

Computer Systems and Telematics — Distributed, Embedded Systems

Bachelor Thesis

Design und Implementierung einer Analysesoftware im Kontext eines Referenzsystems zur Indoorlokalisierung

Benjamin Aschenbrenner
Matr. 4292264

Betreuer: Prof. Dr-Ing. Jochen Schiller

Betreuender Assistent: Dipl.Inf. Heiko Will

٠	٠	٠	
1	1	1	
п	п	н	
-	-	-	

Ich versichere, dass ich die vorliegende Arbeit selbständig verfangegebenen Quellen und Hilfsmittel benutzt habe. Alle Stelle aus veröffentlichten Schriften entnommen wurden, sind als sichnungen oder Abbildungen sind von mir selbst erstellt wor Quellennachweisen versehen. Diese Arbeit ist in gleicher oder a Prüfungsbehörde eingereicht worden.	n, die wörtlich oder sinngemäß olche gekennzeichnet. Die Ze- den oder mit entsprechenden
Berlin, den 2. Dezember 2011	(Benjamin Aschenbrenner)

Zusammenfassung

Zusammenfassung

Diese Arbeit steht im Kontext zum Aufbaus eines Referenzsystems, welches in der Lage ist sich mobil indoor zu bewegen und dabei möglichst genau zu lokalisieren. Der Zweck dieses Referenzsystems ist es, Lokalisierungen als Referenz zur Verfügung zu stellen, um die Genauigkeit von Lokalisierungen mobiler Sensorknoten, die in einem Wireless Sensor Networks Wireless Sensor Network (WSN) organisiert sind, zu ermitteln. Das Referenzsystem ist durch einen Roboter realisiert, welcher autonom vorgegebene Wegpunkte in einer Karte abfährt. Bei einer solchen Fahrt zeichnet der Roboter sowie an ihm befestigte Sensorknoten einen Pfad durch regelmäßige Lokalisierung auf. In dieser Arbeit geht es um die Implementierung eines Analysewerkzeugs namens Pathcompare, welches ermöglicht, die Pfaddaten zusammenzuführen, für den Tester aufzuwerten und zu visualisieren. Neben mittleren Abstand (Median) zum gewählten Referenzpfad werden Parameter wie Pfadlänge, Anzahl der Pfadpunkte, Stichprobenvarianz und eine Liste der größten Abweichungen angezeigt. Alle Daten können als Comma Separated Values (CSV) exportiert werden. Pathcompare ist in das ROS integriert und so entwickelt dass es über Plug-ins erweitert und angepasst werden kann.

Abstract

This thesis is associated with the development of a referece system that has the ability to localize itself. The reason for the development of such a system is to provide localization data. This data is used as reference data for localization data of mobile sensor nodes organized in a Wireless Sensor Network WSN inorder to evaluate the precision of their localization measurements. Such a reference system was build in the form of a mobile robot that is able to autonomously navigate to given waypoints. While moving, the robot and sensor nodes mounted on it, generate path data by continously localizing. This work is about the creation of an analysing tool named Pathcompare that is used to merge the path data of different sources and visualize them for a tester. The software shows the median distance of a path to the given reference path, the overall pathlength, total number of points per path and also a list of the greates distances to the reference path. All results can be exported as CSV. Pathcompare is integrated into the ROS and can be extended via a Plug-in mechanism.

Inhaltsverzeichnis

ΑŁ	bildu	ingsverzeichnis	ix
Та	belle	nverzeichnis	хi
Qι	ıellco	deverzeichnis	xiii
GI	ossar		χV
Αk	ronyı	me >	(vii
1	Einle 1.1 1.2	Motivation	1 1 2 2
2	Path	ncompare - Implementierung	5
	2.1	Technischer Rahmen	5 5 8
	2.2	Design der Software	9 9
	0.2	2.2.2 Plug-in Main Compare	9 10
	2.3	Anwendung	10

Abbildungsverzeichnis

Tabellenverzeichnis

Quellcodeverzeichnis

2.1 ROS trans	formation message																							ĺ
---------------	-------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

