Online Step Size Adaptation

for Stochastic Optimization

Andrii Zadaiancuk Universität Tübingen January 27, 2019

UNIVERSITÄT TÜBINGEN

- + October 2012: Bachalor in Applied Mathematics and Physics, Moscow, Russia
- + June 2016: **Probabilistic Pruning of Neural Networks**, Bachelor Thesis and Publication under supervision Prof. Dr. Vadim Strijov
- + October 2016: Neural Information Processing, Tübingen, Germany
- + September 2017 November 2017: Architectures of Generative Nets, Bethge Lab
- + November 2017 January 2018: Probabilistic RPROP, Probabilistic Numerics, MPI IS
- + February 2018 August 2018: **Proximal step-size adaptation**, Master Thesis under Prof. Dr. Phillipp Henig supervision
- October 2018 March 2019: Equation Learning for extrapolation in Model-based RL, Autonomus Learning Group, MPI IS

- + October 2012: Bachalor in Applied Mathematics and Physics, Moscow, Russia
- + June 2016: **Probabilistic Pruning of Neural Networks**, Bachelor Thesis and Publication under supervision Prof. Dr. Vadim Strijov
- + October 2016: Neural Information Processing, Tübingen, Germany
- + September 2017 November 2017: Architectures of Generative Nets, Bethge Lab
- + November 2017 January 2018: Probabilistic RPROP, Probabilistic Numerics, MPI IS
- + February 2018 August 2018: **Proximal step-size adaptation**, Master Thesis under Prof. Dr. Phillipp Henig supervision
- + October 2018 March 2019: Equation Learning for extrapolation in Model-based RL, Autonomus Learning Group, MPI IS

- + October 2012: Bachalor in Applied Mathematics and Physics, Moscow, Russia
- + June 2016: **Probabilistic Pruning of Neural Networks**, Bachelor Thesis and Publication under supervision Prof. Dr. Vadim Strijov
- + October 2016: Neural Information Processing, Tübingen, Germany
- + September 2017 November 2017: Architectures of Generative Nets, Bethge Lab
- + November 2017 January 2018: Probabilistic RPROP, Probabilistic Numerics, MPI IS
- + February 2018 August 2018: **Proximal step-size adaptation**, Master Thesis under Prof. Dr. Phillipp Henig supervision
- October 2018 March 2019: Equation Learning for extrapolation in Model-based RL, Autonomus Learning Group, MPI IS

- + October 2012: Bachalor in Applied Mathematics and Physics, Moscow, Russia
- + June 2016: **Probabilistic Pruning of Neural Networks**, Bachelor Thesis and Publication under supervision Prof. Dr. Vadim Strijov
- + October 2016: Neural Information Processing, Tübingen, Germany
- + September 2017 November 2017: Architectures of Generative Nets, Bethge Lab
- + November 2017 January 2018: Probabilistic RPROP, Probabilistic Numerics, MPI IS
- + February 2018 August 2018: **Proximal step-size adaptation**, Master Thesis under Prof. Dr. Phillipp Henig supervision
- + October 2018 March 2019: Equation Learning for extrapolation in Model-based RL, Autonomus Learning Group, MPI IS

- + October 2012: Bachalor in Applied Mathematics and Physics, Moscow, Russia
- + June 2016: **Probabilistic Pruning of Neural Networks**, Bachelor Thesis and Publication under supervision Prof. Dr. Vadim Strijov
- + October 2016: Neural Information Processing, Tübingen, Germany
- + September 2017 November 2017: Architectures of Generative Nets, Bethge Lab
- + November 2017 January 2018: Probabilistic RPROP, Probabilistic Numerics, MPI IS
- + February 2018 August 2018: **Proximal step-size adaptation**, Master Thesis under Prof. Dr. Phillipp Henig supervision
- + October 2018 March 2019: Equation Learning for extrapolation in Model-based RL, Autonomus Learning Group, MPI IS

Outline

Problem formulation

Hypergradient Descent (HD) Adaptation Proximal Point Interpretation

Proximal Quadratic (PQ) Adaptation
Bias of the Minimum of Quadratic Model
Proximal Point Iteration for Quadratic Model

Experiments

Fine-tunned adaptation models Sensitivity to the hyperparameters

Conclusions

Stochastic Optimization in Machine Leaning

Regularized empirical risk minimization

$$\min_{ heta} R_{emp}(heta) + \mathcal{L}_{reg}$$

$$R_{emp}(\theta) = \frac{1}{N} \sum_{i=1}^{N} I(h(x_i, \theta), y_i)$$

Stochastic optimization

SGD update rule

$$\theta_{t+1}(\alpha) = \theta_t - \alpha g(\theta_t),$$

where $g(\theta)$ is the stochastic gradient

$$g(\theta) = \frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \nabla I(\theta; x_i).$$

Online Step Size Adaptation

Parameter update is

$$\theta_{t+1} = \theta_t + \alpha v_t.$$

Optimal step size for iteration t is equal to

$$\alpha_t^* = \operatorname*{arg\,min}_{lpha} \mathcal{L}(\theta_{t+1}(lpha)).$$

In case when it is too expensive too find the exact minimum of the loss function (e.g. by line search), one can **adapt** the previous step size value α_{t-1} to make it closer to the α_t^* .

