$12a_{0556} (K12a_{0556})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 1.07057 \times 10^{77} u^{84} - 1.50389 \times 10^{77} u^{83} + \dots + 2.53839 \times 10^{77} b + 9.88146 \times 10^{77},$$

$$4.68186 \times 10^{77} u^{84} - 4.98399 \times 10^{77} u^{83} + \dots + 7.61518 \times 10^{77} a + 1.56488 \times 10^{78}, \ u^{85} - 2u^{84} + \dots + 3u - 9$$

$$I_2^u = \langle b, \ u^4 - u^2 + a - 2u + 1, \ u^5 + u^4 - u^2 + u + 1 \rangle$$

$$I_2^u = \langle -u^3 a - u^2 a + 2u^3 + au - u^2 + 2b - u + 1, \ -2u^3 a + u^2 a + 3u^3 + a^2 + au - u^2 - a - 2u, \ u^4 - u^2 + 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 98 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle 1.07 \times 10^{77} u^{84} - 1.50 \times 10^{77} u^{83} + \dots + 2.54 \times 10^{77} b + 9.88 \times 10^{77}, \ 4.68 \times 10^{77} u^{84} - 4.98 \times 10^{77} u^{83} + \dots + 7.62 \times 10^{77} a + 1.56 \times 10^{78}, \ u^{85} - 2u^{84} + \dots + 3u - 9 \rangle$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ u^2 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -u \\ -u^3 + u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u^3 \\ u^5 - u^3 + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.614806u^{84} + 0.654481u^{83} + \dots + 9.36540u - 2.05495 \\ -0.421753u^{84} + 0.592456u^{83} + \dots - 1.27756u - 3.89280 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0.681235u^{84} - 0.376546u^{83} + \dots - 7.23243u + 7.03410 \\ -0.191650u^{84} - 0.675652u^{83} + \dots + 8.48193u + 7.43904 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1.86822u^{84} - 0.943208u^{83} + \dots - 12.5547u + 7.89357 \\ -0.0907235u^{84} - 1.88072u^{83} + \dots + 17.6608u + 14.6758 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1.63065u^{84} - 3.35202u^{83} + \dots + 13.0436u + 22.5528 \\ -2.79323u^{84} + 3.46800u^{83} + \dots - 2.28892u - 16.8140 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.699998u^{84} - 1.53125u^{83} + \dots + 14.4778u + 10.2525 \\ -1.30758u^{84} + 1.53849u^{83} + \dots - 1.30083u - 10.6368 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.180393u^{84} + 3.41357u^{83} + \dots - 3.48625u - 22.2978 \\ 3.09725u^{84} - 3.65415u^{83} + \dots + 0.275477u + 18.2000 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $0.269673u^{84} 0.693788u^{83} + \cdots + 4.57663u 2.13190$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_7	$u^{85} + 28u^{84} + \dots + 1107u + 81$
c_2, c_6	$u^{85} - 2u^{84} + \dots + 3u - 9$
c_3, c_4, c_8	$u^{85} - 2u^{84} + \dots + 144u - 36$
c_5, c_{11}	$u^{85} + u^{84} + \dots - 96u - 32$
c_9, c_{10}, c_{12}	$u^{85} - 10u^{84} + \dots + 17u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^{85} + 64y^{84} + \dots + 485595y - 6561$
c_2, c_6	$y^{85} - 28y^{84} + \dots + 1107y - 81$
c_3, c_4, c_8	$y^{85} + 80y^{84} + \dots + 16776y - 1296$
c_5, c_{11}	$y^{85} + 45y^{84} + \dots + 22016y - 1024$
c_9, c_{10}, c_{12}	$y^{85} - 80y^{84} + \dots - 91y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.998621		
a = -0.294335	-5.84228	-16.3890
