Oaktree Manual

April 19, 2012

Contents

1	Introduction	2
2	Installation	3
3	Running	4
4	Input 4.1 SIMULATION	5 6 6 6 7
5	Output	8
6	Viewer	9
7	Tutorials	10
8	Theory	11

Introduction

Installation

Running

Input

Oaktree input language extends Python. Subroutines and objects related to input processing are listed below.

4.1 SIMULATION

SIMULATION object stores data specific to one distinct analysis.

obj = SIMULATION (outpath, duration, step, grid, cutoff, extents)

- outpath output directory path
- duration simulation duration
- \bullet **step** time step
- ullet grid regular size of octree grid
- cutoff cutoff length below which geometrical details are not resolved
- extents tuple $(x_{min}, y_{min}, z_{min}, x_{max}, y_{max}, z_{max})$ of domain bounds

4.2 SUPERELLIPSOID

A superellipsoid is defined by the zero set of the implicit function

$$F\left(x,y,z\right) = \left(\left|\frac{x}{a}\right|^p + \left|\frac{y}{b}\right|^p\right)^{q/p} + \left|\frac{z}{c}\right|^q - 1.$$

This routine creates a translated superellipsoid in an initial orientation aligned with the global frame.

obj = SUPERELLIPSOID (center, radii, r, t, vcolor, scolor)

- obj SHAPE object
- center tuple (x, y, z) defining the center
- ullet radii tuple (a,b,c) defining the radii
- ullet **p** exponent p

CHAPTER 4. INPUT 6

- \mathbf{q} exponent q
- \bullet $\,$ vcolor integer volume color
- scolor integer surface color

4.3 UNION

Set theoretic union of two shapes.

obj = UNION (shape1, shape2)

- **obj** SHAPE object
- shape1 first input SHAPE object
- shape2 second input SHAPE object

4.4 INTERSECTION

Set theoretic intersection of two shapes.

obj = INTERSECTION (shape1, shape2)

- \bullet **obj** SHAPE object
- shape1 first input SHAPE object
- shape2 second input SHAPE object

4.5 DIFFERENCE

Set theoretic difference of two shapes.

obj = DIFFERENCE (shape1, shape2)

- \bullet **obj** SHAPE object
- shape1 first input SHAPE object
- shape2 second input SHAPE object

4.6 MOVE

Move shape linearly.

MOVE (shape, vector)

- shape input SHAPE object
- vector tuple (u, v, w) defining the translation

CHAPTER 4. INPUT 7

4.7 ROTATE

Rotate shape about an axis.

MOVE (shape, point, vector, angle)

- $\bullet \ \ {\bf shape}$ input SHAPE object
- $\bullet \ \mathbf{point}$ tuple (x,y,z) defining axis point
- \bullet vector tuple (u,v,w) defining axis direction
- \bullet $\,$ angle oriented angle in degrees

4.8 SOLID

A solid is created in a simulation.

obj = SOLID (simu, shape, label)

- $\bullet \ \mathbf{obj}$ SOLID object
- $\bullet \ \mathbf{simu}$ simulation in which the solid is created
- shape solid shape
- ullet label solid label

Output

Viewer

Tutorials

Theory