For Manifold AI Learning Learners For Manifold AI Learning Learners For Manifold Al Learning Learners

Machine Learning Fundamentals

What is Machine Learning?

Learning Resource for the Course by Manifold AI Learning -Learn from Examples

Inputs & Desired Output Bikes **Training**

Prices

Bikes

Predictions

Data

Code

• If title says - Lottery - then spam

• If title says - Winner - then spam

Supervised

Labelled Dataset

(X&y)

Sampling

Actual Values

Confusion Matrix

ROC - TPR Vs FPR

AUC - Area Under the Curve

FALSE POSITIVE

TRUE NEGATIVE

prediction_probability | Threshold = 0.5 | Threshold = 0.75

0.2 0.65 0.7

0.4 0.45

0.85 0.1

0.82

You're pregnan

You're not pregnant

Data in uncleaned & contains noise

• Data in uncleaned & contains noise

Model is having high variance

Model is too complex

Model has high bias

Model is too simple

TRUE POSITIVE

FALSE NEGATIVE

ou're not pregnant

Y_true

Overfitting

Underfitting

Support Vectors:

Data Points that are closest to the hyperplane

0

1

1

Predicted Values

For Manifold Al Learning Learners

70%

30%

Supervised ML:

- Regression

• Otherwise - "non spam"

• Is sender = <u>promotions@online.com</u> - then spam

• If title says - 100% discount

• If title says - Great chance

• Otherwise - "non spam"

Dataset

• promotions.com

Deposit

Associate---Generative-Al-LLMs-NCA-GENL-662e207dd9c42436ec97fde0

https://www.manifoldailearning.in/courses/NVIDIA-Certified-

How to conversion between input to output **Trained Model**

→ Prices

Outcome

ML System Trained Model

Traditional Software Engineering

Traditional Software

Spam Detection

• Is sender = <u>prizes@online.com</u> - then spam New email

Flow of Machine learning

Types of Machine Learning

Un-Supervised

Features (X)

Training

Test

When predicting a Real value (y)

Linear Regression

Logistic Regression

Logistic regression is the appropriate regression analysis to conduct when the dependent variable is dichotomous (binary). Like

all regression analyses, logistic regression is a predictive analysis. Logistic regression is used to describe data and to explain the

relationship between one dependent binary variable and one or more nominal, ordinal, interval or ratio-level independent

variables.

When predicting a Binary value (y)

Gradient Descent

w(new) = w(initial) - (learning_rate)*grad_w

Precision

Recall

F1- Score

Positive

Negative

Real Label

Positive

True

Positive

(TP)

Negative

 $Recall = \frac{\sum TP}{\sum TP + FN}$

Negative

False

Positive

(FP)

Negative

Using K fold Cross Validation

• Increase the number of feature

Increase the duration of training

Increase model complexity

Regularisation technique

Training with more data

• Ensemble Technique

Take the gradient of loss function wrt parameters

Evaluation Metrics for Classification

For Manifold Al Learning Learners

Predicted Label

Overfitting Vs Underfitting

Cross Validation

Using K fold Cross Validation

KNN Algorithm

- No parameters to learn during the training

- Lazy Learning

Kernel Functions

Sigmoid Kernel

RBF Kernel

Anova Kernel

Polyniomial Kernel

Bessel Function Kernel

Ensemble Learning

Wisdom of crowd

Ensemble - group of predictors

Unsupervised Learning

Clustering

Overlapping Clustering - fuzzy/c-means clustering

KMeans Clustering

Step 2: Select k Points at Random. ...

Hierarchical Clustering

For Manifold AI Learning Learners

Agglomerative Clustering (Bottom level)

Division Cluster (Split from Root - Top Level)

1. Complete Linkage Clustering - Max distance two clusters

Step 3: Make k Clusters. ...

Step 6: Repeat Steps 3–5.

Step 1: Select the Number of Clusters, k. ...

Step 5: Assess the Quality of Each Cluster. ...

Step 4: Compute New Centroid of Each Cluster. ...

Silhouette Score

2. Single Linkage Clustering - Min possible distance between two clusters

3. Mean Linkage Clustering - mean of pairwise distance for points of 2

4. Centroid Linkage Clustering - distance between 2 cluster centroids

1. Voting Classifier

3. Random Forest

4. Boosting

Exclusive Clustering - K Means

· Hierarchial Clustering

Inertia/SSE

clusters

For Manifold AI Learning Learners

2. Bagging Classifier

Support Vector Machine(SVM)

Find Hyperplane that best separates the two classes

Linear SVM

Non-Linear SVM

Margin:

Distance between Hyperplane and Support vectors

(Hard margin & soft margin)

Which one is best?

Hold-out

Manual Method

• Random Search CV

GridSearchCV

Leave-one-out

Hyper-parameter Tuning Techniques

Leave-p-out

Spam

Non - Spam

Python

Reinforcement

Machine

Learning

Non - Spam

Trained ML

Model

Prediction &

For Manifold Al Learning Learners

 $2 \times \text{Precision} \times \text{Recall}$

Precision + Recall

F1 Score = -

Evaluation

For Manifold AI Learning Learners