Homogeneous, weakly homogeneous, universally Baire

YasudaYasutomo

2020年2月16日

Homogeneously Suslin, weakly homogeneously Suslin, universally Baire の関係についていくつかの事実を証明する.*1主に [1] を参考にしているが異なる定義を採用している. Stationary tower forcing は主に [2] を参考とし既知とした. Martin-Steel による projective determinacy の無矛盾性証明 [5] にて示されたいくつかの結果も既知とする.

1 Tree representation

次を示すことを目標とする.

定理 1.1. λ を limit of Woodin とする. このとき実数の集合 $A \subseteq \mathbb{R}$ に関して次は同値.

- 2. $A \not \exists < \lambda$ -weakly homogeneously Suslin.
- 3. A $l \ddagger \lambda$ -universally Baire.

定義 1.2 (homogeneous tree). κ を無限基数とする. $X \times Y$ 上の木 T が κ -homogeneous であるとはある列 $\langle U_s \mid s \in {}^{<\omega}X \rangle$ が存在して次を満たすことをいう.

- 各 $s \in {}^{<\omega}X$ に対して, U_s はT[s] 上の κ -完備な超フィルター.
- 各 $s \subset t \in {}^{<\omega}X$ に対して, U_t は U_s の射影.*2
- 任意の $x \in p[T]$ に対して, tower $\langle U_{x \upharpoonright n} \mid n \in \omega \rangle$ は well-founded. *3

T が任意の $\lambda < \kappa$ について λ -homogeneous であるとき $< \kappa$ -homogeneous という.

定義 1.3.

- $A \subseteq {}^{\omega}X$ が κ -homogeneously Suslin であるとはある κ -homogeneous tree T が存在して A = p[T] を満たすときのことをいう.
- \bullet ${}^{\omega}X$ の部分集合で κ -homogeneously Suslin であるもの全体を $\mathrm{Hom}_{\kappa}^{X}$ と表す.

同様に $<\kappa$ -homogeneously Suslin も定義する.

^{*1} この結果も重要と感じたので「決定性公理の無矛盾性」の記事から分離して書きました.

^{*2} 超冪の間の初等埋め込みを誘導する.

^{*3} 超フィルターの列が誘導する超冪のシステムの direct limit が well-founded ということ.

命題 1.4. $\operatorname{Hom}_{\kappa}^{X}$ は continuous reducibility に関して閉じている.

証明. κ -Suslin set における証明と同様である.

また可算共通部分に関して閉じていることも簡単に示せる. Homogeneity は決定性を導く.

定理 1.5 (Martin). $A \subseteq {}^{\omega}X$ が $|X|^+$ -homogeneously Suslin であると仮定する. このとき A は決定的.

定義 1.6 (weakly homogeneous tree). κ を無限基数とする. $X \times Y$ 上の木 T が κ -weakly homogeneous であるとはある列 $\langle U_{s,t} \mid (s,t) \in {}^{<\omega}X \oplus {}^{<\omega}\omega \rangle$ が存在して次を満たすことをいう.

- 各 $(s,t) \in {}^{<\omega}X \oplus {}^{<\omega}\omega$ に対して, $U_{s,t}$ は T[s] 上の κ -完備な超フィルター.
- 各 $(p,r) \subseteq (q,s) \in {}^{<\omega}X \oplus {}^{<\omega}\omega$ に対して, $U_{q,s}$ は $U_{p,t}$ の射影.
- 任意の $x \in p[T]$ に対してある $y \in \mathbb{R}$ が存在して $\langle U_{x \upharpoonright n, y \upharpoonright n} \mid n \in \omega \rangle$ は well-founded.

T が任意の $\lambda < \kappa$ について λ -weakly homogeneous であるとき $<\kappa$ -weakly homogeneous という.

定義 1.7. $A \subseteq {}^{\omega}X$ が κ -weakly homogeneously Suslin であるとはある κ -weakly homogeneous tree T が存在して A = p[T] を満たすときのことをいう.

