

HEXFET® Power MOSFET

V _{DS}	30	V
V _{GS Max}	± 20	٧
R _{DS(on) max} (@V _{GS} = 10V)	27	$\mathbf{m}\Omega$
$R_{DS(on) max}$ (@V _{GS} = 4.5V)	40	$\mathbf{m}\Omega$

Application(s)

• Load/ System Switch

Features and Benefits

Features

Low $R_{DS(on)}$ ($\leq 27m\Omega$)
Industry-standard pinout
Compatible with existing Surface Mount Techniques
RoHS compliant containing no lead, no bromide and no halogen
MSL1, Industrial qualification

Benefits

results in

Lower switching losses
Multi-vendor compatibility
Easier manufacturing
Environmentally friendly
Increased reliability

Absolute Maximum Ratings

Symbol	ibol Parameter Max.		Units	
V _{DS}	Drain-Source Voltage	30	V	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	5.3		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	4.3	A	
I _{DM}	Pulsed Drain Current	21		
P _D @T _A = 25°C	Maximum Power Dissipation	1.3	14/	
P _D @T _A = 70°C Maximum Power Dissipation		0.8	W	
Linear Derating Factor		0.01	W/°C	
/GS Gate-to-Source Voltage		± 20	V	
$T_{J,}T_{STG}$	Junction and Storage Temperature Range	-55 to + 150	°C	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ③		100	°C/W
$R_{\theta JA}$	Junction-to-Ambient (t<10s) ⁽⁴⁾		99	C/VV

ORDERING INFORMATION:

See detailed ordering and shipping information on the last page of this data sheet.

Notes ① through ④ are on page 10

Electric Characteristics @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.02		V/°C	Reference to 25°C, I _D = 1mA
В	Static Drain-to-Source On-Resistance		33	40	0	V _{GS} = 4.5V, I _D = 4.2A ②
R _{DS(on)}	Static Diam-to-Source On-Resistance		22	27	mΩ	V _{GS} = 10V, I _D = 5.2A ②
V _{GS(th)}	Gate Threshold Voltage	1.3	1.7	2.3	V	$V_{DS} = V_{GS}$, $I_D = 25\mu A$
I _{DSS}	Drain to Source Leakage Current			1		$V_{DS} = 24V, V_{GS} = 0V$
	Drain-to-Source Leakage Current		_	150	μA	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	ΠA	V _{GS} = -20V
R _G	Internal Gate Resistance		2.3		Ω	
gfs	Forward Transconductance	9.5			S	$V_{DS} = 10V, I_D = 5.2A$
Q_g	Total Gate Charge		2.6			$I_D = 5.2A$
Q_{gs}	Gate-to-Source Charge		0.8		nC	V _{DS} =15V
Q_{gd}	Gate-to-Drain ("Miller") Charge		1.1			V _{GS} = 4.5V ②
t _{d(on)}	Turn-On Delay Time		5.2			V _{DD} =15V ^②
t _r	Rise Time		4.4			$I_{D} = 1.0A$
t _{d(off)}	Turn-Off Delay Time		7.4		ns	$R_G = 6.8\Omega$
t _f	Fall Time		4.4			$V_{GS} = 4.5V$
C _{iss}	Input Capacitance		382			V _{GS} = 0V
C _{oss}	Output Capacitance		84		pF	$V_{DS} = 15V$
C _{rss}	Reverse Transfer Capacitance		39			f = 1.0MHz

Source - Drain Ratings and Characteristics

Course Prain Hadings and Characteriolics						
Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current (Body Diode)			1.6		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			21		integral reverse sp-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25^{\circ}C, I_S = 1.6A, V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		11	17	ns	$T_J = 25^{\circ}C, V_R = 15V, I_F=1.6A$
Q _{rr}	Reverse Recovery Charge		4.0	6.0	nC	di/dt = 100A/µs ②

International **TOR** Rectifier

IRLML0030TRPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International **TOR** Rectifier

IRLML0030TRPbF

Fig 9. Maximum Drain Current Vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient

50 $R_{\mbox{\footnotesize{DS}}}(\mbox{\scriptsize{on}}), \mbox{\footnotesize{Drain-to}}$ -Source On Resistance ($m\Omega)$ 45 40 Vgs = 4.5V 35 30 Vgs = 10V 25 20 0 10 30 20 40 50 I_D, Drain Current (A)

