Repaso Teórico - Análisis Matemático I

- a) Detallar las nueve propiedades que hacen de R un cuerpo.
 - b) Demostrar a partir de las mismas que $a \cdot 0 = 0$ y $a \cdot (-b) = -(a \cdot b)$ para todo $a, b \in \mathbb{R}$.

(a) Las nueve propiedades de un cuerpo son

- 1. Propiedad Conmutativa. Si $a,b\in\mathbb{R}$ se cumple a+b=b+a y ab=ba.
- 2. Propiedad Asociativa. Si $a, b \in \mathbb{R}$ se cumple a + (b + c) = (a + b) + c y a(bc) = (ab)c.
- 3. Propiedad del Neutro de la suma. Si $a\in\mathbb{R}$ existe un número $0\in\mathbb{R}$ tal que a+0=a.
- 4. Propiedad del opuesto de la suma. Si $a\in\mathbb{R}$ existe un número $-a\in\mathbb{R}$ tal que a+(-a)=0.
- 5. Propiedad del Neutro de la multiplicación. Si $a\in\mathbb{R}$ existe un número $1\in\mathbb{R}$ tal que cumpla $a\cdot 1=a$.
- 6. Propiedad del inverso multiplicativo. Si $a \in \mathbb{R}$ existe un número $a^{-1} \in \mathbb{R}$ tal que $a \cdot (a^{-1})$.
- 7. Propiedad Distributiva. Si $a,b,c\in\mathbb{R}$ se cumple que $a\cdot(b+c)=a\cdot b+a\cdot c$.

(b) Queremos demostrar que $a\cdot 0=0$. Veamos que por la propiedad (4) se cumple que existe un número $-(a\cdot 0)\in\mathbb{R}$ tal que $a\cdot 0+(-(a\cdot 0))=0$. Luego, 0=0+0 por la propiedad (3) por lo que $a\cdot (0+0)+(-(a\cdot 0))=0$ y por la propiedad (7) tenemos que $a\cdot 0+\underbrace{a\cdot 0+(-a\cdot 0)}_{=0}=0$ y nos queda $a\cdot 0=0$.

Queremos demostrar que $a\cdot (-b)=-(a\cdot b)$. Notemos que b+(-b)=0 por la propiedad (4) por lo que $a\cdot (b+(-b))=a\cdot 0$ que ya vimos que $a\cdot 0=0$. Usando esto y la propiedad (7) nos queda que $a\cdot b+a\cdot (-b)=0$ y luego por la propiedad uniforme de la igualdad podemos sumar de ambos lados por $-(a\cdot b)$ tal que nos quede $\underbrace{(a\cdot b)+(-(a\cdot b))}_{=0}+(a\cdot (-b))=-(a\cdot b)$ por lo tanto $a\cdot (-b)=-(a\cdot b)$. \blacksquare

- a) Detallar las cuatro propiedades que, agregadas a las de cuerpo, hacen de ℝ un cuerpo ordenado.
 - b) Demostrar a partir de las mismas que 1 > 0.

(a) Las 4 propiedades son: sean $a,b,c\in\mathbb{R}$

- 1. (Propiedad de Tricotomía) Pueden ocurrir 3 situaciones: a < b, a = b o a > b.
- 2. (Propiedad de transitividad) Si a < b y b < c entonces a < c
- 3. (Propiedad de la Cerradura) Si a < b entonces a + c < b + c y con c > 0 se cumple ac < bc.

