```
In [1]: import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression,LogisticRegression,Lasso,Rid
```

In [2]: df=pd.read_csv(r"C:\Users\USER\Downloads\GemDataEXTR\Stock Markets, US\$.csv")
 df.fillna(0,inplace=True)

Out[2]:

	Unnamed: 0	United Arab Emirates	Argentina	Australia	Austria	Belgium	Bulgaria	Bahrain	ŀ
0	0.0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	_
1	1994.0	0.00000	0.00000	34.00822	35.52493	48.62237	0.00000	0.00000	
2	1995.0	0.00000	0.00000	33.98690	35.29171	52.61066	0.00000	0.00000	
3	1996.0	0.00000	23.91518	40.10000	37.32716	62.57487	0.00000	0.00000	
4	1997.0	0.00000	31.96844	42.72983	39.26318	72.09075	0.00000	0.00000	
5	1998.0	0.00000	23.74431	37.92748	39.90513	96.45048	0.00000	0.00000	
6	1999.0	0.00000	20.79165	43.27264	33.73018	95.57480	0.00000	0.00000	
7	2000.0	0.00000	21.45833	41.63047	28.07375	76.22327	15.20993	0.00000	
8	2001.0	0.00000	15.60000	37.80406	27.92258	69.96057	13.33601	0.00000	
9	2002.0	0.00000	17.03334	38.87390	30.06042	62.99667	21.52815	0.00000	
10	2003.0	0.00000	31.23999	45.01805	39.87157	62.28960	57.93172	0.00000	
11	2004.0	0.00000	47.17606	58.96969	66.37044	88.58039	106.46260	0.00000	
12	2005.0	0.00000	63.65470	73.40358	99.87017	110.41210	161.40700	152.71750	
13	2006.0	261.13640	74.62035	86.26591	133.30150	136.54990	193.55570	147.13950	
14	2007.0	261.48620	92.00042	117.79100	170.40430	168.11300	336.26270	162.97730	
15	2008.0	274.42360	75.43766	98.45246	135.30620	129.62830	247.21010	178.42820	
16	2009.0	106.64360	69.37860	73.60899	80.66908	83.35619	86.50294	106.92280	
17	2010.0	96.59922	108.55270	97.02012	91.50184	94.37587	84.26382	99.85734	
18	2011.0	87.98379	132.49440	106.18030	92.73847	93.90413	88.36709	89.38204	
19	2012.0	91.33702	106.33210	101.52530	72.82167	81.94432	65.31064	75.61385	
20	2013.0	140.14890	169.72330	110.36950	87.86638	99.49884	92.13893	79.03537	
21	2014.0	263.19360	343.97360	109.97990	86.04282	115.05660	120.31140	96.58291	
22	2015.0	219.16210	472.52220	93.21922	72.52466	111.54020	85.39854	91.81821	
23	2016.0	195.63080	616.53210	89.60355	68.32895	106.37880	85.12999	78.55283	
24	2017.0	207.04250	968.56580	101.10050	94.53688	121.90990	121.75700	89.06664	
25	2018.0	174.03290	1296.93600	102.70640	105.94740	124.20880	123.17940	90.13910	
26	2019.0	158.27540	1467.23100	102.22300	91.47970	113.59450	103.81630	100.50620	
27	2020.0	131.64600	1806.09800	97.35689	74.12048	108.41230	85.20527	96.70240	
28	2021.0	164.58670	2782.20700	125.90400	109.20570	134.21610	104.75880	108.41600	
29	2022.0	196.66440	4923.64200	114.18860	91.17821	112.71390	103.95410	129.80530	
30	2023.0	204.16430	13083.16000	113.31150	94.60561	112.65920	111.60790	130.73140	

day-18 - Jupyter Notebook

21 rows × 70 solumns

In [3]:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 31 entries, 0 to 30
Data columns (total 79 columns):

