Оглавление

1 Жі	изнь до.	2
1.1	Метрическое пространство. Метрика.	2
	1.1.1 Примеры метрик	2
1.2	Открытые множества. Топологические пространства.	4
	1.2.1 Открытые множества. Свойства	4
	1.2.2 Топологическое пространство. Топология	5
	1.2.3 Окрестности. Теорема о дополнении подмножества	5
1.3	Замкнутые множества	6
	1.3.1 Теорема о множестве замкнутых множеств	6
	1.3.2 Теорема о соответствующей топологии	6
1.4	Внутренность, замыкание и граница	8
	1.4.1 Существование внутренности и замыкания	8
	1.4.2 Свойства замыкания, внутренности и границы	9
1.5	База топологии.	10
	$1.5.1$ Критерий базы топологии Ω	10
	1.5.2 Критерий базы некоторой топологии	11
1.6	Индуцированная топология	12
1.7	Непрерывные отображения	12
	1.7.1 Непрерывность в точке	12
	1.7.2 Непрерывность отображения	13
	1.7.3 Фактор-пространство	15
	1.7.4 Гомеоморфизм	15
1.8	Аксиомы отделимости.	16
	1.8.1 Замкнутость точек в пространствах с первой аксиомой отделимости	16
	1.8.2 Метрические пространства нормальные	17
1.9	Аксиомы счетности. Всюду плотность. Сепарабельность	17
	1.9.1 Покрытие. Теорема Линделёфа	18
1.10) Связность	19

Глава 1

Жизнь до.

1.1 Метрическое пространство. Метрика.

• Определение:

 $d: X \times X \to \mathbb{R}$ — метрика, если:

- 1. $d(x,y) \ge 0$; $d(x,y) = 0 \iff x = y$,
- 2. d(x,y) = d(y,x),
- 3. $d(x,y) + d(y,z) \ge d(x,z)$.

(X, d) — метрическое пространство.

1.1.1 Примеры метрик.

1. V - векторное пространство, $<\cdot,\cdot>$ - скалярное произведение.

$$< d(\vec{v_1}, \vec{v_2}) = \sqrt{<\vec{v_1} - \vec{v_2}, \vec{v_1} - \vec{v_2}>} = |\vec{v_1} - \vec{v_2}|$$

- 2. (E, V) аффинное пространство, скалярное произведение на V.
- $3. \circ Oпределение:$

$$H$$
орм $a \mid |\cdot|| : V \to \mathbb{R}$

1.
$$||\vec{v}|| \ge 0$$
; $||\vec{v}|| = 0 \iff \vec{v} = \vec{0}$

$$2. ||\lambda \vec{v}|| = |\lambda| * ||\vec{v}||$$

3.
$$||\vec{v_1} + \vec{v_2}|| \le ||\vec{v_1}|| + ||\vec{v_2}||$$

Тогда $d(\vec{v_1}, \vec{v_2}) = ||\vec{v_1} - \vec{v_2}||$ - метрика.

3.1
$$V = \mathbb{R}^n$$
, $||x||_p = (\sum |x_i|^p)^{1/p}$, $p \ge 1$

$$||x||_{\inf} = \max_{1 \le i \le n} (|x_i|)$$

4. S^2 — сфера, 2 метрики:

 $1.\mathbb{R}^3 \to \mathbb{R}$ (Стандартная метрика),

2. Угловая метрика.

1.2 Открытые множества. Топологические пространства.

1.2.1 Открытые множества. Свойства.

• Определения:

- 1. $R>0,\; B(x_0,R)\stackrel{def}{=}\{x\in X|\;\; d(x_0,x)< R\}$ —открытый шар радиуса R с центром $x_0.$
- 2. $S(x_0, R) \stackrel{def}{=} \{x \in X | d(x_0, x) = R\} c \phi epa.$
- 3. (X,d) –метрическое пространство, $U\subseteq X$ $U-om\kappa pыmo$, если:

$$\forall x \in U \exists \varepsilon > 0 : B(x, \varepsilon) \subseteq U.$$

Теорема об открытости шара.

Открытый шар открыт.

Доказательство:

Рассмотрим $x \in B(x_0, R)$.

$$\varepsilon := R - d(x_0, x) > 0$$
 (t.k. $x \in B(x_0, R) \Rightarrow d(x_0, x) < R$)

Пусть
$$y \in B(x,\varepsilon) \Rightarrow d(x,y) < \varepsilon = R - d(x_0,x)$$

$$d(x_0, y) \le d(x_0, x) + d(x, y) < R \Rightarrow y \in B(x_0, R) \Rightarrow B(x, \varepsilon) \subseteq B(x_0, R).$$

QED.

Теорема о свойствах Ω

 $\Omega \stackrel{def}{=} \{U \subseteq X | U$ -открыто $\}; X$ -метрическое пространство.

Тогда:

- 1. \emptyset , $X \in \Omega$
- 2. $U, V \in \Omega \Rightarrow U \cap V \in \Omega$
- 3. $U_{\alpha} \in \Omega \Rightarrow \bigcup_{\alpha \in I} U_{\alpha} \in \Omega$

Доказательство:

- 1. 1) \varnothing —очевидно. 2) Рассмотреть для каждого элемента $\varepsilon = 1$ (или любой другой, далее очевидно.)
- 2. Рассмотрим $y \in U \cap V$

$$y \in U \Rightarrow \exists \varepsilon_1 > 0 : \forall x \in X \ d(x,y) < \varepsilon_1 \Rightarrow x \in U$$

 $y \in V \Rightarrow \exists \varepsilon_2 > 0 : \forall x \in X \ d(x,y) < \varepsilon_2 \Rightarrow x \in V$

 $\sphericalangle \varepsilon := min(\varepsilon_1, \varepsilon_2).$

Далее очевидно.

