

Engin112 – Lecture 31

Timing Analysis

Maciej Ciesielski Department of Electrical and Computer Engineering 11/16/2012

Recap from last lecture

- Latches and Flip-flops
- Sequential circuits
 - FSM
 - · Mealy, Moore
- Today's lecture
 - · Timing in digital logic
 - » Combinational logic
 - » Sequential logic

11/16/2012

Engin 112 - Intro to ECE

Delay in Logic Circuits

- Circuits do not respond instantaneously to input changes
- Predictable delay in transferring inputs to outputs
 - Propagation delay (t_p)
- Sequential circuits require a periodic clock
- Goal: analyze clock circuit to determine maximum clock frequency
 - Requires analysis of paths from flip-flop outputs to flip-flop inputs
- Even after inputs change, output signal of circuit maintains original output for short time
 - Contamination delay (t_c)

11/16/2012

Engin 112 - Intro to ECE

Delays in Combinational Logic

- Gates have inherent delay
 - RC property determines delay
 - · Gates cannot be made arbitrarily fast
- Delays in gates and circuits:
 - Propagation delay (t_n)
 - » Delay between valid input and valid output
 - Contamination delay (t_c)
 - » Delay between changed input and first change on output

- Both delays are important characteristics for circuits
 - · Determine maximum clock rate

11/16/2012

Engin 112 - Intro to ECE

5

Combinational Logic Timing

- Combinational logic is made from electronic circuits
 - An input change takes time to propagate to the output
- The output remains <u>unchanged</u> for a time period equal to the <u>contamination delay</u>, t_{cd}
- The new output value is guaranteed to be <u>valid</u> (<u>stable</u>) after a time period equal to the <u>propagation delay</u>, t_{pd}

11/16/2012

Engin 112 - Intro to ECE

Combinational Logic Timing

- The output is guaranteed to be stable with old value until the contamination delay
 - Unknown values shown in waveforms as Xs
- The output is guaranteed to be stable with the new value <u>after</u> the <u>propagation</u> delay

11/16/2012

Engin 112 - Intro to ECE

7

Combinational Logic Timing

- Propagation delays are additive
 - Locate the longest combination of t_{pd}
- Contamination delays may not be additive
 - Locate the shortest path of t_{cd}
- Find propagation and contamination delay of the circuit
 - Knowing the propagation and contamination delays of its components

11/16/2012

Engin 112 - Intro to ECE

Combinational Logic Delay - example

- Gate delays:
 - AND gate
 - $t_c = 2 ns$
 - $t_p = 3 \text{ns}$
 - OR gate
 - $t_c = 1.5 \text{ns}$
 - $t_p = 2.5 \text{ns}$
 - Inverter
 - $t_c = 1 ns$
 - $t_p = 2 ns$

• What is the contamination and propagation delay of the circuit?

11/16/2012

Engin 112 - Intro to ECE

0

Contamination Delay - example

- Consider every path
 - · AEG, BEG
 - AEH, BEH
 - CFH, DFH
 - · CF, DF

- Contamination delay
 - $t_c(AEG) = t_c(BEG) = 3ns$
 - $t_c(AEH) = t_c(BEH) = 4ns$
 - $t_c(CFH) = t_c(CFH) = 3.5$ ns
 - $t_c(CF) = t_c(DF) = 1.5$ ns
- What is the contamination delay for this circuit?
 - Shortest of all paths: $t_c = t_c(CF) = t_c(DF) = 1.5$ ns

11/16/2012

Engin 112 - Intro to ECE

Propagation Delay - example

- Propagation delay
 - $t_p(AEG) = t_p(BEG) = 5$ ns
 - $t_p(AEH) = t_p(BEH) = 6$ ns
 - $t_o(CFH) = t_o(CFH) = 5.5$ ns
 - $t_p(CF) = t_p(DF) = 2.5$ ns

- What is the propagation delay for the circuit?
 - Longest of all paths: $t_p = t_p(AEH) = t_p(BEH) = 6ns$

