Práctica 8. Interpolación polinómica

Table of Contents

Ejercicio 1. Polinomios y MATLAB	1
Ejercicio 2. Cálculo del polinomio interpolador	
Ejercicio 3. Estabilidad numérica en la interpolación: centrar y escalar datos	3
Ejercicio 4. Interpolación inversa (aplicación de la interpolación al cálculo de ceros de funciones)	4
Ejercicio 5. Error en la interpolación	5
Ejercicio 6. Curvas paramétricas	5
Funciones internas	

Ejercicio 1. Polinomios y MATLAB

Consultar la página crear y evaluar polinomios y la página Integrar y diferenciar polinomios.

Calcular usando las funciones de MATLAB:

• Las raíces del polinomio cúbico $f(x) = x^3 + 4x^2 + 4x$.

• Los coeficientes de la derivada del polinomio anterior.

$$df = 1 \times 3$$

3 8 4

• Evaluar el polinomio $g(x) = x^5 - 1$ en x = 2.

• Los coeficientes del polinomio que tiene como raíces los enteros -5,-2, -1, 1, 2 y 8. ¿Qué grado tiene? Producir el polinomio simbólico en MATLAB.

coefs =
$$1 \times 7$$

1 -3 -45 15 204 -12 -160
p = $x^6 - 3x^5 - 45x^4 + 15x^3 + 204x^2 - 12x - 160$

Ejercicio 2. Cálculo del polinomio interpolador

Queremos encontrar el polinomio interpolador *P* para los siguientes datos.

	1					
f(x)	16	18	21	17	15	12

En los siguientes apartados usaremos distintos métodos para encontrar *P.* ¿De que orden mínimo será el polinomio interpolador?

• Usar la función polyfit() de MATLAB para interpolar. Representar los datos como asteriscos rojos y el polinomio de interpolación entre 0.8 y 6.2 en magenta. (Nota: puede ser últil usar las funciones linspace() y polyval() de MATLAB.)

- Crear una función polyLagrange(xis, k, xvar) que devuelva el polinomio de Lagrange $L_k(xvar)$ para los valores de abcisas dados en el vector xis.
- Usar la función para calcular el polynomio *P* por la fórmula de Lagrange. (Nota: se puede llamar una función con una variable simbólica.)

$$-\frac{29 x^5}{120} + \frac{13 x^4}{3} - \frac{695 x^3}{24} + \frac{263 x^2}{3} - \frac{579 x}{5} + 69$$

• Representar los datos como asteriscos rojos y el polinomio de interpolación entre 0.8 y 6.2 en verde.

Ejercicio 3. Estabilidad numérica en la interpolación: centrar y escalar datos

Datos de ejemplo anticongelante con glicerol con la concentración y la temperatura de congelación correspondiente.

					40						
C°	0	-1.6	-4.8	-9.5	-15.4	-21.9	-33.6	-37.8	-19.1	-1.6	17

• Se pueden obtener los coeficientes del polinomio interpolador resolviendo el sistema lineal que tiene como matriz del sistema la matriz de Vandermonde. Construirla y calcular el número de condición del sistema. Resolver el sistema usando comandos de MATLAB. ¿Qué sucede? Representar los datos como asteriscos rojos y el polinomio de interpolación en azul. Estimar la temperatura de congelación al 45% de concentración.

```
condition_number =
    9.839200807327531e-22
```

Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 9.839201e-22.

valor45 = -18.107109451294026

• Calcular la media y la desviación estándar de los datos de porcentaje de glicerol. Crear un nuevo vector z con estos porcentajes centrados en cero y estandarizados. Crear la nueva matriz de Vandermonde a partir de estos valores en z y calcular su número de condición. Comparar con el del apartado anterior. Resolver el sistema y estimar la temperatura de congelación al 45% de concentración. (Nota: puede ser útil usar los argumentos opcionales de polyval()).

```
m =
    50
s =
    33.166247903554002
cond_num_estandar =
    3.047381627154119e-05
valor45estandar =
    -18.107109451293944
```

Ejercicio 4. Interpolación inversa (aplicación de la interpolación al cálculo de ceros de funciones)

Encontrar por interpolación de Lagrange una solución de la ecuación $x = e^{-x}$, sabiendo que:

```
error = 1.900476679361773e-07
```

Pistas:

- $f(x) = x e^{-x} = 0$ es la ecuación a resolver.
- En lugar de crear la tabla (x, f(x)), crear una tabla (f(x), x) y hacer la interpolación para el valor f(x) = 0.

Ejercicio 5. Error en la interpolación

A partir de la tabla de la función $f(x) = e^x$ que se proporciona,

x_k	0.0	0.2	0.4	0.6
f_k	1.0000	1.2214	1.4918	1.8221

- Encontrar valores aproximados de $\sqrt[3]{e}$ por interpolación lineal entre los dos valores más próximos y por interpolación cúbica, empleando los métodos de Lagrange o de Newton.
- Dar respectivas estimaciones de los errores debidos a la interpolación. Comparar las estimaciones con

el error exacto, sabiendo que $\sqrt[3]{e} = 1.395612425...$

```
valorlineal =
    1.40166666666667

valorcubica =
    1.395549382716049

valorexacto =
    1.395612425086090

er_lin =
    0.006054241580577

er_cub =
    6.304237004006730e-05
```

Ejercicio 6. Curvas paramétricas

Encontrar usando diferencias finitas de Newton una curva paramétrica en t que pase por los siguientes puntos con intervalos iguales de tiempo entre dos puntos consecutivos.

х	-1	0	1	0	1
у	0	1	0.5	0	-1

Dar la función de la curva paramétrica y representarla en azul junto a los puntos dados representados como asteriscos rojos.

(Nota: se puede hacer el métodos de las diferencias finitas de Newton a mano si se prefiere.)

Pn =

$$\left(64\,t^4 - \frac{352\,t^3}{3} + 60\,t^2 - \frac{14\,t}{3} - 1 - \frac{t\,(64\,t^3 - 144\,t^2 + 116\,t - 33)}{3}\right)$$

Funciones internas

Document preparado por I. Parada, 17 de abril de 2024