1 The Integers

Theorem (Well-Ordering Principle)

Every nonempty set of non-negative integers contain a least element. $\exists a \in S : \forall b \in S, a \leq b$

Proof. Let S be a set of non-negative integers. Suppose S has no smallest element. Then, $0 \notin S$, because otherwise, 0 would be the smallest element. By induction, suppose $0, 1, \ldots, k \notin S$. Then, $k+1 \notin S$ since otherwise, it would be the smallest element. Therefore, $S = \emptyset$.

Definition: Divides

Let $a, b \in \mathbb{Z}$. b divides a if a = bc for some $c \in \mathbb{Z}$, written as $b \mid a$.

Proposition: Let $a, b \in \mathbb{Z}, a \neq 0$ such that $b \mid a$. Then $|b| \leq |a|$.

Proof. Let $a, b \in \mathbb{Z}$ such that $b \mid a$ and $a \neq 0$. Then there exists some $c \in \mathbb{Z}$ such that a = bc. Since $a \neq 0$, b, c are necessarily nonzero. Applying the absolute value to both sides of the equation, we get |a| = |bc| = |b||c|. Since $b, c \neq 0$, we have |b|, |c| > 0. Then $|b| \leq |b||c| = |bc| = |a|$, so $|b| \leq |a|$.

Theorem (Division Algorithm)

Let $a, b \in \mathbb{Z}$ such that b > 0. There exists unique $q, r \in \mathbb{Z}$ such that a = bq + r where $0 \le r < b$.

Proof. Existence: Let $a, b \in \mathbb{Z}, b > 0$. Consider the set $S = \{a - bx : x \in \mathbb{Z}\} \cap \mathbb{Z}_{\geq 0}$. Consider b = -|a|. Then, $a - (-|a|)x \in S$. By the well-ordering principle, choose the smallest $a - bx \in S$ such that q := x, r := a - bx. Then, rearranging r and substituting q for x, we get $a = bq + r \in S$. By construction of S, $0 \le r$. Suppose $r \ge b$. Then, $0 \le r - b = (a - bx) - b = a - b(x - 1)$. This implies that r - b < r, a contradiction, since $r \in S$ was the least element by choice. Therefore, $0 \le r < b$.

Uniqueness: Suppose we have $q_1, r_1, q_2, r_2 \in \mathbb{Z}$ such that $a = bq_1 + r_1 = bq_2 + r_2$, where $0 \le r_1, r_2 < b$. Then, we have

$$bq_1 + r_1 = bq_2 + r_2$$

$$bq_1 + r_1 - (bq_2 + r_2) = 0$$

$$b(q_1 - q_2) + (r_1 - r_2) = 0$$

$$b(q_1 - q_2) = -(r_1 - r_2)$$

$$b(q_1 - q_2) = r_2 - r_1$$

Since $0 \le r_1 < b$, we can rewrite the inequality to be $-b < -r_1 \le 0$. Then, addint $0 \le r_2 < b$ to the inequality, we get $-b < r_2 - r_1 < b$. Because $b \mid (r_2 - r_1), (r_2 - r_1)$ must be a multiple of b, but since $-b < r_2 - r_1 < b$, we have that $(r_2 - r_1) = 0b = 0$. Then, $b(q_1 - q_2) = r_2 - r_1 = 0$. This implies that $q_1 = q_2$ and $r_1 = r_2$. Therefore, $q_1, r_1 \in \mathbb{Z}$ are unique.

Definition: Greatest Common Divisor (gcd)

Let $a, b \in \mathbb{Z}$ and either $a \neq 0$ or $b \neq 0$, but not both. The **greatest common divisor** of a and b is the largest integer dividing a and b. We write gcd(a, b) or (a, b).

 $(a,b) \mid a \text{ and } (a,b) \mid b$. Further, if c > 0 divides a and b, then $0 < c \le (a,b)$.

Theorem (Bezout's Identity)

Let $a, b \in \mathbb{Z}$ with $a \neq 0$ or $b \neq 0$, but not both. Suppose d = (a, b). We can find $x, y \in \mathbb{Z}$ such that ax + by = d.

