br>Tennessee Valley<br>Authority | Tennessee State Dept. of<br>Health                                                                   | Chattanooga, Tennessee                       | U.S. Geological Survey                           | 1874-1913<br>1915-1930<br>1936 to date |  |  |
| OMBIGHEE RIVER<br>below Columbus,<br>Mississippi                            | 368            | At YMCA Camp Pratt, 11 miles south of Columbus, Miss.              | Lowndes County Health<br>Dept.         | Lowndes County Health<br>Dept.                                       | Mississippi State Foard<br>of Health                                                                 | Columbus, Mississippi<br>Steens, Mississippi | U.S. Geological Survey<br>U.S. Geological Survey | 1918 to date                           |  |  |
| TRUCKEE RIVER<br>at Farad, California<br>below California-<br>Nevada Border | 82             | Below Farad Power Station of<br>Sierra Pacific Power Co.           | California Dept. of<br>Mater Resources | Nevada County Health<br>Dept.                                        | Sierra Pacific Power Co.<br>California Dept. of Public<br>Health<br>Nevada Dept. of Public<br>Health | Farad, California                            | U.S. Geological Survey                           | 1900-1909<br>1938 to date              |  |  |
| YAKIMA RIVER<br>at Richland, Washington                                     | 5.2            | Richland Municipal Water<br>Intake                                 | City of Richland,<br>Washington        | Richland Water Dept.                                                 | Washington State Board of<br>Health<br>Washington Pollution Control<br>Commission                    | Kiona, Washington                            | U.S. Geological Survey                           | 1896-1915<br>1933-1950<br>1959 to date |  |  |
| YELLOWSTONE RIVER<br>near Sidney, Montana                                   | 30             | Intake - Lewis & Clark<br>Station, Montana-Dakota<br>Utilities Co. | Montana-Dakota Utilities<br>Go.        | Montana-Dakota Utilities<br>Co.                                      | Montans State Board of<br>Health                                                                     | Near Sidney, Montana                         | U.S. Geological Survey                           | 1934 to date                           |  |  |
|                                                                             |                |                                                                    |                                        |                                                                      |                                                                                                      |                                              |                                                  |                                        |  |  |
| •                                                                           |                |                                                                    |                                        |                                                                      |                                                                                                      |                                              |                                                  |                                        |  |  |
|                                                                             |                |                                                                    |                                        |                                                                      |                                                                                                      |                                              |                                                  |                                        |  |  |
|                                                                             |                |                                                                    |                                        |                                                                      |                                                                                                      |                                              |                                                  |                                        |  |  |
|                                                                             |                |                                                                    |                                        |                                                                      |                                                                                                      |                                              |                                                  |                                        |  |  |

# Bibliography

- 1. Cheng, K. L. Determination of Traces of Selenium 3, 3-Diaminobenzidine as Selenium (IV) Organic Reagent. Analytical Chemistry, 28: 1738 (1956).
- 2. Clark, H. F.; Kabler, P. W., and Geldreich, E. E. The Advantages and Limitations of the Membrane Filter. Water and Sewage Works, 104: 9 (1957).
- 3. Geldreich, Edwin E.; Kabler, Paul W.; Jeter, Harold L., and Clark, H. F. A Delayed Incubation Membrane Filter Test. J.A.P.H.A., 45: 11 (1955).
- 4. Goldin, A. S.; Velten, R. J., and Frishkorn, G. W. Determination of Radioactive Strontium. Analytical Chemistry, 31: 1490 (1959).
- 5. Green, Richard S. Basic Data for Water Supply and Water Pollution Control. Sewage and Industrial Wastes Journal, 30: 219 (1958).
- 6. Green, Richard S. The Surveillance of Water Quality Operation of The National Water Quality Network. Proceedings of the Tenth Southern Municipal and Industrial Waste Conference, Department of Civil Engineering, Duke University, Durham, N.C., April 1961.
- 7. Kramer, Harry P. and Kroner, Robert C. Cooperative Studies in Laboratory Methodology. J.A.W.W.A., 51: 607 (1959).
- 8. Megregian, Stephen. Rapid Spectrophotometric Determination of Fluoride with Zirconium—Eriochrome Cyanine R Lake. Analytical Chemistry, 27: 1161 (1954).

- 9. Middleton, F. M. and Lichtenberg, J. J. Measurements of Organic Contaminants in the Nation's Rivers. Industrial and Engineering Chemistry, 52: 99A (1960).
- 10. Middleton, Francis M. and Rosen, Aaron. Organic Contaminants Affecting the Quality of Water. Public Health Reports, 71: 1125 (1956).
- 11. Middleton, Francis M.; Rosen, Aaron A., and Burttschell, Rice H. Taste and Odor Research Tools for Public Utilities. J.A.W.W.A., 50: 21 (1958).
- 12. Palmer, C. Mervin. Algae as Biological Indicators of Pollution. A separate from Biology of Water Pollution: Transactions of Seminar on Biological Problems in Water Pollution held at the Robert A. Taft Sanitary Engineering Center, April 23–27, 1956 (Mimeo.).
- 13. Palmer, C. Mervin. Algae in Water Supplies. PHS Publication No. 657. U.S. Government Printing Office, Washington, D.C. (1959).
- 14. Palmer, C. Mervin, and Ingram, William Marcus. Suggested Classification of Algae and Protozoa in Sanitary Science. Sewage and Industrial Wastes Journal, 27: 10 (1955).
- 15. Setter, L. R.; Hagee, G. R., and Straub, C. P. Analysis of Radioactivity in Surface Waters—Practical Laboratory Methods. A.S.T.M. Bulletin No. 227 (January 1958).
- 16. Stierli, H.; Orem, M. T. and Blair, R. D. Establishing a Water Quality Network Station—A Case History. Seventeenth Annual Purdue Industrial Waste Conference, Purdue University, Lafayette, Ind. (May, 1962).

17. Thomas, Harold A., Jr.; Woodward, Richard L., and Kabler, Paul W. Use of Molecular Filter Membranes for Water Potability Control. J.A.W.W.A., 48: 11 (1956).

18. Weaver, Leo. The National Water Quality Network-1962. Presented at the Fourth Industrial Wastes Forum, Interstate Commission on the Potomac River Basin, Hagerstown, Maryland (May 1962).

19. Williams, L. G. and Scott, Carol. Diatoms of Major Waterways of the United States. In Press.

N.Y. (1960). Standard Methods for the Examination of Water and Wastewater.

21. U.S. Department of Health, Education, and Welfare, Public Health Service, Cincinnati, Ohio (1960). (Mimeo.) National Water Quality Network Operating Manual.

22. Federal Register March 6, 1962, p. 2152.

23. Drinking Water Standards 1961, Public Health Service. J.A.W.W.A., 53: 935 (1961).

24. State Water Pollution Control Board, Sacramento. 20. A.P.H.A., A.W.W.A., and F.S.I.W.A. New York, Calif. (1952). Water Quality Criteria, Publication No. 3.

# Explanation of Analytical Data

#### Radioactivity Determinations

Sample collection has continued on a weekly basis. Beginning July 1, 1960, samples from certain stations were placed on a reduced program of analyses; i.e., on semimonthly or monthly composites of the weekly samples. This was done where the history of gross radioactivity in the suspended or filtrate solids showed no significant levels during the previous data year. Alpha determinations were made once per month at each of the stations.

In evaluating these data it should be noted that these statistics are subject to errors commonly associated with gross radioactivity analysis. (See Reference 20.)

A dash in the column for the count signifies that no determination was made. An asterisk following data of sample indicates that determinations are for composites of two or more samples taken on and before the date shown.

Strontium 90 determinations are reported in micromicrocuries per liter as measured from total solids in the sample composited for the quarter. A dash (-) indicates that no determination was made in that period.

#### Plankton Population

Blanks in any column are to be read as meaning that none of the organisms for that column were found. The column heading "Dominant Genera" should be interpreted in connection with the table "Plankton-Dominant Organisms" on page 23: 5-946 should be interpreted that the fifth organism of the first column, Chlorella, was named. None of the organisms in the second column of the table were named. The 9 is the ninth item in the third column of the table—Stephanodiscus, 4 is the fourth item in the fourth column-Diatoma, and the 6 is the sixth item in the fifth column—Fragilaria. Five dashes in the column of "Dominant Genera" mean that none were named for that report.

#### Dominant species of diatoms, percent of total diatoms.

| * 10 20 30 | Less than 5% 05 to 14% 15 to 24% 25 to 34% | 50<br>60<br>70<br>80 | 45 to 54%<br>55 to 64%<br>65 to 74%<br>75 to 100% |
|------------|--------------------------------------------|----------------------|---------------------------------------------------|
| 40         | 35  to  44%                                | 90                   | 85 to 100%                                        |

# Plankton—Dominant Organisms

|                              |                                    | III                   | IV                                  | V                                                          |
|------------------------------|------------------------------------|-----------------------|-------------------------------------|------------------------------------------------------------|
| I                            | II                                 | 111                   |                                     |                                                            |
| 1. Additional<br>Filamentous | Additional<br>Green                | Actinastrum           | Golenkinia                          | Additional Pigmented Flagellate (Other than green)         |
| Green Alga<br>2. Anabaena    | Flagellate Aphanizomenon           | Additional<br>Desmid  | Additional<br>Coccoid<br>Green Alga | Additional<br>Coccoid<br>Blue-Green Alga                   |
| 3. Asterionella              | Cryptomonas Cyclotella             | Anacystis Ciliates    | Chlamydomonas Diatoma               | Additional Diatoms  Additional Filamentous Blue-Green Alga |
| 4. Cyclotella                | Į į                                |                       | Cymbella                            | Ankistrodesmus                                             |
| 5. Chlorella                 | Gomphonema                         | Coelastrum  Dinobryon | Nitzschia                           | Fragilaria                                                 |
| 6. Cosmarium                 | Oscillatoria                       | Navicula              | Synedra                             | Melosira                                                   |
| 7. Synedra                   | Peridinium                         | Oocystis              | Tabellaria                          | Micractinium                                               |
| 8. Euglena<br>9. Phormidium  | Scenedesmus Unpigmented Flagellate | Stephanodiscus        | Tribonema                           | Sarcodina                                                  |

# Identification Code for Diatom Species as reported by the National Water Quality Network

|                                                                                               | Identification code for 2                                                                                                                                                                                                                                                      |                                                                                        |                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NO                                                                                            | SPECIES                                                                                                                                                                                                                                                                        | NO.                                                                                    | SPECIES                                                                                                                                                                                                                                                                                                        | NO.                                                                                    |                                                                                                                                                                                                                                                           |
| NO.<br>01<br>02<br>03<br>04<br>05<br>06<br>07<br>08<br>09<br>10<br>11<br>12<br>13<br>14<br>15 | Achnanthes lanceolata Achnanthes minutissima Achnanthes sp. Amphiprora paludosa Amphiprora sp. Amphora ovalis Amphora sp. Anomoeoneis exilis Asterionella formosa Bacillaria paradoxa Biddulphia laevis Caloneis amphisbaena Caloneis sp. Ceratoneis arcus Cocconeis peduculus | 16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 | Cocconeis placentula Cocconeis sp. Coscinodiscus rothii Coscinodiscus (brackish) Coscinodiscus sp. Cymatopleura solea Cymatosira belgica Cyclotella atomus Cyclotella comta Cyclotella kutzingiana Cyclotella meneghiniana Cyclotella pseudostelligera Cyclotella stelligera Cyclotella striata Cyclotella sp. | 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45 | Cymbella ventricosa Cymbella tumida Cymbella sp. Denticula sp. Diatoma elongatum Diatoma vulgare Diatoma sp. Diploneis smithii Diploneis sp. Epithemia turgida Epithemia sorex Epithemia sp. Eunotia sp. (first) Eunotia sp. (second) Fragilaria capucina |

#### Identification Code for Diatom Species as reported by the National Water Quality Network-Continued

| 46 Fragilaria construens 47 Fragilaria crotonensis 48 Fragilaria pinnata 49 Fragilaria pinnata 49 Fragilaria sp. 40 Frustulia sp. 41 Fragilaria sp. 42 Fragilaria sp. 43 Fragilaria sp. 44 Fragilaria sp. 45 Frustulia sp. 46 Nitzschia acicularis 47 Fragilaria sp. 48 Fragilaria sp. 49 Fragilaria sp. 40 Frustulia sp. 40 Frustulia sp. 41 Fragilaria sp. 42 Fragilaria sp. 43 Fragilaria pinnata 44 Fragilaria pinnata 45 Frustulia sp. 46 Fragilaria pinnata 47 Fragilaria pinnata 48 Surirella brightwelli 49 Surirella ovata 40 Surirella sp. 41 Surirella sp. 42 Surirella sp. 43 Surirella sp. 44 Surirella sp. 45 Surirella sp. 46 Surirella sp. 47 Surirella sp. 48 Surirella sp. 49 Synedra acus 49 Synedra pulchella 40 Synedra nana 41 Synedra nana 41 Synedra nana 42 Synedra ulna 43 Synedra vaucheriae 44 Nelosira distans var. alpigena 45 Rhojalodia sp. 46 Melosira islandica 47 Rhizosolenia eriensis 48 Stephanodiscus astraea var. minutula 49 Tabellaria fenestrata 40 Melosira varians 41 Any entity not found above (second) 42 Melosira cryntocenhala 43 Stephanodiscus dubius 44 Stephanodiscus niagarae 54 Stephanodiscus sp. 55 Hantzchia denticula 56 Nervicula sp. 57 Melosira islandica 58 Melosira islandica 59 Melosira islandica 59 Melosira varians 50 Melosira varians 51 Meridion circulare 52 Stephanodiscus dubius 53 Stephanodiscus dubius 54 Stephanodiscus hantzschii 55 Stephanodiscus hantzschii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NO. | SPECIES                        | NO | . SPECIES                         | NO.                    | SPECIES                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------|----|-----------------------------------|------------------------|-------------------------------------|
| Fragilaria crotonensis  Fragilaria pinnata  Fr | 46  | Fragilaria construens          | 65 | Navicula sp. (first)              | 83                     | Stephanodiscus niagarae             |
| Fragilaria pinnata Fragilaria sp. Fragilaria sp. Frustulia |     |                                | 66 |                                   | 84                     |                                     |
| Fragilaria sp. 68 Nitzschia tryblionella 86 Surirella ovata 50 Frustulia sp. 69 Nitzschia denticula 87 Surirella striatula 51 Gomphonema olivaceum 70 Nitzschia (Lancelolatae group) 88 Surirella sp. 52 Gomphonema sp. 71 Nitzschia sp. (first) 89 Synedra acus 53 Gyrosigma kutzingii 72 Nitzschia sp. (second) 90 Synedra pulchella 54 Gyrosigma sp. 73 Opephora martyi 91 Synedra nana 55 Hantzchia amphioxys 74 Pinnularia sp. 92 Synedra ulna 56 Melosira ambigua 75 Pleurosigma delicatulum 93 Synedra vaucheriae 57 Melosira distans var. alpigena 76 Rhoicosphenia curvata 94 Synedra sp. 58 Melosira granulata 77 Rhizosolenia eriensis 95 Tabellaria fenestrata 59 Melosira binderana 78 Rhopalodia gibba 96 Tabellaria flocculosa 60 Melosira italica 80 Stephanodiscus astraea var. minu- 61 Melosira varians 10 Stephanodiscus dubius 10 Reserved for future entity 63 Meridion circulare 81 Stephanodiscus dubius 11 Nitzschia or population inade-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | Fragilaria pinnata             |    | Nitzschia acicularis              | 85                     | Surirella brightwelli               |
| Frustulia sp. 69 Nitzschia denticula 87 Surirella striatula 51 Gomphonema olivaceum 70 Nitzschia (Lancelolatae group) 88 Surirella sp. 52 Gomphonema sp. 71 Nitzschia sp. (first) 89 Synedra acus 53 Gyrosigma kutzingii 72 Nitzschia sp. (second) 90 Synedra pulchella 54 Gyrosigma sp. 73 Opephora martyi 91 Synedra nana 55 Hantzchia amphioxys 74 Pinnularia sp. 92 Synedra ulna 56 Melosira ambigua 75 Pleurosigma delicatulum 93 Synedra sp. 57 Melosira distans var. alpigena 76 Rhoicosphenia curvata 94 Synedra sp. 58 Melosira granulata 77 Rhizosolenia eriensis 95 Tabellaria fenestrata 59 Melosira binderana 78 Rhopalodia gibba 96 Tabellaria flocculosa 60 Melosira islandica 79 Rhopalodia sp. 97 Any entity not found above (first) 61 Melosira talica 80 Stephanodiscus astraea var. minu- 62 Melosira varians tula 99 Reserved for future entity 63 Meridion circulare 81 Stephanodiscus dubius xx Insignificant or population inade-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |                                | 68 | Nitzschia tryblionella            | 86                     |                                     |
| 51 Gomphonema olivaceum 52 Gomphonema sp. 53 Gyrosigma kutzingii 54 Gyrosigma sp. 55 Hantzchia amphioxys 56 Melosira ambigua 57 Rhizosolenia eriensis 58 Melosira binderana 59 Melosira islandica 50 Melosira italica 51 Melosira varians 52 Gomphonema sp. 53 Gyrosigma sp. 54 Gyrosigma sp. 55 Hantzchia amphioxys 56 Melosira ambigua 57 Pleurosigma delicatulum 58 Melosira granulata 59 Melosira binderana 50 Melosira islandica 51 Melosira italica 52 Melosira italica 53 Melosira varians 54 Melosira varians 55 Melosira italica 56 Melosira italica 57 Rhopalodia sp. 58 Melosira italica 58 Melosira italica 59 Melosira italica 50 Melosira italica 50 Melosira italica 51 Melosira italica 52 Melosira varians 53 Melosira varians 54 Melosira italica 55 Melosira italica 56 Melosira italica 57 Rhopalodia sp. 58 Melosira varians 59 Melosira italica 50 Melosira italica 50 Melosira varians 51 Melosira italica 52 Melosira varians 53 Meridion circulare 54 Stephanodiscus dubius 55 Surirella sp. 56 Synedra acus 57 Synedra pulchella 58 Synedra pulchella 59 Synedra pulchella 50 Synedra pulchell | _   |                                |    | Nitzschia denticula               | 87                     | Surirella striatula                 |
| 52 Gomphonema sp. 71 Nitzschia sp. (first) 89 Synedra acus 53 Gyrosigma kutzingii 72 Nitzschia sp. (second) 90 Synedra pulchella 54 Gyrosigma sp. 73 Opephora martyi 91 Synedra nana 55 Hantzchia amphioxys 74 Pinnularia sp. 92 Synedra ulna 56 Melosira ambigua 75 Pleurosigma delicatulum 93 Synedra vaucheriae 57 Melosira distans var. alpigena 76 Rhoicosphenia curvata 94 Synedra sp. 58 Melosira granulata 77 Rhizosolenia eriensis 95 Tabellaria fenestrata 59 Melosira binderana 78 Rhopalodia gibba 96 Tabellaria flocculosa 60 Melosira islandica 79 Rhopalodia sp. 97 Any entity not found above (first) 61 Melosira italica 80 Stephanodiscus astraea var. minu- 62 Melosira varians tula 99 Reserved for future entity 63 Meridion circulare 81 Stephanodiscus dubius xx Insignificant or population inade-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |                                |    |                                   | 88                     |                                     |
| 53 Gyrosigma kutzingii 54 Gyrosigma sp. 55 Hantzchia amphioxys 56 Melosira ambigua 57 Melosira distans var. alpigena 58 Melosira granulata 59 Melosira binderana 50 Melosira islandica 50 Melosira italica 51 Melosira italica 52 Melosira italica 53 Gyrosigma kutzingii 54 Gyrosigma sp. 55 Gyrosigma kutzingii 56 Opephora martyi 57 Opephora martyi 58 Pinnularia sp. 59 Pleurosigma delicatulum 50 Rhoicosphenia curvata 50 Rhoicosphenia curvata 51 Rhizosolenia eriensis 52 Melosira binderana 53 Rhopalodia gibba 54 Gyrosigma pulchella 55 Synedra nana 56 Synedra ulna 57 Synedra vaucheriae 58 Synedra sp. 59 Tabellaria fenestrata 59 Tabellaria flocculosa 50 Melosira italica 50 Melosira italica 51 Melosira italica 52 Melosira varians 53 Meridion circulare 54 Gyrosigma sp. 55 Synedra ulna 56 Synedra vaucheriae 57 Any entity not found above (first) 58 Melosira varians 59 Melosira italica 50 Melosira varians 50 Melosira italica 51 Melosira italica 52 Rhopalodia sp. 53 Gyrodra pulchella 54 Synedra nana 55 Synedra vaucheriae 56 Melosira varians 59 Any entity not found above (second) 60 Melosira varians 61 Melosira varians 62 Meridion circulare 63 Meridion circulare 64 Neridion circulare 65 Rhoicosphenia curvata 66 Rhoicosphenia curvata 67 Rhizosolenia eriensis 68 Synedra vaucheriae 69 Synedra vaucheriae 69 Synedra vaucheriae 60 Any entity not found above (second) 60 Reserved for future entity 61 Rhoicosphenia curvata 62 Meridion circulare 63 Meridion circulare 64 Rhoicosphenia curvata 65 Synedra vaucheriae 67 Rhoicosphenia curvata 68 Synedra vaucheriae 69 Synedra vaucheriae 69 Synedra vaucheriae 60 Any entity not found above (second) 60 Reserved for future entity 61 Melosira varians 62 Meridion circulare 63 Meridion circulare                                                                                                                                                                                                                                                                                                                         |     |                                | 71 |                                   | 89                     |                                     |
| 54 Gyrosigma sp. 73 Opephora martyi 91 Synedra nana 55 Hantzchia amphioxys 74 Pinnularia sp. 92 Synedra ulna 56 Melosira ambigua 75 Pleurosigma delicatulum 93 Synedra vaucheriae 57 Melosira distans var. alpigena 76 Rhoicosphenia curvata 94 Synedra sp. 58 Melosira granulata 77 Rhizosolenia eriensis 95 Tabellaria fenestrata 59 Melosira binderana 78 Rhopalodia gibba 96 Tabellaria flocculosa 60 Melosira islandica 79 Rhopalodia sp. 97 Any entity not found above (first) 61 Melosira italica 80 Stephanodiscus astraea var. minu- 62 Melosira varians tula 99 Reserved for future entity 63 Meridion circulare 81 Stephanodiscus dubius xx Insignificant or population inade-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |                                | 72 | Nitzschia sp. (second)            | 90                     | Synedra pulchella                   |
| 55 Hantzchia amphioxys 56 Melosira ambigua 57 Melosira distans var. alpigena 58 Melosira granulata 59 Melosira binderana 50 Melosira islandica 50 Melosira islandica 51 Melosira italica 52 Melosira italica 53 Melosira italica 54 Rhopalodia gibba 55 Rhopalodia sp. 56 Melosira italica 57 Rhizosolenia eriensis 58 Rhopalodia gibba 59 Rhopalodia sp. 60 Melosira italica 60 Melosira italica 61 Melosira varians 62 Melosira varians 63 Meridion circulare 64 Pinnularia sp. 65 Synedra ulna 67 Synedra vaucheriae 67 Synedra vaucheriae 68 Synedra sp. 69 Tabellaria flocculosa 60 Any entity not found above (first) 61 Any entity not found above (second) 62 Melosira varians 63 Meridion circulare 64 Pinnularia sp. 65 Synedra vaucheriae 65 Any entity not found above (first) 66 Reserved for future entity 67 Rhizosolenia eriensis 68 Rhopalodia gibba 69 Tabellaria flocculosa 60 Any entity not found above (second) 61 Reserved for future entity 62 Reserved for future entity 63 Meridion circulare 64 Synedra vaucheriae 65 Synedra vaucheriae 66 Synedra vaucheriae 67 Synedra vaucheriae 68 Synedra vaucheriae 69 Synedra vaucheriae 60 Synedra vaucheriae 61 Synedra vaucheriae 61 Synedra vaucheriae 62 Synedra vaucheriae 62 Synedra vaucheriae 63 Synedra vaucheriae 64 Synedra vaucheriae 65 Synedra vaucheriae 66 Synedra vaucheriae 67 Synedra vaucheriae                                                                                                                                                                                                                                                                                                                                                                                              |     |                                | 73 | Opephora martyi                   | 91                     | Synedra nana                        |
| 56 Melosira ambigua 57 Melosira distans var. alpigena 58 Melosira granulata 59 Melosira binderana 60 Melosira islandica 61 Melosira italica 62 Melosira varians 63 Meridion circulare 65 Melosira ambigua 75 Pleurosigma delicatulum 76 Rhoicosphenia curvata 77 Rhizosolenia eriensis 78 Rhopalodia gibba 79 Rhopalodia sp. 80 Stephanodiscus astraea var. minu- 10 tula 80 Stephanodiscus dubius 81 Stephanodiscus dubius 93 Synedra vaucheriae 94 Synedra sp. 95 Tabellaria fenestrata 96 Any entity not found above (first) 98 Any entity not found above (second) 99 Reserved for future entity 10 XX Insignificant or population inade-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                | 74 |                                   | 92                     | Synedra ulna                        |
| 57 Melosira distans var. alpigena 58 Melosira granulata 59 Melosira binderana 60 Melosira islandica 61 Melosira italica 62 Melosira varians 63 Meridion circulare 65 Melosira distans var. alpigena 76 Rhoicosphenia curvata 77 Rhizosolenia eriensis 78 Rhopalodia gibba 79 Rhopalodia sp. 79 Rhopalodia sp. 80 Stephanodiscus astraea var. minu- 10 tula 81 Stephanodiscus dubius 82 Synedra sp. 73 Tabellaria fenestrata 74 Patellaria flocculosa 75 Any entity not found above (first) 76 Rhoicosphenia curvata 77 Rhizosolenia eriensis 78 Rhopalodia gibba 79 Any entity not found above (second) 79 Reserved for future entity 70 Reserved for future entity 71 Tabellaria fenestrata 72 Rhopalodia sp. 73 Any entity not found above (second) 74 Patellaria fenestrata 75 Any entity not found above (second) 76 Rhoicosphenia curvata 77 Rhizosolenia eriensis 78 Rhopalodia gibba 79 Any entity not found above (second) 79 Reserved for future entity 70 Richard Sp. 71 Tabellaria fenestrata 72 Rhopalodia gibba 73 Any entity not found above (second) 74 Rhopalodia sp. 75 Rhopalodia gibba 76 Rhopalodia gibba 77 Rhopalodia gibba 78 Rhopalodia sp. 79 Any entity not found above (second) 79 Reserved for future entity 70 Richard Sp. 71 Rhopalodia gibba 72 Any entity not found above (second) 73 Ropalodia sp. 74 Rhopalodia gibba 75 Rhopalodia gibba 76 Rhopalodia gibba 77 Any entity not found above (second) 78 Rhopalodia sp. 79 Any entity not found above (second) 79 Reserved for future entity 79 Ropalodia sp. 70 Any entity not found above (second) 70 Reserved for future entity 70 Rhopalodia sp. 70 Any entity not found above (second) 70 Reserved for future entity                                                                                                                                                                                                                                                                                                                                                                                                                     |     |                                | 75 | Pleurosigma delicatulum           | 93                     | Synedra vaucheriae                  |
| 58 Melosira granulata 59 Melosira binderana 60 Melosira islandica 61 Melosira italica 62 Melosira varians 63 Meridion circulare 77 Rhizosolenia eriensis 78 Rhopalodia gibba 78 Rhopalodia gibba 79 Rhopalodia sp. 70 Rhizosolenia eriensis 70 Rhopalodia gibba 71 Tabellaria fenestrata 72 Tabellaria fenestrata 73 Patellaria fenestrata 74 Patellaria fenestrata 75 Patellaria fenestrata 76 Patellaria fenestrata 77 Rhizosolenia eriensis 78 Rhopalodia gibba 79 Any entity not found above (second) 98 Paserved for future entity 78 Rhizosolenia eriensis 79 Patellaria fenestrata 78 Patellaria flocculosa 79 Patellar |     | Melosira distans var. alpigena | 76 |                                   | 94                     |                                     |
| 59 Melosira binderana 60 Melosira islandica 79 Rhopalodia gibba 79 Rhopalodia sp. 61 Melosira italica 80 Stephanodiscus astraea var. minu- 62 Melosira varians 63 Meridion circulare 81 Stephanodiscus dubius 96 Tabellaria flocculosa 97 Any entity not found above (first) 98 Any entity not found above (second) 99 Reserved for future entity xx Insignificant or population inade-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                                | 77 |                                   | 95                     |                                     |
| 60 Melosira islandica 79 Rhopalodia sp. 97 Any entity not found above (first) 61 Melosira italica 80 Stephanodiscus astraea var. minu- 62 Melosira varians tula 98 Any entity not found above (second) 63 Meridion circulare 81 Stephanodiscus dubius xx Insignificant or population inade-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | Melosira binderana             | 78 | Rhopalodia gibba                  | 96                     |                                     |
| 61 Melosira italica 80 Stephanodiscus astraea var. minu- 98 Any entity not found above (second) 62 Melosira varians tula 99 Reserved for future entity 63 Meridion circulare 81 Stephanodiscus dubius xx Insignificant or population inade-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60  |                                | 79 | Rhopalodia sp.                    | 97                     | Any entity not found above (first)  |
| 62 Melosira varians tula 99 Reserved for future entity 63 Meridion circulare 81 Stephanodiscus dubius xx Insignificant or population inade-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 61  |                                | 80 | Stephanodiscus astraea var. minu- |                        | Any entity not found above (second) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62  |                                |    | tula                              | 99                     |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63  |                                | 81 | Stephanodiscus dubius             | $\mathbf{x}\mathbf{x}$ | Insignificant or population inade-  |
| or replacement days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64  | Navicula cryptocephala         | 82 | Stephanodiscus hantzschii         |                        | quate                               |

#### Organic Chemicals

The data relating to extractables are in micrograms per liter or parts per billion. Zeros when reported have been entered. A dash indicates that the respective results were not reported. An asterisk in the column showing end of sample date indicates that the determinations are for composited samples taken on and before the date shown. The extent of compositing can be determined by examining the gallons filtered, which is the sum of the applicable individual samples immediately above it.

#### Chemical, Physical and Bacteriological Analyses

The data entered in each column are as reported. A dash signifies that the particular test was not performed. Zeros when meaningful have been entered. An asterisk preceding a coliform count should be read as "less than" the number following it.

#### Trace Elements and Other Determinations

For a discussion of the sensitivity limits of the determinations performed with spectrographic methods, see page 10.

# Analytical and Flow Data

STATE

PENNSYLVANIA

MAJOR BASIN

OHIO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

ALLEGHENY RIVER

STATION LOCATION ALLEGHENY RIVER AT

PITTSBURGH, PENNSYLVANIA

|                 |                               |           | DAD!      | DACTIVITY IN V | VATER     |           | T     | T   | RADIOAC | TIVITY IN PLAN | IKTON (dry) | RAD       | HOACTIVITY IN W | ATER          |
|-----------------|-------------------------------|-----------|-----------|----------------|-----------|-----------|-------|-----|---------|----------------|-------------|-----------|-----------------|---------------|
| DATE            |                               |           | ALPHA     | ACTIVITIES Y   | TAILER .  | BETA      |       | Ī   | DATE OF | GROSS A        | CTIVITY     |           | GROSS ACTIVIT   | Y             |
| SAMPLE<br>TAKEN | DATE OF<br>DETERMI-<br>NATION | SUSPENDED | DISSOLVED | TOTAL          | SUSPENDED | DISSOLVED | TOTAL |     | NATION  | ALPHA          | BETA        | SUSPENDED | DISSOLVED       | TOTAL         |
| D. DAY YEAR     |                               | μμe/I     | μμς/Ι     | μμε/Ι          | μμς/Ι     | μμε/Ι     | μμε/Ι |     | MO. DAY | μμc/g          | µµс/g       | μμc/l     | μμс/1           | μμc/ <b>l</b> |
| J. DAT TEAM     | MONTH DAT                     |           |           |                |           |           |       |     |         |                | 1           |           |                 |               |
| 8 61            | 2 28                          | 0         | 0         | 0              | 0         | 0         | 0     |     |         |                |             |           |                 |               |
|                 | 3 6                           | ő         | o         | 0              | 0         | 0         | 0     | - 1 |         |                |             |           |                 |               |
|                 | 3 8                           | 44        | ŏ         | 44             | 46        | 0         | 46    | i   |         |                |             |           |                 |               |
|                 | l .                           | 3         | ő         | 3              | 3         | ol        | 3     | ļ   |         |                | i i         |           |                 |               |
|                 |                               | ٥         | ŏ         | ō              | 9         | ō         | 9     | l   |         |                | 1           |           |                 |               |
| 8 61            | 3 30                          | 0         |           | ŏ              | 1 0       | o l       | 0     |     | ľ       |                |             |           |                 |               |
| 15 61           | 3 31                          |           | ŏ         | Õ              | l õ       | 1         | 1     |     |         |                | 1           |           |                 |               |
| 22 61           | 4 5                           | 0         |           | 0              | lŏ        | 0         | ō     |     |         |                | 1           |           |                 |               |
| 29 61           | 4 17                          | 0         |           | Õ              | l ő       | l ŏ l     | ō     | 1   | i       |                |             |           |                 |               |
| + 5 61          | 4 17                          | 0         | 0         | 0              | ő         | 0 1       | ō     |     |         |                |             |           |                 |               |
| 12 61           | 4 27                          | 0         | 0         |                | 0         | 0 1       | ŏ     |     | 1       |                |             |           |                 |               |
| + 19 61         | 5 10                          | 0         | 0         | 0              | 1         | 0         | ŏ     |     |         |                |             |           |                 |               |
| 4 26 61         | 5 22                          | 1         | 0         | 1              | 0         |           | 3     |     |         |                |             |           |                 |               |
| 5 3 61          | 5 25                          | 0         | 0         | 0              | 0         | 3         |       |     | l       |                | 1 1         |           |                 |               |
| 5 10 61         | 6 1                           | 0         | 0         | 0 .            | 1         | 2         | 3     |     |         |                | i           |           |                 |               |
| 5 17 61         | 5 31                          | 0         | 0         | 0              | 0         | 3         | 3     |     | İ       |                |             |           | 1               |               |
| 24 61           | 6 14                          | 0         | 0         | 0              | 1         | 0         | 1     |     |         |                |             |           | 1               |               |
| 5 31 61         | 6 20                          | 0         | 0         | 0              | 0         | 0         | 0     |     | . i     |                |             |           |                 |               |
| 6 7 61          | 6 28                          | l o       | 0         | 0              | 0         | 0         | 0     |     |         |                |             | ļ         |                 |               |
| 6 16 61         | 7 6                           | 0         | 0         | 0              | 0         | 0         | 0     |     |         |                | 1           | . 1       |                 |               |
| 6 21 61         | 7 28                          | 0         | 1         | 1              | 0         | 0         | 0     |     |         |                |             |           |                 |               |
| 6 28 61         | 7 31                          | 0         | 0         | 0              | 0         | 0         | 0     |     |         |                | 1           |           | ļ               |               |
| 7 5 61          | 8 7                           | 0         | O         | 0              | 0         | 0         | 0     |     |         |                | ļ           |           |                 |               |
|                 | 8 10                          | 0         | Ö         | 0              | 1 0       | 0         | 0     |     |         |                | 1           |           | 1               |               |
|                 | -                             | 0         | Ĭ         | ī              | 0         | 1 0       | 0     |     |         |                |             | l i       |                 |               |
| 7 18 61         | 8 8                           | 0         | 0         | Ô              | 1 0       | 8         | 8     |     |         |                |             |           |                 |               |
| 7 26 61         | 8 24                          | 0         | 1 6       | Ô              | 3         | 19        | 22    |     |         |                |             |           |                 |               |
| 8 2 61          | 9 1                           |           | 0         | 0              | 3         | 3         | 6     |     |         |                |             |           |                 |               |
| 8 9 61          | 9 12                          | 0         | 0         | 0              | 0         | 1         | 1     |     |         |                |             |           |                 |               |
| 8 16 61         | 9 26                          | 0         |           | 1              | 0         | 3         | 3     |     |         |                |             |           |                 |               |
| B 23 61         | 9 27                          | 0         | 1         | ō              | l i       | 6         | 1 - 7 |     |         |                |             |           |                 |               |
| 8 30 61         | 9 27                          | 0         | 0         | 0              | Ò         |           | l ė   | 1   | · ·     |                | İ           |           |                 |               |
| 9 6 61          | 10 11                         | 0         | 0         | 0              | 0         | .0        | 5     | l   |         |                | 1           |           |                 |               |
| 9 13 61         | 10 23                         | 0         | 0         | · -            |           | 2         | 2     | Ì   |         |                |             | ]         |                 |               |
| 9 20 61         | 10 7                          | 1         | 1         | 2              | _         | 28        | 28    | ļ   | 1       |                |             | <b> </b>  |                 |               |
| 9 27 61         | 10 5                          | 0         | 0         | 0              | 0         | 48        | 20    | 1   |         |                |             |           |                 |               |
|                 |                               |           |           |                |           |           |       | 1   |         |                |             | ! !       |                 |               |
|                 |                               |           |           |                | 1         | 1         | 1     |     |         |                |             |           | 1               |               |
|                 |                               |           | 1         |                |           |           |       |     |         |                | 1           |           |                 |               |
|                 |                               |           | 1         | 1              | 1         |           |       |     |         |                |             | i         |                 |               |
|                 |                               |           |           | 1              | 1         | 1         |       | 1   |         | 1              |             | 1         |                 | 1             |
|                 |                               |           |           |                |           |           |       |     |         | 1              |             |           |                 |               |
|                 | 1                             |           | 1         |                | 1         | 1         | 1     |     | I       |                | 1           | 1 1       | 1               | 1             |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

PENNSYLVANIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

ALLEGHENY RIVER

STATION LOCATION ALLEGHENY RIVER AT

PITTSBURGH, PENNSYLVANIA

|                                      |                         |                                                     |                                                               |         |                        |                                               |                       |                                                                |                  |                                                        |                                                                    | 1811                             | PT                                          |                                              |                      |                                                         |                                              |                                             |                                  |                                      |                                 |                            |                                                                         | Т                         | MICROIN                      | VERTER                       | ATEC                         |                                 |                                                             |
|--------------------------------------|-------------------------|-----------------------------------------------------|---------------------------------------------------------------|---------|------------------------|-----------------------------------------------|-----------------------|----------------------------------------------------------------|------------------|--------------------------------------------------------|--------------------------------------------------------------------|----------------------------------|---------------------------------------------|----------------------------------------------|----------------------|---------------------------------------------------------|----------------------------------------------|---------------------------------------------|----------------------------------|--------------------------------------|---------------------------------|----------------------------|-------------------------------------------------------------------------|---------------------------|------------------------------|------------------------------|------------------------------|---------------------------------|-------------------------------------------------------------|
| DA<br>OF SA                          |                         | 1                                                   |                                                               | BLUE-   | GREEN                  | ALGAE (                                       |                       | <del>,</del>                                                   | LLATES<br>ented) | DIAT                                                   | oms                                                                | DIA<br>SHE<br>(No. p             | ERT<br>TOM<br>ELLS<br>er ml.)               |                                              |                      |                                                         |                                              |                                             | ND PE                            |                                      | ITAGE<br>tion*)                 | s                          | PLANKTON,<br>SEATHED<br>nl.)                                            | - Te                      |                              |                              | $\overline{}$                | L FORMS                         | iENERA<br>duction<br>ication)                               |
| MONTH                                | LA.                     | YEAR                                                | TOTAL                                                         | COCCOID | FILA-<br>MENT-<br>OUS  | coccoid                                       | FILA-<br>MENT-<br>OUS | GREEN                                                          | OTHER            | CENTRIC                                                | PENNATE                                                            | CENTRIC                          | PENNATE                                     | FIRST                                        | PER-                 | SECOND                                                  | PER.                                         | THIRD#                                      | PER.<br>CENTAGE                  | FOURTH                               | PER.                            | OTHER PER-                 | OTHER MICROPLANKTOR,<br>FUNGI AND SHEATHED<br>BACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ANIMAL F. (No. per liter) | DONINANT GENERA<br>(See Introduction<br>for Identification) |
| 3 15<br>4 26<br>5 10<br>5 31<br>6 21 | 1 5 5 6 0 1 1 5 9 2 3 6 | 61<br>661<br>661<br>661<br>661<br>661<br>661<br>661 | 500<br>200<br>1100<br>2700<br>800<br>200<br>500<br>100<br>300 |         | 1·20<br>20<br>20<br>20 | 20<br>40<br>20<br>40<br>190<br>20<br>60<br>40 | 20                    | 130<br>170<br>130<br>80<br>40<br>120<br>20<br>370<br>20<br>100 | 20 80            | 20<br>440<br>170<br>190<br>210<br>40<br>40<br>20<br>20 | 420<br>220<br>470<br>2280<br>1140<br>540<br>250<br>250<br>20<br>60 | 90<br>50<br>60<br>20<br>20<br>20 | 1050<br>130<br>90<br>520<br>100<br>20<br>20 | 43<br>99<br>92<br>92<br>92<br>98<br>98<br>88 | 10<br>40<br>20<br>40 | 82<br>35<br>93<br>45<br>9<br>62<br>82<br>47<br>88<br>92 | 10<br>10<br>10<br>10<br>20<br>10<br>10<br>10 | 2<br>92<br>92<br>92<br>56<br>82<br>92<br>92 | 10<br>10<br>10<br>10<br>10<br>10 | 74<br>9<br>31<br>56<br>82<br>9<br>31 | 10<br>10<br>*<br>10<br>10<br>10 | 700400<br>500600<br>500430 | 20<br>20<br>80                                                          |                           | 12 5 2 1 27 6 6              | 2 5 5                        | 1 1 1                        |                                 |                                                             |

### ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

PENNSYLVANIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

ALLEGHENY RIVER

STATION LOCATION ALLEGHENY RIVER AT

PITTSBURGH, PENNSYLVANIA

|                  | 2475 | 05.6:       |                                              | <del></del>                                  |                                        | ~~                                    |                                       |                     |                                  |                            |                               |                            |                              |         |                                 |                                 |               |                                  |
|------------------|------|-------------|----------------------------------------------|----------------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|---------------------|----------------------------------|----------------------------|-------------------------------|----------------------------|------------------------------|---------|---------------------------------|---------------------------------|---------------|----------------------------------|
|                  | GINN | OF SA       | END                                          |                                              | EX                                     | TRACTABL                              | E5                                    | -                   |                                  |                            |                               | CHLOROF<br>NEUTRALS        | ORM EXTRA                    | CTABLES |                                 |                                 | ·             |                                  |
| HLNOM            | DAY  | YEAR        | MONTH                                        | GALLONS<br>FILTERED                          | TOTAL                                  | CHLORO-<br>FORM                       | ALCOHOL                               | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES                | TOTAL                      | ALIPHATICS                    | AROMATICS                  | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS    | WEAK<br>ACIDS                   | STRONG<br>ACIDS                 | BASES         | LOSS                             |
| 3<br>4<br>5<br>6 |      | 61 61 61 61 | 3 15<br>4 19<br>5 18<br>6 21<br>7 26<br>8 28 | 2800<br>2846<br>1387<br>3748<br>2187<br>5257 | 325<br>168<br>710<br>305<br>729<br>307 | 138<br>72<br>293<br>154<br>366<br>140 | 187<br>96<br>417<br>151<br>363<br>167 | 6 3 21 9 11 7       | 30<br>14<br>73<br>34<br>84<br>32 | 42<br>29<br>67<br>39<br>32 | 14<br>11<br>13<br>9<br>7<br>2 | 5<br>4<br>7<br>4<br>7<br>2 | 23<br>13<br>45<br>26<br>74   | 012073  | 15<br>7<br>35<br>17<br>48<br>16 | 15<br>6<br>38<br>23<br>66<br>21 | 1 1 3 3 7 1 1 | 29<br>12<br>56<br>29<br>55<br>31 |
|                  |      |             |                                              |                                              |                                        |                                       |                                       |                     |                                  |                            |                               |                            |                              |         |                                 |                                 |               |                                  |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

PENNSYLVANIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

STATE

ALLEGHENY RIVER

STATION LOCATIONALLEGHENY RIVER AT

PITTSBURGH, PENNSYLVANIA

| DA           |                                         |                         |                             |            |                |                | CHLORINE       | DEMAND          |                              |                   |                    |                  |                        |                            |                  |                    |                                      | <del>                                     </del> |
|--------------|-----------------------------------------|-------------------------|-----------------------------|------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|----------------------------|------------------|--------------------|--------------------------------------|--------------------------------------------------|
| OF SA        |                                         | (Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/l | pH         | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml.                         |
|              | 3 6                                     |                         | -                           | 6.5        |                | -              | -              |                 | •4                           | 35                | 16                 | 152              | 0                      | 5                          | 159              | •0                 | 333                                  |                                                  |
| 2 13         |                                         |                         | 12.0                        | 6.6        | 6.3            | _              | -              | _               | <br>• 4                      | 36                | -<br>18            | 158              | 0                      | 8                          | 1(2              | -                  | -                                    | 5700                                             |
| 2 2          |                                         |                         | 14.1                        | 6.6        | 9.4            | 39             | 3.7            | -               | •1                           | 26                | 21                 | 108              | 45                     | 500                        | 163<br>52        | •1                 | 345<br>170                           | 6400                                             |
| 3            | l 63                                    |                         | 12.8                        | 6.6        | 1.8            | 32             | 1.3            | -               | •0                           | 9                 | 9                  | 46               | 60                     | 120                        | 38               | l .ŏl              | 91                                   | 4000                                             |
| 3 8          | 6 3                                     |                         | 11.4                        | 6•4        | -              | -              | 1.9            | 3.5             | •0                           | 12                | 9                  | 62               | 5                      | 25                         | 54               | •0                 | 121                                  | 1700                                             |
| 3 15         | 6 6 2 6 3                               |                         | 11.6                        | 6.6        | 1.8            | 56             | 1.1            | 4•1             | • 0                          | 10                | 11                 | 62               | 5                      | 50                         | 56               | •0                 | 137                                  | 640                                              |
| 3 22         | 6]                                      |                         | 12.4<br>12.2                | 6.8<br>6.6 | 1.9            | 49<br>51       | •7<br>•7       | 3•3<br>2•9      | •0                           | 13                | 14<br>13           | 70<br>70         | 0 5                    | 25<br>15                   | 63               | • 0                | 129                                  |                                                  |
| 4 2          | 6 6                                     |                         | 11.0                        | 6.5        | 1.5            | 62             | .5             | 1.4             | •1                           | 15                | 12                 | 70<br>78         | 0                      | 12                         | 68<br>72         | •0                 | 128<br>146                           | 600<br>2 <b>6</b> 0                              |
| 4 12         | 61                                      | 5.5                     | 11.6                        | 6.9        | 1.9            | 59             | .3             | 1.4             | •0                           | 13                | 15                 | 68               | 15                     | 30                         | 52               | .0                 | 132                                  | 2100                                             |
| 4 19         |                                         |                         | 12.2                        | 6.8        | 2.2            | 63             | • 4            | 2.0             | •0                           | 10                | 14                 | 46               | 20                     | 20                         | 43               | •0                 | 122                                  | 1700                                             |
| 4 26         |                                         |                         | 10.1                        | 6.5        | 3.0            | 64             | •.7            | 2.9             | •0                           | 11                | 15                 | 58               | 20                     | 50                         | 54               | •0                 | 140                                  | 4900                                             |
| 5 2<br>5 10  |                                         |                         | 10.9                        | 6.8        | 2.8            | 70<br>50       | • 7            | 3.0             | •0                           | 0<br>13           | 15                 | 64               | 15                     | 40                         | 48               | • 0                | 148                                  | 1000                                             |
| 5 16         |                                         |                         | 901                         | 0.7        | 4 • U          | 50             | • 6            | 2•3             | •1                           | T 2               | 20                 | 78<br>-          | 10                     | 35<br>-                    | 71               | • 0                | 153                                  | 1700                                             |
| 5 17         |                                         |                         | 8.8                         | 6.5        | 1.4            | 55             | •3             | 2.8             | •0                           | 12                | 14                 | 84               | 15                     | 12                         | 73               | • 0                | 159                                  | 3800                                             |
| 5 24<br>5 31 | 61                                      |                         | -                           | -          | -              | -              | -              | -               | -                            | _                 | -                  | -                | -                      | -                          | _                | _                  |                                      | 500                                              |
|              |                                         |                         | 9.9                         | 6.8        | 1.7            | 50             | • 4            | 2.6             | •0                           | 11                | 14                 | 82               | 10                     | 10                         | 79               | •0                 | 182                                  | 530                                              |
| 6 16         | 1                                       |                         | 9.1                         | 6.8        | 1.9<br>1.3     | 40<br>52       | • 4            | 2•4             | •0                           | 12                | 16                 | 84               | 0                      | 10                         | 85               | •0                 | 172                                  | _                                                |
| 6 21         | 61                                      |                         | 9.2                         | 6.2        | 2.7            | 28             | ر .<br>5 •     | 2.7             | •0                           | 12<br>10          | 15                 | 60  <br>80       | 20                     | 45<br>5                    | 52<br>74         | .0                 | 147                                  | 500                                              |
| 6 28         |                                         |                         | 8.9                         | 6.0        | 1.3            | 25             | • 4            | 2.6             | .0                           | 14                | 8                  | 96               | 0                      | 5                          | 90               | .0                 | 156<br>183                           | -<br>*100                                        |
| 7 5          |                                         | 23.0                    | 8.2                         | 6.6        | 1.0            | 26             | • 2            | 2 • 8           | • 0                          | 19                | 16                 | 118              | 1                      | 5                          | 115              | •0                 | 242                                  | 2900                                             |
| 7 11         |                                         |                         |                             | -          |                | -              | -              | -               | -                            | -                 |                    | -                | -                      | -                          | -                | -                  | -                                    | 400                                              |
| 7 12<br>7 18 |                                         | 24.0                    | 7.6                         | 6.7        | 2.6            | 24             | • 2            | 1.7             | •0                           | 21                | 10                 | 132              | 0                      | 3                          | 128              | • 0                | 289                                  | ~                                                |
| 7 19         |                                         | 26.0                    | 7.7                         | 6.1        | - 8            | 42             | .2             | 4 • 8           | .0                           | 22                | -<br>9             | 148              | -                      | 5                          |                  | -                  | -                                    | 100                                              |
| 7 25         | 61                                      |                         | -                           | ٠- ا       | -              | -              | -              | 7.0             | • -                          | - 2               | -                  | 140              | _                      | 2                          | 145              | •0                 | 301                                  | 100                                              |
| 7 26         | 61                                      | 26.0                    | 7 • 4                       | 6.5        | •7             | 39             | • 2            | 4.5             | .1                           | 23                | 14                 | 132              | 20                     | 45                         | 126              | •0                 | 260                                  | 100                                              |
| 8 1          | 61                                      | -                       | -                           | -          | -              | -              |                | -1              | -                            | -                 | -                  | -                |                        | _                          |                  | -                  | -                                    | 6                                                |
| 8 2          | 61                                      | 27.0                    | 8.6                         | 6.6        | 2.2            | 28             | • 7            | 4 • 1           | -                            | 28                | 8                  | 126              | 0                      | 10                         | 120              | •0                 | 279                                  | _                                                |
| 8 8          |                                         | 25.0                    | 8.2                         | 6.1        | 1.0            | 25             |                | 3.4             | -                            | 16                |                    | - 0.4            | -                      | -                          |                  | -                  |                                      | *100                                             |
| 8 15         | 61                                      | 25.0                    | - 0 - 2                     | 0.1        | 1.0            | 25             | • 5            | 3 • 4           | _                            | 16                | 7                  | 86               | 0                      | 5                          | 85               | • 0                | 182                                  | *100                                             |
| 8 22         | 61                                      | -                       | -                           | -1         | -              | -              | -              | -               | _                            | -                 | -                  | _                | _                      | _                          | _                | _                  | _                                    | 300                                              |
| 8 23         | 61                                      | 26.0                    | 8 • 4                       | 6.4        | 1.5            | 5              | • 4            | 3.5             | • 1                          | 28                | 12                 | 134              | 0                      | 5                          | 125              | .0                 | 272                                  | -                                                |
| 8 29         | 61                                      | -                       | -                           | -          | -              | -              | -              | -               | -                            | -                 | -                  | -                | - [                    | -                          | -                | -                  |                                      | *100                                             |
|              |                                         |                         | 1                           |            |                |                |                |                 |                              |                   | 1                  | ŀ                |                        |                            |                  |                    |                                      |                                                  |
|              | لــــــــــــــــــــــــــــــــــــــ |                         |                             |            |                |                |                |                 |                              | 30                |                    |                  |                        |                            |                  |                    |                                      |                                                  |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

PENNSYLVANIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

ALLEGHENY RIVER

STATION LOCATIONALLEGHENY RIVER AT

PITTSBURGH, PENNSYLVANIA

| DATE<br>OF SAMP                          |          | TEMP.                   | DISSOLVED                                  |                               | B.O.D.            | C.O.D.     | CHLORINE                  | DEMAND                           | AMMONIA-             | CHLORIDES | ALKALINITY                              | HARDNESS                           | COLOR         | TURBIDITY       | SULFATES                                | PHOSPHATES                              | TOTAL<br>DISSOLVED        | COLIFORMS                    |
|------------------------------------------|----------|-------------------------|--------------------------------------------|-------------------------------|-------------------|------------|---------------------------|----------------------------------|----------------------|-----------|-----------------------------------------|------------------------------------|---------------|-----------------|-----------------------------------------|-----------------------------------------|---------------------------|------------------------------|
|                                          |          | (Degrees<br>Centigrade) | OXYGEN<br>mg/l                             | pН                            | mg/l              | mg/l       | 1-HOUR<br>mg/l            | 24-HOUR<br>mg/l                  | NITROĢEN<br>mg/l     | mg/l      | mg/l                                    | mg/l                               | (scale units) |                 | mg/l                                    | mg/l                                    | SOLIDS<br>mg/I            | per 100 ml.                  |
| 6H 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 61<br>61 | <b>ラフ-Λ</b>             | 8 • 0<br>7 • 4<br>-<br>7 • 7<br>-<br>8 • 3 | 5.7<br>6.4<br>6.5<br>-<br>6.7 | 3.6 2.0 1.8 - 3.3 | 18 - 16 12 | • 4<br><br>• 4<br><br>• 4 | mg/l 6 • 0 - 5 • 3 - 5 • 9 6 • 6 | •3<br>•4<br>•4<br>•4 | _<br>_    | 8<br>-<br>13<br>-<br>18<br>-<br>-<br>19 | 152<br>164<br>-<br>156<br>-<br>168 | -             | 5   5   5   1 5 | 150<br>-<br>154<br>-<br>148<br>-<br>165 | • • • • • • • • • • • • • • • • • • • • | 328<br><br>328<br><br>363 | 1600<br>1600<br>2300<br>3200 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Natrona, Pennsylvania Operated by U.S. Geological Survey STATE

Pennsylvania

MAJOR BASIN

Ohio River

MINOR BASIN

Allegheny River

STATION LOCATION

Allegheny River at

Pittsburgh, Pennsylvania

| Day                              | October                                            | November                                           | December                                           | January                                            | February                                              | March                                                    | April                                                    | May                                                      | June                                                     | July                                                 | August                                             | September                                          |
|----------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| 1<br>2<br>3<br>4                 | 1.860<br>1.700<br>1.600<br>1.630                   | 2.140<br>2.420<br>2.610<br>2.580                   | 2.500<br>2.500<br>2.420<br>2.350                   | 3.070<br>2.940<br>2.730<br>2.690                   | 2.900<br>2.980<br>2.420<br>2.900                      | 97.000<br>87.400<br>82.500<br>79.100                     | 22.400<br>24.600<br>27.400<br>26.200                     | 63.400<br>50.300<br>37.000<br>31.000                     | 12.000<br>12.400<br>13.600<br>20.700                     | 6.780<br>5.620<br>5.620<br>7.640<br>6.920            | 7.800<br>7.730<br>15.800<br>17.700<br>18.700       | 3.580<br>3.580<br>2.920<br>2.690<br>2.820          |
| 5<br>6<br>7<br>8<br>9            | 1.800<br>1.930<br>1.960<br>1.730<br>1.510          | 2.540<br>2.390<br>2.420<br>2.820<br>3.390          | 2.060<br>2.030<br>2.310<br>2.420<br>2.350          | 2.860<br>3.070<br>3.300<br>4.050<br>4.240          | 2.770<br>2.500<br>2.650<br>2.390<br>2.690             | 63.400<br>61.900<br>63.400<br>75.800<br>66.400           | 24.000<br>21.800<br>31.000<br>37.000<br>34.600           | 25.100<br>20.700<br>21.800<br>25.100<br>34.600           | 19.700<br>16.700<br>13.600<br>11.600<br>10.500           | 6.450<br>5.430<br>4.760<br>3.910                     | 14.400<br>11.200<br>8.080<br>5.620                 | 6.930<br>5.870<br>4.820<br>4.360                   |
| 10<br>11<br>12<br>13<br>14       | 1.440<br>1.700<br>1.600<br>1.540                   | 3.530<br>3.530<br>3.690<br>3.910<br>3.910          | 2.170<br>2.030<br>1.730<br>1.630<br>2.100          | 4.880<br>6.060<br>6.450<br>6.580<br>6.450          | 2.940<br>3.110<br>3.110<br>3.110<br>3.160             | 69.400<br>72.600<br>69.400<br>53.100<br>40.900           | 32.200<br>34.600<br>39.600<br>40.900<br>47.500           | 35.800<br>33.400<br>32.200<br>28.600<br>24.600           | 25.000<br>35.800<br>33.400<br>29.800                     | 3.160<br>3.340<br>3.340<br>3.340<br>3.110            | 5.000<br>4.940<br>5.300<br>4.820<br>4.130<br>4.240 | 3.300<br>2.690<br>2.770<br>3.070<br>2.900<br>2.820 |
| 15<br>16<br>17<br>18<br>19<br>20 | 1.660<br>1.410<br>1.480<br>1.480<br>1.510<br>1.540 | 3.490<br>3.490<br>3.300<br>3.030<br>2.820<br>2.540 | 2.310<br>2.730<br>2.610<br>2.500<br>2.460<br>2.350 | 6.260<br>6.120<br>6.520<br>7.320<br>7.600<br>7.120 | 4.700<br>5.870<br>7.460<br>14.900<br>40.700<br>71.500 | 50.300<br>48.900<br>43.500<br>35.800<br>31.000<br>33.400 | 53.100<br>53.100<br>55.900<br>61.900<br>64.900<br>58.900 | 21.200<br>21.200<br>25.100<br>26.200<br>28.000<br>27.400 | 33.400<br>29.800<br>25.100<br>20.200<br>15.400<br>13.200 | 3.200<br>3.030<br>3.030<br>4.300<br>4.470<br>5.740   | 3.960<br>3.390<br>2.900<br>2.820<br>2.500          | 2.610<br>2.310<br>2.100<br>2.310<br>2.280          |
| 21<br>22<br>23<br>24<br>25       | 1.540<br>1.660<br>1.600<br>1.600<br>1.700          | 2.280<br>2.170<br>2.500<br>2.460<br>2.420          | 2.580<br>2.390<br>2.280<br>2.140<br>2.030          | 6.120<br>4.880<br>4.300<br>4.080<br>3.340          | 67.900<br>75.800<br>77.400<br>84.200<br>90.600        | 35.800<br>32.200<br>30.400<br>31.000<br>32.200           | 50.300<br>40.900<br>40.900<br>43.500<br>52.600           | 26.200<br>24.600<br>23.400<br>22.900<br>19.200           | 11.200<br>10.800<br>11.200<br>10.800<br>9.370            | 6.120<br>6.980<br>5.620<br>8.170<br>10.500           | 2.310<br>3.060<br>3.110<br>3.300<br>3.780          | 2.200<br>2.200<br>2.350<br>2.060<br>1.760          |
| 26<br>27<br>28<br>29<br>30<br>31 | 1.890<br>2.100<br>2.310<br>2.310<br>2.140<br>1.960 | 2.100<br>2.030<br>2.030<br>2.030<br>2.310          | 2.170<br>2.280<br>2.310<br>2.500<br>2.690<br>2.860 | 3.300<br>2.860<br>2.770<br>2.770<br>2.820<br>2.580 | 97.500<br>106.000<br>109.000                          | 28.600<br>26.200<br>24.600<br>24.600<br>25.600<br>22.400 | 102.000<br>109.000<br>90.600<br>87.400<br>77.400         | 17.700<br>16.200<br>16.200<br>14.400<br>14.000           | 8.650<br>9.080<br>7.800<br>6.580<br>6.260                | 11.200<br>10.500<br>9.010<br>8.300<br>6.380<br>6.120 | 4.080<br>3.200<br>3.200<br>3.340<br>3.690<br>3.340 | 1.960<br>2.200<br>2.350<br>2.390<br>2.390          |

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

SAN JUAN RIVER

STATION LOCATION ANIMAS RIVER AT

CEDAR HILL, NEW MEXICO

| DATE    | Т        |                    |           | RADIO     | DACTIVITY IN W | /ATER     |           |           | <del></del> | RADIOAC | TIVITY IN PLAN | KTON (dry) | RAD       | IOACTIVITY IN W | ATER  |
|---------|----------|--------------------|-----------|-----------|----------------|-----------|-----------|-----------|-------------|---------|----------------|------------|-----------|-----------------|-------|
| SAMPLE  |          | DATE OF            |           | ALPHA     |                |           | BETA      |           | D/          | ATE OF  | GROSS A        | CTIVITY    |           | GROSS ACTIVITY  | ,     |
| TAKEN   |          | DETERMI-<br>NATION | SUSPENDED | DISSOLVED | TOTAL          | SUSPENDED | DISSOLVED | TOTAL     | DE N        | ATION   | ALPHA          | BETA       | SUSPENDED | DISSOLVED       | TOTAL |
| MO. DAY | YEAR     | MONTH DAY          | μμε/Ι     | μμς/Ι     | μμς/Ι          | μμε/1     | μμc/l     | μμε/Ι     | мс          | D. DAY  | μμc/g          | μμc/g      | μμc/1     | μμc/l           | ##c/l |
| 10 0    |          | 10.10              |           |           |                |           | 0.0       |           | ļ           |         |                | 1          |           | -               |       |
|         | 60       | 10 18              | 1         | 19        | 20             | 0         | 29        | 29        |             |         |                |            |           |                 |       |
|         | 50       | 1 3                | 3         | 37        | 40             | 11        | 82        | 93        |             |         |                |            |           |                 |       |
|         | 60       | 11 1               | 0         | 2         | 2              | 87        | 22        | 109       | İ           | ŀ       |                |            |           |                 |       |
|         | 60       | 11 10              | 2         | 20        | 22             | 0 8       | 22        | 22        |             | ,       |                |            |           |                 |       |
|         | 60       | 11 18              | 6         | 21        | 27             |           | 35        | 43        |             | i       |                |            | Ì         |                 |       |
|         | 60       | 11 28              | 3         | 10        | 13             | 3         | .0        | 3         |             |         |                |            |           |                 |       |
|         | 60       | 12 19              | 4         | 21        | 24             | 6         | 43        | 49        | 1           |         |                |            |           |                 |       |
|         | 60       | 12 20              | 5         | 21        | 26<br>69       | 11 153    | 24<br>57  | 35<br>210 |             |         |                | }          | i         |                 |       |
|         | 60       | 12 30              | 37        | 32        |                | 62        | 7         | 69        | İ           |         |                |            |           |                 |       |
|         | 60       | 1 5                | 4         | 18        | 22<br>93       | 178       | 45        | 223       | l l         |         |                |            |           | 1               |       |
|         | 60       | 1 6                | 58        | 35        | 95<br>37       | 51        | 31        | 82        |             |         |                |            | İ         |                 |       |
|         | 60       | 1 11               | 18        | 19<br>24  | 37             | 36        | 26        | 62        |             |         |                |            | ŀ         |                 |       |
|         | 61       | 2 8<br>2 7         | 3         | 11        | 14             | 7         | 9         | 16        |             |         |                |            |           |                 |       |
|         | 61<br>61 |                    | 6         | 23        | 29             | 11        | 19        | 30        |             | İ       |                |            | İ         |                 |       |
|         |          | 2 6<br>2 8         | 6         | 13        | 19             | 18        | 13        | 31        | Ì           | -       |                |            |           |                 |       |
|         | 61<br>61 | 2 13               | 17        | 25        | 42             | 75        | 30        | 105       |             |         |                |            |           |                 |       |
|         |          | 2 21               | 9         | 19        | 28             | 22        | 12        | 34        |             |         |                |            |           |                 |       |
| -       | 61       | 3 21               | 11        | 10        | 21             | 20        | 7         | 27        |             |         |                |            | Ì         | !               |       |
|         | 61       | 3 22               | 11        | 24        | 35             | 29        | 27        | 56        |             | - 1     |                |            |           | 1               |       |
|         | 61<br>61 | 3 30               | 21        | 19        | 40             | 67        | 48        | 115       |             |         |                |            |           |                 |       |
| 7       |          | 4 3                | 119       | 12        | 131            | 968       | 1         | 969       | 1           | Ì       |                |            |           |                 |       |
| :       | 61       | 4 12               | 156       | 12        | 168            | 1882      | 12        | 1894      | ļ           |         |                |            |           |                 |       |
|         | 61       | 4 12               | 24        | 11        | 35             | 74        | 14        | 88        |             |         |                |            |           |                 |       |
|         | 61<br>61 | 5 1                | 0         | 27        | 27             | 1 0       | 21        | 21        | ì           |         |                |            |           |                 |       |
|         |          | 5 5                | 23        | 14        | 37             | 43        | 10        | 53        |             |         |                |            |           |                 |       |
|         | 61<br>61 | 5 11               | 11        | 7         | 18             | 23        | ī         | 24        | -           |         |                |            |           |                 |       |
|         | 61       | 5 24               | 241       | 7         | 248            | 177       | 2         | 179       |             |         |                |            |           |                 |       |
|         |          | 5 26               | 5         | 6         | 11             | 10        | 0         | 10        |             |         |                |            |           |                 |       |
| -       | 61       | 6 2                | ő         | 2         | 2              | 0         | l o       | 0         |             |         |                |            |           |                 |       |
|         | 61       | 6 13               | 18        | ő         | 18             | 31        | 0         | 31        |             |         |                |            |           |                 |       |
|         | 61       | 6 22               | 8         | 2         | 10             | 16        | 1         | 17        |             |         |                |            |           | 1               |       |
|         | 61       | 6 29               | 2         | 9         | 11             | 0         | 2         | 2         |             |         |                |            |           |                 |       |
|         | 61       | 7 6                | l ī       | 1         | 2              | 2         | 1         | 3         |             |         |                |            | ! !       | ļ               | l     |
|         | 61       | 9 5                | Ô         | l î       | ī              | 2         | 14        | 16        |             |         |                |            |           |                 |       |
|         | 61       | 9 5                | ŏ         | 3         | 3              | 3         | 7         | 10        |             |         |                |            |           |                 |       |
| 7 5     | 61       | 8 10               | 1 0       | 3         | 3              | 0         | 0         | 0         |             |         |                |            |           |                 |       |
| 7 10    | 61       | 8 23               | 2         | 4         | 6              | 9         | 4         | 13        |             |         |                |            | 1 1       |                 |       |
| 7 17    | 61       | 9 8                | ٥         | 4         | 4              | 4         | 12        | 16        |             |         | ]              |            |           |                 | ]     |
|         | 61       | 9 7                | 3         | ż         | 5              | 8         | 4         | 12        |             |         | Ì              |            |           |                 |       |
| 1 2.5   | O I      | ' '                |           | _         |                |           |           |           |             |         | <u> </u>       |            |           |                 |       |

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

SAN JUAN RIVER

STATION LOCATION ANIMAS RIVER AT

CEDAR HILL, NEW MEXICO

| DATE                                                                                           | 1                             |           | RADI      | OACTIVITY IN | WATER     |           |       | 7 | RADIO                         | ACTIVITY IN PL | ANKTON (drv)  | -T- | T                | DIOACTIVITY IN  | 4/4 Tra      |
|------------------------------------------------------------------------------------------------|-------------------------------|-----------|-----------|--------------|-----------|-----------|-------|---|-------------------------------|----------------|---------------|-----|------------------|-----------------|--------------|
| SAMPLE                                                                                         | DATE OF                       | I         | ALPHA     |              |           | BETA      |       | 7 |                               |                | ACTIVITY      | ┪   |                  | GROSS ACTIVIT   |              |
| TAKEN                                                                                          | DATE OF<br>DETERMI-<br>NATION | SUSPENDED | DISSOLVED | TOTAL        | SUSPENDED | DISSOLVED | TOTAL | 7 | DATE OF<br>DETERMI-<br>NATION | ALPHA          |               | ┥   | SUSPENDED        |                 |              |
| MO. DAY YEAR                                                                                   |                               | μμc/l     | μμε/Ι     | μμς/Ι        | μμε/Ι     | μμc/l     | μμc/l |   | MO. DAY                       | и инс/д        | μμc/g         | 7   |                  |                 |              |
| 7 31 61<br>8 7 61<br>8 14 61<br>8 21 61<br>8 29 61<br>9 12 61<br>9 12 61<br>9 12 61<br>9 25 61 |                               |           |           |              |           |           |       |   |                               |                | BETA<br>μμc/g |     | SUSPENDED  ##c/l | DISSOLVED μμc/l | TOTAL  ##e/i |
|                                                                                                |                               |           |           |              |           |           |       |   |                               |                |               |     |                  |                 |              |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

SAN JUAN RIVER

STATION LOCATION ANIMAS RIVER AT

CEDAR HILL, NEW MEXICO

|                                                                                                                                                | <del>-</del> T                   |                                                                                                                              | -       | <del></del>           | ALGAE (1             | lumber                                             | per ml.)                                 |       |                                                                               |                                                                                                                | INE<br>DIA                                   | RT                         |                                        |                                                                      |                                                                                 | DI                         | ATOM                                                                      | ıs                                                                         |                                                                                  |                                             |                                          | ź                                                                 |                           | MICROIN                                                      | VERTEBR                      | ATES                         |                              |                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------|----------------------|----------------------------------------------------|------------------------------------------|-------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------|----------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------|-------------------------------------------------------------------|---------------------------|--------------------------------------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------------------------------------|
| DATE<br>OF SAMPL                                                                                                                               | LE                               |                                                                                                                              | BLUE-0  | GREEN                 | GREE                 | N.                                                 | FLAGEL<br>(Pigma                         |       | DIAT                                                                          | омѕ                                                                                                            | DIA<br>SHE<br>(No. p                         | LLS                        |                                        | DOM1<br>(See                                                         | NANT<br>Introd                                                                  | SPEC<br>luction            | for Cod                                                                   | D PER                                                                      | RCENT<br>tificati                                                                | AGES                                        |                                          | корсанктон<br>Биелтиер<br>ти.)                                    | A<br>ml.)                 | S<br>liter)                                                  | EA<br>liter)                 | iES<br>liter)                | AL FORMS<br>ter)             | genera<br>oduction<br>frication                             |
| MONTH                                                                                                                                          | YEAR                             | TOTAL                                                                                                                        | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID              | FILA-<br>MENT-<br>OUS                              | GREEN                                    | OTHER | CENTRIC                                                                       | PENNATE                                                                                                        | CENTRIC                                      | PENNATE                    | FIRST#                                 | PER-                                                                 | SECOND*                                                                         | PER.<br>CENTAGE            | THIRD*                                                                    | PER.<br>CENTAGE                                                            | FOURTH                                                                           | PER-<br>CENTAGE                             | OTHER PER-<br>CENTAGE                    | OTHER RICROPLANK<br>FUNGI AND SHEATH<br>BACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)                                 | CRUSTACEA<br>(No. per liter) | NEMATOBES<br>(No. per liter) | OTHER ANIMAL (No. per liter) | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| 10 17 6<br>11 7 6<br>11 21 6<br>12 5 6<br>12 7 6<br>2 21 6<br>3 7 6<br>3 21 6<br>4 17 6<br>5 15 6<br>6 6 6<br>6 7 5 6<br>7 17 7 17 8<br>8 21 6 | 50<br>50<br>51<br>51<br>51<br>51 | 4500<br>7500<br>6100<br>1200<br>1700<br>1900<br>4300<br>900<br>4300<br>1600<br>11600<br>1300<br>1000<br>1300<br>1400<br>1800 |         | 20 20 20              | 70<br>20<br>20<br>20 | 20<br>50<br>20<br>20<br>50<br>40<br>20<br>40<br>40 | 70<br>70<br>40<br>40<br>130<br>40<br>270 | 20 20 | 50<br>40<br>50<br>20<br>20<br>330<br>60<br>20<br>120<br>70<br>80<br>100<br>60 | 4490<br>7250<br>6100<br>1210<br>1600<br>1560<br>850<br>4220<br>760<br>230<br>70<br>1080<br>620<br>1220<br>1410 | 20<br>20<br>50<br>40<br>20<br>20<br>40<br>20 | 600<br>220<br>1390<br>1180 | 85<br>85<br>85<br>85<br>85<br>86<br>86 | 40<br>40<br>70<br>70<br>60<br>70<br>60<br>30<br>40<br>20<br>30<br>50 | 93<br>93<br>93<br>93<br>93<br>93<br>93<br>93<br>93<br>93<br>93<br>93<br>93<br>9 | 20<br>20<br>10<br>10<br>10 | 70<br>2<br>70<br>92<br>70<br>70<br>88<br>25<br>93<br>92<br>92<br>92<br>92 | 10<br>10<br>* 10<br>* * * * * 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 71<br>70<br>71<br>71<br>92<br>71<br>70<br>71<br>92<br>31<br>52<br>52<br>70<br>71 | 10<br>*<br>10<br>*<br>*<br>*<br>*<br>*<br>* | 10 300 100 100 100 100 100 100 100 100 1 | 20<br>40<br>20<br>110.<br>70                                      | 20                        | 5<br>2<br>1<br>1<br>16<br>2<br>2<br>5<br>197<br>2<br>13<br>1 | 111                          | 1 7 3 1 9 1 3                | 7 9 1                        | 7-663<br>7-7-763<br>7-63<br>7-63<br>7-7-3<br>7-63<br>7-63   |

# ORGANIC CHEMICALS RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

SAN JUAN RIVER

STATION LOCATION ANIMAS RIVER AT

CEDAR HILL, NEW MEXICO

|                                                                                                                                                                                                     |                                                                       |                                        |                                                    | 1                                    |                                                |                                                        |            | CHLOROF                                 | ORM EXTR                     | CTABLES |               |                 |          |                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------|----------------------------------------------------|--------------------------------------|------------------------------------------------|--------------------------------------------------------|------------|-----------------------------------------|------------------------------|---------|---------------|-----------------|----------|---------------------|
| DATE OF SAMPLE                                                                                                                                                                                      |                                                                       | EXTRACTABL                             | L3                                                 |                                      |                                                |                                                        |            | NEUTRALS                                |                              |         |               |                 |          |                     |
| BEGINNING END  T                                                                                                                                                                                    | LLONS<br>TERED TOTAL                                                  | CHLORO-<br>FORM                        | ALCOHOL                                            | ETHER<br>INSOLUBLES                  | WATER<br>SOLUBLES                              | TOTAL                                                  | ALIPHATICS | AROMATICS                               | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS    | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES    | Loss                |
| 10 3 60 10 24 45<br>11 7 60 11 21 84<br>12 5 60 12 19 32<br>1 3 61 1 12 81<br>2 6 61 2 21 63<br>3 7 61 3 17 63<br>4 3 61 4 17 56<br>5 2 61 5 13 74<br>6 6 61 6 19<br>7 5 61 7 14 2<br>8 7 61 8 21 5 | 970 89 410 59 384 83 152 59 3771 52 631 51 400 42 273 * 980 * 431 127 | 12<br>16<br>16<br>12<br>17<br>19<br>20 | 75<br>47<br>67<br>43<br>50<br>35<br>32<br>22<br>74 | 0<br>0<br>0<br>0<br>1<br>1<br>1<br>1 | 2<br>1<br>1<br>2<br>2<br>4<br>4<br>5<br>7<br>7 | 8<br>8<br>12<br>10<br>7<br>6<br>8<br>7<br>-<br>-<br>25 | 124211126  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5576556415                   | 10000   | 2112212229    | 0221            | 01000001 | 1 1 2 2 2 2 2 2 3 6 |

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

SAN JUAN RIVER

STATION LOCATIONANIMAS RIVER AT

CEDAR HILL, NEW MEXICO

|        | DATE     | Ī  |                                  |                             | 1     |                |                | CHLORINE       | DEMAND          |                              |                   |                    |                  |                        |                            |                  |                    | TOTAL                       | COLIFORMS    |
|--------|----------|----|----------------------------------|-----------------------------|-------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|----------------------------|------------------|--------------------|-----------------------------|--------------|
|        | SAMP     |    | TEMP,<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/l | рН    | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/i | per 100 ml.  |
|        |          |    |                                  |                             |       | 5.1            |                | 1.8            | 3.8             | •0                           | 42                | 186                | 290              | 10                     | 3                          | 220              | •4                 |                             | 1400         |
| 10     | - 1      | 60 | 12.0                             | 9.1                         | 8.2   | 4.0            | _              | 1.2            | 3.9             | • 0                          | 47                | 210                | 294              | 10                     | 18                         | 170<br>208       | 4                  | _ 1                         | 2200         |
|        | 10       | 60 | 11.0                             | 8.2                         | 8.1   | 1.9            | - 1            | 2.5            | 4.2             | <b>.</b> 4                   | 36                | 162                | 256              | 16                     | 1100<br>20                 | 300              | .3                 | _                           | 300          |
|        | 17<br>24 | 60 | 10.0                             | 9.8                         | 8.2   | •4             | -              | 1.8            | 3 • 5           | • 3                          | 28                | 164                | 282<br>272       | 12                     | 8                          | 300              | .4                 | _                           | 100          |
| 10     | 31       | 60 | 6.0                              | 9.8                         | 8.2   | 2.5            | -              | 1.9            | 3.7             | •1                           | 30                | 172                | 282              | 20                     | 1780                       | 260              | .5                 | - '                         | 800          |
| iil    | 7        | 60 | 12.0                             | 7.8                         | 8.1   | 2.6            | -              | 1.4            | 4.0             | •0                           | 35<br>26          | 134                | 284              | 5                      | 4                          | 196              | .6                 | -                           | <b>-</b>     |
| _      | 14       | 60 | 6.0                              | 5.5                         | 8.1   | 5.2            | -              | 1.8            | 2.7             | •0                           | 33                | 120                | 272              | 8                      | 6                          | 250              | • 4                |                             | *1000        |
| 11     | 21       | 60 | 5.0                              | 11.6                        | 8.1   | 2.7            | -              | 1.8<br>1.9     | 2 • 4           | .0                           | 23                | 128                | 292              | 29                     | 8                          | 250              | • 3                | -                           | *100         |
| 11     | 28       | 60 | 3.0                              | 10.4                        | 8.1   | 2.1            | -              | 1.9            | 4.9             | .1                           | 34                | 116                | 272              | 18                     | 70                         | 236              | • 6                |                             | 200          |
| 12     | 5        | 60 | 2.0                              | -                           | 8.1   | ,              | 80<br>107      | 1.8            | 4.6             | .1                           | 22                | 124                | 276              | 15                     | 32                         | 180              | •5                 | _                           | 200          |
| 12     | 12       | 60 | 2.0                              | 10.4                        | 8 • 2 | 1.7<br>*.9     | 82             | 2.5            | 5.0             | .2                           | 32                | 132                | 288              | 8                      | 10                         | 245              | •6                 | _                           | _            |
| 12     | 19       | 60 | •0                               | 11.0                        | 8.1   | 8.5            | 79             | 2.9            | 5.3             | .4                           | 39                | 124                | 272              | 5                      | 16                         | 220<br>370       | .6                 | _                           | _            |
| 12     | 27       | 60 | .0                               | 11.2                        | 8.1   | 2.4            | 86             | 2.7            | 6.0             | •3                           | 42                | 146                | 264              |                        | 24                         | 180              | .5                 | _                           | 91           |
| 1      | 3        | 61 | 3.0<br>4.0                       | 11.8                        | 8.1   | 2.3            | -              | 2.6            | 5.8             | .1                           | 25                | 130                | 268              | 1                      | 20                         | 296              | 4                  | _                           | 100          |
| 1 1    | 9        | 61 | 2.0                              | 10.5                        | 8.0   | 2.1            | 67             | 2.6            | 5 . 8           | •1                           | 39                | 138                | 258              | L                      | 3                          | 300              | 1                  |                             | *100         |
| 1      | 24       | 61 | .0                               | 10.4                        | 8.1   | 2.0            | -              | -              | -               | •1                           | 37<br>52          | 132                | 268              |                        | 35                         | 190              |                    | -                           | *100         |
| 1      | 31       | 61 | 1.0                              |                             | 8.1   | 2.3            | -              | -              | -               | •0                           | 1                 |                    | 284              |                        | 10                         | 200              |                    | -                           | 400          |
| 2      | 7        | 61 | 2.0                              |                             | 8.2   | 1.6            | -              | -              | -               | -2                           | 1                 |                    | 272              |                        | 353                        | 380              |                    | -                           | *100         |
| 2      | 14       | 61 | 7.0                              |                             | 8.1   | 2.5            | _              | _              | _               | .2                           | 1                 |                    | 276              | 8                      | 90                         | 220              |                    | _                           | *100<br>*100 |
| 2      | 21       | 61 | 5.0                              | 10.9                        | 8.4   | 1.8            | _              | \              | _               | -                            | -                 | .   -              | -                | -   -                  |                            |                  | .3                 | _                           | 1 "100       |
| 2      | 28       |    |                                  | 1                           |       | 2.2            | _              | _              | 1               | • 2                          | 5 9               | 140                | 300              |                        |                            | 240              |                    | _                           | 50           |
| 3      | 1        | 61 | 5.0                              | 11.8                        | 8.5   | 2.2            | _              | _              | -               | -                            | .   -             | 1                  | 1                |                        | i                          | 350              |                    | _                           | 1 -          |
| 3      | 7        | 1  | 7.0                              | 10.9                        | 8.1   | .8             | -              | -              | -               |                              |                   |                    |                  | - 1                    | 1                          | 330              |                    | -                           | -            |
| 3<br>3 | 14       |    | 7.0                              |                             | 8.1   | 5.1            | 25             | -              | -               |                              |                   |                    | 1                |                        | ı                          |                  |                    | -                           | 10000        |
| 3      | 15       |    | 1                                | _                           | _     | -              | \ <b>-</b>     | -              |                 | 1                            | 1                 | -                  | 1                | ) 45                   | 4000                       | -                | -   -              | - 1                         | 5000         |
| 3      | 21       |    |                                  | 8.6                         | 8.1   | 8.6            | -              | -              | 1               | • 1                          |                   | .   -              |                  | -                      |                            |                  | -   -              | 1                           | 630          |
| 3      |          |    |                                  | -   -                       | -     | _              | -              | -              |                 | 1 .                          | · .               | 1                  | 26               | 4   8                  | 650                        | 180              |                    |                             | 1 22000      |
| 3      | 29       | 61 | 6.0                              | 9.5                         | 8.1   |                | 95             | -              |                 | 1                            | -                 | -                  |                  | -   -                  | 1                          |                  | -   -              | i                           | 22000        |
| 4      | 3        |    |                                  | -   =                       |       | 2 -            | _              | -              | 1               |                              | 20                | 130                | 23               |                        |                            |                  |                    | 1                           | 1 _          |
| 4      |          |    |                                  |                             | 8.0   |                | _              | -              | 1               | 1 .                          |                   |                    |                  | 1 .                    | 1                          | l l              | 1                  | 1                           | 3200         |
| 4      |          |    |                                  | 1                           | 8.0   |                | -              | -              | 1               | 1 .                          | ) 1               | -                  | 1                | - 1                    | 140                        | 1                | - 1                | i i                         | 6700         |
| 4      |          |    |                                  |                             | 8.2   |                | 32             | -              | .   -           |                              | - 1               | 9 56               |                  | - 1                    | 7   870<br>5   33          | ' }              |                    | i i                         | 200          |
| 5<br>5 |          | 61 | 1                                | - 1                         | 8.1   |                | 37             | -              | .  -            |                              |                   | 1 -                | 1                |                        | -                          | 1                | -                  | ) <b>–</b>                  | -            |
| 5<br>5 |          |    |                                  | ·                           | 8.0   |                | -              | -              |                 |                              |                   |                    |                  | - 1                    | -                          | 1 -              | - 1                |                             |              |
| 5      |          |    |                                  |                             | 7.9   | •1             | -              | -              |                 | 1                            | -                 | 9 40               | <b>-</b> 1       | 8 1                    | •                          |                  | 4   .              | -   -                       | 1400         |
| 5      |          |    |                                  |                             | -     | • 2            | -              | -              | -  -            | -                            | ٦                 | ٠   ٢              | ٠                | -   -                  |                            |                  |                    |                             |              |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

SAN JUAN RIVER

STATION LOCATIONANIMAS RIVER AT

CEDAR HILL, NEW MEXICO

| DATE                                                                                                                                                                 |                                                                                                              |                                                   |                                                            |                                        | <u> </u>       | CHLORINE       | DEMAND          |                                                                                                |                   |                                                                                              |                                                                                                                             |                                                                                       |                                                                                     |                                                                                        |                 | TOTAL                                                                               |                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------|----------------------------------------|----------------|----------------|-----------------|------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| DAY YEAR                                                                                                                                                             | TEMP. (Degrees Centigrade)                                                                                   | DISSOLVED<br>OXYGEN<br>mg/l                       | На                                                         | B.O.D.<br>mg/l                         | C.O.D.<br>mg/l | 1-HÓUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/I                                                                   | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l                                                                           | HARDNESS<br>mg/l                                                                                                            | (scale units)                                                                         | TURBIDITY (scale units)                                                             | SULFATES<br>mg/l                                                                       | PHOSPHATES mg/I | DISSOLVED<br>SOLIDS<br>mg/i                                                         | per 100 ml.                                                                            |
| 7 661<br>12 661<br>12 661<br>13 661<br>14 661<br>17 7 11 8 61<br>17 7 12 3 661<br>14 661<br>15 661<br>15 661<br>15 661<br>16 661<br>17 7 18 8 8 8 8 8 9 9 19 9 25 61 | 14.0<br>16.0<br>17.0<br>18.0<br>19.0<br>23.0<br>23.0<br>23.0<br>21.0<br>21.0<br>21.0<br>20.0<br>19.0<br>19.0 | 7.1.325.7.825.8.7.6.3<br>8.8.7.6.9.6.7.6.8.7.7.8. | 7.99.1<br>7.99.1<br>8.0<br>8.1<br>8.1<br>8.1<br>7.8<br>8.1 | 1.84<br>-7<br>-4-55<br>-7<br>-61<br>-3 |                | 4.66.7.66.9    | 5.3             | • 0<br>• 1<br>• 0<br>• 0<br>• 1<br>• 0<br>• 1<br>• 1<br>• 1<br>• 1<br>• 1<br>• 1<br>• 2<br>• 1 | 10                | 38<br>-10<br>-16<br>20<br>32<br>-32<br>-58<br>140<br>-106<br>-106<br>-118<br>90<br>100<br>76 | 92-<br>102-<br>94-<br>120-<br>154-<br>172-<br>2214-<br>244-<br>182-<br>188-<br>198-<br>188-<br>198-<br>146-<br>200-<br>144- | 10<br>15<br>-5<br>6<br>7<br>-5<br>-4<br>35<br>-3<br>-3<br>-3<br>8<br>4<br>3<br>2<br>6 | 24<br>3 - 2<br>12<br>14 - 6<br>12<br>3 - 5<br>12<br>3 - 5<br>94<br>40<br>295<br>116 | 45<br>- 36<br>- 40<br>56<br>87<br>- 80<br>- 115<br>90<br>- 60<br>125<br>70<br>80<br>70 | 1               | 140<br>140<br>164<br>220<br>360<br>341<br>-<br>300<br>250<br>-<br>323<br>230<br>260 | 270<br>900<br>500<br>100<br>1700<br>4500<br>2300<br>2100<br>2100<br>2300<br>630<br>630 |

stream flow data - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station near Cedar Hill, New Mexico Operated by U.S. Geological Survey STATE

New Mexico

MAJOR BASIN

Colorado River

MINOR BASIN

San Juan River

STATION LOCATION

Animas River at

Cedar Hill, New Mexico

| ay                       | October -    | November     | December     | January | February | March                | April            | May    | June   | July           | August                | September    |
|--------------------------|--------------|--------------|--------------|---------|----------|----------------------|------------------|--------|--------|----------------|-----------------------|--------------|
|                          |              |              |              |         | 192      | .166                 | .415             | 2.200  | 4.080  | .940           | .320                  | .441         |
| 1                        | .246         | <b>.2</b> 86 | .258<br>.249 | .230    | .183     | .166                 | 415              | 2.560  | 3.880  | .905<br>.863   | .482                  | .415         |
|                          | .240         | .280         | .249         | .220    | .189     |                      | •475             | 2.890  | 3.260  | .863           | •837                  | .403         |
| 2                        | .240         | .269         | .262         | .210    | .183     | .176                 | •412             | 2.860  | 2.470  | .842           | .846                  | .460         |
| 2<br>3<br>4<br>5         | .237         | .272         | <b>.2</b> 94 | .220    | .183     | .186                 | .752             | 2.170  | 2.360  | .849           | •747                  | .467         |
| 4                        | 1620         | .276         | .262         | .230    | .183     | -194                 | 1.040            | 2.1(0  | 2.500  | •0.,           |                       |              |
| >                        | .231         | • 2,10       | ,•=          |         |          |                      | 201              | . ((0  | 2.460  | .770           | .684                  | .474         |
| _                        | 000          | .262         | .200         | .230    | .178     | .186                 | .884             | 1.660  |        | .770           | .582                  | .460         |
| 6                        | .228         | 202          | .225         | .230    | .183     | .186                 | .912             | 1.380  | 2.500  | .764           | .536                  | .428         |
| 7                        | .228         | .298         | .240         | .240    | .183     | .183                 | •996             | 1.180  | 2.770  | • (O4          | . 730                 | 530          |
| 8                        | .225         | . 306        |              | .240    | .186     | .178                 | •76 <sup>4</sup> | 1.040  | 2.970  | .746           | .501<br>.441          | .530<br>.882 |
| 8<br>9                   | .231         | .290         | .260         | .240    | .191     | .199                 | .722             | 1.170  | 2.970  | .710           | • <del>44</del> 1     | -00E         |
| 10                       | .280         | .272         | .260         | .240    | • 1.71   | •-//                 | - •              |        |        |                |                       | .837         |
|                          |              |              |              | ماده    | .194     | .234                 | .680             | 1.600  | 2.920  | .638           | • 397                 | •031         |
| 11                       | .342         | .265         | .240         | .240    | • 194    | .266                 | .644             | 2.350  | 2.830  | • 584          | .422                  | .684         |
| 12                       | • 374        | .265         | .230         | .230    | .199     | .269                 | .698             | 2.470  | 2.620  | . 550          | •558<br>•4 <b>2</b> 8 | .598         |
| 10                       | .346         | .265         | .245         | .230    | .194     | .209                 | .722             | 1.870  | 2.320  | . 520          | .428                  | .515<br>.494 |
| 13<br>14                 | .326         | .265         | .260         | .230    | .212     | •29 <sup>1</sup> 4   | .650             | 1.500  | 2.300  | .480           | .480                  | •494         |
| 14                       | .350         | .265         | .240         | .230    | .212     | .326                 | .050             | 1.,000 | 2000   |                |                       |              |
| 15                       | •3,0         | •==0)        |              |         |          |                      | C2 1.            | 1.430  | 2.090  | .446           | .598                  | .501         |
| _                        | .456         | .262         | .225         | .235    | .212     | • 354                | .614             | 1.620  | 2.010  | .438           | .614                  | .454         |
| 16                       | .420         | .252         | .220         | .235    | .217     | . 342                | .680             | 1.020  | 2.010  | .392           | .729                  | .675         |
| 17                       | .520         |              | .220         | .230    | .199     | . 350                | .905             | 2.060  | 1.880  | .374           | .693                  | .801         |
| 18                       | .628         | .272         | .230         | .230    | .191     | • 350                | 1.070            | 3.010  | 7.000  | .370           | .590                  | .810         |
| 19                       | . 446        | .276         | .240         | .230    | .178     | .330                 | 1.270            | 3.690  | 1.880  | . 210          | • >>>                 |              |
| 20                       | ، 379        | .280         | .240         | ٥٤.     | ,_,,     |                      |                  |        | - 0    | . 384          | •536                  | .801         |
|                          |              |              | ماه          | .230    | .191     | . 346                | 1.400            | 3.210  | 1.870  | • 304          | - 500                 | •771         |
| 21                       | .362         | .266         | .240         | .230    | .199     | . 322                | 1.350            | 3.780  | 1.690  | • 397          | .522<br>.454          | .846         |
| 22                       | . 346        | .266         | .240         | .220    | .207     | .362<br>.406         | 1.470            | 3.830  | 1.550  | - 358          | •474<br>kab           | .910         |
| 23                       | • 334        | .266         | .240         | .220    | .181     | 1,06                 | 1.520            | 3.690  | 1.370  | .326<br>.318   | .434                  | .819         |
| 23<br>24                 | . 334        | .266         | .240         | .225    |          | .433                 | 1.300            | 3.790  | 1.320  | .31.8          | . 454                 | • 017        |
| 25                       | .330         |              | .240         | .215    | .178     | • 433                | 1.000            | 3-12-  |        |                |                       |              |
|                          | - 550        |              |              |         |          | 200                  | 1.040            | 4.150  | 1.240  | .302           | .460                  | •75          |
| <b>2</b> 6               | .330         | .262         | .240         | .210    | .173     | .388                 | .926             | 4.400  | 1.150  | .290           | . 434                 | .69          |
| <b>4</b> 0               | .318         |              | .250         | .200    | .173     | .346<br>.366<br>.428 | 97C0             | 4.460  | 1.070  | <b>.2</b> 86   | . 391                 | .66          |
| <b>2</b> 7<br><b>2</b> 8 | . 210        | .258         | .240         | .200    | .169     | . 366                | .972             | 4.230  | .964   | .280           | . 385                 | .67          |
| 28                       | .318<br>.318 | .252         | .240         | .195    |          | .428                 | 1.300            | 4.250  | .948   | . 374          | .385<br>.441          | .63          |
| 29                       | . 318        |              | .230         | .185    |          | .460                 | 1.760            | 4.080  | • 5-10 | . 314<br>. 340 | 1441                  |              |
| 29<br>30<br>31           | .306         | .249         | .230         | .189    |          | •433                 |                  | 3.860  |        | ٠,٠٠٠          |                       |              |
| 31.                      | <b>.2</b> 86 | )            | .230         | .107    |          |                      |                  |        |        |                |                       |              |

STATE

FLORIDA

MAJOR BASIN

SOUTHEAST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

APALACHICOLA RIVER

STATION LOCATION APALACHICOLA RIVER AT

CHATTAHOOCHEE, FLORIDA

|                | T                                                                                                            |                    | RAD       | IOACTIVITY IN V | VATER     |           |       |   | RADIO                        | DACT | IVITY IN PLA | NKTON (dry) | П        | RAD     | OACTIVITY IN       | WATER |
|----------------|--------------------------------------------------------------------------------------------------------------|--------------------|-----------|-----------------|-----------|-----------|-------|---|------------------------------|------|--------------|-------------|----------|---------|--------------------|-------|
| DATE<br>SAMPLE | DATE OF                                                                                                      | T                  | ALPHA     |                 | Ι,        | BETA      |       | 1 |                              |      |              | ACTIVITY    | 1        |         | GROSS ACTIVE       | ry    |
| TAKEN          | DATE OF<br>DETERMI-<br>NATION                                                                                | SUSPENDED          | DISSOLVED | TOTAL           | SUSPENDED | DISSOLVED | TOTAL |   | DATE OF<br>DETERMI<br>NATION |      | ALPHA        | BETA        | SU       | SPENDED | DISSOLVED          | TOTAL |
| MO. DAY YEAR   | R MONTH DAY                                                                                                  | μμ <sub>C</sub> /l | μμε/Ι     | μμc/l           | μμε/Ι     | μμc/l     | μμε/Ι |   | MO. DA                       | Υ    | μμc/g        | μμc/g       | <u> </u> | μμε/Ι   | μμ <sub>C</sub> /Ι | μμε/Ι |
|                | 10 18 10 19 11 2 11 18 11 25 12 2 12 15 12 30 1 10 1 25 2 17 3 7 3 20 3 24 3 29 4 5 4 12 5 17 6 13 7 19 8 29 |                    |           |                 |           |           |       |   |                              | _    |              |             |          |         |                    |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

FLORIDA

MAJOR BASIN

STATE

SOUTHEAST

MINOR BASIN

APALACHICOLA RIVER

STATION LOCATION APALACHICOLA RIVER AT

CHATTAHOOCHEE, FLORIDA

|                                                                                                                                              |                                                                                                                     |         |                       |                              |                       |                                                                                                        |                                                        |                                                                                                            |                             | INE                                                                              | RT I                                                                      |                                                                                              |                                                                                                                                                                                                                                              |         |                                                                                                                                              | ATOM                                                                       |                                                                |                                                                                        |                                                                                                                         |                                                                                        |                                                                    | ,                         | ICROIN                                                                                  | ERTEBR                       | ATES            | T             |                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------|-----------------------|------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------|------------------------------|-----------------|---------------|-------------------------------------------------------------|
| DATE<br>OF SAMPLE                                                                                                                            |                                                                                                                     | BLUE-0  |                       | ALGAE (N<br>GREE             |                       | FLAGEL<br>(Pigme                                                                                       | LATES<br>nted)                                         | DIATO                                                                                                      | MS                          | INE<br>DIAT<br>SHE<br>(No. pa                                                    | LLS                                                                       |                                                                                              | DOMIN<br>(See                                                                                                                                                                                                                                | Introd  | SPECI                                                                                                                                        | ES AN                                                                      | DPER                                                           | CENT.                                                                                  | )n*)                                                                                                                    |                                                                                        | корсанктой<br>Вибатиев<br>· ml.)                                   | M.)                       | RS<br>liter)                                                                            | SEA<br>liter)                | DES<br>liter)   | Her)          | DOMINANT GENERA<br>(See Introduction<br>(or Identification) |
| MONTH<br>DAY<br>YEAR                                                                                                                         | TOTAL                                                                                                               | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                      | FILA-<br>MENT-<br>OUS | GREEN                                                                                                  | OTHER                                                  | CENTRIC                                                                                                    | PENNATE                     | CENTRIC                                                                          | PENNATE                                                                   | FIRST#                                                                                       | PER.<br>CENTAGE                                                                                                                                                                                                                              | SECOND# | PER.<br>CENTAGE                                                                                                                              | THIRD#                                                                     | PER-<br>CENTAGE                                                | FOURTH                                                                                 | PER.<br>CENTAGE                                                                                                         | OTHER PER-<br>CENTAGE                                                                  | OTHER RICROPLANK<br>FUNGI AND SHEATH,<br>EACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)                                                            | CRUSTACEA<br>(No. per lifer) | (No. per lifer) | (Na. per Her) | (See In                                                     |
| 10 3 60<br>10 17 60<br>11 7 60<br>11 21 60<br>2 20 61<br>3 8 61<br>3 22 61<br>4 17 61<br>5 15 61<br>6 19 61<br>7 17 63<br>8 21 63<br>9 19 63 | 1000<br>3600<br>2900<br>1600<br>5600<br>300<br>1 400<br>1 700<br>1 1200<br>1 1500<br>1 1 900<br>1 1 1900<br>1 1 900 | 20 20   | 20                    | 270<br>40<br>70<br>330<br>80 |                       | 200<br>440<br>50<br>270<br>180<br>90<br>110<br>90<br>330<br>80<br>130<br>350<br>60<br>70<br>120<br>210 | 20<br>110<br>440<br>150<br>210<br>20<br>20<br>20<br>20 | 400<br>180<br>2350<br>1480<br>970<br>4180<br>110<br>220<br>400<br>950<br>1100<br>180<br>1060<br>210<br>330 | 60<br>20<br>90<br>310<br>20 | 130<br>600<br>1100<br>270<br>220<br>110<br>210<br>290<br>290<br>520<br>370<br>80 | 70<br>250<br>40<br>20<br>90<br>180<br>70<br>160<br>180<br>60<br>60<br>150 | 57<br>23<br>82<br>57<br>56<br>56<br>57<br>57<br>57<br>57<br>57<br>56<br>57<br>57<br>56<br>57 | 20<br>30<br>70<br>20<br>40<br>20<br>40<br>50<br>40<br>60<br>30<br>40<br>30<br>40<br>30<br>40<br>30<br>40<br>30<br>40<br>30<br>40<br>30<br>40<br>30<br>40<br>30<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 | 57      | 10<br>20<br>20<br>10<br>10<br>10<br>20<br>20<br>10<br>20<br>10<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 82<br>57<br>56<br>27<br>57<br>57<br>82<br>61<br>58<br>57<br>57<br>57<br>82 | 10<br>20<br>10<br>10<br>10<br>10<br>10<br>10<br>20<br>20<br>20 | 23<br>57<br>82<br>27<br>56<br>92<br>82<br>82<br>56<br>56<br>27<br>27<br>27<br>27<br>27 | 10<br>10<br>10<br>10<br>10<br>*<br>*<br>*<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 50<br>30<br>40<br>30<br>10<br>60<br>30<br>50<br>50<br>20<br>10<br>20<br>20<br>20<br>20 | 20<br>20<br>270<br>110<br>20                                       | 20<br>10<br>10            | 25<br>63<br>111<br>43<br>15<br>59<br>22<br>17<br>56<br>48<br>8<br>31<br>15<br>132<br>65 |                              |                 | 1 2           | 7 -2 48964977 -4937 3497717737 4-9-737                      |

# ORGANIC CHEMICALS RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

FLORIDA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

APALACHICOLA RIVER

STATION LOCATION APALACHICOLA RIVER AT

CHATTAHOOCHEE, FLORIDA

|                                                                     |                                                   |                                               |                                         |                                            |                     |                                 |                                       |               | CHLOROF       | ORM EXTRA                       | CTABLES                         |                                   |                                  |                 |                                     |
|---------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------|-----------------------------------------|--------------------------------------------|---------------------|---------------------------------|---------------------------------------|---------------|---------------|---------------------------------|---------------------------------|-----------------------------------|----------------------------------|-----------------|-------------------------------------|
| DATE OF SAMPLE                                                      |                                                   | E                                             | TRACTABL                                | ES                                         |                     | <u> </u>                        |                                       |               | NEUTRALS      |                                 |                                 |                                   |                                  |                 |                                     |
| MONTH DAY MONTH MONTH                                               | GALLONS<br>FILTERED                               | TOTAL                                         | CHLORO-<br>FORM                         | ALCOHOL                                    | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES               | TOTAL                                 | ALIPHATICS    | AROMATICS     | OXYGEN-<br>ATED<br>COMPOUNDS    | LOSS                            | WEAK<br>ACIDS                     | STRONG<br>ACIDS                  | BASES           | Loss                                |
| 11 17 60 12<br>1 4 61 1 7<br>2 9 61 3 2<br>4 27 61 5 2<br>6 26 61 8 | 25 5340<br>21 5120<br>29 5070<br>2 4650<br>8 5058 | 115<br>194<br>157<br>162<br>228<br>173<br>182 | 23<br>70<br>51<br>77<br>107<br>74<br>50 | 92<br>124<br>106<br>85<br>121<br>99<br>132 | 0 4 1 2 3 4 1       | 5<br>11<br>18<br>20<br>17<br>12 | 8<br>20<br>17<br>29<br>26<br>19<br>18 | 1 2 2 4 3 2 2 | 0 2 1 3 2 1 1 | 6<br>14<br>21<br>19<br>14<br>14 | 1<br>0<br>0<br>1<br>2<br>2<br>1 | 4<br>10<br>7<br>8<br>12<br>9<br>7 | 1<br>6<br>4<br>8<br>11<br>7<br>3 | 0 1 2 1 1 2 1 1 | 5<br>14<br>9<br>11<br>34<br>16<br>8 |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

FLORIDA

MAJOR BASIN

SIN SUUTHEAST

MINOR BASIN

APALACHICOLA RIVER

STATION LOCATIONAPALACHICULA RIVER AT

CHATTAHOUCHEE, FLURIDA

| DATE                                                                     | 1                                      |                                                      |                                                             |                                                    | -              |                | CHLORINE                   | DEMAND          |                              |                                                |                                                                                                                      |                                                               |                                                   |                                             |                       |                    | TOTAL                                   |                                                      |
|--------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|----------------|----------------|----------------------------|-----------------|------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------|---------------------------------------------|-----------------------|--------------------|-----------------------------------------|------------------------------------------------------|
| OF SAMPLE                                                                | -                                      | TEMP.<br>(Degrees<br>Centigrade)                     | DISSOLVED<br>OXYGEN<br>mg/l                                 | рН<br>7•1                                          | B.O.D.<br>mg/l | C.O.D.<br>mg/l | T-HOUR<br>mg/l             | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/I | chlorides<br>mg/l                              | ALKALINITY<br>mg/l                                                                                                   | mg/l                                                          | COLOR<br>(scale units)                            | TURBIDITY (scale units)                     | SULFATES<br>mg/l      | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/l             | per 100 ml.                                          |
| 10 17 6<br>10 24 6<br>10 31 6<br>11 21 6<br>11 28 6<br>12 5 6<br>12 12 6 | 60<br>60<br>60<br>60<br>60<br>60<br>60 | 32.0<br>30.0<br>28.0<br>30.0<br>32.0<br>28.0<br>28.0 | 6.2<br>7.0<br>7.0<br>7.0<br>7.2<br>7.6<br>7.5<br>7.1<br>9.5 | 7.2<br>7.3<br>7.1<br>7.1<br>7.2<br>7.5<br>7.0      | . 5            | 1 1 1 1 1 1    | 1111111                    |                 | 11111111                     | 2<br>4<br>2<br>-<br>4<br>2<br>2<br>4<br>2<br>4 | 35<br>40<br>46<br>-<br>48<br>49<br>49<br>46<br>49<br>48                                                              | 30<br>35<br>44<br>-<br>46<br>45<br>45<br>44<br>45<br>44<br>45 | 35<br>15<br>-<br>15<br>40<br>20<br>20<br>20<br>20 | 5 5 4 1 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | -                     | -                  | 6 8 9 8 9 8 9 9 9 9 9 8 9 8 9 8 9 8 9 8 | 150<br>40<br>7<br>35<br>31<br>110<br>63<br>250<br>59 |
| 1 24<br>1 30<br>2 8<br>2 13<br>2 20<br>2 28<br>3 8                       | 61<br>61<br>61<br>61<br>61<br>61<br>61 | 28.0<br>                                             | 9.5<br>11.2<br>10.0<br>-<br>10.0                            | 7.4<br>-7.4<br>-7.2<br>-7.0<br>-7.4                |                |                |                            |                 | -                            | 11<br>-<br>11<br>-<br>10<br>-<br>10            | 40<br>-<br>40<br>-<br>44<br>-<br>42                                                                                  | 32<br><br>31<br><br>35<br><br>35                              | 20<br>-<br>25<br>-<br>30<br>-<br>30               | - 2<br>- 5<br>- 5<br>- 5                    | -<br>-<br>-<br>-<br>- |                    | 90<br><br>96<br><br>86<br><br>90        | 70<br>290<br>40<br>14<br>*10<br>8500<br>17<br>60     |
| 3 20<br>3 27<br>4 3<br>4 17<br>4 24<br>5 1                               | 61<br>61<br>61<br>61<br>61<br>61       | 20.0                                                 | 9.0<br>-<br>-<br>9.6                                        | 7 • 4<br>-<br>-<br>7 • 1<br>7 • 6<br>-             | -              | -              | -<br>-<br>-<br>-<br>-<br>- |                 | -                            | -<br>2<br>4<br><br>-                           | -<br>49<br>48<br>-<br>-                                                                                              | 45<br>46<br>-                                                 | 35<br>-<br>20<br>15<br>-                          | 2<br>-<br>-                                 | -                     |                    | 80<br>-<br>76<br>86<br>-<br>-           | 46<br>140<br>44<br>250<br>710<br>91<br>*50<br>120    |
| 5 29<br>6 12<br>6 17<br>6 19<br>7 10<br>7 31<br>8 21                     | 61<br>61<br>61<br>61<br>61<br>61<br>61 | 28.0<br>-<br>30.0                                    | 8.9<br>-<br>9.0<br>6.5<br>9.1<br>9.0                        | 7 · 2<br>7 · 1<br>7 · 4<br>7 · 4<br>7 · 1<br>7 · 2 | -              | 1 1 1 1 1 1 1  | -                          |                 | -                            | 110                                            | 40<br>42<br>40<br>42<br>40<br>40<br>42<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 | 55<br>44<br>50<br>44<br>-                                     | 20<br>+ 60<br>15<br>+ 10<br>40                    | 20<br>20<br>15<br>10                        | -                     |                    | 60<br>80<br>70<br>80                    | 480<br>                                              |
|                                                                          |                                        |                                                      |                                                             |                                                    |                |                |                            |                 |                              | 42                                             |                                                                                                                      |                                                               |                                                   |                                             |                       |                    |                                         |                                                      |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Chattahoochee, Florida Operated by U.S. Geological Survey STATE

Florida

MAJOR BASIN

Southeast

MINOR BASIN

Apalachicola River

STATION LOCATION

Apalachicola River at

Chattahoochee, Florida

| Day      | October | November | December | January | February | March           | April    | May    | June             | July             | August           | September |
|----------|---------|----------|----------|---------|----------|-----------------|----------|--------|------------------|------------------|------------------|-----------|
| 1        | 19.300  | 9.660    | 10.300   | 13.500  | 13.000   | 125.000         | 46.400   | 40.100 | 24.700           | 27.000           | 12.500           | 24.200    |
| 3        | 19.100  | 9.430    | 10.800   | 13.500  | 13.400   | 134.000         | 64.100   | 41.600 | 23.500           | 24.200           | 12.300           | 22.100    |
| 3        | 18.700  | 9.270    | 10.800   | 11.800  | 12.800   | 134.000         | 75.600   | 43.100 | 19.900           | 20.200           | 12.400           | 19.800    |
| 4        | 18.900  | 10.100   | 10.800   | 11.400  | 15.300   | 113.000         | 84.900   | 43.000 | 18.000<br>16.900 | 20.000<br>19.100 | 12.700<br>12.900 | 18.100    |
| 5        | 19.100  | 11.200   | 10.800   | 11.000  | 14.400   | 68.400          | 78.800   | 42.400 | 16.900           | 19.100           | 12.900           | 14.500    |
| 6        | 19.200  | 9,100    | 11.400   | 11.500  | 13.700   | 58,400          | 59.800   | 37.100 | 14.700           | 18.000           | 12.300           | 17.000    |
| 7        | 19.000  | 8.970    | 10.100   | 12.300  | 14.300   | 53.600          | 53.200   | 33.400 | 14.700           | 18.000           | 12.800           | 17.900    |
| ė        | 16.400  | 9.020    | 10.000   | 13.600  | 14.500   | 50.500          | 51.600   | 32.900 | 19.800           | 19.100           | 13.500           | 16.200    |
| 9        | 13.400  | 10.500   | 10.500   | 13.100  | 15.000   | 47.900          | 51.600   | 33.700 | 17.200           | 19.000           | 13.500           | 15.500    |
| 10       | 12.900  | 10.100   | 11.600   | 11.100  | 15.600   | 45.000          | 48.400   | 33.300 | 13.000           | 17.000           | 14.300           | 19.000    |
| 11       | 12,600  | 10.600   | 12,400   | 10.900  | 15,000   | 43.600          | 42.900   | 29.100 | 11.800           | 16.200           | 16.600           | 16.400    |
| 12       | 12.700  | 8.970    | 12.500   | 10.900  | 13.100   | 37.500          | 48.100   | 28.200 | 11.700           | 16.200           | 19.100           | 12.900    |
| 13       | 12.700  | 9.590    | 12.500   | 10.900  | 13.400   | 32.300          | 57.300   | 27.400 | 11.800           | 19,500           | 19.500           | 11.800    |
| 14       | 12.800  | 8.970    | 11.500   | 11.500  | 13.000   | 33.200          | 61.000   | 29.700 | 12.800           | 24.000           | 19.100           | 12.300    |
| 15       | 12.500  | 8.900    | 11.800   | 12.400  | 13.000   | 33. <i>6</i> 00 | 65.200   | 27.900 | 14.600           | 34.800           | 17.000           | 13.800    |
| 16       | 12.600  | 10.500   | 12.100   | 11.400  | 12.200   | 33.200          | 79.000   | 27.700 | 14.600           | 28.800           | 16,700           | 13.900    |
| 17       | 12.400  | 11.200   | 12.200   | 11.900  | 12.000   | 31.800          | 82.000   | 27.900 | 14.600           | 25.100           | 16.600           | 11.800    |
| 18       | 11.600  | 9.360    | 12.800   | 12.100  | 11.400   | 33.800          | 81.800   | 27.600 | 14.500           | 22,800           | 15.200           | 13.600    |
| 19       | 10.900  | 11.100   | 12.500   | 12.500  | 11.500   | 33.200          | 74.500   | 24.000 | 15.600           | 21.100           | 14.000           | 14.100    |
| 20       | 10.900  | 9.880    | 12.000   | 12.500  | 22.600   | 33.900          | 67.000   | 20.500 | 18.900           | 20.800           | 13.100           | 12,100    |
| 21       | 10.900  | 10.500   | 12.000   | 12.400  | 44.500   | 32.000          | 59.000   | 20.700 | 24.400           | 21.200           | 12.300           | 11.500    |
| 22       | 10.800  | 13.100   | 12.000   | 12.300  | 59.100   | 30.400          | 53.800   | 18.800 | 21.100           | 26,100           | 12.200           | 11.300    |
| 23       | 10.800  | 9.860    | 12.400   | 12.800  | 67.400   | 30.700          | 49.400   | 14.100 | 26.700           | 22.900           | 12.400           | 11.100    |
| 23<br>24 | 10.700  | 9.070    | 12.600   | 12.900  | 75.200   | 28.800          | 45.400   | 15.000 | 30.100           | 19.900           | 13.000           | 10.800    |
| 25       | 10.800  | 9.920    | 13.000   | 13.200  | 79.500   | 27.100          | 40.800   | 19.200 | 30.400           | 17.800           | 17.500           | 10.700    |
| 26       | 11.000  | 9.900    | 13.200   | 14.400  | 93.400   | 25.700          | 37.700   | 28.100 | 27.800           | 17.300           | 18.200           | 10.700    |
| 27       | 9.410   | 10.300   | 12.100   | 14.600  | 101.000  | 20.800          | 36.000   | 34.600 | 27.000           | 16.400           | 20.200           | 10.800    |
| 28       | 9.220   | 12.400   | 9.630    | 15.400  | 119.000  | 20.400          | 40.600   | 34.500 | 28.300           | 15.000           | 32.200           | 10.700    |
| 29       | 9.220   | 12.100   | 9.650    | 17.700  |          | 24.200          | 39.400   | 31.500 | 30.800           | 14.800           | 21.700           | 9.430     |
| 29<br>30 | 9.120   | 11.300   | 10.900   | 14.700  |          | 25,500          | 39.400   | 24.000 | 31.100           | 14.600           | 22.400           | 8.850     |
| 31       | 9.150   | •        | 12.600   | 13.100  |          | 29.100          | <b>J</b> | 21.800 | <b>J</b>         | 13.600           | 25.500           | 0.0,0     |

STATE

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

ARKANSAS RIVER-VAN BUREN TO MOUTH

STATION LOCATION ARKANSAS RIVER AT

PENDLETON FERRY, ARKANSAS

|                                             |                                                        |                  |                     |                                   |                                           |                                        | <del></del>                          | RADIOA                        | CTIVITY IN PLAT | KTON (dry) | RAD       | OACTIVITY IN W | ATER  |
|---------------------------------------------|--------------------------------------------------------|------------------|---------------------|-----------------------------------|-------------------------------------------|----------------------------------------|--------------------------------------|-------------------------------|-----------------|------------|-----------|----------------|-------|
| DATE                                        |                                                        |                  |                     | ACTIVITY IN W                     | AIEK                                      | BETA                                   |                                      |                               |                 | CTIVITY    |           | GROSS ACTIVIT  | Y     |
| SAMPLE                                      | DATE OF<br>DETERMI-<br>NATION                          |                  | ALPHA               | TOTAL                             | SUSPENDED                                 | DISSOLVED                              | TOTAL                                | DATE OF<br>DETERMI-<br>NATION | ALPHA           | BETA       | SUSPENDED | DISSOLVED      | TOTAL |
| TAKEN                                       |                                                        | SUSPENDED        | DISSOLVED           | μμε/Ι                             | μμς/Ι                                     | μμε/1                                  | μμε/Ι                                | MO. DAY                       | μμc/g           | μμc/g      | μμε/Ι     | μμε/Ι          | μμс/  |
| 1 23 61* 3 27 61 4 24 61* 7 31 61* 8 28 61* | 11 21<br>12 30<br>2 21<br>4 13<br>5 11<br>8 29<br>9 18 | 7 20 1 1 1 1 4 0 | μμε/I 2 4 1 0 0 4 0 | 9<br>24<br>2<br>1<br>1<br>18<br>0 | 1<br>100<br>0<br>0<br>0<br>23<br>52<br>69 | 20<br>0<br>0<br>0<br>0<br>0<br>1<br>17 | 21<br>100<br>0<br>0<br>0<br>24<br>69 |                               |                 |            |           |                |       |
| 9 18 61                                     | 11 8                                                   | -                |                     | -                                 |                                           |                                        |                                      |                               |                 |            |           |                |       |
|                                             |                                                        |                  |                     |                                   |                                           |                                        |                                      |                               |                 |            |           |                |       |
|                                             |                                                        |                  |                     |                                   |                                           |                                        |                                      |                               |                 |            |           |                |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARKANSAS RIVER-VAN BUREN TO MOUTH

STATION LOCATION ARKANSAS RIVER AT

PENDLETON FERRY, ARKANSAS

| <del></del>          |                                                                                   |         |                       | ALGAE (                                                                   | Number                | per ml.)                                                        |                                   |                                                                                                               |                                                                                | IN                                                                                | RT                                                                           | T                                                  |                                                                     |                                                          |                                                    | IATO                                           | MS                                         |                                                          |                 |                                                | ·                                                                       |                         | MICROIN                      | VERTEBR                      |                              | J                                                                                         |
|----------------------|-----------------------------------------------------------------------------------|---------|-----------------------|---------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------------------|--------------------------------------------|----------------------------------------------------------|-----------------|------------------------------------------------|-------------------------------------------------------------------------|-------------------------|------------------------------|------------------------------|------------------------------|-------------------------------------------------------------------------------------------|
| DATE<br>OF SAMPLE    |                                                                                   | BLUE-   | GREEN                 | GREE                                                                      |                       | FLAGE                                                           | LLATES<br>sented)                 | DIAT                                                                                                          | омѕ                                                                            | INI<br>DIA<br>SHE<br>(No. p                                                       |                                                                              |                                                    | DOM:                                                                | NANT<br>Intro                                            | SPEC                                               | IES A                                          | ND PE                                      | RCEN<br>nti/ica                                          | TAGES           |                                                | SPLAKKTOI<br>SHEATHED<br>ml.)                                           | A ml.)                  | ts<br>liter)                 | :EA<br>liter)                | DES<br>liter)                | ter) cenera                                                                               |
| MONTH<br>DAY<br>YEAR | TOTAL                                                                             | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                                                                   | FILA-<br>MENT-<br>OUS | GREEN                                                           | OTHER                             | CENTRIC                                                                                                       | PENNATE                                                                        | CENTRIC                                                                           | PENNATE                                                                      | FIRST                                              | PER-                                                                | SECOND#                                                  | PER-                                               | THIRD#                                         | PER.                                       | FOURTH#                                                  | PER.<br>CENTAGE | OTHER PER-<br>CENTAGE                          | OTHER MICROPLANKTOR,<br>FUNCI AND SHEATHED<br>BACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per m. | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | Other Annal, Porns (No. per liter) DOMINANT GENERA (See Introduction) for Identification) |
| 10                   | 2300<br>300<br>600<br>20400<br>33700<br>1400<br>1400<br>600<br>2400<br>500<br>300 | 20      | 20 40                 | 310<br>20<br>50<br>20<br>20<br>110<br>640<br>290<br>200<br>60<br>60<br>70 | 20                    | 840<br>90<br>90<br>780<br>870<br>110<br>940<br>160<br>100<br>50 | 160<br>20<br>40<br>20<br>20<br>20 | 440<br>160<br>290<br>19150<br>32660<br>2280<br>360<br>16300<br>250<br>200<br>690<br>1010<br>230<br>270<br>130 | 510<br>160<br>430<br>130<br>1220<br>110<br>130<br>490<br>90<br>40<br>150<br>40 | 330<br>90<br>1590<br>1940<br>180<br>1310<br>400<br>290<br>650<br>400<br>80<br>130 | 20<br>130<br>180<br>90<br>40<br>600<br>290<br>180<br>490<br>180<br>20<br>160 | 56<br>82<br>82<br>56<br>87<br>26<br>86<br>26<br>26 | 40<br>90<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 58<br>56<br>56<br>82<br>58<br>82<br>58<br>82<br>58<br>58 | 10<br>10<br>10<br>20<br>10<br>20<br>40<br>40<br>30 | 57<br>80<br>92<br>58<br>426<br>59<br>292<br>71 | 10<br>10<br>10<br>10<br>*<br>10<br>20<br>* | 82<br>58<br>56<br>88<br>57<br>58<br>57<br>58<br>57<br>55 | 100 10          | 40<br>40<br>30<br>10<br>70<br>10<br>*10<br>360 | 350<br>20<br>130<br>110<br>20<br>40<br>20                               | 10                      | 1<br>3<br>140<br>5           |                              | 1 1 1                        | 4277-<br><br>71933<br>-1937<br>9<br>197-<br>7-933<br><br>4196-<br>4<br>4                  |

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARKANSAS RIVER VAN DUREN TO MOUTH

STATION LOCATIONARKANSAS RIVER AT

PENDLETON FERRY, ARKANSAS

|                                                                                                                                                                                                                                                                                                                       |                                                                                                                                            | 1   |                                                                                                                     |                                                                                                                                     | CHLORINE                                                                                                          | DEMAND          |                              |                                         |                                      |                   |                        |                                                                                                                   |                  | PHOSPHATES                                                                                                                           | TOTAL                       | COLIFORMS                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------|-----------------------------------------|--------------------------------------|-------------------|------------------------|-------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------|
| DATE OF SAMPLE  H V OF OF OF OF OF OF OF OF OF OF OF OF OF                                                                                                                                                                                                                                                            | S OXYGEN                                                                                                                                   | рН  | 8.O.D.<br>mg/l                                                                                                      | C.O.D.<br>mg/l                                                                                                                      | 1-HOUR<br>mg/l                                                                                                    | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l                       | ALKALINITY<br>mg/l                   | HARDNESS<br>mg/l  | COLOR<br>(scale units) | TURBIDITY<br>(scale units)                                                                                        | SULFATES<br>mg/l | mg/l                                                                                                                                 | DISSOLVED<br>SOLIDS<br>mg/l | per 100 ml.                                                                              |
| 10 3 60 25<br>10 10 60 23<br>11 1 60 10<br>1 9 61 6<br>1 16 61 5<br>1 23 61 4<br>1 30 61 1<br>2 13 61 14<br>2 20 61 11<br>2 27 61 10<br>3 6 61 15<br>3 13 61 13<br>3 27 61<br>4 10 61 14<br>7 10 61 14<br>7 10 61 14<br>7 10 61 14<br>7 10 61 14<br>7 10 61 14<br>7 10 61 28<br>8 15 61 28<br>8 28 61 29<br>9 5 61 29 | 0 8.9<br>8.3<br>9.2<br>11.6<br>6 12.1<br>13.0<br>14.8<br>13.3<br>0 12.6<br>0 9.4<br>10.1<br>10.1<br>9.5<br>0 9.3<br>10.3<br>0 7.8<br>0 7.8 | 7.7 | 1.7<br>3.1<br>4.3<br>4.1<br>7.9<br>6.1<br>3.8<br>5.2<br>2.1<br>3.2<br>1.7<br>2.0<br>1.9<br>6.7<br>3.8<br>2.9<br>4.4 | 15<br>23<br>91<br>119<br>427<br>22<br>26<br>18<br>326<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32 | 2.0<br>1.5<br>2.2<br>1.7<br>3.2<br>2.0<br>4<br>1.9<br>1.6<br>2.8<br>2.9<br>2.1<br>1.1<br>1.5<br>1.8<br>3.1<br>2.9 | _               |                              | -<br>62<br>46<br>123<br>70<br>64<br>233 | 68<br>102<br>124<br>136<br>76<br>112 | 142<br>114<br>184 |                        | 840<br>840<br>106<br>88<br>62<br>86<br>103<br>216<br>192<br>180<br>344<br>-<br>392<br>4000<br>1224<br>3124<br>420 | -                | .1<br>.3<br>.2<br>.1<br>.0<br>.1<br><br>.0<br>.0<br>.1<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | 548<br>7053<br>             | 8600<br>12000<br>1800<br>8200<br>1300<br>1300<br>2800<br>13000<br>2800<br>13000<br>16000 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Little Rock, Arkansas Operated by U.S. Geological Survey STATE

Arkansas

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Arkansas River, Van Buren to Mouth

STATION LOCATION

Arkansas River at

Pendleton Ferry, Arkansas

| Day                        | October                                                  | November                                   | December                                                 | January                                       | February                   | March                                                    | April                                          | May                                                 | June                                           | July                                                       | August                                                   | September                                      |
|----------------------------|----------------------------------------------------------|--------------------------------------------|----------------------------------------------------------|-----------------------------------------------|----------------------------|----------------------------------------------------------|------------------------------------------------|-----------------------------------------------------|------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| 1<br>2<br>3<br>4           | 8.810<br>9.890<br>9.890                                  | 16.300<br>16.800<br>23.900                 | 8.310<br>7.830<br>8.060                                  | 20.900<br>23.300<br>23.900                    | 9.620<br>8.560<br>7.830    | 53.500<br>51.900<br>46.800                               | 148.000<br>182.000<br>169.000                  | 28.100<br>33.500<br>34.900                          | 142.000<br>140.000<br>136.000                  | 16.200<br>15.800<br>15.800                                 | 69.100<br>58.900<br>50.900                               | 31.200<br>27.600<br>24.600                     |
| 5                          | 9.890                                                    | 38.400                                     | 8.810                                                    | 24.500                                        | 8.060                      | 41.200                                                   | 151.000                                        | 30.000                                              | 125.000                                        | 18.800                                                     | 44.400                                                   | 22.300                                         |
|                            | 10.800                                                   | 42.600                                     | 8.810                                                    | 23.300                                        | 8.810                      | 37.700                                                   | 132.000                                        | 37.700                                              | 111.000                                        | 21.300                                                     | 37.400                                                   | 21.300                                         |
| 6                          | 11.400                                                   | 41.900                                     | 10.200                                                   | 23.900                                        | 8.810                      | 38.400                                                   | 114.000                                        | 131.000                                             | 94.000                                         | 21.300                                                     | 32.500                                                   | 19.800                                         |
| 7                          | 10.500                                                   | 41.900                                     | 16.800                                                   | 24.500                                        | 8.810                      | 52.700                                                   | 95.800                                         | 236.000                                             | 84.000                                         | 19.800                                                     | 28.800                                                   | 17.900                                         |
| 8                          | 9.890                                                    | 41.900                                     | 32.800                                                   | 23.900                                        | 9.350                      | 67.300                                                   | 85.300                                         | 234.000                                             | 80.000                                         | 17.400                                                     | 25.800                                                   | 20.800                                         |
| 9                          | 9.890                                                    | 38.400                                     | 28.100                                                   | 21.500                                        | 9.620                      | 72.700                                                   | 82.600                                         | 203.000                                             | 80.000                                         | 15.400                                                     | 22.800                                                   | 51.700                                         |
| 10                         | 9.350                                                    | 34.900                                     | 26.900                                                   | 19.300                                        | 10.500                     | 71.800                                                   | 85.300                                         | 214.000                                             | 88.300                                         | 15.800                                                     | 19.300                                                   | 63.700                                         |
| 11                         | 9.350                                                    | 31.400                                     | 30.700                                                   | 17.800                                        | 10.800                     | 67.300                                                   | 84.400                                         | 247.000                                             | 84.400                                         | 15.000                                                     | 17.400                                                   | 58.900                                         |
| 12                         | 8.810                                                    | 28.700                                     | 53.500                                                   | 15.400                                        | 11.800                     | 60.100                                                   | 77.200                                         | 275.000                                             | 81.700                                         | 16.200                                                     | 17.400                                                   | 51.700                                         |
| 13                         | 7.830                                                    | 24.500                                     | 59.200                                                   | 14.000                                        | 12.400                     | 58.300                                                   | 72.700                                         | 285.000                                             | 74.500                                         | 24.000                                                     | 16.600                                                   | 43.700                                         |
| 14                         | 7.180                                                    | 19.800                                     | 58.300                                                   | 14.500                                        | 13.200                     | 60.100                                                   | 72.700                                         | 267.000                                             | 70.900                                         | 28.200                                                     | 16.200                                                   | 36.700                                         |
| 15                         | 6.980                                                    | 17.300                                     | 58.300                                                   | 15.000                                        | 13.600                     | 55.100                                                   | 72.700                                         | 240.000                                             | 68.200                                         | 27.000                                                     | 15.800                                                   | 33.200                                         |
| 16                         | 7-390                                                    | 15.000                                     | 60.100                                                   | 15.400                                        | 13.200                     | 49.600                                                   | 75.400                                         | 224.000                                             | 56.700                                         | 31.200                                                     | 19.300                                                   | 42.300                                         |
| 17                         | 7-390                                                    | 16.300                                     | 56.700                                                   | 15.400                                        | 12.800                     | 46.100                                                   | 78.100                                         | 215.000                                             | 48.900                                         | 71.000                                                     | 21.300                                                   | 108.000                                        |
| 18                         | 6-780                                                    | 16.300                                     | 50.300                                                   | 15.800                                        | 12.400                     | 43.300                                                   | 75.400                                         | 214.000                                             | 60.100                                         | 135.000                                                    | 36.700                                                   | 160.000                                        |
| 19                         | 6-590                                                    | 15.800                                     | 44.700                                                   | 15.400                                        | 14.000                     | 40.500                                                   | 68.200                                         | 214.000                                             | 76.300                                         | 147.000                                                    | 77.000                                                   | 148.000                                        |
| 20                         | 6-400                                                    | 15.000                                     | 41.900                                                   | 15.800                                        | 20.300                     | 37.700                                                   | 60.100                                         | 220.000                                             | 66.400                                         | 126.000                                                    | 87.700                                                   | 131.000                                        |
| 21                         | 6.050                                                    | 12.800                                     | 41.200                                                   | 15.800                                        | 27.500                     | 37.000                                                   | 53.500                                         | 224.000                                             | 49.600                                         | 120.000                                                    | 83.300                                                   | 131.000                                        |
| 22                         | 6.590                                                    | 12.800                                     | 39.100                                                   | 15.000                                        | 36.300                     | 39.100                                                   | 48.200                                         | 206.000                                             | 41.900                                         | 115.000                                                    | 64.600                                                   | 130.000                                        |
| 23                         | 8.310                                                    | 12.400                                     | 35.600                                                   | 14.000                                        | 41.900                     | 39.100                                                   | 44.700                                         | 184.000                                             | 40.500                                         | 101.000                                                    | 47.900                                                   | 122.000                                        |
| 24                         | 15.000                                                   | 10.500                                     | 30.700                                                   | 12.800                                        | 44.700                     | 39.800                                                   | 41.200                                         | 169.000                                             | 36.300                                         | 83.300                                                     | 37.400                                                   | 110.000                                        |
| 25                         | 19.800                                                   | 9.350                                      | 26.900                                                   | 11.800                                        | 44.700                     | 39.800                                                   | 37.700                                         | 154.000                                             | 30.700                                         | 75.000                                                     | 29.400                                                   | 101.000                                        |
| 26<br>27<br>28<br>29<br>30 | 19.300<br>22.100<br>24.500<br>23.300<br>19.800<br>17.800 | 9.890<br>10.200<br>9.890<br>8.810<br>8.810 | 23.300<br>19.800<br>17.800<br>16.300<br>16.300<br>17.800 | 10.500<br>9.890<br>10.200<br>10.500<br>10.500 | 44.700<br>46.100<br>51.100 | 41.200<br>51.900<br>71.800<br>84.400<br>85.300<br>99.400 | 37.700<br>40.500<br>37.700<br>32.100<br>27.500 | 153.000<br>159.000<br>160.000<br>149.000<br>144.000 | 26.300<br>22.700<br>18.800<br>15.800<br>15.000 | 89.900<br>108.000<br>101.000<br>91.000<br>86.600<br>79.000 | 24.600<br>22.800<br>30.000<br>36.700<br>34.600<br>33.200 | 91.000<br>83.300<br>75.000<br>63.700<br>61.300 |

RADIOACTIVITY DETERMINATIONS

STATE

OKLAHOMA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARK. RIVER, KANS-COLO LINE TO TULSA

STATION LOCATION ARKANSAS RIVER NEAR

PONCA CITY, OKLAHOMA

|                |                               |           |           |               |           |           |       |     | DADIOAC         | TIVITY IN PLAN | KTON (dry) |     |          | IOACTIVITY IN W |       |
|----------------|-------------------------------|-----------|-----------|---------------|-----------|-----------|-------|-----|-----------------|----------------|------------|-----|----------|-----------------|-------|
| Т              |                               |           | RADIC     | ACTIVITY IN Y | VATER     |           |       |     |                 | GROSS A        |            |     |          | GROSS ACTIVIT   |       |
| DATE<br>SAMPLE | DATE OF                       |           | ALPHA     |               |           | BETA      |       | PE  | TERMI-<br>ATION | ALPHA          | BETA       | - 1 | USPENDED |                 | TOTAL |
| TAKEN          | DATE OF<br>DETERMI-<br>NATION | SUSPENDED | DISSOLVED | TOTAL         | SUSPENDED | DISSOLVED | TOTAL |     | DAY             | μμc/g          | μμα/g      |     | μμε/Ι    | μμς/Ι           | μμς/1 |
|                | MONTH DAY                     | μμε/Ι     | μμε/Ι     | μμε/Ι         | μμε/Ι     | μμε/Ι     | μμε/Ι |     |                 |                |            |     |          |                 |       |
| 7. DA.   1     |                               |           |           |               |           | 0         | 0     | - 1 | 1               |                |            | i   |          |                 |       |
| 24 60*         | 11 1                          | 7         | 3         | 10            | 0         | 0         | ŏ     |     |                 |                | 1          | 1   |          |                 |       |
| 28 60*         | l                             | 1         | 5         | 6             | 0         | 0         | ŏ     | 1   |                 |                | 1          |     |          |                 |       |
| 27 60*         |                               | 3         | 8         | 11            | 0.8       | 0         | 8     | 1   | 1               |                |            |     |          |                 |       |
| 30 61*         |                               | 0         | 0         | 0             | ů         | 0         | ŏ     | -   |                 |                | l          |     |          | 1               |       |
| 27 61*         |                               | 8         | 4         | 12            | 38        | ŏ         | 38    |     | 1               |                | }          | 1   |          | 1               |       |
| 27 61*         | 1                             | 1         | 5         | 6             | 0         | ŏ         | ō     |     | ì               |                | <b>\</b>   | - [ |          |                 |       |
| 24 61*         |                               | 10        | 2         | 12            | 0         | 0         | 0     |     | 1               |                | 1          | 1   |          | l               |       |
| 29 61*         | 6 6                           | 15        | 1         | 16            | 0         | 12        | 12    | - 1 | ļ               |                |            | i   |          |                 | 1     |
| 26 61*         | 7 13                          | 5         | 4         | 9             | 22        | 0         | 22    | 1   |                 |                | 1          |     |          | ì               |       |
| 7 31 61*       | 8 23                          | 7         | 7         | 14<br>12      | 34        | 15        | 49    | 1   | ļ               |                | 1          | 1   |          |                 | 1     |
| 3 28 61*       |                               | 11        | 1 -       | 12            | 1 0       | 0         | 0     | l   | ì               |                |            | - 1 |          |                 |       |
| 9 5 61         | 10 5                          | ~         | _         | _             | 21        | 21        | 42    | - 1 |                 |                |            |     |          |                 |       |
| 9 11 61        | 10 5                          | -         |           | _             | 12        | 25        | 37    | 1   | ļ               |                |            |     |          |                 | ļ     |
| 9 18 61        | 10 16                         | _         | 8         | 13            | 39        | 36        | 75    | i   | ļ               |                |            |     |          |                 | 1     |
| 9 25 61        | 10 2                          | 5         | 8         | 1 .           |           |           |       | į.  |                 |                |            |     |          |                 |       |
|                | l                             |           | 1         | 1             |           | 1         |       |     |                 |                |            |     |          |                 |       |
|                |                               |           |           | İ             |           |           | [     | . 1 |                 |                |            |     |          |                 |       |
|                |                               |           |           |               |           |           |       |     | ,               |                |            |     |          |                 | 1     |
|                |                               |           |           | 1             |           |           |       | . 1 |                 | ļ              | 1          |     |          |                 | 1     |
|                |                               | 1         |           | 1             |           |           |       |     |                 | 1              |            | 1 1 |          |                 |       |
|                |                               |           |           |               | 1         |           |       |     |                 | Į.             |            |     |          |                 |       |
|                |                               |           |           |               |           | 1         |       |     |                 |                |            |     |          |                 |       |
|                | İ                             | 1         |           |               |           |           |       | 1 1 |                 | \              |            |     |          |                 | 1     |
|                |                               | Ì         |           |               |           |           |       |     |                 | Ì              |            |     |          |                 |       |
|                |                               | Ì         |           | 1             | İ         |           |       | ]   |                 | 1              | 1          | 1   |          |                 |       |
|                |                               | ļ         |           |               |           |           |       | 1 1 |                 |                |            |     |          | 1               |       |
|                |                               | 1         |           | 1             |           |           |       | 1   |                 |                |            |     |          |                 |       |
|                |                               |           |           |               |           |           |       | 1 1 |                 |                |            |     |          |                 |       |
|                |                               |           | 1         |               |           |           |       | 1 1 |                 | ì              |            | l   |          |                 |       |
|                |                               |           |           |               |           |           |       | 1 1 |                 |                |            | 1   | İ        |                 |       |
|                | 1                             |           |           |               |           |           |       |     |                 | 1              |            | 1   | ì        |                 | 1     |
|                |                               |           | 1         | 1             |           |           |       | 1 1 |                 |                |            | 1   | İ        |                 |       |
|                |                               |           |           |               |           |           |       |     |                 |                |            |     | }        |                 |       |
|                | 1                             |           |           |               |           |           | 1     |     |                 |                |            |     | 1        |                 |       |
|                |                               |           |           |               |           |           |       | 1 ! |                 |                |            |     |          |                 | 1     |
|                |                               | 1         | 1         |               |           | 1         |       |     |                 |                |            | 1   |          |                 |       |
|                |                               |           |           |               |           |           |       | 1   |                 | 1              |            | 1   |          | 1               |       |
|                |                               |           | 1         |               | - (       |           |       | 1   |                 |                |            | 1   |          | 1               |       |
|                | 1                             |           |           |               |           | 1         |       | 1   | l               | 1              |            | -   | l        |                 |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

OKLAHOMA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARK. RIVER, KANS-COLO LINE TO TULSA

STATION LOCATION ARKANSAS RIVER NEAR

PONCA CITY, OKLAHOMA

|                      | <del></del>                                                                                                                               |                                                            | <del></del>                        | ALGAE (7                                                                                                             | Vumber               | per ml.)                                                                                                                |                                                       |                                                                                                                                                                                     |                                                                                                                                                           | INI     | ERT                                       | 1                                                      |                                                                 |                          |                                                                     | IATO                                             |                                                                                 |                                                                                          |      |                                                      | Γ.                                             | Τ                      | MICROIN                             | VERTEBR                      | RATES                        | -            |                                                                                                                                                                         |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------|--------------------------|---------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------|------------------------------------------------------|------------------------------------------------|------------------------|-------------------------------------|------------------------------|------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATE<br>OF SAMPLE    |                                                                                                                                           | BLUE-                                                      |                                    | GREE                                                                                                                 |                      | <del></del>                                                                                                             | LLATES<br>ented)                                      | DIAT                                                                                                                                                                                | омѕ                                                                                                                                                       |         | ERT<br>TOM<br>ELLS<br>er ml.)             |                                                        |                                                                 |                          | SPEC                                                                | IES A                                            | ND PE                                                                           | RCEN <sup>*</sup><br>ntificat                                                            |      | 5                                                    | OPLANKTON,<br>SHEATHED<br>ml.)                 | mL.)                   | iter)                               | A.                           | ES<br>iter)                  | L FORKS      | senera<br>duction<br>ication)                                                                                                                                           |
| MONTH<br>DAY<br>YEAR | TOTAL                                                                                                                                     | COCCOID                                                    | FILA-<br>MENT-<br>OUS              | COCCOID                                                                                                              | FILA-<br>MENT<br>OUS | GREEN                                                                                                                   | OTHER                                                 | CENTRIC                                                                                                                                                                             | PENNATE                                                                                                                                                   | CENTRIC | PENNATE                                   | FIRST*                                                 | PER.<br>CENTAGE                                                 | SECOND#                  | PER-                                                                | THIRD#                                           | PER-                                                                            | FOURTH*                                                                                  | PER. | OTHER PER-<br>CENTAGE                                | OTHER MICRO FUNGI AND S BACTERIA (No. per 1    | PROTOZOA<br>(No. per ) | ROTIFIERS<br>(No. per liter)        | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | (No. per 116 | DOMINANT GENERA<br>(See Introduction<br>for Identification)                                                                                                             |
| 10                   | 29200<br>500<br>4700<br>16500<br>10000<br>2000<br>2700<br>2500<br>11700<br>2700<br>600<br>5300<br>112800<br>46600<br>29100<br>500<br>1200 | 50<br>20<br>110<br>70<br>20<br>20<br>40<br>20<br>60<br>180 | 20<br>20<br>100<br>60<br>20<br>150 | 1370<br>270<br>510<br>20<br>20<br>20<br>380<br>1320<br>160<br>160<br>20<br>770<br>7420<br>3330<br>4250<br>4206<br>40 |                      | 620<br>230<br>1760<br>650<br>260<br>160<br>1360<br>5810<br>3920<br>600<br>600<br>20<br>460<br>1850<br>310<br>2370<br>60 | 70<br>20<br>290<br>20<br>160<br>70<br>20<br>20<br>170 | 26180<br>240<br>1450<br>4030<br>5230<br>260<br>1050<br>560<br>110<br>14790<br>78410<br>630<br>380<br>180<br>2730<br>96630<br>5980<br>10310<br>25910<br>16150<br>210<br>10410<br>310 | 930<br>200<br>2680<br>10080<br>3820<br>1070<br>800<br>10700<br>10700<br>1540<br>410<br>1330<br>6580<br>170<br>4350<br>15210<br>8220<br>150<br>2590<br>790 | 12580   | 1510<br>950<br>1060<br>3200<br>1330<br>40 | 26<br>70<br>4<br>70<br>85<br>70<br>51<br>70<br>4<br>70 | 20<br>30<br>20<br>20<br>10<br>40<br>10<br>30<br>70<br>940<br>20 | 6677 4455622666 72859 56 | 10<br>20<br>10<br>10<br>20<br>20<br>10<br>40<br>10<br>20<br>20<br>* | 5<br>65<br>82<br>26<br>86<br>1<br>85<br>65<br>65 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 71<br>482<br>26<br>70<br>4<br>70<br>486<br>482<br>71<br>72<br>84<br>58<br>58<br>70<br>92 | 10   | 2 0<br>6 0 3 0 2 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 270<br>220<br>70<br>50<br>70<br>20<br>50<br>50 | 10                     | 2<br>1<br>3<br>704<br>52<br>81<br>9 | 1 2 2 2 2                    | 8 3 1 14 15 4 1 1 1 1 2 1    | 1            | 48932<br>4-767<br>41767<br>4-763<br>44-33<br>45933<br>71763<br>45933<br>71763<br>45933<br>45933<br>45933<br>45965<br>48965<br>48967<br>48967<br>48763<br>48763<br>48766 |

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

OKLAHOMA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI KIVER

MINOR BASIN

ARK. RIVER, KANS-COLO LINE TO TULSA

STATION LOCATIONARKANSAS RIVER NEAR

PUNCA CITY, UKLAHUMA

| DATE     | Ī             |                                  |                             | 1              | 1              |                | CHLORINE       | DEMAND          |                              |                   |                    |                  |                        |                            |                  | PHOSPHATES | TOTAL                       | COLIFORMS    |
|----------|---------------|----------------------------------|-----------------------------|----------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|----------------------------|------------------|------------|-----------------------------|--------------|
| OF SAMPL | -             | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/l | рН             | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/I | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | sulfates<br>mg/l | mg/l       | DISSOLVED<br>SOLIDS<br>mg/l | per 100 ml.  |
|          | 60            | 21.0                             | =                           | 7.9            |                | -              |                |                 | -                            | 351<br>555        | 150<br>150         | 231<br>282       | 10<br>10               | 200<br>200                 | 93<br>132        | •7         | 659<br>930                  | _            |
|          | 60            | 21.0                             | -                           | 8.3            | -              | - 1            | _              | _               | _                            | 145               | 100                | 126              | 15                     | 500                        | 43               | - 3        | 310                         | -            |
|          | 60            | 18.0                             | -                           | 7.9            | -              | _              | _              | _               | _                            | 350               | 154                | 265              | 10                     | 500                        | 101              | • 4        | 669                         | _            |
|          | 60            | 17.0                             | -                           | 7.9            |                | _              |                | _               | -                            | 384               | 140                | 239              | 20                     | 800                        | 100              | • 5        | 656<br>608                  | _            |
|          | 60            | 11.0                             | -                           | 7.9            | _              | _              | _              | _               | -                            | 350               | 156                | 248              | 20                     | 175                        | 100              | •6         | 608                         | _            |
|          | 60            | 9.0                              | -                           | 8 • 2<br>8 • 2 | _              | _              | _              | _               | _                            | 479               | 204                | 337              | 15                     | 44                         | 155<br>165       | • 2        | 978                         | _            |
| 11 14    | 60            | 14•4                             |                             | 8.2            | _              | _              | -              | -               | -                            | 572               | 230                | 359              | 15                     | 40                         | 175              | 1.0        | 1024                        | -            |
| 11 21    | 60            | 9•0<br>9•0                       | _                           | 8.3            |                | _              | _              | -               | -                            | 581               | 220                | 376              | 15<br>15               | 40<br>50                   | 175              | 1.0        | 1020                        | -            |
| 11 28    | 60            | 9.0                              | _                           | 8.1            |                | _              | -              | -               | -                            | 547               |                    | 393              | 15                     | 80                         | 158              |            | 960                         | -            |
| 12 5     | 60<br>60      | 9.0<br>4.0                       |                             | 7.9            | -              | _              | -              | -               | -                            | 521               | 210                | 367              | 1 12                   | 30                         | 150              | 1          | õ49                         | 1 -          |
| 12 19    | 60            | 7.0                              | _                           | _              |                | _              | -              | -               | -                            | , , , ,           | _                  | 325              | 1                      | 118                        | -                | _          | -                           | _            |
| 12 21    | 60            | 1.0                              | 1                           | 8.2            | - '            | _              | -              | -               | -                            | 456<br>571        |                    | 330              |                        | 1 60                       | 157              | .9         | 996                         | -            |
| 12 27    | 60            | 3.0                              | 1                           | 8.2            | -              | -              | -              | -               | -                            | 572               | 1                  | 384              | 1                      | 60                         | 205              | 1.0        | 1070                        | -            |
| 1 3      | 61            | 1.0                              |                             | 7.9            | -              | -              | _              | _               | _                            | 589               |                    | 401              | 1                      | 40                         | 190              |            | 1162                        | -            |
| 1 9      | 61            | 1.5                              | -                           | 7.9            | -              | -              | -              | -               | 1                            | 624               |                    | 401              | 1                      |                            | 170              | 1          | 1110                        | _            |
| 1 16     | 61            | 2.0                              |                             | 7.9            | _              | -              | -              | -               | _                            | 1                 | t .                | 412              | 10                     |                            | 203              |            |                             | _            |
| 1 23     | 61            | 1.0                              | ) -                         | 8.2            | -              | ~              | -              | 1               | 1                            | 1 200             |                    | 533              | 20                     |                            | 195              |            | 1430                        | _            |
| 1 30     | 61            | 2.0                              | -                           | 8 • 2          | -              | _              |                | _               |                              | 321               |                    | 376              | ) c                    |                            |                  |            | 1073                        | _            |
| 2 6      | 61            | -                                | ·  -                        |                | -              | _              | -              |                 | 1                            | 573               | 220                |                  |                        | 1                          | 1                |            |                             | -            |
| 2 13     | 61            | 9.0                              |                             |                | _              | _              | _              |                 |                              | 1                 | 7 202              |                  | 1                      |                            |                  | 1          |                             | -            |
| 2 20     | 61            | 5.0                              |                             |                | _              | _              | -              |                 | .  -                         | 45                | 200                |                  |                        | 1 .                        |                  | 1          | 1 2011                      | -            |
| 2 27     | 61            | 5 • 5                            | 1                           | 1              | 1              | _              | _              |                 | .   -                        | 520               |                    |                  | 1                      | 1                          | 1                |            |                             | _            |
| 3 6      | 61            | 10.0                             | 1                           | 1              |                | _              | -              | .  -            | .  -                         |                   |                    |                  | - 1                    |                            | 1 7              | -          |                             | -            |
| 3 13     | 61            | 8 • :                            |                             | 1              |                | _              | -              | .  -            | .  -                         |                   | 1                  | ·                | 1                      | , i                        | 1                | * I .      |                             | -            |
| 3 20     |               | 5.0<br>12.5                      |                             |                | 1              | -              | -              | .  -            | -   -                        |                   |                    | 1                | ·                      | - 1                        |                  |            | 5 569                       | -            |
| 3 27     | 61            | 12.0                             |                             | 1              |                | -              | -              | -               | -  -                         |                   |                    | .                | - (                    | <b>~</b>                   |                  | 0 •        | 626                         | •            |
| 4 3      |               | 1                                |                             | 1              |                | -              | -              | -  ·            | -  -                         |                   | 1                  |                  | -                      | - 1                        | 1                | 5 •        |                             | 1            |
| 4 10     |               | 1                                | 1                           | 1              | 1              | -              |                | -   -           | -  -                         | 1 00              |                    | 1 .              | - 1                    |                            | 1                | 5 •        |                             | 1            |
| 4 24     |               |                                  |                             |                |                | -              | -              | i               |                              |                   | - 1                | 1                | - 1                    |                            | 7                | 0 •        |                             |              |
| 5 1      |               |                                  | 1                           | 7.9            | -              | -              | 1 .            |                 |                              | - 3               |                    |                  |                        | 5 700                      |                  | _1         |                             |              |
| 5 8      |               | 1                                | 1                           | - 7.7          | '              | -              | l.             | 1               |                              |                   | _                  | -                | -                      | -   .                      | 1                | 0 .        |                             | '            |
| 5 10     | 1             | I.                               |                             | -  -           |                | -              | 1              | Į.              |                              | 34                | 2 200              | 31               |                        |                            | * l              | 0          | _   000                     | 1            |
| 5 15     |               |                                  | o  -                        |                | 1              | -              | 1              |                 |                              | _ 30              | _                  |                  |                        | -                          |                  | -          | _  _                        | 1            |
| 5 22     |               |                                  | 0 -                         |                |                | -              | 1              | _               | -                            | - 32              |                    |                  |                        |                            |                  | -          |                             | <u>.</u>   - |
| 5 29     | 6.            | 21.                              | 0 -                         | - 8.4          | 1              | -              |                | i               | 1                            | _ 36              | 0 18               |                  |                        |                            |                  | - 1        | 2 626                       | l l          |
| 6 9      | <b>ა</b>   ა: |                                  |                             | - 8 • 4        | 1              | [              |                | l               |                              | _ 30              | 4 17               | 8 25             | ے اِ ۃ                 | 0 33                       | ' ا              | •          | -                           |              |
| 6 12     | 2 6           | 1 27.                            | 0 .                         | - δ • <i>i</i> | 2 -            | 1              | 1              |                 | 1                            |                   |                    |                  |                        |                            |                  |            |                             |              |

STATE

OKLAHOMA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARK. RIVER, KANS-COLO LINE TO TULSA

STATION LOCATIONARKANSAS RIVER NEAR

PONCA CITY, UKLAHOMA

| DATE                                                                                       | T                                                  |                                                                                              |                             |                                                             |                |                | CHLORINE       | DEMAND          |                              |                                                                             |                                                                                |                                                                                  |                                                                            |                                                                      |                  | PHOSPHATES                                                 | TOTAL<br>DISSOLVED | COLIFORMS   |
|--------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------|----------------|----------------|----------------|-----------------|------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------|------------------|------------------------------------------------------------|--------------------|-------------|
| OF SAMP                                                                                    | -                                                  | TEMP.<br>(Degrees<br>Centigrade)                                                             | DISSOLVED<br>OXYGEN<br>mg/l | pН                                                          | B,O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l                                                           | mg/l                                                                           | HARDNESS<br>mg/l                                                                 | COLOR<br>(scale units)                                                     | TURBIDITY<br>(scale units)                                           | SULFATES<br>mg/l | mg/l                                                       | SOLIDS<br>mg/l     | per 100 ml. |
| 6 19<br>6 26<br>7 3<br>7 10<br>7 17<br>7 24<br>7 31<br>8 14<br>8 21<br>8 28<br>9 5<br>9 11 | 61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61 | 24.0<br>24.5<br>26.5<br>25.0<br>26.5<br>25.0<br>24.5<br>27.0<br>24.0<br>20.0<br>18.0<br>16.5 |                             | 8.1<br>8.4<br>8.4<br>8.4<br>7.9<br>7.9<br>7.9<br>8.4<br>7.9 |                |                |                |                 |                              | 257<br>440<br>528<br>5302<br>274<br>470<br>218<br>813<br>376<br>2916<br>234 | 194<br>152<br>164<br>88<br>190<br>212<br>118<br>94<br>154<br>188<br>160<br>124 | 214<br>281<br>322<br>290<br>274<br>310<br>160<br>188<br>273<br>239<br>133<br>260 | 30<br>25<br>15<br>20<br>20<br>40<br>10<br>20<br>30<br>10<br>25<br>20<br>20 | 520<br>375<br>380<br>110<br>1700<br>1400<br>175<br>460<br>700<br>410 | 80<br>           | 3<br>-33<br>-13<br>-6<br>-11<br>-5<br>-8<br>-7<br>-0<br>-5 | 559<br>            |             |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Ralston, Oklahoma Operated by U.S. Geological Survey STATE

Oklahoma

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Ark. River, Kans-Colo Line to Tulsa

STATION LOCATION

Arkansas River near

Ponca City, Oklahoma

| Day         | October        | November       | December       | January        | February       | March          | April          | May               | June             | July            | August           | September        |
|-------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-------------------|------------------|-----------------|------------------|------------------|
| ٦.          | 3.500          | 12.800         | 1.950          | 2.120          | 1.950          | 2.280          | 9.000          | 5.910             | 4.780            | 2.900           | 4.520<br>4.100   | 4.520<br>4.100   |
| 1           | 2.800          | 19.100         | 2.030          | 2.030          | 1.880          | 2.200          | 7.800          | 22.900            | 4.830            | 2.710<br>2.540  | 3.700            | 3.800            |
| <u>ء</u>    | 2.280          | 12.600         | 1.920          | 2.030          | 1.880          | 2.120<br>2.120 | 8.200<br>7.300 | 17.300<br>15.000  | 7.730<br>7.300   | 2.450           | 3.500            | 3.900            |
| 2<br>3<br>4 | 1.950          | 7.750          | 1.900          | 1.950          | 1.850<br>1.770 | 2.250          | 6.060          | 19.300            | 7.000            | 2.360           | 3.000            | 3.700            |
| 5           | 1.740          | 5.650          | 1.800          | 1.950          | 1.110          | 2.2,0          | 0.000          |                   |                  | _               |                  | - 0              |
| ,           | 1.560          | 4.520          | 1.750          | 1.920          | 1.720          | 4.300          | 5.150          | 48.900            | 6.460            | 2.280           | 2.710            | 3.800            |
| 6           | 1.430          | 4.000          | 1.750          | 1.870          | 1.640          | 2.450          | 4.520          | 115.000           | 8.350            | 3.220           | 2.540<br>2.280   | 5.150<br>4.780   |
| 7           | 1.320          | 3.600          | 1.850          | 1.870          | 1.560          | 2.200          | 4.100          | 153.000           | 6.860            | 3.200<br>4.400  | 2.200            | 6.320            |
| 9           | 1.260          | 3.300          | 1.920          | 1.870          | 1.480          | 2.030          | 4.300          | 139.000<br>64.400 | 12.100<br>11.800 | 4.400           | 2.280            | 5.400            |
| 10          | 1.220          | 3.000          | 2.030          | 1.850          | 1.400          | 2.030          | 5.920          | 64.400            | 11.000           | 4.000           | 2.200            | 2                |
|             |                |                | - 1            | 3 820          | 1.460          | 2.030          | 9.200          | 25.500            | 8.350            | 2.800           | 2.360            | 4.100            |
| 11          | 1.150          | 2.800          | 2.450          | 1.830<br>1.800 | 1.540          | 1.950          | 12.200         | 21.600            | 7.000            | 2.540           | 2.200            | 3.800            |
| 12          | 1.090          | 2.620          | 2.620<br>3.060 | 1.780          | 1.620          | 1.870          | 11.400         | 16.900            | 6.060            | 3.400           | 3.450            | 35.400           |
| 13<br>14    | 1.110          | 2.540<br>2.450 | 5.360          | 1.750          | 1.690          | 1.820          | 9.550          | 13.400            | 8.720            | 6.320           | 13.700           | 105.000          |
|             | 1.120<br>1.180 | 2.450          | 5.900          | 1.720          | 1.700          | 1.750          | 8.050          | 11.400            | 6.730            | 7.000           | 17.100           | 73.100           |
| 15          | 1.100          | 2.300          | ,,,,,,         |                | _              |                | 6 060          | 0.000             | 9.560            | 7.750           | 16.400           | 42.500           |
| 16          | 4.480          | 2.280          | 4.280          | 1.700          | 1.780          | 1.720          | 6.860<br>5.650 | 9.900<br>9.200    | 11.400           | 5.920           | 9.200            | 29.800           |
| 17          | 6.850          | 2.200          | 3.400          | 1.670          | 1.880          | 1.830<br>1.950 | 5.020          | 7.900             | 9.200            | 4.650           | 7.000            | 17.900           |
| 18          | 5.400          | 2.200          | 3.000          | 1.660          | 1.950<br>2.200 | 1.950          | 4.520          | 7.300             | 7.150            | 4.000           | 5.780            | 11.800           |
| 19          | 4.780          | 2.200          | 2.710          | 1.660<br>1.640 | 2.200          | 1.950          | 4.200          | 7.000             | 6.190            | 3.500           | 5 <b>.2</b> 80   | 10.200           |
| 20          | <b>5.2</b> 80  | 2.120          | 2.620          | 1.640          | 2.300          | 1.770          |                | ·                 |                  |                 |                  | 9.200            |
|             | ( 200          | 2.120          | 2.540          | 1.640          | 6.370          | 2.360          | 4.000          | 9.090             | 5.780            | 3.600           | 11.300<br>13.000 | 16.100           |
| 21          | 6.190<br>5.400 | 2.120          | 2.360          | 1.640          | 6.180          | 3.400          | 3.800          | 15.600            | 5.650            | 5.280<br>14.800 | 14.600           | 15.300           |
| 22          | 4.300          | 1.950          | 2.360          | 1.600          | 4.200          | 4.520          | 3.900          | 24.000            | 5.150<br>4.650   | 28.200          | 17.800           | 9.900            |
| 23<br>24    | 3.600          | 1.920          | 2.120          | 1.560          | 3.400          | 5.780          | 4.780          | 18.300<br>14.600  | 4.300            | 33.500          | 17.300           | 7.600            |
| <b>2</b> 5  | 3.100          | 1.880          | 2.120          | 1.500          | 3.000          | 5 <b>.7</b> 80 | 5.400          | 14.000            | 4. 300           | 35.700          | -,.5             |                  |
|             | 3.20           |                |                | . 1.00         | 2.800          | 4.900          | 5.280          | 13.000            | 3.900            | 29.900          | 11.800           | 8.350            |
| 26          | 2.710          | 1.870          | 1.950          | 1.400          | 2.620          | 4.400          | 4.520          | 9.740             | 3.700            | 23.000          | 8.500            | 14.000           |
| 27<br>28    | 2.690          | 1.870          | 1.950          | 1.500<br>1.600 | 2.450          | 3.900          | 4.000          | 7.450             | 3.500            | 11.800          | 7.300            | 12.300<br>10.200 |
| 28          | 11.000         | 1.820          | 1.950          | 1.700          | 2.70           | 14.500         | 3.600          | 6.730             | 3.300            | 7.600           | 6.460<br>5.780   | 8.850            |
| 29          | 10.500         |                | 2.120<br>2.120 | 1.700          |                | 17.800         | 3.500          | 6.060             | 3.100            | 6.190           | 5.020            | 0.00             |
| 30          | 8.200<br>7.750 |                | 2.120          | 1.800          |                | 13.100         |                | 5.280             |                  | 5 <b>.2</b> 80  | 0.020            |                  |
| 31          | 1.150          |                |                |                |                |                |                |                   |                  |                 |                  |                  |

RADIOACTIVITY DETERMINATIONS

STATE

KANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARK. RIVER, KANS-COLO LINE TO TULSA

STATION LOCATION ARKANSAS RIVER AT

COOLIDGE, KANSAS

| DATE            | 1                  | RADIOACTIVITY IN WAT   DATE OF   DETERMI- NATION |               |       |           |           |       | RADIOA                        | CTIVITY IN PLA | NKTON (dry) | RA        | DIOACTIVITY IN W | /ATER |
|-----------------|--------------------|--------------------------------------------------|---------------|-------|-----------|-----------|-------|-------------------------------|----------------|-------------|-----------|------------------|-------|
| SAMPLE          | DATE OF            |                                                  | ALPHA         |       |           | BETA      |       | DATE OF<br>DETERMI-<br>NATION | GROSS          | ACTIVITY    |           | GROSS ACTIVIT    | Y     |
| TAKEN           | DETERMI-<br>NATION | SUSPENDED                                        | DISSOLVED     | TOTAL | SUSPENDED | DISSOLVED | TOTAL | NATION                        | ALPHA          | BETA        | SUSPENDED | DISSOLVED        | TOTAL |
| MO. DAY YEAR    | MONTH DAY          | μμε/Ι                                            | <i>μμ</i> c/1 | μμς/Ι | μμc/i     | μμε/1     | µµс/I | MO. DAY                       | μμс/g          | μμс/g       | μμε/Ι     | μμε/Ι            | μμc/l |
| 0 24 60*        |                    | 3                                                | 63            | 66    | 0         | 0         | 0     |                               |                |             |           |                  |       |
| 1 28 60*        | 12 5               | 3                                                | 60            | 63    | 0         | 0         | 0     |                               |                |             |           |                  |       |
| 1 31 61*        | 2 9                | 1                                                | 31            | 32    |           | 0         | 0     | 1                             |                |             |           | 1                |       |
| 2 28 <b>61*</b> | 3 9                | 3                                                | 74            | 77    | 0         | 0         | 0     |                               |                |             | '         |                  |       |
| 3 27 <b>61*</b> | 4 4                | 0                                                | 49            | 49    |           | 0         | 0     | J                             |                | j           |           |                  |       |
| 4 24 61*        | 5 15               | 8                                                | 80            | 88    | 1 0 1     | 3         | 3     |                               |                |             |           | ]                |       |
| 5 29 61*        | 6 6                | 3                                                | 25            | 28    | 0         | ō         | ō     |                               |                |             |           |                  |       |
| 6 26 61*        | 7 13               | ŏ l                                              | 46            | 46    | 17        | 3         | 70    |                               |                |             |           |                  |       |
| 7 31 61*        | 8 14               | 80                                               | 35            | 115   | 52        | ŏ         | 52    | 1 1                           |                | ŀ           |           | 1                |       |
| 8 29 <b>61*</b> | 9 14               | 22                                               | 16            | 38    | 141       | 4         | 145   | _ i _ i                       |                | 1           | 1         |                  |       |
| 9 5 61          | 9 28               | 0                                                | 6             | 6     | 0         | 16        | 16    | 1 1                           |                |             |           | 1                |       |
| 9 11 61         | 10 23              | _                                                | _             | _     | 9         | 57        | 66    | 1                             |                |             |           |                  |       |
| 9 18 61         | 10 14              | _                                                | _             | -     | 36        | 59        | 95    | l                             |                |             |           | i i              |       |
| 9 25 61         | 11 8               | _                                                | _             | _     | 67        | 48        | 115   | ]                             |                |             | 1 1       | 1                |       |
|                 | 11 0               |                                                  |               |       | "         | 70        | 117   |                               |                |             | 1 1       |                  |       |
|                 |                    |                                                  | 1             |       | i i       |           |       | 1                             |                |             | 1 1       |                  |       |
|                 | 1                  |                                                  | 1             |       |           |           |       | Į I                           |                |             |           |                  |       |
|                 |                    |                                                  | - 1           |       |           |           |       |                               |                |             |           |                  |       |
| ı               | 1                  |                                                  | 1             |       |           |           |       |                               |                |             |           |                  |       |
| ļ               |                    | i                                                |               |       |           |           |       |                               |                |             |           |                  |       |
| i               | į.                 | 1                                                | ĺ             |       | ' i       | i         |       |                               |                |             |           |                  |       |
|                 | į.                 |                                                  |               | ĺ     |           |           | 1     |                               |                |             |           |                  |       |
| i               | İ                  | l                                                |               |       | 1         | 1         |       |                               |                |             |           |                  |       |
|                 |                    |                                                  |               | ſ     |           |           |       |                               |                |             |           |                  |       |
|                 | !                  | [                                                |               |       |           |           |       |                               |                |             |           |                  |       |
|                 |                    | ŀ                                                | 1             | İ     |           |           |       |                               |                |             |           |                  |       |
| · [             |                    | ļ                                                |               | ļ     |           |           | İ     |                               |                |             |           |                  |       |
| 1               | Ī                  | i                                                | 1             |       |           |           |       |                               |                |             |           |                  |       |
| İ               |                    |                                                  |               | 1     | 1         |           | 1     |                               |                |             |           |                  |       |
| 1               |                    |                                                  |               | ļ     |           |           | ļ     |                               |                |             |           |                  |       |
|                 |                    |                                                  |               | 1     | İ         |           |       |                               |                |             |           |                  |       |
| 1               |                    | 1                                                |               | 1     |           |           |       |                               |                |             |           |                  |       |
| 1               | İ                  |                                                  |               |       |           |           |       |                               |                |             |           |                  |       |
| 1               | 1                  | 1                                                | ĺ             |       |           | ŀ         |       |                               |                |             |           |                  |       |
| l               | 1                  | 1                                                |               |       | ļ         |           | ļ     |                               |                |             |           |                  |       |
| ı               | İ                  | 1                                                |               |       |           |           | į     |                               | i              |             |           | 1                |       |
|                 |                    |                                                  |               |       |           |           | ļ     |                               |                | •           |           | ŀ                |       |
| -               | ļ                  | ĺ                                                |               |       | İ         |           |       |                               |                |             |           |                  |       |
| İ               |                    |                                                  |               |       | 1         |           | ļ     |                               |                |             |           | 1                |       |
| 1               | ĺ                  | 1                                                | 1             | ľ     |           |           |       |                               | J              |             |           |                  |       |
|                 |                    |                                                  |               |       |           |           | •     |                               |                |             |           |                  |       |
| 1               |                    |                                                  | 1             |       |           | 1         | İ     |                               |                |             |           |                  |       |
|                 |                    |                                                  |               |       | i i       |           |       | 1                             | 1              | 1           | 1 1       |                  |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

KANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARK. RIVER, KANS-COLO LINE TO TULSA

STATION LOCATION ARKANSAS RIVER AT

COOLIDGE, KANSAS

|                |                                                                                                                    |         |                       |                        |                       | 7 1                         |       |                                                             |                                 | INE                                                                              | RT                                      |                                                                                  |                                         |                                                                      |                                                                                                                                  | NOTA                                                                              |                                                                                 |                                                                                |                          |                                                    | ·ā.                                                             |                      | ICROINV                      |                              | - 1                          | 7                                   | # .ii .ii                                                   |
|----------------|--------------------------------------------------------------------------------------------------------------------|---------|-----------------------|------------------------|-----------------------|-----------------------------|-------|-------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------|----------------------------------------------------|-----------------------------------------------------------------|----------------------|------------------------------|------------------------------|------------------------------|-------------------------------------|-------------------------------------------------------------|
| DATE<br>SAMPLE |                                                                                                                    | BLUE-0  |                       | ALGAE (N<br>GREE       |                       | FLAGEL<br>(Pigme            |       | DIATO                                                       | MS                              | INE<br>DIAT<br>SHEI<br>(No. pe                                                   | LS<br>ml.)                              |                                                                                  |                                         | Introd                                                               | ction                                                                                                                            | or Coo                                                                            | le Iden                                                                         | tificatio                                                                      | on*)                     | _                                                  | OTHER MICEOFLANKTON, FURST AND SHEATHED SACTERIA (No. per 711.) | toA<br>er ml.)       | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ARTHAL FOR<br>(No. per liter) | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| DAY            | TOTAL                                                                                                              | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                | FILA-<br>MENT-<br>OUS | GREEN                       | OTHER | CENTRIC                                                     | PENNATE                         | CENTRIC                                                                          | PENNATE                                 | FIRST                                                                            | PER.<br>CENTAGE                         | SECOND                                                               | PER.<br>CENTAGE                                                                                                                  | THIRD                                                                             | PER.<br>CENTAGE                                                                 | FOURTH                                                                         | PER.<br>CENTAGE          | OTHER PER-<br>CENTAGE                              | PUNEI AN<br>SACTERIA<br>(No. pu                                 | PROTOZOA<br>(No. per | ROTIFI<br>(No. p             | (No. 1                       | (No.                         | (No. p                              | See (See                                                    |
| 2              | 1100<br>2300<br>1100<br>900<br>700<br>900<br>3100<br>2900<br>3800<br>1 300<br>1 4700<br>1 4200<br>1 3200<br>1 5500 |         | 20 20 20              | 20<br>60<br>600<br>230 | 50 20                 | 20<br>20<br>20<br>480<br>40 |       | 110<br>70<br>150<br>170<br>1140<br>520<br>250<br>190<br>180 | 2440<br>2010<br>522<br>4<br>505 | 20<br>40<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 870<br>330<br>810<br>2010<br>830<br>660 | 87<br>4<br>122<br>4<br>92<br>4<br>4<br>4<br>4<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 100 100 100 100 100 100 100 100 100 100 | 92<br>71<br>71<br>87<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75 | 10<br>10<br>10<br>10<br>10<br>10<br>20<br>20<br>20<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 71<br>465<br>85<br>12<br>86<br>86<br>65<br>11<br>75<br>87<br>65<br>67<br>71<br>75 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 69<br>67<br>5<br>66<br>75<br>71<br>71<br>92<br>86<br>71<br>70<br>4<br>92<br>92 | *<br>10<br>10<br>*<br>10 | 60<br>60<br>60<br>60<br>60<br>60<br>20<br>10<br>50 |                                                                 |                      | 9                            | 11                           |                              | 1 1 1                               | 7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-                      |

STATE

KANSAS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARK. RIVER, KANS-COLO LINE TO TULSA

STATION LOCATIONARKANSAS RIVER AT

COOLIDGE, KANSAS

| DATE           |          |                                  |                             |            |                |                | CHLORINE       | DEMAND          |                              |                   | 1                  |                  | Ī                      |                            | [                |                    |                                      |                         |
|----------------|----------|----------------------------------|-----------------------------|------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|----------------------------|------------------|--------------------|--------------------------------------|-------------------------|
| OF SAW         | YEAR     | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/l | pН         | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/I | CHLORIDES<br>mg/l | ALKALINITY<br>mg/i | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 mL |
|                | 60       | 19.0                             | _                           | 8.2        | _              |                | _              | _               | -                            | 198               | 170                | 1660             | 5                      | 5                          | 2225             | .1                 | 4090                                 |                         |
| 10 10<br>10 17 | 60       | 17.5<br>12.0                     | _                           | 8•2<br>8•2 | -              | _              | -              | -               | -                            | 199               | 168                | 1620             | 5                      | 5                          | 2050             | •0                 | 4110                                 | -                       |
| 10 24          |          | 12.0                             | _                           | 7.7        | _              |                | _              | _               | -                            | 190<br>144        | 170<br>200         | 1650<br>1480     | 5                      | 5                          | 1930             | •0                 | 4080                                 | l -                     |
| 11 1           | 60       | 6.0                              | -                           | 8.2        | _              | _              | _              | _               | _                            | 150               | 218                | 1660             | 5<br>5                 | 900<br>270                 | 2000             | •0                 | 3750                                 | _                       |
| 11 8           | 60       | 7.0                              | _                           | 8.1        | _              | _              | _              |                 | _                            | 162               | 216                | 1650             | 10                     |                            | 2300             | •0                 | 3820                                 | _                       |
| 11 21          | 60       | 4.0                              | _                           | 8.1        | -              | -              | _              | _               | _                            | 161               | 216                | 1760             | 5                      | 170<br>5                   | 2380<br>2380     | •0                 | <b>3720</b><br>3990                  | -                       |
| 11 28          | 60       | -                                | -                           | 8.1        | _              | _              | -              | _               | _                            | 159               | 220                | 1750             | 5                      | 250                        | 2380             | .0                 | 4130                                 | _                       |
|                | 61       | -                                | -1                          | 7.7        | -              | -              |                | -1              | _                            | 164               | 232                | 1740             | ٥                      | 50                         | 2500             |                    | 4110                                 | ] [                     |
| 1 9            | 61       | -                                | -                           | 7.8        | -              | -              | -              | -               | -                            | 154               | 214                | 1700             | ŏ                      | 85                         | 2275             | .1                 | 3980                                 | _                       |
| 1 16           | 61       | -                                | -                           | 7.8        | -              | -              | -              | -               |                              | 152               | 212                | 1630             | ا ہ                    | 160                        | 2280             | .0                 | 3920                                 | _                       |
| 1 23           | 61       | •0                               | -                           | 7.7        | -              | -              | -              | -               | -1                           | 153               | 218                | 1680             | o l                    | 125                        | 2250             | .1                 | 3970                                 | _                       |
|                | 61       | -1                               | -                           | 7.8        | -              | -              | -              | - [             | -                            | 153               | 220                | 1670             | 0                      | 122                        | 2200             | .0                 | 3980                                 | -                       |
| 2 7            | 61       | -                                | -                           | 7.8        | -              | -              | -              | -               | -                            | 139               | 226                | 1610             | 0                      | 156                        | 2500             | .0                 | 3785                                 | -                       |
|                | 61       | -                                | -                           |            | -              | -              | -              |                 | -                            | 144               | 232                | 1660             | 5                      | 95                         | 2650             | • • • •            | 4039                                 | · -                     |
|                | 61       | -                                | -                           | 7.6        | -              | -              | -              | -               | -                            | 158               | 206                | 1670             | 0                      | -                          | 2150             | •0                 | 4076                                 | _                       |
| 1 - 1          | 61       | -                                | -                           | 7.7        | -              | -              |                | -1              | -1                           | 158               | 228                | 1710             | 0                      | 170                        | 2650             | •0                 | 4040                                 |                         |
|                | 61       | _                                | -                           | 7.6<br>7.4 | -              | -              | -              | -               | -                            | 156               | 206                | 1670             | 0                      | -                          | 2250             | •0                 | 4014                                 | _                       |
|                | 61       | -1                               | -                           | 7.7        | -              | -              | -              | -               | -                            | 149               | 194                | 1640             | 0                      | -                          | 2150             | • 0                | 4004                                 | _                       |
|                | 61       | _                                | -                           | 7.5        | _              | _              | _              |                 | -                            | 153               | 192                | 1660             | 0                      | 60                         | 2250             | •0                 | 4055                                 | -                       |
| 1 - 1          | 61       | _                                | _                           | 7.4        | _ ]            | _              | _              | -1              | -                            | 143               | 202                | 1640             | 10                     | - [                        | 2100             | •0                 | 3900                                 | _                       |
|                | 61       | -                                | _ [                         | 7.7        | _              | _              | _              | -1              | -1                           | 122<br>117        | 202                | 1540             | 5                      | -                          | 1875             | •1                 | 3453                                 | _                       |
|                | 61       | -                                | -                           | 7.4        | _              | -              | - 1            | _               | _                            | 106               | 198                | 1510             | 5                      | 0                          | 1575             | •0                 | 3330                                 | _                       |
| 5 1            | 61       | -                                | -                           | 8.0        | _              | _              | _              | -               | _                            | 139               | 204                | 1480             | 7                      | 0                          | 1575             | •0                 | 3268                                 | -                       |
| 5 8            | 61       | -1                               | -                           | 7.8        | -              | - 1            | -              | _ !             | _                            | 162               | 196                | 1612             | 5                      | -                          | 1950             | • 0                | 3565                                 | -                       |
|                | 61       | -                                | -                           | 7.9        | -              | -              | -              | _               | -1                           | 186               | 200                | 1736             | 5                      | _                          | 2200<br>2450     | .0                 | 3969                                 |                         |
|                | 61       | -                                | -                           | 7.2        | -              | -              |                | -1              | -                            | 141               | 164                | 1704             | اهٔ                    | 0                          | 2475             | .2                 | 4312                                 | -                       |
|                | 61       | -                                | -                           | 7.4        | - 1            | -              | -              | -               |                              | 42                | 172                | 540              | 20                     | 1500                       | 600              | .1                 | 4122                                 | -                       |
|                | 61       | -                                | -                           | 7.3        | -              | -              | -              | -               | -                            | 135               | 200                | 1496             | 0                      | 570                        | 2250             | :0                 | 1114<br>3650                         | _                       |
|                | 61       | -                                | -                           | 7.3        | -              | -              | -              | -               | -                            | 152               | 186                | 1648             | 5                      | 115                        | 2475             | .01                | 3963                                 | _                       |
|                | 61<br>61 |                                  | -                           | 7.9        | -              | -              | -              | -               |                              | 66                | 212                | 1032             | 15                     | 5000                       | 1238             | .1                 | 2192                                 | _                       |
|                | 61       | _                                | -1                          | 8.1        | -              | -              | -              | -1              | -                            | 166               | 182                | 1600             | 5                      | 130                        | 2400             | 1                  | 3890                                 | _                       |
| 1 1            | 61<br>61 | =1                               | -                           | 8.1        | -              | -              | -              | -               | -                            | 175               | 162                | 1520             | 5                      | 0                          | 2400             | .0                 | 3757                                 | _                       |
| 1 1            | 61       | _                                | -1                          | 7.9        | -              | =              | -              | -               | -                            | 181               | 176                | 1600             | 5                      | 0                          | _                | .1                 | 3948                                 | _                       |
|                | 61       | _                                | _                           | 8.0        | _              |                | -              | -               | -                            | 49                | 180                | 650              | 15                     | 1000                       | 675              | .1                 | 1399                                 | -                       |
| 8 28           |          | _                                | _                           | 7.9        | _              | Ξ              |                | -               | -                            | 93                | 186                | 1150             | 10                     | 1000                       | 1600             | •2                 | 2810                                 | _                       |
|                | 7        | 1                                |                             | 1 0 2      | -              | -              | -              | -               | -                            | 154               | 186                | 1600             | 5                      | 125                        | 2150             | .1                 | 3652                                 | -                       |
| _              |          |                                  |                             | ŀ          | ŀ              |                |                |                 | 1                            |                   |                    | - 1              | ı                      | •                          | 1                | l                  |                                      |                         |
|                |          |                                  |                             |            |                |                |                |                 |                              |                   |                    |                  | L                      |                            |                  |                    |                                      |                         |

STATE KANSAS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN ARK. RIVER, KANS-COLO LINE TO TULSA

STATION LOCATIONARKANSAS RIVER AT

COULIDGE, KANSAS

| DATE |                      | TEMP.                   | DISSOLVED |                          | BOD.           | C.O.D. | CHLORINE       | DEMAND          | AMMONIA-         | CHLORIDES               | ALKALINITY               |                              | COLOR         | TURBIDITY           | SULFATES                     | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS | COLIFORMS<br>per 100 ml. |
|------|----------------------|-------------------------|-----------|--------------------------|----------------|--------|----------------|-----------------|------------------|-------------------------|--------------------------|------------------------------|---------------|---------------------|------------------------------|--------------------|------------------------------|--------------------------|
| Y¥d  | YEAR                 | (Degrees<br>Centigrade) | OXYGEN    | pН                       | B.O.D.<br>mg/l | mg/l   | t-HOUR<br>mg/l | 24-HOUR<br>mg/l | NITROGEN<br>mg/l | mg/l                    | mg/l                     | mg/l                         | (scale units) | (scale units)       | mg/l                         |                    | mg/l                         |                          |
|      | 61<br>61<br>61<br>61 | -<br>-<br>-<br>-        | -         | 7.9<br>7.4<br>7.3<br>8.0 | -              | -      | -              | -               | -<br>-<br>-<br>- | 62<br>152<br>158<br>108 | 168<br>190<br>182<br>192 | 1550<br>1470<br>1470<br>1230 | 5 5           | 0<br>0<br>0<br>5000 | 2350<br>2200<br>2150<br>1800 | •0                 | 3712<br>3549<br>3701<br>-    | -                        |
|      |                      |                         |           |                          |                |        |                |                 |                  |                         |                          |                              |               |                     |                              |                    |                              |                          |
|      |                      |                         |           |                          |                |        |                |                 |                  |                         |                          | T.                           |               |                     |                              |                    |                              |                          |
|      |                      |                         |           |                          |                |        |                |                 |                  |                         |                          |                              |               |                     |                              |                    |                              |                          |
|      |                      |                         |           |                          |                |        |                |                 |                  |                         |                          |                              |               |                     |                              |                    |                              |                          |
|      |                      |                         |           |                          |                |        |                |                 |                  |                         |                          |                              |               |                     |                              |                    |                              |                          |
|      |                      |                         |           |                          |                |        |                |                 |                  |                         |                          |                              |               |                     |                              |                    |                              |                          |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station near Coolidge, Kansas Operated by U.S. Geological Survey STATE

Kansas

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Ark. River, Kans-Colo Line to Tulsa

STATION LOCATION

Arkansas River at

Coolidge, Kansas

| Day                              | October                                      | November                             | December                                     | January                              | February                             | March                                | April                                | May                                       | June                                    | July                                           | August                                    | September                                 |
|----------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|-----------------------------------------|------------------------------------------------|-------------------------------------------|-------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | .0016<br>.0016<br>.0017<br>.0016             | .079<br>.062<br>.062<br>.068<br>.068 | .058<br>.065<br>.065<br>.062                 | .090<br>.090<br>.090<br>.100         | .160<br>.124<br>.118<br>.107<br>.140 | .114<br>.124<br>.124<br>.107         | .100<br>.104<br>.104<br>.104<br>.097 | .104<br>.088<br>.081<br>.078              | .0041<br>.125<br>1.920<br>2.630<br>.879 | .058<br>.065<br>.142<br>.104<br>.065           | .0049<br>.0052<br>.0052<br>.0047<br>.0036 | .043<br>.031<br>.018<br>.012<br>.0080     |
| 6<br>7<br>8<br>9<br>10           | .0014<br>.0014<br>.0016<br>.0021             | .062<br>.062<br>.062<br>.065<br>.072 | .065<br>.065<br>.076<br>.100                 | .100<br>.100<br>.100<br>.110         | .104<br>.114<br>.110<br>.118<br>.114 | .100<br>.114<br>.114<br>.104<br>.104 | .114<br>.124<br>.155<br>.190<br>.190 | .061<br>.064<br>.072<br>.061<br>.040      | .636<br>.396<br>.478<br>.282<br>.218    | .049<br>.072<br>.372<br>.526<br>.353           | .0034<br>.0034<br>.0041<br>.042           | .0070<br>.0056<br>.0090<br>.0056<br>.0056 |
| 11<br>12<br>13<br>14<br>15       | .0021<br>.0021<br>.0021<br>.0026<br>.0034    | .062<br>.054<br>.058<br>.058<br>.062 | .086<br>.079<br>.065<br>.065                 | .107<br>.094<br>.100<br>.110         | .104<br>.100<br>.104<br>.121<br>.124 | .100<br>.100<br>.100<br>.110         | .185<br>.175<br>.180<br>.190<br>.270 | .031<br>.027<br>.025<br>.027<br>.025      | .185<br>.160<br>.156<br>.156<br>.142    | .322<br>.452<br>.270<br>.170<br>.124           | .015<br>.016<br>.530<br>.414<br>.224      | .010<br>.020<br>.015<br>.015              |
| 16<br>17<br>18<br>19<br>20       | .0034<br>.0047<br>.026<br>.054<br>.054       | .062<br>.058<br>.054<br>.058<br>.051 | .065<br>.062<br>.062<br>.072<br>.095         | .118<br>.107<br>.110<br>.107         | .121<br>.121<br>.118<br>.104<br>.100 | .121<br>.121<br>.114<br>.110<br>.107 | .246<br>.234<br>.212<br>.258<br>.246 | .025<br>.020<br>.020<br>.022<br>.019      | .156<br>.137<br>.127<br>.127<br>.114    | .132<br>.190<br>.150<br>.107<br>.090           | .165<br>.224<br>.426<br>.459<br>.276      | .013<br>.013<br>.015<br>.030              |
| 21<br>22<br>23<br>24<br>25       | .068<br>.132<br>.109<br>.072<br>.065         | .054<br>.065<br>.068<br>.062<br>.054 | .100<br>.095<br>.095<br>.095                 | .110<br>.104<br>.097<br>.094<br>.100 | .100<br>.104<br>.107<br>.107         | .107<br>.100<br>.110<br>.100         | .229<br>.218<br>.234<br>.264<br>.240 | .053<br>.020<br>.010<br>.0074<br>.0063    | .104<br>.100<br>.065<br>.086<br>.142    | .081<br>.072<br>.061<br>.053<br>.047           | .224<br>.240<br>.229<br>.196<br>.175      | .079<br>.072<br>.072<br>.086<br>.156      |
| 26<br>27<br>28<br>29<br>30<br>31 | .058<br>.058<br>.047<br>.047<br>.054<br>.062 | .051<br>.049<br>.051<br>.058<br>.068 | .082<br>.082<br>.079<br>.072<br>.065<br>.068 | .100<br>.084<br>.060<br>.114<br>.124 | .104<br>.114<br>.114                 | .100<br>.094<br>.094<br>.094<br>.094 | .240<br>.264<br>.288<br>.294<br>.190 | .0058<br>.0052<br>.0047<br>.0047<br>.0041 | .161<br>.205<br>.205<br>.195<br>.079    | .047<br>.038<br>.036<br>.031<br>.0068<br>.0036 | .155<br>.123<br>.082<br>.051<br>.047      | .205<br>.235<br>.265<br>.286<br>.265      |

STATE

SOUTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

BIG SIOUX RIVER

STATION LOCATION BIG SIOUX RIVER BELOW

SIOUX FALLS, SOUTH DAKOTA

|             |                               |           |           |               |           |           |       | RADIO                    | ACTIVITY IN P | LANKTON (dry) |          | RADIOACTIVITY IN W | AICK  |
|-------------|-------------------------------|-----------|-----------|---------------|-----------|-----------|-------|--------------------------|---------------|---------------|----------|--------------------|-------|
| DATE        |                               |           |           | ACTIVITY IN Y | ATER      | BETA      |       | DATE OF                  | GROS          | S ACTIVITY    |          | GROSS ACTIVITY     | TOTAL |
| SAMPLE      | DATE OF<br>DETERMI-<br>NATION |           | ALPHA     |               | SUSPENDED | DISSOLVED | TOTAL | DATE OF<br>DETERMINATION | ALPHA         | BETA          | SUSPEN   |                    | μμс/I |
| TAKEN       |                               | SUSPENDED | DISSOLVED | TOTAL         | μμε/I     | μμε/Ι     | μμς/Ι | MO. DA                   | r μμε/g       | μμc/g         | µµс/     | <i>рре/</i> 1      |       |
| O. DAY YEAR | MONTH DAY                     | μμε/l     | μμς/Ι     | μμε/!         | PPUI      |           |       |                          |               |               | į        | \                  |       |
|             |                               |           | _         | ,             | 0         | اه        | 0     |                          |               | 1             |          |                    |       |
| 5 19 61     | 6 6                           | 1         | o         | 1<br>5        | 0         | 10        | 10    | Ì                        | ļ             |               | 1        | 1 1                |       |
| 6 5 61      | 6 20                          | 0         | 5         |               | 0         | ō         | 0     | · [                      | ļ             |               | ł        |                    |       |
| 6 15 61     | 7 5                           | 1         | 5         | 6             | 0         | ŏl        | 0     |                          | ļ             | 1             | ł        |                    |       |
| 6 22 61     | 7 31                          | 1 1       | 1         | 2             | 0         | 9         | 9     |                          | 4             | 1 1           | 1        |                    |       |
| 6 29 61     | 7 27                          | 0         | 0         | 0             | 1         | اة        | 0     |                          | 1             |               | 1        |                    |       |
| 7 6 61      | 8 7                           | 0         | 5         | 5             | 0         | 3         | 3     | 1                        | 1             | ļ ļ           | į        |                    |       |
| 7 12 61     | 8 8                           | 0         | 0         | 0             | 0         | 12        | 15    |                          | l             | 1             |          | 1                  |       |
| •           | 8 14                          | 0         | 0         | 0             | 3         | 12        | ī     | - 1                      |               |               |          |                    |       |
|             | 8 14                          | 0         | 1         | 1             | 0         |           | 86    |                          | 1             |               | l        |                    |       |
|             | 9 1                           | 1 0       | 1 1       | 1             | 32        | 54        | 9     |                          | 1             | !             |          |                    | 1     |
| 8 1 61      | 9 8                           | o         | 1 1       | - 1           | 0         | 9         | 36    |                          | 1             |               |          |                    | 1     |
| 8 8 61      |                               | i         | 2         | 3             | 0         | 36        | 26    | ļ                        | 1             |               |          |                    | į     |
| 8 15 61     | 9 13                          | î         | 1         | 2             | 0         | 26        | 36    | l                        | ł             |               |          |                    |       |
| 8 22 61     | 9 26                          | ī         | 1         | 2             | 17        | 19        | 33    | 1                        | 1             |               | 1        | l                  | İ     |
| 8 30 61     | 9 27                          | ō         | ō         | 0             | 4         | 29        | 58    | l l                      | - 1           |               | 1 1      |                    |       |
| 9 6 61      | 10 6                          | 0         | 6         | 6             | 25        | 33        | 20    |                          |               | Ì             |          |                    |       |
| 9 20 61     | 10 3                          |           |           |               |           |           | 1     |                          | 1             | 1             | 1 1      |                    | 1     |
|             |                               |           |           |               |           |           | 1     | Ì                        | ŀ             | l l           | <b>!</b> |                    |       |
|             |                               |           |           |               |           |           | 1     | l                        | ì             |               |          |                    | \     |
|             | 1                             | İ         | }         | ì             |           |           | ì     | 1                        |               |               | 1        |                    | 1     |
|             |                               |           | 1         |               | 1         |           |       | 1.                       |               |               | 1 1      |                    |       |
|             |                               |           | 1         |               | i         | 1         |       |                          | 1             |               | 1        |                    | 1     |
|             | Į.                            | 1         |           |               | ł         |           |       | ļ                        | ł             |               | 1 1      |                    |       |
|             | Į.                            |           | 1         |               | }         |           |       | 1                        | ì             |               | 1 1      | 1                  | 1     |
|             | 1                             | į.        |           |               | 1         |           |       | .                        | 1             |               | 1 1      |                    | 1     |
|             |                               | 1         | 1         |               | 1         |           |       |                          | 1             |               | 1 1      |                    | 1     |
|             | 1                             |           | ì         |               |           |           |       |                          | 1             |               | 1 1      |                    | 1     |
|             |                               | ŀ         | 1         | 1             | 1         |           |       |                          | ļ             |               | 1 1      |                    | 1     |
|             |                               | 1         | Ì         | ì             |           | 1         |       | l i                      | }             | j             |          |                    | Ì     |
|             | l l                           | 1         |           |               | į         |           |       | 1 1                      | 1             |               | 1        | 1                  |       |
|             |                               | 1         | ļ         | ļ             | )         |           |       | \ \                      |               |               |          |                    |       |
|             | 1                             | 1         |           |               | İ         |           |       | 1 1                      | 1             |               | 1        |                    | l l   |
|             |                               | 1         |           |               | Į.        |           |       |                          | ļ             |               |          |                    |       |
|             |                               |           |           |               | 1         |           |       | 1                        | 1             |               | 1        |                    |       |
|             | 1                             |           |           | 1             |           | 1         |       | 1 1                      | 1             |               |          |                    |       |
|             |                               |           | 1         | 1             | 1         | 1         |       | 1                        |               |               |          |                    |       |
|             |                               |           |           |               | 1         | \         |       | 1 1                      | 1             |               |          |                    |       |
|             |                               | 1         |           |               | ļ         |           |       | 1                        |               |               | 1 1      |                    |       |
|             |                               | 1         |           |               |           |           |       | 1 1                      | ł             |               | 1        |                    |       |
|             |                               | 1         |           |               | 1         |           |       |                          |               |               |          | 1                  |       |
|             | 1                             | 1         | - [       |               | ļ.        |           |       | 1 1                      |               |               |          |                    |       |
|             | 1                             | 1         |           |               |           | 1         |       |                          |               |               |          |                    |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

SOUTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

BIG SIOUX RIVER

STATION LOCATION BIG SIOUX RIVER BELOW

SIOUX FALLS, SOUTH DAKOTA

| Α               |                              |                                       | 80                                                                            |
|-----------------|------------------------------|---------------------------------------|-------------------------------------------------------------------------------|
| EBR             | ATES                         |                                       | 1                                                                             |
| (No. per titer) | NEMATODES<br>(No. per liter) | OTHER ANIMAL FORMS<br>(No. per liter) | DONINANT GENERA<br>(See Introduction)<br>for Identification)                  |
| 2 3 2 1         | 61<br>3263<br>424            | 4                                     | 71967<br>48963<br>4893-<br>74963<br>48967<br>48967<br>48165<br>48967<br>48763 |

| _                          |            |                            | 1                                                                           |                               |                                            | ALGAE (                                                     | Numbe                | r per ml.)                                               |                  |                                                                         |                                                              | INE                                 | ERT                          | т-                                     |                      |                            |                                        | IATO                                   |                                  |                            |                    |                       | Γ.                                                                      | 1                         | MICROIN                                           | VERTEBR                      | ATES                         |                                       | 1                                                                |
|----------------------------|------------|----------------------------|-----------------------------------------------------------------------------|-------------------------------|--------------------------------------------|-------------------------------------------------------------|----------------------|----------------------------------------------------------|------------------|-------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------|------------------------------|----------------------------------------|----------------------|----------------------------|----------------------------------------|----------------------------------------|----------------------------------|----------------------------|--------------------|-----------------------|-------------------------------------------------------------------------|---------------------------|---------------------------------------------------|------------------------------|------------------------------|---------------------------------------|------------------------------------------------------------------|
|                            | DAT<br>SAM | E<br>1PLE                  |                                                                             | BLUE                          | GREEN                                      | GRE                                                         | EN                   |                                                          | LLATES<br>ented) | DIAT                                                                    | омѕ                                                          | SHE                                 | ERT<br>TOM<br>LLS<br>er ml.) |                                        | DOM<br>(Se           | INAN'                      | SPEC<br>duction                        | IES A                                  | ND PE                            | RCEN<br>ntifica            | TAGE:              | s                     | PLANKTON<br>IRATHED<br>rd.)                                             | L.I.                      | 1                                                 | Γ                            | T                            | FORMS                                 | ENERA<br>duction<br>ication)                                     |
| MONTH                      | DAY        | YEAR                       | TOTAL                                                                       | COCCOID                       | FILA-<br>MENT-<br>OUS                      | COCCOID                                                     | FILA-<br>MENT<br>OUS | - GREEN                                                  | OTHER            | CENTRIC                                                                 | PENNATE                                                      | CENTRIC                             | PENNATE                      | FIRST#                                 | PER.<br>CENTAGE      | SECOND*                    | PER.                                   | THIRD#                                 | PER.                             | FOURTH®                    | PER.               | OTHER PER-<br>CENTAGE | OTHER HICROPLANKTON,<br>FUNGI AND SHEATHED<br>BACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)                      | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ANIMAL FORMS<br>(No. per liter) | DONINANT GENERA<br>(See Introduction<br>for Identification)      |
| 6<br>7<br>7<br>8<br>8<br>9 |            | 61<br>61<br>61<br>61<br>61 | 22000<br>29700<br>13900<br>20500<br>21100<br>10500<br>8200<br>10300<br>3700 | 40<br>340<br>650<br>110<br>20 | 460<br>180<br>70<br>180<br>90<br>310<br>20 | 2590<br>4310<br>4470<br>3240<br>3660<br>2190<br>2300<br>890 |                      | 2920<br>3040<br>2190<br>740<br>650<br>1600<br>400<br>270 | 90               | 12070<br>18810<br>4670<br>13870<br>13990<br>4140<br>4000<br>5740<br>470 | 3890<br>3040<br>1590<br>2230<br>2390<br>2750<br>1740<br>2010 | 8000<br>3490<br>4670<br>3550<br>950 | 690<br>540                   | 82<br>26<br>26<br>82<br>26<br>26<br>26 | 60<br>40<br>30<br>50 | 82<br>82<br>26<br>71<br>56 | 30<br>40<br>20<br>10<br>30<br>20<br>10 | 56<br>26<br>56<br>56<br>23<br>82<br>58 | 20<br>10<br>10<br>10<br>10<br>10 | 70<br>70<br>70<br>70<br>82 | 10<br>*<br>10<br>* | 10<br>20<br>10        | 50<br>20<br>70                                                          | 10 20 20 10               | 3<br>2<br>10<br>80<br>35<br>18<br>34<br>104<br>45 | 2 3 2 1                      | 61 326344                    |                                       | 71967<br>48963—<br>48963—<br>489667<br>489667<br>481657<br>48763 |

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

SOUTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

BIG SIOUX RIVER

STATION LOCATIONBIG SIOUX RIVER BELOW

SIOUX FALLS, SOUTH DAKOTA

| DAY DAY AND STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STANDS TO STAN | TEMP.<br>(Degrees<br>Centigrade                                                                                                                              | DISSOLVED<br>OXYGEN<br>) mg/l                                                           | рН                                                                               | B.O.D.<br>mg/l                                                                                     | C.O.D.<br>mg/l                  | CHLORINE 1-HOUR mg/i | DEMAND 24-HOUR mg/l | AMMONIA-<br>NITROGEN<br>mg/l                                                                  | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l                                                                             | HARDNESS<br>mg/l                                           | COLOR<br>(scale units)                                                                       | TURBIDITY<br>(scale units) | SULFATES<br>mg/l                                                                  | PHOSPHATES                                | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l                                                                    | COLIFORMS                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------|----------------------|---------------------|-----------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| HINOW 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 18.0<br>1 20.0<br>1 26.0<br>1 26.1<br>1 26.1<br>1 26.1<br>1 26.1<br>1 26.1<br>1 26.1<br>1 26.1<br>1 22.1<br>1 22.1<br>1 22.1<br>1 22.1<br>1 22.1<br>1 22.1 | 1.8<br>2.9<br>4.0<br>1.8<br>1.8<br>1.8<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 8.0<br>8.5<br>7.7<br>7.8<br>7.7<br>7.3<br>7.4<br>7.5<br>7.4<br>7.3<br>7.4<br>7.3 | 6.0<br>8.0<br>19.6<br>28.0<br>24.0<br>20.0<br>22.0<br>66.0<br>70.0<br>58.0<br>46.0<br>85.0<br>60.0 | 104<br>128<br>116<br>152<br>148 |                      |                     | 1.0<br>.6<br>.6<br>.4<br>.7<br>.8<br>1.8<br>2.8<br>2.0<br>1.8<br>.4<br>.2<br>.5<br>6.0<br>1.2 |                   | 273<br>240<br>270<br>249<br>224<br>189<br>227<br>239<br>222<br>192<br>220<br>235<br>260<br>223 | 450<br>452<br>4798<br>3934<br>4702<br>3560<br>3444<br>4916 | 20<br>20<br>20<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25 | 3                          | 214<br>209<br>227<br>301<br>162<br>232<br>2545<br>297<br>278<br>213<br>235<br>225 | 7.6<br>8.8<br>7.2<br>11.2<br>10.0<br>19.6 | 606<br>722<br>660<br>638<br>667<br>702<br>1056<br>706<br>885<br>715<br>642<br>806<br>783<br>1138<br>919 | 220000<br>860000<br>900000<br>6400000<br>3500000<br>6000000<br>5500000 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Brandon, South Dakota Operated by U.S. Geological Survey

STATE

South Dakota

MAJOR BASIN

Missouri River

MINOR BASIN

Big Sioux River

STATION LOCATION

Big Sioux River below

Sioux Falls, South Dakota

| Day         | October      | November     | December | January | February | March          | April | May           | Jun <b>e</b>  | July  | August | September |
|-------------|--------------|--------------|----------|---------|----------|----------------|-------|---------------|---------------|-------|--------|-----------|
|             | .078         | .059         | .040     | .025    | .020     | .904           | .264  | ,126          | .282          | . 300 | .056   | .070      |
| 1           | .084         | .056         | .040     | .025    | .020     | 1.160          | .252  | .111          | . <b>2</b> 61 | . 306 | .055   | .063      |
| 2<br>3<br>4 | .073         | .056         | .045     | .020    | .020     | 1.410          | .249  | .116          | .225          | .231  | .056   | .050      |
| ĭ           | .067         | .056         | .050     | .042    | .020     | 1.710          | .243  | 111           | .216          | .219  | .059   | .047      |
| 5           | .072         | .056         | .050     | .045    | .020     | 1.510          | .188  | .126          | <b>.2</b> 05  | .196  | .059   | .050      |
| 6           | .066         | .056         | .050     | .041    | .020     | 1.210          | .188  | .164          | .264          | .177  | .059   | .055      |
|             | .066         | .054         | .045     | .035    | .020     | 1.080          | .196  | .143          | <b>.2</b> 96  | .152  | .062   | .045      |
| 7<br>8      | .065         | .052         | .040     | .033    | .020     | .904           | .188  | .150          | .222          | .137  | .076   | .050      |
| 0           | .069         | .052         | .035     | .030    | .020     | .712           | .185  | .145          | .172          | .116  | .073   | .041      |
| 9<br>10     | .063         | .050         | .030     | .035    | .025     | .632           | .182  | .152          | 159           | .107  | .063   | .040      |
|             | 050          | .047         | .025     | .034    | .025     | .56 <b>2</b>   | .185  | .167          | .180          | .114  | .062   | .034      |
| 11          | .059         | .047         | .030     | .034    | .025     | . 527          | .182  | .167          | .185          | .120  | .050   | .041      |
| 12          | .062<br>.066 | .054         | .030     | .034    | .025     | .516           | .177  | .185          | .205          | .162  | .044   | .042      |
| 13<br>14    |              | .051         | .030     | .034    | .025     | .660           | .177  | .157          | .213          | .219  | .042   | .034      |
| 15          | .073<br>.062 | .054         | .030     | .032    | .025     | 1.100          | .169  | .188          | . 234         | .174  | . 044  | .038      |
|             | .054         | .052         | .035     | .032    | .025     | 1.230          | .159  | .167          | .297          | .130  | .040   | .028      |
| 16          | .054         | .052         | .030     | .032    | .025     | .896           | .157  | .225          | . 324         | .111  | .038   | .032      |
| 17          |              |              | .030     | .034    | .025     | .684           | .157  | . 306         | .288          | .098  | .055   | .032      |
| 18          | .054<br>.054 | .033<br>.030 | .030     | .032    | .025     | .565           | .150  | .422          | .261          | .088  | .049   | .034      |
| 19<br>20    | .051         | .026         | ,030     | .025    | .035     | .502           | .145  | . 432         | .267          | .085  | .047   | .057      |
|             |              | 200          | 020      | .020    | .050     | . 477          | .141  | .516          | .261          | .079  | .059   | .112      |
| 21          | .051         | .026         | .030     | .020    | .075     | .450           | .145  | .483          | .255          | .078  | .049   | .044      |
| 55          | .052         | .030         | .030     | .020    | .155     | .405           | .157  | .489          | .228          | .079  | .052   | .040      |
| 23<br>24    | .050         | .030         | .030     | .020    | .800     |                | .155  | .431          | .202          | .069  | .056   | .039      |
|             | .049         | .030         | .025     | .020    |          | • 375<br>• 354 | .150  | .621          | .177          | .066  | .067   | .039      |
| <b>2</b> 5  | .050         | .030         | .020     | .020    | . 450    | • 374          | .150  | .021          | • + 11        | .000  | .001   | .039      |
| <b>2</b> 6  | .050         | .030         | .020     | .020    | . 456    | · 345          | .145  | .715          | .157          | .063  | .079   | .039      |
| 27          | .049         | .030         | .020     | .020    | . 694    | • 339          | .141  | • 537         | .145          | .062  | .109   | .039      |
| 28          | .050         | .030         | .025     | .020    | .744     | . 321          | .137  | .4 <b>2</b> 9 | .132          | .060  | . 107  | .039      |
| 29          | .058         | .030         | .025     | .025    |          | . 306          | .130  | . 378         | .124          | .052  | .109   | .038      |
| 30          | .065         | .030         | .025     | .025    |          | . 303          | .130  | . 351         | .126          | .050  | .084   | .038      |
| 31          | .059         | _            | .025     | .025    |          | . 288          |       | . 327         |               | .050  | .074   |           |

STATE

GEORGIA

MAJOR BASIN

SOUTHEAST

RADIOACTIVITY DETERMINATIONS

CHATTACHOOCHEE RIVER MINOR BASIN

STATION LOCATION CHATTACHOOCHEE RIVER AT

COLUMBUS, GEORGIA

|                      |                               |           |           |               |           |           |       |                               |               | VICTON (dec) |     | RAD       | OACTIVITY IN W | ATEK  |
|----------------------|-------------------------------|-----------|-----------|---------------|-----------|-----------|-------|-------------------------------|---------------|--------------|-----|-----------|----------------|-------|
|                      |                               |           | RADIO     | ACTIVITY IN W | ATER      |           |       |                               | TIVITY IN PLA | ACTIVITY     |     |           | GROSS ACTIVITY | TOTAL |
| DATE                 |                               |           | ALPHA     |               |           | BETA      |       | DATE OF<br>DETERMI-<br>NATION | ALPHA         | BETA         |     | SUSPENDED | DISSOLVED      | μμε/Ι |
| SAMPLE<br>TAKEN      | DATE OF<br>DETERMI-<br>NATION | SUSPENDED | DISSOLVED | TOTAL         | SUSPENDED | DISSOLVED | TOTAL | MO. DAY                       | μμc/g         | μμc/g        |     | μμε/1     | μμε/Ι          | 1,000 |
| IAKEN                |                               | μμc/l     | μμε/Ι     | μμε/Ι         | μμς/1     | μμς/1     | μμε/Ι | MO. DAY                       | PPC/ g        | 1            |     |           |                |       |
| O. DAY YEAR          | MONIH DAY                     |           |           |               |           |           | 0     | 1                             |               | 1            |     |           |                |       |
| 0 10 (0*             | 10 20                         | 0         | 1         | 1             | 0         | 0         | 0     |                               |               |              |     | 1         |                |       |
| 0 10 60*             |                               | _         | -         | _             | 0         | - 1       | 0     |                               |               |              |     | 1         | 1              |       |
| 0 24 60*<br>1 7 60*  | 1 7                           | 0         | 1         | 1             | 0         | 0         | i     | 1                             |               |              | 1   |           | 1              |       |
|                      |                               |           | -         | -             | 0         | 1         | i     |                               |               |              | l   |           |                |       |
| 1 28 60*<br>2 12 60* | 1                             | 0         | 2         | 2             | 0         | 1 0       | ō     |                               |               |              | 1   |           | 1              |       |
| 2 27 60              | 2 2                           | -         | -         |               | 0         | 0         | o l   | 1 1                           |               |              |     |           |                |       |
| 1 9 61*              | 1 -                           | 0         | 0         | 0             | 0         | 0         | o l   |                               |               |              |     |           |                | ı     |
| 1 30 61              | 1 -                           | -         | -         | _             | 0         | 0         | o l   |                               |               |              | 1   |           |                |       |
| 2 13 61              |                               | 0         | 0         | 0             | 0         | 0         | 6     |                               |               |              | l   |           | 1              |       |
| 2 27 61              | 1                             | - 1       |           | -             | 6         | 0 1       | ō     | 1                             |               |              | 1   | 1         |                |       |
| 3 13 61              | 1                             | 1         | 0         | 1             | 0         | 0         | 0     |                               |               | Ì            | 1   | l .       |                | 1     |
| 3 20 61              | 4 3                           | _ '       | -         | -             | 0         | 3         | 3     | 1                             |               |              | 1   | 1         |                | ļ     |
| 3 27 61              | 4 12                          | -         | -         | _             | 0         | l ó l     | 0     |                               |               |              | 1   | İ         |                |       |
| 4 10 61              | 1                             | 1         | 1         | 2             | 0         | o         | 0     |                               | ļ             |              |     |           |                |       |
| 4 24 61              | 1 -                           | 1         | 0         | 1             | 1 0       | 0         | 0     |                               |               |              | 1   | 1         |                |       |
| 5 29 61              | 1                             | 0         | 0         | 0             | 0         | 0         | 0     | 1                             |               |              | 1   | ì         |                | 1     |
| 6 26 61              | * 7 12                        | 0         | 0         | 2             | 1 0       | 0         | 0     | 1                             | ŀ             |              | 1   | 1         | 1              | 1     |
| 7 31 61              |                               | 1         | 1         | 0             | 2         | 3         | 5     |                               |               |              | 1   | 1         | 1              | 1     |
| 8 28 61              |                               | 0         | 0         | ő             | 0         | 3         | 3     | i                             |               |              | 1   |           |                |       |
| 9 5 61               |                               | 0         | 0         | -             | 0         | 1         | 1     |                               |               |              | 1   | ļ         |                | 1     |
| 9 11 61              |                               | -         | _         | ٠ ـ           | 2         | 3         | 5     |                               |               |              | 1   | 1         |                |       |
| 9 18 61              | 10 23                         | -         | _         | _             | 0         | 2         | 2     |                               | }             |              | -   | 1         |                |       |
| 9 25 61              | 10 3                          | _         |           |               |           |           |       |                               |               |              | 1   | 1         |                |       |
|                      |                               |           |           |               |           |           |       |                               |               |              | - 1 | - 1       |                |       |
|                      |                               |           |           |               |           |           |       |                               |               |              | -   | 1         | 1              | 1     |
|                      |                               | ì         |           |               |           |           |       |                               |               |              | 1   | 1         |                |       |
|                      |                               |           |           |               | Ì         | İ         |       | 1                             |               |              | - 1 |           |                |       |
|                      |                               |           |           |               | l         |           | 1     |                               |               |              | - 1 | - 1       |                | 1     |
|                      | l                             |           | 1         | 1             |           |           | 1     |                               |               |              | - 1 |           |                |       |
|                      |                               |           |           |               | 1         |           |       | l                             | Į.            | Ì            | - 1 | 1         |                |       |
|                      | 1                             | į.        |           |               |           |           |       | ı <b>l</b>                    |               | 1            | - 1 |           | 1              |       |
|                      |                               |           |           |               | 1         |           |       |                               | 1             |              | - 1 | l         |                | 1     |
|                      |                               |           |           |               |           |           |       |                               |               |              |     | 1         |                |       |
|                      | 1                             |           |           |               |           |           |       |                               |               |              |     | - {       |                |       |
|                      |                               |           |           |               |           |           |       |                               |               |              |     | l l       |                |       |
|                      |                               | 1         | 1         |               | 1         |           |       |                               | 1             |              |     | ł         | 1              |       |
|                      |                               |           |           |               |           | 1         |       | 1 1                           | 1             |              | }   |           |                |       |
|                      | 1                             |           |           |               | 1         |           |       |                               |               | 1            | 1   |           |                |       |
|                      |                               |           |           |               | 1         |           | 1     |                               |               |              |     |           |                |       |
|                      |                               |           |           |               |           |           | 63    |                               |               |              |     |           |                |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

GEORGIA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

CHATTACHOOCHEE RIVER

STATION LOCATION CHATTACHOOCHEE RIVER AT

COLUMBUS, GEORGIA

| DATE                                                                                                                                                             |                                                                                                                          |           |                                                                             | ALGAE (N                                                                                                | lumber                | per ml.)                                                                                              |                                                                    |                                                                                                                         |                                                                                                 | INE                                                                                                       | ERT<br>TOM                                                                    | Π-                                      |                                                                                                                                                                                                    |                                                               |                                        | IATO                                                                 | NC.                                          |                                                                                        |                                                                                                                                       |                                       | l :                                                    |                            | MICROIL                                                                                                                         | IVERTEBI                                                | RATES                        |                               |                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------|-------------------------------|-------------------------------------------------------------|
| OF SAMPLE                                                                                                                                                        |                                                                                                                          | BLUE-     | GREEN                                                                       | GREE                                                                                                    | N                     | FLAGEL<br>(Pigmo                                                                                      |                                                                    | DIAT                                                                                                                    | омѕ                                                                                             | SHE                                                                                                       | TOM<br>ELLS<br>er ml.)                                                        |                                         |                                                                                                                                                                                                    |                                                               | SPEC                                   | IES A                                                                | ND PE                                        |                                                                                        |                                                                                                                                       |                                       | EDPLANKTON,<br>SHEATHED<br>ml.)                        | (7)                        | T                                                                                                                               |                                                         | 8 E                          | rouns                         | ENERA<br>fuction<br>cation)                                 |
| MONTH<br>DAY<br>YEAR                                                                                                                                             | TOTAL                                                                                                                    | .0000001  | FILA-<br>MENT-<br>OUS                                                       | COCCOID                                                                                                 | FILA-<br>MENT-<br>OUS | GREEN                                                                                                 | OTHER                                                              | CENTRIC                                                                                                                 | PENNATE                                                                                         | CENTRIC                                                                                                   | PENNATE                                                                       | FIRST#                                  | PER.<br>CENTAGE                                                                                                                                                                                    | SECOND#                                                       | PER-<br>CENTAGE                        | THIRD\$                                                              | PER.<br>CENTAGE                              | FOURTH#                                                                                | PER-<br>CENTAGE                                                                                                                       | OTHER PER-                            | OTHER MICHOL<br>FUNGIAND SP<br>BACTERIA<br>(No. per 71 | PROTOZOA<br>(No. per ml.)  | ROTIFIERS<br>(No. per liter)                                                                                                    | CRUSTACEA<br>(No. per liter)                            | NEMATODES<br>(No. per liter) | OTHER ANIMAI<br>(No. per lite | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| 10 3 60<br>10 17 60<br>11 7 60<br>11 60<br>12 1 60<br>12 1 6 61<br>21 6 61<br>3 20 61<br>4 17 61<br>5 15 61<br>6 5 61<br>7 3 61<br>7 17 61<br>8 21 61<br>9 18 61 | 400<br>1500<br>1600<br>2000<br>1900<br>700<br>200<br>1000<br>1600<br>2700<br>2400<br>1100<br>4800<br>6200<br>1700<br>900 | 20 90 130 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>1820<br>250<br>1660<br>230<br>100 | 90<br>180<br>130<br>90<br>20<br>70<br>20<br>40<br>40<br>290<br>210<br>160<br>1220<br>1080<br>390<br>190 |                       | 20<br>310<br>460<br>20<br>90<br>160<br>20<br>180<br>20<br>160<br>40<br>560<br>170<br>540<br>310<br>80 | 200<br>200<br>250<br>200<br>200<br>200<br>400<br>600<br>800<br>600 | 180<br>290<br>620<br>70<br>180<br>1560<br>1450<br>90<br>180<br>510<br>870<br>1200<br>2100<br>2100<br>3110<br>620<br>370 | 80<br>180<br>70<br>1100<br>290<br>430<br>1100<br>1300<br>270<br>630<br>170<br>480<br>120<br>120 | 70<br>90<br>70<br>110<br>20<br>180<br>50<br>70<br>130<br>190<br>60<br>80<br>80<br>90<br>210<br>480<br>150 | 110<br>110<br>130<br>110<br>130<br>160<br>270<br>40<br>170<br>80<br>310<br>80 | 3023 575727<br>5578657777<br>5786657777 | 20<br>40<br>30<br>60<br>80<br>20<br>30<br>40<br>60<br>30<br>40<br>60<br>30<br>20<br>40<br>30<br>20<br>40<br>30<br>20<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 | 902228 22222 98678677337<br>555555555555555555555555555555555 | 20<br>20<br>10<br>10<br>10<br>20<br>20 | 70<br>83<br>27<br>28<br>99<br>55<br>62<br>56<br>95<br>57<br>82<br>82 | 10<br>20<br>10<br>10<br>20<br>10<br>10<br>20 | 71<br>56<br>57<br>91<br>97<br>58<br>74<br>58<br>97<br>82<br>57<br>99<br>59<br>56<br>70 | 10<br>10<br>10<br>*<br>10<br>*<br>*<br>*<br>*<br>*<br>*<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 500440<br>3010405<br>. 10010305304304 | 20 20 20                                               | 10<br>20<br>10<br>10<br>20 | 1<br>11<br>17<br>2<br>2<br>2<br>20<br>57<br>5<br>5<br>2<br>13<br>11<br>90<br>17<br>408<br>601<br>37<br>999<br>577<br>321<br>105 | 3<br>4<br>8<br>147<br>39<br>5<br>8<br>9<br>5<br>8<br>13 | 2                            |                               |                                                             |

## ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

GEORGIA

MAJOR BASIN

MINOR BASIN

CHATTACHOOCHEE RIVER

STATION LOCATION CHATTACHOOCHEE RIVER AT

SOUTHEAST

COLUMBUS, GEORGIA

|                                                                                                                           |                                                  |                                  |                                                                                              |                                                                           |                                                                         |                                                                          |                                                                |                                                                       | •                                                                   |              | CI !! ODOF                      | ODM EVED                     | CTABLES         |                                                              |                                     |       |                                                              |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|--------------|---------------------------------|------------------------------|-----------------|--------------------------------------------------------------|-------------------------------------|-------|--------------------------------------------------------------|
| DATE OF SA                                                                                                                |                                                  |                                  |                                                                                              | EX                                                                        | TRACTABL                                                                | ES                                                                       |                                                                | 1                                                                     |                                                                     |              | CHLOROF                         | ORM EXTRA                    | CIABLES         |                                                              |                                     | Т     |                                                              |
| MONTH HE MAN MAN MAN MAN MAN MAN MAN MAN MAN MAN                                                                          | HTNOM                                            | DAY                              | GALLONS<br>FILTERED                                                                          | TOTAL                                                                     | CHLORO-<br>FORM                                                         | ALCOHOL                                                                  | ETHER<br>INSOLUBLES                                            | WATER<br>SOLUBLES                                                     | TOTAL                                                               | ALIPHATICS   | AROMATICS                       | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS            | WEAK<br>ACIDS                                                | STRONG<br>ACIDS                     | BASES | Loss                                                         |
| 10 10 60<br>11 7 60<br>12 5 60<br>1 6 61<br>2 6 61<br>3 6 61<br>4 3 61<br>5 2 61<br>6 5 61<br>7 3 61<br>8 7 61<br>9 14 61 | 11<br>12<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 16<br>14<br>12<br>12<br>14<br>12 | 3770<br>4200<br>3446<br>3462<br>3523<br>3692<br>4028<br>4237<br>3553<br>4139<br>4890<br>4985 | 228<br>236<br>192<br>194<br>258<br>209<br>206<br>224<br>216<br>223<br>184 | 60<br>69<br>61<br>51<br>*<br>103<br>116<br>107<br>89<br>103<br>98<br>59 | 168<br>167<br>131<br>143<br>174<br>155<br>93<br>135<br>125<br>125<br>125 | 2<br>3<br>4<br>2<br>-<br>6<br>7<br>8<br>7<br>1<br>1<br>D-OVERH | 16<br>17<br>16<br>11<br>-<br>30<br>35<br>28<br>22<br>27<br>25<br>- 12 | 17<br>19<br>15<br>15<br>-<br>19<br>23<br>20<br>25<br>22<br>21<br>19 | 2221 2645332 | 1 1 1 1 1 2 2 2 2 2 2 2 2 2 1 1 | 13<br>17<br>16               | 1 1 0 1 1 1 1 2 | 8<br>8<br>6<br>6<br>-<br>10<br>9<br>10<br>11<br>17<br>9<br>8 | 3<br>-<br>10<br>14<br>13<br>9<br>13 |       | 11<br>14<br>14<br>13<br><br>27<br>27<br>16<br>15<br>24<br>13 |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

GEORGIA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

CHATTACHOOCHEE RIVER

STATION LOCATIONCHATTACHOOCHEE RIVER AT

COLUMBUS, GEORGIA

|                | DATE     |          |                                  |                             |                |                |                | CHLORINE       | DEMAND          |                              |                   |                    |                  |                        |                            |                  |                    |                                      |                          |
|----------------|----------|----------|----------------------------------|-----------------------------|----------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|----------------------------|------------------|--------------------|--------------------------------------|--------------------------|
| MONTH          | F SAM    | YEAR     | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/l | pН             | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/I | AMMONIA-<br>NITROGEN<br>mg/I | CHLORIDES<br>mg/l | ALKALINITY<br>mg/i | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml. |
| $\frac{2}{10}$ | 3        | 60       | 23.0                             | 6.8                         | 6.9            | 2.1            | 18             | 2.8            | 5.2             |                              | 4                 | 18                 | 12               |                        | 30                         |                  | -                  |                                      | 170                      |
| 10             | 10       | 60       | 23.5                             | 7.7                         | 7.0            | 1.2            | 17             | 2.2            | 4 • 8           | -                            | 4                 | 17                 | 14               | -                      | 30                         | -                | -                  | -                                    | 120                      |
| 10             | 17       | 60       | 23.5                             | 7.7                         | 7.1            | 1.6            | 20             | .9             | 2.8             | -                            | 4                 | 18<br>18           | 14<br>16         | _                      | 20                         | _                | -                  | -                                    | 35                       |
| 10             | 24       | 60       | 21.5                             | 5.9                         | 6.8            | • 8            | 18             | 1.1            | 1.9             | _                            | 4                 | 10                 | 10               | _                      | 20                         | _                | -                  | _                                    | 190                      |
| 10<br>10       | 29       | 60       | 70.5                             | -                           | , -            | • 7            | 46             | •9             | 2 • 4           | _                            | 4                 | 18                 | 15               | _                      | 20                         |                  |                    |                                      | 150                      |
| 11             | 31       | 60<br>60 | 19.5<br>17.5                     | 6.1<br>7.9                  | 6.8<br>7.0     | 2.0            | 44             | .7             | 2.1             |                              | 4                 | 19                 | 15               | _                      | 20                         | _                | _                  |                                      | 58                       |
| 11             | 14       | 60       | 15.5                             | 8.5                         | 7.1            | 1.0            | 42             | • 9            | 2.3             | -                            | 4                 | 19                 | 15               | -                      | 20                         | _                | _                  |                                      | 49                       |
| 11             | 21       | 60       | 15.0                             | 8.2                         | 6.9            | • 8            | 48             | 1.2            | 2.1             | -                            | 4                 | 19                 | 15               |                        | 8                          |                  |                    | -                                    | 73                       |
| 11             | 28       | 60       | 15.5                             | 8.4                         | 6.9            | • 9            | 54             | 1.1            | 2.6             | -                            | 4                 | 19                 | 15               |                        | 9                          | -                | -                  | -                                    | 55                       |
| 12             | 5        | 60       | -                                | -                           | -              | -              | -              | -              | -1              | -                            |                   | -                  | _                | -                      | -                          | -                | -                  | -                                    | 67                       |
| 12             | 6        | 60       | 12.5                             | 9.1                         | 6.9            | 1.8            | 45             | 1.1            | 2.9             | -                            | 4                 | 19                 | 15               | 0                      | 10                         | -                | -                  | -                                    |                          |
| 12             | 12       | 60       | 11.5                             | 9.8                         | 6.9            | 1.0            | 48             | 1.0            | 2 • 8<br>2 • 8  | -                            | 4<br>4            | 18<br>18           | 15<br>15         | -                      | 10<br>10                   | _                | _                  | -                                    | 50                       |
| 12<br>12       | 19       | 60       | 10.0                             | 10.2                        | 6.9            | .9<br>1.0      | 51<br>45       | 1.1<br>.9      | 2.9             | _                            | 4                 | 18                 | 14               | _                      | 8                          | _                |                    | _                                    | 35                       |
| 12             | 27       | 60       | 9.0<br>8.5                       | 11.0<br>10.6                | 7.0            | .7             | 13             | 1.2            | 3.1             | _                            | 4                 | 18                 | 14               | _                      | 10                         | _                | _                  |                                      | 40<br>40                 |
| 1              | 9        | 61       | 8.0                              | 10.3                        | 6.9            | .8             | 15             | 1.4            | 3.8             | _                            | - 4               | 18                 | 14               | -                      | 15                         |                  | _                  | _                                    | 29                       |
| ī              | 16       | 61       | 9.0                              | 10.6                        | 7.0            | • 9            | 16             | 1.4            | 2.8             | -                            | 4                 | 18                 | 14               | -                      | 15                         | _                |                    | _                                    | 65                       |
| 1              | 23       | 61       | 7.5                              | 10.5                        | 7.0            | • 6            | 12             | 1.2            | 2.9             | -                            | 4                 | 18                 | 15               | _                      | 15                         | -                |                    |                                      | 13                       |
| 1              | 30       | 61       | 7.0                              | 11.0                        | 7.1            | • 7            | 14             | 1.8            | 2.8             | -                            | 4                 | 19                 | 15               | -                      | 15                         | -                | -                  | -                                    | 55                       |
| 2              | 6        | 61       | 8.0                              | 10.7                        | 7.1            | • 7            | 19             | 1.8            | 3.9             | -                            | 4                 | 17                 | 16               | -                      | 10                         | -                | -                  | -                                    | 33                       |
| 2              | 13       | 61       | 8.5                              | 10.8                        | 7.3            | 1.3            | 14             | 1.1            | 2.9             | -                            | 5                 | 19                 | 13               | -                      | 10                         | -                | -                  | -                                    | 5                        |
| 2              | 20       | 61       | 12.0                             | 10.8                        | 6.9            | 1.9            | 22             | 3.6            | 6.0             | -                            | 4                 | 15                 | 15               | -                      | 220                        | -                | -                  | -                                    | 400                      |
| 2              | 27       | 61       | 14.0                             | 11.4                        | 6.6            | 1.4            | 30             | 2.6            | 6 • 4           | -                            | 4                 | 7                  | 10               | -                      | 440                        | -                | -                  | -                                    | 4400                     |
| 3<br>3         | 13       | 61       | 14.5<br>15.0                     | 9.0                         | 6.6            | 2.6<br>1.3     | 19<br>18       | 2.8            | 5 • 9<br>4 • 2  | -                            | 4                 | 10                 | 12               | -                      | 110                        | -                | -                  | -                                    |                          |
| 3              | 20       | 61       | 14.5                             | 9.0                         | 6.7            | 1.3            | 13             | 1.9<br>1.8     | 3.9             | _                            | 4<br>4            | 12<br>12           | 12<br>12         | -                      | 75<br>75                   |                  | -                  | _                                    |                          |
| 3              | 27       | 61       | 16.0                             | 9.2                         | 6.9            | .7             | 13             | .8             | 3.2             | _                            | 4                 | 15                 | 14               | _                      | 40                         | _                |                    | _                                    | 560<br>300               |
| 4              | 3        | 61       | 17.0                             | 9.8                         | 6.9            | 1.0            | 22             | _              |                 | _                            | 4                 | 14                 | 12               | _                      | 160                        | _                | _                  | _                                    | 1500                     |
| 4              | 10       | 61       | 17.0                             | 8.9                         | 6.9            | 1.0            | 15             | 1.4            | 3.6             | -                            | 4                 | 13                 | 12               | _                      | 104                        | _                | _                  | _                                    | 340                      |
| 4              | 17       | 61       | 17.0                             | 9.0                         | 6.9            | 1.3            | 17             | • 9            | 3.8             |                              | 4                 | 13                 | 12               | -                      | 180                        | _                | - [                |                                      | 2400                     |
| 4              | 24       | 61       | 17.0                             | 8.5                         | 6.9            | • 5            | 16             | 1.0            | 2.9             | -                            | 4                 | 15                 | 14               | -                      | 65                         | _                | -                  | -                                    | 300                      |
| 5              | 1        | 61       | 19.0                             | 8.7                         | 6.9            | • 7            | 18             | 1.6            |                 | -                            | 4                 | 15                 | 12               | -                      | 40                         | -                | -                  | -                                    | 1100                     |
| 5              | 8        | 61       | 20.5                             | 8.4                         | 7.0            | • 6            | 16             | 1.4            | 2.7             | -                            | 4                 | 15                 | 12               | -                      | 40                         | -                | -                  | -                                    | 420                      |
| 5<br>5         | 15<br>22 | 61       | 20.5                             | 6.8                         | 7.0            | .7             | 17             | . 9            | 2 • 8           | -                            | 4                 | 16                 | 13               | -                      | 20                         | -                | -                  | -                                    | 47                       |
| 5              | 29       | 61       | 24.0                             | 9.0                         | 7.3            | 1.9            | 24             | 1.4            | 3.8             | -                            | ٤                 | 18                 | 14               | -                      | 20                         | -                | -                  | -                                    | 60                       |
| 6              | 5        | 61       | 23.5                             | 8.3                         | 7 • 1<br>7 • 1 | 1.1            | 16<br>15       | 1.4            | 2 • 9           | -                            | 4                 | 19                 | 14               | -                      | 20                         | -                | -                  | -                                    | 47                       |
| 6              | 6        | 61       |                                  | , • 2                       | , • 1          |                | 12             | 1.4            | 3 • 2           | - [                          | 4                 | 19                 | 14               | -                      | ا ۵                        | -                | -                  | - 1                                  |                          |
|                | 12       | 61       | 26.0                             | 9.0                         | 7.4            | 6.5            | 16             | _              | _               | _                            | -                 | 20                 | 1.4              | -                      |                            | -                | -                  | -                                    | 80                       |
|                |          |          |                                  | 7.00                        | 10             | رون            | 10             |                |                 |                              | 4                 | 20                 | 14               |                        | 20                         |                  |                    | -                                    | 40                       |

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

GEORGIA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

CHATTACHGGCHEE KIVEK

STATION LOCATIONCHATTACHOOCHEE RIVER AT

COLUMBUS, GEORGIA

| DATE<br>OF SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          | TEMP.                                                | DISSOLVED                              |                                                             | B.O.D.                                                                           | C.O.D.                                                               | CHLORINE                                                         | DEMAND                                                       | -AINOMMA         | CHLORIDES     | ALKALINITY                 | HARDNESS                                                       | COLOR         | TURBIDITY                                                                 | SULFATES | PHOSPHATES | TOTAL<br>DISSOLVED | COLIFORMS                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------|----------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|------------------|---------------|----------------------------|----------------------------------------------------------------|---------------|---------------------------------------------------------------------------|----------|------------|--------------------|--------------------------------------|
| MONTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | YEAR                                     | (Degrees<br>Centigrade)                              | OXYGEN<br>mg/l                         | рН                                                          | mg/l                                                                             | mg/l                                                                 | 1-HOUR<br>mg/l                                                   | 24-HOUR<br>mg/l                                              | NITROGEN<br>mg/l | mg/l          | mg/l                       | mg/l                                                           | (scale units) |                                                                           | mg/l     | mg/I       | SOLIDS<br>mg/l     | per 198 ml.                          |
| 6 196 26 3 7 17 17 24 17 3 1 14 8 28 5 1 1 8 9 9 1 18 5 9 9 1 18 5 9 9 1 18 5 9 9 1 18 5 9 9 1 18 5 9 9 1 18 5 9 9 1 18 5 9 9 1 18 5 9 9 1 18 5 9 9 1 18 5 9 9 1 18 5 9 9 1 18 5 9 9 1 18 5 9 9 1 18 5 9 9 1 18 5 9 9 1 18 5 9 9 1 18 5 9 9 1 18 5 9 9 1 18 5 9 9 1 18 5 9 9 1 18 5 9 9 1 18 5 9 9 1 18 5 9 9 1 18 5 9 9 1 18 5 9 1 18 5 9 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 18 5 9 1 1 | 61 61 61 61 61 61 61 61 61 61 61 61 61 6 | 28.0<br>28.0<br>27.0<br>26.0<br>27.5<br>26.5<br>24.5 | 6.8<br>7.0<br>6.8<br>7.6<br>6.2<br>5.6 | 6.9<br>6.9<br>6.9<br>9.9<br>9.9<br>7.1<br>6.9<br>6.9<br>6.9 | 1.3<br>1.1<br>1.9<br>1.0<br>0.8<br>4.5<br>1.5<br>1.1<br>9.4<br>6.6<br>7.7<br>1.5 | 18<br>20<br>19<br>15<br>17<br>18<br>17<br>18<br>26<br>26<br>21<br>25 | 1.4<br>1.9<br>1.6<br>1.9<br>-<br>1.6<br>1.4<br>1.6<br>1.6<br>1.7 | 3.9<br>3.9<br>3.8<br>3.6<br>3.8<br>2.8<br>3.9<br>-2.6<br>3.4 | 1                | 4444444444444 | 19<br>20<br>18<br>18<br>18 | 14<br>14<br>14<br>14<br>15<br>15<br>16<br>16<br>15<br>15<br>15 | -             | 18<br>40<br>40<br>30<br>18<br>10<br>10<br>9<br>40<br>35<br>30<br>18<br>10 |          |            |                    | 2007000110011000<br>2440100<br>3 144 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Columbus, Georgia Operated by U.S. Geological Survey STATE

Georgia

MAJOR BASIN

Southeast

MINOR BASIN

Chattahoochee River

STATION LOCATION

Chattahoochee River at

Columbus, Georgia

| Day                              | October                                            | November                                  | December                                           | January                                            | February                                  | March                                               | April                                          | May                                                | June                                       | July                                               | August                                               | September                                 |
|----------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|-----------------------------------------------------|------------------------------------------------|----------------------------------------------------|--------------------------------------------|----------------------------------------------------|------------------------------------------------------|-------------------------------------------|
| 1 2                              | 4.900                                              | 3.880                                     | 5.440                                              | 1.320                                              | 5.620                                     | 25.000                                              | 58.000                                         | 12.400                                             | 5.480                                      | 6.800                                              | 2.340                                                | 4.730                                     |
|                                  | 6.430                                              | 5.670                                     | 4.250                                              | 1.320                                              | 7.430                                     | 15.100                                              | 35.000                                         | 12.600                                             | 5.060                                      | 6.050                                              | 3.600                                                | 3.080                                     |
| 1<br>2<br>3<br>4<br>5            | 7.060<br>6.830<br>4.200                            | 5.630<br>3.540<br>1.530                   | 2.050<br>1.390<br>4.160                            | 4.420<br>4.670<br>6.620                            | 3.240<br>1.730<br>1.250                   | 12.600<br>10.900<br>7.430                           | 19.200<br>14.000<br>12.800                     | 12.200<br>12.100<br>9.960                          | 1.550<br>1.350<br>7.700                    | 7.160<br>3.780<br>6.930                            | 3•940<br>3•540<br>5•090                              | 3.290<br>2.780<br>5.320                   |
| 6<br>7<br>8<br>9                 | 4.230<br>3.830<br>3.190<br>1.420<br>4.250          | 1.250<br>4.680<br>4.850<br>4.540<br>3.760 | 5.640<br>5.590<br>6.040<br>4.750<br>3.670          | 5.160<br>1.420<br>1.280<br>4.750<br>4.590          | 3.170<br>5.850<br>5.000<br>4.450<br>3.290 | 7.190<br>11.200<br>24.100<br>16.700<br>15.200       | 11.000<br>12.100<br>12.100<br>9.800<br>12.100  | 8.850<br>8.680<br>10.400<br>8.240<br>8.360         | 9.800<br>3.180<br>2.300<br>3.400<br>2.520  | 8.540<br>4.960<br>1.500<br>1.300<br>7.000          | 2.250<br>6.400<br>6.170<br>7.910<br>8.000            | 4.130<br>6.350<br>7.900<br>1.890<br>1.500 |
| 11                               | 6.330                                              | 2.570                                     | 1.320                                              | 3.990                                              | 1.390                                     | 12.000                                              | 12.100                                         | 8.040                                              | 1.650                                      | 7.000                                              | 7.300                                                | 2.260                                     |
| 12                               | 6.450                                              | 1.320                                     | 3.930                                              | 4.720                                              | 1.250                                     | 9.480                                               | 17.000                                         | 9.640                                              | 5.780                                      | 11.000                                             | 5.380                                                | 3.890                                     |
| 13                               | 5.260                                              | 1.320                                     | 6.300                                              | 2.560                                              | 1.320                                     | 10.300                                              | 19.800                                         | 9.160                                              | 5.690                                      | 12.000                                             | 3.320                                                | 4.450                                     |
| 14                               | 5.630                                              | 3.990                                     | 5.360                                              | 1.460                                              | 1.910                                     | 9.320                                               | 20.800                                         | 8.830                                              | 4.300                                      | 9.000                                              | 6.040                                                | 4.260                                     |
| 15                               | 1.530                                              | 4.510                                     | 6.030                                              | 1.280                                              | 1.360                                     | 9.320                                               | 20.000                                         | 9.480                                              | 5.620                                      | 8.750                                              | 4.890                                                | 5.400                                     |
| 16                               | 1.250                                              | 4.160                                     | 5.160                                              | 3.460                                              | 1.320                                     | 9.960                                               | 20.200                                         | 9.640                                              | 6.280                                      | 6.900                                              | 5.670                                                | 1.630                                     |
| 17                               | 2.630                                              | 5.260                                     | 1.360                                              | 4.810                                              | 1.320                                     | 9.000                                               | 17.500                                         | 7.400                                              | 5.920                                      | 7.740                                              | 4.300                                                | 1.410                                     |
| 18                               | 3.410                                              | 4.510                                     | 1.320                                              | 4.920                                              | 2.950                                     | 10.600                                              | 12.800                                         | 5.620                                              | 6.110                                      | 6.800                                              | 5.550                                                | 3.710                                     |
| 19                               | 5.220                                              | 1.610                                     | 3.760                                              | 6.010                                              | 18.600                                    | 11.500                                              | 11.600                                         | 8.520                                              | 5.180                                      | 7.580                                              | 1.960                                                | 7.260                                     |
| 20                               | 5.200                                              | 1.250                                     | 5.730                                              | 4.680                                              | 53.900                                    | 9.800                                               | 11.000                                         | 2.300                                              | 7.400                                      | 7.280                                              | 1.600                                                | 6.140                                     |
| 21                               | 1.500                                              | 3.940                                     | 6.170                                              | 2.760                                              | 50.500                                    | 10.400                                              | 12.200                                         | 1.300                                              | 12.100                                     | 6.770                                              | 5.770                                                | 6.040                                     |
| 22                               | 1.250                                              | 5.380                                     | 5.680                                              | 1.390                                              | 40.500                                    | 10.600                                              | 12.100                                         | 1.280                                              | 13.000                                     | 6.910                                              | 4.000                                                | 6.460                                     |
| 23                               | 1.250                                              | 6.130                                     | 3.940                                              | 4.760                                              | 39.500                                    | 9.320                                               | 11.400                                         | 4.950                                              | 12.800                                     | 3.550                                              | 5.320                                                | 1.720                                     |
| 24                               | 2.530                                              | 3.490                                     | 1.390                                              | 5.330                                              | 46.300                                    | 9.800                                               | 10.900                                         | 7.720                                              | 10.400                                     | 6.710                                              | 6.440                                                | 1.410                                     |
| 25                               | 2.200                                              | 5.360                                     | 1.320                                              | 5.180                                              | 120.000                                   | 8.840                                               | 8.360                                          | 8.040                                              | 8.410                                      | 6.420                                              | 9.160                                                | 5.980                                     |
| 26<br>27<br>28<br>29<br>30<br>31 | 2.940<br>3.320<br>2.000<br>1.250<br>1.220<br>1.220 | 3.370<br>1.320<br>4.510<br>6.500<br>6.240 | 1.280<br>4.950<br>5.440<br>5.700<br>4.220<br>1.560 | 5.620<br>5.940<br>1.460<br>1.320<br>4.060<br>4.110 | 115.000<br>66.000<br>46.500               | 4.820<br>7.300<br>9.160<br>9.160<br>7.620<br>23.400 | 11.000<br>11.400<br>15.200<br>16.200<br>13.200 | 8.040<br>5.910<br>2.850<br>4.740<br>6.460<br>5.880 | 7.970<br>9.480<br>10.400<br>6.800<br>7.620 | 4.220<br>4.550<br>5.340<br>1.740<br>1.490<br>3.920 | 15.600<br>10.200<br>8.590<br>8.470<br>6.300<br>4.460 | 1.850<br>3.700<br>2.500<br>3.020<br>1.370 |

RADIOACTIVITY DETERMINATIONS

STATE

GEORGIA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

CHATTAHOOCHEE RIVER

STATION LOCATION CHATTAHOOCHEE RIVER AT

ATLANTA, GEORGIA

|                    | •                             |           |           |               |           |           |       | PADIOAC                       | TIVITY IN PLAN | KTON (dry) | RA        | DIOACTIVITY IN W | ATER  |
|--------------------|-------------------------------|-----------|-----------|---------------|-----------|-----------|-------|-------------------------------|----------------|------------|-----------|------------------|-------|
| DATE               |                               |           | RADIC     | ACTIVITY IN Y | ATER      |           |       |                               | GROSS A        |            |           | GROSS ACTIVIT    |       |
| SAMPLE             | DATE OF                       |           | ALPHA     |               |           | DISSOLVED | TOTAL | DATE OF<br>DETERMI-<br>NATION | ALPHA          | BETA       | SUSPENDED |                  | TOTAL |
| TAKEN              | DATE OF<br>DETERMI-<br>NATION | SUSPENDED | DISSOLVED | TOTAL         | SUSPENDED | μμc/!     | μμε/1 | MO. DAY                       | μμε/g          | μμc/g      | μμε/1     | μμε/1            | μμς/1 |
| DAY YEAR           | MONTH DAY                     | μμc/l     | μμε/Ι     | μμε/Ι         | μμς/Ι     | рре/1     |       |                               |                |            |           |                  |       |
|                    |                               | _         | , 1       | 1             | 0         | 2         | 2     |                               |                |            | 1         |                  |       |
| 4 60               | 10 18                         | 0         | 1 -       |               | 1 0       | 3         | 3     |                               |                |            |           |                  |       |
| 12 60              | 10 21                         | -         | _         | -4-           | 0         | 3         | 3     |                               |                |            |           |                  |       |
| 18 60              | 11 1                          | -         | _         | -             | 0         | 0         | 0     |                               |                |            |           |                  |       |
| 9 60               | 11 28<br>11 29                |           | _         |               | 0         | 2         | 2     |                               |                |            |           |                  |       |
| 16 60              | 11 29<br>12 2                 | _         | -         | -             | 0         | 1         | 1     | l i                           |                |            |           | 1.               |       |
| . 23 60<br>. 30 60 | 12 12                         |           | -         | _             | 0         | 0         | 0     |                               |                |            |           |                  |       |
| 7 60               | 12 29                         | ١٥        | 0         | 0             | 0         | 0         | 0     | 1 1                           |                |            |           | 1                |       |
| 14 60              | 1 10                          | -         | _         | -             | 0         | 0         | 0     | j l                           |                |            |           |                  | ,     |
| 28 60              | 1 20                          | -         | -         |               | 0         | 1 0       | i     |                               |                | ļ          |           |                  |       |
| 4 61               | 1 24                          | 0         | 0         | 0             | 1 0       | 0         | ōl    |                               |                |            |           |                  |       |
| 18 61              | 2 2                           | _         | _         | -             | 0         | 6         | 6     | } !                           |                | }          | l i       |                  |       |
| 25 61              | 2 7                           | _         | _         | <u>-</u>      | 6         | 0         | ŏ     |                               |                |            |           |                  |       |
| 2 1 61             | 2 20                          | 0         | 0         | 0             | 7         | 11        | 18    |                               |                | ì          | 1         |                  |       |
| 2 8 61             | 2 24                          | 0         | 0         | -             | 6         |           | o     |                               |                |            |           | 1                |       |
| 2 15 61            | 3 6                           | _         | _         | -             | 11        | 2         | 13    | 1                             |                |            |           |                  |       |
| 2 22 61            | 3 8                           | _         | _         | _             | 0         | 0         | 0     |                               | Ì              |            |           |                  |       |
| 3 1 61             | 3 20<br>3 27                  | 2         | 0         | 2             | 0         | 0         | 0     | Ì                             |                |            | 1 1       |                  |       |
| 3 8 61<br>3 22 61  | 3 27                          |           | _         | _             | 0         | 0         | 0     | ľ                             | 1              | 1          |           |                  |       |
| 3 22 61<br>3 29 61 | 4 12                          | -         | -         | -             | 0         | 0         | 0     | İ                             | ļ.             |            |           |                  |       |
| 4 5 61             | 5 3                           | 0         | 0         | 0             | 0         | 0         | 5     | l                             |                | 1          | 1 1       | 1                |       |
| 4 12 61            | 4 27                          | -         | -         | -             | 0         | 5         | ا ہ   | ļ                             | 1              |            | 1 1       |                  |       |
| 4 19 61            | 5 10                          | -         | -         | _             | ,0        | 0         | 0     |                               | 1              |            | 1 1       |                  |       |
| 4 27 61            | 5 17                          | -         | _         | _             | 0 0       | 0         |       |                               | İ              |            |           |                  |       |
| 5 3 61             | 5 25                          | 0         | 0         | 0             | 0         | 0         | ŏ     |                               | ì              |            |           |                  |       |
| 5 10 61            | 5 25                          | -         | -         |               |           | 0         |       | ļ                             | 1              |            | 1         |                  |       |
| 5 24 61            | 6 8                           | -         | _         |               | 0         | 0         | . 0   | 1                             | Ì              |            |           |                  |       |
| 5 31 61            | 6 20                          | 0         | 0         | 0             | Ì         | 0         | 0     | 1                             |                |            | 1 1       |                  |       |
| 6 7 61             | 6 27                          | 1 -       | _         | _             | 0         | 0         | 0     | 1                             |                |            | 1 1       |                  |       |
| 6 14 61<br>6 21 61 | 7 6                           |           | -         | _             | 0         | 2         | 2     |                               | ļ              | 1          |           |                  |       |
|                    |                               | _         | _         | _             | 2         | 0         | 2     |                               | ł              |            |           |                  | 1,    |
| 6 28 61<br>8 2 61  | 1                             | 1 1       | 0         | 1             | 3         | 0         | 3     |                               | 1              |            | 1         | I                |       |
| 8 30 61            | 1                             | Ō         | 0         | 0             | 2         | 1         | 3 0   | 1                             |                |            |           |                  |       |
| 9 6 61             | 1                             | 0         | 0         | 0             | 0         | 0 2       | 2     | 1                             |                |            |           |                  |       |
| 9 13 61            | 1                             | -         | _         |               | 0         | 6         | 6     | l                             |                |            |           |                  |       |
| 9 27 61            |                               | -         | _         |               | ,0        |           |       | ļ                             | -              | 1          |           |                  |       |
|                    |                               |           |           |               |           |           |       |                               |                |            |           |                  |       |
|                    | 1                             |           |           |               |           | 1         | 1     | Į.                            |                | 1          |           |                  |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

GEORGIA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

CHATTAHOOCHEE RIVER

STATION LOCATION CHATTAHOOCHEE RIVER AT

ATLANTA, GEORGIA

|                                                                                                                                                                           |       |         |                       | ALGAE (A                                     | lumber                | per ml.)                                     |                            |                                                                                              |                                                                                          | INE                                                       | ERT<br>TOM<br>ELLS                                            |                                                          |                                  |                                                                  |                                                          | ATO                              |                                                          |                                                                     |                                     |                                                          | i.                                                             |                           | MICROIN                                         | VERTEBR                      | ATES                         |                                       |                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|-----------------------|----------------------------------------------|-----------------------|----------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|----------------------------------|------------------------------------------------------------------|----------------------------------------------------------|----------------------------------|----------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|---------------------------|-------------------------------------------------|------------------------------|------------------------------|---------------------------------------|-------------------------------------------------------------|
| DATE<br>OF SAMPLE                                                                                                                                                         |       | BLUE-   | GREEN                 | GREE                                         | N.                    | FLAGEL<br>(Pigme                             |                            | DIAT                                                                                         | омѕ                                                                                      | SHE<br>(No. p                                             | LLS<br>er ml.)                                                |                                                          | DOMI<br>(See                     | INANT                                                            | SPEC                                                     | for Co                           | de Ide                                                   | RCEN'<br>ntificat                                                   | rages<br>ion*)                      | :                                                        | органкт<br>внелтнея<br>ml.)                                    | A<br>ml.)                 | S<br>liter)                                     | EA<br>liter)                 | ES<br>liter)                 | AL FORMS                              | GENERA<br>oductio<br>fication                               |
| MONTH<br>DAY<br>YEAR                                                                                                                                                      | TOTAL | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                                      | FILA-<br>MENT-<br>OUS | GREEN                                        | OTHER                      | CENTRIC                                                                                      | PENNATE                                                                                  | GENTRIC                                                   | PENNATE                                                       | FIRST#                                                   | PER-                             | SECOND#                                                          | PER-<br>CENTAGE                                          | THIRD#                           | PER-<br>CENTAGE                                          | FOURTH                                                              | PER.<br>CENTAGE                     | OTHER PER-                                               | OTHER BICROPLANKTOH, FUNGI AND SHEATHED BACTERIA (No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)                    | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ANIMAL FORMS<br>(No. per liter) | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| 10 4 60<br>11 16 60<br>11 16 60<br>12 8 60<br>12 2 8 61<br>12 2 8 61<br>12 2 8 61<br>12 2 8 61<br>13 61<br>15 61<br>16 61<br>17 18 8 8 61<br>17 18 8 8 61<br>19 9 9 9 9 9 |       | 20      | 20                    | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 20                    | 20<br>20<br>20<br>70<br>20<br>20<br>20<br>40 | 20<br>20<br>20<br>20<br>20 | 50<br>20<br>50<br>110<br>20<br>180<br>110<br>540<br>350<br>220<br>60<br>60<br>20<br>40<br>20 | 110<br>900<br>20<br>70<br>70<br>50<br>90<br>200<br>440<br>250<br>120<br>60<br>120<br>120 | 90<br>90<br>90<br>90<br>20<br>190<br>40<br>40<br>60<br>80 | 20<br>110<br>50<br>70<br>50<br>40<br>230<br>110<br>150<br>100 | 62<br>28<br>93<br>97<br>57<br>57<br>57<br>57<br>57<br>57 | 30<br>10<br>40<br>30<br>30<br>20 | 28<br>62<br>57<br>57<br>57<br>28<br>88<br>2<br>9<br>9<br>57<br>9 | 10<br>10<br>10<br>20<br>10<br>10<br>20<br>30<br>30<br>20 | 31<br>56<br>95<br>95<br>92<br>92 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 16<br>93<br>62<br>29<br>93<br>62<br>14<br>95<br>56<br>56<br>95<br>2 | 10 10 10 10 10 10 10 10 10 10 10 10 | 50<br>50<br>50<br>60<br>50<br>70<br>20<br>20<br>40<br>50 | 20<br>40<br>20<br>70                                           | 10                        | 2<br>4<br>18<br>7<br>1<br>9<br>1<br>1<br>3<br>5 | 5 3 3                        | 1 1 2 1 1                    |                                       | 4                                                           |

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

GEORGIA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

CHATTAHOOCHEE RIVER

STATION LOCATION CHATTAHOOCHEE RIVER AT

ATLANTA, GEORGIA

|                                 |                                  |                                   |                                               |                                                              |                                                    |                                               |                                                  | ·                                               |                                        |                                              |               | CI II ODOF | ORM EXTRA                    | CTABLES           |                 |                 |       |                                              |
|---------------------------------|----------------------------------|-----------------------------------|-----------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|--------------------------------------------------|-------------------------------------------------|----------------------------------------|----------------------------------------------|---------------|------------|------------------------------|-------------------|-----------------|-----------------|-------|----------------------------------------------|
| DATE O                          |                                  |                                   |                                               | -                                                            | EX                                                 | TRACTABL                                      | .5                                               |                                                 | 1                                      |                                              |               | NEUTRALS   |                              | 1                 |                 |                 |       |                                              |
| HTWO W<br>YAQ                   | YEAR 0                           | MONTH                             | рау                                           | GALLONS                                                      | TOTAL                                              | CHLORO-<br>FORM                               | ALCOHOL                                          | ETHER<br>INSOLUBLES                             | WATER<br>SOLUBLES                      | TOTAL                                        | ALIPHATICS    | AROMATICS  | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS              | WEAK<br>ACIDS   | STRONG<br>ACIDS | BASES | LOSS                                         |
| 10 21<br>11 22<br>12 27<br>1 31 | 60<br>60<br>60<br>61<br>61<br>61 | 11<br>12<br>1<br>2<br>3<br>6<br>7 | 7<br>7<br>7<br>11<br>15<br>29<br>1<br>3<br>11 | 6240<br>5050<br>5130<br>5300<br>5120<br>5030<br>5570<br>6120 | 174<br>171<br>243<br>231<br>162<br>219<br>*<br>133 | 67<br>60<br>69<br>108<br>82<br>80<br>76<br>59 | 107<br>111<br>174<br>123<br>80<br>139<br>*<br>74 | 1<br>4<br>2<br>9<br>7<br>4<br>5<br>2<br>EPORTED | 21<br>19<br>18<br>31<br>21<br>26<br>12 | 13<br>10<br>15<br>16<br>16<br>18<br>15<br>17 | 1 1 1 1 3 2 3 | 2          | 8<br>12<br>13<br>13          | 0 0 1 1 1 0 0 0 1 | 7 5 6 8 7 9 8 6 | 7<br>8          |       | 17<br>15<br>22<br>32<br>21<br>20<br>13<br>16 |

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

GEORGIA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

CHATTAHOOCHEE RIVER

STATION LOCATIONCHATTAHOOCHEE RIVER AT

ATLANTA, GEORGIA

| 10 12<br>10 18<br>10 26 | 00000000000000000000000000000000000000 | TEMP.<br>(Degrees<br>Centigrade) | OXYGEN<br>mg/l | pH         | B.O.D.<br>mg/l   | C.O.D.<br>mg/i | 1-HOUR     | 24-HOUR    | AMMONIA-<br>NITROGEN | CHLORIDES | ALKALINITY | HARDNESS | COLOR         | TURBIDITY     | SULFATES | PHOSPHATES | TOTAL                       | COLIFORMS   |
|-------------------------|----------------------------------------|----------------------------------|----------------|------------|------------------|----------------|------------|------------|----------------------|-----------|------------|----------|---------------|---------------|----------|------------|-----------------------------|-------------|
| 10 12<br>10 18<br>10 26 | 60<br>60<br>60                         | -                                | 1 1            |            |                  |                | mg/l       | mg/l       | mg/l                 | mg/l      | mg/l       | mg/i     | (scale units) | (scale units) | mg/l     | mg/l       | DISSOLVED<br>SOLIDS<br>mg/l | per 100 ml. |
| 10 18<br>10 26          | 60<br>60                               |                                  |                | -          | 1 1              | =              | _          | _          | ***                  | -         |            | _        | _             | -             | 1        | -          | _                           | 1800<br>280 |
| 10 26                   | 60                                     |                                  |                | -          | _                | _              | _          | _          | _                    | _         | -          | _        | _             | _             | _        | -          | _                           | 1900        |
|                         | امما                                   | _                                | _              | _          |                  | _              | _          | _          | -                    | -         | -          | -        | _             | -             | -        | -          | _                           | 1200        |
| 11 2                    | 100                                    | -                                | -              | -          | -                | -              | -          | -          | -                    |           | -          |          |               | _             | -        | -          |                             | 90          |
| 11 9                    | 60                                     | 7.8                              | 10.1           | 6.9        | -                | 24             | -          | -          | •0                   | *1<br>*1  | 12<br>11   | 10<br>12 | *5<br>*5      | 7<br>8        | *1       | -          | 16                          | 190         |
| 11 16                   | 60                                     | 8.3                              | 9.3            | 6.9        | • 8              | 22<br>28       | _          | _          | •0                   | *1        | 10         | 12       | *5<br>*5      | -             | *1<br>*1 | _          | 16<br>16                    | 40<br>150   |
| 11 23<br>11 30          | 60                                     | 10.3<br>8.9                      | 9.6            | 6.7        | • 8<br>—         | 26             | • 9        | 2.1        | . •0                 | *1        | 13         | 12       | *5            | _             | *1       |            | 17                          | 550         |
| 12 7                    | 60                                     | 8.9                              | 9.9            | 6.9        | • 9              | 15             | 1.1        | 2.2        | •0                   | *1        | 14         | 12       | *5            | 7             | *1       | -          | 16                          | 420         |
| 12 14                   | 60                                     | 4.4                              | 12.2           | 6.8        | -                | _              | 1.1        | 2.1        | • 0                  | *1        | 12         | 14       | *5            | -             | *1       | -          | 17                          | 1000        |
| 12 28                   | 60                                     | 6.6                              | 10.7           | 6.9        | • 6              | 18             | • 9        | 2•1        | • 0                  | *1        | 14         | 12       | *5            | 6             | *1       | -          | 19                          | 310         |
| 1 4                     | 61                                     | 4 • 4                            | 10.7           | 6.9        | •6               | 9              | 1.0        | 2.0        | •0                   | *1        | 12         | 12       | *5<br>*5      | 6             | *1       | -          | 15                          | 450         |
| 1 11                    | 61                                     | 5.0                              | 12.2           | 6.9        | •6<br>•8         | 12<br>8        | • 9<br>• 9 | 1.9<br>1.9 | •0                   | *1<br>*1  | 12<br>12   | 12<br>14 | *5<br>*5      | 6             | *1<br>*1 |            | 16<br>16                    | 2000<br>190 |
| 1 18<br>1 25            | 61                                     | 4 • 4<br>2 • 8                   | 11.8           | 6.9<br>6.9 | •6               | 13             | 1.2        | 2.2        | •0                   | *1        | 12         | 14       | *5            | 8             | *1       | _          | 17                          | 220         |
| 2 1                     | 61                                     | 3.3                              | 12.4           | 6.9        | • 7              | 8              | 1.9        | 2.6        | •0                   | *1        | 13         | 12       | *5            | 9             | *1       | _          | 17                          | 370         |
| 2 8                     | 61                                     | 2.8                              | 12.4           | 6.9        | 1.0              | 8              | 2.5        | 3 • 6      | • 3                  | *1        | 12         | 12       | *5            | 14            | *1       |            | 17                          | 5200        |
| 2 15                    | 61                                     | 7.2                              | 11.0           | 6.9        | .8               | 39             | 1.2        | 2 • 4      | • 2                  | 1         | 12         | 12       | 5             | 5             | 1        | -          | 16                          | 1500        |
| 2 22                    | 61                                     | 7.8                              | 10.7           | 6.5        | 2.4              | -              | 3.9        | 4•9        | • 2                  | 1         | 7          | 8        | 5             | 220           | 1        | -          | -                           | -           |
| 3 1                     | 61                                     | 8.8                              | 10.1           | 6.7        | . 8              |                | 2.9        | 4•9        | • 0                  | 1         | 11         | 10       | 5             | 47            | 1        | -          | 18                          | 600         |
| 3 8<br>3 15             | 61                                     | 13.9<br>8.8                      | 9.4            | 6.9        | 1.8<br>.3        | 49<br>43       | 2.9<br>1.8 | 4•9<br>2•4 | • 0                  | 1<br>*1   | 12<br>9    | 10       | 5<br>5        | 63<br>27      | 1<br>*1  | _ [        | 17<br>14                    | 100         |
| 3 22                    | 61                                     | 8.3                              | 10.7           | 6.9        | •6               | 51             | 2.4        | 5.0        | •0                   | *1        | 11         | 10       | 5             | 14            | *1       | _          | 14                          | 3000        |
| 3 29                    | 61                                     | 8.3                              | 10.6           | 6.9        | .3               | 50             | 1.4        | 3.9        | • 0                  | *1        | 11         | 9        | 5             | 18            | *1       | _          | 14                          | 1100        |
| 4 5                     | 61                                     | 8.3                              | 10.4           | 6.9        | 1.5              | 49             | 3.8        | -          | • 0                  | *1        | 9          | 10       | 5             | 8             | *1       | _          | 18                          | 5400        |
| 4 12                    | 61                                     | 9.4                              | 10.3           | 6.9        | • 4              | 49             | 1.6        | 3.0        | • 0                  | *1        | 10         | 6        | 5             | 19            | *1       |            | 14                          | 700         |
| 4 19                    | 61                                     | 11.7                             | 10.7           | 6.9        | •8               | 45             | • 9        | 1.8        | •0                   | *1        | 10         | 8        | 5             | 15            | *1       | -          | 13                          | 950         |
| 4 27                    | 61                                     | 15.0                             | 10.2           | 7.0        | 1.0              | 53             | 1.9        | 3.9        | • 0                  | *1        | 11         | 8        | 5<br>5        | 16            | *1       | -          | 13                          | 3700        |
| 5 3<br>5 10             | 61<br>61                               | 9•4<br>12•8                      | 10.3           | 7.1        | 1.3<br>1.2       | 18             | 1.6<br>1.8 | 3•7<br>3•6 | • 0                  | *1<br>*1  | 10<br>12   | 8<br>8   | 5             | 18<br>13      | *1<br>*1 | _          | 14<br>16                    | 1300<br>370 |
| 5 17                    | 61                                     | 12.2                             | 9.8            | 7.0        | •6               | 18             | 1.9        | 3.7        | •0                   | *1        | 10         | 8        | 5             | 9             | *1       | _          | 16                          | 2800        |
| 5 24                    | 61                                     | 12.7                             | 8.9            | 7.1        | •6               | 15             | 1.5        | 3.8        | • 0                  | 1         | 13         | 8        | 5             | 11            | 1        | _          | 17                          | 2100        |
|                         | 61                                     | 13.3                             | 9.1            | 7.1        | .8               | 49             | 2.0        | 4.0        | • 0                  | 1         | 13         | 8        | 5             | 6             | ī        | -          | 17                          | 2400        |
| 6 7                     | 61                                     | 16.6                             | 8.7            | 7.0        | • 5              | 12             | 2.0        | 4•0        | • 0                  | 1         | 12         | 10       | 5             | 7             | 1        | -          | 16                          | 670         |
| 6 14                    | 61                                     | 16.1                             | 8.3            | 7.0        | •6               | 11             | • 3        | 2.3        | • 0                  | 1         | 13         | 8        | 5             | 11            | 1        | -          | 16                          | 1400        |
| 6 21                    | 61                                     | 14.4                             | 8.3            | 6.9        | •6               | 10             | 3.8        | 4.9        | • 0                  | 1         | 12         | 10       | 5             | 30            | 1        | -          | 18                          | 13000       |
| 6 28                    | 61                                     | 17.7                             | 8.5            | 6.7        | • 7              | 15             | 4.0        | 5•2        | • 0                  | 1         | 11         | 10       | 5<br>5        | 45            | 1        | -          | 18                          | 8000        |
| 7 5                     | 61                                     | 15.5                             | 8.6            | 6.9        | • 6 <sup>-</sup> | 58             | 3.9        | 4 • 8      | • 0                  | 1         | 11         | 10       |               | 12            | 1        | -          | 15                          | 1900        |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

GEORGIA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

CHATTAHOUCHEE RIVER

STATION LOCATIONCHATTAHOOCHEE RIVER AT

ATLANTA, GEORGIA

| DAT                                         |                             | T                                       |                                                     |                             |     |                                |                                | CHLORINE            | DEMAND                       |                                     |                   |                    |                                                 |                        |              |                  |                    | TOTAL                       |                                                                          |
|---------------------------------------------|-----------------------------|-----------------------------------------|-----------------------------------------------------|-----------------------------|-----|--------------------------------|--------------------------------|---------------------|------------------------------|-------------------------------------|-------------------|--------------------|-------------------------------------------------|------------------------|--------------|------------------|--------------------|-----------------------------|--------------------------------------------------------------------------|
| OF SAL                                      | MPLE                        | - (c                                    | EMP.<br>egrees<br>tigrade)                          | DISSOLVED<br>OXYGEN<br>mg/l | рН  | B.O.D.<br>mg/l                 | C.O.D.<br>mg/l                 | 1-HOUR<br>mg/l      | 24-HOUR<br>mg/l              | AMMONIA-<br>NITROGEN<br>mg/I        | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l |                                                 | COLOR<br>(scale units) |              | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/l | per 100 ml.                                                              |
| 7 12<br>7 19<br>7 26<br>8 2<br>8 16<br>8 30 | 2 6 6 6 6 6 6 6 6 6 6 6 6 6 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 14.4<br>15.0<br>16.1<br>16.1<br>15.5<br>-<br>-<br>- | -                           | 6.9 | .7<br>.8<br>.6<br>.8<br>.4<br> | 49<br>51<br>50<br>44<br>46<br> | 2.8 3.8 3.9 3.9 2.9 | 3.9<br>4.9<br>5.0<br>4.0<br> | • 0<br>• 0<br>• 0<br>• 0<br>• 1<br> |                   | 10 11 12 12 12 12  | 8<br>8<br>8<br>10<br>8<br>-<br>-<br>-<br>-<br>- | 55551111               | 28 17 12 8 9 | 1 1 1 1          | -                  | 16 15 17 15 15              | 310<br>3400<br>8800<br>2500<br>5600<br>790<br>4000<br>3500<br>810<br>550 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Atlanta, Georgia Operated by U.S. Geological Survey STATE

Georgia

MAJOR BASIN

Southeast

MINOR BASIN

Chattahoochee River

STATION LOCATION

Chattahoochee River at

Atlanta, Georgia

| Day                              | October                                            | November                                  | December                                           | January                                            | February                | March                                              | April                                     | May                                                | June                                      | July                                               | August                                             | September                                 |
|----------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|
| 1                                | 2.140                                              | 1.960                                     | 4.100                                              | 1.360                                              | 1.600                   | 1.920                                              | 4.450                                     | 2.630                                              | 1.950                                     | 3.680                                              | 2.770                                              | 2.240                                     |
| 2                                | 1.260                                              | 2.260                                     | 4.110                                              | 1.590                                              | 1.600                   | 1.870                                              | 1.720                                     | 4.510                                              | 2.020                                     | 2.410                                              | 3.410                                              | 1.620                                     |
| 3                                | .898                                               | 2.290                                     | 3.070                                              | 2.250                                              | 1.610                   | 1.840                                              | 2.880                                     | 5.390                                              | 1.520                                     | 2.930                                              | 3.480                                              | 1.330                                     |
| 4                                | .865                                               | 2.250                                     | 1.270                                              | 2.500                                              | 1.230                   | 1.510                                              | 3.660                                     | 5.100                                              | 1.300                                     | 3.520                                              | 3.360                                              | 1.240                                     |
| 5                                | .922                                               | 1.770                                     | 2.130                                              | 2.530                                              | 1.080                   | 1.330                                              | 3.940                                     | 5.240                                              | 1.550                                     | 3.740                                              | 2.280                                              | 1.740                                     |
| 6                                | 1.620                                              | 1.290                                     | 4.020                                              | 2.460                                              | 1.480                   | 1.530                                              | 5.110                                     | 3.940                                              | 2.680                                     | 3.610                                              | 1.400                                              | 1.680                                     |
| 7                                | 1.060                                              | 1.580                                     | 4.050                                              | 1.610                                              | 1.670                   | 1.890                                              | 5.330                                     | 1.270                                              | 2.730                                     | 3.690                                              | 1.820                                              | 1.640                                     |
| 8                                | 1.320                                              | 1.890                                     | 4.080                                              | 1.300                                              | 1.740                   | 2.780                                              | 4.120                                     | 1.510                                              | 2.850                                     | 2.760                                              | 3.020                                              | 1.720                                     |
| 9                                | 1.900                                              | 2.280                                     | 4.120                                              | 1.600                                              | 1.730                   | 2.540                                              | 1.450                                     | 1.660                                              | 2.800                                     | 1.420                                              | 3.340                                              | 1.450                                     |
| 10                               | 1.660                                              | 2.400                                     | 3.120                                              | 2.540                                              | 1.720                   | 1.880                                              | 2.950                                     | 2.200                                              | 1.700                                     | 2.100                                              | 5.460                                              | 1.130                                     |
| 11                               | 1.780                                              | 2.320                                     | 1.440                                              | 2.550                                              | 1.380                   | 1.520                                              | 4.180                                     | 2.780                                              | 1.340                                     | 4.450                                              | 6.100                                              | 1.560                                     |
| 12                               | 1.710                                              | 1.940                                     | 1.870                                              | 2.460                                              | 1.200                   | 1.340                                              | 6.820                                     | 2.570                                              | 1.560                                     | 4.940                                              | 4.920                                              | 3.210                                     |
| 13                               | 1.700                                              | 1.320                                     | 2.660                                              | 2.540                                              | 1.340                   | 2.840                                              | 6.570                                     | 1.510                                              | 2.510                                     | 5.170                                              | 1.440                                              | 3.270                                     |
| 14                               | 1.690                                              | 1.810                                     | 2.480                                              | 1.730                                              | 1.540                   | 5.010                                              | 5.820                                     | 1.220                                              | 2.740                                     | 5.200                                              | 2.220                                              | 3.340                                     |
| 15                               | 1.410                                              | 3.960                                     | 2.500                                              | 1.320                                              | 1.540                   | 4.840                                              | 4.200                                     | 2.260                                              | 3.180                                     | 3.830                                              | 4.080                                              | 3.360                                     |
| 16                               | 1.250                                              | 4.050                                     | 2.420                                              | 2.010                                              | 1.500                   | 4.880                                              | 1.630                                     | 3.340                                              | 3.030                                     | 1.520                                              | 3.590                                              | 2.140                                     |
| 17                               | 1.310                                              | 4.080                                     | 1.900                                              | 2.480                                              | 1.660                   | 4.490                                              | 3.120                                     | 3.520                                              | 1.740                                     | 2.540                                              | 3.400                                              | 1.340                                     |
| 18                               | 1.680                                              | 3.920                                     | 1.280                                              | 2.540                                              | 1.700                   | 3.270                                              | 5.920                                     | 3.800                                              | 1.350                                     | 4.660                                              | 3.400                                              | 1.550                                     |
| 19                               | 1.680                                              | 2.970                                     | 1.570                                              | 2.570                                              | 2.440                   | 1.310                                              | 6.320                                     | 3.730                                              | 1.600                                     | 4.740                                              | 2.130                                              | 3.700                                     |
| <b>2</b> 0                       | 2.130                                              | 1.290                                     | 2.700                                              | 2.610                                              | 4.420                   | 3.100                                              | 6.100                                     | 2.660                                              | 2.410                                     | 4.600                                              | 1.380                                              | 3.400                                     |
| 21                               | 1.810                                              | 1.840                                     | 2.570                                              | 1.920                                              | 16.500                  | 4.540                                              | 6.060                                     | 1.200                                              | 3.400                                     | 4.460                                              | 2.020                                              | 3.490                                     |
| 22                               | 1.440                                              | 4.110                                     | 2.700                                              | 1.330                                              | 10.800                  | 4.280                                              | 4.650                                     | 1.660                                              | 3.510                                     | 3.090                                              | 4.650                                              | 3.550                                     |
| 23                               | 1.280                                              | 4.240                                     | 2.650                                              | 1.600                                              | 7.180                   | 4.600                                              | 1.300                                     | 2.380                                              | 3.740                                     | 1.440                                              | 4.720                                              | 2.180                                     |
| 24                               | 1.580                                              | 4.260                                     | 1.940                                              | 2.240                                              | 5.590                   | 4.520                                              | 2.520                                     | 2.580                                              | 3.460                                     | 1.820                                              | 5.080                                              | 1.350                                     |
| 25                               | 1.700                                              | 4.200                                     | 1.310                                              | 2.250                                              | 20.200                  | 3.100                                              | 4.410                                     | 2.340                                              | 2.860                                     | 3.080                                              | 5.050                                              | 1.650                                     |
| 26<br>27<br>28<br>29<br>30<br>31 | 2.130<br>2.160<br>1.900<br>1.710<br>1.290<br>1.670 | 3.060<br>1.280<br>2.250<br>4.120<br>4.100 | 1.560<br>1.740<br>1.710<br>1.720<br>1.740<br>1.480 | 2.360<br>2.220<br>1.710<br>1.290<br>1.630<br>1.750 | 9.520<br>3.180<br>2.200 | 1.280<br>2.900<br>3.460<br>3.470<br>3.730<br>6.820 | 5.280<br>7.180<br>5.960<br>4.600<br>1.320 | 2.580<br>1.680<br>1.240<br>1.580<br>1.840<br>2.010 | 3.460<br>4.230<br>4.820<br>3.820<br>3.620 | 3.010<br>2.910<br>2.920<br>1.990<br>1.610<br>1.450 | 4.250<br>1.580<br>1.700<br>1.820<br>2.040<br>2.120 | 1.740<br>1.790<br>1.790<br>2.170<br>1.470 |

STATE

ARIZONA

MAJOR BASIN

COLORADO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

YUMA, ARIZONA

|             |                               |           |                    | A CTIVITY IN 14 | ATED      |           |       | PADIOA   | CTIVITY IN PLAN | IKTON (dry)   | RAD       | IOACTIVITY IN W | ATER  |
|-------------|-------------------------------|-----------|--------------------|-----------------|-----------|-----------|-------|----------|-----------------|---------------|-----------|-----------------|-------|
| DATE        |                               |           |                    | ACTIVITY IN W   | AICK      | BETA      |       | DATE OF  |                 | CTIVITY       |           | GROSS ACTIVITY  | ·     |
| SAMPLE      | DATE OF<br>DETERMI-<br>NATION |           | ALPHA              | TOTAL           | SUSPENDED | DISSOLVED | TOTAL | DETERMI- | ALPHA           | BETA          | SUSPENDED | DISSOLVED       | TOTAL |
| TAKEN       |                               | SUSPENDED | DISSOLVED<br>μμς/Ι | μμε/Ι           | μμε/1     | μμc/l     | μμε/1 | MO. DAY  | µµс/g           | <i>µµс/</i> g | μμc/l     | μμε/Ι           | μμc/l |
| O. DAY YEAR | MONTH DAY                     | μμε/Ι     | μμε/1              | PALIT           |           |           |       |          |                 |               |           |                 |       |
|             |                               |           | _                  | _               | 0         | 0         | ا ہ   | 1        |                 |               |           |                 |       |
| 0 3 60      | 10 19                         | _         |                    | 5               | 0         | 9         | 9     | i        |                 |               |           | ì               |       |
| 0 10 60     | 11 15                         | 0         | 5                  | 1               | Ö         | ó         | o l   |          |                 |               |           |                 |       |
| 24 60*      |                               | 1         | 0 7                | 7               | 0         | ŏ         | ŏ     |          |                 |               |           | ĺ               |       |
| L 7 60      | 12 15                         | 0         | 6                  | 8               | ŏ         | ŏ         | o l   |          |                 |               |           | Ì               |       |
| L 28 60*    |                               | 2         | 8                  | 8               | l o       | ا ہ       | 0     |          |                 |               | 1         | ļ <u>†</u>      |       |
| 2 12 60*    |                               | 0         | 9                  | 9               | Ò         | o         | o l   |          |                 | \             |           | l l             |       |
| 2 19 60     | 1 19                          | 0         | 15                 | 15              | 0         | o         | 0     |          |                 |               |           | 1               |       |
| 1 9 61*     |                               | 0         | 5                  | -5              | 0         | 0         | 0     | į        | ļ               |               |           | i i             |       |
| 1 30 61*    | 1                             | 1         | 4                  | 5               | 0         | 0         | 0     | l        |                 | 1             |           | İ               |       |
| 2 13 61*    |                               | 0         | 4                  | 4               | 0         | 0         | 0     | Ì        | 1               |               |           | 1               |       |
| 2 27 61*    | 1                             | 1         | 13                 | 14              | 0         | 22        | 22    | l l      |                 |               |           |                 |       |
| 3 13 61*    |                               | o         | 0                  | ō               | 0         | 0         | 0     | 1        | 1               | 1             |           |                 |       |
| 3 27 61*    |                               | 0         | 6                  | 6               | 0         | 1         | 1     | Į.       |                 | 1             | 1         |                 |       |
| 4 10 61     |                               | 0         | 4                  | 4               | 0         | 0         | 0     |          |                 | 1             | 1         | l               |       |
| 4 24 61     | 1                             | 0         | 3                  | à               | 1 0       | 0         | 0     | 1        |                 |               | 1         |                 |       |
| 5 8 61      |                               | 0         | í                  | ĺ               | 0         | 0         | 0     |          |                 |               |           | 1               |       |
| 5 29 61     |                               | 1         | 11                 | 12              | 0         | 0         | 0     | l        | İ               | 1             |           | [               | ļ     |
| 6 12 61     |                               | Ö         | 7                  | 7               | 0         | 0         | 0     | l        |                 |               | 1         |                 |       |
| 6 26 61     | _                             | 1 0       | 5                  | 5               | 0         | 0         | 0     | 1        |                 |               |           |                 |       |
| 7 10 614    | 1 1 -1                        | 1         | 13                 | 14              | 0         | 0         | 0     | l        | 1               |               | İ         |                 |       |
| 7 31 61     |                               | 3         | 5                  | 8               | 0         | 4         | 4     | 1        | i               | 1             | 1         | 1               | •     |
| 8 14 61     |                               | ١٥        | 4                  | 4               | 0         | 141       | 141   | ļ        |                 |               |           |                 | ì     |
| 8 28 61     | 9 18                          | -         |                    | _               | 19        | 0         | 19    | 1        |                 |               |           |                 | İ     |
| 9 5 61      | 9 29                          | _         |                    | _               | 0         | 9         | 9     |          | 1               |               |           |                 | Ì     |
| 9 11 61     | 10 19                         |           | _                  | -               | 21        | 108       | 129   |          |                 |               |           |                 |       |
| 9 18 61     | 10 14                         | 2         | 2                  | 4               | 14        | 0         | 14    | 1        | 1               |               |           | ·               | 1     |
| 9 25 61     | 10 8                          | -         | _                  | 1               | 1         | 1         | 1 1   |          | 1               |               |           |                 |       |
|             |                               | İ         | · ·                | i               | 1         |           |       | l        | 1               |               |           | 1               |       |
|             |                               |           | ļ                  |                 |           |           | 1     | İ        |                 |               |           | 1               | 1     |
|             |                               |           | l                  |                 | ì         |           | 1     | İ        | ì               | İ             |           |                 | 1     |
|             | i                             | ì         |                    | ļ               |           |           |       | Ì        |                 |               |           |                 | 1     |
|             |                               | ŀ         |                    |                 | \         |           |       | İ        |                 |               | 1 1       |                 |       |
|             |                               |           |                    | İ               |           |           |       | İ        |                 |               |           |                 |       |
|             |                               | 1         |                    | 1               | 1         |           |       | İ        | 1               |               |           |                 |       |
|             |                               |           |                    | 1               |           |           |       |          | 1               | Į.            |           |                 |       |
|             |                               |           |                    |                 |           |           |       |          |                 | 1             |           |                 |       |
|             |                               |           | 1                  |                 |           |           |       |          | 1               | -             |           |                 |       |
|             |                               |           |                    |                 |           |           |       |          |                 |               |           |                 | 1     |
|             | 1                             |           |                    | }               |           | ŀ         |       |          |                 |               |           |                 |       |
|             | Ì                             | - 1       |                    | 1               |           |           |       |          |                 |               |           |                 |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

\_\_\_\_

STATE

ARIZONA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

YUMA, ARIZONA

| <del></del>                                                                                                                                                                                                                              | T                                                                                |         |                            | ALGAE (N | umber                 | per ml.)                          |                                        |                                                                                                                                  |                                                                                                                                           | INE                                                                              | RT      |                          |                                                                                 |                                              | D                                                                               | ATO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MS                                                                              |                                                                                       |                                                                |                                         | i .                                            |                           | MICROIN                      | VERTEBR                      | ATES            |                                       |                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------|----------------------------|----------|-----------------------|-----------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------|--------------------------|---------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------|------------------------------------------------|---------------------------|------------------------------|------------------------------|-----------------|---------------------------------------|-------------------------------------------------------------|
| DATE<br>OF SAMPLE                                                                                                                                                                                                                        |                                                                                  | BLUE-   | GREEN                      | GREE     | N                     | FLAGEL<br>(Pigme                  |                                        | DIAT                                                                                                                             | омѕ                                                                                                                                       | SHE<br>(No. p                                                                    | LLS     |                          | DOM1                                                                            | NANT<br>Intro                                | SPEC                                                                            | for Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND PE                                                                           | RCEN'<br>ntificat                                                                     | TAGES                                                          |                                         | ROPLANKTON<br>SHEATHED<br>" ml.)               | A<br>ml.)                 | is<br>liter)                 | E.A<br>liter)                | SES<br>liter)   | ter)                                  | GENERA<br>oductio<br>ification                              |
| MONTH<br>DAY<br>YEAR                                                                                                                                                                                                                     | TOTAL                                                                            | COCCOID | FILA-<br>MENT-<br>OUS      | COCCOID  | FILA-<br>MENT-<br>OUS | GREEN                             | OTHER                                  | CENTRIC                                                                                                                          | PENNATE                                                                                                                                   | CENTRIC                                                                          | PENNATE | FIRST#                   | PER-                                                                            | SECOND#                                      | PER-                                                                            | THIRD#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PER.<br>CENTAGE                                                                 | FOURTH                                                                                | PER.                                                           | OTHER PER-<br>CENTAGE                   | OTHER BICK<br>FUNGIAND<br>BACTERIA<br>(No. per | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | (No. per liter) | OTHER ANIMAL FORMS<br>(No. per liter) | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| 10 3 60<br>11 14 60<br>11 28 60<br>11 28 60<br>11 26 1<br>1 30 61<br>1 30 61<br>2 27 61<br>3 27 61<br>3 27 61<br>4 10 61<br>5 8 61<br>5 23 61<br>5 23 61<br>7 3 61<br>7 3 61<br>7 3 61<br>7 3 61<br>7 3 61<br>7 17 61<br>8 61<br>9 18 61 | 200 700 2000 1800 300 600 200 500 500 2300 800 600 1100 2600 1800 2500 2500 2700 | 20 20   | 50<br>20<br>40<br>20<br>20 |          | 20<br>20              | 70 110 20 20 20 200 200 200 20 60 | 70<br>90<br>20<br>20<br>20<br>20<br>20 | 20<br>50<br>650<br>650<br>70<br>70<br>250<br>7190<br>1080<br>1080<br>1080<br>1080<br>1080<br>1080<br>1090<br>1080<br>1090<br>109 | 90<br>540<br>1410<br>920<br>180<br>400<br>290<br>180<br>1330<br>470<br>400<br>980<br>1780<br>1780<br>1780<br>1080<br>1180<br>1370<br>1040 | 70<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>40<br>40<br>20<br>20<br>60 |         | 48210476757444444478 242 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 | 70<br>791<br>70<br>87<br>70<br>5<br>36<br>82 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 8 6 8 3 3 9 3 6 6 7 7 6 7 9 9 4 6 2 5 9 5 6 5 7 7 6 7 9 4 6 2 5 6 5 7 7 6 7 9 4 6 2 5 6 5 6 7 7 6 7 9 4 6 2 5 6 5 6 7 7 6 7 9 4 6 2 5 6 7 7 6 7 9 4 6 2 5 6 7 7 6 7 9 4 6 2 5 6 7 7 6 7 9 4 6 2 5 6 7 7 6 7 9 4 6 2 5 6 7 7 6 7 9 4 6 2 5 6 7 7 6 7 9 4 6 2 5 6 7 7 7 6 7 9 4 6 2 5 6 7 7 7 6 7 9 4 6 2 5 6 7 7 7 6 7 9 4 6 2 5 6 7 7 7 6 7 9 4 6 2 5 6 7 7 7 6 7 9 4 6 2 5 6 7 7 7 6 7 9 4 6 2 5 6 7 7 7 6 7 9 4 6 2 5 6 7 7 7 6 7 9 4 6 2 5 6 7 7 7 6 7 9 4 6 2 5 6 7 7 7 6 7 9 4 6 2 5 6 7 7 7 6 7 9 4 6 2 5 6 7 7 7 6 7 9 7 9 7 6 7 9 7 8 7 8 7 9 7 8 7 8 7 8 7 8 7 8 7 8 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 92<br>8<br>16<br>92<br>16<br>94<br>94<br>65<br>75<br>77<br>89<br>77<br>75<br>66<br>46 | 100100 * 10000 * 10000 * 10000 * 10000 * 10000 * 10000 * 10000 | 500400640000000000000000000000000000000 | 70<br>160<br>180<br>130<br>90<br>70<br>20      |                           | 1 3 1 1 2 2 5 5 25 14 3 1    | 1 4 2 3 4 6 10 1 7 6         | 1 10 9 6        | 1                                     |                                                             |

## ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

ARIZONA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

YUMA, ARIZONA

|                                                  |                      |                    |                                            |                                                              |                                                      |                                               |                                                      |                     |                   |             |              | CHLOROF   | ORM EXTRA                    | CTABLES           |               |                       |             |          |
|--------------------------------------------------|----------------------|--------------------|--------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|---------------------|-------------------|-------------|--------------|-----------|------------------------------|-------------------|---------------|-----------------------|-------------|----------|
| DATE                                             | OF SA                | MPLE               |                                            |                                                              | EX                                                   | TRACTABL                                      | ES                                                   |                     |                   |             |              | NEUTRALS  |                              |                   |               |                       | į           |          |
| BEG YAG                                          | YEAR                 | HTNOM              | DAY 6                                      | GALLONS<br>FILTERED                                          | TOTAL                                                | CHLORO-<br>FORM                               | ALCOHOL                                              | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES | TOTAL       | ALIPHATICS   | AROMATICS | OXYGEN-<br>ATED<br>COMPOUNDS | ross              | WEAK<br>ACIDS | STRONG<br>ACIDS       | BASES .     | Loss     |
| 10 4<br>12 1<br>4 10<br>5 8<br>5 8<br>7 9<br>8 2 | 61<br>61<br>61<br>61 | 10<br>12<br>4<br>5 | 13<br>13<br>19<br>17<br>*<br>14<br>15<br>* | 3000<br>5530<br>2210<br>3000<br>5210<br>2460<br>4120<br>6580 | 240<br>161<br>486<br>361<br>414<br>448<br>212<br>300 | 39<br>26<br>100<br>71<br>83<br>91<br>31<br>53 | 201<br>135<br>386<br>290<br>331<br>357<br>181<br>247 | 1 0 3 2             | 11 5 - 25 - 11    | 13 11 22 23 | 2 1 - 3 - 10 | 1 1 2 3   | 17<br>-<br>-                 | 1 1 - 0 - 0 - 0 0 | 100           | 1<br>-<br>8<br>-<br>- | 1 1 - 2 - 1 | 7 6 13 8 |

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

ARIZONA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO KIVER

STATION LOCATIONCOLORADO RIVER AT

YUMA, ARIZONA

| DATE           | . 1  |                                  |                             |       |                |                | CHLORINE       | DEMAND          |                              |                   |                    |            |                        |                            |                  | PHOSPHATES | TOTAL                       | COLIFORMS  |
|----------------|------|----------------------------------|-----------------------------|-------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------|------------------------|----------------------------|------------------|------------|-----------------------------|------------|
| OF SAM         |      | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/l | рН    | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | mg/l       | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | mg/l       | DISSOLVED<br>SOLIDS<br>mg/l | per 100 mL |
|                | >    |                                  |                             |       |                |                |                |                 |                              | 215               | 178                | 420        | -                      | 24                         | -                | -          | -                           | 240        |
|                | 60   | 24.0                             | -                           | 8 • 2 | _              | _              | -              | _               | _                            | 155               | 150                | 364        | -                      | 27                         | _                | _          |                             | 960<br>240 |
| 10 10          | 1 1  | 20.0                             | -                           | 8.0   | _              | _              |                | _               | _                            | 145               | 150                | 406        | -                      | 35                         |                  | _          | _                           | 30         |
| 10 17          | 60   | 17.0                             | -                           | 8 • 2 | _              | _              | -              | -               |                              | 190               | 134                | 374        | -                      | 24                         | _                | _          | _                           | 400        |
| 10 24          |      | 20.0                             | -                           | 8.2   | _              | _              | _              | _               | _                            | 267               | 142                | 434        | -                      | 30                         | _                | _          | _                           | 260        |
| 11 7           | 60   | 18.0                             | -                           | 8.2   | -              | _              |                | _               | _                            | 288               | 154                | 430        | _                      | 32                         | _                | _          | _                           | 310        |
| 11 14          |      | 15.0                             | -                           | 8.2   | _              | _              | _              |                 | _                            | 262               | 154                | 470        | -                      | 26                         | _                | ] [        |                             | 440        |
| 11 21          |      | 12.5                             | -                           | 8.2   | _              | _              | -              | _ '             | _                            | 222               | 150                | 406        | -                      | 35                         |                  | _          | _                           | 270        |
| 11 28          |      | 12.0                             | -                           | 7.8   | _              | _              | _              | _               | _                            | 202               | 124                | 392        | -                      | 35                         | _                | -          | _                           | 160        |
| 12 5           |      | 12.0<br>9.5                      | _                           | 8.2   | _              | -              | -              | _               | -                            | 307               | 160                | 456        | _                      | 62<br>35                   | _                | _          | _                           | 260        |
| 12 12          |      | 9.5                              | _                           | 8.2   | _              | _              | -              | -               | _                            | 560               | 184                | 622        | -                      | 35                         | _                | _          | _                           | 310        |
| 12 19<br>12 27 |      | 10.5                             | _                           | 8.2   | _              | -              | -              | -               | -                            | 540               | 170                | 620        |                        | 32                         | -                | _          | _                           |            |
| 12 27          |      | 9.0                              | _                           | 8.2   | -              | -              | -              | -               | _                            | 515               | 180                | 596        | 0                      | 38                         |                  | _          | _                           | 900        |
| 1 9            |      | 12.0                             | _                           | 8.2   | _              | -              | -              | -               | -                            | 630               | 200                | 680        | _                      | 45                         |                  | _          | _                           | 1600       |
| 1 16           |      | 11.0                             | -                           | 8.2   | _              | -              | -              | -               | -                            | 670               | 192                | 704        | _                      | 35                         | _                | _          | 1 -                         | 230        |
| 1 23           |      | 13.0                             | _                           | 8.2   | _              | -              | -              | -               | _                            | 654               | 192                | 716        | 0                      | 32                         |                  | 1 _        | _                           | 350        |
| 1 30           |      | 13.0                             | _                           | 8.2   | _              | -              | _              | -               | -                            | 420               | 152                | 560        | _                      | 45                         | _                | _          | _                           | 30         |
| 2 6            | 1    | 12.0                             | 1 1                         | 8.2   | -              | -              | -              | _               | -                            | 652               | 180                | 716        | _                      | -                          | _                | _          | _                           | 60         |
| 2 13           |      | 13.0                             |                             | 8.2   | -              | -              | -              | -               | _                            | 724               | 180                | 640        | ] =                    | 35                         | _                | -          | -                           | -          |
| 2 20           |      | 11.0                             | 1                           | -     | -              | -              | -              | -               | -                            | 718               | 184                | 764<br>832 | _                      | 38                         | _                | _          | _                           | 260        |
| 2 27           |      | 11.5                             | -                           | 8.2   | -              | -              | -              | _               | -                            | 820               | 192                | 832        | _                      | 32                         |                  | -          | -                           | 100        |
| 3 6            |      | 14.5                             | -                           | 8.2   | -              | -              | -              | _               | -                            | 802               | 188                | 716        | _                      | 42                         | _                | -          | -                           | 120        |
| 3 13           |      | 18.0                             | -                           | 8.2   | -              | -              | -              | -               | _                            | 664               | 180                | 692        | _                      | 45                         | _                |            | -                           | 120        |
| 3 20           |      | 16.0                             | -                           | 8 • 2 | -              | -              | _              | _               | -                            | 610<br>588        | 172                | 672        | _                      | 40                         | _                | -          | -                           | 18         |
| 3 27           | 7 61 | 16.5                             | -                           | 8.2   | -              | -              | _              |                 | _                            | 790               | 180                | 860        | _                      | 48                         | _                | -          | -                           | -          |
| 4 3            | 61   | 18.0                             | -                           | 8 • 2 | -              | -              | -              | _               | _                            | 1                 | 100                | _          | _                      | _                          |                  |            | -                           | 240        |
| 4 4            | + 61 | .  -                             | -                           | -     | -              | -              | -              | _               | _                            | i                 | 180                | 720        | _                      | 48                         | -                | .   -      | -                           | 50         |
| 4 10           | 61   | 20.0                             | - 1                         | -     | _              | -              | _              | -               | _                            | 1                 | 196                | 884        | _                      | 48                         | -                | .  -       | -                           | 260        |
| 4 1            |      |                                  | -                           | 8.2   | -              | _              | 1              |                 | _                            | 1                 | 200                | 888        | -                      | 30                         | -                | .  -       | -                           | 200        |
| 4 24           |      |                                  | 1                           | 8.2   | _              | _              | _              | _               | _                            | 1                 | 216                | 952        | _                      | 38                         | -                | .  -       | -                           | 20         |
| 5 3            |      |                                  |                             | 8.2   | -              | 1              | 1              | 1               | _                            | 900               | 1                  | 872        | -                      | 43                         | -                | .  -       | -                           | -          |
| 5 8            |      | 1                                | 1                           | 8.2   | _              | _              | _              |                 |                              | 935               | 212                | 908        | -                      | 30                         | -                | .  -       | -                           | 220        |
| 5 15           |      |                                  |                             |       | -              | -              | -              | 1               | _                            | 1                 | 192                | 780        | _                      |                            | -                | .   -      | -                           | -          |
| 5 23           |      |                                  |                             | 8 • 2 | -              | _              |                | 1               |                              |                   | 184                |            | -                      | 32                         | -                | .   -      | -                           | 500        |
| 5 29           |      |                                  |                             | 8.2   | -              | _              |                |                 |                              |                   | 1                  | 716        | -                      | 50                         | -                | .  -       | -                           | 200        |
| 6              |      |                                  |                             | 8.2   | -              | _              |                | _               | _                            | 1                 |                    | II .       | 1                      | 35                         | -                | -   -      | -                           | -          |
| 6 1            |      |                                  | 1                           | 8.2   | -              | _              |                | _               | _                            | 1                 |                    |            |                        | 45                         | -                |            | -                           | 780        |
| 6 1            |      |                                  | T .                         | 8 • 2 | -              | _              |                |                 |                              | 1                 |                    |            | 1                      | 35                         | -                | -   -      | -                           | 100        |
| 6 2            | 6 6  | 28.0                             | ) -                         | 8.2   | -              | _              |                | -               |                              | '                 | -/-                |            |                        |                            |                  |            |                             | <u> </u>   |

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

ARIZONA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATIONCOLORADO RIVER AT

YUMA, ARIZONA

| DATE<br>OF SAMPLE                                                                   | TEMP.                                                                        | DISSOLVED      |                                               | B,O.D. | C,O.D. | CHLORINE       | DEMAND          | AMMONIA-<br>NITROGEN | CHLORIDES                               | 1 }  | HARDNESS                                                                   | COLOR         | TURBIDITY | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS                                            |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------|-----------------------------------------------|--------|--------|----------------|-----------------|----------------------|-----------------------------------------|------|----------------------------------------------------------------------------|---------------|-----------|------------------|--------------------|--------------------------------------|------------------------------------------------------|
|                                                                                     | (Degrees<br>entigrade)                                                       | OXYGEN<br>mg/l | pH                                            | mg/l   | mg/l   | 1-HOUR<br>mg/l | 24-HOUR<br>mg/I | mg/I                 | mg/I                                    | mg/l | mg/l                                                                       | (scale units) |           |                  | _                  |                                      |                                                      |
| 7 3 61<br>7 10 61<br>7 17 61<br>8 14 61<br>8 21 61<br>8 28 61<br>9 18 61<br>9 25 61 | 26.0<br>28.0<br>25.0<br>29.0<br>29.0<br>29.0<br>29.2<br>23.0<br>26.0<br>24.0 | 1              | 8 · 2 · 2 · 8 · 2 · 2 · 8 · 2 · 2 · 8 · 2 · 2 |        |        | mg/l           |                 | -                    | 785<br>935<br>920<br>950<br>1000<br>985 | 216  | 948<br>800<br>720<br>728<br>600<br>720<br>845<br>876<br>832<br>940<br>1060 |               | 48<br>32  |                  |                    |                                      | *100<br>*33<br>-33<br>33<br>*100<br><br>-3000<br>200 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station below Yuma, Arizona Operated by U.S. Geological Survey STATE

Arizona

MAJOR BASIN

Colorado River

MINOR BASIN

Lower Colorado River

STATION LOCATION

Colorado River at

Yuma, Arizona

| Day      | October        | November                | December       | January        | February               | March          | April          | May            | June           | July           | August         | September      |
|----------|----------------|-------------------------|----------------|----------------|------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 1        | 1.300          | 1.030                   | 3.450          | 1.290          | 3.490                  | 2.060          | 2.620          | 1.530          | 2.480          | 2.160          | 1.080          | 1.580          |
| 2        | 1.070          | 1.240                   | 3.530          | 1.510          | 3.390                  | 2.180          | 2.930          | 1.450          | 2.740          | 2.470          | 1.150          | 1.400          |
| 3<br>4   | 1.240<br>1.300 | 1.060<br>1.0 <b>2</b> 0 | 3.650<br>3.830 | 1.770<br>1.860 | 1.780                  | 2.090          | 2.950          | 1.490<br>1.440 | <b>2.</b> 850  | 2.560          | 1.380<br>1.550 | 1.670          |
| 5        | 1.200          | .967                    | 3.750          | 1.680          | .987<br>1.0 <b>2</b> 0 | 2.330<br>2.780 | 2.690<br>2.530 | 1.540          | 3.000<br>2.920 | 2.250<br>2.090 | 1.410          | 1.710<br>2.040 |
| 6        | .846           | 1.130                   | 3.020          | 1.560          | .970                   | 2.370          | 2.270          | 1.470          | 2.890          | 2.020          | 1.340          | 1.910          |
| 7        | 1.320          | 1.620                   | 3.030          | 1.430          | .884                   | 2.030          | 2.370          | 1.290          | 2.820          | 2.140          | 1.300          | 1.420          |
| 8        | 1.320          | 2.010                   | 1.120          | 1.480          | •935                   | <b>2.3</b> 80  | 2.400          | 1.290          | 2.460          | 2.230          | 1.300          | . 993          |
| 9        | .846           | 2.190                   | 1.040          | 1.360          | 1.000                  | 2.530          | 2.520          | 1.220          | 2.520          | 2.530          | 1.340          | 1.010          |
| 10       | 1.5 <b>3</b> 0 | 1.500                   | 1.060          | 1.510          | .952                   | 2.600          | 2.380          | 1.220          | 2.720          | 2.400          | 1.450          | .998           |
| Ll       | 1.020          | 1.090                   | 1.350          | 1.390          | 1.190                  | 2.720          | 2.370          | 1.250          | 2.890          | 2.330          | 1.400          | 1.050          |
| .2       | .761           | 1.160                   | 1.700          | 1.400          | •999                   | 2.910          | 2.360          | 1.350          | 2.750          | 2.270          | 1.460          | .986           |
| .3<br>.4 | .759           | 1.070                   | 1.170          | 1.810          | 1.100                  | 2.320          | 2.370          | 1.350          | 2.730          | 2.240          | 1.500          | .999           |
|          | 1.100          | .925                    | 1.320          | 1.650          | .950                   | 2.340          | 2.440          | 1.460          | 2.900          | 2.350          | 1.450          | 1.030          |
| 15       | 1.240          | .822                    | 1.200          | 1.620          | 1.100                  | 2.480          | 2.580          | 1.530          | 2.830          | 2.320          | 1.380          | 1.100          |
| 1.6      | 1.650          | 1.410                   | .908           | .854           | 1.060                  | 2.620          | 2.630          | 1.770          | 2.580          | 2.260          | 1.400          | 1.820          |
| L7       | 1.880          | 1.420                   | .945           | . 758          | 1.210                  | 2.590          | 2.400          | 1.800          | 2.260          | 2.150          | 1.450          | 1.830          |
| 18       | 1.350          | •973                    | 1.030          | .658           | 1.160                  | 2.570          | 2.970          | 1.690          | 2.380          | 2.070          | 1.380          | 1.760          |
| 19       | 1.530          | - 994                   | 1.270          | .721           | 1.320                  | 2.780          | 2.920          | 1.720          | 2.760          | 2.170          | 1.430          | 1.330          |
| 20       | 1.310          | .918                    | 1.510          | .763           | 2.070                  | 2.710          | 2.560          | 1.990          | 2.840          | 2.140          | 1.440          | 1.380          |
| 21       | 1.420          | .699                    | 1.200          | .790           | 2.650                  | 2.580          | 2.320          | 1.790          | 2.300          | 2.120          | 1.290          | 1.340          |
| 22       | 1.860          | .633                    | .749           | .745           | 2.380                  | 2.460          | 2.070          | 1.970          | 1.920          | 2.160          | 1.200          | 1.250          |
| 23<br>24 | 1.580          | .666                    | .770           | .830           | 2.100                  | 2.280          | 1.980          | 2.000          | 1.960          | 2.360          | 1.200          | 1.240          |
| 514      | 1.420          | .750                    | .773           | .963           | 1.920                  | 2.390          | 1.850          | 1.880          | 2:230          | 1.760          | 1.110          | 1.230          |
| 25       | 1.190          | .857                    | .835           | 1.770          | 1.710                  | 2.490          | 1.670          | 1.940          | 2.120          | 1.380          | 1.280          | 1.220          |
| 26       | .976           | 3.020                   | 1.620          | 2.960          | 1.730                  | 2.590          | 1.690          | 1.910          | 2.240          | 1.280          | 1.190          | 1.220          |
| 27<br>28 | 1.050          | 3.860                   | 1.360          | 2.700          | 1.680                  | 2.350          | 1.550          | 2.160          | 2.260          | 1.250          | 1.040          | 1.380          |
| 28       | 1.160          | 3.740                   | .812           | 3.560          | 1.820                  | 2.360          | 1.370          | 2.360          | 1.980          | 1.260          | 1.210          | 1.200          |
| 29       | 1.310          | 3.450                   | . 778          | 3.660          |                        | 2.370          | 1.410          | 2.270          | 2.010          | 1.260          | 1.200          | 1.220          |
| 30       | 1.170          | 3.490                   | . 780          | 3.600<br>3.460 |                        | 2.420<br>2.490 | 1.660          | 2.380<br>2.350 | 2.020          | 1.310<br>1.180 | 1.340<br>1.680 | 1.330          |
| 31       | 1.350          |                         | .773           | 3.400          |                        | 2.490          |                | 2.350          |                | 1.100          | 1.000          |                |

