Familienname: Bsp. 1 2 3 4 $\sum/40$ Vorname: Matrikelnummer:

Note:

Einführung in die Analysis

Roland Steinbauer, Sommersemester 2012

7. Prüfungstermin (16.12.2013)

Gruppe A

1. Definitionen, Sätze & Beweise.

Studienkennzahl(en):

- (a) Definiere die folgenden Begriffe (je 1 Punkt): Konvergente (reelle) Reihe, Logarithmusfunktion, gleichmäßig stetige Funktion.
- (b) Formuliere und beweise das Sandwich-Lemma. Begründe jeden deiner Beweisschritte. (4 Punkte)
- (c) Formuliere (exakt!) und beweise die Aussage, dass die Verknüpfung stetiger Funktionen wieder stetig ist. Begründe alle Beweisschritte. Welche Form (Charakterisierung) der Stetigkeit verwendet dein Beweis? (5 Punkte)
- 2. Beispiele und Gegenbeispiele.
 - (a) Folgen. Berechne die Grenzwerte (je 2 Punkte)

$$a_n = \frac{6n^3 + n^2 - 9}{15 + 3n^3},$$
 $b_n = (\sqrt{n} - \sqrt{n+1})\sqrt{n}.$

(b) Stetigkeit. Zeige explizit die Stetigkeit der Funktion

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(x) = x^3 \cos(1/x) \ (x \neq 0), \ f(0) = 0$$

und fertige eine Skizze an. (2 Punkte)

(c) Reihen. Konvergiert die folgende Reihe? Konvergiert sie absolut? (2 Punkte)

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{(n+2)(n+3)}$$

- (d) Vermischtes. Gib falls existent je ein Beispiel an (je 1 Punkt):
 - eine absolut konvergente aber nicht konvergente (reelle) Reihe
 - eine konvergente aber nicht absolut konvergente Reihe mit ausschließlich positiven Gliedern
 - eine stetige aber nicht gleichmäßig stetige Funktion (Defbereich nicht vergessen!)
 - eine streng monoton wachsende und nach oben beschränkte Funktion.

Bitte umblättern!

3. Ideen & Begriffe.

(a) Vollständigkeit. (6 Punkte)

Was versteht man unter der Vollständigkeit von \mathbb{R} ? Gib mindestens eine der äquivalenten Formulierungen genau an und zähle weitere auf. Worin liegt die Bedeutung der Vollständigkeit? Wo in der Vorlesung wird sie essentiell verwendet?

(b) Winkelfunktionen. (4 Punkte)

Definiere die Winkelfunktionen Sinus und Cosinus. Was besagt die Eulersche Formel und warum gilt sie? Leite die explizite Reihendarstellung von sin und cos her und skizziere die Funktionsgraphen.

4. Richtig oder falsch?

Sind die folgenden Aussagen richtig oder falsch? Gib jeweils eine kurze Begründung oder ein Gegenbeispiel. (je 3 Punkte)

- (a) Jede konvergente Folge hat genau einen Häufungswert.
- (b) Es gibt unbeschränkte, stetige Funktionen auf [0, 1].