**Facultad de Ciencias Programa FOGEC** ÁLGEBRA I 1er. semestre 2021 **Prof. Mario Marotti** 

CLASE No.

# Las razones trigonométricas (de la clase pasada)

En la clase 3, vimos que las razones trigonométricas pueden definirse así:



$$sen \alpha = \frac{BC}{AB}$$
  $cosec \alpha = \frac{AB}{BC}$ 

$$\cos \alpha = \frac{AC}{AB}$$

$$sec \alpha = \frac{AB}{AC}$$

$$tg \ \alpha = \frac{BC}{AC}$$

$$cotg \ \alpha = \frac{AC}{BC}$$



Por lo dicho antes, el cálculo de cualquiera de ellas es independiente del triángulo en el cual trabajemos, sólo depende del ángulo  $\alpha$ , por tanto nos bastará con dibujar un solo triángulo. Dados que las letras pueden cambiar de posición, coloquémosles nombres a los diferentes lados del triángulo: hipotenusa, cateto opuesto al ángulo y cateto advacente al ángulo.

Tenemos entonces que:

$$sen \alpha = \frac{cateto opuesto}{hipotenusa}$$
  $cosec \alpha = \frac{hipotenusa}{cateto opuesto}$ 

$$cosec \ \alpha = \frac{hipotenusa}{cateto \ opuesto}$$

$$\cos \alpha = \frac{cateto \ adyacente}{hipotenusa}$$
  $\sec \alpha = \frac{hipotenusa}{cateto \ adyacente}$ 

$$sec \alpha = \frac{hipotenusa}{cateto adyacente}$$

$$tg \ \alpha = \frac{cateto \ opuesto}{cateto \ advacente}$$

$$tg \ \alpha = \frac{cateto \ opuesto}{cateto \ advacente}$$
  $cotg \ \alpha = \frac{cateto \ advacente}{cateto \ opuesto}$ 

Pequeño recurso mnemotécnico (ayuda memoria):

"Dos cocas con hielo, por favor"

$$rac{CO}{H} = rac{CA}{H} = rac{CO}{CA} = rac{CA}{CO} = rac{H}{CA} = rac{H}{CO}$$

## Valores trigonométricos de ángulos notables:

| RAZÓN | ÁNGULO |                      |                      |                      |     |
|-------|--------|----------------------|----------------------|----------------------|-----|
|       | 00     | 30°                  | 45°                  | 60°                  | 90° |
| sen a | 0      | $\frac{1}{2}$        | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1   |
| cos a | 1      | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$        | 0   |
| tg a  | 0      | $\frac{\sqrt{3}}{3}$ | 1                    | √3                   | → ∞ |

# Propiedades de las razones trigonométricas

### Propiedad 1:

Sabemos que en un triángulo rectángulo se cumple la relación de Pitágoras:

$$(cateto)^2 + (cateto)^2 = (hipotenusa)^2$$

Como ahora somos capaces de distinguir los catetos:

$$(cat.op.)^2 + (cat.ady)^2 = (hipotenusa)^2$$

Dividiendo ambos miembros por el cuadrado de la hipotenusa,

$$\frac{(cat.op.)^{2}}{(hipotenusa)^{2}} + \frac{(cat.ady)^{2}}{(hipotenusa)^{2}} = \frac{(hipotenusa)^{2}}{(hipotenusa)^{2}}$$

Finalmente,

$$(sen \alpha)^2 + (cos \alpha)^2 = 1$$
  $\forall \alpha \in R$ 

#### Propiedad 2:

$$\frac{sen \ \alpha}{cos \ \alpha} = \frac{\frac{cateto \ opuesto}{hipotenusa}}{\frac{cateto \ adyacente}{hipotenusa}}$$

$$\frac{sen \ \alpha}{cos \ \alpha} = \frac{cateto \ opuesto}{hipotenusa} \cdot \frac{hipotenusa}{cateto \ adyacente}$$

Simplificando:

$$\frac{sen \ \alpha}{cos \ \alpha} = \frac{cateto \ opuesto}{cateto \ adyacente}$$

Finalmente:

$$\frac{sen \alpha}{cos \alpha} = tg \alpha$$

lo que es válido para cualquier ángulo en el cuál la tangente esté definida.

