RESOLUÇÃO LISTA 7.

EXERCÍCIOS FEITOS: 1,2,5,7,8,9,11,13

4:
$$\mathbb{R}^2 \to \mathbb{R}^2$$
 , $f(x,y) = (x-y) 2xy = (f(x,y), f_2(x,y))$

a) $df_{x,y}^2 = \begin{pmatrix} \frac{1}{2}f_1(x,y) & \frac{1}{2}f_2(x,y) \\ \frac{1}{2}f_2(x,y) & \frac{1}{2}f_2(x,y) \end{pmatrix} = \begin{pmatrix} 2x & -2y \\ 2y & 2x \end{pmatrix}$

b) BOM, SE $\exists (x,y) \in \mathbb{R}^2$ Eq. 0 $\det(df_{x,y}) \neq 0$ entro $df_{x,y} \in \mathbb{R}^2$ inversion $\in \mathbb{R}^2$ inversion $\in \mathbb{R}^2$ in the one of $f(x,y) \in \mathbb{R}^2$ inversion $\in \mathbb{R}^2$ inversion $\in \mathbb{R}^2$ in the one of $f(x,y) \in \mathbb{R}^2$ inversion $\in \mathbb{R$

SOLUÇÃO ALTERNATIVA USANDO NÚMEROS COMPLEXOS:

 $f(z)=z^2$. Assim: Queremos provar que $f \in \text{injetora}$ quando restrito à $\frac{1}{2}e(; Re(z)>0)$ Mas isto $\in \text{Claro Pois}$ se $w=f(z)=z^2$ entro $\exists z_1,z_2e(\text{com }z_1^2=z_2^2=w,\text{Temos Ainda Que }z_1=-z_2$ $\in \text{Assim } \text{So} z_1 \text{ ou } z_2 \text{ Pode Ter Parte Real Positiva.}$

1060 SE WE f(A) ENTÃO 3! ZEA 1.9 f(Z)=W.

PARA ESTUDAR f(A) BASTA OBSERVAR QUE SE WE $C = Z_1, Z_2 \in C$ (E SÃO AS ÚNICAS) SOLUÇÕES

DE $Z^2 - W = O$. ASSIM SE RE $(Z_1) \neq O$, COMO $Z_1 = -Z_2$ OU RE $(Z_1) > O$ OU RE $(Z_2) > O$. LOGO OU $Z_1 \in A$ OU $Z_2 \in A$. LOGO OS ÚNICOS PONTOS QUE PODEM NÃO ESTAR EM f(A) SÃO: $f(Z_1) = O(f = B)$ E DE FATO $f(A) \cap B = \emptyset$, POIS SE WE G(A) = O(f(A)) =

PARA TERMINAR BASTA OBSERVAR QUE $B = \frac{1}{2} \epsilon (\frac{1}{2}) \epsilon 0 = Im(\frac{1}{2}) = 0$ E ASSIM $f(A) = C \setminus B$

$$\varepsilon \ df_{(1,1)} = \left(\begin{array}{c} 2 & -2 \\ 2 & 2 \end{array} \right) \Rightarrow \left(df_{(1,1)} \right)^{-1} = \left(\begin{array}{c} y_4 \ y_4 \\ -y_4 \ y_4 \end{array} \right) = df_{(0,2)}^{-1} .$$

(2) a) $f(x,y) = (e^x \cdot \cos y, e^x \cdot \sin y)$, $A = f(x,y) \in \mathbb{R}^2$; $y \in J_{0,2\pi}[$ $f(x,y) \in \mathbb{R}^2$; $f(x,y) \in \mathbb{R}^2$; f(x,y)

DE FATO SE f(x,y) = f(u,v), $(\omega M (x,y), (u,v) \in A \Rightarrow \|f(x,y)\| = \|f(u,v)\| = e^x = e^u \Rightarrow x = u$.

