

Investigación sobre T-Pot

Miguel Ángel Roldán de Haro

Índice

Índice	1
1. Objetivo	2
2. ¿Qué es T-pot?	2
3. Instalar T-pot	3
4. Configuración Web	12
5. Ataque desde Kali Linux	19
6. Visualizar el ataque	24

1. Objetivo

El objetivo de este proyecto es realizar una investigación profunda sobre el funcionamiento de la herramienta T-Pot, con el fin de comprender mejor los diferentes tipos de ataques que se pueden llevar a cabo sobre un servicio en red.

2. ¿Qué es T-pot?

T-Pot es un proyecto de código abierto que proporciona una plataforma de investigación para el análisis de amenazas y la detección de intrusiones en sistemas de tecnologías de la información y la comunicación (TIC). Ofrece un entorno simulado que imita una infraestructura real, permitiendo a investigadores y profesionales de la seguridad cibernética estudiar y comprender las amenazas utilizando una variedad de herramientas de código abierto para monitorear y analizar el tráfico de red y las actividades de los sistemas.

3. Instalar T-pot

En primer lugar debemos tener claro que este proyecto se va a realizar usando **máquinas virtuales**, para ello usaremos **Virtual Box** (https://www.virtualbox.org), dicho eso vamos a descargarnos la imagen ISO de T-pot, disponible en: https://github.com/telekom-security/tpotce

Posteriormente y dentro de **VirtualBox** pulsaremos en la parte superior, en el apartado de **Máquina** pulsamos en la opción **nueva**

Nos aparecerá una ventana que nos permite **añadir la imagen ISO** que descargamos anteriormente y le **añadiremos un nombre a la máquina virtual** y pulsamos en Siguiente

Posteriormente nos aparecerá esta ventana para **configurar el nombre y la contraseña** de nuestra máquina virtual y pulsamos en Siguiente

Configuramos la RAM y el procesador , en mi caso le otorgo unos **8GB de RAM y 2 procesadores** y pulsamos en Siguiente

Acto seguido se nos preguntará cuánto **espacio de disco** le aplicaremos, en mi caso dejé **20 GB**

Se nos abrirá un pequeño **resumen de la configuración** de la máquina y pulsaremos en Terminar

Una vez arrancada la máquina virtual veremos **este panel y pulsaremos Enter** para confirmar

Posteriormente se nos mostrará una ventana similar a esta, que nos permitirá configurar opciones como la región o la distribución del teclado.

En la siguiente ventana seleccionamos debian.org como mirror de archivos

Justo después en esta ventana **dejaremos este campo en vacio** y simplemente pulsaremos en continuar

Una vez concluida la instalación, seleccionamos la Edición standard.

Se nos pedirá la contraseña para el usuario y contraseña que nos permitirá más tarde acceder via web

Usuario: tpot_admin

Contraseña: admin

Por otro lado se nos pedirá el usuario y contraseña de la maquina

```
[ Enter your web user name ]
Username (tsec not allowed)
[tpot_admin
| Kaceptar > Kaceptar > Cancelar > C
```


Comenzamos la instalación, esto puede durar varios minutos.

```
### Getting update information.

Obj:1 http://deb.debian.org/debian bullseye InRelease
Obj:2 http://deb.debian.org/debian bullseye-updates InRelease
Obj:3 http://security.debian.org/debian-security bullseye-security InRelease
Obj:3 http://security.debian.org/debian-security bullseye-security InRelease
Leyendo lista de paquetes...

### Upgrading packages.

info: Trying to set 'docker.io/restart' [boolean] to 'true'
info: Loading answer for 'docker.io/restart'
info: Trying to set 'debconf/frontend' [select] to 'noninteractive'
info: Loading answer for 'debconf/frontend'
[apt-fast 10:12:24]
[apt-fast 10:12:24]
with insumant in this may take a while.

W: --force-yes está desactualizado, en su lugar utilice una de las opciones que empiezan por --allow
Leyendo lista de paquetes...
Cereando árbol de dependencias...
Leyendo la información de estado...
Calculando la actualización...
Leyendo la información de estado...
Calculando la actualización...

W: --force-yes está desactualizado, en su lugar utilice una de las opciones que empiezan por --allow
.0 actualizados, 0 nuevos se instalarán, 0 para eliminar y 0 no actualizados.

### Installing T-Pot dependencies.

[apt-fast 10:12:24]
[apt-fast 10:12:24]
[apt-fast 10:12:24] Working... this may take a while.
```

