

#### QUANTRONICS LABORATORY

**Department of Applied Physics** 

Yale University



## Wafer Assembled Whispering Gallery Mode Resonator

Zlatko Minev



Michel H. Devoret



**loan Pop** 



**Dominic Kwok** 

# Thanks to: Kurtis Nick Rob Schoelkopf QuLab

**RSL Lab** 

### **Desired Goals**

- Study superconducting thin film quality factor
- 'Wafer-Scalable' Circuit QED architecture
- Allow flux bias, copper cavity

#### Means:

- Confine EM Waves in vacuum between patterned Aluminum films
  - Keep fields away from lossy dielectric and copper walls
  - Mode control
- Simple, robust geometry





### Whispering Gallery Resonators

- Dielectric spherical structure
- High Q =  $10^10$ , remove wave from unhealthy material
- Liquid droplets / glass spheres



### Transmission Line Ring – Idea Recap





### 1D Description – 2 Degenerate Ground Modes





### Lift Degeneracy

Simplified impedance view from top

$$Z \propto \sqrt{\frac{L}{C}}$$

What the Photon sees along its path of travel

An effective 1D admittance for the photon along its path

$$Y_{\infty \, \text{TL}} = \frac{1}{377 \,\Omega} \, \frac{w}{d}$$



# Simulation Interesting Points

- Simulation indicate that displacement of a few mm and rotation of a few degrees reduce the internal Q by only a factor of 2
- Simulations suggest internal quality factors in the 10s of millions are achievable.
- Middle Vacuum Participation Ratio: ~97%
- Calculated induced current per photon: ~90 nanoamps
- Verified simulation self consistency between different ways to extract
   coupling and internal Q's







### Sample Holder









## Empty cavity 300 K simulation v. experiment



# 300 K simulation against experiment S21



# 300 K simulation against experiment S21



## Profile



## Whispering Mode



## Changes

- Thicker film: 300nm vs. 50nm
- Added Superconducting Shield
- Replaced crushable indium shim with Teflon
- 1 ring resonator is pattered: chicken wire
- Used heavy weight instead of magnet in cooking wafer sandwich

## Current Samples

#### In line



| Freq (GHz) |    | Qint    | Qcouple  |
|------------|----|---------|----------|
| 3.305      | DM | 125,000 | ~10^6    |
|            | CM | Not yet | measured |

#### Hanger

| Freq (GHz) |    | Qint    | Qcouple |
|------------|----|---------|---------|
| 3.230      | DM | 220,000 | 4*10^6  |
| 2.521      | CM | 88,000  | 50,000  |

### Next ...

- Aluminum Sample Holder
- Cryoperm magnetic shield
- Instrument to investigate losses in different material

- Multiple resonator structures
- Josephson Junction integration & qubits



#### QUANTRONICS LABORATORY

**Department of Applied Physics** 

Yale University



