## Department of Computer Science University of Cyprus



### EPL646 – Advanced Topics in Databases

Lecture 1
Syllabus and Course
Overview

### **Demetris Zeinalipour**

http://www.cs.ucy.ac.cy/~dzeina/courses/epl646



### Στόχοι ΕΠΛ646;

#### • Στόχοι:

- Κατανόηση και Υλοποίηση προχωρημένων εννοιών που αφορούν την εσωτερική λειτουργία μιας σχεσιακής βάσης δεδομένων
- Έκθεση σε Προχωρημένα και Ανερχόμενα
   Θέματα στο πεδίο των βάσεων δεδομένων (web, cloud, sensor, spatio-temporal, indoor, κτλ.)
- Να επιτρέψει στους φοιτητές να αποκτήσουν ένα ισχυρό υπόβαθρο στις Βάσεις Δεδομένων καθιστώντας τους ικανούς να αξιοποιήσουν τις γνώσεις τους σε άλλα πεδία της Πληροφορικής.

## **ΕΠΛ646: Εισαγωγή** (Χθές, Σήμερα, Αύριο)



- **Βάση Δεδομένων (Database):** Συλλογή από *ενοποιημένα integrated* δεδομένα).
- DBMS (Database Management System)
  - Ένα **λογισμικό** πακέτο το οποίο έχει σχεδιαστεί για να **αποθηκεύει** και να **διαχειρίζεται** βάσεις δεδομένων
- R(elational)DBMS: Σχεσιακή DBMS (δεδομένα αναπαριστώνται στο σχεσιακό μοντέλο)
  - Σε αυτό το μοντέλο, τα δεδομένα αναπαριστώνται σε πίνακες + περιορισμοί που διασφαλίζονται από το DBMS.
  - Το μοντέλο προκάλεσε μια επανάσταση στο χώρο των βάσεων δεδομένων λόγω της απλότητας και του μαθηματικού του υπόβαθρου:
    - 1969: Το Σχεσιακό Μοντέλο υλοποιείται από τη βάση IBM System R
    - 1970: Η ΙΒΜ δημιουργεί την SEQUEL (προπομπό της SQL)
    - 1981: Ο Codd παίρνει το Turing Award στη πληροφορική
    - 1985: Η IBM κάνει την SQL Πατέντα (US Pat. 4,506,326).
    - **Χθές:** Το Σχεσιακό Μοντέλο υλοποιείται από τις περισσότερες σύγχρονες βάσεις δεδομένων αποτελώντας το υπόβαθρο των επιχειρήσεων )enterprise environments)
    - Σήμερα: Έντονη ανάγκη για μετάβαση σε νέες αρχιτεκτονικές οι οποίες υποστηρίζουν περισσότε λειτουργίες (μηχανική μάθηση, ανάλυση δεδομένων & παρακολούθηση ροών) και προσφέρουν μεγαλύτερη Κλιμακωσιμότητα.

E. Codd

## **ΕΠΛ646: Εισαγωγή** (Χθές, Σήμερα, Αύριο)



## RDBMS ως υπόβαθρο των Επιχειρηματικών Εφαρμογών (Enterprise Applications)



### ΕΠΛ646: Εισαγωγή (Χθές, Σήμερα, Αύριο)



The Information Company (37.1B\$ / '12)

Today: 3rd largest after Microsoft, Alphabet

#### Server and Storage Systems Sun Servers Storage and Tape Exadata Database Machine SPARC SuperCluster T4-4 Database Appliance Exalogic Elastic Cloud Oracle Solaris Oracle Linux Virtualization Enterprise Manager **Ops Center** More Servers and Storage ▼

| <u>roday. Sid ia</u>               | igest after microsof        |
|------------------------------------|-----------------------------|
| Database                           | Middleware                  |
| Oracle Database 11g                | Java                        |
| Real Application                   | WebLogic Server             |
| Clusters                           | Exalogic Elastic Cloud      |
| Data Warehousing                   | Exalytics In-Memory Machine |
| Database Security                  | SOA   BPM                   |
| Exadata Database                   | Social Network              |
| Machine                            | WebCenter                   |
| Database Appliance                 | Content   Portal            |
| Big Data                           | Business Analytics          |
| Enterprise Manager for<br>Database | Identity Management         |
| Embedded                           | Enterprise Manager for      |
| High Availability                  | Middleware                  |
| MySQL                              | Data Integration            |
| More Database ▼                    | More Middleware ▼           |