Glossar

 $\begin{tabular}{ll} \textbf{Robot Operating System} & Ein Framework welches zahlreiche Pakete bzgl. Nachrichtenaustausch zwischen verteilten Programmen, Hardwareabstraktion und Robotik bietet. v. 3, 5–8 \\ \end{tabular}$

Akronyme

API Application Programming Interface. 5

 ${\sf CSV}$ Comma Separated Values. v

IMU Inertial Measurement Unit. 2

MEMS Microelectromechanical systems. 2

MOC Meta Object Compiler. 8, 9

 $\mbox{{\it UIC}}$ User Interface Compiler. 9

WSN Wireless Sensor Network. v

 $\boldsymbol{\mathsf{XML}\text{-}\mathsf{RPC}}\ \mathrm{XML}$ - Remote Procedure Call. 6

KAPITEL 1

Einleitung

1.1 Motivation

Systeme zur Positionsbestimmung werden für zahlreiche Zwecke genutzt und deren Bedeutung wächst parallel zur Verbreitung immer neuer sogenannter location based services und deren wachsender Nutzung. Für Anwendungen im Freien haben sich Satelliten gestützte Systeme, welche hohe Genauigkeit bieten, etabliert. Als bekanntes Beispiel sei hier das NAVSTAR-GPS genannt, welches sich auch im zivil nutzen lässt. Allerdings ergeben sich viele Anwendungsumgebungen, in denen derartige Systeme gar nicht, bzw. nur ungenau funktionieren oder bewusst z.B. aus Kostengründen gemieden werden. Dies sind typischerweise Umgebungen in denen die Satellitensignale zu stark gedämpft werden oder vor allem durch Reflexionen bedingte Laufzeitverschiebungen, sich negativ auf die Genauigkeit auswirken, wie z.B.:

- innerhalb von Gebäuden ("indoor")
- im Untergrund (Tunnel, Höhlen u.ä.)
- im Bereich dicht bebauter urbaner Gebiete (Mehrwegeausbreitung)

Um in solchen Umgebungen dennoch Lokalisierung zu ermöglichen wurden und werden viele theoretische Konzepte und konkrete Systeme entwickelt. Einen Überblick hierzu bietet Quelle anbringen (mobile entity localization and tracking in GPS less enviroments - Buch) Quelle anbringen (mobile entity localization and tracking in GPS less enviroments - Buch) Auch in der Arbeitsgruppe Computer Systems & Telematics, an der FU-Berlin, wurde dem Problem der indoor Lokalisierung mit der Entwicklung eines Wireless Sensor Network (WSN) basiertem Systems im Rahmen des Forschungsprojektes Feuer Where, begegnet. Dieses Projekt entstand u.a. in Kooperation mit der Berliner Feuerwehr. ist das wichtig zu wissen an dieser Stelle? Ziel bei der Entwicklung war ein flexibles indoor Lokalisierungssystem zu schaffen, welches mit low-cost Komponenten bzw. ohne Spezialhardware konstruiert wurde. Im Kern ist das System in der Lage die Entfernung zwischen involvierten Sensorknoten zu bestimmen und dadurch Rückschlüsse auf deren Position zu ermöglichen. In dem WSN unterscheidet man zwei Arten von Knoten, mobile Knoten und Anker Knoten. Diese unterscheiden sich nur dadurch, dass die Position eines Anker Knotens bekannt ist. Bei

