马尔可夫链和熵率

- □ 马尔可夫链
- ② 熵率
- ③ 条件 Huffman 编码
- ④ 英文文本压缩

● 已讲解: 独立同分布随机序列压缩

● 下面讲解: 非独立同分布随机序列—马尔可夫链压缩

马尔可夫链和熵率

- □ 马尔可夫链
- 2 熵率
- ③ 条件 Huffman 编码
- 英文文本压缩

考虑随机序列:

 $X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9, X_{10}, X_{11}, X_{12}, X_{13}, X_{14}, X_{15} \dots$

联合分布: $\Pr[X_1, X_2, \cdots, X_n]$

考虑随机序列:

$$X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9, X_{10}, X_{11}, X_{12}, X_{13}, X_{14}, X_{15} \dots$$

联合分布: $\Pr[X_1, X_2, \cdots, X_n]$

$$\diamondsuit X_t \in \mathcal{X} = \{1, \cdots, m\}$$

- X 为 状态空间
- x ∈ X 为状态

考虑随机序列:

$$X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9, X_{10}, X_{11}, X_{12}, X_{13}, X_{14}, X_{15} \dots$$

联合分布: $\Pr[X_1, X_2, \cdots, X_n]$

$$\Leftrightarrow X_t \in \mathcal{X} = \{1, \dots, m\}$$

- 况 为 状态空间
- x∈X 为状态

- $s_t(x)$: t 时刻状态为 x 的概率
- t 时刻的状态空间向量为

$$s_t = [s_t(1), s_t(2), \dots, s_t(m)]$$

平稳过程

定义 (平稳随机过程): 对任意 n 和任意 k, 若联合概率分布满足以下平移不变性:

$$\Pr[X_1,\cdots,X_n]=\Pr[X_{1+k},\cdots,X_{n+k}]$$

则称该随机过程是平稳的。

平稳过程

定义 (平稳随机过程): 对任意 n 和任意 k, 若联合概率分布满足以下平移不变性:

$$\Pr[X_1,\cdots,X_n]=\Pr[X_{1+k},\cdots,X_{n+k}]$$

则称该随机过程是平稳的。

平稳随机过程具有"平移不变"的概率分布:

$$\underbrace{X_1, X_2, X_3}_{\Pr[X_1, X_2, X_3]}, X_4, X_5, X_6, X_7, X_8, X_9, \underbrace{X_{10}, X_{11}, X_{12}}_{\Pr[X_8, X_9, X_{10}]}, X_{13}, X_{14}, X_{15} \dots$$

$$\Rightarrow \Pr[X_1, X_2, X_3] = \Pr[X_8, X_9, X_{10}]$$

定义 (一阶马尔可夫链): 一个离散、平稳的随机过程 X_1, X_2, \ldots 若满足:

$$\Pr[X_{t+1}|X_t,\cdots,X_1] = \Pr[X_{t+1}|X_t],$$

则称为一阶马尔可夫链或马尔可夫过程。

定义 (一阶马尔可夫链): 一个离散、平稳的随机过程 $X_1, X_2, ...$ 若满足:

$$\Pr[X_{t+1}|X_t,\cdots,X_1] = \Pr[X_{t+1}|X_t],$$

则称为一阶马尔可夫链或马尔可夫过程。

状态转移矩阵

● 时不变马尔可夫链可由转移概率 p_{i,j} 确定:

$$p_{j,i} = \Pr[X_{t+1} = j | X_t = i]$$

状态转移矩阵

● 时不变马尔可夫链可由转移概率p_{i,j} 确定:

$$p_{j,i} = \Pr[X_{t+1} = j | X_t = i]$$

● 转移概率可以写成 m×m 的状态转移矩阵 P:

$$m{P} = \left[egin{array}{ccccc} p_{1,1} & p_{1,2} & \cdots & p_{1,m} \\ p_{2,1} & p_{2,2} & \cdots & p_{2,m} \\ dots & dots & \ddots & dots \\ p_{m,1} & p_{m,2} & \cdots & p_{m,m} \end{array}
ight]$$

$$\mathbf{P} = \left[\begin{array}{cc} 0.9 & 0.5 \\ 0.1 & 0.5 \end{array} \right]$$

