คู่มือการใช้งานบอร์ด

ESPino32 (รหัสสินค้า ETEE061)

Version 1.0

ประวัติการเปลี่ยนเวอร์ชั่น

เวอร์ชั่น	วันที่	การเปลี่ยนแปลง	
0.9b	8 Aug 2016	เวอร์ชั่นแรก	
1.0	11 Sep 2016	เพิ่มข้อมูล	
		- ส่วนประกอบของบอร์ด	
		- การใช้งาน ESPino กับ Arduino	
		บน Windows	
		- รูปการติด Label Sticker บน	
		Pin Header	

สารบัญ

คุณสมบัติของบอร์ด ESPino32	4
คุณสมบัติของตัวโมดูล ESP-WROOM-32	5
คุณสมบัติของบอร์ด ESPino32	6
ส่วนประกอบของบอร์ด ESPino32 by ThaiEasyElec.com	7
การเขียนโปรแกรม ESPino32 ด้วย Arduino IDE บนระบบปฏิบัติการ Windows	10
ผังวงจรบอร์ด ESPino32	16
รูปการติด Label Sticker บน Pin Header	17

คุณสมบัติของบอร์ด ESPino32

บอร์ด ESPino32 เป็นบอร์ดไมโครคอนโทรลเลอร์พร้อมโมดูลสื่อสาร Wireless LAN และ Bluetooth ใช้ โมดูล ESP-WROOM-32 (EFDV571) ชิพ ESP32 2.4 GHz Wi-Fi and Bluetooth Combo SoC จาก Espressif Systems เป็นไมโครคอนโทรลเลอร์ 32-bit Tensilica LX6 ความเร็วสูงสุด 240 MHz (600 DMIPS) จำนวน 2 คอร์ พร้อมหน่วยความจำ SRAM ขนาด 520 KB และ Flash Memory ขนาด 4 MB (32 Mbit) รองรับการ เชื่อมต่อ Wireless LAN ความถี่ 2.4 GHz มาตรฐาน IEEE 802.11 b/g/n และ Dual Mode Bluetooth (Classic and BLE) พร้อมอินเตอร์เฟส GPIO ต่างๆ ได้แก่ UARTs SPI I2S ADC DAC I2C PWM SDIO

สามารถพัฒนาโปรแกรมบทแพลตฟอร์ม Arduino โดยติดตั้ง Board Support Package ชื่อ arduino-esp32 จาก GitHub ของ Espressif บอร์ดมาพร้อม USB-to-Serial ชิพ CP2104 ของ Silicon Labs สามารถ เสียบเข้าคอมพิวเตอร์แล้วติดตั้งไดรฟเวอร์เป็น Virtual COM Port แล้วสามารถโปรแกรมตัวบอร์ดผ่าน Arduino IDE ได้ พร้อมวงจรอัพโหลดอัตโนมัติ ไม่ต้องกดปุ่ม Program และ Reset เพื่ออัพโหลด

บอร์ด ESPino32 เหมาะสำหรับการนำไปพัฒนางานชิ้นงาน Internet of Things เป็นอุปกรณ์ปลายทาง เพื่ออ่านค่าจากเซ็นเซอร์หรือส่งค่าควบคุมไปยังอุปกรณ์ผ่าน Wi-Fi หรือ Bluetooth สามารถนำไปใช้ได้ตั้งแต่การ เรียนรู้จนใช้งานจริง

คุณสมบัติของตัวโมดูล ESP-WROOM-32 (*เฉพาะส่วน Wireless Module จาก Espressif Systems)

- Wi-Fi
 - O ช่วงความถี่การทำงาน 2.4 2.5 GHz
 - O รองรับโพรโตคอล 802.11 b/g/n (802.11n up to 150 Mbps)
 - O A-MPDU and A-MSDU aggregation and 0.4 uS guard interval support

