Linear Least square fit - introductory example

Example: Precise muon track fits for possible discovery $Z^* \to \mu^+ \mu^-$

Linear Track fit

- Necessary conditions for linear least square fit:
 - Measurements with gaussian uncertainties
 - Linear model, here: $y = a_0 + a_1x + a_2x^2$
- Fit construction:

$$- \chi^2 = \sum_{i} \frac{\left[y_i - (a_0 + a_1 x + a_2 x^2) \right]^2}{\sigma_i^2}$$

- Determine a_0, a_1, a_2 by finding χ^2 total minimum (normal equations)
- Check consistency
 - $-\chi^2$ and fit probability
 - Outlier rejection
- Detailed error analysis
 - Parameter errors and correlations (error ellipses), track trajectory error band
 - Momentum calculation (error propagation)
- Possible Extensions:
 - Apply constraint fits to both tracks, e.g. $p_t(\mu^+) = p_t(\mu^-) \rightarrow \text{covered in session on extended fits}$
 - Analysis of obtained $\mu^+\mu^-$ mass spectrum containing background and possible signal events \rightarrow covered in session on non-linear least square fits

Overview of Linear least square fit section

Part I	Part II	Part III
 Reminder of χ²-fit method Linear χ²-fit examples (Constant, straight line, parabola, etc.) Fit of a constant (averaging measurements) One single measurement: χ²min and χ²min + 1, Hesse matrix 	 χ²-fit-quality test: Example: χ² of two measurements and known true value χ²-function for n degrees of freedom exercise: plot and study features of the χ²-function vs n χ²-fit probability exercise: plot and study features of the χ²-fit-probability χ² for two measurements with unknown true value 	 General form of linear χ² Solution by normal equations General features: (Consistency, Unbiasedness, efficiency) Normal equation solution for straight line fit Exercise: Learn qualitative features of straight line fits, e.g. importance of lever arm Exercise: Straight line fit and detailed error analysis (error ellipse, trajectory error band)
 Exercise: Two measurements: perform fit by adding \(\chi^2\)-parabolas Averaging many measurements, results Exercise: Compare weighted vs unweighted average 	 Exercise: Outlier rejection, case world average of m_W, study how the rejection of certain measurements change the average and the χ²-fit probability Pulls of single measurements to the average Averaging data with unknown errors Upscaling of errors a la PDG to obtain reasonable χ² 	 Exercise: Parabola track fit, complete analysis: fit, outlier-rejection, parameter errors/correlation, trajectory uncertainty, momentum calculation Exercise: Guessing the right fit function for smooth data (polynomial fit of background

Lecture I on linear least square fits

Contents:

- Least square χ^2 -fit method reminder
- Linear least square fits: definition and examples
- Fit of a constant: One, two and many measurements

Method of least squares fit - a reminder

Example problem: Particle trajectory measurement

Particle trajectory fit, model y = a x

general:

 \overline{n} -measurements y_i with uncertainties σ_i at fixed x_i Modell: y = f(x, a)

 \Rightarrow how to determine a?

Idea: for the correct a one expects: $|y_i - f(x_i, a)| \le \sigma_i$ i.e. curve describes data within measurement uncertainties

Method of least squares fit - a reminder

$$\rightarrow \boxed{\chi^2 = \sum_{i=1}^n \frac{(y_i - f(x_i, a))^2}{\sigma_i^2}} \leftrightarrow \text{Min. wrt a!}$$

 \Rightarrow determine a from $\frac{d\chi^2}{da} = 0$

$$\rightarrow \boxed{\chi^2 = \sum_{i=1}^n \frac{(y_i - f(x_i, a))}{\sigma_i^2} \cdot \frac{df(x_i, a)}{da} = 0}$$

Most general not analytically solvable.

⇒ use iterative (numerical) methods
(MINUIT, Mathematica)

Method of least squares fit - a reminder

Most general case

- y_i, y_j correlated meas. with covariance V_{ij}
- ullet m fitparms \vec{a}

$$\rightarrow \begin{bmatrix}
\chi^2 = \sum_{i,j=1}^n (y_i - f(x_i, \vec{a})) V_{ij}^{-1} (y_i - f(x_i, \vec{a})) \\
= (\vec{y} - \vec{f}(\vec{a}))^t V^{-1} (\vec{y} - \vec{f}(\vec{a}))
\end{bmatrix}$$

Linear least square fits

$$\vec{y}$$
 Vektor of n meas. $\begin{pmatrix} y_1(x_1) \\ . \\ y_n(x_n) \end{pmatrix}$ with Cov. Matrix V

$$\vec{a}$$
 Vektor of m fitparms $\begin{pmatrix} a_1 \\ . \\ a_m \end{pmatrix}$

Modell for \vec{y} : $= A \vec{a}$

Watch out: linear in \vec{a} , but not necessarily in x.

