Solution to Decision Trees Prac Sheet

Last modified on Wednesday, 24 April 2019 by f.maire@qut.edu.au

Exercise 1

• Consider the data table below

	X ₁	X_2	X ₃	X_4	C
D =	F	F	F	F	Р
	F	F	Т	Τ	Р
	F	Т	F	Т	Р
	Т	Т	Т	F	Р
	Т	F	F	F	Ν
	Т	Т	Т	Т	Ν
	Т	Т	Т	F	Ν

$$\mathbf{X} = \{X_1, X_2, X_3, X_4\}$$

• What is the entropy of *D*?

Write Pp for the probability of C=P, and Pn for the probability of C=N.

We have
$$Pp = 4/7$$
 and $Pn = 3/7$

$$H(D) = -Pn \log_2(Pn) - Pp \log_2(Pp)$$

Numerically

$$Pp = 0.5714$$

$$Pn = 0.4286$$

The entropy H(D) is 0.9852

• What is the information gain of X_1 ?

$$H(C \mid X1=N) = H([0-,3+]) = 0$$

$$H(C \mid X1=P) = H([3-,1+]) = 0.8113$$

$$H(C \mid X1) = 3/7 H([0-,3+]) + 4/7 H([3-,1+]) = 0.4636$$

Information gain of X1 : $H(D) - H(C \mid X1) = 0.5216$

• What is the information gain of X_2 ?

Similarly,
$$Gain(X\ 2\) = 0.98 - 0.97 = 0.01$$

• Build a DT to a depth of 3.

D =	X ₁	X_2	X ₃	X_4	O
	F	F	F	F	Р
	F	F	Т	Т	Р
	F	Т	F	Т	Р
	Т	Т	Т	F	Р
	Т	F	F	F	Ν
	Т	Т	Т	Т	Ν
	Т	Т	Т	F	Ν

$$\mathbf{X} = \{X_1, X_2, X_3, X_4\}$$

$Gain(X_1) = 0.52$									
$Gain(X_2) = 0.01$									
$Gain(X_3) = 0.01$									
$Gain(X_4) = 0.01$									
` /									
,	X_1								
F/\T									
	\								
X ₁ X ₂ X ₃ X ₄ C	X ₁	X ₂	X ₃	X_4	С				
F F F P	Т	Т	Т	F	Р				
F F T T P	Т	F	F	F	Z				
F T F T P	Т	Т	Т	Т	Ν				
	Т	T	Т	F	Ν				

Left subtree,

$$\mathbf{D} = \begin{bmatrix} X_1 & X_2 & X_3 & X_4 & C \\ F & F & F & F & P \\ F & F & T & T & P \\ \hline F & T & F & T & P \end{bmatrix}$$

$$\mathbf{X} = \{X_2, X_3, X_4\}$$

All instances have the same class. Return class P.

Right subtree,

$$\mathbf{D} = \begin{bmatrix} X_1 & X_2 & X_3 & X_4 & C \\ T & T & T & F & P \\ T & F & F & F & N \\ \hline T & T & T & T & N \\ \hline T & T & T & F & N \end{bmatrix} \qquad \begin{cases} X_2 & X_3 & X_4 \\ F / & T & F / & T \\ \hline T & T & T & N \end{cases}$$

$$0:1 \quad 1:2 \quad 0:1 \quad 1:2 \quad 0:1 \quad 1:2$$

$$\mathbf{X} = \{X_2, X_3, X_4\}$$

All attributes have same information gain. Break ties arbitrarily. Choose X_2

So far we have,

For the left subtree of the tree rooted at X2, all instances have the same class, we will return class N

For the right subtree of the tree rooted at X2, we have

 X_3 has zero information gain X_4 has positive information gain Choose X_4

That is, we now have

For the left subtree of X4, X3 has zero information gain. No suitable attribute for splitting. Return most common class (break ties arbitrarily). Note: data is inconsistent! For the right subtree of X4, All instances have the same class. Return N.

The final tree is

Exercise 2

• Recall that

Gain(S, A) = expected reduction in entropy due to sorting on A

$$Gain(S,A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

• Compute the information gain of the attribute A1 and A2

The information gain for A1 and A2 are respectively 0.2659 and 0.1214.

Exercise 3

• Which attribute is the best classifier?

We have

Therefore Humidity is the most informative attribute with respect to class prediction.