b = 1.06804		
u = -0.806816 + 0.599615I		
a = 0.703510 + 0.591628I	-0.43718 + 2.02855I	0
b = -0.319657 + 0.693146I		
u = -0.806816 - 0.599615I		
a = 0.703510 - 0.591628I	-0.43718 - 2.02855I	0
b = -0.319657 - 0.693146I		
u = 0.984839 + 0.081448I		
a = 0.48248 + 1.60444I	-3.82226 - 2.23236I	-15.8479 + 4.6950I
b = -0.198977 + 1.034500I		
u = 0.984839 - 0.081448I		
a = 0.48248 - 1.60444I	-3.82226 + 2.23236I	-15.8479 - 4.6950I
b = -0.198977 - 1.034500I		
u = 1.016480 + 0.146739I		
a = 0.131558 - 0.758826I	-2.02964 - 3.37819I	0
b = -1.033670 - 0.298635I		
u = 1.016480 - 0.146739I		
a = 0.131558 + 0.758826I	-2.02964 + 3.37819I	0
b = -1.033670 + 0.298635I		
u = 0.709986 + 0.663321I		
a = 2.20996 + 0.27167I	-1.108310 + 0.109986I	-8.00000 + 0.I
b = -0.850401 + 0.427141I		
u = 0.709986 - 0.663321I		_
a = 2.20996 - 0.27167I	-1.108310 - 0.109986I	-8.00000 + 0.I
b = -0.850401 - 0.427141I		
u = -0.900145 + 0.529083I		
a = 5.92919 - 1.06315I	-0.08293 + 2.04372I	0
b = -0.309938 + 0.046527I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.900145 - 0.529083I		
a = 5.92919 + 1.06315I	-0.08293 - 2.04372I	0
b = -0.309938 - 0.046527I		
u = -0.724002 + 0.754097I		
a = -0.922405 + 0.673843I	1.77796 - 1.79805I	0
b = 0.555009 - 0.921380I		
u = -0.724002 - 0.754097I		
a = -0.922405 - 0.673843I	1.77796 + 1.79805I	0
b = 0.555009 + 0.921380I		
u = 0.775319 + 0.522980I		
a = -0.458774 + 0.800072I	1.78078 - 2.10361I	0. + 4.46892I
b = 0.235131 - 0.116553I		
u = 0.775319 - 0.522980I		
a = -0.458774 - 0.800072I	1.78078 + 2.10361I	04.46892I
b = 0.235131 + 0.116553I		
u = 0.268293 + 0.888731I		
a = -0.732829 + 0.719131I	0.28979 - 6.12813I	-7.02703 + 5.51860I
b = 0.581673 - 1.021050I		
u = 0.268293 - 0.888731I		
a = -0.732829 - 0.719131I	0.28979 + 6.12813I	-7.02703 - 5.51860I
b = 0.581673 + 1.021050I		
u = -0.711753 + 0.806285I		
a = -1.84218 + 0.24993I	4.32861 - 2.99556I	0
b = 1.26596 + 0.66556I		
u = -0.711753 - 0.806285I		
a = -1.84218 - 0.24993I	4.32861 + 2.99556I	0
b = 1.26596 - 0.66556I		
u = 0.867038 + 0.661822I		
a = -1.308520 + 0.434436I	-5.78886 - 2.56710I	0
b = -0.06260 - 1.87617I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.867038 - 0.661822I		
a = -1.308520 - 0.434436I	-5.78886 + 2.56710I	0
b = -0.06260 + 1.87617I		
u = 0.759915 + 0.787119I		
a = -0.139375 - 0.369733I	5.21127 - 0.29207I	0
b = 0.543133 + 1.290540I		
u = 0.759915 - 0.787119I		
a = -0.139375 + 0.369733I	5.21127 + 0.29207I	0
b = 0.543133 - 1.290540I		
u = -0.674977 + 0.862853I		
a = 0.848112 - 1.114180I	-3.29308 - 5.51174I	0
b = -0.606952 + 1.131660I		
u = -0.674977 - 0.862853I		
a = 0.848112 + 1.114180I	-3.29308 + 5.51174I	0
b = -0.606952 - 1.131660I		
u = -0.996557 + 0.465595I		
a = 1.127330 + 0.051322I	-8.63067 + 1.50287I	0
b = 0.09960 - 1.43805I		
u = -0.996557 - 0.465595I		
a = 1.127330 - 0.051322I	-8.63067 - 1.50287I	0
b = 0.09960 + 1.43805I		
u = 0.693699 + 0.854594I		
a = 0.694895 + 0.626975I	7.72360 + 5.45340I	0
b = -0.729780 - 1.197990I		
u = 0.693699 - 0.854594I		
a = 0.694895 - 0.626975I	7.72360 - 5.45340I	0
b = -0.729780 + 1.197990I		
