Fig. 1: 8-tubulin genes in Physcomitrella patens

Analysis of expression promoting regions of ß-tubulins in Physcomitrella patens

Fig. 2:

TAG 3' VEGET 35S polyA	X 1,5	7	x 3	x 2,5 x 2,5 x 2,5
TSS (+1) ATG S (UIR) T (250) T (250)	150 - 160 -	100 100 100 100 100 100 100 100 100 100	250 500 500 500 500 500 500 600 6	7005
5,	1307 985 416 248 83	- 1075 - 676 - 425 - 245 - 67	- 1274 - 767 - 272 + 53	. 419
1	Pptub 1 1-0 1-1 1-1 1-2 1-2 1-2 1-3 1-4 1-5 1-5 1-5 1-5 1-5 1-5 1-5 1-5 1-5 1-5	Pptub 2 2-0 2-1 2-1 2-2 2-3 2-3 2-4	Pptub 3 3-0 3-2 3-2 3-3 3-3	Pptub 4 4-0 4-1

Fig. 3: Analysis of expression promoting regions of Pptub 1 by transient transformation of rhVEGF constructs

										3	/1	9															
SD	19					-	41						12						97						3		
M	165						111						33						8						2		
absolut %	\$	120	173	148	187	148	150	8	56	119	\$	164	4	46	33	4	ಜ	18	9	တ	52	36	29	70	5	0	0
	1-2 a	1-2 a	1-2 a	1-2 c	1-2 c	1-2 c	1-3 d	<u>1</u> 3	1-3 d	1-3 e	— გ. ტ	1-3 е	14 c	4 0	14 c	14 t	4	14 f	1-5 f	1.5 f	1-5 f	1-5 e	1-5 e		delta 35S e	delta 35S e	delta 35S e

SD	\$																		23						34				_		
≥W	113																		212						155						
absolut %	122	8	98	86	309	119	107	88	104	133	66	69	83	88	139	147	78	75	247	197	195	234	18	204	145	129	165	135	144	119	179
	35S a	35S a	35S a	35S b	35S b	35S b	35S c	35S c	35S c		35S d	35S d	35S e	35S e	35S e	35S f	35S f	35S f	1-0 a	10 a	1-0 a	1-0 c	10 c	1-0 c	1-1 a	1-1 a	1-1 b	17 p	1-1 b	1	1-1 d

a - f: different transformations
SD = standard deviation
35S mean value (MV)
of each transformation was set to 100%

Fig. 4: Analysis of expression promoting regions of Pptub 2 by transient transformation of rhVEGF constructs

SD	14							83						7					
MV	131	•						26						18					
absolut %	143	115	136	141	110	143	127	69	53	127	66	117	89	- 17	17	16	18	80	34
	2-2 a	2-2 a		2-2 b	2-2 b	2-2 c	2-2 c	2-3 f	2-3 ₺	23 f		2-3 9	2-3 g	24 f	2 4 +	24 f	24 g	24 9	

SD	19												31						77					
MV	100												113						125					
absolut %	113 87	402	19 5	8	8	116	02	120	114	127	26	76	134	82	160	119	192	78	155	132	86	66	137	129
	35S a'	1			35S c	35S c	35S f	35S f	35S f	35S g		35S g	2-0 a			2-0 b	2-0 c	2-0 c	2-1 a	2-1 a	2-1 b	2-1 b	2-1 c	2-1 c

a - b, f and g: different transformations
SD = standard deviation

35S mean value (MV) of each transformation was set to 100%

SD	-												52						69							4 0						15					
\ 	100						•						332						287						- 1	112						37					
abenint %		92	105	118	<u>8</u>	101	94	112	94	93	68	118	293	251	353	387	330	379	231	239	247	399	348	259		138	0	191	44		101	27	9	46	55	20	28
L.	a			35S b							35S e	35S e	3-0 e	ò	Q	þ	3-0 p	Ö	3-2 a				3-2 b			က္	ကု	. ع	ဇှ	ကု	3-3 d	3-4 a	4	4	4	3-4 b	4

TSS ATG +113
-1274 rhVEGF
-767 3-0
-272 3-3
53

a - b, d and e: different transformations
SD = standard deviation
35S mean value (MV) of each transformation was set to 100%

Fig. 5:

Analysis of expression promoting regions of Pptub 3 by transient transformation of rhVEGF constructs

Analysis of expression promoting regions of Pptub 4 by transient transformation of rhVEGF constructs

Fig. 6:

6/19

SD	30						45					œ					
M	100						265					20					
absolut %	63	92	141	0/	. 121	109	290	322	229	210	273	25	22	2	19	30	18
	35S a	35S a	35S a	ł	35S c	35S c	4-0 a	4-0 a	4-0 a	4-0 c	4-0 c	4-1 a		4-1 a		4-1 c	

a and c: different transformations SD = standard deviation 35S mean value (MV) of each transformation was set to 100%

5'sequences resulting from iPCR:

Ppact1: 2973 bp until ATG: 1824 bp promoter / 955 bp 5' intron

Ppact3: 3091 bp until ATG: 2270 bp promoter / 434 bp 5' intron

Ppact5: 3095 bp until ATG: 1909 bp promoter / 1006 bp 5' intron

3069 bp until ATG: 1805 bp promoter / 1055 bp 5' intron Ppact7:

Fig. 7: Genomic structure of Physcomitrella patens actin genes.

Fig. 8: Comparison of the expression activity of the different 5 actin regions.

Fig. 9: Ppact1 contructs.

Fig. 10: Ppact 5 constructs.

Fig. 11: Ppact 7 constructs.

Fig. 13: Ppact1 promoter:5' intron substitutions.

14/19

Fig. 14: Ppact1 promoter:vegf deletion constructs.

Fig. 15: Ppact3 promoter:vegf deletion constructs.

16/19

Fig. 16: Ppact5 promoter:vegf deletion constructs.

17/19
Fig. 17: Ppact7 promoter:vegf deletion constructs.

Fig.: 19 Comparison of promoter sequences of homologous actin genes from *Physcomitrella patens* and *Funaria hygrometrica*

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED-TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.