Proof. Let d = (a, b). Consider the set $S = \{ax + by : x, y \in \mathbb{Z}\} \cap \mathbb{Z}_{\geq 0}$. Consider x = a, y = b. Then $ax + by = a^2 + b^2 \geq 0 \in S$, so S is not empty. By the well-ordering principle, choose the least element $s = ax + by \in S$ and consider a = sq + r where $0 \leq r < s$. Rearranging the second equation, we get

$$a = sq + r$$

$$r = a - sq$$

$$= a - (ax + by)q$$

$$r = a(1 - x) + b(-yq)$$

This implies that $r \in S$ since $0 \le r$ by definition. We also have that r < s, but since s was chosen to be the smallest element in S, this forces r = 0. Then, a = sq + r = sq, so $s \mid a$. Similarly, b = st for some $t \in \mathbb{Z}$, so $s \mid b$. Since $s \mid a$ and $s \mid b$, $s \le d$. But $d \mid a$ and $d \mid b$ by definition, so $d \mid s$ which implies that $d \le s$. Therefore, d = s = ax + by.

Theorem

Let $a, b \in \mathbb{Z}$ and suppose $a \mid bc$ and (a, b) = 1. Then $a \mid c$.

Proof. Because (a,b)=1, we can write 1=ax+by. Also, since $a\mid bc$, there exists some $z\in\mathbb{Z}$ such that bc=az. Then

$$c = cax + cby$$

$$= a(cx) + (bc)y$$

$$= a(cx) + a(zy)$$

$$c = a(cx + zy)$$

Therefore, $a \mid c$.

Corollary

Let $a, b, c \in \mathbb{Z}$ and (a, b) = 1. If $a \mid c$ and $b \mid c$, then $ab \mid c$.

Proof. Since (a,b) = 1, we have ax + by = 1. By definition, since $a \mid c$ and $b \mid c$, there exist $n, m \in \mathbb{Z}$ such that c = na and c = mb. Then, we have

$$1 = ax + by$$

$$c = cax + cby$$

$$= (bm)ax + (an)by$$

$$= (ba)mx + (ab)ny$$

$$c = ab(mx + ny)$$

so $ab \mid c$.

1.1 Prime Numbers

Definition: Prime

A nonzero non-unit integer p is **prime** if its only divisors are $\pm 1, \pm p$.

Theorem

Let $p \in \mathbb{Z} \setminus \{0, \pm 1\}$. The following statements are equivalent.

- (1) p is prime.
- (2) If $p \mid bc$, then $p \mid b$ or $p \mid c$ where $b, c \in \mathbb{Z}$.

Proof. (1) \Longrightarrow (2) Suppose p is prime and $p \mid bc$. If $p \mid b$, we are done, so suppose $p \nmid b$. Then, (p,b) = 1, so we have

$$1 = px + by$$

$$c = cpx + cby$$

$$= p(cx) + (bc)y$$

$$= p(cx) + (pn)y p \mid bc \implies bc = pn, n \in \mathbb{Z}$$

$$= p(cx) + p(ny)$$

$$c = p(cx + ny)$$

so $p \mid c$.

(2) \Longrightarrow (1) To prove the reverse implication, suppose the contrapositive: "If p is not prime, then there exist some $b, c \in \mathbb{Z}$ such that $p \mid bc$ but $p \nmid b$ and $p \nmid c$ ". Suppose $p \in \mathbb{Z} \setminus \{0, \pm 1\}$ is not prime; i.e. p is composite. Then, p can be written as its unique factorization $q_1q_2\cdots q_n$ where $n \geq 2$ and each q_i is prime. Choose $b = q_1$ and $c = q_2 \cdots q_n$. Then $p \mid bc$ because bc = p and $p \mid p$, but $p \nmid b$ and $p \nmid c$ because |p| > |b| and |p| > |c| respectively.

Theorem

Let $n \in \mathbb{Z} \setminus \{0, \pm 1\}$. n can be written as a product of primes.

