SRM Institute of Science and Technology DEPARTMENT OF MATHEMATICS

18MAB201T: Transforms and Boundary Value Problems ACADEMIC YEAR 2021-2022 (ODD) Tutorial-1 (Unit-2)

- 1. State Dirichlet condition's for a given function to expand in Fourier series.
- 2. State Euler's formulas for the Fourier coefficients.
- 3. Find a_n for the Fourier series of periodicity 3 for the function $f(x) = 2x x^2$ in (0,3).
- 4. Find a_0 for the periodic function $f(x) = e^{-x}$ in $(0, 2\pi)$.
- 5. Find the Fourier series of period 2π for the function $f(x) = x(2\pi x)$ in $(0, 2\pi)$. Deduce the sum of the series $\frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \dots \infty$.
- 6. Find the Fourier series expansion of $f(x) = x(\pi^2 x^2)$ in $-\pi < x < \pi$.
- 7. Find the Fourier series of period 2l for the function f(x) = |x| in (-l, l). Hence find the value of $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots \infty$.
- 8. Find the Fourier series of period 2l for the function $f(x) = e^{ax}$ in (0, 2l).
- 9. Find the Fourier series of period 2π for the function $f(x) = |\sin x|$ in $(-\pi, \pi)$.
- 10. Find the Fourier series of period 2π for the function $f(x) = \cos ax$ in $[-\pi, \pi]$, when a is not an integer. Deduce that the sum of the series $\sum_{n=1}^{\infty} \frac{1}{9n^2-1}$.