初始状态:

$$p_1 = \begin{bmatrix} \Pr[X_1 = \text{Sunny}] = 0 \\ \Pr[X_1 = \text{Rainy}] = 1 \end{bmatrix}$$

初始状态:

$$p_1 = \begin{bmatrix} \Pr[X_1 = \text{Sunny}] = 0 \\ \Pr[X_1 = \text{Rainy}] = 1 \end{bmatrix}$$

$$p_2 = Pp_1 = P \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$

$$egin{aligned} oldsymbol{p}_1 &= egin{bmatrix} \Pr[X_1 = \operatorname{Sunny}] = 0 \ \Pr[X_1 = \operatorname{Rainy}] = 1 \end{bmatrix} \ oldsymbol{p}_2 &= oldsymbol{P} oldsymbol{p}_1 = oldsymbol{P} oldsymbol{0} \ 1 \end{bmatrix} = egin{bmatrix} 0.5 \ 0.5 \end{bmatrix} \end{aligned}$$

$$p_3 = Pp_2 = P \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 0.7 \\ 0.3 \end{bmatrix}$$

$$egin{aligned} oldsymbol{p}_1 &= egin{bmatrix} \Pr[X_1 = \operatorname{Sunny}] = 0 \ \Pr[X_1 = \operatorname{Rainy}] = 1 \end{bmatrix} \ oldsymbol{p}_2 &= oldsymbol{P} oldsymbol{p}_1 = oldsymbol{P} oldsymbol{0} \ 1 \end{bmatrix} = egin{bmatrix} 0.5 \ 0.5 \end{bmatrix} \end{aligned}$$

$$p_3 = Pp_2 = P \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 0.7 \\ 0.3 \end{bmatrix}$$

初始状态:
$$p_1 = \begin{bmatrix} \Pr[X_1 = \text{Sunny}] = 0 \\ \Pr[X_1 = \text{Rainy}] = 1 \end{bmatrix}$$
$$p_2 = Pp_1 = P\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$
$$p_3 = Pp_2 = P\begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 0.7 \\ 0.3 \end{bmatrix}$$
$$p_4 = \begin{bmatrix} 0.78 \\ 0.22 \end{bmatrix}$$
:

初始状态:

$$p_1 = \begin{bmatrix} \Pr[X_1 = \text{Sunny}] = 1 \\ \Pr[X_1 = \text{Rainy}] = 0 \end{bmatrix}$$

初始状态:

$$p_1 = \begin{bmatrix} \Pr[X_1 = \text{Sunny}] = 0.5 \\ \Pr[X_1 = \text{Rainy}] = 0.5 \end{bmatrix}$$

平稳分布

定义:满足以下条件的状态分布向量 z 称为平稳分布:

$$z = Pz \Rightarrow (P - I)z = 0$$
 (1)

平稳分布

定义:满足以下条件的状态分布向量 z 称为平稳分布:

$$z = Pz \quad \Rightarrow \quad (P - I)z = 0 \tag{1}$$

z 为概率分布向量,

$$[1 \cdots 1]z = 1. \tag{2}$$

平稳分布

定义: 满足以下条件的状态分布向量 z 称为平稳分布:

$$z = Pz \quad \Rightarrow \quad (P - I)z = 0 \tag{1}$$

2 为概率分布向量,

$$[1 \cdots 1] z = 1. \tag{2}$$

求解: 由 (1) 和 (2), (假设 Q 可逆)

$$egin{aligned} \underbrace{\left[egin{array}{c} 1 & \cdots & 1 \ \{P-I\}_{\setminus r_1} \end{array}
ight]} z = \left[egin{array}{c} 1 \ \mathbf{0} \end{array}
ight] \Rightarrow z = Q^{-1} \left[egin{array}{c} 1 \ \mathbf{0} \end{array}
ight] \end{aligned}$$

其中 r_1 是 P-I 的第一行 (任一行都行)。即,平稳分布 z 是 Q^{-1} 的第一列。

平稳分布的计算

计算下面这个马尔可夫链的平稳概率:

$$\mathbf{P} = \left[\begin{array}{ccc} 0.8 & 0.5 & 0.7 \\ 0.1 & 0.5 & 0.2 \\ 0.1 & 0 & 0.1 \end{array} \right]$$