2 1 Einleitung

einer hinreichenden Zahl von Anker Knoten im WSN kann dann per Trilateration bzw. Multilateration die Position eines mobilen Knotens ermittelt werden, add figure principle of trilateration? Die Entfernungsmessung zwischen zwei Knoten geschieht hierbei durch Laufzeitmessungen von per Funk gesendeten Round Trip Time (RTT) Paketen, wodurch eine teure sowie aufwendige Zeit-Synchronisierung zwischen den Knoten entfällt, da bei der Messung der RTT nur ein Knoten die Zeit berechnet. Diese Laufzeitmessungen sind jedoch durch in der Hardware auftretenden Jitter und in non-line of sight (NLOS) Umgebungen auftretende Mehrwegeausbreitung fehlerbehaftet. Die genaue Funktionsweise und Untersuchung der Auftretenden Fehler ist beschrieben in, hier würde ich natürlich gerne Heiko's paper reffen. Frage: Ist das schon erlaubt? Um diesen Fehler zu untersuchen, ist es sehr nützlich, ein möglichst genaues aber ebenso flexibles Testsystem Referenzsystem? zur Verfügung zu haben, welches mögliche Anpassungen, Konfigurationen und Einsatzszenarien des indoor Lokalisierungssystems, in Hinblick auf dessen Genauigkeit, evaluierbar macht. Der Implementierung und Analyse eines solchen Referenzsystems widmet sich diese Arbeit.

1.2 Aufgabenstellung

Bei der Anwendung kommen

Im folgenden wird zunächst zur Abgrenzung dieser Arbeit innerhalb des Referenzsystems, der grundelegende Aufbau des Referenzsystems beschrieben.

1.2.1 Der Roboter

Auf der Ebene der Hardware steht der mobile Roboter. Dieser hat das Ziel sich genau zu lokalisieren um Referenzwerte für die montierten, mobilen Sensorknoten zu liefern. Da er sich während der Testfahrten indoor bewegt, kann er für seine Lokalisierung keine satellitengestützten Lokalisierungssysteme wie GPS verwenden, aus den in ?? genannten Gründen. Zwei weitere Ansätze, um die Bewegung des Roboters nachzuvollziehen und somit Positionsdaten zu gewinnen sind:

- Inertial Navigation
- Odometrie

Bei der intertial Navigation wird mithilfe von Beschleunigungs- und Gyromessungen auf die ausgeführte Bewegung geschlossen. Diese Messungen lassen sich druch Microelectromechanical systems (MEMS), die in einer Inertial Measurement Unit (IMU) zusammengefasst werden durchführen. MEMS werden in großen Stückzahlen produziert und sind kostengünstig. Typischerweise sind aber die Messungen, auch bei Stillstand, durch Jitter belastet. Dieser kann zwar durch geeignete Filter geglättet werden, lässt sich allerdings nicht ganz ausschließen. Auf längere Strecken entsteht durch die Aufsummierung der Fehler ein Drift, fort von der tatsächlichen Position.

Bei der Odometrie, werden die Antriebsdaten ausgewertet, um auf die Bewegung des Roboters zu schließen. Geht man davon aus, dass der Untergrund, auf dem der Roboter fährt, für dessen Räder geeignet ist und die Räder nicht wegen beispielsweise mangelnder Bodenhaftung stark durchdrehen. So kann sie auf kurzen Strecken sehr genaue Abschätzungen liefern.

Allerdings ist auch eine Odometriemessung stets mit einem Fehler behaftet. Dieser Fehler summiert sich über die Zeit auf und die geschätzte Position weicht immer weiter von der tatsächlichen ab. Man hat also auf längeren Strecken ebenfalls mit einem Drift zu rechnen.

Beide Methoden haben gemeinsam, dass sie unabhängig von Informationen aus der Umgebung des Roboters arbeiten. Somit können sie allerdings den beschriebenen Drift in der Lokalisierung niemals korrigieren, da sie nicht die Positions auf Plausibilität mit der Umgebung abgleichen. Für das Referenzsystem ist Drift aber nicht akzeptabel. Aus diesem Grund erfasst der Roboter Abstände zu Hindernissen seiner Umgebung mithilfe einer Microsoft Kinect. Die Kinect erstellt mithilfe eines, im infrarot Bereich gestrahltem, optischen Musters ein Tiefenbild. Die Reichweite liegt dabei bei maximal 10 Meter Entfernung bei einem Blickwinkel von ca 59°. Test haben gezeigt, dass die Genauigkeit der Tiefehmessung mit zunehmender Entfernung abnimmt. Im Nahbereich von zwei Metern aber überraschend Präzise Abstandsauflösung im Zentimeterbreich ermöglicht. Außerdem verfügt der Roboter über eine Karte der Testumgebung. Diese Karte in Kombination mit der Microsoft Kinect ermöglicht während einer Testfahrt eine Lokalisierung durch folgende entscheidende Schritte durchzuführen:

