(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 11 July 2002 (11.07.2002)

PCT

(10) International Publication Number WO 02/053560 A1

- (51) International Patent Classification7: C07D 401/04, 413/14, 401/14, 419/14, 417/14, A01N 43/54
- (21) International Application Number:
- (22) International Filing Date:

20 December 2001 (20.12.2001)

(25) Filing Language:

English

(26) Publication Language:

English

- (30) Priority Data: 0100102.3 3 January 2001 (03.01.2001)
- (71) Applicant (for all designated States except US): SYN-GENTA PARTICIPATIONS AG [CH/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): EBERLE, Martin [CH/CH]; Syngenta Crop Protection AG, Schwarzwaldallee 215, CH-4058 Basel (CH). ZIEGLER, Hugo [CH/CH]; Syngenta Crop Protection AG, Schwarzwaldallee 215, CH-4058 Basel (CH). CEDERBAUM, Fredrik [SE/CH]; Syngenta Crop Protection AG, Schwarzwaldallee 215, CH-4058 Basel (CH). ACK-ERMANN, Peter [CH/CH]; Syngenta Crop Protection AG, Schwarzwaldallee 215, CH-4058 Basel (CH).

- (74) Agents: WATERMAN, John, Richard et al.; Intellectual Property Department, Syngenta Limited, P.O. Box 3538, Jealou's Hill Research Centre, Bracknell RG42 6YA (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA,
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: MICROBIOCIDAL N-PHENYL-N-{4-(4-PYRIDYL-2-PYRIMIDIN-2-YL]-AMINE DERIVATIVES

(57) Abstract: The invention relates to novel N-phenyl-4-(4-pyridyl)-2-pyrimidineamine derivatives of the general formula (I) wherein the sum of (m + p) together is 0, 1, 2 or 3; n and q are independently of each other 0 or 1, and the sum of (m + p + q)together is 1, 2, 3 or 4; R₁ is hydrogen, halogen, alkoxy, haloalkyl, haloalkoxy or alkyl; R₂ is hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl or C₁-C₆-alkoxy; R_{2A} is hydrogen, C₁-C₆-alkyl, C₃-C₄-alkenyl or C₃-C₄-alkynyl; each of R₃, R₄, R₅ and R₆ is, independently of the others, hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, hydroxy-C₁-C₆-alkyl or C₁-C₆-alkoxy-C₁-C₆-alkyl, or the ring members CR₃R₄ or CR₅R₆ or CR₂R_{2A} are independently of each other a carbonyl group (C=O) or a group C=S; X is C=O, C=S, S=O or $O = S = O; Y \text{ is } O, S, C = O, CH_2, -N(R_8) -, -O - N(R_8) -, -N(R_8) - O - or NH -; R_7 \text{ is hydrogen}, C_1 - C_4 - alkyl, C_3 - C_4 - alkynyl, C_4 - C_4 - alkynyl, C_5 - C_5 - alkynyl, C_5$ -CH₂OR₈, CH₂SR₈, -C(O)R₈, -C(O)OR₈, SO2R₈, SOR₈ or SR₈; and R₈ is C₁-C₈-alkyl, C₁-C₈-alkoxyalkyl, C₁-C₈ haloalkyl or phenyl C_1 - C_2 -alkyl wherein the phenyl may be substituted by up to three groups selected from halo or C_1 - C_4 -alkyl; or a salt thereof. The invention also relates to the preparation of the compounds and to agrochemical compositions comprising at least one of those compounds as active ingredient as well as the preparation of the said compositions and to the use of the compounds or of the compositions in controlling or preventing the infestation of plants by phytopathogenic microorganisms, especially fungi.

10

15

20

25

- 1 -

MICROBIOCIDAL N-PHENYL-N-[4-(4-PYRIDYL)-2-PYRIMIDIN-2-YL]-AMINE DERIVATIVES

The present invention relates to novel N-phenyl-[4-(4-pyridyl)-pyrimidin-2-yl]-amine derivatives, to a method of protecting plants against attack or infestation by phytopathogenic organisms, such as nematodes or insects or especially microorganisms, preferably fungi, bacteria and viruses, or combinations of two or more of these organisms, by applying a N-phenyl-[4-(4-pyridyl)-pyrimidin-2-yl]-amine derivative as specified hereinafter to a part and/or to the site of a plant, to the use of said derivative for protecting plants against said organisms, and to compositions comprising said derivative as the active component. The invention further relates to the preparation of these novel N-phenyl-[4-(4-pyridyl)-pyrimidin-2-yl]-amine derivatives.

Certain N-phenyl-4-(4-pyridyl)-2-pyrimidineamine derivatives have been described in the art, e.g. in the PCT patent applications WO 95/09851 and WO 95/09853, as having pharmacological properties, mainly as tumor-inhibiting anti-cancer substances.

Surprisingly, it has now been found that the new N-phenyl-[4-(4-pyridyl)-pyrimidin-2-yl]-amines are effective in plant protection and related areas, showing advantageous properties in the treatment of plant diseases caused by organisms.

The novel N-phenyl-[4-(4-pyridyl)-pyrimidin-2-yl]-amine derivatives according to the invention are those of the formula I

$$(O)_{n} \xrightarrow{N} \xrightarrow{R_{2}} \xrightarrow{R_{2A}} R_{4}$$

$$R_{3} \xrightarrow{C_{n} \xrightarrow{Q} C_{p} \xrightarrow{R_{6}}} R_{5}$$

$$R_{4} \xrightarrow{R_{2}} C_{m} \xrightarrow{Q} C_{p} \xrightarrow{R_{6}} R_{6}$$

$$(1)$$

wherein

the sum of (m + p) together is 0,1, 2 or 3;

n and q are independently of each other 0 or 1, and the sum of (m + p + q) together is 1, 2, 3 or 4;

 R_1 is hydrogen, halogen, alkoxy, haloalkyl, haloalkoxy or alkyl; R_2 is hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl or C_1 - C_6 -alkoxy;

R_{2A} is hydrogen, C₁-C₈-alkyl, C₃-C₄-alkenyl or C₃-C₄-alkynyl;

-2-

each of R_3 , R_4 , R_5 and R_6 is, independently of the others, hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, hydroxy- C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, or the ring members CR_3R_4 or CR_5R_6 or CR_2R_{2A} are independently of each other a carbonyl group (C=O) or a group C=S;

X is C=O, C=S, S=O or O=S=O;
 Y is O, S, C=O, CH₂, -N(R₈)-, -O-N(R₈)-, -N(R₈)-O- or -NH-;
 R₇ is hydrogen, C₁-C₄-alkyl, C₃-C₄-alkenyl, C₃-C₄-alkynyl, -CH₂OR₈, CH₂SR₈, -C(O)R₈,
 -C(O)OR₈, SO2R₈, SOR₈ or SR₈; and

R₈ is C₁-C₈-alkyl, C₁-C₈-alkoxyalkyl, C₁-C₈ haloalkyl or phenylC₁-C₂-alkyl wherein the phenyl may be substituted by up to three groups selected from halo or C₁-C₄-alkyl; or a salt thereof.

The general symbols and expressions used above preferably are defined as below: Halogen is fluorine, bromine, iodine or preferably chlorine.

Haloalkyl is preferably C₁-C₆-alkyl, more preferably lower alkyl, that is linear or branched and is substituted by one or more, for example in the case of halo-ethyl up to five, halogen atoms, especially fluorine. An example is trifluoromethyl.

Haloalkoxy is preferably C_1 - C_6 -alkoxy, more preferably lower alkoxy, that is linear or branched and that is substituted by one or more, for example in the case of halo-ethyl up to five, halogen atoms, especially fluorine; trifluoromethoxy and 1,1,2,2-tetrafluoroethoxy are especially preferred.

Alkyl - as a group per se and as a structural element of hydroxyalkyl, alkoxy, alkenyl, alkynyl or haloalkoxy - is preferably C₁-C₆-alkyl, more preferably lower alkyl, and is linear i.e. methyl, ethyl, propyl, butyl, pentyl or hexyl, or branched, e.g. isopropyl, isobutyl, sec.-butyl, tert.-butyl, isopentyl, neopentyl or isohexyl. Lower alkyl is preferably methyl or ethyl. Specific examples of alkenyl and alkynyl include allyl, 2-butenyl, 3-butenyl, propargyl, 2-butinyl and 3 butynyl.

Preferred among the compounds to be used according to the invention is a compound wherein within the N-linked heterocycle attached to the 2-position of the pyridine ring, namely the moiety

30

10

15

20

25

is one in which the sum of the index numbers m+p+q is 2, 3 or 4, thus indicating various 5-to 7-membered ring systems, which are conceivable under the given definitions and which are common in the art of heterocycles. More preferably, this moiety represents a 5- and 6-

15

20

25

30

35

membered ring system (m+p+q is 2 or 3), preferably a 5-membered ring system. Thus examples of the moieties include N-oxazolidin-2-one, N-oxazolidin-2-thione, N-[1,2,3]oxathiazolidine-2-oxide, N-[1,2,3]oxathiazolidine-2,2-dioxide, N-pyrrolidin-2-one, N-pyrrolidin-2-one, N-pyrrolidine-2,5-dione, N-thiazolidin-2-one, N-4-methylene-oxazolidin-2-one, N-piperidine-2,6-dione, N-morpholine-2,3-dione, N-morpholine-2,5-dione, N-imidazolidin-2-one, N-[1,2,4]-oxazolidin-5-one, N-[1,2,4]-oxazolidin-3-one, N-[1,2,5]oxadiazinan-6-one, N-[1,2,4]oxadiazinan-3-one, azepan-2-one or [1,3]oxazinan-2-one.

More preferred ring systems for the moiety positioned at the 2-position of the pyridyl ring are those selected from the group comprising N-oxazolidin-2-one, N-oxazolidin-2-thione, N-[1,2,3]oxathiazolidine-2-oxide and N-pyrrolidin-2-one.

The compounds of formula I can form acid addition salts, for example with inorganic acids, such as hydrochloric acid, sulfuric acid or a phosphoric acid, or with suitable organic carboxylic or sulfonic acids, for example aliphatic mono- or di-carboxylic acids, such as trifluoroacetic acid, acetic acid, propionic acid, glycolic acid, succinic acid, maleic acid, fumaric acid, hydroxymaleic acid, malic acid, tartaric acid, citric acid, oxalic acid or amino acids, such as arginine or lysine, aromatic carboxylic acids, such as benzoic acid, 2-phenoxy-benzoic acid, 2-acetoxy-benzoic acid, salicylic acid, 4-aminosalicylic acid, aromatic-aliphatic carboxylic acids, such as mandelic acid or cinnamic acid, heteroaromatic carboxylic acids, such as nicotinic acid or isonicotinic acid, aliphatic sulfonic acids, such as methane-, ethane- or 2-hydroxy-ethane-sulfonic acid, or aromatic sulfonic acids, for example benzene-, p-toluene- or naphthalene-2-sulfonic acid.

The pyridine-N-oxides of formula I can form acid addition salts with strong acids, such as hydrochloric acid, nitric acid, phosphoric acid or sulfonic acids, such as benzenesulfonic acid.

Formula I according to the invention shall include all the possible isomeric forms, as well as mixtures, e.g. racemic mixtures, and any mixtures of rotamers.

In view of the close relationship between the compounds of formula I in free form and in the form of their salts, including also salts that can be used as intermediates, for example in the purification of the compounds of formula I or in order to identify those compounds, herein-before and hereinafter any reference to the (free) compounds is to be understood as including also the corresponding salts, where appropriate and expedient.

Among the compounds of formula I according to the present invention the following groups of compounds are preferred. These groups are those wherein R₁ is chlorine, fluorine, trifluoromethyl, trifluoromethoxy, or 1,1,2,2-tetrafluoroethoxy, or R₁ is chlorine, or

-4-

R₂ is hydrogen, methyl, trifluoromethyl or ethyl, or

R₂ is methyl or trifluoromethyl, or

R₂ is methyl, or

R_{2A} is hydrogen or methyl; or

5 R_{2A} is hydrogen; or

 $R_3,\ R_4,\ R_5$ and R_6 independently of each other are hydrogen, methyl, hydroxymethyl, hydroxyethyl, or methoxyethyl, or

one of R_3 and R_4 or one of R_5 and R_6 is hydrogen or methyl, while the other one is hydrogen, methyl, hydroxymethyl, hydroxyethyl, or methoxyethyl, or

10 R₃ and R₄ are hydrogen, or

R₅ and R₆ independently of each other are hydrogen or methyl, or R₇ is hydrogen, methyl, ethyl, allyl, propargyl, methoxymethyl, thiomethoxymethyl or ethoxymethyl, or

R₇ is hydrogen or methoxymethyl, or

15 X is carbonyl, C=S, or S=O; or

X is carbonyl, or

Y is oxygen, sulfur, -O-N(CH₃)-, or -N(CH₃)-O-, or

Y is oxygen, or

X is carbonyl, C=S, or S=O and Y is oxygen.

20 n is zero, or

25

30

35

m is zero and p and q are each one.