Proof. Consider n > 1. Let S be the set of positive integers greater than 1 that cannot be written as a product of primes. Suppose for the sake of contradiction that S is nonempty. Then by the well-ordering principle, we can choose a least element $m \in S$. By definition, m is not prime or a product of primes. Because m is not prime, we can find some divisor $a \in \mathbb{Z}$ such that $a \neq \pm 1, \pm m$; i.e. we can find such an a such that $a \mid m$. Then, we can write m = ab for some $b \in \mathbb{Z}$. By definition, $|a| \leq |m|$ and $|b| \leq |m|$. Without loss of generality, assume a, b > 0. Note that $b \neq 1$ since otherwise, a = m. So, 1 < a, b < m and $a, b \notin S$. Because $a, b \notin S$, they are either prime or products of primes. But $m = a \cdot b$, so m is a product of primes, a contradiction. Therefore, $S = \emptyset$, so n can be written as a product of primes.

Theorem (Fundamental Theorem of Arithmetic

Let $n \in \mathbb{Z} \setminus \{0, \pm 1\}$. Suppose $n = p_1 \cdots p_r$ and $n = q_1 \cdots q_s$ where each p_i, q_j is prime. Then,

- (1) r = s.
- (2) There is a unique permutation σ on $\{1,\ldots,r\}$ such that $p_i=\pm q_{\sigma(i)}$.

Proof. Let $n \in \mathbb{Z} \setminus \{0,1\}$. Without loss of generality, suppose n is positive and $n = p_1 \cdots p_r$ and $n = q_1 \cdots q_s$ where each p_i, q_j is prime. Then $p_1 \mid q_1 \cdots q_s$. In particular, $p_1 \mid q_j$ for some $j \leq s$. Because q_j is prime, we necessarily have that $q_j = |p_1|$. Without loss of generality reindex j = 1 to get $q_1 = |p_1|$. Then, $p_1 \cdot (p_2 \cdots p_r) = p_1 \cdot (q_2 \cdots q_s) \implies p_2 \cdots p_r = q_2 \cdots q_s$. By induction, we have that $p_r = q_r$. If r < s, by the above, we have that $1 = q_{r+1} \cdots q_s$, which implies $q_j = 1$ for each j. A similar argument is said for s < r. In either case, we have a contradiction. Therefore, r = s and there is a unique permutation σ on $\{1, \ldots, r\}$ such that $p_i = q_{\sigma(i)}$.

1.2 Modular Arithmetic

Definition: Well-Defined Functions

A function $f: X \to Y$ is **well-defined** if, for all $a, b \in X$, we have f(a) = f(b) whenever a = b.

Pick $m \in \mathbb{Z}$ to be nonzero. The **Division Algorithm** says that for any $a, b \in \mathbb{Z}$, we can write $a = q_1 m + r_1, b = q_2 m + r_2$ for unique $q_1, q_2, r_1, r_2 \in \mathbb{Z}$ where $0 \le r_1, r_2 < |m|$.

Definition: Modulo

Define a relation R_m on \mathbb{Z} by saying $(a, b) \in R_m$ if and only if $r_1 = r_2$ (alternatively written as $a \sim b$ if and only if $r_1 = r_2$). We write this as $a \equiv b \pmod{m}$.

Proposition: For any $m \in \mathbb{Z}$ nonzero, R_m is an equivalence relation.

Proof. Let R_m be the relation defined above for $m \in \mathbb{Z}$ nonzero.

- (1) For any $a \in \mathbb{Z}$, write a = bq + r. Then, since r = r, $a \equiv a \pmod{m}$, R_m is reflexive.
- (2) Take $a, b \in \mathbb{Z}$ and assume $a \equiv b \pmod{m}$. By the division algorithm, we can write $a = q_1 m + r_1, b = q_2 m + r_2$. By assumption, $a \equiv b \pmod{m}$, so $r_1 = r_2$. Since equality is symmetric, $r_1 = r_2 \iff r_2 = r_1$, so $b \equiv a \pmod{m}$. R_m is symmetric.
- (3) Pick $a, b, c \in \mathbb{Z}$ and assume $a \equiv b \pmod{m}$, $b \equiv c \pmod{m}$. By the division algorithm, we can write $a = q_1m + r_1$, $b = q_2m + r_2$, $c = q_3m + r_3$. By assumption, $r_1 = r_2$ and $r_2 = r_3$. Since equality is transitive, $r_1 = r_2$, $r_2 = r_3 \implies r_1 = r_3$, so $a \equiv c \pmod{m}$. R_m is transitive.

