

IMPLEMENTATION D'UN MODELE DE SCORING

Etude et Présentation: Haïtem

PLAN DE LA PRESENTATION

CONTEXTE ET PROBLEMATIQUE DU PROJET

- > Contexte: La société financière « Prêt à dépenser » souhaite offrir ses offres de crédit à une large clientèle.
- > **Défi 1**: Clientèle avec un historique de crédit limité ou inexistant.
- Défi 2: Manque de transparence sur les motivations d'octroi ou de refus de demande de crédit.
- ➤Objectif: Fournir aux conseillers financiers un outil interactif (un tableau de bord) permettant d'évaluer la solvabilité des demandes de crédit.
 - Système de notation visant à fournir une prédiction automatisée quant au remboursement ou au défaut d'un prêt.
 - Des outils d'interprétation de la décision générées par le modèle,
 - Répondre au besoin de transparence concernant les décisions de financement.

JEU DE DONNEES: EXPLORATION ET FEATURES ENGINEERING

Kernel Kaggle de J. Aguiar(https://www.kaggle.com/code/jsaguiar/lightgbm-with-simple-features/script)

	Traitement			
Fusion des fichiers CSV	Fichiers de base: Application_tain/test			
Variables catégorielles	Imputation des valeurs manquantes par la valeur la plus fréquente			
	OneHotEncoding			
Variables numériques	Agrégation: Min, Max, mean, sum			
	Imputation des valeurs manquantes par la médiane			
	Imputation des valeurs Infinies par +/- MAX(ABS)			
	Standardisation			
Colonnes avec 75% des valeurs nulles	Suppression			
Colonnes avec des valeurs uniques	Suppression			

Taille du dataset d'entrainement: (307507, 741)

JEU DE DONNEES: EXPLORATION - VARIABLE CIBLE 'TARGET'

Distribution of good (0) & faulty (1) clients in the train set

Clients insolvables

Clients solvables

Effectif des clients : 307 507

Problématique de déséquilibre de classes.

MODELISATION: METRIQUES PERTINENTES

- AUC-ROC : L'aire sous la courbe ROC est une mesure synthétique de la performance d'un modèle de classification binaire
- Matrice de confusion: TN, TP, FN, FP

10FN + FPCoût métier = Fonction coût métier *LEN*(Dataset d'entraînement)

False positive rate

TN: Prédiction réussie d'un client fiable

FN: Client non solvable et non identifié par le modèle de prédiction

-10

-1

FP: Client fiable mal classé

TP: Client unifiable bien identifié

Sélection préliminaire de 3 modèles candidats

Valider les modèles sélectionnés sur le dataset entier

Présélection de modèles candidats sur un échantillon de 60000 individus

Sélection finale sur l'ensemble du dataset

- Light Gradient Boosting (LightGBM)
- Linear Discimanant Analysis (LDA)
- Ada Boot (ADA)
- Dummy Classifier

CHOIX DU MODELE: DESEQUILIBRE DE CLASSES

Sélection préliminaire de 3 modèles candidats

Valider les modèles sélectionnés sur le dataset entier

Stratégie d'échantillonnage

Problématique de déséquilibre de classes

Method	Accuracy	Precision	Recall	F1_Score	AUC	Business_Cost
SMOTE	0.919645	0.534722	0.031036	0.058667	0.766572	0.520308
Random Under Sampler	0.705408	0.173127	0.702136	0.277764	0.774056	0.508683
Imbalance Ratio Adjustment	0.733895	0.185007	0.674929	0.290409	0.780745	0.500000

CHOIX DU MODELE: OPTIMISATION

Sélection préliminaire de 3 modèles candidats

Valider les modèles sélectionnés sur le dataset entier

Stratégie d'échantillonnage

Optimisation des hyperparamètres

LightGBM

LightGBM

scale_pos_weight

Optimisation bayésienne: Algorithme « Tree-Structured Parzen Estimator »

Nombre d'itérations: 90

Minimsation de la fonction coût

Dataset

Training

Testing

scale_pos_weight: $\frac{N \ classe \ négative}{N \ classe \ positive}$ - 2, $\frac{N \ classe \ négative}{N \ classe \ positive}$ + 2

learning_rate: 0.001, 0.01 n_estimators: 100, 4000 min_child_samples: 2, 256 reg_alpha: 1e-8, 1e-3 reg_lambda: 1e-8, 1e-3

 $\frac{N \ classe \ n\'egative}{N \ classe \ positive} = 11.385$

scale_pos_weight: 10.532
learning_rate: 0.0082
n_estimators: 3155
min_child_samples: 183

reg_alpha: 0.000153

reg_lambda: 6.8e-06

ANALYSE DES RESULTATS

> AUC: 0.79

> Score métier: 0.4863 (Seuil équivalent): 0.4863)

Prêt à dépenser

ANALYSE DES RESULTATS

Prêt à dépenser

ANALYSE DES RESULTATS

TRACABILITE MLOPS

Sélection préliminaire de 3 modèles candidats

Valider les modèles sélectionnés sur le dataset entier

Stratégie d'échantillonnage

Optimisation des hyperparamètres

LightGBM, LDA, ADA

Oversampling

Adding samples to minority class

LightGBM + Weight Imbalance

- Light Gradient Boosting (LightGBM)
- Linear Discimanant Analysis (LDA)
- ➤ Ada Boot (ADA)

N classe négative
N classe positive

ANALYSE DE LA DERIVE DES DONNEES: BIBLIOTHEQUE II EVIDENTLY AI

Pipeline de déploiement

SOLUTION FINALE

- ➤ Requêtes HTTP: POST GET
- > Accéder aux données des clients et aux prédictions
- Accéder à l'interprétabilité globale et locale

- Visualisation du score du client et de la décision de l'accord ou rejet de la demande de crédit.
- Visualisation des informations du client.
- Analyse des donnée du client.

http://18.132.49.180:8001/client?SK ID CURR=100001

http://18.132.49.180:8501/

Bilan et perspectives

- 1. Modélisation: LGBMCalssifier / Scale_pos_weight
- 2. La solution (API / Dashboard) est bien est déployée sur AWS EC2. Le pipeline de déploiement continue est également fonctionnel
- 3. Pour une meilleure performance:
 - Les données des clients devraient être stockées dans des bases de données
 - Optimiser le dashboard pour avoir une solution rapide à l'exécution.
 - Sécuriser l'accès au dashboard
- 4. La collaboration avec l'Équipe Financière est essentielle pour définir précisément les variables métiers pertinents.
- 5. Analyse des Risques pourrait être nécessaire à l'approche prédictive pour identifier les facteurs de risque sousjacents et ajuster la métrique coût métier
- 6. Optimisation de la transparence : Documenter certaines variables importante à l'interprétation (EXT_SCOURCE_1, EXT_SCOURCE_2, et EXT_SCOURCE_3).

Merci pour votre attention!