1MS

### Τι καλύπτει το ΕΠΛ646;









## Συμβόλαιο Μαθήματος

- Επίπεδο: Μεταπτυχιακό
  - Επιλογή για όλες τις Κατευθύνσεις
- **Πίστωση:** 8 μονάδες ECTS
- Προαπαιτούμενα:
  - ΕΠΛ342: Βάσεις Δεδομένων (ή αντίστοιχο) (ER Modeling, SQL,
     DB Programming, Normalization)
- Μέθοδοι Διδασκαλίας
  - Διαλέξεις (3 ώρες εβδομαδιαίως)
  - Φροντιστήριο (Παρουσίαση / Συζήτηση Άρθρων Νέα Ώρα)
  - Εργαστήριο (2 ώρες εβδομαδιαίως)
- Υπόβαθρο
  - Επαρκή γνώση σε συστήματα Linux (ΕΠΛ421) και
     προγραμματισμός σε γλώσσες C/C++/JAVA (ΕΠΛ232)



### Συμβόλαιο Μαθήματος

### • Αξιολόγηση

- -50% Τελική Εξέταση (1)
- -20% Ενδιάμεση Εξέταση (1)
  - Προκαταρτική Ημερομηνία:
     Friday, 10/3/23 (8<sup>η</sup> βδομάδα)!
- -30% Ασκήσεις
  - Προγραμματιστικές/Θεωρητικές Ασκήσεις
  - Παρουσιάσεις Άρθρων

### Βιβλιογραφία



- Σημειώσεις Μαθήματος και Επιλεγμένη Αρθρογραφία
- Database System Concepts, 7th Edition, by Abraham Silberschatz, Henry Korth, S. Sudarshan, McGraw Hill; 7th edition, 1376 pages, ISBN-10: 0078022150, 2019.
- Fundamentals of Database Systems, 7/E Ramez Elmasri, Shamkant B. Navathe, ISBN-10: 0133970779, ISBN-13: 9780133970, 2016
- Web Data Management, Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart; ISBN-10: 1107012430, ISBN-13: 978-110701243, Cambridge University Press, 450 pages, (available online), 2011.
- Principles of Distributed Database Systems, Özsu, M. Tamer, Valduriez, Patrick, 3rd Edition, 846 p., Springer Press, 2011.
- **Database Management Systems**, 3rd Edition Ramakrishnan, & Johannes Gehrke, 1104 pp. McGraw-Hill Publisher, ISBN 0-07-123057-2, 2003.











### **WWW**



#### Πληροφορίες σχετικά με το μάθημα:

#### http://www.cs.ucy.ac.cy/~dzeina/courses/epl646





### **WWW**

Για τις εκπαιδευτικές δραστηριότητες του μαθήματος (υποβολή εργασιών, φόρουμ ανακοινώσεων, ερωτηματολόγια, βαθμολογίες εργασιών, κτλ) θα χρησιμοποιηθεί το Moodle. <a href="http://moodle.cs.ucy.ac.cy/">http://moodle.cs.ucy.ac.cy/</a>



### ΕΠΛ646: Ενότητα Α Εσωτερική Λειτουργία ενός RDBMS

EPL342 – DBs (Modeling, SQL, Normalization) Programmers / Users SQL FPI 646 - PART A (RDBMS Internals) DB2<sub>®</sub> ORACLE' **DBMS PostgreSQL** 