CALIFORNIA

MAJOR BASIN

STATE

COLORADO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER ABOVE

|             |                     |           |           | ACTIVITY IN W | ATER      |           |       | RADIOA                        | CTIVITY IN PLAN | IKTON (dry) | RAI       | DIOACTIVITY IN W |       |
|-------------|---------------------|-----------|-----------|---------------|-----------|-----------|-------|-------------------------------|-----------------|-------------|-----------|------------------|-------|
| DATE        |                     |           |           | ACTIVITI IN W | AILK .    | BETA      |       | DATE OF                       | GROSS /         | CTIVITY     |           | GROSS ACTIVIT    |       |
| SAMPLE      | DATE OF<br>DETERMI- |           | ALPHA     |               | SUSPENDED | DISSOLVED | TOTAL | DATE OF<br>DETERMI-<br>NATION | ALPHA           | BETA        | SUSPENDED | DISSOLVED        | TOTAL |
| TAKEN       | NATION              | SUSPENDED | DISSOLVED | TOTAL         |           | μμε/ί     | μμc/l | MO. DAY                       | µµс/g           | ppc/g       | μμc/l     | μμc/l            | ppc/l |
| D. DAY YEAR | MONTH DAY           | μμε/Ι     | μμε/Ι     | μμε/I         | μμε/Ι     | FFGI      |       |                               |                 |             |           |                  |       |
|             |                     |           | • }       |               | 0         | 2         | 2     |                               |                 | †           | }         | 1                |       |
| 12 60*      | 11 2                | 0         | 21        | 21            | - 1       | ō         | ō     |                               |                 |             |           |                  |       |
| 26 60*      | 11 17               | 0         | 13        | 13            | 0         |           | 6     |                               |                 | 1           |           | 1                |       |
| 9 60*       | 11 29               | 0 1       | 12        | 12            | 0         | 6         | 5     | l                             |                 | 1           |           |                  |       |
| 30 60*      |                     | 1 0 1     | 8         | 8             | 0         | 5         | 19    | . 1                           |                 | 1           | ł         | 1                |       |
| 2 14 60*    |                     | 0         | 8         | 8             | 0         | 19        | ó     | 1                             |                 | 1           | İ         |                  |       |
| 2 28 60*    | 1                   | 0         | 11        | 11            | 0         | 0         | 0     | 1                             |                 | 1           | į .       |                  |       |
| 1 11 61     | 1 31                | 0         | 12        | 12            | 0         | 0         | 0     | ļ                             |                 | 1           | 1         |                  |       |
|             | 1                   | 0         | 6         | 6             | 0         | 0         |       |                               | l               | 1 1         |           |                  |       |
|             | 1 .                 | 0         | 6         | 6             | 0         | 13        | 13    |                               | 1               | 1 1         | 1         |                  |       |
| 2 14 61*    | 3 22                | 1 0       | 2         | 2             | 0         | 0         | 0     | ł                             |                 | 1           | ł         |                  |       |
| 2 22 61     |                     | 0         | 6         | 6             | 0         | 12        | 12    | 1                             |                 |             |           | 1                |       |
| 3 15 61*    | 1                   | 0         | 5         | 5             | 0         | 28        | 28    | 1                             | ł               | 1           | 1         |                  | ļ     |
| 3 29 61     | 1                   | 0         | 9         | 9             | 0         | 26        | 26    | 1                             | 1               |             | 1         | Ì                |       |
| 4 14 613    |                     |           | 1ó        | 10            | 0         | 5         | 5     | i                             | 1               | i 1         | }         |                  |       |
| 4 26 61†    |                     | 0         | 7         | 8             | 0         | 0         | 0     |                               | 1               |             |           |                  |       |
| 5 3 61      | 6 1                 | 1         | 7         | 7             | 0         | 3         | 3     | ļ                             |                 |             |           | i                |       |
| 5 31 61     | 6 14                | 0         | 10        | 10            | 0         | 0         | 0     |                               |                 |             | ļ         |                  | }     |
| 6 14 61     |                     | 0         | - "       | 8             | 9         | 0         | 9     | 1                             | 1               |             |           |                  |       |
| 6 21 61     | .8 28               | 0         | 8         | 10            | 0         | 10        | 10    | i                             |                 |             |           |                  |       |
| 8 2 61      | * 8 31              | 0         | 10        | 8             | 15        | 1 0       | 15    | 1                             |                 |             |           | į                |       |
| 8 8 61      | 9 27                | 0         | 8         | 6             | 1 0       | 38        | 38    |                               | 1               |             |           |                  |       |
| 9 13 61     | 10 20               | 2         | 4         | l .           | 3         | 1 0       | 3     |                               | 1               |             | Į.        |                  |       |
| 9 20 61     | 10 2                | 0         | 6         | 6             | 1         |           |       |                               | 1               |             |           |                  |       |
|             | 1                   |           |           | 1             |           |           | !     | ł                             | į               |             |           |                  |       |
|             |                     | Į         |           |               |           |           |       | İ                             | İ               |             |           |                  |       |
|             |                     | Į         |           |               |           |           | 1     | İ                             |                 |             |           |                  | 1     |
|             |                     |           |           |               |           | 1         |       | 1                             |                 | -           |           | Ì                |       |
|             |                     | 1         |           |               | ļ         |           | 1     | 1                             | 1               |             |           |                  | 1     |
|             |                     | -         | 1         |               |           | 1         |       | 1                             |                 | ]           | 1         |                  |       |
|             |                     |           |           |               |           |           | 1     | - 1                           | 1               |             |           |                  | 1     |
|             |                     |           |           |               |           |           | į į   |                               | Ĭ               |             |           |                  |       |
|             |                     |           |           |               | 1         |           | Į į   | ì                             |                 |             |           | 1                | ļ     |
|             | 1                   | 1         |           |               | 1         |           | Į.    |                               |                 |             | 1         |                  |       |
|             |                     | ì         |           |               | 1         |           |       |                               | 1               |             |           |                  | •     |
|             |                     | Ì         |           |               | 1         |           |       |                               |                 |             |           |                  |       |
|             | 1                   | Į.        |           | 1             | i         | 1         |       |                               |                 | 1           | 1         |                  | 1     |
|             |                     |           |           |               | 1         |           |       | 1 1                           | 1               |             |           |                  |       |
|             |                     |           |           |               |           |           |       | 1                             | -               |             |           | 1                |       |
|             |                     |           |           |               |           |           |       |                               | - 1             | - {         | 1         | ļ                | l     |
|             |                     | 1         |           |               |           |           | 1     | 1 1                           | 1               |             |           |                  |       |
|             | 1                   |           |           |               | 1         |           |       | 1                             | 1               |             |           |                  |       |
|             | 1                   | 1         |           | 1             | ì         | 1         |       | 1 1 .                         | 1               |             |           |                  |       |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station below Yuma, Arizona Operated by U.S. Geological Survey

STATE

Arizona

MAJOR BASIN

Colorado River

MINOR BASIN

Lower Colorado River

STATION LOCATION

Colorado River at

Yuma, Arizona

| 2 1.0° 3 1.2¹ 4 1.30 5 1.2¢ 6 .8¹ 7 1.32 8 1.32 9 .8³ 10 1.55 11 1.02 12 .76 13 .75 14 1.10 15 1.2⁴ 16 1.65 17 1.88 1.35 19 1.53 20 1.31 21 1.42 22 1.86 23 1.586 24 1.42                    | 300<br>240<br>240<br>300<br>200<br>320<br>320<br>320<br>320<br>320<br>320<br>320<br>320 | 1.030<br>1.240<br>1.060<br>1.020<br>.967<br>1.130<br>1.620<br>2.010<br>2.190<br>1.500<br>1.090<br>1.160<br>1.070 | 3.450<br>3.530<br>3.650<br>3.830<br>3.750<br>3.020<br>3.030<br>1.120<br>1.040<br>1.060 | 1.290<br>1.510<br>1.770<br>1.860<br>1.680<br>1.560<br>1.430<br>1.480<br>1.360<br>1.510 | 3.490<br>3.390<br>1.780<br>.987<br>1.020<br>.970<br>.884<br>.935<br>1.000 | 2.060<br>2.180<br>2.090<br>2.330<br>2.780<br>2.370<br>2.030<br>2.380<br>2.530 | 2.620<br>2.930<br>2.950<br>2.690<br>2.530<br>2.270<br>2.370<br>2.400 | 1.530<br>1.450<br>1.490<br>1.440<br>1.540<br>1.470<br>1.290 | 2.480<br>2.740<br>2.850<br>3.000<br>2.920<br>2.890<br>2.820 | 2.160<br>2.470<br>2.560<br>2.250<br>2.090<br>2.020<br>2.140 | 1.080<br>1.150<br>1.380<br>1.550<br>1.410 | 1.580<br>1.400<br>1.670<br>1.710<br>2.040 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|-------------------------------------------|
| 5 1.26 6 .81 7 1.32 8 1.32 9 .81 10 1.53 11 1.02 12 .76 13 .75 14 1.10 15 1.24 16 1.65 17 1.88 18 1.35 19 1.53 20 1.31 21 1.42 22 1.86 23 1.58 24 1.426                                      | 240<br>300<br>200<br>846<br>320<br>320<br>846<br>530<br>020<br>761<br>759               | 1.060<br>1.020<br>.967<br>1.130<br>1.620<br>2.010<br>2.190<br>1.500<br>1.090<br>1.160                            | 3.650<br>3.830<br>3.750<br>3.020<br>3.030<br>1.120<br>1.040<br>1.060                   | 1.770<br>1.860<br>1.680<br>1.560<br>1.430<br>1.480<br>1.360<br>1.510                   | 1.780<br>.987<br>1.020<br>.970<br>.884<br>.935                            | 2.090<br>2.330<br>2.780<br>2.370<br>2.030<br>2.380<br>2.530                   | 2.930<br>2.950<br>2.690<br>2.530<br>2.270<br>2.370<br>2.400          | 1.450<br>1.490<br>1.440<br>1.540<br>1.470<br>1.290          | 2.740<br>2.850<br>3.000<br>2.920<br>2.890<br>2.820          | 2.470<br>2.560<br>2.250<br>2.090<br>2.020                   | 1.150<br>1.380<br>1.550<br>1.410          | 1.400<br>1.670<br>1.710<br>2.040          |
| 5 1.26 6 .81 7 1.32 8 1.32 9 .81 10 1.53 11 1.02 12 .76 13 .75 14 1.10 15 1.24 16 1.65 17 1.88 18 1.35 19 1.53 20 1.31 21 1.42 22 1.86 23 1.58 24 1.426                                      | 300<br>200<br>846<br>320<br>320<br>846<br>530<br>020<br>761<br>759                      | 1.020<br>.967<br>1.130<br>1.620<br>2.010<br>2.190<br>1.500<br>1.090<br>1.160                                     | 3.830<br>3.750<br>3.020<br>3.030<br>1.120<br>1.040<br>1.060                            | 1.860<br>1.680<br>1.560<br>1.430<br>1.480<br>1.360<br>1.510                            | 1.780<br>.987<br>1.020<br>.970<br>.884<br>.935                            | 2.090<br>2.330<br>2.780<br>2.370<br>2.030<br>2.380<br>2.530                   | 2.950<br>2.690<br>2.530<br>2.270<br>2.370<br>2.400                   | 1.490<br>1.440<br>1.540<br>1.470<br>1.290                   | 2.850<br>3.000<br>2.920<br>2.890<br>2.820                   | 2.560<br>2.250<br>2.090<br>2.020                            | 1.380<br>1.550<br>1.410                   | 1.670<br>1.710<br>2.040                   |
| 5 1.20 6 .81 7 1.32 8 1.32 9 .81 10 1.53 11 1.02 12 .76 13 .75 14 1.10 15 1.24 16 1.65 17 1.88 18 1.35 19 1.53 20 1.31 21 1.42 22 1.86 23 1.58 24 1.42                                       |                                                                                         | .967 1.130 1.620 2.010 2.190 1.500 1.090 1.160                                                                   | 3.750<br>3.020<br>3.030<br>1.120<br>1.040<br>1.060                                     | 1.680<br>1.560<br>1.430<br>1.480<br>1.360<br>1.510                                     | 1.020<br>.970<br>.884<br>.935<br>1.000                                    | 2.330<br>2.780<br>2.370<br>2.030<br>2.380<br>2.530                            | 2.690<br>2.530<br>2.270<br>2.370<br>2.400                            | 1.440<br>1.540<br>1.470<br>1.290                            | 3.000<br>2.920<br>2.890<br>2.820                            | 2.250<br>2.090<br>2.020                                     | 1.550<br>1.410<br>1.340                   | 1.710<br>2.040<br>1.910                   |
| 6 .81 7 1.32 8 1.32 9 .81 10 1.53 11 1.02 12 .76 13 .75 14 1.10 15 1.24 16 1.65 17 1.88 18 1.35 19 1.53 20 1.31 21 1.42 22 1.86 23 1.58 24 1.42                                              | .846<br>.320<br>.320<br>.846<br>.530<br>.020<br>.761<br>.759                            | 1.130<br>1.620<br>2.010<br>2.190<br>1.500<br>1.090<br>1.160                                                      | 3.020<br>3.030<br>1.120<br>1.040<br>1.060                                              | 1.560<br>1.430<br>1.480<br>1.360<br>1.510                                              | 1.020<br>.970<br>.884<br>.935<br>1.000                                    | 2.780<br>2.370<br>2.030<br>2.380<br>2.530                                     | 2.530<br>2.270<br>2.370<br>2.400                                     | 1.540<br>1.470<br>1.290                                     | 2.920<br>2.890<br>2.820                                     | 2.020                                                       | 1.410<br>1.340                            | 2.040                                     |
| 7 1.32<br>8 1.33<br>9 .84<br>10 1.55<br>11 1.02<br>12 .76<br>13 .75<br>14 1.10<br>15 1.24<br>16 1.65<br>17 1.88<br>18 1.35<br>19 1.53<br>20 1.31<br>21 1.42<br>22 1.86<br>23 1.58<br>24 1.42 | 320<br>320<br>846<br>530<br>020<br>761<br>759                                           | 1.620<br>2.010<br>2.190<br>1.500<br>1.090<br>1.160                                                               | 3.030<br>1.120<br>1.040<br>1.060                                                       | 1.430<br>1.480<br>1.360<br>1.510                                                       | .884<br>.935<br>1.000                                                     | 2.030<br>2.380<br>2.530                                                       | 2.370<br>2.400                                                       | 1.290                                                       | 2.820                                                       |                                                             |                                           |                                           |
| 8 1.32<br>9 .81<br>10 1.53<br>11 1.02<br>12 .76<br>13 .75<br>14 1.10<br>15 1.24<br>16 1.65<br>17 1.88<br>18 1.35<br>19 1.53<br>20 1.31<br>21 1.42<br>22 1.86<br>23 1.58<br>24 1.42           | .320<br>.846<br>.530<br>.020<br>.761<br>.759                                            | 2.010<br>2.190<br>1.500<br>1.090<br>1.160                                                                        | 1.120<br>1.040<br>1.060                                                                | 1.480<br>1.360<br>1.510                                                                | .884<br>.935<br>1.000                                                     | 2.030<br>2.380<br>2.530                                                       | 2.370<br>2.400                                                       | 1.290                                                       | 2.820                                                       |                                                             |                                           |                                           |
| 9 .8 <sup>4</sup> 10 1.55  11 1.02 12 .76 13 .75 14 1.10 15 1.2 <sup>4</sup> 16 1.65 17 1.88 18 1.35 19 1.53 20 1.31 21 1.42 22 1.86 23 1.58 24 1.42                                         | .846<br>.530<br>.020<br>.761<br>.759                                                    | 2.190<br>1.500<br>1.090<br>1.160                                                                                 | 1.040<br>1.060<br>1.350                                                                | 1.360<br>1.510                                                                         | 1.000                                                                     | 2.380<br>2.530                                                                | 2.400                                                                |                                                             |                                                             | 2.140                                                       |                                           |                                           |
| 10 1.55  11 1.02  12 .76  13 .75  14 1.10  15 1.24  16 1.65  17 1.88  18 1.35  19 1.53  20 1.31  21 1.42  22 1.86  23 1.58  24 1.42                                                          | . 530<br>. 020<br>. 761<br>. 759                                                        | 1.500<br>1.090<br>1.160                                                                                          | 1.060<br>1.350                                                                         | 1.510                                                                                  | 1.000                                                                     | 2.530                                                                         |                                                                      | 1.24                                                        | 2.460                                                       | 2.230                                                       | 1.300<br>1.300                            | 1.420                                     |
| 11 1.02<br>12 .76<br>13 .75<br>14 1.10<br>15 1.24<br>16 1.65<br>17 1.88<br>18 1.35<br>19 1.53<br>20 1.31<br>21 1.42<br>22 1.86<br>23 1.58<br>24 1.42                                         | .020<br>.761<br>.759                                                                    | 1.090<br>1.160                                                                                                   | 1.350                                                                                  | •                                                                                      | .952                                                                      |                                                                               | 2.520                                                                | 1.220                                                       | 2.520                                                       | 2.530                                                       | 1.340                                     | .993                                      |
| 1276 1375 14 1.10 15 1.24 16 1.65 17 1.88 18 1.35 19 1.53 20 1.31 21 1.42 22 1.86 23 1.58 24 1.42                                                                                            | .761<br>.759                                                                            | 1.160                                                                                                            |                                                                                        | 1 200                                                                                  |                                                                           | 2.600                                                                         | 2.380                                                                | 1.220                                                       | 2.720                                                       | 2.400                                                       | 1.450                                     | 1.010<br>.998                             |
| 13 . 75 14 1.10 15 1.24 16 1.65 17 1.88 18 1.35 19 1.53 20 1.31 21 1.42 22 1.86 23 1.58 24 1.42                                                                                              | .759                                                                                    |                                                                                                                  | 1.700                                                                                  | ±.350                                                                                  | 1.190                                                                     | 2.720                                                                         | 2.370                                                                | 1 <b>.2</b> 50                                              | 2.890                                                       | 2,330                                                       | 1.400                                     |                                           |
| 15 1.24  16 1.65  17 1.88  18 1.35  19 1.53  20 1.31  21 1.42  22 1.86  23 1.58  24 1.42                                                                                                     |                                                                                         | 1 070                                                                                                            |                                                                                        | 1.400                                                                                  | .999                                                                      | 2.910                                                                         | 2.360                                                                | 1.350                                                       | 2.750                                                       | 2.270                                                       | 1.460                                     | 1.050                                     |
| 15 1.24  16 1.65  17 1.88  18 1.35  19 1.53  20 1.31  21 1.42  22 1.86  23 1.58  24 1.42                                                                                                     | 100                                                                                     |                                                                                                                  | 1.170                                                                                  | 1.810                                                                                  | 1.100                                                                     | 2.320                                                                         | 2.370                                                                | 1.350                                                       | 2.730                                                       | 2.240                                                       |                                           | .986                                      |
| 1.65<br>1.7 1.88<br>1.8 1.35<br>1.9 1.53<br>20 1.31<br>21 1.42<br>22 1.86<br>23 1.58<br>24 1.42                                                                                              |                                                                                         | .925                                                                                                             | 1.320                                                                                  | 1.650                                                                                  | .950                                                                      | 2.340                                                                         | 2.440                                                                | 1.460                                                       | 2.900                                                       | 2.350                                                       | 1.500<br>1.450                            | .999                                      |
| 17 1.88<br>18 1.35<br>19 1.53<br>20 1.31<br>21 1.42<br>22 1.86<br>23 1.58<br>24 1.42                                                                                                         | .240                                                                                    | .822                                                                                                             | 1.200                                                                                  | 1.620                                                                                  | 1.100                                                                     | 2.480                                                                         | 2.580                                                                | 1.530                                                       | 2.830                                                       | 2.320                                                       | 1.450                                     | 1.030<br>1.100                            |
| 18 1.35<br>19 1.53<br>20 1.31<br>21 1.42<br>22 1.86<br>23 1.58<br>24 1.42                                                                                                                    |                                                                                         | 1.410                                                                                                            | .908                                                                                   | .854                                                                                   | 1.060                                                                     | 2,620                                                                         | 2.630                                                                | 1.770                                                       | 2.580                                                       | 0.00                                                        |                                           |                                           |
| 19 1.53<br>20 1.31<br>21 1.42<br>22 1.86<br>23 1.58<br>24 1.42                                                                                                                               |                                                                                         | 1.420                                                                                                            | . 945                                                                                  | .758                                                                                   | 1.210                                                                     | 2.590                                                                         | 2.400                                                                | 1.800                                                       | 2.260                                                       | 2.260                                                       | 1.400                                     | 1.820                                     |
| 20 1.31<br>21 1.42<br>22 1.86<br>23 1.58<br>24 1.42                                                                                                                                          | . 350                                                                                   | •973                                                                                                             | 1.030                                                                                  | .658                                                                                   | 1.160                                                                     | 2.570                                                                         | 2.970                                                                | 1.690                                                       |                                                             | 2.150                                                       | 1.450                                     | 1.830                                     |
| 21 1.42<br>22 1.86<br>23 1.58<br>24 1.42                                                                                                                                                     |                                                                                         | .994                                                                                                             | 1.270                                                                                  | .721                                                                                   | 1.320                                                                     | 2.780                                                                         | 2.920                                                                | 1.720                                                       | 2.380                                                       | 2.070                                                       | 1.380                                     | 1.760                                     |
| 22 1.86<br>23 1.58<br>24 1.42                                                                                                                                                                | . 310                                                                                   | .918                                                                                                             | 1.510                                                                                  | .763                                                                                   | 2.070                                                                     | 2.710                                                                         | 2.560                                                                | 1.990                                                       | 2.760<br>2.840                                              | 2.170<br>2.140                                              | 1.430<br>1.440                            | 1.330<br>1.380                            |
| 23 1.586<br>24 1.426                                                                                                                                                                         |                                                                                         | .699                                                                                                             | 1.200                                                                                  | .790                                                                                   | 2.650                                                                     | 2.580                                                                         | 2.320                                                                | 7 700                                                       |                                                             |                                                             |                                           | -                                         |
|                                                                                                                                                                                              |                                                                                         | .633                                                                                                             | .749                                                                                   | .745                                                                                   | 2.380                                                                     | 2.460                                                                         | 2.070                                                                | 1.790                                                       | 2.300                                                       | 2.120                                                       | 1.290                                     | 1.340                                     |
|                                                                                                                                                                                              | . 580                                                                                   | .666                                                                                                             | . 770                                                                                  | .830                                                                                   | 2.100                                                                     | 2.280                                                                         | 1.980                                                                | 1.970                                                       | 1.920                                                       | 2.160                                                       | 1.200                                     | 1.250                                     |
| 25 1.190                                                                                                                                                                                     | .420                                                                                    | .750                                                                                                             | .773                                                                                   | .963                                                                                   | 1.920                                                                     | 2.390                                                                         | 1.850                                                                | 2.000                                                       | 1.960                                                       | 2.360                                                       | 1.200                                     | 1.240                                     |
|                                                                                                                                                                                              | 190                                                                                     | .857                                                                                                             | .835                                                                                   | 1.770                                                                                  | 1.710                                                                     | 2.490                                                                         |                                                                      | 1.880                                                       | 2:230                                                       | 1.760                                                       | 1.110                                     | 1.230                                     |
|                                                                                                                                                                                              |                                                                                         |                                                                                                                  |                                                                                        |                                                                                        | 1.110                                                                     | 2.490                                                                         | 1.670                                                                | 1.940                                                       | 2.120                                                       | 1.380                                                       | 1.280                                     | 1.220                                     |
| 26 .976                                                                                                                                                                                      | 910                                                                                     | 3.020                                                                                                            | 1.620                                                                                  | 2.960                                                                                  | 1.730                                                                     | 2.590                                                                         | 1.690                                                                | 1.910                                                       | 2.240                                                       | 1.280                                                       | 1 100                                     | 1 000                                     |
|                                                                                                                                                                                              |                                                                                         | 3.860                                                                                                            | 1.360                                                                                  | 2.700                                                                                  | 1.680                                                                     | 2.350                                                                         | 1.550                                                                | 2.160                                                       | 2.260                                                       | 1.250                                                       | 1.190<br>1.040                            | 1.220                                     |
| 1.160                                                                                                                                                                                        | 050                                                                                     | 3.740                                                                                                            | .812                                                                                   | 3.560                                                                                  | 1.820                                                                     | 2,360                                                                         | 1.370                                                                | 2.360                                                       | 1.980                                                       | 1.260                                                       |                                           | 1.380                                     |
|                                                                                                                                                                                              | 050<br>160                                                                              | 3.450                                                                                                            | .778                                                                                   | 3.660                                                                                  |                                                                           | 2.370                                                                         | 1.410                                                                | 2.270                                                       | 2.010                                                       | 1.260                                                       | 1.210                                     | 1.200                                     |
|                                                                                                                                                                                              | 050<br>160<br>310                                                                       |                                                                                                                  | . 780                                                                                  | 3.600                                                                                  |                                                                           | 2.420                                                                         | 1.660                                                                | 2.380                                                       | 2.020                                                       |                                                             | 1.200                                     | 1.220                                     |
| 31 1.350                                                                                                                                                                                     | 050<br>160<br>310<br>170                                                                | 3.490                                                                                                            | -773                                                                                   | 3.460                                                                                  |                                                                           | 2.490                                                                         |                                                                      | 2.350                                                       | 2.020                                                       | 1.310<br>1.180                                              | 1.340<br>1.680                            | 1.330                                     |

STATE

CALIFORNIA

MAJOR BASIN

COLORADO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER ABOVE

|                 |                               |           | PADIO     | ACTIVITY IN V | VATER     |           | 1     | RADIOAC            | TIVITY IN PLAN | IKTON (dry) | RAI       | HOACTIVITY IN Y | ATER  |
|-----------------|-------------------------------|-----------|-----------|---------------|-----------|-----------|-------|--------------------|----------------|-------------|-----------|-----------------|-------|
| DATE            |                               |           | ALPHA     |               | Ī         | BETA      |       | DATE OF            | GROSS /        | CTIVITY     |           | GROSS ACTIVIT   |       |
| SAMPLE<br>TAKEN | DATE OF<br>DETERMI-<br>NATION | SUSPENDED | DISSOLVED | TOTAL         | SUSPENDED | DISSOLVED | TOTAL | DETERMI-<br>NATION | ALPHA          | BETA        | SUSPENDED |                 | TOTAL |
|                 | MONTH DAY                     | μμε/1     | μμε/Ι     | μμc/l         | μμε/Ι     | μμε/Ι     | μμc/l | MO. DAY            | μμc/g          | ##c/g       | μμc/i     | μμc/l           | μμε/l |
| O. DAT TEAR     | MONTH DATE                    |           |           |               |           |           |       |                    |                |             |           | 1               |       |
| 11 (0*          | 11 2                          | 0         | 21        | 21            | 0         | 2         | 2     |                    |                |             |           |                 |       |
| 12 60*          |                               | ŏ         | 13        | 13            | 0         | o l       | 0     | 1 1                |                |             |           |                 |       |
| 26 60*          |                               | o l       | 12        | 12            | 0         | 6         | 6 l   |                    |                | 1           | İ         |                 |       |
| 9 60*           | 11 29                         | ŏ         | 8         | 8             | 0         | 5         | 5     | 1                  |                | 1           | i         |                 |       |
| 30 60*          |                               | 0         | 8         | 8             | o         | 19        | 19    |                    |                |             | <u> </u>  |                 |       |
| 2 14 60*        |                               |           | 11        | 11            | Ö         | ō         | - o   | 1                  |                |             | - 1       | Ì               |       |
| 2 28 60*        |                               | 0         |           | 12            | Ö         | o         | o l   |                    |                |             |           |                 |       |
| 1 11 61         | 1 31                          | 0         | 12        |               | 0         | ٥         | 0     | 1 1                |                |             | i         |                 |       |
| 2 1 61*         | 2 17                          | 0         | 6         | 6             | 1         | - 1       | - 1   | 1 1                |                |             |           |                 |       |
| 2 14 61*        | 3 3                           | 0         | 6         | 6             | 0         | 13        | 13    |                    |                |             |           |                 |       |
| 2 22 61         | 3 22                          | 0         | 2         | 2             | 0         | 0         | 0     | 1                  |                | 1           |           |                 |       |
| 3 15 61*        |                               | 0         | 6         | 6             | 0         | 12        | 12    |                    |                |             |           |                 |       |
| 3 29 61         | 1                             | 0         | 5         | 5             | 0         | 28        | 28    | }                  |                | 1           |           |                 | 1     |
| 4 14 61         | 1                             | 0         | 9         | 9             | 0         | 26        | 26    |                    |                | 1           | i         | \               | 1     |
| . –             |                               | 0         | 10        | 10            | 0         | 5         | 5     |                    |                |             |           |                 |       |
| 4 26 61         |                               | l         | 7         | 8             | 0         | 0         | 0     |                    |                | 1           | Ĭ         |                 | ]     |
| 5 3 61          | -                             | Ô         | 7         | 7             | 0         | 3         | 3     | i '                |                |             |           |                 | į     |
| 5 31 61         | 6 14                          | 0         | 10        | 10            | 1 0       | ٥         | 0     |                    |                |             |           |                 | İ     |
| 6 14 61         |                               | _         | 8         | 8             | 9         | ٥         | 9     | i i                |                | 1           |           |                 | İ     |
| 6 21 61         | .8 28                         | 0         |           | 10            | 0         | 10        | 10    | - 1                |                |             |           |                 | 1     |
| 8 2 61          |                               | 0         | 10        |               | 15        | 0         | 15    |                    |                |             |           |                 |       |
| 8 8 61          | 9 27                          | 0         | 8         | 8             | 10        | 38        | 38    | į.                 |                |             |           |                 |       |
| 9 13 61         | 10 20                         | 2         | 4         | 6             | 1         | 30        | 3     | ]                  |                |             |           |                 |       |
| 9 20 61         | 10 2                          | 0         | 6         | 6             | 3         | )         |       | 1                  |                |             |           | 1               | 1     |
| , 20 02         |                               | 1         |           |               |           | ì         | 1     | 1                  | ŀ              |             |           |                 |       |
|                 |                               |           |           | l             |           |           | i l   | 1                  | ļ.             |             |           |                 |       |
|                 |                               | 1         | 1         | l             | į         |           |       | 1                  |                |             |           |                 | 1     |
|                 |                               |           | 1         | 1             | ì         |           | 1     |                    | 1              |             | 1         |                 |       |
|                 |                               |           | 1         | 1             | 1         |           | l     |                    |                |             |           | 1               | 1     |
|                 |                               | İ         |           |               | 1         | 1         |       |                    | 1              |             |           |                 | ì     |
|                 |                               | ĺ         |           |               |           | 1         |       | ì                  |                | 1           | }         |                 | 1     |
|                 |                               | ì         |           | 1             | <b>\</b>  |           |       | i                  | 1              |             |           |                 | 1     |
|                 |                               | k         |           |               | į.        |           | 1     |                    |                |             | <b>!</b>  |                 |       |
|                 |                               | ŀ         |           |               | ļ         | ļ         |       | Į.                 | ì              |             |           |                 | -     |
|                 |                               |           |           |               | į         |           | 1     |                    | ļ              |             | 1 1       |                 |       |
|                 |                               | -[        |           |               |           |           |       |                    |                |             |           | 1               |       |
|                 |                               | 1         |           |               | ļ         | 1         |       |                    | 1              |             |           |                 |       |
|                 | - 1                           | 1         |           |               | 1         |           |       | 1                  |                | Į.          |           | 1               |       |
|                 |                               |           |           | 1             | 1         |           |       |                    |                |             |           |                 |       |
|                 |                               | 1         |           |               | 1         |           |       | 1                  | 1              |             | 1         |                 |       |
|                 |                               | 1         |           |               | 1         |           |       | 1                  |                |             |           |                 |       |
|                 |                               | 1         | 1         | 1             | 1         |           | 1     | 1                  | 1              | Ì           |           |                 | 1     |
|                 |                               | ļ         |           | 1             |           |           |       |                    | 1              |             |           |                 |       |
|                 |                               |           |           |               |           |           | 1     | i 1 .              |                |             |           |                 |       |

# ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

CALIFORNIA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER ABOVE

|                                                   | ATE                                                    | OF S.                                  | AMPI  | .E                                        | $\overline{}$                             |                                                                                                | EX                                                                 | TRACTABL                                          | ES                                                                              |                     |                                              |                                                  |            |           | ORM EXTRA                    | CTABLES         |               |                 |       |                   |
|---------------------------------------------------|--------------------------------------------------------|----------------------------------------|-------|-------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------|---------------------|----------------------------------------------|--------------------------------------------------|------------|-----------|------------------------------|-----------------|---------------|-----------------|-------|-------------------|
|                                                   | INN                                                    |                                        |       | END                                       | -                                         |                                                                                                |                                                                    |                                                   |                                                                                 |                     | 1                                            |                                                  |            | NEUTRALS  |                              |                 |               |                 | İ     |                   |
| MONTH                                             | DAY                                                    | YEAR                                   | MONTH | YAG                                       | - 1                                       | GALLONS<br>FILTERED                                                                            | TOTAL                                                              | CHLORO-<br>FORM                                   | ALCOHOL                                                                         | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES                            | TOTAL                                            | ALIPHATICS | AROMATICS | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS            | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES | LOSS              |
| 10<br>11<br>12<br>1<br>3<br>4<br>5<br>6<br>8<br>9 | 17<br>21<br>31<br>4<br>13<br>20<br>20<br>30<br>8<br>21 | 60<br>60<br>61<br>61<br>61<br>61<br>61 | 10    | ) 2<br>1 2<br>1<br>2<br>3 1<br>4 2<br>5 2 | 3<br>1<br>7<br>3<br>0<br>8<br>8<br>6<br>9 | 5140<br>4080<br>5130<br>5280<br>5060<br>5360<br>5110<br>10470<br>5270<br>5150<br>5500<br>15920 | 190<br>193<br>194<br>132<br>179<br>185<br>172<br>187<br>190<br>162 | 300<br>42<br>37<br>445<br>45<br>464<br>570<br>373 | 160<br>163<br>152<br>95<br>136<br>114<br>101<br>108<br>135<br>120<br>125<br>127 | 0 1 1 1 0 5 2       | 8<br>8<br>10<br>9<br>9<br>-<br>18<br>-<br>12 | 10<br>10<br>12<br>10<br>15<br>-<br>14<br>-<br>18 | 1 1 1 4 6  | Į.        | -                            | 1 1 2 1 1 0 1 1 | 3344659       | 8               | 1 -   | 6 5 12 10 10 13 8 |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

CALIFORNIA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER ABOVE

|                                                                                                                         |                                                                    |                                                                       |         |                       |                                                                               |                       |                                                      |                                                             |                                                            |                                                                        | ı                                |                                                                    |                         |                 |                      |               |                         |               |        |                 |            | <del></del>                                                             | Г                         | n.coo                                                                              | WEDTER-                                                                   | 1750                         | -               |                                                             |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------|---------|-----------------------|-------------------------------------------------------------------------------|-----------------------|------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------|-------------------------|-----------------|----------------------|---------------|-------------------------|---------------|--------|-----------------|------------|-------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------|-----------------|-------------------------------------------------------------|
| DATE                                                                                                                    |                                                                    |                                                                       |         |                       | ALGAE (1                                                                      | Number                | per ml.)                                             | LATES                                                       |                                                            |                                                                        | DIA                              | ERT<br>TOM<br>ELLS                                                 | l                       | DOM             | INANT                | SPEC          | IATO                    | ND PE         | RCEN   | TAGE            | 5          | KTOR,                                                                   | <b></b>                   | MICROIN                                                                            | Ι                                                                         |                              |                 | ter.<br>tion<br>ton)                                        |
| OF SAMP                                                                                                                 | LE                                                                 |                                                                       | BLUE-   | GREEN                 | GREE                                                                          | EN                    | (Pigm                                                | ented)                                                      | DIAT                                                       | OMS                                                                    | (No. p                           | er ml.)                                                            | _                       | <del>,</del>    |                      | duction       | for Co                  | ode Ide       | T      |                 | T :        | ROPLAN<br>SHEAT                                                         | A                         | RS<br>liter)                                                                       | iter)                                                                     | DES<br>liter,                | HAL FO          | r eku<br>roduc<br>tificat                                   |
| MONTH                                                                                                                   | YEAR                                                               | TOTAL                                                                 | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                                                                       | FILA-<br>MENT-<br>OUS | GREEN                                                | OTHER                                                       | CENTRIC                                                    | PENNATE                                                                | CENTRIC                          | PENNATE                                                            | FIRST                   | PER-<br>CENTAGE | SECOND               | PER.          | THIRD                   | PER.          | FOURTH | PER.<br>CENTAGE | OTHER PER- | OTHER MICROPLANKTOR,<br>FUNGI AND SHEATHED<br>BACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)                                                       | CRUSTACEA<br>(No. per liter)                                              | NEMATODES<br>(No. per liter) | (No. per liter) | DOMINANT GRAFAA<br>(See Introduction<br>for Identification) |
| 11 28 4<br>1 12 5<br>2 5 7<br>3 23 23 4<br>4 14 4<br>4 14 6<br>6 14 6<br>6 14 6<br>6 19 6<br>7 19 6<br>8 19 6<br>8 19 8 | 600<br>661<br>661<br>661<br>661<br>661<br>661<br>661<br>661<br>661 | 1200<br>100<br>100<br>200<br>400<br>200<br>1000<br>1700<br>800<br>600 | 20      | 20                    | 220<br>20<br>200<br>130<br>50<br>120<br>90<br>460<br>270<br>230<br>270<br>190 | 40                    | 330<br>20<br>70<br>20<br>80<br>40<br>190<br>80<br>40 | 110<br>20<br>70<br>20<br>40<br>20<br>40<br>190<br>120<br>40 | 50<br>20<br>20<br>50<br>80<br>170<br>40<br>100<br>80<br>20 | 490<br>70<br>130<br>70<br>220<br>80<br>80<br>8390<br>350<br>120<br>620 | 20<br>20<br>50<br>20<br>20<br>40 | 220<br>120<br>130<br>130<br>20<br>50<br>20<br>80<br>20<br>80<br>20 | 91<br>69<br>8<br>8<br>8 | 90<br>80<br>90  | 92<br>69<br>91<br>69 | 10 10 10 10 * | 891<br>992<br>944<br>57 | *<br>10<br>** | 52     | *               | 40 30 * 10 | 70<br>220<br>20<br>60                                                   | 10 10 10 10 20            | 4<br>9<br>11<br>3<br>60<br>44<br>49<br>93<br>24<br>74<br>104<br>44<br>7<br>20<br>6 | 4<br>4<br>2<br>2<br>2<br>11<br>3<br>17<br>6<br>4<br>4<br>1<br>2<br>5<br>7 |                              | 1               | 73<br>3<br>3<br>3                                           |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

CALIFORNIA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATIONCOLORADO RIVER ABOVE

| (Dagress OXYGEN pH B.O.D. C.O.D. NITEOGEN NITEOGEN PHOSPHATES DISSOLVED CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | ATE           |     |      |     |     |     | 1 | CHLORINE | DEMAND |          |    |     |     |     |     |     |     |        |                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|-----|------|-----|-----|-----|---|----------|--------|----------|----|-----|-----|-----|-----|-----|-----|--------|--------------------------|
| 10   12   60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | <del></del> i |     |      |     | pH  |     | 1 | 1        | 1      | NITROGEN |    |     |     |     |     |     |     | SOLIDS | COLIFORMS<br>per 100 ml. |
| 10 15 60 21.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |               |     | 24.6 |     |     | i e | 1 |          |        |          |    |     |     |     |     |     |     |        | -                        |
| 10 26 60 21.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |               |     | 21 1 |     |     | ŀ   | 1 |          |        | 1        |    |     |     |     |     |     |     |        | _                        |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |               |     |      |     |     | 1   | l |          |        | l        |    |     |     |     |     |     |     |        | _                        |
| 11   9   60   18.8   - 7.9   85   135   332   5   5   300   0   621   11   16   60   18.3   - 7.9   91   122   328   5   5   305   0   670   11   30   60   15.5   - 7.9   85   112   348   5   5   305   0   665   12   7   60   12.8   - 8.1   85   112   348   5   5   300   0   665   12   7   60   12.2   - 8.1   85   104   332   0   20   300   0   663   12   14   60   12.2   - 8.1   86   118   328   0   20   300   0   663   12   21   60   12.2   - 8.1   86   118   328   0   20   300   0   663   12   22   60   11.7   - 7.9   85   122   330   0   20   300   0   663   12   28   60   11.7   - 7.9   85   122   330   0   20   300   0   663   12   25   10   10.6   - 7.8   85   122   330   0   270   0   667   11   16   16   10.6   - 7.8   85   122   330   0   290   0   695   12   25   10   10.6   - 8.0   87   125   344   0   0   290   0   695   12   25   11   11.1   - 7.7   87   122   336   0   0   280   0   672   13   16   11.7   - 7.7   81   122   336   0   0   280   0   672   14   12.8   - 7.6   81   123   332   0   0   310   0   669   15   28   61   12.2   - 7.8   81   123   332   0   0   310   0   669   16   28   12.8   - 7.6   81   124   332   0   0   275   0   640   17   18   18   18   18   - 7.7   81   126   332   0   0   275   0   640   18   29   61   11.7   - 7.7   81   126   332   0   0   275   0   640   19   20   21   21   21   21   21   21   21                                                                                                 |       |               |     |      | l . |     | _   | _ |          | _      | 1        |    |     |     | 1   |     |     |     | 630    | _                        |
| 11 23 60 16.7 - 8.1 83 112 348 5 5 5 305 .0 670 11 30 60 15.5 - 7.9 85 128 328 5 5 320 .0 665 12 7 60 12.8 - 8.1 85 104 332 0 20 300 .0 663 12 14 60 12.2 - 8.1 87 125 338 0 20 300 .0 663 12 12 60 12.2 - 8.1 87 125 338 0 20 300 .0 683 12 28 60 11.7 - 7.9 85 120 330 0 20 300 .0 681 11 161 10.0 - 7.9 85 122 330 0 20 300 .0 681 11 161 10.0 - 7.9 85 120 344 0 0 270 .0 667 11 18 61 10.6 - 7.8 87 125 348 0 20 300 .0 681 12 28 60 11.7 - 7.7 87 124 340 0 0 290 .0 695 125 61 10.6 - 8.0 87 125 338 0 20 300 .0 690 2 1 61 11.1 - 7.7 87 124 340 0 0 290 .0 695 125 61 10.6 - 8.0 81 122 336 0 0 0 280 .0 672 14 61 12.8 - 7.6 81 122 336 0 0 0 310 .0 672 14 61 12.8 - 7.6 81 123 332 0 0 310 .0 669 12 28 61 12.8 - 7.8 81 123 332 0 0 310 .0 669 12 28 61 12.8 - 7.8 81 123 332 0 0 310 .0 669 12 28 61 12.8 - 7.8 81 123 332 0 0 310 .0 669 12 28 61 12.8 - 7.8 81 123 332 0 0 310 .0 669 12 28 61 12.8 - 7.8 81 123 332 0 0 310 .0 669 12 28 61 12.8 - 7.8 81 123 332 0 0 0 275 .0 688 13 15 61 14.4 81 123 332 0 0 0 275 .0 688 13 15 61 14.4 81 123 332 0 0 0 275 .0 688 13 29 61 16.1 - 7.7 81 124 332 0 0 0 275 .0 688 13 29 61 16.1 - 7.7 81 124 332 0 0 0 275 .0 688 13 29 61 16.1 - 7.7 81 124 334 0 0 0 275 .0 683 12 16 1 18.8 - 7.7 81 124 334 0 0 0 275 .0 688 13 29 61 16.1 - 7.7 81 124 334 0 0 0 275 .0 688 13 29 61 16.1 - 7.7 81 124 336 0 0 0 275 .0 688 13 29 61 16.1 - 7.7                                                                                                               |       |               |     |      | _   | -   | _   | _ | -        | _      | _        |    | 135 | 332 | 5   |     |     |     | 621    | -                        |
| 11 30 60 15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |               |     |      | -   | 7.9 | -   | - | -        | _      | -        |    |     |     |     |     |     |     |        | -                        |
| 12   14   60   12   2   8   -   8   1   -   -   -   8   6   118   328   0   20   300   0   663   12   14   60   12   2   -   8   1   -   -   -   -   86   118   328   0   20   300   0   663   12   21   60   12   2   -   8   1   -   -   -   -   -   87   125   338   0   20   305   0   663   12   21   60   12   2   -   8   1   -   -   -   -   -   87   125   338   0   20   300   0   683   12   28   60   11   7   7   7   7   -   -   -   -   85   122   330   0   20   300   0   663   11   11   61   10   0   -   7   9   -   -   -   -   85   122   330   0   20   300   0   667   667   118   61   10   6   -   7   8   -   -   -   -   -   85   122   330   0   0   0   270   0   667   118   61   10   6   -   7   8   -   -   -   -   -   85   122   336   0   0   290   0   695   125   61   10   6   -   7   8   -   -   -   -   -   81   122   336   0   0   280   0   672   29   61   11   1   -   7   7   -   -   -   -   -   81   122   336   0   0   280   0   672   29   61   11   7   7   7   -   -   -   -   -   81   123   332   0   0   310   0   672   22   61   12   2   7   7   8   -   -   -   -   -   81   123   332   0   0   310   0   669   22   28   61   12   2   7   7   8   -   -   -   -   81   123   332   0   0   330   0   695   22   28   61   12   2   7   7   8   -   -   -   -   -   81   124   332   0   0   275   0   640   315   61   14   4   -   -   -   -   -   -   -   81   126   332   0   0   275   0   640   315   61   14   4   -   -   -   -   -   -   -   - |       | 23            |     |      | -   |     | -   | - | -        | -      | -        |    |     |     |     |     |     |     |        | _                        |
| 12 14 60 12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |               |     |      | 1   |     |     | l | l        | 1      | ł        |    |     |     |     |     |     |     |        | _                        |
| 12 21 60 12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |               |     |      | i l |     |     |   | l        |        |          |    |     |     |     |     |     |     |        | _                        |
| 12 28 60 11.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |               |     |      | 1   |     | i   |   | 1        | ł      |          |    |     |     | 1   |     |     |     |        |                          |
| 1 11 61 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |               | - 1 |      | 1   |     | i   |   | l        | 1      |          |    |     |     |     |     |     |     |        |                          |
| 1 18 61 10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |               |     |      |     |     | _   | _ | I        |        |          |    |     |     |     |     |     |     |        | _                        |
| 2   1   61   11.1   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |               |     |      | _   |     | _   | _ | _        | _      | _        |    |     | 340 | 0   | Ó   | 290 | .0  | 695    | _                        |
| 2 9 61 11.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |               |     | 10.6 | -   |     | _   | - | -        | -      | _        |    |     |     | 0   | _   |     |     |        | -                        |
| 2   14   61   12   8   -   7   6   -   -   -   -   81   123   332   0   0   310   0   669   2   22   61   12   2   -   7   8   -   -   -   -   83   120   344   0   0   330   0   695   2   28   61   28   3   -   -   -   -   -   -   -   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |               |     |      | -   |     | -   | - | -        | -      | -        |    |     |     |     |     |     |     |        |                          |
| 2 22 61 12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |               |     |      | 1 1 |     | Ī   | ľ | ŀ        | i      |          |    |     |     |     |     |     |     |        | -                        |
| 2 28 61 28.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |               |     |      | 1 1 |     | l   | ľ | į.       |        |          |    |     |     |     |     |     |     |        | _                        |
| 3       7       61       12.8       -       7.8       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - </td <td>2 2</td> <td>22</td> <td></td> <td></td> <td>1 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>l</td> <td></td> <td></td> <td>344</td> <td></td> <td>_</td> <td>330</td> <td></td> <td>695</td> <td> </td>                                                                                                                                                                                                                                                                                                 | 2 2   | 22            |     |      | 1 1 |     |     |   |          |        | l        |    |     | 344 |     | _   | 330 |     | 695    |                          |
| 3 15 61 14.4       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <t< td=""><td></td><td></td><td></td><td></td><td>i i</td><td></td><td>1</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>332</td><td>i .</td><td>i .</td><td>275</td><td>ا م</td><td>640</td><td>_</td></t<>                                                                                                                                                                                                                                                                                                         |       |               |     |      | i i |     | 1   |   | 1        |        |          |    |     | 332 | i . | i . | 275 | ا م | 640    | _                        |
| 3       21       61       -       -       7.7       -       -       -       -       73       136       336       0       0       275       .0       688         3       23       61       15.5       -       7.6       -       -       -       -       77       124       332       0       0       275       .0       683         3       29       61       16.1       -       7.7       -       -       -       -       78       128       328       0       0       275       .0       663         4       6       61       17.2       -       7.7       -       -       -       80       124       336       5       0       255       .0       608         4       12       61       18.8       -       7.7       -       -       -       83       128       344       0       0       290       .0       672         4       20       61       19.4       -       7.7       -       -       -       81       128       344       0       0       300       .0       682         5       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |               |     |      | 1 1 |     | 1   |   | 1        |        | l        |    |     |     |     | -   |     |     |        | _                        |
| 3 23 61 15.5       - 7.6       - 7.6       - 7.7       - 7.7       124 332 0 0 0 275 0 0 683         3 29 61 16.1       - 7.7       - 7.7       7.8       128 328 0 0 0 275 0 0 663       - 0 663 0 0 275 0 0 663         4 6 61 17.2       - 7.7       80 124 336 5 0 255 0 0 608       - 0 608 0 0 0 0 0 0 672         4 14 61 18.8       - 7.7       81 128 344 0 0 0 300 0 0 672         4 20 61 19.4       - 7.7       87 128 344 0 0 0 335 0 0 673         5 3 61 21.1       - 8.2       86 126 352 0 0 285 0 689         5 17 61 22.8       86 131 0 0 340 0 0 0 288 0 0 676         5 31 61 23.9       - 7.6       87 125 340 0 0 0 288 0 0 0 676         5 31 61 23.9       - 7.6       88 124 342 0 0 0 300 0 0 676         6 7 61 23.9       - 7.6       88 128 340 0 0 0 313 0 0 736         6 14 61 27.2       - 7.6       88 128 340 0 0 0 313 0 0 736         6 14 61 28.2       - 8.0       86 130 340 5 0 0 300 0 0 0 702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |               | - 1 | _    | 1   | 7.7 | _   | _ |          | _      | _        |    |     | 336 | 0   | ٥   | 275 | .0  | 688    | _                        |
| 4       6       61       17.2       -       7.7       -       -       -       -       80       124       336       5       0       255       .0       608         4       14       61       18.8       -       7.7       -       -       -       -       83       128       344       0       0       290       .0       672         4       20       61       19.4       -       7.7       -       -       -       -       81       124       344       0       0       300       .0       682         4       26       61       20.0       -       7.8       -       -       -       -       87       128       344       0       0       335       .0       673         5       3       61       21.1       -       8.2       -       -       -       -       86       126       352       0       0       285       -       689         5       17       61       22.88       -       -       -       -       -       87       125       340       0       0       288       .2       687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |               | 61  | 15.5 |     |     | _   | - | -        | _      | _        | 77 | 124 | 332 | 0   | 0   | 275 | •0  | 683    | _                        |
| 4       14       61       18.88       -       7.7       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 2   |               |     |      | -   |     | -   | - | -        | -      | -        |    |     |     | _   |     |     |     |        | _                        |
| 4 20 61 19.4 - 7.7 - 7.7 81 124 344 0 0 0 300 0 0 682         4 26 61 20.0 - 7.8 87 128 344 0 0 0 335 0 0 673         5 3 61 21.1 - 8.2 86 126 352 0 0 285 - 689         5 17 61 22.8 86 131 689         5 17 61 23.9 - 7.3 88 125 340 0 0 288 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | - 1           | -   |      | -   |     | -   | - | -        | -      | -        |    |     | 1   | 1   |     |     |     |        | _                        |
| 4 26 61 20.0       -       7.8       -       -       -       -       8.7       128 344 0 0 0 335 0 0 673       0       6.73       0       6.73       0       0       2.85       -       -       6.89       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |               |     |      | l I |     | 1   | [ | 1        |        | l        |    |     |     |     |     |     |     |        | _                        |
| 5     3     61     21 · 1     -     8 · 2     -     -     -     -     -     -     689       5     17     61     22 · 8     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |               |     |      | l I |     | 1   |   |          |        |          |    |     | -   | _   |     |     |     |        | _                        |
| 5     17     61     22.8     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>i .</td><td></td><td></td><td></td><td>-</td><td>_</td><td>1</td><td></td><td></td><td>_</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |               |     |      |     |     |     |   |          | 1      | i .      |    |     |     | -   | _   | 1   |     |        | _                        |
| 5     22     61     23.9     -     7.3     -     -     -     -     87     125     340     0     0     288     .2     687       5     31     61     23.9     -     -     -     -     -     89     124     342     0     0     300     .0     676       6     7     61     23.9     -     -     -     -     -     -     88     128     336     0     0     300     .0     723       6     14     61     27.2     -     7.6     -     -     -     -     82     128     340     0     0     313     .0     736       6     21     61     28.2     -     8.0     -     -     -     -     86     130     340     5     0     300     .0     702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |               |     |      | 1   |     |     | i |          |        |          |    |     |     |     |     | 1   | 1   |        | -                        |
| 5     31     61     23.9     -     7.6     -     -     -     -     -     89     124     342     0     0     300     .0     676       6     7     61     23.9     -     -     -     -     -     88     128     336     0     0     300     .0     723       6     14     61     27.2     -     7.6     -     -     -     82     128     340     0     0     313     .0     736       6     21     61     28.2     -     8.0     -     -     -     -     86     130     340     5     0     300     .0     702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |               |     |      | 1   |     |     |   |          |        |          |    |     |     | į.  | I   |     | .2  |        | _                        |
| 6 7 61 23.9 88 128 336 0 0 300 .0 723 6 14 61 27.2 - 7.6 82 128 340 0 0 313 .0 736 6 21 61 28.2 - 8.0 86 130 340 5 0 300 .0 702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |               |     |      | l . |     |     | _ |          | _      |          |    |     |     | 1   |     |     |     |        | _                        |
| 6 21 61 28.2 - 8.0 86 130 340 5 0 300 .0 702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |               |     |      | -   |     | _   | · | -        | -      | -        |    |     |     | 0   |     |     | •0  | 723    | _                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |               |     |      | -   |     |     | - | -        | -      | -        |    |     |     | , - | -   | ľ   | 1   |        | -                        |
| 7   19   61   -   -   -   -   -   -   -   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |               | - 1 | 28.2 | -   | 8.0 | -   |   |          | -      |          |    |     |     | -   | _   |     | 1   |        | _                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7   : | 19            | 61  |      | -   | -   | -   | - | -        | -      | -        | 75 | 125 | -   | _   | -   | -   | -   | -      | -                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | İ             |     |      |     |     |     |   |          |        |          |    |     |     |     |     |     |     |        |                          |

STATE

CALIFORNIA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATIONCOLORADO RIVER ABOVE

PARKER DAM, ARIZONA-CALIFORNIA

.

| DAT   |       | T              |                                  |                             |                          | !              |                | CHLORINE       | DEMAND          |                              |                            |                               |                          |                        |                            |                          |                    | TOTAL<br>DISSOLVED       | COLIFORMS   |
|-------|-------|----------------|----------------------------------|-----------------------------|--------------------------|----------------|----------------|----------------|-----------------|------------------------------|----------------------------|-------------------------------|--------------------------|------------------------|----------------------------|--------------------------|--------------------|--------------------------|-------------|
| OF SA |       |                | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/l | pН                       | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l          | ALKALINITY<br>mg/l            |                          | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l         | PHOSPHATES<br>mg/I | SOLIDS<br>mg/l           | per 100 ml. |
| 8 2   | 2 7 8 | 61<br>61<br>61 | 28.3<br>29.4<br>                 |                             | 7.9<br>7.8<br>7.2<br>7.9 | -              |                | mg/l           | mg/l            |                              | 86<br>82<br>84<br>86<br>84 | 124<br>106<br>124<br>120<br>- | 420<br>340<br>332<br>324 | 5<br>5<br>0<br>5       | 10000                      | 255<br>282<br>285<br>288 |                    | 700<br>687<br>680<br>685 | -           |
|       |       |                |                                  |                             |                          |                |                |                |                 |                              |                            |                               |                          |                        |                            |                          |                    |                          |             |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station below Parker Dam Operated by U.S. Geological Survey STATE

California

MAJOR BASIN

Colorado River

MINOR BASIN

Lower Colorado River

STATION LOCATION

Colorado River above

Parker Dam, Arizona-California

| Day              | October        | November       | December         | January        | February       | March            | April            | May              | June             | July             | August           | September        |
|------------------|----------------|----------------|------------------|----------------|----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| ¹1               | 9.460          | 6.800          | 10.600           | 5.140          | 5.400          | 10.300           | 11.900           | 10.900           | 12.000           | 14.300           | 15.400           | 9.550            |
| 2<br>3<br>4      | 9.000          | 6.540          | 10.300           | 5.090<br>5.040 | 5.510<br>6.090 | 10.300<br>9.280  | 12.500<br>13.800 | 10.700<br>10.700 | 13.000<br>13.000 | 14.100<br>14.100 | 15.200           | 9.580            |
| ქ<br>}           | 9.270<br>9.360 | 5.230<br>5.560 | 10.100<br>10.300 | 4.900          | 5.680          | 9.120            | 13.800           | 10.200           | 13.200           | 14.100           | 13.600<br>13.800 | 9.140<br>9.340   |
| 5                | 9.120          | 6.190          | 7.510            | 4.300          | 6.300          | 9.770            | 13.600           | 11.000           | 13.000           | 14.700           | 13.000           | 10.500           |
| 6                | 9.080          | 5.600          | 5.370            | 4.700          | 7.280          | 11.000           | 13.800           | 11.000           | 13.100           | 14.500           | 13.500           | 10.800           |
| 6<br>7<br>8<br>9 | 9.080          | 5.040          | 4.650            | 5.110          | 7.280          | 11.000           | 14.000           | 11.400           | 12.900           | 14.600           | 15.200           | 10.400           |
| 8                | 9.120          | 4.400          | 4.190            | 4.950          | 6.980          | 10.600<br>10.600 | 13.400           | 11.200           | 12.600           | 14.300           | 14.800           | 11.400           |
| 10               | 8.460<br>8.930 | 4.350<br>4.300 | 5.650<br>5.370   | 5.740<br>5.810 | 6.410<br>8.080 | 11.200           | 13.600<br>13.700 | 11.300<br>10.800 | 13.000<br>13.100 | 14.600<br>14.800 | 14.200<br>13.300 | 11.400<br>11.700 |
| 11               | 9,100          | 4.140          | 5.180            | 5.690          | 8.220          | 11.700           | 13.900           | 10.100           | 13.300           | 14.800           | 13.000           | 12.300           |
| L2               | 9.510          | 4.300          | 4.550            | 5.860          | 8.260          | 12.400           | 13.800           | -11.400          | 12.900           | 14.500           | 12.400           | 11.600           |
| -3<br>-4         | 8.510          | 4.280          | 4.350            | 4.450          | 8.590          | 12.300           | 12.900           | 11.100           | 13.200           | 14.300           | 12.100           | 10.900           |
| L4<br>L5         | 7.940          | 3.980          | 4.190            | 4.450<br>5.110 | 8.840<br>8.430 | 12.800<br>12.700 | 12.500<br>12.300 | 11.200<br>11.400 | 12.500<br>12.000 | 14.400           | 12.300           | 10.800           |
|                  | 7.570          | 4.700          | 4.090            | 5.110          |                | •                | 12.500           | 11.400           | 12.000           | 14.300           | 11.500           | 10.300           |
| L6               | 7.720          | 4.750          | 4.600            | 5.170          | 8.860          | 12.600           | 12.500           | 11.900           | 13.700           | 14.800           | 10.900           | 10.200           |
| .7<br>.8         | 7.900          | 4.250          | 4.300            | 5.000          | 9.290          | 12.400           | 12.400           | 11.300           | 13.800           | 14.800           | 10.500           | 10.000           |
| .0<br>.9         | 7.600<br>7.220 | 6.180          | 4.350<br>4.250   | 4.940<br>4.390 | 9.360<br>8.730 | 13.000<br>13.000 | 12.500<br>11.900 | 11.000<br>11.400 | 14.800<br>14.600 | 14.600<br>14.300 | 10.100           | 10.400           |
| .9<br>20         | 6.720          | 4.350<br>4.300 | 3.820            | 4.390          | 9.410          | 13.400           | 10.800           | 11.800           | 14.600           | 14.300           | 9.860<br>9.000   | 10.200<br>9.890  |
|                  | ·              | -              |                  |                | •              | •                | -                |                  |                  | _                |                  |                  |
| 21               | 7.670          | 4.650          | 3.270            | 4.200          | 9.440          | 13.600           | 11.000           | 11.900           | 14.600           | 14.500           | 9.930            | 9.760            |
| 22               | 7.510<br>7.310 | 6.230<br>8.880 | 2.230<br>3.770   | 4.270<br>6.340 | 8.430<br>8.080 | 13.300<br>13.000 | 10.900<br>11.800 | 11.900           | 14.600           | 14.500           | 8.250            | 9.400            |
| 23<br>24         | 7.510          | 10.600         | 3.770<br>4.450   | 8.140          | 9.360          | 13.200           | 11.400           | 12.200<br>12.300 | 15.000<br>15.100 | 14.600<br>15.000 | 8.330<br>8.640   | 9.570<br>9.500   |
| 25               | 7.220          | 12.300         | 4.450            | 9.730          | 10.500         | 13.300           | 11.600           | 12.300           | 15.000           | 15.800           | 9.550            | 9.980            |
| 26               | 6.800          | 11.800         | 4.450            | 11.800         | 9.750          | 13.200           | 11.600           | 12.700           | 15.300           | 14.600           | 8.430            | 9,910            |
| 27               | 5.960          | 11.300         | 3.980            | 10.700         | 9.630          | 14.000           | 11.000           | 12.600           | 15.600           | 14.300           | 8.210            | 9.910            |
| 28<br>29<br>30   | 7.390          | 11.300         | 4.990            | 10.700         | 10.200         | 13.700           | 10.900           | 12.500           | 15.600           | 15.300           | 8.140            | 8.890            |
| 29               | 7.470          | 11.200         | 4.190            | 10.800         |                | 13.300           | 11.600           | 12.900           | 15.300           | 15.400           | 8.130            | 8.510            |
| 30<br>31         | 7.060          | 10.900         | 5.090            | 8.430          |                | 12.200           | 11.500           | 13.000           | 14.500           | 15.300           | 8.670            | 8.170            |
| 14.              | 7.140          |                | 5 <b>.23</b> 0   | 5.680          |                | 11.600           |                  | 13.200           |                  | 15.100           | 8.650            |                  |

RADIOACTIVITY DETERMINATIONS

NEVADA

MAJOR BASIN

STATE

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER NEAR

BOULDER CITY, NEVADA

|                 |                               |           |           |               |           |           |       | PADIOAC                       | TIVITY IN PLAN | KTON (dry) | RA        | DIOACTIVITY IN V |       |
|-----------------|-------------------------------|-----------|-----------|---------------|-----------|-----------|-------|-------------------------------|----------------|------------|-----------|------------------|-------|
| DATE            |                               |           | RADIC     | ACTIVITY IN W | ATER      |           |       |                               | GROSS A        |            |           | GROSS ACTIVIT    |       |
| SAMPLE          | DATE OF<br>DETERMI-<br>NATION |           | ALPHA     |               |           | BETA      | TOTAL | DATE OF<br>DETERMI-<br>NATION | ALPHA          | BETA       | SUSPENDED |                  | TOTAL |
| TAKEN           | NATION                        | SUSPENDED | DISSOLVED | TOTAL         | SUSPENDED | DISSOLVED |       | MO. DAY                       | µµс/g          | μμc/g      | μμc/l     | μμε/1            | μμc/l |
| O. DAY YEAR     | MONTH DAY                     | μμς/1     | μμε/Ι     | μμς/Ι         | μμε/Ι     | μμε/Ι     | μμс/  |                               |                |            |           |                  |       |
|                 |                               |           |           | _             |           | ٥         | اه    | i i                           |                | ļ          |           |                  |       |
| 0 11 60*        | 10 21                         | 0         | 8         | . 8           | 0         | 0         | ŏ     |                               | ļ              |            |           |                  |       |
| 25 60*          |                               | 0         | 12        | 12            | 0         | 23        | 23    |                               |                |            |           | Į į              |       |
| 1 8 60*         | 11 25                         | 0         | 9         | 9             | 0         | 0         | ő     |                               |                |            |           |                  |       |
| 1 29 60#        | 12 8                          | 0         | 14        | 14            |           | 21        | 21    | 1                             |                |            |           | i                |       |
| 2 13 60*        | 1 9                           | 0         | 14        | 14            | 0         | 0         | ō     |                               |                |            |           | 1                |       |
| 2 27 60*        | 1 16                          | 0         | 12        | 12            | 0         |           | ŏ     |                               |                |            |           | 1                |       |
| 1 10 61*        | 2 1                           | 0         | 13        | 13            | 0         | - 1       | ا و   |                               |                |            | l l       |                  |       |
| 1 31 61*        | 2 13                          | 0         | 5         | 5             | 0         | 9         | é l   |                               |                |            |           |                  | -     |
| 2 14 61*        | 3 1                           | 0         | 4         | 4             | 0         | 8 0       | 0     | 1                             |                |            |           |                  |       |
| 2 28 61*        | 3 21                          | 0         | 6         | 6             | 0         | 0         | ŏ     | i l                           |                |            |           |                  |       |
| 3 14 61*        |                               | 0         | 5         | 5             | 0         | 23        | 23    |                               |                |            |           | 1                |       |
| 3 27 61*        | 4 14                          | 0         | 6         | 6             | _         | 20        | 3     | İ                             |                |            |           |                  |       |
| 4 11 61*        |                               | 0         | 8         | 8             | 3         | 0 0       | o l   | 1                             |                |            | ]         |                  |       |
| 4 25 61*        |                               | 0         | 11        | 11            | 0         | 6         | 6     |                               |                |            | l l       |                  |       |
| 5 9 <b>61</b> * | 5 26                          | 0         | 8         | 8             | 0         | 0 1       | ŏ     |                               |                | Ì          |           |                  |       |
| 5 29 61*        |                               | 0         | 0         | 0             | 0         | 2         | 2     |                               |                |            | 1         |                  | -     |
| 6 13 61*        |                               | 0         | 9         | 9             | 0         | ا ہ       | ō     | 1                             |                | 1          |           |                  |       |
| 6 27 61*        | f 7 31                        | 0         | 11        | 11            | 0         | 21        | 21    |                               |                |            | <u> </u>  | 1                | İ     |
| 7 11 61*        | 6 2                           | 0         | 8         | . 8           | 0         | 9         | 9     | ļ                             |                |            |           |                  | Ì     |
| 8 1 61*         | 8 30                          | 0         | 11        | 11            | 3         | 29        | 32    |                               |                |            |           | ļ                |       |
| 8 15 61*        |                               | 0         | 10        | 10            |           | 11        | 11    |                               |                |            | ] }       |                  |       |
| 8 29 61*        | * 9 25                        | 1         | 5         | 6             | 0         | 40        | 40    |                               |                |            | 1 1       |                  |       |
| 9 13 61         | 10 23                         | 0         | 8         | 8             | 3         | 21        | 24    | ļ.                            |                |            | 1         |                  |       |
| 9 19 61         | 10 9                          | 0         | 4         | 4             | 8         | 24        | 32    |                               |                |            |           | 1                | Ì     |
| 9 26 61         | 10 7                          | 0         | 9         | 9             | •         | 24        |       |                               |                |            | 1         |                  | ì     |
|                 |                               |           |           |               |           |           |       |                               |                |            | 1         |                  |       |
|                 |                               | 1         | İ         | ì             |           |           |       |                               |                |            | 1 1       |                  |       |
|                 |                               |           |           |               |           |           | İ     |                               |                |            |           |                  | 1     |
|                 |                               |           |           | ļ             |           |           | l .   |                               |                |            |           | İ                |       |
|                 |                               |           |           |               |           |           | 1     | 1                             |                | ļ          |           |                  | ļ     |
|                 |                               |           |           |               |           |           | i i   |                               | ł              | ì          |           |                  |       |
|                 |                               |           |           |               |           |           | }     |                               |                |            |           | ì                |       |
|                 |                               |           |           |               |           |           |       | l                             | ļ              |            |           | ì                | İ     |
|                 |                               |           |           |               |           |           |       | 1                             |                |            | 1 1       | 1                |       |
|                 |                               |           |           |               | 1         |           |       | 1                             |                |            | 1 1       | 1                |       |
|                 |                               |           | 1         |               |           |           |       |                               |                |            |           |                  |       |
|                 | 1                             |           |           |               |           |           |       |                               |                |            |           |                  |       |
|                 |                               | 1         |           |               |           |           | {     |                               | 1              |            | 1 1       |                  | 1     |
|                 | 1                             |           | 1         |               |           |           |       |                               |                |            |           |                  |       |
|                 |                               |           |           |               |           |           | 1     |                               | 1              | 1          | 1 1       |                  | 1     |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

NEVADA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER NEAR

BOULDER CITY, NEVADA

| DATE                 |                                                      |         |                       | ALGAE (                    | Vumber                | per ml.)         |                 |                                                          |                                   | INE                                    | RT      | Γ             |                 |               |                 | АТО    |       |                   |                 |                       | ž                                                                       |                           | MICROIN                      | VERTEB                       | ATES            |                                                       |
|----------------------|------------------------------------------------------|---------|-----------------------|----------------------------|-----------------------|------------------|-----------------|----------------------------------------------------------|-----------------------------------|----------------------------------------|---------|---------------|-----------------|---------------|-----------------|--------|-------|-------------------|-----------------|-----------------------|-------------------------------------------------------------------------|---------------------------|------------------------------|------------------------------|-----------------|-------------------------------------------------------|
| OF SAMPLE            |                                                      | BLUE-   | GREEN                 | GREE                       | EN                    | FLAGEL<br>(Pigme | LATES<br>ented) | DIAT                                                     | омѕ                               | SHE<br>(No. p                          | LLS     |               | DOM!<br>(See    | NANT<br>Intro | SPEC<br>duction | for Co | ND PE | RCEN'<br>ntificat | rages<br>ion*)  | 3                     | эгіликто<br>нелінер<br>ті.)                                             | mt.)                      | S<br>iter)                   | E.A.<br>iter)                | ES iter)        | GENERA<br>General<br>Signation                        |
| MONTH<br>DAY<br>YEAR | TOTAL                                                | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                    | FILA-<br>MENT-<br>OUS | GREEN            | OTHER           | CENTRIC                                                  | PENNATE                           | CENTRIC                                | PENNATE | FIRST#        | PER.<br>CENTAGE | SECOND*       | PER.<br>CENTAGE | THIRD# | PER-  | FOURTH#           | PER.<br>CENTAGE | OTHER PER-<br>CENTAGE | OTHER MICROPLANKTON,<br>PUNGI AND SHEATHED<br>BACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | (No. per liter) | DOMINANT GENERA (See Introduction for Identification) |
| 10                   | 100<br>100<br>200<br>100<br>100<br>200<br>100<br>200 | 20      |                       | 20<br>40<br>60<br>40<br>20 |                       | 20               |                 | 20<br>20<br>20<br>20<br>20<br>40<br>60<br>20<br>20<br>40 | 20<br>20<br>20<br>80<br>60<br>150 | 20<br>20<br>20<br>20<br>20<br>20<br>20 |         | 8<br>82<br>82 | 90<br>70<br>90  | 91<br>8<br>89 | *<br>20<br>*    | 26 48  | *     | 61                | **              | 20 10                 | 20 20 40                                                                |                           | 17 2 1                       | 1 1                          | 1               |                                                       |

### ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

NEVADA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER NEAR

BOULDER CITY, NEVADA

|                                                                                                                      |                       |                                |                                                 |                                                                                        |                                                                           |                                                          |                                                                                  | ,                   |                                          |                             |                     | CUI OROE                                | ORM EXTRA                    | CTABLES      |               |                 |                                         |                   |
|----------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------|---------------------|------------------------------------------|-----------------------------|---------------------|-----------------------------------------|------------------------------|--------------|---------------|-----------------|-----------------------------------------|-------------------|
| DATE OF S                                                                                                            |                       | PLE                            | $\dashv$                                        |                                                                                        | EX                                                                        | TRACTABL                                                 | ES                                                                               |                     | . 1                                      |                             |                     | NEUTRALS                                |                              | 1            |               |                 |                                         |                   |
| DAY YEAR                                                                                                             |                       | - I                            | -                                               | GALLONS<br>FILTERED                                                                    | TOTAL                                                                     | CHLORO-<br>FORM                                          | ALCOHOL                                                                          | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES                        | TOTAL                       | ALIPHATICS          | AROMATICS                               | OXYGEN-<br>ATED<br>COMPOUNDS | Loss         | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES                                   | LOSS              |
| 10 4 60<br>11 9 60<br>12 22 60<br>2 7 61<br>3 21 61<br>5 1 61<br>6 15 61<br>6 15 62<br>7 17 61<br>8 21 63<br>9 26 63 | 0 1 1 1 1 1 1 1 1 1 1 | 1 1 3 4 1 5 2 6 2 7 2 8 3 10 1 | 4<br>.9<br>3<br>.1<br>22<br>6<br>28<br>31<br>L2 | 5000<br>4884<br>5034<br>4888<br>5147<br>5665<br>5100<br>10765<br>5233<br>5050<br>15543 | 190<br>193<br>197<br>220<br>197<br>161<br>179<br>169<br>175<br>175<br>181 | 33<br>33<br>35<br>37<br>48<br>55<br>35<br>37<br>53<br>42 | 157<br>163<br>162<br>183<br>148<br>103<br>127<br>114<br>138<br>123<br>157<br>139 | 2 1 2 1 2 - 2 2 2   | 10<br>9<br>9<br>12<br>-<br>17<br>-<br>12 | 8<br>9<br>7<br>10<br>10<br> | 1 0 0 0 0 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 6 8 6 9 8 - 10 - 7 7         | 000401101110 | 3 3 3 4 5 4 3 | 1               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 6 5 10 9 14 13 12 |

## CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NEVADA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATIONCOLORADO RIVER NEAR

BOULDER CITY, NEVADA

|          | DATE   | -    |                                  |                             |            |                |                | CHLORINE       | DEMAND          |                                |                   |                      |                  |                        |                         |                  |                    | TOTAL                       |                          |
|----------|--------|------|----------------------------------|-----------------------------|------------|----------------|----------------|----------------|-----------------|--------------------------------|-------------------|----------------------|------------------|------------------------|-------------------------|------------------|--------------------|-----------------------------|--------------------------|
| MONTH    | F SAMI | YEAR | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/l | рH         | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l ' | CHLORIDES<br>mg/l | ALKALINITY<br>. mg/l | HARDNESS<br>mg/I | COLOR<br>(scale units) | TURBIDITY (scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/I | COLIFORMS<br>per 100 ml. |
| 10       | 4      | 60   | 17.0                             | 6.9                         | 8.0        |                |                | 2.9            | 4.6             | •0                             | 78                | 126                  | 326              |                        |                         | 229              | _                  | -                           | *1                       |
| 10       | 10     | 60   | 16.0                             | 8.5                         | 8.0        | _              | _              | 2.9            | 4.4             | _                              | 74                | 108                  | 324              |                        | -                       | 219              | -                  | -                           | 4                        |
| 10       | 18     | 60   | 14.5                             | 6.4                         | 8.0        |                | -              | 2.8            | 4 • 4           | • 0                            | 74                | 130                  | 342              | _                      |                         | 224              | -                  | _                           | 1                        |
| 10       | 25     | 60   | 15.5                             | 6.7                         | 8.0        | -              | -              | 2.9            | 4.5             | • 0                            | 74                | 126                  | 330              | _                      | -                       | 221<br>220       | _                  | _                           | 1                        |
| 11       | 1      | 60   | 15.5                             | 6.5                         | 8.0        | -              | -              | 2.9            | 4.7             | • 0                            | 74                | 122                  | 328              | _                      | -                       | 225              | _                  |                             | î                        |
| 11       | 8      | 60   | 15.0                             | 6.7                         | 8.0        | -              | -              | 2.9            | 4.5             | -                              | 70                | 126                  | 330<br>334       | _                      | _                       | 221              |                    | _                           | ī                        |
| 11       | 15     | 60   | 14.5                             | 9•4                         | 7.9        | -              | -              | 2.9            | 4.5             | -                              | 72<br>72          | 130                  | 330              |                        | _                       | 221              |                    | ,                           | 20                       |
| 11       | 22     | 60   | 14.5                             | 9.3                         | 8.0        | -              | -              | 2.8            | 4.6             |                                | 72                | 124                  | 340              | _                      | _                       | 226              | _                  |                             | *1                       |
| 11       | 29     | 60   | 14.0                             | 6.1                         | 7.9        |                |                | 2•9<br>2•9     | 4•6<br>4•6      | _                              | 72                | 126                  | 330              | _                      | _                       | 226              | -                  | _                           | 1                        |
| 12<br>12 | 13     | 60   | 14.0                             | 8.0<br>5.9                  | 7•9<br>8•1 | _              | _              | 3.0            | 4.7             | -                              | 72                | 124                  | 342              | _                      | _                       | 225              | _                  |                             | 3                        |
| 12       | 20     | 60   | 14.0                             | 5.7                         | 8.2        | _              |                | 3.0            | 4.7             | _                              | 74                | 126                  | 340              | -                      | _                       | 225              | -                  | -                           | 1                        |
| 12       | 27     | 60   | 13.0                             | 7.4                         | 8.3        | _              | _              | 2.9            | 4.6             | _                              | 74                | 124                  | 348              | _                      | _                       | 216              | _                  | -                           | 1                        |
| 1        | 3      | 61   | 13.5                             | 5.6                         | 8.2        | ٠ ـــ          |                | 2.9            | 4.7             | • 0                            | 78                | 126                  | 338              | -                      |                         | 214              | -                  | -                           | 1                        |
| ī        | 10     | 61   | 12.5                             | 7.2                         | 8.3        | _              | -              | 3.0            | 4.7             |                                | 76                | 124                  | 336              | -                      | -                       | 213              | -                  | (10                         | 1<br>*1                  |
| 1        | 17     | 61   | 13.0                             | 7.1                         | 8.3        | _              | -              | 3.0            | 4.7             |                                | 76                | 126                  | 336              | -                      | -                       | 215              | _                  | 610                         | *1                       |
| 1        | 24     | 61   | 12.5                             | 8.5                         | 7.9        | -              | -              | 3.0            | 4•7             | -                              | 76                | 126                  | 338              | -                      | _                       | 220<br>220       | _                  | _                           | 2                        |
| 1        | 31     | 61   | 12.5                             | 6.0                         | 7.9        | -              | _              | 3.0            | 4.7             | -                              | 76                | 114                  | 336<br>340       | _                      | _                       | 221              | _                  | _                           | l î                      |
| 2        | 7      | 61   | 12.5                             | 6.4                         | 7.9        | _              | -              | 4 • 4          | 6.2             | _                              | 78                | 128                  | 340              | _                      | _                       | 230              | _                  | _                           | 2                        |
| 2        |        | 61   | 13.0                             | 6.2                         | 7.9        | -              | -              | 2.9            | 4.7             | -                              | 74<br>76          | 126                  | 336              | _                      | _                       | 226              | _                  | -                           | 1                        |
| 2        |        | 61   | 13.5                             | 5.8                         | 7 - 8      | -              | -              | 2•9<br>3•0     | 4.7             | _                              | 76                | 132                  | 328              | _                      | _                       | 232              | -                  | _                           | 1                        |
| 2        |        | 61   | 14.0                             | 6.3                         | 7.8        | _              | _              | 4.6            | 6.3             | _                              | 78                | 130                  | 332              | _                      | _                       | 226              | -                  | _                           | 2                        |
| 3        |        | 61   | 14.0                             | 5.4<br>5.7                  | 7•8<br>7•9 | _              | _              | 4.6            | 6.1             |                                | 78                | 128                  | 342              | _                      | _                       | 239              | -                  | -                           | 1                        |
| 3<br>3   | 21     | 61   | 14.0<br>14.5                     | 5.7                         | 7.8        | -              | _              | 4.5            | 6.4             | _                              | 82                | 134                  | 336              | _                      | -                       | 243              | _                  | -                           | 2                        |
| 3        | 28     | 61   | 15.0                             | 9.7                         | 7.9        | -              | _              | 4.5            | 6.4             | -                              | 84                | 130                  | 342              | -                      | -                       | 225              | -                  | _                           | 2                        |
| 4        |        | 61   | 16.5                             | 9.4                         | 7.9        | _              | _              | 4.5            | 6.4             | .0                             | 84                | 132                  | 340              | -                      | -                       | 223              | _                  | _                           | 2                        |
| 4        | 11     | 61   | 16.0                             | 12.4                        | 7.9        | _              | _              | 4.5            | 6.3             | _                              | 88                | 132                  | 344              | -                      | -                       | 225              | _                  | _                           | 1                        |
| 4        | 18     | 61   | 15.5                             | 7.5                         | 7.9        | -              | _              | 4.6            | 6.5             | -                              | 88                | 130                  | 336              | _                      | _                       | 214              | _                  | -                           | 1                        |
| 4        |        | 61   | 14.5                             | 7.6                         | 7.9        | _              | -              | 4.6            | 6 • 4           | -                              | 82                | 128                  | 342              | -                      | -                       | 226              | _                  | _                           | *1                       |
| 5        | 2      |      | 15.0                             | 8.1                         | 7.9        |                | -              | 4.6            | 6.5             | -                              | 84                | 124                  | 334              | _                      | _                       | 232              | _                  | _                           | 1 1                      |
| 5        | 9      | 61   | 15.5                             | 7.3                         | 8.1        | -              | -              | 4.7            | 6 • 5           | -                              | 80                | 124                  | 324              |                        | _                       | 210              | _                  | _                           | -                        |
| 5        | 16     | 61   | 16.0                             | 7.2                         | 8.1        | -              | -              | 4.5            | 6.5             | -                              | 80                | 122                  | 330<br>334       | 1                      | _                       | 216              | _                  | -                           | *1                       |
| 5        |        | 61   | 16.0                             |                             | 8 • 1      | -              | -              | 4.6            | 6•5             | _                              | 82<br>84          | 128                  | 336              |                        | _                       | 218              | _                  | _                           | -                        |
| 5        |        |      | 14.5                             | 7.0                         | 8.0        | -              | _              | 4•6<br>4•8     | 6.4             | _                              | 82                | 128                  | 334              |                        | -                       | 219              | j -                | -                           | -                        |
| 6        |        | 61   | 15.0                             |                             | 8 • 2      | _              | -              | 4.7            | 6.8             | _                              | 82                | 128                  | 336              | l l                    | -                       | 212              | -                  | -                           | -                        |
| 6        |        | 61   | 15.0                             |                             | 8 • 2      | _              | _              | 4.8            | 7.0             | _                              | 80                | 128                  | 338              |                        | -                       | 215              | -                  | -                           | 13                       |
| 6        |        | 61   | 15.5                             | 6.7                         | 8.1        | -              | _              | 4.7            | 6.8             | -                              |                   | 128                  | 128              |                        | -                       | 216              | -                  | -                           | *3                       |
| 6        | 27     | 61   | 15.0                             | " '                         | 0.0        |                |                |                | 3.3             |                                |                   |                      |                  |                        |                         | İ                |                    |                             |                          |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NEVADA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATIONCOLORADO RIVER NEAR.

BOULDER CITY, NEVADA

| DATE                                                                          |                                                                    |                               |                                                                                  |                |                | CHLORINE                     | DEMAND                                                    |                              |                                              |                                                                                  |                                                                      |                        |                            | <del></del>                                                               |                    |                                      |                       |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------|----------------|----------------|------------------------------|-----------------------------------------------------------|------------------------------|----------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------|----------------------------|---------------------------------------------------------------------------|--------------------|--------------------------------------|-----------------------|
| DAY YEAR                                                                      | TEMP.<br>(Degrees<br>Centigrade)                                   | DISSOLVED<br>OXYGEN<br>mg/l   | pН                                                                               | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l               | 24-HOUR<br>mg/l                                           | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l                            | ALKALINITY<br>mg/l                                                               | HARDNESS<br>mg/l                                                     | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/i                                                          | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/I | COLIFORMS per 100 ml. |
| 7 1 1 6 1 1 7 1 8 6 1 1 8 6 1 8 1 5 6 1 8 1 5 2 9 6 1 9 9 2 6 6 1 9 9 2 6 6 1 | 16.0<br>15.0<br>15.5<br>15.0<br>15.5<br>15.0<br>15.0<br>15.0<br>15 | 5546344 - 31106<br>66666 6665 | 7.9<br>8.3<br>9.9<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 |                |                | 8899999099878<br>44444544666 | 6.8<br>6.7<br>6.8<br>6.8<br>6.8<br>6.8<br>8.8<br>7<br>8.7 |                              | 80<br>80<br>82<br>80<br>82<br>80<br>76<br>76 | 128<br>126<br>128<br>128<br>128<br>126<br>124<br>126<br>128<br>126<br>128<br>128 | 334<br>3324<br>3328<br>33226<br>3322<br>3322<br>3322<br>3322<br>3322 |                        |                            | 216<br>219<br>230<br>211<br>212<br>215<br>212<br>213<br>210<br>219<br>213 |                    |                                      | ************          |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station below Hoover Dam

Data furnished by U.S. Bureau of Reclamation through U.S. Geological Survey

STATE

Nevada

MAJOR BASIN

Colorado River

MINOR BASIN

Lower Colorado River

STATION LOCATION

Colorado River near

Boulder City, Nevada

| Day             | October         | November | December        | January          | February | March  | April   | May    | June   | July   | August | September |
|-----------------|-----------------|----------|-----------------|------------------|----------|--------|---------|--------|--------|--------|--------|-----------|
|                 |                 |          |                 | h 500            | 10.500   | 13.700 | 14.200  | 16.600 | 14.600 | 10.800 | 13.300 | 10.500    |
| 1               | 10.500          | 6.860    | 7.050           | 4.500            | 11.400   | 13.200 | 12.100  | 15.200 | 13.000 | 6.160  | 13.700 | 7.340     |
|                 | 7.720           | 6.600    | 6.420           | 5.180            | 10.100   | 12.400 | 19.800  | 14.800 | 8.720  | 10.400 | 14.600 | 4.840     |
| 2<br>3<br>4     | 12.300          | 7.380    | 4.940           | 10.800           | 5.600    | 11.400 | 19.200  | 13.900 | 8.010  | 5.120  | 15.300 | 5.500     |
| Ĭ,              | 11.800          | 6.190    | 4.800           | 11.100           | 5.490    | 7.150  | 18.700  | 15.000 | 15.100 | 13.900 | 8.910  | 12.600    |
| 5               | 13.800          | 6.080    | 10.700          | 11.300           | 5.490    | (1.1)0 | 10.100  | 17.000 |        | -3-7   | _      |           |
| _               |                 | 1. 500   | i2.900          | 10.900           | 11.800   | 14.400 | 18.100  | 13.300 | 13.900 | 15.300 | 6.240  | 13.100    |
| 6               | 15.500          | 4.780    | 13.600          | 8.360            | 12.300   | 16.300 | 16.900  | 8.490  | 14.000 | 16.900 | 14.600 | 12.900    |
| 7               | 13.700          | 7.380    | 14.200          | 6.110            | 12.000   | 15.900 | 12.000  | 16.000 | 14.800 | 12.200 | 14.000 | 13.000    |
| 8               | 9.140           | 7.860    |                 | 11.800           | 10.900   | 15.400 | 12.300  | 16.800 | 14.700 | 7.720  | 14.100 | 10.500    |
| 9               | 6.120           | 8.220    | 12.900          | 11.400           | 10.400   | 16.100 | 16.300  | 17.700 | 10.900 | 18.200 | 13.900 | 6.200     |
| 10              | 12.600          | 8.250    | 9.810           | 11.400           | 10.400   | 10.100 | 201,000 | -1.1.  | -      |        |        |           |
|                 |                 | F 500    | 6.960           | 11.400           | 6.800    | 11.800 | 16.600  | 16.500 | 7.400  | 17.300 | 13.700 | 13.200    |
| 11              | 11.000          | 7.530    |                 | 11.300           | 4.580    | 10.800 | 18.000  | 16.700 | 13.900 | 15.300 | 9.390  | 12.900    |
| 12              | 10.4 <b>0</b> 0 | 7.860    | 12.200          | 11.700           | 8.730    | 15.700 | 16.700  | 16.500 | 15.700 | 16.200 | 6.850  | 12.600    |
| 13              | 10.100          | 5.520    | 9.820           |                  | 7.320    | 16.000 | 16.600  | 10,900 | 17.200 | 15.900 | 14.300 | 14.000    |
| 14              | 8.900           | 11.000   | 10.700          | 9.050            | 7.300    | 16.700 | 11.600  | 17.600 | 18.700 | 10.600 | 14.500 | 13.700    |
| 15              | 5.800           | 11.200   | 11.700          | 5.080            | 1.300    | 10.100 | 11.000  | 211000 |        |        | •      |           |
| _               | _1 _            |          | 10.800          | 10.600           | 7.760    | 16.000 | 10.700  | 17.700 | 17.900 | 7.320  | 13.600 | 9.850     |
| 16              | 3.740           | 11.000   |                 | 10.400           | 9.460    | 17.300 | 16.200  | 17.300 | 11.800 | 16.300 | 13.500 | 5.640     |
| 17              | 8.520           | 10.900   | 9.140           |                  | 9.750    | 15.200 | 14.500  | 16.700 | 8.370  | 16.200 | 14.000 | 12.600    |
| 18              | 8.000           | 9.820    | 7.120           | 10.300<br>10.600 | 9.060    | 12.300 | 15.200  | 15.700 | 17.400 | 16.200 | 9.610  | 13.600    |
| 19              | 8.100           | 7.930    | 11.300          |                  | 13.400   | 18.600 | 16.400  | 13.200 | 16.700 | 15.000 | 6.010  | 13.300    |
| 20              | 8.590           | 5.080    | 11.000          | 10.800           | 13.400   | 10.000 | 10.400  | 13.200 | 70.100 | 17.000 | 0.020  | _3.3      |
|                 | 7 000           | 10.900   | 10.700          | 6.980            | 13.900   | 18.900 | 15.200  | 10.800 | 16.900 | 14.300 | 16.800 | 14.800    |
| 21              | 7.900           |          | 9.790           | 5.650            | 10.100   | 19.100 | 12.500  | 17.600 | 17.200 | 9.060  | 14.700 | 13.700    |
| 22              | 6.100           | 10.200   | 9.190<br>8.400  | 11.300           | 14,100   | 18.200 | 9.630   | 17.400 | 17.500 | 5.930  | 12.600 | 10.100    |
| 23              | 4.420           | 10.100   | 6.110           | 10.400           | 14.000   | 17.900 | 15.700  | 18.100 | 13.300 | 14.400 | 13.000 | 5.890     |
| 24              | 9.550           | 4.970    |                 | 10.400           | 12.100   | 13.200 | 16.300  | 18.400 | 8.390  | 16.700 | 11.600 | 15.100    |
| <b>2</b> 5      | 8.740           | 8.710    | 3.950           | 70,000           | 12.100   | 13.200 | 10.000  | 10.400 | 3.370  |        |        |           |
| 26              | 9.590           | 7.360    | 4.340           | 12.000           | 10,000   | 10.500 | 15.000  | 17.100 | 16.500 | 17.300 | 8.770  | 14.800    |
| 20              | 10.400          | 6.590    | 8.820           | 9.380            | 16.200   | 15.800 | 17.500  | 13.900 | 15.200 | 19.600 | 6.080  | 14.900    |
| <b>27</b><br>28 | 10.100          | 10.100   | 9.420           | 7.370            | 16.000   | 18.500 | 16.400  | 9.820  | 15.700 | 17.200 | 11.600 | 15.000    |
| 20              | 5.340           | 10.100   | 10.400          | 7.000            | 20.000   | 17.600 | 13.900  | 16.900 | 15.500 | 12.100 | 11.400 | 14.200    |
| 29              |                 |          | 9.790           | 12.300           |          | 17.400 | 11.700  | 9.550  | 15.300 | 8,640  | 11.100 | 11.600    |
| 30              | 4.150           | 9.980    | 9. 190<br>8.400 | 11.900           |          | 18.500 | 11.100  | 19.400 |        | 15.900 | 10.800 |           |
| 31              | 7.910           |          | 0.400           | 11.500           |          | 10.,00 |         | 17.100 |        | -2-2-  |        |           |

STATE

ARIZONA

MAJOR BASIN

COLORADO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

MIDDLE COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

PAGE, ARIZONA

| D. 15-         |                    |           | PANI      | DACTIVITY IN Y | VATER     |           |       | RADIOAG            | TIVITY IN PLAN | IKTON (dry) | RAI       | DIOACTIVITY IN W | ATER  |
|----------------|--------------------|-----------|-----------|----------------|-----------|-----------|-------|--------------------|----------------|-------------|-----------|------------------|-------|
| DATE<br>SAMPLE | DATE OF            |           | ALPHA     | DACITITI IX 1  | 1         | BETA      |       | DATE OF            | GROSS A        | CTIVITY     |           | GROSS ACTIVIT    | Y     |
| TAKEN          | DETERMI-<br>NATION | SUSPENDED | DISSOLVED | TOTAL          | SUSPENDED | DISSOLVED | TOTAL | DETERMI-<br>NATION | ALPHA          | BETA        | SUSPENDED | DISSOLVED        | TOTAL |
| MO. DAY YEAR   | MONTH DAY          | μμς/ί     | μμε/Ι     | μμε/Ι          | μμε/Ι     | μμς/Ι     | μμε/Ι | MO. DAY            | µµс∕ g         | μμc/g       | μμε/Ι     | μμε/ί            | μμς/Ι |
|                |                    |           |           |                | 2.5       | _         | 3.5   |                    |                |             | 1         |                  |       |
| 0 3 60         | 10 18              | 22        | 22        | 44             | 25        | 0         | 25    |                    |                |             |           |                  |       |
| 0 10 60        | 10 21              | 123       | 24        | 147            | 495       | 9         | 504   |                    |                |             |           |                  |       |
| 0 17 60        | 11 1               | 112       | 16        | 128            | 238       | 0         | 238   |                    |                | İ           |           |                  |       |
| 0 24 60        | 11 7               | 214       | 30        | 244            | 414       | 42        | 456   |                    |                |             |           |                  |       |
| 0 31 60        | 11 18              | 32        | 30        | 62             | 81        | 5         | 86    |                    |                |             |           |                  |       |
| 1 21 60        | 12 2               | 20        | 24        | 44             | 11        | 12        | 23    |                    |                |             |           |                  |       |
| 1 28 60        | 12 15              | 6         | 17        | 23             | 68        | 51        | 119   |                    |                |             |           |                  |       |
| 2 5 60         | 12 29              | 3         | . 7       | 10             | 0         | 15        | 15    |                    |                |             |           |                  |       |
| 2 12 60        | 12 27              | 0         | 17        | 17             | 4         | 0         | 4     |                    |                |             | 1         |                  |       |
| 2 19 60        | 1 13               | 1         | 12        | 13             | 0         | 0         | 0     | }                  |                |             |           |                  |       |
| 2 27 60        | 2 14               | 0         | 22        | 22             | 0         | 39        | 39    |                    |                |             |           |                  |       |
| 1 3 61         | 2 14               | 0         | 23        | 23             | 0         | 13        | 13    |                    |                |             |           |                  |       |
| 1 9 61         | 1 27               | 1         | 17        | 18             | 7         | 44        | 51    |                    |                |             |           |                  |       |
| 2 6 61         | 2 21               | 1         | 11        | 12             | 0         | 28        | 28    |                    |                |             |           |                  |       |
| 2 13 61        | 3 6                | 1         | 12        | 13             | 0         | 0         | 0     |                    |                |             |           |                  |       |
| 2 20 61        | 3 7                | 0         | 9         | 9              | 0         | 0         | 0     |                    |                |             |           |                  |       |
| 2 27 61        | 3 14               | 108       | 8         | 116            | 542       | 21        | 563   |                    |                |             |           |                  |       |
| 3 6 61         | 3 23               | 53        | 8         | 61             | 11        | 0         | 11    | 1 1                |                |             |           |                  |       |
| 3 13 61        | 3 31               | 10        | 7         | 17             | 13        | 0         | 13    |                    |                | l i         |           |                  |       |
| 3 20 61        | 4 5                | 25        | 13        | 38             | 50        | 0         | 50    |                    |                |             |           |                  |       |
| 3 27 61        | 4 14               | 12        | 27        | 39             | 40        | 11        | 51    |                    |                |             |           |                  |       |
| 4 3 61         | 5 9                | 74        | 17        | 91             | 215       | 14        | 229   |                    |                | !           |           |                  |       |
| 4 10 61        | 4 28               | 110       | 7         | 117            | 790       | 30        | 820   |                    |                | İ           |           |                  |       |
| 4 17 61        | 5 2                | 58        | 4         | 62             | 81        | 0         | 81    |                    |                |             |           |                  |       |
| 4 24 61        | 5 17               | 28        | 8         | 36             | 31        | 13        | 44    | 1                  |                |             |           | 1                |       |
| 5 1 61         | 5 16               | 55        | 24        | 79             | 76        | 11        | 87    |                    |                |             |           |                  |       |
| 5 8 61         | 6 1                | 39        | 11        | 50             | 23        | 0         | 23    |                    |                |             |           |                  |       |
| 5 15 61        | 6 1                | 53        | 6         | 59             | 60        | 1         | 61    |                    |                |             | <u> </u>  |                  |       |
| 5 22 61        | 6 22               | 25        | 7         | 32             | 60        | 16        | 76    |                    |                |             |           |                  |       |
| 5 29 61        | 6 15               | 25        | 5         | 30             | 18        | 0         | 18    |                    |                |             | i         |                  |       |
| 6 5 61         | 6 29               | 19        | 2         | 21             | 45        | Ó         | 45    |                    |                |             |           |                  |       |
| 6 12 61        | 7 25               | 35        | 4         | 39             | 39        | 0         | 39    |                    |                |             |           |                  |       |
| 6 19 61        | 7 17               | 18        | 2         | 20             | 16        | 0         | 16    |                    |                |             | l i       |                  |       |
| 6 26 61        | 8 16               | 11        | 8         | 19             | 0         | 2         | 2     |                    |                |             |           |                  |       |
| 7 5 61         | 8 2                | 45        | 4         | 49             | 190       | 9         | 199   |                    |                |             |           | · [              |       |
| 7 11 61        | 8 10               | 78        | 6         | 84             | 198       | 61        | 259   |                    |                | 1           |           |                  |       |
| 7 17 61        | 9 7                | 15        | 16        | 31             | 64        | 32        | 96    |                    |                |             |           |                  |       |
| 7 24 61        | 9 7                | 68        | 12        | 70             | 187       | 32        | 219   |                    |                |             |           |                  |       |
| 7 31 61        | 8 31               | 48        | 6         | 54             | 128       | 0         | 128   |                    |                |             | 1 1       |                  |       |
| 8 28 61        | 9 25               | 124       | 6         | 130            | 336       | 44        | 380   |                    |                |             |           |                  |       |

RADIOACTIVITY DETERMINATIONS

STATE

ARIZONA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

MIDDLE COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

PAGE, ARIZONA

|                                         |                               |                          |                    |                          |                            |                      |                            | PAC    | HOAC | TIVITY IN PLANE | TON (dry) |         | RADIOACTIVITY IN V | ATER  |
|-----------------------------------------|-------------------------------|--------------------------|--------------------|--------------------------|----------------------------|----------------------|----------------------------|--------|------|-----------------|-----------|---------|--------------------|-------|
|                                         |                               |                          | RADIO              | ACTIVITY IN WA           | ATER                       |                      |                            |        |      | GROSS AC        | TIVITY    |         | GROSS ACTIVIT      |       |
| DATE<br>SAMPLE                          | DATE OF                       |                          | ALPHA              |                          |                            | BETA                 | TOTAL                      | DATE O | MI-  | ALPHA           | BETA      | SUSPEND | ED DISSOLVED       | TOTAL |
| TAKEN                                   | DATE OF<br>DETERMI-<br>NATION | SUSPENDED                | DISSOLVED          | TOTAL                    | SUSPENDED                  | DISSOLVED            | μμc/l                      | MO. E  |      | <i>µµс/</i> g   | μμc/g     | μμς/Ι   | μμc/l              | μμε/l |
| MO. DAY YEAR                            | MONTH DAY                     | μμc/l                    | μμε/Ι              | μμε/Ι                    | μμc/l                      | μμε/1                | μμε/1                      |        |      |                 |           |         |                    |       |
| 9 5 61<br>9 12 61<br>9 18 61<br>9 25 61 | 10 5<br>11 3<br>10 23<br>10 9 | 121<br>469<br>234<br>124 | 13<br>4<br>26<br>3 | 134<br>473<br>260<br>127 | 617<br>1527<br>1824<br>881 | 77<br>56<br>67<br>17 | 694<br>1583<br>1891<br>898 |        |      |                 |           |         |                    |       |
|                                         |                               |                          |                    |                          |                            |                      |                            |        |      |                 |           |         |                    |       |
|                                         |                               |                          |                    |                          |                            |                      |                            |        |      |                 |           |         |                    |       |
|                                         |                               |                          |                    |                          |                            |                      |                            |        |      |                 |           |         |                    |       |

PLANKTON POPULATION NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

ARIZONA

MAJOR BASIN

STATE

COLORADO RIVER

MINOR BASIN

MIDDLE COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

PAGE, ARIZONA

|                                                                                                                          | ALGAE (Number per ml.)                                                                                                |         |                       |                                                                  |                       |                                                                                  |       |                                                                                                         |                                                                                                                    | INERT DIATOMS DIATOM DOMINANT SPECIES AND PERCENTAGES |          |                                                              |                            |                          |                            |                                                          |              |                                                    | <u>                                   </u> | MICROINVERTEBRATES                             |                                                                         |                      |                              |                                                                                         |                                     |          |                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------|-----------------------|------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------|--------------------------------------------------------------|----------------------------|--------------------------|----------------------------|----------------------------------------------------------|--------------|----------------------------------------------------|--------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|----------------------|------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------|----------|-------------------------------------------------------------------------------------|
| DATE<br>OF SAMPLE                                                                                                        |                                                                                                                       | BLUE-   | GREEN                 | GREEN                                                            |                       | FLAGELLATES<br>(Pigmented)                                                       |       | DIATOMS                                                                                                 |                                                                                                                    | DIATOM<br>SHELLS<br>(No. per ml.)                     |          | DOMINANT SPECIES AND PER<br>(See Introduction for Code Ident |                            |                          |                            | RCEN'                                                    | tification*) |                                                    | ROPLANKTOI<br>SHEATHED<br>. ml)            | M.)                                            | R\$<br>- liter)                                                         | CEA<br>· liter)      | DES<br>liter)                | OTHER ANIRAL FORMS (No. per liter) DOMINANT GENERA (See Introduction for Identification | T GENERA<br>Toduction<br>tification |          |                                                                                     |
| MONTH<br>DAY<br>YEAR                                                                                                     | TOTAL                                                                                                                 | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                                                          | FILA-<br>MENT-<br>OUS | GREEN                                                                            | OTHER | CENTRIC                                                                                                 | PENNATE                                                                                                            | CENTRIC                                               | PENNATE  | FIRST                                                        | PER-<br>CENTAGE            | SECOND#                  | PER-<br>CENTAGE            | THIRD                                                    | PER.         | FOURTH                                             | PER.                                       | OTHER PER-                                     | OTHER HICROPLANKTOH,<br>FUNGI AND SHEATHED<br>BACTERIA<br>(No. per ml.) | PROTOZO!<br>(No. per | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter)                                                            | NEMATODES<br>(No. per liter)        | (No. per | DOMINANT GENERA<br>(See Introduction<br>for Identification)                         |
| 10 17 60 11 7 60 11 7 60 12 16 60 12 16 60 13 61 1 16 61 2 0 61 3 61 3 61 3 7 61 4 3 61 5 61 5 61 7 7 61 8 28 61 9 18 61 | 400<br>200<br>2000<br>700<br>300<br>400<br>2800<br>300<br>1200<br>1600<br>4600<br>2400<br>3000<br>2400<br>1800<br>600 | 20      | 20                    | 50<br>20<br>40<br>20<br>70<br>20<br>60<br>40<br>100<br>330<br>20 | 20                    | 50<br>20<br>90<br>70<br>50<br>110<br>110<br>270<br>20<br>80<br>150<br>100<br>520 | 20    | 140<br>1170<br>420<br>180<br>200<br>2640<br>130<br>450<br>980<br>210<br>660<br>150<br>210<br>460<br>100 | 140<br>180<br>750<br>160<br>70<br>140<br>290<br>1020<br>920<br>3260<br>1390<br>2050<br>2050<br>2090<br>1880<br>440 | 20<br>20<br>20<br>20<br>40<br>20<br>100               | 70<br>40 | 92<br>92<br>92<br>92<br>92<br>92<br>86<br>92<br>92           | 50<br>50<br>30<br>40<br>30 | 65237<br>856851<br>86664 | 10<br>20<br>10<br>10<br>10 | 70<br>26<br>26<br>51<br>36<br>65<br>93<br>36<br>86<br>12 | 10 10 10 10  | 85<br>70<br>3<br>82<br>51<br>51<br>53<br>641<br>78 | *<br>*<br>*<br>10<br>10<br>10<br>*         | 54000<br>14000<br>0000<br>0000<br>0000<br>0000 | 20<br>50<br>40<br>20                                                    | 10                   | 1 1                          |                                                                                         |                                     |          | 4-97-<br>4-97-<br>4-9<br>9<br>7-3<br>773<br>45973<br>973<br>766<br>766<br>4893-<br> |

# ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

ARIZONA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

MIDDLE COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

PAGE, ARIZONA

|                                                                                                                              |                                                              |                                              |                                              |                                                 | 1                                         |                                       |                                            | ORM EXTR                  | ACTABLES                        |                                        |         |                                           |                 |                            |                                       |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------------|-------------------------------------------|---------------------------------------|--------------------------------------------|---------------------------|---------------------------------|----------------------------------------|---------|-------------------------------------------|-----------------|----------------------------|---------------------------------------|
| DATE OF SAMPLE                                                                                                               |                                                              | EX                                           | TRACTABL                                     | .E3                                             |                                           | l                                     |                                            |                           | NEUTRALS                        |                                        | 10111   |                                           | <u> </u>        |                            |                                       |
| MONTH TEAR MONTH DAY DAY                                                                                                     | GALLONS<br>FILTERED                                          | TOTAL                                        | CHLORO-<br>FORM                              | ALCOHOL                                         | ETHER<br>INSOLUBLES                       | WATER<br>SOLUBLES                     | TOTAL                                      | ALIPHATICS                | AROMATICS                       | OXYGEN-<br>ATED<br>COMPOUNDS           | Loss    | WEAK<br>ACIDS                             | STRONG<br>ACIDS | BASES                      | Loss                                  |
| 10 10 60 10 17<br>11 7 60 11 27<br>1 3 61 1 23<br>2 13 61 2 26<br>3 17 61 3 28<br>4 16 61 4 25<br>6 5 61 6 15<br>7 7 61 7 16 | 4060<br>5410<br>5800<br>5000<br>5050<br>5000<br>4600<br>5000 | 152<br>117<br>186<br>134<br>119<br>109<br>94 | 28<br>25<br>62<br>27<br>14<br>17<br>31<br>21 | 124<br>92<br>124<br>107<br>105<br>92<br>63<br>* | 0<br>0<br>3<br>1<br>0<br>0<br>0<br>0<br>0 | 6<br>6<br>14<br>6<br>3<br>4<br>6<br>4 | 15<br>9<br>20<br>10<br>5<br>10<br>14<br>11 | 3 1 2 1 1 2 3 2 2 REPORTE | 1<br>1<br>1<br>0<br>1<br>2<br>1 | 10<br>7<br>17<br>8<br>4<br>7<br>9<br>8 | 1000000 | 2<br>3<br>5<br>3<br>2<br>2<br>2<br>4<br>2 | 0               | 2<br>1<br>7<br>2<br>1<br>1 | 2<br>4<br>10<br>4<br>3<br>0<br>4<br>2 |
|                                                                                                                              |                                                              |                                              |                                              |                                                 |                                           |                                       |                                            |                           |                                 |                                        |         |                                           |                 |                            |                                       |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

ARIZONA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

MIDDLE COLORADO RIVER

STATION LOCATIONCOLORADO RIVER AT

PAGE, ARIZONA

|    | DATE     |    |                                  |                             |                |                |                | CHLORINE       | DEMAND          |                              |                   |                    | ,                |                        |                            |                  |                    | TOTAL                       |                          |
|----|----------|----|----------------------------------|-----------------------------|----------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|----------------------------|------------------|--------------------|-----------------------------|--------------------------|
| OF | SAM!     | -  | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/l | рН             | B.O.D.<br>mg/l | C.O.D.<br>mg/l | I-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NiTROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml. |
| 10 | 3        | 60 | 19.3                             | -                           | 8.1            |                |                |                |                 |                              | 131               | 200                | 590              | 10                     | 60 <b>0</b>                |                  | -                  |                             | 2000                     |
| 10 | 10       | 60 | 18.4                             | -                           | 7.9            | ~              | _              | -              | -               | -                            | 92                | 278                | 564              | _                      | 8000                       | -                | -                  | -                           | *1000                    |
| 10 | 17       | 60 | 12.4                             | -                           | 8.1            | -              | -              | -              | -               | -                            | 110               | 180                | 540              | 10                     | 2100                       | _                | - 1                | -                           | 9000                     |
|    |          | 60 | 13.3                             | -                           | 8.1            | -              | -              | -              | -               | -                            | 131               | 550                | 680              | 10                     | 6000                       | _                | _                  | _                           | 10000<br>280             |
| 1  |          | 60 | 10.1                             | -                           | 8.1            | -              | -              | -              | -               | <del></del>                  | 117               | 204                | *632             | _                      | 1200                       | _                | _                  | _                           | 300                      |
| 11 | 7        | 60 | 12.1                             | -                           | 8.0            | ~              | -              | -              | -               | -                            | 121               | 240<br>220         | 660<br>620       | 8 9                    | 1000<br>850                |                  | _                  | _                           | 460                      |
|    | 14       | 60 | 8.7                              | -                           | 8.1            | -              | _              | -              | -               | -                            | 118<br>116        | 196                | 560              | 20                     | 500                        | _                | _                  | _                           | 100                      |
|    | 21       | 60 | 6.7                              | -                           | -              | -              | _              | _              | -               | _                            | 112               | 204                | 482              | 5                      | 380                        | _                | _                  | _                           | _                        |
|    | 28       | 60 | 4 • 4                            | -                           | 8.0            | _              | _              | _              | _               | _                            | 130               | 184                | 540              | 5                      | 110                        | _                | _                  | _                           | _                        |
| 12 | 5        | 60 | 4.0                              | -                           | 7•8<br>7•8     | _              | _              | _              | _               | _                            | 100               | 180                | 468              | _                      | 5                          | -                | _                  | _                           |                          |
|    | 12       | 60 | 2.4                              | _                           | 8.0            | _              | _              | _              | _               | -                            | 100               | 184                | 528              | _                      | 5                          | -                |                    | _                           | 91                       |
|    | 19<br>27 | 60 | 3.8<br>2.2                       | -                           | 8.1            | _              | _              |                |                 | -                            | 145               | 192                | 526              | 0                      | 20                         | -                | -                  | -                           | -                        |
| 1  | 3        | 61 | 1.1                              | _                           | 8.2            |                |                |                | _               | -                            | 147               | 198                | 564              | 0                      | 20                         | -                | -                  | -                           | _                        |
| 1  | 9        | 61 | 1.1                              |                             | 8.1            | _              |                |                | _               | _                            | 132               | 188                | 500              | 0                      | 20                         | -                | -                  | -                           | *100                     |
|    | 16       | 61 | 2.2                              |                             | 8.1            | -              | _              | _              | _               | _                            | 153               | 197                | 500              | 2                      | 20                         | _                | -                  | -                           | 1000                     |
| il | 23       | 61 | .9                               | -                           | 8.1            | _              | _              | _              | _               | -                            | 159               | 198                | 532              | 3                      | 22                         | -                | -                  | -                           | *100                     |
|    | 30       | 61 | . 9                              | -!                          | 8.2            | -              | _              | _              | _               | _                            | 138               | 188                | 460              | 3                      | 25                         | -                | -                  | -                           | *1                       |
| 2  | 6        | 61 | 3.3                              | - 1                         | 8.3            | -              | -              | -              | -               | -                            | 126               | 156                | 432              | -                      | 15                         | -                | -                  | -                           |                          |
| 2  | 13       | 61 | 3.9                              | -                           | 8.1            | -              | -              | -              | -               | -                            | 132               | 152                | 452              | 5                      | 20                         | -                | _                  | -                           | *100                     |
| 2  | 20       | 61 | 7.2                              | -                           | 7•9            | _              | -              | -              | -               | -                            | 134               | 154                | 446              | 3                      | 15                         | -                | _                  | -                           | *100                     |
| 2  | 27       | 61 | 6.6                              | -                           | 8.1            |                | -              | i -            | -               | -                            | 140               | 450                | 584              | 5                      | 4500                       | -                | _                  | _                           | 1300                     |
| 3  | 6        | 61 | 5•6                              | -                           | 8.6            | _              | _              | _              | -               | -                            |                   | 216                | 432              | 5                      | 700                        | _                | _                  |                             | 200                      |
| 3  | 13       | 61 | 9•9                              | -                           | 8.7            | -              | _              | -              | _               | -                            | 135               | 184                | 456<br>452       | 8                      | 500                        |                  | _                  | _                           | 910                      |
| 3  | 20       | 61 | 12.5                             | -                           | 8.1            | _              | _              | _              | -               | _                            | 140<br>123        | 184<br>176         | 480              | 5                      | 330                        | _                | _                  | _                           | *1000                    |
| 3  | 27       | 61 | 9.9                              | -                           | 7.8            | -              | l <u>-</u>     | -              | _               | _                            | 84                | 228                | 384              | 1 _                    | 2000                       | _                | l.                 | -                           | 3300                     |
| 4  | 3        | 61 | 14.0                             | -                           | 8 • 1<br>7 • 8 | _              | -              | _              | _               | _                            | 56                | 326                | 420              | 5                      | 4400                       | -                | -                  | -                           | _                        |
| 4  | 10       | 61 | 13.0                             | _                           | 8.3            | _              | _              | _              | _               | _                            | 58                | 196                | 332              | -                      | 1300                       | -                | -                  | -                           | -                        |
| 4  | 17<br>24 | 61 | 13.5<br>13.0                     | _                           | 8.2            | _              | _              | _              | _               | _                            | 56                | 160                | 316              | 8                      | 1000                       | _                | _                  | -                           | 1900                     |
| 5  | 1        | 61 | 17.0                             | _                           | 8.2            |                | _              | _              | _               | _                            | 58                | 148                | 284              | 7                      | 900                        | -                | -                  | -                           | 1200                     |
| 5  | 8        | 61 | 16.1                             | _                           | 8.2            | _              | _              | _              | _               | _                            | 39                | 208                | 300              | 5                      | 880                        | -                | -                  | -                           | 3200                     |
| 5  | 15       | 61 | 17.0                             | -                           | 8.1            | _              | _              | _              | _               | _                            | 34                | 200                | 308              | 5                      | 760                        |                  |                    | -                           | *100                     |
| 5  | 22       | 61 | 20.0                             | _                           | 8.1            | _              | · _            | _              | _               | -                            | 28                | 136                | 224              | 3                      | 700                        | -                | 1                  | -                           | *100                     |
| 5  | 29       | 61 | 20.9                             | _                           | 8.0            | _              | _              | _              | -               | -                            | 24                | 108                | 192              | -                      | 700                        | -                |                    | -                           | 2800                     |
| 6  | 5        | 61 | 20.0                             | _                           | 8.1            | _              |                | _              | _               | -                            | 20                | 112                | 204              |                        | 900                        | -                |                    | -                           | 2000                     |
| 6  | 12       | 61 | 24.0                             | _                           | 8.1            | _              | _              | _              | -               | -                            | 22                | 148                | 200              | 7                      | 700                        | -                | 1                  | -                           | 640                      |
| 6  | 19       | 61 | 24.8                             | -                           | 8.0            | -              | -              | -              | -               | -                            | 20                | 98                 | 196              |                        | 370                        | _                | 1                  | _                           | *100<br>1000             |
| 6  | 26       | 61 | 28.0                             | -                           | 7.8            | -              | -              | -              | _               | -                            | 28                | 96                 | 192              | -                      | 500                        | _                | _                  | _                           | 1000                     |
|    |          |    |                                  | 1                           |                |                |                | i              |                 | 1                            | L                 |                    |                  |                        |                            | <u> </u>         |                    | L                           |                          |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Lees Ferry, Arizona Operated by U.S. Geological Survey STATE

Arizona.

MAJOR BASIN

Colorado River

MINOR BASIN

Middle Colorado River

STATION LOCATION

Colorado River at

Page, Arizona

| Day                              | October                                            | November                                  | December                                           | January                                            | February                                    | March                                              | April                                          | May                                                      | June                                           | July                                               | August                                             | September                                      |
|----------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|---------------------------------------------|----------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------------------------|
| 1<br>2<br>3<br>4                 | 3.760<br>3.650<br>3.550                            | 5.530<br>5.390<br>5.410                   | 1.520<br>1.420<br>1.840                            | 4.850<br>4.830<br>4.700<br>4.520                   | 5.200<br>5.200<br>5.170<br>5.090            | 5.470<br>5.390<br>5.200<br>5.250                   | 8.000<br>8.210<br>8.540<br>8.500               | 10.100<br>9.530<br>9.450<br>10.300                       | 35.800<br>34.400<br>35.200<br>38.400           | 11.500<br>10.700<br>9.760<br>9.910                 | 3.030<br>3.420<br>3.080<br>4.450                   | 8.250<br>6.000<br>5.470<br>4.930               |
| 4<br>5                           | 3.460<br>3.380                                     | 5.500<br>5.580                            | 2.990<br>3.970                                     | 4.250                                              | 5.110                                       | 5.300                                              | 8.360                                          | 12.000                                                   | 39.200                                         | 9.800                                              | 4.500                                              | 4.550                                          |
| 6<br>7<br>8<br>9<br>10           | 3.340<br>3.360<br>3.300<br>3.650<br>3.920          | 5.550<br>5.580<br>6.030<br>6.570<br>6.030 | 4.550<br>4.930<br>5.220<br>5.410<br>5.610          | 3.970<br>3.740<br>3.630<br>3.570<br>3.420          | 5.280<br>5.360<br>5.360<br>5.300<br>5.170   | 5.470<br>5.330<br>5.300<br>5.300<br>5.360          | 8.180<br>7.830<br>9.230<br>11.100<br>10.300    | 14.200<br>16.100<br>17.800<br>17.200<br>15.500           | 37.400<br>33.500<br>31.500<br>29.600<br>27.600 | 8.750<br>8.390<br>7.900<br>7.520<br>7.350          | 7.940<br>8.830<br>9.080<br>7.940<br>6.800          | 5.170<br>4.880<br>5.880<br>16.100<br>21.900    |
| 11<br>12<br>13<br>14             | 4.830<br>4.750<br>5.250<br>5.220<br>6.970          | 6.000<br>5.940<br>5.910<br>6.030<br>6.000 | 5.790<br>5.700<br>5.440<br>5.200<br>5.010          | 3.380<br>3.420<br>3.460<br>3.630<br>3.790          | 5.140<br>5.140<br>5.140<br>5.170<br>5.170   | 5.440<br>5.390<br>5.200<br>4.930<br>4.800          | 10.700<br>11.600<br>10.700<br>10.300<br>9.950  | 13.900<br>13.200<br>12.700<br>12.500<br>13.200           | 27.600<br>28.000<br>29.200<br>30.300<br>29.900 | 7.350<br>6.380<br>6.030<br>5.910<br>5.8 <b>2</b> 0 | 6.030<br>5.220<br>4.830<br>3.900<br>3.550          | 24.700<br>24.300<br>18.700<br>13.200<br>11.300 |
| 16<br>17<br>18<br>19<br>20       | 7.690<br>6.900<br>7.380<br>8.360<br>8.110          | 5.850<br>5.820<br>5.820<br>5.910<br>5.940 | 4.880<br>4.780<br>4.780<br>4.720<br>4.680          | 3.970<br>4.180<br>4.320<br>4.480<br>4.550          | 5.170<br>5.110<br>5.060<br>5.010<br>5.060   | 4.720<br>4.800<br>5.280<br>5.610<br>5.820          | 9.610<br>9.490<br>9.160<br>8.320<br>7.830      | 16.100<br>19.300<br>18.700<br>16.900<br>16.600           | 28.800<br>28.000<br>26.500<br>25.100<br>24.300 | 5.500<br>5.030<br>4.700<br>4.380<br>4.080          | 3.440<br>3.440<br>4.320<br>5.610<br>6.190          | 10.500<br>9.870<br>9.910<br>11.300<br>12.500   |
| 21<br>22<br>23<br>24<br>25       | 8.220<br>7.900<br>6.870<br>6.480<br>6.350          | 5.850<br>5.850<br>5.880<br>5.820<br>5.880 | 4.600<br>4.500<br>4.350<br>4.230<br>4.280          | 4.650<br>4.720<br>4.780<br>4.750<br>4.720          | 5.360<br>7.070<br>9.190<br>10.700<br>10.300 | 6.100<br>6.100<br>6.540<br>6.740<br>6.670          | 7.690<br>8.220<br>8.540<br>8.830<br>9.720      | 17.800<br>18.700<br>20.600<br>23.600<br>25.400           | 22.900<br>21.600<br>20.300<br>19.000<br>18.100 | 3.830<br>3.760<br>3.650<br>3.480<br>3.340          | 6.480<br>7.550<br>6.030<br>5.200<br>4.550          | 14.200<br>16.300<br>12.700<br>10.100<br>9.910  |
| 26<br>27<br>28<br>29<br>30<br>31 | 6.130<br>6.030<br>5.880<br>5.820<br>5.700<br>5.550 | 6.100<br>6.100<br>5.970<br>5.880<br>4.620 | 4.380<br>4.500<br>4.600<br>4.680<br>4.800<br>4.850 | 4.650<br>4.700<br>4.780<br>4.960<br>5.140<br>5.220 | 7.830<br>7.280<br>6.000                     | 6.670<br>6.640<br>7.010<br>7.940<br>8.430<br>8.360 | 10.900<br>12.000<br>12.000<br>11.300<br>10.700 | 27.300<br>29.200<br>30.700<br>31.100<br>32.700<br>34.800 | 16.900<br>15.500<br>14.200<br>12.900<br>12.200 | 3.240<br>3.220<br>3.160<br>3.140<br>3.180<br>3.200 | 4.250<br>4.230<br>4.550<br>5.970<br>7.240<br>8.040 | 10.900<br>13.400<br>15.000<br>13.900<br>12.500 |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

ARIZONA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

MIDDLE COLORADO RIVER

STATION LOCATIONCOLORADO RIVER AT

PAGE, ARIZONA

| DATI   |                                              | 1                                                    | 1                                       |                                                             |                |                | CHLORINE       | DEMAND          |                              |                                                         |                                                                         |                                                             |                        |                                                              | SULFATES | PHOSPHATES | TOTAL                       | COLIFORMS                                   |
|--------|----------------------------------------------|------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------|----------------|----------------|----------------|-----------------|------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------|------------------------|--------------------------------------------------------------|----------|------------|-----------------------------|---------------------------------------------|
| OF SAN |                                              | TEMP.<br>(Degrees<br>Centigrade)                     | DISSOLVED<br>OXYGEN<br>mg/l             | pH                                                          | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l                                       | Mg/I                                                                    | HARDNESS<br>mg/l                                            | COLOR<br>(scale units) | TURBIDITY<br>(scale units)                                   | mg/l     | mg/l       | DISSOLVED<br>SOLIDS<br>mg/I | per 100 ml.                                 |
| 7 5    | 61<br>61<br>61<br>61<br>61<br>61<br>61<br>61 | 27.5<br>28.0<br>27.0<br>26.5<br>26.0<br>20.0<br>18.7 | 111111111111111111111111111111111111111 | 7.9<br>8.1<br>8.2<br>7.8<br>8.0<br>8.2<br>8.1<br>7.8<br>7.6 |                |                |                | 3.9             |                              | 32<br>58<br>54<br>61<br>76<br>88<br>25<br>-<br>53<br>49 | 310<br>148<br>176<br>330<br>118<br>180<br>328<br>130<br>-<br>172<br>140 | 280<br>308<br>440<br>520<br>648<br>700<br>400<br>596<br>450 | 11110110               | 1700<br>800<br>1200<br>800<br>2000<br>5000<br>32000<br>16000 |          |            | 1926                        | 820<br>30<br>100<br>*100<br>720<br>-<br>400 |



RADIOACTIVITY DETERMINATIONS

STATE

COLORADO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

UPPER COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

LOMA, COLORADO

|     |              |      |            |                        |           |           |                |           |           |       |     | PADIOAC | TIVITY IN PLAN | KTON (dry) | RA        | DIOACTIVITY IN Y | ATER          |
|-----|--------------|------|------------|------------------------|-----------|-----------|----------------|-----------|-----------|-------|-----|---------|----------------|------------|-----------|------------------|---------------|
|     |              |      |            |                        |           | RADIO     | ACTIVITY, IN W | ATER      |           |       |     |         | GROSS A        |            |           | GROSS ACTIVIT    |               |
|     | DAT          |      |            |                        |           | ALPHA     |                |           | BETA      |       | DET | TE OF   | ALPHA          | BETA       | SUSPENDED | DISSOLVED        | TOTAL         |
|     | SAMP<br>TAKE |      | DET        | TE OF<br>ERMI-<br>TION | SUSPENDED | DISSOLVED | TOTAL          | SUSPENDED | DISSOLVED | TOTAL |     | DAY     | ppc/g          | μμε/g      | μμε/Ι     | μμε/1            | μμc/ <b>!</b> |
|     |              |      |            |                        |           | μμε/Ι     | μμε/Ι          | μμε/1     | μμc/l     | μμε/Ι | МО. | LOAT    | ppc/g          |            |           |                  |               |
| MO. | DAY          | YEAR | MONTH      | DAY                    | μμc/l     | - FFG.    |                |           |           |       | i   |         |                |            |           |                  |               |
|     |              |      |            |                        | _         | 10        | 20             | 8         | 0         | 8     | ì   | İ       |                |            |           | 1 1              |               |
| 10  | 10           | 60*  | 10         | 20                     | 1         | 19        | 33             | 2         | 40        | 42    |     | -       |                |            | ł         | 1                |               |
| 10  | 24           | 60   | 11         | 17                     | 2         | 31        |                | 0         | 0         | 0     | į   | ļ       |                | 1          |           |                  |               |
| 11  | 7            | 60*  | 11         | 23                     | 2         | 13        | 15             |           |           | o l   | - 1 | i       |                |            |           |                  |               |
|     | 28           | -    |            | 8                      | 0         | 14        | 14             | 0         |           | ŏ     | ļ   | 1       |                |            |           |                  |               |
|     | 27           |      | ī          | 23                     | Ŏ         | 11        | 11             | 0         | 0         | ŏl    | 1 - |         |                |            |           |                  |               |
|     | -            |      |            |                        | 1         | 14        | 15             | 0         | 0         |       | Į.  | Ì       |                |            |           |                  |               |
| 1   | 9            |      |            | 20                     |           | 8         | 11             | 0         | 0         | 0     |     | - 1     |                | . 1        |           |                  |               |
| 1   | 30           | 61*  | 2          | 10                     | 3         |           | 5              | ) 0       | 0         | 0     | 1   | ļ       |                |            |           |                  |               |
| 2   | 13           | 61*  | 3          | 1                      | 2         | 3         | -              | 1 0       | 1 0 1     | 0 1   |     |         |                |            |           |                  |               |
| 2   | 27           | 61*  | 3          | 13                     | 5         | 7         | 12             | 1 -       | Ö         | 1     |     | }       |                |            |           |                  |               |
|     | 14           |      |            | 28                     | 12        | 11        | 23             | 1         | i 1       | 2     |     | ļ       |                |            | İ         |                  |               |
| _   | 27           |      | 1          | 14                     | 6         | 18        | 24             | 2         | 0         |       | 1   | i       |                | Ì          |           |                  |               |
|     |              |      | 1          |                        | 6         | 6         | 12             | 0         | . 0       | 0     |     | - 1     |                |            | İ         | ì                |               |
|     | 10           |      | 1 .        |                        | _         | 9         | 13             | ) 0       | 0         | 0     |     |         |                |            |           |                  |               |
| 4   | 24           | 61+  |            | 15                     | 4         | 1         | 13             |           | 0         | 0     | 1   |         |                |            |           |                  |               |
| 5   | 8            | 61+  | 6 5        | 26                     | 3         | 10        |                | 5         | 0         | 5 1   | 1   |         |                |            |           |                  |               |
| 5   | 29           | 61+  | 6          | 13                     | 3         | 2         | 5              |           | 5         | 16    |     | ļ       |                |            | İ         |                  |               |
| _   | 12           |      | 1          | 10                     | 3         | 4         | 7              | 11        |           | 3     |     | ĺ       |                |            |           |                  |               |
|     | 26           |      |            |                        | 4         | 3         | 7              | 3         | 0         |       |     |         |                |            |           |                  |               |
|     |              |      |            |                        | o         | 4         | 4              | 20        | 33        | 53    | i i |         |                |            |           | ļ                | i             |
|     | 17           |      |            | 25                     | 1         | 29        | 30             | 12        | 43        | 55    | 1   |         |                |            |           |                  |               |
| 7   | 31           | 61   | 9          | 1                      | 1         |           | -              | 66        | 70        | 136   |     |         |                |            | .         |                  |               |
| 8   | 14           | 61   | <b>*</b> 9 | 19                     | 5         | 13        | 18             |           | 27        | 54    | 1   |         |                |            |           |                  |               |
| 8   | 28           | 61   | 9          | 25                     | 0         | 10        | 10             | 27        | N .       | 110   | 1 1 |         |                |            |           |                  |               |
|     | 11           |      | 10         |                        | 35        | 1         | 36             | 70        | 40        |       | 1 1 |         |                |            | i i       |                  |               |
|     |              |      | 11         | 7                      | 38        | l o '     | 38             | 200       | 53        | 253   |     |         |                | Ì          |           |                  |               |
| 9   | 25           | 61   | 1          | 1.                     |           | -         |                |           |           |       |     |         |                |            |           |                  |               |
|     |              |      | 1          |                        | 1         |           |                |           |           | İ     | 1 1 |         | ĺ              |            |           |                  |               |
|     |              |      | 1          |                        | 1         |           |                |           |           | 1     | 1   |         |                |            |           |                  |               |
|     |              |      |            |                        | 1         |           |                |           |           |       |     |         |                |            |           | l                |               |
|     |              |      | 1          |                        |           |           |                |           |           |       | 1 1 |         | 1              |            |           |                  |               |
|     |              |      | -          |                        |           | 1         |                |           |           |       | 1   |         |                |            | 1 1       |                  |               |
|     |              |      |            |                        |           |           |                | 1         |           | ì     | 1 1 |         |                | i          |           |                  |               |
|     |              |      | 1          |                        |           | 1         |                |           | 1         |       | 1   |         |                |            | 1         |                  |               |
|     |              |      |            |                        |           |           |                |           |           |       | 1 1 |         | l              |            | 1 1       |                  | İ             |
|     |              |      |            |                        | 1         | 1         |                | 1         |           |       | 1   |         | 1              |            | 1 1       |                  | Į.            |
|     |              |      | 1          |                        |           |           |                |           |           |       | 1 1 |         | 1              |            | 1 1       |                  |               |
|     |              |      | 1          |                        |           |           |                |           | i         | Ì     | 1 1 |         |                |            | 1 1       |                  |               |
|     |              |      |            |                        |           |           |                | 1         |           |       |     |         | 1              |            |           |                  |               |
|     |              |      |            |                        |           | 1         |                | 1         |           |       | 1 1 |         | 1              |            |           |                  |               |
|     |              |      |            |                        |           | 1         |                | 1         |           |       | 1 1 |         | 1              |            |           |                  |               |
|     |              |      |            |                        | 1         | 1         | ĺ              |           | 1         |       |     |         | 1              | 1          | 1         |                  | 1             |
|     |              |      |            |                        |           |           |                |           |           |       |     |         |                | 1          |           |                  |               |
|     |              |      | 1          |                        |           |           | 1              | 1         |           |       |     |         | 1              | 1          |           |                  | ļ             |
|     |              |      |            |                        | İ         |           |                |           |           | 1     |     |         | 1              | 1          | 1 1       | ì                | 1             |
|     |              |      | l          |                        | 1         |           |                |           | 1         | 1     | 1 1 |         |                |            | 1 1       |                  |               |
|     |              |      |            |                        |           |           |                | 1         | 1         |       |     |         | 1              |            |           |                  |               |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

COLORADO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

UPPER COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

LOMA, COLORADO

|                                                    |            |                                         |       |         |                       |                                                                  |                       |                                                        |       |                                                                                                 |                                                                                                            | INF                           | PT                                                                                                             |                                                                                  |                                                                            |                            |                                          | ATON                                                           |                                                         |                                                                |                                                                  | _                                      |                                                                         | 1                      | MICROIN                      | /ERTEBR                      | ATES                         |                                       |                                                                                      |
|----------------------------------------------------|------------|-----------------------------------------|-------|---------|-----------------------|------------------------------------------------------------------|-----------------------|--------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------|------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------|------------------------|------------------------------|------------------------------|------------------------------|---------------------------------------|--------------------------------------------------------------------------------------|
| DA<br>OF SA                                        | TE<br>MP   | LE                                      |       | BLUE-   | GREEN                 | ALGAE (N                                                         |                       | FLAGEL<br>(Pigme                                       | LATES | DIATO                                                                                           | омѕ                                                                                                        | INE<br>DIAT<br>SHE<br>(No. pa | LLS                                                                                                            |                                                                                  | DOMII<br>(See                                                              | NANT<br>Introd             | SPECI                                    | ES AN                                                          | D PER                                                   | RCENT                                                          | ion*)                                                            |                                        | SHEATHED<br>ML.)                                                        | ml.)                   | RS<br>liter)                 | EA<br>liter)                 | DES<br>liter)                | OTHER ANIMAL FORMS<br>(No. per liter) | DOWINANT GENERA<br>(See Introduction<br>for Identification)                          |
| MONTH                                              | DAY        | YEAR                                    | TOTAL | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                                                          | FILA-<br>MENT-<br>OUS | GREEN                                                  | OTHER | CENTRIC                                                                                         | PENNATE                                                                                                    | CENTRIC                       | PENNATE                                                                                                        | FIRST                                                                            | PER.<br>CENTAGE                                                            | SECOND*                    | PER.<br>CENTAGE                          | THIRD#                                                         | PER-<br>CENTAGE                                         | FOURTH                                                         | PER-<br>CENTAGE                                                  | OTHER PER-<br>CENTAGE                  | OTHER MICROPLARKTOR,<br>FUNGI AND SHEATHED<br>MACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per m | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | (No. per                              | (Sec Int                                                                             |
| 10 2 11 12 2 2 2 2 3 3 4 4 2 5 6 6 2 7 7 1 8 8 9 1 | 4477060302 | 600660661661666666666666666666666666666 | 3000  |         | 50<br>90<br>20<br>20  | 70<br>90<br>20<br>20<br>60<br>40<br>40<br>80<br>370<br>290<br>20 |                       | 200<br>40<br>110<br>40<br>290<br>270<br>40<br>60<br>40 | 70    | 780<br>240<br>20<br>50<br>50<br>70<br>110<br>270<br>120<br>370<br>180<br>640<br>660<br>80<br>40 | 1270<br>1630<br>740<br>1520<br>210<br>1940<br>4780<br>1860<br>9520<br>700<br>38350<br>1760<br>1280<br>2990 | 20<br>20                      | 1720<br>1060<br>1450<br>3460<br>2880<br>3550<br>1980<br>1350<br>4080<br>150<br>770<br>850<br>460<br>150<br>710 | 92<br>92<br>92<br>92<br>92<br>92<br>35<br>86<br>51<br>92<br>92<br>92<br>92<br>92 | 40<br>30<br>20<br>20<br>20<br>20<br>10<br>30<br>10<br>70<br>90<br>50<br>30 | 36<br>36<br>26<br>75<br>36 | 1010201001001001001001001001001001001001 | 36<br>33<br>36<br>85<br>36<br>93<br>51<br>92<br>65<br>51<br>51 | 10<br>10<br>10<br>10<br>20<br>10<br>10<br>10<br>10<br>* | 31<br>93<br>86<br>65<br>93<br>86<br>31<br>65<br>65<br>69<br>12 | * 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 40000000000000000000000000000000000000 | 200 40 130 270                                                          | 10                     | 2 2 3 1 2 2 2                |                              | 2 2 3                        | 1                                     | 74753 7-9537- 75745758 75743 75753 75743 75753 75743 75743 75947- 4-777 78-7- 74-7-3 |

# ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

COLORADO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

UPPER COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

LOMA, COLORADO

|       | <br> |       |     |                     |       |                 |         |                     |                   |       |            |           |                              |          |               |                 |       |      |
|-------|------|-------|-----|---------------------|-------|-----------------|---------|---------------------|-------------------|-------|------------|-----------|------------------------------|----------|---------------|-----------------|-------|------|
|       | <br> | MPLE  |     |                     | E     | KTRACTABL       | ES      | ļ                   | <del></del>       |       |            | CHLOROF   | ORM EXTRA                    | ACTABLES |               |                 | Т     |      |
| HLNOW | YEAR | HTNOM | DAY | GALLONS<br>FILTERED | TOTAL | CHLORO-<br>FORM | ALCOHOL | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES | TOTAL | ALIPHATICS | AROMATICS | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS     | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES | LOSS |
| 4 1   | <br> |       | 24  | 3392                | 216   | 110             | 106     | 7                   | 24                | 26    | 4          | 3         | COMPOUNDS 17                 | 2        | 7             |                 | 20    | 23   |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

COLORADO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

UPPER COLORADO RIVER

STATION LOCATIONCOLORADO RIVER AT

LOMA, COLORADO

| DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           |                                        | Ī                                                                                              |                                                                                                                      |                | CHLORINE       | DEMAND          |                                  |                                                                                                                                             |                                                                                     |                                                                                                                                                                                                                                                            |                        | TURBIDITY                              | SULFATES                                                                  | PHOSPHATES | TOTAL<br>DISSOLVED                                                                                                                                                                          | COLIFORMS                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------|----------------|-----------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------|---------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DAY YEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TEMP.<br>(Degrees<br>Centigrade)                                          | DISSOLVED<br>OXYGEN<br>mg/l            | рН                                                                                             | B.O.D.<br>mg/l                                                                                                       | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l     | CHLORIDES<br>mg/l                                                                                                                           | ALKALINITY<br>mg/l                                                                  | HARDNESS<br>mg/l                                                                                                                                                                                                                                           | COLOR<br>(scale units) | (scale units)                          | mg/l                                                                      | mg/l       | solids<br>mg/l                                                                                                                                                                              | per 100 ml.                                                                                                                                                                              |
| 10 3 60<br>10 24 60<br>11 7 60<br>11 28 60<br>12 12 60<br>12 12 60<br>12 12 60<br>12 13 61<br>1 9 61<br>1 30 61<br>2 7 61<br>1 30 61<br>2 13 61<br>2 27 61<br>3 14 61<br>3 20 61<br>4 17 61<br>4 24 61<br>5 15 61<br>5 22 61<br>6 12 61<br>6 5 61<br>6 7 10 61<br>7 31 61<br>8 61<br>9 61<br>1 8 61<br>9 61<br>1 8 61<br>9 61<br>1 8 61<br>9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 61<br>1 9 | 16.0<br>13.0<br>4.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1 | 5.0<br>5.6<br>4.8<br>4.6<br>5.1<br>7.8 | 8.1<br>8.2<br>8.2<br>8.2<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 1.00<br>4.1<br>5.1<br>6.0<br>5.1<br>6.5<br>1.3<br>4.8<br>4.8<br>4.8<br>4.8<br>4.8<br>4.8<br>4.8<br>4.8<br>4.8<br>4.8 |                |                |                 | .8<br>.1<br>.2<br>.6<br>.4<br>.2 | 72<br>144<br>142<br>138<br>130<br>149<br>134<br>153<br>160<br>124<br>123<br>134<br>1120<br>802<br>760<br>50<br>88<br>89<br>124<br>140<br>87 | 132<br>112<br>92<br>104<br>100<br>-<br>93<br>176<br>184<br>172<br>164<br>200<br>140 | 728<br>6475<br>3284<br>475<br>3284<br>3400<br>34604<br>35208<br>488<br>2200<br>1682<br>2280<br>24608<br>4490<br>4662<br>3200<br>4668<br>3200<br>4668<br>3200<br>4668<br>3200<br>4668<br>3200<br>4668<br>4668<br>4668<br>4668<br>4668<br>4668<br>4668<br>46 |                        | 80<br>120<br>170<br>110<br>330<br>1000 | 6492<br>452<br>452<br>452<br>452<br>452<br>452<br>452<br>452<br>452<br>45 |            | 1376<br>1215<br>1407<br>1136<br>1198<br>1000<br>1190<br>1198<br>1062<br>1053<br>1053<br>1051<br>1026<br>884<br>513<br>378<br>454<br>513<br>378<br>454<br>513<br>880<br>1244<br>1632<br>1017 | 140<br>170<br>110<br>180<br>16<br>25<br>74<br>160<br>26<br>120<br>160<br>25<br>160<br>25<br>160<br>25<br>160<br>260<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>12 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station near Colorado-Utah State Line Operated by U.S. Geological Survey STATE

Colorado

MAJOR BASIN

Colorado River

MINOR BASIN

Upper Colorado River

STATION LOCATION

Colorado River at

Loma, Colorado

| D <b>a</b> y | October | November | December | January | February | March | April | May    | June   | July   | August         | September      |
|--------------|---------|----------|----------|---------|----------|-------|-------|--------|--------|--------|----------------|----------------|
| 1            | 1.980   | 2.800    | 2.300    | 2.150   | 2.440    | 2.190 | 2.320 | 2.990  | 18.300 | 3.040  | 1.960          | 2.410          |
| 2<br>3<br>4  | 1.960   | 2.990    | 2.460    | 2.130   | 2.560    | 2.230 | 2.260 | 4.200  | 18.100 | 3.110  | 2.200          | 2.340          |
| 3            | 1.900   | 2.920    | 2.660    | 2.190   | 2.540    | 2.360 | 2.240 | 5.620  | 17.000 | 2.920  | 2.460          | 2.730          |
|              | 1.880   | 3.010    | 2.900    | 1.950   | 2.540    | 2.400 | 2.340 | 6.910  | 14.300 | 2.740  | 2.810          | 3.590          |
| 5            | 1.850   | 2.850    | 3.100    | 1.910   | 2.480    | 2.380 | 2.430 | 7.570  | 11.900 | 2.660  | 2.850          | 4.140          |
| 6            | 1.870   | 2.930    | 3.040    | 1.850   | 2.480    | 2.380 | 2.860 | 6.670  | 10.800 | 2.430  | 2.350          | 4.200          |
| 7            | 1.920   | 2.990    | 2.490    | 2.000   | 2.460    | 2.380 | 3.130 | 5 330  | 10.800 | 2.290  | 2.120          | 4.160          |
| 8            | 1.880   | 3.100    | 2.290    | 2.200   | 2.410    | 2.280 | 3.240 | 4.540  | 11.100 | 2.240  | 1.730          | 4.160          |
| 9            | 1.980   | 3.100    | 2.260    | 2.400   | 2.480    | 2.190 | 3.150 | 3.790  | 12.200 | 2.340  | 1.500          | 6.320          |
| ro           | 2.080   | 3.040    | 2.610    | 2.500   | 2.380    | 2.150 | 2.880 | 3.320  | 14.100 | 2.380  | 1.340          | 4.740          |
| LI.          | 2.260   | 2.900    | 2.900    | 2.600   | 2.320    | 2.100 | 2.610 | 3.710  | 15.100 | 2.160  | 1.500          | 5.120          |
| .2           | 2.340   | 2.810    | 2.950    | 2.600   | 2.220    | 2.200 | 2.460 | 6.200  | 14.100 | 1.950  | 1.500          | 4.830          |
| .3<br>.4     | 2.380   | 2.780    | 2.730    | 2.400   | 2.240    | 2.400 | 2.290 | 9.400  | 13.600 | 1.780  | 1.520          | 4.410          |
|              | 2.520   | 2.920    | 2.640    | 2.300   | 2.260    | 2.220 | 2.230 | 9.940  | 12.200 | 1.590  | 1.580          | 3.850          |
| .5           | 2.760   | 2.900    | 2.510    | 2.300   | 2.160    | 2.260 | 2.340 | 7.930  | 11.000 | 1.490  | 1.590          | 3.630          |
| .6           | 2.850   | 2.850    | 2,340    | 2.400   | 2.160    | 2.410 | 2.320 | 6.340  | 10.400 | 1.420  | 1,640          | 3.350          |
| -7           | 2.920   | 2.900    | 2.060    | 2.400   | 2,400    | 2.760 | 2.090 | 5.740  | 9.850  | 1.450  | 1.760          | 3.340          |
| .8           | 2.880   | 2.740    | 1.980    | 2.520   | 2.430    | 2.990 | 1.880 | 6.000  | 9.340  | 1.590  | 1.760          | 3.850          |
| .9           | 2.780   | 2.710    | 2.340    | 2.510   | 2.510    | 3.130 | 1.700 | 6.880  | 8.830  | 1.570  | 2.090          | 4.260          |
| 20           | 2.860   | 2.850    | 2.610    | 2.490   | 2.380    | 2.860 | 1.950 | 9.110  | 8.170  | 1.550  | 1.960          | 4.110          |
| 21           | 2.950   | 3.040    | 2.690    | 2.400   | 2.430    | 2.800 | 2.850 | 11.300 | 7.870  | 1.610  | 1.900          | 4.300          |
| 2            | 2.930   | 2.830    | 2.690    | 2.280   | 2.430    | 2.620 | 3.750 | 11.100 | 7.630  | 1.630  | 1.760          | 5.090          |
| 23<br>24     | 2.850   | 2.730    | 2.760    | 2.230   | 2.430    | 2.640 | 3.350 | 11.300 | 6.790  | 1.690  | 1.650          | 6.880          |
| 14           | 2.810   | 2.800    | 2.830    | 2.260   | 2.380    | 2.740 | 3.430 | 15.100 | 5.900  | 1.860  |                | 7.630          |
| 5            | 2.740   | 2.780    | 2.690    | 2.480   | 2.350    | 2.780 | 3.490 | 15.200 | 5.330  | .1.880 | 1.590<br>2.020 | 7.360          |
| :6           | 2.760   | 2.740    | 2.560    | 2.490   | 2.240    | 2.800 | 3.040 | 14.900 | 4.920  | 1.640  | 2.220          | 6.220          |
| 27<br>28     | 2.690   | 2.760    | 2.540    | 2.570   | 2.340    | 2.920 | 2.410 | 16.000 | 4.450  | 1.530  | 2.230          | 5.8 <b>2</b> 0 |
| 28           | 2.640   | 2.760    | 2.520    | 2.460   | 2.280    | 2.880 | 1.980 | 17.000 | 3.890  | 1.420  | 2.300          | 5.8 <b>2</b> 0 |
| 9            | 2.850   | 2.850    | 2.410    | 2.490   |          | 2.540 | 1.760 | 18.100 | 3.610  | 1.460  | 2.290          | 5.940          |
| Ю            | 2.830   | 2.590    | 2.340    | 2.340   |          | 2.380 | 1.990 | 17.400 | 3.340  | 1.590  | 2.290          | 6. <b>22</b> 0 |
| 31           | 2.990   |          | 2.130    | 2.360   |          | 2.320 |       | 18.700 | ٠٠٠ م  | 1.820  | 2.380          | 0.220          |

STATE

OREGON

MAJOR BASIN

PACIFIC NORTHWEST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

COLUMBIA RIVER BELOW YAKIMA RIVER

STATION LOCATION COLUMBIA RIVER AT

CLATSKANIE, OREGON

|                |                    |           | RADIC     | ACTIVITY IN V | WATER     |           |       |   | RADIOAC | TIVITY IN PLAN | IKTON (dry) | RAD       | IOACTIVITY IN W | ATER  |
|----------------|--------------------|-----------|-----------|---------------|-----------|-----------|-------|---|---------|----------------|-------------|-----------|-----------------|-------|
| DATE<br>SAMPLE | DATE OF            |           | ALPHA     |               |           | BETA      |       | Ì | DATE OF | GROSS A        |             |           | GROSS ACTIVIT   |       |
| TAKEN          | DETERMI-<br>NATION | SUSPENDED | DISSOLVED | TOTAL         | SUSPENDED | DISSOLVED | TOTAL |   | NATION  | ALPHA          | BETA        | SUSPENDED |                 | TOTAL |
| D. DAY YEAR    |                    | μμς/Ι     | μμς/!     | μμε/Ι         | μμε/Ι     | μμε/!     | μμε/1 |   | MO. DAY | μμε/g          | μμc/g       | μμε/Ι     | μμc/l           | μμc/l |
|                |                    |           |           |               |           | ,,,       | 104   | 1 |         |                |             |           |                 |       |
| 3 60           | 10 17              | _         |           | _             | 3         | 191       | 194   |   | 1       |                |             | Ì         |                 |       |
| 10 60          | 10 31              | -         | -         | -             | 9         | 207       | 216   | Ì |         |                | 1           | ł         |                 |       |
| 17 60          | 10 31              | -         | -         | -             | 13        | 165       | 178   |   | 1       |                |             | ĺ         |                 |       |
| 24 60          | 11 14              | 0         | 1         | 1             | 5         | 0         | 5     |   | 1       |                | !           | İ         | 1               |       |
| 31 60          | 11 21              | -         | -         | -             | 3         | 138       | 141   |   | İ       |                |             |           |                 |       |
| 7 60           | 11 25              | -         | -         | -             | 6         | 161       | 167   |   | 1       |                | 1           |           |                 |       |
| 14 6C          | 12 16              |           | -         | -             | 6         | 155       | 161   |   |         |                | ļ [         | 1         | 1 1             |       |
| 21 60          | 12 16              | ١ ٥       | 1 1       | 1             | 23        | 96        | 119   |   |         |                | 1           |           |                 |       |
| 28 60          | 12 12              | Ö         | l i l     | 1             | 1 0       | 10        | 10    |   |         |                |             |           |                 |       |
| 5 60           | 12 29              |           |           | -             | 5         | 72        | 77    |   |         |                |             |           |                 |       |
|                | 12 30              | _         | _         |               | 30        | 178       | 208   |   |         |                |             |           |                 |       |
| 12 60          | 1 25               | _         | _         | _             | 1 0       | 80        | 80    |   |         |                |             |           | 1               |       |
| 19 60          |                    | _         |           | -             | 30        | 143       | 173   |   |         |                |             |           |                 |       |
| 27 60          | 1 18               | i         |           | _             | 0         | 148       | 148   |   |         |                | 1           |           |                 |       |
| 3 61           | 1 25               | -         |           | -             | 7         | 68        | 75    |   |         |                |             |           | į               |       |
| 961            | 1 31               | _         | -         | _             | 36        | 191       | 227   |   |         |                |             |           | 1               |       |
| l 16 61        | 2 2                | -         | _         |               | 66        | 211       | 277   |   |         |                |             |           |                 |       |
| L 23 61        | 2 6                | 0         | 0         | 0             | 1         | 183       | 226   |   |         |                | 1           | ľ         | 1               |       |
| l 30 61        | 2 15               | -         | - '       |               | 43        | 1         |       |   |         |                | 1 1         |           |                 |       |
| 2 6 61         | 3 1                | -         | _         | -             | 23        | 93        | 116   |   |         |                |             |           |                 |       |
| 2 13 61        | 3 2                | _         | -         | -             | 31        | 17        | 48    |   | 1       |                |             |           |                 |       |
| 2 20 61        | 3 8                | -         | _         | -             | 15        | 41        | 56    |   |         |                | 1           |           |                 |       |
| 2 27 61        | 3 20               | 0         | 0         | 0             | 17        | 33        | 50    |   |         |                |             |           |                 | Ì     |
| 3 6 61         | 3 29               | _         |           | _             | 22        | 41        | 63    |   |         |                |             |           |                 |       |
| 3 13 61        | 3 31               | _         | _         | _             | 16        | 57        | 73    |   |         |                |             | 1         | ļ               |       |
| 3 20 61        | 4 14               | _         | -         | _             | 20        | 29        | 49    |   |         |                | 1           |           |                 |       |
| 3 27 61        | 4 13               | 0         | 0         | 0             | 33        | 33        | 66    |   |         |                | 1           |           |                 |       |
| 4 3 61         | 4 19               | _         | _         | -             | 34        | 104       | 138   |   |         |                |             |           |                 | 1     |
| 4 10 61        | 4 28               | _         | _         |               | 16        | 81        | 97    |   |         |                |             | 1         |                 |       |
|                | 5 4                | _         | _         | -             | 35        | 93        | 128   |   |         |                | 1 !         |           |                 | 1     |
| 4 17 61        |                    | 0         | 1         | 1             | 18        | 101       | 119   |   |         |                |             | 1         |                 |       |
| 4 24 61        | 5 16               | 1 -       | 0         | ō             | 20        | 74        | 94    |   |         |                | l i         |           |                 | 1     |
| 5 1 61         | 5 24               | 0         | 0         | _             | 18        | 55        | 73    |   |         | Ì              | 1           |           | ì               |       |
| 5 8 61         | 5 31               | -         |           | i _           | 39        | 85        | 124   |   |         |                |             |           |                 |       |
| 5 15 61        | 6 2                | _         | _         | _             | 29        | 55        | 84    |   |         |                |             |           |                 |       |
| 5 22 61        | 6 15               | _         | _         |               | 26        | 28        | 54    |   |         | Ì              |             |           |                 |       |
| 5 29 61        | 6 27               | _         | _         |               | 14        | 9         | 23    |   |         | 1              |             |           |                 |       |
| 6 5 61         | 7 17               | _         | _         |               | 15        | 10        | 25    |   |         | 1              |             |           |                 |       |
| 6 12 61        | 7 6                | _         | -         | _             |           |           | 13    |   |         | l              |             |           |                 |       |
| 6 19 61        | 7 28               | -         | _         | -             | 0         | 13        | 22    |   |         | 1              |             |           |                 |       |
| 6 26 61        | 8 17               | 0         | 0         | 0             | 5         | 17        | 44    |   |         |                |             |           |                 |       |
| -              |                    |           |           |               | ľ         |           |       |   |         |                |             | İ         |                 | 1     |

STATE

OREGON

MAJOR BASIN

PACIFIC NORTHWEST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

COLUMBIA RIVER BELOW YAKIMA RIVER

STATION LOCATION COLUMBIA RIVER AT

CLATSKANIE, OREGON

| DATE                                                                                                              |                                                                                    | <del></del> | RADI      | DACTIVITY IN V                             | VATER                                                  |                                                                               |                                                                                | <br>RADIOA                    | CTIVITY IN PLA | NKTON (drv) | T | RAD                | DIOACTIVITY IN W | /ATER |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------|-----------|--------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------|----------------|-------------|---|--------------------|------------------|-------|
| SAMPLE                                                                                                            | DATE OF                                                                            |             | ALPHA     |                                            | 1                                                      | BETA                                                                          |                                                                                |                               |                | ACTIVITY    | İ |                    | GROSS ACTIVIT    |       |
| TAKEN                                                                                                             | DATE OF<br>DETERMI-<br>NATION                                                      | SUSPENDED   | DISSOLVED | TOTAL                                      | SUSPENDED                                              | DISSOLVED                                                                     | TOTAL                                                                          | DATE OF<br>DETERMI-<br>NATION | ALPHA          | BETA        |   | SÚSPENDED          | DISSOLVED        | TOTAL |
| MO. DAY YEAR                                                                                                      | MONTH DAY                                                                          | μμε/Ι       | μμc/l     | μμε/                                       | μμς/Ι                                                  | μμε/Ι                                                                         | μμε/Ι                                                                          | <br>MO. DAY                   | μμε/g          | μμc/g       |   | μμ <sub>C</sub> /I | μμε/Ι            | μμε/Ι |
| 7 3 61<br>7 10 61<br>7 19 61<br>7 24 61<br>8 2 61<br>8 7 61<br>8 24 61<br>9 5 61<br>9 14 61<br>9 14 61<br>9 25 61 | 8 1<br>8 4<br>8 4<br>8 30<br>9 1<br>9 22<br>9 26<br>9 21<br>10 27<br>10 12<br>10 9 | 0           | 1         | рве/ — — — — — — — — — — — — — — — — — — — | 6<br>13<br>45<br>18<br>23<br>20<br>20<br>65<br>20<br>8 | 31<br>62<br>54<br>58<br>67<br>126<br>63<br>78<br>117<br>94<br>43<br>113<br>80 | 37<br>75<br>99<br>76<br>90<br>147<br>63<br>80<br>119<br>100<br>48<br>133<br>88 | MO. DAY                       | ##c/g          | μμc/g       |   | <i>µµс/</i> 1      | μμε/I            | μμε/Ι |
|                                                                                                                   |                                                                                    |             |           |                                            |                                                        |                                                                               |                                                                                |                               |                |             |   |                    |                  |       |
|                                                                                                                   |                                                                                    |             |           |                                            |                                                        |                                                                               |                                                                                |                               |                |             |   |                    |                  |       |
|                                                                                                                   |                                                                                    | ŀ           |           |                                            |                                                        |                                                                               |                                                                                |                               |                |             |   |                    |                  |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

OREGON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

COLUMBIA RIVER BELOW YAKIMA RIVER

STATION LOCATION COLUMBIA RIVER AT

CLATSKANIE, OREGON

|                                                                   |                                         |                                                                                                       |         |                       |                                                              |                       |                                                          |                                  |                                                                                                                       |                                                                                                             | INF                                                                                                        | PT                          |                                                                                  |                                                                            |                                         | - DI                                                                                         | ATO                                  |                                         |                                                                                  |                 |                                                                                        | <u> </u>                                       | Γ                    | MICROIN                                                                                      | ÆRTEBR                                                             | ATES            | _              |                                                             |
|-------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------|---------|-----------------------|--------------------------------------------------------------|-----------------------|----------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------|------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------|----------------|-------------------------------------------------------------|
| DATE<br>OF SAMPLI                                                 | Æ                                       |                                                                                                       | BLUE-   |                       | GREE                                                         |                       | FLAGEL<br>(Pigma                                         |                                  | DIATO                                                                                                                 | oms                                                                                                         | SHE                                                                                                        | RT<br>TOM<br>LLS<br>er ml.) |                                                                                  | DOMI<br>(See                                                               | NANT<br>Introd                          | SPECI<br>uction                                                                              | ES AN                                | ID PE                                   | RCENT<br>atificati                                                               | AGES            |                                                                                        | коріланктов<br>вивлінкі<br>ті. ј               | M.)                  | IFIERS<br>. per liter)                                                                       | EA<br>liter)                                                       | DES<br>liter)   | MAL FORES      | boninant cenera<br>(See Introduction<br>for Identification) |
| MONTH                                                             | EAR                                     | TOTAL                                                                                                 | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                                                      | FILA-<br>MENT-<br>OUS | GREEN                                                    | OTHER                            | CENTRIC                                                                                                               | PENNATE                                                                                                     | CENTRIC                                                                                                    | PENNATE                     | FIRST#                                                                           | PER.<br>CENTAGE                                                            | SECOND®                                 | PER-<br>CENTAGE                                                                              | THIRD#                               | PER.<br>CENTAGE                         | FOURTH                                                                           | PER-<br>CENTAGE | OTHER PER-                                                                             | OTHER HICE<br>FUNGLAND<br>PACTERIA<br>(No. per | PROTOZO,<br>(No. per | ROTIFIE<br>(No. per                                                                          | CRUSTACEA<br>(No. per liter)                                       | (No. per liter) | OTHER ANIMAL F | See Int                                                     |
| 6 19 6<br>6 27 6<br>7 10 6<br>7 17 6<br>8 2 6<br>8 21 6<br>8 29 6 | 000000000000000000000000000000000000000 | 700<br>500<br>200<br>200<br>100<br>100<br>300<br>6100<br>4100<br>7600<br>4700<br>2100<br>2600<br>3600 | 20      | 40 130                | 20<br>20<br>20<br>20<br>110<br>250<br>80<br>70<br>270<br>270 | 20 90 20              | 20<br>20<br>20<br>20<br>20<br>20<br>80<br>40<br>20<br>80 | 70<br>50<br>20<br>20<br>20<br>20 | 420<br>250<br>220<br>130<br>70<br>70<br>50<br>50<br>110<br>2280<br>3820<br>3820<br>700<br>6570<br>780<br>1660<br>2730 | 180<br>140<br>200<br>70<br>90<br>20<br>250<br>200<br>380<br>2170<br>610<br>890<br>750<br>1160<br>520<br>520 | 110<br>20<br>50<br>90<br>110<br>290<br>70<br>220<br>410<br>830<br>180<br>2320<br>1330<br>500<br>420<br>230 | 1                           | 47<br>82<br>47<br>47<br>92<br>61<br>92<br>47<br>61<br>47<br>47<br>47<br>58<br>58 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>30<br>30<br>40<br>60<br>50 | 295<br>472<br>478<br>924<br>985<br>4747 | 10<br>10<br>10<br>10<br>10<br>10<br>20<br>10<br>10<br>10<br>20<br>10<br>20<br>20<br>30<br>30 | 4554471602559252721563<br>9964721563 | 100100100100100100100100100100100100100 | 56<br>56<br>56<br>56<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58 |                 | 50<br>70<br>70<br>70<br>60<br>70<br>60<br>70<br>40<br>30<br>60<br>40<br>20<br>20<br>20 | 150<br>20<br>70<br>50<br>130<br>20<br>90       | 20 10 10 20          | 11<br>1<br>1<br>1<br>1<br>1<br>2<br>6<br>2<br>2<br>7<br>18<br>123<br>392<br>168<br>76<br>147 | 1<br>1<br>1<br>1<br>1<br>1<br>9<br>12<br>18<br>7<br>13<br>11<br>10 |                 |                | 9-79                                                        |

#### ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

ORÉGON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

COLUMBIA RIVER BELOW YAKIMA RIVER

STATION LOCATION COLUMBIA RIVER AT

CLATSKANIE, OREGON

| DATE OF SAMPLE                                                                                                              |                                                              | Ε>                                                             | CTRACTABL                                                             | .ES                                                             |                                                     |                                                    |                                                   |                         |                   | ORM EXTR                                    | ACTABLES      |                           |                            |              |             |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|---------------------------------------------------|-------------------------|-------------------|---------------------------------------------|---------------|---------------------------|----------------------------|--------------|-------------|
| BEGINNING END                                                                                                               |                                                              |                                                                |                                                                       | 1                                                               |                                                     |                                                    |                                                   |                         | NEUTRALS          |                                             |               |                           |                            |              |             |
| MONTH DAY YEAR MONTH                                                                                                        | GALLONS<br>FILTERED                                          | TOTAL                                                          | CHLORO-<br>FORM                                                       | ALCOHOL                                                         | ETHER<br>INSOLUBLES                                 | WATER<br>SOLUBLES                                  | TOTAL                                             | ALIPHATICS              | AROMATICS         | OXYGEN-<br>ATED<br>COMPOUNDS                | LOSS          | WEAK<br>ACIDS             | STRONG<br>ACIDS            | BASES        | LOSS        |
| 10 18 60 10 26 11 1 60 11 10 12 6 60 12 15 12 27 60 1 3 61 2 9 2 28 61 3 9 3 28 61 4 6 4 25 61 5 4 5 31 61 8 17 8 29 61 9 8 | 3900<br>5820<br>4370<br>4780<br>4920<br>4880<br>4970<br>3300 | 287<br>83<br>81<br>100<br>111<br>102<br>99<br>132<br>120<br>96 | 49<br>15<br>23<br>37<br>31<br>*<br>39<br>47<br>42<br>51<br>22<br>*LAB | 238<br>68<br>58<br>63<br>80<br>76<br>63<br>52<br>90<br>69<br>74 | 1<br>0<br>0<br>2<br>1<br>-<br>1<br>2<br>0<br>1<br>0 | 10<br>2<br>4<br>6<br>6<br>-<br>10<br>11<br>11<br>4 | 21<br>9<br>10<br>11<br>11<br>14<br>13<br>20<br>11 | 4 2 1 1 1 2 2 2 2 4 2 2 | 2 1 1 1 2 1 2 1 1 | 15<br>6<br>8<br>8<br>8<br>9<br>9<br>13<br>7 | 000111-011111 | 8 2 3 7 5 7 5 7 5 7 5 7 3 | 2<br>2<br>-<br>3<br>5<br>3 | 100000-00101 | 51596-88982 |

STATE

OREGON

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN PACIFIC NURTHWEST

MINOR BASIN

COLUMBIA RIVER DELOW YAKIMA RIVER

STATION LOCATIONCOLUMBIA RIVER AT

CLATSKANIE, UREGUN

| DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                                                    |                                                              |                |                | CHLORINE       | DEMAND          |                              |                                        |                                |                                                                                                                         |                                                                  |                            |                                                                                                                                                                                                                |                                      |                                                                                                                            |                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------|--------------------------------------------------------------|----------------|----------------|----------------|-----------------|------------------------------|----------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------|
| DAY SEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TEMP.<br>(Degrees<br>Centigrade) | OXYGEN<br>mg/l                                     | рН                                                           | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l                      | ALKALINITY<br>mg/l             | HARDNESS<br>mg/l                                                                                                        | COLOR<br>(scale units)                                           | TURBIDITY<br>(scale units) | SULFATES<br>mg/l                                                                                                                                                                                               | PHOSPHATES<br>mg/l                   | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l                                                                                       | COLIFORMS<br>per 100 ml. |
| 10 10 60<br>10 10 60<br>10 124 60<br>11 1 60<br>11 21 60<br>11 21 60<br>12 12 60<br>12 12 60<br>12 12 60<br>12 12 60<br>12 12 60<br>13 1 61<br>14 1 60<br>15 1 60<br>16 1 60<br>17 1 60<br>18 60<br>19 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 1 60<br>10 | 17.5<br>                         | 12.5<br>7.8<br>-<br>12.5<br>-<br>11.6<br>-<br>11.2 | 7.96<br>7.66<br>7.66<br>7.66<br>7.66<br>7.67<br>7.67<br>7.67 | 1.8<br>        |                | .7             | 1.66            | -5                           | 8877767577866666646-34-4838447-3-66348 | 34<br>-<br>50<br>-<br>40<br>54 | 96<br>88<br>67<br>118<br>66<br>74<br>54<br>54<br>54<br>55<br>46<br>54<br>55<br>46<br>56<br>77<br>100<br>68<br>77<br>100 | 10<br>10<br>7<br>10<br>10<br>10<br>10<br>10<br>5<br>10<br>5<br>7 | 9                          | 23<br>19<br>19<br>18<br>20<br>14<br>10<br>20<br>19<br>21<br>16<br>19<br>21<br>18<br>30<br>51<br>51<br>13<br>14<br>16<br>16<br>17<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18 | -1<br>-1<br>-1<br>-0<br>-1<br>-2<br> | 104<br>106<br>109<br>115<br>111<br>88<br>105<br>107<br>89<br>72<br>96<br>138<br>90<br>75<br>71<br>93<br>88<br>83<br>70<br> | 1700<br>                 |

STATE

OREGON

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN PACIFIC NORTHWEST

MINOR BASIN

COLUMBIA RIVER BELOW YAKIMA RIVER

STATION LOCATIONCOLUMBIA RIVER AT

CLATSKANIE, UREGON

| DATE<br>OF SAMP             |                                        |                                  |                             | <del> </del>                                                       |                | 1              | CHLORINE       | DEMAND          |                              |                   |                    |                                                 |                          |                            |                                                       |                    | TOTAL                                       |                          |
|-----------------------------|----------------------------------------|----------------------------------|-----------------------------|--------------------------------------------------------------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|-------------------------------------------------|--------------------------|----------------------------|-------------------------------------------------------|--------------------|---------------------------------------------|--------------------------|
| МОМТН                       | YEAR                                   | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/l | рН                                                                 | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l                                | COLOR<br>(scale units)   | TURBIDITY<br>(scale units) | SULFATES<br>mg/l                                      | PHOSPHATES<br>mg/l | TOTAL DISSOLVED SOLIDS mg/l                 | COLIFORMS<br>per 100 ml. |
| 8 28<br>8 29<br>9 5<br>9 14 | 61<br>61<br>61<br>61<br>61<br>61<br>61 | 21.6                             | 8.3                         | 7.8<br>8.3<br>7.6<br>8.1<br>7.5<br>7.5<br>7.6<br>7.2<br>7.1<br>7.1 | 1.2            |                |                |                 | 1.00                         | 663854-4-         | 51<br>56           | 76<br>82<br>80<br>72<br><br>76<br>84<br>88<br>- | 5 5 10 5 5 5 10 10 10 10 | 019100110100               | 11<br>-<br>18<br>16<br>11<br>-<br>-<br>18<br>21<br>17 | 10 NN H 1 1 1 NO 1 | <br>105<br><br>91<br>84<br><br>88<br><br>93 | 1400                     |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Computed Data for Clatskanie, Oregon Data Supplied by U.S. Geological Survey

STATE

Oregon

MAJOR BASIN

Pacific Northwest

MINOR BASIN

Columbia River below Yakima River

STATION LOCATION

Columbia River at

Clatskanie, Oregon

| ·                                |                                                     |                                                     |                                                                | ·                                                              |                                                     |                                                                |                                                     |                                                                |                                                     |                                                                |                                                                |                                                     |
|----------------------------------|-----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|
| Day                              | October                                             | November                                            | December                                                       | January                                                        | February                                            | March                                                          | April                                               | May                                                            | June                                                | July                                                           | August                                                         | September                                           |
| 1<br>2<br>3<br>4<br>5            | 131.000<br>120.000<br>127.000<br>119.000<br>120.000 | 166.000<br>172.000<br>168.000<br>162.000<br>156.000 | 231.000<br>218.000<br>213.000<br>207.000<br>202.000            | 158.000<br>149.000<br>151.000<br>148.000<br>153.000            | 267.000<br>282.000<br>323.000<br>305.000<br>294.000 | 351.000<br>383.000<br>369.000<br>341.000<br>309.000            | 258.000<br>267.000<br>317.000<br>335.000<br>313.000 | 311.000<br>340.000<br>321.000<br>327.000<br>302.000            | 656.000<br>674.000<br>706.000<br>741.000<br>763.000 | 417.000<br>395.000<br>375.000<br>356.000<br>347.000            | 181.000<br>186.000<br>176.000<br>169.000<br>163.000            | 132.000<br>146.000<br>125.000<br>122.000<br>131.000 |
| 6<br>7<br>8<br>9<br>10           | 117.000<br>123.000<br>121.000<br>127.000<br>126.000 | 146.000<br>138.000<br>136.000<br>131.000<br>134.000 | 188.000<br>187.000<br>168.000<br>158.000<br>147.000            | 211.000<br>255.000<br>268.000<br>276.000<br>250.000            | 314.000<br>341.000<br>329.000<br>308.000<br>471.000 | 322.000<br>341.000<br>311.000<br>287.000<br>273.000            | 319.000<br>298.000<br>275.000<br>278.000            | 279.000<br>307.000<br>309.000<br>311.000<br>320.000            | 766.000<br>785.000<br>799.000<br>777.000<br>773.000 | 338.000<br>313.000<br>306.000<br>294.000<br>283.000            | 162.000<br>158.000<br>152.000<br>147.000<br>139.000            | 134.000<br>131.000<br>121.000<br>122.000<br>121.000 |
| 11<br>12<br>13<br>14<br>15       | 117.000<br>119.000<br>116.000<br>120.000<br>116.000 | 155.000<br>166.000<br>167.000<br>164.000<br>169.000 | 148.000<br>158.000<br>162.000<br>157.000<br>155.000            | 223.000<br>197.000<br>189.000<br>197.000<br>225.000            | 563.000<br>623.000<br>599.000<br>488.000<br>478.000 | 285.000<br>293.000<br>312.000<br>384.000<br>410.000            | 272.000<br>241.000<br>265.000<br>265.000<br>258.000 | 362.000<br>372.000<br>389.000<br>394.000<br>386.000            | 771.000<br>762.000<br>745.000<br>714.000<br>723.000 | 276.000<br>265.000<br>268.000<br>264.000<br>252.000            | 143.000<br>148.000<br>158.000<br>150.000<br>156.000            | 124.000<br>109.000<br>120.000<br>118.000<br>117.000 |
| 16<br>17<br>18<br>19<br>20       | 117.000<br>130.000<br>125.000<br>119.000<br>114.000 | 231.000<br>276.000<br>315.000<br>322.000<br>356.000 | 149.000<br>155.000<br>172.000<br>242.000<br>249.000            | 315.000<br>300.000<br>255.000<br>223.000<br>206.000            | 447.000<br>412.000<br>382.000<br>384.000<br>393.000 | 396.000<br>379.000<br>352.000<br>326.000<br>317.000            | 259.000<br>246.000<br>252.000<br>253.000<br>259.000 | 391.000<br>409.000<br>421.000<br>446.000<br>454.000            | 718.000<br>690.000<br>677.000<br>685.000<br>684.000 | 244.000<br>239.000<br>227.000<br>233.000<br>233.000            | 162.000<br>146.000<br>138.000<br>143.000<br>133.000            | 112.000<br>103.000<br>110.000<br>102.000<br>99.800  |
| 21<br>22<br>23<br>24<br>25       | 110.000<br>116.000<br>116.000<br>124.000<br>129.000 | 418.000<br>325.000<br>286.000<br>358.000<br>537.000 | 228.000<br>217.000<br>192.000<br>180.000<br>172.000            | 200.000<br>192.000<br>176.000<br>176.000                       | 440.000<br>548.000<br>498.000<br>460.000<br>449.000 | 309.000<br>308.000<br>309.000<br>316.000<br>312.000            | 236.000<br>240.000<br>265.000<br>246.000<br>245.000 | 458.000<br>472.000<br>497.000<br>515.000<br>519.000            | 661.000<br>637.000<br>608.000<br>579.000<br>550.000 | 233.000<br>238.000<br>230.000<br>224.000<br>222.000            | 131.000<br>122.000<br>120.000<br>126.000<br>117.000            | 108.000<br>106.000<br>107.000<br>100.000<br>101.000 |
| 26<br>27<br>28<br>29<br>30<br>31 | 129.000<br>150.000<br>174.000<br>172.000<br>166.000 | 468.000<br>385.000<br>312.000<br>274.000<br>253.000 | 169.000<br>177.000<br>167.000<br>163.000<br>163.000<br>153.000 | 173.000<br>171.000<br>170.000<br>170.000<br>179.000<br>236.000 | 415.000<br>386.000<br>369.000                       | 308.000<br>322.000<br>321.000<br>295.000<br>275.000<br>260.000 | 256.000<br>263.000<br>255.000<br>244.000<br>264.000 | 551.000<br>594.000<br>612.000<br>612.000<br>610.000<br>614.000 | 532.000<br>509.000<br>485.000<br>454.000<br>434.000 | 219.000<br>226.000<br>223.000<br>205.000<br>193.000<br>175.000 | 135.000<br>129.000<br>133.000<br>138.000<br>142.000<br>133.000 | 101.000<br>102.000<br>100.000<br>105.000<br>103.000 |

Computed as sum of Columbia River near The Dalles, Oregon plus 4 times the sum of Klickitat River near Pitt, Washington and Hood River and Conduit near Hood River, Oregon, plus Willamette River at Salem, Oregon plus 4.5 times the Cowlitz River at Castle Rock, Washington.

STATE

OREGON

MAJOR BASIN

PACIFIC NORTHWEST

# RADIOACTIVITY DETERMINATIONS

MINOR BASIN

COLUMBIA RIVER BELOW YAKIMA RIVE

STATION LOCATION COLUMBIA RIVER AT

BONNEVILLE, OREGON

| DATE<br>SAMPLE<br>TAKEN                                                                                                                                                                                   |                 |              |       | VATER     |           |       | KADIOAC                       | TIVITY IN PLAN | IKION (ary)     | I KAL     | DIOACTIVITY IN W | MIEK |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|-------|-----------|-----------|-------|-------------------------------|----------------|-----------------|-----------|------------------|------|
| TAVEL                                                                                                                                                                                                     | DATE OF         | ALPHA        |       | T         | BETA      |       | DATE OF                       | GROSS A        | CTIVITY         |           | GROSS ACTIVIT    |      |
| IAKEN                                                                                                                                                                                                     | NATION SUSPEND  | ED DISSOLVED | TOTAL | SUSPENDED | DISSOLVED | TOTAL | NATION                        | ALPHA          | BETA            | SUSPENDED | DISSOLVED        | T01  |
| MO. DAY YEAR M                                                                                                                                                                                            | MONTH DAY ##c/l | μμς/1        | μμc/l | μμε/Ι     | μμε/Ι     | μμε/ί | MO. DAY                       | μμc/g          | μμε/g           | μμε/1     | μμς/Ι            | μμ   |
| MO. DAY VEAR M  10 10 60 1  10 24 60 1  11 14 60 1  12 12 60 1  2 12 60 1  2 13 61 2  2 13 61 2  2 13 61 3  2 0 61 4 10 61 4 24 61 5  8 61 5 22 61 6 12 61 6 26 61 7 10 61 7 24 61 8 7 61 8 21 61 9 11 61 |                 | ED DISSOLVED |       | SUSPENDED | DISSOLVED |       | DATE OF<br>DETERMI-<br>NATION | GROSS A        | CTIVITY<br>BETA |           | DISSOLVED        |      |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

OREGON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

COLUMBIA RIVER BELOW YAKIMA RIVER

STATION LOCATION COLUMBIA RIVER AT

BONNEVILLE, OREGON

| DATE                 |                                                                                           |         |                       | ALGAE (A                                                         | lumber                | per ml.) '                              |                                        | <del></del>                                                                                                                                |                                                                                                                              | INE                                                                                                                           | RT                                                                                                                             | Γ                            |                                        |                                                                | DI                                                                                    | ATO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | vs.                                                                                                                       |                                                    |                                                                                 |                       | ·                                                                       |                           | MICROIN                                                   | VERTEBR                      | ATES                         | T .                                                                                                     |
|----------------------|-------------------------------------------------------------------------------------------|---------|-----------------------|------------------------------------------------------------------|-----------------------|-----------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------|------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------|
| OF SAMPLE            |                                                                                           | BLUE-   | GREEN                 | GREE                                                             | N                     | FLAGEL<br>(Pigmo                        |                                        | DIAT                                                                                                                                       | омѕ                                                                                                                          | INE<br>DIA<br>SHE<br>(No. p                                                                                                   | IOM<br>LLS<br>er ml.)                                                                                                          |                              | DOMI<br>(See                           | NANT<br>Introd                                                 | SPEC                                                                                  | IES AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ID PER<br>de Iden                                                                                                         | RCENT                                              | 'AGES<br>ion*)                                                                  |                       | SHEATHER<br>MI.)                                                        | nt.)                      | iter)                                                     | A<br>iter)                   | ES<br>iter)                  | aENERA<br>iduction<br>fication                                                                          |
| MONTH<br>DAY<br>YEAR | TOTAL                                                                                     | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                                                          | FILA-<br>MENT-<br>OUS | GREEN                                   | OTHER                                  | CENTRIC                                                                                                                                    | PENNATE                                                                                                                      | CENTRIC                                                                                                                       | PENNATE                                                                                                                        | FIRST                        | PER.<br>CENTAGE                        | SECOND*                                                        | PER-<br>CENTAGE                                                                       | THIRD#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PER.<br>CENTAGE                                                                                                           | FOURTH                                             | PER.<br>CENTAGE                                                                 | OTHER PER-<br>CENTAGE | OTHER MICEOFLARKTOR,<br>FURGI AND SHEATHED<br>SACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)                              | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | (No. per liter)  Dominany genera (See Introduction for Identification)                                  |
| 10                   | 500 1100 500 200 100 100 200 100 200 700 1200 2500 7000 5900 1000 6200 1300 600 2100 1000 | 20      | 40 80                 | 20<br>20<br>20<br>20<br>60<br>60<br>80<br>150<br>80<br>20<br>190 |                       | 20<br>20<br>20<br>40<br>20<br>60<br>130 | 20<br>20<br>20<br>20<br>20<br>20<br>20 | 160<br>860<br>110<br>40<br>40<br>70<br>70<br>20<br>200<br>330<br>4020<br>1330<br>220<br>5550<br>16520<br>7310<br>520<br>360<br>1590<br>700 | 500<br>1100<br>3100<br>1300<br>700<br>1800<br>900<br>1300<br>6700<br>11600<br>2920<br>44700<br>5400<br>11800<br>2250<br>1500 | 630<br>130<br>40<br>40<br>50<br>90<br>40<br>50<br>200<br>400<br>350<br>640<br>350<br>640<br>350<br>1410<br>270<br>1820<br>730 | 490<br>360<br>90<br>110<br>380<br>2250<br>470<br>450<br>360<br>4970<br>620<br>14970<br>750<br>1160<br>370<br>130<br>290<br>150 | 8225627547692599906157747747 | 33010000000000000000000000000000000000 | 4562<br>4522<br>150<br>905<br>1477<br>4617<br>448<br>485<br>45 | 10<br>10<br>10<br>10<br>20<br>20<br>*<br>10<br>20<br>20<br>20<br>20<br>20<br>40<br>20 | 2<br>92<br>61<br>92<br>82<br>82<br>61<br>92<br>95<br>26<br>89<br>25<br>89<br>25<br>89<br>25<br>89<br>25<br>89<br>26<br>89<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>89<br>26<br>8<br>26<br>8 | 10<br>20<br>10<br>10<br>10<br>10<br>20<br>*<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 92<br>61<br>54<br>45<br>74<br>62<br>95<br>99<br>92 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 10                    | 20<br>90<br>40<br>20<br>20<br>20<br>20<br>40                            | 10                        | 3<br>2<br>2<br>2<br>18<br>91<br>2288<br>141<br>107<br>173 | 4<br>1<br>3<br>1             | 1                            | <br><br><br>3-9<br>3-9<br>3-97-<br>3-977<br>3-977<br>3-977<br>3-977<br>3-977<br>3-977<br>4-9-7<br>4-9-7 |

## ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

OREGON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

COLUMBIA RIVER BELOW YAKIMA RIVER

STATION LOCATION COLUMBIA RIVER AT

BONNEVILLE, OREGON

|                                                                                                                                 |                                        |                                                  |                                                                                |                                                                                | TRACTABL                                                                   | FS                                                                    | 1                                              |                   |           | <del></del>                             | CHI OROF            | ORM EXTR                     | ACTABLES       |               |                 |                |           |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------|-------------------|-----------|-----------------------------------------|---------------------|------------------------------|----------------|---------------|-----------------|----------------|-----------|
| DATE OF S                                                                                                                       |                                        | E<br>ND                                          |                                                                                | E/                                                                             |                                                                            |                                                                       |                                                | I I               |           |                                         | NEUTRALS            |                              |                |               |                 | T              |           |
| DAY YEAR                                                                                                                        | MONTH                                  | T                                                | GALLONS<br>FILTERED                                                            | TOTAL                                                                          | CHLORO-<br>FORM                                                            | ALCOHOL                                                               | ETHER<br>INSOLUBLES                            | WATER<br>SOLUBLES | TOTAL     | ALIPHATICS                              | AROMATICS           | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS           | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES          | LOSS      |
| 10 24 60<br>11 14 60<br>12 12 60<br>1 9 61<br>2 13 61<br>3 6 61<br>4 10 61<br>5 8 61<br>6 12 61<br>7 10 61<br>8 7 61<br>9 11 61 | 11<br>12<br>1<br>2<br>3<br>4<br>5<br>6 | 20<br>18<br>24<br>21<br>25<br>*<br>24<br>21<br>* | 7312<br>3047<br>5333<br>4502<br>3265<br>4529<br>50343<br>14955<br>4079<br>7323 | 82<br>113<br>75<br>65<br>132<br>91<br>128<br>78<br>84<br>95<br>105<br>69<br>78 | 16<br>16<br>12<br>14<br>31<br>26<br>43<br>227<br>30<br>40<br>21<br>29<br>* | 66<br>97<br>63<br>51<br>101<br>65<br>85<br>57<br>65<br>48<br>49<br>42 | 0<br>0<br>0<br>0<br>0<br>-<br>2<br>-<br>1<br>- | 34339779-<br>ENT  | 76558699- | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 0 0 0 0 0 1 1 | 54446566-                    | 00001011101101 | 22124334-     | 1011222         | 01000011101101 | 33238874- |

STATE

OREGON

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

COLUMBIA RIVER BELOW YAKIMA RIVER

STATION LOCATIONCOLUMBIA RIVER AT

BONNEVILLE, OREGON

я

| DATE                                                                                                                                                                                         | _                                                                                                                     |                                                                                                                                |                                                                                 |                                                                                                                                                                                                                                  |                                                                                                   | CHLORINE                                                                               | DEMAND                                                                                                 |                                                                                                                                                    |                        |                                                                                                                |                    |                                                                                     |                                                      |                                                                                                  |                                           | TOTAL                                                                                                               |                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| DAY YEAR                                                                                                                                                                                     | TEMP.<br>(Degrees<br>Centigrade)                                                                                      | DISSOLVED<br>OXYGEN<br>mg/I                                                                                                    | pН                                                                              | B.O.D.<br>mg/l                                                                                                                                                                                                                   | C.O.D.<br>mg/l                                                                                    | I-HOUR<br>mg/l                                                                         | 24-HOUR<br>mg/l                                                                                        | AMMONIA-<br>NITROGEN<br>mg/I                                                                                                                       | CHLORIDES<br>mg/l      | ALKALINITY<br>mg/l                                                                                             | HARDNESS<br>mg/l   | COLOR<br>(scale units)                                                              | TURBIDITY<br>(scale units)                           | SULFATES<br>mg/l                                                                                 | PHOSPHATES<br>mg/l                        | DISSOLVED<br>SOLIDS<br>mg/l                                                                                         | per 100 ml.                                                                                    |
| 10 10 60<br>10 24 60<br>11 14 60<br>11 21 60<br>12 12 60<br>1 25 61<br>2 20 61<br>3 20 61<br>4 10 61<br>4 24 61<br>5 22 61<br>6 12 61<br>7 10 61<br>7 24 61<br>8 21 61<br>8 21 61<br>8 25 61 | 14.5<br>10.1<br>9.4<br>5.0<br>5.2<br>7.5<br>6.0<br>7.5<br>10.3<br>9.8<br>14.0<br>14.5<br>16.5<br>19.7<br>20.0<br>21.7 | 9.3<br>9.9<br>9.9<br>10.7<br>11.6<br>11.4<br>11.6<br>12.2<br>12.7<br>11.9<br>10.9<br>10.7<br>11.6<br>10.9<br>8.2<br>7.8<br>8.5 | 8.13<br>7.9<br>7.6<br>4.5<br>5.5<br>5.8<br>7.8<br>9.0<br>4.2<br>2.2<br>8.0<br>2 | 56<br>99<br>•7<br>•7<br>•7<br>•8<br>•7<br>•1<br>•9<br>•2<br>•1<br>•9<br>•1<br>•1<br>•1<br>•2<br>•1<br>•2<br>•2<br>•3<br>•4<br>•9<br>•1<br>•2<br>•2<br>•3<br>•4<br>•5<br>•6<br>•6<br>•6<br>•6<br>•6<br>•6<br>•6<br>•6<br>•6<br>•6 | 4<br>5<br>10<br>6<br>7<br>18<br>13<br>21<br>21<br>20<br>21<br>20<br>21<br>20<br>6<br>5<br>11<br>8 | -7<br>•4<br>•9<br>•5<br>•5<br>•3<br>•4<br>•1<br>•4<br>•4<br>•5<br>•4<br>•1<br>•6<br>•1 | -2 · 2 · 8 · 8 · 1 · 8 · 8 · 3 · 8 · 2 · 8 · 5 · 3 · 4 · 7 · 2 · 9 · 4 · 3 · 2 · 5 · 6 · 9 · 9 · 1 · 9 | 1<br>3<br>2<br>2<br>2<br>3<br>3<br>4<br>6<br>6<br>2<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 4445555543463322222234 | 70<br>76<br>70<br>76<br>70<br>76<br>70<br>76<br>77<br>60<br>76<br>60<br>51<br>51<br>52<br>53<br>53<br>55<br>65 | 778786666655556667 | 5<br>10<br>5<br>5<br>5<br>10<br>10<br>10<br>10<br>10<br>10<br>5<br>5<br>7<br>7<br>5 | 55555<br>0040<br>2055555<br>2055555<br>2055555555555 | 16<br>17<br>15<br>16<br>14<br>18<br>17<br>20<br>16<br>15<br>14<br>11<br>10<br>9<br>9<br>13<br>13 | 0 1 3 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 112<br>105<br>119<br>136<br>133<br>101<br>148<br>106<br>113<br>105<br>85<br>79<br>84<br>93<br>83<br>97<br>96<br>117 | 280<br>680<br>160<br>460<br>11<br>180<br>-<br>25<br>60<br>-<br>1<br>15<br>2<br>*1<br>*20<br>*1 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Computed Data for Bonneville, Oregon Supplied by U.S. Geological Survey

STATE

Oregon

MAJOR BASIN

Pacific Northwest

MINOR BASIN

Columbia River below Yakima River

STATION LOCATION

Columbia River at

Bonneville, Oregon

|          |         |           |                 |           |              | 16a.b        | April          | May         | June             | July       | August        | September |
|----------|---------|-----------|-----------------|-----------|--------------|--------------|----------------|-------------|------------------|------------|---------------|-----------|
|          | October | November  | December        | January   | February     | March        | 7.5            |             | 585.000          | 379.000    | 159.000       | 108.000   |
| ay)      | 0000    |           |                 |           |              | 184.000      | 166.000        | 210.000     | 592.000          | 357.000    | 165.000       | 116.000   |
|          |         |           | 119.000         | 99.500    | 126.000      | 190.000      | 156.000        | 230.000     | 611.000          | 338.000    | 154.000       | 97.900    |
| 1.       | 113.000 | 114.000   | 111.000         | 92,200    | 155.000      | 189.000      | 191.000        | 206.000     | 642.000          | 319.000    | 147.000       | 97.900    |
|          | 102.000 | 109.000   | 103.000         | 98.300    | 163.000      | 182.000      | 201.000        | 218.000     | 667.000          | 309.000    | 141.000       | 110.000   |
| 2        | 109.000 | 107.000   | 99.400          | 96.900    | 154.000      | 174.000      | 191.000        | 194.000     | 000.100          | 307.       |               |           |
| 3<br>4   | 102.000 | 109.000   | 100.000         | 96.300    | 153.000      | 1/4.000      |                |             | 674.000          | 295.000    | 139.000       | 113.000   |
| 5        | 102.000 | 108.000   | 100.000         | ,         |              | 176.000      | 212.000        | 182.000     |                  | 273.000    | 136.000       | 111.000   |
| 2        |         |           | 95.400          | 112.000   | 153.000      |              | 201.000        | 215.000     | 694.000          | 271.000    | 131.000       | 101.000   |
| 6        | 98.800  | 104.000   | 95.400          | 107.000   | 151.000      | 179.000      | 189.000        | 218.000     | 714.000          | 261.000    | 127.000       | 103.000   |
| 0<br>7   | 102.000 | 99.200    | 101.000         | 116.000   | 153.000      | 161.000      | 194.000        | 222.000     | 703.000          | 250.000    | 119.000       | 103.000   |
|          | 94.500  | 99.900    | 94.300          | 127.000   | 155.000      | 149.000      | 200.000        | 226.000     | 703.000          | 200.000    |               |           |
| 8        | 101.000 | 96.500    | 91.400          | 119.000   | 223.000      | 142.000      | 200,000        |             |                  | 242.000    | 123.000       | 106.000   |
| 9        | 99.200  | 101.000   | 84.300          | 119.000   |              |              | 201.000        | 262.000     | 707.000          | 230.000    | 129.000       | 92.300    |
| .0       | 971200  |           |                 | 110.000   | 235.000      | 152.000      | 169.000        | 274.000     | 699.000          | 230.000    | 139.000       | 102.000   |
|          | 94.000  | 100.000   | 92.700          | 90.800    | 230.000      | 153.000      | 189.000        | 294.000     | 685.000          | 233.000    | 130.000       | 102.000   |
| _1       | 96.000  | 98.500    | 94.700          | 88.200    | 229.000      | 162.000      | 188.000        | 306.000     | 655.000          | 229.000    | 136.000       | 100.000   |
| L2       | 92.700  | 101.000   | 96.400          | 92.000    | 212.000      | 171.000      |                | 301.000     | 662.000          | 217.000    | 130.000       | 200.000   |
| 13<br>14 | 96.200  | 99.800    | 93.400          | 92.000    | 200.000      | 166.000      | 186.000        | 302.000     |                  |            | 142.000       | 94.800    |
| 14       |         |           | 95.000          | 93.400    | 200.000      |              | .000           | 308.000     | 648.000          | 211.000    | 126,000       | 85.200    |
| 15       | 93.100  | 100.000   |                 | 000       | 186.000      | 168,000      | 189.000        | 325.000     | 614.000          | 207.000    |               | 91.900    |
|          | al: 000 | 111.000   | 94.400          | 101.000   | 173.000      | 177.000      | 178.000        | 333.000     | 599.000          | 197.000    | 119.000       | 84.900    |
| 16       | 94.900  | - \ 000   | 101.000         | 104.000   | 173.000      | 181.000      | 180.000        | 352.000     | 608.000          | 205.000    | 125.000       | 82.500    |
| 17       | 108.000 |           |                 | 101.000   | - 0- 000     | 182.000      | 180.000        | 352.000     | 613.000          | 206.000    | 114.000       | 02.500    |
| 17<br>18 | 104.000 |           |                 | 97.000    |              | 170.000      | 188.000        | 355.000     | 023.             |            |               | 91.40     |
| 19       | 98.200  |           |                 | 101.000   | 100,000      |              |                | 252 200     | 599.000          | 206.000    | 112.000       |           |
| 20       | 94.000  | 100.000   | ·               |           | 185.000      | 166.000      | 166.000        | 352.000     | 581.000          | 210.000    | 103.000       | 89.20     |
|          |         | 117.000   | 99.600          | 110.000   |              | 177.000      | 161.000        | 367.000     | 556.000          | 203.000    | 102.000       | 90.30     |
| 21       | 89.80   |           | 0 000           | 113.000   | 0 000        | 179.000      | 167.000        | 400.000     | 5 <b>2</b> 8.000 | 197.000    | 107.000       |           |
| 22       | 94.00   |           | · /             | 103.000   |              | 182.000      | 160.000        | 419.000     | 499.000          | 195.000    | 98.800        | 85.50     |
| 23       | 92.70   | 0 120.00  |                 | 108.000   |              |              | 167.000        | 434.000     | 499.000          |            |               |           |
| 23<br>24 | 91.30   | 0 131.00  |                 | 113.00    | 208.000      | 101.000      |                |             | 481.000          | 194.000    | 117.000       |           |
| 25       | 92.90   | 0 129.00  | . ,,,,,,,       |           |              | 187.000      | 184.000        | 470.000     | 1 = 0 000        | 202.000    | 112.000       |           |
| -/       |         | ^^        | 94.000          | 114.00    | 0 199.000    |              |                | 505.000     |                  | 199.000    | 116.000       | 85.29     |
| 26       | 95.20   |           | , , , , ,       |           | 0.000        |              |                | 530.000     |                  | 182.000    | 120.000       | 88.6      |
| 27       | 96.40   |           |                 | 118.00    | 190,000      |              |                | 535.000     |                  |            |               | 86.2      |
| 27<br>28 | 108.00  | 00 117.00 |                 |           |              | 184.000      | 000            | 534.000     | 393.000          | 153.000    |               | C         |
| 29       | 108.0   | nn 118.00 |                 | -35 00    | 20           | 174.000      |                | £100 000    | ١                |            |               |           |
|          | 109.0   | 00 123.00 | 103.00<br>96.40 | 124.00    | 00           | 165.000      | J              | •           |                  | tibdn=+c   | n and Hood    | River and |
| 30<br>31 | 110.0   | 00        | 90.40           | ,,,       |              |              | of K1          | ckitat Rive | er near Pitt     | , wasningu | JII ZIIG IIOG |           |
| $2\tau$  |         |           |                 | mhe Dalle | s. Oregon pl | us twice the | e amii or ivr. |             |                  |            |               |           |

Computed as sum of Columbia River near The Dalles, Oregon plus twice the sum of Klickitat River near Fire, magning out and accordance to the sum of Klickitat River near Fire, magning out and accordance to the sum of Klickitat River near Fire, magning out and accordance to the sum of Klickitat River near Fire, magning out and accordance to the sum of Klickitat River near Fire, magning out and accordance to the sum of Klickitat River near Fire, magning out and accordance to the sum of Klickitat River near Fire Dalles, Oregon plus twice the sum of Klickitat River near Fire Dalles, Oregon plus twice the sum of Klickitat River near Fire Dalles, Oregon plus twice the sum of Klickitat River near Fire Dalles, Oregon plus twice the sum of Klickitat River near Fire Dalles, Oregon plus twice the sum of Klickitat River near Fire Dalles, Oregon plus twice the sum of Klickitat River near Fire Dalles, Oregon plus twice the sum of Klickitat River near Fire Dalles, Oregon plus twice the sum of Klickitat River near Fire Dalles, Oregon plus twice the sum of Klickitat River near Fire Dalles, Oregon plus twice the sum of Klickitat River near Fire Dalles, Oregon plus twice the sum of Klickitat River near Fire Dalles, Oregon plus twice the sum of Klickitat River near Fire Dalles, Oregon plus twice the sum of Klickitat River near Fire Dalles, Oregon plus twice the sum of Klickitat River near Fire Dalles, Oregon plus twice the sum of Klickitat River near Fire Dalles, Oregon plus twice the sum of Klickitat River near Fire Dalles, Oregon plus twice the sum of Klickitat River near Fire Dalles, Oregon plus twice the sum of Klickitat River near Fire Dalles, Oregon plus twice the sum of Klickitat River near Fire Dalles, Oregon plus twice the sum of Klickitat River near Fire Dalles, Oregon plus twice the State River near Fire Dalles, Oregon plus twice the State River near Fire Dalles, Oregon plus twice the State River near Fire Dalles, Oregon plus twice the State River near Fire Dalles, Oregon plus twice the State River near Fire Dalles, Oreg

STATE

OREGON

MAJOR BASIN MINOR BASIN

PACIFIC NORTHWEST

RADIOACTIVITY DETERMINATIONS

COLUMBIA RIVER BELOW YAKIMA RIVER

STATION LOCATION COLUMBIA RIVER AT

MCNARY DAM, OREGON

|                   |                               |           | 2,210              |                | /ATER     |               | <del></del> |      | BADIOA                        | CTIVITY IN PLAN | IKTON (dry) | RA         | DIOACTIVITY IN V | /ATER          |
|-------------------|-------------------------------|-----------|--------------------|----------------|-----------|---------------|-------------|------|-------------------------------|-----------------|-------------|------------|------------------|----------------|
| DATE              |                               |           |                    | DACTIVITY IN V | AIER      | BETA          |             | ŀ    |                               | GROSS A         |             |            | GROSS ACTIVIT    | Υ              |
| SAMPLE<br>TAKEN   | DATE OF<br>DETERMI-<br>NATION |           | DISSOLVED          | TOTAL          | SUSPENDED | DISSOLVED     | TOTAL       |      | DATE OF<br>DETERMI-<br>NATION | ALPHA           | BETA        | SUSPENDED  | DISSOLVED        | TOTAL          |
|                   |                               | SUSPENDED |                    | μμς/Ι          | μμc/l     | μμε/Ι         | μμε/Ι       | - I- | MO. DAY                       | µµс/g           | μμc/g       | μμc/Ι      | μμε/Ι            | μ <b>μ</b> ε/Ι |
| MO. DAY YEAR      | MONTH DAY                     | μμε/Ι     | μμ <sub>c</sub> /Ι | μμς/1          | μμε/1     | <i>пре/</i> 1 |             |      | WO.   DA.                     |                 |             |            |                  |                |
|                   | 4 20                          | o         | 1                  | 1              | 56        | 205           | 261         |      |                               |                 |             |            |                  |                |
| 4 6 61<br>5 15 61 |                               | o l       | ī                  | î              | 102       | 182           | 284         |      |                               |                 |             | i          |                  |                |
|                   | 6 2                           | - 1       | ō                  | ō              | 16        | 135           | 151         |      |                               |                 |             |            | !                |                |
| 5 22 61           | 6 15                          | 0         |                    | 1              | 9         | 50            | 59          | 1    |                               |                 |             |            |                  |                |
| 5 29 61           | 6 15                          | 1         | 0                  | 0              | 12        | 44            | 56          |      | ĺ                             |                 | į           |            |                  |                |
| 6 5 61            | 7 5                           | 0         | 0                  | 0              |           | 24            | 30          |      |                               |                 | i           |            |                  |                |
| 6 12 61           | 7 7                           | 0         | 0                  |                | 6         |               | 45          |      |                               |                 | 1           | ĺ          |                  |                |
| 6 19 61           | 7 28                          | 0         | 0                  | 0              | 4         | 41            | 85          |      |                               |                 |             |            | 1                |                |
| 6 26 61           | 7 27                          | 0         | 0                  | 0              | 25        | 60            |             | - 1  | 1                             |                 | 1           |            |                  |                |
| 7 3 61            | 8 2                           | 0         | 0                  | 0              | 3         | 62            | 65          |      |                               |                 | 1           |            |                  |                |
| 7 10 61           | 8 2                           | 0         | 0 .                | 0              | 6         | 65            | 71          |      |                               |                 |             |            |                  |                |
| 7 17 61           | 8 7                           | 0         | 1                  | 1              | 6         | 77            | 83          |      |                               |                 |             |            |                  |                |
| 7 24 61           | 8 14                          | 0         | 0                  | 0              | 5         | 95            | 100         |      |                               |                 |             |            |                  |                |
| 7 31 61           | 9 7                           | 0         | 1                  | 1              | 14        | 19            | 33          | . 1  |                               |                 |             |            |                  |                |
| 8 7 61            | 9 1                           | 0         | 1                  | 1              | 17        | 204           | 221         |      |                               |                 |             | İ          |                  |                |
| 8 14 61           | 9 12                          | 0         | 0                  | 0              | 12        | 15            | 27          |      |                               |                 |             | İ          |                  |                |
| 8 21 61           | 9 25                          | 0         | 1                  | 1              | 3         | 86            | 89          | ļ    | }                             |                 |             |            |                  |                |
| 8 28 61           | 9 26                          | 0         | 1                  | 1              | 15        | 141           | 156         |      | 1                             |                 |             |            |                  |                |
| 9 4 61            | 10 6                          | 0         | 0                  | 0              | 16        | 46            | 62          | l    |                               |                 |             |            |                  |                |
| 9 11 61           | 10 18                         | Ō         | 1                  | 1              | 17        | 11            | 28          |      |                               |                 |             |            |                  |                |
| 9 18 61           | 10 19                         | ŏ         | ō                  | 0              | 21        | 154           | 175         |      |                               |                 |             |            |                  |                |
| 9 25 61           | 11 3                          | Ö         | ī                  | 1              | 29        | 357           | 386         |      |                               |                 |             |            |                  |                |
| 9 20 61           | 11 2                          | •         | -                  | -              |           | , ,           |             | 1    | 1                             |                 |             |            | 1                |                |
|                   |                               |           |                    |                |           |               | İ           |      |                               |                 |             |            |                  |                |
|                   |                               |           |                    |                |           |               | -           |      |                               |                 |             |            |                  |                |
|                   |                               |           |                    |                |           | !             | 1           |      |                               |                 |             |            |                  |                |
|                   |                               |           |                    |                |           | 1             | i           |      | İ                             |                 |             |            |                  |                |
|                   |                               |           |                    |                |           |               |             |      |                               |                 |             |            |                  |                |
|                   |                               |           |                    |                |           |               |             | - 1  |                               |                 |             | I          |                  |                |
|                   |                               |           |                    |                |           |               | 1           |      |                               |                 |             |            |                  |                |
|                   |                               |           |                    |                |           |               | İ           |      | i                             |                 | 1           |            |                  |                |
|                   |                               |           |                    |                |           |               |             | 1    | •                             | *               |             |            |                  |                |
|                   |                               |           |                    |                |           |               |             |      |                               |                 |             |            |                  |                |
|                   |                               |           |                    |                |           |               |             | - 1  |                               |                 |             |            |                  |                |
|                   |                               |           |                    |                |           |               | i           |      |                               |                 |             |            |                  |                |
|                   |                               |           |                    |                |           |               |             | - 1  |                               |                 |             |            |                  |                |
|                   |                               |           |                    |                |           |               |             | - 1  |                               |                 | 1           |            |                  |                |
|                   |                               |           |                    |                |           |               |             |      |                               |                 |             |            |                  |                |
|                   |                               |           |                    |                |           |               | į           |      |                               |                 |             |            |                  | 1              |
|                   |                               |           |                    |                |           | ] [           | i           |      |                               |                 |             |            | l.               | 1              |
|                   |                               | 1         |                    |                |           |               |             |      |                               |                 |             |            |                  |                |
|                   |                               |           |                    |                |           |               |             |      |                               |                 |             |            |                  |                |
|                   | 1                             |           |                    |                | 1         |               | i           |      |                               |                 | 1           | l <b>i</b> | 1                | 1              |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

OREGON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

COLUMBIA RIVER BELOW YAKIMA RIVER

STATION LOCATION COLUMBIA RIVER AT

MCNARY DAM, OREGON

|            |                          |                                  | 1                                                 |         |                       | ALGAE (2              | Number                | per ml.)              |                 |                                                        |                                                       | INE                                                 | RT                                    | Γ                                |                                        |                                        |                         | IATO                                        | MS                                    |                                        |                                    |                                        | ·                                                                       |                           | MICROIN                                          | /ERTEBR                      | ATES                         | T               |                                                             |
|------------|--------------------------|----------------------------------|---------------------------------------------------|---------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------|--------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|---------------------------------------|----------------------------------|----------------------------------------|----------------------------------------|-------------------------|---------------------------------------------|---------------------------------------|----------------------------------------|------------------------------------|----------------------------------------|-------------------------------------------------------------------------|---------------------------|--------------------------------------------------|------------------------------|------------------------------|-----------------|-------------------------------------------------------------|
|            | DATE<br>SAM              |                                  |                                                   | BLUE-   | GREEN                 | GREE                  | N                     | FLAGEI<br>(Pigm       | LATES<br>ented) | DIATO                                                  | омѕ                                                   | INE<br>DIA<br>SHE<br>(No. p                         | COM<br>LLS<br>or ml.)                 |                                  | DOM!<br>(See                           | NANT<br>Intro                          | SPEC                    | IES A                                       | ND PE                                 | RCEN'<br>ntificat                      | TAGES                              |                                        | PLANKTO<br>HEATHED<br>THE.)                                             | ml.)                      | B<br>iter)                                       | EA<br>iter)                  | ES<br>liter)                 | AL FORMS        | GENERA<br>pduction<br>(fication)                            |
| MONTH      | DAY                      | YEAR                             | TOTAL                                             | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID               | FILA-<br>MENT-<br>OUS | GREEN                 | OTHER           | CENTRIC                                                | PENNATE                                               | CENTRIC                                             | PENNATE                               | FIRST                            | PER                                    | SECOND#                                | PER.<br>CENTAGE         | THIRD#                                      | PER.<br>CENTAGE                       | FOURTH                                 | PER-                               | OTHER PER-<br>CENTAGE                  | OTHER HICROPLANKTON,<br>PUNGI AND SHEATHED<br>BACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)                     | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | (No. per liter) | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| 4566778899 | 15<br>5<br>19<br>3<br>17 | 61<br>61<br>61<br>61<br>61<br>61 | 1200<br>2600<br>1000<br>500<br>500<br>2100<br>500 | 20 20   |                       | 80<br>130<br>20<br>80 |                       | 20<br>20<br>80<br>170 | 20 20 20        | 600<br>510<br>200<br>160<br>270<br>4490<br>1350<br>250 | 510<br>2080<br>760<br>380<br>7990<br>460<br>20<br>210 | 200<br>160<br>110<br>20<br>1080<br>390<br>100<br>20 | 740<br>810<br>160<br>540<br>310<br>20 | 61<br>84<br>84<br>84<br>84<br>58 | 30<br>20<br>20<br>70<br>50<br>40<br>50 | 47<br>95<br>47<br>47<br>47<br>47<br>58 | 20 10 20 10 40 30 20 10 | 9<br>95<br>61<br>61<br>61<br>58<br>92<br>82 | 10<br>20<br>10<br>*<br>10<br>20<br>10 | 80<br>92<br>62<br>26<br>95<br>92<br>56 | 10<br>10<br>*<br>*<br>*<br>*<br>10 | 30<br>30<br>50<br>10<br>10<br>10<br>50 | 50<br>20                                                                |                           | 27<br>4<br>2<br>3<br>5<br>148<br>179<br>16<br>14 | 39 11 4 2                    |                              |                 | 3-9<br>37<br>7<br>3<br>3-9<br>976<br>97-<br>9-7             |

#### ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

OREGON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

COLUMBIA RIVER BELOW YAKIMA RIVER

STATION LOCATION COLUMBIA RIVER AT

MCNARY DAM, OREGON

| DATE OF SAMPLE   SEXTRACTABLES   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMP | B.M                        |                   |                      | 1                    | <del></del>      |                 |                |                     |                   |                |             |             |                 |          |               |                 |       |                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------|----------------------|----------------------|------------------|-----------------|----------------|---------------------|-------------------|----------------|-------------|-------------|-----------------|----------|---------------|-----------------|-------|-------------------------|
| Total   Chloro- Form   Alcohol   Ether   NSOLUBLES   NOTAL   Aliphatics   AROMATICS   NOTAL   Chloro- Form   Alcohol   Ether   NSOLUBLES   NOTAL   Aliphatics   AROMATICS   NOTAL   Aliphatics   AROMATICS   NOTAL   Aliphatics   AROMATICS   NOTAL   Aliphatics   AROMATICS   NOTAL   Aliphatics   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   NOTAL   ALIPHATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS   AROMATICS |                            |                   |                      |                      | E)               | KTRACTABL       | .ES            |                     | ,                 |                |             |             |                 | ACTABLES |               |                 |       |                         |
| 6 5 61 6 19 5000   115   57   58   1   12   15   2   1   12   0   7   6   1   7   3 61   7 17   5000   88   31   57   1   7   13   3   1   9   0   3   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                   |                      | GALLONS<br>FILTERED  | TOTAL            | CHLORO-<br>FORM | ALCOHOL        | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES | TOTAL          |             |             | OXYGEN-<br>ATED | LOSS     | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES | LOSS                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 5 61<br>7 3 61<br>8 7 61 | . 6<br>. 7<br>. 8 | 5 19<br>7 17<br>3 21 | 5000<br>5000<br>4930 | 115<br>88<br>106 | 57<br>31<br>34  | 58<br>57<br>72 | 1<br>1<br>0         | 12<br>7<br>8      | 15<br>13<br>13 | 2<br>3<br>2 | 1<br>1<br>1 | 12<br>9<br>10   | 0        | 7<br>3<br>5   | 6<br>1<br>2     | 1     | 11<br>15<br>5<br>5<br>4 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station below McNary Dam, Oregon Operated by U.S. Geological Survey STATE

Oregon

MAJOR BASIN

Pacific Northwest

MINOR BASIN

Columbia River below Yakima River

STATION LOCATION

Columbia River at

McNary Dam, Oregon

| Day                        | October                                                      | November                                                 | December                                                 | January                                             | February                                            | March                                                          | April                                               | May                                                            | June                                                | July                                                           | August                                                        | September                                        |
|----------------------------|--------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|
| 1<br>2<br>3<br>4           | 96.200<br>97.100<br>98.600<br>94.400                         | 102.000<br>98.800<br>97.800<br>102.000                   | 108.000<br>93.500<br>89.400<br>86.900                    | 87.200<br>87.600<br>86.600<br>87.300<br>89.300      | 118.000<br>134.000<br>134.000<br>132.000<br>133.000 | 163.000<br>167.000<br>164.000<br>156.000<br>155.000            | 151.000<br>167.000<br>177.000<br>170.000<br>184.000 | 209.000<br>198.000<br>196.000<br>196.000<br>159.000            | 576.000<br>584.000<br>610.000<br>642.000<br>654.000 | 353.000<br>337.000<br>318.000<br>302.000<br>291.000            | 158.000<br>151.000<br>141.000<br>138.000                      | 103.000<br>97.900<br>89.000<br>94.000<br>106.000 |
| 5<br>6<br>7<br>8<br>9      | 91.100<br>92.000<br>93.800<br>94.400<br>89.900<br>85.200     | 98.600<br>92.700<br>88.700<br>87.500<br>95.800<br>90.300 | 85.800<br>88.200<br>88.000<br>84.400<br>81.900<br>80.600 | 101.000<br>99.400<br>108.000<br>109.000<br>99.500   | 127.000<br>132.000<br>129.000<br>129.000<br>142.000 | 156.000<br>152.000<br>140.000<br>128.000<br>127.000            | 184.000<br>178.000<br>172.000<br>185.000            | 187.000<br>204.000<br>204.000<br>200.000<br>235.000            | 664.000<br>696.000<br>692.000<br>686.000<br>690.000 | 270.000<br>259.000<br>255.000<br>246.000<br>235.000            | 129.000<br>124.000<br>127.000<br>111.000<br>115.000           | 105.000<br>97.900<br>92.200<br>99.500<br>93.200  |
| 11<br>12<br>13<br>14       | 89.300<br>85.900<br>86.100<br>91.500<br>87.200               | 89.000<br>91.700<br>91.500<br>91.000<br>94.700           | 86.200<br>81.900<br>82.300<br>86.200<br>86.800           | 87.600<br>80.900<br>84.700<br>85.700<br>88.700      | 164.000<br>179.000<br>172.000<br>165.000<br>156.000 | 132.000<br>138.000<br>141.000<br>133.000<br>133.000            | 168.000<br>163.000<br>177.000<br>171.000<br>174.000 | 251.000<br>274.000<br>285.000<br>287.000<br>281.000            | 689.000<br>676.000<br>659.000<br>659.000            | 224.000<br>225.000<br>222.000<br>213.000<br>205.000            | 115.000<br>128.000<br>126.000<br>128.000<br>135.000           | 91.300<br>91.100<br>95.400<br>93.400<br>100.000  |
| 16<br>17<br>18<br>19       | 93.400<br>98.600<br>93.600<br>86.800<br>85.800               | 97.600<br>103.000<br>101.000<br>94.000<br>101.000        | 89.900<br>102.000<br>93.200<br>86.600<br>85.900          | 91.300<br>85.400<br>85.500<br>90.100<br>93.100      | 147.000<br>146.000<br>160.000<br>160.000<br>159.000 | 148.000<br>147.000<br>161.000<br>151.000<br>139.000            | 169.000<br>164.000<br>160.000<br>175.000<br>155.000 | 303.000<br>314.000<br>325.000<br>335.000<br>336.000            | 617.000<br>577.000<br>590.000<br>603.000<br>589.000 | 200.000<br>190.000<br>193.000<br>196.000<br>197.000            | 121.000<br>114.000<br>114.000<br>112.000<br>103.000           | 80.900<br>77.000<br>78.400<br>79.900<br>80.500   |
| 21<br>22<br>23<br>24<br>25 | 87.300<br>87.100<br>82.200<br>83.400<br>82.600               | 102.000<br>106.000<br>103.000<br>100.000<br>105.000      | 101.000<br>92.400<br>85.500<br>85.200<br>84.700          | 100.000<br>95.800<br>92.700<br>101.000<br>103.000   | 153.000<br>156.000<br>192.000<br>186.000<br>181.000 | 146.000<br>160.000<br>150.000<br>155.000<br>155.000            | 150.000<br>148.000<br>152.000<br>149.000<br>159.000 | 341.000<br>365.000<br>396.000<br>408.000<br>441.000            | 578.000<br>550.000<br>529.000<br>496.000<br>472.000 | 202.000<br>200.000<br>185.000<br>189.000<br>182.000            | 95.000<br>89.900<br>95.300<br>104.000<br>112.000              | 80.800<br>84.400<br>80.800<br>84.100<br>76.000   |
| 26<br>27<br>28<br>29<br>30 | 89.400<br>95.900<br>100.000<br>100.000<br>101.000<br>104.000 | 105.000<br>105.000<br>104.000<br>115.000<br>105.000      | 81,700<br>82,300<br>85,000<br>90,800<br>88,600<br>89,000 | 106.000<br>107.000<br>107.000<br>105.000<br>104.000 |                                                     | 167.000<br>183.000<br>173.000<br>158.000<br>148.000<br>149.000 | 179.000<br>174.000<br>171.000<br>156.000<br>168.000 | 474.000<br>503.000<br>524.000<br>514.000<br>522.000<br>535.000 | 457.000<br>437.000<br>408.000<br>394.000<br>375.000 | 187.000<br>186.000<br>178.000<br>168.000<br>158.000<br>152.000 | 107.000<br>105.000<br>112.000<br>119.000<br>114.000<br>97.900 | 78.900<br>79.600<br>79.800<br>83.100<br>80.500   |

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

MIDDLE AND LOWER SNAKE RIVER

STATION LOCATION COLUMBIA RIVER AT

PASCO, WASHINGTON

ο.

| DATE        |                    |           | RADIO     | DACTIVITY IN V | VATER     |           |       | <br>RADIOAC                   | TIVITY IN PLA | NKTON (dry) | RAD       | IOACTIVITY IN Y | VATER |
|-------------|--------------------|-----------|-----------|----------------|-----------|-----------|-------|-------------------------------|---------------|-------------|-----------|-----------------|-------|
| SAMPLE      | DATE OF            |           | ALPHA     |                |           | BETA      |       | DATE OF<br>DETERMI-<br>NATION | GROSS         | CTIVITY     |           | GROSS ACTIVIT   | Y     |
| TAKEN       | DETERMI-<br>NATION | SUSPENDED | DISSOLVED | TOTAL          | SUSPENDED | DISSOLVED | TOTAL | NATION                        | ALPHA         | BETA        | SUSPENDED | DISSOLVED       | TOTAL |
| D. DAY YEAR | MONTH DAY          | μμε/Ι     | μμc/l     | μμc/l          | μμε/1     | μμc/l     | μμc/l | <br>MO, DAY                   | <i>µµс/</i> g | μμс/g       | ##c/I     | μμc/l           | ##c/l |
| 3 60        | 10 19              |           |           | _              | 59        | 761       | 820   |                               |               |             |           |                 |       |
| 17 60       | 11 1               | 0         | 2         | 2              | 114       | 676       | 790   |                               |               |             |           |                 |       |
| 24 60       | 11 9               | 0         | 2         | 2              | 58        | 601       | 659   |                               |               |             |           |                 |       |
| 31 60       | 11 18              | _         | _         | -              | 48        | 671       | 719   |                               |               |             |           |                 |       |
| 7 60        | 11 25              |           | _         |                | 76        | 1027      | 1103  |                               |               |             |           |                 |       |
| 28 60       | 12 12              | o         | 1         | 1              | 68        | 1123      | 1191  | 1                             |               | <b> </b>    |           |                 |       |
| 5 60        | 12 30              |           | _         | _              | 63        | 694       | 757   |                               |               | 1           |           |                 |       |
| 12 60       | 1 3                | _         |           |                | 864       | 989       | 1073  |                               |               | 1           |           |                 |       |
| 19 60       | 1 25               | _         | _         | -              | 35        | 489       | 524   |                               |               |             |           |                 |       |
| 27 60       | 1 20               | 0 1       | 2         | 2              | 113       | 731       | 844   |                               |               |             |           |                 |       |
| 3 61        | 1 24               | _         | _         | _              | 188       | 962       | 1150  |                               |               | 1           |           |                 |       |
| 9 61        | 1 27               | _         | _         | _              | 169       | 851       | 1020  |                               |               |             | ļ         |                 |       |
| 16 61       | 2 2                |           | -         | -              | 168       | 651       | 819   |                               |               | 1           | Ì         |                 |       |
| 23 61       | 2 15               | 0         | 1         | 1              | 74        | 621       | 695   |                               |               | 1           | Ì         |                 |       |
| 30 61       | 2 16               | -         | _         | _              | 69        | 706       | 775   |                               |               |             | ŀ         |                 |       |
| 6 61        | 2 21               |           |           | -              | 105       | 794       | 899   |                               |               |             |           |                 |       |
| 14 61       | 3 6                | _         | _         | _              | 151       | 760       | 911   |                               |               |             |           |                 |       |
| 20 61       | 3 9                | -         | -         | -              | 52        | 467       | .519  |                               |               |             |           |                 |       |
| 27 61       | 3 17               | 0         | 0         | 0              | 87        | 398       | 485   |                               |               |             | j         |                 |       |
| 6 61        | 3 28               | _         | _         | -              | 108       | 512       | 620   | 1                             |               | 1           |           |                 |       |
| 13 61       | 3 31               | _         |           | -              | 89        | 505       | 594   |                               |               |             |           |                 |       |
| 20 61       | 4 5                |           |           | _              | 128       | 612       | 740   |                               |               |             |           |                 |       |
| 27 61       | 4 17               | 0         | 0         | 0              | . 89      | 474       | 563   |                               |               |             |           |                 |       |
| 3 61        | 4 20               | _         | _         | <u> </u>       | 183       | 630       | 813   |                               |               |             |           |                 |       |
| 10 61       | 5 2                |           | _         | -              | 58        | 351       | 409   |                               |               |             |           |                 |       |
| 17 61       | 5 22               | _         | _         |                | 48        | 280       | 328   |                               |               |             |           |                 |       |
| 1 61        | 5 17               |           | _         |                | 96        | 398       | 494   |                               |               | 1           |           |                 |       |
| 8 61        | 5 26               |           |           |                | 107       | 368       | 475   |                               |               |             | İ         |                 |       |
| 15 61       | 6 2                |           | _         | -              | 67        | 365       | 432   |                               |               |             |           |                 |       |
| 22 61       | 6 15               | _         |           |                | 32        | 117       | 149   |                               |               |             |           |                 |       |
| 29 61       | 7 10               |           | _         | -              | 25        | 40        | 65    |                               |               | 1           |           |                 |       |
| 5 61        | 7 6                | _         | _         | _              | 9         | 46        | 55    |                               |               | 1           |           |                 |       |
| 12 61       | 7 7                | _         | _         |                | 7         | 39        | 46    |                               |               | [           |           | 1               |       |
| 19 61       | 7 14               | _         | -         | -              | 6         | 46        | 52    |                               |               | 1 1         |           |                 |       |
| 26 61       | 8 1                | 0         | 0         | 0              | 4         | 35        | 39    |                               |               |             |           |                 |       |
| 5 61        | 9 6                |           |           | -              | 16        | 50        | 66    |                               |               | j           |           |                 |       |
| 10 61       | 8 3                | _         | _         |                | 14        | 149       | 163   |                               |               | 1           |           |                 |       |
| 7 17 61     | 8 14               | _         |           | ~              | 6         | 109       | 115   |                               |               | ]           |           |                 |       |
| 24 61       | 8 23               | 0         | 0         | 0              | 11        | 148       | 159   |                               |               |             |           |                 |       |
| 31 61       | 9 1                | 1         |           | 2              | 10        | 115       | 125   |                               |               |             |           |                 |       |
| J1 01       | * *                | _         | *         | _              |           |           |       | 1                             |               |             |           |                 |       |

RADIOACTIVITY DETERMINATIONS

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

MIDDLE AND LOWER SNAKE RIVER

STATION LOCATION COLUMBIA RIVER AT

PASCO, WASHINGTON

|              |                               |                    |           |               |           |           |       |     |     | ADIOAC                | IVITY IN PLANK | TON (dry)     |      |           | OACTIVITY IN W |       |
|--------------|-------------------------------|--------------------|-----------|---------------|-----------|-----------|-------|-----|-----|-----------------------|----------------|---------------|------|-----------|----------------|-------|
|              |                               |                    | RADIO     | ACTIVITY IN W | ATER      |           |       | -   |     |                       | GROSS AC       | TIVITY        |      |           | GROSS ACTIVITY |       |
| DATE         |                               |                    | ALPHA     |               |           | BETA      |       |     | DET | E OF<br>ERMI-<br>TION | ALPHA          | BETA          | _  - | SUSPENDED | DISSOLVED      | TOTAL |
| SAMPLE       | DATE OF<br>DETERMI-<br>NATION | SUSPENDED          | DISSOLVED | TOTAL         | SUSPENDED | DISSOLVED | TOTAL |     |     | DAY                   | μμc/g          | μμc/g         |      | μμε/Ι     | μμε/1          | μμc/l |
| TAKEN        |                               | SUSPENDED<br>μμc/l | μμε/1     | μμς/Ι         | μμε/1     | μμc/l     | μμε/1 |     | MO. | DAT                   | PP-/ B         | <del>-:</del> |      |           |                |       |
| MO. DAY YEAR | MONTH DAY                     | рис/1              |           |               |           | ì         |       |     |     | 4                     | -              | 1             |      |           |                |       |
|              |                               |                    |           |               | 21        | 222       | 243   | - 1 |     | ļ                     |                |               | 1    |           |                |       |
| 8 7 61       | 9 8                           | -                  | _         |               | 14        | 208       | 222   | ļ   |     |                       |                |               | 1    | 1         | ļ              |       |
| 8 15 61      | 9 21                          | -                  | _         | _             | 5         | 177       | 182   |     |     | 1                     |                |               | - 1  |           |                |       |
| 8 21 61      | 9 25                          |                    |           | 0             | 13        | 187       | 200   | ]   |     | 1                     |                | 1             | - 1  |           |                |       |
| 8 28 61      | 9 28                          | 0                  | 0         | _             | 13        | 173       | 186   |     | l   | 1                     |                | ļ             | 1    | *         |                |       |
| 9 11 61      | 10 30                         | -                  |           |               | 61        | 445       | 506   |     |     | i                     |                | 1             |      |           |                |       |
| 9 18 61      | 10 11                         | -                  | 1         | ٥             | 64        | 553       | 617   |     | İ   | ì                     |                |               | i    |           |                |       |
| 9 25 61      | 10 11                         | 0                  | 0         | U             | "         |           | į.    |     | Ì   | i                     |                |               | - 1  |           |                |       |
|              |                               |                    |           |               |           |           |       |     | l   |                       | Į.             |               | - 1  |           | [              |       |
|              |                               |                    |           |               |           |           |       |     | 1   |                       |                | İ             | 1    |           | ļ \            |       |
|              |                               | 1                  | ì         |               | 1         |           |       |     | Į.  |                       | ļ              |               | - 1  |           |                |       |
|              |                               | }                  |           |               |           |           |       |     | ļ   | ļ                     | Į.             | l             | l    |           |                |       |
|              | ì                             |                    | 1         |               | 1         | Į į       |       |     | 1   |                       | Y              | i             | 1    |           |                |       |
|              | 1                             |                    | 1         |               | ł         |           | ļ     |     | ļ   |                       |                | i             | - 1  |           |                |       |
|              | 1                             | į                  | <b>!</b>  |               | ļ         |           |       |     | 1   |                       |                |               |      |           |                |       |
|              |                               |                    |           |               |           |           | l l   |     | 1   |                       |                | ļ             | ļ    |           |                |       |
|              |                               |                    |           |               |           | 1         | ì     |     | -   |                       |                |               | 1    |           |                |       |
|              | Į                             | 1                  |           |               | Ì         |           |       |     | 1   | 1                     |                |               |      |           |                |       |
|              | İ                             |                    |           |               | 1         |           | 1     |     | 1   | ł                     |                |               |      |           | ,              |       |
|              | 1                             | 1                  |           |               | Į         |           |       |     |     | 1                     |                |               |      |           | 1              |       |
|              | İ                             | 1                  |           |               |           |           |       |     | 1   | 1                     |                |               |      |           |                | l     |
|              | 1                             |                    | i         |               |           |           | 1     |     | 1   | - 1                   |                |               |      |           |                |       |
|              | 1                             | 1                  |           |               |           |           |       | i   | 1   | 1                     |                |               |      |           |                |       |
|              | 1                             | 1                  |           |               | 1         |           |       | 1   |     |                       |                |               |      |           |                |       |
|              | 1                             | ł                  |           |               |           |           |       | į   | 1   |                       |                | ·             |      |           |                |       |
|              | i                             | \                  |           |               |           |           |       | 1   | 1   |                       |                |               | Ì    |           |                |       |
|              | ì                             |                    |           |               | 1         | 1         |       | l   | 1   |                       |                |               | Ì    | İ         |                | l     |
|              | 1                             | Ţ                  | l         |               | Ì         |           |       | i   |     |                       |                |               | İ    | 1         |                |       |
|              |                               | 1                  |           |               |           |           |       | İ   | 1   |                       |                |               | ]    | l         |                |       |
|              |                               |                    |           |               | 1         |           | ļ     | i i | -   |                       |                |               | İ    | 1         |                |       |
|              |                               |                    |           |               |           |           |       | l   | l   |                       | ŀ              |               | ļ    |           |                | 1     |
|              | -                             |                    |           |               |           |           |       | Ì   |     |                       | ł              |               |      |           |                |       |
|              |                               |                    |           | ļ             |           |           |       | ì   | -   |                       | 1              |               | 1    | ļ         |                |       |
|              |                               |                    |           |               |           |           |       | 1   |     |                       | l              |               | 1    | ļ         |                |       |
|              |                               |                    |           |               |           |           |       | 1   |     |                       | 1              |               | 1    | 1         |                |       |
|              |                               | 1                  |           | 1             |           |           |       | 1   | -   |                       |                |               | ì    | 1         |                |       |
|              |                               | 1                  |           |               |           |           |       | 1   | -   |                       |                | 1             | 1    | i         |                |       |
|              |                               | l                  |           |               |           |           | 1     | 1   |     |                       |                |               | 1    | 1         |                |       |
|              |                               |                    | 1         | 1             |           |           |       |     |     |                       |                |               | i    |           |                |       |
|              |                               | 1                  |           | 1             | 1         |           |       | 1   |     |                       |                |               | 1    |           |                |       |
|              |                               |                    |           |               |           | 1         |       | 1   |     |                       | 1              |               |      | 1         |                |       |
|              |                               |                    | 1         |               | 1         |           |       |     | - 1 |                       |                |               | 1    |           |                |       |
|              |                               |                    |           |               |           |           |       | 1   | 1   |                       | 1              |               |      | L         |                |       |



PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

MIDDLE AND LOWER SNAKE RIVER

STATION LOCATION COLUMBIA RIVER AT

PASCO, WASHINGTON

|                                                                                                                                                           | <del></del> |         | ·                     |                                   |                       |                                        |                  | ···                                                                                                      |                                                                                                        |                                                                           |                                        |                                     |      |                                                                            |                                                 | _                                                                                                                    |                                                          |                                                                |                                                          |                                        |                                                                         |                           |                                                                               |                              |                              |                                       | ,                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|-----------------------|-----------------------------------|-----------------------|----------------------------------------|------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------|-------------------------------------|------|----------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------|------------------------------|------------------------------|---------------------------------------|----------------------------------------------------------------|
| DATE<br>OF SAMPLE                                                                                                                                         |             | BLUE-   | GREEN                 | ALGAE (I                          |                       | <del></del>                            | LLATES<br>ented) | DIAT                                                                                                     | омѕ                                                                                                    | INI<br>DIA<br>SHE                                                         | ERT<br>TOM<br>ELLS<br>er ml.)          |                                     |      |                                                                            | D<br>SPEC                                       |                                                                                                                      | ND PE                                                    |                                                                |                                                          | 5                                      | органктои,<br>бикатико<br>ml.)                                          |                           | MICROIN                                                                       | l                            | $\overline{}$                | FORES                                 | uction<br>action                                               |
| MONTH<br>DAY<br>YEAR                                                                                                                                      | TOTAL       | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                           | FILA-<br>MENT-<br>OUS |                                        | OTHER            | CENTRIC                                                                                                  | PENNATE                                                                                                |                                                                           | Γ                                      | FIRST#                              | PER. | SECOND#                                                                    | PER-<br>CENTAGE                                 | THIRD#                                                                                                               | PER.<br>CENTAGE                                          | FOURTH*                                                        | PER.<br>CENTAGE                                          | OTHER PER-<br>CENTABE                  | OTHER MICROPLANKTOR,<br>FUNGI AND SHEATHED<br>BACTERIA<br>(No. pet ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)                                                  | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ARBEAL PORMS<br>(No. per liter) | DOMINANT GENERA<br>(See Introduction<br>for Identification)    |
| 10 18 60<br>11 14 60<br>12 19 60<br>12 19 60<br>1 1 61<br>2 6 61<br>3 6 61<br>5 61<br>5 61<br>6 19 61<br>7 5 61<br>7 5 61<br>8 7 61<br>8 21 61<br>9 18 61 |             | 80      | 20<br>60<br>20        | 20<br>40<br>20<br>80<br>150<br>60 | 20 20                 | 20<br>40<br>60<br>20<br>20<br>20<br>20 | 40               | 90<br>70<br>70<br>50<br>20<br>310<br>820<br>810<br>1260<br>220<br>160<br>5780<br>230<br>190<br>120<br>80 | 90<br>110<br>360<br>50<br>220<br>580<br>560<br>1400<br>1550<br>4840<br>750<br>340<br>270<br>330<br>330 | 70<br>70<br>90<br>20<br>50<br>210<br>210<br>210<br>680<br>110<br>40<br>20 | 860<br>220<br>330<br>310<br>170<br>370 | 6222779555715444477<br>999469888447 |      | 47<br>82<br>62<br>61<br>95<br>61<br>91<br>91<br>47<br>47<br>47<br>47<br>47 | 10 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20 | 70<br>47<br>61<br>95<br>61<br>92<br>61<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97 | 10<br>10<br>10<br>10<br>10<br>10<br>20<br>20<br>10<br>10 | 70<br>62<br>47<br>91<br>92<br>95<br>95<br>96<br>62<br>62<br>92 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 05700000000000000000000000000000000000 | 40<br>20<br>40<br>40<br>40<br>40                                        | 10                        | 1<br>1<br>2<br>3<br>7<br>1<br>8<br>6<br>4<br>2<br>3<br>1<br>4<br>6<br>5<br>10 | 2 3 1 3                      | 1 2                          |                                       | 3<br>3-9<br>3-983<br>3-977<br>3-9-7<br>3-9-7<br>3-97-<br>3-97- |

# ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

MIDDLE AND LOWER SNAKE RIVER

STATION LOCATION COLUMBIA RIVER AT

PASCO, WASHINGTON

|                                 |                                                                                                    |                                                                                      |                                                                               | TO LOTADI                                                                        | FC                                                                   |                               |                   | <del></del>                                                     |                       | CHLOROF                                                       | ORM EXTR                     | CTABLES       |                            |                 |                                         |                                                               |
|---------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------|-------------------|-----------------------------------------------------------------|-----------------------|---------------------------------------------------------------|------------------------------|---------------|----------------------------|-----------------|-----------------------------------------|---------------------------------------------------------------|
| DATE OF SAM                     |                                                                                                    | 4                                                                                    | E)                                                                            | TRACTABL                                                                         |                                                                      |                               |                   |                                                                 |                       | NEUTRALS                                                      |                              |               |                            |                 |                                         |                                                               |
| MONTH<br>DAY<br>YEAR<br>DINNIDA | MONTH<br>DAY                                                                                       | GALLONS<br>FILTERED                                                                  | TOTAL                                                                         | CHLORO-<br>FORM                                                                  | ALCOHOL                                                              | ETHER<br>INSOLUBLES           | WATER<br>SOLUBLES | TOTAL                                                           | ALIPHATICS            | AROMATICS                                                     | OXYGEN-<br>ATED<br>COMPOUNDS | Loss          | WEAK<br>ACIDS              | STRONG<br>ACIDS | BASES                                   | Loss                                                          |
|                                 | 10 24<br>11 17<br>12 12<br>1 3 12<br>2 21<br>3 13<br>4 12<br>5 11<br>6 8<br>7 7 31<br>8 25<br>9 25 | 3940<br>4910<br>5302<br>3770<br>3870<br>3890<br>3450<br>3190<br>5050<br>5460<br>5060 | 97<br>76<br>83<br>88<br>64<br>95<br>103<br>119<br>123<br>99<br>83<br>79<br>66 | 14<br>13<br>15<br>18<br>26<br>15<br>21<br>31<br>47<br>36<br>34<br>19<br>20<br>15 | 83<br>63<br>68<br>70<br>38<br>79<br>74<br>72<br>87<br>65<br>64<br>59 | 0 1 0 1 1 1 0 2 2 1 2 0 0 1 1 | 43547560409554    | 5<br>5<br>7<br>6<br>4<br>7<br>8<br>11<br>11<br>8<br>7<br>8<br>5 | 1 1 1 1 0 2 2 2 1 2 1 | 0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>0 | 44355365665554               | 0000010120000 | 11 12 22 12 23 44 35 12 22 | 3<br>1<br>1     | 000000000000000000000000000000000000000 | 3<br>2<br>3<br>8<br>4<br>4<br>6<br>1<br>7<br>6<br>5<br>3<br>2 |

STATE

WASHINGTON

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

MIDDLE AND LOWER SNAKE RIVER

STATION LOCATIONCOLUMBIA RIVER AT

PASCO, WASHINGTON

Q

|       | DATE<br>5AM |          | TEMP.                       | DISSOLVED      |                |                |        | CHLORINE       | DEMAND          |                              |                   |                    |                  |                        |                            |                  |                    |                                      |                          |
|-------|-------------|----------|-----------------------------|----------------|----------------|----------------|--------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|----------------------------|------------------|--------------------|--------------------------------------|--------------------------|
| MONTH | DAY         | YEAR     | (Degrees<br>Centigrade)     | OXYGEN<br>mg/l | рН             | B.O.D.<br>mg/l | C.O.D. | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml. |
| 10    | 3<br>10     | 60       | 18.0                        | 9.7            | 8.5            | 1.1            | -      | 1.2            | 1.5             | -                            |                   | 69                 | 66               | 7                      | 2                          |                  |                    |                                      |                          |
|       | 17          | 60       | 16.0<br>16.0                | 9.5<br>9.4     | 8 • 5<br>8 • 4 | • 4            | _      | 1.2<br>1.2     | 1.5             | -                            | -                 | 72                 | 68               | 7                      | 2                          | -                | -                  | -                                    | _                        |
|       | 24          | 60       | 16.0                        | 9.3            | 8.5            | •6             | _      | 1.2            | 1.5             | _                            | _                 | 72<br>69           | 66               | 7                      | 2                          |                  | -                  | -                                    | -                        |
| 10    | 31          | 60       | 15.0                        | 10.0           | 8.3            | .9             | _      | • 7            | 1.0             | _                            | _                 | 73                 | 68<br>66         | 8                      | 2                          | _                | -                  | -                                    | -                        |
| 11    | 7           | 60       | 13.0                        | 10.6           | 8.3            | 1.3            | _      | 7              | 1.0             | _                            |                   | 68                 | 72               |                        | 16<br>1                    | -                | _                  | _                                    | _                        |
|       | 14          | 60       | 13.0                        | 9.8            | 8 • 2          | • 9            | _      | • 7            | 1.0             | _                            | _                 | 68                 | 70               | ا ا                    | i                          | _                | _                  | _                                    |                          |
|       | 21          | 60       | 12.0                        | 10.0           | 8.3            | 1.5            | -      | •7             | 1.0             | -                            | _                 | 72                 | 70               | 7                      | 1                          | -                | _                  | _                                    | _                        |
|       | 28          | 60       | 10.0                        | 10.6           | 8.1            | 1.2            | -      | •7             | 1.0             | -                            | -                 | 74                 | 68               | 7                      | 2                          | _                | -                  | _                                    | l -                      |
| 12    | 5<br>12     | 60<br>60 | 10.0                        | 11.0           | 8.1            | 1.5            | -      | • 7            | 1.0             | -                            | -                 | 69                 | 74               | 6                      | 2                          | _                | -                  | -                                    | -                        |
|       | 19          | 60       | 8.0                         | 11.7           | 8 • 2          | 2.7            | -      | • 5            | • 7             | -                            | -                 | 74                 | 72               | 8                      | 2                          | -                | -                  | -                                    | -                        |
|       | 26          | 60       | 8.0                         | 11.0           | 8.3<br>8.2     | 2.0<br>1.6     | -      | •5<br>•5       | •7              |                              | -                 | 70                 | 70               | 7                      | 2                          | -                | -                  | -                                    | -                        |
| 1     | 2           | 61       | 7.0                         | 12.0           | 8.2            | 2.1            | _      | •5             | • 7             | -                            | -                 | 72<br>74           | 76               | 6                      | 16                         | -                | -                  | -                                    | -                        |
| ī     | 9           | 61       | 7.0                         | 11.1           | 8.1            | 2.0            | _      | •5             | •7              | _                            | _                 | 73                 | 74<br>76         | 9 7                    | 3                          | _                | _                  | -                                    | -                        |
|       | 16          | 61       | 7.0                         | 11.7           | 8.3            | 2.5            | _      | • 7            | 1.0             | -                            | _                 | 77                 | 74               | 8                      | 2                          | _                | _                  | _                                    | _                        |
| 1     | 23          | 61       | 6.0                         | 11.3           | 7.9            | 2.2            | _      | • 7            | 1.0             | _                            | _                 | 77                 | 70               | 8                      | 5                          | _                | _                  | _                                    | _                        |
|       | 30          | 61       | 6.0                         | 11.9           | 7.9            | 2.1            | -      | • 7            | 1.0             | -                            | _                 | 75                 | 74               | 7                      | 2                          | _                | _                  | _                                    | _                        |
| 2     | 6           | 61       | 6.0                         | 12.2           | 7.9            | 1.9            | -      | •7             | 1.0             | -                            | -                 | 74                 | 76               | 12                     | 8                          | -                | _                  | _                                    | -                        |
|       | 13          | 61       | 7.0                         | 12.0           | 8.1            | 2.2            | -      | • 7            | 1.0             | -                            | -                 | 74                 | 76               | 15                     | 30                         | -                | -                  | _                                    | <b>i</b> –               |
|       | 20          | 61       | 6.0                         | 12.1           | 7.8            | 2.5            | -      | • 7            | 1.0             | -                            | -                 | 77                 | 76               | 13                     | 6                          | -                | -                  | -                                    | -                        |
| 2 3   | 27          | 61<br>61 | 7.0                         | 12.4           | 8.1            | 2 • 4          | _      | • 7            | 1.0             | _                            | -                 | 75                 | 78               | 10                     | 11                         | -                |                    | -                                    | -                        |
|       | 13          | 61       | 5 <b>.0</b><br>6 <b>.</b> 0 | 12.1           | 8.1            | 2•7<br>1•3     | _      | • 7            | 1•0<br>1•2      | _                            | -                 | 77                 | 74               | 10<br>13               | 6                          | -                | -                  | -                                    | -                        |
|       | 20          | 61       | 6.0                         | 12.3           | 7.8            | 2.8            | _      | •6             | 1.2             | -                            | _                 | 74<br>67           | 76<br>72         | 16                     | 9<br>22                    | -                | _                  | -                                    |                          |
|       | 27          | 61       | 7.0                         | 12.1           | 8.0            | 2.4            |        | • 7            | 1.2             | _                            | _                 | 69                 | 72               | 16                     | 12                         | _                |                    | _                                    | -                        |
| 4     | 3           | 61       | 9.0                         | 11.5           | 8.0            | 1.6            | _      | • 6            | 1.2             | _                            | -                 | 66                 | 70               | 13                     | 9                          | _                | _                  | _                                    | _                        |
| 4     | 10          | 61       | 8.5                         | 12.7           | 8.0            | 2.6            | _      | • 7            | 1.2             | _                            | -                 | 67                 | 72               | 9                      | 6                          | _                | -                  | _                                    | _                        |
|       | 17          | 61       | 9.0                         | 11.9           | 8.2            | 2.2            | -      | • 7            | 1.2             | -                            | -                 | 72                 | 72               | 10                     | 6                          |                  | -                  | -                                    | -                        |
|       | 24          | 61       | 9.0                         | 12.3           | 8.1            | 2.7            | -      | • 7            | 1.2             | -                            | -                 | 75                 | 76               | 8                      | 6                          | -                | -                  | -                                    | _                        |
| 5     | 1           | 61       | 11.0                        | 11.0           | 8.1            | • 5            | -      | • 7            | 1.1             | -                            | -                 | 72                 | 74               | 10                     | 7                          | -                | -                  | -                                    | -                        |
| 5     | 8           | 61       | 12.0                        | 11.4           | 8.1            | 2.1            | -      | • 7            | 1.2             | -                            | -                 | 71                 | 68               | 11                     | 5                          | -                | -                  | -                                    | -                        |
|       | 15          | 61       | 12.0                        | 11.6           | 8.0            | 1.9            | _      | • 9            | 1.3             | -                            | -                 | 76                 | 70               | 11                     | 9                          | _                |                    | _                                    | -                        |
|       | 22<br>29    | 61       | 12.0                        | 12.7<br>12.4   | 8.1<br>7.9     | 2.9<br>3.3     | _      | • 2<br>• 9     | 1.6<br>1.8      | _                            | -                 | 70<br>66           | 68<br>62         | 12<br>15               | 13                         | _                |                    | _                                    | _                        |
| 6     | 5           | 61       | 14.0                        | 11.2           | 7.9            | 2.0            | _      | 1.6            | 1.0             | _                            | _                 | 62                 | 58               | 13                     | 10                         | _                | _                  | _                                    | -                        |
|       | 12          | 61       | 13.0                        | 11.6           | 8.0            | 2.4            | _      | 1.2            | 1.6             |                              | _                 | 68                 | 60               | 21                     | 15                         | _                | _                  | _                                    | _                        |
|       | 19          | 61       | 15.0                        | 11.2           | 8.1            | -              | -      | •7             | 1.3             | _                            | _                 | 60                 | 62               | 24                     | 14                         | _                | _                  | -                                    | _                        |
|       | 26          | 61       | 16.0                        | 12.1           | 8.0            | 2.8            | _      | 1.0            | 1.6             | _                            | _                 | 66                 | 66               | 20                     | 10                         | -                | -                  | -                                    | -                        |
|       |             |          | -                           | _              | _              |                |        |                |                 |                              |                   |                    |                  |                        |                            |                  |                    |                                      | ĺ                        |

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

MIDDLE AND LOWER SNAKE RIVER

STATION LOCATION COLUMBIA RIVER AT

PASCO: WASHINGTON

Ü

|                                                                                                   | 1                                                                    |                             |                                                                           |                                                                                      |                | CHLORINE                                                                                  | DEMAND                              |                              |                   |                     | HARDNESS                                                                                     | COLOR         | TURBIDITY            | SULFATES | PHOSPHATES | TOTAL<br>DISSOLVED | COLIFORMS   |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------|-------------------------------------|------------------------------|-------------------|---------------------|----------------------------------------------------------------------------------------------|---------------|----------------------|----------|------------|--------------------|-------------|
| DAY DAY                                                                                           | TEMP.<br>(Degrees<br>Centigrade)                                     | DISSOLVED<br>OXYGEN<br>mg/l | рН                                                                        | B.O.D.<br>mg/i                                                                       | C.O.D.<br>mg/i | 1-HOUR<br>mg/l                                                                            | 24-HOUR<br>mg/l                     | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | mg/l                | mg/l                                                                                         | (scale units) | (scale units)        | mg/l     | mg/l       | SOLIDS<br>mg/l     | per 100 ml, |
| 77 77 8 8 8 12 1 6 1 8 8 12 1 6 1 8 8 2 2 9 6 1 1 2 2 5 6 1 8 8 2 9 9 1 1 2 5 6 6 1 9 9 9 9 9 9 9 | 18.0<br>18.0<br>19.5<br>20.0<br>20.5<br>22.0<br>21.0<br>19.0<br>19.0 | 8.9                         | 8.0<br>8.2<br>8.2<br>8.3<br>8.1<br>8.1<br>8.1<br>8.2<br>8.2<br>8.2<br>8.2 | 2.8<br>1.1<br>1.0<br>.3<br>.5<br>.1<br>.0<br>.1<br>.1<br>.2<br>.8<br>1.1<br>.8<br>.1 |                | 1.1<br>1.0<br>1.0<br>1.1<br>1.0<br>-<br>1.1<br>1.2<br>-<br>1.0<br>-<br>1.7<br>7<br>7<br>8 | 1.6<br>1.8<br>1.8<br>2.0<br>1.8<br> |                              | -                 | 73<br>72<br>-<br>70 | 64<br>60<br>64<br>68<br>-<br>70<br>-<br>69<br>-<br>73<br>-<br>68<br>74<br>-<br>70<br>-<br>70 | 1             | 86665141514131331313 |          | -          |                    |             |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Computed Data for Pasco, Washington Supplied by U.S. Geological Survey

STATE

Washington

MAJOR BASIN

Pacific Northwest

MINOR BASIN

Middle and Lower Snake River

STATION LOCATION

Columbia River at

Pasco, Washington

| Day                              | October                                                  | November                                       | December                                                 | January                                                  | February                                           | March                                                      | April                                               | May                                                            | June                                                | July                                                | August                                                   | September                                      |
|----------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | 80.200<br>75.100<br>73.900<br>76.800<br>73.700           | 72.300<br>72.300<br>70.300<br>67.400<br>67.400 | 71.800<br>63.700<br>59.700<br>54.700<br>57.700           | 62.800<br>64.800<br>65.800<br>70.800<br>70.800           | 85.200<br>89.400<br>95.800<br>95.300<br>94.600     | 113.000<br>102.000<br>102.000<br>106.000<br>114.000        | 106.000<br>117.000<br>117.000<br>107.000<br>109.000 | 117.000<br>122.000<br>122.000<br>122.000<br>129.000            | 425.000<br>445.000<br>460.000<br>480.000<br>492.000 | 311.000<br>298.000<br>279.000<br>273.000<br>255.000 | 133.000<br>124.000<br>116.000<br>117.000<br>115.000      | 82.800<br>80.700<br>85.800<br>82.800<br>79.800 |
| 6<br>7<br>8<br>9                 | 70.700<br>70.700<br>67.800<br>66.900<br>65.900           | 66.300<br>65.300<br>65.200<br>66.200<br>68.200 | 59.600<br>58.500<br>58.400<br>62.300<br>63.300           | 67.800<br>60.500<br>58.000<br>54.800<br>54.900           | 95.400<br>88.700<br>82.600<br>84.700<br>84.300     | 112.000<br>99.900<br>93.700<br>91.500<br>95.400            | 111.000<br>105.000<br>115.000<br>125.000<br>119.000 | 130.000<br>138.000<br>145.000<br>164.000<br>189.000            | 514.000<br>526.000<br>529.000<br>540.000<br>546.000 | 244.000<br>232.000<br>225.000<br>216.000<br>208.000 | 116.000<br>103.000<br>101.000<br>101.000<br>97.300       | 80.700<br>74.700<br>78.600<br>79.500<br>74.500 |
| 11<br>12<br>13<br>14<br>15       | 62.900<br>64.000<br>68.900<br>71.800<br>73.200           | 69.100<br>71.100<br>68.400<br>68.600<br>70.500 | 61.200<br>62.100<br>62.100<br>63.200<br>65.300           | 55.900<br>61.800<br>64.700<br>60.600<br>57.600           | 86.100<br>87.000<br>87.900<br>91.900<br>96.800     | 95.200<br>107.000<br>101.000<br>88.500<br>86.500           | 114.000<br>122.000<br>118.000<br>120.000<br>114.000 | 201.000<br>214.000<br>222.000<br>217.000<br>226.000            | 543.000<br>531.000<br>530.000<br>518.000<br>509.000 | 203.000<br>202.000<br>199.000<br>187.000<br>186.000 | 96.300<br>122.000<br>127.000<br>126.000<br>104.000       | 80.400<br>73.400<br>75.400<br>75.300<br>71.400 |
| 16<br>17<br>18<br>19<br>20       | 73.400<br>68.200<br>60.200<br>60.000<br>60.700           | 69.400<br>68.400<br>69.500<br>71.900<br>72.300 | 68.400<br>63.200<br>59.200<br>56.300<br>59.300           | 55.000<br>60.600<br>62.800<br>68.600<br>74.200           | 98.400<br>104.000<br>106.000<br>106.000            | 89.100<br>92.700<br>94.400<br>93.800<br>96.700             | 24.000<br>122.000<br>116.000<br>101.000<br>92.800   | 244.000<br>249.000<br>259.000<br>262.000<br>253.000            | 482.000<br>491.000<br>499.000<br>498.000<br>490.000 | 184.000<br>185.000<br>182.000<br>181.000            | 101.000<br>100.000<br>90.700<br>86.700<br>81.800         | 70.500<br>68.500<br>59.600<br>64.600<br>67.600 |
| 21<br>22<br>23<br>24<br>25       | 62.000<br>60.900<br>56.900<br>58.700<br>68.500           | 71.100<br>74.300<br>74.300<br>75.000<br>74.200 | 61.300<br>59.300<br>56.200<br>56.200<br>56.200           | 74.900<br>75.700<br>74.500<br>78.300<br>78.100           | 99.500<br>102.000<br>107.000<br>110.000<br>113.000 | 100.000<br>100.000<br>99.500<br>100.000<br>104.000         | 95.400<br>100.000<br>94.800<br>96.400<br>129.000    | 261.000<br>283.000<br>298.000<br>316.000<br>342.000            | 477.000<br>475.000<br>438.000<br>424.000<br>410.000 | 177.000<br>174.000<br>174.000<br>172.000<br>174.000 | 76.700<br>83.500<br>89.400<br>93.300<br>94.300           | 66.600<br>59.600<br>62.700<br>62.700<br>57.700 |
| 26<br>27<br>28<br>29<br>30<br>31 | 74.500<br>76.400<br>84.400<br>83.300<br>83.300<br>76.400 | 75.700<br>76.600<br>78.200<br>79.000<br>76.900 | 54.200<br>57.300<br>63.000<br>64.000<br>64.900<br>64.900 | 78.100<br>75.000<br>76.700<br>76.500<br>76.500<br>78.700 | 114.000<br>118.000<br>118.000                      | 119.000<br>116.000<br>97.900<br>95.100<br>95.900<br>97.000 | 126.000<br>123.000<br>106.000<br>109.000<br>111.000 | 369.000<br>370.000<br>381.000<br>396.000<br>404.000<br>417.000 | 402.000<br>375.000<br>359.000<br>345.000<br>326.000 | 176.000<br>167.000<br>157.000<br>145.000<br>139.000 | 97.400<br>95.400<br>95.900<br>93.000<br>89.700<br>86.700 | 56.800<br>54.800<br>56.800<br>64.700<br>58.800 |

Computed as sum of Columbia River at Trinidad, Washington plus Yakima River at Kiona, Washington.

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

COLUMBIA RIVER ABOVE YAKIMA RIVER

STATION LOCATION COLUMBIA RIVER AT

WENATCHEE, WASHINGTON

| DATE         | 1                                                                             |           | RADI      | OACTIVITY IN V | /ATER     | <del></del> |       | <br>RADIO                     | ACTIVITY IN PLA | NKTON (drv) | т        | I BAT     | DIOACTIVITY IN V | WATER |
|--------------|-------------------------------------------------------------------------------|-----------|-----------|----------------|-----------|-------------|-------|-------------------------------|-----------------|-------------|----------|-----------|------------------|-------|
| SAMPLE       | DATE OF                                                                       |           | ALPHA     |                |           | BETA        |       |                               |                 | ACTIVITY    | 1        |           | GROSS ACTIVI     |       |
| TAKEN        | DATE OF<br>DETERMI-<br>NATION                                                 | SUSPENDED | DISSOLVED | TOTAL          | SUSPENDED | DISSOLVED   | TOTAL | DATE OF<br>DETERMI-<br>NATION | ALPHA           | BETA        | 1        | SUSPENDED | DISSOLVED        | TOTAL |
| MO. DAY YEAR | MONTH DAY                                                                     | μμε/Ι     | μμε/Ι     | μμε/Ι          | μμς/Ι     | μμc/l       | μμς/Ι | <br>MO. DAY                   | μμc/g           | μμc/g       | <u> </u> | μμε/Ι     | μμς/Ι            | μμc/i |
|              | 11 16<br>12 8<br>1 13<br>2 16<br>3 17<br>4 11<br>5 11<br>6 12<br>7 21<br>8 29 |           |           |                |           |             |       |                               |                 |             |          |           |                  |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

COLUMBIA RIVER ABOVE YAKIMA RIVER

STATION LOCATION COLUMBIA RIVER AT

WENATCHEE, WASHINGTON

| DATE                 |                                                                                                      | ,       |                       | ALGAE (              | Vumber                | per ml.)                         |              |                                                                                            |                                                                                          | INE                                                                       | RT<br>TOM                                                   | Ι                                                                    |                                                                                              |                                       | D.                               | IATO                    |                                                                                 |                                                                |                                          |                                                                                | Γ.                                                                      | Т                         | MICROIN                      | VERTER                       | ATES                         |                                |                                                             |
|----------------------|------------------------------------------------------------------------------------------------------|---------|-----------------------|----------------------|-----------------------|----------------------------------|--------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------|-------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------|------------------------------|------------------------------|------------------------------|--------------------------------|-------------------------------------------------------------|
| OF SAMPLE            |                                                                                                      | BLUE-   | GREEN                 | GREE                 | EN                    | FLAGEL<br>(Pigm                  | LATES ented) | DIAT                                                                                       | oms*                                                                                     | SHE                                                                       | TOM<br>LLS<br>er ml.)                                       |                                                                      | DOM!                                                                                         | INANT                                 | SPEC                             | IES A                   | ND PE                                                                           | RCEN'<br>ntificat                                              | TAGES                                    | 5                                                                              | OPLANKTON,<br>SHEATHED<br>ml.)                                          |                           | 1                            | T                            |                              | FORMS                          | uction<br>action)                                           |
| MONTH<br>DAY<br>YEAR | TOTAL                                                                                                | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID              | FILA-<br>MENT-<br>OUS | GREEN                            | OTHER        | CENTRIC                                                                                    | PENNATE                                                                                  | CENTRIC                                                                   | PENNATE                                                     | FIRST*                                                               | PER-                                                                                         | SECOND#                               | PER.<br>CENTAGE                  | THIRD#                  | PER.<br>CENTAGE                                                                 | FOURTH*                                                        | PER.                                     | OTHER PER-<br>CENTAGE                                                          | OTHER MICROPLANKTON,<br>FUNGI AND SHEATHED<br>BACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATOBES<br>(No. per liter) | OTHER ARIMAL<br>(No. per liter | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| 10                   | 300<br>200<br>100<br>100<br>100<br>100<br>300<br>1400<br>3800<br>5200<br>3100<br>600<br>4000<br>1000 |         | 20                    | 20<br>40<br>40<br>40 | 20 20                 | 60<br>20<br>60<br>20<br>40<br>40 | 20           | 70<br>50<br>70<br>50<br>50<br>820<br>560<br>600<br>2190<br>250<br>3170<br>730<br>170<br>40 | 180<br>130<br>50<br>110<br>670<br>3130<br>4550<br>1410<br>290<br>810<br>250<br>390<br>60 | 90<br>70<br>20<br>50<br>180<br>270<br>230<br>410<br>50<br>210<br>80<br>80 | 110<br>110<br>580<br>810<br>750<br>460<br>290<br>160<br>330 | 45<br>66<br>61<br>95<br>95<br>95<br>61<br>61<br>61<br>84<br>82<br>47 | 10<br>60<br>30<br>60<br>40<br>40<br>20<br>30<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 | 62<br>70<br>95<br>36<br>9<br>61<br>95 | 20<br>10<br>10<br>10<br>10<br>20 | 2<br>671299227486197485 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 92<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97 | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 400<br>600<br>700<br>400<br>400<br>400<br>400<br>400<br>400<br>400<br>400<br>4 | 70<br>20<br>90<br>20<br>100                                             | 10                        | 13456163277526               | 1 1 1 1                      | 3 1 2                        |                                | 3-8-3-8-3-8-3-9-3-9-0-9                                     |

## ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

COLUMBIA RIVER ABOVE YAKIMA RIVER

STATION LOCATION COLUMBIA RIVER AT

WENATCHEE, WASHINGTON

|                                                                                                                                  |                                                                           |                                                     | (TD 4 CT 4 C'                                            |                             | <del>, ,</del>      |                   |                                              |            | CI II ODOS      | OD14 EVED                    | ACTABLES    |               |                 |                                         |                 |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|-----------------------------|---------------------|-------------------|----------------------------------------------|------------|-----------------|------------------------------|-------------|---------------|-----------------|-----------------------------------------|-----------------|
| DATE OF SAMPLE                                                                                                                   | -                                                                         | E                                                   | TRACTABL                                                 | .E5                         |                     |                   |                                              |            | NEUTRALS        |                              | ACTABLES    |               | 1               | · · · · · · · · · · · · · · · · · · ·   |                 |
| MONTH CAN PEAR DAY DAY DAY DAY                                                                                                   | GALLONS<br>FILTERED                                                       | TOTAL                                               | CHLORO-<br>FORM                                          | ALCOHOL                     | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES | TOTAL                                        | ALIPHATICS | AROMATICS       | OXYGEN-<br>ATED<br>COMPOUNDS | Loss        | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES                                   | LOSS            |
| 10 10 60 10 17 11 7 60 11 14 12 12 60 12 19 1 16 61 2 22 15 61 2 22 5 3 61 5 10 6 7 61 6 1 4 7 12 61 7 19 8 16 61 8 23 8 16 61 * | 4100<br>2200<br>6631<br>5287<br>5158<br>3926<br>*<br>4063<br>4355<br>8418 | 82<br>60<br>124<br>50<br>68<br>77<br>95<br>88<br>91 | 25<br>17<br>25<br>15<br>21<br>16<br>35<br>37<br>36<br>36 | 54995<br>4710 - 825<br>5555 | 1 0 1 0 0 0 2 1 1   | 64436408          | 12<br>8<br>16<br>8<br>9<br>7<br>9<br>7<br>17 | 6383323119 | 1 1 2 1 1 1 1 2 | 5464545 6                    | 00000001110 | 2122243       | 1100011331      | 100000000000000000000000000000000000000 | 2 3 2 2 3 2 6 6 |

STATE

WASHINGTON

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

PACIFIC NURTHWEST

MINOR BASIN

COLUMBIA RIVER ABOVE YAKIMA RIVER

STATION LOCATIONCOLUMBIA RIVER AT

WENATCHEE, WASHINGTON

|          | DATE<br>F SAM |          | TEMP,                   | DISSOLVED      |                |                |                | CHLORINE       | DEMAND          |                              |                   |                    | , <u> </u>       |                        |                         |                  |                    |                                      |                          |
|----------|---------------|----------|-------------------------|----------------|----------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|-------------------------|------------------|--------------------|--------------------------------------|--------------------------|
| MONTH    | DAY           | YEAR     | (Degrees<br>Centigrade) | OXYGEN<br>mg/l | рН             | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY (scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml. |
| 10<br>10 | 10            |          | 15.5                    | -              | 8.0            | -              | _              | _              | _               | -                            | 4                 | 52                 | 64               | 5                      | 5                       | 23               | •0                 | 7ύ                                   |                          |
| 10       | 17<br>24      | 60       | 15.9<br>15.8            | -              | 8.1<br>8.0     | _              | -              | -              | -               | -                            | 4                 | 54                 | 65               | 5 .                    | 5                       | 13               | •0                 | 78                                   | -                        |
| 10       | 31            | 60       | 14.3                    | _              | 8.0            | _              | _              | _              | _               | -                            | 5<br>3            | 53<br>54           | 64<br>65         | 5<br>5                 | 5<br>5                  | 12               | •0                 | 93                                   | -                        |
| 11       | 7             | 60       | 13.2                    | _              | 8.1            | _              |                | _              | _               | _                            | 3                 | 54                 | 65               | 5                      | 5                       | 12<br>13         | .0                 | 69<br>79                             | _                        |
| 11       | 14            | 60       | 13.2                    | _              | 8.0            | _              |                | _              | _               | _                            | 3                 | 53                 | 64               | 5                      | . 5                     | 8                | .0                 | 92                                   | _                        |
| 11       | 21            | 60       | 12.8                    | _              | 7.9            | _              | _              | _              |                 | _                            | 5                 | 55                 | 65               | 5                      | 5                       | 13               | .0                 | 82                                   | _                        |
| 11       | 28            |          | 10.5                    | -              | 8•0            | -              | _              | -              | -               | -                            | 2                 | 56                 | 66               | 5                      | 5                       | 13               | .0                 | 80                                   | _                        |
| 12       | 5             |          | 9.5                     | -              | 8.0            | -              | -              | _              | -               | _                            | 4                 | 57                 | 68               | 0                      | 0                       | 14               | •1                 | 9.0                                  | _                        |
| 12       | 12            | 60       | 8.6                     | -              | 7.9            | -              | -              | -              | -               | -                            | 3                 | 57                 | 67               | 0                      | 0                       | 14               | •0                 | 90                                   | -                        |
| 12<br>12 | 15<br>19      | 60<br>60 | 7.5                     | -              | -              | -              | -              | -              | -               | -                            | _                 | -                  | -                | _                      | -                       | -                | -                  | _                                    | 30                       |
| 12       | 26            | 6Ü       | 7.1                     | _              | 0 • 8<br>0 • 8 | _              | _              | _              |                 | -                            | 2<br>5            | 56<br>58           | 66<br>67         | 0                      | 0                       | 16<br>15         | • O                | 87                                   | -                        |
| 1        | 3             | 61       | 5.9                     | _              | 8.0            | _              | _              | _              | _               | _                            | 3                 | 58                 | 69               | 0                      | 0 0                     | 15               | .0                 | 84<br>94                             | _                        |
| ī        | 9             | 61       | 6.4                     | _              | 8.0            | _              | _              | _              | _               | _                            | 3                 | 58                 | 70               | 0                      | ő                       | 17               | .0                 | 89                                   | _                        |
| 1        | 16            | 61       | 6.6                     | _              | 8.0            |                |                | _              | _               | _                            | 3                 | 58                 | 70               | lő                     | G                       | 15               | .1                 | 82                                   | _                        |
| 1        | 25            | 61       | 5.5                     | -              | 8.0            | -              | _              | _              | -               | _                            | 3                 | 57                 | 68               | 0                      | 0                       | 15               | •0                 | <b>0</b> 6                           | _                        |
| 2        | 1             | 61       | 5.4                     | -              | 8.0            | -              | -              | _              | _               | -                            | 2                 | 60                 | 71               | 0                      | 0                       | 16               | • G                | 93                                   | -                        |
| 2        | 8             | 61       | 5.9                     | -              | 8.0            | -              | -              | -              | -               | -                            | -                 | 61                 | 68               | -                      |                         | -                | -                  | -                                    | ذ*                       |
| 2        | 15            | 61       | 4.8                     | -              | 8.0            | -              | -              | -              | -               | -                            | 3                 | 62                 | 72               | 0                      | 0                       | 19               | •1                 | 109                                  | -                        |
| 2        | 22            |          | 4 • 5                   | -              | 8.0            | -              | -              | -              | -               | -                            | -                 | 63<br>63           | 74<br>78         | _                      | _                       | _                | _                  | 112                                  | -                        |
| 3<br>3   | 8             | 61<br>61 | 4•1<br>-                | _              | 8.0            | _              | _              | _              | _               | _                            | 3                 | 63                 | 84               | 0                      | -                       | 17               | -1                 | 112                                  | _                        |
| 3        | 9             | 61       | 4.1                     | _              | 8.0            | _              | _              | _              | _               | _                            | _                 | 62                 | 74               | _                      | _                       | 1 -              | -                  | 162                                  | _                        |
| 3        | 15            | 61       | 4 . 8                   |                | 7.9            | _              | _              | _              | _               |                              |                   | 58                 | 68               | 0                      | 0                       | 17               | _                  |                                      | _                        |
| 5        | 22            | 61       | 4.9                     | _              | 7.9            | _              | _              | _              | _               | _                            | 4                 | 56                 | 70               | O                      | Ō                       | 17               | .1                 | 121                                  | _                        |
| 3        | 29            | 61       | 6.1                     | -              | 7.9            | _              | -              | -              | -               | _                            | 25                | 54                 | 72               | 0                      | 0                       | 17               | •0                 | -                                    | -                        |
| 4        | 5             | 61       | 5.2                     | -              | 6.0            | _              | -              | -              | -               | _                            | 4                 | 55                 | 64               | 5                      | -                       | 18               | -                  | -                                    | _                        |
| 4        | 12            |          | 6.6                     | _              | 7.9            | -              | -              | -              | -               | -                            | 5                 | 56                 | 68               | 0                      | 0                       | 21               | •1                 | 99                                   | 26                       |
| 4        | 26            |          | 3.6                     | -              | 8.0            | -              | -              | -              | -               |                              | 5                 | 58                 | 71               | 5                      | 0                       | 22               | • 2                | 102                                  | 40<br>60                 |
| 5        | 3             |          | 9.5                     | -              | 8.0            | _              | _              | -              | _               | 1 1                          | 4                 | 55<br>57           | 67<br>69         | 0                      | _                       | 12               | •1                 | 5 l<br>-                             | 110                      |
| 5        | 10            |          | 9.5                     | _              | 7.9<br>8.0     | _              | _              | _              | -               | _                            | _                 | 56                 | 68               |                        | _                       | _                | _                  | _                                    | 120                      |
| 5<br>5   | 17<br>24      | 61       | 10.6<br>11.4            | _              | 7.8            |                |                | _              |                 | _                            | _                 | 51                 | 61               | _                      | -                       | -                | _                  | _                                    | 130                      |
| ر<br>5   | 29            |          | 11.4                    | _              | 7.6            | _              | _              | _              | _               | _                            | 5                 | 54                 | 112              | 5                      | 0                       | 30               | .0                 | -                                    | -                        |
| 5        | 31            | 61       | 11.7                    | _              | 7.9            |                | -              | -              | _               | -                            | _                 | 52                 | -                | 0                      | -                       | -                | -                  | -                                    | 33                       |
| 6        | 7             |          | 12.4                    | _              | 7.9            | -              | -              | -              | -               | -                            | 4                 | 46                 | 55               | 0                      | 0                       | 11               | .0                 | -                                    | 100                      |
| 6        |               |          | 14.1                    | _              | 8.0            | -              | -              | -              | -               | -                            | 3                 | 50                 | 59               | 5                      | 0                       | 10               | •0                 | -                                    | 700                      |
| 6        | 21            | 61       | 14.2                    |                | ಕ•0            | -              | -              | -              | -               | -                            | 4                 | 47                 | 60               | 0                      | 0                       | 10<br>10         | .0                 | _                                    | 700<br>76                |
| 6        | 28            | 61       | 15.1                    | -              | 7.9            | -              |                | _              | -               |                              | 6                 | 48                 | 58               | 5                      | 0                       | 10               | •0                 |                                      | 10                       |

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NURTHWEST

MINOR BASIN

COLUMBIA RIVER ABOVE YAKIMA RIVER

STATION LOCATION COLUMBIA RIVER AT

WENATCHEE, WASHINGTON

| DATE<br>OF SAMPLE                                                                                                  |                                  |                             |                                           |                |                | CHLORINE       | DEMAND          | AMMONIA-         |                   |                               |                  |                     |                            |                                                  |                                              | TOTAL<br>DISSOLVED          |                                                                                           |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------|-------------------------------------------|----------------|----------------|----------------|-----------------|------------------|-------------------|-------------------------------|------------------|---------------------|----------------------------|--------------------------------------------------|----------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------|
| DAY YEAR                                                                                                           | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/l | pH                                        | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | NITROGEN<br>mg/l | CHLORIDES<br>mg/l | mg/l                          | HARDNESS<br>mg/l | (scale units)       | TURBIDITY<br>(scale units) | SULFATES<br>mg/l                                 | PHOSPHATES<br>mg/l                           | DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml.                                                                  |
| 7 5 61<br>7 12 61<br>7 17 61<br>7 26 61<br>8 9 61<br>8 9 61<br>8 23 61<br>8 30 61<br>9 13 61<br>9 13 61<br>9 27 61 | 16.0<br>17.1<br>                 |                             | 8.0 - 0.0 8.0 7.9 7.8 7.9 0.2 8.0 0.0 8.0 |                |                |                |                 |                  | 54-46-54-442      | 511-22222825654<br>5555455555 | 612-41382225824  | 55   55   55   5555 | 111011000                  | 10<br>10<br>10<br>9<br>7<br>10<br>17<br>18<br>11 | .0<br>.1<br>.0<br>.1<br>.0<br>.1<br>.0<br>.3 | 74<br>81<br>                | 100<br>48<br>53<br>-<br>24<br>17<br>120<br>7300<br>110<br>470<br>120<br>200<br>150<br>110 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Trinidad, Washington Operated by U.S. Geological Survey STATE

Washington

MAJOR BASIN

Pacific Northwest

MINOR BASIN

Columbia River above Yakima River

STATION LOCATION

Columbia River at

Wenatchee, Washington

| Day                              | October                                                  | November                                       | December                                                 | January                                                  | February                                         | March                                                      | April                                               | May                                                            | June                                                | July                                                           | August                                                   | September                                      |
|----------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | 78.000<br>73.000<br>72.000<br>75.000<br>72.000           | 70.000<br>70.000<br>68.000<br>65.000<br>65.000 | 69.000<br>61.000<br>57.000<br>52.000<br>55.000           | 61.000<br>63.000<br>64.000<br>69.000<br>69.000           | 82.000<br>86.000<br>88.000<br>90.000<br>90.000   | 106.000<br>96.000<br>95.000<br>99.000<br>108.000           | 99.000<br>110.000<br>109.000<br>98.000<br>99.000    | 108.000<br>112.000<br>112.000<br>112.000<br>119.000            | 415.000<br>436.000<br>450.000<br>469.000<br>481.000 | 309.000<br>296.000<br>278.000<br>272.000<br>254.000            | 132.000<br>122.000<br>115.000<br>116.000<br>114.000      | 81.000<br>79.000<br>84.000<br>81.000<br>78.000 |
| 6<br>7<br>8<br>9<br>10           | 69.000<br>69.000<br>66.000<br>65.000<br>64.000           | 64.000<br>63.000<br>63.000<br>64.000<br>66.000 | 57.000<br>56.000<br>56.000<br>60.000<br>61.000           | 66.000<br>58.000<br>55.000<br>52.000                     | 91.000<br>84.000<br>77.000<br>79.000<br>78.000   | 106.000<br>94.000<br>88.000<br>86.000<br>85.000            | 101.000<br>97.000<br>108.000<br>119.000<br>113.000  | 121.000<br>130.000<br>137.000<br>157.000<br>182.000            | 502.000<br>515.000<br>518.000<br>530.000<br>537.000 | 242.000<br>230.000<br>223.000<br>215.000<br>207.000            | 115.000<br>102.000<br>100.000<br>100.000<br>96.000       | 79.000<br>73.000<br>77.000<br>78.000<br>73.000 |
| 11<br>12<br>13<br>14<br>15       | 61,000<br>62,000<br>67,000<br>70,000<br>71,000           | 67.000<br>69.000<br>66.000<br>66.000<br>68.000 | 59.000<br>60.000<br>60.000<br>61.000<br>63.000           | 53.000<br>59.000<br>62.000<br>58.000<br>55.000           | 76.000<br>77.000<br>79.000<br>84.000<br>89.000   | 90.000<br>102.000<br>96.000<br>83.000<br>80.000            | 108.000<br>117.000<br>113.000<br>115.000<br>109.000 | 194.000<br>206.000<br>215.000<br>209.000<br>219.000            | 535.000<br>523.000<br>523.000<br>513.000<br>505.000 | 202.000<br>201.000<br>198.000<br>186.000<br>185.000            | 95.000<br>121.000<br>126.000<br>125.000<br>103.000       | 79.000<br>72.000<br>74.000<br>74.000<br>70.000 |
| 16<br>17<br>18<br>19<br>20       | 71.000<br>66.000<br>58.000<br>58.000<br>58.000           | 67.000<br>66.000<br>67.000<br>69.000<br>69.000 | 66.000<br>61.000<br>57.000<br>54.000<br>57.000           | 52.000<br>57.000<br>58.000<br>64.000<br>70.000           | 91.000<br>96.000<br>99.000<br>99.000<br>96.000   | 81.000<br>84.000<br>86.000<br>86.000<br>89.000             | 120.000<br>118.000<br>112.000<br>96.000<br>88.000   | 237.000<br>242.000<br>252.000<br>254.000<br>245.000            | 478.000<br>486.000<br>493.000<br>491.000<br>482.000 | 183.000<br>184.000<br>181.000<br>180.000                       | 99.400<br>98.200<br>89.000<br>85.000<br>80.000           | 69.000<br>67.000<br>58.000<br>63.000<br>66.000 |
| 21<br>22<br>23<br>24<br>25       | 59.000<br>58.000<br>54.000<br>56.000<br>66.000           | 68.000<br>71.000<br>71.000<br>72.000<br>71.000 | 59.000<br>57.000<br>54.000<br>54.000<br>54.000           | 71.000<br>72.000<br>71.000<br>75.000<br>75.000           | 93.000<br>95.000<br>97.000<br>100.000<br>104.000 | 92.000<br>92.000<br>92.000<br>93.000<br>97.000             | 91.000<br>96.000<br>90.000<br>91.000<br>124.000     | 251.000<br>272.000<br>286.000<br>304.000<br>331.000            | 469.000<br>469.000<br>433.000<br>420.000<br>406.000 | 176.000<br>173.000<br>171.000<br>163.000<br>173.000            | 75.000<br>82.000<br>88.000<br>92.000<br>93.000           | 65.000<br>58.000<br>61.000<br>61.000<br>56.000 |
| 26<br>27<br>28<br>29<br>30<br>31 | 72.000<br>74.000<br>82.000<br>81.000<br>81.000<br>74.000 | 71.000<br>73.000<br>75.000<br>76.000<br>74.000 | 52.000<br>55.000<br>61.000<br>62.000<br>63.000<br>63.000 | 75.000<br>72.000<br>74.000<br>74.000<br>74.000<br>76.000 | 106.000<br>110.000<br>111.000                    | 111.000<br>107.000<br>90.000<br>88.000<br>89.000<br>90.000 | 121.000<br>118.000<br>101.000<br>103.000<br>104.000 | 359.000<br>360.000<br>371.000<br>385.000<br>394.000<br>407.000 | 398.000<br>372.000<br>356.000<br>342.000<br>325.000 | 175.000<br>166.000<br>156.000<br>144.000<br>138.000<br>134.000 | 96.000<br>94.000<br>94.000<br>91.000<br>88.000<br>85.000 | 55.000<br>53.000<br>55.000<br>63.000<br>57.000 |

STATE

MASSACHUSETTS

MAJOR BASIN

NORTHEAST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

CONNECTICUT RIVER

STATION LOCATION CONNECTICUT RIVER BELOW

NORTHFIELD, MASSACHUSETTS

|              |                               |           |           |                |           |           | T     |     | RADIOAC         | TIVITY IN PLAN | IKTON (dry) |            |       | OACTIVITY IN W |       |
|--------------|-------------------------------|-----------|-----------|----------------|-----------|-----------|-------|-----|-----------------|----------------|-------------|------------|-------|----------------|-------|
| DATE         | т.                            |           |           | ACTIVITY IN Y  | VAIER     | BETA      |       |     |                 | GROSS A        |             |            |       | GROSS ACTIVIT  |       |
| SAMPLE       | DATE OF<br>DETERMI-<br>NATION |           | ALPHA     |                | SUSPENDED | DISSOLVED | TOTAL | DE  | TERMI-<br>ATION | ALPHA          | BETA        |            | ENDED | DISSOLVED      | TOTAL |
| TAKEN        |                               | SUSPENDED | DISSOLVED | TOTAL<br>μμε/l | ##e/l     | μμε/Ι     | μμc/l |     | D. DAY          | μμc/g          | μμc/g       |            | μc/l  | μμε/Ι          | μμc/l |
| MO. DAY YEAR | MONTH DAY                     | μμς/Ι     | μμε/      | μμε/ι          | PPC/I     |           |       |     |                 |                |             |            | -     |                |       |
|              |                               |           |           | 1              |           | 0         | 0     | i   |                 |                | · 1         |            |       |                |       |
| 10 24 60*    | 11 15                         | Ŏ         | 1 0       | Ō              | ŏ         | ĭ         | 1     | 1   | 1               |                |             |            |       |                |       |
| 11 14 60*    |                               | 0         | 0         | 0              | 0         | 0         | 0     | ŀ   | 1               |                |             |            |       |                |       |
| 5 29 61*     | 6 13                          | 0         | -         | 0              | 0         | ō         | 0     |     | İ               |                |             | l          |       |                |       |
| 6 26 61*     | 7 14                          | 0 0       | 0         | Ö              | ŏ         | 6         | 6     | - 1 |                 |                |             |            |       |                |       |
| 7 31 61*     |                               | 0         | 0         | 1              | 0         | 4         | 4     | ł   | 1               |                |             |            |       |                |       |
| 8 14 61*     |                               | 1         | -         | -              | 2         | 13        | 15    | ļ   |                 |                | ļ           |            |       |                |       |
| 9 5 61       | 10 3                          | -         | _         | _              | l ī l     | 8         | 9     | l   |                 |                |             | Ì          |       |                |       |
| 9 11 61      | 10 30                         | _         |           | _              | 0         | ō         | 0     | - 1 |                 |                |             |            |       |                |       |
| 9 18 61      | 10 7                          | _         | _         | 0              | 3         | 6         | 9     |     | ļ               |                | i l         |            |       |                |       |
| 9 25 61      | 10 30                         | 0         | 0         | U              |           | _         |       |     |                 |                | 1           |            |       |                |       |
|              |                               |           |           |                |           |           |       |     | İ               |                | 1           |            |       |                |       |
|              |                               |           |           |                |           | i         | i     | İ   | ļ               |                |             | į          |       |                |       |
|              |                               |           |           |                |           |           |       |     | 1               |                |             | i          |       | i '            |       |
|              |                               | 1         |           |                |           | l i       |       |     | i               | •              |             | İ          |       | ì              |       |
|              |                               |           | i l       |                |           |           | İ     | 1   |                 |                |             | ı          |       |                |       |
|              |                               |           |           |                |           |           |       | Į   | Į               |                |             |            |       |                |       |
|              |                               |           |           |                |           |           |       |     |                 |                |             |            |       |                |       |
|              |                               |           |           |                |           |           |       | Ì   |                 |                |             |            |       | İ              |       |
|              |                               |           |           |                |           |           |       | 1   | 1               |                |             | 1          |       |                |       |
|              |                               |           |           |                | 1         |           |       |     | ļ               |                |             | 1          |       |                |       |
|              |                               |           |           |                |           |           |       |     | 1               |                |             |            |       |                |       |
|              |                               |           |           |                |           |           |       |     |                 |                |             | 1          |       |                |       |
|              |                               |           |           |                |           |           |       |     | ļ               |                |             | 1          |       | 1              |       |
|              |                               |           |           |                |           |           |       |     |                 |                | 1           | 1          |       |                |       |
|              | -                             |           |           |                |           | 1         |       |     |                 |                |             | <b>,</b> , |       | 1              |       |
|              | ì                             |           |           |                |           |           |       |     |                 |                |             |            |       |                |       |
|              | i                             |           |           |                |           |           |       |     |                 |                |             |            |       | I              |       |
|              |                               |           |           |                |           |           |       |     |                 |                |             | , ,        |       |                | l     |
|              |                               |           |           |                |           |           |       |     |                 |                |             |            |       |                |       |
|              |                               |           |           |                |           |           |       |     |                 |                |             |            |       |                |       |
|              |                               |           |           |                |           |           |       |     |                 |                |             | 1 1        |       |                | İ     |
|              |                               |           |           |                |           |           |       |     |                 |                |             |            |       |                |       |
|              |                               |           |           |                |           |           |       |     |                 |                |             |            |       |                |       |
|              | 1                             |           |           |                |           |           |       |     |                 |                |             |            |       | 1              |       |
|              |                               |           |           |                |           |           |       |     |                 |                |             |            |       |                |       |
|              |                               |           |           |                |           | 1         |       |     |                 |                |             |            |       |                |       |
|              |                               | 1         |           |                |           |           |       |     |                 |                |             |            |       |                |       |
|              |                               |           |           |                |           |           |       |     |                 |                |             |            |       |                |       |
|              |                               |           |           |                |           |           |       |     |                 |                |             |            |       |                |       |
|              |                               |           |           |                |           |           |       |     |                 |                |             |            |       |                |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

MASSACHUSETTS

MAJOR BASIN

NORTHEAST

MINOR BASIN

CONNECTICUT RIVER

STATION LOCATION CONNECTICUT RIVER BELOW

NORTHFIELD, MASSACHUSETTS

|                                       |           |                             |                                                                     |                      |                       | ALGAE (A                                           | umber                 | per ml.)                                                   |                             |                                                                           |                                                            | INE                         | RT                                                  |                                             |                      |                                              | Di              | ATO                 | vs.                                         |                                      |                                       |                                              | ı.                                                                       |                           | ICROIN                                                | VERTEBR                             | ATES                         |                                       |                                                             |
|---------------------------------------|-----------|-----------------------------|---------------------------------------------------------------------|----------------------|-----------------------|----------------------------------------------------|-----------------------|------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------|-----------------------------------------------------|---------------------------------------------|----------------------|----------------------------------------------|-----------------|---------------------|---------------------------------------------|--------------------------------------|---------------------------------------|----------------------------------------------|--------------------------------------------------------------------------|---------------------------|-------------------------------------------------------|-------------------------------------|------------------------------|---------------------------------------|-------------------------------------------------------------|
| OF S                                  | ATE<br>AM |                             |                                                                     | BLUE-                | GREEN                 | GREE                                               |                       | FLAGEL<br>(Pigme                                           | LATES                       | DIATO                                                                     | омѕ                                                        | INE<br>DIA<br>SHE<br>(No. p | TOM<br>LLS<br>er ml.)                               |                                             | DOMII<br>(See        | NANT<br>Introd                               | SPEC            | ES AN               | ID PE                                       | RCENT<br>nti/icat                    | rages<br>ion*)                        |                                              | органито<br>енелунев<br>т.г.)                                            | A<br>ml.)                 | is<br>liter)                                          | EA<br>liter)                        | ES<br>liter)                 | AL FORMS                              | GENERA<br>oduction<br>ification                             |
| MONTH                                 | DAY       | YEAR                        | TOTAL                                                               | COCCOID              | FILA-<br>MENT-<br>OUS | COCCOID                                            | FILA-<br>MENT-<br>OUS | GREEN                                                      | OTHER                       | CENTRIC                                                                   | PENNATE                                                    | CENTRIC                     | PENNATE                                             | FIRST                                       | PER-<br>CENTAGE      | SECOND#                                      | PER-<br>CENTAGE | TH:RD*              | PER-<br>CENTAGE                             | FOURTH#                              | PER.<br>CENTAGE                       | OTHER PER-<br>CENTAGE                        | OTHER MICROPLANKTOK,<br>FUNCI AND SHEATHED<br>MACTERIA<br>(No. pet mil.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)                          | CRUSTACEA<br>(No. per liter)        | NEMATODES<br>(No. per liter) | OTHER ANIMAL FORMS<br>(No. per liter) | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| 10 2<br>11 5<br>6 6 7<br>7 7 1<br>8 9 |           | 600 600 601 661 661 661 661 | 1200<br>2000<br>300<br>1000<br>1000<br>1500<br>2400<br>1700<br>4200 | 40<br>20<br>40<br>60 | 120                   | 50<br>20<br>310<br>390<br>420<br>560<br>440<br>950 |                       | 70<br>1100<br>80<br>160<br>230<br>350<br>230<br>440<br>370 | 40<br>100<br>20<br>40<br>40 | 730<br>530<br>270<br>20<br>120<br>130<br>270<br>500<br>790<br>620<br>2130 | 270<br>180<br>70<br>350<br>360<br>680<br>730<br>120<br>500 |                             | 430<br>160<br>390<br>220<br>330<br>190<br>270<br>80 | 91<br>59<br>2<br>92<br>54<br>56<br>56<br>56 | 10<br>10<br>20<br>30 | 62<br>92<br>14<br>92<br>59<br>47<br>47<br>58 | 10<br>10<br>10  | 556641269977<br>477 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>* | 59<br>62<br>9<br>47<br>27<br>2<br>92 | 10<br>10<br>10<br>10<br>10<br>10<br>* | 60<br>50<br>50<br>60<br>50<br>50<br>10<br>10 | 70<br>40<br>20<br>50<br>20<br>100<br>270                                 | 10                        | 1<br>5<br>1<br>5<br>7<br>43<br>37<br>52<br>347<br>179 | 2<br>1<br>25<br>8<br>23<br>100<br>6 | 3                            |                                       | 7<br>47<br>3<br>34-77<br>4-947                              |

### ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

MASSACHUSETTS

MAJOR BASIN

NORTHEAST

MINOR BASIN

CONNECTICUT RIVER

STATION LOCATION CONNECTICUT RIVER BELOW

NORTHFIELD, MASSACHUSETTS

|       |          |       |       |     | ,                   |       |                 |         |                     |                   |       |            | CUL OBOR    | ORM EXTR                     | ACTABLES |               |                 |       |      |
|-------|----------|-------|-------|-----|---------------------|-------|-----------------|---------|---------------------|-------------------|-------|------------|-------------|------------------------------|----------|---------------|-----------------|-------|------|
|       | DATE     | OF SA |       | END |                     | E     | KTRACTABL       | .ES     |                     | 1                 |       |            | NEUTRALS    |                              | CIABLLS  |               | 1               | Т     |      |
| MONTH | DAY      | YEAR  | MONTH | T   | GALLONS<br>FILTERED | TOTAL | CHLORO-<br>FORM | ALCOHOL | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES | TOTAL | ALIPHATICS | AROMATICS   | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS     | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES | LOSS |
|       | <u> </u> |       | -     | 18  |                     | 230   | 104             | 126     | INSOLUBLES 4        | SOLUBLES 24       | 44    | 15         | AROMATICS 5 | ATED<br>COMPOUNDS            | loss 1   | 10            | 7               | 1     | 14   |
|       |          |       |       |     |                     |       |                 | ·       |                     |                   |       |            |             |                              |          |               |                 |       |      |

### CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MASSACHUSETTS

MAJOR BASIN

NORTHEAST

MINOR BASIN

CONNECTICUT RIVER

STATION LOCATIONCONNECTICUT RIVER BELOW

NORTHFIELD, MASSACHUSETTS

| DATE                                                                                                                                                                                                                                            |                                                                                                                                                             |                   |                                                                                                                                                 |                                                                                                                                                         |                                                                                                                      | CHLORINE                                                                                                      | DEMAND                                                                                                                                                                        |                                                                                              |                                                                                                                                                                        |                                                                                                                                                          |                  |                                                                                                                            |                                                                                                          |                              |                      | TOTAL                                                                                                                                                                                                                                                          |                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| DAY YEAR                                                                                                                                                                                                                                        | TEMP.<br>(Degrees<br>Centigrade)                                                                                                                            | OXYGEN<br>mg/l    | рН                                                                                                                                              | B.O.D.<br>mg/l                                                                                                                                          | C.O.D.<br>mg/l                                                                                                       | 1-HOUR<br>mg/l                                                                                                | 24-HOUR<br>mg/l                                                                                                                                                               | AMMONIA-<br>NITROGEN<br>mg/I                                                                 | CHLORIDES<br>mg/l                                                                                                                                                      | Mg/I                                                                                                                                                     | HARDNESS<br>mg/l | COLOR<br>(scale units)                                                                                                     | TURBIDITY<br>(scale units)                                                                               | SULFATES<br>mg/l             | PHOSPHATES<br>mg/l   | DISSOLVED<br>SOLIDS<br>mg/l                                                                                                                                                                                                                                    | coliforms<br>per 100 ml.                                                                                                                    |
| 10 24 60<br>11 8 60<br>11 15 61<br>5 8 61<br>5 23 61<br>5 23 61<br>5 23 61<br>5 25 61<br>6 12 61<br>7 10 61<br>7 24 61<br>7 25 61<br>8 21 61<br>8 21 61<br>8 21 61<br>8 22 61<br>8 21 61<br>8 21 61<br>8 21 61<br>8 21 61<br>9 11 61<br>9 25 61 | 9.0<br>15.0<br>13.0<br>11.0<br>15.8<br>17.7<br>20.6<br>20.4<br>22.2<br>22.8<br>21.8<br>25.9<br>25.4<br>25.2<br>23.5<br>24.0<br>25.4<br>25.4<br>25.4<br>21.8 | 6.1<br>7.8<br>7.8 | 8.0<br>7.2<br>7.1<br>7.0<br>7.0<br>7.0<br>7.1<br>7.1<br>7.1<br>7.1<br>7.1<br>7.3<br>7.1<br>7.3<br>7.1<br>7.1<br>7.3<br>7.4<br>7.4<br>7.4<br>7.4 | 1.6<br>1.7<br>1.9<br>1.0<br>1.0<br>1.2<br>1.5<br>1.3<br>2.7<br>1.2<br>2.4<br>4<br>1.5<br>3.0<br>1.8<br>3.5<br>7<br>3.0<br>4<br>2.7<br>2.6<br>3.3<br>3.3 | 12<br>14<br>14<br>19<br>15<br>21<br>17<br>17<br>17<br>17<br>21<br>18<br>20<br>19<br>23<br>17<br>24<br>21<br>26<br>25 | -3000-2000-7664494582-60041-85532<br>-3000-2000-7664493-582-60041-85532<br>-3000-2000-7664493-582-60041-85532 | -12.55<br>11.66<br>3.9<br>-2.66<br>9.00<br>7.22<br>-6.33<br>7.11<br>4.22<br>7.77<br>7.11<br>9.22<br>10.9<br>9.44<br>11.11<br>9.44<br>-9.00<br>11.66<br>10.11<br>9.22<br>10.11 | .0<br>.1<br>.1<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | 8<br>4<br>5<br>3<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>6<br>9<br>7<br>1<br>9<br>7<br>1<br>9<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 42<br>26<br>26<br>18<br>20<br>18<br>20<br>26<br>26<br>26<br>22<br>24<br>22<br>30<br>36<br>37<br>28<br>32<br>36<br>37<br>28<br>32<br>36<br>36<br>38<br>36 | 48624            | 35<br>45<br>35<br>22<br>21<br>22<br>20<br>20<br>20<br>20<br>20<br>25<br>23<br>23<br>22<br>22<br>23<br>23<br>22<br>21<br>21 | 10<br>15<br>19<br>7<br>16<br>3<br>5<br>2<br>5<br>3<br>3<br>10<br>10<br>10<br>15<br>6<br>8<br>6<br>6<br>7 | 5667-5666479889-9827-8881011 | .0<br>.0<br>.0<br>.1 | 86<br>66<br>76<br>46<br>51<br>56<br>46<br>61<br>56<br>63<br>75<br>68<br>75<br>88<br>10<br>81<br>89<br>10<br>10<br>10<br>12<br>12<br>12<br>12<br>12<br>13<br>14<br>14<br>14<br>15<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16 | 440<br>1400<br>4800<br>3400<br>3000<br>1400<br>5700<br>1400<br>1200<br>1300<br>9700<br>1400<br>1400<br>4800<br>1600<br>890<br>2000<br>11000 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Computed Data for Vernon, Vermont Supplied by U.S. Geological Survey

STATE

Massachusetts

MAJOR BASIN

Northeast

MINOR BASIN

Connecticut River

STATION LOCATION

Connecticut River below

Northfield, Massachusetts

| Day                              | October                                                | November                                   | December                                           | January                                            | February                   | March                                                   | April                                          | May                                                      | June                                      | July                                              | August                                             | September                                |
|----------------------------------|--------------------------------------------------------|--------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------|---------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|-------------------------------------------|---------------------------------------------------|----------------------------------------------------|------------------------------------------|
| 1                                | 3.050                                                  | 11.100                                     | 14.900                                             | 2.050                                              | 4.700                      | 18.400                                                  | 22.800                                         | 29.000                                                   | 12.000                                    | 4.130                                             | 4.880                                              | 5.700                                    |
| 2                                | 3.300                                                  | 17.400                                     | 14.100                                             | 2.010                                              | 4.480                      | 17.800                                                  | 21.000                                         | 28.200                                                   | 12.400                                    | .721                                              | 4.140                                              | .517                                     |
| 3                                | 7.090                                                  | 15.700                                     | 10.700                                             | 6.160                                              | 3.170                      | 15.800                                                  | 19.800                                         | 35.000                                                   | 13.400                                    | 7.480                                             | 4.290                                              | .395                                     |
| 4                                | 6.800                                                  | 15.500                                     | 2.480                                              | 6.760                                              | 2.470                      | 16.600                                                  | 16.300                                         | 33.600                                                   | 15.700                                    | 6.880                                             | 4.590                                              | .348                                     |
| 5                                | 4.860                                                  | 13.000                                     | 8.910                                              | 5.440                                              | 1.880                      | 17.000                                                  | 17.700                                         | 29.300                                                   | 13.600                                    | 6.430                                             | 1.810                                              | 3.640                                    |
| 6                                | 5.670                                                  | 5.030                                      | 10.000                                             | 6.350                                              | 4.280                      | 15.500                                                  | 17.300                                         | 26.500                                                   | 11.700                                    | 7.550                                             | .321                                               | 3.340                                    |
| 7                                | 3.110                                                  | 8.040                                      | 10.000                                             | 3.730                                              | 4.090                      | 18.300                                                  | 18.400                                         | 22.600                                                   | 10.400                                    | 6.300                                             | 3.050                                              | 3.470                                    |
| 8                                | .452                                                   | 10.300                                     | 10.000                                             | 2.680                                              | 3.600                      | 20.500                                                  | 18.800                                         | 20.000                                                   | 8.630                                     | 3.740                                             | 1.960                                              | 3.630                                    |
| 9                                | .403                                                   | 9.650                                      | 8.390                                              | 5.200                                              | 4.200                      | 17.800                                                  | 17.700                                         | 21.200                                                   | 11.200                                    | .357                                              | 3.340                                              | .712                                     |
| 10                               | 4.120                                                  | 10.000                                     | 4.320                                              | 4.640                                              | 4.400                      | 14.600                                                  | 16.200                                         | 30.000                                                   | 12.200                                    | 6.170                                             | 4.630                                              | .302                                     |
| 11                               | 4.290                                                  | 8.220                                      | 1.450                                              | 4.530                                              | 2.200                      | 13.800                                                  | 18.400                                         | 36.000                                                   | 8.920                                     | 6.930                                             | 2.130                                              | 4.220                                    |
| 12                               | 2.090                                                  | 7.280                                      | 4.780                                              | 6.230                                              | .802                       | 12.700                                                  | 19.500                                         | 33.000                                                   | 10.300                                    | 6.900                                             | .300                                               | 5.140                                    |
| 13                               | 4.210                                                  | 3.620                                      | 5.080                                              | 4.720                                              | 4.700                      | 9.460                                                   | 20.800                                         | 27.200                                                   | 12.500                                    | 6.170                                             | .285                                               | 4.220                                    |
| 14                               | 4.090                                                  | 7.740                                      | 4.450                                              | 3.010                                              | 4.400                      | 11.300                                                  | 20.100                                         | 20.400                                                   | 12.700                                    | 6.350                                             | .751                                               | 4.450                                    |
| 15                               | 1.290                                                  | 7.710                                      | 4.600                                              | 1.070                                              | 3.700                      | 12.000                                                  | 18.200                                         | 20.700                                                   | 12.100                                    | 1.510                                             | 2.930                                              | 5.540                                    |
| 16                               | 1.000                                                  | 8.580                                      | 5.950                                              | 5.610                                              | 3.610                      | 12.000                                                  | 20.800                                         | 21.400                                                   | 11.600                                    | .349                                              | 2.940                                              | 1.080                                    |
| 17                               | 4.060                                                  | 9.570                                      | 4.430                                              | 5.930                                              | 3.910                      | 11.100                                                  | 23.100                                         | 16.400                                                   | 8.640                                     | 6.770                                             | 2.900                                              | .313                                     |
| 18                               | 4.700                                                  | 9.870                                      | 2.250                                              | 5.570                                              | 2.410                      | 10.400                                                  | 30.700                                         | 14.200                                                   | 1.460                                     | 7.380                                             | 2.500                                              | 3.880                                    |
| 19                               | 5.960                                                  | 4.750                                      | 6.230                                              | 4.780                                              | 2.450                      | 6.050                                                   | 31.500                                         | 14.500                                                   | 7.420                                     | 6.940                                             | .275                                               | 4.900                                    |
| 20                               | 9.390                                                  | .986                                       | 5.840                                              | 4.560                                              | 4.550                      | 8.990                                                   | 26.500                                         | 14.300                                                   | 8.230                                     | 6.190                                             | .273                                               | 7.280                                    |
| 21                               | 8.700                                                  | 8.170                                      | 6.600                                              | 1.560                                              | 6.220                      | 8.190                                                   | 26.200                                         | 11.400                                                   | 7.150                                     | 6.510                                             | 3.520                                              | 5.220                                    |
| 22                               | 5.020                                                  | 8.680                                      | 5.550                                              | 1.510                                              | 5.830                      | 8.970                                                   | 31.000                                         | 9.460                                                    | 8.430                                     | 5.210                                             | 3.680                                              | 3.460                                    |
| 23                               | 2.300                                                  | 8.140                                      | 5.880                                              | 4.630                                              | 7.480                      | 9.260                                                   | 43.300                                         | 11.700                                                   | 11.300                                    | 1.650                                             | 3.070                                              | .359                                     |
| 24                               | 8.650                                                  | 3.840                                      | 3.900                                              | 4.230                                              | 11.100                     | 10.400                                                  | 59.000                                         | 11.500                                                   | 12.100                                    | 4.200                                             | 3.510                                              | .369                                     |
| 25                               | 12.400                                                 | 7.000                                      | 3.280                                              | 4.030                                              | 9.930                      | 12.400                                                  | 51.900                                         | 12.100                                                   | 3.110                                     | 5.490                                             | 3.690                                              | 2.510                                    |
| 26<br>27<br>28<br>29<br>30<br>31 | 20.400<br>16.300<br>15.800<br>15.000<br>9.190<br>7.960 | 5.100<br>2.180<br>7.800<br>7.080<br>14.800 | 2.540<br>5.920<br>4.990<br>6.130<br>5.420<br>3.440 | 4.320<br>4.710<br>2.310<br>1.410<br>4.400<br>4.700 | 19.300<br>25.700<br>23.000 | 9.610<br>12.900<br>15.200<br>26.600<br>32.700<br>26.400 | 49.400<br>52.800<br>45.600<br>41.300<br>36.400 | 10.200<br>10.800<br>14.300<br>13.900<br>14.000<br>11.400 | 7.410<br>8.130<br>8.300<br>8.000<br>6.600 | 6.500<br>7.480<br>6.460<br>2.430<br>.333<br>3.800 | 1.510<br>3.330<br>3.790<br>6.090<br>7.370<br>8.170 | 2.600<br>2.400<br>2.950<br>2.820<br>.281 |

Computed as sum of Ashuelot River at Hinsdale, New Hampshire plus Connecticut River at Vernon, Vermont.



