

189. La tangente T à (C) au point O(0, 0) a pour équation :

1. $y = x$
2. $y = 2x$

3. $y = -x + 1$
4. $y = 3x + 2$

5. $y = -x$

(B-2009)

Soit la fonction f définie par $f(x) = \frac{2 \ln(6x-1)}{\ln x} = 1$

(Les items 190 et 191 se rapportent à cette fonction).

190. le domaine de définition de f est :

1. $]-\infty, +\infty[$

3. $]0, +\infty[$

5. $\left[\frac{1}{6}, 4 \right]$

2. $\left[\frac{1}{6}, 1 \right] \cup]1, +\infty[$

4. $\left[\frac{1}{6}, \frac{1}{2} \right] \cup \left[\frac{1}{2}, 4 \right]$

191. L'ensemble des solutions de f est :

1. $S =]0, +\infty[$

3. $\left\{ 0, \frac{1}{6} \right\}$

5. $\left[1, \frac{3}{2} \right]$

2. $[0, 1[$

4. $S = \left\{ \frac{1}{4} \right\}$

(M-2009)

On considère la fonction f définie par : $f(x) = \frac{\ln x}{x} - \frac{1}{x}$ et (C) sa

représentation graphique dans un repère ortho normal.

(les items 192 et 193 se rapportent à cette fonction)

192. Les réels x pour lesquels $f(x) > 1$ sont les réels de :

1. $]0, +\infty[$

3. $\left[0, \frac{1}{2} \right] \cup \left[\frac{1}{2}, +\infty \right]$

5. $[0, 1[\cup]1, e[$

2. $\left[0, \frac{1}{e} \right]$

4. $\left[e, \frac{5}{2} \right]$

www.ecoles-rdc.net

193. f est strictement décroissante sur :

1. $]0, +\infty[$

3. $]0, 1[$

5. $]1, e[$

2. $]-\infty, 0[$

4. $]0, \ln 2[\cup]\ln 2, 3[$

(M-2009)