定理 13.8 设 M 为图 G 中的一个匹配, Γ 为 G 中关于 M 的可增广路径,则 $M'=M\oplus E(\Gamma)$ 仍 为匹配,且 |M'|=|M|+1.

定理 $13.9 \, M$ 为 G 中最大匹配当且仅当 G 中不含 M 可增广路径.

定理 13.10 n 阶无向图 G 具有完美匹配当且仅当对于任意的 $V' \subset V(G)$,

$$p_{\tilde{\tau}}(G - V') \le |V'|,$$

其中 $p_{\hat{\sigma}}(G-V')$ 表示 G-V' 中奇数阶连通分支数.

推论 任何无桥 3-正则图都有完美匹配.

定理 13.11 (Hall 定理) 设二部图 $G=\langle V_1,V_2,E\rangle,\ |V_1|\leq |V_2|.\ G$ 中存在 V_1 到 V_2 的完备匹配当且仅当对于任意 $S\subseteq V_1,\ 均有 |S|\leq |N(S)|,\ 其中 N(S)$ 为 S 的邻域,即

$$N(S) = \bigcup_{v_i \in S} N(v_i).$$

定理 13.12 设 $G = \langle V_1, V_2, E \rangle$ 为二部图,若 V_1 中每个顶点至少关联 $t(t \ge 1)$ 条边,而 V_2 中每个顶点至多关联 t 条边,则 G 中存在 V_1 到 V_2 的完备匹配.

定理 13.13 设 $G = \langle V_1, V_2, E \rangle$ 为 k-正则二部图,则 G 中存在 k 个边不重的完美区配.

推论 $K_{k,k}$ 中存在 k 个边不重的完美匹配.

定理 13.14 设 $G = \langle V_1, V_2, E \rangle$ 为无孤立点的二部图,则 $\alpha_0 = \beta_1$.