## 多変量解析

第1回 測定尺度

萩原•篠田 情報理工学部

## 多変量解析

- 人間の心理・生理・行動状態の計測
  - → 計測データの工学的応用
- 人間を対象とした計測データ
  - ・・ ばらつき大、複数変数が関与、複雑

$$y = f(x)$$

$$y_1 = f_1(x_1, x_2, \dots, x_m, y_2, y_3, \dots, y_n)$$
  
 $y_2 = f_2(x_1, x_2, \dots, x_m, y_1, y_3, \dots, y_n)$ 

:

## 多変量解析

- 人間の心理・生理・行動状態の計測
  - → 計測データの工学的応用
- 人間を対象とした計測データ
  - ・・ ばらつき大、複数変数が関与、複雑
- データから特徴を抽出し評価するためには
  - → データを統計的に扱う必要がある
  - → 情報の基本構造を明らかにする必要がある
- ・ 本講義の内容
  - 主観的測定法、統計的データ処理、有意差検定、多変量解析

#### 統計学: ばらつきを伴う情報を客観的に分析・評価

- 1. 単にデータの特性を記述する → 記述統計学
- 2. 少数の情報(データ)から全体を推し量る
  - → 推計統計学(母集団、標本、検定、推定・・・) 第1回、第3回、第4回
- 3. 複数変量の関連性や基本構造を明らかにする
  - → 多変量解析(相関、回帰分析、主成分分析、判別分析、クラスター分析、多次元尺度法、因子分析) 第2回、第5回~第14回

### 授業スケジュール・評価

| 授業回         | テーマ     | BCPレベル1-2 | BCPレベル3-4 |
|-------------|---------|-----------|-----------|
| 第01回(04/11) | 測定尺度の水準 | ライブ配信     | メディア      |
| 第02回(04/18) | 多変量解析とは | 対面        | メディア      |
| 第03回(04/25) | データの集約  | オンデマンド    | メディア      |
| 第04回(05/02) | 有意差検定   | 対面        | メディア      |
| 第05回(05/09) | 相関      | ライブ配信     | メディア      |
| 第06回(05/16) | 単回帰分析   | 対面        | メディア      |
| 第07回(05/23) | 重回帰分析   | ライブ配信     | メディア      |
| 第08回(05/30) | 数量化1類   | 対面        | メディア      |
| 第09回(06/06) | 判別分析    | オンデマンド    | メディア      |
| 第10回(06/13) | 数量化2類   | 対面        | メディア      |
| 第11回(06/20) | 主成分分析   | ライブ配信     | メディア      |
| 第12回(06/27) | 数量化3類   | 対面        | メディア      |
| 第13回(07/04) | クラスター分析 | オンデマンド    | メディア      |
| 第14回(07/11) | 因子分析    | 対面        | メディア      |
| 第15回(07/18) | 授業内試験   | 対面        | メディア      |

manaba+Rで出題される課題や小テスト、および授業内試験で評価

# 本講義の参考書(1)

書名:バイオサイエンスの統計学

著者:市原清志

出版:南江堂

ISBN-10: 4524220364

- 検定、相関、回帰の説明有

署名:入門はじめての多変量解析

著者:石村 貞夫•石村 光資郎

出版:東京図書

ISBN-10: 4489020007

- 重回帰、判別分析、主成分分析、クラスター分析の説明





# 本講義の参考書(2)

書名:多変量解析入門

著者:永田 清•棟近 雅彦

出版:サイエンス社

ISBN-10: 4781909809

- 単/重回帰、数量化1,2,3類、判別分析、主成分分析、 多次元尺度構成法、クラスター分析について説明有。

署名: 図解でわかる多変量解析

著者:涌井 良幸•涌井 貞美

出版:日本実業出版社

ISBN-10: 4534031858





## 測定尺度の分類

- 尺度は
  - (1)値(データ)の順序に意味があるかどうか
  - (2)値(データ)の差に意味があるかどうか
  - (3)ゼロに意味があるかどうか

によって、分類(名義)尺度、順序尺度、間隔 尺度、比例(比)尺度

などに分類できる

## 測定尺度(scale of measurement)の水準

- 分類(名義)尺度 categorical (nominal) scale
   男女、職業など、順序関係のない分類
- 順序尺度 ordinal scale

質的変数

1位-2位-3位、軽症-中等度-重傷など大小・順序が定義される、差は定義できない

- 間隔尺度 interval scale 温度など
  - 順序間の差や距離が定義される
- 比例尺度 ratio scale絶対0(ゼロ)が定義できる比を論ずることができる

量的変数

#### 名義尺度

- ・値(データ)の順序は意味を持たない
- 値(データ)の差は意味を持たない
- 質的データに分類基準を与える
- 例:男女、職業、など

#### 順序尺度

- 値(データ)の順序は意味を持つ
- 値(データ)の差は意味を持たない
- もっともらしい仮定を導入して間隔尺度とみなすこともある
- 例:順位、鉱物の強度、など

## 測定尺度(scale of measurement)の水準

- 分類(名義)尺度 categorical (nominal) scale
   男女、職業など、順序関係のない分類
- 順序尺度 ordinal scale

質的変数

1位-2位-3位、軽症-中等度-重傷など大小・順序が定義される、差は定義できない

- 間隔尺度 interval scale 温度など
  - 順序間の差や距離が定義される
- 比例尺度 ratio scale絶対0(ゼロ)が定義できる比を論ずることができる

