Project 2 Report

MECHENG 5139: Applied Finite Element Method

By: Jessica Hudak

Table of Contents

Overview	3
Description of FEA Model	4
Results (Maple)	5
Results (Steel)	7
Verification	8
Conclusion	9
Appendix	10

Overview

When Steven Sharp Nelson performs with the Trans-Siberian Orchestra, he gets carried away: he grabs his maple cello by the base of the neck and smashes the back face flat on the ground (similar to smashing a guitar). This exerts a uniform pressure of 0.1111 psi into the face. The dimensions in inches of this \frac{1}{4}-inch-thick face is shown below. Structural and modal analyses were done.

Description of FEA Model

Two quadrilateral mesh densities (of 1-in and 0.5-in elements) were analyzed. All outside edges were given a zero-displacement condition in the x, y, and z directions to mimic rib support. A normal pressure of 0.1111 psi was also added into the back face.

Results (Maple)

By comparing the displacement and stress values of the 1-in and 0.5-in meshes, convergence is ensured. In the modal analysis, the natural frequencies and modal shapes are very similar for the full and half models. Because of the strong alignment of maple's grain orientation, no antisymmetric frequencies were skipped in the half model.

Element	Max Total	Max Von
Size	Displacement	Mises Stress
1-inch	0.034503 in	792.4 psi
0.5-inch	0.034534in	781.79 psi

	Maple	1st Mode	2 nd Mode	3 rd Mode	4 th Mode	5 th Mode	6 th Mode
Full Mode Mode 1 1. 2 2. 3 3. 4 4. 5 5. 6 6. 6.	Frequency [Hz] 92.201 134.05 159.39 205.48 245.6 299.74						
Half Mode 1 1. 2 2. 3 3. 4 4. 5 5. 6 6.	92.194 134.05 159.35 205.5 245.57 299.69						

utline Row 3: Maple		
A	В	
Property	Value	
Material Field Variables	Table	
Density	0.02315	lb in^-3
🔀 Orthotropic Elasticity		
Young's Modulus X direction	1.62E+06	psi
Young's Modulus Y direction	1.08E+05	psi
Young's Modulus Z direction	2.27E+05	psi
Poisson's Ratio XY	0.49	
Poisson's Ratio YZ	0.354	
Poisson's Ratio XZ	0.434	
Shear Modulus XY	1.2E+05	psi
Shear Modulus YZ	32000	psi
Shear Modulus XZ	2.16E+05	psi

Results (Steel)

If the cello was made of (isotropic) structural steel, the half model would miss antisymmetric frequencies:

Steel	1 st Mode	2 nd Mode	3 rd Mode	4 th Mode	5 th Mode	6 th Mode
Full Model Mode Frequency [Hz]						
Half Model Mode ✓ Frequency [Hz]				N/A		N/A

Properti	es of Outline Row 3: Structural Steel			▲ 1	×
	A	В	С	D	Е
1	Property	Value	Unit	8	ţρŢ
2	Material Field Variables	III Table			
3	2 Density	0.2836	lb in^-3 ▼		
4	☐ Tsotropic Secant Coefficient of Thermal Expansion				
5	Coefficient of Thermal Expansion	1.2E-05	C^-1		
6	☐ ☑ Isotropic Elasticity				
7	Derive from	Young's Modulus and Poisson			
8	Young's Modulus	2.9008E+07	psi	1	
9	Poisson's Ratio	0.3			
10	Bulk Modulus	1.6667E+11	Pa		
11	Shear Modulus	7.6923E+10	Pa		
12					
20		1 Tabular			
24	🔀 Tensile Yield Strength	36259	psi		
25	Compressive Yield Strength Compressive Yield Stre	36259	psi 🔻		
26	🔀 Tensile Ultimate Strength	66717	psi ▼		
27	🔀 Compressive Ultimate Strength	0	psi <u> </u>		

Verification

The cello was approximated as a rectangle of length a = 15 in, height b = 30 in, and thickness h = 0.25 in. The case of clamped edges and uniform pressure loading was used for all calculations, which can be found at the end of the appendix. The stress at the center of the cello was estimated to be 198 psi, which is close to the probed stress of 171 psi. The deflection at the center of the cello was estimated with lower and upper bounds (from the highest and lowest orthotropic Young's modulus). The bounds of 0.0061 in and 0.0916 in correctly encompass the probed value of 0.00923 in.

The accuracy of the modal analysis was checked by verifying the value of the first natural frequency. Matlab estimated the maple cello's first frequency to be 82.25 Hz, which is relatively close to ANSYS's calculation of 92.2 Hz. Additionally, the first frequency of the steel cello was estimated to be 251.57 Hz, which is of the same magnitude as ANSYS's 184.8 Hz. It is acceptable for these approximations to be slightly off, as the geometry of the cello is more complex than a mere rectangle. Also, the frequency table used estimated a strict 0.4 length-to-height ratio and was geared for isotropic materials (not orthotropic, like maple).

Conclusion

playing abilities.

