Анализ влияния выбора функции потерь на эффективность обучения по нескольким примерам

Курсовая работа

Студент: Кучеров Василий Дмитриевич, гр. 323

Научный руководитель: канд. физ.-мат. наук Буряк Дмитрий Юрьевич

Обучение по нескольким примерам (FSL)

Сферы применения:

- Верификация по биометрии
- Распознавание новых команд для голосового управления
- Исследование лекарств: поиск аналогов по свойствам небольшого количества реально синтезированных молекул

Решения:

- Увеличение размера тренировочной выборки
- Сужение пространства поиска модели
- Оптимизация параметров или процесса обучения

Постановка задачи

Целью данной работы является исследование подходов к повышению эффективности обучения нейронных сетей при решении задачи FSL.

Постановка задачи

Рассмотрим методы, основанные на построении эмбеддингов. Эффективность таких сетей применительно к формированию пространства эмбеддингов существенно зависит от выбора функции потерь, поэтому проведем сравнительное исследование этих функций потерь.

- Провести обзор наиболее популярных функций потерь в области FSL, а также реализовать их.
- Выбрать метод оценки качества пространств эмбеддингов.
- Выбрать задачу для проведения эксперимента и модель нейронной сети.
- Провести сравнительный анализ пространств эмбеддингов, полученных с использованием выбранных функций потерь.

Функции потерь

Contrastive Loss

 x_{i}, x_{j} – два примера, относящиеся к классам y_{i} и y_{j} .

€ – гиперпараметр, определяющий нижнюю границу расстояния между объектами разных классов.

$$egin{aligned} \mathcal{L}_{ ext{cont}}(\mathbf{x}_i,\mathbf{x}_j, heta) &= \mathbb{1}[y_i = y_j] \|f_{ heta}(\mathbf{x}_i) - f_{ heta}(\mathbf{x}_j)\|_2^2 + \ &\mathbb{1}[y_i
eq y_j] \max(0,\epsilon - \|f_{ heta}(\mathbf{x}_i) - f_{ heta}(\mathbf{x}_j)\|_2)^2 \end{aligned}$$

Triplet Loss

х – базовый пример

х+ – положительный пример (того же класса, что и базовый)

х – негативный пример (другого класса)

$$\mathcal{L}_{ ext{triplet}}(\mathbf{x},\mathbf{x}^+,\mathbf{x}^-) = \sum_{\mathbf{x} \in \mathcal{X}} \max \left(0,\|f(\mathbf{x}) - f(\mathbf{x}^+)\|_2^2 - \|f(\mathbf{x}) - f(\mathbf{x}^-)\|_2^2 + \epsilon
ight)$$

Функции потерь

Lifted Structured Loss

№ – все негативные пары

Р – все положительные пары

$$egin{aligned} D_{ij} &= |f(\mathbf{x}_i) - f(\mathbf{x}_j)|_2 \;\; \mathcal{L}_{ ext{struct}}^{(ij)} = D_{ij} + \log \Big(\sum_{(i,k) \in \mathcal{N}} \exp(\epsilon - D_{ik}) + \sum_{(j,l) \in \mathcal{N}} \exp(\epsilon - D_{jl}) \Big) \ \mathcal{L}_{ ext{struct}} &= rac{1}{2|\mathcal{P}|} \sum_{(i,j) \in \mathcal{P}} \max(0, \mathcal{L}_{ ext{struct}}^{(ij)})^2 \end{aligned}$$

N-pair Loss

$$egin{aligned} \mathcal{L}_{ ext{N-pair}}(\mathbf{x},\mathbf{x}^+,\{\mathbf{x}_i^-\}_{i=1}^{N-1}) &= \log\left(1+\sum_{i=1}^{N-1}\exp(f(\mathbf{x})^ op f(\mathbf{x}_i^-) - f(\mathbf{x})^ op f(\mathbf{x}^+))
ight) \ &= -\lograc{\exp(f(\mathbf{x})^ op f(\mathbf{x}^+))}{\exp(f(\mathbf{x})^ op f(\mathbf{x}^+)) + \sum_{i=1}^{N-1}\exp(f(\mathbf{x})^ op f(\mathbf{x}_i^-))} \end{aligned}$$