(b) Queremos probar que 1>0. Notemos que pueden haber 3 situaciones por la propiedad de orden (1), 1>0, 1<0 y 1=0. Es obvio que $1\neq 0$, para probar que 1>0 supongamos por el absurdo que 1<0. Si 1<0 entonces podemos usar la propiedad de orden (3) tal que 1+(-1)<0+(-1). Pero luego tenemos que 0<-1 nos están diciendo entonces que -1 es un número positivo, por lo que podemos usar la propiedad de orden (3) de nuevo en 1<0 tal que $(-1)\cdot 1<(-1)\cdot 0$ pero luego por la segunda propiedad prbada en el ejercicio 1(b) tenemos que -(1 \cdot 1) < 0\$ y por la propiedad (5) $1\cdot 1=1$ por lo que -1<0 y llegamos a un absurdo porque antes habiamos obtenido que 0<-1. Por lo que no queda otra opción que 1>0. \blacksquare

- a) Escribir la definición de |x| para un número real x.
 - b) Demostrar que $|x+y| \le |x| + |y|$ para todo $x, y \in \mathbb{R}$.
- (a) Sea $x \in \mathbb{R}$ definimos al valor absoluto de x a

$$|x| = egin{cases} x & x \geq 0 \ -x & x < 0 \end{cases}$$

(b) Para demostrar que $|x+y| \leq |x| + |y|$ consideremos los 4 casos:

$$x \ge 0$$
 y $y \ge 0$ (1)
 $x < 0$ y $y \ge 0$ (2)
 $x \ge 0$ y $y < 0$ (3)
 $x < 0$ y $y < 0$ (4)

- Consideremos el caso (1) es obvio que entonces |x+y|=x+y=|x|+|y|, luego llegamos a lo que queríamos.
- En el caso (2) |x| + |y| = -x + y = y x queríamos demostrar entonces que $|x + y| \le y x$. Lo cual se puede dividir en dos subcasos:
 - $x+y\geq 0$, entonces $x+y\leq y-x$. Nos basta probar que $x\leq -x$ lo cual es verdad pues x<0 y -x>0.
 - $x+y \leq 0$, entonces $-x-y \leq y-x$. Nos basta probar que $-y \leq y$ lo cual es verdad pues y>0 y -y<0.
- En el caso (3) |x|+|y|=x-y de vuelta para probar $|x+y|\leq x-y$ podemos dividirlo en dos subcasos:
 - $x+y\geq 0$, entonces $x+y\leq x-y$. Nos basta probar que $y\leq -y$ lo cual es verdad pues y<0 y -y>0.
 - $x+y \leq 0$, entonces $-x-y \leq x-y$. Nos basta probar que $-x \leq x$ lo cual es verdad pues x>0 y -x<0.
- Por último, el caso (4) es obvio pues |x+y|=-x-y=|x|+|y|. \blacksquare
- 4. a) Sea A un subconjunto de R. Escribir la definición de que un número M sea una cota superior de A. Escribir la definición de que A esté acotado superiormente y la definición de sup A.
 - b) Mostrar que R no está acotado superiormente.
 - c) Enunciar la propiedad del supremo, que junto con las 13 propiedades de cuerpo ordenado, hacen de $\mathbb R$ un cuerpo ordenado completo.
 - d) Mostrar que sup [0,6) = 6.
- (a) Si $A \subset \mathbb{R}$. Decimos que este conjunto está acotado superiormente si existe un número $M \in \mathbb{R}$ (Ilamado cota superior) tal que para todo $a \in A$ tenemos que $a \leq M$. Por otro lado, por el Axioma del supremo y el Infimo sabemos que todo conjunto acotado superiormente tiene supremo que se define como la menor cota superior. Decimos que $\alpha = \sup A$ si:
 - α es una cota superior.
 - Sea M una cota superior, $\alpha \leq M$.
- (b) Probemos esto por el absurdo. Supongamos que existe una cota superior M de \mathbb{R} , entonces tiene supremo que le llamamos $\alpha=\sup\mathbb{R}$ por lo que cumple que $\alpha\geq r$ para todo $r\in\mathbb{R}$ pero luego sabemos que $M\in\mathbb{R}$ (por definición de la cota) por lo tanto $M\leq\alpha\leq r$ por lo que se genera un absurdo, α no puede ser el supremo. Y \mathbb{R} no está acotado superiormente. \blacksquare
- (c) Propiedad del supremo. Sea $A \subset \mathbb{R}$ tenemos que si existe una cota superior $M \in \mathbb{R}$ entonces existe un supremo del conjunto A.
- (d) Queremos probar que $\sup[0,6)=6$. Es obvio que 6 es una cota superior, entonces el conjunto [0,6) tiene supremo. Sabemos que $0\geq x<6$ entonces 0<6-x, luego por la propiedad arquimediana existe un $n_0\in\mathbb{N}$ tal que $0<\frac{1}{n_0}<6-x$. Podemos reordenar esto, $x<6-\frac{1}{n_0}<6$ por último por el lema útil sabemos que $6-\frac{1}{n_0}\in[0,6)$ entonces 6 es el supremo del conjunto.

