Assignment 1

Will Doyle

2025-01-07

Assignment: Analyzing and Modeling Postsecondary Credits

In this assignment we'll be pushing further out into the future. I want you to predict the number of postsecondary credits someone earned by 2018, based on the individual's entering characteristics as a ninth grader in 2009.

This assignment will assess your ability to: - Present and analyze a dependent variable. - Understand and apply regularization techniques. - Effectively communicate results through coding and visualization.

1. Exploring the Dependent Variable

• Load the dataset and clean the data. The hsls_extract2.csv dataset is on the brightspace page, under datasets. Summarize x5postern using descriptive statistics (mean, median, standard deviation). Visualize its distribution using a histogram and a density plot. (hint: summarize, geom_histogram).

2. Categorical Variable Analysis

• Identify any categorical independent variables in the dataset. Create a bar plot to explore the mean values of x5postern across different levels of one selected categorical variable. (hint: group_by, summarize, geom_col)

3. Continuous Variable Analysis

• Select one continuous independent variable. Create a scatterplot with x5postern on the y-axis and the selected independent variable on the x-axis. Add a trendline to visualize the relationship. (hint: geom_point)

4. Missing Data Handling

• Identify missing values for x5postern and other variables. Make sure to handle missing data! Remember that for most variables, all negative values indicate missing data. This is true for x5postern.

5. Linear Regression Model

• Fit a standard linear regression model to predict x5postern using all available predictors. Report the coefficients, R^2 , and RMSE of the model. Interpret the top three predictors based on their coefficients.

6. Feature Engineering

• Modify the dataset by creating at least one new feature (e.g., an interaction term or a transformed variable (hint: step_log, step_poly)). Refit the linear regression model with this new feature. Compare the RMSE and R² values with the previous model.

7. Lasso Regression Setup

• Set up a Lasso regression model using tidymodels. Use a range of penalties to evaluate how the model simplifies variable selection. Provide a summary of the variables retained at different penalty levels.

8. Lasso Regression Evaluation

• Identify the penalty value among those you worked with that resulted in the lowest rmse.

9. Visualizing Regularization

- Create two plots:
 - RMSE versus penalty values (on a logarithmic scale).
 - Coefficient estimates versus penalty values for the top two predictors.

• Interpret these plots and discuss how the penalty affects model performance and variable selection.

Submission Instructions:

- Include all code, outputs, and visualizations in an organized RMarkdown or similar document.
- Provide brief interpretations for each step, focusing on how the results contribute to understanding x5postern.