3.
$$x \in \bigcup_{\alpha \in I} U_{\alpha} \Rightarrow \exists i \in I : x \in U_i \Rightarrow \exists \varepsilon : (\forall y \in X \ d(x,y) < \varepsilon \Rightarrow y \in U_i \Rightarrow y \in \bigcup_{\alpha \in I} U_{\alpha})$$

1.2.2 Топологическое пространство. Топология.

• Определение:

 (X,Ω) — топологическое пространство, если:

- 1. \emptyset , $X \in \Omega$
- 2. $U, V \in \Omega \Rightarrow U \cap V \in \Omega$
- 3. $U_{\alpha} \in \Omega \Rightarrow \bigcup_{\alpha \in I} U_{\alpha} \in \Omega$

 Ω – monoлогия, элементы Ω – открытые.

Примеры топологических пространств.

- 1. $\Omega = 2^X \partial u c \kappa p e m h a s monoлоги s$.
 - топология.
- 2. $\Omega = \{\varnothing, X\}$ антидискретная топология
- 3. $X=\mathbb{R};\ \Omega=\{(a,+\inf)|\ a\in\mathbb{R}\}\cup\{\varnothing,\ \mathbb{R}\}$ стрелка

1.2.3 Окрестности. Теорема о дополнении подмножества.

• Определения:

 $x_0 \in X$.

- 1. Окрестность точки x_0 произвольное открытое множество, содержащее x_0 .
- 2. ε -окрестность (.) x_0 - $B(x_0, \varepsilon)$. Определено только для метрических пространств.

Теорема о дополнении подмножества

 $F \subset X; X$ — метрическое пространство

- 1. $(\forall x \ \forall \varepsilon \ (B(x,\varepsilon)\setminus \{x\}\cap F\neq\varnothing)\Rightarrow x\in F)\Longleftrightarrow X\setminus F$ -открыто.
- 2. X— топологическое пространство.

$$((\forall U_x$$
-откр. $U_x \cap F \setminus \{x\} \neq \emptyset) \Rightarrow x \in F) \iff X \setminus F$ - открыто.

Доказательство:

1. Если X— метрическое пространство, то $1. \iff 2.$:

$$1. \Leftarrow 2. : -$$
 очевидно ; $1. \Rightarrow 2. :$

Рассмотрим
$$U_x$$
 -откр. $\Rightarrow \exists \varepsilon : B(x,\varepsilon) \subseteq U_x \Rightarrow ((B(x,\varepsilon)\setminus\{x\}) \cap F \subset U_x\setminus\{x\} \cap F \Rightarrow U_x\setminus\{x\} \cap F \neq \emptyset.$

Достаточно доказать (2.)

1.
$$\Rightarrow$$
, т.е. $x \notin F \Rightarrow \exists U_x : U_x \setminus \{x\} \cap F = \varnothing \Rightarrow U_x \cap F = \varnothing \Rightarrow U_x \subseteq X \setminus F \Rightarrow \bigcup_{x \in X \setminus F} U_x \subseteq X \setminus F ; " \supseteq "- тоже(оч.), $\Rightarrow \bigcup_{x \in X \setminus F} U_x = X \setminus F$, но $\cup U$ - откр.$

QED.

2. ⇐:

Пусть
$$X \setminus F$$
—откр. и $\forall U_x$ —откр. $(U_x \setminus \{x\} \cap F \neq \varnothing)$ Допустим, что $x \notin F \implies x \in (X \setminus F)$ Тогда $\varnothing \neq ((X \setminus F) \setminus \{x\}) \cap F = ((X \setminus F) \cap F) \setminus \{x\} = \varnothing$. Противоречие. ¹

QED.

1.3 Замкнутые множества.

• Определение:

F - 3амкнуто $\iff X \backslash F$ — открыто.

1.3.1 Теорема о множестве замкнутых множеств

 \mathcal{F} — множество замкнутых множеств.

Тогда:

- 1. \emptyset , $X \in \mathcal{F}$
- 2. $F, G \in \mathcal{F} \Longrightarrow F \cup G \in \mathcal{F}$
- 3. $F_{\alpha} \in \mathcal{F} \Longrightarrow \bigcap_{\alpha \in I} F_{\alpha} \in \mathcal{F}$

Доказательство:

- 1. очевидно: $(X \setminus X = \emptyset \ ; \ X \setminus \emptyset = X)$
- 2. $F \cup G$ замкнуто $\Longleftrightarrow X \backslash (F \cup G)$ —открыто. Но $X \backslash (F \cup G) = (X \backslash F) \cap (X \backslash G)$ — открыто как пересечение двух открытых.
- 3. $X\setminus (\bigcap_{\alpha\in I}F_{\alpha})=\bigcup_{\alpha\in I}(X\setminus F_{\alpha})$ рассуждение аналогично (2.)

1.3.2 Теорема о соответствующей топологии

Пусть $\mathcal{F} \subseteq 2^X$ такое, что:

- 1. \emptyset , $X \in \mathcal{F}$
- 2. $F, G \in \mathcal{F} \Longrightarrow F \cup G \in \mathcal{F}$

 $^{^{1}}$ Последняя часть доказательства является авторской. Лекционный вариант утерян бесследно.

3.
$$F_{\alpha} \in \mathcal{F} \Longrightarrow \bigcap_{\alpha \in I} F_{\alpha} \in \mathcal{F}$$

Тогда существует единственная топология Ω такая, что $\mathcal F$ - множество замкнутых множеств.