- 5. a) Sea A un subconjunto de R. Escribir la definición de que un número M sea una cota inferior de A. Escribir la definición de que A esté acotado inferiormente y la definición de inf A.
 - b) Dar la idea de la demostración de que todo subconjunto de $\mathbb R$ no vacío acotado inferiormente tiene ínfimo.
 - c) Mostrar que N no está acotado superiormente.
 - d) Probar que para todo $\varepsilon > 0$ existe $n \in \mathbb{N}$ tal que $\frac{1}{n} < \varepsilon$.
 - e) Escribir la definición de que un subconjunto A de \mathbb{R} sea denso en \mathbb{R} .
- (a) Decimos que $m\in\mathbb{R}$ es una cota inferior del conjunto A si para todo $a\in A$ ocurre que $m\leq a$. Decimos que $\beta\in\mathbb{R}$ es un ínfimo o la mayor cota inferior del conjunto A si:
 - β es una cota inferior.
 - Si m es otra cota inferior se cumple que $\beta \geq m$.
- (b) Sea $A\subset\mathbb{R}$ no vacío acotado inferiormente, queremos demostrar que tiene ínfimo. Creemos el conjunto $-A=\{-a|a\in A\}$ que contiene todos los opuestos de los valores de A, este es no vacío también pues A es no vacío. El conjunto -A está acotado superiormente pues si m es una cota inferior de A tenemos que -m va a ser una cota superior de -A. Luego, por la propiedad del supremo existe el $\sup(-A)$. Nos faltaría probar que

$$\inf(A) = -\sup(-A)$$

Como existe $\alpha=\sup(-A)$ entonces $\alpha\geq -a$ para todo $a\in A$, luego multiplicando por -1 de ambos lados $-\alpha\leq a$ tal que tenemos que $-\alpha$ es una cota inferior de A. Siguiendo si -m es una cota superior de -A se cumple que $-m\geq \alpha$, entonces $m\leq -\alpha$ y como $-\alpha$ es una cota inferior de A, m es una cota inferior. Como podemos hacer esto con todas las cotas superiores de -A tenemos que $\inf(A)=-\alpha=-\sup(-A)$.

- (c) Queremos probar que $\mathbb N$ no está acotado superiormente. Empecemos suponiendo que sí lo está, en ese caso existe un supremo $\alpha=\sup\mathbb N$
- luego como α es una cota superior, entonces $\alpha \geq n$ para todo $n \in \mathbb{N}$. Pero luego, $\alpha \geq n+1$ también se cumple, entonces $\alpha-1 \geq n$ tal que $\alpha-1$ es una cota superior, pero acá llegamos a un absurdo pues α es la menor cota superior. \blacksquare
- (d) Propiedad Arquimediana. Queremos probar que para todo $\epsilon>0$ existe un $n\in\mathbb{N}$ tal que $\frac{1}{n}<\epsilon$. Podemos obtener esto como un colorario de la proposición anterior. Si $\frac{1}{\epsilon}>0$ entonces como los números naturales no están acotados superiormente $\frac{1}{\epsilon}$ no es una cota superior por lo que debe existir un número natural que supere este número $n>\frac{1}{\epsilon}\to\frac{1}{n}<\epsilon$. \blacksquare
- (e) Decimos que un conjunto A es denso en $\mathbb R$ cuando dado un intervalo (a,b) de los reales existe un $x \in A$ que a su vez $x \in (a,b)$. O de otra manera, dados a < b existe un $x \in A$ tal que a < x < b.
 - 6. a) Escribir la definición de que la función $f: A \to B$ sea inyectiva.
 - b) Escribir la definición de la imagen de la función $f: A \to B$.
 - c) Escribir la definición de que la función $f:A\to B$ sea surveciva.
- (a) Una función f:A o B es **inyectiva** cuando para todo $a,b\in A$, si f(a)=f(b) se cumple que a=b.
- (b) la imagen de la función $f:A\to B$ es un subconjunto de B tal que $\mathrm{Im}(f)=\{f(t):t\in A\}$.
- (c) Una función f:A o B es **sobreyectiva** cuando la $\mathrm{Im}(f)=B$.