STATE

TENNESSEE

MAJOR BASIN

OHIO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

CUMBERLAND RIVER

STATION LOCATION CUMBERLAND RIVER AT

CLARKSVILLE, TENNESSEE

|                 |                               |           |               |                | (1 TEN    |           |       |   | RADIOAG                       | CTIVITY IN PLAN | IKTON (dry) |     | RAD      | OACTIVITY IN W | ATER          |
|-----------------|-------------------------------|-----------|---------------|----------------|-----------|-----------|-------|---|-------------------------------|-----------------|-------------|-----|----------|----------------|---------------|
| DATE            |                               |           |               | DACTIVITY IN W | AIEK.     | BETA      |       | ł |                               | GROSS A         |             |     |          | GROSS ACTIVIT  | Υ             |
| SAMPLE<br>TAKEN | DATE OF<br>DETERMI-<br>NATION |           | DISSOLVED     | TOTAL          | SUSPENDED | DISSOLVED | TOTAL | 1 | DATE OF<br>DETERMI-<br>NATION | ALPHA           | BETA        | s   | USPENDED | DISSOLVED      | TOTAL         |
|                 |                               | SUSPENDED | μμc/l         | μμε/Ι          | μμc/I     | μμε/Ι     | μμς/Ι | İ | MO. DAY                       | µµс/g           | μμε/g       |     | μμε/Ι    | μμς/Ι          | <i>µµ</i> с/! |
| MO. DAY YEAR    | MONTH DAY                     | μμc/Ι     | <i>р</i> ре/1 | μμι/1          | 77-07.    |           |       |   |                               |                 |             |     |          |                |               |
| 8 8 61          | 9 1                           | ٥         | o             | . 0            | 1         | 0         | 1     |   | 1                             |                 | l           | !   |          |                |               |
| 8 15 61         | 9 12                          | ŏ         | ŏ l           | 0              | 4         | 1         | 5     |   |                               |                 |             |     |          | 1              |               |
| 8 22 61         | 9 25                          | ō         | 0             | 0              | . 0       | 0         | 0     |   |                               |                 |             |     |          | İ              |               |
| 8 29 61         | 9 25                          | 0         | 0             | 0              | 0         | 6         | 6     |   |                               |                 |             |     |          |                |               |
| 9 5 61          | 10 5                          | 0         | 0             | 0              | 1         | 4         | 5     |   |                               |                 |             |     |          |                |               |
| 9 26 61         | 10 11                         | 0         | 1             | 1              | 6         | 9         | 15    |   |                               |                 |             |     |          |                |               |
|                 |                               |           |               |                |           |           |       |   |                               |                 |             |     |          |                |               |
|                 |                               |           |               |                |           |           |       |   | 1                             |                 |             |     |          |                |               |
|                 |                               |           |               |                |           |           |       |   |                               |                 |             | 1   |          | ĺ              |               |
|                 |                               |           |               |                |           |           |       |   |                               |                 | ļ           |     |          |                |               |
|                 |                               |           |               |                |           |           |       |   |                               |                 |             |     |          |                |               |
|                 |                               |           |               |                |           |           |       |   |                               |                 |             |     |          |                |               |
|                 |                               |           |               |                |           |           |       |   |                               |                 |             |     |          |                |               |
|                 |                               | 1         |               |                | 1         |           |       |   |                               |                 |             |     |          |                |               |
|                 |                               | ļ         |               |                |           |           |       |   |                               |                 |             |     |          |                | l             |
|                 |                               | 1         | ļ             |                |           |           |       | 1 |                               |                 |             |     |          |                |               |
|                 |                               |           |               |                |           |           |       |   |                               |                 |             |     |          |                |               |
|                 |                               |           |               |                |           |           |       | 1 |                               | ļ               |             |     |          |                |               |
|                 |                               |           |               |                |           |           |       | 1 | 1                             |                 |             |     |          |                |               |
|                 |                               |           |               |                |           |           |       |   |                               | İ               |             | 1 1 |          |                |               |
|                 |                               | ļ         |               |                |           |           |       |   |                               |                 |             |     |          |                |               |
|                 |                               |           |               |                |           |           |       |   |                               | ļ               |             |     |          |                |               |
|                 |                               |           |               |                |           |           |       | Ì | 1                             | Ì               |             |     |          |                |               |
|                 |                               |           |               |                |           |           |       | 1 |                               | 1               |             | 1   |          |                |               |
|                 |                               |           |               |                |           |           |       | 1 |                               | Į               |             |     |          |                |               |
|                 |                               |           |               |                |           | Ì         |       | 1 |                               |                 |             |     |          |                |               |
|                 |                               |           |               |                |           |           |       | 1 |                               |                 |             |     |          |                |               |
|                 |                               |           |               |                |           |           |       |   |                               |                 |             |     |          |                |               |
|                 |                               |           |               |                |           |           |       |   |                               |                 |             |     |          | -              |               |
|                 |                               |           |               |                | 1         |           |       |   | 1                             |                 |             |     |          |                |               |
|                 |                               |           |               |                | 1         |           |       |   |                               |                 |             |     |          |                |               |
|                 |                               |           |               |                |           |           |       | 1 | 1                             |                 |             | 1 1 |          | 1              |               |
|                 |                               |           |               |                |           |           |       |   |                               |                 |             |     |          | 1.             |               |
|                 |                               |           |               |                |           |           | 1     |   |                               |                 |             |     |          |                |               |
|                 |                               |           | 1             |                |           |           |       | 1 |                               | Į               |             |     |          |                |               |
|                 |                               | 1         |               |                |           |           |       |   |                               |                 |             |     |          | 1              |               |
|                 |                               | 1         |               |                |           |           |       |   |                               |                 | 1           | 1   |          |                |               |
|                 |                               |           |               |                |           |           |       | 1 |                               |                 |             |     |          |                | <u></u>       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

TENNESSEE

MAJOR BASIN

OHIO RIVER

MINOR BASIN

CUMBERLAND RIVER

STATION LOCATION CUMBERLAND RIVER AT

CLARKSVILLE, TENNESSEE

|       |         |                |             |         |                       |          |                       |          |        |                         |          | INE                         | PT       |       |                 |                | DI   | ATON     | us.             |                   |                                         |            | ÷.                                                                       | 1                         | ICROIN                       | VERTEBRA                     |                              |         |                                                             |
|-------|---------|----------------|-------------|---------|-----------------------|----------|-----------------------|----------|--------|-------------------------|----------|-----------------------------|----------|-------|-----------------|----------------|------|----------|-----------------|-------------------|-----------------------------------------|------------|--------------------------------------------------------------------------|---------------------------|------------------------------|------------------------------|------------------------------|---------|-------------------------------------------------------------|
| D     | ATE     | :              |             | T       |                       | ALGAE (I |                       | FLAGEL   | LATES  | DIAT                    | oms      | INE<br>DIA<br>SHE<br>(No. p | LLS      |       | DOM!            | NANT<br>Introd |      | for Co   | ID DE           | RCEN'<br>ntificat | TAGES                                   |            | OTHER MICHOPLANKTOR,<br>FUNGI AND SHEATHED<br>BACTERIA<br>(No. per mil.) | ml.)                      | s<br>iter)                   | iter)                        | NEMATODES<br>(No. per liter) | L PORMS | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| OF S  | AMI     | "LE            |             | BLUE.   | GREEN                 | GREE     |                       | (Pigme   | ented) |                         | Γ        | (140. p                     | sr 114.7 |       | <b>#</b>        | *              | 3 3  | *        | AGE             | *                 | AGE                                     | OTHER PER- | AND SI                                                                   | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | ATOD<br>per l                | Per 11t | Intro                                                       |
| MONTH | DAY     | YEAR           | TOTAL       | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID  | FILA-<br>MENT-<br>OUS | GREEN    | OTHER  | CENTRIC                 | PENNATE  | CENTRIC                     | PENNATE  | FIRST | PER.<br>CENTAGE | SECOND         | PER- | THIRD#   | PER.<br>CENTAGE | FOURTH            | PER.                                    | OTHE       | OTHER<br>FUNG<br>BACTE<br>(No.                                           | PRO'                      | ROT<br>(No.                  | CRU<br>(No.                  | (No.                         | CNO.    | (See                                                        |
| 8 8 9 | 8<br>22 | 61<br>61<br>61 | 200 200 300 |         |                       | 40 20 80 |                       | 20 20 40 |        | 170<br>80<br>190<br>120 | 20010060 | 120                         | 1 20     | 182   | 20043           | 110            | 10   | 57<br>57 | 10<br>*         | 70<br>56          | 100 100 100 100 100 100 100 100 100 100 | 30<br>50   | 20                                                                       |                           | 2 6                          | 2 3                          | 1                            |         |                                                             |

STATE

TENNESSEE

MAJOR BASIN CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

OHIO RIVER

MINOR BASIN

CUMBERLAND RIVER

STATION LOCATIONCUMBERLAND RIVER AT

CLARKSVILLE, TENNESSEE

| OF S        | ATE                       |                            | TEMP.                   | DISSOLVED |     |                |                | CHLORINE       | DEMAND          |                              | <del>, , , , , , , , , , , , , , , , , , , </del> |                    |    |               |                            |                  |                    | TOTAL                       |                                        |
|-------------|---------------------------|----------------------------|-------------------------|-----------|-----|----------------|----------------|----------------|-----------------|------------------------------|---------------------------------------------------|--------------------|----|---------------|----------------------------|------------------|--------------------|-----------------------------|----------------------------------------|
| <b>T</b>    |                           | YEAR                       | (Degrees<br>Centigrade) | OXYGEN    | pH  | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l                                 | ALKALINITY<br>mg/I |    | (scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml.               |
| 8 8 8 8 8 8 | 7<br>15<br>22<br>28<br>29 | 61<br>61<br>61<br>61<br>61 |                         | _         | 7.5 |                |                |                |                 |                              | 4                                                 | 56                 | 84 | 1115115       |                            | 27               |                    |                             | 50<br>60<br>10<br>-<br>40<br>200<br>20 |
|             |                           |                            |                         |           |     |                |                |                |                 |                              |                                                   |                    |    |               |                            |                  |                    |                             |                                        |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Dover, Tennessee Operated by U.S. Geological Survey

STATE

Tennessee

MAJOR BASIN

Ohio River

MINOR BASIN

Cumberland River

STATION LOCATION

Cumberland River at

Clarksville, Tennessee

| Day      | October        | November        | December         | January          | February         | March            | April            | May              | June             | July             | August           | September        |
|----------|----------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|          |                |                 |                  |                  |                  |                  | -                |                  |                  |                  |                  |                  |
| 1        | 7.100          | 9.540           | 17.600           | 38.800           | 14.400           | 72.200           | 48.500           | 27.100           | 20.200           | 20.200           | 9.090            | 18.500           |
| 2        | 5.600<br>5.570 | 9.220<br>10.600 | 16.600<br>18.200 | 48.400           | 12.900           | 65.800           | 52.200           | 40.000           | 15.800           | 18. <i>6</i> 00  | 11.200           | 22.200           |
| 3<br>4   | 7.140          | 11.200          | 19.500           | 37.500<br>26.800 | 12.500<br>14.900 | 51.900           | 46.500           | 45.200           | 15.200           | 15.900           | 12.600           | 15.600           |
| 5        | 9.840          | 9.030           | 12.900           | 24.900           | 19.900           | 43.600<br>45.300 | 43.100<br>44.300 | 39.800           | 14.700           | 16.400           | 12.100           | 14.600           |
|          | <b>7.0.0</b>   | 7.030           | 11.,000          | 24.300           | 19.900           | 47.300           | 44.300           | 34.000           | 15.100           | 14.100           | 11.000           | 10.700           |
| 6        | 8.120          | 8.200           | 12.300           | 19,400           | 20.000           | 53.000           | 45.900           | 38.400           | 18.200           | 13.100           | 10.900           | 10.100           |
| 7        | 7.700          | 8.310           | 15.000           | 20.300           | 16.300           | 65.700           | 44.800           | 42.200           | 20.100           | 12.900           | 9.050            | 11.100           |
| 8        | 7.140          | 11.800          | 15.200           | 24.700           | 23.300           | 79.100           | 43.800           | 37.100           | 20.600           | 7.850            | 8.630            | 17.600           |
| 9<br>10  | 6.460          | 15.500          | 15.700           | 20.800           | 28,900           | 101.000          | 42.600           | 38.200           | 35.900           | 4.620            | 9.420            | 15.900           |
| 10       | 7.210          | 12.600          | 15.700           | 18.300           | 27.400           | 109.000          | 39.900           | 36.900           | 40.900           | 10.500           | 9.540            | 11.700           |
| 11       | 8.100          | 16.600          | 16.100           | 14.200           | 20.800           | 103.000          | 37.700           | 33.700           | 32.600           | 10 200           | 10.000           | 37 000           |
| 12       | 8.000          | 17.400          | 17.300           | 18.800           | 15.400           | 92.800           | 45.100           | 21.400           | 23.100           | 10.300<br>9.320  | 10.200<br>13.700 | 11.300           |
| 13       | 10,200         | 16.100          | 17,900           | 21.900           | 13.700           | 86.400           | 66.100           | 14.200           | 19.600           | 8.140            | 8.330            | 13.200<br>13.200 |
| 14       | 8.180          | 17.200          | 17.100           | 22.200           | 14.100           | 82.800           | 78.500           | 14.800           | 21.500           | 9.940            | 9.240            | 12.500           |
| 15       | 7.850          | 14.000          | 16.800           | 23.500           | 15.600           | 72.600           | 74.100           | 15.500           | 41.400           | 14.300           | 13.400           | 11.400           |
| 16       | 7.880          | 8.050           | 17.300           | 20.600           | 14.900           | 66.000           | 78.700           | 02.000           | F3 000           |                  | -1               |                  |
| 17       | 7.900          | 8.080           | 18.000           | 19.400           | 13.100           | 62.700           | 83.300           | 23.200<br>30.300 | 51.200           | 15.100           | 14.200           | 10.100           |
| 18       | 7.820          | 11.300          | 17.700           | 17.800           | 13.700           | 59.100           | 79,600           | 32.400           | 40.700<br>20.800 | 11.300<br>12.900 | 9.160            | 7.430            |
| 19       | 11.400         | 12,500          | 15.100           | 19.100           | 13.000           | 59.500           | 69.700           | 46.000           | 17.800           | 16.500           | 8.500<br>7.220   | 7.680            |
| 20       | 16.100         | 9.500           | 15.400           | 23.300           | 14.500           | 60.100           | 55.100           | 50.600           | 19.300           | 21.400           | 8.100            | 10.700<br>11.000 |
| 21       | 17.000         | 11.800          | 16.400           | 05 000           |                  | 4                |                  | •                |                  |                  | 0.100            | 11.000           |
| 22       | 11.000         | 9.570           | 20.000           | 25.300<br>26.600 | 22.600           | 62.800           | 49.700           | 37.800           | 25.500           | 21.600           | 6.730            | 10.100           |
| 23       | 12.900         | 12.400          | 24.200           | 25.100           | 36.800<br>51.800 | 72.900           | 49.900           | 31.600           | 25.600           | 18.800           | 6.210            | 10.700           |
| 24       | 10.400         | 10,900          | 21.500           | 21.200           | 50.400           | 68.700<br>63.200 | 47.500           | 29.900           | 24.800           | 17.200           | 8.030            | 11.000           |
| 25       | 8.510          | 12.000          | 14.800           | 19.700           | 48.100           | 57.000           | 43.500<br>43.600 | 27. <i>6</i> 00  | 22.400           | 11.900           | 9.740            | 12.800           |
| _        | -              |                 |                  | 25.100           | 40.100           | 77.000           | 43.000           | 22.000           | 21.600           | 14.600           | 11.800           | 12.700           |
| 26       | 5.310          | 9.540           | 11.900           | 21.300           | 50.800           | 53.500           | 39.600           | 25.300           | 24.400           | 12,400           | 9.990            | 0 810            |
| 27<br>28 | 5.380          | 8.750           | 12.300           | 20.700           | 54.400           | 49.400           | 35.300           | 26.700           | 25.700           | 14.800           | 9.990<br>8.290   | 9.740<br>11.100  |
| 29<br>29 | 4.830<br>6.260 | 8.680<br>9.890  | 13.600           | 17.600           | 55.700           | 45.100           | 38.700           | 22.100           | 24.700           | 15.000           | 8.430            | 7.810            |
| -9<br>30 | 5.990          | 9.890<br>17.400 | 14.900           | 17.900           |                  | 47.600           | 29.700           | 19.100           | 23.100           | 17.600           | 10.700           | 6.780            |
| .~<br>31 | 8.720          | T(.400          | 24.300<br>33.200 | 18.800           |                  | 47.300           | 25.200           | 15.000           | 20.800           | 17.500           | 10.800           | 7.900            |
|          | 0.150          |                 | 33.200           | 15.600           |                  | 43.800           |                  | 17.600           |                  | 12.000           | 13.900           | 1.700            |

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

DELAWARE-SCHUYLKILL RIVERS

STATION LOCATION DELAWARE RIVER AT

PHILADELPHIA: PENNSYLVANIA

|              |                                                                              | <del></del>                       | RADIO     | DACTIVITY IN V | VATER     |           |       | RADIOA                         | CTIVITY IN PLAN | IKTON (dry) | RAD       | DIOACTIVITY IN W | /ATER               |
|--------------|------------------------------------------------------------------------------|-----------------------------------|-----------|----------------|-----------|-----------|-------|--------------------------------|-----------------|-------------|-----------|------------------|---------------------|
| DATE         | DATE OF                                                                      |                                   |           |                | T         | BETA      |       | DATE OF                        | GROSS           | CTIVITY     |           | GROSS ACTIVIT    |                     |
| TAKEN        | DETERMI-<br>NATION                                                           | SUSPENDED                         | DISSOLVED | TOTAL          | SUSPENDED | DISSOLVED | TOTAL | NATION                         | ALPHA           | BETA        | SUSPENDED | DISSOLVED        |                     |
| MO. DAY YEAR |                                                                              | μμε/Ι                             | μμς/      | μμε/Ι          | μμε/ί     | μμς/Ι     | μμε/Ι | MO. DAY                        | μμc/g           | μμc/g       | μμε/Ι     | μμε/Ι            | μμς/Ι               |
| SAMPLE       | 11 8<br>12 27<br>1 13<br>2 13<br>3 10<br>4 10<br>5 12<br>6 9<br>7 13<br>8 28 | SUSPENDED  μμε/Ι  2 2 1 1 0 0 0 0 |           |                |           | DISSOLVED |       | DATE OF DETERMINATION  MO. DAY | ALPHA           | BETA        |           | DISSOLVED        | Y<br>TOTAL<br>μμε/I |
|              |                                                                              |                                   |           |                |           |           |       |                                |                 |             |           |                  |                     |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

DELAWARE-SCHUYLKILL RIVERS

STATION LOCATION DELAWARE RIVER AT

PHILADELPHIA, PENNSYLVANIA

|                      |                                                                                                |                      |                        | ALGAE (                                                                                | Number                | per ml.)                                                                         |                                  |                                                                                           |                                                                                                                      | . INI          | ERT<br>TOM                                                                              | T                                                                                                                                            |                                                                                                          |                                                                            |                                                                            | IATO                                                                                                                            |                           |                                                                                  |                                                                                 |                                                                                                                      | Γ.                                                               | Ţ                         | MICROIN                             | VERTER                       | ATES                         |                                       |                                                             |
|----------------------|------------------------------------------------------------------------------------------------|----------------------|------------------------|----------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------|-------------------------------------|------------------------------|------------------------------|---------------------------------------|-------------------------------------------------------------|
| DATE<br>OF SAMPLE    |                                                                                                | BLUE-                | GREEN                  | GREE                                                                                   |                       | FLAGE!                                                                           |                                  | DIAT                                                                                      | омѕ                                                                                                                  | SHE            | TOM<br>ELLS<br>er ml.)                                                                  |                                                                                                                                              |                                                                                                          |                                                                            | SPEC                                                                       | IES A                                                                                                                           | MS<br>ND PE<br>ode Ide    |                                                                                  |                                                                                 | s                                                                                                                    | ROPLANKTON,<br>SHEATHED<br>ml.)                                  | 3                         | T                                   |                              | T                            | ORMS                                  | NERA<br>iction<br>ition)                                    |
| MONTH<br>DAY<br>YEAR | TOTAL                                                                                          | COCCOID              | FILA-<br>MENT-<br>OUS  | COCCOID                                                                                | FILA-<br>MENT-<br>OUS | GREEN                                                                            | OTHER                            | CENTRIC                                                                                   | PENNATE                                                                                                              | <u> </u>       |                                                                                         | FIRST*                                                                                                                                       | PER-                                                                                                     | SECOND*                                                                    | PER.<br>CENTAGE                                                            | THIRD#                                                                                                                          | PER.<br>CENTAGE           | FOURTH                                                                           | PER.                                                                            | OTHER PER-<br>CENTAGE                                                                                                | OTHER MICROPLAN<br>FURGI AND SHEATI<br>BACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)        | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ARIMAL FORMS<br>(No. per liter) | DONINANT GENERA<br>(See Introduction<br>for Identification) |
| 10                   | 400<br>1100<br>300<br>200<br>4400<br>300<br>300<br>300<br>2100<br>2100<br>2100<br>2100<br>2100 | 20<br>20<br>20<br>40 | 150<br>120<br>40<br>20 | 20<br>20<br>40<br>20<br>40<br>40<br>100<br>270<br>20<br>430<br>70<br>500<br>230<br>390 | 20 20                 | 20<br>20<br>20<br>40<br>20<br>90<br>20<br>170<br>210<br>120<br>100<br>100<br>120 | 20<br>20<br>20<br>20<br>70<br>20 | 130<br>20<br>20<br>20<br>90<br>90<br>50<br>230<br>270<br>480<br>190<br>180<br>1010<br>850 | 220<br>250<br>140<br>290<br>200<br>310<br>380<br>270<br>530<br>470<br>1900<br>1510<br>290<br>270<br>50<br>440<br>270 | 90<br>50<br>70 | 250<br>180<br>420<br>250<br>70<br>560<br>780<br>470<br>910<br>1060<br>380<br>520<br>250 | 62<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95 | 20<br>40<br>40<br>20<br>20<br>20<br>30<br>60<br>10<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 29<br>19<br>29<br>36<br>29<br>36<br>23<br>39<br>39<br>36<br>31<br>42<br>92 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>20<br>20<br>20 | 19<br>26<br>62<br>62<br>93<br>66<br>62<br>93<br>62<br>93<br>62<br>93<br>63<br>63<br>63<br>63<br>63<br>63<br>63<br>63<br>63<br>6 | 10<br>10<br>*<br>20<br>10 | 92<br>29<br>19<br>19<br>26<br>70<br>70<br>93<br>93<br>93<br>29<br>56<br>92<br>62 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 60<br>60<br>60<br>40<br>30<br>40<br>37<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60 | 20<br>70<br>70<br>20<br>50<br>20<br>20                           | 20                        | 1<br>1<br>4<br>158<br>9<br>46<br>55 | 1 3 1                        | 16 214 3                     | 1                                     |                                                             |

#### ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

DELAWARE-SCHUYLKILL RIVERS

STATION LOCATION DELAWARE RIVER AT

PHILADELPHIA . PENNSYLVANIA

|       | D 4 T IF | OF SA    | AADI E |         |                     | FY        | TRACTABL        | FS        | 1                   |                   |          |            | CHLOROF   | ORM EXTR                     | ACTABLES |               |                 |        |        |
|-------|----------|----------|--------|---------|---------------------|-----------|-----------------|-----------|---------------------|-------------------|----------|------------|-----------|------------------------------|----------|---------------|-----------------|--------|--------|
|       | GINN     |          | EN     |         |                     |           |                 |           |                     |                   |          |            | NEUTRALS  |                              |          |               |                 |        |        |
| MONTH | DAY      | YEAR     | MONTH  | DAY     | GALLONS<br>FILTERED | TOTAL     | CHLORO-<br>FORM | ALCOHOL   | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES | TOTAL    | ALIPHATICS | AROMATICS | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS     | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES  | LOSS   |
| 4 5   | 17<br>31 | 61<br>61 | 5      | 3<br>13 | 5800<br>6834        | 165<br>92 | 58<br>35        | 107<br>57 | 2<br>1              | 14<br>7           | 20<br>14 | 5<br>4     | 3<br>2    | 12<br>7                      | 0<br>1   | 7 4           | 5<br><b>3</b>   | 1<br>1 | 9<br>5 |
|       |          |          |        |         |                     |           |                 |           |                     |                   |          |            |           |                              |          |               |                 |        |        |
|       |          |          |        |         |                     |           |                 |           |                     |                   |          |            |           |                              |          |               |                 |        |        |
|       |          |          |        |         |                     |           |                 |           |                     |                   |          |            |           |                              |          |               |                 |        |        |
|       |          |          |        |         |                     |           |                 |           |                     |                   |          |            |           |                              |          |               |                 |        |        |
|       |          |          |        |         |                     |           |                 |           |                     |                   |          |            |           |                              |          |               |                 |        |        |
|       |          |          |        |         |                     |           |                 |           | ç                   |                   |          |            |           |                              |          |               |                 |        |        |
|       |          |          |        |         |                     |           |                 |           |                     |                   |          |            |           |                              |          |               |                 |        |        |
|       |          |          |        |         |                     |           |                 |           |                     |                   |          |            |           |                              |          |               |                 |        |        |
|       |          |          |        |         |                     |           |                 |           |                     |                   |          |            |           |                              |          |               |                 |        |        |
|       |          |          |        |         |                     |           |                 |           |                     |                   |          |            |           |                              |          |               |                 |        |        |
|       |          |          |        |         |                     |           |                 |           |                     |                   |          |            |           |                              |          |               |                 |        |        |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

#### STATE

PENNSYLVANIA

#### MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

DELAWARE SCHUYLKILL RIVERS

STATION LOCATIONDELAWARE RIVER AT

PHILADELPHIA, PENNSYLVANIA

| DATE                 |                                  | <u> </u>                    |            |                |                | CHLORINE       | DEMAND          |                              |                   |                    |                  |                        |                         |                  |                    |                                      |                          |
|----------------------|----------------------------------|-----------------------------|------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|-------------------------|------------------|--------------------|--------------------------------------|--------------------------|
| OF SAMPLE            | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/I | pH         | B.O.D.<br>mg/l | C.O.D.<br>mg/l | I-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/I | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY (scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml. |
| 10 3 60              | 19.0                             | 5.6                         | 7.1        | _              | 10             | _              | · -             | • 6<br>• 8                   | 5<br>4            | 19<br>28           | 46<br>52         | 30<br>30               | 120                     | 29               | •3                 | 162                                  | 49000                    |
| 10 10 60             | 18.0<br>17.0                     | 4.4<br>6.0                  | 7.2        | _              | 10             | _              | _               | .3                           | 6                 | 28                 | 60               | 20                     | 115<br>125              | 31<br>32         | •3                 | 175<br>147                           | 6700<br>9200             |
| 10 24 60             | 18.0                             | 6.6                         | 7.4        | _              | 8              | 8.0            | 10.7            | •6                           | 7                 | 35                 | 211              | 20                     | 150                     | 24               | .1                 | 190                                  | 21000                    |
| 10 31 60             | 13.0                             | 7.6                         | 7.2        | 5.0            | -              | 6.3            | 8.1             | •7                           | 8                 | 41                 | 66               | 20                     | 140                     | 22               | • 2                | 286                                  | 6200                     |
| 11 7 60              | 13.0                             | 7.0                         | 7.2        | 4 • 4          | -              | 5.1            | 7 • 3           | •4                           | 8                 | 38                 | 64               | 15                     | 135                     | 30               | •5                 | 222                                  | 24000                    |
| 11 14 50             | 11.0                             | 9.0                         | 7.2        | 4.0            | 11             | 7.3            | 8.9<br>8.8      | •3                           | 5                 | 42                 | 66               | 15                     | 100                     | 30               | • 2                | 260                                  | 17000                    |
| 11 21 60<br>11 28 60 | 11.0                             | 9.0                         | 7.2<br>7.2 | 3.6<br>3.9     | 11<br>16       | 6•7<br>7•0     | 8.9             | •6<br>•8                     | 9<br>11           | 41<br>40           | 66<br>60         | 5<br>5                 | 120<br>155              | 29<br>30         | •2<br>•2           | 275                                  | 6000                     |
| 12 5 60              | 9.0                              | 8.2                         | 7.3        | 4.8            | 7              | 5.3            | 7•7             | •6                           | 10                | 42                 | 70               | 5                      | 175                     | 29               | .1                 | 266<br>261                           | 4000                     |
| 12 6 60              | -                                | -                           | '-         | -              | _              | -              | -               | -                            | -                 | -                  | -                | _                      |                         | -                |                    | -                                    | 14000                    |
| 12 12 60             | 7.0                              | 11.5                        | 7.2        | 4.4            | 8              | 4•4            | 6.3             | • 4                          | 5                 | 42                 | 58               | 10                     | 165                     | 30               | .1                 | 233                                  |                          |
| 12 13 60             | -                                | -                           | -          | -              | -              |                |                 | -                            | -                 | 1                  |                  |                        | -                       |                  | -                  | -                                    | 7000                     |
| 12 19 60             | 3.0                              | 8.4                         | 7.3        | -              | 8              | 8.3            | 9•6             | •5                           | 9                 | 41                 | 46               | 10                     | 150                     | 32               | •2                 | 253                                  |                          |
| 12 27 60             | 1.0                              | 12.8                        | 7.2        | 4.2            | 12             | 7.0            | 9•3             | _                            | 12                | 36                 | 64               | _                      | 105                     | -<br>35          | •5                 | 994                                  | 2800                     |
| 1 9 61               | 1.0                              | 10.4                        | 7.2        | 4.7            | 13             | 6.8            | 8.4             | •7                           | 13                | 36                 | 66               | 15                     | 120                     | 35               | • 4                | 234<br>195                           | 11000                    |
| 1 16 61              | 1.0                              | 10.4                        | 7.2        | 5.0            | 13             | 8.8            | 9.7             | . 6                          | 9                 | 32                 | 76               | 10                     | 80                      | 33               | •3                 | 162                                  | 25000                    |
| 1 23 61              | 4.0                              | 12.4                        | 7.2        | 4.1            | 8              | 8.5            | 9•9             | •5                           | 15                | 39                 | 72               | 5                      | 50                      | 33               | .7                 | 178                                  | 17000                    |
| 1 30 61              | 1.0                              | 12.0                        | 7.2        | 3.9            | 10             | 10.6           | 11.9            | •6                           | 12                | 39                 | 70               | 7                      | 45                      | 36               | • 4                | 169                                  | 9000                     |
| 2 6 61               | • 6                              | 13.2                        | 7•2        | 2.0            | 9              | 10.0           | 12.0            | 1.0                          | 14                | 41                 | 78               | 10                     | 65                      | 34               | .4                 | 158                                  | _                        |
| 2 8 61<br>2 14 61    | .6                               | 11.0                        | 7.1        | 3.9            | 12             | 8.3            | 9.7             | 1.4                          | 17                | 39                 | 100              | ,-                     |                         | - 4 0            | -                  | -                                    | 1600                     |
| 2 20 61              | -                                | 11.0                        | (•1        | 2.5            | 12             | - 0.0          | <b>9•</b> /     | 1.4                          | 1/                | -                  | 100              | 15                     | 40                      | 40               | •3                 | 152                                  | *200                     |
| 2 21 61              | 3.0                              | 12.0                        | 7.2        | 2.9            | 13             | 7.1            | 9.3             | •7                           | 14                | 37                 | 70               | 20                     | 75                      | 40               | • 3                | 152                                  | 2600                     |
| 2 27 61              | 5.0                              | 12.2                        | 7.1        | 4.4            | 12             | 6.9            | 8.9             | 1.0                          | 4                 | 33                 | 80               | 35                     | 85                      | 20               | .2                 | 128                                  | 400                      |
| 3 6 61               | 5.0                              | 12.6                        | 7 • 1      | 2.7            | 9              | 5 • 2          | 8•8             | 1.7                          | 5                 | 23                 | 40               | 15                     | 50                      | 22               | • 4                | 99                                   | 7800                     |
| 3 13 61 3 14 61      | 6.1                              | 15.0                        | 7.2        | 3.7            | 7              | 5•7            | 7.9             | • 5                          | 7                 | 22                 | 48               | 10                     | 30                      | 23               | • 4                | 96                                   | _                        |
| 3 20 61              | 11.0                             | 12.0                        | 7.1        | 3.3            | 9              | 6.6            | 8.9             | •5                           | 12                | 7.                 | -                | -                      | -                       |                  | -                  |                                      | 6000                     |
| 3 27 61              | 7.8                              | 10.3                        | 7.2        | 1.9            | 3              | 5.5            | 7.8             | .5                           | 6                 | 26<br>28           | 78<br>54         | 5<br>20                | 60<br>60                | 27<br>26         | •1                 | 115<br>164                           | 8000                     |
| 4 3 61               | 8.3                              | 11.4                        | 7.2        | 2.8            | 14             | 5.8            | 8.1             | 2.3                          | 6                 | 29                 | 42               | 15                     | 45                      | 26               | . 4                | 151                                  |                          |
| 4 4 61               | -                                | -                           | -          | -              | -              | -              | -               | _                            | -                 | -                  | -                |                        | -                       |                  | -                  |                                      | 12000                    |
| 4 10 61              | 8.9                              | 11.2                        | 7.2        | 3.0            | 7              | 4.9            | 7 • 7           | 3.8                          | 5                 | 26                 | 66               | 10                     | 30                      | 31               | • 3                | 128                                  | 330                      |
| 4 17 61 4 24 61      | 11.1                             | 11.4                        | 7.1        | 2.6<br>3.8     | 11             | 5.3            | 8 • 4           | 3.8                          | 3                 | 24                 | 40               | 30                     | 45                      | 26               | •2                 | 121                                  | 17000                    |
| 5 1 61               | 7.8                              | 9.6                         | 7.1        | 3.1            | 6              | 5.5            | 7.0             | 2.8                          | 5                 | 27                 | 48               | 10                     | 28                      | 27               | • 4                | 107                                  | 37000                    |
| 5 8 61               | 15.0                             | 8.6                         | 7.2        | 1.7            | 8              | 5.2            | 7.1             | •0                           | 4 6               | 19  <br>22         | 34               | 20                     | 28                      | 21               | • 2                | 109                                  | -                        |
| 5 15 61              | 15.0                             | 8.3                         | 7.2        | *.1            | 9              | 5.8            | 8.8             | •0                           | 7                 | 28                 | 44<br>42         | 10<br>33               | 32<br>33                | 26<br>26         | •2<br>•5           | 143  <br>79                          | 4400                     |
|                      |                                  |                             |            |                |                |                |                 | •                            | '                 | 20                 | 74               | ا در                   | ادر                     | 20               | • • •              | 17                                   | 4400                     |
|                      |                                  |                             |            |                |                |                |                 |                              | 146               |                    |                  |                        | L                       |                  |                    |                                      |                          |



CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

DELAWARE SCHUYLKILL RIVERS

STATION LOCATION PELAWARE RIVER AT

PHILADELPHIA, PENNSYLVANIA

| DATE                                                                   | -                                                  |                                                                                                                                             |                             |                                                                                                                     |                                                                                         |                                                                                | CHLORINE                                                                                       | DEMAND                                                                                                                                                                                                                       |                                                                      |                                                                                                  |                      |                                                                    |                              |                                            |                                                                                    |                    | TOTAL                                                                          |                                                                                                                          |
|------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------|------------------------------|--------------------------------------------|------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| HLNOW AV                                                               |                                                    | TEMP.<br>(Degrees<br>Centigrade)                                                                                                            | DISSOLVED<br>OXYGEN<br>mg/l | рН                                                                                                                  | B.O.D.<br>mg/l                                                                          | C.O.D.<br>mg/l                                                                 | 1-HOUR<br>mg/l                                                                                 | 24-HOUR<br>mg/l                                                                                                                                                                                                              | AMMONIA-<br>NITROGEN<br>mg/l                                         | CHLORIDES<br>mg/l                                                                                | ALKALINITY<br>mg/l   | HARDNESS<br>mg/l                                                   | COLOR                        | •                                          | SULFATES<br>mg/l                                                                   | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/l                                                    | COLIFORMS<br>per 100 ml.                                                                                                 |
| 5 22 29 5 6 12 19 6 6 2 6 7 7 10 7 7 2 4 1 8 2 18 8 2 8 9 11 8 9 9 2 5 | 61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61 | 8.3<br>12.8<br>21.1<br>22.8<br>24.4<br>22.8<br>23.9<br>24.4<br>25.6<br>27.2<br>25.6<br>27.2<br>25.0<br>26.1<br>26.7<br>27.8<br>25.6<br>23.9 | 8                           | 7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.1<br>7.2<br>7.1<br>7.2<br>7.1<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2 | 1.2<br>2.8<br>1.4<br>2.6<br>4.2<br>2.1<br>4.4<br>2.5<br>3.5<br>2.8<br>7.8<br>8.2<br>2.5 | 10<br>8<br>10<br>10<br>8<br>13<br>14<br>14<br>13<br>11<br>14<br>12<br>12<br>12 | 6.2<br>7.4<br>8.2<br>8.8<br>9.8<br>9.7<br>8.9<br>7.5<br>9.7<br>8.9<br>7.5<br>9.8<br>9.7<br>9.8 | 8.3<br>9.2<br>8.7<br>9.0<br>9.4<br>9.5<br>8.8<br>9.2<br>8.9<br>9.4<br>8.9<br>9.4<br>8.9<br>9.4<br>8.9<br>9.4<br>8.9<br>9.4<br>8.9<br>9.4<br>8.9<br>9.4<br>8.9<br>9.4<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | .1<br>.0<br>.3<br>.2<br>.1<br>.1<br>.0<br>.4<br>.1<br>.3<br>.3<br>.1 | 10<br>13<br>8<br>7<br>9<br>8<br>24<br>18<br>8<br>5<br>14<br>7<br>7<br>9<br>7<br>6<br>5<br>6<br>8 | 46<br>32<br>40<br>41 | 522<br>648<br>666<br>668<br>648<br>688<br>649<br>804<br>642<br>766 | 5 5 10 5 5 20 35 15 25 10 15 | 3550405550000055743550<br>4350000055743550 | 207<br>257<br>26<br>26<br>23<br>26<br>30<br>27<br>27<br>29<br>31<br>30<br>31<br>34 | • 4                | 102<br>158<br>-<br>87<br>151<br>183<br>177<br>-<br>128<br>-<br>119<br>136<br>- | 1200<br>-<br>27000<br>1700<br>*200<br>6000<br>7600<br>14000<br>12000<br>-<br>7600<br>5400<br>5000<br>19<br>5600<br>15000 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Trenton, New Jersey Operated by U.S. Geological Survey STATE

Pennsylvania

MAJOR BASIN

North Atlantic

MINOR BASIN

Delaware-Schuylkill Rivers

STATION LOCATION

Delaware River at

Philadelphia, Pennsylvania

| Day                              | October                                            | November                                  | December                                           | January                                            | February                                       | March                                                    | April                                          | May                                                  | June                                       | July                                               | August                                               | September                                 |
|----------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|------------------------------------------------------|--------------------------------------------|----------------------------------------------------|------------------------------------------------------|-------------------------------------------|
| 1                                | 12.200<br>13.300                                   | 6.100<br>7.450                            | 7.400<br>8.550                                     | 4.600<br>6.200                                     | 3.900<br>3.600<br>3.350                        | 46.100<br>37.000<br>30.200                               | 28.300<br>25.500<br>22.900                     | 23.600<br>20.700<br>19.800                           | 7.650<br>7.800<br>7.800                    | 5.300<br>5.100<br>4.740                            | 6.140<br>6.700<br>5.980                              | 6.600<br>5.900<br>5.580                   |
| 2<br>3<br>4<br>5                 | 11.300<br>10.000<br>10.000                         | 7.700<br>7.400<br>7.300                   | 8.250<br>7.080<br>6.140                            | 6.000<br>5.500<br>5.000                            | 3.600<br>3.700                                 | 26.100<br>25.700                                         | 20.000                                         | 18.800<br>17.000                                     | 7.450<br>6.750                             | 4.280<br>4.140                                     | 5.900<br>5.500                                       | 4.980<br>4.240                            |
| 6<br>7<br>8<br>9                 | 9.500<br>9.050<br>8.750<br>8.050<br>7.040          | 7.000<br>6.260<br>5.860<br>6.140<br>7.300 | 5.780<br>5.660<br>5.780<br>5.860<br>5.420          | 5.000<br>4.800<br>4.800<br>4.600<br>4.400          | 3.800<br>3.800<br>4.000<br>4.100<br>4.500      | 25.700<br>34.500<br>41.900<br>38.800<br>32.600           | 16.200<br>15.100<br>14.200<br>13.300<br>15.200 | 15.000<br>13.700<br>13.800<br>15.600<br>19.600       | 5.860<br>5.740<br>5.660<br>5.420<br>6.020  | 4.210<br>4.070<br>3.930<br>3.900<br>3.960          | 5.460<br>5.020<br>5.060<br>4.380<br>4.070            | 3.930<br>4.420<br>5.020<br>4.520<br>4.210 |
| 11<br>12<br>13<br>14<br>15       | 6.220<br>6.960<br>6.650<br>6.260<br>6.180          | 8.550<br>7.800<br>7.500<br>6.700<br>6.020 | 4.980<br>3.700<br>3.000<br>3.500<br>4.000          | 4.660<br>5.100<br>5.020<br>4.520<br>4.740          | 4.300<br>4.150<br>4.000<br>4.200<br>4.500      | 25.800<br>21.800<br>20.200<br>23.500<br>23.700           | 17.000<br>17.200<br>24.900<br>30.900<br>28.600 | 24.200<br>24.200<br>23.500<br>22.800<br>20.300       | 8.050<br>9.740<br>10.500<br>9.620<br>8.400 | 3.820<br>4.240<br>4.100<br>3.590<br>4.000          | 4.420<br>4.820<br>4.700<br>4.490<br>4.000            | 4.140<br>4.100<br>3.900<br>4.100<br>4.070 |
| 16<br>17<br>18<br>19<br>20       | 6.020<br>5.220<br>4.660<br>5.260<br>6.840          | 6.180<br>6.350<br>6.220<br>6.060<br>5.980 | 4.500<br>5.000<br>5.000<br>4.500<br>4.000          | 4.700<br>4.600<br>4.940<br>4.800<br>3.500          | 4.800<br>4.800<br>5.140<br>8.660<br>15.000     | 21.400<br>20.000<br>17.800<br>17.200<br>17.100           | 29.300<br>37.400<br>41.600<br>37.300<br>33.900 | 19.800<br>20.100<br>18.600<br>16.600<br>15.000       | 7.350<br>6.450<br>6.060<br>5.500<br>4.820  | 6.400<br>5.260<br>4.320<br>3.930<br>5.300          | 3.290<br>2.930<br>2.990<br>3.350<br>3.410            | 4.520<br>4.180<br>3.380<br>2.900<br>3.110 |
| 21<br>22<br>23<br>24<br>25       | 8.800<br>8.300<br>7.700<br>6.350<br>5.860          | 5.380<br>4.940<br>5.100<br>5.580<br>5.540 | 4.800<br>4.900<br>5.000<br>4.200<br>4.100          | 4.000<br>4.500<br>4.500<br>4.250<br>4.500          | 15.500<br>17.400<br>24.600<br>25.800<br>36.300 | 15.600<br>14.600<br>16.600<br>20.000<br>17.800           | 28.600<br>25.000<br>24.000<br>24.500<br>28.000 | 13.400<br>12.300<br>11.700<br>11.100<br>10.500       | 4.700<br>5.340<br>7.200<br>9.050<br>10.200 | 7.350<br>6.060<br>5.420<br>5.020<br>6.920          | 3.900<br>4.240<br>4.630<br>5.820<br>6.140            | 4.140<br>4.940<br>4.560<br>3.960<br>3.790 |
| 26<br>27<br>28<br>29<br>30<br>31 | 6.550<br>6.800<br>6.800<br>6.840<br>6.920<br>5.940 | 4.940<br>4.560<br>4.630<br>4.380<br>5.700 | 4.200<br>4.100<br>3.800<br>3.900<br>4.200<br>4.000 | 4.800<br>4.800<br>4.500<br>4.500<br>4.200<br>4.000 | 71.600<br>89.700<br>60.600                     | 17.000<br>16.200<br>16.300<br>21.000<br>35.500<br>34.100 | 55.700<br>53.800<br>39.600<br>32.700<br>27.400 | 9.900<br>10.900<br>10.500<br>9.560<br>8.850<br>8.400 | 8.450<br>7.700<br>6.920<br>6.100<br>5.500  | 7.500<br>7.300<br>6.260<br>7.650<br>6.260<br>5.460 | 5.660<br>9.500<br>11.700<br>12.000<br>9.620<br>7.950 | 3.650<br>3.350<br>3.530<br>3.230<br>3.200 |



RADIOACTIVITY DETERMINATIONS

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

DELAWARE-LEHIGH RIVERS

STATION LOCATION DELAWARE RIVER AT

MARTINS CREEK, PENNSYLVANIA

|             |                               |           |           | A CTIVITY IN 14 | ATED      |           | <del></del> | RADIOA                        | CTIVITY IN PLAN | IKTON (dry) | RAT       | DIOACTIVITY IN V |       |
|-------------|-------------------------------|-----------|-----------|-----------------|-----------|-----------|-------------|-------------------------------|-----------------|-------------|-----------|------------------|-------|
| DATE        |                               |           |           | ACTIVITY IN W   | AIEK      | BETA      |             | DATE OF                       | GROSS A         | CTIVITY     |           | GROSS ACTIVIT    | TOTAL |
| SAMPLE      | DATE OF<br>DETERMI-<br>NATION |           | ALPHA     |                 | SUSPENDED | DISSOLVED | TOTAL       | DATE OF<br>DETERMI-<br>NATION | ALPHA           | BETA        | SUSPENDED |                  |       |
| TAKEN       |                               | SUSPENDED | DISSOLVED | TOTAL           |           | μμc/I     | μμε/Ι       | MO. DAY                       | μμc/g           | μμc/g       | μμε/\     | μμς/Ι            | μμс/1 |
| O. DAY YEAR | MONTH DAY                     | μμς/}     | μμς/Ι     | μμε/Ι           | μμς/Ι     |           |             |                               |                 |             | İ         |                  | i     |
|             |                               | _         | . 1       | 1               | 0         | 1         | 1           |                               |                 | 1           | 1         |                  |       |
| 0 12 60*    |                               | 0         | 1         | 1               | . 0       | اۃًا      | ō           |                               |                 |             |           |                  |       |
| 0 26 60*    | 11 7                          | -         | -         | -               | -         | 0         | ŏ           |                               |                 |             |           |                  |       |
| 1 9 60*     | 12 22                         | 0         | 1         | 1               | 0         | 0 0       | 0           | 1                             |                 |             |           |                  |       |
| 1 30 60*    | 12 12                         | -         | -         | -               | 0         | 0         | ŏ           | j l                           |                 | 1           |           |                  |       |
| 2 7 60      | 1 12                          | 0         | 1         | 1               | 0         | 0         | ŏ           |                               |                 |             |           |                  |       |
| 2 28 60*    | 1 19                          | -         | -         | _               | 0         |           | 0           |                               |                 |             |           |                  | l .   |
| 1 11 61*    | 1 23                          | 0         | 0         | 0               | 0         | 0         | 0           | Į.                            |                 | ]           |           |                  |       |
| 2 1 61*     | 2 16                          | -         | -         | -               | 0         | 0         | 0           | • ]                           |                 |             |           |                  |       |
| 2 15 61*    | 3 3                           | 0         | 0         | 0               | 0         | 0         |             | Ì                             |                 |             |           |                  |       |
| 3 1 61*     |                               | _         | -         | -               | 0         | 6         | 6           |                               |                 |             | 1.        | 1                |       |
| 3 15 61*    | 1                             | 1 0       | 0         | 0               | 0         | 1         | 1           | ļ                             |                 |             | ,         |                  |       |
| 3 29 61*    | _                             | 0         | 0         | 0               | 0         | 0         | 0           | Ì                             |                 |             | l i       | ľ                | '     |
| 4 26 61*    |                               | 1         | loi       | 1               | 0         | 0         | 0           | 1                             | ļ               |             |           |                  |       |
| 5 31 61*    | 1                             | Ō         | 0         | 0               | 0         | 0         | 0           | 1                             |                 | ľ           | ] .       |                  |       |
|             |                               | lŏ        | ō         | 0               | 0         | 0         | 0           |                               | 1               | 1           |           |                  |       |
| 6 28 61*    | -                             | 0         | ŏ         | O               | 3         | 4         | 7           | i                             | İ               |             | 1         | 1                | 1     |
| 8 2 61*     |                               | 1         | 0         | ŏ               | 0         | 5         | 5           |                               | ł               |             |           |                  |       |
| 8 30 61*    |                               | 0         | -         | _               | 1         | 0         | 1 1         |                               | ļ               |             |           |                  | 1     |
| 9 6 61      | 10 5                          |           |           | _               | 9         | 5         | 14          |                               | 1               |             | 1         |                  |       |
| 9 12 61     | 10 10                         | _         |           | 0               | 20        | 4         | 24          |                               | İ               |             |           |                  |       |
| 9 20 61     | 10 19                         | 0         | 0         | -               | 4         | 1 6       | 4           |                               | İ               |             |           |                  | 1     |
| 9 27 61     | 10 11                         | _         | _         | _               | 7         |           | 1           | Į                             | i               |             |           |                  |       |
|             |                               |           |           |                 | 1         | 1         | 1           |                               |                 |             | 1         | 1                |       |
|             |                               |           |           |                 | 1         | 1         |             | ì                             |                 | 1           | 1         |                  | 1     |
|             |                               |           |           |                 | ļ         | 1         |             | 1                             |                 |             |           |                  |       |
|             |                               |           |           |                 |           |           | 1           |                               |                 |             |           | 1                |       |
|             |                               |           |           |                 |           |           |             |                               |                 |             | 1         |                  |       |
|             | 1                             | 1         |           |                 |           |           | !           | İ                             |                 |             |           | 1                | 1     |
|             |                               | ì         |           |                 | ì         |           | 1           |                               |                 |             |           |                  |       |
|             |                               |           | 1         |                 |           |           | 1           | 1                             | ì               |             |           |                  |       |
|             |                               |           |           |                 |           |           | 1           | Ę                             |                 |             | \ \       |                  |       |
|             |                               | 1         |           |                 | 1         |           |             | l                             |                 |             |           |                  | İ     |
|             |                               | 1         |           |                 |           |           | 1           | ľ                             |                 |             |           |                  |       |
|             |                               |           |           |                 | İ         |           |             | İ                             |                 | 1           |           |                  |       |
|             |                               |           |           |                 | 1         |           |             | 1                             |                 |             |           |                  |       |
|             |                               |           |           |                 |           |           |             |                               |                 |             |           |                  | 1     |
|             |                               |           |           |                 |           |           |             |                               |                 |             |           |                  | 1     |
|             |                               |           |           |                 | 1         | 1         |             |                               |                 |             |           | 1                | 1     |
|             |                               |           |           | 1               |           | 1         |             |                               | Ì               |             |           |                  | 1     |
|             |                               |           |           |                 |           |           |             | İ                             | 1               |             |           |                  | 1     |
|             |                               |           |           |                 |           |           |             |                               |                 |             |           |                  |       |
|             |                               | 1         | 1         |                 |           |           |             | 1                             | 1               |             | 1 1       |                  | 1     |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

DELAWARE-LEHIGH RIVERS

STATION LOCATION DELAWARE RIVER AT

MARTINS CREEK, PENNSYLVANIA

| I                    | <del></del>                                                                                               | *                    |                                                | ALGAE (2                                       | Vumber                | per ml.)                                                      | <del></del>                            |                                                                                                        |                                                                                                                                           | INI                                                      | RT                                                    | <del></del>                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                      | DI                                                                                                 | ATO                                                                                                                                      | MS                                                                              |                                                                                                                |                                            |                          | · ·                                             |                           | MICROIN                                                                             | VERTEBR                      | ATES                         |                                       |                                                                       |
|----------------------|-----------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------|------------------------------------------------|-----------------------|---------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------|-------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------|------------------------------|------------------------------|---------------------------------------|-----------------------------------------------------------------------|
| DATE<br>OF SAMPLE    |                                                                                                           | BLUE-                | GREEN                                          | GREE                                           | EN                    | FLAGEL<br>(Pigme                                              |                                        | DIAT                                                                                                   | OMS                                                                                                                                       | INI<br>DIA<br>SHE<br>(No. p                              | TOM<br>LLS<br>er ml.)                                 |                                                                 | DOM I<br>(See                                                                                                                                                                                                                                                                                                                                                                                                             | NANT<br>Introd                                                                       | SPEC                                                                                               | ES A                                                                                                                                     | ND PE                                                                           | RCEN'<br>ntificat                                                                                              | rages<br>ion*)                             |                          | NICROPLANKTON, AND SHEATHED PET TIL.)           | A<br>ml.)                 | S<br>liter)                                                                         | EA<br>liter)                 | ES<br>liter)                 | AL FORKS<br>ter)                      | GENERA<br>oduction<br>fication                                        |
| MONTH<br>DAY<br>YEAR | TOTAL                                                                                                     | COCCOID              | FILA-<br>MENT-<br>OUS                          | COCCOID                                        | FILA-<br>MENT-<br>OUS | GREEN                                                         | OTHER                                  | CENTRIC                                                                                                | PENNATE                                                                                                                                   | CENTRIC                                                  | PENNATE                                               | FIRST#                                                          | PER.<br>CENTAGE                                                                                                                                                                                                                                                                                                                                                                                                           | SECOND#                                                                              | PER.<br>CENTAGE                                                                                    | THIRD#                                                                                                                                   | PER.<br>CENTAGE                                                                 | FOURTH                                                                                                         | PER.<br>CENTAGE                            | OTHER PER-<br>CENTAGE    | OTHER MICE<br>FUNGI AND<br>BACTERIA<br>(No. per | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)                                                        | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ARIMAL FORMS<br>(No. per liter) | DOMINANT GENERA<br>(See Introduction<br>for Identification)           |
| 10                   | 100<br>100<br>300<br>300<br>300<br>4000<br>1000<br>4000<br>14000<br>14400<br>18000<br>14400<br>900<br>300 | 20<br>20<br>80<br>20 | 20<br>40<br>40<br>20<br>60<br>230<br>40<br>150 | 230<br>6930<br>1020<br>580<br>130<br>20<br>330 |                       | 70<br>20<br>20<br>90<br>90<br>150<br>170<br>270<br>170<br>170 | 20<br>20<br>20<br>20<br>20<br>20<br>20 | 20<br>40<br>70<br>270<br>20<br>40<br>60<br>290<br>110<br>230<br>2650<br>370<br>150<br>120<br>80<br>120 | 70<br>50<br>270<br>260<br>130<br>920<br>5140<br>400<br>270<br>380<br>680<br>4000<br>580<br>660<br>3270<br>1280<br>700<br>560<br>290<br>40 | 20<br>20<br>70<br>20<br>40<br>40<br>20<br>20<br>90<br>40 | 310<br>3260<br>180<br>90<br>220<br>270<br>1620<br>510 | 70 36 36 36 36 14 2 2 9 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 420 300 430 300 200 300 200 400 300 200 400 300 200 400 300 300 200 400 300 300 200 400 300 300 200 400 300 300 200 400 300 300 200 400 300 300 200 400 300 300 200 400 300 300 200 400 300 300 200 400 300 300 200 400 300 300 200 400 300 300 200 400 300 300 200 400 300 300 200 400 300 300 200 400 300 300 200 400 300 300 200 400 300 300 200 400 300 300 200 400 300 300 200 400 300 300 400 300 400 400 400 400 4 | 92<br>92<br>14<br>14<br>36<br>36<br>62<br>93<br>31<br>31<br>2<br>62<br>31<br>70<br>2 | 20<br>10<br>10<br>20<br>30<br>30<br>10<br>10<br>20<br>10<br>20<br>10<br>10<br>20<br>10<br>10<br>10 | 64<br>7059<br>731<br>622<br>731<br>622<br>731<br>731<br>74<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 90<br>62<br>62<br>62<br>31<br>65<br>93<br>70<br>92<br>16<br>31<br>93<br>94<br>92<br>62<br>92<br>64<br>62<br>26 | * * 10 10 10 10 10 10 10 10 10 10 10 10 10 | 45 534443565445634544554 | 50<br>70<br>70                                  | 10 10 60 20               | 1<br>1<br>13<br>8<br>2<br>6<br>1<br>1<br>13<br>33<br>15<br>26<br>7<br>16<br>4<br>10 | 3 2 1 1 2 2 2                | 56 76 22                     | 2                                     | 7-4-<br>4-<br>43<br>7-743<br>5-<br>74753<br>374753<br>333<br>33<br>33 |



# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

DELAWARE LEHIGH RIVERS

STATION LOCATIONDELAWARE RIVER AT

MARTINS CREEK, PENNSYLVANIA

| DATE                                                                                                |                                                          | <del></del>                                                                                                                                           |                                                               |                                                                      | CHLORINE                                      | DEMAND                                       |                                                                      |                                                                                                                           |                                                                     |                                        |                                                                                               |                                        |                                        |                    | TOTAL                                                                | COLIFORMS                                                                                                  |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|--------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| DF SAMPLE TEMP.  (Degree Centigra                                                                   |                                                          | рН                                                                                                                                                    | B.O.D.<br>mg/i                                                | C.O.D.<br>mg/l                                                       | 1-HOUR<br>mg/l                                | 24-HOUR<br>mg/l                              | AMMONIA-<br>NITROGEN<br>mg/l                                         | CHLORIDES<br>mg/l                                                                                                         | mg/I                                                                | mg/I                                   | COLOR<br>(scale units)                                                                        | (scale units)                          | sulfates<br>mg/l                       | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/l                                          | per 100 ml.                                                                                                |
| 10 5 60 14<br>10 12 60 14<br>10 19 60 14<br>10 26 60 6<br>11 2 60 10<br>11 9 60 5<br>11 16 60 7     | 8 9.3<br>9.2<br>9 10.7<br>5 10.2<br>3 11.9               | 7.6<br>7.6<br>7.2<br>7.2<br>7.4<br>7.4<br>7.4                                                                                                         | .3<br>.9<br>.8<br>.2<br>1.1                                   | 4<br>5<br>7<br>4<br>6<br>6<br>2                                      | .9<br>.9<br>.9<br>.8<br>1.0                   | 1.9<br>.9<br>2.9<br>2.7<br>2.0<br>2.8<br>1.4 | •2<br>•1<br>•2<br>•2<br>•1<br>•1                                     | 2 3 3 2 3 2 4 3                                                                                                           | 26<br>28<br>26<br>26<br>24<br>24<br>24                              | 42<br>42<br>34<br>34<br>43<br>48<br>42 | 14<br>23<br>21<br>29<br>19<br>18<br>26                                                        | 23<br>25<br>22<br>30<br>20<br>19<br>27 | 10<br>10<br>11<br>12<br>10<br>11<br>15 | .1                 | 61<br>67<br>64<br>60<br>54<br>60<br>59                               | 320<br>470<br>1000<br>1000<br>700                                                                          |
| 1 4 61                                                                                              | 7 11.0<br>4 12.4<br>1 14.0<br>1 13.7<br>6 14.1<br>6 13.4 | 7.8<br>7.6<br>7.8<br>7.7<br>7.6<br>7.3                                                                                                                | 1.2<br>1.0<br>.9<br>.6<br>1.1                                 | 5                                                                    | •3                                            | -                                            | .2<br>.2<br>.2<br>.1<br>.1                                           | 3<br>2<br>4<br>4<br>4<br>3<br>2                                                                                           | 30<br>23<br>30<br>25<br>27<br>29<br>28                              | 42<br>42<br>54<br>40<br>44<br>40<br>46 | 26<br>19<br>18<br>15<br>15<br>26<br>15                                                        | 27<br>20<br>19<br>17<br>17<br>27       | 13<br>11<br>13<br>11<br>11<br>13       |                    | 72<br>56<br>83<br>61<br>67<br>70                                     |                                                                                                            |
| 1 18 61 1<br>1 25 61<br>2 1 61<br>2 8 61<br>2 15 61 1<br>2 2 2 61 1                                 | 6 13.1<br>6 13.1<br>6 12.9<br>6 12.5<br>4 12.4           | 7.3<br>7.6<br>7.6<br>7.5<br>7.2<br>7.4<br>7.2                                                                                                         | 1.0<br>1.1<br>.5<br>.1<br>.9<br>1.3<br>2.1                    | -<br>-<br>-<br>6<br>10                                               | -<br>-<br>-<br>3<br>•3                        |                                              | •1<br>•2<br>•3<br>•3<br>•3                                           | 3<br>4<br>4<br>4<br>3<br>4<br>2                                                                                           | 31<br>31<br>30<br>26<br>30<br>17                                    | 46<br>46<br>38<br>34<br>38<br>35       | 16<br>22<br>43                                                                                | 21<br>14<br>16<br>16<br>18<br>23<br>45 | 11<br>10<br>11<br>9<br>9<br>8          | -                  |                                                                      | 62                                                                                                         |
| 3 8 61 5<br>3 15 61 3<br>3 22 61 4<br>3 29 61 9<br>4 5 61 6<br>4 12 61 6<br>4 19 61 7<br>4 26 61 11 | 6 12 2<br>10 5<br>8 9 8<br>11 5<br>6 10 8<br>2 9 2       | 7 · 1<br>7 · 2<br>7 · 3<br>7 · 4<br>7 · 4<br>7 · 3<br>7 · 2<br>7 · 2<br>7 · 4<br>7 · 8<br>8 · 2<br>7 · 8<br>8 · 2<br>7 · 8<br>8 · 8<br>8 · 8<br>8 · 8 | 8 4 3 1 4 4 1 1 1 4 2 0 0 1 2 8 2 3 3 1 9 9 1 0 0 2 3 3 3 8 8 | 6<br>8<br>6<br>6<br>7<br>6<br>5<br>24<br>9<br>7<br>7<br>7<br>16<br>8 | -1<br>-1<br>-0<br>-66<br>-2<br><br>-7<br>1.88 | 1.88<br>1.88<br>2.00<br>1.11<br>             | .2<br>.2<br>.1<br>.1<br>.1<br>.1<br>.4<br>.1<br>.4<br>.2<br>.1<br>.2 | 3<br>2<br>2<br>4<br>3<br>2<br>1<br>0<br>0<br>0<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 17<br>21<br>13<br>13<br>19<br>9<br>14<br>15<br>15<br>20<br>23<br>20 | 24<br>26<br>22<br>28<br>38<br>30       | 21<br>15<br>21<br>19<br>27<br>27<br>212<br>29<br>34<br>26<br>23<br>29<br>34<br>26<br>20<br>27 | 27<br>25<br>26<br>46                   | 16                                     | 1                  | 42<br>40<br>43<br>34<br>29<br>41<br>45<br>40<br>48<br>56<br>61<br>53 | 170<br>460<br>270<br>600<br>260<br>270<br>310<br>1100<br>730<br>640<br>460<br>5200<br>13000<br>7700<br>360 |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

DELAWARE LEHIGH RIVERS

STATION LOCATIONDELAWARE RIVER AT

MARTINS CREEK, PENNSYLVANIA

**.** 1

| DATE                                                                                         |                                                                              | <u> </u>                                                           |                                                                    |                                                                | <u> </u>                                                    | CHLORINE                                             | DEMAND                                                             |                              |                   |                                                                      |                                        |                                                          |                                                     |                                                          |                           | TOTAL                                                          |                          |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|------------------------------|-------------------|----------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|---------------------------|----------------------------------------------------------------|--------------------------|
| DAY YEAR                                                                                     | TEMP.<br>(Dagraes<br>Centigrade)                                             | DISSOLVED<br>OXYGEN<br>mg/l                                        | рН                                                                 | B.O.D.<br>mg/l                                                 | C.O.D.<br>mg/l                                              | 1-HOUR<br>mg/l                                       | 24-HOUR<br>mg/l                                                    | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | Mg/I                                                                 | HARDNESS<br>mg/l                       | COLOR<br>(scale units)                                   | TURBIDITY<br>(scale units)                          | SULFATES<br>mg/l                                         | PHOSPHATES<br>mg/I        | DISSOLVED<br>SOLIDS<br>mg/l                                    | COLIFORMS<br>per 100 ml. |
| 7 5 61<br>7 12 61<br>7 19 61<br>8 2 61<br>8 9 61<br>8 16 61<br>8 30 61<br>9 13 61<br>9 27 61 | 23 • 8<br>23 • 4<br>26 • 6<br>24 • 8<br>25 • 6<br>23 • 8<br>23 • 0<br>21 • 6 | 7.4<br>7.8<br>6.9<br>6.9<br>7.6<br>7.6<br>7.0<br>7.0<br>8.7<br>7.6 | 7.7<br>7.8<br>7.9<br>7.8<br>8.1<br>7.6<br>7.6<br>7.9<br>7.7<br>7.7 | 1.6<br>1.3<br>1.00<br>1.2<br>9<br>3.9<br>1.5<br>.7<br>.2<br>.5 | 13<br>11<br>12<br>14<br>14<br>9<br>15<br>16<br>9<br>10<br>7 | 1.6<br>1.3<br>1.9<br>2.7<br>1.3<br>2.5<br>2.5<br>1.0 | 3.8<br>3.0<br>3.1<br>4.6<br>2.8<br>2.6<br>4.6<br>2.9<br>2.0<br>2.4 | .1 .2 .1 .1 .3 .2 .1 .1 .1   | 3233234422212     | 26<br>32<br>37<br>39<br>32<br>33<br>29<br>24<br>30<br>27<br>27<br>32 | 367<br>428<br>446<br>469<br>340<br>442 | 36<br>26<br>29<br>38<br>40<br>29<br>59<br>32<br>59<br>18 | 38<br>27<br>39<br>42<br>30<br>61<br>426<br>21<br>19 | 15<br>11<br>12<br>15<br>12<br>15<br>11<br>11<br>12<br>12 | 1 .1 .2 .1 .0 .0 .2 .1 .0 | 57<br>52<br>60<br>66<br>61<br>62<br>54<br>48<br>53<br>56<br>42 |                          |



STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Belvidere, New Jersey Operated by U.S. Geological Survey STATE

Pennsylvania

MAJOR BASIN

North Atlantic

MINOR BASIN

Delaware-Lehigh Rivers

STATION LOCATION

Delaware River at

Martins Creek, Pennsylvania

| Day                  | October | November | December | January | February | March  | April  | May    | June   | July           | August         | September |
|----------------------|---------|----------|----------|---------|----------|--------|--------|--------|--------|----------------|----------------|-----------|
| 1                    | 9.620   | 4.120    | 5.730    | 2.540   | 2.200    | 27.800 | 20.100 | 16.000 | 5.340  | 3.300          | 4.100          | 3.760     |
| 2                    | 8.520   | 5.040    | 6.000    | 2.890   | 2.100    | 21.800 | 18.400 | 15.000 | 5.340  | 3.100          | 3.350          | 3.590     |
|                      | 7.220   | 5.130    | 5.020    | 2.890   | 2.000    | 18.400 | 16.200 | 14.600 | 5.220  | 2.760          | 3.020          | 2.930     |
| 3<br>4               | 7.300   | 5.220    | 4.100    | 2.680   | 2,100    | 17.500 | 14.100 | 14.000 | 4.540  | 2.620          | 3.020          | 2.440     |
| 5                    | 6.780   | 4.710    | 3.780    | 2.480   | 2.200    | 17.400 | 12.600 | 12.000 | 3.730  | 2.740          | 3.260          | 2.200     |
| 6                    | 6.330   | 4.230    | 3.660    | 2.660   | 2.300    | 20.000 | 11.400 | 10.300 | 3.610  | 2.660          | 2.850          | 2.700     |
| 7                    | 6.090   | 3.730    | 3.850    | 2.620   | 2.400    | 29.200 | 10.800 | 9.460  | 3.730  | 2.640          | 2.870          | 3.350     |
| 8                    | 5.640   | 3.920    | 3.920    | 2.660   | 2.500    | 29.100 | 10.200 | 10.300 | 3.470  | 2.580          | 2.500          | 2.890     |
| 9                    | 4.850   | 4.070    | 3.730    | 2.580   | 2,600    | 24.500 | 8.980  | 12.000 | 3.560  | 2.660          | 2.440          | 2.620     |
| 10                   | 4.050   | 4.330    | 3.300    | 2.360   | 2.680    | 20.200 | 9.380  | 14.600 | 4.620  | 2.520          | 2.740          | 2.600     |
| 77                   | 4.690   | 4.650    | 2.910    | 2.930   | 2.500    | 16.100 | 11.300 | 18.600 | 6.630  | 3.080          | 2.950          | 2.720     |
| 11                   | 4.740   | 4.760    | 1.900    | 2.910   | 2.420    | 14.000 | 12.100 | 17.100 | 8.000  | 2.680          | 3.100          | 2.360     |
| 12                   | 4.410   | 4.780    | 1.700    | 2,420   | 2.380    | 13.000 | 13.800 | 17.300 | 7.920  | 2.130          | 3.060          | 2.760     |
| 13<br>14             | 4.410   | 3.680    | 2.000    | 2.380   | 2.460    | 13.200 | 18.000 | 16.400 | 6.600  | 1.990          | 2.600          | 2.640     |
| 14<br>15             | 4.230   | 3.710    | 2.790    | 2.350   | 2.720    | 13.000 | 18.700 | 14.100 | 5.640  | 2.020          | 1.850          | 2.980     |
|                      | 7.200   | 2.1.     | 2.150    | 2.370   |          | _      | -      |        |        | - 10-          |                | 0.050     |
| 16                   | 3.440   | 4.120    | 3.170    | 2.330   | 2.870    | 13.100 | 19.200 | 14.100 | 4.680  | 2.480          | 1.520          | 2.870     |
| 17                   | 2.870   | 4.070    | 3.250    | 2.380   | 2.810    | 12.100 | 27.500 | 14.100 | 4.310  | 2.440          | 1.820          | 2.110     |
| 18                   | 3.350   | 4.020    | 3.300    | 2.910   | 2.850    | 10.400 | 28.100 | 12.900 | 3.760  | 2.230          | 2.180          | 1.620     |
| 19                   | 3.830   | 3.970    | 2.680    | 2.640   | 3.590    | 9.780  | 26.000 | 11.200 | 3.150  | 2.330          | 2.230          | 1.850     |
| 19<br>20             | 5.040   | 3.490    | 2.520    | 2,200   | 5.640    | 9.900  | 23.400 | 10.100 | 3.020  | 3.320          | 2.090          | 2.070     |
| 21                   | 5.700   | 3.040    | 3.300    | 2,600   | 8.400    | 9.500  | 19.700 | 8.550  | 3.170  | 3.590          | 2.220          | 3.080     |
| 22                   | 5.340   | 3.170    | 3.170    | 2.500   | 12.500   | 9.100  | 17.500 | 8.040  | 4.020  | 3.300          | 2.560          | 3.150     |
| 22                   | 4.200   | 3.780    | 3.300    | 2.400   | 14.000   | 9.340  | 17.200 | 7.840  | 5.040  | 3.120          | 3.420          | 2.640     |
| 23<br>24             | 3.610   | 3.730    | 2.850    | 2.300   | 14.600   | 10.500 | 19.300 | 7.570  | 7.510  | 2.330          | 4.020          | 2.620     |
| 2 <del>4</del><br>25 | 4.070   | 3.280    | 2.660    | 2.600   | 30.200   | 10.400 | 28.700 | 6.780  | 6.030  | 3.000          | 3.230          | 2.500     |
|                      | ·       | •        |          |         | _        |        | mo lao | 6 500  | F 700  | 1, 220         | 4.760          | 2.230     |
| 26                   | 4.510   | 2.830    | 2.460    | 2.800   | 57.800   | 10.200 | 53.400 | 6.720  | 5.100  | 4.330          |                | 2.460     |
| 27                   | 4.510   | 3.040    | 2.460    | 2.800   | 60.300   | 10.100 | 38.500 | 7.390  | 4.600  | 3.950<br>2.830 | 5.370<br>9.300 | 2.160     |
| 28                   | 4.410   | 2.700    | 2.290    | 2.700   | 37.300   | 12.000 | 27.800 | 6.780  | 4.050  |                | 7.420          | 2.130     |
| 29                   | 4.760   | 2.760    | 2.500    | 2.600   |          | 21.300 | 22.600 | 5.940  | 3.540  | 2.480          | 5.670          | 2.110     |
| 30                   | 3.970   | 4.020    | 2.480    | 2.500   |          | 29.800 | 20.000 | 5.850  | 3, 350 | 2.620          |                | <.TTO     |
| 31                   | 3.660   |          | 2.600    | 2.400   |          | 24.300 |        | 5.250  |        | 2.230          | 4.310          |           |
|                      |         |          |          |         |          |        |        |        |        |                |                |           |

STATE

FLORIDA

MAJOR BASIN

SOUTHEAST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

PERDIDO-ESCAMBIA RIVERS

STATION LOCATION ESCAMBIA RIVER AT

CENTURY, FLORIDA

|                    |                               |           |           |                |           |           |       | RADIOA                        | CTIVITY IN PLAN | IKTON (dry) |     | RAD       | OACTIVITY IN W | ATER  |
|--------------------|-------------------------------|-----------|-----------|----------------|-----------|-----------|-------|-------------------------------|-----------------|-------------|-----|-----------|----------------|-------|
| DATE               |                               |           |           | DACTIVITY IN Y | VATER     | BETA      |       |                               | GROSS A         |             | [   |           | GROSS ACTIVIT  | Y     |
| SAMPLE             | DATE OF<br>DETERMI-<br>NATION |           | ALPHA     |                |           | DISSOLVED | TOTAL | DATE OF<br>DETERMI-<br>NATION | ALPHA           | BETA        |     | SUSPENDED | DISSOLVED      | TOTAL |
| TAKEN              |                               | SUSPENDED | DISSOLVED | TOTAL          | SUSPENDED | μμc/I     | μμc/1 | MO. DAY                       | μμс/g           | μμc/g       |     | μμε/Ι     | μμc/1          | μμc/l |
| MO. DAY YEAR       | MONTH DAY                     | μμς/1     | μμε/      | μμε/1          | μμε/Ι     |           |       |                               |                 |             | l j |           |                |       |
|                    | Ī <u>.</u> .                  | ì .       |           | 0              | 0         | ٥         | 0     |                               |                 |             |     |           |                |       |
| 10 3 60            | 10 24                         | 0         | 0 2       | 2              | 0         | ŏ         | 0     | į į                           |                 |             |     |           |                |       |
| 10 17 60           | 11 8                          | 0         | 1         | 3              | Ö         | 0         | 0     |                               |                 |             |     |           |                |       |
| 11 7 60            | 11 28                         | 2         | 1         | í              | 0         | 0         | 0     |                               |                 |             |     |           |                |       |
| 11 15 60           | 11 30                         | 0         | ô         | ō              | 0         | 0         | 0     |                               |                 |             |     |           |                |       |
| 12 28 60           | 1 18 2 6                      | l         | i         | 2              | 0         | 0         | 0     | 1                             |                 |             |     | !         |                |       |
| 1 23 61<br>2 13 61 | 2 27                          | ٥         | ō         | 0              | 0         | 0         | 0     | ŀ                             |                 |             |     |           | ·              |       |
| 3 6 61             | 3 23                          | 0 .       | ō         | 0              | 0         | 0         | 0     |                               |                 |             |     |           |                |       |
| 3 21 61            | 4 10                          | 2         | 0         | 2              | 0         | 0         | 0     |                               | •               |             |     |           |                |       |
| 6 16 61            | 7 28                          | ī         | . 0       | 1              | 0         | º         | .0    |                               |                 |             |     |           |                |       |
| 8 5 61*            | 1 .                           | 0         | 0         | 0              | 8         | 5         | 13    |                               |                 |             | 1 1 |           |                |       |
|                    |                               |           |           |                | 1         |           |       |                               |                 |             |     |           |                |       |
|                    |                               | 1         |           |                |           |           |       |                               |                 |             |     |           |                |       |
|                    |                               |           |           |                |           |           |       | i l                           |                 |             |     |           |                |       |
|                    |                               |           |           |                |           |           |       |                               |                 |             | ŀ   | 1         |                |       |
|                    | 1                             | ì         | İ         |                |           |           |       |                               |                 |             | 1   |           |                |       |
|                    |                               | Į         |           |                |           |           |       |                               |                 |             |     |           |                |       |
|                    | ļ                             | 1         |           |                |           |           | l     |                               |                 |             | 1 ' |           |                |       |
|                    | İ                             | <b>\</b>  |           |                |           | 1         | i     |                               |                 |             |     |           |                |       |
|                    |                               |           |           | 1              |           |           |       |                               |                 |             | i   |           |                |       |
|                    |                               |           |           |                |           |           |       |                               |                 |             |     |           |                |       |
|                    |                               |           |           |                |           |           | l     |                               |                 |             |     |           |                |       |
|                    |                               |           |           |                |           |           |       |                               |                 |             |     |           |                |       |
|                    |                               | 1         |           |                |           |           |       |                               |                 |             |     | i         |                |       |
|                    |                               |           |           | 1              |           | }         |       | ĺ                             |                 | 1           | 1   |           |                |       |
|                    |                               | Ì         |           |                |           |           |       | 1                             |                 |             |     |           |                |       |
|                    |                               |           |           |                |           |           |       | ļ                             |                 | 1           | 1   |           |                |       |
|                    |                               |           |           | 1              |           |           |       |                               |                 |             |     |           |                |       |
|                    |                               | İ         |           |                |           |           |       |                               |                 | İ           |     |           |                |       |
|                    | İ                             | ļ         |           |                |           |           |       |                               |                 |             | Ì   |           |                |       |
|                    |                               |           |           |                |           |           | 1     |                               |                 |             |     |           |                |       |
|                    |                               | 1         |           |                |           |           |       |                               |                 |             |     |           |                |       |
|                    |                               |           |           |                |           | 1         |       |                               |                 |             | 1   |           |                |       |
|                    |                               | 1         |           |                |           |           |       |                               |                 |             | [   |           |                |       |
|                    |                               | 1         |           |                |           |           |       |                               |                 |             | 1   |           |                |       |
|                    |                               |           |           |                |           |           |       |                               |                 |             | Į.  |           |                |       |
|                    |                               |           |           |                |           |           |       | 1                             |                 |             | 1   |           |                | 1     |
|                    |                               |           |           |                |           |           |       |                               |                 |             |     |           |                |       |
|                    |                               |           |           |                |           |           |       |                               |                 |             |     |           |                |       |
|                    | 1                             |           | 1         | 1              |           | 1         |       |                               |                 |             |     | <u> </u>  | <u></u>        |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

FLORIDA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

PERDIDO ESCAMBIA RIVERS

STATION LOCATION ESCAMBIA RIVER AT

CENTURY, FLORIDA

|                            |                                                       | . 1                     |                                                       |         |                       | ALGAE ( | Vumber                | per ml.)               |       |                              |                                      | INE                           | RT                  |                                  |                            |                               | DI              | ATO                       |                           |                  |                         |                                              |                                                          | <u> </u>                  | MICROIN                      | VERTEBR                      | ATES                         | T               |                                                             |
|----------------------------|-------------------------------------------------------|-------------------------|-------------------------------------------------------|---------|-----------------------|---------|-----------------------|------------------------|-------|------------------------------|--------------------------------------|-------------------------------|---------------------|----------------------------------|----------------------------|-------------------------------|-----------------|---------------------------|---------------------------|------------------|-------------------------|----------------------------------------------|----------------------------------------------------------|---------------------------|------------------------------|------------------------------|------------------------------|-----------------|-------------------------------------------------------------|
| OF S                       | AM                                                    | - 1                     |                                                       | BLUE-   | GREEN                 | GREE    | EN .                  | FLAGEL<br>(Pigme       |       | DIAT                         | омѕ                                  | INE<br>DIAT<br>SHE<br>(No. pa | OM<br>LLS<br>r ml.) |                                  | DOMI<br>(See               | NANT<br>Introd                | SPEC            | ES AN                     | ID PER                    | RCENT<br>tificat | TAGES<br>ion*)          |                                              | NICROPLANKTON AND SHEATHED EIA  POET ml.,)               | mt.)                      | s<br>iter)                   | EA<br>iter)                  | ES<br>iter)                  | er)             | GENERA<br>pduction<br>fication,                             |
| HTNOM                      | DAY                                                   | YEAR                    | TOTAL                                                 | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID | FILA-<br>MENT-<br>OUS | GREEN                  | OTHER | CENTRIC                      | PENNATE                              | CENTRIC                       | PENNATE             | FIRST                            | PER-<br>CENTAGE            | SECOND#                       | FER.<br>CENTAGE | THIRD#                    | PER-<br>CENTAGE           | FOURTH           | PER.<br>CENTAGE         | OTHER PER-                                   | OTHER HICHOPLAKE FUNGS AND SHEATH BACKERIA (No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | (No. per liter) | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| 1<br>2<br>3<br>3<br>6<br>7 | 7<br>28<br>223<br>13<br>6<br>21<br>22<br>6<br>24<br>5 | 60 60 61 61 61 61 61 61 | 100<br>100<br>100<br>400<br>300<br>100<br>200<br>1100 |         |                       | 90      | 20                    | 20<br>160<br>100<br>60 |       | 50<br>100<br>40<br>20<br>750 | 90<br>110<br>90<br>170<br>100<br>120 | 20<br>20<br>40                | 70<br>20            | 33<br>43<br>33<br>80<br>92<br>43 | 10<br>20<br>20<br>20<br>20 | 43<br>2<br>1<br>92<br>3<br>92 |                 | 33<br>65<br>56<br>73<br>2 | 10<br>*<br>10<br>10<br>10 | 28               | 10<br>*<br>*<br>*<br>10 | 70<br>60<br>70<br>60<br>70<br>60<br>80<br>10 | 180<br>20<br>50<br>560<br>500                            |                           | 2 2 5 5 5                    | 1                            | 1 51                         |                 | 4-9                                                         |

# ORGANIC CHEMICALS RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

FLORIDA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

PERDIDO-ESCAMBIA RIVERS

STATION LOCATION ESCAMBIA RIVER AT

CENTURY, FLORIDA

|                      |    |           | <del></del>         |            |                 |            |                     | · · · ·           |          |            | CUI ODG   | 2011                         |          |               | · · · · · · · · · · · · · · · · · · · |       |          |
|----------------------|----|-----------|---------------------|------------|-----------------|------------|---------------------|-------------------|----------|------------|-----------|------------------------------|----------|---------------|---------------------------------------|-------|----------|
| DATE OF S            |    | END       | -                   | E          | XTRACTAB        | LES        |                     | Ι                 | <u> </u> |            | NEUTRALS  |                              | ACTABLES | <u> </u>      | 1                                     |       |          |
| MONTH<br>DAY<br>YEAR | 1  | T         | GALLONS<br>FILTERED | TOTAL      | CHLORO-<br>FORM | ALCOHOL    | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES | TOTAL    | ALIPHATICS | AROMATICS | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS     | WEAK<br>ACIDS | STRONG<br>ACIDS                       | BASES | Loss     |
| 10 10 60<br>2 6 61   | 11 | . 14<br>* | 2699<br>2200        | 382<br>409 | 166<br>115      | 216<br>294 | 3                   | 33<br>28          | 65<br>38 | 12<br>4    | 6 3       | 42<br>27                     | 5<br>4   | 25<br>13      | 13<br>7                               | 2     | 25<br>24 |
|                      |    |           | POT GIVE            |            |                 |            |                     |                   |          |            |           |                              |          | 13            |                                       |       | 24       |
|                      |    |           |                     |            |                 |            |                     |                   |          |            |           |                              |          |               |                                       |       |          |



CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

FLURIDA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

PERDIDO ESCAMBIA RIVERS

STATION LOCATIONES CAMBIA RIVER AT

CENTURY, FLORIDA

| DATE<br>OF SAMPLE | TEMP.                                    | DISSOLVED |            |                |                                                       | CHLORINE                    | DEMAND                                | AMMONIA-                 |                   |                                                       | Itangunas                                             | COLOR         | TURBIDITY           | SULFATES | PHOSPHATES | TOTAL                                          | COLIFORMS                                                                 |
|-------------------|------------------------------------------|-----------|------------|----------------|-------------------------------------------------------|-----------------------------|---------------------------------------|--------------------------|-------------------|-------------------------------------------------------|-------------------------------------------------------|---------------|---------------------|----------|------------|------------------------------------------------|---------------------------------------------------------------------------|
| DAY YEAR          | (Degrees<br>Centigrade)                  | OXYGEN    | рН         | B.O.D.<br>mg/l | C.O.D.<br>mg/l                                        | 1-HOUR<br>mg/l              | 24-HOUR<br>mg/l                       | NITROGEN<br>mg/l         | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l                                    | mg/l                                                  | (scale units) | (scale units)       | mg/l     | mg/l       | DISSOLVED<br>SOLIDS<br>mg/l                    | per 100 ml.                                                               |
| 10                | 20.0<br>19.0<br>20.0<br>16.0<br>14.0<br> | 6.3       | 6.976.8866 | 1.00           | 36<br>26<br>40<br>44<br>40<br>-<br>-<br>-<br>21<br>21 | 2 • 4 • 4 • 1 • 0 • 3 • 2 • | 1 · 8<br>2 · 3<br>2 · 8<br>1 · 1<br>7 | •2<br>•4<br>•5<br>•4<br> | 33 4 3 3 11 - 17  | 21<br>18<br>20<br>18<br>15<br>-<br>-<br>25<br>-<br>27 | 16<br>24<br>19<br>23<br>17<br>-<br>-<br>28<br>-<br>34 | 14 6 8 4 6    | 1505040001111111510 | 333277   | •13        | 51<br>73<br>69<br>43<br>-<br>-<br>-<br>7<br>81 | 5900<br>4000<br>7400<br>100000<br>1700<br>2200<br>260<br>1100<br>900<br>- |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station near Century, Florida Operated by U.S. Geological Survey STATE

Florida

MAJOR BASIN

Southeast

MINOR BASIN

Perdido-Escambia Rivers

STATION LOCATION

Escambia River at

Century, Florida

| Day         | October        | November | December | January | February | March   | April  | May            | June   | July  | August | September |
|-------------|----------------|----------|----------|---------|----------|---------|--------|----------------|--------|-------|--------|-----------|
|             | 2 790          | 1.540    | 3.020    | 4.180   | 4.660    | 41.900  | 28.500 | 8.210          | 3.080  | 9.760 | 3.560  | 3.980     |
| 1           | 3.780<br>3.200 | 1.540    | 2.440    | 4.930   | 4.360    | 47.300  | 31.900 | 8.420          | 2.930  | 7.910 | 3.170  | 6.510     |
| 2<br>3<br>4 | 2.920          | 2.040    | 2.000    | 4.410   | 4.240    | 49.700  | 30.400 | 8.910          | 2.700  | 6.430 | 2.940  | 8.440     |
| 3           | 2.650          | 2.210    | 1.790    | 3.690   | 4.770    | 45.900  | 28.500 | 8.640          | 2.470  | 5.350 | 3.160  | 9.980     |
| 5           | 2.280          | 2.030    | 1.690    | 3.350   | 4.680    | 38.300  | 27.300 | 7.590          | 2.410  | 4.780 | 4.270  | 11.600    |
| 6           | 2.470          | 1.660    | 1.640    | 3.170   | 4.410    | 28.800  | 26.800 | 6.730          | 2.300  | 4.610 | 5.190  | 13.000    |
| 7           | 3.660          | 1.500    | 1.630    | 2.910   | 5.780    | 20.300  | 27.300 | 6.260          | 2.150  | 4.550 | 6.080  | 13.600    |
| 8           | 4.490          | 1.420    | 1.640    | 3.070   | 7.400    | 14.800  | 25.500 | 5.920          | 2.110  | 4.380 | 7.120  | 12.400    |
| 9           | 3.510          | 1.460    | 1.640    | 3.550   | 7.670    | 11.900  | 22.500 | 5.970          | 2.030  | 4.680 | 7.160  | 9.050     |
| 10          | 2.980          | 1.570    | 1.890    | 3.310   | 7.100    | 11.300  | 21.200 | 6.470          | 1.990  | 4.520 | 5.890  | 6.180     |
| 11          | 2.880          | 1.570    | 2.110    | 2.980   | 6.370    | 11.000  | 20.600 | 6.570          | 2.110  | 4.460 | 4.660  | 5.380     |
| 11<br>12    | 2.700          | 1.520    | 2.170    | 2.770   | 5.630    | 10.100  | 28.000 | 5.940          | 2.350  | 4.800 | 4.110  | 5.220     |
| 12          | 2.390          | 1.540    | 2.060    | 2.650   | 5.010    | 9.550   | 36.200 | 5.660          | 2.490  | 5.880 | 3.790  | 5.710     |
| 13<br>14    | 2.180          | 1.520    | 2.220    | 2.850   | 4.420    | 9.410   | 36.600 | 5.460          | 2.410  | 6.200 | 3.310  | 5.910     |
| 15          | 2.030          | 1.540    | 2.390    | 3.250   | 4.130    | 9.380   | 35.800 | 4.860          | 3.480  | 5.550 | 3.920  | 6.180     |
| 16          | 2.000          | 1.450    | 2.950    | 3.280   | 3.950    | 8.870   | 35.400 | 4.440          | 5.750  | 5.160 | 4.070  | 6.410     |
|             | 2.020          | 1.500    | 3.310    | 3.020   | 3.780    | 8.800   | 33.100 | 4.230          | 5.940  | 4.990 | 3.520  | 5.230     |
| 17<br>18    | 1.930          | 1.580    | 2.910    | 3.070   | 4.110    | 18.000  | 30.800 | 4.060          | 4.680  | 5.550 | 3.400  | 4.620     |
| 19          | 1.760          | 1.630    | 2.500    | 3.140   | 12.500   | 24.800  | 27.800 | 3.850          | 4.580  | 5.730 | 3.040  | 4.180     |
| 20          | 1.730          | 1.700    | 2.390    | 3.110   | 20.900   | 25.700  | 23.700 | 3.530          | 6.980  | 5.260 | 2.800  | 3.830     |
| 21.         | 1.700          | 1.640    | 3.020    | 3,220   | 26.400   | 23.200  | 19.000 | 3.290          | 15.500 | 5.300 | 2.660  | 3.570     |
| 22          | 1.670          | 1.550    | 3.970    | 2.930   | 27.700   | 20.500  | 14.400 | 2.820          | 19.200 | 5.720 | 2.380  | 3.260     |
| 22          | 1.680          | 1.720    | 3.960    | 2.600   | 32.000   | 18.200  | 11.300 | 2.560          | 16.800 | 5.880 | 2.340  | ž.970     |
| 23<br>24    | 1.600          | 2.460    | 3.040    | 2.650   | 35.600   | 15.500  | 9.500  | 2.530          | 14.700 | 5.720 | 2.640  | 2.800     |
| 25          | 1.620          | 2.700    | 2.580    | 3.700   | 39.400   | 12.700  | 8.520  | 2.980          | 14.600 | 4.430 | 3.040  | 2.440     |
| <b>2</b> 6  | 2.190          | 2.250    | 2.640    | 6.670   | 46.800   | 10.300  | 7.790  | 3.760          | 13.900 | 3.780 | 3.590  | 2.430     |
| 27          | 2.540          | 1.980    | 2.450    | 8.300   | 53.100   | 8.720   | 7.610  | 4.750          | 14.600 | 3.450 | 3.830  | 2.690     |
| 27<br>28    | 2.100          | 2.080    | 2.620    | 7.560   | 45.900   | 9.020   | 8.770  | 5.190          | 15.400 | 3.690 | 3.590  | 2.720     |
| 20<br>29    | 1.680          | 3.450    | 2.650    | 6.420   | 770 700  | 11.000  | 9.950  | 4.060          | 14.900 | 4.650 | 3.410  | 2.420     |
| 29<br>30    | 1.580          | 3.560    | 2.620    | 5.660   |          | 13.000  | 9.100  | 3.450          | 12.200 | 4.610 | 3.120  | 2.220     |
| 30<br>31    | 1.590          | 3. )00   | 2.980    | 5.010   |          | 20.700  | J. 200 | 3.430          |        | 4.060 | 2.980  |           |
| سر          | 1.090          |          | 20,500   | 7.010   |          | 200 100 |        | <u>ل</u> ر. بر |        |       |        |           |

STATE

NEW YORK

MAJOR BASIN

NORTHEAST

# RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LAKE ERIE-NIAGARA RIVER

STATION LOCATION LAKE ERIE AT

BUFFALO, NEW YORK

|                                                                                                                                          |                               |                              | 24816                   | DACTIVITY IN V               | VATED                          |                                              |                                    | RADIO                         | ACTIVITY IN PLA | NKTON (dry) | RAI       | DIOACTIVITY IN Y | /ATER |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------|-------------------------|------------------------------|--------------------------------|----------------------------------------------|------------------------------------|-------------------------------|-----------------|-------------|-----------|------------------|-------|
| DATE                                                                                                                                     |                               |                              | ALPHA                   | ACIIVIII IN V                | T T                            | BETA                                         |                                    | DATE OF                       | GROSS           | ACTIVITY    |           | GROSS ACTIVIT    |       |
| SAMPLE<br>TAKEN                                                                                                                          | DATE OF<br>DETERMI-<br>NATION | SUSPENDED                    | DISSOLVED               | TOTAL                        | SUSPENDED                      | DISSOLVED                                    | TOTAL                              | DATE OF<br>DETERMI-<br>NATION | ALPHA           | BETA        | SUSPENDED |                  | TOTAL |
|                                                                                                                                          |                               |                              |                         |                              | μμς/Ι                          | μμε/Ι                                        | μμε/1                              | MO. DAY                       | μμc/g           | μμc/g       | μμε/Ι     | μμε/1            | μμс/\ |
| MO. DAY YEAR  10 26 609  12 1 609  12 2 600  2 1 619  3 1 619  4 26 619  5 31 619  6 28 619  8 28 619  9 6 61  9 13 61  9 20 61  9 27 61 | MONTH   DAY                   | рµс/I  1 1 0 0 0 0 0 0 0 0 0 | μμε/1 2 2 0 0 1 1 0 0 0 | яде/1  3 3 1 2 0 0 1 1 0 0 0 | μμε/I  0 0 2 0 0 0 0 7 0 0 4 3 | μμε/Ι  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | μμε/I  0 0 2 0 0 0 0 18 9 4 0 20 3 | MO. DAY                       | μμε/ g          | μμε/g       | μμε/1     |                  | PP-1  |
|                                                                                                                                          |                               |                              |                         |                              |                                |                                              |                                    |                               |                 |             |           |                  |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

NEW YORK

MAJOR BASIN

NORTHEAST

MINOR BASIN

LAKE ERIE NIAGARA RIVER

STATION LOCATION LAKE ERIE AT

BUFFALO, NEW YORK

|                      |                                                                                                         |                |                       | ALGAE (A                                                                                | lumber                | per ml.)                          |                                              |                                                                                                        |                                                                                              | INE<br>DIA                          | RT                                        | <u> </u>                                                 |                                        |                                     | DI              | ATO                                                                        | MS                               |                                                                      |                                             |                                                                           | * .                                                                     |                                              | MICROIN                                                                                                                       | VERTEBR.                            |                              | 9                                     | 4 # 1                                                        |
|----------------------|---------------------------------------------------------------------------------------------------------|----------------|-----------------------|-----------------------------------------------------------------------------------------|-----------------------|-----------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------|----------------------------------------------------------|----------------------------------------|-------------------------------------|-----------------|----------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------|---------------------------------------|--------------------------------------------------------------|
| DATE<br>OF SAMPLE    |                                                                                                         | BLUE-          | GREEN                 | GREE                                                                                    | :N                    | FLAGEI<br>(Pigm                   | LATES<br>ented)                              | DIAT                                                                                                   | омѕ                                                                                          | SHE<br>(No. p                       | LLS                                       |                                                          | DOMI<br>(See                           | Intro                               | SPEC            | for Co                                                                     | de Ide                           | RCEN<br>ntificat                                                     | TAGES<br>ion*)                              |                                                                           | SHEATHE<br>ML.)                                                         | A                                            | RS<br>liter)                                                                                                                  | EA liter)                           | DES<br>liter)                | MAL FORM                              | r GENER<br>roducti<br>tificatio                              |
| MONTH<br>DAY<br>YEAR | TOTAL                                                                                                   | COCCOID        | FILA-<br>MENT-<br>OUS | COCCOID                                                                                 | FILA-<br>MENT-<br>OUS | GREEN                             | OTHER                                        | CENTRIC                                                                                                | PENNATE                                                                                      | CENTRIC                             | PENNATE                                   | FIRST*                                                   | PER-                                   | SECOND*                             | PER-<br>CENTAGE | THIRD*                                                                     | PER-<br>CENTAGE                  | FOURTH#                                                              | PER.<br>CENTAGE                             | OTHER PER-<br>CENTAGE                                                     | OTHER MICROPLANKTON,<br>FUNGI AND SHEATHED<br>BACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per ml.)                    | ROTIFIERS<br>(No. per liter)                                                                                                  | CRUSTACEA<br>(No. per liter)        | NEMATODES<br>(No. per liter) | OTHER ANIMAL FORMS<br>(No. per liter) | DOMINANT GENERA<br>(See Introduction)<br>for Identification) |
| 10                   | 100<br>300<br>200<br>500<br>400<br>600<br>200<br>1300<br>100<br>600<br>1700<br>200<br>300<br>300<br>300 | 20<br>70<br>80 | 120<br>20<br>20<br>60 | 20<br>50<br>20<br>40<br>20<br>20<br>20<br>20<br>20<br>130<br>40<br>70<br>40<br>20<br>20 | 90                    | 20<br>70<br>160<br>40<br>40<br>60 | 50<br>20<br>40<br>20<br>20<br>50<br>40<br>20 | 20<br>220<br>270<br>260<br>440<br>160<br>340<br>20<br>180<br>920<br>50<br>110<br>210<br>20<br>40<br>20 | 20<br>50<br>110<br>70<br>40<br>70<br>20<br>1010<br>50<br>20<br>110<br>420<br>540<br>20<br>20 | 110<br>490<br>370<br>20<br>70<br>20 | 70<br>130<br>180<br>70<br>70<br>70<br>200 | 49<br>49<br>84<br>49<br>79<br>97<br>97<br>97<br>97<br>97 | 50<br>40<br>70<br>40<br>40<br>40<br>40 | 97355<br>8975<br>8975<br>445<br>455 | 30<br>10        | 95<br>97<br>97<br>83<br>80<br>80<br>80<br>82<br>95<br>80<br>46<br>95<br>95 | 10<br>10<br>10<br>10<br>20<br>20 | 47<br>80<br>45<br>82<br>45<br>83<br>80<br>35<br>35<br>96<br>97<br>26 | 10<br>10<br>20<br>*<br>10<br>10<br>10<br>10 | 20<br>10<br>10<br>10<br>10<br>10<br>10<br>20<br>20<br>*<br>10<br>20<br>30 | 20<br>40<br>50<br>20<br>20<br>70<br>20<br>20                            | 20<br>10<br>10<br>30<br>30<br>10<br>30<br>20 | 14<br>21<br>22<br>13<br>5<br>11<br>3<br>3<br>5<br>23<br>28<br>219<br>233<br>85<br>517<br>32<br>43<br>172<br>234<br>312<br>113 | 6 1 1 9 59 66 76 66 14 12 4 4 2 2 4 | 1                            | 1                                     |                                                              |



ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

NEW YORK NORTHEAST

MAJOR BASIN

MINOR BASIN

.

LAKE ERIE-NIAGARA RIVER

STATION LOCATION LAKE ERIE AT

BUFFALO, NEW YORK

|                  |                              |                                                  |                                                                                |                                                                                         |                                       |                                                                                                |                     |                                         |                                           |                       | CHLOROE           | ORM EXTRA                              | CTABLES  |               |                              | ·     |                                                        |
|------------------|------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------|-------------------------------------------|-----------------------|-------------------|----------------------------------------|----------|---------------|------------------------------|-------|--------------------------------------------------------|
| DATE OF SA       |                              |                                                  |                                                                                | EX                                                                                      | TRACTABL                              | E5                                                                                             |                     |                                         | 1                                         |                       | NEUTRALS          |                                        |          |               |                              |       |                                                        |
| MONTH<br>DAY DAY | MTNOM                        | DAY                                              | GALLONS<br>FILTERED                                                            | TOTAL                                                                                   | CHLORO-<br>FORM                       | ALCOHOL                                                                                        | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES                       | TOTAL                                     | ALIPHATICS            | AROMATICS         | OXYGEN-<br>ATED<br>COMPOUNDS           | LOSS     | WEAK<br>ACIDS | STRONG<br>ACIDS              | BASES | LOSS                                                   |
| 11 21 60         | 11<br>12<br>1<br>2<br>3<br>4 | 2<br>30<br>23<br>19<br>14<br>10<br>13<br>14<br>* | 4747<br>4380<br>4853<br>2950<br>5130<br>5033<br>4755<br>94252<br>5385<br>14699 | 221<br>179<br>152<br>200<br>179<br>164<br>156<br>157<br>175<br>216<br>207<br>160<br>192 | 3222<br>4421<br>4435<br>48663<br>8883 | 188<br>137<br>110<br>158<br>138<br>124<br>123<br>107<br>111<br>109<br>153<br>139<br>102<br>129 | 123313144           | 9<br>12<br>11<br>10<br>8<br>10<br>8<br> | 12<br>12<br>13<br>15<br>18<br>9<br>11<br> | 2 1 2 3 1 1 1 - 3 - 2 | 1 1 1 2 1 0 0 1 1 | 15<br>8<br>8<br>-<br>-<br>14<br>-<br>- | 01100111 | 35444743387   | 3 3 2 2 3 2 6 <del>- 4</del> | 1 1   | 5<br>7<br>7<br>7<br>4<br>10<br>7<br>-<br>10<br>-<br>13 |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

#### STATE

NEW YORK

MAJOR BASIN

NORTHEAST

MINOR BASIN

LAKE ERIE-NIAGARA RIVER

STATION LOCATIONLAKE ERIE AT

BUFFALO, NEW YORK

|            | DATE    | T        | · · · · · · · · · · · · · · · · · · · |                             |                |                |                | CHLORINE       | DEMAND          |                              |                   |                    |                  |                        | TURBIDITY     | SULFATES | PHOSPHATES | TOTAL                       | COLIFORMS   |
|------------|---------|----------|---------------------------------------|-----------------------------|----------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|---------------|----------|------------|-----------------------------|-------------|
|            | SAMP    | $\dashv$ | TEMP.<br>(Degrees<br>Centigrade)      | DISSOLVED<br>OXYGEN<br>mg/l | рН             | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | (scale units) | mg/i     | mg/l       | DISSOLVED<br>SOLIDS<br>mg/l | per 100 ml. |
| HONTH      | DAY     | YEAR     | comingrado,                           |                             |                |                |                | mg/i           |                 |                              |                   |                    | 128              | 0                      | 4             | 23       | •2         | 205                         | 5           |
| 10         | 5       | 60       | 18.0                                  | 9.0                         | 8.3            | 1.0            | 5              | • 4            | 1.8             | •0                           | 23<br>23          | 86<br>82           | 126              | 0                      | 5             | 23       | '-         | 197                         | 3           |
| 10         | 13      | 60       | 17.5                                  | 8.7                         | 8 • 2          | • 4            | 8<br>7         | .3             | 2.0             | •0                           | 23                | 80                 | 128              | 0                      | 5             | 23       | -          | 213                         | 6           |
| 10         | 19      | 60       | 16.5                                  | 9.5                         | 8 • 1<br>8 • 2 | • 4<br>• 6     | 7              | .3             | 2.1             | • 0                          | 23                | 82                 | 128              | 0                      | 20            | 22<br>22 | •1         | 216<br>195                  | *4<br>*4    |
| 10<br>11   | 26<br>2 | 60       | 14.0<br>13.0                          | 9.6                         | 8.2            | • 9            | 3              | • 4            | 2.0             | •0                           | 20                | 82                 | 130              | 0                      | 20<br>15      | 23       | • 2        | 203                         | 310         |
| 11         | 9       | 60       | 11.5                                  | 9.7                         | 8.1            | -              | 5              | • 3            | 2.0             | •0                           | 23<br>23          | 94                 | 128<br>130       | 0                      | 20            | 23       | .2         | 207                         | 64          |
| 11         | 16      | 60       | 11.5                                  | 11.0                        | 8.2            | . 8            | 5              | •3             | 1.3             | 0                            | 20                | 94                 | 136              | l                      | 10            | 22       | •2         | 197                         | -           |
| 11         | 23      | 60       | 11.0                                  | 11.2                        | 8 • 2          | 1.0            | 7<br>12        | .6             | 2.8             | .ő                           | 23                | 96                 | 140              | 0                      | 50            | 23       | • 2        | 199                         | 240         |
| 12         | 7       | 60       | 7.0                                   | 11.4                        | 8.3<br>8.0     | 2.0<br>1.4     | 11             | .6             | 2.2             | •0                           | 23                | 98                 | 123              | 0                      | 10            | 22       | .1         | 204                         | 24<br>12    |
| 12<br>12   | 14      | 60       | 9•0<br>4•5                            | 12.9                        | 7.8            | 1.3            | 6              | .9             | 2 • 6           | •0                           | 23                | 88                 | 134              | - 0                    | 50<br>30      | 23<br>22 | .5         | 199                         | 3           |
| 12         | 22      | 60       | 2.9                                   | 13.9                        | 8.0            | 1.0            | 6              | .8             | 2 • 6           | •0                           | 20<br>23          | 94                 | 128<br>128       | 0                      | 15            | 23       | .1         | 206                         | *4          |
| 1          | 4       | 61       | 4.5                                   | 14.0                        | 8 • 2          | 1.9            | 12             | •6             | 2.0             | •0                           | 20                | 92                 | 128              | _                      | 25            | 23       | •1         | 188                         | 2           |
| 1          | 11      | 61       | 3.0                                   | 12.5                        | 8 • 1          | 2 • 2<br>2 • 5 | 9              | •5             | 1.6             | .0                           | 23                | 96                 | 128              | 0                      | 30            | 22       | •1         | 181                         | 3           |
| 1          | 18      | 61       | 3.0<br>3.0                            | 14.5                        | 8 • 3<br>8 • 2 | 1.7            | 17             | •5             | 1.9             | •0                           | 23                | 98                 | 128              | 0                      | 15            | 22       | •5         | 190                         | *4<br>*1    |
| 1<br>2     | 25      | 61       | 3.0                                   | 14.3                        | 8.1            | 1.0            | 13             | • 3            | 2 • 2           | •0                           | 25                | 96                 | 138              | 0                      | 5<br>7        | 26<br>24 | •1         | 180<br>209                  | *1          |
| 2          |         | 61       | 4.0                                   | 14.2                        | 8.0            | 1.4            | 6              | • 5            | 1.6             | •0                           | 25<br>20          | 98<br>100          | 136<br>134       | 0                      | 7             | 24       | 4          | 229                         | *1          |
| 2          | 15      | 61       | 4.0                                   | 14.5                        | 8.1            | -              | 16             | •2             | 1.9             | •0                           | 23                | 88                 | 138              |                        | 5             | 23       | .1         | 198                         | 9           |
| 2          | 23      | 61       | 6.0                                   | 14.7                        | 8.2            | 1 1            | 7 8            | .2             | 1.8             | .0                           | 23                | 96                 | 140              | 0                      | 6             | 22       | •1         | 191                         | *1          |
| 3          | 1       | 61       | 4∙5<br>4∙0                            | 14.3<br>14.0                | 8 • 2<br>8 • 0 | 1.1            | 9              | .2             | 1.0             | .0                           | 23                | 94                 | 136              | 0                      | 10            | 24       | •5         | 189                         | 58          |
| 3<br>3     |         | 61       | 4.0                                   | 13.6                        | 8.2            | 1.4            | 9              | • 7            | 2 • 1           | •0                           | 20                | 96                 | 132              | 0                      | 10            | 23       | •1         | 202<br>196                  | 100<br>*1   |
| 3          | 22      | 61       | 3.0                                   | 12.7                        | 8.0            | 1.1            | 9              | • 2            | 1.5             | •0                           | 20                | 88                 | 130<br>132       | 0                      | 20            | 24 23    | 1          | 179                         | 1 1         |
| 3          |         | 61       | 4.5                                   | 13.7                        | 7.7            | 2.0            | 8              | • 2            | 1.2             | •0                           | 23<br>20          | 82<br>90           | 126              | 1 0                    | 25            | 21       | .5         | 191                         | 3           |
| 4          |         | 61       | 4.0                                   | 1                           | 8 • 2          | 1.6            | 10             | • 6            | 2.6             | .0                           | 23                | 88                 | 136              | ő                      | 20            | 22       | .0         | 217                         | 1           |
| 4          |         | 61       | 6.0<br>7.0                            |                             | 8•1<br>8•1     | 2.0<br>1.2     | 8              | 3              | 1.3             | .0                           | 23                | 86                 | 124              | 0                      | 20            | 21       | • 1        | 176                         | 7           |
| 4<br>4     |         | 61       | 6 • O                                 |                             | 7.9            | 1.5            | 9              | .7             | 2.2             | .0                           | 20                | 88                 | 126              | 0                      | 20            | 21       | • 1        | 175                         | *1<br>50    |
| 5          |         | 61       | 7.5                                   | 1                           | 8.0            | 2.5            | 9              | . 8            | 2 • 2           | • 0                          | 20                | 80                 | 120              | 0                      | 100           | 21 21    | •1         | 180<br>171                  | 2           |
| 5          |         | 61       | 10.0                                  |                             | 8.3            | 1.7            | 7              | -8             | 2 • 2           | •0                           | 20                | 84                 | 120              | 0                      | 10            | 21       |            |                             | 1           |
| 5          |         | 61       | -                                     | -                           |                |                |                | - 8            | 2.9             | .0                           | 20                | 80                 | 120              | 0                      | 15            | 20       | .1         | 171                         | _           |
| 5          |         | 61       | 4.0                                   |                             | 8 • 2<br>8 • 2 | 2.7            | 6 8            | 1.0            | 2.9             | .0                           | 20                | 80                 | 120              | 0                      | 10            | 20       | •5         | 154                         | *1          |
| 5          |         | 61       | 12.0                                  | 1 -                         | 8.2            | 1.8            | 8              | .3             | 2.2             | .0                           | 23                | 82                 | 132              | 0                      | 10            | 20       |            | 176                         | 8           |
| 6          |         | 61       | 15.0                                  |                             | 8.2            | 2.4            | 10             | • 8            | 2.9             | •0                           | 23                | 80                 | 120              | 0                      |               | 20       |            | 259<br>210                  | *4<br>*1    |
| ě          |         | 1 - 1    | 18.0                                  | 8.9                         | 8.1            | 1.9            | 9              | • 1            | • 3             | •0                           | -                 | 80                 | 130<br>130       | - 0                    | 10<br>14      | 22       |            | 206                         | 180         |
| 6          | 1 -     | 61       | 16.5                                  |                             | 8 • 2          | 2.1            | 5              | 1 • 4          | 2.0             | •0                           | 23                | 92                 | 130              | 0                      |               |          | 1          | 178                         | -           |
| $\epsilon$ | 28      | 61       | 17.0                                  | 9.5                         | 8.3            | 1.2            | 5              | 1.2            | 2.0             | •0                           | 20                | 32                 | 172              |                        |               |          |            |                             |             |
|            |         |          | L                                     |                             | <u> </u>       | L              |                | J              | L               |                              |                   |                    |                  |                        |               |          |            |                             |             |



CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

#### STATE

NEW YORK

#### MAJOR BASIN

NORTHEAST

MINOR BASIN

LAKE ERIE-NIAGARA RIVER

### STATION LOCATIONLAKE ERIE AT

BUFFALO, NEW YORK

| DATE                                                                              |                                              |                                                                                      |                                                             |              |                                                   |                                                                      | CHLORINE                                                      | DEMAND                                                                       |                              |                                     |                                                                |                                                                    |                                         |                                                  | elu PAVE?                                                      | PHOSPHATES                             | TOTAL                                                                            | COLIFORMS                                        |
|-----------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------|---------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------|----------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------|
| OF SAM                                                                            | YEAR                                         | TEMP.<br>(Degrees<br>Centigrade)                                                     | DISSOLVED<br>OXYGEN<br>mg/l                                 | рН           | B.O.D.<br>mg/l                                    | C.O.D.<br>mg/l                                                       | 1-HOUR<br>mg/l                                                | 24-HOUR<br>mg/l                                                              | AMMONIA-<br>NITROGEN<br>mg/I | CHLORIDES<br>mg/I                   | ALKALINITY<br>mg/l                                             | HARDNESS<br>mg/l                                                   | COLOR                                   | TURBIDITY<br>(scale units)                       | SULFATES<br>mg/l                                               | mg/l                                   | DISSOLVED<br>SOLIDS<br>mg/l                                                      | per 100 ml.                                      |
| 7 5<br>7 12<br>7 19<br>7 26<br>8 2<br>8 16<br>8 23<br>8 31<br>9 6<br>9 13<br>9 20 | 61<br>61<br>61<br>61<br>61<br>61<br>61<br>61 | 17.5<br>20.5<br>21.5<br>24.1<br>23.3<br>22.6<br>24.0<br>24.0<br>24.5<br>23.0<br>22.0 | 8.5<br>8.9<br>9.2<br>8.9<br>7.9<br>8.4<br>8.4<br>8.5<br>7.8 | 235354344330 | •9<br><br><br>4•7<br>2•9<br>1•9<br>•8<br>•7<br>•8 | 10<br>11<br>10<br>11<br>13<br>12<br>16<br>17<br>20<br>17<br>11<br>13 | 1.6<br>1.6<br>1.4<br>.7<br>.9<br>1.8<br>.6<br>.2<br>1.2<br>.9 | 2.3<br>3.0<br>2.8<br>2.7<br>2.00<br>2.00<br>1.5<br>2.4<br>2.00<br>1.4<br>2.9 | •0                           | 23 23 25 20 22 3 22 22 22 3 22 22 3 | 80<br>90<br>84<br>88<br>88<br>88<br>86<br>82<br>88<br>92<br>84 | 122<br>126<br>130<br>126<br>128<br>138<br>132<br>126<br>122<br>124 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 10<br>8<br>10<br>6<br>10<br>10<br>13<br>12<br>50 | 21<br>23<br>23<br>24<br>17<br>18<br>21<br>22<br>22<br>22<br>20 | .1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1 | 220<br>214<br>220<br>209<br>208<br>241<br>217<br>196<br>208<br>199<br>200<br>233 | *40<br>*10<br>40<br>-10<br>*10<br>55<br>*4<br>30 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Supplied by U.S. Army Corps of Engineers U.S. Lake Survey

STATE

New York

MAJOR BASIN

Northeast

MINOR BASIN

Lake Erie-Niagara River

STATION LOCATION

Lake Erie at

Buffalo, New York

| October | November | December | January | February | March      | April | May  | June   |      | July | August | September |
|---------|----------|----------|---------|----------|------------|-------|------|--------|------|------|--------|-----------|
|         |          | FLOW     | DATA    | NOT      | APPLICABLE |       | LAKE | LEVELS | ONLY |      |        |           |

RADIOACTIVITY DETERMINATIONS

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. CLAIR-DETROIT RIVERS

STATION LOCATION DETROIT RIVER AT

DETROIT, MICHIGAN

|              |                               |           |           |               |           |           |               |                 | PADICAC                       | TIVITY IN PLAN | KTON (dry) |     | RAD       | IOACTIVITY IN V | /ATER |
|--------------|-------------------------------|-----------|-----------|---------------|-----------|-----------|---------------|-----------------|-------------------------------|----------------|------------|-----|-----------|-----------------|-------|
| DATE         |                               |           | RADIC     | ACTIVITY IN W | ATER      |           |               | F               |                               | GROSS A        |            |     |           | GROSS ACTIVIT   |       |
| SAMPLE       | DATE OF                       |           | ALPHA     |               |           | BETA      | TOTAL         |                 | DATE OF<br>DETERMI-<br>NATION | ALPHA          | BETA       |     | SUSPENDED | DISSOLVED       | TOTAL |
| TAKEN        | DATE OF<br>DETERMI-<br>NATION | SUSPENDED | DISSOLVED | TOTAL         | SUSPENDED | DISSOLVED | μμc/l         |                 | O. DAY                        | μμε/g          | μμc/g      |     | μμε/\     | μμς/Ι           | μμς/Ι |
| MO. DAY YEAR | MONTH DAY                     | μμς/!     | μμς/Ι     | μμε/Ι         | μμε/1     | μμε/Ι     | <i>дре</i> /1 | —— <del> </del> | JO.   DATE                    | 1,7 -7 2       |            |     |           | i               |       |
|              |                               |           |           | _             |           | , ,       | 3             |                 |                               |                |            |     |           |                 |       |
| 0 26 60*     | 11 15                         | 0         | 1         | ī             | 2         | 1 1       | ا ہ           | l               |                               |                |            |     |           |                 |       |
| 1 29 60*     | 12 9                          | 0         | 0         | 0             | 0         | o l       | ŏ             | 1               |                               |                |            |     |           |                 |       |
| 2 27 60*     | 1 12                          | 0         | 1         | 1             | 0         | 0         |               | . 1             |                               |                |            |     |           |                 |       |
| 1 24 61*     | 2 24                          | 0         | 0         | 0             | ) 0       | 1         | 0             | - 1             | 1                             |                |            |     |           |                 |       |
| 2 7 61       | 3 23                          | 0         | 0         | 0             | 0         | 0         |               | - 1             | İ                             |                |            | 1   |           |                 |       |
| 4 11 61      | 5 22                          | 0         | 1 1       | 1             | 0         | 0         | 0             | !               |                               |                |            |     |           |                 |       |
| 5 23 61*     | 1                             | 0         | 0         | 0             | 0         | 0         | 0             |                 | 1                             |                |            | 1   |           | 1               |       |
| 6 20 61*     |                               | 0         | 0         | 0             | 0         | 0         | 0             | i               | ļ                             |                |            | l   | }         |                 |       |
| 7 25 61      | 8 28                          | 2         | 0         | 2             | 0         | 0         | 0             |                 |                               |                | *          |     |           |                 |       |
| 8 29 61*     |                               | Ō         | 0 1       | 0             | 3         | 5         | 8             | 1               |                               |                |            | 1   |           |                 | •     |
| 9 6 61       | 9 28                          | _         |           | -             | 2         | 4         | 6             |                 |                               |                |            | 1   |           |                 | l     |
|              | 10 6                          | 0         | 1 0 1     | 0             | 0         | 0         | 0             | - 1             |                               |                |            | 1   |           |                 |       |
| 9 11 61      |                               | 1 -       | _         | _             | 7         | 53        | 60            | ì               |                               |                | 1          |     |           |                 |       |
| 9 19 61      | 10 18                         | _         | _         | _             | 2         | 3         | 5             |                 |                               |                |            | i - |           |                 | 1     |
| 9 26 61      | 10 3                          | -         |           |               |           | 1         | i i           | Ì               |                               |                |            | i   | 1         |                 |       |
|              | ì                             | 1         |           |               |           |           |               | 1               |                               |                |            |     | 1         |                 |       |
|              |                               |           |           |               |           | İ         |               | 1               |                               |                |            |     | İ         |                 | İ     |
|              |                               |           |           |               | Ì         |           |               | ļ               |                               |                |            | 1   |           |                 | l .   |
|              |                               |           | İ         |               | ł         |           |               | Į.              |                               |                |            | 1   |           |                 | ļ     |
|              |                               |           |           |               |           |           |               |                 |                               |                |            | 1   |           |                 |       |
|              | 1                             |           |           |               | Į         |           |               | l               |                               |                |            | ì   | 1         |                 |       |
|              |                               |           |           |               |           |           | l i           |                 |                               |                | Į.         | 1   |           |                 |       |
|              |                               | ļ         |           |               |           |           | ì             |                 |                               | ļ              |            | 1   |           |                 |       |
|              |                               |           |           | 1             |           | 1         |               | 1               |                               |                |            | 1   |           |                 | 1     |
|              |                               |           |           |               |           |           |               |                 |                               |                |            | 1   |           |                 | 1     |
|              |                               | 1         |           | 1             |           |           |               |                 |                               | j .            | ì          | -   |           |                 |       |
|              |                               | 1         |           |               |           |           |               |                 |                               |                |            |     | l         |                 | 1     |
|              | 1                             |           |           |               |           |           | 1             | į .             |                               |                |            | 1   |           |                 |       |
|              |                               |           |           |               | Ì         |           |               |                 |                               | ł              |            | -   | 1         |                 |       |
|              |                               | 1         |           |               |           |           | i i           | Ì               |                               |                |            | ŀ   | 1         |                 |       |
|              |                               | 1         |           |               |           |           | 1             | İ               |                               |                |            |     | 1         |                 |       |
|              |                               |           |           |               | ļ.        |           | 1             |                 |                               |                | l          | -   | 1         |                 | 1     |
|              |                               |           |           | 1             |           |           |               | 1               |                               |                |            | 1   | 1         |                 | 1     |
|              |                               |           |           |               |           | 1         |               | 1               | 1                             |                |            |     | ì         |                 |       |
|              |                               | 1         |           |               |           | 1         |               |                 |                               |                |            |     |           | 1               |       |
|              |                               |           |           |               |           |           |               | 1               |                               |                |            | - 1 |           |                 |       |
|              |                               |           | 1         |               | .[        |           |               | 1               |                               |                |            | -   | 1         |                 |       |
|              |                               | Į         |           |               | 1         |           |               |                 |                               |                |            |     |           |                 |       |
|              |                               |           |           | 1             | 1         |           |               |                 |                               |                |            |     | ı         |                 |       |
|              |                               |           |           |               |           |           |               | 1               | 1                             | 1              | 1          |     |           |                 |       |
|              |                               |           |           | 1             |           |           |               |                 |                               | 1              |            | - 1 |           |                 |       |
|              | 1                             |           | 1         | 1             | 1         | 1         | 1             | 1               | 1                             | 1              | 1          | 1   | 1         |                 | I _   |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. CLAIR-DETROIT RIVERS

STATION LOCATION DETROIT RIVER AT

DETROIT, MICHIGAN

|            |          |                       | ALGAE (                                                                                      | Number                | per ml.)                                                 |                                                    |                                                                                                            |                                                                                                               | INI           | ERT<br>TOM<br>ELLS                                                                   | Т                                                        |                                         |                                        | D                                                                                                                                                        | IATO                                                                                               | MS                                                                 |                                                                                                    |                                                   |                            | i                                                  | L                         | MICROIN                                                                                                         | VERTEBR                                                                       | ATES                         |                 |                                                             |
|------------|----------|-----------------------|----------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------|----------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------|-----------------|-------------------------------------------------------------|
| OF SAMPLE  | BLUE     | -GREEN                | GRE                                                                                          | EN                    | FLAGEL<br>(Pigm                                          | LATES<br>ented)                                    | DIAT                                                                                                       | омѕ                                                                                                           | SHE<br>(No. p | LLS<br>er ml.)                                                                       |                                                          |                                         |                                        | duction                                                                                                                                                  |                                                                                                    |                                                                    |                                                                                                    |                                                   |                            | корсанктом<br>виеленев<br>ml.)                     | ml.)                      | s<br>iter)                                                                                                      | E.A.                                                                          | ES<br>iter)                  | N, FORMS<br>er) | GENERA<br>duction<br>fication                               |
| TATOT KEAR | . coccoi | FILA-<br>MENT-<br>OUS | COCCOID                                                                                      | FILA-<br>MENT-<br>OUS | GREEN                                                    | OTHER                                              | CENTRIC                                                                                                    | PENNATE                                                                                                       | CENTRIC       | PENNATE                                                                              | FIRST#                                                   | PER.                                    | SECOND*                                | PER.                                                                                                                                                     | THIRD#                                                                                             | PER.                                                               | FOURTH*                                                                                            | PER-                                              | OTHER PER-                 | OTHER MICRO<br>FUNGI AND S<br>RACTERIA<br>(NO. PET | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)                                                                                    | CRUSTACEA<br>(No. per liter)                                                  | NEMATODES<br>(No. per liter) | (No. per liter) | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| 10         | 0        |                       | 70<br>20<br>50<br>40<br>20<br>70<br>40<br>20<br>20<br>40<br>20<br>80<br>40<br>40<br>60<br>60 |                       | 50<br>50<br>20<br>20<br>40<br>20<br>40<br>20<br>20<br>20 | 20<br>80<br>40<br>70<br>40<br>40<br>20<br>20<br>20 | 50<br>110<br>50<br>70<br>20<br>90<br>210<br>310<br>70<br>210<br>440<br>150<br>310<br>60<br>100<br>80<br>60 | 50<br>20<br>90<br>70<br>70<br>270<br>360<br>250<br>270<br>1240<br>510<br>790<br>210<br>370<br>60<br>150<br>60 | 40            | 220<br>290<br>580<br>230<br>270<br>370<br>250<br>170<br>270<br>370<br>40<br>80<br>40 | 25<br>25<br>25<br>47<br>35<br>35<br>45<br>35<br>95<br>95 | 322224400000000000000000000000000000000 | 46<br>47<br>46<br>46<br>95<br>45<br>95 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>20<br>20<br>20<br>20<br>20<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 47<br>42<br>63<br>63<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55 | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | 24<br>47<br>57<br>97<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47 | 10<br>10<br>10<br>10<br>10<br>*<br>10<br>10<br>10 | 46455443133455333322544422 | 20<br>40<br>70                                     | 10                        | 11<br>1<br>2<br>1<br>2<br>9<br>9<br>9<br>3<br>3<br>4<br>21<br>7<br>71<br>35<br>13<br>36<br>3<br>14<br>136<br>10 | 1<br>3<br>2<br>2<br>2<br>1<br>4<br>2<br>1<br>1<br>4<br>9<br>2<br>5<br>48<br>2 | 1                            |                 |                                                             |

# ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. CLAIR-DETROIT RIVERS

STATION LOCATION DETROIT RIVER AT

DETROIT, MICHIGAN

|                                                                                                                                         |                                                                                                                   |                                                                         |                                                                                 |                                                                                   |                     |                   |                       |             | CHI OBOE                          | ORM EXTRA                                      | CTABLES |               |                       |                                                                           |          |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------|-------------------|-----------------------|-------------|-----------------------------------|------------------------------------------------|---------|---------------|-----------------------|---------------------------------------------------------------------------|----------|
| DATE OF SAMPLE                                                                                                                          |                                                                                                                   | EX                                                                      | TRACTABLE                                                                       | S                                                                                 |                     |                   |                       |             | NEUTRALS                          |                                                |         |               | Ī                     |                                                                           |          |
|                                                                                                                                         | GALLONS<br>FILTERED                                                                                               | TOTAL                                                                   | CHLORO-<br>FORM                                                                 | ALCOHOL                                                                           | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES | TOTAL                 | ALIPHATICS  | AROMATICS                         | OXYGEN-<br>ATED<br>COMPOUNDS                   | LOS5    | WEAK<br>ACIDS | STRONG<br>ACIDS       | BASES                                                                     | LOSS     |
| 1 10 61 1 20 1<br>2 7 61 2 21<br>3 7 61 3 21<br>4 5 61 4 18<br>5 2 61 5 16<br>6 5 61 6 20<br>6 5 61 7 25<br>8 8 61 8 22<br>9 14 61 9 26 | 12800<br>8872<br>1920<br>10980<br>4680<br>4159<br>7380<br>3360<br>4005<br>14745<br>10500<br>3710<br>4380<br>18590 | 62<br>63<br>228<br>136<br>117<br>655<br>151<br>108<br>141<br>132<br>929 | 11<br>14<br>33<br>9<br>25<br>21<br>21<br>34<br>37<br>28<br>22<br>31<br>30<br>26 | 51<br>49<br>195<br>54<br>111<br>96<br>42<br>121<br>114<br>80<br>119<br>108<br>103 | 0 0 0 2 0 1 1 1 3 2 | 34938567          | 5512<br>470<br>9<br>8 | 1 1 2 2 2 2 | 1 1 2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 | 3<br>6<br>3<br>6<br>7<br>-<br>-<br>6<br>-<br>- | 1       | 1 1 4 1 3 2 2 | 1<br>-<br>-<br>2<br>- | 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 13415244 |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. CLAIR-DETROIT RIVERS

STATION LOCATIONDETROIT RIVER AT

DETROIT, MICHIGAN

| L    | ATE        |          |                                  |                             |            |                |                | CHLORINE       | DEMAND          |                              |                   |          |                   |                        |                            |                  |                    | TOTAL                       |             |
|------|------------|----------|----------------------------------|-----------------------------|------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|----------|-------------------|------------------------|----------------------------|------------------|--------------------|-----------------------------|-------------|
| II.  | SAMP<br>YO |          | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/l | pН         | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/I | AMMONIA-<br>NITROGEN<br>mg/I | chlorides<br>mg/l | mg/l     | mg/l              | COLOR<br>(scale units) | turbidity<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/l | per 100 ml. |
| 10   | 4          |          | 16.1                             | 8.8                         | 8.1        | • 3            | 4              | • 3            | 1 • 5<br>1 • 2  | •0                           | 6                 | 80<br>80 | 100<br>9 <b>7</b> | 0                      | 20                         | 12<br>14         | .0                 | 122                         | 30<br>56    |
|      | 11         |          | 15.6                             | 8.8<br>9.1                  | 8•1<br>8•0 | • 2<br>• 8     | 6 5            | • 4            | 1.3             | •0                           | 6                 | 78       | 99                | Ö                      | 20                         | 14               | .0                 | 112                         | -           |
|      |            | 60<br>60 | 16.1                             | 9.1                         | 5.0        | -              |                | _              | -               | -                            | -                 | -        | -                 | -                      |                            | _                | -                  | _ <del>_</del>              | 54          |
|      |            | 60       | 10.0                             | 10.2                        | 8.0        | • 8            | 5              | • 4            | 1.5             | •0                           | 6                 | 84       | 103               | 0                      | 100                        | 13               | • 0                | 136                         | 220         |
| 11   |            | 60       | 11.1                             | 10.0                        | 8.0        | • 6            | 5              | • 3            |                 | •0                           | 6                 | 79<br>83 | 98<br>100         | 0                      | 35<br>70                   | 13<br>12         | .0                 | 138<br>146                  | 85<br>73    |
| 11   |            | 60       | 7.2                              | 11.2                        | 8.1        | · 8            | 5<br>4         | • 4<br>• 5     | 1.6             | •0<br>•0                     | 8                 | 80       | 97                | 0                      | 25                         | 13               | .0                 | 126                         | 20          |
|      |            | 60       | 6.7                              | 11.4                        | 7.8        | • 8<br>—       | 3              | .8             | 1.4             | •0                           | 7                 | 79       | 97                | ő                      | 20                         | 7                | .0                 | 140                         |             |
| 11 2 |            | 60       | 7 • 2<br>7 • 8                   | 11.0                        | 8.0<br>8.2 | • 7            | 3              | .5             | 1.2             | •0                           | 7                 | 78       | 96                | 0                      | 35                         | 13               | .0                 | 124                         | 86          |
| 12   |            | 60       | 4 • 4                            | 12.2                        | 8.0        | -              | 4              | • 3            | 1.1             | •0                           | 6                 | 79       | 96                | 0                      | 20                         | 12               | •0                 | 134                         | 230         |
| 12   |            | 60       | · -                              | -                           | -          | -              | -              | _              |                 | -                            |                   |          | 0.77              | 0                      | 60                         | 12               | - 0                | 122                         | 14          |
|      |            | 60       | • 6                              | 13.3                        | 8.1        | • 5            | 5              | • 8            | 1.0             | •0                           | 6<br>6            | 80<br>80 | 97<br>98          | 0                      | 15                         | 14               | .0                 | 134                         | _           |
|      |            | 60       | • 6                              | 12 0                        | 8.1        | • 9            | 4              | •1<br>•2       | •6<br>1•0       | •0                           | 6                 | 79       | 98                | 0                      | 4                          | 12               |                    | 136                         | *1          |
| 12 2 |            | 60<br>61 | • 6<br>• 6                       | 13.9<br>13.5                | 8.1        | • 8            | 4              | • 2            | -               | •0                           | 8                 | 79       | 100               | ŏ                      | 7                          | 13               | .0                 | 138                         | *3          |
|      | - 1        | 61       | • 6                              | 13.9                        | 8.1        | _              | 37             | • 4            | •9              | •0                           | 8                 | 78       | 95                | ٥                      | 3                          | 12               | .0                 | 113                         | 14          |
|      |            | 61       | • 6                              | 12.8                        | 8.2        | • 5            | 8              | • 4            | 1.2             | •1                           | 10                | 78       | 95                | 0                      | 4                          | 14               | •0                 | 111                         | *1          |
|      | - 1        | 61       | •5                               | 14.4                        | 8.1        | • 6            | -              | • 3            | . •7            | •0                           | 8                 | 77       | 95                | 0                      | 3                          | 12               | •0                 | 116                         | *1          |
|      |            | 61       | • 5                              | 14.5                        | 8.2        | •6             | 10             | •1             | •5<br>•7        | •0                           | 7<br>7            | 80<br>80 | 9 <b>7</b><br>96  | 0                      | 2<br>2                     | 12<br>15         | .0                 | 123<br>124                  | _           |
| 2 2  | - 1        | 61<br>61 | •6                               | 14.2                        | 8.2        | • 9            | 13             | • 3            | • 1             | -                            |                   | "-       | -                 | _                      | -                          | -                | "-                 |                             | *1          |
|      |            | 61       | .6                               | 14.1                        | 8.1        | •7             | 10             | • 4            | _               | •0                           | 7                 | 80       | 97                | 0                      | 2                          | 14               | .0                 | 112                         | 2           |
|      |            | 61       | •6                               | 13.8                        | 8.1        | . 2            | 9              | •6             | 1.2             | •0                           | 12                | 78       | 95                | 0                      | 20                         | 14               | • 0                | 119                         | 3           |
| 3    |            | 61       | •7                               | 13.8                        | 8.1        | •7             | 19             | • 7            | 1.0             | • 0                          | 8                 | 77       | 94                | 0                      | 15                         | 14               | • 0                | 128                         | *1          |
|      |            | 61       | 1.7                              | 13.5                        | 8.2        | . 1            | 17             | • 5            | 1 • 3           | •0                           | 7                 | 84       | 100               | O O                    | 50                         | 16               | •0                 | 126<br>122                  | *25         |
|      | - 1        | 61<br>61 | 1.8                              | 14.0                        | 8.3        | 1.2            | 10<br>3        | 1.0            | 1 • 4<br>1 • 0  | .0                           | 8<br><b>7</b>     | 86<br>79 | 102<br>96         | 0                      | 55<br>15                   | 16<br>15         | .0                 | 117                         | _           |
| 4    |            | 61       | 3.3                              | 13.5                        | 8.1        | .5             | 13             | • 4            | .9              | .0                           | 8                 | 80       | 96                | l ő                    | 25                         | 14               |                    | 117                         | _           |
| - 1  |            | 61       | 3.3                              | 13.0                        | 8.1        | 1.1            | 6              |                | _               | .0                           | 7                 | 80       | 97                | Ö                      | 15                         | 14               | .0                 | 112                         | _           |
|      |            | 61       | 3.9                              | 12.0                        | 8.1        | • 1            | 11             | • 5            | 1.0             | •0                           | 7                 | 79       | 95                | 0                      | 45                         | 14               | .0                 | 119                         | -           |
|      |            | 61       | 6.7                              | 12.4                        | 8.1        | • 2            | 10             | • 4            | 1.0             | •0                           | 6                 | 80       | 96                | Ü                      | 40                         | 14               | • 0                | 120                         | -           |
| 5    |            | 61       | 7.0                              | 12.0                        | 8.2        | • 2            | 10             | 1.0            | 1.9             | •0                           | 7                 | 81       | 99                | 0                      | 25                         | 16               | • 0                | 122                         | -           |
| 5    | - 1        | 61       | 8.9<br>12.9                      | 11.5                        | 8.2        | •6<br>•3       | 101            | .8             | 1.5             | • 0                          | 7<br>8            | 80<br>80 | 96<br>99          | 0                      | 15<br>17                   | 16<br>16         | .0                 | 126<br>122                  | *1          |
|      |            | 61       | 11.2                             | 11.4                        | 8.2        | .5             | 9              | • 5            | .9              | • 0                          | 8                 | 80       | 99                | 0                      | 10                         | 15               | 1                  | 126                         |             |
|      |            | 61       | 12.0                             | 11.2                        | 8.4        | .7             | 5              | • 4            | 1.1             | •0                           | 8                 | 81       | 99                | 0                      | 10                         | 15               | .0                 | 120                         | 110         |
| 1 -  |            | 61       | 17.8                             | 10.5                        | -          | 1.3            | 10             | • 6            | 1.5             | •0                           | 8                 | 80       | 96                | 0                      | 8                          | 15               | •1                 | 122                         | _           |
| 6 2  | 20         | 61       | 17.3                             | 9.1                         | 8.3        | •5             | 14             | • 7            | 1 • 7           | • 0                          | 8                 | 80       | 98                | 0                      | 15                         | 14               | •0                 | 130                         | 4           |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. CLAIR-DETROIT RIVERS

STATION LOCATION DETRUIT RIVER AT

DETROIT, MICHIGAN

| DATE                                                                                           |                                                                              |                                        |                                                                    |                                     |                                                      | CHLORINE                                                | DEMAND                                                                                          |                              |                                           |                                                    | !                                                   |                                         |                         |                                                          |                                         | TOTAL .                                                                        |                                                                                 |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------|-------------------------------------|------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------|----------------------------------------------------|-----------------------------------------------------|-----------------------------------------|-------------------------|----------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| DAY YEAR                                                                                       | TEMP.<br>(Degrees<br>Centigrade)                                             | DISSOLVED<br>OXYGEN<br>mg/I            | рН                                                                 | B.O.D.<br>mg/l                      | C.O.D.<br>mg/l                                       | I-HOUR<br>mg/l                                          | 24-HOUR<br>mg/l                                                                                 | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l                         | ALKALINITY<br>mg/l                                 | HARDNESS<br>mg/l                                    | COLOR<br>(scale units)                  | TURBIDITY (scale units) | SULFATES<br>mg/l                                         | PHOSPHATES<br>mg/l                      | DISSOLVED<br>SOLIDS<br>mg/l                                                    | per 100 ml.                                                                     |
| 6 27 61<br>7 11 61<br>7 18 61<br>7 25 61<br>8 1 61<br>8 22 61<br>8 29 61<br>9 11 61<br>9 26 61 | 19.8<br>20.9<br>23.0<br>24.0<br>23.9<br>21.1<br>22.2<br>23.9<br>23.8<br>20.7 | 8.5<br>8.4<br>8.3<br>8.0<br>8.3<br>8.8 | 8.3<br>8.3<br>8.2<br>8.3<br>8.4<br>8.4<br>8.4<br>8.2<br>8.2<br>8.2 | .6<br>.4<br>.7<br>.1<br>323<br>-445 | 12<br>8<br>10 - 9<br>9<br>8<br>9<br>9<br>9<br>9<br>8 | 957.4-65768576<br>• • • • • • • • • • • • • • • • • • • | 2 · 1<br>1 · 6<br>1 · 5<br>1 · 4<br>1 · 4<br>1 · 0<br>1 · 1<br>1 · 6<br>1 · 8<br>2 · 0<br>1 · 7 |                              | 9<br>7<br>8<br>7<br>7<br>7<br>7<br>7<br>7 | 83<br>80<br>81<br>80<br>81<br>80<br>82<br>84<br>81 | 100<br>97<br>96<br>76<br>95<br>96<br>96<br>96<br>96 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                         | 15<br>15<br>14<br>15<br>15<br>15<br>15<br>15<br>14<br>14 | 000000000000000000000000000000000000000 | 128<br>122<br>123<br>133<br>-<br>129<br>126<br>134<br>135<br>118<br>138<br>123 | 3<br>8<br>8<br>3<br>100<br>-<br>30<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>4<br>0 |

MEAN MONTHLY FLOW - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Supplied by U.S. Army Corps of Engineers U.S. Lake Survey STATE

Michigan

MAJOR BASIN

Western Great Lakes

MINOR BASIN

St. Clair-Detroit Rivers

STATION LOCATION

Detroit River at

Detroit, Michigan

| October | November | December | January | February | March   | April   | May     | June    | July    | August  | September |
|---------|----------|----------|---------|----------|---------|---------|---------|---------|---------|---------|-----------|
| <br>    |          |          |         |          |         |         |         |         |         |         | . 0       |
| 201.000 | 195.000  | 200.000  | 175.000 | 181.000  | 187.000 | 188.000 | 188.000 | 187.000 | 189.000 | 190.000 | 187.000   |

RADIOACTIVITY DETERMINATIONS

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. CLAIR-DETROIT RIVERS

STATION LOCATION ST. CLAIR RIVER AT

PORT HURON, MICHIGAN

|                |                    |           |                |               |           |           |                |         | PADIOAC                     | TIVITY IN PLAN | KTON (dry) |     | RAD       | IOACTIVITY IN W | ATER  |
|----------------|--------------------|-----------|----------------|---------------|-----------|-----------|----------------|---------|-----------------------------|----------------|------------|-----|-----------|-----------------|-------|
| D. T.          |                    |           | RADIO          | ACTIVITY IN W | ATER      |           |                | <u></u> |                             | GROSS A        |            |     |           | GROSS ACTIVIT   |       |
| DATE<br>SAMPLE | DATE OF            |           | ALPHA          |               |           | BETA      |                | i ii    | ATE OF<br>ETERMI-<br>IATION | ALPHA          | BETA       |     | SUSPENDED | DISSOLVED       | TOTAL |
| TAKEN          | DETERMI-<br>NATION | SUSPENDED | DISSOLVED      | OTAL          | SUSPENDED | DISSOLVED | TOTAL<br>μμε/l | -       | O. DAY                      | µµс/g          | µµс/g      |     | μμc/\     | μμς/l           | μμς/Ι |
| MO. DAY YEAR   |                    | μμς/Ι     | μμ <b>ε/</b> Ι | μμc/ <b>!</b> | μμς/1     | μμς/Ι     | μμε/Ι          |         | -                           |                |            |     |           | i               |       |
|                |                    |           |                | _             |           | 0         | 2              | ļ       |                             |                |            | ļ   |           |                 |       |
| 10 3 60        | 10 17              | 0         | 1              | 1             | 2         | -         | ہ ا            | 1       |                             |                |            |     |           |                 |       |
| 10 10 60       | 10 20              | 0         | 1              | 1             | 0         | 0         | ŏ              | [       | Ì                           |                |            |     |           |                 |       |
| 10 17 60       | 11 7               | 0         | 1              | 1             | 0         | 0         | ő              | -       | Ì                           |                | 1          |     |           |                 |       |
| 10 24 60       | 11 14              | 0 1       | 3              | 3             | 0         | 0         | 0              |         | ì                           |                |            | 1   |           | 1               |       |
| 10 31 60       | 11 9               | 0         | 1              | 1             | 0         | 0         | 6 1            | 1       | Ì                           |                |            | ۱ ۱ |           |                 |       |
| 11 7 60        | 11 25              | 0         | 0              | 0             | 0         | 0         | -              | 1       | į                           |                |            |     |           |                 |       |
| 11 14 60       | 11 28              | 1 0       | 1              | 1             | 0         | 0         | 0              | 1       |                             |                |            | !!  |           |                 |       |
| 11 21 60       | 12 1               | 0         | 2              | 2             | 0         | 0         | 0              |         |                             |                |            |     |           |                 |       |
| 11 28 60       | 12 12              | 0         | 1              | 1             | 0         | 0         | 0              |         | -                           |                |            |     |           |                 |       |
| 12 5 60        | 12 29              | 0         | 0              | 0             | 0         | 0         | 0              |         | 1                           |                |            |     |           |                 |       |
| 12 12 60       | 1 6                | Ö         | 0              | 0             | 0         | 0         | 0              |         | ì                           |                | 1          |     |           |                 |       |
| 12 12 60       | 1 6                | 0         | 0              | 0             | 0         | 0         | 0              | 1       |                             |                |            |     |           | 1               |       |
|                | 1 16               | 0         | 1 1            | 1             | 0         | 0         | 0              |         | }                           |                |            |     |           |                 |       |
| 12 27 60       | 1 18               | 1 0       | ĺ ố l          | 0             | 0         | 0         | 0              |         | ļ                           |                |            | 1   | }         |                 |       |
| 1 3 61         | 1 24               | 0         | 1              | 1             | 2         | 0         | 2              |         |                             |                |            | 1   | l         |                 |       |
| 1 9 61         |                    | 0         | ō              | Ō             | 0         | 0         | 0              | ļ       |                             |                |            | 1   | ļ         |                 |       |
| 1 16 61        |                    | 0         | l ĭ ˈ          | i             | 0         | 0         | 0              | - 1     |                             |                |            | 1   | ł         | 1               |       |
| 1 23 61        |                    | 0         | Ô              | ā             | 1 0       | 0         | 0              | l       |                             |                |            | 1   |           |                 | 1     |
| 1 30 61        | 2 14               |           | ŏ              | o             | 0         | 0         | 0              |         |                             |                |            | 1   | <b>!</b>  |                 |       |
| 2 6 61         | 2 20               | 0         | 0              | Ö             | 0         | 0         | 0              | 1       |                             |                |            |     | 1         |                 | İ     |
| 2 13 61        | 3 6                | 0         | 0              | ő             | 0         | 0         | 0              |         |                             | 1              |            |     | 1         |                 |       |
| 2 20 61        | 3 8                | 0         |                | Ö             | ١٥        | 0         | 0              |         |                             |                |            | 1   |           |                 |       |
| 2 27 61        | 3 13               | 0         | 0              | 0             | Ö         | 0         | 0              |         |                             | l              |            |     |           | •               |       |
| 3 6 61         | 3 24               | 0         | 0              | 0             | ŏ         | Ó         | 0              |         |                             |                | ]          | 1   | 1         |                 |       |
| 3 13 61        | 3 31               | 0         | 0              | 0             | ŏ         | 0         | 0              |         |                             | ļ              |            |     |           |                 |       |
| 3 20 61        | 4 4                | 0         | 0              | 0             | 0         | 0         |                |         |                             |                |            |     | 1         |                 |       |
| 3 27 61        | 4 17               | 0         | 0              | 0             | 1 . 0     | 0         | 0              |         |                             |                |            | 1   | 1         |                 |       |
| 4 3 61         | 4 19               | 0         | 0              | 1             | 0         | ŏ         | 0              | 1       |                             | ì              |            | ı   |           |                 | ŀ     |
| 4 10 61        | 5 5                | 0         | 0              | 0             | 0         | Ŏ         | 0              | i i     |                             |                |            |     |           | 1               |       |
| 4 17 61        | 5 10               | 0         | 0              | 0             | 0         | 4         | 4              | 1       |                             | 1              |            | 1   |           |                 | 1     |
| 4 24 61        | 5 24               | 0         | 0              | 0             | 0         | i         | 0              | l 1     |                             | 1.             |            | 1   |           |                 |       |
| 5 1 61         | 5 16               | 0         | 0              | 0             | 0         | 0         | l ŏ            | 1       |                             |                | 1          | 1   | 1         |                 |       |
| 5 8 61         | 5 26               | 0         | 0              | 0             | 1 0       | 0         | l ō            | 1 1     |                             | 1              |            | 1   | 1         |                 |       |
| 5 15 61        | 5 31               | 0         | 0              | 0             | 0         | 0         | 0              | 1 1     |                             |                |            |     |           |                 | 1     |
| 5 22 61        | 6 14               | 0         | 0              | 0             | 0         | 0         | Ĭ              | 1 1     |                             | 1              |            |     | 1         |                 |       |
| 5 29 61        |                    | 0         | 0              | 0             | 0         | 1 6       | 1 0            |         |                             | 1              | 1          | - 1 |           |                 | 1     |
| 6 5 61         |                    | 0         | 0              | 0             | _         | 1 0       | 0              | 1 1     |                             |                | - 1        | - 1 |           |                 | 1     |
| 6 9 61         |                    | 0         | 0              | 0             | 0         |           | 0              |         |                             |                | 1          | 1   |           | - 1             |       |
| 6 19 61        | l                  | 0         | 0              | 0             | 0         |           | 0              |         |                             |                |            | - 1 | 1         |                 |       |
| 6 26 6         |                    | 0         | 0              | 0             | 0         |           | 0              | 1       | 1                           |                |            | -   | 1         |                 |       |
|                | 8 11               | 0         | 0              | 1 0           | 0         | 1 0       | 1              | 1       | 1                           | 1              | 1          | ı   |           | 1               | - 1   |

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

### RADIOACTIVITY DETERMINATIONS

MINOR BASIN

ST. CLAIR-DETROIT RIVERS

STATION LOCATIONST. CLAIR RIVER AT

PORT HURON, MICHIGAN

|                | _ |                           |     |           | DAD   | IOACTIVITY IN V | /ATER     |           | ······································ | T | RADIOA                        | CTIVITY IN PLA | NKTON (dry) | T | RAI       | DIOACTIVITY IN | WATER |
|----------------|---|---------------------------|-----|-----------|-------|-----------------|-----------|-----------|----------------------------------------|---|-------------------------------|----------------|-------------|---|-----------|----------------|-------|
| DATE<br>SAMPLE | - | DATE                      | OF. |           | ALPHA |                 | <u> </u>  | BETA      |                                        | 1 |                               |                | ACTIVITY    | 1 |           | GROSS ACTIVI   | гү    |
| TAKEN          |   | DATE (<br>DETERI<br>NATIO | VI- | SUSPENDED | ,     | TOTAL           | SUSPENDED | DISSOLVED | TOTAL                                  | 1 | DATE OF<br>DETERMI-<br>NATION | ALPHA          | BETA        | 1 | SUSPENDED | DISSOLVED      | TOTAL |
| MO. DAY YEA    | R |                           |     | μμς/1     | μμς/1 | μμε/Ι           | μμς/Ι     | μμε/Ι     | μμε/Ι                                  |   | MO. DAY                       | μμc/g          | μμc/g       | 1 | μμς/Ι     | μμς/Ι          | μμε/Ι |
|                | + |                           |     |           |       |                 |           |           |                                        |   |                               |                |             |   |           |                |       |
| 8 28 61        | * | 9 19                      |     | 0         | . 0   | 0               | 7         | 9         | 16                                     |   |                               |                |             | 1 |           |                |       |
| 9 7 61         |   | 10 Z                      |     | _         | _     | _               | 2         | 0         | 2                                      |   |                               |                | 1           |   |           |                |       |
| 9 11 61        |   | 10 9                      | 5   | -         | -     | _               | 5         | 1         | 6                                      | 1 |                               |                |             |   | 1         |                |       |
| 9 18 61        |   | 10 18                     |     | -         | -     | -               | 1         | 6         | 7                                      |   |                               |                |             |   |           |                |       |
| 9 25 61        |   | 10 5                      | 5   | 0         | 0     | 0               | 7         | 7         | 14                                     |   |                               |                |             |   |           |                |       |
|                |   |                           |     |           |       |                 |           |           |                                        |   |                               |                |             | 1 | ŀ         |                |       |
|                |   |                           |     |           |       |                 |           |           |                                        | ] | ]                             |                |             | l |           |                |       |
|                | - |                           | ŀ   |           |       |                 |           |           |                                        | 1 |                               |                |             |   | 1         |                |       |
|                | 1 |                           | - 1 |           |       |                 |           |           |                                        |   |                               |                |             |   |           |                |       |
|                |   |                           | -   |           |       |                 |           |           |                                        |   |                               |                |             |   |           |                |       |
|                |   |                           |     |           |       |                 |           |           |                                        |   |                               |                |             |   |           |                |       |
|                |   |                           | ı   |           |       |                 |           |           |                                        |   |                               |                |             | 1 |           |                |       |
|                |   |                           |     |           |       |                 |           | ì         |                                        |   |                               |                |             |   |           | i              |       |
|                |   |                           | - 1 |           |       |                 | - 1       |           |                                        |   |                               |                |             |   |           |                |       |
|                |   |                           |     |           |       | , ,             | 1         |           |                                        |   |                               |                |             |   |           |                |       |
|                |   |                           | 1   |           |       |                 |           |           |                                        | 1 |                               |                |             |   |           |                |       |
|                | 1 |                           |     |           |       |                 |           |           |                                        |   |                               |                | 1           |   |           |                |       |
|                |   |                           |     |           |       |                 |           |           |                                        |   | ]                             |                |             |   |           |                |       |
|                |   |                           | İ   |           |       |                 |           |           |                                        |   |                               |                |             |   |           |                |       |
|                | 1 |                           |     |           |       |                 |           |           |                                        |   |                               |                |             |   |           |                |       |
|                | 1 |                           |     |           |       |                 |           |           |                                        | Ì |                               |                |             | 1 | i i       |                |       |
|                |   |                           |     |           |       |                 |           |           |                                        | 1 |                               |                |             | ł |           |                |       |
|                | - |                           |     |           |       |                 |           |           |                                        |   |                               |                |             |   |           |                |       |
|                |   |                           |     | 1         |       |                 |           |           |                                        | İ |                               |                |             | ļ |           |                |       |
|                |   |                           | - 1 |           |       |                 |           |           |                                        | ł |                               |                |             | 1 |           |                |       |
|                |   |                           |     |           |       |                 |           |           |                                        |   |                               |                |             | l |           |                |       |
|                |   |                           |     |           |       |                 |           |           |                                        | l |                               |                |             |   |           |                |       |
|                |   |                           | - 1 | į         |       | 1               |           |           |                                        |   |                               |                |             |   |           |                |       |
|                |   |                           | - 1 | ŀ         |       |                 |           |           |                                        | l |                               |                |             |   | 1         |                |       |
|                | ļ |                           |     |           |       | 1               |           |           |                                        |   |                               |                |             |   |           |                |       |
|                |   |                           |     |           | [     | ļ               |           | - 1       |                                        |   |                               |                |             |   |           |                |       |
|                | 4 |                           |     |           |       |                 | 1         |           |                                        |   |                               |                |             | 1 |           |                |       |
|                |   |                           |     |           |       |                 | İ         |           |                                        |   |                               |                |             |   |           |                |       |
|                |   |                           |     |           |       |                 | ļ         |           |                                        |   |                               |                |             |   |           |                |       |
|                |   |                           |     |           |       | }               | 1         |           |                                        |   |                               |                |             | 1 |           |                |       |
|                |   |                           |     |           |       |                 | -         |           |                                        |   |                               |                |             | l |           |                |       |
|                |   |                           |     |           | i     |                 |           | İ         |                                        |   |                               |                |             |   |           | ĺ              |       |
|                |   |                           |     | -         |       |                 |           |           |                                        |   |                               |                |             |   |           |                |       |
|                |   |                           | L   |           |       |                 |           |           |                                        |   |                               |                |             |   |           |                |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. CLAIR-DETROIT RIVERS

STATION LOCATION ST. CLAIR RIVER AT

PORT HURON, MICHIGAN

|                      |       |         |                       | ALGAE (A                                                                            | Vumber                | per ml.)             |                                         | ······································                                                               |                                                                                                    | INE                                                            | 'PT                                                                                                                       |                                                                                  |                                                                                                                                              |                                                                                                                                              |                                                                                                                |                                                                                                                                                          |                                                                                 |                                                                                                                                        |                                                                                 |                                         |                                                                          |                           | HICROIN                                                   | VERTEBR                      | 1770                         |               |                                          |
|----------------------|-------|---------|-----------------------|-------------------------------------------------------------------------------------|-----------------------|----------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------|------------------------------|------------------------------|---------------|------------------------------------------|
| DATE<br>OF SAMPLE    |       | BLUE-   | GREEN                 | GREE                                                                                |                       | FLAGEL<br>(Pigme     |                                         | DIAT                                                                                                 | oms                                                                                                | INE<br>DIA<br>SHE<br>(No. p                                    |                                                                                                                           |                                                                                  |                                                                                                                                              |                                                                                                                                              | SPEC                                                                                                           |                                                                                                                                                          | D PE                                                                            | RCENT<br>ntificati                                                                                                                     |                                                                                 |                                         | <b>САНКТОИ,</b><br>EATHED<br>12.)                                        |                           |                                                           |                              | 1 1                          |               | luction<br>cation)                       |
| MONTH<br>DAY<br>YEAR | TOTAL | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                                                                             | FILA-<br>MENT-<br>OUS | GREEN                | OTHER                                   | CENTRIC                                                                                              | PENNATE                                                                                            | CENTRIC                                                        | PENNATE                                                                                                                   | FIRST#                                                                           | PER.                                                                                                                                         | SECOND*                                                                                                                                      | PER.                                                                                                           | THIRD*                                                                                                                                                   | PER.<br>CENTAGE                                                                 | FOURTH*                                                                                                                                | PER.<br>CENTAGE                                                                 | OTHER PER-<br>CENTAGE                   | OTHER MICROPLANKTON,<br>FUNCI AND BHEATHED<br>BACTERIA<br>(NO. PET INL.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)                              | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per lifer) | No. per liter | (See Introduction<br>for Identification) |
| 10                   |       | 20      |                       | 20<br>90<br>20<br>40<br>20<br>110<br>130<br>20<br>40<br>20<br>80<br>100<br>20<br>60 |                       | 20<br>50<br>40<br>20 | 70<br>20<br>70<br>150<br>20<br>20<br>80 | 160<br>110<br>90<br>90<br>20<br>70<br>50<br>290<br>130<br>60<br>80<br>170<br>60<br>290<br>460<br>250 | 50<br>70<br>470<br>20<br>200<br>270<br>160<br>400<br>930<br>670<br>500<br>230<br>240<br>330<br>500 | 200<br>290<br>130<br>100<br>60<br>40<br>150<br>40<br>150<br>80 | 70<br>70<br>70<br>110<br>90<br>220<br>310<br>70<br>180<br>290<br>580<br>740<br>310<br>100<br>120<br>80<br>60<br>80<br>120 | 25<br>44<br>45<br>44<br>44<br>44<br>44<br>44<br>44<br>44<br>44<br>44<br>45<br>45 | 40<br>20<br>20<br>20<br>20<br>20<br>40<br>30<br>20<br>20<br>30<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 | 47<br>48<br>47<br>30<br>95<br>47<br>48<br>45<br>95<br>48<br>95<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47 | 10<br>20<br>10<br>20<br>20<br>10<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 465<br>305<br>466<br>475<br>4466<br>455<br>475<br>4660<br>455<br>455<br>475<br>4660<br>455<br>455<br>455<br>455<br>455<br>455<br>455<br>455<br>455<br>45 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 95<br>46<br>39<br>36<br>39<br>36<br>39<br>35<br>48<br>48<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 100330004000000000000000000000000000000 | 70<br>20<br>20<br>270<br>70<br>70<br>70                                  | 10<br>10<br>30<br>20      | 2 7 2 6 4 2 2 2 8 19 9 6 13 4 2 6 8 2 6 2 9 19 5 10 8 5 1 | 36<br>36<br>36<br>29         | -                            | 33            |                                          |

### ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. CLAIR-DETROIT RIVERS

STATION LOCATION ST. CLAIR RIVER AT

PORT HURON, MICHIGAN

|                      |                               |     |                                                              |                                                      |                                              |                                                     | <del></del>         |                                          |                                         |                 |             |                              |          |                                 |                            |             |                                       |
|----------------------|-------------------------------|-----|--------------------------------------------------------------|------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|---------------------|------------------------------------------|-----------------------------------------|-----------------|-------------|------------------------------|----------|---------------------------------|----------------------------|-------------|---------------------------------------|
| DATE OF SA           |                               |     | 1                                                            | Ε.                                                   | XTRACTABL                                    | ES                                                  | <u> </u>            | ,                                        |                                         |                 |             |                              | ACTABLES |                                 |                            |             |                                       |
| BEGINNING            | +                             | END | 1                                                            |                                                      |                                              | İ                                                   |                     |                                          |                                         |                 | NEUTRALS    | <u> </u>                     |          |                                 |                            |             |                                       |
| MONTH<br>DAY<br>YEAR | MONTH                         | DAY | GALLONS<br>FILTERED                                          | TOTAL                                                | CHLORO-<br>FORM                              | ALCOHOL                                             | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES                        | TOTAL                                   | ALIPHATICS      | AROMATICS   | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS     | WEAK<br>ACIDS                   | STRONG<br>ACIDS            | BASES       | LOSS                                  |
| 10 14 60<br>10 28 60 | 10<br>11<br>12<br>1<br>2<br>7 | 28  | 5093<br>4973<br>5550<br>5040<br>4680<br>4855<br>3480<br>4720 | 162<br>152<br>156<br>115<br>167<br>151<br>170<br>141 | 28<br>16<br>36<br>26<br>43<br>47<br>42<br>20 | 134<br>136<br>120<br>89<br>124<br>104<br>128<br>121 | 3 1 3 2 5 0 1 0     | 8<br>5<br>10<br>7<br>11<br>14<br>12<br>5 | 6<br>5<br>9<br>7<br>8<br>18<br>19<br>10 | 0 1 1 1 1 2 4 3 | 1 0 1 1 2 1 | 5 4 7 5 7 13 13 6            | 0 0      | 2<br>1<br>3<br>5<br>6<br>3<br>2 | 1<br>2<br>2<br>4<br>2<br>2 | 00010001111 | 7<br>3<br>8<br>5<br>10<br>6<br>4<br>1 |
|                      |                               |     |                                                              |                                                      |                                              |                                                     |                     |                                          |                                         |                 |             |                              |          |                                 |                            |             |                                       |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. CLAIR-DETROIT RIVERS

STATION LOCATIONST . CLAIR RIVER AT

PORT HURON, MICHIGAN

| DATE                 |                         |                     | 1          |            |        | CHLORINE       | DEMAND          |            | j         |            |            |               | Ì             |          |            | TOTAL     |             |
|----------------------|-------------------------|---------------------|------------|------------|--------|----------------|-----------------|------------|-----------|------------|------------|---------------|---------------|----------|------------|-----------|-------------|
| OF SAMPLE            | TEMP.                   | DISSOLVED<br>OXYGEN |            | B.O.D.     | C.O.D. | 1              |                 | AMMONIA-   | CHLORIDES | ALKALINITY | HARDNESS   | COLOR         | TURBIDITY     | SULFATES | PHOSPHATES | DISSOLVED | COLIFORMS   |
| MONTH<br>DAY<br>YEAR | (Degrees<br>Centigrade) | mg/l                | pН         | mg/i       | mg/l   | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | mg/i       | mg/l      | mg/l       | mg/l       | (scale units) | (scale units) | mg/1     | mg/l       | mg/i      | per 100 ml. |
| 10 3 60              | 15.0                    | 10.1                | 8.5        | • 3        | -      | _              | -               | •1         | 7         | 89         | 102        | 4             | _             | -        | -          | -         | 16<br>19    |
| 10 10 60             | 17.0                    | 10.4                | 8.5        | • 6        | -      | -              | -               | • 1        | 8         | 90<br>92   | 102<br>102 | 3             | _             | _        | _ '        | -         | 4           |
| 10 17 60             | 16.0                    | 10.4                | 8.5        | • 5        | _ [    | -              | _               | •1         | 6         | 98         | 106        | 0             | _             | _        | -          | -         | 44          |
| 10 24 60             | 12.5<br>13.0            | 11.0                | 8.5        | •5<br>•6   |        | _              | _               | •1         | 7         | 96         | 104        | 2             | -             | -        | -          | -         | 150         |
| 10 31 60             | 9.0                     | 11.9                | 8.0        | •8         | _      | _              | _               | •1         | 6         | 92         | 102        | 6             | -             | -        | -          | -         | 29          |
| 11 14 60             | 10.0                    | 11.6                | 8.6        | . 8        | _      | _              | -               | • 1        | 6         | 94         | 106        | 0             | -             | -        | -          | -         | 4           |
| 11 21 60             | 9.0                     | 12.2                | 8.4        | • 4        | -      | _              | -               | •1         | 6         | 98         | 100        | 3             | -             | _        | _          | _         | *30<br>9    |
| 11 28 60             | 10.0                    | 12.4                | 8 • 3      | • 9        | -      |                | -               | •1         | 7         | 96<br>110  | 102<br>102 | 5 3           | _             | _        | _          | _         | *4          |
| 12 5 60              | 7.0                     | 12.8                | 7.7        | • 6        | _      | -              | -               | •1         | 7 6       | 110        | 102        | 15            | _             | _        | _          | _         | . *1        |
| 12 12 60             | 4.0                     | 13.4                | 8 • 1      | 1.0        | -      | -              | _               | •1<br>•1   | 7         | 88         | 108        | 5             | _             | -        | -          | -         | <b>*</b> -8 |
| 12 19 60             | 3.0                     | 14.5<br>15.0        | 8.0        | 1.7<br>1.5 | _      | _              | _               | •1         | 10        | 88         | 104        | 8             | -             | _        | -          | -         | 42          |
| 12 27 60             | 1.0                     | 15.6                | 8.1        | 1.6        | _      | _              |                 | •1         | 7         | 86         | 112        | 0             | -             | _        | -          | -         | _           |
| 1 9 61               | 1.0                     | 13.8                | 7.7        | 1.8        | _      | -              | _               | •1         | 7         | 84         | 106        | 5             | -             | -        | 1          | -         | 41          |
| 1 16 61              | 1.0                     | 14.0                | 8.0        | 2.0        | -      | _              | _               | •1         | . 7       | 82         | 106        | 5             | -             | _        | 1          | _         | *100<br>170 |
| 1 23 61              | 1                       | 14.1                | 7.6        | 2.1        | _      | _              | -               | •1         | 8         | 82         | 104        | 3             | _             | _        | 1          | _         | 870         |
| 1 30 61              | 1.0                     | 14.4                | 8.0        | 2.0        | -      | -              | -               | •1         | 8 8       | 80         | 110        | 6             | _             | _        | 1          | -         |             |
| 2 6 61               | 2.0                     | 14.0                | 8 • 2      | 2.4        | _      | -              | _               | •1         | 8         | 84         | 106        | 0             | _             | -        | _          | -         | *8          |
| 2 13 61              | 2.0                     | 14.0                | 8•2<br>8•0 | 2.0<br>2.2 | _      | _              | _               | .1         | 9         |            | 108        | l o           | -             | -        | -          |           | -           |
| 2 20 61<br>2 27 61   | 2.0                     | 13.6                | 8.0        | 2.1        |        | _              | _               | .1         | 8         | 84         | 106        | 5             | -             | -        | 1          | -         | 58          |
| 3 6 61               |                         | 13.7                | 7.7        | 1.9        | -      | -              | -               | •1         | 7         |            | 108        | 5             | -             | -        | 1          | -         | *10         |
| 3 13 61              | 1                       |                     | 8.1        | 1.9        | -      | -              | -               | •1         | 7         |            | 112        | 5             | _             | -        |            |           | 260<br>8    |
| 3 20 61              |                         | 13.8                | 8.0        | 1.4        | -      | -              | -               | • <u>1</u> | 6         |            | 104        | 20            | _             | _        | ì          | 1 .       | 1 -         |
| 3 27 61              |                         |                     | 7.9        | • 7        | -      | -              |                 | • 7        | 6         |            | 106        | 0             | _             | _        | i          |           | 2400        |
| 4 3 61               |                         |                     | 8.1        | 1.0        | _      | _              | _               | •1         | 6         |            |            | ١٥            | _             | -        | .   -      | 125       | 580         |
| 4 10 61              |                         |                     | 8.0        | • 8<br>• 4 | _      | _              | _               | 1          | 6         |            | 106        | 1             | _             | -        |            |           | 770         |
| 4 17 61              | 1                       |                     | 7.9        | • 4        | _      | _              | _               | .1         | 6         | 1          | 108        | 0             | -             | 1 -      | 1          |           | 710         |
| 4 24 61<br>5 1 61    |                         |                     | 8.1        | • 7        | _      | _              | -               | • 1        | 6         | 82         | 110        | 1             | -             | -        | Į.         |           | 390<br>570  |
| 5 8 61               |                         |                     | 8.2        | .6         | -      | -              | _               | •1         | 7         |            |            |               | -             | -        |            |           | 380         |
| 5 15 61              |                         |                     | 8.3        | . 8        | _      | -              | -               | •1         | 7         |            |            |               | _             |          |            |           | 360         |
| 5 22 61              | 10.5                    |                     | 8.2        | -          | -      | -              | -               | • 1        | 8 8       |            |            |               | i .           | -        |            | 1         | 920         |
| 5 29 61              |                         |                     | 8 • 4      | • 5        | _      | _              | _               | •1         | 9         | 1          | 1          | _             | 1             |          |            | 1         | 8100        |
| 6 5 61               | i .                     |                     | 8.5        | • 5        | _      | _              |                 | •1         | 10        |            |            | 1             | i .           | -        | -   -      |           | 50          |
| 6 19 61              |                         |                     | 8.1        | • 5        | _      | _              | _               | .1         | 1 7       |            |            |               | -             | -        | -   -      |           | 2           |
| 6 26 61              |                         |                     | 8.0        | .3         | _      | _              |                 | .1         | 1 7       |            |            |               | 0             | -        | -   -      | 100       | 13          |
| ده اد ا ۱            | 1 1,00                  | 1 7.07              | ""         | ••         | 1      |                |                 |            | 1         | 1          | 1          |               |               |          |            |           |             |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. CLAIR-DETROIT RIVERS

STATION LOCATIONST. CLAIR RIVER AT

PORT HURON, MICHIGAN

| DATE                                                                                        |                                                        |                             |                                                    |                               |                | CHLORINE       | DEMAND          |                                  |                   | <u> </u>                                       |                                             |                        |                            |                  |                    |                                                                |                                                      |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------|----------------------------------------------------|-------------------------------|----------------|----------------|-----------------|----------------------------------|-------------------|------------------------------------------------|---------------------------------------------|------------------------|----------------------------|------------------|--------------------|----------------------------------------------------------------|------------------------------------------------------|
| MONTH<br>DAY<br>YEAR                                                                        | TEMP.<br>(Degrees<br>Centigrade)                       | DISSOLVED<br>OXYGEN<br>mg/I | рН                                                 | B,O.D,<br>mg/l                | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l     | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l                             | HARDNESS<br>mg/l                            | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l                           | COLIFORMS<br>per 100 ml.                             |
| 7 10 61<br>7 17 61<br>7 24 61<br>8 61<br>8 8 61<br>8 22 61<br>8 29 61<br>9 11 61<br>9 25 61 | 19.5<br>20.0<br>-<br>21.0<br>-<br>21.0<br>22.5<br>19.0 | 9.5<br>8.9<br>-<br>8.0      | 8.1<br>8.0<br>-<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0 | . 4<br>. 4<br>1. 0<br>. 2<br> |                |                |                 | •1<br>•1<br>•1<br>•1<br>•1<br>•1 | 676-77-7766       | 842<br>84 - 84 - 84 - 84 - 84 - 84 - 84 - 84 - | 104<br>104<br>102<br>102<br>100<br>88<br>96 | 00000                  | 00010110000                | 21 17 11 11      | • 1                | 116<br>116<br>116<br>-<br>116<br>-<br>115<br>132<br>106<br>116 | 10<br>8<br>20<br>30<br>-<br>18<br>2<br>-<br>23<br>13 |

MEAN MONTHLY FLOW - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Supplied by U.S. Army Corps of Engineers U.S. Lake Survey

STATE

Michigan

MAJOR BASIN

Western Great Lakes

MINOR BASIN

St. Clair-Detroit Rivers

STATION LOCATION

St. Clair River at

Port Huron, Michigan

| October | November | December | January | February | March   | April   | May     | June    | July    | August  | September |
|---------|----------|----------|---------|----------|---------|---------|---------|---------|---------|---------|-----------|
| 200.000 | 191.000  | 193.000  | 171.000 | 180.000  | 181.000 | 181.000 | 182.000 | 184.000 | 185.000 | 186.000 | 185.000   |

STATE

INDIANA

MAJOR BASIN

WESTERN GREAT LAKES

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

ST. JOSEPH RIVER

STATION LOCATION LAKE MICHIGAN AT

GARY, INDIANA

17

| DATE                                                                                                                      |                                                            |           | RADI      | DACTIVITY IN Y | WATER             |           |       | T | PADIOA                        | CTIVITY IN PLA | NKTON (dm/ | 1 | T 841     | DIOACTIVITY IN W | 4 TFN |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------|-----------|----------------|-------------------|-----------|-------|---|-------------------------------|----------------|------------|---|-----------|------------------|-------|
| SAMPLE                                                                                                                    | DATE OF<br>DETERMI-                                        |           | ALPHA     |                |                   | BETA      |       | 1 |                               |                | ACTIVITY   | 1 | - RAI     | GROSS ACTIVITY   |       |
| TAKEN                                                                                                                     | NATION                                                     | SUSPENDED | DISSOLVED | TOTAL          | SUSPENDED         | DISSOLVED | TOTAL | 1 | DATE OF<br>DETERMI-<br>NATION | ALPHA          | BETA       | 1 | SUSPENDED | DISSOLVED        | TOTAL |
| MO. DAY YEAR                                                                                                              | MONTH DAY                                                  | μμε/}     | μμε/Ι     | μμς/           | μμ <sub>ε</sub> / | μμς/Ι     | μμς/Ι |   | MO. DAY                       | μμε/g          | µµс/g      | 1 | μμc/I     | μμς/1            | μμε/1 |
| MO. DAY YEAR  10 25 60* 11 29 60* 12 27 60* 1 31 61* 2 14 61* 3 28 61* 4 25 61* 6 20 61* 8 1 61* 8 29 61* 9 12 61 9 18 61 | NONTH DAY  11 3 12 6 1 19 2 20 3 22 4 6 5 5 6 23 7 21 8 28 |           |           |                |                   |           |       |   |                               |                |            |   |           |                  |       |

The party of the second

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

INDIANA

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. JOSEPH RIVER

STATION LOCATION LAKE MICHIGAN AT

GARY, INDIANA

|                      |                                                                                                                  |                            |                       | ALGAE (A | lumber                | per ml.)                         |                                               |                                                                                                                                      |                            | INE                                                                          | RT                                                                                                       | <u> </u>                                                                                                                                           |                 |                                                                                 |                                                                                                                      | ATO                                                                                                     |                                                  |                                                          |                                            |                                                                                                     |                                                                         |                           | ICROIN                                                     | VERTEBR                      | ITES                         |                 |                                                             |
|----------------------|------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------|----------|-----------------------|----------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------|------------------------------------------------------------|------------------------------|------------------------------|-----------------|-------------------------------------------------------------|
| OF SAMPLE            |                                                                                                                  | BLUE-0                     |                       | GREE     |                       | FLAGEL<br>(Pigme                 | LATES<br>ented)                               | DIATO                                                                                                                                | омѕ                        | INE<br>DIA<br>SHE<br>(No. pa                                                 | LLS                                                                                                      |                                                                                                                                                    | DOMII<br>(See   | NANT<br>Introd                                                                  | SPECI                                                                                                                | ES AN                                                                                                   | no<br>ID PEF<br>de Iden                          | RCENT                                                    | AGES                                       |                                                                                                     | PLAKKTON<br>HEATHED<br>TI.)                                             | nl.)                      | s<br>iter)                                                 | iter)                        | ES<br>iter)                  | er)             | aENERA<br>oduction<br>(ication)                             |
| MONTH<br>DAY<br>YEAR | TOTAL                                                                                                            | COCCOID                    | FILA-<br>MENT-<br>OUS | COCCOID  | FILA-<br>MENT-<br>OUS | GREEN                            | OTHER                                         | CENTRIC                                                                                                                              | PENNATE                    | CENTRIC                                                                      | PENNATE                                                                                                  | FIRST#                                                                                                                                             | PER.<br>CENTAGE | SECOND#                                                                         | PER-<br>CENTAGE                                                                                                      | TH3RD*                                                                                                  | PER.<br>CENTAGE                                  | FOURTH#                                                  | PER.<br>CENTAGE                            | OTHER PER-<br>CENTAGE                                                                               | OTHER MICHOPLAKKTON,<br>FUNGI AND SHEATHED<br>BACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)                               | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | (No. per liter) | boninant genera<br>(See Introduction<br>for Identification) |
| 10                   | 700<br>700<br>1600<br>1100<br>1100<br>1800<br>1700<br>4400<br>1700<br>4000<br>2000<br>1700<br>1800<br>300<br>300 | 20<br>50<br>20<br>20<br>20 | 20<br>20<br>20        | 20       |                       | 20<br>20<br>80<br>40<br>20<br>20 | 50<br>20<br>20<br>20<br>20<br>20<br>120<br>20 | 340<br>90<br>200<br>70<br>110<br>290<br>1140<br>1720<br>860<br>4090<br>9650<br>2990<br>3540<br>910<br>580<br>250<br>370<br>330<br>60 | 850<br>1180<br>1410<br>190 | 160<br>340<br>510<br>890<br>3820<br>2500<br>1280<br>290<br>290<br>160<br>170 | 90<br>200<br>450<br>380<br>70<br>220<br>980<br>450<br>1250<br>120<br>230<br>120<br>220<br>80<br>60<br>20 | 95<br>95<br>95<br>95<br>95<br>97<br>80<br>82<br>82<br>60<br>82<br>47<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95 | 50              | 9<br>47<br>97<br>82<br>60<br>97<br>97<br>60<br>80<br>95<br>47<br>47<br>47<br>47 | 10<br>10<br>20<br>20<br>20<br>20<br>30<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 49<br>9<br>47<br>97<br>47<br>60<br>97<br>47<br>60<br>97<br>82<br>47<br>82<br>96<br>89<br>96<br>24<br>24 | 20<br>10<br>10<br>20<br>10<br>10<br>*<br>*<br>10 | 35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35 | * * 10 10 10 10 10 10 10 10 10 10 10 10 10 | 300<br>300<br>100<br>400<br>300<br>200<br>200<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>1 | 20<br>50<br>90<br>230<br>40<br>20<br>20                                 | 10 10 10 10               | 25<br>3 1 9 3 8 10 2 2 2 2 3 1 4 5 3 2 2 7 7 2 5 2 2 5 2 5 | 4<br>2<br>3<br>7<br>49<br>4  | 2                            |                 |                                                             |

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

INDIANA

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. JOSEPH RIVER

STATION LOCATION LAKE MICHIGAN AT

GARY. INDIANA

| I |  |
|---|--|
|   |  |
|   |  |

| DATE OF SAMPLE                                                                                                                                                         | -                                                                             | EX                                                                                      | TRACTABL                                | ES                                                                   |                                         |                   |                  |            |                   | ORM EXTR                     | ACTABLES  |               |                 |                                         |              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------|-----------------------------------------|-------------------|------------------|------------|-------------------|------------------------------|-----------|---------------|-----------------|-----------------------------------------|--------------|
| BEGINNING END                                                                                                                                                          | ALLONS                                                                        |                                                                                         | ĺ                                       | İ                                                                    |                                         |                   |                  | 1          | NEUTRALS          | ;                            |           |               |                 |                                         |              |
|                                                                                                                                                                        | ILTERED                                                                       | TOTAL                                                                                   | CHLORO-<br>FORM                         | VICOHOL                                                              | ETHER<br>INSOLUBLES                     | WATER<br>SOLUBLES | TOTAL            | ALIPHATICS | AROMATICS         | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS      | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES                                   | LOSS         |
| 11 7 60 11 18 5 12 6 60 12 13 3 1 4 61 1 11 4 2 7 61 2 17 5 3 7 61 3 13 1 4 4 61 4 13 5 5 2 61 5 11 5 6 6 61 * 15 6 6 61 * 15 7 5 61 7 13 5 8 1 61 8 9 5 9 5 61 9 12 5 | 5300<br>5490<br>3360<br>4620<br>5000<br>5330<br>4870<br>5000<br>6450<br>64490 | 143<br>124<br>159<br>133<br>144<br>309<br>110<br>118<br>116<br>123<br>119<br>105<br>115 | 282<br>352<br>373<br>4147<br>386<br>321 | 115<br>92<br>124<br>111<br>106<br>252<br>77<br>782<br>79<br>85<br>84 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 7 9 9 5 8 14 10 8 | 10 9 14 10 17 26 | 112237732  | 1 1 2 1 3 4 4 1 1 | 777971015                    | 101010110 | 34425653      | 12111222        | 111111111111111111111111111111111111111 | 555257116116 |

STATE

INDIANA

## CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. JOSEPH KIVEK

STATION LOCATIONLAKE MICHIGAN AT

GARY, INDIANA

| DATE                           |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                     |                                                                               |                                                                                                                                                |                | CHLORINE       | DEMAND                                                                                                                                          |                                                               |                   |                    |                                                                                                                                                                           |                        |                                                            |                  |                                  |                             |                                                                                                                                                                               |
|--------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------|------------------|----------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OF SAME                        | YEAR                                                                            | TEMP.<br>(Degrees<br>Centigrade)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DISSOLVED<br>OXYGEN<br>mg/l                                                                         | рН                                                                            | B.O.D.<br>mg/l                                                                                                                                 | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l                                                                                                                                 | AMMONIA-<br>NITROGEN<br>mg/l                                  | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l                                                                                                                                                          | COLOR<br>(scale units) | TURBIDITY<br>(scale units)                                 | SULFATES<br>mg/l | PHOSPHATES<br>mg/l               | TOTAL DISSOLVED SOLIDS mg/l | COLIFORMS<br>per 100 ml.                                                                                                                                                      |
| 10 5<br>10 18<br>10 25<br>11 1 | 60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>6 | 13.4-1<br>10.1-5.95<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95-1<br>1.0.95- | 9.2<br>8.3<br>9.4<br>9.4<br>9.5<br>10<br>9.4<br>113<br>113<br>113<br>113<br>113<br>113<br>113<br>11 | 8 · 1 · 3 · 3 · 3 · 3 · 3 · 5 · 3 · 3 · 6 · 4 · 4 · 4 · 4 · 4 · 4 · 4 · 4 · 4 | 2.2<br>2.1<br>1.2<br>1.5<br>1.1<br>3.0<br>-2<br>2.4<br>1.2<br>2.4<br>1.0<br>1.9<br>1.9<br>1.9<br>1.3<br>1.3<br>1.7<br>1.1<br>1.3<br>1.7<br>1.1 |                |                | 2.5<br>1.9<br>1.7<br>1.8<br>2.0<br>1.8<br>1.7<br>1.4<br>4.6<br>2.4<br>3.0<br>2.3<br>2.2<br>2.4<br>3.1<br>2.3<br>2.7<br>2.7<br>2.7<br>2.7<br>2.8 | 1 - 1 - 1 - 1 - 1 - 2 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 |                   | 106                | 124<br>125<br>- 126<br>153<br>152<br>133<br>142<br>- 148<br>144<br>- 145<br>10<br>149<br>149<br>148<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140 | -<br>5<br>0<br>5       | 153-3-1398<br>28-109-10778<br>1574259<br>2014721575-127155 |                  | .0<br>.0<br>.0<br>.0<br>.0<br>.0 |                             | 11<br>42<br>560<br>11<br>1500<br>30<br>42<br>42<br>42<br>42<br>42<br>42<br>43<br>44<br>42<br>44<br>44<br>45<br>46<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48 |
|                                |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                     |                                                                               |                                                                                                                                                |                |                | l                                                                                                                                               |                                                               | 101               |                    |                                                                                                                                                                           |                        |                                                            |                  | 1                                | <u></u>                     | <u></u>                                                                                                                                                                       |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

INDIANA

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

ST. JOSEPH RIVER

STATION LOCATIONLAKE MICHIGAN AT

GARY, INDIANA

| DATE                                                                                          |                                                                      | 1                                                    |                                                             |                                                         | 1                                                                  | CHLORINE                                                       | DEMAND                                                           | •                            |                                           |                                                                           |                                                |                                         |                         |                                                          |                    |                                                                                  | <u> </u>                                                   |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|------------------------------|-------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------|-------------------------|----------------------------------------------------------|--------------------|----------------------------------------------------------------------------------|------------------------------------------------------------|
| DAY YEAR                                                                                      | TEMP.<br>(Degrees<br>Centigrade)                                     | DISSOLVED<br>OXYGEN<br>mg/l                          | рН                                                          | B.O.D.<br>mg/l                                          | C.O.D.<br>mg/l                                                     | 1-HOUR<br>mg/l                                                 | 24-HOUR<br>mg/I                                                  | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l                         | ALKALINITY<br>mg/l                                                        | HARDNESS<br>mg/l                               | COLOR<br>(scale units)                  | TURBIDITY (scale units) | SULFATES<br>mg/l                                         | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l                                             | COLIFORMS<br>per 100 ml.                                   |
| 7 11 61<br>7 18 61<br>8 1 61<br>8 8 61<br>8 22 61<br>8 29 61<br>9 12 61<br>9 12 61<br>9 26 61 | 15.6<br>13.5<br>12.9<br>22.1<br>21.3<br>21.2<br>22.6<br>17.1<br>11.8 | 8.4<br>8.4<br>8.6<br>7.7<br>7.2<br>7.0<br>7.6<br>8.0 | 8.4<br>8.1<br>7.9<br>8.3<br>8.1<br>8.2<br>7.7<br>8.0<br>7.9 | 1.2<br>1.6<br>1.8<br>.5<br>.8<br>.4<br>.4<br>1.3<br>1.0 | 10<br>10<br>11<br>16<br>19<br>13<br>13<br>16<br>-<br>12<br>13<br>- | 1.0<br>1.2<br>.6<br>.9<br>.7<br>1.0<br>1.0<br>1.0<br>1.2<br>.9 | 2.7<br>2.8<br>2.2<br>2.2<br>2.7<br>2.0<br>2.4<br>2.4<br>2.3<br>- |                              | 75<br>109<br>4<br>100<br>100<br>98<br>108 | 122<br>123<br>115<br>116<br>112<br>114<br>116<br>113<br>116<br>110<br>112 | 144<br>148<br>144<br>148<br>132<br>1340<br>128 | 000000000000000000000000000000000000000 | 655410131542            | 18<br>22<br>29<br>26<br>32<br>28<br>19<br>16<br>23<br>25 |                    | 180<br>180<br>169<br>175<br>166<br>153<br>150<br>149<br>170<br>189<br>167<br>144 | 15<br>18<br>93<br>60<br>44<br>46<br>180<br>52<br>130<br>26 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Supplied by U.S. Army Corps of Engineers U.S. Lake Survey

STATE

Indiana

MAJOR BASIN

Western Great Lakes

MINOR BASIN

St. Joseph River

STATION LOCATION

Lake Michigan at

Gary, Indiana

| October | November | December | January | February | March      | Apri. | L Maj | r Jun  | e    | July | August | September |
|---------|----------|----------|---------|----------|------------|-------|-------|--------|------|------|--------|-----------|
|         |          |          |         |          |            |       |       |        |      |      |        |           |
|         |          | FLOW     | DATA    | MOT      | APPLICABLE |       | LAKE  | LEVELS | ONLY |      |        |           |

STATE

WISCONSIN

MAJOR BASIN

WESTERN GREAT LAKES

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LAKE MICHIGAN, WESTERN SHORE

STATION LOCATION LAKE MICHIGAN AT

MILWAUKEE, WISCONSIN

| DATE         |                    |           | RAD       | OACTIVITY IN | WATER     |           | ······································ | Τ   | RADIOA              | CTIVITY IN PLA | NKTON (dry) | T-  | PAD       | DIOACTIVITY IN W | ATED  |
|--------------|--------------------|-----------|-----------|--------------|-----------|-----------|----------------------------------------|-----|---------------------|----------------|-------------|-----|-----------|------------------|-------|
| SAMPLE       | DATE OF            |           | ALPHA     |              |           | BETA      |                                        | 1   | DATE OF<br>DETERMI- |                | ACTIVITY    | 1   |           | GROSS ACTIVIT    |       |
| TAKEN        | DETERMI-<br>NATION | SUSPENDED | DISSOLVED | TOTAL        | SUSPENDED | DISSOLVED | TOTAL                                  | ]   | NATION              | ALPHA          | BETA        | 1   | SUSPENDED | DISSOLVED        | TOTAL |
| MO. DAY YEAR | MONTH DAY          | μμε/Ι     | μμε/Ι     | μμε/Ι        | μμς/Ι     | μμc/I     | μμc/I                                  |     | MO. DAY             | μμε/g          | μμc/g       | 1   | μμς/Ι     | μμε/Ι            | μμc/l |
|              |                    | _         |           |              | 1 _ 1     | _         | _                                      |     |                     |                |             | T   |           |                  |       |
| 0 3 60       | 10 19              | 1         | 1         | 2            | 0         | 1         | 1                                      |     |                     |                |             | 1   |           |                  |       |
| 0 10 60      | 10 19              | 0         | 0         | 0            | 0         | Ō         | 0                                      | 1   | 1 1                 |                |             | İ   |           |                  |       |
| 0 17 60      | 10 31              | 0         | 0         | 0            | 0         | ٥         | 0                                      | ĺ   | 1                   |                |             | 1   |           | '                |       |
| 0 24 60      | 11 2               | 0         | 1         | 1            | 0         | 0         | 0                                      | 1   | 1 1                 |                |             | 1   | 1         |                  |       |
| 0 31 60      | 11 18              | 0         | 0         | 0            | 0         | ٥         | 0                                      | 1   |                     |                |             |     | 1         |                  |       |
| 1 7 60       | 2 6                | 0         | 2         | 2            | 0         | 29        | 29                                     | l   | 1                   |                |             | 1   |           |                  |       |
| 1 14 60      | 11 28              | 0         | 2         | 2            | 0         | 0         | 0                                      |     |                     |                |             | 1   |           |                  |       |
| 1 21 60      | 11 30              | 0         | 1         | 1            | 0         | ٥         | l 0                                    | 1   | 1 1                 |                |             | 1   |           |                  |       |
| 1 28 60      | 12 6               | 0         | 1         | 1            | 0         | 1         | 1                                      | 1   |                     |                |             | 1 . | l i       |                  |       |
| 2 5 60       | 1 5                | 0         | 1         | 1            | 0         | ٥         | 0                                      | ļ   | 1                   |                |             | 1   |           |                  |       |
| 2 12 60      | 1 3                | o l       | 0         | 0            | 0         | 1         | 1                                      |     |                     |                |             | 1   | 1         |                  |       |
| 2 17 60      | 1 12               | 0         | 1         | 1            |           | 0         | ٥                                      | ł   |                     |                |             |     | 1         |                  |       |
| 1 3 61       | 1 18               | ò         | ō         | 0            | 0         | ā         | o                                      | l   | 1 1                 |                |             |     | l         |                  |       |
| 1 9 61       | 1 20               | ō i       | 2         | 2            | 0 1       | ŏ         | 0                                      |     |                     |                |             |     |           | 1                |       |
| 1 16 61      | 2 1                | o l       | ī         | ī            | ŏ         | ŏ         | Ô                                      | l   | 1 1                 |                |             |     |           |                  |       |
| 1 23 61      | 2 6                | ŏ         | î         | 1            | ŏ         | ō         | 0                                      |     | 1                   |                |             | l   |           |                  |       |
| 30 61        | 2 16               | ő         | ō         | ō            | 0         | 0         | ٥                                      |     | 1 1                 |                |             | ŀ   |           |                  |       |
| 1            |                    | 0         | 0         | o l          | 0         | ŏ         | 0                                      |     | 1 1                 |                |             | ļ   |           |                  |       |
| 2 6 61       | 2 16               | I         | - 1       | 0            | -         | - 1       |                                        |     | 1 1                 |                |             | l   |           |                  |       |
| 2 14 61      | 3 2                | 0         | 0         |              | 0         | 0         | 0                                      |     | !                   |                |             |     | 1         |                  |       |
| 2 20 61      | 3 6                | 0         | 1         | 1            | 0         | 0         | 0                                      |     | <b>[</b> ]          |                |             | l   | 1         | i                |       |
| 2 27 61      | 3 16               | 0         | 1         | 1            | 0         | 0         | 0                                      |     |                     |                |             |     |           |                  |       |
| 6 61         | 3 17               | 0         | 0         | 0            | 0         | 0         | 0                                      |     |                     | i              |             |     | 1         |                  |       |
| 3 13 61      | 3 29               | 1         | 0         | 1            | 0         | 0         | 0                                      |     | ĺĺ                  |                |             |     |           |                  |       |
| 3 20 61      | 4 3                | 0         | 1         | 1            | 0         | 0         | 0                                      |     |                     |                |             |     |           |                  |       |
| 27 61        | 4 24               | 0         | 0         | 0            | 0         | 0         | 0                                      |     |                     |                |             | ľ   | l         |                  |       |
| 3 61         | 4 19               | 0         | 0         | 0            | 10        | 13        | 23                                     |     |                     |                |             |     |           |                  |       |
| 10 61        | 5 3                | 0         | 0         | 0            | 0         | 0         | 0                                      |     |                     |                |             | ĺ   | i i       |                  |       |
| 17 61        | 5 2                | 0         | 0         | 0            | 0         | 0         | ا ہ                                    |     |                     |                |             |     |           |                  |       |
| 24 61        | 5 10               | 0         | 0         | 0            | 0         | Ó         | ōl                                     |     |                     |                |             |     |           |                  |       |
| 1 61         | 5 16               | 0         | 1         | 1 1          | o l       | ŏ         | ŏ                                      |     | l i                 |                |             |     |           |                  |       |
| 8 61         | 5 25               | 0         | 0         | ō            | o l       | ŏ         | o l                                    |     |                     |                |             |     |           |                  |       |
| 15 61        | 5 31               | o l       | ō         | ŏ            | o l       | ĭ         | ĭ                                      |     |                     |                |             |     | i i       |                  |       |
| 22 61        | 6 8                | o l       | 0         | o l          | ŏ         | ō         | أه                                     |     |                     | ı              |             |     |           |                  |       |
| 29 61        |                    | 0         | - 1       | - 1          | · 1       |           |                                        |     |                     | 1              |             |     | i i       |                  |       |
| 23 01        | 6 15               | ١         | 0         | 0            | 0         | 0         | 0                                      |     | İ                   | J              |             |     |           |                  |       |
| 1            | ł                  |           |           | J            |           | 1         | [                                      |     |                     |                |             |     |           |                  |       |
| 1            |                    | 1         |           |              | 1         |           |                                        |     |                     |                | i           |     |           |                  |       |
| l            |                    |           | - 1       | 1            | 1         | - 1       |                                        |     | l                   |                |             |     |           |                  |       |
| j            |                    |           |           | 1            |           |           |                                        |     |                     |                |             |     |           | 1                |       |
|              | J                  |           | [         |              | [         | -         |                                        |     | 1                   | ļ              |             |     |           |                  |       |
|              | J                  |           |           | [            |           |           |                                        |     | İ                   |                | ļ           |     |           |                  |       |
|              |                    |           |           | i            | i         | 1         | 1                                      | - 1 |                     | i              | 1           |     | 1         |                  |       |

STATE

WISCONSIN

MAJOR BASIN

WESTERN GREAT LAKES

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LAKE MICHIGAN- WESTERN SHORE

STATION LOCATION LAKE MICHIGAN AT

MILWAUKEE, WISCONSIN

|                 |                               |           | D 4 D 1   | OACTIVITY IN W | /ATED     |           |       |   | RADIOAG                       | CTIVITY IN PLAN | IKTON (dry) | 1   | KAU       | OACTIVITY IN W | AIER  |
|-----------------|-------------------------------|-----------|-----------|----------------|-----------|-----------|-------|---|-------------------------------|-----------------|-------------|-----|-----------|----------------|-------|
| DATE            |                               |           | ALPHA     | OACHVIII IN W  | ALEK .    | BETA      |       |   |                               | GROSS A         |             | Ī   |           | GROSS ACTIVIT  |       |
| SAMPLE<br>TAKEN | DATE OF<br>DETERMI-<br>NATION | SUSPENDED | DISSOLVED | TOTAL          | SUSPENDED | DISSOLVED | TOTAL |   | DATE OF<br>DETERMI-<br>NATION | ALPHA           | BETA        |     | SUSPENDED |                | TOTAL |
| MO. DAY YEAR    |                               | μμc/I     | μμε/Ι     | μμε/Ι          | μμς/Ι     | μμε/Ι     | μμε/Ι |   | MO. DAY                       | μμс/g           | μμc/g       |     | μμε/Ι     | μμε/Ι          | μμε/( |
| MO. DAT TERM    | #0### Ditt                    |           |           |                |           |           |       |   |                               |                 |             |     |           |                |       |
| 6 5 61          | 6 20                          | . 0       | 0         | 0              | 0         | 0         | 0     |   |                               |                 |             | 1   |           |                |       |
| 6 12 61         | 7 25                          | 0         | 1         | 1              | 0         | 0         | 0     |   |                               |                 | 1           | ŀ   |           |                |       |
| 6 19 61         | 6 30                          | 1         | 1         | 2              | 0         | 0         | 0     |   |                               |                 |             |     |           |                |       |
| 6 26 61         | 7 26                          | 0         | 0         | 0              | 0         | 0         | 0     |   |                               |                 |             |     |           |                |       |
| 7 31 61*        | 8 10                          | 0         | 0         | 0              | 0         | 0         | 6     |   |                               |                 |             |     |           |                |       |
| 8 28 61*        | 9 18                          | 0         | 0         | 0              | 2         | 4<br>5    | 6     |   |                               |                 |             |     |           |                |       |
| 9 5 61          | 9 29                          | -         | -         |                | 0         | ٥         | ŏ     |   |                               |                 |             |     |           |                |       |
| 9 11 61         | 10 3                          | _         | -         | 0              | 2         | 1         | 3     |   |                               |                 |             | - 1 |           |                |       |
| 9 18 61         | 10 16                         | 0         | 0         | _              | 0         | ō         | ó     |   |                               |                 |             |     |           |                |       |
| 9 25 61         | 10 2                          | -         | _         |                | Ĭ         |           | •     |   |                               |                 |             | 1   |           |                |       |
|                 |                               |           |           |                |           |           |       |   |                               |                 | ,           | l   |           |                |       |
|                 |                               |           |           |                |           |           |       |   |                               |                 |             |     |           |                |       |
|                 |                               |           |           |                |           |           |       |   | l i                           |                 |             |     |           |                |       |
|                 |                               |           |           |                |           |           |       |   |                               |                 |             |     |           |                |       |
|                 |                               |           |           |                |           |           |       |   |                               |                 |             |     |           |                |       |
|                 |                               |           |           |                |           |           |       |   |                               |                 |             |     |           |                |       |
|                 |                               |           |           |                |           |           |       |   |                               |                 |             |     |           |                |       |
|                 |                               |           |           |                |           |           |       |   |                               |                 | '           |     |           |                |       |
|                 |                               |           | 1         |                |           |           |       |   |                               |                 |             |     |           |                |       |
|                 |                               |           |           |                |           |           |       |   |                               |                 |             |     |           |                |       |
|                 |                               |           |           |                |           |           |       |   |                               |                 |             |     |           |                |       |
|                 |                               |           |           | 1              |           |           |       |   |                               |                 |             | l   |           |                |       |
|                 |                               |           |           |                |           |           |       | 1 | 1                             | İ               |             | ļ   |           |                |       |
|                 |                               |           |           |                |           |           |       |   |                               | ļ               |             |     |           |                | ·     |
|                 |                               | }         |           |                |           |           |       | l |                               |                 |             | İ   |           |                |       |
|                 |                               | i         | 1         |                |           |           |       |   |                               | i               |             |     |           |                |       |
|                 |                               |           |           |                |           |           |       | } | İ                             |                 |             |     | -         |                |       |
|                 |                               |           |           |                | İ         |           |       | ļ | 1                             | ĺ               |             | ļ   |           |                |       |
|                 |                               |           |           | 1              |           |           |       | 1 |                               |                 |             | İ   | ļ         |                |       |
|                 |                               | 1         |           |                |           |           |       |   |                               |                 |             | ì   |           | -              |       |
|                 |                               |           |           |                |           |           |       |   |                               |                 |             |     |           |                |       |
|                 |                               |           |           |                |           |           |       |   |                               |                 |             |     |           |                |       |
|                 |                               |           |           |                |           |           |       |   |                               |                 |             |     |           |                |       |
|                 |                               |           |           |                |           |           |       |   |                               |                 |             |     |           |                |       |
|                 | 1                             |           | 1         |                |           |           |       |   |                               |                 |             |     |           |                |       |
|                 |                               |           |           |                |           |           |       |   |                               |                 |             |     |           |                |       |
|                 |                               |           |           |                |           | 1         |       |   |                               |                 |             |     |           |                |       |
|                 |                               |           |           |                |           |           |       |   |                               |                 |             |     |           |                |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

WISCONSIN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

LAKE MICHIGAN, WESTERN SHORE

STATION LOCATION LAKE MICHIGAN AT

MILWAUKEE, WISCONSIN

|                      | <del> </del>                                                                                                         |         |                       | ALGAE (                          | Number                | per ml.)                   |                                              |                                                                                                                       |                                                                                                      | IN                                                                                                 | RT                     | Ī              |                                                          |         |                                                                      | IATO                                  | MS                                     |                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                                                                         | ٠                                                    | Τ                    | MICROIN                                                                                              | (VERTEB)                                                              | RATES                        |                                  |                                                                               |
|----------------------|----------------------------------------------------------------------------------------------------------------------|---------|-----------------------|----------------------------------|-----------------------|----------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------|----------------|----------------------------------------------------------|---------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------|----------------------------------|-------------------------------------------------------------------------------|
| DATE<br>OF SAMPLE    |                                                                                                                      | BLUE-   | GREEN                 | GREE                             | N                     | FLAGEL<br>(Pigm            | LATES<br>ented)                              | DIAT                                                                                                                  | омѕ                                                                                                  | DIA<br>SHE<br>(No. p                                                                               | TOM<br>ELLS<br>er ml.) |                |                                                          |         | SPEC<br>duction                                                      | IES A                                 | ND PE                                  |                                                                                                                                                                                                                                                                                                                                                               |                                                                                 | s .                                                                     | SPEATHED THE | A mt.)               | iter)                                                                                                | A tery                                                                | ES<br>ter)                   | t. FORMS                         | duction<br>ication)                                                           |
| MONTH<br>DAY<br>YEAR | TOTAL                                                                                                                | COCCOID | FILA-<br>MENT-<br>OUS | coccoid                          | FILA-<br>MENT-<br>OUS | GREEN                      | OTHER                                        | CENTRIC                                                                                                               | PENNATE                                                                                              | CENTRIC                                                                                            | PENNATE                | FIRST#         | PER-                                                     | SECOND* | PER-                                                                 | THIRD#                                | PER-<br>CENTAGE                        | FOURTH#                                                                                                                                                                                                                                                                                                                                                       | PER.<br>CENTAGE                                                                 | OTHER PER-<br>CENTAGE                                                   | OTHER MICRO<br>FUNGI AND S<br>BACTERIA<br>(No. per 1 | PROTOZO/             | ROTIFIERS<br>(No. per liter)                                                                         | CRUSTACEA<br>(No. per liter)                                          | NEMATODES<br>(No. per liter) | OTHER ARMAL F<br>(No. per liter) | DOWINANT GENERA<br>(See Introduction)<br>for Identification)                  |
| 10                   | 4400<br>300<br>300<br>400<br>200<br>1900<br>2400<br>1400<br>800<br>1300<br>2200<br>1600<br>900<br>400<br>400<br>1300 | 20 20   | 20 20 40              | 20<br>70<br>40<br>20<br>40<br>80 |                       | 20<br>20<br>20<br>20<br>20 | 20<br>60<br>20<br>20<br>20<br>20<br>40<br>20 | 4050<br>50<br>150<br>110<br>200<br>70<br>1320<br>1170<br>660<br>270<br>790<br>1350<br>600<br>440<br>120<br>210<br>770 | 240<br>160<br>250<br>200<br>180<br>700<br>180<br>560<br>530<br>220<br>620<br>350<br>310<br>40<br>440 | 2000<br>90<br>40<br>70<br>160<br>200<br>360<br>330<br>410<br>250<br>170<br>100<br>250<br>60<br>120 | 100<br>80<br>80        | 35<br>47<br>82 | 30<br>20<br>60<br>40<br>40<br>40<br>30<br>50<br>40<br>50 | 95      | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>20<br>10<br>20<br>30<br>30 | 4755257267577627555<br>49894949842255 | 10<br>10<br>10<br>10<br>10<br>10<br>10 | 45<br>35<br>97<br>47<br>80<br>83<br>84<br>97<br>82<br>98<br>98<br>47<br>82<br>98<br>47<br>82<br>47<br>82<br>47<br>82<br>47<br>82<br>47<br>82<br>47<br>82<br>47<br>82<br>47<br>82<br>47<br>82<br>47<br>82<br>47<br>82<br>47<br>82<br>47<br>82<br>47<br>82<br>47<br>82<br>47<br>82<br>47<br>82<br>47<br>87<br>87<br>87<br>87<br>87<br>87<br>87<br>87<br>87<br>8 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 10050<br>40050<br>40050<br>4001<br>4002<br>4001<br>1001<br>1001<br>1001 | 20<br>90<br>20                                       | 10<br>20<br>10<br>10 | 17<br>7<br>1<br>1<br>1<br>5<br>4<br>3<br>4<br>6<br>10<br>3<br>16<br>7<br>19<br>43<br>125<br>22<br>59 | 3 1 1 2 1 1 3 3 5 7 7 5 1 7 7 5 1 7 1 6 6 1 2 2 1 3 3 1 0 3 1 1 8 8 7 | 3                            | з                                | 9<br><br><br>9-6<br>4-97-<br>9-7<br>7-9-7<br>7-9-7<br>7-97-<br>97-<br>97-<br> |

#### ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

WISCONSIN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

LAKE MICHIGAN-WESTERN SHORE

STATION LOCATION LAKE MICHIGAN AT

MILWAUKEE, WISCONSIN

|                                                                                                                                                               | ,                   |                                                                           |                                                          |                                                                         |                     |                   |                                                             |                                                     |                                         |                              |              |               |                 |                                         |                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|---------------------|-------------------|-------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|------------------------------|--------------|---------------|-----------------|-----------------------------------------|-------------------------------------------------------|
| BEGINNING END                                                                                                                                                 |                     | E                                                                         | TRACTABL                                                 | .ES                                                                     | ļ                   | <del> </del>      |                                                             |                                                     | NEUTRALS                                | ORM EXTR                     | ACTABLES     |               | <del></del>     |                                         |                                                       |
| MONTH DAY YEAR MONTH DAY                                                                                                                                      | GALLONS<br>FILTERED | TOTAL                                                                     | CHLORO-<br>FORM                                          | ALCOHOL                                                                 | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES | TOTAL                                                       | ALIPHATICS                                          | AROMATICS                               | OXYGEN-<br>ATED<br>COMPOUNDS | LO5\$        | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES                                   | LOSS                                                  |
| 10 10 60 10 29 11 15 60 11 28 12 9 60 12 24 1 17 61 1 27 2 15 61 3 3 3 20 61 4 5 4 17 61 5 8 5 23 61 6 13 6 26 61 7 17 7 31 61 8 10 8 25 61 9 7 9 26 61 10 20 | 5223                | 178<br>114<br>145<br>124<br>181<br>157<br>178<br>168<br>116<br>122<br>157 | 33<br>19<br>16<br>32<br>39<br>44<br>51<br>42<br>31<br>26 | 145<br>91<br>126<br>108<br>149<br>118<br>134<br>1154<br>87<br>92<br>131 | 111222344122        | 10654702163999    | 8<br>8<br>6<br>6<br>7<br>9<br>12<br>11<br>13<br>8<br>7<br>6 | 1<br>1<br>1<br>1<br>0<br>1<br>3<br>2<br>5<br>1<br>1 | 111111111111111111111111111111111111111 | 664476886654                 | 000001001000 | 322124464322  | 211123341222    | 100001111111111111111111111111111111111 | 8<br>5<br>4<br>2<br>11<br>10<br>9<br>8<br>5<br>8<br>4 |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

WISCONSIN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

LAKE MICHIGAN-WESTERN SHORE

STATION LOCATION AKE MICHIGAN AT

MILWAUKEE, WISCONSIN

| DATE            | 1           | <u> </u>            |                |                |                | CHLORINE   | DEMAND         |                      |                   |                    |                  |                        |                            |                  |                    | TOTAL                       |                          |
|-----------------|-------------|---------------------|----------------|----------------|----------------|------------|----------------|----------------------|-------------------|--------------------|------------------|------------------------|----------------------------|------------------|--------------------|-----------------------------|--------------------------|
| OF SAMPLE       | TEMP.       | DISSOLVED<br>OXYGEN | pН             | B.O.D.<br>mg/l | C.O.D.<br>mg/i | 1-HOUR     | 24-HOUR        | AMMONIA-<br>NITROGEN | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml. |
| DAY YEAR        | Centigrade) | mg/l                |                | mg/ ·          |                | mg/l       | mg/l           | mg/l                 |                   |                    |                  |                        |                            |                  |                    |                             |                          |
| 10 3 60         |             | 9.5                 | 8.6            | 1.8            | 8              | 1.1        | 3.9<br>1.6     | •0                   | 7 5               | 111                | 135<br>130       | 0 0                    | 4 0                        | 22<br>18         | •0                 | 160<br>165                  | 370<br>13                |
| 10 10 60        |             | 10.3                | 7•7<br>7•8     | 1.4<br>.7      | 4              | . 4        | •7             | •0                   | 5                 | 109                | 131              | 0                      | 1                          | 17               | .0                 | 148                         | 30                       |
| 10 17 60        |             | 10.9                | 8.3            | 1.1            | 4              | • 7        | 2.0            | •0                   | 5                 | 109                | 129              | 0                      | 2                          | 18               | •0                 | 149                         | 74                       |
| 10 31 60        |             | 10.4                | 8.0            | 1.2            | 4              | • 7        | 1.6            | •0                   | 5                 | 109                | 132              | 0                      | 2                          | 18               | •0                 | 139                         | 12                       |
| 11 7 60         |             | 10.9                | 8 • 2          | • 9            | 4              | • 4        | 1 • 2          | •0                   | 0                 | 106                | 129              | 0                      | . 1 2                      | 18<br>19         | •0                 | 151<br>131                  | 22<br>30                 |
| 11 14 60        |             | 11.5                | 8 • 2          | 1.5            | 4              | •6<br>1•4  | 2•3            | •0                   | 6<br>7            | 108                | 132<br>135       | 0                      | 1                          | 21               | •0                 | 160                         | 1300                     |
| 11 21 60        |             | 11.5                | 8 • 4          | 1.1            | 4              | •6         | 2.9            | •0                   | 6                 | 108                | 132              | ١ ٥                    | 2                          | 18               | .0                 | 151                         | 150                      |
| 11 28 60        |             | 11.6                | 8•1<br>7•9     | •6             | 3              | • 5        | 1.3            | •0                   | 5                 | 107                | 130              | o                      | ī                          | 18               | .0                 | 147                         | 8                        |
| 12 12 60        |             | 12.1                | 8.1            | . 4            | 4              | • 6        | 1.3            | •0                   | 5                 | 106                | 132              | 0                      | 3                          | 19               | •0                 | 141                         | ٠ 6                      |
| 12 19 60        | 1           | 12.7                | 8.1            | -              | 4              | • 5        | 1.2            | •0                   | 5                 | 108                | 132              | 0                      | 1                          | 18               | •0                 | 146                         | 3                        |
| 1 3 6           |             | 13.4                | 8.0            | 1.0            | 3              | • 4        | 1.1            | •0                   | 5                 | 108                | 130              | 0                      | 1 2                        | 18<br>19         | .0                 | 173<br>154                  | 3<br>2                   |
| 1 9 6           |             | 13.4                | 8.2            | 1.7            | 3              | • 7        | 1.4<br>1.2     | •0                   | 6<br>6            | 108<br>109         | 133<br>132       |                        | 1                          | 17               | .0                 | 147                         | 2                        |
| 1 16 6          |             | 13.4                | 8•1<br>8•1     | 1.3<br>.9      | 3              | • 4<br>• 5 | 1.2            | •0                   | 5                 | 107                | 133              | 0                      | 1                          | 18               | .0                 | 153                         | *1                       |
| 1 23 63         |             | 13.6                | 8.0            | • 7            | 4              | •5         | 1.0            | •0                   | 6                 | 109                | 129              | 0                      | 1                          | 18               | .0                 | 154                         | *1                       |
| 2 6 6           |             | 13.5                | 7.8            | .6             | 4              | • 4        | 1.3            | •0                   | 6                 | 109                | 133              | 0                      | 1                          | 20               | •0                 | 158                         | . 2                      |
| 2 14 6          |             | 13.7                | 8.0            | • 9            | 5              | • 6        | 1.8            | •1                   | 5                 | 112                | 131              | 1                      | 0                          | 19               | •0                 | 154                         | *6                       |
| 2 20 6          | 1           | 13.6                | 8.3            | • 6            | 4              | • 5        | 1.3            | •1                   | 5                 | 108                | 132              | 1                      | 1                          | 18               | •0                 | 156                         | 2                        |
| 2 27 6          |             | 13.4                | 8.1            | .8             | 4 6            | • 5<br>• 5 | 1•4<br>1•7     | •0                   | 6<br>6            | 109<br>110         | 132<br>131       | 0                      | 1                          | 19<br>20         | .0                 | 142<br>155                  | 28                       |
| 3 6 6<br>3 13 6 |             | 13.5<br>13.3        | 8•1<br>8•0     | 1.0<br>1.2     | 2              | • 7        | 1.6            | •0                   | 5                 | 110                | 131              | 0                      | 13                         | 19               | .0                 | 152                         | 67                       |
| 3 20 6          |             | 13.6                | 7.9            | 1.1            | 3              | • 7        | 1.6            | •0                   | 5                 | 107                | 132              | l ŏ                    | 7                          | 26               | .0                 | 160                         | 6                        |
| 3 27 6          | 1           | 13.0                | 8.1            | • 9            | 2              | 1.2        | 4.1            | •0                   | 8                 | 110                | 135              | 0                      | 4                          | 22               | .0                 | 151                         | 380                      |
| 4 3 6           | 2.2         | 13.6                | 7.9            | $1 \cdot 1$    | 4              | • 8        | 1.7            | •0                   | 5                 | 108                | 132              | 0                      | 3                          | 20               | • 0                | 155                         | 5                        |
| 4 10 6          | 1           | 13.1                | 8•2            | . 8            | 6              | • 5        | 1.2            | •0                   | 6                 | 107                | 132              | 0                      | 5                          | 19               | •0                 | 147<br>143                  | 4<br>9                   |
| 4 17 6          | -           | 12.3                | 8.1            | 1.0            | 5<br>6         | • 6<br>• 9 | 2•7<br>2•2     | •0                   | 5<br>7            | 111                | 131<br>131       | 0                      | 9                          | 21<br>22         | .0                 | 151                         | 240                      |
| 4 24 6<br>5 1 6 | 1           | 12.8                | 8•1<br>8•1     | 1.1<br>1.1     | 4              | •7         | 1.9            | •1                   | 5                 | 109                | 133              | 1 0                    | í                          | 20               | .0                 | 153                         | 15                       |
| 5 8 6           |             | 12.3                | 8.2            | 1.1            | 5              | • 6        | 1.8            | •1                   | 6                 | 110                | 134              | 1 0                    | 2                          | 18               | •0                 | 153                         | 140                      |
| 5 15 6          |             | 12.6                | 8.3            | 1.3            | 5              | • 9        | 2.0            | •1                   | 5                 | 110                | 132              | 0                      | 1                          | 19               | •0                 | 146                         | 93                       |
| 5 22 6          |             | 12.2                | 7.4            | 1.4            | 2              | • 5        | 1.1            | • 1                  | 5                 | 111                | 129              | 0                      | 1                          | 18               | •0                 | 150                         | 4                        |
| 5 29 6          | 1           | 11.8                | 8.3            | 1.7            | 6              | • 6        | 2 • 2          | •0                   | 7                 | 106                | 131              | 0                      | 2                          | 20               | • 0                | 152                         | 130<br>21                |
| 6 5 6           |             | 11.9                | 8.3            | 1.3            | 2              | • 8<br>• 7 | 2 • 4<br>1 • 9 | •0                   | 5<br>5            | 106<br>106         | 131<br>131       | 1 0                    | 1 1                        | 20<br>19         | .0                 | 151<br>155                  | 1                        |
| 6 12 6          | 1 9.2       | 11.7                | 8 • 4<br>8 • 2 | •6<br>1•0      | 4              | • 6        | 2.2            | •0                   | 5                 | 105                | 131              | 0                      | i                          | 19               | .0                 | 152                         | 8                        |
| 6 26 6          | 10.0        | 11.4                | 8.2            | 1.2            | 4              | • 7        | 1.7            | •0                   | 6                 | 105                | 130              | l ő                    | هٔ ا                       | 19               | .0                 | 156                         | *2                       |
| 7 3 6           |             | 11.4                | 7.9            | 1.2            | 5              | • 7        | 2.0            | •0                   | 6                 | 105                | 132              | , c                    | 0                          | 19               | •0                 | 148                         | 4                        |
|                 |             |                     |                |                |                |            |                |                      |                   |                    | ·                | <u> </u>               |                            |                  |                    |                             | <u> </u>                 |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

WISCONSIN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

LAKE MICHIGAN-WESTERN SHORE

STATION LOCATIONLAKE MICHIGAN AT

MILWAUKEE, WISCONSIN

|                                       | ATE                                      |                |                                                                                 |                                                                                           |                                                                                                       |                                                   |                                                          | CHLORINE                                                                  | DEMAND                |                                        |                             |                                                                                     |                                                                                     |                        |                            |                                              |                    | TOTAL                                                                        |                                                             |
|---------------------------------------|------------------------------------------|----------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|-----------------------|----------------------------------------|-----------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------|----------------------------|----------------------------------------------|--------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|
| <b>x</b>                              | AMPLI<br>AYO                             | -              | TEMP.<br>(Degrees<br>Centigrade)                                                | DISSOLVED<br>OXYGEN<br>mg/l                                                               | рH                                                                                                    | B.O.D.<br>mg/l                                    | C.O.D.<br>mg/l                                           | 1-HOUR<br>mg/l                                                            | 24-HOUR<br>mg/l       | AMMONIA-<br>NITROGEN<br>mg/I           | CHLORIDES<br>mg/l           | ALKALINITY<br>mg/l                                                                  | HARDNESS<br>mg/l                                                                    | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l                             | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/l                                                  | COLIFORMS<br>per 100 ml.                                    |
| 7 1 7 7 7 7 7 7 7 8 8 8 8 9 9 9 9 9 9 | 24 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 51 51 51 51 51 | 12.8<br>6.5<br>5.6<br>19.7<br>17.8<br>20.4<br>9.8<br>7.1<br>7.2<br>15.2<br>14.3 | 10.8<br>11.4<br>13.1<br>-<br>8.9<br>9.6<br>8.8<br>11.4<br>11.0<br>-<br>11.2<br>9.6<br>9.7 | 8.3<br>8.3<br>8.4<br>8.5<br>8.0<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5 | 2.0<br>.8<br>1.1<br>1.0<br>1.2<br>.9<br>1.6<br>.9 | 3<br>4<br>6<br>-7<br>5<br>6<br>9<br>12<br>-12<br>11<br>9 | • 7<br>• 8<br>• 7<br>• 8<br>• 9<br>• 4<br>• 7<br>• 7<br>• 4<br>• 5<br>• 6 | 2.0<br>2.1<br>2.2<br> | .0<br>.0<br>.1<br>.1<br>.1<br>.1<br>.1 | 7 7 6 5 7 6 6 7 7 7 7 7 7 7 | 107<br>106<br>107<br>-<br>105<br>107<br>106<br>106<br>107<br>-<br>105<br>103<br>104 | 129<br>129<br>130<br>-<br>129<br>131<br>128<br>131<br>132<br>-<br>130<br>128<br>130 | 000100001000           | 0001001110                 | 19<br>19<br>18<br>17<br>18<br>19<br>18<br>17 | 0001000001000      | 162<br>152<br>148<br>-<br>149<br>148<br>141<br>148<br>-<br>151<br>147<br>142 | 1<br>11<br>*1<br>17<br>*33<br>*33<br>100<br>33<br>480<br>33 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Supplied by U.S. Army Corps of Engineers U.S. Lake Survey

STATE

Wisconsin

MAJOR BASIN

Western Great Lakes

MINOR BASIN

Lake Michigan-Western Shore

STATION LOCATION

Lake Michigan at

Milwaukee, Wisconsin

| October | November | December | January<br>: | February | March      | Apr | il   | May | June   | July | August | Septembe <b>r</b> |
|---------|----------|----------|--------------|----------|------------|-----|------|-----|--------|------|--------|-------------------|
|         |          |          |              |          |            |     | -    |     |        |      |        |                   |
|         |          | FLOW     | DATA         | NOT      | APPLICABLE |     | LAKE | ]   | LEVELS | ONLY |        |                   |

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LAKE SUPERIOR

STATION LOCATION ST. MARYS RIVER AT

SAULT STE. MARIE, MICHIGAN

| DATE                                                                                                                                       |                                          |           | RADIO     | ACTIVITY IN V | VATER     |           |       | RADIOA                        | CTIVITY IN PLAN | IKTON (dry) | RAC       | IOACTIVITY IN W | ATER  |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------|-----------|---------------|-----------|-----------|-------|-------------------------------|-----------------|-------------|-----------|-----------------|-------|
| SAMPLE                                                                                                                                     | DATE OF                                  |           | ALPHA     |               |           | BETA      |       |                               | GROSS A         |             |           | GROSS ACTIVIT   |       |
| TAKEN                                                                                                                                      | DATE OF<br>DETERMI-<br>NATION            | SUSPENDED | DISSOLVED | TOTAL         | SUSPENDED | DISSOLVED | TOTAL | DATE OF<br>DETERMI-<br>NATION | ALPHA           | BETA        | SUSPENDED | DISSOLVED       | TOTAL |
| MO. DAY YEAR                                                                                                                               |                                          | μμε/1     | μμε/Ι     | μμς/1         | μμε/1     | μμε/1     | μμε/ί | MO. DAY                       | <i>µµс/</i> g   | µµс/g       | μμς/Ι     | μμε/1           | μμс/  |
| MO. DAY YEAR  10 24 60* 11 28 60* 12 26 60* 1 30 61* 2 27 61* 3 27 61* 4 24 61* 5 28 61* 6 26 61* 7 31 61* 8 24 61 9 11 61 9 18 61 9 25 61 | 11 8 12 8 1 9 2 10 3 10 4 7 5 5 6 9 7 14 |           |           |               |           |           |       |                               |                 |             |           |                 | μμε/Ι |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

LAKE SUPERIOR

STATION LOCATION ST. MARYS RIVER AT

SAULT STE. MARIE, MICHIGAN

| DATE                                                                                                                                                               |                                                                                                |         |                       | ALGAE (                          | Number                | per ml.)                   |                                                    |                                                                       |                                                                                              | IN                         | RT<br>TOM                                                                                      |                                                |                                                                            |                                         | D                                                        | IATO                                                                                                        | MS                                                                         |                                                                                                                                                           |                                                                            |                                                                                                                                                                      | I ;                                                    |      | MICROIN                                        | VERTEBR                                 | ATES                         |                               |                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------|-----------------------|----------------------------------|-----------------------|----------------------------|----------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------|------------------------------------------------|-----------------------------------------|------------------------------|-------------------------------|-------------------------------------------------------------|
| OF SAMPLE                                                                                                                                                          |                                                                                                | BLUE-   | GREEN                 | GREE                             | EN                    | FLAGEI<br>(Pigm            | LLATES<br>ented)                                   | DIAT                                                                  | OMS                                                                                          | SHE                        | LLS<br>er ml.)                                                                                 |                                                | DOM<br>(Se                                                                 | INANT<br>e Intro                        | SPEC                                                     | ies Al<br>for Co                                                                                            | ND PE                                                                      | RCEN'<br>ntificat                                                                                                                                         | TAGE:                                                                      | s                                                                                                                                                                    | SHEATHED ml.)                                          | ď.)  | ter)                                           | f.<br>ter)                              | S ter)                       | rorms                         | ENERA<br>fuction<br>ication                                 |
| MONTH<br>DAY<br>YEAR                                                                                                                                               | TOTAL                                                                                          | COCCOID | FILA-<br>MENT-<br>OUS | соссоів                          | FILA-<br>MENT-<br>OUS | GREEN                      | OTHER                                              | CENTRIC                                                               | PENNATE                                                                                      | CENTRIC                    | PENNATE                                                                                        | FIRST#                                         | PER.                                                                       | SECOND#                                 | PER.<br>CENTAGE                                          | THIRD#                                                                                                      | PER-                                                                       | FOURTH#                                                                                                                                                   | PER.                                                                       | OTHER PER-<br>CENTAGE                                                                                                                                                | OTHER MICHOL<br>FUNGI AND SP<br>BACTERIA<br>(No. per n | 12 5 | ROTIFIERS<br>(No. per liter)                   | CRUSTACEA<br>(No. per liter)            | NEMATODES<br>(No. per liter) | OTHER ANIMA!<br>(No. per lite | DOWINANT GENERA<br>(See Introduction<br>for Identification) |
| 10 3 60<br>10 17 60<br>11 21 60<br>12 5 60<br>12 19 60<br>12 16 61<br>2 20 61<br>3 20 61<br>3 20 61<br>4 17 61<br>5 15 61<br>6 19 61<br>7 17 61<br>8 21 61<br>9 18 | 200<br>100<br>100<br>100<br>100<br>200<br>100<br>200<br>400<br>300<br>200<br>200<br>200<br>100 | 20      | 20                    | 20<br>20<br>40<br>80<br>40<br>20 |                       | 20<br>20<br>20<br>20<br>20 | 20<br>70<br>60<br>20<br>60<br>80<br>40<br>20<br>20 | 50<br>20<br>20<br>50<br>70<br>20<br>170<br>20<br>40<br>80<br>60<br>40 | 70<br>70<br>20<br>40<br>20<br>70<br>110<br>90<br>250<br>330<br>170<br>80<br>210<br>120<br>40 | 50<br>20<br>70<br>20<br>70 | 70<br>370<br>20<br>50<br>130<br>50<br>50<br>20<br>70<br>160<br>150<br>150<br>150<br>190<br>190 | 25372557055<br>996<br>995<br>996<br>995<br>995 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>30<br>60<br>30 | 2 475 95 60 9 4 9 9 9 9 9 2 3 2 4 4 9 5 | 10<br>20<br>10<br>10<br>10<br>20<br>10<br>10<br>20<br>20 | 6<br>47<br>6<br>46<br>94<br>47<br>60<br>60<br>47<br>82<br>30<br>47<br>60<br>9<br>89<br>60<br>22<br>22<br>25 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 46<br>647<br>26<br>94<br>91<br>47<br>77<br>92<br>89<br>27<br>89<br>27<br>89<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 60<br>70<br>60<br>70<br>60<br>60<br>30<br>40<br>50<br>60<br>50<br>60<br>50<br>60<br>50<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60 | 20<br>70<br>20<br>20<br>20<br>20<br>50<br>200          | 10   | 2 3 3 2 2 4 4 3 2 2 3 3 3 3 3 15 300 78 8 8 13 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1                            | 1                             |                                                             |

### ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

LAKE SUPERIOR

STATION LOCATION ST. MARYS RIVER AT

SAULT STE. MARIE, MICHIGAN

| - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 |                                                  |                                                   |                                                                                                        |                                                                                  |                                                                |                                                                                |                     |                   | ١        |                       | CHI OBOE  | ORM EXTRA                    | CTABLES                                 |                 |                 |                |           |
|-----------------------------------------|--------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------|-------------------|----------|-----------------------|-----------|------------------------------|-----------------------------------------|-----------------|-----------------|----------------|-----------|
| DATE OF SA                              | ,                                                |                                                   | 1                                                                                                      | EX                                                                               | TRACTABL                                                       | ES                                                                             |                     |                   |          |                       | NEUTRALS  |                              |                                         |                 |                 |                |           |
| MONTH DAY                               | MONTH                                            | DAY                                               | GALLONS<br>FILTERED                                                                                    | TOTAL                                                                            | CHLORO-<br>FORM                                                | ALCOHOL                                                                        | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES | TOTAL    | ALIPHATICS            | AROMATICS | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS                                    | WEAK<br>ACIDS   | STRONG<br>ACIDS | BASES          | Loss      |
|                                         | 11<br>12<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 20<br>19<br>16<br>20<br>20<br>17<br>15<br>19<br>* | 7635<br>4717<br>5205<br>4702<br>4268<br>4500<br>4710<br>4635<br>13590<br>3840<br>4785<br>3603<br>12228 | 114<br>124<br>115<br>125<br>124<br>143<br>110<br>118<br>113<br>114<br>116<br>102 | 18<br>19<br>24<br>17<br>25<br>26<br>34<br>27<br>21<br>22<br>13 | 96<br>105<br>91<br>108<br>101<br>118<br>84<br>76<br>98<br>86<br>93<br>94<br>89 | 1 1 3 1 1 1 3 1 1   | 6 7 8 5 7 11 10 6 | 44443455 | 1 1 1 1 0 0 1 1 2 2 2 | 01110000  | 2 2 2 3 3 2                  | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 2 2 1 1 2 2 1 | 1 1 1 2         | 00100011101110 | 445510555 |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MICHIGAN

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

LAKE SUPERIOR

STATION LOCATIONST. MARYS RIVER AT

SAULT STE. MARIE, MICHIGAN

| DA           | TE    |                   |                     |            |        |         | CHLORINE | DEMAND     |                      |                   |                    |                  |                        |                         |                  |                 |                              |                          |
|--------------|-------|-------------------|---------------------|------------|--------|---------|----------|------------|----------------------|-------------------|--------------------|------------------|------------------------|-------------------------|------------------|-----------------|------------------------------|--------------------------|
| OF SA        | MPLE  | TEMP.<br>(Degrees | DISSOLVED<br>OXYGEN | pН         | B.O.D. | C.O.D.  | 1-HOUR   | 24-HOUR    | AMMONIA-<br>NITROGEN | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY (scale units) | SULFATES<br>mg/l | PHOSPHATES mg/l | TOTAL<br>DISSOLVED<br>SOLIDS | COLIFORMS<br>per 100 ml, |
| MONTH        | YEAR  | Centigrade)       | mg/l                | ·          | mg/l   | mg/1    | mg/l     | mg/l       | mg/l                 | mg/1              |                    |                  |                        |                         | my/1             | ing/i           | mg/l                         | per 100 mi,              |
| 10           | 3 60  | 12.0              | 10.2                | 8.0        | _      | 4 3     | •3<br>•3 | 1.0        | •0                   | 1<br>1            | 47<br>45           | 46<br>45         | 0<br>5                 | 4<br>11                 | 1                | -               | -                            | 6<br>7                   |
| 10 1         |       | 12.5              | 10.0                | 8.0<br>8.0 | _      | 3       | .3       | 1.2        | •1                   | 1                 | 46                 | 46               | 5                      | 19                      | _                | _               | _                            | 25                       |
| 10 1         |       | 8.5               | 11.8                | 8.0        | -      | 4       | • 3      | 1.1        | •0                   | 1                 | 47                 | 45               | 5                      | 10                      | -                | -               | -                            | 10                       |
| 10 3         |       | 10.0              | 11.6                | 8.0        | -      | 3       | • 3      | 1.0        | •0                   | 1                 | 46                 | 45               | 0                      | 13                      | -                | -               | -                            | 7                        |
|              | 7 60  | 7.5               | 12.7                | 8.0        | _      | 3       | •3       | 1.0        | •0                   | 1<br>1            | 46<br>46           | 45<br>46         | 0                      | 17<br>8                 | -                | -               | _                            | 10<br>10                 |
| 11 1         |       | 7 • 2<br>7 • 0    | 12.8<br>13.1        | 7.8<br>7.6 | _      | 3       | .3       | 1.0        | •1                   | 1                 | 46                 | 45               | ő                      | 9                       | _                |                 | _                            | . 36                     |
| 11 2         |       | 6.0               | 13.3                | 7.8        | -      | 3       | • 3      | 1.1        | •1                   | 1                 | 46                 | 46               | 0                      | 5                       | -                | -               | -                            | 17                       |
|              | 5 60  | 5.0               | 13.5                | 6.8        | -      | 5       | • 3      | 1.2        | •0                   | 1                 | 46                 | 46               | 0                      | 7                       | -                | -               | -                            | 11                       |
| 12 1         |       | 1.3               | 15.0                | 7.8        | -      | 3       | •3       | •7         | •0                   | 1<br>1            | 46<br>46           | 45<br>45         | . 0                    | 3<br>3                  |                  | _               | -                            | 4<br>11                  |
| 12 19        |       | 1.0               | 16.4<br>13.2        | 7.6<br>7.6 | -      | 8       | • 2      | • 6        | •0                   | 1                 | 46                 | 45               | اة                     | 2                       | -                | _               | _                            | 1                        |
|              | 2 61  | .0                | 13.4                | 7.6        |        | _       | • 2      | 1.0        | •0                   | 1                 | 45                 | 45               | 0                      | 2                       | -                | -               | _                            | *1                       |
|              | 61    | •0                | 13.8                | 7.6        | -      | -       | .3       | •8         | •0                   | 1                 | 46                 | 46               | 0                      | 3                       | -                | -               | -                            | 2                        |
| 1 1          |       | •0                | 13.7                | 7.8        | -      | -       | • 3      | •8         | •0                   | 1                 | 46                 | 45               | 0                      | 2                       |                  | -               | -                            | *1                       |
| 1 2:         |       | •0                | 13.7                | 7.6<br>7.7 | -      | _       | • 3      | •8<br>•9   | •0                   | 1<br>1            | 46<br>47           | 47<br>47         | 0                      | 3 2                     | -                | _               | 1 1                          | 1<br>*1                  |
| 1 3          | 61    | •0                | 13.7<br>13.8        | 7.7        | _      | -       | • 3      | .9         | •0                   | 1                 | 47                 | 47               | 0                      | 2                       | _                | _               | _                            | " <del>2</del>           |
| 2 1          |       | •0                | 13.8                | 7.6        | -      | _       | • 3      | • 9        | •0                   | 1                 | 47                 | 45               | 0                      | 2                       | _                | -               |                              | 1                        |
| 2 2          |       | •0                | 13.7                | 7.7        | -      | -       | • 3      | • 8        | •0                   | 1                 | 47                 | 46               | 0                      | 1                       | -                | -               | -                            | 1                        |
| 2 2          | , ,   | • 2               | 13.7                | 7.7        | -      | _       | •3       | • 7<br>• 8 | •0                   | 1                 | 46                 | 46<br>46         | 0                      | -                       | _                | -               | -                            | 1<br>*1                  |
| 3 1          | 6 6 1 | •3<br>•2          | 13.5                | 7•6<br>7•6 | _      | -       | .3       | 1.0        | •0                   | 1<br>1            | 47<br>47           | 40<br>47         | 0                      | _                       | _                | _               | -                            | 1                        |
| 3 20         |       | • 2               | 13.7                | 7.6        | -      | -       | • 3      | •9         | •0                   | ĩ                 | 46                 | 47               | o                      | _                       |                  | _               | _                            | 1                        |
| 3 2          | 7 61  | •5                | 13.5                | 7.7        | -      | -       | • 3      | • 9        | •0                   | 1                 | 46                 | 46               | 0                      | -                       | -                | -               | -                            | *1                       |
| 4            |       | • 5               | 13.6                | 7•7        | -      | 6       | • 4      | •9         | •0                   | 1                 | 46                 | 45               | 0                      | -                       | _                |                 | -                            | 5                        |
| 4 1 4 1      |       | •5<br>•8          | 13.2                | 7.6<br>7.6 | -      | 6       | •3<br>•5 | 1.0        | •0                   | 1<br>1            | 46<br>46           | 45<br>45         | 0 0                    | -                       | _                | _               | _                            | 6<br>5                   |
| 4 24         |       | 2.3               | 13.5                | 7.6        | _      | 6       | •5       | 1.2        | •0                   | 1                 | 46                 | 45<br>45         | 0                      | _                       | _                | _               | _                            | *10                      |
| 5            |       | 3.2               | 13.3                | 7.8        | -      | 7       | • 5      | 1 • 4      | •0                   | ī                 | 47                 | 43               | ŏ                      | -                       | _                | -               | -                            | ì                        |
| 5 8          |       | 4.0               | 13.4                | 7.8        | -      | 7       | • 5      | 1.1        | •0                   | 1                 | 46                 | 43               | 0                      | -                       | -                |                 | -                            | 2                        |
| 5 1 5<br>5 2 |       | 5.7               | 12.9                | 7.8<br>7.8 | -      | 7<br>10 | • 5      | •9         | •0                   | 1                 | 46                 | 44               | 0                      | 0                       | _                |                 | -                            | 1                        |
| 5 29         |       | 7.5               | 12.4                | 8.0        | _      | 8       | •5       | 1.0        | •0                   | 1<br>1            | 46<br>46           | 45<br>45         | 0                      | 0 0                     | _                | _               | -                            | 5<br>3                   |
| 6            | 61    | 8.2               | 12.4                | 7.7        | -      | 8       | .5       | 1.3        | •0                   | î                 | 46                 | 46               | 0                      | -                       | _                | -               | _                            | 2                        |
| 6 12         |       | 8.8               | 12.2                | 7.9        | -      | 8       | • 6      | 1.3        | •0                   | 1                 | 47                 | 45               | 0                      | -                       | -                | -               | -                            | 6                        |
| 6 19         |       | 11.7              | 11.2                | 7.9        | -      | 7       | • 5      | 1 • 2      | •0                   | 1                 | 46                 | 46               | 0                      | -                       | -                | -               | -                            | 3                        |
| 6 26         | 61    | 10.8              | 11.1                | 7.9        | -      | 8       | •6       | 1.6        | •0                   | 1                 | 46                 | 44               | ٥                      | 0                       | -                | -               | _                            | 49                       |

STATE

MICHIGAN

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

LAKE SUPERIOR

STATION LOCATIONST . MARYS RIVER AT

SAULT STE. MARIE. MICHIGAN

| DATE<br>OF SAMPL                                                 |                                        | TEMP.                                                                                        |                             |                                                             |                |                                                                 | CHLORINE                                                              | DEMAND                                                      |                              |                                         |                                                    |                              |               |                            |                  |                    | TOTAL                       |                                                         |
|------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|------------------------------|-----------------------------------------|----------------------------------------------------|------------------------------|---------------|----------------------------|------------------|--------------------|-----------------------------|---------------------------------------------------------|
| рах                                                              | YEAR                                   | (Degrees<br>Centigrade)                                                                      | DISSOLVED<br>OXYGEN<br>mg/l | рĦ                                                          | B.O.D.<br>mg/l | C.O.D.<br>mg/l                                                  | 1-HOUR<br>mg/l                                                        | 24-HOUR<br>mg/l                                             | AMMONIA-<br>NITROGEN<br>mg/i | CHLORIDES<br>mg/l                       | mg/I                                               | HARDNESS<br>mg/l             | (scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/i | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/l | per 100 ml.                                             |
| 7 24 6<br>7 31 8<br>8 7 6<br>8 14 6<br>8 21 6<br>8 28 6<br>9 4 6 | 61<br>61<br>61<br>61<br>61<br>61<br>61 | 11.9<br>14.1<br>13.9<br>16.5<br>18.6<br>18.4<br>18.0<br>18.5<br>19.1<br>20.4<br>17.0<br>15.8 | 10.6<br>10.0                | 7.9<br>8.0<br>7.9<br>8.0<br>7.9<br>7.9<br>7.9<br>7.8<br>7.8 |                | 7<br>7<br>7<br>7<br>7<br>8<br>7<br>11<br>11<br>8<br>7<br>6<br>6 | .6<br>.7<br>.8<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.1<br>1.1<br>.6 | 1.5<br>1.7<br>2.0<br>1.9<br>2.0<br>1.8<br>1.7<br>1.8<br>1.9 |                              | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 42<br>40<br>41<br>39<br>41<br>40<br>40<br>40<br>40 | 444454535445<br>444454535445 | 0000000000    | 00000000100                |                  | •0                 |                             | 11<br>14<br>6<br>47<br>12<br>9<br>15<br>16<br>36<br>140 |

MEAN MONTHLY FLOW - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Supplied by U.S. Army Corps of Engineers U.S. Lake Survey

STATE

Michigan

MAJOR BASIN

Western Great Lakes

MINOR BASIN

Lake Superior

STATION LOCATION

St. Marys River at

Sault Ste. Marie, Michigan

| <br>    |          |          |         |          |        |        |        |        |        |        | G - 4 - 3 |   |
|---------|----------|----------|---------|----------|--------|--------|--------|--------|--------|--------|-----------|---|
| October | November | December | January | February | March  | April  | May    | June   | July   | August | September |   |
| <br>    |          |          |         |          |        |        |        |        |        |        | 3 100     | - |
| 92,000  | 73,000   | 68,000   | 67.000  | 67.000   | 66.000 | 66.000 | 68.000 | 69.000 | 65.000 | 57.000 | 57.000    |   |

STATE

MINNESOTA

MAJOR BASIN

WESTERN GREAT LAKES

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LAKE SUPERIOR

STATION LOCATION LAKE SUPERIOR AT

DULUTH, MINNESOTA

|              |                               |           |           |                |           |           |       | PADIO                         | ACTIVITY IN PLA | NKTON (dry) |     | RAD       | OLOACTIVITY IN W | ATER  |
|--------------|-------------------------------|-----------|-----------|----------------|-----------|-----------|-------|-------------------------------|-----------------|-------------|-----|-----------|------------------|-------|
| DATE         |                               |           |           | DACTIVITY IN V | /AIEK     | BETA      |       |                               |                 | ACTIVITY    | ſ   |           | GROSS ACTIVIT    | Y     |
| SAMPLE       | DATE OF<br>DETERMI-<br>NATION |           | ALPHA     |                | SUSPENDED | DISSOLVED | TOTAL | DATE OF<br>DETERMI-<br>NATION | ALPHA           | BETA        | l [ | SUSPENDED | DISSOLVED        | TOTAL |
| TAKEN        |                               | SUSPENDED | DISSOLVED | TOTAL          | μμc/l     | μμc/I     | μμε/Ι | MO. DAY                       |                 | μμc/g       |     | μμε/Ι     | μμc/l            | μμc/l |
| MO. DAY YEAR | MONTH DAY                     | μμε/1     | μμε/Ι     | μμε/Ι          | μμε/1     | ppe//     |       |                               |                 |             |     |           |                  |       |
|              |                               | _         | , !       | 1              | 0         | اه        | 0     | İ                             |                 |             |     |           |                  |       |
| 0 24 60*     | 11 3                          | 0         | 1         | Ô              | 0         | 0         | ŏ     |                               |                 |             |     |           |                  |       |
|              | 12 22                         | 0         | 0         |                | 0         | 0         | ŏ     | 1                             | İ               |             |     |           |                  |       |
| 2 27 60*     |                               | 0         | 2         | 2              | 0         | 1         | ĭ     | 1                             | İ               |             |     |           |                  |       |
| 1 30 61*     |                               | 0         | 0         | 0              | 0         | ō         | ō     |                               |                 | 1           |     |           |                  |       |
| 2 28 61*     |                               | 0         | 0         | 0              | 0         | 0         | ŏ     |                               |                 |             | 1   |           |                  |       |
| 3 27 61*     |                               | 0         | 0         | 0              | 1         | ŏ         | ŏ     |                               | Ì               |             |     |           |                  |       |
| 4 24 61*     | 5 12                          | 0         | 0         | 0              | 0         | 0         | ŏ     |                               |                 |             |     |           | 1                |       |
| 5 29 61*     | 6 9                           | 0         | 0         | 0              | 1         |           | ŏ     |                               |                 |             | 1   |           |                  |       |
| 6 26 61*     |                               | 0         | 0         | 0              | 0         | 0         | 3     |                               | Ì               |             |     |           |                  |       |
| 7 31 61*     | 8 23                          | 0         | 0         | 0              | 0         | 3         | 3     |                               |                 |             |     |           |                  |       |
| 8 30 61      | 9 18                          | O O       | 0         | 0              | 3         | 0         | 8     | 1                             |                 |             | ì   |           |                  |       |
| 9 5 61       | 10 3                          | -         | -         | -              | 0         | 8         |       | 1                             |                 |             | ł   |           |                  |       |
| 9 11 61      | 10 6                          | 0         | 0         | 0              | 1         | 3         | 4     |                               |                 |             | 1   |           | !                |       |
| 9 18 61      | 10 18                         | 0         | 0         | 0              | 1         | 0         | 1     | İ                             |                 |             |     | j         |                  |       |
| 9 25 61      | 10 10                         | _         | -         | -              | 0         | 3         | 3     |                               | ì               |             |     |           | 1                |       |
|              | 1 7 7                         |           | 1         |                | 1         |           |       |                               | Į.              |             | 1   |           |                  |       |
|              |                               |           |           |                |           |           |       |                               |                 |             |     | 1         |                  |       |
|              |                               |           |           |                |           |           | l     |                               | 1               |             | 1   |           |                  |       |
|              | 1                             |           |           |                |           |           | i     |                               | 1               |             |     | ļ         |                  |       |
|              |                               | Ì         |           |                |           |           | 1     |                               |                 |             |     |           |                  |       |
|              |                               |           |           |                |           |           |       |                               |                 |             | j   |           |                  | 1     |
|              |                               |           |           |                | 1         |           | ì     | l                             |                 |             |     |           |                  |       |
|              |                               | ļ         |           |                |           |           |       | ì                             |                 |             | 1   |           |                  |       |
|              |                               | 1         |           |                |           |           |       | ļ                             |                 |             | 1   |           |                  | 1     |
|              |                               |           |           |                |           |           |       |                               | Y               |             | 1   | 1         |                  |       |
|              |                               |           |           |                | ł         |           |       |                               | ļ               | 1           | 1   |           | 1                | ĺ     |
|              |                               | 1         |           |                | Į.        |           |       |                               |                 |             |     |           |                  |       |
|              |                               |           |           |                |           |           |       |                               |                 |             | 1   | 1         | į.               |       |
|              |                               |           |           |                |           |           | l     |                               |                 |             | 1   | 1         |                  | 1     |
|              |                               |           |           |                | 1         |           |       |                               |                 |             | 1   | 1         |                  |       |
|              |                               | 1         |           |                | 1         | i         |       |                               |                 |             | 1   |           |                  |       |
|              |                               |           |           |                | 1         | 1         |       |                               |                 |             | 1   | 1         |                  |       |
|              |                               |           |           |                |           |           |       |                               |                 |             |     |           |                  |       |
|              |                               |           |           |                |           |           |       |                               |                 | į           |     |           |                  |       |
|              |                               | 1         |           |                |           |           |       | 1                             |                 | 1           | 1   | 1         |                  |       |
|              |                               |           |           |                |           |           |       |                               |                 |             |     | İ         |                  |       |
|              |                               |           |           | 1              |           |           | [     |                               |                 |             |     | 1         |                  | 1     |
|              |                               |           |           | 1              |           |           |       |                               | 1               |             |     | 1         |                  |       |
|              |                               |           |           |                |           |           |       |                               |                 |             |     | 1         |                  |       |
|              |                               |           |           |                |           | 1         | 1     |                               |                 |             | 1   |           |                  |       |
|              | 1                             |           | 1         |                |           |           |       | 1                             |                 |             |     | 1         | 1                |       |
|              |                               |           |           |                |           |           |       |                               |                 |             |     |           |                  |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

MINNESOTA

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

LAKE SUPERIOR

STATION LOCATION LAKE SUPERIOR AT

DULUTH, MINNESOTA

|                                                                                                           |                        |                                         | <del></del>                                                                             |         |                       | ALGAE (                      | Vumber                | per ml.)         |          |                                                                               |                                                                                          | INE                                                            | RT                                                                     | Τ_                                     |                                        |                           |                                        | 1470                                                                                    |                                  |                                                                   |      |                                              | Τ.                                                                 | <del></del>               | MICROIN                               | VERTEBE                      | ATES                         |               |                                                       |
|-----------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------|---------|-----------------------|------------------------------|-----------------------|------------------|----------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------|----------------------------------------|---------------------------|----------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------|------|----------------------------------------------|--------------------------------------------------------------------|---------------------------|---------------------------------------|------------------------------|------------------------------|---------------|-------------------------------------------------------|
| DA<br>OF SA                                                                                               | MF                     |                                         |                                                                                         | BLUE-   | GREEN                 | GREE                         |                       | FLAGEL<br>(Pigme |          | DIAT                                                                          | омѕ                                                                                      | DIA<br>SHE<br>(No. p                                           |                                                                        |                                        |                                        |                           | SPEC                                   |                                                                                         | ND PE                            | RCEN                                                              |      | s                                            | ROPLANKTON<br>SHEATHED<br>ml.)                                     |                           |                                       |                              |                              | T TORNS       | ienena<br>duction<br>ication)                         |
| MONTH                                                                                                     | DAY                    | YEAR                                    | TOTAL                                                                                   | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                      | FILA-<br>MENT-<br>OUS | GREEN            | OTHER    | CENTRIC                                                                       | PENNATE                                                                                  | CENTRIC                                                        | PENNATE                                                                | FIRST#                                 | PER.                                   | SECOND#                   | PER.                                   | THIRD#                                                                                  | PER-                             | FOURTH#                                                           | PER. | OTHER PER-<br>CENTAGE                        | OTHER RICROPLAKK<br>FUNGT AND SHEATHI<br>BACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)          | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | (No. per lite | DOMINANT SENERA (See Introduction for Identification) |
| 10 1<br>11 2<br>12 1<br>1 1<br>1 2<br>2 2<br>3 3 2<br>4 4 1<br>5 5 1<br>6 6 1<br>7 1<br>8 1<br>8 1<br>9 1 | 9715937606037155917779 | 000000111111111111111111111111111111111 | 100<br>100<br>100<br>100<br>100<br>300<br>200<br>200<br>100<br>200<br>400<br>200<br>100 |         | 20                    | 90<br>150<br>120<br>40<br>60 |                       | 20 40 20         | 20 20 20 | 20<br>20<br>20<br>20<br>130<br>60<br>80<br>60<br>20<br>40<br>90<br>100<br>120 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>120<br>80<br>120<br>60<br>40<br>40<br>50<br>20 | 20<br>20<br>70<br>20<br>20<br>20<br>40<br>40<br>40<br>50<br>80 | 70<br>20<br>20<br>20<br>70<br>40<br>40<br>40<br>40<br>40<br>100<br>270 | 82<br>95<br>81<br>84<br>84<br>81<br>60 | 40<br>40<br>40<br>40<br>50<br>30<br>30 | 95084020 734<br>999461554 | 10<br>10<br>10<br>10<br>10<br>10<br>20 | 28<br>60<br>95<br>60<br>91<br>24<br>30<br>91<br>60<br>89<br>94<br>99<br>55<br>624<br>47 | 10<br>10<br>10<br>10<br>10<br>10 | 91<br>225<br>560<br>844<br>91<br>95<br>95<br>95<br>95<br>95<br>95 | 10   | 40<br>50<br>60<br>60<br>70<br>50<br>60<br>50 | 40<br>20<br>70<br>40<br>60<br>40<br>3540<br>200<br>40              | 20 10                     | 1<br>1<br>1<br>3<br>18<br>3<br>7<br>4 | 1 3 5 5 100 19               |                              |               |                                                       |

#### ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

MINNESOTA

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

LAKE SUPERIOR

STATION LOCATION LAKE SUPERIOR AT

DULUTH, MINNESOTA

|                                                                                                            |                                                                                           |                                                                                               |                                                                                 | TD LOTED                                                                         |                                                                                     | 1                                                              |                                                          |                                       |                                         | CHI OBOE                                | ORM EXTRA                    | CTABLES        |                 |                 |               |          |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------|----------------|-----------------|-----------------|---------------|----------|
| DATE OF SAMPL                                                                                              | END                                                                                       | -                                                                                             | EX                                                                              | TRACTABL                                                                         | E3                                                                                  |                                                                |                                                          | · · · · · · · · · · · · · · · · · · · |                                         | NEUTRALS                                |                              | 1              |                 |                 |               |          |
| MONTH  YEAR  MONTH                                                                                         | $\neg \neg$                                                                               | GALLONS<br>FILTERED                                                                           | TOTAL                                                                           | CHLORO-<br>FORM                                                                  | ALCOHOL                                                                             | ETHER<br>INSOLUBLES                                            | WATER<br>SOLUBLES                                        | TOTAL                                 | ALIPHATICS                              | ARONATICS                               | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS           | WEAK<br>ACIDS   | STRONG<br>ACIDS | BASES         | Loss     |
| 12 6 60 12<br>1 4 61 1<br>2 6 61 2<br>3 7 61 2<br>4 4 61 5<br>5 5 61 6<br>6 5 61 7<br>6 6 61 7<br>8 7 61 8 | 1 21<br>2 19<br>1 17<br>2 20<br>3 20<br>4 18<br>5 22<br>6 19<br>*<br>7 19<br>8 19<br>9 21 | 6518<br>6195<br>6397<br>5595<br>5920<br>6247<br>5580<br>7733<br>5228<br>5580<br>6510<br>17318 | 110<br>96<br>97<br>130<br>*<br>106<br>81<br>82<br>88<br>155<br>111<br>93<br>116 | 23<br>16<br>12<br>18<br>23<br>18<br>28<br>16<br>22<br>21<br>34<br>20<br>18<br>22 | 87<br>80<br>84<br>79<br>107<br>*<br>78<br>65<br>60<br>67<br>121<br>75<br>94<br>*LAB | 2<br>1<br>0<br>0<br>3<br>2<br>-<br>-<br>2<br>-<br>2<br>ORATORY | 8<br>6<br>4<br>7<br>8<br>6<br>-<br>8<br>-<br>7<br>ACCIDE | 44333344<br>NT                        | 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 3 3 3 2                      | 00000011101110 | 2 1 1 1 2 2 2 3 | _               | 0000011101110 | 53366455 |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MINNESOTA

MAJOR BASIN

WESTERN GREAT LAKES

MINOR BASIN

LAKE SUPERIOR

STATION LOCATIONLAKE SUPERIOR AT

DULUTH, MINNESOTA

| The second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue of the second continue | SOLIDS mg/l per 100 ml.  46 23 | DISSOLVED<br>SOLIDS<br>mg/I |     |   | TURBIDITY     |       |     | l I   |   |       |       | 1   | 1   |     | 1     |      | l     | IDIE I |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------|-----|---|---------------|-------|-----|-------|---|-------|-------|-----|-----|-----|-------|------|-------|--------|-----|
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60 -<br>53 10                  | 46                          |     |   | (scale units) | 1 ''' | l ' |       |   | 7 - 1 | 1     | ľ   |     |     | pН    | /    |       | 1      | DAY |
| 10 11 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60 <del>-</del><br>53 10       |                             |     |   |               |       |     |       |   |       |       | 1   |     |     |       | 12.6 | 4 • 4 |        |     |
| 10 17 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53 10                          |                             |     |   |               | 1     |     |       |   |       | l     |     |     |     |       | 12.5 | 5.6   |        | 111 |
| 10 31 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | 1                           | .0  |   |               | -     |     | 42    | 2 |       |       | 1   |     |     |       |      |       |        | 17  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | 57                          | • 0 |   |               | 7     | 2.3 |       |   |       | ,     |     |     |     |       |      |       |        |     |
| 11       14       60       4.4       12.6       7.3       .7       5       .8       1.7       .0       2       43       41       0       0       1       .6       .6       1.2       .7       1.5       .0       0       0       43       42       0       0       0       1       .6       .6       .6       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7       .7<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48 3                           |                             | • 0 |   |               |       | -   |       |   |       |       |     |     |     |       |      |       |        |     |
| 11 21 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 64 4                           |                             |     |   |               |       |     |       |   |       |       |     |     |     |       |      |       |        |     |
| 12       5       60       3.3       12.9       7.4       .7       4       .8       1.6       .0       2       43       42       5       5       1       .0         12       12       10       60       3.3       13.0       7.5       .5       4       .8       1.7       .0       2       43       42       5       3       2       .0         12       17       60       3.9       13.0       7.5       .5       4       .8       1.7       .0       2       43       41       0       1       2       .0         12       27       60       3.3       13.0       7.5       .8       4       .9       1.7       .0       2       42       41       0       1       2       .0         1       3       61       3.9       13.2       7.4       .9       3       .7       1.5       .0       2       42       41       1       1       2       .0         1       19       61       3.3       13.0       7.5       .4       4       .8       1.6       .0       2       42       41       1       1       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 48 8                           | 4,0                         |     |   |               |       |     | 1 - 1 |   |       |       |     |     |     |       |      |       |        |     |
| 12       19       60       3.9       13.0       7.5       .5       4       .8       1.7       .0       2       43       41       0       1       2       .6         12       27       60       3.3       13.3       7.5       .8       4       .9       1.7       .0       2       42       41       0       1       2       .6         1       3       61       3.9       13.2       7.4       .9       3       .7       1.5       .0       2       42       41       1       1       2       .6         1       9       61       3.3       13.3       7.4       1.0       4       .7       1.4       .0       2       42       41       1       1       1       .0         1       17       61       3.3       13.0       7.5       .4       4       .8       1.6       .0       2       42       41       1       1       1       .0         1       23       61       2.8       13.2       7.6       .3       4       .9       1.9       .0       2       44       43       5       0       1 <td< td=""><td>73 9</td><td>73</td><td>• 0</td><td></td><td></td><td></td><td></td><td>1 1</td><td></td><td></td><td>1.6</td><td></td><td>4</td><td>• 7</td><td>7 • 4</td><td></td><td></td><td></td><td>. 5</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 73 9                           | 73                          | • 0 |   |               |       |     | 1 1   |   |       | 1.6   |     | 4   | • 7 | 7 • 4 |      |       |        | . 5 |
| 12   27   60   3 · 3   13 · 3   7 · 5   · 8   4   · 9   1 · 7   · 0   2   42   41   0   1   2   · 0   1   9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9   1 · 9 | 61 96                          |                             | •0  |   | 7             |       |     |       | 2 |       |       |     | 1 - |     |       |      |       |        |     |
| 1       3       61       3.9       13.2       7.4       .9       3       .7       1.5       .0       2       42       41       1       1       1       2       .0         1       9       61       3.3       13.3       7.4       1.0       4       .7       1.4       .0       2       44       42       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 48 6                           |                             |     |   |               |       |     |       |   |       |       |     |     |     |       |      |       |        |     |
| 1       9       61       3 · 3       13 · 3       7 · 4       1 · 0       4       · 7       1 · 4       · 0       2       44       42       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <t< td=""><td>55 2<br/>56 2</td><td></td><td>.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55 2<br>56 2                   |                             | .0  |   |               |       |     |       |   |       |       |     |     |     |       |      |       |        |     |
| 1       23       61       2.8       13.2       7.4       .3       4       .9       1.5       .0       2       43       41       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       2       0       0       1       4       4       4       0       1       1       1       0       0       1       4       4       4       0       1       1       1       0       0       1       4       4       4       0       0       1       1       0       1       0       1       4       4       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60 2                           |                             |     |   |               |       |     | 1 1   | 2 |       |       |     |     |     |       |      | 3.3   |        | . 9 |
| 1     30     61     2 · 8     13 · 2     7 · 6     · 3     4     · 9     1 · 9     · 0     2     44     43     5     0     1     2     · 0       2     6 · 6     1 · 7     14 · 0     7 · 4     · 3     3     · 7     1 · 7     · 0     2     46     44     0     1     2     · 0       2     13 · 61     1 · 1     14 · 1     7 · 7     · 3     3     · 8     2 · 0     · 0     1     45     44     0     1     1     · 0       2     20     61     1 · 1     13 · 9     7 · 6     · 3     3     · 8     2 · 0     · 0     1     43     42     0     0     1     · 0       2     27     61     1 · 1     14 · 0     7 · 5     · 4     3     · 7     1 · 7     · 0     1     43     42     0     0     1     · 0       2     28     61     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52 *1                          |                             | • 0 |   |               |       |     |       |   |       |       |     |     |     |       |      |       |        |     |
| 2 6 61 1.7 14.0 7.4 .3 3 .7 1.7 .0 2 46 44 0 1 2 .0 .0 2 13 61 1.1 13.9 7.6 .3 3 .8 2.0 .0 1 43 42 0 0 1 2 28 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 58 2                           |                             | •0  |   |               |       |     | 1 1   |   |       |       |     |     |     |       |      |       |        |     |
| 2   13   61   1 • 1   14 • 1   7 • 7   • 3   3   • 8   2 • 0   • 0   1   45   44   0   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 58 4                           |                             | .0  |   |               |       |     |       |   |       |       |     |     |     |       |      |       |        |     |
| 2 20 61 1.1 13.9 7.6 3 3 3 8 2.0 0 1 43 42 0 0 0 1 2 28 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53 2                           |                             | .0  |   |               |       |     |       |   | - 1   |       |     | -   |     |       |      |       |        |     |
| 2 28 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53 1                           | 53                          | .0  |   |               | -     |     |       |   |       |       |     |     |     |       |      |       |        | 20  |
| 3     6     61     1.1     13.9     7.5     .2     2     .7     1.7     .0     1     44     44     0     0     1     .0       3     13     61     1.1     13.8     7.4     .2     2     .7     1.7     .0     1     43     42     0     0     1     .0       3     20     61     .6     13.9     7.5     .3     6     .6     1.5     .0     2     44     43     0     0     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 53 -                           | 1                           | •0  |   |               |       |     | 1 1   |   |       |       | · · |     | _   |       | 14.0 |       |        |     |
| 3   13   61   1 • 1   13 • 8   7 • 4   • 2   2   • 7   1 • 7   • 0   1   43   42   0   0   1   • 6   13 • 9   7 • 5   • 3   6   • 6   1 • 5   • 0   2   44   43   0   0   2   • 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - *1<br>49 1                   | 4                           | _   |   |               |       |     |       |   |       |       |     |     |     |       | 13 0 |       |        |     |
| 3 20 61 6 13.9 7.5 3 6 6 1.5 0 2 44 43 0 0 2 .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 49 1<br>52 1                   |                             | .0  |   |               |       |     |       |   |       |       |     |     |     |       |      |       |        |     |
| $3 27 61  1 \cdot 1  13 \cdot 6  7 \cdot 5  \cdot 3  6  \cdot 8  2 \cdot 0  \cdot 0  2  44  43  5  2  3  0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56 9                           | l l                         | .0  |   |               |       |     | 44    | 2 |       | 1.5   | •6  |     | • 3 |       | 13.9 |       |        | 20  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53 5                           | 1                           | •0  | 3 | 2             | 5     | 43  |       | 2 | •0    | 2 • 0 | 1   |     |     |       |      |       |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 58 *1                          | 1                           | • 0 |   |               |       |     | 1     |   |       |       |     |     |     |       |      |       |        | 1 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 64 *1                          |                             | .0  |   |               |       |     |       |   |       |       |     |     |     |       |      |       |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60 6                           |                             | .0  |   |               | 1     |     |       |   |       |       |     |     |     |       |      |       |        |     |
| 5 1 61 2.8 13.3 7.6 .2 9 1.1 2.2 .0 2 44 44 0 3 2 .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52 54                          | 52                          | •0  |   | 3             |       |     |       |   |       |       | I   |     |     |       | - 1  |       |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55 -                           |                             | •0  |   | -             | -     |     |       |   |       |       |     |     |     | i i   |      |       |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50 84<br>63 100                |                             | .0  |   |               |       |     |       |   |       |       |     |     |     |       |      |       |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60 6                           |                             | .0  |   |               | -     |     |       |   |       |       |     |     |     |       |      |       |        |     |
| 5 29 61 3.3 13.5 7.7 .3 8 .9 1.9 .0 2 42 42 0 1 3 .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58 -                           |                             | .0  |   |               |       | -   |       |   |       |       |     |     |     |       |      |       | 61     | 29  |
| 6 2 6 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 3                            | -                           | _   | _ | i I           | 1     | -   | l I   |   | - 1   |       |     |     | i   | -     | -    | i     |        |     |
| 6 5 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 1                            | -                           | -   | _ | -             | -     | -   | -     | - | -     | -     | -   | -   | -   | -     | -    | -     | 61     | 5   |

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MINNESOTA STATE

WESTERN GREAT LAKES MAJOR BASIN

LAKE SUPERIOR MINOR BASIN

STATION LOCATIONLAKE SUPERIOR AT

DULUTH: MINNESOTA

| 6 11 61 4.4 12.7 7.5 6 6 9 1.6 0 2 42 43 5 0 3 0 49 66 13 61 | DAY DAY VEAR                                                                                 | TEM<br>(Degr<br>Centig                                                                                                                                                                                          | rees                                            | DISSOLVED<br>OXYGEN<br>mg/l                                                  | рΗ                                                          | B.O.D.<br>mg/l                                                                                                   | C.O.D.<br>mg/l                                          | CHLORINE<br>1-HOUR<br>mg/l                   | DEMAND  24-HOUR  mg/l                                       | AMMONIA-<br>NITROGEN<br>mg/l            | CHLORIDES<br>mg/I                                                                           | ALKALINITY<br>mg/l                                                   | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY '               | SULFATES<br>mg/l      | PHOSPHATES<br>mg/I | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l                | COLIFORMS<br>per 100 ml.                                          |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------|------------------------|---------------------------|-----------------------|--------------------|-----------------------------------------------------|-------------------------------------------------------------------|
| 8 30 61 15.6 10.6 7.9                                        | 6 11 61<br>6 12 61<br>6 13 61<br>6 12 6 6<br>7 17 6 6<br>8 14 6<br>8 30 6<br>9 11<br>9 118 6 | 1 44<br>1 4<br>1 2<br>1 2<br>1 1 5<br>1 1 1<br>1 1 1<br>1 1 1<br>1 1 1<br>1 1 1<br>1 1 1<br>1 1 1<br>1 1 1<br>1 1 1<br>1 1 1<br>1 1 1<br>1 1 1<br>1 1 1 1<br>1 1 1 1<br>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4 4 - 9 6 - 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 | 13.4<br>13.1<br>12.5<br>13.0<br>10.5<br>11.3<br>12.9<br>10.6<br>11.8<br>10.9 | 7.5<br>7.6<br>7.6<br>7.6<br>7.8<br>7.8<br>7.7<br>7.7<br>7.7 | 3<br>-3<br>-5<br>-6<br>7<br>-5<br>-6<br>3<br>-6<br>3<br>-6<br>3<br>-6<br>3<br>-6<br>3<br>-6<br>3<br>-6<br>3<br>- | 6<br>11<br>10<br>-<br>9<br>10<br>8<br>10<br>7<br>8<br>8 | .8<br>1.0<br>-<br>.7<br>.8<br>.7<br>.6<br>.6 | 1.6<br>1.9<br>2.1<br>1.5<br>1.6<br>1.8<br>1.4<br>1.6<br>1.5 | 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 42<br>43<br>42<br>43<br>42<br>43<br>42<br>42<br>42<br>42<br>42<br>42 | 43<br>           | 5 - 50 - 55000000      | 0 1 0 0 0 0 0 0 0 0 0 0 1 | 3 - 3 3 3 3 3 3 4 3 3 | .0                 | 94<br>496<br>54<br>55<br>55<br>55<br>55<br>54<br>62 | 1<br>1<br>*1<br>50<br>4<br>21<br>40<br>4<br>-<br>2<br>8<br>7<br>9 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Supplied by U.S. Army Corps of Engineers U.S. Lake Survey

STATE

Minnesota

MAJOR BASIN

Western Great Lakes

MINOR BASIN

Lake Superior

STATION LOCATION

Lake Superior at

Duluth, Minnesota

| October | November | December | January | February | March      | April | May  | June   | July. | August | September |
|---------|----------|----------|---------|----------|------------|-------|------|--------|-------|--------|-----------|
|         |          |          |         |          | ,          |       |      |        |       |        |           |
| *       |          | FLOW     | ATA     | NOT      | APPLICABLE |       | LAKE | LEVELS | ONLY  |        |           |

STATE

NEW YORK

MAJOR BASIN

NORTHEAST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER HUDSON RIVER

STATION LOCATION HUDSON RIVER BELOW

POUGHKEEPSIE, NEW YORK

| DATE  SAMPLE  DATE OF ALPHA  BETA  DATE OF DETERMINATION ALPHA  BETA  DATE OF DETERMINATION ALPHA  BETA  SUSPENDED  DISSOLVED  TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                    |                                                                                                                    |                                                 |                             |                                    |       |                                                                                                  |                                                   |          | RADIOACTIVITY IN PLANKTON (dry) RADIOACTIVITY IN WATER |               |           |               |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------|------------------------------------|-------|--------------------------------------------------------------------------------------------------|---------------------------------------------------|----------|--------------------------------------------------------|---------------|-----------|---------------|-------|
| TAKEN   DETERMINE   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOTAL   SUSPENDED   TOT | DATE                                                                                                                                                                                               |                                                                                                                    |                                                 |                             | DACTIVITY IN Y                     | ATER  |                                                                                                  |                                                   |          |                                                        |               |           | GROSS ACTIVIT | Υ     |
| NARCH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NARTH   NAR |                                                                                                                                                                                                    | DATE OF                                                                                                            |                                                 |                             |                                    |       |                                                                                                  |                                                   | DETERMI- |                                                        |               | SUSPENDED | DISSOLVED     | TOTAL |
| NO.   DAY   VEAR   NORTH   DAY   PHEC    PHEC    PHEC    PHEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TAKEN                                                                                                                                                                                              | NATION                                                                                                             | SUSPENDED                                       |                             |                                    |       |                                                                                                  |                                                   |          |                                                        | <i>µµс/</i> g | μμε/Ι     | μμς/Ι         | μμε/1 |
| 10 12 60* 11 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MO. DAY YEAR                                                                                                                                                                                       | MONTH DAY                                                                                                          | μμc/l                                           | μμς/Ι                       | μμε/                               | μμς/Ι | μμε/1                                                                                            |                                                   |          |                                                        |               |           |               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MO. DAY YEAR  10 12 60* 11 9 60* 11 30 60* 12 14 60 12 28 60 1 11 61* 2 1 61* 3 15 61* 3 29 61 4 12 61* 5 10 61* 5 10 61* 5 24 61 6 14 61* 6 28 61 7 12 61 8 16 61 8 16 61 8 16 61 8 10 61 9 13 61 | MONTH DAY  11 1 21 11 29 12 12 1 18 1 27 2 16 3 22 3 27 4 12 4 27 5 15 5 7 5 7 7 31 8 7 7 31 8 7 8 9 19 9 25 10 27 | рис/1  0  1  0  1  0  1  0  1  0  0  1  1  0  0 | μμε/\ 2 - 2 - 0 - 0 - 0 - 0 | рис/I  2  3  - 2 - 0 - 1 - 2 - 0 0 | рµс/I | 1<br>3<br>0<br>3<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | μμε/1 1 3 0 0 3 0 1 0 0 3 0 0 0 0 4 2 0 2 6 12 13 |          |                                                        |               | μμε/1     | μμε/Ι         | µµс/1 |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

NEW YORK

MAJOR BASIN

NORTHEAST

MINOR BASIN

LOWER HUDSON RÍVER

STATION LOCATION HUDSON RIVER BELOW

POUGHKEEPSIE . NEW YORK

| DATE                 | <u> </u>                                                                                                        |         | ·                     | ALGAE (                                                                     | Number                | per ml.)                                                                      |             |                                                                                           |                                                                                                          | INE                                                                                  | RT<br>TOM                                                                                                                     | Γ                                           |                                                                                                    |                                  |                                                                                              | LATO                                  |                                                                                 |                              |                                 |                                         | T.                                                                      | 1                          | MICROIN                                  | VERTERS                            | ATES                         | ī              |                                                             |
|----------------------|-----------------------------------------------------------------------------------------------------------------|---------|-----------------------|-----------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------|------------------------------|---------------------------------|-----------------------------------------|-------------------------------------------------------------------------|----------------------------|------------------------------------------|------------------------------------|------------------------------|----------------|-------------------------------------------------------------|
| OF SAMPLE            |                                                                                                                 | BLUE-   | GREEN                 | GREE                                                                        | EN                    | FLAGEL<br>(Pigm                                                               |             | DIAT                                                                                      | омѕ                                                                                                      | DIA<br>SHE<br>(No. p                                                                 | LLS                                                                                                                           |                                             |                                                                                                    |                                  | SPEC<br>duction                                                                              |                                       | ND PE                                                                           |                              |                                 | 5                                       | LANKTON,<br>EATHED                                                      |                            |                                          | <u> </u>                           | T                            | TORMS          | uction<br>action                                            |
| MONTH<br>DAY<br>YEAR | TOTAL                                                                                                           | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                                                                     | FILA-<br>MENT-<br>OUS | GREEN                                                                         | OTHER       | CENTRIC                                                                                   | PENNATE                                                                                                  | CENTRIC                                                                              | PENNATE                                                                                                                       | FIRST                                       | PER.                                                                                               | SECOND#                          | PER-                                                                                         | THIRD#                                | PER.<br>CENTAGE                                                                 | FOURTH#                      | PER-                            | OTHER PER-                              | OTHER MICROPLANKTOH,<br>FUNGI AND SHRATHED<br>BACTERIA<br>(NO. per ml.) | PROTOZOA.<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)             | CRUSTACEA<br>(No. per liter)       | NEMATODES<br>(No. per liter) | (No. ner liter | DORINANT GENERA<br>(See Introduction<br>for Identification) |
| 10                   | 300<br>400<br>800<br>700<br>1200<br>300<br>600<br>100<br>1200<br>800<br>100<br>700<br>600<br>1000<br>800<br>700 | 20      | 20<br>60<br>20        | 20<br>50<br>220<br>50<br>20<br>20<br>40<br>20<br>60<br>40<br>40<br>60<br>40 |                       | 70<br>50<br>20<br>90<br>20<br>20<br>150<br>190<br>130<br>20<br>60<br>60<br>60 | 70 20 70 20 | 200<br>270<br>530<br>630<br>1100<br>290<br>5400<br>350<br>370<br>480<br>390<br>587<br>460 | 50<br>70<br>90<br>130<br>220<br>250<br>220<br>160<br>390<br>520<br>190<br>190<br>270<br>60<br>290<br>100 | 70<br>350<br>570<br>740<br>3400<br>90<br>20<br>20<br>230<br>170<br>170<br>650<br>170 | 130<br>290<br>130<br>270<br>110<br>20<br>20<br>400<br>210<br>310<br>350<br>230<br>400<br>120<br>120<br>120<br>80<br>40<br>190 | 58866689882696868969996<br>5555555555551126 | 20<br>10<br>40<br>30<br>10<br>20<br>20<br>10<br>20<br>10<br>20<br>20<br>20<br>30<br>40<br>30<br>10 | 58<br>19<br>26<br>65<br>26<br>56 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>20<br>20<br>20 | 196999689529629625868988<br>555689855 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 5629758258258295925599268559 | 10<br>10<br>10<br>10<br>10<br>* | 000000000000000000000000000000000000000 | 20<br>20<br>90<br>20<br>20<br>20<br>170                                 | 10 10 10 10 10 10 10       | 1 3 11 8 11 49 4 4 4 5 5 5 1 4 6 4 2 7 7 | 10 4 3 3 5 2 2 2 6 5 4 2 1 3 5 2 2 | 1 8 3 1 1                    |                |                                                             |

# ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

NEW YORK

MAJOR BASIN

NORTHEAST

MINOR BASIN

LOWER HUDSON RIVER

STATION LOCATION HUDSON RIVER BELOW

POUGHKEEPSIE, NEW YORK

| _ |       |                                        |                                  |                     |     |             |                                                                              |                                                             |                                                          |                                                                  |                                                |                                                         |                                                          |            | CHLOROF   | ORM EXTRA                    | CTABLES  |                                                  |                 |                   |                                                      |
|---|-------|----------------------------------------|----------------------------------|---------------------|-----|-------------|------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|------------|-----------|------------------------------|----------|--------------------------------------------------|-----------------|-------------------|------------------------------------------------------|
| _ |       |                                        | OF SA                            |                     |     | 4           |                                                                              | EX                                                          | TRACTABL                                                 | ES                                                               |                                                | · · · · · · · · · · · · · · · · · · ·                   |                                                          |            | NEUTRALS  |                              |          |                                                  |                 |                   |                                                      |
|   | HLNOW | DAY                                    | YEAR                             | MONTH               | DAY |             | GALLONS<br>FILTERED                                                          | TOTAL                                                       | CHLORO-<br>FORM                                          | ALCOHOL                                                          | ETHER<br>INSOLUBLES                            | WATER<br>SOLUBLES                                       | TOTAL                                                    | ALIPHATICS | AROMATICS | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS     | WEAK<br>ACIDS                                    | STRONG<br>ACIDS | BASES             | Loss                                                 |
| 1 |       | 2<br>7<br>9<br>16<br>15<br>3<br>9<br>3 | 60<br>61<br>61<br>61<br>61<br>61 | 11 12 1 2 2 3 5 6 8 | 11  | 1 4 4 1 9 1 | 5106<br>5372<br>5465<br>5266<br>5400<br>5893<br>5381<br>6270<br>5214<br>5296 | 172<br>203<br>243<br>273<br>245<br>150<br>152<br>211<br>184 | 50<br>58<br>66<br>62<br>73<br>86<br>62<br>53<br>97<br>84 | 122<br>145<br>177<br>211<br>172<br>110<br>88<br>99<br>114<br>100 | 1<br>2<br>3<br>3<br>1<br>0<br>3<br>1<br>5<br>2 | 10<br>12<br>15<br>11<br>15<br>8<br>15<br>12<br>18<br>17 | 16<br>18<br>21<br>27<br>26<br>17<br>21<br>19<br>29<br>26 | 2223524343 | 2223323   | 21                           | 11111022 | 7<br>8<br>9<br>8<br>9<br>5<br>8<br>7<br>14<br>13 | 5<br>5<br>8     | 1 1 1 1 1 1 1 1 2 | 10<br>12<br>12<br>8<br>15<br>6<br>9<br>8<br>22<br>14 |

STATE

NEW YORK

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN NORTHEAST

MINOR BASIN

LOWER HUDSON RIVER

STATION LOCATIONHUDSON RIVER BELOW

POUGHKEEPSIE, NEW YORK

| DATE<br>OF SAMPLE TEN                                                                                                                                  | P. DISSOLVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                                   |                                                                                                                                                                                                                      | CHLORINE                                                                | DEMAND                                    |                                       |                                    |                                                                    |                                                                                                                                                                                  | <u> </u>                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                |                    |                                      |                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------|---------------------------------------|------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONTH YEAR Centif                                                                                                                                      | OXYGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | рΗ | B,O,D,<br>mg/l                                                                                    | C.O.D.<br>mg/l                                                                                                                                                                                                       | 1-HOUR<br>mg/l                                                          | 24-HOUR<br>mg/l                           | AMMONIA-<br>NITROGEN<br>mg/l          | CHLORIDES<br>mg/l                  | ALKALINITY<br>mg/l                                                 | HARDNESS<br>mg/l                                                                                                                                                                 | COLOR<br>(scale units)                                                                                                                                                                                                                                                                                                                             | TURBIDITY<br>(scale units)                                                                                                                                                                                | SULFATES<br>mg/l                                                                                                                                                                                                                 | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml.                                                                                                                                                                                                                                              |
| 11 23 60 8<br>11 30 60 7<br>12 7 60 6<br>12 14 60 3<br>12 28 60 1<br>1 11 61 1<br>1 18 61 1<br>1 19 61 1<br>2 5 61 2<br>2 1 61 2<br>2 8 61 2<br>2 2 61 | 1 6.1<br>6.2<br>8.0<br>9 8.2<br>7 8.5<br>10.4<br>11.0<br>11.0<br>10.8<br>5.5<br>5.5<br>6.6<br>7 7 11.0<br>10.8<br>9.8<br>12.0<br>11.3<br>9.8<br>9.7<br>11.3<br>9.8<br>9.7<br>11.3<br>9.8<br>9.7<br>11.3<br>9.8<br>9.7<br>11.3<br>9.8<br>9.7<br>11.3<br>9.8<br>9.7<br>11.3<br>9.8<br>9.7<br>11.3<br>9.8<br>9.7<br>11.3<br>9.8<br>11.3<br>9.8<br>9.7<br>11.3<br>9.8<br>9.7<br>11.3<br>9.8<br>11.3<br>9.8<br>9.7<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>9.8<br>11.3<br>11.3<br>11.3<br>11.3<br>11.3<br>11.3<br>11.3<br>11 |    | 1.0<br>1.5<br>1.4<br>.6<br>1.8<br>1.3<br><br>2.0<br>2.0<br>2.0<br>1.6<br>1.9<br>2.0<br>1.3<br>1.4 | 12<br>14<br>14<br>16<br>16<br>16<br>15<br>14<br>18<br>18<br>23<br>21<br>24<br>24<br>24<br>24<br>27<br>19<br>18<br>18<br>18<br>18<br>20<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18 | 522 - 26 - 54 4 - 1 1 1 1 - 1 1 2 2 1 1 1 2 1 5 3 3 2 3 4 3 3 3 2 3 4 3 | 2 · 3 · 6 · · · · · · · · · · · · · · · · | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 6666666686666166666626666666643434 | 822018 - 9292996 - 404288744324252161488<br>4545555555444444445548 | 72<br>77<br>72<br>72<br>72<br>72<br>72<br>88<br>89<br>88<br>88<br>88<br>88<br>88<br>89<br>88<br>77<br>88<br>88<br>88<br>77<br>88<br>88<br>88<br>77<br>88<br>88<br>77<br>88<br>88 | 25<br>18<br>18<br>18<br>23<br>25<br>18<br>18<br>23<br>25<br>23<br>18<br>18<br>18<br>25<br>23<br>25<br>13<br>18<br>13<br>23<br>25<br>13<br>18<br>25<br>18<br>18<br>25<br>18<br>18<br>25<br>18<br>18<br>25<br>18<br>18<br>25<br>18<br>25<br>18<br>26<br>18<br>27<br>27<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28 | 34<br>33<br>25<br>11<br>93<br>115<br>15<br>10<br>10<br>10<br>22<br>28<br>18<br>50<br>33<br>51<br>24<br>13<br>24<br>14<br>60<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 | 18<br>19<br>13<br>18<br>18<br>18<br>20<br>14<br>30<br>18<br>13<br>12<br>15<br>15<br>20<br>18<br>12<br>21<br>21<br>22<br>23<br>23<br>24<br>26<br>18<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 |                    |                                      | 1700<br>640<br>2000<br>3900<br>800<br>5100<br>1400<br>5800<br>2700<br>2600<br>5800<br>2100<br>3100<br>3100<br>2800<br>400<br>1200<br>3100<br>2800<br>400<br>1100<br>200<br>1400<br>1300<br>1400<br>1300<br>1400<br>1300<br>1400<br>1300<br>1400<br>1300<br>1400<br>14 |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NEW YORK

MAJOR BASIN

NORTHEAST

MINOR BASIN

LOWER HUDSON RIVER

STATION LOCATIONHUDSON RIVER BELOW

POUGHKEEPSIE, NEW YORK

| <br>DAT   |     |          |                                  |                             |           |                |                | CHLORINE       | DEMAND          | AMMONIA-         |                   |          |          |                        |                            |                  |                    | TOTAL                       |                                             |
|-----------|-----|----------|----------------------------------|-----------------------------|-----------|----------------|----------------|----------------|-----------------|------------------|-------------------|----------|----------|------------------------|----------------------------|------------------|--------------------|-----------------------------|---------------------------------------------|
| <br>OF SA |     | $\dashv$ | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/l | рН        | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | NITROGEN<br>mg/l | CHLORIDES<br>mg/l | mg/I     |          | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml.                    |
| 8 2       | 2 6 |          | 25 · 8<br>25 · 5<br>24 · 8<br>-  | 4.0 4.6 4.6                 | 7.27.37.2 | 1.0            | 8 12 11        | - 5 3 V        | 3.0 2.3 2.3     | •1 •1            | - 4 5 6           | 44 44 40 | 82 84 88 | 23<br>18<br>-          | 22 22 2 2                  | 20 20 23         |                    |                             | 1600<br>2200<br>900<br>1000<br>1400<br>6900 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Green Island, New York Operated by U.S. Geological Survey STATE

New York

MAJOR BASIN

Northeast

MINOR BASIN

Lower Hudson River

STATION LOCATION

Hudson River below

Poughkeepsie, New York

| Day        | October | November | December | January | February | March  | April   | May    | June   | July   | August | September   |
|------------|---------|----------|----------|---------|----------|--------|---------|--------|--------|--------|--------|-------------|
| 1          | 8.950   | 7.500    | 11.200   | 4.840   | 5.090    | 36.600 | 19.600  | 06 700 |        |        | ····   | <del></del> |
| 2          | 7.850   | 8.800    | 9.830    | 2.990   | 3.820    | 27.000 |         | 26.700 | 8.830  | 7.910  | 6.370  | 9.140       |
| 3<br>4     | 5.340   | 9.980    | 8.680    | 2.990   | 3.740    | 23.200 | 18.900  | 24.200 | 9.670  | 6.970  | 7.180  | 7.120       |
| 4          | 7.140   | 9.440    | 6.970    | 5.420   | 3.820    |        | 17.500  | 24.800 | 11.900 | 7.110  | 6.970  | 4.700       |
| 5          | 6.410   | 9.850    | 4.880    |         |          | 23.400 | 15.800  | 21.900 | 11.900 | 7.110  | 8.210  | 5.710       |
| -          |         | ,        | 4.000    | 5.700   | 3.450    | 22.300 | 13.300  | 20.100 | 10.000 | 6.640  | 6.640  | 5.910       |
| 6          | 6.190   | 8.240    | 7.550    | 5.820   | 2.190    | 24.400 | 10,600  | 16 500 |        |        |        |             |
| 7          | 6.290   | 6.900    | 7.550    | 4.790   | 4.200    |        |         | 16.700 | 10.600 | 7.550  | 5.410  | 7.630       |
| 8          | 6.450   | 8.340    | 7.620    | 4.700   | 4.290    | 31.200 | 11.500  | 17.200 | 10.200 | 7.180  | 2.990  | 6.770       |
| 9          | 4.410   | 8.290    | 7.910    | 3.290   |          | 28.500 | 11.500  | 20.300 | 9.750  | 6.970  | 5.290  | 6.640       |
| 10         | 3.630   | 7.760    | 6.430    |         | 4.290    | 23.700 | 11.900  | 20.000 | 11.600 | 5.920  | 6.300  | 5.680       |
|            | J. 0 J. | 1.100    | 0.430    | 5.090   | 4.420    | 19.800 | 9.910   | 27.700 | 14.700 | 4.740  | 6.240  | 4.380       |
| LL .       | 5.940   | 10.100   | 5.570    | 5.250   | 4.290    | 17.200 | 17 (00  |        | - 4    |        |        | <b>3</b>    |
| L2         | 6.060   | 11.100   | 3.780    | 5.420   | 3.410    | 16.000 | 11.600  | 32.200 | 18.900 | 5.860  | 6.640  | 3.780       |
| L3<br>L4   | 5.870   | 7.880    | 5.680    | 4.950   | 1.950    |        | 19.400  | 28.300 | 14.100 | 6.430  | 5.860  | 5.860       |
| 4          | 5.830   | 6.350    | 5.570    | 4.740   |          | 14.800 | 23.800  | 25.100 | 15.200 | 5.990  | 3.860  | 6.570       |
| L5         | 5.010   | 7.890    | 9.240    |         | 4.080    | 14.200 | 28.700  | 22.000 | 16.600 | 8.760  | 2.920  | 6.180       |
|            | 7.010   | 1.090    | 9.240    | 3.950   | 4.200    | 14.100 | 22.800  | 17.100 | 17.100 | 11.900 | 4.640  | 6.430       |
| L6         | 3.120   | 7.220    | 8.600    | 3.220   | 4.380    | 14.400 | 00.100  |        |        |        |        | 0           |
| L <b>7</b> | 3.250   | 7.960    | 10.200   | 4.900   | 4.470    |        | 22.100  | 17.200 | 14.300 | 9.080  | 5.290  | 5.510       |
| L7<br>L8   | 5.680   | 8.070    | 9.830    | 4.990   | 4.160    | 13.500 | 28.400  | 19.900 | 11.900 | 9.240  | 5.570  | 4.380       |
| L9         | 5.650   | 7.940    | 7.770    | 4.650   | 4.700    | 12.100 | 28.300  | 16.000 | 10.200 | 11.000 | 5.680  | 4.160       |
| 20         | 7.280   | 5.710    | 8.210    | 4.470   |          | 11.200 | 25.100  | 14.900 | 9.830  | 10.800 | 4.460  | 5.410       |
|            | 10-00   | 2.120    | 0.210    | 4.470   | 5.880    | 10.900 | 24.200  | 13.200 | 8.600  | 8.920  | 4.200  | 6.970       |
| 21         | 10.300  | 4.110    | 8.500    | 3.820   | 10.400   | 10.400 | 20.200  | 70.000 | 0.45   |        |        |             |
| 2          | 7.170   | 6.950    | 6.600    | 2.990   | 11.100   | 11.200 |         | 12.000 | 8.680  | 8.210  | 3.530  | 7.040       |
| :3         | 5.930   | 6.970    | 6.530    | 1.920   | 12.100   | 11.200 | 21.500  | 10.100 | 17.000 | 6.060  | 5.800  | 5.920       |
| 13<br>14   | 5.510   | 6.870    | 5.700    | 4.250   | 16.200   |        | 30.800  | 10.600 | 24.700 | 5.570  | 6.300  | 3.950       |
| 5          | 8.440   | 6.480    | 4.560    | 4.160   |          | 12.700 | 40.200  | 10.100 | 23.400 | 4.510  | 6.060  | 4.380       |
|            |         | 0.100    | 4.700    | 4.100   | 34.200   | 16.100 | 38.500  | 10.200 | 16.400 | 7.480  | 5.680  | 3.740       |
| 6          | 11.900  | 6.870    | 3.030    | 4.340   | 71.800   | 18.100 | 20, 000 | 20.000 |        |        |        | 5-1.0       |
| 7          | 11.900  | 4.650    | 3.580    | 3.870   | 75.900   | 16.900 | 39.900  | 10.100 | 13.700 | 10.600 | 7.690  | 5.350       |
| 8          | 10.100  | 4.190    | 6.200    | 3.490   | 52.500   |        | 37.500  | 9.670  | 12.600 | 10.200 | 12.400 | 6.640       |
| 9          | 8.910   | 6.570    | 6.260    | 2.390   | JE. JUU  | 23.500 | 29.700  | 11.000 | 11.500 | 9.240  | 7.180  | 5.920       |
| 5          | 7.520   | 9.040    | 6.140    |         |          | 32.000 | 29.400  | 9.910  | 10.600 | 7.180  | 8.600  | 5.800       |
| Ĺ          | 4.180   | J. 0-10  |          | 1.980   |          | 31.200 | 33.400  | 10.700 | 9.490  | 4.990  | 8.760  | 3.950       |
| -          |         |          | 5.310    | 4.420   |          | 23.700 |         | 10.200 |        | 4.240  | 9.140  | 20370       |

STATE

ILLINOIS

MAJOR BASIN

UPPER MISSISSIPPI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

ILLINOIS RIVER

STATION LOCATION ILLINOIS RIVER AT

PEORIA: ILLINOIS

| DATE        |                    |           | RADIC     | ACTIVITY IN V | VATER     |           |       | RA                     | DIOAC | TIVITY IN PLAN | IKTON (dry) |              | RAD | IOACTIVITY IN W | ATER  |
|-------------|--------------------|-----------|-----------|---------------|-----------|-----------|-------|------------------------|-------|----------------|-------------|--------------|-----|-----------------|-------|
| SAMPLE      | DATE OF            |           | ALPHA     |               |           | BETA      |       | DATE<br>DETER<br>NATIO | OF    | GROSS /        | CTIVITY     |              |     | GROSS ACTIVIT   |       |
| TAKEN       | DETERMI-<br>NATION | SUSPENDED | DISSOLVED | TOTAL         | SUSPENDED | DISSOLVED | TOTAL | NATI                   | NC    | ALPHA          | BETA        | SUSPEN       | DED | DISSOLVED       | TOTAL |
| O. DAY YEAR | MONTH DAY          | μμς/Ι     | μμς/Ι     | μμε/Ι         | μμς/Ι     | μμε/Ι     | μμς/Ι | мо. 1                  | PAY   | µµс/g          | μμc/g       | <i>р</i> рс/ | 1   | μμc/l           | μμc/l |
|             |                    |           |           |               |           | _ 1       | .     |                        |       |                |             | Ì            |     |                 |       |
| 3 60        | 10 13              | 1         | 3         | 4             | 0         | 1         | 1     |                        |       |                |             | 1            |     |                 |       |
| 0 10 60     | 10 20              | 1         | 1         | 2             | 0         | 9         | 9     |                        |       |                |             |              |     |                 |       |
| 0 17 60     | 11 14              | 1         | 2         | 3             | 0         | 0         | 0     |                        | 1     |                | 1           |              |     |                 |       |
| 31 60       | 11 10              | 0         | 3         | 3             | 6         | 0         | 6     |                        |       |                |             | . !          |     |                 |       |
| 1 760       | 11 23              | 9         | 3         | 12            | 3         | 0         | 3     |                        |       |                | 1           |              |     |                 |       |
| 1 14 60     | 11 29              | 1         | 6         | 7             | 0         | 0         | 0     |                        |       |                | Į.          |              |     |                 |       |
| 1 21 60     | 12 1               | 0         | 4         | 4             | 0         | 0         | 0     |                        |       |                | ļ           |              |     |                 |       |
| 1 28 60     | 12 7               | 2         | 2         | 4             | 0         | 6         | 6     |                        |       |                |             |              |     |                 |       |
| 2 5 60      | 12 15              | 2         | 4         | 6             | 0         | 0         | 0     | 1                      |       |                | ļ           |              |     |                 |       |
| 2 12 60     | 12 28              | 1         | 4         | 5             | 0         | 0         | 0     |                        | - 1   |                |             |              |     |                 |       |
| 2 19 60     | 1 16               | 0         | 2         | 2             | 0         | 0         | 0     |                        |       |                |             | 1            |     | '               |       |
| 2 27 60     | 1 10               | 2         | 4         | 6             | 0         | 43        | 43    |                        |       |                | İ           |              |     | ļ               |       |
| 1 3 61      | 1 11               | 1         | 6         | 7             | 0         | 25        | 25    |                        | 1     |                |             | 1            |     | 1               |       |
| 1 9 61      | 1 23               | 0         | 4         | 4             | 0         | 1         | 1     |                        | 1     |                | i           | 1 (          |     |                 |       |
| 1 16 61     | 1 31               | 2         | 2         | 4             | 0         | 10        | 10    |                        | - 1   |                |             | 1 1          |     |                 |       |
| 1 23 61     | 2 7                | 0         | 2         | 2             | 0         | 0         | 0     |                        |       |                |             | 1            |     |                 |       |
| 1 30 61     | 2 17               | 2         | 2         | 4             | 0         | 8         | 8     | ı                      | - 1   |                | 1           | 1            |     |                 |       |
| 2 6 61      | 2 17               | 0         | 1 1       | 1             | 0         | 0         | 0     |                        |       |                | ľ           |              |     |                 |       |
| 2 13 61     | 3 3                | 0         | 1         | 1             | 0         | 0         | 0     |                        |       |                |             |              |     |                 |       |
| 2 27 61     | 3 20               | 0         | 1         | 1             | 0         | 0         | 0     | -                      | Į     |                | ì           | 1 1          |     |                 |       |
| 3 6 61      | 3 22               | 1         | 2         | 3             | 1         | 0         | 1     |                        | - 1   |                |             | 1 1          |     |                 |       |
| 3 13 61     | 3 29               | 2         | 0         | 2             | 0         | 21        | 21    |                        | l     |                |             | 1 1          |     |                 |       |
| 3 20 61     | 4 3                | 0         | 0         | 0             | 0         | 1         | 1     | ļ                      | j     |                | 1           |              |     |                 |       |
| 3 27 61     | 4 14               | 4         | 1         | 5             | 4         | 0         | 4     |                        | Ì     |                |             |              |     |                 |       |
| 4 10 61     | 1                  | 0         | 2         | 2             | 0         | 0         | 0     |                        |       |                |             |              |     |                 |       |
| 4 24 61     | 1                  | 1         | 0         | 1             | 0         | 0         | 0     | Ì                      |       |                |             | 1            |     |                 |       |
|             |                    | 1         | 4         | 5             | 4         | 0         | 4     |                        |       | <b>!</b>       |             |              |     |                 |       |
|             | 4                  | 2         | 3         | 5             | 2         | 0         | 2     | 1                      |       | 1              |             | 1 1          |     |                 |       |
| 5 29 61     | -                  | 1         | 0         | 1             | 0         | 17        | 17    |                        |       |                | 1           | 1 1          |     |                 |       |
| 6 12 61     | 1                  | ō         | 1         | 1             | 0         | . 8       | 8     | İ                      |       | ļ              |             |              |     |                 |       |
| 6 26 61     | 1                  | 1         | 3         | 4             | 0         | 0         | 0     | i                      |       |                |             |              |     |                 |       |
| 7 10 61     |                    | i         | i         | 2             | 10        | 0         | 10    | i                      |       | l              |             | 1 1          |     |                 |       |
| 7 17 61     | 8 29               | 1 1       | 1         | 2             | 11        | 0         | 11    |                        |       | 1              |             |              |     |                 |       |
| 8 14 61     |                    | 0         | 1         | ī             | 0         | 0         | 0     | }                      |       | 1              | 1           |              |     | 1               |       |
| 8 28 61     |                    | 1         | 1         |               | ) 0       | 8         | 8     | 1                      |       | ì              |             |              |     |                 |       |
| 9 5 61      | 9 29               | -         | _         | _             | 0         | 20        | 20    |                        |       |                |             |              |     |                 |       |
| 9 11 61     | 10 6               | -         |           | _             | 0         | 0         | 0     |                        |       |                |             |              |     |                 |       |
| 9 18 61     | 10 23              | _         | 0         | 0             | ١٠٥       | 6         | 6     |                        |       | 1              |             |              |     |                 |       |
| 9 25 61     | 10 2               | 0         | 0         | "             | 1         |           |       |                        |       | 1              |             | 1 1          |     | 1               |       |
|             |                    | 1         |           |               |           |           |       |                        |       |                |             |              |     |                 | 1     |
|             |                    |           |           |               |           |           |       |                        |       |                |             |              |     |                 |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

ILLINOIS

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

ILLINOIS RIVER

•.