Since R_m satisfies (1) - (3), R_m is an equivalence relation.

Definition: Equivalence Class

If R is an equivalence relation on a set S, then S can be written as the union of equivalence classes. The **equivalence class** of x is the set $[x] := \{y \in S : (x, y) \in R\}$.

Note: The equivalence classes of R_m are $[0], [1], \ldots, [m-1]$.

Definition: Equivalence Relation

A relation R on a set S is any subset of $S \times S$. An **equivalence relation** is a relation with the following properties:

- 1. Reflexivity: For any $a \in S$, $(a, a) \in R$ (alternatively written as $a \sim a$).
- 2. Symmetry: For any $(a,b) \in S \times S$, $(a,b) \in R$ implies $(b,a) \in R$ (alternatively written as $a \sim b \implies b \sim a$).
- 3. Transitivity: For any $a, b, c \in S$, if $(a, b), (b, c) \in R$, then $(a, c) \in R$ (alternatively written as $a \sim b, b \sim c \implies a \sim c$).

Definition: Congruent Modulo n

Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}$ be positive. We say a and b are **congruent** modulo n if n|(a-b), written as $a \equiv b \pmod{n}$.

The **integers modulo** n is the set of equivalence classes modulo n, written as $\mathbb{Z}/n, \mathbb{Z}_n, \mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/(n)$.

Definition: Operations on \mathbb{Z}/n

Let $n \in \mathbb{Z}$ and $[a], [b] \in \mathbb{Z}/n$. Define

$$\rightarrow [a] + [b] = [a+b]$$

$$\rightarrow [a][b] = [ab]$$

$$\rightarrow$$
 For $k \ge 0$, $[a]^k = [a^k]$

Proposition: The operations above are well-defined.

Proof. Let $n \in \mathbb{Z}$ and $[a], [a'], [b], [b'] \in \mathbb{Z}/n$ where [a] = [a'], [b] = [b']. Then ([a] = [a']) and [b] = [b'] implies $n \mid (a - a')$ and $n \mid (b - b')$, so $n \mid (a - a') + (b - b') = (a + b) - (a' + b')$. Therefore, [a + b] = [a' + b']. Similarly,

$$ab - a'b' = ab + 0 - a'b'$$

$$= ab + (-ab' + ab') - a'b'$$

$$= (ab - ab') + (ab' - a'b')$$

$$ab - a'b' = a(b - b') + b'(a - a')$$

Since n | (a - a') and n | (b - b'), n | ab - a'b', so [ab] = [a'b'].

Proposition: Let $[a], [b], [c] \in \mathbb{Z}/n$. Then the following properties hold:

$$(1) [a] + [b] = [b] + [a]$$

$$(2) [a] + ([b] + [c]) = ([a] + [b]) + [c]$$

$$(3) [a] + [0] = [a]$$

(4) There exists $x \in \mathbb{Z}$ such that [a] + x = [0]

(5)
$$[a][b] = [b][a]$$

(6)
$$[a]([b][c]) = ([a][b])[c]$$

$$(7) [a][1] = [a]$$

(8)
$$[a]([b] + [c]) = [a][b] + [a][c]$$

Proof. Let $[a], [b], [c] \in \mathbb{Z}/n$. Then the following properties hold:

$$(1) \ [a] + [b] = [a+b] = [b+a] = [b] + [a]$$

$$(2) \ [a] + ([b] + [c]) = [a] + [b + c] = [a + b + c] = [a + b] + [c] = ([a] + [b]) + [c]$$

(3)
$$[a] + [0] = [a + 0] = [a]$$

- (4) Take $x \in \mathbb{Z}$ such that x = n a. Then, [a] + x = [a] + [n a] = [a n a] = [n] = [0].
- $(5) \ [a][b] = [ab] = [ba] = [b][a]$
- $(6) \ \underline{[a]([b][c])} = [a][bc] = [abc] = [ab][c] = \underline{([a][b])[c]}$
- (7) $[a][1] = [a \cdot 1] = [a]$
- $(8) \ [a]([b]+[c]) = [a][b+c] = [a \cdot (b+c)] = [ab+ac] = [ab]+ac] = [a][b]+[a][c]$

Definition: Unit and Inverse

Let n > 1 be an integer. Consider $[a] \in \mathbb{Z}/n$. If there exists $[b] \in \mathbb{Z}/n$ such that [a][b] = [1], then we say [a] is a **unit** and [b] is the **inverse** of [a], written as $[a]^{-1}$.