- 7. a) Sean $f: A \to B$ y $g: C \to D$ dos funciones, donde $B \subset C$. Escribir la definición de la función $g \circ f: A \to D$.
 - b) Escribir la definición de que la función $f:A\to B$ sea biyectiva. Si ese es el caso, escribir la definición de la función $f^{-1}:B\to A$.
 - c) Sea $f:A\to B$ una función biyectiva, donde A y B son intervalos de \mathbb{R} . Describir geométricamente el gráfico de $f^{-1}:B\to A$ en términos del gráfico de f.
 - d) Escribir las definiciones de sen $^{-1}$ = arcsen y \cos^{-1} = arccos (incluyendo sus dominios e imágenes) y dibujar los respectivos gráficos.
- (a) Una función f:A o B y otra función g:C o D tal que $B\subset C$. Se define una nueva función

$$g\circ f:A o D \qquad (g\circ f)(x)=g(f(x))$$

(b) Una función f:A o B sobreyectiva e inyectiva. Definimos la función $f^{-1}:B o A$ como aquella función

Repaso Teórico - Análisis Matemático I

- a) Detallar las nueve propiedades que hacen de ℝ un cuerpo.
 - b) Demostrar a partir de las mismas que $a \cdot 0 = 0$ y $a \cdot (-b) = -(a \cdot b)$ para todo $a, b \in \mathbb{R}$.
- (a) Las nueve propiedades de un cuerpo son
 - 1. Propiedad Conmutativa. Si $a,b\in\mathbb{R}$ se cumple a+b=b+a y ab=ba.
 - 2. Propiedad Asociativa. Si $a,b\in\mathbb{R}$ se cumple a+(b+c)=(a+b)+c y a(bc)=(ab)c.
- 3. Propiedad del Neutro de la suma. Si $a \in \mathbb{R}$ existe un número $0 \in \mathbb{R}$ tal que a+0=a.
- 4. Propiedad del opuesto de la suma. Si $a \in \mathbb{R}$ existe un número $-a \in \mathbb{R}$ tal que a + (-a) = 0.
- 5. Propiedad del Neutro de la multiplicación. Si $a\in\mathbb{R}$ existe un número $1\in\mathbb{R}$ tal que cumpla $a\cdot 1=a$.
- 6. Propiedad del inverso multiplicativo. Si $a \in \mathbb{R}$ existe un número $a^{-1} \in \mathbb{R}$ tal que $a \cdot (a^{-1})$.
- 7. Propiedad Distributiva. Si $a,b,c\in\mathbb{R}$ se cumple que $a\cdot(b+c)=a\cdot b+a\cdot c$.
- (b) Queremos demostrar que $a\cdot 0=0$. Veamos que por la propiedad (4) se cumple que existe un número $-(a\cdot 0)\in\mathbb{R}$ tal que $a\cdot 0+(-(a\cdot 0))=0$. Luego, 0=0+0 por la propiedad (3) por lo que $a\cdot (0+0)+(-(a\cdot 0))=0$ y por la propiedad (7) tenemos que $a\cdot 0+\underbrace{a\cdot 0+(-a\cdot 0)}_{=0}=0$ y nos queda $a\cdot 0=0$.