Hypergradient Descent (HD) Adaptation

$$\theta_{t+1} = \theta_t + \alpha_t v_t.$$

We want to make α_t step closer to the optimal α_t^*

$$\alpha_t = \alpha_{t-1} - \beta \frac{\partial \mathcal{L}(\theta_{t+1})}{\partial \alpha}.$$

Using chain rule

$$\alpha_t = \alpha_{t-1} - \beta \nabla_{\theta} \mathcal{L}(\theta_{t+1})^T v_t.$$

As gradient $\nabla_{\theta}\mathcal{L}(\theta_{t+1})$ is unknown during step t, we assume that $\alpha_t^*pprox \alpha_{t-1}^*$

$$\alpha_t = \alpha_{t-1} - \beta \nabla_{\theta} \mathcal{L}(\theta_t)^T v_{t-1}.$$

5

HD as Proximal Point Iteration of Linear Model

Hypergradient Descent adaptation as iteration of Proximal Point algorithm applied to the linear model. We locally approximate $f_t(\alpha)$ by the linear model $h_{lin}(\alpha)$.

HD as Proximal Point Iteration of Linear Model

Hypergradient Descent adaptation as iteration of Proximal Point algorithm applied to the linear model. We locally approximate $f_t(\alpha)$ by the linear model $h_{lin}(\alpha)$.

HD as Proximal Point Iteration of Linear Model

Hypergradient Descent adaptation as iteration of Proximal Point algorithm applied to the linear model. We locally approximate $f_t(\alpha)$ by the linear model $h_{lin}(\alpha)$.

Proximal point iteration for model $h_t(\alpha)$:

$$\alpha_{t+1} = \arg\min_{\alpha} h_{lin}(\alpha) + \frac{1}{2\beta}(\alpha - \alpha_t)^2 = \alpha_t - \beta f_t'(\alpha_t).$$

Proximal Adaptation

- + Let us change the linear approximation $h_{lin}(\alpha)$ to another convex approximation $h(\alpha)$.
- + As $h(\alpha)$ is **convex** and **one-dimensional**, we can easily compute its proximal operator.
- + We can use one iteration of proximal point method for $h(\alpha)$ to adapt current step size α_t .

Proximal step size adaptation with convex approximation $h(\alpha)$ of loss function $f(\alpha)$ is

$$\alpha_{t+1} = \operatorname*{arg\,min}_{lpha} h(lpha) + rac{1}{2eta} (lpha - lpha_t)^2.$$

Bias of the Minimum of Quadratic Model

Using Tailor expansion, we can get approximation of the expectation of the ratio of two random variables:

$$\mathbb{E}\left[\frac{X}{Y}\right] \approx \frac{\mu_{\scriptscriptstyle X}}{\mu_{\scriptscriptstyle Y}} - \frac{\operatorname{Cov}(X,Y)}{\mu_{\scriptscriptstyle Y}^2} + \frac{\operatorname{var}[Y]\mu_{\scriptscriptstyle X}}{\mu_{\scriptscriptstyle Y}^3}.$$

Applying it to our ratio we get

$$\mathbb{E}\left[\frac{\widehat{f}'(0)}{\widehat{f}'(\alpha_t)-\widehat{f}'(0)}\right] \approx \frac{f'(0)}{f'(\alpha_t)-f'(0)} + \underbrace{\frac{\sigma_0^2}{\left(f'(0)-f'(\alpha)\right)^2} + \frac{\left(\sigma_0^2+\sigma_\alpha^2\right)f'(0)}{\left(f'(0)-f'(\alpha_t)\right)^3}}_{\text{bias}}.$$

We need to correct for this bias when the difference $f'(0) - f'(\alpha)$ is small or the noise in stochastic estimates $\hat{f}'(\alpha)$ or $\hat{f}'(0)$ is large.

Proximal Point Iteration for Quadratic Model

Proximal Quadratic (PQ) adaptation as iteration of Proximal Point algorithm applied to the quadratic model. We approximate $f_t(\alpha)$ by the quadratic model $h_{quad}(\alpha)$.

