Update on forward tracking parameterisation update

Martin Tat

Heidelberg University

10th June 2025

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Outline

1 Introduction and reminder of previous presentation

2 Closer study of z_{mag} parameterisation

3 Conclusion

Introduction

I previously presented an update on the HLT2 forward tracking parameterisations

- Link to Indico here
- Tracking algorithm described in three steps:
 - Trajectories based on equations of motion and detector geometry
 - 2 Parameterise complex calculations using polynomials
 - Oetermine coefficients by fits to MC
- Parameterisations updated using new MC samples
 - New magnetic field map (presented here)
 - Initially worked with a private MC production
 - Moved to centrally produced samples here

Reminder: Parameterisations in HLT2 forward tracking

Last time I presented these parameterisations:

- ① z magnet kick position
- 2 x fringe field correction
- Stereo angle y correction
- Hough histogram binning
- z hit correction with SciFi yz tilt
- Magnetic field integral

Reminder: Parameterisations in HLT2 forward tracking

Last time I presented these parameterisations:

- lacktriangledown z magnet kick position \leftarrow Caused some issues
- 2 x fringe field correction
- Stereo angle y correction
- 4 Hough histogram binning
- z hit correction with SciFi yz tilt
- Magnetic field integral

Reminder: Parameterisations in HLT2 forward tracking

Last time I presented these parameterisations:

- ① z magnet kick position
- 2 x fringe field correction
- 3 Stereo angle y correction
- 4 Hough histogram binning
- z hit correction with SciFi yz tilt
- $\textbf{ 0} \quad \text{Magnetic field integral} \leftarrow \text{Improves momentum resolution estimate}$

Reminder: z_{mag} parameterisation

From CERN-THESIS-2023-097

- ullet Simplified track model: Assume magnet "kicks" particle at $z=z_{
 m mag}$
- ullet Parameterise $z_{
 m mag}$ as:

$$z_{\text{mag}} = c_0 + c_1 t_x^2 + c_3 t_y^2 + \Delta t_x' (c_2 t_x + c_4 \Delta t_x')$$

Reminder: Hit mapping to reference plane

From CERN-THESIS-2023-097

- Once all SciFi hits are parameterised, map hits to reference plane
- Hits from real tracks show peaks in "Hough histogram"

Reminder: Hit mapping to reference plane

From CERN-THESIS-2023-097

- Mapping depends on momentum, as low momentum tracks bend more
- ullet Define a search window by assuming $p=p_{\min}=1500~{
 m MeV/c}$

Reminder: Tracking efficiencies with new parameterisation

Previously: Performance found to be worse after update

- ullet Traced back to the $z_{
 m mag}$ parameterisation
- ullet Reverting back to old $z_{
 m mag}$ parameterisation
 - Negligible change in performance compared to 2025-patches
- \bullet Possible explanation: Biases in $z_{\rm mag}$ are larger with new MC

Reminder: Tracking efficiencies with new parameterisation

Black: Old parameterisation. Blue: Updated parameterisation.

Reminder: Tracking efficiencies with new parameterisation

Black: Old parameterisation. Blue: Updated parameterisation with old $z_{\rm mag}$.

Reminder: Momentum resolution

Despite difficulties with $z_{\rm mag}$, it would be ideal to update parameterisations using the new field map

Black: Old parameterisation. Blue: Updated parameterisation with old $z_{\rm mag}$.

Clear improvement in momentum resolution!

Study bias $z_{\text{mag}}^{\text{pred}} - z_{\text{mag}}$ of original parameterisation:

Left: p < 7 GeV. Right: p > 7 GeV.

- Parameterisation struggles a low momentum
 - Large negative bias
 - Very wide distribution

Study bias $z_{\text{mag}}^{\text{pred}} - z_{\text{mag}}$ of original parameterisation:

Left: p < 7 GeV. Right: p > 7 GeV.

