PSAF- Feuille d'exercices 9

Exercice 1.

Soit $N \in \mathbb{N}^*$ un horizon temporel. Dans le cadre du modèle CRR vu en cours on note $\omega =$ $(\omega_1,\ldots,\omega_N)$ un élément de $\Omega=\{1+a,1+b\}^N$ et on définit

$$\mathbb{P}^*(\omega) = \prod_{n=1}^N p(\omega_n) \quad \forall \omega \in \Omega,$$

où p(1+a) = (b-r)/(b-a) et p(1+b) = (r-a)/(b-a), avec a < r < b. On rappelle que les variables aléatoires $(T_n)_{n=1}^N$, à valeurs dans $\{1+a,1+b\}$, sont définies par $T_n(\omega) = \omega_n$ pour tout $1 \le n \le N$ et tout $\omega \in \Omega$. De plus on travaille avec la filtration $(\mathcal{F}_n)_{0 \le n \le N}$ définie par $\mathcal{F}_0 = \{\emptyset, \Omega\}$ et $\mathcal{F}_n = \sigma(T_1, \dots, T_n)$ pour tout $1 \leq n \leq N$.

- 1) Vérifier que $\mathbb{P}^*(\Omega) = 1$ (on suppose que $\mathbb{P}^* : \mathcal{F}_N \to [0,1]$ est σ -additive).
- **2)** Montrer que sous \mathbb{P}^* les $(T_n)_{n=1}^N$ sont i.i.d. de loi commune donnée par $\mathbb{P}^*(T_1=1+a)=p(1+a)$ et $\mathbb{P}^*(T_1 = 1 + b) = p(1 + b)$.
- 3) Montrer qu'une mesure de probabilité \mathbb{P}^{**} sur (Ω, \mathcal{F}_N) , vérifiant $\mathbb{P}^{**}(\omega) > 0$ pour tout $\omega \in \Omega$, est risque-neutre si et seulement si elle vérifie

$$\mathbb{E}^{**}(T_{n+1}|\mathcal{F}_n) = 1 + r, \quad \forall 0 \le n \le N - 1.$$
 (1)

4) Montrer si \mathbb{P}^{**} est une mesure de probabilité sur (Ω, \mathcal{F}_N) qui vérifie (1) alors

$$\mathbb{P}^{**}(\omega) = \prod_{n=1}^{N} p(\omega_n) = \mathbb{P}^*(\omega)$$

(où \mathbb{P}^* désigne le mesure de probabilités étudiée dans les questions 1) et 2)).

Indication: On pourra dans un premier temps s'intéresser à la valeur de $\mathbb{E}^{**}(\mathbf{1}_{\{T_{n+1}=1+a\}}|\mathcal{F}_n)$.

5) Le marché décrit par ce modèle est-il viable? Complet?

Exercice 2.

Toujours dans le cadre du modèle CRR (avec a < r < b), on considère une option européenne d'échéance N et de payoff $h(S_N)$, avec $h: \mathbb{R}_+^* \to \mathbb{R}_+^*$ fonction mesurable. On note $(H_n^0, H_n)_{1 \leq n \leq N}$ la stratégie de couverture associée (et $(V_n(H))_{0 \le n \le N}$ la valeur du portefeuille correspondant à cette stratégie). On note \mathbb{P}^* la mesure de probabilités risque-neutre.

- 1) Montrer que pour tout $0 \le n \le N$, $V_n(H) = C(n, S_n)$ pour une fonction C(n, x) que l'on précisera. Que peut-on dire de $x \mapsto C(n, x)$ si h est croissante?
 - 2) Quelle est la loi de $\nu = \sum_{k=n+1}^N \mathbf{1}_{T_k=1+a}$ sous \mathbb{P}^* ?
 - 3) En déduire que

$$C(n,x) = (1+r)^{n-N} \sum_{m=0}^{N-n} C_{N-n}^m \left(\frac{b-r}{b-a}\right)^m \left(\frac{r-a}{b-a}\right)^{N-n-m} h(x(1+a)^m (1+b)^{N-n-m}).$$

4) Montrer que la quantité d'actif risqué à détenir sur la période]n,n+1] pour couvrir l'option est donnée par

$$H_{n+1} = \frac{C(n+1, S_n(1+b)) - C(n+1, S_n(1+a))}{S_n(b-a)}.$$

Que peut-on dire de cette quantité si h est croissante ?

- 5) On suppose dans cette question que pour un certain $\alpha > 0$, la fonction $x \mapsto \alpha x h(x)$ est positive et croissante. Montrer qu'alors $H_n \leq \alpha$.
 - 6) En déduire des bornes pour ${\cal H}_n$ dans le cas du Call.