

Hypothèse. « Entier » désigne un nombre <u>entier naturel</u> (positif). « Réel » désigne un nombre quelconque. Les ensembles de nombres : \mathbb{N} (Naturels) $\subset \mathbb{Z}$ (Relatifs) $\subset \mathbb{D}$ (Décimaux) $\subset \mathbb{Q}$ (Rationnels) $\subset \mathbb{R}$ (Réels)

Définition. Soit *a* et *b* deux entiers relatifs.

On dit que a est un **multiple** de b ssi $\frac{a}{b}$ est un entier. On dit aussi que b est un **diviseur** de a.

Autrement dit, a est un multiple de b ssi il existe un entier relatif k tel que a = bk.

Exemples. 35 est un multiple de 7 car 35 = 7×5 où 5 est un entier. 42 pas multiple de 10 car $\frac{42}{10}$ = 4,2.

Exemples. 30 est un diviseur de 90 car $90 = 30 \times 3$. 2 n'est pas un diviseur de 3 car $\frac{3}{2} = 1,5$ pas entier.

Définition d'un entier pair. Un entier n est pair ssi n = 2k où k est <u>un entier</u>.

Remarque. n est pair \Leftrightarrow 2 divise $n \Leftrightarrow n$ multiple de 2 $\Leftrightarrow \frac{n}{2}$ est entier.

Définition d'un entier impair. Un entier n est **impair** ssi n = 2k + 1 où k est <u>un entier</u>.

Remarque. Tout entier n est soit pair, soit impair.

Exemples. 13 est impair, 3 est pair, 0 est pair, 41 est impair.

Remarque. Un entier n admet toujours 1 et n comme diviseurs. Donc n a au moins 2 diviseurs si $n \neq 1$.

Définition. Un entier n est un nombre premier ssi n a exactement 2 diviseurs distincts (1 et lui-même).

Exemple. Liste des 10 premiers nombres premiers : 2; 3; 5; 7; 11; 13; 17; 19; 23; 29.

4 n'est pas premier car {1; 2; 4} sont des diviseurs de 4. 1 n'est pas premier car il n'a qu'un seul diviseur : 1.

Test de primalité. Un entier n non premier a toujours un diviseur d tel que $2 \le d \le \sqrt{n}$.

Si on a trouvé aucun diviseur $\leq \sqrt{n}$, on peut s'arrêter en concluant que n est premier.

Théorème de décomposition en facteurs premiers. <u>Tout</u> nombre entier peut se décomposer de manière <u>unique</u> sous la forme d'un produit de nombres premiers.

Exemples. $20 = 2 \times 2 \times 5$; $22 = 2 \times 11$;

Définition. Une fraction $\frac{a}{b}$ est **irréductible** ssi le numérateur a et le dénominateur b n'ont pas de diviseur commun (autre que 1).

Exemples. $\frac{5}{13}$ est irréductible car le seul diviseur commun à 5 et 13 est 1.

 $\frac{12}{15}$ n'est pas irréductible car 3 est un diviseur de 12 et de 15.