Respuestas correctas

Ejercicio	1.1	1.2	2	3	4	5.1	5.2	6.1	6.2	7	8
Versión 1	A	С	С	F	D	X	F	F	В	Е	A
Versión 2	F	D	D	Α	С	X	С	Α	Е	В	F

Soluciones

Ejercicio 1

1. Llamemos *A* al evento "se elige la moneda doble cara" y *B* al evento "los 10 lanzamientos resultan todos cara". Por la fórmula de la probabilidad total

$$P(B) = P(B|A)P(A) + P(B|A^{c})P(A^{c})$$

$$= 1 \times \frac{1}{10000} + \frac{1}{2^{10}} \times \frac{9999}{10000}$$

$$= 0.00108$$

es decir, aproximadamente 0.1 %.

2. Por la fórmula de Bayes

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{1 \times \frac{1}{10000}}{P(B)} = 0.093$$

Es decir, 9.3%.

Ejercicio 2

El evento A dado por "el estudiante puede entrar a clase" se muestra en rojo en la figura siguiente, el evento a calcular es A^c .

De aquí vemos que $P(A^c) = \frac{5 \cdot 10 + 10^2/2}{15^2} = \frac{5}{9}$.

Ejercicio 3

Como X e Y son independientes con densidad uniforme en [0,2], tenemos que

$$E(XY^{2}) = E(X)E(Y^{2}) = \frac{1}{4} \left(\int_{0}^{2} x dx \right) \left(\int_{0}^{2} y^{2} dy \right)$$
$$= \frac{1}{4} \left[\frac{x^{2}}{2} \right]_{0}^{2} \left[\frac{y^{3}}{3} \right]_{0}^{2} = \frac{4}{3}$$

Ejercicio 4

Haciendo el cambio de variable $y = x^2$, con dy = 2xdx, tenemos que

$$p_Y(1) = \frac{1}{\left|\frac{dy}{dx}(-1)\right|} p_X(-1) + \frac{1}{\left|\frac{dy}{dx}(1)\right|} p_X(1)$$
$$= \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{4}.$$

Ejercicio 5

1. Lo más sencillo es hacer un diagrama de tallo y hojas (extendido) espalda con espalda, usando como tallo las decenas y hojas las unidades:

Montevideo		Treinta y Tres
9	0	
1110	1	
3	1	
544	1	5
	1	
	1	
1	2	
	2	
	2	45
	2 2 2 2 2	45 66667
	2	8
	3	0

Interpretación: vemos que la representación visual confirma la afirmación, ya que las amplitudes térmicas de Treinta y Tres se concentran alrededor de su mediana 26, mientras que las de Montevideo se concentran en un rango de 10 a 15. El diagrama muestra como las amplitudes térmicas tienen rangos esencialmente disjuntos.

También se pueden realizar dos diagramas de caja, dos histogramas o diagrama de caja de la resta, histrograma de la resta o diagrama de dispersión. En cualquier caso, se debe interpretar correctamente la visualización elegida.

 Corresponde realizar un test de dos muestras apareadas en donde el estadístico tiene distribución t de Student con 9 grados de libertad.

Ejercicio 6

1. El promedio \bar{X} tiene media μ y desvío $\sigma/\sqrt{16}=1/2$. Luego

$$\alpha = P(\operatorname{rechazar}|H_0) = P(|\bar{X} - 333| \ge 0.5|\mu = 333)$$

$$= P\left(\frac{|\bar{X} - 333|}{1/2} \ge 1|\mu = 333\right) = 2(1 - \Phi(1))$$

$$= 2(1 - 0.8413) = 0.3174$$

2. El valor observado del promedio es $\bar{X}_{\rm obs}=333.8744$. Como el test es a dos colas, el p-valor es

$$2P(\bar{X} \ge \bar{X}_{obs}|H_0) = 2P\left(\frac{\bar{X} - 333}{1/2} \ge \frac{333.8744 - 333}{1/2}\right)$$
$$= 2P\left(\frac{\bar{X} - 333}{1/2} \ge 1.7488\right)$$
$$= 2(1 - \Phi(1.75)) = 2(1 - 0.9599) = 0.0802$$

Ejercicio 7

El z-intervalo de confianza (al nivel $1 - \alpha$) para θ es

$$\bar{X} \pm \frac{z_{\alpha/2}\sqrt{\bar{X}(1-\bar{X})}}{\sqrt{n}}$$

El promedio $\bar{X} \in [0,1]$, por lo que $\sqrt{\bar{X}(1-\bar{X})} \le 1/2$. Luego, la longitud del intervalo es siempre menor o igual a $z_{\alpha/2}/\sqrt{n}$. Para $\alpha=0.05$, tenemos que $z_{\alpha/2}=1.96$, de donde

$$\frac{1.96}{\sqrt{n}} \le 0.1 \Leftrightarrow n \ge \left(\frac{1.96}{0.1}\right)^2 = 384.16$$

Es decir, $n \ge 385$.

Ejercicio 8

Calculamos primero el valor del estadístico de Pearson Q_P . Los valores esperados de cada celda son:

Luego

$$(Q_P)_{\text{obs}} = \frac{(43 - 47.5)^2}{47.5} + \frac{(85 - 57)^2}{57} + \frac{(62 - 85.5)^2}{85.5} + \frac{(57 - 52.5)^2}{52.5} + \frac{(35 - 63)^2}{63} + \frac{(118 - 94.5)^2}{94.5} = 39.31$$

	Chocos	Zucos	Frutis	Total
Buenos Aires	47.5	57	85.5	190
Montevideo	52.5	63	94.5	210
Total	100	120	180	400

El valor crítico se obtiene de la tabla para (r-1)(c-1)=(2-1)(3-1)=2 grados de libertad y $\alpha=0.05$ es 5.99. Como $(Q_P)_{\rm obs}>5.99$ rechazamos H_0 .