

Max K-armed bandit: On the ExtremeHunter algorithm and beyond

Mastane Achab, Stéphan Clémençon, Aurélien Garivier, Anne Sabourin, Claire Vernade

ECML PKDD 2017, Skopje

Introduction

Controlling $\mathbb{E}[\max_{1 \leq t \leq n} X_t]$

EXTREMEETC algorithm

Reduction to Multi-Armed Bandits

Introduction

Controlling $\mathbb{E}[\max_{1 \leq t \leq n} X_t]$

EXTREMEETC algorithm

Reduction to Multi-Armed Bandits

The classical Multi-Armed Bandit problem

At each time t = 1, ..., n

- ▶ Play a slot machine ("pull an arm")
- Receive reward

Goal: maximize cumulative reward! Dilemma: exploration vs exploitation

A successful approach: UCB algorithm (Auer et al., 2002)

- ▶ Initialization: pull each arm once
- ► Then:

The Max K-Armed Bandit problem

At each time t = 1, ..., n

- ▶ Choose arm $k_t \in \{1, ..., K\}$
- ▶ Observe reward $X_{k_t,t}$

Multi-Armed Bandits

maximize $\mathbb{E}[\sum_{t=1}^{n} X_{k_t,t}]$

Max K-Armed Bandits (Cicirello and Smith, 2005)

maximize $\mathbb{E}[\max_{1 \leq t \leq n} X_{k_t,t}]$

Extreme Regret

optimal arm

$$k^* = \underset{1 \le k \le K}{\operatorname{arg\,max}} \mathbb{E} \left[\underset{1 \le t \le n}{\operatorname{max}} X_{k,t} \right]$$

equivalent objective

Expected extreme regret

$$\text{minimize } \mathbb{E}\left[R_n^{\pi}\right] = \mathbb{E}\left[\max_{1 \leq t \leq n} X_{k^*,t}\right] - \mathbb{E}\left[\max_{1 \leq t \leq n} X_{k_t,t}\right]$$

2nd-order Pareto

Definition

F is a 2^{nd} -order Pareto distribution if $\forall x \geq 0$

$$|1 - Cx^{-\alpha} - F(x)| \le C'x^{-\alpha(1+\beta)},$$

with constants $\alpha, \beta, C, C' > 0$.

Some properties

- for $\beta = +\infty$, $F(x) = 1 Cx^{-\alpha}$ (exact Pareto)
- finite moments of orders $r < \alpha$

Assumption: $\alpha > 1$ (finite mean).

Introduction

Controlling $\mathbb{E}[\max_{1 \leq t \leq n} X_t]$

EXTREMEETC algorithm

Reduction to Multi-Armed Bandits

Controlling $\mathbb{E}[\max_{1 \leq t \leq n} X_t]$

$$X_{1:n} \sim^{\text{iid}} 2^{nd}$$
-order Pareto $(\alpha > 1, \beta, C, C')$

$$\mathbb{E}[\max_{1 < t < n} X_t] \sim_{n \to \infty} (nC)^{1/\alpha} \Gamma(1 - 1/\alpha) \quad \text{(mean of a Fréchet distribution)}$$

Theorem 1

$$\left| \mathbb{E} \left[\max_{1 \le t \le n} X_t \right] - (nC)^{1/\alpha} \Gamma \left(1 - 1/\alpha \right) \right| = \mathcal{O} \left(n^{-(\min(1,\beta) - 1/\alpha)} \right)$$

sharper than $\mathcal{O}\left(n^{\frac{1}{(1+\beta)\alpha}}\right)$ in C&V14.

Introduction

Controlling $\mathbb{E}[\max_{1 \leq t \leq n} X_t]$

EXTREMEETC algorithm

Reduction to Multi-Armed Bandits

ExtremeETC algorithm

UCB idea:

$$B_{k} = (n(\widehat{C}_{k} + \Lambda_{2}))^{\widehat{1/\alpha_{k}} + \Lambda_{1}} \Gamma(1 - \widehat{1/\alpha_{k}} - \Lambda_{1})$$

$$\geq \mathbb{E}\left[\max_{1 \leq t \leq T} X_{k,t}\right] \text{ with high probability}$$
(1)

▶ Initialization: pull each arm $N = A(\log n)^{\frac{2(2b+1)}{b}}$ times

EXTREMEETC VS EXTREMEHUNTER

- 1: Input: n: time horizon, K: number of arms, b > 0 such that $b < \min_k \beta_k$.
- 2: Initialize: Pull N times each arm k and compute index B_k (see Eq. (1)).

