PROJECT PLANNING PHASE

SPRINT DELIVERY PLAN

TEAM ID	PNT2022TMID17061		
PROJECT TITTLE	SMART CROP PROTECTION		
	SYSTEM FOR AGRICULTURE		
MAXIMUM MARKS	8 MARKS		

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

SPRINT	FUNCTIONAL REQUIREMENT	USER STORY NUMBER	USER STORY/TASK	STORY POINTS	PRIORITY	TEAM NUMBERS
Sprint-1		US-1	Create the IBM Cloud services which are being used in this project.	7	high	Pratheesha Sowmiya Vinisha Thulasimani
Sprint-1		US-2	Create the IBM Cloud services which are being used in this project.	7	high	Pratheesha Sowmiya Vinisha Thulasimani
Sprint-2		US-3	IBM Watson IoT platform acts as the mediator to connect the web application to IoT devices, so create the IBM Watson IoT platform.	5	medium	Pratheesha Sowmiya Vinisha Thulasimani
Sprint-2		US-4	In order to connect the IoT device to the IBM cloud, create a device in the IBM Watson IoT platform and get the device credentials	6	high	Pratheesha Sowmiya Vinisha Thulasimani
Sprint-3		US-1	Configure the connection security and create API keys that are used in the Node-RED service for accessing the IBM IoT Platform.	10	high	Pratheesha Sowmiya Vinisha Thulasimani
Sprint-3		US-3	Create a Node-RED service	8	high	Pratheesha Sowmiya Vinisha Thulasimani
Sprint-3		US-2	Develop a python script to publish random	6	medium	Pratheesha Sowmiya

		sensor data such as temperature, moisture, soil and humidity to the IBM IoT platform			Vinisha Thulasimani
Sprint-3	US-1	After developing python code, commands are received just print the statements which represent the control of the devices.	8	high	Pratheesha Sowmiya Vinisha Thulasimani
Sprint-4	US-3	Publish Data to The IBM Cloud	5	high	Pratheesha Sowmiya Vinisha Thulasimani
Sprint-4	US-2	Create Web UI in Node- Red	8	high	Pratheesha Sowmiya Vinisha Thulasimani
Sprint-4	US-1	Configure the Node- RED flow to receive data from the IBM IoT platform and also use Cloudant DB nodes to store the received sensor data in the cloudant DB	6	high	Pratheesha Sowmiya Vinisha Thulasimani

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story	Duration	Sprint Start	Sprint End	Story Points	Sprint Release
	Points		Date	Date	Completed (as	Date (Actual)
				(Planned)	on Planned	
					End Date)	
Sprint-1	20	6days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

 $AV\!\!=\!\!Sprint\ duration/velocity\!=\!20/10$

Burndown Chart:

A burndown chart is a graphical representation of work left to do versus time However, burndown charts can be applied to any project containing measurable progress overtime.

