Example: Beetle Mortality

▶ Study the relation between the mortality of beetles after 5 hours exposure to gaseous disulphide (CS₂) and the concentrations.

$Log10(Dose)$, x_i	$\#$ of beetles, m_i	# killed y_i
1.6907	59	6
1.7242	60	13
1.7552	62	18
1.7842	56	28
1.8113	63	52
1.8369	59	53
1.8610	62	61
1.8839	60	60

Table: Grouped data.

Figure: Beetle mortality data. Proportion killed: y_i/m_i against dose on the \log_{10} scale: x_i .

Example: Median Lethal Dose

- Recall the beetle mortality example, where the primary goal is to study the relation between the mortality rate and the CS2 concentration.
- Suppose we are interested in finding the median lethal dose (LD50), i.e., the dose required to kill half the population.
- ▶ In the logistic regression framework, it is equivalent to predicting the dose x_0 that leads to a response rate $\pi_0 = 0.5$.

$$g(\pi) = \beta_0 + \beta_1 x$$

This type of problem is common in toxicology.

We are interested in x_0 s.t. $\beta_0 + \beta_1 x_0 = g(0.5)$ in LD50 study

► Logit:
$$x_0 = \left(-\frac{\beta_0}{\beta_1}\right) = f(\beta_0, \beta_1)$$

► Logit:
$$x_0 = (\hat{\beta}_0) = \hat{f}(\hat{\beta}_0, \hat{\beta}_1) = (\hat{\beta}_0, \hat{\beta}_1) =$$

Asymptotic variance of \hat{x}_0 :

$$\underbrace{(\underbrace{var(\hat{x}_0)}_{vor(\hat{f}(\hat{k}_0,\hat{k}_0))})}_{vor(\hat{f}(\hat{k}_0,\hat{k}_0))} = \underbrace{(\frac{\partial x_0}{\partial \beta_0})^2 var(\hat{\beta}_0) + (\frac{\partial x_0}{\partial \beta_1})^2 var(\hat{\beta}_1)}_{+2(\frac{\partial x_0}{\partial \beta_0})(\frac{\partial x_0}{\partial \beta_1}) cov(\hat{\beta}_0,\hat{\beta}_1)} \qquad \underbrace{\frac{\partial \hat{f}}{\partial \hat{k}_0} = -\frac{\hat{f}}{\hat{k}_0}}_{=\hat{k}_0} = \underbrace{\frac{\hat{f}}{\hat{k}_0}}_{=\hat{k}_0}$$

▶ Then the asymptotic CI of x_0 is

$$\begin{array}{ccc} x_0 & \in & [x_L, x_R] \\ \hline & = & \left[\hat{x}_0 - z_{\alpha/2} \sqrt{\mathsf{var}(\hat{x}_0)}, \hat{x}_0 + \underline{z_{\alpha/2}} \sqrt{\mathsf{var}(\hat{x}_0)} \right] \end{array}$$

• $(1-\alpha)100\%$ CI of LD50: $[10^{x_L}, 10^{x_R}]$