Theorem

Let p > 1 be an integer. The following statements are equivalent:

- (1) p is prime.
- (2) Each nonzero $[a] \in \mathbb{Z}/p$ has an inverse.
- (3) If [ab] = [0], then either [a] = [0] or [b] = [0]

Proof. Let p > 1 be an integer.

- (1) \Longrightarrow (2) Take $[a] \in \mathbb{Z}/p$ to be nonzero. Then $p \nmid a$ since p is prime. That is, (p, a) = 1. Then px + ay = 1, or [1] = [px + ay] = [px] + [ay]. But $[px] = [p][x] = [0][x] = [0] \in \mathbb{Z}/p$, so [1] = [0] + [ay] = [ay] = [a][y]. Then, [y] is the inverse of [a]. Since [a] was arbitrary, this holds for all $[a] \in \mathbb{Z}/p$.
- (2) \implies (3) Let $[a], [b] \in \mathbb{Z}/p$ and suppose [ab] = [0]. If [a] = 0, we are done, so suppose $[a] \neq 0$. Then, [a] has an inverse, so $[a]^{-1}[ab] = [a]^{-1}[a][b] = [1][b] = [b] = [0]$. Therefore, either [a] = [0] or [b] = [0].
- (3) \Longrightarrow (1) Suppose for the sake of contradiction that p is not prime; i.e. p is composite. Then we can find a divisor a > 0 such that $a \neq \pm 1, \pm p$. That is, |1| < a < |p|. Let p = ab. Then 1 < a, b < p, but [ab] = [p] = [0], a contradiction.

Theorem

Let n > 1 be an integer and $[a] \in \mathbb{Z}/n$. Then [a] has a multiplicative inverse if and only if (a, n) = 1.

Proof. (\Longrightarrow) Suppose [a] has a multiplicative inverse. Then there exists $[x] \in \mathbb{Z}/n$ such that [a][x] = [1]. Then

$$[1] = [a][x]$$

$$= [ax] + [0]$$

$$= [ax] + [ny]$$

$$[ny] = [0] \in \mathbb{Z}/n, y \in \mathbb{Z}$$

$$[1] = [ax + ny]$$

so (a, n) = 1.

(\iff) Suppose (a,n)=1. Then ax+ny=1 for some $x,y\in\mathbb{Z}$, but $[ny]=[0]\in\mathbb{Z}/p$, so [ax]=[a][x]=[1], where [x] is the multiplicative inverse of [a].

Theorem Chinese Remainder Theorem

Let $m, n \in \mathbb{Z}$ be coprime and positive. Let $a, b \in \mathbb{Z}$. We can find $x \in \mathbb{Z}$ such that

$$x \equiv a \pmod{m}$$
$$x \equiv b \pmod{n}$$

Moreover, if y is another solution, then $y \equiv x \pmod{mn}$.

Proof. Let $m, n \in \mathbb{Z}$ such that (n, m) = 1. Then we can write na + mb = 1 for some $a, b \in \mathbb{Z}$. Set x := c(na) + d(mb). Then

$$[x]_m = [cna]_m + [dmb]_m$$

$$= [n(cn)]_m + [m(db)]_m$$

$$= [a(cn)]_m + [0]$$

$$[m(db)]_m = [0] \in \mathbb{Z}/m$$

$$[x]_m = [a]_m$$

so $[x]_m = [a]_m$. Similarly, $[x]_n = [b]_n$. So we have

$$x \equiv a \pmod{m}$$
$$x \equiv b \pmod{n}$$

Let y be another solution. Then $[y]_m = [x]_m$ so $m \mid y - x$. Similarly, $n \mid y - x$. But since (n,m)=1, we have that mn|y-x, or $[y]_{mn}=[x]_{mn}$. So $y \equiv x \pmod{mn}$.