同様に $<\kappa$ -weakly homogeneously Suslin も定義する.

命題 1.8. $A \subset {}^{\omega}X$ に対して次は同値.

- 1. A k κ -weakly homogeneously Suslin.
- 2. A はある κ -homogeneously Suslin set B の射影.

定義から明らかに κ-homogeneously Suslin ならば κ-weakly homogeneously Suslin である.

定義 1.9. κ を無限基数とする. $X \times Y$ 上の木 T と $X \times Z$ 上の木 U の組 (T,U) が κ -absolute complement pair であるとは, 任意のサイズ κ 未満の半順序 $\mathbb P$ と $(V,\mathbb P)$ -generic G に対して次が成立することをいう.

$$V[G] \models p[T] = {}^{\omega}X \setminus p[U]$$

V において $p[T]\cap p[U]=\emptyset$ のとき絶対性から任意の generic extension で $p[T]\cap p[U]=\emptyset$ が成立する.また (T,U), (R,S) を κ -absolute complement pair で V において p[T]=p[R] を満たすものとする.絶対性の議論によりサイズ κ 未満の任意の半順序 $\mathbb P$ と $(V,\mathbb P)$ -generic G に対して,V[G] において p[T]=p[R] が成立する.

定義 1.10 (universally Baire). κ を無限基数とする.

- $A\subseteq {}^{\omega}X$ が κ -universally Baire であるとはある κ -absolute complement pair (T,U) が存在して A=p[T] を満たすときのことをいう.
- uB_{κ}^{X} を ${}^{\omega}X$ の部分集合で κ -universally Baire であるもの全体とする.
- $uB_{\kappa} = uB_{\kappa}^{\omega} \ \xi \ \delta$.

Martin-Solovay の結果から κ -weakly homogeneously Suslin ならば κ -universally Baire であることがわかる. $\langle r_i \mid i \in \omega \rangle$ を $\omega^{<\omega}$ の標準的な数え上げとし固定しておく. T を κ -weakly homogeneous tree とする.

 $(p,r)\subseteq (q,s)\in {}^{<\omega}X\oplus {}^{<\omega}\omega$ に対して、超冪 $\mathrm{Ult}(V,U_{p,r})$ と $\mathrm{Ult}(V,U_{q,s})$ の間に誘導される初等埋め込みを $i_{(p,r),(q,s)}\colon \mathrm{Ult}(V,U_{p,r})\to \mathrm{Ult}(V,U_{q,s})$ で表す.

定義 1.11 (Martin-Solovay tree). T を $X \times Y$ 上の κ -weakly homogeneous tree とする. α を順序数とする. Martin-Solovay tree $\operatorname{ms}(T,\alpha)$ とは次を満たす組 (p,t) から成る $X \times \alpha$ 上の木である.

- $p \in {}^{<\omega}X$.
- $t \in {}^{\operatorname{lh}(p)}\operatorname{ON}$
- $t(0) < \alpha$
- 任意の $i,j < \ln(p)$ に対して, $r_i \subsetneq r_j$ ならば $t(j) < i_{(p \mid \ln(r_i),r_i),(p \mid \ln(r_j),r_j)}(t(i))$ が成立する.

アイデアとしては κ -weakly homogeneous tree T から誘導される V の超冪からなるシステムにおいて、direct limit が ill-founded となるような path を集めている.このアイデアをそのまま形にすると次の定理の証明となる.

定理 1.12. T を $X \times Y$ 上の κ -weakly homogeneous tree とする. $\alpha \geq |Y|^+$ に対して $p[\operatorname{ms}(T,\alpha)] = {}^\omega X \setminus p[T]$ が成立する.

 κ -weakly homogeneously Suslin $\alpha \beta \ \ \kappa$ -universally Baire α

定理 1.13. T を $X \times Y$ 上の κ -weakly homogeneous tree とする. 十分大きい θ に対して, $(T, ms(T, \theta))$ は κ -absolute complement pair となる.

証明. 絶対性と Lévy-Solovay の定理より良い.

