Linguagens Formais e Autômatos

Aula 2:

Elementos de Matemática Discreta

Prof. Dr. Rodrigo Xavier de Almeida Leão Cientista de Dados e Big Data

ELEMENTOS DE MATEMÁTICA DISCRETA

- Em 1968 a Association for Computing Machinery (ACM) passou a recomendar que todos os cursos de engenharia dos EUA incluíssem em seus currículos um curso de matemática discreta, pois se trata da matemática que fundamenta a Computação.
- Nesta seção será feita a introdução aos fundamentos de matemática discreta. Incluindo conjuntos, relações e funções.
- As referências clássicas de matemática discreta são Menezes (2013) e Preparata e Yeh (1973).

Definição 1.1 Conjunto.

Um Conjunto é uma coleção de zero ou mais objetos distintos, denominados Elementos do conjunto.

Um elemento é uma entidade básica a qual não é definida formalmente. Relativamente ao relacionamento entre elementos e conjuntos, tem-se que:

a) Se um elemento a pertence a um conjunto A denota-se por a ∈ A; caso contrário, a ∉ A

- b) Se todos os elementos de um conjunto A também são elementos de um conjunto B, então afirma-se que A está contido em B ou que A é subconjunto de B e denota-se por A ⊆ B (ou ainda B contém A e B ⊇ A). Adicionalmente, se existe b ∈ B tal que b ∉ A, então afirma-se que A está contido propriamente em B ou que A é subconjunto próprio de B e denota-se por A ⊂ B (ou ainda B contém propriamente A e B ⊃ A)
- c) Os conjuntos A e B são *iguais* se, e somente se, possuem os mesmos elementos, ou seja, A = B se, e somente se, $A \subseteq B$ e $B \subseteq A$

O conjunto sem elementos (ou seja, com zero elementos) é denominado conjunto vazio e é denotado por {} ou Ø. Conjuntos (finitos ou infinitos)

EXEMPLO 1 Conjuntos, Elementos.

- a) $a \in \{b, a\} e c \notin \{b, a\}$
- b) $\{a, b\} = \{b, a\}, \{a, b\} \subseteq \{b, a\} \in \{a, b\} \subset \{a, b, c\}$
- c) Os seguintes conjuntos são infinitos:
 - N Conjunto dos Números Naturais;
 - **Z** Conjunto dos Números Inteiros;
 - Q Conjunto dos Números Racionais;
 - I Conjunto dos Números Irracionais;
 - R Conjunto dos Números Reais.
- d) $\{1, 2, 3\} = \{x \in \mathbb{N} \mid x > 0 \in x < 4\} \in \mathbb{N} = \{x \in \mathbb{Z} \mid x \ge 0\}$
- e) O conjunto dos números pares pode ser denotado por compreensão como segue:

$$\{y \mid y = 2x e x \in \mathbb{N} \}$$

Definição 1.2 União, Intersecção, Diferença, Complemento, Partes, Produto Cartesiano.

Sejam A e B conjuntos. Então:

a) União.

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$$

b) Intersecção.

$$A \cap B = \{x \mid x \in A \in x \in B\}$$

c) Diferença.

$$A - B = \{x \mid x \in A \in x \notin B\}$$

d) Complemento. A operação de complement conjunto fixo U denominado conjunto univ
A' = {x | x ∈ U e x ∉ A}

e) Conjunto das Partes.

$$2^A = \{S \mid S \subseteq A\}$$

f) Produto Cartesiano.

$$A \times B = \{(a, b) \mid a \in A \in b \in B\}$$

É usual denotar um produto cartesiano de um conjunto com ele mesmo como um expoente. Por exemplo:

$$A \times A = A^2$$

EXEMPLO 2 Operações sobre Conjuntos.

Suponha o universo \mathbb{N} e sejam $A = \{0, 1, 2\} \in \mathbb{B} = \{2, 3\}$. Então:

- a) $A \cup B = \{0, 1, 2, 3\}$
- b) $A \cap B = \{2\}$
- c) $A B = \{0, 1\}$
- d) $A' = \{x \in \mathbb{N} \mid x > 2\}$
- e) $2^{B} = \{\emptyset, \{2\}, \{3\}, \{2, 3\}\}$
- f) $A \times B = \{ (0, 2), (0, 3), (1, 2), (1, 3), (2, 2), (2, 3) \}$

Produto Cartesiano

R é uma relação entre elementos de A e de B se, e somente se, $R \subseteq A imes B$.