- 1. Abschätzung der derzeitigen Pose durch Odometrie
- 2. Abgleich mit Karte und Korrektur der Pose

Zum Abtasten der Umgebung hätte alternativ auch ein Laserscanner gewählt werden können, welcher hohe Reichweite mit hoher Genauigkeit kombiniert. Dies wäre aber entgegen den Ziele des Referenzsystems, mit zu hohen Anschaffungskosten verbunden gewesen. Im Sinne günstiger Kosten wurde schlussendlich ein sogenannter TurtleBot gebaut. Dies ist ein von WillowGarage spezifizierter low-cost Roboter. Im Kern besteht dieser aus einem Roomba Staubsaugerroboter von iRobot, einer Microsoft Kinect und einem Tragegerüst. Das Tragegerüst dient als Abstellfläche für einen Laptop und bietet im Anwendungsfall des Referenzsystems Platz zum Montieren der Sensorknoten.

Die Aspekte der Software, zum Betrieb des Roboters, wurde innerhalb einer anderen Bachelorarbeit, ebenfalls im Rahmen der Entwicklung des Referenzsystems, ausführlich erarbeitet.

Zusammenfassend kann man in dieser Hinsicht festellen, dass zum autonomen Fahren Programme des ROS genutzt werden sowie eine Software implementiert wurde, die den Roboter vorgegebene Wegpunkte abfahren lässt und dabei gesammelte Lokalisierungsdaten innerhalb von ROS bereitstellt. Genauer wird im Teil ?? auf die Funktionsweise von ROS eingegangen.

KAPITEL 2

Pathcompare - Implementierung

2.1 Technischer Rahmen

2.1.1 Robot Operating System - ROS

Innerhalb des Referenzsystems wird ROS im Zusammenhang mit der Steuerung des Roboters genutzt und um die, während einer Testfahrt gewonnenen Pfaddaten, zur Verfügung zu stellen. Im Folgenden wird genauer auf die Fähigkeiten und Ziele von ROS eingegangen.

Obwohl der Name zunächst anderes vermuten lässt ist ROS kein Betriebssystem im klassischem Sinne. Es ist ein Framework, welches auf ein Betriebssystem angewiesen ist um ausgeführt werden zu können. Es bietet aber Funktionalitäten, die abstrahiert betrachtet Betriebsystemfunktionen ähneln. Charakteristisch ist hierbei ROS Fähigkeit lokal- oder nichtlokalausgeführte Programme zu Verbinden und eine strukturierte Kommunikation zwischen diesen zu ermöglichen. Die wesentlichen Elementareigenschaften der Grundphilosophie sind:

- multi-tool Ansatz
- peer-to-peer Kommunikation
- keine feste Bindung an Programmiersprache
- frei und Open-Source

Multi-tool Ansatz bedeutet, dass ROS die Fähigkeiten verschiedener Programme und Libraries zur Verfügung stellt. Diese sind jedoch nicht fest in den Kern von ROS eingebaut sondern modular integriert. Als analoges Beispiel in Hinblick auf Betriebssysteme kann man ROS also als einen Mikrokernel verstehen. Dies bietet den Vorteil, dass ROS selbst vergleichsweise klein ist und nur wirklich gebrauchte tools geladen werden müssen. Die peer-to-peer Kommunikation bezieht sich auf die Kommunikation zwischen diesen, in ROS integrierten, Modulen. Diese wird durch den ROS Kern gesteuert. Der Kern von ROS ist nativ in C++ implementiert, es existieren jedoch bereits Portierungen in andere Sprachen wie Python, Octave und Lisp um die ROS-Application Programming Interface (API) einer größeren Zahl von Entwicklern und Projekten die Nutzung zu ermöglichen. Weitere Portierungen sollen sich in der Implementierung befinden.

