Universidade Tecnológica Federal do Paraná - Pato Branco Departamento Acadêmico de Elétrica Eletrônica A - Prova 02

Nome:	Note
Nome,	Nota:

Leia com atenção as instruções antes de começar a prova:

- A prova deve ser limpa e organizada;
- A prova é individual e sem consulta;
- A interpretação das questões faz parte da prova;
- Questões com resultado final correto, mas sem desenvolvimento coerente não terão valor;
- A pontuação de cada questão está indicada na respectiva questão;
- Identifique o número das questões nas respostas;
- Escreva seu nome em todas as folhas entregues;
- Após a resolução da prova, você deverá escanear a solução da prova (ou tirar uma foto de boa qualidade) e enviar no *classroom* da disciplina. Os formatos permitidos são PNG, JPG e PDF (preferencialmente).
- 1. (2,5) No circuito representado abaixo, considere que $V_{CC}=12V,~V_{BB}=3,3V,~R_C=1,8k\Omega,~R_E=1,2k\Omega$ e $\beta=100.$ Calcule $I_C,~V_{CE},~V_C$ e V_E e desenhe a reta de carga.

2. (2,5) Para o circuito abaixo, calcule I_B , I_C e V_{CE} e desenhe a reta de carga. $\beta=100,\,V_{CC}=18V,\,R_1=12k\Omega,\,R_2=4k\Omega,\,R_C=2,5k\Omega$ e $R_E=1,5k\Omega.$

3. (2,5) Determine os valores de V_2 e V_3 no circuito abaixo, sendo $V_1=14V,\,R_1=2,2k\Omega,\,R_2=1,1k\Omega,\,I_{DSS}=6mA$ e $V_P=-6V$.

4. (2,5) Considerando o circuito, reta de polarização e a curva característica do transistor representados abaixo, determine $R_1,~R_S,~V_{DS},~V_D$ e V_S . No circuito, $V_{DD}=18V,~R_D=4k\Omega$ e $R_2=1M\Omega$.

Equações úteis:

ВЈТ	$I_C = \beta I_B$	$I_E = (1+\beta)I_B$	$\beta R_E \ge 10R_2$
MOSFET depleção	$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$		
MOSFET intensificação	$I_D = k \left(V_{GS} - V_T \right)^2$	$k = \frac{I_{D(ON)}}{(V_{GS(on)} - V_T)^2}$	
JFET	$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$		
Bhaskara	$ax^2 + bx + c = 0$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	