马尔可夫链和熵率

- ❶ 马尔可夫链
- 2 熵率
- ③ 条件 Huffman 编码
- ④ 英文文本压缩

熵率

$$H(X_1) \le \log |\mathcal{X}_1|$$

$$H(X_1, X_2) \le \log |\mathcal{X}_1| + \log |\mathcal{X}_2|$$

$$\vdots$$

$$H(X_1, \dots, X_n) \le \sum_{i=1}^n \log |\mathcal{X}_i|$$

平均比特数:

$$\frac{1}{n}H(X_1,\cdots,X_n)$$

熵率的定义

定义: 随机过程 X_1, X_2, \ldots 的熵率定义为 (假设极限存在):

$$H(\mathcal{X}) = \lim_{n\to\infty} \frac{1}{n} H(X_1, \dots, X_n)$$

熵率的定义

定义: 随机过程 X_1, X_2, \ldots 的熵率定义为 (假设极限存在):

$$H(\mathcal{X}) = \lim_{n \to \infty} \frac{1}{n} H(X_1, \dots, X_n)$$

定义: 条件熵率定义为:

$$H'(\mathcal{X}) = \lim_{n \to \infty} H(X_n | X_{n-1}, \cdots, X_1)$$

性质: 对于平稳随机过程, $H(X_n|X_{n-1},\ldots,X_1)$ 关于 n 是非增的, 且有极限值 $H'(\mathcal{X})$.

性质: 对于平稳随机过程, $H(X_n|X_{n-1},\ldots,X_1)$ 关于 n 是非增的, 且有极限值 $H'(\mathcal{X})$.

$$H(X_n|X_{n-1},\ldots,X_1) \leq H(X_n|X_{n-1},\ldots,X_2)$$

性质: 对于平稳随机过程, $H(X_n|X_{n-1},...,X_1)$ 关于 n 是非增的, 且有极限值 $H'(\mathcal{X})$.

$$H(X_n|X_{n-1},...,X_1) \le H(X_n|X_{n-1},...,X_2)$$

= $H(X_{n-1}|X_{n-2},...,X_1)$ 平稳特性

性质: 对于平稳随机过程, $H(X_n|X_{n-1},...,X_1)$ 关于 n 是非增的, 且有极限值 $H'(\mathcal{X})$.

$$H(X_n|X_{n-1},...,X_1) \le H(X_n|X_{n-1},...,X_2)$$

= $H(X_{n-1}|X_{n-2},...,X_1)$ 平稳特性

$$H(\mathcal{X}) = H'(\mathcal{X})$$

性质: 对于平稳随机过程, $H(X_n|X_{n-1},\ldots,X_1)$ 关于 n 是非增的, 且有极限值 $H'(\mathcal{X})$.

$$H(X_n|X_{n-1},\ldots,X_1) \le H(X_n|X_{n-1},\ldots,X_2)$$

= $H(X_{n-1}|X_{n-2},\ldots,X_1)$ 平稳特性

$$\mathit{H}(\mathcal{X}) = \mathit{H}'(\mathcal{X})$$

$$H(\mathcal{X}) = \lim_{n \to \infty} \frac{1}{n} H(X_1, \dots, X_n)$$

性质: 对于平稳随机过程, $H(X_n|X_{n-1},...,X_1)$ 关于 n 是非增的, 且有极限值 $H'(\mathcal{X})$.

$$H(X_n|X_{n-1},\ldots,X_1) \le H(X_n|X_{n-1},\ldots,X_2)$$

= $H(X_{n-1}|X_{n-2},\ldots,X_1)$ 平稳特性

$$H(\mathcal{X}) = H'(\mathcal{X})$$

$$H(\mathcal{X}) = \lim_{n \to \infty} \frac{1}{n} H(X_1, \dots, X_n)$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n H(X_i | X_{i-1}, \dots, X_1)$$
 链式法则

性质: 对于平稳随机过程, $H(X_n|X_{n-1},...,X_1)$ 关于 n 是非增的, 且有极限值 $H'(\mathcal{X})$.