ROS ist darüberhinaus frei Verfügbar und Open-Source. Man kann beliebige Programme, als Module zur Erweiterung und Nutzung von ROS hinzufügen, wie es auch im Rahmen des Referenzsystems geschehen ist. Bei allgemeinem Nutzem und gegebener Pflege, besteht die Möglichkeit, dass diese offiziell zu ROS hinzugefügt werden.

Um die konkreten Abläufe und Komponenten innerhalb von ROS veranschaulichen zu können und damit auch den Bezug zu Pathcompare herstellen zu können, ist es zunächst erforderlich die Begrifflichkeiten innerhalb von ROS zu klären. Im Folgendem werden diese aufgezeigt.

Im Zentrum von ROS steht der sogenannte master. Dieser wird als einzelne Instanz gestartet und wartet dann darauf, dass sich tools, die im Kontext von ROS gestartet werden, bei ihm anmelden. Ein gestartetes tool wird innerhalb von ROS als node bezeichnet. Ist der master nicht gestartet können auch keine nodes gestartet werden. Die nodes sind also alle zunächst auf Kommunikation mit dem master angewiesen. Diese Kommunikation kann lokal oder nichtlokal ausgeführt werden, d.h. der master kann sich auch auf einem anderen Rechner wie der node befinden solange eine http Verbindung zwischen beiden hergestellt werden kann. Denn das Anmelden des nodes beim master erfolgt über einen XML - Remote Procedure Call (XML-RPC), getragen vom http. Für den tool Entwickler auf Anwendungsebene ist diese Kommunikation zur Anmeldung allerding völlig unsichtbar und er muss sich nicht darum kümmern. Das Ausführen von nodes auf unterschiedlichen Rechnern ist natürlich ebenso möglich und wie zuvor bereits erwähnt eines der Kernfunktionen von ROS. Dies lässt sich vorteilhaft ausnutzen durch zum Beispiel:

- Verteilung oder Auslagerung rechenintensiver nodes auf potente Hardware
- Zusammenführenung von an unterschiedlichen Stellen gewonnener Daten.

So muss beispielsweise ein mobiler Roboter Bilderkennungs Aufgaben nicht selbst ausführen, sondern kann diese an einen node weiterleiten der auf einem Rechencluster ausgeführt wird. Die zweite genannte Möglichkeit ist auch besonders im Bezug auf diese Arbeit wichtig, da Pfaddaten des Roboters und der zu testenden Sensorknoten für Pathcompare verfügbar gemacht werden müssen. Die Kommunikation zwischen Nodes erfolgt über sogenannte messages, diese enthalten die serialisierte Form der zu übertragenden Daten. ROS bietet in seinen Kernpakten bereits zahlreiche Definitionen für unterschiedliche message Typen, aber es ist auch möglich eigene zu generieren und dies wird von zahlreichen Paketen getan um Daten maßgeschneidert übertragen zu können. Einmal definierte message Typen können wiederum rekusiv in anderen message Typen verwendet werden. Ein Beispiel für eine message ist in Quellcode 2.1 dargestellt; eine Transformation die in ROS geometry_msgs definiert ist. Sie besteht wie erkennbar aus den zwei Typen Vector3 und Quaternion. Letzterer beschreibt die Rotation und der erste die Translation. Zusammengefügt ergibt dies eine Transformationsnachricht.

```
geometry_msgs/Vector3 translation
float64 x
float64 y
float64 z
geometry_msgs/Quaternion rotation
float64 x
float64 y
```

- 8 float64 z
- 9 float64 w

Quellcode 2.1: ROS transformation message

Soll ein node seine messages anderen nodes senden können, so muss dies zunächst durch festlegen einer sogenannten topic beim master angemeldet werden. Dann wird diese topic für andere nodes im ROS über den master sichtbar. Eine topic besteht im wesentlichen aus zwei Teilen, einer topic-id und einem message-type. Wobei der message-type angibt welcher Typ von messages über diese topic verschickt wird. Die topic-id dient zur eindeutigen Identifikation innerhalb des ROS. Nodes welche messages einer topic empfangen sollen, müssen diese topic dann beim master abbonieren. In programmatischer Hinsicht wird beim Empfang neuer Nachrichten innerhalb des nodes eine festgelegte callback Methode aufgerufen um die messages zu bearbeiten. Treffen dabei Nachrichten mit einer höheren Frequenz ein, als abgearbeitet werden können, so kommt es irgendwann zu Verlusten wenn die einstellbare Größe der message queue überschritten wird.

