

Session: Hands-on primer on Sequences (Design) for Mapping

Educational Track 2: From Hardware to Map

Pulseq for mapping

Andreia S Gaspar

ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico Universidade de Lisboa, Lisbon, Portugal;

* e-mail: andreia.gaspar@tecnico.ulisboa.pt

T2 mapping (s20_from_3d_se_to_3d_mse)

T1 mapping (s30_2D_IR_SE_T1mapping)

Sample the longitudinal magnetization recovery curve for T1 mapping

Inversion recovery SE

(one k-space line per inversion)

TR>5*T1

s30_2D_IR_SE_T1mapping.ipynb

T1 mapping (s30_2D_IR_SE_T1mapping)

Inversion recovery SE

IR_SE_TI200_400_1600.mat

~30 min

T1 mapping

IR SE

Too long (>1h)

IR GRE

- Effect of the readout in recovery curve
- Faster

T1 mapping

IR SE

Too long (>1h)

IR GRE

- Effect of the readout in recovery curve
- Faster

IR GRE and trigger for cardiac

Open-MOLLI

Open-source myocardial **T1 mapping** sequence for fast prototyping

pyOpenMOLLI.ipynb

Repository

https://github.com/asgaspar/OpenMOLLI

3. Gaspar AS, et al. MRM. 2024.