# ZANICHELLI

# Lezioni di chimica organica

#### Lezione 5

# Alcoli, fenoli ed eteri



## I gruppi funzionali

Un gruppo funzionale è un atomo o un gruppo di atomi che determina le proprietà chimiche di un composto organico, permettendone la classificazione.

| Classe                | Formula generale     | Gruppo funzionale                  | Esempio                            | Nome<br>(la parte caratteristica del nome è in rosso) |
|-----------------------|----------------------|------------------------------------|------------------------------------|-------------------------------------------------------|
| alogenuri             | R—X                  | alogenuro (—X)                     | CH <sub>3</sub> —CI                | clorometano                                           |
| alcoli                | R—OH                 | ossidrile (—OH)                    | CH <sub>3</sub> —OH                | metanolo                                              |
| eteri                 | R—O—R′               | etere (—O—)                        | CH <sub>3</sub> —O—CH <sub>3</sub> | dimetiletere                                          |
| aldeidi               | R—CHO                | etere (—O—)  carbonile (—C—)     O | CH₃—C H                            | etanale (acetaldeide)                                 |
| chetoni               | R—CO—R′              | carbonile (—C—)                    | CH <sub>3</sub> C=O                | propanone (acetone)                                   |
| acidi<br>carbossilici | R—COOH               | carbossile —C OH                   | CH₃—C OH                           | acido etanoico (acido acetico)                        |
| esteri                | R—COOR'              | estere (—COO—)                     | O                                  | etanoato di metile (acetato di metile)                |
| ammidi                | R—CO—NH <sub>2</sub> | ammidico (—C—N—)<br>    <br>O H    | CH <sub>3</sub> —C NH <sub>2</sub> | etanammide (acetammide)                               |
| ammine                | R—NH <sub>2</sub>    | amminico (—NH <sub>2</sub> )       | CH <sub>3</sub> —NH <sub>2</sub>   | metilammina                                           |

I gruppi funzionali delle principali classi di composti



#### Gli alcoli

Gli **alcoli** derivano dagli **idrocarburi** per sostituzione di un idrogeno con un **gruppo ossidrile** (—OH) che ne diventa il gruppo funzionale.

La formula generale degli alcoli è R—OH, e si classificano in **primari**, **secondari** e **terziari** a seconda che l'atomo di carbonio a cui è legato l'ossidrile sia unito rispettivamente a uno, due o tre atomi di carbonio

## La nomenclatura degli alcoli

Secondo la nomenclatura IUPAC, il nome dell'alcol deriva da quello dell'idrocarburo corrispondente a cui si aggiunge la desinenza -olo. Se presentano due o tre gruppi ossidrili, gli alcoli prendono il nome di dioli e trioli.

| Atomi di carbonio | nome              |
|-------------------|-------------------|
| 1                 | metan <i>olo</i>  |
| 2                 | etan <i>olo</i>   |
| 3                 | propan <i>olo</i> |
| 4                 | butan <i>olo</i>  |
| 5                 | pentan <i>olo</i> |

#### I fenoli

Si dicono **fenoli** tutti i composti aromatici sostituiti da uno o più gruppi ossidrilici. Il capostipite della classe è, appunto, il fenolo o **idrossibenzene**. Le regole di nomenclatura sono analoghe a quelle già viste per i composti aromatici, ma si usa come radice **–fenolo**, e il gruppo –OH, considerato come sostituente, è indicato dal prefisso **–idrossi**.



**ZANICHELLI** 

#### Gli eteri

Gli eteri sono caratterizzati da un atomo di ossigeno che lega due gruppi alchilici o arilici. La loro formula generale è R—O—R' e tradizionalmente il nome si ricava premettendo a –etere i sostituenti legati all'ossigeno. Il nome IUPAC si ricava invece trattando il gruppo –OR come un sostituente dell'idrocarburo. Il nome dato prevede il prefisso dell'alchile seguito da –ossi e dal nome del composto portante della molecola.

tetraidrofurano



ZANICHELLI

# Proprietà fisiche di alcoli, fenoli ed eteri (I)

A parità di massa molecolare, gli alcoli e i fenoli hanno **punti di ebollizione** più alti rispetto agli idrocarburi e agli eteri.