- Bluetooth

- O รองรับโพรโตคอล Bluetooth 4.2 BR/EDR และ BLE
- O NZIF receiver with -98 dBm sensitivity
- O Class-1, class-2 and class-3 transmitter
- O AFH
- O CVSD and SBC

- Hardware

- O โมดูลรองรับอินเตอร์เฟส SD card, UART, SPI, SDIO, I2C, LED PWM, Motor PWM, I2S, I2C, IR
- O Hall Sensor และ Temperature Sensor บนชิพ
- O 40 MHz crystal บนบอร์ด
- O แรงดันการทำงาน 2.3 ถึง 3.6 โวลต์
- O กระแสไฟฟ้าเฉลี่ยในการทำงาน 80 มิลลิแอมป์

- Software

- O รองรับ Wi-Fi โหมด Station, SoftAP, SoftAP+Station, P2P
- O รองรับ WPA / WPA2 / WPA2-Enterprise / WPS
- O รองรับการเข้ารหัส AES / RSA / ECC / SHA
- O ช่องทางการอัพเกรดเฟิร์มแวร์ UART / OTA (via network)
- O รองรับเครือข่าย IPv4, IPv6, SSL, TCP / UDP / HTTP / FTP / MQTT

คุณสมบัติของบอร์ด ESPino32

- ใช้โมดูล ESP-WROOM-32 ใช้ชิพ ESP32 2.4 GHz Wi-Fi and Bluetooth Combo SoC จาก Espressif Systems
- มีวงจร USB-to-UART ใช้ชิพ CP2104 จาก Silicon Labs สำหรับโปรแกรมและสื่อสารผ่านพอร์ตอนุกรม ของบอร์ด
- ใช้ไฟเลี้ยงผ่านพอร์ต Micro USB พร้อมวงจร Regulator เพื่อเป็นแหล่งจ่ายอุปกรณ์บนบอร์ด
- สามารถเขียนโปรแกรมและอัพโหลดผ่าน Arduino IDE โดยใช้ Board Support Package ของ arduinoesp32
- มีสวิตช์ PROG สำหรับโปรแกรมตัวบอร์ด
- มีสวิตช์ RESET สำหรับรีเซ็ตบอร์ด
- มีวงจร Auto Program สามารถอัพโหลดโปรแกรมผ่าน Arduino IDE ได้โดยไม่ต้องกดสวิตช์
- มีหลอด LED ต่อกับ GPIO สำหรับผู้ใช้สั่งแสดงสถานะตามต้องการต่อกับขา GPIO16
- คอนเนคเตอร์ตัวผู้แถวเดี่ยว 10 ขา จำนวน 4 แถว แยกเป็นสองฝั่ง ฝั่งละ 2 แถว สามารถเสียบลงบน บอร์ดทดลอง (Breadboard) ได้ ใช้ความยาว 21 ช่อง (เว้นช่องว่างระหว่างแถวฝั่งละ 1 ช่อง) เป็นขา เชื่อมต่อต่างๆ
- ขนาดบอร์ด
 - o กว้าง 25.4 มม.
 - O ยาว 65 มม.

ส่วนประกอบของบอร์ด ESPino32 by ThaiEasyElec.com

หมายเลข 1 หลอด LED ขา GPIO16

หมายเลข 2 โมดูล ESP-WROOM-32 (2.4 GHz Wi-Fi and Bluetooth Combo SoC)

หมายเลข 3 สวิตช์ RESET

หมายเลข 4 สวิตช์ PROGRAM

หมายเลข 5 ชิพ CP2104 (USB-to-Serial)

หมายเลข 6 หลอด LED สถานะไฟเลี้ยงโมดูล ESP แรงดัน 3.3 โวลต์

หมายเลข 7 จัมพ์เปอร์เลือกแหล่งจ่ายจาก VREG (ผ่านวงจร Regulator จาก USB) หรือ VBAT (ไฟจากขา

