

32-Channel Serial-to-Parallel Converter with Open Drain Outputs

Features

- · 100 mA Minimum Sink Current
- · 8 MHz Shift Register Speed
- · Polarity and Blanking Inputs
- · CMOS-compatible Inputs
- · Forward and Reverse Shifting Options
- Diode to V_{PP} allows Efficient Power Recovery

Applications

- · Inkjet and Electrostatic Print Heads
- AC-electroluminescent Displays
- · Microelectromechanical Systems Applications

General Description

The HV5522 is a low-voltage to high-voltage serial-to-parallel converter with open drain outputs. This device is designed as a driver for AC electroluminescent displays. It can also be used in any application requiring multiple-output high-voltage current sinking capabilities, such as driving inkjet and electrostatic print heads, plasma panels, vacuum fluorescent and large matrix LCD displays.

This device consists of a 32-bit Shift register, 32 latches and control logic to perform the polarity select and blanking of the outputs. Data is shifted through the Shift register on the high-to-low transition of the clock. The HV5522 shifts the data counter clockwise when viewed from the top of the package. A data output buffer is provided for cascading devices. This output reflects the current status of the last bit of the Shift register. The operation of the Shift register is not affected by the latch enable $\overline{(\text{LE})}$, blanking (BL) and polarity (POL) inputs. The transfer of data from the Shift register to the latch occurs when the $\overline{\text{LE}}$ input is high. The data in the latch is stored when $\overline{\text{LE}}$ is low.

Package Types

Functional Block Diagram

Typical Application Circuit

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Supply Voltage, V _{DD} (Note 1)	
Output Voltage, V _{PP} (Note 1)	
Logic Input Levels (Note 1)	
Ground Current (Note 2)	
Operating Ambient Temperature, T _A	
Storage Temperature, T _S	
Continuous Total Power Dissipation:	
44-lead PQFP (Note 3)	1200 mW
44-lead PLCC (Note 3)	
,	

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

- **Note 1:** All voltages are referenced to V_{SS} .
 - **2:** Duty cycle is limited by the total power dissipated in the package.
 - 3: For operations above 25°C ambient, derate linearly to the maximum operating temperature of 20 mW/°C.

RECOMMENDED OPERATING CONDITIONS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Logic Supply Voltage	V_{DD}	10.8	_	13.2	V	
High-voltage Output Voltage	HV _{OUT}	-0.3	_	220	V	
High-level Input Voltage	V _{IH}	V _{DD} –2	_	V_{DD}	V	
Low-level Input Voltage	V_{IL}	0	_	2	V	
Clock Frequency	f _{CLK}	_	_	8	MHz	
Operating Ambient Temperature	T _A	-40	_	+85	°C	

DC ELECTRICAL CHARACTERISTICS

Electrical Specifications:	over recommende	d operating	condition	s unle	ss othe	rwise	noted.		
Paramete	Sym.	Min.	Тур.	Max.	Unit	Conditions			
V _{DD} Supply Current		I _{DD}	_		15	mA	f _{CLK} = 8 MHz, f _{DATA} = 4 MHz		
Quiescent V _{DD} Supply Curre	ent	I_{DDQ}	_	_	100	μΑ	V _{IN} = 0V		
Off State Output Current	I _{O(OFF)}	_		10	μA	All outputs high, all SWS parallel			
High-level Logic Input Curre	nt	I _{IH}	_		1	μΑ	$V_{IH} = V_{DD}$		
Low-level Logic Input Currer	ıt	I _{IL}	_	_	-1	μΑ	V _{IL} = 0V		
High-level Output Data Out		V _{OH}	V _{DD} -1V	_	_	V	I _{DOUT} = –100 μA		
Low-level Output	HV _{OUT}	W	_	_	15	V	I _{HVOUT} = 100 mA		
Voltage	Data Out	V _{OL}	_		1	٧	I _{DOUT} = 100 μA		
HV _{OUT} Clamp Voltage	V _{OC}	_		-1.5	٧	I _{OL} = -100 mA			

AC ELECTRICAL CHARACTERISTICS

Electrical Specifications: V _{DD} = 12V, T _A = 25°	°C					
Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Clock Frequency	f _{CLK}		_	8	MHz	
Clock Width, High or Low	t_{WL} , t_{WH}	62	_	_	ns	
Data Set-up Time before Clock Falls	t _{SU}	25	_	_	ns	
Data Hold Time after Clock Falls	t _H	10	_	_	ns	
Turn-on Time, HV _{OUT} from Enable	t _{ON}	_	_	500	ns	$R_L = 2 k\Omega$ to V_{PP} maximum
Delay Time Clock to Data High to Low	t _{DHL}	_	_	100	ns	C _L = 15 pF
Delay Time Clock to Data Low to High	t _{DLH}	_	_	100	ns	C _L = 15 pF
Delay Time Clock to Latch Enable Low to High	t _{DLE}	50	_	_	ns	
Latch Enable Pulse Width	t _{WLE}	50	_	_	ns	
Latch Enable Setup Time before Clock Falls	t _{SLE}	50	_		ns	

