Assignment #1

Higher Layer Protocols

Anton Claes

0300042110

CEG4188

University of Ottawa

October 4th, 2017

Assignment # 1

Question 1

We have two hosts A and B connected with a R bps link, m meters long, and with a propagation speed of s m/s.

a. Ignoring processing and queing delays, we have a total delay $d_{total}=d_{prop}+d_{trans}$, with : $d_{trans}=L/R$ and $d_{prop}=m/s$ So the total end to end delay is $d_{e2e}=L/R+m/s=\frac{Ls+Rm}{Rs}$

b. d_{prop} is the time needed for a bit to go accros the whole link. If $d_{prop} > d_{trans}$ then at $t = d_{trans}$ it has crossed $\frac{d_{trans}}{d_{prop}}\%$ of the link, so it is at position $\frac{d_{trans}}{d_{prop}} \cdot m$ from the beginning of the link.

c. $d_{trans}=L/R$ and $d_{prop}=m/s$, so if we want d_{trans} and d_{prop} to be equal : $d_{trans}=L/R=d_{prop}=m/s \Rightarrow m=\frac{Ls}{R}$

With a propagation speed of $s=2.5*10^8 m/s$, a length L=120bits and a link rate of R=56kbps we have $m=\frac{2.5*10^8*120}{56*10^3}=53.6km$.

So for the propagation delay and transmission delay to be equal, the link must be 53.6 km long.