PMF Odjel za fiziku

Programski alati u fizici

Simulacija i animacija Sunčeva sustava

Ivan Jagnjić

Split, 6. lipnja 2024.

Sažetak

Ovaj seminarski rad istražuje simulaciju gibanja tijela unutar Sunčevog sustava korištenjem alatima u programskom jeziku pythonu. Cilj je pružiti dublje razumijevanje dinamike tijela u svemiru kroz računalnu simulaciju koja uzima u obzir gravitacijske sile između tijela. Kroz analizu Newtonovih zakona kretanja i primjenu numeričkih metoda, razvijena je programska simulacija koja omogućuje korisnicima istraživanje kretanja planeta, mjeseca i drugih objekata unutar Sunčevog sustava. Simulacija pruža korisnicima mogućnost promatranja orbitalnih putanja, promjena brzina, te utjecaja međusobnog privlačenja tijela. Kako program koristi samo Newtonove zakone, relativistički učinci se zanemaruju.

Rasprava

Gravitacija je fundamentalna sila koja upravlja gibanjem tijela u svemiru, a njezinu matematičku formulaciju prvi je put precizno opisao Isaac Newton u svojem djelu " *Philosophiæ Naturalis Principia Mathematica*" (1687.).

Prema Newtonovoj teoriji gravitacije, sila kojom dva tijela privlače jedno drugo proporcionalna je produktu njihovih masa i obrnuto proporcionalna kvadratu udaljenosti među njima. Naravno, orijentacija te sile je na pravcu koji povezuje dvije mase, a smjer je takav da se tijela privlače. Opća formula za gravitacijsku silu je:

$$F = G \cdot rac{m_1 \cdot m_2}{r^2}$$

Gdje je G gravitacijska konstanta koja iznosi približno 6.674×10⁻¹¹ N·m²/kg.

Ova formula omogućuje izračunavanje gravitacijskih sila između bilo kojih tijela u svemiru te predviđanje njihovih orbitalnih putanja. Primjenom numeričkih metoda, poput Runge-Kutta metode, moguće je simulirati kretanje tijela unutar Sunčevog sustava s visokom točnošću, što omogućuje bolje razumijevanje dinamike nebeskih tijela i predviđanje njihovih budućih položaja.

U ovom radu, implementirana je Newtonova formula za gravitaciju u računalnu simulaciju kretanja tijela u Sunčevom sustavu kako bi se omogućilo detaljno proučavanje orbitalnih dinamika planeta, mjeseca i ostalih nebeskih tijela. Program nije toliko efikasan jer ne koristi Runge-Kuttu ili neku suvremeniju programsku metodu, ali je dovoljno točan da se može dobar prikaz sunčeva sustava

$$y_{n+1} = y_n + h \sum_{i=1}^{s} b_i k_i$$
 $k_1 = f(t_n, y_n),$
 $k_2 = f(t_n + c_2 h, y_n + h(a_{21} k_1)),$
 $k_3 = f(t_n + c_3 h, y_n + h(a_{31} k_1 + a_{32} k_2)),$
 \vdots
 $k_i = f\left(t_n + c_i h, y_n + h \sum_{j=1}^{i-1} a_{ij} k_j\right).$

Model

Koristeću klasu svemir, i potklasu planet napravili smo program s kojim možemo simulirati ponašanje proizvoljnih tijela (korisnik programa im određuje položaj, brzinu i masu) na proizvoljnom vremenskom intervalu. Točnost ovakvog programa najlakše je testirati tako da uvrstimo fizikalne vrijednosti planeta našeg Sunčevog sustava, te provjerimo hoće li se zaista ponašati kao u Sunčevu sustavu.

U predloženom slici simulirano je gibanje tijela u Sunčevu sustavu na vremenskom intervalu od jedne godine. Vidimo da se planeti gibaju po eliptičnoj putanji što se slaže s Keplerovim zakonima o gibanju planeta. Iako je simulacija u određenu ruku približno točna stvarnom sunčevu sustavu, zbog par tehničkih i programerskih nesavršenosti te uzimanja koraka većeg od 500 sekundi određeni sustavi se ne mogu precizno opisati ovim programom. Npr. Sunčev sustav uz Zemlju s Mjesecom.

