Transfinite Recursion

Pierre-Yves Gaillard

The only purpose of this short text¹ is to point out that the Transfinite Recursion Theorem is a particular case of the Transfinite Induction Theorem (and that these theorems generalize immediately from the well-order setting to the artinian setting).

For any member x of any ordered set X, we denote by X_x the set of all those y which are less than x, that is $X_x = \{y \in X \mid y < x\}$.

Say that a subset S of an ordered set X is **inductive** if, for all x in X, the condition $X_x \subset S$ implies $x \in S$.

Transfinite Induction Theorem. Let S be a subset of a well-ordered set X. Then S = X if and only if S is inductive.

Proof. If S = X, then S is trivially inductive. If $S \subsetneq X$, let x be the least element of $X \setminus S$, and note that S is not inductive because we have $X_x \subset S$ but $x \notin S$. \square

Transfinite Recursion Theorem. Let X be well-ordered, let A be a set, and, for all x in X, let A^{X_x} be the set of all maps from X_x to A. Finally, for all x in X, let $r_x: A^{X_x} \to A$ be a map. Then there is a unique map $f: X \to A$ such that $f(x) = r_x(f|X_x)$ for all x in X. Here $f|X_x$ denotes the restriction of f to X_x .

Lemma. The map f in the above theorem is unique.

Proof. Let f and g be two maps from X to A satisfying the required conditions. It is easy to see that $\{x \in X \mid f(x) = g(x)\}$ is inductive. \square

Proof of the Transfinite Recursion Theorem. Let ω satisfy $\omega \notin X$, set $Y := X \cup \{\omega\}$, and equip Y with the unique order such that $\omega > x$ for all x in X and the order of X is induced by that of Y. Then Y is again well-ordered, and $X = Y_{\omega}$. We define the subset T of Y as follows. Let Y be in Y. Then Y is in Y if and only if there is a map Y is a such that Y in Y. By the Lemma, there is at most one such map Y.

Claim: T is inductive. Proof. Let y be in Y. We can assume that the f_x for x < y have already been defined, and we must define f_y , that is, we must define $f_y(x)$ for x < y. If x < z < y for some z we set $f_y(x) := f_z(x)$ and the Lemma shows that this does not depend on the choice of z. If there is no such z, we set $f_y(x) := r_x(f_x)$. It is easy to check that f_y meets our requirements.

By the Transfinite Recursion Theorem, this implies that f_{ω} exists, and it is clear that $f := f_{\omega}$ does the job. \square

Here is a mild generalization.

Recall that a poset X is **artinian** if each nonempty finite subset of X has a minimal element. If x is an element of a poset X, we define X_x as above, and, if S is a subset of X, we define the condition that S is **inductive** as above.

Artinian Induction Theorem. Let S be a subset of an artinian poset X. Then S = X if and only if S is inductive.

¹available at https://github.com/Pierre-Yves-Gaillard/The-Transfinite-Recursion-Theorem

Artinian Recursion Theorem. Let X be an artinian poset, let A be a set, and, for all x in X, let A^{X_x} be the set of all maps from X_x to A. Finally, for all x in X, let $r_x:A^{X_x}\to A$ be a map. Then there is a unique map $f:X\to A$ such that $f(x)=r_x(f|X_x)$ for all x in X. Here $f|X_x$ denotes the restriction of f to X_x .

The proofs are almost the same as in the well-ordered case. Let me just spell out the part where I wrote "If x < z < y for some z we set $f_y(x) := f_z(x)$ and the Lemma shows that this does not depend on the choice of z". Assume x < z < y and x < z' < y. Then, by the Lemma, f_z and $f_{z'}$ coincide on the artinian poset $X_z \cap X_{z'}$ (even if z and z' are not comparable), and we get $f_z(y) = f_{z'}(y)$, as required.