$$H(X_n|X_{n-1},\ldots,X_1) \le H(X_n|X_{n-1},\ldots,X_2)$$

= $H(X_{n-1}|X_{n-2},\ldots,X_1)$ 平稳特性

$$H(\mathcal{X}) = H'(\mathcal{X})$$

$$H(\mathcal{X}) = \lim_{n \to \infty} \frac{1}{n} H(X_1, \dots, X_n)$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n H(X_i | X_{i-1}, \dots, X_1)$$
 链式法则
$$= \lim_{n \to \infty} H(X_n | X_{n-1}, \dots, X_1)$$
 平稳后条件熵率占主导

性质: 对于平稳随机过程, $H(X_n|X_{n-1},\ldots,X_1)$ 关于 n 是非增的, 且有极限值 $H'(\mathcal{X})$.

$$H(X_n|X_{n-1},\ldots,X_1) \le H(X_n|X_{n-1},\ldots,X_2)$$

= $H(X_{n-1}|X_{n-2},\ldots,X_1)$ 平稳特性

$$H(\mathcal{X}) = H'(\mathcal{X})$$

$$H(\mathcal{X}) = \lim_{n \to \infty} \frac{1}{n} H(X_1, \dots, X_n)$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n H(X_i | X_{i-1}, \dots, X_1) \quad$$
 $= \lim_{n \to \infty} H(X_n | X_{n-1}, \dots, X_1)$ 平稳后条件熵率占主导
$$= H'(\mathcal{X})$$

平稳信源的压缩

平稳信源、马尔可夫信源等等

平稳信源的压缩

推论: 每符号最优码率 R^* 满足:

$$\frac{1}{n}H(X_1,\cdots,X_n)\leq R^*\leq \frac{1}{n}H(X_1,\cdots,X_n)+\frac{1}{n}$$

另外, 如果 X_1, \ldots, X_n 是一个平稳随机过程,

$$\lim_{n\to\infty} R^* = H(\mathcal{X})$$

其中 H(X) 是该随机过程的熵率。

马尔可夫信源的压缩

推论: 令 X_1, X_2, \ldots 为平稳概率为 z、转移矩阵为 P 的平稳马尔可夫链,令 $X_1 \sim z$, 那么熵率为:

$$H(\mathcal{X}) = H(X_n|X_{n-1}) = -\sum_{i=1}^m \sum_{j=1}^m z_i p_{j,i} \log p_{j,i}.$$

注:

$$H(X_n|X_{n-1}) = \sum_{i=1}^m z_i H(X_n|X_{n-1} = s_i),$$

$$H(X_n|X_{n-1} = s_i) = -\sum_{j=1}^m p_{j,i} \log p_{j,i}.$$

马尔可夫链熵率的计算

计算以下马尔可夫链的熵率:

$$\mathbf{P} = \left[\begin{array}{cc} 0.9 & 0.2 \\ 0.1 & 0.8 \end{array} \right]$$

马尔可夫链和熵率

- ❶ 马尔可夫链
- 2 熵率
- ③ 条件 Huffman 编码
- 英文文本压缩

考虑平稳随机过程 X_1,X_2,\ldots : $\mathcal{X}=\{1,\ldots,m\}$,平稳概率为 z、转移矩阵为 $P_{m\times m}$ 。

- 基于 *P*_{X1} 编码 *X*₁ (Huffman)
- 基于 p_i 编码 X_n (给定条件 $x_{n-1}=i$) (Huffman) $(p_i: P_{m \times m})$ 的第 i 列)

令 $\mathcal{X} = \{1, 2, 3, 4\}$, $p_{X_1} = [1/2 \ 1/4 \ 1/8 \ 1/8]$, 转移概率矩阵为:

$$\mathbf{P} = \begin{bmatrix} 1/2 & 1/4 & 1/8 & 1/8 \\ 1/4 & 1/8 & 1/8 & 1/2 \\ 1/8 & 1/8 & 1/2 & 1/4 \\ 1/8 & 1/2 & 1/4 & 1/8 \end{bmatrix}$$

