物理实验数学中心

Physics Experiment Center

Oscilloscope

Li Bin

NJUPT

Experimental Goals

- 1. Adjustment and use of oscilloscope.
- 2. Learn to use oscilloscope to observe voltage waveform.
- 3. Observation of Lissajous figures.

SDG 2042X Signal generator

SDS 1102X Oscilloscope

Steps:

1. Settings of Signal generator:

```
Set CH1:
Frequence: 1.000000KHz;
Vpp/ Amplitute: 5.000V;
Phase:0.000。
output 1;
```

2. Observe voltage waveform on Oscilloscope

Power on → Channel 1→ Default (blue)→ Auto setup (blue)

Table 1. The voltage of sinusoidal signals

NO.	Voltage (V)	Sensitivity of Y axis: S _y (V/div)	D _y (div)	U _{p-p} (v)	U _p (v)	U (v)
1	2.5	1				
2	3.0	1				
3	4.5	1				
4	5.0	1				

$$S_y^*D_y = Voltage = U_{p-p}$$
 $U_p = \frac{1}{2}U_{p-p} = \sqrt{2}U$

Table 2. The period of sinusoidal signals

NO.	f (H _Z)	Sensitivity of X axis: S_x (us/div)	D _x (div)	T (us)
1	400	100	25	2500
2	2000	100	5	
3	8000	25		
4	15000	10		

$$S_x^*D_x=1/f=T$$
1 ms = 10⁻³ s
1 us = 10⁻⁶ s
1 Hz = 1 s⁻¹

3. Lissajous figures

$$f_x$$
: $f_y = N_y$: N_x

1 Signal generator:

Set: Ch1 and Ch2:

Ch1: 3KHz, 4V, 0;

Ch2: 2KHz, 4V, 0.

output 1 and 2

2 Oscilloscope

Open Ch1 and Ch2→Acquire→XY

Phase diff fx:fy	0	$\frac{1}{4}\pi$	$\frac{1}{2}\pi$	$\frac{3}{4}\pi$	π
1:1		0			
1:2	\bigcirc				
1:3	\bigvee	\mathbb{M}		M	\bigcap
2:3					

Table 3. Plot Lissajous figures

$f_x = 3 \text{ kHz}, f_y = 6 \text{ kHz}$

Phase diff.	$0^{\rm o}$	90°	180°	270°	360°
Lissajous figures					

END