I legami a idrogeno che si formano tra le molecole degli alcoli e dei fenoli sono infatti più forti sia delle **forze di London** che attraggono le molecole degli idrocarburi o delle interazioni **dipolo-dipolo** presenti negli eteri.

# Proprietà fisiche di alcoli, fenoli ed eteri (II)

La **solubilità** degli alcoli decresce all'aumentare del numero di atomi di carbonio perché prevale il carattere idrofobico della catena rispetto al carattere idrofilo dell'ossidrile. La buona solubilità di metanolo, etanolo e propanolo in acqua è dovuta alla formazione di **legami a idrogeno**.





В

(A) Legami a idrogeno fra molecole di alcol;(B) legami idrogeno tra molecole di acqua e

ZANICHELLI

alcol

#### Acidità di alcoli e fenoli

Gli alcoli sono acidi **molto deboli**; i fenoli al contrario sono circa un **milione di volte più acidi** perché lo **ione fenossido** (ArO<sup>-</sup>) è molto più stabile dello ione alcossido (RO<sup>-</sup>).

| Sostanza                                                         | Nome              | p <i>K</i> <sub>a</sub> |
|------------------------------------------------------------------|-------------------|-------------------------|
| (CH <sub>3</sub> ) <sub>3</sub> COH                              | alcol terbutilico | 18,00 Acido più debole  |
| CH₃CH₂OH                                                         | alcol etilico     | 16,00                   |
| НОН                                                              | acqua             | 15,74                   |
| CH₃OH                                                            | metanolo          | 15,54                   |
| C <sub>6</sub> H <sub>5</sub> OH                                 | fenolo            | 9,89                    |
| C <sub>6</sub> H <sub>2</sub> (NO <sub>2</sub> ) <sub>3</sub> OH | acido picrico     | 0,52 Acido<br>più forte |



# Le reazioni degli alcoli (I)

Gli alcoli danno reazioni con rottura del legame C—O, oppure reazioni di ossidazione.

$$\begin{array}{c} \text{Nu:} + -\overset{\delta^+}{C} \overset{\delta^-}{OH} \overset{H^+}{\longrightarrow} -C - \text{Nu} + \text{H}_2\text{O} \\ \\ \overset{H}{-C} & \overset{O}{OH} \overset{OX}{\longrightarrow} -\overset{C}{C} - \text{OH} \\ \\ & \overset{O}{\text{ossidazione del carbonio alcolico}} \end{array}$$

# Le reazioni degli alcoli (II)

Le reazioni di rottura del legame C—O avvengono prevalentemente in ambiente acido, per **sostituzione nucleofila**. L'ossigeno del gruppo —OH è in grado di accettare un protone (H<sup>+</sup>) e si trasforma nel gruppo — OH<sub>2</sub> <sup>+</sup>. Il legame C—O risulta cosi indebolito, dal carbonio può staccarsi una molecola neutra di acqua e la specie nucleofila può formare con esso un nuovo legame.

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{4} \\ \text{CH}_{5} \\ \text{CH}_{5} \\ \text{CH}_{6} \\ \text{CH}_{6} \\ \text{CH}_{7} \\ \text{CH}_{8} \\ \text{CH}_{8} \\ \text{CH}_{9} \\$$



# Le reazioni degli alcoli (III)

Un'altra reazione con rottura del legame C–O è quella di disidratazione, che avviene in presenza di acido solforico concentrato e alla temperatura di 180°C.