Further preferred subgroups comprise those compounds of formula I wherein

- a) R₁ is chlorine, fluorine, trifluoromethyl, trifluoromethoxy, or 1,1,2,2-tetrafluoroethoxy,; R₂ is hydrogen, methyl, trifluoromethyl or ethyl; R_{2A} is hydrogen or methyl; R₅ and R₆ independently of each other are hydrogen, methyl, hydroxymethyl, hydroxyethyl, or methoxyethyl; R₇ is hydrogen, methyl, ethyl, allyl, propargyl, or methoxymethyl; X is carbonyl, C=S, or S=O; Y is oxygen, sulfur, -O-N(CH₃)-, or -N(CH₃)-O-; m and n are zero and p and q are each one; or
- b) R₁ is chlorine; R₂ is methyl or trifluoromethyl; R_{2A} is hydrogen or methyl; one of R₅ and R₆ is hydrogen or methyl, while the other one is hydrogen, methyl, hydroxymethyl, hydroxyethyl, or methoxyethyl; R₇ is hydrogen or methoxymethyl; X is carbonyl; Y is oxygen; m and n are zero and p and q are each one; or
 - c) R_1 is chlorine; R_2 is methyl; R_{2A} is hydrogen; R_5 and R_6 independently of each other are hydrogen or methyl; R_7 is hydrogen or methoxymethyl; X is carbonyl; Y is oxygen; Y and Y are zero and Y and Y are each one.

Preferred individual compounds of the formula I are:

3-{4-[2-(3-chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-oxazolidin-2-one,
N-{4-[2-(3-chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-pyrrolidin-2-one,
(3-chloro-phenyl)-{4-[2-(2-oxo-[1,2,3]oxathiazolidin-3-yl)-pyridin-4-yl]-pyrimidin-2-yl}-amine,
3-{4-[2-(3-fluoro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-4-methyl-oxazolidin-2-one,

- 3-{4-[2-(3-trifluoromethyl-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-4-methyl-oxazolidin-2-one,
 - (3-chloro-phenyl)-{4-[2-(4-methyl-2-oxo-[1,2,3]oxathiazolidin-3-yl)-pyridin-4-yl]-pyrimidin-2-yl}-amine,
 - 1-{4-[2-(3-chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-5-methyl-pyrrolidin-2-one,
- 3-{4-[2-(3-chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-4-ethyl-oxazolidin-2-one,
 - 3-{4-[2-(3-chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-4-n-propyl-oxazolidin-2-one,
 - 3-{4-[2-(3-chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-4-i-propyl-oxazolidin-2-one,
 - 3-{4-[2-(3-chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-5-methyl-oxazolidin-2-one,
 - 3-{4-[2-(3-chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-4-methyl-oxazolidin-2-one,
- 15 3-{4-[2-(3-chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-4-methyl-oxazolidine-2-thione,
 - (S)-3-{4-[2-(3-Chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-4-methyl-oxazolidin-2-one,
 - 3-{4-[2-(3-Chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-4-trifluoromethyl-oxazolidin-2-one,
 - (R)-3-{4-[2-(3-Chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-4-methyl-oxazolidin-2-one,
- 20 3-{4-[2-(3-Chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-4-trifluoromethyl-[1,3]oxazinan-2-one
 - 3-{4-[2-(3-Chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-4-methyl-[1,3]oxazinan-2-one,
 - 1-{4-[2-(3-chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-5-trifluoromethyl-pyrrolidin-2-one,
- 25 3-(4-{2-[(3-chloro-phenyl)-methoxymethyl-amino]-pyrimidin-4-yl}-pyridin-2-yl)-4-methyl-oxazolidin-2-one.

The compounds according to the invention may be prepared according to methods per se known in the art (this does mean, however, that, where novel compounds are produced, the respective process of manufacture is also novel). The procedures for the preparation of compounds of formula I may be outlined as follows:

A) reacting a compound of the formula (II)

30

-6-

(or a salt thereof) wherein U is a leaving group, especially halogen, for example fluoro, chloro, bromo or iodo, and the other moieties have the meanings given for a compound of the formula I, with a cyclic amine ring system of the formula III

$$\begin{array}{c|c} & H & R_2 \\ & \downarrow & R_2 \\ & \downarrow & R_3 \\ & \downarrow & C_m \\ & \downarrow & C_p \\ & \downarrow & R_6 \end{array} \tag{III)}$$

5

10

15

(or a salt thereof) wherein R_2 to R_6 , R_{2A} , X, Y, m, p and q have the meanings given for a compound of the formula I, in the presence of a base and a metal catalyst, such as palladium(II) or palladium(0) complexes, or in the presence of a base, such as sodium hydride, potassium carbonate, potassium tert-butoxide or

B) cyclize a compound of the formula IV

$$(O)_{n}$$

$$NH$$

$$V^{1}$$

$$R_{2}$$

$$R_{3}$$

$$C_{m}$$

$$V_{q}$$

$$C_{p}$$

$$R_{6}$$

$$(IV)$$

wherein R_1 to R_7 , R_{2A} , X, Y, n, m, p and q have the meanings given for a compound of the formula I and U' is a leaving group, especially halo, for example chloro, bromo or iodo, or sulfonyloxy, for example mesyloxy, trifluoromethansulfonyloxy, tosyloxy or benzenesulfonyloxy by heating it optionally in the presence of a base such as pyridine,

triethylamine, sodium carbonate, etc., or

C) reacting a compound of the formula V

-7-

$$(O)_{n} \xrightarrow{R_{2}} R_{2A}$$

$$H \xrightarrow{C_{p} - R_{6}} R_{5}$$

$$(V)$$

wherein q is 1 and R_1 , R_2 , R_{2A} , R_5 , R_6 , R_7 , Y, n and p have the meanings given for a compound of the formula I, with phosgene, di- or triphosgene, carbonyldiimidazol, thiophosgene, thiocarbonyldiimidazol or thionylchloride thus obtaining a compound of the subformula Ia

$$(O)_{n} \xrightarrow{N} \xrightarrow{R_{2}} R_{2A}$$

$$(Ia)$$

wherein X is C=O, C=S or S=O, q is 1 and R_1 , R_2 , R_2 , R_5 , R_6 , R_7 , Y, n and p have the meanings given for a compound of the formula I, or

D) by oxidizing of a compound of the subformula lb

$$(O)_{n} \xrightarrow{N} \xrightarrow{R_{2}} \xrightarrow{R_{2A}} \xrightarrow{R_{3}} \xrightarrow{C_{m} \setminus Q} \xrightarrow{C_{p} \setminus R_{6}} (Ib)$$

10

5

wherein R_1 to R_7 , R_{2A} , Y, n, m, p and q have the meanings given for a compound of the formula I using an oxidizing amount of an oxidizing agent, for example NalO₄/RuCl₃, NaOCl/RuO₂ or KMnO₄, in order to form a compound of the formula I, wherein X is O=S=O, or

15 E) reacting a compound of the formula VI

10

15

20

25

$$(O)_{n}$$

$$HS$$

$$R_{3}$$

$$R_{4}$$

$$C_{m}$$

$$Q$$

$$R_{5}$$

$$R_{6}$$

$$R_{5}$$

$$R_{6}$$

$$R_{7}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{2}$$

$$R_{5}$$

$$R_{6}$$

$$R_{5}$$

wherein R_1 to R_7 , R_{2A} , Y, n, m, p and q have the meanings given for a compound of the formula I with an oxidizing amount of an oxidizing agent, for example iodine, in order to form a compound of the formula I, wherein X is S=O.

The reaction types A to E and additional methods which can be applied per se or as analogous procedures for the synthesis of compounds of the formula I are described for example in Organic Letters 2(8), 1101-1104 (2000); Organic Letters 3 (16), 2539-2541 (2001); Organic Letters 2(5), 625-627 (2000); Tetrahedron Letters 40(11), 2035-2038 (1999); Heterocycles 48(3), 481-489 (1998); Journal of Organic Chemistry 55(13), 4156-4162 (1990); Journal of Organic Chemistry 58(3), 696-699 (1993); Journal of Organic Chemistry 50(1), 1-4 (1985); Patent Application GB 2267287 A (1993); Patent Application EP-A-497695 (1992); Organic Magnetic Resonance 12(8), 481-489 (1979); Journal of the Chemical Society, Perkin Trans.2, 1207-1210 (1978); Patent Application JP 54024869 (1979); Yakuqaku Zasshi 98(6), 817-821 (1978); Heterocycles 7(2), 919-925 (1977); Chemical Abstracts 77:139931; Zhurnal Organicheskoi Khimii 6(6), 1305-1308 (1970). The palladium catalysts suitable for the C-N linkage reaction (Buchwald-Hartwig amination) of the compound of the formula II with the cyclic amine ring system of the formula III are generally palladium(II) or palladium(0) complexes. They can be prepared in a separate step such as, for example, dichloro[1,1'-bis(diphenylphosphino)ferrocene]palladium or PdCl₂(BINAP). The palladium catalyst can also be prepared "in situ" from palladium(II) or palladium(0) compounds, such as, palladium(II) dichloride, palladium(II) acetate, bis(dibenzylideneacetone)palladium(0), tris(dibenzylideneacetone) dipalladium, and corresponding ligands.

Examples of suitable ligands include but are in no way limited to tris(tert-butyl)phosphine, tricyclohexylphosphine (PCy₃), 2,2'-(diphenylphosphino)-bisnaphthalene (BINAP), 1,1'-bis(diphenylphosphino)ferrocene (dppf), 1,1'-bis(di-tert-butylphosphino)ferrocene, 1,2-bis(diphenylphosphino)ethane, 1,3-bis(diphenylphosphino)propane, 1,4-bis(diphenylphosphino)butane, bis(2-(diphenylphosphino)phenyl)ether (DPE-phos), 4,5-bis (diphenylphosphino)-9,9-

10

15

25

dimethylxanthanene (Xantphos), 2-(di-tert-butylphosphino)biphenyl, 2-(dicyclohexylphosphino)biphenyl, 2-dicyclohexylphosphino-2'-(N,N'-dimethylamino)biphenyl, 2-di-tert-butylphosphino-2'-(N,N'-dimethylamino)biphenyl.

Exemplary bases include such as, for example, sodium tert-butoxide, potassium tert-butoxide, sodium amide, lithium diisopropyl amide (LDA), lithium bis(trimethylsilyl)amide, sodium bis(trimethylsilyl)amide, sodium methylate, sodium phenolate, Cs₂CO₃, K₃PO₄.

The compounds of the formula II, V and VI may be prepared in accordance with manufacturing processes described in WO 95/09853, or in analogy to the methods described therein.

The compounds of the formula III are known or may be prepared in analogy to the synthesis methods described in Organic Letters 2(5), 625-627 (2000); Patent Application EP-A-350002 (1990) or in the above mentioned literature.

The compounds of the formula IV are novel und may be prepared by reacting a compound of the formula VII

$$(O)_{n} \xrightarrow{N}_{NH_{2}} R_{1}$$

$$(VII)$$

wherein R_1 , R_7 and n have the meanings given for a compound of the formula I, with a compound of the formula VIII

$$\begin{array}{c|c} U'' & V' & R_2 \\ \hline \\ R_3 & C_m & C_p & R_5 \\ \hline \\ R_4 & & & \end{array}$$
 (VIII)

wherein R₂ to R₆, R_{2A}, U', X, Y, m, p and q have the meanings given for a compound of the formula IV and U" is a leaving group, especially chloro, or is oxygen which forms an anhydride.

The preparation of a compound of the formula VII is described in the PCT application WO 95/09851.

A compound of the formula II, wherein R₇ is hydrogen, may be obtained preferably by reacting a compound of the formula IX

15

(or – if n is 0 - a salt thereof) wherein L is a leaving group, especially alkoxy, such as lower alkoxy, esterified OH (especially tosyloxy), or di-(lower alkylamino), U is a leaving group (preferably halo, such as chloro, bromo or iodo) and n is 0 or 1, with a guanidino compound of the formula X,

$$\begin{array}{c|c} NH_2 & \\ N & \\$$

(or a salt thereof) wherein R₁ is as defined for a compound of the formula i.

The reaction preferably in conducted under conditions analogous to those mentioned in PCT application WO 95/09583, that is, in a suitable solvent or suspending agent, for example a suitable alcohol, such as isopropanol, or 2-butanol, at a temperature from room temperature (approximately +20°C) to +150°C, e.g. under reflux.

A compound of the formula II, wherein R_7 is $-CH_2OR_8$, $-C(O)R_8$ or $-C(O)OR_8$, may preferably be obtained by reacting a compound of the formula II, wherein R_7 is hydrogen, with one of the following reagents: Hal-CH₂OR₈, Hal-C(O)R₈, Hal-C(O)OR₈ rasp. $O(C(O)R_8)_2$, wherein Hal means halogen like chlorine, bromine or iodine.

The compound of the formula IX are known or may be obtained in accordance with methods that are known in the art, e.g. by reacting a compound of the formula XI

wherein n is 0 or 1 and wherein U is a leaving group, preferably as defined for a compound of the formula (IX), either (i) under Claisen or analogue condensation reaction conditions (leading to a free hydroxy instead of the leaving group L in a compound of the formula IX; this free hydroxy group can then be converted into a leaving group, for example by ether formation with an alkylalkohol ("Alkoxy-H";), yielding alkoxy as L, such as lower alkoxy, or

10

15

20

25

by reaction with an acid or an active ester derivative, e.g. an acid chloride, yielding esterified OH (especially tosyloxy); or to alkoxy L, depending on the reaction conditions), or (ii) preferably by reaction with an N,N-di-(lower alkyl)-formamide di-lower alkylacetal, especially N,N-di-(methyl)formamide di-methylacetal, analogous to the procedure described in European Patent Application EP-A-0233461, which is incorporated by reference, e.g. by reaction in the respective N,N-di-(lower alkyl)-formamide di-lower alkylacetal at a temperature between room temperature and the boiling point of the reaction mixture, especially under reflux conditions.