STATION LOCATION ILLINOIS RIVER AT

PEORIA, ILLINOIS

| DATE                                                                                                                                                                                                                                        |                                                                                                                                      |         |                                                                          | ALGAE (                                                                                                                             | Vumbe                | per ml.)                                                   |                                                                                            | *************************************** |                                                                                                                                   | IN                                                        | ERT                                                                            | Т                                                                                                                                      |                                                                                                          |                                                |                                                                                              |                                                 |                            |                                                                                                                                              |                                                                                   |                                                                                           | 1                                                                |                      |                                                                                                                          |                              |                              |                |                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| OF SAMPLE                                                                                                                                                                                                                                   |                                                                                                                                      | BLUE-   | GREEN                                                                    | GREE                                                                                                                                | :N                   | FLAGEI<br>(Pigm                                            | LLATES<br>ented)                                                                           | DIAT                                    | омѕ                                                                                                                               | DIA                                                       | TOM<br>ELLS<br>per ml.)                                                        |                                                                                                                                        | DOMI<br>(See                                                                                             | NANT                                           | SPEC                                                                                         | IATO<br>IES A<br>for Co                         | ND PE                      | RCEN'                                                                                                                                        | TAGES                                                                             | 5                                                                                         | ROPLANKTON,<br>SHEATHED<br>ml.)                                  | 3                    | Τ                                                                                                                        | NVERTEB                      | 1                            | ORKS           | NERA<br>retion<br>ation)                                                                                                                  |
| MONTH<br>DAY<br>YEAR                                                                                                                                                                                                                        | OTAL                                                                                                                                 | соссоів | FILA-<br>MENT-<br>OUS                                                    | COCCOID                                                                                                                             | FILA-<br>MENT<br>OUS | GREEN                                                      | OTHER                                                                                      | CENTRIC                                 | PENNATE                                                                                                                           | CENTRIC                                                   | PENNATE                                                                        | FIRST#                                                                                                                                 | PER-                                                                                                     | SECOND#                                        | PER-                                                                                         | THIRD#                                          | PER.<br>CENTAGE            | FOURTH*                                                                                                                                      | PER.<br>CENTAGE                                                                   | OTHER PER-<br>CENTAGE                                                                     | OTHER MICROFLAN<br>FUNGI AND SHEATI<br>BACTERIA<br>(No. per ml.) | 0ZO                  | ROTIFIERS<br>(No. per liter)                                                                                             | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ANIMAL F | bowinant genera<br>(See Introduction<br>for Identification)                                                                               |
| 10 17 60 11 7 60 11 7 60 12 15 60 16 12 19 60 18 12 15 60 11 12 6 6 61 12 2 0 61 13 3 66 61 43 66 19 61 61 5 15 61 61 5 15 61 61 5 15 61 61 5 15 61 61 7 7 3 61 88 7 17 61 88 7 17 61 88 7 17 61 88 7 17 61 88 7 17 61 88 7 161 88 9 5 61 8 | 2900<br>7900<br>1600<br>2500<br>0400<br>4300<br>4300<br>2700<br>1300<br>3900<br>1800<br>8500<br>8500<br>8500<br>8500<br>8500<br>8500 | 40      | 90<br>130<br>440<br>70<br>90<br>290<br>1260<br>5710<br>4000<br>200<br>40 | 1300<br>680<br>840<br>1060<br>150<br>70<br>70<br>70<br>110<br>1550<br>1430<br>200<br>2150<br>6340<br>12590<br>17780<br>1510<br>1550 | 20                   | 2120<br>200<br>990<br>4200<br>2440<br>4740<br>3750<br>1860 | 630<br>800<br>530<br>400<br>110<br>20<br>70<br>110<br>60<br>620<br>190<br>210<br>590<br>40 | 1                                       | 11170<br>2070<br>380<br>570<br>310<br>2500<br>760<br>510<br>940<br>7950<br>470<br>2460<br>4000<br>12690<br>10910<br>12690<br>1430 | 2310<br>1870<br>3040<br>1410<br>680<br>470<br>1770<br>180 | 690<br>1300<br>560<br>1010<br>470<br>850<br>1140<br>1350<br>1160<br>980<br>250 | 83<br>83<br>83<br>82<br>82<br>82<br>82<br>82<br>82<br>83<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85 | 40<br>40<br>80<br>60<br>20<br>40<br>20<br>60<br>90<br>50<br>30<br>30<br>20<br>50<br>50<br>50<br>50<br>50 | 62228556892708955566688<br>9205556668855566688 | 30<br>30<br>20<br>40<br>10<br>10<br>10<br>10<br>20<br>20<br>20<br>30<br>20<br>20<br>30<br>10 | 56856636558892268666666666666666666666666666666 | 20<br>20<br>10<br>10<br>10 | 26<br>35<br>26<br>97<br>58<br>58<br>58<br>58<br>80<br>58<br>80<br>58<br>85<br>88<br>85<br>88<br>85<br>88<br>85<br>88<br>88<br>88<br>88<br>88 | 10<br>10<br>*<br>10<br>*<br>10<br>10<br>10<br>10<br>*<br>10<br>*<br>10<br>*<br>10 | 20<br>120<br>20<br>10<br>10<br>20<br>40<br>40<br>30<br>120<br>30<br>30<br>40<br>120<br>** | 130<br>40<br>90<br>20<br>20<br>20<br>40                          | 20<br>30<br>10<br>10 | 272<br>266<br>247<br>70<br>4<br>17<br>3<br>1<br>2<br>8<br>8<br>5<br>2<br>40<br>46<br>154<br>999<br>62<br>43<br>61<br>155 | 2                            |                              | 12             | -8967<br>48937<br>98937<br>4-9-7<br>329493-34933<br>84933<br>71928<br>34938927<br>51817<br>41967<br>94967<br>88967<br>4233-48-37<br>48867 |

## ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE ILLINOIS

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

ILLINOIS RIVER

STATION LOCATION ILLINOIS RIVER AT

PEORIA, ILLINOIS

|                              |          |       |       |                             |                        | TRACTABL          | EC .                   | i                   |                   | CHLOROE              | OBM EXTR     | ACTABLES          |                              |                  |               |                   |                  |                    |
|------------------------------|----------|-------|-------|-----------------------------|------------------------|-------------------|------------------------|---------------------|-------------------|----------------------|--------------|-------------------|------------------------------|------------------|---------------|-------------------|------------------|--------------------|
| BEGINN                       | OF SA    |       | ND ND |                             | E./                    | IRACIABL          | .53                    |                     |                   |                      |              | NEUTRALS          |                              | NO: ADELO        |               |                   |                  |                    |
| Month<br>PAd                 | YEAR     | HTNOM | DAY   | GALLONS<br>FILTERED         | TOTAL                  | CHLORO-<br>FORM   | ALCOHOL                | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES | TOTAL                | ALIPHATICS   | AROMATICS         | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS             | WEAK<br>ACIDS | STRONG<br>ACIDS   | BASES            | Loss               |
| 2 20<br>4 24<br>6 12<br>8 15 | 61<br>61 |       |       | 4899<br>4998<br>3446<br>195 | 378<br>314<br>515<br>* | 111<br>102<br>239 | 267<br>212<br>276<br>— | 2<br>2<br>5<br>-    | 19<br>18<br>36    | 57<br>44<br>102<br>- | 2<br>4<br>13 | 4<br>4<br>11<br>- |                              | 5<br>1<br>2<br>- | 16<br>36      | 7<br>8<br>24<br>- | 3<br>2<br>5<br>- | 8<br>12<br>31<br>- |
|                              |          |       |       |                             | *SAM                   | ,<br>IPLE NOT     | PROCES                 | SED-FLO             | W TOO L           | .OW<br>I             |              |                   |                              |                  |               |                   |                  |                    |
|                              |          |       |       |                             |                        |                   |                        |                     |                   |                      |              |                   |                              |                  |               |                   |                  |                    |
|                              |          |       |       |                             |                        |                   |                        |                     | -                 |                      |              |                   |                              |                  |               |                   | :                |                    |
|                              |          |       |       |                             |                        |                   |                        |                     |                   |                      |              |                   |                              |                  |               |                   |                  |                    |
|                              |          |       |       |                             |                        |                   |                        |                     |                   |                      |              |                   |                              |                  |               |                   |                  |                    |
|                              |          |       |       |                             |                        |                   |                        |                     |                   |                      |              |                   |                              |                  |               |                   |                  |                    |
|                              |          |       |       |                             |                        |                   |                        |                     |                   |                      |              |                   |                              |                  |               |                   |                  |                    |
|                              |          |       |       |                             |                        |                   |                        |                     |                   |                      |              |                   |                              |                  |               |                   |                  |                    |
|                              |          |       |       |                             |                        |                   |                        |                     |                   |                      |              |                   |                              |                  |               |                   |                  |                    |
|                              |          |       |       |                             |                        |                   |                        |                     |                   |                      |              |                   |                              |                  | -             |                   |                  |                    |
|                              |          |       |       |                             |                        |                   |                        |                     |                   |                      |              |                   |                              |                  |               |                   |                  |                    |
|                              |          |       |       |                             |                        |                   |                        |                     |                   |                      |              |                   |                              |                  |               |                   |                  | <u> </u>           |

STATE

ILLINOIS

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

ILLINOIS RIVER

STATION LOCATIONILLINOIS RIVER AT

PEORIA, ILLINOIS

| DATE                                                                                                                                                                                                                               |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                |                | CHLORINE       | DEMAND          |                              |                                                    | 1                                                                                                                          |                                                                                                                                                     | 1                                                                                                  |                                          |                  | 1                  |                                      |                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------|----------------|----------------|-----------------|------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------|------------------|--------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DAY YEAR STANK                                                                                                                                                                                                                     | TEMP.<br>(Degrees<br>Centigrade)                                                                                                                                                      | DISSOLVED<br>OXYGEN<br>mg/I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Нq                        | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l                                  | ALKALINITY<br>mg/l                                                                                                         | HARDNESS<br>mg/l                                                                                                                                    | COLOR<br>(scale units)                                                                             | TURBIDITY<br>(scale units)               | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 mil.                                                                                                                                  |
| 10 3 60<br>10 60<br>10 10 36 61<br>2 6 61<br>2 2 7 61<br>3 20 61<br>2 2 3 61<br>2 2 7 61<br>3 2 61<br>4 10 61<br>5 12 61<br>6 1 61<br>8 21 61<br>8 21 61<br>8 21 61<br>8 21 61<br>8 21 61<br>8 21 61<br>9 18 61<br>9 18 61<br>9 25 | 18.5<br>19.0<br>13.5<br>2.2<br>2.0<br>5.0<br>9.5<br>6.0<br>10.5<br>8.8<br>7.0<br>20.0<br>18.8<br>27.5<br>26.4<br>25.0<br>22.7<br>27.5<br>26.0<br>27.2<br>27.2<br>27.2<br>27.2<br>20.0 | 9.4<br>10.9<br>8.6<br>9.9<br>13.7<br>12.4<br>13.7<br>10.5<br>10.6<br>12.1<br>12.5<br>14.2<br>8.4<br>17.5<br>14.2<br>8.4<br>10.7<br>17.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5 | 8.5.3.3.4.7.7.0.0.0.0.9.1 |                |                |                |                 |                              | 4444431872556-7113873114788845<br>2222223311478845 | 164<br>168<br>168<br>170<br>194<br>180<br>174<br>172<br>186<br>176<br>188<br>158<br>158<br>158<br>154<br>156<br>162<br>130 | 278<br>282<br>270<br>2794<br>288<br>2692<br>29948<br>299648<br>29969<br>29948<br>29000<br>258<br>2000<br>258<br>2000<br>2000<br>2000<br>2000<br>200 | 25<br>25<br>25<br>25<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 7005005005005005005005005005005005005005 |                  |                    |                                      | 300<br>100<br>140<br>200<br>190<br>86<br>190<br>140<br>100<br>950<br>950<br>950<br>350<br>360<br>100<br>160<br>200<br>400<br>1900<br>1900<br>1200<br>14000 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Kingston Mines, Illinois Operated by U.S. Geological Survey STATE

Illinois

MAJOR BASIN

Upper Mississippi River

MINOR BASIN

Illinois River

STATION LOCATION

Illinois River at

Peoria, Illinois

| Day                              | October                                            | November                                   | December                                           | January                                            | February                 | March                                                    | April                                          | May                                                | June                                      | July                                               | August                                             | September                                      |
|----------------------------------|----------------------------------------------------|--------------------------------------------|----------------------------------------------------|----------------------------------------------------|--------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------------------------|
| 1                                | 6.440                                              | 6.650                                      | 7.460                                              | 8.200                                              | 3.500                    | 8.760                                                    | 15.500                                         | 25.200                                             | 8.190                                     | 7.460                                              | 7.120                                              | 5.210                                          |
| 2                                | 6.300                                              | 7.170                                      | 6.900                                              | 7.500                                              | 2.300                    | 8.130                                                    | 15.400                                         | 24.800                                             | 8.790                                     | 6.820                                              | 7.760                                              | 5.370                                          |
| 3                                | 6.300                                              | 7.170                                      | 7.300                                              | 7.000                                              | 4.000                    | 7.790                                                    | 15.500                                         | 24.000                                             | 8.770                                     | 7.120                                              | 9.060                                              | 5.660                                          |
| 4                                | 6.350                                              | 7.350                                      | 7.420                                              | 6.700                                              | 4.800                    | 6.300                                                    | 15.200                                         | 23.700                                             | 9.070                                     | 7.520                                              | 10.100                                             | 7.220                                          |
| 5                                | 6.150                                              | 7.070                                      | 7.250                                              | 7.000                                              | 4.820                    | 6.300                                                    | 12.500                                         | 22.800                                             | 8.630                                     | 8.100                                              | 10.800                                             | 8.850                                          |
| 6                                | 5.800                                              | 7.580                                      | 8.130                                              | 7.200                                              | 4.100                    | 7.190                                                    | 10.300                                         | 21.800                                             | 9.070                                     | 7.400                                              | 11.000                                             | 8.950                                          |
| 7                                | 5.870                                              | 7.420                                      | 8.520                                              | 7.200                                              | 4.440                    | 7.270                                                    | 9.540                                          | 21.600                                             | 9.020                                     | 7.090                                              | 10.200                                             | 9.080                                          |
| 8                                | 5.630                                              | 6.910                                      | 8.800                                              | 6.600                                              | 5.040                    | 10.100                                                   | 9.610                                          | 21.100                                             | 9.350                                     | 7.440                                              | 10.300                                             | 8.950                                          |
| 9                                | 5.070                                              | 7.840                                      | 8.260                                              | 6.400                                              | 4.100                    | 12.400                                                   | 10.000                                         | 20.800                                             | 10.500                                    | 7.160                                              | 10.000                                             | 7.950                                          |
| 10                               | 4.670                                              | 7.530                                      | 8.150                                              | 6.800                                              | 4.890                    | 11.300                                                   | 9.970                                          | 20.200                                             | 9.950                                     | 7.350                                              | 9.610                                              | 7.870                                          |
| 11                               | 4.870                                              | 7.070                                      | 7.850                                              | 6.400                                              | 4.820                    | 11.600                                                   | 9.600                                          | 19.600                                             | 10.200                                    | 7.220                                              | 8.910                                              | 7.740                                          |
| 12                               | 5.160                                              | 7.090                                      | 8.270                                              | 6.800                                              | 5.570                    | 12.200                                                   | 10.600                                         | 18.400                                             | 10.700                                    | 6.900                                              | 10.400                                             | 7.360                                          |
| 13                               | 5.540                                              | 7.420                                      | 7.730                                              | 7.000                                              | 6.240                    | 14.200                                                   | 10.500                                         | 17.400                                             | 12.600                                    | 7.220                                              | 10.800                                             | 8.820                                          |
| 14                               | 5.130                                              | 7.250                                      | 7.610                                              | 6.950                                              | 5.630                    | 17.500                                                   | 9.750                                          | 16.900                                             | 13.500                                    | 6.880                                              | 9.610                                              | 21.200                                         |
| 15                               | 6.390                                              | 7.090                                      | 7.950                                              | 6.950                                              | 6.280                    | 21.000                                                   | 10.400                                         | 16.500                                             | 14.100                                    | 6.840                                              | 7.960                                              | 23.000                                         |
| 16                               | 7.200                                              | 7.660                                      | 8.080                                              | 6.770                                              | 6.280                    | 20.600                                                   | 11.100                                         | 17.400                                             | 15.000                                    | 6.540                                              | 7.570                                              | 23.000                                         |
| 17                               | 6.770                                              | 8.360                                      | 7.650                                              | 5.850                                              | 6.980                    | 20.200                                                   | 10.700                                         | 16.400                                             | 15.800                                    | 6.730                                              | 7.330                                              | 22.100                                         |
| 18                               | 6.380                                              | 8.520                                      | 7.520                                              | 4.960                                              | 7.700                    | 20.200                                                   | 10.600                                         | 16.700                                             | 14.400                                    | 6.650                                              | 7.160                                              | 21.000                                         |
| 19                               | 5.850                                              | 8.090                                      | 7.240                                              | 4.960                                              | 7.520                    | 20.000                                                   | 10.500                                         | 16.300                                             | 10.300                                    | 5.460                                              | 7.060                                              | 19.900                                         |
| 20                               | 5.600                                              | 7.950                                      | 6.960                                              | 4.910                                              | 7.660                    | 19.800                                                   | 11.300                                         | 15.900                                             | 9.550                                     | 5.780                                              | 6.740                                              | 18.800                                         |
| 21                               | 5.520                                              | 8.110                                      | 7.000                                              | 4.800                                              | 8.520                    | 19.000                                                   | 15.700                                         | 16.100                                             | 8.720                                     | 6.180                                              | 6.630                                              | 16.300                                         |
| 22                               | 5.440                                              | 7.340                                      | 7.000                                              | 4.700                                              | 8.650                    | 18.800                                                   | 18.900                                         | 16.100                                             | 7.420                                     | 5.250                                              | 6.550                                              | 9.720                                          |
| 23                               | 5.870                                              | 7.650                                      | 6.600                                              | 4.500                                              | 9.510                    | 19.100                                                   | 20.700                                         | 15.100                                             | 7.230                                     | 5.860                                              | 6.090                                              | 12.300                                         |
| 24                               | 5.510                                              | 7.240                                      | 6.600                                              | 4.500                                              | 10.600                   | 19.500                                                   | 21.200                                         | 11.200                                             | 7.120                                     | 6.850                                              | 5.960                                              | 23.100                                         |
| 25                               | 5.080                                              | 7.870                                      | 7.000                                              | 4.300                                              | 10.900                   | 19.000                                                   | 21.600                                         | 4.890                                              | 6.610                                     | 8.240                                              | 6.140                                              | 28.200                                         |
| 26<br>27<br>28<br>29<br>30<br>31 | 5.540<br>5.370<br>5.470<br>5.270<br>5.270<br>6.470 | 7.070<br>*7.240<br>8.420<br>8.130<br>7.950 | 8.000<br>8.850<br>8.720<br>8.710<br>8.870<br>9.050 | 4.500<br>4.500<br>4.500<br>4.300<br>4.500<br>4.300 | 9.910<br>10.200<br>9.910 | 19.000<br>17.500<br>19.500<br>19.900<br>19.500<br>16.500 | 22.100<br>23.400<br>25.200<br>24.900<br>25.300 | 4.340<br>5.360<br>5.530<br>6.880<br>7.200<br>7.340 | 7.100<br>7.900<br>7.290<br>7.070<br>7.870 | 8.340<br>8.750<br>8.750<br>8.800<br>9.000<br>7.950 | 5.900<br>5.900<br>6.140<br>5.270<br>5.160<br>5.130 | 30.200<br>33.600<br>36.900<br>38.300<br>35.200 |

STATE

WEST VIRGINIA

MAJOR BASIN

OHIO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

KANAWHA RIVER

STATION LOCATION KANAWHA RIVER AT

WINFIELD DAM, WEST VIRGINIA

| DATE         |                     |           | RADIO     | ACTIVITY IN | WATER     | ····      |       |      | RADIOAC                     | TIVITY IN PLA | NKTON (dry) |          | RAD  | IOACTIVITY IN W | ATER          |
|--------------|---------------------|-----------|-----------|-------------|-----------|-----------|-------|------|-----------------------------|---------------|-------------|----------|------|-----------------|---------------|
| SAMPLE       | DATE OF<br>DETERMI- |           | ALPHA     |             |           | BETA      |       | D    |                             |               | ACTIVITY    | 1 .      |      | GROSS ACTIVITY  |               |
| TAKEN        | NATION              | SUSPENDED | DISSOLVED | TOTAL       | SUSPENDED | DISSOLVED | TOTAL | ן פו | ATE OF<br>ETERMI-<br>IATION | ALPHA         | BETA        | SUSPE    | NDED | DISSOLVED       | TOTAL         |
| MO. DAY YEAR | MONTH DAY           | μμc/l     | μμc/l     | μμε/        | μμε/Ι     | μμc/l     | μμς/Ι | М    | O. DAY                      | μμc/g         | μμc/g       | μμ       | c/I  | μμε/            | μ <b>μ</b> ε/ |
| 0 5 60       | 10 17               |           | _         | _           | 5         | 3         | 8     | 1    |                             |               |             |          |      |                 |               |
| 0 19 60      | 11 14               | _         | _         | _           | l ó l     | ō         | ől    | l    | -                           |               |             | }        |      | . 1             |               |
| 1 2 60       | 11 21               | _         | _         | -           |           | ŏ         | ĭ     |      |                             |               | 1           | 1 1      |      |                 |               |
| 1 10 60      | 11 28               | ا ہ       |           | 1           |           |           |       |      |                             |               |             | 1 1      |      |                 |               |
| 16 60        | 11 30               | _         | 1         |             | 0         | 0         | 0     |      |                             |               |             |          | [    | 1               |               |
|              |                     | i         | 1         | -           | 0         | 0         | 0     |      |                             |               | 1           | <b>!</b> |      | ĺ               |               |
| 23 60        | 12 1                | -         | -         | -           | 0         | 2         | 2     |      |                             |               |             | 1        | 1    |                 |               |
| 2 1 60       | 12 20               | · -       | -         | -           | 0         | 5         | 5     | ŀ    |                             |               |             | 1 1 .    | - 1  |                 |               |
| 2 8 60       | 12 29               | -         | -         | -           | 0         | 0         | 0     |      |                             |               |             |          |      |                 |               |
| 2 22 60      | 1 12                | -         | -         | -           | 0 1       | 0         | ا ہ   |      |                             |               |             | 1 1      |      | ŀ               |               |
| 2 29 60      | 1 23                | -         |           | -           | Ō         | o l       | · ŏ   |      | İ                           |               |             |          | - 1  |                 |               |
| 1 5 61       | 1 20                | _         | _         | -           |           | 1         | ĭ     |      |                             |               |             |          | ľ    |                 |               |
| 1 11 61      | 1 27                | 0         | 1         | 1           |           |           |       | - 1  | 1                           |               |             | <u> </u> |      | ļ               |               |
| 1 18 61      |                     | 1         |           |             | 1 -       | 0         | 0     |      |                             |               |             |          |      | į               |               |
|              | 2 1                 |           | -         | _           | 0         | 0         | 0     |      |                             |               |             |          | - 1  |                 |               |
| 1 26 61      | 2 8                 | -         | -         | -           | 0         | 0         | 0     | - 1  |                             |               |             | ļ i      | Ì    | i               |               |
| 2 1 61       | 29                  | -         | -         | -           | 0         | 0         | 0     | [    |                             |               |             |          |      |                 |               |
| 2 761        | 2 23                | -         | -         | -           | 0         | 0         | 0     | - 1  |                             |               |             | l i      |      |                 |               |
| 2 16 61      | 3 3                 | 3         | 0         | 3           | 4         | 0         | 4     | 1    |                             |               |             |          | 1    |                 |               |
| 2 23 61      | 3 8                 |           | _         | -           | i         | ŏ         | i     | ŀ    | - 1                         |               |             |          |      |                 |               |
| 3 3 61       | 3 20                | _         | _         | _           | ō         | ŏ         | ô     | - 1  |                             |               | }           |          |      |                 |               |
| 3 11 61      | 3 28                | _         |           |             | - 1       | - 1       | _     |      |                             |               |             |          | ]    |                 | •             |
|              |                     |           | -         | ~           | 0         | o         | 0     |      |                             |               |             |          | ŀ    |                 |               |
| 3 15 61      | 4 3                 | 0         | 0         | 0           | 0         | 0         | 0     |      |                             |               |             |          |      |                 |               |
| 3 23 61      | 4 13                | -         | - }       | -           | 2         | 0         | 2     |      | ļ                           |               |             |          |      |                 |               |
| + 25 61*     | 5 22                | 0         | 0         | 0           | 0         | 0         | 0     |      |                             |               |             |          | 1    |                 |               |
| 2 61*        | 6 15                | 0         | 0         | 0           | 0         | o l       | ٥     |      | İ                           |               |             |          | İ    |                 |               |
| 28 61*       | 7 21                | 0         | 0         | 0           | 0         | οl        | ٥l    | i    |                             |               |             |          |      |                 |               |
| 3 61*        | 8 29                | ž         | ĭ         | 3           | 4         | اة        | 4     |      |                             |               |             |          | -    | İ               |               |
| 31 61*       | 9 19                | ō         | ō         | Õ           |           | اة        |       |      |                             |               |             |          |      |                 |               |
| 6 61         |                     | _         | _         | _           |           | - 1       | 0     |      |                             |               |             |          |      |                 |               |
|              |                     | l         |           |             | 2         | 7         | 9     |      |                             |               |             |          |      |                 |               |
| 13 61        | 10 30               | -         | -         | -           | 5         | 5         | 10    |      |                             |               |             |          |      | 1               |               |
| 21 61        | 10 3                | -         | -         | -           | 6         | 1         | 7     | 1    |                             |               |             |          |      |                 |               |
| 28 61        | 10 12               | 0         | 0         | 0           | 3         | 9         | 12    | ŀ    |                             |               |             |          |      |                 |               |
|              |                     | 1         |           |             |           | -         |       | - 1  | i                           |               |             |          | i    |                 |               |
|              |                     | 1         | 1         |             |           |           |       |      |                             |               |             |          |      |                 |               |
|              |                     |           |           |             |           |           | ı     |      |                             |               |             |          |      |                 |               |
|              |                     | 1         |           |             |           | 1         |       | - 1  |                             |               |             |          | ŀ    |                 |               |
|              | İ                   | 1         | i         |             |           | 1         |       | - 1  |                             |               |             |          | - 1  | 1               |               |
|              |                     |           | ļ         |             |           |           | 1     | - 1  | 1                           |               |             |          |      |                 |               |
|              |                     | i         |           |             |           | 1         | j     |      |                             |               |             |          |      |                 |               |
|              | ı                   | ļ         |           |             |           |           |       |      |                             |               |             |          | 1    |                 |               |
|              |                     | ĺ         |           |             |           |           |       |      |                             |               |             | 1        |      | ſ               |               |
|              | 1                   | ļ         | İ         | ļ           |           |           | 1     |      | - 1                         |               |             |          |      |                 |               |
|              |                     |           |           | İ           |           |           |       |      |                             |               |             | l        |      |                 |               |
| 1            |                     |           |           |             |           |           |       |      | 1                           |               |             | 1        | l l  |                 |               |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

WEST VIRGINIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

KANAWHA RIVER

STATION LOCATION KANAWHA RIVER AT

WINFIELD DAM, WEST VIRGINIA

|                      | r                                                                                | <del></del> |                       | ALGAE (                                                                 | Vumber                | ner ml )                                                                 | <del></del>    |                                                                                                                        |                                                                                                 | INE                                              | DT                                  |                           |                                              |                |                                  |                                                                           |                               |                                             |                 |                            | T                                                              | ,                         |                                          |                              |                              |                  |                                                             |
|----------------------|----------------------------------------------------------------------------------|-------------|-----------------------|-------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------|---------------------------|----------------------------------------------|----------------|----------------------------------|---------------------------------------------------------------------------|-------------------------------|---------------------------------------------|-----------------|----------------------------|----------------------------------------------------------------|---------------------------|------------------------------------------|------------------------------|------------------------------|------------------|-------------------------------------------------------------|
| DATE<br>OF SAMPLE    |                                                                                  | BLUE-       | GREEN                 | GREE                                                                    |                       | FLAGEL<br>(Pigma                                                         | LATES          | DIAT                                                                                                                   | омѕ                                                                                             | INE<br>DIA<br>SHE<br>(No. p                      | TÒM<br>LLS<br>er ml.)               |                           | DOMI<br>(See                                 | NANT<br>Introd | SPEC                             | ATOI<br>IES AI<br>for Co                                                  | ND PE                         | RCEN'<br>ntificat                           | TAGES<br>ion*)  |                            | LANKTOR,<br>IEATHED<br>IJ.)                                    |                           | MICROIN                                  |                              | $\overline{}$                | T TORKE          | luction<br>cation)                                          |
| MONTH<br>DAY<br>YEAR | TOTAL                                                                            | COCCOID     | FILA-<br>MENT-<br>OUS | COCCOID                                                                 | FILA-<br>MENT-<br>OUS | GREEN                                                                    | OTHER          | CENTRIC                                                                                                                | PENNATE                                                                                         | CENTRIC                                          | PENNATE                             | FIRST#                    | PER.<br>CENTAGE                              | SECOND®        | PER-                             | тнівр                                                                     | PER-<br>CENTAGE               | FOURTH                                      | PER-<br>CENTAGE | OTHER PER-                 | OTHER BICHOPLANKTOR, FUNGI AND SHEATHED RACTERIA (No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)             | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ANIMAL FOR | DOBINANT GENERA<br>(See Introduction<br>for Identification) |
| 10                   | 200<br>300<br>500<br>100<br>200<br>200<br>200<br>200<br>200<br>500<br>1200<br>12 | 20 20 20    | 40<br>20<br>60        | 90<br>200<br>170<br>60<br>2500<br>2120<br>60<br>20<br>310<br>700<br>600 |                       | 110<br>70<br>20<br>60<br>20<br>40<br>170<br>20<br>20<br>80<br>950<br>360 | 20<br>20<br>40 | 50<br>180<br>250<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>60<br>70<br>80<br>930<br>560<br>70<br>750<br>410<br>1990 | 20<br>50<br>580<br>130<br>160<br>270<br>440<br>490<br>170<br>250<br>600<br>1680<br>1390<br>1590 | 40<br>20<br>130<br>20<br>130<br>120<br>250<br>20 | 50<br>110<br>70<br>210<br>850<br>40 | 26<br>27<br>64<br>92<br>2 | 40<br>40<br>20<br>20<br>20<br>30<br>10<br>30 | 28<br>65<br>28 | 20<br>10<br>10<br>10<br>20<br>10 | 27<br>28<br>2<br>65<br>62<br>36<br>36<br>27<br>58<br>89<br>50<br>70<br>89 | 10 10 10 10 10 10 10 * * * 10 | 27<br>26<br>9<br>47<br>47<br>62<br>92<br>26 | 10<br>10<br>10  | 40<br>30<br>60<br>50<br>60 | 40<br>70<br>90<br>110<br>70<br>400<br>1100<br>5960<br>20       | 10                        | 31<br>1<br>2<br>93<br>2<br>39<br>73<br>1 | 16                           | 4 3 1                        | 1                | 4<br>4<br>4<br><br><br>4-9<br>4-9<br>41-6-<br>4186-         |

# ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

WEST VIRGINIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

KANAWHA RIVER

STATION LOCATION KANAWHA RIVER AT

WINFIELD DAM, WEST VIRGINIA

|                                                                                                                              |                                                                                                       |              |                                                                                                   |                                                                                             |                                                                           |                                                                        |                                                                                |                                                                  | CIII 000                                                       | 0011                                                                  |                                                                        |                                                                           |                 |                                                     |                                                                       |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------|-----------------------------------------------------|-----------------------------------------------------------------------|
| DATE OF SAMPLE                                                                                                               |                                                                                                       | E            | XTRACTABI                                                                                         | _ES                                                                                         |                                                                           |                                                                        |                                                                                |                                                                  | NEUTRALS                                                       | ORM EXTR                                                              | ACTABLES                                                               | <del></del>                                                               | 7               |                                                     |                                                                       |
| BEGINNING END                                                                                                                | GALLON<br>FILTERE                                                                                     |              | CHLORO-<br>FORM                                                                                   | ALCOHOL                                                                                     | ETHER<br>INSOLUBLES                                                       | WATER<br>SOLUBLES                                                      | TOTAL                                                                          | ALIPHATICS                                                       | AROMATICS                                                      | OXYGEN-<br>ATED<br>COMPOUNDS                                          | LOSS                                                                   | WEAK<br>ACIDS                                                             | STRONG<br>ACIDS | BASES                                               | Loss                                                                  |
| 2 1 61 2<br>2 24 61 3<br>3 15 61 3 2<br>4 5 61 4 1<br>5 16 61 5 2<br>6 14 61 6 2<br>7 13 61 7 2<br>8 10 61 8 1<br>9 7 61 9 1 | 29 4120<br>8 4730<br>2 3070<br>2 3070<br>23 4800<br>4 4220<br>23 5710<br>22 5930<br>20 5050<br>7 3010 | 1018<br>1336 | 2239<br>893<br>1194<br>710<br>934<br>118<br>219<br>204<br>148<br>376<br>213<br>666<br>1024<br>780 | 143<br>125<br>142<br>119<br>95<br>166<br>107<br>106<br>68<br>112<br>44<br>191<br>110<br>182 | 0<br>18<br>12<br>21<br>19<br>1<br>7<br>12<br>5<br>8<br>4<br>20<br>10<br>8 | 112<br>71<br>96<br>57<br>43<br>43<br>27<br>49<br>26<br>87<br>113<br>78 | 672<br>348<br>609<br>376<br>551<br>78<br>68<br>180<br>117<br>226<br>440<br>406 | 13<br>10<br>24<br>15<br>17<br>14<br>9<br>7<br>7<br>7<br>13<br>12 | 108<br>31<br>91<br>60<br>94<br>17<br>7<br>36<br>14<br>25<br>61 | 363<br>212<br>353<br>270<br>39<br>54<br>50<br>106<br>82<br>185<br>236 | 188<br>95<br>141<br>68<br>170<br>6<br>23<br>14<br>6<br>29<br>114<br>97 | 45<br>27<br>36<br>36<br>37<br>8<br>11<br>10<br>30<br>19<br>40<br>31<br>39 | 18<br>24        | 457<br>246<br>91<br>463<br>840<br>146<br>384<br>232 | 1343<br>3843<br>393<br>170<br>252<br>157<br>458<br>820<br>2468<br>201 |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

WEST VIRGINIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

KANAWHA RIVER

STATION LOCATIONKANAWHA RIVER AT

WINFIELD DAM, WEST VIRGINIA

|       | DATE<br>SAMI |    |                                  |                             |            |                |                | CHLORINE       | DEMAND          |                              |                   |                    |                  |                        |                            |                  |                    |                             |                          |
|-------|--------------|----|----------------------------------|-----------------------------|------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|----------------------------|------------------|--------------------|-----------------------------|--------------------------|
| MONTH | DAY          | _  | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/I | Hq         | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/I | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL DISSOLVED SOLIDS mg/I | COLIFORMS<br>per 100 ml. |
|       | 17           | 60 | 21.0                             | •0                          | 7.1        | 16.2           | 52             | -              |                 | 3.1                          | 183               | 64<br>68           | 116<br>121       | 20<br>20               | 20<br>20                   | 48<br>62         | -                  | 178<br>162                  | -                        |
| 10    | 20           | 60 | 21.5                             | •0<br>•0                    | 7.8<br>7.5 | 7.1<br>10.0    | 62<br>76       | _              | -               | 3.1<br>1.4                   | 112<br>32         | 47                 | 62               | 20                     | 20                         | 28               | -                  | 168                         | _                        |
|       | 10           | 60 | 12.0                             | .0                          | 7.4        | 24.6           | 52             | _              | -               | 3.0                          | 38                | 48                 | 68               | 20                     | 2                          | 26               | -                  | 172                         | _                        |
| 11    | 18           | 60 | 13.0                             | 6.3                         | 6.7        | 4.1            | 52             |                | -               | • 8                          | 43                | 42                 | 120              | 20                     | 2                          | 24               | -                  | 132                         | -                        |
| 11    | 23           | 60 | 14.0                             | .8                          | 6.7        | 4.2            | 38             | -              | -               | 2.2                          | 46                | 43                 | 116              | -20                    | 2                          | 26               | -                  | 148                         | -                        |
| 12    | 2<br>7       | 60 | 10.1                             | 1.0                         | 6.9        | 8.8<br>6.2     | 32<br>40       | _              | -               | 3 • 8<br>3 • 2               | 62<br>58          | 49<br>50           | 114<br>130       | 10<br>20               | 4 2                        | 57<br>28         | _                  | 192<br>221                  | _                        |
| 12    | 14           | 60 | 6.0                              | 1.0                         | 7.0<br>7.0 | 6.8            | 22             | _              | -               | 4.6                          | 68                | 58                 | 132              | 10                     | 2                          | 96               | _                  | 226                         | _                        |
| 12    | 22           | 60 | 3.0                              | 8.3                         | 6.8        | 5.5            | 19             | _              | _               | 2.0                          | 35                | 49                 | 96               | 20                     | 20                         | 19               | _                  | 186                         | _                        |
| 12    | 30           | 60 | 3.0                              | 9.2                         | 7.1        | 9.0            | 16             | -              | -               | 5.4                          | 56                | 50                 | 108              | 10                     | 2                          | . 48             | -                  | 188                         | -                        |
| 1     | 5            | 61 | 3.0                              | 12.1                        | 6.9        | 9.1            | 51             |                | -               | 1.6                          | 26                | 42                 | 56               | 10                     | 2                          | 19               | _                  | 152                         | _                        |
|       | 10           | 61 | 3.9                              | 11.7                        | 7 • 4      | 7.2            | 24             | -              | -               | 2 • 4                        | 23<br>22          | 32<br>39           | 72<br>60         | 20                     | 2                          | 24<br>24         | _                  | 158<br>143                  | _                        |
| 1     | 18<br>27     | 61 | 3.9<br>1.5                       | 8.0<br>8.6                  | 7.0<br>7.0 | 7.5<br>11.7    | 48<br>16       | -              | -               | 3.2                          | 28                | 32                 | 64               | 20                     | 2                          | 24               | _                  | 162                         | _                        |
| 2     | 1            | 61 | -                                | "-                          | ,          |                | -              | _              | _               |                              | _                 | -                  | _                |                        | _                          |                  | -                  |                             | 10                       |
| 2     | 2            | 61 | 3.9                              | 9.0                         | 6.9        | 9.1            | 16             | -              | -               | 1.0                          | 28                | 34                 | 68               | 20                     | 2                          | 24               | -                  | 132                         | -                        |
| 2     | 8            | 61 | 3 • 2                            | 11.6                        | 7.0        | 3.5            | 44             | -              | -               | 3.0                          | 38                | 39                 | 100              | 20                     | 2                          | 28               | -                  | 168                         |                          |
| 2 2   | 9            | 61 | 3.5                              | 11 6                        | 7.1        | 6 6            | 120            | _              | _               | 2.2                          | 14                | 25                 | -<br>50          | 20                     | 75                         | 48               |                    | 184                         | 330                      |
| 3     | 28           | 61 | 4.2                              | 11.4                        | 7.2        | 6.6<br>7.2     | 120            | _              | _               | 2.2                          | 32                | 42                 | 62               | 20                     | 22                         | 24               | _                  | 184                         | 6700                     |
| 3     | 9            | 61 | 4.8                              | 10.3                        | 6.9        | 2.6            | 11             | _              | _               | 2.0                          | 22                | 16                 | 56               | 20                     | 120                        | 24               | _                  | 191                         | 23000                    |
| 3     | 15           | 61 | 4.8                              | 11.0                        | 6.7        | 5.0            | 36             | -              | -               | 1.2                          | 26                | 16                 | 52               | 20                     | 10                         | 19               | -                  | 167                         | -                        |
|       | 24           | 61 | 8.0                              | 11.0                        | 7.0        | 3.5            | 3              | -              | -               | 1.0                          | 32                | 30                 | 60               | 20                     | 20                         | 19               | -                  | 161                         | -                        |
|       | 29           | 61 | -                                | 9•7                         | 6.7        | 4.1            | -              | -              | -               | 1.2                          | 18                | 17                 | 66               | 20                     | 25                         | 19               | _                  | 185                         | 500                      |
|       | 30<br>14     | 61 | 9•2                              | 10.1                        | 7.3        | 3.0            | 9              | _              | _               | 2.2                          | 32                | 42                 | 74               | 20                     | 10                         | 28               | _                  | 138                         | 300                      |
| 4     | 19           | 61 | 10.0                             | 10.9                        | 7.0        | 4.4            |                | _              | _               | 1.0                          | 14                | 25                 | 50               | 20                     | 10                         | 28               | _                  | 132                         | 6800                     |
|       | 26           | 61 | 12.4                             | 8.3                         | 4.2        | 4.5            | -              | -              | _               | • 4                          | 14                | 2                  | 54               | 10                     | 10                         | 48               | -                  | 126                         | _                        |
|       | 26           | 61 | 20.0                             | 1.4                         | 6.6        | 6.1            | 29             | -              | -               | 1.2                          | 29                | 34                 | 80               | 10                     | 10                         | 48               | -                  | 188                         | -                        |
|       | 31           | 61 | 21.0                             | • 6                         | 6.8        | 6.2            | 32             | -              | -               | 1.8                          | 42                | 51                 | 84               | 10                     | 20                         | 48               | _                  | 162                         | -                        |
| 6     | 7<br>14      | 61 | 22 <b>.</b> 0<br>24 <b>.</b> 0   | 3.8                         | 6.6<br>6.5 | 4.7            | 29<br>34       | _              | _               | 2.8                          | 42<br>20          | 49<br>36           | 96<br>54         | 10                     | 20<br>10                   | 10<br>28         | _                  | 194<br>163                  | _                        |
| 6     | 28           | 61 | 25.0                             | 3.0                         | 7.0        | 6.2            | 17             | · _            | _               | 1.8                          | 23                | 42                 | 82               | 10                     | 2                          | 28               | _                  | 172                         | *170                     |
| 7     | 6            | 61 | 25.0                             | .0                          | 6.9        | 6.4            | 19             | _              |                 | 3.0                          | 22                | 30                 | 72               | 10                     | 2                          | 48               | -                  | 172                         | -                        |
|       | 27           | 61 | _                                | -                           | -          | -              | _              | -              | -               | _                            | -                 | -                  | -                | -                      | -                          | -                | -                  | _                           | 44                       |
| 8     | 10           | 61 | 28.0                             | •0                          | 6.8        | 6.3            | 24             | -              | - 1             | 2.0                          | 28                | 34                 | 78               | 10                     | 2                          | 24               | _                  | 181                         | 570                      |
|       | 1.7          | 61 | 28.0                             | • 5                         | 6.2        |                | 57             | -              | -               | 2.0                          | 28                | 40<br>47           | 90               | 10                     | 2 2                        | 98               | _                  | 180<br>176                  | 570<br>14                |
| 8     | 25           | 61 | 27.0                             | •0                          | 6.7        | 5.3            | -              | -              | -               | -                            | 34                | 4/                 | 82               | 1 10                   | 2                          | _                | _                  | 1/0                         | 14                       |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

WEST VIRGINIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

KANAWHA RIVER

STATION LOCATION KANAWHA RIVER AT

WINFIELD DAM, WEST VIRGINIA

|                | DATE           |          |                                  |                             |                   |                    |                     | CHLORINE       | DEMAND          |                              |                       |              |                      |                        |                            |                     |                    | TOTAL                               |                  |
|----------------|----------------|----------|----------------------------------|-----------------------------|-------------------|--------------------|---------------------|----------------|-----------------|------------------------------|-----------------------|--------------|----------------------|------------------------|----------------------------|---------------------|--------------------|-------------------------------------|------------------|
| <del>-</del> 1 | SAM!           | YEAR     | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/l | рН                | B.O.D.<br>mg/l     | C.O.D.<br>mg/l      | 1-HOUR<br>mg/i | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l     | Mg/I         | HARDNESS<br>mg/l     | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l    | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOUDS<br>mg/l | COLIFORMS        |
| 8 :            | 31<br>8<br>13  |          | 28.0                             | •0                          | 6.7               | 5.3                | 86<br>-<br>-        | -              | =               | 2.0                          | 22<br>-<br>7          | 47<br>-<br>- | 98<br>-<br>-         | 10<br>-<br>-           | 2<br>-<br>-                | 24<br>-<br>-        | =                  | . 181<br>-<br>-                     | 500<br>2400<br>- |
| 9              | 14<br>21<br>28 | 61<br>61 | 28.0<br>29.0<br>29.0             | •0                          | 6•7<br>7•1<br>7•6 | 4.2<br>11.1<br>4.0 | 46<br>28<br>78<br>5 |                | -               | 2.0<br>2.2<br>5.2            | 22<br>160<br>80<br>57 |              | 98<br>128<br>94<br>- | 10<br>10<br>10<br>-    | 2<br>2<br>4<br>-           | 24<br>24<br>24<br>- | -<br>-<br>-        | 187<br>-<br>168<br>-                | -                |
|                |                |          |                                  |                             |                   |                    |                     |                |                 |                              |                       |              |                      |                        |                            |                     |                    |                                     |                  |
|                |                |          |                                  |                             |                   |                    |                     |                |                 |                              |                       |              |                      |                        | ·                          |                     |                    |                                     |                  |
|                |                |          |                                  |                             |                   |                    |                     |                |                 |                              |                       |              |                      |                        |                            |                     |                    |                                     |                  |
|                |                |          |                                  |                             |                   |                    |                     |                |                 |                              |                       |              |                      |                        |                            |                     |                    |                                     |                  |
|                |                |          |                                  |                             |                   |                    |                     |                |                 |                              |                       |              |                      | :                      |                            |                     |                    |                                     |                  |
|                |                |          | ·                                |                             |                   |                    |                     |                |                 |                              |                       |              |                      |                        |                            |                     |                    |                                     |                  |

#### STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Charleston, West Virginia Operated by U.S. Geological Survey STATE

West Virginia

MAJOR BASIN

Ohio River

MINOR BASIN

Kanawha River

STATION LOCATION

Kanawha River at

Winfield Dam, West Virginia

| Day                              | October                                            | November                                  | December                                             | January                                            | February                                       | March                                                    | April                                          | May                                                | June                                           | July                                           | August                                             | September                                 |
|----------------------------------|----------------------------------------------------|-------------------------------------------|------------------------------------------------------|----------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------|-------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | 2.600<br>2.600<br>2.600<br>2.600<br>2.600          | 4.530<br>4.530<br>4.530<br>4.530<br>4.530 | 4.360<br>4.360<br>4.360<br>4.360<br>4.360            | 19.800<br>18.800<br>17.900<br>12.200<br>10.500     | 5.420<br>5.420<br>5.420<br>5.420<br>5.420      | 72.800<br>56.600<br>40.600<br>29.800<br>29.500           | 21.100<br>27.500<br>24.900<br>19.400<br>19.100 | 24.800<br>48.200<br>38.100<br>27.500<br>24.200     | 6.090<br>6.090<br>6.090<br>6.090<br>6.090      | 5.490<br>5.490<br>5.490<br>5.490<br>5.490      | 10.000<br>10.000<br>10.000<br>10.000<br>10.000     | 4.480<br>4.480<br>4.480<br>4.480<br>4.480 |
| 6<br>7<br>8<br>9                 | 2.700<br>2.700<br>2.700<br>2.700<br>2.700          | 5.950<br>5.950<br>5.950<br>5.950<br>5.950 | 3.500<br>3.500<br>3.500<br>3.500<br>3.500            | 9.260<br>7.820<br>8.400<br>8.290<br>6.730          | 8.860<br>8.860<br>8.860<br>8.860<br>8.860      | 29.800<br>28.900<br>29.300<br>42.400<br>46.800           | 16.300<br>15.900<br>13.700<br>12.000<br>10.600 | 36.000<br>58.200<br>66.400<br>47.000<br>32.500     | 12.200<br>12.200<br>12.200<br>12.200<br>12.200 | 5.820<br>5.820<br>5.820<br>5.820<br>5.820      | 6.300<br>6.300<br>6.300<br>6.300<br>6.300          | 4.160<br>4.160<br>4.160<br>4.160<br>4.160 |
| 11<br>12<br>13<br>14<br>15       | 3.380<br>3.380<br>3.380<br>3.380<br>3.380          | 10.000<br>10.000<br>10.000<br>10.000      | 5.510<br>5.510<br>5.510<br>5.510<br>5.510            | 7.020<br>7.020<br>7.020<br>7.020<br>7.020          | 9.490<br>9.610<br>15.600<br>26.800<br>40.300   | 33.500<br>27.200<br>21.700<br>23.100<br>21.300           | 18.000<br>26.300<br>26.800<br>45.600<br>41.500 | 25.700<br>22.200<br>37.900<br>43.900<br>37.500     | 22.000<br>16.800<br>12.100<br>14.700<br>24.500 | 5.520<br>5.520<br>5.520<br>5.520<br>5.520      | 9.100<br>9.100<br>9.100<br>9.100<br>9.100          | 4.720<br>4.720<br>4.720<br>4.720<br>4.720 |
| 16<br>17<br>18<br>19<br>20       | 2.700<br>2.700<br>2.700<br>2.700<br>2.700          | 5.180<br>5.180<br>5.180<br>5.180<br>5.180 | 4.770<br>4.770<br>4.770<br>4.770<br>4.770            | 27.400<br>32.800<br>26.300<br>19.500<br>16.400     | 34.200<br>33.000<br>30.000<br>47.500<br>61.900 | 32.400<br>40.400<br>31.200<br>22.800<br>19.000           | 37.900<br>33.800<br>27.500<br>25.100<br>20.500 | 25.700<br>22.200<br>16.000<br>14.700<br>13.700     | 37.000<br>34.100<br>22.500<br>12.700<br>10.100 | 9.610<br>8.820<br>7.920<br>10.200<br>41.300    | 5.790<br>5.790<br>5.790<br>5.790<br>5.790          | 3.140<br>3.140<br>3.140<br>3.140<br>3.140 |
| 21<br>22<br>23<br>24<br>25       | 3.680<br>3.680<br>3.680<br>3.680<br>3.680          | 3.490<br>3.490<br>3.490<br>3.490<br>3.490 | 3.730<br>3.730<br>3.730<br>3.730<br>3.730            | 9.210<br>9.210<br>9.210<br>9.210<br>9.210          | 45.800<br>33.900<br>41.700<br>59.700<br>68.300 | 20.400<br>26.300<br>38.400<br>37.100<br>33.000           | 20.700<br>22.500<br>23.600<br>21.900<br>21.600 | 9.110<br>9.110<br>9.110<br>9.110<br>9.110          | 11.400<br>11.300<br>18.300<br>15.400<br>10.800 | 24.000<br>13.500<br>9.490<br>9.490<br>15.600   | 5.260<br>5.260<br>5.260<br>5.260<br>5.260          | 4.620<br>4.620<br>4.620<br>4.620<br>4.620 |
| 26<br>27<br>28<br>29<br>30<br>31 | 3.810<br>3.810<br>3.810<br>3.810<br>3.810<br>3.810 | 3.350<br>3.350<br>3.350<br>3.350<br>3.350 | 5.060<br>5.060<br>5.060<br>5.060<br>20.700<br>23.500 | 5.190<br>5.190<br>5.190<br>5.190<br>5.190<br>5.190 | 102.000<br>97.500<br>75.100                    | 28.400<br>21.000<br>16.300<br>20.600<br>22.700<br>20.800 | 23.600<br>18.800<br>15.200<br>12.100<br>16.100 | 7.250<br>7.250<br>7.250<br>7.250<br>7.250<br>7.250 | 8.090<br>8.090<br>8.090<br>8.090<br>8.090      | 10.500<br>10.500<br>10.500<br>10.500<br>10.500 | 9.070<br>9.070<br>9.070<br>9.070<br>9.070<br>9.070 | 3.140<br>3.140<br>3.140<br>3.140<br>3.140 |

STATE

OREGON

MAJOR BASIN

CALIFORNIA

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

KLAMATH RIVER

STATION LOCATION KLAMATH RIVER AT

KENO, OREGON

| DATE              | T                  |           | RADI      | OACTIVITY IN W | /ATER     |           |       |     | RADIOA             | CTIVITY IN PLA | NKTON (drv) | RAI       | DIOACTIVITY IN V | /ATER |
|-------------------|--------------------|-----------|-----------|----------------|-----------|-----------|-------|-----|--------------------|----------------|-------------|-----------|------------------|-------|
| SAMPLE            | DATE OF            |           | ALPHA     |                |           | BETA      |       | 1   | DATE OF            |                | ACTIVITY    |           | GROSS ACTIVIT    |       |
| TAKEN             | DETERMI-<br>NATION | SUSPENDED | DISSOLVED | TOTAL .        | SUSPENDED | DISSOLVED | TOTAL | 1 1 | DETERMI-<br>NATION | ALPHA          | BETA        | SUSPENDED | DISSOLVED        | TOTAL |
| MO. DAY YEAR      | MONTH DAY          | μμς/Ι     | μμc/l     | μμε/Ι          | μμc/I     | μμε/Ι     | μμς/ί |     | MO. DAY            | μμε/g          | μμε/g       | μμς/Ι     | μμς/Ι            | μμε/Ι |
|                   |                    | _         |           | •              |           |           |       |     |                    |                |             |           |                  |       |
| 11 7 60           | 11 29              | 0         | 3         | 3              | 0         | 2         | 2     |     |                    |                |             |           |                  |       |
| 11 14 60          | 12 1               | 0         | 1         | 1              | 4         | 0         | 4     |     |                    |                |             | ļ         |                  |       |
| 11 21 60          | 12 5               | . 0       | 0         |                | . 0       | 0         | õ     |     |                    |                |             |           |                  |       |
| 11 28 60          | 12 20              | 0         | 2         | 2 2            | 0         | 5         | 5     |     |                    |                |             |           |                  |       |
| 12 5 60           | 12 28              | 1         | 1         | 1              | 0         | 9         | 9     |     |                    |                | ŀ           |           |                  |       |
| 12 12 60          | 12 30              | 0         | 1         | 3              | 0         | 1         | 1     |     |                    |                |             |           |                  |       |
| 12 19 60          | 1 16               | 0         | 3         |                | 0         | 4         | 4     |     |                    |                |             |           |                  |       |
| 12 26 60          | 1 16               | 0         | 0         | 0              | 0         | 0         | 0     |     |                    |                |             |           |                  |       |
| 1 3 61            | 1 24               | 0         | . 0       | 0              | - 0       | ō         | 0     |     |                    |                |             |           |                  |       |
| 1 10 61           | 2 1                | 0         | 1         | 1              | 0         | 5         | 5     |     |                    |                |             |           |                  |       |
| 1 17 61           | 2 2 2 2            | 0         | 1         | 1              | 0         | 0         | 0     |     |                    |                |             |           |                  |       |
| 1 24 61           | 2 <b>7</b><br>2 20 | 0         | 0         | 0              | 0         | 2         | 2     |     |                    |                |             |           |                  |       |
| 1 31 61 2 7 61    | 1                  |           |           | 0              | 0         | 0         | 0     |     |                    |                |             |           |                  |       |
| 2 7 61<br>2 14 61 | 3 3                | 0         | 0         | 3              | 0         | 0         | 0     |     |                    |                |             |           |                  |       |
| 2 21 61           | 3 20               | 0         | 0         | 0              | 0 0       | 1         | 1     |     |                    |                |             |           |                  |       |
| 2 28 61           | 3 24               | 1         | ŏ         | 1              | -         | 0         | 0     |     |                    | •              |             |           |                  |       |
| 3 7 61            | 3 28               | Ŏ         | ŏ         | Ó              | 0         | 0         | 0     |     |                    |                |             |           |                  |       |
| 3 14 61           | 3 31               | 0         | 1         | 1              | 0         | 0         | 0     |     |                    |                |             |           |                  |       |
| 3 21 61           | 4 14               | 0         | ō         | Ō              |           | 5         | 0     |     |                    |                |             |           |                  |       |
| 3 28 61           | 4 17               | 0         | 0         | 0              |           |           | 5     |     |                    |                |             |           |                  |       |
| 4 5 61            | 5 3                | 0         | 0         | 0              | 0         | 6         | 6     |     |                    |                |             |           |                  |       |
| 4 11 61           | 4 27               | 0         | ő         | 0              | 1 1       | 0         | 0     |     |                    |                |             |           |                  |       |
| 4 18 61           | 5 17               | 0         | 0         | 0              | 0         | 0         | 0     |     |                    |                |             |           |                  |       |
| 4 25 61           | 5 23               | 0         | 0         | Ö              | 0         | o l       | 0     |     |                    |                |             |           |                  |       |
| 5 2 61            | 5 25               | 0         | 0         | 0              | 0         | 2         | 2     |     |                    |                |             |           |                  |       |
| 5 9 61            | 5 31               | 0         | 0         | ő              | 0         | 0         | 0     |     |                    |                |             |           |                  |       |
| 5 16 61           | 6 2                | 0         | ő         | 0              | 0         | 0         | 0     |     |                    |                |             |           |                  |       |
| 5 23 61           | 6 20               | 0         | 0         | 0              | 00        | o l       | 0     |     |                    |                |             |           |                  |       |
| 5 31 61           | 6 20               | 0         | 0         | a              | 0 0       | 0         | 0     |     |                    |                |             |           |                  |       |
| 6 6 61            | 6 29               | 0         | ő         | 0              | - 1       | 1         | 1     |     |                    |                |             |           |                  |       |
| 6 13 61           | 7 5                | 0         | 0         | ő              | 0 0       | 0         | Õ     |     |                    |                |             | ·         |                  |       |
| 6 20 61           | 8 1                | ŏ         | ŏ         | ő              | 1         | 2         | 0     |     | ĺ                  |                |             |           |                  |       |
| 7 4 61            | 8 3                | ő         | ő         | o l            | ō         | 6         |       |     |                    |                |             |           |                  |       |
| 7 26 61           | 9 1                | ő         | ő         | ŏ              | 4         | - 1       | 0     |     |                    |                |             |           |                  |       |
| 8 1 61            | 9 8                | ŏ         | ő         | ő              | 11        | 0         | 4     |     |                    |                |             |           |                  |       |
| 8 8 61            | 9 13               | ŏ         | ő         | ŏ              | 5         | 0         | 11    |     |                    |                |             |           |                  |       |
| 8 15 61           | 9 26               | ŏ         | ő         | ŏ              |           |           | 6     |     |                    |                |             |           |                  |       |
| 8 29 61           | 10 3               | ŏ         | 0         | 0              | 0         | 0         | 0     |     |                    |                |             |           |                  |       |
| - 2, 31           | -                  | ١ ٠       | U         | ١              | 2         | 2         | 4     |     |                    |                |             |           |                  |       |
|                   |                    | ļ         | İ         | ļ              | 1         |           |       |     |                    |                |             |           | 1                |       |
|                   | L                  |           |           |                |           |           |       |     |                    |                |             |           |                  |       |

STATE

OREGON

MAJOR BASIN

CALIFORNIA

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

KLAMATH RIVER

STATION LOCATIONKLAMATH RIVER AT

KENO, OREGON

| DATE                                    |                               |             | RADI        | OACTIVITY IN V | WATER            |                  |                   | Ι | RADIOA                        | CTIVITY IN PLA | NKTON (dry) | RAI       | DIOACTIVITY IN W | /ATER         |
|-----------------------------------------|-------------------------------|-------------|-------------|----------------|------------------|------------------|-------------------|---|-------------------------------|----------------|-------------|-----------|------------------|---------------|
| SAMPLE                                  | DATE OF<br>DETERMI-<br>NATION |             | ALPHA       |                |                  | BETA             |                   | 1 |                               |                | ACTIVITY    |           | GROSS ACTIVIT    |               |
| TAKEN                                   |                               | SUSPENDED   | DISSOLVED   | TOTAL          | SUSPENDĖD        | DISSOLVED        | TOTAL             | 1 | DATE OF<br>DETERMI-<br>NATION | ALPHA          | BETA        | SUSPENDED | DISSOLVED        | TOTAL         |
| O. DAY YEAR                             | MONTH DAY                     | μμc/l       | μμε/1       | μμε/1          | μμc/l            | μμε/Ι            | μμε/Ι             |   | MO. DAY                       | μμc/g          | μμc/g       | μμς/Ι     | μμς/Ι            | <b>μμς/</b> Ι |
| 9 5 61<br>9 12 61<br>9 19 61<br>9 27 61 | 1 6<br>10 23<br>10 5<br>10 13 | 0<br>0<br>0 | 0<br>0<br>0 | 0 0 0          | 0<br>7<br>0<br>0 | 1<br>3<br>4<br>7 | 1<br>10<br>4<br>7 |   |                               |                |             |           |                  |               |
|                                         |                               |             |             |                |                  |                  |                   |   | -                             |                |             |           |                  |               |
|                                         |                               |             |             |                |                  |                  |                   |   |                               |                |             |           |                  |               |
|                                         |                               |             |             |                |                  |                  |                   |   |                               |                |             |           |                  |               |
|                                         |                               |             |             |                |                  |                  |                   |   |                               |                |             |           |                  |               |
|                                         |                               |             |             |                |                  |                  |                   |   |                               |                |             |           |                  |               |
|                                         |                               |             |             |                |                  |                  |                   |   |                               |                |             |           |                  |               |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

OREGON

MAJOR BASIN

CALIFORNIA

MINOR BASIN

KLAMATH RIVER

STATION LOCATION KLAMATH RIVER AT

KENO, OREGON

| DATE                 | T                                                                                                                                                      |                                                                                |                                                        | ALGAE (                                                                   | Vumber                | per ml.)                                                                                           |                                     |                                                                                                                                                     | <del></del>                             | INE                                                                                        | ERT                                                                                                                                      | T                                                                                                                                                              |                                                          |                                                                                 |                                                                      |                                                                      |                                                                          |                                                                       |                                                          |                                                                                  | T                                                                | ,                                      | Wichou                                                                                                                              | WERRER                                                                                                         |                              |                              | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATE<br>OF SAMPLE    |                                                                                                                                                        | BLUE-                                                                          | GREEN                                                  | GREE                                                                      | EN                    | FLAGEI<br>(Pigm                                                                                    |                                     | DIAT                                                                                                                                                | OMS                                     | SHE                                                                                        | ERT<br>TOM<br>ELLS<br>er ml.)                                                                                                            |                                                                                                                                                                | DOM<br>(Se                                               | INANT<br>Intro                                                                  | SPEC                                                                 | IATO<br>IES AI<br>for Co                                             | ND PE                                                                    | RCEN<br>ntifical                                                      | TAGE:                                                    | s                                                                                | ROPLANKTON,<br>SHKATHED<br>ml.)                                  | -                                      | MICROIN                                                                                                                             |                                                                                                                | Τ.                           | TORKS.                       | nk ra<br>tetion<br>artion)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MONTH<br>DAY<br>YEAR | TOTAL                                                                                                                                                  | COCCOID                                                                        | FILA-<br>MENT-<br>OUS                                  | COCCOID                                                                   | FILA-<br>MENT-<br>OUS | GREEN                                                                                              | OTHER                               | CENTRIC                                                                                                                                             | PENNATE                                 | CENTRIC                                                                                    | PENNATE                                                                                                                                  | FIRST#                                                                                                                                                         | PER.<br>CENTAGE                                          | SECOND#                                                                         | PER.                                                                 | THIRD#                                                               | PER.                                                                     | FOURTH#                                                               | PER-                                                     | OTHER PER-<br>CENTAGE                                                            | DTHER MICROFLAN<br>RUNGI AND SHEATH<br>RACYERIA<br>(No. per ml.) | 12 8                                   | per E                                                                                                                               | CRUSTACEA<br>(No. per liter)                                                                                   | NEMATODES<br>(No. per liter, | OTHER ANIMAL (No. per liter) | boninant genera<br>(See Introduction<br>for Identification)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11                   | 66000<br>91500<br>40200<br>33700<br>21900<br>14500<br>27900<br>173500<br>4900<br>5800<br>6500<br>1400<br>5000<br>9400<br>700<br>3600<br>13000<br>10800 | 40<br>50<br>90<br>20<br>100<br>20<br>190<br>470<br>1470<br>830<br>4220<br>5340 | 350<br>50<br>20<br>100<br>20<br>80<br>40<br>1590<br>80 | 290<br>180<br>110<br>50<br>20<br>270<br>370<br>210<br>1040<br>850<br>1700 |                       | 130<br>40<br>50<br>90<br>40<br>510<br>420<br>820<br>240<br>330<br>120<br>130<br>1620<br>770<br>310 | 180<br>450<br>250<br>20<br>20<br>70 | 710<br>64590<br>75500<br>39590<br>33510<br>37900<br>20330<br>13270<br>24780<br>171010<br>3130<br>940<br>2770<br>7080<br>7080<br>8180<br>2280<br>290 | 110<br>130<br>200<br>890<br>740<br>1300 | 5100<br>16170<br>13900<br>7280<br>14490<br>9940<br>11690<br>11930<br>29170<br>4390<br>3270 | 1540<br>4200<br>3420<br>560<br>2350<br>8490<br>7600<br>13920<br>4950<br>2110<br>2030<br>1500<br>850<br>1860<br>980<br>370<br>700<br>1260 | 82<br>82<br>82<br>82<br>49<br>82<br>82<br>82<br>83<br>84<br>84<br>86<br>87<br>86<br>87<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88 | 80<br>70<br>40<br>50<br>70<br>50<br>60<br>40<br>20<br>20 | 46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>4 | 10<br>10<br>20<br>30<br>40<br>20<br>20<br>10<br>20<br>20<br>10<br>10 | 56<br>84<br>81<br>83<br>81<br>45<br>81<br>84<br>45<br>45<br>49<br>92 | 10<br>10<br>*<br>*<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 84<br>567<br>81<br>84<br>81<br>83<br>45<br>49<br>82<br>76<br>82<br>46 | *<br>*<br>*<br>*<br>*<br>*<br>10<br>10<br>10<br>10<br>10 | 40<br>20<br>10<br>10<br>10<br>20<br>10<br>20<br>30<br>40<br>40<br>50<br>40<br>55 | 20<br>20<br>50<br>110                                            | 30<br>20<br>30<br>10<br>10<br>10<br>20 | 44<br>299<br>233<br>62<br>43<br>113<br>48<br>87<br>94<br>182<br>14<br>10<br>200<br>30<br>10<br>199<br>999<br>505<br>322<br>22<br>22 | 22<br>20<br>27<br>31<br>22<br>20<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21 |                              | 21                           | 9<br>9-53<br>9-6<br>-19-6<br>-19-6<br>-19-6<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19-65<br>-19 |

# ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

OREGON

MAJOR BASIN

CALIFORNIA

MINOR BASIN

KLAMATH RIVER

STATION LOCATION KLAMATH RIVER AT

KENO, OREGON

| DATE OF SAMPLE EXTRACTABLES CHLOROFORM EXTRACTABLES  BEGINNING END NFUTRALS                                                                                                                                                                          |                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| FILTER WATER                                                                                                                                                                                                                                         | BASES LOSS                          |
| 1 3 61 1 15 5037 229 125 104 6 29 29 1 1 1 27 0 16 11 4 5525 180 80 100 5 22 19 1 1 1 16 2 9 8 5 2 61 5 11 6009 145 44 101 1 12 14 1 0 11 2 5 3 3 6 8 61 6 16 5357 174 87 87 4 22 30 2 2 23 3 10 8 9 12 61 9 21 6091 182 78 104 3 21 20 3 1 15 1 9 9 | 3 31<br>1 16<br>1 8<br>2 11<br>2 14 |

STATE

OREGON

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

CALIFORNIA

MINOR BASIN

KLAMATH RIVER

STATION LOCATIONKLAMATH RIVER AT

KENO, OREGON

| DATE<br>OF SAMPL         | E TE | IP.           | DISSOLVED         |                   |                   |        | CHLORINE       | DEMAND          |                              |                   |                    |                |                        |                            |                  | Ī                  |                                      | <u> </u>  |
|--------------------------|------|---------------|-------------------|-------------------|-------------------|--------|----------------|-----------------|------------------------------|-------------------|--------------------|----------------|------------------------|----------------------------|------------------|--------------------|--------------------------------------|-----------|
| 4 5 6 6 9 12 6           | (Deg | rees<br>rade) | OXYGEN<br>mg/l    | pН                | B.O.D.<br>mg/l    | C.O.D. | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l |                | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS |
| 4 5 6<br>5 2 6<br>9 12 6 |      | •0            | 8.7<br>9.3<br>8.0 | 7.2<br>7.8<br>8.6 | 5.0<br>4.3<br>7.4 | -      | 1              | -               | -                            | 6<br>7<br>5       | 74<br>70<br>66     | 94<br>82<br>46 | -<br>-                 | 80<br>26<br>44             | -                | -                  | -<br>-                               | -         |
|                          |      |               |                   |                   |                   |        |                |                 |                              |                   |                    |                |                        |                            |                  |                    |                                      |           |
|                          |      |               |                   |                   |                   |        |                |                 |                              |                   |                    |                |                        |                            |                  |                    |                                      |           |
|                          |      |               |                   |                   |                   |        |                |                 |                              |                   |                    |                |                        |                            |                  |                    |                                      |           |
|                          |      |               |                   |                   |                   |        |                |                 |                              |                   |                    |                |                        |                            |                  |                    |                                      |           |
|                          |      |               |                   |                   |                   |        |                |                 |                              |                   |                    |                |                        |                            |                  |                    |                                      |           |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station below Big Bend powerplant near Keno, Oregon Operated by U.S. Geological Survey STATE

Oregon

MAJOR BASIN

California

MINOR BASIN

Klamath River

STATION LOCATION

Klamath River at

Keno, Oregon

| Day                              | October                                            | November                                  | December                                  | January                                            | February                                  | March                                              | April                                     | May                                                | June                                                                 | July                                  | August                                           | September                                 |
|----------------------------------|----------------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------|---------------------------------------|--------------------------------------------------|-------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | 1.090<br>.762<br>1.510<br>1.460<br>1.490           | 1.420<br>1.550<br>1.460<br>1.710<br>1.250 | 2.140<br>2.390<br>2.230<br>1.990<br>2.480 | 1.520<br>1.660<br>2.030<br>1.930<br>1.700          | 1.710<br>1.410<br>1.470<br>1.390<br>1.100 | 1.720<br>1.600<br>1.910<br>1.510                   | 1.590<br>1.190<br>1.730<br>1.790<br>1.910 | 1.340<br>1.470<br>1.520<br>1.580<br>1.450          | 1.610<br>1.430<br>1.240<br>.940<br>1.400                             | .891<br>.798<br>.818<br>.798          | •954<br>•952<br>•950<br>•935<br>•798             | 1.220<br>.972<br>.812<br>.790<br>1.280    |
| 6<br>7<br>8<br>9                 | 1.400<br>1.360<br>1.180<br>.880<br>1.470           | 1.140<br>1.570<br>1.560<br>1.620<br>1.510 | 2.390<br>2.280<br>2.310<br>2.370<br>2.260 | 1.370<br>1.470<br>1.010<br>1.570<br>1.580          | 1.470<br>1.580<br>1.540<br>1.500<br>1.450 | 1.310<br>1.900<br>1.950<br>1.780<br>1.650          | 1.730<br>1.780<br>1.710<br>1.200<br>1.810 | 1.180<br>.984<br>1.460<br>1.440<br>1.470           | 1.370<br>1.380<br>1.360<br>1.410<br>1.000                            | .940<br>.836<br>.798<br>.790          | .798<br>.965<br>.950<br>.938                     | 1.480<br>1.260<br>1.270<br>.944<br>.850   |
| 11<br>12<br>13<br>14<br>15       | 1.540<br>1.400<br>1.470<br>1.530<br>1.200          | 1.510<br>1.270<br>1.220<br>1.500<br>1.510 | 2.090<br>2.360<br>2.480<br>2.440<br>2.500 | 1.760<br>1.610<br>1.710<br>1.590<br>1.570          | .882<br>1.090<br>1.500<br>1.540<br>1.440  | 1.660<br>1.110<br>1.990<br>1.920<br>1.860          | 1.800<br>1.980<br>1.650<br>1.570<br>1.540 | 1.490<br>1.600<br>1.210<br>.900<br>1.500           | .93 <sup>1</sup> 4<br>1.1 <sup>1</sup> 20<br>1.320<br>1.170<br>1.270 | .936<br>.924<br>.932<br>1.020<br>.783 | .928<br>.798<br>.790<br>1.020                    | 1.370<br>1.360<br>1.330<br>1.320<br>1.280 |
| 16<br>17<br>18<br>19<br>20       | .961<br>1.470<br>1.500<br>1.180<br>1.840           | 1.560<br>1.570<br>1.510<br>1.430<br>1.180 | 2.460<br>2.290<br>2.090<br>2.540<br>2.550 | 1.840<br>1.820<br>1.980<br>1.860<br>2.000          | 1.480<br>1.710<br>1.500<br>1.260<br>1.420 | 1.720<br>1.740<br>1.460<br>1.610<br>1.670          | 1.210<br>1.700<br>1.700<br>1.470<br>1.470 | 1.440<br>1.460<br>1.450<br>1.730<br>1.470          | 1.450<br>.998<br>.904<br>1.180<br>1.210                              | •783<br>•918<br>•946<br>•948<br>•986  | .945<br>1.110<br>1.010<br>.798<br>.805           | .970<br>.790<br>1.420<br>1.450<br>1.550   |
| 21<br>22<br>23<br>24<br>25       | 1.610<br>1.200<br>.954<br>1.540<br>1.540           | 1.620<br>1.610<br>1.610<br>1.320<br>1.600 | 2.530<br>2.340<br>2.160<br>2.210<br>2.060 | 1.730<br>1.860<br>2.010<br>2.050<br>2.020          | 1.670<br>1.770<br>1.560<br>1.520<br>1.560 | 1.680<br>1.820<br>1.740<br>1.700<br>1.630          | 1.540<br>1.270<br>1.080<br>1.720<br>1.770 | .742<br>1.390<br>1.410<br>1.360<br>1.340           | 1.200<br>1.200<br>1.470<br>.842<br>.885                              | .980<br>.805<br>.798<br>.934<br>.945  | .976<br>.970<br>.974<br>.966<br>1.050            | 1.470<br>1.450<br>1.360<br>1.040<br>1.510 |
| 26<br>27<br>28<br>29<br>30<br>31 | 1.520<br>1.440<br>1.430<br>1.130<br>1.190<br>1.620 | 1.330<br>1.210<br>1.720<br>2.440<br>2.270 | 1.930<br>2.230<br>2.130<br>1.810<br>1.850 | 1.680<br>1.980<br>1.820<br>1.630<br>2.140<br>1.790 | 1.220<br>1.680<br>1.630                   | 1.210<br>1.890<br>1.810<br>1.690<br>1.690<br>1.480 | 1.490<br>1.330<br>1.360<br>1.210<br>1.120 | 1.460<br>1.170<br>1.000<br>1.380<br>1.170<br>1.340 | 1.260<br>1.240<br>1.220<br>1.410<br>1.410                            | .976<br>.951<br>.984<br>.798<br>.798  | .908<br>.864<br>1.150<br>1.170<br>1.230<br>1.290 | 1.560<br>1.650<br>1.620<br>1.500<br>1.220 |

STATE

OHIO

MAJOR BASIN

OHIO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LITTLE MIAMI RIVER

STATION LOCATION LITTLE MIAMI RIVER AT

CINCINNATI, OHIO

| DATE SAMPLE DATE OF DETERMINATION SUSPENDED | RADIOACTIVITY II                                | T         |           |       |     |         |    |         |         |           |               |       |
|---------------------------------------------|-------------------------------------------------|-----------|-----------|-------|-----|---------|----|---------|---------|-----------|---------------|-------|
| TAKEN DETERMI-<br>NATION SUSPENDED          |                                                 | 1         | BETA      |       |     | DATE OF | :  | GROSS A | CTIVITY |           | GROSS ACTIVIT | Y     |
| AKITON SOSI ENDED                           | DISSOLVED TOTAL                                 | SUSPENDED | DISSOLVED | TOTAL | - 1 | DETERM  |    | ALPHA   | BETA    | SUSPENDED | DISSOLVED     | TOTAL |
| MO. DAY YEAR MONTH DAY ##c/                 | μμε/1 μμε/1                                     | μμε/Ι     | μμc/l     | μμε/Ι |     | MO. DA  | Y  | μμc/g   | μμc/g   | μμς/Ι     | μμε/Ι         | μμc/l |
|                                             |                                                 |           |           | _     |     |         |    |         |         |           |               |       |
| 10 4 60 10 17 0                             | 2 2                                             | 0         | 0         | 0     |     |         |    |         |         |           |               |       |
| 10 11 60 10 17 0                            | 4 4                                             | 5         | 1         | 6     |     |         |    |         | i       |           |               |       |
| 10 18 60   11 2   1                         | 6 7                                             | 0         | 0         | 0     | i   |         | 1  |         | . 1     |           |               |       |
| 11 8 60   11 18   0                         | 2 2                                             | 0         | 0         | 0     | i   |         |    |         | ŀ       |           |               |       |
| 11 22 60   11 29   0                        | 3 3                                             | 0         | 1 0       | 1 0   |     |         | 1. |         |         |           |               |       |
| 11 29 60 12 5 0                             | 1 1 3                                           | 0         | 10        | 10    |     |         |    |         |         |           |               |       |
| 12 6 60 12 15 0                             |                                                 | 0         | 7         | 7     |     |         |    |         | l       |           |               |       |
| 12 13 60 12 27 0                            |                                                 |           | 6         | óΙ    | - 1 |         |    |         |         |           |               |       |
| 12 20 60 1 10 0                             | - 1                                             |           | 0 0       | ŏ     | 1   |         |    |         |         |           |               |       |
| 12 27 60 1 6 0                              | $\begin{array}{c c} 1 & 1 \\ 1 & 2 \end{array}$ | 0         |           | ŏ     | - 1 |         |    |         |         |           |               |       |
| 1 3 61   1 18   1   1 10 61   1 24   0      | 0 0                                             | 0         | 5         | 5     | ı   |         |    |         | 1       |           |               |       |
|                                             | 3 7                                             | l ŏ       | ő         | ó l   |     |         |    |         |         |           |               |       |
| 1 17 61   2 2   4   1 2 4 61   2 1   1      | 3 4                                             | 0         | ŏ         | ŏl    | 1   |         |    |         |         |           |               |       |
| 1 31 61 2 15 0                              | o lo                                            | l ŏ       | Ö         | ŏl    |     |         |    |         | 1       |           |               |       |
| 2 7 61 2 20 0                               | i l i                                           | l ŏ       | Ö         | ŏ     |     |         |    |         | 1       |           |               |       |
| 2 14 61   2 27   3                          | 0 3                                             | 4         | 0         | 4     |     |         | 1  |         | -       |           |               |       |
| 2 23 61 3 7 1                               | 0 1                                             | 0         | 1 1       | 1     |     |         | 1  |         |         |           |               |       |
| 2 28 61 3 13 1                              | 0 1                                             | 0         | 0         | 0     |     |         |    |         |         |           |               |       |
| 3 7 61 3 23 4                               | 0 4                                             | 0         | 0         | 0     | ĺ   |         | 1  |         |         |           |               |       |
| 3 14 61 3 29 1                              | 0 1                                             | 4         | 0         | 4     | į.  |         | 1  |         | į.      |           |               |       |
| 3 21 61 4 3 2                               | 0 2                                             | 0         | 0         | 0     |     |         |    |         |         |           |               |       |
| 3 28 61 4 13 0                              | 0 0                                             | 0         | 0         | 0     |     |         |    |         |         |           |               |       |
| 4 4 61   4 14   0                           | 0 0                                             | 0         | 0         | . 0   | - 1 |         |    |         | •       |           |               |       |
| 4 11 61   4 24   2                          | 0 2                                             | 0         | 0         | 0     | - 1 |         |    |         |         |           |               |       |
| 4 18 61 5 4 2                               | 1 3                                             | 0         | 0         | 0     | - 1 |         |    |         |         |           |               |       |
| 4 25 61 5 11 1                              | 1 2                                             | 0         | 0         | 0     | -   |         |    |         |         |           |               |       |
| 5 9 61 6 8 9                                | 0 9                                             | 0         | 5         | 5     |     |         |    |         |         |           |               |       |
| 5 16 61   5 31   0                          | 1 1                                             | 0         | 0         | 0     | - 1 |         |    |         |         | İ         |               |       |
| 5 23 61 6 8 0                               | 0 0                                             | 0         | 0         | 0     | - 1 |         |    |         |         |           |               |       |
| 5 31 61 6 13 0                              | 1 1                                             | 0         | 0         | 0     | 1   |         |    |         |         |           |               |       |
| 6 6 61 6 16 0<br>6 13 61 6 29 0             | 0 0                                             | 0         | 0 2       | 0 2   | - 1 |         |    |         |         |           |               |       |
| 6 20 61 7 25 1                              | 1 2                                             | 0         | }         |       | - 1 |         |    |         |         |           |               |       |
| 6 27 61 7 26 1                              | 0 1                                             | -         | 0         | 0     |     |         |    |         |         |           |               |       |
| 7 3 61 7 31 0                               | 0 0                                             | 0         | 0         | 0     | }   |         |    |         |         |           |               |       |
| 7 11 61   8 4   1                           | 0 1                                             | 0         | 0         | 0     |     |         |    |         | 1       |           |               |       |
| 7 25 61 8 18 1                              | 1 2                                             | 0         | 1         | 1     | ŀ   |         |    |         | 1       |           |               |       |
| 8 1 61 8 23 1                               | 0   1                                           | 5         | 10        | 15    | }   |         |    |         | İ       |           |               |       |
| 8 8 61 9 8 1                                | 0 1                                             | 2         | 9         | 11    |     |         |    |         | 1       |           |               |       |
|                                             | ·   •                                           | "         |           | 11    | - 1 |         |    |         |         |           |               |       |

STATE

OHIO

MAJOR BASIN

OHIO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LITTLE MIAMI RIVER

STATION LOCATION LITTLE MIAMI RIVER AT

CINCINNATI, OHIO

| B.475                                                                | <u> </u>                      |                      | BADI                            | OACTIVITY IN V                                    | A/ATED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                               | т            |                                 | -               |               |          |                   |                             |
|----------------------------------------------------------------------|-------------------------------|----------------------|---------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------|--------------|---------------------------------|-----------------|---------------|----------|-------------------|-----------------------------|
| DATE<br>SAMPLE                                                       | DATE OF                       | Γ                    | ALPHA                           | ONCHITI IN                                        | TOTAL STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE | BETA                             |                               | 1            | DATE OF                         | CTIVITY IN PLAN |               |          | ADIOACTIVITY IN V |                             |
| TAKEN                                                                | DATE OF<br>DETERMI-<br>NATION | SUSPENDED            |                                 | TOTAL                                             | SUSPENDED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | TOTAL                         | 1            | DETERMI-                        |                 | ACTIVITY      |          | GROSS ACTIVIT     |                             |
| MO. DAY YEAR                                                         |                               |                      |                                 |                                                   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                               | -            |                                 |                 |               | 1        |                   |                             |
|                                                                      |                               |                      | 774.                            |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,50                             |                               | <del> </del> | MO. DAT                         | <i>ррс/</i> g   | <i>µµс/g</i>  | μμc/l    | μμς/              | <i>μμ</i> ε/l               |
| MO. DAY YEAR  8 15 61 8 22 61 8 28 61 9 5 61 9 12 61 9 19 61 9 26 61 |                               | ##e/I  1 0 0 0 1 0 0 | DISSOLVED  ##c/I  1 0 1 0 1 0 0 | ΤΟΤΑL<br>μμε/I<br>2<br>0<br>1<br>0<br>2<br>1<br>0 | SUSPENDED  μμε/Ι  Ο  Ο  Ο  Ο  Ο  Ο  Ο  Ο  Ο  Ο  Ο  Ο  Ο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DISSOLVED  μμε/I  0 2 19 5 8 7 6 | ΤΟΤΑL  μμε/I  0 2 19 5 10 7 6 |              | DATE OF DETERMI-NATION  MO. DAY | ALPHA<br>μμα/g  | ВЕТА<br>##c/g | BUSPENDE |                   | Υ<br>ΤΟΤΑL<br><i>μμε/</i> Ι |
|                                                                      |                               |                      |                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                               |              |                                 |                 |               |          |                   |                             |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

OHÍO

MAJOR BASIN

OHIO RIVER

MINOR BASIN

LITTLE MIAMI RIVER

STATION LOCATION LITTLE MIAMI RIVER AT

CINCINNATI, OHIO

| DATE                 |                                                                                                                                                           |                       |                       | ALGAE (1                                                                | Vumber                | per ml.)                                                                                                      |                                         | <del></del>                                                                                                                                      |                                                                                                                              | INE                                                                                                                                                          | RT                                                                                                              | Γ                                                                                                                          |                                                                                              |                                                                                        |                                                                                        | IATO                                                                                               |                                                                                 |                                                                                |                                                                                             | ···                                                                                                            | l <u>.</u>                                            | 1                          | MICROIN                                                                      | VERTEBR                      | ATES                         | 7               | <del></del>                                                 |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|-------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------|------------------------------------------------------------------------------|------------------------------|------------------------------|-----------------|-------------------------------------------------------------|
| OF SAMPLE            |                                                                                                                                                           | BLUE-                 | GREEN                 | GREE                                                                    | EN                    | FLAGEI<br>(Pigm                                                                                               |                                         | DIAT                                                                                                                                             | OMS                                                                                                                          | INE<br>DIA<br>SHE<br>(No. p                                                                                                                                  |                                                                                                                 |                                                                                                                            |                                                                                              | NANT<br>Introd                                                                         | SPEC                                                                                   | IES A                                                                                              | ND PE                                                                           |                                                                                |                                                                                             | 3                                                                                                              | ROPLANKTON<br>SHEATHED<br>ml.)                        | (.In                       | iter)                                                                        | A<br>ter)                    | is<br>ter)                   | L FORMS         | tenera<br>duction<br>ication)                               |
| MONTH<br>DAY<br>YEAR | TOTAL                                                                                                                                                     | COCCOID               | FILA-<br>MENT-<br>OUS | coccoip                                                                 | FILA-<br>MENT-<br>OUS | GREEN                                                                                                         | OTHER                                   | CENTRIC                                                                                                                                          | PENNATE                                                                                                                      | CENTRIC                                                                                                                                                      | PENNATE                                                                                                         | FIRST#                                                                                                                     | PERCENTAGE                                                                                   | SECOND#                                                                                | PER-<br>CENTAGE                                                                        | THIRD#                                                                                             | PER.<br>CENTAGE                                                                 | FOURTH                                                                         | PER-<br>CENTAGE                                                                             | OTHER PER-<br>CENTAGE                                                                                          | OTHER MICRO<br>FUNGI AND SI<br>BACTERIA<br>(No. per 1 | PROTOZOA<br>(No. per ml.)  | ROTIFIERS<br>(No. per liter)                                                 | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | (No. per liter) | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| 10                   | 3900<br>5000<br>2600<br>1800<br>3700<br>5800<br>1000<br>300<br>1000<br>2900<br>4900<br>1400<br>3400<br>700<br>8700<br>600<br>500<br>14500<br>1800<br>9500 | 20<br>20<br>40<br>150 | 20 70 20              | 110<br>160<br>50<br>130<br>20<br>360<br>20<br>170<br>480<br>130<br>1260 | 20                    | 930<br>860<br>600<br>200<br>160<br>20<br>40<br>70<br>80<br>100<br>60<br>290<br>2590<br>70<br>40<br>250<br>810 | 200<br>50<br>50<br>20<br>40<br>60<br>20 | 2530<br>3680<br>1740<br>750<br>1410<br>5520<br>200<br>20<br>20<br>20<br>20<br>1410<br>4490<br>390<br>2260<br>3060<br>100<br>8240<br>1040<br>6710 | 160<br>160<br>220<br>660<br>1230<br>90<br>470<br>920<br>450<br>290<br>1390<br>270<br>870<br>680<br>290<br>3170<br>350<br>660 | 500<br>860<br>3460<br>400<br>110<br>20<br>50<br>60<br>20<br>39<br>50<br>400<br>20<br>39<br>50<br>400<br>400<br>400<br>400<br>400<br>400<br>400<br>400<br>400 | 90<br>110<br>350<br>910<br>910<br>960<br>70<br>250<br>340<br>270<br>540<br>210<br>120<br>80<br>250<br>490<br>40 | 82<br>82<br>36<br>82<br>36<br>83<br>83<br>83<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85 | 60<br>70<br>60<br>70<br>60<br>10<br>20<br>30<br>20<br>10<br>20<br>10<br>80<br>40<br>20<br>60 | 82<br>26<br>36<br>82<br>70<br>51<br>92<br>51<br>46<br>26<br>86<br>86<br>86<br>71<br>26 | 20<br>10<br>10<br>20<br>10<br>20<br>10<br>10<br>10<br>10<br>20<br>10<br>10<br>20<br>30 | 23<br>26<br>64<br>27<br>64<br>51<br>57<br>86<br>86<br>92<br>76<br>92<br>88<br>26<br>88<br>26<br>26 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 264<br>644<br>645<br>92<br>761<br>51<br>51<br>82<br>65<br>51<br>89<br>65<br>23 | 10<br>*<br>10<br>*<br>10<br>10<br>10<br>10<br>10<br>10<br>*<br>10<br>10<br>*<br>*<br>*<br>* | 10<br>10<br>20<br>20<br>30<br>53<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60 | 180<br>40<br>180<br>40<br>70<br>20<br>20<br>20        | 20<br>20<br>10<br>10<br>20 | 113<br>5<br>3<br>24<br>3<br>2<br>281<br>11<br>222<br>7<br>8<br>7<br>16<br>11 | 1 4 10 1 2 7                 | 116 3 2 35 11 33             | 1               | 42933<br>4193-<br>4-9-7<br>4-94-<br>4194-<br>4-9            |

#### ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

OHIO

MAJOR BASIN

OHIO RIVER

MINOR BASIN

LITTLE MIAMI RIVER

STATION LOCATION LITTLE MIAMI RIVER AT

CINCINNATI, OHIO

|                      | ·                                                                    |                                                             |                                                       |                                                             |                     |                                                   |                                                    |                                            |                   |                              |           |                                     |                                            |                   |                                                  |
|----------------------|----------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------|---------------------|---------------------------------------------------|----------------------------------------------------|--------------------------------------------|-------------------|------------------------------|-----------|-------------------------------------|--------------------------------------------|-------------------|--------------------------------------------------|
| DATE OF SAMPLE       |                                                                      | Ελ                                                          | TRACTABL                                              | .ES                                                         |                     |                                                   |                                                    |                                            | CHLOROF           | ORM EXTR                     | ACTABLES  |                                     |                                            |                   |                                                  |
| BEGINNING END        | .l i                                                                 |                                                             |                                                       |                                                             |                     |                                                   |                                                    |                                            | NEUTRALS          | 3                            |           |                                     |                                            | I                 |                                                  |
| MONTH DAY YEAR MONTH | GALLONS<br>FILTERED                                                  | TOTAL                                                       | CHLORO-<br>FORM                                       | ALCOHOL                                                     | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES                                 | TOTAL                                              | ALIPHATICS                                 | AROMATICS         | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS      | WEAK<br>ACIDS                       | STRONG<br>ACIDS                            | BASES             | LOSS                                             |
| 10                   | 5249<br>5557<br>5051<br>2628<br>5152<br>5004<br>4999<br>5030<br>4975 | 316<br>247<br>186<br>224<br>255<br>243<br>330<br>168<br>270 | 108<br>72<br>45<br>81<br>100<br>94<br>154<br>64<br>94 | 208<br>175<br>141<br>143<br>155<br>149<br>176<br>104<br>176 | 21022512            | 18<br>12<br>7<br>17<br>20<br>18<br>26<br>12<br>12 | 46<br>35<br>20<br>29<br>41<br>39<br>65<br>24<br>45 | 6<br>8<br>2<br>6<br>6<br>6<br>16<br>4<br>8 | 3 4 2 3 4 3 9 3 5 |                              | 311220114 | 21<br>8<br>5<br>10<br>15<br>26<br>9 | 9<br>4<br>2<br>6<br>8<br>9<br>17<br>6<br>7 | 3 1 1 2 2 3 1 2 2 | 9<br>11<br>10<br>16<br>12<br>9<br>12<br>11<br>10 |

STATE

OHIO

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

OHIO RIVER

MINOR BASIN

LITTLE MIAMI RIVER

STATION LOCATIONLITTLE MIAMI RIVER AT

CINCINNATI, OHIO

|          | DATE<br>OF SAM |          | TEMP.                   | DISSOLVED      |                |                |                | CHLORINE       | DEMAND          | <u> </u>                     |                |                    |                  | 1                      |                            |                  |                    | TOTAL                       |              |
|----------|----------------|----------|-------------------------|----------------|----------------|----------------|----------------|----------------|-----------------|------------------------------|----------------|--------------------|------------------|------------------------|----------------------------|------------------|--------------------|-----------------------------|--------------|
| MONTH    | DAY            | YEAR     | (Degrees<br>Centigrade) | OXYGEN<br>mg/l | pH             | B.O.D.<br>mg/l | C.O.D.<br>mg/l | I-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/I | CHLORIDES mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/l | per 100 ml.  |
| 10       |                | 60       | 20.0                    | •2             | 7.8            | 1.0            | 14             | 2.5            | 6•4             | • 6                          | 27             | 193                | 334              | 17                     | 5                          | 52               | •6                 | 390                         | <del>-</del> |
| 10<br>10 |                | 60       | 19.0<br>19.8            | •1             | 7.8<br>8.1     | 3.0<br>4.8     | 16<br>15       | 2•4<br>3•3     | 6•3<br>7•1      | 1.0                          | 24<br>28       | 261<br>268         | 297<br>319       | 20<br>17               | 12                         | 49<br>61         | 1.0                | 3 <b>6</b> 5<br>386         | -            |
| 10       | 25             | 60       | 14.8                    | 6.6            | 8.2            | 1.0            | 9              | 1.3            | 3.5             | 1.0                          | 29             | 267                | 314              | 15                     | 7                          | 53               | .8                 | 402                         |              |
| 11       | 1              | 60       | 15.0                    | 4.5            | 8.0            | 1.6            | 9              | 1.8            | 4.1             | •0                           | 35             | 268                | 322              | 15                     | 11                         | 55               | 1.8                | _                           | _            |
| 11       |                | 60       | _                       | 1.1            | 8.1            | 1.1            | 9              | 1.2            | 3 • 1           | • 7                          | 28             | 272                | 334              | 17                     | -                          | 54               | 1.5                | 391                         | · · · -      |
| 11       | 15             | 60       | 15.0                    | 8.9            | 8.3            | 1.7            | 12             | 2.8            | 7 • 1           | • 5                          | 21             | 188                | 238              | 22                     | 10                         | 45               | 1.0                | 275                         | -            |
| 11<br>11 | 22             | 60       | 10.6                    | 9.9            | 8.5            | 1.1            | 8              | 1.8            | 4•9             | • 4                          | 25             | 236                | 298              | 17                     | 20                         | 52               | 8                  | 378                         | -            |
| 12       |                | 60       | 8.5                     | 5.5<br>11.0    | 8.2            | 4.4<br>1.3     | 17<br>9        | 2.1            | 8•8<br>8•8      | • 4<br>• 4                   | 25<br>25       | 208                | 266<br>266       | 20<br>20               | 35<br>16                   | 53<br>53         | 1.0                | 350<br>392                  | _            |
| 12       | 13             | 60       | -                       | 13.9           | 8.3            | 1.9            | 16             | 2.8            | 6.7             | • 4                          | 30             | 244                | 324              | 12                     | 10                         | 57               | 9                  | 403                         | _            |
| 12       |                | 60       | _                       | 11.3           | 8.4            | 1.6            | 15             | 2.9            | 5.9             | • 4                          | 27             | 264                | 334              | 10                     | _                          | 74               | 9                  | 424                         | _            |
| 12       |                | 60       | -                       | 13.2           | 8 • 4          | 1.4            | 13             | 3.4            | 8.7             | • 7                          | 40             | 250                | 323              | 12                     | -                          | 65               | 1.0                | 463                         |              |
| 1        | 3              | 61       | -                       | 13.3           | 8.3            | 1.4            | 14             | 3.6            | 6•4             | • 4                          | 32             | 222                | 298              | 18                     | -                          | 61               | 1.0                | 385                         | -            |
| 1        | 10             | 61       | -                       | 13.6           | 8.0            | 2.8            | 20             | 1.6            | 3.9             | • 9                          | 25             | 143                | 198              | 35                     | -                          | 62               | • 8                | 293                         | -            |
| 1        | 17<br>24       | 61<br>61 | _                       | 12.2           | 8.1            | 5.1<br>1.8     | 37<br>12       | 1.5            | 4•0<br>1•6      | • 7                          | 16<br>38       | 86<br>192          | 146<br>264       | 40<br>20               | _                          | 62<br>76         | •7                 | 208<br>364                  | : -          |
| 1        | 31             | 61       | _                       | 13.4           | 8 • 1<br>8 • 2 | 1.7            | 10             | • 5<br>• 8     | 2.7             | •7<br>1•4                    | 34             | 259                | 345              | 15                     | _                          | 78               | 1.0                | 429                         | _            |
| 2        |                | 61       | _                       | 13.2           | 8.0            | 2.1            | 9              | • 8            | 2.1             | •9                           | 39             | 278                | 352              | 12                     | _                          | 79               | 1.3                | 457                         | _            |
| 2        |                | 61       | _                       | 13.4           | 8.0            | 3.6            | 27             | • 3            | 2.5             | 1.0                          | 21             | 118                | 173              | 20                     | _                          | 59               | .5                 | 224                         | -            |
| 2        |                | 61       | -                       | 9.8            | 8.2            | 2.3            | 22             | 2.6            | 6•4             | • 5                          | 19             | 128                | 201              | 32                     | ~                          | 72               | •5                 | 291                         | _            |
| 2        |                | 61       | 7.0                     | 10.2           | 8.1            | 1.9            | 23             | 3 • 4          | 7•0             | •5                           | 17             | 103                | 167              | 30                     | 90                         | 49               | •3                 | 233                         | _            |
| 3        |                | 61       | 11.0                    | 8.0            | 7.9            | 2.6            | 31             | 4 • 2          | 8 • 2           | • 9                          | 10             | 86                 | 132              | 48                     | 210                        | 37               | •3                 | 184                         | _            |
| 3        | 14             | 61       | 10.5                    | 8.0            | 8.0            | 1.6<br>3.2     | 21<br>29       | 3.0<br>3.3     | 7 • 0<br>7 • 7  | • 4                          | 12<br>14       | 125                | 197              | 25                     | 200<br>225                 | 49               | •3                 | 254                         |              |
| 3        | 28             | 61       | 10.0                    | 8.6<br>2.3     | 8 • 1<br>7 • 9 | .3             | 10             | 1.6            | 3.4             | •5                           | 18             | 145<br>196         | 217<br>278       | 12<br>10               | 10                         | 50<br>60         | •4                 | 272<br>346                  | _            |
| 4        | 4              | 61       | 10.0                    | 6.6            | 8.1            | • 4            | 13             | 1.3            | 4 • 2           | • 4                          | 17             | 179                | 248              | 8                      | 10                         | 49               | .3                 | 311                         | _            |
| 4        | 11             | 61       | -                       | 10.9           | 8.2            | 2.9            | 24             | 2.6            | 8 • 2           | . 5                          | 12             | 124                | 183              | 33                     |                            | 59               | .3                 | 237                         |              |
| 4        | 18             | 61       | _                       | 13.2           | 8.2            | 2.0            | 28             | 1.7            | 8.7             | • 4                          | 10             | 116                | 183              | 21                     | -                          | 42               | •3                 | 229                         | _            |
| 5        | 2              | 61       |                         | 10.1           | 8.2            | 1.6            | 14             | 1.8            | 4.7             | • 6                          | 14             | 200                | 276              | 8                      | _                          | 57               | • 2                | 348                         | -            |
| 5        | 9              | 61       | -                       | 8.4            | 8 • 0          | 2.3            | 54             | 1.8            | 3.5             | •6                           | 7              | 74                 | 83               | 35                     | -                          | 10               | •3                 | 117                         | _            |
| 5        | 16<br>23       | 61       | 15.5                    | 8 • 3<br>7 • 8 | 8 • 2<br>8 • 4 | 1.7<br>1.5     | 16<br>16       | 2.5            | 5 • 6<br>4 • 6  | • 6<br>• 4                   | 14<br>16       | 219<br>238         | 292<br>311       | 7<br>5                 | 20                         | 54<br>57         | •6                 | 355<br>384                  | _            |
| 5        | 31             | 61       | 17.5                    | 6.8            | 8.3            | 2.0            | 14             | 1.6            | 4.3             | • 5                          | 16             | 240                | 314              | 5                      | 7                          | 55               | .6                 | 387                         | _            |
| 6        | 1 "            | 61       | 20.5                    | 3.8            | 8.0            | .1             | 5              | 1.5            | 3 • 4           | • 6                          | 18             | 250                | 308              | Ó                      | 3                          | 52               | • 4                | 380                         | _            |
| 6        | 13             | 61       | _                       | 4.4            | 8.3            | 1.0            | 10             | 1.8            | 4.7             | •5                           | 13             | 184                | 246              | Ŏ                      | _                          | 37               | • 3                | 322                         | _            |
| ,6       | 20             | 61       | -                       | 7.2            | 8.1            | 1.9            | 13             | • 5            | . 5∙8           | <b>.</b> 8                   | 16             | 244                | 313              | 5                      | -                          | 46               | • 7                | 397                         | -            |
| 6        | 27             | 61       | 20.1                    | 11.3           | 8 • 4          | 3.9            | 12             | 2.8            | 7.7             | •4                           | 23             | 239                | 296              | 8                      | 36                         | 38               | •3                 | 354                         | -            |
|          |                |          |                         |                |                |                |                |                |                 |                              |                |                    |                  |                        |                            |                  |                    |                             |              |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

OIHO

MAJOR BASIN

OHIO RIVER

MINOR BASIN

LITTLE MIAMI RIVER

STATION LOCATION LITTLE MIAMI RIVER AT

CINCINNATI, UHIO

| DATE<br>OF SAMPI                                                | LE                                     | TEMP.                    | DISSOLVED      |                                                             |                                                       |                | CHLORINE                                  | DEMAND                              | AMMONIA-         | CHLORIDES                                         | AIKAIINITY                                                 | HARDNESS                                                   | COLOR                                         | TURBIDITY                                   | SULFATES                                          | PHOSPHATES                                         | TOTAL<br>DISSOLVED                                          | COLIFORMS   |
|-----------------------------------------------------------------|----------------------------------------|--------------------------|----------------|-------------------------------------------------------------|-------------------------------------------------------|----------------|-------------------------------------------|-------------------------------------|------------------|---------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------|---------------------------------------------|---------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|-------------|
|                                                                 |                                        | (Degrees<br>Centigrade)  | OXYGEN<br>mg/l | рН                                                          | B.O.D.<br>mg/l                                        | C.O.D.<br>mg/l | 1-HOUR<br>mg/l                            | 24-HOUR<br>mg/l                     | NITROGEN<br>mg/l | mg/l                                              | mg/l                                                       | mg/l                                                       | (scale units)                                 | (scale units)                               | mg/l                                              | mg/l                                               | SOLIDS<br>mg/l                                              | per 100 ml. |
| 7 5<br>7 11<br>7 18<br>7 25<br>8 1<br>8 8<br>15<br>8 22<br>8 28 | 61<br>61<br>61<br>61<br>61<br>61<br>61 | 22.8 22.7 22.6 24.5 24.9 |                | 8.0<br>8.3<br>8.2<br>8.2<br>7.9<br>8.1<br>8.5<br>8.4<br>7.2 | 2.2<br>.6<br>1.1<br>1.8<br>.9<br>-<br>-<br>2.8<br>2.4 | 11 12 19 19 13 | 3 • 2 • 3 • 4 • 6 • 2 • 5 • 2 • 5 • 1 • 2 | 5.6<br>4.4<br>7.4<br>5.1<br>2.6<br> | 1.0              | 18<br>15<br>12<br>17<br>31<br>13<br>16<br>19<br>- | 188<br>202<br>146<br>170<br>47<br>138<br>192<br>256<br>212 | 296<br>312<br>256<br>285<br>192<br>1846<br>326<br>26<br>27 | 12<br>8<br>10<br>12<br>0<br>20<br>5<br>5<br>- | 42<br>19<br>117<br>98<br>510<br>0<br>0<br>- | 36<br>30<br>5<br>28<br>9<br>3<br>4<br>5<br>7<br>7 | .4<br>.6<br>.6<br>.9<br>.1<br>.2<br>.2<br>.3<br>.0 | 312<br>352<br>269<br>302<br>270<br>208<br>275<br>355<br>318 |             |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Milford, Ohio Operated by U.S. Geological Survey

STATE

Ohio

MAJOR BASIN

Ohio River

MINOR BASIN

Little Miami River

STATION LOCATION

Little Miami River at

Cincinnati, Ohio

| Day                              | October                              | November                             | December                             | January                                   | February                               | March                                              | April                                      | May                                          | June                                      | July                                          | August                                   | September                             |
|----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|----------------------------------------|----------------------------------------------------|--------------------------------------------|----------------------------------------------|-------------------------------------------|-----------------------------------------------|------------------------------------------|---------------------------------------|
| 1<br>2<br>3<br>4<br>5            | .066<br>.066<br>.066<br>.063         | .092<br>.090<br>.090<br>.087<br>.087 | .116<br>.109<br>.102<br>.098         | .130<br>.127<br>.123<br>.116              | .138<br>.130<br>.138<br>.130           | 4.260<br>2.910<br>2.000<br>2.320<br>7.520          | 1.070<br>1.250<br>1.120<br>1.010           | 1.600<br>1.360<br>1.160<br>1.020             | . 434<br>. 473<br>. 687<br>. 670<br>. 506 | . 320<br>. 305<br>. 290<br>. 295<br>. 325     | 4.690<br>4.120<br>4.050<br>1.490<br>.958 | .267<br>.310<br>.310<br>.254<br>.232  |
| 6<br>7<br>8<br>9<br>10           | .092<br>.073<br>.073<br>.087         | .102<br>.195<br>.225<br>.292<br>.335 | .102<br>.109<br>.109<br>.120         | .120<br>.234<br>.548<br>.399<br>.311      | .130<br>.130<br>.134<br>.138<br>.142   | 9.310<br>5.370<br>5.640<br>5.340<br>3.230          | .881<br>.821<br>.776<br>.847<br>2.280      | 1.410<br>11.900<br>26.900<br>30.800<br>8.220 | .572<br>1.620<br>1.130<br>2.380<br>4.730  | 1.020<br>1.250<br>.724<br>.534<br>.424        | 2.910<br>1.130<br>.718<br>.544<br>.517   | .240<br>2.380<br>.902<br>.534<br>.375 |
| 11<br>12<br>13<br>14<br>15       | .078<br>.070<br>.068<br>.068<br>.063 | .297<br>.178<br>.134<br>.116<br>.105 | .123<br>.150<br>.123<br>.109         | .288<br>.269<br>.256<br>.195<br>1.150     | .146<br>.166<br>.427<br>1.440<br>.972  | 2.310<br>1.840<br>3.840<br>5.820<br>3.300          | 2.010<br>2.430<br>6.590<br>3.790<br>2.470  | 4.240<br>2.920<br>2.280<br>1.840<br>1.560    | 2.780<br>1.570<br>1.130<br>5.990<br>5.380 | .370<br>.350<br>.330<br>1.100<br>1.860        | 2.180<br>5.410<br>2.460<br>1.400<br>.986 | .310<br>.262<br>.240<br>.216<br>.196  |
| 16<br>17<br>18<br>19<br>20       | .063<br>.063<br>.063<br>.073         | .112<br>.105<br>.102<br>.105<br>.098 | .109<br>.105<br>.095<br>.095<br>.098 | 1.670<br>• 754<br>• 570<br>• 526<br>• 467 | .667<br>.581<br>1.770<br>1.690<br>.964 | 2.360<br>1.780<br>1.500<br>2.340<br>2.040          | 5.180<br>4.420<br>3.890<br>2.870<br>2.190  | 1.400<br>1.150<br>1.080<br>1.040<br>.916     | 2.250<br>1.460<br>1.090<br>.888<br>.756   | 1.320<br>.718<br>.937<br>.730<br>.598         | .756<br>.622<br>.522<br>.456<br>.407     | .184<br>.184<br>.172<br>.160<br>.160  |
| 21<br>22<br>23<br>24<br>25       | .090<br>.081<br>.081<br>.076         | .098<br>.098<br>.109<br>.109         | .112<br>.102<br>.102<br>.098<br>.098 | ·359<br>·229<br>·234<br>·216<br>·174      | .654<br>.660<br>1.200<br>.878<br>6.900 | 5.050<br>5.210<br>5.600<br>3.860<br>2.700          | 1.800<br>1.890<br>1.830<br>1.800<br>5.510  | .834<br>.814<br>.769<br>.694<br>.640         | .682<br>.634<br>.574<br>.522<br>.473      | .822<br>2.750<br>1.230<br>.888<br>.676        | .365<br>.340<br>.365<br>.385<br>.396     | .160<br>.150<br>.150<br>.150          |
| 26<br>27<br>28<br>29<br>30<br>31 | .070<br>.070<br>.078<br>.078<br>.076 | .112<br>.105<br>.102<br>.134<br>.123 | .116<br>.247<br>.195<br>.166<br>.150 | .162<br>.154<br>.138<br>.142<br>.142      | 6.960<br>4.370<br>3.080                | 2.110<br>1.770<br>1.530<br>1.300<br>1.140<br>1.050 | 14.700<br>5.680<br>3.130<br>2.390<br>1.900 | .610<br>.580<br>.544<br>.522<br>.495<br>.462 | .434<br>.402<br>.380<br>.355<br>.340      | .580<br>.451<br>.375<br>.335<br>.458<br>4.270 | .385<br>.350<br>.310<br>.276<br>.258     | .142<br>.164<br>.132<br>.128<br>.125  |

STATE

MASSACHUSETTS

MAJOR BASIN

NORTHEAST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

MERRIMACK RIVER

STATION LOCATION MERRIMACK RIVER ABOVE

LOWELL, MASSACHUSETTS

|                                          | T                             |             | PADIO     | DACTIVITY IN W | ATER              |                    |                    | RADIOA                        | CTIVITY IN PLAN | IKTON (dry) | į į      | ADIOACTIVITY IN | WATER |
|------------------------------------------|-------------------------------|-------------|-----------|----------------|-------------------|--------------------|--------------------|-------------------------------|-----------------|-------------|----------|-----------------|-------|
| DATE<br>SAMPLE                           | DATE OF                       |             | ALPHA     |                | R                 | BETA               |                    |                               | GROSS A         |             |          | GROSS ACTIVI    | TY    |
| TAKEN                                    | DATE OF<br>DETERMI-<br>NATION | SUSPENDED   | DISSOLVED | TOTAL          | SUSPENDED         | DISSOLVED          | TOTAL              | DATE OF<br>DETERMI-<br>NATION | ALPHA           | BETA        | SUSPENDE | DISSOLVED       | TOTAL |
| MO. DAY YEAR                             |                               | μμε/1       | μμς/Ι     | μμς/Ι          | μμς/Ι             | μμς/Ι              | μμε/Ι              | <br>MO. DAY                   | μμc/g           | μμc/g       | μμε/Ι    | μμε/Ι           | μμς/! |
| 6 27 61<br>8 2 61*<br>8 22 61*<br>9 7 61 |                               | 0<br>0<br>1 | 0 0       | 0<br>0<br>1    | 0<br>1<br>31<br>0 | 0<br>0<br>27<br>11 | 0<br>1<br>58<br>11 |                               |                 |             |          |                 |       |
| , , ,                                    |                               |             |           |                |                   |                    |                    |                               |                 |             |          |                 |       |
|                                          |                               |             |           |                |                   |                    |                    |                               |                 |             |          |                 |       |
|                                          |                               |             |           |                |                   |                    |                    |                               |                 |             |          |                 |       |
|                                          |                               |             |           |                |                   |                    |                    |                               |                 |             |          |                 |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

MASSACHUSETTS

MAJOR BASIN

NORTHEAST

MINOR BASIN

MERRIMACK RIVER

STATION LOCATION MERRIMACK RIVER ABOVE

LOWELL, MASSACHUSETTS

| DA     | ΓE             |                                       |                         |                              | ALGAE (                             | Number                | per ml.)                         |                       |                                 |                                | IN              | ERT                            | Γ             |                |               |                      | 1470                    |               |                 |         |                       | Ι                                                                       | 1                         | MICROII                      | IVEDTE:                      | DATES                        |                                 |                                                             |
|--------|----------------|---------------------------------------|-------------------------|------------------------------|-------------------------------------|-----------------------|----------------------------------|-----------------------|---------------------------------|--------------------------------|-----------------|--------------------------------|---------------|----------------|---------------|----------------------|-------------------------|---------------|-----------------|---------|-----------------------|-------------------------------------------------------------------------|---------------------------|------------------------------|------------------------------|------------------------------|---------------------------------|-------------------------------------------------------------|
| OF SAI | MPLE           |                                       | BLUE-                   | GREEN                        | GRE                                 | ΞN                    | FLAGEI<br>(Pigm                  | LATES<br>ented)       | DIAT                            | омѕ                            |                 | ERT<br>TOM<br>ELLS<br>per ml.) |               | DOM<br>(Se     | INANT         | D<br>SPEC<br>duction | IATO<br>IES A<br>for Co | ND PE         | RCEN<br>nti/ica | TAGES   | 8                     | LANKTON,<br>LATHED                                                      | 2                         | T                            |                              |                              | FORMS                           | nera<br>tetion<br>ation)                                    |
| MONTH  | YEAR           | TOTAL                                 | COCCOID                 | FILA.<br>MENT-<br>OUS        | COCCOID                             | FILA-<br>MENT-<br>OUS | GREEN                            | OTHER                 | CENTRIC                         | PENNATE                        | CENTRIC         | PENNATE                        | FIRST*        | PER.           | SECOND#       | PER.<br>CENTAGE      | THIRD#                  | PER.          | FOURTH#         | PER.    | OTHER PER-<br>CENTAGE | OTHER MICROPLANKTOM,<br>FUNGI AND SHEATHED<br>RACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | THER ARIMAL I<br>No. per liter) | powinant genera<br>(See Introduction<br>for Identification) |
| 8 7    | 61<br>61<br>61 | 6600<br>5200<br>7000<br>11300<br>1200 | 370<br>120<br>100<br>20 | 290<br>330<br>80<br>60<br>20 | 2070<br>2650<br>5840<br>9360<br>720 |                       | 2300<br>660<br>430<br>620<br>190 | 60<br>60<br>150<br>20 | 520<br>580<br>390<br>350<br>120 | 990<br>750<br>250<br>640<br>80 | 250<br>20<br>40 |                                | 9<br>56<br>56 | 50<br>30<br>60 | 2<br>47<br>92 | 10<br>20<br>10       | 56<br>93<br>2           | 10<br>10<br>* | 47<br>9<br>43   | 10<br>* | 40<br>50<br>30        | 20                                                                      | 30<br>30<br>10            | 120<br>211                   | 23 8 8 2 7                   | 4 2                          |                                 | 38333-8-2<br>                                               |
|        |                |                                       |                         |                              |                                     |                       |                                  |                       |                                 |                                |                 |                                |               |                |               |                      |                         |               |                 |         |                       |                                                                         |                           |                              |                              |                              |                                 |                                                             |
|        |                |                                       |                         |                              |                                     |                       |                                  |                       |                                 |                                |                 |                                |               |                |               |                      |                         |               |                 |         |                       |                                                                         |                           |                              |                              |                              |                                 |                                                             |

## ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

MASSACHUSETTS

MAJOR BASIN

NORTHEAST

MINOR BASIN

MERRIMACK RIVER

STATION LOCATION MERRIMACK RIVER ABOVE

LOWELL, MASSACHUSETTS

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |       |                 |         | <del> </del>        | ACTABLES          |       |            |             |                              |      |               |                 |       |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------|-----------------|---------|---------------------|-------------------|-------|------------|-------------|------------------------------|------|---------------|-----------------|-------|------|
| DATE OF SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                   | E     | TRACTABL        | ES.     |                     |                   |       |            | NEUTRALS    |                              | 1    |               |                 |       |      |
| MONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH HONTH | GALLONS<br>FILTERED | TOTAL | CHLORO-<br>FORM | ALCOHOL | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES | TOTAL | ALIPHATICS | AROMATICS   | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES | LOSS |
| 6 26 61 8 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | 315   | 152             | 163     | ETHER INSOLUBLES    | SOLUBLES 27       | 62    | 9          | AROMATICS 5 | ATED                         | Loss | 18            | 14              | 3     | 23   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |       |                 |         |                     |                   |       |            |             |                              |      |               | 3               |       |      |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MASSACHUSETTS

MAJOR BASIN

NORTHEAST

MINOR BASIN

MERRIMACK RIVER

STATION LOCATION MERRIMACK RIVER ABOVE

LOWELL, MASSACHUSETTS

| DAT                                                 |              |   |                             |    |                |                | CHLORINE       | DEMAND          |                              |                   |                    |                  |                        |                            |                  |                    |                                      |                                                      |
|-----------------------------------------------------|--------------|---|-----------------------------|----|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|----------------------------|------------------|--------------------|--------------------------------------|------------------------------------------------------|
| DAY YAG                                             | YEAR         |   | DISSOLVED<br>OXYGEN<br>mg/I | рН | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml.                             |
| 6 27<br>7 10<br>7 17<br>7 24<br>8 2<br>8 10<br>6 17 | 616161616161 | - |                             |    |                |                |                |                 |                              |                   |                    |                  |                        |                            |                  |                    |                                      | 17000<br>1600<br>3700<br>6000<br>2000<br>1800<br>920 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station below Concord River at Lowell, Massachusetts
Operated by U.S. Geological Survey

STATE

Massachusetts

MAJOR BASIN

Northeast

MINOR BASIN

Merrimack River

STATION LOCATION

Merrimack River above

Lowell, Massachusetts

| Day                              | October                                               | November                                  | December                                           | January                                            | February                                  | March                                                   | April                                          | May                                                   | June                                      | July                                               | August                                             | September                                 |
|----------------------------------|-------------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|---------------------------------------------------------|------------------------------------------------|-------------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|
| 1                                | 4.850                                                 | 6.930                                     | 10.400                                             | 4.100                                              | 3.270                                     | 16.400                                                  | 20.000                                         | 20.000                                                | 7.900                                     | 2.290                                              | 3.030                                              | 2.900                                     |
| 2                                | 4.590                                                 | 10.600                                    | 10.900                                             | 4.300                                              | 3.200                                     | 15.100                                                  | 21.000                                         | 18.500                                                | 7.230                                     | 1.820                                              | 2.940                                              | 2.300                                     |
| 3                                | 4.890                                                 | 13.400                                    | 9.000                                              | 4.500                                              | 3.200                                     | 13.800                                                  | 22.000                                         | 20.000                                                | 6.930                                     | 2.260                                              | 2.710                                              | 2.100                                     |
| 4                                | 4.850                                                 | 13.700                                    | 7.120                                              | 4.400                                              | 3.100                                     | 13.200                                                  | 20.000                                         | 20.500                                                | 7.000                                     | 2.880                                              | 2.740                                              | 2.000                                     |
| 5                                | 4.210                                                 | 11.400                                    | 6.260                                              | 4.300                                              | 2.900                                     | 13.000                                                  | 17.000                                         | 17.400                                                | 6.590                                     | 3.330                                              | 2.060                                              | 1.900                                     |
| 6                                | 4.080                                                 | 9.330                                     | 6.370                                              | 4.100                                              | 3.000                                     | 13.400                                                  | 16.500                                         | 15.100                                                | 5.910                                     | 3.030                                              | .523                                               | 1.700                                     |
| 7                                | 3.580                                                 | 8.300                                     | 6.120                                              | 3.700                                              | 2.900                                     | 14.100                                                  | 17.000                                         | 13.400                                                | 5.230                                     | 2.600                                              | 1.940                                              | 1.500                                     |
| 8                                | 3.330                                                 | 7.420                                     | 5.940                                              | 3.300                                              | 2.940                                     | 14.200                                                  | 17.000                                         | 12.800                                                | 4.270                                     | 2.210                                              | 2.060                                              | 2.000                                     |
| 9                                | 2.610                                                 | 7.120                                     | 5.600                                              | 3.800                                              | 3.000                                     | 13.800                                                  | 16.500                                         | 13.000                                                | 4.170                                     | 2.140                                              | 2.110                                              | 1.600                                     |
| 10                               | 3.000                                                 | 6.850                                     | 4.950                                              | 3.900                                              | 3.700                                     | 12.700                                                  | 16.000                                         | 13.900                                                | 4.790                                     | 2.970                                              | 2.080                                              | 1.300                                     |
| 11                               | 3.030                                                 | 6.930                                     | 4.370                                              | 3.800                                              | 3.480                                     | 12.100                                                  | 17.000                                         | 15.100                                                | 6.660                                     | 2.880                                              | 1.980                                              | 1.700                                     |
| 12                               | 3.120                                                 | 7.040                                     | 4.600                                              | 4.000                                              | 2.830                                     | 11.700                                                  | 18.000                                         | 15.000                                                | 8.060                                     | 2.770                                              | 1.730                                              | 1.800                                     |
| 13                               | 3.390                                                 | 6.160                                     | 3.700                                              | 3.900                                              | 3.420                                     | 10.900                                                  | 18.500                                         | 13.100                                                | 7.000                                     | 2.970                                              | 1.320                                              | 1.700                                     |
| 14                               | 3.060                                                 | 6.080                                     | 3.700                                              | 3.700                                              | 3.270                                     | 10.300                                                  | 20.000                                         | 12.400                                                | 6.300                                     | 2.690                                              | 1.780                                              | 1.800                                     |
| 15                               | 2.370                                                 | 6.300                                     | 4.500                                              | 3.100                                              | 3.480                                     | 9.630                                                   | 20.500                                         | 13.000                                                | 5.980                                     | 2.210                                              | 1.780                                              | 2.000                                     |
| 16<br>17<br>18<br>19<br>20       | 2.160<br>2.700<br>3.090<br>3.520<br>4.210             | 6.080<br>5.940<br>5.530<br>5.190<br>5.190 | 5.000<br>6.200<br>6.800<br>5.000<br>4.700          | 3.500<br>3.600<br>3.550<br>3.700<br>3.760          | 3.760<br>3.860<br>3.120<br>3.120<br>4.240 | 9.880<br>9.710<br>8.960<br>8.830<br>8.380               | 21.000<br>25.000<br>26.000<br>29.000<br>27.000 | 12.700<br>11.900<br>11.100<br>10.000<br>8.870         | 5.700<br>5.060<br>4.240<br>4.920<br>4.240 | 1.750<br>3.100<br>3.700<br>3.860<br>3.520          | 1.520<br>1.560<br>1.580<br>1.320                   | 1.900<br>1.500<br>2.300<br>2.300<br>2.100 |
| 21                               | 5.770                                                 | 5.090                                     | 4.800                                              | 3.640                                              | 4.820                                     | 8.140                                                   | 24.000                                         | 7.540                                                 | 3.950                                     | 3.180                                              | 1.500                                              | 4.000                                     |
| 22                               | 6.810                                                 | 5.260                                     | 5.200                                              | 2.970                                              | 5.840                                     | 8.100                                                   | 21.500                                         | 7.460                                                 | 3.830                                     | 2.660                                              | 1.520                                              | 5.200                                     |
| 23                               | 5.840                                                 | 5.060                                     | 5.400                                              | 3.600                                              | 6.160                                     | 8.020                                                   | 21.000                                         | 7.380                                                 | 3.890                                     | 2.180                                              | 1.600                                              | 4.000                                     |
| 24                               | 6.230                                                 | 4.270                                     | 4.900                                              | 3.600                                              | 6.960                                     | 8.300                                                   | 22.500                                         | 7.740                                                 | 4.920                                     | 3.310                                              | 1.800                                              | 3.600                                     |
| 25                               | 8.100                                                 | 4.920                                     | 4.700                                              | 3.500                                              | 7.780                                     | 8.870                                                   | 28.500                                         | 7.980                                                 | 4.850                                     | 3.240                                              | 1.600                                              | 4.200                                     |
| 26<br>27<br>28<br>29<br>30<br>31 | 12.300<br>13.600<br>10.600<br>9.380<br>8.620<br>6.930 | 4.530<br>3.980<br>4.330<br>4.300<br>6.440 | 4.300<br>4.500<br>4.700<br>4.700<br>4.400<br>3.900 | 3.240<br>2.910<br>2.770<br>2.600<br>3.330<br>3.300 | 9.290<br>12.200<br>16.000                 | 9.460<br>11.000<br>12.200<br>14.900<br>20.600<br>22.000 | 29.000<br>26.500<br>26.000<br>23.000<br>21.500 | 7.460<br>7.700<br>10.400<br>11.100<br>10.100<br>9.420 | 4.850<br>4.560<br>4.080<br>3.520<br>3.120 | 3.210<br>3.060<br>3.000<br>2.600<br>1.910<br>3.240 | 1.300<br>1.500<br>1.600<br>2.000<br>3.400<br>3.300 | 4.500<br>4.300<br>3.900<br>3.640<br>2.800 |

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER MISSISSIPPI-NATCHEZ TO GULF

STATION LOCATION MISSISSIPPI RIVER AT

NEW ORLEANS, LOUISIANA

| DATE    |      |                           |     |           | RAD       | IOACTIVITY IN V | VATER     |           | <del></del> | T | RADIO                         | ACTIVITY IN PLA | NKTON (dry) | T | RAI       | DIOACTIVITY IN | WATER |
|---------|------|---------------------------|-----|-----------|-----------|-----------------|-----------|-----------|-------------|---|-------------------------------|-----------------|-------------|---|-----------|----------------|-------|
| SAMPL   |      | DATE                      | )F  |           | ALPHA     |                 |           | BETA      |             | 1 | DATE OF                       | GROSS           | ACTIVITY    | 1 |           | GROSS ACTIVI   | ry    |
| TAKEN   |      | DATE (<br>DETERI<br>NATIO | (I- | SUSPENDED | DISSOLVED | TOTAL           | SUSPENDED | DISSOLVED | TOTAL       | 1 | DATE OF<br>DETERMI-<br>NATION | ALPHA           | BETA        | 1 | SUSPENDED | DISSOLVED      | TOTAL |
| MO. DAY | YEAR |                           |     | μμε/Ι     | μμε/Ι     | μμc/l           | μμc/I     | μμς/Ι     | μμc/1       | 1 | MO. DAY                       | μμc/g           | μμc/g       | 1 | μμς/      | μμε/Ι          | μμε/1 |
|         |      |                           |     |           |           |                 |           |           |             | 1 | 1                             |                 |             |   |           |                |       |
| 10 27   | 60*  | 11 7                      | ,   | 0         | 2         | 2               | 0         | 0         | 0           | 1 |                               |                 |             |   |           |                |       |
|         |      | 12 9                      |     | 1         | 2         | 3               | 0         | 1         | 1           |   |                               |                 |             | i |           |                |       |
| 12 29   | - 1  |                           |     | 3         | 22        | 25              | 1         | 2         | 3           |   |                               |                 |             |   |           |                |       |
|         | 61   | 2 23                      |     | 0         | 0         | 0               | 4         | 5         | 9           | 1 |                               |                 |             |   |           |                |       |
|         | 61*  | 2 15                      |     | 3         | 1         | 4               | 2         | 6         | 8           | İ | 1                             |                 |             |   |           |                |       |
|         | 61*  | 3 16                      |     | 2         | 0         | 2               | 1         | 3         | 3           |   |                               |                 |             |   |           |                |       |
| 3 30    |      |                           |     | 1         | 0         | 1               | 9         | 0         | 9           |   |                               |                 |             |   |           |                |       |
|         | 61*  | 5 17                      |     | 13        | 0         | 13              | 22        | 0         | 22          |   |                               |                 |             | 1 |           |                |       |
|         | 61*  | 6                         | - 1 | 5         | 1         | 6               | 5         | 1         | 6           | 1 |                               |                 |             | 1 |           |                |       |
| 6 22    | - 1  | 7 27                      | 1   | 3         | 0         | 3               | 6         | 4         | 10          | 1 |                               |                 |             | 1 |           |                |       |
|         | 61*  | 8 28                      |     | 1         | 0         | 1               | 0         | 12        | 12          |   |                               |                 |             | 1 |           |                |       |
| 8 31    |      | 9 22                      |     | ō         | 0         | 0               | 4         | 12        | 16          |   |                               |                 | 1           |   |           |                |       |
| 0 31    | -    | ,                         |     | _         |           |                 |           |           |             | 1 |                               |                 |             | ŀ |           |                |       |
|         |      |                           | - 1 |           |           |                 |           |           |             | ŀ | 1                             |                 |             | l |           |                |       |
|         | İ    |                           |     |           |           |                 |           |           |             |   |                               |                 |             |   | 1         |                |       |
|         |      |                           |     |           |           |                 | l         |           |             | l |                               |                 |             |   |           |                |       |
|         |      |                           | Ì   |           |           |                 |           |           |             |   |                               |                 |             | 1 |           |                |       |
|         | 1    |                           |     |           |           |                 |           |           |             |   |                               |                 |             |   |           |                |       |
|         | 1    |                           | 1   |           |           |                 | ĺ         |           |             |   |                               |                 |             |   |           |                |       |
|         |      |                           |     |           |           |                 |           |           |             |   |                               |                 |             |   |           |                |       |
|         |      |                           |     |           |           |                 |           |           |             | ١ |                               |                 |             |   | 1         |                |       |
|         |      |                           |     |           |           |                 |           |           |             | 1 |                               |                 |             | 1 |           |                |       |
|         | 1    |                           |     |           |           |                 |           |           |             |   |                               |                 |             |   |           |                |       |
|         | 1    |                           |     |           |           |                 |           |           |             | l |                               |                 |             | 1 |           |                |       |
|         |      |                           |     |           |           |                 |           |           |             |   |                               |                 |             | 1 |           |                |       |
|         |      |                           |     |           |           |                 |           |           |             |   | 1                             |                 |             | 1 |           |                |       |
|         |      |                           | 1   |           |           |                 |           |           |             | 1 |                               |                 |             |   | 1         |                |       |
|         |      |                           | ı   |           |           |                 |           |           |             |   |                               |                 |             |   |           |                |       |
|         |      |                           |     |           |           |                 |           |           |             |   |                               |                 |             |   |           |                |       |
|         |      |                           |     |           |           |                 |           |           |             |   |                               |                 |             |   | 1         |                |       |
|         |      |                           | - 1 |           |           |                 |           |           |             |   |                               |                 |             |   |           |                |       |
|         |      |                           | - 1 |           |           |                 |           |           |             | 1 | 1                             |                 |             |   |           |                |       |
|         | Ì    |                           |     |           |           |                 |           |           |             | İ | 1                             |                 |             |   |           |                |       |
|         |      |                           |     |           |           |                 |           | İ         |             |   |                               |                 |             |   |           |                |       |
|         |      |                           |     |           |           |                 |           |           |             |   |                               |                 |             |   |           |                |       |
|         | l    |                           |     |           |           |                 |           |           |             |   |                               |                 |             |   |           |                |       |
|         |      |                           |     | 1         |           |                 |           | İ         |             |   |                               |                 |             |   |           |                |       |
|         |      |                           | - 1 |           |           |                 |           |           |             |   |                               |                 |             |   | :         |                |       |
|         |      |                           |     | I         |           |                 |           |           |             |   |                               |                 |             |   |           |                |       |
|         |      |                           |     |           | į         |                 |           |           |             | 1 |                               |                 |             |   |           |                |       |
|         |      |                           |     |           |           |                 |           |           |             | 1 |                               |                 |             |   |           |                |       |
|         | - 1  |                           | - 1 | i         |           |                 |           |           |             | ı | 1 1                           |                 | ı           | 1 | ı         |                |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI NATCHEZ TO GULF

STATION LOCATION MISSISSIPPI RIVER AT

NEW ORLEANS, LOUISIANA

| DATE                 |            |         |                       | ALGAE (                                                                                                         | lumber                | per ml.)                                                                                    |       |                                                                                                                                        |                                | INE                                                                                                                                                                                                                                                                    | RT                                                                                                   |                                                                                                                      |                                                                            |                      | ום                                                                                                                                     | ATOM                                                                                   | 45                                                                                    |                                                                      |                                                                               |                                                                | ı.                                                 |                           | ICROIN                       | VERTEBR                      | ATES                         | J                                                                                      |                                                          |
|----------------------|------------|---------|-----------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|---------------------------|------------------------------|------------------------------|------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------|
| OF SAMPLE            |            | BLUE-   | GREEN                 | GREE                                                                                                            | :N                    | FLAGEL<br>(Pigme                                                                            |       | DIAT                                                                                                                                   | омѕ                            | INE<br>DIA<br>SHE<br>(No. p                                                                                                                                                                                                                                            | LLS<br>r ml.)                                                                                        |                                                                                                                      | DOMII<br>(Ses                                                              | NANT<br>Introd       | SPECI                                                                                                                                  | es AN                                                                                  | D PER                                                                                 | RCENT<br>ti/icati                                                    | AGES                                                                          |                                                                | HICROPLANKTON AND SHEATHED RIA Per ml.)            | ml.)                      | s<br>iter)                   | EA<br>iter)                  | ES<br>iter)                  | aENERA<br>duction<br>fication                                                          |                                                          |
| MONTH<br>DAY<br>YEAR | TOTAL      | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                                                                                                         | FILA-<br>MENT-<br>OUS | GREEN                                                                                       | OTHER | CENTRIC                                                                                                                                | PENNATE                        | CENTRIC                                                                                                                                                                                                                                                                | PENNATE                                                                                              | FIRST                                                                                                                | PER.<br>CENTAGE                                                            | SECOND#              | PER.<br>CENTAGE                                                                                                                        | THIRD#                                                                                 | PER-<br>CENTAGE                                                                       | FOURTH                                                               | PER.<br>CENTAGE                                                               | OTHER PER-<br>CENTAGE                                          | OTHER BICK!<br>FUNGI AND S<br>RACTERIA<br>(NO. PET | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER AUTHOL FORMS (NO. DET HER) DOMINANT GENERA (See Introduction for Identification) | _                                                        |
| 10                   | 400<br>600 | 70 20   | 20 50                 | 50<br>90<br>70<br>40<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>80<br>210<br>40<br>80<br>80<br>80 |                       | 70<br>290<br>110<br>50<br>40<br>50<br>20<br>20<br>110<br>150<br>60<br>40<br>130<br>80<br>80 | 20    | 180<br>470<br>200<br>90<br>620<br>900<br>1680<br>1900<br>2640<br>2320<br>670<br>730<br>560<br>440<br>1100<br>270<br>3100<br>410<br>640 | 290<br>210<br>120<br>150<br>20 | 200<br>330<br>360<br>240<br>180<br>900<br>3020<br>3040<br>630<br>200<br>310<br>200<br>310<br>200<br>310<br>200<br>310<br>200<br>310<br>200<br>310<br>200<br>310<br>200<br>310<br>200<br>310<br>200<br>310<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>3 | 90<br>90<br>70<br>50<br>200<br>160<br>290<br>130<br>100<br>80<br>120<br>130<br>190<br>60<br>20<br>20 | 57<br>26<br>92<br>57<br>56<br>57<br>82<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56 | 30<br>30<br>30<br>30<br>30<br>50<br>20<br>40<br>80<br>40<br>20<br>60<br>60 | 56<br>58<br>56<br>58 | 20<br>10<br>20<br>30<br>20<br>20<br>30<br>10<br>20<br>10<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 26<br>82<br>26<br>59<br>61<br>82<br>89<br>56<br>92<br>58<br>56<br>58<br>56<br>26<br>45 | 10<br>10<br>10<br>20<br>10<br>20<br>*<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 82<br>58<br>56<br>26<br>80<br>26<br>82<br>82<br>58<br>82<br>59<br>26 | 10<br>10<br>10<br>10<br>*<br>10<br>*<br>*<br>10<br>10<br>10<br>10<br>10<br>10 | 30<br>20<br>20<br>30<br>20<br>20<br>10<br>20<br>50<br>60<br>40 | 70<br>200<br>130<br>90<br>20<br>20<br>20           | 20<br>10<br>20<br>40      | 21 5 6 6                     | 3                            | 1 1 4 3 2                    |                                                                                        | -7<br>-7<br>-7<br>-7<br>-7<br>-7<br>-7<br>-7<br>-7<br>-7 |

## ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-NATCHEZ TO GULF

STATION LOCATION MISSISSIPPI RIVER AT

NEW ORLEANS, LOUISIANA

|                                                                                                                                          |                                                                      |                                                                            |                                    |                                                                                |                     |                                                |                                                                          |                |                                         |                                                                          |                |                |                 | · · · · · · · · · · · · · · · · · · · |                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------|---------------------|------------------------------------------------|--------------------------------------------------------------------------|----------------|-----------------------------------------|--------------------------------------------------------------------------|----------------|----------------|-----------------|---------------------------------------|-----------------------------------------------------------------------|
| DATE OF SAMPLE                                                                                                                           | 4                                                                    | E)                                                                         | TRACTABL                           | .E5                                                                            | <del> </del>        |                                                |                                                                          |                | NEUTRALS                                | ORM EXTR                                                                 | ACTABLES       | ·              | ,               |                                       |                                                                       |
| MONTH PAY POUNTH PAY POUNTH PAY POUNTH PAY POUNTH PAY POUNTH PAY PAY PAY PAY PAY PAY PAY PAY PAY PAY                                     | GALLONS<br>FILTERED                                                  | TOTAL,                                                                     | CHLORO-<br>FORM                    | ALCOHOL                                                                        | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES                              | TOTAL                                                                    | ALIPHATICS     | AROMATICS                               | OXYGEN-<br>ATED<br>COMPOUNDS                                             | LOSS           | WEAK<br>ACIDS  | STRONG<br>ACIDS | BASES                                 | LOSS                                                                  |
| 10 17 60 10 24 11 10 60 11 30 60 12 7 12 27 60 1 2 24 3 15 61 3 22 5 3 61 5 10 5 30 61 6 6 27 7 17 61 8 14 9 5 61 9 13 9 26 61 10 3 **No | 6229<br>6952<br>6229<br>6227<br>6227<br>6227<br>6229<br>6430<br>6229 | 152<br>135<br>125<br>156<br>167<br>147<br>1123<br>122<br>111<br>111<br>105 | 645481<br>449036662230<br>55662230 | 88<br>100<br>101<br>118<br>126<br>98<br>64<br>67<br>86<br>79<br>69<br>58<br>85 | 31012102200200      | 16<br>85<br>97<br>115<br>145<br>186<br>96<br>4 | 19<br>12<br>11<br>14<br>19<br>18<br>13<br>13<br>12<br>13<br>12<br>8<br>9 | 10111122212111 | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 14<br>9<br>8<br>10<br>13<br>14<br>10<br>9<br>8<br>9<br>10<br>9<br>6<br>7 | 22113111201000 | 74355746754633 | 72122415743411  | 11111111101                           | 11<br>7<br>3<br>6<br>5<br>7<br>6<br>12<br>11<br>6<br>5<br>8<br>5<br>2 |

STATE

LOUISIANA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-NATCHEZ TO GULF

STATION LOCATIONMISSISSIPPI RIVER AT

NEW ORLEANS, LOUISIANA

|        | DATE    | 1    |              | 1                   |            |            |          | CHLORINE       | DEMAND          |                      |           |            |            |              |                            |                  |                    | TOTAL               | 1                        |
|--------|---------|------|--------------|---------------------|------------|------------|----------|----------------|-----------------|----------------------|-----------|------------|------------|--------------|----------------------------|------------------|--------------------|---------------------|--------------------------|
| OF     | SAMP    | LE   | TEMP.        | DISSOLVED<br>OXYGEN | pH         | B.O.D.     | C.O.D.   |                |                 | AMMONIA-<br>NITROGEN | CHLORIDES | ALKALINITY | HARDNESS   | COLOR        | TURBIDITY<br>(scale units) | SULFATES<br>mg/i | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS | COLIFORMS<br>per 100 ml. |
| MONTH  | DAY     | YEAR | Centigrade)  | mg/l                | •          | mg/l       | mg/l     | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | mg/l                 | mg/l      | mg/l       | mg/l       | (scale outs) | (zeara auris)              | mg/i             |                    | mg/l                | <b>J</b>                 |
| 10     | 6       | 60   | 28.0         | 6.0                 | 8.2        | • 2        | 7        | 1.0            | 3•3             | •1                   | 32        | 127        | 164        | 15           | 54                         | 54               | • 2<br>• 2         | 267<br>277          | 2300                     |
| 10     | 13      | 60   | 28.0         | 6.2                 | 8.0        | • 2        | 9        | 1.0            | 2.7             | •1                   | 37        | 120        | 164<br>164 | 15<br>15     | 23<br>13                   | 60<br>83         | • 2                | 278                 | 2500                     |
|        |         | 60   | 24.0         | 6.5                 | 8.0        | • 3        | 11       | 1.0<br>1.3     | 2•9             | • 2                  | 33<br>35  | 120<br>128 | 156        | 15           | 25                         | 55               | .3                 | 277                 | _                        |
|        |         | 60   | 23.0         | 6.7                 | 8.1        | • 3        | 11       | 100            | 4.0             |                      | ]         | 120        | -          |              |                            | -                | -                  | -                   | 600                      |
| 10     | 31      | 60   | 21.0         | 7.1                 | 7.9        | • 4        | 10       | 1.1            | 3.1             | • 2                  | 29        | 128        | 156        | 15           | 20                         | 58               | • 2                | 258                 | 490                      |
|        | 10      | 60   | 20.0         | 7.7                 | 7.8        | . 2        | 10       | 1.1            | 3.3             | • 2                  | 45        | 133        | 164        | 15           | 12                         | 49               | .2                 | 310                 | 1700                     |
| 11     | 17      | 60   | 16.0         | 7.9                 | 8.0        | • 6        | 13       | 1.2            | 3.9             | •2                   | 40        | 130        | 164        | 15           | 215                        | 61               | .2                 | 343<br>271          | 1700<br>400              |
| 12     | 1       | 60   | 14.0         | 8.4                 | 7.9        | • 6        | 11       | 1.3            | 3.7             | •2                   | 33        | 114        | 154        | 15<br>15     | 60<br>40                   | 58<br>65         | 1                  | 284                 | 330                      |
| 12     | 8       | 60   | 14.0         | 8.9                 | 7.9        | • 6        | 11       | 1.7            | 3.7             | • 2                  | 32        | 118        | 158<br>160 | 15           | 40                         | 60               | 1                  | 272                 | 550                      |
|        | 15      | 60   | 9.0          | 9.2                 | 7.8        | • 9        | 14       | 1.1            | 4.0             | •2                   | 31<br>31  | 130        | 140        | 15           | 56                         | 50               | 1                  | 248                 | 510                      |
| 12     | 22      | 60   | 8.0          | 9.9                 | 7.7        | • 6<br>• 3 | 14       | 1.1            | 4•0<br>4•0      | .2                   | 37        | 108        | 136        | 15           | 160                        | 45               | • 2                | 247                 | 530                      |
| 12     | 29      | 60   | 9.0<br>6.0   | 10.4                | 7.9<br>7.8 | 2.6        | 13       | 1.1            | 3.6             | .2                   | 35        | 114        | 144        | 15           | 54                         | 46               | • 1                | 245                 | 5400                     |
| 1      | 12      | 61   | 6.0          | 10.5                | 7.7        | 2.1        | 16       | 1.1            | 4.0             | .3                   | 32        | 114        | 136        | 15           | 228                        | 43               | • 2                | 234                 | 630                      |
| ī      | 19      | 61   | 6.0          | 10.6                | 7.8        | 1.6        | 13       | 1.0            | 3 • 2           | • 2                  | 32        | 100        | 130        | 15           | 68                         | 46               | • 1                | 237                 | 800                      |
| ī      | 26      | 61   | _            | 10.8                | 8.0        | • 6        | 12       | 1.1            | 4 • 4           | •2                   | 40        | 109        | 150        | 15           | 38                         | 55<br>49         | .2                 | 278<br>261          | 600<br>450               |
| 2      | 2       | 61   | 7.0          | 11.1                | 7.9        | 2.0        | 14       | 1.0            | 3.3             | • 2                  | 33        | 105        | 140<br>136 | 15<br>15     | 54<br>40                   | 52               | .0                 | 240                 | 300                      |
| 2      | 9       | 61   | 5.0          | 11.3                | 8.0        | 2.6        | 13       | 8.             | 3 • 2           | .2                   | 31        | 99         | 150        | 15           | 46                         | 49               | .0                 | 257                 | 400                      |
| 2      | 16      | 61   | 7.0          | 10.4                | 7.9        | 2.1        | 12       | 1.0            | 3.2             | 2                    | 26        | 113        | 134        | 15           | 66                         | 32               | .0                 | 213                 | 700                      |
| 2      | 23      | 61   | 9.0          | 9.4                 | 7.8        | 1.6        | 14<br>22 | 1.1            | 5.7             | 3                    | 28        | 90         | 116        | 15           | 320                        | 40               | • 2                | 216                 | 990                      |
| 3      | 2       | 61   | 11.0<br>12.0 | 8.6                 | 8.0        | 1.6<br>1.4 | 28       | 1.1            | 5.4             | 1                    | 26        | 85         | 108        | 15           | 495                        | 37               | • 1                | 208                 | 930                      |
| 3      | 16      | 61   | 12.0         | 8.1                 | 7.8        | 1.1        | 24       | 2.0            | 5.7             | . 2                  | 15        | 75         | 96         | 15           | 375                        | 31               | • 1                | 169                 | 520                      |
| 3      | 23      | 61   | 14.0         | 7.7                 | 7.4        | 1.4        | 32       | •8             | 4.1             | •1                   | 15        | 77         | 100        | 15           | 515                        | 30               |                    | 176                 | 450                      |
| 3      | 30      | 61   | 13.0         | 7.6                 | 7.5        | 1.7        | 28       | 1.0            | 5 • 1           | •1                   | 12        | 77         | 100        | 15           | 455                        | 32<br>33         | • 1                | 175<br>166          | 450                      |
| 4      | 6       | 61   | 14.0         | 7.2                 | 7.7        | • 9        | 21       | •8             | 5 • 1           | • 2                  | 16        | 77         | 100        | 15<br>15     | 355<br>305                 | 34               |                    | 182                 | 580                      |
| 4      | 13      | 61   | 16.0         | 7.0                 | 7.4        | • 9        | 26       | 1.0            | 5 • 1           | •2                   | 16        | 88         | 112        | 15           | 170                        | 32               | 1                  | 172                 | 890                      |
| 4      | 20      | 61   | 14.0         | 7.7                 | 7.4        | • 9        | 21       | 1.0            | 5.1             | •1                   | 16        | 85         | 108        | 15           | 190                        | 35               |                    | 178                 | 2200                     |
| 4      | 27      | 61   | 15.0         | 7.0                 | 7.7        | •5<br>•5   | 21       | 1.0            | 5.1             | 1                    | 16        | 90         | 114        | 15           | 155                        | 40               | .1                 | 185                 | 870                      |
| 5<br>5 | 4<br>11 | 61   | 17.0<br>18.0 | 7.0                 | 7.4        | 1.0        | 21       | 7.7            | 4.2             | .1                   | 16        | 90         | 118        | 15           | 230                        | 41               |                    | 205                 | 900                      |
| 5      | 18      | 61   | 19.0         | 6.4                 | 7.5        | .7         | 22       | .7             | 4 • 2           | •1                   | 19        | 92         | 118        | 15           | 370                        | 45               | ı                  | 213                 | 800                      |
| 5      | 25      | 61   | 20.0         | 5.4                 | 7.8        | .7         | 27       | .7             | 4.2             | .1                   | 1.3       | 86         | 104        | 15           | 290                        | 31               |                    | 165<br>179          | 2000                     |
| 6      | 1       | 61   | 21.0         |                     | 7.9        | .3         | 23       | 1.0            | 5 • 1           | • 1                  | 11        | 86         | 102        | 15           | 225<br>155                 | 34               | 1                  | 200                 | 1300                     |
| 6      | 8       | 61   | 22.0         | 5.0                 | 7.9        | •6         | 23       | 1.7            | 5.1             | • 1                  | 15        | 91         | 110        | 15<br>15     | 200                        | 37               |                    | 200                 | 4900                     |
| 6      | 15      | 61   | 24.0         | 4.7                 | 7.9        | •5         | 22       | 1.6            | 4 • 1           | • 1                  | 17        | 98         | 118        | 1            | 225                        | 48               |                    | 240                 |                          |
| 6      | 22      | 61   | 24.0         | 1                   | 7.5        | • 5        | 19       | 1.0            | 5 - 1           | •1                   | 28        | 1          | 128        | 1            | 255                        | 57               | 1                  | li i                | _                        |
| 6      | 29      | 61   | 24.0         | 5.9                 | 7.8        | • 9        | 16       | 1.0            | 4 • 1           | • 1                  | 20        | "          |            | 1            |                            | "                |                    |                     |                          |

STATE

LOUISIANA

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-NATCHEZ TO GULF

STATION LOCATIONMISSISSIPPI RIVER AT

NEW ORLEANS, LOUISIANA

| DATE<br>OF SAMPLE                             | TEMP.                                                                                                    | DISSOLVED                                                                                                              |                                                                    |                                                          |                                                                    | CHLORINE                                                              | DEMAND                                                                                                                          |                                     |                                                                |                                                                                       |                                                                     |                                                                |                                                                                     |                             |                                                          |                                                                                         |                                                                                                  |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| MONTH<br>DAY                                  | (Dagrees                                                                                                 | OXYGEN                                                                                                                 | рН                                                                 | B.O.D.<br>mg/l                                           | C.O.D.<br>mg/l                                                     | 1-HOUR<br>mg/l                                                        | 24-HOUR<br>mg/l                                                                                                                 | AMMONIA-<br>NITROGEN<br>mg/l        | CHLORIDES<br>mg/l                                              | ALKALINITY<br>mg/l                                                                    | HARDNESS<br>mg/l                                                    | COLOR<br>(scale units)                                         | TURBIDITY<br>(scale units)                                                          | SULFATES<br>mg/l            | PHOSPHATES<br>mg/l                                       | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l                                                    | COLIFORMS<br>per 100 ml.                                                                         |
| 7 7 1 2 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 1 25.<br>1 26.<br>1 27.<br>1 28.<br>1 28.<br>1 28.<br>1 28.<br>1 27.<br>1 27.<br>1 27.<br>1 27.<br>1 27. | 5.4<br>6.1<br>6.0<br>6.0<br>5.8<br>5.7<br>6.0<br>5.8<br>5.7<br>6.0<br>5.8<br>6.0<br>5.8<br>6.0<br>7<br>6.0<br>6.0<br>7 | 7.8<br>7.9<br>8.0<br>7.7<br>7.7<br>7.9<br>7.8<br>7.9<br>7.9<br>7.8 | .2<br>.5<br>.4<br>.2<br>.3<br>.4<br>.2<br>.1<br>.4<br>.3 | 26<br>33<br>15<br>19<br>16<br>17<br>19<br>10<br>8<br>5<br>12<br>30 | .7<br>1.3<br>.9<br>1.3<br>1.4<br>.8<br>1.0<br>1.1<br>1.1<br>1.0<br>.8 | 5 · 4 · 4 · 3 · 5 · 2 · 6 · 6 · 3 · 2 · 2 · 2 · 4 · • 6 · 3 · 4 · • 2 · 2 · 4 · • 6 · 3 · • • 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6 | 33 3 3 8 8 8 5 4 2 4 4 8<br>• 4 4 8 | 19<br>20<br>24<br>20<br>25<br>18<br>20<br>32<br>23<br>30<br>48 | 95<br>104<br>117<br>119<br>101<br>103<br>96<br>105<br>109<br>112<br>116<br>123<br>110 | 122<br>126<br>152<br>1540<br>138<br>126<br>138<br>144<br>158<br>144 | 25<br>20<br>20<br>15<br>15<br>20<br>20<br>20<br>20<br>20<br>20 | 225<br>210<br>90<br>210<br>128<br>120<br>198<br>133<br>108<br>73<br>63<br>34<br>305 | 42193639255566<br>453925566 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>1 | 215<br>206<br>226<br>255<br>203<br>224<br>202<br>232<br>245<br>233<br>277<br>342<br>287 | 900<br>500<br>470<br>830<br>1500<br>1100<br>1300<br>*200<br>4000<br>19000<br>1600<br>830<br>3800 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Red River Landing, Louisiana Operated by U.S. Geological Survey

STATE

Louisiana

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Lower Mississippi-Natchez to Gulf

STATION LOCATION

Mississippi River at

New Orleans, Louisiana

| Day                              | October                                                        | November                                            | December                                                       | January                                                        | February                                            | March                                                                | April                                                    | May                                                                | June                                                    | July                                                           | August                                                         | September                                           |
|----------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | 178.000<br>175.000<br>172.000<br>170.000<br>170.000            | 174.000<br>174.000<br>174.000<br>174.000<br>170.000 | 191.000<br>188.000<br>186.000<br>180.000<br>175.000            | 223.000<br>222.000<br>221.000<br>228.000<br>239.000            | 309.000<br>296.000<br>277.000<br>254.000<br>232.000 | 544.000<br>579.000<br>608.000<br>634.000<br>658.000                  | 1099.000<br>1095.000<br>1093.000<br>1087.000<br>1080.000 | 837.000<br>830.000<br>812.000<br>812.000<br>812.000                | 1035.000<br>1034.000<br>1028.000<br>1017.000<br>996.000 | 532.000<br>510.000<br>482.000<br>450.000<br>412.000            | 403.000<br>414.000<br>420.000<br>419.000<br>411.000            | 205.000<br>203.000<br>203.000<br>202.000<br>202.000 |
| 6<br>7<br>8<br>9<br>10           | 169.000<br>171.000<br>171.000<br>171.000<br>168.000            | 160.000<br>155.000<br>156.000<br>173.000<br>182.000 | 177.000<br>182.000<br>184.000<br>190.000                       | 252.000<br>274.000<br>318.000<br>335.000<br>346.000            | 217.000<br>210.000<br>200.000<br>193.000<br>189.000 | 687.000<br>707.000<br>724.000<br>740.000<br>754.000                  | 1073.000<br>1060.000<br>1055.000<br>1048.000<br>1042.000 | 812.000<br>805.000<br>788.000<br>786.000<br>789.000                | 977.000<br>945.000<br>908.000<br>864.000<br>810.000     | 372.000<br>343.000<br>321.000<br>304.000<br>298.000            | 393.000<br>374.000<br>362.000<br>352.000<br>340.000            | 201.000<br>201.000<br>200.000<br>199.000<br>202.000 |
| 11<br>12<br>13<br>14<br>15       | 167.000<br>167.000<br>167.000<br>174.000                       | 190.000<br>199.000<br>208.000<br>213.000<br>215.000 | 204.000<br>217.000<br>228.000<br>236.000<br>241.000            | 354.000<br>353.000<br>352.000<br>349.000<br>340.000            | 186.000<br>186.000<br>188.000<br>191.000<br>196.000 | 768.000<br>784.000<br>800.000<br>815.000<br>831.000                  | 1034.000<br>1007.000<br>983.000<br>968.000<br>952.000    | 820.000<br>848.000<br>852.000<br>853.000<br>854.000                | 762.000<br>715.000<br>662.000<br>620.000<br>589.000     | 297.000<br>301.000<br>295.000<br>289.000<br>285.000            | 328.000<br>320.000<br>316.000<br>314.000<br>314.000            | 206.000<br>198.000<br>190.000<br>208.000<br>220.000 |
| 16<br>17<br>18<br>19<br>20       | 174.000<br>174.000<br>172.000<br>167.000<br>161.000            | 215.000<br>215.000<br>215.000<br>217.000<br>221.000 | 248.000<br>260.000<br>272.000<br>282.000<br>286.000            | 325.000<br>306.000<br>289.000<br>273.000<br>261.000            | 201.000<br>213.000<br>239.000<br>259.000<br>274.000 | 846.000<br>879.000<br>911.000<br>926.000<br>939.000                  | 938.000<br>930.000<br>925.000<br>921.000<br>916.000      | 874.000<br>894.000<br>902.000<br>908.000<br>926.000                | 562.000<br>549.000<br>540.000<br>538.000<br>541.000     | 279.000<br>280.000<br>289.000<br>293.000<br>297.000            | 314.000<br>314.000<br>310.000<br>307.000<br>306.000            | 228.000<br>228.000<br>223.000<br>212.000<br>208.000 |
| 21<br>22<br>23<br>24<br>25       | 155.000<br>150.000<br>149.000<br>149.000<br>152.000            | 221.000<br>220.000<br>219.000<br>216.000<br>214.000 | 286.000<br>280.000<br>274.000<br>265.000<br>256.000            | 250.000<br>242.000<br>240.000<br>245.000<br>260.000            | 298.000<br>331.000<br>354.000<br>372.000<br>399.000 | 950.000<br>960.000<br>970.000<br>985.000<br>994.000                  | 910.000<br>902.000<br>890.000<br>880.000<br>875.000      | 945.000<br>960.000<br>962.000<br>963.000<br>964.000                | 545.000<br>540.000<br>542.000<br>560.000<br>568.000     | 308.000<br>325.000<br>340.000<br>347.000<br>354.000            | 307.000<br>308.000<br>320.000<br>320.000<br>317.000            | 244.000<br>277.000<br>313.000<br>348.000<br>382.000 |
| 26<br>27<br>28<br>29<br>30<br>31 | 155.000<br>157.000<br>159.000<br>161.000<br>170.000<br>174.000 | 211.000<br>208.000<br>204.000<br>196.000<br>191.000 | 246.000<br>238.000<br>231.000<br>224.000<br>221.000<br>221.000 | 278.000<br>288.000<br>296.000<br>305.000<br>312.000<br>313.000 | 425.000<br>457.000<br>501.000                       | 1007.000<br>1021.000<br>1039.000<br>1062.000<br>1076.000<br>1092.000 | 870.000<br>863.000<br>843.000<br>840.000<br>838.000      | 966.000<br>984.000<br>1002.000<br>1018.000<br>1027.000<br>1035.000 | 572.000<br>580.000<br>579.000<br>575.000<br>569.000     | 356.000<br>357.000<br>357.000<br>357.000<br>368.000<br>383.000 | 302.000<br>280.000<br>254.000<br>232.000<br>218.000<br>209.000 | 400.000<br>410.000<br>408.000<br>398.000<br>382.000 |

## ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

MISSISSIPPI

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-YAZOO RIVER

STATION LOCATION MISSISSIPPI RIVER AT

VICKSBURG, MISSISSIPPI

|                                                   |                                        |                                      |                                       |                                   |                                    | ,                   |                                |                                  |             |               | ODIL EVED                    | ACTADI EC     | ····                        |                             |               |                               |
|---------------------------------------------------|----------------------------------------|--------------------------------------|---------------------------------------|-----------------------------------|------------------------------------|---------------------|--------------------------------|----------------------------------|-------------|---------------|------------------------------|---------------|-----------------------------|-----------------------------|---------------|-------------------------------|
| DATE OF SAME                                      |                                        |                                      | EX                                    | TRACTABL                          | .ES                                |                     | <del></del>                    |                                  |             | NEUTRALS      | ORM EXTR                     | ACIABLES      |                             | l                           |               |                               |
| MONTH<br>DAY<br>YEAR                              | MONTH NO MA                            | GALLONS<br>FILTERED                  | TOTAL                                 | CHLORO-<br>FORM                   | ALCOHOL                            | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES              | TOTAL                            | ALIPHATICS  | AROMATICS     | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS          | WEAK<br>ACIDS               | STRONG<br>ACIDS             | BASES         | LOSS                          |
| 4 10 61<br>5 4 61<br>6 8 61<br>7 10 61<br>8 14 61 | 4 21<br>5 25<br>6 22<br>7 8 24<br>9 22 | 4950<br>4500<br>3580<br>5000<br>6500 | 188<br>160<br>292<br>104<br>131<br>94 | 79<br>78<br>151<br>32<br>52<br>32 | 109<br>82<br>141<br>72<br>79<br>62 | 3 3 1 1 1 1         | 20<br>20<br>41<br>8<br>13<br>7 | 20<br>21<br>35<br>10<br>18<br>15 | 2 1 4 2 3 4 | 2 2 2 1 2 2 2 | 16<br>17<br>28<br>7          | 0 1 1 0 0 0 0 | 8<br>9<br>17<br>4<br>6<br>4 | 9<br>7<br>20<br>4<br>5<br>1 | 1 2 3 1 1 1 1 | 18<br>16<br>32<br>4<br>8<br>3 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Vicksburg, Mississippi Operated by U.S. Geological Survey STATE

Mississippi

MAJOR BASIN

Southwest-Lower Mississippi

MINOR BASIN

Lower Mississippi-Yazoo Rivers

STATION LOCATION

Mississippi River at

Vicksburg, Mississippi

| Day                              | October                                                        | November                                            | December                                                       | January                                                        | February                                                          | March                                                                      | April                                                         | May                                                           | June                                                          | July                                                           | August                                                         | September                                                                                     |
|----------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | 241.000<br>235.000<br>229.000<br>223.000<br>223.000            | 212.000<br>210.000<br>199.000<br>188.000<br>187.000 | 245.000<br>240.000<br>232.000<br>228.000<br>226.000            | 248.000<br>248.000<br>254.000<br>264.000<br>279.000            | 3 <sup>1</sup> 40.000<br>311.000<br>279.000<br>251.000<br>237.000 | 692.000<br>733.000<br>776.000<br>813.000<br>843.000                        | 1.347.000<br>1.347.000<br>1.351.000<br>1.355.000<br>1.347.000 | 1.016.000<br>1.012.000<br>1.008.000<br>1.008.000<br>1.004.000 | 1.532.000<br>1.488.000<br>1.413.000<br>1.340.000<br>1.265.000 | 641.000<br>589.000<br>534.000<br>483.000<br>436.000            | 554.000<br>560.000<br>560.000<br>550.000<br>532.000            | 271.000<br>268.000<br>266.000<br>270.000<br>268.000                                           |
| 6<br>7<br>8<br>9<br>10           | 229.000<br>229.000<br>228.000<br>226.000<br>226.000            | 187.000<br>204.000<br>216.000<br>226.000<br>238.000 | 230.000<br>240.000<br>248.000<br>253.000<br>250.000            | 299.000<br>328.000<br>353.000<br>371.000<br>383.000            | 228.000<br>220.000<br>212.000<br>207.000<br>206.000               | 880.000<br>903.000<br>930.000<br>949.000<br>969.000                        | 1.315.000<br>1.311.000<br>1.294.000<br>1.286.000<br>1.232.000 | 1.004.000<br>1.000.000<br>1.008.000<br>1.032.000<br>1.060.000 | 1.195.000<br>1.133.000<br>1.052.000<br>960.000<br>876.000     | 400.000<br>378.000<br>370.000<br>368.000<br>368.000            | 510.000<br>488.000<br>469.000<br>456.000<br>447.000            | 263.000<br>254.000<br>252.000<br>250.000<br>247.000                                           |
| 11<br>12<br>13<br>14<br>15       | 226.000<br>224.000<br>228.000<br>224.000<br>220.000            | 253.000<br>269.000<br>278.000<br>277.000            | 254.000<br>259.000<br>262.000<br>267.000<br>275.000            | 387.000<br>381.000<br>369.000<br>350.000<br>333.000            | 212.000<br>220.000<br>237.000<br>245.000<br>251.000               | 997.000<br>1.017.000<br>1.049.000<br>1.074.000<br>1.094.000                | 1.203.000<br>1.182.000<br>1.158.000<br>1.133.000<br>1.117.000 | 1.092.000<br>1.121.000<br>1.150.000<br>1.186.000<br>1.211.000 | 811.000<br>763.000<br>735.000<br>704.000<br>704.000           | 365.000<br>359.000<br>351.000<br>344.000<br>336.000            | 442.000<br>440.000<br>440.000<br>440.000<br>436.000            | 2 <sup>1</sup> 47.000<br>25 <sup>1</sup> 4.000<br>280.000<br>295.000<br>30 <sup>1</sup> 4.000 |
| 16<br>17<br>18<br>19<br>20       | 214.000<br>210.000<br>202.000<br>199.000<br>193.000            | 277.000<br>280.000<br>283.000<br>286.000<br>286.000 | 289.000<br>308.000<br>326.000<br>333.000<br>335.000            | 315.000<br>298.000<br>286.000<br>275.000<br>264.000            | 264.000<br>277.000<br>296.000<br>313.000<br>329.000               | 1.123.000<br>1.156.000<br>1.180.000<br>1.188.000<br>1.205.000              | 1.096.000<br>1.076.000<br>1.068.000<br>1.060.000              | 1.240.000<br>1.273.000<br>1.294.000<br>1.332.000<br>1.370.000 | 701.000<br>688.000<br>678.000<br>678.000<br>701.000           | 344.000<br>363.000<br>368.000<br>366.000<br>392.000            | 432.000<br>425.000<br>415.000<br>409.000<br>409.000            | 299.000<br>287.000<br>276.000<br>276.000<br>316.000                                           |
| 21<br>22<br>23<br>24<br>25       | 190.000<br>190.000<br>192.000<br>196.000<br>199.000            | 278.000<br>275.000<br>273.000<br>270.000<br>269.000 | 331.000<br>320.000<br>311.000<br>299.000<br>286.000            | 261.000<br>269.000<br>282.000<br>296.000<br>311.000            | 350.000<br>367.000<br>387.000<br>416.000<br>460.000               | 1.230.000<br>1.250.000<br>1.263.000<br>1.284.000<br>1.300.000              | 1.060.000<br>1.060.000<br>1.060.000<br>1.064.000<br>1.064.000 | 1.405.000<br>1.435.000<br>1.466.000<br>1.497.000<br>1.528.000 | 721.000<br>742.000<br>752.000<br>760.000<br>760.000           | 428.000<br>451.000<br>456.000<br>460.000<br>460.000            | 417.000<br>432.000<br>436.000<br>428.000<br>396.000            | 380.000<br>449.000<br>514.000<br>570.000<br>603.000                                           |
| 26<br>27<br>28<br>29<br>30<br>31 | 204.000<br>206.000<br>210.000<br>214.000<br>214.000<br>214.000 | 262.000<br>256.000<br>249.000<br>248.000<br>248.000 | 272.000<br>266.000<br>264.000<br>261.000<br>258.000<br>251.000 | 326.000<br>338.000<br>352.000<br>357.000<br>359.000<br>355.000 | 515.000<br>579.000<br>643.000                                     | 1.313.000<br>1.321.000<br>1.326.000<br>1.338.000<br>1.342.000<br>1.347.000 | 1.064.000<br>1.060.000<br>1.056.000<br>1.044.000<br>1.028.000 | 1.555.000<br>1.564.000<br>1.568.000<br>1.564.000<br>1.564.000 | 756.000<br>752.000<br>742.000<br>721.000<br>685.000           | 460.000<br>462.000<br>467.000<br>483.000<br>512.000<br>537.000 | 357.000<br>325.000<br>295.000<br>275.000<br>270.000<br>275.000 | 611.000<br>594.000<br>562.000<br>517.000<br>483.000                                           |

RADIOACTIVITY DETERMINATIONS

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-YAZOO RIVERS

STATION LOCATION MISSISSIPPI RIVER AT

DELTA, LOUISIANA

| DATE .                                                                                                    | DATE OF DETERMINATION SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED            |            |                                 |                                                  |                                            |                                        | T                                            | RADIOA | CTIVITY IN PLA                | NKTON (dry) | T        | RAI      | DIOACTIVITY IN Y | VATER         |       |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------|---------------------------------|--------------------------------------------------|--------------------------------------------|----------------------------------------|----------------------------------------------|--------|-------------------------------|-------------|----------|----------|------------------|---------------|-------|
| SAMPLE                                                                                                    | DATE OF                                                                        | [          |                                 |                                                  | T                                          | BETA                                   |                                              | 1      | DATE OF<br>DETERMI-<br>NATION |             | ACTIVITY | 7        |                  | GROSS ACTIVIT |       |
| TAKEN                                                                                                     | NATION                                                                         | SUSPENDED  | DISSOLVED                       | TOTAL                                            | SUSPENDED                                  | DISSOLVED                              | TOTAL                                        | ]      | NATION                        | ALPHA       | BETA     | ]        | SUSPENDED        | DISSOLVED     | TOTAL |
| MO. DAY YEAR                                                                                              | MONTH DAY                                                                      | μμc/l      | μμc/l                           | μμε/l                                            | μμε/Ι                                      | μμc/l                                  | μμε/Ι                                        | ļ      | MO. DAY                       | μμc/g       | μμc/g    | <u> </u> | μμc/l            | μμε/Ι         | μμc/l |
| 10 13 60<br>11 30 60*<br>12 13 60<br>1 25 61*<br>2 23 61*<br>4 25 61*<br>5 23 61*<br>6 22 61*<br>7 18 61* | 11 23<br>12 15<br>1 18<br>2 21<br>3 23<br>4 24<br>5 10<br>6 23<br>7 26<br>8 28 | 1121243496 | 4<br>2<br>1<br>0<br>1<br>1<br>2 | 5<br>3<br>4<br>2<br>2<br>5<br>4<br>5<br>11<br>16 | 0<br>0<br>0<br>0<br>9<br>2<br>4<br>1<br>35 | 10<br>2<br>5<br>12<br>7<br>5<br>0<br>0 | 10<br>2<br>5<br>12<br>7<br>14<br>2<br>4<br>3 |        |                               |             |          |          |                  |               |       |
| 8 24 61*<br>9 6 61<br>9 20 61                                                                             | 9 22<br>10 7<br>10 7                                                           | 5 5        | 2 -                             | 5 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1          | 23<br>12<br>9                              | 12<br>22<br>13                         | 35<br>34<br>22                               |        |                               |             |          |          |                  |               |       |
|                                                                                                           |                                                                                |            |                                 | ·                                                |                                            |                                        |                                              |        |                               |             |          |          |                  |               |       |
|                                                                                                           |                                                                                |            |                                 |                                                  |                                            |                                        |                                              |        |                               |             |          |          |                  |               |       |
|                                                                                                           |                                                                                |            |                                 |                                                  |                                            |                                        |                                              |        |                               |             |          |          |                  |               |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-YAZOO RIVERS

STATION LOCATION MISSISSIPPI RIVER AT

DELTA, LOUISIANA

| DATE                 |                                                                                          |         |                            | ALGAE (                                                                                    | Vumber                | per ml.)                                                                             |                      |                                                                                                             |                                                                           | INE                                                                                                      | ERT<br>TOM<br>ELLS                                                                                              |                                                                |                                              |                                                                                                                                              | DI                                                             | ATO                                                            | MS                                                                         |                                                          |                                                                      |                                                                      | Γ.                                                                      |                           | MICROIN                      | VERTEBR                      | ATES                         |                                  |                                                              |
|----------------------|------------------------------------------------------------------------------------------|---------|----------------------------|--------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------|------------------------------|------------------------------|------------------------------|----------------------------------|--------------------------------------------------------------|
| OF SAMPLE            | :                                                                                        | BLUE-   | GREEN                      | GREE                                                                                       | N.                    | FLAGEL<br>(Pigm                                                                      | LATES<br>ented)      | DIAT                                                                                                        | омѕ                                                                       |                                                                                                          | ELLS<br>er ml.)                                                                                                 |                                                                | DOMI<br>(See                                 | NANT<br>Introd                                                                                                                               | SPEC                                                           | IES A                                                          | ND PE                                                                      | RCEN <sup>*</sup><br>nti/icat                            | rages<br>ion*)                                                       | 3                                                                    | PLANKTON<br>HEATHED                                                     | , mI.)                    | S<br>liter)                  | EA<br>liter)                 | ES<br>liter)                 | AL FORMS                         | GENERA<br>oduction<br>ification                              |
| MONTH<br>DAY<br>YEAR | TOTAL                                                                                    | COCCOID | FILA-<br>MENT-<br>OUS      | COCCOID                                                                                    | FILA-<br>MENT-<br>OUS | GREEN                                                                                | OTHER                | CENTRIC                                                                                                     | PENNATE                                                                   | CENTRIC                                                                                                  | PENNATE                                                                                                         | FIRST                                                          | PER.<br>CENTAGE                              | SECOND*                                                                                                                                      | PER.<br>CENTAGE                                                | THIRD\$                                                        | PER-<br>CENTAGE                                                            | FOURTH                                                   | PER.<br>CENTAGE                                                      | OTHER PER-<br>CENTAGE                                                | OTHER RICROPLANETOR,<br>FUNCI AND SHEATHED<br>RACTERIA<br>(NO. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ANIMAL FOR (No. per liter) | porinant genera<br>(See Introduction)<br>for Identification) |
| 10                   | 1600<br>500<br>1500<br>4300<br>4900<br>2100<br>500<br>400<br>1000<br>1000<br>700<br>1500 | 20      | 50<br>20<br>20<br>20<br>80 | 70<br>500<br>20<br>110<br>70<br>500<br>20<br>70<br>40<br>80<br>20<br>100<br>60<br>40<br>40 |                       | 70<br>70<br>90<br>160<br>70<br>90<br>100<br>70<br>80<br>20<br>170<br>60<br>60<br>100 | 70<br>20<br>40<br>20 | 270<br>1300<br>1190<br>3820<br>4580<br>5670<br>310<br>200<br>330<br>540<br>660<br>230<br>990<br>1240<br>580 | 900<br>180<br>250<br>200<br>130<br>270<br>410<br>350<br>270<br>250<br>250 | 650<br>340<br>1160<br>3600<br>3240<br>2390<br>1560<br>470<br>250<br>540<br>120<br>80<br>40<br>210<br>170 | 50<br>160<br>290<br>250<br>270<br>290<br>580<br>180<br>70<br>170<br>290<br>120<br>20<br>170<br>250<br>260<br>40 | 56<br>80<br>82<br>82<br>56<br>82<br>82<br>82<br>82<br>82<br>56 | 20 30 40 40 40 40 40 40 40 40 40 40 40 40 40 | 83<br>83<br>83<br>82<br>85<br>56<br>85<br>56<br>85<br>56<br>95<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25 | 10<br>20<br>30<br>30<br>30<br>20<br>10<br>10<br>10<br>20<br>20 | 83<br>80<br>56<br>56<br>80<br>58<br>56<br>55<br>57<br>68<br>58 | 10<br>20<br>20<br>20<br>10<br>10<br>10<br>10<br>10<br>10<br>20<br>10<br>** | 80<br>61<br>61<br>57<br>58<br>92<br>83<br>83<br>83<br>80 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 60<br>30<br>20<br>20<br>20<br>20<br>10<br>30<br>50<br>70<br>50<br>20 | 260<br>200<br>50<br>30<br>20<br>20                                      | 10                        | 1 1 1 6                      | 2 2 6                        | . 1                          |                                  |                                                              |

# ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-YAZOO RIVERS

STATION LOCATION MISSISSIPPI RIVER AT

DELTA, LOUISIANA

|                                                                                     | EXTRACTABLE |                          | <del> </del>      |       | <del></del> | CHLOROF  | ODM EVED                     | ACTABLEC |               |                 |       |      |
|-------------------------------------------------------------------------------------|-------------|--------------------------|-------------------|-------|-------------|----------|------------------------------|----------|---------------|-----------------|-------|------|
| DATE OF SAMPLE                                                                      | EXTRACTABLE | E3                       | 1                 | ı     |             | NEUTRALS |                              | ACIABLES | 1             | 1               | ,     |      |
| BEGINNING END HL A B B B B B B B B B B B B B B B B B B                              |             | ALCOHOL ETHER INSOLUBLES | WATER<br>SOLUBLES | TOTAL | ALIPHATICS  |          | OXYGEN-<br>ATED<br>COMPOUNDS | Loss     | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES | LOSS |
| 12     13     60     12     20     4217       8     30     61     10     2     4738 |             | 99 0 66 0                | 5.3               | 23 16 | 8 2         | 4 2      | COMPOUNDS                    | 0 0      |               | 1               | 1 0   | 3 2  |
|                                                                                     |             |                          |                   |       |             |          |                              |          |               |                 |       |      |

STATE

LOUISIANA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-YAZOO RIVERS

STATION LOCATION ISSISSIPPI RIVER AT

DELTA, LOUISIANA

| DATE<br>OF SAMPLE                                                     | ,                        | EMP.                                               | DISSOLVED                                               |                                               |                                              |                                           | CHLORINE                                       | DEMAND                                        | AMMONIA-          |                                       |                                                     |                                                      |                        |                                                    |                         |                    | TOTAL                                                |                          |
|-----------------------------------------------------------------------|--------------------------|----------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|----------------------------------------------|-------------------------------------------|------------------------------------------------|-----------------------------------------------|-------------------|---------------------------------------|-----------------------------------------------------|------------------------------------------------------|------------------------|----------------------------------------------------|-------------------------|--------------------|------------------------------------------------------|--------------------------|
| DAY                                                                   | (De                      | egrees<br>igrade)                                  | OXYGEN<br>mg/l                                          | pН                                            | B.O.D.<br>mg/l                               | C.O.D.<br>mg/l                            | 1-HOUR<br>mg/l                                 | 24-HOUR<br>mg/l                               | NITROGEN<br>mg/l  | mg/l                                  | mg/l                                                | HARDNESS<br>mg/l                                     | COLOR<br>(scale units) | TURBIDITY<br>(scale units)                         | SULFATES<br>mg/l        | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/l                          | COLIFORMS<br>per 100 ml. |
| 10 13 6<br>10 31 6<br>11 30 6<br>12 13 6<br>12 7 6<br>2 23 6<br>3 8 6 | 0 2<br>0 2<br>0 1<br>0 1 | 1.1<br>0.1<br>1.1<br>9.4<br>-<br>3.3<br>8.8<br>8.1 | 7.8<br>7.4<br>14.0<br>12.0<br>15.6<br>5.4<br>6.1<br>6.2 | 8.1<br>7.5<br>7.6<br>7.6<br>7.8<br>7.4<br>7.7 | .8<br>1.1<br>1.1<br>2.1<br>1.0<br>1.4<br>1.0 | 14<br>18<br>11<br>9<br>9<br>14<br>18<br>9 | .6<br>.8<br>.6<br>.8<br>1.1<br>1.1<br>.8<br>.4 | 2.4<br>2.7<br>3.2<br>2.8<br>2.5<br>2.0<br>1.9 | •1 •1 •1 •1 •1 •1 | 24<br>24<br>28<br>34<br>30<br>35<br>5 | 129<br>114<br>118<br>122<br>124<br>106<br>104<br>70 | 132<br>122<br>150<br>144<br>164<br>142<br>142<br>109 |                        | 125<br>100<br>140<br>180<br>75<br>125<br>75<br>410 | 382<br>425<br>450<br>43 |                    | 212<br>208<br>199<br>202<br>220<br>210<br>224<br>194 |                          |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Vicksburg, Mississippi Operated by U.S. Geological Survey STATE

Louisiana

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Lower Mississippi-Yazoo Rivers

STATION LOCATION

Mississippi River at

Delta, Louisiana

| Day                              | October                                                        | November                                            | December                                                       | January                                                        | February                                            | March                                                                | April                                                    | May                                                                  | June                                                     | July                                                           | August                                                         | September                                           |
|----------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | 241.000<br>235.000<br>229.000<br>223.000<br>223.000            | 212.000<br>210.000<br>199.000<br>188.000<br>187.000 | 245.000<br>240.000<br>232.000<br>228.000<br>226.000            | 248.000<br>248.000<br>254.000<br>264.000<br>279.000            | 340.000<br>311.000<br>279.000<br>251.000<br>237.000 | 692.000<br>733.000<br>776.000<br>813.000<br>843.000                  | 1347.000<br>1347.000<br>1351.000<br>1355.000<br>1347.000 | 1016.000<br>1012.000<br>1008.000<br>1008.000<br>1004.000             | 1532.000<br>1488.000<br>1413.000<br>1340.000<br>1265.000 | 641.000<br>589.000<br>534.000<br>483.000<br>436.000            | 554.000<br>560.000<br>560.000<br>550.000<br>532.000<br>510.000 | 271.000<br>268.000<br>266.000<br>270.000<br>268.000 |
| 7<br>8<br>9<br>10                | 229.000<br>228.000<br>226.000<br>226.000                       | 204.000<br>216.000<br>226.000<br>238.000            | 240.000<br>248.000<br>253.000<br>250.000                       | 328.000<br>353.000<br>371.000<br>383.000                       | 220.000<br>212.000<br>207.000<br>206.000            | 903.000<br>930.000<br>949.000<br>969.000                             | 1311.000<br>1294.000<br>1286.000<br>1232.000             | 1000.000<br>1008.000<br>1032.000<br>1060.000                         | 1133.000<br>1052.000<br>960.000<br>876.000               | 378.000<br>370.000<br>368.000<br>368.000                       | 488.000<br>469.000<br>456.000<br>447.000                       | 254.000<br>252.000<br>250.000<br>247.000            |
| 12<br>13<br>14<br>15             | 224.000<br>228.000<br>224.000<br>220.000                       | 269.000<br>278.000<br>277.000<br>277.000            | 259.000<br>262.000<br>267.000<br>275.000                       | 381.000<br>369.000<br>350.000<br>333.000                       | 220.000<br>237.000<br>245.000<br>251.000            | 1017.000<br>1049.000<br>1074.000<br>1094.000                         | 1203.000<br>1182.000<br>1158.000<br>1133.000<br>1117.000 | 1092.000<br>1121.000<br>1150.000<br>1186.000<br>1211.000             | 811.000<br>763.000<br>735.000<br>704.000<br>704.000      | 365.000<br>359.000<br>351.000<br>344.000<br>336.000            | 442.000<br>440.000<br>440.000<br>440.000<br>436.000            | 247.000<br>254.000<br>280.000<br>295.000<br>304.000 |
| 16<br>17<br>18<br>19<br>20       | 214.000<br>210.000<br>202.000<br>199.000<br>193.000            | 277.000<br>280.000<br>283.000<br>286.000<br>286.000 | 289.000<br>308.000<br>326.000<br>333.000<br>335.000            | 315.000<br>298.000<br>286.000<br>275.000<br>264.000            | 264.000<br>277.000<br>296.000<br>313.000<br>329.000 | 1123.000<br>1156.000<br>1180.000<br>1188.000<br>1205.000             | 1096.000<br>1076.000<br>1068.000<br>1060.000             | 1240.000<br>1273.000<br>1294.000<br>1332.000<br>1370.000             | 701.000<br>688.000<br>678.000<br>678.000<br>701.000      | 344.000<br>363.000<br>368.000<br>366.000<br>392.000            | 432.000<br>425.000<br>415.000<br>409.000<br>409.000            | 299.000<br>287.000<br>276.000<br>276.000<br>316.000 |
| 21<br>22<br>23<br>24<br>25       | 190.000<br>190.000<br>192.000<br>196.000<br>199.000            | 278.000<br>275.000<br>273.000<br>270.000<br>269.000 | 331.000<br>320.000<br>311.000<br>299.000<br>286.000            | 261.000<br>269.000<br>282.000<br>296.000<br>311.000            | 350.000<br>367.000<br>387.000<br>416.000<br>460.000 | 1230.000<br>1250.000<br>1263.000<br>1284.000<br>1300.000             | 1060.000<br>1060.000<br>1060.000<br>1064.000<br>1064.000 | 1405.000<br>1435.000<br>1466.000<br>1497.000<br>1528.000             | 721.000<br>742.000<br>752.000<br>760.000<br>760.000      | 428.000<br>451.000<br>456.000<br>460.000                       | 417.000<br>432.000<br>436.000<br>428.000<br>396.000            | 380.000<br>449.000<br>514.000<br>570.000<br>603.000 |
| 26<br>27<br>28<br>29<br>30<br>31 | 204.000<br>206.000<br>210.000<br>214.000<br>214.000<br>214.000 | 262.000<br>256.000<br>249.000<br>248.000<br>248.000 | 272.000<br>266.000<br>264.000<br>261.000<br>258.000<br>251.000 | 326.000<br>338.000<br>352.000<br>357.000<br>359.000<br>355.000 | 515,000<br>579,000<br>643,000                       | 1313.000<br>1321.000<br>1326.000<br>1338.000<br>1342.000<br>1347.000 | 1064.000<br>1060.000<br>1056.000<br>1044.000<br>1028.000 | 1555.000<br>1564.000<br>1568.000<br>1564.000<br>1564.000<br>1550.000 | 756.000<br>752.000<br>742.000<br>721.000<br>685.000      | 460.000<br>462.000<br>467.000<br>483.000<br>512.000<br>537.000 | 357.000<br>325.000<br>295.000<br>275.000<br>270.000<br>275.000 | 611.000<br>594.000<br>562.000<br>517.000<br>483.000 |

STATE

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER MISSISSIPPI-CAIRO TO HELENA

STATION LOCATION MISSISSIPPI RIVER AT

WEST MEMPHIS. ARKANSAS

| DATE                                                                                                                                                    |                               |                   | RADI                                    | DACTIVITY IN V          | VATER                                                                                                                       |                                                                                           |                                                                                                                             | <br>RADIOAG                   | CTIVITY IN PLAN | IKTON (dry) | RAD           | IOACTIVITY IN W | ATED  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------|-----------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------|-------------|---------------|-----------------|-------|
| SAMPLE                                                                                                                                                  | DATE OF                       |                   | ALPHA                                   |                         | I                                                                                                                           | BETA                                                                                      |                                                                                                                             |                               | GROSS A         |             |               | GROSS ACTIVITY  |       |
| TAKEN                                                                                                                                                   | DATE OF<br>DETERMI-<br>NATION | SUSPENDED         | DISSOLVED                               | TOTAL                   | SUSPENDED                                                                                                                   | DISSOLVED                                                                                 | TOTAL                                                                                                                       | DATE OF<br>DETERMI-<br>NATION | ALPHA           | BETA        | SUSPENDED     | DISSOLVED       | TOTAL |
| MO, DAY YEAR                                                                                                                                            | MONTH DAY                     | μμε/ί             | μμε/1                                   | μμc/l                   | μμς/Ι                                                                                                                       | μμς/                                                                                      | μμε/Ι                                                                                                                       | <br>MO. DAY                   | μμε/g           | μμc/g       | <br>μμς/Ι     | μμς/1           | μμε/Ι |
| 10 10 60* 10 24 60* 11 7 60* 11 28 60* 12 27 60* 1 9 61* 2 13 61* 2 27 61* 3 13 61* 5 8 61* 6 26 61* 6 26 61* 7 31 61* 8 28 61* 9 11 61 9 18 61 9 25 61 | 10 24<br>11 14<br>11 25       | 1 1 2 7 1 6 1 2 1 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 7 3 3 7 2 7 4 5 7 7 3 7 | 0<br>0<br>0<br>3<br>3<br>0<br>0<br>0<br>0<br>1<br>1<br>9<br>0<br>0<br>1<br>1<br>2<br>4<br>18<br>26<br>0<br>0<br>3<br>2<br>0 | 22<br>11<br>17<br>13<br>4<br>19<br>5<br>7<br>0<br>0<br>0<br>4<br>16<br>10<br>5<br>22<br>0 | 22<br>11<br>20<br>16<br>4<br>19<br>5<br>10<br>5<br>18<br>9<br>0<br>0<br>3<br>12<br>4<br>22<br>42<br>10<br>5<br>25<br>2<br>0 | MG. DAY                       | рье/д           | ppc/g       | <i>дис/</i> 1 | <i>µµс</i> /\$  | μμε/Ι |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-CAIRO TO HELENA

STATION LOCATION MISSISSIPPI RIVER AT

WEST MEMPHIS, ARKANSAS

| DATE                                                                                                                                                                           |                                                                                                                                   |                            |                       | ALGAE (                                                                         | lumber                | per ml.)                                                                                                   |                                                      |                                                                                                                                                       |         | INE                                                                                                        | ERT<br>TOM                                                                          | Τ                                |                                        |                          |                                 | IATO                      | MS                                     |         |                                          |                                        | <u>.</u>                                             |                         | MICROIN                            | VERTEBR                      | ATES                         |                                            |                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------|---------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------|----------------------------------------|--------------------------|---------------------------------|---------------------------|----------------------------------------|---------|------------------------------------------|----------------------------------------|------------------------------------------------------|-------------------------|------------------------------------|------------------------------|------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------|
| OF SAMPLE                                                                                                                                                                      |                                                                                                                                   | BLUE-                      | GREEN                 | GREE                                                                            | :N                    |                                                                                                            | LLATES<br>ented)                                     | DIAT                                                                                                                                                  | омѕ     | SHE                                                                                                        | LLS<br>er ml.)                                                                      |                                  |                                        |                          | duction                         |                           |                                        |         | ITAGE:                                   | 5                                      | ROPLANKTON<br>SHEATHED<br>ml.)                       | A<br>ml.)               | iter)                              | A<br>ter)                    | ter)                         | L FORMS                                    | duction<br>ication                                                                           |
| MONTH<br>DAY<br>YEAR                                                                                                                                                           | TOTAL                                                                                                                             | COCCOID                    | FILA-<br>MENT-<br>OUS | COCCOID                                                                         | FILA-<br>MENT-<br>OUS | GREEN                                                                                                      | OTHER                                                | CENTRIC                                                                                                                                               | PENNATE | CENTRIC                                                                                                    | PENNATE                                                                             | FIRST#                           | PER.                                   | *ano322                  | PER-                            | THIRD                     | PER.                                   | FOUNTH# | PER-                                     | OTHER PER-<br>CENTAGE                  | OTHER BICEO<br>FUNCTAND SI<br>BACTERIA<br>(No. per 1 | PROTOZOA<br>(No. per 1  | ROTIFIERS<br>(No. per liter)       | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | (No. per liter)                            | DOMINANT GENERA<br>(See Introduction<br>for Identification)                                  |
| 10 3 60<br>17 60<br>11 7 60<br>12 5 60<br>12 5 60<br>12 1 6 61<br>20 61<br>3 20 61<br>3 20 61<br>4 24 61<br>6 12 661<br>6 12 661<br>6 12 661<br>7 7 661<br>8 21 661<br>9 18 61 | 1100<br>900<br>2000<br>809<br>1500<br>4600<br>4100<br>5100<br>11900<br>2700<br>2100<br>2300<br>1700<br>800<br>1100<br>1200<br>600 | 70<br>20<br>20<br>80<br>20 | 20 20 20 20           | 180<br>180<br>200<br>110<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20 |                       | 160<br>50<br>70<br>110<br>110<br>130<br>90<br>70<br>190<br>150<br>170<br>20<br>80<br>80<br>80<br>120<br>80 | 50<br>20<br>50<br>110<br>180<br>70<br>20<br>40<br>20 | 470<br>460<br>1430<br>540<br>1270<br>3870<br>4690<br>11170<br>7670<br>2010<br>310<br>1440<br>480<br>1200<br>1410<br>580<br>1010<br>830<br>1780<br>370 |         | 530<br>1250<br>1250<br>1250<br>1390<br>1390<br>4360<br>310<br>250<br>210<br>790<br>270<br>270<br>230<br>40 | 70<br>740<br>270<br>290<br>100<br>130<br>150<br>270<br>350<br>40<br>450<br>40<br>20 | 56<br>82<br>62<br>56<br>56<br>92 | 10030000000000000000000000000000000000 | 8005<br>585<br>545<br>56 | 20<br>*<br>10<br>10<br>10<br>10 | 262106666688 6022886 4806 | 10000000000000000000000000000000000000 |         | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 00000000000000000000000000000000000000 | 130<br>40<br>270<br>50<br>50                         | 20 10 10 10 10 10 10 10 | 1<br>13<br>5<br>25<br>15<br>6<br>3 | 2                            | 2 2 3 2                      | 4-<br><br>3-<br>4-<br><br>4-<br><br>4-<br> | -9-6<br>49-7<br>-9-7<br>-9-7<br>-9-7<br>-9-7<br>-9-7<br>-9-7<br>-9-7<br>-9-7<br>-9-7<br>-9-7 |

## ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-CAIRO TO HELENA

STATION LOCATION MISSISSIPPI RIVER AT

WEST MEMPHIS, ARKANSAS

| DATE OF SAMPLE BEGINNING END                                                | -                                            | EX                                    | TRACTABL                         | .ES                                |                     |                             |                                  |             |                     |                              | ACTABLES         |                            |                  |                                         |             |
|-----------------------------------------------------------------------------|----------------------------------------------|---------------------------------------|----------------------------------|------------------------------------|---------------------|-----------------------------|----------------------------------|-------------|---------------------|------------------------------|------------------|----------------------------|------------------|-----------------------------------------|-------------|
| _                                                                           | GALLONS<br>FILTERED                          | TOTAL                                 | CHLORO-<br>FORM                  | ALCOHOL                            | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES           | TOTAL                            | ALIPHATICS  | NEUTRALS  AROMATICS | OXYGEN-<br>ATED<br>COMPOUNDS | Loss             | WEAK<br>ACIDS              | STRONG<br>ACIDS  | BASES                                   | LOSS        |
| 10 3 60 10 10<br>10 31 60 11 7<br>6 5 61 6 12<br>7 5 61 7 17<br>8 4 61 8 14 | 4120<br>3760<br>1123<br>6190<br>5830<br>3900 | 181<br>128<br>283<br>102<br>98<br>113 | 23<br>31<br>70<br>33<br>30<br>31 | 158<br>97<br>213<br>69<br>68<br>82 | 0 0 1 1 1 0         | 4<br>7<br>17<br>7<br>7<br>7 | 12<br>14<br>28<br>15<br>10<br>13 | 2 2 6 5 2 2 | 1 2 3 1 1 1 1       | 8                            | 1<br>2<br>1<br>0 | 3<br>4<br>9<br>4<br>4<br>4 | 2<br>5<br>2<br>2 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2 3 9 3 5 4 |

STATE

ARKANSAS

## CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-CAIRO TO HELENA

STATION LOCATIONMISSISSIPPI RIVER AT

WEST MEMPHIS, ARKANSAS

| DAYE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    |                                 |                                                                                                                                                        |                                                                                                                                                | I                                                                                                                                                                                          | CHLORINE                               | DEMAND                           |                                        |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                          |                                                                                                               |                                                                                                                                |                                                                                                                                    |                                                                           |                               |                                                                                                                                                                                           |                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DAY YEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Degrees<br>Centigrade)                                                            | DISSOLVED<br>OXYGEN<br>mg/l     | Нզ                                                                                                                                                     | B.O.D.<br>mg/l                                                                                                                                 | C.O.D.<br>mg/l                                                                                                                                                                             | 1-HOUR<br>mg/l                         | 24-HOUR<br>mg/l                  | AMMONIA-<br>NITROGEN<br>mg/l           | CHLORIDES<br>mg/l                                                                                                                                                                                                                                   | ALKALINITY<br>mg/l                                                                                                                                                                                                                                                                                                       | HARDNESS<br>mg/l                                                                                              | COLOR<br>(scale units)                                                                                                         | TURBIDITY (scale units)                                                                                                            | SULFATES<br>mg/l                                                          | PHOSPHATES<br>mg/l            | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l                                                                                                                                                      | COLIFORMS<br>per 100 ml.                                                                                                                                                                                                                            |
| 10 3 60<br>10 10 60<br>10 17 60<br>10 24 60<br>11 3 60<br>11 28 60<br>12 15 60<br>12 19 60<br>12 27 60<br>12 27 60<br>12 27 60<br>13 61<br>1 23 61<br>1 23 61<br>1 23 61<br>2 3 61<br>2 13 61<br>2 13 61<br>2 13 61<br>2 13 61<br>2 13 61<br>2 13 61<br>2 14 61<br>3 13 61<br>3 20 61<br>4 17 61<br>5 6 61<br>6 12 61<br>6 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61<br>7 6 61 | Centigrade)  0 23.9 22.5 23.8 17.8 16.0 15.1 10.5 13.3 - 8.8 8.2 4.0 0 2.9 2.2 4.1 | 1                               | 7.9<br>7.7<br>7.9<br>8.1<br>8.0<br>7.9<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0<br>7.9<br>7.9<br>8.0<br>7.9<br>7.9<br>8.0<br>7.9<br>7.9<br>8.0<br>7.9 | 1.2<br>.5<br>.4<br>.3<br>.9<br>.8<br>.7<br>1.6<br>1.8<br>2.2<br>1.1<br>2.3<br>4.0<br>2.8<br>3.4<br>1.5<br>1.3<br>1.3<br>2.0<br>1.0<br>.7<br>.8 | 11<br>18<br>20<br>18<br>11<br>13<br>20<br>14<br>-<br>17<br>15<br>15<br>15<br>18<br>23<br>15<br>28<br>18<br>36<br>18<br>36<br>18<br>36<br>28<br>22<br>26<br>28<br>22<br>16<br>33<br>41<br>9 | 1                                      | 1                                | ************************************** | 14<br>15<br>15<br>15<br>16<br>15<br>18<br>19<br>22<br>23<br>22<br>23<br>24<br>25<br>20<br>18<br>16<br>21<br>14<br>13<br>8<br>5<br>9<br>9<br>8<br>10<br>11<br>15<br>15<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16 | 102<br>105<br>112<br>114<br>110<br>110<br>92<br>102<br>102<br>114<br>106<br>94<br>102<br>94<br>84<br>102<br>94<br>84<br>102<br>94<br>82<br>66<br>68<br>62<br>46<br>64<br>74<br>90<br>82<br>106<br>90<br>82<br>106<br>82<br>106<br>82<br>83<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84 | 134<br>1442<br>157<br>1586<br>118<br>15 - 6020<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>160 | 8<br>13<br>15<br>12<br>11<br>11<br>9<br>13<br>12<br>13<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11 | 15<br>245<br>215<br>110<br>20<br>400<br>20<br>90<br>85<br>125<br>190<br>80<br>230<br>240<br>260<br>280<br>330<br>290<br>380<br>600 | 5001118808-59764488911300707079<br>55555555444488911300707079<br>44445546 | mg/l                          | 232<br>270<br>250<br>270<br>264<br>264<br>268<br>254<br>268<br>254<br>266<br>260<br>252<br>232<br>244<br>232<br>180<br>176<br>150<br>106<br>188<br>196<br>206<br>196<br>222<br>234<br>208 | 100000<br>29000<br>38000<br>38000<br>110000<br>110000<br>100000<br>180000<br>55000<br>64000<br>28000<br>48000<br>46000<br>42000<br>25000<br>17000<br>83000<br>34000<br>9200<br>25000<br>11000<br>28000<br>25000<br>11000<br>25000<br>21000<br>21000 |
| 7 17 61<br>7 24 61<br>7 31 61<br>8 7 61<br>8 14 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26.6<br>27.4<br>28.8<br>29.6<br>27.9                                               | 6.5<br>6.5<br>6.4<br>5.1<br>6.3 | 7.8<br>7.8<br>7.9<br>7.7<br>7.7<br>7.8                                                                                                                 | .4<br>.6<br>2.4<br>1.7                                                                                                                         | 20<br>13<br>18<br>16<br>20                                                                                                                                                                 | 3.1<br>3.5<br>2.1<br>3.2<br>3.5<br>3.5 | 12.3<br>6.0<br>8.5<br>8.0<br>9.0 | .0<br>.0<br>.0<br>.2<br>.0             | 10<br>10<br>14<br>12<br>14<br>11                                                                                                                                                                                                                    | 102<br>109<br>96<br>92<br>86<br>84                                                                                                                                                                                                                                                                                       | 144<br>154<br>146<br>133<br>130<br>133                                                                        | 12<br>12<br>11<br>12<br>18<br>14                                                                                               | 240<br>400<br>180<br>320<br>490<br>320                                                                                             | 45<br>36<br>34<br>40<br>46<br>41                                          | -<br>-<br>1<br>•1<br>•2<br>•2 | 216<br>244<br>234<br>218<br>208<br>210                                                                                                                                                    | 22000<br>93000<br>28000<br>62000<br>40000<br>12000                                                                                                                                                                                                  |

STATE

ARKANSAS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-CAIRO TO HELENA

STATION LOCATIONMISSISSIPPI RIVER AT

WEST MEMPHIS, ARKANSAS

| DAT<br>OF SAA                               |          | TEMP.                                    | DISSOLVED                |                                        |                                     |                                  | CHLORINE                                              | DEMAND                                 |                              |                           |                                     |                                        |                                 |                                       |                            |                                  |                                        |                                                    |
|---------------------------------------------|----------|------------------------------------------|--------------------------|----------------------------------------|-------------------------------------|----------------------------------|-------------------------------------------------------|----------------------------------------|------------------------------|---------------------------|-------------------------------------|----------------------------------------|---------------------------------|---------------------------------------|----------------------------|----------------------------------|----------------------------------------|----------------------------------------------------|
| MONTH                                       | <u> </u> | (Degrees                                 | OXYGEN                   | pН                                     | B.O.D.<br>mg/l                      | C.O.D.<br>mg/l                   | 1-HOUR<br>mg/l                                        | 24-HOUR<br>mg/l                        | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l         | ALKALINITY<br>mg/l                  | HARDNESS<br>mg/l                       | (scale units)                   | TURBIDITY<br>(scale units)            | SULFATES<br>mg/l           | PHOSPHATES<br>mg/l               | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l   | per 100 ml.                                        |
| 8 21<br>8 28<br>9 5<br>9 11<br>9 18<br>9 25 | 6 6      | 27 · 1<br>28 · 4<br>1 26 · 8<br>1 24 · 8 | 6.5<br>5.7<br>6.0<br>7.3 | 7.6<br>7.8<br>8.0<br>8.0<br>8.0<br>7.8 | 1.5<br>.4<br>.3<br>.5<br>1.4<br>1.3 | 50<br>12<br>13<br>23<br>19<br>43 | 3 · 8 · 1 · 2 · 8 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 | 9.5<br>8.2<br>3.8<br>3.7<br>9.1<br>8.1 | •2<br>•2<br>•1<br>•1<br>•1   | 13<br>16<br>15<br>13<br>8 | 85<br>105<br>107<br>106<br>94<br>88 | 136<br>151<br>156<br>148<br>129<br>113 | 12<br>11<br>11<br>8<br>12<br>17 | 800<br>120<br>70<br>125<br>260<br>600 | 46<br>52<br>51<br>40<br>34 | •2<br>•2<br>•3<br>•1<br>•0<br>•2 | 220<br>242<br>260<br>236<br>202<br>170 | 16000<br>48000<br>19000<br>49000<br>27000<br>19000 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Memphis, Tennessee Operated by U.S. Geological Survey STATE

Arkansas

MAJOR Basin

Southwest-Lower Mississippi River

MINOR BASIN

Lower Mississippi-Cairo to Helena

STATION LOCATION

Mississippi River at

West Memphis, Arkansas

| Day        | October | November | December | January | February | March    | April    | May      | June    | July    | August  | September  |
|------------|---------|----------|----------|---------|----------|----------|----------|----------|---------|---------|---------|------------|
| 1          | 192.000 | 152.000  | 188.000  | 188,000 | 178.000  | 755.000  | 1042.000 | 869.000  | 688.000 | 363.000 | 447.000 | 215,000    |
| 2          | 193.000 | 151.000  | 190.000  | 200,000 | 181.000  | 785.000  | 1021.000 | 869.000  | 609.000 | 324.000 | 429.000 | 219.000    |
| 3<br>4     | 192.000 | 158.000  | 199.000  | 226.000 | 185.000  | 819.000  | 1016.000 | 861.000  | 549.000 | 299.000 | 404.000 | 213.000    |
|            | 190.000 | 164.000  | 208.000  | 267,000 | 176.000  | 850.000  | 1016.000 | 858.000  | 503.000 | 288.000 | 382.000 | 206.000    |
| 5          | 186.000 | 170.000  | 202.000  | 302.000 | 164.000  | 877.000  | 1008.000 | 854.000  | 472.000 | 291.000 | 373.000 | 206.000    |
| 6          | 181.000 | 175.000  | 202,000  | 322,000 | 164.000  | 899.000  | 983.000  | 854.000  | 456.000 | 299.000 | 365.000 | 211,000    |
| 7          | 183.000 | 190.000  | 200.000  | 331.000 | 170.000  | 915.000  | 947.000  | 861.000  | 450.000 | 304.000 | 361.000 | 209.000    |
| 8          | 181.000 | 217.000  | 197.000  | 331.000 | 181.000  | 939.000  | 903.000  | 877.000  | 445.000 | 304.000 | 363.000 | 204.000    |
| 9          | 185.000 | 238.000  | 193.000  | 319.000 | 188.000  | 959.000  | 873.000  | 915.000  | 447.000 | 293.000 | 375.000 | 208.000    |
| LO         | 186.000 | 240.000  | 185.000  | 306.000 | 199,000  | 983.000  | 843.000  | 955.000  | 447.000 | 275.000 | 387.000 | 215.000    |
| Ll         | 186.000 | 230.000  | 183.000  | 288.000 | 208.000  | 1012.000 | 823.000  | 1004.000 | 453.000 | 262.000 | 387.000 | 226,000    |
| .2         | 180.000 | 228.000  | 181.000  | 258.000 | 213.000  | 1047.000 | 819.000  | 1051.000 | 481.000 | 254.000 | 385.000 | 236.000    |
| L3         | 176.000 | 228.000  | 192.000  | 230.000 | 224.000  | 1091.000 | 809.000  | 1101.000 | 503.000 | 267.000 | 380.000 | 232.000    |
| 4          | 173.000 | 232.000  | 209.000  | 215.000 | 248.000  | 1137.000 | 802.000  | 1165.000 | 512.000 | 282.000 | 373.000 | 224.000    |
| -5         | 171.000 | 238.000  | 213.000  | 208.000 | 269,000  | 1175.000 | 826.000  | 1227.000 | 523.000 | 280.000 | 363.000 | 217.000    |
| .6         | 164.000 | 244.000  | 213.000  | 199.000 | 282,000  | 1203.000 | 850.000  | 1291.000 | 540.000 | 265.000 | 354.000 | 211.000    |
| L7         | 161.000 | 238.000  | 215.000  | 190.000 | 284.000  | 1227.000 | 869.000  | 1351.000 | 573.000 | 252.000 | 352.000 | 209.000    |
| L <b>Ś</b> | 158.000 | 232.000  | 211.000  | 200.000 | 286.000  | 1247.000 | 884.000  | 1396.000 | 609.000 | 258.000 | 352.000 | 252.000    |
| L9         | 163.000 | 226.000  | 206.000  | 230.000 | 293.000  | 1261.000 | 892.000  | 1431.000 | 636.000 | 269.000 | 349.000 | 349.000    |
| 20         | 164.000 | 224.000  | 204.000  | 254.000 | 299.000  | 1271.000 | 899.000  | 1451.000 | 651.000 | 275.000 | 335.000 | 434.000    |
| 21         | 161.000 | 224.000  | 192.000  | 267.000 | 324.000  | 1276.000 | 899.000  | 1451.000 | 660.000 | 288,000 | 315.000 | 495.000    |
| 22         | 166.000 | 224.000  | 183.000  | 280.000 | 361.000  | 1276.000 | 896.000  | 1441.000 | 669.000 | 306.000 | 282.000 | 523.000    |
| 23         | 171.000 | 217.000  | 176.000  | 297.000 | 297.000  | 1261.000 | 884.000  | 1426.000 | 672.000 | 319.000 | 246.000 | 520.000    |
| 24         | 170.000 | 213.000  | 173.000  | 319.000 | 470.000  | 1242.000 | 865.000  | 1391.000 | 663.000 | 340.000 | 222.000 | 486.000    |
| 25         | 164.000 | 213,000  | 178.000  | 331.000 | 564.000  | 1213.000 | 854.000  | 1351.000 | 645.000 | 358.000 | 213.000 | 442.000    |
| 26         | 161.000 | 217.000  | 183.000  | 338.000 | 636.000  | 1184.000 | 843.000  | 1301.000 | 615.000 | 370.000 | 213.000 | 401.000    |
| 27         | 158.000 | 219.000  | 180,000  | 335.000 | 685.000  | 1160.000 | 836.000  | 1237.000 | 567.000 | 385.000 | 219.000 | 397.000    |
| 28         | 158.000 | 215.000  | 171.000  | 322.000 | 723.000  | 1133.000 | 843.000  | 1156.000 | 517.000 | 419.000 | 217.000 | 365.000    |
| 9          | 158.000 | 208.000  | 164.000  | 295.000 |          | 1101.000 | 847.000  | 1042.000 | 461.000 | 450.000 | 209.000 | 380.000    |
| 30         | 156.000 | 193.000  | 164.000  | 242.000 |          | 1078.000 | 858,000  | 915.000  | 411.000 | 461.000 | 206.000 | 399.000    |
| 1          | 154.000 |          | 175.000  | 197.000 |          | 1064.000 |          | 792.000  |         | 456.000 | 208.000 | 3,,,,,,,,, |

STATE

MISSOURI

MAJOR BASIN

UPPER MISSISSIPPI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

MISSISSIPPI-CAPE GIRARDEAU AREA

STATION LOCATION MISSISSIPPI RIVER AT

CAPE GIRARDEAU, MISSOURI

PLANKTON POPULATION

STATE

MISSOURI

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI-CAPE GIRARDEAU AREA

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATION LOCATION MISSISSIPPI RIVER AT

CAPE GIRARDEAU, MISSOURI

| DATE                 | 1     |         |                            | ALGAE (1                                                                                | Vumber                | per ml.)                                                                                              |                                                           |                                                                                                                 |                                                                                        | INE                                                                                                                          | RT<br>TOM                                                                              |                                        |                                              |                                                                | D                                                        | IATO                             | MS                                                                  |                                                                                  |                                      |                                                                | ] <u>;</u>                                        |                           | MICROIN                      | VERTEBR                      | ATES                         |                                       |                                                             |
|----------------------|-------|---------|----------------------------|-----------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|----------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------|---------------------------------------------------|---------------------------|------------------------------|------------------------------|------------------------------|---------------------------------------|-------------------------------------------------------------|
| OF SAMPLE            |       | BLUE-   | GREEN                      | GREE                                                                                    | :N                    | FLAGEL<br>(Pigm                                                                                       |                                                           | DIAT                                                                                                            | омѕ                                                                                    | SHE                                                                                                                          | ELLS<br>er ml.)                                                                        |                                        |                                              |                                                                | SPEC                                                     |                                  |                                                                     |                                                                                  |                                      | 5                                                              | EDPLANKTON<br>SHEATHED<br>ml.)                    | ml.)                      | S<br>iter)                   | EA<br>iter)                  | ES<br>iter)                  | AL FORMS                              | GENERA<br>oduction<br>fication,                             |
| MONTH<br>DAY<br>YEAR | TOTAL | COCCOID | FILA-<br>MENT-<br>OUS      | COCCOID                                                                                 | FILA-<br>MENT-<br>OUS | GREEN                                                                                                 | OTHER                                                     | CENTRIC                                                                                                         | PENNATE                                                                                | CENTRIC                                                                                                                      | PENNATE                                                                                | FIRST#                                 | PER.<br>CENTAGE                              | SECOND#                                                        | PER-<br>CENTAGE                                          | THIRD#                           | PER-                                                                | FOURTH#                                                                          | PER.<br>CENTAGE                      | OTHER PER-<br>CENTAGE                                          | OTHER MICH<br>FUNGI AND I<br>RACTERIA<br>(No. per | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ANIMAL FORMS<br>(No. per liter) | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| 10                   |       | 20      | 20<br>50<br>20<br>90<br>90 | 20<br>240<br>70<br>150<br>130<br>20<br>50<br>620<br>130<br>230<br>40<br>250<br>50<br>40 | 50                    | 20<br>130<br>20<br>110<br>220<br>310<br>70<br>70<br>110<br>70<br>290<br>150<br>150<br>100<br>90<br>20 | 50<br>240<br>50<br>70<br>50<br>20<br>20<br>20<br>20<br>20 | 490<br>1060<br>2200<br>1960<br>2950<br>25980<br>2370<br>160<br>1700<br>2050<br>930<br>660<br>340<br>110<br>1020 | 90<br>160<br>420<br>270<br>580<br>740<br>220<br>380<br>160<br>250<br>580<br>590<br>290 | 130<br>730<br>970<br>640<br>770<br>4600<br>1990<br>110<br>360<br>200<br>1210<br>480<br>230<br>410<br>200<br>190<br>160<br>80 | 310<br>130<br>180<br>70<br>160<br>340<br>310<br>220<br>340<br>290<br>290<br>370<br>110 | 5830226<br>8826<br>8856<br>5258<br>556 | 50<br>40<br>20<br>20<br>10<br>30<br>30<br>70 | 56<br>56<br>56<br>80<br>71<br>26<br>58<br>82<br>71<br>58<br>47 | 10<br>10<br>10<br>10<br>10<br>20<br>10<br>30<br>30<br>10 | 86<br>80<br>86<br>71<br>83<br>56 | 20<br>10<br>20<br>*<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 46<br>80<br>61<br>61<br>92<br>82<br>70<br>83<br>97<br>58<br>26<br>71<br>26<br>58 | 10<br>10<br>*<br>10<br>10<br>*<br>10 | 40<br>60<br>30<br>20<br>40<br>50<br>40<br>50<br>40<br>50<br>10 | 200<br>420<br>90<br>50<br>20                      |                           | 16<br>8<br>9<br>4<br>14      | 1 3                          | 1 2                          |                                       | 47 4-9-7 4-9-7 4-9-7 4-9-7 3-9639-399-7 4-9-7 4-9-7 47      |

#### ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

E MISSOURI

MAJOR BASIN UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI-CAPE GIRARDEAU AREA

STATION LOCATION MISSISSIPPI RIVER AT

CAPE GIRARDEAU, MISSOURI

|                              |                                                             |                                                                            |                                                                            |                       | <del></del>                                                          |                                                                      |                         | CILL OPOE    | ORM EXTR                                                       | CTABLES      |                                                                    |                                                         |               |                                                                    |
|------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------|--------------|----------------------------------------------------------------|--------------|--------------------------------------------------------------------|---------------------------------------------------------|---------------|--------------------------------------------------------------------|
| DATE OF SAMPLE BEGINNING END | E                                                           | XTRACTABL                                                                  | .E5                                                                        |                       |                                                                      |                                                                      |                         | NEUTRALS     |                                                                | , ICIABLES   |                                                                    |                                                         |               |                                                                    |
| H A W H H A FILTERE          | S TOTAL                                                     | CHLORO-<br>FORM                                                            | ALCOHOL                                                                    | ETHER<br>INSOLUBLES   | WATER<br>SOLUBLES                                                    | TOTAL                                                                | ALIPHATICS              | AROMATICS    | OXYGEN-<br>ATED<br>COMPOUNDS                                   | Loss         | WEAK<br>ACIDS                                                      | STRONG<br>ACIDS                                         | BASES         | Loss                                                               |
| 10                           | 281<br>286<br>318<br>499<br>464<br>307<br>338<br>245<br>204 | 63<br>56<br>80<br>105<br>179<br>117<br>123<br>113<br>92<br>96<br>88<br>107 | 217<br>225<br>206<br>213<br>320<br>347<br>184<br>2153<br>108<br>162<br>272 | 1 1 1 2 1 8 1 3 6 3 4 | 15<br>11<br>14<br>12<br>30<br>29<br>27<br>26<br>24<br>25<br>20<br>30 | 20<br>21<br>38<br>56<br>82<br>41<br>38<br>22<br>32<br>23<br>26<br>32 | 1 2 3 8 3 2 3 4 3 2 3 5 | 224873343223 | 15<br>15<br>28<br>39<br>59<br>32<br>28<br>19<br>17<br>19<br>24 | 223134720220 | 9<br>8<br>13<br>22<br>21<br>16<br>17<br>19<br>14<br>13<br>13<br>14 | 6<br>4<br>4<br>13<br>8<br>11<br>9<br>5<br>12<br>9<br>11 | 2122431222111 | 10<br>10<br>8<br>8<br>27<br>19<br>23<br>20<br>19<br>16<br>16<br>15 |

STATE

MISSOURI

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI-CAPE GIRARDEAU AREA

STATION LOCATION ISSISSIPPI RIVER AT

CAPE GIRARDEAU, MISSOURI

|       | DATE<br>SAMI | - 1      | TEMP.                   | DISSOLVED      |            |                |                | CHLORINE       | DEMAND          |                                |                   |                    |                  |                        |                            |                  |                    | TOTAL                       |             |
|-------|--------------|----------|-------------------------|----------------|------------|----------------|----------------|----------------|-----------------|--------------------------------|-------------------|--------------------|------------------|------------------------|----------------------------|------------------|--------------------|-----------------------------|-------------|
| MONTH | DAY          | YEAR     | (Degrees<br>Centigrade) | OXYGEN<br>mg/l | рН         | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN .<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/I | per 100 ml. |
| 10    | 3            | 60       | 22.0                    | -              | 7.8        | -              |                |                | -               |                                | 16                | 134                | 186              | 10                     | 300                        | 93               | •2                 | 317                         | -           |
|       | 10<br>17     | 60<br>60 | 19.5<br>19.5            |                | 7•9<br>7•7 | _              | _              | _              | -               | _                              | 16<br>17          | 136<br>160         | 126<br>186       | 15<br>15               | 380<br>180                 | 81<br>98         | •1                 | 316<br>353                  | _           |
|       |              | 60       | 16.0                    | _              | 7.9        | _              | _              | -              | _               | _                              | 17                | 110                | 184              | 10                     | 140                        | 104              | .1                 | 383                         | _           |
|       |              | 60       | 17.0                    | _              | 7.8        |                | _              | _              | _               | _                              | 20                | 160                | 200              | 20                     | 140                        | 95               | .2                 | 319                         | _           |
| 11    | 7            | 60       | 11.0                    | _              | 7.9        | _              | _              | _              | -               | _                              | 16                | 144                | 176              | 30                     | 380                        | 83               | .0                 | 287                         | _           |
| 11    | 14           | 60       | 10.0                    | _              | 7.7        | _              | _              | _              | _               | _                              | 15                | 150                | 216              | 20                     | 220                        | 95               | .0                 | 264                         | _           |
|       | 21           | 60       | 11.0                    | _              | 7.7        | -              | -              | _              | -               | _                              | 17                | 118                | 180              | 10                     | 220                        | 125              | .0                 | 357                         | _           |
| 11    |              | 60       | 12.0                    | ~              | 7.7        | _              | _              | _              | -               | -                              | 19                | 160                | 208              | 20                     | 140                        | 95               | •1                 | 296                         | _           |
| 12    |              | 60       | 7.0                     | -              | 7.9        | -              | -              | _              | -               | -                              | 20                | 176                | 214              | 15                     | 140                        | 100              | .0                 | 310                         | _           |
|       | 12           | 60       | 5 • 5                   | -              | 7.8        | -              | 1 - I          | -              | -               | -                              | 20                | 172                | 208              | 15                     | 340                        | 90               | .0                 | 292                         | -           |
| 12    |              | 60       | 3.5                     | -              | 7.9        |                | -              | -              | -               | -                              | 21                | 168                | 196              | 20                     | 220                        | 83               | •0                 | 2 <b>6</b> 6                | -           |
|       | 27           | 60       | 3.0                     | -              | 7.9        | _              | - 1            | -              | -               | -                              | 24                | 176                | 198              | 15                     | 140                        | 90               | •1                 | 327                         | _           |
| 1     |              | 61       | 3.5                     | -              | 7•9        | -              | -              | -              | -               | -                              | 19                | 190                | 200              | 10                     | 140                        | 83               | •1                 | 308                         | -           |
| 1     | - 1          | 61       | 3.0                     | -              | 7.9        | -              | -              | -              | -               | -                              | 25                | 186                | 236              | 5                      | 140                        | 90               | •1                 | 352                         | -           |
|       | 16           | 61       | 4.5                     | -              | 7.9        | -              | -              | -              | -               | -                              | 25                | 144                | 240              | 10                     | 120                        | 100              | • 1                | 353                         | _           |
|       |              | 61       | 2.5<br>2.0              | -              | 7.9        | -              |                | -              | -               | -                              | 25                | 180                | 214              | 10                     | 140                        | 95<br>-          | •2                 | 360                         | _           |
| 2     |              | 61       | 2.0                     | _              | 7•9        | _              |                | -              | _               | _ [                            | 25                | 188                | 226              | 10                     | 120                        | 90               | .1                 | 352                         |             |
| 2     |              | 61       | 2.0                     | _              | 7.9        | _              | _              | _              | -               | _                              | 21                | 190                | 240              | 15                     | 86                         | 85               | .1                 | 379                         | _           |
|       | 13           | 61       | 4.5                     | _              | 7.9        | _              | _              | _              | _               |                                | 25                | 188                | 220              | 15                     | 180                        | 98               | .1                 | 414                         | _           |
|       | 20           | 61       | 6.0                     | - 1            | 7.7        | _              | _              | _              | _               | _                              | 29                | 162                | 188              | 10                     | 220                        | 108              | .2                 | 351                         | _           |
|       | 27           | 61       | 5.0                     | _              | 7.7        |                | _              | _              | _               | _                              | 20                | 132                | 186              | 15                     | 720                        | 75               | .3                 | 290                         | _           |
| 3     | 6            | 61       | 6.0                     | -              | 7.7        | -              | _              | -              | -               | -                              | 17                | 112                | 162              | -                      | 1120                       | -                | _                  | -                           | -           |
| 3 :   | 13           | 61       | 8.0                     | -              | 7.7        | -              | -              | -              | -               | -                              | 12                | 98                 | 136              | -                      | 1260                       | -                | _                  | _                           | -           |
| 3   3 |              | 61       | 11.0                    | ~              | 7.7        | -              | -              | -              | -               | -                              | 12                | 96                 | 140              | 15                     | 1260                       | 45               | •1                 | 226                         | -           |
|       | 27           | 61       | 8.0                     | -              | 7.7        | -              | -              | -              | -               | -                              | 12                | 80                 | 158              | -                      | 640                        | -                |                    | _                           | _           |
| 4     |              | 61       | 9.0                     | -              | 7.7        | -              | -              | -              | -               | -                              | 12                | 118                | 150              | 20                     | 1000                       | 60               | • 2                | 207                         |             |
|       | 10           | 61       | 9.0                     | -              | 7.7        | -              | -              | -              | -               | -                              | 10                | 110                | 142              | 15                     | 500                        | 50               | •0                 | 205                         | _           |
|       | 17           | 61       | 10.0                    | -              | 7.7        | -              |                | -              | -               | -                              | 11                | 118                | 138              | 15                     | 460                        | 65               | • 1                | 201                         | -           |
|       | 24           | 61       | 14.0                    | -              | 7.7        | -              | -              | -              | -               | -                              | 11                | 110                | 174              | 15                     | 340                        | 75               | • 1                | 203                         | -           |
| 5     | 1            | 61       | 15.5                    | -              | 7.7        | - 1            | - 1            | -              | -               | -                              | 10                | 112                | 160              | 15                     | 720                        | 50               | •0                 | 205                         | _           |
|       | 8<br>15      | 61       | 16.0                    | _              | 7•7<br>7•7 | _              | _              | _              | _               | -                              | 9<br>6            | 110<br>88          | 140<br>114       | 10<br>15               | 420<br>720                 | 50<br>30         | .1                 | 205<br>141                  | <u>-</u>    |
| 5     | 22           | 61       | 19.0                    | - 1            | 7.7        | _ [            | _              | _              | _               | _                              | 8                 | 100                | 132              | 15                     | 420                        | <sup>30</sup>    | • -                | 141                         | _           |
| 5 2   | 29           | 61       | 19.0                    | _              | 7.7        | _              |                | -              | _               |                                | 15                | 132                | 174              | 10                     | 300                        | 71               | .0                 | 256                         | _           |
| 6     |              | 61       | 22.5                    | _              | 7.7        | _ [            | _              | _ [            | _               | _                              | 12                | 124                | 164              | 10                     | 420                        | 47               | .0                 | 261                         | _           |
|       |              | 61       | 25.0                    | _              | 7.7        | _              | _              | _              | _               | _                              | 14                | 112                | 182              | 10                     | 420                        | 74               | .0                 | 302                         | _           |
|       |              | 61       | 24.0                    | -              | 7.8        | -              |                | -              | -               | -                              | 14                | 132                | 180              | 10                     | 760                        | 75               | 1                  | 292                         | _           |
|       |              | 61       | 24.0                    | _              | 7.7        | _              | -              | _              | -               | -                              | 16                | 126                | 184              |                        | 680                        | _                |                    | - ; -                       | _           |

STATE

MISSOURI

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI-CAPE GIRARDEAU AREA

STATION LOCATION ISSISSIPPI RIVER AT

CAPE GIRARDEAU, MISSOURI

| DATE                                                                                                                           |                                                                                |                             |                                                                    |                |                | CHLORINE       | DEMAND          |                              |                                                                    |                                                             |                                                                           |                        |                                                   |                                               |                    | TOTAL                       | COLIFORMS   |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------|----------------|----------------|----------------|-----------------|------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------|------------------------|---------------------------------------------------|-----------------------------------------------|--------------------|-----------------------------|-------------|
| DAY YEAR                                                                                                                       | TEMP,<br>(Degrees<br>Centigrade)                                               | DISSOLVED<br>OXYGEN<br>mg/I | pН                                                                 | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/I | CHLORIDES<br>mg/l                                                  | mg/l                                                        | HARDNESS<br>mg/l                                                          | COLOR<br>(scale units) | TURBIDITY<br>(scale units)                        | SULFATES<br>mg/l                              | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/l | per 100 ml. |
| 7 3 6.7<br>7 10 6.7<br>7 17 6.7<br>7 24 6.7<br>8 14 6.8<br>8 14 6.8<br>8 21 6.8<br>9 5 6.9<br>9 15 6.9<br>9 15 6.9<br>9 25 6.9 | 26.0<br>27.0<br>1 27.0<br>1 28.0<br>28.0<br>26.5<br>1 26.0<br>1 26.0<br>1 27.0 | 1111111111111               | 7.7<br>7.8<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7 |                |                |                |                 |                              | 18<br>23<br>16<br>13<br>17<br>14<br>18<br>20<br>21<br>7<br>11<br>9 | 138<br>116<br>140<br>124<br>124<br>134<br>140<br>132<br>106 | 178<br>200<br>196<br>178<br>132<br>174<br>154<br>198<br>220<br>176<br>130 | 10 15 15               | 460<br>760<br>580<br>9620<br>1880<br>1180<br>1180 | 93<br>83<br>-<br>80<br>55<br>92<br>12 -<br>60 | II.                | 285<br>                     |             |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Thebes, Illinois Operated by U.S. Geological Survey

STATE

Missouri

MAJOR BASIN

Upper Mississippi River

MINOR BASIN

Mississippi-Cape Girardeau Area

STATION LOCATION

Mississippi River at

Cape Girardeau, Missouri

| Day                              | October                                                  | November                                            | December                                                 | January                                                  | February                                         | March                                                          | April                                               | May                                                            | June                                                | July                                                           | August                                                   | September                                           |
|----------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | 129.000<br>127.000<br>117.000<br>114.000<br>110.000      | 84.800<br>88.000<br>95.200<br>112.000<br>143.000    | 87.600<br>82.700<br>81.900<br>80.900<br>80.800           | 68.600<br>70.300<br>70.900<br>70.900<br>69.900           | 50.800<br>50.500<br>50.700<br>49.900<br>50.600   | 166.000<br>163.000<br>149.000<br>136.000<br>126.000            | 383.000<br>375.000<br>357.000<br>346.000<br>334.000 | 298.000<br>276.000<br>263.000<br>259.000<br>265.000            | 263.000<br>250.000<br>235.000<br>226.000<br>214.000 | 115.000<br>126.000<br>146.000<br>173.000<br>170.000            | 202.000<br>181.000<br>167.000<br>171.000<br>168.000      | 84.800<br>86.400<br>87.100<br>83.700<br>89.600      |
| 6<br>7<br>8<br>9                 | 106.000<br>104.000<br>100.000<br>95.000<br>88.100        | 158.000<br>146.000<br>133.000<br>126.000<br>123.000 | 83.100<br>82.700<br>81.400<br>79.500<br>85.200           | 68.100<br>66.000<br>64.600<br>65.500<br>65.400           | 50.900<br>51.900<br>52.700<br>53.300<br>54.300   | 148.000<br>174.000<br>198.000<br>232.000<br>284.000            | 325.000<br>323.000<br>322.000<br>333.000<br>343.000 | 303.000<br>370.000<br>461.000<br>560.000<br>638.000            | 203.000<br>189.000<br>188.000<br>189.000            | 149.000<br>133.000<br>124.000<br>122.000<br>133.000            | 177.000<br>187.000<br>180.000<br>161.000<br>151.000      | 105.000<br>114.000<br>116.000<br>130.000<br>134.000 |
| 11<br>12<br>13<br>14<br>15       | 85.600<br>80.200<br>78.600<br>78.600<br>80.700           | 127.000<br>128.000<br>123.000<br>115.000<br>113.000 | 97.900<br>102.000<br>93.700<br>88.400<br>89.000          | 64.400<br>63.300<br>62.500<br>61.700<br>61.700           | 55.400<br>57.000<br>58.800<br>61.300<br>63.100   | 329.000<br>336.000<br>335.000<br>319.000<br>315.000            | 342.000<br>363.000<br>396.000<br>400.000<br>375.000 | 690.000<br>726.000<br>735.000<br>705.000<br>647.000            | 186.000<br>189.000<br>199.000<br>193.000            | 149.000<br>143.000<br>126.000<br>117.000<br>110.000            | 152.000<br>188.000<br>206.000<br>192.000<br>174.000      | 129.000<br>121.000<br>110.000<br>109.000<br>150.000 |
| 16<br>17<br>18<br>19<br>20       | 83.700<br>86.400<br>92.200<br>98.300<br>96.700           | 110.000<br>108.000<br>111.000<br>112.000<br>115.000 | 89.100<br>86.100<br>80.100<br>77.000<br>75.900           | 61.800<br>62.700<br>64.000<br>64.100<br>64.100           | 66.100<br>73.400<br>84.700<br>100.000<br>105.000 | 332.000<br>359.000<br>372.000<br>354.000<br>341.000            | 352.000<br>342.000<br>319.000<br>289.000<br>267.000 | 585.000<br>527.000<br>478.000<br>458.000<br>433.000            | 181.000<br>177.000<br>185.000<br>211.000<br>223.000 | 104.000<br>98.600<br>101.000<br>98.500<br>99.700               | 157.000<br>143.000<br>130.000<br>116.000<br>106.000      | 321.000<br>429.000<br>465.000<br>485.000<br>478.000 |
| 21<br>22<br>23<br>24<br>25       | 91.200<br>87.600<br>83.600<br>80.100<br>77.400           | 117.000<br>118.000<br>114.000<br>112.000<br>105.000 | 74.000<br>73.300<br>70.500<br>69.600<br>70.200           | 66.500<br>67.300<br>64.400<br>62.300<br>61.000           | 101.000<br>108.000<br>133.000<br>152.000         | 336.000<br>325.000<br>318.000<br>317.000<br>316.000            | 253.000<br>241.000<br>229.000<br>229.000<br>260.000 | 411.000<br>386.000<br>368.000<br>339.000<br>314.000            | 210.000<br>192.000<br>176.000<br>158.000<br>144.000 | 120.000<br>143.000<br>139.000<br>148.000<br>196.000            | 97.500<br>93.200<br>91.000<br>87.000<br>83.600           | 423.000<br>359.000<br>309.000<br>277.000<br>267.000 |
| 26<br>27<br>28<br>29<br>30<br>31 | 75.000<br>76.300<br>80.400<br>81.900<br>81.700<br>82.100 | 100.000<br>97.000<br>93.000<br>92.200<br>92.200     | 71.800<br>75.500<br>78.400<br>73.800<br>70.000<br>68.500 | 60.100<br>58.400<br>57.700<br>56.000<br>54.000<br>53.000 | 154.000<br>152.000<br>156.000                    | 311.000<br>301.000<br>285.000<br>277.000<br>298.000<br>355.000 | 294.000<br>323.000<br>347.000<br>341.000<br>318.000 | 297.000<br>290.000<br>298.000<br>308.000<br>297.000<br>279.000 | 134.000<br>126.000<br>122.000<br>119.000<br>115.000 | 244.000<br>241.000<br>234.000<br>244.000<br>240.000<br>220.000 | 84.000<br>86.700<br>90.100<br>95.800<br>93.900<br>88.100 | 310.000<br>356.000<br>376.000<br>343.000<br>288.000 |

RADIOACTIVITY DETERMINATIONS

STATE

ILLINOIS

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI RIVER-ST. LOUIS AREA

STATION LOCATION MISSISSIPPI RIVER AT

EAST ST. LOUIS, ILLINOIS

24

|                       |                     |           |           |               | /A TED    |           | — Т      |    | RADIOAG                       | CTIVITY IN PLAN | IKTON (dry) | RAD       | IOACTIVITY IN W | ATER  |
|-----------------------|---------------------|-----------|-----------|---------------|-----------|-----------|----------|----|-------------------------------|-----------------|-------------|-----------|-----------------|-------|
| DATE                  |                     |           |           | ACTIVITY IN V | VATER     | BETA      |          |    |                               | GROSS A         |             |           | GROSS ACTIVIT   | Y     |
| SAMPLE                | DATE OF<br>DETERMI- |           | ALPHA     |               | SUSPENDED | DISSOLVED | TOTAL    |    | DATE OF<br>DETERMI-<br>NATION | ALPHA           | BETA        | SUSPENDED | DISSOLVED       | TOTAL |
| TAKEN                 | NATION              | SUSPENDED | DISSOLVED | TOTAL         | μμc/l     | μμc/!     | μμε/Ι    |    | MO. DAY                       | μμc/g           | µµс/g       | μμς/Ι     | μμε/Ι           | μμς/! |
| MO. DAY YEAR          | MONTH DAY           | μμς/Ι     | . μμε/Ι   | μμε/Ι         | μμε/Ι     | ppc/.     | 77       |    |                               |                 |             |           |                 |       |
|                       | 1,, 0               | ,         | 3         | 4             | 0         | اه        | 0        |    |                               |                 |             |           |                 |       |
| 10 10 60*             |                     | 1 1       |           |               | 0         | o l       | o        |    |                               |                 | . 1         |           |                 |       |
| 10 17 60              | 11 21               | 0         | 3         | 3             | 0         | ŏ         | 0        |    | 1                             |                 |             | į         |                 |       |
| 11 7 60*              |                     | _         | _         | _             | 0         | 0         | 0        |    |                               |                 |             |           |                 |       |
| 11 28 60*             |                     | 0         | 2         | 2             | 0         | οl        | 0        |    | 1 1                           |                 |             |           |                 |       |
| 12 12 60*<br>12 19 60 | 1 18                | _         |           | _             | o         | 0         | 0        |    |                               |                 |             |           |                 |       |
| 1 9 61                | 2 1                 | 0         | 4         | 4             | 0         | 0         | 0        |    |                               |                 |             |           |                 |       |
| 1 30 61*              |                     |           |           | _             | 0         | 0         | 0        |    |                               |                 |             |           |                 |       |
| 2 13 61*              |                     | 0         | 2         | 2             | 0         | 0         | 0        |    |                               |                 |             |           |                 |       |
| 2 27 61*              | 1                   | _         | _         | _             | 8         | 3         | 11       |    | 1                             |                 |             |           |                 |       |
| 3 13 61               | 4 4                 | 28        | 0         | 28            | 153       | 4         | 157      |    |                               |                 |             |           |                 |       |
| 3 27 61*              |                     |           | _         | -             | 21        | 7         | 28       |    |                               |                 |             |           | 1               |       |
| 4 10 61*              | 1 1 1               | 8         | 2         | 10            | 9         | 4         | 13       |    |                               |                 |             |           |                 |       |
| 4 24 61*              |                     | _         | _         |               | 2         | 2         | 4        |    |                               | ı               |             |           |                 |       |
| 5 8 61*               |                     | 8         | 0         | 8             | 11        | 0         | 11       |    |                               |                 |             |           |                 |       |
| 5 22 61*              |                     | _         | -         |               | ) 0       | 0         | 0        |    |                               |                 | 1           |           |                 |       |
| 6 12 61*              |                     | 0         | 0         | 0             | 0         | 2         | 2        |    |                               |                 |             |           |                 |       |
| 6 26 61*              |                     | _         | -         | -             | 10        | 0         | 10       |    |                               |                 |             |           |                 |       |
| 7 10 61               | 8 7                 | 3         | 0         | 3             | 6         | 0         | 6        |    |                               |                 |             |           |                 |       |
| 7 17 61               | 9 27                | 0         | 1         | 1             | 7         | 12        | 19       |    |                               |                 |             |           |                 |       |
| 8 12 61               | 9 15                | 1         | 1         | 2             | 0         | 7         | 7        |    |                               |                 | 1           |           |                 | ì     |
| 8 28 61               | 9 25                | 1         | 3         | 4             | 0         | 8         | 8        |    | 1                             |                 | l i         |           |                 |       |
| 9 11 61               | 10 5                | -         | -         | _             | 63        | 38        | 101      |    | İ                             |                 | 1           |           | ļ               |       |
| 9 18 61               | 10 16               | _         | -         | ~             | 55        | 8         | 63<br>21 |    | 1                             | Ì               |             |           |                 |       |
| 9 25 61               | 10 5                | <u> </u>  |           | -             | 16        | 5         | 21       | 1  |                               | 1               | 1           | 1         | 1               |       |
|                       | ľ                   |           |           |               |           |           |          | ļ  |                               |                 |             |           |                 |       |
|                       |                     | Ì         |           |               | ļ         |           |          | İ  |                               | 1               |             |           |                 |       |
|                       |                     |           | ļ.        |               | 1         |           |          |    |                               | 1               |             |           |                 |       |
|                       |                     |           |           |               |           | ļ         |          |    |                               |                 |             |           |                 |       |
|                       |                     |           |           |               |           |           |          |    |                               |                 |             | İ         |                 | ì     |
|                       |                     |           |           |               |           |           |          | 1  | 1                             |                 |             |           |                 |       |
|                       | 1                   | 1         |           |               |           |           |          | 1  | ļ                             |                 |             | · •       | 1               |       |
|                       |                     |           |           |               | 1         |           |          | Į. | 1                             | 1               |             |           |                 |       |
|                       |                     |           |           |               | 1         |           |          | [  | 1                             |                 |             |           |                 |       |
|                       |                     |           |           |               |           | 1         |          | i  | 1                             | -               |             |           |                 | 1     |
|                       |                     |           |           |               |           |           | 1        | 1  | 1                             |                 |             |           |                 |       |
|                       |                     |           |           |               |           |           |          |    |                               |                 |             |           |                 |       |
|                       |                     |           |           |               |           |           |          |    |                               |                 |             |           |                 |       |
|                       |                     |           |           |               |           |           |          | Ì  |                               |                 |             |           |                 | •     |
|                       |                     | 1         | 1         | 1             |           |           |          | 1  |                               |                 |             |           |                 |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

ILLINOIS

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI RIVER-ST. LOUIS AREA

STATION LOCATION MISSISSIPPI RIVER AT

EAST ST. LOUIS, ILLINOIS

| DATE                                                                                                                                                        | <u> </u>                                                                                                                                         |                      |                                                      | ALGAE (                                                                                           | Number                | per ml.)                                                                                           |                                                            |                                                                                                                      |                                                                                                                     | INE                                                                                             | RT<br>TOM                                                                                   | <u> </u>                                                                                                                                     |                                                    |                                                       |                                                          | IATO                                                                                                        | MS.                                   |                                                                |                              |                                                  | Γ.                                                                      | <u> </u>                         | MICROIN                                                                             | VERTEBE                           | ATES                         |                                       |                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------|------------------------------|--------------------------------------------------|-------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------|-----------------------------------|------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------|
| OF SAMPLE                                                                                                                                                   |                                                                                                                                                  | BLUE-                | GREEN                                                | GREE                                                                                              | EN                    | FLAGEI<br>(Pigm                                                                                    |                                                            | DIAT                                                                                                                 | омѕ                                                                                                                 | DIA<br>SHE<br>(No. p                                                                            | LLS                                                                                         |                                                                                                                                              |                                                    |                                                       | SPEC                                                     | IES A                                                                                                       | ND PE                                 | RCEN'<br>nti/icat                                              |                              | 3                                                | LAMKTON<br>RATHED<br>II.)                                               | A<br>ml.)                        | T                                                                                   | l                                 |                              | C TORKS                               | ENERA<br>fuction<br>cation)                                                                           |
| MONTH<br>DAY<br>YEAR                                                                                                                                        | TOTAL                                                                                                                                            | COCCOID              | FILA-<br>MENT-<br>OUS                                | COCCOID                                                                                           | FILA-<br>MENT-<br>OUS | GREEN                                                                                              | OTHER                                                      | CENTRIC                                                                                                              | PENNATE                                                                                                             | CENTRIC                                                                                         | PENNATE                                                                                     | FIRST#                                                                                                                                       | PER.                                               | SECOND#                                               | PER.                                                     | THIRD#                                                                                                      | PER.<br>CENTAGE                       | FOURTH                                                         | PER-<br>CENTAGE              | OTHER PER-<br>CENTAGE                            | OTHER BICROPLARKTOR,<br>FUNGS AND SHEATHED<br>BACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per m           | ROTIFIERS<br>(No. per liter)                                                        | CRUSTACEA<br>(No. per liter)      | NEMATODES<br>(No. per liter) | OTHER ANIMAL PORMS<br>(No. per liter) | DOMINANT GENERA<br>(See Introduction<br>for Identification)                                           |
| 10 3 60<br>10 17 60<br>12 5 60<br>12 19 60<br>1 1 6 61<br>2 0 61<br>3 6 61<br>3 20 61<br>4 3 61<br>4 17 61<br>5 61<br>5 61<br>7 17 61<br>8 21 61<br>9 18 61 | 1700<br>3200<br>7300<br>19300<br>23000<br>27200<br>28000<br>27200<br>15800<br>4200<br>6900<br>5400<br>2400<br>2200<br>1700<br>1500<br>600<br>800 | 70<br>70<br>20<br>20 | 90<br>90<br>90<br>20<br>130<br>20<br>40<br>290<br>20 | 110<br>270<br>350<br>230<br>70<br>500<br>130<br>70<br>150<br>100<br>200<br>170<br>80<br>40<br>110 | 20                    | 70<br>110<br>550<br>250<br>160<br>270<br>270<br>250<br>270<br>230<br>210<br>60<br>190<br>100<br>20 | 180<br>130<br>20<br>50<br>70<br>50<br>20<br>20<br>40<br>40 | 1200<br>1870<br>6100<br>18570<br>22320<br>267030<br>26160<br>14500<br>67470<br>4490<br>5340<br>1010<br>13060<br>3560 | 160<br>710<br>130<br>110<br>270<br>310<br>540<br>670<br>490<br>470<br>890<br>1510<br>910<br>290<br>100<br>100<br>90 | 880<br>590<br>7370<br>9230<br>65990<br>3820<br>2570<br>21510<br>210<br>990<br>460<br>80<br>1160 | 130<br>70<br>110<br>160<br>590<br>250<br>290<br>510<br>340<br>290<br>190<br>190<br>60<br>20 | 82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>83<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85 | 30<br>60<br>70<br>50<br>90<br>40<br>30<br>80<br>80 | 56082<br>8083<br>5666<br>5608<br>5608<br>5608<br>5608 | 50<br>40<br>10<br>10<br>10<br>10<br>20<br>20<br>10<br>10 | 58<br>56<br>8<br>9<br>36<br>8<br>56<br>66<br>66<br>66<br>66<br>66<br>66<br>66<br>66<br>66<br>66<br>66<br>66 | *<br>10<br>10<br>10<br>10<br>10<br>10 | 26<br>59<br>56<br>26<br>56<br>80<br>58<br>80<br>58<br>82<br>18 | * * * * 10 * * 10 10 10 10 * | 20<br>* 10<br>* 10<br>40<br>30<br>10<br>20<br>30 | 130<br>40<br>50<br>50<br>20<br>20<br>20                                 | 30<br>10<br>20<br>10<br>30<br>50 | 5<br>4<br>23<br>19<br>11<br>9<br>3<br>16<br>8<br>159<br>27<br>520<br>13<br>3<br>158 | 2<br>2<br>7<br>1<br>6<br>16<br>14 | 1 1 2 2 2 1                  | 1                                     | 4-9-7<br>9-7<br>9-7<br>3-9<br>31-9<br>41-963<br>963<br>34-913<br>34-913<br>74-9-3<br>74-9-7<br>74-9-7 |

# ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

ILLINOIS

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI RIVER-ST. LOUIS AREA

STATION LOCATION MISSISSIPPI RIVER AT

EAST ST. LOUIS, ILLINOIS

| DATE OF SA         | MPLE                                   | $\Box$ |                                                                      | EX                                                          | TRACTABL                                            | ES                                                          |                     |                                                   |                                                    |             | CHLOROF    | ORM EXTRA                    | CTABLES           |                    | Ī               |                                         |                                              |
|--------------------|----------------------------------------|--------|----------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|---------------------|---------------------------------------------------|----------------------------------------------------|-------------|------------|------------------------------|-------------------|--------------------|-----------------|-----------------------------------------|----------------------------------------------|
| MONTH DAY YEAR DAY | MONTH                                  | DAY    | GALLONS<br>FILTERED                                                  | TOTAL                                                       | CHLORO-<br>FORM                                     | ALCOHOL                                                     | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES                                 | TOTAL                                              | ALIPHATICS  | AROMATICS  | OXYGEN-<br>ATED<br>COMPOUNDS | Loss              | WEAK<br>ACIDS      | STRONG<br>ACIDS | BASES                                   | Loss                                         |
| 10 3 60            | 10<br>12<br>1<br>2<br>4<br>5<br>6<br>7 | 14     | 4380<br>3330<br>4287<br>5791<br>3897<br>3053<br>4060<br>3711<br>2997 | 191<br>273<br>222<br>220<br>237<br>286<br>234<br>188<br>242 | 48<br>67<br>40<br>67<br>78<br>118<br>55<br>51<br>88 | 143<br>206<br>182<br>153<br>159<br>168<br>179<br>137<br>154 | 021125132           | 10<br>15<br>7<br>12<br>22<br>30<br>11<br>13<br>20 | 19<br>28<br>18<br>33<br>20<br>32<br>22<br>16<br>25 | 32331333222 | 2334222222 | 11                           | 1 1 1 2 1 2 0 1 1 | 8 9 4 9 8 13 8 6 9 | 5               | 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | 7<br>7<br>8<br>7<br>15<br>23<br>7<br>7<br>21 |

STATE

ILLINOIS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MISSISSIPPI RIVER-ST. LOUIS AREA

STATION LOCATIONMISSISSIPPI RIVER AT

EAST ST. LOUIS, ILLINOIS

|        | DATE<br>OF SAM |      |                                  |                             |                  |                |                | CHLORINE       | DEMAND          |                              |                   |                    |                  |                        |                            |                  |                    | TOTAL                       |                          |
|--------|----------------|------|----------------------------------|-----------------------------|------------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|----------------------------|------------------|--------------------|-----------------------------|--------------------------|
| MONTH  |                | YEAR | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/I | pН               | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/I | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml. |
| 10     | 3<br>6         |      | 24.5                             | 5.6                         | 7.6              | 2.0            | =              |                | -               | • 2                          | 13<br>12          | 164<br>148         | 192<br>164       | 25<br>11               | 100<br>100                 | 70<br>57         | _                  | 290<br>274                  | 16000                    |
| 10     | 10             | 60   | 22.0                             | 5.9<br>6.5                  | 7 • 8  <br>7 • 8 | 2.2<br>3.6     | _              | _              | 7-1             | • 2                          | 13                | 148                | 172              | 30                     | 100                        | 52               | _                  | 282                         | 51000                    |
| 10     | 17             | 60   | 20.1                             | 7.5                         | 7.8              | 2.2            |                | _              | _               | • 2                          | 13                | 154                | 180              | 28                     | 90                         | 63               | _                  | 247                         | 15000                    |
| 10     | 24             | 60   | 16.5                             | 8.3                         | 7.8              | 1.9            | -              | -              | -               | • 2                          | 13                | 156                | 192              | 25                     | 70                         | 77               | -                  | 280                         | 11000                    |
| 10     | 31             | 60   | 14.9                             | 8.9                         | 8.0              | 2.0            | -              | -              | -               | •2                           | 13                | 160                | 184              | 27                     | 70                         | 45               | -                  | 270                         | 14000                    |
| 11     | 14             | 60   | 12.0<br>8.1                      | 10.0                        | 7.9<br>7.8       | 2.3            |                | _              | _               | •3<br>•4                     | 14<br>12          | 160<br>152         | 192<br>172       | 27                     | 70<br>90                   | 65<br>5 <b>6</b> | _                  | 272<br>258                  | 2700<br>2400             |
| 11     | 21             | 60   | 7.7                              | 11.0                        | 7.7              | 4.3<br>4.4     |                | _              | _               | • 4                          | 14                | 158                | 188              | 32                     | 70                         | 65               |                    | 258                         | 1200                     |
| 11     | 28             | 60   | 11.1                             | 10.7                        | 8.0              | 4.6            | -              | ~              | _               | • 3                          | 13                | 166                | 196              | 30                     | 60                         | 50               | _                  | 248                         | 10000                    |
| 12     | 5              | 60   | 6.5                              | 11.9                        | 8.0              | 5.0            | -              | -              | -               | • 4                          | 14                | 168                | 196              | 31                     | 50                         | 50               | -                  | 250                         | 8000                     |
| 12     | 12             | 60   | 5.0                              | 12.7                        | 7 • 8            | 4.2            | -              | -              | -               | • 3                          | 13                | 158                | 192              | 27                     | 60                         | 50               | -                  | 275                         | 1700                     |
| 12     | 19             | 60   | 2.5                              | 13.3                        | 8.1              | 4.6            | -              | _              | -               | • 4                          | 14<br>15          | 170                | 198              | 31                     | 60                         | 59               | -                  | 290                         | 5500                     |
| 1      | 9              | 61   | 1.0                              | 14.1<br>13.6                | 8 • 2            | 4.2<br>4.8     | -              | _              | _ [             | •5<br>•5                     | 16                | 176<br>156         | 208<br>220       | 31<br>30               | 40<br>40                   | 68<br>69         |                    | 298<br>300                  | 2300                     |
| ī      | 16             | 61   | 2.0                              | 13.4                        | 8.3              | 5.0            | _              | _              | _               | • 6                          | 15                | 176                | 208              | 28                     | 35                         | 53               |                    | 222                         | 10000                    |
| 1      | 23             | 61   | 1.7                              | 14.0                        | 8.2              | 6.0            | _              | _              | _               | • 6                          | 15                | 182                | 214              | 32                     | 40                         | 55               | _                  | 311                         | 5500                     |
| 1      | 30             | 61   | •6                               | 14.5                        | 8.2              | 5.2            | -              | 5.3            | 10.0            | • 5                          | 13                | 190                | 222              | 33                     | 50                         | 50               | -                  | 311                         | 4500                     |
| 2      | 6              | 61   | • 5                              | 14.5                        | 7.8              | 6.8            | -              | -              | -               | • 7                          | 16                | 190                | 212              | 27                     | 50                         | 55               | -                  | 308                         | 4300                     |
| 2      | 13<br>20       | 61   | 1.1                              | 14.0                        | 7.8              | 5.3            | -              | _              | _               | • 7                          | 19<br>19          | 188                | 218              | 27                     | 35                         | 66               | -                  | 318                         | 2300                     |
| 2      | 27             | 61   | 3.3                              | 13.8                        | 7.8              | 7•0<br>7•7     |                |                | _               | •9<br>1•0                    | 17                | 168<br>148         | 202<br>168       | 29<br>29               | 50<br>450                  | 51<br>50         | -                  | 310<br>295                  | 6000<br>9000             |
| 3      | 6              | 61   | 6.6                              | 11.1                        | 7.7              | 6.0            | -              | ~              | -1              | • 9                          | 18                | 136                | 174              | 30                     | 300                        | 45               | _                  | 230                         | 5100                     |
| 3      | 13             | 61   | 6.5                              | 10.5                        | 7.7              | 9.2            | -              | -              | -               | • 9                          | 11                | 116                | 140              | 30                     | 1100                       | 38               | -                  | 219                         | 30000                    |
| 3      | 20             | 61   | 6.1                              | 10.2                        | 7.8              | 6.8            | -              | -              | -               | • 8                          | 12                | 120                | 166              | 26                     | 800                        | 53               | -                  | 273                         | 6300                     |
| 3<br>4 | 27             | 61   | 8.9                              | 10.4                        | 8.0              | 6.0            | -              | -              | -               | •6                           | 14                | 146                | 202              | 27                     | 300                        | 70               | -                  | 281                         | 7800                     |
| 4      | 10             | 61   | 8 • 3<br>7 • 8                   | 9.5                         | 7.8              | 6.1<br>6.3     | -              | _              | _               | • 6<br>• 6                   | 11<br>10          | 148<br>120         | 190<br>148       | 27<br>31               | 400<br>450                 | 60               | •3                 | 268                         | 4600                     |
| 4      | 17             | 61   | 7.8                              | 9.8                         | 7.8              | 4.0            | _              | _              | _1              | •3                           | 11                | 138                | 172              | 30                     | 200                        | 41<br>55         | 2                  | 240<br>240                  | 2200<br>60000            |
| 4      | 24             | 61   | 12.8                             | 9.2                         | 8.2              | 4.1            | _              | _              | _               | .2                           | 14                | 162                | 208              | 20                     | 150                        | 62               | .4                 | 260                         | 8000                     |
| 5      | 1              | 61   | 13.9                             | 6.8                         | 7.9              | 3.7            | ~              | _              | -1              | •1                           | 15                | 160                | 202              | 23                     | 250                        | 65               | 3                  | 264                         | 5600                     |
| 5      | 8              | 61   | 15.0                             | 7.1                         | 7.8              | 4.5            | -              | -              | -               | • 2                          | 11                | 130                | 176              | 26                     | 750                        | 51               | .2                 | 255                         | 12000                    |
| 5<br>5 | 15             | 61   | 18.3                             | 6.2                         | 7 • 8            | 3.1            | -              | -              | -               | •1                           | 10                | 128                | 164              | 30                     | 400                        | 50               | •1                 | 248                         | *1000                    |
| 5<br>6 | 22             | 61   | 18.3<br>21.7                     | 5.0<br>4.8                  | 7.8              | 3.0<br>2.5     | _              | _              | _               | •1                           | 12<br>10          | 154                | 200              | 27<br>27               | 180                        | 59               | -                  | 284                         | 2200                     |
| 6      |                | 61   | 25.6                             | 4.6                         | 7.7              | 2.4            | -              | _              | _[              | •1                           | 11                | 128<br>138         | 164<br>184       | 24                     | 100<br>100                 | 57<br>63         | •1                 | 226<br>215                  | 700<br>6300              |
| 6      | 19             | 61   | 23.9                             | 4.8                         | 7.6              | 2.3            | _              | -1             | -               | .1                           | 14                | 136                | 176              | 22                     | 200                        | 62               | 2                  | 276                         | 4900                     |
| 6      | 26             | 61   | 23.9                             | 5.5                         | 7.7              | 3.1            | -              | -              | -               | •1                           | 15                | 144                | 190              | 20                     | 200                        | 66               | .3                 | 300                         | 7200                     |
|        |                |      |                                  |                             |                  |                |                |                |                 |                              |                   |                    |                  |                        |                            |                  |                    |                             |                          |
|        |                |      |                                  |                             |                  |                |                |                |                 |                              | 900               |                    | ·                | L                      |                            |                  | <u> </u>           |                             |                          |

STATE

ILLINOIS

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI RIVER-ST. LOUIS AREA

STATION LOCATIONMISSISSIPPI RIVER AT

EAST ST. LOUIS, ILLINOIS

|                                      | DATE<br>SAMI                                            |              | TEMP.                                                        | DISSOLVED                                               |                                                                    |                                                             |                | CHLORINE       | DEMAND          |                              |                                                          |                                                                   |                                                                    |                                                    |                                                                     |                                                           |                    | TOTAL                                                                     |                                                                       |
|--------------------------------------|---------------------------------------------------------|--------------|--------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|----------------|----------------|-----------------|------------------------------|----------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|--------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------|
| HTWOM                                | DAY                                                     | YEAR         | (Degrees<br>Centigrade)                                      | OXYGEN<br>mg/l                                          | pН                                                                 | B.O.D.<br>mg/l                                              | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l                                        | ALKALINITY<br>mg/l                                                | HARDNESS<br>mg/l                                                   | COLOR<br>(scale units)                             | TURBIDITY<br>(scale units)                                          | SULFATES<br>mg/l                                          | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/l                                               | per 100 ml.                                                           |
| 7<br>7<br>7<br>7<br>8<br>8<br>8<br>8 | 10<br>17<br>24<br>31<br>14<br>22<br>8<br>11<br>18<br>25 | 611661661661 | 25.6<br>26.7<br>28.3<br>29.4<br>27.2<br>26.1<br>27.2<br>22.7 | 18080558557<br>540.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. | 7.7<br>7.8<br>7.6<br>7.5<br>7.6<br>7.8<br>7.9<br>7.8<br>7.5<br>7.6 | 3.4<br>2.6<br>8.6<br>3.0<br>9.2<br>2.9<br>2.9<br>2.1<br>3.0 |                |                |                 | •1 •1 •1 •1 •1 •1 •1 •1 •1   | 15<br>14<br>16<br>13<br>14<br>11<br>15<br>16<br>10<br>15 | 130<br>144<br>116<br>110<br>122<br>138<br>144<br>124<br>88<br>116 | 176<br>192<br>162<br>152<br>166<br>128<br>176<br>184<br>108<br>156 | 20<br>20<br>33<br>30<br>30<br>21<br>21<br>25<br>21 | 1000<br>125<br>315<br>250<br>150<br>450<br>100<br>800<br>900<br>300 | 57<br>68<br>48<br>50<br>40<br>327<br>56<br>46<br>26<br>60 |                    | 268<br>264<br>224<br>222<br>200<br>198<br>199<br>210<br>188<br>180<br>200 | 8300<br>3300<br>2700<br>2000<br>4300<br>1400<br>5800<br>13000<br>9100 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Alton, Illinois Operated by U.S. Geological Survey

STATE

Illinois

MAJOR BASIN

Upper Mississippi River

MINOR BASIN

Mississippi River-St. Louis Area

STATION LOCATION

Mississippi River at

East St. Louis, Illinois

| Day                              | October                                                  | November                                       | December                                                 | January                                                  | February                     | March                                                          | April                                               | May                                                            | June                                           | July                                                     | August                                                   | September                                         |
|----------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|
| 1                                | 54.700                                                   | 50.000                                         | 49.100                                                   | 40.900                                                   | 34.600                       | 89.000                                                         | 188.000                                             | 161.000                                                        | 119.000                                        | 75.600                                                   | 62.700                                                   | 31.300                                            |
| 2                                | 58.700                                                   | 64.300                                         | 47.600                                                   | 37.800                                                   | 34.400                       | 82.300                                                         | 189.000                                             | 159.000                                                        | 115.000                                        | 97.100                                                   | 91.500                                                   | 28.200                                            |
| 3                                | 57.800                                                   | 69.800                                         | 48.300                                                   | 37.200                                                   | 31.200                       | 79.500                                                         | 196.000                                             | 156.000                                                        | 108.000                                        | 95.300                                                   | 82.100                                                   | 32.400                                            |
| 4                                | 57.500                                                   | 78.100                                         | 49.300                                                   | 38.000                                                   | 31.600                       | 69.900                                                         | 199.000                                             | 150.000                                                        | 100.000                                        | 73.700                                                   | 90.700                                                   | 56.300                                            |
| 5                                | 56.300                                                   | 72.800                                         | 45.100                                                   | 38.700                                                   | 32.500                       | 74.500                                                         | 207.000                                             | 149.000                                                        | 91.200                                         | 63.300                                                   | 96.200                                                   | 64.600                                            |
| 6                                | 56.200                                                   | 67.500                                         | 49.300                                                   | 38.500                                                   | 33.700                       | 89.900                                                         | 219.000                                             | 148.000                                                        | 79.800                                         | 59.600                                                   | 95.100                                                   | 44.600                                            |
| 7                                | 53.300                                                   | 64.400                                         | 47.200                                                   | 38.900                                                   | 33.500                       | 114.000                                                        | 233.000                                             | 179.000                                                        | 78.200                                         | 55.100                                                   | 76.800                                                   | 29.100                                            |
| 8                                | 45.900                                                   | 66.400                                         | 54.900                                                   | 38.400                                                   | 33.300                       | 139.000                                                        | 241.000                                             | 207.000                                                        | 77.200                                         | 47.500                                                   | 78.400                                                   | 30.900                                            |
| 9                                | 47.600                                                   | 75.100                                         | 58.900                                                   | 38.200                                                   | 32.800                       | 160.000                                                        | 245.000                                             | 225.000                                                        | 90.500                                         | 41.500                                                   | 77.200                                                   | 38.400                                            |
| 10                               | 40.100                                                   | 74.900                                         | 58.400                                                   | 35.500                                                   | 32.600                       | 172.000                                                        | 239.000                                             | 228.000                                                        | 90.900                                         | 43.500                                                   | 91.100                                                   | 37.500                                            |
| 11                               | 36.700                                                   | 71.900                                         | 53.200                                                   | 35.800                                                   | 31.800                       | 176.000                                                        | 231.000                                             | 226.000                                                        | 98.300                                         | 40.100                                                   | 142.000                                                  | 30.300                                            |
| 12                               | 41.200                                                   | 62.400                                         | 49.200                                                   | 35.600                                                   | 32.600                       | 170.000                                                        | 216.000                                             | 203.000                                                        | 103.000                                        | 40.200                                                   | 121.000                                                  | 39.500                                            |
| 13                               | 39.900                                                   | 63.600                                         | 48.500                                                   | 35.700                                                   | 30.000                       | 157.000                                                        | 190.000                                             | 162.000                                                        | 83.100                                         | 36.200                                                   | 104.000                                                  | 67.000                                            |
| 14                               | 43.800                                                   | 59.700                                         | 45.300                                                   | 35.900                                                   | 29.000                       | 165.000                                                        | 147.000                                             | 151.000                                                        | 70.700                                         | 35.200                                                   | 86.100                                                   | 175.000                                           |
| 15                               | 42.300                                                   | 52.500                                         | 36.400                                                   | 35.200                                                   | 26.800                       | 177.000                                                        | 121.000                                             | 126.000                                                        | 77.000                                         | 36.900                                                   | 73.300                                                   | 213.000                                           |
| 16                               | 51.500                                                   | 63.800                                         | 31.100                                                   | 35.500                                                   | 34.700                       | 181.000                                                        | 121.000                                             | 113.000                                                        | 73.200                                         | 36.200                                                   | 55.500                                                   | 204,000                                           |
| 17                               | 51.900                                                   | 59.400                                         | 33.300                                                   | 36.500                                                   | 48.900                       | 177.000                                                        | 102.000                                             | 135.000                                                        | 75.300                                         | 36.000                                                   | 47.600                                                   | 215,000                                           |
| 18                               | 50.700                                                   | 60.200                                         | 34.900                                                   | 37.700                                                   | 51.600                       | 163.000                                                        | 100.000                                             | 153.000                                                        | 80.800                                         | 31.100                                                   | 45.000                                                   | 230,000                                           |
| 19                               | 42.000                                                   | 64.000                                         | 36.000                                                   | 37.700                                                   | 50.200                       | 158.000                                                        | 108.000                                             | 146.000                                                        | 78.100                                         | 46.700                                                   | 44.100                                                   | 204,000                                           |
| 20                               | 41.200                                                   | 66.400                                         | 37.700                                                   | 35.600                                                   | 45.400                       | 151.000                                                        | 110.000                                             | 139.000                                                        | 67.600                                         | 72.200                                                   | 44.300                                                   | 107,000                                           |
| 21                               | 37.900                                                   | 61.100                                         | 37.100                                                   | 34.200                                                   | 77.500                       | 147.000                                                        | 108.000                                             | 130.000                                                        | 72.700                                         | 45.700                                                   | 41.200                                                   | 84.700                                            |
| 22                               | 34.100                                                   | 59.800                                         | 33.900                                                   | 33.500                                                   | 73.400                       | 144.000                                                        | 112.000                                             | 130.000                                                        | 64.200                                         | 69.800                                                   | 35.500                                                   | 74.100                                            |
| 23                               | 34.700                                                   | 55.300                                         | 32.500                                                   | 32.400                                                   | 74.900                       | 149.000                                                        | 132.000                                             | 127.000                                                        | 59.700                                         | 110.000                                                  | 33.600                                                   | 75.200                                            |
| 24                               | 30.800                                                   | 52.300                                         | 34.000                                                   | 32.500                                                   | 78.000                       | 152.000                                                        | 150.000                                             | 120.000                                                        | 52.900                                         | 126.000                                                  | 33.600                                                   | 119.000                                           |
| 25                               | 33.800                                                   | 51.000                                         | 39.100                                                   | 33.600                                                   | 88.600                       | 150.000                                                        | 166.000                                             | 122.000                                                        | 48.000                                         | 115.000                                                  | 35.200                                                   | 165.000                                           |
| 26<br>27<br>28<br>29<br>30<br>31 | 38.400<br>36.700<br>36.300<br>35.200<br>42.000<br>43.800 | 48.800<br>51.700<br>53.800<br>49.600<br>44.400 | 46.700<br>44.400<br>44.300<br>45.700<br>44.300<br>41.300 | 34.200<br>31.800<br>32.300<br>34.800<br>34.100<br>34.400 | 92.900<br>106.000<br>106.000 | 147.000<br>145.000<br>154.000<br>166.000<br>184.000<br>190.000 | 179.000<br>181.000<br>173.000<br>163.000<br>163.000 | 118.000<br>118.000<br>118.000<br>118.000<br>119.000<br>121.000 | 48.200<br>45.900<br>47.900<br>49.200<br>53.900 | 86.600<br>73.400<br>79.200<br>87.400<br>86.100<br>79.600 | 28.700<br>35.400<br>32.100<br>29.800<br>29.300<br>32.700 | 177.000<br>152.000<br>119.000<br>90.800<br>89.100 |

RADIOACTIVITY DETERMINATIONS

STATE

IOWA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI-DES MOINES-SKUNK RIVERS

STATION LOCATION MISSISSIPPI RIVER AT

BURLINGTON, IOWA

|                       |                               |           |                    |                |           |           |       | PADIO                 | OACTIV       | VITY IN PLANI | CTON (dry) |     | RAD       | IOACTIVITY IN W | ATER  |
|-----------------------|-------------------------------|-----------|--------------------|----------------|-----------|-----------|-------|-----------------------|--------------|---------------|------------|-----|-----------|-----------------|-------|
| DATE                  |                               |           |                    | DACTIVITY IN W | ATER      | BETA      |       |                       |              | GROSS A       |            |     |           | GROSS ACTIVIT   |       |
| SAMPLE                | DATE OF<br>DETERMI-<br>NATION |           | ALPHA              | TOTAL          | SUSPENDED | DISSOLVED | TOTAL | DATE OF DETERM NATION | !:  <u> </u> | ALPHA         | BETA       |     | SUSPENDED |                 | TOTAL |
| TAKEN                 |                               | SUSPENDED | DISSOLVED          | μμε/1          | μμc/I     | μμε/Ι     | μμε/Ι | MO. DA                |              | μμc/g         | μμс/g      |     | μμc/l     | μμε/Ι           | μμε/Ι |
| MO. DAY YEAR          | MONTH DAY                     | μμς/Ι     | μμ <sub>C</sub> /I | μμε/1          |           | 77.0      |       |                       |              |               |            |     |           |                 |       |
|                       | 1,1,22                        | 0         | 2                  | 2              | 0         | lol       | ٥     |                       |              |               | 1          | 1   |           |                 |       |
| 10 17 60*             | 11 23                         | 1         | i                  | 2              | ا         | 2         | 2     |                       |              |               | 1          |     |           |                 |       |
| 11 7 60               | 12 19                         | ō         | 2                  | 2              | 0         | 0         | 0     |                       |              |               | į          | - 1 |           | 1               |       |
| 12 12 60*<br>1 23 61* |                               | 1 1       | 1                  | 2              | l ŏ       | 0         | 0     | - 1                   |              | i             | 1          | - 1 |           |                 |       |
|                       |                               | 1         | Ō                  | 1              | 1         | 0         | 1     | l                     |              | l             | i          | 1   |           | Į Į             |       |
| 2 27 61*              | 1                             | 5         | 1                  | 6              | l ō       | 6         | 6     |                       | 1            | ļ             |            | - 1 |           | ]               |       |
| 3 20 61*              |                               | 1         | ō                  | i              | 0         | 0         | 0     |                       | -            | i             | l          | - 1 |           | į i             |       |
| 4 24 61*              |                               | i         | 2                  | 3              | 0         | 0         | 0     |                       |              |               | ]          | ļ   |           |                 |       |
| 5 22 61*<br>6 26 61*  |                               | 1         | ī                  | 2              | 0         | 0         | 0     |                       | 1            |               |            | - 1 |           |                 |       |
|                       | 8 30                          | 1         | ō                  | 1              | 3         | 11        | 14    | 1                     |              | ļ             | ŀ          | 1   |           |                 |       |
| 7 10 61               | 1                             | 2         | 1                  | 3              | 10        | 8         | 18    |                       |              | -             | ļ          | - 1 |           | 1               |       |
| 8 21 61*<br>9 5 61    | 9 22                          | 0         | 0                  | lõ             | 3         | 9         | 12    |                       |              |               | 1          | - 1 |           |                 |       |
|                       | 10 3                          |           | -                  | _              | 4         | 0         | 4     | 1                     | 1            |               | ļ          | ŀ   |           |                 |       |
| 9 11 61<br>9 18 61    | 10 23                         |           |                    | _              | 10        | 13        | 23    |                       | -            |               |            | - 1 |           |                 |       |
| 9 25 61               | 10 25                         |           | -                  | _              | 8         | 9         | 17    |                       |              |               | Ì          |     |           |                 |       |
| 9 20 01               | 10 5                          |           |                    |                |           |           |       | 1                     | 1            |               | İ          | ļ   |           |                 |       |
|                       |                               |           |                    |                |           |           |       | Į.                    |              |               |            |     |           |                 |       |
|                       |                               |           |                    |                | ļ.        |           | ļ.    | l                     |              |               | i          |     |           |                 |       |
|                       |                               | ļ         |                    |                | İ         |           |       | ļ                     |              |               |            |     |           | 1               |       |
|                       |                               | İ         |                    |                | ļ         |           | 1     |                       | -            |               |            |     |           | 1               |       |
|                       |                               |           |                    |                |           |           |       | i                     |              |               |            |     |           | }               |       |
|                       |                               |           |                    |                | 1         |           |       | 1                     | Ì            |               |            |     |           | 1               |       |
|                       |                               | 1         | ł                  |                | ļ         |           | i     |                       |              |               | '          |     |           |                 |       |
|                       |                               |           |                    | 1              | 1         |           | 1     |                       |              |               |            |     |           |                 |       |
|                       |                               |           |                    |                | 1         | 1         |       |                       |              |               |            |     | Ì         | ,               | 1     |
|                       |                               |           |                    |                |           |           |       |                       |              |               |            |     |           |                 |       |
|                       |                               |           |                    |                | 1         |           |       |                       | -            |               |            | ì   | l         |                 |       |
|                       |                               |           |                    |                |           |           | i     | 1                     | ĺ            |               | ì          | 1   |           |                 |       |
|                       |                               | İ         |                    |                |           |           |       |                       | Ì            |               |            |     | 1         |                 |       |
|                       |                               | Ļ         |                    | 1              |           |           |       |                       | - 1          |               |            |     |           | Ì               |       |
|                       |                               |           |                    |                | Ì         |           |       |                       | ļ            |               |            | 1   | 1         | 1               | İ     |
|                       |                               |           |                    |                |           |           | 1 1   |                       |              |               |            | l   | ł         |                 | 1     |
|                       |                               |           |                    |                | Ì         |           |       | Ì                     |              |               |            | 1   | ļ         |                 |       |
|                       |                               | 1         |                    |                | 1         |           |       |                       | 1            |               | 1          | 1   | 1         |                 | 1     |
|                       |                               |           |                    |                |           |           |       |                       | 1            |               |            | Ì   |           |                 |       |
|                       |                               | 1         |                    | 1              | 1         |           |       |                       | -            |               | 1          | 1   | 1         |                 |       |
|                       |                               |           |                    |                | ļ         |           |       |                       | Į            |               |            |     | 1         |                 |       |
|                       |                               |           |                    |                | 1         |           |       |                       |              |               |            |     |           |                 |       |
|                       |                               |           |                    |                |           |           |       | 1                     | -            |               |            |     | 1         |                 |       |
|                       | Ì                             |           |                    |                |           |           |       |                       |              |               |            | 1   | 1         |                 | 1     |

PHS-2845-5 REV, 4-61

#### WATER QUALITY BASIC DATA

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

AWOI

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI-DES MOINES SKUNK RIVERS

STATION LOCATION MISSISSIPPI RIVER AT

BURLINGTON, IOWA

|                                                                                                                                                                    |                                                                                                                               |                                               |                                                     | ALGAE (I                                                                                            | Vumber                | per ml.)                                                                                              |                                                                    | <del></del>                                                                                                                                       |                                                                                                     | INI                                                                                                                               | ERT                                                                                                               | Т                                     |                 | ·····                             |                                  |                                  |                                                       |                                                                    |                                                           |                                                                    | <del></del>                                            |                                              | MICROIN                                                                                        | VEDTEDO                                                                                                                                                      | ATEC                         |                                |                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------|-----------------------------------|----------------------------------|----------------------------------|-------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------|-----------------------------------------------------------------------|
| DATE<br>OF SAMPLE                                                                                                                                                  |                                                                                                                               | BLUE-                                         | GREEN                                               | GREE                                                                                                | N                     | FLAGEI<br>(Pigm                                                                                       |                                                                    | DIAT                                                                                                                                              | oms                                                                                                 | DIA<br>SHE                                                                                                                        | TOM<br>LLS<br>er ml.)                                                                                             |                                       |                 |                                   | SPEC                             |                                  | ND PE                                                 | RCENT<br>ntificati                                                 |                                                           | 3                                                                  | КОРІЛИКТОЙ,<br>ВНЕЛТИЕВ<br>. ml.)                      | A                                            |                                                                                                |                                                                                                                                                              | T                            | FORES                          | ENERA<br>Luction<br>cation)                                           |
| MONTH<br>DAY<br>YEAR                                                                                                                                               | TOTAL                                                                                                                         | COCCOID                                       | FILA-<br>MENT-<br>OUS                               | COCCOID                                                                                             | FILA-<br>MENT-<br>OUS | GREEN                                                                                                 | OTHER                                                              | CENTRIC                                                                                                                                           | PENNATE                                                                                             | CENTRIC                                                                                                                           | PENNATE                                                                                                           | FIRST                                 | PER-<br>CENTAGE | SECOND#                           | PER.                             | TH!RD#                           | PER-<br>CENTAGE                                       | FOURTH#                                                            | PER.<br>CENTAGE                                           | OTHER PER-<br>CENTAGE                                              | OTHER MICHOF<br>FUNGI AND SH<br>BACTERIA<br>(No. per m | PROTOZOA<br>(No. per n                       | ROTIFIERS<br>(No. per liter)                                                                   | CRUSTACEA<br>(No. per liter)                                                                                                                                 | NEMATODES<br>(No. per liter) | OTHER ANIMAL<br>(No. per liter | DOMINANT GENERA<br>(See Introduction<br>for Identification)           |
| 10 3 60<br>10 17 60<br>11 7 60<br>11 2 5 60<br>1 3 61<br>1 16 61<br>2 20 61<br>3 6 61<br>4 17 61<br>5 22 61<br>6 19 61<br>7 10 61<br>7 10 61<br>8 21 61<br>9 18 61 | 1500<br>6900<br>3500<br>64000<br>10600<br>54600<br>27900<br>126300<br>11700<br>11000<br>25000<br>4500<br>4500<br>1700<br>1600 | 240<br>20<br>20<br>20<br>80<br>50<br>40<br>20 | 20<br>70<br>20<br>20<br>50<br>50<br>20<br>50<br>310 | 240<br>470<br>180<br>110<br>70<br>90<br>20<br>230<br>70<br>1450<br>2010<br>160<br>350<br>450<br>220 | 70                    | 90<br>290<br>130<br>170<br>1270<br>250<br>430<br>310<br>440<br>310<br>270<br>330<br>120<br>130<br>200 | 130<br>20<br>20<br>90<br>40<br>70<br>70<br>20<br>100<br>110<br>110 | 1110<br>4420<br>2970<br>2290<br>4600<br>6410<br>53750<br>26160<br>12590<br>124410<br>8580<br>8470<br>7220<br>1070<br>24270<br>2940<br>920<br>1070 | 90<br>1340<br>620<br>1650<br>1160<br>1580<br>1160<br>1180<br>1010<br>90<br>330<br>330<br>160<br>130 | 1780<br>2030<br>1100<br>2410<br>920<br>3750<br>1770<br>1040<br>3520<br>5640<br>3130<br>2390<br>1610<br>1100<br>910<br>1490<br>800 | 110<br>380<br>550<br>260<br>50<br>50<br>110<br>470<br>4910<br>500<br>690<br>470<br>410<br>380<br>70<br>100<br>270 | 56656808282<br>82282<br>56280<br>8358 | 40<br>20        | 888 5758562383668<br>575858858555 | 20<br>20<br>20<br>30<br>40<br>10 | 47<br>56<br>80<br>56<br>83<br>89 | 20<br>10<br>20<br>10<br>* 20<br>20<br>20<br>10<br>* * | 26<br>61<br>82<br>61<br>26<br>8<br>8<br>64<br>58<br>55<br>56<br>56 | 10<br>10<br>20<br>10<br>*<br>10<br>*<br>10<br>*<br>*<br>* | 20<br>30<br>20<br>*<br>40<br>10<br>20<br>10<br>10<br>30<br>20<br>* | 90<br>180<br>50<br>50                                  | 40<br>20<br>20<br>10<br>30<br>40<br>10<br>30 | 1<br>6<br>34<br>24<br>18<br>11<br>35<br>17<br>32<br>12<br>286<br>6<br>20<br>51<br>5<br>91<br>4 | 1<br>2<br>1<br>1<br>2<br>3<br>6<br>2<br>3<br>3<br>1<br>6<br>1<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 2 3 3 2 1 3                  | 1 1                            | -49-7 74937 4-9-7 7496794399199 3497196- 31967 3892799 41997 489379-7 |

# ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

IÓWA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI-DES MOINES-SKUNK RIVERS

STATION LOCATION MISSISSIPPI RIVER AT

BURLINGTON, IOWA

|                                                      |                                         |    |                            |     |                                                              |                                                                                  |                                                                      |                                                                                 |                       |                                                                 |                                                                      |                | CUI OBOE  | ORM EXTR                                       | CTABLES      |               |                                                     |                  |                                                           |
|------------------------------------------------------|-----------------------------------------|----|----------------------------|-----|--------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|----------------|-----------|------------------------------------------------|--------------|---------------|-----------------------------------------------------|------------------|-----------------------------------------------------------|
| DATI                                                 | E OF                                    | SA | MPLE                       |     |                                                              | EX                                                                               | TRACTABL                                                             | ES                                                                              |                       |                                                                 |                                                                      |                | NEUTRALS  |                                                | 1            |               |                                                     |                  |                                                           |
| HL AA                                                | Τ                                       | -+ | MONTH                      | DAY | GALLONS<br>FILTERED                                          | TOTAL                                                                            | CHLORO-<br>FORM                                                      | ALCOHOL                                                                         | ETHER<br>INSOLUBLES   | WATER<br>SOLUBLES                                               | TOTAL                                                                | ALIPHATICS     | AROMATICS | OXYGEN-<br>ATED<br>COMPOUNDS                   | LOSS         | WEAK<br>ACIDS | STRONG<br>ACIDS                                     | BASES            | Loss                                                      |
| 11 1<br>12 5<br>1 1<br>2 6<br>3 6<br>4 3<br>5 7<br>8 | 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 0  | 3<br>4<br>5<br>6<br>7<br>8 | 10  | 5000<br>5000<br>5000<br>5000<br>5000<br>4700<br>5010<br>5000 | 200<br>151<br>144<br>212<br>175<br>236<br>205<br>181<br>172<br>174<br>148<br>158 | 31<br>37<br>25<br>30<br>44<br>69<br>76<br>86<br>44<br>47<br>42<br>54 | 169<br>114<br>119<br>182<br>131<br>167<br>129<br>95<br>128<br>127<br>106<br>104 | 1 1 1 2 1 2 2 0 2 1 2 | 8<br>9<br>6<br>7<br>10<br>14<br>20<br>26<br>11<br>13<br>9<br>12 | 10<br>14<br>10<br>11<br>13<br>23<br>20<br>24<br>15<br>12<br>12<br>14 | 11011122223222 |           | 11<br>8<br>8<br>11<br>18<br>17<br>20<br>9<br>8 | 111103002001 | 4433598106657 | 2<br>1<br>2<br>3<br>5<br>7<br>7<br>3<br>5<br>3<br>5 | 2<br>1<br>1<br>1 | 5<br>6<br>3<br>5<br>10<br>16<br>17<br>15<br>8<br>11<br>13 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Keokuk, Iowa Operated by U.S. Geological Survey STATE

Iowa

MAJOR BASIN

Upper Mississippi River

MINOR BASIN

Mississippi-Des Moines-Skunk Rivers

STATION LOCATION

Mississippi River at

Burlington, Iowa

| Day    | October          | November         | December | January | February        | March   | April   | May     | June            | July             | August           | Septembe:        |
|--------|------------------|------------------|----------|---------|-----------------|---------|---------|---------|-----------------|------------------|------------------|------------------|
| 1      | 44.300           | 49.400           | 40.000   | 30.000  | 26.800          | 67.000  | 153,000 | 108.000 | 92.500          | 357, 000         | 1.0 500          |                  |
| 2      | 43.300           | 61.900           | 40.800   | 29.700  | 26.900          | 57.700  | 164.000 | 101.000 | 87.700          | 37•900<br>43•700 | 40.700           | 21.100           |
| 3<br>4 | 44.900           | 62.600           | 37.800   | 29.200  | 26.900          | 57.100  | 181.000 | 99.900  | 82.100          | 47.700           | 46.900           | 19.500           |
| 4      | 44.700           | 60.700           | 34.000   | 29.300  | 26.300          | 60.200  | 200.000 | 91.500  | 73.600          | 40.800           | 59.300           | 27.000           |
| 5      | 43.800           | 55.100           | 34.000   | 27.500  | 25.700          | 60,900  | 208.000 | 84.000  | 66.100          | 39.100           | 59.700<br>56.700 | 46.600<br>32.600 |
| 6      | 43.000           | 55.400           | 37.500   | 27,900  | 25,200          | 81.700  | 202.000 | 82.500  | 62.000          | 21. 202          | ,                | _                |
| 7      | 41.200           | 58.300           | 40.700   | 25.800  | 23.900          | 105.000 | 189.000 | 74.800  | 63.200          | 34.200           | 42.700           | 20.000           |
| 7<br>8 | 35.600           | 61.600           | 49.500   | 24.800  | 24.300          | 122.000 | 174.000 | 71,000  | 56.700          | 31.200           | 47.000           | 16.200           |
| 9      | 32.300           | 66.800           | 46.200   | 25.000  | 24,200          | 124.000 | 164.000 | 70.400  | 57 <b>.</b> 500 | 30.200           | 46.400           | 18.000           |
| LO     | 32,200           | 62.800           | 39.700   | 25.000  | 25.700          | 123.000 | 142.000 | 68.100  | 59.600          | 29.900           | 45.500           | 18.800           |
|        |                  |                  |          | •       | ->-1-1-0        | 225.000 | 142.000 | 60.100  | 72.900          | 29.100           | 44.000           | 19.500           |
| ī      | 31.000           | 60.200           | 40.900   | 25.100  | 23.700          | 106.000 | 127.000 | 67.000  | 65.600          | 27.200           | 42.300           | 22,000           |
| .2     | 31.000           | 57.800           | 37.900   | 25.200  | 23.200          | 101.000 | 110.000 | 64.900  | 53.600          | 24.200           | 44.700           | 27.000           |
| -3     | 30.900           | 44.600           | 30.000   | 26.200  | 24.600          | 106.000 | 91.500  | 59.700  | 48.000          | 22.100           | 43.500           | 52.800           |
| .4     | 34.400           | 44.100           | 26.000   | 27.000  | 27.000          | 107.000 | 84.500  | 58.700  | 46.800          | 21.000           | 34.900           | 123.000          |
| .5     | 39.400           | 47.300           | 24.700   | 27.500  | 24.200          | 100.000 | 80.300  | 58.100  | 54.200          | 19.800           | 32.900           | 130.000          |
| .6     | 40.200           | 47.300           | 25.300   | 29.000  | 26.000          | 97.100  | 71.500  | (0.500  | <b></b>         |                  |                  |                  |
| .7     | 36.100           | 47.100           | 24.000   | 28.900  | 25.900          | 105.000 | 83.500  | 62.500  | 50.100          | 19.200           | 29,900           | 124.000          |
| .8     | 34.100           | 54.600           | 26.500   | 30.000  | 26.200          | 96.700  | 83.500  | 68.100  | 49.000          | 19.600           | 27.400           | 91.300           |
| 9      | 33.100           | 50.400           | 31.600   | 28,900  | 26.700          | 81.200  | 81.000  | 70.800  | 47.200          | 20.700           | 25.700           | 64.400           |
| 0      | 31.000           | 49.900           | 32.300   | 26.900  | 30.100          | 80.200  | 79.200  | 73.800  | 46.100          | 34.000           | 23.700           | 55.000           |
| _      |                  |                  |          |         | 5-12-5-         | 001200  | 19.200  | 73.700  | 44.400          | 26.300           | 22.700           | 49.000           |
| 1<br>2 | 27.800           | 48.500           | 29.400   | 27.200  | 41.200          | 76.300  | 82.800  | 78,000  | 43.200          | 34.400           | 20.500           | lin 000          |
| 3      | 24.500<br>21.500 | 46.000<br>46.700 | 31.100   | 26.700  | 50. <i>5</i> 00 | 83.500  | 81.000  | 76.600  | 40.900          | 41.800           | 20.600           | 43.800<br>46.300 |
| ے<br>4 | 26.400           |                  | 32.200   | 27.800  | 55.000          | 89.200  | 78.700  | 75.400  | 35.500          | 40.800           | 22.500           | 46.500           |
| 5      | 26.500           | 41.700           | 32.900   | 26.800  | 59.600          | 92.400  | 85.500  | 77.500  | 30.300          | 37.800           | 22.000           | 58.100           |
| ,      | 20.500           | 42.200           | 32.800   | 26.800  | 69.600          | 93.700  | 93.100  | 81.600  | 30.500          | 34.800           | 21.300           | 55.600           |
| 6      | 30.000           | 41.200           | 32.500   | 24.700  | 79.200          | 98.000  | 104.000 | 00 222  |                 | -                | •                |                  |
| 7      | 31.500           | 40.600           | 34.000   | 22.800  | 75.400          | 104.000 | 108.000 | 88,300  | 30.800          | 37. 300          | 20.400           | 56.000           |
| 3      | 32.800           | 40.800           | 33.900   | 21.900  | 69.700          | 122.000 | 108.000 | 88.200  | 30.400          | 38.800           | 19.600           | 48.500           |
| 9      | 32.500           | 39.200           | 32.500   | 21.800  | 0). (00         | 130.000 | 108.000 | 92.300  | 30.400          | 37.600           | 20.500           | 43.200           |
| )      | 28,800           | 38.800           | 31.500   | 22.300  |                 | 140.000 |         | 96.900  | 31.500          | 44.200           | 22.000           | 35.300           |
| L      | 37 • 500         |                  | 30.400   | 24.200  |                 | 148.000 | 109.000 | 92.900  | 34.000          | 46.100           | 22.300           | 34.100           |
|        |                  |                  | -        |         |                 | ±70.000 |         | 92.700  |                 | 45.700           | 23.300           | -                |

RADIOACTIVITY DETERMINATIONS

STATE

IOWA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI-WAPSIPINICON & TRIB.

STATION LOCATION MISSISSIPPI RIVER AT

DUBUQUE, IOWA

26

|                  | T                             |         | 5.51      | DA CTIVITY IN 14 | /ATED     |           |       | RADIOAG                       | TIVITY IN PLAN | KTON (dry) |          |           | IOACTIVITY IN W |                                        |
|------------------|-------------------------------|---------|-----------|------------------|-----------|-----------|-------|-------------------------------|----------------|------------|----------|-----------|-----------------|----------------------------------------|
| DATE             |                               |         |           | DACTIVITY IN W   | AIER      | BETA      |       |                               | GROSS A        |            |          |           | GROSS ACTIVIT   |                                        |
| SAMPLE           | DATE OF<br>DETERMI-<br>NATION |         | ALPHA     | TOTAL            | SUSPENDED | DISSOLVED | TOTAL | DATE OF<br>DETERMI-<br>NATION | ALPHA          | BETA       |          | SUSPENDED | DISSOLVED       | TOTAL                                  |
| TAKEN            |                               |         | DISSOLVED | µµе/I            | μμε/I     | μμς/1     | μμς/1 | MO. DAY                       | μμε/g          | μμε/g      |          | μμε/Ι     | μμc/l           | μμε/Ι                                  |
| O. DAY YEAR      | MONTH DA                      | / µµс/1 | μμε/1     | <i>ире/</i> 1    | РРС/1     |           |       |                               |                |            |          |           |                 |                                        |
|                  |                               |         | ,         | 2                | 0         | 3         | 3     |                               |                | ŀ          | - 1      |           |                 |                                        |
| 0 12 60*         |                               | 0       | 2         | 2                | 0         | 14        | 14    | 1 1                           |                | 1          | 1        |           |                 |                                        |
| 1 30 60*         |                               | 1       | 1         |                  | 0         | 0         | - o l | ,                             |                | 1          |          |           |                 |                                        |
| 4 25 61*         | 1                             | 2       | 0         | 2                | 0         | ŏ         | ŏ     | i                             |                |            |          |           |                 |                                        |
| 5 22 <b>61</b> 3 |                               | 0       | 0         | 0                | 0         | ő         | ٥l    |                               |                |            | Ì        |           |                 |                                        |
| 6 19 613         | 7 21                          | 0       | 0         | 0                |           | 0         | ŏ     |                               |                | 1          | 1        |           | 1               |                                        |
| 7 24 61          | 8 8                           | 0       | 4         | 4                | 0         | 7         | 7     | 1 1                           |                |            | -        |           |                 |                                        |
| 8 30 614         | ¥ 9 15                        | 0       | 1         | 1                | 0         |           | 8     | 1                             |                | i i        | - 1      |           |                 |                                        |
| 9 5 61           | 9 29                          | -       | -         | -                | 7         | 1 1       | 9     | 1                             |                |            | - 1      |           |                 |                                        |
| 9 11 61          | 10 13                         | 0       | 1 1       | 1                | 1         | 8         | 23    |                               |                |            | 1        |           |                 |                                        |
| 9 26 61          | 10 9                          | -       | -         | -                | 3         | 20        | 23    |                               |                |            |          |           |                 |                                        |
|                  |                               |         |           |                  |           | ļ ļ       |       |                               |                |            |          |           |                 |                                        |
|                  | 1                             |         |           |                  |           | · 1       |       |                               |                |            |          |           |                 |                                        |
|                  | 1                             |         |           |                  |           |           | ļ     |                               |                |            |          |           |                 |                                        |
|                  |                               |         |           |                  |           |           | ŀ     |                               |                |            |          |           |                 |                                        |
|                  |                               | 1       |           |                  |           |           | ł     |                               |                | 1          |          |           |                 |                                        |
|                  |                               | ļ       |           |                  |           |           |       |                               |                | 1          |          |           |                 |                                        |
|                  |                               | 1       |           |                  | 1         |           |       |                               |                |            |          |           |                 |                                        |
|                  |                               |         |           |                  |           | 1         |       |                               |                |            | ·        | }         |                 |                                        |
|                  |                               |         |           |                  | İ         |           | 1     | 1                             |                |            |          | 1         |                 |                                        |
|                  | İ                             |         |           |                  | l .       |           | Į.    |                               |                |            |          | ļ         | ı               |                                        |
|                  | l                             |         |           |                  |           |           | 1     |                               | Į              |            | 1        |           | 1               |                                        |
|                  |                               |         |           | i                | 1         |           |       | İ                             |                |            | 1        | İ         |                 |                                        |
|                  |                               | •       |           |                  |           |           |       |                               | 1              |            | i        | İ         |                 |                                        |
|                  |                               |         |           | 1                |           | [         |       | 1                             |                |            | 1        | ł         |                 |                                        |
|                  | i                             |         |           |                  |           |           | Į     |                               | ļ              |            |          |           |                 | 1                                      |
|                  | 1                             |         |           | i                |           |           |       | İ                             | Ì              |            | l        |           |                 | Ì                                      |
|                  |                               | 1       | 1         |                  |           |           |       | ŀ                             |                |            | 1        | 1         |                 |                                        |
|                  | 1                             |         |           |                  |           |           |       |                               | 1              |            | ì        | i         |                 |                                        |
|                  |                               | i i     |           |                  |           |           |       | 1                             |                |            | 1        |           |                 |                                        |
|                  |                               |         |           |                  |           |           |       |                               |                |            | <b>\</b> | ļ         |                 |                                        |
|                  |                               |         |           |                  |           |           |       | 1                             | Ì              |            |          |           | ľ               |                                        |
|                  |                               |         |           |                  | Ī         |           | 1     |                               | ļ              |            | 1        | 1         | ì               |                                        |
|                  |                               |         |           |                  | 1         |           |       | Ì                             | ŀ              |            | 1        | ł         |                 |                                        |
|                  | ļ                             |         |           |                  |           |           |       | 1                             |                | 1          | 1        | Į.        |                 |                                        |
|                  | · ·                           |         |           |                  |           |           |       |                               | 1              |            | -        | l         |                 |                                        |
|                  |                               | - 1     |           |                  |           |           | 1     |                               |                | 1          | 1        |           | 1               | 1                                      |
|                  |                               |         |           |                  | 1         |           |       | İ                             |                |            | 1        | }         | 1               |                                        |
|                  |                               |         |           |                  |           |           |       | 1                             | 1              | 1          | i        | ļ         |                 | 1                                      |
|                  |                               |         |           |                  | 1         |           |       | .                             |                |            | 1        | 1         |                 | 1                                      |
|                  |                               |         |           |                  | 1         |           |       | [                             |                |            | 1        | 1         |                 |                                        |
|                  |                               |         |           |                  | 1         |           |       | 1                             |                |            | 1        | 1         |                 |                                        |
|                  |                               |         | 1         |                  |           | 1         |       |                               |                |            |          |           |                 | ــــــــــــــــــــــــــــــــــــــ |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

AWOI

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI-WAPSIPINICON & TRIB.

STATION LOCATION MISSISSIPPI RIVER AT

DUBUQUE, IOWA

|                      |                                                                                                                |                            |                                             | ALGAE (N                                                                   | lumber                | per ml.)                                                    |                                    |                                                                                                               |                                                                                   | INE                                             | RT                                                                           |                 |                 |                                  |                 | ATON                                               |                                                              |                                                    |                                                 |                       | *                                               |                           | MICROIN                                                                       | VERTEBR                                     | ATES                         |                   |                                                             |
|----------------------|----------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------|----------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------|-----------------|-----------------|----------------------------------|-----------------|----------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|-----------------------|-------------------------------------------------|---------------------------|-------------------------------------------------------------------------------|---------------------------------------------|------------------------------|-------------------|-------------------------------------------------------------|
| DATE<br>OF SAMPLE    |                                                                                                                | BLUE-                      |                                             | GREE                                                                       | $\overline{}$         | FLAGEL<br>(Pigme                                            | LATES<br>inted)                    | DIATO                                                                                                         | омѕ                                                                               | SHE<br>(No. p                                   | LLS                                                                          |                 | DOM II          | NANT<br>Introd                   | SPEC!           | es an                                              | le Iden                                                      | tificat                                            | ion*)                                           | ,                     | корсанктон<br>Sheathed<br>ml.)                  | A<br>ml.)                 | ts<br>liter)                                                                  | EA<br>liter)                                | SES<br>liter)                | IAL PORMS<br>ter) | GENERA<br>oduction<br>fication,                             |
| MONTH<br>DAY<br>YEAR | TOTAL                                                                                                          | COCCOID                    | FILA-<br>MENT-<br>OUS                       | COCCOID                                                                    | FILA-<br>MENT-<br>OUS | GREEN                                                       | OTHER                              | CENTRIC                                                                                                       | PENNATE                                                                           | CENTRIC                                         | PENNATE                                                                      | FIRST           | PER.<br>CENTAGE | SECOND#                          | PER-<br>CENTAGE | THIRD#                                             | PER.<br>CENTAGE                                              | FOURTH                                             | PER.<br>CENTAGE                                 | OTHER PER-<br>CENTAGE | OTHER WICK<br>FUNGI AND<br>BACTERIA<br>(No. per | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)                                                  | CRUSTACEA<br>(No. per liter,                | NEMATODES<br>(No. per liter) | (No. per II       | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| 10                   | 7700<br>2600<br>3600<br>4800<br>1700<br>126700<br>37100<br>140700<br>11000<br>11200<br>11600<br>12000<br>11400 | 60<br>40<br>20<br>20<br>60 | 650<br>110<br>330<br>40<br>150<br>130<br>80 | 70<br>230<br>70<br>70<br>90<br>210<br>540<br>180<br>20<br>190<br>40<br>190 |                       | 110<br>20<br>290<br>4150<br>120<br>900<br>200<br>100<br>100 | 50<br>70<br>90<br>110<br>110<br>90 | 1060<br>6030<br>2240<br>3350<br>4310<br>1010<br>24260<br>335980<br>1970<br>760<br>1280<br>1240<br>930<br>1390 | 50<br>670<br>110<br>90<br>110<br>420<br>1900<br>2730<br>3730<br>100<br>100<br>100 | 3370<br>8490<br>440<br>510<br>510<br>100<br>100 | 20<br>560<br>20<br>160<br>370<br>200<br>480<br>520<br>270<br>160<br>20<br>80 | 558885858555555 | 40<br>40<br>40  | 8200626266888888<br>585855555555 |                 | 59<br>56<br>56<br>58<br>59<br>59<br>59<br>59<br>59 | 10<br>20<br>20<br>10<br>10<br>20<br>10<br>20<br>* 10<br>* 10 | 83<br>83<br>61<br>58<br>80<br>58<br>80<br>58<br>81 | * 10<br>10<br>* 10<br>* 10<br>* 10<br>* * * * * | 102030401020101010    | 130<br>20<br>70<br>20                           | 10 10 10 20               | 7<br>40<br>12<br>31<br>2<br>1<br>138<br>80<br>20<br>8<br>41<br>209<br>5<br>83 | 1 6 1 1 2 2 1 4 3 1 3 1 2 9 6 1 2 8 1 0 1 3 | 1 2 6 2 2                    | 5 1 1 1 2         | 47 -29779-7 4-9-79-3 3-973 31977 3-967 -29279-79-79-79-7    |

# ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

IOWA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI-WAPSIPINICON & TRIB.

STATION LOCATION MISSISSIPPI RIVER AT

DUBUQUE, IOWA

|                                                                                                     |                                                              |                                                                    |                                                    |                                                                  |                     |                                            |                                                         |                       |                                         |                                       | omani ro                |               |                  |                                         |                                                |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|---------------------|--------------------------------------------|---------------------------------------------------------|-----------------------|-----------------------------------------|---------------------------------------|-------------------------|---------------|------------------|-----------------------------------------|------------------------------------------------|
| DATE OF SAMPLE                                                                                      | ]                                                            | EX                                                                 | TRACTABL                                           | ES                                                               |                     |                                            |                                                         |                       | CHLOROF                                 | ORM EXTRA                             | CIABLES                 |               |                  | T                                       |                                                |
| MONTH DAY YEAR DAY DAY DAY DAY DAY DAY DAY                                                          | GALLONS<br>FILTERED                                          | TOTAL                                                              | CHLORO-<br>FORM                                    | ALCOHOL                                                          | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES                          | TOTAL                                                   | ALIPHATICS            | AROMATICS                               | OXYGEN-<br>ATED<br>COMPOUNDS          | LOSS                    | WEAK<br>ACIDS | STRONG<br>ACIDS  | BASES                                   | LOSS                                           |
| 10 5 60 10 13 11 1 60 11 8 12 7 60 12 13 3 7 61 3 14 4 3 61 5 5 6 4 61 6 14 7 3 61 8 20 9 6 61 9 18 | 3405<br>4500<br>4440<br>4613<br>4267<br>4957<br>4215<br>7500 | 440<br>186<br>165<br>264<br>197<br>153<br>179<br>166<br>108<br>130 | 70<br>41<br>34<br>75<br>72<br>42<br>70<br>66<br>36 | 370<br>145<br>131<br>189<br>125<br>111<br>109<br>100<br>72<br>99 | 1 2 1 1 2 3 2 1     | 20<br>9<br>19<br>21<br>10<br>18<br>17<br>8 | 21<br>13<br>12<br>22<br>19<br>14<br>21<br>18<br>9<br>10 | 2 2 1 1 2 2 3 3 1 1 1 | 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 9<br>10<br>17<br>16<br>11<br>16<br>14 | 1 1 0 0 0 0 0 0 0 0 0 1 | 8648959954    | 3<br>6<br>7<br>4 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 14<br>8<br>5<br>17<br>18<br>13<br>11<br>7<br>4 |

STATE

IOWA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

MISSISSIPPI-WAPSIPINICON & TRIB.

STATION LOCATIONMISSISSIPPI RIVER AT

DUBUQUE, IOWA

| DATE<br>OF SAMPLE | TEMP.                                                                                                                  | DISSOLVED                                                                                                         |                                                                                         |                                                                                           |                                                                                   | CHLORINE       | DEMAND          |                              |                      |                                                                                                                 |                                                                                          |                                                                           |                                                                     |                  |                    |                             |                                                                                 |
|-------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------|-----------------|------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|------------------|--------------------|-----------------------------|---------------------------------------------------------------------------------|
| DAY YEAR          | (Degrees<br>Centigrade)                                                                                                | OXYGEN<br>mg/l                                                                                                    | рН                                                                                      | B.O.D.<br>mg/l                                                                            | C.O.D.                                                                            | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l    | ALKALINITY<br>mg/l                                                                                              | HARDNESS<br>mg/l                                                                         | COLOR<br>(scale units)                                                    | TURBIDITY<br>(scale units)                                          | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL DISSOLVED SOLIDS mg/l | COLIFORMS<br>per 100 ml.                                                        |
| 10                | 15.0<br>7.4<br>7.0<br>6.0<br>2.0<br>8.3<br>18.2<br>17.0<br>8.3<br>24.0<br>26.7<br>25.6<br>26.0<br>24.2<br>23.1<br>16.2 | 8.6<br>10.8<br>11.1<br>11.2<br>12.0<br>9.2<br>7.6<br>10.8<br>4.2<br>4.6<br>5.1<br>5.2<br>4.9<br>6.8<br>6.6<br>6.4 | 8.0<br>8.2<br>8.2<br>8.2<br>8.3<br>7.8<br>8.0<br>7.8<br>8.0<br>7.8<br>8.1<br>8.1<br>8.2 | 3.5<br>2.1<br>1.8<br>1.7<br>1.8<br>3.4<br>- 3.7<br>3.5<br>2.2<br>1.8<br>2.2<br>2.2<br>2.2 | 7<br>4<br>5<br>4<br>4<br>8<br>8<br>4<br>1<br>1<br>4<br>8<br>8<br>6<br>6<br>5<br>4 |                |                 | 11111111111111               | 8-88879-8889-9098999 | 111<br>132<br>130<br>119<br>120<br>90<br>-<br>110<br>96<br>112<br>120<br>122<br>126<br>119<br>117<br>119<br>120 | 120<br>144<br>142<br>139<br>131<br>140<br>112<br>136<br>144<br>146<br>147<br>1230<br>143 | 75<br>75<br>75<br>100<br>200<br>150<br>150<br>75<br>75<br>75<br>75<br>100 | 25<br>20<br>50<br>75<br>190<br>75<br>70<br>100<br>100<br>100<br>150 |                  |                    |                             | 36<br>2300<br>300<br>220<br>40<br>40<br>200<br>120<br>200<br>1000<br>500<br>500 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at McGregor, Iowa Operated by U.S. Geological Survey

STATE

Iowa

MAJOR BASIN

Upper Mississippi River

MINOR BASIN

Mississippi-Wapsipinicon & Trib.