u = -0.873454 + 0.207048I		
a = 1.70854 - 0.67125I	-8.29116 + 1.11793I	-14.9646 + 1.4167I
b = -0.20097 - 1.51805I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.873454 - 0.207048I		
a = 1.70854 + 0.67125I	-8.29116 - 1.11793I	-14.9646 - 1.4167I
b = -0.20097 + 1.51805I		
u = 0.631492 + 0.905031I		
a = -0.944080 - 0.902830I	2.45406 + 10.41200I	0
b = 0.83894 + 1.21192I		
u = 0.631492 - 0.905031I		
a = -0.944080 + 0.902830I	2.45406 - 10.41200I	0
b = 0.83894 - 1.21192I		
u = -0.886138 + 0.123069I		
a = -0.92190 - 1.99206I	-0.667588 + 1.025160I	-12.54308 - 0.08033I
b = -0.053379 - 0.976140I		
u = -0.886138 - 0.123069I		
a = -0.92190 + 1.99206I	-0.667588 - 1.025160I	-12.54308 + 0.08033I
b = -0.053379 + 0.976140I		
u = 0.850775 + 0.712293I		
a = 0.798573 + 0.967990I	2.60791 - 2.73509I	0
b = -0.612070 - 0.514601I		
u = 0.850775 - 0.712293I		
a = 0.798573 - 0.967990I	2.60791 + 2.73509I	0
b = -0.612070 + 0.514601I		
u = -1.093410 + 0.191489I		_
a = -0.21969 + 1.48130I	0.65643 + 5.42394I	0
b = 0.482351 + 1.025410I		
u = -1.093410 - 0.191489I		_
a = -0.21969 - 1.48130I	0.65643 - 5.42394I	0
b = 0.482351 - 1.025410I		
u = -0.922652 + 0.626826I		_
a = -1.48767 + 0.81968I	-0.82236 + 2.80542I	0
b = 0.235613 + 0.929059I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.922652 - 0.626826I		
a = -1.48767 - 0.81968I	-0.82236 - 2.80542I	0
b = 0.235613 - 0.929059I		
u = 1.105020 + 0.170837I		
a = -0.762252 - 0.928102I	-10.32480 - 5.23736I	0
b = 0.412640 - 1.334080I		
u = 1.105020 - 0.170837I		
a = -0.762252 + 0.928102I	-10.32480 + 5.23736I	0
b = 0.412640 + 1.334080I		
u = 1.034710 + 0.424655I		
a = 0.678821 + 0.419020I	2.03787 - 1.45102I	0
b = 0.453832 + 0.596946I		
u = 1.034710 - 0.424655I		
a = 0.678821 - 0.419020I	2.03787 + 1.45102I	0
b = 0.453832 - 0.596946I		
u = 0.887489 + 0.698307I		
a = -1.81058 + 0.09319I	2.49176 - 2.67187I	0
b = 0.549211 - 0.690031I		
u = 0.887489 - 0.698307I		
a = -1.81058 - 0.09319I	2.49176 + 2.67187I	0
b = 0.549211 + 0.690031I		
u = 0.759240 + 0.855036I		
a = -0.365619 - 1.259310I	-1.327970 - 0.401840I	0
b = 0.353657 + 0.964749I		
u = 0.759240 - 0.855036I		
a = -0.365619 + 1.259310I	-1.327970 + 0.401840I	0
b = 0.353657 - 0.964749I		
u = 0.967500 + 0.663999I		
a = -1.16043 - 1.12609I	-1.88422 - 5.29403I	0
b = 1.042120 + 0.405267I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.967500 - 0.663999I		
a = -1.16043 + 1.12609I	-1.88422 + 5.29403I	0
b = 1.042120 - 0.405267I		
u = -0.826690 + 0.842297I		
a = 1.264590 - 0.276686I	10.14220 + 0.91099I	0
b = -1.032940 - 0.397310I		
u = -0.826690 - 0.842297I		
a = 1.264590 + 0.276686I	10.14220 - 0.91099I	0
b = -1.032940 + 0.397310I		
u = -0.979456 + 0.706863I		
a = 1.99453 - 0.39746I	1.00480 + 7.36064I	0
b = -0.548510 - 1.048100I		
u = -0.979456 - 0.706863I		
a = 1.99453 + 0.39746I	1.00480 - 7.36064I	0
b = -0.548510 + 1.048100I		
u = -1.200290 + 0.153170I		
a = 0.338551 - 0.939110I	-4.88195 + 9.31216I	0
b = -0.631973 - 1.218280I		
u = -1.200290 - 0.153170I		
a = 0.338551 + 0.939110I	-4.88195 - 9.31216I	0