量的変数

#### 間隔尺度

- ・値(データ)の順序は意味を持つ
- 値(データ)の差も意味を持つ
- ゼロに意味がない(=値の比は意味を持たない)
- 例: 摂氏温度, 西暦年など
  - 正「10°Cと20°Cの差と20°Cと30°Cの差は同じ」
  - ・誤「20°Cは10°C の 2倍熱い」

#### 比例尺度

- 値(データ)の順序は意味を持つ
- 値(データ)の差も意味を持つ
- ゼロに意味がある(=値の比は意味をもつ)
- 客観的に測定可能な変数の多くは比尺度
- 例:年齢、体重、年齢など
  - 正「1歳から2歳の差と10歳から11歳の差は同じ」
  - ・正「2歳の幼児は1歳の幼児の2倍生きている」

### 問題(1)

- ・以下の量的変量は比例尺度か間隔尺度か?
  - a. 身長
  - b. 商品の売り上げ
  - c. 速度
  - d. 西暦
  - e. 偏差値
  - f. 時刻
  - g. 絶対温度(K)
  - h. 相対温度(別名:セルシウス温度,°C)
    - 注意: 絶対温度 = 相対温度 + 273

### 問題(1)回答

- ・以下の量的変量は比率尺度か間隔尺度か?
  - a. 身長 比例尺度
  - b. 商品の売り上げ- 比例尺度
  - c. 速度- 比例尺度
  - d. 西暦 間隔尺度 西暦の0年は「無い」わけではない。
  - e. 偏差值 間隔尺度
  - f. 時刻 間隔尺度
  - g. 絶対温度 比例尺度 熱力学的に考えられる最低温度を0Kとしており、%の温 度の上昇のようにいえる。
  - h. 相対温度 間隔尺度0℃とは温度が「無い」わけではない。

#### 推計統計学



#### 推計統計学



## 多変量データと多変量解析

- ・調査対象の項目を変量と呼ぶ
- ・サンプルそれぞれに対して複数の変量が 計測されたデータを多変量データと呼ぶ

| ID | 2回生GPA<br>y | 入試得点<br>x <sub>1</sub> | 1回生GPA<br>x <sub>2</sub> | 性別<br>× <sub>3</sub> | 出身高校<br>X <sub>4</sub> |
|----|-------------|------------------------|--------------------------|----------------------|------------------------|
| 1  | 3.5         | 80                     | 3.7                      | F                    | A高校                    |
| 2  | 2.4         | 61                     | 2.3                      | M                    | B高校                    |
| 3  | 4.1         | 82                     | 4.0                      | M                    | C高校                    |
| 4  | 3.1         | 78                     | 3.4                      | F                    | D高校                    |
| 5  | 1.8         | 62                     | 2.2                      | M                    | D高校                    |
| 6  | 2.7         | 73                     | 2.0                      | F                    | B高校                    |
| 7  | 2.6         | 62                     | 2.1                      | M                    | C高校                    |
| 8  | 3.5         | 60                     | 3.2                      | M                    | A高校                    |
| 9  | 4.3         | 100                    | 4.4                      | F                    | B高校                    |

### 多変量データと多変量解析

<u>多変量データの関係性や基本構造を解析する</u> → **多変量解析** 回帰分析、判別分析、因子分析、主成分分析、クラスター分析、 多次元尺度法、数量化理論

| ID | 2回生GPA<br>y | 入試得点<br>x <sub>1</sub> | 1回生GPA<br>x <sub>2</sub> | 性別<br>× <sub>3</sub> | 出身高校<br>X <sub>4</sub> |
|----|-------------|------------------------|--------------------------|----------------------|------------------------|
| 1  | 3.5         | 80                     | 3.7                      | F                    | A高校                    |
| 2  | 2.4         | 61                     | 2.3                      | M                    | B高校                    |
| 3  | 4.1         | 82                     | 4.0                      | M                    | C高校                    |
| 4  | 3.1         | 78                     | 3.4                      | F                    | D高校                    |
| 5  | 1.8         | 62                     | 2.2                      | M                    | D高校                    |
| 6  | 2.7         | 73                     | 2.0                      | F                    | B高校                    |
| 7  | 2.6         | 62                     | 2.1                      | M                    | C高校                    |
| 8  | 3.5         | 60                     | 3.2                      | M                    | A高校                    |
| 9  | 4.3         | 100                    | 4.4                      | F                    | B高校                    |

## 感覚・知覚の測定

• 心理物理学的手法 psychophysical method

測定対象: 絶対閾値、弁別閾値、知覚的等価値(PSE)

測定手法:恒常法、段階法、極限法、調整法

→ 心理物理学(篠田担当)

- 心理学的手法 psychological method
  - 一対比較法
  - 順位法
  - 評定尺度法
  - SD(セマンティック ディファレンシャル)法
  - マグニチュード推定法(ME法)

一対比較法(method of paired comparison)



• 評定尺度(rating scale)を用いた一対比較法



順位法(method of rank order)



評定尺度法(rating scale method)



マグニチュード推定法(ME法, magnitude estimation method)

(基準100) A vs B (??) (基準100) A vs C (??)

(基準100) A vs D (??)

| 対象 | ME値 |
|----|-----|
| Α  | 100 |
| В  | 60  |
| С  | 85  |
| D  | 125 |



SD法(semantic differential method)

とてもない + ---- + ---- + 寒い 安らしい + ---- + ---- + ---- + 那らしい 健康な + ---- + ---- + 重い やわらかい + ---- + ---- + かたい うれしい + ---- + ---- + かなしい

多変量解析

因子分析 重回帰分析 主成分分析 判別分析 クラスター分析 数量化理論 多次元尺度法