11/16/2012

Engin 112 - Intro to ECE

11

Sequential Circuits

- Sequential circuits can contain both combinational logic and edge-triggered flip flops
- A clock signal determines when data is stored in flip flops
- Goal: How fast can the circuit operate?
 - Minimum clock period: T_{min}
 - Maximum clock frequency: f_{max}
- Maximum clock frequency is the inverse of the minimum clock period

11/16/2012

Clock

Engin 112 - Intro to ECE

Clocked Device: Delays

- Timing parameters for clocked devices are specified in relation to the clock input (rising edge)
 Input D must be ready and stable
- Output <u>unchanged</u> for a time period equal to the <u>contamination</u> <u>delay</u>, t_{cd} after the rising clock edge
- New output guaranteed <u>valid</u> after time equal to the propagation delay $Clk \rightarrow \overline{Q}$, t_{Clk-Q} (why not t_{D-Q} ?)
 - · Follows rising clock edge

11/16/2012

Engin 112 - Intro to ECE

Clocked Devices: Setup and Hold Times

- Timing parameters for clocked devices are specified in relation to the clock input (rising edge)
 - D input must be valid at least t_s (setup time) before the rising clock edge
 - D input must be held steady t_h (hold time) after rising clock edge
- Setup and hold are input restrictions
 - Failure to meet restrictions causes circuit to operate incorrectly

11/16/2012

Engin 112 - Intro to ECE

Edge-Triggered Flip Flop Timing

- The logic driving the flip flop must ensure that setup and hold are met
- Timing values $(t_{cd}, t_{pd}, t_{Clk-Q}, t_{s}, t_{h})$

11/16/2012

Engin 112 - Intro to ECE

15

Analyzing Sequential Circuits

- What is the minimum time between rising clock edges?
 - $T_{min} = T_{CLK-Q} (FFA) + T_{pd} (G) + T_s (FFB)$
- Trace propagation delays from FFA to FFB
- Draw the waveforms, compute F_{max}

11/16/2012

Engin 112 - Intro to ECE

Analyzing Sequential Circuits

- What is the minimum clock period (T_{min}) of this circuit? Hint: evaluate all FF to FF paths
- Maximum clock frequency is 1/T_{min}

11/16/2012

Engin 112 - Intro to ECE

17

Analyzing Sequential Circuits

- Path FFA to FFB
 - $T_{Clk-Q}(FFA) + T_{pd}(H) + T_{s}(FFB) = 5ns + 5ns + 2ns = 12ns$
- Path FFB to FFB
 - $T_{CLK-Q}(FFB) + T_{pd}(F) + T_{pd}(H) + T_{s}(FFB) = 4ns + 4ns + 5ns + 2ns = 15ns$

11/16/2012

Engin 112 - Intro to ECE

Hold Time Requirement

- One more issue:
 - make sure that input to D remains stable for <u>hold time</u> (\mathcal{T}_h) after rising clock edge
- Remember:
 - contamination delay ensures that signal doesn't change for t_{cd}
- How long before first change arrives at Y?

•
$$T_{cd}$$
 (FFA) + T_{cd} (G) > T_h
1ns + 2ns > 2ns

11/16/2012

Engin 112 - Intro to ECE

19

All paths must satisfy timing requirements!

- Path FFA to FFB
 - T_{cd} (FFA) + T_{cd} (H) > T_h (FFB) 1 ns + 2ns > 2ns
- Path FFB to FFB
 - T_{cd} (FFB) + T_{cd} (F) + T_{cd} (H) > T_h (FFB) 1ns + 1ns + 2ns > 2ns

11/16/2012

Engin 112 - Intro to ECE

Summary

- Maximum <u>clock frequency</u> is a fundamental parameter in sequential computer systems
- It is possible to determined clock frequency from propagation delays (t_p) and setup time (t_s)
- The <u>longest propagation path</u> determines <u>clock frequency</u>
- All flip-flop to flip-flop paths must be checked
- Hold time are satisfied by examining contamination delays
- The shortest contamination delay path determines if hold times are met
- Check <u>handout</u> (pdf file) for more details and examples.

11/16/2012

Engin 112 - Intro to ECE