Training and Evaluation of a Convolutional Neural Network (CNN) on CIFAR-10 Dataset

Semih Özdemir

Purpose of the project

- The goal of this project is to develop a Convolutional Neural Network (CNN) and evaluate its performance on the CIFAR-10 dataset.
- This presentation will cover data preprocessing, model architecture, training process, evaluation results and challenges faced.

Dataset

- The CIFAR-10 dataset consists of 60,000 32x32 color images in 10 different classes. Each class has 6,000 images.
- Training Set: 50,000 images are used for training.
- Test Set: 10,000 images are used for testing.
- Classes: The classes include airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

Data Preprocessing

- The images are normalized to have pixel values between 0 and 1 by dividing by 255.0. This helps in faster convergence during training.
- One-Hot Encoding: The class labels are converted into one-hot encoded vectors, transforming categorical labels into binary vectors. This is essential for multi-class classification tasks.

Model Architecture

- Layers: The CNN model consists of several layers:
- Input Layer: 32x32x3 dimensions for the color images.
- Convolutional Layers: Three Conv2D layers with 32 and 64 filters.
- MaxPooling Layers: Two MaxPooling2D layers to reduce spatial dimensions.
- Flatten Layer: Converts 2D matrices into a vector.
- Dense Layers: Two dense layers with 64 and 10 units respectively.
- Functions: Each convolutional layer uses the ReLU activation function. The final dense layer uses the softmax activation function for classification.

Model Compilation

• Loss Function: The model uses categorical cross-entropy as the loss function, which is suitable for multi-class classification problems.

Optimizer: The Adam optimizer is used for training the model due to its efficiency and adaptive learning rate properties.

Metrics: Accuracy is used as the primary metric to evaluate model performance during training and testing.

Training Process

• **Parameters:** The model is trained for 10 epochs with a batch size of 32. These parameters were chosen to balance training time and performance.

Datasets: The training set consists of 50,000 images, and the validation set consists of 10,000 images. Data augmentation techniques could be applied to enhance the training process.

Custom Callback

MetricsCallback: A custom callback class called
 MetricsCallback is defined to calculate and display precision,
 recall, and f1-score at the end of each epoch.

Purpose: This callback helps in monitoring the model's
 performance using additional metrics beyond accuracy, providing
 a more comprehensive evaluation.

Model Training Results

Class	Precision	Recall	F1-Score	Support
airplane	0.84	0.58	0.69	1000
automobile	0.84	0.8	0.82	1000
bird	0.59	0.57	0.58	1000
cat	0.54	0.44	0.48	1000
deer	0.56	0.71	0.63	1000
dog	0.63	0.6	0.62	1000
frog	0.56	0.9	0.69	1000
horse	0.77	0.69	0.73	1000
ship	0.8	0.82	0.81	1000
truck	0.86	0.72	0.78	1000
Accuracy				0.68
Macro Avg	0.7	0.68	0.68	10000
Weighted Avg	0.7	0.68	0.68	10000

Challenges Faced

- **Challenges:** One of the most difficult aspects was determining an appropriate layer configuration and deciding which metrics would be meaningful.
- **Solutions**: I researched and learned through experimentation to solve my challenges.