General Organization of the heterotrimeric G protein pathways

Receptors activate G proteins by catalyzing the exchange of GDP for GTP on α subunits

Effectors - Enzymes, Channels, or Regulators of small GTPases

Intracellular Second Messengers cAMP, IP₃, DAG

Protein Kinases PKA, PKC, PKB, CaMKII

Even in linear pathways there are feedback loops

Physiological EffectorsTranscription factors, metabolic enzymes

Introduction to Systems Biology Lecture 2 - Part B-2

Iyengar

The small GTPases (21-28 kDa) another class of signal transducers that are active when GTP is bound and inactive when GDP is bound

Vigil D et al *Nat. Rev Cancer* 10(12):842-57 (2010)

Introduction to Systems Biology Lecture 2 - Part B-3

Iyengar

Many receptors
Many GEFS and GAPS
Many GTPases
Many protein kinases
Interconnections go to
form an extensive network

More about networks in the next lecture Now let us focus on **Receptors** -- *Major Drug Targets*

Zheng and Quilliam EMBO Reports 4(5):463-8 (2003)

Introduction to Systems Biology Lecture 2 - Part B-4

Iyengar

Receptor ligands are widely used drugs

Agonists - specifically binds to receptor and initiates action

Antagonists - specifically binds to receptors – but does not initiate action

blocks the effects of agonists in disease – generally the deleterious effects

Insulin - Natural hormone Insulin receptor agonist - peptide – mostly used to treat Type 1 Diabetes , sometimes Type2 as well

Propranolol - β adrenergic receptor antagonist – among the first antihypertensives **Cimitedine** - H2 histamine receptor antagonist – blocks acid secretion (small chemicals)

Trastuzumab - antibody antagonist against ERBB2 – receptor used to treat certain breast cancers

Mathematical Representations of Drug Actions

Understanding the competition between the antagonist drug and the natural ligand (agonists) is critical for developing potent drugs

$$[IR] + [L] \xrightarrow{k_2^+} [L] + [R] + [I] \xrightarrow{k_1^+} [LR] + [I]$$

$$[LR] = \frac{[R]_{TOTAL}[L]}{[L] + K_D + \frac{K_D}{K_I}[I]}$$
 I - Inhibitor (antagonist)
L - ligand (agonist)

Level of [LR] determines the extent of the physiological (or pathophysiological) response

Plots of data from ligand-receptor interaction experiments

Left - different concentrations of radioactively labeled ligand or a fixed concentration of radioactive ligand and varying concentrations of a competing drug are tested for binding

Middle - Semi-log plot of Receptor Activity (Receptor bound to agonist) as a function of agonist concentration The agonist concentration corresponding to 50% activity is called EC_{50}

Right – Scatchard Plot - a linear transformation plot. Slope is $-1/K_D$ where K_D is the affinity constant (dissociation constant) and intercept on abscissa is total receptor concentration

Introduction to Systems Biology Lecture 2 - Part B7

Iyengar

Lecture 2 – Take Home Points

- ➤ Signaling pathways receive information from outside the cell and change cellular physiology in response to this information
- ➤ Signaling pathways contain many components each of which receive and transmit information with bi-directional specificity
- ➤ Information flow through signaling pathways can be studied mathematically using ordinary differential equations
- Receptors, are targets of drugs used to treat various diseases