Una vez finalizada, se verá algo así

debemos de tener en cuenta entonces la URL que aparece en el apartado WEB

https://192.168.3.15:64297

4. Configuración Web

** IMPORTANTE**

 Se debe mantener activa la máquina virtual de T-pot a la vez que realizamos estas operaciones a nivel web

Usando la URL https://192.168.3.15:64297 en un **navegador web** accederemos al panel de T-pot

Usuario: tpot_admin

Contraseña: admin

Una vez dentro, se verá la siguiente interfaz gráfica.

En el **lado izquierdo** se nos muestran todas las **herramientas disponibles**.

Cockpit:

Función: Visualización de datos en tiempo real del honeypot.

Beneficios:

- Monitoreo de la actividad del atacante.
- Identificación de patrones y tendencias.
- Detección de intrusiones en tiempo real.

Cyberchef:

Función: Procesamiento y análisis de datos del honeypot.

Beneficios:

- Extracción de información relevante de los datos.
- Automatización de tareas de análisis.
- Generación de informes personalizados.

Elasticvue:

Función: Visualización de datos de seguridad en tiempo real.

Beneficios:

- Correlación de datos de diferentes fuentes.
- Detección de amenazas de forma proactiva.
- Investigación de incidentes de seguridad.

Kibana:

Función: Visualización y análisis de datos de Elasticsearch.

Beneficios:

- Creación de dashboards personalizados.
- Análisis de tendencias de seguridad.
- Generación de informes detallados.

Spiderfoot:

Función: Recopilación de información sobre la superficie de ataque de una organización.

Beneficios:

- Identificación de activos vulnerables.
- Descubrimiento de posibles amenazas.
- Evaluación de la postura de seguridad.

Resumen:

Estas herramientas se utilizan en conjunto para:

- Monitorear la actividad del atacante en tiempo real.
- Analizar los datos del honeypot para obtener información relevante.
- Detectar intrusiones y amenazas de forma proactiva.
- Investigar incidentes de seguridad.
- Visualizar los datos de seguridad de una manera fácil de entender.

Ejemplos de uso:

- <u>Cockpit</u>: Se puede usar para ver en tiempo real qué IPs están intentando acceder al honeypot, qué puertos están escaneando y qué tipos de ataques están intentando realizar.
- Cyberchef: Se puede usar para analizar los datos del honeypot para identificar patrones de ataque, como las técnicas de ataque más comunes o las vulnerabilidades más explotadas.
- **Elasticvue**: Se puede usar para correlacionar los datos del honeypot con otros datos de seguridad, como los registros de firewall o los eventos de intrusiones, para obtener una vista completa de la actividad del atacante.
- <u>Kibana</u>: Se puede usar para crear dashboards personalizados que muestren las métricas de seguridad más importantes, como el número de ataques por día o el número de hosts infectados.
- **Spiderfoot**: Se puede usar para identificar activos de la organización que son accesibles desde Internet, como servidores web, aplicaciones web y dispositivos IoT.

Si pulsamos sobre la **herramienta Cockpit** se nos pedirán nuestras credenciales configuradas al inicio de la instalación del servidor en mi caso:

Usuario: tpot

Contraseña: admin

Accederemos a un panel similar al mostrado a continuación:

Esta web nos permitirá **comprobar** una gran cantidad de **datos de nuestro servidor a tiempo real,** como usuarios conectados, rendimiento del servidor, registros de incidentes...etc

Incluso contamos con una **Terminal** por comandos para realizar acciones de manera rápida

Por último creamos un usuario nuevo y le damos todos los permisos

Usuario: ma

Contraseña: Contraseña1234

5. Ataque desde Kali Linux

- ** IMPORTANTE**
 - Se debe mantener activa la máquina virtual de T-pot a la vez que realizamos estas operaciones

LLegados a este punto realizaremos una serie de **ataques desde Kali Linux hacia nuestro servidor de T-pot** para luego poder comprobar su impacto desde la consola de administración web del servidor (anteriormente explicada).

