# **CALCOLATORE DI REGRESSIONE LINEARE**

# Metodi Matematici e Statistici, A.A. 2019/2020

# Simone Torrisi X81000732

Link al progetto: <a href="http://torrisisimone.altervista.org/regrlin/index.html">http://torrisisimone.altervista.org/regrlin/index.html</a>

# **INDICE**

- Introduzione
- Regressione lineare
- Metodo dei minimi quadrati
- Varianza e deviazione standard
- Covarianza
- Coefficiente di correlazione lineare (o di Pearson)
- Banda di confidenza
- Stima dei valori
- Implementazione pratica
- Risultato grafico
- Referenze

### **INTRODUZIONE**

Il progetto è incentrato sullo sviluppo di un'applicazione web relativa ad un calcolatore di regressione lineare. Acquisito un dataset inserito dall'utente, l'obiettivo è trovare la retta che meglio approssima i dati, cercando una correlazione tra essi.

Il software è in grado di:

- Prendere i valori x e y inseriti dall'utente;
- Calcolare i coefficienti m e q della retta di regressione;
- o Calcolare la covarianza e il coefficiente di correlazione lineare (o di Pearson);
- Calcolare gli intervalli di confidenza per i coefficienti della retta, andando ad individuare una banda di confidenza;
- o Effettuare delle **stime** di nuovi valori sulla base della serie di dati precedente;
- Fornire un risultato grafico.

### **REGRESSIONE LINEARE**

La regressione lineare rappresenta un metodo di stima del valore atteso partendo da due variabili x e y legati da una retta.

Tale retta è del tipo: y = mx + q

Dove **q** è l'intercetta, ovvero il punto dove la retta incontra l'asse delle ordinate, mentre **m** è il coefficiente angolare della retta che indica di quanto aumenta y all'aumentare di un'unità di x.

La retta di regressione si ottiene applicando il metodo dei minimi quadrati.

## METODO DEI MINIMI QUADRATI

Tecnica che permette di trovare una funzione che minimizza lo scarto quadratico tra un generico punto y e la retta di regressione.

La funzione è: 
$$g(f) = \sum_{i=1}^{n} |f(x_i) - y_i|^2$$

Per trovare i coefficienti della retta di regressione si applicano le variabili m e q alla

funzione e diventa: 
$$g(m,q) = \sum_{i=1}^{n} [mx_i + q - y_i]^2$$

Risolvendo il sistema e usando le formule della varianza e covarianza, si trova che:

$$m = \frac{c_{xy}}{s_x^2} \qquad q = \overline{y} - \frac{c_{xy}}{s_x^2} \overline{x}$$

### VARIANZA E DEVIAZIONE STANDARD

La **varianza** è un indice che misura di quanto i dati si discostano dal valore medio. Tanto più è grande questo valore, tanto più i dati sono "distanti" dalla media. Se è nullo, tutti i dati sono uguali.

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

La **deviazione standard** (o scarto quadratico medio) è un indice risultante dalla radice quadrata della varianza.

$$s = \sqrt{s^2}$$

### **COVARIANZA**

La **covarianza** è un indice che esprime una correlazione tra la variabile x e la variabile y.

$$c_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})$$

Due serie di dati sono statisticamente incorrelate se  $c_{xy}=0$ . Tuttavia non ci assicura che non ci sia una dipendenza tra le due serie di dati.

Se  $c_{xy} > 0$  i due set di dati si dicono correlati positivamente, se  $c_{xy} < 0$  i due set di dati si dicono correlati negativamente.

### COEFFICIENTE DI PEARSON

Il **coefficiente di correlazione lineare** (o di Pearson) è un indice che esprime un'eventuale relazione di linearità tra due serie di dati.

$$r_{xy} = \frac{c_{xy}}{s_x s_y}$$

È compreso nell'intervallo [-1,1]. Più il valore si avvicina ad uno degli estremi, più i dati sono allineati con la retta di regressione.

Se  $r_{xy} > 0$  la retta è ascendente, se  $r_{xy} < 0$  la retta è discendente. Se i numeri sono piccoli può capitare che la covarianza sia molto vicina a zero, ma che il coefficiente di Pearson sia molto vicino ad uno degli estremi.