系 1.14. $A \subseteq \mathbb{R}$ が κ -weakly homogeneously Suslin ならば κ -universally Baire.

ここまで一般の κ について成り立つ方向を示した。二つの逆向きの成立は Woodin 基数を用いていくつかの結果が示されている。Projective determinacy の無矛盾性証明において次を示すことが鍵であった。そこでは Woodin 基数の存在のもとで適切な alternating chain を構成して超フィルターの列を得ていた。

定理 1.15 (Martin-Steel). δ を Woodin 基数とし, $X \in V_{\delta}$ とする. また T を δ^+ -weakly homogeneous tree とする. このとき十分大きい θ に対して $\operatorname{ms}(T,\theta)$ は $<\delta$ -homogeneous tree となる.

証明は非常に大変であるので省略する.

系 1.16. δ を Woodin 基数とする. $A \subseteq \mathbb{R} \times \mathbb{R}$ を δ^+ -homogeneously Suslin とする. このとき $\neg \exists^\mathbb{R} A$ は $<\delta$ -homogeneously Suslin となる.

系 1.17. λ を limit of Woodin とする. このとき $\mathrm{Hom}_{<\lambda}$ は $\exists^{\mathbb{R}}$, 補集合と取る操作, continuous reducibility に関して閉じている.

系 1.17 と Martin の Π_1^1 -determinacy から無限個の Woodin 基数の存在を仮定すると projective determinacy が成立することがわかる. また $\operatorname{Hom}_{<\lambda}$ に関して Wadge order の議論により次が成立する.

定理 1.18. λ を limit of Woodin とする. このときある $\kappa < \lambda$ が存在して $\operatorname{Hom}_{\kappa} = \operatorname{Hom}_{<\lambda}$ が成立する.

証明. 任意の $\kappa < \lambda$ に対して $\operatorname{Hom}_{\kappa} = \operatorname{Hom}_{<\lambda}$ であると仮定する.このとき Wadge order の無限降下

列 $A_0>_w A_1>_w \dots$ が存在する. しかし十分な決定性があるため, Martin-Monk による $<_w$ の well-foundedness の証明と同様にして矛盾.

次に universally Baireness から weak homogeneity を得る. 次の補題 1.19 は便利な特徴付けである.

補題 1.19. $\omega \times Z$ 上の木 T に対して次は同値.

- 1. $T \bowtie \kappa$ -weakly homogeneous.
- 2. ある $^{<\omega}Z$ 上の κ -完備な超フィルターの可算族 Σ が存在して, $x \in p[T]$ とある countably complete な $\langle \mu_n \mid n \in \omega \rangle \in {}^{\omega}\Sigma$ が存在して任意の $n \in \omega$ に対して $T[x \mid n] \in \mu_n$ が成立することが同値となる.

定理 1.20 (Woodin). δ を Woodin 基数とする. T, U を $\omega \times Z$ 上の木で (T, U) は δ^+ -absolutely complement pair とする. このとき T は $<\delta$ -weakly homogeneous となる.

証明・(T,U) を δ^+ -absolutely complement pair とする.正則基数 η を $T,U \in V_\eta$ となるように十分大きく取る.T' と U' をそれぞれ T と U の部分木で V_η 上で V_δ の元と T, U, δ をパラメタに用いて定義可能な node 全体とする.このとき $|T'| = |U'| = \delta$ となる. $\mathbb{Q}_{<\delta}$ を countable stationary tower とする.実数の $\mathbb{Q}_{<\delta}$ -name はある到達不能基数 $\kappa < \delta$ が存在して $\mathbb{Q}_{<\kappa}$ -name として実現できるので V_δ の元として取れる.このことから $\mathbb{Q}_{<\delta}$ ト $p[\check{T}'] = \mathbb{R} \setminus p[\check{U}']$ が成立する.よって p[T] = p[T'] が成立する.また T' が $<\delta$ -weakly homogeneous のとき,T も $<\delta$ -weakly homogeneous であることから一般性を損なうことなく T と U は $\omega \times \delta$ 上の木だ と仮定して良い. κ を任意に取る.T が κ -weakly homogeneous であることを示す. δ は Woodin より κ を $<\delta$ -T-strong だと仮定して良い.各 κ $<\lambda$ $<\delta$ に対して j_λ : $V \to M_\lambda$ を λ -T-strong embedding とする. Σ_λ を各 $(s,u) \in T \cap V_\lambda$ と $X \subseteq \kappa^{<\omega}$ に対して,

$$X \in \Sigma_{\lambda}(s, u) \leftrightarrow u \in j_{\lambda}(X)$$

と定義する.

