Probability Theory for Inference

Discrete random variables

- A random variable can take on one of a set of different values, each with an associated probability. Its value at a particular time is subject to random variation.
 - Discrete random variables take on one of a discrete (often finite) range of values
 - Domain values must be exhaustive and mutually exclusive
- For us, random variables will have a discrete, countable (usually finite) domain of arbitrary values.
 - Mathematical statistics usually calls these random elements
 - Example: Weather is a discrete random variable with domain {sunny, rain, cloudy, snow}.
 - Example: A Boolean random variable has the domain {true,false},

A word on notation

Assume Weather is a discrete random variable with domain {sunny, rain, cloudy, snow}.

- Weather = sunny abbreviated sunny
- P(Weather=sunny)=0.72 abbreviated P(sunny)=0.72
- Cavity = true abbreviated cavity
- Cavity = false abbreviated ¬cavity

Vector notation:

Fix order of domain elements:

<sunny,rain,cloudy,snow>

Specify the probability mass function (pmf) by a vector:

P(Weather) = <0.72, 0.1, 0.08, 0.1>

13.2.3 Probability Axioms

- The axiomatization of probability theory by Kolmogorov (1933) based on three simple axioms
- For any proposition a the probability is in between 0 and 1: 0 ≤ P(a) ≤ 1
- Necessarily true (i.e., valid) propositions have probability 1 and necessarily false (i.e., unsatisfiable) propositions have probability 0:

$$P(true) = 1$$
 $P(false) = 0$

 The probability of a disjunction is given by the inclusion-exclusion principle

$$P(a \lor b) = P(a) + P(b) - P(a \land b)$$

Probability Theory

- Random variables
 - Domain
- Atomic event: complete specification of state
- **Prior probability**: degree of belief without any other evidence
- Joint probability: matrix of combined probabilities of a set of variables

- Alarm, Burglary, Earthquake
 - Boolean (like these), discrete, continuous
- Alarm=True ∧ Burglary=True ∧
 Earthquake=False
 alarm ∧ burglary ∧ ¬earthquake
- P(Burglary) = .1
- P(Alarm, Burglary) =

	alarm	¬alarm
burglary	.09	.01
¬burglary	.1	.8

Probability Theory: Definitions

• Computing conditional prob:

- $P(a \mid b) = P(a \land b) / P(b)$
- P(b): **normalizing** constant
- Product rule:
 - $P(a \land b) = P(a \mid b) P(b)$
- Marginalizing:
 - $P(B) = \sum_{a} P(B, a)$
 - $P(B) = \sum_{a} P(B \mid a) P(a)$ (conditioning)

Bayes' Rule & Diagnosis

$$P(a|b) = \frac{P(b|a) * P(a)}{P(b)}$$
Posterior

Useful for assessing diagnostic probability from causal probability:

$$P(Cause|Effect) = P(Effect|Cause) * P(Cause)$$
 $P(Effect)$

Probability Summary

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

oduct rule

$$P(x,y) = P(x|y)P(y)$$

nain rule

$$P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$$
$$= \prod_{i=1}^{n} P(X_i|X_1, ..., X_{i-1})$$

Y independent if and only if: $\forall x, y : P(x, y) = P(x)P(y)$

$$\forall x, y : P(x, y) = P(x)P(y)$$

 $X \perp \!\!\! \perp Y | X = X + Y | X$

and Y are conditionally independent given Z if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

Try It...

	alarm	¬alarm
burglary	.09	.01
¬burglary	.1	.8

• Computing conditional prob:

$$- P(a \mid b) = P(a \land b) / P(b)$$

- P(b): **normalizing** constant

• Product rule:

$$- P(a \land b) = P(a \mid b) P(b)$$

• Marginalizing:

$$- P(B) = \sum_{a} P(B, a)$$

-
$$P(B) = \sum_{a} P(B \mid a) P(a)$$

(conditioning)

- P(alarm | burglary) = ??
- P(burglary | alarm) = ??
- P(burglary \land alarm) = ??
- P(alarm) = ??

Probability Theory (cont.)

- Conditional probability: probability of effect given causes
- Computing conditional probs:
 - $P(a \mid b) = P(a \land b) / P(b)$
 - P(b): **normalizing** constant
- Product rule:
 - $P(a \land b) = P(a \mid b) P(b)$
- Marginalizing:
 - $P(B) = \sum_{a} P(B, a)$
 - $P(B) = \sum_{a} P(B \mid a) P(a)$ (conditioning)

- P(burglary | alarm) = .47 P(alarm | burglary) = .9
- P(burglary | alarm) =
 P(burglary ∧ alarm) / P(alarm)
 = .09 / .19 = .47
- P(burglary ∧ alarm) = P(burglary | alarm) P(alarm) = .47 * .19 = .09
- P(alarm) =
 P(alarm ∧ burglary) +
 P(alarm ∧ ¬burglary) =
 .09+.1 = .19

Bayes Theorem Application

Guilty or not?