Although slamming a cello on the ground is unadvisable, performing this stunt with a cello that is thick (high h) and stiff (high E) would help minimize deformation. Maple is less dense (ρ = 5.999 * $10^{-5} \frac{lb \, s^2}{in^4}$) and less stiff (E_{max} = 1.62e6 psi) than steel, which has a density of 7.3395 * $10^{-4} \frac{lb \, s^2}{in^4}$ and Young's modulus of 2.9e7 psi. Maple is a much more common material selection for cellos than steel (due to acoustic reasons) and exhibited lower natural frequencies. However, the maple cello undesirably exhibited larger deformations during this stunt that likely diminished its

Appendix

When the "Thick Shells and Beam" option is selected, the cello first looks like a 3D solid:

By unchecking this display option, one can see that the cello face really is meshed with shell elements.

First, a mesh of 1-inch quadratic elements was investigated.

The material assignment for the cello is maple. The orthotropic properties of maple are found in the below table. As a note, the Poisson's ratio in the xy-direction was rounded down from 0.509 to 0.49, as ANSYS can only handle Poisson's ratios that are below 0.5.

	E_x	Ey	E_{ε}	G_{xy}	G_{yz}	G_{xz}	V _{xy}	v_{ye}	V_{xz}
	×10 ⁶ psi	$\times 10^6 \mathrm{psi}$	$\times 10^6$ psi	$\times 10^6$ psi	$\times 10^6$ psi	$\times 10^6$ psi			
Spruce	1.43	0.061	0.112	0.087	0.0043	0.0915	0.467	0.245	0.372
Douglas Fir	1.83	0.0915	0.1244	0.143	0.0128	0.117	0.449	0.374	0.292
Maple	1.62	0.108	0.227	0.120	0.032	0.216	0.509	0.354	0.434
CFRP Composite	18.4	11.2	11.2	0.95	4.15	0.95	0.28	0.35	0.28

Table B.3 Anisotropic elastic properties in US Customary Units, grain or fibers are aligned with the x-direction [1].

Boundary conditions:

- 0-displacement on all sides in the x, y, and z directions to demonstrate the effect of ribs support
- Pressure of 0.1111 psi across entire back face (in the negative z direction)

Structural Analysis with the 1-inch Mesh:

Total deformation = 0.034503 inches

Structural Analysis with the 0.5-inch Mesh:

Now making the mesh size smaller (0.5-inch quadratic elements), total deformation = 0.034534 inches.

(Maple) Modal Analysis: Full Model

MODE 1:

MODE 2:

MODE 3:

MODE 4:

MODE 5:

MODE 6:

Now using a half model:

The same boundary conditions were applied on the half model as the full model (0 displacement in the x, y, and z directions on the outside edges, and a pressure of 0.1111 psi into the entire face), except one fixed rotation constraint was additionally subjected on the symmetry line.

(Maple) Modal Analysis: Half Model

MODE 1:

MODE 2:

MODE 3:

MODE 4:

MODE 5:

MODE 6:

(Steel) Modal Analysis: Full Model

Mode 1:

Mode 2:

Mode 3:

Mode 4:

Mode 5:

Mode 6:

(Steel) Modal Analysis: Half Model

Mode 1:

Mode 2:

Mode 3:

Mode 4:

Mode 5:

Mode 6:

Verification Computations:

The cello can be approximated as a rectangle of length a = 15 in, height b = 30 in, and thickness h = 0.25 in. The case of clamped edges and uniform pressure loading was used for the following calculations.

To verify the accuracy of the structural analysis, the stress and deflection at the center of the cello were checked.

$$\sigma_{maple} = \frac{p \, a^2}{2t^2 [0.623 \left(\frac{a}{b}\right)^6 + 1]} = \frac{\left(0.1111 \frac{lb}{in^2}\right) (15in)^2}{2 \, (0.25in)^2 [0.623 \left(\frac{15in}{30in}\right)^6 + 1]} = 198.0445 \, psi$$

This is close to the probed value of 171.02 psi!

$$\delta_{lower, maple} = \frac{0.0284 \, p \, a^4}{Et^3 [1.056 \left(\frac{a}{b}\right)^5 + 1]} = \frac{0.0284 \left(0.1111 \frac{lb}{in^2}\right) (15in)^4}{\left(1.62*10^6 \frac{lb}{in^2}\right) (0.25in)^3 [1.056 \left(\frac{15in}{30in}\right)^5 + 1]} = 0.0061 \, in$$

$$\delta_{upper, maple} = \frac{0.0284 \, p \, a^4}{E t^3 [1.056 \left(\frac{a}{b}\right)^5 + 1]} = \frac{0.0284 \left(0.1111 \frac{lb}{in^2}\right) (15in)^4}{\left(1.08*10^5 \frac{lb}{in^2}\right) (0.25in)^3 [1.056 \left(\frac{15in}{30in}\right)^5 + 1]} = 0.0916 \, in$$

These values correctly surround the probed value of 0.00923 in!