Example fct = ae^{-x} , i.e. model for y_i : = $e^{-x_i}a$

$$\chi^{2} = (\vec{y} - A\vec{a})^{t} V^{-1} (\vec{y} - A\vec{a})$$

 \rightarrow to be minimised w.r.t \vec{a}

Examples for linear least square fits

Attention: Linear means that y depends linearly on the fitparameters a_i .

Fit of a constant

Example: Averaging of n different measurements $a_i \pm \sigma_i$ of an observable a (e.g. $a = \alpha_s(m_Z)$)

$$\chi^2 = \sum_{i=1}^{n} \frac{(a_i - a)^2}{\sigma_i^2}$$

"Idiot example" of one single measurement $a_1 \pm \sigma_1$:

$$\chi^2 = \frac{(a_1 - a)^2}{\sigma_1^2}$$

$$Min.\chi^2: \frac{d\chi^2}{da} = 0 \rightarrow \text{Estimated value} \quad \hat{a} = a_1; \ \sigma_{\hat{a}} = \sigma_1$$

Fit of a constant

Continuing example of one single meas.: Probability density p for true value of a (inverse probability):

$$p \sim e^{-\chi^2/2} = e^{-\frac{(a-\hat{a})^2}{2\sigma_{\hat{a}}^2}}$$

 $p\sim e^{-\chi^2/2}=e^{-\frac{(a-\hat{a})^2}{2\sigma_{\hat{a}}^2}}$ Important general relation: $\sigma_{\hat{a}}=\left[-\frac{d^2\chi^2}{da_{|a=\hat{a}}^2}\right]^{-1/2}$

$$\chi^2(\hat{a} + \sigma_{\hat{a}}) = 1$$

Generalisation to any one parameter fit

Taylor expansion of χ^2 around estimated value \hat{a} :

$$\chi^2 = \chi^2(\hat{a}) + \frac{d\chi^2}{da_{|a=\hat{a}}} \cdot (a - \hat{a}) + \frac{1}{2} \frac{d^2\chi^2}{da_{|a=\hat{a}}^2} \cdot (a - \hat{a})^2 + \dots$$

$$=\chi^2(\hat{a})+H\cdot(a-\hat{a})^2\quad\text{with}\quad H=\frac{1}{2}\frac{d^2\chi^2}{da_{|a=\hat{a}}^2}\quad\text{Hesse matrix}$$

Thus the inverse probability density is

$$p(a|\hat{a}) \sim e^{-\frac{\chi^2(\hat{a})}{2}} \cdot e^{-\frac{1}{2}H \cdot (\hat{a}-a)^2)}$$

ightarrow gaussian distribution around \hat{a} with width $\sigma = H^{-1/2}$

Generalisation to any one parameter fit

$$\chi^{2}(a) = \chi^{2}(\hat{a}) + \frac{(a - \hat{a})^{2}}{\sigma^{2}}$$

$$\to \chi^{2}(a \pm 1\sigma) = \chi^{2}(\hat{a}) + 1 = \chi^{2}_{min} + 1$$

$_{ ext{Mini-exercise}}$ Averaging of two meas. via χ^2 parabolas

Two measurements y_1 , y_2 of the same quantity a can be represented by their χ^2 parabolas: $\chi_i^2 = (y_i - a)^2/\sigma_i^2$; i = 1, 2

- ullet draw for the example below the total χ^2 , i.e. the sum of the two parabolas
- Read off the value \hat{a} (where the total χ^2 is minimal)
- Estimate the error of \hat{a} from the points where $\chi^2 = \chi^2_{min} + 1$

Averaging several measurements

n measurements $y_i \pm \sigma_i$ of the same quantity $y \rightarrow$ what is the best way to average?

(Why is $\frac{1}{n}\Sigma y_i$ not the best? \rightarrow measurements with large errors get too much weight and can spoil the average!)

$$\chi^{2} = \sum_{i=1}^{n} \frac{(y_{i} - a)^{2}}{\sigma_{i}^{2}}$$

$$\frac{d\chi^{2}}{da} = 0 = \sum_{i=1}^{n} \frac{-2(y_{i} - a)}{\sigma_{i}^{2}} = -2\sum_{i=1}^{n} \frac{y_{i}}{\sigma_{i}^{2}} + 2a\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}$$

$$\rightarrow \hat{a} = \sum_{i=1}^{n} \frac{y_{i}}{\sigma_{i}^{2}} / \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}$$