EPL646 - PART B (Distributed/Web/Cloud DBs)

EPL646 - PART C (Other DB Research)

### **ΕΠΛ646: Ενότητα Α** Εσωτερική Λειτουργία ενός RDBMS



## **ΕΠΛ646: Ενότητα Α** ((Disk-based) Index Structures)





Φυσική Αναπαράσταση Ευρετηρίου στη Δευτερεύουσα Μνήμη

### Physical Layout (on Disk)



## ΕΠΛ646: Ενότητα Α (Βελτιστοποίηση Επερωτήσεων)



**Αναλυτής (Parser):** Αναλύει τα SQL επερωτήματα του χρήστη και τα μεταφέρει στον Βελτιστοποιητή

**Βελτιστοποιητής (Optimizer):** Κάνει χρήση μέτα-πληροφοριών στον κατάλογο συστήματος (system catalog) για να γνωρίζει τα διαθέσιμα ευρετήρια, τον αριθμό των πλειάδων σε ένα πίνακα.



Όλα αυτά για να βρει το καλύτερο (γρήγορο) πλάνο εκτέλεσης!

#### Εκτελεστής Πλάνου (Plan Executor):

Εύρεση και εκτέλεση φθηνότερου πλάνου από όλα τα δένδρα σχεσιακών τελεστών.

SELECT S.sname FROM Reserves R, Sailors S WHERE R.sid=S.sid AND R.bid=100 AND S.rating>5



## **ΕΠΛ646: Ενότητα Α** (Δοσοληψίες)



- Δοσοληψία (<u>transaction</u>), μια ατομική (<u>atomic</u>, <u>δηλ</u>. allor-nothing) ακολουθία από read / write στη βάση.
  - Transaction Example in MySQL

```
START TRANSACTION;
SELECT @A:=SUM(salary) FROM table1 WHERE type=1;
UPDATE table2 SET summary=@A WHERE type=1;
UPDATE table3 SET summary=@A WHERE type=1;
COMMIT;
```

- Κάθε δοσοληψία, που ολοκληρώνεται, πρέπει να αφήνει την DB σε συνεπή κατάσταση (consistent state).
  - Οι κανόνες ακεραιότητας (<u>integrity constraints</u>), π.χ., Primary Key, Foreign Key, Check, Not Null, Unique, επιβάλλονται αυτόματα από μια βάση.
  - Από εκεί και πέρα, η RDBMS δεν γνωρίζει τους επιχειρησιακούς κανόνες ακεραιότητας (που ορίζονται μέσω των δοσοληψιών). Αυτό διασφαλίζεται από τα transactions.

## **ΕΠΛ646: Ενότητα Α** (Έλεγχος Ταυτοχρονίας)



- Η παράλληλη εκτέλεση των δοσοληψιών είναι απαραίτητη για να έχει ένα DBMS καλή επίδοση
  - Αυτό διότι η πρόσβαση στη δευτερεύουσα μνήμη (δίσκο) είναι συχνή, και σχετικά αργή, συνεπώς είναι σημαντικό να κρατάμε τον επεξεργαστή απασχολημένο!
- Παρεμβάλλοντας (Interleaving) τις δοσοληψιών μπορεί να προκαλέσει ασυνέπεια (inconsistency): π.χ., μια επιταγή αποπληρώνεται ενώ υπολογίζεται το ισοζύγιο του λογαριασμού.... το αποτέλεσμα του ισοζυγίου είναι λανθασμένο!
- Το DBMS διασφαλίζει ότι τέτοια προβλήματα δε θα προκύψουν: Οι χρήστες έχουν την εντύπωση ότι οι δοσοληψίες τους εκτελούνται σειριακά!