TEMPERATURE SPECIFICATIONS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
TEMPERATURE RANGE						
Operating Ambient Temperature	T _A	-40	_	+85	°C	
Storage Temperature	T _S	-65		+150	°C	
PACKAGE THERMAL RESISTANCE						
44-lead PQFP	θ_{JA}	_	51	_	°C/W	
44-lead PLCC	θ_{JA}	_	37	_	°C/W	

HV5522

Timing Waveforms

2.0 PIN DESCRIPTION

The details on the pins of HV5522 44-lead PQFP and 44-lead PLCC are listed on Table 2-1 and Table 2-2, respectively. Refer to **Package Types** for the location of pins.

TABLE 2-1: 44-LEAD PQFP PIN FUNCTION TABLE

Pin Number	Pin Name	Description
1	HVOUT11	High-voltage output
2	HVOUT12	High-voltage output
3	HVOUT13	High-voltage output
4	HVOUT14	High-voltage output
5	HVOUT15	High-voltage output
6	HVOUT16	High-voltage output
7	HVOUT17	High-voltage output
8	HVOUT18	High-voltage output
9	HVOUT19	High-voltage output
10	HVOUT20	High-voltage output
11	HVOUT21	High-voltage output
12	HVOUT22	High-voltage output
13	HVOUT23	High-voltage output
14	HVOUT24	High-voltage output
15	HVOUT25	High-voltage output
16	HVOUT26	High-voltage output
17	HVOUT27	High-voltage output
18	HVOUT28	High-voltage output
19	HVOUT29	High-voltage output
20	HVOUT30	High-voltage output
21	HVOUT31	High-voltage output
22	HVOUT32	High-voltage output
23	DATA OUT	Data output pin
24	NC	No connection
25	NC	No connection
26	NC	No connection
27	POL	Inverts the polarity of the HVOUT pins
28	CLK	Clock pin. Shift registers shift data on the falling edge of input clock.
29	VSS	Reference voltage (usually ground)
30	VDD	Logic supply voltage
31	LE	Latch enable pin. Data is shifted from the Shift register to the latches on logic input high.
32	DATA IN	Data input pin
33	BL	This blanking pin sets all HVOUT pins low or high, depending on the state of polarity. See Table 3-2.
34	NC	No connection

HV5522

TABLE 2-1: 44-LEAD PQFP PIN FUNCTION TABLE (CONTINUED)

Pin Number	Pin Name	Description
35	HVOUT1	High-voltage output
36	HVOUT2	High-voltage output
37	HVOUT3	High-voltage output
38	HVOUT4	High-voltage output
39	HVOUT5	High-voltage output
40	HVOUT6	High-voltage output
41	HVOUT7	High-voltage output
42	HVOUT8	High-voltage output
43	HVOUT9	High-voltage output
44	HVOUT10	High-voltage output

TABLE 2-2: 44-LEAD PLCC PIN FUNCTION TABLE

Pin Number	Pin Name	Description
1	HVOUT16	High-voltage output
2	HVOUT17	High-voltage output
3	HVOUT18	High-voltage output
4	HVOUT19	High-voltage output
5	HVOUT20	High-voltage output
6	HVOUT21	High-voltage output
7	HVOUT22	High-voltage output
8	HVOUT23	High-voltage output
9	HVOUT24	High-voltage output
10	HVOUT25	High-voltage output
11	HVOUT26	High-voltage output
12	HVOUT27	High-voltage output
13	HVOUT28	High-voltage output
14	HVOUT29	High-voltage output
15	HVOUT30	High-voltage output
16	HVOUT31	High-voltage output
17	HVOUT32	High-voltage output
18	DATA OUT	Data output pin
19	NC	No connection
20	NC	No connection
21	NC	No connection
22	POL	Inverts the polarity of the HVOUT pins
23	CLK	Clock pin. Shift registers shift data on the falling edge of the input clock.
24	VSS	Reference voltage (usually ground)
25	VDD	Logic supply voltage
26	ĪĒ	Latch enable pin. Data is shifted from the Shift register to the latches on logic input high.

TABLE 2-2: 44-LEAD PLCC PIN FUNCTION TABLE (CONTINUED)

Pin Number	Pin Name	Description
27	DATA IN	Data input pin
28	BL	This blanking pin sets all HVOUT pins low or high, depending on the state of polarity. See Table 3-2.
29	NC	No connection
30	HVOUT1	High-voltage output
31	HVOUT2	High-voltage output
32	HVOUT3	High-voltage output
33	HVOUT4	High-voltage output
34	HVOUT5	High-voltage output
35	HVOUT6	High-voltage output
36	HVOUT7	High-voltage output
37	HVOUT8	High-voltage output
38	HVOUT9	High-voltage output
39	HVOUT10	High-voltage output
40	HVOUT11	High-voltage output
41	HVOUT12	High-voltage output
42	HVOUT13	High-voltage output
43	HVOUT14	High-voltage output
44	HVOUT15	High-voltage output

3.0 FUNCTIONAL DESCRIPTION

Follow the steps in Table 3-1 to power up and power down the HV5522.