A person is put in front of a jury. The jury finds the defendant guilty in 98% of the cases in which the defendant has committed a crime, and it finds the defendent not guilty in only 9\% of the cases in which the defendant has not committed a crime. Furthermore, only .008 of the entire population has committed a crime.

If a random person is found guilty by the jury, what's more likely: criminal or not?

Bayes Theorem Application

Guilty or not?

A person is put in front of a jury. The jury finds the defendant guilty in 98% of the cases in which the defendant has committed a crime, and it finds the defendent not guilty in only 97% of the cases in which the defendant has not committed a crime. Furthermore, only .008 of the entire population has committed a crime.

$$P(criminal) = 0.008$$
 $P(\neg criminal) = 0.992$ $P(guilty|criminal) = 0.98$ $P(\neg guilty|criminal) = 0.02$ $P(guilty|\neg criminal) = 0.03$ $P(\neg guilty|\neg criminal) = 0.97$

If a random person is found guilty by the Jury, what's more likely: criminal or not?

which is bigger? P(criminal|guilty) or $P(\neg criminal|guilty)$?

Probabilities Bayes Rule

$$P(a \wedge b) = P(a|b)P(b)$$

 $P(a \wedge b) = P(b|a)P(b)$

$$P(b|a)P(a) = P(a|b)P(b)$$

$$P(\underline{b}|\underline{a}) = \frac{P(\underline{a}|\underline{b})P(\underline{b})}{P(\underline{a})}$$

Bayes Theorem Application

Guilty or not?

$$P(criminal) = 0.008$$
 $P(\neg criminal) = 0.992$
 $P(guilty|criminal) = 0.98$ $P(\neg guilty|criminal) = 0.03$
 $P(guilty|\neg criminal) = 0.02$ $P(\neg guilty|\neg criminal) = 0.97$

If a random person is found guilty by the jury, what's more likely: criminal or not? which is bigger? P(criminal|guilty) or $P(\neg criminal|guilty)$?

$$P(criminal|guilty) = \frac{P(guilty|criminal)P(criminal)}{P(guilty)}$$

$$P(\neg criminal|guilty) = \frac{P(guilty|\neg criminal)P(\neg criminal)}{P(guilty)}$$

Calculating Conditional Probabilities

College students were asked if they have ever cheated on an exam. Results were broken down by gender.

		Cheated	on College Ex	kam _i ?	
		Yes	No.	Total	_
der	Male	.32	.22	.54	
ender	Female	.28	.18	.46	
g	Total	.60	.40	1.00	_

- Question: Given that a person has cheated, what is the probability he is male?
- Answer: $P(\text{Male}|\text{Cheater}) = \frac{P(\text{Male} \cap \text{Cheater})}{P(\text{Cheater})}$.32

	Right-handed	Left-handed	Total
Male	0.41	0.08	0.49
Female	0.45	0.06	0.51
Total	0.86	0.14	1

Find the probability that a randomly selected person is:

- (a) a male given that she is right-handed;
- (b) right-handed given that she is a male;
- (c) a female given that she is left-handed.
- (d) Are the events being a female and being left-handed independent? Justify.

a)
$$P(M1R) = P(MNR) = \frac{0.41}{P(R)} \approx 0.477$$

b)
$$P(R|M) = P(R \cap M) = 0.41 = 0.837$$

b)
$$P(R|M) = \frac{P(R \cap M)}{P(M)} = \frac{0.41}{0.49} \approx 0.837$$

C) $P(F|L) = \frac{P(F \cap L)}{P(L)} = \frac{0.06}{0.19} \approx 0.429$
d) $P(F|L) \approx 0.429$ $\Rightarrow F \text{ and } L \text{ are } P(F) = 0.51$ $\Rightarrow F \text{ and } L \text{ are } P(F) = 0.51$

Joint probability distribution

 Probability assignment to all combinations of values of random variables (i.e. all elementary events)

	toothache	- toothache
cavity	0.04	0.06
¬ cavity	0.01	0.89

- The sum of the entries in this table has to be 1
- Every question about a domain can be answered by the joint distribution
- Probability of a proposition is the sum of the probabilities of elementary events in which it holds
 - P(cavity) = 0.1 [marginal of row 1]
 - P(toothache) = 0.05 [marginal of toothache column]

