

DB Normalization

COMP3278B 2020

Overview

- Check if a decomposition is lossless-join
- Check if a decomposition is dependency preserving
- Check if a decomposition is in BCNF
- Perform lossless join decomposition into relations in BCNF

Testing lossless join

- Given relation R decomposed into R1 and R2.
- Let Att(R) be the set of attributes in relation R. Decomposition is lossless if

$$Att(R1) \cap Att(R2) \rightarrow Att(R1)$$
Or
 $Att(R1) \cap Att(R2) \rightarrow Att(R2)$

We test if the common attributes of R1 and R2 could be used to derive attributes in either R1 or R2.

lossless join

Reflexivity – if $\beta \subseteq \alpha$, then $\alpha \to \beta$. Transitivity – if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$ Augmentation – if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$ Union – if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$ Decomposition – if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$ Pseudo-transitivity – if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- Consider relation R(A, B, C) with functional dependencies $\mathbf{F} = \{A \rightarrow B\}.$
 - Is R1(A, B), R2(A, C) a lossless join decomposition?
 - Common attribute is A
 - $A \rightarrow B \Rightarrow A \rightarrow AB$ (Augmentation)
 - It is a lossless join decomposition as common attribute A could derives attributes in R1.
 - Is R3(A,B), R4(B,C) a lossless join decomposition?
 - Common attribute is B

We need to find attribute closure to show that • Attribute closure of B, $\{B\}^+ = \{B\}$. a decomposition is not a lossless join.

• It is not a lossless join decomposition as common attribute B could not derive R1 and R2.

Testing dependency preserving

- Given relation R with FD \boldsymbol{F} decomposed into R_1, R_2, \ldots let \boldsymbol{F}_i be the set of FDs in \boldsymbol{F}^+ that include only attributes in R_i
- Decomposition is dependency preserving if

$$(\boldsymbol{F}_1 \cup \boldsymbol{F}_2 \cup \cdots)^+ = \boldsymbol{F}^+$$

We test if F^+ could be constructed by combining the FDs in the decomposed relations.

dependency preserving

```
Reflexivity – if \beta \subseteq \alpha, then \alpha \to \beta.

Transitivity – if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

Augmentation – if \alpha \to \beta, then \gamma \to \gamma \to \gamma \to \gamma

Union – if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \to \gamma

Decomposition – if \alpha \to \beta \gamma, then \alpha \to \beta and \alpha \to \gamma

Pseudo-transitivity – if \alpha \to \beta and \gamma \to \delta, then \alpha \to \delta
```

- Consider relation R(A, B, C) with functional dependencies $F = \{A \rightarrow B, B \rightarrow C\}$.
- $F^+ = \{A \to B, B \to C, \text{ and trivials/derived FDs}\}\$
 - Is R1(A,B), R2(B,C) a dependency preserving decomposition?
 - $F_1 = \{A \rightarrow B, \text{ and trivials FD}s\}$
 - $F_2 = \{B \rightarrow C, \text{ and trivials FD}s\}$
 - $F_1 \cup F_2 = F \Rightarrow \{F_1 \cup F_2\}^+ = F^+$, it is a dependency preserving decomposition.
 - Is R3(A,B), R4(A,C) a dependency preserving decomposition?
 - $F_3 = \{A \rightarrow B, \text{ and trivials FD}s\}$
 - $F_4 = \{A \to C, \text{ and trivials FD}s\}$ Note that $A \to C$ is in F^+ due to transitivity.
 - $F_3 \cup F_4 = \{A \to B, A \to C, \text{ and trivials FDs}\}$, we need to check if $B \to C$ is preserved.
 - In $\{F_3 \cup F_4\}^+$, $\{B\}^+ = \{B\}$ and so $B \to C$ is not in $\{F_3 \cup F_4\}^+$, it is not a dependency preserving decomposition.

Testing BCNF for relation

- Given relation R with FD F
- R is in BCNF if for all non-trivial dependency $\alpha \to \beta$ in F,

$$\{\alpha\}^+ = Att(R)$$

We test if LHS of each non-trivial dependencies is a superkey.

