Powers of Ten

In computers and electronics, deal with very large numbers (1000000000000 bits of data) or with very small numbers (0.00000001 amps of current leakage in a circuit)

Instead of writing numbers in such a fashion, it is best to convert them to short hand notation...power of 10

10ⁿ

For powers of 10, 10 is considered the base and n is the exponent part

The exponent, n refers to the multiples of 10

If n < 0, then the number is less than 1

If n = 0, then the number is equal to 1

If n > 0, then the number is greater than 1

Powers of Ten

1000000 = 10*10*10*10*10	10 ⁶
100000 = 10*10*10*10	10 ⁵
10000 = 10*10*10	104
1000 = 10*10*10	10 ³
100 = 10*10	10 ²
10 = 10	10 ¹
1 = 10/10	10 ⁰
0.1 = 1/10	1/10 ¹ = 10 ⁻¹
0.01 = 1/100 = 1/(10*10)	$1/10^2 = 10^{-2}$
0.001 = 1/1000 = 1/(10*10*10)	$1/10^3 = 10^{-3}$
0.0001 = 1/10000 = 1/(10*10*10*10)	1/104 = 10-4
0.00001 = 1/100000 = 1/(10*10*10*10*10)	$1/10^5 = 10^{-5}$
0.000001 = 1/1000000 = 1/(10*10*10*10*10*10)	$1/10^6 = 10^{-6}$

Converting from Decimal Fractions to Power of 10 Form and Vice Versa

In converting from a fraction, count the number of multiples of 10 that are being used to represent the initial number. Replace the multiples of 10 with an exponent equivalent.

$$\frac{1}{10000} = \frac{1}{10 \times 10 \times 10 \times 10} = \frac{1}{10^4} = \frac{10^{-4}}{1}$$

In converting from a decimal, determine the value of the denominator. Place the 1 in that position. Follow the steps from above to convert to power of 10.

$$0.001 = \frac{1}{1000} = \frac{1}{10 \times 10 \times 10} = \frac{1}{10^3} = \frac{10^{-3}}{1}$$

In converting from power of 10, use reciprocal principle to convert to positive fraction power and then to multiples of 10

$$\frac{10^{-5}}{1} = \frac{1}{10^{5}} = \frac{1}{10 \times 10 \times 10 \times 10 \times 10} = \frac{1}{100000} = 0.00001$$

Multiplication and Division in Power of 10

In multiplication, add the exponents

$$10^{m} \times 10^{n} = 10^{m+n}$$

$$10^6 \times 10^{-2}$$

$$10^{-1} \times 10^{-6}$$

In division, subtract the exponents

$$\frac{10^m}{10^n} = 10^{m-n}$$

$$\frac{10^{-6}}{10^3}$$

$$\frac{10^{-7}}{10^{-4}}$$

Combined Multiplication and Division in Power of 10

Whenever a power of 10 is in the denominator, it can be moved to the numerator with a change of sign or vice versa...reciprocal principle

$$\frac{10^{-7} \times 10^{13} \times 10^{5}}{10^{-4} \times 10^{-8}}$$

$$\frac{10^{-2} \times 10^{-11}}{10^{3} \times 10^{-9} \times 10^{10}}$$