CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (I E II GRUPPO) 26 GENNAIO 2012

Svolgere i seguenti esercizi, giustificando tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Si dica quando, per definizione, un grafo è connesso. Disegnare il grafo G = (V, L) dove $V = \{1, 2, 3\}$ ed $L = \{\{1, 2\}\}$. G è connesso? Quali sono le sue componenti connesse?

Esercizio 2. Si consideri l'applicazione $\psi \colon \bar{x} \in \mathbb{Z}_{16} \mapsto \bar{7}\bar{x} \in \mathbb{Z}_{16}$. Senza calcolare le immagini dei singoli elementi, ma tenendo conto delle proprietà di $\bar{7}$ in \mathbb{Z}_{16} , si stabilisca se ψ è iniettiva e se ψ è suriettiva? Se possibile, costruire l'inversa di ψ .

Caratterizzare gli $m \in \mathbb{Z}$ tali che l'applicazione $\psi_m \colon \bar{x} \in \mathbb{Z}_{16} \mapsto \bar{m}\bar{x} \in \mathbb{Z}_{16}$ sia biettiva. Sia T l'insieme di tali interi m. Se $m \in T$, è necessariamente vero che $5m \in T$? T è chiuso in $(\mathbb{Z}, +)$? T è chiuso in (\mathbb{Z}, \cdot) ?

Esercizio 3. Sia $X=\{n\in\mathbb{N}\mid 1\leq n\leq 10\}$. Si considerino i seguenti insiemi di parti di X:

$$A = \{\{1, 3, 5\}, \{4, 6\}, \{1, 7, 8\}, \{9, 10\}\},\$$

$$B = \{\{4\}, \{5, 8\}, \{1, 2, 3\}, \{6, 7, 9, 10\}\}.$$

Quale tra $A \in B$ è una partizione di X? Quale non lo è? (giustificare entrambe le risposte).

Detta F quella tra A e B che è una partizione di X, per ogni $x \in X$ si indichi con F_x l'unico elemento di F tale che $x \in F_x$. Si consideri in X la relazione binaria Σ così definita: per ogni $x, y \in X$

$$x \Sigma y \iff x = y \text{ oppure } |F_x| < |F_y|.$$

- (i) Si verifichi che Σ è una relazione d'ordine in X e si dica se è totale.
- (ii) Disegnare il diagramma di Hasse di (X, Σ) .
- (iii) (X, Σ) è un reticolo?
- (iv) Determinare un sottoinsieme di X di ordine 6 tale che (Y, Σ) sia un reticolo. (Y, Σ) è distributivo? È complementato?

Esercizio 4. Sia P il sottoinsieme dell'anello dei polinomi $\mathbb{R}[x]$ così definito:

$$P = \{ax^3 + bx + c \mid a, b, c \in \mathbb{R}\}.$$

Si definisca in P la seguente operazione *:

$$(ax^3 + bx + c) * (ux^3 + tx + z) = aux^3 + btx + cz.$$

- (i) Stabilire se (P, *) è un monoide; in caso di risposta affermativa, caratterizzare gli elementi invertibili di (P, *).
- (ii) Per quali coppie $(f,g) \in P \times P$ il polinomio f * g è irriducibile nell'anello dei polinomi $(\mathbb{R}, +, \cdot)$?