Euclid's Elements

Book I

If Euclid did not kindle your youthful enthusiasm, you were not born to be a scientific thinker.

Albert Einstein

Table of Contents, Chapter 1

- 1 Construct an equilateral triangle
- 2 Copy a line
- 3 Subtract one line from another
- 4 Equal triangles if equal side-angle-side
- 5 Isosceles triangle gives equal base angles
- 6 Equal base angles gives isosceles triangle
- 7 Two sides of triangle meet at unique point
- 8 Equal triangles if equal side-side
- 9 How to bisect an angle
- 10 Bisect a line
- 11 Construct right angle, point on line
- 12 Construct perpendicular, point to line
- 13 Sum of angles on straight line = 180
- 14 Two lines form a single line if angle = 180

- 15 Vertical angles equal one another
- 16 Exterior angle larger than interior angle
- 17 Sum of two interior angles less than 180
- 18 Greater side opposite of greater angle
- 19 Greater angle opposite of greater side
- 20 Sum of two angles greater than third
- 21 Triangle within triangle has smaller sides
- 22 Construct triangle from given lines
- 23 Copy an angle
- 24 Larger angle gives larger base
- 25 Larger base gives larger angle
- 26 Equal triangles if equal angle-side-angle
- 27 Alternate angles equal then lines parallel
- 28 Sum of interior angles = 180, lines parallel

- 29 Lines parallel, alternate angles are equal
- 30 Lines parallel to same line are parallel to themselves
- 31 Construct one line parallel to another
- 32 Sum of interior angles of a triangle = 180
- 33 Lines joining ends of equal parallels are parallel
- 34 Opposite sides-angles equal in parallelogram
- 35 Parallelograms, same base-height have equal area
- 36 Parallelograms, equal base-height have equal area
- 37 Triangles, same base-height have equal area
- 38 Triangles, equal base-height have equal area

Table of Contents, Chapter 1

- 39 Equal triangles on same base, have equal height
- 40 Equal triangles on equal base, have equal height
- 41 Triangle is half parallelogram with same base and height
- 42 Construct parallelogram with equal area as triangle
- 43 Parallelogram complements are equal
- 44 Construct parallelogram on line, equal to triangle
- 45 Construct parallelogram equal to polygon
- 46 Construct a square
- 47 Pythagoras' theorem
- 48 Inverse Pythagoras' theorem

Proposition 42 of Book I

To construct a parallelogram equal to a given triangle in a given rectilinear angle.

To construct a parallelogram equal to a given triangle in a given rectilinear angle.

In other words

Create a parallelogram with a specific angle, whose area is equal to a given triangle

To construct a parallelogram equal to a given triangle in a given rectilinear angle.

δ

Construction

Start with triangle ABC and angle $\boldsymbol{\delta}$

To construct a parallelogram equal to a given triangle in a given rectilinear angle.

$$BE = EC$$

Bisect line BC at point E (I-10). Draw line AC

To construct a parallelogram equal to a given triangle in a given rectilinear angle.

BE = EC

Start with triangle ABC and angle δ Bisect line BC at point E (I·10). Draw line AC Copy angle δ onto line EC, with the vertex at point E (I·23)

To construct a parallelogram equal to a given triangle in a given rectilinear angle.

Construction

Start with triangle ABC and angle δ Bisect line BC at point E (I·10). Draw line AC Copy angle δ onto line EC, with the vertex at point E (I·23) Draw a line AF, through A, parallel to BC (I·31)

To construct a parallelogram equal to a given triangle in a given rectilinear angle.

Construction

Start with triangle ABC and angle δ

Bisect line BC at point E (I·10). Draw line AC

Copy angle δ onto line EC, with the vertex at point E (I-23)

Draw a line AF, through A, parallel to BC (I·31)

Draw a line CG, through C, parallel to EF (I·31)

To construct a parallelogram equal to a given triangle in a given rectilinear angle.

Construction

Start with triangle ABC and angle δ

Bisect line BC at point E (I·10). Draw line AC

Copy angle δ onto line EC, with the vertex at point E (I-23)

Draw a line AF, through A, parallel to BC (I·31)

Draw a line CG, through C, parallel to EF (I·31)

The parallelogram FECG is equal in area to the triangle ABC

To construct a parallelogram equal to a given triangle in a given rectilinear angle.

Construction

Start with triangle ABC and angle δ
Bisect line BC at point E (I·10). Draw line AC
Copy angle δ onto line EC, with the vertex at point E (I·23)
Draw a line AF, through A, parallel to BC (I·31)
Draw a line CG, through C, parallel to EF (I·31)
The parallelogram FECG is equal in area to the triangle ABC

Proof:

To construct a parallelogram equal to a given triangle in a given rectilinear angle.

Construction

Start with triangle ABC and angle δ Bisect line BC at point E (I·10). Draw line AC Copy angle δ onto line EC, with the vertex at point E (I·23) Draw a line AF, through A, parallel to BC (I·31) Draw a line CG, through C, parallel to EF (I·31) The parallelogram FECG is equal in area to the triangle ABC

Proof:

Triangle ABE and AEC have equal bases (BE and EC) and are on the same parallels, so their areas are equal (I-38)

To construct a parallelogram equal to a given triangle in a given rectilinear angle.

Construction

Start with triangle ABC and angle δ Bisect line BC at point E (I·10). Draw line AC Copy angle δ onto line EC, with the vertex at point E (I·23) Draw a line AF, through A, parallel to BC (I·31) Draw a line CG, through C, parallel to EF (I·31) The parallelogram FECG is equal in area to the triangle ABC

Proof:

Triangle ABE and AEC have equal bases (BE and EC) and are on the same parallels, so their areas are equal (I-38)

Triangle AEC shares the same base as the parallelogram FECG, so it is half the area of the parallelogram (I·41)

To construct a parallelogram equal to a given triangle in a given rectilinear angle.

BE = EC

AF || BC

CG || EF

$$\Delta ABE = \Delta AEC = \frac{1}{2} \Delta ABC$$
 $\Delta AEC = \frac{1}{2} FECG$

 $FECG = \Delta ABC$

Construction

Start with triangle ABC and angle δ
Bisect line BC at point E (I·10). Draw line AC
Copy angle δ onto line EC, with the vertex at point E (I·23)
Draw a line AF, through A, parallel to BC (I·31)
Draw a line CG, through C, parallel to EF (I·31)
The parallelogram FECG is equal in area to the triangle ABC

Proof:

Triangle ABE and AEC have equal bases (BE and EC) and are on the same parallels, so their areas are equal (I-38)

Triangle AEC shares the same base as the parallelogram FECG, so it is half the area of the parallelogram (I·41)

Hence, FECG is equal in area to ABC

To construct a parallelogram equal to a given triangle in a given rectilinear angle.

Construction

Start with triangle ABC and angle δ Bisect line BC at point E (I·10). Draw line AC Copy angle δ onto line EC, with the vertex at point E (I·23) Draw a line AF, through A, parallel to BC (I·31) Draw a line CG, through C, parallel to EF (I·31) The parallelogram FECG is equal in area to the triangle ABC

Proof:

Triangle ABE and AEC have equal bases (BE and EC) and are on the same parallels, so their areas are equal (I-38)

Triangle AEC shares the same base as the parallelogram FECG, so it is half the area of the parallelogram (I·41)

Hence, FECG is equal in area to ABC

Youtube Videos

https://www.youtube.com/c/SandyBultena

Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc/3.0