

Representation

Independencies

Preliminaries

Independence

- For events α , β , $P \models \alpha \perp \beta$ if: $-P(\alpha, \beta) = P(\alpha) \cdot P(\beta)$
- $-P(\beta|\alpha) = P(\beta)$
 - For random variables $X,Y,P \models X \perp Y$ if:

$$-P(X,Y) = P(X) P(Y)$$

$$-P(X|Y) = P(X)$$

$$-P(Y|X) = P(Y)$$

$$-P(Y|X) = P(Y)$$

Independence

I	D	G	Prob.
i ⁰	ď ⁰	g^1	0.126
i ⁰	d ⁰	g ²	0.168
i ⁰	d ⁰	g ³	0.126
i ⁰	d^1	g^1	0.009
i ⁰	d^1	g ²	0.045
i ⁰	d^1	g^3	0.126
i ¹	d ⁰	g^1	0.252
i ¹	d ⁰	g ²	0.0224
i ¹	d ⁰	g ³	0.0056
j ¹	d^1	g^1	0.06
i ¹	d^1	g²	0.036
j ¹	d¹	g ³	0.024

I	۵	Prob
i ⁰	ď	0.42
i ⁰	d^1	0.18
i ¹	d ⁰	0.28
i ¹	d¹	0.12

P(1)

I	Prob
i ⁰	0.6
j ¹	0.4

PO

٥	Prob
ďo	0.7
d^1	0.3

Daphne Koller

Conditional Independence

For (sets of) random variables X,Y,Z

$$P \models (X \perp Y \mid Z) \text{ if:}$$

$$-P(X, Y \mid Z) = P(X \mid Z) P(Y \mid Z)$$

$$-P(X \mid Y \mid Z) = P(X \mid Z)$$

$$-P(Y \mid X \mid Z) = P(X \mid Z)$$

$$-P(X, Y, Z) \propto \phi_1(X, Y) \phi_2(Y, Z)$$

Conditional Independence

Conditional Independence

I	5	G	Prob.
i ⁰	s ⁰	g^1	0.114
i ⁰	s ⁰	g ²	0.1938
i ⁰	s ⁰	g^3	0.2622
i ⁰	s ¹	g^1	0.006
i ⁰	s ¹	g ²	0.0102
i ⁰	s ¹	g^3	0.0138
j ¹	s ⁰	9 ¹	0.252
j ¹	s ⁰	g ²	0.0224
j ¹	s ⁰	g^3	0.0056
j ¹	s ¹	9 ¹	0.108
j ¹	s ¹	g ²	0.0096
j ¹	s ¹	g ³	0.0024

P(S,G | <u>i</u>0)

5	G	Prob.
s ⁰	g ¹	0.19
s ⁰	g ²	0.323
s ⁰	g ³	0.437
s ¹	g ¹	0.01
s ¹	g ²	0.017
S ¹	g ³	0.023

5	Prob
s ⁰	0.95
s ¹	0.05

P(G1 (3)

G	Prob.
g ¹	0.2
g ²	0.34
g ³	0.46

Daphne Koller

Conditioning can Lose Independences

I	٥	G	Prob.
i ⁰	ď	g^1	0.126
i ⁰	ď	g ²	0.168
i ⁰	ď	g ³	0.126
i ⁰	d^1	9 ¹	0.009
i ⁰	d^1	g ²	0.045
i ⁰	d^1	g^3	0.126
i ¹	ď	g^1	0.252
i ¹	ď	g ²	0.0224
i ¹	ď	g^3	0.0056
i ¹	d^1	g^1	0.06
i ¹	d^1	g ²	0.036
j ¹	d^1	g ³	0.024

P(I,D	$ g^1\rangle$
• •	' '

I	۵	Prob.
i ⁰	ď	0.282
i ⁰	d^1	0.02
i ¹	ďo	0.564
i ¹	d^1	0.134

Daphne Koller