Доказательство:

1. Докажем единственность:

Если такая топология Ω существует, то $\Omega = \{X \setminus F | F \in \mathcal{F}\}.$

Действительно, каждое такое множество должно входить в Ω , и ни одно другое в неё входить не может. Таким образом, Ω - единственная возможная топология по построению.

- 2. Теперь докажем, что построенная Ω действительно является топологией. Для этого проверим 3 необходимых свойства из определения.
 - (a) \varnothing , $X \in \Omega$ очевидно.
 - (b) $U=X\backslash F,\ V=X\backslash G;\ F,\ G\in\mathcal{F}$ $U\cap V=(X\backslash F)\cap (X\backslash G)=X\backslash (F\cup G)\Longrightarrow U\cap V\in\Omega.$ здесь мы пользуемся свойством (2).
 - (c) $U_{\alpha}=X\backslash F_{\alpha}; \quad F_{\alpha}\in \mathcal{F}$ $\bigcup_{\alpha\in I}U_{\alpha}=\bigcup_{\alpha\in I}X\backslash F_{\alpha}=X\backslash \bigcap_{\alpha\in I}F_{\alpha} \text{ здесь мы пользуемся свойством (3)}.$

1.4 Внутренность, замыкание и граница.

• Определения:

$A \subseteq X$

- 1. x Bнутренняя точка A, если $\exists U_x \in \Omega : U_x \subseteq A$, т.е. точка входит в A с некоторой окрестностью. Заметим, что условие можно переписать как $(U_x \cap (X \setminus A)) = \emptyset$
- 2. x Внешняя точка A, если $\exists U_x \in \Omega : U_x \subseteq X \backslash A$, т.е. точка входит в дополнение A с некоторой окрестностью. Иначе говоря, $U_x \cap A = \emptyset$.
- 3. $x \Gamma$ раничная точка A, если $\forall U_x \in \Omega : (U_x \cap A \neq \varnothing) \& (U_x \cap (X \setminus A) \neq \varnothing)$, т.е. любая окрестность пересекает и A, и дополнение A.
 - *Упражнение:* Доказать, что в случае метрических пространств определения останутся эквивалентными при замене окрестностей на шаровые.
- 4. x Точка прикосновения A, если $\forall U_x \ U_x \cap A \neq \emptyset$
- 5. Внутренность Int(A) наибольшее по включению открытое множество, содержащееся в A. Примечание: Также используется обозначение $\overset{\circ}{A}$.
- 6. Замыкание Cl(A) наименьшее по включению замкнутое множество, содержащее А. Примечание: Также используется обозначение \overline{A} и cl(A).
- 7. Граница ∂A множество граничных точек A. <u>Примечание:</u> Также используется обозначение Fr(A). Если необходимо подчеркнуть, к какому всеобъемлещему множеству относится граница, пишут $\partial_X A$.

1.4.1 Существование внутренности и замыкания

1. Int(A) существует и $Int(A) \stackrel{1}{=} \bigcup_{\substack{U \subseteq A, \\ U \in \Omega}} U \stackrel{2}{=} \{ \ x \mid \ x$ — внутр.}

Доказательство:

- <u>1.</u> Первое равенство справедливо, т.к. объединение открытых множеств открыто, содержится в A и любое открытое подмножество A лежит в нем по определению.
- Покажем, что второе множество содержится в первом и наоборот.
- (a) Пусть x внутренняя точка A. Тогда существует $U_x\subseteq A$. Но $U_x\subseteq\bigcup_{U\subseteq A,\atop U\in\Omega}U$, значит $x\in\bigcup_{U\subseteq A,\atop U\in\Omega}U$, то есть $\{\ x\mid\ x$ внутр. $\}\subseteq\bigcup_{U\subseteq A,\atop U\in\Omega}U$
- (b) Пусть точка x лежит в нашем объединении. Значит существует открытое множество, в котором она лежит. Но тогда x - внутренняя точка A, то есть любая точка из объединения является внутренней, а значит { x | x− внутр.} ⊇ ∪ U.

Значит множества действительно равны. Заметим, что иногда последняя часть равенства используется в качестве определения.

2. Cl(A) существует и $Cl(A) \stackrel{1}{=} \bigcap\limits_{\substack{F \supseteq A \\ F \subseteq F}} F \stackrel{2}{=} \{x | x$ —т. прикосн. $A\}$.

Доказательство:

 $R := \bigcap_{\substack{F \supseteq A, \\ F \in \mathcal{F}}} F \supseteq A$, R - замкнуто как пересечение замкнутых. Если замкнутое множество G содержит A, то G содержит и R, ведь G входит в пересечение. Значит R - действительно наименьшее (по включению) замкнутое множество, содержащее A.

1.4.2 Свойства замыкания, внутренности и границы.

1. $X \setminus Cl(A) = Int(X \setminus A)$. - это очевидно, но давайте докажем:

Доказательство:

$$X\backslash Cl(A)=X\backslash (\cap F)^2=\cup (X\backslash F)=[U=X\backslash F\text{ -открыто}]=\bigcup_{U\subseteq (X\backslash A)}U=Int(X\backslash A)\ .$$

- 2. $X \setminus Cl(A)$ множество всех внешних точек А. Следует напрямую из пункта 1.
- 3. $X \setminus Int(A) = Cl(X \setminus A)$. Доказывается абсолютно аналогично пункту 1.

Выпишем ещё несколько свойств, оставив часть из них читателю в качестве упражнения.

