Applications Of Linear Algebra in Game Development.

Mikhailov V.V.

February 27, 2017

Overview

Vector, dot and cross product

Figure 1: For dot product

Figure 2: For cross product

Vector is ...

An element of a vector space

Basics (assume
$$\|a\|=\|b\|=1$$
, $\vec{a}, \vec{b} \in R^3$)

Dot product: $\cos \alpha = \vec{a} \cdot \vec{b} = a^i b_i$, Cross product: $|\sin(\alpha)| = ||\vec{a} \times \vec{b}||$, where $\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$

Wedge product: $\omega = \vec{a} \wedge \vec{b}, \ \omega \in \Lambda^2$

"Types" of vectors

- Polar
- Axial (aka pseudovector).

Angle between two vectors

Problem

Find angle α between two vectors \vec{a} and \vec{b}

 $\cos \alpha = \vec{a} \cdot \vec{b}$, but cosine function is an even $(\cos (-\alpha) = \cos \alpha)$. sgn α - ?

Solution

In general, we need a reference axis \vec{z}_{ref} .

Let
$$\vec{z} = \vec{a} \times \vec{b}$$
.

If
$$\vec{z} \cdot \vec{z}_{ref} \geq 0$$
, then $\alpha = \arccos \vec{a} \cdot \vec{b}$, else $\alpha = -\arccos \vec{a} \cdot \vec{b}$.

2D case: Check the sign of
$$\begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix}$$

Geometric features

- $\bullet \|\vec{a} \times \vec{b}\| = S_{ABCD}$
- $\frac{1}{2} \| \vec{a} \times \vec{b} \| = S_{ABC}$ determinant of |a b c|? scalar triple product (or mixed product) proper and improper rotation