Characters of irreducible representations

George McNinch

2024-02-05

The regular representation, again.

We write $\mathbb{C}[G]$ for the space of functions on G, viewed as a permutation representation of G (and we suppress the notation for the homomorphism $G \to \mathrm{GL}(\mathbb{C}[G])$).

For functions $f_1,f_2\in\mathbb{C}[G],$ we define their convolution by the formula

$$(f_1\star f_2)(x)=\sum_{yz=x}f_1(y)f_2(z).$$

For the basis elements $\delta_g \in \mathbb{C}[G]$ (i.e. the $\mathit{Dirac\ functions}),$ we have

$$\delta_g \star \delta_h = \delta_{gh}.$$

Proposition:

a. For $f \in \mathbb{C}[G]$, the action of an element $g \in G$ on f satisfies

$$g.f = \delta_q \star f.$$

b. Let $W\subseteq \mathbb{C}[G]$ be an invariant subspace. For any $f\in \mathbb{C}[G]$, we have

$$f \star f' \in W \quad \forall f' \in W.$$

Bibliography