

WEBENCH® Design Report

VinMin = 3.7V VinMax = 4.2V Vout = 3.3V Iout = 1.0A Device = TPS62152RGTR Topology = Buck Created = 9/2/14 6:13:19 AM BOM Cost = \$1.18 Footprint = 69.0mm2 BOM Count = 6 Total Pd = 0.21W

Design: 3822995/3 TPS62152RGTR TPS62152RGTR 3.7V-4.2V to 3.3V @ 1.0A

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cin	Samsung Electro- Mechanics	CL10A106MQ8NNNC Series= X5R	Cap= 10.0 μF VDC= 6.3 V IRMS= 0.0 A	1	\$0.02	0603 5mm2
2.	Cout	TDK	C2012X5R0J226M Series= 285	Cap= 22.0 μF VDC= 6.3 V IRMS= 0.0 A	1	\$0.06	0805 7mm2
3.	Css	MuRata	GRM033R71C391KA01D Series= X7R	Cap= 390.0 pF VDC= 16.0 V IRMS= 0.0 A	1	\$0.01	0201 2mm2
4.	L1	Bourns	SDR0403-2R2ML	L= 2.2 μH DCR= 47.0 mOhm	1	\$0.18	SDR0403 28mm2
5.	Rpg	Vishay-Dale	CRCW0402100KFKED Series= CRCWe3	Res= 100.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3mm2
6.	U1	Texas Instruments	TPS62152RGTR	Switcher	1	\$0.90	S-PVQFN-N16 25mm2

Operating Values

	#	Name	Value	Category	Description
Т	1.	Cin IRMS	379.506 mA	Current	Input capacitor RMS ripple current
	2.	Cout IRMS	73.525 mA	Current	Output capacitor RMS ripple current
	3.	IC lpk	1.127 A	Current	Peak switch current in IC
	4.	lin Avg	835.83 mA	Current	Average input current
	5.	L lpp	254.7 mA	Current	Peak-to-peak inductor ripple current
	6.	BOM Count	6	General	Total Design BOM count
	7.	FootPrint	69.0 mm2	General	Total Foot Print Area of BOM components
	8.	Frequency	1.326 MHz	General	Switching frequency
	9.	Pout	3.3 W	General	Total output power
	10.	Total BOM	\$1.18	General	Total BOM Cost
	11.	Vout OP	3.3 V	Op_Point	Operational Output Voltage

#	Name	Value	Category	Description
12.	Duty Cycle	82.554 %	Op_point	Duty cycle
13.	Efficiency	94.005 %	Op_point	Steady state efficiency
14.	IC Tj	34.415 degC	Op_point	IC junction temperature
15.	ICThetaJA	29.1 degC/W	Op_point	IC junction-to-ambient thermal resistance
16.	IOUT_OP	1.0 A	Op_point	lout operating point
17.	VIN_OP	4.2 V	Op_point	Vin operating point
18.	Vout p-p	1.28 mV	Op_point	Peak-to-peak output ripple voltage
19.	Cin Pd	0.0 W	Power	Input capacitor power dissipation
20.	Cout Pd	0.0 W	Power	Output capacitor power dissipation
21.	IC Iq Pd	84.0 μW	Power	IC lq Pd
22.	IC Pd	151.717 mW	Power	IC power dissipation
23.	L Pd	58.75 mW	Power	Inductor power dissipation
24.	Total Pd	210.454 mW	Power	Total Power Dissipation

Design Inputs

	0 1		
#	Name	Value	Description
1.	lout	1.0 A	Maximum Output Current
2.	lout1	1.0 Amps	Output Current #1
3.	VinMax	4.2 V	Maximum input voltage
4.	VinMin	3.7 V	Minimum input voltage
5.	Vout	3.3 V	Output Voltage
6.	Vout1	3.3 Volt	Output Voltage #1
7.	base_pn	TPS62152	Base Product Number
8.	source	DC	Input Source Type
9.	Ta	30.0 degC	Ambient temperature

Design Assistance

- 1. Feature Highlights: DCS-Control(TM) Architecture with upto 1A output current, 3V to 17V Input Voltage Range, 3.3V Fixed Output voltageSelectable operating frequency, Optional Softstart Capacitor for slow startup, Tracking,Pin selectable output voltage (nominal, +5%) Seamless Power Save Mode for Light Load Efficiency, Power Good Output, 100% Duty Cycle mode, Short Circuit Protection, Thermal Shutdown
- 2. TPS62152 Product Folder: http://www.ti.com/product/tps62152: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.