1. (a) A - OTKP.
$$\iff A = Int(A)$$

(b) A - замкнуто
$$\iff A = Cl(A)$$

2. (a)
$$A \subseteq B \Longrightarrow Int(A) \subseteq Int(B)$$

(b)
$$A \subseteq B \Longrightarrow Cl(A) \subseteq Cl(A)$$

3. (a)
$$Int(A \cap B) = Int(A) \cap Int(B)$$

(b)
$$Cl(A \cup B) = Cl(A) \cup Cl(B)$$

4. (a)
$$Int(A \cup B) \supseteq Int(A) \cup Int(B)$$

(b)
$$Cl(A \cap B) \subseteq Cl(A) \cap Cl(B)$$

Приведем лишь доказательства пунктов (a), пункт (b) же выводится либо из (a), либо аналогично (a). Итак, начнем.

- 1. Как и всегда в таких теоремах, разобьем утверждение на 2 и докажем их по отдельности.
 - \Leftarrow : На самом деле очевидно, т.к. $A=Int(A)=\cup U_x$ открыто как объединение открытых.
 - \Rightarrow : А открыто, $A \subseteq A$. Значит А входит в объединение открытых подмножеств, содержащихся в A, откуда очевидно A = Int(A).
- 2. Воспользуемся другим определением внутренности: $Int(A) = \{ x | x \text{ внутр. в A} \}$. Заметим, что если x внутр. в $A, A \subseteq B$, то x внутр. в B ($U_x \subseteq A \subseteq B$). Откуда $Int(A) = \{ x | x \text{ внутр. в A} \} \subseteq \{ x | x \text{ внутр. в B} \} = Int(B)$.

²Здесь и далее индексы объединения/пересечения/суммирования пишутся только в первом употреблении и далее опускаются чтобы не загромождать текст. Как правило всё ясно из контекста и без них.

3. Существует по меньшей мере 2 доказательства данного факта. Мы приведем лишь один, оставив второй на совесть читателя.

Как и всегда в таких ситуациях, разобьем утверждение на 2 и докажем их по отдельности.

$$\subseteq$$
: $A \cap B \subseteq A \Longrightarrow Int(A \cap B) \subseteq Int(A)$ (по пункту (2)).

Аналогично, $Int(A \cap B) \subseteq Int(B)$, откуда $Int(A \cap B) \subseteq Int(A) \cap Int(B)$.

⊇:

$$\left\{ \begin{array}{l} A \supseteq Int(A) \\ B \supseteq Int(B) \end{array} \right. | \Longrightarrow A \cap B \supseteq Int(A) \cap Int(B) \Longrightarrow Int(A \cap B) \supseteq Int(A) \cap Int(B)$$

(здесь используются сразу пункты 1 и 2)

4. Пусть x — внутренняя точка А. Тогда она внутренняя и для $A \cup B$, значит $Int(A) \subseteq Int(A \cup B)$. Аналогично для Int(B).

Тогда $Int(A) \cup Int(B) \subseteq Int(A \cup B) \cup Int(A \cup B) = Int(A \cup B)$.

 $QED.^3$

1.5 База топологии.

• Определение:

 $(X,\ \Omega)$ - топологическое пространство. $\Sigma\subseteq\Omega-$ Ваза топологии, если любой элемент из Ω представим в виде объединения некоторых элементов из Σ .

1.5.1 Критерий базы топологии Ω

Оказывается, что определение базы Σ для топологии Ω эквивалентно совокупности следующих двух условий:

- 1. $\forall U \in \Omega \ \forall x \in U \ \exists S \in \Sigma : \ x \in S \subseteq U$
- 2. $\forall S \in \Sigma : S \text{otkd}$

Доказательство:

 \Rightarrow :

1. По условию,
$$\forall U \in \Omega \ \exists I: \ \{S_{\alpha} \in \Sigma\}: \ U = \underset{\alpha \in I}{\cup} S_{\alpha}$$
 Тогда $x \in \underset{\alpha \in I}{\cup} S_{\alpha} \Longrightarrow \exists \alpha_0 \in I: \ x \in S_{\alpha_0}, \ \text{но} \ S_{\alpha_0} \subseteq \underset{\alpha \in I}{\cup} S_{\alpha} = U. \ S = S_{\alpha_0}$ - подходит.

2. очевидно из определения.

<u></u>

По условию,
$$\forall x \in U \ \exists S_x \in \Sigma: \ x \in S_x \subseteq U$$
 Но тогда $U \subseteq \underset{\alpha \in U}{\cup} S_\alpha \subseteq U \iff \underset{\alpha \in U}{\cup} S_\alpha = U.$

 $^{^3 \}Pi$ ункты 1-2,4 созданы вашим покорным слугой. Лекционным считать только пункт 3.

• Упражнение: Докажите, что шары - база метрической топологии.

1.5.2 Критерий базы некоторой топологии

Оказывается, что Σ — база некоторой топологии тогда и только тогда, когда выполняются следующие два условия:

1. $\forall x \in X \ \exists S_x : \ x \in S_x$

2. $\forall S_{1,2} \in \Sigma$: $\forall x \in S_1 \cap S_2 \ \exists S_x \in \Sigma$: $x \in S_x \subseteq S_1 \cap S_2$

Причем заданная топология единственна.

Доказательство:

 \Rightarrow :

1.
$$\forall x \in X \in \Omega \Longrightarrow \exists I : S_{\alpha} \in \Sigma \& X = \bigcup_{\alpha \in I} S_{\alpha}$$

 $|\Rightarrow \forall x \in X \exists \alpha : x \in S_{\alpha}.$

2.
$$S_1 \cap S_2$$
 - откр. $\Longrightarrow \exists I: S_\alpha \in \Sigma;$
$$S_1 \cap S_2 = \bigcup_{\alpha \in I} S_\alpha \implies \exists \alpha: \ x \in S_\alpha \subseteq S_1 \cap S_2.$$

eq :

Если топология существует, то $\Omega = \bigcap\limits_{\alpha \in I} S_{\alpha} | \ S_{\alpha} \in \Sigma$

Если это топология, то Σ — её база. Проверим, что Ω — действительно топология.

