#### Recitation: Review

Felipe Balcazar

NYU

October, 2022





# All else equal



• What is the impact of a choice/event (D) on an outcome (Y)?

#### Fundamental Problem of Causal Inference

#### Definition (Fundamental Problem of Causal Inference)

We cannot observe both potential outcomes. How can we calculate the avg. causal effect?

Naive comparisons have bias: difference in means

$$\begin{split} E[Y_{1,i}|D_i = 1] - E[Y_{0,i}|D_i = 0] &= \underbrace{E[Y_{1,i} - Y_{0,i}|D_i = 1]}_{ATT} + \underbrace{\{E[Y_{0,i}|D_i = 1] - E[Y_{0,i}|D_i = 0]\}}_{\text{Selection bias}} \\ &= \kappa + \underbrace{\{E[Y_{0,i}|D_i = 1] - E[Y_{0,i}|D_i = 0]\}}_{\text{Selection bias}} \\ &= \text{avg. causal effect + Selection bias} \end{split}$$

Thus, most naive comparisons are not "other things equal" (ceteris paribus) comparisons.



# Effect of being migrant on an H1B Visa on wages

Education, Ethnicity, Language



# Effect of being migrant on an H1B Visa on wages

### Education, Ethnicity, Language



$$E[Y_{1,i}|D_i = 1] - E[Y_{0,i}|D_i = 0] = \kappa + E[Y_{0i}|D_i = 1] - E[Y_{0i}|D_i = 0]$$

$$Y_i = \alpha + \beta D_i + \varepsilon_i.$$

$$Y_i = \alpha + \beta D_i + \varepsilon_i$$
.

#### Remember

- $\bullet \ \widehat{\alpha} = E(Y_i|D_i = 0).$
- $\hat{\beta} = E(Y_i|D_i = 1) E(Y_i|D_i = 0).$

$$Y_i = \alpha + \beta D_i + \varepsilon_i.$$

#### Remember

- $\widehat{\alpha} = E(Y_i|D_i = 0)$ .
- $\hat{\beta} = E(Y_i|D_i = 1) E(Y_i|D_i = 0).$
- Is  $\beta$  the average treatment effect?

$$Y_i = \alpha + \beta D_i + \delta X_i + \epsilon_i.$$

$$Y_i = \alpha + \beta D_i + \delta X_i + \epsilon_i.$$

#### Remember

- $\bullet \ \widehat{\alpha} = E(Y_i | D_i = 0, X_i).$
- $\hat{\beta} = E(Y_i|D_i = 1, X_i) E(Y_i|D_i = 0, X_i).$

$$Y_i = \alpha + \beta D_i + \delta X_i + \epsilon_i.$$

#### Remember

- $\bullet \ \widehat{\alpha} = E(Y_i | D_i = 0, X_i).$
- $\hat{\beta} = E(Y_i|D_i = 1, X_i) E(Y_i|D_i = 0, X_i).$
- Is  $\beta$  the average treatment effect? If not, when?

# Effect of being migrant on an H1B Visa on wages

$$Wage_{i} = \alpha + \beta H1B_{i} + \underbrace{\delta_{1}Edu_{i} + \delta_{2}Eth_{i} + \delta_{3}Lang_{i}}_{\delta X_{i}} + \epsilon_{i}$$

#### Recall:

- $\widehat{\alpha} = E(Wage_i|H1B_i = 0, X_i)$ .
- $\hat{\beta} = E(Wage_i|H1B_i = 1, X_i) E(Wage_i|H1B_i = 0, X_i).$

# Effect of being migrant on an H1B Visa on wages

$$Wage_{i} = \alpha + \beta H1B_{i} + \underbrace{\delta_{1}Edu_{i} + \delta_{2}Eth_{i} + \delta_{3}Lang_{i}}_{\delta X_{i}} + \epsilon_{i}$$

#### Recall:

- $\widehat{\alpha} = E(Wage_i|H1B_i = 0, X_i)$ .
- $\hat{\beta} = E(Wage_i|H1B_i = 1, X_i) E(Wage_i|H1B_i = 0, X_i).$
- Is  $\beta$  the average treatment effect? If not when?



• When  $D_i$  is randomly assigned:

$$E[Y_{0i}|Di = 1] = E[Y_{0i}|Di = 0].$$

• If this occurs the difference in means by treatment status captures the causal effect of treatment.

$$E[Y_i|D_i = 1] - E[Y_i|D_i = 0] = ATE + \underbrace{E[Y_{0i}|D_i = 1] - E[Y_{0i}|D_i = 0]}_{0}$$

$$= ATE$$

• When  $D_i$  is randomly assigned:

$$E[Y_{0i}|Di = 1] = E[Y_{0i}|Di = 0].$$

• If this occurs the difference in means by treatment status captures the causal effect of treatment.

$$E[Y_i|D_i = 1] - E[Y_i|D_i = 0] = ATE + \underbrace{E[Y_{0i}|D_i = 1] - E[Y_{0i}|D_i = 0]}_{0}$$

$$= ATE$$

Can you think about a simple experiment for the effect of H1B on wages?

• When  $D_i$  is randomly assigned:

$$E[Y_{0i}|Di = 1] = E[Y_{0i}|Di = 0].$$

• If this occurs the difference in means by treatment status captures the causal effect of treatment.

$$E[Y_i|D_i = 1] - E[Y_i|D_i = 0] = ATE + \underbrace{E[Y_{0i}|D_i = 1] - E[Y_{0i}|D_i = 0]}_{0}$$

$$= ATE$$

Can you think about a simple experiment for the effect of H1B on wages? Can the experiment fail?