Similar to the case in dependency preserving, if R is decomposed, we need to construct the corresponding FDs in the decomposed relation by considering ${\it F}^+$

BCNF (1)

Reflexivity – if $\beta \subseteq \alpha$, then $\alpha \to \beta$. Transitivity – if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$ Augmentation – if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$ Union – if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$ Decomposition – if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$ Pseudo-transitivity – if $\alpha \to \beta$ and $\gamma \to \beta$, then $\alpha \to \delta$

- Consider relation R(A, B, C) with functional dependencies $F = \{A \rightarrow B, B \rightarrow C\}$.
 - Is R in BCNF?
 - $\{B\}^+ = \{B, C\} \neq \{A, B, C\}$ so it is not in BCNF.
- Consider relation R(A, B, C) with functional dependencies $F = \{A \rightarrow B\}$.
 - Is R in BCNF?
 - $\{A\}^+ = \{A, B\} \neq \{A, B, C\}$, so it is not in BCNF.
- Consider relation R(A, B, C) with functional dependencies $F = \{\}$ (trivial FDs only).
 - Is R in BCNF?
 - There is no non-trivial dependency. It is in BCNF.

No non-trivial dependency ⇒ BCNF

BCNF (2)

```
Reflexivity – if \beta \subseteq \alpha, then \alpha \to \beta.

Transitivity – if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

Augmentation – if \alpha \to \beta, then \gamma \to \gamma \to \gamma \to \gamma

Union – if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \to \gamma

Decomposition – if \alpha \to \beta \to \gamma, then \alpha \to \beta and \alpha \to \gamma

Pseudo-transitivity – if \alpha \to \beta and \gamma \to \delta, then \alpha \to \delta
```

- Consider relation R(A, B, C, D) with functional dependencies $F = \{A \rightarrow B, B \rightarrow C\}.$
 - Is R in BCNF?
 - $\{A\}^+ = \{A, B, C\} \neq \{A, B, C, D\}$, so it is not in BCNF.
 - Suppose R is decomposed into R1(A, C, D), R2(B, D), is R1 in BCNF?
 - $F_1 = \{A \rightarrow C, \text{ and trivials FD}s\}$
 - $\{A\}^+ = \{A, C\} \neq \{A, C, D\}$, it is not in BCNF

Again, $A \rightarrow C$ is in F^+ due to transitivity.

- Is *R*2 in BCNF?
 - R2 has no non-trivial FD, it is in BCNF

Decomposing relations

- Given relation R with FD F. (where R is not in BCNF)
 - Pick a dependency $\alpha \rightarrow \beta$ in F.
 - Split R into relation $R1 = \alpha \cup \beta$ and $R2 = \alpha \cup (\alpha \cup \beta)^c$.
 - Check that R1 is in BCNF, decompose R1 if not.
 - Check that R2 is in BCNF, decompose R2 if not.

We pick one rule for decomposition, repeat until all relations are in BCNF.

BCNF (2)

```
Reflexivity – if \beta \subseteq \alpha, then \alpha \to \beta.

Transitivity – if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

Augmentation – if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

Union – if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

Decomposition – if \alpha \to \beta \gamma, then \alpha \to \beta and \alpha \to \gamma

Pseudo-transitivity – if \alpha \to \beta and \gamma \beta \to \delta, then \alpha \gamma \to \delta
```

- Consider relation R(A, B, C, D) with functional dependencies $F = \{A \rightarrow B, B \rightarrow C\}$. Decompose R into relations in BCNF.
 - Pick dependency $A \rightarrow B$.
 - Decompose R into $R1 = \{A, B\}$ and $R2 = \{A, C, D\}$.
 - R1 is in BCNF as $\{A\}^+ = \{A, B\}$.
 - $F_2 = \{A \rightarrow C, \text{ and trivials FDs}\}, \{A\}^+ = \{A, C\} \neq \{A, C, D\}, \text{ it is not in BCNF.}$
 - Pick rule $A \rightarrow C$.
 - Decompose R2 into $R3 = \{A, C\}$ and $R4 = \{A, D\}$.
 - R3 is in BCNF as $\{A\}^+ = \{A, C\}$.
 - R4 has no non-trivial FD, it is in BCNF.
- R is decomposed into $R1 = \{A, B\}, R3 = \{A, C\}, \text{ and } R4 = \{A, D\}$

Exercise

Given R(A, B, C, D), $\mathbf{F} = \{A \rightarrow B, BC \rightarrow D, D \rightarrow A\}$

- 1. If R is decomposed into R1(A,C,D) and R2(B,C), is it a lossless join decomposition? If so, is it dependency preserving?
- 2. If R is decomposed into R3(A,B,C) and R4(B,C,D), is it a lossless join decomposition? If so, is it dependency preserving?
- 3. Show that *R* in not in BCNF.
- 4. Give a lossless join decomposition of R into relations in BCNF. Check if the decomposition is dependency preserving.
 - Try to repeat this question by picking different dependency to split.