Theorem Chinese Remainder Theorem (General)

Let $m_1, \ldots, m_n \in \mathbb{Z}$ be positive and pairwise relatively prime (i.e., $(m_i, m_j) = 1$ when $i \neq j$). Let $a_1, \ldots, a_n \in \mathbb{Z}$. We can find x such that

```
x \equiv a_1 \pmod{m_1}

x \equiv a_2 \pmod{m_2}

\vdots

x \equiv a_n \pmod{m_n}
```

Moreover, if y is another solution, then $y \equiv x \mod m_1 m_2 \cdots m_n$

Proof. We will induct on $n \in \mathbb{N}$.

Base case: At n = 2, we have $m_1, m_2 \in \mathbb{Z}$ where $(m_1, m_2) = 1$. Then, we can find $p, q \in \mathbb{Z}$ such that $m_1p + m_2q = 1$. Then, because $m_2q \equiv 0 \pmod{m_2}$, we have $m_1 \equiv 1 \pmod{m_2}$. Similarly, $m_2 \equiv 1 \pmod{m_1}$. Consider $x = (m_2q)r + (m_1p)s$ for $r, s \in \mathbb{Z}$. Then, since $(m_2q)r \equiv 0 \pmod{m_2}$, we have $x \equiv (m_1p)s \equiv s \pmod{m_2}$. Similarly, $x \equiv (m_2q)r \equiv r \pmod{m_1}$. So, $x \equiv r \pmod{m_1}$ and $x \equiv s \pmod{m_2}$. Now suppose y is another solution. Then, we have $y \equiv x \pmod{m_1}$, which implies that $m_1|(y-x)$ and similarly, $m_2|(y-x)$. Then because $(m_1, m_2) = 1$, we have that $m_1m_2|(y-x)$, so $y \equiv x \pmod{m_1m_2}$.

Inductive step: At n = n + 1, we have $m_1, m_2 \in \mathbb{Z}$ where $(m_1, m_2) = 1$. Then by the inductive hypothesis, we have a set of n pairwise coprime integers m_1, \dots, m_n where $x' \equiv a_i \pmod{m_i}$ for each $i = 1, \dots, n$. Define $M = \prod_{i=1}^n m_i$ and consider x = x' + sM for some $s \in \mathbb{Z}$. Then since $m_i | M$ implies $sM \equiv 0 \pmod{m_i}$ and from the inductive hypothesis, $x' \equiv a_i \pmod{m_i}$, we have $x \equiv x' + sM \equiv x' \equiv a_i \pmod{m_i}$ for $i = 1, \dots, n$. At m_{n+1} , because $m_{n+1} \nmid M$, we can choose an $s \in \mathbb{Z}$ such that $x \equiv x' + sM \equiv a_{n+1} \pmod{m_{n+1}}$. Now suppose y is another solution. Then $y \equiv x' \pmod{M}$ and $y \equiv a_{n+1} \pmod{m_{n+1}}$. Since $(M, m_{n+1}) = 1$, by the inductive hypothesis, we have that $y \equiv x \pmod{M}$, so $y \equiv x \pmod{m_1 m_2 \cdots m_{n+1}}$.

2 Rings

Definition: Ring

A **ring** R is a nonempty subset with two operations, addition (+) and multiplication (\cdot) such that, for all $a, b, c \in R$, the following properties hold:

- (1) $a+b \in R$
- (2) a + (b+c) = (a+b) + c
- (3) a + b = b + a
- (4) There exists $0 \in R$ such that 0 + a = a + 0 = a for all $a \in R$.
- (5) For all $a \in R$, there exists -a such that (-a) + a = a + (-a) = 0.
- (6) $a \cdot b \in R$
- $(7) \ a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- (8) $a \cdot (b+c) = a \cdot b + a \cdot c$
- $(9)^*$ There exists $1 \in R$ such that $1 \cdot a = a \cdot 1 = a$ for all $a \in R$.

*A set satisfying (1) - (8) is called a nonunital ring. If the set also satisfies (9), the ring is called unital.