STATION LOCATION

Mississippi River at

Dubuque, Iowa

| Day      | October | November | December | January | February         | March            | April           | May                  | June   | July   | August | September |
|----------|---------|----------|----------|---------|------------------|------------------|-----------------|----------------------|--------|--------|--------|-----------|
|          |         |          |          | (0-     | 10.700           | 00,000           | 103.000         | 54.400               | 55.500 | 17.000 | 20.600 | 11.600    |
| 1        | 23.000  | 16.500   | 16.700   | 11.600  | 10.700           | 20.900           | 94.300          | 50.700               | 50.500 | 16.700 | 21.000 | 12.200    |
| 2        | 22.800  | 20.800   | 15.800   | 11.600  | 10.700           | 19.700           | 86.000          | 47.200               | 45.700 | 16.900 | 19.100 | 11.700    |
| 2<br>3   | 22.000  | 23.400   | 16.500   | 11.600  | 10.700           | 23.000           | 77.900          | 43.600               | 40.000 | 16.800 | 16.000 | 11.600    |
| 4        | 22.100  | 29.700   | 16.600   | 11.700  | 10.600           | 31.200<br>41.400 | 70.000          | 39.800               | 35.000 | 16.900 | 16.900 | 10.800    |
| 5        | 20.200  | 37.500   | 20.200   | 11.800  | 10.600           | 41.400           | γο.000          | 39.000               | 57,000 |        |        |           |
|          |         | _        | 0        | 77 000  | 10 600           | 43.100           | 67.000          | 37.800               | 31.100 | 16.500 | 17.900 | 10.600    |
| 6        | 17.100  | 35.800   | 22.800   | 11.800  | 10.600           |                  | 62.500          | 36.100               | 33.500 | 15.600 | 17.900 | 10.600    |
| 7        | 15.900  | 36.900   | 21.300   | 11.800  | 10.600           | 33.800           | 55.000          | 37.000               | 32.800 | 14.500 | 17.500 | 10.500    |
| 8        | 14.600  | 35.500   | 20.300   | 11.700  | 10.800           | 25.700<br>18.300 | 50.600          | 39.200               | 25.000 | 14.500 | 17.100 | 12.900    |
| 9<br>10  | 14.500  | 31.700   | 18.600   | 12.000  | 11.700           | 20.800           | 45.500          | 37.100               | 20.900 | 13.100 | 16.500 | 13.300    |
| 10       | 14.600  | 22.600   | 16.100   | 12.900  | 11.700           | 20.000           | 45.500          | 31.100               | 20.700 | -5     | •      |           |
|          |         |          |          | -1 000  | 77 700           | 24,000           | 40.700          | 34.000               | 22.400 | 12.600 | 16.100 | 13.800    |
| 11       | 15.000  | 21.400   | 12.100   | 14.800  | 11.700           | 24.000           | 38.600          | 35.300               | 26.300 | 11.300 | 15.500 | 15.200    |
| 12       | 15.500  | 20.600   | 12.100   | 15.500  | 11.800           |                  | 36 <b>.</b> 600 | 36.400               | 28.200 | 10.600 | 14.100 | 22.900    |
| 13<br>14 | 15.600  | 18.900   | 10.700   | 14.600  | 13.100           | 21.700<br>18.800 | 35.200          | 38.200               | 28.500 | 9.720  | 14.700 | 21.200    |
| 14       | 15.500  | 17.200   | 13.600   | 13.900  | 12.900           |                  | 34.200          | 42.400               | 30.000 | 9.660  | 15.200 | 10.200    |
| 15       | 14.800  | 18.500   | 16.200   | 13.800  | 12.700           | 16.100           | 34.200          | 42.400               | 50.000 | 3.222  |        |           |
|          |         |          |          | 000     | 70.700           | 15.900           | 33.500          | 42.900               | 26.800 | 10,100 | 14.000 | 9.560     |
| 16       | 15.400  | 19.700   | 18.500   | 13.800  | 12.700           | 16.500           | 32 <b>.</b> 900 | 42.600               | 22.300 | 9.780  | 11.400 | 9.850     |
| 17       | 13.800  | 20.200   | 18.700   | 13.800  | 12.900           | 17.600           | 36.000          | 48.200               | 20.300 | 10.400 | 10.200 | 10.300    |
| 18       | 13.000  | 19.200   | 19.100   | 13.800  | 13.600           | 19.700           | 40.000          | 54,500               | 21.400 | 11,200 | 9.500  | 10.300    |
| 19       | 12.000  | 19.600   | 20.300   | 13.700  | 13.500           | 23.500           | 39,600          | 55.500               | 22.400 | 12.400 | 10.100 | 11.300    |
| 20       | 12.900  | 18.700   | 20.600   | 13.200  | 13.300           | 23.500           | 39.000          | <i>)</i> , , , , , , |        |        |        |           |
|          |         |          |          |         | 12 700           | 30.500           | 41.300          | 58.700               | 19.200 | 13.100 | 11.500 | 11.800    |
| 21       | 13.000  | 20.500   | 20.300   | 13.200  | 13.700<br>16.800 | 31.100           | 47.900          | 66.200               | 17.900 | 13.500 | 10.700 | 13.100    |
| 22       | 12.900  | 21.200   | 17.500   | 13.300  |                  | 32.100           | 51.100          | 70,200               | 18.900 | 15.200 | 10.900 | 16.400    |
| 23       | 12.100  | 20.500   | 14.300   | 13.300  | 23.000           | 36.400           | 52.800          | 73.900               | 18.800 | 18.700 | 10.900 | 16.600    |
| 24       | 12.600  | 20.500   | 14.400   | 12.500  | 22.900           | 48.000           | 53.600          | 75.700               | 18.200 | 18,400 | 11.700 | 15.100    |
| 25       | 12.900  | 19.800   | 14.400   | 12.400  | 19.400           | 40.000           | 73.000          | 17.100               | 20120  |        |        |           |
|          |         |          | -1 1     | 70 1.00 | 16.000           | 66.000           | 54.700          | 75.900               | 18.100 | 18.200 | 10.400 | 11.800    |
| 26       | 12.700  | 18.200   | 14.400   | 12.400  |                  | 81.900           | 56.100          | 74.600               | 18.600 | 18.200 | 10.800 | 10.300    |
| 27       | 13.300  | 17.000   | 14.200   | 12.100  | 17.500           | 102,000          | 59.600          | 73.000               | 18.300 | 17.600 | 11.300 | 9.910     |
| 28       | 13.500  | 19.600   | 12.700   | 12.000  | 20.500           | 114.000          | 58.500          | 70.300               | 18.400 | 17.200 | 12.400 | 9.920     |
| 29<br>30 | 13.200  | 18.200   | 12.800   | 11.900  |                  | 114.000          | 57.000          | 65.700               | 17.200 | 16.500 | 12.200 | 15.200    |
| 30       | 12.500  | 18.300   | 12.600   | 11.900  |                  |                  | 51.000          | 61.000               | 11.200 | 20.100 | 12,400 | •         |
| 31       | 14.100  |          | 12.400   | 10.700  |                  | 109.000          |                 | 01.000               |        |        |        |           |

STATE

MINNESOTA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

UPPER PORTION-UPPER MISSISSIPPI

STATION LOCATION MISSISSIPPI RIVER LOCK DAM #3 BELOW

ST. PAUL, MINNESOTA

| DATE         RADIOACTIVITY IN WATER         RADIOACTIVITY IN PLANKTON (dry)           SAMPLE TAKEN         DATE OF DETERMINATION         SUSPENDED         DISSOLVED         TOTAL         SUSPENDED         DISSOLVED         TOTAL         ALPHA         BETA           ALPHA         BETA         ALPHA         BETA         ALPHA         BETA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |       |                     |                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|---------------------|--------------------|
| TAKEN NATION SUSPENDED SIGNATURE AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 14    | GROSS ACTI          | VITY               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SUSPENDED   | BETA  | SUSPENDED DISSOLVED | TOTAL              |
| 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μμc/l       | πhc/a | μμε/Ι μμε/Ι         | μμ <sub>C</sub> /I |
| No.   DAY   VEAK   NOSTIN   DAY   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PRECT   PR | <del></del> |       | <u> </u>            |                    |

PLANKTON POPULATION NUMBER PER MILLILITER, EXCEPT MACROPLANKTON STATE

MINNESOTA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

UPPER PORTION-UPPER MISSISSIPPI

STATION LOCATION MISSISSIPPI RIVER LOCK DAM #3 BELOW

ST. PAUL, MINNESOTA

|                                                                                         |                                                                                                                                                 |                                                                          |                                                                                                                                                                      |                                                                                                                                                          |                       |                                                                                                                                      |                                      |                                                                                                                                                                          |                                   | INE                                                                                                                                 | RT                                                                                          |                      |                                              |                              | DI                                                                                                                | ATON                                                                       | 1S                                                                    |                                                                            |                       |                                                                                                  |                                                |                                                                                                                                                          | ICROIN                         | VERTEBR                                                                                         | ATES                         |           | * 2 5                                                       |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------|----------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------|------------------------------|-----------|-------------------------------------------------------------|
| DATE<br>OF SAMPLE                                                                       |                                                                                                                                                 | BLUE-G                                                                   |                                                                                                                                                                      | ALGAE (N<br>GREE                                                                                                                                         |                       | FLAGEL<br>(Pigme                                                                                                                     | LATES<br>inted)                      | DIATO                                                                                                                                                                    | омѕ                               | DIAT<br>SHE<br>(No. pe                                                                                                              | LLS                                                                                         |                      | DOMII<br>(See                                | Introdi                      | SPECI<br>uction                                                                                                   | es an                                                                      | le Iden                                                               | tificati                                                                   | on*)                  |                                                                                                  | MICROPLANKTON, AND SHEATHED RIA per ml.)       | oA<br>' mL.)                                                                                                                                             | FIERS<br>  per liter           | CEA<br>r liter)                                                                                 | DES<br>r liter)              | IRAL FORM | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| MONTH<br>DAY<br>YEAR                                                                    | TOTAL                                                                                                                                           | COCCOID                                                                  | FILA-<br>MENT-<br>OUS                                                                                                                                                | COCCOID                                                                                                                                                  | FILA-<br>MENT-<br>OUS | GREEN                                                                                                                                | OTHER                                | CENTRIC                                                                                                                                                                  | PENNATE                           | CENTRIC                                                                                                                             | PENNATE                                                                                     | FIRST#               | PER.<br>CENTAGE                              | SECOND*                      | PER-<br>CENTAGE                                                                                                   | THIRD#                                                                     | PER-<br>CENTAGE                                                       | FOURTH                                                                     | PER-<br>CENTAGE       | OTHER PER-<br>CENTAGE                                                                            | OTHER MIG<br>FUNGI AND<br>BACTERIA<br>(No. per | PROTOZO<br>(No. per                                                                                                                                      | ROTIFIE<br>(No. pe             | CRUSTACEA<br>(No. per liter)                                                                    | NEMATODES<br>(No. per liter) | (No. per  | See In for Idea                                             |
| 10 4 60<br>11 8 60<br>11 22 60<br>12 13 60<br>12 29 60<br>1 10 61<br>1 25 61<br>2 14 61 | 24800<br>7400<br>17200<br>17700<br>21400<br>15500<br>15800<br>7300<br>10900<br>25700<br>30400<br>25700<br>31700<br>8000<br>9700<br>9700<br>1900 | 90<br>90<br>7<br>20<br>20<br>470<br>310<br>120<br>160<br>80<br>190<br>20 | 270<br>180<br>320<br>220<br>50<br>70<br>20<br>270<br>250<br>130<br>1120<br>4200<br>230<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 2110<br>740<br>180<br>270<br>110<br>110<br>110<br>90<br>2270<br>200<br>470<br>1930<br>3000<br>220<br>1720<br>3240<br>4600<br>1270<br>2010<br>1620<br>150 | 70                    | 400<br>360<br>530<br>200<br>250<br>130<br>310<br>4290<br>840<br>580<br>270<br>1390<br>670<br>980<br>740<br>1080<br>750<br>580<br>120 | 490<br>600<br>310<br>190<br>40<br>80 | 21340<br>5670<br>15260<br>20960<br>14950<br>15440<br>6260<br>9360<br>29100<br>23500<br>26590<br>15710<br>19110<br>3460<br>22270<br>44990<br>4920<br>5710<br>4820<br>1410 | 2610<br>2550<br>580<br>870<br>370 | 1830<br>1050<br>310<br>1520<br>780<br>1210<br>1450<br>600<br>3770<br>1880<br>7180<br>1920<br>6930<br>17340<br>9430<br>17410<br>9430 | 250<br>130<br>50<br>70<br>40<br>270<br>450<br>270<br>450<br>270<br>2450<br>380<br>150<br>60 | 26<br>57<br>56<br>56 | 40<br>50<br>30<br>40<br>50<br>90<br>90<br>50 | 5669292679566228582656625826 | *<br>*<br>10<br>10<br>20<br>20<br>20<br>20<br>20<br>10<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 | 89<br>92<br>91<br>56<br>58<br>26<br>80<br>80<br>26<br>82<br>47<br>47<br>58 | 10<br>10<br>*<br>*<br>*<br>*<br>10<br>*<br>10<br>10<br>10<br>10<br>10 | 56<br>26<br>26<br>58<br>97<br>80<br>82<br>56<br>57<br>47<br>82<br>26<br>20 | * * * * * * * 100 100 | 10<br>30<br>10<br>20<br>* 420<br>20<br>20<br>310<br>310<br>310<br>310<br>310<br>310<br>310<br>31 | 630<br>150<br>50<br>20                         | 40<br>10<br>60<br>30<br>10<br>20<br>20<br>40<br>10<br>10<br>10<br>10<br>20<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 113<br>423<br>999<br>70<br>633 | 2<br>18<br>6<br>10<br>17<br>6<br>17<br>6<br>17<br>6<br>17<br>6<br>17<br>6<br>17<br>6<br>17<br>6 | 2 3                          | 1         | 48935<br>489                                                |

## ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

MINNESOTA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

UPPER PORTION-UPPER MISSISSIPPI

STATION LOCATION MISSISSIPPI RIVER LOCK DAM #3 BELOW

ST. PAUL, MINNESOTA

| DATE OF SA | AMPLE | T                                                                            | [ F                                                          | KTRACTABL                                                              | FG                                                                               |                     |                                                                      |                                                          | <del></del> | CHLOBOR      | ORM EXTR                                                             | ACTABLES    |                                    |                 |                               |                                                                   |
|------------|-------|------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------|----------------------------------------------------------|-------------|--------------|----------------------------------------------------------------------|-------------|------------------------------------|-----------------|-------------------------------|-------------------------------------------------------------------|
| BEGINNING  | END   | 7                                                                            |                                                              |                                                                        | <u> </u>                                                                         |                     | 1                                                                    | <u> </u>                                                 |             | NEUTRALS     |                                                                      |             |                                    | [               |                               |                                                                   |
| DAY YEAR   | MONTH | GALLONS<br>FILTERED                                                          | TOTAL                                                        | CHLORO-<br>FORM                                                        | ALCOHOL                                                                          | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES                                                    | TOTAL                                                    | ALIPHATICS  | AROMATICS    | OXYGEN-<br>ATED<br>COMPOUNDS                                         | LOSS        | WEAK<br>ACIDS                      | STRONG<br>ACIDS | BASES                         | Loss                                                              |
| 11 1 60    | 11 8  | 4296<br>3663<br>2900<br>3058<br>4964<br>3366<br>3327<br>3857<br>2940<br>3515 | 205<br>224<br>255<br>351<br>251<br>2419<br>255<br>249<br>447 | 44<br>48<br>67<br>97<br>95<br>114<br>67<br>93<br>60<br>103<br>75<br>80 | 161<br>176<br>188<br>259<br>256<br>137<br>175<br>126<br>159<br>152<br>174<br>367 | 122523221633        | 12<br>12<br>17<br>24<br>19<br>29<br>18<br>26<br>13<br>27<br>18<br>25 | 19<br>17<br>25<br>34<br>42<br>34<br>20<br>22<br>31<br>27 | 22221233434 | 212232222222 | 14<br>13<br>20<br>28<br>33<br>28<br>15<br>23<br>15<br>22<br>16<br>20 | 11124310221 | 10<br>14<br>7<br>9<br>8<br>17<br>9 | 234651576964    | 1 1 1 2 2 2 1 2 1 2 2 1 2 2 1 | 4<br>9<br>11<br>14<br>15<br>21<br>14<br>19<br>9<br>11<br>14<br>13 |

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MINNESOTA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

UPPER PORTION UPPER MISSISSIPPI

STATION LOCATIONMISSISSIPPI RIVER LUCK DAM #3 BELOW

ST.PAUL, MINNESOTA

| DATE                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                       |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                          |                                                                      |                                                                                                                                                                                                          | CHLORINE                 | DEMAND                   |                                                                 |                                                                                               |                    |                                                                                                                                                                                       |                            |                                                                                                                                                  |                                                                                                                                  |                               |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OF SAMPLE                                                                                                                                                                                                                                                                                                                                                               | TEMP. (Degrees Centigrade)                                                                                                              | DISSOLVED<br>OXYGEN<br>mg/l                                                                                                                                                                                                                         | рН                                                                                                                                                                                                                                                       | B.O.D.<br>mg/l                                                       | C.O.D.<br>mg/l                                                                                                                                                                                           | 1-HOUR                   | 24-HOUR<br>mg/l          | AMMONIA-<br>NITROGEN<br>mg/l                                    | CHLORIDES<br>mg/l                                                                             | ALKALINITY<br>mg/l | HARDNESS<br>mg/l                                                                                                                                                                      | COLOR<br>(scale units)     | TURBIDITY<br>(scale units)                                                                                                                       | SULFATES<br>mg/l                                                                                                                 | PHOSPHATES<br>mg/l            | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l                                                                                                                                                                      | per 100 ml.                                                                                                                                                                                                                                                   |
| 10 4 60<br>10 18 60<br>11 1 60<br>11 22 60<br>11 22 60<br>11 29 60<br>12 3 60<br>12 20 60<br>12 13 60<br>12 20 60<br>12 13 60<br>12 20 60<br>12 20 60<br>13 60<br>14 60<br>1 30 60<br>2 21 66<br>2 21 66<br>2 21 66<br>3 24 66<br>3 24 66<br>3 24 66<br>3 24 66<br>3 24 66<br>3 28 66<br>4 11 66<br>4 18 66<br>4 18 66<br>5 2 3 66<br>6 3 3 66<br>6 6 6 66<br>6 6 20 66 | 0 14.7<br>0 14.0<br>0 9.1<br>0 6.5<br>0 6.5<br>0 4.5<br>0 2.1<br>1.0<br>0 0 4.5<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 | 7.2<br>8.5<br>9.9<br>8.1<br>9.8<br>9.8<br>11.1<br>12.5<br>11.2<br>10.0<br>8.3<br>6.7<br>7.9<br>6.8<br>8.9<br>10.6<br>10.3<br>10.1<br>11.4<br>9.8<br>10.3<br>8.9<br>7.7<br>7.3<br>8.9<br>8.9<br>8.9<br>8.9<br>8.9<br>8.9<br>8.9<br>8.9<br>8.9<br>8.9 | 7.9<br>8.2<br>8.1<br>8.0<br>8.1<br>8.1<br>8.0<br>7.9<br>7.9<br>7.9<br>7.8<br>7.7<br>7.8<br>7.9<br>7.9<br>7.9<br>8.0<br>8.0<br>8.0<br>8.0<br>8.1<br>8.1<br>8.0<br>8.1<br>8.0<br>8.1<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0<br>8.0 | 91251239250334336365648127641371<br>3.125123925033445336445333445371 | 28<br>30<br>25<br>24<br>22<br>27<br>24<br>24<br>23<br>21<br>22<br>20<br>22<br>23<br>29<br>29<br>29<br>29<br>31<br>34<br>47<br>33<br>44<br>33<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34 |                          |                          | -1000056655-5133-99-559881-11-11-11-11-11-11-11-11-11-11-11-11- | -9910 111 9910 100 100 120 130 120 130 120 130 120 130 150 150 150 150 150 150 150 150 150 15 |                    | 190<br>200<br>188<br>184<br>184<br>172<br>184<br>178<br>188<br>182<br>220<br>202<br>170<br>202<br>170<br>192<br>174<br>188<br>210<br>2176<br>204<br>2176<br>204<br>2176<br>204<br>218 | 35<br>45<br>50<br>40<br>40 | 45<br>50<br>40<br>30<br>10<br>15<br>15<br>9<br>10<br>7<br>7<br>10<br>10<br>20<br>55<br>120<br>45<br>90<br>75<br>60<br>60<br>75<br>45<br>70<br>45 | 45<br>406<br>406<br>332<br>280<br>232<br>232<br>283<br>270<br>287<br>287<br>287<br>287<br>287<br>287<br>287<br>287<br>287<br>287 | .2 .3 .2 .2 .2 .1 .1 .1 .2 .2 | 265<br>264<br>252<br>248<br>230<br>242<br>233<br>246<br>2495<br>291<br>292<br>295<br>2665<br>2674<br>2677<br>2784<br>2677<br>2782<br>2784<br>2677<br>2782<br>2782<br>2782<br>2782<br>2782<br>2782<br>2782 | 11000<br>1200<br>15000<br>30000<br>50000<br>45000<br>45000<br>45000<br>15000<br>41000<br>1500<br>36000<br>8800<br>7900<br>12000<br>14000<br>19000<br>13000<br>84000<br>39000<br>39000<br>37000<br>71000<br>63000<br>53000<br>21000<br>53000<br>21000<br>53000 |
| 7 11 6<br>7 18 6<br>7 25 6                                                                                                                                                                                                                                                                                                                                              | 21.9<br>22.9<br>31 24.7<br>31 24.9<br>31 24.4                                                                                           | .8.2<br>9.9<br>10.5                                                                                                                                                                                                                                 | 8 • 1<br>8 • 3<br>8 • 5<br>8 • 4<br>8 • 4                                                                                                                                                                                                                | 4 • 2<br>4 • 6<br>6 • 0<br>5 • 8<br>6 • 7                            | 32<br>21<br>34<br>37                                                                                                                                                                                     | 1.0<br>1.7<br>2.4<br>2.5 | 9.9<br>9.5<br>8.1<br>8.4 | •1                                                              | 10<br>8<br>12<br>14                                                                           | 140<br>127<br>144  | 180<br>160<br>164<br>180                                                                                                                                                              | 35<br>35                   | 50<br>55<br>60                                                                                                                                   | 42<br>38<br>46<br>48                                                                                                             | .1                            | 283                                                                                                                                                                                                       | 1500<br>290<br>1700<br>670<br>*100                                                                                                                                                                                                                            |



CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MINNESOTA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

UPPER PORTION UPPER MISSISSIPPI

STATION LOCATIONMISSISSIPPI RIVER LOCK DAM #3 BELOW

ST. PAUL, MINNESOTA

| DA    |                       |          |                                                   |                                             |                                 |                                      |                                       | CHLORINE          | DEMAND                                       |                                 |                                       |                                           |                                             |                                       |                                  |                                       |                                        |                                             |                                                  |
|-------|-----------------------|----------|---------------------------------------------------|---------------------------------------------|---------------------------------|--------------------------------------|---------------------------------------|-------------------|----------------------------------------------|---------------------------------|---------------------------------------|-------------------------------------------|---------------------------------------------|---------------------------------------|----------------------------------|---------------------------------------|----------------------------------------|---------------------------------------------|--------------------------------------------------|
| OF SA |                       | YEAR H   | TEMP.<br>(Degrees<br>Centigrade)                  | DISSOLVED<br>OXYGEN<br>mg/l                 | pН                              | B,O.D.<br>mg/l                       | C.O.D.<br>mg/l                        | 1-HOUR<br>mg/l    | 24-HOUR<br>mg/l                              | AMMONIA-<br>NITROGEN<br>mg/i    | CHLORIDES<br>mg/l                     | ALKALINITY<br>mg/l                        | HARDNESS<br>mg/l                            | COLOR<br>(scale units)                | TURBIDITY<br>(scale units)       | SULFATES<br>mg/l                      | PHOSPHATES<br>mg/l                     | TOTAL DISSOLVED SOLIDS mg/l                 | COLIFORMS<br>per 100 ml.                         |
|       | 8<br>5<br>2<br>9<br>2 | 61<br>61 | 25.9<br>25.5<br>-<br>23.4<br>21.4<br>18.5<br>16.2 | 7.3<br>7.4<br>-<br>6.3<br>5.5<br>8.1<br>5.4 | 8.1<br>8.2<br>8.0<br>7.9<br>7.7 | 5.3<br>3.5<br>-<br>3.6<br>4.9<br>3.3 | 32<br>29<br>-<br>26<br>24<br>23<br>20 | .8 .1 .3 .1 .3 .2 | 9.7<br>11.4<br>-<br>11.6<br>12.8<br>-<br>5.3 | -<br>•3<br>-<br>•9<br>•9<br>1•0 | 12<br>10<br>-<br>12<br>13<br>13<br>11 | 156<br>162<br>-<br>162<br>161<br>-<br>158 | 202<br>210<br>-<br>200<br>270<br>170<br>168 | 30<br>30<br>-<br>25<br>25<br>25<br>25 | 35<br>35<br>35<br>45<br>30<br>30 | 56<br>53<br>-<br>48<br>39<br>33<br>30 | • 2<br>• 2<br>• 4<br>• 4<br>• -<br>• 3 | 301<br>306<br>-<br>299<br>270<br>253<br>240 | 620<br>400<br>100<br>380<br>710<br>3000<br>30000 |
|       |                       |          |                                                   |                                             |                                 |                                      |                                       |                   |                                              |                                 |                                       |                                           |                                             |                                       |                                  |                                       |                                        |                                             |                                                  |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Prescott, Wisconsin Operated by U.S. Geological Survey

STATE

Minnesota

MAJOR BASIN

Upper Mississippi River

MINOR BASIN

Upper Portion-Upper Mississippi

STATION LOCATION

Mississippi River Lock and Dam #3 below

St. Paul, Minnesota

| Day                        | October                                            | November                                   | December                                           | January                                            | February                                  | Merch                                                    | April                                          | May                                                      | June                                           | ·July                                              | August                                             | September                                 |
|----------------------------|----------------------------------------------------|--------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|
| 1<br>2<br>3<br>4           | 11.100<br>10.300<br>9.900<br>9.780<br>8.550        | 6.460<br>5.340<br>6.140<br>7.950<br>8.100  | 5.820<br>4.850<br>5.080<br>5.940<br>6.660          | 5.020<br>5.270<br>4.970<br>5.020<br>4.910          | 4.120<br>4.130<br>4.140<br>4.080<br>4.080 | 5.710<br>6.980<br>7.230<br>7.500<br>7.610                | 25.000<br>24.500<br>24.700<br>24.300<br>23.300 | 20.700<br>19.700<br>18.700<br>17.500<br>17.000           | 20.400<br>18.700<br>18.900<br>17.700<br>16.200 | 7.490<br>6.970<br>6.670<br>6.980<br>7.020          | 7.060<br>6.570<br>7.590<br>9.670<br>9.380          | 5.070<br>5.580<br>4.330<br>3.890<br>3.930 |
| 6<br>7<br>8<br>9           | 7.930<br>8.410<br>8.700<br>8.270<br>7.890          | 8.000<br>9.120<br>6.410<br>5.340<br>7.860  | 7.200<br>6.910<br>6.260<br>6.330<br>6.660          | 4.820<br>5.290<br>5.030<br>4.860<br>4.820          | 4.220<br>4.170<br>4.200<br>4.230<br>4.230 | 7.210<br>7.750<br>7.580<br>7.240<br>8.200                | 22.200<br>19.200<br>17.100<br>17.000<br>15.800 | 17.100<br>16.900<br>16.200<br>16.500<br>17.200           | 14.700<br>13.100<br>13.300<br>12.900<br>12.300 | 6.250<br>6.830<br>5.340<br>4.220<br>4.800          | 9.040<br>7.270<br>7.410<br>7.530<br>7.760          | 5.140<br>5.230<br>5.630<br>6.420<br>6.100 |
| 11<br>12<br>13<br>14<br>15 | 8.070<br>7.960<br>7.230<br>6.410<br>6.600          | 7.860<br>10.300<br>8.830<br>7.230<br>6.400 | 7.000<br>6.920<br>7.120<br>7.370<br>7.080          | 4.930<br>4.910<br>5.070<br>5.250<br>5.340          | 4.290<br>4.260<br>4.430<br>4.230<br>4.650 | 7.660<br>8.190<br>7.650<br>7.560<br>7.690                | 14.500<br>15.100<br>15.000<br>14.800<br>16.400 | 17.800<br>18.000<br>17.800<br>17.900<br>20.300           | 12.400<br>12.800<br>13.400<br>12.000<br>10.500 | 5.080<br>4.910<br>5.430<br>5.200<br>5.150          | 6.790<br>6.120<br>6.130<br>5.180<br>3.940          | 4.090<br>5.300<br>6.790<br>5.200<br>4.120 |
| 16<br>17<br>18<br>19<br>20 | 6.600<br>6.280<br>5.910<br>4.400<br>6.400          | 5.160<br>8.470<br>8.410<br>8.340<br>7.810  | 7.280<br>7.290<br>7.180<br>6.490<br>5.970          | 5.450<br>5.430<br>5.540<br>5.300<br>5.340          | 4.780<br>5.410<br>5.440<br>5.240<br>5.210 | 7.880<br>9.580<br>9.100<br>9.450<br>9.850                | 14.100<br>14.800<br>17.500<br>17.400<br>17.400 | 23.600<br>29.900<br>37.000<br>43.900<br>45.900           | 11.100<br>10.900<br>10.700<br>10.800<br>10.400 | 5.130<br>5.140<br>5.600<br>4.760<br>5.880          | 4.510<br>4.560<br>5.420<br>6.930<br>5.540          | 5.050<br>7.630<br>7.560<br>7.370<br>7.670 |
| 21<br>22<br>23<br>24<br>25 | 6.340<br>3.910<br>3.550<br>6.960<br>7.270          | 6.820<br>6.900<br>6.630<br>5.930<br>7.240  | 5.720<br>5.180<br>4.810<br>4.420<br>4.520          | 5.000<br>4.930<br>4.620<br>4.200<br>3.800          | 5.620<br>5.950<br>6.090<br>5.820<br>5.280 | 10.900<br>12.200<br>11.400<br>10.800<br>13.500           | 18.800<br>22.400<br>22.000<br>24.800<br>26.500 | 45.800<br>44.700<br>43.700<br>41.100<br>38.700           | 10.300<br>10.600<br>10.000<br>9.540<br>9.190   | 6.950<br>7.050<br>8.890<br>9.440<br>10.200         | 5.440<br>4.990<br>4.820<br>5.070<br>5.140          | 7.450<br>6.720<br>7.060<br>5.470<br>5.290 |
| 26<br>27<br>28<br>29<br>30 | 5.870<br>7.860<br>7.580<br>9.090<br>8.610<br>4.870 | 7.130<br>7.020<br>8.070<br>7.510<br>7.330  | 4.560<br>4.530<br>4.340<br>4.800<br>4.620<br>5.210 | 4.520<br>4.330<br>3.960<br>4.290<br>4.120<br>4.150 | 5.020<br>4.940<br>5.370                   | 16.200<br>16.700<br>19.800<br>22.600<br>24.000<br>24.700 | 26.500<br>26.000<br>24.900<br>22.300<br>22.000 | 35.300<br>31.400<br>27.500<br>24.700<br>23.200<br>22.100 | 9.230<br>8.450<br>7.790<br>7.520<br>7.570      | 9.720<br>9.210<br>8.010<br>6.550<br>6.110<br>7.880 | 4.750<br>5.050<br>5.480<br>5.350<br>5.300<br>4.820 | 6.230<br>3.470<br>4.940<br>6.480<br>4.310 |

STATE

MISSOURI

MAJOR BASIN

MISSOURI RIVER

# RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATION MISSOURI RIVER AT

ST. LOUIS, MISSOURI

|                      | r                             |           | PADI   | OACTIVITY IN V | WATER     |           |       | T   | RADIO   | ACTIVITY IN PLAN | NKTON (dry) | RAD       | DIOACTIVITY IN Y | VATER |
|----------------------|-------------------------------|-----------|--------|----------------|-----------|-----------|-------|-----|---------|------------------|-------------|-----------|------------------|-------|
| DATE                 |                               |           | ALPHA  |                | [         | BETA      |       | 1   | DATE OF | GROSS A          | CTIVITY     |           | GROSS ACTIVIT    | Y     |
| SAMPLE<br>TAKEN      | DATE OF<br>DETERMI-<br>NATION | SUSPENDED |        | TOTAL          | SUSPENDED | DISSOLVED | TOTAL | 9   | ETERMI- | ALPHA            | BETA        | SUSPENDED | DISSOLVED        | TOTAL |
| O. DAY YEAR          |                               | μμc/l     | μμε/Ι  | μμε/Ι          | μμε/Ι     | μμc/l     | μμε/Ι | М   | O. DAY  | μμc/g            | μμc/g       | μμc/l     | μμc/ <b>l</b>    | μμς/Ι |
| IO.   DAY   TEAR     | MONTH DAT                     | 77.       |        |                |           |           |       |     |         |                  |             |           |                  |       |
| 0 10 60*             | 10 20                         | _         | -      | -              | 2         | 22        | 24    |     |         |                  |             |           |                  |       |
| 0 24 60*             |                               | 0         | 0      | - 0            | 0         | 1         | 1     |     |         | ľ                |             |           |                  |       |
| 1 7 60*              |                               | _         | _      | -              | 10        | 3         | 13    |     |         | -                |             |           |                  |       |
| 1 28 60*             |                               | 7         | 4      | 11             | 12        | 7         | 19    |     |         |                  |             |           |                  |       |
| 2 12 60*             |                               | _         | -      | -              | 0         | 0         | 0     |     |         |                  |             | •         |                  |       |
| 2 27 60*             |                               | 1         | 4      | 5              | 0         | 13        | 13    |     |         |                  |             |           |                  |       |
| 1 9 61*              | 1 20                          | -         | -      | _              | 8         | 0         | 8     |     |         |                  |             |           |                  |       |
| 1 30 61*             | 2 10                          | 1         | 6      | 7              | 0         | 3         | 5     |     |         |                  |             |           |                  |       |
| 2 14 61*             |                               | -         |        | -              | 0         | 5         | ő     | İ   |         |                  |             |           |                  |       |
| 2 27 61*             |                               | 21        | 2      | 23             | 9         | ŏ         | 9     |     |         |                  |             |           |                  |       |
| 3 6 61               | 4 4                           |           | -      | 20             | 0         | 20        | 20    | 1   |         |                  |             |           |                  |       |
| 3 27 61*             | \$ :                          | 18        | 2      | -              | 30        | 4         | 34    | - 1 |         |                  |             |           |                  |       |
| 4 10 61*             | 4 24                          | -         | _<br>2 | 35             | 23        | ŏ         | 23    | - 1 |         |                  |             |           |                  |       |
| 4 24 61*             |                               | 33        |        | -<br>-         | 8         | ŏ         | 8     |     |         |                  |             |           |                  |       |
| 5 8 61*              | 5 24                          | -         | -      | 17             | 24        | 4         | 28    | İ   |         |                  |             |           |                  |       |
| 5 29 61*             | 6 12                          | 15        | 2      | 17             | 16        | ō         | 16    |     |         |                  |             |           |                  |       |
| 6 12 61*             | ŧ :                           | 29        | 4      | 33             | 31        | ě         | 37    | 1   |         |                  |             |           |                  |       |
| 6 26 61*<br>7 10 61* | 7 28                          |           | -      | _              | 31        | ŏ         | 31    | - 1 |         |                  |             |           |                  |       |
| 7 31 61*             | t i                           | 12        | 1      | 13             | 52        | 32        | 84    |     |         |                  |             |           |                  |       |
| 8 14 61              | 9 18                          |           |        | -              | 27        | 30        | 57    |     |         |                  |             |           |                  |       |
| 8 28 61*             | 1 - 1                         | 16        | 1      | 17             | 35        | 10        | 45    |     |         |                  |             |           |                  |       |
| 9 5 61               | 9 29                          | -         |        |                | 1         | 29        | 30    |     |         |                  |             |           |                  |       |
| 9 11 61              | 10 10                         | 22        | 0      | 22             | 47        | 25        | 72    |     |         |                  |             |           |                  |       |
| 9 18 61              | 10 18                         | 21        | ì      | 22             | 32        | 18        | 50    |     |         |                  |             |           |                  |       |
| 25 61                | 10 5                          |           | _      | _              | 61        | 18        | 79    |     |         |                  |             |           |                  |       |
|                      |                               |           |        |                |           | 1         |       |     |         |                  |             |           |                  |       |
|                      |                               |           |        |                |           |           |       |     |         |                  |             |           |                  |       |
|                      |                               |           |        |                |           |           |       |     |         |                  |             |           | :                |       |
| l                    |                               |           |        |                |           |           |       |     |         |                  |             |           |                  |       |
|                      |                               |           |        |                |           |           |       | ı   |         |                  |             | l         |                  |       |
|                      |                               |           |        |                |           |           | İ     | - 1 | 1       |                  |             |           |                  |       |
|                      |                               |           |        |                | Į į       |           | 1     |     | >       |                  |             |           |                  |       |
|                      |                               | İ         |        |                |           |           |       |     |         |                  |             |           |                  |       |
|                      |                               |           | ļ      |                |           |           |       |     |         |                  |             |           |                  |       |
|                      |                               |           | ]      |                | ,         | Ī         |       |     |         |                  |             |           |                  |       |
| 1                    |                               |           | 1      |                | i i       |           | İ     |     |         |                  |             |           |                  |       |
| Ì                    |                               |           |        |                |           |           |       |     |         |                  |             |           |                  |       |
|                      |                               |           |        |                |           |           |       |     |         |                  |             |           |                  |       |
| -                    |                               |           |        |                |           |           |       | 1   |         |                  |             |           |                  |       |
|                      |                               | Į.        |        |                |           |           |       |     |         | 1                | 1           | 1         |                  |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

MISSOURI

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATION MISSOURI RIVER AT

ST. LOUIS, MISSOURI

|                                                                                                                                                                                 |                                                                                                                                              |         |                       | ALGAE (I                                                                                 | Vumber                | per ml.)                                                                                       |                                        |                                                                                              |                                                                                                                                                                                                                           | INE                                                                                               | RT                      |                                                                |                                                    |                                 |                                                                            | ATO                                                                        | us.                                                                      |                                                                   |                                              |                                                                                  | ÷                                                       |                           | MICROIN                      | VERTEBR                      | ATE5                         |            |                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------|------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------|----------------------------------------------------|---------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------|------------------------------|------------------------------|------------------------------|------------|-------------------------------------------------------------|
| DATE<br>OF SAMPLE                                                                                                                                                               |                                                                                                                                              | BLUE-   | GREEN                 | GREE                                                                                     | EN                    | FLAGEL<br>(Pigm                                                                                |                                        | DIAT                                                                                         | омѕ                                                                                                                                                                                                                       | DIA<br>SHE<br>(No. p                                                                              | TOM<br>LLS<br>er ml.)   |                                                                | DOMI<br>(See                                       | Intro                           | SPEC                                                                       |                                                                            | ID PE                                                                    | RCEN-<br>atificat                                                 | TAGES                                        |                                                                                  | MICROPLANKTOR<br>AND SHEATHED<br>RIA<br>PET IN!.)       | A<br>ml.)                 | is<br>liter)                 | EA<br>liter)                 | iter)                        | AL FORMS   | GENERA<br>oduction<br>ification                             |
| MONTH<br>DAY<br>YEAR                                                                                                                                                            | TOTAL                                                                                                                                        | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                                                                                  | FILA-<br>MENT-<br>OUS | GREEN                                                                                          | OTHER                                  | CENTRIC                                                                                      | PENNATE                                                                                                                                                                                                                   | CENTRIC                                                                                           | PENNATE                 | FIRST*                                                         | PER-                                               | SECOND#                         | PER-<br>CENTAGE                                                            | THIRD*                                                                     | PER.<br>CENTAGE                                                          | FOURTH                                                            | PER.                                         | OTHER PER-<br>CENTAGE                                                            | OTHER MICE<br>FUNGI AND<br>BACTERIA<br>(No. per         | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATOBES<br>(No. per liter) | OTHER ANIM | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| 10 3 60<br>17 60<br>11 7 60<br>12 5 60<br>12 5 60<br>12 1 6 61<br>20 61<br>3 61<br>4 3 61<br>4 3 61<br>4 3 61<br>4 17 61<br>5 15 61<br>6 19 61<br>7 17 61<br>8 21 61<br>9 18 61 | 900<br>1100<br>1700<br>600<br>1200<br>2400<br>4800<br>1300<br>500<br>300<br>400<br>1200<br>600<br>1700<br>1300<br>900<br>1100<br>1500<br>200 | 60      | 20                    | 20<br>130<br>20<br>20<br>20<br>20<br>130<br>60<br>170<br>100<br>270<br>160<br>150<br>370 | 50                    | 90<br>140<br>110<br>130<br>140<br>290<br>20<br>70<br>60<br>40<br>80<br>150<br>170<br>350<br>70 | 20<br>50<br>40<br>50<br>50<br>20<br>20 | 530<br>600<br>250<br>1300<br>950<br>7810<br>4510<br>910<br>4600<br>9350<br>400<br>207<br>700 | 130<br>70<br>400<br>290<br>3100<br>290<br>3100<br>4060<br>1250<br>500<br>410<br>500<br>350<br>350<br>31<br>40<br>40<br>41<br>40<br>40<br>41<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 | 770<br>160<br>330<br>580<br>90<br>220<br>510<br>290<br>40<br>20<br>120<br>270<br>40<br>60<br>1050 | 400<br>560<br>200<br>50 | 80<br>82<br>82<br>82<br>82<br>86<br>71<br>71<br>46<br>47<br>47 | 20<br>50<br>50<br>30<br>80<br>10<br>20<br>20<br>40 | 46<br>86<br>71<br>9<br>58<br>58 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>20<br>10<br>20 | 71<br>92<br>70<br>58<br>80<br>70<br>82<br>85<br>92<br>80<br>46<br>46<br>71 | 10<br>* 10<br>10<br>10<br>* 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 65<br>11<br>466<br>706<br>92<br>92<br>80<br>65<br>80<br>56<br>846 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 60<br>30<br>40<br>40<br>40<br>10<br>70<br>60<br>60<br>70<br>50<br>30<br>60<br>50 | 440<br>180<br>110<br>130<br>200<br>20<br>20<br>20<br>50 | 10                        | 1 3                          | 2                            | 3                            |            | 4-9-3<br>4899-6<br>99999                                    |

## ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

MISSOURI

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATION MISSOURI RIVER AT

ST. LOUIS, MISSOURI

| DATE OF SA                                                              | AMPLE                      | Ε.                  | <del></del>                                          | E                                             | TRACTABL                               | .ES                                        | T .                 |                                    |                                      |                 | CHLOROF    | ORM EXTR                            | ACTABLES      |               |                       |                                         |                                   |
|-------------------------------------------------------------------------|----------------------------|---------------------|------------------------------------------------------|-----------------------------------------------|----------------------------------------|--------------------------------------------|---------------------|------------------------------------|--------------------------------------|-----------------|------------|-------------------------------------|---------------|---------------|-----------------------|-----------------------------------------|-----------------------------------|
| BEGINNING                                                               | E                          | ИД                  |                                                      |                                               | 1                                      |                                            | <u> </u>            |                                    |                                      |                 | NEUTRALS   |                                     |               |               |                       |                                         |                                   |
| MONTH<br>DAY<br>YEAR                                                    | MONTH                      | DAY                 | GALLONS<br>FILTERED                                  | TOTAL                                         | CHLORO-<br>FORM                        | ALCOHOL                                    | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES                  | TOTAL                                | ALIPHATICS      | AROMATICS  | OXYGEN-<br>ATED<br>COMPOUNDS        | Loss          | WEAK<br>ACIDS | STRONG<br>ACIDS       | BASES                                   | LOSS                              |
| 1 2 61<br>1 30 61<br>2 27 61<br>5 8 61<br>6 19 61<br>7 31 61<br>9 15 61 | 1<br>2<br>3<br>5<br>7<br>8 | 16 13 13 22 3 14 30 | 5483<br>6620<br>3905<br>4720<br>4316<br>5390<br>3175 | 170<br>148<br>243<br>143<br>138<br>111<br>182 | 34<br>27<br>55<br>66<br>45<br>36<br>38 | 136<br>121<br>188<br>77<br>93<br>75<br>144 | 1 0 0 4 5 1 1       | 6<br>6<br>11<br>18<br>13<br>9<br>8 | 14<br>12<br>20<br>14<br>8<br>8<br>13 | 1 0 1 1 0 1 1 1 | 2111110011 | 10<br>10<br>17<br>11<br>7<br>7<br>9 | 1 1 1 0 0 0 2 | 43886555      | 1<br>4<br>6<br>5<br>3 | 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 6<br>4<br>11<br>15<br>8<br>9<br>7 |

## CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE MISSOURI

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATIONMISSOURI RIVER AT

ST. LOUIS, MISSOURI

|             | DATE     | 1    |                                  |                             |                |                |                | CHLORINE | DEMAND      |                              |                   |                    |                  |                        |                            |                  |                    | TOTAL                       |                          |
|-------------|----------|------|----------------------------------|-----------------------------|----------------|----------------|----------------|----------|-------------|------------------------------|-------------------|--------------------|------------------|------------------------|----------------------------|------------------|--------------------|-----------------------------|--------------------------|
|             | SAMI     |      | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/l | рН             | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR   | 24-HOUR     | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml. |
| MONTH       | DAY      | YEAR | • •                              |                             |                |                |                | mg/l     | mg/i        |                              |                   |                    |                  |                        |                            |                  |                    |                             |                          |
| 10          | 3        | 60   | 18.9                             | 8.0                         | 7.8            | 1.5            | 46             | -        |             | **                           | 30                | 122                | 184              | 17<br>11               | 800<br>250                 | 113<br>132       | • 4<br>• 4         |                             | 10000<br>4800            |
|             | 10       | 60   | 17.8                             | 8.3                         | 8.3            | 1.2            | 9              | -        | -           | -                            | 22<br>23          | 157<br>165         | 225<br>235       | 12                     | 220                        | 150              | .4                 | _                           | 4300                     |
| 10          | 17       | 60   | 18.9<br>15.0                     | 7.9<br>8.2                  | 8.1            | 1.1            | 7              | 2•4      | 7.6         | •0                           | 26                | 163                | 233              | 11                     | 160                        | 151              | •4                 | 453                         | 5300                     |
|             | 24<br>31 | 60   | 17.8                             | 8.1                         | 8.2            | 1.4            | 9              | 2.6      | 5.9         | •0                           | 20                | 168                | 243              | 10                     | 180                        | 154              | •3                 | 443                         | 11000                    |
| 11          | 7        | 60   | 11.7                             | 9.6                         | 8.1            | 3.6            | 20             | 3.4      | 8.0         | • 0                          | 18                | 137                | 195              | 20                     | 600                        | 115              | •3                 | 346                         | 13000                    |
| īī          | 14       | 60   | 10.0                             | 10.9                        | 8.2            | 2.1            | 11             | 1.9      | 4 • 8       | • 0                          | 23                | 170                | 236              | 12                     | 230                        | 151              | • 3                | 426                         | 21000                    |
|             | 21       | 60   | 8.9                              | 11.0                        | 8.3            | 2.1            | 10             | 2.0      | 6.0         | • 0                          | 18                | 168                | 237              | 15                     | 210                        | 143              | •2                 | 440                         | 26000                    |
|             | 28       | 60   | 13.3                             | 10.6                        | 8.1            | 2.4            | 9              | 2.8      | 6•7         | • 0                          | 23                | 185                | 250              | 12                     | 300                        | 149              | .2                 | 4 <b>6</b> 6<br>465         | 18000<br>8000            |
| 12          | 5        | 60   | 7.2                              | 13.2                        | 8.1            | 1.8            | 6              | 1.5      | 4.5         | • 0                          | 32                | 210                | 272<br>267       | 10<br>11               | 150<br>160                 | 119<br>105       | • 2                | 423                         | 1600                     |
|             | 12       | 60   | 3.8                              | 1.9                         | 8.0            | 3.3            | 6              | 1.4      | 4 • 4       | • 1                          | 28<br>24          | 205<br>165         | 235              | 9                      | 190                        | 85               | .2                 | 347                         | 3500                     |
|             | 19       | 60   | 3.8                              | 12.2                        | 7.7            | 3.5            | 8              | 2.7      | 3.6<br>3.0  | •0                           | -                 | 102                | - 22             | _                      |                            | _                | _                  | 378                         | _                        |
|             | 26       | 60   | 2 0                              | 1, -                        |                | 4.4            | 7              | 2.4      | <b>3•</b> ∪ | • 5                          | 30                | 216                | 292              | 11                     | 170                        | 105              | .0                 | -                           | -                        |
| 12          | 28<br>2  | 60   | 2.8                              | 12.3                        | 8.0            | 4.4            |                | 2.7      | 4.8         | •3                           |                   |                    |                  | _                      | -                          | _                | -                  | 390                         | -                        |
| i           | 3        | 61   | 3.3                              | 12.1                        | 8.2            | 4.2            | _              |          | _           | _                            | 33                | 230                | 305              | 12                     | 150                        | 114              | •1                 | -                           | <b>-</b>                 |
| ī           | 9        | 61   | 5.6                              | 12.8                        | 8.0            | 4.3            | · - ·          | 3.0      | 4•4         | •4                           | 35                | 278                | 294              | 11                     | 100                        | 132              | • 1                | 494                         | 1300                     |
| ī           | 16       | 61   | 6.1                              | 11.9                        | 8.0            | 3.7            | _              | 3.0      | 4.7         | • 3                          | 35                | 205                | 277              | 11                     | 90                         | 111              | • 1                | 470                         | 1600                     |
| $\tilde{1}$ | 23       | 61   | 2.2                              | 13.1                        | 8.2            | 5.1            | -              | 2.6      | 4 • 6       | • 3                          | 34                | 205                | 270              | 10                     | 95<br>95                   | 123<br>110       | .3                 | 511<br>461                  | 600                      |
|             | 30       | 61   | 2.2                              | 13.1                        | 8.2            | 5.1            | -              | 1.8      | 3.6         | • 3                          | 26                | 205                | 270              | 10                     | 50                         | 116              | 1 .0               | 489                         | 760                      |
| 2           | 6        | 61   | 2,2                              | 13.1                        | -              | 3.8            | _              | 2.6      | 3.9         | • 3                          | 33                | 238                | 298              | _                      |                            | 110              | "-                 | . 558                       | 1900                     |
|             | 13       | 61   | _                                |                             | -              |                | -              | 3.9      | 5.5         | • 5                          | 40                | 216                | 285              | 12                     | 140                        | 157              | .1                 | _                           | _                        |
| 2           | 14       | 61   | 2.2                              | 11.5                        | 8.1            | 5.3<br>3.9     | 13<br>22       | 4.0      | 7.8         | •3                           | 25                | 164                | 213              | 15                     | 600                        | 97               | .1                 | 371                         | 10000                    |
|             | 20       | 61   | 4 • 4<br>6 • 7                   | 10.1                        | 8 • 2          | 5.4            | 36             | 4.7      | 9.7         | •3                           | 18                | 121                | 167              | 26                     | 1300                       | 60               | .0                 | 274                         | 12000                    |
| 2           | 27<br>6  | 61   | 8.9                              | 10.6                        | 8 • 1<br>7 • 9 | 4.6            | 43             | 3.8      | 8.9         | • 2                          | 18                | 140                | 190              | 20                     | 1100                       | 79               | .0                 | 351                         | 5600                     |
| 3           | 13       | 61   | 7.2                              | 9.3                         | 8.2            | 4.4            | 46             | 4.7      | 9.0         | •3                           | 10                | 100                | 136              | 26                     | 1500                       | 33               | .0                 | 196                         | 18000                    |
| 3           | 20       | 61   | 5.6                              | 9.0                         | 8.1            | 4.1            | 85             | 3.9      | 11.3        | • 3                          | 7                 | 95                 | 127              | 26                     | 2000                       | 59               | • 0                | 231                         | 17000                    |
| 3           | 27       | 61   | 10.0                             | 9.4                         | 8.0            | 3.0            | 5,9            | 3.0      | 9•9         | • 2                          | 10                | 110                | 151              | 25                     | 1000                       | 48               | • 3                | 224                         | 15000                    |
| 4           | 3        | 61   | 8.9                              | 8.9                         | 8.0            | 2.9            | 55             | 2.9      | 11.8        | •1                           | 9                 | 106                | 139              | 25                     | 1400                       | 50               | .3                 | 226<br>305                  | 40000                    |
| 4           | 10       | 61   | 9 • 4                            | 9.8                         | 8.1            | 3.0            | 50             | 2 • 7    | 6.7         | • 1                          | 12                | 142                | 186              | 17                     | 1100                       | 60               |                    | 231                         | 11000                    |
| 4           | 17       | 61   | 9 • 4                            | 9.7                         | 8.0            | 3.1            | 66             | 2 • 9    | 10.7        | •0                           | 11                | 113                | 155              | 16                     | 450                        | 80               | 1                  | 302                         | 8500                     |
| 4           | 24       | 61   | 11.7                             | 8.1                         | 8.1            | 1.2            | 18             | 2.7      | 9.0         | .0                           | 13<br>13          | 139                | 190<br>180       | 1                      | 500                        | 86               | 1                  | 343                         | 2500                     |
| 5           | 1        | 61   | 14.4                             | 8.5                         | 7.8            | 1.7            | 28<br>89       | 2.7      | 10.8        | .1                           | 5                 | 79                 | 94               |                        | 1650                       | 38               |                    | 241                         | 33000                    |
| 5           | . 8      | 61   | 16.1                             | 7.5                         | 8.0            | 4.0<br>1.3     | 35             | 3.8      | 10.0        | •1                           | 5                 | 85                 | 108              | 27                     | 650                        | 24               |                    | 144                         | 1800                     |
| 5<br>5      | 15<br>22 | 61   | 16.1<br>16.7                     | 7.7                         | 8.2            | 2.3            | 97             | 3.4      | 9.0         | .1                           | 10                | 106                | 145              | 22                     | 400                        | 62               | .4                 | 246                         | 2900                     |
| 5           | 29       | 61   | 16.1                             | 7.5                         | 7.9            | 1.6            | 40             | 3.4      | 13.0        | .0                           | 10                | 111                | 140              | 25                     | 1400                       | 480              |                    | 231                         | 70                       |
| 6.          | 5        |      | 22.8                             |                             | 8.2            | 1.0            | 7              | 2.8      | 11.0        | • 1                          | 14                | 136                | 180              | 22                     | 600                        | 76               | • 3                | 294                         | -                        |
|             | ` ا      | ~ ~  |                                  |                             |                |                |                |          |             | l                            | 1                 |                    |                  |                        | 1                          |                  | 1                  | <u> </u>                    | <u></u>                  |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

#### STATE

MISSOURI

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATIONMISSOURI RIVER AT

ST. LOUIS, MISSOURI

| DATE<br>OF SAMP                                                                            |                                                          | TEMP.                                                                                                |                                                                                                       |                                       |                                                                                             |                                                                             | CHLORINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DEMAND                                                                                      |                                                                            |                                                                          |                                                                                                |                                                                                |                                                               | -                                                                           |                                                                                  |                                           |                                                                                                       |                                                                    |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| MONTH                                                                                      | YEAR                                                     | (Degrees<br>Centigrade)                                                                              | DISSOLVED<br>OXYGEN<br>mg/l                                                                           | рН                                    | B.O.D.<br>mg/l                                                                              | C.O.D.<br>mg/l                                                              | I-HOUR<br>mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24-HOUR<br>mg/l                                                                             | AMMONIA-<br>NITROGEN<br>mg/l                                               | CHLORIDES<br>mg/l                                                        | mg/I                                                                                           | HARDNESS<br>mg/l                                                               | COLOR<br>(scale units)                                        | TURBIDITY<br>(scale units)                                                  | SULFATES<br>mg/l                                                                 | PHOSPHATES<br>mg/l                        | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l                                                                  | COLIFORMS<br>per 100 ml.                                           |
| 6 26<br>7 3<br>7 10<br>7 17<br>7 24<br>7 31<br>8 7<br>8 14<br>8 21<br>8 28<br>9 11<br>9 18 | 61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61 | 25.0<br>22.2<br>23.9<br>24.4<br>23.3<br>26.1<br>25.6<br>27.2<br>28.9<br>27.2<br>26.7<br>28.6<br>20.6 | 6.2<br>6.1<br>7.2<br>6.6<br>5.3<br>7.1<br>6.9<br>5.6<br>6.0<br>7.0<br>6.7<br>7.0<br>6.8<br>4.5<br>7.3 | 8 • 2 2 8 • 1 1 2 2 3 8 • 1 1 7 • 9 • | .8<br>1.7<br>1.0<br>-1.7<br>.9<br>1.0<br>.6<br>1.4<br>1.2<br>1.1<br>1.0<br>1.2<br>1.7<br>.9 | 38<br>80<br>31<br>24<br>548<br>270<br>11<br>19<br>16<br>22<br>54<br>25<br>- | 3.090503.462.66691366-9<br>3.0003.00033.00033.00033.00033.00034.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.00033.0003003 | 12.4<br>12.1<br>14.0<br>13.0<br>17.0<br>11.0<br>15.0<br>14.1<br>9.9<br>11.0<br>13.0<br>12.6 | .1<br>.0<br>.0<br>.0<br>.0<br>.1<br>.0<br>.0<br>.0<br>.1<br>.1<br>.2<br>.1 | 18<br>14<br>20<br>19<br>18<br>9<br>18<br>227<br>25<br>23<br>18<br>8<br>8 | 136<br>124<br>140<br>1425<br>154<br>128<br>125<br>158<br>126<br>158<br>154<br>120<br>85<br>106 | 185<br>173<br>188<br>2073<br>2225<br>138<br>175<br>2122<br>225<br>2168<br>1052 | 25<br>22<br>18<br>20<br>16<br>15<br>16<br>15<br>16<br>24<br>2 | 1400<br>9000<br>9000<br>1600<br>5500<br>1500<br>6450<br>9000<br>13500<br>80 | 75<br>74<br>99<br>92<br>73<br>88<br>80<br>40<br>81<br>10<br>10<br>94<br>36<br>64 | 5 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 312<br>282<br>324<br>335<br>306<br>369<br>487<br>227<br>308<br>352<br>442<br>407<br>308<br>170<br>232 | 7700 35000 11000 9500 12000 2500 8000 10000 2500 10000 47000 10000 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Hermann, Missouri Operated by U.S. Geological Survey STATE

Missouri

MAJOR BASIN

Missouri River

MINOR BASIN

Lower Missouri River

STATION LOCATION

Missouri River at

St. Louis, Missouri

| Day                              | October                                                  | November                                       | December                                                 | January                                                  | February                                       | March                                                         | April                                              | May                                                            | June                                              | July                                                         | August                                                   | September                                           |
|----------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | 55.500<br>50.600<br>47.700<br>45.500<br>43.700           | 45.500<br>68.400<br>75.400<br>66.700<br>57.000 | 27.000<br>27.300<br>27.300<br>27.300<br>26.100           | 32.500<br>29.100<br>24.900<br>23.000<br>22.800           | 13.400<br>13.200<br>12.800<br>14.000<br>15.000 | 41.300<br>38.000<br>39.300<br>42.800<br>42.500                | 148.000<br>132.000<br>111.000<br>98.100<br>87.900  | 83.500<br>91.200<br>107.000<br>117.000<br>125.000              | 97.500<br>94.000<br>91.800<br>87.900<br>81.500    | 70.500<br>72.600<br>60.000<br>53.000<br>50.000               | 66.200<br>66.700<br>70.500<br>81.000<br>87.900           | 52.400<br>51.000<br>48.600<br>48.300<br>62.200      |
| 6<br>7<br>8<br>9                 | 41.900<br>41.000<br>40.400<br>40.200<br>39.900           | 52.000<br>46.700<br>44.600<br>46.100<br>43.700 | 25.300<br>24.900<br>26.100<br>27.300<br>29.100           | 24.400<br>24.400<br>24.200<br>23.700<br>22.800           | 13.600<br>14.400<br>15.700<br>17.000<br>17.400 | 39.600<br>51.300<br>88.400<br>114.000                         | 79.000<br>71.400<br>64.200<br>67.500<br>120.000    | 192.000<br>252.000<br>323.000<br>385.000<br>401.000            | 84.000<br>89.000<br>79.500<br>78.000<br>80.500    | 55.800<br>74.900<br>105.000<br>98.100<br>74.900              | 77.600<br>64.600<br>56.600<br>55.800<br>58.400           | 104.000<br>98.100<br>81.500<br>77.200<br>67.100     |
| 11<br>12<br>13<br>14<br>15       | 39.300<br>38.800<br>38.800<br>38.800<br>39.000           | 43.100<br>43.100<br>42.200<br>41.300<br>41.600 | 29.900<br>30.900<br>34.400<br>41.900<br>40.700           | 22.500<br>23.000<br>23.000<br>23.900<br>24.400           | 17.800<br>18.700<br>26.100<br>33.000<br>34.400 | 99.300<br>84.000<br>93.400<br>111.000<br>152.000              | 162.000<br>185.000<br>185.000<br>183.000           | 382.000<br>369.000<br>323.000<br>276.000<br>230.000            | 83.000<br>77.200<br>70.500<br>69.600<br>71.400    | 62.200<br>59.600<br>57.000<br>53.000<br>52.700               | 55.500<br>53.800<br>51.300<br>52.400<br>57.700           | 55.200<br>47.700<br>53.000<br>161.000<br>263.000    |
| 16<br>17<br>18<br>19<br>20       | 39.900<br>41.300<br>40.400<br>41.300<br>41.300           | 47.700<br>49.300<br>49.000<br>48.000<br>44.900 | 36.600<br>33.800<br>31.700<br>27.300<br>27.000           | 23.500<br>23.500<br>27.800<br>28.600<br>24.900           | 36.300<br>30.900<br>28.800<br>31.700<br>35.500 | 170.000<br>150.000<br>144.000<br>142.000<br>125.000           | 166.000<br>149.000<br>130.000<br>111.000<br>98.100 | 206.000<br>200.000<br>206.000<br>190.000<br>178.000            | 94.000<br>118.000<br>123.000<br>107.000<br>87.900 | 54.800<br>55.500<br>60.000<br>77.600<br>73.100               | 55.500<br>48.300<br>42.500<br>39.600<br>39.900           | 268.000<br>274.000<br>271.000<br>246.000<br>214.000 |
| 21<br>22<br>23<br>24<br>25       | 40.700<br>40.200<br>39.900<br>39.900<br>40.200           | 42.800<br>41.300<br>39.900<br>38.500<br>36.000 | 32.000<br>33.300<br>33.000<br>32.200<br>27.800           | 24.400<br>23.900<br>22.100<br>21.600<br>21.000           | 55.200<br>60.000<br>52.700<br>44.900<br>41.300 | 123.000<br>126.000<br>124.000<br>125.000<br>120.000           | 85.700<br>86.800<br>108.000<br>128.000<br>140.000  | 167.000<br>144.000<br>120.000<br>114.000                       | 73.100<br>64.600<br>62.200<br>63.400<br>61.400    | 59.600<br>64.200<br>86.800<br>125.000                        | 39.600<br>39.600<br>40.200<br>45.500<br>54.400           | 187.000<br>168.000<br>151.000<br>136.000<br>165.000 |
| 26<br>27<br>28<br>29<br>30<br>31 | 40.400<br>40.700<br>39.300<br>38.800<br>38.800<br>39.300 | 32.700<br>29.900<br>27.600<br>26.300<br>26.100 | 22.500<br>19.200<br>18.100<br>23.900<br>26.600<br>27.600 | 19.000<br>16.000<br>14.000<br>11.000<br>11.500<br>11.000 | 43.100<br>48.000<br>47.000                     | 106.000<br>92.800<br>106.000<br>164.000<br>181.000<br>168.000 | 166.000<br>154.000<br>131.000<br>111.000<br>93.400 | 149.000<br>150.000<br>139.000<br>131.000<br>120.000<br>107.000 | 58.800<br>56.600<br>54.400<br>53.000<br>55.800    | 148.000<br>162.000<br>137.000<br>111.000<br>91.800<br>74.400 | 56.600<br>54.100<br>51.600<br>48.300<br>49.600<br>52.400 | 197.000<br>186.000<br>157.000<br>133.000<br>109.000 |

STATE

KANSAS

MAJOR BASIN

MISSOURI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATION MISSOURI RIVER AT

KANSAS CITY, KANSAS

| SAMPLE DATE OF DETERMI. NATION SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL SUSPENDED DIS | DATE                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         | RADK                                        | OACTIVITY IN V                 | WATER                                                                  |                                           |                                                                        | T | PADIOA   | CTIVITY IN PLA | NICTON (day) | r <del></del> | DIO 1 CTD (ITV |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------|--------------------------------|------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------|---|----------|----------------|--------------|---------------|----------------|---------------|
| Mo.   DAY   VEAR   MONTH   DAY   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PREVI   PRE   |                                                                                                                           | DATE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |                                             |                                | T                                                                      | RETA                                      |                                                                        | ┨ |          |                |              | RA RA         |                |               |
| Mo.   DAY   MOST   DAY   MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAPC    MAP   |                                                                                                                           | NATION SUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PENDED                                                                  | DISSOLVED                                   | TOTAL                          | SUSPENDED                                                              |                                           | TOTAL                                                                  | 1 | DETERMI- |                | ,            | CUEPENDED     | <del></del>    |               |
| 10 24 60* 11 14 2 5 5 7 1 0 0 1 1 12 60* 12 5 1 5 6 0 0 0 0 1 1 13 3 3 3 6 6 0 0 5 5 5 1 1 5 6 6 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MO. DAY YEAR                                                                                                              | MONTH DAY A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ιμc/[                                                                   | μμc/l                                       | μμc/1                          |                                                                        |                                           |                                                                        | 1 |          |                |              |               |                |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MO. DAY YEAR  10 24 60* 11 28 60* 12 19 60* 1 30 61* 3 27 61* 4 24 61* 5 29 61* 6 26 61* 7 31 61* 8 28 61* 9 5 61 9 18 61 | NONTH DAY PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF | 2<br>1<br>3<br>0<br>2<br>3<br>6<br>9<br>1<br>3<br>8<br>2<br>4<br>-<br>6 | DISSOLVED  ##κ/1  5 5 3 4 3 1 5 4 4 3 - 0 - | 7 6 6 4 23 87 14 17 22 5 7 - 6 | 1<br>0<br>0<br>0<br>18<br>477<br>0<br>23<br>22<br>5<br>17<br>161<br>22 | DISSOLVED  μμε/Ι  0 0 5 4 3 0 0 0 19 4 11 | 1<br>0<br>5<br>4<br>21<br>477<br>0<br>23<br>22<br>5<br>36<br>165<br>33 |   | NATION   | ALPHA          | BETA         |               | DISSOLVED      | Y TOTAL μμε/Ι |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

KANSAS

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATION MISSOURI RIVER AT

KANSAS CITY, KANSAS

| -                    |                                                                                                                                     |         |                       | ALGAE (A                                                            | 7                     |                                                                                           |                            |                                                                                                                                 |                                                                                                                                      | INIE                                                                                    | PT                            |                                                          |                                        |                                              |                                              | . = 01                                                         |                                        |                                                                     |                           |                                                                                                                      |                                                                         |                           | MICROIN                      | VERTEBR                      | ATES                         |                                       |                                                                                                        |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------|---------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------|----------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------|------------------------------|------------------------------|------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------|
| DATE<br>OF SAMPLE    |                                                                                                                                     | BLUE-   | GREEN                 | GREE                                                                |                       | FLAGEL<br>(Pigm                                                                           |                            | DIAT                                                                                                                            | омѕ                                                                                                                                  | SHE                                                                                     | ERT<br>TOM<br>LLLS<br>er ml.) |                                                          | DOMI<br>(See                           | NANT<br>Introd                               | SPEC                                         | ATO!                                                           | ID PE                                  | RCENT<br>ntificat                                                   | AGES                      |                                                                                                                      | органкто)<br>Sheathed<br>ml.)                                           | A<br>ml.)                 | RS<br>liter)                 | EA<br>liter)                 | DES<br>liter)                | OTHER ANIMAL FORMS<br>(No. per liter) | r cenera<br>roduction<br>tification                                                                    |
| MONTH<br>DAY<br>YEAR | TOTAL                                                                                                                               | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                                                             | FILA-<br>MENT-<br>OUS | GREEN                                                                                     | OTHER                      | CENTRIC                                                                                                                         | PENNATE                                                                                                                              | CENTRIC                                                                                 | PENNATE                       | FIRST                                                    | PER.                                   | SECOND#                                      | PER-<br>CENTAGE                              | THIRD#                                                         | PER-<br>CENTAGE                        | FOURTH*                                                             | PER-<br>CENTAGE           | OTHER PER-<br>CENTAGE                                                                                                | OTHER MICEOPLANKTON,<br>FUNGI AND SHEATHED<br>BACTERIA<br>(No. per mi.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | CNO. per                              | DOKINANT GENERA<br>(See Introduction<br>for Identification)                                            |
| 10                   | 1700<br>1900<br>11000<br>1300<br>700<br>300<br>700<br>600<br>700<br>400<br>800<br>5500<br>1100<br>200<br>1000<br>3800<br>700<br>200 |         | 20                    | 330<br>160<br>130<br>20<br>20<br>20<br>20<br>540<br>70<br>640<br>40 |                       | 200<br>1100<br>200<br>700<br>2200<br>200<br>200<br>200<br>200<br>400<br>400<br>400<br>400 | 20<br>20<br>70<br>20<br>20 | 1020<br>1150<br>1100<br>740<br>1360<br>1040<br>450<br>580<br>70<br>130<br>2030<br>490<br>600<br>1430<br>310<br>620<br>70<br>190 | 3100<br>2980<br>2580<br>2700<br>1800<br>6390<br>5400<br>2030<br>5400<br>2110<br>8500<br>3500<br>3500<br>3500<br>3500<br>3500<br>3500 | 90<br>310<br>310<br>360<br>220<br>50<br>310<br>1260<br>160<br>310<br>1620<br>420<br>560 | 420                           | 82<br>82<br>82<br>86<br>82<br>86<br>71<br>58<br>47<br>46 | 50<br>40<br>20<br>40<br>20<br>20<br>10 | 71<br>26<br>86<br>47<br>92<br>26<br>58<br>80 | 10<br>10<br>10<br>20<br>10<br>10<br>10<br>30 | 82<br>46<br>70<br>46<br>70<br>71<br>71<br>80<br>56<br>26<br>58 | 10<br>10<br>10<br>10<br>10<br>10<br>10 | 46<br>71<br>78<br>67<br>46<br>71<br>45<br>70<br>71<br>46<br>92<br>9 | *<br>10<br>10<br>10<br>10 | 60<br>50<br>30<br>30<br>30<br>30<br>30<br>30<br>40<br>50<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65 | 330<br>340<br>110<br>160<br>90<br>70                                    |                           |                              |                              |                              |                                       | 4893-<br>-49-6<br>-9-6<br>-9-1<br>-9-1<br>-9-7<br>-9-7<br>71963<br>-96-<br>-9-7<br>48963<br>4<br>-8926 |

## ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

KANSAS

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATION MISSOURI RIVER AT

KANSAS CITY, KANSAS

| DATE OF SAMPLE                                                                                                                                                   | E                                                                                                                             |                            | EX                                                                                                               | TRACTABL                                                                              | .ES                                                                                      | <del></del>                             |                       | ···                                                                                         |                   | CHLORO                | ODM EVER                     | 107171              |                        |                      |                      |                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------|---------------------------------------------------------------------------------------------|-------------------|-----------------------|------------------------------|---------------------|------------------------|----------------------|----------------------|----------------------|
|                                                                                                                                                                  | ND                                                                                                                            | -                          |                                                                                                                  |                                                                                       |                                                                                          |                                         | 1                     |                                                                                             |                   | NEUTRALS              | ORM EXTR                     | ACTABLES            | -                      | 1                    |                      |                      |
| DAY<br>YEAR<br>MONTH                                                                                                                                             |                                                                                                                               | LONS                       | TOTAL                                                                                                            | CHLORO-<br>FORM                                                                       | ALCOHOL                                                                                  | ETHER<br>INSOLUBLES                     | WATER<br>SOLUBLES     | TOTAL                                                                                       | ALIPHATICS        | AROMATICS             | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS                | WEAK<br>ACIDS          | STRONG<br>ACIDS      | BASES                | Loss                 |
| 1 19 61 1<br>2 9 61 2<br>2 20 61 3<br>3 9 61 3<br>3 23 61 4<br>4 6 61 4<br>4 28 61 5<br>5 18 61 6<br>6 1 61 6<br>6 27 61 7<br>7 11 61 7<br>8 1 61 8<br>8 24 61 9 | 14 45<br>28 50<br>14 53<br>3 58<br>19 52<br>30 45<br>19 6 41<br>20 28<br>6 42<br>20 43<br>11 48<br>11 48<br>11 10 35<br>24 42 | 68<br>30<br>60<br>90<br>29 | 88<br>90<br>119<br>115<br>78<br>149<br>162<br>139<br>162<br>189<br>105<br>78<br>82<br>85<br>84<br>57<br>77<br>68 | 7<br>16<br>11<br>15<br>17<br>25<br>16<br>21<br>25<br>37<br>24<br>13<br>21<br>19<br>10 | 81<br>74<br>108<br>106<br>197<br>118<br>1154<br>1196<br>68<br>54<br>55<br>56<br>58<br>58 | 000000000000000000000000000000000000000 | 121110422527106182531 | 5<br>9<br>7<br>11<br>12<br>13<br>14<br>12<br>18<br>10<br>10<br>10<br>12<br>9<br>7<br>8<br>7 | 12132324232453222 | 111122122211122111111 | 36578097836976455454         | 0000001110010000000 | 1111214322424432322221 | 01100311111232021110 | 00000011001100000010 | 03122532761283030321 |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

KANSAS

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATIONMISSOURI RIVER AT

KANSAS CITY, KANSAS

| DATE                       |                                  |                             |            |                |                | CHLORINE       | DEMAND          |                              |                   |                    |                  |                        |                            |                  |                    | TOTAL                       |                |
|----------------------------|----------------------------------|-----------------------------|------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|----------------------------|------------------|--------------------|-----------------------------|----------------|
| DAY YEAR YEAR              | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/I | Hq         | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/I | CH1ORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/l | per 100 ml.    |
| 10 3 60                    | 17.6                             | 7.7                         | 7.9        | 2.2            | 21             | 3.3            | 9•0             | •0                           | 15                | 161                | 227              | 10                     | 300                        | 157              | -                  | 439                         | 21000<br>17000 |
| 10 11 60                   | 18.1                             | 7.7                         | 8.0        | 2.3            | 17             | 2.1            | 8 • 8           | •0                           | 17                | 163                | 236<br>233       | 8<br>10                | 220<br>350                 | 170<br>165       | _                  | 464<br>456                  | 21000          |
| 10 17 60                   | 17.2                             | 7.8                         | 8.0        | 2.2            | 21<br>13       | 2•2            | 6.8             | •0                           | 17<br>16          | 166<br>169         | 239              | 6                      | 230                        | 175              |                    | 466                         | 35000          |
| 10 24 60<br>11 7 60        | 11.7                             | 9.3                         | 7.9        | 2.1<br>1.8     | 27             | 2.0            | 5•9             | •0                           | 16                | 171                | 238              | 7                      | 260                        | 171              | _                  | 467                         | 6000           |
| 1 1 1                      | 7.8<br>6.8                       | 10.2                        | 8.1        | 2.0            | 21             | 1.8            | 6.4             | •1                           | 17                | 175                | 239              | 5                      | 250                        | 177              | _                  | 477                         | 32000          |
| 11 14 60                   | 6.1                              | 11.0                        | 8.1        | 2.5            | 17             | 1.7            | 6.3             | •0                           | 17                | 173                | 241              | 5                      | 210                        | 174              |                    | 495                         | 38000          |
| 11 28 60                   | 6.4                              | 10.7                        | 8.0        | 3.4            | 4              | 2.4            | -               | •1                           | 22                | 210                | 265              | 5                      | 170                        | 153              | _                  | 490                         | 19000          |
| 12 5 60                    | 4.5                              | 11.8                        | 8.1        | 4.4            | 48             | 2.7            | 6.7             | • 2                          | 22                | 219                | 277              | 5                      | 200                        | 150              | _                  | 505                         | 18000          |
| 12 12 60                   | 2                                | 12.0                        | 8.0        | 4.6            | 37             | 2.7            | 6.5             | •2                           | 21                | 199                | 260              | 5                      | 250                        | 137              | -                  | 460                         | 6000           |
| 12 19 60                   | •0                               | 12.6                        | 8.0        | 5.3            | 32             | 3.1            | 6.9             | •3                           | 23                | 212                | 277              | 5                      | 130                        | 155              | - '                | 499                         | 15000          |
| 1 3 61                     | •0                               | 12.9                        | 8.0        | 3.7            | 37             | •6             | 6 • 8           | • 4                          | 26                | 216                | 301              | 5                      | 95                         | 172              | -                  | 534                         | 6700           |
| 1 9 61                     | • 5                              | 12.5                        | 8.0        | 3.7            | 35             | •7             | 6 • 8           | •3                           | 23                | 213                | 267              | 4                      | 105                        | 229              | -                  | 503                         | 13000          |
| 1 16 61                    | 1.3                              | 12.4                        | 8.0        | 3.4            | 30             | •7             | 6•5             | •3                           | 25                | 207                | 257              | 3                      | 95                         | 148              | -                  | 485                         | 5300           |
| 1 23 61                    | •0                               | 13.3                        | 8.1        | 2.5            | 18             | •7             | 5.5             | •3                           | 25                | 206                | 280              | 5                      | 75                         | 159              | _                  | 502                         | 13000          |
| 1 30 61                    | •0                               | -                           | 7.9        | 1.2            | 8              | • 6            | 5•5             | • 4                          | 23                | 219                | 301              | 4                      | 10                         | 165              | _                  | 542<br>556                  | 4700<br>3400   |
| 2 6 61                     | •0                               | _                           | 7•9        | 1.2            | 27             | • 4            | 7•0             | •6                           | 33                | 214                | 284              | 4                      | 15                         | 180<br>143       | .3                 | 454                         | 1300           |
| 2 13 61                    | •0                               | 10.7                        | 8.0        | 5.5            | 41             | • 4            | 10.2            | • 4                          | 25                | 181                | 240              | 4<br>8                 | 220<br>2700                | 93               | .3                 | 338                         | 9000           |
| 2 20 61                    | • 5                              | 10.7                        | 7.8        | 7.8            | 139            | • 9            | 7•7             | •4<br>•5                     | 16<br>17          | 137                | 181<br>192       | 25                     | 1700                       | 94               | 4                  | 359                         | 4900           |
| 2 27 61                    | 1.9                              | 10.4                        | 7.9        | 8.2            | 93<br>98       | .9<br>1.5      | 13.7<br>11.0    | •5                           | 15                | 161                | 183              | 20                     | 1600                       | 93               | 3                  | 338                         | 16000          |
| 3 6 61<br>3 13 61          | 3.2                              | 9•4<br>9•0                  | 7.8<br>7.8 | 7.3<br>5.5     | 184            | 1.3            | 10.6            | •6                           | 15                | 136                | 164              | 25                     | 4000                       | 69               | .2                 | 290                         | 38000          |
| 3 13 61<br>3 20 61         | 4.9<br>4.5                       | 9.0                         | 7.7        | 7.7            | 106            | . 8            | 10.8            | •6                           | 11                | 130                | 164              | 25                     | 1900                       | 63               | .3                 | 277                         | 60000          |
| 3 27 61                    | 8.5                              | 9.0                         | 7.9        | 5.4            | 130            | .6             | 6.9             | .4                           |                   | 141                | 173              | 18                     | 2000                       | 71               | .3                 | 287                         | 24000          |
| 4 3 61                     | 7.1                              | 9.5                         | 7.9        | 3.8            | 59             | 2.0            | 9.0             | .2                           | 10                | 144                | 183              | 17                     | 900                        | 76               | • 3                | 306                         | 22000          |
| 4 10 61                    | 6.8                              | 10.1                        | 8.0        | 3.7            | 41             | 2.9            | 8.0             | •1                           | 14                | 167                | 221              | 8                      | 510                        | 114              | .3                 | 392                         | 18000          |
| 4 17 61                    | 7.7                              | 10.2                        | 8.0        | 3.0            | 43             | 2.8            | 8 • 2           | •1                           | 13                | 156                | 215              | 8                      | 700                        | 113              | • 3                | 378                         | 22000          |
| 4 24 61                    | 17.6                             | 7.8                         | 8.0        | 2.8            | 41             | 2.5            | 9.5             | •1                           | 16                | 170                | 241              | 7                      | 620                        | 139              | • 3                | 412                         | 63000          |
| 5 1 61                     | 12.6                             | 8.9                         | 7.8        | 2.3            | 24             | 1.9            | 7 • 2           | , •0                         | 16                | 177                | 255              | 3                      | 270                        | 159              | .3                 | 470                         | 34000          |
| 5 8 61                     | 13.5                             | 6.9                         | 7.7        | 5.4            | 125            | • 9            | 6.9             | • 2                          | 12                | 183                | 183              | 8                      | 2500                       | 108              | • 2                | 342                         | 110000         |
| 5 29 61                    | 19.7                             | 7.6                         | 8.1        | 2.6            | 28             | 2.5            |                 | •1                           | 16                | 180                | 248              | 2                      | 390                        | 143              | • 1                | 436                         | 5300           |
| 6 12 61                    | 25.3                             | 5.6                         | 8.1        | 2.5            | 71             | 1.9            | 9.0             | •1                           | 18                | 166                | 222              | 8                      | 1700                       | 135              | -5                 | 417<br>327                  | 32000          |
| 6 19 61                    | 22.4                             | 5.5                         | 7.7        | 3.0            | 138            | .6             | 4 • 6           | • 0                          | 15                | 142                | 190              | 12                     | 2700<br>420                | 98<br>147        | • 4                | 438                         | 5000           |
| 6 26 61                    | 23.6                             | 6.6                         | 8.0        | 2.6            | 31<br>62       | 2 • 6          | 10.0            | •5                           | 17<br>18          | 174                | 241<br>229       | 8                      | 950                        | 149              | .4                 | 428                         | 24000          |
| 7 3 61                     | 27.5                             | 5.2                         | 7.8        | 2.2            | 36             | 2.0            | 10.0            | 1.6                          | 16                | 148                | 222              | 8                      | 600                        | 146              | .3                 | 422                         | 7000           |
| 7 10 61                    | 25.5                             | 5.8                         | 8.0        | 1.8            | ٥٥             | 2 • 4          | 10.0            | 1.0                          | 20                | 161                | 233              | 7                      | 270                        | 162              | -                  | 455                         | 14000          |
| 7   17   61<br>7   24   61 | 25.1                             | 5.2                         | 8.0<br>7.8 | 2.9            | 83             | 1.2            | 5.0             | •1                           | 15                | 143                | 207              | 7                      | 1500                       | 138              | • 3                | 387                         | 35000          |
| 7 31 61                    | 1                                | 4.8                         | 7.9        | 1.9            | 35             | 3.0            | 11.7            | 1                            | 17                | 159                | 233              | 5                      | 650                        | 164              | • 4                | 447                         | 6000           |
| 1 3 1 6 1                  | 2001                             | 7.0                         | '• 7       |                |                |                |                 | "                            | ] - '             |                    |                  |                        |                            |                  |                    |                             |                |

STATE

KANSAS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

MISSOURI RIVER .

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATIONMISSOURI RIVER AT

KANSAS CITY, KANSAS

|             | DATI                     |                | TEMP.                        | DISSOLVED                       |                                 | B.O.D.                          | C.O.D.                     | CHLORINE                    | DEMAND                           | AMMONIA-                   |                            |                                 |                                 |                        |                                   |                                 |                    | 70741                                |                                        |
|-------------|--------------------------|----------------|------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------|-----------------------------|----------------------------------|----------------------------|----------------------------|---------------------------------|---------------------------------|------------------------|-----------------------------------|---------------------------------|--------------------|--------------------------------------|----------------------------------------|
| MONTH       | DAY                      | YEAR           | (Degrees<br>Centigrade)      | OXYGEN                          | pH                              | mg/l                            | mg/l                       | 1-HOUR<br>mg/l              | 24-HOUR<br>mg/l                  | NITROGEN<br>mg/l           | mg/I                       | ALKALINITY<br>mg/l              |                                 | COLOR<br>(scale units) | (scale units)                     | SULFATES<br>mg/l                | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml.               |
| 8<br>8<br>9 | 7<br>28<br>5<br>18<br>25 | 61<br>61<br>61 | 28.3<br>24.3<br>21.4<br>17.0 | 5.8<br>6.5<br>4.9<br>7.0<br>7.4 | 7.8<br>7.9<br>7.7<br>7.8<br>7.9 | 1.3<br>1.6<br>3.0<br>2.2<br>3.2 | 31<br>25<br>47<br>38<br>52 | 2 · 5 2 · 2 · 6 3 · 5 1 · 1 | 9.0<br>9.0<br>6.8<br>10.5<br>7.0 | •0<br>•0<br>•8<br>•1<br>•1 | 17<br>15<br>12<br>11<br>15 | 158<br>152<br>128<br>120<br>148 | 217<br>224<br>161<br>164<br>198 | 7 68 8 5 5             | 500<br>440<br>2100<br>700<br>1300 | 152<br>168<br>121<br>108<br>117 | • 4                | 439<br>441<br>329<br>322<br>393      | 41000<br>-<br>50000<br>18000<br>160000 |
|             |                          |                |                              |                                 |                                 |                                 |                            |                             |                                  |                            |                            |                                 |                                 |                        |                                   |                                 |                    |                                      |                                        |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Kansas City, Missouri Operated by U.S. Geological Survey STATE

Kansas

MAJOR BASIN

Missouri River

MINOR BASIN

Lower Missouri River

STATION LOCATION

Missouri River at

Kansas City, Kansas

| Day                              | October                                                  | November                                       | December                                                 | January                                            | February                                       | March                                                    | April                                          | May                                                      | June                                           | July                                                     | August                                                   | September                                      |
|----------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| 1                                | 43.600                                                   | 46.000                                         | 19.600                                                   | 17.700                                             | 87.200                                         | 38.600                                                   | 66.400                                         | 40.700                                                   | 71.900                                         | 48.000                                                   | 39.500                                                   | 36.700                                         |
| 2                                | 41.000                                                   | 43.300                                         | 19.100                                                   | 18.100                                             | 11.200                                         | 31.700                                                   | 58.000                                         | 40.400                                                   | 72.400                                         | 46.300                                                   | 46.600                                                   | 37.000                                         |
| 3                                | 39.200                                                   | 40.400                                         | 18.500                                                   | 18.300                                             | 12.100                                         | 31.000                                                   | 48.000                                         | 40.400                                                   | 68.200                                         | 52.600                                                   | 53.400                                                   | 53.000                                         |
| 4                                | 37.800                                                   | 39.200                                         | 17.500                                                   | 19.100                                             | 12.200                                         | 33.000                                                   | 40.700                                         | 41.000                                                   | 71.000                                         | 48.400                                                   | 50.200                                                   | 72.400                                         |
| 5                                | 37.800                                                   | 38.300                                         | 18.100                                                   | 19.800                                             | 12.400                                         | 35.300                                                   | 40.700                                         | 50.200                                                   | 67.300                                         | 44.600                                                   | 43.300                                                   | 56.800                                         |
| 6<br>7<br>8<br>9                 | 38.000<br>37.000<br>36.400<br>36.100<br>36.100           | 38.000<br>38.000<br>37.500<br>37.200<br>37.000 | 19.100<br>19.400<br>19.800<br>20.600<br>22.300           | 19.800<br>18.900<br>17.900<br>17.900<br>18.100     | 13.000<br>15.600<br>16.500<br>17.700<br>18.100 | 42.600<br>41.600<br>41.000<br>39.200<br>37.000           | 41.600<br>42.300<br>44.200<br>52.600<br>71.900 | 91.800<br>99.000<br>105.000<br>101.000<br>84.000         | 60.000<br>58.000<br>69.600<br>70.500<br>66.800 | 78.600<br>68.600<br>56.000<br>48.000<br>44.200           | 38.900<br>34.500<br>35.800<br>37.200<br>36.700           | 56.800<br>51.600<br>44.900<br>40.100<br>39.500 |
| 11                               | 35.800                                                   | 37.000                                         | 22.700                                                   | 18.500                                             | 18.300                                         | 35.600                                                   | 74.300                                         | 65.500                                                   | 61.200                                         | 43.000                                                   | 37.500                                                   | 38.000                                         |
| 12                               | 35.300                                                   | 37.000                                         | 20.200                                                   | 18.500                                             | 24.700                                         | 38.600                                                   | 74.800                                         | 53.800                                                   | 60.400                                         | 41.600                                                   | 45.600                                                   | 38.900                                         |
| 13                               | 35.800                                                   | 37.000                                         | 18.900                                                   | 18.700                                             | 34.800                                         | 67.300                                                   | 91.200                                         | 49.400                                                   | 61.200                                         | 41.600                                                   | 48.400                                                   | 126.000                                        |
| 14                               | 37.200                                                   | 36.400                                         | 18.900                                                   | 18.900                                             | 24.500                                         | 101.000                                                  | 80.500                                         | 46.600                                                   | 70.000                                         | 43.900                                                   | 43.300                                                   | 162.000                                        |
| 15                               | 37.000                                                   | 36.600                                         | 19.400                                                   | 18.900                                             | 20.800                                         | 76.200                                                   | 72.800                                         | 46.000                                                   | 85.000                                         | 43.300                                                   | 38.000                                                   | 118.000                                        |
| 16                               | 38.300                                                   | 37.000                                         | 20.600                                                   | 20.000                                             | 22.100                                         | 66.400                                                   | 67.800                                         | 44.200                                                   | 98.400                                         | 42.000                                                   | 36.400                                                   | 103.000                                        |
| 17                               | 38.900                                                   | 35.800                                         | 20.800                                                   | 19.600                                             | 24.300                                         | 68.200                                                   | 60.400                                         | 46.600                                                   | 95.400                                         | 40.100                                                   | 36.400                                                   | 84.500                                         |
| 18                               | 38.600                                                   | 36.400                                         | 20.800                                                   | 19.100                                             | 28.600                                         | 66.400                                                   | 52.600                                         | 54.200                                                   | 76.200                                         | 38.300                                                   | 36.700                                                   | 73.800                                         |
| 19                               | 38.000                                                   | 35.800                                         | 22.100                                                   | 18.500                                             | 36.100                                         | 62.000                                                   | 47.400                                         | 57.200                                                   | 63.300                                         | 39.500                                                   | 36.700                                                   | 66.800                                         |
| 20                               | 37.200                                                   | 34.200                                         | 22.100                                                   | 18.300                                             | 33.700                                         | 56.000                                                   | 44.200                                         | 51.200                                                   | 57.600                                         | 42.000                                                   | 37.000                                                   | 66.400                                         |
| 21                               | 37.200                                                   | 32.000                                         | 20.200                                                   | 18.100                                             | 29.300                                         | 53.800                                                   | 45.200                                         | 50.800                                                   | 60.000                                         | 49.100                                                   | 40.100                                                   | 68.200                                         |
| 22                               | 37.200                                                   | 29.100                                         | 18.500                                                   | 17.500                                             | 28.200                                         | 53.800                                                   | 49.100                                         | 53.400                                                   | 58.800                                         | 52.300                                                   | 48.000                                                   | 65.000                                         |
| 23                               | 37.200                                                   | 25.600                                         | 21.900                                                   | 16.300                                             | 28.200                                         | 54.900                                                   | 50.500                                         | 72.400                                                   | 56.800                                         | 53.800                                                   | 49.100                                                   | 58.000                                         |
| 24                               | 37.200                                                   | 24.500                                         | 19.800                                                   | 13.300                                             | 33.400                                         | 53.400                                                   | 49.100                                         | 113.000                                                  | 53.800                                         | 68.200                                                   | 47.700                                                   | 69.600                                         |
| 25                               | 37.200                                                   | 23.600                                         | 17.700                                                   | 9.860                                              | 35.000                                         | 50.500                                                   | 46.600                                         | 105.000                                                  | 51.200                                         | 62.500                                                   | 48.000                                                   | 66.800                                         |
| 26<br>27<br>28<br>29<br>30<br>31 | 37.000<br>36.100<br>36.100<br>37.000<br>40.700<br>46.600 | 22.500<br>21.900<br>21.700<br>21.400<br>20.600 | 13.100<br>12.600<br>12.800<br>23.200<br>17.900<br>17.100 | 7.800<br>7.650<br>7.090<br>6.050<br>5.440<br>6.180 | 31.000<br>29.100<br>33.700                     | 53.000<br>80.500<br>97.800<br>88.400<br>73.300<br>70.500 | 47.700<br>44.600<br>42.600<br>41.300<br>41.000 | 96.000<br>88.400<br>79.500<br>77.600<br>72.400<br>69.600 | 48.800<br>49.400<br>51.900<br>58.000<br>53.400 | 59.200<br>56.400<br>51.600<br>46.600<br>48.400<br>44.200 | 44.600<br>39.800<br>36.700<br>37.500<br>38.000<br>37.000 | 61.600<br>54.500<br>48.800<br>46.000<br>47.000 |

RADIOACTIVITY DETERMINATIONS

STATE

MISSOURI

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI BELOW NIOBRARA RIVER

STATION LOCATION MISSOURI RIVER AT

ST. JOSEPH, MISSOURI

|                                                                                                                         |                                                                         |                                                   |                    |                                                   | IA TER                                             |                                                     |       |                                | CTIVITY IN PLAN | NKTON (dry)        |                | RADIOACTIVITY IN W |       |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------|--------------------|---------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|-------|--------------------------------|-----------------|--------------------|----------------|--------------------|-------|
|                                                                                                                         |                                                                         |                                                   | RADIO              | activity in w                                     | AIEK                                               | HETA                                                |       | DATE OF                        |                 |                    | SUSPEND        | ED DISSOLVED       | TOTAL |
| DATE                                                                                                                    |                                                                         |                                                   | ALPHA              |                                                   | - INCOMPANDED                                      |                                                     | TOTAL |                                |                 |                    |                | μμε/\              | μμε/1 |
|                                                                                                                         | DETERMI-                                                                | SUSPENDED                                         | DISSOLVED          |                                                   |                                                    |                                                     | μμε/Ι | MO. DAY                        | μμc/g           | μμε/ 9             |                |                    |       |
|                                                                                                                         | NATION DAY                                                              |                                                   | μμε/Ι              | μμс/Ι                                             | μμε/1                                              |                                                     |       |                                |                 |                    | ł              |                    |       |
| DATE SAMPLE TAKEN  0. DAY YEAR  0. 2 60* 1 28 60* 1 28 60* 2 27 61* 3 27 61* 4 24 61* 5 29 61* 6 26 61* 9 11 61 9 24 61 | 10 13<br>11 3<br>12 7<br>1 9<br>2 21<br>3 14<br>4 11<br>6 6 6<br>8 8 18 | SUSPENDED  μμc/\ 21 4 7 1 0 6 96 8 3 2 25 11 - 16 | ALPHA<br>DISSOLVED | ΤΟΤΑΙ μμε/!  27 11 13 7 4 10 98 11 8 2 28 15 - 21 | SUSPENDED  μμc/I  56 0 0 0 149 19 19 20 62 8 22 84 | BETA DISSOLVED μμε/1  0 1 4 5 0 2 0 8 0 0 2 9 12 14 |       | DATE OF DETERMINATION  MO. DAY | ALPHA μμc/g     | BΕΤΑ <i>μμc/</i> 9 | SUSPEND: μμε/1 |                    |       |
|                                                                                                                         |                                                                         |                                                   |                    |                                                   |                                                    |                                                     |       |                                |                 |                    |                |                    |       |
|                                                                                                                         |                                                                         |                                                   |                    |                                                   |                                                    |                                                     |       |                                |                 |                    |                |                    |       |
|                                                                                                                         |                                                                         |                                                   |                    |                                                   |                                                    |                                                     |       |                                |                 |                    |                |                    |       |
|                                                                                                                         |                                                                         |                                                   |                    |                                                   |                                                    |                                                     |       |                                |                 |                    |                |                    |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

MISSOURI

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI BELOW NIOBRARA RIVER

STATION LOCATION MISSOURI RIVER AT

ST. JOSEPH, MISSOURI

| <del></del>                                                                                                                                                                                                          | ····                                                                                                                                               |         |                       | ALGAE (A                                                                                                | lumher                | ner ml.)                                                                                                                |                                   |                                                                                                                                  |                                                                                                                                                     | INE                                                                                                                          | RT<br>TOM                                                                                                                          | Ι                                                                               | ·                                                                                                                                                              |                                                    | DI                                                                                                                         | ATON                                                                                   | 45                                                     |                                                                                         |                           |                       | ·                                                                       |                           | MICROIN                      | VERTEBR                      | ATES                         |            | . # 3                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------|---------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------|-----------------------|-------------------------------------------------------------------------|---------------------------|------------------------------|------------------------------|------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------|
| DATE<br>OF SAMPLE                                                                                                                                                                                                    |                                                                                                                                                    | BLUE-   |                       | GREE                                                                                                    |                       | FLAGEL<br>(Pigme                                                                                                        | LATES<br>ented)                   | DIAT                                                                                                                             | OMS                                                                                                                                                 | DIA<br>SHE<br>(No. p                                                                                                         | LLS                                                                                                                                |                                                                                 | DOMII<br>(See                                                                                                                                                  | NANT<br>Introd                                     | speci<br>uction                                                                                                            | ES AN                                                                                  | D PE                                                   | RCENT                                                                                   | AGES                      |                       | OPLANKTO<br>SHEATHED<br>ml. J                                           | M.)                       | 15<br>liter)                 | :EA<br>liter)                | DES<br>liter)                | MAL FORMS  | r cenera<br>roductio<br>tification                                                                                           |
| MONTH<br>DAY<br>YEAR                                                                                                                                                                                                 | TOTAL                                                                                                                                              | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                                                                                                 | FILA-<br>MENT-<br>OUS | GREEN                                                                                                                   | OTHER                             | CENTRIC                                                                                                                          | PENNATE                                                                                                                                             | CENTRIC                                                                                                                      | PENNATE                                                                                                                            | FIRST#                                                                          | PER.<br>CENTAGE                                                                                                                                                | SECOND#                                            | PER.<br>CENTAGE                                                                                                            | THIRD*                                                                                 | PER-<br>CENTAGE                                        | FOURTH#                                                                                 | PER-<br>CENTAGE           | OTHER PER-<br>CENTAGE | OTHER MICROPLANKTON,<br>FUNGI AND SHEATHED<br>MACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | (No. per l | DOKINANT GENERA<br>(See Introduction<br>for Identification)                                                                  |
| 10 3 60<br>10 18 60<br>11 7 60<br>11 18 60<br>12 2 60<br>12 15 60<br>13 61<br>1 30 61<br>2 14 61<br>3 20 61<br>4 4 61<br>4 17 61<br>5 15 61<br>6 1 61<br>7 7 61<br>7 7 61<br>7 7 61<br>8 7 61<br>8 7 61<br>8 9 18 61 | 2800<br>3400<br>2000<br>2000<br>5600<br>3700<br>2700<br>600<br>400<br>1600<br>3700<br>6500<br>20300<br>400<br>2200<br>3800<br>1500<br>1500<br>2100 | 20      | 20 20                 | 570<br>780<br>70<br>40<br>110<br>20<br>50<br>20<br>270<br>270<br>2430<br>50<br>580<br>850<br>330<br>310 | 20                    | 240<br>270<br>70<br>70<br>110<br>50<br>200<br>130<br>70<br>250<br>670<br>1720<br>1100<br>40<br>160<br>520<br>210<br>230 | 110<br>70<br>20<br>20<br>50<br>50 | 1610<br>1860<br>1370<br>1430<br>2440<br>3020<br>19800<br>160<br>150<br>720<br>1140<br>12690<br>12690<br>140<br>290<br>600<br>870 | 3100<br>3800<br>4600<br>4400<br>5500<br>4000<br>2400<br>6500<br>2400<br>4100<br>4100<br>660<br>310<br>660<br>310<br>660<br>310<br>660<br>310<br>660 | 1360<br>110<br>300<br>180<br>240<br>270<br>70<br>160<br>20<br>180<br>130<br>1500<br>1610<br>20<br>1100<br>290<br>190<br>1200 | 220<br>760<br>400<br>590<br>420<br>270<br>70<br>310<br>1070<br>310<br>740<br>580<br>1450<br>640<br>470<br>180<br>720<br>410<br>230 | 82<br>46<br>82<br>46<br>82<br>82<br>82<br>82<br>71<br>71<br>82<br>82<br>92<br>9 | 30<br>30<br>30<br>30<br>40<br>40<br>30<br>40<br>30<br>30<br>20<br>30<br>30<br>20<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30 | 46<br>80<br>46<br>71<br>47<br>46<br>46<br>46<br>46 | 10<br>20<br>20<br>10<br>20<br>10<br>10<br>20<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 26<br>71<br>71<br>80<br>82<br>70<br>46<br>70<br>26<br>86<br>92<br>46<br>47<br>80<br>56 | 10<br>20<br>10<br>10<br>20<br>10<br>10<br>*<br>*<br>10 | 92<br>70<br>92<br>71<br>84<br>71<br>70<br>96<br>5<br>8<br>95<br>8<br>95<br>8<br>95<br>8 | 10 10 * * * * * * * * * * | 40<br>50<br>50        | 180<br>110<br>20<br>90<br>150<br>110<br>20<br>40                        |                           | 2                            | 10                           | 1 2 2 2 3                    |            | 4893-<br>4893-<br>-996<br>-99-<br>-996<br>-199-<br>-99-<br>-99-<br>3196-<br>71963<br>48963<br>-99-<br>-8967<br>-996<br>489-3 |

## ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

MISSOURI

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI BELOW NIOBRARA RIVER

STATION LOCATION MISSOURI RIVER AT

ST. JOSEPH, MISSOURI

| DATE OF SAMPLE |                                                                              | <del></del>                                                              |                                                                     |                                                                              | <del>,</del>        |                                                             |                                                           |                         | · · · · · · · · · · · · · · · · · · · |                                                    |              |               |                       |            |                                                            |
|----------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------|-----------------------------------------------------------|-------------------------|---------------------------------------|----------------------------------------------------|--------------|---------------|-----------------------|------------|------------------------------------------------------------|
| BEGINNING END  | -                                                                            | E                                                                        | XTRACTABL                                                           | ES                                                                           | ļ                   |                                                             |                                                           |                         |                                       | ORM EXTR                                           | ACTABLES     |               |                       |            |                                                            |
| DAY YEAR MONTH | GALLONS<br>FILTERED                                                          | TOTAL                                                                    | CHLORO-<br>FORM                                                     | ALCOHOL                                                                      | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES                                           | TOTAL                                                     | ALIPHATICS              | AROMATICS                             | OXYGEN-<br>ATED<br>COMPOUNDS                       | LOSS         | WEAK<br>ACIDS | STRONG<br>ACIDS       | BASES      | LOSS                                                       |
| 10             | 5595<br>4305<br>4507<br>5535<br>4700<br>5812<br>4687<br>2100<br>3825<br>5295 | 135<br>88<br>226<br>176<br>154<br>252<br>108<br>147<br>2446<br>99<br>123 | 23<br>16<br>28<br>40<br>33<br>72<br>18<br>35<br>52<br>75<br>32<br>6 | 112<br>72<br>198<br>136<br>121<br>180<br>90<br>112<br>190<br>171<br>66<br>97 | 100121021510        | 6<br>2<br>4<br>8<br>7<br>17<br>4<br>9<br>14<br>19<br>8<br>6 | 7<br>7<br>14<br>13<br>12<br>6<br>8<br>18<br>19<br>9<br>10 | 1 1 2 2 2 1 1 1 5 2 1 1 | 1 1 1 2 1 0 0 1 2 1 1 1 1             | 5<br>10<br>9<br>8<br>18<br>6<br>10<br>14<br>7<br>7 | 001112001201 | 2249339346843 | 1<br>1<br>2<br>2<br>7 | 1011111200 | 4<br>4<br>4<br>7<br>5<br>15<br>3<br>8<br>8<br>14<br>7<br>5 |

STATE

MISSOURI

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI BELOW NIOBRARA RIVER

STATION LOCATIONMISSOURI RIVER AT

ST. JOSEPH, MISSOURI

| DATE<br>OF SAM     |          | TEMP.                   | DISSOLVED      |     |                |                | CHLORINE       | DEMAND          |                              |                   |                    |                  |                        |                            |                  |                    |                                      |                          |
|--------------------|----------|-------------------------|----------------|-----|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|----------------------------|------------------|--------------------|--------------------------------------|--------------------------|
| MONTH              | YEAR     | (Degrees<br>Centigrade) | OXYGEN<br>mg/l | рН  | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/i | ALKALINITY<br>mg/i | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml. |
| 10 2<br>10 4       | 60<br>60 | 17.0                    | 7.8            | 8.5 | 1.1            | _              | 4.6            |                 | •1                           | 25                | 182                | 226              |                        | 240                        | 164              |                    | 448                                  |                          |
| 10 10              | 60       | _                       | _              | _   | _              | _              | - 1            | _               | -                            | _                 | _                  | -                | _                      | _                          | -                | -                  | -                                    | 2100                     |
| 10 12              | 60       | 15.5                    | 8.1            | 8.0 | 1.7            | -              | 3.2            | _               | •1                           | 20                | 182                | 226              | _                      | 250                        | 164              | _                  | 448                                  | 1400                     |
|                    | 60       | 16.6                    | 8.5            | 8.0 | 1 •.3          | -              | 3.2            | -               | • 1                          | 18                | 168                | 226              | 15                     | 200                        | 156              | _                  | 440                                  | _                        |
| 10 17              | 60<br>60 | 11.1                    | 8.9            | 8.0 | 1.8            | -              |                | _               | -                            | -                 | -                  |                  | -                      | -                          | -                | -                  | -                                    | 3800                     |
| 10 30              | 60       | 11.6                    | 8.6            | 8.0 | T • O          |                | 2•2<br>2•5     | _               | •1<br>•1                     | 17<br>18          | 165<br>140         | 208<br>200       | 8                      | 200                        | 153              | -                  | 378                                  | -                        |
| 10 31              |          | _                       | -              | -   | -              | _              |                | · _             | • 1                          | 10                | 140                | 200              | 10                     | 115                        | 147              | -                  | 360<br>-                             | 23000                    |
| 11 3               | 60       | 10.0                    | 8.6            | 7.9 | 1.5            | -              | 2.0            | _               | •1                           | 18                | 166                | 232              | ٥                      | 220                        | -                | -                  | 360                                  | 23000                    |
|                    | 60       | 6.6                     | 11.0<br>10.4   | 7.8 | 2.0            | -              | 2 • 4          | 5.5             | • 2                          | 17                | 176                | 220              | 0                      | 220                        | 166              | -                  | 399                                  | _                        |
| 11   16<br>11   21 | 60       | 6.6                     | 10.4           | -   | 1.7            |                | 2.5            | 5 • 5<br>-      | •1                           | 17                | 172                | 232              | -                      | 200                        | 168              | -                  | 360                                  |                          |
| 11 22              | 60       | 5.6                     | 10.4           | 8.0 | 1.5            | _              | 2.5            | _               | •1                           | 18                | 176                | 220              | _                      | 180                        | 172              |                    | 260                                  | 1100                     |
| 11 28              | 60       | -                       | -              | -   | _              | _              |                | _               | • -                          |                   | 1,0                | ~                | _                      | 100                        | 1/2              | -                  | 360                                  | 8600                     |
|                    | 60       | 5.5                     | 12.0           | 8.0 | 1.8            | -              | 3.0            | 6.0             | •1                           | 23                | 200                | 260              | 0                      | 180                        | 143              | .1                 | 468                                  | 0000                     |
| 12 5<br>12 7       | 60       | .7                      | 12.3           | 8.0 | 2.9            | _              | 3.5            | -               | -                            | _                 |                    |                  | -                      | -                          | -                | -                  | -                                    | 1800                     |
| 12 17              | 60       | 1.1                     | 12.3           | 8.0 | 2.7            |                | 3.6            | 5 • 0<br>5 • 0  | •1<br>•3                     | 25<br>30          | 220<br>214         | 260<br>280       | _                      | 185<br>150                 | 104              | •1                 |                                      | -                        |
| 12 21              | 60       | 1.1                     | 13.0           | 7.9 | 2.3            | _              | 3.6            | 5.5             | •3                           | 36                | 188                | 276              | _                      | 100                        | 136<br>210       | •1                 | 507<br>576                           | _                        |
| 12 27              | 60       | 1.1                     | 12.0           | 8.0 | 1.3            | -              | -              | -               | • 6                          | 32                | 200                | 310              | -                      | 25                         |                  | .8                 | -                                    | _                        |
| 1 3                | 61<br>61 | 1 1                     | 12.6           | 8.0 | 2 0            | -              |                |                 | _                            |                   | -                  | -                | -                      | -1                         | -                | -                  | -                                    | 700                      |
| 1 9                | 61       | 1.1                     | 12.0           | ٥٠٠ | 2.0            | _              | 4.0            | 6•5<br>-        | • 3                          | 35                | 224                | 296              | -                      | 60                         | ***              | •1                 | -                                    | -                        |
| 1 12               | 61       | 1.1                     | 12.7           | 8.0 | 2.0            | _              | 3.0            | 5.5             | • 2                          | 33                | 212                | 256              | - 0                    | 60                         | 131              | -<br>5             | 496                                  | 200                      |
| 1 16               | 61       | 1.1                     | 13.8           | 8.0 | 3.8            | -              | 3.5            | 5.0             | •6                           | 30                | 196                | 248              |                        | 50                         | 141              | 2                  | 476                                  | _                        |
| 1 23               | 61       | 1.1                     | -              | 8.0 | -              | -              | 3.6            | -               | •5                           | 35                | 210                | 256              | -                      | 25                         | 152              | .3                 | 510                                  | 200                      |
| 1 29               | 61       | 1.1                     | _              | 8.0 | _              | _              | 2 0            |                 | -                            | _                 | -                  | -                | -                      | -                          | -                | -                  | -                                    | *100                     |
| 2 6                | 61       | 1.1                     | _              | 7.8 | _              |                | 3.0            |                 | •5<br>•4                     | 37<br>30          | 222<br>280         | 262<br>324       | -                      | 25<br>20                   | 159              | •3                 | 510<br>616                           | 1000                     |
| 2 10               |          | 1.1                     | 12.6           | 8.0 | 3.4            | -              | 4.6            | -               | •6                           | 33                | 256                | 366              | -                      | 25                         | 159              | .2                 | 610                                  | 1000                     |
| 2 13               | 61       |                         | -              | -   | _              | -              | -              | _               | -                            | -                 | -                  | -                | -                      | -                          | -                |                    | _                                    | *100                     |
| 2 16               | 61       | 2.2                     | 12.1           | -   | 2.1            | -              | -              | -               | • 3                          | 34                | 184                | 232              | -                      | 25                         | -                | •2                 | -                                    | _                        |
| 2 20 25            | 61       | 3.3                     | 10.6           | 7.9 | 3.0            |                | 1 1            | _               | •2                           | -                 | 756                | 744              | ~                      | 1200                       | - 05             | -                  | -                                    | 550                      |
| 2 27               | 61       | ر ده د                  | -              | ' - | -              | _              | _              | _               | • 4                          | 28                | 154                | 244              | _                      | 1200                       | 95               | •2                 | 405<br>-                             | *100                     |
| 3 1                | 61       | 3.3                     | 12.2           | 8.0 | 2.4            | -              | 6.0            | 8.0             | • 4                          | 32                | 148                | 218              | 5                      | 590                        | 100              | .2                 | _                                    | ,100                     |
| 3 6                | 61       | ·                       | -              |     | _              | -              |                | -               | -                            | -                 | -                  | -                | -                      | -                          |                  | -                  | -                                    | 27000                    |
| 3 9                | 61       | 4 • 4                   | -              | 7.6 | ***            | -              | 6.5            | 8.0             | • 8                          | 27                | 140                | 210              | 15                     | 750                        | -                | •6                 | -                                    | _                        |

STATE

MISSOURI

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI BELOW NIOBRARA RIVER

STATION LOCATIONMISSOURI RIVER AT

ST. JOSEPH, MISSOURI

| DATE                 |                |                                  |                             |            |                 | Ī      | CHLORINE       | DEMAND          |                              |                   |                    |                  |                        |                            |                  |                    |                                      |                          |
|----------------------|----------------|----------------------------------|-----------------------------|------------|-----------------|--------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|----------------------------|------------------|--------------------|--------------------------------------|--------------------------|
| OF SAM               | YEAR           | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/l | pН         | B.O.D.<br>mg/l  | C,O,D, | I-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml. |
| 3 13<br>3 20<br>3 27 | 61<br>61<br>61 | 4.4<br>4.4<br>4.4                | 9.2<br>9.2<br>8.8           | 7.2<br>8.0 | 1.8<br>9.2      | -      | -              | -               | .8<br>1.0                    | 27<br>26          | 140                | 108<br>144       | 200<br>15              | 5000<br>3350               | 60               | •4<br>•5           | -<br>346                             | 14000<br>36000           |
| 3 28                 | 61             | -                                | 3.0                         | -          | _               | -      | 6.0            | 8.0             | •5                           | 23<br>-           | 138                | 170              | 15                     | 250 <b>0</b>               | -                | 8 -                | -                                    | 1700                     |
| 4 4 5                | 61<br>61       | 4.4                              | 10.0                        | 7.6        | 2.7             | -      | -              |                 | •3                           | 23                | 170                | 220              | 10                     | 1200                       | ~                | -                  | -                                    | 45000                    |
| 4 10                 | 61             | 6.7                              | 10.6                        | 7.8        | 4.0             | -      | 3•3            | 5•0             | •2                           | 19                | 120                | 210              | -                      | 1200<br>500                | -                | •2<br>•7           | 356                                  | 7000                     |
| 4 17<br>4 19         | 61             | 8.3                              | 10.6                        | 8.0        | 3.6             |        | -              | _               | • 3                          | 22                | 180                | 228              | -                      | 500                        | 130              | -<br>•2            | -<br>325                             | 14000                    |
| 4 24<br>4 28         | 61<br>61       | 13.3                             | -                           | -          | ~               | -      | _              | -               | -                            | -                 | -                  | _                | -                      | -                          | -                | -                  | 525                                  | 18000                    |
| 5 1                  | 61             | 13.3                             | 9•8                         | 7.9        | 2.4             |        | -              | . ~             | •3                           | 23                | 168                | 240              | 10                     | 350                        |                  | •5                 | 386                                  | 5400                     |
|                      | 61             | 12.2                             | 9.2                         | 7.9        | 1.6             |        | -              | -               | • 2                          | 22                | 186                | 230              | 10                     | 162                        | -                | • 5                | 400                                  | _                        |
| 5 11                 | 61             | 13.3                             | 8 • 4                       | 7.9        | 1.2             | -      | 3.5            | 5.5             | • 3                          | 20                | 170                | 220              | _                      | 300                        | 156              | .5                 | 457                                  | 60000                    |
|                      | 61             | 17.2                             | 7.8                         | 7.9        | 1.8             |        | -              | -               | • 3                          | 23                | 166                | 230              | 10                     | 280                        | 153              | •2                 | 387                                  | 4000                     |
| 5 23                 | 61             | 16.0                             | 7.8                         | 7.9        | 1.8             | -      | -              | -               | • 2                          | 25                | 180                | 236              | 10                     | 6800                       | _                | •2                 | 426                                  | 2100                     |
| 6 5                  | 61             | 21.0                             | 8.8                         | 7.8        | 1.2             |        | -              | _               | •3                           | 24                | 166                | 204              | -<br>15                | 3250                       | 111              | - 1                | -<br>445                             | 800                      |
|                      | 61             | 24.4                             | 5.0                         | 7.8        | <b>-</b><br>3.4 | -      | -              | -               | -                            | -                 | -                  | -                | -                      | -                          |                  | -                  | <del>4</del> 47                      | 10000<br>*100            |
| 6 19                 | 61             | -                                | -                           | -          | J.4<br>         | -      | -              | _               | • 2                          | 26                | 152                | 220              | -                      | 600                        | _                | •3                 | -                                    | *100                     |
|                      | 61             | 21.1                             | 6.6                         | 7.8        | -               | -      | -              | -               | •1                           | 24                | 174                | 232              | -                      | 300                        | 138              | •2                 | 525                                  |                          |
| 6 27                 | 61             | 25.6                             | 7.9                         | 7.9        | -               | -      | -              | -               | •3                           | 24                | 152                | 220              | -                      | 800                        | -                | • 2                | - 1                                  | ∠100<br>_                |
| 1 1                  | 61             | 25.0                             | _                           | 8.1        | -               | _      | -              | -               | _                            | 23                | 140                | -<br>190         | -                      | 7500                       |                  |                    | -                                    | 7300                     |
| 7 10                 | 61             | -                                |                             | -1         |                 | -      | -              | -               | -                            | -                 | -                  | 190              | -                      | 7500                       | 116              | • 5<br>-           | 375                                  | 18000                    |
| 7 17                 | 61             | 23.2                             | 7.2                         | 7.9        | 2.0             | _      | _              | _               | • 2                          | 24                | 160                | 226              | -                      | 310                        | 155              | • 2                | 473<br>-                             | 12000                    |
|                      | 61             | 24.4                             | 5.9<br>5.8                  | 7.9        | 1.6<br>2.0      | -      | 2 -            | -               | • 2                          | 24                | 140                | 196              | 10                     | 400                        |                  | .1                 | -                                    | 12000<br>1800            |
| 8 7                  | 61             | 25.6                             | 6.0                         | 7.9        | 1.5             | -      | 3.0            | -               | •2                           | 24   23           | 172<br>182         | 210<br>220       | -                      | 575<br>300                 | -                | •3                 | -                                    | 25000                    |
|                      | 61<br>61       | 26.7                             | 6.5                         | 7.8        | 1.5             | -      | 3.0            | 5.0             | - 2                          | 25                | -                  | -                | -                      | -                          | -                | -                  | -                                    | 11000                    |
| 8 22                 | 61             | -                                | -                           | -          | -               | -      | -              | -               | -                            | 25                | 136                | 216              | 10                     | 370<br>-                   | -                | • 1                | -                                    | 16000                    |
| 8 23 8               | 61<br>61       | 25.0                             | 6.5                         | 7.9        | 2.0             |        | -              | -               | • 2                          | 26                | 144                | 200              | -                      | 400                        | -                | • 2                | -                                    | _                        |
|                      | l              |                                  |                             |            |                 |        |                |                 |                              |                   |                    |                  | -                      | -                          | -                | -                  | -                                    | 5000                     |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MISSOURI

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI DELOW NIOBRARA RIVER

STATION LOCATIONMISSOURI RIVER AT

ST. JOSEPH, MISSOURI

|          | DATE  |                      |                                  |                             |     |                |                | CHLORINE       | DEMAND          |                              |                   |                        |                        |                        |                            |                  |                    | TOTAL                       |                                                  |
|----------|-------|----------------------|----------------------------------|-----------------------------|-----|----------------|----------------|----------------|-----------------|------------------------------|-------------------|------------------------|------------------------|------------------------|----------------------------|------------------|--------------------|-----------------------------|--------------------------------------------------|
| <b>-</b> | \$AMI | YEAR                 | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/l | рН  | B.O.D.<br>mg/l | C.O.D.<br>mg/l | I-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/I | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l     | HARDNESS<br>mg/l       | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/l | per 100 ml.                                      |
| 9 9 9 9  | 4     | 61<br>61<br>61<br>61 | -<br>15•5                        | 7•6<br>8•0                  | 7.9 | 1.8            |                | 3.0<br>        | 5 • O           | •1                           | 25 - 23 25        | 127<br>-<br>166<br>170 | 220<br>-<br>216<br>234 |                        | 300<br>370                 | 132<br>120       | .2 .2              | 456<br>400                  | 100000<br>100000<br>20000<br>29000<br>-<br>31000 |



STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at St. Joseph, Missouri Operated by U.S. Geological Survey STATE

Missouri

MAJOR BASIN

Missouri River

MINOR BASIN

Lower Missouri below Niobrara River

STATION LOCATION

Missouri River at

St. Joseph, Missouri

| Day                              | October                                                  | November                                       | December                                                | January                                            | February                   | March                                                    | April                                          | May                                                      | June                                           | July                                                     | August                                                   | September                                      |
|----------------------------------|----------------------------------------------------------|------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|----------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| 1                                | 35.200                                                   | 37.900                                         | 17.500                                                  | 14.800                                             | 10.000                     | 29.900                                                   | 40.900                                         | 35.700                                                   | 41.200                                         | 34.200                                                   | 35.400                                                   | 32.700                                         |
| 2                                | 34.200                                                   | 37.000                                         | 16.800                                                  | 14.500                                             | 11.200                     | 29.100                                                   | 36.600                                         | 35.700                                                   | 43.400                                         | 38.600                                                   | 40.900                                                   | 32.400                                         |
| 3                                | 33.300                                                   | 36.000                                         | 14.800                                                  | 15.300                                             | 12.500                     | 31.300                                                   | 33.600                                         | 36.000                                                   | 46.000                                         | 39.600                                                   | 42.300                                                   | 51.600                                         |
| 4                                | 33.300                                                   | 35.100                                         | 14.600                                                  | 16.800                                             | 13.500                     | 33.600                                                   | 33.000                                         | 36.000                                                   | 43.400                                         | 33.300                                                   | 37.300                                                   | 44.800                                         |
| 5                                | 33.300                                                   | 34.500                                         | 15.800                                                  | 16.600                                             | 14.300                     | 34.200                                                   | 33.600                                         | 40.900                                                   | 37.600                                         | 33.300                                                   | 35.100                                                   | 37.000                                         |
| 6                                | 32.700                                                   | 34.200                                         | 17.100                                                  | 15.800                                             | 14.500                     | 36.300                                                   | 33.900                                         | 48.400                                                   | 35.400                                         | 52.800                                                   | 31.600                                                   | 35.400                                         |
| 7                                | 32.400                                                   | 33.900                                         | 17.100                                                  | 15.000                                             | 14.000                     | 32.400                                                   | 36.000                                         | 44.000                                                   | 39.600                                         | 45.600                                                   | 32.400                                                   | 34.200                                         |
| 8                                | 32.700                                                   | 34.200                                         | 17.300                                                  | 15.200                                             | 13.700                     | 30.700                                                   | 37.300                                         | 42.600                                                   | 42.600                                         | 38.600                                                   | 33.300                                                   | 33.900                                         |
| 9                                | 33.000                                                   | 34.500                                         | 18.300                                                  | 16.000                                             | 13.700                     | 28.800                                                   | 38.900                                         | 41.600                                                   | 42.300                                         | 36.000                                                   | 32.400                                                   | 34.200                                         |
| 10                               | 32.700                                                   | 34.800                                         | 17.700                                                  | 17.000                                             | 14.300                     | 27.600                                                   | 42.300                                         | 38.900                                                   | 36.600                                         | 35.700                                                   | 32.100                                                   | 33.300                                         |
| 11                               | 33.000                                                   | 34.800                                         | 16.200                                                  | 17.100                                             | 15.000                     | 25.900                                                   | 43.700                                         | 37.300                                                   | 34.200                                         | 34.500                                                   | 38.600                                                   | 33.000                                         |
| 12                               | 32.700                                                   | 33.900                                         | 16.400                                                  | 17.000                                             | 16.000                     | 28.800                                                   | 67.000                                         | 36.000                                                   | 33.900                                         | 33.600                                                   | 41.600                                                   | 38.200                                         |
| 13                               | 32.700                                                   | 33.300                                         | 16.200                                                  | 16.600                                             | 18.000                     | 50.800                                                   | 61.300                                         | 35.700                                                   | 33.300                                         | 35.100                                                   | 39.200                                                   | 99.200                                         |
| 14                               | 33.300                                                   | 33.600                                         | 15.800                                                  | 17.000                                             | 17.300                     | 61.300                                                   | 51.200                                         | 35.700                                                   | 42.300                                         | 37.300                                                   | 33.000                                                   | 73.000                                         |
| 15                               | 34.800                                                   | 33.900                                         | 16.000                                                  | 17.300                                             | 18.100                     | 43.000                                                   | 47.200                                         | 35.700                                                   | 55.400                                         | 36.600                                                   | 30.700                                                   | 53.600                                         |
| 16                               | 34.200                                                   | 34.200                                         | 16.600                                                  | 17.300                                             | 19.100                     | 43.700                                                   | 45.200                                         | 34.800                                                   | 63.100                                         | 35.400                                                   | 31.800                                                   | 42.600                                         |
| 17                               | 33.900                                                   | 33.900                                         | 16.400                                                  | 17.500                                             | 19.800                     | 42.000                                                   | 43.000                                         | 36.300                                                   | 53.200                                         | 33.600                                                   | 32.700                                                   | 36.300                                         |
| 18                               | 33.600                                                   | 33.600                                         | 16.400                                                  | 17.500                                             | 26.300                     | 43.000                                                   | 40.900                                         | 38.600                                                   | 42.600                                         | 33.600                                                   | 32.700                                                   | 33.000                                         |
| 19                               | 33.600                                                   | 31.800                                         | 16.000                                                  | 17.500                                             | 25.400                     | 42.600                                                   | 38.600                                         | 38.900                                                   | 37.600                                         | 34.500                                                   | 33.000                                                   | 32.700                                         |
| 20                               | 33.600                                                   | 29.600                                         | 15.700                                                  | 17.300                                             | 20.200                     | 42.000                                                   | 37.000                                         | 38.600                                                   | 38.600                                         | 35.700                                                   | 35.400                                                   | 33.300                                         |
| 21                               | 34.200                                                   | 27.600                                         | 17.700                                                  | 16.800                                             | 17.500                     | 40.200                                                   | 36.600                                         | 37.600                                                   | 40.600                                         | 40.200                                                   | 37.900                                                   | 34.200                                         |
| 22                               | 34.500                                                   | 25.400                                         | 17.300                                                  | 16.000                                             | 19.000                     | 38.900                                                   | 37.900                                         | 37.300                                                   | 37.600                                         | 38.600                                                   | 41.200                                                   | 35.400                                         |
| 23                               | 34.200                                                   | 23.200                                         | 12.400                                                  | 14.000                                             | 27.100                     | 37.900                                                   | 38.200                                         | 37.300                                                   | 37.600                                         | 37.300                                                   | 40.200                                                   | 39.200                                         |
| 24                               | 34.200                                                   | 21.100                                         | 11.400                                                  | 12.000                                             | 34.800                     | 37.600                                                   | 38.200                                         | 37.000                                                   | 37.000                                         | 42.300                                                   | 36.300                                                   | 43.400                                         |
| 25                               | 34.800                                                   | 19.600                                         | 10.400                                                  | 10.000                                             | 28.800                     | 39.200                                                   | 37.900                                         | 37.300                                                   | 36.000                                         | 37.300                                                   | 36.000                                                   | 39.600                                         |
| 26<br>27<br>28<br>29<br>30<br>31 | 34.800<br>34.800<br>34.500<br>35.100<br>43.400<br>39.900 | 18.800<br>18.100<br>18.100<br>17.700<br>17.700 | 9.900<br>10.700<br>21.700<br>18.700<br>15.500<br>15.300 | 9.000<br>8.500<br>8.000<br>7.500<br>6.000<br>8.000 | 27.600<br>30.200<br>36.600 | 42.600<br>52.800<br>59.000<br>53.600<br>48.400<br>44.400 | 37.300<br>36.600<br>36.300<br>35.400<br>35.700 | 40.600<br>38.900<br>37.900<br>37.300<br>36.600<br>37.600 | 35.100<br>36.600<br>43.000<br>43.700<br>36.600 | 39.200<br>36.000<br>35.700<br>40.900<br>42.000<br>35.100 | 33.600<br>31.600<br>31.600<br>31.800<br>31.800<br>32.700 | 37.000<br>35.100<br>34.200<br>33.900<br>48.400 |

STATE

NEBRASKA

MAJOR BASIN

MISSOURI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATION MISSOURI RIVER AT

OMAHA, NEBRASKA

| DATE                                                                                                               |                                                                            |                     | RADI         | OACTIVITY IN V              | WATER                                  |                                                                              |                                                   | RADIOA                        | CTIVITY IN PLAI | VIKTON (dry) | RAI       | DOACTIVITY IN W | /ATER |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------|--------------|-----------------------------|----------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------|-----------------|--------------|-----------|-----------------|-------|
| SAMPLE                                                                                                             | DATE OF<br>DETERMI-                                                        |                     | ALPHA        |                             |                                        | BETA                                                                         |                                                   |                               |                 | ACTIVITY     |           | GROSS ACTIVIT   |       |
| TAKEN                                                                                                              | NATION                                                                     | SUSPENDED           | DISSOLVED    | TOTAL                       | SUSPENDED                              | DISSOLVED                                                                    | TOTAL                                             | DATE OF<br>DETERMI-<br>NATION | ALPHA           | BETA         | SUSPENDED | DISSOLVED       | TOTAL |
| MO. DAY YEAR                                                                                                       | MONTH DAY                                                                  | μμc/I               | μμε/l        | <i>µµс/</i> \               | μμc/!                                  | μμc/l                                                                        | μμc/l                                             | MO. DAY                       | <i>µµс</i> /g   | ##c/g        | μμc/l     | μμc/l           | μμc/l |
| MO. DAY YEAR  10 24 60* 11 28 600* 12 30 61* 22 7 61* 42 49 61* 62 66 61* 7 31 61* 9 4 61* 9 11 61 9 12 61 9 25 61 | 11 2<br>12 15<br>1 12<br>2 9<br>3 10<br>4 11<br>5 8<br>6 9<br>7 12<br>8 28 | 2 3 1 0 2 6 1 3 6 3 | 741622554456 | 97 13 6 4 63 11 6 7 10 8 10 | 0 8 0 0 28 122 17 0 5 10 22 0 52 29 33 | 37<br>16<br>11<br>0<br>21<br>3<br>0<br>12<br>13<br>26<br>0<br>13<br>21<br>78 | μμε/1 37 24 11 0 49 125 20 0 17 23 48 0 65 50 111 |                               | ##c/g           |              |           |                 |       |



PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

NEBRASKA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATION MISSOURI RIVER AT

OMAHA, NEBRASKA

| DATE                 |                                                                                                                                |          | ······································ | ALGAE (                                                                                                         | Vumber                | per ml.)                                                                                            | <del></del>                |                                                                                                                                                              |                                                                                                                    | INE                  | RT                                                                                          | Г                                                                    |                                                                                        |                                        |                                                                     | IATO                       | MS                                                               |                                                                     |                     |                       | T                                                                       | 1                      | MICROIN                      | VERTEBE                      | RATES                        |                |                                                                                                                                         |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------|----------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|---------------------|-----------------------|-------------------------------------------------------------------------|------------------------|------------------------------|------------------------------|------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| OF SAMPLE            |                                                                                                                                | BLUE-    | GREEN                                  | GREE                                                                                                            | EN.                   |                                                                                                     | LLATES<br>ented)           | DIAT                                                                                                                                                         | омѕ                                                                                                                | DIA<br>SHE<br>(No. p | TOM<br>LLS<br>er ml.)                                                                       |                                                                      | DOM:                                                                                   | INANT<br>e Intro                       | SPEC<br>duction                                                     | IES A                      | ND PE                                                            | RCEN<br>ntifica                                                     | TAGES               | 5                     | LANKTON<br>EATHED<br>IL.)                                               | A<br>ml.)              |                              | T                            |                              | FORKS          | uction<br>cation)                                                                                                                       |
| MONTH<br>DAY<br>YEAR | TOTAL                                                                                                                          | COCCOID  | FILA.<br>MENT-<br>OUS                  | COCCOID                                                                                                         | FILA-<br>MENT-<br>OUS | GREEN                                                                                               | OTHER                      | CENTRIC                                                                                                                                                      | PENNATE                                                                                                            | CENTRIC              | PENNATE                                                                                     | FIRST#                                                               | PER.<br>CENTAGE                                                                        | SECOND*                                | PER.                                                                | THIRD#                     | PER-                                                             | FOURTH#                                                             | PER-                | OTHER PER-<br>CENTAGE | OTHER MICROPLANKTON,<br>FUNGI AND SHEATHED<br>BACTERIA<br>(No. pet ml.) | PROTOZOA<br>(No. per m | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ANIMAL F | poulnant genera<br>(See Introduction<br>for Identification)                                                                             |
| 10                   | 1000<br>9000<br>2300<br>8000<br>1900<br>1500<br>7000<br>17000<br>22900<br>4600<br>2900<br>4600<br>2800<br>4600<br>2800<br>1500 | 20 20 20 | 20<br>40<br>170<br>20                  | 180<br>90<br>70<br>50<br>110<br>20<br>90<br>290<br>40<br>120<br>930<br>290<br>1020<br>1430<br>370<br>790<br>270 |                       | 220<br>70<br>130<br>290<br>20<br>500<br>640<br>380<br>500<br>600<br>850<br>930<br>270<br>710<br>250 | 90<br>20<br>20<br>40<br>20 | 350<br>290<br>1920<br>770<br>1540<br>1050<br>960<br>220<br>630<br>1300<br>2260<br>1250<br>2550<br>6210<br>3750<br>1300<br>3420<br>1700<br>1010<br>930<br>600 | 240<br>240<br>250<br>270<br>90<br>50<br>20<br>360<br>220<br>380<br>620<br>1180<br>1330<br>510<br>950<br>370<br>410 | 150                  | 90<br>200<br>50<br>20<br>420<br>290<br>180<br>100<br>420<br>270<br>520<br>360<br>250<br>100 | 80<br>80<br>82<br>82<br>82<br>82<br>82<br>84<br>47<br>84<br>47<br>80 | 30<br>40<br>90<br>80<br>40<br>40<br>90<br>70<br>20<br>30<br>60<br>40<br>60<br>70<br>20 | 82<br>82<br>84<br>84<br>80<br>84<br>26 | 10<br>20<br>30<br>*<br>10<br>30<br>30<br>10<br>20<br>20<br>10<br>20 | 36<br>84<br>71<br>26<br>80 | * 10<br>10<br>* 10<br>10<br>* * 10<br>10<br>10<br>10<br>10<br>20 | 32<br>71<br>70<br>58<br>9<br>80<br>92<br>24<br>55<br>83<br>31<br>58 | * 10 10 10 10 10 20 | 30<br>40              | 420<br>70<br>110<br>20<br>70                                            | 10 10 10               | 2 2 1                        | 1 1 1 1 2 2 2 2 2            | 2 3 1 3                      |                | 93-<br>9<br>9<br>9<br>9<br>4-967<br>933<br>33-964<br>33-963<br>33-963<br>3419637<br>4419637<br>4419637<br>4419637<br>4419637<br>4419637 |

## ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

NEBRASKA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATION MISSOURI RIVER AT

OMAHA, NEBRASKA

| DATE OF SAMPLE                                                                      | LE I                                                                |                                                                                             | FX                                                               | TRACTABL                                                                       | FS                                                                                   | ,                                                         |                                                                     |                                                                                | <del></del>    | 0111 0 0 0 0     |                              |                                                          |                                                                         |                                                       |                             |                  |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------|------------------|------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------|------------------|
|                                                                                     | END                                                                 |                                                                                             |                                                                  |                                                                                |                                                                                      |                                                           | 1                                                                   |                                                                                | ····           | NEUTRALS         | ORM EXTR                     | ACTABLES                                                 | <del>,</del>                                                            | <del></del>                                           |                             |                  |
| DAY<br>YEAR<br>MONTH                                                                | DAY                                                                 | GALLONS<br>FILTERED                                                                         | TOTAL                                                            | CHLORO-<br>FORM                                                                | ALCOHOL                                                                              | ETHER<br>INSOLUBLES                                       | WATER<br>SOLUBLES                                                   | TOTAL                                                                          | ALIPHATICS     | AROMATICS        | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS                                                     | WEAK<br>ACIDS                                                           | STRONG<br>ACIDS                                       | BASES                       | LOSS             |
| 3 13 61 3<br>4 10 61 4<br>5 8 61 5<br>6 5 61 6<br>7 3 61 7<br>7 31 61 8<br>8 2 61 8 | 2 4<br>1 30<br>2 27<br>3 23<br>2 24<br>5 22<br>1 19<br>1 14<br>1 14 | 1751<br>3606<br>4537<br>6864<br>4367<br>719<br>1438<br>1327<br>1996<br>2422<br>3710<br>4205 | 406<br>205<br>119<br>285<br>7607<br>4864<br>255<br>1337<br>*SAMF | 61<br>32<br>24<br>20<br>107<br>268<br>118<br>94<br>146<br>85<br>46<br>41<br>29 | 345<br>173<br>161<br>99<br>178<br>497<br>389<br>390<br>218<br>170<br>86<br>97<br>108 | 2<br>0<br>0<br>2<br>-<br>11<br>1<br>6<br>2<br>1<br>2<br>0 | 13<br>55<br>30<br>78<br>31<br>25<br>45<br>23<br>11<br>8<br>7 TOO LC | 23<br>14<br>10<br>6<br>29<br>-<br>62<br>37<br>33<br>47<br>20<br>16<br>12<br>10 | 31100134354322 | 211001-432721111 | 11                           | 1<br>1<br>0<br>0<br>2<br>-<br>5<br>1<br>0<br>0<br>0<br>0 | 8<br>6<br>3<br>2<br>13<br>-<br>24<br>14<br>11<br>15<br>8<br>5<br>4<br>3 | 4<br>1<br>1<br>11<br>7<br>6<br>12<br>7<br>3<br>3<br>2 | 2 1 0 1 2 - 5 3 3 3 2 1 1 1 | 9555206751883885 |



CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NEBRASKA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATIONMISSOURI RIVER AT

OMAHA, NEBRASKA

| 01       | DATE<br>F SAMI |      | TEMP.                   | DISSOLVED      |                |                |          | CHLORINE       | DEMAND          | AMMONIA-                    |                   |            |                  |                        |                         |                  | ·                  | TOTAL                       |                       |
|----------|----------------|------|-------------------------|----------------|----------------|----------------|----------|----------------|-----------------|-----------------------------|-------------------|------------|------------------|------------------------|-------------------------|------------------|--------------------|-----------------------------|-----------------------|
| HTNOM    | DAY            | YEAR | (Degrees<br>Centigrade) | OXYGEN<br>mg/l | pН             | B,O,D.<br>mg/l | C.O.D.   | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | MMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | mg/l       | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY (scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS per 100 ml. |
| 10<br>10 | 3<br>10        | 60   | 16.1                    | 8.2            | 8.2            | 1.1            | 24       | 2.2            | 4.5             | •0                          | 11                | 152        | 230              | 24                     | 160                     | 182              | _                  | 526                         | 18000                 |
| 10       | 17             | 60   | 15.9<br>14.5            | 8.0<br>8.0     | 8.3<br>8.3     | •8<br>•7       | 49<br>21 | 1.4            | 6•3<br>5•0      | •0                          | 10<br>10          | 149<br>155 | 228<br>226       | 24                     | 140<br>140              | 176<br>178       | _                  | 453<br><b>46</b> 5          | 1700                  |
| 10       | 24             | 60   | 11.6                    | 8.5            | 8.3            | .9             | 21       | 1.5            | 4.9             | •0                          | 10                | 157        | 236              | 24                     | 150                     | 177              |                    | 471                         | 7700                  |
| 10       | 31             | 60   | 9.4                     | 9.1            | 8.3            | 1.2            | 26       | 1.5            | 5.2             | .0                          | 10                | 161        | 234              | 40                     | 190                     | 182              |                    | 454                         | 4500                  |
| 11       | 7              | 60   | 6.7                     | 9.0            | 8.3            | • 6            | 26       | 1.6            | 6.0             | •0                          | 10                | 164        | 236              | 24                     | 200                     | 181              | -                  | 443                         | 13000                 |
| 11       | 14             | 60   | 6.5                     | 11.0           | 8.4            | 2.0            | 24       | 1.6            | 5 • 4           | •0                          | 10                | 168        | 240              | 32                     | 170                     | 184              | •1                 | 492                         | 3800                  |
| 11       | 21             | 60   | 4.7                     | 11.0           | 8.1            | •7             | 24       | 1.8            | 4•2             | •0                          | 11                | 180        | 254              | 8                      | 150                     | 192              | •0                 | 454                         | 2700                  |
| 11       | 28             | 60   | 5.6                     | 10.2           | 8.2            | 1.1            | 23       | 2.7            | 6.9             | •0                          | 13                | 192        | 270              | 8                      | 95                      | 190              | •0                 | 494                         | 10000                 |
| 12<br>12 | 5<br>12        | 60   | 2.7<br>.2               | 11.7           | 8 • 3          | 1.8            | 28       | 2.8            | 8•5             | •1                          | 11                | 212        | 282              | 10                     | 190<br>90               | 188              | •1                 | 525                         | 3800                  |
| 12       | 19             | 60   | • 3                     | 12.8           | 8 • 2<br>8 • 4 | 1.9<br>1.3     | 20<br>18 | 2 • 8<br>2 • 8 | 5 • 8<br>6 • 4  | •1                          | 12<br>13          | 208<br>205 | 284<br>290       | 6 8                    | 90                      | 195<br>198       | •1                 | 501<br>529                  | 8000<br>670           |
| 12       | 26             | 60   | .1                      | 12.9           | 8.2            | 1.1            | 21       | 3.1            | 6.5             | •1                          | 13                | 216        | 304              | 7                      | 10                      | 205              | .0                 | 562                         | "                     |
| 1        | 2              | 61   | .1                      | 12.1           | 8.2            | 1.1            | 21       | 3.0            | 6.3             | .2                          | 12                | 186        | 270              | 8                      | 15                      | 190              | .1                 | 514                         | 970                   |
| 1        | 9              | 61   | . 2                     | 11.1           | 9.6            | 1.1            | 15       | 3.0            | 6.2             | .1                          | 13                | 186        | 266              | 7                      | 15                      | 187              | .3                 | 545                         | 140                   |
| 1        | 16             | 61   | • 2                     | 11.2           | 8.1            | 1.2            | 16       | 3.0            | 6.5             | .1                          | 12                | 187        | 270              | 9                      | 10                      | 196              | .1                 | 519                         | 1500                  |
| 1        | 23             | 61   | •1                      | .11.4          | 8.1            | 1.3            | 20       | 3.1            | 6•3             | •2                          | 13                | 207        | 292              | 7                      | 11                      | 202              | .1                 | 543                         | 440                   |
| 1        | 30             | 61   | • 1                     | 12.2           | 8.1            | • 9            | 23       | 3.9            | 7•3             | •2                          | 13                | 197        | 284              | 7                      | 6                       | 213              | •1                 | 535                         | 140                   |
| 2        | 6              | 61   | • 1                     | 10.9           | 8.1            | • 9            | 12       | 3.6            | 6.4             | •1                          | 11                | 173        | 256              | 8                      | 8                       | 178              | • 1                | 474                         | 77                    |
| 2        | 13             | 61   | • 4                     | 11.0           | 8 • 1          | .8             | 26       | 2.1            | 6 • 2           | • 2                         | 12                | 179        | 250              | 9                      | 8                       | 168              | •2                 | 464                         | 100                   |
| 2        | 20<br>27       | 61   | • 2<br>• 3              | 9.9<br>8.6     | 7.9<br>8.0     | 2.8<br>7.4     | 29<br>64 | 2 • 8<br>4 • 0 | 11.1            | •4                          | 13<br>12          | 178<br>160 | 258<br>214       | 20<br>34               | 10<br>450               | 174<br>145       | •3                 | 458<br>418                  | 4500<br>4800          |
| 3        | 6              | 61   | • 4                     | 8.4            | 7.8            | 10.6           | 77       | 5.0            | 28.5            | .6                          | 12                | 125        | 164              | 36                     | 850                     | 71               | .2                 | 290                         | 5600                  |
|          | 13             | 61   | 1.5                     | 9.3            | 8.1            | 6.4            | 69       | 3.8            | 19.3            | .4                          | 80                | 140        | 186              | 26                     | 1200                    | 95               | 2                  | 324                         | 5100                  |
| 3        | 20             | 61   | 3.6                     | 9.0            | 7.9            | 5.6            | 78       | 14.0           | 22.7            | .7                          | 7                 | 122        | 168              | 30                     | 1200                    | 78               | 4                  | 296                         | 14000                 |
| 3        | 27             | 61   | 7.8                     | 8.5            | 8.1            | 2.2            | 50       | 5.9            | 15.1            | •3                          | 7                 | 132        | 185              | 16                     | 760                     | 104              | .1                 | 328                         | 2500                  |
| 4        | 3              | 61   | 4.7                     | 10.0           | 8.2            | 3.0            | 34       | 5.7            | 11.1            | •1                          | 7                 | 161        | 228              | 12                     | 310                     | 105              | .1                 | 364                         | 23000                 |
|          | 10             | 61   | 5.6                     | 9.5            | 8.3            | 2.3            | 37       | 3.1            | 13.0            | •1                          | 6                 | 187        | 252              | 9                      | 230                     | 117              | .1                 | 441                         | 11000                 |
|          | 17             | 61   | 4.2                     | 10.8           | 8.4            | 2.2            | 27       | 2.7            | 10.5            | •0                          | 11                | 104        | 266              | 6                      | 210                     | 175              | •0                 | 459                         | 2300                  |
|          | 24             | 61   | 12.2                    | 8.9            | 8•3            | 2.2            | 22       | 2.8            | 10.5            | •0                          | 12                | 182        | 260              | 7                      | 200                     | 186              | •0                 | 490                         | 12000                 |
| 5        | 1<br>8         | 61   | 11.8<br>11.6            | 8.7            | 8.3            | 1.0<br>.5      | 30<br>24 | 2.9            | 10.0<br>9.5     | .0                          | 12<br>11          | 176<br>177 | 258<br>252       | 7 8                    | 230<br>200              | 187<br>190       | •0                 | 492<br>484                  | 19000<br>9500         |
| 5        | 15             | 61   | 15.9                    | 7.5            | 8.4            | 1.7            | 24       | 2.2            | 7.0             | •0                          | 13                | 177        | 256              |                        | 180                     | 188              | .0                 | <del>4</del> 97             | 18000                 |
|          |                | 61   | 15.6                    | 8.4            | 8.4            | 1.4            | 33       | 2.2            | 7.0             | .0                          | 11                | 180        | 260              | 8                      | 150                     | 181              | .1                 | 499                         | 12500                 |
|          |                | 61   | 18.7                    | 7.5            | 8.5            | 1.6            | 26       | 2.5            | 8 • 4           | .0                          | 13                | 177        | 259              | 9                      | 150                     | 185              | .1                 | 500                         | 9500                  |
| 6        | 5              | 61   | 21.1                    | 7.0            | 8.5            | 1.5            | 36       | 2.6            | 6 • 8           | •0                          | 11                | 171        | 238              | 9                      | 260                     | 177              | .0                 | 473                         | 26000                 |
| 6        | 12             | 61   | 24.0                    | 6.7            | 8.4            | 1.4            | 24       | 2.4            | 6.7             | •0                          | 12                | 166        | 236              | 9                      | 150                     | 175              | •1                 | 469                         | 4300                  |
|          |                | 61   | 21.7                    | 6.8            | 8.1            | 1.3            | 31       | 2.4            | 6.1             | •0                          | 11                | 165        | 240              | 10                     | 280                     | 166              | .0                 | 461                         | 5000                  |
| 6        | 26             | 61   | 21.8                    | 7.5            | 8.5            | 1.5            | 21       | 2.7            | 6.9             | • 0                         | 11                | 168        | 238              | 10                     | 160                     | 169              | •0                 | 457                         | 3700                  |
|          | i              |      |                         |                |                |                | L1       |                |                 |                             |                   | l          |                  | İ                      | L                       |                  | l                  |                             | L                     |

STATE

NEBRASKA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATION ISSOURI RIVER AT

OMAHA, NEBRASKA

31.

| DATE                                                                                                               |                                  |                                                      |                                             |                                                                                | <u> </u>                                                 | CHLORINE                                                            | DEMAND                                               |                                                          |                                                              |                                                             |                                                                            | <u> </u>                                                            |                                                                           |                                                                                  |                                         |                                                                           | <u> </u>                                                                      |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| DAY DAY YEAR                                                                                                       | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/l                          | pH                                          | B.O.D.<br>mg/l                                                                 | C.O.D.<br>mg/l                                           | 1-HOUR<br>mg/l                                                      | 24-HOUR<br>mg/l                                      | AMMONIA-<br>NITROGEN<br>mg/l                             | CHLORIDES<br>mg/l                                            | ALKALINITY<br>mg/l                                          | HARDNESS<br>mg/l                                                           | COLOR<br>(scale units)                                              | TURBIDITY<br>(scale units)                                                | SULFATES<br>mg/l                                                                 | PHOSPHATES<br>mg/l                      | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l                                      | COLIFORMS<br>per 100 ml.                                                      |
| 7 3 61<br>7 10 61<br>7 17 61<br>7 24 61<br>8 7 61<br>8 14 61<br>8 28 61<br>9 4 61<br>9 11 61<br>9 18 61<br>9 25 61 | 23.3<br>16.6                     | 6.1<br>6.7<br>6.4<br>6.6<br>6.7<br>7.0<br>9.1<br>9.1 | 33313232323<br>8888888888888888888888888888 | 1.0<br>.9<br>.9<br>.6<br>.7<br>.9<br>.8<br>.9<br>1.0<br>.8<br>1.7<br>.2<br>1.1 | 33<br>28<br>25<br>20<br>18<br>18<br>16<br>12<br>25<br>19 | 2.85<br>2.66<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.65<br>2.6 | 7·1<br>6·8<br>6·8<br>6·8<br>7·0<br>6·8<br>7·1<br>6·7 | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | 10<br>12<br>12<br>11<br>11<br>10<br>8<br>9<br>12<br>11<br>11 | 165<br>162<br>157<br>155<br>154<br>155<br>158<br>160<br>160 | 233<br>226<br>224<br>218<br>2203<br>221<br>225<br>227<br>228<br>230<br>236 | 12<br>10<br>12<br>12<br>10<br>8<br>7<br>6<br>8<br>8<br>8<br>11<br>6 | 150<br>170<br>150<br>140<br>200<br>160<br>150<br>130<br>220<br>180<br>150 | 169<br>182<br>178<br>176<br>173<br>178<br>186<br>186<br>191<br>193<br>205<br>192 | .00.00.00.00.00.00.00.00.00.00.00.00.00 | 449<br>445<br>441<br>445<br>469<br>464<br>471<br>439<br>436<br>471<br>468 | 3300<br>6000<br>2500<br>2700<br>2800<br>7100<br>2900<br>10000<br>4800<br>9800 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Omaha, Nebraska Operated by U.S. Geological Survey STATE

Nebraska

MAJOR BASIN

Missouri River

MINOR BASIN

Lower Missouri River

STATION LOCATION

Missouri River at

Omaha, Nebraska

| Day                              | October                                                  | November                                       | December                                                | January                                            | February                                      | March                                                    | April                                          | May                                                      | June                                            | July                                                     | August                                         | September                                      |
|----------------------------------|----------------------------------------------------------|------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------|------------------------------------------------|------------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | 27.700<br>27.700<br>27.200<br>27.500<br>28.200           | 29.000<br>28.000<br>28.000<br>28.400<br>28.700 | 10.300<br>10.200<br>10.200<br>10.700<br>10.900          | 11.600<br>11.000<br>10.500<br>10.000<br>9.400      | 10.600<br>10.300<br>10.000<br>9.780<br>9.910  | 19.700<br>21.700<br>21.900<br>25.400<br>23.000           | 23.900<br>22.800<br>23.000<br>23.000<br>24.300 | 26.600<br>26.800<br>27.200<br>27.500<br>28.200           | 29.200<br>27.700<br>24.300<br>23.000<br>23.400  | 27.000<br>27.500<br>27.700<br>27.700<br>27.700           | 33.200<br>31.500<br>31.200<br>29.200<br>30.200 | 31.500<br>32.100<br>31.800<br>31.000<br>30.000 |
| 6<br>7<br>8<br>9                 | 28.700<br>28.400<br>28.200<br>28.000<br>27.700           | 29.200<br>29.200<br>29.200<br>29.000<br>28.400 | 10.700<br>10.700<br>10.300<br>9.260<br>9.780            | 9.600<br>10.500<br>11.000<br>11.200<br>11.000      | 9.520<br>9.130<br>8.880<br>8.760<br>9.000     | 21.300<br>19.500<br>18.700<br>17.600<br>16.900           | 25.700<br>25.900<br>25.700<br>26.400<br>26.600 | 28.000<br>28.200<br>27.500<br>26.600<br>26.100           | 25.200<br>26.600<br>25.900<br>25.000<br>25.000  | 28.200<br>28.400<br>28.700<br>28.700<br>28.400           | 30.000<br>27.000<br>28.000<br>28.700<br>32.100 | 29.700<br>29.200<br>29.000<br>29.200<br>29.400 |
| 11<br>12<br>13<br>14<br>15       | 27.500<br>27.500<br>27.700<br>28.400<br>29.000           | 27.700<br>27.200<br>27.700<br>28.000<br>28.400 | 10.200<br>11.000<br>11.400<br>11.300<br>11.300          | 10.700<br>10.600<br>11.000<br>11.000               | 9.130<br>9.260<br>9.390<br>9.650<br>9.650     | 16.700<br>17.600<br>18.900<br>17.800<br>25.900           | 26.800<br>27.200<br>27.500<br>27.000<br>26.800 | 25.400<br>25.700<br>26.400<br>26.600<br>27.200           | 25.200<br>25.900<br>27.700<br>31.800<br>40.400  | 28.400<br>29.400<br>30.000<br>29.400<br>28.200           | 34.600<br>30.000<br>26.800<br>27.200<br>28.400 | 31.200<br>31.000<br>31.500<br>31.200<br>29.000 |
| 16<br>17<br>18<br>19<br>20       | 28.400<br>28.000<br>27.500<br>27.500<br>27.500           | 28.700<br>27.000<br>24.100<br>20.700<br>18.100 | 11.600<br>11.400<br>10.700<br>10.400<br>10.200          | 10.900<br>10.600<br>10.300<br>10.700<br>10.500     | 10.600<br>11.600<br>10.400<br>9.130<br>9.130  | 28.700<br>28.700<br>28.400<br>26.800<br>24.100           | 26.400<br>25.400<br>24.600<br>24.600<br>25.000 | 27.700<br>27.500<br>27.000<br>27.000<br>26.100           | 33.700<br>25.000<br>23.000<br>23.900<br>25.000  | 28.200<br>29.200<br>29.700<br>29.700<br>29.700           | 28.400<br>28.700<br>29.000<br>30.700<br>29.000 | 27.500<br>27.700<br>28.200<br>29.000<br>29.000 |
| 21<br>22<br>23<br>24<br>25       | 27.000<br>27.200<br>27.200<br>27.500<br>28.000           | 16.200<br>14.000<br>12.400<br>11.800<br>11.600 | 8.000<br>8.500<br>8.000<br>8.000<br>8.000               | 10.200<br>10.000<br>9.500<br>9.000<br>8.500        | 9.650<br>10.700<br>14.100<br>15.800<br>16.200 | 21.300<br>18.900<br>20.700<br>24.300<br>27.500           | 26.400<br>26.800<br>26.600<br>26.400<br>26.100 | 25.000<br>25.400<br>25.900<br>25.700<br>24.600           | 26.100<br>26.800<br>26.400<br>26.100<br>26.100  | 30.400<br>30.200<br>29.400<br>29.700<br>29.700           | 29.000<br>29.700<br>30.400<br>30.000<br>28.700 | 29.200<br>29.700<br>29.200<br>28.700<br>26.700 |
| 26<br>27<br>28<br>29<br>30<br>31 | 28.000<br>27.700<br>28.200<br>29.000<br>29.700<br>30.000 | 11.300<br>11.000<br>11.100<br>11.300<br>11.300 | 8.500<br>13.500<br>10.300<br>10.600<br>10.700<br>11.400 | 9.000<br>9.500<br>8.500<br>8.000<br>7.500<br>9.000 | 17.200<br>18.000<br>16.200                    | 29.400<br>30.000<br>30.400<br>30.000<br>29.200<br>27.200 | 25.900<br>25.400<br>25.700<br>26.100<br>26.100 | 23.900<br>24.100<br>24.300<br>25.400<br>26.800<br>29.700 | 26.1400<br>29.000<br>28.200<br>27.700<br>27.000 | 30.000<br>30.000<br>34.600<br>30.400<br>29.700<br>30.200 | 29.000<br>29.700<br>30.000<br>30.400<br>31.000 | 28.200<br>28.400<br>28.200<br>28.700<br>30.400 |

STATE

SOUTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

RADIOACTIVITY DETERMINATIONS MINO

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATION MISSOURI RIVER AT

YANKTON, SOUTH DAKOTA

| DATE                |                               |                    | RADI      | DACTIVITY IN V | WATER     |           |       | T                                                | T 545:5                       | A CONTRACTOR AND THE |          |   | - <del></del> |                |       |
|---------------------|-------------------------------|--------------------|-----------|----------------|-----------|-----------|-------|--------------------------------------------------|-------------------------------|----------------------|----------|---|---------------|----------------|-------|
| SAMPLE              | DATE OF<br>DETERMI-<br>NATION |                    | ALPHA     |                | T         | BETA      |       | 1                                                |                               | ACTIVITY IN PLA      |          | 4 | RAI           | DIOACTIVITY IN |       |
| TAKEN               | NATION                        | SUSPENDED          | DISSOLVED | TOTAL          | SUSPENDED | DISSOLVED | TOTAL | -                                                | DATE OF<br>DETERMI-<br>NATION | ALPHA                | ACTIVITY | 4 |               | GROSS ACTIVI   |       |
| MO. DAY YEAR        | MONTH DAY                     | μμ <sub>C</sub> /I | μμε/Ι     | μμε/Ι          | μμς/1     | μμc/l     | μμc/l | -                                                | MO. DAY                       |                      | BETA     | - | SUSPENDED     | DISSOLVED      | TOTAL |
|                     |                               |                    |           |                |           |           | 1,750 | <del>                                     </del> | MO. DAT                       | <i>дре/g</i>         | μμc/g    | + | μμε/Ι         | μμc/l          | μμς/Ι |
| 10 24 60*           |                               | 0                  | 0         | 0              | 0         | ٥         | 1 0   | 1                                                |                               |                      |          |   | İ             |                |       |
| 11 28 60*           |                               | 0                  | 7         | 7              | 0         | 0         | 0     | 1                                                | İ                             |                      |          | 1 |               |                |       |
| 12 27 60*           | 1 10                          | 0                  | 13        | 13             | 0         | 1         | 1     |                                                  |                               |                      |          | ĺ |               |                |       |
| 1 30 61*            | 2 8                           | 0                  | 5         | 5              | 0         | ٥         | l 0   | 1                                                |                               | 1                    |          | 1 | 1             |                |       |
| 2 27 61*            | 3 10                          | 0                  | 3         | 3              | 0         | 1         | 1     | 1                                                |                               |                      |          |   |               |                |       |
| 3 27 61*            | 4 12                          | 0                  | 4         | 4              | 0         | 1         | 1     |                                                  | 1                             |                      | ļ        | i |               |                |       |
| 4 24 61*            | 5 8                           | 1                  | 3         | 4              | 0         | 0         | 0     |                                                  |                               |                      |          | 1 |               |                |       |
| 5 29 61*            | 6 12                          | 1 1                | 4         | 5              | 0         | 0         | 0     |                                                  |                               |                      |          | 1 |               |                |       |
| 6 26 61*            | 7 21                          | 0                  | 4         | 4              | 0         | 8         | 8     |                                                  |                               |                      |          |   |               |                |       |
| 7 31 61*            | 8 24                          | 1                  | 4         | 5              | 1 1       | 0         | 1     |                                                  |                               |                      |          |   |               |                |       |
| 8 21 61*<br>9 11 61 | 9 14                          | 1                  | 3         | 4              | 0         | 12        | 12    | 1                                                |                               |                      |          |   |               |                |       |
| 9 18 61             | 10 24<br>10 13                | _                  | _         | -              | 14        | 18        | 32    | İ                                                |                               |                      |          | 1 | 1             |                |       |
| 9 25 61             | 10 15                         | 0                  | 2         | _              | 0         | 16        | 16    |                                                  |                               |                      |          | ŀ |               |                |       |
| 7 2 0 1             | 10 2                          | 0                  | 2         | 2              | 3         | 30        | 33    |                                                  |                               |                      |          |   |               |                |       |
|                     |                               |                    |           |                |           |           |       |                                                  |                               |                      | 1        |   |               |                |       |
|                     |                               |                    |           |                |           |           |       |                                                  |                               |                      |          | İ |               |                |       |
|                     |                               |                    |           |                |           |           |       | l i                                              |                               |                      |          |   |               |                |       |
|                     |                               |                    |           |                |           |           |       |                                                  |                               |                      |          | 1 |               | i              |       |
|                     |                               |                    |           |                |           |           |       |                                                  |                               |                      |          | İ |               |                |       |
|                     |                               | İ                  |           |                |           |           |       |                                                  |                               |                      |          | 1 |               |                |       |
|                     |                               |                    |           |                |           |           |       |                                                  |                               |                      |          |   | 1 1           |                |       |
|                     |                               |                    |           |                |           |           |       |                                                  |                               |                      |          |   |               |                |       |
|                     |                               |                    |           |                |           |           |       |                                                  |                               |                      |          |   |               |                |       |
|                     |                               |                    |           |                | İ         |           |       |                                                  |                               |                      |          |   |               |                |       |
|                     |                               |                    |           |                | l i       |           |       |                                                  |                               |                      |          |   |               |                |       |
|                     |                               |                    |           |                |           |           |       |                                                  |                               |                      |          |   |               |                |       |
|                     |                               |                    |           |                |           |           |       |                                                  |                               |                      |          |   |               |                |       |
| 1                   |                               |                    |           |                |           |           |       |                                                  |                               |                      |          | 1 |               |                |       |
|                     |                               |                    |           |                |           |           |       |                                                  |                               |                      |          |   | 1             |                |       |
|                     |                               |                    |           |                |           |           |       |                                                  |                               |                      |          |   | 1             |                |       |
|                     |                               |                    |           |                |           |           |       |                                                  | i                             |                      |          |   | ]             | 1              |       |
|                     | İ                             |                    |           |                |           |           |       |                                                  |                               |                      |          |   |               | ŀ              |       |
|                     |                               |                    |           |                |           |           |       |                                                  | ļ                             |                      |          |   |               |                |       |
|                     |                               |                    |           |                |           |           |       |                                                  |                               |                      |          |   |               | ĺ              |       |
|                     | 1                             | į                  | [         |                |           |           |       |                                                  |                               |                      |          |   |               |                |       |
|                     |                               |                    |           |                |           |           |       |                                                  |                               |                      |          |   |               | 1              |       |
|                     |                               |                    |           |                |           |           |       |                                                  |                               |                      |          |   |               |                |       |
|                     |                               |                    |           |                |           |           |       |                                                  |                               |                      |          |   |               |                |       |
|                     |                               | 1                  |           |                |           |           |       |                                                  | ľ                             |                      |          |   |               |                |       |
|                     |                               |                    |           | 1              |           |           |       |                                                  | 1                             |                      |          | 1 | 1             | 1              |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

SOUTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

.

STATION LOCATION MISSOURI RIVER AT

YANKTON, SOUTH DAKOTA

|                      |                                                                                                                                          |         |                       | ALGAE (A                                                                          | lumber                | per ml.)                                                                                                  |                                                    |                                                                                                                                            |                                                                                                                                   | INE                                | RT                                                                                             | Γ                                                                                |                                 |                                             | DI                                                             | ATO                                                                                                                                                      | MS                                |                             |                 | $\neg \neg$                                                                                                                                              | i.                                                                      |          | MICROIN                        | ERTEBR                                                                       | ATES                         |                                       | - 6.5                                                       |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------|-----------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------|---------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------|--------------------------------|------------------------------------------------------------------------------|------------------------------|---------------------------------------|-------------------------------------------------------------|
| DATE<br>OF SAMPLE    |                                                                                                                                          | BLUE-   | GREEN                 | GREE                                                                              |                       | FLAGEL<br>(Pigme                                                                                          |                                                    | DIATO                                                                                                                                      | эмэ                                                                                                                               | DIA<br>SHE<br>(No. p               | LLS                                                                                            |                                                                                  | DOMI<br>(See                    | NANT<br>Introd                              | SPEC<br>luction                                                | for Co                                                                                                                                                   | ID PEI<br>de Ider                 | RCENT                       | rages<br>ion*)  |                                                                                                                                                          | ортанкт<br>внеатне<br>ml.)                                              | MI.)     | s<br>liter)                    | EA<br>liter)                                                                 | )ES<br>liter)                | AL FORM                               | cenen<br>oductio<br>ificatio                                |
| MONTH<br>DAY<br>YEAR | TOTAL                                                                                                                                    | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                                                                           | FILA-<br>MENT-<br>OUS | GREEN                                                                                                     | OTHER                                              | CENTRIC                                                                                                                                    | PENNATE                                                                                                                           | CENTRIC                            | PENNATE                                                                                        | FIRST#                                                                           | PER.<br>CENTAGE                 | SECOND#                                     | PER-<br>CENTAGE                                                | THIRD#                                                                                                                                                   | PER.<br>CENTAGE                   | FOURTH                      | PER.<br>CENTAGE | OTHER PER-<br>CENTAGE                                                                                                                                    | OTHER HICROPLANKTOM,<br>PUNGI AND SHEATHED<br>BACTERIA<br>(No. per ml.) | (No. per | ROTIFIERS<br>(No. per liter)   | CRUSTACEA<br>(No. per liter)                                                 | NEMATODES<br>(No. per liter) | OTHER ANIMAL FORMS<br>(No. per liter) | poninant genera<br>(See Introduction<br>for Identification) |
| 10                   | 900<br>6500<br>500<br>200<br>100<br>500<br>800<br>2000<br>16100<br>3800<br>4800<br>4800<br>7500<br>8600<br>5300<br>5300<br>12100<br>7700 | 20      | 60<br>180<br>40<br>20 | 50<br>50<br>50<br>50<br>310<br>490<br>80<br>460<br>90<br>230<br>870<br>2500<br>70 | 20                    | 490<br>20<br>20<br>200<br>470<br>220<br>130<br>270<br>1750<br>1750<br>2970<br>1800<br>4200<br>4200<br>800 | 90<br>50<br>90<br>20<br>20<br>40<br>40<br>60<br>20 | 1050<br>780<br>6100<br>350<br>140<br>20<br>50<br>70<br>130<br>15070<br>2550<br>21050<br>1210<br>3130<br>4390<br>1700<br>670<br>1620<br>110 | 1270<br>50<br>130<br>310<br>70<br>200<br>250<br>440<br>630<br>1780<br>1900<br>2170<br>1140<br>2130<br>1040<br>4760<br>1390<br>160 | 3540<br>1070<br>1990<br>620<br>560 | 270<br>400<br>650<br>50<br>50<br>20<br>20<br>330<br>3410<br>860<br>1970<br>1040<br>3190<br>160 | 82<br>80<br>80<br>84<br>84<br>36<br>36<br>82<br>84<br>84<br>86<br>84<br>87<br>47 | 40000<br>87 6557263534440<br>32 | 2 3 6 8 0 8 2 2 8 4 9 9 9 4 0 0 8 3 5 8 5 8 | 10<br>10<br>10<br>20<br>20<br>10<br>20<br>10<br>20<br>20<br>30 | 36<br>83<br>82<br>96<br>35<br>35<br>36<br>37<br>37<br>37<br>37<br>37<br>37<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38 | 10<br>*<br>10<br>*<br>*<br>*<br>* | 832<br>45159657825943<br>80 | * *             | 40<br>40<br>30<br>10<br>10<br>20<br>40<br>20<br>20<br>40<br>20<br>40<br>20<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 | 290<br>70<br>400<br>50<br>40<br>20<br>50                                |          | 1 6 32 3 58 10 9 8 6 10 474 14 | 1<br>12<br>1<br>48<br>40<br>8<br>6<br>3<br>3<br>3<br>2<br>3<br>1<br>111<br>3 | 1 24                         | 1                                     | 933<br>                                                     |

## ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

SOUTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATION MISSOURI RIVER AT

YANKTON, SOUTH DAKOTA

| DATE OF SAMPLE                                                                                                                                               | <u> </u>                                                                      | E                                                                                       | CTRACTABL                          | ES                                                                          | <u> </u>            |                                                         | · · · · · · · · · · · · · · · · · · · |                                     | CHLOROF                                 | ORM FXTR                     | ACTABLES                |               |                 |                                         |                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------|---------------------|---------------------------------------------------------|---------------------------------------|-------------------------------------|-----------------------------------------|------------------------------|-------------------------|---------------|-----------------|-----------------------------------------|-----------------------------------------------------|
| BEGINNING END                                                                                                                                                |                                                                               |                                                                                         |                                    |                                                                             |                     |                                                         |                                       |                                     | NEUTRALS                                |                              |                         |               | 1               |                                         |                                                     |
| DAY YEAR MONTH                                                                                                                                               | GALLONS<br>FILTERED                                                           | TOTAL                                                                                   | CHLORO-<br>FORM                    | ALCOHOL                                                                     | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES                                       | TOTAL                                 | ALIPHATICS                          | AROMATICS                               | OXYGEN-<br>ATED<br>COMPOUNDS | Loss                    | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES                                   | LOSS                                                |
| 10 24 60 11 7 11 22 60 12 5 12 20 60 1 3 130 61 2 13 2 8 61 4 10 4 26 61 5 22 61 6 5 5 22 61 6 6 5 6 19 61 7 31 61 8 14 8 28 61 9 11 9 25 61 10 9 25 61 10 9 | 4400<br>4370<br>3290<br>4490<br>4860<br>3520<br>5000<br>13380<br>4690<br>4920 | 156<br>238<br>156<br>159<br>156<br>167<br>129<br>151<br>123<br>138<br>122<br>130<br>130 | 3064098824582475<br>32343244235223 | 126<br>212<br>122<br>119<br>117<br>139<br>81<br>109<br>95<br>86<br>98<br>95 | 112210112           | 8<br>7<br>9<br>12<br>11<br>8<br>-<br>-<br>11<br>-<br>10 | 10<br>10<br>9<br>8<br>11<br>10<br>    | 1 1 1 1 1 1 1 1 1 2 1 2 1 2 2 1 2 2 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 88768787                     | 0 0 0 0 0 1 1 1 0 0 0 0 | 2             | 1               | 111011111111111111111111111111111111111 | 5<br>4<br>8<br>1<br>1<br>8<br>5<br>-<br>-<br>-<br>7 |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

SOUTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATIONMISSOURI RIVER AT

YANKTON, SOUTH DAKOTA

| DATE          |          |                                  |                             |                |                |                | CHLORINE       | DEMAND          |                              |                   |                    |                  |                        | ·                          |                  |                    |                                      |                          |
|---------------|----------|----------------------------------|-----------------------------|----------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|----------------------------|------------------|--------------------|--------------------------------------|--------------------------|
| OF SAW        | YEAR     | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/l | Нα             | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/I | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml. |
| 10 3          | 60       | 16.8                             | 10.6                        | 8.4            | • 9            | -              | 2.8            | 4.8             | •1                           | 11                | 148                | 200              | 30                     | 20                         |                  | _                  | -                                    | 37                       |
| 10 10         | 60<br>60 | 17.4<br>16.5                     | 10.5                        | 8.3            | 1.8            | -              | 2.8            | 6.6             | •1                           | 12                | 156                | 220              | 20                     | 10                         | -                | -                  | -                                    | -                        |
|               | 60       | 12.0                             | 10.9                        | 8.3            | 2.9<br>1.9     |                | 2•3<br>2•3     | 5 • 8<br>4 • 8  | •1                           | 12<br>12          | 158<br>158         | 200<br>220       | 15<br>30               | 10<br>10                   | _                | _                  | -                                    | 32                       |
| 10 31         | 60       | 10.9                             | 10.3                        | 8.4            | 1.8            | -              | 1.8            | 4.2             | •1                           | 12                | 168                | 220              | 20                     | 25                         | _                |                    | _                                    | 34                       |
| 11 7          | 60       | 8.3                              | 11.6                        | 8.2            | • 8            | -              | 2.2            | 3.9             | .1                           | 12                | 170                | 216              | 20                     | 10                         | _                | _                  | _                                    | 14                       |
| 11   15       | 60       | 6.2                              | 13.2                        | 8 • 4          | • 7            | -              | 2.2            | 4 • 2           | •1                           | 12                | 164                | 236              | 30                     | 15                         | _                | -                  | _                                    | *10                      |
|               | 60       | 6.0                              | 12.8                        | 8.3            | • 5            | -              | 2.8            | 3 • 8           | •1                           | 12                | 172                | 232              | 20                     | 10                         | -                | -                  | -                                    | 19                       |
| 11 28<br>12 5 | 60<br>60 | 9.0                              | 13.9                        | 8.5            | • 2            | _              | 2.1            | 3 • 1           | •1                           | 15                | 168                | 258              | 40                     | 50                         | -                | -                  | -                                    | 9                        |
| 12 12         | 60       | 2.5                              | 15.5<br>13.1                | 8.2            | • 8<br>• 7     | [              | 3•9<br>1•9     | 4•2<br>3•0      | •1                           | 13<br>14          | 172                | 264              | 30                     | 30                         | -                | -                  | -                                    | 20                       |
| 2 19          | 60       | 1.0                              | 13.5                        | 8.4            | • 4            |                | •9             | 2.4             | •1<br>•1                     | 12                | 170<br>172         | 244<br>224       | 30<br>30               | 30<br>30                   | -                | _                  | -                                    | 1000                     |
|               | 60       | .8                               | 13.3                        | 8.1            | . 4            | _ [            | • 9            | 2.6             | .1                           | 16                | 174                | 244              | 10                     | 10                         |                  |                    |                                      | 1800                     |
| 1 3           | 61       | 4.0                              | 13.3                        | 8.1            | •7             | -              | 1.2            | 3.8             | .1                           | 13                | 178                | 232              | 20                     | 35                         | _                |                    |                                      | _                        |
| 1 9           | 61       | . 8                              | 13.2                        | 8.1            | • 9            | -              | 3∙9            | 5•7             | •2                           | 12                | 180                | 236              | 10                     | 10                         | -                |                    | -                                    | 20                       |
| 1 16          | 61       | • 9                              | 13.6                        | 8.2            | • 8            | ~              | 1.4            | 5•3             | •1                           | 13                | 176                | 232              | 20                     | 10                         | -                | -                  | -                                    | *17                      |
|               | 61<br>61 | 2.0<br>3.0                       | 14.5                        | 8.2            | • 8            | -              | 2 6            | 1.6             | •1                           | 13                | 176                | 224              | 5                      | 0                          | -                | -                  | -                                    | 13                       |
|               | 61       | 3.0                              | 13.8                        | 8 • 1<br>7 • 9 | •7<br>•9       | -              | 2.2            | 3 • 4 i         | •2<br>•2                     | 18<br>13          | 166<br>168         | 228<br>224       | 20<br>20               | 20<br>10                   | -                |                    | -                                    | 2                        |
|               | 61       | .5                               | 15.5                        | 8.2            | 1.0            | _              | .8             | 2.1             | •1                           | 12                | 178                | 266              | 15                     | 10                         | _                | _                  | _                                    | 12<br>6                  |
| 1 - 1         | 61       | 1.0                              | 14.5                        | 8.2            | .9             | _              | • 5            | 3.2             | .2                           | 25                | 176                | 232              | 10                     | 10                         | _                | _ }                | _                                    | 3                        |
|               | 61       | 1.9                              | 13.4                        | 8.2            | • 3            | -              | • 2            | 2.9             | •2                           | 25                | 168                | 210              | 20                     | 10                         | -                | _                  | _                                    | *1                       |
|               | 61       | 3.0                              | 12.7                        | 8.1            | 1.1            | ~              | 1.1            | 4•4             | •2                           | 19                | 154                | 200              | 40                     | 10                         | _                | -                  | -                                    | 38                       |
|               | 61       | 4.8                              | 13.2                        | 8.1            | 1.8            | -              | • 8            | 4.0             | •2                           | 20                | 154                | 200              | 30                     | 30                         |                  | -                  | _                                    | _                        |
|               | 61       | 3.1                              | 15.4                        | 8.1            | 2.3            | -              | 1.2            | 3.8             | •2                           | 16                | 154                | 212              | 20                     | 10                         | -                | -                  | -                                    | 14                       |
|               | 61       | 4.0<br>7.0                       | 15.4                        | 8.2            | 1.6            | -              | • 4            | 2•2<br>4•8      | • 2                          | 20                | 160                | 182              | 30                     | 10                         | -                | •1                 | -                                    | 6                        |
|               | 61       | 6.2                              | 16.2                        | 8.3            | • 7            |                | • 4            | 2.9             | •2                           | 18<br>20          | 148<br>170         | 204<br>216       | 20<br>30               | 10<br>25                   | _                | •1                 | -                                    | -                        |
|               | 61       | 4.5                              | 16.8                        | 8.3            | .6             | _              | 1.8            | 2.4             | •2                           | 18                | 174                | 256              | 40                     | 60                         | -                | .1                 | _                                    | . 2<br>—                 |
|               | 61       | 8.9                              | 12.9                        | 8.2            | 1.1            | -              | 1.0            | 3.3             | .2                           | 19                | 168                | 232              | 40                     | 30                         | _                | .1                 | _                                    | 7                        |
|               | 61       | 9.3                              | 12.5                        | 8 • 4          | 1.8            | -              | • 4            | 2 • 8           | •2                           | 23                | 170                | 232              | 40                     | 35                         | _                | .1                 | -                                    | 13                       |
|               | 61       | 10.4                             | 13.5                        | 8.2            | 4.9            | -              | • 5            | 3.3             | •2                           | 20                | 158                | 264              | 40                     | 20                         | -                | •1                 | -                                    | _                        |
|               | 61       | 13.8                             | 12.6                        | 8.3            | 4.5            | ~              | • 9            | 3 • 4           | •1                           | 20                | 176                | 236              | 30                     | 50                         | -                | • 1                | -                                    | _                        |
| 1             | 61       | 13.8                             | 14.1                        | 8.2            | 1.8<br>3.7     | -              | • 9            | 3.6             | •2                           | 20                | 166                | 234              | 40                     | 20                         | _                | • 1                | -                                    | -                        |
|               | 61       | 20.9                             | 9.0                         | 8.3            | 2.8            | _              | 1.3            | 3.5             | •1                           | 22<br>25          | 164                | 240<br>230       | 40<br>20               | 30                         | -                | •1                 | -                                    |                          |
|               | 61       | 21.8                             | 9.0                         | 8.2            | .8             | _              | 1 · 3  <br>• 7 | 3.9             | • 2                          | 17                | 160<br>152         | 228              | 30                     | 20  <br>20                 | -                | •0                 | -                                    | 51<br>150                |
|               | 61       | 20.4                             | 9.5                         | 8.2            | 8.4            | _              | 1.5            | 6.0             | .2                           | 15                | 150                | 220              | 30                     | 20                         | _                | .1                 | _                                    | 150<br>70                |
| 1 1           | 61       | 24.0                             | 9.0                         | 8.2            | 1.2            | -              | 2.0            | 5.8             | •2                           | 18                | 156                | 226              | 20                     | 20                         |                  | .1                 | _                                    | 49                       |
|               |          |                                  |                             |                |                | İ              |                |                 |                              |                   |                    |                  |                        | - "                        |                  |                    |                                      | 7                        |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

SOUTH DAKUTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI RIVER

STATION LOCATIONMISSOURI RIVER AT

YANKTON, SOUTH DAKOTA

| DATE<br>OF SAMPLE                                                                                                  | TEMP.                                                             | DISSOLVED      |                                                                               |                                                                            |                | CHLORINE                                                              | DEMAND                                                                                                   |                                                          |                                                                           |                                                              |                                                                           |                                                                     |                                                                      |                  |                      |                                      |                                           |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|------------------|----------------------|--------------------------------------|-------------------------------------------|
| DAY                                                                                                                | (Degrees<br>Centigrade)                                           | OXYGEN<br>mg/l | pН                                                                            | B.O.D.<br>mg/l                                                             | C.O.D.<br>mg/l | 1-HOUR<br>mg/l                                                        | 24-HOUR<br>mg/l                                                                                          | AMMONIA-<br>NITROGEN<br>mg/I                             | CHLORIDES<br>mg/l                                                         | ALKALINITY<br>mg/l                                           | HARDNESS<br>mg/l                                                          | COLOR<br>(scale units)                                              | TURBIDITY<br>(scale units)                                           | SULFATES<br>mg/i | PHOSPHATES<br>mg/l   | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml.                  |
| 7 10 61<br>7 17 61<br>7 24 61<br>8 7 61<br>8 14 61<br>8 28 61<br>9 4 61<br>9 5 61<br>9 11 61<br>9 18 61<br>9 25 61 | 24.9<br>25.0<br>24.8<br>23.5<br>24.2<br>21.4<br>—<br>21.0<br>20.8 | 10.1           | 8 · 1<br>8 · 2<br>8 · 1<br>8 · 2<br>8 · 2<br>8 · 2<br>8 · 2<br>8 · 2<br>8 · 2 | 9<br>1.2<br>1.0<br>2.1<br>3.6<br>8<br>2.3<br>1.0<br>1.2<br>1.0<br>9<br>1.0 |                | 1.8<br>1.0<br>.8<br>1.5<br>1.4<br>1.2<br>1.4<br>1.6<br>.5<br>.6<br>.9 | 5 · 8<br>5 · 2<br>5 · 1<br>4 · 6<br>4 · 8<br>4 · 1<br>4 · 1<br>3 · 9<br>4 · 2<br>3 · 0<br>2 · 8<br>2 · 6 | .2<br>.2<br>.2<br>.1<br>.1<br>.1<br>.2<br>.2<br>.2<br>.2 | 18<br>19<br>19<br>20<br>22<br>20<br>18<br>19<br>16<br>-<br>20<br>18<br>16 | 144<br>162<br>1608<br>156<br>152<br>152<br>152<br>154<br>158 | 224<br>232<br>214<br>222<br>224<br>220<br>232<br>248<br>224<br>234<br>238 | 40<br>20<br>20<br>40<br>20<br>30<br>30<br>40<br>30<br>-<br>20<br>20 | 30<br>20<br>20<br>20<br>20<br>20<br>20<br>30<br>20<br>20<br>30<br>20 |                  | .1 .1 .1 .1 .1 .1 .1 |                                      | 120<br>30<br>960<br>-18<br>280<br>4<br>24 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Yankton, South Dakota Operated by U.S. Geological Survey

STATE

South Dakota

MAJOR BASIN

Missouri River

MINOR BASIN

Lower Missouri River

STATION LOCATION

Missouri River at

Yankton, South Dakota

| Day                              | October                                                  | November                                       | December                                           | January                                                  | February                                  | March                                                  | April                                          | May                                                      | June                                           | July                                                     | August                                                   | September                                      |
|----------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|-------------------------------------------|--------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| 1                                | 28.100                                                   | 27.800                                         | 8.420                                              | 8.800                                                    | 10.000                                    | 6.740                                                  | 15.000                                         | 25.400                                                   | 19.500                                         | 29.800                                                   | 26.400                                                   | 29.000                                         |
| 2                                | 27.700                                                   | 28.000                                         | 8.100                                              | 8.730                                                    | 8.500                                     | 6.520                                                  | 17.700                                         | 24.900                                                   | 20.300                                         | 28.900                                                   | 28.900                                                   | 28.900                                         |
| 3                                | 27.800                                                   | 27.600                                         | 8.380                                              | 8.730                                                    | 8.000                                     | 6.600                                                  | 19.900                                         | 23.000                                                   | 21.000                                         | 28.600                                                   | 27.700                                                   | 29.500                                         |
| 4                                | 27.600                                                   | 27.100                                         | 8.660                                              | 8.730                                                    | 8.960                                     | 6.460                                                  | 22.000                                         | 23.000                                                   | 21.800                                         | 28.000                                                   | 25.100                                                   | 29.500                                         |
| 5                                | 27.400                                                   | 27.400                                         | 8.760                                              | 8.660                                                    | 8.660                                     | 7.220                                                  | 21.200                                         | 22.000                                                   | 19.600                                         | 28.500                                                   | 26.000                                                   | 28.900                                         |
| 6<br>7<br>8<br>9                 | 27.400<br>27.300<br>27.800<br>28.100<br>28.800           | 27.600<br>28.100<br>27.600<br>26.300<br>27.100 | 8.420<br>8.730<br>9.160<br>9.920<br>9.640          | 8.560<br>8.620<br>8.700<br>8.800<br>8.730                | 8.620<br>8.520<br>8.310<br>7.360<br>6.180 | 8.730<br>9.360<br>8.760<br>7.580<br>6.880              | 22.500<br>23.000<br>21.700<br>20.500<br>20.600 | 21.800<br>22.300<br>22.700<br>22.200<br>23.000           | 21.000<br>21.500<br>21.000<br>22.200<br>23.100 | 29.200<br>28.300<br>28.400<br>28.400<br>29.200           | 27.200<br>27.600<br>28.700<br>26.100<br>23.000           | 28.700<br>29.800<br>30.000<br>29.700<br>29.400 |
| 11                               | 28.300                                                   | 27.100                                         | 9.400                                              | 8.920                                                    | 6.320                                     | 6.980                                                  | 22.700                                         | 21.800                                                   | 23.800                                         | 29.100                                                   | 25.800                                                   | 28.600                                         |
| 12                               | 27.400                                                   | 27.000                                         | 9.760                                              | 9.040                                                    | 7.020                                     | 7.080                                                  | 23.000                                         | 21.300                                                   | 24.900                                         | 27.500                                                   | 27.700                                                   | 28.100                                         |
| 13                               | 27.600                                                   | 27.000                                         | 8.920                                              | 8.960                                                    | 7.470                                     | 7.080                                                  | 23.400                                         | 23.200                                                   | 21.800                                         | 28.400                                                   | 28.700                                                   | 28.600                                         |
| 14                               | 27.900                                                   | 26.600                                         | 8.450                                              | 9.000                                                    | 7.260                                     | 7.160                                                  | 22.800                                         | 25.000                                                   | 16.200                                         | 30.200                                                   | 29.600                                                   | 28.900                                         |
| 15                               | 27.400                                                   | 23.900                                         | 8.660                                              | 8.880                                                    | 7.440                                     | 7.190                                                  | 21.700                                         | 22.300                                                   | 15.800                                         | 30.200                                                   | 29.200                                                   | 27.700                                         |
| 16                               | 27.100                                                   | 21.400                                         | 9.640                                              | 9.120                                                    | 7.440                                     | 6.880                                                  | 22.200                                         | 20.900                                                   | 19.100                                         | 30.200                                                   | 28.600                                                   | 28.300                                         |
| 17                               | 26.900                                                   | 18.500                                         | 9.640                                              | 9.280                                                    | 7.050                                     | 6.740                                                  | 22.900                                         | 19.500                                                   | 21.500                                         | 30.700                                                   | 27.900                                                   | 28.200                                         |
| 18                               | 26.500                                                   | 15.800                                         | 9.680                                              | 9.520                                                    | 7.750                                     | 7.330                                                  | 23.800                                         | 19.500                                                   | 24.500                                         | 30.200                                                   | 27.700                                                   | 27.600                                         |
| 19                               | 26.700                                                   | 13.000                                         | 10.700                                             | 9.500                                                    | 8.100                                     | 7.800                                                  | 24.000                                         | 21.400                                                   | 27.300                                         | 28.600                                                   | 27.100                                                   | 28.200                                         |
| 20                               | 26.900                                                   | 10.400                                         | 10.600                                             | 9.500                                                    | 8.140                                     | 11.400                                                 | 24.900                                         | 23.100                                                   | 23.800                                         | 28.900                                                   | 27.500                                                   | 27.400                                         |
| 21                               | 27.400                                                   | 9.640                                          | 10.700                                             | 9.500                                                    | 9.160                                     | 13.800                                                 | 25.800                                         | 25.800                                                   | 20.300                                         | 29.200                                                   | 27.000                                                   | 27.300                                         |
| 22                               | 27.300                                                   | 9.080                                          | 10.200                                             | 9.500                                                    | 10.600                                    | 15.200                                                 | 25.000                                         | 25.200                                                   | 23.000                                         | 29.600                                                   | 25.100                                                   | 27.700                                         |
| 23                               | 26.900                                                   | 8.800                                          | 9.480                                              | 9.500                                                    | 9.600                                     | 17.100                                                 | 23.900                                         | 20.200                                                   | 28.200                                         | 29.300                                                   | 26.200                                                   | 24.900                                         |
| 24                               | 27.100                                                   | 8.700                                          | 9.120                                              | 9.500                                                    | 8.960                                     | 15.600                                                 | 22.700                                         | 17.800                                                   | 28.100                                         | 28.800                                                   | 27.000                                                   | 23.800                                         |
| 25                               | 27.600                                                   | 8.620                                          | 8.700                                              | 9.500                                                    | 9.080                                     | 14.200                                                 | 24.400                                         | 20.600                                                   | 28.000                                         | 28.500                                                   | 27.400                                                   | 22.000                                         |
| 26<br>27<br>28<br>29<br>30<br>31 | 28.600<br>28.100<br>27.600<br>27.600<br>27.400<br>27.700 | 8.960<br>9.080<br>9.760<br>8.960<br>8.730      | 9.040<br>9.560<br>9.800<br>9.520<br>9.120<br>8.960 | 10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000 | 8.960<br>9.120<br>8.280                   | 14.300<br>12.500<br>9.160<br>7.470<br>10.200<br>13.000 | 27.800<br>27.700<br>28.900<br>27.200<br>26.200 | 23.800<br>23.100<br>22.300<br>21.800<br>21.500<br>20.600 | 27.800<br>25.000<br>23.200<br>29.700<br>29.100 | 27.500<br>26.900<br>28.200<br>28.600<br>29.300<br>29.200 | 28,500<br>28,600<br>29,400<br>29,800<br>30,100<br>29,500 | 24.000<br>25.000<br>27.900<br>31.200<br>30.700 |

STATE

NORTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

MISSOURI-SOURIS RIVERS

STATION LOCATION MISSOURI RIVER AT

BISMARCK, NORTH DAKOTA

| DATE         |           |           | RAD                | OACTIVITY IN V | VATER     |           |       | 1 | RADIOA                        | CTIVITY IN PLA | NKTON (drv) | Ι        | PAD       | HOACTIVITY IN | VATER |
|--------------|-----------|-----------|--------------------|----------------|-----------|-----------|-------|---|-------------------------------|----------------|-------------|----------|-----------|---------------|-------|
| SAMPLE       | DATE OF   |           | ALPHA              |                |           | BETA      | ·     | 1 |                               |                | ACTIVITY    | İ        |           | GROSS ACTIVIT |       |
|              |           | SUSPENDED | DISSOLVED          | TOTAL          | SUSPENDED | DISSOLVED | TOTAL | 1 | NATION                        | ALPHA          | BETA        | 1        | SUSPENDED | DISSOLVED     | TOTAL |
| MO. DAY YEAR | MONTH DAY | μμε/Ι     | μμς/Ι              | μμc/l          | μμc/1     | μμc/l     | μμc/l |   | MO. DAY                       | ##c/g          | μμc/g       | <u> </u> | μμε/      | μμε/Ι         | ppc/I |
|              | 3 17      |           | ALPHA<br>DISSOLVED | TOTAL          | SUSPENDED | DISSOLVED |       |   | DATE OF<br>DETERMI-<br>NATION | GROSS<br>ALPHA | BETA        |          | SUSPENDED | DISSOLVED     | TOTAL |
|              |           |           |                    |                |           |           |       |   |                               |                |             |          |           |               |       |

STATE

NORTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

MISSOURI-SOURIS RIVERS

PLANKTON POPULATION NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATION LOCATION MISSOURI RIVER AT

BISMARCK, NORTH DAKOTA

| INERT<br>DIATOM<br>SHELLS<br>(No. per ml.)                                                                           | DOMINANT                                                                                                                                                                                                          | DIATOMS T SPECIES AND PERCENTAGES                                                                                                                                                               | 89 208                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (140. per ////.)                                                                                                     | ) (See Introd                                                                                                                                                                                                     | oduction for Code Identification*)                                                                                                                                                              | ml.)  ml.)  ml.)  ml.)  iter)  iter)  cerner  deduction                                                                                                                                                                                                                                                                                                            |
| E CENTRIC PENNATI                                                                                                    | FR. FR. SECOND*                                                                                                                                                                                                   | PER.  THIRD#  THIRD#  PER.  CENTAGE  FOURTH#  PER.  CENTAGE  OTHER PER.  CENTAGE                                                                                                                | PROTOCOME AND SEATURE AND SEATURE AND SEATURE AND SEATURE AND AND AND AND AND AND AND AND AND AND                                                                                                                                                                                                                                                                  |
| 0 90<br>0 20 310<br>0 70<br>0 90<br>0 20 70<br>0 40<br>310<br>60<br>0 250 390<br>20<br>0 110<br>60<br>60<br>60<br>60 | 20 65 10 83<br>90 80 20 9<br>10 83 20 80<br>70 9 30 84<br>90 9 30 35<br>40 9 40 82<br>10 9 50 82<br>60 9 10 45<br>90 9 60 86<br>20 9 20 84<br>36 20 15<br>10 36 70 80<br>60 36 50 9<br>60 36 20 65<br>60 47 40 36 | * 65 * 86 * 60<br>20 35 * 36 * 40<br>10 36 10 45 10 60<br>20 9 10 83 10 40<br>* 65 * 86 * 40<br>10 35 10 51 * 30<br>10 36 10 86 10 60<br>20 9 10 80 10 50<br>* 92 * 45 * 40<br>10 9 10 65 10 30 | 1                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                      | 20 3                                                                                                                                                                                                              | 20 65 10 83 90 80 20 9 30 35 40 9 40 82 310 9 50 82 0 9 20 84 36 20 15 110 36 70 80 60 36 20 65 60 47 40 36                                                                                     | 20 65 10 83 10 82 10 47 10 60 90 80 20 9 10 83 10 15 10 50 20 310 83 20 80 10 9 10 36 10 50 70 9 30 84 20 56 10 83 10 40 9 10 36 10 50 40 9 10 40 9 40 82 20 35 * 36 * 40 310 9 50 82 10 35 10 51 * 36 70 80 * 9 10 45 10 36 10 86 10 60 36 20 15 20 9 10 80 10 50 110 36 70 80 * 92 * 56 * 20 60 36 50 9 10 92 * 45 * 40 60 36 50 60 60 47 40 36 20 9 10 65 10 30 |

### ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

NORTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

MISSOURI-SOURIS RIVERS

STATION LOCATION MISSOURI RIVER AT

BISMARCK, NORTH DAKOTA

| DATE OF SAMPLE EXTRACTABLES CHLOROFORM EXTRACTABLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| BEGINNING END NEUTRALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |
| THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O | LOSS                                   |
| 4 20 61     5 14     2167     176     41     135     0     13     13     3     2     8     0     5     3     1       6 8 61     6 30     2242     237     57     180     2     18     18     6     2     10     0     6     4     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4<br>4<br>7<br>17<br>6<br>8<br>18<br>5 |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NORTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

MISSOURI SOURIS RIVERS

STATION LOCATIONMISSOURI RIVER AT

BISMARCK, NORTH DAKOTA

| DATE                 |                                  |                             |            |                |                | CHLORINE       | DEMAND          |                              |                   |                    |                  |                        |               |                  |                    |                                      |                       |
|----------------------|----------------------------------|-----------------------------|------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|---------------|------------------|--------------------|--------------------------------------|-----------------------|
| DAY PARTY            | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/I | рН         | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | (scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS per 100 ml. |
| 10 4 60              | -                                | 9.3                         | 8 • 4      | •7             | 7              |                | _               | •1                           | 10                | 150                | 208              | 15<br>-                | 23            | -<br>158         | •2                 | 205                                  | 67                    |
| 10 5 60              | 14.4                             | 7.5                         | 8.4        |                |                | _              | _               | •3                           | -                 | 148                | 210              | 6                      | 30            | 150              | • 4                | 395<br>-                             | 71                    |
| 10 13 60             | 13.0                             | 9.5                         | -          | _              | -              | •1             | -               | -                            | 11                | -                  | _                | =                      | -             | 155              | •2                 | 395                                  |                       |
| 10 19 60             | 7.3                              | 10.7                        | -          | 1.3            | 7              | •1             | _               | -                            | 9                 | -                  |                  | _                      | -             | 153              | •2                 | 384                                  | 110                   |
| 10 26 60             | 10.3                             | 10.5                        | 0 4        | 1.2<br>2.3     | 6<br>7         | 1.0            | • 2             | -                            | 7                 | 1.56               | 202              | _                      | -             | 168              | •1                 | 392                                  | 260                   |
| 11 2 60<br>11 9 60   | 9•9<br>2•7                       | 12.5                        | 8•4<br>8•5 | 2.5            | 5              | 1.4            | _               | •2<br>•1                     | 6                 | 156<br>156         | 202<br>212       | 5 -                    | 30<br>27      | 168<br>225       | •0<br>•1           | 389<br>396                           | . *4                  |
| 11 16 60             | -                                | _                           | 8.5        | _              |                |                | _               | •2                           | -                 | 154                | 208              | 0                      | 62            | 225              | • _                | 270                                  | 84                    |
| 11 23 60             | -                                | -                           | 8.4        | _              | -              | -              | -               | •2                           | _                 | 152                | 208              | 3                      | 64            | _                | -                  |                                      | _                     |
| 11 30 60             | -                                | -                           | 8.4        | -              | -              | -              | _               | •4                           | -                 | 154                | 206              | 5                      | 53            | -                | -                  | -                                    | 110                   |
| 12 7 60              | -                                | -                           | 8 • 2      | -              | -              | -              | -               | • 2                          | -                 | 154                | 208              | 3                      | 46            |                  |                    | _                                    | 10                    |
| 12 14 60<br>12 18 60 | 3.1<br>.8                        | _                           | 8•4<br>8•4 | _              | -              | _              | -               | •3<br>•2                     | _                 | 152<br>152         | 202<br>200       | 15<br>0                | 65<br>27      | -                | _                  | -                                    | 4                     |
| 12 21 60             | -                                | _                           | 8.4        | _              |                | _              | _               | •4                           | _                 | 152                | 210              | 8                      | 37            |                  | _                  | _                                    | 56                    |
| 12 22 60             | • 9                              | 13.4                        | -          | 5.5            | 9              | •9             | _               | _                            | 8                 |                    |                  | _                      |               | 167              | .1                 | 400                                  | 7 -                   |
| 1 4 61               | . 8                              | 13.1                        | 8.4        | • 8            | 11             | 1.1            | 2•9             | •2                           | 8                 | 154                | 208              | 3                      | 20            | 150              | .1                 | 400                                  | 330                   |
| 1 9 61               | -                                | -                           | 8.3        | -              | -              | -              | -               | •1                           | _                 | 154                | 208              | 4                      | 30            | _                | -                  | -                                    | _                     |
| 1 10 61<br>1 11 61   | - 8                              | 12.8                        | _          | <u>-</u><br>8  | 9              | 1.2            | _               | _                            | 8                 |                    | _                | _                      | -             | -<br>150         | -                  | -                                    | 88                    |
| 1 18 61              | -                                | 12.0                        | _          | -              |                | 1.2            | _               | _                            | -                 | _ [                | _                | _                      | -             | 150              | •1                 | 417                                  | - 21                  |
| 1 19 61              | .8                               | 12.9                        | -          | •7             | 13             | 1.3            | 2.5             | _                            | 8                 | _                  | _                | _                      | _ [           | 148              | •1                 | 406                                  | 31                    |
| 1 24 61              | -                                | -                           | 8.3        | -              | -              | -              | -               | •2                           | _                 | 152                | 206              | 3                      | 8             |                  | \                  | -                                    | 2                     |
| 1 26 61              | <b>8</b>                         | 13.3                        | -          | 1.1            | 15             | 1.3            | 3.0             | -                            | 7                 | -                  | -                | -                      | -             | 205              | .0                 | 417                                  | _                     |
| 2 1 61 2 7 61        | • 7                              | 12.8                        | 8.5        | • 7            | -              | 1.0            | 2•4             | -                            | 7                 |                    |                  | - 1                    |               | 210              | •0                 | 395                                  | 22                    |
| 2 8 61               | _                                | -                           | 8.3        | -              | _              | _              | _               | •2<br>•2                     | -                 | 156                | 206<br>208       | 15                     | 20            | -                | -                  | -                                    |                       |
| 2 15 61              | .8                               | 12.5                        | 8.5        | • 5            | 8              | 1.2            | 2.4             | • 4                          | 7                 | 156<br>154         | 208              | 3 7                    | 18<br>10      | 204              | •0                 | 406                                  | 130                   |
| 2 21 61              | -                                | -                           | -          | _              | _              |                |                 |                              |                   | -                  | _                |                        | -             | 204              | • • • •            | 400                                  | 180                   |
|                      | -                                | -                           | 8.4        |                | -              | -              | -               | •2                           | -                 | 156                | 210              | 25                     | 20            | _                | _                  |                                      | 84                    |
| 3 1 61               | • 9                              | 12.3                        | -          | • 7            | 10             | 1.1            | -               | -                            | 9                 | -                  | -                | -                      | -             | 165              | .0                 | 411                                  | -                     |
| 3 6 61<br>3 9 61     | .8                               | 12.3                        | _          | • 9            | 12             | 1 4            | 2.8             | _                            | -                 | -                  | -                | -                      | -             | -                | -                  |                                      | 76                    |
| 3 14 61              | •-                               | 12.3                        | 8.4        | • 7            | 12             | 1.4            | 2 • 8           | •3                           | 5<br>-            | 158                | 208              | -<br>5                 | -             | -                | •0                 | 411                                  |                       |
| 3 16 61              | • 9                              | 12.2                        | -          | -              | 9              | 1.1            | _               | -                            | 7                 | 150                | 200              | 2                      | 40            | 200              | •0                 | 406                                  | 42                    |
| 3 21 61              | -                                | -                           | 8.3        | -              | -              | -              | - [             | •2                           |                   | 160                | 218              | 110                    | 35            | - 1              | -                  |                                      | 72                    |
| 3 29 61              | 2.2                              | 12.7                        | 8.5        | •6             | 16             | 1.2            | 3.0             | •1                           | 9                 | 164                | 224              | 15                     | 55            | 178              | •0                 | 429                                  | 37                    |
| 4 5 61<br>4 6 61     | 2 2                              | 12 7                        | 8.4        | , -            | -              | -              |                 | • 2                          | -                 | 160                | 220              | 15                     | 37            | -                | -                  | -                                    | 180                   |
| 4 0 01               | 2.3                              | 12.7                        | -          | 1.2            | 20             | 1.2            | 2 • 5           | -                            | 9                 | -                  | -                | -                      | -             | 173              | •0                 | 429                                  | -                     |
|                      |                                  |                             |            | l              |                |                |                 |                              | 010               |                    |                  |                        |               |                  |                    |                                      |                       |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NORTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

MISSOURI SOURIS RIVERS.

STATION LOCATION MISSOURI RIVER AT

BISMARCK, NORTH DAKOTA

| 4 12 6<br>4 18 6<br>4 19 6<br>4 25 6<br>5 3 6<br>5 9 6 | (Deg Centis          | rade) | SSOLVED<br>EXYGEN<br>mg/l | р <b>н</b><br>8•3 | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR | AMMONIA-<br>NITROGEN | CHLORIDES  | ALKALINITY | HARDNESS   | COLOR         | TURBIDITY     | SULFATES | PHOSPHATES | TOTAL<br>DISSOLVED | COLIFORMS   |
|--------------------------------------------------------|----------------------|-------|---------------------------|-------------------|----------------|----------------|----------------|---------|----------------------|------------|------------|------------|---------------|---------------|----------|------------|--------------------|-------------|
| 4 18 6<br>4 19 6<br>4 25 6<br>5 3 6<br>5 9 6           | 51<br>51<br>51<br>51 | -     | -                         |                   |                |                | ı              | mg/l    | mg/l                 | mg/l       | mg/l       | mg/l       | (scale units) | (scale units) | mg/l     | mg/l       | SOLIDS<br>mg/l     | per 100 ml. |
| 4 19 6<br>4 25 6<br>5 3 6<br>5 9 6                     | 51 6<br>51           | .6 1  | 1                         | 8.2               | • 9            | 19             | 1.2            | 2•4     | . • 2                | 7          | 162        | 222        | 5             | 35            | 170      | •0         | 433                | 25          |
| 5 3 6<br>5 9 6                                         | 51 (                 | -     | 11.6                      | -                 | • 9            | 19             | _              | _       | • 2                  | 7          | 160        | 216        | 22            | 50            | 175      | .0         | -<br>429           | 43          |
| 5 9 6                                                  |                      | - 1   | -                         | 3.2               | -              | -              | _              | _       | • 2                  | · <u>-</u> | 156        | 216        | 3             | 40            | - 1/2    |            | 727                | 8           |
|                                                        |                      |       | 11.7                      | -                 | -              | 15             | 1.1            | 2•5     | -                    | . 7        | -          | -          | -             | -             | 178      | .0         | 423                | 71          |
| 5   16   6                                             | 51                   | _     | _                         | 8•3<br>8•3        | _              | _              | _              | _       | • 3                  | -          | 156        | 214        | 12            | 40            | _        | -          |                    | 220         |
|                                                        |                      | - 1   | 11.4                      | 0.2               | • 9            | 20             | 1.2            | 2.9     | • 3                  | 7          | 134        | 218        | 15            | 30            | 173      | •0         | 429                | 80          |
| 5 23 6                                                 |                      | -     | -                         | 8.1               | _              |                |                |         | • 5                  |            | 156        | 216        | 15            | 30            | 113      | ••         | 429                | 230         |
|                                                        |                      | .5 1  | 10.4                      | -                 | -              | 12             | -              | -       | -                    | 7          | -          | _          | _             | -             | 175      | .0         | 423                |             |
| 5 31 6<br>6 1 6                                        |                      | .5 1  | 10.1                      | 8.3               | -              | -              | -              | -       | • 3                  | -          | 158        | 218        | 18            | 30            | -        | -          | -                  | *1          |
| 6 1 6<br>6 7 6                                         |                      |       | 9.7                       | 8.2               | • 5            | 13<br>12       | 1.2            | 3.8     | -                    | 6          | -          | -          | -             | _             | 178      | •0         | 449                | -           |
| 4 1                                                    | 51 -                 |       |                           | 8.0               | _              | 12             | 1.4            | 2.0     | •1<br>•4             | 7          | 160<br>160 | 208<br>210 | 15<br>3       | 28<br>40      | 179      | •0         | 417                | 190         |
| 6 19 6                                                 |                      | -     | -                         | -                 | _              | _              | _              | -       | • -                  | _          | 100        | 210        | _             | <del>-</del>  | _        | -          | _                  | *1<br>140   |
|                                                        | 51                   | -     | -                         | 8.1               | _              | -              | -              | _       | •1                   | _          | 160        | 212        | 2             | 35            | _        | _          | _                  | 140         |
|                                                        |                      | . 8   | 9.7                       |                   | ٠              | 14             | - 1            | -       | -                    | 7          | -          | -          | -             | -             | 178      | •0         | 442                | -           |
| 6   28   6<br>7   5   6                                |                      |       | _                         | 8.1               |                | _              | _              | -       | • 3                  | -          | 162        | 214        | 5             | 30            | -        | -          |                    | 820         |
| 7 11 6                                                 |                      | _     | _                         | 8.1               | _              | _              | _              | _       | •3                   | _          | 162<br>162 | 206<br>212 | 0 3           | 30<br>30      | -        | _          | -                  | *1          |
| 7 13 6                                                 |                      | .1    | 9.0                       | _                 | • 9            | 15             | 1.5            | _       | •=                   | 7          | 102        | 212        | -<br>-        | 50            | 170      |            | -<br>452           | 20          |
| 7   18   6                                             |                      | -     | -                         | 8.1               | -              | -              | -              | -       | •1                   | <u>.</u>   | 164        | 218        | 2             | 35            |          | -          | 772                | 50          |
| 7   25   6                                             |                      | -     |                           | 8.1               | -              | -              | -              | -       | • 3                  | -          | 164        | 212        | 2             | 40            | _        | -          | -                  | 20          |
| 7   26   6<br>8   1   6                                |                      | •6    | 8 • 6                     |                   | • 8<br>        | 14             | 1.2            | 3•2     | -                    | 8          | -          | _          | -             |               | 166      | •1         | 424                | -           |
| 1 1                                                    |                      | .3    | 8.6                       | 8.1               |                | 13             | 1.3            | 3.1     | •3                   | 10         | 160        | 214        | 3 -           | 27            | 170      | _ [        |                    | 100         |
| 8 7 6                                                  |                      | -     | -                         | 8.4               | _              | -              | 1.7            |         | • 0                  | -          | 48         | 106        | 0             | - 0           | 173      | • 0        | 507                | -           |
| 8 8 6                                                  | 51                   | -     | -                         | 8.1               |                | -              | -1             | -1      | • 4                  |            | 162        | 214        | 2             | 25            | _        | _          | _                  | 130         |
| 8 15 6                                                 |                      | -     |                           | 8.1               | -              | -              | -              | -       | • 2                  | _          | 164        | 216        | 7             | 35            | -        | -          |                    | 120         |
| 8   18   6<br>8   22   6                               |                      | . 8   | 8.6                       | -                 | -              | 16             | -              | -       | -                    | 8          | -          |            | -             | -             | 167      | .0         | 452                | -           |
| 8 22 6<br>8 29 6                                       |                      | _     | <u>-</u>                  | 8.1               | _              | _              | _              | _       | •1                   | -          | 166        | 216<br>220 | 12            | 30            | -        | -          | -                  | 100         |
| 9 5 6                                                  |                      | _     | _                         | 8.0               | _              |                | -1             | _       | • 3                  | -          | 160<br>160 | 220        | 5<br>5        | 30<br>25      | _        | _          | -                  | *1<br>4     |
| 9 8 6                                                  |                      | •6    | 8.7                       | -                 | -              | 14             | -              | -       | -                    | 5          | 100        | -          |               | -             | 180      | •0         | 487                | - 4         |
| 9   11   6                                             |                      | -     | -                         | 8.1               | -              | -              | -              | -       | •1                   | -          | 162        | 220        | 8             | 40            | _        | "-         | -                  | 120         |
| 9   19   6                                             |                      | -     |                           | -                 | -              | -              | -              | -       | -                    | -          | -          | -          | -             | -             | _        | -          | -                  | *4          |
| 9   26   6<br>9   27   6                               |                      | - 3   | 9.8                       |                   | 1.0            | 13             | 1.2            | 2 5     | -                    | - 0        | -          | -          | -             | -             |          | -          | -                  | 30          |
| 7 2 1 0                                                | 1 1 4                | • •   | 7.0                       | -                 | 1.0            | 10             | 1 • 2          | 2•5     | -                    | 8          | -          |            | -             | -             | 195      | •0         | 541                | -           |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Bismarck, North Dakota Operated by U.S. Geological Survey STATE

North Dakota

MAJOR BASIN

Missouri River

MINOR BASIN

Missouri-Souris Rivers

STATION LOCATION

Missouri River at

Bismarck, North Dakota

| Day                              | October                                        | November                                       | December                                                 | January                                                  | February                                       | March                                                    | April                                          | May                                                      | June                                           | July                                                     | August                                                   | September                                     |
|----------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|
| 1                                | 12.200                                         | 11.100                                         | 11.700                                                   | 16.400                                                   | 20.600                                         | 20.300                                                   | 23.500                                         | 20.200                                                   | 14.900                                         | 11.300                                                   | 16.300                                                   | 13.600                                        |
| 2                                | 12.300                                         | 11.000                                         | 15.400                                                   | 17.200                                                   | 20.800                                         | 20.800                                                   | 23.800                                         | 20.000                                                   | 16.800                                         | 12.100                                                   | 18.700                                                   | 12.900                                        |
| 3                                | 11.400                                         | 11.000                                         | 16.500                                                   | 19.000                                                   | 20.600                                         | 21.100                                                   | 21.800                                         | 21.000                                                   | 16.900                                         | 12.100                                                   | 19.200                                                   | 11.500                                        |
| 4                                | 10.800                                         | 10.500                                         | 18.300                                                   | 21.000                                                   | 20.800                                         | 21.400                                                   | 20.600                                         | 21.300                                                   | 16.400                                         | 12.100                                                   | 19.200                                                   | 10.900                                        |
| 5                                | 11.400                                         | 10.600                                         | 18.100                                                   | 21.600                                                   | 21.000                                         | 21.900                                                   | 20.600                                         | 21.400                                                   | 15.500                                         | 12.100                                                   | 20.200                                                   | 11.000                                        |
| 6<br>7<br>8<br>9                 | 11.100<br>10.900<br>10.300<br>10.300<br>10.200 | 10.400<br>10.500<br>10.900<br>10.200<br>10.400 | 15.000<br>11.700<br>15.300<br>16.500<br>15.600           | 21.600<br>21.600<br>21.400<br>21.200<br>21.300           | 21.600<br>21.700<br>21.200<br>20.800<br>21.100 | 22.100<br>21.900<br>21.800<br>22.300<br>22.600           | 20.500<br>20.600<br>20.600<br>20.500<br>20.200 | 21.800<br>21.500<br>20.300<br>20.300<br>21.200           | 14.900<br>16.000<br>15.500<br>14.800<br>14.400 | 11.700<br>11.000<br>11.400<br>11.500<br>10.900           | 19.300<br>17.600<br>17.400<br>16.200<br>14.800           | 10.500<br>10.300<br>10.200<br>9.820<br>10.200 |
| 11                               | 10.100                                         | 10.500                                         | 15.800                                                   | 21.600                                                   | 20.800                                         | 23.000                                                   | 20.000                                         | 21.200                                                   | 13.900                                         | 11.000                                                   | 15.800                                                   | 9.550                                         |
| 12                               | 9.880                                          | 10.300                                         | 15.000                                                   | 21.600                                                   | 20.300                                         | 22.700                                                   | 20.800                                         | 21.000                                                   | 13.300                                         | 11.600                                                   | 16.500                                                   | 9.550                                         |
| 13                               | 9.700                                          | 10.300                                         | 14.700                                                   | 21.600                                                   | 20.500                                         | 23.100                                                   | 21.200                                         | 20.600                                                   | 11.900                                         | 13.300                                                   | 15.300                                                   | 9.910                                         |
| 14                               | 8.850                                          | 10.300                                         | 16.600                                                   | 21.600                                                   | 19.600                                         | 23.200                                                   | 21.400                                         | 20.700                                                   | 11.200                                         | 13.500                                                   | 13.800                                                   | 10.200                                        |
| 15                               | 9.370                                          | 10.300                                         | 16.400                                                   | 21.800                                                   | 20.100                                         | 23.300                                                   | 20.700                                         | 20.100                                                   | 12.700                                         | 13.300                                                   | 14.900                                                   | 9.520                                         |
| 16                               | 9.080                                          | 10.200                                         | 13.700                                                   | 21.900                                                   | 20.100                                         | 23.000                                                   | 20.500                                         | 19.900                                                   | 19.300                                         | 13.600                                                   | 16.300                                                   | 9.460                                         |
| 17                               | 9.200                                          | 10.400                                         | 13.100                                                   | 21.300                                                   | 20.200                                         | 22.300                                                   | 19.500                                         | 20.900                                                   | 21.100                                         | 13.000                                                   | 16.700                                                   | 9.020                                         |
| 18                               | 8.940                                          | 11.200                                         | 14.300                                                   | 21.400                                                   | 19.300                                         | 21.000                                                   | 19.600                                         | 21.100                                                   | 21.100                                         | 13.300                                                   | 18.200                                                   | 8.830                                         |
| 19                               | 8.830                                          | 13.400                                         | 14.700                                                   | 21.200                                                   | 20.100                                         | 20.800                                                   | 20.800                                         | 21.000                                                   | 20.300                                         | 13.200                                                   | 17.400                                                   | 8.880                                         |
| 20                               | 9.400                                          | 14.700                                         | 13.600                                                   | 20.800                                                   | 19.200                                         | 19.600                                                   | 21.000                                         | 20.200                                                   | 17.700                                         | 13.000                                                   | 14.700                                                   | 8.830                                         |
| 21                               | 8.970                                          | 15.200                                         | 12.700                                                   | 19.800                                                   | 18.500                                         | 19.300                                                   | 20.700                                         | 19.800                                                   | 12.800                                         | 13.600                                                   | 12.800                                                   | 8.370                                         |
| 22                               | 9.340                                          | 14.900                                         | 12.300                                                   | 19.100                                                   | 18.500                                         | 18.000                                                   | 20.600                                         | 17.200                                                   | 11.300                                         | 14.600                                                   | 13.200                                                   | 7.900                                         |
| 23                               | 9.050                                          | 15.300                                         | 12.700                                                   | 20.000                                                   | 18.500                                         | 16.900                                                   | 20.900                                         | 16.700                                                   | 11.000                                         | 15.200                                                   | 15.400                                                   | 7.960                                         |
| 24                               | 8.830                                          | 15.800                                         | 14.200                                                   | 19.800                                                   | 18.500                                         | 16.700                                                   | 20.600                                         | 19.100                                                   | 10.900                                         | 13.900                                                   | 16.200                                                   | 7.930                                         |
| 25                               | 8.940                                          | 15.700                                         | 16.200                                                   | 19.600                                                   | 18.500                                         | 16.600                                                   | 19.200                                         | 18.800                                                   | 10.800                                         | 14.700                                                   | 17.000                                                   | 7.780                                         |
| 26<br>27<br>28<br>29<br>30<br>31 | 8.720<br>9.050<br>10.200<br>10.800<br>11.000   | 15.400<br>15.600<br>15.900<br>15.800<br>12.000 | 16.900<br>16.200<br>16.000<br>16.300<br>16.600<br>16.500 | 19.900<br>20.400<br>20.700<br>20.800<br>21.200<br>20.800 | 20.300<br>19.900<br>19.300                     | 16.400<br>16.300<br>18.800<br>22.100<br>24.300<br>23.800 | 20.500<br>20.800<br>20.800<br>20.700<br>20.800 | 18.300<br>16.500<br>15.400<br>14.800<br>13.400<br>13.700 | 10.700<br>11.200<br>10.800<br>11.100<br>11.200 | 15.700<br>18.100<br>18.800<br>19.000<br>20.200<br>17.700 | 17.400<br>18.800<br>18.800<br>17.000<br>14.700<br>14.400 | 7.660<br>7.380<br>7.240<br>7.020<br>7.160     |

STATE

NORTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

MISSOURI-SOURIS RIVERS

STATION LOCATION MISSOURI RIVER AT

WILLISTON, NORTH DAKOTA

| DATE         |                               | ······································ | RADI      | OACTIVITY IN Y | WATER     |           |       | RADIC                        | ACTIVITY IN PLAN | IKTON (dry) | RAD                | HOACTIVITY IN | VATER |
|--------------|-------------------------------|----------------------------------------|-----------|----------------|-----------|-----------|-------|------------------------------|------------------|-------------|--------------------|---------------|-------|
| SAMPLE       | DATE OF                       |                                        | ALPHA     |                |           | BETA      |       | DATE OF                      | GROSS /          | CTIVITY     |                    | GROSS ACTIVIT | ſΥ    |
| TAKEN        | DATE OF<br>DETERMI-<br>NATION | SUSPENDED                              | DISSOLVED | TOTAL          | SUSPENDED | DISSOLVED | TOTAL | DATE OF<br>DETERMI<br>NATION | ALPHA            | BETA        | SUSPENDED          | DISSOLVED     | TOTAL |
| MO. DAY YEAR | MONTH DAY                     | μμς/Ι                                  | μμς/Ι     | μμε/           | μμε/      | μμε/Ι     | μμε/Ι | MO. DAY                      | μμc/g            | μμε/g       | μμ <sub>c</sub> /I | μμε/Ι         | μμε/Ι |
| 0 26 40*     | 11 2                          | ,                                      |           | 12             | 0         | 7         | 7     |                              |                  |             |                    |               |       |
| 0 24 60*     |                               | 3 1                                    | 9<br>5    | 6              |           | 2         | 2     |                              |                  |             |                    |               |       |
| 1 28 60*     |                               |                                        |           |                | 1         |           | ő     |                              |                  |             |                    |               |       |
| 2 26 60*     |                               | 0                                      | 8         | 8              | 0         | 0         |       |                              |                  |             |                    |               |       |
| 1 31 61*     |                               | 0                                      | 6         | 6-             | 0         | 5         | 5     |                              |                  |             |                    |               |       |
| 2 28 61*     | 3 17                          | 1/ 1                                   | 5         | 6              | 0         | 2         | 2     |                              |                  |             |                    |               |       |
| 3 27 61*     | 4 7                           | 2                                      | 3         | 5              | 1         | 0         | 1     |                              |                  |             |                    |               |       |
| 4 24 61*     | 5 5                           | 2                                      | 5         | 7              | 0         | 0         | 0     |                              | 1                |             |                    |               |       |
| 5 29 61*     |                               | 5                                      | 6         | 11             | 15        | 51        | 66    |                              | 1                |             |                    |               |       |
| 6 28 61*     |                               | 13                                     | 3         | 16             | 19        | 4         | 2.3   | 1                            |                  |             |                    |               |       |
| 7 31 61*     | 1                             | 5                                      | 4         | 9              | 8         | il        | 9     |                              |                  |             |                    |               |       |
|              |                               |                                        | <b>I</b>  | 4              |           | 20        | 26    |                              |                  |             |                    |               |       |
| 8 28 61*     |                               | 1                                      | 3         | -              | 6         |           |       |                              |                  |             |                    |               |       |
| 9 4 61       | 9 28                          | _                                      | ~         |                | 1         | 9         | 10    |                              | 1                |             |                    |               |       |
| 9 11 61      | 10 6                          |                                        | -         |                | 47        | 2         | 49    |                              |                  |             |                    |               |       |
| 9 18 61      | 10 10                         | -                                      | -         | _              | 22        | 24        | 46    | İ                            | ł                |             |                    |               |       |
| 9 24 61      | 10 4                          | 37                                     | 3         | 40             | 127       | 25        | 152   |                              |                  |             |                    |               |       |
|              |                               |                                        |           |                |           |           | į     |                              |                  |             |                    | ļ             |       |
|              |                               |                                        |           |                |           |           |       |                              |                  |             |                    |               |       |
|              |                               |                                        |           |                |           |           |       |                              |                  |             |                    |               |       |
|              |                               |                                        |           |                |           |           | ı     |                              |                  | l i         |                    |               |       |
|              |                               |                                        |           |                |           |           |       |                              |                  |             |                    |               |       |
|              | 1                             |                                        |           |                |           |           |       |                              |                  |             | 1                  |               | !     |
|              | 1                             |                                        |           |                |           |           | 1     | i                            |                  |             | Į.                 |               |       |
|              |                               |                                        |           |                |           |           |       |                              |                  | 1           |                    |               | İ     |
|              |                               | 1                                      |           |                |           |           | 1     |                              |                  |             | 1                  |               | 1     |
|              |                               | 1                                      |           |                | 1         |           |       |                              |                  | 1           |                    |               |       |
|              |                               |                                        |           |                |           |           |       |                              |                  |             |                    |               | ŀ     |
|              |                               |                                        |           |                |           |           |       |                              |                  |             |                    |               |       |
|              |                               |                                        |           |                |           |           | ļ     |                              |                  | i           |                    |               |       |
|              |                               |                                        |           |                |           | 1         | İ     |                              |                  |             |                    |               |       |
|              |                               |                                        |           |                |           |           |       |                              |                  |             |                    |               |       |
|              | 1                             |                                        |           |                |           |           |       |                              |                  |             |                    |               |       |
|              |                               |                                        |           |                |           |           |       |                              |                  |             |                    |               |       |
|              |                               |                                        |           |                |           |           |       |                              |                  |             |                    |               | l     |
|              |                               |                                        | ļ         |                |           |           | 1     |                              |                  | j 1         |                    |               |       |
|              |                               |                                        |           |                |           |           |       |                              |                  | ]           |                    |               |       |
|              | 1                             |                                        |           |                |           |           |       |                              |                  |             |                    | 1             |       |
|              |                               | 1                                      |           |                |           |           | ł     | ĺ                            |                  |             | ŀ                  |               |       |
|              |                               | 1                                      |           |                |           |           |       |                              |                  |             |                    |               |       |
|              |                               |                                        |           |                |           |           | 1     |                              |                  |             |                    |               |       |
|              |                               |                                        |           |                |           |           |       |                              |                  |             |                    |               |       |
|              |                               |                                        | -         |                |           |           |       | ı                            |                  |             |                    |               |       |
|              |                               |                                        |           |                |           |           |       |                              |                  |             |                    |               |       |
|              |                               |                                        | i         |                |           |           | ļ     |                              |                  |             |                    |               |       |
|              | 1                             | 1 1                                    |           |                | 1         | 1         |       | 1                            | 1                | 1 1         | 1                  | 1             | 1     |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON .

STATE

NORTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

MISSOURI-SOURIS RIVERS

STATION LOCATION MISSOURI RIVER AT

WILLISTON, NORTH DAKOTA

| <del></del>                                                                                                                                                                                                 |                                                                                 |         |                       | ALGAE (A                                                  | Vumber ;              | per ml.)                                                               |          |                                                                                                                            |                                                                                                                              | INE                                                                              | RT                                                                                                                         |                    |                                                                                        |                                         |                                                                                                    | ATO                                                        |                                                                                             |                                                               |                                                        |                                                                                                                      | i.                                                |                        | MICROIN                      | VERTEBR                      | ATES                         | _               | - = 5                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------|-----------------------|-----------------------------------------------------------|-----------------------|------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------|------------------------------|------------------------------|------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------|
| DATE<br>OF SAMPLE                                                                                                                                                                                           |                                                                                 | BLUE-   |                       | GREE                                                      |                       | FLAGEL<br>(Pigme                                                       |          | DIAT                                                                                                                       | OMS                                                                                                                          | SHE<br>(No. p                                                                    | LLS                                                                                                                        |                    | DOM!<br>(See                                                                           | Introd                                  | SPEC<br>luction                                                                                    | for Co                                                     | de Ide                                                                                      | RCEN'<br>ntificat                                             | TAGES                                                  |                                                                                                                      | MICROPLANKTON<br>AND SHEATHED<br>RIA<br>per 771.) | M.)                    | RS<br>liter)                 | EA<br>liter)                 | DES<br>liter)                | MAL FORM        | r GENERI<br>roductio<br>tification                                                                              |
| MONTH<br>DAY<br>YEAR                                                                                                                                                                                        | TOTAL                                                                           | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                                                   | FILA-<br>MENT-<br>OUS | GREEN                                                                  | OTHER    | CENTRIC                                                                                                                    | PENNATE                                                                                                                      | CENTRIC                                                                          | PENNATE                                                                                                                    | FIRST#             | PER.                                                                                   | SECOND*                                 | PER-<br>CENTAGE                                                                                    | THIRD#                                                     | PER-<br>CENTAGE                                                                             | FOURTH                                                        | PER-                                                   | OTHER PER-                                                                                                           | OTHER MICI<br>FUNGI AND<br>BACTERIA<br>(No. per   | PROTOZOA<br>(No. per 1 | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | (No. per liter) | DOMINANT GENERA<br>(See Introduction<br>for Identification)                                                     |
| 10 14 60<br>11 22 60<br>11 30 60<br>12 31 60<br>12 3 61<br>2 27 61<br>3 61<br>2 27 61<br>3 61<br>2 27 61<br>3 61<br>4 17 61<br>5 1 61<br>5 61<br>6 19 61<br>7 3 61<br>7 61<br>8 21 61<br>8 21 61<br>9 18 61 | 700 1300 700 200 400 200 100 300 300 800 1900 3500 1900 2700 2700 3400 3700 600 | 20      | 20 20                 | 20<br>80<br>170<br>340<br>170<br>380<br>250<br>440<br>160 |                       | 20<br>50<br>50<br>40<br>200<br>210<br>600<br>400<br>250<br>170<br>1600 | 20 20 20 | 180<br>70<br>160<br>400<br>50<br>240<br>1130<br>500<br>1450<br>870<br>70<br>290<br>810<br>1340<br>1740<br>640<br>220<br>50 | 380<br>1120<br>540<br>290<br>180<br>270<br>270<br>620<br>1400<br>830<br>1880<br>4550<br>1450<br>1120<br>2420<br>1820<br>2420 | 70<br>20<br>50<br>20<br>20<br>90<br>110<br>40<br>170<br>670<br>20<br>250<br>1200 | 200<br>760<br>270<br>110<br>90<br>200<br>470<br>270<br>1070<br>480<br>80<br>1410<br>1360<br>270<br>920<br>80<br>290<br>890 | 99 995276222725605 | 40<br>70<br>50<br>40<br>60<br>40<br>60<br>30<br>30<br>30<br>20<br>10<br>30<br>30<br>10 | 36<br>92<br>92<br>92<br>92<br>936<br>92 | 10<br>30<br>10<br>10<br>20<br>20<br>10<br>20<br>10<br>20<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 3 9 0 6 6 2 6 5 9 2 6 6 0 5 4 3 2 5 0<br>9 3 6 5 8 9 4 8 0 | 10<br>10<br>*<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 36<br>85<br>82<br>9<br>85<br>65<br>83<br>33<br>24<br>47<br>92 | * * 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 40<br>20<br>10<br>20<br>30<br>40<br>30<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 | 110<br>50<br>20<br>20<br>20<br>20                 |                        | 2                            | 7                            | 1 2                          |                 | 9<br>37-<br>3<br>3<br>3<br>3<br>3176-<br>97-<br>4197-<br>78933<br>7-953<br>4-743<br>-8964<br>7-963<br>973<br>6- |

#### ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

NORTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

MISSOURI-SOURIS RIVERS

STATION LOCATION MISSOURI RIVER AT

WILLISTON, NORTH DAKOTA

34

|                                                                                                 |                                             |                                                 |                                                                     |                                                                            | 777.477.77                                       |                                                                                                                |                     |                           |                |                         | CIII OBOE      | ORM EXTR                     | ACTABLES     |               |                 |            | <del> </del> |
|-------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------|---------------------------|----------------|-------------------------|----------------|------------------------------|--------------|---------------|-----------------|------------|--------------|
| DATE OF SA                                                                                      | AMPLE                                       |                                                 |                                                                     |                                                                            | TRACTABL                                         | £5                                                                                                             | ļ                   | 1                         |                | <del> </del>            | NEUTRALS       |                              | CIABLLO      |               |                 |            |              |
| DAY ZEAR                                                                                        | MONTH                                       | рах                                             | GALLONS<br>FILTERED                                                 | TOTAL                                                                      | CHLORO-<br>FORM                                  | ALCOHOL                                                                                                        | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES         | TOTAL          | ALIPHATICS              | AROMATICS      | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS         | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES      | LOSS         |
| 11 29 60<br>12 28 60<br>1 27 61<br>3 7 61<br>4 11 61<br>5 28 61<br>6 28 61<br>8 1 61<br>8 31 61 | 11<br>12<br>1<br>2<br>3<br>4<br>6<br>7<br>8 | 12<br>10<br>9<br>16<br>24<br>24<br>5<br>7<br>12 | 50250<br>54250<br>52250<br>522840<br>5470<br>5470<br>52255<br>52255 | 109<br>70<br>97<br>128<br>112<br>95<br>113<br>106<br>89<br>79<br>98<br>100 | 27<br>127<br>324<br>10<br>397<br>225<br>16<br>15 | 82<br>88<br>89<br>88<br>77<br>65<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88 | 110100212100        | 8 2 5 1 7 2 1 8 7 8 4 4 4 | 85610941198766 | 1 1 1 1 2 1 1 1 1 1 1 1 | 01111001111000 | 734763865555                 | 000110010000 | 3123331333222 | 2<br>1          | 1011101100 | 23283283332  |



CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NORTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

MISSOURI SOURIS RIVERS

STATION LOCATIONMISSOURI RIVER AT

WILLISTON, NORTH DAKOTA

| DATE   |          |                                  |                             |            |                |                | CHLORINE       | DEMAND          |                              |                   |                    |                  |                        |                            |                  |                    | TOTAL                       |             |
|--------|----------|----------------------------------|-----------------------------|------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|----------------------------|------------------|--------------------|-----------------------------|-------------|
| OF SAW |          | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/l | рН         | B.O.D.<br>mg/l | C.O.D.<br>mg/l | I-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/I | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL DISSOLVED SOLIDS mg/I | per 100 ml. |
|        | 60       | 13.0                             | -                           | 8.3        | _              | -              | -              | -               | 1 1                          |                   | 174<br>148         | 248<br>250       | 0 0                    | 150<br>115                 | _                | -                  |                             | _           |
|        | 60       | 12.0<br>12.0                     | -                           | 8 • 4      | _              | -              |                | -               | _                            | _                 | 150                | 256              | -                      | 125                        | _                | -                  | _                           | _           |
| 10 24  | 60       | 9.0                              | _                           | - 1        | _              | -              | 1              | _               | -                            | _                 | 172                | 242              | -                      | 400                        | -                | -                  | -                           | -           |
| 10 31  | 60       | 8.0                              | -                           | -          | -              | -              | -              | -               | -                            | -                 | 162                | 252              | -                      | 95                         |                  | -                  | -                           | _           |
|        | 60       | 6.0                              | -                           | -          | -              | -              | -              | -               | -                            | -                 | 156                | 246              | 0                      | 10                         | -                | -                  |                             | _           |
|        | 60       | 3.0                              | -                           | _          | -              | -              | -              | _               | -                            | _                 | 172<br>160         | 270<br>250       | - 0                    | 5                          | _                | _                  | -                           | _           |
|        | 60       | 5 • 0<br>—                       | -                           | _          | _              | _              | -              | _               | _                            | _                 | 170                | 262              | 0                      | 0                          | _                | _                  | _                           | _           |
| 12 5   | 60       | 2.0                              | -                           | 8.2        |                | -              | -              | _               | _                            | -                 | 170                | 274              | _                      | _                          | _                | _                  | _                           | -           |
| 12 12  | 60       | 2.0                              | -                           | 8 • 2      | -              | -              | _              | -               | -                            | _                 | 170                | 266              | -                      | -                          | _                | -                  | -                           | _           |
|        | 60       | 2.0                              | -                           | 8.2        | -              | -              | -              | -               | -                            | -                 | 170                | 256              | -                      | -                          | -                | -                  | -                           | _           |
|        | 60       | 1.0                              | -                           | 8•3        | -              | -              | -              | -               | -                            | _                 | 178                | 276<br>262       | _                      | -                          | _                | -                  | _                           |             |
|        | 61       | 1.0                              | _ [                         | 8•2<br>8•1 | _              | -              | -              | _               | -                            | -                 | 166<br>162         | 240              | _                      | _                          | _                | _                  | _                           | _           |
| 1 - 1  | 61       | 2.0                              |                             | 8.1        | _              | _              | _              | _               |                              | _                 | 160                | 240              | _                      | _                          | _                | _                  | -                           | _           |
|        | 61       | 1.0                              | _                           | 8.2        |                | _              | -              | -               | _                            | -                 | 162                | 268              | -                      | 20                         | _                | -                  | -                           | -           |
| 1 31   | 61       | 1.0                              | -                           | 8.2        | -              | -              | -              | -               | _                            | _                 | 172                | 260              | 0                      | 25                         | -                | -                  | -                           | _           |
|        | 61       | 2.0                              | -                           | 8.2        |                | -              | -              | -               | -                            | -                 | 172                | 250              | 0                      | 25                         | _                | -                  | -                           | -           |
|        | 61       | 1.0                              | -                           | 8.1        | -              | -              | -              | -               | -                            | -                 | 160                | 250              | 5 3                    | 40<br>31                   | _                | _                  | _                           | _           |
|        | 61       | 1.0                              | -                           | 8•1<br>8•2 | _              | -              | _              | _               | _                            | _                 | 160<br>165         | 240<br>230       | 5                      | 92                         | _                | _                  | _                           |             |
|        | 61       | 2.0                              | -                           | 8.2        | _              | _              | _              | _               | _                            | _                 | 168                | 230              | _                      | 84                         | _                | _ :                | _                           | _           |
|        | 61       | 2.0                              | -                           | 8.2        | _              | -              | _              | _               |                              | -                 | 160                | 234              | _                      | 80                         | -                | -                  | -                           | _           |
| 3 21   | 61       | 2.0                              | -                           | 8.1        | -              | -              | -              | -               | -                            | _                 | 134                | 204              | 12                     | 300                        | -                | -                  | -                           | _           |
|        | 61       | 4.0                              | -                           | 8.1        | -              | -              | -              | -               | -                            | -                 | 144                | 236              | 10                     | 210                        | -                | -                  | -                           | 210         |
| 1 1    | 61       |                                  | -                           |            | -              | _              | -              | -               | -                            | -                 | 170                | 252              | _                      | 150                        | _                | _                  | -                           | 29<br>-     |
|        | 61<br>61 | 7.0                              | -                           | 8•3<br>    | -              | 1 1            | _              | _               | -                            | _                 | 170                | 252              | _                      | 150                        | _                | _                  | -                           | 25          |
|        | 61       | 5.0                              | -                           | 8.3        | _              | _              | _              | _               |                              | _                 | 166                | 234              | _                      | 90                         | _                | _                  | _                           |             |
|        | 61       | 8.0                              | _                           | 8.3        | -              | -              | _              | _               | -                            | _                 | 182                | 242              | 5                      | 125                        | _                | _                  | _                           | 13          |
| 4 25   | 61       | 8.0                              | -                           | 3.3        | -              | -              | _              | -               | -                            | _                 | 176                | 230              | 0                      | 125                        | -                | -                  | -                           | 130         |
|        | 61       |                                  | -                           |            | -              | -              | -              | -               | -                            | -                 |                    |                  | -                      | -                          | -                | -                  | -                           | 130         |
|        | 61       | 7.0                              |                             | 8.3        | -              | -              | -              | -               | -                            | -                 | 174                | 238              | _                      | 300                        |                  | _                  | -                           |             |
|        | 61<br>61 | 9.0                              | -                           | 8.3        | -              | _              | _              | -               | _                            | _                 | 162                | 250              | 5                      | 90                         | _                | _                  | _                           | 60          |
|        | 61       | <b>7.0</b>                       | _                           | -          | -              | _              | _              | _               | -                            | _                 | 102                | - 230            |                        | 1 -                        | _                | _                  | _                           | 180         |
|        | 61       | 12.0                             | -                           | 8 • 2      | -              | -              | -              | -               | -                            | _                 | 162                | 220              | _                      | 92                         | -                | _                  | _                           |             |
|        | 61       | 17.0                             | -                           | 8.3        | -              | -              | -              | -               | -                            | _                 | 162                | 240              | 5                      | 200                        |                  | -                  | _                           | 7500        |
| 5 29   | 61       | 18.0                             |                             | 8.2        |                |                |                |                 |                              |                   | 158                | 230              |                        | 1000                       |                  | _                  | -                           | _           |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NORTH DAKOTA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

MISSOURI SOURIS RIVERS

STATION LOCATIONMISSOURI RIVER AT

WILLISTON, NORTH DAKOTA

2/

| DATE<br>OF SAMPLE                     | TEMP.                                                                                                | DISSOLVED      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                | CHLORINE       | DEMAND          |                              |                   |                                                                                       |                                                                                                                                          |                                       |                                                                                                 |                  |                    |                                      |                |
|---------------------------------------|------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------|------------------|--------------------|--------------------------------------|----------------|
| MONTH<br>DAY<br>YEAR                  | (Degrees<br>Centigrade)                                                                              | OXYGEN<br>mg/l | pН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B.O.D.<br>mg/l | C.O.D.<br>mg/l | I-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l                                                                    | HARDNESS<br>mg/l                                                                                                                         | COLOR<br>(scale units)                | TURBIDITY<br>(scale units)                                                                      | SULFATES<br>mg/I | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS      |
| 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 22.0<br>25.0<br>26.0<br>21.0<br>24.0<br>23.0<br>23.0<br>26.0<br>24.0<br>25.0<br>22.0<br>16.0<br>14.0 | 111111         | 2031133131314141311114144134         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888         888     < |                |                |                |                 |                              |                   | 118<br>70<br>120<br>120<br>128<br>-<br>140<br>-<br>150<br>-<br>150<br>-<br>166<br>160 | 134<br>120<br>144<br>156<br>174<br>196<br>212<br>224<br>216<br>222<br>234<br>226<br>228<br>234<br>248<br>234<br>248<br>234<br>248<br>232 | 51. 1 1 1 1 1 1 1 5 1 1 0 1 1 1 1 244 | 900<br>500<br>850<br>100<br>750<br>180<br>250<br>400<br>350<br>100<br>190<br>150<br>150<br>2000 |                  | -                  |                                      | 630<br>130<br> |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station near Williston, North Dakota Operated by U.S. Geological Survey STATE

North Dakota

MAJOR BASIN

Missouri River

MINOR BASIN

Missouri-Souris Rivers

STATION LOCATION

Missouri River at

Williston, North Dakota

| Day                              | October                                                  | November                                       | December                                             | January                                            | February                                       | March                                                    | April                                          | May                                                      | June                                           | July                                                     | August                                             | September                                      |
|----------------------------------|----------------------------------------------------------|------------------------------------------------|------------------------------------------------------|----------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------------------|
| 1                                | 12.800                                                   | 12.500                                         | 10.000                                               | 12.400                                             | 9.770                                          | 12.400                                                   | 12.500                                         | 11.000                                                   | 33.400                                         | 22.400                                                   | 14.200                                             | 8.600                                          |
| 2                                | 12.500                                                   | 12.600                                         | 9.000                                                | 12.700                                             | 10.000                                         | 12.300                                                   | 12.400                                         | 11.000                                                   | 35.100                                         | 20.200                                                   | 13.400                                             | 8.710                                          |
| 3                                | 12.300                                                   | 12.700                                         | 10.000                                               | 12.700                                             | 10.000                                         | 12.400                                                   | 12.300                                         | 10.800                                                   | 36.000                                         | 22.800                                                   | 11.000                                             | 9.210                                          |
| 4                                | 12.300                                                   | 12.700                                         | 10.000                                               | 12.600                                             | 10.000                                         | 12.500                                                   | 12.300                                         | 10.700                                                   | 33.900                                         | 22.500                                                   | 10.400                                             | 9.520                                          |
| 5                                | 12.300                                                   | 12.800                                         | 10.000                                               | 12.100                                             | 10.100                                         | 12.600                                                   | 12.300                                         | 10.700                                                   | 31.400                                         | 21.500                                                   | 9.960                                              | 9.990                                          |
| 6<br>7<br>8<br>9                 | 12.100<br>12.000<br>11.800<br>11.600<br>11.400           | 12.800<br>12.900<br>13.100<br>13.300<br>13.600 | 11.000<br>10.000<br>10.000<br>10.000                 | 11.500<br>11.400<br>12.100<br>12.500<br>12.600     | 10.200<br>10.600<br>11.600<br>12.100<br>12.300 | 12.600<br>12.800<br>13.000<br>12.800<br>12.800           | 12.200<br>12.100<br>11.900<br>11.800<br>11.700 | 10.600<br>10.400<br>10.100<br>9.880<br>9.990             | 31.400<br>31.700<br>32.800<br>34.600<br>34.400 | 20.800<br>20.200<br>19.700<br>19.400<br>18.800           | 9.600<br>9.330<br>9.090<br>8.780<br>8.440          | 11.400<br>11.700<br>11.700<br>12.900<br>14.000 |
| 11                               | 10.800                                                   | 13.600                                         | 10.000                                               | 12.300                                             | 12.200                                         | 13.000                                                   | 11.600                                         | 10.000                                                   | 33.600                                         | 19.200                                                   | 8.400                                              | 13.200                                         |
| 12                               | 11.000                                                   | 13.600                                         | 10.000                                               | 11.700                                             | 12.000                                         | 13.200                                                   | 11.700                                         | 10.000                                                   | 34.400                                         | 20.000                                                   | 8.520                                              | 13.500                                         |
| 13                               | 11.500                                                   | 13.400                                         | 10.000                                               | 12.100                                             | 11.800                                         | 13.400                                                   | 11.700                                         | 10.000                                                   | 36.200                                         | 21.300                                                   | 8.460                                              | 16.300                                         |
| 14                               | 11.700                                                   | 13.200                                         | 9.000                                                | 13.100                                             | 11.700                                         | 13.800                                                   | 11.400                                         | 10.000                                                   | 37.900                                         | 19.800                                                   | 8.500                                              | 19.300                                         |
| 15                               | 12.400                                                   | 13.100                                         | 9.000                                                | 13.500                                             | 11.600                                         | 14.200                                                   | 11.200                                         | 9.910                                                    | 37.500                                         | 18.000                                                   | 8.690                                              | 19.200                                         |
| 16                               | 13,900                                                   | 13.200                                         | 9.000                                                | 13.500                                             | 11.500                                         | 15.000                                                   | 11.000                                         | 9.570                                                    | 35.500                                         | 16.700                                                   | 9.180                                              | 20.400                                         |
| 17                               | 14,300                                                   | 13.400                                         | 9.000                                                | 13.400                                             | 11.500                                         | 15.100                                                   | 10.900                                         | 9.350                                                    | 32.900                                         | 16.100                                                   | 9.570                                              | 20.200                                         |
| 18                               | 13,700                                                   | 13.500                                         | 9.000                                                | 13.200                                             | 11.400                                         | 15.500                                                   | 10.700                                         | 9.180                                                    | 30.900                                         | 16.000                                                   | 9.570                                              | 19.000                                         |
| 19                               | 13,200                                                   | 13.300                                         | 9.000                                                | 13.200                                             | 11.300                                         | 17.000                                                   | 10.300                                         | 9.490                                                    | 29.200                                         | 15.900                                                   | 9.300                                              | 18.200                                         |
| 20                               | 13,000                                                   | 13.100                                         | 9.000                                                | 12.900                                             | 10.900                                         | 17.800                                                   | 10.400                                         | 10.300                                                   | 28.000                                         | 15.600                                                   | 8.180                                              | 19.000                                         |
| 21.                              | 13.000                                                   | 12.900                                         | 9.000                                                | 12.100                                             | 10.500                                         | 18.000                                                   | 10.600                                         | 11.600                                                   | 27.700                                         | 15.300                                                   | 8.420                                              | 20.600                                         |
| 22                               | 13.300                                                   | 13.000                                         | 9.000                                                | 11.700                                             | 10.800                                         | 18.600                                                   | 10.700                                         | 13.400                                                   | 27.300                                         | 14.800                                                   | 8.780                                              | 21.000                                         |
| 23                               | 13.100                                                   | 12.400                                         | 9.000                                                | 10.700                                             | 11.300                                         | 21.600                                                   | 10.800                                         | 13.800                                                   | 26.900                                         | 14.300                                                   | 8.800                                              | 26.200                                         |
| 24                               | 12.900                                                   | 13.800                                         | 8.000                                                | 9.500                                              | 11.800                                         | 16.200                                                   | 10.500                                         | 13.400                                                   | 26.400                                         | 14.200                                                   | 8.710                                              | 28.600                                         |
| 25                               | 12.900                                                   | 12.500                                         | 7.000                                                | 8.730                                              | 12.400                                         | 13.800                                                   | 10.300                                         | 13.800                                                   | 25.600                                         | 14.100                                                   | 8.670                                              | 27.000                                         |
| 26<br>27<br>28<br>29<br>30<br>31 | 12.900<br>12.700<br>12.700<br>12.500<br>12.300<br>12.300 | 12.700<br>12.700<br>12.500<br>11.000<br>12.000 | 7.000<br>6.500<br>8.000<br>9.000<br>10.000<br>11.000 | 8.850<br>8.820<br>8.220<br>8.110<br>8.570<br>9.140 | 12.700<br>12.100<br>12.300                     | 13.100<br>13.100<br>12.900<br>12.700<br>12.700<br>12.700 | 10.500<br>10.200<br>9.800<br>10.300<br>11.100  | 14.400<br>15.500<br>18.900<br>23.500<br>27.100<br>30.200 | 24.500<br>23.200<br>21.800<br>20.700<br>19.200 | 14.000<br>14.200<br>14.400<br>14.200<br>12.200<br>11.400 | 8.620<br>8.600<br>8.380<br>8.340<br>8.820<br>8.690 | 24.900<br>24.200<br>25.000<br>25.000<br>25.000 |

STATE

PENNSYLVANIA

MAJOR BASIN

OHIO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

MONONGAHELA RIVER

STATION LOCATION MONONGAHELA RIVER AT

PITTSBURGH, PENNSYLVANIA

|                   |                               |                                         | PADI      | OACTIVITY IN V | /ATED     |       |       |      | ADIOAG | CTIVITY IN PLAN | KTON (dry) | R        | ADIOACTIVITY IN V | ATER  |
|-------------------|-------------------------------|-----------------------------------------|-----------|----------------|-----------|-------|-------|------|--------|-----------------|------------|----------|-------------------|-------|
| DATE<br>SAMPLE    | DATE OF                       | [ · · · · · · · · · · · · · · · · · · · | ALPHA     |                | I         | BETA  |       | DAT  | E OF   | GROSS A         |            |          | GROSS ACTIVIT     | Y     |
| TAKEN             | DATE OF<br>DETERMI-<br>NATION | SUSPENDED                               | DISSOLVED | TOTAL          | SUSPENDED |       | TOTAL | DETE | ION    | ALPHA           | BETA       | SUSPENDE | DISSOLVED         | TOTAL |
| MO. DAY YEAR      |                               | μμς/Ι                                   | μμς/1     | μμε/Ι          | μμς/Ι     | μμε/Ι | μμε/Ι | мо.  | DAY    | μμc/g           | μμc/g      | μμς/Ι    | μμε/Ι             | μμε/Ι |
|                   |                               |                                         |           |                |           |       |       |      |        |                 |            |          |                   |       |
| 6 20 61           | 7 28                          | 0                                       | . 0       | 0              | 0         | 0     | 0     |      |        |                 |            |          |                   |       |
| 6 27 61           | 7 27                          | 0                                       | 0         | 0              | 0         | 0     | 0     |      |        |                 |            |          |                   |       |
| 7 5 61            | 8 4                           | 0                                       | 1         | 1              | 0         | 0     | 0     |      |        |                 |            |          |                   |       |
| 7 11 61           | 8 10                          | 0                                       | 0         | 0              | 0         | 0     | 0     |      | - 1    |                 |            |          |                   |       |
| 7 17 61           | 8 7                           | 0                                       | 0         | 0              | 0         | 0     | 0     |      |        |                 |            |          |                   |       |
| 7 25 61<br>8 8 61 | 88.<br>91                     |                                         | 0         | 0              |           | 5     | 5     |      |        |                 |            |          | ľ                 |       |
| 8 15 61           | 9 12                          | 0                                       | 1         | 1              | 3         | 6     | 9     |      |        |                 |            |          |                   |       |
| 8 22 61           | 9 25                          | lö                                      | ī         | ī              | Ō         | ō     | 0     |      | İ      |                 |            |          |                   |       |
| 8 29 61           | 9 27                          | Ö                                       | 1         | 1              | 3         | 13    | 16    |      |        |                 |            |          |                   |       |
| 9 5 61            | 10 5                          | 0                                       | 0         | 0              | 0         | 7     | 7     |      | ļ      |                 |            |          |                   |       |
| 9 12 61           | 10 10                         | 0                                       | 0         | 0              | 0         | 7     | 7     | ĺ    | l      |                 |            |          |                   |       |
| 9 19 61           | 10 16                         | 0                                       | 0         | 0              | 6         | 15    | . 21  |      |        |                 |            |          |                   |       |
| 9 26 61           | 10 10                         | 0                                       | 0         | 0              | 0         | 2     | 4     |      |        |                 |            |          |                   |       |
|                   |                               |                                         |           |                |           |       |       |      |        |                 |            |          |                   |       |
|                   |                               |                                         |           |                |           |       |       |      |        |                 |            |          |                   |       |
|                   |                               | 1                                       |           |                |           |       |       |      |        |                 |            |          |                   |       |
|                   |                               |                                         |           |                |           |       |       |      |        |                 |            |          |                   |       |
|                   |                               |                                         |           |                |           |       |       |      |        |                 |            |          |                   |       |
|                   |                               |                                         |           |                |           |       |       | ļ    | 1      |                 |            |          |                   |       |
|                   |                               |                                         |           | -              |           |       | 1     |      |        |                 |            |          |                   |       |
|                   |                               |                                         |           |                |           |       |       |      | ļ      |                 |            |          |                   |       |
|                   |                               |                                         |           |                | 1         |       |       | Ì    | ĺ      |                 |            |          |                   |       |
|                   |                               |                                         |           |                |           |       |       | İ    |        |                 |            |          |                   |       |
|                   |                               | ł                                       |           |                |           |       | 1     |      |        |                 |            |          |                   |       |
|                   |                               | Ì                                       |           |                |           |       |       |      | İ      |                 |            |          | ļ                 |       |
|                   |                               |                                         |           |                |           |       |       |      |        |                 |            |          | ļ                 |       |
|                   |                               |                                         |           |                |           |       |       |      |        |                 |            |          | 1                 |       |
|                   |                               |                                         |           |                |           |       |       |      |        |                 |            | j        |                   |       |
|                   |                               |                                         |           |                |           |       |       |      |        |                 |            |          |                   |       |
|                   |                               |                                         |           |                |           |       |       |      |        |                 |            |          | 1                 |       |
|                   |                               |                                         |           |                |           |       |       |      |        |                 |            |          |                   |       |
|                   |                               |                                         |           |                |           |       |       |      | 1      |                 |            |          |                   |       |
|                   |                               |                                         |           |                |           |       |       |      |        |                 |            |          |                   |       |
|                   |                               | 1                                       |           |                |           |       |       |      |        |                 |            |          |                   |       |
|                   |                               |                                         |           |                |           |       |       |      |        |                 |            |          |                   |       |
|                   | 1                             |                                         |           |                |           |       |       |      |        |                 |            | ]        |                   |       |
|                   | 1                             |                                         |           |                |           |       |       |      |        |                 |            |          |                   |       |

PHS-2845-5 REV. 4-61

#### WATER QUALITY BASIC DATA

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

PENNSYLVANIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

MONONGAHELA RIVER

STATION LOCATION MONONGAHELA RIVER AT

PITTSBURGH, PENNSYLVANIA

|         | DAT | E              |                           |         |                       | ALGAE (          | Number                | per ml.)                  |                  |         |          | INE                  | ERT                |        |            |                  |                 |                         |          |                               |            |                       | Ι                                                              | т                       | MICROIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VEDTER                       | ATCS                         | <del>-</del> 1                        |                                                             |
|---------|-----|----------------|---------------------------|---------|-----------------------|------------------|-----------------------|---------------------------|------------------|---------|----------|----------------------|--------------------|--------|------------|------------------|-----------------|-------------------------|----------|-------------------------------|------------|-----------------------|----------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|---------------------------------------|-------------------------------------------------------------|
| OF      |     | IPLE           |                           | BLUE.   | GREEN                 |                  |                       |                           | LLATES<br>ented) | DIAT    | омѕ      | DIA<br>SHE<br>(No. p | ERT<br>TOM<br>ELLS |        | DOM<br>(Se | INANT<br>e Intro | SPEC<br>duction | IATO<br>IES A<br>for Co | ND PE    | RCEN <sup>*</sup><br>ntificat | TAGES      | 3                     | ANKTON,<br>ATHED                                               | 7                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                              | ORMS                                  | NERA<br>sction<br>ation)                                    |
| MONTH   | DAY | YEAR           | TOTAL                     | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID          | FILA-<br>MENT-<br>OUS |                           |                  | CENTRIC | PENNATE  |                      | PENNATE            | FIRST# | PER-       | SECOND#          | PER-<br>CENTAGE | THIRD#                  | PER-     | FOURTH#                       | PER-       | OTHER PER-<br>CENTAGE | OTHER MICROPLANKTOR, FUNGI AND SHEATHED MACTERIA (No. per ml.) | PROTOZOA<br>(No. per ml | ROTIFIERS<br>(No. per liter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ANIMAL FORMS<br>(No. per liter) | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| 8 8 9 9 |     | 61<br>61<br>61 | 1500<br>300<br>700<br>200 |         |                       | 20<br>170<br>100 | ous                   | 1490<br>270<br>500<br>100 | JINEK            | 20      | 20<br>20 |                      | 20                 | FIRST  | - 184      | 0038             | CENT            | пинт                    | PER-CENT | FOURT                         | PER. CENT. | ино                   | NO NO NO NO NO NO NO NO NO NO NO NO NO N                       | PROT                    | TO THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE CHAPTER OF THE | Cuns.                        | NEWA (700.1                  | отиви (Мо. р                          | рини ромин ( See ) — — — — — — — — — — — — — — — — — —      |
|         |     |                |                           |         |                       |                  |                       |                           |                  |         |          |                      |                    |        |            |                  |                 |                         |          |                               |            |                       |                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                              |                                       |                                                             |

## ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

PENNSYLVANIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

MONONGAHELA RIVER

STATION LOCATION MONONGAHELA RIVER AT

PITTSBURGH, PENNSYLVANIA

|                              |     | _          |                      |                   | TRACTABL         | FC .              |                     |                   |                |            | CHLOROF   | ORM EXTRA                    | CTABLES |               |                 |         |                |
|------------------------------|-----|------------|----------------------|-------------------|------------------|-------------------|---------------------|-------------------|----------------|------------|-----------|------------------------------|---------|---------------|-----------------|---------|----------------|
| DATE OF S                    |     | END        |                      | E./               | IRACIABL         |                   |                     |                   |                |            | NEUTRALS  |                              |         | ·····         | 1               |         |                |
| DAY YEAR                     | _   | 1          | GALLONS<br>FILTERED  | TOTAL             | CHLORO-<br>FORM  | ALCOHOL           | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES | TOTAL          | ALIPHATICS | AROMATICS | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS    | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES   | Loss           |
| 6 20 61<br>8 9 61<br>9 19 61 | . 6 | 29 3 17 28 | 3687<br>5697<br>5167 | 289<br>251<br>254 | 152<br>100<br>76 | 137<br>151<br>178 | 15<br>11<br>4       | 46<br>26<br>18    | 40<br>26<br>24 | 6 9 6      | 5 4 3     | 27                           | 2 1 0   | 15<br>9<br>10 | 7               | 2 1 1 1 | 16<br>20<br>11 |
|                              |     |            |                      |                   |                  |                   |                     |                   |                |            |           |                              |         |               |                 |         |                |



STATE

PENNSYLVANIA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

OHIO RIVER

MINOR BASIN

MONONGAHELA RIVER

STATION LOCATIONMONONGAHELA RIVER AT

PITTSBURGH, PENNSYLVANIA

| DATE<br>OF SAMPLE                                                                                               |                                                                              |                             |                                                             |                | <u> </u>       | CHLORINE       | DEMAND          | 1                            |                   |                    |                                                                                                       |                        |                                  |                                                                                   |                    | *                                                                                       |                          |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|-------------------------------------------------------------------------------------------------------|------------------------|----------------------------------|-----------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------|--------------------------|
| DAY                                                                                                             | TEMP. (Degrees Centigrade)                                                   | DISSOLVED<br>OXYGEN<br>mg/l | рН                                                          | B,O,D,<br>mg/i | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l                                                                                      | COLOR<br>(scale units) | TURBIDITY<br>(scale units)       | SULFATES<br>mg/l                                                                  | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l                                                    | COLIFORMS<br>per 100 mi. |
| 6 20 61<br>27 61<br>7 6 61<br>7 11 61<br>7 125 61<br>8 61<br>8 61<br>8 61<br>8 61<br>8 61<br>9 26 61<br>9 26 61 | 23.9<br>24.4<br>23.5<br>23.5<br>25.9<br>28.2<br>31.1<br>25.8<br>25.4<br>25.8 |                             | 9.2.6.5.5.1.4.4.3.4.9.3.0.4.6.6.5.5.5.5.5.4.4.4.4.6.6.6.5.4 |                |                |                |                 |                              | 43755579665880011 | 443332142 254522   | 98<br>72<br>120<br>88<br>106<br>100<br>118<br>116<br>78<br>66<br>88<br>94<br>106<br>110<br>111<br>126 |                        | 155550055555<br>2222555<br>25555 | 115<br>93<br>159<br>153<br>158<br>212<br>218<br>125<br>1144<br>164<br>173<br>2008 |                    | 174<br>148<br>181<br>261<br>143<br>356<br>254<br>200<br>226<br>189<br>218<br>331<br>399 |                          |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Braddock, Pennsylvania Operated by U.S. Geological Survey STATE

Pennsylvania

MAJOR BASIN

Ohio River

MINOR BASIN

Monongahela River

STATION LOCATION

Monongahela River at

Pittsburgh, Pennsylvania

| Day                              | October                                            | November                                       | December                                             | January                                            | February                                       | March                                                    | April                                          | May                                                | June                                           | July                                               | August                                             | September                                 |
|----------------------------------|----------------------------------------------------|------------------------------------------------|------------------------------------------------------|----------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------|------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|
| 1<br>2<br>3<br>4                 | 3.480<br>2.970<br>2.900                            | 4.000<br>5.600<br>6.300<br>5.600               | 3.200<br>3.680<br>3.850<br>3.000                     | 18.000<br>17.000<br>16.000<br>14.200               | 4.000<br>5.000<br>4.500<br>4.000               | 42.900<br>42.900<br>40.700<br>40.700                     | 22.400<br>30.400<br>25.000<br>22.400           | 25.000<br>26.800<br>26.800<br>25.000               | 6.800<br>11.600<br>26.300<br>31.300            | 8.400<br>5.250<br>4.550<br>8.100                   | 4.900<br>5.800<br>14.500<br>22.400                 | 2.780<br>2.870<br>2.970<br>2.840          |
| 5                                | 3.400<br>3.160                                     | 4.850                                          | 2.500                                                | 12.800                                             | 3.000                                          | 55.700                                                   | 20.800                                         | 20.000                                             | 24.100                                         | 5.800                                              | 15.600                                             | 3.360                                     |
| 6<br>7<br>8<br>9                 | 3.080<br>3.080<br>3.080<br>2.810<br>2.710          | 4.300<br>5.000<br>8.100<br>9.000<br>8.700      | 2.710<br>3.360<br>3.200<br>3.120<br>3.440            | 11.100<br>11.800<br>11.400<br>11.400<br>11.100     | 3.000<br>5.000<br>4.800<br>4.500<br>4.500      | 64.500<br>52.100<br>44.000<br>52.100<br>50.900           | 17.400<br>14.900<br>13.500<br>10.200<br>8.400  | 15.600<br>17.000<br>23.800<br>34.200<br>25.900     | 19.600<br>16.000<br>15.200<br>16.600<br>29.200 | 8.120<br>18.400<br>13.800<br>9.300<br>6.100        | 10.500<br>7.800<br>7.800<br>6.100<br>4.750         | 4.050<br>3.200<br>2.940<br>3.000<br>2.680 |
| 11<br>12<br>13<br>14<br>15       | 3.120<br>2.870<br>2.650<br>2.560<br>2.500          | 11.400<br>14.200<br>14.200<br>11.800<br>10.200 | 2.740<br>2.300<br>2.470<br>3.120<br>3.280            | 9.300<br>9.000<br>8.100<br>8.100<br>8.400          | 5.000<br>6.000<br>7.000<br>15.000<br>50.000    | 46.200<br>45.100<br>42.900<br>36.300<br>32.200           | 19.400<br>25.000<br>32.200<br>36.300<br>35.200 | 24.100<br>25.000<br>22.400<br>15.600<br>8.700      | 38.500<br>30.400<br>29.500<br>29.500<br>30.400 | 5.400<br>4.600<br>4.450<br>6.380<br>9.300          | 4.850<br>12.700<br>23.200<br>15.600<br>15.600      | 2.470<br>2.680<br>2.680<br>2.590<br>2.470 |
| 16<br>17<br>18<br>19<br>20       | 2.210<br>2.020<br>2.320<br>2.710<br>3.320          | 9.000<br>7.550<br>6.300<br>5.700<br>5.100      | 3.320<br>3.850<br>3.280<br>3.160<br>3.800            | 9.000<br>16.600<br>16.600<br>15.600<br>13.800      | 45.000<br>35.000<br>45.300<br>63.200<br>72.800 | 34.200<br>30.400<br>25.900<br>22.400<br>25.900           | 37.400<br>37.400<br>32.200<br>30.400<br>28.600 | 10.200<br>11.800<br>9.900<br>9.000<br>9.300        | 26.800<br>20.800<br>10.800<br>7.550<br>7.050   | 7.550<br>5.700<br>7.800<br>9.900<br>10.800         | 13.800<br>9.300<br>5.550<br>4.450<br>4.450         | 2.440<br>2.270<br>2.040<br>2.300<br>3.170 |
| 21<br>22<br>23<br>24<br>25       | 3.950<br>5.150<br>4.050<br>3.080<br>3.000          | 4.000<br>4.700<br>5.300<br>4.950<br>3.720      | 4.200<br>3.720<br>3.900<br>4.400<br>3.320            | 12.400<br>8.100<br>6.550<br>5.450<br>5.950         | 45.100<br>32.200<br>38.500<br>52.100<br>45.100 | 28.600<br>42.600<br>48.500<br>36.300<br>32.200           | 25.000<br>27.700<br>39.600<br>36.300<br>33.200 | 8.700<br>6.550<br>7.800<br>7.550<br>7.300          | 7.300<br>9.300<br>9.300<br>7.300<br>5.300      | 9.900<br>10.500<br>8.100<br>5.750<br>7.050         | 7.050<br>6.550<br>4.500<br>3.480<br>3.760          | 5.800<br>5.550<br>4.100<br>3.200<br>2.840 |
| 26<br>27<br>28<br>29<br>30<br>31 | 3.080<br>3.160<br>3.900<br>3.800<br>3.120<br>3.200 | 3.900<br>3.000<br>2.470<br>2.810<br>3.200      | 3.240<br>3.400<br>7.800<br>9.300<br>12.600<br>20.000 | 5.450<br>5.400<br>4.950<br>3.850<br>3.480<br>3.440 | 68.600<br>54.800<br>39.600                     | 26.800<br>21.600<br>19.200<br>20.000<br>21.600<br>19.600 | 58.100<br>45.100<br>32.200<br>28.600<br>29.500 | 6.550<br>7.550<br>8.100<br>5.550<br>7.300<br>5.150 | 4.550<br>4.900<br>4.700<br>4.500<br>5.010      | 7.800<br>6.100<br>5.650<br>6.050<br>5.600<br>5.250 | 3.720<br>3.520<br>3.200<br>3.600<br>3.000<br>2.840 | 3.000<br>7.740<br>2.620<br>2.500<br>2.440 |

STATE

NEBRÁSKA

MAJOR BASIN

MISSOURI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

NORTH PLATTE RIVER

STATION LOCATION NORTH PLATTE RIVER ABOVE

HENRY, NEBRASKA

|                               |                               |                | PADI            | DACTIVITY IN    | WATER        | <del></del>    | T.             |   | RADIOAC                       | CTIVITY IN PLAN | KTON (dry)         |           | OACTIVITY IN W |       |
|-------------------------------|-------------------------------|----------------|-----------------|-----------------|--------------|----------------|----------------|---|-------------------------------|-----------------|--------------------|-----------|----------------|-------|
| DATE                          |                               |                | ALPHA           | JACIIVIII III   | T            | BETA           |                |   | DATE OF                       | GROSS A         | CTIVITY            |           | GROSS ACTIVIT  | Y     |
| SAMPLE<br>TAKEN               | DATE OF<br>DETERMI-<br>NATION | SUSPENDED      | DISSOLVED       | TOTAL           | SUSPENDED    | DISSOLVED      | TOTAL          |   | DATE OF<br>DETERMI-<br>NATION | ALPHA           | BETA               | SUSPENDED |                | TOTAL |
| O. DAY YEAR                   |                               | μμε/Ι          | μμε/Ι           | μμς/            | μμε/ί        | μμε/1          | μμς/Ι          |   | MO. DAY                       | μμc/g           | μμ <sub>C</sub> /g | μμc/l     | μμε/1          | μμε/1 |
| 8 21 61<br>8 28 61<br>9 5 61  | 9 27<br>9 26<br>9 29          | 0<br>0<br>1    | 16<br>109<br>26 | 16<br>109<br>27 | 0 1 3        | 5<br>29<br>40  | 5<br>30<br>43  |   |                               |                 |                    | !         |                |       |
| 9 11 61<br>9 18 61<br>9 25 61 | 10 24<br>10 27<br>10 4        | 4<br>1<br>0    | 19<br>22<br>28  | 23<br>23<br>28  | 4<br>2<br>31 | 34<br>20<br>34 | 38<br>22<br>65 |   |                               |                 |                    |           |                |       |
|                               |                               |                |                 |                 |              | ·              | 3              |   |                               |                 |                    |           |                |       |
|                               |                               |                |                 |                 |              |                |                |   |                               |                 |                    |           |                |       |
|                               |                               |                |                 |                 |              |                |                |   |                               |                 |                    |           |                |       |
|                               |                               |                |                 |                 |              |                |                |   |                               |                 |                    | ,         |                |       |
|                               | -                             |                | •               | ~               |              |                |                |   |                               |                 |                    |           |                |       |
|                               |                               |                |                 |                 |              |                |                | - |                               |                 |                    |           |                |       |
|                               |                               | Rabin Strategy |                 |                 |              |                |                |   |                               |                 |                    |           |                |       |
|                               |                               |                |                 |                 |              |                |                |   |                               |                 |                    |           |                |       |
|                               |                               |                |                 |                 |              |                |                |   |                               |                 |                    |           |                |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

NEBRASKA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

NORTH PLATTE RIVER

STATION LOCATION NORTH PLATTE RIVER ABOVE

HENRY, NEBRASKA

| DATE   SAMPLE   BLUE-GREEN   GREEN   Figuresist   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIATOMS   DIAT |                      |       |         |       | ALGAE (A | lumber | per ml.) |                 |         |         | INE                    | RT                    |        |              |                | DI              | ATON   | 4S              |                    |                 |                       | ×                                                 | 1                   | ICROIN               | VERTEBR             | ATES                |                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|---------|-------|----------|--------|----------|-----------------|---------|---------|------------------------|-----------------------|--------|--------------|----------------|-----------------|--------|-----------------|--------------------|-----------------|-----------------------|---------------------------------------------------|---------------------|----------------------|---------------------|---------------------|-----------------------------------------------------------------------|
| 8 21 61 2700 210 40 20 250 1040 1120 60 460 15 20 36 20 6 10 2 10 40 8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DATE<br>OF SAMPLE    |       | BLUE-0  |       |          |        |          | LATES<br>ented) | DIAT    | омѕ     | DIAT<br>SHE<br>(No. pa | FOM<br>LLS<br>er ml.) |        | DOMI<br>(See | NANT<br>Introd | SPECI           | ES AN  | ID PER          | RCENT<br>utificati | AGES<br>on*)    |                       | OPLANKTO<br>SHEATHED<br>THL.)                     | A<br>m1.)           | is<br>liter)         | EA<br>liter)        | liter)              | arnena<br>oduction<br>ification                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MONTH<br>DAY<br>YEAR | TOTAL | COCCOID | MENT- | COCCOID  | MENT-  | GREEN    | OTHER           | CENTRIC | PENNATE | CENTRIC                | PENNATE               | FIRST# | PER-         | SECOND*        | PER.<br>CENTAGE | THIRD# | PER.<br>CENTAGE | FOURTH#            | PER.<br>CENTAGE | OTHER PER-<br>CENTAGE | OTHER WICH<br>FURGI AND I<br>BACTERIA<br>(No. per | PROTOZO<br>(No. per | ROTIFIER<br>(No. per | CRUSTAC<br>(No. per | NEMATOR<br>(No. per | CNS. per liter) DOBINANT BENERA CSee Introduction (as Identification) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | 2700  |         |       | 40       |        | 250      |                 | 1040    | 1120    | 60                     |                       | 15     | 1            |                |                 |        |                 |                    |                 |                       |                                                   |                     |                      |                     |                     | 4-9-                                                                  |



#### ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

NEBRASKA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

NORTH PLATTE RIVER

STATION LOCATION NORTH PLATTE RIVER ABOVE

HENRY, NEBRASKA

|       |      |      |       |     |                     | ,     |                 |         | <del>,</del>        |                   |       |            | <del></del> |                              |          |               |                 |       |      |
|-------|------|------|-------|-----|---------------------|-------|-----------------|---------|---------------------|-------------------|-------|------------|-------------|------------------------------|----------|---------------|-----------------|-------|------|
|       |      |      | AMPLE |     |                     | E     | XTRACTABL       | ES      | <del> </del>        |                   |       |            |             |                              | ACTABLES |               |                 |       |      |
| В     | GINN | ING  | EN    | םו  |                     | İ     |                 |         |                     |                   |       |            | NEUTRALS    | }<br>                        |          |               |                 |       |      |
| MONTH | DAY  | YEAR | MONTH | DAY | GALLONS<br>FILTERED | TOTAL | CHLORO-<br>FORM | ALCOHOL | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES | TOTAL | ALIPHATICS | AROMATICS   | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS     | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES | LOSS |
| 9     | 9    | 61   | 9     | 18  | 2678                | 207   | 37              | 170     | 2                   | 8                 | 16    | 4          | 2           | 10                           | o        | 3             | 2               | 0     | 6    |
|       |      |      |       |     |                     |       |                 |         |                     |                   |       |            |             |                              | -        |               |                 |       |      |
|       |      |      |       |     |                     |       |                 |         |                     |                   |       |            |             |                              |          |               |                 |       |      |
|       |      |      |       |     |                     |       |                 |         |                     |                   |       |            |             |                              |          |               |                 |       |      |
|       |      |      |       |     |                     |       |                 |         |                     |                   |       | ·          |             |                              |          |               |                 |       |      |
|       |      |      |       |     |                     |       |                 |         |                     | :                 |       |            |             |                              |          |               |                 |       |      |
|       |      |      |       |     |                     |       |                 |         |                     | ***               |       |            |             |                              |          |               |                 |       |      |
|       |      |      |       |     |                     |       |                 |         |                     |                   |       |            |             |                              |          |               |                 |       |      |
|       |      |      |       |     |                     |       |                 |         |                     |                   |       |            |             |                              |          |               |                 |       |      |
|       |      |      |       |     |                     |       |                 |         |                     |                   |       |            |             |                              |          | 3<br>6        |                 |       |      |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

NEBRASKA

MAJOR BASIN

STATE

MISSOURI RIVER

MINOR BASIN

NORTH PLATTE RIVER

STATION LOCATIONNORTH PLATTE RIVER ABOVE

HENRY. NEBRASKA

| _                | DATE     |                      | 1                            |                             |                                 |                 |                | CHLORINE                           | DEMAND                       |                              |                                  |                                        |                  |                        |                            |                  |                    | TOTAL                       |                                    |
|------------------|----------|----------------------|------------------------------|-----------------------------|---------------------------------|-----------------|----------------|------------------------------------|------------------------------|------------------------------|----------------------------------|----------------------------------------|------------------|------------------------|----------------------------|------------------|--------------------|-----------------------------|------------------------------------|
| MONTH            | F SAM    | YEAR                 | TEMP. (Degrees Contigrade)   | DISSOLVED<br>OXYGEN<br>mg/l | pН                              | B.O.D.<br>mg/l  | C.O.D.<br>mg/l | 1-HOUR<br>mg/l                     | 24-HOUR<br>mg/l              | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l                | ALKALINITY<br>mg/l                     | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/I | DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 mi.           |
| 8<br>8<br>9<br>9 | 21<br>28 | 61<br>61<br>61<br>61 | 21.9<br>14.0<br>15.0<br>18.0 | 6.1<br>5.6<br>5.4           | 8.7<br>8.3<br>8.1<br>8.1<br>8.1 | 2.0 1.2 1.3 2.6 | 1111           | 5.3<br>5.3<br>12.5<br>11.6<br>12.0 | 27.5<br>93.5<br>24.4<br>73.6 | 11111                        | 22<br>26<br>23<br>23<br>22<br>23 | 175<br>190<br>190<br>189<br>190<br>190 | 290              | 20 6                   | -<br>-<br>38<br>25         |                  | -                  | 1                           | 800<br>2000<br>1400<br>170<br>1000 |
|                  |          |                      |                              |                             |                                 |                 |                |                                    |                              |                              |                                  |                                        |                  |                        |                            |                  |                    |                             |                                    |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Wyoming-Nebraska State Line Operated by U.S. Geological Survey STATE

Nebraska

MAJOR BASIN

Missouri River

MINOR BASIN

North Platte River

STATION LOCATION

North Platte River above

Henry, Nebraska

| Day                              | October                                      | November                             | December                                     | January                                            | February                             | March                                            | April                                | May                                          | June                                                  | July                                               | August                                       | September                                 |
|----------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------------|--------------------------------------|--------------------------------------------------|--------------------------------------|----------------------------------------------|-------------------------------------------------------|----------------------------------------------------|----------------------------------------------|-------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | .374<br>.310<br>.280<br>.189                 | .275<br>.275<br>.275<br>.275<br>.260 | .280<br>.290<br>.295<br>.325<br>.310         | .260<br>.260<br>.275<br>.265                       | .234<br>.234<br>.234<br>.234<br>.226 | .206<br>.203<br>.210<br>.210                     | .210<br>.210<br>.210<br>.210<br>.206 | .210<br>.206<br>.203<br>.210                 | .214<br>.206<br>.210<br>.210                          | 1.050<br>1.250<br>1.280<br>1.340<br>1.390          | •796<br>•593<br>•452<br>•392<br>•335         | .422<br>.386<br>.386<br>.428<br>.537      |
| 6<br>7<br>8<br>9                 | .168<br>.164<br>.180<br>.200                 | .280<br>.290<br>.290<br>.295<br>.295 | .295<br>.285<br>.265<br>.275<br>.275         | .255<br>.265<br>.260<br>.265<br>.280               | .222<br>.214<br>.206<br>.206<br>.210 | .226<br>.226<br>.226<br>.230<br>.234             | .203<br>.203<br>.218<br>.214<br>.218 | .200<br>.189<br>.186<br>.050<br>.015         | • 255<br>• 315<br>• 325<br>• 356<br>• 37 <sup>4</sup> | 1.420<br>1.460<br>1.560<br>1.510<br>1.460          | .684<br>1.020<br>1.120<br>1.260<br>1.150     | .628<br>.600<br>.600<br>.656<br>.677      |
| 11<br>12<br>13<br>14<br>15       | .302<br>.335<br>.320<br>.310<br>.315         | .295<br>.300<br>.300<br>.300         | .275<br>.270<br>.265<br>.270<br>.275         | .265<br>.265<br>.280<br>.270<br>.265               | .218<br>.218<br>.214<br>.210<br>.210 | .21 <sup>4</sup><br>.210<br>.200<br>.200<br>.200 | .222<br>.230<br>.242<br>.255<br>.242 | .014<br>.013<br>.091<br>.464<br>.285         | .380<br>.206<br>.210<br>.218<br>.203                  | 1.360<br>1.230<br>1.170<br>1.060<br>1.000          | 1.060<br>1.030<br>1.030<br>1.000             | .684<br>.733<br>.719<br>.719<br>.747      |
| 16<br>17<br>18<br>19<br>20       | .310<br>.310<br>.305<br>.300<br>.290         | .305<br>.295<br>.290<br>.285<br>.285 | .265<br>.255<br>.260<br>.280<br>.280         | .260<br>.260<br>.260<br>.2 <sup>1</sup> 42<br>.238 | .206<br>.214<br>.214<br>.203<br>.203 | .203<br>.203<br>.203<br>.206<br>.206             | .238<br>.260<br>.265<br>.265         | .172<br>.164<br>.178<br>.250<br>.242         | .178<br>.168<br>.161<br>.138<br>.125                  | 1.090<br>1.130<br>1.100<br>1.100<br>1.190          | .968<br>1.020<br>1.000<br>.976<br>.831       | •733<br>•726<br>•740<br>•761<br>•761      |
| 21<br>22<br>23<br>24<br>25       | .285<br>.275<br>.275<br>.270<br>.270         | .285<br>.285<br>.285<br>.280<br>.275 | .275<br>.275<br>.275<br>.280<br>.280         | .246<br>.226<br>.230<br>.246<br>.246               | .214<br>.218<br>.218<br>.218<br>.214 | .210<br>.214<br>.210<br>.214<br>.214             | .250<br>.246<br>.246<br>.238<br>.238 | .260<br>.255<br>.246<br>.234<br>.222         | .122<br>.102<br>.070<br>.055<br>.055                  | 1.280<br>1.190<br>1.190<br>1.190<br>1.170          | .712<br>.712<br>.691<br>.677<br>.656         | . 761<br>. 782<br>. 642<br>. 565<br>. 434 |
| 26<br>27<br>28<br>29<br>30<br>31 | .275<br>.275<br>.275<br>.275<br>.275<br>.275 | .275<br>.275<br>.270<br>.270<br>.265 | .275<br>.280<br>.265<br>.285<br>.255<br>.265 | .240<br>.235<br>.230<br>.226<br>.222<br>.230       | .210<br>.206<br>.206                 | .210<br>.214<br>.214<br>.214<br>.214<br>.214     | .226<br>.230<br>.222<br>.218<br>.210 | .218<br>.222<br>.222<br>.226<br>.218<br>.214 | .055<br>.055<br>.055<br>.158<br>.816                  | 1.180<br>1.170<br>1.140<br>1.270<br>1.030<br>1.280 | .635<br>.593<br>.530<br>.494<br>.464<br>.452 | . 368<br>. 340<br>. 330<br>. 320<br>. 315 |

STATE

ILLINOIS

MAJOR BASIN

OHIO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

CAIRO, ILLINOIS

|                 |                               |           | 9.510     | ACTIVITY IN W | /ATED     |           | r     |   | RADIOAC            | TIVITY IN PLAN | IKTON (dry) |     | RAD       | IOACTIVITY IN W | ATER     |
|-----------------|-------------------------------|-----------|-----------|---------------|-----------|-----------|-------|---|--------------------|----------------|-------------|-----|-----------|-----------------|----------|
| DATE            |                               |           |           | ACTIVITY IN W | AIER      | BETA      |       | f | DATE OF            | GROSS A        |             |     |           | GROSS ACTIVIT   | <u>'</u> |
| SAMPLE          | DATE OF<br>DETERMI-<br>NATION | T         | DISSOLVED | TOTAL         | SUSPENDED | DISSOLVED | TOTAL |   | DETERMI-<br>NATION | ALPHA          | BETA        | [5  | SUSPENDED | DISSOLVED       | TOTAL    |
| TAKEN           |                               | SUSPENDED | μμc/I     | μμε/Ι         | μμς/Ι     | μμε/Ι     | μμε/Ι | i | MO. DAY            | μμс/g          | μμε/g       |     | μμε/ί     | μμc/l           | μμε/1    |
| O. DAY YEAR     | MONTH DAY                     | μμε/Ι     | μμε/1     |               | 1, 3      |           |       |   |                    |                |             | l   |           |                 |          |
| 0 11 60*        | 10 21                         | 0         | 1         | 1             | 0         | 15        | 15    |   |                    |                |             |     |           |                 |          |
| ) 24 60*        |                               | _         | _         | _             | 2         | 23        | 25    |   |                    |                |             | 1   |           |                 |          |
| 1 7 60*         |                               | 0         | 1         | 1             | 13        | 6         | 19    |   |                    |                |             |     |           |                 |          |
| 1 21 60*        |                               | i         | 1         | 2             | 2         | 9         | 11    |   |                    |                |             |     |           |                 |          |
| 2 12 60         | 1 3                           | 2         | o         | 2             | 5         | 2         | 7     | l |                    |                |             |     |           |                 |          |
| 2 19 60         | 1 19                          | _         | _         | _             | 2         | 9         | 11    |   |                    |                |             |     |           |                 |          |
| 9 61            | 1 27                          | 1         | 2         | 3             | 0         | 0         | 0     |   |                    |                |             | - [ |           | 1               |          |
| 1 30 61*        | 1                             | _         | -         | _             | 7         | 0         | 7     |   |                    |                |             | Ì   |           |                 |          |
| 2 13 61*        |                               | 1 1       | 0         | 1             | 0         | 0         | 0     |   |                    |                |             | l   |           |                 |          |
| 2 27 61*        |                               | -         |           |               | 7         | 0         | 7     |   |                    |                |             | 1   |           |                 |          |
| 3 14 61*        |                               | 2         | 0         | . 2           | 15        | 3         | 18    |   |                    |                |             |     |           |                 |          |
| 3 27 61*        | 1                             | _         | - 1       | _             | 9         | 1         | 10    |   |                    |                |             |     |           |                 |          |
| 4 10 61*        | 1                             | 1 1       | 0         | 1             | 7         | 0         | 7     |   |                    |                |             |     |           | !               |          |
| 4 24 61*        | 1                             | _         | -         | _             | 6         | 2         | 8     |   |                    |                |             |     |           |                 |          |
| 5 8 <b>61</b> * | 1                             | 1         | 1         | 2             | 5         | 2         | 7     |   |                    |                |             |     |           |                 |          |
| 5 31 61*        | 1                             | _         | _         | _             | 4         | 5         | 9     |   |                    |                |             |     |           |                 |          |
| 6 12 61         | 7 6                           | 10        | 3         | 13            | 0         | 0         | 0     |   |                    |                |             |     |           |                 |          |
| 6 26 61         | 7 26                          | _         | _         | -             | 0         | 0         | 0     |   |                    |                | !           |     |           |                 | ı        |
| 7 11 61         | 1                             | 0         | 1         | 1             | 0         | 9         | 9     |   |                    |                |             |     |           | l .             |          |
| 7 31 61         | 8 29                          | _         | -         |               | 10        | 7         | 17    |   |                    |                |             |     |           |                 |          |
| 8 7 61          | 9 19                          | 3         | 1         | 4             | 6         | 9         | 15    |   |                    |                | 1           | 1 1 |           |                 |          |
| • , •-          |                               | 1         |           |               |           |           |       |   |                    |                |             |     |           |                 |          |
|                 |                               |           |           |               | Ì         |           |       |   |                    |                |             |     |           |                 |          |
|                 |                               | l         |           |               | 1         |           |       |   |                    |                |             | 1 1 |           |                 |          |
|                 |                               |           |           |               |           |           |       |   |                    |                |             |     |           |                 |          |
|                 |                               |           |           |               |           | 1         |       |   |                    |                |             |     |           |                 |          |
|                 |                               |           |           |               |           | İ         |       |   |                    |                |             |     |           |                 |          |
|                 |                               |           |           |               |           |           |       |   |                    |                |             | 1 1 |           |                 | 1        |
|                 |                               |           |           |               |           |           |       | 1 | ļ                  |                |             | 1 1 |           |                 |          |
|                 |                               |           |           |               |           |           | !     | ł |                    |                |             | 1 1 |           |                 |          |
|                 |                               |           |           |               |           |           |       | ! |                    |                |             |     |           |                 |          |
|                 |                               |           | Ì         |               |           |           |       |   |                    |                |             |     |           |                 |          |
|                 |                               |           |           |               |           |           |       | i |                    |                |             |     |           |                 |          |
|                 |                               |           |           |               |           |           | 1     |   |                    |                | 1           |     |           |                 |          |
|                 |                               |           |           |               |           |           |       |   |                    |                |             |     |           | 1               |          |
|                 |                               |           |           |               |           |           |       |   |                    |                |             |     |           |                 |          |
|                 |                               |           |           |               |           |           |       |   |                    |                |             | 1 1 |           |                 |          |
|                 |                               |           |           |               |           |           |       | 1 |                    |                |             |     |           |                 |          |
|                 |                               |           | 1         |               |           |           |       |   |                    |                | 1           |     |           |                 |          |
|                 |                               |           |           |               |           | 1         |       | 1 | 1                  | 1              | 1           | 1 1 |           |                 | 1        |



PHS-2845-5 REV. 4-61

WATER QUALITY BASIC DATA

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

ILLINOIS

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

CAIRO, ILLINOIS

| DATE                 |                                                                                                                                             |                             |                       | ALGAE (I                                                                                             | Vumber                | per ml.)                                                                               |                                                          |                                                                                                         |                                                                                                          | IN                                             | RT                                                                                                   | Π                                               |                                                                                                                                                                                                          |                  | D                                                                                                                                                                                                                                            | IATO                                                                                                                                         | MS                                                                                     |                                                                                                                                                                                                          |                                                                                               |                                              | l ;                                                          | 1                         | MICROIN                                 | VERTEBR                      | ATES                         | T                              |                                                                                                 |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------|------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|---------------------------|-----------------------------------------|------------------------------|------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------|
| OF SAMPLE            |                                                                                                                                             | BLUE-                       | GREEN                 | GREE                                                                                                 | EN                    | FLAGEI<br>(Pigm                                                                        | LATES<br>ented)                                          | DIAT                                                                                                    | омѕ                                                                                                      | DIA<br>SHE<br>(No. p                           | ERT<br>TOM<br>ELLS<br>er ml.)                                                                        |                                                 |                                                                                                                                                                                                          | INANT<br>s Intro | SPEC                                                                                                                                                                                                                                         | IES A                                                                                                                                        | ND PE                                                                                  |                                                                                                                                                                                                          |                                                                                               | 3                                            | ROPLANKTON,<br>SHEATHED                                      | (.1                       | (La                                     | er)                          | s<br>er)                     | Tonks                          | ENERA<br>Luction<br>cation)                                                                     |
| MONTH<br>DAY<br>YEAR | TOTAL                                                                                                                                       | COCCOID                     | FILA-<br>MENT-<br>OUS | COCCOID                                                                                              | FILA-<br>MENT-<br>OUS | GREEN                                                                                  | OTHER                                                    | CENTRIC                                                                                                 | PENNATE                                                                                                  | CENTRIC                                        | PENNATE                                                                                              | FIRST                                           | PER.                                                                                                                                                                                                     | SECOND*          | PER.                                                                                                                                                                                                                                         | THIRD#                                                                                                                                       | PER.                                                                                   | FOURTH#                                                                                                                                                                                                  | PER.                                                                                          | OTHER PER-<br>CENTAGE                        | OTHER MICRO-<br>FUNGS AND SH<br>BACTERSA<br>(No. per m       | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)            | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ANIMAL<br>(No. per liter | DOMINANT GENERA<br>(See Introduction<br>for Identification)                                     |
| 10                   | 200<br>200<br>100<br>100<br>200<br>1700<br>9100<br>4900<br>3200<br>7300<br>1400<br>1400<br>1400<br>100<br>300<br>1700<br>200<br>300<br>1700 | 20<br>50<br>20<br>20<br>110 | 20<br>50<br>20<br>20  | 110<br>20<br>20<br>40<br>50<br>380<br>490<br>90<br>20<br>130<br>110<br>40<br>180<br>440<br>90<br>580 | 20                    | 40<br>70<br>420<br>510<br>50<br>50<br>50<br>130<br>490<br>150<br>60<br>220<br>70<br>20 | 50<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>50 | 90<br>70<br>40<br>150<br>65440<br>2350<br>1120<br>2560<br>12360<br>1250<br>1060<br>1060<br>1060<br>1060 | 70<br>20<br>50<br>20<br>1170<br>1390<br>670<br>240<br>130<br>580<br>700<br>290<br>130<br>60<br>190<br>50 | 70<br>220<br>750<br>2010<br>1920<br>980<br>290 | 180<br>1210<br>650<br>160<br>510<br>240<br>380<br>440<br>380<br>760<br>120<br>210<br>180<br>50<br>20 | 2606622661266662266662256662<br>855588555984558 | 20<br>30<br>60<br>60<br>60<br>20<br>20<br>30<br>60<br>40<br>30<br>20<br>20<br>30<br>40<br>40<br>40<br>40<br>40<br>50<br>50<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 | 92<br>82<br>26   | 20<br>10<br>20<br>10<br>20<br>20<br>20<br>20<br>20<br>10<br>20<br>20<br>20<br>10<br>20<br>20<br>10<br>20<br>10<br>20<br>10<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 10<br>82<br>82<br>85<br>67<br>26<br>80<br>22<br>23<br>56<br>86<br>88<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85 | 10<br>10<br>20<br>10<br>20<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 57<br>10<br>26<br>57<br>58<br>58<br>57<br>57<br>33<br>58<br>59<br>26<br>58<br>92<br>58<br>92<br>58<br>92<br>68<br>92<br>68<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92 | 10<br>10<br>*<br>10<br>*<br>10<br>*<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>*<br>10<br>* | 340400<br>4401200000000000000000000000000000 | 40<br>110<br>50<br>20<br>50<br>160<br>130<br>800<br>20<br>20 | 10 10 20 10               | 3<br>1<br>50<br>10<br>5<br>1<br>2<br>69 | 1<br>1<br>1<br>1<br>1<br>2   | 1 2                          | 1                              | 4-9-7<br>4-9-7<br>4-7-7<br>4-7-7<br>4-7-7<br>4-9-7<br>4-9-7<br>4-9-7<br>4-9-7<br>4-9-7<br>4-9-7 |

### ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

ILLINOIS

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

CAIRO, ILLINOIS

35

|                                                                                                                                                                                              |                                                                              |                                                                |                              |                                                                  |                         |                                                                     |                                            |                | CUI OBOT      | ORM EXTRA                    | CTABLES          |                                                             |                 |             |                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------|------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------|--------------------------------------------|----------------|---------------|------------------------------|------------------|-------------------------------------------------------------|-----------------|-------------|-----------------------------------------------------------------|
| DATE OF SAMPLE                                                                                                                                                                               |                                                                              | EX                                                             | TRACTABL                     | ES                                                               |                         |                                                                     |                                            |                | NEUTRALS      |                              | TOTALLES         |                                                             |                 |             |                                                                 |
| MONTH DAY TEAR MONTH A DAY                                                                                                                                                                   | GALLONS<br>FILTERED                                                          | TOTAL                                                          | CHLORO-<br>FORM              | ALCOHOL                                                          | ETHER<br>INSOLUBLES     | WATER<br>SOLUBLES                                                   | TOTAL                                      | ALIPHATICS     | AROMATICS     | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS             | WEAK<br>ACIDS                                               | STRONG<br>ACIDS | BASES       | LOSS                                                            |
| 10 11 60 10 22<br>11 15 60 11 23<br>12 12 60 12 19<br>1 6 61 1 16<br>2 16 61 3 3<br>3 24 61 4 2<br>4 20 61 4 30<br>5 26 61 6 2<br>6 20 61 7 3<br>7 18 61 7 31<br>8 28 61 9 5<br>9 28 61 10 9 | 4281<br>3202<br>1765<br>1964<br>3305<br>3312<br>3593<br>3487<br>3125<br>4262 | 185<br>190<br>2333<br>438<br>266<br>225<br>1685<br>1927<br>143 | 46502793362793<br>1155686448 | 145<br>127<br>143<br>224<br>315<br>213<br>169<br>101<br>84<br>95 | 1 1 1 8 0 1 1 1 5 2 1 1 | 11<br>12<br>13<br>20<br>17<br>10<br>3<br>15<br>22<br>14<br>10<br>12 | 1233<br>55<br>65<br>221<br>224<br>35<br>18 | 12371144564332 | 1227993333212 | 12<br>15<br>14<br>10         | 1100255113003111 | 5<br>9<br>6<br>13<br>14<br>8<br>7<br>6<br>10<br>8<br>5<br>5 | 10<br>6<br>3    | 11123111112 | 6<br>12<br>0<br>11<br>17<br>8<br>20<br>11<br>15<br>15<br>8<br>7 |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

ILLINOIS

#### MAJOR BASIN

STATE

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATIONOHIO RIVER AT

CAIRO, ILLINOIS

| DAT<br>OF SA |       | ١.   | TEMP.                         | DISSOLVED      |            |                | 1_1_           | CHLORINE       | DEMAND          | AMMONIA-         | CHLORIDES | ALKALINITY | HARDNESS   | COLOR         | TURBIDITY     | SULFATES | PHOSPHATES | TOTAL<br>DISSOLVED | COLIFORMS   |
|--------------|-------|------|-------------------------------|----------------|------------|----------------|----------------|----------------|-----------------|------------------|-----------|------------|------------|---------------|---------------|----------|------------|--------------------|-------------|
| PAG YAG      |       | - (n | remr.<br>Degrees<br>ntigrade) | OXYGEN<br>mg/l | рН         | B,O.D.<br>mg/I | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | NITROGEN<br>mg/l | mg/l      | mg/l       | mg/l       | (scale units) | (scale units) | mg/l     | mg/l       | SOLIDS<br>mg/l     | per 100 ml. |
|              | 3 6   | 0    | 24.5                          | 7.2            | 7.6        | 1.2            |                | • 6            | 3.0             | •0               | 13        | 54         | 100        | -             | 100<br>35     | _        | _          | - 1                | -           |
| ő 1          |       |      | 23.0                          | 7.7            | 8.0        | . 8            | -              | • 7            | 3.3             | •0               | 12        | 70         | 104<br>116 | _             | 28            |          |            | _                  | _           |
| 0 1          | 7 6   | 0    | 22.8                          | 7.8            | 7.4        | • 8            | _              | • 7            | 3 • 2           | •0               | 15<br>17  | 62<br>60   | 80         | -             | 20            | _        |            | -                  | 20          |
| 0 24         |       | - 1  | 19.0                          | 8.7            | 7.5        | • 7            | -              | • 7            | 2 • 8<br>2 • 8  | •0               | 19        | 40         | 100        | _             | 67            | _        | -          | -                  | -           |
| 0 3          |       |      | 17.2                          | 9.0            | 7.2        | • 8            |                | • 6<br>• 8     | 2.9             | •0               | 19        | 60         | 100        | -             | 20            | _        | -          | ~                  | -           |
|              |       |      | 14.0                          | 10.1           | 8.0        | •7<br>1•2      |                | • 7            | 2.8             | • 2              | 26        | 80         | 150        | 0             | 15            | _        | _          | -                  |             |
| 1 14         |       |      | 12.0                          | 11.8           | 8.0<br>7.5 | •7             | _              | • 6            | 2.9             | •0               | 19        | 64         | 128        | -             | 12            | _        | _          | -                  | 59          |
| 1 2          |       |      | 12.0                          | 10.5           | 7.5        | • 9            | _              | • 5            | 2.6             | •1               | 20        | 63         | 106        | -             | 15            | -        | _          | _                  | -           |
|              | - 1   | -1   | 10.0                          | 13.1           | 7.8        | 2.1            | _              | . 4            | 2.2             | •1               | 24        | 66         | 120        | -             | 15            | -        | _          | _                  | 5000        |
| 2 1          |       | ŏl   | 7.0                           | 12.9           | 7.7        | 2.4            | -              | • 4            | 2 • 4           | •0               | 22        | 60         | 120        | -             | 150           | _        | _          | _                  | 160         |
| 2 1          |       | o    | 5.1                           | 15.5           | 8.0        | 3.8            | _              | • 4            | 2 • 0           | •1               | 26        | 73         | 136        | _             | 33<br>15      | _        | 1 -        | -                  | 1           |
| 2 2          |       | 0    | 5.0                           | 16.2           | 7.5        | 3.2            | -              | • 5            | 2.2             | •0               | 25        | 70         | 130<br>190 | _             | 240           | _        | _          |                    | ١.          |
|              |       | 1    | 3.1                           | 15.0           | 7.8        | 2.8            | -              | • 5            | 2.0             | •4               | 9         | 92<br>75   | 134        | -             | 160           | _        | _          | -                  | ١.          |
| 1 1          |       | 1    | 4.8                           | 13.6           | 8.1        | 3.8            | - '            | • 5            | 2.6             | •1               | 32<br>26  | 72         | 140        | _             | 380           |          | -          | -                  |             |
| 1 2          |       | 1    | 2.9                           | 12.4           | 7.8        | 5.3            | -              | • 7            | 2 • 8           | .2<br>1.0        | 18        | 66         | 116        | _             | 130           | -        | -          | -                  | 1400        |
| 1 3          |       | 1    | 1.6                           | 15.7           | 7.3        | 3.8            |                | •5             | 2 • 6           | .2               | 20        | 75         | 104        | _             | 63            | -        | -          | -                  | -           |
|              | - 1 - | 1    | 2.0                           | 17.8           | 7.5        | 5 • 2<br>3 • 6 | _              | • 4            | 2.4             | 2.0              | 25        | 88         | 130        | -             | 180           | -        | -          | _                  |             |
| 2 1          |       | 1    | 4.0                           | 15.2<br>12.8   | 7.5<br>8.0 | 2.5            | _              | .4             | 2.6             | 3.0              | 32        | 83         | 140        | -             | 200           | -        | -          | _                  | 2000        |
| 2 2 2        |       | 1    | 6•2<br>7•0                    | 12.3           | 7.3        | 3.3            | _              | . 4            | 4.0             | 3.0              | 20        | 58         | 118        | -             | 250           | -        | -          | _                  | (20)        |
|              |       | 1    | 9.5                           | 11.1           | 7.3        | 2.9            | _              | • 4            | 3.0             | 4.0              | 12        | 60         | 100        | 0             | 385           | _        | 1          | _                  | 630         |
| 3 1          |       | 1    | 9.8                           | 11.2           | 7.5        | 1.6            | _              | • 4            | 2.9             | •0               | 12        | 58         | 106        | -             | 260           | _        |            | _                  | 1           |
| 3 2          |       | 1    | 9.5                           | 11.4           | 7.5        | 2.0            | _              | • 6            | 3.0             | -                | 13        | 62         | 116        | -             | 130<br>150    | _        |            | _                  |             |
| 3 2          |       | 1    | 9.5                           | 10.6           | 7.5        | 1.8            | -              | • 5            | 3 • 4           | •0               | 13        | 66         | 122        | _             | 140           | _        | _          | _                  |             |
|              |       | 1    | 10.0                          | 11.6           | 7.8        | 1.3            | _              | • 5            | 3.6             | •0               | 13        | 76<br>80   | 130        | _             | 170           | _        | _          | -                  | İ           |
|              |       | 1    | 10.0                          | 11.9           | 7.5        | 2.2            | _              | • 4            | 3 • 0           | •0               | 14<br>15  | 74         | 136        | _             | 210           | _        | -          | -                  |             |
| 4 1          |       | 1    | 9.9                           | 11.3           | 7.8        | 1.8            | -              | • 5            | 3 • 4           | •0               | 14        | 75         | 120        | -             | 175           | -        | -          | _                  |             |
|              |       | 1    | 13.0                          | 10.9           | 7.5        | 1.9            | _              | • 6            | 3.2             | .0               | 13        | 68         | 128        | _             | 175           | -        |            | -                  |             |
|              |       | 1    | 14.6                          | 9.9            | 7.5        | 1.8<br>1.5     | _              | 5              | 3.4             | .0               | 14        | 72         | 118        | _             | 230           | -        |            | -                  |             |
|              |       | 1    | 15.9<br>17.8                  | 8.9            | 7.4        | 2.0            | _              | .6             | 3.5             | .0               | 10        | 60         | 90         | -             | 280           | -        |            | _                  | ì           |
|              |       | 1    | 19.0                          | 8.0            | 7.5        | 2.3            | _              | .6             | 3.0             | •0               | 10        | 70         | 100        |               | 120           | _        | 1          | -                  |             |
|              |       | 31   | 20.0                          | 7.2            | 7.8        | 1.8            | _              | .5             | 3.0             | .0               | 14        | 95         | 140        | 1             | 85            | _        | ı          | _                  | 260000      |
|              |       | 31   | 25.0                          | 7.7            | 7.7        | 1.4            | _              | • 5            | 3.0             | •0               | 20        | 95         | 160        | 1             | 195           |          |            | 1                  | 100000      |
| 6 1          | 9     | 51   | 23.2                          | 7.1            | 7.9        | 1.4            | -              | • 6            | 3 • 2           | •0               | 18        |            | 150        | 1             | 300           | 1 -      | i          | _                  |             |
|              | - 1   | 51   | 23.0                          | 6.9            | 7.5        | • 9            | -              | • 6            | 3 • 4           | •0               | 13        | 70         | 130        | 1             | 65            |          |            | _                  | 1           |
|              |       | 51   | 27.0                          | 8.8            | 7.8        | 1.4            | -              | • 5            | 3 • 2           | •0               | 11        | 80         | 116        | '             | 67            |          |            |                    |             |
|              | İ     | - 1  |                               | 1              |            | 1              | 1              | 1              |                 | 1                | 1         | 1          | 1          | 1             |               | 1        |            | 1                  |             |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

ILLINOIS

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATIONOHIO RIVER AT

CAIRO, ILLINOIS

|                                                  | ATE         |                            |                                                                      | 1                           |                                                             |                                                  |                | CHLORINE              | DEMAND                                                               |                                                     |                                                         |                                                    |                                                            |                        |                                                              |                  |                 | TOTAL                       |                          |
|--------------------------------------------------|-------------|----------------------------|----------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------|--------------------------------------------------|----------------|-----------------------|----------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------|------------------------|--------------------------------------------------------------|------------------|-----------------|-----------------------------|--------------------------|
| OF SA                                            | DAY         | YEAR                       | TEMP.<br>(Degrees<br>Centigrade)                                     | DISSOLVED<br>OXYGEN<br>mg/l | pH                                                          | B.O.D.<br>mg/l                                   | C.O.D.<br>mg/l | 1-HOUR<br>mg/l        | 24-HOUR<br>mg/l                                                      | AMMONIA-<br>NITROGEN<br>mg/l                        | CHLORIDES<br>mg/l                                       | ALKALINITY<br>mg/l                                 | HARDNESS<br>mg/l                                           | COLOR<br>(scale units) | TURBIDITY<br>(scale units)                                   | SULFATES<br>mg/l | PHOSPHATES mg/l | DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml. |
| 7 1<br>7 1<br>7 2<br>7 3<br>8<br>8 1<br>8 2<br>9 | 7 8 5 2 9 5 | 61<br>61<br>61<br>61<br>61 | 26.9<br>26.5<br>26.9<br>28.2<br>27.8<br>26.8<br>27.2<br>27.8<br>28.8 | -                           | 8.0<br>8.0<br>7.7<br>7.4<br>7.7<br>7.5<br>7.5<br>7.5<br>7.6 | 2.1<br>1.9<br>.7<br>1.2<br>.9<br>1.4<br>.9<br>.9 |                | 6565-656667<br>•••••• | 3 • 2<br>3 • 3<br>3 • 2<br>3 • 3<br>3 • 4<br>3 • 6<br>3 • 4<br>3 • 7 | 0<br>0<br>0<br>0<br>1<br>0<br>1<br>0<br>0<br>0<br>0 | 15<br>13<br>19<br>22<br>-<br>22<br>19<br>19<br>16<br>16 | 80<br>82<br>67<br>73<br>66<br>60<br>78<br>64<br>76 | 134<br>122<br>75<br>142<br>120<br>120<br>124<br>112<br>126 |                        | 48<br>85<br>165<br>190<br>250<br>140<br>85<br>60<br>50<br>33 |                  |                 |                             | 9100                     |



STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Metropolis, Illinois Operated by U.S. Geological Survey STATE

Illinois

MAJOR BASIN

Ohio River

MINOR BASIN

Ohio River-Main Stem & Minor Trib.