1) \varnothing — "пустое объединение" (|I|=0).

X есть по свойству 1. Например, можно взять объединение всех S из Ω .

2)
$$U, V \in \Omega$$
, $\iff U = \cup S_{\alpha}, V = \cup S_{\beta}$.
$$U \cap V = (\cup S_{\alpha}) \cap (\cup S_{\beta}) = \cup (S_{\alpha} \cap S_{\beta}) =$$
$$\forall x \in S_{\alpha} \cap S_{\beta} \ \exists S_{x} : x \in S_{x} \subseteq S_{\alpha} \cap S_{\beta} \ \text{(свойство 2)}$$
$$S_{\alpha} \cap S_{\beta} \subseteq \bigcup_{x \in S_{\alpha} \cap S_{\beta}} S_{x} \subseteq S_{\alpha} \cap S_{\beta}$$
$$= \bigcup_{\alpha, \beta} (\bigcup_{x \in S_{\alpha} \cap S_{\beta}} S_{x}) \text{- лежит в } \Omega. \text{Объясним это в пункте 3, попутно доказав его.}$$

3) $\bigcup_{\beta \in I} S_{\beta} = \bigcup_{\alpha \in I_b} (\bigcup_{\alpha \in I_b} S_{\alpha})$ - это объединение объединений множеств из базы. Поскольку объединение ассоциативно, это просто объединение множеств из базы. А значит, оно лежит в Ω .

QED.

Пример

X, Y — топологические пространства

$$\{U \times V | U$$
- откр. в X , V - откр. в Y $\}$ — База топологии.

Доказывается непосредственно.

1.6 Индуцированная топология

• Определение:

$$X$$
 – т.п.; $A \subseteq X$

 $\Omega_A := \{U \cap A | U \in \Omega\}$ — *индуцированная топология на A.* Само построение понадобится нам чуть позже, а сейчас ограничимся лишь тем, что докажем, что это действительно топология.

Доказательство:

- 1. $\emptyset = \emptyset \cap A$; $A = X \cap A$
- 2. $(U \cap A) \cap (V \cap A) = (U \cap V) \cap A$
- 3. $\bigcap_{\alpha} (U_{\alpha} \cap A) = (\bigcap_{\alpha} U_{\alpha}) \cap A$

Пока на этом всё. Читателю в упражнение остаётся проверить, что же происходит с метрикой под действием индуцирования.

1.7 Непрерывные отображения

1.7.1 Непрерывность в точке

Определения.

1. Следующие определения эквивалентны, в чём читатель легко может убедиться сам. Итак,

$$X, Y$$
—м. п.

$$f: X \longrightarrow Y$$
—непрерывно в точке a , если:

(a)
$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x \ d_X(x, a) < \delta \Rightarrow d_Y(f(x), f(a)) < \varepsilon$$
.

(b)
$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x \ x \in B(a, \delta) \Rightarrow f(x) \in B(f(a), \varepsilon).$$

(c)
$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ f(B(a, \delta)) \subset B(f(a), \varepsilon)$$
.

2. Естественноо продолжить предыдущее определение на произвольную топологию. Итак,

$$X, Y$$
—т.п.

$$f: X \longrightarrow Y-$$
 непрерывно в точке a , если: $\forall U_{f(a)} \ \exists V_a: f(V_a) \subset U_{f(a)}.$ (*)

Это кажется нам очевидным, но давайте все же формально докажем:

Теорема.

Для метрических пространств (*) дает то же самое.

Доказательство.

 $1. \Rightarrow$

Доказываем: f—непрерывно в метрическом смысле $\Longrightarrow f$ —непрерывно в топологическом смысле.

Рассмотрим
$$U_{f(a)} \in \Omega_Y \implies \exists \varepsilon > 0: B_{f(a)}(\varepsilon) \subset U_{f(a)}$$

Тогда
$$\exists \delta : f(B(a,\delta)) \subset B_{f(a)}(\varepsilon) \subset U_{f(a)}.$$

$$V_a := B(a, \delta).$$

 $2. (\Leftarrow)$

$$B(f(a), \varepsilon) \in \Omega_Y \implies \exists V_a \in \Omega_X : f(V_a) \subset B(f(a), \varepsilon)$$

$$V_a \in \Omega_X \Longrightarrow \exists \delta : B_a(\delta) \subset V_a.$$

$$f(B_a(\delta)) \subset f(V_a) \subset B(f(a), \varepsilon).$$

QED.

1.7.2 Непрерывность отображения

Аналогии с матанализом возникают у вас не случайно, так что, думаю, вы знаете, что будет дальше. Итак, Определение. X, Утопологические пространства.

 $f:\ X o Y$ —непрерывно, если:

$$\forall U \in \Omega_Y: \quad f^{-1}(U) \in \Omega_X.$$

И тут читатель скажет: Георгий, ты што дурак? непрерывность ета другое!

Не волнуйся, дорогой читатель. Следующая теорема тебя успокоит.

Эквивалентность определений

Теорема.

f—непрерывно \iff ($\forall x \in X f$ -непрерывно в x).

Доказательство.

