線形代数学・同演習 B

演習問題 3

- 1. (1) 基底をなす (2) 基底にならない (考え方) 与えられたベクトルを並べた行列が正則かどうか調べる.正則ならば基底を なし,そうでないならば基底になれない.
- 2. (1) 略 . (2) $\dim V=3$ (自由に動けるパラメータは 3 つなので) . 自然な基底は x,y,1 . (3) $f_1(x,y)=-x-y+1,$ $f_2(x,y)=x,$ $f_3(x,y)=y$ とすればよい .
- 3^{\dagger} (1) 基底になる . (2) 基底にならな. (考え方) 係数を並べた行列が正則かどうかで判断できる .
- 4.[†] (1) $\operatorname{Sym}(n,\mathbb{R})$ は n 次正方行列のなすベクトル空間の部分集合であるため, $O \in \operatorname{Sym}(n,\mathbb{R})$ (O は零行列) および $X,Y \in \operatorname{Sym}(n,\mathbb{R})$ のとき $\lambda X + \mu Y \in \operatorname{Sym}(n,\mathbb{R})$ となることを確認する.(2) $\dim \operatorname{Sym}(n,\mathbb{R}) = \frac{n(n+1)}{2}$.(3) E_{ii} $(i=1,\ldots,n)$ および $E_{ij} + E_{ji}$ $(1 \leq i < j \leq n)$
- 5.† (1) $\begin{pmatrix} c \\ b \\ a \end{pmatrix}$ (2) $\begin{pmatrix} a \\ b-a \\ c-b \end{pmatrix}$ (3) $\begin{pmatrix} 3a-2b-c \\ -2a+2b+c \\ -a+b+c \end{pmatrix}$

(考え方) (3) を例に説明する . $[q_1(x),q_2(x),q_3(x)]=[x^2,x,1]\left(egin{smallmatrix}1&1&0\\1&2&-1\\0&-1&2\end{smallmatrix}\right)$ なので

$$[x^2, x, 1] = [q_1(x), q_2(x), q_3(x)] \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}^{-1} = [q_1(x), q_2(x), q_3(x)] \begin{pmatrix} 3 & -2 & -1 \\ -2 & 2 & 1 \\ -1 & 1 & 1 \end{pmatrix}.$$

よって,
$$ax^2 + bx + c = [x^2, x, 1] \begin{pmatrix} a \\ b \\ c \end{pmatrix} = [q_1(x), q_2(x), q_3(x)] \begin{pmatrix} 3 & -2 & -1 \\ -2 & 2 & 1 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
.

- 6.* (1) ベクトル空間になるための条件 (教科書 p.63 の脚注) は,考えている空間が複素数なので当然全て成り立つ.ただし,(4)-(6) の a,b は実数だけを考えていることに注意.任意の複素数は x+yi (i は虚数単位) と書けるので $\dim \mathbb{C}=2$.
 - (2) $\mathbb R$ が $\mathbb Q$ 上のベクトル空間になることも (1) と同様である.その次元が無限次元になることは,背理法によって示せる.仮に有限次元になると仮定すると,ある自然数 n に対して $\pi^n,\dots,\pi,1$ が線形従属になってしまうが,それは適当な有理数係数 a_0,\dots,a_n により $a_n\pi^n+\dots+a_1\pi+a_0=0$ となることを意味する.これは $x=\pi$ が多項式 $p(x)=a_nx^n+\dots+a_1x+a_0$ の零点になることを表しているが,この結果は π の超越性に反する.よって, $\mathbb R$ は " $\mathbb Q$ 上の" ベクトル空間としては無限次元でなければならない.

10月24日分 (凡例:無印は基本問題,† は特に解いてほしい問題,* は応用問題) 講義用 HP: http://www2.math.kyushu-u.ac.jp/~h-nakashima/lecture/2017LA.html