主張 1. 各 $\kappa < \lambda < \delta$ に対して次が成立する.

- 1. $\Sigma_{\lambda}(s,u)$ は κ -完備な超フィルターで $T[s] \cap V_{\kappa} \in \Sigma_{\lambda}(s,u)$ が成立する.
- 2. 各 $(s,u) \subseteq (t,v) \in T \cap V_{\lambda}$ に対して, $\Sigma_{\lambda}(t,v)$ は $\Sigma_{\lambda}(s,u)$ の射影.
- 3. 各 $(x,f) \in [T \cap V_{\lambda}]$ に対して, $\langle \Sigma_{\lambda}(x \upharpoonright n, f \upharpoonright n) \mid n \in \omega \rangle$ は well-founded.

1, 2 は良い. $(x,f) \in [T \cap V_{\lambda}]$ に対して, direct limit は M_{λ} の初等部分モデルとなることから良い. $\exists G \in (V, \mathbb{Q}_{\leq \delta})$ -generic とし, $i: V \to N \subseteq V[G]$ を generic ultrapower embedding とする.

主張 **2.** i(T) は N において $i(\kappa)$ -weakly homogeneous.

 $\kappa^{<\omega}$ 上の κ -完備な超フィルター全体を $m_{\kappa}(\kappa)$ で表す. $\sigma=i"m_{\kappa}(\kappa)$ が i(T) の κ -weak homogeneity の witness となっていることを示す. N は V[G] において可算列で閉じているから $\sigma\in N$ となる. $x\in p[i(T)]\cap N$ を任意に取る. (T,U) は δ^+ -absolutely complement pair より $x\in p[T]$ が成立する. $\lambda<\delta=\omega_1^{V[G]}$ を十分大きく取ることで $x\in p[T\cap V_{\lambda}]$ とする. f を $(x,f)\in [T\cap V_{\lambda}]$ となるように取る. 初等性より $\langle i(\Sigma_{\lambda})(x\upharpoonright n,i(f)\upharpoonright n)\mid n\in\omega\rangle$ は N において well-founded となる. よって i(T) は N において $i(\kappa)$ -weakly homogeneous. \dashv

初等性から T は κ -weakly homogeneous となる.

よって以上のことから次が示された.

定理 1.21. λ を limit of Woodin とする. このとき実数の集合 $A \subseteq \mathbb{R}$ に関して次は同値.

- 1. $A \bowtie < \lambda$ -homogeneously Suslin.
- 2. A $l = \lambda$ -weakly homogeneously Suslin.
- 3. A $l \ddagger \lambda$ -universally Baire.

参考文献

- [1] John R. Steel, The Derived Model Theorem, 2008.
- [2] P. Larson, The stationary tower, University Lecture Series, American Mathematical Society, 2004.
- [3] Akihiro Kanamori, The higher infinite, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1994.
- [4] W. Hugh Woodin, Supercompact cardinals, sets of reals, and weakly homogeneous trees, Proc. Nat. Acad. Sci. USA 85, 6587-6591.
- [5] D.A. Martin and J.R. Steel, A Proof of Projective Determinacy, Journal of the American Mathematical Society bf 2 (1989), 71-125.
- [6] van Wesep R. (1978) Wadge degrees and descriptive set theory. In: Kechris A.S., Moschovakis Y.N. (eds) Cabal Seminar 76-77. Lecture Notes in Mathematics, vol 689. Springer, Berlin, Heidelberg.