### BANDA DI CONFIDENZA

Fissato  $\alpha \in [0,1]$ , si chiama **intervallo di confidenza** con livello di fiducia  $\alpha$ , quell'intervallo:  $[T-e_1, T+e_2]$  tale che  $P(T' \in [T-e_1, T+e_2]) = 1-\alpha$ .

L'obiettivo è trovare gli intervalli di confidenza dei coefficienti m e q in modo da calcolare la **banda** (o striscia) **di confidenza**.

Siano  $[m-m_1$ ,  $m+m_1]$  e  $[q-q_1$ ,  $q+q_1]$  gli intervalli di confidenza per i coefficienti m e q della retta.

$$m_1 = t_{1-\frac{\alpha}{2}} \sqrt{s_{RES}^2 \frac{1}{s_x^2}} \qquad q_1 = t_{1-\frac{\alpha}{2}} \sqrt{s_{RES}^2 \left[\frac{1}{n} + \frac{\overline{x}^2}{s_x^2}\right]}$$

Dove  $s_{RES}^2 = \frac{1}{n-2} \sum_{i=1}^n (y_i - y_i')^2$ , con  $y_i'$  si intendono i valori teorici che dovrebbero essere assunti dal valore y se si trovassero sulla retta (in assenza di errori). Questo indice è chiamato **Errore Standard**, quanto più è piccolo tanto più attendibile è il valore statistico calcolato. Il termine  $t_{1-\frac{\alpha}{2}}$  indica il quantile di ordine  $1-\frac{\alpha}{2}$  della distribuzione t-student con n-2 gradi di libertà.

La banda di confidenza sarà compresa tra le rette:

$$y_1 = (m - m_1) x + (q - q_1)$$
  $y_2 = (m + m_1) x + (q + q_1)$ 

### STIMA DEI VALORI

È possibile stimare il valore di y, dato in input un determinato valore x o viceversa.

In presenza di una banda di confidenza, al valore stimato corrisponderà un intervallo entro il quale si stima che cada, con una certa probabilità basata su un valore di  $\alpha$  scelto, il valore vero.

Siano [mMin, mMax] e [qMin, qMax] gli intervalli di confidenza di m e q trovati in precedenza e sia  $x_1$  il valore di cui si vuole trovare la stima del corrispettivo y, l'intervallo stimato è dato da:  $[mMin \times x_1 + qMin, mMax \times x_1 + qMax]$ 

Per stimare il valore di x, dato in input un determinato valore di y, l'intervallo risultante è dato dalle formule inverse:  $\left[\frac{y_1 - qMin}{mMin}, \frac{y_1 - qMax}{mMax}\right]$ 

# **IMPLEMENTAZIONE PRATICA**

Di seguito è mostrato il codice delle funzioni per il calcolo di tutti i coefficienti.

L'implementazione fa riferimento ai concetti e alle formule teoriche precedenti.

Il linguaggio utilizzato è Javascript.

### **VARIANZA**

```
calcolaVarianzaX() {
        const { x, mediaX } = this.state;
        let n = x.length;
        let sommatore = 0;
        for (let i = 0; i < n; i++) {
            sommatore += Math.pow((x[i] - mediaX), 2);
        }
        varianzaX = sommatore / n;
calcolaVarianzaY() {
        const { y, mediaY } = this.state;
        let n = y.length;
        let sommatore = 0;
        for (let i = 0; i < n; i++) {
            sommatore += Math.pow((y[i] - mediaY), 2);
        }
        varianzaY = sommatore / n;
    }
```

### **DEVIAZIONE STANDARD**

```
calcolaDevstdX() {
      const { varianzaX } = this.state;
      devstdX = Math.sqrt(varianzaX);
   }
calcolaDevstdY() {
      const { varianzaY } = this.state;
      devstdY = Math.sqrt(varianzaY);
   }
}
```

#### COVARIANZA

```
calcolaCovarianza() {
    const { x, y, mediaX, mediaY } = this.state;
    let n = x.length;
    let sommatore = 0;
    for (let i = 0; i < n; i++) {
        sommatore += (x[i] - mediaX) * (y[i] - mediaY);
    }
    covarianza = sommatore / n;
}</pre>
```

