Cartesian Powers

+, -, X, ...

Analogies between number and set operations

Numbers	Sets	
Addition	Disjoint union	
Subtraction	Complement	
Multiplication	Cartesian product	
Exponents	?	

Cartesian Powers of a Set

Cartesian product of a set with itself is a Cartesian power

$$A^2 = A \times A$$
 Cartesian square

$$A^n \stackrel{\text{def}}{=} A \times A \times \dots \times A$$
 n'th Cartesian power

$$|A^n| = |A \times A \times ... \times A| = |A| \times |A| \times ... \times |A| = |A|^n$$

Practical and theoretical applications

California License Plates

Till 1904

no registration

1905-1912

various registration formats

one-time \$2 fee

≤6 digits 10⁶ = 1 million If all OK

1956

 $26^3 \times 10^3 \approx 17.6 \text{ m}$

1969

 $26^3 \times 10^4 \approx 176 \text{ m}$

Sam?

Binary Strings

2n

{0,1}ⁿ = { length-n binary strings }

n	Set	Strings	Size
0	{0,1}0	Λ	1
1	{0,1}1	0, 1	2
2	{0,1}2	00, 01, 10, 11	4
3	{0,1} ³	000, 001, 011, 010, 100, 100, 111	8

n-bit strings

$$| \{0,1\}^n | = |\{0,1\}|^n = 2^n$$

Subsets

The power set of S, denoted $\mathbb{P}(S)$, is the collection of all subsets of S

$$\mathbb{P}(\{a,b\}) = \{\{\}, \{a\}, \{b\}, \{a,b\}\}$$

 $\mathbb{P}(\{a,b\}) \text{ and } \{0,1\}^2$

$$IP(S)I = ?$$

$\mathbb{P}(\{a,b\})$	a	b	$\{0,1\}^2$
{ }	X	X	00
{b}	X		01
{a}		X	10
{a,b}			11

1-1 correspondence between $\mathbb{P}(S)$ and $\{0,1\}^{|S|}$

$$|P(S)| = |\{0,1\}|S|| = 2|S|$$

The size of the power set is the power of the set size

Functions

A function from A to B maps every element a ∈ A to an element f(a) ∈ B

Define a function f: | specify f(a) for every a ∈ A

```
f from \{1,2,3\} to \{p, u\} specify f(1), f(2), f(3) f(1)=p, f(2)=u, f(3)=p f: 3-tuple (f(1), f(2), f(3)) (p, u, p) \{p,u\} \times \{p,u\} \times \{p,u\} \times \{p,u\} # functions from \{1,2,3\} to \{p,u\} = 2 \times 2 \times 2 = 2^3 = |\{p,u\}|^{|\{1,2,3\}|}
```

{ functions from A to B } $B \times B \times ... \times B = B|A|$

functions from A to B = |B|A| = |B|A|

Exponential Growth

Cartesian Powers & Exponentials

Cartesian power

Again use product function in itertools library

```
import itertools
print(set(itertools.product({2, 5, 9}, repeat = 2)))
\{(5,9),(5,5),(2,9),(9,2),(9,9),(2,2),(9,5),(2,5),(5,2)\}
```

Exponent
**
print(3**2)

Notebook

Compute exponentials

Compare to other growth rates

Chess-Rice Legend

(Indian & Persian versions)

Chess Invented by poor yet clever peasant

Became very popular

King liked it Offered peasant any reward he wished

Peasant

Poor and humble farmer Just need a little rice

Kindly place a single rice grain on first square

Double on each subsequent square

King

Such a modest request

Granted!

Chess-Rice Legend (ctd.)

Placed one (20) grain on first square

Two (2¹) on second

All Americans' worth \$90 · 10¹² All humans' worth \$600 · 1012

Four (2²) on third...

World richest person worth \$90 · 109

64th square: $2^{63} \approx 1,000,000,000,000,000,000,000,000,000$

Two endings Peasant became king

Peasant beheaded

Moral

Be peasant or be King: beware of exponentials!

Jeopardy

Counting questions

Answer

n-bit sequences

Subsets of $\{1, ..., n\}$

Functions: {1,...., n} to {0,1}

?

#

22ⁿ

Find a natural counting question whose answer is a double exponential

Find a natural counting question whose answer is a double exponential

2 solutions

Subsets

Functions

∃ more

Power set of S - set of subsets of S

 $\mathbb{P}(S)$

$$\mathbb{P}(\{a, b\}) = \{ \{\}, \{a\}, \{b\}, \{a,b\} \}$$

$$| \mathbb{P}(S) | = 2|S|$$

$$| \mathbb{P}(\{a,b\}) | = 4 = 2^2 = 2|\{a,b\}|$$

P(S) is a set

What about power set of $\mathbb{P}(S)$?

Find a natural counting question whose answer is a double exponential

 $\mathbb{P}(\mathbb{P}(S))$ - set of subsets of $\mathbb{P}(S)$

$$| \mathbb{P}(S) | = 2^{|S|}$$
 $| \mathbb{P}(\mathbb{P}(S)) | = 2^{|\mathbb{P}(S)|} = 2^{|S|}$

$$\mathbb{P}(\{a, b\}) = \{ \{\}, \{a\}, \{b\}, \{a,b\} \}$$

$$\mathbb{P}(\{a,b\}) = \mathbb{P}(\{\{\},\{a\},\{b\},\{a,b\}\})$$

$$= \{ \{\}, \{ \{\} \}, \{ \{a\} \}, ..., \{ \{\}, \{a\} \}, ..., \{ \{\}, \{a\}, \{b\}, \{a,b\} \} \}$$

$$\|\mathbb{P}(\{a,b\})\| = 2^{\|\mathbb{P}(\{a,b\})\|} = 2^{\|\{a,b\}\|}$$

$$|\mathbb{P}(\mathbb{P}([n]))| = 2^{2^n}$$

Double exponential

Solution 2: Boolean Functions

Functions from A to B

BA

$$# = |B||A|$$

Boolean functions of n boolean (binary) variables

Functions from $\{0,1\}^n$ to $\{0,1\}$

 $\# = |\{0,1\}|^{|\{0,1\}^n|} = 2^{2^n}$

000 001

Double exponential

Circuit with n binary inputs, one binary output

Can implement 2^{2ⁿ} functions

$$2^{63} = \frac{1}{2} \cdot 2^{2^6}$$

Which Came First

Numbers

Addition

Subtraction

Multiplication

Exponent *

Sets

Disjoint union

Complement

Cartesian product

Cartesian power

#1

Like all innovations

Necessity is the mother of math!

