Theory of Probability - 2022/10/06

Theory of Probability - 2022/10/06

Recap

Expectation (E(X))

Variance

Definition

Formula

Example

Variance is NOT linear

Named Discrete Distributions

Bernoulli Distribution

Bernoulli Trial

Definition

Properties

Example

Binomial Distribution

Definition

Example

Properties

Geometric Distribution

Motivation

Definition

Properties

Recap

- Expectation (E(X))
 - $E(X) = \sum_{x \in X} x P(x)$
 - LOTUS:

$$\bullet$$
 $E(g(X)) = \sum g(x)p(x)$

- <u>Linearity</u>:
 - $\bullet \ E(aX+b) = aE(X) + b$

Variance

Motivation:

Recall from a statistics, a discrete data set,

$$X = \{x_1, x_2, x_3, \dots\}$$

$$E(X) = rac{\sum x_i}{n} = \mu$$

It only gives us the average, but we don't know the spread.

What is the average distance each data point is from the mean?

Note that we can't simply use $x_i - \mu$, because $\dfrac{\sum (x_i - \mu)}{n} = 0$

We can use $|x_i - \mu|$ or $(x_i - \mu)^2$

Variance:
$$\frac{\sum (x_i - \mu)^2}{n}$$

Definition

If X is a RV with $E(X)=\mu$, then define <u>Variance</u> of X, Var(X) by,

$$Var(X) = E[(X - \mu)^2]$$

and Standard Deviation of X, SD(X)

Note that $\sum xp(x)=E(X)=\mu$, $\sum p(x)=1$

$$SD(X) = \sqrt{Var(X)}$$

Formula

Given DRV, X,

$$egin{aligned} Var(X) &= E[(X-\mu)^2] \ &= \sum_{x \in X} (x-\mu)^2 p(x) \ &= \sum_{x \in X} (x^2 - 2x\mu + \mu^2) p(x) \ &= \sum_{x \in X} x^2 p(x) - 2x\mu p(x) + \mu^2 p(x) \ &= \sum_{x \in X} x^2 p(x) - 2\mu \sum_{x \in X} x p(x) + \mu^2 \sum_{x \in X} p(x) \ &= E(X^2) - 2E(X)^2 + E(X)^2 \end{aligned}$$

 $= E(X^2) - E(X)^2$

Therefore,

$$Var(X) = E(X^2) - E(X)^2$$

which is [The mean of the squares - the sugare of the mean]

Example

X	p(x)	xp(x)	$x^2p(x)$
0	1/8	0	0
1	3/8	3/8	3/8
2	3/8	6/8	12/8
3	1/8	3/8	9/8
Sum	1	E(X)=12/8	$E(X^2)=24/8$

$$Var(X) = E(X^2) - (E(X))^2 = 3/4$$

 $SD(X) = \sqrt{3/4}$

Variance is NOT linear

Remember that E(X) is linear, that is E(aX+b)=aE(X)+b

Determine g(X) = aX + b for Variance

$$\begin{split} Var(aX+b) &= E((aX+b)^2) - (E(aX+b))^2 \\ &= E(a^2X^2 + 2abX + b^2) - (aE(X) + b)^2 \\ &= a^2E(X^2) + 2abE(X) + b^2 - a^2E(X)^2 - 2abE(X) - b^2 \\ &= a^2E(X^2) - a^2E(X)^2 \\ &= a^2[E(X^2) - E(x)^2] \\ &= a^2 \cdot Var(X) \\ &\neq aVar(X) + b \end{split}$$

Therefore Variance is NOT linear

Given $X_1, X_2, \ldots X_n$ are Random Variables,

$$Var(\sum X_i)
eq \sum Var(X_i)$$

BUT when X_i are independent,

$$Var(\sum X_i) = \sum Var(X_i)$$

Named Discrete Distributions

• Bernoulli Distribution

- Bernoulli Trial

• A trial with exactly two outcomes: Success (with probability p) or Failure (with probability 1-p)

• Given an experiment o S and an event A.

 \circ Success: A occurs

 \circ Failure: A does not occur

• Note: A Bernoulli Trial is only a single trial.

- Definition

ullet Define X to be the RV that counts the number of success in a Bernoulli Trial

•
$$X = \{0, 1\}$$

0		х		P(X)
	0		1-p	
	1		p	

$$\bullet$$
 $E(X) = \sum xp(x) = p$

•
$$Var(X) = E(X^2) - E(X)^2 = p - p^2 = p(1-p)$$

- Properties

• $X \sim Ber(p)$

$$\begin{array}{ll} \circ & X=\{0,1\} \text{ count number of success} \\ \circ & p(x)= \begin{cases} 1-p &, x=0 \\ p &, x=1 \end{cases}$$

 \circ E(X) = p

$$o Var(X) = p(1-p)$$

- Example

• Given an experiment $\rightarrow S$ and an event A.