## **ΕΠΛ646: Ενότητα Α** (Έλεγχος Ταυτοχρονίας)



```
Deposit (amount, account#) {
    x = read(accounts[account#]);
    write(accounts[account#], amount + x);
}
```

#### Θεωρήστε:

Account[7] = €100

T1: Deposit1(100, 7)

T2: Deposit2(50, 7)

| Εκτέλεση 1 |           | Εκτέλεση 2 |               |
|------------|-----------|------------|---------------|
| T1         | <b>T2</b> | T1         | <b>T2</b>     |
| Read1      |           | Read1      | Dood          |
| Write1     | Read2     | Write1     | Read2         |
| •          | Write2    |            | Write2        |
| 250€ (     | Correc    | ct) 150    | )€ ⊗!<br>RONG |

EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University Victor)

### ΕΠΛ646: Ενότητα Α (Τεχνικές Ανάκαμψης)



- Μια DBMS διασφαλίζει την ατομικότητα atomicity (all-or-nothing) ακόμη και εάν το σύστημα καταρρεύσει στη μέση μιας δοσοληψίας.
- Ιδέα: Να διατηρείται ένα <u>log</u> (history) από όλες τις πράξεις που εκτελεί η DBMS καθώς εκτελεί ένα σύνολο δοσοληψιών:
  - Προτού οποιαδήποτε αλλαγή γίνει στην DB, το αντίστοιχο log entry εγγράφεται σε ασφαλές σημείο.
     (WAL protocol)
  - Μετά την κατάρρευση, οι επιδράσεις των ατελείωτων δοσοληψιών ακυρώνονται (<u>undone</u>) με τη χρήση του log (εάν δεν αποθηκεύτηκε το log entry τότε η αλλαγή δεν εφαρμόστηκε στη DB!)

## EΠΛ646: Ενότητα Α (Minibase)



- H Minibase είναι ένα σύστημα διαχείρισης δεδομένων το οποίο προορίζεται για εκπαιδευτική χρήση.
- Περιλαμβάνει ένα Αναλυτή Επερωτήσεων (Parser), ένα Βελτιστοποιητή Επερωτήσεων (Query Optimizer), Διαχειριστή Ενδιάμεσης Μνήμης (Buffer Pool Manager), Μηχανισμούς Αποθήκευσης (heap files, secondary indexes based on B+ Trees), και Διαχειριστή Μαγνητικού Δίσκου (Disk Space Manager).
- Επιτρέπει στο φοιτητή να προγραμματίσει συστατικά μιας βάσης με χρήση της C++.
- Αναπτύχθηκε παράλληλα με ένα από τα βιβλία του μαθήματος μας.
- Χρησιμοποιείται σαν εισαγωγικό εργαλείο εκπαίδευσης του προσωπικού από εταιρείες κατασκευής βάσεων δεδομένων (π.χ., oracle) πριν διεισδύσουν σε πιο περίπλοκο κώδικα (π.χ., postgres).

# **ΕΠΛ646: Ενότητα Α** (Minibase Architecture)



MiniBase Structure Εύκολο & Aνοικτό Λογισμικό



# **ΕΠΛ646: Ενότητα Α**(MySQL Server Architecture





# **ΕΠΛ646: Ενότητα Α** (The Oracle Architecture)





### Περίπλοκο & Κλειστό Λογισμικό

EPL342 – DBs (Modeling, SQL, Normalization)

Programmers / Users

SQL

EPL646 - PART A (RDBMS Internals)



EPL646 - PART C (Other DB Research)

### Distributed Database (DDB)

- a collection of multiple logically related (λογικά συσχετιζόμενες) databases distributed over a computer network.
- Distributed Database Management System (DDBMS)
  - a generic software system that manages a distributed database while making the distribution transparent (διαφανής) to the user.

#### Applications:

- Operational Scalability: OLTP Workloads
- Analytics (Business Intel.): OLAP Workloads
- All major vendors offer DDBMS extensions but there was never a common standard bringing vendors together.