1.3 Lógica

No texto que segue é suposto que o leitor está familiarizado com os conceitos básicos relativos à Lógica Booleana. Entende-se por *Lógica Booleana* como o estudo dos princípios e métodos usados para distinguir sentenças verdadeiras de falsas.

Definição 1.15 Proposição.

- a) Uma *Proposição* é uma sentença declarativa a qual possui valor lógico verdadeiro ou falso (não-verdadeiro);
- b) Considere um conjunto universo U. Uma *Proposição Sobre U* é uma proposição cujo valor lógico depende de um elemento x ∈ U considerado. □

Os valores lógicos verdadeiro e falso são usualmente denotados por V e F, respectivamente. Uma proposição p a qual descreve alguma propriedade de um elemento $x \in U$ é usualmente denotada por p(x). Toda a proposição p sobre U induz uma partição de U em duas classes de equivalência, como segue:

- a) {x | p(x) é verdadeira}, denominado conjunto verdade de p
- b) {x | p(x) é falsa}, denominado conjunto falsidade de p

Definição 1.16 Tautologia, Contradição.

Seja p uma proposição sobre o conjunto universo U. Então:

- a) p é dita uma Tautologia se p(x) é verdadeira para qualquer x ∈ U
- b) p é dita uma Contradição se p(x) é falsa para qualquer x \in \mathbb{U}

EXEMPLO 12 Proposição, Tautologia, Contradição.

- a) A sentença 3+4>5 é uma proposição;
- b) Para a proposição n! < 10 sobre \mathbb{N} , tem-se que $\{0, 1, 2, 3\}$ é o conjunto verdade e $\{n \in \mathbb{N} \mid n > 3\}$ é o conjunto falsidade;
- c) A proposição n + 1 > n sobre N é uma tautologia;
- d) A proposição "2n é impar" sobre N é uma contradição.

Uma operação ou um operador sobre um conjunto A é uma função da forma op: $A^n \to A$. Portanto, um operador lógico, também denominado conetivo (lógico), é um operador sobre o conjunto das proposições. Uma proposição que não contém operadores é denominada proposição atômica ou simplesmente átomo. O conjunto de todas as proposições lógicas é denotado por \mathbb{P} .

Uma tabela verdade é uma tabela que descreve os valores lógicos de uma proposição em termos das possíveis combinações dos valores lógicos das proposições componentes.

Definição 1.17 Operadores Lógicos.

Os seguintes *Operadores* ou *Conetivos* sobre o conjunto das proposições lógicas P são definidos conforme a tabela verdade ilustrada abaixo:

- a) Negação. Operador denotado pelo símbolo ¬
- b) E. Operador denotado pelo símbolo \wedge
- c) Ou. Operador denotado pelo símbolo v
- d) Se-Então. Operador denotado pelo símbolo ->
- e) Se-Somente-Se. Operador denotado pelo símbolo \leftrightarrow

- d) $Se\text{-}Ent\tilde{a}o$. Operador denotado pelo símbolo \rightarrow
- e) Se-Somente-Se. Operador denotado pelo símbolo \leftrightarrow

_	р	q	-¬p	p ^ q	p ∨ q	$p \rightarrow q$	p ↔ q
	٧	٧	F	V	٧	V	٧
	V	F	F	F	٧	F	F
	F	V	٧	F	V	V	F
	F	F	٧	F	F	V	٧

CONECTIVOS LÓGICOS

Formalmente, propriedades são especificadas através de uma linguagem lógica que faz uso dos **conectivos lógicos:**

conjunção (∧), disjunção (∨), negação (¬) e implicação (→).

Definição 1.18 Relação de Implicação, Equivalência.

As seguintes relações são induzidas pelos operadores → e ↔ sobre P:

a) A relação \Rightarrow , denominada Relação de Implicação ou simplesmente Implicação, é definida pelo conjunto:

$$\{(p,q) \in \mathbb{P}^2 \mid p \to q \text{ \'e uma tautologia}\}$$

b) A relação \Leftrightarrow , denominada Relação de Equivalência ou simplesmente Equivalência, é definida pelo conjunto:

$$\{(p,q) \in \mathbb{P}^2 \mid p \leftrightarrow q \text{ \'e uma tautologia}\}$$

É fácil verificar que ⇒ e ⇔ são relações de ordem e de equivalência, respectivamente.

