Analogue Electronics 1 (EE204FZ)

Tutorial 4

Q1. Circle the correct answer.
1. An Ideal operational amplifier has A. infinite output impedance B. zero input impedance C. infinite bandwidth D. all of the above
2. Another name for <mark>a unity gain amplifier</mark> is A. differential amplifier B. comparator C. instrumentation amplifier D. voltage follower
 3. The closed-loop voltage gain of an inverting amplifier equals A. the ratio of the input resistance to the feedback resistance B. the open-loop voltage gain C. the feedback resistance divided by the input resistance D. the input resistance
4. A noninverting closed-loop op-amp circuit generally has a gain factor A. less than one B. greater than one C. of zero D. less than zero
5. Op-amps used as high- and low-pass filter circuits employ the configuration.A. noninvertingB. comparatorC. open-loopD. inverting
Q2. Answer the following questions.
1. List the characteristics of ideal and practical op-amps.
2. With the help of a diagram, define what the slew rate of an operational amplifier is. Explain why it is an important parameter in op-amp circuit design.
3. Explain the difference between the open-loop gain and the closed-loop gain of an op-amp.
Q3. The input to the circuit shown in Figure Q3 is $v_1 = -0.20 \text{ V}$. (i) What is v_0 ?

(ii)

Determine i_2 , i_0 , and i_L .

- Fig. Q3
- Q4. Consider the ideal noninverting op-amp circuit in Figure Q4.
 - (i) Derive the expression for v_0 as a function of v_{11} and v_{12} .
 - (ii) Find v_0 for $v_{11} = 0.2$ V and $v_{12} = 0.3$ V.

Fig. Q4

- Q5. The circuit in Figure Q5 is a first-order low-pass active filter.
 - (i) Show that the voltage transfer function is given by $A_v = -(\frac{R_2}{R_1}) \frac{1}{1+j\omega R_2 C_2}$.
 - (ii) What is the voltage gain at DC ($\omega = 0$)?
 - (iii) At what frequency is the magnitude of the voltage gain a factor of $\sqrt{2}$ less than the DC value (This is the -3 dB frequency)?

Fig Q5