### "Big Data"

- "Collection of data sets so large and complex that it becomes awkward to work with using on-hand database management tools." (wikipedia.org)
- Examples
  - Facebook handles over 40 billion photos with HBase
  - **Google's Bigtable** is designed to scale into the petabyte range across "hundreds or thousands of machines, ...easy to add more machines ... without any reconfiguration".
  - CERNs Large Hadron Collider (LHC) produced 13 petabytes of data in 2010
  - Walmart handles more than 1 million customer transactions every hour (more than 2.5 petabytes of data = 167 times the info contained in all the books in the US Library of Congress.) EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Google's Datacenter in Oregon



### Microsoft's 224,000 Servers Only Take Four People To Set Up

• There are 2000 in that container. And there are 112 such containers in Microsoft's \$US500 million Chicago data centre

(http://www.gizmodo.com.au/2009/10/micro softs-224000-servers-only-take-four-people-to-set-up/)

1-27

- Γιατί οι RDBMS ΔΕΝ είναι κατάλληλες για **Big-data**;
  - Ψηλό Κόστος
    - Oracle Standard Edition (per CPU): 5,900\$
    - Oracle Enterprise Edition (per CPU): 47,500\$
    - IBM DB2 v9.7 Enterprise: 25,000\$
    - SQL Server 2008 Enterprise: 25,000\$
    - Τα πιο πάνω ΔΕΝ περιλαμβάνουν κόστος αγοράς υλικού (server), λειτουργικού συστήματος, training, κτλ.!
  - Ψηλή Πολυπλοκότητα
    - Οι Σχεσιακές ΒΔ έχουν περίπλοκη εσωτερική δομή (triggers, transactions, indexes, views, κτλ.) που δεν είναι χρήσιμα για τις εφαρμογές στα νέα αυτά περιβάλλοντα.
  - Δεν παρέχουν Επεκτασιμότητα / Ελαστικότητα;
    - Pay as you go?

#### NewSQL-as-a-Service

#### To Amazon RDS\* (Relational Database Service)

Pay by the hour your DB Instance runs.

| US - N. Virginia                               | US – N. California | EU - Ireland    | APAC - Singapore |
|------------------------------------------------|--------------------|-----------------|------------------|
| DB Instance Class                              |                    | 062¢ / voor     | Price Per Hour   |
| Small DB Instance                              |                    | 963\$ / year    | \$0.11           |
| Large DB Instance                              |                    |                 | \$0.44           |
| Extra Large DB Instance                        |                    | <b>V</b>        | \$0.88           |
| Double Extra Large DB Insta                    | nce                | 27,165 \$ / yea | \$1.55           |
| Quadrunia Evtra Large DR In  DB Instance Class | netanca (*aaaanti  |                 | ag on Amazon EC2 |

(\*essentially MySQL running on Amazon EC2 –

Amazon RDS currently supports five DB Instance Classes:

- on RDS currently supports five DB Instance Classes:

  Elastic Computing Cloud)

  Small DB Instance: 1.7 GB memory, 1 ECU (1 virtual core with 1 ECU), 64-bit platform, Moderate I/O Capacity
- Large DB Instance: 7.5 GB memory, 4 ECUs (2 virtual cores with 2 ECUs each), 64-bit platform, High I/O Capacity
- Extra Large DB Instance: 15 GB of memory, 8 ECUs (4 virtual cores with 2 ECUs each), 64-bit platform, High. I/O Capacity
- Double Extra Large DB Instance: 34 GB of memory, 13 ECUs (4 virtual cores with 3,25 ECUs each), 64-bit platform, High I/O Capacity
- Quadruple Extra Large DB Instance: 68 GB of memory, 26 ECUs (8 virtual cores with 3.25 ECUs each), 64-bit platform, High I/O Capacity

For each DB Instance class, RDS provides you with the ability to select from 5GB to 1TB of associated storage capacity. One ECU provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor.