STATION LOCATION

Ohio River at

Cairo, Illinois

| Day                              | October                                                  | November                                            | December                                                    | January                                                        | February                                            | March                                                          | April                                               | May                                                            | June                                                | July                                                           | August                                                         | September                                           |
|----------------------------------|----------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | 64.900<br>60.500<br>53.300<br>66.300<br>67.800           | 83.400<br>90.400<br>75.100<br>88.500<br>92.200      | 124.000<br>117.000<br>115.000<br>114.000<br>105.000         | 196.000<br>219.000<br>239.000<br>243.000<br>246.000            | 105.000<br>98.900<br>106.000<br>110.000<br>113.000  | 651.000<br>683.000<br>705.000<br>711.000<br>722.000            | 557.000<br>537.000<br>516.000<br>488.000<br>451.000 | 531.000<br>551.000<br>561.000<br>571.000<br>571.000            | 190.000<br>175.000<br>176.000<br>182.000<br>195.000 | 136.000<br>143.000<br>144.000<br>127.000<br>126.000            | 163.000<br>179.000<br>195.000<br>184.000<br>190.000            | 111.000<br>115.000<br>122.000<br>123.000<br>110.000 |
| 6<br>7<br>8<br>9<br>10           | 77.100<br>83.200<br>87.000<br>79.800<br>83.800           | 94.100<br>92.800<br>82.200<br>93.300<br>109.000     | 110.000<br>97.200<br>94.400<br>94.400<br>102.000            | 232.000<br>217.000<br>211.000<br>176.000<br>134.000            | 117.000<br>122.000<br>137.000<br>138.000<br>150.000 | 747.000<br>753.000<br>792.000<br>869.000<br>935.000            | 435.000<br>442.000<br>423.000<br>413.000<br>406.000 | 583.000<br>609.000<br>629.000<br>659.000<br>678.000            | 194.000<br>196.000<br>198.000<br>221.000<br>282.000 | 128.000<br>130.000<br>119.000<br>115.000<br>109.000            | 197.000<br>205.000<br>212.000<br>218.000<br>225.000            | 106.000<br>103.000<br>113.000<br>121.000<br>111.000 |
| 11<br>12<br>13<br>14<br>15       | 79.200<br>84.400<br>73.400<br>74.400<br>73.100           | 106.000<br>118.000<br>122.000<br>124.000<br>114.000 | 118.000<br>109.000<br>109.000<br>124.000<br>120.000         | 141.000<br>134.000<br>131.000<br>119.000<br>122.000            | 176.000<br>201.000<br>204.000<br>208.000<br>199.000 | 963.000<br>911.000<br>896.000<br>901.000<br>923.000            | 384.000<br>380.000<br>391.000<br>419.000<br>459.000 | 715.000<br>760.000<br>844.000<br>839.000<br>865.000            | 295.000<br>285.000<br>292.000<br>311.000<br>369.000 | 132.000<br>125.000<br>119.000<br>109.000<br>122.000            | 218.000<br>186.000<br>133.000<br>154.000                       | 94.100<br>102.000<br>99.900<br>105.000<br>94.400    |
| 16<br>17<br>18<br>19<br>20       | 84.400<br>85.500<br>68.800<br>84.000<br>88.700           | 116.000<br>109.000<br>111.000<br>110.000<br>97.700  | 114.000<br>119.000<br>105.000<br>107.000<br>103.000         | 142.000<br>187.000<br>178.000<br>193.000<br>215.000            | 203.000<br>204.000<br>197.000<br>218.000<br>246.000 | 934.000<br>909.000<br>887.000<br>880.000<br>868.000            | 496.000<br>522.000<br>540.000<br>559.000<br>560.000 | 888.000<br>912.000<br>938.000<br>931.000<br>909.000            | 415.000<br>440.000<br>445.000<br>428.000<br>426.000 | 148.000<br>154.000<br>161.000<br>194.000<br>202.000            | 194.000<br>186.000<br>172.000<br>158.000<br>108.000            | 78.800<br>25.400<br>41.000<br>73.300<br>58.900      |
| 21<br>22<br>23<br>24<br>25       | 85.900<br>86.600<br>83.100<br>82.400<br>84.700           | 88.900<br>92.700<br>94.100<br>108.000               | 104.000<br>111.000<br>119.000<br>117.000<br>106.000         | 239.000<br>250.000<br>262.000<br>267.000<br>250.000            | 283.000<br>385.000<br>469.000<br>509.000<br>527.000 | 851.000<br>845.000<br>826.000<br>807.000<br>757.000            | 550.000<br>547.000<br>548.000<br>553.000<br>545.000 | 871.000<br>806.000<br>732.000<br>658.000<br>538.000            | 432.000<br>434.000<br>429.000<br>398.000<br>355.000 | 207.000<br>216.000<br>218.000<br>218.000<br>219.000            | 103.000<br>97.200<br>105.000<br>124.000<br>123.000             | 63.500<br>81.200<br>89.600<br>86.300<br>92.500      |
| 26<br>27<br>28<br>29<br>30<br>31 | 90.100<br>90.900<br>78.300<br>77.700<br>63.100<br>87.000 | 103.000<br>86.900<br>90.200<br>102.000<br>109.000   | 99.100<br>96.000<br>99.700<br>116.000<br>123.000<br>138.000 | 229.000<br>175.000<br>108.000<br>113.000<br>116.000<br>117.000 | 549.000<br>584.000<br>619.000                       | 716.000<br>691.000<br>650.000<br>613.000<br>571.000<br>549.000 | 551.000<br>535.000<br>519.000<br>513.000<br>513.000 | 498.000<br>410.000<br>348.000<br>295.000<br>248.000<br>214.000 | 310.000<br>273.000<br>223.000<br>163.000<br>153.000 | 232.000<br>234.000<br>230.000<br>213.000<br>194.000<br>184.000 | 118.000<br>111.000<br>105.000<br>117.000<br>122.000<br>118.000 | 96.600<br>62.800<br>57.700<br>55.400<br>64.000      |

STATE

INDIANA

MAJOR BASIN

OHIO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

EVANSVILLE, INDIANA

| DATE                 | T                             |           | RADI      | OACTIVITY IN V | VATER     |           |       |    | RADIOA                        | CTIVITY IN PLAN | IKTON (dry) |   | RAI       | HOACTIVITY IN V | ATER  |
|----------------------|-------------------------------|-----------|-----------|----------------|-----------|-----------|-------|----|-------------------------------|-----------------|-------------|---|-----------|-----------------|-------|
| SAMPLE               | DATE OF                       |           | ALPHA     |                | T         | BETA      |       | T. |                               |                 | CTIVITY     |   |           | GROSS ACTIVIT   | Y     |
| TAKEN                | DATE OF<br>DETERMI-<br>NATION | SUSPENDED | DISSOLVED | TOTAL          | SUSPENDED | DISSOLVED | TOTAL | 1  | DATE OF<br>DETERMI-<br>NATION | ALPHA           | BETA        |   | SUSPENDED | DISSOLVED       | TOTAL |
| MO. DAY YEAR         | MONTH DAY                     | μμε/Ι     | μμς/Ι     | μμε/Ι          | μμε/Ι     | μμς/      | μμc/l |    | MO. DAY                       | µµс/g           | μμε/g       |   | ##c/1     | μμc/l           | μμc/l |
|                      |                               |           |           |                |           |           |       |    |                               |                 |             |   |           |                 |       |
| 10 24 60*            |                               | 0         | 2         | 2              | 0         | 0         | 0     |    | -                             |                 |             |   |           |                 |       |
| 11 28 60*            |                               | 0         | 1         | 1              | 0         | 0         | 0     | 1  |                               |                 |             |   |           |                 |       |
| 12 5 60              | 1 19                          | 0         | 0         | 0              | 0         | 1 0       | 1     |    |                               |                 |             |   |           | 1               |       |
| 12 27 60*            |                               | 0         | 1 0       | 1 2            | 0 11      | ٥         | 11    |    |                               |                 |             |   | 1         |                 |       |
| 1 30 61*             | 2 8                           | 2 4       | 0         | 4              | 2         | 0         | 2     |    | 1                             |                 |             |   |           |                 |       |
| 2 27 61*<br>3 27 61* |                               | 0         | 0         | 0              | 0         | ŏ         | ő     |    |                               |                 |             |   |           |                 |       |
| 4 24 61*             |                               | 2         | ŏ         | 2              | ŏ         | 0         | Ö     |    |                               |                 |             |   |           |                 |       |
| 5 22 61*             |                               | Ō         | ō         | ō              | 6         | 11        | 17    |    |                               |                 |             |   | ŀ         |                 |       |
| 6 26 61*             |                               | li        | 2         | 3              | 0         | ٥         | 0     |    |                               |                 |             |   |           |                 |       |
| 7 24 61*             | 1                             | Ī         | 1         | 2              | 0         | 3         | 3     |    |                               |                 |             | 1 |           |                 |       |
| 8 28 61*             | i .                           | 1         | 0         | 1              | 5         | 4         | 9     |    |                               |                 |             |   |           |                 |       |
| 9 5 61               | 9 29                          | _         | ~         | _              | 0         | 14        | 14    |    |                               |                 |             | ļ |           |                 |       |
| 9 11 61              | 10 12                         | 0         | 1         | 1              | 0         | 4         | 4     |    |                               |                 |             |   | ł         |                 |       |
| 9 18 61              | 10 16                         | 0         | 0         | 0              | 0         | 5         | 5     |    |                               |                 |             |   |           |                 |       |
| 9 25 61              | 10 3                          | _         | _         | _              | 0         | 8         | 8     |    |                               |                 |             |   | 1         |                 |       |
|                      |                               |           |           |                |           |           |       | 1  |                               |                 |             |   |           |                 |       |
|                      |                               | 1         |           |                |           | ł         |       |    |                               |                 |             |   |           | '               |       |
|                      |                               |           |           |                |           |           |       |    |                               |                 |             |   |           |                 |       |
|                      |                               | ļ.        |           |                |           |           |       |    |                               |                 |             |   |           |                 |       |
|                      |                               |           |           |                |           |           |       |    |                               |                 |             |   | İ         |                 |       |
|                      |                               |           |           |                | İ         |           |       |    |                               |                 |             |   |           |                 |       |
|                      |                               |           |           |                |           |           |       |    |                               |                 |             |   |           |                 |       |
|                      | İ                             | 1         |           |                |           |           |       |    |                               |                 |             |   |           |                 |       |
|                      |                               |           |           |                |           |           |       |    |                               |                 |             |   |           |                 |       |
|                      |                               |           |           |                |           |           |       |    |                               |                 |             |   | 1         |                 |       |
|                      |                               |           |           |                |           |           |       |    |                               |                 |             |   |           |                 |       |
|                      |                               |           |           |                |           |           |       |    |                               |                 |             |   | ļ         |                 |       |
|                      |                               |           |           |                |           |           |       |    |                               |                 |             |   | İ         |                 |       |
|                      |                               |           |           |                |           | İ         |       |    |                               |                 |             |   | 1         |                 |       |
|                      |                               |           |           |                | 1         |           |       | 1  |                               |                 |             |   | ł         |                 |       |
|                      |                               |           |           |                |           |           |       |    |                               |                 |             |   |           |                 |       |
|                      |                               |           |           |                |           |           |       |    |                               |                 |             |   |           |                 |       |
|                      |                               |           |           |                |           |           |       |    |                               |                 |             |   |           | -               |       |
|                      |                               |           |           |                |           |           |       |    |                               |                 |             |   |           |                 |       |
|                      |                               |           |           |                |           |           |       |    |                               |                 |             |   | 1         |                 |       |
|                      |                               |           |           |                |           |           |       | 1  |                               |                 |             | 1 |           | 1               |       |
|                      |                               |           |           |                |           |           |       |    |                               |                 |             |   | 1         | 1               | 1     |
|                      |                               |           |           |                |           |           |       |    |                               |                 |             | 1 | 1         |                 |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

INDIANA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

EVANSVILLE, INDIANA

|                                                                                                                                                                   |                                                                                                                                   |                                           |                                    | ALGAE (                                                                                                    | Vumber                | per ml.)                                                                             |                                    |                                                                                                                                   |                                                                                                 | INE                                                                                                                     | RT<br>TOM                                                                                   | Γ                                       |                                                                |                                       | DI                                                                                                                               | ATO                                    | MS                                                                   |                                              |                                         |                                                                                 | ·                                                    |                      | MICROIN                                                                        | VERTEBR                      | ATES                         |                 |                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------|----------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------|----------------------|--------------------------------------------------------------------------------|------------------------------|------------------------------|-----------------|-------------------------------------------------------------|
| DATE<br>OF SAMPLE                                                                                                                                                 |                                                                                                                                   | BLUE-                                     | GREEN                              | GREE                                                                                                       | IN.                   | FLAGEL<br>(Pigm                                                                      |                                    | DIAT                                                                                                                              | омѕ                                                                                             | DIA<br>SHE<br>(No. p                                                                                                    | LLS                                                                                         |                                         |                                                                |                                       |                                                                                                                                  | IES A                                  | ND PE                                                                |                                              | rages<br>ion*)                          |                                                                                 | NICROPLANKTON, AND SHEATHED RIA POET TIL.)           | A ml.)               | s<br>iter)                                                                     | iter)                        | ES<br>iter)                  | L FORMS         | duction<br>fication,                                        |
| MONTH<br>DAY<br>YEAR                                                                                                                                              | TOTAL                                                                                                                             | COCCOID                                   | FILA-<br>MENT-<br>OUS              | COCCOID                                                                                                    | FILA-<br>MENT-<br>OUS | GREEN                                                                                | OTHER                              | CENTRIC                                                                                                                           | PENNATE                                                                                         | CENTRIC                                                                                                                 | PENNATE                                                                                     | FIRST#                                  | PER-                                                           | SECOND#                               | PER.                                                                                                                             | THIRD#                                 | PER-<br>CENTAGE                                                      | FOURTH#                                      | PER.<br>CENTAGE                         | OTHER PER-<br>CENTAGE                                                           | OTHER MICRO<br>FUNGI AND S<br>BACTERIA<br>(No. per 1 | PROTOZO/<br>(No. per | ROTIFIERS<br>(No. per liter)                                                   | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | (No. per liter) | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| 10 3 60<br>17 60<br>11 14 60<br>12 19 60<br>12 1 3 661<br>20 661<br>3 20 61<br>3 20 61<br>4 17 61<br>5 5 61<br>6 19 61<br>7 3 61<br>7 17 61<br>8 28 61<br>9 18 61 | 1300<br>4900<br>2300<br>5300<br>3800<br>15500<br>200<br>700<br>800<br>400<br>1200<br>7400<br>1100<br>3300<br>5500<br>3600<br>5500 | 250<br>20<br>70<br>180<br>20<br>80<br>410 | 360<br>200<br>20<br>50<br>20<br>20 | 70<br>780<br>670<br>740<br>440<br>2500<br>90<br>20<br>2730<br>40<br>410<br>60<br>170<br>310<br>160<br>2450 | 70 20                 | 130<br>50<br>220<br>1060<br>1700<br>20<br>20<br>60<br>150<br>80<br>170<br>830<br>370 | 20<br>900<br>310<br>20<br>20<br>20 | 870<br>2170<br>1300<br>3510<br>510<br>8250<br>360<br>110<br>470<br>110<br>540<br>230<br>370<br>2670<br>680<br>1700<br>2320<br>480 | 1300<br>2740<br>17400<br>18400<br>200360<br>2700<br>4400<br>9705<br>600<br>2900<br>2500<br>3900 | 220<br>180<br>430<br>180<br>2520<br>200<br>180<br>360<br>70<br>190<br>60<br>90<br>500<br>190<br>210<br>40<br>310<br>760 | 20<br>180<br>130<br>2840<br>160<br>90<br>470<br>510<br>250<br>350<br>100<br>60<br>310<br>60 | 55555855558<br>5958955558<br>5958955558 | 40<br>60<br>40<br>10<br>30<br>20<br>30<br>50<br>40<br>30<br>50 | 926579758892<br>55889<br>859566898587 | 10<br>30<br>10<br>10<br>20<br>20<br>10<br>20<br>20<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 98885692228 21291006222<br>52587882888 | 10<br>20<br>10<br>10<br>10<br>10<br>10<br>20<br>10<br>20<br>10<br>** | 89<br>89<br>36<br>26<br>36<br>86<br>59<br>62 | * * 10 20 * 10 10 * * 10 10 10 10 * * * | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 110<br>50<br>20<br>20<br>50                          | 10 10                | 30<br>12<br>16<br>54<br>844<br>2<br>7<br>1<br>284<br>89<br>18<br>4<br>8<br>999 | 2 2 4 4 2 5 1 1 1 1 4        | 2 3 1 1 3 1                  |                 | 7327 -28-7 78927 38-37 71927777 789277777 12325             |

## ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

INDIANA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

EVANSVILLE, INDIANA

| DATE OF S                   | AMPLE |                |                     | FY            | TRACTABL        | FS      | <u> </u>            |                   |         |            | CHLOROF     | ORM EXTR                     | ACTABLES |               |                 |       |      |
|-----------------------------|-------|----------------|---------------------|---------------|-----------------|---------|---------------------|-------------------|---------|------------|-------------|------------------------------|----------|---------------|-----------------|-------|------|
| BEGINNING                   | EN    |                |                     |               |                 |         |                     |                   |         |            | NEUTRALS    |                              |          |               |                 |       |      |
| MONTH<br>DAY<br>YEAR        |       | DAY            | GALLONS<br>FILTERED | TOTAL         | CHLORO-<br>FORM | ALCOHOL | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES | TOTAL   | ALIPHATICS | AROMATICS   | OXYGEN-<br>ATED<br>COMPOUNDS | Loss     | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES | Loss |
| 10 4 60<br>2 6 61<br>3 2 61 | 2     | 14<br>27<br>30 | 314<br>5000<br>464  | *<br>197<br>* | 75<br>-         | 122     | -<br>1<br>-         | 11                | 38<br>- | 5 -        | -<br>6<br>- | 26                           | 1 -      | -<br>8<br>-   | 5 -             | 1     | 11   |
|                             |       | 1000           |                     | *SAMP         | LE NOT          | PROCESS | ED-FLOW             | T00 L0            | W       |            |             |                              |          |               |                 |       |      |
|                             |       |                |                     |               |                 |         |                     |                   |         |            |             |                              |          |               |                 |       |      |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

#### STATE

INDIANA

#### MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRID.

# STATION LOCATIONOHIO RIVER AT

EVANSVILLE, INDIANA

| OF SAMPLE            |                                  |                             |            |                |                | CHLORINE       | DEMAND          |                              |                   |           |                    |                        |                            |                  |                    | TOTAL                       |                          |
|----------------------|----------------------------------|-----------------------------|------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|-----------|--------------------|------------------------|----------------------------|------------------|--------------------|-----------------------------|--------------------------|
| DAY YEAR             | TEMP,<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/I | рН         | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/I | CHLORIDES<br>mg/l | Mg/I      | HARDNESS<br>mg/l   | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 mi. |
| 10 3 60              |                                  | -                           | 7.6        | -              | -              | -              |                 |                              | 40<br>40          | 76<br>75  | 142<br>150         |                        | 12<br>11                   |                  | •2                 | -                           | 1900<br>2400             |
| 10 10 60             |                                  | _ [                         | 7•8<br>7•9 | -              | 14             | -              | -               | _                            | 45                | 84        | 160                | _                      | 12                         | _                | .2                 | -                           | -                        |
| 10 18 60             |                                  |                             |            | _              |                | -              | _               | _                            | _                 | _         | -                  | -                      | -                          | -                | -                  | -                           | 3000                     |
| 10 24 60             |                                  | 8.5                         | 7.8        | -              | -              | -              | ~               |                              | 57                | 81        | 164                | -                      | 10                         | -                | •1                 | -                           | 5700                     |
| 10 31 60             |                                  | -                           | 7.6        | -              | 12             | -              | _               | -                            | 60                | 83        | 186                | _                      | 11                         | _                | •1                 | -                           | 5700                     |
| 11 7 60              |                                  | -                           | 7•6<br>7•7 | _              | 8 -            | -              |                 | -                            | 50<br>40          | 75<br>76  | 182<br>184         | _                      | 15                         | _                | .2                 | _                           | 6800                     |
| 11 14 60<br>11 21 60 |                                  | -                           | 7.6        | _              | _              | _              | _               | -                            | 38                | 78        | 187                | _                      | 15                         | -                | .2                 | _                           | 1900                     |
| 11 28 60             |                                  | _                           | 7.6        | -              | _              | -              | -               | _                            | 45                | 80        | 197                | _                      | 12                         | -                | .1                 | -                           | 5400                     |
| 12 5 60              |                                  | -1                          | 7.6        |                | 10             | _              | -               | -                            | 52                | 85        | 200                | -                      | 19                         | -                | •1                 | -                           | 4200                     |
| 12 12 60             |                                  | -                           | 7.6        | -              | -              | -              | -               | -                            | 46                | 87        | 184                | -                      | 17                         | -                | • 2                |                             | 7600                     |
| 12 19 60             |                                  | -                           | 7.6        | -              | -              | -              | -               | _                            | 46                | 96        | 204                | _                      | 15                         | 65               | .2                 | _                           | 3800<br>2800             |
| 12 27 60             |                                  | -                           | 7.5        | _              | _              | 1              |                 | -                            | 39<br>43          | 102<br>87 | 20 <b>6</b><br>194 | _                      | 14<br>86                   | 105              | .3                 | _                           | 8800                     |
| 1 3 63               |                                  | _                           | 7•5<br>7•2 | _              | -              | _              | _               | _                            | 39                | 73        | 162                | _                      | 86                         | 105              | .3                 | _                           | 9600                     |
| 1 16 6               |                                  | _                           | 7.6        | _              | _              | _              | _               | _                            | 29                | 57        | 125                | _                      | 82                         | 83               | •1                 | _                           | 10000                    |
| 1 23 6               |                                  | 11.5                        | 7.4        | -              | 31             | -              | _               | • 9                          | 21                | 68        | 124                | -                      | 326                        | -                | .1                 | -                           | 9600                     |
| 1 30 6               | 1 1.9                            | 13.1                        | 7.5        | _              | 10             | ~              | -               | • 8                          | 20                | 58        | 116                | -                      | 96                         | -                | • 2                | -                           | 2300                     |
| 2 6 6                |                                  | 13.6                        | 7.3        |                | 9              | -              | -               | _                            | 23                | 64        | 110<br>134         | :                      | 62<br>89                   | _                | •1                 | _                           | 720<br>15000             |
| 2 14 6 2 20 6        |                                  | 12.5                        | 7.5<br>7.3 | 2.7            | 15             | 1 1            | _               | •6                           | 23<br>19          | 72<br>65  | 112                | -                      | 185                        | _                | .3                 | _                           | 10000                    |
| 2 20 6               |                                  | 7.9                         | 7.3        | 6.5            | 61             | 4.8            | 11.2            | .6                           | 25                | 64        | 121                | _                      | 440                        | _                | .6                 | _                           | 11000                    |
| 3 6 6                |                                  | 9.7                         | 7.3        | 1.6            | 12             | 2.0            | 4.8             | • 4                          | 9                 | 45        | 78                 | -                      | 168                        | 56               | .4                 | -                           | 8800                     |
| 3 13 6               | 1 13.6                           | -                           | 7.2        | -              | -              | 2.0            | 4.5             | • 4                          | 9                 | 57        | 87                 | -                      | 131                        | 59               | • 2                | -                           | 4200                     |
| 3 20 6               |                                  | 9.9                         | 7 • 4      | 2.2            | 15             | 1.6            | 4.4             | • 2                          | 10                | 53        | 96                 | -                      | 160                        | 71               | • 3                | _                           | 3000                     |
| 3 27 6               |                                  | 9 • 8                       | 7.3        | 2.4            | 26             | 2.0            | 6.5             | • 3                          | 12<br>10          | 56        | 105<br>115         | _                      | 165<br>97                  | 55<br>75         | •1                 | _                           | 9000                     |
| 4 3 6 4 10 6         |                                  | -                           | 7•3<br>7•7 | _              | 16<br>13       | -              | _               | -2                           | 10                | 48        | 105                | _                      | 240                        | 68               | .3                 | _                           | _                        |
| 4 17 6               |                                  | 9.9                         | 7.6        | 2.2            | 13             | 2.1            | 6.8             | .4                           | 11                | 64        | 114                | _                      | 150                        | 75               | .3                 | _                           | 9400                     |
| 4 24 6               |                                  | 9.3                         | 7.3        | 2.2            | 11             | 1.9            | 4.2             | .3                           | l io              | 61        | 112                | -                      | 135                        | 78               | .2                 | -                           | 6400                     |
| 5 1 6                | 1 17.5                           | 8.0                         | 7•4        | -              | 16             | 3.1            | 7.7             | • 2                          | 10                | 62        | 116                | -                      | 230                        | 45               | • 2                | -                           | 9600                     |
| 5 8 6                |                                  | -                           | 7.3        | -              | -              | 2.4            | 6.2             | •3                           | 8                 | 50        | 92                 | -                      | 150                        | 40               | -                  | -                           | 5400                     |
| 5 15 6               |                                  | -                           | 7 • 2      | _              |                | 2•4            | 6.0             | •3                           | 8                 | 60        | 88<br>128          | -                      | 115<br>92                  | 78               | .2                 | _                           | 7300                     |
| 5 22 6<br>5 29 6     |                                  | 7 /                         | 7•2<br>7•5 | 1.4            | 9<br>19        | 1.4            | 4.3             | •2                           | 10<br>15          | 82        | 128                | -                      | 84                         | 82               | .2                 | _                           | ****                     |
| 5 29 6<br>6 5 6      |                                  | 7.4                         | 7.3        | 2.0            | 8              | 2.0            | 4.8             | •3                           | 15                | 84        | 159                | -                      | 45                         | -                | .1                 | _                           |                          |
| 6 6 6                |                                  | ``-                         |            | -              | -              |                | _               | -                            |                   | -         |                    | -                      | '-                         | _                | _                  | -                           | 8800                     |
| 6 12 6               |                                  | 5.0                         | 7•4        | 2.0            | 8              | 2•4            | 4•8             | • 5                          | 20                | 68        | 151                | -                      | 93                         | -                | • 2                | -                           | 11000                    |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Evansville, Indiana Operated by U.S. Geological Survey

STATE

Indiana

MAJOR BASIN

Ohio River

MINOR BASIN

Ohio River-Main Stem and Minor Trib.

STATION LOCATION

Ohio River at

Evansville, Indiana

| Day                              | October                                        | November                                       | December                                       | January                                             | February                                            | March                                                          | April                                               | May                                                         | June                                                | July                                                       | August                                                   | September                                      |
|----------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | 18.000<br>18.000<br>18.000<br>18.000<br>18.000 | 26.000<br>26.000<br>26.000<br>26.000<br>26.000 | 30.000<br>30.000<br>30.000<br>30.000<br>30.000 | 75.000<br>85.500<br>98.300<br>105.000<br>116.000    | 55.000<br>55.000<br>55.000<br>55.000<br>55.000      | 421.000<br>448.000<br>465.000<br>492.000<br>513.000            | 240.000<br>228.000<br>228.000<br>244.000<br>270.000 | 378.000<br>376.000<br>377.000<br>368.000<br>362.000         | 72.000<br>72.000<br>72.000<br>72.000<br>79.700      | 50.000<br>50.000<br>50.000<br>50.000<br>50.000             | 88.200<br>85.500<br>90.200<br>101.000<br>119.000         | 26.000<br>26.000<br>26.000<br>26.000<br>26.000 |
| 6<br>7<br>8<br>9                 | 16.000<br>16.000<br>16.000<br>16.000           | 30.000<br>30.000<br>30.000<br>30.000<br>30.000 | 25.000<br>25.000<br>25.000<br>25.000<br>25.000 | 121.000<br>115.000<br>70.000<br>70.000<br>70.000    | 50.000<br>50.000<br>50.000<br>50.000<br>50.000      | 536.000<br>562.000<br>585.000<br>594.000<br>601.000            | 295.000<br>300.000<br>285.000<br>258.000<br>234.000 | 364.000<br>380.000<br>429.000<br>494.000<br>566.000         | 83.300<br>93.800<br>115.000<br>130.000<br>138.000   | 60.000<br>60.000<br>60.000<br>60.000                       | 120.000<br>128.000<br>134.000<br>135.000<br>118.000      | 27.000<br>27.000<br>27.000<br>27.000<br>27.000 |
| 11<br>12<br>13<br>14<br>15       | 15.000<br>15.000<br>15.000<br>15.000           | 55.000<br>55.000<br>55.000<br>55.000<br>55.000 | 35.000<br>35.000<br>35.000<br>35.000<br>35.000 | 65.000<br>65.000<br>65.000<br>65.000                | 82.400<br>98.800<br>112.000<br>116.000<br>124.000   | 593.000<br>580.000<br>563.000<br>545.000<br>526.000            | 221.000<br>222.000<br>238.000<br>254.000<br>274.000 | 609.000<br>626.000<br>626.000<br>598.000<br>555.000         | 150.000<br>173.000<br>198.000<br>215.000<br>230.000 | 35.000<br>35.000<br>35.000<br>35.000<br>35.000             | 70.000<br>70.000<br>70.000<br>70.000<br>70.000           | 22.000<br>22.000<br>22.000<br>22.000<br>22.000 |
| 16<br>17<br>18<br>19<br>20       | 14.000<br>14.000<br>14.000<br>14.000<br>14.000 | 40.000<br>40.000<br>40.000<br>40.000<br>40.000 | 35.000<br>35.000<br>35.000<br>35.000<br>35.000 | 70.000<br>105.000<br>129.000<br>151.000<br>177.000  | 123.000<br>128.000<br>143.000<br>168.000<br>188.000 | 504.000<br>482.000<br>446.000<br>409.000<br>385.000            | 298.000<br>317.000<br>338.000<br>363.000<br>382.000 | 499.000<br>443.000<br>383.000<br>334.000<br>296.000         | 248.000<br>269.000<br>286.000<br>297.000<br>293.000 | 70.000<br>87.500<br>107.000<br>120.000<br>127.000          | 96.300<br>103.000<br>50.000<br>50.000                    | 16.000<br>16.000<br>16.000<br>16.000<br>16.000 |
| 21<br>22<br>23<br>24<br>25       | 22.000<br>22.000<br>22.000<br>22.000<br>22.000 | 26.000<br>26.000<br>26.000<br>26.000<br>26.000 | 35.000<br>35.000<br>35.000<br>35.000<br>35.000 | 188.000<br>183.000<br>167.000<br>146.000<br>120.000 | 194.000<br>195.000<br>208.000<br>238.000<br>266.000 | 368.000<br>360.000<br>360.000<br>354.000<br>342.000            | 390.000<br>392.000<br>384.000<br>375.000<br>368.000 | 247.000<br>209.000<br>181.000<br>159.000<br>143.000         | 280.000<br>255.000<br>214.000<br>165.000<br>118.000 | 130.000<br>131.000<br>132.000<br>143.000<br>149.000        | 40.000<br>40.000<br>40.000<br>40.000<br>40.000           | 18.000<br>18.000<br>18.000<br>18.000<br>18.000 |
| 26<br>27<br>28<br>29<br>30<br>31 | 19.000<br>19.000<br>19.000<br>19.000<br>19.000 | 24.000<br>24.000<br>24.000<br>24.000<br>24.000 | 55.000<br>55.000<br>55.000<br>55.000<br>55.000 | 60.000<br>60.000<br>60.000<br>60.000<br>60.000      | 303.000<br>345.000<br>388.000                       | 333.000<br>326.000<br>315.000<br>302.000<br>281.000<br>254.000 | 360.000<br>360.000<br>369.000<br>377.000<br>380.000 | 127.000<br>117.000<br>101.000<br>88.600<br>80.000<br>75.000 | 87.400<br>60.000<br>60.000<br>60.000<br>60.000      | 139.000<br>119.000<br>96.200<br>82.900<br>72.900<br>76.900 | 40.000<br>40.000<br>40.000<br>40.000<br>40.000<br>40.000 | 15.000<br>15.000<br>15.000<br>15.000<br>15.000 |

STATE

KENTUCKY

MAJOR BASIN

OHIO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

LOUISVILLE, KENTUCKY

|                                                                                                               | T                                                                    |           |                                               | PADIO                                                              | DACTIVITY IN W                                                                    | /ATER                                                                           |                                                                                | · · · · · · · · · · · · · · · · · · ·                                               | <del></del> - | RADIOAG                       | TIVITY IN PLAN | IKTON (dry) |                    | RADIOACTIVITY | N WATER       |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------|-----------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------|-------------------------------|----------------|-------------|--------------------|---------------|---------------|
| DATE<br>SAMPLE                                                                                                | DATE O                                                               | F         |                                               | ALPHA                                                              |                                                                                   |                                                                                 | BETA                                                                           |                                                                                     |               |                               | GROSS A        |             |                    | GROSS ACT     | IVITY         |
| TAKEN                                                                                                         | DATE O<br>DETERM<br>NATION                                           | I-<br>SU: | SPENDED                                       | DISSOLVED                                                          | TOTAL                                                                             | SUSPENDED                                                                       | DISSOLVED                                                                      | TOTAL                                                                               | Ľ             | DATE OF<br>DETERMI-<br>NATION | ALPHA          | BETA        | SUSPEND            |               |               |
| MO. DAY YEAR                                                                                                  |                                                                      |           | μμς/Ι                                         | μμc/1                                                              | μμε/Ι                                                                             | μμε/ί                                                                           | μμc/l                                                                          | μμς/Ι                                                                               |               | MO. DAY                       | μμc/g          | μμс/g       | μμ <sub>C</sub> /l | μμc/l         | μμc/ <b>I</b> |
| M8.   BAY   YEAR 6 14 61 6 19 61 6 26 61 7 5 61 7 18 61 7 25 61 8 1 61 8 26 61 9 5 61 9 11 61 9 19 61 9 26 61 | 7 17 7 11 7 26 8 2 8 4 8 31 9 1 9 25 9 27 9 26 10 28 10 6 10 18 10 4 |           | 1 3 2 0 0 0 0 0 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>2<br>0<br>0 | 1<br>3<br>2<br>0<br>0<br>1<br>0<br>8<br>2<br>0<br>0<br>1<br>0<br>0<br>2<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>15<br>14<br>8<br>0<br>0<br>0<br>1<br>18<br>2<br>4 | 0<br>0<br>1<br>0<br>1<br>4<br>6<br>0<br>5<br>5<br>4<br>4<br>1<br>1<br>10<br>10 | 0<br>0<br>3<br>0<br>1<br>4<br>21<br>14<br>13<br>5<br>4<br>4<br>13<br>19<br>12<br>14 |               |                               | rc79           |             |                    |               |               |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

KENTUCKY

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

LOUISVILLE, KENTUCKY

| DATE                                          | L    |                                                     |          | · · · · · · · · · · · · · · · · · · · | ALGAE (                                       | Vumber                | per ml.)                                     |       |                                                  | <del></del>                                    | INE                             | RT<br>TOM | Ι                                |                      |                                  |                                  | IATO                             |                            |                   |                          |                            |                                                                         | 1                         | MICROIN                      | VERTERR                      | ATES                         | _                             | <del></del>                                                 |
|-----------------------------------------------|------|-----------------------------------------------------|----------|---------------------------------------|-----------------------------------------------|-----------------------|----------------------------------------------|-------|--------------------------------------------------|------------------------------------------------|---------------------------------|-----------|----------------------------------|----------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------|-------------------|--------------------------|----------------------------|-------------------------------------------------------------------------|---------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------------------------------------|
| OF SAMPL                                      | _E   |                                                     | BLUE-    | GREEN                                 | GREE                                          | EN                    | FLAGEL<br>(Pigme                             | LATES | DIAT                                             | омѕ                                            | DIA<br>SHE<br>(No. p            | LLS       |                                  | DOM I<br>(See        | NANT<br>Intro                    | SPEC                             | ies At                           | ND PE                      | RCEN'<br>ntificat | TAGES<br>ion*)           | •                          | PLAKKTON<br>IRATHED<br>11.)                                             | 1,1                       | Τ                            |                              |                              | rorns                         | ENERA<br>fuction<br>cation)                                 |
| MONTH<br>DAY                                  | YEAR | TOTAL                                               | COCCOID  | FILA-<br>MENT-<br>OUS                 | COCCOID                                       | FILA-<br>MENT-<br>OUS | GREEN                                        | OTHER | CENTRIC                                          | PENNATE                                        | CENTRIC                         | PENNATE   | FIRST                            | PER.<br>CENTAGE      | SECOND#                          | PER-<br>CENTAGE                  | THIRD#                           | PER.                       | FOURTH            | PER-<br>CENTAGE          | OTHER PER-<br>CENTAGE      | OTHER MICROPLANKTON,<br>FUNGI AND SHEATHED<br>BACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ANIMAL<br>(No. per lite | bominant genera<br>(See Introduction<br>for Identification) |
| 6 16 6<br>6 26 6<br>7 11 6<br>8 1 6<br>8 10 6 |      | 1100<br>2700<br>8600<br>2300<br>900<br>2500<br>2400 | 20 20 60 | 20<br>80<br>390                       | 120<br>350<br>470<br>130<br>250<br>770<br>710 |                       | 170<br>190<br>360<br>170<br>60<br>370<br>370 | 40    | 410<br>1570<br>7330<br>1570<br>500<br>390<br>230 | 390<br>540<br>250<br>370<br>. 100<br>350<br>80 | 410<br>1300<br>480<br>210<br>80 | 100       | 92<br>56<br>56<br>56<br>56<br>89 | 50<br>40<br>60<br>40 | 56<br>62<br>45<br>45<br>26<br>56 | 10<br>10<br>20<br>20<br>10<br>30 | 62<br>92<br>89<br>92<br>82<br>26 | 10<br>10<br>10<br>10<br>10 |                   | *<br>10<br>*<br>10<br>10 | 30<br>30<br>30<br>10<br>10 | 2 O                                                                     | PRC [IN                   | 44<br>163<br>26              | 48<br>1<br>32<br>27          | 2                            | 5                             | 477<br>4-977<br>-1977<br>-1977<br>7<br>11177<br>161         |

### ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

KENTUCKY

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

LOUISVILLE, KENTUCKY

|                                   |                              |                              |                          |                         |                          | <del>,</del>        |                      |                      |                    |           |                              |          |                      |                 |               |                      |
|-----------------------------------|------------------------------|------------------------------|--------------------------|-------------------------|--------------------------|---------------------|----------------------|----------------------|--------------------|-----------|------------------------------|----------|----------------------|-----------------|---------------|----------------------|
| DATE OF SAMPI                     |                              |                              | EX                       | TRACTABL                | ES                       |                     | т т                  |                      |                    | CHLOROF   | ORM EXTRA                    | ACTABLES |                      | <del></del>     | <del></del> 1 |                      |
| MONTH DAY PEAR DOINGUIDE          | DAY                          | GALLONS<br>FILTERED          | TOTAL                    | CHLORO-<br>FORM         | ALCOHOL                  | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES    | TOTAL                | ALIPHATICS         | AROMATICS | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS     | WEAK<br>ACIDS        | STRONG<br>ACIDS | BASES         | LOSS                 |
| 6 14 61 6<br>7 1 61 7<br>8 1 61 8 | 6 16<br>7 18<br>8 15<br>9 15 | 1510<br>1314<br>5040<br>1200 | 315<br>306<br>191<br>581 | 123<br>122<br>77<br>156 | 192<br>184<br>114<br>425 | 16 2 2 3            | 26<br>25<br>18<br>33 | 49<br>53<br>23<br>69 | 13<br>11<br>3<br>7 | 6 6 2 4   | 29<br>33<br>17               | 1 3 1 6  | 12<br>18<br>10<br>22 | 8<br>9<br>8     | 1 2 2 3       | 11<br>13<br>14<br>18 |
|                                   |                              |                              |                          |                         |                          |                     |                      |                      |                    |           |                              |          |                      |                 |               |                      |

STATE

KENTUCKY

MAJOR BASIN CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATIONOHIO RIVER AT

LOUISVILLE, KENTUCKY

| • | DA<br>OF SA                          |                                           |                                         |                                                                                       |                             |                                                             |                |                | CHLORINE                                                                     | DEMAND                                                                                                                         |                              |                                                                        |                                                                            |                                                                                           |                        |                                                                            |                                                    |                                                   |                                                                                                                  |                                                                                            |
|---|--------------------------------------|-------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------|----------------|----------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|   | HONTH A                              | 1                                         | YEAR                                    | TEMP.<br>(Degrees<br>Centigrade)                                                      | DISSOLVED<br>OXYGEN<br>mg/l | pH                                                          | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l                                                               | 24-HOUR<br>mg/l                                                                                                                | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l                                                      | ALKALINITY<br>mg/I                                                         | HARDNESS<br>mg/l                                                                          | COLOR<br>(scale units) | TURBIDITY<br>(scale units)                                                 | SULFATES<br>mg/l                                   | PHOSPHATES<br>mg/l                                | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/I                                                                             | COLIFORMS<br>per 100 ml.                                                                   |
| _ | 6 1<br>7 7<br>7 1<br>7 1<br>7 2<br>8 | 3 (d) 6666666666666666666666666 | 23.0<br>19.5<br>21.55<br>25.0<br>26.0<br>27.0<br>26.5<br>27.5<br>29.0<br>25.5<br>25.5 |                             | 7.64<br>7.7<br>7.65<br>7.48<br>7.48<br>7.55<br>7.55<br>7.55 |                |                | 2.00<br>.7<br>.8<br>.7<br>.7<br>.7<br>.7<br>.7<br>.7<br>.7<br>.7<br>.7<br>.7 | 6.4<br>5.4<br>5.6<br>5.6<br>5.7<br>7<br>7<br>7<br>7<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>8<br>8<br>7<br>7<br>7<br>7<br>7 | 9267<br>-371-73-12145-47     | 21<br>19<br>176<br>314<br>37<br>19<br>28<br>28<br>20<br>34<br>34<br>34 | 90<br>70<br>74<br>82<br>87<br>91<br>67<br>70<br>90<br>88<br>95<br>88<br>93 | 124<br>112<br>118<br>128<br>130<br>150<br>128<br>110<br>1142<br>128<br>1444<br>144<br>154 | 000010000000100        | 1550<br>1650<br>1553<br>1530<br>1530<br>1530<br>1530<br>1530<br>1530<br>15 | 825<br>706 - 857<br>7053 880<br>8950 - 555<br>1055 | 5751-11632-111-11-11-11-11-11-11-11-11-11-11-11-1 | 220<br>178<br>139<br>200<br>-<br>133<br>262<br>201<br>154<br>1245<br>244<br>225<br>252<br>217<br>-<br>238<br>275 | 1900<br>14000<br>9500<br>730<br>1600<br>2400<br>4500<br>4500<br>470<br>590<br>*100<br>1300 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Louisville, Kentucky Operated by U.S. Geological Survey

STATE

Kentucky

MAJOR BASIN

Ohio River

MINOR BASIN

Ohio River-Main Stem and Minor Trib.

STATION LOCATION

Ohio River at

Louisville, Kentucky

|                                   |                                                |                                                |                                                           |                                                          |                                                     |                                                                | ·                                                                 |                                                          |                                                     | ·                                                        |                                                          |                                                |
|-----------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| Day                               | October                                        | November                                       | December                                                  | January                                                  | February                                            | March                                                          | April                                                             | May                                                      | June                                                | July                                                     | August                                                   | September                                      |
| 1<br>2<br>3<br>4<br>5             | 13.000<br>13.000<br>13.000<br>13.000           | 20.000<br>15.400<br>19.800<br>15.600<br>21.900 | 25.300<br>22.100<br>17.900<br>22.600<br>18.300            | 61.700<br>76.800<br>90.600<br>105.000<br>99.400          | 32.600<br>30.600<br>24.000<br>25.900<br>23.200      | 445.000<br>454.000<br>460.000<br>463.000<br>/ 478.000          | 172.000<br>186.000<br>22 <sup>1</sup> 4.000<br>265.000<br>272.000 | 333.000<br>316.000<br>301.000<br>290.000<br>298.000      | 47.200<br>44.400<br>58.300<br>58.900<br>66.700      | 35.400<br>31.700<br>33.300<br>32.700<br>34.800           | 78.800<br>91.700<br>117.000<br>118.000<br>126.000        | 27.900<br>17.100<br>21.400<br>24.700<br>22.800 |
| 6<br>7<br>8<br>9                  | 12.000<br>12.000<br>12.000<br>12.000           | 19.900<br>20.000<br>12.700<br>24.900<br>34.300 | 24.400<br>23.000<br>14.100<br>13.700<br>13.300            | 77.200<br>53.900<br>48.100<br>51.100<br>52.200           | 20.600<br>31.900<br>35.100<br>32.800<br>49.700      | 524.000<br>530.000<br>524.000<br>515.000<br>492.000            | 247.000<br>215.000<br>190.000<br>168.000<br>172.000               | 291.000<br>359.000<br>505.000<br>583.000<br>587.000      | 83.500<br>110.000<br>118.000<br>121.000<br>135.000  | 38.800<br>36.400<br>42.100<br>44.700<br>40.800           | 137.000<br>140.000<br>124.000<br>81.400<br>46.100        | 14.000<br>24.000<br>28.500<br>23.000<br>16.000 |
| 11<br>12<br>13<br>14<br>15        | 14.000<br>14.000<br>14.000<br>14.000           | 34.000<br>36.200<br>35.300<br>37.600<br>40.600 | 12.200<br>22.600<br>23.800<br>16.700<br>19.700            | 47.600<br>40.700<br>32.900<br>32.400<br>52.900           | 72.000<br>88.800<br>85.800<br>103.000<br>111.000    | 475.000<br>457.000<br>439.000<br>422.000<br>391.000            | 176.000<br>178.000<br>213.000<br>246.000<br>253.000               | 560.000<br>520.000<br>465.000<br>401.000<br>341.000      | 162.000<br>182.000<br>198.000<br>202.000<br>228.000 | 32.200<br>20.600<br>27.000<br>26.100<br>50.500           | 39.100<br>58.000<br>73.800<br>87.100<br>110.000          | 23.300<br>24.000<br>22.800<br>17.100<br>13.000 |
| 16<br>17<br>18<br>19<br>20        | 14.000<br>14.000<br>14.000<br>14.000           | 35.600<br>27.700<br>23.800<br>28.900<br>25.600 | 28.700<br>23.700<br>22.000<br>25.000<br>15.400            | 94.700<br>126.000<br>160.000<br>177.000<br>171.000       | 126.000<br>147.000<br>168.000<br>179.000<br>169.000 | 352.000<br>309.000<br>280.000<br>261.000<br>248.000            | 280.000<br>322.000<br>337.000<br>346.000<br>337.000               | 279.000<br>230.000<br>199.000<br>170.000<br>146.000      | 240.000<br>246.000<br>246.000<br>228.000<br>201.000 | 73.200<br>82.700<br>98.000<br>109.000<br>106.000         | 98.200<br>70.700<br>40.200<br>24.700<br>23.800           | 10.600<br>11.800<br>16.500<br>12.100<br>12.200 |
| 21<br>22<br>23<br>24<br>25        | 17.000<br>17.000<br>17.000<br>17.000<br>17.000 | 24.200<br>17.900<br>17.000<br>14.500<br>17.200 | 17.500<br>28.700<br>29.800<br>22.000<br>13.900            | 148.000<br>125.000<br>104.000<br>70.600<br>51.000        | 162.000<br>182.000<br>225.000<br>249.000<br>292.000 | 265.000<br>265.000<br>260.000<br>259.000<br>259.000            | 31.3.000<br>295.000<br>298.000<br>300.000<br>301.000              | 127.000<br>116.000<br>110.000<br>95.600<br>99.800        | 165.000<br>120.000<br>82.500<br>71.000<br>71.800    | 108.000<br>130.000<br>148.000<br>135.000<br>114.000      | 20.900<br>28.400<br>34.800<br>32.100<br>23.300           | 15.300<br>12.600<br>14.300<br>20.200<br>15.200 |
| 26<br>27<br>28.<br>29<br>30<br>31 | 16.000<br>16.000<br>16.000<br>16.000<br>16.000 | 18.500<br>19.100<br>21.200<br>21.500<br>25.100 | 12.000<br>20.1400<br>26.600<br>27.100<br>33.700<br>14.100 | 35.500<br>34.700<br>38.300<br>34.400<br>31.800<br>28.400 | 345.000<br>371.000<br>408.000                       | 263.000<br>257.000<br>238.000<br>216.000<br>195.000<br>176.000 | 322.000<br>343.000<br>339.000<br>336.000<br>336.000               | 82.000<br>73.200<br>68.900<br>56.200<br>51.100<br>49.300 | 58.000<br>51.400<br>37.500<br>39.000<br>39.400      | 83.300<br>75.900<br>74.500<br>72.000<br>80.100<br>78.000 | 30.400<br>31.800<br>32.800<br>33.800<br>29.100<br>15.900 | 12.200<br>9.070<br>12.400<br>8.640<br>9.070    |

STATE

0110

MAJOR BASIN

OHIO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

CINCINNATI, OHIO

| DATE         |                               |           | RADIO     | DACTIVITY IN | WATER     |           |       | RADIOA                        | CTIVITY IN PLAI | NKTON (dry) | R        | DIOACTIVITY IN V | VATER |
|--------------|-------------------------------|-----------|-----------|--------------|-----------|-----------|-------|-------------------------------|-----------------|-------------|----------|------------------|-------|
| SAMPLE       | DATE OF                       | [         | ALPHA     |              |           | BETA      |       | DATE OF                       | GROSS           | ACTIVITY    |          | GROSS ACTIVIT    |       |
| TAKEN        | DATE OF<br>DETERMI-<br>NATION | SUSPENDED | DISSOLVED | TOTAL        | SUSPENDED | DISSOLVED | TOTAL | DATE OF<br>DETERMI-<br>NATION | ALPHA           | BETA        | SUSPENDE | DISSOLVED        | TOTAL |
| MO. DAY YEAR | HONTH DAY                     | μμς/Ι     | μμc/l     | μμε/Ι        | μμς/Ι     | μμς/Ι     | μμε/  | MO. DAY                       | μμс/g           | μμc/g       | μμς/1    | μμc/l            | μμc/! |
|              |                               |           | _         |              |           | _         | _     |                               |                 |             |          |                  |       |
| 0 26 60*     |                               | 0         | 1         | 1            | 0         | 0         | 0     | 1 1                           |                 |             |          |                  |       |
| 1 30 60*     | 12 6                          | 0         | 0         | 0            | 0         | 0         | 0     |                               |                 |             |          |                  |       |
| 2 21 60*     | 1 16                          | 0         | 1         | . 1          | 0         | 0         | 0     |                               |                 |             |          |                  |       |
| 2 1 61*      | 2 9                           | 2         | 0         | 2            | 2         | 0         | 2     |                               |                 |             |          |                  |       |
| 3 1 61*      | 3 10                          | 2         | 0         | 2            | 8         | 1         | 9     |                               |                 |             |          |                  |       |
| 3 29 61*     | 4 6                           | 2         | 1         | 3            | 1         | 1         | 2     |                               |                 | i           |          |                  |       |
| 4 26 61*     | 5 5                           | 2         | ō         | 2            | 2         | ō         | 2     |                               |                 |             |          |                  |       |
| 5 31 61*     | 6 12                          | ō         | ő         | ō            | ا آ       | ŏl        | . 6   | i                             |                 |             |          | '                |       |
| 6 28 61      |                               |           | 1         |              | { I       | - 1       |       |                               |                 |             |          |                  |       |
|              | 7 17                          | 2         | 0         | 2            | 0         | 0         | 0     |                               |                 |             |          |                  |       |
| 8 2 61*      | 8 25                          | 3         | 1         | 4            | 4         | 13        | 17    |                               |                 |             |          |                  |       |
| 8 30 61*     | 9 14                          | 1         | 1         | 2            | 7         | 9         | 16    |                               |                 |             |          |                  |       |
| 9 6 61       | 10 5                          | 0         | 0         | 0            | 5         | 10        | 15    |                               |                 |             |          |                  |       |
| 9 13 61      | 10 10                         | 0         | 1         | 1            | 0         | 16        | 16    | 1                             |                 |             |          |                  |       |
| 9 20 61      | 10 16                         | -         | - 1       | · <u>-</u>   | 0         | 0         | 0     |                               |                 |             |          |                  |       |
| 27 61        | 10 6                          | _         | -         | _            | 0         | 11        | 11    |                               |                 |             |          |                  |       |
|              |                               |           |           |              |           |           |       |                               |                 |             | i        | 1                |       |
|              |                               |           | ŀ         |              |           |           | Į.    |                               |                 |             | 1        |                  |       |
|              |                               |           |           |              |           | 1         |       |                               |                 |             |          |                  |       |
|              |                               |           | İ         |              |           |           |       |                               |                 |             | İ        |                  |       |
|              |                               |           |           |              |           |           |       |                               |                 |             |          |                  |       |
|              |                               |           |           |              |           | 1         |       |                               |                 |             |          |                  |       |
|              |                               |           |           |              |           | 1         |       |                               |                 |             | İ        |                  |       |
|              |                               |           |           |              |           |           |       | 1                             |                 |             |          |                  |       |
|              |                               | 1         |           |              |           | 1         |       |                               |                 |             |          |                  |       |
|              |                               |           |           |              | 1         | 1         |       |                               |                 |             |          |                  |       |
|              |                               |           |           |              |           |           |       |                               |                 |             |          | 1                |       |
|              |                               |           |           |              |           |           |       |                               |                 |             |          | 1                |       |
|              |                               |           |           |              |           | 1         |       | 1                             |                 |             |          |                  |       |
|              |                               | ļ         |           |              |           | 1         |       |                               |                 | 1           |          |                  |       |
|              |                               |           |           |              |           |           |       |                               |                 |             |          |                  |       |
|              |                               |           |           |              |           |           | İ     | 1 1                           |                 |             |          |                  |       |
| 1            |                               |           | Ĭ         |              |           |           | į     | 1 1                           |                 |             | İ        |                  |       |
| i            |                               |           |           |              |           |           |       |                               |                 |             |          |                  |       |
|              | 1                             |           |           |              |           | 1         |       |                               |                 |             |          |                  |       |
|              |                               |           |           |              |           |           |       |                               |                 |             |          | *                |       |
|              |                               |           |           |              |           |           |       |                               |                 |             |          |                  |       |
| Į            | ļ                             |           |           |              |           | 1         |       |                               |                 |             |          |                  |       |
| 1            |                               |           | l         |              |           |           |       | 1                             |                 |             | 1        |                  |       |
| i            |                               | İ         |           |              |           |           |       |                               |                 |             |          |                  |       |
| 1            | 1                             |           |           |              |           | l         | i     |                               |                 |             |          |                  |       |
| İ            | Į.                            | 1         |           |              |           |           | ļ     |                               |                 |             |          |                  |       |
|              |                               |           | 1         |              |           |           | ľ     |                               |                 |             |          |                  |       |
| l            | Ĭ                             | 1         | 1         |              |           |           |       |                               |                 |             |          |                  |       |
|              | ľ                             | 1         |           |              |           |           |       | 1 1                           |                 |             | 1        | 1 1              |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

OH10

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

CINCINNATI, OHIO

|                                                                                                                                                                                                                                                                                                                                                  |                                                                    |                                                                                                                                           |                        |                                                                        | ALGAE (N                                                                                           | I han                 | ner m7 1                                                                             |                                                   |                                                                                                                            |                                                                                                    | INE                                                                                                                                      | RT                                                                                                      | <del></del>                                                                                                                                  |                                        |                                                                                  |                                              | ATON                                               | 15                                                                        |                                                                                        |                                                                                 |                                    | ,                                                                       | ,                      | LICROIN                                                                | /ERTEBR                      | ATES                         |                    |                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------|------------------------------|------------------------------|--------------------|-----------------------------------------------------------------------------------|
| DATE<br>OF SAMPL                                                                                                                                                                                                                                                                                                                                 | -E                                                                 |                                                                                                                                           | BLUE-                  |                                                                        | GREE                                                                                               |                       | FLAGEL<br>(Pigme                                                                     |                                                   | DIATO                                                                                                                      | oms .                                                                                              | DIA.                                                                                                                                     | TOM<br>LLS                                                                                              |                                                                                                                                              | DOMI<br>(See                           | NANT<br>Introd                                                                   | SPECI                                        | ES AN                                              | D PE                                                                      | RCENT<br>ntificati                                                                     | 'AGES                                                                           |                                    | ОРЦАНКТОВ<br>ВНЕАТИЕВ<br><i>TIL.</i> )                                  | ml.)                   | ts<br>liter)                                                           | EA<br>liter)                 | DES<br>liter)                | KAL FORMS<br>Iter} | r GENERA<br>roduction<br>lification                                               |
| MONTH                                                                                                                                                                                                                                                                                                                                            | YEAR                                                               | TOTAL                                                                                                                                     | COCCOID                | FILA-<br>MENT-<br>OUS                                                  | COCCOID                                                                                            | FILA-<br>MENT-<br>OUS | GREEN                                                                                | OTHER                                             | CENTRIC                                                                                                                    | PENNATE                                                                                            | CENTRIC                                                                                                                                  | PENNATE                                                                                                 | FIRST#                                                                                                                                       | PER-<br>CENTAGE                        | SECOND#                                                                          | PER.<br>CENTAGE                              | TKIRD#                                             | PER.<br>CENTAGE                                                           | FOURTH                                                                                 | PER-<br>CENTAGE                                                                 | OTHER PER-<br>CENTAGE              | OTHER MICROFLANKTOR,<br>FUNGI AND SHEATHED<br>PACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per m | ROTIFIERS<br>(No. per liter)                                           | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | (No. per )         | bowinant genera<br>(See Introduction<br>for Identification)                       |
| 10 19 6<br>11 23 6<br>11 21 6<br>12 21 6<br>12 21 6<br>2 2 1 6<br>3 2 2 6<br>4 5 6<br>5 17 6<br>6 20 6<br>7 19 6<br>8 23 6<br>8 23 6<br>8 23 6<br>8 23 6<br>8 23 6<br>8 23 6<br>8 23 6<br>8 23 6<br>8 23 6<br>8 24 6<br>7 19 6<br>8 23 6<br>8 23 6<br>8 24 6<br>7 19 6<br>8 25 6<br>8 26 6<br>8 26 6<br>8 27 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 500<br>550<br>551<br>551<br>551<br>551<br>551<br>551<br>551<br>551 | 2200<br>2600<br>5600<br>10300<br>8700<br>1200<br>600<br>400<br>500<br>700<br>1400<br>8100<br>400<br>6100<br>3200<br>3200<br>3400<br>11300 | 70<br>180<br>20<br>180 | 220<br>160<br>200<br>400<br>20<br>20<br>20<br>270<br>40<br>370<br>4740 | 840<br>970<br>1460<br>2500<br>160<br>90<br>2260<br>40<br>420<br>310<br>7300<br>560<br>1100<br>4250 | 20                    | 20<br>160<br>2270<br>1270<br>20<br>40<br>80<br>480<br>20<br>180<br>150<br>290<br>660 | 130<br>200<br>350<br>120<br>140<br>20<br>20<br>90 | 290<br>350<br>1540<br>2750<br>1250<br>940<br>800<br>270<br>160<br>410<br>3420<br>400<br>2090<br>770<br>1720<br>1180<br>640 | 600<br>570<br>2620<br>3150<br>430<br>290<br>180<br>270<br>580<br>1340<br>7800<br>350<br>460<br>170 | 290<br>1020<br>750<br>1230<br>380<br>20<br>870<br>360<br>70<br>90<br>70<br>150<br>210<br>1060<br>110<br>740<br>850<br>330<br>1430<br>230 | 130<br>130<br>680<br>180<br>1520<br>220<br>1180<br>420<br>510<br>600<br>690<br>420<br>170<br>120<br>210 | 91<br>56<br>56<br>56<br>56<br>56<br>26<br>86<br>92<br>92<br>92<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56 | 20<br>20<br>30<br>30<br>90<br>70<br>80 | 89<br>89<br>85<br>85<br>86<br>26<br>65<br>66<br>65<br>65<br>65<br>89<br>89<br>89 | 30<br>20<br>20<br>30<br>20<br>10<br>10<br>10 | 56<br>62<br>82<br>56<br>45<br>62<br>26<br>58<br>47 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>20<br>10<br>* | 82<br>26<br>56<br>56<br>92<br>89<br>58<br>74<br>52<br>36<br>92<br>92<br>92<br>92<br>92 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | * 20 20 40 30 40 60 70 60 60 50 30 | 40<br>200<br>70<br>150<br>50                                            | 20                     | 59<br>58<br>659<br>148<br>75<br>3<br>114<br>2<br>4<br>60<br>115<br>176 | 75                           | 2                            |                    | 76-27 74321 749-7 48931 7192577777 -4-53 377 48977 -41977 749-7 4-177 4-177 1-124 |

## ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

OHIO

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

CINCINNATI, OHIO

| DATE OF S            | AMDIE |                                                                            |                                              |                                                                                  |                                                                       |                                                                                | <del></del>              |                                                               |                                                          |              |                       |                                                                      |              |                                                            |                                                                |                 |                                                                    |
|----------------------|-------|----------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------|----------------------------------------------------------|--------------|-----------------------|----------------------------------------------------------------------|--------------|------------------------------------------------------------|----------------------------------------------------------------|-----------------|--------------------------------------------------------------------|
| BEGINNING            | END   | -                                                                          |                                              | EX                                                                               | TRACTABL                                                              | ES                                                                             |                          | 1                                                             |                                                          |              |                       | ORM EXTR                                                             | ACTABLES     |                                                            |                                                                |                 |                                                                    |
| MONTH<br>DAY<br>YEAR | МОМТН | GALI<br>FILT                                                               | ONS<br>ERED                                  | TOTAL                                                                            | CHLORO-<br>FORM                                                       | ALCOHOL                                                                        | ETHER<br>INSOLUBLES      | WATER<br>SOLUBLES                                             | TOTAL                                                    | ALIPHATICS   | NEUTRALS<br>AROMATICS | OXYGEN-<br>ATED<br>COMPOUNDS                                         | LOSS         | WEAK<br>ACIDS                                              | STRONG<br>ACIDS                                                | BASES           | LOSS                                                               |
| 10                   | 11 1  | 6 28<br>37<br>1 40<br>5 43<br>9 48<br>9 49<br>7 55<br>0 64<br>7 50<br>1 53 | 80<br>10<br>03<br>77<br>56<br>83<br>80<br>19 | 537<br>338<br>426<br>316<br>291<br>240<br>227<br>156<br>147<br>187<br>179<br>287 | 143<br>171<br>197<br>109<br>157<br>42<br>97<br>472<br>98<br>54<br>144 | 394<br>167<br>229<br>207<br>134<br>168<br>130<br>114<br>75<br>89<br>125<br>143 | 1 3 10 3 3 2 9 0 2 5 1 3 | 30<br>34<br>35<br>19<br>22<br>15<br>22<br>8<br>16<br>19<br>32 | 54<br>79<br>75<br>49<br>77<br>25<br>26<br>25<br>32<br>53 | 464382324322 | 3148583322324         | 42<br>51<br>58<br>37<br>47<br>17<br>19<br>12<br>18<br>25<br>20<br>44 | 585443201513 | 21<br>19<br>20<br>12<br>14<br>9<br>10<br>6<br>9<br>14<br>9 | 11<br>14<br>12<br>7<br>10<br>6<br>11<br>3<br>8<br>10<br>4<br>9 | 656231221122166 | 20<br>17<br>39<br>17<br>28<br>14<br>16<br>8<br>11<br>12<br>5<br>22 |

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE OHIO

MAJOR BASIN OHIO RIVER

MINOR BASIN OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATIONOHIO RIVER AT

CINCINNATI, UHIO

|        | DATE     | T  |                                  |                             |            |                | 1              | CHLORINE       | DEMAND          |                              |                   |                    |                  |                        |                            |                  |                    |                                      |              |
|--------|----------|----|----------------------------------|-----------------------------|------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|----------------------------|------------------|--------------------|--------------------------------------|--------------|
|        | SAMF     | LE | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/l | рН         | B.O.D.<br>mg/l | C,O,D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS    |
|        |          |    |                                  |                             |            | - 1 0          |                | 2 3            | 5.4             | •0                           | 34                | 38                 | 152              | 5                      | 3                          | 140              | .0                 | 299                                  | 200          |
| 10     | 5<br>12  | 60 | 21.8                             | 8.8                         | 7•9<br>8•0 | 1.0<br>1.6     | 3<br>17        | 2•3            | 6.9             | •1                           | 38                | 45                 | 175              | 5                      | 9                          | 135              | -                  | 333                                  | 340          |
|        | 19       | 60 | 20.2                             | 8.7                         | 7.6        | 1.9            | 35             | 2.9            | 6.9             | •1                           | 38                | 44                 | 178              | 5                      | 3                          | 156              | .0                 | 360                                  | 3300         |
|        | 26       | 60 | 15.8                             | 9.4                         | 7.9        | 1.5            | 22             | 2.3            | 4.7             | •1                           | 41                | 40                 | 175              | 10                     | 3                          | 148              | •0                 | 351                                  | 950          |
|        | 31       | 60 | -                                | ' -                         | '`_        |                | _              | _              | _               | -                            | -                 | - '                | -                | _                      | -                          | 1.50             |                    | 366                                  | 250          |
| iil    | 2        | 60 | 14.6                             | 10.0                        | 7.6        | 2.6            | 22             | 4.8            | 8.0             | •2                           | 43                | 36                 | 181              | 5                      | 6                          | 152<br>146       | .0                 | 396                                  | 2800         |
| 11     | 9        | 60 | 12.0                             | 10.1                        | 7.5        | _              | 29             | 6.6            | 11.0            | • 3                          | 63                | 43                 | 203              | 5<br>5                 | 20<br>20                   | 151              | .0                 | 418                                  | 850          |
| 11     | 16       | 60 | 12.1                             | 9.8                         | 7.2        | 2.3            | 32             | 7.8            | 12.5            | •3                           | 64                | 38                 | 190<br>182       | 5                      | 10                         | 159              |                    | 384                                  | 830          |
| 11     | 23       | 60 | 11.0                             | 11.1                        | 7•4        | 2.0            | 26             | 1.1            | 13.9            | •4                           | 63                | 47<br>46           | 182              | 5                      | 10                         | 153              |                    | 333                                  | 630          |
| 11     | 30       | 60 | 9•2                              | 11.4                        | 7•4        | 2.2            | 22             | • 8            | 7.9             | •4                           | 52<br>49          | 42                 | 187              | 5                      | 6                          | 167              |                    | 380                                  | 670          |
| 12     | 7        | 60 | 7.2                              | 12.3                        | 7.7        | 1.1            | 21             | • 6            | 8•9             | •5                           | 47                | -                  | 101              | _                      | 1 -                        | _                | _                  | -                                    | 00 خ         |
| 12     | 14       | 60 | -                                |                             |            | ,              | 7              | -              | 9.9             | •5                           | 55                | 40                 | 180              | 5                      | 10                         | 144              | .0                 | 364                                  | -            |
| 12     | 15       | 60 | 3.9                              | 8.5                         | 7.7        | 1.7            | 26             | •6             | 10.7            | .5                           | 74                | 50                 | 202              | 5                      | 8                          | 156              | .0                 | 389                                  | 720          |
| 12     | 21<br>27 | 60 | 2.1                              | 13.4                        | 7.5        | _              | 20             | •0             |                 | -                            | '-                | -                  | -                | -                      | -                          | -                | -                  |                                      | 830          |
|        | 28       | 60 | 1.3                              | 13.8                        | 7.5        | _              | 23             | .6             | 15.8            | •6                           | 59                | 53                 | 183              | 5                      | 20                         | 85               | • 1                | 379                                  | 800          |
| 12     | 4        | 60 | 2.5                              | 9.2                         | 7.4        | 9•2            | 1054           | 1.2            | 14.9            | 1.4                          | 49                | 45                 | 143              | 5                      | 360                        | 98               | • 1                | 287                                  | 1100         |
| 1      | 11       | 61 | 2.5                              | 12.5                        | 7.3        | 1.4            | 42             | • 2            | 11.8            | •9                           | 31                | 37                 | 118              | 5                      | 130                        | 99               | • 0                | 221 231                              | 3100<br>6500 |
| 1      | 18       | 61 | 3.8                              | 10.1                        | 7.1        | 1.2            | 53             | • 6            | 11.9            | .8                           | 32                | 32                 | 124              | 10                     | 500<br>110                 | 88<br>75         | .0                 | 248                                  | 2200         |
| ī      | 25       | 61 | • 5                              | 13.7                        | 7.2        | 1.9            | 39             | • 6            | 7 • 8           | •5                           | 31                | 36                 | 110              | 5 5                    | 40                         | 81               | 2                  | 237                                  | 120          |
| 2      | 1        | 61 | • 2                              | 13.6                        | 7.3        | 1.2            | 12             | • 2            | 9•8             | 1.0                          | 34                | 43                 | 137              | 5                      | 25                         | 92               | .2                 | 264                                  | 770          |
| 2      | 8        | 61 | • 3                              | 13.4                        | 7.4        | 1.5            | 19             | • 4            | 9•6             | • 7                          | 39                | 46                 | 142              | 5                      | 130                        | 66               |                    | 240                                  | 700          |
| 2      | 15       | 61 | 4.0                              |                             | 7 • 2      | 3.0.           | 47             | • 6            | 11.1            | •6                           | 28                | 34                 | 113              | 5                      | 220                        | 79               |                    | 224                                  | 6700         |
| 2      | 21       | 61 | 4.9                              | 10.5                        | 7.1        | -              | 38             | • 8            | _               | • 7                          | 25                | 5-                 | 11.5             |                        |                            | -                | l.                 | _                                    | 11000        |
| 2      | 28       | 61 | _                                | -                           |            | 2 2            | 259            | .9             | 9.9             | .3                           | 15                | 25                 | 69               | 5                      | 450                        | 47               | .1                 | 138                                  | -            |
| 3      | 1        | 61 | 6.3                              |                             | 7.2        | 3.2            | 31             | 9              | 6.8             | 2                            | 15                | 27                 | 81               | 5                      | 180                        | 60               | .0                 | 147                                  | 960          |
| 3      | 8        | 61 | 7.6                              | 9.9                         | 7.3        | 1.1            | 25             | 1.1            | 6.9             | .3                           | 17                | 29                 | 93               | 10                     | 140                        | 61               |                    | 181                                  | 18000        |
| 3<br>3 | 15<br>22 | 61 | 8 • 2<br>7 • 9                   | 10.2                        | 7.2        | 1.7            | 32             | 1.9            | 6.6             | .3                           | 17                | 30                 | 102              | 10                     | 150                        | 72               |                    |                                      | 10000        |
| 3      | 29       | 61 | 9.0                              |                             | 7.2        | 1.5            | 29             | 1.9            | 5.7             | •2                           | 15                | 29                 | 97               |                        | 80                         | 68               |                    | 182                                  | 1800         |
| 4      | 5        | 61 | 8.8                              | 1                           | 7.1        | 2.2            | 31             | 2.9            | 7.8             | •2                           | 15                | 26                 | 83               |                        | 320                        | 69               | 1                  |                                      | 6100<br>4200 |
| 4      | 12       |    | 8.5                              |                             | 7.3        | 1.5            | 18             | • 9            | 5.9             | • 2                          | 15                | 1                  | 110              | 1                      | 70                         | 77               |                    |                                      | 20000        |
| 4      | 19       |    | 8.3                              | 1                           | 7.3        | 1.3            | 13             | 2.7            | 7.6             | •1                           | 13                |                    | 93               |                        | 1                          | 59               | 1 .                |                                      | 6000         |
| 4      | 26       |    | 11.5                             | 1                           | 7.2        | 1.6            | 14             | 2.00           | 5.0             | •1                           | 15                |                    | 98               |                        | 1                          | 71               |                    |                                      | 4600         |
| 5      | 3        |    | 12.5                             | 1                           | 7.2        | 1.7            | 29             | 1.9            | 6.0             | •1                           | 13                | 1                  |                  |                        |                            | 46               | 1 -                |                                      | 7200         |
| 5      | 10       |    | 14.4                             |                             | 7.3        | 1.3            | 34             | 2.8            | 8 • 8           | •1                           | 13                |                    | 1                | 1                      |                            | 1                |                    |                                      | 3000         |
| 5      | 17       | 61 | 17.3                             | 1                           | 7.1        | 1.6            | 26             | 2.5            | 6.9             | •1                           | 16                |                    | 1                | · I                    | 1                          | 1                | 1                  |                                      | 490          |
| 5      | 24       | 61 |                                  |                             | 7.1        | 1.3            | 29             | 1.9            | 5 • 5           | • 2                          |                   | 1                  |                  | -                      |                            |                  |                    |                                      | 83           |
| 5      | 31       | 61 | 18.5                             | 7.5                         | 7.7        | • 8            | 20             | 1.7            | 6 • 1           |                              | 20                | '  50              | -                |                        | -                          |                  |                    | 1                                    |              |
|        |          |    | 1                                |                             |            |                |                | ]              |                 |                              |                   |                    |                  |                        |                            |                  |                    |                                      |              |

#### STATE

#### OHIO

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATIONOHIO RIVER AT

CINCINNATI, OHIO

| DATE                                                                                                                  | 1                                                                                                                                        |                                                      |                                                                                       |                                                             |                                                                                       | CHLORINE                                                                                       | DEMAND                                                     |                                                                                             |                                                                            |                                                                            |                                                                                       |                        |                                                                          |                                                                                                       |                                         |                                                                                                              | 1                                |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------|
| OF SAMPLE                                                                                                             | (Degrees                                                                                                                                 | DISSOLVED<br>OXYGEN<br>mg/I                          | pH                                                                                    | B.O.D.<br>mg/l                                              | C.O.D.                                                                                | 1-HOUR<br>mg/l                                                                                 | 24-HOUR<br>mg/l                                            | AMMONIA-<br>NITROGEN<br>mg/l                                                                | CHLORIDES<br>mg/[                                                          | ALKALINITY<br>mg/l                                                         | HARDNESS<br>mg/l                                                                      | COLOR<br>(scale units) | TURBIDITY<br>(scale units)                                               | SULFATES<br>mg/l                                                                                      | PHOSPHATES<br>mg/l                      | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l                                                                         | COLIFORMS<br>per 100 ml.         |
| 6 7 6<br>6 14 6<br>6 20 6<br>6 28 6<br>7 12 6<br>7 12 6<br>8 16 6<br>8 23 6<br>8 16 6<br>8 8 30 6<br>9 13 6<br>9 27 6 | 1 22.8<br>1 21.3<br>1 22.6<br>1 24.8<br>1 25.6<br>1 25.0<br>1 27.9<br>1 26.6<br>1 26.6<br>1 26.2<br>1 27.0<br>1 29.2<br>1 29.2<br>1 25.3 | 4.9<br>6.4<br>8.6<br>7.6<br>8.3<br>5.1<br>5.6<br>5.6 | 7.1<br>7.0<br>7.0<br>7.0<br>7.5<br>7.6<br>7.1<br>7.5<br>7.6<br>8.4<br>2<br>9.1<br>8.3 | 2.0<br>2.0<br>2.3<br>1.6<br>1.6<br>1.1<br>1.3<br>1.9<br>1.5 | 33<br>26<br>62<br>54<br>8<br>23<br>33<br>59<br>22<br>26<br>51<br>15<br>20<br>13<br>10 | 2.4<br>3.4<br>2.5<br>1.5<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6 | 8.5.7.5.9.9.7.5.8.8.9.5.9.6.8.7.4.9.9.9.5.5.6.4.6.3.8.5.4. | 1<br>00<br>1<br>00<br>00<br>1<br>00<br>1<br>00<br>1<br>1<br>1<br>3<br>0<br>0<br>4<br>1<br>1 | 25<br>17<br>11<br>17<br>19<br>23<br>15<br>31<br>22<br>26<br>25<br>32<br>45 | 36<br>36<br>31<br>39<br>41<br>38<br>34<br>41<br>36<br>44<br>57<br>57<br>57 | 141<br>99<br>82<br>103<br>1117<br>92<br>137<br>121<br>133<br>143<br>139<br>153<br>178 | 3755857078866685       | 120<br>190<br>270<br>68<br>320<br>450<br>100<br>170<br>15<br>6<br>4<br>3 | 109<br>90<br>60<br>65<br>70<br>85<br>74<br>68<br>78<br>72<br>95<br>76<br>80<br>96<br>64<br>100<br>140 | 000000000000000000000000000000000000000 | 238<br>191<br>154<br>199<br>203<br>226<br>212<br>165<br>257<br>239<br>241<br>229<br>249<br>277<br>325<br>351 | 890<br>6200<br>26000<br>3400<br> |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Cincinnati, Ohio Operated by U.S. Geological Survey

STATE

Ohio

MAJOR BASIN

Ohio River

MINOR BASIN

Ohio River-Main Stem & Minor Trib.

STATION LOCATION

Ohio River at

Cincinnati, Ohio

| Day                              | October                                                | November                                       | December                                                 | January                                            | February                                            | March                                                          | April                                               | May                                                      | June                                                | July                                                     | August                                                   | September                                      |
|----------------------------------|--------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| 1<br>2<br>3<br>4                 | 11.000<br>11.000<br>11.000<br>11.000                   | 11.800<br>14.100<br>10.800<br>20.000<br>18.600 | 17.400<br>13.100<br>17.600<br>12.100<br>13.200           | 70.600<br>81.500<br>88.000<br>84.000<br>75.900     | 25.000<br>25.000<br>25.000<br>25.000<br>25.000      | 420.000<br>430.000<br>429.000<br>415.000<br>404.000            | 145.000<br>185.000<br>235.000<br>254.000<br>235.000 | 300.000<br>277.000<br>265.000<br>266.000<br>293.000      | 44.000<br>48.600<br>68.700<br>72.700<br>89.000      | 35.600<br>38.200<br>38.500<br>32.800<br>42.100           | 71.300<br>84.400<br>99.800<br>106.000<br>113.000         | 18.800<br>18.500<br>20.100<br>16.500<br>14.200 |
| 5<br>6<br>7<br>8<br>9            | 11.000<br>10.000<br>10.000<br>10.000<br>10.000         | 23.500<br>17.100<br>15.000<br>33.800<br>35.900 | 25.000<br>14.100<br>14.100<br>12.900<br>13.800           | 53.300<br>42.900<br>48.900<br>57.100<br>54.200     | 30.000<br>30.000<br>30.000<br>30.000<br>60.300      | 424.000<br>421.000<br>426.000<br>418.000<br>403.000            | 201.000<br>174.000<br>152.000<br>138.000<br>143.000 | 235.000<br>250.000<br>383.000<br>437.000<br>438.000      | 106.000<br>112.000<br>112.000<br>96.400<br>92.600   | 39.100<br>43.900<br>48.100<br>43.800<br>37.900           | 129.000<br>115.000<br>84.800<br>38.700<br>40.000         | 16.100<br>27.600<br>23.400<br>97.100<br>20.200 |
| 11<br>12<br>13<br>14<br>15       | 12.000<br>12.000<br>12.000<br>12.000<br>12.000         | 34.200<br>36.300<br>40.900<br>41.800<br>38.300 | 18.100<br>27.200<br>18.100<br>14.800<br>20.900           | 45.100<br>36.800<br>37.100<br>34.700<br>65.900     | 74.900<br>74.600<br>79.500<br>91.400<br>110.000     | 395.000<br>384.000<br>357.000<br>333.000<br>294.000            | 138.000<br>141.000<br>182.000<br>203.000<br>222.000 | 416.000<br>370.000<br>316.000<br>256.000<br>229.000      | 137.000<br>178.000<br>194.000<br>181.000<br>195.000 | 18.500<br>23.600<br>20.000<br>24.400<br>55.000           | 42.600<br>68.700<br>83.200<br>104.000<br>101.000         | 16.300<br>26.100<br>17.200<br>14.600<br>13.000 |
| 16<br>17<br>18<br>19             | 13.000<br>13.000<br>13.000<br>13.000                   | 32.600<br>22.300<br>24.700<br>16.400<br>23.400 | 23.500<br>20.500<br>20.100<br>15.500<br>15.800           | 97.700<br>129.000<br>157.000<br>156.000<br>136.000 | 135.000<br>157.000<br>163.000<br>161.000<br>150.000 | 269.000<br>251.000<br>236.000<br>227.000<br>207.000            | 271.000<br>299.000<br>308.000<br>298.000<br>286.000 | 203.000<br>176.000<br>146.000<br>123.000<br>108.000      | 215.000<br>222.000<br>226.000<br>200.000<br>154.000 | 77.000<br>87.100<br>88.200<br>93.100<br>85.100           | 66.500<br>42.100<br>31.100<br>30.700<br>20.700           | 9.700<br>8.620<br>8.570<br>10.700              |
| 21<br>22<br>23<br>24<br>25       | 15.000<br>9.520<br>15.100<br>22.300<br>13.900          | 21.200<br>14.100<br>16.300<br>12.000<br>13.100 | 25.000<br>27.300<br>26.300<br>15.900<br>18.000           | 114.000<br>92.000<br>63.600<br>48.900<br>34.700    | 162.000<br>200.000<br>230.000<br>248.000<br>273.000 | 201.000<br>189.000<br>193.000<br>212.000<br>236.000            | 269.000<br>249.000<br>236.000<br>238.000<br>238.000 | 106.000<br>99.700<br>92.900<br>86.600<br>77.700          | 112.000<br>78.700<br>65.600<br>63.800<br>65.700     | 108.000<br>140.000<br>122.000<br>105.000<br>79.800       | 25.100<br>35.100<br>25.200<br>22.900<br>24.800           | 9.550<br>11.800<br>29.700<br>10.800<br>14.000  |
| 26<br>27<br>28<br>29<br>30<br>31 | 11.600<br>18.800<br>14.200<br>9.540<br>8.530<br>16.600 | 12.000<br>12.200<br>18.700<br>19.800<br>22.400 | 15.100<br>17.800<br>26.600<br>32.700<br>30.300<br>55.900 | 30.000<br>30.000<br>30.000<br>30.000<br>30.000     | 309.000<br>340.000<br>384.000                       | 237.000<br>222.000<br>200.000<br>179.000<br>160.000<br>146.000 | 258.000<br>265.000<br>283.000<br>304.000<br>316.000 | 72.700<br>64.800<br>59.900<br>53.600<br>53.800<br>51.500 | 47.400<br>40.300<br>41.700<br>39.500<br>37.800      | 72.300<br>77.400<br>73.000<br>49.100<br>57.800<br>61.800 | 32.800<br>34.100<br>36.600<br>28.300<br>20.000<br>25.200 | 13.900<br>8.510<br>12.600<br>9.400<br>9.420    |

STATE

WEST VIRGINIA

MAJOR BASIN

OHIO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

HUNTINGTON, WEST VIRGINIA

|                                                                                                                          | Τ                  |           | PADI      | IOACTIVITY IN V | VATER     | <del></del> |       | т | RADIO                         | ACTIVITY IN PLA | NKTON (dry)   | Т | DAT       | DIOACTIVITY IN V | WATER |
|--------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|-----------|-----------------|-----------|-------------|-------|---|-------------------------------|-----------------|---------------|---|-----------|------------------|-------|
| DATE<br>SAMPLE                                                                                                           | DATE OF            |           | ALPHA     |                 |           | BETA        |       | 1 |                               |                 | ACTIVITY      | 1 | - NA      | GROSS ACTIVIT    |       |
| TAKEN                                                                                                                    | DETERMI-<br>NATION | SUSPENDED | DISSOLVED | TOTAL           | SUSPENDED | DISSOLVED   | TOTAL | 1 | DATE OF<br>DETERMI-<br>NATION | ALPHA           | BETA          | 1 | SUSPENDED | DISSOLVED        | TOTAL |
| MO, DAY YEAR                                                                                                             |                    | μμc/l     | μμς/Ι     | μμε/Ι           | μμε/1     | μμε/        | μμε/Ι | 1 | MO. DAY                       |                 | <i>µµс/</i> g | 1 | μμς/Ι     | μμc/I            | μμc/l |
| MO. DAY YEAR  10 24 60* 11 28 60* 12 26 60* 1 30 61* 3 27 61* 4 24 61* 5 29 61* 6 26 61* 7 31 61 9 15 61 9 18 61 9 25 61 | NONTH   DAY   1    |           |           |                 |           |             |       |   |                               |                 |               |   |           |                  |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

WEST VIRGINIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

HUNTINGTON, WEST VIRGINIA

|                      | T                                                                                                                   |                 |                                                            | ALGAE (N                                                                                                  | lumber                | ner ml.)                                                                                      |                                                |                                                                                                           |                                                                                                                | INE                                                                                                         | RT<br>TOM                                                                                                  | Γ                  |                                                                      |                                              | וח                                                                                                 | ATON                                                                                                                             | 4S                                                                                           |                                                                                 |                        |                       | ÷.                                                                      |                      | MICROIN                                                                    | VERTEBR                      | ATES            |                              |                                                                             |
|----------------------|---------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------|-----------------------|-------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------|------------------------------|-----------------|------------------------------|-----------------------------------------------------------------------------|
| DATE<br>OF SAMPLE    |                                                                                                                     | BLUE-           |                                                            | GREE                                                                                                      |                       | FLAGEL<br>(Pigme                                                                              | LATES<br>ented)                                | DIATO                                                                                                     | OMS                                                                                                            | DIA<br>SHE<br>(No. p                                                                                        | LLS                                                                                                        |                    | DOMI<br>(See                                                         | NANT<br>Introd                               | SPEC                                                                                               | for Co                                                                                                                           | D PE                                                                                         | RCENT<br>stificati                                                              | AGES                   |                       | органкто)<br>SHEATHED<br>ml.}                                           | A<br>ml.)            | is<br>liter)                                                               | EA<br>liter)                 | DES<br>liter)   | R ANIMAL FORMS<br>per liter) | r GENERA<br>roduction<br>tification                                         |
| MONTH<br>DAY<br>YEAR | TOTAL                                                                                                               | COCCOID         | FILA-<br>MENT-<br>OUS                                      | COCCOID                                                                                                   | FILA-<br>MENT-<br>OUS | GREEN                                                                                         | OTHER                                          | CENTRIC                                                                                                   | PENNATE                                                                                                        | CENTRIC                                                                                                     | PENNATE                                                                                                    | FIRST#             | PER.<br>CENTAGE                                                      | SECOND*                                      | PER.<br>CENTAGE                                                                                    | THIRD*                                                                                                                           | PER-<br>CENTAGE                                                                              | FOURTH#                                                                         | PER.<br>CENTAGE        | OTHER PER-<br>CENTAGE | OTHER MICROPLANKTON,<br>FUNSI AND SHEATHED<br>BACTERIA<br>(No."per ml.) | PROTOZO!<br>(No. per | ROTIFIERS<br>(No. per liter)                                               | CRUSTACEA<br>(No. per liter) | (No. per liter) | (No. per I                   | DOMINANY GENERA<br>(See Introduction<br>for Identification)                 |
| 10                   | 2500<br>4300<br>1500<br>1900<br>1000<br>1800<br>300<br>1000<br>2500<br>2700<br>4000<br>4000<br>1900<br>2400<br>5900 | 50<br>160<br>50 | 20<br>350<br>20<br>90<br>20<br>20<br>20<br>20<br>120<br>40 | 660<br>490<br>1130<br>20<br>70<br>70<br>80<br>80<br>1510<br>730<br>770<br>990<br>850<br>190<br>350<br>210 |                       | 310<br>180<br>1720<br>360<br>140<br>130<br>40<br>60<br>100<br>770<br>150<br>460<br>120<br>270 | 50<br>220<br>200<br>50<br>40<br>20<br>20<br>20 | 1890<br>930<br>600<br>580<br>920<br>130<br>270<br>270<br>120<br>370<br>2360<br>2090<br>640<br>1680<br>910 | 960<br>440<br>380<br>160<br>690<br>200<br>720<br>180<br>640<br>2190<br>730<br>410<br>700<br>350<br>2150<br>540 | 200<br>1010<br>160<br>50<br>1720<br>250<br>90<br>150<br>60<br>540<br>120<br>910<br>440<br>210<br>250<br>330 | 130<br>1400<br>90<br>380<br>220<br>70<br>1130<br>490<br>580<br>790<br>290<br>310<br>290<br>210<br>60<br>20 | 568256656656565789 | 30<br>40<br>10<br>40<br>10<br>30<br>40<br>40<br>50<br>40<br>73<br>40 | 58<br>56<br>26<br>89<br>35<br>58<br>56<br>74 | 10<br>20<br>10<br>20<br>10<br>20<br>10<br>10<br>20<br>10<br>20<br>20<br>10<br>30<br>10<br>20<br>10 | 26<br>57<br>98<br>92<br>82<br>36<br>89<br>45<br>79<br>89<br>89<br>89<br>89<br>89<br>89<br>89<br>89<br>89<br>89<br>89<br>89<br>89 | 10<br>10<br>20<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 27<br>99<br>58<br>92<br>92<br>62<br>27<br>56<br>2<br>92<br>62<br>56<br>82<br>57 | * 10 10 10 10 10 10 10 | 40                    | 20<br>20<br>20<br>20<br>20<br>20<br>20                                  | 10                   | 101<br>75<br>11<br>15<br>1<br>7<br>2<br>16<br>105<br>78<br>547<br>27<br>91 | 3 3 2 2 1 66 162 8 422 15    | 1 3 2 2 2 2     | 3                            | 74-37<br>78-7<br>-1-74<br>419-5<br>7-967<br><br>747<br>63<br>7-74-<br>37-74 |

## ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

WEST VIRGINIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

HUNTINGTON, WEST VIRGINIA

|                                                                                           |       | <del>,                                      </del>           |                                                                     |                                                                               |                                                                                  |                     |                                                          |                                                                        |                         |                            |                                                                 |              |                                                                     |                                                                   |                         |                                                                |
|-------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------|----------------------------------------------------------|------------------------------------------------------------------------|-------------------------|----------------------------|-----------------------------------------------------------------|--------------|---------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------|----------------------------------------------------------------|
| DATE OF SAI                                                                               | END   | -                                                            | E                                                                   | TRACTABL                                                                      | ES                                                                               |                     |                                                          |                                                                        |                         | NEUTRALS                   | ORM EXTR                                                        | ACTABLES     |                                                                     |                                                                   |                         |                                                                |
| DAY YEAR                                                                                  | МОИТН | GALLONS<br>FILTERED                                          | TOTAL                                                               | CHLORO-<br>FORM                                                               | ALCOHOL                                                                          | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES                                        | TOTAL                                                                  | ALIPHATICS              | AROMATICS                  | OXYGEN-<br>ATED<br>COMPOUNDS                                    | LOSS         | WEAK<br>ACIDS                                                       | STRONG<br>ACIDS                                                   | BASES                   | Loss                                                           |
| 12 2 60<br>1 4 61<br>2 1 61<br>3 3 61<br>4 4 61<br>5 8 61<br>6 12 61<br>7 10 61<br>8 7 61 | 11 18 | 4155<br>3360<br>3510<br>4290<br>3705<br>3922<br>3375<br>3352 | 490<br>448<br>6662<br>740<br>326<br>227<br>268<br>475<br>358<br>379 | 203<br>184<br>300<br>134<br>546<br>107<br>93<br>88<br>76<br>202<br>155<br>129 | 287<br>264<br>366<br>228<br>194<br>219<br>134<br>173<br>192<br>273<br>203<br>250 | 855465892864        | 45<br>50<br>27<br>32<br>21<br>23<br>21<br>45<br>32<br>27 | 57<br>70<br>117<br>58<br>213<br>39<br>26<br>31<br>30<br>71<br>50<br>57 | 2 2 1 4 6 3 2 5 5 7 3 2 | 2 5 11 5 9 3 3 3 5 4 2 2 5 | 50<br>58<br>90<br>45<br>130<br>21<br>22<br>20<br>56<br>39<br>46 | 355483010464 | 26<br>15<br>21<br>13<br>16<br>11<br>8<br>10<br>11<br>26<br>19<br>14 | 26<br>15<br>24<br>11<br>16<br>11<br>8<br>7<br>6<br>24<br>20<br>12 | 4 5 6 3 1 1 1 1 2 4 3 3 | 37<br>22<br>57<br>18<br>246<br>19<br>15<br>8<br>24<br>23<br>12 |

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

WEST VIRGINIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER MAIN STEM & MINOR TRIB.

STATION LOCATIONOHIO RIVER AT

HUNTINGTON, WEST VIRGINIA

| DATE            | 1      |             |           | 1            |        |          | CHLORINE       | DEMAND  | .                    |                   |                    |                  |       |                         |                  |                    | TOTAL                       |                          |
|-----------------|--------|-------------|-----------|--------------|--------|----------|----------------|---------|----------------------|-------------------|--------------------|------------------|-------|-------------------------|------------------|--------------------|-----------------------------|--------------------------|
| OF SAM          |        | TEMP.       | DISSOLVED | pН           | B.O.D. | C.O.D.   |                | 24-HOUR | AMMONIA-<br>NITROGEN | CHLORIDES<br>mg/I | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR | TURBIDITY (scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml. |
| MONTH           | YEAR   | Centigrade) | mg/l      |              | mg/l   | mg/l     | 1-HOUR<br>mg/l | mg/l    | mg/l                 | mg/1              |                    |                  | ,     |                         |                  |                    | 11197                       |                          |
| 10 3            |        |             |           |              |        |          | -              |         |                      |                   | -<br>27            | 178              | 5     | -<br>8                  | 178              | _                  | -<br>380                    | 580                      |
| 10 5            | 60     | 22.3        | -         | 7.1          | -      |          | _              | _       | •5                   | 36                | -                  | -                | -     | -                       | _                | _                  | -<br>390                    | 570<br>—                 |
| 10 10<br>10 12  | 60     | 20.2        | _         | 7.1          | -      | -        | -              | _       | •5                   | 40                | 22                 | 167              | 10    | 8 -                     | 161<br>-         | _                  | -                           | 360                      |
| 10 17<br>10 19  | 60     | 18.3        | -         | 7.4          | _      | -        | _              | -       | • 8                  | 45                | 23                 | 183              | 10    | 9                       | 153              | _                  | 360                         | 170                      |
| 10 24           | 60     |             | _         | 7.1          | _      | -        | _              | -       | 1.0                  | -<br>55           | 28                 | 196              | 10    | 14                      | 197              | -                  | 60 ق                        | 170                      |
| 10 26<br>10 31  | 60     | 15.0        |           | / • <u>-</u> | -      | _        | _              |         | _                    | 72                | 31                 | -<br>196         | 10    | 8                       | 166              | _                  | 470                         | 170                      |
| 11 2<br>11 7    | 60     | 14.9        | _         | 7.2          | -      | -        | -              | _       | 1.2                  | -                 | -                  | -                | -     | - 1                     | 223              | _                  | 440                         | 180                      |
| 11 9            | 60     | 12.3        | _         | 7.1          | ~      | -        | -              | -       | - 8                  | 67                | 35                 | 184              | 10    | 41                      | -                | -                  | -                           | 670                      |
| 11 14<br>11 16  |        | 12.8        | _         | 7.1          | _      | _        | _              | _       | 1.0                  | 58                | 34                 | 158              | 10    | 20                      | 206              | _                  | 400                         | 2000                     |
| 11 21           | 60     |             | -         | 7.3          | _      | -        | _              | _       | .6                   | 50                | 30                 | 172              | 5     | 10                      | 216              | -                  | 380                         | 650                      |
| 11 23<br>11 28  | 60     | 8.1         | _         | -            | -      | -        | -              | -       | - 6                  | 53                | 27                 | 177              | 5     | 28                      | 230              | 1                  | 400                         | _                        |
| 11 30           | 60     | 8.9         | 1         | 7.2          | _      | _        | -              | _       | -                    | -                 | -                  | -                | 15    | 11                      | 197              | -                  | 480                         | 230                      |
| 12 7            | 60     | 8.5         | -         | 7•3          | ~      | <u> </u> | _              | _       | • 7                  | 75                | 35                 | 202              | -     | -                       | -                | -                  | -                           | 130                      |
| 12 12<br>12 14  | . 60   | 3.3         | _         | 6.9          | _      | -        | -              | -       | • 8                  | 92                | 42                 | 218              | 10    | 14                      | 220              | .\ _               |                             | 860                      |
| 12 19           | 60     | 3.9         | 1         | 7.1          | _      | _        | [ -            | _       | 1.3                  | 55                | 38                 | 155              | l l   | 10                      | 151              | 1                  | 1                           | 650                      |
| 12 21<br>12 26  | 60     | -           | -         | -            | -      | -        | _              | -       | 1.0                  | 62                |                    | 170              | 10    | 12                      | 173              | -                  | 360                         | -                        |
| 12 28           |        | 3.9         | 1         | 7.5          | _      | _        | _              | _       | -                    | -                 | -                  | 120              |       | 100                     | 130              |                    | 1                           | 1300                     |
| 1 4             | 61     |             |           | 7.1<br>7.1   | _      | _        | _              | _       | 1                    |                   |                    |                  |       | 33                      | 178              | -                  | 460                         | 3500                     |
| 1 1 1 1 1 1 1 6 |        | 2 - 3       |           | -            | -      | -        | -              |         | 1                    |                   | 1                  | 116              | 35    | 215                     | 120              |                    |                             | _                        |
| 1 18            | 3   61 | 5 • 4       | 1         | 7.1          | _      | _        | _              | 1       | -                    | .   -             | -                  | -                |       | -                       | 108              |                    | 1                           | 100                      |
| 1 25            | 6 6 1  | 2.1         | .  -      |              | -      | _        | =              | Į.      |                      | ı                 | · I                | 1                | l.    | -                       | 1                |                    | .   -                       | *10                      |
| 1 30            |        |             | :  =      | I            | -      | -        | -              | -       | . 7                  | 41                | 1                  | 1                | 1     |                         | 134              |                    | 1                           | 150                      |
| 2               | 5 61   |             | -  -      | l            | _      | _        | -              |         |                      | 1                 | 3 39               | 138              | 3 10  | 14                      |                  |                    |                             | 440                      |
| 2 1             | 3 61   | ւ  -        | -   -     | -            | -      | _        | -              |         |                      | 1                 | 1                  | 1                | i i   | I                       | 1                | 1                  | 1                           | -                        |
| 2 1             | 5 61   | 3 • 2       | ²  -      | 6.9          | -      | -        |                |         |                      |                   |                    |                  |       |                         |                  |                    |                             | <u> </u>                 |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

WEST VIRGINIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER MAIN STEM & MINOR TRIB.

STATION LOCATIONOHIO RIVER AT

HUNTINGTON, WEST VIRGINIA

| DATE<br>OF SAM   |          | TEMP.                   | DISSOLVED      |              |                |                | CHLORINE       | DEMAND          | AMMONIA-         |                   |      |                  |               | *************************************** | £111 p           | nuoceu esta        | TOTAL                       | COLIFORMS   |
|------------------|----------|-------------------------|----------------|--------------|----------------|----------------|----------------|-----------------|------------------|-------------------|------|------------------|---------------|-----------------------------------------|------------------|--------------------|-----------------------------|-------------|
| DAY              | YEAR     | (Degrees<br>Centigrade) | OXYGEN<br>mg/l | рН           | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | NITROGEN<br>mg/l | CHLORIDES<br>mg/l | Mg/I | HARDNESS<br>mg/l | (scale units) | (scale units)                           | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/l | per 100 ml. |
| 2 20 22          | 61<br>61 | 6.1                     |                | 6.9          |                | -              |                | 1               | .8               | _<br>20           | 32   | 112              | 15            | 400                                     | 91               | 1 1                | 240                         | 3500        |
| 2 27             | 61       | 5.8                     |                | 6.9          |                | -              | - 1            | -               | •2               | -<br>12           | 21   | 62               | 30            | 280                                     | -<br>53          | _                  | 140                         | 3700        |
| 3 6              | 61       | -                       | -              | -            | -              | -              | _              | _               | _                | -                 | _    | -                | -             | 240                                     | 70               | _                  | 1/10                        | 5900        |
| 3 8<br>3 13      | 61<br>61 | 10.3                    | -              | 6.7          | -              | _              | -              | -               | •2               | 9 -               | 22   | 80               | 15            | 240                                     | 72<br>-          | _                  | 140                         | 4400        |
| 3 15             | 61       | 7.6                     | -              | 6.9          | _              | -              | -              | -               | •6               | 16                | 21   | 78<br>-          | 10            | 120                                     | 82               | _                  | 170                         | 3700        |
| 3 20             | 61       | 8.1                     | _              | 6.9          | -              | _              | _              | -               | •3               | 17                | 29   | 92               | 10            | 130                                     | 82               | _                  | 200                         | -           |
| 3 27             | 61       | -                       | -              | -            | -              | -              | _              | -               | _                | -                 | 27   | -<br>105         | 5             | 120                                     | 77               | _                  | 220                         | 5100        |
| 3 29             | 61<br>61 | 9.6                     | <u>-</u>       | 7.0          | -              | -              | -              | _               | •3               | 16                |      | 105              | -             | -                                       | _                | -                  | -                           | 17000       |
| 4 5              | 61<br>61 | 9.3                     | -              | 7.1          | _              | _              | -              | -               | • 4              | 16                | 30   | 100              | 5             | 150                                     | 62               | _                  | 180                         | 4200        |
| 4 12             | 61       | 9.2                     | _              | 7.1          | -              | _              | _              | _               | •4               | 18                | 28   | 95               | 5             | 70                                      | 72               | -                  | 220                         |             |
| 4 17             | 61<br>61 | 8.9                     | -              | -<br>7•0     | -              | _              | -              | -               | -<br>•5          | 13                | 25   | -<br>81          | 5             | 150                                     | -<br>79          | _                  | 160                         | 250         |
| 4 24             | 61       | -                       | _              | -            | _              | _              | -              | _               | _                | -                 | -    | _                | -             | -                                       | -                | -                  | -                           | 460         |
| 4 26             | 61       | 13.0                    | -              | 7 • 2        | -              | _              | _              | -               | •4               | 13                | 25   | 84               | 10            | 120                                     | 102              | _                  | 200                         | 470         |
| 5 3              | 61       | 13.1                    | -              | 6.9          | -              | _              | _              | -               | <b>•</b> 5       | 13                | 24   | 69               | 25            | 145                                     | 67               | -                  | 120                         | 800         |
| 5 8<br>5 10      | 61       | 14.4                    | _              | 7.2          | -              | _              | _              | _               | •3               | 11                | 26   | 79               | 35            | 185                                     | 67               | _                  | 160                         | 000         |
| 5   15           | 61       | -                       | -              | -            | -              | -              | -              | _ :             | _                | -                 | -    | - 04             | 15            | 97                                      | -<br>77          | _                  | 180                         | 140         |
| 5   17<br>5   22 | 61<br>61 | 16.8                    | -              | 7 • 2        | _              | _              | _              | _               | •5<br>-          | 7 -               | 33   | 86               | -             | 97                                      | '-'              | -                  | 180                         | 260         |
| 5 24             | 61       | 18.3                    |                | 7 • 2        | -              | _              | -              | -               | 1.2              | 22                | 30   | 122              | 5 -           | 39                                      | 101              | _                  | 260                         | 7           |
| 5 29 31          | 61<br>61 | 17.8                    |                | 7.1          | _              | _              | _              | _               | •5               | 23                | 31   | 100              | 5             | 27                                      | 124              | -                  | 280                         | l           |
| 6 6              | 61<br>61 | 20.3                    | -              | 7 • 1        | _              | _              | -              | -               | • 2              | 23                | 39   | 150              | 10            | 130                                     | 138              | _                  | 280                         | 140         |
| 6   12           | 61       | _                       | _              | 1 • 1        | _              | _              | _              | _               | _                | -                 | _    | _                | -             | _                                       | -                | -                  | _                           | 300         |
| 6 14             | 61<br>61 | 22.5                    | _              | 7.1          | -              | _              | -              | -               | •2               | 12                | 28   | 99               | 30            | 185                                     | 111              | _                  | 240                         | 330         |
| 6 21             | 61       | 21.5                    | -              | 7.6          | _              | _              | _              | -               | • 3              | 19                | 25   | 88               | 10            | 45                                      | 240              | -                  | 200                         |             |
| 6 26<br>6 28     | 61       | 21.3                    | _              | 7 <b>.</b> 1 | -              | _              | -              | -               | .2               | 23                | 36   | 108              | 15            | 31                                      | 82               | _                  | 220                         | 1100        |
| 7 3              | 61       |                         | -              | ' -          | ~              | -              | _              | _               | -                | -                 | -    |                  | -             | "=                                      | =                | -                  |                             | 27          |

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

WEST VIRGINIA

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER MAIN STEM & MINOR TRIB.

STATION LOCATIONOHIO RIVER AT

HUNTINGTON, WEST VIRGINIA

| DATE                                                                                                                                     |                                                                                 |                                                                                                                                    |                             |                                                                                         |                |                | CHLORINE       | DEMAND          |                                            |                                                                          |                                                                                |                                                                                                  |                                                        | #1188/B.#1                                                                       | SULFATES                                                                                                          | PHOSPHATES | TOTAL<br>DISSOLVED                                                                      | COLIFORMS   |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------|----------------|----------------|----------------|-----------------|--------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------|-------------|
| OF SAMPL                                                                                                                                 |                                                                                 | TEMP.<br>(Degrees<br>Centigrade)                                                                                                   | DISSOLVED<br>OXYGEN<br>mg/l | рН                                                                                      | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/I               | CHLORIDES<br>mg/l                                                        | ALKALINITY<br>mg/l                                                             | HARDNESS<br>mg/l                                                                                 | (scale units)                                          | TURBIDITY<br>(scale units)                                                       | mg/l                                                                                                              | mg/I       | SOLIDS<br>mg/l                                                                          | per 100 ml. |
| 7 5<br>7 10<br>7 12<br>7 17<br>7 19<br>7 24<br>7 31<br>8 2<br>8 7<br>8 9<br>8 14<br>8 16<br>8 23<br>8 28<br>8 30<br>9 4<br>9 13<br>9 120 | 61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>6 | 23.8<br>-23.9<br>-24.4<br>-25.5<br>-27.2<br>-25.7<br>-23.7<br>-25.2<br>-27.2<br>-27.2<br>-27.2<br>-27.3<br>-27.3<br>-29.2<br>-24.7 | 6.00                        | 7.1<br>-7.2<br>7.1<br>-7.1<br>-7.1<br>-7.1<br>-7.1<br>-6.9<br>-7.3<br>7.3<br>7.2<br>7.5 | mg/1           |                |                |                 | •3 - •2 - •6 - •3 - •3 - •4 - •5 - •6 1 •0 | 27<br>-27<br>-48<br>-30<br>-22<br>-27<br>-28<br>-39<br>-325<br>449<br>65 | 36<br>-29<br>38<br>-35<br>-30<br>-26<br>-34<br>-33<br>-34<br>-37<br>-37<br>-37 | 118<br>-<br>132<br>-<br>136<br>-<br>148<br>-<br>136<br>-<br>110<br>-<br>114<br>160<br>150<br>148 | 10<br>10<br>10<br>10<br>10<br>-<br>10<br>5<br>10<br>10 | 28<br>- 20<br>- 80<br>- 140<br>- 75<br>- 65<br>- 17<br>- 16<br>- 12<br>10<br>4 6 | 115<br>-<br>110<br>-<br>106<br>-<br>173<br>-<br>125<br>-<br>139<br>-<br>148<br>-<br>106<br>-<br>154<br>125<br>125 |            | 260<br>- 220<br>- 300<br>- 260<br>- 240<br>- 260<br>- 240<br>- 260<br>320<br>320<br>420 | 760<br>450  |



STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Huntington, West Virginia Operated by U.S. Geological Survey STATE

West Virginia

MAJOR BASIN

Ohio River

MINOR BASIN

Ohio River-Main Stem & Minor Trib.

STATION LOCATION

Ohio River at

Huntington, West Virginia

| Day         | October          | November | December             | January           | February  | March   | April       | May     | June             | July             | August           | September        |
|-------------|------------------|----------|----------------------|-------------------|-----------|---------|-------------|---------|------------------|------------------|------------------|------------------|
| 1           | 8.230            | 15,700   | 10.400               | 80.900            | 18.300    | 333.000 | 127.000     | 214.000 | 112,000          | 05 202           | 50               |                  |
| 2           | 11.000           | 14.200   | 12,100               | 77.600            | 14.500    | 322.000 | 136.000     | 220.000 | 43.000<br>50.000 | 25.300           | 52.300           | 15,600           |
| 3<br>4      | 8.940            | 18.000   | 13.700               | 65.500            | 14.900    | 301.000 | 175.000     | 221.000 |                  | 39,900           | 70.100           | 19.100           |
|             | 9.020            | 17.600   | 12.ioo               | 55.300            | 21.000    | 276.000 | 162.000     | 188.000 | 79.000           | 29.200           | 82.000           | 14.400           |
| 5           | 8.940            | 19.700   | 13.000               | 39.600            | 21.200    | 263.000 | 138.000     | 163.000 | 105.000          | 27.800<br>32.400 | 111.000          | 9.790<br>12.400  |
| 6           | 7.010            | 17.300   | 14.800               | 35.600            | 18.000    | 276.000 | 129,000     | 157.000 | 05.000           | -                | ,                |                  |
| 7           | 7.150            | 20.000   | 11.800               | 30.700            | 20.600    | 295.000 | 119.000     | 165.000 | 95.800           | 36.000           | 76.800           | 14.800           |
| 7<br>8<br>9 | 8.390            | 25.000   | 9.900                | 39.800            | 32.100    | 292.000 | 107.000     | 205.000 | 85.300           | 44.700           | 45.100           | 24.800           |
| 9           | 7.310            | 38.500   | 10.100               | 46.600            | 27.300    | 295.000 | 102.000     | 205.000 | 56.000           | 37.700           | 28.500           | 17.000           |
| 10          | 10.200           | 34.400   | 9.320                | 36.300            | 22.100    | 296.000 | 98.100      | 226.000 | 85.600           | 35.500           | 35.500           | 15.900           |
|             |                  |          | , -                  | 3                 |           |         | 90.100      | 220.000 | 124.000          | 27.000           | 29.200           | 1.4.500          |
| 11          | 10.600           | 33.000   | 14.600               | 29.400            | 42.900    | 292,000 | 109.000     | 204.000 | 157.000          | 18.700           | 22.700           | 07 000           |
| 12          | 9.220            | 32.400   | 22. <sup>1</sup> :00 | 28,600            | 53.300    | 269.000 | 137.000     | 185.000 | 153.000          | 22.100           | 33.100           | 21.200           |
| 13          | 9.400            | 44.700   | 15.300               | 28.600            | 70.000    | 244.000 | 147.000     | 166.000 | 131.000          | 18.400           | 65.900           | 15.800           |
| 14          | 9.510            | 33.800   | 12.300               | 28,800            | 96.200    | 221.000 | 181.000     | 164.000 | 126.000          | 28.400           | 79.500           | 12.200           |
| 15          | 10.200           | 33.500   | 14.000               | 51.200            | 134.000   | 211.000 | 205.000     | 152.000 | 135.000          | 46.600           | 73.900<br>38.600 | 13.200<br>14.700 |
| 16          | 10.300           | 27.600   | 17.400               | a), 000           | 7 1.7 000 |         |             |         |                  |                  | 50000            | 21.100           |
| 17          | 9.220            | 21.400   | 15.500               | 94.900<br>106.000 | 147.000   | 196.000 | 217.000     | 120.000 | 150.000          | 70.600           | 33.100           | 12.400           |
| 18          | 7.310            | 14.500   | 13.700               | 96.300            | 139.000   | 190.000 | 227.000     | 98.000  | 150.000          | 52.700           | 45.500           | 10.100           |
| 19          | 10.800           | 22.300   | 12.500               |                   | 129.000   | 183.000 | 226.000     | 88.000  | 130.000          | 63.600           | 25.400           | 10.100           |
| 20          | 18.200           | 21.200   | 13.400               | 84.100            | 127.000   | 164.000 | 210.000     | 83.000  | 85,700           | 52.400           | 17.000           | 11.100           |
|             | 10.200           | 21.200   | 13.400               | 72.400            | 172.000   | 140.000 | 197.000     | 88.000  | 45.000           | 122.000          | 17.600           | 11.300           |
| 21          | 11.200           | 10.200   | 23.800               | 49.800            | 206.000   | 126,000 | 187,000     | 81.000  | 45.000           | 114.000          | 20.100           | 7.5.000          |
| 22          | 9.320            | 15.700   | 25.700               | 41.700            | 214.000   | 141.000 | 191.000     | 75.000  | 48.500           | 76,000           | 23.800           | 15.900           |
| 23          | 11.500           | 13.100   | 15.300               | 36.100            | 214.000   | 175.000 | 194.000     | 68.000  | 51.800           | 62.700           |                  | 23.100           |
| 24          | 20.100           | 11.200   | 12.300               | 21.600            | 213,000   | 190.000 | 196.000     | 66.000  | 51.000           | 40.400           | 18.700           | 13,000           |
| 25          | 12.200           | 15.100   | 11.700               | 22.100            | 227.000   | 183.000 | 195.000     | 65,000  | 48.000           | 62.900           | 16.000<br>20.100 | 12.900<br>14.500 |
| :6          | 11 000           | 10.000   |                      |                   |           |         |             | -,      | .0.00            | 02.500           | 20.100           | 14. JUU          |
| 27          | 11.200<br>22.900 | 12.200   | 15.200               | 26.200            | 259.000   | 166.000 | 196.000     | 50.000  | 34.100           | 60.100           | 19.500           | 16.000           |
| : 7<br>:8   | 8.140            | 12.300   | 17.000               | 26.300            | 301.000   | 147.000 | 238.000     | 53.000  | 41.200           | 61.000           | 31.700           | 17.000           |
|             |                  | 11.200   | 18.600               | 25.800            | 323.000   | 130.000 | 258.000     | 47.000  | 30.000           | 36.600           | 26.600           | 12.000           |
| <u>19.</u>  | 10.900           | 16.500   | 28.500               | 25.400            |           | 119.000 | 256.000     | 50.000  | 34.400           | 40.000           | 19.300           | 15.400           |
| 30          | 10.000           | 13.000   | 40.800               | 23.300            |           | 111.000 | 239.000     | 51.000  | 35.900           | 40.700           | 23.100           | 10.800           |
| 31          | 13.600           |          | 69. <i>6</i> 00      | 19.700            |           | 110.000 | <del></del> | 38.000  | 37.700           | 37.700           | 16.800           | TO*000           |

STATE

OHIO

MAJOR BASIN

OHIO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

EAST LIVERPOOL, OHIO

|                 |                               |           | BADIC     | ACTIVITY IN V | WATER     |           | Т      |   | RADIOAC                       | TIVITY IN PLAI | IKTON (dry)   | RAL       | IOACTIVITY IN W | ATER  |
|-----------------|-------------------------------|-----------|-----------|---------------|-----------|-----------|--------|---|-------------------------------|----------------|---------------|-----------|-----------------|-------|
| DATE            |                               |           | ALPHA     | ACTIVITIES    | T. C.     | . BETA    |        | Ī | DATE OF                       | GROSS          | CTIVITY       |           | GROSS ACTIVIT   |       |
| SAMPLE<br>TAKEN | DATE OF<br>DETERMI-<br>NATION | SUSPENDED | DISSOLVED | TOTAL         | SUSPENDED | DISSOLVED | TOTAL  |   | DATE OF<br>DETERMI-<br>NATION | ALPHA          | BETA          | SUSPENDED | DISSOLVED       | TOTAL |
|                 |                               | μμε/Ι     | μμς/1     | μμς/1         | μμς/Ι     | μμc/I     | μμс/1  |   | MO. DAY                       | μμc/g          | <i>µµс/</i> g | μμε/Ι     | μμε/Ι           | μμc/l |
| MO. DAT TEAR    | MONTH DAT                     | FF-07:    |           |               |           |           |        |   |                               |                |               |           |                 |       |
| 0 13 60*        | 10 21                         | 0         | 0         | 0             | 0         | 0         | 0      |   |                               |                | ļ [           |           |                 |       |
| 1 7 60          | 12 20                         | ŏ         | ĭ l       | 1             | 0         | 0         | 0      |   | i                             |                |               | i         |                 |       |
| 1 28 60*        |                               | _         | ~         |               | 0         | 0         | 0      |   |                               |                | \             | ł         | 1               |       |
| 12 19 60        | 1 19                          | _         | - 1       | _             | 0         | 3         | 3      |   | 1                             |                | <b>!</b>      |           | 1               |       |
| 1 10 61         | 2 2                           | 0         | 1         | 1             | 0         | 0         | 0      |   |                               |                |               |           |                 |       |
| 1 23 61*        | 1                             | _ '       | _         | -             | . 0       | 0         | 0      |   |                               |                | 1             | ļ         |                 |       |
| 2 15 61         | 3 22                          | 0         | 0 1       | 0             | 0         | 0         | 0      |   | ,                             |                | 1             | İ         |                 |       |
| 2 28 61         | 3 22                          | -         | -         | _             | 0         | 0         | 9      |   | ļ                             |                | 1             | ì         |                 |       |
| 3 14 61*        | 1                             | 1         | 0         | 1             | 0         | 3         | 3      |   |                               |                |               | 1         |                 |       |
| 3 28 61*        |                               | -         | -         | -             | 0         | 0         | 0      |   |                               |                | -             | Į.        |                 |       |
| 4 12 61*        | 5 2                           | 1         | 0         | 1             | 0         | 0         | 0 1    | ` |                               |                |               |           |                 |       |
| 4 25 61*        |                               | _         | -         | -             | 0         | 0         | 0<br>8 |   |                               |                | 1             |           | ,               |       |
| 5 9 61*         |                               | 0         | 0         | 0             | 0         | 8 0       | ő      |   |                               |                | 1             |           |                 |       |
| 5 22 61*        | 6 23                          | -         | _         | -             | 0         | 0         | 0      |   |                               |                | 1             |           | 1               |       |
| 6 12 61*        |                               | 1         | 0         | 1             | 0         | 0         | ŏ      |   |                               |                | 1             |           |                 |       |
| 6 27 61*        |                               | -         | _         | 0             | 0         | ŏ         | ŏ      |   |                               |                |               |           |                 | · ·   |
| 7 10 61*        |                               | 0         | 0         | -             | 0         | 1         | ĭ      |   |                               |                |               |           |                 |       |
| 8 1 61*         |                               | _         | _         | 0             | 3         | i         | 4      |   |                               |                |               | 1         | }               |       |
| 8 17 61*        |                               | 0         | 0         | _             | ا ،       | ō         | ė l    |   |                               |                |               |           |                 |       |
| 9 1 61          | 9 28                          | -         | _         |               | ı         | 7         | 8      |   |                               |                |               | İ         |                 |       |
| 9 18 61         | 10 16                         | _         | _ '       |               | _         |           | _      |   |                               |                |               |           |                 |       |
|                 | 1                             | 1         |           |               |           |           |        |   |                               |                |               | }         |                 |       |
|                 | 1                             | 1         |           |               |           | !         |        |   |                               |                |               |           |                 |       |
|                 |                               |           |           |               | Ì         |           |        |   |                               | 1              |               |           |                 |       |
|                 |                               |           |           |               | 1         |           |        |   |                               | 1              |               |           | İ               |       |
|                 |                               | 1         |           |               |           |           | !      |   | ĺ                             |                |               |           |                 |       |
|                 |                               |           |           |               | 1         |           |        |   |                               | ļ              |               |           |                 |       |
|                 |                               | 1.        |           |               | - [       |           |        |   |                               | İ              |               |           |                 | 1     |
|                 | ļ                             |           |           |               |           |           |        |   |                               | 1              | 4             |           |                 |       |
|                 |                               |           |           | İ             |           |           |        |   |                               |                |               |           |                 |       |
|                 |                               |           |           |               |           |           |        | 1 | l                             |                |               | i         |                 |       |
|                 | İ                             |           |           |               |           |           |        |   | 1                             |                |               |           | i               |       |
|                 |                               |           |           |               | 1         |           |        | ļ |                               |                |               |           |                 |       |
|                 |                               |           | 1         |               | -         |           |        |   |                               |                |               |           |                 |       |
|                 |                               |           |           |               |           |           |        | 1 |                               |                |               | j         |                 |       |
|                 |                               | }         |           |               |           |           |        |   |                               |                |               | 1 1       | 1               |       |
|                 |                               |           |           |               |           |           |        |   |                               |                |               |           |                 |       |
|                 |                               |           |           |               |           |           |        |   |                               | 1              |               |           |                 |       |
|                 |                               |           |           |               | 1         |           |        | 1 | 1                             |                |               | 1         | 1               | 1     |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

OHIO

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

EAST LIVERPOOL, OHIO

| DATE                                                                                                                            |                                                                                          |          |                                      | ALGAE (1                                                                   | Vumber                | per ml.)                                                                   |                 | <del></del>                                                                          |                                                                                  | INE                                                               | RT                                                                    |                                                    |                                              |                                                    |                                                   |                                                    |                                                   |                                                                |                      |                                                                      | T                                                                |                           |                                           |                              |                              |                                 |                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------|--------------------------------------|----------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------------|---------------------------------------------------|----------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------|----------------------|----------------------------------------------------------------------|------------------------------------------------------------------|---------------------------|-------------------------------------------|------------------------------|------------------------------|---------------------------------|------------------------------------------------------------------------|
| OF SAMPLE                                                                                                                       |                                                                                          | BLUE-    | GREEN                                | GREE                                                                       | EN                    | FLAGEL<br>(Pigme                                                           |                 | DIAT                                                                                 | OMS                                                                              | SHE                                                               | ERT<br>TOM<br>ELLS<br>er ml.)                                         |                                                    | DOMI<br>(See                                 | NANT<br>Intro                                      | SPEC<br>duction                                   | IATO<br>IES A<br>for Co                            | ND PE                                             | RCEN<br>ntifica                                                | TAGE:                | s                                                                    | ANKTON,<br>ATHED .                                               | 3                         | 1                                         | VERTEB                       |                              | FORMS                           | NERA<br>tetion<br>ation)                                               |
| MONTH<br>DAY<br>YEAR                                                                                                            | TOTAL                                                                                    | COCCOID  | FILA-<br>MENT-<br>OUS                | COCCOID                                                                    | FILA-<br>MENT-<br>OUS | GREEN                                                                      | OTHER           | CENTRIC                                                                              | PENNATE                                                                          | CENTRIC                                                           | PENNATE                                                               | FIRST*                                             | PER-                                         | SECOND#                                            | PER-                                              | THIRD#                                             | PER.                                              | FOURTH*                                                        | PER-                 | OTHER PER-                                                           | OTHER HICROPLANKTON, FUNGI AND SHEATHED.  BACTERIA (NO. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)              | CRUSTACEA<br>(No. per liter) | NEMATOBES<br>(No. per liter) | OTHER ANIMAL<br>(No. per liter) | DOMINANT GENERA<br>(See Introduction<br>for Identification)            |
| 10 4 60<br>11 2 60<br>11 7 60<br>11 18 60<br>12 1 60<br>12 19 60<br>1 9 61                                                      | 1900<br>300<br>6200<br>2200<br>400<br>100                                                | 130      | 20                                   | 850<br>110<br>20<br>20                                                     |                       | 460<br>90<br>6140<br>2120<br>290<br>140                                    | 350<br>70<br>50 | 50<br>20<br>20                                                                       | 50<br>20<br>20<br><b>5</b> 0                                                     | 40<br>40<br>50                                                    | 20                                                                    | 26<br>26<br>26                                     | 20                                           | 62<br>27<br>62                                     |                                                   | 82<br>36<br>36                                     | 10<br>10                                          | 1                                                              | 10<br>10<br>10       | 60<br>60                                                             | 20                                                               | 10                        | 7<br>13<br>1<br>1                         | 5                            | 1                            |                                 | 31<br>3-<br>3-<br>-1                                                   |
| 2 15 61<br>2 28 61<br>3 14 61<br>3 30 61<br>4 12 61<br>4 12 61<br>6 23 61<br>6 27 61<br>7 17 61<br>8 9 61<br>8 18 61<br>9 18 61 | 800<br>200<br>200<br>4400<br>1600<br>2000<br>1300<br>5600<br>2900<br>300<br>2900<br>2300 | 20 20 20 | 20<br>970<br>2690<br>60<br>210<br>40 | 40<br>60<br>40<br>120<br>670<br>2900<br>1800<br>460<br>250<br>1320<br>1100 |                       | 20<br>240<br>100<br>20<br>1490<br>310<br>1590<br>460<br>2240<br>460<br>350 | 70<br>40<br>40  | 110<br>90<br>50<br>400<br>330<br>130<br>20<br>160<br>440<br>210<br>100<br>620<br>290 | 200<br>630<br>90<br>160<br>3690<br>1100<br>270<br>370<br>40<br>20<br>1240<br>410 | 180<br>50<br>20<br>20<br>100<br>70<br>20<br>110<br>80<br>20<br>40 | 70<br>1250<br>250<br>50<br>440<br>290<br>200<br>60<br>160<br>80<br>80 | 82<br>94<br>92<br>92<br>62<br>56<br>56<br>57<br>56 | 40<br>20<br>60<br>10<br>40<br>30<br>40<br>30 | 92<br>99<br>82<br>92<br>26<br>92<br>26<br>70<br>26 | 10<br>10<br>10<br>10<br>*<br>10<br>20<br>10<br>10 | 36<br>25<br>35<br>56<br>56<br>56<br>56<br>59<br>26 | 10<br>10<br>10<br>10<br>*<br>10<br>10<br>10<br>10 | 16<br>62<br>82<br>45<br>66<br>36<br>27<br>62<br>57<br>92<br>70 | * 10 10 10 10 * * 10 | 70<br>70<br>60<br>40<br>60<br>50<br>70<br>40<br>40<br>50<br>10<br>10 | 20<br>20<br>170<br>20<br>40<br>60                                | 10                        | 3<br>6<br>6<br>53<br>6<br>2<br>117<br>168 | 2 1 2 9 5 5 26 18            | 2                            |                                 | 35973<br>35973<br>3-963<br>31-7-<br>5848-32<br>48-32<br>42164<br>48-35 |

## ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

OHIO

MAJOR BASIN

OHIO RIVER

MINOR BASIN

OHIO RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION OHIO RIVER AT

EAST LIVERPOOL, OHIO

|                                                        |        |          |                      |                    |                   |                   |                     |                   |                  |                 | CHI OBOE        | ORM EXTR                     | ACTABLES |                |                 |       |               |
|--------------------------------------------------------|--------|----------|----------------------|--------------------|-------------------|-------------------|---------------------|-------------------|------------------|-----------------|-----------------|------------------------------|----------|----------------|-----------------|-------|---------------|
| DATE OF SA                                             |        |          |                      | E>                 | TRACTABL          | <u> </u>          |                     |                   |                  |                 | NEUTRALS        |                              |          |                | Ī               |       |               |
| MONTH BB BB BAY BZ BZ BZ BZ BZ BZ BZ BZ BZ BZ BZ BZ BZ | MONTH  | DAY      | GALLONS<br>FILTERED  | TOTAL              | CHLORO-<br>FORM   | ALCOHOL           | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES | TOTAL            | ALIPHATICS      | AROMATICS       | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS     | WEAK<br>ACIDS  | STRONG<br>ACIDS | BASES | LOSS          |
| 10 25 60<br>12 13 60<br>2 1 61                         | 111 13 | 30<br>17 | 2500<br>4000<br>1416 | 939<br>344<br>1156 | 379<br>118<br>766 | 560<br>226<br>390 | 8 3 8               | 72 15 31          | 223<br>64<br>559 | 78<br>26<br>274 | 40<br>12<br>129 | 85                           | 20 3 5   | 42<br>15<br>84 | 5               | 8 1 8 | 3<br>15<br>68 |
|                                                        |        |          |                      |                    |                   |                   |                     |                   |                  |                 |                 |                              |          |                |                 |       |               |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Sewickley, Pennsylvania Operated by U.S. Geological Survey

STATE

Ohio

MAJOR BASIN

Ohio River

MINOR BASIN

Ohio River-Main Stem & Minor Trib.

STATION LOCATION

Ohio River at

East Liverpool, Ohio

| Day                              | October                                            | November                                  | December                                              | January                                            | February                                 | March                                                    | April                                               | May                                                      | June                                           | July                                                     | August                                             | September                                 |
|----------------------------------|----------------------------------------------------|-------------------------------------------|-------------------------------------------------------|----------------------------------------------------|------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|-------------------------------------------|
| 1                                | 5.460                                              | 6.160                                     | 5.680                                                 | 22.000                                             | 7.010                                    | 142.000                                                  | 47.000                                              | 95.000                                                   | 19.600                                         | 15.800                                                   | 12.300                                             | 6.490                                     |
| 2                                | 5.080                                              | 7.360                                     | 6.080                                                 | 20.400                                             | 8.210                                    | 135.000                                                  | 61.500                                              | 83.500                                                   | 26.000                                         | 10.800                                                   | 14.900                                             | 6.830                                     |
| 3                                | 4.650                                              | 8.400                                     | 6.240                                                 | 18.900                                             | 8.210                                    | 127.000                                                  | 55.200                                              | 68.000                                                   | 41.100                                         | 10.700                                                   | 29.600                                             | 7.010                                     |
| 4                                | 4.720                                              | 8.120                                     | 5.530                                                 | 17.200                                             | 7.100                                    | 127.000                                                  | 52.000                                              | 59.400                                                   | 53.100                                         | 15.300                                                   | 42.000                                             | 5.830                                     |
| 5                                | 5.080                                              | 7.830                                     | 4.800                                                 | 15.800                                             | 6.650                                    | 125.000                                                  | 47.000                                              | 49.000                                                   | 47.000                                         | 12.600                                                   | 36.400                                             | 6.740                                     |
| 6                                | 5.680                                              | 6.920                                     | 4.580                                                 | 14.100                                             | 6.080                                    | 130.000                                                  | 42.000                                              | 39.200                                                   | 38.200                                         | 14.200                                                   | 26.000                                             | 10.000                                    |
| 7                                | 5.160                                              | 6.830                                     | 5.600                                                 | 15.500                                             | 6.920                                    | 120.000                                                  | 45.000                                              | 40.200                                                   | 31.000                                         | 25.200                                                   | 20.400                                             | 9.500                                     |
| 8                                | 5.160                                              | 10.200                                    | 5.680                                                 | 15.300                                             | 7.540                                    | 125.000                                                  | 52.000                                              | 52.000                                                   | 28.500                                         | 19.600                                                   | 15.800                                             | 8.310                                     |
| 9                                | 4.720                                              | 12.800                                    | 5.680                                                 | 16.000                                             | 7.360                                    | 122.000                                                  | 46.000                                              | 72.400                                                   | 28.500                                         | 13.200                                                   | 12.200                                             | 7.360                                     |
| 10                               | 4.370                                              | 12.100                                    | 5.680                                                 | 16.200                                             | 6.920                                    | 125.000                                                  | 43.000                                              | 65.800                                                   | 46.200                                         | 9.500                                                    | 9.610                                              | 7.100                                     |
| 11                               | 4.650                                              | 14.400                                    | 5.300                                                 | 14.800                                             | 8.310                                    | 122.000                                                  | 57.300                                              | 59.400                                                   | 65.800                                         | 8.310                                                    | 9.830                                              | 5.530                                     |
| 12                               | 4.870                                              | 17.600                                    | 4.300                                                 | 15.300                                             | 8.400                                    | 117.000                                                  | 68.000                                              | 59.400                                                   | 70.200                                         | 8.210                                                    | 17.200                                             | 5.530                                     |
| 13                               | 4.800                                              | 18.300                                    | 3.960                                                 | 14.800                                             | 9.000                                    | 104.000                                                  | 79.000                                              | 55.200                                                   | 65.800                                         | 8.310                                                    | 29.400                                             | 5.910                                     |
| 14                               | 4.510                                              | 15.500                                    | 4.560                                                 | 14.500                                             | 18.900                                   | 81.200                                                   | 88.100                                              | 43.000                                                   | 61.500                                         | 9.720                                                    | 20.400                                             | 5.830                                     |
| 15                               | 4.440                                              | 13.900                                    | 5.230                                                 | 14.900                                             | 49.200                                   | 83.500                                                   | 92.700                                              | 31.900                                                   | 65.800                                         | 12.800                                                   | 20.400                                             | 5.680                                     |
| 16                               | 4.300                                              | 12.400                                    | 5.350                                                 | 15.100                                             | 48.000                                   | 88.100                                                   | 95.000                                              | 33.700                                                   | 59.400                                         | 11.100                                                   | 18.600                                             | 5.530                                     |
| 17                               | 3.560                                              | 10.500                                    | 5.990                                                 | 24.400                                             | 37.300                                   | 79.000                                                   | 97.300                                              | 37.300                                                   | 48.000                                         | 8.400                                                    | 13.200                                             | 5.160                                     |
| 18                               | 3.490                                              | 8.900                                     | 5.760                                                 | 25.200                                             | 65.000                                   | 68.000                                                   | 97.300                                              | 37.300                                                   | 31.900                                         | 12.700                                                   | 8.500                                              | 4.720                                     |
| 19                               | 5.040                                              | 8.210                                     | 5.230                                                 | 24.400                                             | 102.000                                  | 55.200                                                   | 99.700                                              | 38.200                                                   | 23.600                                         | 15.500                                                   | 7.540                                              | 4.300                                     |
| 20                               | 5.230                                              | 7.360                                     | 5.760                                                 | 22.000                                             | 142.000                                  | 59.400                                                   | 92.700                                              | 38.200                                                   | 21.200                                         | 18.400                                                   | 7.270                                              | 5.980                                     |
| 21<br>22<br>23<br>24<br>25       | 5.230<br>6.080<br>5.910<br>4.800<br>4.720          | 6.570<br>6.320<br>7.830<br>7.180<br>5.990 | 6.490<br>6.320<br>5.760<br>6.240<br>5.460             | 18.900<br>13.700<br>10.800<br>9.400<br>9.100       | 123.000<br>112.000<br>114.000<br>137.000 | 68.000<br>76.800<br>83.500<br>70.200<br>68.000           | 81.200<br>74.600<br>85.800<br>83.500<br>88.100      | 36.400<br>32.800<br>32.800<br>31.900<br>27.600           | 18.900<br>20.400<br>20.400<br>18.900<br>14.600 | 16.800<br>17.700<br>15.100<br>13.900<br>19.600           | 9.400<br>9.940<br>7.830<br>7.180<br>8.400          | 8.020<br>7.540<br>6.160<br>5.760<br>4.870 |
| 26<br>27<br>28<br>29<br>30<br>31 | 4.870<br>5.530<br>5.760<br>6.160<br>5.760<br>5.230 | 5.990<br>5.460<br>4.510<br>4.650<br>5.680 | 5.010<br>5.830<br>9.360<br>11.600<br>15.200<br>23.600 | 8.210<br>8.310<br>7.450<br>6.240<br>6.160<br>5.910 | 156.000<br>164.000<br>146.000            | 57.300<br>50.000<br>45.000<br>46.000<br>50.000<br>45.000 | 155.000<br>159.000<br>130.000<br>122.000<br>114.000 | 26.000<br>24.400<br>25.200<br>22.000<br>22.000<br>17.800 | 13.500<br>13.700<br>12.800<br>10.800<br>11.100 | 19.600<br>17.700<br>14.800<br>17.100<br>12.600<br>11.800 | 7.920<br>7.640<br>6.650<br>6.740<br>7.010<br>6.650 | 4.940<br>5.080<br>5.010<br>5.160<br>5.010 |

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

OUACHITA RIVER

STATION LOCATION OUACHITA RIVER AT

BASTROP, LOUISIANA

|                    | _  |                               |           | PADI      | OACTIVITY IN W | /ATER                                    |           |       |          | RADIOA                        | CTIVITY IN PLAN | IKTON (dry) |     | RAD       | IOACTIVITY IN W | ATER  |
|--------------------|----|-------------------------------|-----------|-----------|----------------|------------------------------------------|-----------|-------|----------|-------------------------------|-----------------|-------------|-----|-----------|-----------------|-------|
| DATE               | -  |                               | T         | ALPHA     | OACHTHI III II | T. T. T. T. T. T. T. T. T. T. T. T. T. T | BETA      |       |          | DATE OF                       | GROSS A         | CTIVITY     |     |           | GROSS ACTIVIT   |       |
| SAMPLE<br>TAKEN    |    | DATE OF<br>DETERMI-<br>NATION | SUSPENDED | DISSOLVED | TOTAL          | SUSPENDED                                | DISSOLVED | TOTAL |          | DATE OF<br>DETERMI-<br>NATION | ALPHA           | BETA        |     | SUSPENDED | DISSOLVED       | TOTAL |
|                    |    |                               |           | μμc/I     | μμc/I          | μμ <sub>C</sub> /I                       | μμς/1     | μμε/Ι |          | MO. DAY                       | μμε/g           | μμc/g       |     | μμc/l     | μμε/Ι           | μμc/l |
| MO. DAY YEAR       | MC | NTH DAY                       | μμς/      | PPC/1     | FFCI           | 17.4.                                    |           |       |          |                               |                 |             |     |           |                 |       |
| 0 1/ 61            |    | 9 12                          | . 0       | 2         | 2              | 0                                        | 12        | 12    |          |                               |                 |             |     |           |                 |       |
| 8 14 61<br>8 22 61 |    | 9 22                          | 0         | 0         | ō              | 15                                       | 16        | 31    |          |                               |                 |             |     |           |                 |       |
| 8 29 61            |    | 9 27                          | 0         | Ō         | 0              | 0                                        | 6         | 6     |          |                               |                 |             |     |           |                 |       |
| 0 27 01            |    | ,                             |           |           |                |                                          |           |       |          |                               |                 |             | 1   |           | 1               |       |
|                    | 1  |                               |           |           |                |                                          |           |       |          | l i                           |                 |             | 1   |           |                 |       |
|                    |    |                               | ł         |           | Į.             |                                          |           |       |          |                               |                 |             | l l |           |                 |       |
|                    |    |                               | ľ         |           |                |                                          |           | ,     |          | 1.                            |                 |             |     |           |                 |       |
|                    | ļ. |                               |           |           |                |                                          |           |       |          |                               |                 |             | i   |           |                 |       |
|                    | İ  |                               |           |           |                |                                          |           |       |          |                               |                 |             | ì   |           |                 |       |
|                    |    |                               |           |           |                |                                          |           |       | <b>!</b> |                               |                 |             |     |           |                 |       |
|                    | 1  |                               |           |           | ļ              |                                          |           |       |          |                               |                 | }           |     |           |                 |       |
|                    | i  |                               |           |           | 1.             |                                          |           |       |          |                               |                 |             |     |           |                 |       |
|                    |    |                               | Ì         |           |                |                                          |           |       | ,        |                               |                 |             | i   |           |                 |       |
|                    |    |                               |           |           |                | }                                        |           |       |          | 1                             |                 |             | 1   |           |                 |       |
|                    | }  |                               |           |           |                | 1                                        |           |       |          |                               | ĺ               |             |     |           |                 |       |
|                    |    |                               | 1         |           |                |                                          |           |       |          |                               |                 |             |     |           |                 |       |
|                    |    |                               |           |           |                |                                          |           |       |          |                               | Į.              |             |     |           |                 |       |
|                    |    |                               |           | İ         |                |                                          |           |       |          |                               |                 |             |     |           |                 |       |
|                    | İ  |                               |           |           |                |                                          |           |       |          |                               |                 |             |     |           |                 |       |
|                    |    |                               |           |           |                |                                          |           | Ì     | 1        |                               |                 |             |     |           |                 |       |
|                    |    |                               | 1         |           |                |                                          |           |       | ļ        |                               |                 |             |     |           |                 |       |
|                    | ì  |                               | ļ         |           |                |                                          |           |       | 1        |                               |                 |             |     |           |                 |       |
|                    | 1  |                               | 1         |           |                | 1                                        |           |       |          |                               |                 |             |     |           |                 |       |
|                    | ľ  |                               |           |           |                |                                          |           |       |          |                               | Į               |             |     |           |                 |       |
|                    |    |                               |           |           |                |                                          | ľ         |       |          | Ì                             |                 |             |     |           |                 |       |
|                    |    |                               |           | ì         | 1              |                                          |           |       | !        | 1                             | ļ               |             |     |           |                 |       |
|                    |    |                               |           |           |                | }                                        | İ         |       |          |                               |                 |             |     |           |                 |       |
|                    |    |                               |           |           |                |                                          |           |       | ı        | Ì                             |                 |             |     | 1         |                 |       |
|                    | ŀ  |                               |           |           |                | 1                                        |           |       | 1        |                               |                 |             | 1   | ļ         |                 |       |
|                    |    |                               |           |           |                |                                          | 1         | İ     |          |                               |                 |             | 1   | İ         |                 |       |
|                    |    |                               |           |           |                |                                          |           |       |          |                               |                 |             |     | ì         |                 |       |
|                    |    |                               |           |           |                | 1                                        |           |       | 1        |                               | 1               |             |     |           |                 |       |
|                    | -  |                               |           |           |                |                                          |           | 1     |          |                               |                 |             |     |           |                 |       |
|                    |    |                               | 1         |           |                | 1                                        |           |       | 1        |                               |                 |             | 1   |           |                 |       |
|                    |    |                               |           |           | 1              |                                          |           |       |          | Ì                             |                 |             |     |           |                 |       |
|                    |    |                               |           |           |                |                                          |           |       |          |                               |                 |             |     |           |                 |       |
|                    |    |                               | 1         |           |                |                                          |           |       | 1        |                               |                 |             |     |           |                 |       |
|                    | -  |                               |           |           |                |                                          |           |       |          |                               |                 |             |     |           |                 |       |
|                    |    |                               |           | 1         |                |                                          |           |       |          |                               |                 |             |     | L         |                 |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

OUACHITA RIVER

STATION LOCATION OUACHITA RIVER AT

BASTROP, LOUISIANA

|        | DAT     | Έ    |       |         |                       | ALGAE (   | Numbe                | per ml.)        |                 |            |           | IN                   | ERT                           | Γ        |                 |                  | ח               | IATO     | MS       |                               |          |            | I                                                                       | Т                         | MICROIN                      | VERTEB                       | RATES                        |                                       |                                                             |
|--------|---------|------|-------|---------|-----------------------|-----------|----------------------|-----------------|-----------------|------------|-----------|----------------------|-------------------------------|----------|-----------------|------------------|-----------------|----------|----------|-------------------------------|----------|------------|-------------------------------------------------------------------------|---------------------------|------------------------------|------------------------------|------------------------------|---------------------------------------|-------------------------------------------------------------|
| OF     | SAM     |      | =     | BLUE    | GREEN                 | GRE       | EN                   | FLAGEL<br>(Pigm | LATES<br>ented) | DIAT       | омѕ       | DIA<br>SHE<br>(No. p | ERT<br>TOM<br>ELLS<br>er ml.) |          | DOMI<br>(See    | INANT<br>e Intro | SPEC<br>duction | ies A    | ND PE    | RCEN <sup>*</sup><br>ntificat | TAGES    | 3          | PLANKTON<br>IEATHED<br>11.)                                             | 11.)                      | T                            | 1                            | 1                            | rorns                                 | ENERA<br>luction<br>cation)                                 |
| MONTH  | DAY     | YEAR | TOTAL | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID   | FILA-<br>MENT<br>OUS | GREEN           | OTHER           | CENTRIC    | PENNATE   | CENTRIC              | PENNATE                       | FIR5T#   | PER.<br>CENTAGE | SECOND*          | PER-<br>CENTAGE | THIRD#   | PER-     | FOURTH*                       | PER.     | OTHER PER- | OTHER MICROPLANKTOR,<br>FUNGI AND SHEATHED<br>BACTERIA<br>(No. pet ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ANIMAL FORMS<br>(No. per liter) | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| 8<br>9 | 22<br>5 |      |       |         |                       | 130<br>60 |                      | 40<br>80        | 40              | 540<br>270 | 170<br>20 | 80<br>40             | 80                            | 58<br>57 | 40<br>30        | 56<br>58         | 30<br>20        | 88<br>56 | 10<br>10 | 57<br>53                      | 10<br>10 | 20<br>40   |                                                                         |                           | 77<br>24                     | 4                            |                              |                                       | 47                                                          |
|        |         |      |       |         |                       |           |                      |                 |                 |            |           |                      |                               |          |                 |                  |                 |          |          | - 1                           |          |            |                                                                         |                           |                              |                              |                              |                                       |                                                             |
| :      |         |      |       |         |                       |           |                      |                 |                 |            |           |                      |                               |          |                 |                  |                 |          |          |                               |          | 1          |                                                                         |                           |                              |                              |                              |                                       |                                                             |
|        |         |      |       |         |                       |           |                      | -               |                 |            |           |                      |                               |          |                 |                  |                 |          |          |                               |          |            |                                                                         |                           |                              |                              |                              |                                       |                                                             |
|        |         |      |       |         |                       |           |                      |                 |                 |            |           |                      |                               |          |                 |                  |                 |          |          |                               |          |            |                                                                         |                           |                              |                              |                              |                                       |                                                             |
|        |         |      |       |         |                       |           |                      |                 |                 |            |           |                      |                               |          |                 |                  |                 |          |          |                               |          |            |                                                                         |                           |                              |                              |                              |                                       |                                                             |
|        |         |      |       |         |                       |           |                      |                 |                 |            |           |                      |                               |          |                 |                  |                 |          |          |                               |          |            |                                                                         |                           |                              |                              |                              |                                       |                                                             |
|        |         |      |       |         |                       |           |                      |                 |                 |            |           |                      |                               | <br>     |                 |                  |                 |          |          |                               |          |            |                                                                         |                           |                              |                              |                              |                                       |                                                             |
|        |         |      |       |         |                       |           |                      |                 |                 |            |           |                      |                               |          |                 |                  |                 |          |          |                               |          | 1          |                                                                         |                           |                              |                              |                              |                                       |                                                             |
|        |         |      |       |         |                       |           |                      |                 |                 |            |           |                      |                               |          |                 |                  |                 |          |          | 1                             |          |            |                                                                         |                           |                              |                              |                              |                                       |                                                             |

AUTOINE BUILD SOUTH THE HOUSE

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

OUACHITA RIVER

STATION LOCATION OUNCHITA RIVER AT

BASTROP, LOUISIANA

|                          | ATE       |             |                                  |                             |                                 |                |                | CHLORINE       | DEMAND          |                              |                   |                    |    |                        | <br>CHIPATES     | PHOSPHATES | TOTAL<br>DISSOLVED | COLIFORMS   |
|--------------------------|-----------|-------------|----------------------------------|-----------------------------|---------------------------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|----|------------------------|------------------|------------|--------------------|-------------|
| OF 5                     | AMP       | YEAR        | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/I | рН                              | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l |    | COLOR<br>(scale units) | SULFATES<br>mg/l | mg/l       | SOLIDS<br>mg/l     | par 100 ml. |
| 8 1<br>8 2<br>8 2<br>9 1 | 4 2 9 5 2 | 61 61 61 61 | 30.0<br>29.0<br>29.0<br>29.0     | 6.8<br>6.4                  | 6.7<br>6.7<br>6.7<br>6.7<br>7.0 |                | -              |                |                 |                              |                   |                    | 68 | 15                     | 15               | - 1        | 249                | 10000       |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

# PROVISIONAL--SUBJECT TO REVISION

Gaging Station near Arkansas-Louisiana State Line Operated by U.S. Geological Survey STATE

Louisiana

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Ouachita River

STATION LOCATION

Ouachita River at

Bastrop, Louisiana

| Day                              | October                                            | November                                  | December                                       | January                                            | February                                    | March | April        | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | June                                      | July                                       | August                                             | September                                          |
|----------------------------------|----------------------------------------------------|-------------------------------------------|------------------------------------------------|----------------------------------------------------|---------------------------------------------|-------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | 5.000<br>4.000<br>3.500<br>3.000<br>3.000          | 2.790<br>2.360<br>2.070<br>2.150<br>2.350 | 2.640<br>3.000<br>3.500<br>4.000<br>5.000      | 14.300<br>16.000                                   | 5.610<br>5.110<br>5.340<br>5.060<br>5.010   |       |              | \$,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 2.620<br>2.660<br>2.690<br>2.570<br>2.500  | 5.270<br>5.300<br>5.680<br>4.040<br>4.390          | 4.430<br>4.550<br>4.790<br>4.910<br>4.960          |
| 6<br>7<br>8<br>9<br>10           | 2.910<br>2.980<br>3.420<br>4.350<br>5.330          | 2.560<br>2.740<br>2.760<br>2.620<br>2.380 | 5.700<br>6.130<br>10.300<br>14.200<br>15.600   |                                                    | 5.180<br>4.700<br>5.370<br>5.700<br>6.730   |       |              | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 5.000<br>4.650<br>4.330<br>3.750<br>4.490 | 1.940<br>2.000<br>1.600<br>1.590<br>1.710  | 4.870<br>5.290<br>5.400<br>5.920<br>6.000          | 3.930<br>3.240<br>3.090<br>3.120                   |
| 11<br>12<br>13<br>14<br>15       | 5.400<br>4.720<br>3.650<br>3.240<br>3.150          | 2.580<br>3.740<br>5.260<br>4.640<br>4.840 | 16.800<br>17.700<br>18.000                     | 11.700                                             | 7.910<br>8.150<br>8.130<br>7.800<br>6.490   |       | <i>&amp;</i> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.140<br>4.340<br>4.630<br>4.800<br>5.420 | 1.870<br>2.150<br>2.280<br>2.780<br>4.320  | 4.520<br>4.170<br>4.480<br>5.780<br>5.960          | 3.270<br>3.470<br>3.680<br>4.010<br>4.940          |
| 16<br>17<br>18<br>19<br>20       | 3.240<br>3.280<br>3.330<br>3.270<br>2.990          | 5.360<br>4.210<br>4.830<br>5.070<br>6.730 |                                                | 10.800<br>10.000<br>9.850<br>10.000<br>10.200      | 5.740<br>5.760<br>7.080<br>11.600<br>15.300 |       |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.380<br>4.390<br>4.570<br>3.420<br>4.600 | 9.030<br>15.900                            | 4.250<br>3.610<br>3.730<br>4.030<br>4.210          | 5.800<br>6.600<br>7.570<br>7.200<br>6.020<br>4.620 |
| 21<br>22<br>23<br>24<br>25       | 3.050<br>3.090<br>3.120<br>3.130<br>3.160          | 6.750<br>6.600<br>5.290<br>4.660<br>4.500 |                                                | 10.300<br>10.200<br>8.940<br>8.560<br>7.870        |                                             |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.660<br>4.190<br>1.660<br>2.190<br>2.550 |                                            | 5.000<br>6.130<br>5.320<br>4.050<br>3.870          | 3.330<br>3.140<br>3.150<br>3.280<br>3.430          |
| 26<br>27<br>28<br>29<br>30<br>31 | 2.950<br>2.640<br>2.520<br>2.630<br>2.830<br>2.910 | 4.350<br>4.250<br>4.040<br>3.470<br>2.930 | 12.200<br>10.800<br>10.300<br>11.500<br>12.700 | 7.170<br>7.140<br>7.060<br>6.650<br>6.620<br>6.570 | ear because                                 |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.760<br>3.270<br>2.850<br>2.650<br>2.640 | 12.300<br>9.740<br>7.300<br>6.540<br>5.860 | 3.970<br>4.980<br>6.020<br>5.790<br>4.930<br>4.560 | 3.550<br>3.170<br>3.060<br>3.000<br>3.000          |

No discharge measurements were made for part of the year because of high flows that could not be measured accurately. No records are available for these periods.

STATE

NEBRASKA

MAJOR BASIN

MISSOURI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER MISSOURI BELOW NIOBRARA RIVER

STATION LOCATION PLATTE RIVER ABOVE

PLATTSMOUTH, NEBRASKA

| DATE         |                      |           | RADIO     | PACTIVITY IN | WATER     |           |       | RA                 | DIOAC | TIVITY IN PLAN | IKTON (dry) | RAD       | IOACTIVITY IN W | ATER  |
|--------------|----------------------|-----------|-----------|--------------|-----------|-----------|-------|--------------------|-------|----------------|-------------|-----------|-----------------|-------|
| SAMPLE       | DATE OF              |           | ALPHA     | *            |           | BETA      |       | DATE               | OF    | GROSS A        | CTIVITY     |           | GROSS ACTIVIT   | Y     |
| TAKEN        | NATION               | SUSPENDED | DISSOLVED | TOTAL        | SUSPENDED | DISSOLVED | TOTAL | NATI               | ON-   | ALPHA          | BETA        | SUSPENDED | DISSOLVED       | TOTAL |
| MO. DAY YEAR | MONTH DAY            | μμc/l     | μμc/l     | μμc/l        | μμc/1     | μμς/!     | μμς/Ι | MO.                | DAY   | μμε/g          | μμc/g       | <br>μμς/1 | μμς/I           | μμс/  |
| TAKEN        | DATE OF NATION   DAY |           | DISSOLVED |              |           | DISSOLVED |       | DATE POTENTIAL MO. | _     | ALPHA          | BETA        | SUSPENDED | DISSOLVED       |       |
|              |                      |           |           |              |           |           |       |                    |       |                |             |           |                 |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

NEBRASKA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI BELOW NIOBRARA RIVER

STATION LOCATION PLATTE RIVER ABOVE

PLATTSMOUTH, NEBRASKA

NEBRASKA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

STATE

MISSOURI RIVER

MINOR BASIN

LOWER MISSOURI BELOW NIOBRARA RIVER

STATION LOCATIONPLATTE RIVER ABOVE

PLATTSMOUTH, NEBRASKA

| DATE<br>OF SAME                   |                |                                  |                             |                          |                          |                            | CHLORINE       | DEMAND          | 1                            |                                |                                 |                                 |                        |                                 |                            |                         |                                      |                          |
|-----------------------------------|----------------|----------------------------------|-----------------------------|--------------------------|--------------------------|----------------------------|----------------|-----------------|------------------------------|--------------------------------|---------------------------------|---------------------------------|------------------------|---------------------------------|----------------------------|-------------------------|--------------------------------------|--------------------------|
| PAQ YAC                           | YEAR           | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/I | рH                       | B.O.D.<br>mg/l           | C.O.D.<br>mg/l             | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l              | ALKALINITY<br>mg/l              | HARDNESS<br>mg/l                | COLOR<br>(scale units) | TURBIDITY<br>(scale units)      | SULFATES<br>mg/l           | PHOSPHATES<br>mg/l      | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml. |
| 8 2<br>8 8<br>8 29<br>9 5<br>9 28 | 61<br>61<br>61 | 24.6<br>27.0<br>28.0             | 8.9<br>12.1                 | 8.5<br>8.3<br>8.2<br>8.7 | 5.4<br>6.6<br>6.8<br>6.2 | 54<br>46<br>32<br>45<br>22 | -              | 1 1             | 1.2<br>.3<br>.4<br>.2<br>.2  | 172<br>124<br>120<br>135<br>89 | 168<br>174<br>160<br>176<br>144 | 156<br>146<br>160<br>160<br>148 | -                      | 700<br>420<br>280<br>160<br>180 | 48<br>40<br>66<br>46<br>24 | 1.1<br>.8<br>1.1<br>1.1 | 468<br>274<br>406<br>420<br>432      | -                        |
|                                   |                |                                  |                             |                          |                          |                            |                |                 |                              |                                |                                 |                                 |                        |                                 | ·                          |                         |                                      |                          |
|                                   |                |                                  |                             |                          |                          |                            |                |                 |                              |                                |                                 |                                 |                        |                                 |                            |                         | •                                    |                          |
|                                   |                |                                  |                             |                          |                          |                            |                |                 |                              |                                |                                 |                                 |                        |                                 |                            |                         |                                      |                          |
|                                   |                |                                  |                             |                          |                          |                            |                |                 |                              |                                |                                 |                                 |                        |                                 |                            |                         |                                      |                          |
|                                   |                | ē                                |                             |                          | :                        |                            |                |                 |                              |                                |                                 |                                 |                        |                                 |                            |                         |                                      |                          |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Louisville, Nebraska Operated by U.S. Geological Survey STATE

Nebraska

MAJOR BASIN

Missouri River

MINOR BASIN

Lower Missouri-Niobrara River

STATION LOCATION

Platte River above

Plattsmouth, Nebraska

| Day         | October        | November       | December       | January        | February        | March           | April          | May             | June             | July           | August         | September      |
|-------------|----------------|----------------|----------------|----------------|-----------------|-----------------|----------------|-----------------|------------------|----------------|----------------|----------------|
| 1           | 3.160          | 3.850          | 2.720          | 3.850          | 3,260           | 8.640           | 5.830          |                 |                  |                |                | <del>-</del>   |
| 2<br>3<br>4 | 3.070          | 3,920          | 3.620          | 3.770          | 2.840           | 9.930           | 5.460          | 4.870<br>4.390  | 10.700<br>15.800 | 3,900<br>3,550 | 2.480<br>2.960 | 1.770<br>1.580 |
| 3<br>4      | 3.200<br>2.880 | 4.330<br>4.370 | 2.690<br>2.780 | 3.510          | 2.540           | 8.690           | 5.600          | 4.310           | 12.900           | 3.250          | 3.290          | 1.600          |
| 5           | 2.880          | 4.040          | 2.840          | 3.330<br>3.370 | 2.490<br>2.540  | 7.500<br>7.030  | 5.180<br>5.000 | 4.560<br>5.600  | 9.140<br>7.980   | 3.140<br>2.420 | 3.320<br>3.030 | 1.770<br>1.480 |
| 6           | 2.720          | 3.810          | 4.770          | 3.810          | 2.690           | 7.440           | 5.140          | 6.120           | 6.920            | 2.860          | 2.260          | 1.150          |
| 7<br>8      | 2.600<br>2.400 | 3.730<br>3.810 | 6.350<br>6.150 | 4.160          | 2.840           | 7.820           | 4.870          | 6.520           | 7.980            | 2.720          | 1.790          | 1.360          |
| 9<br>10     | 2.690          | 3.690          | 4.860          | 4.290<br>4.290 | 3.030<br>3.230  | 8.140<br>6.770  | 5.790<br>5.880 | 6.670           | 7.340            | 2.550          | 1.630          | 1.460          |
| 10          | 2.750          | 4.120          | 4.120          | 4.250          | 3.470           | 6.420           | 5.370          | 6.720<br>6.470  | 6.920<br>6.820   | 2.930<br>2.260 | 1.560<br>1.600 | 1.580<br>1.740 |
| 11<br>12    | 2.840<br>2.630 | 3.650          | 3.580          | 4.250          | 3.770           | 7.440           | 6.320          | 6,520           | 6,220            | 2.050          | 1.430          | 2.360          |
| 13          | 2.940          | 3.920<br>4.040 | 3.260<br>3.230 | 4.120<br>4.040 | 4.080<br>4.500  | 7.870           | 8.910          | 6.270           | 5.690            | 2.230          | 2.020          | 3.710          |
| 14          | 3.130          | 3.810          | 3.510          | 3.810          | 5.040           | 8.360<br>8.250  | 8.520<br>8.470 | 5.790<br>5.510  | 4.870            | 2.300          | 1.990          | 4.650          |
| 15          | 3.400          | 3.650          | 3.810          | 3.690          | 5.400           | 8.580           | 8.470          | 5.510           | 5.050<br>10.200  | 2.790<br>2.480 | 1.560<br>1.850 | 3.860<br>3.290 |
| 16<br>17    | 3.200<br>3.160 | 3.440<br>3.620 | 4.040          | 4.000          | 5.750           | 12.600          | 7.870          | 6.670           | 11.800           | 2.330          | 1.560          | 2.450          |
| 18          | 3.330          | 3.620<br>3.620 | 4.120<br>4.160 | 4.370<br>4.500 | 5.650<br>5.180  | 10.600          | 7.180          | 7.390           | 13.300           | 2.300          | 1.290          | 2.690          |
| 19          | 3.400          | 3.850          | 3.510          | 4.430          | 5.040           | 10.300<br>9.820 | 6.170<br>5.980 | 7.500<br>7.080  | 9.360<br>9.080   | 2.170          | 1.260          | 2.550          |
| 20          | 3.440          | 4.000          | 2.130          | 4.160          | 5.180           | 8.970           | 5.510          | 6.420           | 7.980            | 1.790<br>1.690 | 1.630<br>1.820 | 2.330<br>2.230 |
| 21<br>22    | 3.300<br>3.550 | 4.000          | 1.450          | 3.880          | 5.400           | 8.360           | 5.600          | 6.670           | 7.440            | 1.430          | 2.590          | 2.450          |
| 23          | 3.770          | 3.880<br>3.810 | 1.040<br>1.050 | 3.160<br>2.400 | 5.900<br>6.500  | 8.300           | 5.280          | 6. 320          | 7.660            | 1.480          | 3.740          | 2.650          |
| 24          | 4.250          | 4.000          | 1.650          | 1.650          | 7.320           | 9.020<br>8.580  | 5.000<br>5.280 | 6.670<br>11.400 | 7.600            | 1.430          | 3.740          | 3.480          |
| 25          | 3.810          | 4.040          | 3.330          | 1.410          | 8.120           | 7.980           | 5.100          | 12.600          | 7.340<br>6.980   | 1.240<br>1.030 | 3.360<br>2.650 | 3.250<br>3.550 |
| 26<br>27    | 3.770          | 4.120          | 3.160          | 1.450          | 10.000          | 7.500           | 5.100          | 11.000          | 6.720            | 1.030          | 2.390          | 3.550          |
| 28          | 3.770<br>3.650 | 4.950<br>5.260 | 2.130<br>2.210 | 1.610<br>1.880 | 11.000<br>8.690 | 7.710           | 4.920          | 9.870           | 5.830            | 1.200          | 2.720          | 2.750          |
| 29          | 3.880          | 5.220          | 2.400          | 2.320          | 0.050           | 9.580<br>7.340  | 4.920<br>4.610 | 8.250<br>7.180  | 5.140            | 1.600          | 2.720          | 2.860          |
| 30<br>31    | 3.920          | 2.750          | 3.300          | 2.840          |                 | 6.820           | 4.690          | 6.670           | 5.230<br>4.310   | 2.590<br>3.000 | 2.360<br>1.710 | 3.290<br>3.710 |
| 31          | 3.770          |                | 3.770          | 3.200          |                 | 6.420           | •              | 6.420           | ٠٠٠ مير          | 2.720          | 1.660          | 2. (10         |

STATE

MARYLAND

MAJOR BASIN

NORTH ATLANTIC

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

POTOMAC RIVER

STATION LOCATION POTOMAC RIVER AT

GREAT FALLS, MARYLAND

|              |                                                                              |                                     | 2101               | 016711/174 (1)                                 |                                           |                                                       |                                           |     |                                         |                     |                                   | ·                   |                                                     |  |
|--------------|------------------------------------------------------------------------------|-------------------------------------|--------------------|------------------------------------------------|-------------------------------------------|-------------------------------------------------------|-------------------------------------------|-----|-----------------------------------------|---------------------|-----------------------------------|---------------------|-----------------------------------------------------|--|
|              | DATE OF                                                                      | T                                   |                    | OACHVILT IN                                    | WAIEK                                     | DET4                                                  |                                           | l F |                                         |                     |                                   | RAI                 |                                                     |  |
| TAKEN        | DETERMI-<br>NATION                                                           | SUSPENDED                           |                    | TOTAL                                          | SUSPENDED                                 |                                                       | TOTAL                                     |     | DETERMI-                                |                     |                                   | GUEDENDED           |                                                     |  |
| MO. DAY YEAR |                                                                              | μμς/Ι                               | μμς/               | μμς/1                                          |                                           |                                                       |                                           |     |                                         |                     |                                   |                     |                                                     |  |
|              | 11 3<br>12 5<br>1 12<br>2 10<br>3 10<br>4 10<br>5 12<br>6 12<br>7 17<br>8 11 | SUSPENDED  μμε/I  0 0 0 4 1 1 0 0 0 | ALPHA<br>DISSOLVED | OACTIVITY IN \  TOTAL  μμε/1  4  0  1  1  1  2 | SUSPENDED  μμc/1  0 0 0 0 0 4 0 0 0 3 4 2 | BETA DISSOLVED μμε/Ι  0 1 1 0 0 4 0 0 0 2 0 0 1 1 4 4 | ΤΟΤΑL μμε/Ι  0 1 1 0 0 8 0 0 0 7 0 3 15 6 |     | RADIOAC DATE OF DETERMI- NATION MO. DAY | GROSS. ALPHA  μμc/g | NKTON (dry) ACTIVITY  BETA  μμc/g | RAI SUSPENDED μμc/l | GROSS ACTIVITY IN W GROSS ACTIVITY DISSOLVED  μμε/Ι |  |
|              |                                                                              |                                     |                    |                                                |                                           |                                                       |                                           |     |                                         |                     |                                   |                     |                                                     |  |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

MÀRYLAND

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

POTOMAC RIVER

STATION LOCATION POTOMAC RIVER AT

GREAT FALLS, MARYLAND

| DATE                 |                                                                                                                         | ,                                   |                               | ALGAE (                                                                         | Number                | per ml.)                                                                                          |          |                                                                                                                           |                                                                                           | IN                    | ERT.                                        | Γ              |                                                                      |                                                                                                                                                                |                                                                                                    | IATO                                                                                         |                                          |                                                          |                                                                                       |                                                                                    | Γ.                                                                      | т-                        | MICROIN                                                                               | (VERTER)                     | RATES                        |                                       |                                                                                                  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------|---------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------|----------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------|------------------------------|------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------|
| OF SAMPLE            |                                                                                                                         | BLUE-                               | GREEN                         | GREE                                                                            | EN                    | FLAGEL<br>(Pigm                                                                                   |          | DIAT                                                                                                                      | омѕ                                                                                       |                       | ERT<br>TOM<br>ELLS<br>er ml.)               |                | DOM I                                                                | NANT<br>Intro                                                                                                                                                  | SPEC<br>duction                                                                                    | IES AN                                                                                       | ND PE                                    | RCEN<br>ntificat                                         | TAGES                                                                                 | 3                                                                                  | LANETON<br>EATHED                                                       | 3                         |                                                                                       |                              | Т                            | FORMS                                 | ENERA<br>uction<br>cation)                                                                       |
| MONTH<br>DAY<br>YEAR | TOTAL                                                                                                                   | COCCOID                             | FILA-<br>MENT-<br>OUS         | COCCOID                                                                         | FILA-<br>MENT-<br>OUS | GREEN                                                                                             | OTHER    | CENTRIC                                                                                                                   | PENNATE                                                                                   | CENTRIC               | PENNATE                                     | FIRST          | PER.                                                                 | SECOND#                                                                                                                                                        | PER.<br>CENTAGE                                                                                    | THIRD#                                                                                       | PER-<br>CENTAGE                          | FOURTH#                                                  | PER.<br>CENTAGE                                                                       | OTHER PER-<br>CENTAGE                                                              | OTHER RICROPLANETOR,<br>FUNGI AND SHEATHED<br>RACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)                                                          | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ANIMAL FORMS<br>(No. per liter) | DOWINANT GENERA<br>(See Introduction<br>for Identification)                                      |
| 10                   | 1800<br>15900<br>600<br>700<br>400<br>200<br>1400<br>2500<br>800<br>1100<br>1100<br>6000<br>8700<br>2700<br>800<br>1300 | 20<br>20<br>100<br>40<br>150<br>310 | 40<br>250<br>640<br>410<br>20 | 290<br>270<br>130<br>200<br>1300<br>2050<br>2260<br>2130<br>3710<br>1240<br>420 |                       | 20<br>90<br>130<br>90<br>20<br>20<br>40<br>70<br>60<br>60<br>50<br>730<br>620<br>170<br>230<br>40 | 20 20 20 | 1170<br>15360<br>270<br>330<br>130<br>20<br>70<br>20<br>70<br>1910<br>190<br>14260<br>8240<br>4410<br>5440<br>1060<br>250 | 130<br>110<br>200<br>200<br>1270<br>310<br>670<br>1220<br>1570<br>950<br>270<br>170<br>20 | 990<br>70<br>20<br>70 | 1340<br>330<br>60<br>40<br>170<br>120<br>80 | 65<br>64<br>64 | 30<br>30<br>20<br>30<br>20<br>10<br>10<br>10<br>10<br>50<br>40<br>60 | 23<br>26<br>82<br>36<br>36<br>36<br>72<br>64<br>51<br>92<br>93<br>71<br>36<br>26<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72 | 30<br>10<br>20<br>20<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 27<br>27<br>26<br>82<br>71<br>64<br>51<br>36<br>64<br>86<br>83<br>93<br>26<br>98<br>21<br>26 | * 10 10 10 10 10 10 10 10 10 10 10 10 10 | 93<br>21<br>51<br>92<br>78<br>63<br>33<br>22<br>81<br>81 | 10<br>10<br>10<br>*<br>10<br>10<br>10<br>10<br>10<br>*<br>10<br>*<br>*<br>*<br>*<br>* | 300440<br>55004666070<br>5500<br>5500<br>5400<br>5400<br>5400<br>5400<br>5400<br>5 | 70<br>110<br>50<br>20<br>40                                             |                           | 1 1 1 2 6 6 1 3 1 7 5 3 1 0 5 5 5 5 5 5 5 5 5 6 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2                            | 1 2 1                        | 1                                     | 4-9<br>4-9<br>-49<br>-743<br>743<br>77-<br>763<br>893<br>893<br>81343<br>4-8125<br>4-8<br>4<br>4 |

## ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

MARYLAND

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

POTOMAC RIVER

STATION LOCATION POTOMAC RIVER AT

GREAT FALLS, MARYLAND

| DATE OF SA                                                                                                 |                                             |                                                   |                                                              | E                                                                  | KTRACTABL                                                   | ES                                                          |                     |                                                    |                                                          |                   |            | ORM EXTRA                                    | ACTABLES              |                                          |                 |                     |                                           |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|---------------------|----------------------------------------------------|----------------------------------------------------------|-------------------|------------|----------------------------------------------|-----------------------|------------------------------------------|-----------------|---------------------|-------------------------------------------|
| BEGINNING                                                                                                  | EN                                          |                                                   | GALLONS                                                      |                                                                    |                                                             |                                                             |                     |                                                    |                                                          |                   | NEUTRALS   |                                              |                       |                                          |                 |                     |                                           |
| MONTH<br>DAY<br>YEAR                                                                                       | MONTH                                       | DAY                                               | FILTERED                                                     | TOTAL                                                              | CHLORO-<br>FORM                                             | ALCOHOL                                                     | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES                                  | TOTAL                                                    | ALIPHATICS        | AROMATICS  | OXYGEN-<br>ATED<br>COMPOUNDS                 | LOSS '                | WEAK<br>ACIDS                            | STRONG<br>ACIDS | BASES               | LOSS                                      |
| 10 10 60<br>11 14 60<br>12 19 60<br>1 24 61<br>2 27 61<br>4 3 61<br>5 15 61<br>6 26 61<br>8 2 61<br>9 5 61 | 10<br>11<br>1<br>2<br>3<br>4<br>5<br>7<br>8 | 24<br>28<br>3<br>7<br>13<br>19<br>214<br>15<br>18 | 3713<br>3457<br>3480<br>3216<br>3074<br>4323<br>4323<br>3505 | 248<br>303<br>322<br>365<br>265<br>292<br>106<br>282<br>351<br>251 | 67<br>99<br>60<br>104<br>57<br>97<br>49<br>89<br>117<br>102 | 181<br>204<br>262<br>261<br>208<br>195<br>193<br>234<br>149 | 3317141554          | 18<br>23<br>11<br>25<br>14<br>27<br>11<br>20<br>25 | 23<br>37<br>26<br>26<br>16<br>24<br>17<br>27<br>25<br>25 | 1 1 1 2 5 4 4 2 3 | 2122132332 | 18<br>33<br>21<br>22<br>16<br>10<br>19<br>20 | 2 2 2 1 1 0 1 1 1 0 0 | 7<br>11<br>6<br>11<br>7<br>10<br>5<br>10 | 4828493837      | 1 2 1 1 1 0 1 2 2 2 | 11<br>15<br>125<br>14<br>22<br>123<br>229 |
|                                                                                                            |                                             |                                                   |                                                              |                                                                    |                                                             |                                                             |                     |                                                    |                                                          |                   |            |                                              |                       |                                          |                 |                     |                                           |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

MARYLAND

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

POTOMAC RIVER

STATION LOCATIONPOTOMAC RIVER AT

GREAT FALLS, MARYLAND

| DAT<br>OF SA | _     | TEMP.                   | DISSOLVED      |                  |                |                | CHLORINE       | DEMAND          |                              |                   |                    |                  |                        |                            |                  |                    |                             |                          |
|--------------|-------|-------------------------|----------------|------------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|----------------------------|------------------|--------------------|-----------------------------|--------------------------|
| MONTH        | T.    | (Degrees<br>Centigrade) | OXYGEN<br>mg/l | рН               | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL DISSOLVED SOLIDS mg/l | COLIFORMS<br>per 100 ml. |
| 10 5         |       | 17.7                    | 8.2            | 8.5              | • 6            | 5              | 2.6            | 6•4             | •0                           | 10                | 85                 | 116              | 7                      | 20                         | 39               | _                  | 172                         |                          |
| 10 10        |       | 16.1<br>29.0            | 9.2            | 8.1              | 2.2            | 6              | 2.7            | 4 • 6           | • 1                          | 6                 | 90                 | 122              | 5                      | 12                         | 37               | -                  | 156                         | 80                       |
| 10 24        |       | 18.0                    | 9.0            | 8•5<br>8•7       | 3.6<br>2.8     | 8<br>11        | 2•1<br>1•4     | 6 • 0<br>4 • 6  | •1                           | 9<br>12           | 88<br>102          | 118<br>126       | 7 7                    | 15<br>10                   | 35               | -                  | 160                         | 550                      |
| 10 31        |       | 12.5                    | 9.4            | 8.2              | 1.2            | 8              | 1.7            | 3.5             | •1                           | 14                | 107                | 130              | +                      | 10                         | 34<br>40         | _                  | 176<br>208                  | 180                      |
| 11 7         |       | 8.3                     | • 4            | 8.4              | 1.8            | 8              | 1.8            | 4.7             | .1                           | 15                | 95                 | 130              | '7                     | 12                         | 41               | _                  | 177                         | _                        |
| 11 7         | 60    | _                       | -              | _                | _              | -              | _              | _               |                              | _                 | -                  | _                | -                      |                            | _                | -                  |                             | 200                      |
| 11   14      |       | 7.3                     | 11.6           | 8.6              | 3.6            | 11             | 2.7            | 6 • 4           | •1                           | 14                | 97                 | 126              | 6                      | 10                         | 35               | -                  | 178                         | 96                       |
| 11 21        |       | 8.3                     | 11.8           | 8.8              | 1.9            | 9              | 1.2            | 4.5             | •0                           | 18                | 97                 | 144              | 7                      | 8                          | 47               | -                  | 203                         | -                        |
| 11 28        | 1 1   | 7.3                     | 12.2           | 8 • 4            | 1.4            | 9              | 1.1            | 4 • 2           | •0                           | 11                | 100                | 138              | 7                      | 8                          | 44               | -                  | 191                         | 200                      |
| 12 5         | I - I | 2.8                     | 12.0           | 8 • 2            | 2.6            | 10             | 2.2            | 4 • 7           | • 1                          | 11                | 95                 | 134              | 10                     | 10                         | 37               | -                  | 190                         | 720                      |
| 1 9          | 1 - 1 | 1.7<br>2.6              | 12.2<br>11.8   | 7•9<br>7•6       | 1.4<br>3.6     | 13<br>10       | 3•1<br>1•5     | 6 • 5           | •1                           | 15                | 67                 | 118              | 5                      | 15                         | 40               | -                  | 185                         | 1800                     |
| 1 23         |       | • 5                     | 12.0           | 7.8              | 1.6            | 7              | 1.00           | _               | •1                           | 10<br>9           | 42<br>57           | 90<br>88         | 10                     | . 30<br>16                 | 24<br>2 <b>7</b> | _                  | 122<br>141                  | 11000                    |
| 1 30         |       | • 5                     | 12.0           | 7.8              | 1.4            | 7              | 1.6            | 4.6             | •1                           | 8                 | 64                 | 96               | 5                      | 10                         | 27               |                    | 141                         | 93                       |
| 2 6          | 1 - 1 | • 5                     | 12.8           | 7.7              | 2.6            | 5              | 2.5            | 4.2             | .1                           | 8                 | 76                 | 112              | 5                      | 10                         | 28               | _                  | 156                         | 230                      |
| 2 13         |       | 1.1                     | 12.2           | 7.8              | 1.8            | _              | • 8            | 4.7             | •1                           | 10                | 75                 | 106              | 4                      | 7                          | 30               | _                  | 162                         |                          |
| 2 20         |       | 2.8                     | 10.0           | 7.7              | 8.6            | 67             | 1.8            | 6.9             | • 2                          | 7                 | 47                 | 68               | 25                     | 500                        | 22               | -                  | 108                         | 7600                     |
| 2 27         |       | 1.2                     | 10.6           | 7.6              | 2 • 4          | 32             | 1.2            | , 3∙3           | • 1                          | 3                 | 31                 | 56               | 40                     | 240                        | 20               | -                  | 95                          | _                        |
| 3 6          |       | 10.0                    | 10.8           | 7.7              | 1.7            | 12             | 1.2            | 5 • 6           | • 1                          | 4                 | 43                 | 64               | 10                     | 26                         | 23               | -                  | 102                         | 4800                     |
| 3 13         |       | 5.5                     | 10.2           | 7.7              | 1.0            | 8              | 1.7            | 6 • 4           | • 1                          | 3                 | 40                 | 66               | 15                     | 15                         | 22               | -                  | 106                         | 7200                     |
| 3 20         | 61    | 3.3<br>12.2             | 11.2           | 7•7<br>7•8       | 1.7<br>2.0     | 6              | 2 • 0          | 5•7             | • 1                          | 7                 | 49                 | 76               | 10                     | 18                         | 23               | -                  | 112                         | 3400                     |
| 4 3          | 1 ' 1 | 10.0                    | 10.2           | 7.8              | 2.0            | 24<br>21       | 1.2            | 4 • 6           | • 1                          | 6                 | . 38<br>45         | 60               | 60                     | 60                         | 23               | -                  | 90                          | 2800                     |
| 4 10         |       | 9.4                     | 11.2           | 7.9              | 1.6            | 20             | 2.2            | 6 • 0<br>4 • 9  | •0<br>•1                     | 7<br>5            | 47                 | 66<br>72         | 15<br>20               | 40<br>43                   | 23<br>23         | _                  | 100<br>125                  | 7000<br>3800             |
| 4 17         | 61    | 12.2                    | 10.6           | 7.8              | 1.8            | 26             | 1.4            | 5.8             | •1                           | 5                 | 36                 | 58               | 30                     | 100                        | 21               | _                  | 90                          | 6400                     |
| 4 24         | 61    | 17.7                    | 9.0            | 7.9              | 1.6            | 21             | 2.0            | 5.5             | •0                           | 4                 | 49                 | 70               | 10                     | 24                         | 22               | _                  | 114                         | 0+00                     |
| 5 1          | 61    | 14.4                    | 9.0            | 7.8              | • 2            | 20             | 2.0            | 6.4             | • 1                          | 4                 | 44                 | 70               | 7                      | 27                         | 21               | _                  | 98                          |                          |
| 5 8          |       | 15.5                    | 9.2            | 7.7              | 1.8            | 20             | 1.6            | 5.9             | •0                           | 7                 | 48                 | 66               | 7                      | 35                         | 22               | _                  | 110                         | _                        |
| 5 15         | 1 ' 1 | 19.4                    | 7.8            | 7.9              | 1.2            | 27             | 2•5            | 7 • 1           | • 1                          | 5                 | 53                 | 74               | 8                      | 38                         | 24               | -                  | 117                         | 8600                     |
| 5 22         | 61    | 20.0                    | 8,2            | 8.0              | • 7            | 14             | 1.1            | 5 • 2           | • 0                          | 9                 | 55                 | 80               | 5                      | 15                         | 25               | -                  | 130                         | 1000                     |
| 5 29         |       | 19.0                    | 8.4            | 8.2              | 1.2            | 19             | 1.3            | 4 • 0           | • 0                          | 6                 | 62                 | 90               | 4                      | 10                         | 26               | -                  | 147                         | 71                       |
| 6 5          |       | 23.9                    | 8.8            | 8.9              | 2.8            | 17             | 2•4            | 3 • 9           | • 0                          | 8                 | 66                 | 94               | 5                      | 9                          | 25               | -                  | 138                         | 160                      |
| 6 19         |       | 18.0<br>20.0            | 7.0            | 7 · 8  <br>8 • 2 | 1.0<br>4.2     | 20<br>18       | 4•0<br>2•7     | 9 • 6<br>4 • 9  | •0                           | 7<br>7            | 60<br>62           | 86<br>9 <b>6</b> | 13<br>25               | 41<br>23                   | 25               | -                  | 133                         | 160                      |
| 6 26         |       | 26.6                    | 6.6            | 8.5              | 2.6            | 21             | 1.5            | 6.4             | •0                           | 7                 | 70                 | 106              | ∠5<br>8                | 23<br>17                   | 24<br>24         | .1                 | 127<br>146                  | _                        |
| 7 3          | 61    | 30.0                    | 5.8            | 8.6              | 1.6            | 19             | 2.6            | 5.4             | •1                           | 7                 | 74                 | 104              | 5                      | 14                         | 24<br>25         | .1                 | 153                         | _                        |
| 7 10         |       | 26.6                    | 7.0            | 8.8              | 1.6            | 18             | 2.2            | 3.8             | •1                           | 7                 | 79                 | 110              | 7                      | 14                         | 26               | .1                 | 148                         | *20                      |
| 7 17         |       | 30.5                    | 6.0            | 8.4              | 1.7            | 18             | • 4            | 3 • 4           | •1                           | 8                 | 87                 | 118              | 4                      | 9                          | 27               | •1                 | 166                         | *20                      |
| 7 24         | 61    | 33.3                    | 6.0            | 8.4              | 1.7            | 16             | 2.1            | 3.6             | .1                           | 10                | 79                 | 114              | 6                      | 12                         | 30               | .1                 | 167                         |                          |

STATE

MARYLAND

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

POTOMAC RIVER

STATION LOCATIONPOTOMAC RIVER AT

GREAT FALLS, MARYLAND

| DATE<br>OF SAMPLE                                                       | TEMP.                                     | DISSOLVED                  |                                        |                                               |                                                         | CHLORINE                 | DEMAND                       |                                        |                                            |                                                |                                                                 |                                                   |                                                     |                                               |                                                   |                                     |                          |
|-------------------------------------------------------------------------|-------------------------------------------|----------------------------|----------------------------------------|-----------------------------------------------|---------------------------------------------------------|--------------------------|------------------------------|----------------------------------------|--------------------------------------------|------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|---------------------------------------------------|-------------------------------------|--------------------------|
| DAY YEAR                                                                | (Degrees<br>Centigrade)                   | OXYGEN<br>mg/i             | рH                                     | B.O.D.<br>mg/i                                | C.O.D.<br>mg/l                                          | 1-HOUR<br>mg/l           | 24-HOUR<br>mg/l              | AMMONIA-<br>NITROGEN<br>mg/l           | CHLORIDES<br>mg/l                          | ALKALINITY<br>mg/l                             | HARDNESS<br>mg/l                                                | COLOR<br>(scale units)                            | TURBIDITY<br>(scale units)                          | SULFATES<br>mg/l                              | PHOSPHATES<br>mg/l                                | TOTAL DISSOLVED SOLIDS mg/I         | COLIFORMS<br>per 100 ml. |
| 7 31 61<br>8 7 61<br>8 14 61<br>8 28 61<br>9 9 61<br>9 11 61<br>9 25 61 | 27.8<br>25.0<br>30.0<br>-<br>30.0<br>26.1 | 26628 - 4484<br>66556 5467 | 8.5<br>8.4<br>8.0<br>7.8<br>8.3<br>8.3 | 1.0<br>2.0<br>2.3<br>2.0<br>2.4<br>1.6<br>1.4 | 19<br>19<br>18<br>14<br>20<br>-<br>26<br>16<br>14<br>14 | 3.0.952 - 12.97<br>21.97 | 5.6.9.2.7.5.9.0.2.5.5.4.5.5. | •1<br>•1<br>•1<br>•2<br>•1<br>•2<br>•1 | 9<br>13<br>12<br>14<br>12<br>9<br>11<br>11 | 80<br>68<br>83<br>842<br>81<br>868<br>96<br>90 | 106<br>106<br>124<br>132<br>126<br>-<br>118<br>98<br>140<br>140 | 4<br>6<br>4<br>7<br>12<br>-<br>5<br>16<br>5<br>10 | 9<br>11<br>9<br>11<br>16<br>-<br>10<br>35<br>8<br>8 | 28<br>32<br>35<br>37<br>3 -<br>29<br>26<br>30 | .1<br>.1<br>.1<br>.2<br>-<br>.1<br>.1<br>.2<br>.2 | 138<br>167<br>181<br>196<br>182<br> |                          |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station near Washington, D.C. Operated by U.S. Geological Survey

STATE

Maryland

MAJOR BASIN

North Atlantic

MINOR BASIN

Potomac River

STATION LOCATION

Potomac River at

Great Falls, Maryland

| Day                              | October                                            | November                                  | December                                           | January                                            | February                                     | March                                                    | April                                          | May                                                | June                                      | July                                               | August                                             | September                                 |
|----------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|
| 1                                | 2.890                                              | 1.960                                     | 2.110                                              | 3.500                                              | 4.500                                        | 51.700                                                   | 25.200                                         | 19.900                                             | 7.020                                     | 4.450                                              | 2.800                                              | 2.350                                     |
| 2                                | 2.680                                              | 1.920                                     | 2.000                                              | 4.700                                              | 4.500                                        | 39.200                                                   | 26.900                                         | 18.800                                             | 6.900                                     | 4.300                                              | 2.720                                              | 2.070                                     |
| 3                                | 2.470                                              | 2.310                                     | 1.960                                              | 4.700                                              | 4.000                                        | 31.200                                                   | 30.100                                         | 17.500                                             | 6.540                                     | 3.920                                              | 2.680                                              | 2.150                                     |
| 4                                | 2.430                                              | 2.430                                     | 1.960                                              | 4.850                                              | 4.000                                        | 26.200                                                   | 27.600                                         | 16.700                                             | 6.540                                     | 3.870                                              | 2.680                                              | 2.270                                     |
| 5                                | 2.390                                              | 2.350                                     | 1.880                                              | 4.700                                              | 4.500                                        | 23.400                                                   | 23.800                                         | 15.800                                             | 6.720                                     | 3.690                                              | 2.680                                              | 2.150                                     |
| 6                                | 2.350                                              | 2.270                                     | 1.880                                              | 4.500                                              | 4.500                                        | 28.200                                                   | 21.000                                         | 14.600                                             | 7.860                                     | 3.640                                              | 2.470                                              | 2.230                                     |
| 7                                | 2.310                                              | 2.310                                     | 1.880                                              | 4.350                                              | 4.000                                        | 32.100                                                   | 18.400                                         | 13.800                                             | 7.680                                     | 3.820                                              | 2.890                                              | 2.390                                     |
| 8                                | 2.230                                              | 2.350                                     | 1.850                                              | 4.300                                              | 4.500                                        | 35.500                                                   | 16.300                                         | 14.200                                             | 7.140                                     | 3.780                                              | 3.230                                              | 3.540                                     |
| 9                                | 2.110                                              | 2.350                                     | 1.730                                              | 3.780                                              | 4.500                                        | 35.900                                                   | 14.700                                         | 15.900                                             | 7.080                                     | 3.730                                              | 3.550                                              | 5.290                                     |
| 10                               | 2.040                                              | 2.430                                     | 1.730                                              | 4.210                                              | 4.500                                        | 39.100                                                   | 19.200                                         | 19.300                                             | 9.520                                     | 3.780                                              | 3.190                                              | 4.250                                     |
| 11                               | 2.000                                              | 2.470                                     | 1.770                                              | 5.120                                              | 5.000                                        | 38.700                                                   | 27.300                                         | 19.400                                             | 11.500                                    | 3.640                                              | 2.840                                              | 3.410                                     |
| 12                               | 2.000                                              | 2.430                                     | 1.610                                              | 5.240                                              | 5.000                                        | 31.800                                                   | 34.500                                         | 19.600                                             | 10.900                                    | 3.640                                              | 2.720                                              | 3.190                                     |
| 13                               | 2.000                                              | 2.470                                     | 1.160                                              | 4.700                                              | 5.000                                        | 26.600                                                   | 53.100                                         | 24.100                                             | 11.100                                    | 3.500                                              | 2.680                                              | 3.010                                     |
| 14                               | 2.000                                              | 2.390                                     | 1.440                                              | 4.350                                              | 5.000                                        | 22.700                                                   | 77.800                                         | 30.800                                             | 10.800                                    | 4.910                                              | 2.550                                              | 2.760                                     |
| 15                               | 1.960                                              | 2.350                                     | 1.770                                              | 4.800                                              | 6.000                                        | 21.200                                                   | 81.000                                         | 33.600                                             | 9.450                                     | 4.000                                              | 2.230                                              | 2.550                                     |
| 16<br>17<br>18<br>19<br>20       | 1.960<br>1.960<br>1.850<br>1.770<br>2.040          | 2.630<br>2.590<br>2.470<br>2.230<br>2.310 | 2.000<br>1.850<br>1.850<br>1.810                   | 6.420<br>6.720<br>7.440<br>8.380<br>8.260          | 6.960<br>9.310<br>16.900<br>45.700<br>91.300 | 19.400<br>17.400<br>15.400<br>15.700<br>16.600           | 61.400<br>60.400<br>70.700<br>56.600<br>41.400 | 28.900<br>23.200<br>19.800<br>17.400<br>15.400     | 9.240<br>8.640<br>7.860<br>6.900<br>6.000 | 3.550<br>3.500<br>4.350<br>4.110<br>3.690          | 3.010<br>3.190<br>2.760<br>2.470<br>2.350          | 2.150<br>2.040<br>1.920<br>1.770<br>1.730 |
| 21                               | 2.150                                              | 2.190                                     | 2.040                                              | 7.320                                              | 10.000                                       | 19.000                                                   | 31.600                                         | 14.100                                             | 5.520                                     | 3.370                                              | 2.550                                              | 1.690                                     |
| 22                               | 2.230                                              | 2.110                                     | 1.770                                              | 6.300                                              | 71.600                                       | 23.400                                                   | 25.800                                         | 13.400                                             | 5.520                                     | 3.010                                              | 2.270                                              | 1.650                                     |
| 23                               | 2.430                                              | 2.110                                     | 1.690                                              | 6.360                                              | 58.600                                       | 30.600                                                   | 22.700                                         | 12.000                                             | 6.240                                     | 2.890                                              | 2.510                                              | 1.730                                     |
| 24                               | 2.230                                              | 2.040                                     | 1.580                                              | 5.640                                              | 60.800                                       | 35.600                                                   | 21.600                                         | 11.200                                             | 7.440                                     | 2.840                                              | 2.190                                              | 1.770                                     |
| 25                               | 2.070                                              | 1.960                                     | 1.650                                              | 5.240                                              | 74.400                                       | 37.700                                                   | 20.600                                         | 10.400                                             | 7.020                                     | 2.800                                              | 2.040                                              | 1.880                                     |
| 26<br>27<br>28<br>29<br>30<br>31 | 2.350<br>2.230<br>2.070<br>2.040<br>1.920<br>1.880 | 1.960<br>1.920<br>1.880<br>1.850<br>2.040 | 1.650<br>1.610<br>1.580<br>1.810<br>2.270<br>2.350 | 4.750<br>4.500<br>4.000<br>4.500<br>5.000<br>4.800 | 87.200<br>98.400<br>78.400                   | 47.300<br>47.500<br>39.600<br>33.500<br>29.300<br>25.600 | 19.500<br>24.200<br>27.800<br>25.000<br>21.900 | 9.660<br>9.310<br>8.580<br>8.120<br>7.800<br>7.380 | 6.840<br>6.300<br>5.580<br>5.120<br>4.650 | 3.060<br>3.100<br>2.840<br>2.800<br>2.760<br>2.720 | 2.720<br>2.630<br>2.510<br>2.270<br>2.630<br>2.630 | 2.040<br>1.960<br>1.960<br>1.880<br>1.810 |

STATE

MARYLAND

MAJOR BASIN

NORTH ATLANTIC

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

POTOMAC RIVER

STATION LOCATION POTOMAC RIVER AT

WILLIAMSPORT, MARYLAND

| DATE                                                                                                           |                               |           | RADI      | DACTIVITY IN V | WATER     |           |       |  | RADIOAG                       | CTIVITY IN PLAI | NKTON (dry) | T | RAI       | OOACTIVITY IN V | VATER         |
|----------------------------------------------------------------------------------------------------------------|-------------------------------|-----------|-----------|----------------|-----------|-----------|-------|--|-------------------------------|-----------------|-------------|---|-----------|-----------------|---------------|
| SAMPLE                                                                                                         | DATE OF<br>DETERMI-<br>NATION |           | ALPHA     |                |           | BETA      |       |  |                               |                 | ACTIVITY    | 1 |           | GROSS ACTIVIT   |               |
| TAKEN                                                                                                          |                               | SUSPENDED | DISSOLVED | TOTAL          | SUSPENDED | DISSOLVED | TOTAL |  | DATE OF<br>DETERMI-<br>NATION | ALPHA           | BETA        | ] | SUSPENDED | DISSOLVED       | TOTAL         |
| MO. DAY YEAR                                                                                                   | MONTH DAY                     | μμc/l     | μμc/I     | μμc/l          | μμς/Ι     | μμc/l     | μμε/Ι |  | MO. DAY                       | ##c/g           | μμc/g       |   | μμε/Ι     | μμc/l           | μμc/ <b>i</b> |
| MO. DAY YEAR 11 28 60* 12 19 60* 1 30 61* 2 27 61* 4 24 61* 5 29 61* 6 26 61* 7 31 61* 9 11 61 9 18 61 9 25 61 | MONTH DAY                     | μμε/I     |           |                |           |           |       |  |                               |                 |             |   |           |                 |               |
|                                                                                                                |                               |           |           |                |           |           |       |  |                               |                 |             |   |           |                 |               |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

MARYLAND

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

POTOMAC RIVER

STATION LOCATION POTOMAC RIVER AT

WILLIAMSPORT, MARYLAND

|                                                                                                                                                                                                                      |                                       |                            |       |                       | ALGAE (A                           | lumber                | per ml.)              |       |                                                                             |         | INE                                           | RT                                                                            |                                        |                                                                      |                                                                          | DI                                           | ATON                                                                                 | 4S                                                                         |                                                          |                                                                                   |                                        | ž.                                                             |                           | MICROIN                      | ERTEBR                       |                              | $\exists$       | 4 % B                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------|-------|-----------------------|------------------------------------|-----------------------|-----------------------|-------|-----------------------------------------------------------------------------|---------|-----------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------|---------------------------|------------------------------|------------------------------|------------------------------|-----------------|-------------------------------------------------------------|
| DATE<br>OF SAMPLE                                                                                                                                                                                                    | =====                                 | BL                         | UE-G  | REEN                  | GREE                               |                       | FLAGEL<br>(Pigme      | LATES | DIATO                                                                       | OMS     | INE<br>DIAT<br>SHE<br>(No. pa                 | LLS<br>er ml.)                                                                |                                        | DOMII<br>(See                                                        | NANT<br>Introd                                                           | SPECI<br>uction                              | ES AN                                                                                | ID PEF<br>de Iden                                                          | RCENT                                                    | 'AGES<br>on*)                                                                     |                                        | SHEATHE<br>MI.)                                                | A. ml.)                   | RS<br>liter)                 | EA<br>liter)                 | DES<br>liter)                | liter.)         | r GENER<br>roducti<br>tificatio                             |
| MONTH<br>DAY<br>YEAR                                                                                                                                                                                                 | TOTA                                  | cocc                       | COID  | FILA-<br>MENT-<br>OUS | COCCOID                            | FILA-<br>MENT-<br>OUS | GREEN                 | OTHER | CENTRIC                                                                     | PENNATE | CENTRIC                                       | PENNATE                                                                       | FIRST                                  | PER-<br>CENTAGE                                                      | SECOND*                                                                  | PER.<br>CENTAGE                              | THIRD#                                                                               | PER.<br>CENTAGE                                                            | FOURTH                                                   | PER-<br>CENTAGE                                                                   | OTHER PER-<br>CENTAGE                  | OTHER MICHOFLAHETOR, FUNCI AND SHEATHED BACTERIA (No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | (No. per liter) | bouinant genera<br>(See Introduction<br>for Identification) |
| 10 31 60<br>11 14 60<br>12 5 60<br>12 19 61<br>1 3 61<br>1 16 61<br>2 20 61<br>3 6 61<br>3 20 61<br>3 20 61<br>3 20 61<br>5 1 61<br>5 1 61<br>5 1 63<br>6 5 63<br>6 7 3 63<br>7 17 63<br>8 7 63<br>8 7 63<br>9 18 63 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 00<br>00<br>00<br>00<br>00 | 20 40 | 20<br>440             | 440<br>70<br>40<br>130<br>60<br>20 |                       | 20<br>20<br>210<br>40 | 40    | 20<br>180<br>70<br>20<br>200<br>200<br>2500<br>170<br>40<br>680<br>40<br>20 |         | 130<br>50<br>70<br>50<br>40<br>20<br>20<br>20 | 160<br>90<br>220<br>1360<br>60<br>370<br>410<br>470<br>220<br>80<br>80<br>190 | 92<br>33<br>33<br>27<br>27<br>16<br>16 | 10<br>20<br>10<br>50<br>10<br>20<br>20<br>20<br>20<br>20<br>20<br>10 | 36<br>36<br>36<br>2<br>2<br>92<br>92<br>92<br>62<br>28<br>16<br>27<br>27 | 10<br>10<br>30<br>20<br>10<br>10<br>20<br>10 | 16<br>70<br>71<br>45<br>31<br>36<br>31<br>31<br>2<br>92<br>16<br>82<br>27<br>2<br>52 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 52<br>33<br>36<br>31<br>92<br>16<br>33<br>32<br>52<br>27 | * 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 50<br>20<br>40<br>60<br>40<br>60<br>50 | 90 20 20 40                                                    | 10                        | 3 5 4 2 1 3 8 5              | 1                            |                              |                 | 7-5-                                                        |

# ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

MARYLAND

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

POTOMAC RIVER

STATION LOCATION POTOMAC RIVER AT

WILLIAMSPORT, MARYLAND

|           |       |                            |                                                                | ,                                                    |                                                            |                                                                    |                     |                                                               |                                                                |            |                                                |                                                           |                       |                                               |                 |                       |                                                      |
|-----------|-------|----------------------------|----------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------|---------------------|---------------------------------------------------------------|----------------------------------------------------------------|------------|------------------------------------------------|-----------------------------------------------------------|-----------------------|-----------------------------------------------|-----------------|-----------------------|------------------------------------------------------|
| DATE OF S |       |                            |                                                                | EX                                                   | TRACTABL                                                   | .ES                                                                |                     |                                                               |                                                                |            | CHLOROF                                        | ORM EXTR                                                  | CTABLES               |                                               | <del></del>     |                       |                                                      |
| BEGINNING | E     | םע                         |                                                                |                                                      |                                                            |                                                                    |                     |                                                               |                                                                |            | NEUTRALS                                       |                                                           | 1                     |                                               |                 |                       |                                                      |
| MONTH     | MONTH | DAY                        | GALLONS<br>FILTERED                                            | TOTAL                                                | CHLORO-<br>FORM                                            | ALCOHOL                                                            | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES                                             | TOTAL                                                          | ALIPHATICS | AROMATICS                                      | OXYGEN-<br>ATED<br>COMPOUNDS                              | LOSS                  | WEAK<br>ACIDS                                 | STRONG<br>ACIDS | BASES                 | Loss                                                 |
| 10        |       | 10 7 5 11 6 7 10 5 10 7 11 | 4878<br>4683<br>4906<br>49203<br>4175<br>4308<br>46257<br>4707 | 159<br>313<br>144<br>197<br>222<br>183<br>192<br>213 | 42<br>166<br>32<br>80<br>53<br>88<br>49<br>65<br>83<br>100 | 117<br>147<br>112<br>117<br>154<br>134<br>127<br>100<br>126<br>113 | 02021832337         | 10<br>48<br>6<br>14<br>11<br>26<br>13<br>15<br>13<br>17<br>21 | 17<br>80<br>16<br>30<br>17<br>15<br>12<br>19<br>18<br>27<br>33 | 121211322  | 1<br>2<br>1<br>2<br>1<br>1<br>1<br>1<br>2<br>1 | 14<br>68<br>13<br>22<br>13<br>11<br>9<br>16<br>133<br>226 | 1 8 1 4 2 0 1 1 1 0 4 | 4<br>17<br>4<br>10<br>6<br>8<br>6<br>10<br>12 | 22165835490     | 1 5 1 2 1 1 0 1 1 2 2 | 8<br>2<br>4<br>16<br>12<br>22<br>15<br>8<br>15<br>15 |



CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

#### STATE

MARYLAND

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

POTOMAC RIVER

STATION LOCATIONPOTOMAC RIVER AT

WILLIAMSPORT, MARYLAND

| DATE                 | T              |                                  |                             |                 |                |                | CHLORINE       | DEMAND          |                              |                   |                    |                  | 40100                  | TURBIDITY     | SULFATES | PHOSPHATES | TOTAL<br>DISSOLVED | COLIFORMS       |
|----------------------|----------------|----------------------------------|-----------------------------|-----------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|---------------|----------|------------|--------------------|-----------------|
| OF SAM               | YEAR           | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/l | Hq              | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | (scale units) | mg/l     | mg/l       | SOUDS<br>mg/l      | per 100 ml.     |
| 11 14<br>11 16       | 60<br>60       | 7.0                              | -                           | 7.3             | _              | -              | _              | =               | -                            | -                 | 68                 | 118              | 5                      | 10            | -        | _          | -                  | 10              |
| 11 21<br>11 22       |                | 7.0                              | -                           | 7.3             | -              | -              | -              | _               | -                            | -                 | 70                 | 124              | 5<br>-                 | 12            | -        | -          | -                  | 4               |
| 11 28<br>11 29       | 60<br>60       | 7.0                              | -                           | 7•5             | -              | -              | -              | -<br>-          | -<br>-                       | -                 | 76<br>-            | 138              | 5                      | 18<br>-       | -        | -          | -                  | 7               |
| 12 5<br>12 6         | 60<br>60       | 4.4                              | -                           | 7.5             | -              | -              | =              | =               | _                            | -                 | 80                 | 152              | 5 -                    | 14<br>-       | -        | _          | _                  | 12              |
| 12 19<br>12 21       | 60<br>60<br>61 | 1.0                              | 1                           | 7.6             | -              | _              | _              | -               | -                            | -                 | 80                 | 156              | 5 -                    | 12            | -        | =          | -                  | 120             |
| 1 9<br>1 10<br>1 16  | 61             | -                                | -                           | 7.3             | -              | _              | _              | _               |                              | -                 | 58<br>-            | 108              | 5                      | 45<br>-       | -        | -          | -                  | 270             |
| 1 17<br>1 23         | 61             | 1.7                              | -                           | 7 -             | -              | -              |                | _               | _                            | -                 | 50                 | 108              | 5 - 5                  | 15<br>-<br>16 | _        | _          | _                  | 120             |
| 1 24<br>2 6          | 61<br>61       | • 6<br>-                         | -                           | 7•3             |                | -              | -<br>-         | -               | _                            | _                 | 34<br>-<br>52      | 102<br>-<br>86   | 5                      | 8             | _        | _          |                    | 24              |
| 2 7<br>2 13          | 61<br>61       | •6                               | -                           | 7.1             | -              | -              | _              | -               | =                            | =                 | 68                 | 122              | 5                      | 14            | -        | _          |                    | 42              |
| 2 14 2 20            | 61<br>61       | •6<br>-<br>1•7                   | 1 1 1                       | 7•2<br>-<br>6•9 | -              | -              | -              | _<br>_          | -                            | -                 | 22                 | 46               | _                      | 300           | -        |            | _                  | 1100            |
| 2 21<br>2 27<br>2 28 | 61             | 6.1                              | -                           | 7.0             | -              | -              | -              | _               | -                            | _                 | 10                 | -<br>36          | _                      | 150           | _        | _          | _                  | 1700            |
| 3 13 3 14            | 61             | 6.7                              | -                           | 7.2             | -              | _              | _              | <u> </u>        | _                            | _                 | 32                 | -<br>68          |                        | 10            | -        | -          |                    | 230<br>-<br>170 |
| 3 20<br>3 21         | 61<br>61       | 5.6                              | -                           | 7•3             | -              | _              | _              | _               | -                            | _                 | 28                 | 60               | 5                      | 35<br>25      | =        | _          | _                  |                 |
| 3 28<br>4 3          | 61<br>61       | 7.2                              | -                           | 7.3             | -              | -              | -              | _               | _                            | -<br>-            | 24<br>-<br>26      | 50<br>-<br>60    | -                      | 18            | _        | _          |                    | 88              |
|                      | 61             | 6.7                              | -                           | 7•3             | -              | -              | _              | -               | -                            | _                 | -                  | -                | -                      | -             | _        | _          | _                  | 530<br>9000     |
| 4 17<br>4 18<br>4 24 |                | 8.9                              | -                           | 7.1             | -              | -              | -              | -               | -                            | -                 | 22                 | 44               | -                      | 150           | -        | 1          | _                  | 81              |
| 4 25<br>5 1          | 61             | 13.9                             | -                           | 7.3             | -              | -              | _<br>_         | _               | _                            | -                 | 32                 | 70               | -                      | 12            | -        | _          | -                  | 240             |
| 5 8<br>5 9           | 61             | -<br>13.9                        | -                           | 7•3             |                | -              | -              | _               | =                            | -                 | 42                 | 76               | 1                      | 12            | _        |            | _                  | 10              |

STATE

MARYLAND

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

POTOMAC RIVER

STATION LOCATIONPOTOMAC RIVER AT

WILLIAMSPORT, MARYLAND

1.7

| Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Colo | DATE<br>OF SAMPLE                                                                                                                                                                                                                                                   | темр.                                                                                                                          | DISSOLVED |                                     |  | CHLORINE | DEMAND |          |   |                                                                            |              |                                      | ·                                            | <u> </u> |           |                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------|--|----------|--------|----------|---|----------------------------------------------------------------------------|--------------|--------------------------------------|----------------------------------------------|----------|-----------|---------------------------------------------------------------------------------------------------------------|
| 6   5   61   22.0   - 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DAY YEAR                                                                                                                                                                                                                                                            | (Degrees                                                                                                                       | OXYGEN    | рН                                  |  |          | 1      | NITROGEN | l |                                                                            |              | l                                    |                                              |          | DISSOLVED | COLIFORMS<br>per 100 ml.                                                                                      |
| 8       9       61       26.0       -       7.6       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - </td <td>5 15 61<br/>5 17 61<br/>6 7 61<br/>6 12 61<br/>6 12 61<br/>6 13 61<br/>6 21 61<br/>6 26 61<br/>7 10 61<br/>7 17 61<br/>7 19 61<br/>7 17 61<br/>7 19 61<br/>7 19 61<br/>8 26 61<br/>8 27 61<br/>8 16 61<br/>8 23 61<br/>8 28 61<br/>8 29 61<br/>9 11 61<br/>9 13 61<br/>9 13 61<br/>9 19 61</td> <td>1 18.0<br/>1 22.0<br/>1 23.9<br/>1 24.0<br/>1 21.7<br/>1 22.8<br/>1 25.5<br/>1 26.0<br/>1 24.5<br/>1 26.7<br/>2 26.7<br/>2 26.7<br/>2 21.1</td> <td></td> <td>7.5<br/>7.4<br/>7.5<br/>7.7<br/>7.6<br/></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>36<br/>46<br/>48<br/>58<br/>76<br/>68<br/>76<br/>82<br/>84<br/>70<br/>78<br/>76<br/>80</td> <td>64<br/>84<br/></td> <td>5 - 5 - 5 - 5 - 5 - 5 - 10 - 10 - 10</td> <td>10 - 6 - 8 - 5 - 1 - 2 - 4 - 4 - 2 8 - 8 - 1</td> <td></td> <td></td> <td>2300<br/>200<br/>300<br/>10<br/>200<br/>1200<br/>76<br/>160<br/>130<br/>270<br/>90<br/>68<br/>-<br/>470<br/>670<br/>-<br/>560</td>                                                                                                                                                                    | 5 15 61<br>5 17 61<br>6 7 61<br>6 12 61<br>6 12 61<br>6 13 61<br>6 21 61<br>6 26 61<br>7 10 61<br>7 17 61<br>7 19 61<br>7 17 61<br>7 19 61<br>7 19 61<br>8 26 61<br>8 27 61<br>8 16 61<br>8 23 61<br>8 28 61<br>8 29 61<br>9 11 61<br>9 13 61<br>9 13 61<br>9 19 61 | 1 18.0<br>1 22.0<br>1 23.9<br>1 24.0<br>1 21.7<br>1 22.8<br>1 25.5<br>1 26.0<br>1 24.5<br>1 26.7<br>2 26.7<br>2 26.7<br>2 21.1 |           | 7.5<br>7.4<br>7.5<br>7.7<br>7.6<br> |  |          |        |          |   | 36<br>46<br>48<br>58<br>76<br>68<br>76<br>82<br>84<br>70<br>78<br>76<br>80 | 64<br>84<br> | 5 - 5 - 5 - 5 - 5 - 5 - 10 - 10 - 10 | 10 - 6 - 8 - 5 - 1 - 2 - 4 - 4 - 2 8 - 8 - 1 |          |           | 2300<br>200<br>300<br>10<br>200<br>1200<br>76<br>160<br>130<br>270<br>90<br>68<br>-<br>470<br>670<br>-<br>560 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Computed Data for Williamsport, Maryland Operated by U.S. Geological Survey STATE

Maryland

MAJOR BASIN

North Atlantic

MINOR BASIN

Potomac River

STATION LOCATION

Potomac River at

Williamsport, Maryland

| Day      | October | November | December | January | February | March  | April  | May        | June   | July    | August | September      |
|----------|---------|----------|----------|---------|----------|--------|--------|------------|--------|---------|--------|----------------|
|          |         |          |          |         |          |        |        |            | 7 (10  | 5.010   | 3.100  | 2.860          |
|          | 2.840   | 2.210    | 2.050    | 3.350   | 3.100    | 46.400 | 23.500 | 19.000     | 7.640  |         | 2.940  | 2.800          |
| 1        | 2.840   | 2.470    | 2.100    | 4.600   | 3.090    | 35.800 | 27.400 | 17.900     | 7.380  | 4.470   | 2.900  | 2.660          |
| 2        |         | 2.480    | 2.100    | 5.140   | 3.090    | 28.800 | 30.500 | 17.500     | 7.210  | 4.210   |        | 2.430          |
| 3        | 2.770   |          | 2.080    | 5.100   | 3.200    | 24.400 | 26,800 | 17.100     | 7.270  | 4.080   | 3.140  | 2.400          |
| 4        | 2.730   | 2.530    |          | 5.000   | 3.320    | 23.300 | 23.500 | 16.000     | 8.380  | 3.890   | 2.880  | 2.400          |
| 5        | 2.640   | 2.500    | 2.100    | 5.000   | 0عر در   | 25.500 | -3.7   |            |        |         |        |                |
|          |         |          |          | 1. 700  | 2 1,00   | 28.100 | 20.800 | 14.800     | 8.510  | 4.090   | 3.510  | 2.750          |
| 6        | 2.620   | 2.520    | 2.070    | 4.720   | 3.480    |        | 18.400 | 14.100     | 7.930  | 4.110   | 3.920  | 3.350          |
| 7        | 2.460   | 2.610    | 2.000    | 4.400   | 3.740    | 31.000 |        | 15.100     | 7.500  | 4.320   | 4.740  | 3.770<br>4.440 |
| 8        | 2.360   | 2.560    | 2.000    | 4.270   | 4.320    | 31.500 | 16,400 |            | 8.110  | 4.360   | 3.890  | 4.440          |
| 9        | 2.250   | 2,510    | 1.980    | 3.760   | 4.900    | 30.500 | 14.800 | 19.600     |        |         | 3.560  | 3.700          |
| 10       | 2.370   | 2.440    | 1,960    | 4.260   | 4.900    | 37.100 | 19.000 | 21.100     | 9.040  | 4.260   | 3.700  | 2.100          |
| 10       | 2.314   |          | •        |         |          |        |        |            |        | 1. 1.60 | 3.270  | 3.930          |
| 11       | 2.370   | 2.460    | 1.960    | 4.750   | 4.900    | 35.300 | 29.700 | 20.400     | 12.700 | 4.460   |        | 3.750          |
|          | 2.360   | 2,480    | 1.900    | 4.900   | 4.900    | 28.400 | 38.400 | 21.900     | 12.900 | 4.020   | 3.380  | 3.460          |
| 12       |         | 2.440    | 1.880    | 4.500   | 5.150    | 23.800 | 49.600 | 31.200     | 12.000 | 3.630   | 3.260  | 3.400          |
| 13<br>14 | 2.310   |          | 1.860    | 4.120   | 5.500    | 21.400 | 93.000 | 37.900     | 10.000 | 3.830   | 2.710  | 3.120          |
|          | 2.380   | 2.510    | 2.000    | 3.960   | 6.200    | 19.700 | 80.500 | 37.600     | 9.460  | 4.230   | 3.770  | 2.630          |
| 15       | 2.290   | 2.830    | 2.000    | 3.500   | 0.200    | ±). 00 | 00.7   | <b>3</b> 1 | -      |         |        |                |
|          |         |          |          | 1, 520  | 7.600    | 18.500 | 62.700 | 29.900     | 9.740  | 3.750   | 3.770  | 2.380          |
| 16       | 2.340   | 2.750    | 2.200    | 4.530   |          | 16.800 | 65.800 | 24.600     | 9.300  | 4.200   | 3.210  | 2.250          |
| 17       | 2.100   | 2.640    | 2.100    | 5.360   | 11.900   |        | 73.600 | 21.700     | 8.330  | 4.200   | 2.910  | 2.020          |
| 18       | 2.110   | 2.440    | 2.090    | 6.170   | 21.800   | 15.200 |        |            | 7.240  | 3.950   | 2.720  | 1.920          |
| 19       | 2,180   | 2.470    | 2.080    | 7.640   | 53.000   | 14.900 | 53.500 | 19.000     |        | 3.810   | 2.700  | 1.870          |
| 20       | 2.470   | 2.360    | 2.180    | 7.700   | 108.900  | 16.300 | 39.000 | 17.000     | 6.410  | 3.010   | 2.100  | 2.010          |
|          | •       | _        |          |         |          |        |        | 2 5 000    | r 900  | 3.440   | 2.510  | 2,020          |
| 21       | 2.500   | 2.320    | 2.080    | 6.180   | 105.700  | 19.300 | 30.100 | 15.800     | 5.820  | 3.440   | 2.720  | 2.240          |
| 22       | 2.620   | 2.240    | 1.970    | 5.390   | 60.100   | 21.100 | 25.400 | 14.500     | 6.320  | 3.440   |        |                |
|          | 2.450   | 2.180    | 1.860    | 4.780   | 49.900   | 25.400 | 23.100 | 13.100     | 7.910  | 3.300   | 2.390  | 2.450          |
| 23<br>24 | 2.560   | 2.120    | 1.960    | 4.330   | 58.800   | 33.400 | 22.200 | 12.100     | 7.960  | 3.230   | 2.090  | 2.880          |
| 24       |         | 2.100    | 1.910    | 4.000   | 72.500   | 41.300 | 20.600 | 11.200     | 7.780  | 4.000   | 2.240  | 2.770          |
| 25       | 2.770   | 2.100    | 1.910    | 4.000   | 12.500   | 121000 |        |            | • •    |         |        | _              |
| ~ (      | 0.500   | 2.060    | 1.950    | 3.770   | 86,000   | 50.300 | 20.200 | 10.500     | 7.010  | 3.750   | 2.760  | 2.610          |
| 26       | 2.530   |          |          |         | 103.100  | 46.500 | 24.900 | 9.790      | 6.330  | 3.560   | 2.590  | 2.550          |
| 27       | 2.380   | 2.040    | 2.030    | 3.550   |          | 37.500 | 26.000 | 9.130      | 6.010  | 3.210   | 2.690  | 2.440          |
| 28       | 2.300   | 2.050    | 2.100    | 3.430   | 67.300   |        |        | 8.740      | 5.380  | 3.240   | 3.990  | 2.200          |
| 29       | 2.200   | 2.130    | 2.320    | 3.320   |          | 32.500 | 22.700 |            |        |         | 3.480  | 2.080          |
| 29<br>30 | 2.180   | 2.200    | 2.540    | 3.210   |          | 28,100 | 20.400 | 8.410      | 5.130  | 3.170   |        | 2.000          |
| 31       | 2.130   |          | 2.350    | 3.200   |          | 24.600 |        | 7.820      |        | 3.370   | 2.840  |                |

Computed as sum of Potomac River at Point of Rocks, Maryland plus Shenandoah River at Millville, West Virginia.

STATE

· MINNESOTA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

RAINY RIVER

STATION LOCATION RAINY RIVER AT

BAUDETTE, MINNESOTA

| DAT  | ΤE |      |           |                        |           | RADIO     | DACTIVITY IN | WATER     |           |       | <br>RADIOA                    | CTIVITY IN PLAN | KTON (dry) |   | RAD       | DOACTIVITY IN V | VATER |
|------|----|------|-----------|------------------------|-----------|-----------|--------------|-----------|-----------|-------|-------------------------------|-----------------|------------|---|-----------|-----------------|-------|
| SAME |    |      | DA        | TE OF                  |           | ALPHA     |              |           | BETA      |       |                               | GROSS /         |            | . |           | GROSS ACTIVIT   |       |
| TAKE | EN |      | DET<br>NA | TE OF<br>ERMI-<br>TION | SUSPENDED | DISSOLVED | TOTAL        | SUSPENDED | DISSOLVED | TOTAL | DATE OF<br>DETERMI-<br>NATION | ALPHA           | BETA       | Ī | SUSPENDED | DISSOLVED       | TOTAL |
| . DA | Υ  | YEAR | MONTH     | DAY                    | μμε/Ι     | μμς/Ι     | μμε/Ι        | μμε/1     | μμε/Ι     | μμε/Ι | <br>MO. DAY                   | μμc/g           | μμc/g      |   | μμε/Ι     | μμε/Ι           | μμς/ί |
| 27   | e  | 51   | 10        | 13                     | 0         | 0         | 0            | 14        | 32        | 46    |                               |                 |            |   | :         |                 |       |
|      |    |      |           |                        |           |           |              |           |           |       |                               |                 |            |   |           |                 |       |
|      |    |      |           |                        |           |           |              |           |           |       |                               |                 |            |   |           |                 |       |
|      |    |      |           |                        |           |           |              |           |           |       |                               |                 |            |   |           |                 |       |
|      |    |      |           |                        |           |           |              |           |           |       |                               |                 |            |   |           |                 |       |
|      |    |      |           |                        |           |           |              |           |           |       |                               |                 |            |   |           |                 |       |
|      |    |      |           |                        |           |           |              |           |           |       |                               |                 |            |   |           |                 |       |
|      |    |      |           |                        |           |           |              |           |           |       |                               |                 |            |   |           |                 |       |
|      |    |      |           |                        |           |           |              |           |           |       |                               |                 |            |   |           |                 |       |
|      |    |      |           |                        |           |           |              |           |           |       |                               |                 |            |   |           |                 |       |
|      |    |      |           |                        |           |           |              |           |           |       |                               |                 |            |   |           |                 |       |
|      |    |      |           |                        |           |           |              |           |           |       |                               |                 |            |   |           |                 |       |
|      |    |      |           |                        |           |           |              |           |           |       |                               |                 |            |   |           |                 |       |

STATE

MINNESOTA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

RAINY RIVER

PLANKTON POPULATION NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATION LOCATION RAINY RIVER AT

BAUDETTE, MINNESOTA

|       |        |      |       |         |                       | ALGAE (2 | Number                | per ml.)         |                 |         |         | INE                  | RT                           |       |              |                | DI              | ATO      | us.              |         |                                           | 1                     | ٠,,                                                            | Ī                   | MICROIN                      | VERTEBR                      | ATES                         | $\Box$     |                                                             |
|-------|--------|------|-------|---------|-----------------------|----------|-----------------------|------------------|-----------------|---------|---------|----------------------|------------------------------|-------|--------------|----------------|-----------------|----------|------------------|---------|-------------------------------------------|-----------------------|----------------------------------------------------------------|---------------------|------------------------------|------------------------------|------------------------------|------------|-------------------------------------------------------------|
| OF    | DATI   |      |       | BLUE-   | GREEN                 | GREE     |                       | FLAGEL<br>(Pigme | LATES<br>ented) | DIAT    | омѕ     | DIA<br>SHE<br>(No. p | RT<br>TOM<br>LLLS<br>er ml.) |       | DOMI<br>(See | NANT<br>Introd | SPECI           | IES AN   | ID PEI           | RCENT   | rages<br>ion*)                            |                       | ОР <b>еланкто</b><br>Виелтиер<br><i>ml.)</i>                   | A<br>mL.)           | S<br>liter)                  | EA<br>liter)                 | ES<br>liter)                 | ter)       | GENERA<br>oduction<br>ification                             |
| MONTH | DAY    | YEAR | TOTAL | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID  | FILA-<br>MENT-<br>OUS | GREEN            | OTHER           | CENTRIC | PENNATE | CENTRIC              | PENNATE                      | FIRST | PER-         | SECOND#        | PER.<br>CENTAGE | THIRD#   | PER-<br>CENTAGE  | FOURTH# | PER.<br>CENTAGE                           | OTHER PER-<br>CENTAGE | OTHER MICROPLANKTON, FUNGI AND SHEATHED BACTERIA (No. per ml.) | PROTOZO<br>(No. per | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ANIM | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
|       | 27     |      | 700   |         |                       | 20       |                       |                  |                 | 270     | 410     | 40                   | 120                          | 16    | 10           | 83             | 10              | 60       | 10               | 56      | 10                                        | 50                    | 990                                                            |                     | 39                           | 1                            | 1                            | 1          | 7                                                           |
| •     |        |      |       |         |                       | ·        |                       |                  |                 |         |         |                      |                              |       |              |                |                 |          |                  |         |                                           | 1                     |                                                                |                     |                              |                              |                              |            |                                                             |
|       |        |      |       |         |                       |          |                       |                  |                 |         |         |                      |                              |       |              |                |                 |          |                  |         | [<br>[<br>]<br>]<br>]<br>[<br>]<br>[<br>] |                       |                                                                |                     |                              |                              |                              |            | İ                                                           |
|       | i<br>i |      |       |         |                       |          |                       |                  |                 |         |         |                      |                              |       |              |                |                 |          |                  |         |                                           |                       |                                                                |                     |                              |                              |                              |            |                                                             |
|       |        |      |       |         |                       |          |                       |                  |                 |         | 3       |                      |                              |       |              |                |                 |          | ]<br>[<br>]<br>] |         |                                           |                       |                                                                |                     |                              |                              |                              |            |                                                             |
|       |        |      |       |         |                       |          |                       |                  |                 |         |         |                      |                              |       |              |                |                 |          |                  |         |                                           |                       |                                                                |                     |                              |                              |                              |            |                                                             |
|       |        |      |       |         |                       |          |                       |                  |                 |         |         |                      |                              |       |              |                |                 |          |                  |         |                                           |                       |                                                                |                     | J                            |                              |                              |            |                                                             |
|       |        |      |       |         |                       |          |                       |                  |                 |         |         |                      |                              |       |              |                |                 | <u>.</u> |                  |         |                                           |                       | <br>                                                           |                     |                              |                              |                              |            |                                                             |
|       |        |      |       |         |                       |          |                       |                  |                 |         |         |                      |                              |       |              |                |                 |          |                  |         |                                           |                       |                                                                |                     |                              |                              |                              |            |                                                             |
|       |        |      |       |         |                       |          |                       |                  |                 |         |         |                      |                              |       |              |                |                 |          |                  |         |                                           |                       |                                                                |                     |                              |                              |                              |            |                                                             |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Manitou Rapids, Minnesota Operated by U.S. Geological Survey

STATE

Minnesota

MAJOR BASIN

Upper Mississippi River

MINOR BASIN

Rainy River

STATION LOCATION

Rainy River at

Baudette, Minnesota

| Day                              | October                                            | November                                  | December                                           | January                                            | February                                  | March                                                   | April                                          | May                                                      | June                                           | July                                               | August                                             | September                                    |
|----------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|---------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------|
| 1                                | 8.530                                              | 6.530                                     | 6.250                                              | 5.600                                              | 6.400                                     | 7.150                                                   | 9.780                                          | 16.700                                                   | 13.100                                         | 8.350                                              | 7.940                                              | 7.440                                        |
| 2                                | 8.160                                              | 6.140                                     | 5.990                                              | 5.180                                              | 7.220                                     | 6.540                                                   | 9.430                                          | 15.000                                                   | 15.600                                         | 5.760                                              | 8.080                                              | 8.120                                        |
| 3                                | 5.160                                              | 5.250                                     | 5.980                                              | 6.500                                              | 7.790                                     | 6.500                                                   | 9.330                                          | 14.200                                                   | 19.300                                         | 5.060                                              | 8.660                                              | 5.810                                        |
| 4                                | 6.050                                              | 5.030                                     | 4.000                                              | 6.120                                              | 7.200                                     | 6.770                                                   | 8.930                                          | 14.600                                                   | 20.500                                         | 4.100                                              | 8.750                                              | 4.180                                        |
| 5                                | 7.940                                              | 5.480                                     | 3.450                                              | 6.250                                              | 6.300                                     | 7.990                                                   | 8.510                                          | 14.400                                                   | 20.600                                         | 3.900                                              | 8.840                                              | 3.710                                        |
| 6<br>7<br>8<br>9                 | 8.530<br>8.290<br>8.040<br>6.030<br>4.100          | 4.500<br>4.310<br>6.490<br>7.160<br>7.000 | 6.500<br>7.700<br>7.400<br>6.800<br>6.700          | 6.450<br>6.650<br>4.180<br>4.400<br>5.500          | 7.150<br>7.660<br>7.790<br>7.470<br>7.460 | 6.310<br>6.940<br>6.290<br>6.320<br>7.320               | 8.160<br>8.200<br>8.440<br>8.100<br>8.350      | 14.000<br>14.100<br>14.700<br>15.500<br>15.800           | 20.400<br>20.000<br>19.600<br>19.400<br>19.500 | 6.380<br>8.160<br>8.180<br>7.160<br>4.740          | 7.860<br>5.840<br>5.350<br>7.500<br>8.490          | 6.770<br>7.120<br>7.680<br>7.780<br>7.680    |
| 11                               | 5.700                                              | 6.590                                     | 4.800                                              | 6.190                                              | 7.750                                     | 7.130                                                   | 8.510                                          | 15.500                                                   | 19.500                                         | 4.500                                              | 8.750                                              | 5.330                                        |
| 12                               | 6.720                                              | 6.570                                     | 3.960                                              | 6.180                                              | 7.160                                     | 5.630                                                   | 8.750                                          | 15.300                                                   | 19.400                                         | 6.720                                              | 8.570                                              | 5.570                                        |
| 13                               | 7.200                                              | 4.840                                     | 6.300                                              | 6.110                                              | 6.740                                     | 7.280                                                   | 8.710                                          | 15.400                                                   | 19.100                                         | 7.920                                              | 8.000                                              | 8.730                                        |
| 14                               | 7.280                                              | 4.210                                     | 7.180                                              | 6.220                                              | 7.650                                     | 7.230                                                   | 8.530                                          | 16.200                                                   | 19.200                                         | 8.000                                              | 7.020                                              | 10.900                                       |
| 15                               | 6.590                                              | 4.290                                     | 6.780                                              | 4.000                                              | 7.470                                     | 6.810                                                   | 8.490                                          | 18.500                                                   | 19.000                                         | 7.300                                              | 7.960                                              | 11.600                                       |
| 16                               | 4.780                                              | 5.720                                     | 7.120                                              | 2.830                                              | 7.810                                     | 6.850                                                   | 9.360                                          | 21.200                                                   | 18.900                                         | 7.200                                              | 8.660                                              | 12.000                                       |
| 17                               | 4.460                                              | 6.100                                     | 6.790                                              | 6.700                                              | 7.940                                     | 6.670                                                   | 9.940                                          | 24.300                                                   | 18.100                                         | 5.570                                              | 8.330                                              | 11.500                                       |
| 18                               | 6.280                                              | 5.670                                     | 4.000                                              | 6.850                                              | 7.530                                     | 6.810                                                   | 10.600                                         | 25.300                                                   | 13.200                                         | 5.300                                              | 8.880                                              | 8.100                                        |
| 19                               | 7.740                                              | 5.760                                     | 3.000                                              | 6.300                                              | 7.390                                     | 7.560                                                   | 11.400                                         | 24.300                                                   | 10.600                                         | 7.800                                              | 8.950                                              | 6.960                                        |
| 20                               | 7.700                                              | 5.690                                     | 5.300                                              | 5.900                                              | 6.500                                     | 7.810                                                   | 12.000                                         | 22.500                                                   | 10.100                                         | 8.790                                              | 8.550                                              | 9.500                                        |
| 21                               | 8.350                                              | 4.580                                     | 6.120                                              | 6.690                                              | 7.100                                     | 7.580                                                   | 14.700                                         | 20.700                                                   | 10.400                                         | 8.930                                              | 7.080                                              | 10.600                                       |
| 22                               | 8.330                                              | 5.840                                     | 5.070                                              | 5.320                                              | 6.330                                     | 7.210                                                   | 18.800                                         | 19.300                                                   | 9.660                                          | 9.080                                              | 5.060                                              | 11.100                                       |
| 23                               | 5.790                                              | 6.700                                     | 6.040                                              | 7.820                                              | 7.580                                     | 6.970                                                   | 20.600                                         | 18.100                                                   | 8.950                                          | 9.180                                              | 6.960                                              | 11.000                                       |
| 24                               | 4.160                                              | 6.300                                     | 6.400                                              | 7.000                                              | 7.670                                     | 8.250                                                   | 19.100                                         | 16.900                                                   | 8.790                                          | 9.430                                              | 7.860                                              | 10.500                                       |
| 25                               | 5.860                                              | 4.720                                     | 5.210                                              | 6.070                                              | 6.930                                     | 8.770                                                   | 20.700                                         | 16.100                                                   | 8.060                                          | 8.060                                              | 8.310                                              | 8.270                                        |
| 26<br>27<br>28<br>29<br>30<br>31 | 7.460<br>7.920<br>7.940<br>7.760<br>5.960<br>4.420 | 4.720<br>4.260<br>4.450<br>5.960<br>6.800 | 4.700<br>5.100<br>6.400<br>7.030<br>6.190<br>6.810 | 6.200<br>6.500<br>7.600<br>5.440<br>5.100<br>7.000 | 6.680<br>6.390<br>7.090                   | 9.640<br>10.700<br>10.400<br>10.600<br>10.400<br>10.300 | 20.900<br>20.600<br>19.800<br>18.700<br>17.700 | 16.800<br>16.700<br>16.200<br>15.700<br>14.200<br>12.800 | 6.140<br>7.000<br>7.940<br>8.770<br>8.950      | 8.310<br>9.080<br>8.930<br>8.900<br>8.970<br>9.500 | 8.270<br>7.900<br>5.880<br>4.360<br>6.640<br>7.100 | 8.620<br>9.980<br>10.600<br>10.700<br>11.000 |

RADIOACTIVITY DETERMINATIONS

STATE

NORTH DAKOTA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

RED RIVER OF THE NORTH .

STATION LOCATION RED RIVER AT

GRAND FORKS, NORTH DAKOTA

| DATE            |                     |           | RADI      | OACTIVITY IN | WATER     |           |        | Т — | n        | 1040 | TIMEN 18 2 2 2 |                    |     |           |                 |      |
|-----------------|---------------------|-----------|-----------|--------------|-----------|-----------|--------|-----|----------|------|----------------|--------------------|-----|-----------|-----------------|------|
| SAMPLE<br>TAKEN | DATE OF<br>DETERMI. |           | ALPHA     |              |           | BETA      |        | 1   | DATE     |      |                | ANKTON (dry)       | 4   | RAI       | DOACTIVITY IN W | ATER |
|                 | NATION              | SUSPENDED | DISSOLVED | TOTAL        | SUSPENDED | DISSOLVED | TOTAL  | 1   | DETER    | vi ├ |                | ACTIVITY           | 4   |           | GROSS ACTIVITY  | Υ    |
| MO. DAY YEAR    | MONTH DAY           | μμc/l     | μμς/      | μμς/         | μμς/1     | μμς/Ι     | μμε/Ι  | -   | MO. D.   |      | ALPHA          | BETA               | _   | SUSPENDED | DISSOLVED       | TOTA |
| 0 12 60         |                     |           |           |              |           |           | PF-0/1 | +   | MO.   D. | AT   | μμc/g          | μμ <sub>c</sub> /g |     | μμc/l     | μμc/i           | μμε/ |
| 0 12 60         | 10 21               | 0         | 0         | 0            | 0         | 5         | 5      | 1   |          |      |                |                    |     |           |                 |      |
| 0 18 60         | 11 3                | 1         | 4         | 5            |           | 5         | 5      | I   | ľ        |      |                |                    | 1   | 1         |                 |      |
| 1 2 60          | 11 23               | 0         | 3         | 3            | 0         |           | -      | j   |          |      |                | i                  | 1   |           |                 |      |
| 1 10 60         | 11 29               | 1         | 1         | 2            | 0         | 0         | 0      |     |          |      |                |                    | İ   | 1 .       |                 |      |
| 1 30 60         | 12 9                | ōi        | ī         | 1            |           | 0         | 0      | 1   |          |      |                |                    | 1   |           |                 |      |
| 2 7 60          | 12 27               | ŏ         | 7         |              | 0         | 0         | ٥      | 1   | l        | 1    |                | 1                  | 1   | 1         | i               |      |
| 2 15 60         | 1 10                | ő         |           | 7            | 0         | 0         | ٥      | 1   | ł        |      |                |                    | ł   | 1         |                 |      |
| 2 21 60         | 1 10                | - 1       | 0         | 0            | 0         | 19        | 19     | l   |          |      |                |                    |     |           | ļ               |      |
| 2 29 60         |                     | 0         | 4         | 4            | 0         | 12        | 12     |     | ĺ        | - 1  |                |                    | 1   |           |                 |      |
|                 | 1 11                | 1         | 7         | 8            | 0         | 7         | 7      | i   | 1        | -    |                |                    | ľ   |           | 1               |      |
|                 | 1 20                | 0         | 7         | 7            | lol       | ıi l      | 11     | 1   |          |      |                | }                  | 1   |           |                 |      |
| 1 11 61         | 2 3                 | 0         | 4         | 4            | ŏ         | ō         |        |     |          | Ì    |                |                    | 1   |           | 1               |      |
| 1 18 61         | 2 7                 | 0         | 4         | 4            | 0         | -         | 0      | 1   |          |      |                | l                  |     | 1 }       | 1               |      |
| 1 25 61         | 2 6                 | ō         | i         |              |           | 18        | 18     | 1   |          |      |                |                    | i   | 1         |                 |      |
| 2 2 61          | 2 16                | ŏ         |           | 1            | 0         | 0         | , 0    |     |          | 1    |                |                    | 1   | 1 1       | İ               |      |
| 2 8 61          | 2 23                | -         | 0         | 0            | 1         | 0         | 1      | ĺ   |          | - }  |                |                    |     | 1         |                 |      |
|                 |                     | 0         | 2         | 2            | 0         | 0         | 0      |     |          |      |                |                    | i   | 1         |                 |      |
|                 | 3 6                 | 0         | 0         | 0 1          | 0         | o l       | Õ      |     |          | İ    |                | 1                  | 1   | 1         |                 |      |
| 2 22 61         | 3 7                 | 0         | 0         | 0            | ŏ         | ŏ         | -      |     |          |      |                | l                  |     | 1         |                 |      |
| 3 1 61          | 3 17                | 0         | 1         | i            | 0         |           | 0      |     |          |      |                | 1                  |     | 1         | i               |      |
| 8 61            | 3 28                | ō         | 2         |              | - 1       | 0         | 0      | i   |          | ĺ    |                |                    | 1   |           |                 |      |
| 3 15 61         | 4 3                 | ŏ         |           | 2            | 0         | 3         | 3      |     |          | 1    |                |                    |     |           |                 |      |
| 3 22 61         | 4 7                 | -         | 2         | 2            | 0         | 2         | 2      |     |          | ļ    |                |                    | 1   |           | Ì               |      |
|                 |                     | 0         | 2         | 2            | 0         | 14        | 14     | ĺ   |          |      |                |                    | 1   | 1         |                 |      |
|                 | 4 19                | 0         | 2         | 2            | 4         | 0         | 4      | - 1 |          | -    |                | ļ                  | 1   | 1         |                 |      |
| 12 61           | 5 2                 | 0         | 0         | 0 1          | 0         | i         | ĭ      |     |          |      |                |                    | i   | 1 1       | İ               |      |
| 19 61           | 5 22                | 0         | 2         | 2            | i         |           |        | l   |          | İ    |                |                    | Į   | 1         | ļ               |      |
| 27 61           | 5 15                | 1         | ō         | ī            | -         | 1         | 2      |     |          |      |                |                    |     |           |                 |      |
| 1 61*           | 6 13                | ō         | 2         |              | 0         | 6         | 6      |     |          | ĺ    |                |                    | 1   | 1         |                 |      |
| 22 61*          | 7 25                | ŏ         |           | 2            | 0         | 0         | 0      | - ! |          |      |                |                    | 1   | 1         |                 |      |
| 31 61*          | - 1                 |           | 1         | 1            | 0         | 0         | 0 1    |     |          |      |                |                    |     |           |                 |      |
|                 | 1                   | 0         | 0         | 0            | 0         | 30        | 30     | ı   |          | ſ    |                |                    | İ   | i i       | i               |      |
| 0 0 1           | 9 29                | -         | -         | ~            | 0         | o l       | 0      | - 1 |          | 1    |                |                    | l   |           |                 |      |
| 1               | 10 9                | -         | -         | -            | o l       | 63        | 63     | Ĩ   |          |      |                |                    | ĺ   |           |                 |      |
| 27 61 :         | 10 10               |           | ~         | _            | 9         | 21        |        | - 1 |          | 1    |                |                    | 1   | l i       | İ               |      |
| 1               | 1                   |           | į.        | į            | ,         | 41        | 30     | - 1 |          | 1    |                |                    |     |           |                 |      |
|                 |                     |           | - 1       |              | 1         |           | i      | ì   |          | ŀ    |                |                    | 1   |           | [               |      |
| 1               | ļ                   |           | ĺ         | j            | 1         |           | ļ      | ļ   |          |      |                |                    |     |           | 1               |      |
| 1               |                     | ľ         | ĺ         | j            |           |           | 1      | - 1 |          |      |                |                    |     |           |                 |      |
| 1               | 1                   |           | j         | J            |           | 1         | 1      |     |          | 1    |                |                    |     |           |                 |      |
|                 |                     | 1         |           | j            |           |           | l l    | - 1 |          |      | j              |                    |     |           |                 |      |
| ı               | İ                   | 1         |           | I            |           | 1         | ĺ      |     |          | 1    |                |                    | [   | į.        |                 |      |
| l               | 1                   |           | ŀ         | 1            |           |           | ŀ      | - 1 |          |      |                |                    |     |           |                 |      |
| ľ               | ĺ                   | !         | 1         | 1            |           |           | ļ      | - 1 |          | 1    |                |                    |     |           |                 |      |
|                 | 1                   | 1         | 1         |              |           | i i       | l      | ]   |          |      |                |                    |     |           |                 |      |
|                 |                     |           | l         |              |           | ı         | i      | - 1 |          |      |                |                    |     |           |                 |      |
| i               |                     |           | 1         | 1            | 1         |           |        | i   |          | 1    |                |                    | ı ! |           |                 |      |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

NORTH DAKOTA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

RED RIVER OF THE NORTH

STATION LOCATION RED RIVER AT

GRAND FORKS, NORTH DAKOTA

|                      |                                                                                                                             |                                   |                                       | ALGAE (A                                                                                              | lumber                | per ml.)                                                                |                                                  |                                                                                                                                  |                                                                                                     | INE                                       | RT<br>TOM                                                                    | l                                                                               |                                                                      |                                                                                  | DI               | ATO                                    | us                     |                            |                 |                                                                      | į.                                               |                     | MICROIN                                                                            | ERTEBRA                                                      | ATES                         |           | - = 5                                                                                                                  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------|----------------------------------------|------------------------|----------------------------|-----------------|----------------------------------------------------------------------|--------------------------------------------------|---------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------|
| OF SAMPLE            |                                                                                                                             | BLUE-0                            | GREEN                                 | GREE                                                                                                  | N.                    | FLAGEL<br>(Pigme                                                        |                                                  | DIATO                                                                                                                            | омѕ                                                                                                 | SHE                                       | TOM<br>LLS<br>er ml.)                                                        |                                                                                 | DOM1<br>(See                                                         | Introd                                                                           | SPEC!<br>luction | ES AN                                  | ID PEI                 | RCEN<br>sti/icat           | TAGES           |                                                                      | SHEATHED SHEATHED THE SHEATHED                   | ,A<br>ml.)          | RS<br>liter)                                                                       | EA<br>liter)                                                 | DES<br>liter)                | MAL FORM: | r GENERI<br>roductio<br>tificatio                                                                                      |
| MONTH<br>DAY<br>YEAR | TOTAL                                                                                                                       | coccoib                           | FILA-<br>MENT-<br>OUS                 | COCCOID                                                                                               | FILA-<br>MENT-<br>OUS | GREEN                                                                   | OTHER                                            | CENTRIC                                                                                                                          | PENNATE                                                                                             | CENTRIC                                   | PENNATE                                                                      | FIRST#                                                                          | PER.<br>CENTAGE                                                      | SECOND*                                                                          | PER.<br>CENTAGE  | THIRD#                                 | PER.<br>CENTAGE        | FOURTH                     | PER.<br>CENTAGE | OTHER PER-<br>CENTAGE                                                | OTHER MICH<br>FUNGIAND S<br>BACTERIA<br>(No. per | PROTOZO<br>(No. per | ROTIFIERS<br>(No. per liter)                                                       | CRUSTACEA<br>(No. per liter)                                 | NEMATODES<br>(No. per liter) | (No. per  | DOMINANT GENERA<br>(See Introduction<br>for Identification)                                                            |
| 12                   | 1600<br>56100<br>10300<br>6600<br>3700<br>1300<br>200<br>32400<br>02400<br>02400<br>18300<br>2300<br>15700<br>12200<br>9700 | 110<br>70<br>20<br>20<br>70<br>20 | 40<br>4270<br>20<br>6350<br>40<br>940 | 290<br>470<br>20<br>260<br>20<br>40<br>110<br>490<br>1300<br>1350<br>810<br>380<br>400<br>1730<br>560 |                       | 130<br>90<br>90<br>40<br>2350<br>540<br>680<br>450<br>380<br>810<br>116 | 290<br>70<br>50<br>200<br>120<br>110<br>20<br>20 | 460<br>54740<br>10120<br>6160<br>3640<br>1010<br>200<br>2010<br>28800<br>100770<br>26230<br>12650<br>890<br>510<br>26740<br>6810 | 350<br>690<br>70<br>40<br>20<br>20<br>70<br>160<br>990<br>2240<br>470<br>920<br>4100<br>2070<br>250 | 1240<br>4060<br>2010<br>340<br>660<br>970 | 150<br>160<br>20<br>20<br>50<br>110<br>70<br>360<br>210<br>450<br>220<br>110 | 82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>8 | 90<br>90<br>90<br>90<br>70<br>50<br>70<br>90<br>80<br>60<br>40<br>60 | 89<br>67<br>56<br>70<br>70<br>27<br>49<br>71<br>58<br>56<br>68<br>25<br>58<br>82 | *                | 70<br>71<br>71<br>70<br>72<br>58<br>86 | 1<br>*<br>*<br>*<br>10 | 26<br>56<br>46<br>92<br>89 | * * * *         | 10<br>10<br>10<br>20<br>10<br>10<br>20<br>10<br>20<br>10<br>20<br>10 | 40<br>20<br>40<br>90<br>20                       | 10 10 20 10         | 80<br>4<br>3<br>15<br>8<br>6<br>61<br>11<br>329<br>999<br>995<br>582<br>506<br>188 | 1<br>1<br>2<br>1<br>13<br>11<br>17<br>8<br>796<br>876<br>120 | 2 2 11 3 1 4 1 19 10         | 1         | 779-3<br>-897-<br>-99-<br>-99-<br>-99-<br>-99-<br>-1935<br>71973<br>-8923<br>74963<br>-1917<br>2197-<br>4197-<br>829-7 |

## ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parte per billion)

STATE

NORTH DAKOTA

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

RED RIVER OF THE NORTH

STATION LOCATION RED RIVER AT

GRAND FORKS, NORTH DAKOTA

| DATE OF SAMPLE FYTRACTABLES                                                               |                                            |                                                                                                   |                                            |
|-------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------|
| BEGINNING END EXTRACTABLES CHLOROFORM E                                                   | EXTRACTABLES                               |                                                                                                   |                                            |
| NEUTRALS                                                                                  |                                            |                                                                                                   |                                            |
| TOTAL CHLORO-FORM ALCOHOL ETHER WATER SOLUBLES TOTAL ALIPHATICS AROMATICS OXYGE COMPOUNT. | ED LOSS ACIDS                              | DS ACIDS BASES LOSS                                                                               | SS                                         |
| 12 14 60 12 21 5820 179 36 143 1 9 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                     | 9 1<br>8 1<br>15 1<br>14 1<br>23 1<br>39 0 | 4     2     1       8     7     1       7     7     1       12     11     2       23     11     3 | 7<br>6<br>12<br>12<br>22<br>22<br>21<br>24 |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NORTH DAKOTA

MAJOR BASIN UPPER MISSISSIPPI RIVER

MINOR BASIN

RED RIVER OF THE NORTH

STATION LOCATIONRED RIVER AT

GRAND FORKS, NORTH DAKOTA

| DATE     |          |                            |                             |                | · · · · · · · · · · · · · · · · · · · |                | CHLORINE       | DEMAND          |                              |                   |                    |                  |                        |           |                  |                    |                             |                          |
|----------|----------|----------------------------|-----------------------------|----------------|---------------------------------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|-----------|------------------|--------------------|-----------------------------|--------------------------|
| OF SAMPL | (De      | EMP.<br>egrees<br>tigrade) | DISSOLVED<br>OXYGEN<br>mg/l | pH             | B.O.D.<br>mg/l                        | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/i | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL DISSOLVED SOLIDS mg/l | COLIFORMS<br>per 100 ml. |
|          |          | 12.5                       | 5.5                         | 8.6            | 2.1                                   | 28             | 5.0            | 12.4            | •3                           | 11                | 232                | 260              | 30<br>25               | 19<br>17  | 10<br>16         | 0.0                | 371<br>-                    | 80<br>310                |
|          | 50<br>50 | 9.1                        | 5.5<br>10.6                 | 8.5<br>9.0     | 2.4<br>.0                             | 22<br>29       | 4.3<br>4.5     | 10.4<br>10.7    | •1                           | 12<br>15          | 240<br>250         | 264<br>268       | 30                     | 10        | 25               | .0                 | 378                         | 73                       |
|          | 50       | 1.5                        | 10.5                        | 8.9            | • •                                   | 29             | 4.6            | 1001            | .1                           | 16                | 266                | 272              | 25                     | 16        | 26               | _                  | 384                         | -                        |
| 11 17    | 50       | -                          | _                           | _              |                                       | -              | -              | -               | _                            | _                 | -                  | _                | _                      | -         | -                | -                  | -                           | 80                       |
|          | 50       | .1                         | 10.4                        | 8.0            | 3.6                                   | 42             | 1.8            | -               |                              | 18                | 280                | 316              | 30                     | 6         | 21               | _                  | 448<br>502                  |                          |
|          | 50       | • 2<br>• 4                 | 12.0                        | 8.0            | 2•9<br>5•5                            | 39<br>39       | • 6            | 13.3<br>13.8    |                              | 21<br>38          | 300<br>320         | 340<br>352       | 30                     | 8         | 22<br>28         | _                  | 509                         | _                        |
| 1 1      | 50<br>50 | • 4                        | •1                          | 7.6            | 200                                   | - 27           | • 6            | 13.0            | _                            | - 0               | 320                | 552              |                        | -         | -                | _                  | -                           | 2200                     |
|          | 50       | .4                         | .7                          | 7.6            | -                                     | 35             | • 6            | _               | _                            | 21                | 302                | 340              | 25                     | 6         | 37               |                    | 490                         | 110                      |
| 12 29    | 50       | • 5                        | • 4                         | 7.5            | 2.5                                   | 40             | . 8            | 17.7            | _                            | 27                | 318                | 356              | 25                     | 6         | 32               | _                  | 519                         | 180                      |
|          | 61       | o 4                        | • 4                         | 7.5            | 1.3                                   | 38             | . 8            | 17.8            | -                            | 24                | 324                | 344              | 25<br>20               | 5<br>5    | 38<br>28         | _                  | 506<br>486                  | 350<br>250               |
| 1 - 1    | 51<br>51 | • 5<br>• 4                 | •2<br>•5                    | 7.5<br>7.5     | 1.2                                   | 35<br>31       | • 7<br>• 8     | 17.7            | _                            | 21<br>21          | 316<br>302         | 344<br>324       | 20                     | 5         | 24               |                    | 454                         | 840                      |
|          | 51       | .4                         | .5                          | 7.5            | • •                                   | 34             | • 6            | 17.8            | _                            | 20                | 306                | 320              | 15                     | 5         | 24               | _                  | 474                         | 620                      |
|          | 61       | .4                         | .4                          | . 7.5          | • 9                                   | 32             | • 6            | 18.4            | _                            | 21                | 314                | 332              | 15                     | 4         | 28               | -                  | 480                         | 540                      |
| 2 8      | 51       | 1.0                        | •0                          | 7.5            | 8.3                                   | 52             | • 6            | 18.5            | _                            | 24                | 320                | 336              | 15                     | 4         | 26               | -                  | 495                         | 190                      |
|          | 51       | • 4                        | •1                          | 7.5            | 1.2                                   | 36             | 2.1            | 10 0            |                              | 18<br>19          | 306<br>304         | 316<br>312       | 15<br>15               | 4         | 25<br>24         | _                  | 447<br>437                  | 530<br>530               |
|          | 51<br>51 | •6                         | •6                          | 7•5<br>7•5     | 1.0                                   | 33<br>33       | •9<br>•7       | 18•2<br>17•7    | _                            | 16                | 288                | 300              | 15                     | 4         | 22               | _                  | 422                         | 850                      |
| 1 1      | 51       | .4                         | 3.6                         | 7.5            | 4.1                                   | 38             | • 9            | 16.2            | _                            | 17                | 248                | 264              | 30                     | 8         | 30               | -                  | 397                         |                          |
| 1 1      | 51       | .6                         | 6.6                         | 7.6            | 4.5                                   | 48             | • 9            | 18•4            | _                            | 11                | 176                | 216              | 50                     | 17        | 28               | _                  | 338                         | -                        |
|          | 51       | . 8                        | 4.5                         | 7.7            | 7.8                                   | 41             | 3.1            | _               | -                            | 15                | 180                | 216              | 50                     | 17        | -                | -                  | 35-                         | 820                      |
|          | 51       | 1.8                        | 12.9                        | 8.3            | 4.1                                   | 40             | • 9            | 12.7            | _                            | 11<br>12          | 200<br>212         | 248<br>260       | 25<br>25               | 27<br>21  | -                | _                  | 358<br>360                  | 270<br>170               |
|          | 51<br>51 | 4.8                        | 14.6                        | 8.5<br>8.9     | 5.2<br>5.3                            | 46<br>47       | . •9           | 11.3            | _                            | 11                | 212                | 276              | 25                     | 30        |                  | _                  | 393                         | 100                      |
|          | 51       | 8.6                        | 11.8                        | 8.8            | 4.1                                   | 42             | 4.6            | 11.5            | _                            | 10                | 222                | 280              | 20                     | 32        | 67               | .0                 | 385                         | 140                      |
| 5 3      | 51       | 9.6                        | 12.4                        | 8.6            | 3.4                                   | 40             | 4.5            | 11.4            | _                            | 12                | 224                | 288              | 20                     | 23        | 86               | -                  | 414                         | 200                      |
|          |          | 10.6                       | 13.2                        | 8.8            | 4.2                                   | 44             | 4.6            | 13.3            | -                            | 12                | 228                | 300              | 25                     | 14        | 104              | -                  | 435                         | 80                       |
|          |          | 13.4                       | 11.3                        | 8.7            | 4.0                                   | 40<br>50       | 4.5            | 11•4<br>17•5    | _                            | 12<br>10          | 242<br>248         | 316<br>340       | 30<br>50               | 16<br>44  | 102<br>152       | _                  | 444<br>496                  | 740                      |
|          |          | 18.3<br>19.8               | 7•9<br>6•6                  | 8 • 4<br>8 • 2 | 5 <b>.</b> 2                          | 46             | 6.5            | 15.4            | _                            | 10                | 248                | 332              | 35                     | 24        | 116              | _                  | 463                         | 1400                     |
|          |          | 23.2                       | 5.9                         | 8.3            | 2.1                                   | 48             | 6.9            | 15.3            | -                            | 12                | 250                | 312              | 30                     | 17        | 98               | -                  | 437                         | 3700                     |
| 6 14     | 61 2     | 23.6                       | 5.3                         | 8.2            | 1.9                                   | 47             | 4.7            | 11.0            | -                            | 11                | 238                | 272              | 25                     | 12        | 117              | -                  | 421                         | 660                      |
|          |          | 20.5                       | 5.4                         | 7.8            | -                                     | 56             | 4.3            | 10.6            | -                            | 9                 | 244                | 260              | 25                     | 22        | 120              | _                  | 358<br>312                  | 580<br>*20               |
| 1 1      |          | 25.1                       | 8.2<br>6.9                  | 8.8            | 7.2                                   | 50<br>55       | 4.8<br>4.4     | 14.9<br>12.8    | _                            | 9<br>13           | 206<br>186         | 232<br>208       | 25<br>25               | _         | 58<br>60         | _                  | 312                         | 20                       |
| 1 [      |          | 23.8                       | 7.9                         | 9.0            | 4.6<br>8.1                            | 52             | 2.8            | 12.00           | _                            | 18                | 202                | 236              | 20                     | _         | 62               | _                  | 358                         | 80                       |
|          |          |                            | , • /                       | -              |                                       |                |                |                 |                              |                   |                    |                  |                        |           |                  |                    |                             |                          |

STATE

NORTH DAKOTA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

UPPER MISSISSIPPI RIVER

MINOR BASIN

RED RIVER OF THE NORTH

STATION LOCATION RED RIVER AT

GRAND FORKS, NORTH DAKOTA

|                  | DAT<br>F SAN        |    | TEMP.                        | DISSOLVED |                          |                        |                      | CHLORINE                | DEMAND                       |                              |                      | <u> </u>                 |                          |                            |                            |                      |                    |                                      | 1                        |
|------------------|---------------------|----|------------------------------|-----------|--------------------------|------------------------|----------------------|-------------------------|------------------------------|------------------------------|----------------------|--------------------------|--------------------------|----------------------------|----------------------------|----------------------|--------------------|--------------------------------------|--------------------------|
| MONTH            | DAY                 | 1  | ,                            | OXYGEN    | рĦ                       | B.O.D.<br>mg/l         | C.O.D.<br>mg/l       | 1-HOUR<br>mg/l          | 24-HOUR<br>mg/l              | AMMONIA-<br>NITROGEN<br>mg/I | CHLORIDES<br>mg/l    | ALKALINITY<br>mg/l       | HARDNESS<br>mg/l         | COLOR<br>(scale units)     | TURBIDITY<br>(scale units) | SULFATES<br>mg/i     | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml. |
| 8<br>9<br>9<br>9 | 31<br>6<br>20<br>27 | 61 | 22.8<br>18.5<br>15.4<br>13.9 |           | 8.6<br>8.4<br>6.5<br>9.0 | 3.7<br>-<br>2.9<br>5.6 | 48<br>50<br>50<br>60 | 4.2<br>.9<br>4.0<br>2.9 | 12.9<br>10.8<br>10.6<br>10.8 | -                            | 18<br>22<br>25<br>27 | 194<br>178<br>202<br>182 | 224<br>216<br>232<br>216 | 20<br>20<br>20<br>20<br>20 | 1 1                        | 76<br>76<br>84<br>76 | -                  | 362<br>346<br>375<br>337             | 110<br>-<br>320          |
|                  |                     |    | ·                            |           |                          |                        |                      |                         |                              |                              |                      |                          |                          |                            |                            |                      |                    |                                      |                          |
|                  |                     |    |                              |           |                          | ,                      |                      |                         |                              |                              |                      |                          |                          |                            |                            |                      |                    |                                      |                          |
|                  |                     |    |                              |           |                          |                        |                      |                         |                              |                              |                      |                          |                          |                            |                            |                      |                    |                                      |                          |
|                  |                     |    |                              |           |                          |                        |                      |                         |                              |                              |                      |                          |                          |                            |                            |                      |                    |                                      |                          |
|                  |                     |    |                              |           |                          |                        |                      | į                       |                              |                              |                      |                          |                          |                            |                            |                      |                    |                                      |                          |
|                  |                     |    |                              |           |                          |                        |                      |                         |                              |                              |                      |                          |                          |                            |                            |                      |                    |                                      |                          |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Grand Forks, North Dakota Operated by U.S. Geological Survey STATE

North Dakota

MAJOR BASIN

Upper Mississippi River

MINOR BASIN

Red River of the North

STATION LOCATION

Red River at

Grand Forks, North Dakota

| Day                              | October                                            | November                                  | December                                     | January                              | February                                  | March                                              | April                                     | May                                                | June                                      | July                                               | August                               | September                            |
|----------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------|--------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|--------------------------------------|--------------------------------------|
| 1<br>2<br>3<br>4<br>5            | . 322<br>. 315<br>. 312<br>. 302<br>. 275          | .560<br>.560<br>.596<br>.589<br>.592      | .250<br>.260<br>.270<br>.300<br>.360         | .240<br>.240<br>.240<br>.240<br>.240 | .280<br>.280<br>.280<br>.280<br>.290      | .420<br>.450<br>.500<br>.530<br>.560               | 2.660<br>2.200<br>2.020<br>1.950<br>1.870 | 2.520<br>2.400<br>2.300<br>2.160<br>2.020          | 1.470<br>1.380<br>1.280<br>1.190<br>1.120 | .518<br>.518<br>.518<br>.503<br>.464               | .348<br>.350<br>.352<br>.335<br>.318 | .156<br>.146<br>.135<br>.135         |
| 6<br>7<br>8<br>9                 | .270<br>.278<br>.272<br>.278<br>.280               | .603<br>.603<br>.572<br>.560<br>.430      | . 350<br>. 260<br>. 240<br>. 250<br>. 280    | .240<br>.250<br>.250<br>.250<br>.260 | .290<br>.290<br>.290<br>.300<br>.300      | .630<br>.770<br>.970<br>1.180<br>1.360             | 1.680<br>1.560<br>1.440<br>1.380<br>1.350 | 1.950<br>1.880<br>1.840<br>1.840<br>1.870          | 1.070<br>1.030<br>.999<br>.975<br>.967    | .392<br>.338<br>.305<br>.275<br>.298               | .290<br>.261<br>.253<br>.241<br>.229 | .122<br>.119<br>.123<br>.119<br>.145 |
| 11<br>12<br>13<br>14<br>15       | .298<br>.308<br>.310<br>.308<br>.310               | . 380<br>. 390<br>. 440<br>. 470<br>. 500 | . 320<br>. 350<br>. 350<br>. 350<br>. 340    | .260<br>.260<br>.280<br>.280         | .300<br>.310<br>.320<br>.330<br>.340      | 1.500<br>1.600<br>1.650<br>1.650<br>1.620          | 1.300<br>1.260<br>1.210<br>1.160<br>1.120 | 1.880<br>1.880<br>1.860<br>1.790<br>1.780          | .991<br>1.170<br>1.180<br>1.060<br>.967   | • 345<br>• 362<br>• 365<br>• 407<br>• 440          | .215<br>.209<br>.201<br>.197<br>.194 | .199<br>.233<br>.350<br>.458<br>.446 |
| 16<br>17<br>18<br>19             | . 308<br>. 315<br>. 312<br>. 358<br>. 383          | .470<br>.410<br>.350<br>.410<br>.490      | .330<br>.310<br>.300<br>.300<br>.290         | .270<br>.280<br>.290<br>.280<br>.310 | . 340<br>. 340<br>. 340<br>. 340<br>. 340 | 1.600<br>1.580<br>1.660<br>1.740<br>1.760          | 1.060<br>1.070<br>1.060<br>1.050<br>1.020 | 1.920<br>2.200<br>2.600<br>2.840<br>2.880          | .891<br>.830<br>.785<br>.760<br>.729      | .437<br>.428<br>.401<br>.377<br>.380               | .190<br>.190<br>.201<br>.194<br>.181 | .407<br>.392<br>.401<br>.434<br>.458 |
| 21<br>22<br>23<br>24<br>25       | . 392<br>. 392<br>. 392<br>. 401<br>. 377          | .510<br>.490<br>.420<br>.360<br>.380      | .290<br>.280<br>.280<br>.270<br>.260         | .310<br>.310<br>.300<br>.300<br>.290 | . 350<br>. 350<br>. 360<br>. 370<br>. 350 | 1.800<br>1.900<br>2.000<br>2.100<br>2.300          | 1.100<br>1.310<br>1.840<br>2.240<br>2.390 | 2.840<br>2.750<br>2.620<br>2.460<br>2.300          | .712<br>.701<br>.666<br>.638<br>.631      | .419<br>.437<br>.437<br>.434<br>.416               | .182<br>.182<br>.173<br>.165<br>.156 | .467<br>.449<br>.461<br>.503<br>.542 |
| 26<br>27<br>28<br>29<br>30<br>31 | • 389<br>• 380<br>• 374<br>• 395<br>• 494<br>• 539 | . 440<br>. 420<br>. 420<br>. 410<br>. 280 | .250<br>.250<br>.230<br>.230<br>.230<br>.230 | .270<br>.280<br>.270<br>.270<br>.280 | . 370<br>. 390<br>. 400                   | 2.800<br>3.240<br>3.320<br>3.050<br>2.940<br>2.810 | 2.420<br>2.480<br>2.580<br>2.610<br>2.600 | 2.140<br>2.010<br>1.870<br>1.760<br>1.660<br>1.560 | .614<br>.563<br>.497<br>.467<br>.488      | . 383<br>. 362<br>. 360<br>. 383<br>. 368<br>. 358 | .158<br>.153<br>.155<br>.165<br>.161 | .536<br>.533<br>.503<br>.479<br>.467 |

RADIOACTIVITY DETERMINATIONS

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

ALEXANDRIA, LOUISIANA

| DATE                                                                                                          | T                                                                                             |                                                               | RADI                                           | OACTIVITY IN Y          | WATER                                                          |                  | · ·                                                                                   | PANI                       | OACTIVITY | IM DI A | NKTON (dry)  |   | T         |              |       |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------|-------------------------|----------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------|----------------------------|-----------|---------|--------------|---|-----------|--------------|-------|
| SAMPLE                                                                                                        | DATE OF<br>DETERMI-                                                                           |                                                               | ALPHA                                          |                         |                                                                | BETA             |                                                                                       | DATE O                     | F 4       |         | ACTIVITY     | ┨ | RA        | GROSS ACTIVI |       |
| TAKEN                                                                                                         | NATION                                                                                        | SUSPENDED                                                     | DISSOLVED                                      | TOTAL                   | SUSPENDED                                                      | DISSOLVED        | TOTAL                                                                                 | DATE O<br>DETERM<br>NATION | ALI       | PHA     | BETA         | 1 | SUSPENDED | DISSOLVED    | TOTAL |
| MO. DAY YEAR                                                                                                  | R MONTH DAY                                                                                   | μμc/l                                                         | μμc/I                                          | μμς/Ι                   | μμε/l                                                          | μμc/l            | μμε/Ι                                                                                 | MO. DA                     |           | c/g     | <del> </del> | 1 |           |              |       |
| MO. DAY VEAM 10 24 609 11 28 609 12 12 609 1 30 619 2 27 619 4 17 619 5 22 61 8 1 619 8 1 619 9 18 61 9 25 61 | * 11 8<br>* 12 9<br>* 1 17<br>* 2 13<br>* 3 10<br>* 4 10<br>* 5 19<br>6 27<br>* 8 2<br>* 8 25 | дие/I  2  4  10  5  28  4  1  1  1  1  1  1  1  1  1  1  1  1 | 6<br>4<br>1<br>1<br>0<br>0<br>0<br>5<br>0<br>0 | 8 9 5 11 6 5 28 4 6 0 1 | 0<br>11<br>38<br>51<br>0<br>11<br>56<br>0<br>0<br>16<br>5<br>1 | 9 0 9 13 38 13 0 | μμε/I<br>0<br>14<br>38<br>53<br>0<br>13<br>56<br>9<br>0<br>25<br>18<br>39<br>13<br>18 |                            |           |         | μμc/g        |   | μμc/l     | pac/1        | Ppe/I |

# PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

ALEXANDRIA, LOUISIANA

|                                                                |                                              | 丁                                       |                                                                                                       |          |                       | ALGAE (?                                                                              | lumber                | per ml.)                                                                             |                                              | ····                                                                                           |                                                                                           | INE                                                                           | RT  | 1                                                        |                                        |                                                          |                                  |                                                                |                          |                                                               |                    |                                                        |                                                                         | 1                      | MICROIN                      | VEDTEDE                      | ATEC                         |                                       |                                                             |
|----------------------------------------------------------------|----------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------|----------|-----------------------|---------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----|----------------------------------------------------------|----------------------------------------|----------------------------------------------------------|----------------------------------|----------------------------------------------------------------|--------------------------|---------------------------------------------------------------|--------------------|--------------------------------------------------------|-------------------------------------------------------------------------|------------------------|------------------------------|------------------------------|------------------------------|---------------------------------------|-------------------------------------------------------------|
| DAT<br>OF SAI                                                  |                                              | LE                                      |                                                                                                       | BLUE-    | GREEN                 | GREE                                                                                  | N.                    | FLAGEL<br>(Pigmo                                                                     | LATES<br>ented)                              | DIATO                                                                                          | омѕ                                                                                       | INE<br>DIA<br>SHE<br>(No. p                                                   |     |                                                          |                                        | NANT<br>Introd                                           | SPEC                             |                                                                | ID PEI                   |                                                               |                    | :                                                      | CANKTOK,<br>CATHED                                                      | 3                      |                              |                              | ī —                          | OKKS                                  | uction<br>action)                                           |
| MONTH                                                          |                                              | YEAR                                    | TOTAL                                                                                                 | COCCOID  | FILA-<br>MENT-<br>OUS | COCCOID                                                                               | FILA-<br>MENT-<br>OUS | GREEN                                                                                | OTHER                                        | CENTRIC                                                                                        | PENNATE                                                                                   |                                                                               |     | FIRST#                                                   | PER-                                   | SECOND#                                                  | PER.<br>CENTAGE                  | THIRD*                                                         | PER.<br>CENTAGE          | FOURTH*                                                       | PER.<br>CENTAGE    | OTHER PER-<br>CENTAGE                                  | OTHER MICROPLANKTON,<br>PUNGI AND SHEATHED<br>BACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per m | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER AHIMAL FORMS<br>(No. per liter) | voninant genera<br>(See Introduction<br>for Identification) |
| 10 18 11 12 25 22 25 3 3 4 4 1 7 5 5 6 6 6 7 7 8 8 1 5 9 9 1 5 | 77 83 86 86 86 86 86 86 86 86 86 86 86 86 86 | 000011111111111111111111111111111111111 | 2700<br>600<br>4000<br>200<br>200<br>200<br>100<br>700<br>2300<br>900<br>2500<br>2500<br>8100<br>1300 | 40<br>90 | 930                   | 200<br>40<br>1120<br>40<br>20<br>310<br>700<br>380<br>450<br>250<br>1160<br>830<br>60 |                       | 270<br>460<br>560<br>70<br>50<br>20<br>120<br>340<br>60<br>340<br>450<br>250<br>1800 | 20<br>20<br>50<br>90<br>20<br>20<br>60<br>20 | 360<br>180<br>270<br>20<br>70<br>20<br>100<br>1720<br>440<br>860<br>830<br>2610<br>1500<br>270 | 1860<br>3760<br>900<br>500<br>700<br>1100<br>400<br>12390<br>8790<br>3040<br>1500<br>8990 | 150<br>20<br>70<br>70<br>160<br>60<br>350<br>510<br>340<br>100<br>290<br>1560 | 130 | 38<br>89<br>92<br>92<br>80<br>80<br>80<br>80<br>80<br>80 | 50<br>30<br>30<br>30<br>90<br>80<br>40 | 56<br>92<br>89<br>56<br>26<br>58<br>26<br>18<br>26<br>84 | 10<br>20<br>10<br>10<br>20<br>10 | 26<br>56<br>80<br>43<br>84<br>26<br>57<br>38<br>26<br>82<br>26 | 10<br>10<br>10<br>*<br>* | 7<br>38<br>26<br>73<br>58<br>25<br>58<br>58<br>58<br>58<br>58 | 10<br>*<br>10<br>* | 30<br>40<br>40<br>50<br>*<br>20<br>*<br>40<br>30<br>50 | 50<br>20<br>20<br>110<br>40<br>20                                       | 10                     | 1 47                         | 2 10                         |                              |                                       | 74763<br>                                                   |

STATE

LOUISIANA

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATIONRED RIVER AT

ALEXANDRIA, LOUISIANA

| Table   Dissolve   Table   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Dissolve   Diss  | DATE<br>OF SAMPLE    | TEAR                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | ······································     | Ī                                                                                                                            | CHLORINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DEMAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |                                                                                                                                                                                                                | 1                                                                                                                                                                                                        |                                                                                                                                                | 1                                                                                                                                                              |                                                |                                               |                                        |                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10   10   60   24 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0   7 · 0 | MONTH<br>DAY<br>YEAR | (Degrees<br>Centigrade)                   | OXYGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Η  |                                            |                                                                                                                              | 1-HOUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24-HOUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NITROGEN                                                                                    |                                                                                                                                                                                                                | '                                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                                                |                                                |                                               |                                        | DISSOLVED SOLIDS                                                                                                                                                                           |                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                   | 25.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.0 | 7.30 — 8.51 6.33 8.68 6.8 6.8 8.33 9 9.00 2.02 5.38 8.68 6.86 7.60 8.85 3.53 8.66 7.60 8.85 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 6.86 7.60 7.60 7.60 7.60 7.60 7.60 7.60 7.6 | 7. | 1.3<br>1.2<br>1.9<br>1.6<br>1.7<br>1.4<br> | 22<br>- 16<br>36<br>21<br>24<br>17<br>48<br>22<br>24<br>28<br>26<br>25<br>32<br>42<br>33<br>25<br>24<br>45<br>32<br>47<br>47 | 2.1<br>1.7<br>1.9 - 0.60<br>1.9<br>2.623000368018001<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.000789<br>1.00078 | 8.6<br>5.9<br>6.4<br>-<br>6.3<br>4.2<br>7.3<br>9.2<br>8.2<br>7.7<br>8.9<br>9.7<br>10.0<br>8.6<br>9.0<br>8.7<br>10.4<br>10.5<br>8.7<br>10.4<br>11.0<br>9.5<br>8.7<br>10.4<br>11.0<br>9.5<br>8.7<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>9.5<br>11.0<br>11.0<br>11.0<br>11.0<br>11.0<br>11.0<br>11.0<br>11 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 111<br>76<br>95<br>311<br>3105<br>2142<br>95<br>77<br>99<br>41<br>42<br>77<br>41<br>30<br>37<br>49<br>49<br>49<br>41<br>47<br>47<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41 | 80<br>88<br>-<br>103<br>91<br>72<br>74<br>94<br>54<br>44<br>42<br>51<br>61<br>55<br>50<br>45<br>50<br>48<br>55<br>49<br>49<br>51<br>61<br>55<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61 | 133<br>129<br>1630<br>3540<br>2005<br>2355<br>1375<br>803<br>1095<br>1252<br>8274<br>983<br>1021<br>8274<br>983<br>1021<br>824<br>226<br>82138 | 20 10 20 10 20 20 50 50 60 80 60 60 80 60 60 80 60 60 80 60 60 80 60 60 80 60 60 80 60 60 80 60 80 60 80 60 80 60 80 60 80 80 80 80 80 80 80 80 80 80 80 80 80 | 128<br>710-00000000000000000000000000000000000 | 667-967-4267-4267-4267-4267-4267-4267-4267-42 | 11 11 11 11 11 11 11 11 11 11 11 11 11 | 1086<br>362<br>304<br>353<br>1018<br>6978<br>752<br>3197<br>2275<br>281<br>338<br>194<br>2275<br>281<br>192<br>2678<br>275<br>281<br>194<br>285<br>165<br>188<br>285<br>1528<br>607<br>311 | 3200<br>-11000<br>5700<br>16000<br>42000<br>21000<br>19000<br>7400<br>22000<br>22000<br>11000<br>6700<br>3200<br>4200<br>6700<br>3200<br>4200<br>6700<br>3200<br>6700<br>3200<br>4200<br>5600<br>2000<br>2000<br>1200<br>2000<br>1200<br>1200<br>1200<br>1 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Alexandria, Louisiana Operated by U.S. Corps of Engineers

STATE

Louisiana

MAJOR BASIN

Southwest-Lover Mississippi River

MINOR BASIN

Lower Red River below Denison

STATION LOCATION

Red River at

Alexandria, Louisiana

| Day                              | October                                                 | November                                       | December                                                 | January                                                  | February                                       | March                                                    | April                                               | May                                                      | June                                           | July                                                     | August                                                   | September                                                                |
|----------------------------------|---------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | 6.000<br>6.800<br>7.800<br>8.900<br>9.900               | 32.400<br>31.600<br>30.100<br>26.800<br>24.400 | 9.800<br>9.100<br>8.800<br>8.600<br>8.200                | 41.800<br>44.400<br>47.600<br>55.400<br>62.700           | 40.000<br>38.000<br>37.000<br>35.700<br>34.500 | 68.700<br>65.200<br>60.800<br>55.900<br>51.800           | 106.000<br>117.000<br>126.000<br>132.000<br>133.000 | 24.500<br>23.600<br>22.200<br>20.900<br>19.900           | 12.700<br>12.300<br>11.400<br>10.300<br>9.120  | 28.000<br>27.400<br>26.400<br>24.800<br>22.900           | 36.800<br>33.400<br>29.400<br>25.700<br>22.800           | 9.600<br>9.000<br>8.600<br>8.000<br>7.400                                |
| 6<br>7<br>8<br>9                 | 10.600<br>10.700<br>10.500<br>9.900<br>9.300            | 22.300<br>20.200<br>17.500<br>15.600<br>15.300 | 8.200<br>8.200<br>10.800<br>16.400<br>34.900             | 65.700<br>69.000<br>78.500<br>81.900<br>80.500           | 32.800<br>31.700<br>32.500<br>31.700<br>29.900 | 48.700<br>46.700<br>45.800<br>45.300<br>47.000           | 133.000<br>127.000<br>116.000<br>111.000<br>101.000 | 18.700<br>18.000<br>17.900<br>18.100<br>21.300           | 8.810<br>8.480<br>7.950<br>6.900<br>5.880      | 21.500<br>20.200<br>20.000<br>20.100<br>19.900           | 20.900<br>19.000<br>17.800<br>16.300<br>14.600           | 7.000<br>6.800<br>6.500<br>6.400<br>6.400                                |
| 11<br>12<br>13<br>14<br>15       | 8.800<br>9.000<br>11.100<br>13.600<br>14.200            | 15.600<br>15.200<br>14.300<br>13.400<br>12.500 | 56.000<br>76.000<br>92.200<br>103.000<br>114.000         | 77.100<br>72.500<br>70.000<br>69.900<br>67.800           | 27.300<br>24.900<br>24.000<br>25.800<br>29.000 | 48.500<br>49.400<br>49.000<br>48.800<br>47.500           | 90.800<br>83.800<br>82.400<br>81.000<br>79.500      | 40.600<br>56.000<br>61.400<br>61.400<br>60.100           | 5.870<br>6.450<br>7.650<br>9.070<br>10.200     | 19.600<br>19.600<br>19.000<br>18.200<br>18.000           | 13.200<br>12.400<br>11.900<br>11.100<br>10.600           | 6.700<br>8.300<br>1 <sup>1</sup> 4.000<br>2 <sup>1</sup> 4.700<br>31.600 |
| 16<br>17<br>18<br>19<br>20       | 13.100<br>12.500<br>10.600<br>9.600<br>8.500            | 11.800<br>11.600<br>12.200<br>12.600           | 121.000<br>122.000<br>118.000<br>108.000<br>98.100       | 64.500<br>61.000<br>57.300<br>54.1400<br>50.800          | 30.800<br>31.800<br>40.500<br>43.000<br>44.300 | 46.300<br>51.400<br>59.600<br>61.800<br>61.900           | 75.400<br>71.600<br>66.600<br>62.300<br>57.500      | 56.400<br>52.400<br>47.100<br>41.300<br>34.800           | 11.000<br>13.500<br>17.100<br>21.500<br>26.400 | 18.000<br>18.900<br>21.400<br>27.400<br>40.700           | 10.500<br>10.500<br>10.600<br>10.600<br>10.800           | 32.200<br>30.500<br>29.100<br>29.400<br>32.900                           |
| 21<br>22<br>23<br>24<br>25       | 7.700<br>7.300<br>7.100<br>7.100<br>7.100               | 12.500<br>13.000<br>13.500<br>14.200<br>14.200 | 86.400<br>75.200<br>65.300<br>56.700<br>49.700           | 48.200<br>45.200<br>43.400<br>42.400<br>45.600           | 48.800<br>55.700<br>63.000<br>67.900<br>71.400 | 59.700<br>57.000<br>54.200<br>52.000<br>50.200           | 52.400<br>45.500<br>40.800<br>36.800<br>33.500      | 28.400<br>23.600<br>19.400<br>16.900<br>14.300           | 30.600<br>30.200<br>28.900<br>26.000<br>24.000 | 45.000<br>45.000<br>42.200<br>37.800<br>33.000           | 12.000<br>13.700<br>15.400<br>17.100<br>17.200           | 33.800<br>32.700<br>29.600<br>26.100<br>22.900                           |
| 26<br>27<br>28<br>29<br>30<br>31 | 7.100<br>11.600<br>21.000<br>28.100<br>31.300<br>32.300 | 14.000<br>13.500<br>12.800<br>11.800<br>10.800 | 44.200<br>40.300<br>37.500<br>35.800<br>36.400<br>37.000 | 49.800<br>50.500<br>50.000<br>47.800<br>45.500<br>42.400 | 72.400<br>72.400<br>71.300                     | 47.900<br>45.500<br>45.000<br>52.600<br>67.200<br>87.400 | 31.600<br>30.100<br>28.400<br>27.100<br>25.700      | 12.300<br>12.600<br>13.100<br>12.600<br>12.400<br>12.500 | 25.100<br>28.200<br>28.900<br>28.800<br>28.300 | 31.800<br>29.800<br>29.300<br>31.800<br>37.100<br>38.700 | 16.000<br>14.600<br>14.000<br>13.200<br>12.100<br>10.700 | 19.100<br>15.700<br>13.100<br>11.500<br>10.300                           |

STATE

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

INDEX, ARKANSAS

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

INDEX, ARKANSAS

| • |                                                     |                       |                                                                                                                                                                            |                                                                                                                                     |                                                                     |                                             | ALGAE (1                                                                                                                           | Vumber                | per ml.)                                                                                             |                                                     |                                                                                                                                |                                                                                                                                             | INE<br>DIA                                                                                | RT                                                                                             | Г                                |                                                                   |                                        |                                         | IATO                                                                       | us                                                    |                                                                                          |                                           |                                        |                                                                   |                           | MICROIN                                            | VERTEBR                      | ATES                         |                 |                                                                                                                                   |
|---|-----------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------|----------------------------------------|-----------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------|-------------------------------------------------------------------|---------------------------|----------------------------------------------------|------------------------------|------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------|
|   | OF S                                                | AM                    |                                                                                                                                                                            |                                                                                                                                     | BLUE-                                                               | GREEN                                       | GREE                                                                                                                               | N                     | FLAGEL<br>(Pigma                                                                                     |                                                     | DIAT                                                                                                                           | oms                                                                                                                                         | DIA<br>SHE<br>(No. p                                                                      | LLS                                                                                            |                                  |                                                                   |                                        | SPEC                                    | IES A                                                                      | ND PE                                                 |                                                                                          |                                           | 3                                      | EPLANKTON<br>SHEATHED<br>m2.)                                     | ul.)                      | iter)                                              | A ter)                       | is<br>ter)                   | r. ronns        | duction<br>ication)                                                                                                               |
|   | MONTH                                               | DAY                   | YEAR                                                                                                                                                                       | TOTAL                                                                                                                               | COCCOID                                                             | FILA-<br>MENT-<br>OUS                       | COCCOID                                                                                                                            | FILA-<br>MENT-<br>OUS | GREEN                                                                                                | OTHER                                               | CENTRIC                                                                                                                        | PENNATE                                                                                                                                     | CENTRIC                                                                                   | PENNATE                                                                                        | FIRST                            | PER.<br>CENTAGE                                                   | SECOND*                                | PER.                                    | THIRD#                                                                     | PER.<br>CENTAGE                                       | FOURTR#                                                                                  | PER.<br>CENTAGE                           | OTHER PER-<br>CENTAGE                  | OTHER MICROPLANK<br>FUNGI AND SHEATH<br>SACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)                       | CRUSTACEA<br>(No. per liter) | NEMATOBES<br>(No. per liter) | (No. per liter) | DOMINANT GENERA<br>(See Introduction<br>for Identification)                                                                       |
| 1 | 0 1 1 2 2 2 2 2 2 3 3 4 4 4 5 5 6 6 6 7 7 7 8 8 8 9 | 771593606037155937714 | 60<br>60<br>60<br>60<br>60<br>60<br>61<br>61<br>66<br>61<br>66<br>61<br>66<br>61<br>66<br>61<br>66<br>61<br>66<br>61<br>66<br>61<br>66<br>61<br>66<br>61<br>66<br>61<br>61 | 8200<br>3300<br>4600<br>8400<br>1200<br>1100<br>3100<br>200<br>4700<br>10600<br>1400<br>8900<br>6700<br>1700<br>6700<br>5700<br>900 | 1020<br>220<br>110<br>20<br>180<br>90<br>20<br>60<br>70<br>20<br>20 | 160<br>20<br>20<br>20<br>1140<br>130<br>640 | 2040<br>660<br>630<br>2280<br>2100<br>110<br>220<br>180<br>1030<br>430<br>2070<br>2630<br>90<br>2250<br>3350<br>2150<br>770<br>100 |                       | 240<br>70<br>140<br>180<br>710<br>650<br>650<br>540<br>1650<br>290<br>490<br>200<br>510<br>330<br>60 | 20<br>50<br>50<br>20<br>20<br>20<br>440<br>20<br>40 | 1600<br>530<br>250<br>270<br>340<br>220<br>310<br>130<br>1440<br>510<br>270<br>2610<br>1680<br>740<br>540<br>910<br>770<br>100 | 3300<br>1650<br>3500<br>5630<br>1090<br>220<br>160<br>820<br>70<br>660<br>2770<br>130<br>2010<br>2570<br>670<br>3910<br>4390<br>3150<br>580 | 420<br>70<br>380<br>20<br>20<br>500<br>1400<br>60<br>2480<br>360<br>210<br>60<br>60<br>60 | 440<br>340<br>310<br>850<br>160<br>200<br>200<br>210<br>540<br>380<br>620<br>830<br>680<br>460 | 38<br>38<br>80<br>38<br>92<br>80 | 400-620<br>6 320-580<br>7 0 0 80<br>500-220<br>200-200<br>200-200 | 97<br>97<br>26<br>38<br>82<br>51<br>47 | 300 100 100 100 100 100 100 100 100 100 | 30<br>26<br>11<br>80<br>56<br>51<br>88<br>92<br>88<br>92<br>26<br>84<br>71 | * 100<br>100<br>100<br>* 100<br>* 100<br>100<br>* 100 | 97<br>5920<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | *<br>10<br>10<br>*<br>10<br>10<br>*<br>10 | 2003100<br>460032 0 10000<br>1356 6655 | 380<br>260<br>50<br>20<br>20                                      | 10 10 10                  | 36<br>1<br>1<br>1<br>5<br>5<br>14<br>25<br>6<br>44 | 1                            | 12                           | 8888            | +8723<br>+88-3<br>-863<br>-863<br>34823<br>833<br>833<br>183-<br>71923<br>192-<br>-192-<br>-192-<br>-192-<br>-192-<br>-2763<br>63 |

STATE

ARKANSAS

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHWEST LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATIONRED RIVER AT

INDEX, ARKANSAS

| DATE                 |                                  |                             |            | · · · · · · · · · · · · · · · · · · · |                | CHLORINE       | DEMAND          |                              |                   |                    |                  |                        |                         |                  | Ī                  |                                      |                          |
|----------------------|----------------------------------|-----------------------------|------------|---------------------------------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|-------------------------|------------------|--------------------|--------------------------------------|--------------------------|
| DAY YEAR             | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/l | pН         | B.O.D.<br>mg/l                        | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/I | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY (scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml, |
| 10 3 60              | 25.0                             | 7.4                         | 7.9        | 2.0                                   | 18             | 3.4            | 7.8             |                              | 78                | 97                 | 194              | 80                     | 85                      |                  |                    | 268                                  | 160                      |
| 10 10 60             | 22.0                             | 6.8<br>7.8                  | 7•6<br>8•1 | 2.0<br>2.4                            | 18             | 4•7<br>2•7     | 10.7            | -                            | 78                | 88                 | 160              | 50                     | 350                     | -                | -                  | 311                                  | 3400                     |
| 10 24 60             | 20.0                             | 6.4                         | 7.6        | 1.0                                   | -              | 4.2            | 6•7<br>8•2      | -                            | 150<br>246        | 120                | 244              | 40                     | 105                     | -                | -                  | 459                                  | 160                      |
| 10 30 60             | -                                | _                           | - 1        |                                       | _              | -              | -               | _                            | 240               | 111                | 390              | 25                     | 300                     | _                | _                  | 1142                                 | 1400                     |
| 10 31 60             | 19.0                             | 8.0                         | 7.9        | 1.8                                   | 45             | 2.7            | 8.7             | -                            | 240               | 96                 | 408              | 20                     | 260                     | _                | _                  | 1176                                 | 800                      |
| 11 7 60              | 15.0                             | 9.4                         | 7.8        | 1.6                                   | -              | 2.2            | 4.7             | _                            | 244               | 94                 | 380              | 10                     | 145                     | _                |                    | 1106                                 | *200                     |
| 11 14 60             | 15.0                             | 9.8                         | 7.9        | 1.8                                   | 28             | 2.7            | 5•8             | -                            | 190               | 100                | 340              | 45                     | 110                     | _                | _                  | 977                                  | 1500                     |
| 11 21 60<br>11 28 60 | 15.0<br>17.0                     | 9.6                         | 8.0        | 4.4                                   | 30             | 1.8            | 6 • 2           | -                            | 223               | 100                | 364              | 30                     | 70                      | _                | -                  | 728                                  | 1800                     |
| 12 5 60              | 13.0                             | 10.0                        | 8.1        | 3 • 8<br>2 • 8                        | 25<br>30       | 2.5            | 6.7             | -                            | 166               | 123                | 332              | 20                     | 65                      | -                | -                  | 950                                  | 20                       |
| 12 12 60             | 8.0                              | 9.6                         | 8.1        | 4.0                                   | - 1            | 1.8<br>4.5     | 4.7             | -                            | 200               | 141                | 354              | 10                     | 25                      | -                | -                  | 687                                  | 60                       |
| 1 9 61               | 7.0                              | 11.2                        | 7.8        | 4.2                                   | 14             | 2.2            | 6.4             | -                            | 64<br>110         | 56<br>75           | 92<br>200        | 80                     | 600                     | -                | -                  |                                      | 16000                    |
| 1 16 61              | 9.0                              | 11.0                        | 7.9        | 2.6                                   | -              | 1.6            | 4.7             | _                            | 170               | 100                | 300              | 45<br>10               | 145<br>82               | -                | _                  | 610                                  | 1800                     |
| 1 23 61              | 5.0                              | 12.0                        | 8.1        | 3.0                                   | 21             | 1.4            | 4.7             | _                            | 215               | 115                | 356              | 10                     | 55                      |                  |                    | 5 <b>6</b> 6<br>901                  | 1300<br>80               |
| 1 30 61              | 3.0                              | 12.8                        | 8.3        | 4.2                                   | 26             | 1.9            | 3.3             | -                            | 280               | 111                | 408              | 10                     | 55                      | _                |                    | 1200                                 | 220                      |
| 2 6 61               | 6.0                              | 11.6                        | 8.0        | 3.4                                   | 29             | 1.8            | 4.2             | -                            | 205               | 124                | 382              | 0                      | 37                      | _                | _                  | 1027                                 | 100                      |
| 2 13 61 2 20 61      | 10.0<br>12.0                     | 10.4                        | 7.9        | 2.8                                   | 13             | 2.7            | 8.7             | -                            | 70                | 85                 | 170              | 130                    | 160                     | _                | _                  | 433                                  | 4000                     |
| 2 27 61              | 13.0                             | 9.8<br>10.0                 | 7.9        | 2.0                                   | 17             | 3.3            | 6.7             | -                            | 100               | 140                | 246              | 35                     | 155                     | -                | -                  | 425                                  | 3800                     |
| 3 6 61               | 20.0                             | 9.2                         | 7.8<br>7.9 | 2.2<br>1.8                            | 17<br>22       | 2.7            | 8 • 3           | -                            | 60                | 70                 | 140              | 75                     | 150                     | -                | -                  | 297                                  | 14000                    |
| 3 13 61              | 18.0                             | 9.0                         | 7.9        | 1.2                                   | 17             | 3.8            | 6.7<br>1.8      |                              | 135<br>90         | 110                | 250              | 25                     | 37                      | -                | -                  | 636                                  | 2000                     |
| 3 20 61              | 16.0                             | 9.4                         | 7.9        | 1.6                                   | 18             | 3.8            | 1.0             | _                            | 57                | 85  <br>112        | 196              | 50                     | 180                     | -                | -                  | 527                                  | 4400                     |
| 3 27 61              | 19.0                             | 8.6                         | 7.8        | 2.6                                   | 14             | 4.2            | 10.7            | -                            | 44                | 112                | 172<br>158       | 50                     | 55                      | -                | -                  | 511                                  | 380                      |
| 4 3 61               | 17.0                             | 8 • 2                       | 7.8        | 3.0                                   | 17             | 4.7            | 11.1            | _                            | 35                | 57                 | 94               | 69<br>180              | 125<br>650              | _                | _                  | 250                                  | 4000                     |
| 4 10 61              | 16.0                             | 9.2                         | 7.9        | 1.4                                   | 30             | 2.2            | 4.7             | -                            | 160               | 97                 | 288              | 60                     | 215                     | _                | -                  | 197<br>759                           | 42000<br>4000            |
| 4 17 61              | 16.0                             | 9 • 4                       | 8.0        | 1.6                                   | 22             | 2.7            | 4.7             | -                            | 210               | 98                 | 290              | 20                     | 120                     | _                | _                  | 897                                  | 1100                     |
| 4 24 61 5 1 61       | 21.0                             | 7.8                         | 7.9        | -                                     | 34             | 2.2            | 4.7             |                              | 180               | 110                | 330              | 15                     | 55                      | _                |                    | 1030                                 | *2000                    |
| 5 8 61               | 26.0<br>25.0                     | 7.6                         | 7.8        | -                                     | 24             | 2.7            | 3.7             | -                            | 140               | 143                | 300              | 15                     | 30                      | -                | -                  | 707                                  | 140                      |
| 5 15 61              | 26.0                             | 6 • 6  <br>7 • 2            | 7.7        | 1.6                                   | 45<br>22       | 4 • 7          | 10.7            | -                            | 64                | 74                 | 160              | 90                     | 450                     | -                | -                  | 496                                  | 1300                     |
| 5 22 61              | 25.0                             | 7.4                         | 8.0        | • • •                                 | 29             | 4.7            | 9•1             | -                            | 50                | 72                 | 140              | 50                     | 200                     | -                | -                  | 297                                  | 150                      |
| 5 29 61              | 23.0                             | 7.8                         | 8.0        | 1.4                                   | 33             | 2.7            | 8.2             | _                            | 113               | 132                | 260              | 30                     | 58                      | -                | -                  | 708                                  | 40                       |
| 6 5 61               | 26.0                             | 7.0                         | 7.9        | 1.8                                   | 21             | 2.7            | 8.2             | -                            | 107<br>45         | 120                | 118              | 20                     | 180                     | -                | -                  | 717                                  | *20                      |
| 6 12 61              | 29.0                             | 6.2                         | 7.8        | 2.2                                   | 33             | 1.8            | 4.2             | -1                           | 105               | 100                | 246              | 40<br>20               | 150<br>200              | _                | _                  | 305<br>683                           | 420                      |
| 6 19 61              | 23.0                             | 7.6                         | 8.0        | 2.8                                   | 37             | 4.2            | 6.7             | -                            | 153               | 130                | 294              | 30                     | 70                      | _ [              | _                  | 720                                  | 420<br>160               |
| 6 26 61 7 3 61       | 23.0                             | 6.6                         | 7.8        | 3.2                                   | 36             | 4.7            | 10.7            | -                            | 70                | 95                 | 220              | 40                     | 210                     | _                | _                  | 594                                  | 1300                     |
| 7 3 61 7 10 61       | 29.0                             | 6.6                         | 8.1        | 2.6                                   | 105            | 2.2            | 4.2             | -                            | 128               | 135                | 282              | 15                     | 35                      | _                | _                  | 788                                  | *20                      |
| ,   10   01          | 20.0                             | 9•2                         | 8.1        | 8.0                                   | 41             | 4 • 2          | 6.7             |                              | 158               | 160                | 340              | 20                     | 25                      | -1               | -                  | 806                                  | 200                      |
|                      |                                  |                             |            |                                       |                |                |                 |                              |                   |                    |                  |                        |                         |                  |                    |                                      | _                        |

STATE

ARKANSAS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHWEST LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATIONRED RIVER AT

INDEX, ARKANSAS

| DATE<br>OF SAMPLE                                                                   | 1                                                                          | DISSOLVED<br>OXYGEN                                         |                                                      | B.O.D.                                                      | C.O.D.                                                         | CHLORINE                                                    | DEMAND                                                               | AMMONIA-         | CHLORIDES                                                               | ALKALINITY                                                    | HARDNESS                                                           | COLOR                                                    | TURBIDITY                                                            | SULFATES | PHOSPHATES | TOTAL<br>DISSOLVED                                                           | COLIFORMS                                                |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|------------------|-------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|----------|------------|------------------------------------------------------------------------------|----------------------------------------------------------|
| DAY                                                                                 | (Degrees<br>Centigrade)                                                    | 1 1                                                         | pН                                                   | mg/l                                                        | mg/l                                                           | 1-HOUR<br>mg/l                                              | 24-HOUR<br>mg/l                                                      | NITROGEN<br>mg/l | mg/l                                                                    | mg/l                                                          | mg/l                                                               | (scale units)                                            | (scale units)                                                        | mg/l     | mg/l       | SOLIDS<br>mg/l                                                               | per 100 ml.                                              |
| 7 17 61<br>7 24 63<br>7 31 63<br>8 14 63<br>8 28 63<br>9 4 63<br>9 11 63<br>9 25 63 | 1 28.0<br>1 31.0<br>30.0<br>1 29.0<br>1 27.0<br>1 28.0<br>1 27.5<br>1 22.0 | 5.6<br>6.6<br>6.4<br>6.4<br>6.8<br>7.0<br>7.0<br>6.6<br>7.4 | 7.6<br>7.9<br>7.8<br>8.1<br>8.0<br>8.0<br>7.6<br>8.0 | 1.4<br>1.6<br>2.8<br>1.4<br>3.6<br>3.0<br>2.2<br>2.4<br>1.4 | 30<br>18<br>18<br>23<br>44<br>18<br>20<br>27<br>22<br>15<br>16 | 4.7<br>4.7<br>2.7<br>2.7<br>4.7<br>2.7<br>4.8<br>4.7<br>1.8 | 10.7<br>9.1<br>8.7<br>4.7<br>4.7<br>8.3<br>6.7<br>8.7<br>10.7<br>8.7 | 11111            | 115<br>70<br>118<br>160<br>215<br>110<br>118<br>180<br>194<br>70<br>150 | 70<br>90<br>92<br>136<br>140<br>135<br>150<br>162<br>41<br>96 | 230<br>164<br>220<br>326<br>392<br>270<br>390<br>430<br>170<br>276 | 25<br>70<br>40<br>40<br>20<br>35<br>15<br>20<br>70<br>20 | 270<br>210<br>160<br>51<br>27<br>150<br>50<br>35<br>44<br>300<br>100 |          |            | 624<br>394<br>700<br>888<br>1100<br>643<br>654<br>1101<br>1195<br>409<br>825 | 2400<br>2000<br>73<br>100<br>-<br>-<br>150<br>560<br>140 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Index, Arkansas Operated by U.S. Geological Survey

STATE

Arkansas

MAJOR BASIN

Southwest Lower Mississippi River

MINOR BASIN

Lower Red River below Denison

STATION LOCATION

Red River at

Index, Arkansas

| Day      | October | November      | December | January | February | March  | April  | May     | June           | July   | August | September      |
|----------|---------|---------------|----------|---------|----------|--------|--------|---------|----------------|--------|--------|----------------|
| 1        | 6.010   | 22.800        | 3.1.90   | 13.800  | 7.400    | 9,300  | 61.000 | 4.350   | 5.600          | 2.200  | = (    |                |
| 2        | 5.600   | 21.800        | 2.680    | 25.000  | 6.660    | 7.920  | 60.000 | 4.050   |                | 3.190  | 5.600  | 2.800          |
| 3<br>4   | 4.050   | 18,600        | 2.460    | 29.400  | 6.010    | 6,660  | 51.200 | 4.050   | 4.660          | 3.900  | 5.200  | 2.470          |
| 4        | 3.320   | 14.200        | 2.680    | 25.200  | 6.010    | 6.900  | 40.400 |         | 3.900          | 4.500  | 4.500  | 2.680          |
| 5        | 3,390   | 10.900        | 2.860    | 19.100  | 5.600    | 7.400  | 32,600 | 48.300  | 3,600          | 4.500  | 3.750  | 3.530          |
|          |         | -             |          | _,,     | 7.000    | 1.400  | 32,000 | 5.800   | 3.260          | 4.500  | 3.190  | 3. <i>6</i> 00 |
| 6        | 3.390   | 8.440         | 4.350    | 15.400  | 5.010    | 7,920  | 28.800 | ( 1.1.0 |                | •      |        |                |
| 7        | 4.040   | 6.660         | 13.200   | 13.400  | 4.050    | 7.920  | 25.800 | 6.440   | 3 <b>.</b> 900 | 3.750  | 3.900  | 3.750          |
| 8        | 11.600  | 5.800         | 25.100   | 12.300  | 4.500    | 8.720  | 20.600 | 12.700  | 4.500          | 2.800  | 4.500  | 3.750          |
| 9        | 13.400  | 5.200         | 39.000   | 12.300  | 5.200    | 7.660  | 18,600 | 35.200  | 4.830          | 2.620  | 4.350  | 3.320          |
| 10       | 11.300  | 4.200         | 45.000   | 12.700  | 8.180    |        |        | 44.400  | 5.200          | 3.390  | 4.050  | 2.570          |
|          |         |               | 1,71000  | 12.100  | 0.100    | 7.660  | 20.600 | 37.400  | 4.830          | 3.260  | 3.900  | 2.170          |
| L1       | 8.440   | 3.750         | 50.900   | 13.400  | 11.300   | 9.600  | 07 000 |         | _              |        |        | •              |
| 12       | 5.800   | 4.350         | 63.000   | 13.000  | 11.900   |        | 21.200 | 27.600  | 5.800          | 4.660  | 3.390  | 2,170          |
| 13       | 4.200   | 4.500         | 68.000   | 11.300  | 11.300   | 9.920  | 18.100 | 18.600  | 11.300         | 5.400  | 3.000  | 2.800          |
| 13<br>14 | 3.190   | 4.830         | 58.000   | 9.300   | 9,600    | 11.300 | 16.700 | 12.700  | 11.600         | 5.010  | 3.530  | 3.600          |
| L5       | 2.680   | 5.600         | 38.000   | 8.720   |          | 10.600 | 15.900 | 9.300   | 8.720          | 4.350  | 3.900  | 3.750          |
| •        |         | <b>7.</b> 000 | 20.000   | 0.120   | 7.660    | 8.180  | 16.700 | 7.400   | 6.660          | 4.050  | 4.050  | 4.500          |
| 16       | 3.060   | 5.600         | .25.200  | 8.440   | 6.010    | F (00  |        |         |                |        | •      | •              |
| L7       | 3.750   | 5.010         | 19.600   | 8.180   | 5,200    | 5.600  | 16.700 | 6.220   | 4.830          | 10.400 | 4.050  | 11,600         |
| .ė       | 4.200   | 5.200         | 17,200   | 8.180   |          | 4.500  | 15.900 | 5.600   | 4.350          | 22.800 | 4.350  | 16.300         |
| .9       | 4.050   | 6.010         | 14.600   | 8.440   | 5.600    | 4.660  | 13.000 | 4.830   | 5.200          | 25.800 | 4.500  | 15.000         |
| ó        | 3.320   | 6.440         | 13.000   | 8.180   | 6.440    | 5.400  | 9.600  | 4.350   | 5.010          | 19,600 | 4.350  | 13.000         |
| -        | ت∟ر ∙ر  | 0.440         | 13.000   | 0.180   | 7.920    | 5.800  | 7.140  | 3.750   | 4.500          | 13.400 | 6.010  | 10.600         |
| 21       | 2.680   | 6.900         | 11.900   | 8,180   | 36.000   |        |        |         | -              |        | ****** | 10.000         |
| 22       | 2.300   | 6.440         | 10.600   |         | 16.200   | 7.660  | 6.220  | 4.200   | 4.350          | 9,600  | 6.010  | 7.920          |
| :3       | 13.100  | 5.800         | 8.440    | 7.920   | 23.400   | 9.000  | 6.440  | 4.660   | 3.750          | 7.660  | 5.400  | 5.400          |
| 4        | 27.600  | 4.830         |          | 7.660   | 28.200   | 7.660  | 5.800  | 5.400   | 3.390          | 6.660  | 5.400  | 4.050          |
| 5        | 28.200  |               | 6.900    | 7.660   | 26.400   | 5.600  | 5.400  | 6.440   | 3.190          | 7.140  | 4.500  | 3.900          |
|          | 20.200  | 3.750         | 6.220    | 7.400   | 20.100   | 4.830  | 5.800  | 6.440   | 4.660          | 8.720  | 3.260  | 3.900          |
| 6        | 28.200  | 3.320         | E 900    | ( ((c   | -1 6     |        |        |         |                | 0.120  | J. 200 | 3.500          |
| 7        | 29.400  | 4.200         | 5.800    | 6.660   | 14.600   | 4.660  | 5.800  | 6.660   | 7.140          | 13.800 | 2.740  | 3.900          |
| 8        | 30.000  |               | 5.400    | 6.220   | 11.600   | 7.660  | 5.010  | 7.660   | 7.660          | 15.400 | 3.190  | 4.200          |
| 9        | 30.000  | 4.500         | 5.400    | 6. 440  | 10.200   | 18.600 | 4.050  | 7.660   | 7.400          | 13.000 |        |                |
| 0        |         | 3.750         | 5.010    | 7.400   |          | 22.300 | 3.900  | 5.600   | 5.800          | 10.600 | 3.190  | 4.050          |
| 1        | 30.000  | 3.120         | 5.010    | 7.920   |          | 30.000 | 4.500  | 4.830   | 3.750          | 8.180  | 2.570  | 3.190          |
| 4        | 27.600  |               | 7.140    | 7.920   |          | 43.600 |        | 5.200   | 3.150          | 6.660  | 2.1470 | 2.860          |
|          |         |               |          |         |          | •      |        | 7.200   |                | 0.000  | 2.740  |                |

STATE

TEXAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

DENISON, TEXAS

|                |                                                                  |           | PANI  | OACTIVITY IN W | /ATED     |      |       | <br>RADIOA                    | CTIVITY IN PLAN | IKTON (drv) |        | RAD | OACTIVITY IN W | ATER  |
|----------------|------------------------------------------------------------------|-----------|-------|----------------|-----------|------|-------|-------------------------------|-----------------|-------------|--------|-----|----------------|-------|
| DATE<br>SAMPLE | DATE OF                                                          |           | ALPHA | OACHVIII II V  | - III     | BETA |       |                               | GROSS A         |             |        |     | GROSS ACTIVIT  |       |
| TAKEN          | DATE OF<br>DETERMI-<br>NATION                                    | SUSPENDED |       | TOTAL          | SUSPENDED |      | TOTAL | DATE OF<br>DETERMI-<br>NATION | ALPHA           | BETA        | SUSPEN | DED | DISSOLVED      | TOTAL |
| MO. DAY YEAR   |                                                                  | μμс/Ι     | μμc/l | μμс/Ι          | μμε/Ι     | μμс/ | μμε/Ι | MO. DAY                       | μμc/g           | μμc/g       | μμς/   | I   | μμε/ί          | μμς/Ι |
|                | 11 7<br>12 7<br>1 20<br>2 8<br>3 23<br>4 7<br>5 8<br>6 6<br>7 13 |           |       |                |           |      |       |                               |                 |             |        | -   |                |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

TEXAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

DENISON, TEXAS

| DATE                                                                                                                                                                                      |                                                                                                                 | <del>,</del>                                   |                       | ALGAE (                                                                                                      | Number                | per ml.)                                                                                          |                      |                                                                                                       |                                                                                                                               | IN                                                                      | ERT                                                                    | T                                                                               |                                            |                                                                                        |                                                                        |                                                                                        |                                                            |                                                                                        |                                                    |                                                                                        |                                                                  |                      |                                                                  |                                  |                              |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------|------------------------------------------------------------------|----------------------------------|------------------------------|-----------------|
| F SAMPLE                                                                                                                                                                                  |                                                                                                                 | BLUE-                                          | GREEN                 | GREE                                                                                                         | EN                    | FLAGEI<br>(Pigm                                                                                   | LLATES<br>ented)     | DIAT                                                                                                  | омѕ                                                                                                                           | SH                                                                      | TOM<br>ELLS<br>per ml.)                                                |                                                                                 | DOM<br>(Se                                 | INANT                                                                                  | SPEC                                                                   | IATO<br>IES A<br>for Co                                                                | ND PE                                                      | RCEN                                                                                   | TAGES                                              | s                                                                                      | ROPLANKTON,<br>SHEATHES                                          | -                    |                                                                  | VERTEB                           |                              |                 |
| MONTH<br>DAY<br>YEAR                                                                                                                                                                      | TOTAL                                                                                                           | COCCOID                                        | FILA-<br>MENT-<br>OUS | COCCOID                                                                                                      | FILA-<br>MENT-<br>OUS | GREEN                                                                                             | OTHER                | CENTRIC                                                                                               | PENNATE                                                                                                                       |                                                                         | PENNATE                                                                | FIRST#                                                                          | PER.                                       |                                                                                        | PER.                                                                   | THIRD                                                                                  | PER.                                                       | FOURTH                                                                                 | PER.                                               | OTHER PER-<br>CENTAGE                                                                  | OTHER MICHOFLAN<br>FUNGI AND SHEATH<br>MACTERIA<br>(No. per ml.) | 12 2                 | ROTIFIERS<br>(No. per liter)                                     | CRUSTACEA<br>(No. per liter)     | NEMATODES<br>(No. per liter) | (No. per liter) |
| 0 17 60<br>1 7 60<br>2 1 60<br>2 1 60<br>2 19 60<br>1 1 61<br>1 61<br>6 61<br>3 20 61<br>1 1 61<br>6 5 61<br>1 61<br>5 61<br>7 61<br>2 1 61<br>5 61<br>1 7 61<br>2 1 61<br>5 61<br>1 8 61 | 1600<br>2800<br>1300<br>1400<br>1700<br>3900<br>700<br>1100<br>1500<br>1300<br>900<br>1300<br>800<br>700<br>400 | 70<br>20<br>40<br>90<br>100<br>580<br>20<br>20 | 20                    | 180<br>270<br>70<br>670<br>40<br>1120<br>760<br>220<br>580<br>1360<br>2150<br>220<br>680<br>440<br>270<br>60 |                       | 90<br>240<br>130<br>340<br>290<br>360<br>690<br>110<br>90<br>40<br>540<br>190<br>190<br>120<br>50 | 70<br>20<br>50<br>20 | 110<br>710<br>240<br>50<br>130<br>70<br>90<br>130<br>40<br>390<br>220<br>50<br>210<br>100<br>60<br>20 | 1270<br>1670<br>770<br>6990<br>1410<br>2280<br>270<br>70<br>110<br>270<br>310<br>510<br>400<br>230<br>100<br>190<br>290<br>90 | 130<br>360<br>50<br>40<br>20<br>70<br>50<br>90<br>110<br>80<br>20<br>20 | 220<br>70<br>90<br>200<br>190<br>1010<br>600<br>200<br>350<br>20<br>60 | 38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>3 | 80 70 90 80 90 60 20 530 60 40 50 30 40 50 | 26<br>57<br>26<br>56<br>84<br>80<br>82<br>58<br>80<br>80<br>26<br>38<br>80<br>49<br>80 | * * * * 20 10 20 10 30 10 10 30 10 10 10 10 10 10 10 10 10 10 10 10 10 | 58<br>26<br>26<br>82<br>80<br>92<br>93<br>92<br>26<br>38<br>26<br>26<br>80<br>70<br>92 | *<br>*<br>*<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>* | 56<br>18<br>92<br>92<br>93<br>92<br>71<br>56<br>80<br>92<br>31<br>56<br>46<br>65<br>26 | * * * 10<br>10<br>* * * * * * 10<br>* * * * * * 10 | 10<br>20<br>10<br>10<br>10<br>10<br>50<br>30<br>30<br>30<br>30<br>40<br>40<br>40<br>20 | 130<br>310<br>20<br>160<br>20                                    | 30<br>10<br>90<br>20 | 2<br>1<br>1<br>8<br>18<br>23<br>3<br>21<br>2<br>6<br>3<br>3<br>9 | 6 2 12 23 7 12 24 16 7 7 3 5 1 1 |                              |                 |

# ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

TEXAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

DENISON, TEXAS

. .

| DATE OF SAMPLE           | 1                                                                                     | I =                                                                              | XTRACTABL                                                                         | EC                                                                        |                     |                                                        |                                                                  |                |           |                                                      |          |               |                 |                         |                                      |
|--------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------|--------------------------------------------------------|------------------------------------------------------------------|----------------|-----------|------------------------------------------------------|----------|---------------|-----------------|-------------------------|--------------------------------------|
| BEGINNING END            | 1                                                                                     |                                                                                  | LINACIABL                                                                         | 1                                                                         |                     | ı — — —                                                | T                                                                |                | CHLOROF   | ORM EXTR                                             | ACTABLES |               | ,               |                         |                                      |
| MONTH DAY YEAR MONTH DAY | GALLONS<br>FILTERED                                                                   | TOTAL                                                                            | CHLORO-<br>FORM                                                                   | ALCOHOL                                                                   | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES                                      | TOTAL                                                            | ALIPHATICS     | AROMATICS | OXYGEN-<br>ATED<br>COMPOUNDS                         | Loss     | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES                   | LOSS                                 |
| 10                       | 7300<br>4850<br>5210<br>5040<br>5350<br>5070<br>5680<br>5020<br>15770<br>5460<br>4960 | 280<br>195<br>291<br>209<br>250<br>210<br>254<br>291<br>264<br>251<br>237<br>231 | 64<br>46<br>52<br>60<br>54<br>49<br>73<br>92<br>108<br>91<br>71<br>81<br>44<br>65 | 216<br>149<br>239<br>149<br>196<br>161<br>183<br>173<br>180<br>156<br>163 | 211221 5 4          | 18<br>13<br>12<br>16<br>15<br>12<br>-<br>26<br>-<br>16 | 17<br>10<br>15<br>13<br>12<br>13<br>-<br>-<br>19<br>-<br>-<br>16 | 200101-1-2-1-2 | 1 1 0 0 1 | 14<br>9<br>13<br>11<br>10<br>-<br>-<br>16<br>-<br>12 | 002011   | 75667566777   | 5               | 2 1 2 2 2 2 2 2 2 2 1 1 | 11<br>11<br>13<br>15<br>14<br>11<br> |

STATE

TEXAS

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

DENISON, TEXAS

|          | DATE<br>OF SAMPLE                       | TEA                                                  | P. DISSOI | IVED |                                                                    |                | CHLORINE | DEMAND |                                                                                         |                                                                                                          |                                                                                         |                             |                                                  |                                                                                                                  |                                                                                                                               |                                         |
|----------|-----------------------------------------|------------------------------------------------------|-----------|------|--------------------------------------------------------------------|----------------|----------|--------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 10 10 60 | MONTH                                   | (Deg<br>Centig                                       | ees OXYC  | GEN  | pН                                                                 | B.O.D.<br>mg/l | 1        |        |                                                                                         |                                                                                                          |                                                                                         | 1                           |                                                  | l                                                                                                                | <br>SOLIDS                                                                                                                    |                                         |
|          | 10 10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 |           |      | 7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6 |                |          |        | 399<br>405<br>396<br>427<br>416<br>417<br>419<br>424<br>405<br>387<br>385<br>412<br>410 | 1100<br>-104<br>-2<br>98<br>98<br>-3<br>100<br>-102<br>-108<br>-112<br>-108<br>-114<br>116<br>405<br>116 | 420<br>470<br>440<br>460<br>460<br>440<br>430<br>410<br>420<br>430<br>430<br>430<br>430 | 551510150100111001010111010 | 10   5   10   15   5   5   5   5   5   5   5   5 | 300<br>300<br>375<br>325<br>305<br>305<br>305<br>305<br>305<br>305<br>305<br>295<br>297<br>290<br>283<br>310<br> | 1230<br>1230<br>1230<br>1240<br>1240<br>1240<br>1230<br>1210<br>1230<br>1210<br>1220<br>1210<br>1220<br>12110<br>1271<br>1271 | * 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |

STATE

TEXAS

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATIONRED RIVER AT

DENISON, TEXAS

| OF S       | ATE | .        | TEMP.                   | DISSOLVED      |                  |                |                | CHLORINE       | DEMAND          |                              | 1                 |                    |                  |                        |                            |                  |                    |                                      |                          |
|------------|-----|----------|-------------------------|----------------|------------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|----------------------------|------------------|--------------------|--------------------------------------|--------------------------|
| HTNOM      | DAY | YEAR     | (Degrees<br>Contigrade) | OXYGEN<br>mg/l | pH               | B.O.D.<br>mg/l | C.O.D.<br>mg/l | I-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml. |
| 4          |     | 61<br>61 | -                       | _              | _                | _              | -              | -              | _               | _                            | 435               |                    | -                | 5                      | -                          | 305              | •0                 | 1244                                 |                          |
| 4          | - 1 | 61       | 12.8                    | _              | 8.0              | _              | _              | _              | _               | _                            | -                 | 116                | 450              | _                      | <b>-</b> 5                 | _                | _                  | -                                    | 33                       |
|            | .2  | 61       | 12.8                    | -              | 8.0              | _              | _              | -              | _               | -                            | -                 | 118                | 440              | _                      | 5                          |                  | _                  | -                                    |                          |
|            |     | 61       | -                       | -              | -                | -              | -              | -              | -               | -                            | _                 | -                  | _                | 5                      | _                          | 305              | • 2                | 1269                                 | *30                      |
|            |     | 61       | 13.9                    | _              | 8.0              | _              | _              | -              | -               | _                            | _                 | 126                | 450              | -                      | 0                          | -                | -                  | -                                    | _                        |
|            |     | 61       | 15.0                    | -              | -8.0             | _              | -              | _              | -               | _                            | 470               | 122                | 470              | 5                      | _                          | 300              | •0                 | 1286                                 | -                        |
| 5          |     | 61       |                         | _              | -                | _              | _              | _              | _               | _                            | 450               | 122                | 470              | 7                      | 0                          | 285              | .0                 | 1422                                 | 10                       |
| 5          |     | 61       | 16.1                    | -              | 8.0              | -              | -              | -              | -               | -                            | _                 | 124                | 460              |                        | 0                          |                  |                    | 4 T 4 4                              | *3                       |
| 5          |     | 61       |                         | -              | -                | -              | -              | -              | -               | -                            | 454               | 122                | 488              | 7                      | -                          | 315              | •0                 | 1336                                 | _                        |
| 5 1<br>5 1 |     | 61       | _                       | -              | -                | _              | -              |                | -               | -                            | 445               | -                  | -                | 7                      |                            | 305              | •1                 | 1268                                 | -                        |
|            |     | 61       | 18.9                    | _              | 8.0              | _              | _              | _              | -               | _                            | 438<br>-          | 122                | 460              | 8 -                    | 0                          | 300              | .0                 | 1276                                 |                          |
| 5 2        | 2   | 61       | 19.4                    | -              | 8.2              | -              | _              | _              | _               | _                            | _                 | 128                | 470              | _                      | 0                          | _                | _                  | _                                    | 33<br>31                 |
|            |     | 61       |                         | -              | -                | -              | -              | -              |                 | -                            | 441               | -                  | _                | 10                     | -                          | 325              | .0                 | 1348                                 |                          |
|            |     | 61       | 19.4                    | -              | 7.8              | -              | -              | -              | -               | -                            | -                 | 114                | 460              | -                      | 0                          | _                | -                  |                                      | -                        |
| 6 1        |     | 61       | 21.1                    | _              | 7 <sub>•</sub> 6 | _              | _              | _              | _               | -                            | 430               | 122                | 450              | 5                      | -                          | 313              | •0                 | 1348                                 |                          |
|            |     | 61       |                         | _              | 7,00             | -              | _              | _              |                 | _                            | 430               | 122                | 450<br>-         | 0                      | 0                          | 300              | .0                 | 1311                                 | 100                      |
| 6 2        | 1   | 61       | 21.7                    | -              | 7.8              | -              | -              | _              | -               |                              | -                 | 120                | 440              | -                      | 0                          | 500              |                    | 1711                                 | _                        |
| 6 2        | 6   | 61       | -                       | -              | -                | -              | -              | -              | -               | -                            | 434               | -                  | -                | 5                      | _                          | 350              | •0                 | 1311                                 | _                        |
|            |     | 61       | 25.6                    | -              | 7.6              | -              | -              | -              | -               | -                            | -                 | 122                | 490              | -                      | . 0                        |                  | -                  | -                                    | -                        |
| 7 1        |     | 61       | 20.6                    | _              | 7.6              | - 1            | _              | ****           | -               | -                            | 449               |                    |                  | 5                      | _                          | 325              | •0                 | 1308                                 | -                        |
| 7 1        | 7   | 61       | 20.5                    | _              | 7.0              | _              | _              |                | _               | _                            | -<br>452          | 118                | 460              | -<br>5                 | 0                          | 300              | .0                 | 1316                                 | 36                       |
| 7 2        |     | 61       | _                       | -              | _                | _              | _              | _              | _ [             |                              | 447               | _                  | -                | 5                      | _                          | 300              | .0                 | 1317                                 | _                        |
| 7 2        | 5   | 61       | 23.3                    | -              | 7.6              | -              | -              | -              | -               | -                            | -                 | 120                | 490              | _                      | ٥                          | _                | "-                 |                                      | _                        |
| 7 3        |     | 61       |                         | -              |                  | -              | -              | -              | -               |                              | 450               | -                  | -                | 5                      | -                          | 310              | .0                 | 1297                                 | _                        |
|            |     | 61       | 22.7                    | -              | 7.8              | _              | _              | -              | -               |                              | 4.50              | 122                | 450              | -                      | 0                          | _                | -                  | _                                    | 3                        |
|            |     | 61       | 21.6                    | _              | 7.6              | _              | _              | _              | _               | _                            | 450<br>-          | 118                | 500              | 5<br>                  | - 0                        | 315              | •1                 | 1337                                 |                          |
|            |     | 61       |                         | _              | '-               | _              | -              | _              | _               | _                            | 450               | 110                | -                | 5                      | -                          | 285              | .1                 | 1345                                 | *3                       |
| 8 1        | 5   | 61       | 22.2                    | -              | 7.4              | -              | -              | -              | _               | -                            | -                 | 130                | 570              |                        | 0                          |                  | - "-               | -                                    | _                        |
| 8 2        | 1   | 61       |                         | -              |                  | -              | -              | -1             | -               | -                            | 455               | 120                | 468              | 5                      | 0                          | 275              | 1                  | 1347                                 | -                        |
| 8 2        | 2   | 61       | 23.3                    | -              | 7 • 4            | -              | -              | ~              | -               | -                            | -                 | 126                | 470              | -                      | 0                          | -                | -                  |                                      | 10                       |
|            |     |          |                         |                |                  |                |                |                |                 |                              |                   |                    |                  |                        |                            |                  |                    |                                      |                          |

STATE

TEXAS

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATIONRED RIVER AT

DENISON, TEXAS

| DATE<br>OF SAMPLE                                                        | TEMP.                   | DISSOLVED |     |                |                | CHLORINE       | DEMAND          |                              |                   |                                    | <del></del>                               |                        |                            |                  |                    |                                      | <u> </u>                 |
|--------------------------------------------------------------------------|-------------------------|-----------|-----|----------------|----------------|----------------|-----------------|------------------------------|-------------------|------------------------------------|-------------------------------------------|------------------------|----------------------------|------------------|--------------------|--------------------------------------|--------------------------|
| MONTH<br>DAY<br>YEAR                                                     | (Degrees<br>Centigrade) | OXYGEN    | рН  | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l                 | HARDNESS<br>mg/l                          | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml. |
| 8 28 61<br>8 29 61<br>9 5 61<br>9 11 61<br>9 12 61<br>9 25 61<br>9 26 61 | 22.2                    |           | 7.4 |                |                |                |                 |                              | 455<br>           | 128<br>134<br>-<br>126<br>-<br>110 | 540<br>530<br>540<br>-<br>540<br>-<br>490 | 5   5   1   5   1      | 155101151                  | 315              | •1                 | 1355                                 | *3 *3 7 - 33             |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Colbert, Oklahoma Operated by U.S. Corps of Engineers

STATE

Texas

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Lower Red River below Denison

STATION LOCATION

Red River at

Denison, Texas

| Day                              | October                                                  | November                                  | December                                           | January                                            | February                                  | March                                              | April                                        | May                                             | June                                      | July                                              | August                                            | September                                 |
|----------------------------------|----------------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------|-------------------------------------------------|-------------------------------------------|---------------------------------------------------|---------------------------------------------------|-------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | .340<br>.020<br>3.440<br>3.310<br>3.280                  | 9.360<br>3.980<br>3.960<br>3.370<br>.080  | 3.370<br>3.290<br>.040<br>.040<br>3.680            | 3.470<br>4.280<br>4.870<br>4.610<br>6.210          | 2.880<br>2.420<br>2.070<br>.770<br>.480   | 4.170<br>3.370<br>3.540<br>.900<br>1.010           | 9.250<br>9.340<br>9.960<br>9.860<br>10.100   | 1.440<br>2.800<br>2.860<br>3.790<br>3.620       | 3.690<br>3.410<br>.600<br>.459<br>2.920   | .510<br>.190<br>4.590<br>.300<br>4.700            | 3.890<br>3.830<br>3.190<br>3.130<br>2.470         | 3.270<br>2.600<br>.020<br>.020<br>2.270   |
| 6<br>7<br>8<br>9<br>10           | 3.070<br>1.220<br>.020<br>.020<br>2.910                  | 1.390<br>4.200<br>2.280<br>3.650<br>5.170 | 3.250<br>3.170<br>3.440<br>3.920<br>3.870          | 5.690<br>4.500<br>3.820<br>4.840<br>4.830          | 2.000<br>2.130<br>2.560<br>1.500<br>.770  | 3.460<br>3.900<br>3.650<br>3.320<br>2.000          | 10.800<br>10.600<br>9.910<br>9.890<br>10.100 | .900<br>.180<br>2.600<br>2.690<br>2.530         | 2.760<br>2.990<br>3.080<br>3.230<br>1.590 | 4.730<br>4.750<br>2.020<br>.020<br>2.220          | .920<br>3.110<br>3.370<br>3.090<br>3.200          | 2.560<br>3.110<br>3.120<br>2.760<br>2.160 |
| 11<br>12<br>13<br>14<br>15       | 2.750<br>3.810<br>3.760<br>1.300<br>.020                 | 3.970<br>3.210<br>3.010<br>4.990<br>4.970 | 9.090<br>8.090<br>4.920<br>8.310<br>10.500         | 4.980<br>5.390<br>4.570<br>5.130<br>4.460          | .690<br>.450<br>2.680<br>2.580<br>4.290   | .180<br>.030<br>1.530<br>1.550<br>2.080            | 10.100<br>10.100<br>10.200<br>8.770<br>2.390 | 2.820<br>3.370<br>.960<br>.1490<br>2.780        | .520<br>4.260<br>3.970<br>2.120<br>3.790  | 4.540<br>4.080<br>4.030<br>3.720<br>1.990         | 3.120<br>1.680<br>1.430<br>1.870<br>2.180         | 4.600<br>3.720<br>4.850<br>8.710<br>9.200 |
| 16<br>17<br>18<br>19<br>20       | .020<br>2.650<br>6.150<br>9.200<br>21.100                | 5.700<br>4.300<br>4.360<br>2.230<br>.030  | 10.100<br>9.920<br>9.140<br>5.140<br>3.980         | 5.590<br>5.190<br>5.070<br>5.430<br>5.200          | 2.000<br>3.040<br>.600<br>.670<br>4.790   | 3.080<br>2.320<br>.040<br>.040                     | 1.980<br>4.830<br>2.640<br>2.970<br>3.900    | 3.130<br>3.450<br>3.510<br>2.990<br>2.270       | 1.550<br>1.870<br>.150<br>2.520<br>3.280  | .020<br>3.210<br>3.440<br>4.210<br>3.260          | 2.590<br>2.740<br>2.860<br>.520<br>.250           | 6.940<br>.360<br>2.930<br>2.260<br>2.830  |
| 21<br>22<br>23<br>24<br>25       | 30.630<br>30.330<br>30.200<br>30.350<br>30.490           | 3.150<br>4.150<br>2.940<br>.450<br>3.030  | 4.380<br>2.750<br>4.210<br>3.200<br>3.490          | 4.010<br>3.830<br>4.690<br>6.310<br>6.900          | 3.750<br>3.510<br>3.660<br>4.500<br>1.710 | .870<br>1.400<br>2.160<br>1.190<br>2.140           | 4.180<br>1.950<br>.160<br>2.210<br>2.800     | 1.090<br>3.430<br>1.260<br>1.710<br>2.140       | 3.430<br>4.700<br>½.350<br>.020           | 3.940<br>1.300<br>4.500<br>5.230<br>3.940         | 2.940<br>2.490<br>.370<br>1.710<br>2.200          | 3.380<br>3.780<br>1.370<br>.550<br>3.410  |
| 26<br>27<br>28<br>29<br>30<br>31 | 30.570<br>27.510<br>23.810<br>19.910<br>19.920<br>14.680 | .610<br>.030<br>2.920<br>1.560<br>2.690   | 3.540<br>5.580<br>4.730<br>4.350<br>5.940<br>4.210 | 5.470<br>6.270<br>4.010<br>4.020<br>4.940<br>3.790 | .260<br>3.600<br>3.710                    | 4.250<br>6.090<br>5.580<br>6.700<br>7.650<br>7.210 | 1.170<br>1.380<br>1.430<br>.020              | 1.030<br>.300<br>.320<br>2.610<br>.330<br>2.820 | 3.440<br>3.790<br>3.800<br>3.630<br>2.870 | 3.690<br>3.550<br>3.600<br>1.800<br>.020<br>3.450 | 1.590<br>.020<br>3.020<br>3.280<br>2.950<br>3.560 | 3.680<br>3.740<br>3.000<br>2.630<br>.230  |

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

BROWNSVILLE, TEXAS

| DATE            | Т   |       |       |              | RADI      | DACTIVITY IN V | /ATER     |           |          | Г        | RADIOA                        | CTIVITY IN PLA | NKTON (dry) | т | T PAF     | DIOACTIVITY IN V | /ATED |
|-----------------|-----|-------|-------|--------------|-----------|----------------|-----------|-----------|----------|----------|-------------------------------|----------------|-------------|---|-----------|------------------|-------|
| SAMPLE          | Ī   | DAT   | E OF  |              | ALPHA     |                |           | BETA      |          | 1        |                               |                | ACTIVITY    | 1 | l RAL     | GROSS ACTIVIT    |       |
| TAKEN           |     | NA.   | ERMI- | SUSPENDED    | DISSOLVED | TOTAL          | SUSPENDED | DISSOLVED | TOTAL    |          | DATE OF<br>DETERMI-<br>NATION | ALPHA          | BETA        | - | SUSPENDED | DISSOLVED        | TOTAL |
| MO. DAY Y       | EAR | MONTH | DAY   | <b>μμc/l</b> | μμε/Ι     | μμε/Ι          | μμε/Ι     | μμς/Ι     | μμς/Ι    | <u> </u> | MO. DAY                       | μμc/g          | μμс/g       | 1 | μμε/Ι     | μμε/Ι            | μμε/Ι |
| 10 0 4          |     |       | • ,   |              |           |                |           | _         | _        |          |                               |                |             |   |           |                  |       |
| 10 2 6          |     |       |       | 2            | 4         | 6              | 0         | . 0       | 0        |          |                               |                |             | 1 |           |                  |       |
| 10 14 6         |     |       |       | -            |           |                | 0         | . 0       | 0        | 1        |                               |                | İ           | 1 |           |                  |       |
| 10 28 6         |     |       | 17    | 17           | 4         | 21             | 0         | 0         | 0        |          |                               |                |             |   | · ·       |                  |       |
| 12 15 6         |     | 11    | 5     | 12           | . 9       | 21             | 9         | 0 4       | . 4      |          | 1                             |                |             |   |           |                  |       |
| 12 30 6         |     |       | 16    | 0            | 2         | 2              | 0         | 0         | 13<br>0  |          |                               |                |             | 1 |           |                  |       |
| 1 13 6          |     | 2     | 3     | -            | _         |                | Ö         | ŏ         | o        |          |                               |                |             |   |           |                  |       |
| 1 27 6          |     | 3     | ī     | l 6          | 4         | 4              | o         | 0         | Ô        |          |                               |                |             | 1 |           |                  |       |
| 2 17 6          |     | 3     | 2     | _            | _         | _              | Ö         | ŏ         | ŏ        |          |                               |                |             | • |           |                  |       |
| 2 24 6          | 1   | 3     | 22    | 0            | 1         | 1              | 18        | 7         | 25       |          |                               |                |             |   |           |                  |       |
| 3 17 6          | 1*  | 4     | 4     | _            | _ `       | _              | 0         | o l       | 0        |          |                               |                |             |   |           |                  |       |
| 3 24 6          | 1   | 5     | 5     | 0            | 2         | 2              | 1         | 0         | 1        |          |                               |                |             | 1 |           |                  |       |
| 4 7 6           |     | 5     |       | 5            | 4         | 9              | 0         | 0         | 0        |          |                               |                |             | 1 |           |                  |       |
| 5 24 6          | - 1 | 6     |       | 1            | 4         | 5              | 0         | 0         | 0        |          | 1                             |                |             | l |           |                  |       |
|                 | 1*  | 7     |       | 0            | 4         | 4              | 6         | 0         | 6        |          |                               |                |             | 1 | 1         |                  |       |
| 6 28 6          |     | 7     |       | 3            | 3         | 6              | 0         | o         | 0        |          |                               |                |             |   |           |                  |       |
| 7 12 6          |     | 8     |       | -            | -         | -              | 0         | 0         | 0        |          |                               |                |             |   |           |                  |       |
| 8 2 6<br>8 16 6 | 1*  | 8     |       | 1 -          | 4         | 5              | 0         | 22        | 22       |          | i l                           |                |             |   |           |                  |       |
| 8 30 6          |     | 9     |       | 2            | <u> </u>  | 7              | 10        | 27        | 37       |          |                               |                | 1           |   |           |                  |       |
| 9 13 6          |     | 10    |       |              |           | -              | 13<br>16  | 15        | 28       |          | ]                             |                |             |   |           |                  |       |
| 9 20 6          | - 1 | 10    | ٠٠.   |              |           | -              | 2         | 30<br>11  | 46       |          |                               |                |             | 1 |           |                  |       |
| 9 28 6          |     | 10    | -     | ٥            | 5         | 5              | 0         | 11        | 13<br>11 |          |                               |                |             | ĺ |           |                  |       |
|                 | _   |       |       |              | _         |                |           | ~ -       |          |          |                               |                |             |   |           | •                |       |
|                 |     |       |       |              |           |                |           |           |          |          |                               |                |             |   |           |                  |       |
|                 |     |       |       |              |           |                |           |           |          |          |                               |                |             |   | }         |                  |       |
|                 | 1   |       |       |              |           |                |           |           |          | İ        | 1 1                           |                |             |   |           |                  |       |
|                 | İ   |       |       |              |           |                |           |           |          |          |                               |                |             | 1 |           |                  |       |
|                 |     |       |       |              |           |                |           |           |          |          |                               |                |             | ľ |           |                  |       |
|                 |     |       |       |              |           |                |           |           |          |          |                               |                |             |   |           |                  |       |
|                 |     |       |       |              |           |                |           |           |          |          |                               |                |             |   |           |                  |       |
|                 |     |       |       |              |           |                |           |           |          |          |                               |                |             | ĺ |           |                  |       |
|                 |     |       |       |              |           |                |           |           |          |          |                               |                |             |   |           |                  |       |
|                 |     |       |       |              |           |                |           |           |          |          |                               |                |             |   |           |                  |       |
|                 |     |       |       |              |           |                |           |           |          |          |                               |                |             | 1 |           |                  |       |
|                 |     |       |       |              |           |                |           |           |          |          |                               |                |             | i |           |                  |       |
|                 |     |       |       |              |           |                |           |           |          |          |                               |                |             |   |           |                  |       |
|                 |     |       |       |              |           |                |           |           |          |          |                               |                |             |   |           |                  |       |
|                 |     |       |       |              |           |                |           |           |          |          |                               |                |             |   | 1         |                  |       |
|                 |     |       |       |              |           |                |           |           |          |          |                               |                |             |   |           |                  |       |
|                 |     |       |       | l            |           |                |           |           | - 1      |          | 1                             |                | 1           | 1 | 1         |                  |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

BROWNSVILLE, TEXAS

| DATE                 |       |                                                                     |                                           | ALGAE (                                                                                                  | Vumber                | per ml.)                                                                                    |       |                                                                                |                                                                                                                    | INI                                                                           | ERT<br>TOM                                                                | Ι                         | <u></u>                                                        |                     |                                                                    | IATO                                                                           | MS.                        |                                                  |                                                    |                                                                                                                               | l <u>.</u>                                              | <u> </u>                  | MICROIN                                                                | VERTEBR                      | ATES                         |                 |                                                                                                           |
|----------------------|-------|---------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------|---------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------|--------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------|------------------------------------------------------------------------|------------------------------|------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------|
| OF SAMPLE            |       | BLUE-0                                                              | GREEN                                     | GREE                                                                                                     | :N                    | FLAGEL<br>(Pigma                                                                            |       | DIAT                                                                           | омѕ                                                                                                                | SHE                                                                           | TOM<br>LLS<br>er ml.)                                                     |                           | DOM I<br>(See                                                  | INANT<br>Intro      | SPEC                                                               | ies Al                                                                         | ND PE                      | RCEN'<br>ntificat                                | TAGES<br>ion*)                                     | •                                                                                                                             | корсанктон<br>викатикр<br>т.)                           | 13                        | ĵ.                                                                     | , ie                         | s (et)                       | FORMS.          | ENKRA<br>fuction<br>cation)                                                                               |
| MONTH<br>DAY<br>YEAR | TOTAL | COCCOID                                                             | FILA-<br>MENT-<br>OUS                     | COCCOID                                                                                                  | FILA-<br>MENT-<br>OUS | GREEN                                                                                       | OTHER | CENTRIC                                                                        | PENNATE                                                                                                            | CENTRIC                                                                       | PENNATE                                                                   | FIRST#                    | PER-                                                           | SECOND*             | PER.<br>CENTAGE                                                    | THIRD#                                                                         | PER-                       | FOURTH                                           | PER.<br>CENTAGE                                    | OTHER PER-                                                                                                                    | OTHER MICROI<br>FUNGI AND SH<br>BACTERIA<br>(No. per 71 | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)                                           | CRUSTACEA<br>(No. per liter) | HEMATODES<br>(No. per liter) | (No. per liter) | DOMINANY GENERA<br>(See Introduction<br>for Identification)                                               |
| 10                   | 2700  | 1300<br>160<br>200<br>200<br>190<br>750<br>220<br>580<br>540<br>870 | 150<br>130<br>20<br>110<br>70<br>20<br>40 | 870<br>130<br>270<br>200<br>90<br>360<br>1200<br>270<br>3230<br>4040<br>3710<br>850<br>890<br>330<br>100 | 40                    | 90<br>290<br>90<br>160<br>200<br>130<br>330<br>160<br>40<br>350<br>290<br>250<br>290<br>290 | 40    | 90<br>180<br>200<br>700<br>200<br>490<br>480<br>190<br>470<br>210<br>210<br>80 | 590<br>1450<br>3710<br>2600<br>800<br>1780<br>600<br>14930<br>4330<br>1390<br>4300<br>7870<br>2300<br>2730<br>2300 | 90<br>90<br>70<br>20<br>20<br>40<br>90<br>100<br>210<br>80<br>60<br>70<br>310 | 130<br>270<br>360<br>130<br>110<br>530<br>840<br>530<br>120<br>210<br>680 | 4<br>38<br>92<br>38<br>70 | 30<br>30<br>30<br>20<br>20<br>20<br>40<br>10<br>50<br>40<br>10 | 26<br>38<br>5<br>91 | 200<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | 90<br>70<br>38<br>80<br>5<br>82<br>49<br>53<br>84<br>38<br>21<br>26<br>9<br>87 | 10<br>10<br>10<br>10<br>10 | 82<br>6<br>26<br>26<br>26<br>8<br>27<br>38<br>68 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 100<br>620<br>40<br>40<br>55<br>50<br>610<br>35<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 | 130<br>180<br>90<br>40<br>20<br>310                     | 20                        | 3<br>16<br>9999<br>12<br>10<br>7<br>3<br>194<br>53<br>53<br>146<br>148 | 2 1 8 1 1 1 1 2              | 1 3                          |                 | 722<br>773<br>78763<br>63<br>76-78-63<br>973<br>-8926<br>963<br>78863<br>-8366<br>+8363<br>7-763<br>7-362 |

### ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

BROWNSVILLE, TEXAS

| DATE OF                                     | F SAI | MPLE   |                          | <del></del>                           | F                                       | KTRACTABL             | EG                                |                     |                   |                            |            | 0111 000    |                              |           |               | ·               |           |           |
|---------------------------------------------|-------|--------|--------------------------|---------------------------------------|-----------------------------------------|-----------------------|-----------------------------------|---------------------|-------------------|----------------------------|------------|-------------|------------------------------|-----------|---------------|-----------------|-----------|-----------|
| BEGINNING                                   |       | EN     |                          |                                       |                                         | 1                     | ī                                 | <del> </del>        | 1                 | ·                          |            | NEUTRALS    |                              | ACTABLES  | 1             | <del></del>     | ,         |           |
| РАМОМТН                                     | YEAR  | MONTH  | DAY                      | GALLONS<br>FILTERED                   | TOTAL                                   | CHLORO-<br>FORM       | ALCOHOL                           | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES | TOTAL                      | ALIPHATICS | AROMATICS   | OXYGEN-<br>ATED<br>COMPOUNDS | Loss      | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES     | Loss      |
| 1 25 6<br>3 3 6<br>5 10 6<br>7 5 6<br>8 9 6 | 51    | 5<br>7 | 7<br>1<br>27<br>20<br>26 | 4980<br>20880<br>4760<br>4914<br>4860 | 168<br>*<br>141<br>152<br>126<br>**SAMF | 39<br>-47<br>29<br>35 | 129<br>94<br>123<br>91<br>PROCESS | 1<br>2<br>1<br>1    | 8<br>13<br>6<br>9 | 18<br>-<br>13°<br>15<br>12 | 3 - 2 3 2  | 3 - 2 2 2 1 | 122-9999                     | 0 - 0 1 0 | 6 3           | -<br>3<br>1     | 1 1 1 1 1 | 5 - 9 2 5 |

STATE

TEXAS

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATIONRIO GRANDE AT

BROWNSVILLE, TEXAS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATIONRIO GRANDE AT

BROWNSVILLE, TEXAS

| DATE                                                                                       |                                                                              |                             |                                                      |                                                                    |                | CHLORINE       | DEMAND          | -                            |                                                              |                                                      |                                                                     |                        |                  | ·                                                              |                        | 70741                                |                                                                     |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------|--------------------------------------------------------------------|----------------|----------------|-----------------|------------------------------|--------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|------------------------|------------------|----------------------------------------------------------------|------------------------|--------------------------------------|---------------------------------------------------------------------|
| DAY YEAR YEAR                                                                              | TEMP.<br>(Degrees<br>Centigrade)                                             | DISSOLVED<br>OXYGEN<br>mg/l | рН                                                   | B.O.D.<br>mg/l                                                     | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l                                            | ALKALINITY<br>mg/l                                   | HARDNESS<br>mg/l                                                    | COLOR<br>(scale units) |                  | SULFATES<br>mg/l                                               | PHOSPHATES<br>mg/l     | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml.                                            |
| 7 5 61<br>12 61<br>7 19 61<br>8 9 61<br>8 16 61<br>8 30 61<br>9 6 61<br>9 20 61<br>9 28 61 | 31.0<br>32.5<br>29.5<br>26.5<br>30.0<br>26.5<br>29.0<br>30.0<br>29.0<br>27.0 | 7.9<br>8.2<br>7.1           | 7.9<br>7.8<br>7.8<br>7.8<br>7.6<br>7.6<br>7.7<br>7.7 | 1.4<br>1.9<br>1.3<br>1.1<br>1.6<br>1.2<br>1.7<br>1.8<br>1.1<br>1.1 |                |                |                 |                              | 2950<br>2250<br>2550<br>2555<br>1950<br>1555<br>1755<br>1750 | 100<br>110<br>120<br>120<br>130<br>130<br>140<br>100 | 328<br>272<br>296<br>3108<br>300<br>272<br>244<br>304<br>224<br>248 | -<br>-<br>-<br>-       | 2020150500145640 | 200 120 180 150 130 150 170 170 170 170 170 170 170 170 170 17 | 11   54435   1   1   1 |                                      | *100<br>80<br>10<br>700<br>430<br>170<br>270<br>1800<br>1800<br>200 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Computed Data for Brownsville, Texas Supplied by International Boundary and Water Commission STATE

E

MAJOR BASIN

Western Gulf

Texas

MINOR BASIN

Rio Grande/Lower/below Pecos River

STATION LOCATION

Rio Grande at

Brownsville, Texas

| Day                              | October                                          | November                                  | December                                  | January                                      | February                             | March                                        | April                                     | May                                           | June                                 | July                                         | August                                             | September                                 |
|----------------------------------|--------------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|-------------------------------------------|-----------------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------------|-------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | .556<br>.372<br>.253<br>.175                     | . 380<br>. 358<br>. 975<br>. 803<br>. 439 | . 264<br>. 219<br>. 335<br>. 439<br>. 533 | 1.105<br>1.075<br>1.135<br>1.115<br>.894     | .247<br>.208<br>.158<br>.149<br>.228 | .161<br>.110<br>.144<br>.396<br>.377         | .173<br>.476<br>.815<br>.641<br>.532      | 1.344<br>1.967<br>2.410<br>2.198<br>1.059     | ·397<br>·184<br>·344<br>·575<br>·776 | .134<br>.130<br>.344<br>.443                 | .351<br>.360<br>.212<br>.159                       | 1.276<br>.673<br>.411<br>.296             |
| 6                                | .180                                             | . 291                                     | • 531                                     | .462                                         | .308                                 | .342                                         | .490                                      | . 644                                         | .713                                 | .148                                         | .188                                               | .336                                      |
| 7                                | .167                                             | . 340                                     | • 380                                     | .195                                         | .377                                 | .225                                         | 1.167                                     | • 993                                         | .234                                 | .146                                         | .236                                               | .234                                      |
| 8                                | .172                                             | . 380                                     | • 335                                     | .236                                         | .233                                 | .153                                         | 1.576                                     | • 755                                         | .164                                 | .180                                         | .217                                               | .166                                      |
| 9                                | .149                                             | . 346                                     | • 353                                     | .359                                         | .223                                 | .198                                         | 1.697                                     | • 505                                         | .114                                 | .199                                         | .370                                               | .180                                      |
| 10                               | .231                                             | . 529                                     | • 200                                     | .280                                         | .254                                 | .473                                         | 1.441                                     | • 487                                         | .092                                 | .350                                         | .399                                               | .320                                      |
| 11                               | .339                                             | . 587                                     | .227                                      | .173                                         | .268                                 | .217                                         | 1.174                                     | .330                                          | .805                                 | .462                                         | .470                                               | .801                                      |
| 12                               | .354                                             | . 624                                     | .233                                      | .174                                         | .287                                 | .114                                         | .928                                      | .207                                          | 1.614                                | .399                                         | .455                                               | .962                                      |
| 13                               | .192                                             | . 639                                     | .308                                      | .183                                         | .346                                 | .284                                         | .609                                      | .141                                          | 2.015                                | .281                                         | .336                                               | 1.118                                     |
| 14                               | .125                                             | . 750                                     | .488                                      | .203                                         | .201                                 | .441                                         | .440                                      | .169                                          | 1.249                                | .444                                         | .519                                               | 1.396                                     |
| 15                               | .084                                             | . 606                                     | .471                                      | .215                                         | .141                                 | .327                                         | .489                                      | .206                                          | .321                                 | .492                                         | .459                                               | 1.136                                     |
| 16                               | .150                                             | .381                                      | . 494                                     | .214                                         | .131                                 | .220                                         | .568                                      | .281                                          | .286                                 | .466                                         | .317                                               | 1.846                                     |
| 17                               | .439                                             | .240                                      | . 348                                     | .283                                         | .224                                 | .228                                         | .615                                      | .358                                          | .726                                 | .434                                         | .242                                               | 3.206                                     |
| 18                               | .559                                             | .194                                      | . 302                                     | .294                                         | .368                                 | .210                                         | .494                                      | .325                                          | .856                                 | .413                                         | .254                                               | 5.197                                     |
| 19                               | .444                                             | .172                                      | . 216                                     | .256                                         | .283                                 | .203                                         | .299                                      | .154                                          | 1.224                                | .379                                         | .391                                               | 6.517                                     |
| 20                               | .466                                             | .218                                      | . 251                                     | .219                                         | .530                                 | .240                                         | .183                                      | .094                                          | 1.538                                | .211                                         | .502                                               | 6.707                                     |
| 21                               | . 433                                            | . 484                                     | .248                                      | .195                                         | .554                                 | .404                                         | .147                                      | .123                                          | 1.315                                | .146                                         | .812                                               | 6.157                                     |
| 22                               | . 386                                            | . 517                                     | .245                                      | .204                                         | .510                                 | .400                                         | .180                                      | .208                                          | 1.336                                | .221                                         | 1.553                                              | 5.568                                     |
| 23                               | . 494                                            | . 460                                     | .211                                      | .252                                         | .342                                 | .224                                         | .251                                      | .248                                          | 1.177                                | .347                                         | 1.340                                              | 5.234                                     |
| 24                               | . 389                                            | . 473                                     | .178                                      | .260                                         | .205                                 | .148                                         | .817                                      | .426                                          | .585                                 | .420                                         | .761                                               | 4.487                                     |
| 25                               | . 345                                            | . 488                                     | .199                                      | .210                                         | .182                                 | .161                                         | .615                                      | .343                                          | .306                                 | .380                                         | 1.234                                              | 3.447                                     |
| 26<br>27<br>28<br>29<br>30<br>31 | . 352<br>1.978<br>2.599<br>2.147<br>.984<br>.496 | . 457<br>. 324<br>. 284<br>. 329<br>. 320 | .260<br>.289<br>.218<br>.159<br>.130      | .213<br>.233<br>.202<br>.152<br>.243<br>.338 | .402<br>.388<br>.310                 | .506<br>.779<br>.834<br>.648<br>.261<br>.131 | . 388<br>. 278<br>. 159<br>. 163<br>. 338 | .169<br>.101<br>.175<br>.319<br>1.014<br>.909 | .798<br>.661<br>.287<br>.150<br>.178 | .220<br>.179<br>.335<br>.669<br>.665<br>.494 | 2.040<br>2.820<br>3.271<br>3.370<br>3.191<br>2.471 | 2.847<br>2.107<br>1.557<br>1.648<br>2.088 |

Computed as being sum of (1) Flow at Lower Brownsville Station, (2) City of Matamoros Diversion and (3) average daily Diversion at El Jardin Pump.