Data	columns (total 79 column	ns):	
#	Column	Non-Null Count	Dtype
0	Unnamed: 0	31 non-null	float64
1	United Arab Emirates	31 non-null	float64
2	Argentina	31 non-null	float64
3	Australia	31 non-null	float64
4	Austria	31 non-null	float64
5	Belgium	31 non-null	float64
6	Bulgaria	31 non-null	float64
7	Bahrain	31 non-null	float64
8	Bosnia and Herzegovina	31 non-null	float64
9	Brazil	31 non-null	float64
10	Canada	31 non-null	float64
11	Switzerland	31 non-null	float64
12	Chile	31 non-null	float64
13	China	31 non-null	float64
14	Colombia	31 non-null	float64
15	Czech Republic	31 non-null	float64
16	Germany	31 non-null	float64
17	Denmark	31 non-null	float64
18	Egypt, Arab Rep.	31 non-null	float64
19	Spain	31 non-null	float64
20	Estonia	31 non-null	float64
21	Finland	31 non-null	float64
22	France	31 non-null	float64
23	United Kingdom	31 non-null	float64
24	Greece	31 non-null	float64
25	High Income Countries	31 non-null	float64
26	Hong Kong SAR, China	31 non-null	float64
27	Croatia	31 non-null	float64
28	Hungary	31 non-null	float64
29	Indonesia	31 non-null	float64
30	India	31 non-null	float64
31	Ireland	31 non-null	float64
32	Iran, Islamic Rep.	31 non-null	float64
33	Iceland	31 non-null	float64
34	Israel	31 non-null	float64
35	Italy	31 non-null	float64
36	Jordan	31 non-null	float64
37	Japan	31 non-null	float64
38	Kazakhstan	31 non-null	float64
39	Kenya	31 non-null	float64
40	Korea, Rep.	31 non-null	float64
41	Sri Lanka	31 non-null	float64
42	Lithuania	31 non-null	float64
43	Luxembourg	31 non-null	float64
44	Latvia	31 non-null	float64
45	Morocco	31 non-null	float64
46	Mexico	31 non-null	float64
47	North Macedonia	31 non-null	float64
48	Malta	31 non-null	float64
		- · · · · · · · · · · · · · ·	

49	Malawi	31	non-null	float64
50	Malaysia	31	non-null	float64
51	Nigeria	31	non-null	float64
52	Netherlands	31	non-null	float64
53	Norway	31	non-null	float64
54	New Zealand	31	non-null	float64
55	Oman	31	non-null	float64
56	Pakistan	31	non-null	float64
57	Peru	31	non-null	float64
58	Philippines	31	non-null	float64
59	Poland	31	non-null	float64
60	Portugal	31	non-null	float64
61	Qatar	31	non-null	float64
62	Romania	31	non-null	float64
63	Russian Federation	31	non-null	float64
64	Saudi Arabia	31	non-null	float64
65	Singapore	31	non-null	float64
66	Slovakia	31	non-null	float64
67	Slovenia	31	non-null	float64
68	Sweden	31	non-null	float64
69	Thailand	31	non-null	float64
70	Tunisia	31	non-null	float64
71	Turkey	31	non-null	float64
72	Taiwan, China	31	non-null	float64
73	Uganda	31	non-null	float64
74	Ukraine	31	non-null	float64
75	United States	31	non-null	float64
76	Venezuela, RB	31	non-null	float64
77	Vietnam	31	non-null	float64
78	South Africa	31	non-null	float64
t+vn4	as: float64(79)			

dtypes: float64(79)
memory usage: 19.3 KB

In [4]: df1=df.dropna()

Out[4]:

