PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE MATEMATICAS DEPARTAMENTO DE MATEMATICA

Primer Semestre 2022

MAT1203 - ÁLGEBRA LINEAL

Clase 6: Ecuaciones Vectoriales y ecuación matricial

1. Determine si \mathbf{b} es una combinación lineal de \mathbf{a}_1 , \mathbf{a}_2 y \mathbf{a}_3 .

$$a) \ \mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}, \ \mathbf{a}_2 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \ \mathbf{a}_3 = \begin{bmatrix} 5 \\ -6 \\ 8 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix}. \qquad \begin{array}{c} \text{Collubor solvation de } [\mathbf{Q}_1 \ \mathbf{Q}_2 \ \mathbf{Q}_3 \ \mathbf{b}) \\ \text{Al gio: 2Q_1 + 3Q_2 = b} \end{array}$$

b)
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 2 \\ 3 \\ -2 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} -6 \\ 7 \\ 5 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 11 \\ -5 \\ 9 \end{bmatrix}$.

2. Sean $\mathbf{a}_1 = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$, $\mathbf{a}_2 = \begin{bmatrix} -5 \\ -8 \\ 2 \end{bmatrix}$ y $\mathbf{b} = \begin{bmatrix} 3 \\ -5 \\ h \end{bmatrix}$. ¿Con qué valor (o valores) de h se encuentra \mathbf{b} en el plano generado por \mathbf{a}_1 y \mathbf{a}_2 ? Columbra solución de [a, a2 b]

3. Sean $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -2 \\ 1 \\ 7 \end{bmatrix}$ y $\mathbf{y} = \begin{bmatrix} h \\ -3 \\ -5 \end{bmatrix}$. ¿Para qué valor (o valores) de h se encuentra \mathbf{y} en el plano generado por \mathbf{v}_1 y \mathbf{v}_2 ? Calcular solución de $\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix}$

4. Sean $\mathbf{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ y $v = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Demuestre que $\begin{bmatrix} h \\ k \end{bmatrix}$ está en $\text{Gen}\{u, v\}$ para todas las hy k. Demostrar que u y v generan IR^2 , as decir, demostrar que u y v

5. Sean $A = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 3 & -2 \\ -2 & 6 & 3 \end{bmatrix}$ y $\mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ -4 \end{bmatrix}$. Denote las columnas de A por \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 , y $\operatorname{sea} W = \operatorname{Gen}\{\mathbf{a}_1, \mathbf{a}_2,$

- b) ¿Está $\mathbf b$ en W? ¿Cuántos vectores hay en W? (alubr [AID] infinites
- c) Demuestre que a_1 está en W.

w= {a,a,a,a), y la comb. liveal da+6a+ you - Consider and az1, B=0, y=0: 101+0.0z+0.03 = 04 O1 está en W

6. Sean
$$A = \begin{bmatrix} 2 & 0 & 6 \\ -1 & 8 & 5 \\ 1 & -2 & 1 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 10 \\ 3 \\ 7 \end{bmatrix}$ y sea W el conjunto de todas las combinaciones lineales de las columnas de A .

- a) i. Está \mathbf{b} en W? Colube solución de [A16]
- b) Demuestre que la segunda columna de A está en W. $w = \frac{6en(a_1, a_2, a_3)}{5ea}$
- 7. Marque cada enunciado como falso o verdadero. Justifique sus respuestas. 😘 🖘

a) Otra notación para el vector
$$\begin{bmatrix} -4 \\ 3 \end{bmatrix}$$
 es $[-4,3]$.

- b) Los puntos en el plano que corresponden a $\begin{bmatrix} -2 \\ 5 \end{bmatrix}$ y $\begin{bmatrix} -5 \\ 2 \end{bmatrix}$ están sobre una recta que pasa por el origen.
- c) Un ejemplo de combinación lineal de los vectores \mathbf{v}_1 y \mathbf{v}_2 es el vector $\frac{1}{2}\mathbf{v}_1$. \bigvee
- d) El conjunto solución del sistema lineal cuya matriz aumentada es $[\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{b}]$ coincide con el conjunto solución de la ecuación $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \mathbf{b}$.
- e) El conjunto $Gen\{u,v\}$ siempre se visualiza como un plano que pasa por el origen. $rac{1}{5}$ (5) u y $rac{1}{5}$ son LD serio uno recto $rac{1}{5}$
- f) Cuando **u** y **v** son vectores diferente de cero, Gen{**u**, **v**} solo contiene la recta que pasa por **u** y por el origen, y la recta que pasa por **v** y el origen. F (Prece contener un plano)
- g) Cualquier lista de cinco números reales es un vector en \mathbb{R}^5 . \bigvee
- h) Preguntar si el sistema lineal correspondiente a la matriz aumentada $[\mathbf{a}_1 \, \mathbf{a}_2 \, \mathbf{a}_3 \, \mathbf{b}]$ tiene solución equivale a preguntar si el vector \mathbf{b} está en Gen $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$. \checkmark
- i) El vector ${f v}$ resulta cuando un vectgor ${f u}-{f v}$ se suma al vector ${f v}$. F (Resulta ${f u}$)
- j) No todos los pesos c_1, \ldots, c_p en una combinación lineal $c_1\mathbf{v}_1 + \cdots + c_p\mathbf{v}_p$ pueden ser cero. \vdash (5) peden \triangleright \bigcirc
- 8. Considerando A y \mathbf{b} , escriba la matriz aumentada para el sistema lineal que corresponde a la ecuación matricial $Ax = \mathbf{b}$. Después, resuelva el sistema y escriba la solución como un vector.

