OPOSICIONES PES MATEMÁTICAS 2019 PRIMERA PRUEBA. PARTE A.

OPCIÓN A

- 1. El número de vehículos que atraviesan diariamente una zona de velocidad controlada por radar sigue una distribución de Poissón de parámetro λ . Si la probabilidad de que un vehículo no respete el límite fijado es p, se pide:
 - a. Encontrar la distribución del número de infracciones diarias detectadas por el radar.
 - b. Si el radar detectó r infracciones, ¿cuál es la distribución del número de vehículos que han atravesado la zona controlada? ¿Cuál es la media de esta distribución?
- 2.- Hállense los criterios de divisibilidad por 4 y 13. Aplíquense estos criterios para determinar el mayor número de seis cifras divisible por 4 y por 13.

3.- Sea
$$f: C \to C$$
 dada por $f(z) = \frac{z}{1-i}$

Definimos: $f^2=f\circ f$, $f^3=f\circ f^2$, , $f^{(n+1)}=f\circ f^{(n)}$ y llamamos $f^{(n)}(z)=w_n$

- a) Siendo z=i , hallar el menor $n\in N$ posible para que $w_1+w_2+.....+w_n$ sea real y calcular el valor correspondiente.
- b) Hallar $z^{\frac{1}{6}}$ sabiendo que $w_{200} = i$
- 4.- Sea E un espacio vectorial sobre el cuerpo de los números reales, y f una aplicación lineal de E en E tal que $f^{\,2}=-I$.
- a) Demostrar que f es biyectiva.
- b) Demostrar que si $A = \{x_1, x_2, \ldots, x_n, f(x_1), f(x_2), \ldots, f(x_{n-1})\}$ es un conjunto de vectores linealmente independientes, también $B = \{x_1, x_2, \ldots, x_n, f(x_1), f(x_2), \ldots, f(x_{n-1}), f(x_n)\}$ es un conjunto de vectores linealmente independientes.
- 5.- Tomando sobre el eje OX el punto P(a,0), construimos sobre la circunferencia:

$$x^2 + y^2 = r^2$$
 $(0 \le a < r)$ el triángulo de vértices: $P(a,0)$, $R(r,0)$, $Q(a, \sqrt{r^2 - a^2})$

Consideramos ahora el triángulo curvilíneo cuyos lados son: el segmento \overline{PQ} , el segmento \overline{PR} y el arco de circunferencia QR .

Calcular el límite del cociente de las áreas de los triángulos mencionados si hacemos tender "a" hacia "r"

OPOSICIÓNS PES MATEMÁTICAS 2019 PRIMEIRA PROBA. PARTE A.

OPCIÓN A

- 1. O número de vehículos que atravesan diariamente unha zona de velocidade controlada por radar segue unha distribución de Poissón de parámetro λ . Se a probabilidade de que un vehículo non respecte o límite fixado é p, pídese:
- a) Atopar a distribución do número de infraccións diarias detectadas polo radar.
- b) Se o radar detectou r infraccións, ¿cal é distribución do número de vehículos que atravesaron a zona controlada? ¿Cal é a media desta distribución?
- 2.- Áchense os criterios de divisibilidade por 4 e 13. Aplíquense estes criterios para determinar o maior número de seis cifras divisible por 4 e por 13.

3.- Sexa
$$f: C \to C$$
 dada por $f(z) = \frac{z}{1-i}$

Definimos: $f^2=f\circ f$, $f^3=f\circ f^2$,, $f^{(n+1)}=f\circ f^{(n)}$ e chamamos $f^{(n)}(z)=w_n$