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

LAREDO, TEXAS

| SAMPLE TAKEN DATE OF DETERMINE NATION NATION NATION NATION NATION NATION DAY YEAR MONTH DAY μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε/Ι μμε | - 175                                                                                                                                   |                                                                                  |                             | RADIO                         | DACTIVITY IN Y                      | WATER                                                                |                                   | <del></del>                           | RADIOAC            | TIVITY IN PLA | NKTON (dry) | RAD       | IOACTIVITY IN W | ATER          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------|-------------------------------|-------------------------------------|----------------------------------------------------------------------|-----------------------------------|---------------------------------------|--------------------|---------------|-------------|-----------|-----------------|---------------|
| MO.   DAY   PEAR   MONTH    DAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DATE<br>SAMPLE                                                                                                                          | DATE OF                                                                          |                             |                               |                                     | T                                                                    | BETA                              |                                       |                    |               |             |           |                 |               |
| MO   DAY   VEAR   MONTH   DAY   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε   |                                                                                                                                         | DETERMI-<br>NATION                                                               | SUSPENDED                   | DISSOLVED                     | TOTAL                               | SUSPENDED                                                            | DISSOLVED                         | TOTAL                                 | DETERMI-<br>NATION | ALPHA         | BETA        | SUSPENDED | DISSOLVED       | TOTAL         |
| 11 29 60* 12 9 7 3 10 23 10 33 10 33 12 660 1 19 9 5 14 0 5 5 5 1 14 15 12 10 0 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MO. DAY YEAR                                                                                                                            |                                                                                  | μμε/Ι                       | μμc/l                         | μμε/Ι                               | μμε/Ι                                                                | μμε/Ι                             | μμς/Ι                                 | MO. DAY            | μμc/g         | µµс/g       | µµс/I     | ##c/l           | μμc/ <b>l</b> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MO. DAY YEAR  10 25 60* 11 29 60* 12 6 60 1 31 61* 2 28 61* 3 28 61* 4 25 61* 5 30 61* 6 27 61* 8 1 61* 8 29 61* 9 5 61 9 12 61 9 19 61 | NONTH DAY  11 15 12 9 1 19 2 10 3 13 4 11 5 8 6 13 7 13 8 29 9 14 10 3 10 2 10 2 | 39 7 9 0 1 1 23 42 27 - 4 6 | рµе/1 5 3 5 2 1 2 6 3 3 4 3 - | μμε/1 44 10 14 2 2 2 7 4 26 46 30 6 | 41<br>23<br>0<br>0<br>0<br>0<br>0<br>14<br>124<br>20<br>2<br>14<br>6 | μμε/I  0 10 5 0 0 0 0 14 0 4 0 11 | μμc/l 41 33 5 0 0 0 14 138 20 6 14 17 |                    |               |             |           |                 |               |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

LAREDO, TEXAS

|                      |                                                                                            |         |                       | ALGAE (                                                                                    | Vumber                | per ml.)                                                                    |                       |                                                                                    |                                                                                                         | INI     | RT<br>TOM                                                                                          |                                                     |                                                                |                                                           | -                                    | IATO                                                                 |                        |                |                 |                                        | Ι.                                                     | ı —                    | MICROIN                      | VERTER                       | ATES                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------|--------------------------------------------------------------------------------------------|---------|-----------------------|--------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------|------------------------|----------------|-----------------|----------------------------------------|--------------------------------------------------------|------------------------|------------------------------|------------------------------|------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATĘ<br>OF SAMPLE    |                                                                                            | BLUE-   | GREEN                 | GREE                                                                                       | EN                    | FLAGEL<br>(Pigma                                                            |                       | DIAT                                                                               | омѕ                                                                                                     | SHE     | TOM<br>LLS<br>er ml.)                                                                              |                                                     |                                                                |                                                           | SPEC                                 | IES A                                                                | MD PE<br>ode Ide       |                |                 | 3                                      | ROPLANKTON<br>EHEATHED<br>'ml.)                        | M.)                    |                              |                              | T                            | rorms                                 | ENERA<br>luction<br>cation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MONTH<br>DAY<br>YEAR | TOTAL                                                                                      | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                                                                                    | FILA-<br>MENT-<br>OUS | GREEN                                                                       | OTHER                 | CENTRIC                                                                            | PENNATE                                                                                                 | CENTRIC | PENNATE                                                                                            | FIRST#                                              | PER.                                                           | SECOND#                                                   | PER.                                 | THIRD#                                                               | PER.<br>CENTAGE        | FOURTH         | PER.<br>CENTAGE | OTHER PER-<br>CENTAGE                  | OTHER MICROL<br>FUNGI AND EN<br>BACTERIA<br>(No. per n | PROTOZOA<br>(No. per n | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATOBES<br>(No. per liter) | OTHER ANIMAL FORMS<br>(No. per liter) | DOMINANT GENERA<br>(See Introduction<br>for Identification)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10                   | 1000<br>400<br>4000<br>6500<br>7200<br>22600<br>43300<br>4100<br>7500<br>100<br>100<br>300 | 20      |                       | 160<br>90<br>650<br>40<br>50<br>90<br>130<br>70<br>2180<br>4040<br>3170<br>40<br>490<br>60 |                       | 180<br>20<br>90<br>600<br>150<br>20<br>220<br>160<br>80<br>290<br>290<br>60 | 50<br>330<br>20<br>20 | 500<br>200<br>750<br>1970<br>6180<br>940<br>760<br>2920<br>600<br>1820<br>50<br>60 | 160<br>180<br>90<br>1340<br>200<br>3950<br>6090<br>21960<br>39740<br>24910<br>3480<br>3480<br>20<br>150 | 20      | 70<br>20<br>70<br>1300<br>270<br>340<br>540<br>580<br>910<br>1110<br>750<br>200<br>60<br>150<br>80 | 55<br>266<br>80<br>47<br>47<br>47<br>47<br>47<br>69 | 10<br>20<br>70<br>60<br>90<br>70<br>90<br>90<br>90<br>30<br>60 | 92<br>552<br>82<br>71<br>80<br>26<br>47<br>55<br>47<br>55 | 10<br>10<br>30<br>*<br>10<br>*<br>20 | 71<br>82<br>71<br>26<br>26<br>26<br>26<br>80<br>26<br>80<br>92<br>92 | 10 10 10 * * 10 * 10 * | 80<br>70<br>71 | 10 10 *         | 50<br>10<br>10<br>10<br>10<br>10<br>10 | 20<br>50<br>20<br>20                                   | 60                     | 1                            |                              |                              |                                       | 9<br>9<br>4-9<br>71963<br>9<br>646<br>4165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-165<br>48-16 |

# ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

LAREDO, TEXAS

| 1                                                                                                                                                                       | E                                                                                    | XTRACTABL                                                                          | FS                                                                               | i i                                                                |                                                                     |                                                                    |                     |                         |                              |                                       |                |                                  |                                         |                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|---------------------|-------------------------|------------------------------|---------------------------------------|----------------|----------------------------------|-----------------------------------------|-------------------------|
| 1                                                                                                                                                                       |                                                                                      |                                                                                    |                                                                                  |                                                                    | ı                                                                   | <del></del>                                                        |                     | CHLOROF                 | ORM EXTR                     | ACTABLES                              |                |                                  |                                         |                         |
| GALLONS<br>FILTERED                                                                                                                                                     | TOTAL                                                                                | CHLORO-<br>FORM                                                                    | ALCOHOL                                                                          | ETHER<br>INSOLUBLES                                                | WATER<br>SOLUBLES                                                   | TOTAL                                                              | ALIPHATICS          | AROMATICS               | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS                                  | WEAK<br>ACIDS  | STRONG<br>ACIDS                  | BASES                                   | LOSS                    |
| 3311<br>4 1661<br>79 6557<br>0 3922<br>0 1470<br>6 3067<br>8 1752<br>4 4591<br>26 3585<br>1 4857<br>1966<br>7 21 61 7 28 3775<br>8 16 61 8 23 4613<br>9 15 61 9 22 4698 | 134<br>174<br>62<br>168<br>250<br>108<br>122<br>105<br>106<br>200<br>106<br>94<br>70 | 21<br>17*<br>12<br>14<br>34<br>15<br>14*<br>16<br>14<br>33<br>41<br>25<br>25<br>21 | 113<br>157<br>50<br>154<br>216<br>93<br>108<br>89<br>88<br>73<br>159<br>49<br>49 | 0<br>0<br>0<br>1<br>0<br>1<br>0<br>1<br>3<br>1<br>0<br>1<br>SAMPLE | 3<br>1<br>1<br>6<br>3<br>3<br>2<br>8<br>10<br>7<br>6<br>3<br>FOR SE | 13<br>-9<br>11<br>16<br>8<br>-6<br>9<br>13<br>16<br>10<br>12<br>14 | 5-4552-1336458<br>N | 1 1 2 2 1 1 1 3 1 1 1 2 | 7-4495-4587554               | 0   0   0   0   0   0   0   0   0   0 | 2-1142-2133231 | 1 -0 0 0 1 1 1 0 0 2 2 1 1 2 1 1 | 1-0001000000000000000000000000000000000 | 1 1 5 1 3 2 5 6 6 4 2 1 |

STATE

TEXAS

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATIONRIO GRANDE AT

LAREDO, TEXAS

WESTERN GULF

|          | DATE     |      | Tran                             |                             |       |                |                | CHLORINE       | DEMAND          |                              |                   |                    |                  |                        |                            |                  |                 |                                      |                          |
|----------|----------|------|----------------------------------|-----------------------------|-------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|----------------------------|------------------|-----------------|--------------------------------------|--------------------------|
| HONTH    | DAY      | YEAR | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/l | рН    | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/i | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml. |
| 10       | 4        | 60   | 26.0                             | -                           | 8.3   | -              | -              | _              |                 | -                            | 78                | 129                | 240              |                        | 308                        | 160              |                 |                                      | 230                      |
| 10       | 11       | 60   | 26.2                             | -                           | 8.2   | -              | -              | -              | -               | -                            | 78                | 120                | 226              | -                      | 110                        | 164              | -               | _                                    | 150                      |
| 10       | 18       |      | 24.0                             | -                           | 8.0   | -              | -              | -              | -               | -                            | 15                | 66                 | 100              | -                      | 4100                       | 61               | -               | _                                    | 3000                     |
| 10<br>11 | 25       | 60   | 23.0<br>21.0                     | -                           | 8 • 2 | -              | _              | -              | -               | -                            | 44                | 115                | 175              | -                      | 2500                       | 90               | -               | _                                    | 7800                     |
| 11       | 1        | 60   | 20.0                             | -                           | 8.2   | _              | _              | _              | -               | -                            | 36                | 102                | 157              | -                      | 5200                       | 85               | -               | -                                    | -                        |
| 11       | 15       | 60   | 21.0                             |                             | 8.3   | _              | _              |                | _               | -                            | 62                | 142                | 234              | -                      | 2760                       | 150              | . <b>-</b>      | _                                    | 6000                     |
| 11       |          | 60   | 18.5                             | _                           | 8.2   | _              |                | _              | -               | -                            | 76                | 159                | 270              | _                      | 950                        | 156              | -               | -                                    | 1300                     |
| 11       | 29       | 60   | 19.0                             | _                           | 8.3   | _              | _              |                | _               | _                            | 102<br>110        | 133                | 266              | _                      | 525                        | 176              | -               | _                                    | 2300                     |
| 12       | 6        | 60   | 18.0                             |                             | 8.3   | _              | _              |                | _               | _                            | 110               | 141<br>157         | 280<br>304       | _                      | 31<br>1390                 | 161<br>219       | _               | _                                    | 120<br>4300              |
| 12       | 13       | 60   | 12.0                             |                             | 8.1   | _              | _              | _              | _               | _                            | 95                | 162                | 290              | _                      | 690                        | 196              | _               | _                                    | 1800                     |
| 12       | 20       | 60   | 14.0                             | _                           | 8.2   | _              |                | _              |                 |                              | 95                | 140                | 268              | _                      | 244                        | 171              | _               |                                      | 790                      |
| 12       | 27       | 60   | 13.0                             | -                           | 8.2   | _              | _              | _              | _               |                              | 100               | 148                | 280              | _                      | 420                        | 173              | _               | _                                    | 7300                     |
| 1        | 3        | 61   | 12.0                             | - 1                         | 8.1   | -              | _              | _              | _               | _                            | 105               | 142                | 272              | _                      | 258                        | 171              | _               | _                                    | 2900                     |
| 1        | 10       | 61   | 12.0                             | -                           | 8.2   | -              | -              | -              | -               | -                            | 105               | 144                | 274              | -                      | 143                        | 165              | _               | _                                    | 770                      |
| 1        | 17       | 61   | 13.0                             | -                           | 8.2   | -              | -              | _              | -               | -                            | 105               | 150                | 280              | -                      | 69                         | 168              | _               | -                                    | 20                       |
| 1        | 24       | 61   | 14.0                             | -                           | 8.2   | _              | -              | -              | -               | -                            | 110               | 148                | 284              | -                      | 116                        | 179              | -               |                                      | 700                      |
| 1        | 31       | 61   | 11.0                             | -                           | 8.2   |                | -              | -              | -               | -                            | 110               | 150                | 280              | -                      | 120                        | 165              | -               | -                                    | -                        |
| 2        | 7        | 61   | 10.0                             | -                           | 8.2   | -              | -              |                | -               | -                            | 110               | 140                | 280              | -                      | 200                        | 140              | -               | _                                    | 400                      |
| 2        | 14       | 61   | 16.0                             |                             | 8.3   | -              | Nes            | -              | -               | -                            | 110               | 140                | 270              | -                      | 170                        | 135              | -               | _                                    | 110                      |
| 2        | 21       | 61   | 16.2                             | -                           | 8.3   | -              | - '            |                | -               | -                            | 120               | 118                | 256              | -                      | 172                        | 148              | -               | -                                    | 550                      |
| 2        | 28       | 61   | 15.0                             | -                           | 8.3   | -              | -              | -              | -               | -                            | 120               | 131                | 270              | -                      | 232                        | 148              | -               | -                                    | 630                      |
| 3        | 7        | 61   | 23.0                             | -                           | 8.3   | -              | -              | -              | -               | -                            | 120               | 117                | 254              | -                      | 141                        | 148              | _               | _                                    | 330                      |
| 3        | 14<br>21 | 61   | 22.2<br>19.0                     | _                           | 8.3   | _              | _              | -              | -               | -                            | 125               | 114                | 254              | -                      | 158                        | 169              | _               | -                                    | 100                      |
| 3        | 28       | 61   | 24.0                             |                             | 8.3   | _              | _              | _              | _               |                              | 120<br>125        | 107<br>100         | 248<br>242       | _                      | 210<br>186                 | 168<br>171       | -               | _                                    | 66                       |
| 4        | 4        | 61   | 21.0                             |                             | 8.3   | _              | _              | _              | _               | _                            | 125               | 121                | 264              | =                      | 110                        | 148              | _               | _                                    | 400<br>66                |
| 4        | 10       | 61   | 21.5                             | _                           | 8.3   |                | _              | _              | _               | _                            | 135               | 121                | 276              | _                      | 268                        | 158              | _               | _                                    | 00                       |
| 4        | 11       | 61   |                                  | _                           | -     |                | _              | _              | _               | _                            |                   | 1                  |                  | _                      |                            | 170              | _               | _                                    | *100                     |
| 4        | 18       | 61   | 21.0                             |                             | 8.3   | -              | _              |                | _               | _                            | 175               | 121                | 298              | _                      | 90                         | 160              | _               | _                                    | 90                       |
| 4        | 25       | 61   | 26.0                             |                             | 8.3   |                | -              |                | _               | _                            | 190               | 120                | 306              | _                      | 71                         | 171              | _               | _                                    | _                        |
| 4        | 26       | 61   |                                  | _                           |       | _              | _              | _              | _               | _                            |                   |                    |                  | _                      | '-                         |                  | _               | -                                    | 480                      |
| 5        | 2        | 61   | 25.5                             |                             | 8.0   |                | -              | _              | _               | _                            | 105               | 96                 | 210              | -                      | 1900                       | 122              | -               | _                                    | 72000                    |
| 5        | 9        | 61   | 26.0                             | -                           | 8.3   | _              | _              | -              | _               | _                            | 145               | 130                | 280              | _                      | 190                        | 132              | -               | -                                    | 110                      |
| 5        | 16       | 61   | 28.0                             | -                           | 8.3   |                | _              | -              | -               | _                            | 150               | 112                | 280              | _                      | 76                         | 173              | -               | -                                    | 300                      |
| 5        | 23       | 61   | 28.1                             | -                           | 8.3   | _              | -              | -              | -               | -                            | 130               | 123                | 258              | -                      | 63                         | 135              | -               | -                                    | 400                      |
| 5        | 30       | 61   | 27.0                             | -                           | 8.3   | -              | -              | -              | -               | -                            | 100               | 137                | 266              | -                      | 760                        | 187              | -               | -                                    | _                        |
| 6        | 2        | 61   | -                                | -                           | -     | _              |                | -              | -               | _                            | -                 | _                  |                  | -                      |                            |                  | -               | -                                    | 2300                     |
| 6        | 6        | 61   | 27.5                             | -                           | 8.3   | -              | _              |                | _               | -                            | 62                | 128                | 240              | -                      | 1300                       | 135              | -               | -                                    | 1800                     |
| 6        | 13       | 61   | 28.5                             | -                           | 8.3   | -              | _              | _              | -               | _                            | 86                | 140                | 260              | -                      | 1360                       | 164              | -               | -                                    | *300                     |

STATE

TEXAS

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

LAREDO, TEXAS

| DATE<br>OF SAMPLE                                                                                                             | TEMP.                                        | DISSOLVED      |                                                                                   |                |                | CHLORINE       | DEMAND          |                              |                                                                             | 1                                                                                              |                                                                                  |                        |                                                                                                  | <u> </u>                                                                                          | T                  | <del></del>                          | Ι                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------|-----------------------------------------------------------------------------------|----------------|----------------|----------------|-----------------|------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------|--------------------------------------|-----------------------------------------------------------------------------------------------|
| DAY                                                                                                                           | (Degrees<br>Centigrade)                      | OXYGEN<br>mg/l | Hq                                                                                | B,O,D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l                                                           | ALKALINITY<br>mg/l                                                                             | HARDNESS<br>mg/l                                                                 | COLOR<br>(scale units) | TURBIDITY<br>(scale units)                                                                       | SULFATES<br>mg/l                                                                                  | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml,                                                                      |
| 6 20 61<br>6 27 61<br>7 11 61<br>7 18 61<br>7 25 61<br>8 1 61<br>8 22 61<br>8 22 61<br>8 29 61<br>9 5 61<br>9 5 61<br>9 26 61 | 28.5<br>29.0<br>29.0<br>29.0<br>27.5<br>27.1 |                | 8 · 3 · 3 · 2 · 2 · 1 · 3 · 3 · 3 · 3 · 3 · 4 · 8 · 8 · 8 · 8 · 8 · 8 · 8 · 8 · 8 |                |                |                |                 |                              | 18<br>60<br>85<br>90<br>85<br>62<br>48<br>76<br>650<br>72<br>70<br>76<br>78 | 91<br>149<br>154<br>143<br>135<br>121<br>110<br>-141<br>140<br>134<br>133<br>138<br>143<br>136 | 117<br>236<br>268<br>258<br>212<br>280<br>254<br>218<br>260<br>254<br>254<br>240 |                        | 3200<br>2860<br>970<br>535<br>460<br>5500<br>1560<br>1760<br>4200<br>1220<br>1560<br>820<br>1090 | 55<br>105<br>127<br>135<br>123<br>94<br>183<br>-<br>135<br>136<br>151<br>195<br>226<br>199<br>182 |                    |                                      | 11000<br>1800<br>-<br>650<br>350<br>16000<br>*1000<br>900<br>670<br>1300<br>260<br>50<br>2000 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Laredo, Temas Supplied by International Boundary and Water Commission

STATE

Texas

MAJOR BASIN

Western Gulf

MINOR BASIN

Rio Grande/Lower/below Pecos River

STATION LOCATION

Rio Grande at

Laredo, Texas

| Day                              | October                                             | November                                  | December                                           | January                                            | February                                  | March                                              | April                                     | May                                                | June                                      | July                                                 | August                                             | September                                 |
|----------------------------------|-----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|------------------------------------------------------|----------------------------------------------------|-------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | 1.960<br>1.910<br>1.820<br>1.820<br>1.790           | 6.640<br>4.870<br>4.030<br>4.030<br>3.880 | 3.390<br>3.110<br>2.730<br>2.730<br>3.020          | 2.750<br>2.810<br>2.880<br>2.810<br>2.590          | 2.960<br>2.750<br>2.800<br>2.750<br>2.800 | 1.960<br>1.960<br>1.840<br>1.900                   | 1.480<br>1.450<br>1.410<br>1.370<br>1.330 | 5.300<br>2.510<br>2.600<br>1.880<br>1.460          | 2.260<br>1.880<br>1.570<br>1.880<br>2.080 | 4.240<br>4.380<br>4.380<br>4.060<br>4.240            | 4.240<br>3.920<br>3.640<br>3.600<br>3.740          | 2.820<br>2.620<br>2.370<br>2.370<br>2.460 |
| 6                                | 1.760                                               | 3.640                                     | 3.280                                              | 2.530                                              | 3.160                                     | 1.960                                              | 1.480                                     | 1.690                                              | 1.750                                     | 3.880                                                | 4.910                                              | 2.370                                     |
| 7                                | 1.730                                               | 3.240                                     | 4.170                                              | 2.590                                              | 3.250                                     | 2.030                                              | 1.630                                     | 1.460                                              | 1.460                                     | 3.780                                                | 4.170                                              | 2.550                                     |
| 8                                | 1.730                                               | 3.080                                     | 3.440                                              | 2.810                                              | 3.410                                     | 1.960                                              | 1.410                                     | 1.230                                              | 1.360                                     | 3.410                                                | 3.880                                              | 3.810                                     |
| 9                                | 1.700                                               | 3.140                                     | 3.230                                              | 3.140                                              | 2.910                                     | 1.840                                              | 1.330                                     | 1.190                                              | 2.080                                     | 3.100                                                | 3.500                                              | 3.070                                     |
| 10                               | 1.700                                               | 3.240                                     | 3.280                                              | 3.200                                              | 2.850                                     | 1.730                                              | 1.260                                     | 1.140                                              | 2.320                                     | 3.140                                                | 3.400                                              | 3.110                                     |
| 11.                              | 1.670                                               | 3.180                                     | 3.180                                              | 3.070                                              | 2.800                                     | 1.680                                              | 1.180                                     | 1.100                                              | 2.380                                     | 3.370                                                | 3.310                                              | 3.110                                     |
| 12                               | 1.670                                               | 2.810                                     | 3.230                                              | 2.690                                              | 2.750                                     | 1.680                                              | 1.180                                     | .978                                               | 2.080                                     | 4.060                                                | 3.110                                              | 2.820                                     |
| 13                               | 5.010                                               | 2.760                                     | 3.490                                              | 2.590                                              | 2.690                                     | 1.730                                              | 1.110                                     | .939                                               | 1.690                                     | 3.500                                                | 2.980                                              | 2.680                                     |
| 14                               | 2.340                                               | 2.710                                     | 3.490                                              | 2.750                                              | 2.800                                     | 1.730                                              | 1.030                                     | .978                                               | 2.010                                     | 3.230                                                | 3.020                                              | 3.160                                     |
| 15                               | 2.460                                               | 2.660                                     | 3.110                                              | 3.070                                              | 2.750                                     | 1.900                                              | 1.110                                     | .904                                               | 1.690                                     | 3.100                                                | 2.930                                              | 2.980                                     |
| 16                               | 2.840                                               | 2.660                                     | 2.940                                              | 2.940                                              | 2.580                                     | 1.840                                              | 1.030                                     | .869                                               | 1.510                                     | 3.010                                                | 2.770                                              | 2.680                                     |
| 17                               | 51.560                                              | 2.710                                     | 3.180                                              | 2.810                                              | 2.580                                     | 1.730                                              | .961                                      | .869                                               | 4.770                                     | 3.050                                                | 2.830                                              | 2.460                                     |
| 18                               | 15.790                                              | 2.610                                     | 3.230                                              | 2.810                                              | 2.580                                     | 1.780                                              | .961                                      | .812                                               | 36.020                                    | 3.530                                                | 3.140                                              | 2.370                                     |
| 19                               | 8.790                                               | 2.570                                     | 3.110                                              | 2.590                                              | 2.510                                     | 1.780                                              | .961                                      | .745                                               | 75.220                                    | 4.480                                                | 3.740                                              | 2.680                                     |
| 20                               | 9.890                                               | 2.520                                     | 3.280                                              | 2.640                                              | 2.460                                     | 1.730                                              | .918                                      | .745                                               | 92.520                                    | 3.990                                                | 3.920                                              | 2.940                                     |
| 21                               | 7.240                                               | 3.140                                     | 3.110                                              | 2.640                                              | 2.460                                     | 1.590                                              | .961                                      | .763                                               | 27.970                                    | 3.410                                                | 3.670                                              | 2.550                                     |
| 22                               | 6.140                                               | 4.030                                     | 2.730                                              | 2.590                                              | 2.460                                     | 1.520                                              | .961                                      | .788                                               | 12.680                                    | 2.830                                                | 6.750                                              | 2.620                                     |
| 23                               | 5.050                                               | 3.240                                     | 2.730                                              | 2.640                                              | 2.340                                     | 1.560                                              | .883                                      | .939                                               | 9.010                                     | 5.120                                                | 5.860                                              | 2.280                                     |
| 24                               | 4.480                                               | 2.810                                     | 2.730                                              | 2.750                                              | 2.280                                     | 1.520                                              | .918                                      | 1.320                                              | 7.420                                     | 14.830                                               | 4.380                                              | 2.200                                     |
| 25                               | 4.030                                               | 2.710                                     | 2.730                                              | 4.410                                              | 2.230                                     | 1.520                                              | .961                                      | 1.880                                              | 6.430                                     | 8.760                                                | 3.740                                              | 2.100                                     |
| 26<br>27<br>29<br>29<br>30<br>31 | 3.600<br>3.440<br>4.380<br>4.660<br>9.920<br>17.270 | 2.710<br>2.810<br>3.640<br>3.640<br>3.430 | 2.860<br>2.940<br>2.790<br>2.600<br>2.600<br>2.860 | 3.400<br>2.880<br>2.810<br>2.810<br>2.880<br>3.140 | 2.230<br>2.170<br>2.120                   | 1.480<br>1.520<br>1.520<br>1.480<br>1.520<br>1.450 | .961<br>.918<br>.883<br>.883<br>5.690     | 2.480<br>2.010<br>1.940<br>4.100<br>4.630<br>2.950 | 5.930<br>5.330<br>4.940<br>4.520<br>4.310 | 13.880<br>13.980<br>8.830<br>7.560<br>5.860<br>4.840 | 3.780<br>4.060<br>3.810<br>3.450<br>3.110<br>2.880 | 2.450<br>2.810<br>2.010<br>2.680<br>2.680 |

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

RIO GRANDE /UPPER/ ABOVE PECOS RIVER

STATION LOCATION RIO GRANDE AT

EL PASO, TEXAS

| DATE                                                                                                                                                                                              | T                                                                  |                                 | RAD          | DIOACTIVITY IN Y                                                                                  | VATER                                                                               |                                                                                        |                                                                                      | т | T PARIO                       | CTI (INC. II. II. |          | · 1 | <del></del> |                |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------|--------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---|-------------------------------|-------------------|----------|-----|-------------|----------------|-------|
| SAMPLE                                                                                                                                                                                            | DATE OF<br>DETERMI-<br>NATION                                      |                                 | ALPHA        |                                                                                                   | T T                                                                                 | BETA                                                                                   |                                                                                      | - |                               | CTIVITY IN PL     | ACTIVITY | -   | RAI         | DIOACTIVITY IN |       |
| TAKEN                                                                                                                                                                                             |                                                                    | SUSPENDED                       | DISSOLVED    | TOTAL                                                                                             | SUSPENDED                                                                           | DISSOLVED                                                                              | TOTAL                                                                                | 1 | DATE OF<br>DETERMI-<br>NATION | ALPHA             | BETA     | -   | SUSPENDED   | DISSOLVED      | TOTAL |
| MO. DAY YEAR                                                                                                                                                                                      | MONTH DAY                                                          | μμε/Ι                           | μμc/!        | μμε/1                                                                                             | μμε/Ι                                                                               | μμς/Ι                                                                                  | μμς/1                                                                                |   | MO. DAY                       | μμc/g             | μμc/g    | 1   | μμε/Ι       | μμc/I          | μμε/Ι |
| 10 24 60<br>10 31 60<br>12 27 60<br>1 3 61<br>1 16 61<br>2 0 61<br>3 27 61<br>4 3 61<br>4 28 61<br>5 8 61<br>5 29 61<br>6 12 61<br>6 12 61<br>6 12 61<br>7 31 61<br>8 14 61<br>8 28 61<br>9 18 61 | 5 11<br>5 15<br>5 24<br>6 9<br>6 28<br>7 25<br>8 3<br>8 31<br>9 12 | 0 0 0 1 1 0 0 0 0 1 1 2 6 1 1 - | 15<br>12<br> | 15<br>12<br>-<br>1<br>2<br>0<br>-<br>13<br>-<br>4<br>2<br>4<br>-<br>13<br>-<br>4<br>11<br>16<br>- | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>13<br>4<br>20<br>5 | 0<br>5<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>0<br>1<br>0<br>2<br>8<br>1<br>0<br>7<br>5 | 0<br>5<br>0<br>0<br>0<br>0<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>41<br>1<br>27<br>10 |   |                               |                   |          |     |             | PPCI)          | PPE   |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /UPPER/ ABOVE PECOS RIVER

STATION LOCATION RIO GRANDE AT

EL PASO, TEXAS

|       |                  |                            |                                                                    |         |                       | ALGAE (                                        | Vumber                | per ml.)                                                    | <del></del>     |                                                    |                                                                  | INI                    | FRT                            | т                          |                                  |                                  |                      |                                 |                    |                                  |                    |                           | <del></del>                                                             |                           | MICROIN                      | VEDTERO                      | ATES                         |              |                                                             |
|-------|------------------|----------------------------|--------------------------------------------------------------------|---------|-----------------------|------------------------------------------------|-----------------------|-------------------------------------------------------------|-----------------|----------------------------------------------------|------------------------------------------------------------------|------------------------|--------------------------------|----------------------------|----------------------------------|----------------------------------|----------------------|---------------------------------|--------------------|----------------------------------|--------------------|---------------------------|-------------------------------------------------------------------------|---------------------------|------------------------------|------------------------------|------------------------------|--------------|-------------------------------------------------------------|
|       | SAM              | E<br>IPLE                  |                                                                    | BLUE-   | GREEN                 | GREE                                           |                       | FLAGEL<br>(Pigma                                            | LATES<br>ented) | DIAT                                               | OMS                                                              | DIA<br>SHE<br>(No. p   | ERT<br>TOM<br>ELLS<br>per ml.) |                            |                                  |                                  | D<br>SPEC<br>duction |                                 | ND PE              |                                  |                    | 3                         | PLANKTON,<br>KATHED<br>21.)                                             |                           |                              | <u> </u>                     | T                            | . FORMS      | ENERA<br>fuction<br>ication)                                |
| MONTH | DAY              | YEAR                       | TOTAL                                                              | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                                        | FILA-<br>MENT-<br>OUS | GREEN                                                       | OTHER           | CENTRIC                                            | PENNATE                                                          | CENTRIC                | PENNATE                        | FIRST#                     | PER.<br>CENTAGE                  | SECOND#                          | PER.<br>CENTAGE      | THIRD#                          | PER-               | FOURTH                           | PER.               | OTHER PER-<br>CENTAGE     | OTHER RICHOPLANKTOR,<br>FURGI AND SHEATHED<br>BACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ARIMAI | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
|       | 6<br>3<br>1<br>2 | 61<br>61<br>61<br>61<br>61 | 1500<br>2200<br>3500<br>8600<br>2400<br>4200<br>3400<br>100<br>300 | 20      | 40                    | 1610<br>6730<br>210<br>390<br>280<br>170<br>20 |                       | 360<br>1010<br>360<br>70<br>120<br>1510<br>1040<br>70<br>80 | 500             | 20<br>20<br>360<br>380<br>770<br>540<br>1390<br>20 | 1070<br>1140<br>1160<br>1470<br>1570<br>2690<br>270<br>50<br>210 | 50<br>40<br>120<br>120 | 1510<br>970<br>1370<br>930     | 12<br>12<br>12<br>15<br>15 | 40<br>20<br>10<br>20<br>20<br>50 | 65<br>12<br>65<br>51<br>12<br>12 | 10<br>10<br>10       | 4<br>65<br>70<br>92<br>65<br>41 | 10<br>*<br>10<br>* | 45<br>51<br>66<br>36<br>51<br>10 | *<br>10<br>*<br>10 | 6300<br>700<br>640<br>440 | 20<br>50<br>40<br>20                                                    | 10                        | 16                           | 4                            | 11                           | 1            | 63<br>8-763<br>84723<br>4-763<br>34763<br>4-1963<br>4-193   |

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /UPPER/ ABOVE PECOS RIVER

STATION LOCATION RIO GRANDE AT

EL PASO, TEXAS

|          | DAT-                            | OF S.             | 1110: |     |                                                                | <del>,                                      </del>   |                                              |                                                 |                     |                   |       |            |           |                              |          |                  |                 |       |      |
|----------|---------------------------------|-------------------|-------|-----|----------------------------------------------------------------|------------------------------------------------------|----------------------------------------------|-------------------------------------------------|---------------------|-------------------|-------|------------|-----------|------------------------------|----------|------------------|-----------------|-------|------|
|          | GINN                            |                   |       | ND  | ł                                                              | E                                                    | XTRACTABL                                    | ES                                              |                     |                   |       |            | CHLORO    | ORM EXT                      | ACTABLES | }                |                 |       |      |
|          | -11714                          | .,40              |       | I   | GALLONS                                                        |                                                      |                                              |                                                 |                     | ]                 |       |            | NEUTRALS  |                              |          | T                | 1               | 1     |      |
| MONTH    | DAY                             | YEAR              | MONTH | DAY | FILTERED                                                       | TOTAL                                                | CHLORO-<br>FORM                              | ALCOHOL                                         | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES | TOTAL | ALIPHATICS | AROMATICS | OXYGEN-<br>ATED<br>COMPOUNDS | Loss     | WEAK<br>ACIDS    | STRONG<br>ACIDS | BASES | Loss |
| 45667899 | 3<br>5<br>5<br>3<br>7<br>5<br>5 | 61 61 61 61 61 61 | 7     | 8   | 5190<br>5227<br>4875<br>15292<br>5010<br>5865<br>4867<br>15742 | 168<br>161<br>119<br>150<br>119<br>113<br>109<br>114 | 48<br>41<br>30<br>40<br>40<br>32<br>21<br>31 | 120<br>120<br>89<br>110<br>79<br>81<br>88<br>83 | 1                   | 10 8              | 14 9  | 1          | 1         | 111                          | 1        | -<br>4<br>-<br>- | -               | -     |      |

STATE

TEXAS

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN WESTERN GULF

MINOR BASIN

RIO GRANDE /UPPER/ Above PECOS RIVER

STATION LOCATIONRIO GRANDE AT

EL PASO, TEXAS

| DATE<br>OF SAMPLE                                                             | TEMP.                                                                                        | DISSOLVED                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                | CHLORINE                                                                                       | DEMAND                                                                               |                              |                                                                                   | 1                                                                                                                               |                                                                                         |                        | <u> </u>                                                                                               | <u> </u>                                                                                   |                    |                                                                                                                                    |                                                                                                    |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| MONTH<br>DAY<br>YEAR                                                          | (Dagrees<br>Centigrade)                                                                      | OXYGEN<br>mg/l                                                               | pН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B.O.D.<br>mg/l   | C.O.D.<br>mg/i | 1-HOUR<br>mg/l                                                                                 | 24-HOUR<br>mg/l                                                                      | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l                                                                 | ALKALINITY<br>mg/l                                                                                                              | HARDNESS<br>mg/l                                                                        | COLOR<br>(scale units) | TURBIDITY<br>(scale units)                                                                             | SULFATES<br>mg/l                                                                           | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l                                                                                               | COLIFORMS<br>per 100 ml.                                                                           |
| 3 3 4 4 6 6 1 1 2 5 8 6 6 6 1 1 2 5 5 5 5 5 6 6 6 6 1 7 7 7 7 7 8 8 8 8 8 8 8 | 15.0<br>20.5<br>27.0<br>22.5<br>23.0<br>26.0<br>26.5<br>27.0<br>28.0<br>27.0<br>30.5<br>31.5 | 9.04<br>8.76<br>8.59<br>8.64<br>8.87<br>9.48<br>1.80<br>9.49<br>9.49<br>9.88 | 10 2 2 3 2 2 2 2 2 2 4 3 3 3 4 2 3 1 2 2 2 3 3 3 4 2 3 1 2 2 3 3 3 4 2 3 1 2 2 3 3 3 4 2 3 1 2 2 3 3 3 4 2 3 1 2 2 3 3 3 4 2 3 1 2 2 3 3 3 4 2 3 1 2 2 3 3 3 4 2 3 1 2 2 3 3 3 4 2 3 1 2 2 3 3 3 4 2 3 1 2 2 3 3 3 4 2 3 1 2 2 3 3 3 4 2 3 1 2 2 3 3 3 4 2 3 1 2 2 3 3 3 4 2 3 1 2 2 3 3 3 4 2 3 1 2 2 3 3 3 4 2 3 1 2 2 3 3 3 4 2 3 1 2 2 3 3 3 4 2 3 1 2 2 3 3 3 4 2 3 1 2 2 3 3 3 4 2 3 1 2 2 3 3 3 4 2 3 1 2 2 3 3 3 4 2 3 1 2 2 3 3 3 4 2 3 1 2 2 3 3 3 4 2 3 1 2 2 3 3 3 4 2 3 1 2 2 3 3 3 4 2 3 1 2 2 3 3 3 4 2 3 1 2 3 3 3 4 2 3 1 2 3 3 3 3 4 2 3 1 2 3 3 3 3 4 2 3 1 2 3 3 3 3 4 2 3 1 3 3 3 3 3 4 2 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 1.1.89.255.29.29 |                | 1.4<br>1.5<br>1.4<br>1.4<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6 | 1.66<br>1.66<br>1.61<br>1.81<br>1.91<br>2.01<br>1.64<br>1.71<br>1.91<br>2.44<br>1.77 |                              | 125<br>135<br>135<br>135<br>2100<br>211<br>145<br>140<br>1190<br>145<br>15<br>165 | 154<br>169<br>186<br>192<br>196<br>202<br>185<br>194<br>186<br>174<br>172<br>156<br>195<br>187<br>170<br>189<br>-<br>176<br>202 | 268<br>2700<br>3332<br>3318<br>3006<br>2982<br>2814<br>244<br>2728<br>284<br>254<br>254 |                        | 220<br>195<br>90<br>105<br>110<br>110<br>110<br>160<br>180<br>210<br>3000<br>450<br>180<br>2500<br>800 | 217<br>2268<br>290<br>318<br>321<br>268<br>268<br>269<br>251<br>308<br>265<br>1261<br>2300 | •0                 | 751<br>720<br>936<br>820<br>900<br>1000<br>992<br>881<br>832<br>619<br>826<br>962<br>731<br>924<br>792<br>756<br>748<br>725<br>996 | 250<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station below Caballo Dam, New Mexico Operated by U.S. Bureau of Reclamation STATE

Texas

MAJOR BASIN

Western Gulf

MINOR BASIN

Rio Grande/Upper/above Pecos River

STATION LOCATION

Rio Grande at

El Paso, Texas

| Day    | October | November | December | January       | February | March | April | May          | June           | July  | August     | September |
|--------|---------|----------|----------|---------------|----------|-------|-------|--------------|----------------|-------|------------|-----------|
| 1      | .0020   | .0015    | .0016    | .0011         | .0012    | .0014 | 1,680 | .740         | 1 120          | 3 000 |            |           |
| 2      | .0020   | .0015    | .0016    | .0011         | .0012    | .0014 | 1.600 | • 748        | 1.130<br>1.260 | 1.980 | 1.900      | 1.620     |
| 3<br>4 | .0019   | .0015    | .0016    | .0010         | .0012    | .0014 | 1.580 | .745         |                | 1.940 | 1.850      | 1.510     |
|        | .0018   | .0015    | .0016    | .0009         | .0012    | .0014 | 1.480 |              | 1.390          | 1.750 | 1.850      | 1.520     |
| 5      | .0018   | .0015    | .0015    | .0008         | .0012    | .0014 | 1.300 | •759<br>•866 | 1.380          | 1:700 | 1.880      | 1.500     |
| _      |         |          |          |               |          |       | 1.000 | • 000        | 1.370          | 1.720 | 1.910      | 1.430     |
| 6      | .0018   | .0015    | .0015    | .0013         | .0012    | .0014 | 1.220 | 055          | - 1            |       |            |           |
| 7      | .0018   | .0015    | .0015    | .0013         | .0012    | .0014 | 1.200 | •957         | 1.450          | 1.750 | 1.780      | •703      |
| 8      | .0018   | .0015    | .0015    | .0013         | .0012    | .0014 | 1.180 | .982         | 1.550          | 1.800 | 1.680      | - 385     |
| 9      | .0018   | .0015    | .0015    | .0013         | .0011    | .0014 | 1.100 | .968         | 1.550          | 1.800 | 1.740      | .864      |
| 10     | .0018   | .0015    | .0015    | .0013         | .0011    | .811  | 1.100 | 1.070        | 1.660          | 1.790 | 1.810      | . 424     |
| •      |         | -        |          | 14025         | •0011    | • ОТТ | 1.040 | 1.160        | 1.770          | 1.720 | 1.800      | .211      |
| Ll     | .0018   | .0015    | .0015    | .0012         | .0011    | 1.490 | 900   |              |                |       |            |           |
| L2     | .0018   | .0015    | .0015    | .0012         | .0012    | 1.490 | .892  | 1.100        | 1.790          | 1.660 | 1.950      | .0013     |
| .3     | .0017   | .0015    | .0015    | .0012         | .0012    |       | .807  | 1.120        | 1.710          | 1.630 | 1.950      | .0013     |
| .4     | .0017   | .0015    | .0015    | .0012         | .0012    | 1.740 | .813  | 1.120        | 1.750          | 1.480 | 1.740      | .0013     |
| -5     | .0018   | .0015    | .0015    | .0012         |          | 2.270 | •796  | 1.110        | 1.840          | 1.540 | 1.320      | .0013     |
| •      |         |          | .001)    | .0012         | .0012    | 2.680 | •794  | 1.090        | 1.640          | 1.670 | • 453      | .0013     |
| .6     | .0018   | .0015    | .0014    | .0012         | 0010     | 2.66  | _     |              |                |       | • 1,7,5    | .0013     |
| .7     | .0019   | .0015    | .0014    | .0012         | .0012    | 2.660 | .809  | 1.070        | 1.610          | 1.690 | .286       | .0013     |
| 8      | .0019   | .0015    | .0014    |               | .0012    | 2.750 | .810  | 1.070        | 1,610          | 1.720 | . 508      |           |
| 9      | .0018   | .0015    |          | .0012         | .0012    | 2.790 | •956  | 1.080        | 1.600          | 1.990 | .516       | .0013     |
| ó      | .0017   | .0016    | .0014    | .0012         | .0012    | 2.800 | •999  | 1.180        | 1.510          | 2.200 |            | .0013     |
| •      | ,0017   | .0010    | .0014    | .0012         | .0013    | 2.800 | 1.120 | 1.250        | 1.500          | 2.250 | ·638       | .0013     |
| J.     | .0017   | 0016     | !        |               |          |       |       |              | 1.700          | 2.250 | .785       | .0013     |
| 2      | .0017   | .0016    | .0014    | .0012         | .0013    | 2.740 | 1.210 | 1.250        | 1.530          | 0 300 | <b>500</b> |           |
| 3      | .0017   | .0016    | .0014    | .0013         | .0013    | 2.720 | 1.190 | 1.240        | 1.470          | 2.320 | .798       | .0013     |
| ے<br>ل |         | .0016    | .0013    | .0013         | .0013    | 2.740 | 1.180 | 1.250        | 1.460          | 2.330 | 1.300      | .0013     |
|        | .0017   | .0016    | .0013    | .0013         | .0013    | 2.770 | 1.130 | 1.280        | 1.470          | 2.350 | 1.550      | .0013     |
| 5      | .0017   | .0016    | .0013    | .0012         | .0013    | 2.820 | 1.070 | 1.270        |                | 2.340 | 1.610      | .0013     |
| _      |         | _        |          |               |          |       | 1.010 | 1.210        | 1.480          | 2.220 | 1.870      | .0013     |
| 6      | .0017   | .0016    | .0012    | .0012         | .0014    | 2.720 | 1.010 | 7 020        | 7 500          |       |            | -         |
| 7<br>8 | .0016   | .0016    | .0012    | .0012         | .0014    | 2.600 | .865  | 1.230        | 1.580          | 2.070 | 2.060      | .0013     |
|        | .0016   | .0016    | .0012    | .0012         | .001/    | 2.420 |       | 1.180        | 1.650          | 2.060 | 2.190      | .0013     |
| ?      | .0016   | .0016    | .0012    | .0013         | .001-7   | 2.310 | .783  | 1.160        | 1.670          | 2.140 | 2.190      | .0013     |
| )      | .0016   | .0016    | .0012    | .0013         |          |       | .796  | 1.100        | 1.660          | 2.190 | 2.180      | .0014     |
| L      | .0016   |          | .0012    | .0013         |          | 2.320 | .763  | 1.100        | 1.840          | 2.130 | 2.004      | .0014     |
|        |         |          |          | • • • • • • • |          | 1.990 |       | 1.140        |                | 2.030 | 1.850      |           |

STATE

COLORADO

MAJOR BASIN

WESTERN GULF

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

RIO GRANDE /UPPER/ ABOVE PECOS RIVER

STATION LOCATION RIO GRANDE BELOW

ALAMOSA, COLORADO

|                |                               |           | PADIC     | ACTIVITY IN \ | WATER     |           |       |       | RADIOAC                  | TIVITY IN PLAN | IKTON (dry) | RAI       | DIOACTIVITY IN W | ATER  |
|----------------|-------------------------------|-----------|-----------|---------------|-----------|-----------|-------|-------|--------------------------|----------------|-------------|-----------|------------------|-------|
| DATE<br>SAMPLE | DATE OF                       |           | ALPHA     | ACIIVIII III  |           | BETA      |       | DA    | TE OF                    | GROSS A        | CTIVITY     |           | GROSS ACTIVIT    | Υ     |
| TAKEN          | DATE OF<br>DETERMI-<br>NATION | SUSPENDED | DISSOLVED | TOTAL         | SUSPENDED | DISSOLVED | TOTAL | DE NA | TE OF<br>TERMI-<br>ATION | ALPHA          | BETA        | SUSPENDED |                  | TOTAL |
| MO. DAY YEAR   |                               | μμε/Ι     | μμς/1     | μμε/Ι         | μμε/Ι     | μμς/Ι     | μμε/Ι | мо    | . DAY                    | μμc/g          | μμc/g       | μμε/Ι     | μμε/Ι            | μμς/  |
|                |                               |           |           |               |           |           |       |       |                          |                |             | 1         |                  |       |
| 1 3 60         | 11 18                         | 0         | 2         | 2             | 4         | 0         | 4     |       |                          |                |             |           |                  |       |
| 2 13 60        | ī 3                           | 0         | 1         | 1             | 0         | 0         | 0     | ļ     |                          |                |             | Ì         |                  |       |
| 2 19 60        | 1 16                          | 1         | 1         | 2             | 0         | 0         | 0     | 1     |                          |                | Į.          |           | 1                |       |
| 2 27 60        | 1 13                          | 0         | 3         | 3             | 0         | 0         | 0     |       | 1                        |                |             |           |                  |       |
| 1 3 61         | 1 24                          | 0         | 1         | 1             | 0         | 2         | 2     |       |                          |                |             |           |                  |       |
| 1 9 61         | 1 31                          | 0         | 3         | 3             | 0         | 0         | 0     |       |                          |                |             |           |                  |       |
| 1 16 61        | 2 2                           | 0         | 2         | 2             | 0         | 7         | 7     | i     |                          |                |             |           |                  |       |
| 1 24 61        | 2 8                           | 0         | 1         | 1             | 0         | 3         | 3     |       |                          |                | ľ           |           |                  |       |
| 1 30 61        | 2 13                          | 0         | 1         | 1             | 18        | 35        | 53    |       |                          |                |             |           |                  |       |
| 2 13 61        | 3 3                           | 0         | 0         | 0             | 0         | 5         | 5     |       |                          |                |             |           | 1                |       |
| 2 20 61        | 3 6                           | 0         | 0         | 0             | 0         | 0         | 0     | 1     |                          |                |             |           |                  |       |
| 2 27 61        | 3 20                          | 0         | 2         | 2             | 0         | 1         | 1     | - 1   | i                        |                |             |           |                  |       |
| 3 13 61        | 4 3                           | 0         | 1         | 1             | 0         | 0         | 0     |       |                          |                |             |           |                  |       |
| 3 20 61        | 4 4                           | 0         | 3         | 3             | 0         | 0         | 0     | İ     |                          |                | İ           | 1         |                  |       |
| 3 27 61        | 4 14                          | 0         | 1         | 1             | 0         | 0         | 0     | l     |                          |                |             | İ         |                  |       |
| 4 11 61        | 4 24                          | 0         | 0         | 0             | 0         | .0        | 0     | -     |                          |                |             | 1         |                  |       |
| 5 9 61         | 5 25                          | 0         | 2         | 2             | 0         | 0         | 0     |       | 1                        |                |             |           |                  |       |
| 6 6 61         | 6 28                          | 0         | 1         | 1             | 0         | 6         | 6     |       |                          |                |             |           |                  | 1     |
| 7 5 61         | 8 28                          | 0         | 2         | 2             | 3         | 23        | 26    |       | Ì                        |                |             |           |                  |       |
| 8 7 61         | 9 22                          | 1         | 3         | 4             | 4         | 10        | 14    | i     | -                        |                |             |           |                  |       |
| 9 12 61        | 10 24                         | 0         | 3         | 3             | 2         | 12        | 14    |       | l                        |                |             |           |                  | !     |
|                |                               | 1         |           |               |           |           |       | - 1   | 1                        |                |             |           |                  |       |
|                |                               |           |           |               | ì         |           | İ     | i     | Į                        |                |             |           | i                |       |
|                |                               |           |           |               |           |           |       | - 1   | İ                        |                | ļ           |           |                  |       |
|                |                               | ļ         |           |               |           | · '       |       | 1     |                          |                |             |           |                  |       |
|                |                               | ľ         |           |               |           |           | ļ     | İ     |                          |                | 1           |           |                  |       |
|                |                               | ļ         |           |               |           |           | 1     |       |                          |                |             | 1         | 1                |       |
|                |                               |           |           |               |           |           | -     |       |                          |                |             |           |                  |       |
|                |                               | 1         |           |               |           |           |       |       | ł                        |                |             |           |                  |       |
|                | 1                             |           |           |               |           |           |       |       |                          |                |             |           |                  |       |
|                | i                             | i         |           |               |           |           |       |       | ľ                        |                |             |           |                  | 1     |
|                |                               |           |           |               |           |           | . 1   |       | ļ                        |                |             |           |                  |       |
|                |                               |           | 1         |               |           |           | [     | - 1   |                          |                |             |           |                  |       |
|                |                               | 1         | 1         |               | 1         |           | į į   | ľ     |                          |                |             |           |                  |       |
|                |                               |           |           | 1             |           | 1         |       |       |                          |                |             |           |                  |       |
|                |                               |           | 1         |               |           |           |       | 1     | ĺ                        | •              |             | 1         |                  |       |
|                |                               |           |           |               |           |           |       | 1     |                          |                |             |           |                  |       |
|                |                               |           |           |               |           |           |       |       |                          |                |             | 1 1       |                  |       |
|                |                               |           |           |               |           |           |       |       | ļ                        | }              |             | 1 1       |                  |       |
|                |                               | İ         |           | 1             |           |           |       | i     |                          |                | 1           |           |                  | 1     |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

COLORADO

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /UPPER/ ABOVE PECOS RIVER

STATION LOCATION RIO GRANDE BELOW

ALAMOSA, COLORADO

| DATE                                | . 1                    |                                                              |         |                       | ALGAE (I                                           | Vumber                | per ml.)                                      |       |                                                      |                                                           | INI                                    | ERT                                               | Γ-                                           |                                              |                                              |                                  |                                              |                                  |                            |                                |                       |                                                                |                           |                                   |                              |                              |                 |                                                             |
|-------------------------------------|------------------------|--------------------------------------------------------------|---------|-----------------------|----------------------------------------------------|-----------------------|-----------------------------------------------|-------|------------------------------------------------------|-----------------------------------------------------------|----------------------------------------|---------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------|----------------------------------------------|----------------------------------|----------------------------|--------------------------------|-----------------------|----------------------------------------------------------------|---------------------------|-----------------------------------|------------------------------|------------------------------|-----------------|-------------------------------------------------------------|
| OF SAM                              | - 1                    |                                                              | BLUE-   | GREEN                 | GREE                                               | N                     | FLAGEL<br>(Pigm                               |       | DIAT                                                 | омѕ                                                       | SHE                                    | ERT<br>TOM<br>ELLS<br>er ml.)                     |                                              | DOM!                                         | NANT                                         | SPEC                             | IATO                                         | ND PE                            | RCEN                       | TAGE:                          | s                     | AMETOR,<br>VTHED                                               | <u></u>                   | MICROIP                           |                              | T                            | S N N           | ERA<br>ction<br>tion)                                       |
| MONTH                               | YEAR                   | TOTAL                                                        | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                                            | FILA-<br>MENT-<br>OUS | GREEN                                         | OTHER | CENTRIC                                              | PENNATE                                                   | CENTRIC                                | PENNATE                                           | FIRST                                        | PER.                                         | SECOND#                                      | PER.<br>CENTAGE                  | THIRD#                                       | PER-                             | FOURTH#                    | PER.                           | OTHER PER-<br>CENTAGE | OTHER RICROPLANKTOR, FUNGI AND SHEATHED BACTERIA (No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)      | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ANIMAL, F | DOMINANT GENERA<br>(See Introduction<br>(or Identification) |
| 12 6<br>2 13<br>2 27<br>3 27<br>5 9 | 60 661 661 661 661 661 | 1100<br>600<br>3100<br>3700<br>2500<br>1700<br>1400<br>15000 |         | 460<br>80             | 230<br>50<br>20<br>130<br>60<br>250<br>2550<br>970 |                       | 50<br>20<br>270<br>340<br>420<br>1570<br>1610 | 200   | 200<br>20<br>20<br>130<br>290<br>130<br>4370<br>4950 | 380<br>450<br>2790<br>3130<br>1140<br>560<br>5960<br>3230 | 90<br>110<br>200<br>120<br>220<br>1330 | 490<br>290<br>1880<br>2170<br>1900<br>830<br>1160 | 46<br>92<br>36<br>92<br>46<br>46<br>46<br>46 | 40<br>20<br>20<br>20<br>40<br>30<br>30<br>70 | 36<br>36<br>42<br>46<br>92<br>92<br>48<br>41 | 20<br>20<br>20<br>20<br>20<br>10 | 92<br>46<br>92<br>36<br>36<br>48<br>15<br>92 | 10<br>20<br>20<br>10<br>10<br>10 | 85<br>70<br>85<br>51<br>48 | * 10<br>10<br>10<br>10<br>* 10 | 50                    |                                                                | 10                        | 2<br>5<br>2<br>90<br>4<br>5<br>10 | 1 2 7 7 1                    | 8                            | 1               | 4<br>71-46<br>-1776<br>41976<br>76<br>-16<br>486<br>41937   |

STATE

COLORADO

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /UPPER/ ABOVE PECOS RIVER

STATION LOCATIONRIO GRANDE BELOW

ALAMOSA, COLURADO

| DATE<br>OF SAMPLE                                                                                                                                                                                                    |                                  |                             |                                                                  |                |                | CHLORINE       | DEMAND          |                              |                   |                                                                                                      |                                                                                            | · ·                    |                                          |                  |                    |                                                              |                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------|------------------------------------------------------------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------|------------------------------------------|------------------|--------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| DAY YEAR                                                                                                                                                                                                             | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/l | pН                                                               | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/I | CHLORIDES<br>mg/l | ALKALINITY<br>mg/I                                                                                   | HARDNESS<br>mg/l                                                                           | COLOR<br>(scale units) | TURBIDITY<br>(scale units)               | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l                         | COLIFORMS<br>per 100 ml.                                                                |
| 11 7 60<br>11 14 60<br>11 21 60<br>12 6 60<br>12 13 60<br>12 19 60<br>13 61<br>1 16 61<br>1 24 61<br>1 30 61<br>2 27 61<br>3 20 61<br>3 27 61<br>3 20 61<br>3 27 61<br>5 9 61<br>6 61<br>7 5 61<br>7 5 61<br>9 12 61 | -                                |                             | 7.9<br>7.8<br>7.9<br>8.1<br>7.5<br>7.6<br>2<br>7.6<br>8.1<br>7.9 |                |                |                |                 |                              |                   | 78<br>96<br>108<br>92<br>92<br>90<br>82<br>-<br>78<br>-<br>90<br>106<br>106<br>86<br>-<br>154<br>134 | 116<br>120<br>106<br>110<br>94<br>84<br>-<br>256<br>224<br>128<br>136<br>156<br>168<br>276 |                        | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 |                  |                    | 220<br>209<br>195<br>176<br>152<br><br>248<br><br>248<br>336 | 80<br>240<br>110<br>160<br>130<br>130<br>-<br>-<br>8500<br>6200<br>20<br>-<br>*100<br>- |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station near Lobatos, Colorado Operated by U.S. Geological Survey

STATE

Colorado

MAJOR BASIN

Western Gulf

MINOR BASIN

Rio Grande/Upper/above Pecos River

STATION LOCATION

Rio Grande below

Alamosa, Colorado

| Day                        | October                              | November                             | December                             | January                              | February                             | March                                | April                                     | May                                           | June                                 | July                                 | August                               | September                            |
|----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|-----------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| 1<br>2<br>3<br>4           | .030<br>.030<br>.032                 | .076<br>.073<br>.078                 | .144<br>.145<br>.125                 | .170<br>.165<br>.155                 | .180<br>.175<br>.168                 | .160<br>.170<br>.185                 | .160<br>.177<br>.166                      | .688<br>1.090<br>1.080                        | .854<br>.811                         | .076                                 | .033<br>.037                         | .030<br>.034                         |
| 4<br>5                     | .030<br>.032                         | .076<br>.073                         | .140                                 | .130                                 | .165<br>.165                         | .210                                 | .160                                      | 1.160<br>1.230                                | •753<br>•567<br>•418                 | .067<br>.069<br>.062                 | .053<br>.065<br>.051                 | .058<br>.090<br>.092                 |
| 6<br>7<br>8<br>9<br>10     | .029<br>.032<br>.029<br>.036<br>.037 | .073<br>.065<br>.067<br>.071<br>.289 | .085<br>.100<br>.117<br>.116<br>.116 | .135<br>.140<br>.135<br>.140         | .160<br>.160<br>.165<br>.175<br>.185 | .230<br>.225<br>.220<br>.225<br>.230 | .280<br>.276<br>.276<br>.272<br>.247      | .940<br>.612<br>.485<br>.418<br>.395          | .358<br>.313<br>.251<br>.211<br>.243 | .060<br>.073<br>.067<br>.062<br>.058 | .054<br>.054<br>.049<br>.049         | .088<br>.082<br>.090<br>.144<br>.095 |
| 11<br>12<br>13<br>14<br>15 | .036<br>.034<br>.033<br>.036         | .542<br>.586<br>.599<br>.605<br>.586 | .134<br>.156<br>.173<br>.177         | .134<br>.135<br>.135<br>.145<br>.160 | .200<br>.210<br>.230<br>.240<br>.245 | .231<br>.231<br>.235<br>.211<br>.196 | .219<br>.211<br>.203<br>.192<br>.192      | .429<br>.429<br>.502<br>.485<br>.353          | .239<br>.211<br>.177<br>.163         | .056<br>.056<br>.058<br>.054         | .040<br>.039<br>.044<br>.067         | .080<br>.071<br>.082<br>.095         |
| 16<br>17<br>18<br>19       | .037<br>.060<br>.065<br>.111<br>.150 | .280<br>.166<br>.120<br>.105<br>.102 | .181<br>.177<br>.160<br>.160         | .155<br>.150<br>.146<br>.150<br>.150 | .248<br>.240<br>.235<br>.230<br>.220 | .192<br>.199<br>.203<br>.166<br>.170 | .192<br>.173<br>.156<br>.284<br>.513      | .318<br>.284<br>.268<br>.251<br>.259          | .114<br>.105<br>.111<br>.134<br>.134 | .051<br>.049<br>.045<br>.042         | .067<br>.067<br>.069<br>.065         | .080<br>.073<br>.065<br>.078         |
| 21<br>22<br>23<br>24<br>25 | .160<br>.134<br>.122<br>.108<br>.098 | .098<br>.098<br>.098<br>.098<br>.098 | .163<br>.163<br>.166<br>.166         | .150<br>.150<br>.151<br>.155<br>.160 | .215<br>.210<br>.200<br>.170<br>.175 | .166<br>.160<br>.160<br>.160<br>.163 | .854<br>.710<br>.667<br>.731<br>.717      | . 313<br>. 318<br>. 384<br>. 777<br>. 639     | .144<br>.160<br>.153<br>.156         | .076<br>.080<br>.060<br>.053         | .045<br>.045<br>.073<br>.051         | .073<br>.080<br>.122<br>.114         |
| 6<br>7<br>8<br>9<br>9      | .088<br>.085<br>.085<br>.082<br>.080 | .100<br>.111<br>.147<br>.147<br>.137 | .170<br>.170<br>.170<br>.173<br>.173 | .170<br>.170<br>.180<br>.190<br>.165 | .175<br>.165<br>.150                 | .181<br>.170<br>.160<br>.153<br>.160 | . 525<br>. 446<br>. 379<br>. 384<br>. 525 | .554<br>.667<br>.874<br>1.070<br>.864<br>.820 | .122<br>.114<br>.105<br>.095         | .039<br>.095<br>.069<br>.054<br>.042 | .045<br>.039<br>.033<br>.037<br>.036 | .092<br>.090<br>.085<br>.080         |

STATE

VIRGINIA

MAJOR BASIN

SOUTHEAST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

ROANOKE RIVER

STATION LOCATION ROANOKE RIVER AT

JOHN H KERR RESR & DAM, VIRGINIA 91

| DATE               | T    |        |                       |           | RAD   | OACTIVITY IN V | VATER     |           |       |   | RADIOA                        | CTIVITY IN PLA | NKTON (dry) |     | RAD       | IOACTIVITY IN V | /ATER |
|--------------------|------|--------|-----------------------|-----------|-------|----------------|-----------|-----------|-------|---|-------------------------------|----------------|-------------|-----|-----------|-----------------|-------|
| SAMPLE             |      | DAT    | E OF<br>ERMI-<br>TION |           | ALPHA |                |           | BETA      |       | ] | DATE OF<br>DETERMI-<br>NATION | GROSS          | ACTIVITY    | 1 [ |           | GROSS ACTIVIT   | Y     |
| TAKEN              | _    |        |                       | SUSPENDED |       | TOTAL          | SUSPENDED | DISSOLVED | TOTAL | ] | NATION                        | ALPHA          | BETA        | ] [ | SUSPENDED | DISSOLVED       | TOTAL |
| O. DAY YEA         | AR I | MONTH  | DAY                   | μμε/Ι     | μμc/I | μμс/1          | μμε/Ι     | μμc/l     | μμε/Ι |   | MO. DAY                       | μμc/g          | µµс∕g       |     | μμε/Ι     | μμε/Ι           | ##c/l |
| 7 17 (1            |      |        |                       | 0         | 0     | o              | ٥         | ا ہ       | ٥     |   |                               |                |             |     |           |                 |       |
| 7 17 61<br>7 31 61 |      | 8<br>9 | 8<br>7                | 0         | 0     | 0              | 3         | 1         | 4     |   |                               |                |             |     |           |                 |       |
| 7 61               | - 1  | 9      | 8                     | 0         | 0     | 0              | 3         | 5         | 8     |   | 1 1                           |                |             |     |           |                 |       |
| 3 14 61            |      | 9      |                       | ő         | Ö     | 0              | 3         | 5         | 8     |   | 1 1                           |                |             |     |           |                 |       |
| 3 21 61            |      | 9      |                       | î         | Ö     | 1              | 1 1       | 4         | 5     |   | 1 1                           |                |             |     |           |                 |       |
| 3 28 61            |      |        | 26                    | ō         | ŏ     | ō              |           | 2         | 2     |   | 1 1                           |                | }           |     |           |                 |       |
| 5 61               |      | 10     | 6                     | ō         | o     | o              | Ö         | ō         | ō     | l | 1 1                           |                |             |     |           |                 |       |
| 11 61              |      | 10     | 6                     | 1         | Ŏ     | i              | l ŏ       | ŏ         | ŏ     |   |                               |                |             |     |           |                 |       |
| 18 61              |      | 10     | 7                     | ī         | 0     | 1              | 4         | 7         | 11    |   |                               |                |             |     |           |                 |       |
| 25 61              |      | 10     | 3                     | 0         | 0     | 0              | 0         | 2         | 2     |   |                               |                |             |     |           |                 |       |
|                    |      |        |                       |           |       |                |           |           |       |   |                               |                |             |     |           |                 |       |
| 1                  |      |        |                       |           |       |                |           |           |       |   | 1 1                           |                |             |     |           |                 |       |
|                    |      |        |                       |           |       |                |           |           |       |   | 1                             |                | •           | l i |           |                 |       |
|                    |      |        |                       |           |       |                |           |           |       |   | 1 1                           |                |             | ]   | ·         |                 |       |
|                    |      |        |                       |           |       |                |           |           |       |   |                               |                |             | 1   |           |                 |       |
|                    |      |        |                       |           |       |                |           |           |       |   | 1 1                           |                |             |     |           |                 |       |
|                    |      |        |                       | j         |       |                |           |           |       |   |                               |                |             |     |           |                 |       |
|                    |      |        |                       |           |       |                |           |           |       |   |                               |                |             |     |           |                 |       |
|                    |      |        |                       |           |       |                |           |           |       |   | 1 1                           |                |             |     |           |                 |       |
|                    |      |        | ,                     |           |       |                |           |           |       |   |                               |                |             |     |           |                 |       |
|                    |      |        |                       |           |       |                |           |           |       |   |                               |                | •           |     |           |                 |       |
|                    |      |        |                       |           |       |                |           |           |       | Ì |                               |                |             |     |           |                 |       |
|                    |      |        |                       |           |       |                |           |           |       |   |                               |                |             |     |           |                 |       |
|                    |      |        |                       |           |       |                |           |           |       |   |                               |                |             |     |           | ļ               |       |
|                    |      |        |                       |           |       |                |           |           |       |   |                               |                |             |     |           |                 |       |
|                    |      |        |                       |           |       |                |           |           |       |   |                               |                |             |     |           |                 |       |
|                    |      |        |                       |           |       |                |           |           |       |   |                               |                |             |     |           | İ               |       |
|                    |      |        |                       |           |       |                |           |           |       |   |                               |                |             |     |           |                 |       |
|                    |      |        |                       |           |       |                |           |           |       |   |                               |                |             |     |           |                 |       |
|                    |      |        |                       | ł         |       |                |           |           |       |   |                               |                |             |     |           |                 |       |
|                    |      |        |                       |           |       |                |           |           |       |   | 1                             |                |             |     |           |                 |       |
|                    |      |        |                       |           |       |                |           |           |       |   | 1                             |                |             | 1   |           |                 |       |
|                    |      |        |                       |           |       |                | 1         |           |       |   |                               |                |             |     |           |                 |       |
|                    |      |        |                       |           |       |                |           |           |       |   |                               |                |             |     |           |                 |       |
|                    |      |        |                       |           |       |                |           |           |       |   |                               |                |             |     |           |                 |       |
|                    |      |        |                       |           |       |                |           |           |       |   |                               |                |             |     |           |                 |       |
|                    |      |        |                       |           |       |                |           |           |       |   |                               |                |             |     |           |                 |       |
|                    |      |        |                       |           |       |                |           |           |       |   |                               |                |             |     |           |                 |       |
|                    |      |        |                       |           |       |                |           |           |       |   |                               |                |             |     |           |                 |       |
|                    |      |        |                       | 1         |       |                | 1         |           |       | 1 |                               |                |             | 1 1 |           | 1               |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

VIRGINIA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

ROANOKE RIVER

STATION LOCATION ROANOKE RIVER AT

JOHN H KERR RESR & DAM, VIRGINIA 91

| DATE                                                         |                            |         |                       | ALGAE (                     | Vumber                | per ml.)         |                 |                               |                        | INI                    | RT                            | Т-                   |            |                      |                              |                |                  |                   |                 |                       |                                                               | <del>-</del>              | HICRO                        | WEDZEN                       |                              |                |                                                             |
|--------------------------------------------------------------|----------------------------|---------|-----------------------|-----------------------------|-----------------------|------------------|-----------------|-------------------------------|------------------------|------------------------|-------------------------------|----------------------|------------|----------------------|------------------------------|----------------|------------------|-------------------|-----------------|-----------------------|---------------------------------------------------------------|---------------------------|------------------------------|------------------------------|------------------------------|----------------|-------------------------------------------------------------|
| OF SAMPLE                                                    |                            | BLUE-   | GREEN                 | GREE                        | N                     | FLAGEI<br>(Pigma | LATES<br>ented) | DIAT                          | омѕ                    | DIA<br>SHE<br>(No. p   | ERT<br>TOM<br>LLLS<br>er ml.) |                      | DOM<br>(Se | INANT                | SPEC<br>duction              | IATC           | ND PE            | ERCEN<br>entifica | TAGE:           | s                     | ATHEROR.                                                      | 3                         | T                            | NVERTEB                      | Τ                            |                | KERA<br>ction<br>ution)                                     |
| MONTH<br>DAY<br>YEAR                                         | TOTAL                      | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                     | FILA-<br>MENT-<br>OUS | GREEN            | OTHER           | CENTRIC                       | PENNATE                | CENTRIC                | PENNATE                       | FIRST                | PER.       | SECOND#              | PER.                         | THIRD#         | PER.             | FOURTH            | PER.<br>CENTAGE | OTHER PER-<br>CENTAGE | OTHER RICROPLANKTOR FURGI AND SHEATHED BACTERIA (No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ANIMAL ! | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| 6 19 61<br>7 17 61<br>8 7 61<br>8 21 61<br>9 5 61<br>9 18 61 | 1500<br>1200<br>600<br>100 | 70      | 60<br>960<br>50       | 40<br>70<br>130<br>20<br>20 |                       | 20               | 20 50           | 1160<br>70<br>220<br>80<br>20 | 40<br>110<br>110<br>20 | 170<br>130<br>80<br>70 | 70<br>20                      | 58<br>58<br>57<br>58 | 30<br>60   | 47<br>57<br>58<br>57 | * 20<br>30<br>30<br>10<br>20 | 47<br>28<br>21 | * 20<br>10<br>20 | 56                | *<br>20<br>10   | 10 10 20 30           | 70 20                                                         |                           | 7<br>110<br>130<br>14        | 6 9 19                       |                              |                | 7                                                           |

# ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

VIRGINIA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

ROANOKE RIVER

STATION LOCATION ROANOKE RIVER AT

JOHN H KERR RESR & DAM, VIRGINIA 91

| DAT        | E OF S | AMPL  | E        | 1                   | l F        | XTRACTABL       | EC         |                     |                   |          |            |           |                              |          |               |                 |       |          |
|------------|--------|-------|----------|---------------------|------------|-----------------|------------|---------------------|-------------------|----------|------------|-----------|------------------------------|----------|---------------|-----------------|-------|----------|
| BEGIN      |        |       | ND       |                     |            |                 |            |                     |                   | <u> </u> |            | CHLOROF   | ORM EXTR                     | ACTABLES |               |                 |       |          |
| MONTH      | YEAR   | MONTH | DAY      | GALLONS<br>FILTERED | TOTAL      | CHLORO-<br>FORM | ALCOHOL    | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES | TOTAL    | ALIPHATICS | AROMATICS | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS     | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES | LOSS     |
| 8 7<br>9 5 | 61     | 8 9   | 28<br>21 | 4370<br>4550        | 361<br>301 | 188<br>155      | 173<br>146 | 9                   | 47<br>40          | 34<br>37 | 3          | 2 3       |                              | 1 1      | 15<br>12      | 30<br>23        | 2     | 51<br>30 |
|            |        |       |          |                     |            |                 |            |                     |                   |          |            |           |                              |          |               |                 |       |          |
|            |        |       |          |                     |            |                 |            |                     |                   |          |            |           |                              |          |               |                 |       |          |
|            |        |       |          | ·                   |            |                 | -          |                     |                   |          |            |           |                              |          |               |                 |       |          |
|            |        |       |          |                     |            |                 |            |                     |                   |          |            |           |                              |          |               |                 |       |          |
|            |        |       |          |                     |            |                 |            |                     |                   |          |            |           | į                            | ,        |               |                 |       |          |
|            |        |       |          |                     |            |                 | İ          |                     |                   |          |            |           |                              |          |               |                 |       |          |
|            |        |       |          |                     |            |                 |            |                     |                   |          |            |           |                              |          |               |                 |       |          |
|            |        |       |          |                     |            |                 |            |                     |                   |          |            |           |                              |          |               |                 |       |          |
|            |        |       |          |                     |            |                 |            |                     |                   |          |            |           |                              |          |               |                 |       |          |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Buggs Island, Virginia Operated by U.S. Geological Survey STATE

Virginia

MAJOR BASIN

Southeast

MINOR BASIN

Roanoke River

STATION LOCATION

Roanoke River at

John H. Kerr Reservoir & Dam, Va.

| Day                              | October                                           | November                                | December                                          | January                                            | February                   | March                                                   | April                                      | May                                                 | June                                           | July                                             | August                                                | September                                              |
|----------------------------------|---------------------------------------------------|-----------------------------------------|---------------------------------------------------|----------------------------------------------------|----------------------------|---------------------------------------------------------|--------------------------------------------|-----------------------------------------------------|------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|
| 1                                | 1.120                                             | 5.050                                   | 3.380                                             | .310                                               | 4.040                      | 17.700                                                  | 8.910                                      | 8.120                                               | 10.500                                         | 4.410                                            | 5.300                                                 | 18.400                                                 |
| 2                                | .410                                              | 4.890                                   | 4.060                                             | 1.040                                              | 6.600                      | 16.000                                                  | 12.000                                     | 8.640                                               | 12.100                                         | 1.570                                            | 2.950                                                 | 2.600                                                  |
| 3                                | 8.320                                             | 4.860                                   | .425                                              | 6.380                                              | 4.220                      | 14.900                                                  | 18.300                                     | 6.360                                               | 3.580                                          | 8.140                                            | 4.160                                                 | .215                                                   |
| 4                                | 7.370                                             | 4.900                                   | .262                                              | 4.420                                              | .318                       | 5.360                                                   | 20.500                                     | 7.410                                               | 2.800                                          | .256                                             | 2.970                                                 | .210                                                   |
| 5                                | 8.450                                             | 1.090                                   | 6.460                                             | 4.000                                              | .310                       | 1.780                                                   | 17.600                                     | 9.610                                               | 7.440                                          | 7.760                                            | .256                                                  | 8.880                                                  |
| 6                                | 9.450                                             | .575                                    | 5.710                                             | 3.720                                              | 3.550                      | 16.400                                                  | 17.400                                     | 3.130                                               | 7.610                                          | 10.300                                           | .250                                                  | 8.420                                                  |
| 7                                | 8.030                                             | 8.000                                   | 5.160                                             | .920                                               | 2.380                      | 18.100                                                  | 14.200                                     | 3.080                                               | 8.680                                          | 10.400                                           | 4.250                                                 | 7.930                                                  |
| 8                                | 4.320                                             | 5.730                                   | 6.180                                             | .415                                               | 2.160                      | 12.700                                                  | 3.470                                      | 11.200                                              | 7.410                                          | 2.240                                            | 7.090                                                 | 4.040                                                  |
| 9                                | 2.200                                             | 5.640                                   | 7.050                                             | 7.220                                              | 2.120                      | 16.400                                                  | 2.620                                      | 8.050                                               | 5.760                                          | .268                                             | 5.780                                                 | 1.820                                                  |
| 10                               | 8.780                                             | 5.650                                   | 1.060                                             | 5.200                                              | 2.210                      | 16.800                                                  | 18.400                                     | 6.730                                               | 3.620                                          | 6.760                                            | 4.580                                                 | .215                                                   |
| 11                               | 7.480                                             | 3.460                                   | 1.860                                             | 5.120                                              | .405                       | 9.530                                                   | 20.500                                     | 9.380                                               | 2.580                                          | 7.110                                            | 5.360                                                 | 10.300                                                 |
| 12                               | 7.520                                             | .950                                    | 8.660                                             | 4.820                                              | .298                       | 2.220                                                   | 14.700                                     | 13.700                                              | 10.500                                         | 6.800                                            | .630                                                  | 8.310                                                  |
| 13                               | 7.460                                             | .515                                    | 7.420                                             | 4.160                                              | 4.120                      | 19.000                                                  | 15.600                                     | 2.920                                               | 8.800                                          | 7.120                                            | .250                                                  | 7.260                                                  |
| 14                               | 8.000                                             | 5.810                                   | 4.860                                             | 1.980                                              | 2.690                      | 16.300                                                  | 18.600                                     | 2.650                                               | 5.690                                          | 7.600                                            | 2.060                                                 | 15.400                                                 |
| 15                               | 3.240                                             | 4.890                                   | 4.780                                             | .560                                               | 2.120                      | 15.300                                                  | 18.100                                     | 15.100                                              | 3.460                                          | 2.380                                            | 2.890                                                 | 2.460                                                  |
| 16                               | 1.310                                             | 5.180                                   | 5.280                                             | 7.440                                              | 2.220                      | 16.300                                                  | 14.700                                     | 18.000                                              | 3.600                                          | .262                                             | 6.060                                                 | .220                                                   |
| 17                               | 9.140                                             | 4.760                                   | 2.200                                             | 5.950                                              | 2.470                      | 12.500                                                  | 20.500                                     | 17.300                                              | .250                                           | 7.580                                            | 5.510                                                 | .220                                                   |
| 18                               | 7.930                                             | 5.000                                   | 1.020                                             | 5.780                                              | .550                       | 4.450                                                   | 18.900                                     | 16.500                                              | .250                                           | 5.780                                            | 4.780                                                 | 4.060                                                  |
| 19                               | 8.000                                             | .745                                    | 6.630                                             | 7.640                                              | .256                       | .995                                                    | 17.300                                     | 16.000                                              | 3.940                                          | 6.560                                            | .445                                                  | 6.480                                                  |
| 20                               | 6.840                                             | .485                                    | 5.900                                             | 5.700                                              | 4.480                      | 6.710                                                   | 16.900                                     | 2.920                                               | 4.560                                          | 5.520                                            | .240                                                  | 6.580                                                  |
| 21                               | 6.930                                             | 5.450                                   | 4.960                                             | 3.960                                              | 4.540                      | 5.200                                                   | 17.200                                     | 2.960                                               | 5.820                                          | 7.200                                            | 5.350                                                 | 7.360                                                  |
| 22                               | 1.180                                             | 4.780                                   | 5.080                                             | 1.230                                              | 3.080                      | 6.440                                                   | 17.700                                     | 8.070                                               | 17.800                                         | 1.660                                            | 6.940                                                 | 5.810                                                  |
| 23                               | .765                                              | 4.400                                   | 4.080                                             | 8.250                                              | 6.100                      | 10.700                                                  | 13.800                                     | 9.640                                               | 16.300                                         | .256                                             | 5.600                                                 | .915                                                   |
| 24                               | 10.200                                            | 1.750                                   | 2.140                                             | 8.040                                              | 11.500                     | 12.600                                                  | 9.890                                      | 8.130                                               | 2.420                                          | 7.760                                            | 8.510                                                 | .210                                                   |
| 25                               | 7.050                                             | 2.080                                   | .390                                              | 7.580                                              | 3.110                      | 14.200                                                  | 9.580                                      | 8.120                                               | 3.000                                          | 5.430                                            | 8.210                                                 | 11.200                                                 |
| 26<br>27<br>28<br>29<br>30<br>31 | 6.920<br>6.480<br>6.160<br>1.340<br>.200<br>6.620 | .515<br>.205<br>4.600<br>4.340<br>4.830 | .485<br>3.550<br>5.450<br>4.990<br>3.940<br>2.020 | 6.900<br>5.290<br>2.260<br>1.000<br>7.380<br>6.220 | 13.800<br>19.400<br>19.700 | 9.1140<br>17.600<br>17.700<br>15.100<br>14.700<br>9.800 | 9.350<br>10.100<br>8.080<br>3.140<br>3.050 | 10.300<br>3.340<br>3.100<br>8.550<br>6.760<br>8.080 | 14.800<br>17.000<br>19.500<br>18.400<br>17.000 | 3.380<br>3.580<br>4.910<br>.905<br>.250<br>9.040 | 5.020<br>.240<br>19.300<br>18.100<br>14.500<br>16.400 | 5.2 <sup>1</sup> 40<br>2.860<br>2.600<br>2.960<br>.210 |

STATE

TEXAS

RADIOACTIVITY DETERMINATIONS

MAJOR BASIN

WESTERN GULF SABINE RIVER

STATION LOCATION SABINE RIVER NEAR

RULIFF, TEXAS

| DATE               |                     |           | RADI      | OACTIVITY IN V | VATER         |           |               | Т— | RADIOA              | CTIVITY IN PLAN | IKTON (4-4)   |          |           | 10.1 000 000 000 |       |
|--------------------|---------------------|-----------|-----------|----------------|---------------|-----------|---------------|----|---------------------|-----------------|---------------|----------|-----------|------------------|-------|
| SAMPLE             | DATE OF<br>DETERMI- |           | ALPHA     |                |               | BETA      |               | i  | DATE OF<br>DETERMI- | GROSS A         |               |          |           | GROSS ACTIVIT    |       |
| TAKEN              | NATION              | SUSPENDED | DISSOLVED | TOTAL          | SUSPENDED     | DISSOLVED | TOTAL         | İ  | DETERMI-<br>NATION  | ALPHA           | BETA          |          | SUSPENDED | DISSOLVED        | TOTAL |
| MO. DAY YEAR       | MONTH DAY           | μμε/Ι     | μμc/1     | μμε/Ι          | <i>μ</i> μc/l | μμς/Ι     | μμς/Ι         | 1  | MO. DAY             | μμc/g           | μμc/ <b>g</b> |          | μμς/1     | μμε/1            | μμε/1 |
| 10 3 60            | 10 20               | 1         |           | _              | _             | _         |               |    |                     |                 |               |          |           |                  |       |
| 10 10 60           | 10 21               | 2         | 2         | 3              | 0             | 1         | 1             | 1  |                     |                 |               |          |           |                  |       |
| 10 17 60           | 11 1                | 0         | 1         | 3              | 0             | 1         | 1             | 1  | li                  |                 |               |          |           |                  |       |
| 10 24 60           | 11 15               | o l       | 3         | 0              | 0             | 8         | 17            |    |                     |                 | -             |          |           |                  |       |
| 10 31 60           | 11 21               | 2         | 1         | 3              | 1             | 0         | 1             |    |                     |                 |               |          |           |                  |       |
| 11 7 60            | 11 29               | ī         | ō         | 1              | 2             | 0         | 1             |    |                     | ļ               |               |          |           |                  |       |
| 11 14 60           | 11 30               | ō         | ő         | ō              | ا ٥ ا         | 0         | 2<br>0        |    |                     | İ               |               |          |           |                  |       |
| 11 29 60           | 12 20               | i         | ĭ         | 2              | 0 0           | 2         | 2             |    |                     | ļ               |               |          |           | i                |       |
| 12 5 60            | 1 3                 | ō         | ō         | ō              | 0             | 3         | 3             |    |                     |                 |               |          |           |                  |       |
| 12 12 60           | 16                  | 1         | 1         | 2              | 0             | ő         | ó             |    |                     |                 |               |          | i ·       |                  |       |
| 12 19 60           | 1 13                | 1         | 0         | 1              | 0             | 9         | 9             |    |                     |                 |               |          |           | i l              |       |
| 12 27 60           | 1 19                | 0         | 0         | 0              | o             | o l       | Ó             |    |                     |                 |               |          |           |                  |       |
| 1 2 61             | 1 31                | 0         | 0         | 0              | 0             | ō         | ō             |    |                     |                 |               |          |           |                  |       |
| 1 9 61             | 1 27                | 0         | 1         | 1              | 0             | 0         | Ō             |    |                     |                 |               |          |           |                  |       |
| 1 16 61            | 2 6                 | 0         | 1         | 1              | 0             | 3         | 3             |    |                     |                 |               |          | ŀ         |                  |       |
| 1 23 61            | 2 17                | 0         | 1         | 1              | 0             | 1         | 1             |    |                     |                 |               |          |           |                  |       |
| 1 29 61            | 2 13                | 3         | 0         | 3              | 24            | 5         | 29            |    |                     |                 |               |          |           |                  |       |
| 2 6 61             | 2 21                | 4         | 0         | 4              | 0             | 0         | 0             |    |                     |                 |               |          |           |                  |       |
| 2 13 61            | 3 3                 | 0         | 0         | 0              | 11            | 0         | 11            |    |                     |                 |               |          |           |                  |       |
| 2 19 61<br>2 27 61 | 3 9<br>3 21         | 1         | 0         | 1              | 0             | 5         | 5             |    |                     |                 |               |          | 1         |                  |       |
|                    | 3 27                | 1         | 0         | 1              | 0             | 0         | 0             |    |                     |                 |               |          | 1         |                  |       |
|                    | 3 31                | 1         | 0         | 1              | 0             | 0         | 0             |    |                     |                 |               |          |           |                  |       |
| 3 13 61<br>3 20 61 | 4 5                 | 1         | 0         | 1              | 2             | ō         | 2             |    |                     |                 |               | ŀ        |           |                  |       |
| 3 27 61            | 4 17                | 0         | 0         | 0              | 0             | 5 4       | 5             |    |                     |                 |               | ĺ        |           |                  |       |
| 4 3 61             | 5 5                 | 2         | i         | 3              | 0 0           | 5         | <b>4</b><br>5 |    |                     |                 |               |          |           |                  |       |
| 4 10 61            | 5 2                 | 1         | o l       | ī              | 0             | i         | 1             |    |                     |                 |               |          |           |                  |       |
| 4 17 61            | 5 17                | ō         | ŏ         | ō              | 2             | 8         | 10            |    |                     |                 |               |          |           |                  |       |
| 4 24 61            | 5 23                | ŏ         | ŏ         | ŏ              | ا ہ           | 0         | 0             |    |                     |                 |               |          |           |                  |       |
| 5 1 61             | 6 8                 | o i       | ŏ         | ō              | l ŏ l         | o l       | ŏ             |    | ľ                   |                 |               |          |           |                  |       |
| 5 8 61             | 6 8                 | 2         | 0         | 2              | 6             | i !       | 7             |    |                     |                 |               |          | l         |                  |       |
| 5 15 61            | 6 2                 | 1         | 1         | 2              | 0             | 0         | 0             |    |                     |                 |               |          |           |                  |       |
| 5 22 61            | 6 14                | 2         | 1         | 3              | 0             | 7         | 7             |    |                     |                 |               |          | •         |                  |       |
| 5 29 61            | 6 20                | 1         | 1         | 2              | 0             | 0         | 0             |    |                     |                 |               |          | ļ         |                  |       |
| 6 5 61             | 6 28                | 1         | 0         | 1              | 0             | 0         | 0             |    |                     |                 |               |          | ļ         | 1                |       |
| 6 11 61            | 7 6                 | 1         | 0         | 1              | 0             | 0         | 0             |    |                     |                 |               |          | ŀ         |                  |       |
| 6 19 61            | 7 28                | 5         | 0         | 5              | 5             | 0         | 5             |    |                     |                 |               |          |           |                  |       |
| 7 31 61*           | 8 30                | 1         | 1         | 2              | 3             | 7         | 10            |    |                     |                 |               |          |           |                  |       |
|                    |                     |           |           |                |               |           |               |    |                     |                 |               |          |           |                  |       |
|                    |                     |           |           |                |               |           |               |    |                     |                 |               |          |           |                  |       |
|                    |                     |           |           |                |               |           |               |    |                     |                 |               | <u> </u> | L         |                  |       |

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

SABINE RIVER

STATION LOCATION SABINE RIVER NEAR

RULIFF, TEXAS

|                | T                  |                           | PADI  | OACTIVITY IN V      | VATER                                 |       |                          | T PADIO                       | ACTIVITY IN PLA | NKTON (drv)      | т  | PAI       | DIOACTIVITY IN V | /ATER |
|----------------|--------------------|---------------------------|-------|---------------------|---------------------------------------|-------|--------------------------|-------------------------------|-----------------|------------------|----|-----------|------------------|-------|
| DATE<br>Sample | DATE OF            |                           |       | 0.00111111111111111 | T T                                   | BETA  |                          |                               |                 |                  | 1  | 873       |                  |       |
| TAKEN          | DETERMI-<br>NATION | SUSPENDED                 |       | TOTAL               | SUSPENDED                             |       | TOTAL                    | DETERMI-<br>NATION            | ALPHA           | BETA             | 1  | SUSPENDED |                  | TOTAL |
| MO. DAY YEAR   |                    | μμ <sub>C</sub> /l        |       |                     | <del></del>                           | μμc/l | μμε/Ι                    | MO. DAY                       |                 | <i>µµс/</i> g    | 1. | μμε/Ι     | μμс/I            | μμc/l |
| SAMPLE         |                    | SUSPENDED  ##c/1  O  O  O | ALPHA | ΤΟΤΑL  μμε/1  0 0   | SUSPENDED μμ <sub>c</sub> /1  1 0 1 2 |       | ΤΟΤΑL  ##e/I  6 0 4 5 12 | DATE OF<br>DETERMI-<br>NATION | GROSS<br>ALPHA  | ACTIVITY<br>BETA |    | SUSPENDED | GROSS ACTIVIT    | TOTAL |
|                |                    |                           |       |                     |                                       |       |                          |                               |                 |                  |    |           |                  |       |

# PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

SABINE RIVER

STATION LOCATION SABINE RIVER NEAR

RULIFF, TEXAS

|                                                                                                               | ATE                |                                         |                                                                                    |                 |                       | ALGAE (                | Number                | per ml.)                        |                  | ·····                                                                                   | ······                                          | INE                                                          | ERT                                                  | т—                                          |                                        |                |                                       |                            |                                        |                            |                  |                       | т                                                                      | 1                         |                                               |                              |                              |                                |                                                             |
|---------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------|------------------------------------------------------------------------------------|-----------------|-----------------------|------------------------|-----------------------|---------------------------------|------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|---------------------------------------------|----------------------------------------|----------------|---------------------------------------|----------------------------|----------------------------------------|----------------------------|------------------|-----------------------|------------------------------------------------------------------------|---------------------------|-----------------------------------------------|------------------------------|------------------------------|--------------------------------|-------------------------------------------------------------|
| OF S                                                                                                          |                    | - 1                                     |                                                                                    | BLUE-           | GREEN                 | GREE                   | EN                    | FLAGEI<br>(Pigm                 | LLATES<br>ented) | DIAT                                                                                    | омѕ                                             | DIA<br>SHE<br>(No. p                                         | ERT<br>TOM<br>ELLS<br>er ml.)                        |                                             | DOM<br>(Se                             | NANT<br>Intro  | SPEC                                  | IATO<br>IES A<br>for C     | ND PE                                  | RCEN<br>nti/ica            | TAGES            | 5                     | LANKTOR,<br>LATKER                                                     | 3                         | MICROIN                                       | I                            | Т                            | TORES                          | NERA<br>setion<br>ation)                                    |
| MONTH                                                                                                         | DAY                | YEAR                                    | TOTAL                                                                              | COCCOID         | FILA-<br>MENT-<br>OUS | COCCOID                | FILA-<br>MENT-<br>OUS | GREEN                           | OTHER            | CENTRIC                                                                                 | PENNATE                                         | CENTRIC                                                      | PENNATE                                              | FIRST*                                      | PER.                                   | SECOND®        | PER-                                  | THIRD#                     | PER.                                   | FOURTH                     | PER-<br>CENTAGE  | OTHER PER-<br>CENTAGE | OTHER RICROPLANKTOR<br>FUNGI AND SHEATHED<br>RACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)                  | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ANIMAL<br>(No. per liter | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| 11<br>12<br>12<br>1<br>2<br>3<br>3<br>4<br>4<br>4<br>1<br>5<br>5<br>1<br>6<br>6<br>7<br>7<br>1<br>8<br>8<br>2 | 759356037155939716 | 600001111111111111111111111111111111111 | 200<br>200<br>100<br>100<br>300<br>400<br>4200<br>2400<br>100<br>100<br>100<br>200 | 20<br>290<br>50 |                       | 20<br>480<br>90<br>110 | 20                    | 160<br>160<br>1370<br>690<br>20 | 20<br>60<br>50   | 110<br>220<br>20<br>20<br>20<br>100<br>1660<br>1230<br>40<br>20<br>50<br>20<br>80<br>80 | 20<br>70<br>70<br>20<br>390<br>50<br>170<br>100 | 20<br>20<br>20<br>20<br>250<br>1230<br>150<br>50<br>20<br>20 | 50<br>20<br>20<br>60<br>180<br>40<br>250<br>90<br>20 | 26<br>437<br>577<br>577<br>577<br>426<br>92 | 30<br>30<br>50<br>73<br>40<br>30<br>20 | 92<br>57<br>26 | *<br>20<br>10<br>20<br>10<br>10<br>10 | 82<br>82<br>43<br>10<br>82 | 10<br>10<br>10<br>10<br>10<br>10<br>10 | 44<br>26<br>84<br>26<br>88 | 10 10 10 10 10 * |                       | 70<br>50                                                               | 10                        | 20<br>82<br>171<br>10<br>829<br>12<br>6<br>11 | 9999 4 8 21 2 2              | 8 2 1                        | 1 2 5                          | 41937                                                       |

### ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

SABINE RIVER

STATION LOCATION SABINE RIVER NEAR

RULIFF, TEXAS

| DATE OF SA | MPLE                                   |     |                                                                      | EX                                                                 | TRACTABL                                                         | ES                                                                |                     |                                                          |                                                                            |                                             | CHLOROF             | ORM EXTR                                                 | ACTABLES    |                                                   |                                             |               |                                                    |
|------------|----------------------------------------|-----|----------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|---------------------|----------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------|---------------------|----------------------------------------------------------|-------------|---------------------------------------------------|---------------------------------------------|---------------|----------------------------------------------------|
| BEGINNING  | E                                      | αν  |                                                                      |                                                                    |                                                                  | ***************************************                           |                     |                                                          |                                                                            |                                             | NEUTRALS            |                                                          |             |                                                   |                                             |               |                                                    |
| DAY YEAR   | MONTH                                  | DAY | GALLONS<br>FILTERED                                                  | TOTAL                                                              | CHLORO-<br>FORM                                                  | ALCOHOL                                                           | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES                                        | TOTAL                                                                      | ALIPHATICS                                  | AROMATICS           | OXYGEN-<br>ATED<br>COMPOUNDS                             | LOSS        | WEAK<br>ACIDS                                     | STRONG<br>ACIDS                             | BASES         | Loss                                               |
| 10         | 11<br>12<br>1<br>2<br>3<br>4<br>5<br>7 | 24  | 5000<br>5000<br>5000<br>5000<br>5000<br>5070<br>5000<br>3200<br>5000 | 369<br>349<br>378<br>304<br>330<br>407<br>341<br>181<br>372<br>260 | 121<br>100<br>142<br>104<br>165<br>101<br>142<br>82<br>206<br>77 | 248<br>249<br>236<br>200<br>165<br>306<br>199<br>99<br>166<br>183 | 1295616362          | 27<br>21<br>38<br>24<br>36<br>21<br>34<br>19<br>47<br>14 | 34<br>24<br>21<br>20<br>45<br>30<br>27<br>20<br>52<br>52<br>52<br>52<br>52 | 2<br>2<br>1<br>10<br>3<br>2<br>2<br>15<br>4 | 1 2 2 1 6 3 2 2 8 2 | 29<br>17<br>18<br>17<br>29<br>21<br>22<br>15<br>30<br>18 | 23010311111 | 17<br>12<br>13<br>9<br>20<br>14<br>14<br>10<br>21 | 18<br>15<br>18<br>11<br>20<br>10<br>33<br>9 | 2223121121121 | 22<br>24<br>40<br>38<br>23<br>40<br>19<br>43<br>14 |

STATE

TEXAS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

WESTERN GULF

MINOR BASIN

SABINE RIVER

STATION LOCATIONSABINE RIVER NEAR

RULIFF, TEXAS

| DATE<br>OF SAMPLE    | TEMP.                   | DISSOLVED      |                                                                                                                                                                                                                 |                |                | CHLORINE       | DEMAND          |                              |                                                                                                                           |                                                                                                                                                                                                                                           |                                                                                 | <u> </u>                                                                                                                                                 |                                                                         |                                                                                                                                                                                  |                    |                                                                                                                                                               |                         |
|----------------------|-------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|-----------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| MONTH<br>DAY<br>YEAR | (Degrees<br>Centigrade) | OXYGEN<br>mg/l | рН                                                                                                                                                                                                              | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/I | CHLORIDES<br>mg/l                                                                                                         | ALKALINITY<br>mg/l                                                                                                                                                                                                                        | HARDNESS<br>mg/l                                                                | COLOR<br>(scale units)                                                                                                                                   | TURBIDITY<br>(scale units)                                              | SULFATES<br>mg/l                                                                                                                                                                 | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l                                                                                                                          | COUFORMS<br>per 100 ml. |
| 10                   | -<br>-<br>-             |                | 7.2<br>7.2<br>7.3<br>7.4<br>7.9<br>7.5<br>7.6<br>8<br>7.6<br>6.8<br>7.7<br>7.3<br>7.4<br>7.3<br>7.4<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6<br>8<br>7.7<br>7.8<br>7.7<br>7.8<br>7.8<br>7.7<br>7.8<br>7.8<br>7.8<br>7 |                |                |                |                 |                              | 38<br>49<br>37<br>30<br>36<br>218<br>22<br>10<br>19<br>20<br>14<br>6 - 7<br>76<br>70<br>31<br>32<br>33<br>340<br>13<br>17 | 42<br>26<br>32<br>24<br>36<br>20<br>14<br>16<br>10<br>14<br>12<br>32<br>-<br>18<br>-<br>26<br>32<br>-<br>36<br>44<br>26<br>22<br>24<br>26<br>22<br>24<br>26<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 72<br>442<br>500<br>600<br>600<br>600<br>600<br>600<br>600<br>600<br>600<br>600 | 15<br>100<br>100<br>100<br>140<br>50<br>100<br>50<br>40<br>40<br>40<br>65<br>40<br>20<br>10<br>10<br>10<br>35<br>35<br>30<br>35<br>30<br>35<br>30<br>100 | 5<br>27<br>5<br>50<br>30<br>110<br>20<br>0<br>0<br>110<br>500<br>75<br> | 12<br>15<br>12<br>12<br>27<br>15<br>16<br>19<br>13<br>11<br>240<br>46<br>30<br>10<br>8<br>10<br>16<br>22<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21 | .1 .2 .2           | 121<br>157<br>120<br>105<br>169<br>98<br>-<br>72<br>55<br>-<br>77<br>114<br>48<br>104<br>90<br>-<br>-<br>-<br>-<br>102<br>109<br>112<br>147<br>112<br>-<br>86 |                         |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station near Ruliff, Texas Operated by U.S. Geological Survey

STATE

Texas

MAJOR BASIN

Western Gulf

MINOR BASIN

Sabine River

STATION LOCATION

Sabine River near

Ruliff, Texas

| Day                 | October        | November | December | January | February | March  | April  | May   | June   | July   | August         | September      |
|---------------------|----------------|----------|----------|---------|----------|--------|--------|-------|--------|--------|----------------|----------------|
| 1                   | 1.720          | 4.700    | 7,680    | 36.500  | 22.800   | 24.200 | 21.400 | 4.330 | 2.010  | 11.400 | 6.740          | 2.160          |
| 2                   | 1.860          | 4.800    | 6.400    | 37.200  | 21.400   | 22.100 | 22.100 | 4.240 | 1.910  | 11.400 | 6.740          | 2.010          |
| 3                   | 2.310          | 4.240    | 5.300    | 35.800  | 20.100   | 21.400 | 22.800 | 4.420 | 1.860  | 11.400 | 6.400          | 1.910<br>1.860 |
| 3<br>4              | 3.030          | 3.520    | 4.600    | 33.500  | 19.500   | 20.700 | 23.500 | 5.000 | 1.810  | 11.000 | 5.540<br>4.700 | 1.810          |
| 5                   | 3.450          | 2.960    | 4.150    | 31.200  | 19.000   | 20.100 | 24.200 | 5.200 | 1.810  | 10.300 | 4.700          | 1.010          |
| _                   | 2 1.50         | 2.600    | 3.910    | 29.100  | 19.000   | 19.500 | 24.900 | 5.000 | 1.860  | 9.600  | 4.070          | 1.760          |
| 6<br>7              | 3.450<br>3.100 | 2.360    | 3.990    | 31.200  | 19.500   | 19.000 | 24.200 | 4.700 | 1.910  | 8.780  | 3.830          | 1.720          |
| 8                   | 2.720          | 2.160    | 4.700    | 34.200  | 19.500   | 18.500 | 23.500 | 4.420 | 1.960  | 8.080  | 3.750          | 1.600          |
| 9                   | 2.420          | 2.010    | 5.940    | 39.600  | 18.500   | 18.000 | 24.200 | 4.240 | 1.910  | 8.300  | 3.910          | 1.520          |
| .ó                  | 2.260          | 1.910    | 7.680    | 49.200  | 18.000   | 17.600 | 24.200 | 4.070 | 1.860  | 8.780  | 3.990          | 1.480          |
| -                   | 2.110          | 2.010    | 9.950    | 52.400  | 17.200   | 17.200 | 23.500 | 3.910 | 1.810  | 9.300  | 3.750          | 1.560          |
| 1<br>2              | 2.110          | 3.170    | 12.300   | 49.200  | 16.300   | 16.700 | 23.500 | 3.670 | 1.860  | 11.400 | 3.310          | 2.060          |
|                     | 1.910          | 4.240    | 14.800   | 46.000  | 15.200   | 15.900 | 23.500 | 3.520 | 1.910  | 12.300 | 2.840          | 4.440          |
| 3<br>1 <sub>4</sub> | 1.860          | 4.150    | 17.600   | 44.400  | 14.800   | 15.200 | 22.800 | 3.380 | 1.960  | 12.300 | 2.480          | 7.880          |
| 5                   | 1.720          | 3.670    | 20.700   | 44.400  | 14.200   | 13.900 | 22.100 | 3.240 | 2.060  | 12.300 | 2.480          | 11.000         |
| .6                  | 1.640          | 3.380    | 22.100   | 42.800  | 13.600   | 12.300 | 20.700 | 3.170 | 2.260  | 11.800 | 2.540          | 15.900         |
| .7                  | 1.560          | 3.170    | 22.100   | 41.200  | 15.900   | 11.800 | 20.700 | 3.100 | 2.420  | 10.600 | 2.420          | 32.000         |
| 8                   | 1.480          | 3.380    | 22.800   | 39.600  | 19.500   | 12.300 | 18.500 | 3.170 | 2.480  | 9.040  | 2.310          | 36.500         |
|                     | 1.560          | 4.510    | 22.800   | 37.200  | 21.400   | 14.200 | 17.200 | 3.240 | 2.900  | 8.080  | 2.480          | 35.000         |
| .9<br>.0            | 1.760          | 5.420    | 23.500   | 35.800  | 24.200   | 17.600 | 15.500 | 3.100 | 5.160  | 7.480  | 2.960          | 32.000         |
| 1                   | 1.910          | 6.080    | 23.500   | 33.500  | 28,400   | 24.900 | 14.200 | 2.840 | 6.080  | 6.920  | 2.840          | 27,700         |
| 22                  | 1.960          | 6.400    | 23.500   | 32.800  | 32.000   | 29.100 | 12.800 | 2.600 | 6.560  | 6.240  | 2.480          | 22.100         |
| 23                  | 1.810          | 6.560    | 23.500   | 31.200  | 32.800   | 31.200 | 11.000 | 2.480 | 7.100  | 6.080  | 2.310          | 18.000         |
| 23<br>24            | 1.600          | 7.100    | 23.500   | 29.100  | 33,500   | 30.500 | 9.300  | 2.310 | 7.480  | 6.400  | 2.160          | 13.600         |
| 25                  | 1.440          | 7.680    | 23.500   | 27.700  | 32.800   | 28.400 | 7.880  | 2.260 | 8.080  | 6.400  | 2.160          | 9.600          |
| 26                  | 1.400          | 8.300    | 23,500   | 26.300  | 30.500   | 27.000 | 6.740  | 2.210 | 8.780  | 6.080  | 2.260          | 6.740          |
| ?7                  | 1.400          | 9.040    | 24.200   | 25.600  | 29.100   | 24.900 | 5.940  | 2.260 | 9.300  | 5.660  | 2.160          | 5.000          |
| :8                  | 1.480          | 9.040    | 25.600   | 27.000  | 27.000   | 24.200 | 5.300  | 2.360 | 9.600  | 5.300  | 2.260          | 4.070          |
| 9                   | 1.760          | 9.040    | 26.300   | 27.700  |          | 22.800 | 4.900  | 2.260 | 10.300 | 5.540  | 2.310          | 3.520          |
| 30                  | 2.600          | 8.520    | 28.400   | 26.300  |          | 22.800 | 4.510  | 2.160 | 10.600 | 6.560  | 2.480          | 3,170          |
| 1                   | 3.750          |          | 32.800   | 24.900  |          | 22.100 |        | 2.060 |        | 7.100  | 2.360          |                |

STATE

NEW YORK

MAJOR BASIN

NORTHEAST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

ST. LAWRENCE RIVER

STATION LOCATION ST. LAWRENCE RIVER AT

MASSENA, NEW YORK

| DATE        |                               |           | RADIO     | DACTIVITY IN V | WATER     |           | т т   | RADIOAG  | TIVITY IN PLAN | NKTON (dry) | PAI       | DIOACTIVITY IN W | ATER  |
|-------------|-------------------------------|-----------|-----------|----------------|-----------|-----------|-------|----------|----------------|-------------|-----------|------------------|-------|
| SAMPLE      | DATE OF<br>DETERMI-<br>NATION |           | ALPHA     |                |           | BETA      |       | DATE OF  |                | ACTIVITY    |           | GROSS ACTIVITY   |       |
| TAKEN       |                               | SUSPENDED | DISSOLVED | TOTAL          | SUSPENDED | DISSOLVED | TOTAL | DETERMI- | ALPHA          | BETA        | SUSPENDED | DISSOLVED        | TOTAL |
| O. DAY YEAR | MONTH DAY                     | μμε/ί     | μμc/I     | μμε/Ι          | μμς/Ι     | μμς/ί     | µµс/I | MO. DAY  | μμc/g          | μμc/g       | μμς/Ι     | μμε/Ι            | μμc/l |
| 0 10 60     | 10 24                         | 0         | 1         | 1              |           | 2         | ,     |          |                |             |           |                  |       |
| 18 60       | 11 14                         | =         | - 1       | _              | 0         | 4         | 2 4   |          |                |             |           |                  |       |
| 25 60       | 11 9                          | lol       | 3         | 3              |           | ō         | ŏ     |          |                |             |           | -                |       |
| 1 1 60      | 11 18                         | Ö         | ĩ l       | í              |           | ŏ         | 0     |          |                |             |           |                  |       |
| 2 5 60      | 12 22                         | 0         | δl        | ô              | 1 1       | 9         | 10    |          |                |             |           |                  |       |
| 2 12 60     | 1 10                          | ő         | ŏl        | Ö              | 0         | ó         | 0     |          |                |             |           |                  |       |
| 2 19 60     | 1 18                          | o l       | ŏ         | Ö              |           | 1         | 1     |          |                |             | ļ         |                  |       |
| 2 29 60     | 1 20                          | Ö         | 2         | 2              |           | 3         | 3     | 1 1      |                |             | İ         |                  |       |
| 3 61        | 1 23                          | l ŏ l     | ī         | ī              |           | ő         | ő     |          |                |             |           |                  |       |
| 1 10 61     | 2 3                           | اةا       | 2         | 2              | l ŏ l     | 2         | 2     |          |                | <b>!</b>    |           | 1                |       |
| 1 16 61     | 2 1                           | 0         | ī         | ī              |           | ٥         | ō     |          |                |             |           |                  |       |
| 1 23 61     | 2 7                           | l ŏ l     | î         | î              | 1 0 1     | ŏ         | ŏ     |          |                |             |           |                  |       |
| 1 30 61     | 2 15                          | lol       | ō         | Ô              | 0         | ŏ         | ŏ     |          |                |             |           | 1                |       |
| 7 61        | 2 24                          | ŏ         | ŏ         | Õ              | 10        | 9         | 19    |          |                |             |           |                  |       |
| 2 14 61     | 3 2                           | 0         | ĭ         | ĭ              | 0         | اهٔ       | fó l  |          |                |             |           | 1                |       |
| 2 20 61     | 3 13                          |           | o l       | ō              | ĭ         | 4         | 5     |          |                |             |           |                  |       |
| 2 28 61     | 3 22                          | Ö         | ĭ         | ĭ              | Ô         | ō         | ōΙ    |          |                | 1           |           |                  |       |
| 3 6 61      | 3 27                          | l ŏ l     | ô         | ô              |           | ŏ         | ŏΙ    |          |                | 1           |           |                  |       |
| 3 13 61     | 3 30                          | l ŏ l     | 0         | Ö              | i         | ĭ         | 2     |          |                |             | İ         |                  |       |
| 3 20 61     | 4 5                           | ا ة ا     | 0         | Ö              |           | â         | ا ہ   |          |                |             | i         |                  |       |
| 3 27 61     | 4 19                          | l ŏ l     | ŏ         | Õ              | 0         | ŏ         | ŏ     |          |                |             |           |                  |       |
| 4 3 61      | 4 19                          | lŏl       | o l       | ŏ              | 0         | ŏ         | ŏ     |          |                | ļ           |           |                  |       |
| 4 10 61     | 4 27                          | 0 1       | ŏ         | Ö              | 0         | ŏ         | ŏ     | l l      |                |             |           |                  |       |
| 4 17 61     | 5 16                          |           | ŏ         | Õ              | ŏ         | o         | ŏ l   | 1        |                |             |           |                  |       |
| 5 1 61      | 6 6                           | ١٥١       | i         | ì              | 0         | ŏ         | ŏ l   |          |                |             |           |                  |       |
| 5 8 61      | 6 1                           | 0         | ī         | ī              | 0         | ŏ         | ōΙ    |          |                |             | 1         |                  |       |
| 5 15 61     | 6 2                           | 0 1       | i         | ī              | 0         | ŏ         | οl    |          |                |             |           |                  |       |
|             | 6 14                          |           | 0         | ō              | 0         | o l       | o l   | f        |                |             |           |                  |       |
| 5 22 61     |                               |           | 0         | o o            | ŏ         | ŏ l       | o l   |          |                | 1           |           |                  |       |
| 6 1 61      | 6 20                          | 1 1       | 2         | 3              | 0         | ŏl        | ŏ l   |          |                | 1           |           |                  |       |
| 6 5 61      | 7 7                           | 0         | 0         | ő              | l ŏ l     | ŏ         | ŏl    |          |                |             |           |                  |       |
| 6 12 61     | 7 6                           | 0         | 0 1       | ŏ              | l ŏ l     | ŏ         | ŏ     | 1 '      |                |             |           |                  |       |
| 6 19 61     | 7 17                          |           |           | Ö              | 0         | o l       | 0     | ļ        |                | 1           |           |                  |       |
| 6 26 61     | 7 27                          | 0         | 2         | 2              |           | o l       | οl    |          |                | i i         |           | 1                |       |
| 7 31 61*    | 8 25                          |           | 0         | ī              | 0         | Ö         | ٥     | 1 1      |                |             |           |                  |       |
| 8 28 61*    | 9 15                          | 1         | 0         | -              | 4         | ŏ         | 4     |          |                |             |           |                  |       |
| 9 5 61      | 9 29                          |           |           | ***            | 7         | 7         | 7     | ļ        |                |             |           |                  |       |
| 9 11 61     | 10 6                          |           | 0         | 0              |           | 2         | ż     | 1 1      |                |             |           |                  |       |
| 9 18 61     | 10 19                         | 0         | _         | _              | 1         | 2         | 3     |          |                |             |           |                  |       |
| 9 25 61     | 10 9                          | -         | -         |                | 1 -       | -         | -     |          |                |             |           |                  |       |
|             |                               | 1         |           |                |           |           |       |          |                | 1           | I         | 1                |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

NEW YORK

MAJOR BASIN

NORTHEAST

MINOR BASIN

ST. LAWRENCE RIVER

STATION LOCATION ST. LAWRENCE RIVER AT

MASSENA, NEW YORK

|                                                           | ATE          | -                                                                                |                                                                                                           |         |                       | ALGAE (1                                                     | Vumber                | per ml.)                     |                                                      |                                                                             |                                                                                       | INI     | RT<br>TOM                                                         | 1                             |                |                                                                                                    | - n             | IATO                                                                 | MS                                                       |                                                                |                                                               |                       | <u>.</u>                                                       | Г                         | MICROIN                                                                                                                                                                                          | VERTEBR                      | ATES                         |                                       |                                                             |
|-----------------------------------------------------------|--------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------|-----------------------|--------------------------------------------------------------|-----------------------|------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------|-------------------------------|----------------|----------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|-----------------------|----------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|---------------------------------------|-------------------------------------------------------------|
| OF S                                                      |              |                                                                                  |                                                                                                           | BLUE-   | GREEN                 | GREE                                                         | EN                    | FLAGEL<br>(Pigmo             |                                                      | DIAT                                                                        | омѕ                                                                                   | SHE     | TOM<br>ELLS<br>er ml.)                                            |                               | DOM<br>(Sec    | INANT                                                                                              | SPEC            | IES A                                                                | ND PE                                                    | RCEN'<br>ntificat                                              | TAGE:                                                         | s                     | PLANKTON<br>IEATHED<br>11.)                                    | L.                        |                                                                                                                                                                                                  |                              | T                            | TORKS                                 | ENERA<br>fuction<br>cation)                                 |
| MONTH                                                     | DAY          | YEAR                                                                             | TOTAL                                                                                                     | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                                                      | FILA-<br>MENT-<br>OUS | GREEN                        | OTHER                                                | CENTRIC                                                                     | PENNATE                                                                               | CENTRIC | PENNATE                                                           | FIRST#                        | PER-           | SECOND*                                                                                            | PER.<br>CENTAGE | THIRD#                                                               | PER-                                                     | FOURTH                                                         | PER.<br>CENTAGE                                               | OTHER PER-<br>CENTAGE | OTHER MICROPLANKTOR, FUNGI AND SHEATHED BACTERIA (No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)                                                                                                                                                                     | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ANIMAL FORMS<br>(No. per liter) | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| 1 1<br>2 3<br>3 2<br>3 2<br>5 5<br>6 1<br>7 7<br>8 8<br>9 | 509162515595 | 60<br>60<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61 | 100<br>100<br>200<br>300<br>300<br>1700<br>1300<br>700<br>1900<br>400<br>700<br>1400<br>200<br>900<br>100 | 20      | 40 20                 | 20<br>40<br>90<br>210<br>220<br>250<br>60<br>190<br>20<br>70 |                       | 130<br>60<br>40<br>20<br>290 | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200 | 20<br>70<br>50<br>70<br>250<br>890<br>660<br>100<br>270<br>540<br>90<br>210 | 50<br>160<br>220<br>250<br>270<br>560<br>460<br>310<br>290<br>290<br>290<br>700<br>70 | 20      | 400<br>50<br>160<br>150<br>160<br>750<br>190<br>450<br>190<br>770 | 47552577555555<br>99999999998 | 40<br>40<br>20 | 9<br>97<br>397<br>97<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47 |                 | 82<br>97<br>47<br>62<br>47<br>69<br>52<br>82<br>31<br>60<br>80<br>16 | 10<br>20<br>10<br>10<br>30<br>10<br>10<br>10<br>10<br>10 | 47<br>82<br>58<br>82<br>80<br>82<br>97<br>60<br>97<br>45<br>82 | 10<br>10<br>10<br>10<br>10<br>*<br>10<br>10<br>10<br>10<br>10 | 20<br>30              | 40<br>20<br>20                                                 | 10                        | 2<br>1<br>3<br>12<br>8<br>2<br>4<br>1<br>1<br>1<br>0<br>3<br>9<br>6<br>1<br>9<br>4<br>3<br>0<br>4<br>6<br>2<br>4<br>4<br>2<br>4<br>4<br>2<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | 2 2 1 5 5 5 2 4              | 8                            | 4                                     |                                                             |

# ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

NEW YORK

MAJOR BASIN

NORTHEAST

MINOR BASIN

ST. LAWRENCE RIVER

STATION LOCATION ST. LAWRENCE RIVER AT

MASSENA, NEW YORK

|                                                              |                       |                                  |                                              |                                        |                                   |                                       |                     |                                 |                                  | 1,          |           |                              |             |                             |                            |               |                             |
|--------------------------------------------------------------|-----------------------|----------------------------------|----------------------------------------------|----------------------------------------|-----------------------------------|---------------------------------------|---------------------|---------------------------------|----------------------------------|-------------|-----------|------------------------------|-------------|-----------------------------|----------------------------|---------------|-----------------------------|
| DATE OF S                                                    |                       |                                  |                                              | E:                                     | XTRACTABL                         | ES.                                   |                     |                                 |                                  |             | CHLOROF   | ORM EXTR                     | ACTABLES    |                             |                            |               |                             |
| BEGINNING                                                    | -                     | END                              |                                              |                                        |                                   |                                       |                     |                                 |                                  |             | NEUTRALS  |                              | IAULES      |                             | 1                          |               |                             |
| MONTH<br>DAY                                                 | MONTH                 | DAY                              | GALLONS<br>FILTERED                          | TOTAL                                  | CHLORO-<br>FORM                   | ALCOHOL                               | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES               | TOTAL                            | ALIPHATICS  | AROMATICS | OXYGEN-<br>ATED<br>COMPOUNDS | Loss        | WEAK<br>ACIDS               | STRONG<br>ACIDS            | BASES         | LOSS                        |
| 1 5 61<br>4 19 61<br>6 1 61<br>7 10 61<br>8 16 61<br>9 26 61 | 3<br>5<br>6<br>7<br>8 | 31<br>15<br>20<br>25<br>30<br>10 | 5250<br>5490<br>5851<br>4880<br>5176<br>5226 | 302<br>171<br>155<br>156<br>148<br>135 | 141<br>71<br>76<br>51<br>47<br>26 | 161<br>100<br>79<br>105<br>101<br>109 | 4 1 2 1 1 0         | 17<br>16<br>20<br>14<br>12<br>7 | 86<br>33<br>27<br>18<br>19<br>12 | 9 2 2 2 2 1 | 9432222   | 67<br>26<br>20<br>14<br>14   | 1 1 2 0 1 0 | 13<br>9<br>9<br>7<br>6<br>3 | 9<br>6<br>7<br>4<br>2<br>1 | 1 1 2 1 1 1 1 | 11<br>5<br>9<br>6<br>6<br>2 |
|                                                              |                       |                                  |                                              |                                        |                                   |                                       |                     |                                 |                                  |             |           |                              |             |                             |                            |               |                             |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NEW YORK

MAJOR BASIN

NORTHEAST

MINOR BASIN

ST. LAWRENCE RIVER

STATION LOCATIONST . LAWRENCE RIVER AT

MASSENA, NEW YORK

|               | ATE |    |                                  |                             |            |                |                 | CHLORINE       | DEMAND          |                              |                   |                    |                  |                        |                            |                  |                    |                             |                          |
|---------------|-----|----|----------------------------------|-----------------------------|------------|----------------|-----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|----------------------------|------------------|--------------------|-----------------------------|--------------------------|
| HLMON AND AND | AMP | -  | TEMP.<br>(Degrees<br>Contigrade) | DISSOLVED<br>OXYGEN<br>mg/I | рH         | B.O.D.<br>mg/l | Ç.O.D.<br>ing/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/I | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL DISSOLVED SOLIDS mg/l | COLIFORMS<br>per 100 ml, |
| 10            |     | 60 | -                                | -                           | 7.8        |                | -               |                | -               | -                            | 29                | 126                | 140              | 5                      | 5                          | 31               | •0                 | 173                         | -                        |
| 10 1          |     | 60 | -                                | -                           | 7.8        | _              | _               | _              | _               | -                            | 29                | 84                 | 144<br>120       | 5 5                    | 5                          | 30<br>28         | .0                 | -                           | _                        |
|               |     | 60 | -                                | _                           | 7.7<br>7.9 | _              | _               | _              | _               | _                            | 29                | -                  | 152              | 5                      | 5                          | 45               | .0                 | _                           | _                        |
| 2 1           |     | 61 |                                  | -                           |            | _              | _               | _              | _               | _                            |                   | _                  | -                | _                      | _                          | -                | _                  |                             | *4                       |
| 2 2           | 0   | 61 | •0                               | -                           | 8.0        | -              | _               | •8             | 2 • 2           | •0                           | 35                | 100                | 139              | _                      | -                          | 27               | -                  | 200                         | 40                       |
| 2 2           |     | 61 | 2.2                              | -                           | 8.0        | -              | -               | 1.6            | 3•6             | •0                           | 30                | 95                 | 136              | _                      | -                          | 26               | -                  | 165                         | 15                       |
|               |     | 61 | 5.6                              | -                           | 8.0        | -              | -               | 1.1            | 3•1             | •1                           | 31                | 83                 | 125              | _                      | _                          | 20               | _                  | 179<br>187                  | 30<br>26                 |
| 3 1           | 3   | 61 | 8.3<br>10.3                      | <u>-</u>                    | 8.1<br>8.0 | _              | -               | 1.3            | 3•5<br>1•9      | •2                           | 33<br>31          | 88<br>91           | 130<br>125       | _                      | _                          | 21<br>26         | _                  | 201                         | 23                       |
| 3 2           | 7   | 61 | 1.1                              | 13.7                        | 8.1        | 2.7            | 12              | 1.5            | 4.0             | •6                           | 23                | 86                 | 121              | 10                     |                            | 23               | •3                 | 170                         | 45                       |
|               |     | 61 | 2.0                              | 13.9                        | 8.2        | 2.5            | 19              | 1.6            | 4.2             | •0                           | 21                | 88                 | 117              | 10                     | _                          | 25               | .0                 | 175                         | 10                       |
| 4 1           | 0   | 61 | 2.8                              | 13.3                        | 8.1        | 2.7            | 80              | 1.7            | 4•1             | •0                           | 26                | 88                 | 119              | 10                     | _                          | 30               | •1                 | 167                         | 60                       |
| 4 1           | 7   | 61 | 4.7                              | 12.7                        | 7.9        | 2.2            | 90              | 2.2            | 5•3             | •4                           | 23                | 84                 | 114              | 10                     | -                          | 23               | •0                 | 164                         | 40                       |
| 4 2           |     | 61 | 5.6                              | 12.1                        | 8.1        | 2•4            | 11              | 2.1            | 4.5             | •0                           | 23                | 88                 | 115              | 15                     | -                          | 18               | •0                 | 168                         | 55                       |
|               |     | 61 | 8.9                              | ا , ,                       | 8.0        | 2.2            | 120             | 2.7            | 5•1             | _                            | 30<br>17          | 88<br>88           | 119<br>122       | 7 5                    | -                          | 24               | •0                 | 177<br>175                  | 110<br>75                |
| 5 1           |     | 61 | 9•2<br>13•9                      | 11.8                        | 8.1<br>8.2 | 2.2            | 128             | 2.0            | 4•3             | •0                           | 26                | 90                 | 122              | 5                      | 15                         | - 24             |                    | 190                         | 100                      |
| 5 2           | 2   | 61 | 10.0                             | 10.9                        | 8.3        | 1.6            | 7               | 2.0            | _               | •0                           | 26                | 90                 | 125              | 5                      | 5                          | 23               | .0                 | 184                         |                          |
| 5 3           | 1   | 61 | 13.9                             | -                           | 8.2        | _              | -               | -              | -               | _                            | 30                | 86                 | 121              | 7                      | 10                         | _                | -                  | 192                         | -                        |
|               |     | 61 | 12.2                             | 10.7                        | 8.3        | 1.2            | 9               | 1.8            | 3•7             | •0                           | 21                | 90                 | 125              | 7                      | 5                          | 27               | •1                 | 192                         | -                        |
| 6 1           |     | 61 | 16.1                             | -                           | 8.2        | -              | _               | -              | -               | -                            | 26                | 90                 | 122              | 5                      | 15                         | -                | -                  | 189                         |                          |
| 6 1<br>6 1    | 3   | 61 | 14.5                             | 10.1                        | 8.3        | 1.4            | 8               | 2.3            | 4.5             | .0                           | 28                | 92                 | 125              | 5                      | 37                         | 27               | - 0                | 198                         | 60<br>15                 |
| 6 2           | 6   | 61 | 16.1                             | 10.1                        | 8.2        | 1.4            | _               | 2.5            | 4.5             | •0                           | 26                | 92                 | 125              | 5                      | 15                         | 41               | •                  | 200                         | 60                       |
| 7             | 5   | 61 | 21.4                             |                             | 8.1        | _              | -               | _              | _               | _                            | 17                | 88                 | 120              | 5                      | 15                         | _                | _                  | 191                         | 130                      |
| 7 1           | 0   | 61 | 20.6                             | -                           | 8.0        | -              | -               | -              | -               | -                            | -                 | -                  | -                | 7                      | 20                         | _                | -                  | 204                         | 25                       |
| 7 1           |     | 61 | 18.3                             | -                           | 8.1        | -              | -               | -              | _               | -                            | 26                | 90                 | 131              | 5                      | 25                         | _                | -                  | 214                         | 55                       |
|               |     | 61 | 22.2                             | -                           | 8.2        | -              | -               | -              | _               | -                            | 26                | 88                 | 129              | 5                      | 27                         | -                | -                  | 196                         | 30                       |
| 7 3           |     | 61 | 23.3                             | -                           | 7.7        | -              | _               | _              | _               | -                            | 21                | 90                 | 132              | 5 5                    | 25<br>20                   | _                | _                  | 193<br>197                  | 5                        |
|               |     | 61 | 21.7                             | 8.3                         | 8.0        | •6             | 8               | 1.2            | 3•5             | •0                           | 30                | 86<br>87           | 123<br>121       | 0                      | 25                         | 32               | .1                 | 197                         | 60<br>200                |
|               |     | 61 | 21.1                             | `*-                         | 8.2        |                | -               | 1.2            | -               | -                            | 26                | 90                 | 121              | 5                      | 62                         | J2<br>-          |                    | 213                         | 5                        |
|               |     | 61 | 21.1                             | -                           | 8.1        | -              | -               | -              | _               | _                            | 24                | 86                 | 124              | 5                      | 30                         | _                | _                  | 217                         | 10                       |
| 9             | 5   | 61 | 22.2                             | -                           | 8.0        | -              | -               | -              | -               | -                            | 26                | 86                 | 122              | 5                      | 10                         | _                | _                  | 200                         | *5                       |
|               |     | 61 | 22.2                             | -                           | 8.2        | -              | -               | •9             | 3 • 8           | -                            | 30                | 86                 | 121              | 5                      | 10                         | -                | -                  | 191                         |                          |
|               |     | 61 | 17 0                             | - 1                         | -          | -              | _               | -              | -               | -                            | -                 |                    | ,,,,             | -                      |                            | -                | -                  | 100                         | 120                      |
|               |     | 61 | 17.8<br>21.1                     | 8.4                         | 8.1        | - 6            | 10              | •3             | •8              | - 5                          | 26<br>25          | 83<br>85           | 120<br>129       | 1 0                    | 20<br>20                   | - 24             | .0                 | 199<br>186                  | 100                      |
|               | 6   | 61 | Z101                             | ***                         | 0.2        | •6             | 10              | • 5            | • •             | • 2                          | 45                | 82                 | 129              | 0                      | 20                         | 26               |                    | 100                         | 10                       |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

MAJOR BASIN

STATE

New York

Northeast

MINOR BASIN

St. Lawrence River

Gaging Station at St. Lawrence River - International Rapids Section (St. Lawrence Power Pool)
Supplied by U.S. Army Corps of Engineers

STATION LOCATION

St. Lawrence River at

Massena, New York

| Day                              | October                                                           | November                                            | December                                                       | January                                                        | February                                            | March                                                          | April                                               | May                                                            | June                                                | July                                                           | August                                                         | September                                           |
|----------------------------------|-------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | 225.000<br>22 <sup>1</sup> ;.000<br>226.000<br>226.000<br>225.000 | 194.000<br>195.000<br>206.000<br>205.000            | 210.000<br>210.000<br>210.000<br>210.000<br>210.000            | 210.000<br>209.000<br>210.000<br>209.000<br>210.000            | 21½.000<br>216.000<br>216.000<br>203.000<br>202.000 | 216.000<br>211.000<br>211.000<br>197.000<br>197.000            | 201.000<br>201.000<br>215.000<br>215.000<br>216.000 | 249.000<br>249.000<br>249.000<br>249.000<br>249.000            | 278.000<br>278.000<br>279.000<br>280.000<br>280.000 | 271.000<br>271.000<br>271.000<br>271.000<br>271.000            | 258.000<br>258.000<br>258.000<br>258.000<br>254.000            | 250.000<br>250.000<br>250.000<br>250.000<br>250.000 |
| 6<br>7<br>8<br>9<br>10           | 215.000<br>216.000<br>214.000<br>204.000<br>206.000               | 205.000<br>206.000<br>205.000<br>206.000            | 210.000<br>210.000<br>210.000<br>210.000<br>210.000            | 210.000<br>210.000<br>210.000<br>210.000<br>210.000            | 215.000<br>215.000<br>216.000<br>216.000<br>216.000 | 211.000<br>211.000<br>212.000<br>211.000<br>211.000            | 214.000<br>214.000<br>200.000<br>200.000<br>214.000 | 230.000<br>230.000<br>230.000<br>230.000<br>230.000            | 280.000<br>280.000<br>280.000<br>279.000<br>282.000 | 271.000<br>271.000<br>271.000<br>270.000<br>271.000            | 254.000<br>254.000<br>254.000<br>254.000<br>254.000            | 250.000<br>250.000<br>250.000<br>249.000<br>249.000 |
| 11<br>12<br>13<br>14<br>15       | 205.000<br>206.000<br>195.000<br>195.000                          | 205.000<br>205.000<br>205.000<br>205.000<br>205.000 | 210.000<br>210.000<br>210.000<br>210.000<br>210.000            | 210.000<br>210.000<br>210.000<br>210.000<br>210.000            | 202.000<br>202.000<br>216.000<br>216.000<br>216.000 | 197.000<br>197.000<br>211.000<br>211.000                       | 214.000<br>214.000<br>213.000<br>213.000<br>213.000 | 230.000<br>230.000<br>238.000<br>238.000<br>238.000            | 281.000<br>282.000<br>282.000<br>282.000<br>282.000 | 271.000<br>271.000<br>271.000<br>271.000<br>263.000            | 254.000<br>252.000<br>252.000<br>251.000<br>252.000            | 249.000<br>249.000<br>249.000<br>249.000<br>249.000 |
| 16<br>17<br>18<br>19<br>20       | 194.000<br>195.000<br>195.000<br>195.000                          | 205.000<br>210.000<br>211.000<br>210.000<br>210.000 | 210.000<br>210.000<br>210.000<br>210.000<br>210.000            | 210.000<br>210.000<br>210.000<br>210.000                       | 216.000<br>216.000<br>202.000<br>202.000<br>216.000 | 211.000<br>211.000<br>197.000<br>197.000<br>211.000            | 213.000<br>213.000<br>213.000<br>213.000<br>213.000 | 238.000<br>239.000<br>238.000<br>238.000<br>258.000            | 282.000<br>279.000<br>279.000<br>279.000<br>279.000 | 263.000<br>263.000<br>263.000<br>263.000<br>263.000            | 252.000<br>252.000<br>252.000<br>249.000<br>249.000            | 246.000<br>246.000<br>246.000<br>246.000<br>246.000 |
| 21<br>22<br>23<br>24<br>25       | 195.000<br>195.000<br>194.000<br>196.000<br>195.000               | 210.000<br>210.000<br>210.000<br>207.000<br>207.000 | 210.000<br>210.000<br>210.000<br>210.000<br>210.000            | 203.000<br>204.000<br>214.000<br>214.000<br>214.000            | 216.000<br>216.000<br>216.000<br>216.000<br>202.000 | 211.000<br>211.000<br>211.000<br>211.000                       | 213.000<br>230.000<br>230.000<br>230.000<br>230.000 | 258.000<br>258.000<br>258.000<br>258.000<br>258.000            | 279.000<br>279.000<br>279.000<br>272.000<br>272.000 | 263.000<br>263.000<br>262.000<br>263.000<br>263.000            | 249.000<br>249.000<br>248.000<br>249.000<br>245.000            | 246.000<br>246.000<br>239.000<br>239.000<br>239.000 |
| 26<br>27<br>28<br>29<br>30<br>31 | 195.000<br>195.000<br>195.000<br>195.000<br>194.000<br>195.000    | 206.000<br>210.000<br>211.000<br>209.000<br>211.000 | 210.000<br>210.000<br>210.000<br>209.000<br>210.000<br>210.000 | 214.000<br>214.000<br>201.000<br>200.000<br>214.000<br>214.000 | 202.000<br>216.000<br>216.000                       | 197.000<br>211.000<br>211.000<br>211.000<br>217.000<br>214.000 | 230.000<br>230.000<br>230.000<br>249.000<br>249.000 | 258.000<br>278.000<br>278.000<br>277.000<br>278.000<br>278.000 | 272.000<br>272.000<br>272.000<br>272.000<br>272.000 | 263.000<br>263.000<br>262.000<br>259.000<br>259.000<br>258.000 | 250.000<br>250.000<br>250.000<br>250.000<br>250.000<br>250.000 | 239.000<br>239.000<br>239.000<br>240.000<br>236.000 |

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

SAN JUAN RIVER

STATION LOCATION SAN JUAN RIVER AT

SHIPROCK, NEW MEXICO

| DATE        |                               |           | RADI      | OACTIVITY IN V | VATER     |           |       |     | 1                             |                 |          |    |           |                |               |
|-------------|-------------------------------|-----------|-----------|----------------|-----------|-----------|-------|-----|-------------------------------|-----------------|----------|----|-----------|----------------|---------------|
| SAMPLE      | DATE OF                       |           | ALPHA     |                | ,         | BETA      |       |     | RADIOA                        | ACTIVITY IN PLA |          | 4  | RAI       | DIOACTIVITY IN |               |
| TAKEN       | DATE OF<br>DETERMI-<br>NATION | SUSPENDED | DISSOLVED | TOTAL          | SUSPENDED | DISSOLVED | TOTAL |     | DATE OF<br>DETERMI-<br>NATION |                 | ACTIVITY | 4  |           | GROSS ACTIVI   |               |
| O. DAY YEAR | NONTH DAY                     | μμε/Ι     | μμε/Ι     | μμc/I          | μμc/1     | μμς/Ι     | μμε/1 |     | MO. DAY                       | ALPHA           | BETA     | 4  | SUSPENDED |                | TOTAL         |
|             |                               |           |           |                |           |           |       |     | MO. DAT                       | μμc/g           | μμc/g    | +- | μμc/l     | μμc/I          | <i>μμ</i> c/l |
| 7 61        | 9 12                          | 56        | 3         | 59             | 181       | 23        | 204   |     |                               |                 |          | ı  |           |                |               |
| 3 14 61     | 9 22                          | 35        | 25        | 60             | 111       | 53        | 164   |     |                               |                 |          | i  |           |                |               |
| 21 61       | 9 22                          | 132       | 4         | 136            | 519       | 51        | 570   |     |                               |                 |          |    |           |                | ļ             |
| 28 61       | 9 27                          | 66        | 7         | 73             | 74        | 0         | 74    |     | , ,                           |                 |          |    |           |                |               |
| 6 61        | 10 3                          | -         | -         | -              | 27        | 17        | 44    |     | i i                           |                 |          | 1  |           |                |               |
| 18 61       | 10 4                          | 94        | 6         | 100            | 185       | 17        | 202   |     |                               |                 |          | 1  | 1         |                |               |
| 25 61       | 10 9                          | 18        | 2         | 20             | 94        | 18        | 112   |     |                               |                 |          | 1  | l i       |                |               |
|             |                               |           |           |                |           |           |       |     |                               |                 |          |    |           |                |               |
|             |                               |           |           |                |           |           |       |     |                               |                 | ,        | 1  | 1         |                |               |
|             |                               |           | ĺ         |                |           |           |       |     |                               |                 |          | 1  | 1         |                |               |
|             |                               |           |           |                |           |           | -     |     |                               |                 |          |    |           |                |               |
|             |                               |           |           |                |           |           |       |     |                               |                 |          | 1  |           |                |               |
|             | Ì                             |           |           |                |           |           |       |     |                               |                 |          | ł  |           |                |               |
| 1           |                               | 1         |           |                |           | -         |       |     |                               |                 |          | 1  |           |                |               |
|             |                               |           |           |                |           |           | 1.    |     |                               |                 |          | 1  | 1         |                |               |
|             |                               |           |           |                |           |           |       |     |                               |                 |          | 1  | 1 1       |                |               |
|             |                               |           |           |                |           |           | i     | 1   | i                             |                 |          | 1  | 1         |                |               |
|             |                               |           |           |                |           |           |       |     |                               |                 |          | 1  | 1         |                |               |
| ļ           | İ                             |           |           |                | l         | 1         | . ]   |     |                               |                 |          | 1  | 1         |                |               |
|             |                               |           |           |                |           |           | ľ     |     | 1                             |                 |          |    |           |                |               |
|             |                               |           |           |                |           |           |       | - 1 |                               |                 |          |    | <u> </u>  |                |               |
|             | 1                             |           | ĺ         |                |           | i         | 1     | l   | İ                             |                 |          |    |           |                |               |
|             |                               |           | 1         |                |           |           |       |     | 1                             |                 |          | 1  |           |                |               |
|             |                               | İ         |           |                |           |           |       | 1   |                               |                 |          | l  |           |                |               |
|             |                               | 1         | Í         |                |           |           |       |     |                               |                 |          | l  |           |                |               |
| 1           | ľ                             |           | ł         |                |           |           | i     |     |                               |                 |          | l  |           |                |               |
| İ           |                               |           |           |                |           | 1         | İ     | Ì   |                               |                 |          | 1  | 1         |                |               |
|             |                               |           |           |                | ļ         |           |       | 1   | İ                             |                 |          |    |           | Ì              |               |
| 1           | ļ                             | ļ         |           |                | 1         |           |       |     |                               | i               |          | ]  |           |                |               |
| 1           | i                             | i         |           |                |           |           | ŀ     |     |                               |                 |          | i  | 1         |                |               |
|             |                               |           |           |                |           |           | }     | - 1 | 1                             |                 |          |    |           |                |               |
|             |                               | ļ         |           |                |           | ĺ         | ļ     |     |                               |                 |          |    |           | 1              |               |
|             |                               | i         |           |                |           |           |       | ı   | [                             |                 |          | 1  | 1 1       |                |               |
|             |                               | ļ         | 1         | J              | 1         |           |       |     |                               |                 |          |    |           | l              |               |
|             | 1                             |           |           | 1              |           |           |       |     |                               | ]               |          |    |           |                |               |
|             | 1                             | 1         | 1         | 1              |           |           | 1     |     |                               |                 |          |    |           | ļ              |               |
|             | 1                             |           |           | 1              |           |           |       |     |                               |                 |          |    |           | İ              |               |
|             | ļ                             |           | 1         | [              |           | 1         | ĺ     |     |                               |                 |          |    |           | l              |               |
|             | ļ                             |           |           | ĺ              |           |           |       | - 1 |                               |                 |          |    |           | ŀ              |               |
|             |                               |           |           |                | İ         |           |       | - 1 | i i                           |                 |          |    |           |                |               |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

SAN JUAN RIVER

STATION LOCATION SAN JUAN RIVER AT

SHIPROCK, NEW MEXICO

|       | ATE | <u>. [</u>     | <del></del> |         |                       | ALGAE ( | Number                | per ml.)         |                 |         |         | INIT                        | DT         | <br>       |                  |                      |                          |                        |         |       |             |                                                                          | ,                         |                              |                              |                              |                                         |                                                             |
|-------|-----|----------------|-------------|---------|-----------------------|---------|-----------------------|------------------|-----------------|---------|---------|-----------------------------|------------|------------|------------------|----------------------|--------------------------|------------------------|---------|-------|-------------|--------------------------------------------------------------------------|---------------------------|------------------------------|------------------------------|------------------------------|-----------------------------------------|-------------------------------------------------------------|
| OF S  |     |                |             | BLUE-   | GREEN                 | GREE    |                       | FLAGEL<br>(Pigme | LATES<br>ented) | DIAT    | OMS     | INE<br>DIA<br>SHE<br>(No. p | TOM<br>LLS | DOM<br>(Se | INANT<br>e Intro | D<br>SPEC<br>duction | IATO<br>IES AI<br>for Co | MS<br>ND PE<br>ode Ide | RCEN'   | TAGES | 3           | NNKTOK,<br>THEB                                                          | -                         | MICROIN                      | l                            | RATES                        | ORKS                                    | IERA<br>ction<br>tion)                                      |
| MONTH | DAY | YEAR           | TOTAL       | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID | FILA-<br>MENT-<br>OUS | GREEN            | OTHER           | CENTRIC | PENNATE |                             | PENNATE    | 101        |                  | PER.                 | THIRD*                   | i w                    | FOURTH* |       | <del></del> | OTHEN MICROFLANKTON,<br>FUNGI AND SHEATHED<br>BACTERIA<br>(NO. PET III.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | THER ANIMAL F<br>No. per liter)         | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| 8 2   | 14  | 61<br>61<br>61 | 300         |         |                       |         | OUS                   |                  |                 | 40      | 270     | <u>.</u>                    | 20 640     |            |                  |                      |                          |                        |         |       |             | Detail Net Net Net Net Net Net Net Net Net Net                           | PRO!                      | TION<br>(No.                 | CRUS                         | NEW (No.                     | 1 I I I I I I I I I I I I I I I I I I I | 17 J J J J J J J J J J J J J J J J J J J                    |

## ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

SAN JUAN RIVER

STATION LOCATION SAN JUAN RIVER AT

SHIPROCK, NEW MEXICO

| -     | D     |      |       |     |                     | <del></del> |                 |         |                     |                   |       |            |           |                              |          |               |                 |             |      |
|-------|-------|------|-------|-----|---------------------|-------------|-----------------|---------|---------------------|-------------------|-------|------------|-----------|------------------------------|----------|---------------|-----------------|-------------|------|
|       | DATE  |      |       | D   |                     | E           | CTRACTABL       | ES      |                     |                   |       |            | CHLOROF   | ORM EXTR                     | ACTABLES | 3             |                 | i           |      |
|       | EGINN | NG   | E     | I D |                     |             |                 |         |                     |                   |       |            | NEUTRALS  | 3                            |          | T             | T               | <del></del> | Γ    |
| MONTH | DAY   | YEAR | MONTH | DAY | GALLONS<br>FILTERED | TOTAL       | CHLORO-<br>FORM | ALCOHOL | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES | TOTAL | ALIPHATICS | AROMATICS | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS     | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES       | LOSS |
| 9     | 13    | 61   | 9     | 18  | 3177                | 167         | 56              | 111     | 3                   | 10                | 24    | 4          | 2         | 18                           | 0        | 7             | 5               | 1           | 6    |
|       |       |      |       |     |                     |             |                 |         |                     |                   |       |            |           |                              |          |               |                 |             |      |
|       |       |      |       |     |                     |             |                 |         | -                   |                   |       |            |           |                              |          |               |                 |             |      |
|       |       |      |       | \$  |                     |             | ,               |         |                     |                   |       |            |           |                              | ļ        |               |                 |             |      |
|       |       |      |       |     |                     |             |                 |         |                     |                   |       |            |           |                              |          |               |                 |             |      |
|       |       |      |       |     |                     |             |                 |         |                     |                   |       |            |           |                              |          |               |                 |             |      |
|       |       |      |       |     |                     |             |                 |         |                     |                   |       |            |           |                              |          |               |                 |             |      |
|       |       |      |       |     |                     |             |                 |         |                     |                   |       |            |           |                              |          |               |                 |             |      |
|       |       |      |       |     |                     |             |                 |         |                     |                   |       |            |           |                              |          |               |                 |             |      |
|       |       |      |       |     |                     |             |                 |         |                     |                   |       |            |           |                              |          |               |                 |             |      |
|       |       |      |       |     |                     |             |                 |         |                     |                   |       |            |           |                              |          |               |                 |             |      |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

SAN JUAN RIVER

STATION LOCATIONSAN JUAN RIVER AT

SHIPROCK, NEW MEXICO

| DATE<br>OF SAME                             | 4              | TEMP.                                                | DISSOLVED                              |                                                      |                                                           |                | CHLORINE       | DEMAND          |                                  |                                             |                                                           |                                                    |                        |                                                          |                                                    |                    | TOTAL                                        |                                                               |
|---------------------------------------------|----------------|------------------------------------------------------|----------------------------------------|------------------------------------------------------|-----------------------------------------------------------|----------------|----------------|-----------------|----------------------------------|---------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|--------------------|----------------------------------------------|---------------------------------------------------------------|
| - 1                                         | YEAR           | (Degrees<br>Centigrade)                              | OXYGEN<br>mg/l                         | рН                                                   | B.O.D.<br>mg/l                                            | C.O.D.<br>mg/l | I-HOUR<br>mg/I | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l     | CHLORIDES<br>mg/l                           | ALKALINITY<br>mg/l                                        | HARDNESS<br>mg/l                                   | COLOR<br>(scale units) | TURBIDITY<br>(scale units)                               | SULFATES<br>mg/l                                   | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/l                  | COLIFORMS                                                     |
| 8 14<br>8 15<br>8 22<br>8 28<br>9 5<br>9 12 | 61<br>61<br>61 | 25.0<br>27.0<br>21.0<br>18.0<br>21.0<br>20.0<br>13.0 | 4.7<br>5.9<br>7.7<br>7.2<br>3.7<br>7.2 | 8.0<br>8.1<br>8.0<br>8.2<br>8.0<br>7.8<br>7.9<br>7.7 | 1 • 4<br>5 • 1<br>2 • 1<br>2 • 2<br>2 • 4<br>2 • 4<br>• 7 |                |                |                 | •1<br>•1<br>•1<br>•1<br>•1<br>•1 | 19<br>-<br>40<br>30<br>32<br>36<br>25<br>23 | 120<br>-<br>138<br>112<br>124<br>128<br>116<br>116<br>116 | 210<br>-<br>298<br>180<br>272<br>196<br>206<br>170 | 12<br>20<br>3          | 508<br>32<br>4800<br>4875<br>750<br>8000<br>7000<br>2375 | 125<br>-<br>200<br>140<br>180<br>190<br>165<br>110 | •3<br>-<br>-<br>-  | 330<br>- 750<br>- 360<br>600<br>510<br>- 380 | 8000<br>2100<br>-<br>22000<br>25000<br>11000<br>30000<br>2700 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Shiprock, New Mexico Operated by U.S. Geological Survey STATE

New Mexico

MAJOR BASIN

Colorado River

MINOR BASIN

San Juan River

STATION LOCATION

San Juan River at

Shiprock, New Mexico

| Day                              | October                                        | November                                  | December                                           | January                                      | February                                  | March                                              | April                                     | May                                                | June                                      | July                                         | August                                    | September                                 |
|----------------------------------|------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------|-------------------------------------------|-------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | .270<br>.260<br>.245<br>.225<br>.209           | .645<br>.613<br>.629<br>.589<br>.573      | .560<br>.540<br>.588<br>.691<br>.733               | . 475<br>. 378<br>. 342<br>. 370<br>. 400    | .582<br>.599<br>.550<br>.510<br>.495      | .525<br>.500<br>.495<br>.510<br>.610               | 2.120<br>1.720<br>1.610<br>1.740<br>2.460 | 4.620<br>4.920<br>5.770<br>6.250<br>5.800          | 7.490<br>7.610<br>6.810<br>5.770<br>4.820 | 1.120<br>1.120<br>1.170<br>1.320<br>1.420    | .559<br>.621<br>1.500<br>2.050<br>1.870   | .546<br>.540<br>.534<br>.570              |
| 6<br>7<br>8<br>9<br>10           | .217<br>.205<br>.221<br>.250<br>.307           | .581<br>.597<br>.663<br>.735<br>.857      | .677<br>.588<br>.540<br>.658<br>.719               | . 450<br>. 500<br>. 520<br>. 520<br>. 520    | .490<br>.460<br>.446<br>.490<br>.566      | .610<br>.588<br>.550<br>.540<br>.515               | 2.870<br>2.780<br>3.030<br>3.280<br>3.000 | 4.520<br>3.630<br>3.250<br>2.720<br>2.230          | 4.590<br>4.520<br>4.460<br>4.490<br>4.620 | 1.270<br>1.220<br>1.040<br>1.080<br>1.210    | 1.860<br>1.420<br>.964<br>.719<br>.570    | .892<br>.780<br>.828<br>.788<br>1.160     |
| 11<br>12<br>13<br>14<br>15       | .361<br>.525<br>.565<br>.549<br>1.150          | • 745<br>• 690<br>• 654<br>• 645<br>• 637 | .712<br>.684<br>.664<br>.726<br>.719               | • 530<br>• 510<br>• 480<br>• 500<br>• 510    | .566<br>.628<br>.646<br>.658              | .545<br>.691<br>.946<br>1.080<br>1.240             | 2.620<br>2.270<br>2.000<br>2.300<br>2.440 | 2.400<br>3.580<br>4.420<br>4.660<br>3.990          | 4.690<br>4.820<br>4.520<br>4.420<br>4.110 | 1.160<br>.972<br>.733<br>.621<br>.564        | .470<br>.409<br>.510<br>.663<br>.804      | 2.260<br>2.840<br>1.720<br>1.390<br>1.170 |
| 16<br>17<br>18<br>19<br>20       | 1.650<br>1.880<br>2.140<br>2.120<br>1.660      | .621<br>.645<br>.637<br>.604<br>.604      | .684<br>.622<br>.582<br>.555<br>.505               | .490<br>.495<br>.495<br>.495<br>.500         | .733<br>.804<br>.800<br>.700<br>.652      | 1.500<br>1.600<br>1.360<br>1.360<br>1.280          | 1.930<br>1.740<br>2.180<br>3.320<br>3.990 | 3.550<br>3.230<br>3.580<br>4.170<br>4.890          | 3.990<br>3.990<br>3.680<br>3.500<br>3.050 | .475<br>.398<br>.290<br>.204<br>.172         | 1.010<br>2.200<br>2.600<br>4.620<br>2.840 | 1.350<br>1.220<br>1.440<br>5.950<br>4.800 |
| 21<br>22<br>23<br>24<br>25       | 1.180<br>1.020<br>.904<br>.820<br>.778         | .599<br>.622<br>.604<br>.616<br>.604      | • 515<br>• 520<br>• 490<br>• 465<br>• 540          | •485<br>•520<br>•520<br>•588<br>•652         | • 572<br>• 572<br>• 577<br>• 588<br>• 588 | 1.160<br>1.300<br>1.250<br>1.440<br>1.700          | 3.960<br>3.790<br>3.930<br>3.700<br>3.740 | 6.030<br>5.690<br>6.510<br>6.690<br>6.690          | 3.050<br>2.800<br>2.450<br>2.240<br>2.120 | .223<br>.223<br>.294<br>.342<br>.204         | 1.710<br>1.250<br>.980<br>.916<br>1.280   | 2.920<br>2.680<br>2.300<br>2.180<br>2.030 |
| 26<br>27<br>28<br>29<br>30<br>31 | · .735<br>.717<br>.699<br>.690<br>.672<br>.663 | . 594<br>. 588<br>. 582<br>. 604<br>. 582 | . 560<br>• 560<br>• 588<br>• 604<br>• 599<br>• 540 | .640<br>.652<br>.764<br>.670<br>.577<br>.545 | .530<br>.515<br>.515                      | 1.840<br>1.590<br>1.290<br>1.290<br>1.840<br>2.440 | 3.140<br>2.560<br>2.120<br>2.340<br>3.550 | 6.940<br>7.280<br>7.470<br>7.710<br>7.530<br>7.320 | 1.960<br>1.730<br>1.560<br>1.320<br>1.180 | .137<br>.112<br>.092<br>.077<br>.338<br>.478 | 1.260<br>1.160<br>1.030<br>.748<br>.600   | 1.830<br>1.720<br>1.600<br>1.470<br>1.410 |

RADIOACTIVITY DETERMINATIONS

STATE

GEORGIA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

SAVANNAH RIVER

STATION LOCATION SAVANNAH RIVER AT

PORT WENTWORTH, GEORGIA

| DATE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SA |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| TAKEN   DISPENDED   DISSOLVED   TOTAL   SUSPENDED   DISSOLVED   TOTAL   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION   NATION    |       |
| Mo.   DAY   VERR   NOTH   DAY   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/1   μμε/2   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε/3   μμε |       |
| 10 3 60 10 20 0 0 0 0 28 28 28 10 10 10 60 10 20 0 0 80 80 80 10 17 60 11 1 0 0 8 8 8 8 10 31 60 11 21 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | μμε/Ι |
| 10 10 60 10 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| 10 17 60 11 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| 10 24 60 11 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| 10 31 60 11 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| 11 7 60 11 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| 11 14 60 11 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| 11 12 60 12 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| 11 28 60 12 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| 11 2 5 60       12 22       0       0       0       0       52       52         12 19 60       1 6       -       -       -       0       158       158         12 27 60       1 17       -       -       0       16       16         1 3 61       1 25       0       0       0       57       57         1 9 61       1 25       -       -       0       26       26         1 16 61       2 1       -       -       0       14       14         1 23 61       2 15       -       -       0       12       12         2 6 61       2 21       1       0       1       8       36       44         2 13 61       2 24       -       -       -       0       0       0         2 20 61       3 6       -       -       -       0       0       0       0         2 27 61       3 14       -       -       -       0       2       2         3 6 61       3 21       1       0       1       0       49       49         3 13 61       3 31       -       -       -       1 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| 12 19 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| 12     27     60     1     17     -     -     0     16     16       1     3     61     1     25     0     0     0     57     57       1     9     61     1     25     -     -     0     26     26       1     16     61     2     1     -     -     0     14     14       1     23     61     2     15     -     -     0     10     10       1     29     61     2     15     -     -     0     12     12       2     6     61     2     21     1     0     1     8     36     44       2     13     61     2     24     -     -     0     0     0       2     27     61     3     14     -     -     0     2     2       3     6     61     3     21     1     0     49     49       3     13     61     3     31     -     -     -     0     2       2     20     21     2     2     2     2     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| 1 3 61 1 25 0 0 0 0 57 57 57 1 9 61 1 25 0 26 26 1 16 61 2 1 0 14 14 14 14 123 61 2 15 0 12 12 12 12 12 13 61 2 24 0 0 5 5 2 20 61 3 61 2 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| 1 9 61 1 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| 1 16 61 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| 1 23 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| 1 29 61 2 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 2 6 61 2 21 1 0 1 8 36 44<br>2 13 61 2 24 0 5 5<br>2 20 61 3 6 0 0 0 0<br>2 27 61 3 14 - 0 0 2 2<br>3 6 61 3 21 1 0 1 0 49 49<br>3 13 61 3 31 1 20 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| 2 13 61 2 24 0 5 5 5 2 20 61 3 6 0 0 2 2 2 3 661 3 21 1 0 1 0 49 49 3 13 61 3 31 1 20 21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| 2 20 61 3 6 0 0 0 0 0 2 2 3 6 1 3 14 - 0 1 0 49 49 49 3 13 61 3 31 - 1 0 1 20 21 3 6 61 3 21 1 0 1 20 21 3 6 61 3 21 1 0 1 20 21 3 6 61 3 21 1 0 1 20 21 3 6 61 3 21 1 0 1 20 21 3 6 61 3 31 - 0 1 20 21 3 6 61 3 31 - 0 1 20 3 6 61 3 31 - 0 1 3 20 3 6 61 3 31 - 0 1 3 20 3 6 61 3 31 - 0 1 3 20 3 6 61 3 31 - 0 1 3 20 3 6 61 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 1 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0 3 31 - 0  |       |
| 2 27 61 3 14 0 2 2 3 49 49 3 13 61 3 31 1 20 21 21 3 6 61 3 21 4 6 61 61 61 61 61 61 61 61 61 61 61 61 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| 3 13 61 3 31 1 1 20 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ı     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| 3 20 61 4 4 0 36 36 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| 3 27 61 4 12 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| 4 3 61 4 19 1 0 1 0 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 4 10 61   4 28   -   -   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| 4 17 61 5 2 2 3 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| 4 24 61 5 17 0 3 3 3 1 5 1 6 1 5 15 0 0 0 0 0 0 2 2 2 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| 5 22 61   6 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| 5 29 61 7 10 1 9 10 6 5 61 6 28 0 0 0 0 0 4 4 4 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| 6 12 61 7 6 0 41 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| 6 19 61 7 7 7 5 107 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| 6 26 61 9 5 2 174 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ĺ     |
| 7 3 61 8 2 1 0 1 1 9 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| 7 10 61 9 6 0 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| 7 17 61 8 10 0 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |

STATE

GEORGIA

MAJOR BASIN

SOUTHEAST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

SAVANNAH RIVER

STATION LOCATION SAVANNAH RIVER AT

PORT WENTWORTH, GEORGIA

| DATE         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | RADI      | OACTIVITY IN V | VATER     | *         |       | ГТ    | RADIOA                         | CTIVITY IN PLA | NKTON (dry) | Т  | RAD       | DIOACTIVITY IN V | /ATER |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|----------------|-----------|-----------|-------|-------|--------------------------------|----------------|-------------|----|-----------|------------------|-------|
| SAMPLE       | DATE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | ALPHA     |                |           | BETA      |       | 1 - 1 |                                |                | ACTIVITY    | 1  |           | GROSS ACTIVIT    |       |
| TAKEN        | NATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SUSPENDED | DISSOLVED | TOTAL          | SUSPENDED | DISSOLVED | TOTAL | 1 15  | NATION                         | ALPHA          | BETA        | 1  | SUSPENDED | DISSOLVED        | TOTAL |
| MO. DAY YEAR | MONTH DAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μμς/      | μμε/Ι     | μμс/1          | μμε/Ι     | μμc/l     | μμς/Ι | N     | O. DAY                         | μμс/g          | μμc/g       | 1[ | μμς/      | μμς/             | μμε/ί |
| TAKEN        | ## DATE OF PRINCE OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF PARTY OF |           | DISSOLVED |                |           | DISSOLVED |       | -     | DATE OF DETERMINATION  AO. DAY | ALPHA          | BETA        |    | SUSPENDED | DISSOLVED        | TOTAL |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |           |                |           |           |       |       |                                |                |             |    |           |                  |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

GEORGIA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

SAVANNAH RIVER

STATION LOCATION SAVANNAH RIVER AT

PORT WENTWORTH, GEORGIA

|                      | 1                                                                         |         |                       | ALGAE (2                                                          | lumber                | per ml.)                                                                        |                            |                                                                                                                               |                                                                                                          | INE                                                                                         | RT                                                                                                 |                                                      |                                                                                                                                                                            |                          | DI                                      | ATO                                                                              | ws.                                                                             |                                          |                                                                                 |                                         | Г <u>.</u>                                                              |                           | LICROIN                      | VERTEBR.                     | TES             | I            |                                                             |
|----------------------|---------------------------------------------------------------------------|---------|-----------------------|-------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------|---------------------------|------------------------------|------------------------------|-----------------|--------------|-------------------------------------------------------------|
| DATE<br>OF SAMPLE    |                                                                           | BLUE-   | GREEN                 | GREE                                                              | :N                    | FLAGEL<br>(Pigme                                                                |                            | DIATO                                                                                                                         | омѕ                                                                                                      | DIA<br>SHE<br>(No. p                                                                        |                                                                                                    |                                                      | DOMII<br>(See                                                                                                                                                              | NANT<br>Introd           | SPEC                                    | IES AN                                                                           | ID PE                                                                           | RCENT<br>stificati                       | 'AGES<br>ion*)                                                                  |                                         | PLANKTOI<br>HEATHED<br>ml.)                                             | ,<br>ml.)                 | s<br>iter)                   | EA<br>iter)                  | ES<br>iter)     | AL PORMS     | genera<br>oduction<br>fication                              |
| MONTH<br>DAY<br>YEAR | TOTAL                                                                     | COCCOID | FILA-<br>MENT-<br>OUS | соссоів                                                           | FILA-<br>MENT-<br>OUS | GREEN                                                                           | OTHER                      | CENTRIC                                                                                                                       | PENNATE                                                                                                  | CENTRIC                                                                                     | PENNATE                                                                                            | FIRST                                                | PER.<br>CENTAGE                                                                                                                                                            | SECOND#                  | PER-<br>CENTAGE                         | THIRD#                                                                           | PER.<br>CENTAGE                                                                 | FOURTH*                                  | PER.<br>CENTAGE                                                                 | OTHER PER-<br>CENTAGE                   | OTHER MICROPLANKTOM,<br>FUNGI AND SHEATHED<br>BACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | (No. per liter) | (No. per III | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| 10                   | 500<br>100<br>300<br>100<br>100<br>200<br>200<br>200<br>200<br>2100<br>21 | 20      | 20<br>80<br>20        | 130<br>20<br>20<br>40<br>20<br>210<br>80<br>60<br>60<br>90<br>120 | 20 20 20              | 90<br>20<br>20<br>20<br>20<br>230<br>440<br>230<br>100<br>40<br>210<br>40<br>40 | 20<br>20<br>20<br>40<br>20 | 50<br>180<br>50<br>90<br>220<br>20<br>130<br>50<br>20<br>20<br>20<br>810<br>290<br>480<br>310<br>440<br>90<br>100<br>60<br>20 | 110<br>130<br>90<br>140<br>110<br>20<br>130<br>160<br>110<br>20<br>170<br>170<br>1230<br>120<br>40<br>40 | 20<br>70<br>160<br>90<br>70<br>20<br>70<br>90<br>20<br>110<br>40<br>120<br>390<br>100<br>60 | 20<br>70<br>160<br>90<br>110<br>20<br>130<br>70<br>270<br>70<br>20<br>390<br>120<br>70<br>20<br>20 | 577222223121731669778755<br>557222223121731669778755 | 20<br>10<br>20<br>10<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>30<br>40<br>30<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 265990577275297187686646 | 100100100100010001000100000000000000000 | 192<br>200<br>577<br>519<br>422<br>199<br>172<br>277<br>573<br>456<br>558<br>558 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 5752795297291965<br>57529795297972299995 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 700000000000000000000000000000000000000 | 20<br>40<br>110<br>70<br>20<br>20<br>20                                 | 10                        | 2 2 2 2 3 3 3 3              | 2 2 1 3 1                    | 1 2 2 2 3 2     | 1            |                                                             |

STATE

GEORGIA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHEAST

MINOR BASIN

SAVANNAH RIVER

STATION LOCATIONS AVANNAH RIVER AT

PORT WENTWORTH, GEORGIA

| DATE<br>OF SAMPLE                                                                                                                                      | TEMP.                   | DISSOLVED      |     |                |                | CHLORINE       | DEMAND          |                              |                   |                                                                    |                  |                        |                                                      | ]                | T                  | <u> </u>                             | ĺ                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------|-----|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------------------------------------------------------|------------------|------------------------|------------------------------------------------------|------------------|--------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------|
| MONTH<br>DAY<br>YEAR                                                                                                                                   | (Degrees<br>Centigrade) | OXYGEN<br>mg/l | рH  | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l                                                 | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units)                           | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 mL                                                                               |
| 5 22 61<br>5 25 61<br>6 12 66<br>6 12 61<br>7 10 61<br>7 17 61<br>7 20 61<br>7 17 61<br>8 24 61<br>8 24 61<br>8 24 61<br>9 11 61<br>8 25 61<br>9 25 61 | 22.5                    | 6.6            | 6.5 | 1.0            |                |                |                 |                              | 462               | 20<br>-<br>18<br>-<br>-<br>15<br>-<br>-<br>15<br>-<br>-<br>19<br>- | 25               | 30                     | 99<br>-<br>106<br>-<br>45<br>-<br>48<br>-<br>36<br>- | 3 - 3 3 1 1      |                    | 52<br>                               | 2100<br>2400<br>2400<br>33000<br>3500<br>3000<br>1400<br>2100<br>1500<br>2400<br>3000<br>2000<br>4000 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station near Clyo, Georgia Operated by U.S. Geological Survey

STATE

Georgia

MAJOR BASIN

Southeast

MINOR BASIN

Savannah River

STATION LOCATION

Savannah River at

Port Wentworth, Georgia

| Day                              | October                                            | November                                  | December                                           | January                                            | February                                     | March                                                 | April                                          | May                                                | June                                      | July                                                     | August                                                   | September                                      |
|----------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------|-------------------------------------------------------|------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| 1<br>2<br>3<br>4                 | 7.650<br>8.490<br>8.610<br>8.010<br>7.530          | 7.110<br>7.010<br>7.010<br>7.010<br>7.010 | 7.110<br>7.010<br>7.110<br>7.310<br>7.410          | 7.890<br>8.010<br>7.890<br>7.890<br>7.890          | 8.010<br>7.770<br>7.770<br>8.010<br>8.490    | 18.100<br>19.200<br>20.800<br>22.400<br>25.200        | 9.870<br>11.100<br>12.800<br>14.000<br>15.000  | 29.200<br>27.200<br>25.700<br>24.200<br>23.700     | 8.370<br>8.250<br>7.890<br>7.890<br>8.250 | 10.900<br>12.000<br>12.900<br>13.300<br>12.900           | 14.900<br>12.900<br>10.000<br>9.100<br>8.980             | 13.100<br>13.700<br>14.500<br>14.900<br>15.300 |
| 6<br>7<br>8<br>9                 | "7.410<br>7.110<br>7.110<br>7.110<br>7.110         | 7.110<br>7.010<br>6.810<br>6.610<br>6.610 | 7.410<br>7.310<br>7.210<br>7.210<br>7.310          | 8.010<br>8.370<br>8.890<br>8.610<br>8.130          | 8.610<br>8.250<br>8.010<br>8.130<br>8.750    | 28.700<br>29.700<br>29.700<br>29.200<br>27.200        | 16.300<br>17.800<br>20.400<br>24.700<br>29.700 | 22.800<br>22.000<br>20.800<br>18.400<br>16.600     | 8.010<br>7.650<br>7.410<br>7.310<br>7.530 | 10.900<br>9.480<br>9.100<br>8.860<br>8.500               | 9.100<br>9.480<br>9.100<br>8.500<br>8.260                | 16.100<br>15.900<br>15.300<br>14.900<br>14.900 |
| 11<br>12<br>13<br>14<br>15       | 7.110<br>7.110<br>7.010<br>7.010<br>7.110          | 6.710<br>6.810<br>7.210<br>7.210<br>7.010 | 7.650<br>7.650<br>7.410<br>7.410<br>7.530          | 7.770<br>7.530<br>7.650<br>8.250<br>8.750          | 9.870<br>10.800<br>10.000<br>8.890<br>8.250  | 25.200<br>23.200<br>22.400<br>22.000<br>22.000        | 32.500<br>32.500<br>34.900<br>31.900<br>29.200 | 14.800<br>13.600<br>13.200<br>13.400<br>13.400     | 8.130<br>8.130<br>7.410<br>7.310<br>7.310 | 8.040<br>7.820<br>7.930<br>8.260<br>8.620                | 8.860<br>8.980<br>8.500<br>8.620<br>8.620                | 14.900<br>15.100<br>14.500<br>12.200<br>10.500 |
| 16<br>17<br>18<br>19<br>20       | 7.310<br>7.310<br>6.910<br>6.810<br>7.650          | 6.810<br>6.710<br>6.910<br>7.010<br>7.210 | 7.770<br>8.130<br>8.610<br>8.610<br>8.130          | 9.030<br>8.890<br>8.750<br>8.610<br>9.170          | 8.010<br>8.010<br>8.750<br>9.170<br>8.890    | 23.200<br>25.700<br>28.200<br>28.700<br>27.200        | 27.200<br>25.200<br>24.700<br>26.200<br>28.200 | 13.400<br>12.600<br>11.700<br>11.200<br>10.800     | 7.410<br>7.650<br>8.130<br>8.010<br>7.530 | 8.620<br>8.380<br>8.040<br>7.930<br>8.860                | 8.500<br>8.380<br>8.980<br>9.620<br>10.200               | 9.900<br>9.220<br>8.500<br>7.820<br>7.490      |
| 21<br>22<br>23<br>24<br>25       | 9.030<br>9.870<br>10.300<br>9.870<br>8.370         | 7.310<br>7.010<br>6.910<br>6.910<br>7.010 | 7.650<br>7.530<br>7.530<br>7.650<br>8.010          | 9.730<br>10.000<br>9.730<br>8.610<br>8.130         | 8.890<br>9.870<br>11.900<br>13.600<br>14.600 | 25.200<br>21.600<br>17.500<br>14.800<br>13.400        | 30.700<br>33.100<br>34.900<br>36.100<br>36.100 | 10.200<br>9.310<br>9.030<br>8.890<br>8.890         | 7.210<br>7.210<br>7.410<br>8.250<br>8.620 | 10.900<br>12.300<br>13.300<br>14.100<br>14.700           | 9.900<br>8.860<br>8.740<br>9.220<br>10.300               | 7.380<br>7.270<br>7.380<br>7.380<br>7.380      |
| 26<br>27<br>28<br>29<br>30<br>31 | 7.500<br>7.000<br>6.500<br>6.500<br>7.000<br>7.500 | 7.210<br>7.650<br>7.650<br>7.410<br>7.210 | 8.010<br>7.650<br>7.530<br>7.410<br>7.410<br>7.530 | 7.890<br>8.010<br>8.490<br>9.170<br>9.170<br>8.370 | 15.600<br>16.300<br>17.200                   | 12.800<br>11.900<br>10.600<br>9.730<br>9.450<br>9.450 | 35.500<br>35.500<br>33.700<br>33.100<br>31.900 | 8.890<br>9.310<br>9.870<br>9.870<br>9.450<br>8.890 | 8.040<br>7.600<br>7.600<br>8.040<br>9.480 | 15.100<br>15.300<br>15.300<br>15.300<br>15.300<br>15.300 | 11.400<br>12.200<br>12.500<br>12.500<br>12.200<br>12.500 | 7.160<br>7.060<br>6.960<br>6.960<br>7.060      |

STATE

SOUTH CAROLINA

MAJOR BASIN

SOUTHEAST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

SAVANNAH RIVER

STATION LOCATION SAVANNAH RIVER AT

NORTH AUGUSTA, SOUTH CAROLINA

ΛQ

| DATE         |                               |           | RADIO     | DACTIVITY IN V | WATER     | ······································ |       | BANGA    | CTIVITY IN PL | ANISTON (1 ) | <del></del> |                  |       |
|--------------|-------------------------------|-----------|-----------|----------------|-----------|----------------------------------------|-------|----------|---------------|--------------|-------------|------------------|-------|
| SAMPLE       | DATE OF<br>DETERMI-<br>NATION |           | ALPHA     |                |           | BETA                                   |       | DATE OF  |               | ACTIVITY     | - RA        | DIOACTIVITY IN W |       |
| TAKEN        | NATION                        | SUSPENDED | DISSOLVED | TOTAL          | SUSPENDED | DISSOLVED                              | TOTAL | DETERMI- | ALPHA         | BETA         | I I         | GROSS ACTIVIT    |       |
| MO. DAY YEAR | MONTH DAY                     | μμε/Ι     | μμε/Ι     | μμc/1          | μμε/1     | μμε/Ι                                  | μμε/Ι | MO. DAY  | <i>µµс/g</i>  | μμc/g        | SUSPENDED   |                  | TOTAL |
|              | _                             |           |           |                |           |                                        |       |          |               | ppc/g        | μμε/Ι       | μμc/I            | μμε/Ι |
| 0 24 60*     |                               | 0         | 1         | 1              | 0         | 0                                      | 0     |          |               |              |             |                  |       |
| 1 29 60*     |                               | 0         | 0         | 0              | 0         | 0                                      | 0     |          |               |              |             | 1                |       |
| 2 26 60*     | 1 12                          | 0         | 0         | 0              | 0         | 0                                      | o l   |          |               |              |             |                  |       |
| 1 17 61*     | 2 24                          | 0         | 0         | 0              | 0         | 2                                      | 2     |          |               |              |             |                  |       |
| 2 28 61*     | 3 16                          | 0         | 0         | 0              | 0         | ō                                      | ōl    | 1 1      |               |              |             |                  |       |
| 3 27 61*     | 4 6                           | 0         | 0         | 0              | 0         | ŏ                                      | ŏ     |          |               |              |             | 1                |       |
| 4 25 61*     | 5 8                           | 0         | 0         | 0              | 0         | ŏ                                      | ŏ     |          |               | ŀ            |             |                  |       |
| 5 16 61*     | 5 23                          | 0         | 0         | 0              | 0         | ŏ                                      | ŏ     |          |               |              | 1 1         | 1.               |       |
| 6 5 61       | 7 21                          | 0         | 0         | 0              | 0         | ŏ                                      | ŏ     |          |               |              |             |                  |       |
| 7 31 61*     | 8 25                          | 0         | 0         | Ó              | Ö         | ١                                      | ŏ     | 1        |               |              | 1           |                  |       |
| 8 28 61*     | 9 21                          | 0         | 0         | 0              | l ŏ l     | ō                                      | ŏ     | 1        |               |              | 1 1         | 1                |       |
| 9 5 61       | 9 29                          | _         | -         | _              | 4         | i                                      | 5     |          |               |              |             | 1 1              |       |
| 9 11 61      | 10 5                          | -         | -         | -              | liol      | 5                                      | 5     |          |               | 1            |             |                  |       |
| 9 19 61      | 10 27                         | 0         | 0         | 0              | 5         | 7                                      | 12    |          |               |              |             | 1 1              |       |
| 9 26 61      | 10 13                         | -         | -         | _              | ا ہ ا     | ا ہ                                    | 0     |          |               |              |             |                  |       |
|              |                               |           | -         |                |           |                                        | •     |          |               | Ì            |             |                  |       |
|              |                               |           |           |                | ]         |                                        |       |          |               |              |             |                  |       |
| 1            |                               |           |           |                |           | i                                      |       |          |               |              |             |                  |       |
|              |                               | l i       |           |                | ĺ         |                                        |       |          |               | ·            |             |                  |       |
|              |                               |           | ĺ         |                | }         |                                        |       | 1        |               | -            |             |                  |       |
|              |                               | ļ į       |           |                |           |                                        | 1     | 1 1      |               |              |             |                  |       |
|              |                               |           |           |                |           | . [                                    | 1     |          |               |              |             |                  |       |
| 1            |                               | i         |           |                |           |                                        | 1     |          |               |              | 1 1         |                  |       |
|              |                               |           | [         |                |           |                                        |       | 1        |               | ļ            |             |                  |       |
|              |                               | ĺ         |           |                |           | ŀ                                      | j     |          |               | İ            |             |                  |       |
|              |                               |           |           |                |           |                                        | - 1   |          |               |              |             | İ                |       |
|              |                               |           | i         |                |           | i                                      |       | 1 1      |               |              |             |                  |       |
|              |                               |           |           |                |           |                                        | ł     |          |               |              |             |                  |       |
|              |                               |           | l         | l              | İ         |                                        |       |          |               |              |             |                  |       |
|              |                               | i         | i         |                | į.        |                                        |       | 1        |               |              |             |                  |       |
| i            |                               |           |           |                | i         |                                        |       |          |               | İ            |             |                  |       |
|              |                               |           |           |                |           | 1                                      | i     | 1        |               |              |             | i                |       |
|              |                               |           | İ         |                |           |                                        | 1     | 1 1      |               |              |             |                  |       |
|              |                               | 1         |           | Ī              |           |                                        | ľ     |          |               |              |             |                  |       |
|              |                               |           |           | ļ              |           | ļ                                      |       | 1 1      |               |              |             |                  |       |
|              |                               |           | -         |                |           |                                        | 1     |          |               |              |             |                  |       |
|              |                               | [         |           | İ              |           |                                        | 1     |          |               |              |             |                  |       |
|              | ľ                             |           |           | 1              |           |                                        | 1     |          |               |              |             |                  |       |
| 1            | ŀ                             |           |           |                |           |                                        | l     |          |               |              |             |                  |       |
| 1            | ļ                             | İ         |           |                |           |                                        | 1     |          |               |              |             | i                |       |
| İ            |                               |           | 1         | 1              |           |                                        | l     |          |               |              |             | 1                |       |
|              |                               |           |           |                |           | i                                      | i i   | 1        |               |              | 1           | 1                |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

SOUTH CAROLINA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

SAVANNAH RIVER

STATION LOCATION SAVANNAH RIVER AT

NORTH AUGUSTA, SOUTH CAROLINA

|                                                                                                                                                          |                                                                                   |         |                       | ALGAE (A       | Jumber                | per ml.)                                      |       |                                                                                 |                                                                                      | INE                                                | ERT                   | Ι        |                                                                      |                                         | D                                                  | IATO                | us.                  |                                                                             |                 |                                                          |                                                                  |                      | MICROIN                               | VERTEBR                      | ATES            |                                       |                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------|-----------------------|----------------|-----------------------|-----------------------------------------------|-------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------|----------|----------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------|---------------------|----------------------|-----------------------------------------------------------------------------|-----------------|----------------------------------------------------------|------------------------------------------------------------------|----------------------|---------------------------------------|------------------------------|-----------------|---------------------------------------|--------------------------------------------------------------|
| DATE<br>OF SAMPLE                                                                                                                                        |                                                                                   | BLUE-   |                       | GREE           |                       | FLAGEL<br>(Pigm                               |       | DIAT                                                                            | омѕ                                                                                  | INE<br>DIA<br>SHE<br>(No. p                        | TOM<br>LLS<br>er ml.) |          | DOMI<br>(See                                                         | NANT<br>Intro                           | SPEC                                               | IES A               | ND PE                | RCEN<br>ntificat                                                            | TAGES           |                                                          | OPLANKTON<br>SHEATHED<br>THL.)                                   | A<br>ml.)            | ts<br>liter)                          | EA<br>liter)                 | DES<br>liter)   | MAL FORMS                             | r GENERA<br>roduction<br>tification                          |
| MONTH<br>DAY<br>YEAR                                                                                                                                     | TOTAL                                                                             | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID        | FILA-<br>MENT-<br>OUS | GREEN                                         | OTHER | CENTRIC                                                                         | PENNATE                                                                              | CENTRIC                                            | PENNATE               | FIRST#   | PER.<br>CENTAGE                                                      | SECOND                                  | PER-                                               | THIRD#              | PER-<br>CENTAGE      | FOURTH                                                                      | PER-<br>CENTAGE | OTHER PER-<br>CENTAGE                                    | OTHER RICROPLANKTOR FUNGIAND AND SHEATHED BACTERIA (No. pet ml.) | PROTOZOA<br>(No. per | ROTIFIERS<br>(No. per liter)          | CRUSTACEA<br>(No. per liter) | (No. per liter) | OTHER ARIMAL FORMS<br>(No. per liter) | DOMINANT GENERA<br>(See Introduction)<br>for Identification) |
| 10 3 60<br>11 7 60<br>12 6 61<br>17 61<br>2 21 61<br>3 6 61<br>3 6 61<br>3 6 61<br>5 1 61<br>5 1 61<br>7 3 61<br>7 19 61<br>8 21 61<br>9 5 61<br>9 19 61 | 100<br>100<br>200<br>400<br>1200<br>500<br>400<br>200<br>100<br>200<br>200<br>200 | 20      | 40                    | 20<br>60<br>60 | 20 20 20              | 50<br>20<br>70<br>250<br>70<br>20<br>40<br>40 | 20    | 20<br>20<br>20<br>50<br>180<br>220<br>80<br>70<br>120<br>350<br>120<br>40<br>20 | 20<br>90<br>180<br>200<br>90<br>40<br>110<br>80<br>20<br>60<br>100<br>20<br>20<br>20 | 20<br>50<br>20<br>50<br>20<br>40<br>20<br>20<br>20 | 80<br>20              | 57<br>43 | 20<br>10<br>40<br>30<br>40<br>20<br>20<br>30<br>20<br>30<br>40<br>20 | 656577255666666666665655577266666666666 | 20<br>10<br>20<br>10<br>10<br>10<br>20<br>20<br>30 | 62<br>58<br>56<br>2 | 10 10 10 10 10 10 10 | 66<br>208<br>26<br>59<br>99<br>99<br>22<br>65<br>99<br>22<br>65<br>97<br>82 | 10 10 *         | 50<br>60<br>30<br>40<br>40<br>62<br>65<br>40<br>30<br>60 | 20                                                               | 10                   | 3<br>1<br>2<br>3<br>15<br>4<br>9<br>3 | 2 5                          | 2 3 1 1 2       |                                       |                                                              |

# ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

SOUTH CAROLINA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

SAVANNAH RIVER

STATION LOCATION SAVANNAH RIVER AT

NORTH AUGUSTA, SOUTH CAROLINA

*1*. 0

|                      |      | <del></del>                                          |                                         |                                         | <del></del>                                  | <del>,</del>        |                                        |                                        |               |                       |                                       |          |                                  |                  |         |                                        |
|----------------------|------|------------------------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------------|---------------------|----------------------------------------|----------------------------------------|---------------|-----------------------|---------------------------------------|----------|----------------------------------|------------------|---------|----------------------------------------|
| DATE OF SAMPLE       | END  | }                                                    | EX                                      | TRACTABL                                | .ES                                          |                     |                                        |                                        |               |                       | ORM EXTR                              | ACTABLES |                                  |                  |         |                                        |
| MONTH DAY YEAR       |      | GALLONS<br>FILTERED                                  | TOTAL                                   | CHLORO-<br>FORM                         | ALCOHOL                                      | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES                      | TOTAL                                  | ALIPHATICS    | NEUTRALS<br>AROMATICS | OXYGEN-<br>ATED<br>COMPOUNDS          | LOSS     | WEAK<br>ACIDS                    | STRONG<br>ACIDS  | BASES   | Loss                                   |
| 3 8 61 3<br>5 1 61 5 | 1 29 | 5144<br>4586<br>3802<br>3874<br>3384<br>4804<br>7098 | 185<br>184<br>227<br>248<br>2214<br>105 | 71<br>46<br>59<br>107<br>99<br>75<br>38 | 114<br>138<br>168<br>141<br>160<br>139<br>67 | 6126741             | 21<br>12<br>14<br>31<br>30<br>25<br>10 | 13<br>13<br>15<br>19<br>16<br>15<br>11 | 1 1 1 1 1 2 2 | 1 1 1 1 1 1 1 1 1 1   | 10<br>10<br>12<br>16<br>14<br>13<br>8 | 11110000 | 7<br>5<br>6<br>10<br>9<br>7<br>3 | 6 2 4 10 9 8 2 2 | 1011110 | 17<br>13<br>17<br>30<br>27<br>15<br>11 |

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

SOUTH CAROLINA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

SAVANNAH RIVER

STATION LOCATIONSAVANNAH RIVER AT

NORTH AUGUSTA, SOUTH CAROLINA

3.4

| DATE                         |      |                            |                             |                   |                |                | CHLORINE       | DEMAND          |                              |                   |                    |                |                        |                            |                  |                    | TOTAL                       |                          |
|------------------------------|------|----------------------------|-----------------------------|-------------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|----------------|------------------------|----------------------------|------------------|--------------------|-----------------------------|--------------------------|
| OF SAMPLE                    | (D   | EMP.<br>egrees<br>tigrade) | DISSOLVED<br>OXYGEN<br>mg/l | pН                | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | mg/l           | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml. |
| 10 3 6<br>10 10 6<br>10 18 6 | 0 2  | 22.1<br>22.1<br>21.9       |                             | 6.9<br>6.8        | 111            | -              | 1 1 1          | -               | -                            | 3<br>4<br>3       | 24<br>24<br>22     | 14<br>16<br>16 |                        | 9<br>7<br>8                | -<br>-           | 1                  | -                           | -                        |
| 10 24 6                      | 0 2  | 20.1                       | -                           | 6.9               | -              | -              | -              | -               | -                            | - 3               | 22<br>20           | 18<br>14       | -                      | 7<br>18                    | -                | -                  | _                           | _                        |
| 11 7 6                       | 0 1  | 19.5                       | -                           | 7.1               | -              | -              | -              | _               | -                            | 3                 | 20<br>26           | 14<br>16       | -                      | 8<br>7                     | -                | -                  | -                           | _                        |
| 11 29 6<br>12 6 6            | 0 1  | 17.0<br>11.9               | -                           | 6.9               | -              | -              | -              | _               | -                            | 3 3               | 24<br>22           | 20             | -                      | 8<br>15                    | _                | -                  |                             | -                        |
| 12 12 6<br>12 20 6           | o 1  | 11.9                       | -                           | 7•1<br>6•9        | -              | -              | -              | -               | -                            | 3 3               | 22 24              | 24<br>14       |                        | 8 8                        | -                | -                  | -                           | -                        |
| 12 26 6<br>1 2 6             | 1 1  | 9.3                        | -                           | 6.9               | _              | -              | -              | -               | -                            | 3 4               | 24 26              | 18<br>26       | _                      | 8                          | -                | -                  | _                           | 66<br>-                  |
|                              | 1    | 8.0<br>9.0                 | -                           | 6.9<br>7.1        | -              | _              | -              | -               | ~                            | 4 3               | 30<br>24           | 36<br>36       | _                      | 15<br>8                    | _                | -                  | -                           | -                        |
| 2 6 6                        | 1    | 9.0<br>8.5                 | -                           | 7.0<br>6.7        | -              | _              | -              | -               | _                            | 3 3               | 14                 | 32<br>30       | _                      | 8                          | -                |                    | -                           | 170                      |
| 2 13 6                       | 1 :  | 9.1<br>13.0                | -                           | 6.8               | -              | _              | -              | _               | -<br>-                       | 4                 | 26<br>18           | 28<br>28       | _                      | 55<br>65                   | -                | -                  | -                           | -                        |
| 2 28 6                       | 1    | 12.1                       | _                           | 6.4               | -              | =              | -              | -               | -                            | 4 3               | 24                 | 38<br>22       |                        | 25<br>40                   | -                | -                  | -                           | -                        |
| 3 13 6<br>3 20 6             | 1 :  | 13.3                       | -                           | 6.8<br>6.9        | -              | =              | -              | _               | _                            | 3 4               | 22                 | 16<br>20       | _                      | 22<br>30                   | _                | -                  | -                           | -                        |
|                              | 1 :  | 13.9<br>13.2<br>13.9       | -<br>-                      | 6.9<br>6.7<br>6.9 | =              | =              | _              | _               | -                            | 3 5               | 20 28              | 32<br>28       | -                      | 40<br>30                   | <u> </u>         | _                  |                             | -                        |
| 4 17 6                       | 31 : | 14.9                       | _                           | 6.7               | _              | -              | -<br>-         | -               | -                            | 3 3               | 20<br>24           | 14<br>14       | _                      | 50<br>30                   | -                | į                  | _                           | -                        |
| 5 1 6                        | 51 : | 18.0<br>15.9<br>18.1       | -                           | 6.7               | _              | _              | -              | -               | -                            | 4 4               | 24<br>24           | 14<br>24       | -                      | 40<br>45                   | _                | 1                  | _                           | _                        |
| 5 16 6                       | 1    | 18.5                       | _                           | 6.8<br>7.1        | -              | _              | _              | -               | -                            | 3 4               | 22<br>26           | 22<br>14       | _                      | 50<br>40                   | _                |                    | -                           | _                        |
| 7 3 6                        | 1    | 24.0<br>23.5               | _                           | 6.9               | _              | -              | _              | _               | _                            | 3                 | 24<br>24           | 16<br>18       | _                      | 45<br>30                   | _                |                    | _                           | -                        |
| 7 31 6                       | 51   | 25.0<br>23.9               | _                           | 7.0<br>7.1        | -              | -              | _              | -               | -                            | 3                 | 24<br>26           | 22<br>18       | _                      | 30<br>25                   | =                | 1                  | =                           | _                        |
| 8 21 6                       | 51   | 19.9                       | _                           | 6.7<br>7.1        | -              | _              | _              | _               | _                            | 3                 | 22<br>26           | 24<br>18       |                        | 30<br>30                   | =                | ı                  | _                           | _                        |
|                              |      | /                          |                             | ,                 |                |                |                |                 |                              |                   |                    |                |                        |                            |                  |                    |                             |                          |



CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

SOUTH CAROLINA

MAJOR BASIN

SOUTHEAST

MINOR BASIN

SAVANNAH RIVER

STATION LOCATIONSAVANNAH RIVER AT

NORTH AUGUSTA, SOUTH CAROLINA

/. O

|       | DATE<br>F SAM |                | TEMP.                   | DISSOLVED      |                          |                |                | CHLORINE       | DEMAND          |                              |                   |                      |                      |                        |                            |                  | 1                  |                                      |                          |
|-------|---------------|----------------|-------------------------|----------------|--------------------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|----------------------|----------------------|------------------------|----------------------------|------------------|--------------------|--------------------------------------|--------------------------|
| MONTH | DAY           | YEAR           | (Degrees<br>Centigrade) | OXYGEN<br>mg/l | рН                       | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/I | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l   | HARDNESS<br>mg/l     | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml. |
| 9     | 5<br>11<br>19 | 61<br>61<br>61 | 23.7<br>22.0<br>19.8    | -              | 7.1<br>7.4<br>7.0<br>7.2 |                | -              |                |                 |                              | 3 3 3 3           | 26<br>26<br>28<br>26 | 24<br>18<br>20<br>18 | 0 1 1                  | 20<br>15<br>15<br>12       |                  | •0                 | 0                                    |                          |
|       |               |                |                         |                |                          |                |                |                |                 |                              |                   |                      |                      |                        |                            |                  |                    |                                      |                          |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Augusta, Georgia Operated by U.S. Geological Survey

STATE

South Carolina

MAJOR BASIN

Southeast

MIMOR BASIN

Savannah River

STATICH LOCATION

Savannah River at

Morth Augusta, South Carolina

| Day                              | October                                            | November                                  | December                                           | January                                            | February                   | March                                              | April                                          | May                                                | June                                         | July                                                  | August                                                | September                                 |
|----------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------|----------------------------------------------------|------------------------------------------------|----------------------------------------------------|----------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|
| 1                                | 5.900                                              | 5.680                                     | 6.010                                              | 5.570                                              | 5.680                      | 19.700                                             | 25.300                                         | 10.100                                             | 5.900                                        | 12.400                                                | 6.010                                                 | 16.700                                    |
| 2                                | 5.790                                              | 6.010                                     | 6.560                                              | 5.570                                              | 6.670                      | 19.200                                             | 30.000                                         | 12.800                                             | 6.780                                        | 5.570                                                 | 6.560                                                 | 14.100                                    |
| 3                                | 6.120                                              | 6.230                                     | 5.790                                              | 5.570                                              | 7.330                      | 18.000                                             | 21.800                                         | 14.200                                             | 5.900                                        | 5.240                                                 | 6.340                                                 | 6.340                                     |
| 4                                | 5.900                                              | 6.230                                     | 5.680                                              | 6.120                                              | 5.680                      | 14.000                                             | 26.400                                         | 11.700                                             | 5.460                                        | 5.460                                                 | 7.110                                                 | 5.790                                     |
| 5                                | 5.790                                              | 5.790                                     | 5.570                                              | 7.110                                              | 5.460                      | 7.700                                              | 28.200                                         | 7.000                                              | 5.570                                        | 5.570                                                 | 6.340                                                 | 7.690                                     |
| 6                                | 5.790                                              | 5.680                                     | 5.570                                              | 7.220                                              | 5.460                      | 9.870                                              | 27.000                                         | 6.340                                              | 5.460                                        | 6.120                                                 | 5.240                                                 | 15.100                                    |
| 7                                | 5.790                                              | 5.680                                     | 5.570                                              | 5.680                                              | 5.570                      | 13.900                                             | 18.300                                         | 6.890                                              | 5.680                                        | 5.900                                                 | 5.240                                                 | 15.100                                    |
| 8                                | 5.900                                              | 5.570                                     | 6.120                                              | 5.460                                              | 7.620                      | 26.100                                             | 13.200                                         | 6.120                                              | 6.890                                        | 5.130                                                 | 6.120                                                 | 15.100                                    |
| 9                                | 6.010                                              | 5.680                                     | 6.780                                              | 5.460                                              | 9.510                      | 29.500                                             | 6.330                                          | 6.670                                              | 7.000                                        | 4.930                                                 | 7.660                                                 | 11.700                                    |
| 10                               | 5.790                                              | 6.340                                     | 5.790                                              | 5.460                                              | 7.110                      | 28.200                                             | 6.730                                          | 9.270                                              | 5.680                                        | 5.030                                                 | 5.790                                                 | 6.010                                     |
| 11                               | 5.790                                              | 6.780                                     | 5.570                                              | 6.010                                              | 5.570                      | 25.800                                             | 8.800                                          | 8.430                                              | 5.350                                        | 5.570                                                 | 6.010                                                 | 5.900                                     |
| 12                               | 6.010                                              | 5.680                                     | 5.790                                              | 7.000                                              | 5.460                      | 18.600                                             | 10.600                                         | 8.210                                              | 5.460                                        | 6.120                                                 | 5.900                                                 | 6.450                                     |
| 13                               | 6.670                                              | 5.680                                     | 5.790                                              | 6.890                                              | 5.460                      | 16.200                                             | 20.800                                         | 7.000                                              | 5.460                                        | 6.230                                                 | 5.030                                                 | 7.440                                     |
| 14                               | 6.890                                              | 5.570                                     | 6.120                                              | 5.900                                              | 5.460                      | 11.200                                             | 22.200                                         | 7.220                                              | 6.010                                        | 6.340                                                 | 5.030                                                 | 7.770                                     |
| 15                               | 5.790                                              | 5.570                                     | 7.000                                              | 6.010                                              | 6.120                      | 10.100                                             | 24.700                                         | 6.120                                              | 6.780                                        | 5.350                                                 | 6.340                                                 | 6.450                                     |
| 16                               | 5.570                                              | 5.680                                     | 7.110                                              | 5.900                                              | 7.550                      | 9.390                                              | 30.300                                         | 8.100                                              | 6.780                                        | 5.130                                                 | 8.100                                                 | 5.680                                     |
| 17                               | 5.900                                              | 6.120                                     | 6.010                                              | 6.230                                              | 6.450                      | 8.580                                              | 28.500                                         | 7.660                                              | 5.570                                        | 5.460                                                 | 8.550                                                 | 5.570                                     |
| 18                               | 9.870                                              | 6.670                                     | 5.680                                              | 7.880                                              | 5.350                      | 5.640                                              | 29.100                                         | 7.000                                              | 5.350                                        | 9.670                                                 | 8.210                                                 | 5.570                                     |
| 19                               | 10.500                                             | 5.790                                     | 5.680                                              | 8.100                                              | 5.460                      | 5.460                                              | 28.300                                         | 6.670                                              | 5.350                                        | 19.800                                                | 5.570                                                 | 5.570                                     |
| 20                               | 10.400                                             | 5.570                                     | 5.570                                              | 8.100                                              | 8.060                      | 5.740                                              | 29.400                                         | 5.460                                              | 5.570                                        | 19.000                                                | 5.350                                                 | 5.570                                     |
| 21                               | 9.870                                              | 5.680                                     | 5.570                                              | 5.680                                              | 13.400                     | 6.330                                              | 30.000                                         | 5.460                                              | 6.230                                        | 20.000                                                | 5.900                                                 | 6.010                                     |
| 22                               | 6.340                                              | 5.570                                     | 6.120                                              | 5.460                                              | 14.500                     | 6.530                                              | 29.700                                         | 5.570                                              | 8.210                                        | 15.000                                                | 7.660                                                 | 6.450                                     |
| 23                               | 5.790                                              | 5.680                                     | 6.340                                              | 5.460                                              | 12.200                     | 6.830                                              | 29.100                                         | 5.680                                              | 6.450                                        | 6.230                                                 | 8.550                                                 | 5.570                                     |
| 24                               | 5.680                                              | 6.340                                     | 5.680                                              | 5.460                                              | 15.200                     | 7.260                                              | 21.000                                         | 6.230                                              | 5.240                                        | 8.160                                                 | 7.770                                                 | 5.790                                     |
| 25                               | 5.570                                              | 6.560                                     | 5.570                                              | 5.900                                              | 28.300                     | 5.260                                              | 17.000                                         | 7.550                                              | 5.350                                        | 14.700                                                | 8.430                                                 | 5.680                                     |
| 26<br>27<br>28<br>29<br>30<br>31 | 5.680<br>6.120<br>7.220<br>5.900<br>5.790<br>5.790 | 5.680<br>5.680<br>5.680<br>5.570<br>5.570 | 5.570<br>5.460<br>5.570<br>6.230<br>6.670<br>5.680 | 7.220<br>7.770<br>5.460<br>5.460<br>5.570<br>5.460 | 28.300<br>23.200<br>16.500 | 5.260<br>5.360<br>5.170<br>5.550<br>6.330<br>8.690 | 15.500<br>17.700<br>23.400<br>20.400<br>13.200 | 7.330<br>5.900<br>6.010<br>5.680<br>6.230<br>5.570 | 5.570<br>6.350<br>11.200<br>12.800<br>18.100 | 14.100<br>14.000<br>12.600<br>8.310<br>5.790<br>5.130 | 7.660<br>6.120<br>9.110<br>17.300<br>17.000<br>16.700 | 5.790<br>5.790<br>6.450<br>6.010<br>5.900 |

RADIOACTIVITY DETERMINATIONS

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

DELAWARE-SCHUYLKILL RIVERS

STATION LOCATION SCHUYLKILL RIVER AT

PHILADELPHIA, PENNSYLVANIA

| DATE                                                                                                                       | T                                                                                                                    |                                       | PAD                                         | IOACTIVITY IN                   | WATER        |           |                                                            | <del>-</del> | 1 845:-                      |       |                |   |                  |                | -             |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------|---------------------------------|--------------|-----------|------------------------------------------------------------|--------------|------------------------------|-------|----------------|---|------------------|----------------|---------------|
| SAMPLE                                                                                                                     | DATE OF                                                                                                              | T                                     | ALPHA                                       |                                 |              | BETA      |                                                            | ┪            |                              |       | PLANKTON (dry) | _ | RAI              | DIOACTIVITY IN |               |
| TAKEN                                                                                                                      | DATE OF<br>DETERMI-<br>NATION                                                                                        | SUSPENDED                             | DISSOLVED                                   | TOTAL                           | SUSPENDED    | DISSOLVED | TOTAL                                                      | -            | DATE OF<br>DETERMI<br>NATION | ALPHA | BETA           | - | Allenaven        | GROSS ACTIVI   |               |
| MO. DAY YEAR                                                                                                               | MONTH DAY                                                                                                            | ##c/!                                 | μμc/l                                       | <b>μμc/</b> Ι                   | β#c/I        | μμc/l     |                                                            | 1            |                              |       |                |   |                  |                |               |
| MO. DAY VEAR  10 3 60 11 7 60 11 21 60 12 5 60 12 20 60 1 3 661 2 20 61 3 6 61 3 20 61 4 17 61* 5 15 61* 6 19 5 61 9 18 61 | 10 20<br>11 1<br>11 25<br>12 1<br>12 22<br>1 13<br>1 25<br>2 1<br>2 23<br>3 7<br>3 27<br>4 3<br>5 23<br>6 23<br>7 21 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 2 0 3 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ####/I  0 2 0 3 1 1 2 1 0 0 1 1 | <del> </del> |           | ο 1<br>ο 1<br>ο 8<br>ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο |              | MO. DAY                      |       | Mpc/g          |   | SUSPENDED  Ape/I | PHO()          | TOTAL.  APE/I |

# PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

DELAWARE-SCHUYLKILL RIVERS

STATION LOCATION SCHUYLKILL RIVER AT

PHILADELPHIA, PENNSYLVANIA

|                 | DATI                | - L                        |                                                                                   |          |                       | ALGAE (1                                            | Vumber                | per ml.)                                                           |       | ·····                                                                                |                                                                               | IN                                                      | ERT                                                                     | Т                                                  |                                              |                                                          |                                              | IATO                                              | MS                                           |                                                          |                                       | · · · · · · · · · · · · · · · · · · ·                       | · ·                                                                     | Ī                         | MICROIN                       | VERTEBR                      | ATES                         | _              |                                                                                     |
|-----------------|---------------------|----------------------------|-----------------------------------------------------------------------------------|----------|-----------------------|-----------------------------------------------------|-----------------------|--------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------------------|----------------------------------------------|---------------------------------------------------|----------------------------------------------|----------------------------------------------------------|---------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------|-------------------------------|------------------------------|------------------------------|----------------|-------------------------------------------------------------------------------------|
|                 | SAM                 | - 1                        |                                                                                   | BLUE-    | GREEN                 | GREE                                                | EN                    | FLAGEI<br>(Pigm                                                    |       | DIAT                                                                                 | омѕ                                                                           | INI<br>DIA<br>SHE<br>(No. p                             | TOM<br>LLS<br>er ml.)                                                   |                                                    | DOM:                                         | INANT<br>e Intro                                         | SPEC                                         | IES A                                             | ND PE                                        | RCEN<br>entifica                                         | TAGES<br>tion*)                       | 5                                                           | TANKTON<br>IEATHED<br>11.)                                              | 12.)                      | ter)                          | er)                          | s s                          | FORMS          | ENERA<br>luction<br>cation)                                                         |
| MONTH           | DAY                 | YEAR                       | TOTAL                                                                             | COCCOID  | FILA-<br>MENT-<br>OUS | COCCOID                                             | FILA-<br>MENT-<br>OUS | GREEN                                                              | OTHER | CENTRIC                                                                              | PENNATE                                                                       | CENTRIC                                                 | PENNATE                                                                 | FIRST                                              | PER.<br>CENTAGE                              | SECOND#                                                  | PER.<br>CENTAGE                              | THIRD#                                            | PER.                                         | FOURTH#                                                  | PER.                                  | OTHER PER-<br>CENTAGE                                       | OTHER MICROPLANKTON,<br>FUNGI AND SHEATHED<br>BACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)  | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ARIMAL F | DOMINANT GENERA<br>(See Introduction<br>for Identification)                         |
| 101121234567799 | 37536631538<br>1858 | 60 60 61 61 61 61 61 61 61 | 400<br>1100<br>4600<br>400<br>600<br>1400<br>2100<br>8200<br>8300<br>2200<br>7300 | 90<br>60 | 20 230 20             | 70<br>20<br>40<br>330<br>6280<br>540<br>230<br>5470 | 50                    | 110<br>200<br>130<br>180<br>230<br>5360<br>870<br>80<br>170<br>580 | 20 70 | 110<br>290<br>50<br>180<br>20<br>20<br>470<br>390<br>1410<br>70<br>350<br>100<br>270 | 110<br>550<br>870<br>4340<br>380<br>690<br>1410<br>470<br>1180<br>600<br>1040 | 70<br>270<br>270<br>50<br>60<br>120<br>200<br>170<br>20 | 250<br>640<br>340<br>2840<br>220<br>6880<br>540<br>14120<br>350<br>1140 | 70<br>92<br>92<br>94<br>93<br>70<br>62<br>62<br>70 | 20<br>20<br>20<br>10<br>10<br>10<br>10<br>10 | 26<br>56<br>65<br>92<br>82<br>82<br>70<br>36<br>47<br>93 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 2<br>70<br>70<br>70<br>88<br>65<br>47<br>92<br>26 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 64<br>82<br>62<br>65<br>62<br>93<br>26<br>65<br>36<br>62 | 10<br>*<br>10<br>10<br>10<br>10<br>10 | 700<br>200<br>500<br>700<br>600<br>700<br>600<br>700<br>600 | 110<br>420<br>20<br>50<br>50                                            | 10 10 20                  | 2 4 1 3 1 6 1 7 4 1 2 2 5 6 6 | 2 3 3                        | 1 8 3 2 3 1                  | 1              | <br>96-<br>77<br>74763<br>9-3<br>7-76-<br>4193-<br>-8-35<br>7876-<br>-8-6-<br>4873- |

# ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

DELAWARE-SCHUYLKILL RIVERS

STATION LOCATION SCHUYLKILL RIVER AT

PHILADELPHIA, PENNSYLVANIA

| DATE OF S                                 | SAMPI   | E_  | l                            | E                        | XTRACTABL               | ES                       | <del></del>         |                      |                       | <del></del>         | CHLOROS  | ORM EXTR                     | ACTABLES |               |                 |         |                    |
|-------------------------------------------|---------|-----|------------------------------|--------------------------|-------------------------|--------------------------|---------------------|----------------------|-----------------------|---------------------|----------|------------------------------|----------|---------------|-----------------|---------|--------------------|
| BEGINNING                                 | $\perp$ | END |                              |                          |                         |                          |                     |                      | T                     |                     | NEUTRALS |                              | ACTABLES | 1             | 1 1             |         |                    |
| MONTH<br>DAY<br>YEAR                      | MONTH   | DAY | GALLONS<br>FILTERED          | TOTAL                    | CHLORO-<br>FORM         | ALCOHOL                  | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES    | TOTAL                 | ALIPHATICS          |          | OXYGEN-<br>ATED<br>COMPOUNDS | Loss     | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES   | LOSS               |
| 11 15 60<br>12 20 60<br>1 30 61<br>9 5 61 | 11 1 2  |     | 5363<br>4997<br>6000<br>4780 | 187<br>344<br>239<br>287 | 53<br>211<br>109<br>147 | 134<br>133<br>130<br>140 | 1 4 2 2 2           | 10<br>40<br>21<br>19 | 23<br>103<br>49<br>82 | 3<br>20<br>10<br>18 | 2        | 17<br>64<br>30               | 1        | 7 28 17 21    | 4<br>13         | 1 4 2 3 | 7<br>19<br>10<br>8 |
|                                           |         |     |                              |                          |                         |                          |                     |                      |                       |                     |          |                              |          |               |                 |         |                    |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

DELAWARE SCHUYLKILL RIVERS

STATION LOCATIONS CHUYLKILL RIVER AT

PHILADELPHIA, PENNSYLVANIA

| DATE    |      |                                  |                             |            |                |                | CHLORINE       | DEMAND          |                              |                   |                    |                  | 1                      |                            |                  |                    |                                      |                          |
|---------|------|----------------------------------|-----------------------------|------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|----------------------------|------------------|--------------------|--------------------------------------|--------------------------|
| OF SAME | YEAR | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/l | pН         | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR         | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 mil |
|         |      |                                  |                             |            |                |                |                |                 |                              |                   |                    |                  |                        |                            |                  |                    |                                      | İ                        |
| 1 1     | 60   | 27.2                             | 8.8                         | 7.5        | 1.0            | _              | 2.9            | 3.8             | • 2                          | 12                | 52                 | 128              | 30                     | 12                         | 64               | •3                 | 203                                  | 1100                     |
| 10 10   | 60   | 17.8<br>19.4                     | 9.8                         | 7.6        | 1.5            | 5              | 2.0            | 2.9             | •1                           | 15                | 60                 | 144              | 17                     | 10                         | 73               | •2                 | 223                                  | 1400                     |
| 10 24   | 60   | 14.4                             | 10.2                        | 7.6<br>7.6 | 1.4<br>1.4     | 8              | 1.6            | 3.6             | •1                           | 15                | 67                 | 148              | 13                     | . 8                        | 87               | •3                 | 241                                  | 1600                     |
| 1 1     | 60   | 13.9                             | 10.8                        | 7.6        | 1.2            | 11             | 1.9            | 3 • 6.<br>3 • 9 | • 2<br>• 2                   | 11<br>17          | 70<br>70           | 160<br>160       | 18<br>23               | 13<br>12                   | 73<br>88         | •3<br>•5           | 243<br>126                           | 1200                     |
| 11 7    | 60   | 12.2                             | 11.6                        | 7.6        | 1.0            | 8              | 2.9            | 4.9             | • 2                          | 14                | 70                 | 142              | 25                     | 8                          | 71               | .4                 | 203                                  | 2600<br>200              |
| 11 14   | 60   | 10.0                             | 12.8                        | 7.6        | 1.0            | 13             | 3.1            | 5.6             | • 2                          | 11                | 61                 | 132              | 23                     | 15                         | 9 <b>6</b>       | .4                 | 209                                  | 2300                     |
| 11 21   | 60   | 12.8                             | 11.8                        | 7.4        | 1.2            | 9              | 2.6            | 4.9             | .1                           | 16                | 66                 | 150              | 23                     | 12                         | 78               | 4                  | 231                                  | 430                      |
| 11 28   | 60   | 11.7                             | 13.0                        | 17.5       | • 8            | 12             | 2.6            | 6.2             | • 2                          | 16                | 69                 | 140              | 18                     | 10                         | 71               | •4                 | 230                                  | 7900                     |
| 12 5    | 60   | 8.9                              | 14.2                        | 7.6        | 3.0            | 12             | 3 • 4          | 5.9             | • 3                          | 26                | 69                 | 160              | 33                     | 8                          | 67               | .5                 | 238                                  | 670                      |
| 12 12   | 60   | 3.3                              | 12.0                        | 7.8        | 1.6            | 11             | 5.9            | 9•1             | •4                           | 20                | 70                 | 156              | 18                     | 7                          | 78               | .8                 | 235                                  | _                        |
|         | 60   | -                                | -                           |            |                | -              | -              | -               | - [                          | -                 | -                  | -                | -                      | [                          | -                | -                  | _                                    | 4200                     |
|         | 60   | 3.3                              | 12.6                        | 7.3        | 1.0            | 10             | 1.9            | 7.9             | •6                           | 22                | 75                 | 144              | 15                     | 8                          | 84               | •7                 | 235                                  | -                        |
|         | 60   | 2.8                              | 12.8                        | 7.3        | 1.4            | 10             | 2 • 6          | 12.6            | • 5                          | 23                | 76                 | 152              | 15                     | 8                          | 60               | • 6                | 220                                  | 4400                     |
|         | 61   | 3.9                              | 12.8                        | 7.1        | 4.2<br>2.6     | 18             | 1.9            | 8 • 6           | •6                           | 14                | 41                 | 116              | 35                     | 45                         | 43               | • 3                | 134                                  | -                        |
| 1 1     | 61   | 4.4                              | 11.4                        | 7.3<br>7.4 | 1.0            | 9              | •8             | 1.9             | •6                           | 15                | 60                 | 108              | 18                     | 12                         | 52               | •5                 | 170                                  | ~                        |
|         | 61   | 1.1                              | 13.2                        | 7.3        | 1.7            | 10.            | •3             | 1.6<br>1.8      | • 6                          | 18                | 62<br>58           | 140              | 8                      | 8  <br>8                   | 61               | •5<br>•5           | 190                                  | 2400                     |
|         | 61   | 1.1                              | 12.8                        | 7.4        | 101            | 9              | 1.6            | 1.6             | • 4                          | 14<br>16          | 62                 | 114<br>130       | 18<br>12               | 7                          | 61               |                    | 193                                  | 660                      |
| 1 - 1   | 61   | 1.1                              | 13.2                        | 7.5        | 1.4            | 10 l           | • 6            | 9               | • 6<br>• 8                   | 15                | 67                 | 138              | 7                      | 8                          | 57<br>61         | •6<br>•4           | 195<br>228                           | 2200                     |
| , i     | 61   | 4.4                              | 12.2                        | 7.4        | . 8            | 7              | 2.2            | 2.8             | .8                           | 17                | 70                 | 128              | á l                    | ا څ                        | 63               | .4                 | 208                                  | 960                      |
|         | 61   | 6.1                              | 13.8                        | 7.3        | 4.4            | 49             | . 9            | •9              | .4                           | - é               | 39                 | 70               | 220                    | 380                        | 27               | .3                 | 128                                  | 7000                     |
| 2 27    | 61   | 5.0                              | 12.4                        | 7.1        | 2.1            | 84             | 1.6            | 3.6             | .3                           | 5                 | 31                 | 60               | 230                    | 330                        | 31               | .1                 | 98                                   | 7900                     |
|         | 61   | 13.9                             | 11.2                        | 7.3        | 1.2            | 9              | 1.9            | 2.6             | .4                           | 8                 | 43                 | 88               | 15                     | 12                         | 52               | .2                 | 160                                  | 4400                     |
|         | 61   | 6.1                              | 12.6                        | 7.4        | -              | 5              | 1.9            | 3.0             | • 2                          | 7                 | 39                 | 102              | 12                     | 8                          | 59               | .2                 | 176                                  | 730                      |
| 1 1     | 61   | -                                | -                           | -          | -              | -              | -              | -1              | -                            | -                 | -                  | -                | -                      | -                          | -                | -                  |                                      | 21000                    |
|         | 61   | 8.3                              | 11.4                        | 7.4        | • 3            | 8              | 1.9            | 3 • 4           | • 2                          | 10                | 44                 | 102              | 22                     | 12                         | 61               | .2                 | 203                                  | 2800                     |
|         | 61   | 7.2                              | 11.9                        | 7.6        | • 9            | 5              | 2 • 4          | 3.9             | •2                           | 9                 | 49                 | 122              | 10                     | 8                          | 68               | الان               | 172                                  | 1000                     |
|         | 61   | 10.0                             | 10.2                        | 7.6        | • 5            | 6              | 2.2            | 2.6             | •1                           | 11                | 52                 | 118              | 10                     | 8                          | 57               | •3                 | 183                                  | 770                      |
|         | 61   | 10.0                             | 11.2                        | 7.3        | .8             | 12             | 2.1            | 3.6             | •1                           | 5                 | 40                 | 78               | 28                     | 30                         | 42               | • 2                | 135                                  | 5700                     |
|         | 61   | 15.6                             | 10.8                        | 7.5        | 1.2            | 7              | 1.8            | 3 • 4           | •1                           | 9                 | 46                 | 103              | 15                     | 14                         | 47               | • 4                | 153                                  | 3800                     |
|         | 61   | 10.0                             | 9•5<br>9•3                  | 7•4<br>7•5 | 3.9<br>.2      | 14<br>8        | 2 • 6          | 5 • 2           | •1                           | 12                | 47                 | 92               | 28                     | 22                         | 54               | •4                 | 170                                  | 3900                     |
|         | 61   | 18.3                             | 8.0                         | 7.4        | .6             | 9              | 1.9            | 4•0<br>3•9      | •1                           | 11                | 49                 | 122              | 12                     | 10                         | 78               | • 3                | 221                                  | 2800                     |
| 1 1     | 61   | 17.8                             | 7.9                         | 7.5        | 4.9            | 10             | 1.4            | 2.8             | •1                           | 7                 | 58<br>53           | 124<br>138       | 15                     | 12                         | 53               | • 3                | 212                                  | 1300                     |
|         | 61   | 17.8                             | 8.1                         | 7.5        | 1.2            | 8              | 2.4            | 3.9             | .2                           | 11                | 58                 | 130              | 18<br>12               | 18                         | 76<br>82         | .3                 | 224<br>225                           | 1900                     |
|         | 61   | 22.8                             | 7.3                         | 7.6        | 2.8            | 12             | 1.8            | 4.9             | .0                           | 12                | 69                 | 142              | 18                     | 12                         | 82               | • 1                | 256                                  | 1500                     |
| , ,     | 61   | 25.0                             | 4.8                         | 7.6        | 1.4            | 11             | 3.6            | 6.6             | • 2                          | 16                | 63                 | 126              | 22                     | 18                         | 89               | .5                 | 238                                  | 9800                     |
| 6 19    | 61   | 23.9                             | 8.0                         | 7.7        | 1.8            | 14             | 2.6            | 6.9             | •0                           | 15                | 80                 | 144              | 37                     | 28                         | 74               | .5                 | 282                                  | 3900                     |
| 6 26    | 61   | 25.0                             | 5.7                         | 7.4        | 1.2            | 10             | 2.6            | 3.6             | •1                           | 19                | 77                 | 148              | 18                     | 17                         | 87               | .5                 | 278                                  | 7500                     |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

DELAWARE SCHUYLKILL RIVERS

STATION LOCATIONS CHUYLKILL RIVER AT

PHILADELPHIA, PENNSYLVANIA

| DATE<br>OF SAMPLE                                                                                        |                                                                                                      |                                                                    |                                                                       | <u> </u>                                                    |                                                                   | CHLORINE               | DEMAND                                                      |                                                                |                                                                      |                                                                       |                                                                                 |                                                                |                                                                |                                                                           |                                 |                                                                        | <del>                                     </del>                                     |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|------------------------|-------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| DAY YEAR                                                                                                 | TEMP.<br>(Degrees<br>Centigrade)                                                                     | DISSOLVED<br>OXYGEN<br>mg/l                                        | рН                                                                    | B,O,D,<br>mg/l                                              | C.O.D.<br>mg/l                                                    | 1-HOUR<br>mg/l         | 24-HOUR<br>mg/l                                             | AMMONIA-<br>NITROGEN<br>mg/l                                   | CHLORIDES<br>mg/l                                                    | ALKALINITY<br>mg/l                                                    | HARDNESS<br>mg/l                                                                | COLOR                                                          | TURBIDITY<br>(scale units)                                     | SULFATES<br>mg/I                                                          | PHOSPHATES<br>mg/l              | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l                                   | COLIFORMS<br>per 100 ml.                                                             |
| 7 3 61<br>7 10 61<br>7 17 61<br>7 24 61<br>8 7 61<br>8 14 61<br>8 28 61<br>9 11 61<br>9 18 61<br>9 25 61 | 27.8<br>24.4<br>25.0<br>29.4<br>26.1<br>28.3<br>26.7<br>24.4<br>27.2<br>28.9<br>28.3<br>23.3<br>28.3 | 6.7<br>6.7<br>6.7<br>6.7<br>6.7<br>6.7<br>6.7<br>6.7<br>6.7<br>6.7 | 7.6<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.6<br>6<br>7.6<br>6 | 1.5<br>3.1<br>1.4<br>1.2<br>1.1<br>1.5<br>6.4<br>1.3<br>1.4 | 12<br>12<br>21<br>13<br>15<br>10<br>12<br>10<br>8<br>7<br>12<br>7 | 1.99 3.099 4.896 6 2 2 | 4.6<br>3.4<br>6.0<br>4.6<br>4.6<br>4.6<br>4.8<br>4.8<br>4.8 | .0<br>.1<br>.2<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1 | 17<br>14<br>13<br>13<br>10<br>18<br>19<br>14<br>16<br>18<br>21<br>18 | 72<br>81<br>58<br>648<br>47<br>62<br>73<br>58<br>50<br>65<br>73<br>65 | 128<br>152<br>104<br>102<br>74<br>144<br>140<br>158<br>180<br>142<br>148<br>148 | 18<br>12<br>40<br>50<br>52<br>27<br>22<br>25<br>32<br>38<br>32 | 15<br>12<br>95<br>60<br>40<br>30<br>20<br>20<br>30<br>30<br>30 | 71<br>74<br>59<br>51<br>25<br>101<br>94<br>109<br>130<br>117<br>-95<br>79 | 1 · 4 3 4 3 4 3 3 5 5 6 5 · 6 5 | 232<br>260<br>214<br>205<br>143<br>247<br>269<br>300<br>327<br>290<br> | 830<br>2800<br>11000<br>4300<br>2300<br>2400<br>3300<br>2000<br>3700<br>3800<br>7100 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Philadelphia, Pennsylvania Operated by U.S. Geological Survey STATE

Pennsylvania

MAJOR BASIN

North Atlantic

MINOR BASIN

Delaware-Schuylkill Rivers

STATION LOCATION

Schuylkill River at

Philadelphia, Pennsylvania

| Day                              | October                                        | November                                  | December                                     | January                                            | February                                      | March                                              | April                                       | May                                       | June                                                              | July                                               | August                                    | September                                 |
|----------------------------------|------------------------------------------------|-------------------------------------------|----------------------------------------------|----------------------------------------------------|-----------------------------------------------|----------------------------------------------------|---------------------------------------------|-------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------|-------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | 2.340<br>2.100<br>1.820<br>1.630<br>1.500      | 1.160<br>1.730<br>1.540<br>1.160<br>1.080 | 1.630<br>1.330<br>.892<br>.929               | 3.680<br>6.400<br>4.390<br>3.190<br>2.490          | 1.160<br>1.080<br>1.000<br>1.040<br>1.000     | 8.650<br>7.400<br>6.180<br>5.340<br>5.340          | 4.040<br>4.440<br>3.710<br>3.290<br>3.080   | 3.340<br>3.440<br>3.710<br>3.080<br>2.780 | 1.500<br>1.370<br>1.500<br>1.370<br>1.410                         | .892<br>.929<br>.929<br>.855<br>.744               | 2.590<br>2.150<br>1.910<br>2.200<br>3.260 | 1.590<br>1.370<br>1.330<br>1.450<br>1.240 |
| 6<br>7<br>8<br>9<br>10           | 1.410<br>1.370<br>1.290<br>1.200<br>1.120      | 1.040<br>1.000<br>.966<br>.929<br>1.770   | .929<br>.929<br>.892<br>.818<br>.800         | 2.050<br>2.010<br>2.440<br>2.290<br>1.860          | 1.120<br>1.530<br>1.770<br>1.730<br>1.370     | 5.220<br>5.580<br>6.270<br>11.000<br>8.690         | 3.990<br>2.780<br>2.590<br>2.440<br>4.570   | 2.640<br>2.930<br>3.080<br>4.540<br>4.800 | 1.240<br>1.160<br>1.160<br>1.730<br>1.410                         | .670<br>.638<br>.638<br>.606                       | 2.540<br>2.200<br>1.820<br>1.500<br>1.290 | 1.040<br>1.000<br>1.000<br>.892<br>.818   |
| 11<br>12<br>13<br>14<br>15       | 1.040<br>1.120<br>1.000<br>.966<br>.929        | 3.080<br>2.100<br>1.730<br>1.450<br>1.330 | .760<br>.710<br>.740<br>.800<br>.880         | 1.680<br>1.590<br>1.500<br>1.500                   | 1.410<br>1.330<br>1.200<br>1.240<br>1.540     | 6.430<br>5.640<br>5.100<br>7.330<br>7.140          | 5.920<br>4.440<br>12.900<br>14.600<br>9.140 | 4.390<br>4.100<br>4.330<br>3.820<br>3.390 | 1.630<br>1.450<br>1.160<br>1.590<br>1.120                         | .542<br>.510<br>1.290<br>1.450<br>2.050            | 1.200<br>1.500<br>1.450<br>1.160<br>.966  | .744<br>.707<br>.606<br>.829<br>1.030     |
| 16<br>17<br>18<br>19<br>20       | .929<br>.892<br>.855<br>.855<br>2.160          | 1.240<br>1.160<br>1.080<br>1.000<br>.966  | .880<br>.900<br>.890<br>.810                 | 2.730<br>2.200<br>1.600<br>1.300<br>1.300          | 2.050<br>2.440<br>3.030<br>10.300<br>13.100   | 5.700<br>4.860<br>4.220<br>6.1490<br>6.300         | 8.160<br>9.350<br>7.600<br>6.500<br>5.580   | 3.880<br>3.440<br>2.930<br>2.640<br>2.590 | 1.0 <sup>1</sup> 40<br>.966<br>.818<br>.74 <sup>1</sup> 4<br>.670 | 3.210<br>2.640<br>1.500<br>1.160<br>2.800          | .892<br>.855<br>.744<br>.707<br>.804      | .707<br>.606<br>.510<br>.510              |
| 21<br>22<br>23<br>24<br>25       | 2.050<br>1.540<br>1.160<br>1.040<br>1.000      | .966<br>.929<br>.929<br>.892<br>.892      | 1.300<br>1.600<br>1.330<br>1.000<br>.740     | 1.400<br>1.300<br>1.800<br>3.000<br>4.500          | 10.200<br>7.400<br>10.100<br>10.400<br>13.600 | 4.740<br>4.100<br>5.160<br>7.340<br>5.400          | 4.920<br>4.330<br>4.440<br>4.440<br>3.820   | 2.440<br>2.250<br>2.100<br>1.960<br>1.860 | .855<br>1.290<br>1.760<br>1.680<br>1.680                          | 3.190<br>1.910<br>1.290<br>1.210<br>2.680          | 1.730<br>1.240<br>1.910<br>1.910<br>1.860 | 1.160<br>.781<br>.606<br>.510<br>.414     |
| 26<br>27<br>28<br>29<br>30<br>31 | .966<br>.892<br>.929<br>1.450<br>1.120<br>.929 | .892<br>.855<br>.818<br>1.010<br>1.580    | .800<br>.850<br>.760<br>.800<br>.760<br>.940 | 2.500<br>1.700<br>1.550<br>1.450<br>1.350<br>1.250 | 20.800<br>16.000<br>10.800                    | 4.740<br>4.390<br>4.160<br>4.160<br>4.040<br>3.550 | 5.490<br>4.620<br>3.710<br>5.260<br>3.930   | 1.960<br>2.390<br>2.200<br>1.770<br>1.680 | 1.450<br>1.730<br>1.370<br>1.160<br>1.000                         | 4.640<br>2.680<br>1.910<br>7.770<br>7.400<br>3.680 | 1.490<br>3.540<br>3.440<br>2.540<br>2.100 | .350<br>.325<br>.325<br>.300<br>.300      |

STATE

VIRGINIA

MAJOR BASIN

NORTH ATLANTIC

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

POTOMAC RIVER

STATION LOCATION SHENANDOAH RIVER AT

BERRYVILLE, VIRGINIA

| DATE         | T                   |     |                   | RAD       | OACTIVITY IN V | VATER     |       | т     | PADIO                         | ACTIVITY IN PL | ANKTON (4- ) |           |                  |       |
|--------------|---------------------|-----|-------------------|-----------|----------------|-----------|-------|-------|-------------------------------|----------------|--------------|-----------|------------------|-------|
| SAMPLE       | DATE                | OF  |                   | ALPHA     |                |           | BETA  |       | DATE OF                       | CROSS          | ACTIVITY     | - R/      | DIOACTIVITY IN V |       |
| TAKEN        | DATE<br>DETE<br>NAT | ION | SUSPENDED         | DISSOLVED | TOTAL          | SUSPENDED |       | TOTAL | DATE OF<br>DETERMI-<br>NATION | ALPHA          | BETA         | _         | GROSS ACTIVIT    |       |
| MO. DAY YEAR | MONTH               | DAY | μμ <sub>6</sub> / | μμς/Ι     | μμς/Ι          | μμε/Ι     | μμε/Ι | μμε/1 | MO. DAY                       |                | μμc/g        | SUSPENDED |                  | TOTAL |
|              |                     |     |                   |           |                |           |       | 1121  | 1                             | <i>PPC/</i> 9  | PAC/ 9       | μμς/Ι     | μμς/             | μμс/I |
| 9 12 61      |                     |     | 1                 | 0         | 1              | 8         | 5     | 13    |                               |                | İ            |           |                  |       |
| 9 18 61      | 10 1                |     | 0                 | 0         | 0              | 1         | 10    | 11    |                               |                |              |           |                  |       |
| 9 25 61      | 10 ]                | 12  | 0                 | 1         | 1              | 3         | 14    | 17    |                               |                |              |           | 1                |       |
|              |                     |     |                   |           |                |           |       | İ     |                               | Í              |              | 1         |                  |       |
|              |                     |     |                   |           |                |           |       |       | 1                             | ļ              |              |           |                  |       |
|              |                     |     |                   |           |                |           |       |       |                               | ]              |              | 1 1       | 1                |       |
|              |                     |     |                   |           |                |           |       |       | 1                             |                | 1            |           | 1                |       |
|              |                     |     |                   |           |                | 1         |       | 1     |                               |                |              |           |                  |       |
|              |                     |     |                   |           |                |           |       |       |                               |                |              | 1 1       |                  |       |
|              |                     |     |                   |           |                | i i       |       |       | ŀ                             | ĺ              | 1            |           |                  |       |
|              |                     |     |                   |           |                | ] [       |       | İ     | ļ                             |                | -            |           |                  |       |
|              |                     |     |                   |           |                | [         |       | ļ     |                               |                |              |           |                  |       |
|              |                     |     |                   |           |                |           |       |       |                               |                |              |           |                  |       |
|              |                     |     |                   |           |                |           |       |       |                               |                |              |           |                  |       |
|              | 1                   |     |                   |           |                |           |       |       |                               |                |              |           |                  |       |
|              |                     |     |                   |           |                |           |       |       |                               |                |              |           |                  |       |
|              |                     | ĺ   |                   |           |                |           |       |       |                               |                |              |           |                  |       |
|              |                     |     |                   |           |                | i         |       |       |                               |                |              |           | 1                |       |
|              |                     |     |                   |           |                |           |       | İ     |                               |                |              |           |                  |       |
|              |                     | İ   |                   |           |                |           | I     | 1     | ]                             |                |              |           |                  |       |
|              |                     | i   |                   |           |                | [         |       |       |                               |                |              |           |                  |       |
|              | İ                   |     |                   |           |                |           |       |       |                               |                |              | 1 1       |                  |       |
|              |                     | 1   | ļ                 |           |                |           |       | 1     |                               |                |              |           |                  |       |
|              | l                   |     |                   | 1         |                |           | ļ     | 1     |                               |                |              |           |                  |       |
|              |                     | ł   | i                 |           |                |           |       | l     | 1 1                           |                | ,            |           |                  |       |
|              |                     |     | 1                 |           | ĺ              |           | i     |       | 1 1                           |                |              |           |                  |       |
|              |                     | İ   | 1                 |           | 1              |           |       |       |                               |                |              |           |                  |       |
|              |                     |     |                   |           |                |           |       |       |                               |                |              |           |                  |       |
|              |                     | - 1 |                   |           | ł              |           |       |       |                               |                |              |           |                  |       |
|              |                     |     |                   | - 1       |                |           |       | j     |                               |                |              |           |                  |       |
| 1            |                     |     | İ                 | 1         |                |           | 1     | ĺ     | i i                           |                |              |           |                  |       |
|              |                     |     |                   | ļ         | 1              |           | 1     |       |                               |                |              |           |                  |       |
| j            |                     |     |                   |           |                |           |       |       |                               |                |              |           |                  |       |
| ļ            |                     |     |                   |           |                |           |       | 1     |                               |                |              |           |                  |       |
|              |                     |     |                   |           |                |           | İ     |       | ł                             |                |              |           |                  |       |
|              |                     |     |                   |           |                |           |       |       |                               |                |              |           |                  |       |
|              |                     |     | 1                 |           | 1              |           |       | 1     |                               |                |              |           |                  |       |
|              |                     |     |                   |           |                |           |       |       |                               |                |              |           |                  |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

VIRGINIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

POTOMAC RIVER

STATION LOCATION SHENANDOAH RIVER AT

BERRYVILLE, VIRGINIA

|       | TAC | E    |       |         |                       | ALGAE (1 | Number                | per ml.)         |                 |         |         | IN                   | ERT                            | Т      |                 |                  |                 | LATO   |       |                  |       |            | Γ.                                                                      | т                         | MICROIN                      | VERTER                       | ATEC                         |                                     |                                                             |
|-------|-----|------|-------|---------|-----------------------|----------|-----------------------|------------------|-----------------|---------|---------|----------------------|--------------------------------|--------|-----------------|------------------|-----------------|--------|-------|------------------|-------|------------|-------------------------------------------------------------------------|---------------------------|------------------------------|------------------------------|------------------------------|-------------------------------------|-------------------------------------------------------------|
| OF S  |     |      |       | BLUE-   | GREEN                 | GREE     | EN                    | FLAGEL<br>(Pigme | LATES<br>ented) | DIAT    | oms     | DIA<br>SHI<br>(No. 1 | ERT<br>TOM<br>ELLS<br>per ml.) |        | DOM<br>(Sec     | INANT<br>e Intro | SPEC<br>duction | IATO   | ND PE | RCEN<br>ntificat | TAGES | s          | LANKTON,<br>EATHED<br>IL.)                                              | L.S.                      | T                            | Τ                            |                              | FORKS                               | enera<br>luction<br>cation)                                 |
| MONTH | DAY | YEAR | TOTAL | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID  | FILA-<br>MENT-<br>OUS | GREEN            | OTHER           | CENTRIC | PENNATE | CENTRIC              | PENNATE                        | FIRST# | PER-<br>CENTAGE | SECOND*          | PER.<br>CENTAGE | THIRD# | PER-  | FOURTH*          | PER.  | OTHER PER- | OTHER MICROPLANKTON,<br>FUNGI AND SHEATHED<br>BACTERIA<br>(No. pet ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATOBES<br>(No. per liter) | OTHER ARMAL FORK<br>(No. per liter) | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| 9     |     |      | 30600 | 350     |                       | 10080    |                       | 3290             | 20              | 10640   | 6230    | 7930                 | 2650                           | T      | ]               |                  | 1               |        |       |                  | 1     |            | 5236                                                                    | ()<br>14                  | 25                           | 1                            | NI VI                        |                                     | 8.9.<br>48~G5                                               |

STATE

VIRGINIA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

POTOMAC RIVER

STATION LOCATIONSHEN ANDOAH RIVER AT

BERRYVILLE, VIRGINIA

|       | DAT<br>DF SAA |     | TEMP.                   | DISSOLVED      |     |                |                | CHLORINI       | E DEMAND        |                              |                   |                    |                  |                        |                            | ]                |                    |                                      |                          |
|-------|---------------|-----|-------------------------|----------------|-----|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|----------------------------|------------------|--------------------|--------------------------------------|--------------------------|
| HTHOM | DAY           | 1 ' | (Degrees<br>Centigrade) | OXYGEN<br>mg/l | Hq  | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml. |
| 999   | 1825          |     |                         | 8 • 6 5 • 5    | 8.3 | -              | -              |                |                 |                              | 9 10              | 138                | 164              | 5                      | 20 20                      |                  | 1                  | 237 243                              | *40 270                  |
|       |               |     |                         |                |     |                |                |                |                 |                              |                   |                    |                  |                        |                            |                  |                    |                                      |                          |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Millville, West Virginia Operated by U.S. Geological Survey STATE

Virginia

MAJOR BASIN

North Atlantic

MINOR BASIN

Potomac River

STATION LOCATION

Shenandoah River at

Berryville, Virginia

| Day                              | October                                            | November                                  | December                                     | January                                   | February                                      | March                                              | April                                        | May                                                | June                                        | July                                      | August                                             | September                                 |
|----------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------|-------------------------------------------|-----------------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------------|---------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | .760<br>.775<br>.739<br>.739<br>.704               | .664<br>.644<br>.613<br>.607<br>.601      | • 541<br>• 565<br>• 547<br>• 571<br>• 571    | .851<br>.899<br>1.040<br>1.000            | .600<br>.590<br>.590<br>.600                  | 7.740<br>6.220<br>5.210<br>4.470<br>4.010          | 4.410<br>5.280<br>5.710<br>5.130<br>4.610    | 2.780<br>2.830<br>3.010<br>2.980<br>2.830          | 1.810<br>1.700<br>1.600<br>1.510<br>1.520   | 1.250<br>1.090<br>1.040<br>1.080<br>1.050 | .706<br>.674<br>.658<br>.846<br>.873               | • 990<br>• 837<br>• 786<br>• 714<br>• 682 |
| 6<br>7<br>8<br>9<br>10           | .632<br>.670<br>.677<br>.632<br>.690               | •577<br>•619<br>•553<br>•607<br>•595      | • 541<br>• 505<br>• 535<br>• 529<br>• 511    | .920<br>.798<br>.770<br>.760              | .680<br>.740<br>.820<br>.900                  | 3.800<br>3.650<br>3.580<br>3.990<br>4.710          | 4.080<br>3.610<br>3.230<br>2.940<br>4.350    | 2.690<br>2.700<br>3.090<br>3.870<br>4.010          | 1.420<br>1.410<br>1.380<br>1.590<br>2.220   | 1.060<br>1.050<br>1.150<br>1.060<br>1.060 | 1.120<br>1.050<br>1.360<br>1.050                   | .762<br>1.160<br>1.130<br>.945<br>.722    |
| 11<br>12<br>13<br>14<br>15       | .670<br>.684<br>.670<br>.677                       | .565<br>.583<br>.571<br>.613<br>.559      | .510<br>.500<br>.480<br>.460                 | .746<br>.697<br>.697<br>.625              | .900<br>.900<br>.950<br>1.000                 | 4.770<br>4.230<br>3.740<br>3.420<br>3.210          | 7.040<br>8.440<br>12.100<br>23.800<br>17.600 | 4.200<br>5.540<br>10.100<br>12.200<br>10.200       | 3.280<br>2.600<br>2.290<br>1.940<br>1.940   | 1.170<br>1.020<br>.918<br>1.120<br>1.250  | .828<br>.9 <sup>1</sup> ,5<br>.918<br>.722<br>.738 | . 927<br>. 909<br>. 855<br>. 762<br>. 674 |
| 16<br>17<br>18<br>19<br>20       | .638<br>.553<br>.577<br>.595<br>.644               | • 583<br>• 559<br>• 565<br>• 547<br>• 553 | .600<br>.600<br>.590<br>.580                 | .828<br>.958<br>.974<br>1.140<br>1.200    | 1.600<br>2.400<br>3.800<br>13.000<br>23.000   | 3.060<br>2.910<br>2.660<br>2.600<br>2.540          | 12.800<br>11.600<br>13.000<br>9.800<br>7.380 | 7.670<br>6.150<br>5.260<br>4.510<br>3.970          | 2.020<br>1.860<br>1.740<br>1.590<br>1.390   | 1.040<br>.999<br>1.060<br>.918<br>.936    | .706<br>.629<br>.643<br>.601<br>.601               | • 594<br>• 574<br>• 574<br>• 567<br>• 560 |
| 21<br>22<br>23<br>24<br>25       | . 632<br>. 664<br>. 638<br>. 601                   | • 577<br>• 541<br>• 535<br>• 529<br>• 535 | . 580<br>. 570<br>. 560<br>. 560<br>. 560    | • 983<br>• 891<br>• 780<br>• 730<br>• 700 | 16.900<br>10.500<br>9.510<br>10.800<br>11.200 | 2.520<br>2.960<br>3.950<br>6.310<br>7.770          | 6.000<br>5.170<br>4.690<br>4.270<br>3.910    | 3.540<br>3.180<br>2.910<br>2.660<br>2.450          | 1.300<br>1.480<br>1.720<br>1.660<br>1.560   | .855<br>.927<br>.819<br>.918<br>1.310     | .636<br>.643<br>.650<br>.636<br>.714               | .594<br>.666<br>.864<br>1.030<br>.846     |
| 26<br>27<br>28<br>29<br>30<br>31 | . 607<br>. 589<br>. 577<br>. 577<br>. 589<br>. 583 | •535<br>•535<br>•541<br>•583<br>•583      | .651<br>.684<br>.700<br>.720<br>.739<br>.753 | .670<br>.650<br>.630<br>.620<br>.610      | 12.600<br>15.600<br>10.900                    | 8.140<br>7.530<br>6.420<br>5.560<br>4.820<br>4.250 | 3.690<br>3.420<br>3.210<br>3.070<br>2.910    | 2.290<br>2.150<br>2.040<br>1.960<br>1.930<br>1.780 | 1.1470<br>1.350<br>1.1410<br>1.260<br>1.310 | 1.040<br>1.120<br>.900<br>.826<br>.810    | .864<br>.674<br>.836<br>1.410<br>1.070<br>.762     | .762<br>.650<br>.594<br>.541<br>.51:9     |

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

MIDDLE AND LOWER SNAKE RIVER

STATION LOCATION SNAKE RIVER AT

WAWAWAI, WASHINGTON

| DATE         |                               |           | PADI      | OACTIVITY IN V | VATER     |           |       |                      |            |       |             |   |           |                  |       |
|--------------|-------------------------------|-----------|-----------|----------------|-----------|-----------|-------|----------------------|------------|-------|-------------|---|-----------|------------------|-------|
| SAMPLE       | DATE OF                       |           | ALPHA     | OACHVIII III V | TATER     | BETA      |       |                      |            |       | NKTON (dry) | _ | RAD       | DIOACTIVITY IN V | VATER |
| TAKEN        | DATE OF<br>DETERMI-<br>NATION | SUSPENDED | DISSOLVED | TOTAL          | SUSPENDED | DISSOLVED |       | DATE<br>DETE<br>NATI | OF<br>RMI- |       | ACTIVITY    |   |           | GROSS ACTIVIT    | Υ     |
| MO. DAY YEAR |                               | μμς/!     | μμε/1     | μμε/Ι          | μμc/I     |           | TOTAL |                      |            | ALPHA | BETA        |   | SUSPENDED | DISSOLVED        | TOTAL |
|              | <del> </del>                  | 77.57     | 7701      | PPC/1          | μμε/1     | μμς/      | μμε/Ι | MO.                  | DAY        | μμc/g | μμc/g       |   | μμς/      | μμc/1            | μμε/[ |
| 10 24 60*    | 11 7                          | l o 1     | 4         | 4              | 0         | 0         |       |                      |            |       |             | 1 |           |                  |       |
| 11 28 60*    |                               | l a l     | 3         | 3              | ő         | 4         | 0 /   |                      |            |       | 1           |   |           |                  |       |
| 12 28 60*    | 1 12                          | ō         | 6         | 6              | 0         | ŏ         | 4     |                      |            |       |             | i | i i       |                  |       |
| 1 31 61*     |                               | l o l     | 3         | 3              | 0         |           | 0     |                      |            |       |             |   |           |                  |       |
| 2 27 61*     |                               | l ŏ l     | ĩ         | 1              | 0         | 0         | 0     |                      | 1          |       |             | 1 |           |                  |       |
| 3 27 61*     |                               | ŏ         | ī         | 1              | 0         | 0         | 0     | İ                    |            |       |             | 1 |           |                  |       |
| 4 24 61*     |                               | 0         | i         | 1              |           | 0         | 0     | 1                    | İ          |       |             |   |           |                  |       |
| 5 29 61*     |                               | 0         | 1         | 1              | 0         | 3         | 3     |                      | -          |       |             | 1 |           |                  |       |
| 6 26 61*     |                               | 0 1       | i         | 1              | 0         | 14        | 14    | ĺ                    | j          |       |             |   | ]         | i                |       |
| 7 31 61*     |                               | ŏ         | i         | 1              | 0         | 3         | 3     | ł                    | - 1        |       |             |   |           |                  |       |
| 8 28 61*     |                               | ŏ         | i         | 1              | 1 1       | 7         | 8     | ļ                    |            |       |             |   |           |                  |       |
| 9 5 61       | 10 3                          |           |           | ,              | 0         | 19        | 19    | l                    | İ          |       |             | Ī |           |                  |       |
| 9 11 61      | 10 19                         |           | _         |                | 0         | 8         | 8     | ļ                    |            |       |             | ļ | 1         | i                |       |
| 9 18 61      | 10 5                          | _         | _         | _              | 3         | 8         | 11    |                      |            |       |             |   | ]         |                  |       |
| 9 25 61      | 10 10                         | 0         | 3         |                | 0         | 0         | 0     |                      | ł          |       |             | 1 |           |                  |       |
| , ,, ,,      | 10 10                         |           | 3         | 3              | 1         | 13        | 14    |                      | -          |       |             |   | ]         |                  |       |
|              | <u>l</u>                      |           |           |                |           | į         |       |                      | Ì          |       |             | 1 | 1         |                  |       |
|              | 1                             |           |           |                |           |           |       |                      |            |       |             |   | 1         | 1                |       |
|              |                               |           |           |                |           |           | 1     | İ                    |            |       | 1           | ] |           |                  |       |
|              |                               |           |           |                |           |           | 1     | 1                    |            |       |             | I | 1         |                  |       |
|              |                               |           | 1         |                |           |           |       | 1                    |            |       |             |   |           |                  |       |
|              |                               |           |           |                |           |           | 1     | j                    | 1          |       |             |   |           |                  |       |
|              | i i                           |           |           | İ              |           |           |       | İ                    |            |       | i           |   | 1         |                  |       |
|              |                               |           | į         |                |           |           | -     | - 1                  |            |       |             |   |           |                  |       |
|              |                               |           |           |                |           |           |       |                      |            |       |             | 1 |           |                  |       |
|              |                               |           |           |                |           |           |       | 1                    | İ          |       |             | 1 |           |                  |       |
|              |                               |           |           |                |           |           |       |                      |            |       |             |   | ]         | -                |       |
|              |                               | 1         | 1         |                |           | 1         |       |                      |            |       |             | 1 | 1         |                  |       |
|              | ŀ                             |           |           | l              | 1         |           |       |                      | - 1        |       |             | 1 | 1         |                  |       |
| 1            |                               |           |           | ľ              |           |           | 1     |                      |            |       |             |   |           | 1                |       |
|              |                               |           | ļ         |                | Í         |           | İ     |                      |            |       |             |   |           |                  |       |
| 1            |                               | ŀ         |           |                |           |           |       |                      |            |       |             |   |           |                  |       |
|              |                               |           |           |                |           |           | 1     | 1                    |            |       |             | i |           |                  |       |
|              | 1                             |           |           |                |           | 1         | Ī     | -                    | 1          |       |             | ļ |           | 1                |       |
|              | 1                             |           | 1         |                | 1         | 1         | ļ     |                      |            |       |             | i |           | ľ                |       |
|              | 1                             |           |           | 1              |           |           | İ     |                      |            |       |             |   |           |                  |       |
|              | 1                             | Ī         |           | - 1            |           | 1         | ļ     |                      |            |       |             |   |           |                  |       |
|              |                               | 1         | 1         |                |           |           |       |                      |            |       |             |   |           |                  |       |
| j            |                               |           |           |                | 1         |           | l     | 1                    |            |       |             |   |           | ľ                |       |
|              |                               |           |           |                |           |           |       |                      |            |       |             | 1 | 1         |                  |       |
|              | İ                             | 1         | 1         | ĺ              |           |           | 1     |                      |            |       |             |   |           |                  |       |
|              |                               |           |           |                |           |           |       | 1                    | - 1        | 1     |             | l | 1         | 1                |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

MIDDLE AND LOWER SNAKE RIVER

STATION LOCATION SNAKE RIVER AT

WAWAWAI, WASHINGTON

| DATE                                                                                                                                                                                        |                                                                                                                           |          |                       | ALGAE (                      | Vumber                | per ml.)                               |       |                                                                                                                 |                                                                                                                                             | 1 1815                                                                                                    | ,<br>-DT                      | 1                                                                                                               |                                                                      |                                                             |                                                                                 | <u></u>                                                                                |                                  |                                                                                                 |                           |                                                                                                                                                                                              | <del></del>                                                      | ,                         |                                                                                                  |                              |                              |                   |                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|------------------------------|-----------------------|----------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------|------------------------------|------------------------------|-------------------|----------------------------------------------------------------------|
| OF SAMPLE                                                                                                                                                                                   |                                                                                                                           | BLUE-    | GREEN                 | GREE                         | EN                    | FLAGEI<br>(Pigm                        |       | DIAT                                                                                                            | OMS                                                                                                                                         | DIA                                                                                                       | ERT<br>TOM<br>ELLS<br>er ml.) |                                                                                                                 |                                                                      |                                                             | SPEC                                                                            |                                                                                        | OMS<br>AND PI<br>Code Id         |                                                                                                 |                           | s                                                                                                                                                                                            | SHEATHED                                                         | <u></u>                   | MICROIN                                                                                          | T                            | T                            | ORMS              | tera<br>ction<br>ttion)                                              |
| MONTH<br>DAY<br>YEAR                                                                                                                                                                        | TOTAL                                                                                                                     | COCCOID  | FILA-<br>MENT-<br>OUS | COCCOID                      | FILA-<br>MENT-<br>OUS | GREEN                                  | OTHER | CENTRIC                                                                                                         | PENNATE                                                                                                                                     |                                                                                                           | T                             | FIRST#                                                                                                          | PER-                                                                 | SECOND#                                                     | PER.<br>CENTAGE                                                                 | THIRD*                                                                                 | PER.                             | FOURTH                                                                                          | PER.                      | OTHER PER-<br>CENTAGE                                                                                                                                                                        | OTHER MICROFLAN<br>PUNCI AND SHEATE<br>BACTERIA<br>(NO. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)                                                                     | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | CHER ANIMAL FORMS | DOMINANT GENERA<br>(See Introduction<br>for Identification)          |
| 10 10 60<br>10 17 60<br>11 14 60<br>12 5 60<br>12 19 60<br>1 3 61<br>1 16 61<br>2 20 61<br>3 6 61<br>3 20 61<br>4 3 61<br>4 17 61<br>5 61<br>6 5 61<br>7 3 61<br>7 61<br>8 21 61<br>9 18 61 | 600<br>600<br>1300<br>300<br>600<br>400<br>900<br>1500<br>1400<br>2300<br>800<br>400<br>200<br>1500<br>1300<br>400<br>800 | 20 40 20 | 20                    | 20<br>80<br>100<br>120<br>60 | 20 20 40 20 20        | 20<br>20<br>20<br>40<br>40<br>40<br>40 | 20    | 50<br>130<br>70<br>130<br>50<br>20<br>1600<br>330<br>640<br>150<br>970<br>250<br>540<br>330<br>270<br>110<br>40 | 510<br>420<br>1230<br>220<br>470<br>310<br>780<br>650<br>840<br>1020<br>1260<br>270<br>760<br>270<br>70<br>1140<br>660<br>830<br>250<br>640 | 20<br>40<br>70<br>30<br>200<br>160<br>50<br>930<br>640<br>530<br>40<br>150<br>40<br>120<br>80<br>20<br>60 |                               | 70<br>70<br>36<br>70<br>9<br>70<br>36<br>70<br>82<br>2<br>2<br>80<br>2<br>80<br>2<br>92<br>47<br>92<br>92<br>92 | 10<br>10<br>10<br>10<br>20<br>10<br>20<br>20<br>20<br>50<br>60<br>30 | 2 2 4 1 2 7 7 1 4 1 9 2 2 8 2 9 9 2 2 8 9 1 6 2 2 4 7 7 7 0 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 58<br>36<br>36<br>36<br>57<br>32<br>32<br>32<br>47<br>47<br>82<br>47<br>48<br>46<br>46 | 10<br>10<br>10<br>10<br>10<br>10 | 64<br>64<br>71<br>71<br>36<br>70<br>76<br>70<br>80<br>2<br>89<br>2<br>15<br>62<br>35<br>85<br>2 | 10<br>10<br>10<br>10<br>* | 50<br>60<br>70<br>50<br>60<br>70<br>60<br>60<br>70<br>60<br>60<br>70<br>60<br>60<br>70<br>60<br>60<br>70<br>60<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 40<br>110<br>30<br>20<br>70<br>160                               | 10 20 10                  | 4<br>1<br>4<br>6<br>1<br>1<br>8<br>3<br>0<br>4<br>7<br>3<br>4<br>1<br>0<br>3<br>2<br>9<br>1<br>4 | 3 3                          | 1 2 2 4 2 2 1 4 1 1          | 1 2 7             | 3-97-<br>3-963<br>7-963<br>3-973<br>3-973<br>3-973<br>3-973<br>3-973 |



#### ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

MIDDLE AND LOWER SNAKE RIVER

STATION LOCATION SNAKE RIVER AT

WAWAWAI, WASHINGTON

|                               |      | AMPLE               | :   |                                      | E                              | XTRACTABL                  | FS                            | ı                   |                         |                           |             | CLU OF CT     |                              |             |               |                 |               |            |
|-------------------------------|------|---------------------|-----|--------------------------------------|--------------------------------|----------------------------|-------------------------------|---------------------|-------------------------|---------------------------|-------------|---------------|------------------------------|-------------|---------------|-----------------|---------------|------------|
| BEGINN                        | IING | E                   | ND  |                                      |                                |                            | <del></del>                   |                     | i i                     |                           |             | NEUTRALS      |                              | ACTABLES    | 1             | 1 1             | <del></del>   |            |
| MONTH                         | YEAR | HTNOM               | DAY | GALLONS<br>FILTERED                  | TOTAL                          | CHLORO-<br>FORM            | ALCOHOL                       | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES       | TOTAL                     | ALIPHATICS  | AROMATICS     | OXYGEN-<br>ATED<br>COMPOUNDS | Loss        | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES         | LOSS       |
| 10 3<br>11 7<br>12 13<br>1 16 | 61   | 10<br>11<br>12<br>2 | 21  | 2909<br>6930<br>5370<br>4570<br>3440 | 237<br>86<br>125<br>141<br>145 | 52<br>25<br>24<br>35<br>75 | 185<br>61<br>101<br>106<br>70 | 1 1 2 1 1           | 11<br>5<br>4<br>7<br>21 | 23<br>10<br>9<br>12<br>15 | 1 1 1 1 2 2 | 2 1 1 1 1 1 1 | 18<br>7<br>6<br>9<br>12      | 2 1 1 1 0 0 | 7 3 5 4 8     |                 | 1 1 0 0 0 1 1 | 6 4 3 9 21 |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

WASHINGTON

STATE
MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

MIDDLE AND LOWER SNAKE RIVER

STATION LOCATIONS NAKE RIVER AT

WAWAWAI, WASHINGTON

| DATE<br>OF SAMPLE | TEMP.    | DISSOLVED      |            |                |                | CHLORINE         | DEMAND          |                              |                   |                    |                  | 1        |                            | 1                |                    |                                      |                          |
|-------------------|----------|----------------|------------|----------------|----------------|------------------|-----------------|------------------------------|-------------------|--------------------|------------------|----------|----------------------------|------------------|--------------------|--------------------------------------|--------------------------|
| MONTH DAY         | (Degrees | OXYGEN<br>mg/l | pН         | B.O.D.<br>mg/l | C.O.D.<br>mg/l | I-HOUR<br>. mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR    | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml. |
| 10 3 6            |          | -              | -          | -              | -              | 1.5              | 2.9             | _                            |                   | _                  |                  |          | 20                         |                  |                    |                                      | 130                      |
| 10 10 60          |          | 1              | 7.9        |                | 7              | 1.9              | 5 • 2           | •0                           | 17                | 124                | 125              | 18       | 20                         | 55               | _                  | 223                                  | 200                      |
| 10 17 60          |          | 10.1           | 8.0        | 1.7            | 8              | • 6              | 2 • 2           | •0                           | 16                | 128                | 126              | 17       | 20                         | 49               | i I                | 238                                  | 110,0                    |
| 10 31 60          |          | 9.9            | 7.8<br>8.1 | 1.6<br>3.4     | 7              | • 5              | 1.7             | •0                           | 16                | 137                | 134              | 17       | 2                          | 51               | -                  | 212                                  | 800%                     |
| 11 7 60           |          | 10.1           | 8.0        | 1.7            | 7 8            | 1.3              | 3.0             | • 0                          | 16                | 114                | 121              | 16       | 20                         | 44               |                    | 203                                  | 430                      |
| 11 14 60          |          | 10.6           | 7.9        | 3.0            | 7              | 1.5              | 5.0             | •1                           | 18                | 126                | 130              | 18       | 20                         | 59               | -                  | 238                                  | 1400                     |
| 11 21 60          |          | 11.1           | 8.1        | 2.2            | 6              | .8<br>1.0        | 2 • 6           | •0                           | 16                | 120                | 126              | 19       | 4                          | 56               | -                  | 228                                  | 550                      |
| 11 28 60          |          | 11.2           | 7.5        | 3.6            | 7              | 1.6              | 6.7             | •0                           | 10<br>11          | 103                | 107              | 20       | 13                         | 42               | -                  | 165                                  | 66                       |
| 12 5 60           |          | 10.9           | 7.8        | 4.3            | 8              | •6               | 1.3             | •0                           | 17                | 96<br>117          | . 93             | 20       | 12                         | 43               | -                  | 186                                  | 1300                     |
| 12 12 60          | 4.0      | 11.2           | 8.1        | 3.7            | 8              | .8               | 2.3             | •0                           | 18                | 128                | 114<br>123       | 18<br>17 | 1                          | 41               | -                  | 226.                                 | 700                      |
| 12 19 60          |          | 12.2           | 8.1        | 5.6            | 6              | 1.2              | 3.7             | •0                           | 19                | 141                | 132              | 17       | 1                          | 54               | -                  | 237                                  | 380                      |
| 12 28 60          |          | 13.3           | 7.5        | 5.5            | 30             | 1.2              | 4.7             | •0                           | 11                | 126                | 125              | 20       | 2 4                        | 50<br>43         | -                  | 227                                  | 14000                    |
| 1 3 6             |          | 13.5           | 7.6        | 4.3            | 9              | •7               | 1.9             | .0                           | 17                | 136                | 135              | 20       | ő                          | 47<br>55         | _                  | 211<br>248                           | 300                      |
| 1 9 61            |          | 13.8           | 7.8        | 5•4            | 7              | • 9              | 2 • 8           | •0                           | 16                | 129                | 125              | 18       | i                          | 51               |                    | 242                                  | 2700                     |
| 1 16 61           |          | 12.8           | 7.6        | 2.7            | 8              | 1.3              | 3 • 3           | •0                           | 17                | 118                | 115              | 18       | 5                          | 51               | _                  | 216                                  | 310<br>300               |
| 1 23 61           |          | 13.1           | 7.8        | 4.5            | 9              | • 9              | 3.0             | •0                           | 16                | 116                | 112              | 18       | 2                          | 53               | _                  | 220                                  | 300                      |
| 1 29 61           | 1        |                |            | -              | -              | ~                | -               | -                            | -                 | -                  | -                |          |                            | -                | -                  |                                      | 250                      |
| 1 30 61           |          | 13.2           | 7.5        | 3.0            | 8              | 1.0              | 2.7             | • 1                          | 19                | 140                | 139              | 18       | 1                          | 53               | [                  | 280                                  |                          |
| 2 13 63           |          | 11.5           | 7.8        | 4.0            | 13             | • 9              | 3 • 3           | •0                           | 12                | . 86               | 86               | 35       | 31                         | 26               | -                  | 173                                  | 330                      |
| 2 20 61           |          | 12.3           | 7 • 4      | 3.2            | 14             | 1.0              | 4 • 2           | •0                           | 7                 | 59                 | 56               | 40       | 45                         | 26               | -                  | 158                                  | 960                      |
| 2 27 61           |          | 12.5           | 7.4        | 3.3            | 11             | 1.0              | 3 • 4           | •0                           | 10                | 80                 | 74               | 40       | 6                          | 26               | -                  | 175                                  | 150                      |
| 3 6 6 1           |          | 13.0           | 7.0        | 3.1<br>3.0     | 9              | 1.0              | 3.2             | • 2                          | 10                | 87                 | 81               | 30       | 6                          | 40               | -                  | 188                                  | 790                      |
| 3 13 61           |          | 13.1           | 7.1        | 3.0            | 21             | . 9              | 2.5             | •0                           | 10                | 89                 | 85               | 22       | 5                          | 38               | -                  | 172                                  | 790                      |
| 3 20 61           |          | 10.8           | 6.6        | 3.3            | 10             | 1.1              | 3.5             | •0                           | 10                | 95                 | 90               |          | 35                         | -                | -                  | 136                                  | 120                      |
| 3 27 61           |          | 12.5           | 6.9        | 2.7            | 8              | 1.2              | 4 • 2           | •0                           | 7                 | 61                 | 59               | 18       | 10                         | 32               | -                  | 122                                  | 270                      |
| 4 3 61            |          | 14.0           | 7.0        | 2.8            | š l            | .8               | 2.8             | •0                           | 7<br>8            | 69                 | 61               | 18       | 8                          | 33               | -                  | 114                                  | 2 <b>6</b> 0             |
| 4 10 61           | . 8.0    | 13.6           | 7.2        | 2.3            | 9              | 1.2              | 3.7             | •0                           | 7                 | 70  <br>51         | 58<br>51         | 18       | 3                          | -                | -                  | 113                                  | 160                      |
| 4 17 61           | . 10.6   | 11.2           | 8.1        | 2.2            | _              | . 9              | 3.4             |                              | 4                 | 51                 | 48               | 18       | 1 2                        |                  | -                  | -                                    | 140                      |
| 4 24 61           | 8.2      | 11.3           | 7.7        | 2.1            | 13             | 1.3              | 5.1             | •1                           | 2                 | 38                 | 35               | 47       | 34                         | 13               |                    | 90                                   | 230                      |
| 5 1 61            |          | 11.0           | 8.0        | 3.0            | 10             | 1.0              | 3.2             | •0                           | 2                 | 37                 | 33               | 21       | 2                          | 8                | •1                 | 75                                   | 1400                     |
| 5 8 61            | 9.7      | 11.2           | 7.8        | 1.2            | 10             | 1.1              | 3.7             | •1                           | 1                 | 30                 | 29               | 26       | 2                          | 5                | •0                 | 68<br>67                             | 540<br>320               |
| 5 15 61           | 11.0     | 11.4           | 7.7        | 2.5            | 10             | 1.4              | 4.9             | •0                           | ī                 | 28                 | 26               | 21       | 2                          | 7                | .0                 | 62                                   | *33                      |
| 5 22 61           |          | 10.4           | 7.5        | 1.9            | 13             | 1.7              | 5.0             | •0                           | ī                 | 24                 | 24               | 19       | 5                          | 4                | .0                 | 46                                   | *33                      |
| 5 29 61           | 11.0     | 10.9           | 7 • 4      | 2.0            | 13             | 1.4              | 6 • 4           | •1                           | 1                 | 20                 | 20               | 15       | 8                          | 4                |                    | 50                                   | 770                      |
| 6 5 61            | 12.8     | 10.6           | 7.5        | . 8            | 10             | • 6              | 3 • 4           | •0                           | 1                 | 22                 | 22               | 14       | 8                          | 5                | .0                 | 48                                   | 150                      |
| 6 12 61           | 14.4     | 10.2           | 7.7        | 1.8            | . 9            | • 7              | 2 • 8           | •0                           | 2                 | 30                 | 29               | 14       | 2                          | 7.               | .0                 | 57                                   | 170                      |
| 6 19 61 6 26 61   | 18.0     | 8.7            | 7.8        | 1.6            | 10             | 1.4              | 3.9             | •0                           | 2                 | 36                 | 32               | 14       | 1                          | 9                | -                  | 67                                   | 300                      |
| 6 26 61           | 21.0     | 8.6            | 8.1        | 1.3            | 9              | 1.0              | 3 • 1           | •0                           | 3                 | 46                 | 42               | 14       | 1                          | 12               | •0                 | 82                                   | 1800                     |

