ÁLGEBRA LINEAR ALGORÍTMICA-2020.1-LABORATÓRIO 4

O modelo de Leslie. O modelo de Leslie descreve o comportamento de uma população que não se reproduz continuamente ao longo do tempo, mas sim a intervalos fixos e periódicos como dias, meses ou anos. Para descrevê-lo precisamos conhecer

- a taxa de sobrevivência dos indivíduos em uma faixa etária;
- a taxa de transição dos indivíduos de uma faixa etária para a seguinte;
- a *taxa de fecundidade* da espécie, dada pela quantidade de descendentes de um indivíduo que nascem, em média, por unidade de tempo enquanto este indivíduo faz parte de uma dada classe etária.

Suponhamos que a população que estamos estudando pode ser subdividida em k faixas etárias. Denotaremos por

 $s_{i,i}$ a porcentagem de indivíduos da faixa etária i que continuam nesta faixa etária depois de uma unidade de tempo;

 $t_{i,i+1}$ a porcentagem de indivíduos da faixa etária i que atingem a faixa etária i+1 depois de uma unidade de tempo;

 $f_{1,i}$ a taxa de fertilidade da faixa etária i.

A unidade de tempo depende da espécie que está sendo considerada. Note que

$$0 \le s_{i,i} \le 1$$
 e $0 \le t_{i,i+1} \le 1$,

já que são percentagens, ao passo que $f_{1,i} \ge 0$, uma vez que um indivíduo pode dar origem a muitos outros a cada unidade de tempo. Finalmente, digamos que $p_j(k)$ seja a quantidade média de indivíduos que pertencem à faixa etária j depois de decorrido um tempo k, a partir da primeira contagem feita nesta população. Leslie propôs a seguinte fórmula para os p's:

$$p_{i}(k) = \begin{cases} f_{1,1}p_{1}(k) + \dots + f_{1,k}p_{k}(k) & \text{para } i = 1. \\ s_{i,i}p_{i}(k) + t_{i-1,i}p_{i-1}(k) & \text{para } 2 \leq i \leq k-1 \\ s_{i,i}p_{i}(k) & \text{para } i = k. \end{cases}$$

1

O próprio Leslie observou que estas equações podem ser descritas compactamente em notação matricial por

$$p(k+1) = L \cdot p(k),$$

em que

$$L = \begin{bmatrix} f_{1,1} & f_{1,2} & f_{1,3} & f_{1,4} & \dots & f_{1,n} \\ t_{1,2} & s_{2,2} & 0 & 0 & \dots & 0 \\ 0 & t_{2,3} & s_{3,3} & 0 & \dots & 0 \\ 0 & 0 & t_{3,4} & s_{4,4} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & t_{n-1,n} & s_{n,n} \end{bmatrix} \quad \mathbf{e} \quad p(k) = \begin{bmatrix} p_1(k) \\ \vdots \\ p_k(k) \end{bmatrix}$$

é uma matriz $n \times n$. Tendo determinado o número de indivíduos em cada faixa etária de uma população em um dado momento, podemos usar o modelo para prever sua evolução ao longo do tempo, calculando

$$(4) p(k) = L^k \cdot p(0)$$

para vários valores de k, que são inteiros maiores que zero.

Análise de uma população de *Podocnemis expansa.* Neste laboratório aplicaremos o modelo de Leslie à tartaruga-amazônica (*Podocnemis expansa*) cujas taxas de sobrevivência e transição por faixa etária são dadas na tabela 1. Esta espécie só se reproduz a partir dos 11 anos e a quantidade de ovos postos por uma fêmea adulta nas faixas I, II e III são em média 83.31, 84.12 e 77.79. Construa a matriz de Leslie, referente a uma

população de *Podocnemis expansa*, a partir dos dados da tabela e transcreva-a para a sessão do Maxima que você vai usar para responder às questões postas a seguir.

Idade	Categoria	Tamanho	Taxa de	Taxa de
(anos)		(mm)	sobrevivência	transição
0-1	Ovos e recém nascidos	50-140	*	0.584
1-10	Juvenis	141-450	0.44	0.0002
11–28	Adultos I	451-600	0.91	0.0225
29-53	Adultos II	601-700	0.93	0.0159
> 53	Adultos III	> 700	0.86	*

TABELA 1. Taxas de sobrevivência de *Podocnemis expansa*

A caça predatória da *Podocnemis expansa* levou à sua extinção em um dos afluentes do Amazonas, mas o IBAMA criou um programa para criar a tartaruga em cativeiro e depois reintroduzi-la neste afluente. Duas estratégias estão sendo consideradas:

Estratégia 1: soltar 300 tartarugas adultas;

Estratégia 2: soltar 3000 tartarugas recém nascidas.

Utilize o modelo de Leslie, baseado nos dados fornecidos acima, para analisar o comportamento da população de tartarugas ao longo de 10 anos, relativamente a cada uma das duas estratégias. Sua análise deve ser baseada em gráficos, gerados usando o Maxima, que ilustrem as variações de população ano a ano. Você deve produzir, **pelo menos**:

- 1. gráficos que ilustrem, para cada estratégia, a evolução ao longo de 10 anos da população em cada uma das cinco faixas etárias;
- 2. um gráfico que compare as variações, ao longo de 10 anos, da população total de tartarugas em cada uma das duas estratégias;
- 3. gráficos que comparem, caso da estratégia 1 seja adotada, o efeito na população, ao longo de 10 anos, de soltar todas as tartarugas adultas em uma das três faixas etárias ou de distribuí-las igualmente entre as faixas I, II e III.

O programa do Maxima que gera os dados e desenha os gráficos deve ser enviado como parte da atividade. Além disso, você deve escrever um texto curto com uma descrição das previsões que o modelo faz a respeito do comportamento da população de tartarugas quando cada uma das estratégias é adotada. Sua análise deve ser justificada com base nos gráficos que você gerou. Para facilitar a referência aos gráficos você deve

numerá-los. Não esqueça de mencionar, qual a melhor maneira de soltar as tartarugas adultas, caso o IBAMA decida adotar a estratégia 2. Lembre-se que a decisão cabe ao IBAMA, seu papel, como pesquisador, consiste apenas em informar os dirigentes do órgão sobre as previsões do modelo em cada caso.

Algumas sugestões. Usei as seguintes funções do Maxima enquanto preparava este laboratório:

A k calcula a k-ésima potência da matriz quadrada A;

 $sum(expr,i,i_0,i_1)$ quando expr é uma função de i, calcula a soma dos valores desta expressão para i inteiro variando de i_0 a i_1 ;

makelist(expr, i, i₀, i₁) quando expr é uma função de i, calcula a lista dos valores desta expressão para i inteiro variando de i_0 a i_1 .

Para desenhar os gráficos você deve utilizar o pacote draw. Se lp for uma lista de pontos, wxdraw2d(points_joined=true,color=blue,points(lp));

desenha os pontos de 1p interligados por uma reta azul, o que é conveniente para nossos gráficos porque temos um ponto correspondente à população a cada ano. Nos gráficos com várias curvas você deve desenhar cada uma delas com uma cor diferente e acrescentar uma legenda no próprio gráfico.

Referência. Os dados na tabela foram adaptados do artigo:

S. C. Mogollones, D. J. Rodríguez, O. Hernández e G. R. Barreto, *A Demographic Study of the Arrau Turtle (Podocnemis expansa) in the Middle Orinoco River, Venezuela*, Chelonian Conservation and Biology, **9** (2010), 79–89.