Motrvation Variation des paramètres Phénomène de Ramsey-Dvoretzky-Milman La propriété de Milman

Sphères en hautes dimensions

Antoine Poulin

28 Mai 2022

Section des sphères I^p

Soit $p \in [1, \infty]$ et $d \in \mathbb{N}_{>2}$. Notons S(p, d) pour la sphère unité de $\ell^p(d)$, soit

$$S(p,d) = \left\{ x = (x_1, ..., x_n) \in \mathbb{R}^d : (|x_1|^p + ... + |x_n|^p)^{\frac{1}{p}} = 1 \right\}$$

$$S(\infty, d) = \left\{ x = (x_1, ..., x_n) \in \mathbb{R}^d : \sup\{x_1, ..., x_n\} \right\}$$

Section des sphères I^p

Si v_1, v_2 sont deux vecteurs "aléatoires" de \mathbb{R}_2 (de norme 1), à quoi ressemble la sphère unité de $\ell^p(d)$ sur le plan généré par v_1, v_2 ?

Distance de Banach-Mazur

On s'intéresse à la distance de Banach-Mazur entre la métrique ℓ^2 induite par v_1 et v_2 et ℓ^p induite par $\ell^p(d)$.

La distance est $\frac{R}{r}$, où R est le rayon du gros cercle et r est le rayon du petit cercle.

Lorsqu'on augmente la dimension, on se rapproche d'une sphère!

La convergence est beaucoup plus rapide pour p=1 que pour $p=100 \approx \infty$

Théorème de Dvoretzky

Théoreme, Dvoretzky

Pour tout ε , si X est un espace normé de dimension n, il existe un sous-espace E < X de dimension $k \ge c\varepsilon^2 \log(n)$ tel que

$$d_{BM}(E,\ell^2(k)) \leq 1 + \varepsilon,$$

c.-à-d. que E est presque Euclidien.

Théorème de Ramsey

Soit $[\mathbb{N}]^k$ l'ensemble des ensembles à k éléments de \mathbb{N} .

Théorème de Ramsey infini

Si γ est un coloriage fini de $[\mathbb{N}]^k$, il existe un sous-ensemble infini $A \subset \mathbb{N}$ tel que $[A]^k$ est monochromatique.

Reformulation de Dvoretzky

Soit \mathbb{S}^d la sphère unité de $\ell^2(d)$

Dvoretzky, Version Ramsey

Si γ est un coloriage fini de \mathbb{S}^{∞} , pour tout N et ε , il existe une copie de \mathbb{S}^{N} qui est contenue dans l' ε -voisinage d'une seule couleur.

Stabilité pour fonction

Soit X un espace métrique et $G \curvearrowright X$ une action uniformément continue et $f: X \to \mathbb{R}$ une fonction bornée, uniformément continue.

Stabilité sous oscillation finie (Milman)

On dit que f est stable sous l'oscillation finie si pour tout ensemble fini $F \subset X$,

$$\forall \varepsilon, \exists g \in G, \forall x, y \in gF, d(f(x), f(y)) < \varepsilon$$

En mots : pour tout ensemble fini F, il existe une translation de F sur laquelle f est presque constante.

Stabilité pour action

Soit X un espace métrique et $G \curvearrowright X$ une action uniformément continue.

Stabilité sous oscillation finie (Milman)

On dit que $G \curvearrowright X$ est stable sous l'oscillation finie si pour toute fonction $f: X \to \mathbb{R}$ bornée, uniformément continue, f est stable sous l'oscillation finie.

Reformulation du théorème de Ramsey

Ramsey infini, formulé par Milman

L'action du groupe symétrique infini $S_{\infty} \curvearrowright [\mathbb{N}]^k$ (avec la métrique discrète) est stable sous l'oscillation finie.

Reformulation du théorème de Dvoretzky

Dvoretzky, formulé par Milman

L'action du groupe unitaire infini $U_{\infty} \curvearrowright \mathbb{S}^{\infty}$ est stable sous l'oscillation finie.

Pour prouver : besoin de concentration de la mesure.

Conclusion

Merci!