Università degli Studi di Trento - Dipartimento di Matematica CdL in Matematica - a.a. 2022–2023

Note esercitazione

Esercitatore: Simone Verzellesi*

19 Settembre 2022

Esercizio 1.1. Dati i sottoinsiemi di \mathbb{R} :

- $A = \left\{ \frac{1}{n} : n \in \mathbb{N}, n \neq 0 \right\}$
- B = [0, 1[
- $C = \mathbb{Q}$
- $D = \{0, \frac{1}{2}, 1\}$

Determinare $A \cap B$, $A \cap C$, $A \cup B$, B^C , $A \setminus B$, $A \triangle D$, $\mathcal{P}(D)$

Soluzione Sia $A' = A \setminus \{1\}$

- $A \cap B = A'$
- $A \cap C = A$, infatti se P, R insiemi e $P \subseteq R$, allora $P \cap R = P$
- $A \cup B = [0, 1]$
- $B^C =]-\infty, 0[\cup[1, +\infty[$
- $\bullet \ A \setminus B = \{x \in A \ e \ x \not\in B\} = A \cap B^C = \{1\}$
- $A \triangle D = (A \setminus D) \cup (D \setminus A) = (A \cup D) \setminus (A \cap D) = \{0\} \cup \left\{\frac{1}{n}, n > 0\right\}$
- $\mathcal{P}(D) = \{\varnothing, \{0\}, \{\frac{1}{2}\}, \{1\}, \{0, \frac{1}{2}\}, \{0, 1\}, \{\frac{1}{2}, 1\}, D\}$

Esercizio 1.2. Rappresentare in \mathbb{R}^2 i seguenti insiemi:

- $A = \{(x, y) \in \mathbb{R}^2 : x + y \le 1\}$
- $B = \{(x, y) \in \mathbb{R}^2 : |x| + |y| \le 1\}$
- $C = \{(x, y) \in \mathbb{R}^2 : |x| \le 1\}$
- $D = \{(x, y) \in \mathbb{R}^2 : y \le 2x^2\}$

Solutione

Esercizio 1.3. Formalizzare e negare la seguente proprietà: "Esiste un numero naturale n tale che per ogni numero naturale z si ha che se z è diverso da n, allora z è minore di n". Verificare se tale proprietà è vera o falsa.

Soluzione $\exists n \in \mathbb{N}, \forall z \in \mathbb{N} : (z \neq \mathbb{N} \Rightarrow z < n)$ (F) La negazione è $\forall n \in \mathbb{N}, \exists z \in \mathbb{N} : (z \neq n \ e \ z \geq n)$ (V) infatti basta fissare n e scegliere z = n + 1

^{*}Trascrizione a cura di Davide Borra

Esercizio 1.4. Data una proprietà $\mathcal{P}(x)$, formalizzare il fatto che esiste un unico x che realizza \mathcal{P} senza utilizzare il simbolo \exists !.

Soluzione $\exists x : \mathcal{P}(x) \ e \ \forall y, (y \neq x \Rightarrow \neg \mathcal{P}(x))$

Esercizio 1.5. Negare e stabilire la veridicità della proprietà:

$$\forall x, y \in \mathbb{R}, (y > x \Rightarrow \exists n \in \mathbb{N} : nx > y)$$

Soluzione $\exists x, y \in \mathbb{R} : (y > x \ e \ \forall n \in \mathbb{N}, nx \le y)$ (V), infatti basta scegliere x = 0 e y = 1.

Esercizio 1.6. Rappresentare il grafico della funzione $f(x) = \ln(|x-3|)$, dopo averne determinato il dominio.

Soluzione Dominio: $|x-3| > 0 \Leftrightarrow x \neq 3$

Esercizio 1.7. Rappresentare il grafico di $f_{\alpha}(x) = x^{\alpha}$, dopo averne determinato il dominio, con

$$\alpha \in \mathbb{N}_{\geq 0} \cup \left\{ \frac{1}{n}, n \in \mathbb{N}_{> 0} \right\}$$

. Discutere iniettività e suriettività di f_{α} .

Soluzione Se $\alpha \in \mathbb{N}$ e α pari si tratta di una funzione potenza di grado pari, quindi né iniettiva né suriettiva. Se α dispari la funzione è una potenza di grado dispari, quindi sia iniettiva che suriettiva. Se $\alpha \in \left\{\frac{1}{n}, n \in \mathbb{N}_{>0}\right\}$, con n pari, la funzione è una radice di indice pari, per cui è iniettiva ma non suriettiva. Se n è dispari si tratta di una radice di indice dispari, quindi di una funzione iniettiva e suriettiva.

Esercizio 1.8. Dimostrare che $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definita come

$$f(x) = x + \frac{1}{x}$$

non è iniettiva.

Dimostrazione. f(x) è iniettiva $\Leftrightarrow \forall x, y f(x) = f(y) \Rightarrow x = y$, quindi:

$$f(x) = f(y) \quad \Leftrightarrow \quad x + \frac{1}{x} = y + \frac{1}{y} \quad \Leftrightarrow \quad x - y = \frac{1}{y} - \frac{1}{x} \quad \Leftrightarrow \quad x - y = \frac{x - y}{xy}$$

Questa uguaglianza è verificata se e solo se xy = 1 oppure x = y, quindi non solo per x = y. Di conseguenza la funzione non è iniettiva. QED