Negação (Conectivo ~ ou ¬)

- Conectivo: "não"
- Símbolo: ~ ou ¬
- Esquema: ~p ou ¬p (não p)
- Proposição p: O carro é amarelo
- Proposição ~p: O carro não é amarelo
 - ~p : Não é verdade que o carro é amarelo
 - ~p : É falso que o carro é amarelo

Negação (Conectivo ~ ou ¬)

- Conectivo: "não"
- Símbolo: ~ ou ¬
- Esquema: ~p ou ¬p (não p)
- Proposição p: O carro é amarelo
- Proposição ~p: O carro não é amarelo

~p : Não é verdade que o carro é amarelo

~p : É falso que o carro é amarelo

NGUAGENS

Negação (Conectivo ~ ou ¬)

O carro é amarelo (p)

Uma proposição: $2^1 = 2$

P	~p ou ¬p
V	F
F	V

Conjunção (conectivo "e")

Conectivo "e" é denominado conjunção

Símbolo: "^"

Esquema é p ^ q (p e q)

Ex.: Irei para a escola e ao teatro

Irei para a escola (p)

irei para ao teatro (q)

2 proposições = $2^2 = 4$

P	Д	p ^ q (p e q)
V	V	V
V	F	F
F	V	F
F	F	F

Será verdadeira somente se todas as proposições forem verdadeiras.

Conjunção (conectivo "e")

Irei para a escola (p)

irei para ao teatro (q)

2 proposições = $2^2 = 4$

P	Д	p ^ q (p e q)
V	V	V
V	F	F
F	V	F
F	F	F

Disjunção inclusiva

Símbolo: "v"

Conectivo: "ou"

Esquema: p v q (p ou q)

Ex.: Como ou bebo

Proposição 1: como Proposição 2: bebo Tem duas proposições: $2^2 = 4$ p v q P \mathbf{q} \mathbf{v} v F \mathbf{v} F ${f v}$ \mathbf{v} F F F

Embora tenha usado o conectivo ou, nada me impede de fazer as duas coisas, ou seja, significa uma inclusão.

Disjunção inclusiva

Proposição 1: como

Proposição 2: bebo

Tem duas proposições: $2^2 = 4$

P	p	рvq
\mathbf{v}	\mathbf{V}	\mathbf{V}
V	F	\mathbf{v}
F	\mathbf{V}	\mathbf{v}
F	F	F

Disjunção exclusiva

Símbolo "<u>v</u>"

Conectivo "ou...ou"

Esquema: p v q (p ou q)

Ex.: Ou como ou bebo

Com a repetição do conectivo ou, ele exclui a possibilidade de fazer as duas coisas, ou seja, significa uma exclusão.

Disjunção exclusiva

Proposição 1: Ou como

Proposição 2: Ou bebo

Tem duas proposições: $2^2 = 4$

P	g	<u>p</u> <u>v</u> q	
V	\mathbf{V}	F	
V	F	V	
F	V	V	
F	F	F	

Implicação

Símbolo: →

Conectivo "se...então"

Esquema: $p \rightarrow q$ (se p então q)

Ex.: Se sim então imprima.

LINGUAGENS

Implicação

Bicondicional: $p \leftrightarrow q$ (p se e somente se q)

Р	Q	$P \leftrightarrow Q$
V	V	V
V	F	F
F	V	F
F	F	V

Quantificador Universal

Utilizado quando queremos nos referir a todos os elementos de um conjunto.

"para todo", "qualquer que seja" ou "para cada".

$$\forall$$
 n \in \mathbb{N} , n.0 = 0.n = 0

Quantificador Existencial

Faz referência a pelo menos um elemento pertencente ao conjunto. "existe um", "existe pelo menos um", "algum" ou "existe"

Exemplo: existe pelo menos um número natural n que, subtraído de seu quadrado, resulta em 0, isto é:

$$\exists n \in \mathbb{N}, n^2 - n = 0$$

Como sabemos que dois conjuntos são iguais?

Ora, dois conjuntos são iguais se ambos possuem os mesmos elementos.

Dado um subconjunto arbitrário B de um conjunto A, a propriedade x ∈ B especifica B.

Ou seja, B e $\{x \mid x \in A \land x \in B\}$ são o mesmo conjunto.

Inclusão entre conjuntos

Sejam B e C conjuntos.

Dizemos que B está incluído em C, ou que C contém B, se, e somente se, todo elemento de B é também um elemento de C.