b = -0.631973 + 1.218280I		
u = 0.967716 + 0.732266I		
a = 1.56362 + 0.49238I	4.57399 - 5.44218I	0
b = -0.42587 + 1.36774I		
u = 0.967716 - 0.732266I		
a = 1.56362 - 0.49238I	4.57399 + 5.44218I	0
b = -0.42587 - 1.36774I		
u = -1.000590 + 0.727268I		
a = 0.73771 - 1.21462I	3.44867 + 8.76620I	0
b = -1.35820 + 0.57857I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.000590 - 0.727268I		
a = 0.73771 + 1.21462I	3.44867 - 8.76620I	0
b = -1.35820 - 0.57857I		
u = -0.946573 + 0.803204I		
a = -0.739615 + 0.818673I	9.77457 + 5.21014I	0
b = 1.022410 - 0.261567I		
u = -0.946573 - 0.803204I		
a = -0.739615 - 0.818673I	9.77457 - 5.21014I	0
b = 1.022410 + 0.261567I		
u = 0.995841 + 0.763155I		
a = 1.69209 - 0.43161I	-2.07273 - 5.62883I	0
b = -0.479759 + 1.044820I		
u = 0.995841 - 0.763155I		
a = 1.69209 + 0.43161I	-2.07273 + 5.62883I	0
b = -0.479759 - 1.044820I		
u = 0.147072 + 0.728915I		
a = 0.683793 - 0.110743I	4.76220 - 2.53471I	-1.46695 + 3.47281I
b = -0.656032 + 0.815272I		
u = 0.147072 - 0.728915I		
a = 0.683793 + 0.110743I	4.76220 + 2.53471I	-1.46695 - 3.47281I
b = -0.656032 - 0.815272I		
u = -0.150086 + 0.725683I		
a = 0.54471 + 1.31256I	-6.11100 + 2.42065I	-11.51467 - 3.42821I
b = -0.202918 - 1.187480I		
u = -0.150086 - 0.725683I		
a = 0.54471 - 1.31256I	-6.11100 - 2.42065I	-11.51467 + 3.42821I
b = -0.202918 + 1.187480I		
u = 1.027010 + 0.742791I		
a = -1.86187 - 0.57547I	6.70036 - 11.40770I	0
b = 0.67693 - 1.27703I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.027010 - 0.742791I		
a = -1.86187 + 0.57547I	6.70036 + 11.40770I	0
b = 0.67693 + 1.27703I		
u = -0.730565		
a = 0.0171409	-1.07739	-9.03050
b = -0.401918		
u = -1.038750 + 0.736760I		
a = -2.04598 + 0.10778I	-4.41235 + 11.46610I	0
b = 0.672589 + 1.206980I		
u = -1.038750 - 0.736760I		
a = -2.04598 - 0.10778I	-4.41235 - 11.46610I	0
b = 0.672589 - 1.206980I		
u = 1.166100 + 0.516708I		
a = -0.690535 + 0.225074I	-2.57120 + 1.00877I	0
b = -0.402473 - 1.048200I		
u = 1.166100 - 0.516708I		
a = -0.690535 - 0.225074I	-2.57120 - 1.00877I	0
b = -0.402473 + 1.048200I		
u = 1.073740 + 0.736661I		
a = 2.00421 + 0.50463I	1.0897 - 16.4761I	0
b = -0.84789 + 1.28835I		
u = 1.073740 - 0.736661I		
a = 2.00421 - 0.50463I	1.0897 + 16.4761I	0
b = -0.84789 - 1.28835I		
u = -0.942740 + 0.934437I		
a = -0.350351 - 0.512078I	8.96196 + 3.42091I	0
b = 0.061691 + 0.565881I		
u = -0.942740 - 0.934437I		
a = -0.350351 + 0.512078I	8.96196 - 3.42091I	0
b = 0.061691 - 0.565881I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.111200 + 0.545459I		
a = -1.08297 - 1.20293I	1.50806 + 1.20124I	-5.48394 - 0.07233I
b = 0.699790 - 0.645759I		
u = -0.111200 - 0.545459I		
a = -1.08297 + 1.20293I	1.50806 - 1.20124I	-5.48394 + 0.07233I
b = 0.699790 + 0.645759I		
u = -0.193935 + 0.335714I		
a = -1.051420 - 0.253121I	-0.404941 + 0.957173I	-6.94345 - 7.00511I
b = 0.180316 + 0.662567I		
u = -0.193935 - 0.335714I		
a = -1.051420 + 0.253121I	-0.404941 - 0.957173I	-6.94345 + 7.00511I
b = 0.180316 - 0.662567I		
u = 0.311045		
a = 3.80168	-2.06404	-1.31720
b = -0.461365		

II.