Averaging several measurements

 \rightarrow Single measurements contribute with weight $G_i = \frac{1}{\sigma_i^2}$;

Define $G_s := \sum_{i=1}^n G_i$; Hesse Matrix $H = 1/2 \frac{d^2 \chi^2}{da^2} = G_s$

Error on \hat{a} :

$$\sigma_{\hat{a}}^2 = \Sigma_{i=1}^n \left(\frac{d\hat{a}}{dy_i}\right)^2 \cdot \sigma_i^2 = \Sigma_{i=1}^n \left(\frac{G_i}{G_s}\right)^2 \cdot \sigma_i^2$$
$$= \frac{1}{G_s^2} \cdot \Sigma_{i=1}^n G_i = \frac{1}{G_s} = \frac{1}{\Sigma_{i=1}^n 1/\sigma_i^2}$$

In short

$$\hat{a} = \frac{\sum_{i=1}^{n} y_i / \sigma_i^2}{\sum_{i=1}^{n} 1 / \sigma_i^2} \pm \frac{1}{\sqrt{\sum_{i=1}^{n} 1 / \sigma_i^2}}$$

Mini-exercise Gain from weighted average

Die totale Teilchenrate aus einer Quelle soll gemessen werden. Um die Quelle herum ist ein hermetischer Detektor gebaut. Die eine Hälfte des Detektors misst

$$N_1 = 100 \pm 10$$

Die andere Hälfte des Detektors ist sehr ineffizient und misst (effizienzkorrigiert!)

$$N_2 = 100 \pm 100$$

Schätzen Sie die Gesamtrate N mit den folgenden zwei Methoden:

- 1. $\hat{N} = N_1 + N_2$
- 2. Multipliziere N_1 und N_2 jeweils mit Faktor 2 (beide Hälften 'sehen' ja 50%!) \rightarrow separate Messungen:
 - Erste Messung: $N = 200 \pm 20$
 - Zweite Messung $N = 200 \pm 200$
 - ightarrow Bilde das gewichtete Mittel beider Messungen als Schätzwert \hat{N} .
- \rightarrow Bestimmen Sie für beide Verfahren den Fehler auf \hat{N} (Formeln s. Vorlesung!)

Lecture II on linear least square fits

Contents:

- ullet Consistency of measurements $\to \chi^2$ fit quality test
- Outlier rejection

Consistency of measurements

Example: Two measurements y_1 and y_2 with errors σ_1 and σ_2 ; the true value a is known, are the meas. consistent with a?:

$$\chi^2 = \frac{(y_1 - a)^2}{\sigma_1^2} + \frac{(y_2 - a)^2}{\sigma_2^2} = 2$$

 $\to \chi^2$ is a measure of the consistency

$$\chi^2 = 8$$

Consistency of measurements

Expected prob. density for $\vec{y} = (y_1, y_2)$ (for case $a = 0; \sigma_1 = \sigma_2 = \sigma$):

Trafo $L(\vec{y}, a) \rightarrow \text{prob. density } f(\chi^2)$

General result for n measurements: χ^2 fct. for n-degrees of freedom

$$\to f(\chi^2, n) = \frac{1}{\Gamma(n/2)2^{n/2}} \cdot (\chi^2)^{n/2-1} \cdot e^{-\chi^2/2}$$

χ^2 -function for n degrees of freedom

$$f(\chi^2,n) = \frac{1}{\Gamma(n/2)2^{n/2}} \cdot (\chi^2)^{n/2-1} \cdot e^{-\chi^2/2}$$
 with $\Gamma(n/2) = \int_0^\infty dt e^{-t} t^{n/2-1}$

$$\int_0^\infty f(\chi^2, n) d\chi^2 = 1$$

$$\langle \chi^2 \rangle = n$$

$$V(\chi^2) = 2n; \ \sigma(\chi^2) = \sqrt{2n}$$

$$\to \langle \chi^2/n \rangle = 1$$

$$\sigma(\chi^2/n) = \sqrt{2/n}$$

χ^2 -fit probability

Common measure for consistency of measurements:

Probability that for repeated experiments a $\chi^2 \geq \chi^2_{actual}$ is observed

$$prob(\chi^2,n) = \int_{\chi^2}^{\infty} f(\chi^2,n) d\chi^2$$
 subst. $t = \chi^2/2$
$$= \frac{1}{\Gamma(n/2)} \cdot \int_{\chi^2/2}^{\infty} dt \, e^{-t} \, t^{n/2-1}$$

Add plot of expected flat distribution

χ^2 for two measurements with unknown true value

Until now the true value of a was assumed to be known, now replace by estimated \hat{a} ;

