

Capstone Project - 4 Book Recommendation System

Team Members

Prerit Tyagi

Content

- Problem statement
- Data Summary
- Analysis of different datasets
- Data Cleaning
- Outlier treatment
- Imputing missing values
- Different Recommendation Model
- Challenges
- Conclusion
- Future Scope

Problem Statement

During the last few decades, with the rise of Youtube, Amazon, Netflix, and many other such web services, recommender systems have become much more important in our lives in terms of providing highly personalized and relevant content.

The main objective is to create a recommendation system to recommend relevant books to users based on popularity and user interests.

Al

Data Summary

The dataset is comprised of three csv files:: User_df, Books_df, Ratings_df

Users dataset.

- User-ID (unique for each user)
- Location (contains city, state and country separated by commas)
- Age
- Shape of Dataset (278858, 3)

Books_dataset.

- ISBN (unique for each book)
- Book-Title
- Book-Author
- Year-Of-Publication
- Publisher

Ratings_dataset.

- User-ID
- ISBN

- Image-URL-S
- Image-URL-M
- Image-URL-L
- Shape of Dataset (271360, 8)
- Book-Rating
- Shape of Dataset (1149780, 3)

Observations from Users_df (Age)

- The Age range given here is from 0 to 250.
- Outliers in the Age column.

Observations from Users_df (Age)

- The Age range distribution is right skewed
- Most active readers lie in age group 20- 40

Observations from Users_df (Location)

- Splitting Location column and analysing country.
- Most active readers are from USA.

Observations from Book_df (Authors)

Agatha Christie wrote highest number of books in our given dataset

Observations from Book_df (Publishers)

Harlequin published highest number of books in our given dataset

Observations from Ratings_df (Book_Rating)

- Higher ratings are more common amongst users
- Rating 8 has been rated the highest number of times

Data Cleaning(Users_df)

1 Null Value Imputation:

Age column has 40% missing values.

	index	Missing Values	% of Total Values	Data_type
0	Age	110762	39.72	float64
1	User-ID	0	0.00	int64
2	Location	0	0.00	object

Imputing missing values

- Outliers in Age column
- Age has positive Skewness (right tail) so we can use median to fill Nan values,

Data Cleaning(Books_df)

- 1. Cleaned Year-Of-Publication and Publisher columns.
- 2. Drop all three URLs columns
- 3. Imputed null values with mean.

```
books_df.isnull().sum()

ISBN 0
Book-Title 0
Book-Author 1
Year-Of-Publication 0
Publisher 2
Image-URL-S 0
Image-URL-M 0
Image-URL-L 3
dtype: int64
```


1 Popularity Based Recommendation

Book weighted average formula:

Weighted Rating(WR)=[vR/(v+m)]+[mC/(v+m)]

Where,

v is the number of votes for the books; m is the minimum votes required to be listed in the chart; R is the average rating of the book; and C is the mean vote across the whole report.

(4) 137 9.262774 8.741835	Harry Potter and the Goblet of Fire (Book 4)	0
(k)) 313 8.939297 8.716469	Harry Potter and the Sorcerer's Stone (Harry Potter (Paperback))	1
5) 206 9.033981 8.700403	Harry Potter and the Order of the Phoenix (Book 5)	2
oird 214 8.943925 8.640679	To Kill a Mockingbird	3
(3) 133 9.082707 8.609690	Harry Potter and the Prisoner of Azkaban (Book 3)	4
77 9.402597 8.596517	The Return of the King (The Lord of the Rings, Part 3)	5
(3) 141 9.035461 8.595653	Harry Potter and the Prisoner of Azkaban (Book 3)	6
(1) 119 8.983193 8.508791	Harry Potter and the Sorcerer's Stone (Book 1)	7
(2) 189 8.783069 8.490549	Harry Potter and the Chamber of Secrets (Book 2)	8
126 8.920635 8.484783	Harry Potter and the Chamber of Secrets (Book 2)	9
83 9.120482 8.470128	The Two Towers (The Lord of the Rings, Part 2)	10
(4) 110 8.954545 8.466143	Harry Potter and the Goblet of Fire (Book 4)	11
131 8.839695 8.441584	The Fellowship of the Ring (The Lord of the Rings, Part 1)	12
ngs 161 8.739130 8.422706	The Hobbit : The Enchanting Prelude to The Lord of the Rings	13
(k)) 117 8.837607 8.409441	Ender's Game (Ender Wiggins Saga (Paperback))	14
son 200 8.615000 8.375412	Tuesdays with Morrie: An Old Man, a Young Man, and Life's Greatest Lesson	15
ry) 68 9.073529 8.372037	Charlotte's Web (Trophy Newbery)	16
ow) 75 8.973333 8.353301	Dune (Remembering Tomorrow)	17
any 181 8.607735 8.351465	A Prayer for Owen Meany	18
151 164 8.628049 8.346969	Fahrenheit 451	19

