4.

6.

State an equation you could use to find the value of x. Then solve for x.

7.

8.

9.

10. Supply reasons to complete a proof of Case I of Theorem 9-10.

Given: Secants \overline{PA} and \overline{PC}

Prove: $m \angle 1 = \frac{1}{2}(m\widehat{AC} - m\widehat{BD})$

Proof:

- 1. Draw chord \overline{BC} .
- 2. $m \angle 1 + m \angle 2 = m \angle 3$
- $3. m \angle 1 = m \angle 3 m \angle 2$
- 4. $m \angle 3 = \frac{1}{2} mAC$; $m \angle 2 = \frac{1}{2} mBD$
- 5. $m \angle 1 = \frac{1}{2} m\widehat{AC} \frac{1}{2} m\widehat{BD}$, or $m \angle 1 = \frac{1}{2} (m\widehat{AC} m\widehat{BD})$

Written Exercises

1-10. \overrightarrow{BZ} is tangent to $\bigcirc O$; \overrightarrow{AC} is a diameter; $\widehat{mBC} = 90$: $\widehat{mCD} = 30$: $\widehat{mDE} = 20$. Draw your own large diagram so that you can write arc measures alongside the arcs. Find the measure of each numbered angle.

Complete.

- 11. If $\widehat{mRT} = 80$ and $\widehat{mUS} = 40$, then $m \angle 1 = \frac{?}{}$.
- **12.** If mRU = 130 and mTS = 100, then $m \angle 1 = \frac{?}{}$.
- 13. If $m \angle 1 = 50$ and $\widehat{mRT} = 70$, then $\widehat{mUS} = \frac{?}{}$.
- **14.** If $m \angle 1 = 52$ and $m\widehat{US} = 36$, then $m\widehat{RT} = \frac{?}{}$.