### Propiedad 3:

Recordando que las medidas de los tres ángulos interiores de un triángulo cualquiera suman 180° y que en un triángulo rectángulo un ángulo mide 90°, tenemos que:



$$\alpha + \beta + 90^{\circ} = 180^{\circ}$$

$$\alpha + \beta = 90^{\circ}$$

**Conclusión**: en todo triángulo rectángulos los dos ángulos agudos suman 90°, es decir son **complementarios**. Y, como al cambiar de ángulo, los catetos opuesto y adyacente, intercambian sus posiciones, es decir:

Cateto opuesto a  $\alpha$  = Cateto adyacente a  $\beta$ 

encontramos que:

$$sen \alpha = cos \beta$$

o lo que es lo mismo:

$$sen \alpha = cos (90^{\circ} - \alpha)$$

Análogamente, se deduce que:

$$\cos \alpha = sen (90^{\circ} - \alpha)$$

# Propiedad 4:

Comparando las columnas a la izquierda y a la derecha de las seis razones trigonométricas, observamos que:

$$cosec \ \alpha = \frac{1}{sen \ \alpha}$$
  $sec \ \alpha = \frac{1}{cos \ \alpha}$   $cotg \ \alpha = \frac{1}{tg \ \alpha}$ 

#### Uso de la calculadora:

Las calculadoras sólo tienen las funciones sen cos tan

Invirtiendo éstas mediante la tecla  $x^{-1}$  y utilizando la propiedad 4, se pueden obtener los valores de las otras tres funciones.

Por otro lado, se debe tener cuidado al ingresar el dato a la calculadora si éste está en grados (degrees) o radianes (radians), a través de un selector que cambia de D a R. Generalmente, esa función está en la tecla MODO pero depende un poco del modelo de calculadora.

### **Ejemplo:**

Quremos calcular

cotg 40º

Recordamos que:

$$\cot g \ \alpha = \frac{1}{tg \ \alpha}$$



$$tg\ 40^{\circ} = 0.84$$

$$cotg \ 40^{\circ} = \frac{1}{0.84} \approx 1.2$$

# Un ejemplo de aplicación:

Dos observadores situados a 100 metros de distancia observan el vuelo de un globo aerostático, tal como se ve en la figura.

Con los datos dados calcular la altura a la cual vuela el globo.



#### Solución:

Trabajando en los dos triángulos rectángulos que se observan en la figura,

$$tg \ 60^{\circ} = \frac{h}{x}$$
  $tg \ 30^{\circ} = \frac{h}{x+100}$  
$$\sqrt{3} = \frac{h}{x}$$
 
$$\frac{\sqrt{3}}{3} = \frac{h}{x+100}$$
 
$$x = \frac{h}{\sqrt{3}}$$
 
$$x = \frac{3h}{\sqrt{3}} - 100$$

Igualando, para eliminar "x":

$$\frac{h}{\sqrt{3}} = \frac{3h}{\sqrt{3}} - 100 \quad \Rightarrow \quad 100 = \frac{2h}{\sqrt{3}} \quad \Rightarrow \quad \frac{100 \cdot \sqrt{3}}{2} = h \quad \Rightarrow \quad \frac{100 \cdot 1,73}{2} \approx h \quad \Rightarrow$$
$$\Rightarrow \quad h \approx 86,5 \, m$$

# **Ejercicios:**

**1.** La hipotenusa de un triángulo rectángulo mide 26 cm y un ángulo 45°. Encuentre la medida de los catetos.

Respuesta: 
$$\frac{26\sqrt{2}}{2}$$

**2.** El hilo de un volantín mide 50 metros y forma con la horizontal un ángulo de 37°. ¿A qué altura vuela el volantín?

3. En una circunferencia de 10 cm de radio, un arco mide  $6\pi$  cm. ¿Cuánto mide (en grados y en radianes) el ángulo central correspondiente?

Respuesta: 
$$108^\circ$$
;  $\frac{3\pi}{5}$ 

**4.** El apotema de un hexágono regular mide 15 cm, calcula el lado del polígono y el área de la figura.

Respuesta: 
$$l = 10\sqrt{3} \ cm$$
; A =  $450\sqrt{3} \ cm^2$ 

**5.** En un triángulo isósceles los ángulos basales miden 78° y la altura 28 cm. Halle la medida de la base.

Respuesta: 11,9 cm

**6.** Desde un bote se observa la torre de un faro con un ángulo de elevación de 45°. Al alejarse 15 metros más, el ángulo es 30°. ¿Qué altura tiene la torre?

Respuesta: 20,4 m