2. Model based collaborative filtering

SVD

test_rmse 1.602152 test_mae 1.239638 fit_time 5.437686 test_time 0.472132 dtype: float64

NMF

test_rmse	2.626532
test mae	2.242070
fit time	8.057059
test time	0.546524
dtype: floa	t64

SVD Model Results

SVD Model Results

User-ID - 193458

Test set: predicted top rated books

Test set: actual top rated books

Collaborative Filtering-(Item-Item based)

3. Collaborative Filtering-(Item-Item based)

- Cosine Similarity
- Nearest Neighbour

Recommendations for Angels & Demons:

- 1: The Da Vinci Code, with distance of 0.8275555141289059:
- 2: Digital Fortress: A Thriller, with distance of 0.83781217691282:
- 3: Deception Point, with distance of 0.8422605379839627:
- 4: Prey: A Novel, with distance of 0.9216969275206289:
- 5: The Cat Who Knew a Cardinal, with distance of 0.9280814355076102:

SVD and Correlation

Recommendations for Harry Potter and the Sorcerer's Stone (Book 1)

Input

Output

0.842

0.802

0.675

0.673

0.646

0.621

0.617

0.617

0.606

0.600

The Pelican Brief

Silence of the Lambs

A Time to Kill

The Firm

Different Models

5 0440214041

7 0440211727

8 0060928336

9 0312924585

044021145X

4. Collaborative Filtering-(User-Item based)

Enter User ID from above list for book recommendation 69078 Recommendation for User-ID = 69078 Book-Title recStrength TSBN To Kill a Mockingbird 0 0446310786 Jurassic Park 0345370775 Four To Score (A Stephanie Plum Novel) 2 0312966970 The Catcher in the Rye 3 0316769487 4 0345361792 A Prayer for Owen Meany

Divine Secrets of the Ya-Ya Sisterhood: A Novel

Model Results

Global metrics:

{'modelName': 'Collaborative Filtering', 'recall@5': 0.2357298474945534, 'recall@10': 0.3057371096586783}

	hits@5_count	hits@10_count	interacted_count	recall@5	recall@10	User-ID
10	252	343	1389	0.181	0.247	11676
31	189	245	1138	0.166	0.215	98391
45	17	30	380	0.045	0.079	189835
30	83	104	369	0.225	0.282	153662
70	29	33	236	0.123	0.140	23902
7	30	49	204	0.147	0.240	235105
47	22	32	203	0.108	0.158	76499
50	23	35	193	0.119	0.181	171118
42	55	68	192	0.286	0.354	16795
43	23	31	188	0.122	0.165	248718

Conclusion

- In EDA, the Top-10 most rated books were essentially novels. Books like The Lovely Bone and The Secret Life of Bees were very well perceived.
- Majority of the readers were of the age bracket 20-35 and most of them came from North American and European countries namely USA, Canada, UK, Germany and Spain.
- If we look at the ratings distribution, most of the books have high ratings with maximum books being rated 8. Ratings below 5 are few in number.
- Author with the most books was Agatha Christie, William Shakespeare and Stephen King.
- For modelling, it was observed that for model based collaborative filtering SVD technique worked way better than NMF with lower Mean Absolute Error (MAE).

Challenges

- Handling of sparsity was a major challenge as well since the user interactions were not present for the majority of the books.
- Understanding the metric for evaluation was a challenge as well.
- Since the data consisted of text data, data cleaning was a major challenge in features like Location etc..
- Decision making on missing value imputations and outlier treatment was quite challenging as well.

Future Scope

- Given more information regarding the books dataset, namely features like Genre, Description etc, we could implement a content-filtering based recommendation system and compare the results with the existing collaborative-filtering based system.
- We would like to explore various clustering approaches for clustering the users based on Age, Location etc., and then implement voting algorithms to recommend items to the user depending on the cluster into which it belongs.

Thank You