### **COEFFICIENTE DI PEARSON**

```
calcolaPearson() {
    const { covarianza, devstdX, devstdY } = this.state;
    pearson = covarianza / (devstdX * devstdY);
}
```

#### COEFFICIENTI DELLA RETTA

```
calcolaCoeffM() {
      const { covarianza, varianzaX } = this.state;
      m = covarianza / varianzaX;
    }
calcolaCoeffQ() {
      const { mediaX, mediaY, covarianza, varianzaX } = this.state;
      q = mediaY - (mediaX * covarianza / varianzaX);
    }
```

### **QUANTILE DELLA T-STUDENT**

```
calcolaQuantile() {
    const { x, alfa } = this.state;
    var { jStat } = require('jstat');
    var ordine = 1 - (alfa / 2);
    quantile = jStat.studentt.inv(ordine, x.length - 2);
}
```

#### **ERRORE STANDARD**

```
calcolaS2RES(stimeY) {
    const { y } = this.state;
    let n = y.length;
    let sommatore = 0;
    for (let i = 0; i < n; i++) {
        sommatore += Math.pow((y[i] - stimeY[i]), 2);
    }
    s2res = sommatore / (n - 2);
}</pre>
```

#### BANDA DI CONFIDENZA

#### STIMA DEI VALORI

```
calcolaStimaX() {
    const { stimaY, mMin, mMax, qMin, qMax } = this.state;

    stimaXMin = (stimaY - qMin) / mMin;
    stimaXMax = (stimaY - qMax) / mMax;
}

calcolaStimaY() {
    const { stimaX, mMin, mMax, qMin, qMax } = this.state;

    stimaYMin = mMin * stimaX + qMin;
    stimaYMax = mMax * stimaX + qMax;
}
```

# **RISULTATO GRAFICO**

Di seguito è proposto il risultato grafico di un set di dati di prova (tabella a lato). La prima colonna costituisce la variabile x, la seconda costituisce la variabile y.

Nel grafico i punti viola rappresentano le coppie della tabella, la retta gialla tratteggiata rappresenta la retta di regressione lineare che meglio approssima i dati, le rette di colore grigio indicano la banda di confidenza con  $\alpha = 0.05$  (95%).



Tabella 1.5: Carichi di rottura.

| $I^a$ lesione | rottura |  |  |
|---------------|---------|--|--|
| 2550          | 4650    |  |  |
| 2900          | 4650    |  |  |
| 3000          | 4700    |  |  |
| 3000          | 4750    |  |  |
| 3000          | 4775    |  |  |
| 3000          | 4775    |  |  |
| 3250          | 4800    |  |  |
| 3250          | 4950    |  |  |
| 3250          | 5050    |  |  |
| 3600          | 5100    |  |  |
| 4225          | 5100    |  |  |
| 4650          | 5150    |  |  |
| 4750          | 5175    |  |  |
| 5175          | 5250    |  |  |
| 5300          | 5300    |  |  |
|               |         |  |  |

#### VALORI NUMERICI

$$m = 0.230$$

$$m_1 = 0.059$$

$$q = 4101,746$$

$$q_1 = 222,068$$

$$c_{xy} = 177133,333$$

$$r_{xy} = 0.920$$

# **REFERENZE**

| Dimostrazione formule dei coefficienti m e q | Dimostrazione | e formule | dei co | pefficienti | m e a: |
|----------------------------------------------|---------------|-----------|--------|-------------|--------|
|----------------------------------------------|---------------|-----------|--------|-------------|--------|

o Orazio Muscato, (2019). Metodi Matematici e Statistici. Regressione lineare (p. 33)

Documentazione formule intervallo di confidenza dei coefficienti m e q:

o Francesco Lagona, Intervalli di confidenza. Varianza incognita (p. 4)

Documentazione libreria Javascript JStat per il calcolo del quantile della t-student:

o <a href="https://github.com/jstat/jstat">https://github.com/jstat/jstat</a>

Documentazione React, framework Javascript utilizzato per lo sviluppo del progetto:

o https://it.reactjs.org/