An intermediate of the formula (XI) may, for example, be obtained by reaction of a metallated methyl derivative of the formula (XII)

wherein Metal stands preferably for Mg-Hal (Hal = halogen) or Li, with a 4-pyridyl-carbonic acid derivative of the formula (XIII)

wherein U and n have the meanings given for a compound of the formula IX, and W is a leaving group, preferably N-lower alkyl-N-lower alkoxy-amino or halogen, under standard conditions for alkylation reactions.

Alternatively, an intermediate of the formula XI, wherein n is 0, may be obtained by reaction of a metallated pyridine derivative of the formula XIV

wherein U is a leaving group, preferably as defined for a compound of the formula IX, and Metal stands for Mg-Hal (Hal = halogen) or Li, under standard conditions for alkylation reactions with an acetyl equivalent of the formula XV

$$H_3C$$
 (XV)

wherein Z is halo, or forms with the rest of the molecule an amide, an alkoxyamide, an

10

15

20

30

anhydride or the like; or Z is hydrogen (meaning that the compound XV is acetaldehyde), resulting after the reaction in an alcohol that is then oxidized with a selective oxidant, for example in the presence of oxalylchloride and dimethyl sulfoxide, to the ketone intermediate of the formula XI.

A starting material of the formula X may be prepared (preferably obtaining an acid addition salt) by reaction of an aniline derivative of the formula XVI

wherein R₁ is as defined for a compound of formula I, with cyanamide (NC-NH₂) in a suitable solvent, e.g. an alcohol, such as a lower alkanol, for example (i) in the presence of equimolar amounts of the salt-forming acid, for example nitric acid, or (ii) in the presence of a clear, for example 60 %, excess of a mineral acid, such as hydrochloric acid, where an ammonium salt of the desired salt-forming acid is added when the reaction is complete; at a temperature between room temperature and +150°C, e.g. under reflux.

Compounds of the formulae XIII, XIV and XVI may be prepared according to methods that are known in the art.

The synthesis of many of the starting materials and intermediates may also be done as described in or in analogy to the processes described in WO 95/09853.

In all intermediates, functional groups that shall not participate in the intended reactions may be protected and deprotected at appropriate stages in order to avoid side reactions – appropriate protecting groups and methods for their introduction and removal can be found e.g. in WO 95/09853.

The present invention also relates to novel starting materials and/or intermediates and to processes for the preparation thereof. The starting materials used and the reaction conditions chosen are preferably such that the compounds shown in this disclosure as being especially preferred or to be used preferably are obtained. Especially preferred among the process conditions are those described in the examples below, or analogous procedures.

The invention also relates to compositions which comprise the compounds of the formula I, or a salt thereof, as an active component, in particular plant-protecting compositions, and also to their use in the agricultural sector or related areas.

Active compounds of the formula I are customarily used in the form of compositions and may be added, simultaneously or successively, to the surface or plant to be treated together with additional active compounds. These additional active compounds may be either fertilizers, trace element-supplying agents or other preparations which influence plant

15

20

25

30

35

growth. It is also possible, in this context, to use selective herbicides, such as insecticides, fungicides, bactericides, nematicides or molluscicides, or mixtures of several of these preparations, additionally, where appropriate, together with excipients, surfactants or other administration-promoting additives which are customary in formulation technology (designated collectively as carrier materials herein).

Suitable excipients and additives may be solid or liquid and are those substances which are appropriate in formulation technology, for example natural or regenerated minerals, solvents, dispersants, wetting agents, adhesives, thickening agents, binding agents or fertilizers.

A preferred method for applying a compound of formula I, or an agrochemical composition which comprises at least one of these compounds, is administration to the leaves (foliar application). The frequency and rate of administration depend upon the risk of infestation by the corresponding pathogen. The compounds of formula I can, however, also penetrate the plant through the roots via the soil (systemic action). If the locus of the plant is impregnated with a liquid formulation or if the substances are introduced in solid form into the soil, e.g. in the form of granules (soil application). In paddy rice crops, such granules can be applied in metered amounts to the flooded rice fields. In order to treat seeds, the compounds of formula I can, however, also be applied to the seeds (coating), either by impregnating the grains or tubers with a liquid formulation of the active ingredient, or by coating them with a solid formulation.

Advantageous rates of application are in normally from 5 g to 2 kg of active ingredient (a.i.) per hectare (ha), preferably from 10 g to 1 kg of a.i./ha, especially from 20 g to 600 g a.i./ha. When the compound are used as seed dressings, dosages of from 10 mg to 1 g of active ingredient per kg seed are advantageous employed. The agrochemical compositions generally comprise 0.1 to 99% by weight, preferably 0.1 to 95% by weight, of a compound of formula I, 99.9 to 1% by weight, preferably 99.8 to 5% by weight, of a solid or liquid adjuvant and 0 to 25% by weight, preferably 0.1 to 25 % by weight, of a surfactant. Whereas commercial products will preferably be formulated as concentrates, the end user will normally employ dilute formulations.

The compositions may also comprise further auxiliaries, such as fertilizers and other active ingredients for obtaining special desirable biological effects.

The compounds of formula I may be used preventatively and/or curatively in the sector of agronomics and related technical areas as active ingredients for controlling plant pests. The active ingredients of formula I according to the invention are notable for their good activity even at low concentrations, for their good plant tolerance and for their environmentally friendly nature. They have very advantageous, especially systemic,

10

15

20

25

30

35

properties and may be used to protect a plurality of cultivated plants. Using the active ingredients of formula I on plants or plant parts (fruit, flowers, leaves, stems, tubers, roots) of various crops, the pests appearing can be controlled or destroyed, whereby the parts of plants which grow later also remain protected, e.g. from phytopathogenic microorganisms.

The compounds I may additionally be used as a dressing to treat seeds (fruits, tubers, corms) and plant cuttings to protect against fungal infections and against phytopathogenic fungi occurring in the soil.

The compounds I are effective for example against the following classes of related phytopathogenic fungi: Fungi imperfecti (e.g. Botrytis, Pyricularia, Helminthosporium, Fusarium, Septoria, Cercospora and Alternaria); Basidiomycetes (e.g. Rhizoctonia, Hemileia, Puccinia); Ascomycetes (e.g. Venturia and Erysiphe, Podosphaera, Monilinia, Uncinula) and Oomycetes (e.g. Phytophthora, Pythium, Plasmopara).

Target crops for the plant-protecting usage in terms of the invention are for example the following plant cultivars: cereals (wheat, barley, rye, oats, rice, maize, sorghum and related species); beet (sugar beet and fodder beet); pome, stone and berry fruit (apples, pears, plums, peaches, almonds, cherries, strawberries, raspberries and blackberries); legumes (beans, lentils, peas, soya); oil crops (rape, mustard, poppy, olives, sunflowers, coconut, castor oil, cocoa, peanut); cucumber plants (squashes, cucumber, melons); citrus fruits (oranges, lemons, grapefruits, mandarines); vegetables (spinach, lettuce, asparagus, cabbage varieties, carrots, onions, tomatoes, potatoes, paprika); laurels (avocado, cinnamonium, camphor) and plants such as tobacco, nuts, coffee, aubergines, sugar cane, tea, pepper, vines, hops, bananas and natural rubber plants, as well as ornamental plants.

Further areas of application for the active ingredients according to the invention are the protection of stores and material, where the storage matter is protected against putrescence and mould.

The compounds I are used in unchanged form or preferably together with customary excipients in formulation techniques. To this end, they are conveniently processed in known manner e.g. into emulsion concentrates, coatable pastes, directly sprayable or diluable solutions, diluted emulsions, wettable powders, soluble powders, dusts or granules, e.g. by encapsulation into for example polymeric materials. As with the type of medium, the application processes, such as spraying, atomizing, dusting, scattering, coating or pouring are similarly chosen according to the desired aims and the prevailing conditions.

Suitable substrates and additives may be solid or liquid and are useful substances in formulation techniques, e.g. natural or regenerated mineral substances, dissolving aids, dispersants, wetting agents, tackifiers, thickeners or binding agents.

The compounds of formula I may be mixed with further active ingredients, e.g.

10

15

20

25

30

35

fertilizers, ingredients providing trace elements or other active ingredients used in the plant protection science, especially further fungicides. In doing so, in some cases synergistic enhancement of the biological effects may occur.

Preferred active ingredients advantageous as additives to the compositions comprising the active ingredient of formula I are: Azoles, such as azaconazole, BAY 14120, bitertanol, bromuconazole, cyproconazole. difenoconazole, diniconazole, epoxiconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, hexaconazole, imazalil, imibenconazole, ipconazole, metconazole, myclobutanil, pefurazoate, penconazole, pyrifenox, prochloraz, propiconazole, simeconazole, tebuconazole, tetraconazole, triadimefon, triadimenol, triflumizole, triticonazole; pyrimidinyl carbinole, such as ancymidol, fenarimol, nuarimol; 2-amino-pyrimidines, such as bupirimate, dimethirimol, ethirimol; morpholines, such as dodemorph, fenpropidine, fenpropimorph, spiroxamine, tridemorph; anilinopyrimidines, such as cyprodinil, mepanipyrim, pyrimethanil; pyrroles, such as fenpiclonil, fludioxonil; phenylamides, such as benalaxyl, furalaxyl, metalaxyl, R-metalaxyl, ofurace, oxadixyl; benzimidazoles, such as benomyl, carbendazim, debacarb, fuberidazole, thiabendazole; dicarboximides, such as chlozolinate, dichlozoline, iprodione, myclozoline, procymidone, vinclozoline; carboxamides, such as carboxin, fenfuram, flutolanil, mepronil, oxycarboxin, thifluzamide; quanidines, such as quazatine. dodine, iminoctadine; strobilurines, such as azoxystrobin, kresoxim-methyl, metominostrobin, SSF-129, trifloxystrobin, picoxystrobin, BAS 500F (proposed name pyraclostrobin), BAS 520; dithiocarbamates, such as ferbam, mancozeb, maneb, metiram, propineb, thiram, zineb, ziram; N-halomethylthiotetrahydrophthalimides, such as captafol, captan, dichlofluanid, fluoromides, folpet, tolyfluanid; Cu-compounds, such as Bordeaux mixture, copper hydroxide, copper oxychloride, copper sulfate, cuprous oxide, mancopper, oxinecopper; nitrophenol-derivatives, such as dinocap, nitrothal-isopropyl; organo-p-derivatives, such as edifenphos, iprobenphos, isoprothiolane, phosdiphen, pyrazophos, tolclofosmethyl; various others, such as acibenzolar-S-methyl, anilazine, benthiavalicarb, blasticidin-S, chinomethionate, chloroneb, chlorothalonil, cyflufenamid, cymoxanil, dichlone, diclomezine, dicloran, diethofencarb, dimethomorph, SYP-LI90 (proposed name: flumorph), dithianon, ethaboxam, etridiazole, famoxadone, fenamidone, fenoxanil, fentin, ferimzone, fluazinam, flusulfamide, fenhexamid, fosetyl-aluminium, hymexazol, iprovalicarb, IKF-916 (cyazofamid), kasugamycin, methasulfocarb, metrafenone, nicobifen, pencycuron, phthalide, polyoxins, probenazole, propamocarb, pyroquilon, quinoxyfen, quintozene, sulfur, triazoxide, tricyclazole, triforine, validamycin, zoxamide (RH7281).

One preferred method of application of an active ingredient of formula I or of an agrochemical composition containing at least one of these active ingredients is foliar

application. The frequency and amount of application depend on the severity of the attack by the pathogen in question. However, the active ingredients I may also reach the plants through the root system via the soil (systemic action) by drenching the locus of the plant with a liquid preparation or by incorporating the substances into the soil in solid form, e.g. in the form of granules (soil application). In rice cultivations, these granules may be dispensed over the flooded paddy field. The compounds I may however also be applied to seed grain to treat seed material (coating), whereby the grains or tubers are either drenched in a liquid preparation of the active ingredient or coated with a solid preparation.

The compositions are produced in known manner, e.g. by intimately mixing and/or grinding the active ingredient with extenders such as solvents, solid carriers and optionally surfactants.

Favourable application rates are in general 1 g to 2 kg of active substance (AS) per hectare (ha), preferably 10 g to 1 kg AS/ha, especially 20 g to 600 g AS/ha. For usage as a seed dressing, it is advantageous to use dosages of 10 mg to 1 g active substance per kg of seed grain.

While concentrated compositions are preferred for commercial usage, the end user normally uses diluted compositions.

Formulations may be prepared analogously to those described for example in WO 97/33890.

20 Examples:

10

15

25

30

The subsequent examples are intended to illustrate the invention, without however limiting the scope thereof.

Synthesis Example 1: 3-{4-[2-(3-Chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-

oxazolidin-2-one

Phosgene in toluene (1.9ml of a 20% commercial solution, 3.5mmol) is added within five minutes to a solution of 2-{4-[2-(3-chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-ylamino}-ethanol (0.88g, 2.6mmol) and triethylamine (1.7ml, 11.7mmol) in absolute THF (20ml) at 50°C. After stirring the resulting suspension for one hour at room temperature it is partitioned between ethyl acetate and water. The organic phase is separated, dried over magnesium sulfate, filtered and evaporated under reduced presssure. The residue is purified by silicagel chromatography to give the title compound, m.p. 162-163°C.