- a) Sendo z=i , achar o menor $n\in N$ posible para que $w_1+w_2+.....+w_n$ sexa real e calcular o valor correspondente.
- b) Achar $z^{\frac{1}{6}}$ sabendo que $w_{200} = i$
- 4.- Sexa E un espazo vectorial sobre o corpo dos números reais, e f unha aplicación lineal de E en E tal que $f^2=-I$.
- a) Demostrar que f é bixectiva.
- b) Demostrar que se $A = \{x_1, x_2, \ldots, x_n, f(x_1), f(x_2), \ldots, f(x_{n-1})\}$ é un conxunto de vectores linealmente independentes, tamén $B = \{x_1, x_2, \ldots, x_n, f(x_1), f(x_2), \ldots, f(x_{n-1}), f(x_n)\}$ é un conxunto de vectores linealmente independentes.
- 5.- Tomando sobre o eixo OX o punto P(a,0), construimos sobre a circunferencia:

$$x^2 + y^2 = r^2$$
 $(0 \le a < r)$ o triángulo de vértices: $P(a,0)$, $R(r,0)$, $Q(a, \sqrt{r^2 - a^2})$

Consideramos agora o triángulo curvilíneo cuxos lados son: o segmento \overline{PQ} , o segmento \overline{PR} e o arco de circunferencia QR .

Calcular o límite do cociente das áreas dos triángulos mencionados se facemos tender "a" cara "r".

OPOSICIONES PES MATEMÁTICAS 2019 PRIMERA PRUEBA. PARTE A.

OPCIÓN B

- 1.- Los dos lados de un triángulo isósceles tienen una longitud L cada uno, y el ángulo x entre ellos es el valor de una variable aleatoria X con función de densidad proporcional a $x(\pi-x)$ en cada punto $x\in (0,\frac{\pi}{2})$. Calcular la función de densidad del área del triángulo y su esperanza.
- 2.- Consideramos los polinomios $P(x)=x^3+Ax^2+Bx+C, \ Q(x)=3x^2+2Ax+B$ (x es la variable, A, B, C son parámetros reales). Supongamos que si a, b, c son las tres raíces de P, las de Q son $\frac{a+b}{2}$, $\frac{b+c}{2}$. Determinar todos los posibles polinomios P y Q.
- 3.- Un cartel, situado en una pared, tiene sus bordes superior e inferior a las alturas $m \ y \ n$ respectivamente, con referencia a la visual horizontal de un lector. ¿A qué distancia de la pared debe colocarse el lector del cartel para que el ángulo visual determinado por la pupila y los bordes sea máximo?
- 4.- Un cuadrado ABCD de centro O y lado 1, gira un ángulo α en torno a O . Hallar el área común a ambos cuadrados.
- 5.- Hallar la envolvente de los círculos que tienen sus centros en la parábola $y^2=2\,px$, y que pasan por el vértice de esta parábola.

OPOSICIÓNS PES MATEMÁTICAS 2019 PRIMEIRA PROBA. PARTE A.

OPCIÓN B

- 1.- Os dous lados dun triángulo isósceles teñen unha lonxitude L cada un, e o ángulo x entre eles é o valor dunha variable aleatoria X con función de densidade proporcional a $x(\pi-x)$ en cada punto $x\in (0,\frac{\pi}{2})$. Calcular a función de densidade da área do triángulo e a súa esperanza.
- 2.- Consideramos os polinomios $P(x) = x^3 + Ax^2 + Bx + C$, $Q(x) = 3x^2 + 2Ax + B$ ($x \in a$ variable, A, B, C son parámetros reais). Supoñamos que se a, b, c son as tres raíces de P, as de Q son $\frac{a+b}{2}$, $\frac{b+c}{2}$. Determinar todos os posibles polinomios $P \in Q$.
- 3.- Un cartel, situado nunha parede, ten os seus bordos superior e inferior ás alturas m e n respectivamente, con referencia á visual horizontal dun lector. A qué distancia da parede debe colocarse o lector do cartel para que o ángulo visual determinado pola pupila e os bordos sexa máximo?
- 4.- Un cadrado ABCD de centro O e lado 1, xira un ángulo α ao redor de O . Achar a área común a ambos cadrados.
- 5.- Achar a envolvente dos círculos que teñen os seus centros na parábola $y^2=2\,px$, e que pasan polo vértice desta parábola.