- $\begin{array}{lll} \text{3: } k_0 = \arg\max_k B_k & \quad \text{3: } \text{for } t > KN \text{ do} \\ \text{4: } \text{for } t > KN \text{ do} & \quad \text{4: } \text{Pull } k_t = \arg\max_k B_k. \\ \text{5: } \text{Pull arm } k_0. & \quad \text{5: } \text{Update index } B_{k_t}. \end{array}$
- 6: end for 6: end for

Complexity	Ex.ETC	Ex.Hunt.
Time	$\mathcal{O}\left(K(\log n)^{\frac{2(2b+1)}{b}}\right)$ $\mathcal{O}\left(K(\log n)^{\frac{2(2b+1)}{b}}\right)$	$\mathcal{O}(n^2)$
Memory	$\mathcal{O}(K(\log n)^{\frac{2(2b+1)}{b}})$	$\mathcal{O}(n)$

Tight regret bounds

Theorem

(i) Upper bound for ExtremeETC and ExtremeHunter

$$\mathbb{E}[R_n] = \mathcal{O}\left((\log n)^{\frac{2(2b+1)}{b}} n^{-(1-1/\alpha_{k^*})} + n^{-(b-1/\alpha_{k^*})} \right),$$

sharper than
$$\mathcal{O}\left(n^{\frac{1}{(1+b)\alpha_{k^*}}}\right)$$
 in $C\&V(14)$.

(ii) Lower bound for any algorithm pulling each arm at least N times

$$\mathbb{E}[R_n] = \Omega\left(\left(\log n\right)^{\frac{2(2b+1)}{b}} n^{-(1-1/\alpha_{k^*})}\right).$$

When $b \ge 1$, (i) and (ii) are tight!

Regret bounds - idea of proof

- ▶ favorable event (A): $1/\alpha_k$, $C_k \in$ confidence intervals
- ▶ Lemma: under (A), k^* always pulled
- use Theorem 1 to control $\mathbb{E}[\max...]$

Introduction

Controlling $\mathbb{E}[\max_{1 \leq t \leq n} X_t]$

EXTREMEETC algorithm

Reduction to Multi-Armed Bandits

Reduction to Multi-Armed Bandits

- Idea: peak over threshold
- ► Truncated rewards: $Y_{k,t} = X_{k,t} \mathbb{1}_{\{X_{k,t} > u\}}$.
- $\mathbb{E}[Y_{k,1}] \sim_{u \to \infty} C_k \left(1 + \frac{1}{\alpha_k 1}\right) u^{-\alpha_k + 1} .$
- ▶ For *u* and *n* large

$$\mathop{\arg\max}_{1\leq k\leq K}\mathbb{E}[Y_{k,1}] = \mathop{\arg\min}_{1\leq k\leq K}\alpha_k = k^* \; .$$

- ▶ MAB objective: maximize $\mathbb{E}\left[\sum_{t=1}^{n} Y_{k_t,t}\right]$.
- ▶ We use ROBUST UCB (Bubeck et al., 2013)
 - ▶ parameters: $\epsilon < \min_{1 \le k \le K} \alpha_k 1$, $\nu \ge \max_{k \in [K]} \mathbb{E} \left| \left| Y_{k,1} \right|^{1+\epsilon} \right|$
 - ▶ $\mathbb{E}\left[\# \text{ pulls arm } k \neq k^*\right] = \mathcal{O}(\log n) < N$.

Introduction

Controlling $\mathbb{E}[\max_{1 \leq t \leq n} X_t]$

EXTREMEETC algorithm

Reduction to Multi-Armed Bandits

- ▶ time horizon $n = 10^5$
- K = 3 exact Pareto distributions $(\beta = +\infty)$

Arm	1	$k^* = 2$	3
α	15 10 ⁸	1.5	10
С	10 ⁸	1	10^{5}
$\mathbb{E}[X]$	3.7	3	3.5
$\mathbb{E}\left[\max_{1\leq t\leq n}X_{t}\right]$	7.7	$5.8\cdot10^3$	11

Experiments

Linear regression for <code>ExtremeETC</code> over $t=5\cdot 10^4,\ldots,10^5$ has slope ≈ -0.333 (with $R^2\approx 0.97$)

 \rightarrow validation of bounds !