Proximal Point Iteration for Quadratic Model

Proximal Quadratic (PQ) adaptation as iteration of Proximal Point algorithm applied to the quadratic model. We approximate $f_t(\alpha)$ by the quadratic model $h_{quad}(\alpha)$.

Proximal Point Iteration for Quadratic Model

Proximal Quadratic (PQ) adaptation as iteration of Proximal Point algorithm applied to the quadratic model. We approximate $f_t(\alpha)$ by the quadratic model $h_{quad}(\alpha)$.

Proximal Point Iteration for Quadratic Model

$$_{eta h_{quad}}(lpha_t) = rg \min_{lpha} h_{quad}(lpha) + rac{1}{2eta} (lpha - lpha_t)^2.$$

To find it we should take the derivative and set it to zero

$$_{eta h_{quad}}(lpha_t) = rac{rac{1}{eta}lpha_t - w_1}{2w_2 + rac{1}{eta}}.$$

Step size update rule as one iteration of Proximal Point algorithm is

$$\alpha_{t+1} = \frac{\frac{1}{\beta}\alpha_t - w_1}{2w_2 + \frac{1}{\beta}}.$$

Using maximum-likelihood estimation \widehat{w} of the parameters w

$$\widehat{\alpha}_{t+1} = \frac{\frac{1}{\beta}\alpha_t - \widehat{f}'(0)}{\frac{\widehat{f}'(\alpha) - \widehat{f}'(0)}{\alpha_t} + \frac{1}{\beta}}.$$

PQ-Momentum Pseudocode

Require: initial parameter value θ_0 , initial step size α_0 , regularization constant β , momentum μ , number of steps T, upper bound on Lipschitz constant M

```
_{\scriptscriptstyle 1} Initialize \upsilon= 0, \emph{m}= 0, lpha=lpha_{0}
```

- $_2$ for $t=1,\ldots,T$ do
- \exists Evaluate stochastic gradient g
- Evaluate one-dimentinal derivatives $\hat{f}'(\alpha) = g^T v$ and $\hat{f}'(0) = g_{old}^T v$
- $_{5} \mid \mathbf{if} \ 0 \leq \frac{\widehat{f}'(\alpha) \widehat{f}'(0)}{\alpha} \leq M \ \text{or} \ f'(0) > 0 \ \mathbf{then}$
- Update $\alpha = \frac{\frac{1}{\beta}\alpha \hat{f}'(0)}{\frac{\hat{f}'(\alpha) \hat{f}'(0)}{\alpha} + \frac{1}{\beta}}$
- 7 end if
- Update moving average $\emph{m} = \mu \emph{m} + (1-\mu) \emph{g}$
- 9 Evaluate new direction v = -m
- Update parameters $\theta = \theta + \alpha v$
- Update $g_{old} = g$
- 12 end for

Results

Comparison of the fine-tunned adaptation models

Experimental results of fine-tuned PQ and HD on CIFAR10. Parameter β was chosen by grid search. PQ is superior to the HD. For both HD and PQ -Momentum the value of momentum parameter is $\mu=0.99$.

UNIVERSITAT TUBINGEN

Sensitivity to the regularization parameter β

Sensitivity of the Proximal Quadratic and the Hypergradient Descent adaptation to initial step size α_0 and regularization parameter β . Momentum with $\mu=0.99$ on CIFAR10 with batch size 128.

Conclusions

- Hypergradient Descent adaptation rule is equal to proximal point iteration of linear approximation.
- + Proximal adaptation with other convex approximation is possible.
- + Quadratic model is biased towards larger step sizes are therefore unstable.
- + Proximal Quadratic adaptation is less sensitive to the hyperparameter choice.

Thank you for your attention!

Results

Comparison of the fine-tunned adaptation models

Experimental results of fine-tuned PQ and HD on MNIST. Parameter β was chosen by grid search. PQ is superior to the HD. For both HD and PQ -Momentum the value of momentum parameter is $\mu=0.99$.

Results

Comparison of the fine-tuned adaptation models

Experimental results of fine-tuned PQ and HD on SVHN. Parameter β was chosen by grid search. PQ is superior to the HD. For both HD and PQ -Momentum the value of momentum parameter is $\mu=0.99$.

Sensitivity to the regularization parameter β

Sensitivity of the Proximal Quadratic and the Hypergradient Descent adaptation to initial step size α_0 and regularization parameter β . Momentum with $\mu=0.99$ on MNIST with batch size 128.

Sensitivity of the Proximal Quadratic and the Hypergradient Descent adaptation to initial step size α_0 and regularization parameter β . Momentum with $\mu=0.99$ on SVHN with batch size 128.