B.Tech 2nd semester Assignment -II

- 1. Evaluate the followings
 - a) $\int_0^{\frac{\pi}{4}} \int_0^{\sqrt{\cos 2\theta}} \frac{r}{(1+r^2)^2} dr d\theta$
 - b) $\int \int r^2 \sin \theta \, dr \, d\theta$, over the cardoid $r = a (1 + \cos \theta)$ above the initial line.
 - c) $\int_0^1 \int_{\sqrt{x-x^2}}^{\sqrt{1-x^2}} \frac{xye^{-(x^2+y^2)}}{x^2+y^2} dxdy$
 - d) $\int_0^{4a} \int_{\frac{y^2}{2}}^{y} \frac{x^2 y^2}{x^2 + y^2} dx dy$
- 2. Using the transformation u = x y, v = x + y, evaluate $\int \int cos\left(\frac{x-y}{x+y}\right) dxdy$ over the region bounded by the lines x = 0, y = 0, x + y = 1.
- Using the transformation $u = x^2 y^2$, v = 2xy, evaluate $\int \int (x^2 + y^2) dx dy$ over the region bounded by the hyperbola $x^2 - y^2 = 1$, $x^2 - y^2 = 9$, xy = 2, xy = 4.
- 4. Evaluate $\iint x^2yz \, dx \, dy \, dz$ over the region bounded by the planes x = 0, y = 0, z = 0 and x + y + z = 1.
- 5. Evaluate $\iint \frac{dxdydz}{(x^2+y^2+z^2)^{\frac{3}{2}}}$ over the region bounded by the spheres $x^2+y^2+z^2=a^2$ and $x^2+y^2+z^2=a^2$ $b^2, a > b > 0$
- 6. Evaluate $\iint \int \frac{dxdydz}{(x^2+y^2+z^2)^{\frac{1}{2}}}$ over the region bounded by the spheres $x^2+y^2+z^2=a^2$ and $x^2+y^2+z^2=a^2$
- 7. Evaluate $\int_0^{\log 2} \int_0^x \int_0^{x+\log y} e^{x+y+z} dz dy dx$

Vector Calculus

- 1. Find a unit vector normal to the surface $xy^3z^2 = 4$ at the point (-1, -1, 2).
- 2. Find the directional derivative of $f(x, y, z) = xy^2 + yz^3$ at the point (2, -1, 1).
- 3. Find the directional derivative of $f = x^2 y^2 + 2z^2$ at the point P(1, 2, 3) in the direction of the line PQ where Q is the point (5, 0, 4). Also calculate the magnitude of the maximum directional derivative.
- 4. Find the directional derivative of $\phi = 5x^2y 5y^2z + 2.5z^2x$ at the point P(1, 1, 1) in the direction of the line $\frac{x-1}{2} = \frac{y-3}{-2} = z$.
- 5. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point (2, -1, 2).
- **6.** A fluid motion is given by $\bar{v} = (y\sin z \sin x)i + (x\sin z + 2yz)j + (xy\cos z + y^2)k$ is the motion irrational? If so, find the velocity potential.
- 7. Show that the vector field represented by $\vec{F} = (z^2 + 2x + 3y)i + (3x + 2y + z)j + (y + 2zx)k$ is irrotational but not solenoidal. Also obtain a scalar function ϕ such that $grad \phi = \vec{F}$.
- 8. If the directional derivative of the function $\emptyset = xyz$ at (1, 1, 1) in the direction of $\alpha i + j + k$ is $\sqrt{3}$, find α .
- **9.** Find the angle between the surface $x \log z = y^2 1$ and $x^2 y = 2 z$ at the points (1, 1, 1).
- 10. Find the values of a and b so that the surfaces $ax^3 by^2z = (a+3)x^2$ and $4x^2y z^3 = 11$ may cut orthogonally at (2, -1, -3).
- 11. Find the values of a, b, c so that the vector $\overline{F} = (x + y + az)\hat{i} + (bx + 2y z)\hat{j} + (-x + cy + 2z)\hat{k}$ may be irrotational.
- **12.** Prove that $\bar{A} = (z^2 + 2x + 3y)i + (3x + 2y + z)j + (y + 2zx)k$ is conservative.
- 13. Prove that, $\int_C \bar{F} \cdot d\bar{r} = 3\pi$, where $\bar{F} = zi + xj + yk$ and C is the arc of the curve $\bar{r} = \cos t \, i + \sin t \, j + tk$ from t = 0 to $t = 2\pi$.
- **14.** If $\bar{F} = (2x y + 2z)i + (x + y z)j + (3x 2y 5z)k$, calculate the circulation of \bar{F} along the circle in the xy-plane of radius of 2 unit radius and centre at the origin.

- **15.** If $\bar{F} = (x^2 yz)i + (y^2 zx)j + (z^2 xy)k$ then,
 - (i) Prove that \overline{F} is conservative
 - (ii) Find its scalar potential
 - (iii) Find the work done in moving a particle under this force field from (1, 1, 0) to (2, 0, 1).
- **16.** If $\overline{F} = 2xye^z i + x^2e^z j + x^2ye^z k$ is conservative then find
 - (i) The scalar potential φ
 - (ii) The work done in moving a particle under this force field from (0, 0, 0) to (1, 1, 1).
- 17. Verify Green's theorem for $\int_C [(xy+y^2)dx + x^2dy]$ where C is the region bounded by $y=x,y=x^2$.
- **18.** Verify Green's theorem for $\oint_C (2xy \, dx y^2 \, dy)$, where C is the boundary of the region bounded by the ellipse $3x^2 + 4y^2 = 12$.
- 19. Evaluate the following integrals by using Green's theorem:
 - (a) $\oint_C [(x^2 + y^2)dx + (5x^2 3y)dy]$, where C is the region bounded by the parabola $x^2 = 4y$ and the line y = 4.
 - (b) $\oint_C [e^x(\sin y \, dx + \cos y \, dy)]$, where C is the boundary of the region bounded by the ellipse $4(x+1)^2 + 9(y-3)^2 = 36$.

Page No: 2 of 3