 \Rightarrow :

Рассмотрим $U_{f(a)}$. $V_a := f^{-1}(U_{f(a)})$ -открыт как прообраз открытого. $a \in V_a$ т.к. $f(a) \in U_{f(a)}, f(V_a) \subset U_{f(a)}$ по построению.

 \Leftarrow :

 $U \in \Omega_Y$.

$$f(x) \in U \implies \exists V_x : f(V_x) \subset U \iff V_x \subset f^{-1}(U).$$

$$f^{-1}(U) = \bigcup_{x \in f^{-1}(U)} V_x$$
—откр. как объединение открытых.

Свойства

1. $g: X \to Y$; $f: Y \to Z$, f, g—непрерывны.

Тогда отображение $f \circ q: X \to Z$ тоже непрерывно.

Доказательство тривиально: $(f \circ g)^{-1}(U) = g^{-1}(f^{-1}(U))$ - открыто по условию.

2. $A\subset X$. $in_A:A{\ \hookrightarrow\ }X$ —непрерывно.

Доказательство.

 $U \in \Omega_X \Longrightarrow in^{-1}(U) = U \cap A$ -открыто по определению индуцированной топологии.

2.1 Следствие:

$$A\subset X;\quad f:X\to Y$$
-непр. Тогда $f|_A:A\to Y$ -непрерывно. Доказательство: $f|_A=f\circ in_A$ – непрерывно как композиция непрерывных.

3.
$$f:X \to Y$$
—непр. $\iff f|_{f(X)}:X \to f(X)$ — ограничение — непрерывно. Доказательство остается читателю в качестве упражнения.

4.
$$pr_X: X \times Y \to X; \quad pr_Y: X \times Y \to Y$$
 — непрерывны.

4. $pr_X: X \times Y \to X; \quad pr_Y: X \times Y \to Y$ — непрерывны. Докажем играючи: $pr_X^{-1}(U) = U \times Y \in \Sigma_{X \times Y}.$ (Мы обсуждали этот пример когда речь шла о критериях базы.)

Сопутствующие теоремы

Теорема. $(f: X \to Y - \text{непр.}) \iff (\forall F \in \mathcal{F}_Y: f^{-1}(F) \in \mathcal{F}_X).$

Доказательство.

$$\Rightarrow$$
:

$$f^{-1}(F) = f^{-1}(Y \setminus U) = \{x \mid f(x) \in Y \setminus U\} = \{x \mid f(x) \notin U\} = X \setminus \{x \mid f(x) \in U\} = X \setminus f^{-1}(U) - \text{замкнуто.}$$

Рассуждение аналогично, поэтому мы позволим себе опустить несколько переходов, оставив их осмысление на совесть читателя.

$$f^{-1}(U) = f^{-1}(Y \backslash F) = X \backslash f^{-1}(F).$$

QED.

Теорема. $f:X\to Y;$ $U_{\alpha}\in\Omega_X;$ $f|_{U_{\alpha}}$ — непр; $\bigcup_{\alpha}U_{\alpha}=X.$

Тогда f непрерывно.

Доказательство. Рассмотрим произвольное $V \in \Omega_Y$.

$$(f|U_{\alpha})^{-1}(V) = \{x \in U_{\alpha}|f(x) \in V\} = \{x \in U_{\alpha}|x \in f^{-1}(V)\} = U_{\alpha} \cap f^{-1}(V).$$

$$f^{-1}(V) = X \cap f^{-1}(V) = (\bigcup_{\alpha} U_{\alpha}) \cap f^{-1}(V) = \bigcup_{\alpha} (U_{\alpha} \cap f^{-1}(V)) = \bigcup_{\alpha} ((f|U_{\alpha})^{-1}(V)) \in \Omega_X$$
. (Заметим, что поскольку U_{α} открыт, $W \cap U_{\alpha}$ тоже открыт для любого $W \in \Omega_X$, а значит, если $(f|U_{\alpha})^{-1}(V)$ открыто в U_{α} , то оно открыто и в X . В следующей теореме соображение будет таким же.)

QED.

Теорема.
$$f: X \to Y;$$
 $F_{1..n} \in \mathcal{F};$ $f|_{F_i}$ — непр.; $\bigcup_{1 \le i \le n} F_i = X.$ Тогда f — непрерывно.

Доказательство.

Рассмотрим произвольное $G \in \mathcal{F}_Y$.

$$(f|F_i)^{-1}(G) = \dots = F_i \cap f^{-1}(G).$$

 $f^{-1}(G) = X \cap f^{-1}(G) = (\bigcup_{1 \le i \le n} F_i) \cap f^{-1}(G) = \bigcup_i (F_i \cap f^{-1}(G)) = \bigcup_i ((f|F_i)^{-1}(G)) \in \mathcal{F}_X.$

QED.

1.7.3 Фактор-пространство.

Определение .

X — топологическое пространство; \sim — отношение эквивалентности на X; $[x] = \{y | y \sim x\}$.

Тогда
$$pr: X \to X/\sim X/\sim A/\sim M$$
актор-пространство. $\Omega_{X/\sim}:=\{A\subset X/\sim |pr^{-1}(A)\in \Omega_X\}.$

Утверждение

 $\Omega_{X/\sim}$ — топология.

Доказательство.