15

- 17 -

Synthesis Example 2: 3-{4-[2-(3-Chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}oxazolidine-2-thione

A mixture of 2-{4-[2-(3-chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-ylamino}-ethanol (0.67g, 2.0mmol) and thiocarbonyldiimidazole (0.38g, 2.1mmol) in absolute THF (20ml) is stirred at room temperature for one hour. The reaction mixture is partitioned between ethyl acetate and water. The organic phase is separated, dried over magnesium sulfate, filtered and evaporated under reduced presssure. The residue is purified by silicagel chromatography to give the title compound, m.p. 213-2140C.

10 Synthesis Example 3: (3-Chloro-phenyl)-{4-[2-(2-oxo-[1,2,3]oxathiazolidin-3-yl)-pyridin-4yl]-pyrimidin-2-yl}-amine

A solution of sulfonyl chloride (0.63g, 5.3mmol) in THF (2ml) is added within 5 minutes to a solution of 2-{4-[2-(3-chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-ylamino}-ethanol (1.50g, 4.4mmol) and triethylamine (3.0ml, 22mmol) in absolute THF (20ml) at +5°C. After stirring the resulting suspension for four hours at room temperature it is partitioned between ethyl acetate and water. The organic phase is separated, dried over magnesium sulfate, filtered and evaporated under reduced presssure. The residue is purified by silicagel chromatography to give the title compound, m.p. 202-203°C.

Synthesis Example 4: 1-{4-[2-(3-Chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-20 pyrrolidin-2-one

To a solution of (3-chloro-phenyl)-[4-(2-chloro-pyridin-4-yl)-pyrimidin-2-yl]-amine (4.8g, 0.015mol) in pyrrolidon (20ml) is added sodium hydride (1.93g, 0.06mmol of a 75% dispersion in oil) in several portions. The reaction temperature is slowly raised to +150°C. 25 After 30 minutes the heating bath is removed and the mixture is poured onto crushed ice.

15

20

25

The reaction mixture is partitioned between ethyl acetate and water. The organic phase is separated, dried over magnesium sulfate, filtered and evaporated under reduced presssure. The residue is purified by silicagel chromatography and recrystallized from ethyl acetate to give the title compound, m.p. 165-166°C.

5 Synthesis Example 5: 3-(4-{2-[(3-Chloro-phenyl)-methoxymethyl-amino]-pyrimidin-4-yl}pyridin-2-yl)-4-methyl-oxazolidin-2-one

Potassium t-butoxide (0.235g, 2.1mmol) is added at room temperature to a solution of 3-{4-[2-(3-chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-4-methyl-oxazolidin-2-one (0.5g, 1.3mmol). After stirring the mixture for 10 minutes chloromethylmethylether (0.17g, 2.1mmol) in THF (3ml) is added. The mixture is stirred for additional 5 hours at this temperature. Dilution with ethyl acetate, washing with brine, drying over magnesium sulfate, filtering and evaporation of the solvent gives the title compound in form of a slightly colored oil; ¹H-NMR (DMSO): 8.70 (s, 1H); 8.51 (d, 1H); 8.48 (d, 1H); 7.68 (d,1H); 7.47-7.23 (m, 5H); 5.39 (s,2H); 4.87-4.74 (m,1H); 4.50 (dd, 1H); 4.08 (dd,1H); 3.25 (s,3H); 1.33 (d,3H). Synthesis Example 6: 1-{4-[2-(3-Chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-5-methyl-

pyrrolidin-2-one

In a Schlenk tube (3-chloro-phenyl)-[4-(2-chloro-pyridin-4-yl)-pyrimidin-2-yl]-amine (0.95g), NaOtBu (0:29g), dppf (0.1g), Pd(OAc)₂ (0.01g) and 4-methylpyrrolidin-2one (0.2g) are added: Three consecutive cycles of vacuum/argon are applied. Thereafter, 10ml of degassed dioxane is added and the solution is heated to 120° C (external temperature) for 8 hours. The solvent is removed under vacuum and the crude product is purified over column chromatography (eluent; EE/MeOH = 9/1) yielding the title compound, m.p. 162-164°C.

Synthesis Example 7: 3-{4-[2-(3-Chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-4-methyl-oxazolidin-2-one

A solution of Xantphos (0.018g) and $Pd_2(dba)_3$ (0.014g) in toluene (2ml) is stirred under argon at room temperature for 20 minutes. Then (3-chloro-phenyl)-[4-(2-chloro-pyridin-4-yl)-pyrimidin-2-yl]-amine (0.20g), (R)-4-methyl-oxazolidin-2-one (0.127g), NaOtBu (0.085g) and toluene ((2ml) are added. The reaction mixture is refluxed at 120° C for 1 hour. After this time the mixture is cooled to room temperature, diluted with ethyl acetate, and washed with water. The organic layer is dried over Na_2SO_4 and concentrated under vacuum. The residue is purified by silicagel chromatography to give the title compound, m.p. 177-178°Cand $[\alpha]_D = -72.0^{\circ}$ (20°C, c=1).

Similar to the above described working examples the compounds of the following tables may be obtained.

Table 1

5

10

Compounds of the general structure I.1, wherein $R_2 - R_6$, R_{2A} , X, Y, m, p and q correspond with a line of table A.

Table 2

15

Compounds of the general structure I.2, wherein $R_2 - R_6$, R_{2A} , X, Y, m, p and q correspond with a line of table A.

20 Table 3

Compounds of the general structure I.3, wherein $R_2 - R_6$, R_{2A} , X, Y, m, p and q correspond with a line of table A.

- 20 -

Table 4

Compounds of the general structure I.4, wherein $R_2 - R_6$, R_{2A} , X, Y, m, p and q correspond with a line of table A.

Table 5

5

Compounds of the general structure I.5, wherein $R_2 - R_8$, R_{2A} , X, Y, m, p and q correspond with a line of table A.

$$\begin{array}{c} R_4 \\ R_3 \\ C_m \\ R_6 \\ R_2 \\ R_{2A} \\ N \end{array}$$

10 <u>Table 6</u>

Compounds of the general structure I.5, wherein R_2 – R_6 , R_{2A} , X, Y, m, p and q correspond with a line of table A.

Table 7

Compounds of the general structure I.7, wherein R₂ – R₆, R_{2A}, X, Y, m, p and q correspond with a line of table A.

Table 8

Compounds of the general structure I.8, wherein $R_2 - R_6$, R_{2A} , X, Y, m, p and q correspond with a line of table A.

Table 9

5

Compounds of the general structure I.9, wherein $R_2 - R_6$, R_{2A} , X, Y, m, p and q correspond with a line of table A.

10 Table 10

Compounds of the general structure I.10, wherein $R_2 - R_6$, R_{2A} , X, Y, m, p and q correspond with a line of table A.

Table 11

Compounds of the general structure I.11, wherein R₂ – R₆, R_{2A}, X, Y, m, p and q correspond with a line of table A.

- 22 -

$$\begin{array}{c|c} R_4 & R_3 \\ Y_q & X \\ \hline \\ R_5 & R_2 & R_{2A} & N \end{array}$$

Table 12

5

Compounds of the general structure I.12, wherein $R_2 - R_6$, R_{2A} , X, Y, m, p and q correspond with a line of table A.

$$\begin{array}{c|c}
R_{4} & R_{3} \\
Y_{q} & X \\
\hline
C_{p} & X \\
\hline
N & N \\
O = S = O
\end{array}$$
1.12

Table 13

Compounds of the general structure I.13, wherein $R_2 - R_6$, R_{2A} , X, Y, m, p and q correspond with a line of table A.

$$\begin{array}{c|c}
R_6 & R_2 \\
R_5 & R_2 & R_{20} \\
\end{array}$$
I.13

10 <u>Table 14</u>

Compounds of the general structure I.14, wherein $R_2 - R_6$, R_{2A} , X, Y, m, p and q correspond with a line of table A.

15 <u>Table 15</u>

Compounds of the general structure I.15, wherein $R_2 - R_6$, R_{2A} , X, Y, m, p and q correspond with a line of table A.

- 23 -

PCT/IB01/02821

$$\begin{array}{c} R_4 \\ R_3 \\ C_m \\ R_6 \\ R_5 \\ R_2 \\ R_{2A} \\ N \end{array}$$

Table 16

Compounds of the general structure I.16, wherein $R_2 - R_6$, R_{2A} , X, Y, m, p and q correspond with a line of table A.

Table 17

5

Compounds of the general structure I.17, wherein $R_2 - R_6$, R_{2A} , X, Y, m, p and q correspond with a line of table A.

$$\begin{array}{c|c}
R_4 R_3 \\
V_q & X \\
R_6 R_5 R_2 & R_{2A}
\end{array}$$
1.17

10 <u>Table 18</u>

Compounds of the general structure I.18, wherein $R_2 - R_6$, R_{2A} , X, Y, m, p and q correspond with a line of table A.

Table 19

Compounds of the general structure I.19, wherein $R_2 - R_6$, R_{2A} , X, Y, m, p and q correspond with a line of table A.

$$\begin{array}{c|c} & R_4 \\ & R_3 \\ & C_m \\ & R_5 \\ & R_2 \\ & R_{2A} \\ & N \end{array}$$

Table 20

Compounds of the general structure I.20, wherein $R_2 - R_6$, R_{2A} , X, Y, m, p and q correspond with a line of table A.

$$\begin{array}{c} R_4 R_3 \\ V_q \\ C_m \\ R_5 R_2 \\ R_{2A} \\ N \end{array}$$

Table A:

No.	R ₂	R _{2A}	R ₃	R₄	R_5	R ₆	X	Υ	m	р	q
001	Н	Н			Н	Н	C=O	0	0	1	1
002	CH₃	Н		1	Н	Н	C=O	0	0	1	1
003	CH₂CH₃	Н			Н	Н	C=O	0	0	1	1
004	(CH ₂) ₂ CH ₃	Н			н	Н	C=O	0	0	1	1
005	CH(CH ₃) ₂	Н			Н	Н	C=O	0	0	1	1
006	Н	Н			CH ₃	Н	C=O	0	0	1	1
007	CH ₃	Н			CH ₃	Н	C=O	0	0	1	1
800	CH ₃	Н			CH₂OH	Н	C=O	0	0	1	1
009	CH ₃	н			(CH₂)₂OH	Н	C=O	0	0	1	1
010	CH ₃	н			CH₂OCH₃	Н	C=O	0	0	1	1
011	CH ₃	Н			(CH₂)₂OCH₃	Н	C=O	0	0	1	1
012	Н	Н			CH ₃	CH₃	C=O	0	0	1	1
013	CH ₃	Н			CH ₃	CH₃	C=O	0	0	1	1
014	CH₂CH₃	H			CH ₃	CH₃	C=O	0	0	1	1
015	Н	н			Н	Н	C=S	0	0	1	1
016	Н	Н	-		CH ₃	Н	C=S	0	0	1	1
017	CH₃	н			Н	Н	C=S	0	0	1	1
018	CH₂CH₃	н			Н	Н	C=S	0	0	1	1
019	CH₃	Н			CH ₃	Н	C=S	0	0	1	1
020	CH₂CH₃	Н			CH ₃	Н	C=S	0	0	1	1
021	CH ₃	Н			CH ₃	CH ₃	C=S	0	0	1	1
022	CH₂CH₃	Н			CH ₃	CH₃	C=S	0	0	1	1
023	Н	Н			Н	Н	S=O	0	0	1	1
024	CH ₃	Н			Н	Н	S=O	0	0	1	1
025	CH₂CH₃	Н			H	Н	S=O	0	0	1	1
026	CH ₃	Н			CH ₃	Н	S=O .	0	0	1	1
027	CH₂CH₃	Н			CH₃	Н	S=O	0	0	1	1
028	CH ₃	Н			CH ₃	CH₃	S=O	0	0	1	1
029	CH₂CH₃	Н	-		CH₃	CH₃	S=O	0	0	1	1
030	CH ₃	Н			Н	Н	0=S=0	0	0	1	1
031	CH₂CH₃	Н			Н	Н	0=S=O	0	0	1	1
032	CH ₃	Н	_		CH₃	Н	O=S=O	0	0	1	1