Vidimo da zbog grešaka u aproksimaciji, za interval od godinu dana, mjesec se znatno udalji od zemlje. Ali kad u program unesemo sustav, Mjesec I Zemlja ne nalazimo iste poteškoće, jer je račun mnogo jednostavniji.

Program nam je dao gibanje nebeskih tijela u sustavu Mjesec i Zemlja, na vremenskom intervalu 1/12 godine(oko jedan mjesec), te vidimo da mjesec u to vrijeme napravi malo više od jednog zaokreta oko Zemlje po eliptičnoj putanji.

Kod

U kodu sam se koristio knjižnicama numpy za računanje s vektorima, matplotlib.pyplot knižnicom za izradom grafova kretanja, te matplotlib.animation za animaciju planeta. Koristeći se početničkim znanjem iz objektno orijentiranog programiranja napravio sam klasu Svemir i njenu potklasu Planeti, te je većina ostalog koda ponovno iskorištena od Vježba 9 u kojima je zadatak bio simulirati sustav Zemlja-Sunce.

Zadatak 1

Napišite program koji crta putanju dvije čestice koje međudjeluju gravitacijskom silom. Provjerite valjanost programa na primjeru Sunca i Zemlje. Promatrajte problem u dvije dimenzije i koristite Euler-ovu metodu za rješavanje vezanih diferencijalnih jednadžbi.

U početnom trenutku Sunce se nalazi u ishodištu i nema početnu brzinu, a Zemlja je udaljena jednu astronomsku jedinicu (1 a.u. = $1.486 \cdot 10^{11}$ m) i ima početnu okomitu komponentu brzine $v_{\perp} = 29783$ $\frac{\rm m}{\rm s}$. Masa Sunca je $M_S = 1.989 \cdot 10^{30}$ kg, masa Zemlje je $M_Z = 5.9742 \cdot 10^{24}$ kg, gravitacijska konstanta je $G = 6.67408 \cdot 10^{-11} \frac{\rm Nm^2}{\rm kg^2}$, a jedna godina ima 365.242 dana.

Za dio koda vezan u animaciju, te optimiziranje koda korišten je bing-ov ChatGpt koji se pokazao iznenađujuće učinkovitim za ovaj zadatak.

Zaključak

Ovaj seminarski rad je pokazao da s minimalnim znanjem iz fizike(Newtonov zakon o gravitaciji) je moguće napraviti nelošu simulaciju gibanja planeta, te čak aproksimirano opisati ponašanje tijela u sunčevu sustavu. Naravno, u ovom primjeru, izračuni su nedovoljno precizni za ikakvu praktičnu uporabu, ali program daje zanimljivu mogućnost da se korisnik "igra" s ponašanjem različitih sustava planeta te tako dobije nekakvu intuiciju o gravitacijskom međudjelovanju tijela.

Materijali

https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Fwww.arz.hr%2Fwp-content%2Fuploads%2F2021%2F12%2Fsto-je-suncev-sustav-1024x567.jpg&f=1&nofb=1&ipt=6b24fb35f6dcaa1f635f9a8b1ba3ad38546e647520120d0ce6e105f720393256&ipo=images

https://images.saymedia-content.com/.image/t_share/MTk2NzMxMjQzNTQ5Njk3NTU4/force-weight-newtons-velocity-and-mass.jpg

https://external-

content.duckduckgo.com/iu/?u=http%3A%2F%2Finversesquare.files.wordpress.com%2F 2007%2F12%2Fsir_isaac_newton_1702.jpg&f=1&nofb=1&ipt=cdef760b61f2c52c3b438 79bf91bf5b2719c9d55632573aa63aad5bf3be90fc1&ipo=images