1
$$pr^{-1}(\emptyset) = \emptyset$$
; $pr^{-1}(X/\sim) = X$.

$$2 U, V \in \Omega_X \iff pr^{-1}(U), pr^{-1}(V) \in \Omega_{X/\sim}.$$

$$pr^{-1}(U)\cap pr^{-1}(V)=pr^{-1}(U\cap V)\in \Omega_{X/\sim}.$$

$$3 \underset{\alpha}{\cup} (pr^{-1}(U_{\alpha})) = pr^{-1}(\underset{\alpha}{\cup} U_{\alpha}) \in \Omega_{X/\sim}.$$

Теорема. $f: X \Rightarrow Y - \text{непр.}; \sim - \text{ отн. экв.}; \quad (x_1 \sim x_2 \Leftrightarrow f(x_1) == f(x_2))$

$$\overline{f}: X/\sim \to Y - \underline{\Phi a \kappa mop\text{-}omoбражениe} \overset{!}{-}$$
 непрерывно.

Доказательство.

Рассмотрим произвольное $U \in \Omega_Y$.

По определению,
$$(\overline{f})^{-1}(U) \in \Omega_{X/\sim} \iff pr^{-1}((\overline{f})^{-1}(U)) \in \Omega_X$$
.

Но
$$pr^{-1}((\overline{f})^{-1}(U)) = \{x|\overline{f}([x]) \in U\} = \{x|f(x) \in U\} = f^{-1}(U) \in \Omega_X$$
 — по условию.

QED.

1.7.4 Гомеоморфизм

Определение. $f:X \to Y$ — *гомеоморфизм* $\stackrel{def}{\Longleftrightarrow} f$ — биекция, непрерывно И f^{-1} непрерывно.

Читатель может подумать, что последнее условие излишне. Классическим опровержением такого мнения служит биекция полуинтервала в окружность.

Определение. X, Y — *гомеоморфны* $\stackrel{def}{\Longleftrightarrow}$ между ними существует гомеоморфизм.

Несколько примеров гомеоморфных пространств приведены на картинке.

Рис. 1.1. Трилистник, восьмерка и тривиальный узел

1.8 Аксиомы отделимости.

Сразу оговоримся, что здесь аксиомы - не то, что требуется от любой топологии. В нашем случае, аксиомы - то, что мы можем потребовать, если сильно нужно.

Определения. $\underline{T_0}$: Пусть даны любые две несовпадающие точки $x,y\in X$, тогда по крайней мере у одной из них есть окрестность, которая не содержит другую.

 $T_1: Для$ любых двух несовпадающих точек $x, y \in X$, найдется окрестность y, не содержащая x.

 $\underline{T_2}: \underline{xaycdop\phiosocmb}$ — Любые две различные точки $x,y \in X$ обладают окрестностями $U_x,\ U_y,$ которые не пересекаются.

 T_3 : регулярность — $\forall x \in X, \forall F \in \mathcal{F} \exists U_x, U_F : U_x \cap U_F = \emptyset.$

 $\underline{T_4}: \forall F_1 \cap F_2 = \varnothing \ \exists \ U_{F_1}, U_{F_2}: \ U_{F_1} \cap U_{F_2} = \varnothing.$

Иногда для T_3, T_4 также требуют выполнение T_1 . Мы этого делать не будем, но в таких случаях говорят:

 $T_1 + T_3$ -регулярные, $T_1 + T_4$ -нормальные.

Докажем несколько теорем:

1.8.1 Замкнутость точек в пространствах с первой аксиомой отделимости

Теорема: X удовл. $T_1 \Leftrightarrow \forall x \in X : \{x\} \in \mathcal{F}$.

 $\forall x, y : U_x := X \setminus \{y\}.$

 \Rightarrow :

Для каждой точки $y \neq x$ есть окрестность U_y , не пересекающаяся с x. Тогда объединение всех этих окрестностей - и есть дополнение к $\{x\}$. Объединение открытых открыто.

1.8.2 Метрические пространства нормальные.

Название теоремы отражает её суть. Сразу заметим, что хаусдорфовость очевидна: для любых $x \neq y$ достаточно рассмотреть шары радиуса d(x,y)/2. Их пересечение очевидно пусто(скажем, по неравенству треугольника.). Также сразу отметим, что в силу предыдущей теоремы из нормальности последует регулярность. Итак,:

Теорема: Метрические пространства нормальные.

Док-во: Нам осталось проверить только выполнение T_4 .

Наши закрытые множества назовём F и G.

$$\forall x \in F \Longrightarrow x \notin G \Longrightarrow \exists \varepsilon_x > 0 : B(x, \varepsilon_x) \supset X \backslash G.$$

Аналогично для $y \in G$.

Тогда объединение всех шаров $B(x, \varepsilon_x/2)$ по точкам из F и G соответственно будет содержать F и G.

Обозначим эти объединения через U_F и U_G соответственно.

Нам осталось показать, что построенные множества не пересекаются.

В самом деле, пусть $\exists z \in U_F \cap U_G$. Тогда $\exists x \in F, y \in G: d(x,z) < \varepsilon_x/2, d(y,z) < \varepsilon_y/2$.

Пусть НУО $varepsilon_x \leq \varepsilon_y$. Тогда:

 $d(x,y) \leq d(x,z) + d(z,y) < \varepsilon_y/2 + \varepsilon_y/2 = \varepsilon_y$, что абсурдно по построению.

QED.

1.9 Аксиомы счетности. Всюду плотность. Сепарабельность.

Идеология понятия "аксиома" здесь ровно такая же, как в случае с аксиомами отделимости. Итак,

Определение. <u>Базой в точке x_0 </u> называется $\Sigma_{x_0} \subset \Omega$, удовлетворяющая сразу следующим двум условиям:

- (a) $\forall S \in \Sigma_{x_0} : x_0 \in S$;
- (b) $\forall U \in \Omega : x_0 \in U \Longrightarrow \exists S \in \Sigma_{x_0} : S \subset U.$

Определения. $\underline{A_1}$: $\forall x_0 \in X \exists HBAC \Sigma_{x_0}$.

