实验二: MOS管放大电路 (插板)

专业班级: 通信2101班

姓名: 罗畅

学号: U202113940

实验名称

MOS管放大电路 (插板)

实验目的

- 了解MOS管共源放大电路工作原理
- 掌握共源放大电路参数调整方法
- 掌握共源放大电路的基本原理与参数测量方法
- 掌握分立元件复杂电路搭建与调试方法

实验元器件

MOSFET晶体管: 2N7000; 电阻: $1k\Omega$, $5.1k\Omega$, $100k\Omega$; 电容: 1μ F, 4.7μ F, 47μ F; 电位器: 470k, 100k, 100

实验原理

MOSFET共源极放大电路

图 3.3.6 共源极放大电路

• 图3.3.6为N沟道增强型MOSFET共源极放大电路, 其静态工作点可由下式估算:

$$egin{split} V_{GSQ} &= rac{R_{g2}}{R_{g1} + R_{g2}} imes V_{DD} - I_{DQ} R_s \ &I_{DQ} &= K_n (V_{GS} - V_{TN})^2 \ &V_{DSQ} &= V_{DD} - I_{DQ} (R_d + R_s) \end{split}$$

• 动态性能指标可由下式估算:

式
$$3.3.4$$
 $A_v = -g_m R_d$ $R_i = R_{g1}//R_{g2}$ $R_o = R_d$

• 数据手册通常会给出 $V_T N$ 和某工作点下的 g_m 。对于MOS管2N7000,当 I_D =200mA时, g_m^\prime =100mS,则由(3.3.3)第二式可得

$$K_n = rac{(g_m'/2)^2}{I_D} = 12.5 mA/V^2$$

而(3.3.4)第一式中的 g_m 是电路静态工作点下MOS管的互导,同样由式子

$$r_{ds} = rac{\partial v_{DS}}{\partial i_D}|_{V_{GS}}$$

可得

$$g_m = g_m' \sqrt{rac{I_{DQ}}{I_D}}$$

即

$$g_m=10\sqrt{rac{I_{DQ}}{2}}ms$$

此外 V_{TN} 在0.8-3V之间,这里取 V_{TN} =1.75V

设置静态工作点时,调整电位器 R_p ,使 V_p 为5-6V

实验任务

一、测试静态工作点

- 按照图3.3.6连接后,检查无误后接通电源。
- 用数字万用表的直流电压档测量电路的 V_D (漏极对地电压)
- 调整电位器 R_P ,使 V_D 为5~6V
- 再测出电路的 V_G (栅极对地电压)和 V_S (源极对地电压),填入表3.3.2中,并计算静态工作点Q(I_{DQ} 、 V_{GSQ} 、 V_{DSQ})。

表 3.3.2 静态工作点。

	实测值.			计算值.]
<i>V</i> _G /V _e <i>V</i> _S /V _e		$V_{\rm D}/{\rm V}_{\circ}$	$I_{DQ} = V_S / R_{e^{-}}$ $/mA_{e^{-}}$	$V_{\text{GSQ}} = V_{\text{G}} - V_{\text{S}}$ $/V_{\text{G}}$	$V_{\text{DSQ}} = V_{\text{D}} - V_{\text{S}}$ $/V_{\text{-}}$	1
		÷				
实测电阻值。 R _{g1} =		, R) _{g2} =	, $R_{\rm d}=$, R _a =.]

注意:接下来的测试不要再改动静态工作点

二、测试放大电路的输入、输出波形和通带电压增益

- 按照下图搭建放大电路实验测试平台
- 调整信号源,使其输出峰一峰值为30 mV、频率为1 kHz 的正弦波,作为放大电路的 v_i ,分别用示波器的两个通道同时测试 v_i 和 v_o
- 在实验报告上定量画出 v_i 和 v_o 的波形(时间轴上下对齐)
- 分别测试负载开路和 R_L = 5.1k Ω 两种情况下的 v_i 和 v_{o_i} 完成表3.3.3。

表3.3.3

表 3.3.3 电压增益 (f=1kHz)

负载情况	v _i 峰-峰 值 V _{ipp} /mV	v _o 峰-峰 值 V _{opp} /mV	$ A_{\rm v} = V_{\rm opp}/V_{\rm ipp}$	A _v 的理 论值	相对误差
负载开路	30				
$R_L=5.1$ k Ω	30				

三、测试放大电路的输入电阻

• 采用在输入回路中串入已知电阻的方法测量输入电阻。

- 由于MOSFET放大电路的输入电阻较大,所以当测量仪器的输入电阻不够大时,采用图3.2.8 所示的方法可能存在较大误差,改用如图3.3.7所示的测量输出电压的方法更好
- R取值尽量与 R_i 接近(此处可取R=51 KΩ)。信号源仍旧输出峰峰值30mV、1kHz正弦波
- 用示波器的一个通道始终监视 v_i 波形,用另一个通道先后测量开关S闭合和断开时对应的输出电压 v_{o1} 和 v_{o2} ,则输入电阻为

$$R_i = rac{v_{o2}}{v_{o1} - v_{o2}} R$$

测量过程要保证v_o不出现失真现象

图 3.2.8 输入电阻测试局部示意图

图 3.3.7 高输入电阻测试局部示意图

四、测试放大电路的输出电阻

• 采用改变负载的方法测试输出电阻。

• 分别测试负载开路输出电压 v_o' 和接入已知负载 R_L 时的输出电压 v_o 测量过程同样要保证 v_o 不出现失真现象。实际上在表3.3.3 中已得到 v_o' 和 v_o 则输出电阻为