Queremos demostrar que $a\cdot (-b)=-(a\cdot b)$. Notemos que b+(-b)=0 por la propiedad (4) por lo que $a\cdot (b+(-b))=a\cdot 0$ que ya vimos que $a\cdot 0=0$. Usando esto y la propiedad (7) nos queda que $a\cdot b+a\cdot (-b)=0$ y luego por la propiedad uniforme de la igualdad podemos sumar de ambos lados por $-(a\cdot b)$ tal que nos quede $\underbrace{(a\cdot b)+(-(a\cdot b))}_{=0}+(a\cdot (-b))=-(a\cdot b)$ por lo tanto $a\cdot (-b)=-(a\cdot b)$. \blacksquare

- a) Detallar las cuatro propiedades que, agregadas a las de cuerpo, hacen de ℝ un cuerpo ordenado.
 - b) Demostrar a partir de las mismas que 1 > 0.
- (a) Las 4 propiedades son: sean $a,b,c\in\mathbb{R}$
- 1. (Propiedad de Tricotomía) Pueden ocurrir 3 situaciones: a < b, a = b o a > b.
- 2. (Propiedad de transitividad) Si a < b y b < c entonces a < c
- 3. (Propiedad de la Cerradura) Si a < b entonces a + c < b + c y con c > 0 se cumple ac < bc.

(b) Queremos probar que 1>0. Notemos que pueden haber 3 situaciones por la propiedad de orden (1), 1>0, 1<0 y 1=0. Es obvio que $1\neq 0$, para probar que 1>0 supongamos por el absurdo que 1<0. Si 1<0 entonces podemos usar la propiedad de orden (3) tal que 1+(-1)<0+(-1). Pero luego tenemos que 0<-1 nos están diciendo entonces que -1 es un número positivo, por lo que podemos usar la propiedad de orden (3) de nuevo en 1<0 tal que $(-1)\cdot 1<(-1)\cdot 0$ pero luego por la segunda propiedad prbada en el ejercicio 1(b) tenemos que -(1 \cdot 1) < 0\$ y por la propiedad (5) $1\cdot 1=1$ por lo que -1<0 y llegamos a un absurdo porque antes habiamos obtenido que 0<-1. Por lo que no queda otra opción que 1>0.

- a) Escribir la definición de |x| para un número real x.
 - b) Demostrar que $|x+y| \le |x| + |y|$ para todo $x, y \in \mathbb{R}$.
- (a) Sea $x \in \mathbb{R}$ definimos al **valor absoluto** de x a

$$|x| = egin{cases} x & x \geq 0 \ -x & x < 0 \end{cases}$$

(b) Para demostrar que $|x+y| \le |x| + |y|$ consideremos los 4 casos:

$$x \ge 0$$
 y $y \ge 0$ (1)
 $x < 0$ y $y \ge 0$ (2)
 $x \ge 0$ y $y < 0$ (3)
 $x < 0$ y $y < 0$ (4)

