

Digital Geometry

JJCAO

Pleasure may come from illusion, but happiness can come only of reality.

Content

- Applications
- Prerequisites
- Traditional Computer Graphics
- Advance Computer Graphics
- Modern Computer Graphics

Prerequisites

- Familiarity with basic calculus, linear algebra,
 & vector calculus
- Familiarity with a graphics API (e.g. OpenGL)
 - If not, learn quickly (for the sake of visualization)
- C++/Matlab coding skills
 - If Java is preferred, you will be on your own
- Capability to search Google and forums for useful information

Coding

Coding is very import in this area!

If you can not program, you will study nothing in this subject!

Math

- Differential Geometry
- Liner algebra: transformations, spectral decomposition, PCA, SVD
- Graph theory

• ...

- Combined with a lot of intuition ...
- Work on real data = Write/use a lot of code!

How to pass

- 2 assignments
 - Shape descriptors & retrieval
 - // Shape matching / correspondence
 - Mesh filter
- 2 presentations
 - Mesh filter
 - **—** ?

Motivation

Streetview Scans

RGB-D data

Motivation

Lots of geometric data in different domains!

What is CG?

er ice

- The <u>study of computer graphics</u> is a sub-field of <u>computer science</u> which studies methods for digitally synthesizing and manipulating visual
 - -3D

content.

- Image processing
- CG studies the manipulation of visual & geometric information using mathematical & computational techniques.
- CG vs. <u>Visualization</u>

Computer Graphics

The big picture

• 3D graphics programming in 1979

approx. 25 triangles

approx. 50 x 100 pixels

Advance Computer Graphics

Texture Mapping [Lévy 2001]

Normal Mapping [Sheffer et al., 2005]

Detail Transfer [Biermann et al. 2002]

Morphing [Lee et al. 1999]

Mesh Completion [Kraevoy and Sheffer 2005]

Editing [Lévy 2003]

Databases [Allen et al. 2003]

Remeshing [Praun and Hoppe 2003]

Surface Fitting [Li et al. 2006]

Advance Computer Graphics

- Shape acquisition
- Point Set Processing
- Reconstruction
- Digital geometry processing
- Shape modeling and deformation
- Shape analysis
- GUI

Shape Acquisition

• David:

- 480 individually aimed scans
- 2 billion polygons
- 7,000 color images
- 32 gigabytes
- 30 nights of scan
- 22 people

Point set consolidation

tog13_Edge-Aware Point Set Resampling with a c++ code framework for visualizing and processing

Mesh Reconstruction

tog03_Shape Modeling with Point-Sampled Geometry

Digital geometry processing

 Denoising, smoothing, simplification/remeshing, parameterization, compression

Mesh processing- Filtering

Several of filtering results.

Mesh parameterization

The goal: find the 2D parametric field of the triangle mesh.

A parameterization of a triangle mesh can be seen as a piecewise linear function, determined by the coordinates (u_i, v_i) at each vertex (x_i, y_i, z_i) .

Shape modeling and deformation

Sketch-based interfaces

Shape creation, editing & retrieval

More applications of geometric deformation

- Skeleton-skin animation; morphing
- Image/video retargeting

2.4 Shape analysis

Current research focus!

2.4 Shape analysis-Segmentation

2.4 Shape analysis-Correspondences

2.4 Shape analysis-Symmetry detection

Planar-reflective system

Intrinsic system

2.4 Shape analysis-Retrieval

What is graphics?

 Creation, display, storage, and animation of visual content

3D Content Creation

Modeling via part re-assembly [Funkhouser et al., SIG 2004]

Warping to photo [Xu et al., SIG 2011]

3D model retargeting

Structure-preserving retargeting of irregular 3D architecture [Lin et al., SIG Asia 2011]

3D Content Creation

sig12_A Probabilistic Model for Component-Based Shape Synthesis

sig12_Fit and Diverse-Set Evolution for Inspiring 3D Shape Galleries

Human Body Geometry and Motion Recovery from a Single Depth Camera

