

SINH LÝ TAI: Thính giác và thăng bằng

ThS. BS. Bùi Diễm Khuê Bộ môn Sinh lý – Sinh lý bệnh Miễn dịch

MỤC TIÊU

- Trình bày được vai trò của màng nhĩ và chuỗi xương con trong sự dẫn truyền âm thanh, và sự dẫn truyền âm thanh trong ốc tai.
- 2. Phân tích được cơ chế phân biệt cường độ và tần số âm thanh.
- Phân biệt được điếc dẫn truyền và điếc tiếp nhận.
- 4. Giải thích được vai trò của ống bán khuyên.
- 5. Trình bày được vai trò của soan nang và cầu nang.
- Giải thích cơ chế chóng mặt trong tổn thương thần kinh tiền đình.

NỘI DUNG

1. Thính giác

- 1. Cấu trúc hệ thống thính giác
- 2. Âm thanh, sự dẫn truyền âm thanh
- 3. Cơ chế thính giác trung ương
- 4. Liên hệ lâm sàng: điếc

2. Thăng bằng

- 1. Cấu trúc hệ thống tiền đình
- Sự nhận cảm tiền đình: các ống bán khuyên, soan nang, cầu nang
- 3. Cơ chế tiền đình trung ương
- 4. Các phản xạ tiền đình
- 5. Liên hệ lâm sàng: chóng mặt

CHỰC NĂNG CỦA TAI

- Nghe (thính giác)
- Tiền đình
 - Thông tin về vị trí của đầu
 - → Ôn định thị giác, thăng bằng

HỆ THỐNG THÍNH GIÁC

- 1. Cấu trúc: tai ngoài, tai giữa, tai trong
- 2. Âm thanh, Sự dẫn truyền âm thanh
 - Màng nhĩ → ốc tai
 - Qua xương
 - Ôc tai
 - Phân biệt cường độ và tần số âm thanh
- 3. Cơ chế thính giác trung ương
- 4. Liên hệ lâm sàng

Tai

SL tai > 1. Thính giác > 1.1. Cấu trúc

Âm thanh

- Được tạo ra từ sự dồn ép và giãn nở các sóng di chuyển trong không khí hoặc trong các môi trường đàn hồi (vd: nước)
- Tần số: số chu kì/giây, hay hertz (Hz)
- Vận tốc truyền trong không khí: # 335 m/giây

Âm thanh

 Ngoài tần số, mỗi âm đơn độc còn đặc trưng bởi biên độ và pha

Thanh áp – Mức thanh áp

- Thanh áp (áp suất âm thanh): các sóng liên quan với các thay đổi áp suất nhất định
 - Đơn vị: N/m²
- Mức thanh áp = 20 log P/Pr
 - Đơn vị: dB (decibel)
 - P: thanh áp;

Pr: thanh áp tham khảo (0,0002 dyne/cm2, ngưỡng tuyệt đối ở tần số 1000 Hz đối với tai người).

Âm thanh

- Giới hạn tần số nghe được (tai người):
 20 20.000Hz.
- Âm thanh có cường độ trên 100 dB có thể gây tổn thương cho cơ quan thính giác ngoại biên, trên 120 dB sẽ gây đau.

Ngưỡng thính giác

Ngưỡng thính giác thay đổi theo tần số, thấp nhất (= 0 dB) đối với các tần số 1000 – 3000Hz

Ngưỡng thính giác

Ngưỡng thính giác đối với nam (M) và nữ (W) ở độ tuổi 20 đến 60

→ Ngưỡng thính giác đối với các âm thanh có tần số cao giảm theo tuổi (lãng tai).

Dẫn truyền từ màng nhĩ đến ốc tai

- Màng nhĩ thụt vào

 x. bàn đạp đấy cửa số bầu
 dục vào tầng tiền đình
- Màng nhĩ nhô ra

 x. bàn đạp kéo cửa sổ bầu dục ra ngoài
- Màng nhĩ luôn căng

 sóng âm luôn được dẫn truyền đến chuỗi xương con
- Không có xương con → dẫn truyền qua không khí, cảm giác nghe giảm 20-30 dB

Dẫn truyền từ màng nhĩ đến ốc tai

- Phản xạ nhĩ:
 - Tiếng động lớn
 - → co cơ căng màng nhĩ và cơ bàn đạp
 - → kéo màng nhĩ vào trong, kéo cửa sổ bầu dục ra khỏi tầng tiền đình
 - → giảm dẫn truyền âm thanh
 - Bảo vệ cơ quan Corti khỏi bị kích thích quá mức
 - Không được bảo vệ nếu âm thanh xảy ra quá nhanh

Dẫn truyền qua xương

- · Óc tai nằm trong xương thái dương
- →rung chuyển của xương sọ có thể làm chuyển động dịch trong ốc tai.
- Xảy ra đối với tiếng động lớn, hay khi đặt âm thoa lên xương sọ, nhất là trên xương chũm.