- Consideremos el caso (1) es obvio que entonces |x+y|=x+y=|x|+|y|, luego llegamos a lo que queríamos.
- En el caso (2) |x|+|y|=-x+y=y-x queríamos demostrar entonces que $|x+y|\leq y-x$. Lo cual se puede dividir en dos subcasos:
 - $x+y\geq 0$, entonces $x+y\leq y-x$. Nos basta probar que $x\leq -x$ lo cual es verdad pues x<0 y -x>0.
 - $x+y \leq 0$, entonces $-x-y \leq y-x$. Nos basta probar que $-y \leq y$ lo cual es verdad pues y>0 y -y<0.
- En el caso (3) |x| + |y| = x y de vuelta para probar $|x + y| \le x y$ podemos dividirlo en dos subcasos:
 - $x+y\geq 0$, entonces $x+y\leq x-y$. Nos basta probar que $y\leq -y$ lo cual es verdad pues y<0 y -y>0.
 - $x+y \leq 0$, entonces $-x-y \leq x-y$. Nos basta probar que $-x \leq x$ lo cual es verdad pues x>0 y -x<0.
- Por último, el caso (4) es obvio pues |x+y|=-x-y=|x|+|y|.
- 4. a) Sea A un subconjunto de R. Escribir la definición de que un número M sea una cota superior de A. Escribir la definición de que A esté acotado superiormente y la definición de sup A.
 - b) Mostrar que R no está acotado superiormente.
 - c) Enunciar la propiedad del supremo, que junto con las 13 propiedades de cuerpo ordenado, hacen de \mathbb{R} un cuerpo ordenado completo.
 - d) Mostrar que sup [0,6) = 6.
- (a) Si $A \subset \mathbb{R}$. Decimos que este conjunto está acotado superiormente si existe un número $M \in \mathbb{R}$ (Ilamado cota superior) tal que para todo $a \in A$ tenemos que $a \leq M$. Por otro lado, por el <u>Axioma del supremo y el ínfimo</u> sabemos que todo conjunto acotado superiormente tiene supremo que se define como la menor cota superior. Decimos que $\alpha = \sup A$ si:
 - α es una cota superior.
 - Sea M una cota superior, $\alpha < M$.

- (b) Probemos esto por el absurdo. Supongamos que existe una cota superior M de $\mathbb R$, entonces tiene supremo que le llamamos $\alpha=\sup\mathbb R$ por lo que cumple que $\alpha\geq r$ para todo $r\in\mathbb R$ pero luego sabemos que $M\in\mathbb R$ (por definición de la cota) por lo tanto $M\leq\alpha\leq r$ por lo que se genera un absurdo, α no puede ser el supremo. Y $\mathbb R$ no está acotado superiormente. \blacksquare
- (c) Propiedad del supremo. Sea $A\subset\mathbb{R}$ tenemos que si existe una cota superior $M\in\mathbb{R}$ entonces existe un supremo del conjunto A.
- (d) Queremos probar que $\sup[0,6)=6$. Es obvio que 6 es una cota superior, entonces el conjunto [0,6) tiene supremo. Sabemos que $0\geq x<6$ entonces 0<6-x, luego por la propiedad arquimediana existe un $n_0\in\mathbb{N}$ tal que $0<\frac{1}{n_0}<6-x$. Podemos reordenar esto, $x<6-\frac{1}{n_0}<6$ por último por el lema útil sabemos que $6-\frac{1}{n_0}\in[0,6)$ entonces 6 es el supremo del conjunto.
 - 5. a) Sea A un subconjunto de \mathbb{R} . Escribir la definición de que un número M sea una cota inferior de A. Escribir la definición de que A esté acotado inferiormente y la definición de inf A.
 - b) Dar la idea de la demostración de que todo subconjunto de \mathbb{R} no vacío acotado inferiormente tiene ínfimo.
 - c) Mostrar que N no está acotado superiormente.
 - d) Probar que para todo $\varepsilon > 0$ existe $n \in \mathbb{N}$ tal que $\frac{1}{n} < \varepsilon$.
 - e) Escribir la definición de que un subconjunto A de $\mathbb R$ sea denso en $\mathbb R$.
- (a) Decimos que $m \in \mathbb{R}$ es una cota inferior del conjunto A si para todo $a \in A$ ocurre que $m \le a$. Decimos que $\beta \in \mathbb{R}$ es un **ínfimo** o la mayor cota inferior del conjunto A si:
 - β es una cota inferior.
 - Si m es otra cota inferior se cumple que $\beta \geq m$.
- (b) Sea $A\subset\mathbb{R}$ no vacío acotado inferiormente, queremos demostrar que tiene ínfimo. Creemos el conjunto $-A=\{-a|a\in A\}$ que contiene todos los opuestos de los valores de A, este es no vacío también pues A es no vacío. El conjunto -A está acotado superiormente pues si m es una cota inferior de A tenemos que -m va a ser una cota superior de -A. Luego, por la propiedad del supremo existe el $\sup(-A)$. Nos faltaría probar que

