CS 70 Discrete Mathematics and Probability Theory Spring 2018 Ayazifar and Rao Midterm 2

PRINT Your Name:		
	(last)	(first)
SIGN Your Name:		
PRINT Your Student ID: WRITE THE NAME OF your	ttps://powcod	er.com
Name of the person sitting to	nment Project	Exam Help
Name of the person sitting to		
• Afjective Schrosting, staple when scanning	your exam).	Which the very will remove the
We will not grade any the space provided for	thing outside of the space provided the space provi	for a problem unless we are clearly told in COM
• The questions vary in	difficulty, so if you get stuck on ar	ny question, it might help to leave it and try

- No justifications are needed for True/False or Short Answer questions. Make sure you bubble in or write your answer in the provided box, accordingly. Work outside the box may be considered
- You may consult only 2 *sheets of notes*. Apart from that, you may not look at books, notes, etc. Calculators, phones, computers, and other electronic devices are NOT permitted.
- There are 12 single sided pages on the exam. Notify a proctor immediately if a page is missing.

for partial credit where tricky calculations are involved.

- You may, without proof, use theorems and lemmas that were proven in the notes and/or in lecture.
- You have 120 minutes: there are 6 questions with a total of 59 parts on this exam worth a total of 165 points.

Do not turn this page until your instructor tells you to do so.

1. True/False. 2 points/part. 14 parts. No partial credit. No work necessary. Fill in bubbles	!•
1. The equation $7x = y \pmod{10}$ has a solution x for every value y .	
	○True
	○False
2. The function $f(x) = ax \pmod{N}$ is always a bijection if $gcd(a, N) = 1$.	
	○ True
	○False
3. If there are k numbers that are relatively prime to N in $\{0,,N-1\}$, then $a^k = gcd(a,N) = 1$. https://powcoder.com	1 (mod <i>N</i>) if
	○True
Assignment Project Exam Help 4. For all $n > 2$, there is at least one element of $\{2, 3,, n-1\}$ with a multiplicative inver) CFalse
4. For all $n > 2$, there is at least one element of $\{2, 3,, n-1\}$ with a multiplicative inver	se $(\text{mod } n)$.
Assis Add MaChat Bourontain	○True
Assignment Project Paumo Help	○False
5. It is possible to measure out exactly 1 oz. of water using only cups of size 56 oz. and 14	· OZ.
https://powcoder.com	○True
	○False
6. A polynomial, $P(x)$ module X prime, p , of degree exactly d (that is the coefficient of x^c where $d < p$, must have at least d roots.	l is non-zero),
	○True
	○False
7. If two degree d polynomials intersect on $d+1$ points, they must be the same polynomial	1.
	○True
	○False
8. There is no program that takes a program <i>P</i> , an input <i>x</i> , and an integer <i>k</i> and determines steps on input <i>x</i> .	if it halts in k^k
	○True
	○False
9. For any countable subset, S , of the reals, \mathbb{R} , we have $\exists \varepsilon > 0 \in \mathbb{R}, \forall x, y \in S, (x \neq y) \Longrightarrow$	$(x-y \ge \varepsilon).$
	○True
	○False

10.	10. We define the output of a program as the string it prints (possibly infinite length) when length input. Then, the set of outputs of any particular deterministic program is countable	
	rengan input their, and set of compute of any particular determinante program is communical	○ True
		○ False
11.	For events $A,B,C\subseteq\Omega$, we have $Pr[(A\cap B)\cup C]\geq Pr[A\cup C]$. $https://powcoder.com$	○ True ○ False
	Assignment Project Exam Help	
12.	If eyents stight and the Verent and Apart	○ True
	https://powcoder.com	○ False
13.	Add WeChat powcoder For any events A and B , $Pr[A B] + Pr[A \bar{B}] = Pr[A]$.	
		○ True
		○False
14.	For events A and B , if $Pr[A B] > Pr[A]$ then $Pr[A \bar{B}] < Pr[A]$.	○ True
		○ False

2.	Short Answer/Proof: Modular Arithmetic to RSA. 3 points/part. 15 parts.	
	Put your answers in boxes where provided. Answers outside the box will not	be graded.
	1. What is $gcd(0,n)$?	
	2. What are the possible values of $gcd(n, n+2)$?	
	https://powcoder.com	
	Assignment Project Exam	Help
	3. For x, y with $gcd(x, y) = d$, where $ax + by = d$, and $zx = kd \pmod{y}$. What	•
	Assignment Pestat Exment	e lp
	https://powcoder.com	
	4. What is the smallest possible positive value of the expression 14x (mod 21) Add WeChat powcoder) in $\{1,, 20\}$?
	rida Weenat peweeder	
	5. What is $7^{11} \pmod{15}$?	
	6. Find $x \pmod{90}$ where $x = 1 \pmod{9}$ and $x = 3 \pmod{10}$.	

