MATH 116 WORKSHEET: simple Gaussian quadratum 10/19

Consider [-1,1] integration. We'll fix n=2., ie 3 nodes.

Choosing nodes Xo=-1, Xo=0, Xz=1 we had Newton-Cotes quadrature Q2(f) = \frac{2}{k=0} Wk f(xk) with with \wo = \wz = \frac{1}{3}, \width \frac{4}{3}

This integrales degree-2 polys exactly 1/3 1/3

a) Explain why this happens to integrate xm for mode, exactly, too.

Now allow nodes to move inwards from £1, ie $x_0 = -\alpha$, $x_1 = 0$, $x_2 = \alpha$ and choose $W_0 = W_2 = \beta$

- b) Use degree-0 exact integration to fix W,
- c) Write exactness conditions for degree-2: and for degree-4:
- d) Solve these for α , β
- e) Up to what polynomial order is integrated exactly now?

B4
MATH 116 WORKSHEET: simple Gaussian quadratum 10/1/08
Consider [-1,1] integration. We'll fix n=2, ie 3 nodes.
Choosing nodes Xo=-1, X1=0, X2=1 we had Newton-Cotes quadrature
Q2(f) = \(\sum_{k=0} W_k f(x_k) \) with \(W_0 = W_2 = \frac{1}{3} \), \(W_1 = \frac{4}{3} \)
This integrates degree - 2 polys exactly 11/2 /4/3 11/3
a) Explain why this happens to integrate x " for mode, exactly, too.
x dx = o for mode a t Com to me to me to me
Now allow nodes to move inwards from £1, ie xo=-a, x1=0, x2=0
Now allow nodes to move inwards from £1, ie $x_0 = -\alpha$, $x_1 = 0$ \Rightarrow exact! Now allow nodes to move inwards from £1, ie $x_0 = -\alpha$, $x_1 = 0$, $x_2 = \alpha$ and choose $w_0 = w_2 = \beta$ b) Use degree-0 exact integration to fix w_1 :
B + W, + B = 51 dx = 2
e) Write exactness conditions for degree 2: $\beta x^2 + y_1(0)^2 + \beta x^2 = 5x^2 dx = \frac{3}{2}$ and for degree 4: $\beta x^4 + 0 + \beta x^4 = 5x^4 dx = \frac{3}{2}$
and for degree 4: Bx4 x 0 + Bx4 = Sx4dx = 3
d) Salve Hase A
d) Solve these for α , β divide: $\alpha^2 = 3/5$, $\alpha = 7/5$
502B. 3/5 = 4/3, B= 5/4, W1 = 8/4.
PEPS is sack Note 5 = 2nel (n=2).
pells is anch Note 5= 2nel (12)
since you did 0, 2,4, and all odd we exact,