日期 班级 姓名 学号

第十二次作业

题目 1. 设 X 为 B 空间, $T \in \mathfrak{C}(X)$,则 $Ker(I-T) = \{\theta\} \Rightarrow R(I-T) = X$.

证明. 反设 $R(I-T) \subsetneq X$. 则 $\exists x \in X$ 没有 I-T 下的原像,断言 $R(I-T)^2 \subsetneq R(I-T)$,反设 $R(I-T)^2 = R(I-T)$,由于 $(I-T)x \in R(I-T)$,则 $\exists y \in X$ 使得 $(I-T)^2y = (I-T)x \Rightarrow (I-T)\big((I-T)y-x\big) = \theta$,由于 $\mathrm{Ker}(I-T) = \{\theta\}$,则 (I-T)y = x 与 x 没有 I-T 下的原像 矛盾,则 $R(I-T)^2 \subsetneq R(I-T)$.

依此类推,由 Riesz 引理, $\exists y_n \in R(I-T)^n$ 且 $||y_n||=1$ 使得 $\rho(y_n,R(I-T)^{n+1})>1/2$,于 是 $\forall p\geqslant 1,\ n\geqslant 1$ 有

$$||Ty_{n+p} - Ty_n|| = ||Ty_{n+p} - y_{n+p} + y_{n+p} - y_n + y_n - Ty_n|| \ge \rho(y_n, R(I-T)^{n+1}) > 1/2$$

上述第一个不等号是因为: $Ty_{n+p} - y_{n+p} = (T-I)y_{n+p} \in R(I-T)^{n+p+1} \subsetneq R(I-T)^{n+1}, \ y_{n+p} \in R(I-T)^{n+p} \subsetneq R(I-T)^{n+1}, \ y_n - Ty_n = (I-T)y_n \in R(I-T)^{n+1}.$

故 $\{Ty_n\}$ 没有收敛子列,与 T 是紧算子矛盾. 所以 I-T 是满射.

题目 2. $D(\Omega)$ 是序列完备的,即若 $\{\varphi_j\}$ 满足:(1) 存在紧集 $K \subset \Omega$ 使得 supp $\varphi_j \subset K$.

 $(2) \ \forall \varepsilon > 0, \forall \alpha, \ \exists N > 0 \ \textbf{使得} \ \max_K |\partial^\alpha \varphi_n(x) - \partial^\alpha \varphi_m(x)| < \varepsilon, \ (n,m>N), \ \ \textbf{则} \ \exists \varphi \in D(\Omega) \ \textbf{使得} \ \varphi_j \to \varphi.$

证明. 由于 $\{\varphi_j\}$ 满足 $\max_K |\varphi_i - \varphi_j| \to 0$, $(i, j \to \infty)$, 由于 $(C, ||\cdot||_{\infty})$ 是完备的,则存在函数 φ 使得 $\varphi_i \stackrel{||\cdot||_{\infty}}{\longrightarrow} \varphi$.

又由于 $\forall \alpha = (\alpha_1, \cdots, \alpha_n)$,令 $m = |\alpha|$,有 $\max_K |\partial^\alpha \varphi_i - \partial^\alpha \varphi_j| \to 0$, $(i, j \to \infty)$,由于 $(C^m, ||\cdot||)$ 是完备的,其中范数的定义为 $||\varphi|| := \sup_{|\alpha| \leqslant m} \max_K |\partial^\alpha \varphi|$,则存在函数 ψ 使得 $\partial^\alpha \varphi_j \overset{||\cdot||_\infty}{\longrightarrow} \psi$.

由于收敛极限的导数就是导函数收敛的极限,所以 $\partial^{\alpha}\varphi = \psi$,由于 α 的任意性可知, φ 的任意阶导数都存在,即 $\varphi \in C_0^{\infty}$. 故 $\forall \alpha$ 有 $\max_K |\partial^{\alpha}\varphi_j - \partial^{\alpha}\varphi| \to 0$,则在 $D(\Omega)$ 中有 $\varphi_j \to \varphi$. \square

题目 3. 在 \mathbb{R}^1 中 $f_j(x) = \frac{1}{\pi} \frac{\sin jx}{x}$ $(j = 1, 2, \cdots)$,则 $f_j \to \delta$.

证明. 由于 $\forall \varphi \in D(\mathbb{R}^1)$ 有

$$|\langle f_j, \varphi \rangle - \langle \delta, \varphi \rangle| = \left| \frac{1}{\pi} \int_{\mathbb{R}^1} \frac{\sin jx}{x} \varphi(x) \, \mathrm{d}x - \varphi(0) \right| = \left| \frac{1}{\pi} \int_{\mathbb{R}^1} \frac{\varphi(x) - \varphi(0)}{x} \sin jx \, \mathrm{d}x \right|$$

第二个等号是因为可通过留数定理构造挖去原点的围道计算 $\int_{\mathbb{R}^1} \frac{\sin jx}{\pi x} \, \mathrm{d}x = \int_{\mathbb{R}^1} \frac{\sin x}{\pi x} \, \mathrm{d}x = 1$,又由于 φ 在 0 处导数存在,于是通过 Riemann-Lebesgue 引理可知,当 $j \to \infty$ 时, $|\langle f_j, \varphi \rangle - \langle \delta, \varphi \rangle| \to 0$,故 $f_j \to \delta$.

题目 4. 设
$$T \in D'(\Omega)$$
,则 $\frac{\partial^2 T}{\partial x_k \partial x_j} = \frac{\partial^2 T}{\partial x_j \partial x_k}$.

证明.

$$\begin{split} \langle \frac{\partial^2 T}{\partial x_k \partial x_j}, \varphi \rangle &= -\langle \frac{\partial T}{\partial x_k}, \frac{\partial \varphi}{\partial x_j} \rangle = \langle T, \frac{\partial^2 \varphi}{\partial x_j \partial x_k} \rangle = \langle T, \frac{\partial^2 \varphi}{\partial x_k \partial x_j} \rangle \\ &= -\langle \frac{\partial T}{\partial x_j}, \frac{\partial \varphi}{\partial x_k} \rangle = \langle \frac{\partial^2 T}{\partial x_j \partial x_k}, \varphi \rangle \end{split}$$