- Parameterisation works well at high momentum
 - Small and almost negligible bias
 - Very small variance

If we only update coefficients of z_{mag} parameterisation:

Left: p < 7 GeV. Right: p > 7 GeV.

- Potential explanation of worse performance with new coefficients:
 - Bias is generally worse
 - Parameterisation doesn't describe $z_{\rm mag}$ well

5 20 25 z_{mag} - z_{mag} (mm)

Reminder: z_{mag} parameterisation

From CERN-THESIS-2023-097

• Original z_{mag} parameterisation:

$$z_{\rm mag} = c_0 + c_1 t_x^2 + c_3 t_y^2 + \Delta t_x' (c_2 t_x + c_4 \Delta t_x')$$

Improved z_{mag} parameterisation

From CFRN-THFSIS-2023-097

• After trial and error, this parameterisation was obtained:

$$z_{\text{mag}} = c_0 + c_1 t_x^2 + c_3 t_y^2 + \Delta t_x' (c_2 t_x + c_4 \Delta t_x')$$

$$+ (c_5 + tx^2 + ty^2 + |\Delta t_x'|^2) |\Delta t_x'|$$

Check biases with new improved parameterisation:

Left: p < 7 GeV. Right: p > 7 GeV.

- Huge improvement in biases:
 - Almost symmetric and unbiased distribution at high momentum
 - Mostly unbiased at low momentum, with a left tail

Tracking efficiencies with new improved parameterisation

Black: Old parameterisation. Blue: Improved parameterisation of $z_{\rm mag}$ need to

Tracking efficiencies with new improved parameterisation

- ullet I propose that we keep the original $z_{
 m mag}$ parameterisation
 - Determined by Andre Günther using DC19 MC
- Somehow, tracking efficiencies get <u>worse</u> when using a more accurate parameterisation...
- ...but perhaps in this case doing the wrong thing is better
- Is there a straightforward explanation for this...?

Reminder: Hit mapping to reference plane

From CERN-THESIS-2023-097

- ullet Define a search window by assuming $p=p_{\min}=1500~{
 m MeV/c}$
- My understanding is:
 - $z_{
 m mag}$ is underestimated ightarrow Search window becomes larger!
 - ightarrow Add negative bias at low momentum to improve performance

Tracking efficiencies with biased z_{mag} parameterisation

Black: Old parameterisation. Blue: Biased parameterisation of z_{mag} need to

Conclusion of z_{mag} studies

- Indeed, the improvement in performance when introducing a bias confirms that it is the search window size that drive the tracking efficiencies at low momentum
- ullet Motivates us to keep the original $z_{
 m mag}$ parameterisation
- All other parameterisations will be updated using new MC samples
- I have already added these samples to TestDB in this MR
- I will also add documentation to the ParamScriptor repository

Tracking efficiencies with final parameterisation

Black: Old parameterisation. Blue: Proposed parameterisation need to update

Momentum resolution with final parameterisation

Black: Old parameterisation. Blue: Proposed parameterisation. need to update these plots

Summary

- All parameterisations have been updated using centrally produced MC
 - Larger MC samples
 - Both magnet polarities
 - Start Larger selection of decay modes
- ullet Possible improvements to $z_{
 m mag}$ parameterisation have been explored
 - Biases are reduced, but performance gets worse
 - Reason for this unexpected behaviour:
 - Original parameterisation mostly underestimated $z_{\rm mag}$
 - → Overestimated search windows in the x-plane
 - → More hits included in reconstruction
 - → Higher tracking reconstruction
- ullet I propose: Update all parameterisations except for that of $z_{
 m mag}$
 - Negligible change in tracking efficiencies
 - Small improvement in momentum resolution

Next steps

- ① Get !4362 and !567 merged
- Occument work in ParamScriptor
- Final step: Improve throughput
 - Code was already heavily optimised by Andre Günther...
 - ...but I'll do some quick checks for obvious bottleknecks

Thanks for listening!