Функции потерь

Кластеризация

Отношение внутриклассовой к межклассовой дисперсии.

$$\frac{\sigma_{\text{within}}^{2}}{\sigma_{\text{between}}^{2}} = \frac{\frac{\sum_{i,j} \left\| \phi_{i,j} - \mu_{i} \right\|_{2}^{2}}{N}}{\frac{\sum_{i} \left\| \mu_{i} - \mu \right\|_{2}^{2}}{C}} = \frac{C}{N} \frac{\sum_{i,j} \left\| \phi_{i,j} - \mu_{i} \right\|_{2}^{2}}{\sum_{i} \left\| \mu_{i} - \mu \right\|_{2}^{2}}$$

Выражение показывает насколько разные гиперплоскости можно построить, выбирая различные пары объектов из двух классов:

$$\begin{split} R_{HV}\left(f_{\theta}\left(x_{1}\right),f_{\theta}\left(x_{2}\right),f_{\theta}\left(y_{1}\right),f_{\theta}\left(y_{2}\right)\right) \\ &= \frac{\left\|\left(f_{\theta}\left(x_{1}\right)-f_{\theta}\left(y_{1}\right)\right)-\left(f_{\theta}\left(x_{2}\right)-f_{\theta}\left(y_{2}\right)\right)\right\|_{2}}{\left\|\left(f_{\theta}\left(x_{1}\right)-f_{\theta}\left(y_{1}\right)\right\|_{2}+\left\|f_{\theta}\left(x_{2}\right)-f_{\theta}\left(y_{2}\right)\right\|_{2}}. \end{split}$$

Задача распознавания ключевых словGoogle Speech V2Word Number of Backward Bed 2,0

- 105 829 примеров 35 английских слов.
- Каждый пример файл формата 16Khz WAV продолжительность в 1 секунду или меньше
- Использовался голос 2618 разных людей
- В комплекте с датасетом предоставлено несколько WAV файлов (около минуты длиной) с фоновым шумом

Word	Number of Utterances			
Backward	1,664			
Bed	2,014			
Bird	2,064			
Cat	2,031			
Dog	2,128			
Down	3,917			
Eight	3,787			
Five	4,052			
Follow	1,579			
Forward	1,557			
Four	3,728			
Go	3,880			
Happy	2,054			
House	2,113			
Learn	1,575			
Left	3,801			
Marvin	2,100			
Nine	3,934			
No	3,941			
Off	3,745			
On	3,845			
One	3,890			
Right	3,778			
Seven	3,998			
Sheila	2,022			
Six	3,860			
Stop	3,872			
Three	3,727			
Tree	1,759			
Two	3,880			
Up	3,723			
Visual	1,592			
Wow	2,123			
Yes	4,044			
Zero	4,052			

Результаты экспериментов

Функция потерь	FC	HV	FC	HV
	Train	Train	Test	Test
Cross-Entropy	0.70	0.50	1.51	0.57
Triplet	0.44	0.45	1.22	0.58
Lifted Structured	0.32	0.42	0.93	0.54
N-pair	0.55	0.48	1.23	0.58

t-SNE

Выводы

- В рамках работы было проведено исследование подходов к повышению эффективности обучения по нескольким примерам
- На языке Python с использованием библиотеки PyTorch были реализованы различные функции потерь и метрики кластеризации.
- На примере задачи распознавания ключевых слов на датасете Google Speech V2 был произведен сравнительный эксперимент выбранных функций потерь.
- В ходе эксперимента была выявлена наиболее эффективная функция по выбранным критериям Lifted Structured Loss, которая показала на тестовом наборе результаты лучше: до 0.48 (31%) по критерию FC и до 0.04 (6%) по критерию HV

Спасибо за внимание!