

REAL MATRIX INVERSES

Why

Recall that if $A \in \mathbf{R}^{m \times n}$ then x = Ax is a linear function from \mathbf{R}^n to \mathbf{R}^m . And conversely, if $g: \mathbf{R}^n \to \mathbf{R}^m$ is a linear function, there is a matrix $B \in \mathbf{R}^{m \times n}$ so that g(z) = Bz. Does this function have an inverse?

Derivation

If $A \in \mathbf{R}^{m \times n}$, with $m \neq n$, then the inverse of f can not exist. For a square matrix $A \in \mathbf{R}^{n \times n}$, $B \in \mathbf{R}^{n \times n}$ is a left inverse if BA = I. In other words, B is a left inverse element of A in the algebra of matrices with the operation of multiplication. $C \in \mathbf{R}^{n \times n}$ is a right inverse if AC = I.

Definition

We call a square matrix A invertible if there is $B \in \mathbb{R}^{n \times n}$ so that BA = I.

Now suppose that $A \in \mathbf{R}^{n \times n}$. Of course, the inverse may not exist. Consider, for example if A was the n by n matrix of zeros. If there exists a matrix B so that BA = I we call B the *left inverse* of A and likewise if AC = I we call C the *right inverse* of A. In the case that A is square, the right inverse and left inverse coincide.

Proposition 1. Let $A, B, C \in \mathbb{R}^{n \times n}$. Let BA = I and AC = I. Then B = C.

Proof. Since BA = AC we have BBA = BAC so B = C since BA = I.