Em lógica, isto é descrito como

$$\forall x ((x \in B) \rightarrow (x \in C))$$

Sejam B e C subconjuntos de A.

União: B \cup C é especificado por { x/ x \in A e ((x \in B) \vee (x \in C))}

Interseção: B \cap C é especificado por $\{x \mid x \in A \in ((x \in B) \land (x \in C))\}$

Complemento em A: C_A B é especificado por $\{x/x \in A \in \neg(x \in B)\}$

Diferença: B - C é especificado por $\{x / x \in A \in ((x \in B) \land \neg(x \in C))\}$

Definições

Menor que:

X < Z

$$\exists y (\neg (y=0) \land x + y = z)$$
, que indica que $x < z$

Definições

Definição do número zero, quando estamos no domínio dos números naturais.

Por exemplo, sendo suc a função sucessor no conjunto dos números naturais, que a cada n associa n+1, a propriedade $\exists y(suc(y)=x)$ só é verdadeira quando x é o número 0 (zero).

A fórmula define 0, pois é verdade se, e somente se, x = 0.

R é uma relação entre elementos de A e de B se, e somente se, $R \subset A imes B$.

Um tipo especial de relação é a funcional. Uma função de F de Aem B é qualquer relação na qual para cada a existe um, e somente um, b, tal que $(a,b) \in F$. Isto também implica que todo elemento de a está relacionado com algum $b \in B$. Como cada a possui um, e somente um, b, podemos denominar tal b F(a). Por exemplo, cada ser humano possui uma, e somente uma, mãe biológica. Quando Maria é mãe de João, podemos denotar Maria por Mae-de(Joao). Neste caso, também se chama b de imagem de a via F .

Questão 1 (PM PB – IBFC) Considerando o conjunto verdade dos conectivos lógicos proposicionais e sabendo que o valor lógico de uma proposição "p" é falso e o valor lógico de uma proposição "q" é verdade, é correto afirmar que o valor lógico:

- a) da conjunção entre "p" e "q" é verdade
- b) da disjunção entre "p" e "q" é falso
- c) do condicional entre "p" e "q", nessa ordem, é falso
- d) do bicondicional entre "p" e "q" é falso

2) Dadas as proposições simples:

p: "Sou aposentado"

q: "Nunca faltei ao trabalho".

Escreva a proposição composta na forma de conectivos lógicos:

"Se sou aposentado e nunca faltei ao trabalho, então não sou aposentado"

2) Dadas as proposições simples:

p: "Sou aposentado"

q: "Nunca faltei ao trabalho".

Escreva a proposição composta na forma de conectivos lógicos:

"Se sou aposentado e nunca faltei ao trabalho, então não sou aposentado"

3) Se o valor lógico de uma proposição p é verdade e o valor lógico de uma proposição q é falso, então é correto afirmar que o valor lógico:

- a) da conjunção entre p e q é falso
- b) da disjunção entre p e q é falso
- c) do bicondicional entre p e q é verdade
- d) do condicional entre p e q, nessa ordem, é verdade
- e) da negação entre a disjunção entre p e q é verdade

4) O conectivo cujo valor lógico é falso se duas proposições tiverem valores lógicos iguais é:

- a) Disjunção
- b) Conjunção
- c) Bicondicional
- d) Dsjunção exclusiva

4) O conectivo cujo valor lógico é falso se duas proposições tiverem valores lógicos iguais é:

- a) Disjunção
- b) Conjunção
- c) Bicondicional
- d) Dsjunção exclusiva

5 - Seja *p* a proposição "está chovendo" e seja *q* "está ventando". Escreva uma sentença verbal simples, em português, que descreva cada uma das seguintes proposições lógicas:

- a) ~~p
- b) p ∧ ~q
- c) q V ~p
- d) q→p
- $e) \sim (p \Lambda q)$

6) De acordo com João, ele não lerá o livro se e somente se não chover.

É possível que chova e João leia o livro?

7) Verifique se o conjunto W:

$$\{(2, 2); (4, 2); (1, 3); (2, 3); (4, 3)\}$$

É uma relação entre os conjuntos:

$$S = \{1, 2, 3, 4\}$$

 $T = \{2, 3\}$

8) Identifique uma função para a qual y = F(x)

$$x = \{1, 2, 3, 4, 5\}$$

$$y = \{2, 6, 12, 20, 30\}$$