$$I_2^u = \langle b, u^4 - u^2 + a - 2u + 1, u^5 + u^4 - u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{3} \\ -u^{4} + u^{3} + u^{2} - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{4} + u^{2} + 2u - 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} \\ u^{4} + u^{3} - u^{2} + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{4} - u^{3} + u^{2} + 2u - 1 \\ u^{4} + u^{3} - u^{2} + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-9u^4 u^3 + 2u^2 + 4u 17$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4	$u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1$
c_2	$u^5 - u^4 + u^2 + u - 1$
c_5, c_{11}	u^5
<i>c</i> ₆	$u^5 + u^4 - u^2 + u + 1$
c_{7}, c_{8}	$u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1$
c_9, c_{10}	$(u-1)^5$
c_{12}	$(u+1)^5$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_7, c_8	$y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1$
c_2, c_6	$y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1$
c_5, c_{11}	y^5
c_9, c_{10}, c_{12}	$(y-1)^5$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.758138 + 0.584034I		
a = 1.47956 + 1.63976I	0.17487 - 2.21397I	-6.59361 - 0.42541I
b = 0		
u = 0.758138 - 0.584034I		
a = 1.47956 - 1.63976I	0.17487 + 2.21397I	-6.59361 + 0.42541I
b = 0		
u = -0.935538 + 0.903908I		
a = 0.044146 + 0.313338I	9.31336 + 3.33174I	3.61324 + 0.36944I
b = 0		
u = -0.935538 - 0.903908I		
a = 0.044146 - 0.313338I	9.31336 - 3.33174I	3.61324 - 0.36944I
b = 0		
u = -0.645200		
a = -2.04741	-2.52712	-20.0390
b = 0		

$$\begin{aligned} \text{III. } I_3^u = \langle -u^3a - u^2a + 2u^3 + au - u^2 + 2b - u + 1, \ -2u^3a + u^2a + 3u^3 + \\ a^2 + au - u^2 - a - 2u, \ u^4 - u^2 + 1 \rangle \end{aligned}$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 2u^{3}a - u^{3} + \dots + \frac{1}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{2}u^{2}a - \frac{1}{2}u^{3} + \dots + \frac{1}{2}a - \frac{1}{2} \\ -\frac{1}{2}u^{3}a + \frac{1}{2}u^{2}a + \dots + \frac{1}{2}u - \frac{3}{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{2}u^{2}a - \frac{1}{2}u^{3} + \dots + \frac{1}{2}a - \frac{1}{2} \\ -\frac{1}{2}u^{3}a - u^{3} + \dots + \frac{3}{2}u - \frac{3}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{2}u^{2}a - \frac{3}{2}u^{3} + \dots + \frac{1}{2}a + \frac{1}{2} \\ -\frac{1}{2}u^{3}a + 2u^{3} + \dots + \frac{1}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{2}u^{3}a + u^{3} + \dots + a + \frac{1}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{2}u^{3}a - \frac{3}{2}u^{3} + \dots + \frac{1}{2}u - \frac{1}{2}u + \frac{1}{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^2 12$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u^2 - u + 1)^4$
c_2, c_6	$(u^4 - u^2 + 1)^2$