• When  $D_i$  is randomly assigned:

$$E[Y_{0i}|Di = 1] = E[Y_{0i}|Di = 0].$$

• If this occurs the difference in means by treatment status captures the causal effect of treatment.

$$E[Y_i|D_i = 1] - E[Y_i|D_i = 0] = ATE + \underbrace{E[Y_{0i}|D_i = 1] - E[Y_{0i}|D_i = 0]}_{0}$$

$$= ATE$$

Can you think about a simple experiment for the effect of H1B on wages? Can the experiment fail? How do we now?



## Are they perfect?

- Experiments can be expensive to carry out.
  - Often you can run them on (small) random samples.
  - This is contingent on the treatment and outcome of interest.
- Often you need cooperation from local political actors.
- They can be time consuming (perhaps it is not wise to do one if you are graduating soon).

## Are they perfect?

- Experiments can be expensive to carry out.
  - Often you can run them on (small) random samples.
  - This is contingent on the treatment and outcome of interest.
- Often you need cooperation from local political actors.
- They can be time consuming (perhaps it is not wise to do one
  if you are graduating soon).
- They may lack external validity.
  - But they are replicable and scalable, addressing this issue.

## Are they perfect?

- Experiments can be expensive to carry out.
  - Often you can run them on (small) random samples.
  - This is contingent on the treatment and outcome of interest.
- Often you need cooperation from local political actors.
- They can be time consuming (perhaps it is not wise to do one if you are graduating soon).
- They may lack external validity.
  - But they are replicable and scalable, addressing this issue.
- You cannot use them to study any type of question.
- Despite these shortcomings, they are the gold standard.
  - They are internally valid!
  - They solve the problem of selection bias!
  - We can estimate the direction and magnitude of the treatment!



#### **Ethical Concerns**

- Some people object to field experiments on ethical grounds.
- Some units are denied potentially helpful treatments just for purposes of evaluation.
- Participant consent is important, but may some times influence the outcomes (*Hawthorne* Effects).
- They are often justified on the grounds of:
  - Scarce resources/staggered implementation.
  - Potential gains from learning about impact of treatment compensates for ethical considerations.



$$Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i \times X_i + \varepsilon_i$$

•  $\beta_1$  is the effect of the treatment conditional on X=0:

$$E(Y_i|D_i = 1, X_i = 0) - E(Y_i|D_i = 0, X_i = 0)$$

•  $\beta_1 + \beta_3$  is the effect of the treatment conditional on X = 1:

$$E(Y_i|D_i = 1, X_i = 1) - E(Y_i|D_i = 0, X_i = 1)$$

•  $\beta_3$  is the additional effect of the treatment for X=1.

$$Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i \times X_i + \varepsilon_i$$

•  $\beta_1$  is the effect of the treatment conditional on X=0:

$$E(Y_i|D_i = 1, X_i = 0) - E(Y_i|D_i = 0, X_i = 0)$$

$$E(Y_i|D_i = 1, X_i = 1) - E(Y_i|D_i = 0, X_i = 1)$$

- $\beta_3$  is the additional effect of the treatment for X=1.
- Neither D nor X need to be binary!



$$Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i \times X_i + \varepsilon_i$$

•  $\beta_1$  is the effect of the treatment conditional on X=0:

$$E(Y_i|D_i = 1, X_i = 0) - E(Y_i|D_i = 0, X_i = 0)$$

$$E(Y_i|D_i = 1, X_i = 1) - E(Y_i|D_i = 0, X_i = 1)$$

- $\beta_3$  is the additional effect of the treatment for X=1.
- Neither D nor X need to be binary!



$$Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i \times X_i + \varepsilon_i$$

•  $\beta_1$  is the effect of the treatment conditional on X=0:

$$E(Y_i|D_i = 1, X_i = 0) - E(Y_i|D_i = 0, X_i = 0)$$

$$E(Y_i|D_i = 1, X_i = 1) - E(Y_i|D_i = 0, X_i = 1)$$

- $\beta_3$  is the additional effect of the treatment for X=1.
- Neither D nor X need to be binary!



$$Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i \times X_i + \varepsilon_i$$

•  $\beta_1$  is the effect of the treatment conditional on X=0:

$$E(Y_i|D_i = 1, X_i = 0) - E(Y_i|D_i = 0, X_i = 0)$$

$$E(Y_i|D_i = 1, X_i = 1) - E(Y_i|D_i = 0, X_i = 1)$$

- $\beta_3$  is the additional effect of the treatment for X=1.
- Neither *D* nor *X* need to be binary!



$$Wage_i = \alpha + \beta_1 H1B_i + \beta_2 H1B_i \times Eth_i + \delta X_i + \epsilon$$

So

- $\widehat{\beta}_1 = E(Wage_i|H1B_i = 1, Eth_i = 0, X_i) E(Wage_i|H1B_i = 0, Eth_i = 0, X_i)$
- $\widehat{\beta}_1 + \widehat{\beta}_2 = E(Wage_i|H1B_i = 1, Eth_i = 1, X_i) E(Wage_i|H1B_i = 0, Eth_i = 1, X_i)$

### **Practice Questions**

- What is the unit of analysis (i)?
- ② What is the treatment? Which are the treated units  $(D_i = 1)$  and which are control units  $(D_i = 0)$ ?
- **3** What is the outcome variable  $Y_i$ ? How would you measure it?
- What is the ideal counterfactual to assess the causal relationship?
- What is the naive comparison (simple correlation)? What do you expect to be the sign of the naive comparison?
- **1** What do  $Y_{0i}$  and  $Y_{1i}$  correspond to in this context?
- What sign do you expect selection bias to have in this context? Mention explicitly the main observable and non-observable confounders that may generate this selection bias. (Use selection bias formula and a DAG).
- Ooes the naive comparison tend to over-estimate or under-estimate the causal effect?