SL tai > 1. Thính giác > 1.2. Âm thanh – Dẫn truyền

Óc tai

Tế bào lông và sự di chuyển của màng nền

MECHANISM OF AUDITORY TRANSDUCTION

Cơ chế dẫn truyền thính giác

Sound waves

Vibration of organ of Corti

Bending of cilia on hair cells

Change in K⁺ conductance of hair cell membrane

Oscillating receptor potential (cochlear microphonic)

Intermittent glutamate release

Intermittent action potentials in afferent cochlear nerves

Sự phân biệt cường độ âm thanh

- Âm thanh → màng nền rung chuyển → tế bào lông bị kích thích → phát xung động trong dây thần kinh thính giác.
- Tế bào lông ngoài chỉ bị kích thích khi sự rung chuyển của màng nền đạt đến một cường độ nào đó
 - -> các tế bào này bị kích thích thì âm thanh phải rất lớn.

Sự phân biệt tần số âm thanh

- Tùy thuộc vào nơi mà màng nền bị kích thích tối đa.
- Tần số càng cao, nơi bị kích thích tối đa càng gần đáy ốc tai; tần số càng thấp, nơi bị kích thích tối đa càng gần đỉnh

Copyright © 2008 by Mosby, an imprint of Elsevier, Inc. All rights reserved

Đường dẫn truyền thính giác

Vỏ não thính giác

- Có những cột tế bào đáp ứng chuyên biệt với những tần số âm thanh khác nhau.
- Một số neuron có vai trò kết hợp các tần số âm thanh khác nhau, hoặc kết hợp tần số với các đặc điểm khác của âm thanh.
- Khu trú âm thanh dựa vào 2 yếu tố:
 - Sự sai biệt về thời gian giữa 2 bên tai
 - Sự sai biệt về cường độ âm thanh giữa 2 bên tai

Điếc

- Điếc thần kinh: do tổn thương ốc tai hay đường dẫn truyền thần kinh thính giác
 - Giảm dẫn truyền qua không khí và qua xương.
- Điếc dẫn truyền: do cản trở sự dẫn truyền âm thanh đến ốc tại
 - Dẫn truyền qua không khí giảm, dẫn truyền qua xương không bị ảnh hưởng.

HỆ THỐNG TIỀN ĐÌNH

- 1. Cấu trúc
- 2. Sự nhận cảm tiền đình:
 - Các ống bán khuyên
 - · Soan nang, cầu nang
- 3. Cơ chế tiền đình trung ương
- 4. Các phản xạ tiền đình
- 5. Liên hệ lâm sàng

Cấu trúc hệ thống tiền đình

Bộ máy tiền đình

Óng bán khuyên: gia tốc xoay của đầu

Soan – cầu nang: gia tốc thẳng của đầu

Biểu mô nhận cảm của bóng

 Mào thính giác (mào bóng)

Copyright © 2008 by Mosby, an imprint of Elsevier, Inc. All rights reserved

Biểu mô nhận cảm của soan nang, cầu nang

- Vết cầu nang (A)
- Vết soan nang (B)

Tế bào lông

Sự nhận cảm tiền đình

Cơ chế tiền đình trung ương

Các phản xạ tiền đình

- Phản xạ tiền đình mắt:
 - Khi đầu xoay tròn
 - Vai trò: ổn định thị giác trong khi xoay đầu

Các phản xạ tiền đình

- Phản xạ tiền đình tủy:
 - Xung động từ nhân tiền đình → tủy gai
 - Bó tiền đình tủy trong: gây co cơ cổ
 - Bó tiền đình tủy ngoài: gây co cơ duỗi
 - → chống đỡ cơ thể

Chóng mặt

 Để thăng bằng: cần thông tin có cường độ tương đương từ hệ tiền đình 2 bên

Chóng mặt tiền đình ngoại biển

 Rối loạn chức năng bộ máy tiền đình (soan nang, cầu nang, ống bán khuyên), TK tiền đình

Chóng mặt tiền đình trung ương

Rối loạn quá trình xử lý tín hiệu ở trung ương

TÀI LIỆU THAM KHẢO

- Sinh lý học Y khoa, Nhà xuất bản Y học, 2017
- Ganong's Review of Medical Physiology, 23rd ed., McGraw-Hill, USA, 2010
- Guyton A. C, Hall J.E. Textbook of Medical Physiology, 12th ed., Elsevier Inc., China, 2011

Câu hỏi và phản hồi:

bui.diemkhue@gmail.com