- \rightarrow A ring is **commutative** if, for all $a, b \in R$, $a \cdot b = b \cdot a$.
- \rightarrow An element $a \in R$ is a **zero divisor** if there exists a nonzero $b \in R$ such that $a \cdot b = 0$ or $b \cdot a = 0$.
- \rightarrow An element $a \in R$ is a **unit** if there exists $b \in R$ such that $a \cdot b = b \cdot a = 1$, and is called the *inverse* of a, written as a^{-1} .

Proposition: Let n > 1, $a \in \mathbb{Z}$. If (a, n) = 1, [a] is a unit. Otherwise, it is a zero divisor.

Proof. Let n > 1 and $a \in \mathbb{Z}$. There are two cases.

Case i (a, n) = 1. Then ax + ny = 1 so [ax] = [a][x] = [1] where [x] is the inverse of [a], so [a] is a unit.

Case ii $(a, n) \neq 1$. Then (a, n) = d for d > 1. Then, ax + ny = d so [ax] = [d]. Since d|n, n = dm for some $m \in \mathbb{Z}$. Then since [d] = [dm] = [0], we get [ax] = [a][x] = [0], where [x] is nonzero, so [a] is a zero divisor.

Proposition: Let R be a ring and $a, b, c \in R$. The following hold:

- (1) The additive identity is unique.
- (2) An additive inverse is unique.
- (3) If a + b = a + c, then b = c.
- (4) The multiplicative identity is unique.
- (5) If a is a unit, then its inverse is unique.
- (6) $0 \cdot a = a \cdot 0 = 0$
- (7) (a)(-b) = -ab = (-a)(b)
- (8) (-a) = a
- (9) -(a+b) = -a b
- (10) -(a-b) = -a + b
- (11) (-a)(-b) = ab

Proof. Let R be a ring. Then

- (1) Let $0, 0' \in R$ be two additive identities. Then $\underline{0} = 0 \cdot 0' = 0' \cdot 0 = \underline{0'}$.
- (2) Let $a \in R$ have two additive inverses $b, c \in R$. Then $\underline{b} = 0 + b = (c + a) + b = c + (a + b) = c + 0 = \underline{c}$.
- (3) Let a + b = a + c. Then $(-a + a) + b = (-a + a) + c \to 0 + b = 0 + c \to b = c$.
- (4) $1, 1' \in R$ be two multiplicative identities. Then $\underline{1} = 1 \cdot 1' = 1' \cdot 1 = \underline{1'}$.
- (5) Let $a \in R$ be a unit with two multiplicative inverses $b, c \in R$. Then $\underline{b} = b \cdot 1 = b \cdot (ac) = (ba) \cdot c = 1 \cdot c = \underline{c}$.
- (6) Let $a \in R$. Then $0 = (a + a) \cdot 0 = a0 + a0 = a0$. Similarly, 0 = 0a.
- (7) Let $a, b \in R$. Then $a0 = a(b + (-b)) = ab + (a)(-b) \implies (a)(-b) = -ab$. Similarly, (-a)(b) = -ab.
- (8) Let $a \in R$. Then

$$-(-a) = 0 - (-a)$$

$$= (a + (-a)) + (-(-a))$$

$$= a + ((-a) - (-a))$$

$$= a + 0$$

$$-(-a) = a$$

$$a - b = a + (-b)$$

$$a - b = a + (-b)$$

(9) Let $a, b \in R$. Then

$$-(a+b) = 0 - (a+b))$$

$$= 0 + 0 - (a+b))$$

$$= (a-a) + (-b+b) - (a+b)$$

$$= a + (-a-b) + b - (a+b)$$

$$= (-a-b) + (a+b) - (a+b)$$

$$= (-a-b) + 0$$

$$-(a+b) = -a-b$$

(10) Let $a, b \in R$. Then

$$-(a - b) = -(a + (-b))$$

$$= -a - (-b)$$

$$-(a - b) = -a + b$$

$$-(a + b) = -a - b$$

$$-(-a) = a$$

(11) Let $a, b \in R$. Then

$$(-a)(-b) = a(-(-b))$$
 $(-a)(b) = a(-b)$
 $(-a)(-b) = ab$ $-(-a) = a$