- E COMO $y \mapsto (\cos y, \sin y) \in \text{injetora PARA } y \in J0,27 \text{L}. ENTATO } f \in \text{injetora}.$
- BOM, COMO $f(x,y) = e^{x} \cdot (\cos y, \sin y)$ ENTÃO SE $x = \log(\sqrt{a^2 + b^2})$ E $y = \theta(a,b)$ ONDE $\theta \in J_0, 2\pi L$ E $\theta(a,b) \notin O$ ANGULO QUE O VETOR (a,b) FAZ COM $(0,\sqrt{a^2 + b^2})$ NO SENTIDO ANTI-HOPARIO. ENTÃO TEREMOS QUE f(x,y) = (a,b). Assim para (a,b) ESTAR NA IMAGEM DE A ROE f(x,y) = (a,b) OF $(a,b) \neq (0,0)$ E $\theta(a,b) \notin h_0, 2\pi h_0$ Coe $b = 0 \Rightarrow a \neq 0$. LOGO $f(A) = h_0(x,y) \in R^2$; ou x+0 ou x=0 Ey20 h
 - C) Come $df_{(0,1)}^{-1} = (df_{(0,\pi/2)})^{-1}$ ENTRO $df_{(0,\pi/2)} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \Rightarrow df_{(0,1)}^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

5 5im, DE FATO SEJA $f(x,y) = x^3 + xy + y^3$ ENTÃO $\frac{\partial f}{\partial y}(x,y) = 3y^2 + x$.

AGORA OBSERVE QUE Y (x,y) \in f⁻¹(4) $\frac{\partial f}{\partial y}$ (x,y) \neq 0 Pois supon HA POR ABSURDO QUE \exists (x,y) \in \mathbb{R}^2 \downarrow q. $\frac{\partial f}{\partial y}$ (x,y) = 0 \in f(x,y) = 4. \in FNTAO $\frac{\partial f}{\partial y}$ (x,y) = 0 = x + 3y² \Rightarrow $x = -3y^2$, ASSIM $f(x,y) = x^3 + y^3 + xy$

 $= (-3y^2)^3 + y^3 - 3y^3 = -27y^6 - 2y^3 = 4 \implies y^3 = 4 \pm \sqrt{4 - 16 \cdot 27} \notin \mathbb{R} \quad \text{ABSURDO}$

AGORA NOS RESTA PROVAR QUE $f^{-1}(4) \neq \emptyset$. DE FATO SE DEFINIRMOS $\Upsilon(t) = (t,t)$

TEMOS QUE $f(\gamma(t)) = 2t^3 + t^2$, LOGO $f(\gamma(0)) = 0$ E $\lim_{t \to +\infty} f(\gamma(t)) = +\infty$ ASSIM PELO TEORE-

MA DO VALOR INTERMEDIARIO 3 SER, o t.q f(Y(s)) = 4, E ASSIM (s,s) & f-1(4)

LOGIO SEJA (G,C) e f (4) TEMOS PEUD TEOREMA DA FUNÇÃO IMPLICITA TEMOS QUE

COMO $\frac{\partial f}{\partial y}(c_1,c_2) \neq 0$ então \exists I intervalo aberto que contem c_1 e \mathcal{J} intervalo aberto que contém c_2 e $\mathcal{Y}: \underline{\Gamma} \to \mathcal{J}$ de classe C^2 tal que se $x \in \underline{\Gamma} \to f(x,y(x)) = 4$.

 $\forall x \in \mathcal{Y}(x) = \mathcal{Y}(x) \in \mathcal{Y}(x) \in \mathcal{Y}(x) + \mathcal{Y}(x)$

 $= 0 = \varphi'(x) \left[x + 3 \varphi(x)^2 \right] + 3x^2 + \chi \varphi(x) \Rightarrow \varphi'(x) = \frac{-3x^2 - \chi \varphi(x)}{\chi + 3 \varphi(x)^2} = \frac{dy}{dx} = \frac{-3x^2 - \chi y}{\chi + 3y^2}$

(7) O) SEJA $f(x,y,z) = e^{x+y+z} + xyz$. ENTAÖ $\frac{\partial f}{\partial z}(x,y,z) = e^{x+y+z} + xy$

SETA p = (0, 1, 1), SEGUE QUE f(p) = 1 & como $\frac{\partial f}{\partial z}(p) = 1 \neq 0$ ENTÃO PEW TEOREMA DA FUNÇÃO 'IMPLICITA. $\frac{1}{2}U \in V$ vizinhancas de $(p_1, p_2) = (0, 1)$ & de $p_3 = -1$ respectivamente e $\psi: U \to V \in C^1$ t. $\frac{1}{2}V(x,y) \in U$ f(x,y,y(x,y)) = 1. ENTÃO ψ é uma TAL FUNÇÃO f(x,y).

