Supporting Information for:

$\operatorname{CCSD}(\operatorname{T})$ Complete Basis Set Limit Relative Energies for Low-Lying Water Hexamer Structures

Desiree M. Bates and Gregory S. Tschumper*

Department of Chemistry and Biochemistry University of Mississippi, University, Mississippi 38677–1848 USA

Last updated December 1, 2008

^{*}Author to whom all correspondence should be addressed. email: tschumpr@olemiss.edu

Figure S1: Effect of scaling factors for MP2/haTZ harmonic vibrational frequencies on the relative energies of the water hexamer isomers. All relative energies increase with respect to the prism for scaling factors less than 1. Only with a scaling factor larger than 1.39 does another structure (cyclic-chair) become more stable than the prism. The relative stability cyclic-chair and book-2 structures inverts at a value of 1.04.

Table S1: Cartesian coordinates (in Å) of the MP2/haTZ optimized book-2 water hexamer

	<u> </u>	, , ,	
O	2.4032053362	1.3270659373	-0.4231241288
O	2.0682038153	-1.4035016261	-0.6521599818
O	-0.1643579518	-1.5595899492	1.0026524632
O	-2.3181617136	-1.1551868762	-0.5453543706
O	-2.0641196909	1.5200844007	-0.4985515003
O	0.0821770896	1.3511908817	1.1316718732
Н	3.2824705291	1.5275529981	-0.0914460180
Н	2.4010102640	0.3610726372	-0.5799178960
Н	-1.8529134608	2.0431806726	-1.2764401766
Н	-1.2682598521	1.5827252635	0.0837206366
Н	0.0581169390	0.4025609972	1.3290652908
Н	0.9279954625	1.4655873732	0.6566010635
Н	-3.2290937865	-1.3858096501	-0.3443798320
Н	-2.3092654357	-0.1705337451	-0.6170936879
Н	1.8644694205	-1.8074627322	-1.5001929598
Н	1.2809613207	-1.5678898278	-0.0972909741
Н	-1.0129241853	-1.5230335341	0.4985855505
<u>H</u>	-0.2826661794	-2.2325735230	1.6787417375

Table S2: Cartesian coordinates (in Å) of the MP2/haTZ optimized cyclic-boat-2 water hexamer.

10010 02	Cartesian coordinates (in 11) or	one wii 2/ na i 2 openinzea eyene	boat 2 water hexamer.
О	-1.3867441060	-2.1368119633	-0.3756225893
H	-0.4863499895	-2.1789552080	0.0153601788
Н	-1.7732871574	-3.0024272951	-0.2236401630
O	-1.1321912700	2.2124077551	0.6482442718
Н	-1.2992914850	2.2386321163	1.5937908372
Н	-1.7207166238	1.5020492418	0.3064145725
O	-2.7262340741	0.2257234831	-0.2955282394
Н	-2.2736190362	-0.6453266868	-0.3243346978
H	-3.0650993684	0.3594784483	-1.1846860058
O	1.3867422071	2.1368108756	-0.3756286314
H	1.7732934243	3.0024220545	-0.2236436139
H	0.4863369901	2.1789706344	0.0153257188
O	1.1321572604	-2.2123721845	0.6483234883
H	1.2992212246	-2.2385310875	1.5938783399
Н	1.7206916453	-1.5020336282	0.3064678630
O	2.7262138391	-0.2257363978	-0.2955339749
Н	3.0650364573	-0.3595167569	-1.1847041922
Н	2.2736040400	0.6453160882	-0.3243422191

Table S3: Cartesian coordinates (in Å) of the MP2/haTZ optimized water monomer.

O	-1.3867441060	-2.1368119633	-0.3756225893
Н	-0.4863499895	-2.1789552080	0.0153601788
Н	-1.7732871574	-3.0024272951	-0.2236401630

Table S4: Cartesian coordinates (in Å) of the MP2/haTZ optimized cyclic-boat-1 water hexamer. a

Table 51. Ce	or occident coordinates (in 11) or on	ic wir 2/ narz openmizea cyclic bo	at I water hexamer.
О	-1.726744	-1.949373	-0.286967
O	-2.590266	0.622599	-0.361636
O	-0.794610	2.415041	0.610617
O	2.590163	-0.622736	-0.361901
O	0.794557	-2.414847	0.610989
O	1.726922	1.949301	-0.286706
Н	-1.948340	1.276484	-0.005295
H	0.134410	2.266967	0.327985
H	2.049592	1.021469	-0.329144
H	-0.134451	-2.266742	0.328301
H	-2.049611	-1.021593	-0.329106
H	0.754378	-2.535812	1.562971
H	-0.754427	2.536367	1.562552
H	2.876251	-0.991167	-1.201866
H	-2.876587	0.990982	-1.201544
Н	1.948264	-1.276555	-0.005381
Н	2.495054	2.475673	-0.052229
H	-2.494719	-2.475947	-0.052417

^a Private communication from the authors of Reference 19 (the MP2/haTZ boat structure in the Supporting Information for that reference is actually the book structure)

Table S5: Harmonic ZPVE corrections (δ_{ZPVE} in kcal mol⁻¹) computed with various methods and basis sets.

Method	MP2	BLYP	B3LYP	BLYP	B3LYP	PBE
Basis	haTZ	6-31+G(d,p)	6-31+G(d,2p)	MG3S	MG3S	MG3S
prism	+0.00	+0.00	+0.00	+0.00	+0.00	+0.00
cage	-0.16	-0.13	-0.14	-0.02	-0.16	-0.08
bag	-0.78	-0.67	-0.62	-0.60	-0.69	-0.60
cyclic-ring	-1.29	-1.11	-1.04	-0.92	-1.14	-0.93
book-1	-0.51	-0.40	-0.38	-0.32	-0.45	-0.34
book-2	-0.54	-0.37	-0.30	-0.33	-0.47	-0.32
cyclic-boat-1	-1.51	-1.27	-1.29	-1.10	-1.28	-1.10
cyclic-boat-2	-1.61	-1.36	-1.41	-1.18	-1.46	-1.11
6 monomers	-13.71	-14.21	-14.07	-13.35	-13.82	-13.42

Table S6: Total electronic energies and sum of electronic and zero-point vibrational energies (E_e and $E_{+\text{ZPVE}}$, respectively, in E_h) from the MP2/haTZ computations as well as the corresponding relative energies (ΔE_e and $\Delta E_{+\text{ZPVE}}$ in kcal mol⁻¹).

Structure	$E_e^{ m MP2/haTZ}$	$\Delta E_e^{ ext{MP2/haTZ}}$	$E_{ m +ZPVE}^{ m MP2/haTZ}$	$\Delta E_{ m +ZPVE}^{ m MP2/haTZ}$	$\delta_{ m ZPVE}$
prism	-458.042669	+0.00	-457.892242	+0.00	+0.00
cage	-458.042650	-0.15	-457.892475	+0.01	-0.16
bag	-458.040790	+0.40	-457.891601	+1.18	-0.78
cyclic-ring	-458.040683	-0.05	-457.892314	+1.25	-1.29
book-1	-458.042171	-0.19	-457.892550	+0.31	-0.51
book-2	-458.041693	+0.07	-457.892123	+0.61	-0.54
cyclic-boat-1	-458.039088	+0.74	-457.891068	+2.25	-1.51
6yclic-boat-2	-458.038958	+0.72	-457.891092	+2.33	-1.61
6 monomers	-457.968327	+32.94	-457.839750	+46.65	-13.71