	Unnamed: 0	United Arab Emirates	Argentina	Australia	Austria	Belgium	Bulgaria	Bahrain F	•
0	0.0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
1	1994.0	0.00000	0.00000	34.00822	35.52493	48.62237	0.00000	0.00000	
2	1995.0	0.00000	0.00000	33.98690	35.29171	52.61066	0.00000	0.00000	
3	1996.0	0.00000	23.91518	40.10000	37.32716	62.57487	0.00000	0.00000	
4	1997.0	0.00000	31.96844	42.72983	39.26318	72.09075	0.00000	0.00000	
5	1998.0	0.00000	23.74431	37.92748	39.90513	96.45048	0.00000	0.00000	
6	1999.0	0.00000	20.79165	43.27264	33.73018	95.57480	0.00000	0.00000	
7	2000.0	0.00000	21.45833	41.63047	28.07375	76.22327	15.20993	0.00000	
8	2001.0	0.00000	15.60000	37.80406	27.92258	69.96057	13.33601	0.00000	
9	2002.0	0.00000	17.03334	38.87390	30.06042	62.99667	21.52815	0.00000	
10	2003.0	0.00000	31.23999	45.01805	39.87157	62.28960	57.93172	0.00000	
11	2004.0	0.00000	47.17606	58.96969	66.37044	88.58039	106.46260	0.00000	
12	2005.0	0.00000	63.65470	73.40358	99.87017	110.41210	161.40700	152.71750	
13	2006.0	261.13640	74.62035	86.26591	133.30150	136.54990	193.55570	147.13950	
14	2007.0	261.48620	92.00042	117.79100	170.40430	168.11300	336.26270	162.97730	
15	2008.0	274.42360	75.43766	98.45246	135.30620	129.62830	247.21010	178.42820	
16	2009.0	106.64360	69.37860	73.60899	80.66908	83.35619	86.50294	106.92280	
17	2010.0	96.59922	108.55270	97.02012	91.50184	94.37587	84.26382	99.85734	
18	2011.0	87.98379	132.49440	106.18030	92.73847	93.90413	88.36709	89.38204	
19	2012.0	91.33702	106.33210	101.52530	72.82167	81.94432	65.31064	75.61385	
20	2013.0	140.14890	169.72330	110.36950	87.86638	99.49884	92.13893	79.03537	
21	2014.0	263.19360	343.97360	109.97990	86.04282	115.05660	120.31140	96.58291	
22	2015.0	219.16210	472.52220	93.21922	72.52466	111.54020	85.39854	91.81821	
23	2016.0	195.63080	616.53210	89.60355	68.32895	106.37880	85.12999	78.55283	
24	2017.0	207.04250	968.56580	101.10050	94.53688	121.90990	121.75700	89.06664	
25	2018.0	174.03290	1296.93600	102.70640	105.94740	124.20880	123.17940	90.13910	
26	2019.0	158.27540	1467.23100	102.22300	91.47970	113.59450	103.81630	100.50620	
27	2020.0	131.64600	1806.09800	97.35689	74.12048	108.41230	85.20527	96.70240	
28	2021.0	164.58670	2782.20700	125.90400	109.20570	134.21610	104.75880	108.41600	
29	2022.0	196.66440	4923.64200	114.18860	91.17821	112.71390	103.95410	129.80530	
30	2023.0	204.16430	13083.16000	113.31150	94.60561	112.65920	111.60790	130.73140	

31 rows × 79 columns

Linear

```
In [13]:
Out[13]:
                          3
          0.00000
          108.55270
                          1
          4923.64200
                          1
          2782.20700
                          1
                          1
          1806.09800
          1467.23100
                          1
          1296.93600
                          1
          968.56580
                          1
                          1
          616.53210
          472.52220
                          1
                          1
          343.97360
          169.72330
                          1
                          1
          106.33210
          132.49440
                          1
          69.37860
                          1
          23.91518
                          1
          75.43766
                          1
          92.00042
                          1
          74.62035
                          1
                          1
          63.65470
          47.17606
                          1
          31.23999
                          1
                          1
          17.03334
          15.60000
                          1
                          1
          21.45833
                          1
          20.79165
          23.74431
                          1
          31.96844
                          1
          13083.16000
                          1
          Name: Argentina, dtype: int64
In [14]: df1.loc[df1["Argentina"]<1.40, "Argentina"]=1</pre>
          df1.loc[df1["Argentina"]>1.40, "Argentina"]=2
Out[14]:
          2.0
                  28
          1.0
          Name: Argentina, dtype: int64
```