Conditional Probability

	toothache	¬ toothache
cavity	0.04	0.06
¬ cavity	0.01	0.89

- P(cavity)=0.1 and P(cavity \(\triangle \) toothache)=0.04 are both prior (unconditional) probabilities
- Once the agent has new evidence concerning a previously unknown random variable, e.g. Toothache, we can specify a posterior (conditional) probability e.g. P(cavity | Toothache=true)

$$P(a \mid b) = P(a \land b)/P(b)$$

[Probability of a with the Universe Ω restricted to b]

- \rightarrow The new information restricts the set of possible worlds ω_i consistent with it, so changes the probability.
- So P(cavity | toothache) = 0.04/0.05 = 0.8

Conditional Probability (continued)

Definition of Conditional Probability:

$$P(a \mid b) = P(a \land b)/P(b)$$

Product rule gives an alternative formulation:

$$P(a \wedge b) = P(a \mid b) * P(b)$$
$$= P(b \mid a) * P(a)$$

A general version holds for whole distributions:

```
P(Weather, Cavity) = P(Weather \mid Cavity) * P(Cavity)
```

Chain rule is derived by successive application of product rule:

$$P(A,B,C,D,E) = P(A|B,C,D,E) P(B,C,D,E)$$

= $P(A|B,C,D,E) P(B|C,D,E) P(C,D,E)$
= ...
= $P(A|B,C,D,E) P(B|C,D,E) P(C|D,E) P(D|E) P(E)$

9 Penn

Probabilistic Inference

- Probabilistic inference: the computation
 - from observed evidence
 - of posterior probabilities
 - for query propositions.
- We use the full joint distribution as the "knowledge base" from which answers to questions may be derived.
- Ex: three Boolean variables Toothache (T), Cavity (C), ShowsOnXRay (X)

	t			8	_	٦t	
	X		$\neg x$		X		¬X
c	0.108		0.012		0.072	0	.008
¬с	0.016		0.064		0.144	0	.576

Probabilities in joint distribution sum to 1

Probabilistic Inference II

	1	t	-	¬t
	X	$\neg x$	X	¬ x
c	0.108	0.012	0.072	0.008
¬с	0.016	0.064	0.144	0.576

- Probability of any proposition computed by finding atomic events where proposition is true and adding their probabilities
 - P(cavity v toothache)
 = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064
 = 0.28
 - P(cavity) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2
- P(cavity) is called a <u>marginal probability</u> and the process of computing this is called <u>marginalization</u>

Probabilistic Inference III

		1	t	_	¬t
		X	$\neg x$	x	¬ x
c	945	0.108	0.012	0.072	0.008
¬с		0.016	0.064	0.144	0.576

- Can also compute conditional probabilities.
- P(¬ cavity | toothache)
 = P(¬ cavity ∧ toothache)/P(toothache)
 = (0.016 + 0.064) / (0.108 + 0.012 + 0.016 + 0.064)
 = 0.4
- Denominator is viewed as a normalization constant:
 - Stays constant no matter what the value of Cavity is.
 (Book uses α to denote normalization constant 1/P(X), for random variable X.)

13.3 Inference Using Full Joint Distribution

	toot	hache	-toothache	
	catch	¬catch	catch	-catch
cavity	0.108	0.012	0.072	0.008
¬cavity	0.016	0.064	0.144	0.576

- E.g., there are six atomic events for cavity v toothache:
 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28
- Extracting the distribution over a variable (or some subset of variables), marginal probability, is attained by adding the entries in the corresponding rows or columns
- E.g., P(cavity) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2
- We can write the following general marginalization (summing out) rule for any sets of variables Y and Z:

$$\underline{P}(Y) = \sum_{z \in Z} \underline{P}(Y, z)$$

	tooth	nache	-toothache		
	catch	-catch	catch	-catch	
cavity	0.108	0.012	0.072	0.008	
-cavity	0.016	0.064	0.144	0.576	

Computing a conditional probability

P(cavity | toothache) =

P(cavity
$$\land$$
 toothache)/P(toothache) =

(0.108 + 0.012)/(0.108 + 0.012 + 0.016 + 0.064) =

0.12/0.2 = 0.6

Respectively

$$P(\neg cavity \mid toothache) = (0.016 + 0.064)/0.2 = 0.4$$

· The two probabilities sum up to one, as they should

13.4 Independence

- If we expand the previous example with a fourth random variable Weather, which has four possible values, we have to copy the table of joint probabilities four times to have 32 entries together
- · Dental problems have no influence on the weather, hence:

```
P(Weather = cloudy | toothache, catch, cavity) = 
P(Weather = cloudy)
```