An extra question if you have time

- Given R(A, B, C, D, E), $\mathbf{F} = \{A \rightarrow B, AD \rightarrow E, C \rightarrow ADE\}$.
 - Give a lossless join decomposition of *R* into relations in BCNF.
 - Check if the decomposition is dependency preserving.

Answer-1

Given R(A, B, C, D), $F = \{A \rightarrow B, BC \rightarrow D, D \rightarrow A\}$ If R is decomposed into R1(A, C, D) and R2(B, C), is it a lossless join decomposition? If so, is it dependency preserving?

- Common attributes: {*C*}
- $\{C\}^+ = \{C\}$, which doesn't cover R1 nor R2.
- It is not a lossless join decomposition.

Answer - 2

Given R(A, B, C, D), $\mathbf{F} = \{A \rightarrow B, BC \rightarrow D, D \rightarrow A\}$ If R is decomposed into R3(A, B, C) and R4(B, C, D), is it a lossless join decomposition? If so, is it dependency preserving?

- Common attributes: {*B*, *C*}
- $\{B,C\}^+ = \{B,C,D\}$, which covers R4.
- It is a lossless join decomposition.
- Consider FDs in R3 (F_3) = { $A \rightarrow B, BC \rightarrow A$, and trivials FDs}
- Consider FDs in R4 (F_4) = { $BC \rightarrow D$, and trivials FDs}
- Now consider $\{D\}^+$ for $\{F_3 \cup F_4\}^+$, $\{D\}^+ = \{D\}$. Dependency $D \to A$ is gone. Therefore, it is not dependency preserving.

Answer - 3

Given R(A, B, C, D), $F = \{A \rightarrow B, BC \rightarrow D, D \rightarrow A\}$ Show that R in not in BCNF.

- $\{A\}$ is not a superkey as $\{A\}^+ = \{A, B\}$, so R is not in BCNF.
 - You can also check $\{D\}^+$.
 - Note that $\{B,C\}^+ = \{A,B,C,D\}$, so this could not be used here.

Pick $A \rightarrow B$

Given R(A, B, C, D), $\mathbf{F} = \{A \rightarrow B, BC \rightarrow D, D \rightarrow A\}$ Give a lossless join decomposition of R into relations in BCNF. Check if the decomposition is dependency preserving.

- Pick $A \to B$, R is decomposed into R1(A,B) and R2(A,C,D).
 - FDs in $R1(F_1) = \{A \to B, ...\}, \{A\}^+ = \{A, B\}, R1$ is in BCNF.
 - FDs in $R2(F_2) = \{D \to A, ...\}, \{D\}^+ = \{A, D\} \neq \{A, C, D\}, R2$ is not in BCNF.
- Pick $D \to A$ for R2, R2 is decomposed into R3(A, D) and R4(C, D).
 - FDs in R3 $(F_3) = \{D \to A, ...\}, \{D\}^+ = \{A, D\}, R3$ is in BCNF.
 - There is no non-trivial FDs in R4, R4 is in BCNF.
- R is decomposed into R1(A,B), R3(A,D), and R4(C,D).
- We can see that dependency $BC \to D$ is not preserved in the decomposition.

 What if we pick $BC \to D$ first?

Pick $BC \rightarrow D$

Given R(A, B, C, D), $\mathbf{F} = \{A \rightarrow B, BC \rightarrow D, D \rightarrow A\}$ Give a lossless join decomposition of R into relations in BCNF. Check if the decomposition is dependency preserving.