Zwei weitere wichtige Begriffe in ROS betreffen die Organisierung der Dateien die zu den einzelnen tools gehören. Dies sind:

- package
- stack

Ein package beinhaltet den Code, Libraries sowie die ausführbare Datei eines tools bzw. nodes. In ROS sind für packages bestimmte Ordnerstrukturen und Dateien festgelegt sodass mithilfe der von ROS mitgebrachten tools packages leicht gebaut, gesucht und gestartet werden können. Beispielsweise basiert das ROS build System auf cmake und so ist eine vorkonfigurierte CMakeLists.txt in jedem package grundsätzlich enthalten. Eine Zusammenfassung mehrerer packages wird als stack bezeichnet.

Pathcompare ist also im Bezug auf ROS, während der Ausführung, ein einzelner node welcher topics abboniert um messages zu empfangen. Es wird in einem späteren Teil darauf eingegangen, welche messages das genau sind. Alle zum Kompilieren und Ausführen nötige Dateien sind dabei in zwei packages namens pathcompare und pathcompareplugins aufgeteilt.

- Warum brauchen wir ROS?
- Wer entwickelt ROS? (Stanford University & WillowGarage & community)
- Was sind die Grundeigenschaften
- multitool Ansatz
- strukturierte Kommunikation zwischen den Tools
- free and open source
- multilingual
- Begrifflichkeiten des ROS (Stack, Package, Node, Master, Topic, Message)
- Topologie (figure: Roboter, Master, Pathcompare , Sensorknoten)
- plattformen: Ubuntu
- standard Buildsystem cmake

2.1.2 Qt

Pathcompare ist darauf ausgelegt alle Informationen für den Nutzer in einer Benutzeroberfläche (fortan als GUI bezeichnet) zu visualisieren. Da die Anbindung an ROS über C++ erfolgt, lag nahe auch die GUI in C++ umzusetzen. Dazu wurde das Qt Framework gewählt. Qt ist in C++ implementiert, wobei allerdings auch Anbindungen für zahlreiche andere Sprachen wie z.B. Java, C#, Ruby oder Python existieren. Die Entwicklung von Qt begann 1991 und ist zum Zeitpunkt des Schreibens in der Version 4.7.4 verfügbar. Das Framework besteht dabei mittlerweile nicht mehr nur aus reinen GUI Bibliotheken, sondern stellt auch z.B. Netzwerk-, SQL- und andere Anwendungs-Bibliothken zur Verfügung.

Für die Entwicklung von *Pathcompare* waren neben den GUI Bibliotheken, besonders folgende Konzepte und Funktionen beim Entwickeln vorteilhaft:

- Signal-Slot Konzept
- Plattformunabhängigkeit
- Containerklassen mit praktischen Hilfsmethoden
- graphischer GUI Designer

Auf einige dieser Punkte und deren Bezug zu Pathcompare wird nun kurz eingangen.