BOM COMO $e^{x+y+q(x,y)} + xyq(x,y) = 1$ $\Rightarrow e^{x+y+q(x,y)} \cdot (1 + \frac{3q}{3x}(x,y)) + yq(x,y) + xy \cdot \frac{3q}{3x} = 0$ $\Rightarrow \frac{3q}{3x}(xy + e^{x+y+q(x,y)}) = -yq(x,y) - e^{x+y+q(x,y)} \Rightarrow \frac{3q}{3x}(x,y) = -yq(x,y) - e^{x+y+q(x,y)}$ $\Rightarrow xy + e^{x+y+q(x,y)}$ $\Rightarrow xy + e^{x+y+q(x,y)}$

b) SEJA $f(x,y,z) = x^3 + y^3 + z^3 - x - y - z$. TEMOS QUE $\frac{2t}{2z}(x,y,z) = 3z^2 - 1$

Tome p=(0,0,1). SEGUE QUE f(p)=0 E $\frac{\partial f}{\partial z}(p)=2\neq0$. Loso PEUD TEOREMA DA FUNÇÃO IMPLICITA TEMOS QUE $\exists U \in V$ VIZINHANÇAS DE $(p_1,p_2)=(0,0)$ E $p_3=1$ RESPECTIVAMENTE E $\psi(x,y)=0$ V $\psi(x,y)=0$ Loso $\psi(x,y)=0$ E ASSIM

CONO $\chi^3+\chi^3+\psi(x,y)^3-\chi-\chi-\chi-\psi(x,y)=0$ $\chi^3=\chi^3+3\psi(x,y)^2\cdot\frac{\partial}{\partial x}\psi(x,y)=0$ $\chi^3=\chi^3+\chi^3+\psi(x,y)^3-\chi-\chi-\chi-\psi(x,y)=0$

 $\frac{2y}{3x}(x,y) = \frac{1-3x^2}{3y(x,y)^2-1} \quad \text{ANAWGAMENTE} \quad \frac{3y}{2y}(x,y) = \frac{1-3y^2}{3y(x,y)^2-1}$

PRIMEIRO VAMOS OBSERVAR QUE SE p=(2,0,1) ENTÃO F(P)=3 E $\frac{\partial F}{\partial z}(x,y,z)=5z^4+3xz^2+2y\Rightarrow\frac{\partial F}{\partial z}(P)=11\neq0.$ ASSIM PELO TEOREMA DA FUNÇÃO IMPLICITA \exists U um abserto de \mathbb{R}^2 contendo $(p_1,p_2)=(2,0)$, I um intervalo abserto contendo $p_3=1$ E $\psi:U\to I$ \in C^1 U. $Y(x,y)\in U$ $F(x,y), <math>\psi(x,y)=3$, $Y(p_1,p_2)=Y(2,0)=1$ E ALÉM DISSO QUE $Y(x,y,z)\in U$ X $Y(x,y,z)\in U$ $Y(x,y,z)\in U$

b) Como $F(x,y, \varphi(x,y)) = 3 = \varphi(x,y)^5 + \chi \psi(x,y)^3 + 2y \psi(x,y)$ $\Rightarrow \frac{2\varphi}{2x}(x)(5\psi(x,y)^4 + \chi \cdot 3\cdot \psi(x,y)^2 + 2y) + \psi(x,y)^3 = 0 \Rightarrow \frac{2\psi}{2x}(2,0) \cdot (11) + 1 = 0 \Rightarrow$ $\frac{2\psi}{2x}(2,0) = -\frac{1}{11}$. Analogiamente $\frac{2\psi}{2y}(x,y) \cdot \frac{\partial F}{\partial z}(x,y, \psi(x,y)) + 2\psi(x,y) \Rightarrow$ $\frac{\partial \psi}{\partial x}(2,0) \cdot (11) + 2 = 0 \Rightarrow \frac{2\psi}{2y}(2,0) = \frac{-2}{11}$

TENHO A IMPRESSÃO QUE NA PRÓXIMA QUESTÃO DEVERÍA SER:

- 9. Seja $U = \{(x, y, z) \in \mathbb{R}^3 \mid xy + z > 0\}$ e seja $F : U \to \mathbb{R}$ definida por $F(x, y, z) = \ln(xy + z)$.
 - (a) Use o Teorema da Função Implícita para concluir que existem um aberto $U\subset\mathbb{R}^2$ contendo (1,0), um intervalo aberto $I \subset \mathbb{R}$ contendo 1 e uma função de classe \mathcal{C}^1 $f: U \to I$ tais que F(x,y,z) = 0 se, e somente se, y = f(x,z) para todo $(x,z) \in U$ e todo $y \in I$.
 - (b) Calcule as derivadas parciais de f no ponto (1,0).