7.	How many numbers in $\{0, \dots, 34\}$ are relatively prime to 35.	
8.	What are the last two digits of 99999?	
	https://powcoder.com	
	Assignment Project Exam	Help
9.	For a prime p , how many tools dies the polytomial x^{p-1} (mod p) have $ASS1S111111111111111111111111111111111$	el p
10.	https://powcoder.com What is the (simplified) result of multiplying out the polynomial $(x-1)(x-2)$ where p is a prime? Add WeChat powcoder	$(2)\cdots(x-p+1)\pmod{p}$
11.	Suppose we want to send a length n message, but the channel can introdugeneral errors. How long should the message we send through the channel that the other side can decode it successfully?	

12.	Recall that RSA computes $y^* \pmod{N}$ where $N = pq$ for p and q being prime.
	(a) If p and q have n -bits, how many bits does it take to represent $N = pq$? (Any answer within 1 or
	2 bits of the right answer gets full credit.)

(b) Consider $y = a \pmod{p}$, we know that $y^d = a^d \pmod{p}$. Prove that $y^d = a^u \pmod{p}$ where $u = d \pmod{p-1}$.

https://powcoder.com

Assignment Project Exam Help

Assignated type Glat Exmontelp

https://powcoder.com

(c) L $y = a \pmod{p}$ and $y = b \pmod{q}$. Give an expression for $y^d \pmod{pq}$ in terms of $m_1 = a^u \pmod{p}$ and $n_2 = b^v \pmod{p}$ when $n_1 = a^u \pmod{q-1}$.

13. Alice is selling books for \$10. She sets up an RSA scheme with public key (N, e) and private key d. People buy her book by encrypting their credit card number x as $c = x^e \pmod{N}$ and sending c through a public channel to Alice, who then charges \$10 to the decrypted credit card number c^d . If Eve can listen in on the channel, how could she take advantage of this setup?

3. Short Answer: Polynomials. 3 points/part. 5 parts.

Put your answers in boxes where provided. Answers outside the box will not be graded.

For the following, recall that a polynomial, P(x), contains a point (a,b) when P(a) = b. And two polynomials, P(x) and Q(x), intersect at a point (a,b) when P(a) = Q(a) = b.

1. Given two polynomials P(x) and Q(x) of degrees d_1 and d_2 respectively, consider R(x) = P(x)Q(x). We claim that we can recover P(x) and Q(x) with any r points on R(x) and any q points on Q(x), What are r and q? (You should give the minimum possible values for r and q here.)

https://powcoder.com

2. Recall the secret sharing scheme where the secret is P(0). What is the secret corresponding to a polynomial of Aggregat group where P(1) = 100 pend P(2) = X (mod 5)?

Assignated type bet pawned elp

3. Consider sending an *p* packet/message where each packet has *p*-bits, and we want to encode the message so that *p* packets can be lost using an polynomial encoding scheme modulo a prime *p*. How large is *p* required to be in this setup?

Add WeChat powcoder

4. What is the maximum number of points at which two distinct degree *d* polynomials can intersect?

5. For a prime p, and d < p, how many polynomials in GF(p) (modulo arithmetic modulo p) of degree d are there with exactly d roots? (Here, we assume $(x-2)^2$ has *two roots* at x=2.)

4.	Short Answer: Counting. 3 points/part. 9 parts. Answers should be in boxes.
	1. How many permutations of the letters in "STANFORD=BORING" are there? (Hint: there are 15 letters total, and one permutation is: "ABDFGINNOORRST=".)
	2. We have a classroom of <i>n</i> people, who are playing a (sort of) tournament of rock paper scissors. At every turn, one pair of students is picked from the pool of students who are still in the game, to play in front of the class. The base who lose have a classroom of <i>n</i> people, who are playing a (sort of) tournament of rock paper scissors. At every turn, one pair of students is picked from the pool of students who are still in the game, to play in front of the class. The base who lose have a classroom of <i>n</i> people, who are playing a (sort of) tournament of rock paper scissors. At every turn, one pair of students is picked from the pool of students who are still in the game, to play in front of the class. The base who lose have a classroom of <i>n</i> people, who are playing a (sort of) tournament of rock paper scissors. At every turn, one pair of students is picked from the pool of students who are still in the game, to play in front of the class. The base who lose have a classroom of the class. The base who are still in the game, to play in front of the class. The base who are still in the game, to play the base have a classroom of the class.
	Assignment Project Exam Help
	Assignment Project Example 19. 3. How many ways are there to divide up nine distinguishable people into three indistinguishable teams of three? https://powcoder.com
	Add WeChat powcoder
	4. Consider the set $S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. We wish to count the number of distinct 3-element subsets of S where the sum of the elements in the subset is divisible by 3.
	(a) Case 1: How many 3-element subsets of <i>S</i> have one element which is equivalent to 1 (mod 3) one which is equivalent to 2 (mod 3) and one which is equivalent 0 (mod 3)?
	(b) Case 2: How many 3-element subsets of S have all the elements being equivalent (mod 3)?