Example of two measurements:

$$\chi_{min}^2 = \frac{(y_1 - \hat{a})^2}{\sigma_1^2} + \frac{(y_2 - \hat{a})^2}{\sigma_2^2}$$

Using the weighted average for \hat{a} and with $G_i := 1/\sigma_i^2 \to$

χ^2 for two measurements with unknown true value

$$\chi_{min}^{2} = G_{1} \cdot \left(y_{1} - \frac{(G_{1}y_{1} + G_{2}y_{2})}{G_{1} + G_{2}}\right)^{2} + G_{2} \cdot \left(y_{2} - \frac{(G_{1}y_{1} + G_{2}y_{2})}{G_{1} + G_{2}}\right)^{2}$$

$$= G_{1} \cdot \left(\frac{(G_{2}y_{1} - G_{2}y_{2})}{G_{1} + G_{2}}\right)^{2} + G_{2} \cdot \left(\frac{(G_{1}y_{2} - G_{1}y_{1})}{G_{1} + G_{2}}\right)^{2}$$

$$= \frac{G_{1}G_{2}^{2}}{(G_{1} + G_{2})^{2}}(y_{1} - y_{2})^{2} + \frac{G_{2}G_{1}^{2}}{(G_{1} + G_{2})^{2}}(y_{1} - y_{2})^{2}$$

$$= \frac{G_{1}G_{2}(G_{1} + G_{2})}{(G_{1} + G_{2})^{2}} \cdot (y_{1} - y_{2})^{2} = \frac{G_{1} \cdot G_{2}}{G_{1} + G_{2}} \cdot (y_{1} - y_{2})^{2}$$

$$= \frac{1}{1/G_{1} + 1/G_{2}} \cdot (y_{1} - y_{2})^{2} = \frac{1}{\sigma_{1}^{2} + \sigma_{2}^{2}} \cdot (y_{1} - y_{2})^{2}$$

Observable $\Delta=\frac{y_1-y_2}{\sqrt{\sigma_1^2+\sigma_2^2}}$ follows (obviously) gauss distribution $\sim e^{-\frac{\Delta^2}{2}}$

- $\rightarrow \chi^2 = \Delta^2$ follows <u>1-dim</u> χ^2 distr.!
- \rightarrow One degree of freedom "sacrificed" for determination of \hat{a} .

General: n-measurements with one unknown a

 \rightarrow follows χ^2 distribution with n-1 degrees of freedom

Mini-exercise Plot χ^2 curves with computer

Mini-exercise Outlier rejection

see /afs/desy.de/user/m/mgoebel/public/StatisticsWS/AverageMW.C

Tasks: Determined weighted average, thi χ^2_{min} and fit-probability, see what happens if one takes out the value with the largest deviation from the mean, etc.

Lecture III on linear least square fits

Contents:

- General solution (normal equations) of linear least square fits
- Straight line fits ... and other fit examples

Solution via normal equations

Linear fit \rightarrow determines estimator for \vec{a}

$$\chi^{2} = (\vec{y} - A\vec{a})^{t}V^{-1}(\vec{y} - A\vec{a})$$

$$Min.\chi^{2} \rightarrow \frac{d\chi^{2}}{d\vec{a}} = 0$$

$$\rightarrow -2A^{t}V^{-1}(\vec{y} - A\vec{a}) = 0$$

$$\rightarrow A^{t}V^{-1}A\vec{a} = A^{t}V^{-1}\vec{y}$$

Side remark: why can't we just set: $\vec{y} = A\vec{a}$??? Because \vec{y} has dimension n and \vec{a} has dimension m !!! Solution:

Normal equations

To be xchecked: Properties of linear least square fits

- 1. consistency: $\lim_{N\to\infty} \hat{\vec{a}} = \vec{a}$ (follows from next point)
- 2. <u>Unbiasedness</u>: $\langle \hat{\vec{a}} \rangle = \langle B\vec{y} \rangle = B \langle \vec{y} \rangle = B A \vec{a} = (A^t V^{-1} A)^{-1} A^t V^{-1} A \vec{a} = \vec{a}$ \rightarrow unbiased!
- 3. Efficiency: Gauss-Markov-Theorem:

For randomly distributed \vec{y} the linear least square fit is the most efficient estimator (Proof e.g. in Blobel/Lohrmann book)

4. For measurements \vec{y} with gaussian errors and if $\vec{y} = A\vec{a}$ is the correct model, then χ^2 follows a χ^2 -distribution with N-m degrees of freedom (with N = number of data points and m = number of fit parameters)

