Assignment-1 Course: B.Tech 1st Year

Subject: Discrete Mathematical Structures (DMS)

- 1. Write the following sets in the set builder form: $\{x \mid P(x)\}$, where P(x) is a property that describes the elements of the set:
 - a) $A = \{1, 7, 5, 13, 9, 19, 13, 25, \ldots\}$
 - b) $A = \{-2, -1, 0, 1, 2, \dots\}$
 - c) $A = \{2, 4, 7, 11, 16, 26, \ldots\}$
 - d) $A = [-1, 5] \cap [-2, 3] \cup [1, 4]$
- 2. Use the Venn diagram, given below to identify each of the following as true or false:
 - a) $A \subseteq B$, b) $B \subseteq A$, c) $C \subseteq B$, d) $x \in B$, e) $x \in A$, f) $y \in B$

- 3. For three given nonempty sets *A*, *B*, and *C* of which no two are disjoint, represent the following sets through appropriate Venn diagrams:
 - a) $(A-B)\cap C$, b) $(A^c-B)\cap C$, c) $(A\cup B)\oplus (B\cap C)$, d) $A\oplus B\oplus C$,
 - e) $A^{c} \cap B \cap C^{c}$, f) $(A \oplus B) C$
- 4. Write down the power set of each of the following sets:
 - a) $\{a,b,c\}$, b) $\{a,\{b,c\}\}$, c) $\{a\}$
- 5. Check the following identities for true or false and give proper justification (assume throughout that \mathbb{R} is the universal set):
 - a) $\mathbb{Z}^+ + \mathbb{Z}^- = \mathbb{Z}$, b) $(\mathbb{Z} \mathbb{Z}^-) \cap \mathbb{N} = \{0\}$, c) $\mathbb{Q} \cup \mathbb{Z}^c \cup \mathbb{N} = (\mathbb{Z}^-)^c$
- 6. State the addition principle for three sets and verify it with the sets:

$$A = \{a, b, c, d, e, f, g, h\}, B = \{b, d, e, h, k, j, m, p\}, C = \{a, c, e, h, j, p\}$$

- 7. Consider that $U = \{a, b, c, d, e, f, g, h\}$, $A = \{a, c, f, g\}$, $B = \{a, e\}$, $C = \{b, h\}$. compute the following:
 - a) $A^{c} \cup B$, b) $A \cap B^{c}$, c) $A \oplus B$, d) $B \oplus C$
- 8. Prove the following set identities through the first principle as well as Venn diagram:
 - a) $((A-B)\cap C)^c = A^c \cup B \cup C^c$
 - b) $(A \cup B) \cap (A^c \cap B)^c = A$
 - c) $A-B=A\cap B^{c}$
 - d) (A-B)-C = (A-C)-(B-C)
 - e) $(A-B)-C \subseteq A-C$
 - f) $(B-A)\cup(C-A)\subseteq(B\cup C)-A$
 - g) $(A \cup B) (A \cap B) = (A B) \cup (B A)$
 - h) $A \oplus B = A^{c} \oplus B^{c}$
 - i) $A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$
 - j) $(A \oplus B) \oplus B = A$
- 9. Let, $A_i = \{1, 2, 3, ..., i\}, (\forall i = 1, 2, 3, ...)$. Find $\bigcup_{i=1}^n A_i$ and $\bigcap_{i=1}^n A_i$.
- 10. Let, $A_i = \{..., -2, -1, 0, 1, ..., i\}, (\forall i = 1, 2, 3, ...)$. Find $\bigcup_{i=1}^n A_i$ and $\bigcap_{i=1}^n A_i$.
- 11. For: a) $A_i = \{i, i+1, i+2, ...\}$, b) $A_i = \{0, i\}$, (for every positive integer i) find the sets representing: $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$.
- 12. For the universal set $U = \{a,b,c,...,o,p\}$, write the bit string representations for the sets: $A = \{a,b,c,d,e,f,g,h\}$, $B = \{b,d,e,h,k,j,m,p\}$, $C = \{a,c,e,h,j,p\}$. Then, compute the bit strings for the sets: $A \cup B$, $A \cap B$, (A-B)-C, $A \oplus B$, $B \oplus C$.
- 13. Write down a formula for the nth term of the following sequences:
 - a) 1,-1,1,-1,1,...
 - b) 0,3,0,3,...
 - c) 0,3,8,15,24,35,...
 - d) 2,5,8,11,14,17,...
 - e) 2,5,7,12,19,31,...
 - f) 2,8,14,26,...

_____******_____