033	CH₂CH₃	Н			CH₃	Н	0=S=0	0	0	1	1
034	CH₃	Н			CH ₃	CH₃	0=S=0	0	0	1	1
035	CH₂CH₃	H			CH ₃	CH₃	0=S=0	0	Ö	1	1
036	CH₃	Н			Н	H	C=O	s	0	1	1
037	CH₂CH₃	Н	+		Н	Н	C=O	s	0	1	1
038	CH₃	Н			CH ₃	Н	C=O	S	0	1	1
039	CH₂CH₃	Н			CH ₃	Н	C=O	s	0	1	1
040	CH₃	Н			CH₃	CH₃	C=O	s	0	1	1
041	CH₂CH₃	H			CH ₃	CH ₃	C=O	s	0	1	1
042	Н	Н	н	Н	1		C=O	0	1	0	1
043	CH ₃	Н	н	Н	1		C=O	0	1	0	1
044	CH₂CH₃	Н	Н	Н			C=O	0	1	0	1
045	Н	Н	CH₃	Н	 		C=O	0	1	0	1
046	CH₃	Н	CH₃	Н			C=O	0	1	0	1
047	CH₂CH₃	Н	CH₃	Н	<u> </u>		C=O	0	1	0	1
048	CH ₃	Н	CH₂OH	Н			C=O	0	1	0	1
049	CH ₃	Н	(CH ₂) ₂ OH	Н			C=O	0	1	0	1
050	CH ₃	Н	CH₂OCH₃	Н			C=O	0	1	0	1
051	CH₃	Н	(CH ₂) ₂ OCH ₃	Н			C=O	0	1	0	1
052	Н	н	CH₃	CH₃	-		C=O	0	1	0	1
053	CH ₃	Н	CH₃	CH ₃			C=O	0	1	0	1
054	CH₂CH₃	H	CH₃	CH₃	1		C=O	0	1	0	1
055	CH ₃	Н	Н	Н	-		C=S	0	1 -	0	1
056	CH₂CH₃	Н	Н	Н			C=S	0	1	0	1
057	CH ₃	Н	CH₃	Н			C=S	0	1	0	1
058	CH ₂ CH ₃	Н	CH₃	Н			C=S	0	1	0	1
059	CH ₃	Н	CH ₃	CH₃			C=S	0	1	0	1
060	CH ₂ CH ₃	Н	CH₃	СН₃			C=S	0	1	0	1
061	CH ₃	Н	Н	Н			S=O	0	1	0	1
062	CH₂CH₃	Н	Н	Н			S=O	0	1	0	1
063	CH ₃	н	CH₃	Н			S=O	0	1	0	1
064	CH ₂ CH ₃	Н	CH₃	Н			S=O	0	1	0	1
065	CH ₃	Н	CH₃	CH₃			S=O	0	1	0	1
066	CH ₂ CH ₃	Н	CH ₃	CH₃			S=O	0	1	0	1

067	CH₃	Н	Н	Н			0=S=0	0	1	Ō	1
068	CH₂CH₃	Н	Н	Н			O=S=O	0	1	0	1
069	CH₃	Н	CH ₃	Н		1	O=S=O	0	1	0	1
070	CH₂CH₃	Н	CH ₃	Н		†	O=S=O	0	1	0	1
071	CH₃	Н	CH ₃	CH₃			O=S=O	0	1	0	1
072	CH₂CH₃	Н	CH₃	CH₃			O=S=O	0	1	0	1
073	CH ₃	Н	Н	Н			C=O	S	1	0	1
074	CH₂CH₃	Н	Н	Н			C=O	S	1	ō	1
075	CH₃	Н	CH₃	Н	<u> </u>		C=O	S	1	0	1
076	CH₂CH₃	Н	CH₃	Н			C=O	S	1	0	1
077	CH₃	Н	CH₃	CH₃			C=O	S	1	0	1
078	CH₂CH₃	Н	CH₃	СНз		<u> </u>	C=0	S	1	0	1
079	Н	Н	Н	Н	н	Н	C=O		1	1	0
080	CH₃	Н	Н	Н	Н	Н	C=O		1	1	0
081	CH₂CH₃	Н	н	Н	Н	Н	C=O		1	1	0
082	Н	Н	CH₃	Н	н	Н	C=O		1	1	0
083	CH₃	Н	CH ₃	H	Н	Н	C=O		1	1	0
084	CH₂CH₃	Н	CH₃	Н	Н	Н	C=O		1	1	0
085	CH₃	Н	CH₂OH	Н	Н	Н	C=O		1	1	0
086	CH₃	Н	(CH ₂) ₂ OH	Н	Н	Н	C=O		1	1	0
087	CH₃	Н	CH₂OCH₃	Н	Н	Н	C=O		1	1	0
088	CH₃	Н	(CH ₂) ₂ OCH ₃	Н	H	Н	C=O		1	1	0
089	Н	Н	CH₃	CH₃	Н	Н	C=O		1	1	0
090	CH₃	Н	CH₃	СН₃	Н	Н	C=O		1	1	0
091	CH₂CH₃	Н	CH₃	CH₃	н	Н	C=O	 	1	1	0
092	Н	н	Н	Н	CH ₃	Н	C=O		1	1	0
093	CH₃	Н	Н	Н	CH ₃	Н	C=O	ļ	1	1	0
094	CH₂CH₃	н	Н	Н	CH ₃	Н	C=O	 	1	1	0
095	CH₃	Н	Н	Н	CH₂OH	Н	C=O		1	1	0
096	CH₃	 	Н	Н	(CH ₂)₂OH	Н	C=O		1	1	0
097	CH₃	Н	Н	Н	CH₂OCH₃	Н	C=O		1	1	0
098	CH₃	Н	Н	Н	(CH ₂)₂OCH ₃	Н	C=O		1	1	0
099	Н	Н	н	Н	CH₃	CH ₃	C=O		1	1	0
100	CH ₃	н	Н	Н	CH ₃	CH₃	C=O		1	1	0

- 28 -

101	CH₂CH₃	Н	Н	Н	CH ₃	CH₃	C=O	T	1	1	0
102	Н	Н	CH₃	H	CH ₃	Н	C=0		1	1	0
103	CH₃	·H	CH₃	H	CH ₃	Н	C=O	 	1	1	0
104	CH₂CH₃	Н	CH₃	H	CH ₃	Н	C=O		1	1	0
105	CH₃	Н	CH ₃	CH₃	CH ₃	Н	C=0		1	1	0
106	CH₂CH₃	Н	CH₃	CH₃	CH ₃	н	C=O	 	1	1	0
107	CH₃	Н	CH₃	Н	CH₃	Н	C=O	<u> </u>	1	1	0
108	CH₂CH₃	н	CH₃	Н	CH ₃	Н	C=O		1	1	0
109	CH₃	Н	CH₃	CH ₃	CH ₃	CH ₃	C=O		1	1	0
110	CH₂CH₃	Н	CH₃	CH₃	CH ₃	CH ₃	C=0		1	1	0
111	CH ₃	Н	Н	Н	Н	Н	C=S		1	1	0
112	CH₂CH₃	Н	Н	Н	Н	Н	C=S		1	1	0
113	CH₃	Н	CH₃	Н	Н	Н	C=S		1	1	0
114	CH₂CH₃	н	CH₃	Н	Н	Н	C=S		1	1	0
115	CH ₃	Н	CH ₃	CH ₉	Н	Н	C=S		1	1	0
116	CH₂CH₃	Н	CH₃	CH₃	Н	н	C=S		1	1	0
117	CH ₃	Н	Н	Н	CH ₃	Н	C=S	-	1	1	0
118	CH₂CH₃	Н	Н	Н	CH ₃	н	C=S		1	1	0
119	CH ₃	н	CH ₃	Н	CH ₃	Н	C=S		1	1	0
120	CH₂CH₃	Н	CH ₃	Н	CH ₃	Н	C=S		1	1	0
121	CH ₃	Н	CH₃	CH₃	CH₃	Н	C=S		1	1	0
122	CH₂CH₃	Н	CH₃	CH₃	CH₃	Н	C=S		1	1	0
123	CH ₃	Н	Н	Н	CH₃	CH ₃	C=S		1	1	0
124	CH₂CH₃	Н	Н	Н	CH ₃	CH ₃	C≃S		1	1	0
125	CH ₃	Н	CH₃	Н	CH₃	CH ₃	C=S		1	1	0
126	CH₂CH₃	Н	CH₃	Н	CH ₃	CH₃	C=S		1	1	0
127	CH ₃	Н	CH₃	CH ₃	CH ₃	CH ₃	C=S		1	1	0
128	CH₂CH₃	Н	CH₃	CH₃	CH ₃	CH₃	C=S		1	1	0
129	CH ₃	Н	Н	Н	Н	Н	S=O		1	1	0
130	CH₂CH₃	Н	Н	Н	Н	Н	S=O		1	1	0
131	CH₃	Н	CH₃	Н	Н	Н	S=O		1	1	0
132	CH₂CH₃	Н	CH₃	Н	Н	Н	S=O		1	1	0
133	CH ₃	Н	CH₃	CH₃	Н	Н	S=O		1	1	0
134	CH₂CH₃	Н	CH₃	CH₃	Н	Н	S=O	1	1	1	0

135	CH₃	Н]H	Н	CH ₃	Н	S=O		1	1	0
136	CH₂CH₃	Н	Н	Н	CH ₃	Н	S=O		1	1	0
137	CH ₃	Н	CH₃	Н	CH₃	Н	S=O		1	1	0
138	CH₂CH₃	Н	CH₃	Н	CH ₃	H	S=O		1	1	0
139	CH ₃	Н	CH₃	CH₃	CH ₃	H	S=O		1	1	0
140	CH₂CH₃	H	CH₃	CH ₃	CH ₃	H	S=O		1	1	0
141	CH ₃	Н	Н	Н	CH ₃	CH₃	S=O		1	1	0
142	CH ₂ CH ₃	Н	Н	Н	CH₃	CH₃	S=O		1	1	0
143	CH ₃	Н	CH₃	Н	CH ₃	CH₃	S=O		1	1	0
144	CH₂CH₃	H	CH₃	Н	CH ₃	CH₃	S=O		1	1	0
145	CH ₃	Н	CH₃	CH₃	CH ₃	CH₃	S=O		1	1	0
146	CH₂CH₃	Н	CH₃	CH₃	CH ₃	CH₃	S=O		1	1	0
147	CH ₃	Н	Н	Н	Н	H	0=S=O		1	1	0
148	CH₂CH₃	H	Н	Н	Н	Н	O=S=O		1	1	0
149	CH ₃	Н	CH₃	Н	Н —	Н	O=S=O		1	1	0
150	CH₂CH₃	Н	CH₃	Н	Н	Н	0=S=O		1	1	0
151	CH ₃	Н	CH₃	CH₃	H	Н	0=S=O		1	1	0
152	CH₂CH₃	Н	CH ₃	CH₃	Н	H	O=S=O		1	1	0
153	CH ₃	Н	Н	Н	CH ₃	H	O=S=O		1	1	0
154	CH₂CH ₃	Н	Н	H	CH ₃	Н	O=S=O		1	1	0
155	CH ₃	Н	CH ₃	Н	CH ₃	H	O=S=O		1	1	0
156	CH₂CH₃	Н	CH₃	Н	CH ₃	Н	O=S=O		1	1	0
157	CH ₃	Н	CH₃	CH ₃	CH₃	Н	O=S=O		1	1	0
158	CH₂CH₃	Н	CH₃	CH ₃	CH₃	Н	O=S=O		1	1	0
159	CH ₃	Н	Н	Н	CH ₃	CH₃	O=S=O		1	1	0
160	CH₂CH₃	Н	Н	н	CH₃	CH₃	O=S=O		1	1	0
161	CH₃	H .	CH₃	Н	CH₃	CH₃	O=S=O		1	1	0
162	CH₂CH₃	Н	CH₃	Н	CH ₃	CH₃	0=S=0	1	1	1	0
163	CH ₃	Н	CH₃	CH ₃	CH₃	CH ₃	O=S=O		1	1	0
164	CH₂CH₃	Н	CH₃	CH ₃	CH₃	CH ₃	0=S=0		1	1	0
165	CH₃	Н	C=	0	Н	Н	C=O	!	1	1	0
166	CH₃	Н	C=		CH ₃	Н	C=O		1	1	0
167	CH₃	Н	C=		CH₂OH	Н	C=O		1	1	0
168	CH₃	Н	C=	.O	CH₂OCH₃	Н	C=O		1	1	0

169	CH₃	Н	C=O		CH ₂ OCH ₂ CH ₃	Н	C=O		1	1	0
170	CH₃	H	Н	Н	C=O	_I	C=O	1	1	1	0
171	CH₃	Н	CH ₃	Н	C=O	-	C=O		1	1	0
172	CH₃	Н	CH₃	CH ₃	C=O		C=O	<u> </u>	1	1	0
173	Н	Н			Н	Н	C=O	NCH₃ '	0	1	1
174	CH₃	Н		1	Н	Н	C=O	NCH₃	0	1	1
175	CH₂CH₃	Н		T^-	Н	Н	C=O	NCH₃	0	1	1
176	Н	Н			CH ₃	Н	C=O	NCH₃	0	1	1
177	CH ₃	Н			CH ₃	Н	C=O	NCH ₃	0	1	1
178	CH₃	Н			CH₂OH	Н	C=O	NCH ₃	0	1	1
179	CH₃	Н			(CH ₂) ₂ OH	Н	C=O	NCH ₃	0	1	1
180	CH ₃	н		1	CH₂OCH₃	Н	C=O	NCH ₃	0	1	1
181	CH ₃	Н		T	(CH ₂) ₂ OCH ₃	Н	C=O	NCH ₃	0	1	1
182	Н	Н			CH ₃	CH₃	C=O	NCH ₃	0	1	1
183	CH ₃	Н			CH ₃	CH ₃	C=O	NCH₃	0	1	1.
184	CH₂CH₃	Н		 	CH ₃	CH₃	C=O	NCH₃	0	1	1:
185	CH ₃	Н		 	Н	Н	C=S	NCH ₃	0	1	1.
186	CH₂CH₃	Н		1	Н	Н	C=S	NCH₃	0	1	1.
187	CH ₃	Н		1	CH ₃	Н	C=S	NCH₃	0	1	1
188	CH₂CH₃	Н	-		CH ₃	H	C=S	NCH ₃	0	1	1
189	CH ₃	Н		 	CH ₃	CH ₃	C=S	NCH₃	0	1	1
190	CH₂CH₃	Н		 	CH₃	CH ₃	C=S	NCH₃	0	1.	1
191	CH ₃	Н			Н	Н	S=O	NCH₃	0	1	1
192	CH ₂ CH ₃	Н		-	Н	Н	S=O	NCH₃	0	1	1
193	CH ₃	Н			CH₃	Н	S=O	NCH₃	0	1	1
194	CH₂CH₃	Н		 	CH₃	Н	S=O	NCH₃	0	1	1
195	CH ₃	Н		 	CH₃	CH ₃	S=O	NCH₃	0	1	1
196	CH₂CH₃	Н			CH₃	CH₃	S=O	NCH ₃	0	1	1
197	CH ₃	Н			Н	Н	O=S=O	NCH₃	0	1	1
198	CH₂CH₃	Н			Н	Н	O=S=O	NCH₃	0	1	1
199	CH ₃	Н	 	 	CH₃	Н	0=S=0	NCH₃	0	1	1
200	CH₂CH₃	Н			CH₃	Н	O=S=O	NCH₃	0	1	1
201	CH ₃	Н		T	CH₃	CH₃	O=S=O	NCH₃	0	1	1
202	CH₂CH₃	H	 	-	CH₃	CH₃	O=S=O	NCH₃	0	1	1

