数值分析 code4 实验报告

张景浩 PB20010399

2023.4.10

1 问题介绍

利用 Richardson 外推计算下列函数在给定点处的导数值,h=1,并输出相应的三角阵列。

$$1.y = lnx, x = 3, M = 3$$

$$2.y = tanx, x = sin^{-1}(0.8).M = 4$$

$$3.y = sin(x^2 + \frac{1}{3}x), x = 0, M = 5$$

2 解决方法

使用 Richardson 外推算法:

1. 选取一个方便计算的初始 h 值 (h=1), 并计算 M-1 个数:

$$D(n,0) = \phi(h/2^n) \ (0 \le n \le M)$$

其中 $\phi(h) = \frac{1}{2h} [f(x+h) - f(x-h)]$ 是数值微分公式。

2. 用下列公式计算:

$$D(n,k) = \frac{4^k}{4^k - 1}D(n,k-1) - \frac{1}{4^k - 1}D(n-1,k-1)$$

其中 $k = 1, 2, \dots, M; n = k, k + 1, \dots, M$ 。

3 编译环境及使用方法

本程用 matlab 编译,使用时直接调用 outcome.m 文件即可。

4 实验结果

n	D(n,0)	D(n,1)	D(n,2)	D(n,3)
0	0.3465736			
1	0.3364722	0.3331051		
2	0.3341082	0.3333201	0.3333345	
3	0.3335264	0.3333325	0.3333333	0.3333333

表 1:
$$y = lnx, x = 3, M = 3$$

n	D(n,0)	D(n,1)	D(n,2)	D(n,3)	D(n,4)
0	-1.3061863				
1	6.4653364	9.0558439			
2	3.2090999	2.1236878	1.6615440		
3	2.8729801	2.7609402	2.8034236	2.8215487	
4	2.8009018	2.7768757	2.7779381	2.7775336	2.7773609

表 2:
$$y = tanx, x = sin^{-1}(0.8).M = 4$$

n	D(n,0)	D(n,1)	D(n,2)	D(n,3)	D(n,4)	D(n,5)
0	0.1767840					
1	0.3214776	0.3697088				
2	0.3322976	0.3359042	0.3336506			
3	0.3331962	0.3334958	0.3333352	0.3333302		
4	0.3333067	0.3333435	0.33333333	0.33333333	0.3333333	
5	0.3333271	0.3333340	0.3333333	0.33333333	0.3333333	0.3333333

表 3:
$$y = sin(x^2 + \frac{1}{3}x), x = 0, M = 5$$

5 总结

观察实验结果可知,由 Richardson 外推法得到的三角阵列可以很快的收敛到该点对应的导数。 我们通过低阶估计之间的相互运算达到更高阶的截断误差,在减小截断误差的同时大大减少了计 算量。

A Computer Code

Here we include the computer code.

```
function D = richardson(h, M, f, x)
2 % Richardson外推
3 \quad \% \quad input-h, M, f, x
4 % output-D(Richardson 三角阵列)
5 D=zeros(M+1);
   for n=0:M
       D(n+1,1)=2^{(n-1)}*(f(x+h/2^n)-f(x-h/2^n))/h;
   end
   for k=1:M
        for n=k:M
10
            D(n+1,k+1)=D(n+1,k)+(D(n+1,k)-D(n,k))/(4^k-1);
11
12
        end
13
   end
14
   end
```

```
function y=f(x)
17
   y=sin(x^2+x/3);
   end
18
19
20 h=1;
21 \% y=@atan; x=sqrt(2); M=4;
22 \% y=@log; x=3;M=3;
23 \% y=@tan; x=asin(0.8); M=4;
24 y=@f; x=0; M=5;
D=richardson(h,M,y,x);
26
   for i=1:M+1
       fprintf('%d \t',i-1);
27
       for j=1:M+1
28
            fprintf('& %.7f \t',D(i,j));
29
30
       end
       fprintf( '%s',"\\");
31
       fprintf('\n');
32
33
   end
```