The accuracy of the maple cello's modal analysis was checked by verifying the value of its first natural frequency.

$$\rho_{maple} = \left(0.02315 \frac{lb}{in^3}\right) \left(\frac{1}{\left(32.2 \frac{ft}{s^2}\right) \left(12 \frac{in}{ft}\right)}\right) = 5.999 * 10^{-5} \frac{lb s^2}{in^4}$$

Assume v = 0.43, which is the average of maple's orthotropic Poisson's ratios. Also choose the Young's modulus, E, to be $2.27*10^5$ psi:

$$D_{maple} = \frac{E h^{3}}{12 (1-v^{2})} = \frac{\left(2.27*10^{5} \frac{lb}{in^{2}}\right) (0.25 in)^{3}}{12 \left(1-0.43^{2}\right)} = 362.6217 \ lb \ in$$

1026 PLATES

Table 1 Nondimensional free vibration frequencies $\omega a^2 \sqrt{\rho h/D}$ for rectangular plates (v = 0.3)

Edge conditions	a/b = 1 (square	e)	a/b = 0.4	a/b = 2.5	
	Mode 1	Mode 2	Mode 3	Mode 1	Mode 1
SS-SS-SS-SS	19.739	49.348	49.348	11.449	71.556
SS-C-SS-C	28.951	54.743	69.327	12.135	145.484
SS-C-SS-SS	23.646	51.674	58.646	11.750	103.923
SS-C-SS-F	12.687	33.065	41.702	10.189	30.628
SS-SS-SS-F	11.684	27.756	41.197	10.126	18.801
SS-F-SS-F	9.631	16.135	36.726	9.760	9.484
C-C-C-C	35.99	73.41	73.41	23.65	147.80
C-C-C-SS	31.83	63.35	71.08	23.44	107.07
C-C-C-F	24.02	40.04	63.49	22.58	37.66
C-C-SS-SS	27.06	60.54	60.79	18.85	105.31
C-C-SS-F	17.62	36.05	52.06	15.70	33.58
C-C-F-F	6.942	24.03	26.68	3.986	24.91
C-SS-C-F	23.46	35.61	63.13	22.54	28.56
C-SS-SS-F	16.86	31.14	51.63	15.65	23.07
C-SS-F-F	5.364	19.17	24.77	3.854	10.10
C-F-C-F	22.27	26.53	43.66	22.35	22.13
C-F-SS-F	15.28	20.67	39.78	15.38	15.13
C-F-F-F	3.492	8.525	21.43	3.511	3.456
SS-SS-F-F	3.369	17.41	19.37	1.320	8.251
SS-F-F-F	6.648	15.02	25.49	2.692	14.94
F-F-F-F	13.49	19.79	24.43	3.463	21.64

Adapted from more extensive data given in Leissa AW (1973) The free vibration of rectangular plates. Journal of Sound and Vibration 31: 257-293.

In the above table, the C-C-C edge condition row and the "a/b = 0.4" column were used to find the value of 23.65. This number was set equal to the characteristic equation for rectangular plates to solve for the frequency of the first mode. In the attached Matlab code, the first frequency of the maple cello was found to be 82.2534 Hz, which is relatively close to ANSYS's first frequency of 92.2 Hz.

Propertie	es of Outline Row 3: Structural Steel			v	φ X
	A	В	С	D	Е
1	Property	Value	Unit	S	(p.)
2	Material Field Variables	Table		\top	
3	☑ Density	0.2836	lb in^-3		
4	☐ Variable Isotropic Secant Coefficient of Thermal Expansion				П
5	Coefficient of Thermal Expansion	1.2E-05	C^-1	-	
6	☐ ☑ Isotropic Elasticity				П
7	Derive from	Young's Modulus and Poisson			
8	Young's Modulus	2.9008E+07	psi	•	
9	Poisson's Ratio	0.3			
10	Bulk Modulus	1.6667E+11	Pa		
11	Shear Modulus	7.6923E+10	Pa		
12					
20		III Tabular			
24	🔀 Tensile Yield Strength	36259	psi		
25	☐ Compressive Yield Strength	36259	psi		
26	🔀 Tensile Ultimate Strength	66717	psi	1	
27	2 Compressive Ultimate Strength	0	psi	1	

Additionally, the accuracy of the steel cello's modal analysis was checked by verifying the value of its first natural frequency.

$$\rho_{steel} = \left(0.2836 \frac{lb}{in^3}\right) \left(\frac{1}{\left(32.2 \frac{ft}{s^2}\right) \left(12 \frac{in}{ft}\right)}\right) = 7.3395 * 10^{-4} \frac{lb s^2}{in^4}$$

For this isotropic material, use v = 0.30 and $E = 2.9*10^7$ psi:

$$D_{steel} = \frac{E h^3}{12 (1 - v^2)} = \frac{\left(2.9*10^7 \frac{lb}{in^2}\right) (0.25 in)^3}{12 (1 - 0.3^2)} = 41,495 lb in$$

Using Matlab, the steel cello's first natural frequency was estimated to be 251.57 Hz. This is of the same magnitude as ANSYS's value of 184.8 Hz.