$$R_o = rac{v_o' - v_o}{v_o'} imes R_L$$

 R_L 越接近 R_o 误差越小

五、测试放大电路的通频带

- 在图3.3.6 中,输入 v_i 为峰-峰值30mV、1kHz的正弦波,用示波器的一个通道始终监视输入波形的峰-峰值,用另一个通道测出输出波形的峰-峰值。
- 保持输入波形峰峰值不变,调节信号源的频率,逐渐提高信号的频率,观测输出波形的幅值 变化,并相应适时调节示波器水平轴的扫描速率,保证始终能清晰观测到正常的正弦波。
- 持续提高信号频率,直到输出波形峰-峰值降为1kHz时的0.707倍,此时信号的频率即为上限频率 f_H ,记录该频率;
- 类似地,**逐渐降低**信号频率,直到输出波形峰峰值降为1kHz时的0.707 **倍**,此时的频率即为信号频率 f_L ,记录该频率,完成表3.3.4。
- 要特别注意,测试过程必须时刻监视输入波形峰-峰值,若有变化,需调整信号源的输出幅值,保持 v_i 的峰-峰值始终为30mV。

通频带(带宽)为 $BW = f_H - f_L$ 。

表 3.3.4 通 信号频率 f 输出波形 峰-峰值 $V_{\rm opp}$	f_{L}		$f_{\rm H}$
		1kHz	η.
		1 11	T.

六、观察失真波形

- 调整信号源频率调回1kHz,分别用示波器的两个通道同时观测 v_i 和 v_o ,不断调整电位器 R_P ,观察 v_o 波形的变化,直至出现明显的非线性失真。
- 在表3.3.5中定性画出失真波形形状,并用万用表的直流电压档测量电路的 V_D 、 V_G 和 V_S 填入表3.3.5,计算静态工作点Q(I_{DQ} 、 V_{GSQ} 、 V_{DSQ})。
- 再反方向调整 R_P ,直至 v_o 波形出现另一种非线性失真现象,再次测量静态工作点,完成表 3.3.5的内容。(注意,如果调不出失真现象,可以适当增大输入信号的幅值,再调整 R_P)

 实测值
 计算值

 V_G/V
 V_S/V
 V_D/V
 V_D/V
 V_{GSQ}= V_G- V_S V_{DSQ}= V_D- V_S /V
 失真类型

表 3.3.5 失真时的静态工作点

实验记录

一、测试静态工作点

表3.3.2记录如下:

表 3.3.2 静态工作点

	实测值。	3	计算值。			
Ver.	V _S /V ₊	$V_{\rm D}/{\rm V}_{\rm r}$	I _{DQ} = V _S / R _s . /mA.	$V_{GSQ} = V_G - V_{S^{\perp}}$ /V	$V_{DSQ} = V_D - V_{S^{\omega}}$ /V.	
2,8196	1.2793	5.9406	1,2268	1,403	4.6613	
		$R_{s2} = 17.006k + R_d = 5.025k + R_s = 1.042$				

二、测试放大电路的输入、输出波形和通带电压增益

示波器图示如下:

无RL(负载开路)

负载 $RL = 5.1k\Omega$

表3.3.3记录如下:

表 3.3.3 电压增益 (f=1kHz)

负载情况	v _i 峰-峰 値 V _{ipp} /mV	vo峰-峰 値 Vopp /mV	$ A_{\rm v} = V_{\rm opp}/V_{\rm ipp}$	A _v 的理 论值	相对误差
负载开路	30	9840	32.8	39.94	17.87%
$R_L=5.1$ k Ω	30	520.	17.3	19.97	1337%

三、测试放大电路的输入电阻

实验测量示波器图示如下:

接入 $R = 51k\Omega$

不接R

由

$$R_i = rac{v_{o2}}{v_{o1} - v_{o2}} R$$

有

$$R_i = rac{313.9}{520.1 - 313.9} imes 51k = 77.6377k$$

又

理论值 R_i =(R_{g1} + R_p)// R_{g2} =**76.3467k**

则相对误差为

$$\frac{77.6377-76.3467}{76.3467}=1.691\%$$

四、测试放大电路的输出电阻

实验示波器测量图示如下:

有RL

无RL

$$R_o = rac{v_o' - v_o}{v_o'} imes R_L$$

有

$$R_o = rac{984.0 - 520.1}{984.0} imes 5.1 k = 2.4044 k$$

五、测试放大电路的通频带

实验示波器测量图示如下:

$$1kHz, v_{opp} = 984.0mV$$

 $26Hz, v_{opp} = 696.0mV$

 $700kHz, v_{opp} = 696.1mV$

实验记录表3.3.4如下:

表 3.3.4	通频带	$(V_{ipp} = 30 \text{mV})$
		ipp .

/ · □ · · · · · · · · · · · · · · · · ·	fL		$f_{ m H}$	
信号频率f	26	1kHz	700KH	
输出波形 峰-峰值 Vopp	696.0	9.84:6	676.	
A _v	232	328	232	

六、观察失真波形

实验示波器测量图示如下:

截止失真

饱和失真

实验记录表3.3.5如下

表 3.3.5 失真时的静态工作点

		实测值		计算值			
失真波形	V _G /V	V _S /V	$V_{\rm D}/{ m V}$	$I_{\rm DQ} = V_{\rm S} / R_{\rm s}$ $/{\rm mA}$	$V_{\rm GSQ} = V_{\rm G} - V_{\rm S}$ /V	$V_{\rm DSQ} = V_{\rm D} - V_{\rm S}$ /V	失真类型
017	3,4486	18498	23834	17729	15988	n1348	档据
8/00	2,233	0.8037	2.1176	07707	1.43	7.3137	松上

实验小结

这次实验增强了我对MOSFET的理解,亲身学习并调试出了两种失真波形,复习并更好的理解了 模电的知识。实验过程中发现理解实验原理,掌握MOS管的工作原理和相关计算方法以及相关仪器 的使用方法至关重要。