$$\inf(A) = -\sup(-A)$$

Como existe $\alpha=\sup(-A)$ entonces $\alpha\geq -a$ para todo $a\in A$, luego multiplicando por -1 de ambos lados $-\alpha\leq a$ tal que tenemos que $-\alpha$ es una cota inferior de A. Siguiendo si -m es una cota superior de -A se cumple que $-m\geq \alpha$, entonces $m\leq -\alpha$ y como $-\alpha$ es una cota inferior de A, m es una cota inferior. Como podemos hacer esto con todas las cotas superiores de -A tenemos que $\inf(A)=-\alpha=-\sup(-A)$.

(c) Queremos probar que $\mathbb N$ no está acotado superiormente. Empecemos suponiendo que sí lo está, en ese caso existe un supremo $\alpha=\sup\mathbb N$

luego como α es una cota superior, entonces $\alpha \geq n$ para todo $n \in \mathbb{N}$. Pero luego, $\alpha \geq n+1$ también se cumple, entonces $\alpha-1 \geq n$ tal que $\alpha-1$ es una cota superior, pero acá llegamos a un absurdo pues α es la menor cota superior. \blacksquare

(d) Propiedad Arquimediana. Queremos probar que para todo $\epsilon>0$ existe un $n\in\mathbb{N}$ tal que $\frac{1}{n}<\epsilon$. Podemos obtener esto como un colorario de la proposición anterior. Si $\frac{1}{\epsilon}>0$ entonces como los números naturales no están acotados superiormente $\frac{1}{\epsilon}$ no es una cota superior por lo que debe existir un número natural que supere este número $n>\frac{1}{\epsilon}\to\frac{1}{n}<\epsilon$. \blacksquare

- (e) Decimos que un conjunto A es denso en $\mathbb R$ cuando dado un intervalo (a,b) de los reales existe un $x\in A$ que a su vez $x\in (a,b)$. O de otra manera, dados a< b existe un $x\in A$ tal que a< x< b.
 - 6. a) Escribir la definición de que la función $f:A\to B$ sea inyectiva.
 - b) Escribir la definición de la imagen de la función $f: A \to B$.
 - c) Escribir la definición de que la función $f:A\to B$ sea suryeciva.
- (a) Una función f:A o B es **inyectiva** cuando para todo $a,b\in A$, si f(a)=f(b) se cumple que a=b.
- (b) la imagen de la función $f:A \to B$ es un subconjunto de B tal que $\mathrm{Im}(f)=\{f(t):t\in A\}$.
- (c) Una función $f:A \to B$ es **sobreyectiva** cuando la $\mathrm{Im}(f)=B$.
 - 7. a) Sean $f: A \to B$ y $g: C \to D$ dos funciones, donde $B \subset C$. Escribir la definición de la función $g \circ f: A \to D$.
 - b) Escribir la definición de que la función $f:A\to B$ sea biyectiva. Si ese es el caso, escribir la definición de la función $f^{-1}:B\to A$.
 - c) Sea $f:A\to B$ una función biyectiva, donde A y B son intervalos de \mathbb{R} . Describir geométricamente el gráfico de $f^{-1}:B\to A$ en términos del gráfico de f.
 - d) Escribir las definiciones de sen $^{-1}$ = arcsen y \cos^{-1} = arccos (incluyendo sus dominios e imágenes) y dibujar los respectivos gráficos.
- (a) Una función f:A o B y otra función g:C o D tal que $B\subset C$. Se define una nueva función

$$g \circ f : A \to D$$
 $(g \circ f)(x) = g(f(x))$

(b) Una función f:A o B sobreyectiva e inyectiva. Definimos la función $f^{-1}:B o A$ como aquella función