令 $\mathcal{X} = \{1, 2, 3, 4\}$, $p_{X_1} = [1/2 \ 1/4 \ 1/8 \ 1/8]$, 转移概率矩阵为:

$$\mathbf{P} = \left[\begin{array}{cccc} 1/2 & 1/4 & 1/8 & 1/8 \\ 1/4 & 1/8 & 1/8 & 1/2 \\ 1/8 & 1/8 & 1/2 & 1/4 \\ 1/8 & 1/2 & 1/4 & 1/8 \end{array} \right]$$

 $z = [1/4 \quad 1/4 \quad 1/4 \quad 1/4],$

令 $\mathcal{X} = \{1, 2, 3, 4\}$, $p_{X_1} = [1/2 \ 1/4 \ 1/8 \ 1/8]$, 转移概率矩阵为:

$$\mathbf{P} = \left[\begin{array}{cccc} 1/2 & 1/4 & 1/8 & 1/8 \\ 1/4 & 1/8 & 1/8 & 1/2 \\ 1/8 & 1/8 & 1/2 & 1/4 \\ 1/8 & 1/2 & 1/4 & 1/8 \end{array} \right]$$

 $z = [1/4 \quad 1/4 \quad 1/4 \quad 1/4], \quad \mathit{H}(z) = 2 \; \; \mathrm{bits}$

令 $\mathcal{X} = \{1, 2, 3, 4\}$, $p_{X_1} = [1/2 \ 1/4 \ 1/8 \ 1/8]$, 转移概率矩阵为:

$$P = \begin{bmatrix} 1/2 & 1/4 & 1/8 & 1/8 \\ 1/4 & 1/8 & 1/8 & 1/2 \\ 1/8 & 1/8 & 1/2 & 1/4 \\ 1/8 & 1/2 & 1/4 & 1/8 \end{bmatrix}$$

$$z = [1/4 \quad 1/4 \quad 1/4 \quad 1/4], \quad H(z) = 2 \text{ bits}$$

$$R = 1 \cdot 1/2 + 2 \cdot 1/4 + 2(3 \cdot 1/8) = 1.75$$
 bits.

令 $\mathcal{X} = \{1, 2, 3, 4\}$, $p_{X_1} = [1/2 \ 1/4 \ 1/8 \ 1/8]$, 转移概率矩阵为:

$$P = \begin{bmatrix} 1/2 & 1/4 & 1/8 & 1/8 \\ 1/4 & 1/8 & 1/8 & 1/2 \\ 1/8 & 1/8 & 1/2 & 1/4 \\ 1/8 & 1/2 & 1/4 & 1/8 \end{bmatrix}$$

$$z = [1/4 \quad 1/4 \quad 1/4 \quad 1/4], \quad \mathit{H}(z) = 2 \; \; \mathrm{bits}$$

$$R = 1 \cdot 1/2 + 2 \cdot 1/4 + 2(3 \cdot 1/8) = 1.75$$
 bits.

Huffman 编码: $X_1 \to \{0\ 10\ 110\ 111\}$ 。

令 $\mathcal{X} = \{1, 2, 3, 4\}$, $p_{X_1} = [1/2 \ 1/4 \ 1/8 \ 1/8]$, 转移概率矩阵为:

$$P = \begin{bmatrix} 1/2 & 1/4 & 1/8 & 1/8 \\ 1/4 & 1/8 & 1/8 & 1/2 \\ 1/8 & 1/8 & 1/2 & 1/4 \\ 1/8 & 1/2 & 1/4 & 1/8 \end{bmatrix}$$

$$z = [1/4 \quad 1/4 \quad 1/4 \quad 1/4], \quad H(z) = 2$$
 bits

$$R = 1 \cdot 1/2 + 2 \cdot 1/4 + 2(3 \cdot 1/8) = 1.75$$
 bits.