# Le reazioni degli alcoli (IV)

Nelle **reazioni di ossidazione**, il carbonio risulta tanto più ossidato quanti più legami forma con l'ossigeno e quanti meno ne forma con l'idrogeno. Gli **alcoli primari** si ossidano prima ad aldeidi e poi ad acidi carbossilici.

$$R-CH_{2}OH \xrightarrow{ox} R-C \xrightarrow{ox} R-C$$

$$H \qquad OH$$
alcol primario aldeide acido carbossilico

#### Gli alcoli secondari si ossidano a chetoni.





#### L'ossidazione dei fenoli

Anche i fenoli si ossidano facilmente: il prodotto che si ottiene e del tutto particolare e appartiene alla categoria dei **chinoni**. Dall'ossidazione dell'idrochinone, per esempio, si ottiene il *p*-benzochinone, o chinone.



idrochinone *p*-benzochinone (chinone)

I chinoni sono molecole di grande importanza biologica: gli **ubichinoni**, o *coenzimi* Q, sono fondamentali per il metabolimo dei mitocondri.

#### Utilizzo di alcoli e fenoli (I)

Il **metanolo** (CH<sub>3</sub>OH) è un importante intermedio dell'industria chimica, inoltre viene impiegato come **carburante** per autotrazione e nelle celle a combustibile. Si tratta anche di una sostanza altamente **tossica**: 30 mL provocano la morte di un essere umano adulto.



Modello molecolare del metanolo



#### Utilizzo di alcoli e fenoli (II)

L'etanolo (CH<sub>3</sub>CH<sub>2</sub>OH) è il costituente di tutte le bevande alcoliche e si ottiene per fermentazione degli zuccheri da parte di microorganismi.

$$C_6H_{12}O_6 \xrightarrow{\text{fermentazione}} 2CH_3CH_2OH + 2CO_2$$

Viene usato come combustibile al posto della benzina e trova impiego nell'industria dei solventi, dei profumi e dei cosmetici.

#### Utilizzo di alcoli e fenoli (III)

Il **glicol etilenico** è un diolo che viene impiegato come liquido anticongelante grazie all'alto punto di ebollizione e alla totale solubilità in acqua.



Modello molecolare del glicol etilenico

Il glicol etilenico è usato per la sintesi di numerosi composti tra cui il PET, la resina con cui si producono le bottiglie «di plastica».

#### Utilizzo di alcoli e fenoli (IV)

Il glicerolo, più noto come glicerina, è un triolo. Trova impiego nell'industria dei cosmetici e delle vernici. Il derivato nitrato del glicerolo, la nitroglicerina, è un potente esplosivo che viene impiegato anche, in soluzione alcolica molto diluita, nella terapia dell'angina pectoris.

$$CH_{2}-OH$$
  $CH_{2}-O-NO_{2}$   $H_{2}SO_{4}$   $CH_{2}-O-NO_{2}$   $CH_{2}-O-NO_{2}$   $CH_{2}-O-NO_{2}$   $CH_{2}-O-NO_{2}$   $CH_{2}-O-NO_{2}$ 

La nitroglicerina si ottiene facendo reagire glicerina anidra con una miscela di acido nitrico e solforico



## Utilizzo di alcoli e fenoli (V)

| Formula                                                       | Nome                        | Usi                                                                            |
|---------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------|
| CH <sub>3</sub> OH CH <sub>3</sub> CH <sub>3</sub>            | timolo                      | Disinfettante del cavo orale<br>e componente delle paste<br>dentifricie.       |
| OH<br>OCH <sub>3</sub>                                        | guaiacolo                   | Espettorante e componente di alcuni sciroppi per la tosse.                     |
| OH<br>NH—C—CH <sub>3</sub>                                    | paracetamolo                | Antipiretico e analgesico,<br>alternativo all'aspirina.                        |
| OH<br>C—(CH <sub>3</sub> ) <sub>3</sub><br>OCH <sub>3</sub>   | butilidrossianisolo (E 103) | Antiossidante per prodotti alimentari (farina, biscotti, cioccolato).          |
| OH<br>OCH <sub>3</sub><br>CH <sub>2</sub> —CH=CH <sub>2</sub> | eugenolo                    | Antibatterico usato dai dentisti;<br>viene estratto dai chiodi di<br>garofano. |

I composti fenolici hanno proprietà antiossidanti e azione disinfettante. Molte piante aromatiche contengono il timolo, a cui devono le loro proprietà antisettiche.

