Riemann Sums Assignment

Author Aaron Tresham

Date 2017-06-09T19:58:08

Project a8975d68-235e-4f21-8635-2051d699f504

Location 13 - Riemann Sums Assignment/Riemann Sums Assignment.sagews

Original file Riemann Sums Assignment.sagews

1

Riemann Sums Assignment

Question 0

Watch the lecture video here.

Did you watch the video? [Type yes or no.]

Question 1

Approximate the area under the graph of $f(x) = 3x^2 - 9x + 5$ on the interval [-5, 5] using left and right Riemann sums with n = 25 and n = 50 subintervals.

[The actual area is 300.]

Question 2

The area under the graph of $f(x) = \ln(\sin(x))$ from x = 1 to x = 2 is approximately -0.0455.

To get an idea of how big n must be to get a good approximation (say correct to four decimal places), find both the left and right Riemann sums with n=100, n=500, and n=1000.

Question 3

The graph of $x^2+y^2=25$ is a circle of radius 5 centered at the origin. From geometry, we know its area is $\pi\cdot 5^2\approx 78.54$. We will approximate this area using Riemann sums.

Let $f(x) = \sqrt{25 - x^2}$ (the top half of the circle). Approximate the area between f and the x-axis from x = -5 to x = 5 using left and right Piomann sums with x = 100 subjectorvals

HOIH $a=-\theta$ to $a=\theta$ using left and high external of such a with $\mu=\pm00$ submittensals.

Now multiply this area by 2 to get an approximation for the area of the whole circle. How close are you to the correct area?

Question 4

Use Sage's sum command to evaluate the following sums.

Part a

$$\sum_{i=1}^{50} \frac{1}{i^2}$$

Part b

$$\sum_{k=10}^{100} \frac{k^3 - 3k^2}{5}$$

Part c

$$\sum_{k=1}^{n} \left(\left(\frac{k}{n} \right)^2 + \frac{k}{n} \right) \cdot \frac{1}{n}$$

[Hint: Declare both n and k to be variables.]

Question 5

Calculate the limit as $n o \infty$ of your answer from Question 4, Part c.

Note: This limit gives the area between the x-axis and the function $f(x)=x^2+x$ over the interval from x=0 to x=1, because the sum in Question 4, Part c, is the right Riemann sum with n

rectangles for this function. In other words,
$$\int_0^1 x^2 + x \, dx = \lim_{n \to \infty} \sum_{k=1}^n \left(\left(\frac{k}{n} \right)^2 + \frac{k}{n} \right) \cdot \frac{1}{n} \; .$$