c_3, c_4, c_8	$(u^2+1)^4$
c_5,c_{11}	$(u^4 + 3u^2 + 1)^2$
c_7	$(u^2 + u + 1)^4$
c_9,c_{10}	$(u^2 + u - 1)^4$
c_{12}	$(u^2 - u - 1)^4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7	$(y^2+y+1)^4$
c_2, c_6	$(y^2 - y + 1)^4$
c_3, c_4, c_8	$(y+1)^8$
c_5, c_{11}	$(y^2 + 3y + 1)^4$
c_9, c_{10}, c_{12}	$(y^2 - 3y + 1)^4$

(vi) Complex Volumes and Cusp Shapes

u = 0.866025 + 0.500000I	
a = 1.344250 - 0.092242I $0.65797 - 2.02988I$ $-10.00000 + 3.46400000000000000000000000000000000000$	410I
b = 0.618034I	
u = 0.866025 + 0.500000I	
$a = -1.71028 + 0.72622I$ $\left -7.23771 - 2.02988I \right -10.00000 + 3.4649$	410I
b = -1.61803I	
u = 0.866025 - 0.500000I	
a = 1.344250 + 0.092242I $0.65797 + 2.02988I$ $-10.00000 - 3.464981$	410I
b = -0.618034I	
u = 0.866025 - 0.500000I	
$a = -1.71028 - 0.72622I$ $\left -7.23771 + 2.02988I \right -10.00000 - 3.4649$	410I
b = 1.61803I	
u = -0.866025 + 0.500000I	
a = 1.092240 - 0.344250I - 7.23771 + 2.02988I - 10.00000 - 3.464981	410I
b = -1.61803I	
u = -0.866025 + 0.500000I	
a = 0.27378 + 2.71028I $0.65797 + 2.02988I$ $-10.00000 - 3.4648I$	410I
b = 0.618034I	
u = -0.866025 - 0.500000I	
a = 1.092240 + 0.344250I -7.23771 - 2.02988I -10.00000 + 3.4649800000000000000000000000000000000000	410I
b = 1.61803I	
u = -0.866025 - 0.500000I	
a = 0.27378 - 2.71028I $0.65797 - 2.02988I$ $-10.00000 + 3.4648I$	410I
b = -0.618034I	

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{2} - u + 1)^{4}(u^{5} - u^{4} + 4u^{3} - 3u^{2} + 3u - 1)$ $\cdot (u^{85} + 28u^{84} + \dots + 1107u + 81)$
c_2	$((u^4 - u^2 + 1)^2)(u^5 - u^4 + u^2 + u - 1)(u^{85} - 2u^{84} + \dots + 3u - 9)$
c_3, c_4	$((u^{2}+1)^{4})(u^{5}-u^{4}+\cdots+3u-1)(u^{85}-2u^{84}+\cdots+144u-36)$
c_5, c_{11}	$u^{5}(u^{4} + 3u^{2} + 1)^{2}(u^{85} + u^{84} + \dots - 96u - 32)$
<i>C</i> ₆	$((u^4 - u^2 + 1)^2)(u^5 + u^4 - u^2 + u + 1)(u^{85} - 2u^{84} + \dots + 3u - 9)$
c_7	$(u^{2} + u + 1)^{4}(u^{5} + u^{4} + 4u^{3} + 3u^{2} + 3u + 1)$ $\cdot (u^{85} + 28u^{84} + \dots + 1107u + 81)$
<i>c</i> ₈	$((u^{2}+1)^{4})(u^{5}+u^{4}+\cdots+3u+1)(u^{85}-2u^{84}+\cdots+144u-36)$
c_9, c_{10}	$((u-1)^5)(u^2+u-1)^4(u^{85}-10u^{84}+\cdots+17u-1)$
c_{12}	$((u+1)^5)(u^2-u-1)^4(u^{85}-10u^{84}+\cdots+17u-1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_7	$(y^{2} + y + 1)^{4}(y^{5} + 7y^{4} + 16y^{3} + 13y^{2} + 3y - 1)$ $\cdot (y^{85} + 64y^{84} + \dots + 485595y - 6561)$
c_2, c_6	$(y^{2} - y + 1)^{4}(y^{5} - y^{4} + 4y^{3} - 3y^{2} + 3y - 1)$ $\cdot (y^{85} - 28y^{84} + \dots + 1107y - 81)$
c_3, c_4, c_8	$(y+1)^8(y^5+7y^4+16y^3+13y^2+3y-1)$ $\cdot (y^{85}+80y^{84}+\cdots+16776y-1296)$
c_5, c_{11}	$y^{5}(y^{2}+3y+1)^{4}(y^{85}+45y^{84}+\cdots+22016y-1024)$
c_9, c_{10}, c_{12}	$((y-1)^5)(y^2-3y+1)^4(y^{85}-80y^{84}+\cdots-91y-1)$