- Pick $BC \to D$, R is decomposed into R1(B,C,D) and R2(A,B,C).
 - FDs in $R1(F_1) = \{BC \to D, D \to B, ...\}, \{D\}^+ = \{B, D\} \neq \{B, C, D\}, R1$ is not in BCNF.
 - FDs in $R2(F_2) = \{A \to B, BC \to A, ...\}, \{A\}^+ = \{A, B\} \neq \{A, B, C\}, R2$ is not in BCNF.
- Pick $A \to B$ for R2, R2 is decomposed into R3(A,B) and R4(A,C).
 - FDs in R3 $(F_3) = \{A \to B, ...\}, \{A\}^+ = \{A, B\}, R3$ is in BCNF.
 - There is no non-trivial FDs in R4, R4 is in BCNF.
- Pick $D \to B$ for R1, R1 is decomposed into R5(B,D) and R6(C,D)
 - · Both are in BCNF.
- R is decomposed into, R3(A,B), R4(A,C), R5(B,D) and R6(C,D).
- We can see that dependency $D \to A$ is not preserved in the decomposition. (Shown in Q2) What if we pick $D \to A$ first?

Pick $D \rightarrow A$

Given R(A, B, C, D), $F = \{A \rightarrow B, BC \rightarrow D, D \rightarrow A\}$ Give a lossless join decomposition of R into relations in BCNF. Check if the decomposition is dependency preserving.

- Pick $D \to A$, R is decomposed into R1(A, D) and R2(B, C, D).
 - FDs in $R1(F_1) = \{D \to A, ...\}, \{D\}^+ = \{A, D\}, R1$ is in BCNF.
 - FDs in $R2(F_2) = \{BC \to D, D \to B, ...\}, \{D\}^+ = \{B, D\}, R2$ is not in BCNF.
- Pick $D \to B$ for R2, R2 is decomposed into R3(B,D) and R4(C,D)
 - Both are in BCNF.
- R is decomposed into R1(A,D), R3(B,D) and R4(C,D).
- We can see that dependency $A \rightarrow B$ is not preserved in the decomposition.

Answer -5Pick $A \rightarrow B$

Given R(A, B, C, D, E), $F = \{A \rightarrow B, AD \rightarrow E, C \rightarrow ADE\}$. Give a lossless join decomposition of R into relations in BCNF. Check if the decomposition is dependency preserving.

- Pick $A \to B$, decompose R into R1(A,B) and R2(A,C,D,E).
 - R1 is in BCNF. (proof skipped)
 - FDs in R2 $(F_2) = \{AD \rightarrow E, C \rightarrow ADE, ...\}, \{A, D\}^+ = \{A, D, E\} \neq \{A, C, D, E\},$ R2 is not in BCNF.
- Pick $AD \rightarrow E$ for R2, R2 is decomposed into R3(A,D,E) and R4(A,C,D).
 - R3 is in BCNF. (proof skipped)
 - FDs in R4 $(F_4) = \{C \to AD, \dots\}, \{C\}^+ = \{A, C, D\}, R4$ is in BCNF.
- R is decomposed to R1(A,B), R3(A,D,E) and R4(A,C,D).
- Is $C \rightarrow ADE$ preserved in the decomposition?

Analysis

Given R(A, B, C, D, E), $\mathbf{F} = \{A \rightarrow B, AD \rightarrow E, C \rightarrow ADE\}$. Give a lossless join decomposition of R into relations in BCNF. Check if the decomposition is dependency preserving.

- Note that some of the dependencies could be reduced or transformed.
 - $C \rightarrow ADE \Leftrightarrow C \rightarrow A, C \rightarrow D, C \rightarrow E$

Must be two-way implications

- And some is redundant, e.g.,
 - $C \rightarrow A, C \rightarrow D, AD \rightarrow E \Rightarrow C \rightarrow E$
- Consider $F' = \{A \rightarrow B, AD \rightarrow E, C \rightarrow A, C \rightarrow D\}$, then $F^+ = F'^+$.
 - Now if R is decomposed into R1(A,B), R3(A,D,E) and R4(A,C,D), you can see that all dependencies are preserved.

In order to check if the decomposition is dependency preserving, you must consider $(F_1 \cup F_2 \cup \cdots)^+ = F^+$ instead of just checking the given dependencies!

You can also find an equivalent (but simpler) set of FDs first before normalizing.