### Το Amazon EC2 Σύστημα Διαπροσωπείας



### ΕΠΛ646: Ενότητα Β

#### Distributed/Web/Cloud DBs/Dstores

What is the picture like today?



 A broad class of DBMSs that Don't follow the relational model (i.e., not using tables), thus those DBMSs are usually also not using SQL either.

#### Characteristics

 NoSQL, Distributed, Fault-tolerant Architectures, Less Consistency Guarantees, High Performance and High Scalability!

#### Examples

 Store/Analyze Google Maps (Bigtable), friendship data from Facebook (Cassandra, HBase), accounting data at Akamai (HBase), Amazon S3 (DynamoDB)

- OLTP (Online Transaction Processing): facilitate & manage transaction-oriented applications (order something, withdraw money, cash a check, etc.)
- New OLTP: Consider new Web-based applications such as multi-player games, social networking sites, and online gambling networks.
  - The aggregate number of interactions per signal is skyrocketing!.
- New SQL: An alternative to NoSQL or Old SQL for New OLTP applications.
- Examples: Clustrix, NimbusDB, and VoltDB.

#### Big-data Example: Akamai Content Distribution Network





## **ΕΠΛ646: Ενότητα Γ**Sensor/Spatio-temporal/etc.



EPL342 – DBs (Modeling, SQL, Normalization)

Programmers / Users

SQL

EPL646 - PART A (RDBMS Internals)

EPL646 - PART B (Distributed/Web/Cloud DBs)



#### **VLDB** - INTERNATIONAL CONFERENCE ON VERY LARGE DATA BASES



https://vldb.org/2023/

#### **Data Privacy and Security**

- Blockchain
- Access control and privacy

#### **Data Mining and Analytics**

- Mining/analysis of different types of data (e.g., scientific/business, social networks, streams, text, web, graphs, rules, patterns, Graph and Network Data logs, and spatio-temporal)
- Data warehousing, OLAP, parallel and distributed data mining

#### **Distributed Database Systems**

- Data networking and content delivery
- Cloud data management, resource management, database as a service
- Distributed transactions
- Distributed analytics

#### **Database Engines**

- Currency control, recovery, and transactions
- Access methods
- Multi-core processing and hardware acceleration
- Memory and storage management
- Views, indexing, and search
- Query processing and optimization
- Administration and manageability
- **Database Performance and Manageability**
- Tuning, benchmarking, and performance measurement

#### Information Integration and Data Quality

- Heterogeneous and federated DBMS, metadata management
- Data cleaning, data preparation
- Schema matching, data integration
- Knowledge graphs and knowledge management
- Web data management and Semantic Web
- Source discovery

- Hierarchical, non-relational, and other modern data models
- Graph data management
- Social networks

#### Machine Learning, AI, and Databases

- Data management issues and support for ML and AI
- Applied ML and AI for data management

#### Languages

- Schema management and design
- Data models and guery languages

#### Provenance and Workflows

- Process mining
  - Debugging
- Provenance analytics
- Profile-based and context-aware data management

#### Novel Database Architectures

- Embedded and mobile databases
- Data management on novel hardware
- Real-time databases, sensors and IoT, stream databases
- Energy-efficient data systems
- Video management and analytics systems

#### Text and Semi-Structured Data

- Information retrieval
- Data extraction
- Text in databases

Semi-structured data-management, RDF Leinalipour (University of Cyprus)

#### Specialized and Domain-**Specific Data Management**

- Ethical data management
- Crowdsourcina
- Image and multimedia databases
- Fuzzy, probabilistic, and approximate
- data Spatial and
- temporal databases Scientific and medical data
  - management

#### User Interfaces

- Database support for visual analytics
- Data exploration tools
- Database usability