203	Н	Н	- 1				C=O	ON(CH ₃)	0	0	1
204	CH ₃	Н	_		<u> </u>		C=O	ON(CH ₃)	0	0	1
205	CH₂CH₃	Н			-		C=O	ON(CH ₃)	0	0	1
206	Н	Н			 		C=O	N(CH₃)O	0	0	1
207	CH₃	Н					C=O	N(CH ₃)O	0	0	1
208	CH₂CH₃	Н					C=O	N(CH₃)O	0	0	1
209	Н	Н		_	Н	H	C=O	0	0	2	1
210	CH ₃	Н			Н	Н	C=O	0	0	2	1
211	CH₂CH₃	Н			Н	н	C=O	0	0	2	1
212	(CH ₂) ₂ CH ₃	Н			Н	н	C=O	0	0	2	1
213	CH(CH ₃) ₂	Н			Н	Н	C=O	0	0	2	1
214	CH₃	Н			Н	Н	S=O	0	0	2	1
215	CH₂CH₃	Н			Н	Н	S=O	0	0	2	1
216	CH₃	н			н	н	0=S=O	0	0	2	1
217	CH₂CH₃	Н			Н	н	0=S=O	0	0	2	1
218	Н	н	Н	Н			C=O	0	2	0	1
219	CH₃	Н	Н	Н			C≍O	0	2	0	1
220	CH₂CH₃	Н	Н	Н			C=O	0	2	0	1
221	Н	Н	Н	Н	Н	H	C=O	0	1	1	1
222	CH₃	Н	Н	н	Н	H	C=O	0	1	1	1
223	CH₂CH₃	Н	Н	н	Н	Н	C=O	0	1	1	1
224	Н	Н	CH ₃	Н	Н	Н	C=O	0	1	1	1
225	CH ₃	Н	CH ₃	н	Н	н	C=O	O	1	1	1
226	CH₂CH₃	Н	CH ₃	Н	Н	Н	C=O	0	1	1	1
227	Н	Н	CH ₃	CH₃	Н	Н	C=O	0	1	1	1
228	CH₃	Н	CH ₃	CH₃	Н	Н	C=O	0	1	1	1
229	CH₂CH₃	Н	CH ₃	CH₃	Н	Н	C=O	0	1	1	1
230	Н	Н	Н	Н	CH ₃	Н	C=O	0	1	1	1
231	CH₃	Н	Н	Н	CH ₃	Н	C=O	0	1	1	1
232	CH₂CH₃	Н	Н	Н	CH ₃	Н	C=O	0	1	1	1
233	Н	Н	Н	Н	CH ₃	CH₃	C=O	0	1	1	1
234	СН₃	Н	Н	Н	CH ₃	CH₃	C=O	0	1	1	1
235	CH₂CH₃	Н	Н	Н	CH ₃	CH₃	C=O	0	1	1	1
236	Н	Н	CH ₃	Н	CH ₃	Н	C=O	0	1	1	1

237	CH ₃	Н	CH₃	Н	CH₃	Н	C=O	0	1	1	1
238	CH₂CH₃	Н	CH ₃	H	CH ₃	H	C=O	0	1	1	1
239	CH ₃	Н	CH ₃	CH ₃	CH₃	H	C=O	0	1	1	1
240	CH₂CH₃	Н	CH ₃	CH₃	CH ₃	H	C=O	0	1	1	1
241	CH ₃	Н	CH₃	Н	CH ₃	Н	C=O	0	1	1	1
242	CH₂CH₃	Н	CH₃	Н	CH ₃	Н	C=O	0	1	1	1
243	CH ₃	Н	CH₃	CH ₃	CH ₃	CH₃	C=O	0	1	1	1
244	CH ₂ CH ₃	H	CH₃	CH ₃	CH ₃	CH ₃	C=O	0	1	1	1
245	CH ₃	Н	C=O	Ol 13	H	H	C=O	0	1	1	1
246	CH ₃	'' H	C=O		CH ₃	''	C=O	0	1	1	1
247	CH₃	H	C=O		CH₃	CH ₃	C=O	0	1	1	1
248	CH₂CH₃	Н	C=O		Н	Н	C=O	0	1	1	1
249	CH ₃	Н	Н	Н	C=O	l	C=O	0	1	1	1
250	CH ₃	Н	CH ₃	Н	C=O		C=O	0	1	1	1
251	CH ₃	н	CH ₃	CH₃	C=O		C=O	0	1	1	1
252	CH ₃	Н			Н	Н	C=O	NH	0	1	1
253	CH ₃	CH₃			Н	Н	C=O	NH	0	1	1
254	Н	Н		1	Н	Н	C=O	NH	0	1	1
255	CH ₃	Н			Н	Н	C=S	NH	0	1	1
256	Н	Н	1		н	Н	C=S	NH	0	1	1
257	CH ₃	Н			CH ₃	Н	C=O	NH	0	1	1
258	CH₂CH₃	Н			н	Н	C=O	NH	0	1	1
259	CH ₂ CH ₃	н			н	Н	C=S	NH	0	1	1
260	CH₃	CH ₃			Н	Н	C=O	0	0	1	1
261	CH₃	CH ₃	 н	Н	Н	Н	C=O	0	1	1	1
262	CH₃	CH ₃			Н	Н	C=S	0	0	1	1
263	CH ₃	CH ₃		 	H	Н	S=O	0	0	1	1
264	CH ₃	CH₃		<u> </u>	H	Н	O=S=O	0	0	1	1
265	CH ₃	CH₃			Н	Н	C=O	S	0	1	1
266	CH ₃	CH ₂ CH ₃	 	 	Н	Н	C=O	0	0	1	1
267	CH ₃	CH₂CH₃	 		Н	Н	C=O	S	0	1	1
268	CH ₃	CH₂CH₃			Н	Н	C=O	NCH ₃	0	1	1
269	CH ₃	CH₂CH₃	1	-	н	Н	C=S	0	0	1	1
270	CH ₃	CH₂CH₃	 	-	н	Н	0=S=O	0	0	1	1
271	CH ₃	CH ₃	 	-	Н	Н	C=O	0	0	2	1
	<u> </u>	<u> </u>		<u></u>		<u> </u>	<u> </u>	L	<u> </u>	<u> </u>	

$\overline{}$.								
272	CH ₃	CH₂CH₂CH₃			Н	H	C=O	0	0	1	1
273	CH ₃	CH₃	C=	0	Н	Н	C=O	0	1	1	1
274	CH ₃	CH ₃			CH ₃	Н	C=O	0	0	1	1
275	С	=0	Н	Н	Н	Н	C=O	<u> </u>	1	1	0
276	С	=0			CH ₃	Н	C=O	0	0	1	1
277	C	=0	CH₃	Н	Н	Н	C=O	1	1	1	0
278	С	=0	CH ₃	Н	CH ₃	Н	C=O		1	1	0
279	С	=0	CH₂CH₃	Н	CH₂CH₃	Н	C=O		1	1	0
280	C	=0	н	Н	CH ₃	Н	C=O		1	1	0
281	C	=O	CH ₃	Н	CH ₃	Н	C=0	CH₂	1	1	1
282	C	=0	Н	Н	CH ₃	Н	C=O	CH₂	1	1	1
283	С	=0	CH ₃	Н	Н	Н	C=O	CH₂	1	1	1
284	C	=0	н	Н	H	Н	C=O	CH ₂	1	1	1
285	С	=0	CH ₂ CH ₃	Н	CH ₂ CH ₃	Н	C=O	CH₂	1	1	1
286	С	=0	CH₂CH₃	Н	Н	Н	C=O	CH ₂	1	1	1
287	C	=0	H	Н	CH ₂ CH ₃	H	C=O	CH₂	1	1	1
288	CF ₃	Н			H	Н	C=O	0	0	1	1
289	CF ₃	Н	H	Н	Н	Н	C=O		1	1	0
290	CF ₃	Н	H	Н	Н	H	C=O	 	2	1	0
291	CF ₃	Н	Н	Н	н	Н	C=O	0	1	1	1
292	CF ₃	Н	Н	Н	CH ₃	Н	C=O		1	1	0
293	CF ₃	Н		†	CH ₃	Н	C=O	0	0	1	1
294	CF ₃	Н			Н	Н	S=O	0	0	1	1
295	CF ₃	Н	Н	Н	Н	Н	C=O	CH ₂	2	1	1
296	CH ₃	Н	Н	Н	Н	Н	C=O	CH ₂	2	1	1
297	CH ₃	Н	Н	Н	Н	Н	S=O	CH ₂	2	1	1
298	CH ₃	Н	Н	Н	CH ₃	Н	C=S	CH ₂	2	1	1
299	CH₂CH₂CH₃	Н	н	Н	Н	н	C=O	CH ₂	2	1	1
300	CH ₃	CH ₃	Н	Н	CH ₃	н	C=O	CH ₂	2	1	1
301	CF ₃	Н			Н	Н	C=O	0	0	2	1

For the following example compounds physico-chemical data have been obtained and are displayed in order to illustrate the working of the present invention, including the outlined methods of synthesis. The number of given data may not be interpreted as a limitation of

the invention.

Table B:

<u> </u>	1	,		1					
Comp.	Melting point [°C] or		Comp.	Melting point [OC] or					
No.	¹ H-NMR [δ in ppm]		No.	¹ H-NMR [δ in ppm]					
1.001	162-163								
1.002	178-179								
			1.301	215-218					
1.003	154-155		1.210	154-155					
1.004	134-135	34-135 1.079 165-166							
1.005	167-168		3.002	175-176					
1.006	154-155		6.002	89-90					
1.015	213-214		7.002	oil**					
1.016	171-172		1.254	> 200					
1.017	156-157		1.260	176-177					
1.023	202-203		13.002	133-135					
1.024	125-126		12.002	183-184					
1.276	173-174		1.080	162-164					
1.275	209-211		1.284	204-207					
1.002*	177 (S-isomer; [α] _D	= +70.8°	²)						
1.002*	177-178 (R-isomer;	$[\alpha]_D = -7$	'2.0°)						
1.222	H-NMR (DMSO): 9.95 (s, 1H); 8.	57 (d, 1H);	8.53 (d, 1H); 8.36 (s, 1H);					
				(d, 1H); 7.19 (t, 1H); 6.88 (d,					
	1H); 4.57 (m, 1H); 4.15 (
14.002	· ·	•		; 7.62 (d, 1H); 7.40-7.20 (m,					
ļ	' ' '	n, 1H); 4.	57 (t, 1H); ^z	4.13 (m, 3H); 1.50 (d, 3H);					
15.000	1.30 (t, 3H).		54 () (I N)	0.44 (4.410) 7.07 (4.410)					
15.002				8.44 (d, 1H); 7.67 (d, 1H);					
	7.50 (s, 1H), 7.43-7.20 (t, 4.10 (m, 1H); 2.27 (t, 1H			; 4.84 (d, 2H); 4.58 (t, 1H);					
0.000	<u> </u>			9.45 /d 1LI\- 7.60 (m. 0LI\).					
9,002		•	-	8.45 (d, 1H); 7.62 (m, 2H);					
	7.40-7.20 (m, 4H); 5.00 (m, 1H); 4.58 (t, 1H); 4.32 (q, 2H); 4.12 (dd, 1H); 1.50 (d, 3H); 1.28 (t, 3H).								
10.002	'H-NMR (DMSO): 8.88 (d, 1H); 8.81 (s, 1H); 8.60 (d, 1H); 7.98 (d, 1H);								
10.002									
	7.82 (d, 1H); 7.50-7.18 (m, 4H); 4.90 (m, 1H); 4.58 (t, 1H); 4.13 (dd, 1H); 3.32 (s, 3H); 1.40 (d, 3H).								
L	0.02 (0, 0.1), 1.40 (d, 0.1)	<i>'</i> ·		···					

16.002	¹ H-NMR (DMSO): 8.74 (s, 1H); 8.59 (d, 1H); 8.54 (d, 1H); 7.74 (d, 1H);
	7.51-7.30 (m, 5H); 5.51 (s, 2H); 4.88 (m, 1H); 4.56 (t, 1H); 4.12 (dd, 1H);
	3.31 (s, 3H); 1.38 (d, 3H).
17002	¹ H-NMR (DMSO): 8.76 (s, 1H); 8.61 (d, 1H); 8.54 (d, 1H); 7.72 (d, 1H);
	7.53-7.20 (m, 10H); 5.62 (s, 2H); 4.89 (m, 1H); 4.70 (s, 2H); 4.57 (m, 2H);
	4.13 (dd,1H); 1.40 (d, 3H).
18.002	¹ H-NMR (DMSO): 8.75 (s, 1H); 8.61 (d, 1H); 8.55 (d, 1H); 7.76 (d, 1H);
	7.55-7.35 (m, 5H); 5.53 (s, 2H); 4.90 (m, 1H); 4.57 (t, 1H); 4.13 (dd,1H);
	3.74 (dd, 2H); 3.46 (dd, 2H); 3.22 (s, 3H); 1.39 (d, 3H).
19.002	'H-NMR (DMSO): 8.75 (s, 1H); 8.61 (d, 1H); 8.54 (d, 1H); 7.76 (d, 1H);
	7.54-7.33 (m, 5H); 5.57 (s, 2H); 4.89 (m, 1H); 4.57 (t, 1H); 4.16 (dd, 1H);
ł Į	3.91 (t, 2H); 3.75 (t, 2H); 1.39 (d, 3H).
20.002	H-NMR (DMSO): 8.73 (s, 1H); 8.58 (d, 1H); 8.55 (d, 1H); 7.76 (d, 1H);
	7.56-7.35 (m, 5H); 5.36 (s, 2H); 4.90 (m, 1H); 4.58 (t, 1H); 4.13 (dd, 1H);
	2.12 (s, 3H); 1.40 (d, 3H).