By this observation and product rule

```
P(toothache, catch, cavity, Weather = cloudy) = P(Weather = cloudy) P(toothache, catch, cavity)
```

Conditional Independence

- Absolute independence:
 - A and B are **independent** if $P(A \land B) = P(A) P(B)$; equivalently, $P(A) = P(A \mid B)$ and $P(B) = P(B \mid A)$
- A and B are **conditionally independent** given C if
 - $P(A \land B \mid C) = P(A \mid C) P(B \mid C)$
- This lets us decompose the joint distribution:
 - $P(A \land B \land C) = P(A \mid C) P(B \mid C) P(C)$
- Moon-Phase and Burglary are *conditionally independent given* Light-Level
- Conditional independence is weaker than absolute independence, but still useful in decomposing the full joint probability distribution

Bayes' Rule

Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Lets us build a conditional from its reverse
- Often one conditional is tricky but the other one is simple
- Foundation of many systems we'll see later
- In the running for most important AI equation!

ayes' Rule & Diagnosis

$$P(a|b) = \frac{P(b|a) * P(a)}{P(b)}$$
Posterior
$$P(b)$$
Normalization

Useful for assessing diagnostic probability from causal probability:

Bayes' Rule For Diagnosis II

 $P(Disease \mid Symptom) = P(Symptom \mid Disease) * P(Disease)$ P(Symptom)

Imagine:

- disease = TB, symptom = coughing
- P(disease | symptom) is different in TB-indicated country vs.
 USA
- P(symptom | disease) should be the same
 - It is more widely useful to learn P(symptom | disease)
- What about P(symptom)?
 - Use conditioning (next slide)
 - For determining, e.g., the most likely disease given the symptom, we can just ignore P(symptom)!!! (see slide 35)

Conditioning

Idea: Use conditional probabilities instead of joint probabilities

$$P(a) = P(a \land b) + P(a \land \neg b)$$

= $P(a \mid b) * P(b) + P(a \mid \neg b) * P(\neg b)$
Here:

$$P(symptom) = P(symptom \mid disease) * P(disease)$$

 $P(symptom \mid \neg disease) * P(\neg disease)$

- More generally: $P(Y) = \sum_{z} P(Y|z) * P(z)$
- Marginalization and conditioning are useful rules for derivations involving probability expressions.

Conditional Independence

UT absolute independence is rare entistry is a large field with hundreds of variables, one of which are independent. What to do?

and B are <u>conditionally independent</u> given C iff

- $P(A \mid B, C) = P(A \mid C)$
- $P(B \mid A, C) = P(B \mid C)$
- $P(A \wedge B \mid C) = P(A \mid C) * P(B \mid C)$

- oothache (T), Spot in Xray (X), Cavity (C)
- None of these are independent of the other two
- But T and X are conditionally independent given C

Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, -cavity) = P(+catch| -cavity)
- Catch is conditionally independent of Toothache given Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
 - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily

Conditional Independence II WHY??

If I have a cavity, the probability that the XRay shows a spot doesn't depend on whether I have a toothache (and vice vers

$$P(X|T,C) = P(X|C)$$

From which follows:

$$P(T|X,C) = P(T|C) \text{ and } P(T,X|C) = P(T|C) * P(X|C)$$

By the chain rule), given conditional independence:

$$P(T,X,C) = P(T|X,C) * P(X,C) = P(T|X,C) * P(X|C) * P(C)$$
$$= P(T|C) * P(X|C) * P(C)$$

- P(Toothache, Cavity, Xray) has $2^3 1 = 7$ independent entries
- Given conditional independence, chain rule yields 2 + 2 + 1 = 5 independent numbers

Conditional Independence III

- In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Exercise: Inference from the Joint

p(smart \(\)	SI	nart	¬smart		
study ∧ prep)	study	¬study	study	¬study	
prepared	.432	.16	.084	.008	
¬prepared	.048	.16	.036	.072	

• Queries:

- What is the prior probability of *smart*?
- What is the prior probability of study?
- What is the conditional probability of *prepared*, given *study* and *smart*?
- Save these answers for later! ⊙

Exercise: Independence

p(smart ∧ study ∧ prep)	smart		¬smart	
	study	¬study	study	¬study
prepared	.432	.16	.084	.008
¬prepared	.048	.16	.036	.072

• Queries:

- Is smart independent of study?
- Is prepared independent of study?

Exercise: Conditional Independence

p(smart ∧ study ∧ prep)	smart		¬smart	
	study	¬study	study	¬study
prepared	.432	.16	.084	.008
¬prepared	.048	.16	.036	.072

• Queries:

- Is *smart* conditionally independent of *prepared*, given *study*?
- Is *study* conditionally independent of *prepared*, given *smart*?