Neural Summarization of documents by extracting sentences

Guided by:

Abhishek Singh

Submitted by:

Group8 Suryansh Agnihotri Anandita Dhasmana Piyush Shrivastava Shalin Agarwal

Introduction

- Problem statement:single document summarization by extracting sentences using deep learning.
- Model used:- A neural network-based hierarchical document reader or encoder and an attention based content extractor is used.
- Traditional approaches to extractive summarization rely heavily on human-engineered features
- We have used a data-driven approach based on neural networks and continuous sentence features.
- A general framework for single-document summarization composed of a hierarchical document encoder and an attention-based extractor is introduced.
- This architecture allows us to develop different classes of summarization models which can extract sentences or words.
- The role of the reader is to derive the meaningful representation(encoding) of a document based on its sentences and their constituent words.
- Sentence extractor uses attention mechanism for sequence labeling.

Training Data

- DailyMail news dataset is used.
- Dataset division:
 90% of data set for training
 5% for validation
 5% for testing

```
as the model for Gentity4 's " Gentity3 . " Gentity1 became the symbol of Gentity7 women working on the home front during Gentity9 the 92 - year - old died this week
at her home in @entity12 , @entity13
as a 19 - year - old telephone operator , @entity1 posed for the famous painting that would become the cover of the @entity17 on may 29 , 1943
although she was petite, @entity1 was transformed into the iconic -- and burly -- embodiment of the character by @entity4
" other than the red hair and my face , @entity4 embellished @entity26 's body , " @entity1 said in a 2012 interview with the @entity22 " i was much smaller than that and did not know how he was going to make me look like that until i saw the finished painting
" people we 've lost in 2015 @entity1 pocketed $ 10 for the two mornings of modeling work she did in @entity34 , @entity35
@entity4 lived in neighboring @entity34 at the time
  @entity3 " is often confused with another popular image from the same era
the poster shows a woman flexing her arm under the slogan " @entity42
" it was part of a nationwide campaign to sell war bonds , but is not the same character
still , many folks on social media paid tribute to @entity1 using the image
both show the key role women played in the war effort.
" @entity3 " appeared on the cover of the @entity17 on may 29 , 1943
@entity1 was a 19 - year - old telephone operator at the time
@entity3:Rosie the Riveter
@entity17:Saturday Evening Post
@entity1:Mary Doyle Keefe
@entity0:CNN
```

MATHEMATICAL FORMULATION

Given a document D consisting of a sequence of sentences $\{s \ 1 \ , \cdots , s \ m \}$ Sentence extraction aims to create a summary from D by selecting a subset of j sentences. predicting a label $y_L \in \{0, 1\}$

Objective function:-

Given the input document D and model parameters θ :

$$\log p(y_L|D; \theta) = \sum \log p(y_L^i|D; \theta)$$

NEURAL SUMMARIZATION MODEL

- The key components of our summarization model include a neural network-based hierarchical document reader and an attention-based hierarchical content extractor.
- Such a representation yields minimum information loss and is flexible allowing us to apply neural attention for selecting salient sentences.
- Key components used:
 - -neural network-based hierarchical document reader
 - -attention -based hierarchical content extractor

DOCUMENT READER

• The role of the reader is to derive the meaning representation of the document from its constituent sentences, each of which is treated as a sequence of words.

Long Short-Term Memory (LSTM) activation unit is used in the RNN for ameliorating the vanishing gradient problem when training long sequences.

Recurrent Document Encoder:-

SENTENCE EXTRACTOR

- sentence extractor applies attention to directly salient sentences after reading them
- Set Pt-1 to the true label of the previous sentence as training goes on they gradually shift its value to the predicted label.

Result

Model was trained in 18 epoch of the training dataset:

```
group8@kattapa: ~
                                                                                                                                                (47%) ◆)) 1:49 PM
                                                                                                                  group8@kattapa: ~
                                     Terminal
```

Score generation for Test data:

Sentence scores are generated and stored

```
9.949956494383513927e-01 7.101479917764663696e-01 7.060083001852035522e-01 1.238418444991111755e-01 4.624989330768585205e-01 1.993201747536659241e-01 3.840281814336776733e-01 7.199154645204544067e-01 2.584178000688552856e-01 3.626094162464141846e-01 5.996743440628051758e-01 1.217002160847187042e-01 5.549399703741073608e-01 3.994210436940193176e-01 1.621807896867721865e-07 9.803755236789584160e-01 9.883490633219480515e-01 9.616373460739850998e-01 4.649035930633544922e-01 8.931522220373153687e-01 9.598650056868791580e-01 1.948903873562812805e-01 1.339862719178199768e-01 5.209758654236793518e-01 9.470038060098886490e-01 3.329327851533889771e-01 8.667793422937393188e-01 3.271220773458480835e-01 8.187378868460655212e-01 9.322041794657707214e-01 3.561458736658096313e-01 9.533735625445842743e-01 9.108157195150852203e-01 8.2840088754893391e-01 2.834613621234893799e-01 8.629281520843505859e-01 9.15891425907611847e-01 3.406101912260055542e-01 2.958291769027709961e-01 5.060718208551406860e-01 4.430162720382213593e-02 5.825996696949005127e-01 3.519710898399353027e-01 5.402918159961700439e-01 4.129633903503417969e-01 4.437561333179473877e-01 4.655369818210601807e-01 8.468578308820724487e-01 9.209049306809902191e-01 9.734167642891407013e-01 8.478100746870040894e-01 2.522733360528945923e-01 3.865976333618164062e-01 9.138754889369010925e-01 5.088656246662139893e-01 4.671209752559661865e-01
```

Sentence scores are stored during evaluation.

```
sentence1 sentence2
```

```
doc18.42e-01 8.13e-01 8.37e-01 6.27e-01 5.07e-01 6.57e-01 doc29.12e-01 7.97e-01 8.03e-01 7.61e-01 8.85e-01 7.47e-01 9.07e-01 8.68e-01 9.13e-01 9.46e-01 7.22e-01 9.21e-01
```

CONCLUSION

- We developed a model based on sentence extraction.
- This architecture can further be extended for generating summaries in english using the word extractor.

THANK YOU