- pure enantiomer
- ** NMR cf. experimental part, example 5

In the following, examples of test systems in plant protection are provided which can demonstrate the efficiency of the compounds of the formula I (designated as "active ingredient" or "test compounds"):

Biological Examples

Example B-1: Effect against Puccinia graminis on wheat (brownrust on wheat)

a) Residual protective activity

10 1 week old wheat plants cv. Arina are treated with the formulated test-compound (0.02 % active substance) in a spray chamber. Two days after application wheat plants are inoculated by spraying a spore suspension (1 x 10⁵ ureidospores/ml) on the test plants. After an incubation period of 1 day at +20°C and 95% relative atmospheric humidity (r. h.) plants are kept for 9 days at +20°C and 60% r.h. in a greenhouse. The disease incidence is assessed 10 days after inoculation.

Compounds of Tables 1 to 20 show good activity in this test.

At the indicated concentration compounds 1.002, 1.002*, 1.024, 1.080 and 7.002 exhibited over 70% control of the fungal infection in this test.

b) Systemic activity

An aqueous spray liquor prepared from the formulated test compound (0.002 % active substance, based on the volume of soil) is poured into pots with 5 days old wheat seedlings. Care is taken that the spray liquor does not come into contact with the above-

ground parts of the plant. 4 days later, the plants are inoculated with a spore suspension of the fungus (1 x 10⁵ ureidospores/ml). After an incubation period of 1 day (95 to 100 % r.h. at +20°C), the plants are placed in a greenhouse at +20°C. 10 days after infection, the disease incidence is evaluated.

5 Compounds of Tables 1 to 20 show good activity in this test.

Example B-2: Effect against *Phytophthora infestans* on tomatoes (late blight on potato)

a) Residual protective activity

3 week old tomato plants cv. Roter Gnom are treated with the formulated test compound (0.02 % active substance) in a spray chamber. Two day after application the plants are inoculated by spraying a sporangia suspension (2 x 10⁴ sporangia/ml) on the test plants. After an incubation period of 4 days at +18°C and 95% r. h. in a growth chamber the disease incidence is assessed.

Compounds of Tables 1 to 20 show good activity in this test.

At the indicated concentration compounds 1.002*, 1.079 and 7.002 exhibited over 70% control of the fungal infection in this test.

b) Systemic activity

10

20

30

35

An aqueous suspension prepared from the formulated test compound (0.002 % active substance, based on the volume of soil) is poured into pots with 3 week old. Care is taken that the spray liquor does not come into contact with the above-ground parts of the plant. 4 days later, the plants are inoculated with a sporangia suspension of the fungus (2x10⁴ sporangia/ml). After an incubation period of 4 days at +18°C and 95% r.h. in a growth chamber the disease incidence is assessed.

Compounds of Tables 1 to 20 show good activity in this test.

At the indicated concentration compounds 1.002*, 1.079 and 7.002 exhibited over 70% control of the fungal infection in this test.

Example B-3: Effect against *Phytophthora infestans I* potato (late blight on potato) 5 week old potato plants cv. Bintje are treated with the formulated test compound (0.02 % active substance) in a spray chamber. Two days after application the plants are inoculated by spraying a sporangia suspension (1.4 x 10⁵ sporangia/ml) on the test plants. After an incubation period of 4 days at +18°C and 95% r. h. in a growth chamber the disease incidence is assessed.

Compounds of Tables 1 to 20 show good activity in this test.

Example B-4: Effect against *Plasmopara viticola* on grapevine (grape downy mildew) 5 week old grape seedlings cv. Gutedel are treated with the formulated test compound (0.02 % active substance) in a spray chamber. One day after application grape plants are

inoculated by spraying a sporangia suspension (4 \times 10⁴ sporangia/ml) on the lower leaf side of the test plants. After an incubation period of 6 days at +22°C and 95% r. h. in a greenhouse the disease incidence is assessed.

Compounds of Tables 1 to 20 show good activity in this test.

5 Example B-5: Residual protective activity against *Venturia inaequalis* on apples (scab on apple)

4 week old apple seedlings cv. McIntosh are treated with the formulated test compound (0.02 % active substance) in a spray chamber. One day after application apple plants are inoculated by spraying a spore suspension (4 x 10⁵ conidia/ml) on the test plants. After an incubation period of 4 days at +20°C and 95% r. h. the plants are transferred to standard greenhouse conditions at 20 and 60% r.h. where they stayed for 2 days. After another 4 day incubation period at +20°C and 95% r. h. the disease incidence is assessed. Compounds of Tables 1 to 20 show good activity in this test.

At the indicated concentration compounds 1.002, 7.002 and 6.002 exhibited over 70% control of the fungal infection in this test.

Example B-6: Effect against Erysiphe graminis on barley (powdery mildew on barley)

a) Residual protective activity
 Barley plants, cv. Regina of approximately 8 cm height were treated with the formulated test

compound (0.02% active substance) in a spray chamber and duste 2 days after inoculation with conidia of the fungus. The infected plants are placed in a greenhouse at +20°C. 6 days after infection, the fungal attack was evaluated.

Compounds of Tables 1 to 20 show good activity in this test.

At the indicated concentration compounds 1.002, 1.003, 1.024, 14.002, 15.002 and 7.002 exhibited over 70% control of the fungal infection in this test.

25 b) Systemic activity

10

20

30

35

An aqueous spray liquor prepared from the formulated test compound (0.002 % active substance, based on the volume of soil) is poured into pots with 5 day old barley seedlings. Care is taken that the spray liquor does not come into contact with the above-ground parts of the plant. 4 days later, the plants are dusted with conidia of the fungus. The infected plants are placed in a greenhouse at +20°C. 6 days after infection, the disease incidence is evaluated.

Compounds of Tables 1 to 20 show good activity in this test.

Example B-7: Botrytis cinerea / grape (botrytis on grapes)

5 week old grape seedlings cv. Gutedel are treated with the formulated test compound (0.02% active substance) in a spray chamber. Two days after application grape plants are

inoculated by spraying a spore suspension (1.5 x 10^5 conidia/ml) on the test plants. After an incubation period of 3 days at $+21^\circ$ C and 95% r. h. in a greenhouse the disease incidence is assessed.

Compounds of Tables 1 to 20 show good activity in this test.

At the indicated concentration compounds 1.002, 1.002*, 1.003, 1.024 and 7.002 exhibited over 70% control of the fungal infection in this test.

Example B-8: Effect against Botrytis cinerea / tomato (botrytis on tomatoes)

4 week old tornato plants cv. Roter Gnom are treated with the formulated test compound 0.02 % active substance) in a spray chamber. Two days after application tomato plants are inoculated by spraying a spore suspension (1 x 10⁵ conidia/ml) on the test plants. After an incubation period of 4 days at +20°C and 95% r. h. in a greenhouse the disease incidence is assessed.

Compounds of Tables 1 to 20 show good activity in this test.

At the indicated concentration compounds 1.002, 1.002*, 1.017, 1.024 and 7.002 exhibited over 70% control of the fungal infection in this test.

Example B-9: Effect against Pyricularia oryzae / rice (rice blast)

3 week old rice plants cv. Sasanishiki are treated with the formulated test compound (0.02 % active substance) in a spray chamber. Two days after application rice plants are inoculated by spraying a spore suspension (1 x 10^5 conidia/ml) on the test plants. After an incubation period of 6 days at $+25^{\circ}$ C and 95% r. h. the disease incidence is assessed.

Compounds of Tables 1 to 20show good activity in this test.

At the indicated concentration compounds 1.024 and 7.002 exhibited over 70% control of the fungal infection in this test.

Example B-10: Effect against Pyrenophora teres (Helminthosporium) / barley (net blotch on

25 <u>barley</u>)

10

15

20

1 week old barley plants cv. Regina are treated with a formulated test compound (0.02 % active substance) in a spray chamber. Two days after application barley plants are inoculated by spraying a spore suspension (3 x 10^4 conidia/ml) on the test plants. After an incubation period of 2 days at $+20^{\circ}$ C and 95% r.h. the disease incidence is assessed.

30 Compounds of Tables 1 to 20 show good activity in this test.

At the indicated concentration compounds 1.001, 1.002, 1.002*, 1.003, 1.004, 1.017, 1.023, 1.024, 1.079, 1.275, 3.002, 6.002 and 7.002 exhibited over 70% control of the fungal infection in this test.

Example B-11: Effect against Fusarium culmorum / wheat (fusarium head blight on wheat)

A conidia suspension of *F. culmorum* (7 x 10⁵ conidia/ml) is mixed with the formulated test compound (0.002 % active substance).. The mixture is applied into a pouch which has been equipped before with a filter paper. After the application wheat seeds (cv. Orestis) are sown into the upper fault of the filter paper. The prepared pouches are then incubated for 11 days at approx. +10°C to +18°C and a relative humidity of 100% with a light period of 14 hours. The evaluation is made by assessing the degree of disease occurrence in the form of brown lesions on the roots.

Compounds of Tables 1 to 20show good activity in this test.

At the indicated concentration compounds 1.002, 1.004, 1.005 and 7.002 exhibited over 70% control of the fungal infection in this test.

Example B-12: Effect against *Septoria nodorum* / wheat (septoria leaf spot on wheat)

1 week old wheat plants cv. Arina are treated with a formulated test compound (0.02 % active substance) in a spray chamber. One day after application wheat plants are inoculated by spraying a spore suspension (6 x 10⁵ conidia/ml) on the test plants. After an incubation period of 1 day at +22°C and 95% r.h. plants are kept for 7 days at +22°C and 60% r.h. in a greenhouse. The disease incidence is assessed 8 days after inoculation.

Compounds of Tables 1 to 20 show good activity in this test.

At the indicated concentration compounds 1.002, 1.002*, 1.003, 1.004, 1.017, 1.024, 1.079, 1.080, 1.260, 1.275, 3.002, 6.002, 10.002, 9.002, 14.002, 15.002, and 7.002 exhibited over

20 70% control of the fungal infection in this test.

PCT/IB01/02821

- 40 -

CLAIMS

1. A compound of formula I

$$(O)_{n} \xrightarrow{N} \xrightarrow{R_{2}} \xrightarrow{R_{2}} \xrightarrow{R_{3}} \xrightarrow{C_{m}} \xrightarrow{R_{5}} \xrightarrow{R_{6}}$$

5

20

wherein

the sum of (m + p) together is 0,1, 2 or 3;

n and q are independently of each other 0 or 1, and the sum of (m + p + q) together is 1, 2, 3 or 4;

10 R₁ is hydrogen, halogen, alkoxy, haloalkyl, haloalkoxy or alkyl;

R₂ is hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl or C₁-C₆-alkoxy;

R_{2A} is hydrogen, C₁-C₆-alkyl, C₃-C₄-alkenyl or C₃-C₄-alkynyl;

each of R₃, R₄, R₅ and R₆ is, independently of the others, hydrogen, C₁-C₆-alkyl,

C₁-C₆-haloalkyl, hydroxy-C₁-C₆-alkyl or C₁-C₆-alkoxy-C₁-C₆-alkyl, or the ring members

15 CR₃R₄ or CR₅R₆ or CR₂R_{2A} are independently of each other a carbonyl group (C=O) or a group C=S;

X is C=O, C=S, S=O or O=S=O;

Y is O, S, C=O, CH₂, $-N(R_8)$ -, $-O-N(R_8)$ -, $-N(R_8)$ -O- or -NH-;

R₇ is hydrogen, C₁-C₄-alkyl, C₃-C₄-alkenyl, C₃-C₄-alkynyl, -CH₂OR₈, CH₂SR₈, -C(O)R₈,

-C(O)OR₈, SO2R₈, SOR₈ or SR₈; and

 R_8 is C_1 - C_8 -alkyl, C_1 - C_8 -alkoxyalkyl, C_1 - C_8 haloalkyl or phenyl C_1 - C_2 -alkyl wherein the phenyl may be substituted by up to three groups selected from halo or C_1 - C_4 -alkyl; or a salt thereof.