Huffman 编码: $X_1 \to \{0 \ 10 \ 110 \ 111\}$ 。 给定条件 x_{n-1} Huffman 编码 x_n :

$$x_{n-1} = 1 \Rightarrow x_n \in \{0 \ 10 \ 110 \ 111\}$$

令 $\mathcal{X} = \{1, 2, 3, 4\}$, $p_{X_1} = [1/2 \ 1/4 \ 1/8 \ 1/8]$, 转移概率矩阵为:

$$P = \begin{bmatrix} 1/2 & 1/4 & 1/8 & 1/8 \\ 1/4 & 1/8 & 1/8 & 1/2 \\ 1/8 & 1/8 & 1/2 & 1/4 \\ 1/8 & 1/2 & 1/4 & 1/8 \end{bmatrix}$$

$$z = [1/4 \quad 1/4 \quad 1/4 \quad 1/4], \quad H(z) = 2 \text{ bits}$$

$$R = 1 \cdot 1/2 + 2 \cdot 1/4 + 2(3 \cdot 1/8) = 1.75$$
 bits.

Huffman 编码: $X_1 \to \{0 \ 10 \ 110 \ 111\}$ 。 给定条件 x_{n-1} Huffman 编码 x_n :

$$x_{n-1} = 1 \Rightarrow x_n \in \{0 \ 10 \ 110 \ 111\}$$

 $x_{n-1} = 2 \Rightarrow x_n \in \{10 \ 110 \ 111 \ 0\}$

令 $\mathcal{X} = \{1, 2, 3, 4\}, p_{X_1} = [1/2 1/4 1/8 1/8], 转移概率矩阵为:$

$$P = \left[\begin{array}{cccc} 1/2 & 1/4 & 1/8 & 1/8 \\ 1/4 & 1/8 & 1/8 & 1/2 \\ 1/8 & 1/8 & 1/2 & 1/4 \\ 1/8 & 1/2 & 1/4 & 1/8 \end{array} \right]$$

$$z = [1/4 \quad 1/4 \quad 1/4 \quad 1/4], \quad H(z) = 2 \text{ bits}$$

$$R = 1 \cdot 1/2 + 2 \cdot 1/4 + 2(3 \cdot 1/8) = 1.75$$
 bits.

Huffman 编码: $X_1 \to \{0 \ 10 \ 110 \ 111\}$ 。 给定条件 x_{n-1} Huffman 编码 x_n :

$$x_{n-1} = 1 \Rightarrow x_n \in \{0 \ 10 \ 110 \ 111\}$$

$$x_{n-1} = 2 \Rightarrow x_n \in \{10\ 110\ 111\ 0\}$$

$$x_{n-1} = 3 \Rightarrow x_n \in \{110\ 111\ 0\ 10\}$$

$$x_{n-1} = 4 \Rightarrow x_n \in \{111\ 0\ 10\ 110\}$$

令 $\mathcal{X} = \{1, 2, 3, 4\}$, $p_{X_1} = [1/2 \ 1/4 \ 1/8 \ 1/8]$, 转移概率矩阵为:

$$P = \begin{bmatrix} 1/2 & 1/4 & 1/8 & 1/8 \\ 1/4 & 1/8 & 1/8 & 1/2 \\ 1/8 & 1/8 & 1/2 & 1/4 \\ 1/8 & 1/2 & 1/4 & 1/8 \end{bmatrix}$$

$$z = [1/4 \quad 1/4 \quad 1/4 \quad 1/4], \quad H(z) = 2 \text{ bits}$$

$$R = 1 \cdot 1/2 + 2 \cdot 1/4 + 2(3 \cdot 1/8) = 1.75$$
 bits.

Huffman 编码: $X_1 \to \{0 \ 10 \ 110 \ 111\}$ 。 给定条件 x_{n-1} Huffman 编码 x_n :

$$x_{n-1} = 1 \Rightarrow x_n \in \{0 \ 10 \ 110 \ 111\}$$

$$x_{n-1} = 2 \Rightarrow x_n \in \{10\ 110\ 111\ 0\}$$

$$x_{n-1} = 3 \Rightarrow x_n \in \{110\ 111\ 0\ 10\}$$

$$x_{n-1} = 4 \Rightarrow x_n \in \{111\ 0\ 10\ 110\}$$

马尔可夫序列: 12411342...

