Graph Transformer for Quantum Circuit Reliability Estimation

Quantum Computing in NISQ Era

- Noisy Intermediate-Scale Quantum (NISQ)
 - **Noisy**: qubits are sensitive to environment; quantum gates are unreliable
 - Limited number of qubits: tens to hundreds of qubits
 - Limited connectivity: no all-to-all connections

IBM Washington 127Q

https://guantum-computing.ibm.com/

A Large Gap between Powerful Quantum Algorithms and Current Devices

Close the gap with machine learning and hardware-aware algorithm design

^{*}Size of data point indicates connectivity; larger means denser connectivity.

Good Infrastructure is Critical

- To enable ML-assisted hardware-aware quantum algorithm design
- Need a simulation framework on classical computer
 - Fast
 - PyTorch native
 - Portable
 - Scalable
 - Analyze circuit behavior
 - Study **noise** impact
 - Develop ML model for quantum optimization

TorchQuantum Library

- A fast library for classical simulation of quantum circuit in **PyTorch**
 - Automatic gradient computation for training parameterized quantum circuit
 - GPU-accelerated tensor processing with batch mode support
 - Dynamic computation graph for easy debugging
 - Easy construction of hybrid classical and quantum neural networks
 - Gate level and pulse level simulation support
 - Converters to other frameworks such as IBM Qiskit
 - Examples of ML for Quantum
 - •

Transformer for circuit reliability prediction

Use the circuit graph information

Transformer for circuit reliability prediction

Use PST as the metrics (same as in the previous Ji and Swamit's papers)

 $PST = \frac{\#Trials\ with\ output\ same\ as\ initial\ state}{\#Total\ trials}$

Dataset collection

Collect dataset on real machine / noisy simulator

Features on each node

Use the circuit graph information

Graph Transformer

Graph transformer layers

Preliminary Results

Randomly generated circuits

