4.2 Color Models in Images

Color models and spaces used for stored, displayed, and printed images.

RGB Color Model for Displays

- 1. We expect to be able to use 8 bits per color channel for color that is accurate enough.
- 2. However, in fact we have to use about 12 bits per channel to avoid an aliasing effect in dark image areas contour bands that result from gamma correction.
- 3. For images produced from computer graphics, we store integers proportional to intensity in the frame buffer. So should have a gamma correction between the frame buffer and the display.
- 4. If gamma correction is applied to floats before quantizing to integers, before storage in the frame buffer, then in fact we can use only 8 bits per channel and still avoid contouring artifacts.

Subtractive color: CMY color Model

(Cyan, Magenta, Yellow)

 So far, we have effectively been dealing only with additive color. Namely, when two light beams impinge on a target, their colors add; when two phosphors on a CRT screen are turned on, their colors add.

 But for ink deposited on paper, the opposite situation holds: yellow ink subtracts blue from white illumination, but reflects red and green; it appears yellow.

1. Instead of red, green, and blue primaries, we need primaries that amount to -red, -green, and -blue. I.e., we need to *subtract* R, or G, or B.

2. These subtractive color primaries are Cyan (C), Magenta (M) and Yellow (Y) inks.

Fig. 4.15: RGB and CMY color cubes.

 Fig. 4.16: color combinations that result from combining primary colors available in the two situations, additive color and subtractive color.

Fig. 4.16: Additive and subtractive color. (a): RGB is used to specify additive color. (b): CMY is used to specify subtractive color

Transformation from RGB to CMY

 Simplest model we can invent to specify what ink density to lay down on paper, to make a certain desired RGB color:

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$
 (4.24)

Then the inverse transform is:

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} C \\ M \\ Y \end{bmatrix}$$
 (4.25)

Undercolor Removal: CMYK System

- Undercolor removal: Sharper and cheaper printer colors: calculate that part of the CMY mix that would be black, remove it from the color proportions, and add it back as real black.
- The new specification of inks is thus:

$$K \equiv min\{C, M, Y\} \tag{4.26}$$

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} \Rightarrow \begin{bmatrix} C - K \\ M - K \\ Y - K \end{bmatrix}$$