TABLE 3-1: POWER-UP AND POWER-DOWN SEQUENCE

	Power-up	Power-down					
Step	Description	Step	Description				
1	Connect ground.		Remove all inputs.				
2	Apply V _{DD} .	2	Remove V _{DD} .				
3	Set all inputs to a known state.	3	Disconnect ground.				

TABLE 3-2: TRUTH FUNCTION TABLE

			lanuta			Outputs								
Function		l	Inputs			S	Shift Register				-volta	ge Oı	utput	Data Out
	Data CLK LE BL POL						2		32	1	2		32	
All On	Х	Х	Х	L	L	p1	p2		p32	On	On		On	d
All Off	Х	Х	Х	L	Н	p1	p2		p32	Off	Off		Off	d
Invert Mode	Х	Χ	L	Н	L	p1	p2		p32	p1	p2		p32	d
Load S/R	H or L	↓	L	Н	Н	H or L	p1		p31	p1	p2		p32	p32
Load Latches	Х	H or L	1	Н	Н	p1	p2		p32	p1	p2		p32	d
Load Lateries	Х	H or L	↑	Ι	Ш	p1	p2		p32	p1	p2		p32	d
Transparent	L	\downarrow	Η	Н	Н	L	p1		p31	Off	p1		p31	p32
Latch Mode	Н	\downarrow	Н	Н	Н	Н	p1		p31	On	p1		p31	p32

Note: H = High-logic level

L = Low-logic level

X = Irrelevant

↓ = High-to-low transition

↑ = Low-to-high transition

d = Current state of the data output

pn = "p" represents the current state of the Shift register output, and

"n" represents the channel order.

FIGURE 3-1: Input and Output Equivalent Circuits.

4.0 PACKAGE MARKING INFORMATION

4.1 Packaging Information

Legend: XX...X Product Code or Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code

Byb-free JEDEC® designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator (a)
can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or not include the corporate logo.

44-Lead PQFP Package Outline (PG)

10.00x10.00mm body, 2.35mm height (max), 0.80mm pitch

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbo	ol	Α	A1	A2	b	D	D1	E	E1	е	L	L1	L2	θ
	MIN	1.95*	0.00	1.95	0.30	13.65*	9.80*	13.65*	9.80*		0.73			0 º
Dimension (mm)	NOM		-	2.00	-	13.90	10.00	13.90	10.00	0.80 BSC	0.88	1.95 REF	0.25 BSC	3.5°
()	MAX	2.35	0.25	2.10	0.45	14.15*	10.20*	14.15*	10.20*		1.03		_ 30	7°

JEDEC Registration MO-112, Variation AA-2, Issue B, Sep.1995.

* This dimension is not specified in the JEDEC drawing.

Drawings not to scale.

44-Lead PLCC Package Outline (PJ)

.653x.653in body, .180in height (max), .050in pitch

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging. Notes:

- 1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.
- Actual shape of this feature may vary.

Symbol		Α	A1	A2	b	b1	D	D1	E	E1	е	R
Dimension (inches)	MIN	.165	.090	.062	.013	.026	.685	.650	.685	.650	.050 BSC	.025
	NOM	.172	.105	-	-	-	.690	.653	.690	.653		.035
	MAX	.180	.120	.083	.021	.036 [†]	.695	.656	.695	.656		.045

JEDEC Registration MS-018, Variation AC, Issue A, June, 1993.

† This dimension differs from the JEDEC drawing. **Drawings not to scale.**

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (October 2017)

- Converted Supertex Doc# DSFP-HV5522 to Microchip DS20005699A
- Changed the package marking format
- Removed the 44-lead PQFP PG M919 and 44-lead PLCC PJ M903 media types
- · Made minor changes throughout the document

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO. Device	XX Package	-	X - X Environmental Media Type	Examples:					
	Options			a) HV5522PG-G:	32-Channel Serial-to-Parallel Converter with Open Drain Outputs, 44-lead PQFP, 96/Tray				
Device:	HV5522	=	32-Channel Serial-to-Parallel Converter with Open Drain Outputs	b) HV5522PJ-G:	32-Channel Serial-to-Parallel Converter with Open Drain Outputs, 44-lead				
Packages:	PG	=	44-lead PQFP		PLCC, 27/Tube				
	PJ	=	44-lead PLCC						
Environmental:	G	=	Lead (Pb)-free/RoHS-compliant Package						
Media Type:	(blank)	=	96/Tray for a PG Package						
	(blank)	=	27/Tube for a PJ Package						

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2017, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-2256-3

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/support

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York. NY

Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon
Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829

Fax: 86-24-2334-2829

China - Shenzhen

Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870

Fax: 65-6334-8850 **Taiwan - Hsin Chu**

Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90

Fax: 34-91-708-08-91 **Sweden - Gothenberg** Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820