Lasso

```
In [16]:
          prediction1=la.predict(x_test)
Out[16]: <matplotlib.collections.PathCollection at 0x17085e09580>
           200
           175
           150
           125
           100
            75
            50
            25
             0
                         50
                                 100
                                         150
                                                 200
                                                          250
In [17]:
```

Ridge

ElasticNet

In [26]:

```
In [21]: en=ElasticNet()
         en.fit(x_train,y_train)
         C:\Users\USER\anaconda3\lib\site-packages\sklearn\linear_model\_coordinate_de
         scent.py:647: ConvergenceWarning: Objective did not converge. You might want
         to increase the number of iterations, check the scale of the features or cons
         ider increasing regularisation. Duality gap: 9.255e+01, tolerance: 2.031e+01
           model = cd_fast.enet_coordinate_descent(
Out[21]: ElasticNet()
In [22]:
         prediction2=rr.predict(x_test)
Out[22]: <matplotlib.collections.PathCollection at 0x17086f2feb0>
          200
          150
          100
           50
                       50
                              100
                                      150
                                             200
                                                     250
In [23]:
         print(rr.score(x_test,y_test))
         0.7763320213189454
Out[24]: 0.999999995333385
         Logistic
In [25]:
         g={"Argentina":{1.0:"Low",2.0:"High"}}
         df1=df1.replace(g)
Out[25]: High
                 28
                   3
         Name: Argentina, dtype: int64
```

11 of 13 8/9/2023, 10:00 AM

x=df1.drop(["Argentina"],axis=1)

y=df1["Argentina"]

```
In [27]: lo=LogisticRegression()
Out[27]: LogisticRegression()
In [28]: prediction3=lo.predict(x_test)
Out[28]: <matplotlib.collections.PathCollection at 0x17087f759d0>
Low
High
High
Low
In [29]:
```

Random Forest

```
In [30]: from sklearn.ensemble import RandomForestClassifier
In [31]: |g1={"Argentina":{"Low":1.0,"High":2.0}}
In [32]: x=df1.drop(["Argentina"],axis=1)
         y=df1["Argentina"]
In [33]: rfc=RandomForestClassifier()
Out[33]: RandomForestClassifier()
In [34]:
         parameter={
             'max_depth':[1,2,4,5,6],
             'min_samples_leaf':[5,10,15,20,25],
             'n_estimators':[10,20,30,40,50]
         grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,scoring="accu
Out[35]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 4, 5, 6],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
```

```
In [36]:
In [38]: from sklearn.tree import plot_tree
        plt.figure(figsize=(80,40))
Out[38]: [Text(0.5, 0.75, 'Philippines <= 87.259\ngini = 0.308\nsamples = 13\nvalue =
         [4, 17] \setminus class = No'),
         Text(0.25, 0.25, 'gini = 0.494 \setminus samples = 5 \setminus s = [4, 5] \setminus s = No'),
         Text(0.75, 0.25, 'gini = 0.0\nsamples = 8\nvalue = [0, 12]\nclass = No')]
                              Philippines \leq 87.259
                                    gini = 0.308
                                    samples = 13
                                   value = [4, 17]
                                      class = No
                  gini = 0.494
                                                         gini = 0.0
                  samples = 5
                                                       samples = 8
                 value = [4, 5]
                                                     value = [0, 12]
                    class = No
                                                        class = No
In [39]: |print("Linear:",lis)
        print("Lasso:",las)
        print("Ridge:",rrs)
         print("ElasticNet:",ens)
         print("Logistic:",los)
         Linear: 0.7763562931025759
         Lasso: 0.6157514963056996
         Ridge: 0.7763320213189454
         ElasticNet: 0.7062968997489696
         Logistic: 1.0
```

13 of 13 8/9/2023, 10:00 AM

Random Forest: 0.8590909090909091