5.	We wish to count how many undirected graphs on six vertices there are, wh degree.	ere every vertex has equal
	(a) How many such graphs are there such that all vertices have degree one	?
	(b) How many ways can we form two disjoint cycles of length three with s	ix vertices?
	Assist Droiset Even	Holm
	Assignment Project Exam	петр
	Assignment Project Exmont	el p
	\mathcal{L}	1
	(c) How manhattps://forpongecodetsicom	
	A 1 1 TT C1	
	Add WeChat powcoder	
	(d) How many graphs are there where all vertices has equal degree? (For panswer in terms of a,b,c , the answers to the previous parts. For full	
	numerical answer.)	

- 5. Counting/Combinatorial Proof. Points by part: 2/5/4. Put your answers in boxes where provided otherwise use the space provided.
 - 1. Recall that a subset S of n elements of size k is uniquely specified by the n-k items left out of S. Write a combinatorial identity that corresponds to this statement.

https://powcoder.com	
----------------------	--

2. Use a combinatorial argument to prove that $\Pr(k) = \sum_{i=0}^{k} \binom{n}{i} \binom{m}{k-i}$ Assignment Project Exam Help

Assign And the Pauro Help

https://powcoder.com

Add WeChat powcoder

3. Consider the following $\sum_{k=0}^{n} k^2 \binom{n}{k} = n(n-1)2^{n-2} + X$. Give an expression	on for X (in terms of n only.)

6. Probability. 3 points/part. 13 parts. Answers in boxes. Calculations outside may be considered for partial credit. For this problem, recall Dice have six sides.	
1. Given $Pr[A B] = 1/3$, $Pr[B] = 1/2$, what is $Pr[A \cap B]$?	
2. Given $Pr[A B] = 1/3$, $Pr[B] = 1/2$ and $Pr[A \bar{B}] = 1/2$, what is $Pr[B A]$?	
https://powcoder.com	
3. Suppose A Sissiegre introduction where 1, 2, and 3 are in order but not reprobability that we get a permutation where 1, 2, and 3 are in order but not reprobability.	equal Dikel). What is the necessarily adjacent.
Assign And the Gleat Exmon	₽Ip
4. What is the size of the sample space for rolling four distinguishable dice? POWCOGET.COM	
Add WeChat powcoder	
5. You roll a fair die 4 times. What is the probability that the first time you get	a six is on the fourth roll?
6. You roll a fair die 4 times. What is the probability that the second time you	get a siv is on the fourth
roll?	I get a SIA IS OII the Touran
7. A sequence of dice rolls is considered "lucky" if there exists two consecutive What is the probability that a sequence of 4 dice rolls is "lucky"?	rolls of the same number.

8.	There 2 dice in a bag. One die is cheating in that it has two sixes which are means there is no side with 1 pip on it). The other die is a fair six sided die. You into the bag and choose one of the dice to roll.	• •	•
	(a) What is the probability that you get a six on the first roll?		
	ſ		
	(b) You get a six on the first roll. What is the conditional probability that yo	ou chose a ch	neating die?
	https://powcoder.com		
	Assignment Project Exam	Heln	
	Assignment Project Exam (c) Now you roll the same die again (this is the second roll). What is the pro-		
	again? (For partial credit, you may express your answer in terms of	•	wers to part
	Assignated type Glat Pamport	elp_	
	https://powcoder.com		
	(d) On the second roll you get a six. What is the conditional probability the die? (For partial credit you may express your answer in terms of (b) and (c). The property of the conditional probability the die? (For partial credit you may express your answer in terms of (b) and (c).	-	-
0	Consider chaosing h mains of meanle from a meanle allowing for constition	within a mai	. That is to
9.	Consider choosing k pairs of people from n people, allowing for repetition create each pair, we choose from all n people twice.	within a pai	r. That is, to
	(a) What is the probability that we choose the same person twice in the firs	t pair?	
	(b) Upper bound the probability that the same person is chosen twice in ar union bound. (Answer is expression involving <i>k</i> and <i>n</i> .)	by of the k particles	airs using the
	,		