Das Signal-Slot Konzept dient dazu Objekten, bestimmte Veränderungen an Objekten mitzuteilen, welche über diese Änderung informiert werden sollen. Es realisiert das Entwurfsmuster des Observer patterns. Signal-Slot erspart es dem Programmierer einen Verweis auf das beobachtende Objekt, durch einen registrierenden Methodenaufruf beim aktualisierenden Objekt, zu hinterlegen. Stattdessen emittiert, im Falle einer mitzuteilenden Aktualisierung, das aktualisierende Object einen Methode, welche durch einen Qt Makro als signal ausgezeichnet ist. Bei Beobachter Objekten, die auf dieses Signal reagieren sollen, wird dann eine als slot deklarierte Methode selbständig aufgerufen, sofern die Objekte, durch einen Aufruf einer von Qt bereitgestellten, statischen Methode, verbunden wurden. Dieses Konzept vereinfacht die Entwicklung wegen seiner Flexibilität deutlich, allerdings ist der durch Qt erzeugte Code, welcher bei Auflösung der Makros entsteht, aufblähend und dadurch theoretisch langsamer bei der Ausführung als eine klassische callback Implementierung. In der Praxis ist diese Verlangsamung aber unmerklich und wiegt nicht die Vorteile für den Entwickler auf. Deshalb wurde das Konzept auch bei der Entwicklung von Pathcompare eingesetzt.

Im Zusammenhang mit dem Signal-Slot Konzepts wurde bereits erwähnt, dass Qt C++ mit verschiedenen Makros erweitert. Diese Makros werden dabei nicht immer direkt in gültigen C++ Code übersetzt, sondern dienen als Annotationen. Dies hat Folgen für den Build Vorgang, denn die mit Annotationen versehenen Klassen müssen dann zuerst, mit dem von Qt bereitgestelltem Meta Object Compiler (MOC) übersetzt werden. Standardmäßig wird in Qt das Build Programm qmake verwendet, welches die nötigen Aufrufe des MOC automatisch veranlasst. In Hinblick auf Pathcompare war aber eine Integration in das von ROS unterstützte Build verfahren cmake notwendig. Hierbei muss beachtet werden, dass cmake die Dateien welche einen MOC Aufruf notwendig machen, in der derzeitigen Version, nicht selbständig erkennt. Diese müssen manuell in der CmakeLists.txt deklariert werden. Die sonstige Einbindung Qt spezifischer Libraries und deren Verlinkung mit der Applikation ist in cmake leicht möglich. Somit war die Verwenung von Qt in pathcompare kein Hindernis für die Verwendung von cmake. Die Nutzung von cmake wird darüberhinaus, für große

Projekte, von Autoren im Rahmen der Qt Dokumentation selbst empfohlen.

Neben dem MOC existiert noch ein sogenannter User Interface Compiler (UIC). Dieser tritt im Zusammenhang mit dem *QtDesigner* in Erscheinung. Der *QtDesigner* ermöglicht es graphisch Qt GUIs zu erstellen. Dabei wird eine XML datei vom Designer erstellt, welche den Aufbau der GUI abbildet. Der UIC ist dann dafür verantwortlich diese Datei in C++ Klassen zu übersetzen. Auch hier muss cmake veranlasst werden zunächst den glsUIC aufzurufen.

- Warum braucht Pathcompare Qt?
- GUI framework, native in C++ (auch Implementierungen für Java, Ruby,...)
- bietet auch zahlreiche nicht GUI spezifische Funktionalität
- cross platform
- native UI rendering
- UI designing with Qt Designer
- bereichert C++ durch embedded Macros (z.B. signal&slot) -> moc compiler
- standard Buildsystem native qmake
- Unterstützung für cmake gegeben, für große Projekte sogar empfohlen

2.2 Design der Software

Der Hauptfokus beim Design der GUI lag darauf, einfache Benutzung und übersichtliche Testdatendarstellung, für den Nutzer zu gewährleisten. Außerdem sollte die Software leicht erweiterbar sein.

2.2.1 Überblick Gesamtsystem

- Rahmen mit Topic TreeView
- Anbindung an ROS durch ROSManager
- TabFlächen für einzelne PlugIns
- PluginLoader lädt Plugins

2.2.2 Plug-in Main Compare

- Funktionen erklären
- Referenz Pfad Selektion
- Export (+Format der csv Datei)
- Tabellenansicht erklären

P fadver gleich sver fahren

2.2.3 Plug-in Konzept allgemein

- allgemein Qt Plugins
- Vorstellen der Interfaces zum Schreiben eigener Plug-ins für Pathcompare
- Beispiel Camera Plugin

2.3 Anwendung