Adaptive coding for DNA storage with high storage density and low

coverage

Supplementary document 1

DNA subsequences with length of 100 were randomly extracted from each DNA sequence, and the length of each sequence was 100 base, that is, the length of each DNA sequence was 199 in Jeong's work, so 99 times were extracted from each DNA sequence. The variance of the ratio of bases A, T, G and C was calculated, and then the variance of the variance was calculated. The results in Table 1-3 are the sum, mean, and median of variances, used to reflect the base diversity of each DNA block.

Supplementary document 2

In the text, the coding results of the proposed cascading coding algorithm are compared with those of Jeong when the length is 137. In order to better illustrate the excellent performance of the adaptive coding algorithm, we also compare the results of different lengths under different constraints, and the abbreviations are consistent with those in the text.

Supplementary document 3

Jeong'work: Each oligo has length 199 nucleotides (nt) in total (26nt first primers+16nt seed + 128nt payload + 8nt RS code+21nt end primers)

513.6KB=513.6x8x1024=4207411.2bit

152x18000=2736000nt 4207411.2bit/2736000nt=1.53bit/nt 199x18000=3582000nt 4207411.2bit/3582000nt=1.17bit/nt

Ourwork: Each oligo has length 172 nucleotides (nt) in total (10nt addrsss+16nt seed + 128nt payload + 8nt RS code+15nt end primers)

480kb=480x8x1024= 3932160bit

162x17200=2786400nt 3932160bit/2786400nt =1.41bit/nt 177x17200= 3044400nt 3932160bit/ 3044400nt=1.29bit/nt

Every time a DNA sequence is generated in an independent random storage experiment, an additional address bit needs to be stored, so the storage density of the independent random storage experiment is 1.22bit/nt. Calculations of other data refer to the work of Erlich and Ceze et al[1, 2]., which will not be described here.

Supplementary document 4

Table 1 gives the maximum value of non-payload constructed by heuristic algorithm under EGNA, EGNAM, HGNN and HGN, with data from Wang et al.[4-6]. According to the threshold value, the size of DNA pool in DNA storage can be reasonably divided. When the required non-payload exceeds the maximum under the current length, consideration is given to increasing the length of the non-payload.

Supplementary tables 1. Comparison of naked single strand MFE and TM in length 580.

	MFEAve	MFEMAX	MFEMIN	TM variance
Jeong[3]	-11.9497	-4.9	-28.5	2.2797
HGN	-14.5088	-3.4	-28.7	1.9737

Supplementary tables 2. Comparison of naked single strand MFE and TM in length 157.

	MFEAve	MFEMAX	MFEMIN	TM variance
Jeong[3]	-11.4325	-4.9	-26.3	2.28
HGNN	-14.4771	-4.8	-31.1	2.0177

Supplementary tables 3. Comparison of naked single strand MFE and TM in length 250.

	MFEAve	MFEMAX	MFEMIN	TM variance
Jeong[3]	-11.5732	-4.9	-26.3	2.2879
EGNAM	-14.3096	-4.1	-27.1	1.9859

Supplementary tables 4. The lower limit of the non-payload code set under four combinatorial constraints

$n \backslash d$	3	4	5	6	7	8	9	
4	6	_						EGNA
	4	_						EGNAM
		_						HGNN
	6	2						HGN
	12	5	_					EGNA
	7	2	_					EGNAM
3	_	_	_					HGNN
	15	3	1					HGN
	30	11	4	_				EGNA
	16	7	2	_				EGNAM
6	51	22	8	_				HGNN
	43	16	4	2				HGN
	53	19	6	_	_			EGNA
	28	11	3	_	_			EGNAM
7	113	42	15	6	_			HGNN
	131	34	11	2	1			HGN
	101	38	12	5	3	_		EGNA
8	48	21	9	3	—	_		EGNAM
	319	105	35	15	5	_		HGNN
	437	102	26	11	2	2		HGN
	167	61	19	7	3	2	_	EGNA
9	93	33	12	5	2	_		EGNAM
	635	206	66	25	10	5	_	HGNN
	1331	280	65	19	8	2	1	HGN
	250	110	34	11	5	3	2	EGNA
	137	62	19	6	3	_	_	EGNAM
10	1634	518	157	56	21	10	4	HGNN
	4490	857	179	55	16	8	2	HGN

Reference

- [1] L. Ceze, J. Nivala, and K. Strauss, "Molecular digital data storage using DNA," *Nature Reviews Genetics*, vol. 20, no. 8, pp. 456-466, Aug, 2019.
- [2] Y. Erlich, and D. Zielinski, "DNA Fountain enables a robust and efficient storage architecture," *Science*, vol. 355, no. 6328, pp. 950-953, Mar, 2017.
- [3] J. Jeong, S.-J. Park, J.-W. Kim, J.-S. No, H. H. Jeon, J. W. Lee, A. No, S. Kim, and H. Park, "Cooperative Sequence Clustering and Decoding for DNA Storage System with Fountain Codes," *Bioinformatics (Oxford, England)*, 2021 Apr 27 (Epub 2021 Apr, 2021.
- [4] B. Cao, X. Zhang, J. Wu, B. Wang, and Q. Zhang, "Minimum free energy coding for DNA storage," *IEEE Transactions on NanoBioscience*, vol. 2, pp. 212-222, 2021.
- [5] B. Cao, X. Li, X. Zhang, B. Wang, Q. Zhang, and X. Wei, "Designing Uncorrelated Address Constrain for DNA Storage by DMVO Algorithm," *IEEE/ACM Transactions on Computational Biology and Bioinformatics*, 2020.
- [6] Yanfen Zheng, Jieqiong Wu, and Bin Wang, "CLGBO: An algorithm for constructing highly robust coding sets for DNA storage," *frontiers in Genetics*, 2021.