 $\underline{A_2}$: В X существует НБЧС база. Очевидно, $A_2 \Rightarrow A_1$.

Определение. $A \subset X$.

- (a) A всю ду плотно, если Cl(A) = X.
- (b) A всю ду плотно, если $\forall \varnothing \neq U \in \Omega$: $U \cap A \neq \varnothing$.

Теорема. Определения всюду плотности равносильны.

Док-во. \Rightarrow : От противного.

Пусть $\exists U \neq \varnothing : U \cap A = \varnothing$. Тогда $X \setminus U \in \mathcal{F}, \ X \setminus U \supseteq A \Longrightarrow X \neq X \setminus U \supset Cl(A) \Longrightarrow Cl(A) \neq X$.

 \Leftarrow : Рассмотрим $U := X \setminus Cl(A)$.

U - открыто. Предположим, что оно не пусто. Тогда $\varnothing = U \cap Cl(A) \supseteq U \cap A \neq \varnothing$, что абсурдно. Откуда и следует, что C(A) = X.

Определение. Х - сепарабельно, если в Х существует НБЧС всюду плотное множество.

Теорема. Если X удовлетворяет A_2 , то X сепарабельно.

Док-во. Пусть $\Sigma = \{S_1, S_2,\}$ — НБЧС база. НУО $S_i \neq \emptyset$, зафиксируем $a_i \in S_i \ \forall i > 0$

Теперь построим наше всюду плотное множество: $A := \{a_i | i > 0\}$. Пока очевидно, что A НБЧС (элементы могут совпадать, но мощность от этого не возрастает, а значит всё хорошо).

Наконец, покажем, что A всюду плотно:

$$\forall U \neq \varnothing \Longrightarrow U = \underset{i \in I}{\cup} (S_i) \Longrightarrow S_{i_0} \subset U \Rightarrow a_{i_0} \in A \cap U.$$

QED.

Теорема. Если X – метрическое и сепарабельное, то оно удовлетворяет аксиоме A_2 .

Док-во. Всё, что нам нужно - предъявить НБЧС базу. Пусть $A = \{a_1, a_2, ...\}$ - НБЧС всюду плотное множество. $\Sigma := \{B(a_n, k^{-1}) | \ a_n \in A, k \in \mathbb{N}\} \cong \mathbb{N} \times \mathbb{N} - \text{HБЧС}.$

Проверим, что Σ является базой, что эквивалентно $\forall U \in \Omega \forall x \in U \ \exists B(a_n, k^{-1}) \subset U$.

Действительно, U - открыто, а значит, $\exists B(x,\varepsilon) \subset U$. Тогда в качестве эпсилон можно взять k^{-1} для некоторого k. Теперь посмотрим на шар того же центра вдвое меньшего радиуса. По построению, в нем лежит некоторый элемент $a_n \in A$. Тогда $x \in B(a_n, (2k)^{-1}) \subset U$.

QED.

1.9.1 Покрытие. Теорема Линделёфа

Определение. $\{A_{\alpha}\}\subset 2^{X}$ - <u>покрытие</u>, если $\cup A_{\alpha}=X$. Если каждое из A_{α} открыто, покрытие называется <u>открытым покрытием</u>. Интуитивно вводится понятие nodnokpumue.

Теорема. (Линделёф) Если в X выполняется A_2 , то у любого покрытия существует НБЧС подпокрытие.

Д-во. Пусть $\Sigma = \{S_1, S_2, ...\}$ - НБЧС база, $\{U_{\alpha}\}_{{\alpha} \in I}$ - покрытие.

 $\forall lpha \exists I_lpha: \ U_lpha = \underset{i \in I_lpha}{\cup} S_i$ просто по определению базы. Но тогда

 $X=\bigcup\limits_{lpha\in I}U_lpha=\bigcup\limits_{lpha\in I}(\bigcup\limits_{i\in I_lpha}(S_i))$ Обозначим $A:=\bigcup\limits_{lpha\in I}I_lpha\subseteq\mathbb{N}.$ Тогда для каждого i есть $lpha_i$ такое, что $(i\in I_{lpha_i}\Longrightarrow S_i\subset U_{lpha_i})$ Выберем по одному такому U_{lpha_i} , оно и будет нашим НБЧС подпокрытием.

1.10 Связность

Определение. X - <u>не связно</u>, если $\exists U, V \in \Omega_X: U \cap V = \varnothing, U, V \neq \varnothing, U \cup V = X$. Отрицание этого условия является определением <u>связного</u> пространства.

Теорема. Отрезок [0,1] в \mathbb{R} связен.

Д-во. Представим отрезок в виде дизъюнктного объединения открытых множеств U и V. НУО будем считать, что $0 \in U$.

Обозначим $t_0 := \sup(t | [0, t] \in U)$ - он существует, т.к. мнужество не пусто и ограничено.

Тогда $[0,t_0]\subset U$. Действительно, пусть $0\leq t^* \lneq t_0$. Тогда $\exists t>t^*: [0,t]\in U$. Но тогда $t^*\in U$. Покажем, что $t_0=1$: Пусть это не так, то есть $t_0 \lneq 1$: Любая точка лежит в открытом множестве с некоторой окрестностью. Предположим, что $t_0\in U$. Обозначим за ε соответствующую окрестность. тогда $[0,t_0+\varepsilon/2]\subset U$, что противоречит построению. Если же $t_0\in V$, мы аналогично приходим к тому, что $t_0-\varepsilon$ - верхняя грань построенного множества.

Таким образом, $t_0 = 1, U = [0, 1], V = \emptyset$. Значит множество связно.