SE FOSSE ASSIM A RESOLUÇÃO SERIA:

(9) a) PRIMEIRO OBSERVE QUE SE P- (1,1,0) ENTÃO F(p) = 0 \in COMO $\frac{\partial F}{\partial y}(x,y,z) = \frac{x}{xy+z} \rightarrow \frac{\partial F}{\partial y}(p) = 1 \neq 0$. ENTÃO PEIO TEOREMA DA FUNÇÃO IMPLICITA J U UM ABERTO DE R2 CONTENDO (P. P3)=(1,1), I UM INTERVALO ABERTO CONTENDO $P_2 = 1$ $\in \Psi: U \rightarrow I \in C^1$ $t.q. <math>\forall (x,7) \in U^ F(x, \Psi(x,7), \neq) = 0$, $P_2 = Y(P_1,P_3) = Y(1,0) = 1 \in ALÉM DISSO QUE Y(x,y,z) \in U \times I SE F(x,y,z) = 0 \Rightarrow y = Y(x,z)$

Que é o que que l'amos peovar.

$$\frac{\partial \Psi}{\partial z}(x,2) = -\frac{\partial F}{\partial z}(x, \Psi(x,z), 2) \Rightarrow \frac{\partial \Psi}{\partial z}(1,0) = -1$$

$$\frac{\partial F}{\partial z}(x, \Psi(x,z), 2)$$

- (1) SEJA $F: \mathbb{R}^3 \to \mathbb{R}^2 e^{-C^2}$ SUPONHA $F(3,-1,2) = (0,0) = C^2$
- Q) G(y,z) = F(3,y,z) TEM $dG_{(-1,2)} = \begin{bmatrix} 2 & 1 \end{bmatrix}$ E det $dG_{(-1,3)} = 3 \neq 0$, ENTAÑO

 PELO TEOREMA DA FUNÇÃO INVERSA SEGUE QUE $\exists I$ INTERVALO ABERTO CONTENDO 3, U ABERTO DE \mathbb{R}^2 CONTENDO (-1,2) E $\mathbb{P}: I \rightarrow U$ GC^2 COM $\mathbb{P}(3) = (-1,2)$ E $\mathbb{P} \times EI$ $F(x, \mathbb{P}(x)) = (0,0)$
 - b) (omo $F(x, \varphi(x)) = 0 \Rightarrow 0 = \frac{2F}{2x}(x, \varphi(x)) + dG(y, 2) \cdot d\varphi_x \cdot ASSIM$ $0 = \frac{2F}{2x}(3, -1, 2) + dG_{(-1, 2)} \cdot d\varphi_3 = \binom{1}{1} + \binom{2}{-1} d\varphi_3 \Rightarrow d\varphi_3 = \binom{-1}{-1} \cdot \binom{1}{1-2} = (0 1)$

(13) SEJA f. $\mathbb{R} \to \mathbb{R}$ com $f'(x) \neq \rho$ $\forall x \in \mathbb{R}$. Então se $x, y \in \mathbb{R}$ com y > xTEMOS PELO TEOREMA DO VALOR MÉDIO QUE $f(x) - f(y) = f'(\omega) \cdot (x - y)$ onde $\omega \in Jx, y \in \mathbb{R}$ ASSIM como $x - y \neq o \in f'(\omega) \neq o \in \mathbb{N}$ $f(x) - f(y) \neq o \to f(x) \neq f(y)$.

DE FATO O MESMO NÃO VALE PARA $f:\mathbb{R}^M \supseteq COM M>1:$ NO EX 2 TEMOS QUE SE $f(x,y) = e^x \cdot (cosy, siny)$ NÃO SÓ TEM $df_{(x,y)} \neq 0$ MAS COMO $df_{(x,y)} \notin Bijetora (inversíyel / isomorfismo) <math>\forall (x,y) \in \mathbb{R}^2$, mesmo f NÃO SENDO injetora.