VBAT จากคอนเนคเตอร์ P3) เข้าที่ VESP (ไฟเลี้ยงโมดูล ESP แรงดัน 3.3 โวลต์) <u>ปกติให้ Jump</u>

<u>ระหว่าง VREG กับ VESP และจ่ายไฟเลี้ยงผ่าน Micro USB</u>

หมายเลข 8 พอร์ต Micro USB สำหรับจ่ายไฟเข้า VREG และต่อคอมพิวเตอร์เพื่อโปรแกรมตัวบอร์ด

P1 (ซ้ายบน)	ขาสัญญาณ	P2 (ขวาบน)	ขาสัญญาณ
GND	Ground	3V3	3.3 volts
3V3	3.3 Volts	GND	Ground
EN	Enable	SCL/22	I2C SCL / GPIO22
A0 / 36	ADC1_CH0 / GPIO36	SDA/21	I2C SDA / GPIO21
A3 / 39	ADC1_CH3 / GPIO39	Tx	U0TXD / GPIO3
A4 / T9 / 32	ADC1_CH4 / TOUCH9	Rx	U0RXD / GPIO1
	/ GPIO32		
A5 / T8 / 33	ADC1_CH5 / TOUCH8	17	GPIO17
	/ GPIO33		
A6 / 34	ADC1_CH6 / GPIO34	16	GPIO16
A7 / 35	ADC1_CH7 / GPIO35	SCK / 18	SPI SCK / GPIO18
A10 / T0 / 4	ADC2_CH0 / TOUCH0	MISO / 19	SPI MISO / GPIO19
	/ GPIO4		

P3 (ซ้ายล่าง)	ขาสัญญาณ	P4 (ขวาล่าง)	ขาสัญญาณ
A11 / T1 / 0	ADC2_CH1 / TOUCH1	MOSI / 23	SPI MOSI / GPIO23
	/ GPIO0		
A12 / T2 / 2	ADC2_CH2 / TOUCH2	SS / 5	SPI SS / GPIO5
	/ GPIO2		
A13 / T3 / 15	ADC2_CH3 / TOUCH3	SD2 / 9	SD_DATA2 / GPIO9
	/ GPIO15		
A14 / T4 / 13	ADC2_CH4 / TOUCH4	SD3 / 10	SD_DATA3 / GPIO10
	/ GPIO13		
A15 / T5 / 12	ADC2_CH5 / TOUCH5	CMD / 11	SD_CMD / GPIO10
	/ GPIO12		
A16 / T6 / 14	ADC2_CH6 / TOUCH6	CLK / 6	SD_CLK / GPIO6
	/ GPIO14		
A17 / T7 / 27	ADC2_CH7 / TOUCH7	SD0 / 7	SD_DATA0 / GPIO7
	/ GPIO27		
A18 / DAC1 / 25	ADC2_CH8 / DAC_1 /	SD1 / 8	SD_DATA1 / GPIO8
	GPIO25		
A19 / DAC2 / 26	ADC2_CH9 / DAC_2 /	GND	Ground
	GPIO26		
Vin	Vin	VBAT	VBAT

การเขียนโปรแกรม ESPino32 ด้วย Arduino IDE บนระบบปฏิบัติการ Windows

- 1. เสียบสายฝั่ง Micro USB เข้ากับ ESPino32 แล้วเสียบสาย USB เข้ากับเครื่องคอมพิวเตอร์
- 2. หากเครื่องที่ใช้ยังไม่มีไดรฟเวอร์ Virtual COM Port (VCP) ของ CP210x สามารถดาวน์โหลดได้จาก เว็บไซต์ของ Silicon Labs ตามระบบปฏิบัติการที่ใช้

https://www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx

Download for Windows 7/8/8.1/10 (v6.7.4)

Platform	Software	
Mindows 7/8/8.1/10	Download VCP (5.3 MB) (Default)	
Mindows 7/8/8.1/10	Download VCP with Serial Enumeration (Learn More »	5.3 MB)