STATE

WASHINGTON

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

MIDDLE AND LOWER SNAKE RIVER

STATION LOCATIONSNAKE RIVER AT

WAWAWAI, WASHINGTON

| DATE<br>OF SAMPLE                                                                                                   | TEMP.                   | DISSOLVED |                        |                                                                       |                                                      | CHLORINE                                                      | DEMAND                                                                                |                                         |                                                                                                                                                         |                                                                          |                                                                             |                                                                      |                                         |                                                                      |                    |                                                                                | 1                                                              |
|---------------------------------------------------------------------------------------------------------------------|-------------------------|-----------|------------------------|-----------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|
| DAY YEAR                                                                                                            | (Degrees<br>Centigrade) | OXYGEN    | рĦ                     | B.O.D.<br>mg/l                                                        | C.O.D.                                               | 1-HOUR<br>mg/I                                                | 24-HOUR<br>mg/l                                                                       | AMMONIA-<br>NITROGEN<br>mg/l            | CHLORIDES<br>mg/l                                                                                                                                       | ALKALINITY<br>mg/I                                                       | HARDNESS<br>mg/l                                                            | COLOR<br>(scale units)                                               | TURBIDITY<br>(scale units)              | SULFATES<br>mg/l                                                     | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l                                           | COLIFORMS<br>per 100 ml,                                       |
| 7   3   61<br>7   10   61<br>7   17   61<br>7   31   61<br>8   14   61<br>8   28   61<br>9   11   61<br>9   25   61 | 24.4                    |           | 8.11.95.02.4.3.3.3.4.2 | 1.0<br>.4<br>.6<br>.4<br>1.0<br>1.1<br>.6<br>1.7<br>1.4<br>1.9<br>1.2 | 9<br>10<br>11<br>11<br>11<br>11<br>11<br>9<br>9<br>9 | 9<br>6<br>9<br>9<br>8<br>9<br>7<br>9<br>7<br>1<br>0<br>1<br>0 | 2.7<br>2.9<br>2.4<br>2.5<br>3.6<br>1.5<br>2.8<br>3.9<br>2.0<br>2.8<br>2.2<br>7.2<br>8 | 000000000000000000000000000000000000000 | 4<br>4<br>6<br>8<br>0<br>1<br>1<br>1<br>2<br>1<br>3<br>1<br>4<br>1<br>1<br>1<br>1<br>4<br>1<br>1<br>4<br>1<br>1<br>4<br>1<br>1<br>4<br>1<br>1<br>4<br>1 | 52<br>52<br>58<br>72<br>88<br>90<br>96<br>104<br>100<br>98<br>108<br>113 | 50<br>48<br>56<br>666<br>766<br>92<br>100<br>104<br>92<br>104<br>111<br>109 | 13<br>14<br>15<br>15<br>15<br>15<br>16<br>15<br>15<br>15<br>15<br>15 | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 13<br>12<br>16<br>22<br>28<br>33<br>38<br>42<br>35<br>40<br>44<br>43 | .0                 | 92<br>92<br>108<br>130<br>154<br>180<br>198<br>212<br>180<br>202<br>215<br>212 | 1200<br>770<br>1400<br>190<br>330<br>130<br>2500<br>280<br>540 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station near Clarkston, Washington Operated by U.S. Geological Survey

STATE

Washington

MAJOR BASIN

Pacific Northwest

MINOR BASIN

Middle and Lower Snake River

STATION LOCATION

Snake River at

Wawawai, Washington

| Day                              | October                                                  | November                                       | December                                                 | January                                                  | February                                       | March                                                    | April                                          | May                                                            | June                                               | July                                                     | August                                                   | September                                      |
|----------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| 1                                | 21.200                                                   | 23.500                                         | 25.900                                                   | 27.700                                                   | 42.300                                         | 44.900                                                   | 51.500                                         | 59.900                                                         | 141.000                                            | 37.100                                                   | 19.700                                                   | 17.600                                         |
| 2                                | 18.700                                                   | 26.100                                         | 25.300                                                   | 27.500                                                   | 40.800                                         | 49.000                                                   | 52.200                                         | 72.200                                                         | 148.000                                            | 33.000                                                   | 18.500                                                   | 20.000                                         |
| 3                                | 17.600                                                   | 26.300                                         | 25.300                                                   | 26.600                                                   | 37.600                                         | 45.300                                                   | 58.000                                         | 79.000                                                         | 160.000                                            | 30.200                                                   | 18.100                                                   | 23.000                                         |
| 4                                | 18.100                                                   | 25.400                                         | 26.700                                                   | 25.300                                                   | 33.500                                         | 39.500                                                   | 77.400                                         | 75.800                                                         | 156.000                                            | 29.000                                                   | 16.000                                                   | 21.600                                         |
| 5                                | 19.500                                                   | 24.200                                         | 26.800                                                   | 24.600                                                   | 31.500                                         | 37.400                                                   | 74.000                                         | 73.500                                                         | 150.000                                            | 28.500                                                   | 16.600                                                   | 20.600                                         |
| 6                                | 20.200                                                   | 24.000                                         | 26.200                                                   | 27.000                                                   | 32.100                                         | 36.100                                                   | 66.700                                         | 68.700                                                         | 145.000                                            | 28.200                                                   | 17.300                                                   | 21.200                                         |
| 7                                | 20.900                                                   | 25.200                                         | 23.600                                                   | 28.400                                                   | 38.000                                         | 35.100                                                   | 60.600                                         | 62.400                                                         | 148.000                                            | 29.300                                                   | 14.600                                                   | 19.700                                         |
| 8                                | 21.500                                                   | 25.600                                         | 22.200                                                   | 28.200                                                   | 39.900                                         | 34.900                                                   | 58.200                                         | 58.400                                                         | 140.000                                            | 28.000                                                   | 13.900                                                   | 18.800                                         |
| 9                                | 23.000                                                   | 24.800                                         | 21.500                                                   | 28.100                                                   | 40.000                                         | 35.800                                                   | 56.000                                         | 55.900                                                         | 127.000                                            | 25.400                                                   | 16.000                                                   | 17.300                                         |
| 10                               | 20.800                                                   | 24.500                                         | 22.300                                                   | 28.900                                                   | 51.500                                         | 36.300                                                   | 51.400                                         | 58.000                                                         | 122.000                                            | 23.100                                                   | 17.600                                                   | 17.400                                         |
| 11<br>12<br>13<br>14<br>15       | 21.100<br>23.100<br>25.500<br>24.600<br>23.300           | 22.900<br>25.500<br>26.400<br>27.000<br>27.500 | 22.800<br>21.700<br>24.000<br>25.400<br>25.700           | 29.700<br>29.000<br>27.800<br>27.500                     | 75.600<br>72.200<br>60.000<br>55.300<br>49.700 | 35.200<br>32.900<br>30.100<br>36.300<br>44.500           | 49.300<br>47.400<br>51.600<br>50.400<br>46.600 | 67.200<br>70.300<br>70.100<br>68.500<br>69.400                 | 115.000<br>112.000<br>112.000<br>103.000<br>91.800 | 24.000<br>23.000<br>21.900<br>21.000<br>20.500           | 14.000<br>16.400<br>17.600<br>14.800<br>14.000           | 17.300<br>17.100<br>17.800<br>17.700<br>18.500 |
| 16                               | 22.000                                                   | 27.600                                         | 25.400                                                   | 28.000                                                   | 50.400                                         | 46.000                                                   | 43.700                                         | 71.900                                                         | 88.600                                             | 20.000                                                   | 16.200                                                   | 17.900                                         |
| 17                               | 23.400                                                   | 28.000                                         | 24.700                                                   | 30.900                                                   | 48.300                                         | 53.600                                                   | 44.400                                         | 74.600                                                         | 86.300                                             | 19.000                                                   | 17.200                                                   | 17.400                                         |
| 18                               | 23.400                                                   | 29.200                                         | 26.000                                                   | 31.100                                                   | 45.400                                         | 50.600                                                   | 58.200                                         | 79.700                                                         | 83.800                                             | 18.400                                                   | 14.800                                                   | 17.200                                         |
| 19                               | 23.800                                                   | 33.200                                         | 29.600                                                   | 28.500                                                   | 41.800                                         | 46.200                                                   | 61.000                                         | 83.300                                                         | 76.500                                             | 18.200                                                   | 16.700                                                   | 18.300                                         |
| 20                               | 24.400                                                   | 29.800                                         | 31.800                                                   | 26.100                                                   | 41.700                                         | 46.600                                                   | 57.000                                         | 91.500                                                         | 73.100                                             | 17.500                                                   | 17.200                                                   | 20.500                                         |
| 21                               | 24.700                                                   | 26.900                                         | 29.700                                                   | 23.900                                                   | 47.700                                         | 47.600                                                   | 53.300                                         | 102.000                                                        | 66.600                                             | 17.000                                                   | 14.200                                                   | 21.500                                         |
| 22                               | 24.000                                                   | 27.600                                         | 27.400                                                   | 23.000                                                   | 66.600                                         | 46.600                                                   | 48.100                                         | 111.000                                                        | 64.700                                             | 17.500                                                   | 13.800                                                   | 22.100                                         |
| 23                               | 23.600                                                   | 26.100                                         | 26.500                                                   | 23.800                                                   | 64.300                                         | 48.000                                                   | 51.600                                         | 116.000                                                        | 59.700                                             | 19.100                                                   | 16.300                                                   | 21.800                                         |
| 24                               | 22.900                                                   | 25.200                                         | 26.200                                                   | 25.500                                                   | 54.600                                         | 53.400                                                   | 51.500                                         | 129.000                                                        | 55.900                                             | 17.300                                                   | 17.000                                                   | 22.000                                         |
| 25                               | 24.800                                                   | 31.000                                         | 25.300                                                   | 27.600                                                   | 50.200                                         | 59.000                                                   | 50.100                                         | 141.000                                                        | 54.800                                             | 15.800                                                   | 14.000                                                   | 22.700                                         |
| 26<br>27<br>28<br>29<br>30<br>31 | 22.600<br>23.000<br>22.800<br>22.600<br>22.800<br>24.000 | 32.100<br>31.600<br>31.800<br>29.100<br>26.600 | 25.000<br>24.300<br>26.300<br>27.600<br>27.600<br>27.900 | 29.000<br>27.200<br>27.300<br>27.100<br>29.000<br>32.100 | 47.800<br>43.000<br>44.000                     | 56.900<br>55.300<br>53.500<br>50.700<br>49.600<br>49.500 | 47.600<br>45.500<br>45.800<br>48.400<br>52.800 | 156.000<br>168.000<br>154.000<br>138.000<br>140.000<br>151.000 | 46.800<br>46.900<br>46.100<br>40.400<br>37.100     | 17.300<br>18.900<br>16.000<br>16.100<br>20.000<br>22.000 | 15.800<br>17.600<br>15.700<br>15.800<br>17.000<br>16.900 | 22.200<br>22.800<br>21.500<br>20.900<br>19.600 |

STATE

IDAHO

MAJOR BASIN

PACIFIC NORTHWEST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

CENTRAL SNAKE RIVER

STATION LOCATION SNAKE RIVER AT

WEISER, IDAHO

| -  | DAT  |           | Г  | ·                           |          | RA       | DIOACTIVITY IN | WATER              |           |             | Γ'''     | RADIOA                        | CTIVITY IN PLA | NKTON (dry) | T   | RAI           | DIOACTIVITY IN V | VATER |
|----|------|-----------|----|-----------------------------|----------|----------|----------------|--------------------|-----------|-------------|----------|-------------------------------|----------------|-------------|-----|---------------|------------------|-------|
|    | SAMP |           | Б  | ATE OF                      | T        | ALPHA    |                | 1                  | BETA      | <del></del> | 1        | DATE OF                       | GROSS          | ACTIVITY    | 1   |               | GROSS ACTIVIT    |       |
|    | TAKE | N         | DI | ATE OF<br>ETERMI-<br>IATION | SUSPENDE | DISSOLVE | TOTAL          | SUSPENDED          | DISSOLVED | TOTAL       | ]        | DATE OF<br>DETERMI-<br>NATION | ALPHA          | BETA        | 1   | SUSPENDED     | DISSOLVED        | TOTAL |
| МО | DAY  | YEAR      |    | TH DAY                      | μμς/1    | μμε/Ι    | μμε/Ι          | μμ <sub>c</sub> /l | μμς/Ι     | μμε/Ι       | <u> </u> | MO. DAY                       | μμε/g          | µµс/g       | 1   | μμc/ <b>!</b> | μμc/I            | PPe/  |
|    |      |           |    |                             |          |          |                | _                  |           |             |          |                               |                |             |     |               |                  |       |
| 10 | 24   | 60*       | 11 | 15                          | 0        | 7        | 7              | 5                  | 20        | 25          |          | 1 1                           |                |             |     |               |                  |       |
|    |      |           |    | 22                          | 0        | 5        | 5              | 0                  | 0         | 0           |          |                               |                |             |     |               |                  |       |
| 12 |      | 60        |    | 27                          | 0        | 6        | 6              | 0                  | 12        | 13          |          |                               |                |             |     |               |                  |       |
|    |      | 61*<br>61 |    | 17                          | 0        | 6        | 6              | Ō                  | 0         | 0           |          |                               |                |             |     |               |                  |       |
| 8  | 30   | 61        |    | 22                          | 0        | 3        | 3              | 1                  | B         | 9           |          |                               |                |             |     | į             |                  |       |
| ٠  | 50   | 01        | ,  |                             |          |          | -              |                    | •         |             |          |                               |                |             | ] : |               |                  |       |
|    |      |           |    |                             |          |          |                |                    |           |             |          | İ                             |                |             |     |               |                  |       |
|    |      |           |    |                             |          |          |                |                    |           |             |          | 1 .                           |                |             |     |               |                  |       |
|    |      |           |    |                             | -        | 1        |                |                    |           |             |          |                               |                |             |     |               | l i              |       |
|    |      |           |    |                             | 1        |          |                |                    |           |             |          |                               |                |             |     |               |                  |       |
|    |      |           | ĺ  |                             |          |          |                |                    |           |             |          | I                             |                |             |     |               |                  |       |
|    |      |           |    |                             |          |          |                |                    |           |             |          |                               |                |             |     |               |                  |       |
|    |      |           | 1  |                             |          |          |                |                    |           |             |          |                               |                |             |     |               |                  |       |
|    |      |           |    |                             | 1        |          |                |                    |           |             | ļ        | 1                             |                |             |     |               |                  |       |
|    |      |           |    |                             |          |          |                |                    |           |             |          | 1 1                           |                |             | 1   |               |                  |       |
|    |      |           |    |                             |          |          |                |                    |           |             |          | 1                             |                |             |     |               |                  |       |
|    |      |           |    |                             | ]        |          |                |                    |           |             |          | 1 1                           |                |             |     |               |                  |       |
|    |      |           |    |                             | 1        |          |                |                    |           |             |          |                               |                |             |     |               | · l              |       |
|    |      |           |    |                             |          |          |                |                    |           |             |          | 1 1                           |                |             |     |               |                  |       |
|    |      |           |    |                             |          |          |                |                    |           |             |          | 1 1                           |                |             |     |               |                  |       |
|    |      |           |    |                             |          |          |                |                    |           |             |          |                               |                |             | 1 1 |               |                  |       |
|    |      |           |    |                             |          |          |                |                    |           |             |          |                               |                |             |     |               |                  |       |
|    |      |           |    |                             |          |          |                |                    |           |             |          | 1                             |                |             |     |               |                  |       |
|    |      |           |    |                             | İ        |          |                |                    |           |             |          |                               |                |             |     |               |                  |       |
|    |      |           |    |                             |          |          | İ              |                    |           |             |          | 1                             |                |             |     |               |                  |       |
|    |      | ļ         |    |                             | 1        |          |                |                    |           |             |          | l i                           |                |             |     |               |                  |       |
|    |      | 1         |    |                             |          |          |                |                    |           |             |          | 1 1                           |                |             |     |               | i i              | 4     |
|    |      |           |    |                             |          |          |                |                    |           |             |          |                               |                |             |     |               |                  |       |
|    |      |           |    |                             |          |          |                |                    |           |             |          |                               |                |             |     |               |                  |       |
|    |      |           |    |                             |          |          |                |                    |           |             |          | 1 1                           |                |             |     |               |                  |       |
|    |      |           |    |                             | 1        | 1        |                |                    |           |             |          |                               |                |             |     |               |                  |       |
|    |      |           |    |                             |          |          |                |                    |           |             |          |                               |                |             |     |               |                  |       |
|    |      |           |    |                             |          | 1        |                |                    |           |             |          |                               |                |             |     |               |                  |       |
|    |      |           |    |                             |          |          |                |                    |           |             |          |                               |                |             |     |               |                  |       |
|    |      |           |    |                             |          |          |                |                    |           |             |          |                               |                |             |     |               |                  |       |
|    |      |           |    |                             |          |          |                |                    |           |             |          |                               |                |             |     |               |                  |       |
|    |      |           |    |                             | ]        |          |                |                    |           |             |          |                               |                |             |     |               |                  |       |
|    |      |           |    |                             |          |          |                | 1                  |           |             |          | 1                             |                |             | l   |               |                  |       |

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

IDAHO

PLANKTON POPULATION

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

CENTRAL SNAKE RIVER

STATION LOCATION SNAKE RIVER AT

WEISER, IDAHO

| DATE                                                                                                         |                                                                         |                        |                       | ALGAE ( | Number                | per ml.)                                                 |                       |                                                                          |                                                                   | T                                                 |                     | <del>,</del>                                 |                                              |                |                                  |                            |                            |                                             |                           |                                              |                                                                         |                           |                                                  |                              |                              |                                       |                                                                           |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------|-----------------------|---------|-----------------------|----------------------------------------------------------|-----------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------|---------------------|----------------------------------------------|----------------------------------------------|----------------|----------------------------------|----------------------------|----------------------------|---------------------------------------------|---------------------------|----------------------------------------------|-------------------------------------------------------------------------|---------------------------|--------------------------------------------------|------------------------------|------------------------------|---------------------------------------|---------------------------------------------------------------------------|
| OF SAMPLE                                                                                                    |                                                                         | BLUE-                  | GREEN                 | GREE    | EN                    | FLAGEI<br>(Pigm                                          |                       | DIAT                                                                     | OMS                                                               | SHE                                               | ERT<br>TOM<br>ELLS  |                                              | DOM                                          | INANT          | SPEC                             | IATO                       | ND PE                      | RCEN                                        | TAGE                      | s                                            | KTOM,                                                                   | -                         | T T                                              | NVERTEB                      | T-                           | 15                                    | <b>3</b> 0 €                                                              |
| MONTH<br>DAY<br>YEAR                                                                                         | TOTAL                                                                   | COCCOID                | FILA-<br>MENT-<br>OUS | COCCOID | FILA-<br>MENT-<br>OUS | GREEN                                                    | OTHER                 | CENTRIC                                                                  | PENNATE                                                           |                                                   | PENNATE             | FIRST*                                       | PER.                                         | SECOND*        | PER-                             |                            |                            | <del></del>                                 | PER.                      | OTHER PER-<br>CENTAGE                        | DTHER RICKOFLANKTON,<br>FUNGI AND SHEATHED<br>BACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)                     | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER AHIMAL FORMS<br>(No. per liter) | DOMINANT GENERA<br>(See Introduction<br>for Identification)               |
| 10 10 60<br>10 17 60<br>11 14 60<br>12 5 60<br>1 9 61<br>1 16 61<br>4 17 61<br>6 13 61<br>7 18 61<br>8 30 61 | 2600<br>700<br>1800<br>4200<br>14400<br>3000<br>18900<br>12900<br>11100 | 70<br>150<br>60<br>120 | 70                    | 50      | 50                    | 70<br>90<br>20<br>510<br>70<br>310<br>100<br>620<br>1220 | 50<br>70<br>90<br>180 | 1960<br>460<br>570<br>1650<br>310<br>860<br>14010<br>730<br>6250<br>1590 | 530<br>80<br>1100<br>1630<br>2100<br>4180<br>2840<br>4640<br>2840 | 460<br>240<br>1690<br>1160<br>1070<br>4220<br>230 | 700<br>1210<br>1050 | 92<br>36<br>36<br>36<br>65<br>82<br>47<br>92 | 20<br>20<br>30<br>20<br>20<br>20<br>80<br>70 | 36<br>80<br>92 | 10<br>10<br>20<br>10<br>20<br>10 | 65<br>82<br>47<br>35<br>58 | 10<br>10<br>10<br>10<br>20 | 46<br>65<br>82<br>66<br>71<br>9<br>65<br>80 | 10<br>10<br>10<br>10<br>* | 40<br>60<br>65<br>30<br>40<br>50<br>12<br>30 | 70<br>150<br>40<br>150                                                  | 20 10 20                  | 2<br>20<br>13<br>3<br>1<br>55<br>106<br>11<br>26 |                              | 2                            | 1                                     | 7-9-7<br>9-3<br>71943<br>943<br>3-743<br>7-973<br>7-743<br>41-77<br>74338 |

STATE

IDAHO

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

CENTRAL SNAKE RIVER

STATION LOCATIONSNAKE RIVER AT

WEISER, IDAHO

| DATE<br>OF SAMPLE                                                                       | TEMP.                                             | DISSOLVED                                |                                               |                |                                        | CHLORINE       | DEMAND          |                                         | <del></del>       |                                                             |                                                      |                        |                                                    |                  |                    |                             | ·                        |
|-----------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------|-----------------------------------------------|----------------|----------------------------------------|----------------|-----------------|-----------------------------------------|-------------------|-------------------------------------------------------------|------------------------------------------------------|------------------------|----------------------------------------------------|------------------|--------------------|-----------------------------|--------------------------|
| MONTH<br>DAY<br>YEAR                                                                    | (Degraes<br>Contigrade)                           | OXYGEN                                   | pH                                            | B.O.D.<br>mg/i | C.O.D.<br>mg/l                         | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l            | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l                                          | HARDNESS<br>mg/l                                     | COLOR<br>(scale units) | TURBIDITY<br>(scale units)                         | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL DISSOLVED SOLIDS mg/l | COLIFORMS<br>per 100 ml. |
| 10 3 60<br>10 10 60<br>10 24 60<br>10 31 60<br>11 7 60<br>11 14 60<br>1 9 61<br>6 13 61 | 12.5<br>13.5<br>13.0<br>10.4<br>9.1<br>8.9<br>4.2 | 9.3<br>8.9<br>10.2<br>10.6<br>9.4<br>9.9 | 7.4<br>7.6<br>8.0<br>7.6<br>7.6<br>7.6<br>7.6 | 3.7355522      | 11<br>27<br>21<br>25<br>17<br>25<br>21 | 2.4            | 4.1             | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 656678666         | 216<br>104<br>194<br>204<br>220<br>198<br>216<br>192<br>150 | 248<br>236<br>264<br>240<br>242<br>216<br>204<br>240 | 5 5 5 5 5 5 5 5        | 40<br>21<br>15<br>12<br>20<br>18<br>18<br>16<br>24 |                  |                    |                             |                          |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Weiser, Idaho Operated by U.S. Geological Survey STATE

Idaho

MAJOR BASIN

Pacific Northwest

MINOR BASIN

Central Snake River

STATION LOCATION

Snake River at

Weiser, Idaho

| Day                              | October                                                  | November                                       | December                                                 | January                                                  | February                                       | March                                                    | April                                          | May                                                      | June                                           | July                                               | August                                             | September                                      |
|----------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------------------------|
| 1                                | 13.500                                                   | 13.200                                         | 14.700                                                   | 12.700                                                   | 19.400                                         | 12.600                                                   | 13.600                                         | 11.100                                                   | 14.600                                         | 8.000                                              | 8.310                                              | 9.460                                          |
| 2                                | 13.500                                                   | 12.900                                         | 14.500                                                   | 12.900                                                   | 15.400                                         | 12.200                                                   | 13.100                                         | 11.200                                                   | 14.800                                         | 8.000                                              | 8.230                                              | 9.630                                          |
| 3                                | 13.000                                                   | 13.500                                         | 12.400                                                   | 12.400                                                   | 16.900                                         | 12.400                                                   | 13.300                                         | 11.800                                                   | 15.200                                         | 8.230                                              | 8.230                                              | 9.980                                          |
| 4                                | 12.400                                                   | 13.500                                         | 12.300                                                   | 11.900                                                   | 14.800                                         | 11.300                                                   | 14.700                                         | 11.300                                                   | 14.700                                         | 8.300                                              | 8.310                                              | 9.930                                          |
| 5                                | 12.800                                                   | 13.400                                         | 12.100                                                   | 10.800                                                   | 13.100                                         | 11.500                                                   | 15.100                                         | 11.200                                                   | 14.200                                         | 8.380                                              | 8.310                                              | 10.100                                         |
| 6                                | 13.000                                                   | 13.200                                         | 12.800                                                   | 10.500                                                   | 14.300                                         | 11.400                                                   | 14.800                                         | 11.500                                                   | 13.800                                         | 8.880                                              | 8.470                                              | 9.800                                          |
| 7                                | 13.600                                                   | 11.500                                         | 13.300                                                   | 10.900                                                   | 13.800                                         | 11.200                                                   | 14.000                                         | 11.300                                                   | 13.600                                         | 8.800                                              | 8.470                                              | 9.720                                          |
| 8                                | 14.600                                                   | 11.600                                         | 13.500                                                   | 11.300                                                   | 14.000                                         | 11.600                                                   | 13.400                                         | 11.000                                                   | 13.500                                         | 8.550                                              | 8.470                                              | 9.630                                          |
| 9                                | 14.300                                                   | 13.500                                         | 12.800                                                   | 11.400                                                   | 14.200                                         | 11.400                                                   | 13.100                                         | 10.600                                                   | 13.200                                         | 8.230                                              | 8.310                                              | 9.630                                          |
| 10                               | 13.100                                                   | 13.800                                         | 12.900                                                   | 11.600                                                   | 16.600                                         | 12.000                                                   | 13.000                                         | 9.900                                                    | 13.000                                         | 8.470                                              | 8.310                                              | 9.890                                          |
| 11<br>12<br>13<br>14<br>15       | 13.500<br>14.900<br>14.600<br>15.600<br>15.900           | 13.900<br>14.400<br>14.900<br>14.900<br>14.700 | 12.200<br>13.300<br>12.600<br>11.800<br>13.100           | 12.700<br>12.000<br>11.800<br>11.600<br>12.200           | 17.100<br>16.200<br>15.200<br>14.300<br>15.400 | 11.500<br>11.800<br>13.300<br>13.700<br>14.100           | 11.400<br>12.200<br>12.600<br>11.600<br>11.400 | 10.900<br>11.300<br>11.100<br>11.500                     | 12.600<br>12.700<br>12.100<br>11.200<br>11.000 | 8.310<br>8.470<br>8.200<br>8.010<br>7.770          | 8.310<br>8.310<br>8.880<br>9.120<br>9.210          | 10.200<br>10.200<br>10.200<br>10.700<br>10.300 |
| 16                               | 16.400                                                   | 14.200                                         | 12.900                                                   | 12.100                                                   | 15.200                                         | 13.900                                                   | 11.100                                         | 11.700                                                   | 10.200                                         | 7.770                                              | 8.960                                              | 10.500                                         |
| 17                               | 14.900                                                   | 14.200                                         | 13.000                                                   | 10.800                                                   | 14.000                                         | 13.700                                                   | 11.200                                         | 11.300                                                   | 9.600                                          | 7.880                                              | 8.710                                              | 10.300                                         |
| 18                               | 13.500                                                   | 16.800                                         | 13.500                                                   | 11.600                                                   | 14.000                                         | 13.300                                                   | 11.200                                         | 11.400                                                   | 9.450                                          | 7.700                                              | 8.630                                              | 11.000                                         |
| 19                               | 14.000                                                   | 16.400                                         | 13.800                                                   | 11.800                                                   | 13.200                                         | 13.600                                                   | 12.300                                         | 11.600                                                   | 7.950                                          | 7.830                                              | 8.630                                              | 12.100                                         |
| 20                               | 14.200                                                   | 15.100                                         | 13.300                                                   | 11.000                                                   | 13.100                                         | 14.400                                                   | 12.000                                         | 11.900                                                   | 7.470                                          | 7.970                                              | 8.630                                              | 12.000                                         |
| 21                               | 13.700                                                   | 12.100                                         | 13.000                                                   | 11.700                                                   | 12.600                                         | 13.200                                                   | 11.100                                         | 12.300                                                   | 8.000                                          | 7.900                                              | 8.550                                              | 12.200                                         |
| 22                               | 14.000                                                   | 11.900                                         | 13.000                                                   | 11.300                                                   | 13.300                                         | 12.800                                                   | 10.700                                         | 13.100                                                   | 7.780                                          | 8.000                                              | 8.630                                              | 12.600                                         |
| 23                               | 14.000                                                   | 14.200                                         | 12.700                                                   | 11.400                                                   | 13.300                                         | 12.900                                                   | 10.600                                         | 12.900                                                   | 8.080                                          | 8.360                                              | 8.630                                              | 11.700                                         |
| 2 <sup>1</sup> 4                 | 13.800                                                   | 15.200                                         | 13.400                                                   | 11.200                                                   | 13.100                                         | 16.600                                                   | 10.200                                         | 13.300                                                   | 8.220                                          | 8.140                                              | 8.630                                              | 11.300                                         |
| 25                               | 12.600                                                   | 16.200                                         | 14.000                                                   | 12.400                                                   | 12.700                                         | 16.000                                                   | 9.900                                          | 13.600                                                   | 7.920                                          | 8.180                                              | 8.710                                              | 11.200                                         |
| 26<br>27<br>26<br>29<br>30<br>31 | 13.200<br>13.000<br>13.200<br>13.100<br>14.000<br>11.400 | 14.600<br>15.200<br>13.600<br>12.700<br>13.900 | 13.100<br>12.000<br>12.200<br>12.300<br>12.600<br>12.600 | 11.600<br>11.700<br>11.400<br>10.700<br>10.800<br>11.900 | 12.000<br>11.400<br>11.300                     | 15.700<br>15.500<br>14.900<br>13.500<br>12.900<br>13.800 | 9.800<br>9.500<br>9.500<br>9.500<br>10.900     | 14.200<br>14.700<br>14.500<br>13.900<br>14.500<br>14.900 | 8.220<br>7.850<br>7.850<br>7.850<br>7.780      | 8.000<br>8.140<br>8.320<br>8.910<br>8.330<br>8.320 | 9.900<br>9.460<br>9.540<br>9.380<br>9.290<br>9.460 | 11.000<br>11.000<br>11.100<br>10.700<br>10.700 |

RADIOACTIVITY DETERMINATIONS

STATE

COLORADO

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

SOUTH PLATTE RIVER

STATION LOCATION SOUTH PLATTE RIVER AT

JULESBURG, COLORADO

| DATE                                                                                                                  | T                                                                                                                |                                                                                   | RAD                                                                         | IOACTIVITY IN V                                                                        | VATER                                                                        |                                                                                               |                                                                                          | T BARIO                       | A CTIVITY IN BU | LIETOLI (I ) |    |         |                |       |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------|-----------------|--------------|----|---------|----------------|-------|
| SAMPLE                                                                                                                | DATE OF<br>DETERMI-<br>NATION                                                                                    |                                                                                   | ALPHA                                                                       |                                                                                        | T                                                                            | BETA                                                                                          |                                                                                          |                               | ACTIVITY IN PLA | ACTIVITY     |    |         | GROSS ACTIVITY |       |
| TAKEN                                                                                                                 |                                                                                                                  | SUSPENDED                                                                         | DISSOLVED                                                                   | TOTAL                                                                                  | SUSPENDED                                                                    | DISSOLVED                                                                                     | TOTAL                                                                                    | DATE OF<br>DETERMI-<br>NATION | ALPHA           | BETA         | SU | SPENDED |                | TOTAL |
| MO. DAY YEAR                                                                                                          | MONTH DAY                                                                                                        | μμε/1                                                                             | μμε/Ι                                                                       | μμε/Ι                                                                                  | μμc/I                                                                        | μμc/i                                                                                         | μμε/Ι                                                                                    | MO. DAY                       |                 | μμc/g        |    | μμc/l   | μμς/1          | μμς/Ι |
| 6 12 61<br>6 19 61<br>6 26 61<br>7 10 61<br>7 17 61<br>7 25 61<br>8 14 61<br>8 28 61<br>9 15 61<br>9 16 61<br>9 26 61 | 7 18<br>7 20<br>7 27<br>8 2<br>8 10<br>8 8 14<br>8 31<br>10 3<br>9 25<br>9 25<br>10 20<br>10 24<br>10 23<br>10 7 | 0<br>2<br>2<br>0<br>0<br>0<br>0<br>2<br>3<br>1<br>9<br>1<br>0<br>0<br>5<br>2<br>2 | 18<br>20<br>32<br>21<br>27<br>43<br>11<br>425<br>33<br>28<br>15<br>23<br>44 | 18<br>22<br>32<br>21<br>27<br>43<br>34<br>62<br>63<br>33<br>28<br>16<br>42<br>44<br>46 | 0<br>0<br>0<br>0<br>0<br>0<br>58<br>91<br>16<br>20<br>0<br>4<br>0<br>21<br>1 | 25<br>21<br>39<br>29<br>22<br>23<br>57<br>21<br>77<br>28<br>57<br>116<br>54<br>87<br>66<br>74 | 25<br>21<br>39<br>29<br>22<br>23<br>57<br>79<br>168<br>44<br>77<br>116<br>58<br>87<br>75 |                               |                 |              |    |         | P              | #PC/I |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

COLORADÓ

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

STATE

SOUTH PLATTE RIVER

STATION LOCATION SOUTH PLATTE RIVER AT

JULESBURG, COLORADO

| D     | ATE | =        |                       |         |                       | ALGAE (           | Number                | per ml.)         |                  | <del></del>   |         | INI      | PPT               | 7        |          |          |             |          |             |      |         |    |                                                                         |                         |                              |                              |          |                |                                                             |
|-------|-----|----------|-----------------------|---------|-----------------------|-------------------|-----------------------|------------------|------------------|---------------|---------|----------|-------------------|----------|----------|----------|-------------|----------|-------------|------|---------|----|-------------------------------------------------------------------------|-------------------------|------------------------------|------------------------------|----------|----------------|-------------------------------------------------------------|
| OF S  |     | - 1      |                       | BLUE-   | GREEN                 | GREE              | EN                    | FLAGEI<br>(Pigm  | LLATES<br>ented) | DIAT          | омѕ     | DIA      | ERT<br>TOM<br>LLS | ĺ        | DOM      | INAN     | D<br>T SPEC | IATO     | MS<br>ND PE | RCEN | TAGE    | s  | KTON,                                                                   | -                       | MICROI                       | NVERTEB                      | RATES    | 12             | £ 8 2                                                       |
| MONTH | DAY | YEAR     | TOTAL                 | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID           | FILA-<br>MENT-<br>OUS |                  |                  | CENTRIC       | PENNATE |          | PENNATE           | FIRST#   | PER-     |          |             | ,        | Τ.,         |      | CENTAGE |    | OTHER MICROPLANKTON,<br>FUNGI AND SHEATHED<br>BACTERIA<br>(NO. per ml.) | ROTOZOA<br>No. per ml.) | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | EMATODES | HER ANIMAL FOR | bowinant genera<br>(See Introduction<br>for Identification) |
| 6 :   | 12  | 61 61 61 | 3600<br>14700<br>3800 |         | 40<br>120             | 890<br>310<br>310 |                       | 210<br>120<br>70 |                  | 1120 1260 110 | 1370    | 20<br>60 | 500<br>810        | 92<br>85 | 10<br>30 | 71<br>92 | 10          | 46<br>65 | 10          | 65   | 10      | 60 |                                                                         | 1                       | ROTIE<br>(No. p              |                              |          | Onter (No. pe  | PRI DE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                  |
|       |     |          |                       |         |                       |                   |                       |                  |                  |               |         |          |                   |          |          |          |             |          |             |      |         |    |                                                                         |                         |                              |                              |          |                |                                                             |

# ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

COLORADO

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

SOUTH PLATTE RIVER

STATION LOCATION SOUTH PLATTE RIVER AT

JULESBURG, COLORADO

|       | GINN  |      | AMPL  | מא  | 1        | E     | XTRACTAB        | LES     |                     |                   |       |            | CHLORO    | FORM EXT                     | RACTABLES |               |                 |             |      |
|-------|-------|------|-------|-----|----------|-------|-----------------|---------|---------------------|-------------------|-------|------------|-----------|------------------------------|-----------|---------------|-----------------|-------------|------|
|       | SIIVN | .14G | _     | 1   | GALLONS  | 1     |                 |         |                     |                   |       |            | NEUTRAL   | s                            |           | 1             | T               | <del></del> | T    |
| MONTH | DAY   | YEAR | MONTH | DAY | FILTERED | TOTAL | CHLORO-<br>FORM | ALCOHOL | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES | TOTAL | ALIPHATICS | AROMATICS | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS      | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES       | LOSS |
| 9     | 27    | 61   | 10    | 16  | 4000     | 208   | 37              | 171     | 0                   | 8                 | 15    | 2          | 1         | 11                           | 1         | 5             | 2               | 1           | 6    |
|       |       |      |       |     |          |       |                 |         |                     |                   |       |            |           |                              |           |               |                 |             |      |
|       |       |      |       |     |          |       |                 |         |                     |                   |       |            |           |                              |           |               |                 |             |      |
|       |       |      |       |     |          |       |                 |         |                     |                   |       |            |           |                              |           |               |                 |             |      |
|       |       |      |       |     |          |       |                 |         |                     |                   |       |            |           |                              |           |               |                 |             |      |
|       |       |      |       |     |          |       |                 |         |                     |                   |       |            |           |                              |           |               |                 |             |      |
|       |       |      |       |     |          |       |                 |         |                     |                   |       |            |           |                              |           |               |                 |             |      |
|       |       |      |       |     |          |       |                 |         |                     |                   |       |            |           |                              |           |               |                 |             |      |
|       |       |      |       |     |          |       |                 |         |                     |                   |       |            |           |                              |           |               |                 |             |      |
|       |       |      |       |     |          |       |                 |         |                     |                   |       |            |           |                              |           |               |                 |             |      |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Julesburg, Colorado Supplied by State of Colorado Department of Water Resources STATE

Colorado

MAJOR BASIN

Missouri River

MINOR BASIN

South Platte River

STATION LOCATION

South Platte River at

Julesburg, Colorado

| Day                              | October                                      | November                             | December                                     | January                                      | February                             | March                                        | April                                | May                                                | June                                      | July                                 | August                               | September                                 |
|----------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | .022<br>.023<br>.024<br>.024                 | .106<br>.104<br>.099<br>.098<br>.101 | .072<br>.096<br>.124<br>.150                 | .206<br>.208<br>.165<br>.172                 | .287<br>.218<br>.188<br>.211<br>.245 | .141<br>.133<br>.155<br>.139                 | .231<br>.257<br>.259<br>.260<br>.271 | .107<br>.101<br>.099<br>.102                       | 2.310<br>1.980<br>2.070<br>2.460<br>2.680 | .243<br>.292<br>.218<br>.168<br>.134 | .241<br>.212<br>.181<br>.174<br>.169 | .034<br>.036<br>.035<br>.034              |
| 6<br>7<br>8<br>9<br>10           | .032<br>.033<br>.034<br>.041<br>.043         | .098<br>.099<br>.098<br>.095<br>.102 | .172<br>.186<br>.192<br>.212<br>.213         | .182<br>.224<br>.246<br>.265<br>.283         | .225<br>.234<br>.250<br>.280<br>.273 | .160<br>.215<br>.220<br>.237<br>.253         | .284<br>.199<br>.199<br>.157<br>.193 | .092<br>.087<br>.075<br>.070<br>.069               | 2.570<br>3.020<br>3.990<br>5.470<br>6.750 | .117<br>.109<br>.124<br>.235<br>.218 | .182<br>.192<br>.146<br>.101         | .035<br>.044<br>.089<br>.120              |
| 11<br>12<br>13<br>14<br>15       | .042<br>.041<br>.050<br>.063<br>.081         | .102<br>.100<br>.097<br>.096<br>.096 | .220<br>.233<br>.236<br>.243<br>.256         | .286<br>.278<br>.270<br>.270<br>.274         | .268<br>.270<br>.262<br>.246<br>.246 | .258<br>.272<br>.278<br>.283<br>.286         | .297<br>.322<br>.360<br>.358<br>.324 | .062<br>.058<br>.060<br>.106<br>.181               | 5.930<br>5.120<br>5.050<br>5.080<br>5.440 | .179<br>.169<br>.149<br>.129<br>.115 | .061<br>.055<br>.064<br>.046<br>.045 | .137<br>.145<br>.139<br>.120<br>.134      |
| 16<br>17<br>18<br>19<br>20       | .083<br>.084<br>.086<br>.086                 | .094<br>.095<br>.094<br>.099<br>.096 | .249<br>.252<br>.257<br>.253<br>.239         | .269<br>.264<br>.246<br>.235                 | .250<br>.250<br>.243<br>.234<br>.232 | .278<br>.283<br>.289<br>.279<br>.285         | .318<br>.316<br>.306<br>.264<br>.251 | .150<br>.150<br>.162<br>.204<br>.204               | 5.330<br>4.880<br>4.190<br>3.540<br>3.110 | .097<br>.085<br>.073<br>.067<br>.064 | .045<br>.050<br>.046<br>.044<br>.043 | .135<br>.129<br>.116<br>.131<br>.159      |
| 21<br>22<br>23<br>24<br>25       | .127<br>.122<br>.110<br>.104<br>.099         | .100<br>.101<br>.097<br>.099         | .239<br>.167<br>.167<br>.228<br>.288         | .230<br>.245<br>.248<br>.234<br>.240         | .231<br>.231<br>.231<br>.231<br>.230 | .276<br>.277<br>.277<br>.272<br>.269         | .304<br>.397<br>.397<br>.334<br>.290 | .268<br>.740<br>1.010<br>1.250<br>1.610            | 2.410<br>1.810<br>1.440<br>1.120<br>.800  | .066<br>.064<br>.057<br>.052<br>.052 | .043<br>.040<br>.037<br>.038<br>.037 | .156<br>.165<br>.195<br>.236<br>.265      |
| 26<br>27<br>28<br>29<br>30<br>31 | .103<br>.100<br>.102<br>.102<br>.099<br>.105 | .095<br>.095<br>.066<br>.052<br>.060 | .269<br>.252<br>.238<br>.178<br>.167<br>.188 | .223<br>.188<br>.201<br>.194<br>.270<br>.333 | .196<br>.165<br>.157                 | .242<br>.186<br>.166<br>.153<br>.144<br>.158 | .278<br>.225<br>.146<br>.120<br>.106 | 2.040<br>2.420<br>2.620<br>2.400<br>2.500<br>2.540 | .630<br>.458<br>.299<br>.203<br>.165      | .062<br>.104<br>.121<br>.131<br>.151 | .036<br>.034<br>.033<br>.033<br>.036 | . 352<br>. 407<br>. 585<br>. 797<br>. 866 |

STATE

MARYLAND

MAJOR BASIN

NORTH ATLANTIC

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

SUSQUEHANNA-JUNIATA

STATION LOCATION SUSQUEHANNA RIVER AT

CONOWINGO, MARYLAND

| DATE         |                     |           | RAD       | OACTIVITY IN V | VATER     |           | Т     | RADIOA             | CTIVITY IN PLAI | NKTON (dry) | RAI       | DIOACTIVITY IN W | 'ATER |
|--------------|---------------------|-----------|-----------|----------------|-----------|-----------|-------|--------------------|-----------------|-------------|-----------|------------------|-------|
| SAMPLE       | DATE OF<br>DETERMI- |           | ALPHA     |                |           | BETA      |       | DATE OF            |                 | ACTIVITY    |           | GROSS ACTIVIT    |       |
| TAKEN        | NATION              | SUSPENDED | DISSOLVED | TOTAL          | SUSPENDED | DISSOLVED | TOTAL | DETERMI-<br>NATION | ALPHA           | BETA        | SUSPENDED | DISSOLVED        | TOTAL |
| MO. DAY YEAR | MONTH DAY           | μμς/      | μμc/l     | μμε/           | μμc/l     | μμc/l     | μμς/Ι | MO. DAY            | μμc/g           | μμc/g       | μμc/l     | μμc/1            | ##c/I |
|              |                     | _         |           |                |           |           |       |                    |                 | T           |           |                  | 77.33 |
| 10 5 60      | 10 19               | 0         | . 1       | 1              | 0         | 0         | 0     | l                  |                 | !!          |           | l i              |       |
| 10 13 60     | 10 31               | 0         | 1         | 1              | 0         | 1         | 1     | j                  |                 |             |           |                  |       |
| 10 19 60     | 10 31               | 0         | 2         | 2              | 0         | 1         | 1     |                    |                 |             |           |                  |       |
| 10 26 60     | 11 18               | 1         | 1         | 2              | 0         | 0         | 0     | j i                |                 |             |           |                  |       |
| 11 2 60      | 11 29               | 0         | 2         | 2              | 0         | 0         | 0     | l                  |                 |             |           |                  |       |
| 11 9 60      | 11 28               | 0         | 1         | 1              | 0         | 0         | 0     |                    |                 |             | 1         |                  |       |
| 11 16 60     | 11 29               | 0         | 0         | 0              | 0         | 0         | 0     |                    |                 |             |           |                  |       |
| 11 23 60     | 12 2                | 0         | 1         | 1              | 0         | 0         | 0     |                    |                 |             | l         |                  |       |
| 11 30 60     | 12 15               | 0         | 1         | 1              | 0         | 0         | 0     |                    |                 |             |           | [                |       |
| 12 7 60      | 12 30               | 0         | 0         | 0              | 0         | 0         | 0     |                    |                 |             |           |                  |       |
| 12 28 60     | 1 11                | 0         | 2         | 2              | 0         | 5         | 5     |                    |                 |             |           |                  |       |
| 1 4 61       | 1 27                | 0         | 1         | 1              | 0         | 0         | 0     |                    |                 |             | l         |                  |       |
| 1 11 61      | 1 31                | 0         | 1         | 1              | 0         | 0         | 0     |                    |                 |             |           |                  |       |
| 1 18 61      | 2 6                 | 0         | 1         | 1              | 0         | 0         | 0 1   |                    | ı               |             |           |                  |       |
| 1 25 61      | 2 15                | 0         | 0         | 0              | 0         | 0         | 0     | - 1 1              |                 |             |           |                  |       |
| 2 1 61       | 2 17                | 0         | 0         | 0              | 0         | 1         | 1     |                    |                 | ı           |           |                  |       |
| 2 10 61      | 3 3                 | 0         | 0         | 0              | 0         | 0         | 0     |                    |                 |             | İ         |                  |       |
| 2 15 61      | 3 2                 | 0         | 0         | 0              | 0         | 0         | 0     |                    |                 | 1           |           | ļ                |       |
| 2 23 61      | 3 22                | 1         | 1         | 2              | 0         | 0         | 0     |                    |                 | ļ           |           | İ                |       |
| 3 1 61       | 3 20                | 5         | 0         | 5              | 0         | 0         | 0     |                    |                 |             |           |                  |       |
| 3 8 61       | 3 27                | 1         | 0         | 1              | 0         | 0         | 0     |                    |                 |             |           |                  |       |
| 3 15 61      | 3 31                | 1         | 0         | 1              | 0         | 0         | 0     |                    |                 |             |           |                  |       |
| 3 29 61      | 4 17                | 0         | 0         | 0              | 0         | 0         | 0     |                    |                 |             | i         |                  |       |
| 4 5 61       | 4 20                | 0         | 0         | 0              | 0         | 0         | 0     |                    |                 |             |           |                  |       |
| 4 12 61      | 4 24                | 0         | 0         | 0              | 0         | 0         | 0     |                    |                 |             | 1         |                  |       |
| 4 19 61      | 5 10                | 0         | 0         | 0              | 1         | 3         | 4     |                    | ]               |             | 1 1       |                  |       |
| 4 26 61      | 5 17                | 0         | 0         | 0              | 0         | 3         | 3     |                    | 1               |             |           |                  |       |
| 5 31 61*     | 6 12                | 0         | 0         | 0              | 0         | 1         | 1     |                    | ľ               | ŀ           |           |                  |       |
| 6 28 61*     | 7 17                | 0         | 1         | 1              | 0         | 3         | 3     |                    |                 |             |           |                  |       |
| 8 6 61*      | 8 29                | 0         | 0         | 0              | 0         | 16        | 16    |                    |                 |             |           |                  |       |
| 9 20 61      | 10 7                | -         | -         | ~              | 1         | 9         | 10    | 1 1                |                 | ĺ           |           |                  |       |
| 9 27 61      | 10 11               | -         | -         | -              | 0         | 0         | 0     |                    |                 | 1           |           | İ                |       |
| 1            |                     |           |           |                |           |           |       |                    | ĺ               |             |           |                  |       |
|              |                     |           |           |                | ĺ         |           |       |                    |                 |             |           |                  |       |
| ľ            | 1                   |           |           |                |           |           |       |                    |                 |             | 1         |                  |       |
| 1            | 1                   |           | 1         |                | İ         |           |       |                    |                 | 1           |           |                  |       |
| Ī            | 1                   | 1         | 1         | 1              | ļ         |           |       |                    |                 | İ           |           |                  |       |
| 1            | ĺ                   | ļ         |           |                | !         |           |       |                    |                 |             |           |                  |       |
|              | ſ                   |           | ĺ         | 1              | 1         |           |       |                    |                 | -           |           |                  |       |
|              | İ                   |           |           | 1              |           |           | İ     |                    |                 |             |           |                  |       |
|              |                     |           |           | ļ              | İ         |           |       |                    |                 | ĺ           |           |                  |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

MARYLAND

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

SUSQUEHANNA-JUNIATA

STATION LOCATION SUSQUEHANNA RIVER AT

CONOWINGO, MARYLAND

| DATI                                                                | -                                                                                      |                                                                                                                    |         |                       | ALGAE (I                                                                   | Vumber                | per ml.)                                                                         |                                         |                                                                                                             |                                                                                                          | 1815                                                                                               |                                                                                       |                                                                                                                            |                                                                                  |                                                                                   |                                                                                  |                                                                                                                            |                                                                                 |                                                                                                                |                                                                                 |                                         |                                                                   |                           |                                                  |                                                        |                              |                 |                                                             |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------|-----------------------|----------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------|---------------------------|--------------------------------------------------|--------------------------------------------------------|------------------------------|-----------------|-------------------------------------------------------------|
| OF SAM                                                              |                                                                                        |                                                                                                                    | BLUE-   | GREEN                 | GREE                                                                       | N.                    | FLAGEL<br>(Pigm                                                                  | LATES                                   | DIAT                                                                                                        | омѕ                                                                                                      | DIA<br>SHE                                                                                         |                                                                                       |                                                                                                                            | DOM!                                                                             | NANT                                                                              | SPEC                                                                             | IATC                                                                                                                       | ND PE                                                                           | RCEN                                                                                                           | TAGE:                                                                           | s                                       | ROPLANKTON,<br>SHKATHED<br>. ml.)                                 | -                         | T                                                | VERTEB                                                 | T                            | 1               | ERA<br>tion<br>ion)                                         |
| MONTH                                                               | YEAR                                                                                   | TOTAL                                                                                                              | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                                                                    | FILA-<br>MENT-<br>OUS | GREEN                                                                            | OTHER                                   | CENTRIC                                                                                                     | PENNATE                                                                                                  |                                                                                                    | PENNATE                                                                               | FIRST#                                                                                                                     | PER.<br>CENTAGE                                                                  | Τ.                                                                                | PER-<br>CENTAGE                                                                  |                                                                                                                            | PER.<br>CENTAGE                                                                 |                                                                                                                | PER.                                                                            | OTHER PER-<br>CENTAGE                   | OTHER MICROPLAMI<br>FUNGI AND SHEATH<br>BACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)                     | CRUSTACEA<br>(No. per liter)                           | NEMATODES<br>(No. per liter) | OTHER ANIMAL FO | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| 11 2 7 18 1 25 1 15 3 8 3 15 5 4 26 5 10 5 2 4 6 6 8 16 8 30 9 9 13 | 60<br>60<br>60<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61 | 200<br>200<br>100<br>100<br>200<br>700<br>400<br>1300<br>2000<br>1000<br>600<br>3400<br>1100<br>300<br>200<br>1200 | 20      | 60                    | 90<br>20<br>170<br>220<br>70<br>850<br>190<br>350<br>810<br>60<br>60<br>20 |                       | 20<br>20<br>40<br>40<br>1470<br>250<br>190<br>40<br>230<br>100<br>40<br>20<br>60 | 70<br>160<br>70<br>20<br>20<br>20<br>20 | 50<br>130<br>20<br>70<br>20<br>160<br>20<br>1240<br>1090<br>560<br>410<br>20<br>1450<br>1450<br>120<br>1010 | 90<br>50<br>70<br>220<br>130<br>110<br>440<br>360<br>440<br>390<br>170<br>910<br>290<br>3190<br>40<br>20 | 40<br>110<br>20<br>40<br>50<br>20<br>90<br>170<br>420<br>40<br>580<br>730<br>80<br>60<br>40<br>210 | 50<br>4700<br>2700<br>2400<br>2340<br>2340<br>5490<br>5440<br>290<br>520<br>680<br>40 | 56<br>82<br>93<br>92<br>93<br>92<br>93<br>92<br>93<br>92<br>93<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95 | 20<br>20<br>10<br>10<br>10<br>20<br>30<br>30<br>40<br>20<br>20<br>10<br>70<br>30 | 82 9 35 922 9 2 5 1 2 8 8 2 9 2 8 8 2 7 5 4 7 6 7 7 6 7 7 6 7 7 7 7 7 7 7 7 7 7 7 | 20<br>10<br>10<br>10<br>10<br>10<br>20<br>10<br>20<br>10<br>10<br>10<br>10<br>10 | 61<br>27<br>64<br>25<br>64<br>64<br>31<br>93<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 58<br>70<br>45<br>65<br>70<br>93<br>62<br>62<br>31<br>93<br>92<br>95<br>83<br>82<br>26<br>62<br>93<br>82<br>27 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 53050 000000000000000000000000000000000 | 20<br>50                                                          | 20                        | 10 42 1 2 2 1 13 73 88 82 209 11 220 70 9 68 112 | 1<br>3<br>7<br>4<br>39<br>7<br>8<br>18<br>5<br>11<br>6 | 1 2 2 2                      | 1               | -1933<br>34973<br>34973<br>34977<br>-49                     |

#### ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

MARYLAND

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

SUSQUEHANNA-JUNIATA

STATION LOCATION SUSQUEHANNA RIVER AT

CONOWINGO, MARYLAND

| DATE OF SA                                                                                                | MOLE                              |                                            |                                                                      |                                                                    |                                                            |                                                                |                     |                                                         |                                                          |            |            |                                                        |              |                |                                                   |                                         |                                                        |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|---------------------|---------------------------------------------------------|----------------------------------------------------------|------------|------------|--------------------------------------------------------|--------------|----------------|---------------------------------------------------|-----------------------------------------|--------------------------------------------------------|
| BEGINNING                                                                                                 | ENI                               | _                                          |                                                                      | E)                                                                 | TRACTABL                                                   | ES                                                             |                     | ,                                                       |                                                          |            | CHLOROF    | ORM EXTR                                               | ACTABLES     |                |                                                   |                                         |                                                        |
|                                                                                                           |                                   | -                                          | GALLONS                                                              |                                                                    | İ                                                          |                                                                |                     |                                                         |                                                          |            | NEUTRALS   | ;                                                      |              | <u> </u>       | i i                                               |                                         |                                                        |
| MONTH<br>DAY<br>YEAR                                                                                      | MONTH                             | DAY                                        | FILTERED                                                             | TOTAL                                                              | CHLORO-<br>FORM                                            | ALCOHOL                                                        | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES                                       | TOTAL                                                    | ALIPHATICS | AROMATICS  | OXYGEN-<br>ATED<br>COMPOUNDS                           | Loss         | WEAK<br>ACIDS  | STRONG<br>ACIDS                                   | BASES                                   | LOSS                                                   |
| 10 11 60<br>11 2 60<br>12 7 60<br>1 31 61<br>3 7 61<br>4 12 61<br>5 22 61<br>6 26 61<br>8 9 61<br>9 20 61 | 11<br>12<br>2<br>3<br>4<br>6<br>7 | 10<br>14<br>7<br>14<br>20<br>7<br>12<br>23 | 5000<br>5000<br>5210<br>5050<br>5530<br>2630<br>2210<br>4030<br>5974 | 213<br>189<br>137<br>149<br>171<br>133<br>330<br>437<br>302<br>161 | 74<br>68<br>50<br>58<br>51<br>36<br>145<br>129<br>98<br>63 | 139<br>121<br>87<br>91<br>120<br>97<br>185<br>308<br>204<br>98 | 4325413152          | 19<br>15<br>10<br>12<br>12<br>8<br>38<br>34<br>26<br>13 | 19<br>21<br>19<br>20<br>12<br>13<br>26<br>27<br>23<br>23 | 2121224433 | 2112123222 | 15<br>18<br>15<br>16<br>8<br>9<br>19<br>20<br>17<br>15 | 011110001113 | 77756543161119 | 4<br>5<br>2<br>5<br>3<br>2<br>17<br>14<br>11<br>6 | 1 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 20<br>15<br>11<br>10<br>14<br>7<br>37<br>23<br>21<br>9 |

STATE

MARYLAND

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN NORTH ATLANTIC

MINOR BASIN

SUSQUEHANNA-JUNIATA

STATION LOCATIONSUSQUEHANNA RIVER AT

CONOWINGO, MARYLAND

| DATE<br>OF SAMPL                                                                                                      | E TEMP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DISSOLVED                                                                    |                                                                                         |                                                                                      |                                                          | CHLORINE                                                     | DEMAND                                                                                 |                              |                                                                         |                                                                                                   |                                                                                 |                                                                               |                                                                                                                                                                                                           |                                                                       |                                                          |                                                                                         |                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| MONTH                                                                                                                 | (Degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OXYGEN<br>) mg/l                                                             | Нq                                                                                      | B.O.D.<br>mg/l                                                                       | C.O.D.<br>mg/l                                           | 1-HOUR<br>mg/l                                               | 24-HOUR<br>mg/l                                                                        | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l                                                       | ALKALINITY<br>mg/l                                                                                | HARDNESS<br>mg/l                                                                | COLOR<br>(scale units)                                                        | TURBIDITY<br>(scale units)                                                                                                                                                                                | SULFATES<br>mg/l                                                      | PHOSPHATES<br>mg/l                                       | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l                                                    | COLIFORMS<br>per 100 ml.                                                                                                |
| 10 4 0 10 5 0 10 19 0 10 26 0 11 1 16 0 11 23 0 11 1 30 0 12 7 12 28 0 11 4 0 11 1 6 0 11 1 1 6 0 11 1 1 6 0 11 1 1 1 | 50 18.5<br>50 17.8<br>50 18.3<br>50 15.0<br>50 12.2<br>50 12.2<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 10.6<br>50 | 7.2<br>7.6<br>9.1<br>9.7<br>9.9<br>9.9<br>10.6<br>12.5<br>12.6               | 7.3<br>7.3<br>7.3<br>7.3<br>7.3<br>7.5<br>7.5<br>7.3<br>7.3<br>7.3                      | 1.1<br>6<br>1.1<br>1.00<br>1.9<br>.8<br>.8                                           | 5<br>-9<br>7<br>3<br>10<br>8<br>10<br>3                  | 1.9<br>-9<br>-1.3<br>1.9<br>1.9<br>-1.8<br>1.7<br>2.2        | 3 · 8<br>2 · 0<br>2 · 7<br>3 · 2<br>2 · 4<br>2 · 7<br>2 · 9<br>4 · 6<br>3 · 9<br>5 · 0 | •0                           | 6<br>                                                                   | 29<br>-<br>33<br>-<br>35<br>42<br>44<br>43<br>41<br>41<br>46<br>51<br>47                          | 79<br>-<br>105<br>-<br>108<br>144<br>128<br>118<br>116<br>119<br>117            | 10<br>-<br>7<br>-<br>7,<br>8<br>8<br>12<br>10<br>8<br>8<br>7                  | 5<br>4<br>5<br>11<br>5<br>2<br>4<br>3<br>6<br>4                                                                                                                                                           | 54<br>-73<br>-76<br>89<br>80<br>77<br>77<br>81<br>74<br>84            | .1 .1 .0 .0 .0 .0 .0                                     | 124<br>-<br>172<br>-<br>175<br>231<br>210<br>202<br>182<br>189<br>184<br>211            | *170<br>                                                                                                                |
| 1 18 6 25 6 2 1 1 6 2 1 1 5 6 6 3 1 5 6 6 3 1 5 6 6 4 1 1 6 6 6 1 1 1 1 6 6 6 1 1 1 1 1                               | 1 1.7<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.9<br>12.1<br>12.1<br>11.4<br>11.2<br>13.3<br>12.6<br>11.8<br>12.0<br>11.2 | 7.1<br>7.3<br>7.1<br>7.0<br>7.2<br>6.9<br>7.2<br>7.3<br>7.3<br>7.1<br>7.3<br>7.1<br>7.3 | .8<br>.5<br>.7<br>.5<br>1.6<br>2.3<br>1.6<br>1.3<br>.7<br>.7<br>.6<br>.6<br>.6<br>.6 | 13<br>7<br>7<br>12<br>7<br>17<br>27<br>8<br>9<br>12<br>5 | .5<br>.3<br>.4<br>.6<br>.7<br>.5<br>1.6<br>1.3<br>1.9<br>1.7 | 4.4<br>4.8<br>4.9<br>                                                                  | •0                           | 12<br>10<br>12<br>11<br>12<br>7<br>2<br>4<br>4<br>7<br>4<br>-<br>5<br>5 | 51<br>48<br>46<br>48<br>49<br>36<br>14<br>23<br>23<br>39<br>23<br>-<br>30<br>19<br>24<br>24<br>29 | 131<br>124<br>120<br>121<br>178<br>54<br>54<br>65<br>64<br>57<br>65<br>65<br>65 | 9<br>7<br>12<br>7<br>15<br>-<br>11<br>7<br>7<br>10<br>7<br>13<br>8<br>10<br>7 | 4<br>4<br>2<br>9<br>3<br>4<br>108<br>240<br>16<br>15<br>13<br>12<br>-<br>10<br>85<br>15<br>13<br>10<br>15<br>15<br>15<br>15<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16 | 94<br>80<br>82<br>713<br>38<br>23<br>30<br>30<br>37<br>27<br>39<br>24 | .1<br>.1<br>.1<br>.1<br>.0<br>.0<br>.0<br>.2<br>.1<br>.0 | 231<br>202<br>197<br>185<br>200<br>130<br>94<br>87<br>85<br>109<br>92<br>-<br>110<br>81 | 920<br>170<br>170<br>370<br>230<br>500<br>7300<br>1200<br>900<br>500<br>1100<br>-<br>7800<br>2800<br>1300<br>500<br>670 |
| 5 29 6<br>5 31 6<br>6 2 6<br>6 7 6<br>6 14 6<br>6 21 6                                                                | 1 - 1 16.1 1 - 1 18.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.5<br>7.9<br>7.1<br>6.8<br>6.5                                              | 7 • 4<br>-<br>7 • 3<br>7 • 3<br>7 • 3<br>7 • 2                                          | 1.1<br>3.4<br>1.5<br>3.8                                                             | 18                                                       | 1.3                                                          | 2.9                                                                                    | -                            | 6 8 9 -                                                                 | 30<br>-<br>31<br>-<br>37<br>44<br>41<br>40                                                        | 66<br>- 75<br>- 83<br>98<br>83<br>83                                            | 7<br>-<br>6<br>-<br>6<br>6<br>8<br>-                                          | 4<br>6<br>-<br>3<br>6<br>10<br>32                                                                                                                                                                         | -                                                                     | -                                                        | 113                                                                                     | *120<br>*170<br>120<br>*170<br>120<br>*170<br>*2                                                                        |

STATE

MARYLAND

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

SUSQUEHANNA-JUNIATA

STATION LOCATIONSUSQUEHANNA RIVER AT

CONOWINGO, MARYLAND

|                                      |                                                                                                       | 1            | CHLORIN                           | E DEMAND        |                                      | }                 |                                                         |                                                                | 1                                                |                                                          |                                       |                                |                                                          | T                                         |
|--------------------------------------|-------------------------------------------------------------------------------------------------------|--------------|-----------------------------------|-----------------|--------------------------------------|-------------------|---------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|---------------------------------------|--------------------------------|----------------------------------------------------------|-------------------------------------------|
|                                      | pH B.O.D. mg/l                                                                                        | C.O.D.       | 1-HOUR<br>mg/l                    | 24-HOUR<br>mg/I | AMMONIA-<br>NITROGEN<br>mg/l         | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l                                      | HARDNESS<br>mg/l                                               | COLOR<br>(scale units)                           | TURBIDITY<br>(scale units)                               | SULFATES<br>mg/l                      | PHOSPHATES<br>mg/l             | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l                     | COLIFORI<br>per 100 n                     |
| 0<br>8<br>8<br>7<br>4<br>9<br>0<br>1 | 7.2<br>7.3<br>7.3<br>7.1<br>7.1<br>7.2<br>7.1<br>7.2<br>7.1<br>7.2<br>7.1<br>3.0<br>2.1<br>7.1<br>3.4 | 18 11 9 6 18 | •9<br>1•1<br>1•0<br>•7<br>2•6<br> |                 | •1<br>•1<br>•2<br>•2<br>•2<br>•1<br> | 66688.88711100111 | 47<br>42<br>46<br>52<br>49<br>48<br>47<br>47<br>-<br>44 | 87<br>86<br>102<br>117<br>122<br>104<br>108<br>119<br>-<br>112 | 10<br>7<br>7<br>9<br>8<br>9<br>12<br>10<br><br>7 | 1<br>4<br>52<br>4<br>48<br>10<br>12<br>6<br>6<br>-<br>35 | 56<br>500<br>66<br>65<br>70<br><br>49 | •1<br>•0<br>•0<br>•0<br>•0<br> | 130<br>148<br>163<br>173<br>184<br>157<br>171<br>165<br> | *10<br>31<br>*10<br>*<br>*<br>*<br>*<br>* |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Marietta, Pennsylvania Operated by U.S. Geological Survey STATE

Maryland

MAJOR BASIN

North Atlantic

MINOR BASIN

Susquehanna-Juniata

STATION LOCATION

Susquehanna River at

Conowingo, Maryland

| Day                              | October                                            | November                                       | December                                           | January                                             | February                                       | March                                                    | April                                               | May                                                      | June                                           | July                                                     | August                                                   | September                                      |
|----------------------------------|----------------------------------------------------|------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | 13.400<br>13.700<br>14.400<br>13.400<br>12.300     | 11.400<br>14.000<br>13.700<br>13.700<br>13.700 | 10.100<br>12.600<br>12.300<br>11.400<br>10.900     | 9.000<br>10.500<br>12.500<br>11.500<br>11.000       | 9.000<br>8.000<br>8.000<br>7.000<br>7.200      | 250.000<br>182.000<br>139.000<br>111.000<br>97.600       | 93.800<br>86.500<br>76.200<br>69.600<br>63.300      | 92.000<br>81.300<br>72.900<br>64.900<br>58.800           | 23.900<br>23.100<br>21.600<br>20.100<br>19.400 | 18.000<br>16.600<br>15.000<br>13.700<br>12.800           | 13.700<br>12.300<br>13.100<br>15.600<br>19.400           | 17.300<br>15.000<br>13.700<br>13.100<br>12.300 |
| 6<br>7<br>8<br>9<br>10           | 11.400<br>10.900<br>10.400<br>10.600<br>10.400     | 13.100<br>12.800<br>13.100<br>12.600<br>12.300 | 10.600<br>10.600<br>10.400<br>10.100<br>8.860      | 10.500<br>9.500<br>9.100<br>8.800<br>12.000         | 7.800<br>7.500<br>7.800<br>7.800<br>8.100      | 101.000<br>132.000<br>153.000<br>162.000<br>144.000      | 57.300<br>51.500<br>48.700<br>46.100<br>51.500      | 51.500<br>48.700<br>46.100<br>48.700<br>60.300           | 20.100<br>20.100<br>18.700<br>18.000           | 12.300<br>12.600<br>12.600<br>12.300<br>11.700           | 17.300<br>21.600<br>18.700<br>15.000<br>12.800           | 10.100<br>9.610<br>9.360<br>9.610<br>8.860     |
| 11<br>12<br>13<br>14<br>15       | 9.610<br>9.360<br>8.860<br>8.620<br>8.380          | 12.000<br>12.000<br>12.000<br>11.700<br>11.400 | 9.110<br>5.500<br>3.300<br>4.000<br>5.400          | 10.500<br>11.000<br>11.000<br>11.000                | 8.800<br>8.600<br>8.900<br>9.100<br>9.500      | 122.000<br>101.000<br>84.800<br>76.200<br>76.200         | 60.300<br>68.000<br>90.200<br>137.000<br>148.000    | 76.200<br>90.200<br>83.000<br>72.900<br>63.300           | 18.000<br>29.700<br>39.800<br>38.600<br>34.000 | 10.400<br>10.100<br>11.200<br>12.800<br>12.300           | 11.700<br>11.200<br>10.400<br>9.360<br>8.860             | 8.620<br>8.620<br>8.380<br>8.140<br>7.670      |
| 16<br>17<br>18<br>19<br>20       | 8.140<br>7.900<br>7.210<br>7.210<br>7.670          | 11.700<br>11.700<br>11.200<br>10.900<br>10.600 | 6.600<br>7.800<br>8.600<br>8.200<br>7.800          | 12.000<br>13.500<br>12.500<br>13.500<br>10.000      | 11.000<br>12.500<br>15.000<br>23.000<br>42.000 | 72.900<br>72.900<br>74.500<br>68.000<br>63.300           | 160.000<br>197.000<br>230.000<br>206.000<br>157.000 | 55.800<br>54.300<br>54.300<br>55.800<br>51.500           | 29.900<br>29.900<br>31.900<br>29.900<br>25.400 | 12.800<br>13.100<br>12.300<br>11.200<br>14.000           | 8.140<br>8.380<br>8.620<br>7.900<br>6.980                | 6.980<br>6.540<br>6.540<br>6.540<br>6.330      |
| 21<br>22<br>23<br>24<br>25       | 7.440<br>7.440<br>7.440<br>8.620<br>7.900          | 9.860<br>10.100<br>9.860<br>9.360<br>9.610     | 8.000<br>7.600<br>7.200<br>6.600<br>7.500          | 9.600<br>12.000<br>11.500<br>10.500<br>10.000       | 66.000<br>110.000<br>113.000<br>113.000        | 58.800<br>55.800<br>57.300<br>58.800<br>58.800           | 126.000<br>101.000<br>90.200<br>84.800<br>81.300    | 48.700<br>46.100<br>43.500<br>41.000<br>39.800           | 22.300<br>24.600<br>29.900<br>25.400<br>26.300 | 14.400<br>14.700<br>13.400<br>13.400<br>14.700           | 7.440<br>6.760<br>6.540<br>6.330<br>7.900                | 6.330<br>5.920<br>6.760<br>6.760<br>6.540      |
| 26<br>27<br>28<br>29<br>30<br>31 | 8.620<br>9.610<br>9.610<br>9.360<br>9.110<br>9.110 | 9.610<br>8.860<br>9.110<br>9.110<br>10.100     | 6.800<br>7.000<br>6.600<br>7.200<br>7.000<br>6.900 | 10.000<br>9.500<br>9.000<br>8.700<br>8.800<br>9.000 | 252.000<br>376.000<br>340.000                  | 63.300<br>68.000<br>68.000<br>69.600<br>79.500<br>93.800 | 109.000<br>192.000<br>190.000<br>132.000            | 37.400<br>34.000<br>30.900<br>29.000<br>27.100<br>25.400 | 29.900<br>28.000<br>25.400<br>22.300<br>19.400 | 14.000<br>16.000<br>17.300<br>20.800<br>20.100<br>16.000 | 14.400<br>16.000<br>18.000<br>18.700<br>20.800<br>19.400 | 5.920<br>5.000<br>4.830<br>4.670<br>4.360      |

RADIOACTIVITY DETERMINATIONS

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

SUSQUEHANNA RIVER-NORTH BRANCH

STATION LOCATION SUSQUEHANNA RIVER AT

SAYRE, PENNSYLVANIA

| DATE<br>SAMPLE |                               |           | RADIO     | PACTIVITY IN | WATER       |           |       |                               |                  |          |           |                |               |
|----------------|-------------------------------|-----------|-----------|--------------|-------------|-----------|-------|-------------------------------|------------------|----------|-----------|----------------|---------------|
| TAKEN          | DATE OF<br>DETERMI-<br>NATION |           | ALPHA     |              |             | BETA      |       | RADIO                         | ACTIVITY IN PLAI |          | RAD       | OACTIVITY IN W | ATER          |
|                |                               | SUSPENDED | DISSOLVED | TOTAL        | SUSPENDED   | DISSOLVED |       | DATE OF<br>DETERMI-<br>NATION | GROSS            | ACTIVITY |           | GROSS ACTIVITY |               |
| O. DAY YEAR    | MONTH DAY                     | μμc/I     | μμε/1     | μμε/ί        | μμc/!       | ##c/I     | TOTAL |                               | ALPHA            | BETA     | SUSPENDED | DISSOLVED      | TOTAL         |
|                |                               |           |           |              | <del></del> | PPC/1     | μμε/Ι | MO. DAY                       | μμc/g            | μμc/g    | μμς/Ι     | ##c/I          |               |
| 3 60           | 10 19                         | 0         | 1         | 1            | 0           | 0         | . 1   | j                             |                  |          | 1         |                | <i>µµс/</i> I |
| 10 60          | 10 24                         | 0         | 0         | 0            | ŏ           | 0         | 0     | - 1                           |                  |          | 1 1       | i              |               |
| 17 60          | 11 2                          | 0         | 0         | 0            | Ĭŏ          | - 1       | 0     |                               |                  |          | ] }       | ì              |               |
| 24 60          | 11 14                         | 0         | 2         | 2            | 0           | 0         | 0     |                               |                  | [        |           |                |               |
| 31 60          | 11 23                         | 0         | ō l       | ō            |             | 0         | 0     | 1. 1                          | ĺ                |          |           |                |               |
| 7 60           | 11 25                         | 0         | ŏ I       | ő            | 0           | 0         | 0     | 1 1                           |                  |          |           |                |               |
| 15 60          | 11 30                         | o         | ĭ         |              | 0           | 14        | 14    | 1                             |                  | į.       |           |                |               |
| 21 60          | 12 2                          | ŏ         | i         | 1            | 0           | 0         | 0     | 1 1                           |                  | ĺ        | 1         |                |               |
| 28 60          | 12 19                         | ŏ         |           | 1            | 0           | 0         | 0     | 1                             |                  | 1        | 1 1       |                |               |
| 5 60           | 12 29                         | ŏ         | 0         | 0            | 0           | 1         | 1     | 1 1                           |                  |          | 1         | 1              |               |
| 12 60          | 12 29                         | 0         | 0         | 0            | 0           | 0         | ō     | 1 1                           |                  |          | 1         | i              |               |
| 20 60          | 1 13                          | - 1       | 1         | 1            | 0           | ٥         | ŏ     | ] ]                           | l                | 1        |           |                |               |
| 27 60          |                               | 1         | 1         | 2            | 0           | o l       | ŏ     | ]                             |                  |          |           |                |               |
|                | 1 18                          | 0         | 0         | 0            | 0           | o l       | ö     |                               |                  |          |           |                |               |
|                | 1 24                          | 0         | 0         | 0            | 0           | ŏ         |       | 1 1                           |                  |          |           |                |               |
| 9 61           | 1 31                          | 0         | 0         | 0            | ŏ           | 0         | 0     | 1                             |                  |          |           |                |               |
| 16 61          | 2 2                           | 0         | 1         | 1            | ŏ           | -         | 0     | 1 1                           | 1                |          | 1         | ļ              |               |
| 23 61          | 2 7                           | 0 1       | 1         | ī            | - 1         | 4         | 4     | 1 1                           |                  | į.       |           |                |               |
| 30 61          | 2 16                          | 0         | ō         | ō            | 6           | 1         | 7     | 1 1                           | į                | 1        |           | 1              |               |
| 6 61           | 2 28                          | 0         | 0         |              | 0           | 0         | 0     | 1 1                           |                  | 1        |           |                |               |
| 14 61          | 3 2                           | 0         | ő         | 0            | 0           | 0         | 0     | 1 1                           |                  |          |           | ļ              |               |
| 20 61          | 3 8                           | 4         | - 1       | 0            | 0           | 0         | 0     | 1 1                           | 1                | ł        | 1         |                |               |
| 6 61           | 3 27                          |           | 0         | 4            | 8           | 0         | a l   | 1 1                           | 1                |          |           |                |               |
| 13 61          |                               | 0         | 1         | 1            | 0           | 0         | ا ہ   | 1 1                           |                  | 1        | 1 1       | 1.             |               |
|                | 4 3                           | 1         | 0         | 1            | 0           | 5         | 5     |                               |                  | Į        | 1 1       |                |               |
|                | 4 17                          | 0         | 0         | 0            | o l         | ō l       |       | 1                             | ŀ                | ļ        |           | j              |               |
| 24 61*         | 5 8                           | 1         | 0         | 1            | o l         | ŏ         | 0     |                               |                  |          | 1         |                |               |
| 29 61*         | 6 13                          | 1         | 0         | ī            | ŏ l         |           | 0     | 1                             |                  |          |           |                |               |
| 26 61*         | 7 11                          | 0         | 0         | ō            |             | 0         | 0     | 1                             |                  | ĺ        | 1 1       | į              |               |
| 25 61×         | 8 29                          | 0         | o l       | ŏ            | 0           | 0         | 0     | j                             |                  |          |           |                |               |
| 28 61          | 9 21                          | o l       | ő         | 0            | 0           | 4         | 4     |                               | 1                |          |           |                |               |
| 18 61   1      | .0 9                          | _         | _         | -            | 6           | 2         | 8     |                               |                  |          |           |                |               |
|                | -                             | I         | -         | -            | 10          | 2         | 12    | j                             |                  |          | 1         |                |               |
| 1              | ĺ                             |           | 1         |              | 1           |           | 1     |                               |                  | ı        |           |                |               |
| ı              | 1                             | ļ         | 1         |              |             | 1         | i     |                               |                  | 1        | 1         |                |               |
|                | 1                             |           | 1         | 1            |             | 1         | j     |                               |                  | 1        |           | 1              |               |
|                |                               | J         |           | 1            |             | 1         | j     |                               | 1                | 1        |           | 1              |               |
|                | ľ                             | 1         |           | 1            | 1           |           | - ]   |                               |                  | }        | 1         | 1              |               |
|                | ſ                             |           | - 1       | j            | 1           |           |       | 1 1                           |                  |          |           |                |               |
| 1              | i                             |           | 1         | - 1          |             |           | ĺ     | 1 1                           | 1                |          |           | .              |               |
|                | 1                             |           |           | ]            | 1           | 1         | ı     | 1                             |                  | 1        |           |                |               |
| 1              | ſ                             |           |           |              |             | 1         | ł     | 1 1                           | 1                | ł        | 1         |                |               |
| ľ              |                               |           |           | 1            | 1           | 1         | 1     |                               | 1                | 1        |           | 1              |               |
| 1              |                               |           | .         |              | İ           | 1         | }     | 1                             | 1                | - 1      |           | 1              |               |
|                |                               |           |           | - 1          |             | i         | ı     | 1                             | ľ                | ı        | 1         | 1              |               |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

SUSQUEHANNA RIVER-NORTH BRANCH

STATION LOCATION SUSQUEHANNA RIVER AT

SAYRE, PENNSYLVANIA

| DAT                                                                                           |      |       |                       |                       | ALGAE (                                  | Vumber                | per ml.)                                                 |                 |                                                                                    |                                                                                          | I INI                                                          | FOT                            | <del></del>                                                                                                                                                                                  |                                                             |                              |                                                                            |                                                          |                                                          |                                                        |                                                       |                                                                        | <del></del>                                                             |                           |                                                   |                              |                              |                                       |                                                             |
|-----------------------------------------------------------------------------------------------|------|-------|-----------------------|-----------------------|------------------------------------------|-----------------------|----------------------------------------------------------|-----------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------|---------------------------------------------------|------------------------------|------------------------------|---------------------------------------|-------------------------------------------------------------|
| OF SAM                                                                                        |      |       | BLUE-                 | GREEN                 | GREE                                     | EN                    | FLAGEI<br>(Pigm                                          | LATES<br>ented) | DIAT                                                                               | oms                                                                                      | DIA<br>SHE<br>(No. )                                           | ERT<br>TOM<br>ELLS<br>per ml.) |                                                                                                                                                                                              | DOM<br>(Se                                                  | INANT<br>e Intro             | SPEC                                                                       | IATC<br>SIES A<br>for C                                  | ND P                                                     | ERCEN<br>entifica                                      | NTAGE                                                 | s                                                                      | LANKTON,<br>EATHED                                                      | 2                         |                                                   | VERTEB                       | T                            | FORKS                                 | NERA<br>iction<br>ation)                                    |
| MONTH                                                                                         | YEAR | TOTAL | COCCOID               | FILA-<br>MENT-<br>OUS | COCCOID                                  | FILA-<br>MENT-<br>OUS | GREEN                                                    | OTHER           | CENTRIC                                                                            | PENNATE                                                                                  | CENTRIC                                                        | PENNATE                        | FIRST#                                                                                                                                                                                       | PER.<br>CENTAGE                                             | SECOND#                      | PER.                                                                       | THIRD#                                                   | PER-                                                     | FOURTH                                                 | PER.                                                  | OTHER PER-<br>CENTAGE                                                  | OTHER MICHOPLANKTON,<br>FUNGI AND SHEATHED<br>PACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)                      | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ANIMAL FORMS<br>(No. per liter) | DOMINANT GENERA<br>(See Introduction<br>for Identification) |
| 10 3<br>10 17<br>11 7<br>5 3<br>2 2 6<br>3 24<br>4 17<br>5 15<br>6 19<br>7 17<br>8 22<br>9 18 |      |       | 20<br>360<br>50<br>40 | 90<br>20<br>130<br>80 | 80<br>220<br>4600<br>3050<br>1600<br>850 | 20 20                 | 90<br>200<br>70<br>50<br>660<br>110<br>580<br>190<br>460 | 20 20           | 1610<br>7810<br>20<br>20<br>20<br>130<br>980<br>6020<br>2170<br>2500<br>540<br>870 | 130<br>440<br>290<br>250<br>270<br>110<br>540<br>340<br>2980<br>780<br>400<br>480<br>310 | 220<br>460<br>50<br>90<br>20<br>20<br>180<br>960<br>250<br>330 | 290<br>210                     | 82<br>36<br>36<br>36<br>36<br>51<br>82<br>36<br>82<br>36<br>82<br>36<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>83<br>84<br>85<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86 | 600<br>400<br>300<br>100<br>200<br>400<br>400<br>400<br>400 | 7666423123113766<br>63322276 | 10<br>20<br>10<br>10<br>10<br>20<br>10<br>20<br>10<br>20<br>10<br>20<br>10 | 51<br>64<br>51<br>93<br>92<br>82<br>92<br>26<br>82<br>16 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 92<br>65<br>82<br>64<br>31<br>2<br>93<br>31<br>2<br>36 | *<br>*<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>* | 10<br>*20<br>30<br>50<br>40<br>70<br>660<br>20<br>50<br>31<br>30<br>30 | 20<br>150<br>40<br>70<br>20<br>20<br>70<br>40                           | 10                        | 1<br>2<br>3<br>4<br>1<br>10<br>7<br>13<br>4<br>30 | 1 1 1                        | 2 1 1 2 2 2 2                | 7-554                                 | 4-9-4-9-3<br>7                                              |

#### ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

SUSQUEHANNA RIVER-NORTH BRANCH

STATION LOCATION SUSQUEHANNA RIVER AT

SAYRE, PENNSYLVANIA

| DATE OF S                                                                                                           |                                              |                                 |                                                                              |                                                                           |                                                                   |                                                                           |                     |                                                          |                                                                |             |             |                                                          |           |                                                            |                                                       |                         |                                                         |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------|----------------------------------------------------------|----------------------------------------------------------------|-------------|-------------|----------------------------------------------------------|-----------|------------------------------------------------------------|-------------------------------------------------------|-------------------------|---------------------------------------------------------|
| BEGINNING                                                                                                           |                                              | ND                              | 1                                                                            | E                                                                         | XTRACTABL                                                         | ES                                                                        | <del> </del>        |                                                          |                                                                |             |             |                                                          | RACTABLES |                                                            |                                                       |                         |                                                         |
|                                                                                                                     | +                                            | 1                               | GALLONS                                                                      | [                                                                         |                                                                   | 1                                                                         |                     |                                                          |                                                                | ,           | NEUTRALS    |                                                          |           |                                                            |                                                       |                         |                                                         |
| MONTH<br>DAY<br>YEAR                                                                                                | MONTH                                        | DAY                             | FILTERED                                                                     | TOTAL                                                                     | CHLORO-<br>FORM                                                   | ALCOHOL                                                                   | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES                                        | TOTAL                                                          | ALIPHATICS  | AROMATICS   | OXYGEN-<br>ATED<br>COMPOUNDS                             | LOSS      | WEAK<br>ACIDS                                              | STRONG<br>ACIDS                                       | BASES                   | LOSS                                                    |
| 10 3 60<br>11 3 60<br>12 5 60<br>1 9 61<br>2 20 61<br>4 28 61<br>6 2 61<br>6 16 61<br>7 22 61<br>8 28 61<br>9 25 61 | 11<br>12<br>.1<br>3<br>5<br>6<br>7<br>8<br>9 | 17<br>16<br>16<br>10<br>2<br>18 | 3337<br>2977<br>3127<br>3299<br>2244<br>2281<br>1608<br>2565<br>4268<br>4455 | 340<br>251<br>317<br>283<br>413<br>230<br>432<br>215<br>313<br>196<br>174 | 124<br>63<br>79<br>85<br>133<br>78<br>114<br>69<br>99<br>50<br>47 | 216<br>188<br>238<br>198<br>280<br>152<br>318<br>146<br>214<br>146<br>127 | 92443265612         | 27<br>16<br>17<br>18<br>32<br>20<br>23<br>15<br>23<br>10 | 43<br>20<br>25<br>27<br>37<br>23<br>43<br>24<br>29<br>24<br>18 | 32324585442 | 32324343231 | 35<br>15<br>16<br>25<br>14<br>28<br>16<br>21<br>16<br>15 | ī         | 15<br>8<br>11<br>13<br>17<br>11<br>15<br>7<br>11<br>6<br>6 | 5<br>4<br>6<br>7<br>11<br>5<br>10<br>5<br>9<br>2<br>4 | 2 1 1 2 1 2 1 1 1 0 0 1 | 23<br>125<br>14<br>32<br>15<br>16<br>12<br>20<br>7<br>6 |

STATE

PENNSYLVANIA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

SUSQUEHANNA RIVER-NORTH BRANCH

STATION LOCATIONSUSQUEHANNA RIVER AT

SAYRE, PENNSYLVANIA

76

| OF SA          | ATE<br>AMP | LE       | TEMP.                   | DISSOLVED      |            |                |                | CHLORINE       | DEMAND          |                              |                   |                    |                  |                        | 1                          |                  | Ī .                |                                      | 1         |
|----------------|------------|----------|-------------------------|----------------|------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|----------------------------|------------------|--------------------|--------------------------------------|-----------|
|                |            | YEAR     | (Degrees<br>Centigrade) | OXYGEN<br>mg/l | рН         | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/l | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS |
| 0 1            |            | 60       | -                       | -              | 7.7<br>7.6 | -              | -              | -              |                 | _                            | 10                | 74                 | 104              | 5                      | 5                          | 18               | ٠٠                 | 104                                  | -         |
| 0 3            |            | 60       | - [                     | -              | 7.8        | -              | -              | _              | -               |                              | 10                | 62                 | 80               | 5                      | 5                          | 17               | .2                 | 102                                  | _         |
|                |            | 60       | -                       | -              | 7.7        | -              | -              | _              | _               | _                            | 6<br>7            | 98<br>52           | 80               | 5                      | 5                          | 17               | .2                 | 94                                   | _         |
| 1 1            |            | 60       |                         | -              | 8.0        | -              | -              | -              | -               | _                            | 12                | 58                 | 92<br>96         | 5<br>5                 | 5                          | 15               | • 4                | 67                                   | -         |
| 1   2<br>1   2 |            | 60       | -                       | -              | 7.9        | -              | -              | -              | -               | ,                            | 11                | 64                 | 96               | 10                     | 5<br>5                     | 25               | •0                 | 108                                  | -         |
| 2 2            | ا ا        | 60       | _                       | -              | 7.9        | _              | -              | -              | -               | -                            | 11                | 66                 | 100              | 10                     | 5                          | 24<br>20         | .1                 | 95                                   | -         |
| 2 2            | 7 1        | 60       | _                       | -              | 7.5        | _              | -              | -              | -               | ~                            | 8                 | 78                 | 76               | 0                      | اة                         | 23               | .2                 | _                                    | _         |
|                |            | 61       | -                       | -              | 7.8        | _              | -              | _              | -               | -                            | 12                | 72                 | 106              | 0                      | 20                         | 26               | .3                 | 133                                  | -         |
|                |            | 61       | -1                      | -              | _          | -              | _              |                | _               | -                            | 13                | 72                 | 100              | 5                      | 20                         | 24               | • 4                | 134                                  | _         |
| 1 1            |            | 61       | -                       | -              | -          | -              | -              | _              | -               | -                            | 12                | -                  | -                | -                      | 0                          | 22               | .5                 | 124                                  | _         |
| 1 23           | 3   6      | 61       | , -                     |                | _ =        | -              | -              | -              | - [             | -                            | 13                | _                  | _                | 0                      | -                          | 21               | • 5                | 99                                   | *50       |
| 1 30           |            | 61<br>51 | 1.0                     | -              | 7.2        | -              | -              | - [            | -1              | -                            |                   | 87                 | 94               | 5                      | 0 3                        | 34               | • 4                | 156                                  | *50       |
| 1 1 5          |            | 51       | _                       |                | -          | ~              | -              | -1             | -               | -                            | 16                | 80                 | -                | - [                    | ٥                          | 36               | -                  | 100                                  | *50       |
| 20             | ء ا        | 51       | 3.0                     | -              | 7.4        | -              |                | -              | -               | -                            | 22                | - 1                | -                | - [                    |                            | 26               | •6                 | 158<br>155                           | -         |
| 3   6          |            | 51       | 5.5                     |                | 6.8        | _              |                | -              | -               | -                            | 9                 | 38                 | 64               | 10                     | 270                        | 22               | .2                 | 81                                   |           |
| 12             |            | 51       | -                       | -              | _          | _              | _              | _              |                 | -                            | 4                 | 38                 | 70               | 10                     | 50                         | 19               | •6                 | 83                                   |           |
| 27             |            | 51       | 4.7                     | -              | 7.4        | -              | -              | _ [            |                 | =                            | 7                 | 42                 | 60               | 5                      | 40                         | 19               | .1                 | 98                                   | -         |
| 1 3            |            | 1        | 4.5                     | -              | 7 • 4      | -              | -              | -              | _               | _                            | 5                 | 37  <br>34         | 64<br>48         | 0                      | 20                         |                  | - [                | - ]                                  | _         |
| 17             |            | 51       | 5.2                     | -              | 7.5        | ~              | -              | -              | -               | _                            | -                 | 44                 | 108              | 10                     | 25                         | 20               | • 0                | 50                                   | 1100      |
| 24             |            | 51       | 10.0                    | -              | 7.2        | ~              | -              | -              | -               | -                            | 6                 | 23                 | 35               | 8                      | 60                         | 18               |                    | -                                    | *50       |
| 1              |            | 1        | 9.0                     | -              | 7.3        | -              | -              | -              | -               | -                            | 11                | 36                 | 48               | 5                      | 45                         | 40               | .0                 | 45                                   | 150       |
| ē              |            | 1        | 12.0                    | _              | 7.5        | _              | -              | -              |                 | -1                           | 6                 | 35                 | 46               | 0                      | 40                         | 12               | .0                 | 104<br>81                            | *50       |
| 15             |            | 1        | 16.5                    | -1             | 7.3        | _              | -              |                | =1              | ~                            | 6                 | 38                 | 60               | 0                      | 60                         | 12               | .1                 | 53                                   | 360       |
| 22             |            | 1        | 13.5                    | -              | 7.5        | -              | -              |                | _[              | =                            | 6                 | 49                 | 56               | 10                     | 40                         | 11               | .2                 | 50                                   | _         |
| 29             |            |          | 15.0                    | -              | 8.1        | -              | -              | _              | _               | -                            | 8 9               | 56                 | 72               | 5                      | 25                         | 13               | •2                 | 58                                   | 6000      |
| 5              |            | 1        | 19.0                    | -              | 8.1        | -              | ~ ]            | -1             |                 | _                            | 10                | 65<br>70           | 74<br>82         | 5                      | 10                         | 15               | •0                 | 76                                   | 11000     |
| 13             |            |          | 22.5                    | -              | 7 • 3      | -              | -              |                | -               |                              | 10                | 47                 | 78               | 5  <br>5               | 5                          | 13               | •0                 | 98                                   | 50        |
| 19<br>26       |            |          | 19.0                    | -              | 7.5        | -              | ~              | -              | -1              | -                            | 7                 | 60                 | 80               | 5                      | 45<br>25                   | 22<br>12         | • 0                | 77                                   | 900       |
| 5              |            | i        | 22.0                    |                | 7•7<br>8•1 | _              |                | -              | -               | -                            | -                 | 65                 | 84               | 5                      | 20                         | 12               | • • •              | 87                                   | *50       |
| 11             |            |          | 18.5                    | -              | 8.4        | _ [            | _              | _              | -               | -                            | -                 | 82                 | 82               | 5                      | 12                         | -                | _                  | <u> </u>                             | 1000      |
| 17             | '   6      | 1        | 22.5                    | -              | 8.6        | - 1            | _              | _ [            | _               | _                            | ,-                | 89                 | 104              | 5                      | 20                         | 16               | .0                 | 122                                  | 7700      |
| 25             | 6          | 1        | 25.0                    | -              | 9.2        | -              | -              | _              | -1              | -                            | 18<br>13          | 85                 | 96               | 5                      | 10                         | 17               | .0                 | 135                                  | 50        |
|                |            |          | i                       |                | İ          |                | .              |                | ļ               | -                            | 13                | 100                | 92               | 5                      | 10                         | 15               | •0                 | 115                                  | 590       |
| 1              |            |          |                         |                | ŀ          | 1              | - 1            |                |                 |                              |                   |                    |                  | ľ                      | ŀ                          |                  |                    |                                      |           |
|                |            |          |                         |                | .          |                | - 1            | 1              | 1               |                              |                   | 1                  |                  | - 1                    | - 1                        | i i              | - 1                | i                                    |           |

665709 O - 62 - 33

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

PENNSYLVANIA

MAJOR BASIN

NORTH ATLANTIC

MINOR BASIN

SUSQUEHANNA RIVER-NORTH BRANCH

STATION LOCATIONSUSQUEHANNA RIVER AT

SAYRE, PENNSYLVANIA

. 76

| OF SAMPLE TEMP. DISSOLVED DORSON PH B.O.D. C.O.D. AMMONIA- CHLORIDES ALKALINITY HARDNESS COLOR TURBIDITY SULFATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |           |                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|--------------------------|
| The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | PHOSPHATES<br>mg/l | DISSOLAED | COLIFORMS<br>per 100 ml. |
| 8 15 61 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | _         | 450<br>1100              |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station near Waverly, New York Operated by U.S. Geological Survey STATE

Pennsylvania

MAJOR PASIN

North Atlantic

MINOR BASIN

Susquehanna River-North Branch

STATION LOCATION

Susquehanna River at

Sayre, Pennsylvania

| De.y      | October        | November       | December | January | February | March  | April   | May    | June            | July           | August         | September |
|-----------|----------------|----------------|----------|---------|----------|--------|---------|--------|-----------------|----------------|----------------|-----------|
| 1         | 2.270<br>2.270 | 4.150          | 2.890    | 1.600   | 1.020    | 42.200 | 19.900  | 19.800 | lt are          |                |                |           |
| 3         | 2.230          | 3.940<br>4.380 | 3.330    | 1.550   | 1.000    | 29.300 | 17.800  | 16.900 | 4.350<br>4.100  | 3.560          | 4.210          | 2.530     |
| 3<br>4    | 2.290          | 4.520          | 3.080    | 1.550   | 1.020    | 23,500 | 16.100  | 15.900 | 4.400           | 3.160          | 3.720          | 2.310     |
| 5         | 2.090          |                | 2.820    | 1.500   | 1.060    | 22.300 | 13.900  | 14.100 |                 | 3.640          | 5.570          | 2.010     |
| ,         | 2.090          | 4.130          | 2.550    | 1.450   | 1.040    | 22.300 | 12.500  | 12.100 | 4.740<br>4.380  | 3.430<br>3.360 | 4.710<br>3.640 | 1.820     |
| 6         | 1.820          | 3.860          | 2.640    | 1.400   | 1.040    | 00.600 |         |        |                 | J. 300         | 3.040          | 1.730     |
| 7<br>8    | 1.840          | 3.800          | 2.680    | 1.400   | 1.060    | 29.600 | 11.400  | 10.600 | 3.780           | 3.060          | 2.910          | 1.610     |
| 8         | 1.800          | 3.670          | 2.710    | 1.450   | 1.060    | 35.500 | 11.000  | 11.700 | 3.260           | 2.730          | 2.400          | 1.490     |
| 9         | 1.800          | 3.640          | 2.680    | 1.350   | 1.080    | 30.500 | 11.400  | 12.800 | 3.200           | 3.410          | 2.090          | 1.430     |
| LO        | 1.700          | 3.610          | 2.360    | 1.300   |          | 24.600 | 10.600  | 13.400 | 8.390           | 3.160          | 1.860          | 1.880     |
|           |                |                |          | 1.300   | 1.080    | 19.800 | 10.100  | 21.300 | 11.400          | 3.590          | 1.700          | 1.630     |
| ll<br>L2  | 1.560<br>1.520 | 3.880          | 1.800    | 1.350   | 1.100    | 16.300 | 12.500  | 20.200 | 12.100          |                | ·              |           |
| .2<br>.3  | 1.410          | 4.400          | 1.240    | 1.350   | 1.080    | 14.100 | 15.000  | 16.700 | 13.100          | 3.330          | 1.640          | 1.470     |
| .3<br>.4. |                | 4.400          | 1.200    | 1.350   | 1.100    | 12.500 | 18.700  | 14.200 | 13.000          | 2.680          | 1.700          | 1.360     |
|           | 1.330          | 3.830          | 1.500    | 1.400   | 1.160    | 11,300 | 24.100  | 12.600 | 11.400          | 2.340          | 1.950          | 1.300     |
| .5        | 1.270          | 3.590          | 1.900    | 1.450   | 1.200    | 11.400 | 24.400  | 10.900 | 11.900          | 2.150          | 1.790          | 1.240     |
| .6        | 1.210          | 2 260          | 0.100    | •       |          |        | 24.400  | 10.900 | 14.600          | 1.990          | 1.490          | 1.200     |
| .7        | 1.200          | 3.360<br>3.430 | 2.100    | 1.450   | 1.240    | 13.300 | 28,600  | 10.700 | 14.000          |                |                |           |
| .8        | 1.140          | 3.430          | 2.250    | 1.400   | 1.260    | 11.100 | 40.500  | 11.000 |                 | 1.950          | 1.320          | 1.120     |
| 9         | 1.150          | 3.540          | 2.400    | 1.350   | 1.400    | 8.670  | 38.700  | 10.000 | 10.700<br>8.340 | 2.070          | 1.270          | 1.630     |
| 0         | 1.350          | 3.180          | 2.300    | 1.300   | 4.800    | 8.090  | 32.100  | 8.590  | 6.340           | 2.230          | 1.200          | 2.480     |
| .0        | 1.350          | 3.110          | 2,200    | 1.250   | 12.200   | 8.300  | 26.300  | 7.840  | 6.790           | 2.550          | 1.140          | 2.070     |
| 1         | 2.420          | 2.890          | 0.000    |         |          |        | 201,000 | 1.040  | 5.940           | 2.620          | 1.070          | 1.560     |
| 2         | 2.940          | 2.730          | 2.000    | 1.240   | 16.000   | 8.230  | 21.300  | 7.210  | 5.250           | 0 1:00         |                |           |
|           | 3.180          | 2.730<br>2.660 | 1.750    | 1.220   | 14.500   | 7.810  | 18.500  | 8.410  | 8.980           | 2.400          | 1.320          | 1.200     |
| :3<br>4   | 2.620          |                | 1.650    | 1.200   | 15.000   | 7.780  | 19.400  | 8.160  | 11.800          | 2.250          | 1.510          | 1.070     |
| 5         | 2.400          | 2.730          | 1.600    | 1.160   | 24.000   | 8,890  | 24.500  | 7.500  | 11.100          | 2.110          | 2.030          | 1.030     |
| ,         | 2.400          | 2.730          | 1.550    | 1.140   | 45.200   | 10.400 | 61,200  | 6.790  | 8.890           | 1.820          | 2.070          | • 988     |
| 6         | 2.590          | 2.710          | 1.600    | 1 160   |          |        |         | 0.150  | 0.090           | 2.150          | 1.660          | 1.000     |
| 7         | 3.410          | 2.590          | 1.650    | 1.160   | 82.000   | 10.100 | 54.700  | 6.020  | 7.040           | 2.480          | J. 200         | 1 016     |
| B         | 4.990          | 2.480          | 1.600    | 1.180   | 76.100   | 11.600 | 35.800  | 5.960  | 6.110           | 2.960          | 4.390          | 1.010     |
| 9         | 5.110          | 2.440          |          | 1.140   | 58.400   | 20.100 | 27.400  | 5.690  | 5.370           | 3.030          | 6.850          | .923      |
| ó         | 4.630          | 2.480          | 1.500    | 1.100   |          | 32.200 | 25.200  | 5.370  | 4.520           | 2.710          | 7.010          | .871      |
| Ĺ         | 4.430          | £.400          | 1.500    | 1.080   |          | 34.600 | 24.600  | 5.080  | 3.940           |                | 5.900          | .806      |
| -         | 7,430          |                | 1.550    | 1.060   |          | 26.700 |         | 4.660  | 3.340           | 2.570          | 4.430          | .768      |
|           |                |                |          |         |          |        |         |        |                 | 5.370          | 3.330          |           |

STATE

ALABAMA

MAJOR BASIN

TENNESSEE RIVER

BRIDGEPORT, ALABAMA

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

TENN. RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION TENNESSEE RIVER AT

| DATE               |                               |           | RADIC     | ACTIVITY IN V | /ATER     |           |          | RADIOA                        | CTIVITY IN PLAN | IKTON (dry) | RAD       | OACTIVITY IN W | ATER  |
|--------------------|-------------------------------|-----------|-----------|---------------|-----------|-----------|----------|-------------------------------|-----------------|-------------|-----------|----------------|-------|
| SAMPLE             | DATE OF                       |           | ALPHA     |               |           | BETA      |          | DATE OF                       | GROSS A         | CTIVITY     |           | GROSS ACTIVIT  | Y     |
| TAKEN              | DATE OF<br>DETERMI-<br>NATION | SUSPENDED | DISSOLVED | TOTAL         | SUSPENDED | DISSOLVED | TOTAL    | DATE OF<br>DETERMI-<br>NATION | ALPHA           | BETA        | SUSPENDED | DISSOLVED      | TOTAL |
| O. DAY YEAR        |                               | μμς/Ι     | μμε/Ι     | μμς/Ι         | μμε/Ι     | μμε/ί     | μμε/Ι    | MO. DAY                       | μμc/g           | μμc/g       | μμς/Ι     | μμc/l          | μμc/l |
|                    |                               |           |           |               |           |           |          |                               |                 |             |           |                |       |
| 0 26 60            | 11 10                         | 0         | 2         | 2             | 0         | 17        | 17       |                               |                 | Į.          |           |                |       |
| 1 23 60            | 12 1                          | 0         | 0         | 0             | 0         | 21        | 21       |                               |                 | Į.          |           |                |       |
| 2 760              | 12 29                         | 0         | 0         | 0             | 0         | 69        | 69       |                               |                 |             |           |                |       |
| 2 21 60            | 1 12                          | 0         | 1         | 1             | 0         | 69        | 69       |                               |                 |             |           |                |       |
| 1 5 61             | 1 24                          | 0         | 0         | 0             | 0         | 65        | 65       |                               |                 | l.          |           |                |       |
| 1 18 61            | 2 17                          | 0         | 0         | 0             | 0         | 70        | 70       |                               |                 |             | 1         |                |       |
| 2 1 61             | 2 13                          | 0         | 1         | 1             | 3         | 133       | 136      | 1 1                           |                 | - 1         |           |                |       |
| 2 15 61            | 3 3                           | 0         | 0         | 0 .           | 5         | 90        | 95       | -                             |                 | i           |           |                |       |
| 3 2 61             | 3 20                          | 0         | 0         | 0             | 0         | 187       | 187      |                               |                 |             |           |                |       |
| 3 15 61            | 3 30                          | 2         | 0         | 2             | 1 1       | 47        | 48       |                               |                 | i           |           |                |       |
| 3 29 61            | 4 14                          | 1         | 0         | 1             | 0         | 26        | 26<br>31 |                               |                 |             |           |                |       |
| 4 12 61            | 4 28                          | 0         | 0         | 0             | 0         | 31        | 130      | 1                             |                 |             |           |                |       |
| 5 10 61            | 5 31                          | 0         | 0         | 0             | 50        | 80<br>55  | 57       |                               |                 |             |           |                |       |
| 5 24 61            | 6 14                          | 0         | 0         | 0             |           | 55        | 55       |                               |                 |             |           |                |       |
| 6 7 61             | 6 20                          | 0         | 1         | 0             |           | 58        | 58       | 1 1                           |                 |             |           |                |       |
| 6 21 61            | 7 14                          | 0         | 0         | 0             | 4         | 46        | 50       |                               |                 |             |           |                |       |
| 7 5 61             | 8 4                           | 0         | 0         | 0             |           | ٥ -       | 0        |                               |                 |             |           |                |       |
| 7 19 61            | 8 10                          | 0         | 1         | 1             | 8         | 46        | 54       |                               |                 |             |           | 1              |       |
| 8 2 61             | 9 7                           | 0 0       | 1         | 1             | ا ہ ا     | 31        | 31       |                               | 4               |             |           |                |       |
| 8 16 61            | 9 22                          | 0         | ō         | Ō             | 0         | 38        | 38       | 1 1                           |                 |             | 1         |                |       |
| 8 31 61            | 9 27                          | 0         | ŏ         | 0             |           | 58        | 58       |                               | -               |             |           |                |       |
| 9 13 61<br>9 27 61 | 10 2<br>10 11                 | 0         | 2         | 2             | 3         | 25        | 28       |                               |                 |             |           |                |       |
| 9 21 61            | 10 11                         | "         | -         | _             |           |           |          |                               |                 |             |           |                |       |
|                    |                               |           |           |               |           |           |          |                               |                 |             |           |                |       |
|                    |                               |           |           |               |           |           |          |                               |                 |             |           |                |       |
|                    |                               |           |           |               |           |           |          |                               |                 |             |           | ]              |       |
|                    |                               |           |           |               | 1         |           | į        | 1 1                           |                 |             |           |                |       |
|                    |                               |           |           |               |           |           |          |                               |                 |             |           |                |       |
|                    |                               |           | ļ         |               |           | l         |          |                               |                 |             |           |                |       |
|                    |                               |           |           |               | 1         |           |          |                               |                 |             |           |                |       |
|                    |                               |           |           |               |           |           |          |                               |                 |             |           |                |       |
|                    |                               |           | i         |               |           |           | İ        |                               |                 |             |           |                |       |
|                    |                               |           |           |               |           |           |          | 1                             |                 |             |           |                |       |
|                    |                               |           | į         |               | ļ         |           |          |                               |                 |             |           |                |       |
|                    |                               |           |           |               | 1         |           | 1        |                               |                 |             |           |                |       |
|                    |                               |           |           |               | [         |           | }        |                               |                 |             |           |                |       |
|                    |                               |           |           |               |           |           |          |                               |                 |             |           |                |       |
|                    |                               |           | ŀ         |               |           |           |          |                               |                 |             |           |                |       |
|                    |                               |           |           |               |           |           |          |                               |                 |             |           |                |       |
|                    |                               |           |           |               |           | ĺ         |          |                               |                 |             |           |                |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

ALABAMA

MAJOR BASIN

TENNESSEE RIVER

MINOR BASIN

TENN. RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION TENNESSEE RIVER AT

BRIDGEPORT, ALABAMA

| DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                 |         |                       | ALGAE (                                       | Number                | per ml.)                                                                         |                  |                                                                                                       |                                                                 | IN                                                          | ERT                                                                                                       | 1                                                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                         |                                                   |                             |                                                                                                                                        | <u> </u>                                               |                           |                                                                            |                              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------|-----------------------|-----------------------------------------------|-----------------------|----------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------|----------------------------------------------------------------------------|------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OF SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                 | BLUE-   | GREEN                 | GREE                                          | ΞN                    | FLAGE!                                                                           | LLATES<br>ented) | DIAT                                                                                                  | OMS                                                             | SHI                                                         | ERT<br>TOM<br>ELLS                                                                                        |                                                                           | DOMI                                    | NANT :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SPECI                                   | ATOM                                    | DPFR                                              | CENTA                       | GES                                                                                                                                    | , a                                                    | -                         | MICROI                                                                     | NVERTER                      | RATES                        | s ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DAY YEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TOTAL                                                                                           | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                                       | FILA-<br>MENT-<br>OUS |                                                                                  | OTHER            | CENTRIC                                                                                               | PENNATE                                                         |                                                             | PENNATE                                                                                                   | FIRST*                                                                    | PER.<br>CENTAGE                         | Introde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CENTAGE                                 | for Cod                                 | e Ident                                           | ification                   | CENTAGE (*                                                                                                                             | OTHER MICROFLANKTON,<br>FUNGI AND SHEATHED<br>BACTENIA | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter)                                               | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ANIMAL FORMS (No. per liter)  DOMINANT GENERA (See Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 26 60<br>9 60<br>21 60<br>27 60<br>2 7 60<br>2 1 60<br>1 18 61<br>1 5 61<br>1 2 61<br>1 2 61<br>1 2 61<br>1 61<br>2 61<br>1 61<br>2 61<br>1 61<br>2 61<br>1 61<br>2 61<br>1 61<br>2 61<br>1 61<br>2 61<br>3 61<br>6 61<br>1 61<br>6 61<br>1 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61<br>6 61 | 100<br>100<br>300<br>400<br>600<br>1700<br>200<br>100<br>200<br>200<br>200<br>100<br>500<br>100 |         |                       | 20<br>40<br>20<br>60<br>20<br>250<br>20<br>20 |                       | 20<br>20<br>40<br>40<br>50<br>20<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 | 20 20 20         | 20<br>90<br>160<br>310<br>470<br>560<br>1610<br>90<br>20<br>80<br>150<br>80<br>100<br>100<br>40<br>40 | 50<br>50<br>90<br>90<br>20<br>70<br>60<br>40<br>100<br>40<br>20 | 20<br>20<br>50<br>160<br>90<br>200<br>110<br>50<br>20<br>20 | 20<br>50<br>70<br>130<br>20<br>50<br>20<br>110<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 | 7027<br>557<br>556<br>555<br>555<br>555<br>555<br>555<br>566<br>566<br>56 | 100 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 57 11<br>56 12<br>56 22<br>57 32<br>57 37 22<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12<br>57 12 | 100000000000000000000000000000000000000 | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 000 8 4 8 5 9 9 5 5 5 9 2 2 2 2 2 2 2 2 2 2 2 2 2 | 666240617262277772222277723 | 50 50 50 50 50 50 50 50 70 80 30 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80 | 150<br>90<br>20<br>20<br>20<br>390                     | 10                        | 1<br>1<br>5<br>6<br>22<br>22<br>2<br>3<br>3<br>3<br>7<br>4<br>7<br>13<br>4 | 22 4 4122 111                | 1 1                          | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 |

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

ALABAMA

MAJOR BASIN

TENNESSEE RIVER

MINOR BASIN

TENN. RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION TENNESSEE RIVER AT

BRIDGEPORT, ALABAMA

| <del></del>                                                                                                          |                                                                              |                                                                           |                                                                |                                                                    |                     |                                                             |                                                                      |                             | CIII ODOD                                      | ORM EXTR                                                     | CTABLEC      |               |                 |                                         |                                                                  |
|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|---------------------|-------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------|------------------------------------------------|--------------------------------------------------------------|--------------|---------------|-----------------|-----------------------------------------|------------------------------------------------------------------|
| DATE OF SAMPLE BEGINNING END                                                                                         |                                                                              | EX                                                                        | TRACTABL                                                       | .E.5                                                               |                     | 1                                                           |                                                                      |                             | NEUTRALS                                       |                                                              | CIABLES      |               |                 |                                         |                                                                  |
| DAY YEAR MONTH                                                                                                       | GALLONS<br>FILTERED                                                          | TOTAL                                                                     | CHLORO-<br>FORM                                                | ALCOHOL                                                            | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES                                           | TOTAL                                                                | ALIPHATICS                  | AROMATICS                                      | OXYGEN-<br>ATED<br>COMPOUNDS                                 | LOSS         | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES                                   | Loss                                                             |
| 12 8 60 12 27 2 13 61 3 25 5 17 61 5 25 6 8 61 6 16 6 27 61 7 18 7 20 61 8 13 8 22 61 8 30 9 11 61 9 19 9 28 61 10 6 | 5010<br>5070<br>5350<br>5255<br>5200<br>5300<br>5180<br>5220<br>5170<br>5210 | 154<br>164<br>145<br>147<br>168<br>149<br>169<br>140<br>121<br>115<br>121 | 31<br>55<br>60<br>50<br>65<br>72<br>61<br>59<br>44<br>37<br>34 | 123<br>109<br>84<br>97<br>103<br>77<br>108<br>81<br>77<br>78<br>87 | 133127233121        | 6<br>14<br>19<br>11<br>17<br>19<br>15<br>13<br>10<br>9<br>7 | 16<br>17<br>15<br>17<br>20<br>18<br>20<br>18<br>17<br>16<br>10<br>12 | 1 1 4 2 3 2 2 4 1 3 2 2 2 2 | 1<br>2<br>2<br>2<br>2<br>2<br>1<br>1<br>1<br>1 | 13<br>13<br>9<br>12<br>15<br>13<br>14<br>10<br>12<br>17<br>9 | 110101061100 | 355577777544  | 6               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3<br>10<br>13<br>11<br>11<br>12<br>10<br>11<br>12<br>7<br>9<br>6 |

STATE

ALABAMA

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

TENNESSEE RIVER

MINOR BASIN

TENN. RIVER-MAIN STEM

STATION LOCATIONTENNESSEE RIVER AT

BRIDGEPORT, ALABAMA

77

MINOR TRIB.

| DATE<br>OF SAMPLE    |                                                                                                                          |                                                                                                                                       | Tortomore and                                                             |                                                                                                                                                                                                                                                                               |                                                                                                                     | CHLORINE                                                                                              | DEMAND                                          |                                                                            |                                                                                                                   | <u> </u>                                                       | ı                                                                                             | 1                                                                                           | Ī                                                                                                                                       | I                                                                                                                                      | 1                  | I                                                                                                                                                    | 1                                                                                                                           |
|----------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| MONTH<br>DAY<br>YEAR | TEMP.<br>(Dogrees<br>Centigrade)                                                                                         | DISSOLVED<br>OXYGEN<br>mg/l                                                                                                           | Hq                                                                        | 8.O.D.<br>mg/l                                                                                                                                                                                                                                                                | C.O.D.<br>mg/l                                                                                                      | 1-HOUR<br>mg/l                                                                                        | 24-HOUR<br>mg/l                                 | AMMONIA-<br>NITROGEN<br>mg/l                                               | CHLORIDES<br>mg/l                                                                                                 | ALKALINITY<br>mg/l                                             | HARDNESS<br>mg/l                                                                              | COLOR<br>(scale units)                                                                      | TURBIDITY<br>(scale units)                                                                                                              | SULFATES<br>mg/l                                                                                                                       | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l                                                                                                                 | COLIFORMS                                                                                                                   |
| 11                   | 14.2<br>13.0<br>17.0<br>4.7<br>5.5<br>4.0<br>7.6<br>11.2<br>12.4<br>12.7<br>16.3<br>22.4<br>24.3<br>25.3<br>24.5<br>25.5 | 8.1<br>8.7<br>6.8<br>9.5<br>10.4<br>11.0<br>11.8<br>11.5<br>9.1<br>8.8<br>9.3<br>8.4<br>7.8<br>6.5<br>1.5<br>5.2<br>5.4<br>5.0<br>6.0 | 7.4<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0 | 2.7<br>1.9<br>2.6<br>2.9<br>2.6<br>2.9<br>2.6<br>2.8<br>2.6<br>2.8<br>2.6<br>2.6<br>2.8<br>3.8<br>3.8<br>3.6<br>3.8<br>3.8<br>3.7<br>3.8<br>3.7<br>3.8<br>3.7<br>3.8<br>3.7<br>3.8<br>3.7<br>3.8<br>3.7<br>3.8<br>3.8<br>3.8<br>3.8<br>3.8<br>3.8<br>3.8<br>3.8<br>3.8<br>3.8 | 13<br>16<br>22<br>13<br>16<br>12<br>14<br>18<br>12<br>15<br>15<br>13<br>9<br>10<br>18<br>14<br>15<br>22<br>24<br>23 | 1.8<br>1.3<br>1.7<br>1.4<br>1.7<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6 | 3.4.6.6.3.6.8.2.1.2.4.4.5.9.9.8.3.4.8.1.3.6.1.7 | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | 16<br>18<br>17<br>18<br>12<br>15<br>19<br>17<br>12<br>55<br>77<br>44<br>77<br>8<br>8<br>8<br>15<br>16<br>18<br>17 | 4684585262621666900566674<br>555554455545555555555555555555555 | 644<br>67<br>62<br>54<br>51<br>55<br>55<br>55<br>66<br>66<br>66<br>67<br>76<br>86<br>77<br>76 | 25<br>20<br>20<br>30<br>35<br>20<br>20<br>15<br>15<br>15<br>20<br>20<br>10<br>15<br>15<br>5 | 8<br>15<br>6<br>13<br>28<br>23<br>10<br>8<br>11<br>344<br>123<br>245<br>17<br>15<br>16<br>14<br>15<br>11<br>14<br>6<br>9<br>8<br>8<br>7 | 14<br>25<br>11<br>27<br>17<br>16<br>17<br>26<br>24<br>14<br>10<br>12<br>13<br>19<br>20<br>16<br>17<br>14<br>10<br>12<br>15<br>18<br>16 |                    | 104<br>121<br>107<br>128<br>122<br>80<br>104<br>97<br>120<br>104<br>98<br>109<br>99<br>98<br>79<br>78<br>95<br>91<br>106<br>138<br>113<br>134<br>140 | 330<br>1000<br>1500<br>-<br>680<br>-<br>330<br>18000<br>23000<br>670<br>3000<br>500<br>1700<br>1700<br>3200<br>4600<br>2800 |



#### STREAM FLOW DATA - 1960-1961

#### Thousand Cubic Feet per Second

#### PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Hales Bar near Chattanooga, Tennessee Operated by U.S. Geological Survey

STATE

Alabama

MAJOR BASIN

Tennessee River

MINOR BASIN

Tennessee River-Main Stem & Minor Trib.

STATION LOCATION

Tennessee River at

Bridgeport, Alabama

| Day                  | October          | November         | December         | January          | February           | March              | April            | May              | June             | July             | August           | September        |
|----------------------|------------------|------------------|------------------|------------------|--------------------|--------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| ı                    | 29.400           | 39.200           | 46.600           | 45.600           | 25.100             | 89.200             | 29.900           | 31.400           | 28.200<br>29.600 | 33.700           | 36.400           | 32.700<br>41.400 |
| 2<br>3               | 21.500<br>25.700 | 37.900<br>36.800 | 41.500<br>36.600 | 44.800<br>40.700 | 20.900<br>28.400   | 79.000<br>74.500   | 25.400<br>28.800 | 33.300<br>34.100 | 18.700           | 23.100<br>23.900 | 37.200<br>39.000 | 41.400           |
| ر<br>4               | 31.500           | 37.400           | 21.300           | 39.400           | 24.900             | 63.900             | 18.500           | 30.400           | 10.200           | 26.200           | 39.000           | 39.100           |
| 5                    | 31.700           | 34.300           | 25.500           | 33.500           | 18.600             | 56.900             | 14.700           | 28.400           | 23.900           | 30.100           | 41.700           | 39.500           |
| 6                    | 31.700           | 30.800           | 34.900           | 29.600           | 25.600             | 55.000             | 19.700           | 25.500           | 26.100           | 35.000           | 36.200           | 37.500           |
| 7                    | 26.100           | 36.300           | 29.000           | 28.000           | 26.600             | 72.600             | 16.200           | 21.300           | 33.900           | 32.000           | 36.000           | 39.300           |
| 8                    | 27.000<br>22.200 | 41.100           | 27.300<br>26.400 | 23.100           | 35.500<br>30.200   | 135.000<br>180.000 | 25.000<br>20.300 | 24.200<br>31.600 | 37.900<br>31.400 | 37.000<br>26.800 | 37.500<br>39.500 | 40.600<br>42.600 |
| 9<br>10              | 26.300           | 37.000<br>36.800 | 23.800           | 27.300<br>30.400 | 31.300             | 172.000            | 28.500           | 35.200           | 17.900           | 30.300           | 36.000           | 35.300           |
| 11                   | 34.900           | 34.000           | 21.700           | 32.300           | 28.000             | 147.000            | 27.700           | 30.800           | 12.500           | 33.200           | 34.500           | 41.700           |
| 12                   | 34.900           | 30.500           | 37.200           | 29.800           | 18,600             | 112.000            | 27.300           | 34.300           | 22.300           | 36.600           | 42.000           | 39.000           |
| 13<br>14             | 35.500           | 24.900           | 37.600           | 30.300           | 20.900             | 96.800             | 32.300           | 26.400           | 33.800           | 38.300           | 40.400           | 38.500           |
| 14                   | 33.600           | 31.300           | 35.600           | 24.100           | 17.600             | 95.300             | 33.100           | 20.000           | 34.400           | 39.500           | 37.400           | 37.200           |
| 15                   | 29.700           | 33.500           | 36.600           | 16.500           | 14.000             | 85.200             | 29.600           | 24.200           | 32.600           | 40.400           | 34.000           | 34.900           |
| 16                   | 30.500           | 29.500           | 34.800           | 20.700           | 11.600             | 63.500             | 22.400           | 21.200           | 37.200           | 36.500           | 37.500           | 34.900           |
| 17<br>18             | 38.100           | 35.500           | 29.600           | 33.100           | 14.500             | 53.300             | 39.000           | 16.500           | 39.600           | 37.600           | 38.000           | 33.600           |
| 18                   | 39.200           | 41.400           | 29.400           | 30.400           | 12.400             | 53.800             | 39.100           | 20.100           | 37.400           | 35.800           | 38.000           | 30.400           |
| 19<br>20             | 38.900<br>39.100 | 34.700<br>37.000 | 25,200<br>31,000 | 29.300<br>31.200 | 20.900<br>32.300   | 55.600<br>48.800   | 38.300<br>34.900 | 21.500<br>24.600 | 26.400<br>21.600 | 33.400<br>30.900 | 42.300<br>37.200 | 33.600<br>33.800 |
| 20                   |                  |                  | _                | _                |                    |                    |                  |                  |                  |                  | -,               | 33,000           |
| 21                   | 41.400           | 35,700           | 41.400           | 36.300           | 48.000             | 44.000             | 28.100           | 28.100           | 35.200           | 33.900           | 38.200           | 31.000           |
| 22                   | 38.800           | 32.300           | 37.400           | 30.600           | 69.800             | 39.000             | 20.000           | 20.700           | 41.600           | 37.800           | 35.200           | 35.200           |
| 23<br>24             | 26.600<br>30.600 | 35.000<br>32.200 | 29.100<br>31.100 | 27.200<br>37.400 | 146.000<br>169.000 | 36.700<br>37.800   | 20.000<br>22.400 | 21.100<br>28.800 | 39.900<br>35.000 | 32.800<br>35.500 | 34.900<br>38.000 | 34.400<br>25.800 |
| 2 <del>1</del><br>25 | 33.900           | 32.800           | 31.100           | 40.300           | 169.000            | 36.800             | 16.800           | 25.900           | 39.100           | 30.700           | 41.000           | 28.700           |
|                      |                  | _                |                  |                  | •                  | -                  |                  |                  |                  |                  |                  | •                |
| 26                   | 38.600           | 30.500           | 29.900           | 33.400           | 145.000            | 29.800             | 26.200           | 24.300           | 31.400           | 35.100           | 37.000           | 37.400           |
| 27<br>28             | 42.700<br>40.800 | 28.300<br>32.600 | 30.400<br>36.800 | 27.000<br>30.400 | 107.000<br>96.600  | 31.200<br>36.700   | 34.700<br>31.800 | 29.300<br>28.800 | 31.800<br>32.600 | 36.700<br>35.700 | 34.000<br>38.000 | 39.000<br>36.500 |
| 20                   | 35.600           | 36.000           | 33.700           | 27.000           | 90.000             | 25.100             | 27.000           | 28.200           | 37.700           | 40.700           | 38.500           | 40.400           |
| 29<br>30             | 34.900           | 42.800           | 36.700           | 23.500           |                    | 21.400             | 26.200           | 27.200           | 36.500           | 38.700           | 40.500           | 29.600           |
| 31                   | 36.900           |                  | 45.400           | 24.000           |                    | 32.700             |                  | 27.700           | 3,-3             | 36.300           | 40.500           | _,               |

STATE

TENNESSEE

RADIOACTIVITY DETERMINATIONS

MAJOR BASIN

TENNESSEE RIVER

MINOR BASIN

TENN. RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION TENNESSEE RIVER AT

CHATTANOOGA, TENNESSEE

| DATE   |        |         |           | RADIO     | ACTIVITY IN V | WATER     |           | <del></del> | BARIA              |                |               |           |                 |       |
|--------|--------|---------|-----------|-----------|---------------|-----------|-----------|-------------|--------------------|----------------|---------------|-----------|-----------------|-------|
| SAMPLE | 5      | DATE OF |           | ALPHA     |               | 1         | BETA      |             | DATE OF            | TIVITY IN PLAN |               | RAC       | IOACTIVITY IN W |       |
| TAKEN  |        | NATION  | SUSPENDED | DISSOLVED | TOTAL         | SUSPENDED | DISSOLVED | TOTAL       | DETERMI-<br>NATION |                | CTIVITY       | ļ         | GROSS ACTIVITY  | Y     |
| DAY YE | AR MON | NTH DAY | μμc/I     | μμc/l     | μμς/!         | μμc/I     | μμc/I     | μμc/1       | MO. DAY            | ALPHA          | BETA          | SUSPENDED | DISSOLVED       | TOTAL |
|        |        |         |           | 1         |               |           |           |             | MO.   DAT          | μμε/g          | <i>µµс/</i> g | μμε/Ι     | μμc/I           | ##c/l |
| 5 60   |        | 0 17    | -         | - 1       | -             | 0         | 15        | 15          |                    |                | 1             |           |                 |       |
| 12 60  |        | 0 21    | 0         | 0         | 0             | 0         | 26        | 26          |                    |                |               | l         |                 |       |
| 19 60  |        |         | -         | -         | ~             | 0         | 18        | 18          |                    |                | 1             | ]         |                 |       |
| 26 60  |        | 1 14    | انفا      | -         | -             | 0         | 35        | 35          |                    |                | ļ             |           |                 |       |
| 2 60   | 11     | 1 23    | -         | -         | -             | 0         | 91        | 91          |                    | 1              | ĺ             | 1         |                 |       |
| 9 60   | )   11 | 1 25    | 0         | 1         | 1             | 0         |           |             | 1 1                |                |               |           |                 |       |
| 16 60  | 12     | 2 16    | -         | _         | _             | 0         | 68        | 68          |                    | i              |               |           |                 |       |
| 23 60  |        |         | <u> </u>  | _         | _             | 1 - 1     | 35        | 35          |                    |                |               |           |                 |       |
| 30 60  |        | 2 20    | -         | _         | <u> </u>      | 0         | 16        | 16          |                    |                |               | ŧ         |                 |       |
| 14 60  |        |         | 0         |           |               | 0         | 9         | 9           | 1 1                |                |               | ]         | ļ               |       |
| 28 60  |        |         | -         | 1         | 1             | 0         | 56        | 56          |                    |                | Ī             | 1         |                 |       |
|        |        | 1 17    | <u> </u>  | -         |               | 0         | 47        | 47          |                    |                | Į.            | 1         |                 |       |
| 11 61  | -      | 1 31    | 0         | 2         | 2             | 1 1       | 89        | 90          |                    |                |               |           |                 |       |
| 25 61  |        | 2 8     | **        | -         | -             | 4         | 160       | 164         |                    |                |               |           | i i             |       |
| 8 61   |        | 2 27    | ÷         | -         | 4             | 8         | 77        | 85          |                    |                | İ             |           |                 |       |
| 20 61  |        | 3 14    | *         | **        | خ             | 10        | 33        | 43          |                    |                | 1             |           | 1               |       |
| 8 61   | .   3  | 3 27    | *         | -         | <u> </u>      | ا م       | 78        | 78          |                    |                |               |           |                 |       |
| 22 61  | 4      | 4 10    | 4-        | 4.        | 4             | اةا       | 26        |             | 1 1                |                | 1             |           | ŀ               |       |
| 5 61   | 4      | 4 17    | 4         | <u>.</u>  | 4             | 2         |           | 26          |                    |                |               | į į       | ]               |       |
| 19 61  |        | 1       | اند       | <u>.</u>  | <b>{</b>      | - 1       | 35        | 37          |                    |                |               |           |                 |       |
| 3 61   |        |         | <u>.</u>  | <u> </u>  | i i           | 0         | 33        | 33          |                    |                |               |           |                 |       |
|        |        |         | i i       |           | \$            | 1         | 104       | 105         |                    |                |               |           |                 |       |
| 17 61  |        |         | 1         | +         | **            | 2         | 79        | 81          |                    | i              |               | i l       |                 |       |
| 29 61  | 1 -    |         | <u>+</u>  | -         | 7             | •         | 53        | 53          |                    | j.             | 1             |           |                 |       |
| 14 61  |        | 7 7     | 1         | 0         | 1             | 0         | 6.3       | 63          |                    |                |               | 1         |                 |       |
| 27 61  | 8      | 3 1     | -         | ••        | -             | 0         | 36        | 36          |                    |                | 1             |           |                 |       |
| 12 61  | 8      | 34      | Ó I       | 6         | Ó             | اه        | 80        | 80          |                    | 1              | ı             |           |                 |       |
| 26 61  | 1 8    | 3 18    |           | -         | ***           | ŏ         | 37        | 37          | 1                  |                | - 1           |           |                 |       |
| 9 61   | وَ     |         | مغد       |           | 4             | 4         | 53        |             |                    | 1              | f             | 1 1       |                 |       |
| 23 61  | 1 -    |         | <u></u>   | سد        | 4             | ' '       |           | 57          |                    |                | 1             |           |                 |       |
|        | 1      |         | 6         |           | ī             | 0         | 20        | 20          |                    | 1              |               | l 1       | 1               |       |
| 5 61   | 10     |         |           | 1         |               | 0         | 4         | 4           |                    |                | ı             | 1 1       |                 |       |
| 20 61  | 10     | 12      | ***       |           | *             | 3         | 27        | 30          |                    |                |               |           |                 |       |
|        | İ      |         |           |           | 1             | f         |           |             |                    |                | ł             |           |                 |       |
|        |        | - 1     |           |           |               |           |           | 1           |                    | i              |               |           |                 |       |
|        |        | 1       |           |           |               |           | }         |             |                    |                | 1             |           |                 |       |
|        |        |         |           |           | 1             |           |           | İ           | 1 1                | 1              |               |           |                 |       |
|        |        |         |           | 1         |               |           |           | 1           |                    |                | 1             | 1         |                 |       |
|        |        | į       |           |           | j             |           |           |             |                    | 1              |               |           |                 |       |
|        |        | ŀ       | 1         |           |               |           |           | 1           |                    |                | 1             |           |                 |       |
|        |        |         |           |           |               | ľ         |           | 1           |                    | 1              | İ             |           |                 |       |
|        |        |         |           |           |               | j         |           | ŀ           |                    | [              | 1             |           |                 |       |
|        | 1      | ļ       |           |           |               |           |           |             |                    | -              | 1             |           |                 |       |
|        | 1      |         | 1         |           |               |           |           |             |                    | İ              | i             |           |                 |       |
|        | 1      |         |           |           | ľ             |           |           | 1           | 1 1                |                |               | 1 1       | i               |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

TENNESSEE

MAJOR BASIN

TENNESSEE RIVER

MINOR BASIN

TENN. RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION TENNESSEE RIVER AT

CHATTANOOGA, TENNESSEE

| DA                                                       | <del></del>          | T                                                                  |                                                                                                           |         |                       | ALGAE (A                                              | Vumber                | per ml.)                                                                         |                                                          |                                                                                                                        |                                                                                                | INE                                                                                                   | RT                                                                                                 | T                                      |                 |                                       |                                              | IATO                                                                                                                                                                                                                 | MS                                                                   |                                                          |                                                                                             |                            | <u>.</u>                                                                | Τ_                     | MICROIN                                                       | VERTEBR                      | ATES                         | Т                                     |                                                              |
|----------------------------------------------------------|----------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------|-----------------------|-------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------|-----------------|---------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------|------------------------|---------------------------------------------------------------|------------------------------|------------------------------|---------------------------------------|--------------------------------------------------------------|
| OF SA                                                    |                      |                                                                    |                                                                                                           | BLUE-   | GREEN                 | GREE                                                  | :N                    | FLAGEL<br>(Pigme                                                                 |                                                          | DIAT                                                                                                                   | омѕ                                                                                            | DIA<br>SHE<br>(No. p                                                                                  | ERT<br>TOM<br>LLLS<br>er ml.)                                                                      |                                        |                 |                                       | SPEC<br>duction                              | IES A                                                                                                                                                                                                                | ND PE                                                                |                                                          |                                                                                             | S                          | PLAKKTOH<br>HEATHED<br>nl.)                                             | A ml.)                 |                                                               |                              | П                            | r)                                    | inction<br>fuction<br>cation)                                |
| HTNOM                                                    | 4                    | YEAR                                                               | TOTAL                                                                                                     | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID                                               | FILA-<br>MENT-<br>OUS | GREEN                                                                            | OTHER                                                    | CENTRIC                                                                                                                | PENNATE                                                                                        | CENTRIC                                                                                               | PENNATE                                                                                            | FIRST#                                 | PER.<br>CENTAGE | SECOND#                               | PER-                                         | THIRD*                                                                                                                                                                                                               | PER-                                                                 | FOURTH*                                                  | PER.                                                                                        | OTHER PER-<br>CENTAGE      | OTHER HICROPLANKTOH,<br>FUNGI AND SHRATHED<br>RACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per 1 | ROTIFIERS<br>(No. per liter)                                  | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ANIMAL FORMS<br>(No. per liter) | DOMINANT GENERA<br>(See Introduction)<br>for Identification) |
| 10 11 12 1 1 1 2 2 2 3 3 2 4 4 1 5 5 1 5 6 6 1 5 6 6 1 5 | 96736606037155937715 | 600<br>600<br>661<br>661<br>661<br>661<br>661<br>661<br>661<br>661 | 500<br>300<br>200<br>700<br>1200<br>3900<br>2100<br>500<br>700<br>1700<br>400<br>700<br>200<br>600<br>500 | 20      | 20                    | 20<br>20<br>20<br>20<br>110<br>20<br>100<br>190<br>40 |                       | 70<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>60<br>60<br>60<br>40<br>40 | 20<br>70<br>70<br>50<br>90<br>50<br>40<br>70<br>20<br>40 | 260<br>180<br>140<br>160<br>490<br>1010<br>3620<br>1770<br>290<br>400<br>500<br>110<br>250<br>230<br>370<br>230<br>350 | 130<br>20<br>50<br>110<br>70<br>160<br>380<br>20<br>50<br>120<br>110<br>100<br>150<br>80<br>80 | 90<br>20<br>150<br>110<br>430<br>160<br>20<br>20<br>170<br>250<br>250<br>170<br>80<br>120<br>90<br>60 | 20<br>50<br>20<br>290<br>50<br>250<br>180<br>160<br>70<br>50<br>80<br>120<br>40<br>100<br>20<br>40 | 55555555555555555555555555555555555555 | 50<br>70<br>60  | 82777772126 28886887288<br>8555584988 | 20<br>10<br>20<br>10<br>10<br>20<br>10<br>10 | 57<br>82<br>65<br>57<br>82<br>92<br>62<br>57<br>57<br>59<br>62<br>59<br>62<br>57<br>59<br>62<br>59<br>62<br>59<br>62<br>59<br>62<br>63<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58 | 10<br>10<br>10<br>*<br>10<br>10<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | 5030430640 301020103103400 | 70<br>40<br>20<br>20                                                    | 10 10 30 20 30 10      | 2 3 1 8 2 2 5 2 1 1 8 1 0 4 7 3 2 0 3 3 3 3 3 3 3 3 3 3 3 3 3 | 3 2 .54                      | 62 .                         |                                       |                                                              |

## ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

TENNESSEE

MAJOR BASIN

TENNESSEE RIVER

MINOR BASIN

TENN. RIVER-MAIN STEM & MINOR TRIB.

STATION LOCATION TENNESSEE RIVER AT

CHATTANOOGA, TENNESSEE

|                                                                                                                            |                                                                                 | <del>,</del>                                                                            |                                                                            |                                                                                  |                     |                                              | ,                                               | 1             |          |                              |          |               | LIMILOUL        | -                                       | 21            |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------|----------------------------------------------|-------------------------------------------------|---------------|----------|------------------------------|----------|---------------|-----------------|-----------------------------------------|---------------|
| DATE OF SAMPLE                                                                                                             | _                                                                               | E                                                                                       | XTRACTABL                                                                  | ES .                                                                             |                     |                                              | <del></del>                                     |               | CHLOROE  | ORM EXTR                     | ACT 101  |               |                 |                                         |               |
| BEGINNING END                                                                                                              | _                                                                               | 1                                                                                       |                                                                            |                                                                                  |                     |                                              | 1                                               |               | NEUTRALS | OKW EXTR                     | ACTABLES | ·             |                 |                                         |               |
| MONTH DAY YEAR MONTH                                                                                                       | GALLONS<br>FILTERED                                                             | TOTAL                                                                                   | CHLORO-<br>FORM                                                            | ALCOHOL                                                                          | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES                            | TOTAL                                           | ALIPHATICS    |          | OXYGEN-<br>ATED<br>COMPOUNDS | Loss     | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES                                   | Loss          |
| 10 12 60 10 19 11 10 12 14 60 12 21 11 61 3 15 61 3 25 61 6 7 61 6 7 61 6 7 61 8 9 61 8 18 9 13 61 9 13 61 9 13 61 9 13 61 | 6 4670<br>4590<br>3030<br>4600<br>4110<br>3860<br>3450<br>11420<br>3450<br>3500 | 135<br>143<br>125<br>192<br>140<br>132<br>124<br>184<br>145<br>166<br>179<br>101<br>143 | 25<br>33<br>21<br>50<br>46<br>55<br>49<br>77<br>60<br>74<br>61<br>28<br>51 | 110<br>110<br>104<br>142<br>94<br>77<br>75<br>107<br>85<br>92<br>118<br>73<br>92 | 1 1 0 2 2 3         | 5<br>8<br>5<br>13<br>9<br>-<br>19<br>-<br>14 | 10<br>10<br>9<br>16<br>17<br>-<br>18<br>-<br>13 | 1 1 1 1 2 3 2 | 1        | 7 8 7 12 12 12 10            | 10000211 | 3             | 2               | 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 38 4 9 9 8 10 |



STATE

TENNESSEE

TENNESSEE RIVER

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN MINOR BASIN

TENN. RIVER-MAIN STEM MINOR TRIB.

STATION LOCATIONTENNESSEE RIVER AT

CHATTANOOGA, TENNESSEE

| DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                             |                                               |                                                                   |                 | CHLORINE              | DEMAND                                                      |                                  |                                                                   |                                                                     |                                                                      | 1                                    | 1                                                                             |                                                                     | 1                  |                                                                                 | <u> </u>                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------|-----------------------------------------------|-------------------------------------------------------------------|-----------------|-----------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| MONTH<br>DAY<br>YEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TEMP.<br>(Degrees<br>Centigrade) | DISSOLVED<br>OXYGEN<br>mg/i | pН                                            | B.O.D.<br>mg/l                                                    | C.O.D.<br>mg/l  | 1-HOUR<br>mg/l        | 24-HOUR<br>mg/l                                             | AMMONIA-<br>NITROGEN<br>mg/I     | CHLORIDES<br>mg/l                                                 | ALKALINITY<br>mg/l                                                  | HARDNESS<br>mg/l                                                     | COLOR<br>(scale units)               | TURBIDITY (scale units)                                                       | SULFATES<br>mg/l                                                    | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l                                            | COLIFORMS<br>per 100 ml,                                                              |
| 10 4 60<br>10 11 60<br>10 12 60<br>10 13 60<br>10 19 60<br>11 1 60<br>11 1 60<br>11 1 60<br>11 1 60<br>11 1 60<br>11 1 60<br>11 1 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 60<br>11 2 7 60<br>11 2 7 60<br>12 13 60<br>12 14 60<br>12 14 60<br>12 14 60<br>12 14 60<br>12 14 60<br>12 14 60 | 22.4<br>                         | 6.7<br>6.6<br>              | 7.4<br>7.4<br>7.4<br>7.4<br>7.4<br>7.4<br>7.4 | 1.5<br>.9<br>1.6<br>-<br>2.8<br>1.6                               | 9 - 10 17 19 17 | 1.9<br>1.5<br>1.6<br> | 3.7<br>3.6<br>3.4<br>-<br>3.1<br>-<br>3.1<br>-<br>3.5       | •0<br>•1<br>•0<br>•1<br>•0<br>•0 | 15<br>-9<br>-9<br>14<br>-10<br>-3<br>-9<br>-16<br>-18             | -48<br>-50<br>-49<br>52<br>-52<br>-51<br>-51<br>-52<br>-646<br>-751 | 72<br>76<br>78<br>78<br>78<br>80<br>80<br>84<br>76                   | 7 - 5 - 6 5 - 6 - 6 - 5 - 7 - 8 - 13 | 10<br>-15<br>-8<br>10<br>-10<br>-7<br>-10<br>-10                              | 11<br>-<br>13<br>-<br>15<br>-<br>14<br>-<br>-<br>12<br>-<br>-<br>27 |                    | 116<br>                                                                         | 9<br>12<br>45<br>-<br>11<br>29<br>-<br>26<br>48<br>-<br>72<br>-<br>310                |
| 12 28 60<br>1 5 61<br>1 10 61<br>1 24 61<br>2 7 61<br>2 8 61<br>2 21 61<br>3 7 61<br>3 8 61<br>3 22 61<br>4 4 61<br>4 18 61<br>4 19 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.7                              | 11.1<br>                    | 7.4<br>                                       | 1.6<br>-3.0<br>-1.2<br>-2.2<br>3.3<br>-3.0<br>1.5<br>-1.6<br>-2.4 | 13<br>          | 1.3<br>               | 3 · 4<br>3 · 6<br>6 · 1<br>6 · 3<br>5 · 2<br>4 · 0<br>3 · 6 | .0                               | 12<br>-<br>12<br>-<br>12<br>-<br>12<br>-<br>6<br>-<br>4<br>-<br>5 | 50<br>                                                              | -<br>80<br>-<br>80<br>-<br>88<br>68<br>-<br>60<br>-<br>82<br>-<br>64 | 7<br>                                | 12<br>-<br>10<br>-<br>118<br>155<br>-<br>120<br>-<br>55<br>-<br>18<br>-<br>23 | 19<br>                                                              |                    | 126<br><br>136<br><br>94<br><br>152<br>130<br><br>105<br><br>106<br><br>124<br> | 24<br>500<br>200<br>40<br>-<br>12<br>-<br>36<br>120<br>-<br>180<br>-<br>56<br>-<br>12 |

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

TENNESSEE

MAJOR BASIN

TENNESSEE RIVER

MINOR BASIN

TENN. RIVER-MAIN STEM MINOR TRIB.

STATION LOCATIONTENNESSEE RIVER AT

CHATTANOOGA, TENNESSEE

| DATE<br>OF SAMPLE                                                                                                                                       | TEMP.                   | DISSOLVED                                                             |                                                             |                                                                      |                                                                                              | CHLORINE                                             | DEMAND                                                                 |                              |                                                        |                                                                    |                                                                                                |                        |                                                                  | <u> </u>                                                                         | ļ.                 |                                                                       |                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------|------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|
| MONTH<br>DAY<br>YEAR                                                                                                                                    | (Degrees<br>Centigrade) | OXYGEN                                                                | рН                                                          | B.O.D.<br>mg/l                                                       | C.O.D.<br>mg/l                                                                               | 1-HOUR<br>mg/l                                       | 24-HOUR<br>mg/l                                                        | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l                                      | ALKALINITY<br>mg/l                                                 | HARDNESS<br>mg/l                                                                               | COLOR<br>(scale units) | TURBIDITY<br>(scale units)                                       | SULFATES<br>mg/l                                                                 | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l                                  | COLIFORMS<br>per 100 ml.                                                    |
| 5 2 61<br>5 16 61<br>5 17 61<br>5 31 61<br>5 31 61<br>6 14 61<br>6 12 61<br>7 25 61<br>8 9 61<br>8 2 3 61<br>8 2 3 61<br>8 2 3 61<br>9 6 61<br>8 2 7 61 | 16.2                    | 8. 3<br>7. 3<br>8. 1<br>6. 6. 5<br>5. 4<br>5. 2<br>5. 6. 6<br>5. 6. 6 | 7.5<br>7.5<br>7.5<br>7.4<br>7.4<br>7.3<br>7.3<br>7.4<br>7.4 | 1.6<br>-1.8<br>2.0<br>-1.4<br>2.0<br>1.1<br>-1.2<br>-8<br>-1.9<br>-9 | 19<br>21<br>13<br>-<br>12<br>20<br>14<br>-<br>22<br>-<br>12<br>-<br>23<br>-<br>22<br>21<br>- | 1.2<br>1.4<br>1.7<br>1.6<br>1.4<br>1.6<br>1.4<br>1.5 | 3.1<br>-3.7<br>3.9<br>-3.6<br>3.3<br>3.2<br>3.2<br>-2.6<br>-3.4<br>3.0 | 10100100010101101001         | 2<br>2<br>3<br>4<br>4<br>5<br>6<br>7<br>12<br>17<br>16 | 50<br>-8<br>53<br>-54<br>51<br>-6<br>-8<br>-73<br>-5<br>-73<br>-73 | -64<br>-64<br>-64<br>-68<br>-68<br>-68<br>-68<br>-76<br>-84<br>-84<br>-87<br>-84<br>-84<br>-84 | 10715141131331         | 16<br>- 35<br>27<br>- 45<br>32<br>20<br>- 28<br>26<br>- 18<br>12 | 14<br>-<br>15<br>-<br>17<br>11<br>21<br>-<br>12<br>-<br>17<br>-<br>16<br>19<br>- |                    | 109<br>-108<br>102<br>-127<br>93<br>86<br>-95<br>-106<br>-134<br>-134 | 150<br>-<br>36<br>-<br>25<br>-<br>900<br>-<br>5800<br>-<br>400<br>-<br>4400 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Chattanooga, Tennessee Operated by U.S. Geological Survey STATE

Tennessee

MAJOR BASIN

Tennessee River

MINOR BASIN

Tennessee River-Main Stem & Minor Trib.

STATION LOCATION

Tennessee River at

Chattanooga, Tennessee

| Day                              | October                                                  | November                                       | December                                                 | January                                                  | February                                       | March                                                    | April                                          | May                                                      | June                                           | July                                                     | August                                                   | September                                      |
|----------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| 1                                | 27.800                                                   | 40.000                                         | 44.400                                                   | 36.300                                                   | 23.800                                         | 79.700                                                   | 21.300                                         | 33.000                                                   | 28.200                                         | 32.100                                                   | 35.800                                                   | 31.200                                         |
| 2                                | 20.600                                                   | 34.200                                         | 38.900                                                   | 38.300                                                   | 20.300                                         | 72.200                                                   | 21.300                                         | 33.200                                                   | 31.800                                         | 21.000                                                   | 37.500                                                   | 39.000                                         |
| 3                                | 37.100                                                   | 37.000                                         | 33.500                                                   | 33.400                                                   | 28.100                                         | 64.600                                                   | 26.000                                         | 35.500                                                   | 20.400                                         | 24.900                                                   | 39.500                                                   | 40.100                                         |
| 4                                | 31.900                                                   | 34.700                                         | 15.900                                                   | 37.200                                                   | 23.800                                         | 57.000                                                   | 16.900                                         | 30.600                                                   | 10.300                                         | 26.900                                                   | 37.500                                                   | 38.900                                         |
| 5                                | 30.500                                                   | 32.800                                         | 23.700                                                   | 27.900                                                   | 17.800                                         | 52.200                                                   | 13.100                                         | 28.400                                                   | 23.600                                         | 30.700                                                   | 39.100                                                   | 39.600                                         |
| 6<br>7<br>8<br>9                 | 32.100<br>24.100<br>27.000<br>19.500<br>24.800           | 29.500<br>35.600<br>40.600<br>34.400<br>35.000 | 33.900<br>25.400<br>24.000<br>25.500<br>21.900           | 25.400<br>24.700<br>20.100<br>25.800<br>28.400           | 25.400<br>24.400<br>34.700<br>24.900<br>29.400 | 54.300<br>68.800<br>136.000<br>174.000<br>166.000        | 17.600<br>12.500<br>23.100<br>17.600<br>25.300 | 25.100<br>20.900<br>25.100<br>32.700<br>36.000           | 26.800<br>32.700<br>37.700<br>31.700<br>19.000 | 35.900<br>30.800<br>36.000<br>25.400<br>29.900           | 33.300<br>36.100<br>36.600<br>40.000<br>34.800           | 36.300<br>38.400<br>39.600<br>39.300<br>32.700 |
| 11                               | 34.200                                                   | 33.600                                         | 19.800                                                   | 29.200                                                   | 25.900                                         | 130.000                                                  | 24.600                                         | 30.400                                                   | 12.600                                         | 32.700                                                   | 33.1400                                                  | 38.500                                         |
| 12                               | 33.700                                                   | 30.000                                         | 34.700                                                   | 28.100                                                   | 18.200                                         | 103.000                                                  | 22.100                                         | 35.600                                                   | 21.500                                         | 37.400                                                   | 39.700                                                   | 38.400                                         |
| 13                               | 35.300                                                   | 22.800                                         | 33.400                                                   | 27.900                                                   | 20.000                                         | 91.500                                                   | 25.800                                         | 28.000                                                   | 33.500                                         | 38.600                                                   | 35.800                                                   | 38.300                                         |
| 14                               | 33.100                                                   | 30.400                                         | 32.300                                                   | 20.500                                                   | 17.000                                         | 91.700                                                   | 27.500                                         | 21.500                                                   | 34.200                                         | 40.300                                                   | 37.200                                                   | 36.300                                         |
| 15                               | 28.200                                                   | 33.300                                         | 32.800                                                   | 16.000                                                   | 14.800                                         | 80.100                                                   | 24.300                                         | 24.300                                                   | 32.000                                         | 39.500                                                   | 33.600                                                   | 35.900                                         |
| 16                               | 29.300                                                   | 29.200                                         | 31.400                                                   | 18.200                                                   | 11.700                                         | 58.800                                                   | 16.200                                         | 21.700                                                   | 35.600                                         | 33.300                                                   | 38.000                                                   | 30.900                                         |
| 17                               | 38.400                                                   | 35.300                                         | 26.700                                                   | 34.000                                                   | 15.000                                         | 49.400                                                   | 35.600                                         | 19.200                                                   | 37.800                                         | 38.400                                                   | 38.100                                                   | 30.600                                         |
| 18                               | 38.500                                                   | 40.500                                         | 26.400                                                   | 28.100                                                   | 12.000                                         | 51.400                                                   | 37.200                                         | 17.500                                                   | 34.900                                         | 35.600                                                   | 37.700                                                   | 28.300                                         |
| 19                               | 38.100                                                   | 30.200                                         | 24.700                                                   | 28.000                                                   | 18.200                                         | 51.800                                                   | 36.800                                         | 22.500                                                   | 24.200                                         | 33.400                                                   | 40.400                                                   | 33.700                                         |
| 20                               | 35.500                                                   | 37.000                                         | 31.500                                                   | 29.700                                                   | 29.100                                         | 40.900                                                   | 34.700                                         | 24.300                                                   | 18.700                                         | 30.600                                                   | 33.000                                                   | 34.400                                         |
| 21                               | 39.500                                                   | 33.100                                         | 38.100                                                   | 34.900                                                   | 41.200                                         | 39.300                                                   | 27.100                                         | 28.500                                                   | 28.900                                         | 32.900                                                   | 38.100                                                   | 31.300                                         |
| 22                               | 37.700                                                   | 32.000                                         | 31.400                                                   | 28.100                                                   | 53.900                                         | 32.200                                                   | 18.700                                         | 20.300                                                   | 37.400                                         | 37.300                                                   | 33.300                                                   | 34.800                                         |
| 23                               | 24.700                                                   | 32.000                                         | 24.900                                                   | 25.200                                                   | 141.000                                        | 31.500                                                   | 18.100                                         | 19.700                                                   | 36.700                                         | 31.200                                                   | 36.100                                                   | 31.700                                         |
| 24                               | 30.000                                                   | 27.400                                         | 28.000                                                   | 35.400                                                   | 160.000                                        | 33.800                                                   | 21.000                                         | 28.700                                                   | 32.800                                         | 35.200                                                   | 38.000                                                   | 21.300                                         |
| 25                               | 34.000                                                   | 31.200                                         | 28.600                                                   | 38.600                                                   | 153.000                                        | 33.500                                                   | 20.700                                         | 25.700                                                   | 38.600                                         | 30.100                                                   | 41.000                                                   | 29.000                                         |
| 26<br>27<br>28<br>29<br>30<br>31 | 37.200<br>43.400<br>39.800<br>34.100<br>34.400<br>37.400 | 27.100<br>25.900<br>31.400<br>33.700<br>40.600 | 26.900<br>27.300<br>33.600<br>30.700<br>31.800<br>40.800 | 30.400<br>24.800<br>29.000<br>23.000<br>23.200<br>23.600 | 126.000<br>95.500<br>89.100                    | 26.000<br>31.000<br>32.500<br>21.500<br>20.300<br>29.900 | 24.900<br>34.200<br>32.100<br>27.500<br>26.700 | 23.600<br>28.500<br>28.000<br>28.100<br>27.000<br>28.600 | 29.600<br>30.500<br>32.200<br>36.800<br>34.800 | 34.200<br>37.300<br>35.100<br>40.600<br>35.100<br>37.100 | 36.800<br>34.000<br>38.100<br>38.400<br>40.300<br>40.600 | 38.500<br>39.600<br>37.400<br>41.500<br>28.000 |

# ORGANIC CHEMICALS RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

MISSISSIPPI

MAJOR BASIN

SOUTHEAST

MINOR BASIN

UPPER TOMBIGBEE RIVER

STATION LOCATION TOMBIGBEE RIVER BELOW

COLUMBUS, MISSISSIPPI

| _ | 1        | ATE  | OF SA | AMPLE |                     | E     | XTRACTABL       | LES         | T                   |                   |       | ····       |           |                              |           |               |                 |       |      |
|---|----------|------|-------|-------|---------------------|-------|-----------------|-------------|---------------------|-------------------|-------|------------|-----------|------------------------------|-----------|---------------|-----------------|-------|------|
| _ | BEG      | INNI | ING   | END   |                     |       | 1               | <del></del> | <del> </del>        | ī                 |       |            | CHLORO    | ORM EXT                      | RACTABLES | 5             |                 |       |      |
|   | <b>=</b> |      | D-    | r l   | GALLONS<br>FILTERED |       | CULODS          |             |                     |                   |       |            | NEUTRALS  | 5                            |           |               |                 | T     | T    |
|   | MONTH    | DAY  | YEAR  | MONTH | TIETERED            | TOTAL | CHLORO-<br>FORM | ALCOHOL     | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES | TOTAL | ALIPHATICS | AROMATICS | OXYGEN-<br>ATED<br>COMPOUNDS | Loss      | WEAK<br>ACIDS | STRONG<br>ACIDS | BASES | Loss |
|   | 9        | 1    | 61    | 9 18  | 5414                | 161   | 45              | 116         | 1                   | 7                 | 22    | 3          | 2         | 15                           | 2         |               |                 | 1     | 5    |
|   |          |      |       |       |                     |       |                 |             |                     |                   |       |            |           |                              |           |               |                 |       |      |
|   |          |      |       |       |                     |       |                 |             |                     |                   |       |            |           |                              |           |               |                 |       |      |
|   |          |      |       |       |                     |       |                 |             |                     |                   |       |            |           |                              |           |               |                 |       |      |
|   |          |      |       |       |                     |       |                 |             |                     |                   |       |            |           |                              |           |               |                 |       |      |
|   |          |      |       |       |                     |       |                 |             |                     |                   |       |            |           |                              |           |               |                 |       |      |
|   |          |      |       |       |                     |       |                 |             |                     |                   |       |            |           |                              |           |               |                 |       |      |
|   |          |      |       |       |                     |       |                 |             |                     |                   |       |            |           |                              |           |               |                 |       |      |
|   |          |      |       |       |                     |       |                 |             |                     |                   |       |            |           |                              |           |               |                 |       |      |
|   |          |      |       |       |                     |       |                 |             |                     |                   |       |            |           |                              |           |               |                 |       |      |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Computed Data for Columbus, Mississippi Operated by U.S. Geological Survey STATE

Mississippi

MAJOR BASIN

Southeast

MINOR BASIN

Upper Tombigbee River

STATION LOCATION

Tombigbee River below

Columbus, Mississippi

| Day                              | October                                            | November                                  | December                                           | January                                            | February                                        | March                                                    | April                                          | May                                                | Jun <b>e</b>                              | July                                               | August                                             | September                                 |
|----------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | 1.660<br>1.440<br>1.270<br>1.110<br>1.010          | 4.180<br>3.980<br>3.440<br>3.170<br>2.760 | 2.950<br>2.710<br>2.510<br>2.330<br>2.210          | 10.600<br>13.200<br>13.300<br>13.600<br>13.200     | 2.870<br>2.850<br>3.210<br>4.380<br>4.260       | 34.400<br>28.500<br>23.400<br>19.000<br>14.800           | 56.600<br>62.100<br>56.700<br>51.900<br>44.300 | 5.260<br>5.620<br>5.790<br>4.920<br>4.090          | 1.860<br>1.750<br>1.620<br>1.500<br>1.440 | 1.430<br>1.360<br>1.340<br>1.370<br>1.300          | 1.070<br>1.040<br>•975<br>•881<br>•875             | 1.300<br>1.350<br>1.460<br>1.710<br>2.010 |
| 6<br>7<br>8<br>9<br>10           | 1.190<br>1.760<br>2.490<br>3.540<br>4.190          | 2.470<br>2.240<br>1.920<br>1.700<br>1.960 | 2.130<br>2.080<br>2.040<br>2.040<br>2.020          | 11.000<br>9.650<br>7.960<br>5.890<br>4.670         | 3.880<br>3.580<br>5.920<br>9.000<br>8.200       | 11.700<br>11.700<br>22.100<br>28.200<br>24.400           | 35.400<br>28.800<br>22.600<br>20.800<br>19.000 | 3.680<br>4.100<br>5.860<br>6.420<br>8.080          | 1.440<br>2.330<br>2.650<br>2.950<br>2.690 | 1.210<br>2.240<br>3.180<br>3.410<br>2.560          | .844<br>.838<br>.859<br>1.970                      | 1.790<br>1.670<br>1.840<br>1.690<br>1.530 |
| 11<br>12<br>13<br>14<br>15       | 3.220<br>2.630<br>2.300<br>1.990<br>1.670          | 4.650<br>4.280<br>3.770<br>3.290<br>2.840 | 2.060<br>3.000<br>3.740<br>3.180<br>2.870          | 4.000<br>3.480<br>3.140<br>2.990<br>3.140          | 6.430<br>5.400<br>4.870<br>4.630<br>4.450       | 21.900<br>20.800<br>21.500<br>26.100<br>25.300           | 16.000<br>17.000<br>20.600<br>19.400<br>19.700 | 6.300<br>5.530<br>4.880<br>4.080<br>3.730          | 3.030<br>2.760<br>2.630<br>2.450<br>2.250 | 1.830<br>4.750<br>7.850<br>8.140<br>7.210          | 1.370<br>1.050<br>.879<br>.779                     | 1.360<br>1.210<br>1.120<br>1.060<br>1.070 |
| 16<br>17<br>18<br>19<br>20       | 1.390<br>1.370<br>1.450<br>1.360<br>1.220          | 2.530<br>2.470<br>2.940<br>2.670<br>2.540 | 2.640<br>2.610<br>2.440<br>6.420<br>2.220          | 3.690<br>3.800<br>3.490<br>9.300<br>5.510          | 4.120<br>3.840<br>5.130<br>12.900<br>24.300     | 24.100<br>21.400<br>22.300<br>24.900<br>22.000           | 18.700<br>15.400<br>12.400<br>10.400<br>8.390  | 6.970<br>8.430<br>6.500<br>4.630<br>3.500          | 2.010<br>1.920<br>1.880<br>1.760<br>2.280 | 8.140<br>6.400<br>4.940<br>3.780<br>2.660          | 2.340<br>6.910<br>9.330<br>9.080<br>5.520          | 1.220<br>1.090<br>•995<br>•929<br>•877    |
| 21<br>22<br>23<br>24<br>25       | 1.710<br>2.050<br>2.160<br>1.770<br>1.570          | 2.350<br>2.210<br>2.780<br>5.470<br>5.120 | 2.880<br>4.850<br>4.150<br>3.630<br>3.140          | 6.870<br>5.580<br>4.420<br>3.860<br>3.520          | 44.500<br>62.800<br>94.100<br>101.000<br>82.800 | 22.900<br>23.100<br>21.900<br>20.800<br>18.300           | 7.120<br>6.320<br>5.640<br>5.040<br>4.550      | 2.940<br>2.640<br>2.420<br>2.630<br>2.640          | 7.490<br>7.880<br>5.250<br>3.630<br>2.840 | 2.160<br>1.980<br>1.890<br>1.750<br>2.370          | 2.990<br>2.140<br>1.730<br>1.490<br>2.480          | .840<br>.799<br>.787<br>.767<br>.742      |
| 26<br>27<br>28<br>29<br>30<br>31 | 1.440<br>1.300<br>1.170<br>1.090<br>1.060<br>1.660 | 4.330<br>3.760<br>3.150<br>2.820<br>2.850 | 2.900<br>2.780<br>2.620<br>2.510<br>3.720<br>8.030 | 3.670<br>4.350<br>4.230<br>3.660<br>3.260<br>3.000 | 65.100<br>52.600<br>43.500                      | 16.300<br>14.300<br>18.100<br>27.600<br>29.100<br>39.300 | 4.380<br>6.560<br>9.780<br>8.560<br>6.710      | 2.510<br>2.450<br>2.640<br>2.630<br>2.290<br>2.040 | 2.630<br>2.230<br>1.960<br>1.770<br>1.650 | 2.770<br>2.500<br>1.990<br>1.800<br>1.490<br>1.330 | 2.730<br>2.940<br>2.290<br>1.800<br>1.570<br>1.400 | .724<br>.696<br>.681<br>.662<br>.659      |

Computed as sum of Tombigbee River at Columbus, Mississippi plus 3 times the sum of Luxapalila Creek at Steens, Mississippi.

STATE

CALIFORNIA

MAJOR BASIN

GREAT BASIN

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

NORTHWESTERN LAHONTAN

STATION LOCATION TRUCKEE RIVER, CAL-NEV BORDER AT

FARAD, CALIFORNIA

| DATE       | L       |                    |      |           | RAD           | DOACTIVITY IN V | VATER     |           | T     | BARIS                        | ACTIVITY IN    | ANICONT  |    |           |                 |                |
|------------|---------|--------------------|------|-----------|---------------|-----------------|-----------|-----------|-------|------------------------------|----------------|----------|----|-----------|-----------------|----------------|
| SAMPLE     |         | DAT<br>DETE<br>NAT | E OF |           | ALPHA         |                 | T         | BETA      |       | RADIC                        | ACTIVITY IN PL |          | -  |           | DOACTIVITY IN V |                |
| TAKEN      | $\perp$ |                    |      | SUSPENDED | DISSOLVED     | TOTAL           | SUSPENDED | DISSOLVED | TOTAL | DATE OF<br>DETERMI<br>NATION | GROSS          | ACTIVITY | -  |           | GROSS ACTIVIT   |                |
| O. DAY YEA | IR I    | MONTH              | DAY  | μμς/Ι     | <i>μμ</i> ε/Ι | μμc/l           | μμc/l     | μμc/I     | μμε/Ι | MO. DAY                      |                | BETA     | _  | SUSPENDED | DISSOLVED       | TOTAL          |
|            | 1       |                    | • •  | _ "       |               |                 |           |           |       | #0. DA                       | / μμc/g        | μμc/g    | +  | μμε/1     | μμc/l           | μ <b>μ</b> ε/l |
| 9 29 61    | ١.      | 10                 | 13   | 0         | 0             | 0               | 0         | 0         | 0     |                              |                |          | 1  |           | !"              |                |
|            |         |                    |      |           |               |                 | į         | ł         |       |                              |                | İ        | 1  | 1         |                 |                |
|            |         |                    |      |           |               | 1               |           |           | 1     |                              |                |          |    | !         |                 |                |
|            | -       |                    |      |           |               |                 |           | İ         |       |                              | 1              | 1        |    |           |                 |                |
|            |         |                    |      |           |               |                 | ļ         |           | ]     | 1                            | Í              | 1        |    | 1         |                 |                |
|            |         |                    |      |           |               |                 | 1         |           | Ì     | 1                            | }              |          | 1  | 1         |                 |                |
|            |         |                    |      |           |               |                 |           | İ         | 1     |                              | 1              |          | İ  |           | ļ               |                |
|            |         |                    |      |           |               |                 | ĺ         | İ         | Ī     | i                            | ĺ              |          |    | 1         |                 |                |
|            |         |                    |      |           |               | ļ               |           |           | ŧ     |                              | ļ              |          |    | 1 1       |                 |                |
|            |         |                    |      | ĺ         |               |                 |           | ļ         |       |                              |                |          | 1  |           |                 |                |
|            |         |                    |      |           |               |                 | ĺ         |           |       |                              | 1              |          |    | ļ .       |                 |                |
|            |         |                    |      | i         |               |                 |           | ĺ         | ľ     |                              |                | 1        | İ  |           |                 |                |
|            |         |                    |      |           |               |                 |           |           |       | i                            | 1              |          | }  | 1         | 1               |                |
|            |         |                    | l    |           |               |                 |           |           |       |                              |                |          |    |           | 1               |                |
|            |         |                    | 1    |           |               |                 |           |           | ľ     |                              |                |          |    | ]         |                 |                |
|            |         |                    |      |           |               |                 |           | ĺ         | 1     | İ                            | ĺ              | ĺ        | 4  |           | İ               |                |
|            |         |                    |      |           |               |                 |           |           |       |                              | ļ              |          | 1  |           | ł               |                |
|            |         |                    |      |           |               |                 |           |           | ĺ     | - 1                          |                |          | l  | 1 1       |                 |                |
|            |         |                    |      |           |               |                 | - 1       | .         | l     |                              |                |          |    |           |                 |                |
|            | ĺ       |                    | i    |           |               |                 |           |           | ļ     |                              |                |          |    | 1         |                 |                |
|            |         |                    |      |           |               |                 |           |           |       |                              |                |          | 1  |           | i i             |                |
|            |         |                    |      |           |               |                 |           |           |       |                              |                |          |    |           | 1               |                |
|            | ĺ       |                    |      |           |               |                 | ĺ         |           |       |                              |                |          |    |           |                 |                |
|            |         |                    |      | ļ         |               | i               |           |           | İ     | 1 1                          |                |          | ,  |           | 1               |                |
|            |         |                    | - 1  |           |               |                 |           |           |       |                              |                |          |    |           | l               |                |
|            | ĺ       |                    |      |           |               | l               |           |           |       |                              |                | i        |    |           |                 |                |
|            |         |                    |      |           |               |                 |           | 1         | Ĭ     | i i                          |                |          |    |           |                 |                |
|            |         |                    |      |           | İ             | ľ               |           |           |       |                              |                |          |    | İ         |                 |                |
|            | i       |                    |      |           |               |                 |           |           | Ī     | i i                          |                |          |    |           |                 |                |
|            |         |                    |      |           |               |                 |           |           |       |                              |                | ŀ        |    |           |                 |                |
|            |         |                    |      |           | ĺ             | ľ               | 1         | Ì         | 1     |                              |                |          | ١. |           |                 |                |
|            | 1       |                    |      |           |               |                 | ļ         |           | l     |                              |                |          |    |           |                 |                |
|            |         |                    |      |           |               |                 |           | i         | İ     |                              |                |          |    |           |                 |                |
|            |         |                    |      | 1         |               | 1               |           |           |       |                              |                |          |    |           | 1               |                |
|            |         |                    | İ    |           |               |                 | į         | İ         | İ     |                              |                |          |    |           |                 |                |
|            | 1       |                    |      |           | 1             |                 |           |           |       | 1 1                          |                |          | 1  | 1         |                 |                |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

CALIFORNIA

MAJOR BASIN

GREAT BASIN

MINOR BASIN

NORTHWESTERN LAHONTAN

STATION LOCATION TRUCKEE RIVER, CAL-NEV BORDER AT

FARAD, CALIFORNIA

| DAT | ΓE | _    |       |         |                       | ALGAE ( | Number                |                |                  |         |         | INI           | ERT                            |        |                 |                  | D               | IATO   | MS              |                     |                 |                       | ي ا                                                                     | T                         | MICROIN                      | VERTEB                       | ATES                         |                                |                                      |
|-----|----|------|-------|---------|-----------------------|---------|-----------------------|----------------|------------------|---------|---------|---------------|--------------------------------|--------|-----------------|------------------|-----------------|--------|-----------------|---------------------|-----------------|-----------------------|-------------------------------------------------------------------------|---------------------------|------------------------------|------------------------------|------------------------------|--------------------------------|--------------------------------------|
| SAN |    |      |       | BLUE-   | GREEN                 | GRE     | EN                    | FLAGE<br>(Pigm | LLATES<br>ented) | DIAT    | омѕ     | SHE<br>(No. p | ERT<br>TOM<br>ELLS<br>per ml.) |        | DOM!            | INANT<br>e Intro | duction         | ies Al | ND PE           | RCEN'<br>ntificat   | TAGES<br>ion*)  | 3                     | PLANKTON<br>IEATHED<br>11.)                                             | Ci.                       | 1                            |                              | Τ                            | FORMS                          | ENERA                                |
| DAY |    | YEAR | TOTAL | COCCOID | FILA-<br>MENT-<br>OUS | COCCOID | FILA-<br>MENT-<br>OUS | GREEN          | OTHER            | CENTRIC | PENNATE | CENTRIC       | PENNATE                        | FIRST# | PER.<br>CENTAGE | SECOND*          | PER.<br>CENTAGE | THIRD# | PER.<br>CENTAGE | FOURTH*             | PER.<br>CENTAGE | OTHER PER-<br>CENTAGE | OTHER MICROPLANKTON,<br>FUNGI AND SHEATHED<br>BACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per ml.) | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATOBES<br>(No. per liter) | OTHER ANIMAL<br>(No. per liter | DOMINANT GENERA<br>(See Introduction |
| 29  | •  | 61   | 400   | 20      |                       |         |                       |                |                  | 40      | 310     | 40            | 190                            | 64     | 10              | 58               | 10              | 16     | 10              | 71                  | 10              | 70                    |                                                                         |                           | 2                            |                              |                              |                                |                                      |
|     |    |      |       |         |                       |         |                       |                |                  |         |         |               |                                |        |                 |                  |                 |        |                 |                     |                 |                       |                                                                         |                           |                              |                              |                              |                                |                                      |
|     |    |      |       | •       |                       |         |                       |                |                  |         |         |               |                                |        |                 |                  |                 |        |                 | <br> <br> <br> <br> |                 |                       |                                                                         |                           |                              |                              |                              |                                |                                      |
|     |    |      |       |         |                       |         |                       |                |                  |         |         |               |                                |        |                 |                  |                 |        |                 | <br>                |                 |                       |                                                                         |                           |                              |                              |                              |                                |                                      |
|     |    |      |       |         |                       |         |                       |                |                  |         |         |               |                                |        |                 |                  |                 | 1      |                 | 1                   |                 |                       |                                                                         |                           |                              |                              |                              |                                |                                      |
|     |    |      |       |         |                       |         |                       |                |                  |         |         |               |                                |        |                 |                  |                 |        |                 |                     |                 |                       |                                                                         |                           |                              |                              |                              |                                |                                      |
|     |    |      |       |         |                       |         | jih.                  |                |                  |         |         |               |                                |        |                 |                  |                 | 1      |                 |                     |                 |                       |                                                                         |                           |                              |                              |                              |                                |                                      |
|     |    |      |       |         |                       |         |                       |                |                  |         |         |               |                                |        |                 |                  |                 |        |                 |                     |                 | -                     |                                                                         |                           |                              |                              |                              |                                |                                      |
|     |    |      |       |         |                       |         | ļ                     |                |                  |         |         |               |                                |        |                 |                  |                 |        |                 |                     |                 |                       |                                                                         |                           |                              |                              |                              |                                |                                      |
|     |    |      |       |         |                       |         |                       |                |                  |         |         |               |                                |        |                 | i<br> <br>       |                 |        |                 |                     |                 |                       |                                                                         |                           |                              |                              |                              |                                |                                      |
|     |    |      | ļ     |         |                       |         |                       |                |                  |         |         |               |                                |        |                 |                  |                 |        |                 |                     |                 |                       |                                                                         |                           |                              |                              |                              |                                |                                      |
|     |    |      |       |         |                       |         |                       |                |                  |         |         |               |                                |        |                 |                  |                 | 1      |                 | -                   |                 |                       |                                                                         |                           |                              |                              |                              |                                |                                      |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Farad, California Operated by U.S. Geological Survey

STATE

California

MAJOR BASIN

Great Basin

MINOR BASIN

Northwestern Lahontan

STATION LOCATION

Truckee Riv., Calif.-Nev. Border at

Farad, California

| Day                              | October                                   | November                             | December                                  | January                              | February                             | March                                        | April                                     | May                                                | June                                      | July                                               | August                                       | September                            |
|----------------------------------|-------------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------|--------------------------------------|
| 1<br>2<br>3<br>4<br>5            | .404<br>.404<br>.415<br>.423<br>.419      | .224<br>.224<br>.224<br>.257<br>.237 | .280<br>.331<br>.286<br>.268              | .223<br>.204<br>.211<br>.216<br>.209 | .218<br>.196<br>.216<br>.194<br>.183 | .245<br>.207<br>.209<br>.200<br>.196         | • 348<br>• 396<br>• 559<br>• 648<br>• 536 | .574<br>.495<br>.490<br>.504<br>.465               | .465<br>.773<br>.736<br>.613              | . 469<br>. 465<br>. 482<br>. 469<br>. 452          | .452<br>.469<br>.469<br>.452<br>.427         | .146<br>.212<br>.237<br>.232<br>.249 |
| 6<br>7<br>8<br>9                 | . 427<br>. 423<br>. 404<br>. 419<br>. 407 | .232<br>.218<br>.214<br>.208<br>.206 | . 302<br>. 355<br>. 352<br>. 345<br>. 363 | .228<br>.214<br>.172<br>.170<br>.170 | .183<br>.179<br>.177<br>.192<br>.469 | .194<br>.209<br>.232<br>.235<br>.238         | .440<br>.460<br>.407<br>.423<br>.411      | .444<br>.419<br>.427<br>.517<br>.710               | • 555<br>• 513<br>• 478<br>• 504<br>• 469 | .473<br>.473<br>.465<br>.460<br>.456               | .423<br>.448<br>.436<br>.427<br>.419         | .246<br>.243<br>.240<br>.234<br>.243 |
| 11<br>12<br>13<br>14<br>15       | . 396<br>. 392<br>. 396<br>. 407<br>. 423 | .208<br>.243<br>.237<br>.243<br>.237 | · 334<br>· 338<br>· 321<br>· 321<br>· 315 | .168<br>.167<br>.163<br>.163         | .404<br>.321<br>.287<br>.269<br>.238 | .235<br>.232<br>.235<br>.248<br>.264         | .444<br>.588<br>.522<br>.513<br>.490      | . 623<br>. 518<br>. 527<br>. 545<br>. 588          | .522<br>.482<br>.531<br>.574<br>.513      | . 482<br>. 490<br>. 490<br>. 478<br>. 473          | .415<br>.411<br>.419<br>.407<br>.404         | .229<br>.234<br>.229<br>.214<br>.200 |
| 16<br>17<br>18<br>19<br>20       | .404<br>.396<br>.407<br>.415<br>.415      | .280<br>.280<br>.296<br>.289<br>.274 | . 324<br>. 341<br>. 338<br>. 315<br>. 308 | .161<br>.158<br>.155<br>.153         | .232<br>.242<br>.223<br>.237<br>.270 | .245<br>.250<br>.248<br>.256<br>.272         | • 559<br>• 588<br>• 555<br>• 473<br>• 490 | .574<br>.623<br>.658<br>.715<br>.741               | . 499<br>. 499<br>. 504<br>. 499<br>. 536 | .469<br>.460<br>.460<br>.469<br>.460               | .400<br>•396<br>•396<br>•396<br>•392         | .234<br>.226<br>.189<br>.125<br>.112 |
| 21<br>22<br>23<br>24<br>25       | .415<br>.411<br>.355<br>.251              | .268<br>.260<br>.251<br>.251<br>.245 | .305<br>.305<br>.311<br>.302<br>.296      | .153<br>.150<br>.152<br>.152<br>.150 | .275<br>.284<br>.272<br>.281<br>.290 | .281<br>.296<br>.338<br>.308<br>.293         | .486<br>.513<br>.527<br>.527<br>.508      | .730<br>.689<br>.663<br>.613                       | .508<br>.490<br>.486<br>.473<br>.473      | . 460<br>. 456<br>. 452<br>. 448<br>. 444          | .290<br>.165<br>.160<br>.157<br>.152         | .112<br>.125<br>.120<br>.115<br>.112 |
| 26<br>27<br>28<br>29<br>30<br>31 | .243<br>.240<br>.234<br>.234<br>.226      | .254<br>.260<br>.243<br>.245<br>.240 | .289<br>.286<br>.279<br>.221<br>.221      | .157<br>.161<br>.158<br>.153<br>.155 | .278<br>.275<br>.272                 | .290<br>.287<br>.293<br>.284<br>.293<br>.315 | .531<br>.522<br>.527<br>.564<br>.583      | . 598<br>. 469<br>. 460<br>. 423<br>. 388<br>. 404 | .486<br>.469<br>.444<br>.452<br>.473      | . 448<br>. 456<br>. 448<br>. 448<br>. 452<br>. 448 | .147<br>.144<br>.142<br>.141<br>.145<br>.139 | .107<br>.104<br>.107<br>.104<br>.096 |

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

YAKIMA RIVER

STATION LOCATION YAKIMA RIVER AT

RICHLAND, WASHINGTON

| DATE         |                               |           | RADIO     | DACTIVITY IN  | WATER     |           |       |                                         | RADIOA                      | CTIVITY IN PLA | NKTON (dea) |     | B45       | IOACTIVITY IN Y | /A 7/2 |
|--------------|-------------------------------|-----------|-----------|---------------|-----------|-----------|-------|-----------------------------------------|-----------------------------|----------------|-------------|-----|-----------|-----------------|--------|
| SAMPLE       | DATE OF<br>DETERMI-<br>NATION |           | ALPHA     |               | T         | BETA      |       | 1   -                                   |                             |                | ACTIVITY    | -   |           | GROSS ACTIVIT   |        |
| TAKEN        |                               | SUSPENDED | DISSOLVED | TOTAL         | SUSPENDED | DISSOLVED | TOTAL |                                         | ATE OF<br>EYERMI-<br>IATION | ALPHA          | BETA        | ┥   | SUSPENDED | DISSOLVED       | TOTAL  |
| MO. DAY YEAR | HONTH DAY                     | ##c/l     | ##c/I     | ##c/l         | ##c/l     | μμc/l     | μμc/l | , , , , , , , , , , , , , , , , , , , , | O. DAY                      | μμε/g          | ##c/g       | 1   | μμc/l     | ##c/I           | MHe/I  |
| 4 21 61      | 5 10                          | 0         | _ [       |               |           | _         |       |                                         |                             |                |             | T   |           |                 |        |
| 5 2 61       | 5 25                          |           | 0         | 0<br><b>1</b> | 0         | 0.        | 0     |                                         | İ                           |                |             | 1   |           |                 |        |
| 5 8 61       | 5 26                          | 6         | ŏ         | Ö             | 0         | 0         | 0     |                                         |                             |                | 1           |     | ]         |                 |        |
| 5 15 61      | 6 2                           |           | 0         | 0             | 0         | . 0       | 0     |                                         |                             |                |             | 1   | 1         |                 |        |
| 5 22 61      | 6 14                          | اةا       | ŏ         | Õ             | 0         | 0         | 0     | 1 1                                     | -                           |                |             |     |           |                 |        |
| 5 29 61      | 6 20                          | l i l     | ŏ         | ĭ             |           | 0         |       | 1 !                                     | i                           |                |             |     | [         |                 |        |
| 6 15 61      | 7 7                           | ō         | ŏ         | ō             | 1 1       | ò         | 1 1   | 1 1                                     | - 1                         |                |             | İ   | l ł       |                 |        |
| 6 19 61      | 7 27                          | i         | ŏ         | ĭ             | اةًا      | ŏ         | Ô     |                                         | l                           |                |             | 1 1 |           |                 |        |
| 6 26 61      | 7 31                          | ō         | ō l       | ō             | Ĭ         | ŏ         | li    | 1 1                                     | 1                           |                |             |     |           |                 |        |
| 7 3 61       | 8 1                           | 0         | 2         | 2             | ا ة ا     | ĭ         | ī     | 1                                       |                             |                |             |     |           |                 |        |
| 7 10 61      | 8 4                           | 0 [       | 1         | ī             | 0         | 2         | 2     |                                         | 1                           |                |             |     |           |                 |        |
| 7 17 61      | 8 14                          | 0         | 3         | 3             | 0         | 3         | 3     |                                         | 1                           |                |             |     |           | ľ               |        |
| 7 24 61      | 8 18                          | 0         | 5         | 5             | 2         | 10        | 12    |                                         |                             |                |             |     |           |                 |        |
| 7 31 61      | 8 31                          | 0         | 2         | 2             | 0         | 5         | 5     |                                         |                             |                |             | 1 1 |           | Ì               |        |
| 8 7 61       | 9 8                           | 0         | 1         | 1             | 0         | 16        | 16    |                                         |                             |                |             | 1 1 |           |                 |        |
| 8 14 61      | 9 29                          | 0         | 3         | 3             | 1 1       | 6         | 7     |                                         |                             |                |             |     |           |                 |        |
| 8 21 61      | 9 13                          | 0         | 0         | 0             | 1 1       | 10        | 11    |                                         | I                           |                |             | 1 1 |           | ]               |        |
| 8 28 61      | 9 28                          | 0         | 3         | 3             | 1 1       | 7         | 8     |                                         | 1                           |                |             | 1 1 |           | 1               |        |
| 9 5 61       | 10 5                          | 0         | 1         | 1             | 1         | 9         | 10    |                                         |                             |                |             | 1   |           | 1               |        |
| 9 11 61      | 10 6                          | 0         | 3         | 3             | 1         | 22        | 23    |                                         | -                           |                |             | 1   |           |                 |        |
|              | 10 16                         | 0         | 2         | 2             | 1         | 5         | 6     |                                         | -                           |                |             |     |           | - 1             |        |
| 9 25 61      | 10 9                          | 0         | 1 j       | 1             | 5         | 9         | 14    |                                         |                             |                |             | 1 1 |           |                 |        |
|              |                               | 1         |           |               |           |           |       |                                         |                             |                |             |     | - 1       |                 |        |
|              |                               | 1         |           |               |           |           |       |                                         |                             |                |             |     |           |                 |        |
|              | 1                             | ļ         |           |               |           |           |       |                                         |                             |                |             | 1 1 |           | 1               |        |
|              |                               |           | ĺ         |               |           |           |       |                                         |                             |                |             | 1 1 |           |                 |        |
|              | İ                             |           | 1         |               |           |           |       |                                         |                             | 1              |             | 1 1 |           |                 |        |
|              | ŀ                             |           |           |               | 1         | i         |       |                                         | 1                           |                |             | 1 1 |           |                 |        |
| ŀ            |                               |           |           |               |           |           |       |                                         |                             |                |             |     |           | 1               |        |
|              |                               |           |           |               | [         |           |       | - 1                                     | ĺ                           |                |             | 1 1 |           |                 |        |
|              |                               |           |           |               |           |           |       | - 1                                     |                             |                |             | 1   |           | İ               |        |
|              |                               |           |           |               |           |           |       |                                         | İ                           |                |             | 1   | 1         | ļ               |        |
|              |                               |           | ĺ         | 1             |           |           |       | ı                                       | }                           |                |             |     |           | [               |        |
| İ            | 1                             |           |           |               |           | ĺ         |       |                                         |                             |                |             | 1 1 |           |                 |        |
| i            | 1                             |           |           |               |           |           |       | - 1                                     |                             |                |             | 1 1 |           |                 |        |
| [            | 1                             |           | [         | l             |           |           | ļ     | - 1                                     |                             |                |             |     |           | 1               |        |
| 1            | ĺ                             | 1         |           |               |           | İ         | İ     |                                         |                             |                |             |     |           | 1               |        |
|              | j                             | 1         | 1         | İ             |           | }         | -     | i                                       |                             |                |             |     |           |                 |        |
|              |                               |           | 1         | }             |           | }         | Ī     |                                         |                             | ļ              |             |     |           |                 |        |
|              |                               |           |           | J             |           |           | l     | ı                                       |                             |                |             | 1 ] |           | i               |        |

# PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

YAKIMA RIVER

STATION LOCATION YAKIMA RIVER AT

RICHLAND, WASHINGTON

| DATE                                                          |                                                                                | ,                      |                               | ALGAE (I                                               | Vumber                | per ml.)                                                 |                 |                                                                          |                                                                   | INI                                          | ERT                                                 | Т                                            |                                              |                                  |                           |                        |                      |                                  |             |                            | т                                                                 | 1                       | VICEOU                                              | IVERTEB                      |                              |                             |                                                              |
|---------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------|-------------------------------|--------------------------------------------------------|-----------------------|----------------------------------------------------------|-----------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------|---------------------------|------------------------|----------------------|----------------------------------|-------------|----------------------------|-------------------------------------------------------------------|-------------------------|-----------------------------------------------------|------------------------------|------------------------------|-----------------------------|--------------------------------------------------------------|
| OF SAMPLE                                                     |                                                                                | BLUE-                  | GREEN                         | GREE                                                   | :N                    | FLAGEI<br>(Pigm                                          | LATES<br>ented) | DIAT                                                                     | омѕ                                                               | DIA<br>SHE<br>(No. 1                         | ERT<br>TOM<br>ELLS<br>er ml.)                       |                                              |                                              |                                  | T SPEC                    | IATO<br>IES A<br>for C | ND PE                |                                  |             |                            | HOPLANKTON,<br>BREATHED                                           | 3                       | Т                                                   | T                            | T                            |                             | KE BA<br>cetion<br>ation)                                    |
| MONTH<br>DAY<br>YEAR                                          | TOTAL                                                                          | COCCOID                | FILA-<br>MENT-<br>OUS         | COCCOID                                                | FILA-<br>MENT-<br>OUS | GREEN                                                    | OTHER           | CENTRIC                                                                  | PENNATE                                                           |                                              | Π                                                   | FIRST                                        | PER-                                         | BECONDS                          | PER.                      | THIRDS                 | PER.<br>CENTAGE      | FOURTH                           | PER.        | OTHER PER-                 | OTHER HICROPLAND<br>PUMSI AND SHEATH<br>BACTERIA<br>(No. per ml.) | PROTOZOA<br>(No. per mi | ROTIFIERS<br>(No. per liter)                        | CRUSTACEA<br>(No. per liter) | NEMATOBES<br>(No. per liter) | THER ANIMAL (No. per liter) | DORINANT SENERA<br>(Bes Introduction)<br>for Identification) |
| 4 21 61<br>5 61 61<br>6 19 61<br>7 7 61<br>8 21 61<br>9 18 61 | 1400<br>600<br>1400<br>900<br>15700<br>12600<br>25100<br>10100<br>5000<br>4000 | 90<br>150<br>120<br>20 | 70<br>230<br>250<br>270<br>40 | 20<br>100<br>560<br>2920<br>2050<br>1060<br>350<br>310 |                       | 80<br>50<br>80<br>20<br>1260<br>9990<br>660<br>460<br>80 | 20 40           | 290<br>270<br>250<br>310<br>3080<br>5360<br>7720<br>4780<br>1760<br>1450 | 970<br>270<br>910<br>540<br>11040<br>2680<br>3350<br>2380<br>2130 | 120<br>70<br>490<br>730<br>250<br>190<br>150 | 1230<br>700<br>1410<br>2460<br>1720<br>1450<br>2380 | 92<br>61<br>61<br>92<br>92<br>92<br>92<br>92 | 20<br>20<br>30<br>60<br>70<br>90<br>80<br>80 | 36<br>92<br>92<br>70<br>82<br>26 | 10<br>30<br>10<br>10<br>* | 61                     | 10<br>10<br>10<br>10 | 16<br>62<br>36<br>59<br>15<br>70 | * 10<br>* * | 70 40 50 30 20 10 10 20 10 |                                                                   |                         | 3<br>3<br>5<br>4<br>4<br>46<br>27<br>22<br>47<br>14 | 5 3 1                        | 13                           | 11                          | 7-<br>9-<br>77<br>74763<br>48977<br>71937<br>74-37<br>48973  |

# ORGANIC CHEMICALS RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

WASHINGTON

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

YAKIMA RIVER

STATION LOCATION YAKIMA RIVER AT

RICHLAND, WASHINGTON

|                       | DATE           | OF S           | AMPLE                 |                               | 1                                            |                                        |                                  |                                    |                     |                              |                            |              |                     |                              |                 |                  |                  |                 |              |
|-----------------------|----------------|----------------|-----------------------|-------------------------------|----------------------------------------------|----------------------------------------|----------------------------------|------------------------------------|---------------------|------------------------------|----------------------------|--------------|---------------------|------------------------------|-----------------|------------------|------------------|-----------------|--------------|
| В                     | EGINN          |                |                       | ,<br>ND                       |                                              | E                                      | XTRACTABL                        | .ES                                |                     |                              |                            |              |                     | ORM EXTR                     | ACTABLES        | 5                |                  |                 |              |
| MONTH                 | DAY            | YEAR           | HTNOM                 | DAY                           | GALLONS<br>FILTERED                          | TOTAL                                  | CHLORO-<br>FORM                  | ALCOHOL                            | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES            | TOTAL                      | ALIPHATICS   | NEUTRALS  AROMATICS | OXYGEN-<br>ATED<br>COMPOUNDS | Loss            | WEAK<br>ACIDS    | STRONG<br>ACIDS  | BASES           | LOSS         |
| 3<br>5<br>6<br>7<br>8 | 29<br>17<br>16 | 61<br>61<br>61 | 5<br>6<br>7<br>8<br>9 | 3<br>16<br>7<br>15<br>12<br>5 | 3010<br>2050<br>4250<br>3540<br>3000<br>2470 | 182<br>194<br>102<br>104<br>116<br>146 | 83<br>61<br>30<br>26<br>38<br>31 | 99<br>133<br>72<br>78<br>78<br>115 | 2 1 1 0 1 1         | 17<br>14<br>7<br>4<br>8<br>6 | 38<br>24<br>13<br>16<br>16 | 14 4 4 4 5 2 | 6 3 2 2 2 2 2 2 2   | 17                           | 1 1 0 0 0 0 1 1 | 8<br>4<br>6<br>7 | 9<br>1<br>1<br>2 | 1 1 1 0 0 0 1 1 | 11 4 3 2 4 1 |

STATE

WASHINGTON

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

PACIFIC NORTHWEST

MINOR BASIN

YAKIMA RIVER

STATION LOCATIONYAKIMA RIVER AT

RICHLAND, WASHINGTON

| DATE<br>OF SAMPLE                                                                                                               | темр.                                                              | DISSOLVED                                                    |                                                                      |                                                     |                | CHLORINE       | DEMAND          |                                                                      |                        |                                                                         |                                                              | ]                      |                            |                  |                    |                                                                                                           | 1                                                             |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------|----------------|----------------|-----------------|----------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------|------------------------|----------------------------|------------------|--------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| MONTH<br>DAY<br>YEAR                                                                                                            | (Degrees<br>Centigrade)                                            | OXYGEN<br>mg/l                                               | pН                                                                   | B.O.D.<br>mg/l                                      | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l                                         | CHLORIDES<br>mg/l      | ALKALINITY<br>mg/l                                                      | HARDNESS<br>mg/l                                             | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l                                                                      | COLIFORMS                                                     |
| 5 8 61<br>5 15 61<br>5 22 61<br>6 19 61<br>6 26 61<br>7 17 61<br>7 24 61<br>8 14 61<br>8 21 61<br>8 28 61<br>9 11 61<br>9 12 61 | 15.2<br>15.2<br>16.4<br>22.1<br>23.5<br>-7<br>25.6<br>25.6<br>25.6 | 8.2<br>9.6<br>8.7<br>8.0<br>8.8<br>-<br>11.0<br>11.5<br>12.5 | 7.6.8<br>7.6.8<br>7.6.8<br>8.6.4<br>8.6.4<br>8.6.3<br>8.6.5<br>8.6.5 | 1.7<br>1.47<br>1.40 - 0.5<br>5.05<br>4.0 - 23<br>.9 |                |                |                 | -2<br>-2<br>-2<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1 | -331044-45510121215015 | -40<br>40<br>70<br>80<br>-150<br>140<br>160<br>160<br>170<br>180<br>170 | 563<br>462<br>564 - 85<br>1040<br>125<br>1290<br>1400<br>130 |                        | 10 445 18 41 20 11 6       |                  |                    | 87<br>129<br>102<br>123<br>141<br>-<br>164<br>163<br>208<br>204<br>218<br>177<br>157<br>141<br>133<br>163 | 130<br>-33<br>-100<br>*33<br>*100<br>-33<br>230<br>120<br>-67 |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Kiona, Washington Operated by U.S. Geological Survey

STATE

Washington

MAJOR BASIN

Pacific Northwest

MINOR BASIN

Yakima River

STATION LOCATION

Yakima River at

Richland, Washington

| Day         | October        | November       | December       | January | February       | March          | April          | May             | Jun <b>e</b>   | July           | August         | September               |
|-------------|----------------|----------------|----------------|---------|----------------|----------------|----------------|-----------------|----------------|----------------|----------------|-------------------------|
| 1           | 2.200          | 2.280          | 2.810          | 1.800   | 3.240          | 6.700          | 7 <b>.2</b> 50 | 8,660           | 9.720          | 1.770          | 1.370          | 1,800                   |
| 2           | 2.120          | 2.270          | 2.730          | 1.780   | 3.400          | 6.3 <b>2</b> 0 | 7.140          | 9.700           | 9.420          | 1.690          | 1.570          | 1.670                   |
| 2<br>3<br>4 | 1.860<br>1.780 | 2.310          | 2.710          | 1.790   | 7.820          | 6.810          | 7.630          | 10.100          | 9.940          | 1.380          | 1.460          | 1.790                   |
| 5           | 1.740          | 2.410<br>2.350 | 2.700<br>2.670 | 1.780   | 5.280          | 6.590          | 8.740          | 10.200          | 10.900         | 1.330          | 1.280          | 1.800                   |
| ,           | 1. [40         | 2.300          | 2.010          | 1.780   | 4.550          | 6.430          | 9.640          | 9.900           | 11.200         | 1.400          | 1.140          | 1.830                   |
| 6           | 1.710          | 2.310          | 2.560          | 1.800   | 4.380          | 6.070          | 9.540          | 9.180           | 11.500         | 1,500          | 1.120          | 1.680                   |
| 6<br>7<br>8 | 1.690          | 2.280          | 2.460          | 2.520   | 4.690          | 5.890          | 8.410          | 8.490           | 11.300         | 1.660          | 1.170          | 1.670                   |
| 8           | 1.770          | 5.550          | 2.350          | 3.010   | 5.560          | 5.690          | 7.420          | 7.650           | 10.500         | 1.780          | 1.340          | 1.590                   |
| 9           | 1.850          | 2.180          | 2.320          | 2.840   | 5.730          | 5.510          | 6.470          | 6.890           | 9.620          | 1.480          | 1.370          | 1.480                   |
| 10          | 1.880          | 2.150          | 2.270          | 2.850   | 6.270          | 5.370          | 6.190          | 6.980           | 8.860          | 1.350          | 1.310          | 1.450                   |
| 11          | 1.880          | 2.140          | 2.220          | 2.890   | 10.100         | 5.190          | 5.830          | 7.360           | 9 000          |                |                | - 1                     |
| 12          | 1.960          | 2.090          | 2.070          | 2.810   | 10.000         | 5.010          | 5.470          | 7.540           | 8.220<br>7.800 | 1.210          | 1.300          | 1.430                   |
| 13          | 1,900          | 2.370          | 2.100          | 2.670   | 8.880          | 5.260          | 5.060          | 7.400           | 7.270          | 1.140<br>1.100 | 1.310<br>1.310 | 1.400                   |
| 14          | 1.830          | 2.570          | 2.200          | 2.610   | 7.860          | 5.470          | 4.910          | 7.670           | 5.420          | 1.070          | 1.300          | 1.350<br>1.340          |
| 15          | 2.220          | 2.490          | 2.320          | 2.590   | 7.840          | 6.490          | 4.890          | 7.460           | 4.330          | 1.160          | 1.480          | 1.400                   |
| 16          | 2.360          | 2.430          | 2.390          | 2.950   | 7.400          | 8.110          | 4.450          | 7.400           | 1, 700         |                |                |                         |
| 17          | 2.230          | 2.350          | 2.190          | 3.620   | 7.520          | 8.720          | 4.240          | 7.400<br>7.380  | 4.190<br>4.580 | 1.100          | 1.570          | 1.470                   |
| 18          | 2.180          | 2.520          | 2.200          | 4.820   | 7.100          | 8.370          | 4.110          | 7.420           | 5.820          | 1.130<br>1.140 | 1.750<br>1.690 | 1.530<br>1.620          |
| 19          | 2,030          | 2.870          | 2.300          | 4.620   | 6.700          | 7.840          | 4.500          | 7.880           | 7.140          | 1.080          | 1.710          | 1.570                   |
| 20          | 2.730          | 3.310          | 2.300          | 4.210   | 6.340          | 7.710          | 4.750          | 8.390           | 8.470          | 1.040          | 1.770          | 1.560                   |
| 21          | 3.030          | 3.060          | 2.260          | 3.900   | 6.470          | 8.350          | 4.380          | 9.760           | 8.280          | 225            | . (00          |                         |
| 22          | 2.880          | 3.320          | 2.270          | 3.700   | 7.380          | 7.990          | 4.260<br>4.260 | 11.000          | 6.320          | . 905<br>. 852 | 1.690          | 1.560                   |
| 23<br>24    | 2.850          | 3.340          | 2.200          | 3.500   | 9.820          | 7.480          | 4.820          | 12.000          | 4.570          | .896           | 1.490<br>1.400 | 1.590<br>1.710          |
|             | 2.720          | 3.040          | 2.180          | 3.250   | 10.000         | 7.380          | 5.420          | 11.800          | 3.590          | 1.100          | 1.340          | 1.670                   |
| 25          | 2.490          | 3.180          | 2.180          | 3.140   | 8.7 <b>2</b> 0 | 7.380          | 5.310          | 11.300          | 3.580          | 1.100          | 1.340          | 1.670                   |
| 26          | 2.460          | 4.670          | 2.200          | 3.130   | 8.110          | 7.500          | 4.890          | 10.000          | 2 500          | - 1            |                |                         |
| 27<br>28    | 2.410          | 3.590          | 2.310          | 2.950   | 7.520          | 8.640          | 4.090<br>4.790 | 10.200<br>9.600 | 3.720<br>3.460 | 1.400          | 1.410          | 1.770                   |
| :8          | 2.380          | 3.190          | 2.040          | 2.710   | 6.970          | 7.900          | 5.400          | 10.900          | 3.460<br>3.260 | 1.160<br>1.110 | 1.410          | 1.770                   |
| 9           | 2.340          | 3.000          | 2.020          | 2.540   | 21-            | 7.140          | 5.830          | 10.800          | 2.630          | 1.110          | 1.940<br>2.030 | 1.790<br>1.7 <b>2</b> 0 |
| 30          | 2.340          | 2.870          | 1.940          | 2.530   |                | 6.890          | 6.740          | 10.300          | 1.460          | 1.040          | 1.710          | 1.840                   |
| 31          | 2.360          |                | 1.900          | 2.660   |                | 6.950          | •              | 9.940           | 100            | 1.130          | 1.660          | 1.040                   |

STATE

MONTANA

MAJOR BASIN

MISSOURI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

YELLOWSTONE RIVER

STATION LOCATION YELLOWSTONE RIVER NEAR

SIDNEY, MONTANA

| DATE                                                                                                                                 |                                                                               |           | RADI      | DACTIVITY IN V | VATER     | <del></del> | ·     | Ι | RADIOA                         | CTIVITY IN PLAN | IKTON (dry) | Т | PAD       | IOACTIVITY IN V | /ATER |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------|-----------|----------------|-----------|-------------|-------|---|--------------------------------|-----------------|-------------|---|-----------|-----------------|-------|
| SAMPLE                                                                                                                               | DATE OF<br>DETERMI-<br>NATION                                                 |           | ALPHA     |                |           | BETA        |       | 1 |                                | GROSS /         |             |   |           | GROSS ACTIVIT   |       |
|                                                                                                                                      |                                                                               | SUSPENDED | DISSOLVED | TOTAL          | SUSPENDED | DISSOLVED   | TOTAL | 1 | DETERMI-<br>NATION             | ALPHA           | BETA        | F | SUSPENDED | DISSOLVED       |       |
| MO. DAY YEAR                                                                                                                         | MONTH DAY                                                                     | μμc/l     | μμc/l     | μμc/l          | μμc/l     | μμε/Ι       | μμε/Ι |   | MO. DAY                        | μμс/g           | μμε/g       |   | μμε/Ι     | μμε/Ι           | μμε/l |
| TAKEN  MD. DAY YEAR  0 24 60 # 1 28 60 0 2 26 60 1 30 61 # 3 27 61 # 5 29 61 # 6 19 61 # 7 31 61 # 8 28 61 # 9 11 61 9 18 61 9 25 61 | 11 14<br>12 8<br>1 23<br>2 13<br>3 14<br>4 12<br>5 12<br>6 12<br>7 21<br>8 23 |           |           |                |           | DISSOLVED   |       |   | DATE OF DETERMINATION  MG. DAY | ALPHA           | BETA        |   | SUSPENDED | DISSOLVED       | TOTAL |
|                                                                                                                                      |                                                                               |           |           |                |           |             |       |   |                                |                 |             |   |           |                 |       |

PLANKTON POPULATION

NUMBER PER MILLILITER, EXCEPT MACROPLANKTON

STATE

MONTANA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

YELLOWSTONE RIVER

STATION LOCATION YELLOWSTONE RIVER NEAR

SIDNEY, MONTANA

| DATE                                                                                                                                                         |                                                                                                                          |                       |                       | ALGAE (                                                                        | Vumber                | per ml.)                                                                                          | <del></del> | <del></del>                                                                                                |                                                                                                            | INÉ                                                                    | ERT                                                                                                     | Τ_                                                                                     | -                                                                                                                                            |                                                    |                                                                                       |                                                                                        |                                                                           | ~········                                                                                                                                                                   |                                        | ·                                                                                                   | <del></del>                                                     |     |                              |                              |                              |                                 |                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|--------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----|------------------------------|------------------------------|------------------------------|---------------------------------|------------------------------------------------------------------------------------------------|
| OF SAMPLE                                                                                                                                                    |                                                                                                                          | BLUE-                 | GREEN                 | GREE                                                                           | EN                    | FLAGEL<br>(Pigm                                                                                   | LATES       | DIAT                                                                                                       | омѕ                                                                                                        |                                                                        | ERT<br>TOM<br>ELLS<br>er ml.)                                                                           |                                                                                        | DOM<br>(Se                                                                                                                                   | INANT                                              | SPEC                                                                                  | IATO<br>IES A<br>for C                                                                 | ND PI                                                                     | ERCEN<br>enti/ica                                                                                                                                                           | ITAGE                                  | s                                                                                                   | портанктой,<br>внелтико<br>т.)                                  | -   | 7                            | (VERTEB)                     | 1                            | SHNO                            | ERA<br>tion<br>tion)                                                                           |
| MONTH<br>DAY<br>YEAR                                                                                                                                         | TOTAL                                                                                                                    | COCCOID               | FILA-<br>MENT-<br>OUS | COCCOID                                                                        | FILA-<br>MENT-<br>OUS | GREEN                                                                                             | OTHER       | CENTRIC                                                                                                    | PENNATE                                                                                                    |                                                                        |                                                                                                         | FIRST®                                                                                 | PER-                                                                                                                                         | SECOND®                                            | PER.                                                                                  | THIRDS                                                                                 | PER.                                                                      | FOURTH                                                                                                                                                                      | PER.                                   | OTHER PER-<br>CENTAGE                                                                               | OTHER RICROPLAN<br>FUNGIAND SHEATI<br>BACTERIA<br>(No. per ml.) | 020 | ROTIFIERS<br>(No. per liter) | CRUSTACEA<br>(No. per liter) | NEMATODES<br>(No. per liter) | OTHER ARIMAL F. (No. per liter) | DOMINANT GENERA<br>(See Introduction<br>for Identification)                                    |
| 10 17 60<br>11 7 60<br>12 1 60<br>12 19 60<br>12 19 60<br>1 2 6 61<br>2 0 61<br>3 61<br>2 0 61<br>3 61<br>5 15 61<br>6 19 61<br>7 7 61<br>8 21 61<br>9 18 61 | 4200<br>1100<br>900<br>200<br>300<br>500<br>100<br>3600<br>4400<br>16000<br>8300<br>200<br>9600<br>14000<br>10800<br>400 | 70<br>100<br>40<br>20 | 40<br>150<br>20       | 160<br>50<br>50<br>20<br>20<br>230<br>770<br>40<br>710<br>2920<br>4660<br>2010 |                       | 110<br>20<br>20<br>20<br>20<br>130<br>70<br>1400<br>2110<br>1740<br>40<br>250<br>310<br>360<br>70 | 210         | 800<br>70<br>40<br>20<br>90<br>110<br>50<br>10540<br>3270<br>100<br>110<br>50<br>1720<br>1080<br>340<br>40 | 3130<br>950<br>820<br>150<br>200<br>250<br>360<br>860<br>3130<br>2300<br>1800<br>560<br>720<br>8110<br>310 | 20<br>50<br>20<br>20<br>270<br>1300<br>90<br>4160<br>750<br>660<br>250 | 420<br>360<br>200<br>200<br>250<br>400<br>250<br>400<br>240<br>240<br>500<br>2080<br>2660<br>540<br>580 | 92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>47<br>47<br>65<br>75 | 50<br>40<br>70<br>50<br>60<br>60<br>40<br>30<br>30<br>40<br>30<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | 36<br>86<br>86<br>65<br>83<br>82<br>36<br>92<br>92 | 10<br>30<br>*<br>10<br>10<br>10<br>10<br>10<br>20<br>20<br>10<br>30<br>20<br>10<br>10 | 36<br>65<br>64<br>70<br>26<br>71<br>21<br>51<br>71<br>51<br>82<br>41<br>36<br>36<br>55 | 10.<br>10<br>* 10<br>* 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 265<br>71<br>47<br>64<br>35<br>65<br>81<br>27<br>86<br>83<br>17<br>86<br>83<br>17<br>86<br>83<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84 | ************************************** | 300<br>300<br>200<br>400<br>200<br>400<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>3 | 70<br>180<br>10<br>20                                           | 20  | 2 3 3                        | 3                            | 2 2                          |                                 | 74766<br>7-<br>74-<br><br><br><br>71963<br>71925<br>7-74-<br>7-<br>4897-<br><br>78323<br>7-763 |

## ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

MONTANA

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

YELLOWSTONE RIVER

STATION LOCATION YELLOWSTONE RIVER NEAR

SIDNEY, MONTANA

|                                                                                                           |                                        |                      | <del> </del>                                                          | ·                                                                         |                                                                            |                                                          | <del>,</del>        |                   |                                                          |                      |                                               |                              |                |                     |                 |                                         |           |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|---------------------|-------------------|----------------------------------------------------------|----------------------|-----------------------------------------------|------------------------------|----------------|---------------------|-----------------|-----------------------------------------|-----------|
| DATE OF S                                                                                                 |                                        | ND                   |                                                                       | EX                                                                        | TRACTABL                                                                   | .ES                                                      |                     |                   |                                                          |                      |                                               | ORM EXTR                     | ACTABLES       |                     |                 |                                         |           |
| DAY YEAR                                                                                                  | MONTH                                  | DAY                  | GALLONS<br>FILTERED                                                   | TOTAL                                                                     | CHLORO-<br>FORM                                                            | ALCOHOL                                                  | ETHER<br>INSOLUBLES | WATER<br>SOLUBLES | TOTAL                                                    | ALIPHATICS           | AROMATICS                                     | OXYGEN-<br>ATED<br>COMPOUNDS | LOSS           | WEAK<br>ACIDS       | STRONG<br>ACIDS | BASES                                   | LOSS      |
| 10  3  60  11  7  60  12  5  60  19  61  26  61  3  66  61  65  61  67  3  61  67  61  9  5  61  9  5  61 | 11<br>12<br>1<br>2<br>3<br>4<br>5<br>6 | 14<br>12<br>16<br>13 | 5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>4500<br>4500<br>14000 | 117<br>135<br>93<br>109<br>85<br>109<br>85<br>61<br>73<br>84<br>118<br>98 | 15<br>17<br>21<br>19<br>46<br>32<br>33<br>21<br>27<br>26<br>34<br>31<br>30 | 102<br>118<br>72<br>84<br>1033<br>520<br>446<br>58<br>68 | 0000101112          | 33434961161118    | 7<br>8<br>9<br>10<br>34<br>11<br>14<br>-<br>13<br>-<br>9 | 1 2 2 2 17 1 2 - 4 2 | 1 1 1 1 7 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 55678801-8-1-6               | 00002101101110 | 1 3 2 2 2 4 3 2 2 2 | 1               | 110011111111111111111111111111111111111 | 215244436 |

STATE

MONTANA

# CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

MISSOURI RIVER

MINOR BASIN

YELLOWSTONE RIVER

STATION LOCATIONYELLOWSTONE RIVER NEAR

SIDNEY, MONTANA

| 10 3    | YEAR | TEMP,<br>(Degrees<br>Centigrade) | DISSOLVED OXYGEN |                |                | 3              |                | DEMAND          |                              |                   |                    |                  | 1                      |                            |                    | 1                  |                                      |                          |
|---------|------|----------------------------------|------------------|----------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------|--------------------|------------------|------------------------|----------------------------|--------------------|--------------------|--------------------------------------|--------------------------|
|         |      |                                  | mg/l             | На             | B.O.D.<br>mg/l | C.O.D,<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l | ALKALINITY<br>mg/i | HARDNESS<br>mg/l | COLOR<br>(scale units) | TURBIDITY<br>(scale units) | SULFATES<br>mg/l   | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS<br>per 100 ml. |
|         | 60   | 12.2                             | -                | 8.4            | -              | -              | -              | -               | -                            | 5                 | 200                | 322              | _                      | 1360                       | 333                | -                  | 744                                  | <del></del>              |
| . 1 - 1 | 60   | 9.0                              | 10.1             | 8.5            | _              | _              | , -            | -               | -                            | 5                 | 200                | 322              | -                      | 100                        | 340                | -                  | 758                                  | -                        |
| 1 1     | 60   | 8.9                              | 10.1             | 8 • 4<br>8 • 3 | _              | -              | 1.7            | ·               | -                            | 6                 | 206                | 358              | -                      | 140                        | 394                | -                  | 820                                  | -                        |
|         | 60   | 4.6                              | 11.2             | 8.4            | _              | _              | 1.2            | 5 • 4<br>5 • 4  |                              | 2                 | 206                | 334              | -                      | 460                        | 340                | -                  | 712                                  | -                        |
|         | 60   | 3.4                              | 11.3             | 8.4            | _              | _              | •7             | J.4             | _                            | 2<br>6            | 188<br>198         | 316<br>326       | _                      | 40                         | 315                | -                  | 710                                  | -                        |
|         | 60   | 5.5                              | 11.5             | 8.4            | _              | _              | 9              | 3.6             | _                            | 6                 | 210                | 330              | _                      | 40<br>30                   | 323                | ~                  | 686                                  | -                        |
|         | 60   | 5.7                              | 10.5             | 8.4            | _              | l - i          | 1.2            | 3.9             | _                            | 9                 | 212                | 334              |                        | 45                         | 30 <b>7</b><br>299 | _                  | 698<br>706                           | _                        |
|         | 60   | •0                               | 12.2             | 8.3            | _              | -              | • 9            | 6.3             | -                            | 6                 | 208                | 338              | _                      | 120                        | 315                | _                  | 734                                  | -                        |
|         | 60   | •0                               | 11.4             | 8 • 4          | -              | -              | •7             | _               | -                            | 15                | 240                | 386              | _                      | 20                         | 360                | _                  | 844                                  | _                        |
|         | 60   | •0                               | 12.3             | 8 • 4          | -              | -              | • 9            | 3 • 2           | -                            | 13                | 234                | 386              | _                      | 20                         | 360                | _                  | 748                                  | _                        |
|         | 60   | •0                               | 11.9             | 8.3            | -              | -              | 1.3            | 3 • 4           | -                            | 17                | 234                | 392              | -                      | 25                         | 315                | _                  | 812                                  | _                        |
|         | 60   | •0                               | -                | 8.2            | -              | -              | -              | -               | -                            | 6                 | 254                | 400              | -                      | 20                         | 315                | _                  | 820                                  | _                        |
|         | 61   | .0                               | -                | 8.2            | -              | -              | -              | -               | -                            | 1                 | 232                | 376              | -                      | 30                         | 307                | - 1                | 750                                  | _                        |
|         | 61   | .0                               | 11.8             | 8.2            | -              | -              |                |                 | -                            | 7                 | 228                | 366              | -                      | 25                         | 315                | -                  | 750                                  | _                        |
|         | 61   | .0                               | 12.0             | 8.2            | _              | -              | 1.4            | 3 • 4           | -                            | 14                | 216                | 348              |                        | 40                         | 295                | -                  | 712                                  | _                        |
|         | 61   | .0                               | 12.5             | 8.3            | _              | _              | 1.4            | 2•9             | -                            | 12                | 208                | 336              | -                      | 25                         | 245                | -                  | 664                                  | 50                       |
| 1 - 1 - | 51   | .0                               | 10.6             | 8.1            | _              | _              | 1.5            | 3.1             | -                            | 1<br>7            | 222                | 364              | ~                      | 20                         | 340                | -                  | 726                                  |                          |
|         | 51   | •0                               | 11.8             | 8.1            |                | _              | 1.2            | 2.9             |                              | 12                | 240  <br>196       | 398<br>310       | -                      | 20                         | 333                | - ]                | 804                                  | -                        |
|         | 51   | •0                               | 12.2             | 8.2            | -              | - 1            | .8             | 2.4             | _                            | 11                | 174                | 290              | =                      | 70  <br>35                 | 239                |                    | 640                                  | -                        |
|         | 51   | •0                               | 12.2             | 8.3            | _              | -              | 1.3            | 2.8             | _                            | 10                | 160                | 288              | _ [                    | 150                        | 239<br>264         | -                  | 590                                  | -                        |
|         | 51   | • 0                              | 11.5             | 8.3            | -              | -              | 1.5            | -               | -                            | 12                | 176                | 300              | _                      | 150                        | 299                | _                  | 632<br>656                           | _                        |
|         | 51   | •0                               | 11.1             | 8 • 2          | -              | -              | • 8            | 2.7             | -                            | 16                | 170                | 302              | ~                      | 340                        | 285                | _                  | 620                                  |                          |
|         | 51   | •0                               | 9.4              | 8.4            | -              | -              | -              | -               | -                            | 19                | 160                | 286              | - 1                    | 1350                       | 285                | _                  | 632                                  | *60                      |
|         | 51   | .0                               | 11.1             | 8.4            | -              | -              | -              | -               |                              | 5                 | 176                | 328              |                        | 500                        | 323                | - 1                | 712                                  | -                        |
|         |      | 9.1<br>7.1                       | 10.3             | 8 • 4          | -              | -              | 1.1            | 4 • 8           | - [                          | 16                | 178                | 334              | - [                    | 240                        | 333                | -                  | 744                                  |                          |
| 4 17 6  |      | 8.1                              | 11.2             | 8.5            | -              | - [            |                |                 | -                            | 22                | 186                | 338              | -                      | 240                        | 333                | - 1                | 788                                  | _                        |
| 4 24 6  |      | 7.6                              | 11.2             | 8.3            |                | -              | 1.2            | 3 • 8           | -                            | 20                | 198                | 362              | -                      | 380                        | 308                | -                  | 910                                  | _                        |
|         | i    | 12.1                             | 11.2             | 8.5            | _ [            | _              | 1.3            | 4 • 3           | -                            | 20                | 180                | 344              | -                      | 180                        | 421                | -                  | 926                                  | _                        |
| 5 8 6   |      | 10.2                             | 10.5             | 8.4            |                | _              | 1.6            | 4 • 8           | -                            | 45                | 180                | 354              | -                      | 300                        | 407                | -                  | 934                                  | -                        |
| 5 15 6  |      | 16.4                             | _                | 8.5            | _              | _              | 1.0            | 4.8             | _ [                          | 16<br>16          | 186                | 328              | -                      | 100                        | 360                | -                  | 790                                  | _                        |
| 5 22 6  | 1    | 18.7                             | -                | 8.5            | _              | -              | _              | _ [             | -1                           | 14                | 164                | 288 i<br>288 i   | -                      | 60                         | 315                | -                  | 760                                  | _                        |
| 5 29 6  |      | 21.5                             | -                | 8.2            | -              | -              | -              | _               | _                            | 6                 | 124                | 178              | _                      | 500<br>8800                | 299                | -                  | 710                                  | -                        |
| 6 5 6   | - 4  | 21.5                             | -                | 8.2            | - [            | -              | -              | -               | -                            | 3                 | 74                 | 102              | _                      | 2200                       | 147  <br>75        | _                  | 368<br>244                           | _                        |
| 6 12 6  |      | 22.8                             | -                | 8.1            | -              | -              | -              | -               | -                            | 4                 | 72                 | 84               | _                      | 800                        | 54                 | 1                  | 177                                  | _                        |
| 6 19 6  |      | 22.1                             | - [              | 8.2            | -              | -              | -              | -               | -                            | 10                | 72                 | 98               | _                      | 430                        | 69                 | - 1                | 234                                  | _                        |
| 7 3 6   | 1    | 24•4                             | -1               | 8.5            | -              | -              | -              | -               | -                            | 9                 | 97                 | 132              | _                      | 180                        | 106                | _ [                | 298                                  |                          |
|         |      |                                  |                  |                |                |                |                |                 |                              | 1                 | ĺ                  | -                | 1                      |                            | -00                |                    | 2,0                                  | _                        |

#### NATIONAL WATER QUALITY NETWORK

STATE

MONTANA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN MISSOURI RIVER

MINOR BASIN

YELLOWSTONE RIVER

STATION LOCATIONYELLOWSTONE RIVER NEAR

SIDNEY, MONTANA

55

| DATE<br>OF SAMPLE                                                                           | темр.                                                                        | DISSOLVED                                                          |                                                                  |                |                | CHLORINE       | DEMAND          |                              |                                                 | <u> </u>                                                    |                                                                           | Ī                      |                                                                                 | <del>                                     </del>                   | [                  | 1                                    | <del></del> |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------|----------------|----------------|----------------|-----------------|------------------------------|-------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------|--------------------------------------|-------------|
| DAY YEAR                                                                                    | (Degrees<br>Centigrade)                                                      | OXYGEN<br>mg/l                                                     | рН                                                               | B.O.D.<br>mg/l | C.O.D.<br>mg/l | 1-HOUR<br>mg/l | 24-HOUR<br>mg/l | AMMONIA-<br>NITROGEN<br>mg/l | CHLORIDES<br>mg/l                               | ALKALINITY<br>mg/l                                          | HARDNESS<br>mg/l                                                          | COLOR<br>(scale units) | TURBIDITY<br>(scale units)                                                      | SULFATES<br>mg/l                                                   | PHOSPHATES<br>mg/l | TOTAL<br>DISSOLVED<br>SOLIDS<br>mg/l | COLIFORMS   |
| 7 10 61<br>7 17 61<br>7 24 61<br>7 61<br>8 14 61<br>8 21 61<br>9 5 61<br>9 11 61<br>9 25 61 | 24.8<br>24.8<br>22.8<br>25.4<br>24.6<br>23.9<br>24.4<br>17.1<br>13.5<br>16.2 | 8.0<br>7.2<br>7.2<br>7.5<br>7.5<br>8.0<br>9.5<br>9.5<br>9.5<br>9.5 | 5.3.6.4.6.5.5.6.5.3.1.9<br>8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8 |                |                | 1.0            | 4.9 6.8 7.1     |                              | 20<br>2<br>2<br>-<br>20<br>26<br>20<br>30<br>44 | 120<br>130<br>144<br>154<br>168<br>178<br>170<br>160<br>130 | 150<br>213<br>217<br>206<br>246<br>292<br>278<br>254<br>286<br>276<br>228 |                        | 110<br>1800<br>700<br>280<br>120<br>130<br>110<br>800<br>1040<br>11000<br>22000 | 138<br>169<br>213<br>219<br>342<br>275<br>344<br>326<br>315<br>316 |                    | 283<br>                              |             |

STREAM FLOW DATA - 1960-1961

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station near Sidney, Montana Operated by U.S. Geological Survey STATE

Montana

MAJOR BASIN

Missouri River

MINOR BASIN

Yellowstone River

STATION LOCATION

Yellowstone River near

Sidney, Montana

| Day                              | October                                            | November                                  | December                                           | January                                   | February                | March                                              | April                                     | May                                                     | June                                           | July                                               | August                                   | September                                   |
|----------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|-------------------------|----------------------------------------------------|-------------------------------------------|---------------------------------------------------------|------------------------------------------------|----------------------------------------------------|------------------------------------------|---------------------------------------------|
| 1                                | 4.150                                              | 4.610                                     | 4.000                                              | 4.200                                     | 2.900                   | 5.500                                              | 3.910                                     | 2.770                                                   | 29.800                                         | 9.010                                              | 4.810                                    | 1.130                                       |
| 2                                | 4.130                                              | 4.640                                     | 2.800                                              | 4.400                                     | 2.900                   | 5.600                                              | 3.840                                     | 2.670                                                   | 30.400                                         | 8.340                                              | 2.960                                    | 1.220                                       |
| 3                                | 4.090                                              | 4.660                                     | 2.400                                              | 4.600                                     | 3.000                   | 5.600                                              | 3.760                                     | 2.480                                                   | 28.600                                         | 7.680                                              | 2.610                                    | 1.400                                       |
| 4                                | 4.000                                              | 4.730                                     | 2.200                                              | 4.800                                     | 3.400                   | 5.500                                              | 3.690                                     | 2.360                                                   | 24.900                                         | 7.150                                              | 2.320                                    | 1.590                                       |
| 5                                | 3.910                                              | 4.730                                     | 2.200                                              | 4.700                                     | 3.800                   | 5.400                                              | 3.710                                     | 2.250                                                   | 23.800                                         | 6.570                                              | 2.090                                    | 2.160                                       |
| 6                                | 3.890                                              | 4.730                                     | 2.400                                              | 4.600                                     | 4.400                   | 5.300                                              | 3.520                                     | 2.160                                                   | 23.700                                         | 5.990                                              | 1.880                                    | 2.120                                       |
| 7                                | 3.870                                              | 4.950                                     | 3.200                                              | 4.500                                     | 4.700                   | 5.300                                              | 3.460                                     | 1.840                                                   | 24.100                                         | 5.410                                              | 1.600                                    | 2.690                                       |
| 8                                | 3.820                                              | 5.050                                     | 4.000                                              | 4.300                                     | 5.000                   | 5.200                                              | 3.420                                     | 1.700                                                   | 26.000                                         | 5.070                                              | 1.330                                    | 2.990                                       |
| 9                                | 3.690                                              | 5.000                                     | 3.400                                              | 4.200                                     | 5.200                   | 5.200                                              | 3.350                                     | 1.590                                                   | 26.000                                         | 4.970                                              | 1.200                                    | 3.130                                       |
| 10                               | 3.630                                              | 4.850                                     | 3.000                                              | 4.200                                     | 5.400                   | 5.200                                              | 3.350                                     | 1.560                                                   | 25.900                                         | 5.710                                              | .948                                     | 3.170                                       |
| 11                               | 3.630                                              | 4.930                                     | 2.800                                              | 4.400                                     | 5.600                   | 5.300                                              | 3.540                                     | 1.570                                                   | 26.800                                         | 6.100                                              | .822                                     | 4.830                                       |
| 12                               | 3.630                                              | 5.050                                     | 2.700                                              | 5.000                                     | 5.700                   | 5.400                                              | 3.540                                     | 1.510                                                   | 28.100                                         | 6.950                                              | .717                                     | 7.230                                       |
| 13                               | 3.840                                              | 4.850                                     | 2.600                                              | 4.900                                     | 5.600                   | 5.400                                              | 3.150                                     | 1.330                                                   | 29.100                                         | 6.100                                              | .810                                     | 10.400                                      |
| 14                               | 4.880                                              | 4.970                                     | 2.700                                              | 4.800                                     | 5.500                   | 5.500                                              | 2.940                                     | 1.110                                                   | 29.100                                         | 5.460                                              | 1.270                                    | 10.200                                      |
| 15                               | 6.150                                              | 4.970                                     | 2.800                                              | 4.600                                     | 5.400                   | 5.600                                              | 2.780                                     | 1.010                                                   | 27.900                                         | 5.140                                              | 2.070                                    | 11.000                                      |
| 16                               | 5.860                                              | 5.050                                     | 3.000                                              | 4.500                                     | 5.300                   | 5.800                                              | 2.630                                     | .810                                                    | 25.400                                         | 5.410                                              | 2.410                                    | 10.800                                      |
| 17                               | 5.310                                              | 5.120                                     | 3.200                                              | 4.700                                     | 5.200                   | 6.800                                              | 2.360                                     | .570                                                    | 23.100                                         | 5.290                                              | 2.250                                    | 9.800                                       |
| 18                               | 4.850                                              | 5.020                                     | 3.500                                              | 5.000                                     | 5.100                   | 7.000                                              | 2.030                                     | 1.440                                                   | 21.100                                         | 4.850                                              | 2.070                                    | 8.720                                       |
| 19                               | 4.730                                              | 4.950                                     | 3.700                                              | 5.000                                     | 5.000                   | 6.400                                              | 2.460                                     | 2.580                                                   | 19.600                                         | 4.540                                              | 1.720                                    | 8.080                                       |
| 20                               | 4.880                                              | 4.880                                     | 3.400                                              | 4.800                                     | 4.900                   | 5.500                                              | 2.580                                     | 3.930                                                   | 19.500                                         | 4.110                                              | 1.430                                    | 8.340                                       |
| 21                               | 5.260                                              | 4.850                                     | 3.200                                              | 4.700                                     | 4.800                   | 4.640                                              | 2.410                                     | 5.780                                                   | 19.200                                         | 3.540                                              | 1.270                                    | 8.720                                       |
| 22                               | 5.120                                              | 4.850                                     | 3.000                                              | 4.500                                     | 5.100                   | 4.540                                              | 2.100                                     | 5.480                                                   | 18.200                                         | 3.070                                              | 1.250                                    | 13.000                                      |
| 23                               | 5.120                                              | 4.780                                     | 2.800                                              | 4.300                                     | 5.200                   | 4.360                                              | 1.880                                     | 5.410                                                   | 17.700                                         | 2.940                                              | 1.200                                    | 16.800                                      |
| 24                               | 5.170                                              | 4.660                                     | 2.600                                              | 4.000                                     | 5.100                   | 4.150                                              | 1.860                                     | 6.280                                                   | 16.500                                         | 2.980                                              | 1.170                                    | 14.900                                      |
| 25                               | 5.240                                              | 4.690                                     | 2.600                                              | 3.900                                     | 4.800                   | 4.060                                              | 1.860                                     | 6.680                                                   | 15.200                                         | 2.900                                              | 1.140                                    | 12.600                                      |
| 26<br>27<br>28<br>29<br>30<br>31 | 5.050<br>4.970<br>4.810<br>4.730<br>4.730<br>4.690 | 4.410<br>4.400<br>4.400<br>4.400<br>4.400 | 2.700<br>2.800<br>2.900<br>3.000<br>3.400<br>3.800 | 3.700<br>3.600<br>3.400<br>3.200<br>3.000 | 4.800<br>5.000<br>5.200 | 3.930<br>3.840<br>3.820<br>3.820<br>3.840<br>3.820 | 1.700<br>1.510<br>2.180<br>2.580<br>2.540 | 8.860<br>12.200<br>16.300<br>19.600<br>23.500<br>28.100 | 13.800<br>12.300<br>11.100<br>10.300<br>13.800 | 2.880<br>2.750<br>2.500<br>2.230<br>2.180<br>6.190 | 1.110<br>1.080<br>1.010<br>.987<br>1.040 | 11.500<br>10.400<br>9.800<br>9.190<br>8.770 |

# Strontium 90

Strontium 90

Strontium 90 Activity, µµc/liter—1960-1961

| Sampling Point                                                                             | October-<br>December | January-<br>March | April-<br>June | July-<br>September | Sampling Point                                                                              | October-<br>December | January-<br>March | April-<br>June | July-<br>September                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------|----------------------|-------------------|----------------|--------------------|---------------------------------------------------------------------------------------------|----------------------|-------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALLEGHENY RIVER at Pittsburgh, Pa.                                                         |                      |                   | . 2            | . 3                | CONNECTICUT RIVER below Northfield, Mass.                                                   |                      |                   |                | . 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ANIMAS RIVER<br>at Cedar Hill, N. Mex.                                                     |                      |                   |                | . 3                | CUMBERLAND RIVER at Clarksville, Tenn.                                                      |                      |                   |                | . 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| APALACHICOLA RIVER at Chattahoochee, Fla.                                                  |                      |                   |                | . 4                | DELAWARE RIVER<br>at Philadelphia, Pa.<br>at Martins Creek, Pa.                             |                      | . 6               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ARKANSAS RIVER<br>at Pendleton Ferry, Ark.<br>near Ponca City, Okla.<br>at Coolidge, Kans. |                      |                   | .7             | 2.3                | ESCAMBIA RIVER at Century, Fla. GREAT LAKES                                                 |                      |                   |                | . 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BIG SIOUX RIVER<br>below Sioux Falls, S. Dak.                                              |                      |                   |                | .4                 | Lake Erie at Buffalo, N.Y.<br>Lake Huron, Detroit River at                                  |                      | . 6               |                | . 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CHATTAHOOCHEE RIVER at Columbus, Ga. at Atlanta, Ga.                                       |                      | . 3               | . 3            |                    | Detroit, Mich. Lake Huron, St. Clair River at Port Huron, Mich. Lake Michigan at Gary, Ind. |                      |                   |                | . 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| COLORADO RIVER<br>at Yuma, Ariz.<br>above Parker Dam, Ariz-Calif.                          | 1.2                  | 1.2               | _              | <br><br>1. 0       | Lake Michigan at Milwaukee, Wis. Lake Superior, St. Mary's River at Sault Ste. Marie, Mich. | . 2                  |                   | . 3            | and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th |
| near Boulder City, Nev.<br>at Page, Ariz.<br>at Loma, Colo.                                | . 4                  | . 4               | 2.3            | 1.0                | Lake Superior at Duluth, Minn. HUDSON RIVER                                                 |                      | . 4               |                | provingstore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| COLUMBIA RIVER                                                                             |                      |                   |                |                    | below Poughkeepsie, N.Y.                                                                    | . 4                  | . 4               | . 5            | . 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| at Clatskanie, Oreg.<br>at Bonneville, Oreg.<br>at McNary Dam, Oreg.                       | . 5                  | ********          | 1.1            | . 6<br>1. 2        | ILLINOIS RIVER<br>at Peoria, Ill.                                                           | . 5                  |                   |                | . 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| at Pasco, Wash.<br>at Wenatchee, Wash.                                                     |                      | 1.0               | _              | 1.1                | KANAWHA RIVER at Winfield Dam, W. Va.                                                       |                      | . 2               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Dash (—) indicates no determination made.

### Strontium 90—Continued

#### Strontium 90 Activity, µµc/liter—1960-1961

| Sampling Point                                                                               | October-<br>December | January-<br>March | April-<br>June | July-<br>September | Sampling Point                                                       | October-<br>December | January-<br>March | April-<br>June | July-<br>September |
|----------------------------------------------------------------------------------------------|----------------------|-------------------|----------------|--------------------|----------------------------------------------------------------------|----------------------|-------------------|----------------|--------------------|
| KLAMATH RIVER<br>at Keno, Oreg.                                                              |                      |                   | . 3            |                    | OHIO RIVER<br>at Cairo, Ill.                                         |                      |                   |                | 1. 1               |
| LITTLE MIAMI RIVER at Cincinnati, Ohio                                                       |                      | 1.1               |                | 1. 1               | at Evansville, Ind.<br>at Louisville, Ky.<br>at Cincinnati, Ohio     | .8                   |                   | _              | 4                  |
| MERRIMACK RIVER above Lowell, Mass.                                                          |                      |                   |                | . 7                | at Huntington, W. Va.<br>at East Liverpool, Ohio                     | . 4                  |                   |                | . 4                |
| MISSISSIPPI RIVER<br>at New Orleans, La.<br>at Vicksburg, Miss                               | _                    |                   |                |                    | OUACHITA RIVER<br>at Bastrop, La.                                    |                      |                   |                |                    |
| at Delta, La.<br>at West Memphis, Ark.                                                       | 1.0                  | _                 | . 6            | 4                  | PLATTE RIVER above Plattsmouth, Nebr.                                |                      |                   |                |                    |
| at Cape Girardeau, Mo.<br>at East St. Louis, Ill.<br>at Burlington, Iowa<br>at Dubuque, Iowa |                      | .7<br>            | .5             | . 8                | POTOMAC RIVER<br>at Great Falls, Md.<br>at Williamsport, Md.         |                      | 1.3               | .8             |                    |
| at Lock & Dam No. 3 below St.<br>Paul, Minn.                                                 |                      |                   |                | . 9                | RAINY RIVER<br>at Baudette, Minn.                                    | _                    |                   |                |                    |
| MISSOURI RIVER<br>at St. Louis, Mo.<br>at Kansas City, Kans.                                 | 1.4                  | 1. 1              |                | 1.4                | RED RIVER (North) at Grand Forks, N. Dak.                            |                      |                   | 1. 5           |                    |
| at St. Joseph, Mo.<br>at Omaha, Nebr.<br>at Yankton, S. Dak.<br>at Bismarck, N. Dak.         | .5                   |                   |                | 6                  | RED RIVER (South) at Alexandria, La. at Index, Ark. at Denison, Tex. |                      | .4                |                | 1.0                |
| at Williston, N. Dak.  MONONGAHELA RIVER at Pittsburgh, Pa.                                  |                      |                   | _              | . 4                | RIO GRANDE<br>at Brownsville, Tex.<br>at Laredo, Tex.                |                      |                   | . 3            |                    |
| NORTH PLATTE RIVER above Henry, Nebr.                                                        |                      |                   |                |                    | at El Paso, Tex.<br>below Alamosa, Colo.                             |                      | . 4               |                | . 4                |

## Strontium 90-Continued

### Strontium 90 Activity, μμc/liter—1960–1961

| Sampling Point                                                     | October-<br>December | January-<br>March | April-<br>June | July-<br>September | Sampling Point                                                        | October-<br>December                    | January-<br>March | April-<br>June | July-<br>September                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------|----------------------|-------------------|----------------|--------------------|-----------------------------------------------------------------------|-----------------------------------------|-------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ROANOKE RIVER<br>at John H. Kerr Dam and Reser-<br>voir, Va.       |                      |                   |                |                    | SOUTH PLATTE RIVER at Julesburg, Colo.                                |                                         |                   |                | . 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SABINE RIVER<br>near Ruliff, Tex.                                  |                      |                   | .8             |                    | SUSQUEHANNA RIVER<br>at Conowingo, Md.<br>at Sayre, Pa.               | . 4                                     |                   |                | . 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ST. LAWRENCE RIVER at Massena, N.Y.                                | . 6                  |                   |                | ——                 | TENNESSEE RIVER<br>at Bridgeport, Ala.<br>at Chattanooga, Tenn.       | . 9                                     | 1. 5              | . 9            | . 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SAN JUAN RIVER<br>at Shiprock, N. Mex.                             |                      |                   |                |                    | TOMBIGBEE RIVER                                                       | . 9                                     | .8                |                | . 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SAVANNAH RIVER<br>at Port Wentworth, Ga.<br>at North Augusta, S.C. | . 5                  | . 4               | . 5<br>. 5     | . 4                | below Columbus, Miss.  TRUCKEE RIVER at Farad Calif. below Calif-Nev. |                                         |                   |                | - Annie de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de la Contraction de l |
| SCHUYLKILL RIVER<br>at Philadelphia, Pa.                           | _                    |                   |                |                    | border YAKIMA RIVER                                                   |                                         |                   |                | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SHENANDOAH RIVER                                                   |                      |                   |                |                    | at Richland, Wash.                                                    |                                         |                   | _              | . 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| at Berryville, Va.<br>SNAKE RIVER                                  |                      |                   |                |                    | YELLOWSTONE RIVER<br>near Sidney, Mont.                               | *************************************** |                   | . 8            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| at Wawawai, Wash.<br>at Weiser, Idaho                              | $-\frac{1}{2}$       |                   |                | . 3                |                                                                       |                                         |                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### NATIONAL WATER QUALITY NETWORK 1960 - 1961

| r                                               |                   |                     |              |              |             |                |              |                |               |                    | 301            |                |                |              |                |             |              |                |               |                |        |              |                |
|-------------------------------------------------|-------------------|---------------------|--------------|--------------|-------------|----------------|--------------|----------------|---------------|--------------------|----------------|----------------|----------------|--------------|----------------|-------------|--------------|----------------|---------------|----------------|--------|--------------|----------------|
|                                                 | DΔ                | TE                  | A & .        | 11 V C 1 C   | DV 11/23    | OR FL          |              | CONC           | ENTI          | RATIO              | ) N -          |                | MILL           | IGRAI        | ИS             | PER         | L            | ITER           |               |                | -      |              |                |
| STATION                                         |                   | l                   | ANZ          | 127575       | METHOS      | OR FL.         | AME          |                |               |                    |                | ANALY          | SIS            | BY SP        | ECTRO          | PHOTO       | GRAPI        | HIC ME         | ETHOD         |                |        |              |                |
|                                                 | FROM              | ТО                  | В            | F            | K           | Na             | Se           | Cd             | Ва            | Be                 | Рb             | Cr             | Sn             | Sb           | Mn             | Fe          | Ni           | Bi             | Мо            | V              | Cu     | Zn           | Co             |
| ALLEGHENY RIVER<br>at Pittsburgh, Pennsylvania  | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.03         | 0.13<br>0.45 | 1.6<br>3.9  | 6.0<br>25.5    | .01*<br>.01* | .003*          | .04           | .00006*            | .006*<br>.01*  | .001*<br>.003* | .002*          | .01*<br>.03* | .1<br>.01      | .20<br>.01  | .003         | .006*          | .003          | .005<br>.006*  | .003   | .6*          | .002*          |
| avimas River<br>at Cedar Hill, N. Mexico        | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.10<br>0.08 | 0.42<br>0.45 | 3.7<br>3.7  | 28.0<br>19.0   | .01<br>.01*  | .01*           | .08           | .0002*             | .02*<br>.01*   | .004*          | .008*<br>.005* | .04*<br>.03* | .02*<br>.01*   | .20<br>.01  | .008*        | .02*<br>.01*   | .008*         | .02<br>.05     | .004   | 2.0*         | .008*          |
| APALACHICOLA RIVER<br>at Chattahoochee, Florida | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.04         | 0.18         | 1.3         | 2.8            |              | .002*<br>.001* | .02<br>.03    | .00003*            | .003*<br>.004  | .0006*<br>.002 | .005           | .006*        | .002*<br>.002  | .02         | .005<br>.01  | -003*<br>-002* | .001*<br>.004 | .001*<br>.001* | .003   | .3*          | .001*          |
| ARKAHSAS RIVER<br>at Pendleton Ferry, Ark.      | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.04         | 0.39<br>0.20 | 2.3<br>4.2  | 41.0<br>34.0   | .01*<br>.01* | *800.          | .08<br>.08    | .0001*             | .01*<br>.01*   | .003*          | .006*          | .03*<br>.03* | .01*<br>.01*   | .08         | .005         | .01*           | .005*<br>.008 | .005*<br>.005* | .008   | 1.0*         | .005*          |
| near Ponca City, Oklahoma                       | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.13<br>0.09 | 0.43<br>0.35 | 4.6<br>6.3  | 100.0<br>90.0  | .01*<br>.01* | .02*<br>.02*   | .2<br>.2      | .0004              | .04*<br>.03*   | .008*          | .02*<br>.01*   | .08*         | .03*<br>.02*   | .03*<br>.05 | .02*<br>-01* | .04*           | .02*<br>.01   | .02*           | .002*  | 4.0*<br>3.0* | .02*<br>.01*   |
| at Coolidge, Kansas                             | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.40         | 0.51<br>0.54 | 8.3<br>11.3 | 440.0<br>350.0 | .01*<br>.01* | .100*          | .2<br>.07*    | .002*              | .2*            | .04*<br>.03*   | .08°<br>.07*   | .4ª          | .2*            | .08*        | .08*         | .2*            | .08*          | .08*           | .01*   | 20.0*        | .08*           |
| BIG SIOUX RIVER<br>below Sioux Falls, S. Dak.   | 7-10-61           | 10-15-61            | 0.17         | 0.50         | 13.8        | 106.0          | .01*         | ,02*           | .02           | .0004*             | .04*           | .008*          | .02*           | .08*         | .03*           | .04         | .02*         | .04*           | .02*          | .02*           | ,002*  | 4.0*         | .02*           |
| CHATTAHOOCHEE RIVER<br>at Columbus, Georgia     | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.03<br>0.06 | 0.10<br>0.16 | 1.6         | 2.8<br>5.0     | .01*<br>.01* | .001*<br>.001* | .01<br>.01    | .00002*<br>.00002* | .002*<br>.002* | .0005*<br>.002 | .001*<br>.001* | .005*        | .002*          | .01<br>.005 | .02          | .002*          | .001*<br>.001 | .001*          | .01    | .2*          | .001*          |
| at Atlanta, Georgia                             | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.03         | 0.24<br>0.16 | 1.3<br>2.5  | 2.2<br>3.2     | .01*<br>.01* | .002*<br>.03*  | .003<br>.02*  | .00003*            | .003*<br>.05*  | .0006*         | .001<br>.02*   | .006*        | .002*          | .001        | .001*        | .003*          | .001*         | .001*          | ,0002* | .3*<br>5.0*  | .001*          |
| COLORADO RIVER<br>at Yuma, Arizona              | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.04         | 0.33         | 6.9<br>10.0 | 345.0<br>469.0 | .01*<br>.01* | .006*<br>.08*  | .004*<br>.05* | .0001*<br>.001*    | .01*<br>.1*    | .002*          | .004*<br>.05*  | .02*         | .008*          | 004         | .004*        | .01*           | .008          | .004*          | .0008  | 1.0*         | .004*<br>.05*  |
| above Parker Dam,<br>Arizona-Ualifornia         | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.10<br>0.15 | 0.45<br>0.45 | 4.8<br>6.3  | 72.0<br>96.0   | .01*<br>.01* | .02*           | .3<br>.1      | .0003*<br>.0003*   | .03*<br>.03*   | .006*<br>.007* | .01*<br>.01*   | .06*         | .03*           | .01         | .01*         | .03*           | .03<br>.03    | .01*<br>.01*   | .03    | 3.0*<br>3.0* | .01*           |
| near Boulder City, Nevada                       | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.17<br>0.14 | 0.34<br>0.35 | 4.4<br>5.5  | 85.0<br>75.0   | .01*<br>.01* | .02*<br>.02*   | .1            | .0003*             | .03*           | .007*          | .01*<br>.01*   | .07*         | .03*           | .02         | .01*         | .03*           | .03           | .01*           | .002*  | 3.0*<br>3.0* | .01*           |
| at Page, Arizona                                | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.10<br>0.17 | 0.45         | 5.5<br>10.3 | 120.0<br>112.0 | .01*<br>.01* | .03*<br>.03*   | .09           | .0004*<br>.0006*   | .04*<br>*80.   | .009*<br>.01*  | .02*           | .09*         | .05*           | .04         | 02*          | .04*           | .04           | .02*           | .003   | 4.0*         | .02*           |
| at Loma, Colorado                               | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.10<br>0.14 | 0.43         | 5.0<br>6.5  | 115.0<br>89.0  | .01*<br>.01* | .03*<br>.03*   | .09<br>.02*   | .0005*<br>.0005*   | .05*<br>.05*   | .009*          | .02*<br>.02*   | .09*         | .04*           | .02         | .02*         | .05*           | .07           | .02            | .003*  | 4.0*<br>5.0* | .02*           |
| COLUMBIA RIVER                                  |                   |                     |              |              |             |                |              |                |               |                    |                |                |                | İ            |                | İ           |              |                |               |                |        | ,            |                |
| at Bonneville, Oregon                           | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.06<br>0.05 | 0.18<br>0.30 | 1.6<br>3.3  | 5.0<br>8.5     | .01*<br>.01* | .003*<br>.003* | 1.02          | .00004*            | .004           | .003           | .002*          | .009*        | .003*<br>.004* | .007        | .002         | .004*<br>.006* | .002*         | .002*          | .002   | 4*,          | .002*          |
| at Clatekanie, Oregon                           | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.03         | 0.24         | 1.3         | 5.0            | .01*         | .001*          | .01<br>.02    | .00002*            | .002*          | .003           | .002           | .005*        | .002           | .02         | .001*        | .002*          | .001          | .002*          | .002   | .2*          | .002*          |
| at McMary Dam, Oregon                           | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.04         | 0.24<br>0.20 | 3.6         | 4.0<br>7.0     | .01*<br>:01* | .002*          | 03<br>03      | .00003*<br>.00004* | .003*<br>.004* | .003           | .001*          | .007*        | .003*          | .003        | .006         | .003*<br>.004* | .002          | .001°<br>.002° | .003   | 3*           | .001*<br>.002* |
| at Pasco, Washington                            | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.10         | 0.16<br>0.10 | 1.3<br>2.3  | 2.8<br>2.8     | .01*<br>.01* | .002*<br>.002* | .04<br>.02    | .00004*<br>.00004* | .004*<br>.004* | .006           | .001*          | .007         | .003*          | .003        | .001*        | .004           | .001<br>.002* | .001*<br>.002  | .003   | .4*<br>.4*   | .001*<br>.002* |
| at Wenatchee, Washington                        | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.09         | 0.52<br>0.10 | 1.3<br>2.2  | 2.3<br>2.3     | .01°         | .002*          | .05<br>.03    | .00004*            | .004*<br>.003* | .000B          | .002*<br>.001* | .008*        | .003*<br>-003* | .005        | .002         | .004*<br>.003* | .002<br>.002  | .002°<br>.001* | .002   | .4*          | .002*<br>.001* |
|                                                 |                   |                     |              |              |             |                |              |                |               |                    |                |                |                |              |                |             |              |                |               |                |        |              |                |
|                                                 |                   |                     | I            |              |             | اــــا         |              |                |               |                    | !              |                |                |              |                |             |              |                |               |                |        |              |                |

<sup>\*</sup> ACTUAL VALUE IS LESS THAN THE AMOUNT SHOWN REPORTED RESULT INDICATES LIMIT OF SENSITIVITY AT WHICH TEST WAS PERFORMED. SEE TEXT FOR EXPLANATION.

#### NATIONAL WATER QUALITY NETWORK 1960-1961

| at Philadelphia, Pa.  at Philadelphia, Pa.  at Martins Oreek, Pa.  3-1-  7-10  SCAMBIA RIVER  at Century, Florida  3-1-  RHARI LAKES  Superior at  Diluth, Minnesota  5-1-  Sanlt Ste. Marie, Nich.  Lake Michigan at  Gary, Indiana  5t. Clair River at  Fort Baron, Michigan  Lake Michigan at  John Michigan  Lake Michigan at  John Michigan  3-1-  Milvanukse, Visconsin  Detroit River at  3-1-  7-10  Detroit River at  3-1-  7-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -61<br>-61<br>-61<br>-61<br>-61<br>-61<br>-61<br>-61<br>-61<br>-61 | TO 6-20-61 (0-15-61 6-20-61 (0-15-61 6-20-61 (0-15-61 6-20-61 (0-15-61 6-20-61 6-20-61 6-20-61 6-20-61 6-20-61 6-20-61                            | 0.01<br>0.05<br>0.05<br>0.05<br>0.06<br>0.03<br>0.04 | 0.13<br>0.10<br>0.18<br>0.20<br>0.05<br>0.05 | 1.2<br>3.3<br>1.6<br>4.2<br>1.2<br>2.5 | 0.9 1.6                                 | .01* .01* .01* .01*  | .004* .002* .004* .002* .001 .003 | .01<br>.02        | .00006<br>.00004*                                  | .006*<br>.004*<br>.003*<br>.007* | .001*<br>.002*        | .003*<br>.002*<br>.002*         | .01*<br>.008*<br>.005*<br>.002*<br>.003* | .005*<br>.003*<br>.003* | Fe .03 .02 .04 .01 .007 .01 | .004<br>.002<br>.001*<br>.003* | .006*<br>.004*          | .003*.002      | .003*<br>.002*<br>.003*<br>.005* | .004<br>.005   | .6*<br>.4*               | .003<br>.002<br>.001<br>.003 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------|----------------------------------------|-----------------------------------------|----------------------|-----------------------------------|-------------------|----------------------------------------------------|----------------------------------|-----------------------|---------------------------------|------------------------------------------|-------------------------|-----------------------------|--------------------------------|-------------------------|----------------|----------------------------------|----------------|--------------------------|------------------------------|
| DENEOTIGUT RIVER  below Northfield, Nass.  3-1-7-10  KLAVARH HIVER  at Philadelphia, Pa.  3-1-7-10  at Martins Oreck, Pa.  3-1-7-10  SOANBIA RIVER  at Century, Florida  3-1-RHAT LAKES  Lake Superior at Pulluth, Minnesota  5-1-Sault Ste. Marie, Mich.  Lake Michigan at Gary, Indiana  St. Clair River at Fort Buron, Michigan  Lake Michigan at Fort Buron, Michigan  Lake Michigan at Fort Buron, Michigan  3-1-Milvaukes, Wisconsin  Detroit Niver at 3-1-7-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -61<br>-61<br>-61<br>-61<br>-61<br>-61<br>-61<br>-61<br>-61<br>-61 | 6-20-61<br>10-15-61<br>6-20-61<br>10-15-61<br>6-20-61<br>10-15-61<br>6-20-61<br>10-15-61<br>6-20-61<br>10-15-61<br>6-20-61<br>10-15-61<br>6-20-61 | 0.01<br>0.05<br>0.05<br>0.05<br>0.06<br>0.03<br>0.04 | 0.13<br>0.10<br>0.18<br>0.20<br>0.05<br>0.05 | 1.2<br>3.3<br>1.6<br>4.2<br>2.5        | 2.8<br>11.0<br>4.0<br>8.5<br>1.9<br>2.8 | .01*<br>.01*<br>.01* | .004*<br>.002*<br>.002*<br>.004*  | .01<br>.02        | .00006<br>.00004*<br>.00003*<br>.00007*<br>.00001* | .006*<br>.004*<br>.003*<br>.007* | .001*<br>.005         | .003*<br>.002*<br>.002<br>.003* | .01*<br>.008*<br>.005*<br>.01*           | .005*<br>.003*<br>.006* | .03<br>.02<br>.04<br>.01    | .004<br>.002<br>.001*<br>.003* | .006*<br>.004*          | .003*<br>.002  | .003*<br>.002*                   | .004<br>,005   | .6*<br>.4*<br>.3*<br>.7* | .003<br>.002<br>.001<br>.003 |
| below Northfield, Mass.  Z-1-7-10  ELAWARE HIVER  at Philadelphia, Pa.  at Martins Oreek, Pa.  3-1-7-10  SOAMBIA RIVER  at Century, Florida  3-1-REAT LAKES  Lake Superior at Duluth, Minnesota 7-10  St. Mary's River at Sault Sts. Marie, Mich.  Lake Michigan at Gary, Indiana  St. Clair River at Fort Euron, Michigan  Lake Michigan at Fort Euron, Michigan  Lake Michigan at J-1-River at Hivankes, Visconsin  Detroix Nyer at 3-1-7-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -61<br>-61<br>-61<br>-61<br>-61<br>-61<br>0-61                     | 6-20-61<br>6-20-61<br>10-15-61<br>6-20-61<br>6-20-61<br>6-20-61<br>6-20-61<br>6-20-61<br>6-20-61<br>6-20-61                                       | 0.05<br>0.05<br>0.05<br>0.06<br>0.03<br>0.04         | 0.10<br>0.18<br>0.20<br>0.05<br>0.05<br>0.13 | 1.6<br>4.2<br>1.2<br>2.5               | 4.0<br>8.5<br>1.9<br>2.8                | .01*<br>.01*<br>.01* | .002*<br>.002*<br>.004*           | .02               | .00004*<br>.00003*<br>.00007*<br>.00001*           | .004*<br>.003*<br>.007*          | .005<br>.001<br>.001* | .002*<br>.002<br>.003*          | .005*                                    | .003*<br>.003<br>.006*  | .02<br>.04<br>.01           | .002<br>.001*<br>.003*         | .004*<br>.003*<br>.007* | .002           | .002<br>.003<br>.003             | .05<br>.1      | .4*                      | .002                         |
| at Philadelphia, Pa.  at Philadelphia, Pa.  at Martins Oreak, Pa.  3-1-7-10  SCAMBIA RIVER  at Century, Florida  3-1-RBAI LAKES  Lake Superior at Duluth, Minnesota  St. Mary's River at Sanlt Ste. Marie, Mich.  Lake Michigan at Gary, Indiana  St. Clair River at Fort Buron, Michigan  Lake Michigan at Fort Buron, Michigan  Lake Michigan at Fort Huron, Michigan  Lake Michigan at Fort Huron, Michigan  St. Clair River at Fort Huron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  St. Olair River at Fort Buron, Michigan  Fort Buron, Michigan  St. | -61<br>-61<br>-61<br>-61<br>-61<br>-61<br>0-61                     | 6-20-61<br>6-20-61<br>10-15-61<br>6-20-61<br>6-20-61<br>6-20-61<br>6-20-61<br>6-20-61<br>6-20-61<br>6-20-61                                       | 0.05<br>0.05<br>0.05<br>0.06<br>0.03<br>0.04         | 0.10<br>0.18<br>0.20<br>0.05<br>0.05<br>0.13 | 1.6<br>4.2<br>1.2<br>2.5               | 4.0<br>8.5<br>1.9<br>2.8                | .01*<br>.01*<br>.01* | .002*<br>.002*<br>.004*           | .02               | .00004*<br>.00003*<br>.00007*<br>.00001*           | .004*<br>.003*<br>.007*          | .005<br>.001<br>.001* | .002*<br>.002<br>.003*          | .005*                                    | .003*<br>.003<br>.006*  | .02<br>.04<br>.01           | .002<br>.001*<br>.003*         | .004*<br>.003*<br>.007* | .002           | .002<br>.003<br>.003             | .05<br>.1      | .4*                      | .002                         |
| at Philadelphia, Pa. 3-1-7-10 at Martins Greek, Pa. 3-1-7-10 SCAMBIA RIVER at Century, Florida 3-1- RARI LAKES  Lake Superior at 3-1-7-10 St. Mary's River at 3-1-7-10 Gary, Indiana 7-10 St. Clair River at 7-10 Lake Michigan at 7-10 Lake Michigan at 7-10 Lake Michigan at 7-10 Lake Michigan at 7-10 Lake Michigan at 7-10 Lake Michigan at 7-10 Lake Michigan at 7-10 Lake Michigan at 3-1-41 Milvankes, Visconsin 7-10 Detroit Niver at 3-1-7-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -61<br>-61<br>-61<br>-61<br>-61<br>0-61                            | 6-20-61<br>6-20-61<br>6-20-61<br>6-20-61<br>6-20-61<br>6-20-61<br>6-20-61<br>6-20-61<br>6-20-61                                                   | 0.05<br>0.06<br>0.03<br>0.04<br>0.02<br>0.05         | 0.20<br>0.05<br>0.05<br>0.13                 | 1.2<br>2.5<br>1.2<br>2.3               | 8.5<br>1.9<br>2.8<br>2.3                | .01*<br>.01*<br>.01* | .004*                             | .03<br>.01<br>.01 | .00007*<br>.00001*<br>.00002*                      | .007*<br>.005                    | .001*                 | .003*                           | .01*                                     | .006*                   | .01                         | .003*                          | .007*                   | .004           | .003*                            | .02            | .7*                      | .003                         |
| at Martine Oreek, Fa. 7-10  SCAMBIA RIVER  at Century, Florida 3-1- REAT LAKES  Lake Superior at 9-1- Duluth, Minnesota 7-10  St. Mary's River at 3-1- Sanla Ste. Marie, Nich.  Lake Michigan at 7-10  St. Clair River at 7-10  St. Clair River at 7-10  Lake Michigan at 7-10  Detroit River at 7-10  Detroit River at 7-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -61<br>-61<br>-61<br>-61<br>-61<br>0-61                            | 6-20-61<br>6-20-61<br>6-20-61<br>6-20-61<br>6-20-61<br>6-20-61<br>6-20-61<br>6-20-61<br>6-20-61                                                   | 0.05<br>0.06<br>0.03<br>0.04<br>0.02<br>0.05         | 0.20<br>0.05<br>0.05<br>0.13                 | 1.2<br>2.5<br>1.2<br>2.3               | 8.5<br>1.9<br>2.8<br>2.3                | .01*<br>.01*<br>.01* | .004*                             | .03<br>.01<br>.01 | .00007*<br>.00001*<br>.00002*                      | .007*<br>.005                    | .001*                 | .003*                           | .01*                                     | .006*                   | .01                         | .003*                          | .007*                   | .004           | .003*                            | .02            | .7*                      | .003                         |
| 5CAMBIA RIVER at Century, Florida 3-1- REAT LAKES Lake Superior at Duluth, Minnesota 5-1- Sault Ste. Marie, Mich. Lake Michigan at Gary, Indiana 5t. Clair River at Fort Baron, Michigan 1-2-1 Hilvanukes, Visconsin 2-1- T-10 Detroit Niver at 3-1- 7-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -61<br>-61<br>0-61<br>-61<br>0-61                                  | 6-20-61<br>6-20-61<br>6-20-61<br>6-20-61<br>6-20-61<br>6-20-61                                                                                    | 0.04<br>0.04<br>0.05<br>0.05                         | 0.05<br>0.13<br>0.00<br>0.10                 | 1.0<br>2.3                             | 2.8                                     | *01*                 | .003                              | .01               | .00002*                                            | .01                              |                       |                                 |                                          |                         |                             |                                | .001*<br>.002*          |                |                                  |                | .1*                      |                              |
| at Century, Florida  3-1- REAT LAKES  Lake Superior at Duluth, Minnesota  5t. Mary's River at Sault Ste. Marie, Nich.  Lake Michigan at Gary, Indiana  5t. Clair River at Fort Baron, Michigan  Lake Michigan at Mitwalkes, Wisconsin  Detroit Niver at 3-1- 7-10  Detroit Niver at 3-1- 3-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -61<br>0-61<br>-61<br>0-61<br>-61                                  | 6-20-61<br>10-15-61<br>6-20-61<br>10-15-61<br>6-20-61                                                                                             | 0.02<br>0.05<br>0.05                                 | 0.00                                         | 1.0                                    | 0.9                                     |                      | .002*                             | .02               | .00003*                                            |                                  |                       | J                               |                                          | 1                       |                             |                                |                         | 1              |                                  | 1              | !                        | i                            |
| REAT LAKES  Lake Superior at Duluth, Minnesota  St. Mary's River at Sault Sts. Marie, Nich.  Lake Michigan at Gary, Indiana  St. Clair River at Fort Baron, Michigan  Lake Michigan at Michigan at Michigan at Michigan at Milvanukes, Visconsin  Detroit Niver at  3-1- 7-10  Detroit Niver at  3-1- 3-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -61<br>0-61<br>-61<br>0-61<br>-61                                  | 6-20-61<br>10-15-61<br>6-20-61<br>10-15-61<br>6-20-61                                                                                             | 0.02<br>0.05<br>0.05                                 | 0.00                                         | 1.0                                    | 0.9                                     |                      | .002*                             | .02               | .00003*                                            |                                  |                       |                                 |                                          |                         |                             |                                |                         |                | l                                | 1              |                          |                              |
| Lake Superior at Duluth, Minnesota  St. Mary's River at Sault Ste. Marie, Mich.  Lake Michigan at Gary, Indiana  St. Clair River at Fort Buron, Michigan  Lake Michigan at Michigan at Michigan at Michigan at Milwankee, Visconsin  Detroit Niver at  3-1- 7-10  Detroit Niver at  3-1- 7-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0-61<br>-61<br>0-61<br>-61<br>0-61                                 | 6-20-61<br>10-15-61<br>6-20-61                                                                                                                    | 0.05                                                 | 0.10                                         | 2.3                                    |                                         |                      |                                   |                   | 1.0000                                             | .003*                            | .001                  | .001*                           | .007*                                    | .003*                   | .4                          | .005                           | .003*                   | .001*          | .001*                            | .006           | .3*                      | .001                         |
| Duluth, Minnesota  St. Mary's River at Sault Ste. Marie, Mich.  Lake Michigan at Gary, Indiana  St. Clair River at Fort Euron, Michigan  Lake Michigan at Michigan at Michigan at Michigan at Michigan at Milwaukee, Visconsin  Detroit River at  3-1- 7-10  Detroit River at  3-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0-61<br>-61<br>0-61<br>-61<br>0-61                                 | 6-20-61<br>10-15-61<br>6-20-61                                                                                                                    | 0.05                                                 | 0.10                                         | 2.3                                    |                                         |                      | 1                                 | l                 |                                                    |                                  |                       | 1                               |                                          |                         |                             |                                |                         |                |                                  |                | 1                        |                              |
| Sault Ste. Marie, Mich.  Lake Michigan at Gary, Indiana  St. Clair River at Fort Euron, Michigan  Lake Michigan at Hilvankee, Visconsin  Detroit River at 3-1- 7-10  Detroit River at 3-1- 3-1- 3-1- 3-1- 3-1- 3-1- 3-1- 3-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0-61<br>-61<br>0-61                                                | 6-20-61                                                                                                                                           |                                                      | 0.24                                         | 1                                      | 1                                       | .01*<br>.01*         | .002*<br>.003*                    | .004              | .00003*<br>.00004*                                 | .003*<br>.004*                   | .0006*                | .001*<br>.002*                  | *800.                                    | .003*<br>.003*          | .006<br>.008                | .002<br>.003                   | .003*<br>.004*          | .002*          | .001*<br>.002*                   | .002           | .3*<br>.4*               | .001                         |
| Onry, Indiana  St. Clair River at Port Baron, Michigan  Alleke Michigan at Milvanikes, Visconsin  Detroit River at  3-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0-61                                                               |                                                                                                                                                   | 1                                                    | 0.06                                         | 1.0                                    | 0.9                                     | .01*<br>.01*         | .002*<br>.002*                    | .01               | .00003<br>.00003*                                  | .003*                            | .0006*<br>.002        | .001*<br>.001*                  | .006*<br>.006*                           | .003*<br>.002*          | .03<br>.01                  | .003<br>.001*                  | .003*<br>.003*          | .001*<br>.001* | .001*<br>.001*                   | .01            | .3*<br>.3*               | .001                         |
| Fort Euron, Michigan 7-10  Lake Michigan at 3-1- Milwaukee, Visconsin 7-10  Detroit River at 3-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -61                                                                | 10-15-61                                                                                                                                          | 0.06                                                 | 0.13                                         | 1.3<br>3.0                             | 3.2<br>9.5                              | .01*<br>.01*         | .005*                             | .01               | .00008*                                            | .008*                            | .002*                 | .003*<br>.003*                  | .02*<br>.01*                             | .007*                   | .05<br>.03                  | .003*<br>.003                  | .008*<br>.007*          | .005<br>.004   | .003*<br>.003*                   | .005<br>.004   | .8*<br>.7*               | .003                         |
| Milwaukee, Wisconsin 7-10  Detroit River at 3-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    | 6-20-61<br>L0-15-61                                                                                                                               | 0.03<br>0.05                                         | 0.13                                         | 1.2                                    | 2.7<br>3.6                              | .01*<br>.01*         | .004*<br>*E00.                    | .03               | .00006*<br>.00005*                                 | .006*<br>.005*                   | .001*<br>.004*        | .003*<br>.002*                  | .01°<br>.01°                             | .005*<br>.004*          | .005                        | .003*<br>.003*                 | .006*<br>.005*          | .003*<br>.002  | .003*<br>.002*                   | .001           | .6*<br>.5*               | .003                         |
| Detroit River at 3-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    | 6-20-61<br>10-15-61                                                                                                                               | 0.06<br>0.05                                         | 0.24<br>0.20                                 | 1.6                                    | 3.2<br>4.0                              | .01*<br>.01*         | .005*<br>.004*                    | .02               | .00008*<br>.00006*                                 | .008*<br>.006*                   | .002*<br>.001*        | .003*<br>.003*                  | .02*<br>.01*                             | .006*<br>.005*          | .003<br>000.                | .005                           | .008*<br>.006*          | .005           | .003*<br>.003*                   | .006<br>.005   | .8*<br>.6*               | .003                         |
| Petrore, Atom But                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -61<br>0-61                                                        | 6-20-61<br>10-15-61                                                                                                                               | 0.06<br>0.05                                         | 0.10<br>0.17                                 | 1.2                                    | 3.3<br>4.0                              | .01*                 | .003*                             | .03<br>.009       | .00005*                                            | .005*<br>.005*                   | .002<br>.0009*        | .002<br>.002*                   | .009*<br>.009*                           | *1000<br>*1000          | .009                        | .002*<br>.002                  | .005*<br>.005*          | .002*<br>.003  | .002*<br>.002*                   | .005<br>.008   | .5*<br>.5*               | .002                         |
| Lake Eric at 3-1-<br>Buffalo, New York 7-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    | 6-20-61<br>10-15-61                                                                                                                               | 0.04                                                 | 0.05                                         | 1.6<br>3.0                             | 9.0                                     | .01*<br>.01*         | .006*                             | .004<br>.02       | .0001*<br>.0001*                                   | .01*<br>.01*                     | .002*                 | *004*                           | .02*<br>.02*                             | *800.<br>*800.          | .004                        | .004*<br>.008                  | .01*<br>.01*            | .004           | .004*                            | .001<br>.04    | 1.0*                     | .004                         |
| St. Lawrence River at 3-1-<br>at Massena, New York 7-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    | 6-20-61<br>10-15-61                                                                                                                               | 0.01                                                 | 0.43<br>0.30                                 | 2.5<br>1.8                             | 13.0<br>11.0                            | .01*<br>.01*         | .008*                             | .03<br>.03        | .0001*<br>.00007*                                  | .01*<br>.007*                    | .003*<br>.004         | .005*                           | .03*<br>.01*                             | .01*                    | .03<br>.006                 | .008<br>.003*                  | .01*<br>.003*           | .008           | .005*<br>.003*                   | .008<br>.006   | 1.0*                     | .005                         |
| EUDSON RIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |                                                                                                                                                   |                                                      |                                              |                                        | ]                                       |                      |                                   |                   |                                                    |                                  |                       |                                 |                                          |                         | Ì                           |                                |                         |                |                                  |                |                          |                              |
| below Poughkeepsie, New York 3-1-<br>?-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    | 6-20-61<br>10-15-61                                                                                                                               | 0.03                                                 | 0.00<br>0.18                                 | 1.9                                    | 4.0<br>7.5                              | .01*<br>.01*         | .002*                             | .03<br>.02        | .00003*<br>.00009*                                 | .003*<br>.009*                   | .004                  | .001*                           | .006*<br>.02*                            | .003*                   | .04                         | .004<br>.004*                  | .003*<br>.009*          | .002           | .001*<br>.004*                   | .004           | .3*<br>.9*               | .001                         |
| LLLINOIS RIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    |                                                                                                                                                   |                                                      |                                              |                                        |                                         |                      |                                   |                   |                                                    |                                  |                       |                                 |                                          |                         |                             |                                |                         |                |                                  |                |                          | l                            |
| at Peoria, Illinois 3-1-7-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    | 6-20-61<br>10-15-61                                                                                                                               | 0.04                                                 | 0.41<br>0.67                                 | 3.2<br>4.8                             | 16.0<br>19.0                            | .01*<br>.01*         | .01*<br>.01*                      | .03<br>.03        | .0002*<br>.0002*                                   | .02*<br>.02*                     | .003*<br>.004*        | .006*                           | .03*<br>.04*                             | .01*<br>.02*            | .03                         | .02<br>.01                     | .02*<br>.02*            | .01<br>.02     | .006*<br>.008*                   | .02            | 2.0*                     | .006                         |
| CANAWHA RIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    | -                                                                                                                                                 | İ                                                    |                                              |                                        |                                         |                      |                                   |                   |                                                    |                                  |                       |                                 |                                          |                         |                             |                                |                         |                |                                  |                |                          |                              |
| at Winfield Dam, W. Ya. 3-1-7-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    | 6-20-61<br>10-15-61                                                                                                                               | 0.12<br>0.04                                         | 0.10                                         | 1.9<br>2.8                             | 5.0<br>21.0                             | .01*<br>.01*         | .002*                             | .3<br>.6          | .00004*<br>.0001*                                  | .004*<br>.01*                    | .0008*<br>.003*       | .002*                           | .008*                                    | .003*                   | .008                        | .004<br>.006•                  | .004*<br>.01*           | .002*<br>.006* | .002*<br>.006*                   | .002           | .4*<br>1.0*              | .002                         |
| CLAMATE RIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |                                                                                                                                                   |                                                      |                                              |                                        |                                         |                      |                                   |                   |                                                    |                                  |                       |                                 |                                          |                         |                             |                                |                         |                |                                  |                |                          | 1                            |
| at Keno, Oregon 3-1-<br>7-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    | 6-20-61<br>10-15-61                                                                                                                               | 0.09                                                 | 0.24<br>0.18                                 | 3.4<br>3.3                             | 16.0<br>12.0                            | .01*<br>.01*         | .006*<br>.004*                    | .01               | .0001*<br>.00007*                                  | .01*                             | .008<br>.001*         | .006<br>.003*                   | .02*<br>.01*                             | .008*<br>.005*          | .006                        | .004*<br>.003                  | .01*                    | .004<br>.004   | .017*                            | .0006*<br>.005 | 1.0*<br>.7*              | .004                         |

<sup>\*</sup> ACTUAL VALUE IS LESS THAN THE AMOUNT SHOWN REPORTED RESULT INDICATES LIMIT OF SENSITIVITY AT WHICH TEST WAS PERFORMED. SEE TEXT FOR EXPLANATION.

#### NATIONAL WATER QUALITY NETWORK 1960 - 1961

|                                          | DA                | TE                  |              |              |                  |              |              | CONC           | ENT        | RATIO             | ) N -         |                | MILL           | IGRAI        | M S           | PER         | L              | ITER          | <u> </u>       |                |               |              |                |
|------------------------------------------|-------------------|---------------------|--------------|--------------|------------------|--------------|--------------|----------------|------------|-------------------|---------------|----------------|----------------|--------------|---------------|-------------|----------------|---------------|----------------|----------------|---------------|--------------|----------------|
| STATION                                  |                   |                     | ANA          | LYSIS        | BY WET<br>METHOL | OR FL.       | AME          |                |            |                   |               | ANALY          | 818            | BY SP        | ECTRO         | PHOTO       | GRAP           | HIC ME        | ETHOD          |                |               |              |                |
|                                          | FROM              | то                  | В            | F            | K                | Na           | Se           | Cd             | Ва         | Ве                | Pb            | Cr             | Sn             | Sb           | Mn            | Fe          | Ni             | Bi            | Мо             | ٧              | Cu            | Zn           | Со             |
| LITTLE HIAMI RIVER                       |                   |                     |              |              |                  |              |              |                |            |                   |               |                |                |              |               |             |                |               |                |                |               |              |                |
| at Cincinnati, Chio                      | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.17<br>0.12 | 0.39<br>0.24 | 2.2<br>3.8       | 7.5<br>10.5  | .01*<br>.01* | .008*          | .02<br>.04 | .0001*<br>.0001*  | .01*<br>.01*  | .003*          | .005*<br>.004* | .03*<br>.02* | .01*          | .1          | .005*          | .01*          | .005*          | .005*          | .0008*        | 1.0*         | .005*          |
| MERRIMACK RIVER                          |                   |                     |              |              |                  |              |              |                |            |                   |               |                |                |              |               | ,           |                |               |                |                |               | 0            | .004           |
| above Lowell, Mass.<br>MISSISSIPPI RIVER | 7-10-61           | 10-15-61            | 0.08         | 0.18         | 2.2              | 8.5          | .01*         |                |            |                   |               |                |                |              |               |             |                |               |                |                |               |              |                |
| at New Orleans, Louisiana                | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.11<br>0.12 | 0.18<br>0.18 | 2.7<br>3.9       | 10.0         | .01*<br>.01* | .004*          | .07<br>.06 | .00007*<br>.0002* | .007*         | .001*          | .003*          | .01*<br>.03* | .006*         | .01         | .003*<br>.01   | .007*         | .004           | .003*<br>.006* | .001          | .7*<br>2.0*  | .003*          |
| at Delta, Louisiana                      | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.03<br>.06  | 0.33<br>0.30 | 3.0<br>4.2       | 9.5<br>19.5  | .01*<br>.01* | .004*          | .07        | .00007*           | .007*         | .001*<br>.003* | .003*          | .01*<br>.03* | .005*<br>.01* | .03<br>.03  | -003*<br>-007* | .007*         | .004           | .005*          | .003          | .7*<br>2.0*  | .003*          |
| at West Hemphis, Arkansas                | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.02<br>0.11 | 0.33<br>0.26 | 2.7<br>4.2       | 7.5<br>11.5  | .01*<br>.01* | .004*<br>.008* | .05<br>.08 | .00007*           | .007°<br>.01* | .001*<br>.003* | .003*<br>.01   | .01*<br>.03* | .005          | .04<br>.05  | .003           | .007<br>.01*  | .003           | .003*          | .003<br>.008  | 1.0*         | .003*          |
| at Cape Girardeau, Missouri              | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.03         | 0.18<br>0.38 | 4.2<br>4.8       | 11.0<br>21.0 | .01*<br>.01* | .006*<br>.008* | .1<br>.08  | .0001*<br>.0001*  | .01°<br>.01°  | .002*<br>.003* | .004*<br>.008  | .02*<br>.03* | .008*         | .008<br>.05 | .006           | .01*          | .006<br>.01    | .004*<br>.005* | .02<br>.01    | 1.0*         | .004*          |
| at East St. Louis, Illinois              | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.06         | 0.29<br>0.36 | 3.7<br>4.5       | 9.0<br>15.0  | .01*<br>.01* | .006*          | .06<br>.07 | .0001*            | .01*<br>.01*  | .002*<br>.002* | .004*<br>.005* | .02*<br>.02* | .008*<br>.01* | .04<br>.02  | .004*          | .01*<br>.01*  | .006           | .004*          | .0006         | 1.0*         | .004*          |
| at Burlington, Iowa                      | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.04         | 0.18         | 3.7<br>3.8       | 4.5<br>6.5   | .01*<br>.01* | .005*          | .05        | .0008*<br>.0001*  | .008*<br>.01* | .002*<br>.002* | .003<br>.005*  | .02*<br>.02* | .006*<br>.1   | .03<br>1.1  | .003           | .008*         | .003           | .003*<br>.005* | .1<br>.42     | .8*<br>1.0*  | .003*          |
| at Dubuque, Iowa                         | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.06<br>0.10 | 0.13<br>0.18 | 3.0<br>3.0       | 2.8<br>6.5   | .01*         | .004*          | .04        | .00007*<br>.0001* | .007*<br>.01* | .003<br>.002*  | .003*<br>.004* | .01*<br>.02* | .005*         | .009        | .004<br>.004*  | .007*<br>.01* | .003*          | .003*<br>.004* | .007          | .7*<br>1.0*  | .003*          |
| below St. Faul, Minnesota                | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.01<br>0.12 | 0.24<br>0.18 | 3.0<br>3.3       | 10.0<br>11.5 | .01*         | .008*          | .05<br>.1  | .0001*<br>.0001*  | .01<br>.01*   | .003<br>.005*  | .005*<br>.005* | .03*<br>.02* | .05<br>.01*   | .08         | .005           | .01*<br>.01*  | .005*          | .005*<br>.005* | .008          | 1.0*         | .005*          |
| MISSOURI RIVER                           |                   |                     |              |              |                  |              |              |                |            |                   |               |                |                |              |               |             |                |               |                |                |               |              | -              |
| at St. Louis, Missouri                   | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.06<br>0.12 | 0.43<br>0.38 | 4.4<br>5.5       | 23.0<br>25.0 | .014<br>.01* | .008*          | .1<br>.2   | .0001*<br>.0002*  | .01*<br>.02*  | .003*<br>.003* | .005*<br>.006* | .03*<br>.03* | .01*<br>.01*  | .2<br>.1    | .005*<br>.006* | .01*          | .008           | .005*          | .003<br>.01   | 1.0*<br>2.0* | .005*          |
| at Kansas City, Kansas                   | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.06<br>0.15 | 0.58         | 6.0<br>6.0       | 23.0<br>35.0 | .01*         | .007*          | .07<br>;1  | .0001*<br>.0002*  | .01*<br>.02*  | .002*<br>.004* | .004*<br>.007* | .02*<br>.04* | .009*<br>.01* | .04         | .004*<br>.007* | .01*<br>.02*  | .009           | .004*          | .007          | 1.0*         | .004*          |
| at St. Joseph, Missouri                  | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.10<br>0.18 | 0.50<br>0.55 | 6.7<br>5.8       | 28.0<br>51.5 | .01*<br>.01* | .01*<br>.01*   | .61<br>.1  | .0002*<br>.0002*  | .02<br>.02*   | .003*<br>.005* | .007*<br>.01*  | .03*<br>.05* | .01*<br>.02*  | .2<br>.05   | .007*<br>.01*  | .02*<br>.02*  | .01<br>.01     | .007*<br>.01*  | .03<br>.01    | 2.0*         | .007*          |
| at Omaha, Mebraska                       | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.14<br>0.18 | 0.53         | 6.5<br>5.5       | 28.0<br>59.5 | .01*<br>.01* | .01*<br>.02*   | .03<br>.2  | .0002*<br>.0003*  | .02*<br>.03*  | .007*<br>.005* | .007*<br>.01*  | .03*<br>.05* | .01*<br>.02*  | .1          | .007*<br>.01*  | .02*<br>.03*  | .007<br>.01*   | .007*<br>.01*  | .01<br>.005   | 2.0*<br>3.0* | .007*          |
| at Yankton, South Dakota                 | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.10<br>0.18 | 0.70<br>0.50 | 5.2<br>5.5       | 48.0<br>60.5 | .01*<br>.01* | .01*<br>.02*   | .03<br>.03 | .0002*<br>.0003*  | .02*<br>.02*  | .004*<br>.004* | .008*<br>*800. | .04*<br>.04* | .02*<br>.02*  | .008        | .008*<br>.008* | .02*<br>.02*  | .008*<br>-800. | *800.          | .2<br>.2      | 2.0*<br>2.0* | *800.<br>*800. |
| at Bismarck, North Dakota                | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.06         | 0.72<br>0.60 | 4.2<br>4.6       | 50.0<br>52.5 | .01*<br>.01* | .01*           | .04<br>.03 | .0002*            | .02*<br>.03*  | .00%*<br>.005* | .008*<br>.01*  | .0/1*        | .02*<br>.02*  | .008        | .008*          | .02*          | .008           | .008<br>.01*   | .2<br>.05     | 2.0*<br>3.0* | .008*          |
| at Williston, North Dakota               | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.08<br>0.18 | 0.62<br>0.80 | 4.2<br>4.5       | 54.0<br>59.5 | .01*<br>.01* | .01*<br>.02*   | .04<br>.04 | .0002*<br>.0003*  | .02*<br>.03*  | .004*<br>.005* | .009*<br>.01*  | .04*<br>.05* | .02*<br>.02*  | .02*        | .009*<br>.01*  | .02*<br>.03*  | .009           | .009*<br>.01*  | .001*<br>.002 | 2.0*<br>3.0* | .009*          |
| MONONGAHELA RIVER                        |                   |                     |              |              |                  |              |              |                |            |                   |               |                |                |              |               |             | }              |               |                |                |               |              |                |
| at Pittsburgh, Pennsylvania              | 71061             | 6-20-61             | 0.10         | 0.53         | 3.7              | 25.0         | .01*         | .01*           | .07        | .0002*            | .02*          | .004*          | .007*          | .04=         | .36           | .01         | .04            | .02*          | .007*          | .007*          | .004          | 2.0*         | .007*          |
| NORTH PLATTE RIVER                       |                   |                     |              |              |                  |              |              |                |            |                   |               |                | ļ              |              |               |             |                | j             |                |                | -             | İ            |                |
| above Henry, Mebraska                    | 710-61            | 10-15-61            | 0.17         | 0.46         | 6.3              | 60.5         | .01*         | .02*           | .1         | .0003*            | .03*          | .006*          | .01*           | .06*         | .02*          | .02         | .01*           | .03*          | .02            | .01*           | .05           | 3.0*         | .01*           |

<sup>\*</sup> ACTUAL VALUE IS LESS THAN THE AMOUNT SHOWN REPORTED RESULT INDICATES LIMIT OF SENSITIVITY AT WHICH TEST WAS PERFORMED. SEE TEXT FOR EXPLANATION.

#### NATIONAL WATER QUALITY NETWORK 1960-1961

| at Cairo, Illinois              | FROM              | то                  | ANA<br>B     |              | BY WET<br>METHOS | OR FLA         | 4 ME         |                |              |                   |               |                |                |              |               |              |                |               |                |                |                      |              |              |
|---------------------------------|-------------------|---------------------|--------------|--------------|------------------|----------------|--------------|----------------|--------------|-------------------|---------------|----------------|----------------|--------------|---------------|--------------|----------------|---------------|----------------|----------------|----------------------|--------------|--------------|
| at Cairo, Illinois              |                   | то                  | В            |              |                  |                |              |                |              |                   |               | ANALY          | SIS I          | BY SP        | ECTRO         | PHOTO        | GRAPI          | HIC ME        | THOD           |                |                      |              | -            |
| at Cairo, Illinois              |                   |                     |              | F            | K                | No             | Se           | Cd             | Ва           | Be                | Pb            | Cr             | Sn             | Sb           | Mn            | Fe           | Ni             | Bi            | Мо             | ٧              | Cu                   | Zn           | Co           |
| at Evansville, Indiana          |                   |                     |              |              |                  |                |              |                |              |                   |               |                |                |              |               |              |                |               |                |                |                      |              |              |
| at Evansville, Indiana          | 3-1-61            | 6-20-61             | 0.07         | 0.43         | 2.4              | 7.5            | .01*         | .005*          | -07          | .00009*           | .009*         | .002*          | .004*          | .02*         | .007*         | .04          | .004           | .009*         | .004*          | .004*          | .004                 | -9*          | .004         |
|                                 | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.04         | 0.39<br>0.30 | 3.7              | 7.0<br>13.5    | .01°         | .004*          | .05<br>.1    | .00007*<br>.0001* | .007*<br>.01* | .001*          | .003*<br>.005* | .01°<br>.02* | .03<br>.01*   | .1<br>.01    | .003<br>.005*  | .007*         | .003           | .003*<br>.005* | .004                 | .7*<br>1.0*  | .003         |
| at Louisville, Kentucky         | 7-10-61           | 10-15-61            | 0.06         | 0.28         | 3.7              | 15.0           | .01*         | .009*          | .09          | .0001*            | .01*          | .003*          | .006*          | .03*         | .01*          | .09          | .009           | .01*          | .01            | .006*          | .009                 | 1.0*         | .006         |
|                                 | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.06         | 0.24<br>0.36 | 2.2<br>3.7       | 7.0<br>17.5    | .01*<br>.01* | .005*<br>.009* | .05<br>.1    | .00008*<br>.0001* | .008*<br>.01° | .002*<br>.003* | .003*<br>.006* | .02*<br>.03* | .007*         | .005         | .003*<br>.006* | .008*<br>.01* | .003*          | .003*<br>.006* | .007                 | 1.0*         | .003         |
|                                 | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.06<br>80.0 | 0.26<br>0.44 | 2.2<br>3.7       | 7.5<br>22.5    | .01*<br>.01* | .005*<br>.01*  | .05          | .00008*<br>.0002* | .008*         | .002*<br>.003* | .003*<br>.007* | .02*<br>.03* | .1<br>.01*    | .08          | .005<br>.007*  | .008*<br>.02* | .003*          | .003*          | .006                 | .8*<br>2.0*  | .003         |
|                                 | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.04         | 0.18<br>0.53 | 2.2<br>4.6       | 7.0<br>21.5    | .01*<br>.01* | .005*<br>.01*  | .05<br>.007* | .00008*           | .008*         | .002*          | .003*          | .02*         | .009          | .06          | .005           | .008*         | .003*          | .00 <u>3</u> * | .002_                | .8*<br>2.0*  | .003         |
| UACHITA RIVER                   |                   |                     |              |              |                  |                |              |                |              |                   |               |                |                |              |               |              |                | ,             | ,              | ,              |                      |              | .007         |
| at Bastrop, Louisiana           | 7-10-61           | 10-15-61            | 0.09         | 0.06         | 2.7              | 59.5           | .01*         | .009*          | .2           | .0001*            | .010          | .003*          | .006*          | .03*         | .01*          | .1           | .009           | .01*          | .006*          | .006*          | .03                  | 1.0*         | .006         |
| LATTE RIVER                     |                   |                     |              |              |                  |                |              |                |              |                   |               |                |                |              |               |              |                |               |                |                |                      |              | ĺ            |
| above Plattsmouth, Nebraska     | 7-10-61           | 10-15-61            | 0.15         | 0.36         | 8.5              | 81.5           | .01*         | .01*           | .3           | .0002*            | .02*          | .004*          | .009*          | .04*         | .02*          | .2           | .009*          | .02*          | .01            | .03            | .009                 | 2.0*         | .009         |
| OTOMAC RIVER                    |                   | ŀ                   |              |              |                  |                |              |                |              |                   |               |                |                |              |               |              |                |               |                |                |                      |              |              |
|                                 | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.04         | 0.24         | 1.6<br>3.4       | 2.6<br>8.5     | .01°         | .003*<br>.008* | .04<br>.02   | .00005*           | .005*<br>.01* | .001*          | .002*          | .01*<br>.03* | .004*         | .03          | .002*<br>.006* | .005*<br>.01* | .002*          | .002°<br>.006° | .004                 | .5*<br>1.0*  | .002         |
|                                 | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.09<br>0.08 | 0.24         | 1.3<br>2.5       | 2.3<br>11.0    | .01°<br>.01° | .003*<br>.006* | .02<br>.06   | .00005*<br>.0001* | .005*<br>.01* | .001*<br>.002* | .002*          | .01*<br>.02* | .004<br>.008* | .03          | .002<br>.004*  | .005*<br>.01* | .002*<br>.004* | .002*<br>.004* | .001                 | 4*<br>1.0*   | .002         |
| ED RIVER (North)                |                   |                     |              |              |                  |                |              |                |              |                   |               |                |                |              |               | İ            |                |               |                |                |                      |              | 1            |
| at Grand Forks,<br>North Dakota | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.08<br>0.13 | 0.39<br>0.38 | 5.7<br>5.7       | 33.0<br>47.5   | .01*<br>.01* | .01*<br>.01*   | .01          | .0002<br>.0002*   | .02*<br>.02*  | .004*<br>.004* | .007<br>.008*  | .04*<br>.04* | .01*<br>.02*  | .07          | .007*<br>.008* | .02*<br>.02*  | .007*          | .007*<br>.008* | .001*                | 2.0*         | .007         |
| ED RIVER (South)                |                   |                     |              |              |                  |                |              |                |              |                   |               |                |                |              |               |              |                |               |                |                |                      |              | ĺ            |
| at Alexandria, Louisiana        | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.21         | 0.24<br>0.30 | 2.2<br>3.3       | 26.0<br>60.0   | .01*         | .007           | .02          | .0001*            | .01*<br>.056  | .002*<br>.004* | .005*          | .02*         | .009*         | .009         | .005*<br>.008  | .01*<br>.02*  | .007           | .005*<br>.008* | .002*                | 1.0*         | .005         |
|                                 | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.02         | 0.39<br>0.36 | 3.0<br>4.5       | 75.0<br>149.0  | .01*<br>.01* | .02*           | .05          | .0003*<br>.0004*  | .03*<br>.04*  | .005*<br>.008* | .01*<br>.02*   | .05*         | .02*<br>.03*  | .04          | .01*<br>.02*   | .03*          | .01*<br>.02*   | .01*           | .002*                | 3.0*<br>4.0* | .01*<br>.02* |
| at Denison, Texas               | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.09<br>0.18 | 0.62<br>0.46 | 5.5<br>5.7       | 130.0<br>330.0 | .01°         | .04*           | .05<br>.4    | .0007*            | .007*<br>.07* | .01*<br>.01*   | .03*<br>.03*   | .10*         | .05*<br>.05*  | .03*         | .03*<br>.03*   | .07*<br>.07*  | .03*           | .03*<br>.03*   | .004 <b>*</b><br>.05 | 7.0*<br>7.0* | .03*         |
| 10 GRANDE                       |                   |                     |              |              |                  |                |              |                |              |                   |               |                |                |              |               |              |                |               |                | İ              |                      |              |              |
| at Erownsville, Texas           | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.34         | 0.97         | 5.0<br>5.0       | 125.0<br>116.0 | .01*<br>.01* | .02*           | .07<br>.1    | .0004*            | .04*<br>.03*  | .007*          | .01*<br>.01*   | .07*<br>.06* | .03*          | .02          | .01*<br>.01*   | .04*          | .02<br>.02     | .01*<br>.01*   | .002*                | 4.0°<br>3.0° | .01*<br>.01* |
| at Laredo, Texas                | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.22<br>0.18 | 0.90         | 4.2<br>4.5       | 91.0<br>84.0   | .01*<br>.01* | .02*           | .04          | .0003*<br>.0003*  | .03*<br>.03*  | .006*          | .01*<br>.01*   | .06*<br>.05* | .03*          | .06          | .06            | .03*          | .01*           | .01*           | .1                   | 3.0*         | .01*         |
|                                 | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.24         | 0.93         | 7.5<br>10.8      | 150.0<br>318.0 | .01*<br>.01* | .03*           | .04          | .0004*            | .04*          | .009*          | .02*           | .09*         | .04*          | .02<br>.008* | .02*           | .05*          | .02*           | .02*           | .003*                | 4.0*         | .02*         |
|                                 | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.06<br>0.08 | 0.48         | 4.4<br>5.7       | 25.0<br>41.0   | .01*<br>.01* | .008*          | .01<br>.07   | .0001*<br>.0002*  | .01*          | .003*          | .005*          | .03*         | .01*<br>.01*  | .008         | .005*<br>.007* | .01°<br>.02°  | .005*          | .005*          | .0008                | 1.0*         | .005         |

<sup>\*</sup> ACTUAL VALUE IS LESS THAN THE AMOUNT SHOWN REPORTED RESULT INDICATES LIMIT OF SENSITIVITY AT WHICH TEST WAS PERFORMED. SEE TEXT FOR EXPLANATION.

#### NATIONAL WATER QUALITY NETWORK 1960-1961

|                                                |                   |                     | ,            |              |                  |               |              |                        |                   |                               |                         |                 |                      |                       |                                                  |                    |              |                |                                                  |                         |                                         |                      |                |
|------------------------------------------------|-------------------|---------------------|--------------|--------------|------------------|---------------|--------------|------------------------|-------------------|-------------------------------|-------------------------|-----------------|----------------------|-----------------------|--------------------------------------------------|--------------------|--------------|----------------|--------------------------------------------------|-------------------------|-----------------------------------------|----------------------|----------------|
|                                                | DA                | ATE                 |              |              |                  |               |              | CONC                   | ENTI              | RATIC                         | ) N -                   |                 | MILL                 | IGRA                  | MS                                               | PER                | L            | ITER           | <del></del>                                      |                         |                                         |                      |                |
| STATION                                        | <b></b>           | Τ                   | AN.          | ALYSIS       | BY WE'S<br>METHO | T OR FL       | AME          |                        |                   |                               |                         | ANALY           | 515                  | BY SF                 | ECTRO                                            | PHOT               | GRAPI        | HIC M          | ETHOD                                            |                         | *************************************** |                      |                |
|                                                | FROM              | ТО                  | В            | F            | K                | Na            | Se           | Cd                     | Ва                | Ве                            | Pb                      | Çr              | Sn                   | Sb                    | Mn                                               | Fe                 | Ni           | Bi             | Мо                                               | l v                     | Cu                                      | Zn                   | Co             |
| ROANOKE RIVER                                  |                   |                     |              |              |                  |               |              |                        |                   | 1                             |                         |                 |                      |                       | <del>                                     </del> |                    |              |                | <del>                                     </del> | <u> </u>                |                                         | 211                  |                |
| at John H. Kerr Reservoir<br>and Dam, Virginia | 7-10-61           | 10-15-61            | 0.08         | 0.05         | 2.3              | 7.0           | .01*         | .02*                   | .1                | .0003*                        | .03*                    | .006*           | .01*                 | .06*                  | .04*                                             | .02                | .01          | .03*           | .01*                                             | .01*                    | .006                                    | 3.0*                 | .01*           |
| BABINE RIVER                                   |                   |                     |              |              |                  |               |              |                        |                   |                               |                         |                 |                      |                       |                                                  |                    |              | i              |                                                  |                         |                                         |                      |                |
| near Euliff, Texas                             | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.04         | 0.13         | 1.6              | 9.0<br>16.5   | .01*         | .003*                  | .02               | .00005*                       | .007                    | .0009*          | .002*                | .009*                 | .07                                              | .9                 | .04          | .005*          | .002*                                            | .002*                   | .03                                     | 5.0*                 | .002           |
| an juan river                                  | 1                 |                     |              |              |                  |               |              |                        | ,                 |                               | .005                    | .001            | ,002                 | .01                   | .007                                             | ••                 | .003         | .005*          | .002*                                            | .002*                   | .005                                    | .5*                  | .002           |
| at Shiprock, New Mexico                        | 7-10-61           | 10-15-61            | 0.10         | 0.51         | 3.5              | 63.5          | .01*         | .006*                  | .1                | .0001*                        | .01*                    | .002*           | .004*                | .02*                  | ,009*                                            | .04                | .004*        | .01*           | 000                                              | 0.06%                   |                                         |                      |                |
| AVANNAH RIVER                                  |                   |                     |              |              |                  |               |              |                        |                   |                               |                         |                 | 1004                 |                       | .007                                             | .04                | .004         | .01            | .009                                             | .004*                   | .009                                    | 1.0*                 | .004           |
| at Port Wentworth, Georgia                     | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.01         | 0.18         | 1.3              | 5.0<br>5.5    | .01*         | .002*                  | .01               | .00003*                       | .003*                   | .001            | .001*                | .006*                 | .002                                             | .4<br>.15          | .006         | .003*          | .001*                                            | .001*                   | .005                                    | 0.3*                 | .001           |
| at North Augusta,<br>South Carolina            | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.02         | 0.13<br>0.14 | 1.2              | 4.0<br>4.0    | .01*<br>.01* | .002*                  | .01               | .00003*                       | .003*                   | .0006*          | .001*                | .006*                 | .005                                             | .5                 | .003         | .003*          | ,001*<br>,001                                    | .001*                   | .005<br>.05                             | 0.5*<br>0.3*<br>0.3* | .002*<br>.01*  |
| CHUYLKILL RIVER                                |                   |                     |              |              |                  |               |              |                        |                   |                               |                         |                 |                      |                       |                                                  |                    |              |                |                                                  |                         |                                         |                      |                |
| at Philadelphia, Pa.                           | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.01         | 0.13         | 1.9<br>3.8       | 6.0           | .01*<br>.01* | .005*                  | .06               | .00008*                       | .008*                   | .002*           | .003*                | .02*                  | .006*<br>.004*                                   | .005               | .006         | .008*          | .003*                                            | .003*                   | .005                                    | 0.8*                 | .003           |
| HENANDOAH RIVER                                |                   |                     |              |              |                  |               |              |                        |                   |                               |                         |                 |                      | 100,                  | ,,,,,                                            | 100)               | .000         | .000           | .002                                             | .002                    | .007                                    | 0.5+                 | .002*          |
| at Berryville, Virginia                        | 7-10-61           | 10-15-61            | 0.12         | 0.26         | 3.3              | 19.0          | .01*         | .007*                  | .02               | .0001*                        | .01*                    | .002*           | .004+                | .02*                  | .009*                                            | .02                | .004*        | .01*           | .004*                                            | .004*                   |                                         |                      |                |
| NAKE RIVER                                     |                   |                     |              |              |                  |               |              |                        |                   |                               |                         | .002            | .004                 | .02                   | .009                                             | ,02                | .004*        | .014           | .004*                                            | .004*                   | .004                                    | 1.0*                 | .004*          |
| at Weiser, Idaho                               | 7-10-61           | 10-15-61            |              |              |                  | į             |              | .01*                   | .01               | .0002*                        | .02*                    | .003*           | .006*                | .03*                  | .01*                                             | .01                | .007*        | .02*           | .01                                              | .007                    | .001*                                   |                      |                |
| at Wawawai, Washington                         | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.03<br>0.15 | 0.52         | 2.3              | 10.0<br>29.0  | .01*<br>.01* | .003*                  | .08<br>.04        | .00006*<br>.0001*             | .006*                   | .001*           | .002*                | .01*<br>.02*          | .005*                                            | .02                | .002*        | .006*          | .005                                             | .007                    | .0014                                   | 0.6*<br>1.0*         | .007*          |
| SOUTH PLATTE RIVER                             |                   | ł                   |              |              |                  |               |              |                        |                   |                               |                         |                 |                      |                       |                                                  |                    |              |                |                                                  |                         |                                         |                      | ,              |
| at Julesburg, Colorado                         | 7-10-61           | 10-15-61            | 0.23         | 0.60         | 14.0             | 169.0         | .01*         | .04*                   | .03               | .0006*                        | .06*                    | .04             | .03*                 | .10*                  | .05*                                             | .1                 | .03*         | .06*           | .03                                              | .03*                    | .004*                                   | 6.0*                 | .03*           |
| USQUEHANNA RIVER<br>at Concwingo, Maryland     | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.03         | 0.13         | 1.3              | 2.8           | .01*<br>.01* | .002*                  | .02               | .00004*                       | .004*                   | .0008*          | .002*                | *800.                 | .003*                                            | .02                | .002*        | .004*          | .002*                                            | .002*                   | .002                                    | 0.#e                 | .002*          |
| at Sayre, Pennsylvania                         | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.01         | 0.24         | 1.0              | 2.8<br>9.5    | .01*<br>.01* | .005<br>.002*<br>.004* | .07<br>.02<br>.01 | .00008*<br>.00003*<br>.00007* | .008*<br>.003*<br>.007* | .002*<br>.0007* | .1<br>.001*<br>.003* | .02*<br>.007*<br>.01* | .007*<br>.006<br>.006*                           | .02<br>.05<br>.007 | .002         | .008*<br>.003* | .001<br>.001*                                    | .003*<br>.001*<br>.003* | .005<br>.007<br>.006                    | 0.8*<br>0.3*<br>0.7* | .003*<br>.001* |
| ENVESSEE RIVER                                 |                   |                     |              |              |                  |               |              |                        |                   |                               |                         |                 |                      |                       |                                                  |                    |              |                |                                                  | - 1                     |                                         |                      | ,,,,           |
| at Bridgeport, Alabama                         | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.13         | 0.19         | 1.3              | 4.0           | .01*         | .002*<br>.003*         | .02               | .00004*                       | .004*                   | .0008*<br>*0009 | .002*                | .008*<br>*eoo.        | .003*                                            | .03                | .004*        | .004*          | .002*                                            | .002*<br>*500.          | .005                                    | 0.4*                 | .002*          |
| at Chattanooga, Tennessee                      | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.02<br>0.10 | 0.24         | 1.2              | 4.0<br>10.0   | .01*<br>.01* | .002*                  | .02<br>.03        | .00004*                       | .004*                   | .0008*<br>.006  | .002*<br>.003*       | .008*                 | .003*<br>.006*                                   | .03                | .002*        | .004*          | .002*                                            | .002*                   | .002                                    | 0.4*                 | .002*          |
| RUCKER RIVER                                   |                   |                     |              |              |                  |               |              |                        |                   |                               | i                       |                 |                      |                       |                                                  |                    |              |                |                                                  | İ                       |                                         |                      | •              |
| at Farad, California                           | 7-10-61           | 10-15-61            | 0.1          | 0.20         | 2.3              | 8.0           | .01•         |                        |                   |                               |                         |                 |                      |                       |                                                  |                    |              | İ              |                                                  |                         |                                         |                      |                |
| AKIMA RIVER<br>at Richland, Washington         | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.22         | 0.33         | 1.6              | 5.0<br>25.0   | .01*<br>.01* | .003*                  | .006              | .00005*                       | .005*                   | .001*           | .002*<br>#400.       | .01*<br>.02*          | .004*<br>.008*                                   | .01                | .002*        | .005*          | .003                                             | .002                    | .002                                    | 0.5*                 | .002*          |
| ELLOWSTONE RIVER                               |                   |                     |              |              |                  |               |              |                        |                   |                               |                         | .002            | ,004                 | .02.                  | .000                                             | .01                | .004         | .01*           | .008                                             | .01                     | .004                                    | 1,0*                 | .004*          |
| near Sidney, Montana                           | 3-1-61<br>7-10-61 | 6-20-61<br>10-15-61 | 0.03         | 0.77         | 4.6<br>5.5       | 78.0<br>105.0 | .01*<br>.01* | .02*                   | .01*<br>.06       | .0003*<br>.0003*              | .03*<br>.03*            | .007*<br>.006*  | .01*<br>.01*         | .07*<br>.06*          | .03*<br>.02*                                     | .01                | .01*<br>.01* | .03*           | .01*<br>.02                                      | .01*<br>.01*            | .002*<br>.006                           | 3.0*                 | .01°           |

<sup>\*</sup> ACTUAL VALUE IS LESS THAN THE AMOUNT SHOWN REPORTED RESULT INDICATES LIMIT OF SENSITIVITY AT WHICH TEST WAS PERFORMED. SEE TEXT FOR EXPLANATION.