• Recordemos la IP del servidor, en mi caso : 192.168.3.15

5.1 Ataque de fuerza bruta

Lanzamos un escaneo de puertos con nmap sobre la IP del servidor

```
nmap -v -sV 192.168.3.15
Starting Nmap 7.94SVN ( https://nmap.org ) at 2024-03-07 09:24 CET
NSE: Loaded 46 scripts for scanning.
Initiating Ping Scan at 09:24
Scanning 192.168.3.15 [2 ports]
Completed Ping Scan at 09:24, 0.00s elapsed (1 total hosts)
Initiating Parallel DNS resolution of 1 host. at 09:24
Completed Parallel DNS resolution of 1 host. at 09:24, 0.00s elapsed
Initiating Connect Scan at 09:24
Scanning 192.168.3.15 [1000 ports]
Discovered open port 1025/tcp on 192.168.3.15
Discovered open port 21/tcp on 192.168.3.15
Discovered open port 80/tcp on 192.168.3.15
Discovered open port 22/tcp on 192.168.3.15
Discovered open port 22/tcp on 192.168.3.15
```

Comprobamos entonces que tenemos **855 servicios activos**, pero el puerto que nos interesa es el **22**, por el que trabaja el **servicio SSH**

```
Completed Connect Scan at 09:24, 4.38s elapsed (1000 total ports)
Initiating Service scan at 09:24
Scanning 855 services on 192.168.3.15
Service scan Timing: About 2.44% done; ETC: 09:49 (0:23:57 remaining)
Service scan Timing: About 4.07% done; ETC: 09:51 (0:25:54 remaining)
Service scan Timing: About 6.64% done; ETC: 09:55 (0:28:37 remaining)
Service scan Timing: About 8.96% done; ETC: 09:52 (0:25:44 remaining)
```

En siguiente paso es usar una wordlist de contraseñas posibles, en mi caso usaré la **wordlist de rockyou.txt** y la pasaré a mi escritorio para trabajar de manera más cómoda

```
冏
                                                   Terminal n.º 1
Archivo Acciones Editar Vista Ayuda
> wordlists ~ Contains the rockyou wordlist
/usr/share/wordlists
  - amass → /usr/share/amass/wordlists
  - dirb → /usr/share/dirb/wordlists
  — dirbuster → /usr/share/dirbuster/wordlists

    dnsmap.txt → /usr/share/dnsmap/wordlist_TLAs.txt

   fasttrack.txt → /usr/share/set/src/fasttrack/wordlist.txt
  - fern-wifi → /usr/share/fern-wifi-cracker/extras/wordlists
  - john.lst → /usr/share/john/password.lst
  - metasploit → /usr/share/metasploit-framework/data/wordlists

    nmap.lst → /usr/share/nmap/nselib/data/passwords.lst

   • sqlmap.txt → /usr/share/sqlmap/data/txt/wordlist.txt

    wfuzz → /usr/share/wfuzz/wordlist

  - wifite.txt → /usr/share/dict/wordlist-probable.txt
Do you want to extract the wordlist rockyou.txt? [Y/n] Y
Extracting rockyou.txt.gz...
[sudo] contraseña para kali:
> wordlists ~ Contains the rockyou wordlist
/usr/share/wordlists
  - dirb → /usr/share/dirb/wordlists
  — dirbuster → /usr/share/dirbuster/wordlists
  - dnsmap.txt → /usr/share/dnsmap/wordlist_TLAs.txt
   fasttrack.txt → /usr/share/set/src/fasttrack/wordlist.txt
  - fern-wifi → /usr/share/fern-wifi-cracker/extras/wordlists
  - john.lst → /usr/share/john/password.lst
  - metasploit → /usr/share/metasploit-framework/data/wordlists
  - nmap.lst → /usr/share/nmap/nselib/data/passwords.lst
  - rockyou.txt
   sqlmap.txt → /usr/share/sqlmap/data/txt/wordlist.txt
   wfuzz → /usr/share/wfuzz/wordlist
  - wifite.txt → /usr/share/dict/wordlist-probable.txt
 // a /usr/share/wordlists
```