a)
$$A = \begin{bmatrix} 1 & 3 & -4 \\ 1 & 5 & 2 \\ -3 & -7 & 6 \end{bmatrix}$$
 y $\mathbf{b} = \begin{bmatrix} -2 \\ 4 \\ 12 \end{bmatrix}$ b) $A = \begin{bmatrix} 1 & 2 & -1 \\ -3 & -4 & 2 \\ 5 & 2 & 3 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$

collular solvuon de [AID]

9. Sean $\mathbf{u} = \begin{bmatrix} 0 \\ 4 \\ 4 \end{bmatrix}$ y $A = \begin{bmatrix} 3 & -5 \\ -2 & 6 \\ 1 & 1 \end{bmatrix}$. ¿Está \mathbf{u} en el plano generado por las columnas de A? (Véase la figura). ¿Por qué? Calway solución de LA \mathbf{u}

- 10. Sean $\mathbf{u} = \begin{bmatrix} 4 \\ -1 \\ 4 \end{bmatrix}$ y $A = \begin{bmatrix} 2 & 5 & -1 \\ 0 & 1 & -1 \\ 1 & 2 & 0 \end{bmatrix}$. ¿Está \mathbf{u} en el subconjunto de \mathbb{R}^3 generado por las columnas de A? ¿Por qué?
- 11. Considere las siguientes matrices

$$A = \begin{bmatrix} 1 & 3 & 0 & 3 \\ -1 & -1 & -1 & 1 \\ 0 & -4 & 2 & -8 \\ 2 & 0 & 3 & -1 \end{bmatrix} \quad \text{y} \quad B = \begin{bmatrix} 1 & 4 & 1 & 2 \\ 0 & 1 & 3 & -4 \\ 0 & 2 & 6 & 7 \\ 2 & 9 & 5 & -7 \end{bmatrix}.$$

- a) ¿Cuántas filas de A contienen una posición pivote? ¿La ecuación $A\mathbf{x} = \mathbf{b}$ tiene solución para cada \mathbf{b} en \mathbb{R}^4 ?
- b) ¿Cada vector en \mathbb{R}^4 se puede escribir como una combinación lineal de las columnas de la matriz B? ¿Las columnas de B generan a \mathbb{R}^3 ?
- c) ¿Todo vector en \mathbb{R}^4 se puede escribir como una combinación lineal de las columnas de la matriz A anterior? ¿Las columnas de A generan a \mathbb{R}^4 ?
- d) ¿Las columnas de B generan a \mathbb{R}^4 ? ¿La ecuación $B\mathbf{x} = \mathbf{y}$ tiene solución para cada \mathbf{y} en \mathbb{R}^4 ?

12. Sean
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}$. $\mathbf{i}_3\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ genera a \mathbb{R}^4 ? \mathbf{i}_3 Por qué?

Nonca, ya que se necesitan 4 vactoes en \mathbf{i}_3 and $\mathbf{v}_1 = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ -3 \\ 9 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 4 \\ -2 \\ -6 \end{bmatrix}$. $\mathbf{i}_3\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ genera \mathbb{R}^3 ? \mathbf{i}_3 Por qué?

Solve and \mathbf{v}_3 and \mathbf{v}_4 are seen \mathbf{v}_3 invalentes and \mathbf{v}_4 are seen \mathbf{v}_3 varieties and \mathbf{v}_4 are seen \mathbf{v}_3 por qué?

- 14. Marque cada enunciado como verdadero o falso. Justifique sus respuestas.
 - a) La ecuación $A\mathbf{x} = \mathbf{b}$ se reconoce como una ecuación vectorial. \mathbf{F} LEvación matricial
 - b) Un vector \mathbf{b} es una combinación lineal de las columnas de una matriz A si y solo si la ecuación $A\mathbf{x} = \mathbf{b}$ tiene al menos una solución. \checkmark
 - c) La ecuación $A\mathbf{x} = \mathbf{b}$ es consistente si la matriz aumentada $[A \ \mathbf{b}]$ tiene una posición pivote en cada fila. F (La Girma fila prede ex $[O \ O \ O \ I \ bn]$
 - d) La primera entrada en el producto $A\mathbf{x}$ es una suma de productos. \bigvee
 - e) Si las columnas de una matriz A de $m \times n$ generan a \mathbf{R}^m , entonces la ecuación $A\mathbf{x} = \mathbf{b}$ es consistente para cada \mathbf{b} en \mathbb{R}^m . \bigvee
 - f) Si A es una matriz de $m \times n$ y si la ecuación $A\mathbf{x} = \mathbf{b}$ es inconsistente para alguna \mathbf{b} en \mathbb{R}^m , entonces A no puede tener una posición pivote en cada fila. \checkmark
 - g) Cada ecuación matricial $A\mathbf{x} = \mathbf{b}$ corresponde a una ecuación vectorial con el mismo conjunto solución.
 - h) Si la ecuación $A\mathbf{x} = \mathbf{b}$ es consistente, entonces \mathbf{b} está en el conjunto generado por las columnas de A. \bigvee
 - i) Cualquier combinación lineal de vectores siempre se puede escribir en la forma $A\mathbf{x}$ para una matriz A y un vector \mathbf{x} adecuados. \bigvee
 - j) Si la matriz coeficiente A tiene una posición pivote en cada fila, entonces la ecuación $A\mathbf{x} = \mathbf{b}$ es inconsistente.
 - k) El conjunto solución de un sistema lineal cuya matriz aumentada es $[\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{b}]$ coincide con el conjunto solución de $A\mathbf{x} = \mathbf{b}$, si $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3]$.
 - l) Si A es una matriz de $m \times n$ cuyas columnas no generan a \mathbb{R}^m , entonces la ecuación $A\mathbf{x} = \mathbf{b}$ es consistente para toda \mathbf{b} en \mathbb{R}^m .