25 2. A compound according to claim 1, wherein the moiety

$$R_3$$
 C_m
 Q_p
 Q_p

5

10

20

25

30

35

represents a ring system selected from N-oxazolidin-2-one, N-oxazolidin-2-thione, N-[1,2,3]oxathiazolidine-2-oxide, N-[1,2,3]oxathiazolidine-2,2-dioxide, N-pyrrolidin-2-one, N-pyrrolidin-2-one, N-pyrrolidin-2-one, N-thiazolidin-2-one, N-4-methylene-oxazolidin-2-one, N-piperidine-2,6-dione, N-morpholine-2,3-dione, N-morpholine-2,5-dione, N-imidazolidin-2-one, N-[1,2,4]-oxazolidin-5-one, N-[1,2,4]-oxazolidin-3-one, N-[1,2,5]oxadiazinan-6-one, N-[1,2,4]oxadiazinan-3-one, azepan-2-one or [1,3]oxazinan-2-one.

- 3. A compound according to claim 1 or claim 2, wherein R₁ is chlorine, fluorine, trifluoromethyl, trifluoromethoxy, or 1,1,2,2-tetrafluoroethoxy.
- 4. A compound according to any one of claims 1 to 3, wherein R₂ is hydrogen, methyl, trifluoromethyl or ethyl and R_{2A} is hydrogen or methyl.
- 5. A compound according to any one of claims 1 to 4, wherein R₇ is hydrogen, methyl, ethyl, allyl, propargyl, methoxymethyl, thiomethoxymethyl or ethoxymethyl.
 - A compound according to any one of claims 1 to 5, wherein X is carbonyl, C=S, or S=O and Y is oxygen and R₃, R₄, R₅ and R₆ are independently hydrogen or methyl.
 - 7. A compound according to any one of claims 1 to 6, wherein R₁ is chlorine, fluorine, trifluoromethyl, trifluoromethoxy, or 1,1,2,2-tetrafluoroethoxy,; R₂ is hydrogen, methyl, trifluoromethyl or ethyl; R_{2A} is hydrogen or methyl; R₅ and R₆ independently of each other are hydrogen, methyl, hydroxymethyl, hydroxyethyl, or methoxyethyl; R₇ is hydrogen, methyl, ethyl, allyl, propargyl, or methoxymethyl; X is carbonyl, C=S, or S=O; Y is oxygen, sulfur, -O-N(CH₃)-, or -N(CH₃)-O-; m and n are zero and p and q are each one.
 - 8. A compound according to any one of claims 1 to 7, wherein R₁ is chlorine; R₂ is methyl or trifluoromethyl; R_{2A} is hydrogen or methyl; one of R₅ and R₆ is hydrogen or methyl, while the other one is hydrogen, methyl, hydroxymethyl, hydroxyethyl, or methoxyethyl; R₇ is hydrogen or methoxymethyl; X is carbonyl; Y is oxygen; m and n are zero and p and q are each one.
 - 9. A compound according to any one of claims 1 to 8, wherein R₁ is chlorine; R₂ is methyl;

 R_{2A} is hydrogen; R_5 and R_6 independently of each other are hydrogen or methyl; R_7 is hydrogen or methoxymethyl; X is carbonyl; Y is oxygen; m and n are zero and p and q are each one.

- 5 10. A compound according to claim 1, selected from the group comprising 3-{4-[2-(3-chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-oxazolidin-2-one, N-{4-[2-(3-chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-pyrrolidin-2-one, (3-chloro-phenyl)-{4-[2-(2-oxo-[1,2,3]oxathiazolidin-3-yl)-pyridin-4-yl]-pyrimidin-2-yl}-amine,
- 3-{4-[2-(3-fluoro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-4-methyl-oxazolidin-2-one, 3-{4-[2-(3-trifluoromethyl-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-4-methyl-oxazolidin-2-one,
 - (3-chloro-phenyl)-{4-[2-(4-methyl-2-oxo-[1,2,3]oxathiazolidin-3-yl)-pyridin-4-yl]-pyrimidin-2-yl}-amine,
- 1-{4-[2-(3-chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-5-methyl-pyrrolidin-2-one, 3-{4-[2-(3-chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-4-ethyl-oxazolidin-2-one, 3-{4-[2-(3-chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-4-n-propyl-oxazolidin-2-one, 3-{4-[2-(3-chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-4-i-propyl-oxazolidin-2-one, 3-{4-[2-(3-chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-5-methyl-oxazolidin-2-one,
- 3-{4-[2-(3-chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-4-methyl-oxazolidin-2-one, 3-{4-[2-(3-chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-4-methyl-oxazolidine-2-thione,
 - (S)-3-{4-[2-(3-Chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-4-methyl-oxazolidin-2-one,
- 25 3-{4-[2-(3-Chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-4-trifluoromethyl-oxazolidin-2-one,
 - (R)-3-{4-[2-(3-Chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-4-methyl-oxazolidin-2-one,
 - $3-\{4-[2-(3-Chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl\}-4-trifluoromethyl-1-yll-1-y$
- 30 [1,3]oxazinan-2-one
 - 3-{4-[2-(3-Chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-4-methyl-[1,3]oxazinan-2-one,
 - 1-{4-[2-(3-chloro-phenylamino)-pyrimidin-4-yl]-pyridin-2-yl}-5-trifluoromethyl-pyrrolidin-2-one, and
- 35 3-(4-{2-[(3-chloro-phenyl)-methoxymethyl-amino]-pyrimidin-4-yl}-pyridin-2-yl)-4-methyl-oxazolidin-2-one.

10

15

11. A process for the preparation of the compound according to claim 1, comprisinga) reacting a compound of the formula (II)

(or a salt thereof) wherein U is a leaving group, and the other moieties have the meanings given for a compound of the formula I, with a cyclic amine ring system of the formula III

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ R_3 & C_m & \\ R_4 & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & \\ \end{array} \begin{array}{c} & & \\ & \\ \end{array} \begin{array}{c} &$$

(or a salt thereof) wherein R_2 to R_6 , R_{2A} , X, Y, m, p and q have the meanings given for a compound of the formula I, in presence of a catalyst, such as palladium or in the presence of a base, or

b) cyclizing a compound of the formula IV

$$(O)_{n} \xrightarrow{NH} U' \xrightarrow{R_{2}} R_{2A}$$

$$R_{3} \xrightarrow{C_{m}} Q_{p} \xrightarrow{R_{6}}$$

$$(IV)$$

wherein R_1 to R_7 , R_{2A} , X, Y, n, m, p and q have the meanings given for a compound of the formula I and U' is a leaving group, by heating it optionally in presence of a base, or c) reacting a compound of the formula V

- 44 -

$$(O)_{n} \xrightarrow{R_{2}} R_{2A}$$

$$H \xrightarrow{R_{2}} R_{5}$$

$$H \xrightarrow{R_{6}} C_{p} \xrightarrow{R_{6}}$$

$$(V)$$

wherein q is 1 and R_1 , R_2 , R_2 , R_5 , R_6 , R_7 , Y, n and p have the meanings given for a compound of the formula I, with phosgene, di- or triphosgene, carbonyldiimidazol, thiophosgene, thiocarbonyldiimidazol or thionylchloride thus obtaining a compound of the subformula Ia

$$(O)_{n} \xrightarrow{N} \xrightarrow{R_{2}} \xrightarrow{R_{2A}} (Ia)$$

wherein X is C=O, C=S or S=O, q is 1 and R_1 , R_2 , R_2 , R_5 , R_6 , R_7 , Y, n and p have the meanings given for a compound of the formula I, or

d) oxidizing of a compound of the subformula lb

$$(O)_{n} \qquad \qquad R_{1}$$

$$(O)_{n} \qquad \qquad R_{2}$$

$$R_{3} \qquad \qquad C_{m} \qquad \qquad C_{p} \qquad \qquad R_{8}$$

$$R_{4} \qquad \qquad \qquad (Ib)$$

10

5

wherein R_1 to R_7 , R_{2A} , Y, n, m, p and q have the meanings given for a compound of the formula I with an oxidizing amount of NaIO₄/RuCl₃, NaOCl/RuO₂ or KMnO₄, in order to form a compound of the formula I, wherein X is O=S=O, or

e) reacting a compound of the formula VI

5

15

$$(O)_{n}$$

$$HS$$

$$R_{3}$$

$$R_{4}$$

$$C_{p}$$

$$R_{6}$$

$$R_{6}$$

$$(VI)$$

wherein R_1 to R_7 , R_{2A} , Y, n, m, p and q have the meanings given for a compound of the formula I with an oxidizing amount of iodine, in order to form a compound of the formula I, wherein X is S=O.

- 12. A composition for controlling and protecting against phytopathogenic microorganisms, comprising a compound of formula I according to claim 1 as active ingredient together with a suitable carrier.
- 10 13. The use of a compound of formula I according to claim 1 in protecting plants against infestation by phytopathogenic microorganisms.
 - 14. A method of controlling and preventing an infestation of crop plants by phytopathogenic microorganisms, which comprises the application of a compound of formula I according to claim 1 as active ingredient to the plant, to parts of plants or to the locus thereof.
 - 15. A method according to claim 13, wherein the phytopathogenic microorganisms are fungal organisms.

Int mal Application No PCT/IB 01/02821

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07D401/04 C07D413/14 CO7D401/14 C07D419/14 C07D417/14 A01N43/54 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO7D A01N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category * DE 40 34 762 A (HOECHST AG) Α 1,12-157 May 1992 (1992-05-07) claims; examples A EP 0 388 838 A (CIBA GEIGY AG) 1,12-15 26 September 1990 (1990-09-26) the whole document WO 98 18782 A (CELLTECH THERAPEUTICS LTD Α 1 ;DAVIS PETER DAVID (GB); MOFFAT DAVID FE) 7 May 1998 (1998-05-07) page 4, line 17 - line 20; claim 4 WO 95 09853 A (CIBA GEIGY AG ; ZIMMERMANN Α 1 JUERG (CH)) 13 April 1995 (1995-04-13) cited in the application claims; examples -/--Further documents are listed in the continuation of box C. Х Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention *E* earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or other means *P* document published prior to the international filing date but later than the priority date claimed *&* document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 06/06/2002 29 May 2002 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Bosma, P

Form PCT/ISA/210 (second shoot) (July 1992)

onal Application No PCT/IB 01/02821

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category •	Citation of document, with Indication, where appropriate, of the relevant passages	Relevant to claim No.
Х,Р	WO 01 93682 A (EBERLE MARTIN ;STIERLI DANIEL (CH); ZIEGLER HUGO (CH); PILLONEL CH) 13 December 2001 (2001-12-13) the whole document	1-15
	210 (continuation of second sheet) (July 1992)	

In onal Application No
PCT/IB 01/02821

	atent document d in search report		Publication date		Patent family member(s)	Publication date
DE	4034762	Α	07-05-1992	DE	4034762 A1	07-05-1992
EP	0388838	Α	26-09-1990	AU	632319 B2	24-12-1992
				AU	5211490 A	27-09-1990
		•		BR	9001304 A	02-04-1991
				CA -	2012566 A1	22-09-1990
				DD	293115 A5	22-08-1991
				DE	59010042 D1	22-08-1991
		•		DK		05-02-1996
				EP	388838 T3	
					0388838 A2	26-09-1990
				ES	2081863 T3	16-03-1996
				FI	95376 B	13-10-1995
				HR	940514 A1	30-06-1996
				HU	53490 A2	28-11-1990
				IL	93813 A	31-07-1994
				JP	2286666 A	26-11-1990
				JP	3002786 B2	24-01-2000
				KR	143776 B1	15-07-1998
				NZ	233003 A	26-02-1991
				PT	93516 A ,B	07-11-1990
				SI	9010548 A	31-10-1997
				TR	25912 A	01-11-1993
				US	5075316 A	24-12-1991
				YU	54890 A1	31-10-1991
				ZA	9002166 A	28-12-1990
				BG	51157 A3	15-02-1993
				BG 	51433 A3	14-05-1993
WO	9818782	A	07-05-1998	AU	732155 B2	12-04-2001
				AU	4954097 A	22-05-1998
				EP	0934304 A1	11-08-1999
				WO	9818782 A1	07-05-1998
				JP	2001503047 T	06-03-2001
				U\$ 	6114333 A	05-09-2000
MO	9509853	Α	13-04-1995	AT	208772 T	15-11-2001
			1	ΑU	691834 B2	28-05-1998
			\	AU	7697794 A	01-05-1995
				CA	2148928 A1	13-04-1995
				CN	1115982 A ,B	31-01-1996
				CZ	9501722 A3	13-03-1996
				DE	69429078 D1	20-12-2001
				DK	672041 T3	25-02-2002
				MO	9509853 A1	13-04-1995
				EP	0672041 A1	20-09-1995
				FΙ	952607 A	29-05-1995
				HU	72609 A2	28-05-1996
				ΙL	111077 A	28-10-1999
				JP	2983636 B2	29-11-1999
				JP	8504215 T	07-05-1996
				NO	952132 A	30-05-1995
				NZ	273617 A	26-11-1996
				PL	309225 A1	02-10-1995
				RU	2135491 C1	27-08-1999
						1 E N1 1000
				SG	45183 A1	16-01-1998
				SI	672041 T1	30-04-2002

In onal Application No
PCT/IB 01/02821

					01/02821
Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 9509853	A		ZA	9407657 A	03-04-1995
WO 0193682	A 	13-12-2001	AU WO	8384101 A 0193682 A1	17-12-2001 13-12-2001
·					