לוגיקה - תרגול 8

גדירות - תזכורות

 Σ של מודל נקראת נסוקים בסוקים המספקת השמה הנדרה 1: השמה המספקת הנדרה לי

 $M\left(\Sigma\right)=\left\{ v\in\mathrm{Ass}\mid v\models\Sigma
ight\}$ היא הקבוצה. במודלים של המודלים של

נקראת K אחרת אות $M\left(\Sigma\right)=K$ כך ש־ Σ כך פסוקים קבוצת אם קיימת לדירה אחרת גדירה נקראת לא נקראת לדירה.

הוכחת גדירות

איך מוכיחים שקבוצת השמות K היא גדירה?

- .1 מראים בוצת פסוקים למפורשת.
- .2 מוכיחים כי $M\left(\Sigma\right)=K$ על ידי הכלה דו־כיוונית.

 K_j = $\{v\mid$ נגדיר את קבוצת לכל T נותנת $v\}$: ההשמות ההשמות גדיר את קבוצת ההשמות לכל היותר ל־ $j\in\mathbb{N}$ לכל היותר לי $j\in\mathbb{N}$ גדירה.

:2 תרגיל

 $X,Y\subseteq WFF$ תהיינה

 $M\left(X\cup Y
ight) =M\left(X
ight) \cap M\left(Y
ight)$ הוכיחו כי

משפט הקומפקטיות - תזכורת

לכל קבוצת פסוקים Σ מתקיים, Σ ספיקה אמ"מ כל תת־קבוצה סופית של ספיקה.

הוכחת אי־גדירות

איך מוכיחים שקבוצת השמות K אינה גדירה?

- $M\left(X
 ight) =K$ מניחים בשלילה ש־K גדירה ו־X גדירה ו־X מניחים בשלילה ש־ל. מניחים בשלילה ש־ל גדירה את א ניתן להניח דבר על X פרט לכך שהיא מגדירה את א.
- 2. בוחרים קבוצת פסוקים מפורשת Y שעבורה ידוע (או שניתן להוכיח בקלות) שעבורה על עבוצת עבורה ידוע (או שניתן להוכיח $Y=\{\neg p_i\mid i\in\mathbb{N}\}$, $Y=\{p_i\mid i\in\mathbb{N}\}$
- $M\left(X\cup Y
 ight)=M\left(X
 ight)\cap M\left(Y
 ight)=K\cap M\left(Y
 ight)=\emptyset$ מוכיחים ש־ $X\cup Y$ איננה ספיקה על ידי כך שמראים ש-3.
 - . מוכיחים ש־ $Y \cup Y$ ספיקה על ידי שימוש במשפט הקומפקטיות.

תהי $D\subseteq X\cup Y$ סופית.

 $D_Y = D \cap Y$ ר ו $D_X = D \cap X$ נסמן

 $v\in K$ נבנה השמה D_Y ונשלים אותה כך ש־ D_X . נתחיל בבניה ע"פ מבנה הפסוקים ב־ D_Y ונשלים אותה כך ש־ D_Y . נוכיח שהבניה מספקת את

 D_X את מספקת את מספקת את $v \Leftarrow v \in K$

 $D_X \cup D_Y = D$ מספקת את $v \Leftarrow D_Y$ ו ר D_X מספקת את מספקת ע

.5 מקבלים סתירה ולכן K אינה גדירה.

:3 תרגיל

. אינה אינה אינה אינה א K_{fin} = $\{v \in \mathrm{Ass} \mid$ שטומים של למספר T אינה אינה על הוכיחו כי

תרגיל 4:

. אינה אינה אינה א K_{inf} = $\{v \in \mathrm{Ass} \mid$ אטומים לאינסוף לאינה אינה $v\}$ נותנת כי

```
X,Y\subseteq \text{WFF} M(X\cup Y)=M(X)\cap M(Y) v\in M(X)\cap M(Y)\Leftarrow \varphi\in Y\varphi\in X\varphi\in X\cup Y v\in M(X)\varphi\in X`` v\in M(X\cup Y)v\vDash\varphi \varphi\in Y v\in M(X\cup Y)\subseteq\Rightarrow v\in M(Y)v\in M(X)`` v\vDash \varphi\varphi\in XM(x) v\in M(X)
```