MATH H113: Honors Introduction to Abstract Algebra

2016-04-20

• Unique factorization domains

For Friday:

Skip "Factorization in the Gaussian Integers" (p. 289-292) Read Sect. 9.1 and 9.2

Last time: In a P.I.D., every nonzero prime ideal is a maximal ideal.

Corollary: If F is a field, then F[x, y] (= F[x][y]) is not a P.I.D.

Proof: Since $F[x,y]/(y) \cong F[x]$, and F[x] is an integral domain, but not a field, the ideal (y) is prime but not maximal. F[x,y] is not a P.I.D. because P.I.D.'s don't have such ideals.

Unique Factorization Domains

Definition: Let R be an integral domain. Then:

- a. An element $r \in R$ is *irreducible* if it's nonzero, not a unit, and $r = ab \implies a$ or b is a unit. a'. An element $r \in R$ is *reducible* if it's nonzero, not a unit, and r = ab with a, b not units.
- b. An element $p \in R$ is prime if the ideal (p) is a nonzero prime ideal; equivalently, if p is nonzero, p is not a unit, and $p \mid ab \implies p \mid a$ or $p \mid b$.

Examples: 0. In a field, there are no irreducible, reducible, or prime elements. Everything's either a unit or 0. 1. In \mathbb{Z} , the prime elements are $\pm p$, where p is a prime number (as in grade school: $2, 3, 5, 7, \ldots$).

The reducible elements are \pm composite numbers

The irreducible elements are $\pm 2, \pm 3, \pm 5, \dots$ 2. The book gives some examples of irreducible elements that are not prime.

Proposition: In an integral domain, all prime elements are irreducible.

Proof: Let R be an integral domain and let $p \in R$ be prime. Then $p \neq 0$ and p is not a unit. Suppose p = ab. Then $a \in (p)$ or $b \in (p)$ (by primeness of (p)). If $a \in (p)$, then $p \mid a$, but also $a \mid p$, so a and p are associates; since $a \neq 0$, $b = \frac{p}{a}$ is a unit. Similarly, $b \in (p) \Longrightarrow (a)$ is a unit. $\therefore p$ is irreducible. The converse is true in a P.I.D. (proof later).

Remark: Let R be an integral domain, and let a and b be associates in R. Then:

```
a = 0 \iff b = 0;
a \text{ is a unit } \iff b \text{ is a unit}
```

```
a is irreducible \iff b is irreducible a is reducible \iff b is reducible a is prime \iff b is prime ((a) = (b))
```

Definition: A unique factorization domain is an integral domain R for which every nonzero nonunit element $r \in R$ has the following properties:

- i. r can be written $r = p_1 p_2 \cdots p_n$, in which all p_i are irreducible elements of R; and
- ii. Any two such factorizations are unique up to associates: if $r = q_1 q_2 \cdots q_m$ also, then m = n and after renumbering the q_i , each q_i is associate to some p_i .

Big Theorem of the Day

Theorem: Every P.I.D. is a U.F.D.

Key Lemma: Let R be a P.I.D. Then every nonempty collection of ideals of R has a maximal element (not necessarily a max ideal).

Proof: Let R be a P.I.D. and let A be a nonempty collection of ideal of R. Partially order A by inclusion. Let B be a nonempty chain in A. We need to find an upper bound for B in A: Let $J = \bigcup_{I \in B} I$. As before, J is an ideal of R.

Clearly, J is an upper bound for B.

We need to check that $J \in A$.

Since R is a P.I.D., $J \in (r)$ for some $r \in R$.

Since $J = \bigcup_{I \in B} I$, r occurs in some $I \in B$.

So $J \subseteq I$ (because J = (r) and $r \in I$),

and $I \subseteq J$ (because I is among the ideal whose union is J), $J = I \in B \subseteq A$, so $J \in A$.

Therefore, by Zorn's lemma, A has a maximal element.

Theorem: Every P.I.D. is a U.F.D.

Proof: Let R be a P.I.D.

Step 1: Factorization.

Assume that not every nonzero nonunit $r \in R$ can be written as a (finite) product

of irreducibles. Let $A = \{(r) : r \in R, r \neq 0, r \text{ is not a unit, and } r \text{ is not equal to a (finite) product of irreducible Then (by assumption) } A \neq \emptyset$, so it has a maximal element (r). Then $r \neq 0$, r is not a unit, and r is not a finite product of irreducibles.

In particular, r is not irreducible (otherwise r = r would be a factorization).

So r is reducible, so r = ab such that neither a nor b is a unit.

Now $a \mid r$, so $(r) \subseteq (a)$. Also b is not a unit, so r and a are not associates. \therefore

 $(r) \neq (a)$. So $(a) \notin A$ (by maximality of (r)). We know that $a \neq 0$ $(r \neq 0)$, and a is not a unit, so $(a) \notin A \implies a = p_1 p_2 \cdots p_n$ with p_i irreducible $\forall i$.

Similarly, $b = q_1 q_2 \cdots q_m$ with q_j irreducible $\forall j$.

Then $r = ab = p_1 p_2 \cdots p_n q_1 q_2 \cdots q_m$ is a factorization of r into irreducibles,

contradiction.

 \therefore every nonzero nonunit in R can be factored into irreducibles.

Step 2: Friday.

See how Step 1 plays out if $R=\mathbb{Z}$. Just work with positive numbers, $n\geq 2$ (avoids units). Proof that every $n\geq 2$ has a prime factorization:

Method 1: Strong induction: If all m < n have prime factorizations, then:

- a. if n is prime, then n = n is a prime factorization.
- b. otherwise n=ab with $a,b\geq 2$. Each of these has prime factorization, \therefore so does n.

Conclude by induction.

Method 2: By contradiction: Let $n \ge 2$ be the smallest number not having a prime factorization. Then n is not prime, so n = ab; a, b < n, so they have prime factorizations, \therefore so does n, :(.