Analysing Patterns and Risk Factors of Gun Violence in the US

Data Science Project

Exploratory Data Analysis and Visualization Report

Name	Roll Number
Shaaf Salman	21L-6083
Syed Farhan Jafri	21L-6074
Haider Khan	21L-6067

1. Summary Statistics and Visualizations for Each Variable

Numerical Variables

n_killed and n_injured: Most incidents involved 0–2 deaths or injuries. Outliers
present showing some incidents had 10+ casualties. Histograms show highly rightskewed distributions (most incidents had very few victims). Boxplots confirm the
presence of extreme outliers.

• **latitude and longitude:** Values are distributed according to U.S. geography. No major outliers outside the expected U.S. range.

- **state_house_district and state_senate_district:** Distributed fairly evenly across districts. Some missing values where district information was unavailable.
- n_guns_involved: Mostly 1–2 guns per incident. Some extreme cases with 10+ guns.

Categorical Variables

• **state:** States like Illinois, California, and Texas had the highest number of incidents.

• **gun_stolen:** Majority of incidents had unknown or unspecified stolen gun status. Among known cases, "Not-stolen" guns were more common than "Stolen".

• **gun_type:** "Handgun" was the most frequent weapon type used. Word clouds revealed additional types like rifles and shotguns.

• **incident_characteristics**: Frequent terms included "Home Invasion", "Drive-by", "Argument", indicating common types of gun violence.

• participant_gender and participant_age_group: Most participants were adult males (18+ years old). Fewer female participants overall.

2. Insights and Observations from Univariate, Bivariate, and Multivariate Analysis

Univariate Analysis: Gun violence incidents often result in either injuries or deaths, but rarely both. Incidents typically involve a small number of participants and few weapons.

Bivariate/Multivariate Analysis:

• **n_killed vs n_injured:** Positive correlation as incidents with more injuries also tend to have more deaths, though not perfectly.

• **latitude vs longitude:** Scatter plot shows clustering along major urban areas like the East Coast and Midwest.

• State vs Year heatmap: Gun violence is persistent over the years, with some states (like Illinois and California) consistently showing high incident counts.

• **Monthly trend:** Slight seasonal variation visible: incidents peak slightly in the summer months (June–August).

Correlation Matrix

Moderate positive correlation between n_killed, n_injured, and n_guns_involved. This suggests that incidents involving a higher number of guns tend to result in more casualties, both injuries and deaths. Although the correlation is not extremely strong, it indicates a meaningful relationship where an increase in the number of weapons involved could escalate the severity of an incident.

3. Key Findings and Insights from the Descriptive Analysis

• Concentration:

A small number of states account for a large proportion of incidents. Urban areas are hotspots for gun violence.

Casualties:

Most incidents result in few casualties.

However, a few extreme incidents (outliers) cause mass casualties.

• Weapons:

Handguns dominate gun violence incidents.

Stolen guns are less frequent but still a significant concern when known.

Seasonality:

Gun violence shows slight increases during summer months, suggesting a seasonal pattern.

• Data Gaps:

Missing values in participant details (age, gender, relationship) and district fields could limit the depth of participant-focused analyses.