1-36

## IEEE ICDE - International Conference on Data Engineering



- Al for Database Systems
- Benchmarking, Performance Modeling, Tuning, and Testing
- Cloud Data Management
- Crowdsourcing
- Data Mining and Knowledge Discovery
- Data Models, Semantics, Query languages
- Data Stream Systems and Edge Computing
- Data Visualization and Interactive Data Exploration
- Database Security and Privacy
- Database technology for AI
- Database technology for Blockchains
- Distributed, Parallel and P2P Data Management
- Explainability, Fairness, and Trust in Data Systems and Analysis
- Graphs, Networks, and Semistructured Data
- Information Integration and Data Quality
- IoT Data Management
- Modern Hardware and In-Memory Database Systems
- Query Processing, Indexing, and Optimization
- Spatial Databases and Temporal Databases
- Text, Semi-Structured Data, IR, Image, and Multimedia databases
- Uncertain, Probabilistic, and Approximate Databases
- Very Large Data Science Applications/pipelines
- Workflows, Scientific Data Management

https://icde2023.ics.uci.edu/





## ACM SIGMOD - International Conference on Management of Data



- Benchmarking, database monitoring, and performance tuning
- Cloud data management and HPC
- Crowdsourced and collaborative data management
- Data models and semantics
- Data provenance and workflows
- Data exploration, visualization, query languages, and user interfaces
- Data integration, information extraction, and schema matching
- Data quality, data cleaning, and database usability
- Data warehousing, OLAP, SQL Analytics
- Data security, privacy, and access control
- Data sparsity, boosting, simulated data, and digital twins
- Data platforms for emerging hardware/Emerging hardware for data management
- Data systems for knowledge discovery, data mining, machine learning, and artificial intelligence
- Distributed, decentralized, and parallel data management, distributed ledgers, and blockchainsGraphs, social networks, and semantic web
- Machine learning and artificial intelligence for data management and data systems
- Multimedia and information retrieval
- Query processing and optimization
- Responsible data management and data fairness
- Self-driving databases
- · Semistructured, partially structured, and unstructured data
- Sensor networks and IoT
- Spatial data management
- Storage, indexing, and physical database design
- Streams and complex event processing
- Temporal databases
- Transaction processing
- Uncertain, probabilistic, and approximate databases



https://2023.sigmod.org/

Hosts yearly the SIGMOD Programming Competition!

### IEEE MDM - IEEE International Conference on Mobile Data Management

https://mdmconferences.org/mdm2023/

- Mobility Data Acquisition and Protection
- Middleware and Tools for Mobile and Pervasive Computing
- Quality of mobility data: methodologies, metrics, algorithms
- **Mobility Simulation**
- Security, Privacy and Ethics in Mobility Data and Analytics
- Mobility Data Management and Processing
- Theoretical Foundations of Data-intensive Mobile Computing
- Data Management for Internet of Things (IoT) and Sensor Systems
- Mobile Crowd-Sourcing and Crowd-Sensing
- Data Stream Processing in Mobile/Sensor Network
- Indexing, Optimization and Query Processing for Moving Objects/Usershovative Applications driven by Mobile Data
- Mobile Systems
- Mobile Location-Based Social Networks
- Mobile Recommendation Systems
- Context-aware Computing for Intelligent Mobile Services
- Learning and analytics
- **Approaches**



- Mobile Data Analytics
- Machine Learning/AI for Mobile Data
- Visual Analytics
- Behavioral/Activity Sensing and Analytics
- Applications of Mobility Data Science
- Data Management for Connected Cars, Intelligent Transportation Systems, Smart Spaces
- Routing, Personalized Routing, Eco-Routing, Routing for **Electrical Vehicles**
- Transportation-As-A-Service, Mobility-As-A-Service
- Data Management for Augmented Reality Systems

- Connections of mobile data management with other emerging Mobile Cloud Computing and Data Management in the Mobile Cloud technologies such as blockchain and paradigms, such as social sciences.
  - Data Economy, Incentive Mechanisms, Reputation Systems and Game-theoretic



## **ΕΠΛ646: Ενότητα Γ (Research)**Overview + Technical Papers



## Student Presentations

. . .