• Success: A occurs

 \circ Failure: A does not occur

ullet Define I_A as an indicator RV

$$\bullet \ \ I_A = \begin{cases} 1 & \text{if A occurs} \\ 0 & \text{if A not occur} \end{cases}$$

 $ullet I_A \sim \overset{ullet}{Bern}(p)$ where p = P(A)

• Binomial Distribution

- Definition

If we perform "n" independent, identical Bernoulli trials, each with probability of success, p, and we let X be the R.V. that counts the number of successes in "n" trials, Then we say

• X is a <u>Binomial Random Variable</u> with <u>parameters</u> n, p

$$X \sim Bin(n, p)$$

•
$$X = \{0, 1, 2, \dots, n\}$$

Note:

- We have **Fixed** number of trials (*n*)
- Trials are Independent
- Each trial has Same probability of Success (p)

- Example

- 1. Flip 3 coins, with p(H) = p, p(T) = 1 p
 - $\bullet \ \ {\it Fixed trials:} \ n=3 \\$
 - Trials Independent
 - \circ Trial has P(Success) = p
 - \Rightarrow Satisfies the requirements for binomial distribution

Let X count number of successes, then $X \sim Bin(3, p)$.

$$X = \{0, 1, 2, 3\}$$

S	х	P(x)
TTT	0	$(1-p)(1-p)(1-p) = (1-p)^3$
нтт, тнт, ттн	1	$p(1-p)^2 + (1-p)p(1-p) + (1-p)^2p = 3p(1-p)^2$
ннт, нтн, тнн	2	$3p^2(1-p)$
ННН	3	p^3

2. Let's consider $X \sim Bin(4,\ p)$

$$X = \{0, 1, 2, 3, 4\}$$

	Х	P(X)
ТТТТ	0	$\binom{4}{0}(1-p)^4p^0$
нттт,	1	$\binom{4}{1}(1-p)^3p^1$
ннтт,	2	$\binom{4}{2}(1-p)^2p^2$
нннт,	3	$\binom{4}{3}(1-p)^1p^3$
нннн	4	$\binom{4}{4}(1-p)^0p^4$

Properties

• Therefore, If we have $X \sim Bin(n,\ p)$

$$P(X=a) = \binom{n}{a} (1-p)^{n-a} p^a$$

ullet We think of $X \sim Bin(n,p)$ as $x = \sum_{i=1}^n X_i, \quad X_i \sim Ber(p)$

$$ullet E(X) = E(\sum_{i=1}^n X_i) = \sum_{i=1}^n E(X_i) = np$$

$$\circ \ \ Var(X) = Var(\sum X_i) = \sum Var(X_i) = np(1-p)$$
 (independent)

Properties:

• $X \sim Bin(n, p)$

$$P(X=a) = \binom{n}{a} p^a (1-p)^{n-a}$$

$$\bullet$$
 $E(X) = np$

$$\circ \ Var(X) = np(1-p)$$

$$\circ Var(X) = np(1-p)$$

 $\circ SD(X) = \sqrt{np(1-p)}$

Geometric Distribution

Motivation

Consider the experiment

Perform independent, identical Bernoulli trials each with probability of success p, UNTIL you achieve first success.

Let X count the number of trials needed to achieve first success

$$X = \{1, 2, \dots\}$$

- We have:
 - Independent Bernoulli trials,
 - \circ Each with same probability of success p
- We don't have:
 - A fixed number of trials
- $\Rightarrow NOT \ Binomial$

- Definition

- ullet We say X is a Geometric R.V. with parameter, p
- pmf:

х	P(X)
1	p
2	p(1-p)
3	$p(1-p)^2$
n	$p(1-p)^{n-1}$

- Notation: $X \sim Geo(p)$
- Expectation:

$$\begin{split} E(X) &= \sum_{x=1}^{\infty} x p(x) \\ &= \sum_{x=1}^{\infty} x (1-p)^{x-1} p \\ &= \sum_{x=1}^{\infty} (x-1+1)(1-p)^{x-1} p \\ &= \sum_{x=1}^{\infty} (x-1)(1-p)^{x-1} p + \sum_{x=1}^{\infty} (1-p)^{x-1} p \\ &= \sum_{x=0}^{\infty} x (1-p)^x p + \sum_{x=1}^{\infty} p(x) \\ &= \sum_{x=1}^{\infty} x (1-p)^x p + 1 \\ &= (1-p) \sum_{x=1}^{\infty} x (1-p)^{x-1} p + 1 \\ &= (1-p) E(X) + 1 \end{split}$$

Therefore,

$$E(X) = (1 - p)E(X) + 1$$
$$\Rightarrow E(X) = \frac{1}{p}$$

• Variance:

To determine Var(X), let us first compute $E[X^2]$. With q=1-p, we have

$$egin{aligned} E[X^2] &= \sum_{i=1}^\infty i^2 q^{i-1} p \ &= \sum_{i=1}^\infty (i-1+1)^2 q^{i-1} p \ &= \sum_{i=1}^\infty (i-1)^2 q^{i-1} p + \sum_{i=1}^\infty 2(i-1) q^{i-1} p + \sum_{i=1}^\infty q^{i-1} p \ &= \sum_{j=0}^\infty j^2 q^j p + 2 \sum_{j=1}^\infty j q^j p + 1 \ &= q E[X^2] + 2q E[X] + 1 \end{aligned}$$

Using E[X] = 1/p, the equation for $E[X^2]$ yields

$$pE[X^2] = \frac{2q}{p} + 1$$

Hence,

$$E[X^2] = \frac{2q+p}{p^2} = \frac{q+1}{p^2}$$

giving the result

$$Var(X) = rac{q+1}{p^2} - rac{1}{p^2} = rac{q}{p^2} = rac{1-p}{p^2}$$

- Properties

- $X \sim Geo(p)$
 - $\circ \ \ X$ counts number of trials until first success
 - $\circ \ \ X=\{1,2,3,\dots\}$
 - $P(X = x) = (1 p)^{x-1}p$