令 $\mathcal{X} = \{1, 2, 3, 4\}$, $p_{X_1} = [1/2 \ 1/4 \ 1/8 \ 1/8]$, 转移概率矩阵为:

$$P = \left[\begin{array}{cccc} 1/2 & 1/4 & 1/8 & 1/8 \\ 1/4 & 1/8 & 1/8 & 1/2 \\ 1/8 & 1/8 & 1/2 & 1/4 \\ 1/8 & 1/2 & 1/4 & 1/8 \end{array} \right]$$

$$z = [1/4 \quad 1/4 \quad 1/4 \quad 1/4], \quad H(z) = 2 \text{ bits}$$

$$R = 1 \cdot 1/2 + 2 \cdot 1/4 + 2(3 \cdot 1/8) = 1.75 \ \text{bits}.$$

Huffman 编码: $X_1 \to \{0 \ 10 \ 110 \ 111\}$ 。 给定条件 x_{n-1} Huffman 编码 x_n :

$$x_{n-1} = 1 \Rightarrow x_n \in \{0 \ 10 \ 110 \ 111\}$$

$$x_{n-1} = 2 \Rightarrow x_n \in \{10\ 110\ 111\ 0\}$$

$$x_{n-1} = 3 \Rightarrow x_n \in \{110\ 111\ 0\ 10\}$$

$$x_{n-1} = 4 \Rightarrow x_n \in \{111\ 0\ 10\ 110\}$$

马尔可夫序列: 12411342...

 \Rightarrow Huffman: 00 01 11 00 00 10 11 01... L=16/8=2 bits

令 $\mathcal{X} = \{1, 2, 3, 4\}$, $p_{X_1} = [1/2 \ 1/4 \ 1/8 \ 1/8]$, 转移概率矩阵为:

$$P = \left[\begin{array}{cccc} 1/2 & 1/4 & 1/8 & 1/8 \\ 1/4 & 1/8 & 1/8 & 1/2 \\ 1/8 & 1/8 & 1/2 & 1/4 \\ 1/8 & 1/2 & 1/4 & 1/8 \end{array} \right]$$

$$z = [1/4 \quad 1/4 \quad 1/4 \quad 1/4], \quad H(z) = 2 \text{ bits}$$

$$R = 1 \cdot 1/2 + 2 \cdot 1/4 + 2(3 \cdot 1/8) = 1.75 \ \text{bits}.$$

Huffman 编码: $X_1 \to \{0 \ 10 \ 110 \ 111\}$ 。 给定条件 x_{n-1} Huffman 编码 x_n :

$$x_{n-1} = 1 \Rightarrow x_n \in \{0 \ 10 \ 110 \ 111\}$$

$$x_{n-1} = 2 \Rightarrow x_n \in \{10\ 110\ 111\ 0\}$$

$$x_{n-1} = 3 \Rightarrow x_n \in \{110\ 111\ 0\ 10\}$$

$$x_{n-1} = 4 \Rightarrow x_n \in \{111\ 0\ 10\ 110\}$$

马尔可夫序列: 12411342...

- \Rightarrow Huffman: 00 01 11 00 00 10 11 01... L=16/8=2 bits
- ⇒ 条件 Huffman: 0 10 0 111 0 110 10 0... L=14/8=1.75 bits

令 $\mathcal{X} = \{1, 2, 3, 4\}, p_{X_1} = [1/2 1/4 1/8 1/8], 转移概率矩阵为:$

$$P = \left[\begin{array}{cccc} 1/2 & 1/4 & 1/8 & 1/8 \\ 1/4 & 1/8 & 1/8 & 1/2 \\ 1/8 & 1/8 & 1/2 & 1/4 \\ 1/8 & 1/2 & 1/4 & 1/8 \end{array} \right]$$

$$z = [1/4 \quad 1/4 \quad 1/4 \quad 1/4], \quad H(z) = 2 \text{ bits}$$

$$R = 1 \cdot 1/2 + 2 \cdot 1/4 + 2(3 \cdot 1/8) = 1.75$$
 bits.