Straight line fit

Model: $y = a_0 + a_1 x$

Example: All y_i have the same uncertainty

$$V = \left(\begin{array}{cc} \sigma^2 & 0 \\ & \cdot \\ 0 & \sigma^2 \end{array}\right)$$

$$\chi^2 = \sum_{i=1}^n \frac{(y_i - a_0 - a_1 x_i)^2}{\sigma^2}$$

$$A = \left(\begin{array}{cc} 1 & x_1 \\ \vdots & \vdots \\ 1 & x \end{array}\right)$$

Matrix notation:
$$\vec{y} = A\vec{a}$$
; $A = \begin{pmatrix} 1 & x_1 \\ . & . \\ 1 & x \end{pmatrix}$, $A^T = \begin{pmatrix} 1 & \dots & 1 \\ x_1 & \dots & x_n \end{pmatrix}$

$$\hat{\vec{a}} = \begin{pmatrix} \hat{a}_0 \\ \hat{a}_1 \end{pmatrix} = (A^T V^{-1} A)^{-1} A^T V^{-1} \vec{y}; \qquad V^{-1} = \begin{pmatrix} 1/\sigma^2 & 0 \\ & \ddots & \\ 0 & 1/\sigma^2 \end{pmatrix}$$

Straight line fit

$$\hat{\vec{a}} = \sigma^{2} (A^{T} A)^{-1} \cdot \frac{1}{\sigma^{2}} A^{T} \cdot \vec{y} = (A^{T} A)^{-1} A^{T} \cdot \vec{y}$$

$$= \begin{pmatrix} \sum_{i} 1 & \sum_{i} x_{i} \\ \vdots & \vdots \\ \sum_{i} x_{i} & \sum_{i} x_{i}^{2} \end{pmatrix}^{-1} \cdot \begin{pmatrix} \sum_{i} y_{i} \\ \sum_{i} x_{i} y_{i} \end{pmatrix} = \begin{pmatrix} N & N\overline{x} \\ N\overline{x} & N\overline{x^{2}} \end{pmatrix}^{-1} \cdot \begin{pmatrix} N\overline{y} \\ N\overline{x}\overline{y} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & \overline{x} \\ \overline{x} & \overline{x^{2}} \end{pmatrix}^{-1} \cdot \begin{pmatrix} \overline{y} \\ \overline{x}\overline{y} \end{pmatrix} = \frac{1}{\overline{x^{2}} - \overline{x}^{2}} \begin{pmatrix} \overline{x^{2}} & -\overline{x} \\ -\overline{x} & 1 \end{pmatrix} \begin{pmatrix} \overline{y} \\ \overline{x}\overline{y} \end{pmatrix} = \frac{1}{V[x]} \cdot \begin{pmatrix} \overline{x^{2}}\overline{y} - \overline{x}\overline{x}\overline{y} \\ -\overline{x}\overline{y} + \overline{x}\overline{y} \end{pmatrix}$$

Covariance matrix:

$$U = \begin{pmatrix} \sigma_{a_0}^2 & cov(a_0, a_1) \\ cov(a_0, a_1) & \sigma_{a_1}^2 \end{pmatrix} = (A^t V^{-1} A)^{-1} = \frac{\sigma^2}{NV[x]} \begin{pmatrix} \overline{x^2} & -\overline{x} \\ -\overline{x} & 1 \end{pmatrix}$$

Mini exercise: straight line track-fit with N det.

Using the above formulas - determine the improvements on the track slope error σ_{a_1} by:

- a) Doubling the number of detector layers within the same interval in x
- b) Distributing the detector layers over an interval in x twice as large
- c) Buying detectors with measurement uncertainties reduced by a factor two

Mini-exercise Straight-line fit example

Tasks: Do the fit, plot the error ellipse, get the 1-sigma band, judge fit quality, etc.

Mini-exercise Real Trackfit in Si + driftchamber

Linear Track fit

y (cm)

Tasks: Do the straight line fit, plot the error ellipse, get the 1-sigma band, judge fit quality, reject outliers!, fit with parabola, determine momentum and error, extension: add vertex constraint

Mini-exercise: Find best data parametrisation

The plots on the next two pages show χ^2 -fits of the same data distribution with eight different parametrisations (polynomials of different orders). Which parametrisation is the most reasonable one? Try to judge using the following three criteria:

- 1. optically, how well the curves fit the data
- 2. a reasonable parametrisation should lead to $\chi^2/ndf \approx 1$.
- 3. choose only a more complicated parametrisation if a significant improvement of χ^2/ndf can be achieved
- → Try to find your personal favorite.

Mini-exercise: Find best data parametrisation

Mini-exercise: Find best data parametrisation