En una terminal de Metasploit usamos el siguiente comando:

este nos permitirá **realizar ataques de fuerza bruta por SSH** teniendo en cuenta la wordlist de contraseñas (**rockyou.txt**), para **pasarle dicha wordlist como parámetro**, debemos inserta el siguiente comando (en mi caso tengo la wordlist alojada en mi escritorio)

```
msf6 auxiliary(scanner/ssh/ssh_login) > set PASS_FILE /home/kali/Escritorio/rockyou.txt
PASS_FILE ⇒ /home/kali/Escritorio/rockyou.txt
msf6 auxiliary(scanner/ssh/ssh_login) > ■
```

A continuación **definimos el host remoto** que deseamos atacar usando el siguiente comando

```
msf6 auxiliary(scanner/ssh/ssh_login) > set RHOST 192.168.3.15
RHOST ⇒ 192.168.3.15
msf6 auxiliary(scanner/ssh/ssh_login) > ■
```

Ahora pasaremos a **definir el usuario del sistema que existe a nivel del servidor T-pot** (previamente conocido)

```
msf6 auxiliary(scanner/ssh/ssh_login) > set USERNAME tsec
USERNAME ⇒ tsec
```

Ya por ultimo y para **comprobar que todo el módulo de metasploit** está correctamente configurado pasamos a escribir el siguiente **comando: info**

Basic options: Name	Current Setting	Required	Description	
ANONYMOUS_LOGIN BLANK_PASSWORDS BRUTEFORCE_SPEED DB_ALL_CREDS	false false 5 false	yes no yes no	Attempt to login with a blank username and password Try blank passwords for all users How fast to bruteforce, from 0 to 5 Try each user/password couple stored in the current	
DB ALL PASS	false	no	database Add all passwords in the current database to the li	
		110	st	
DB_ALL_USERS DB_SKIP_EXISTING	false none	no no	Add all users in the current database to the list Skip existing credentials stored in the current dat	
PASSWORD PASS_FILE	/home/kali/Escritorio/rockyou	no no	abase (Accepted: none, user, user&realm) A specific password to authenticate with File containing passwords, one per line	
RHOSTS	.txt 192.168.3.15	yes	The target host(s), see https://docs.metasploit.com /docs/using-metasploit/basics/using-metasploit.html	
RPORT	22	yes	The target port	
STOP_ON_SUCCESS	false	yes	Stop guessing when a credential works for a host	
THREADS	1	yes	The number of concurrent threads (max one per host)	
USERNAME USERPASS_FILE	tsec	no no	A specific username to authenticate as File containing users and passwords separated by sp ace, one pair per line	
USER_AS_PASS	false	no	Try the username as the password for all users	
USER_FILE		no	File containing usernames, one per line	
VERBOSE	false	yes	Whether to print output for all attempts	
Description: This module will test ssh logins on a range of machines and report successful logins. If you have loaded a database plugin and connected to a database this module will record successful logins and hosts so you can track your access. References: https://nvd.nist.gov/vuln/detail/CVE-1999-0502				
View the full module info with the info -d command.				
<pre>msf6 auxiliary(scanner/ssh/ssh_login) > </pre>				

Y ya por ultimo ejecutamos el comando run para que se empiece a ejecutar

```
msf6 auxiliary(scanner/ssh/ssh_login) > run

msf6 auxiliary(scanner/ssh/ssh_login) > run

[*] 192.168.3.15:22 - Starting bruteforce
```

```
msf6 auxiliary(scanner/ssh/ssh_login) > run

[*] 192.168.3.15:22 - Starting bruteforce
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf6 auxiliary(scanner/ssh/ssh_login) >
```

Una vez que tengamos acceso, **nos conectaremos vía SSH al servidor desde Metasploit con la contraseña ya adivinada** y la insertamos. Con esto ya tendremos acceso a nuestro server T-pot

```
msf6 auxiliary(scanner/ssh/ssh_login) > ssh tsec@192.168.3.15
[*] exec: ssh tsec@192.168.3.15
(tsec@192.168.3.15) Password:
```

6. Visualizar el ataque

Para ello nos iremos al apartado de kibana,

Una vez dentro seleccionamos el Dashboard Cowrie:

En este Dashboard veremos las estadísticas del ataque

Así como los protocolos utilizados, en nuestro caso SSH

Otro dato importante es la recolección de palabras usadas

Así como la **IP de donde provienen estos ataques**. En mi caso es mi propia maquina de atacante Kali Linux