Huffman 编码: $X_1 \rightarrow \{0\ 10\ 110\ 111\}$ 。 给定条件 x_{n-1} Huffman 编码 x_n :

$$x_{n-1} = 1 \Rightarrow x_n \in \{0 \ 10 \ 110 \ 111\}$$

$$x_{n-1} = 2 \Rightarrow x_n \in \{10 \ 110 \ 111 \ 0\}$$

$$x_{n-1} = 3 \Rightarrow x_n \in \{110 \ 111 \ 0 \ 10\}$$

$$x_{n-1} = 4 \Rightarrow x_n \in \{111 \ 0 \ 10 \ 110\}$$

马尔可夫序列: 12411342...

- \Rightarrow Huffman: 00 01 11 00 00 10 11 01... L=16/8=2 bits
- ⇒ 条件 Huffman: 0 10 0 111 0 110 10 0... L=14/8=1.75 bits
- ⇒ 相似地, 给定条件 x_{m-1} 解码 x_m

马尔可夫链和熵率

- ❶ 马尔可夫链
- 2 熵率
- ③ 条件 Huffman 编码
- ④ 英文文本压缩

英文文本压缩

考虑英文文本压缩问题,简单起见,考虑以下包含 27 个符号的集合:

Space A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, -

忽略大小写 (a→ A) 和特殊符号 (.,?!等等)

由于 $|\mathcal{X}| = 27$, 因此可以压缩到码率 $R = \log 27 \approx 4.75$.

问题:对于英文文本,可以无损压缩的最低的码率是多少?

首先考虑:如果一段文本每个符号独立同分布会怎样?英文中最常见的字母是什么?最不常见的字母是什么?

假设独立同分布

最常见的字母是 A 和 E, 最不常见的字母是 Q 和 Z。

Letter	Probability	Letter	Probability	Letter	Probability
А	8.29%	J	0.21%	S	6.33%
В	1.43	К	0.48	Т	9.27
С	3.68	L	3.68	U	2.53
D	4.29	М	3.23	V	1.03
E	12.8	N	7.16	W	1.62
F	2.20	0	7.28	Х	0.20
G	1.71	Р	2.93	Υ	1.57
Н	4.54	Q	0.11	Z	0.09
I	7.16	R	6.90		

$$H(X) = -\sum_{i=1}^{27} p_i \log p_i \approx 4.17 \text{ bits } < 4.75 \text{ bits}$$

i	a_i	p_i	
1	a	0.0575	
2	Ъ	0.0128	1
3	C	0.0263	(
4	d	0.0285	
5	е	0.0913	•
6	f	0.0173	1
7	g	0.0133	8
8	h	0.0313	1
9	i	0.0599	
10	j	0.0006	
11	k	0.0084	1
12	1	0.0335	1
13	m	0.0235	I
14	n	0.0596	1
15	0	0.0689	(
16	p	0.0192	1
17	q	0.0008	(
18	r	0.0508	1
19	S	0.0567	8
20	t	0.0706	1
21	u	0.0334	1
22	v	0.0069	1
23	W	0.0119	1
24	x	0.0073	1
25	у	0.0164	3
26	z	0.0007	2
27	_	0.1028	

假设马尔可夫性

条件可以减小信息熵:

$$H(X_{10}) > H(X_{10}|X_9) > H(X_{10}|X_9X_8) > H(X_{10}|X_9X_8X_7) > \cdots$$

我们知道,英语中常常出现固定的两个字母搭配:

- THIS THAT THE THEN THOUGH
- LOOK GOOD BOOK

英文中 Q 之后通常是什么字母?

- May I ask a question?
- This is the library, please be quiet?

一阶马尔可夫

考虑一段英文文本序列:

$$X_1 \ X_2 \ X_3 \ X_4 \ X_5 \ X_6 \ X_7 \ X_8 \ X_9 \$$

我们可以衡量条件概率

$$\Pr[X_n = a \mid X_{n-1} = b]$$

例如,字母 Q 之后通常是字母 U,

$$\Pr[X_n = "u" \mid X_{n-1} = "q"]$$

图中方块大小表示概率大小

学术词频查询——Google N-Gram Viewer

可以查找更高阶的短语吗? 对于单词而言,一般最高统计三阶

总结

- 马尔可夫链是一个非 IID 随机序列
- 马尔可夫信源可以被进一步压缩(码率更低)

作业

- 复习授课内容
- 预习信道容量
- 独立完成习题
 - **3.16**