3. เมื่อติดตั้งเรียบร้อยจะแสดงอุปกรณ์ใน Computer Management > Device Manager ดังรูป โดยจะ เป็น COM Port ต่างๆ ยกตัวอย่างเป็น COM27

4. ดาวน์โหลด Arduino IDE จากเว็บไซต์ Arduino.cc ที่ https://www.arduino.cc/en/Main/Software และเลือกติดตั้งตามระบบปฏิบัติการที่ใช้ สำหรับ Windows แนะนำให้เลือกดาวน์โหลดแบบไฟล์ ZIP แตกไฟล์ (Extract) เพื่อรันใช้งานได้ทันที)

https://www.arduino.cc/download handler.php?f=/arduino-1.8.4-windows.zip

Download the Arduino IDE

5. ติดตั้ง ESP32 Core สำหรับ Arduino จาก GitHub ของ Espressif จากโปรเจค arduino-esp32 เข้าไป ที่เว็บไซต์ https://github.com/espressif/arduino-esp32

6. เลือกเมนู Clone or download แล้วเลือก Download ZIP

7. สร้างไดเรกทอรีชื่อ espressif ใน C:\Users\<username>\Documents\Arduino\hardware โดย <username> เป็นชื่อผู้ใช้บน Windows ที่ท่านใช้งานอยู่

8. แตกไฟล์ esp32-arduino-master.zip ที่ดาวน์โหลดมา จะได้ไดเรกทอรี esp32-arduino-master ให้ เปลี่ยนชื่อเป็น esp32 แล้วนำไปวางในไดเรกทอรี espressif จะมีโครงสร้างได้เรกทอรีเป็น C:\Users\<username>\Documents\Arduino\hardware\espressif\esp32

9. เข้าไปในไดเรกทอรี tools ภายในไดเรกทอรี esp32 แล้วรันไฟล์ get.exe เพื่อดาวน์โหลดชุดคอม Compiler ของ ESP32 รอจนหน้าต่าง get.exe สำเร็จและปิดลงไป จะได้ไดเรกทอรี dist และ xtensa-esp32-elf เพิ่มเข้ามา

10. เปิดโปรแกรม Arduino IDE

11. เลือกเมนู Tools > Boards ภายใต้กลุ่ม ESP32 Arduino เลือกบอร์ด "ThaiEasyElec's ESPino32

12. เลือกเมนู Tools > Ports เลือก COM Port ของบอร์ด ESPino32 ตามที่อยู่ใน Device Manager

13. เปิดตัวอย่างจากเมนู File > Examples ภายใต้ Examples for ThaiEasyElec's ESPino32 เลือก ESP32 > ChipID > GetChipID

```
GetChipID | Arduino 1.8.3

File Edit Sketch Tools Help

GetChipID

pint64_t chipid;

void setup() {
    Serial.begin(115200);
}

void loop() {
    chipid=ESP.getEfuseMac();//The chip ID is essentially its MAC address(length: 6 bytes).
    Serial.printf("ESP32 Chip ID = %04X", (uint16_t) (chipid>>32));//print High 2 bytes
    Serial.printf("%08X\n", (uint32_t) chipid);//print Low 4bytes.

delay(3000);
}
```

14. กดปุ่ม Upload (หรือเลือกเมนู Sketch > Upload หรือกด Hot Key Ctrl + U) จะขึ้นสถานะ Compiling และเปลี่ยนเป็น Uploading แล้วรอจนแถบสถานะขึ้นว่า Done uploading

15. กดปุ่มเปิด Serial Monitor

ของ Arduino เลือก Baud Rate เป็น 115200

buad เมื่อโปรแกรมรันจะแสดง MAC Address ของตัวชิพ ESP32 ที่อยู่บนบอร์ด ESPino32

ผังวงจรบอร์ด ESPino32

รูปการติด Label Sticker บน Pin Header

