TD 3

Entiers modulo n et Congruences linéaires

Esercice 1. Soit $a, b, n, n' \in \mathbb{Z}$, avec n, n' > 0 et $n' \mid n$. Montrer que si $a \equiv b \pmod{n}$, alors $a \equiv b \pmod{n'}$.

Esercice 2. Lister les éléments de l'ensemble $(\mathbb{Z}/20\mathbb{Z})^{\times}$ et pour chacun de ces éléments déterminer son inverse modulo 20.

Esercice 3. Déterminer si 46 est inversible modulo 651 et, en cas affirmatif, calculer son inverse.

Esercice 4. Démontrer que si $n \in \mathbb{Z}_{>0}$ n'est pas premier alors $\mathbb{Z}/n\mathbb{Z}$ n'est pas un corps.

Esercice 5.

- (a) Résoudre dans \mathbb{Z} les congruences suivantes :
 - $21z \equiv 12 \pmod{30}$,
 - $14z \equiv 5 \pmod{21}$,
 - $15z \equiv 9 \pmod{25}$,
 - $z + 4 \equiv 16z + 13 \pmod{18}$.
- (b) Quelle âge ai-je? La réponse dans le représentant canonique des solutions du système suivant :

$$\begin{cases} z \equiv 2 \pmod{3} \\ z \equiv 3 \pmod{4} \\ z \equiv 0 \pmod{5} \end{cases}.$$

(c) Résoudre dans $\mathbb Z$ les systèmes suivants :

$$\begin{cases} 5z \equiv 2 \pmod{3} \\ 3z \equiv 4 \pmod{7} \\ 3z \equiv 7 \pmod{8} \end{cases}, \begin{cases} 6z \equiv 9 \pmod{15} \\ 22z \equiv 55 \pmod{77} \\ 3z \equiv 2 \pmod{13} \\ 27z \equiv 9 \pmod{36} \end{cases}.$$

Esercice 6. Détérminer un couple d'entiers a, b tels que la congruence linéaire

$$az \equiv b \pmod{319}$$

a exactement 11 solutions distinctes modulo 319.

Esercice 7. Montrer qu'il n'existe pas d'entiers x, y qui satisfont l'équation

$$7x^3 + 2 = y^3$$
.