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current

Fig 14a. Basic Gate Charge Waveform

Fig 14b. Gate Charge Test Circuit

International TOR Rectifier

IRLML0030TRPbF

Fig 15. Typical Threshold Voltage Vs. Junction Temperature

Fig 16. Typical Power Vs. Time

Micro3 (SOT-23) Package Outline

Dimensions are shown in millimeters (inches)

	DIMENSIONS					
SYMBOL	MILLIM	ETERS	INCH	HES		
STIVIBOL	MIN	MAX	MIN	MAX		
Α	0.89	1.12	0.035	0.044		
A1	0.01	0.10	0.0004	0.004		
A2	0.88	1.02	0.035	0.040		
b	0.30	0.50	0.012	0.020		
С	0.08	0.20	0.003	0.008		
D	2.80	3.04	0.110	0.120		
E	2.10	2.64	0.083	0.104		
E1	1.20	1.40	0.047	0.055		
е	0.95	BSC	0.037	BSC		
e1	1.90	BSC	0.075	BSC		
L	0.40	0.60	0.016	0.024		
L1	0.54	REF	0.021	REF		
L2	0.25	BSC	0.010	BSC		
0	0	8	0	8		

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994
 2. DIMENSIONS AFE SHOWN IN MILLIMETERS (INCHES).
 3. CONTROLLING DIMENSION MILLIMETER

 ADATUM PANSION BY THE MILLIMETER

 ADATUM AND B TO BE DETERMINED AT DATUM PLANE H.

 ADMENSIONS DAND EI ARE MEASURED AT DATUM PLANE H.

 DIMENSIONS DAND EI ARE MEASURED AT DATUM PLANE H.

 DIMENSIONS DAND EI ARE MEASURED AT DATUM PLANE H.

 DIMENSIONS DAND EI ARE MEASURED AT DATUM PLANE H.

 DIMENSIONS DAND EI ARE MEASURED AT DATUM PLANE H.

 DIMENSIONS DAND EI ARE MEASURED AT DATUM PLANE DIMENSIONS OR INTERLEAD FLASH MALD PROTRUSIONS OR INTERLEAD FLASH MALD PROTRUSIONS

 OR INTERLEAD FLASH SHALL NOT EXCEED 0.25 MM (0010 INCH) PER SIDE.

 DIMENSION LIST THE LEAD LENSTHIFOR SOLDERING TO A SUBSTRATE.

 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO -296 AB.

Micro3 (SOT-23/TO-236AB) Part Marking Information

Notes: This part marking information applies to devices produced after 02/26/2001

W = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

YEAR	Υ	WORK WEEK	W	
2001	1	01	Α	
2002	2	02	В	
2003	3	03	C	
2004	4	04	D	
2005	5			
2006	6			
2007	7			
2008	8	1	1	
2009	9	1	1	
2010	0	24	X	
		25	Υ	
		26	Ζ	

B = IRLML2803 C = IRLML6302

D = IRLML5103E = IRLML6402F = IRLML6401

G = IRLML2502H = IRLML5203I = IRLML0030 $J = \mathsf{IRLML2030}$ K = IRLML0100 $\mathsf{L} = \mathsf{IRLML0060}$ M = IRLML0040N = IRLML2060

P = IRLML9301R = IRLML9303 W = (27-52) IF PRECEDED BY A LETTER

Υ	WORK WEEK	W	
Α	27	Α	
В	28	В	
C	29	С	
D	30	D	
E			
F			
G			
Н	1	1	
J	7	1	
K	50	X	
	B C D E F G H J	Y WEEK A 27 B 28 C 29 D 30 E F G H J	A 27 A B 28 B C 29 C D 30 D E F G H J V

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Micro3™ Tape & Reel Information

Dimensions are shown in millimeters (inches)

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

International

TOR Rectifier

Orderable part number	Package Type	Standard Pack Note		Note
		Form	Quantity	
IRLML0030TRPbF	Micro3	Tape and Reel	3000	

Qualification information[†]

Qualification level		onsumer ^{tt} ESD47F ^{ttt} guidelines)	
	(pa Jedecii	L3D4/1 guidelines)	
		MS L 1	
Moisture Sensitivity Level	Micro3	(per IPC/JEDEC J-STD-020D ^{†††})	
RoHS compliant	Yes		

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width \leq 400 μ s; duty cycle \leq 2%.
- 3 Surface mounted on 1 in square Cu board
- Refer to <u>application note #AN-994.</u>

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.04/2010