1 Question 1

Base Step: for k = 1, it holds that $\theta x_1 = x_1 \in C$. for k = 2, it holds by definition of convexity.

Induction Hypothesis: for arbitrary k > 2, assume that $\theta_1 x_1 + ... + \theta_k x_k \in C$, with $x_1, ..., x_k \in C$, $\theta_i \geq 0$ and $\sum_{i=1}^k \theta_i = 1$.

Inductive Step:let $x_1, x_2, ..., x_k, x_{k+1} \in C, \theta_i \geq 0, \sum_{i=1}^{k+1} \theta_i = 1$, then we have $\theta_1 x_1 + ... + \theta_{k+1} x_{k+1} = \theta_1 x_1 + ... + \theta_{k-1} x_{k-1} + (\theta_k + \theta_{k+1}) \left(\frac{\theta_k}{\theta_k + \theta_{k+1}} x_k + \frac{\theta_{k+1}}{\theta_k + \theta_{k+1}} x_{k+1}\right) \in C$, because $x_k, x_{k+1} \in C, \frac{\theta_k}{\theta_k + \theta_{k+1}}, \frac{\theta_{k+1}}{\theta_k + \theta_{k+1}} \geq 0$ and $\frac{\theta_k}{\theta_k + \theta_{k+1}} + \frac{\theta_{k+1}}{\theta_k + \theta_{k+1}} = 1$. By definition of convexity, $\frac{\theta_k}{\theta_k + \theta_{k+1}} x_k + \frac{\theta_{k+1}}{\theta_k + \theta_{k+1}} x_{k+1} \in C$, so with $\sum_{i=1}^{k+1} \theta_i = 1$, it holds $\theta_1 x_1 + ... + \theta_{k+1} x_{k+1} \in C$.
Therefore, it holds that $\theta_1 x_1 + ... + \theta_k x_k \in C$.

2 Question 2

(a) First, show that a set is convex \Rightarrow its intersection with any line is convex: If $C = \emptyset$, or C only contains a single point, then its intersection with any line is itself which is still convex. If not, for any two points $x_1, x_2 \in C$, C is a convex set, its intersection with any line can be expressed as: $\theta x_1 + (1 - \theta)x_2, \theta \in \{\theta_i\}$, defined as S. Because C is a convex set and $x_1, x_2 \in C$, $\theta x_1 + (1 - \theta)x_2 \in C$ for $0 \le \theta \le 1$. Meanwhile, by definition of a line, $\theta x_1 + (1 - \theta)x_2$ is in this line for $\forall \theta \in R$. So $\theta x_1 + (1 - \theta)x_2 \in C$'s intersection with any line, S.

Then, show that a set's intersection with any line is convex \Rightarrow this set is convex: Let c be a set, and S be its intersection with any line. If $S = \emptyset$ or only contains a point, it's obvious that C is convex. If not, for any two points $x_1, x_2 \in C$, S can be expressed as $\theta x_1 + (1 - \theta)x_2, \theta \in \{\theta_i\}$. Because S is convex, $\theta x_1 + (1 - \theta)x_2 \in S$, $0 \le \theta \le 1$. And because $S \subseteq C$, $\theta x_1 + (1 - \theta)x_2 \in C$, $0 \le \theta \le 1$. So C is convex.

(b) First, show that a set is affine \Rightarrow its intersection with any line is affine: If $C = \emptyset$, or C only contains a single point, then its intersection with any line is itself which is still affine. If not, for any two points $x_1, x_2 \in C$, C is an affine set, then we have $\theta x_1 + (1-\theta)x_2 \in C$, for $\forall \theta \in R$. C's intersection with any line can be expressed as: $\theta x_1 + (1-\theta)x_2, \theta \in \{\theta_i\}$, defined as S. For any θ , $\theta x_1 + (1-\theta)x_2$ is in any line, too. It's both in C and any line, so it's in S. Therefore, S is affine.

Then, show that a set's intersection with any line is affine \Rightarrow this set is affine: Let C be a set, and S be its intersection with any line. If $S = \emptyset$ or only contains a point, it's obvious that C is still affine. If not, for any two points $x_1, x_2 \in C$, S can be expressed as $\theta x_1 + (1 - \theta)x_2, \theta \in \{\theta_i\}$. Because S is affine, $\theta x_1 + (1 - \theta)x_2 \in S$ for $\forall \theta$. And because $S \subseteq C$, then $\theta x_1 + (1 - \theta)x_2 \in C$ for $\forall \theta$. Therefore, C is affine.

3 Question 3

(a) $\{x|a^Tx=0, a \text{ is orthogonal to } b_1a_1+b_2a_2, b_1, b_2 \in R, -|b^Ta_1| \leq b^Tx \leq |b^Ta_1|, b=a_1-a_2\frac{a_1^Ta_2}{||a_2||_2^2}, -|c^Ta_2| \leq c^Tx \leq |c^Ta_2|, c=a_2-a_1\frac{a_2^Ta_1}{||a_1||_2^2}\}.$

(b)
$$\{x|Ex \ge 0, \mathbf{1}^T x = 1, a^T x = b_1, a = (a_1, ..., a_n), a'^T x = b_2, a' = (a_1^2, ..., a_n^2)\}.$$

- (c)S isn't a polyhedron.
- (d) $\{x|Ex \geq 0, v_i^T x \leq 1, vi : \text{only } a_{i1} \text{ is } 1 \text{ and the rest of its elements are } 0\}.$

4 Question 4

(a)By definition of V:

$$||x - x_0||_2 = ||x - x_i||_2 ||x - x_0||_2^2 = ||x - x_i||_2^2 (x - x_0)^T (x - x_0) \le (x - x_i)^T (x - x_i) x^T x - 2x_0^T x + x_0^T x_0 \le x^T x - 2x_i^T x + x_i^T x_i 2(x_i - x_0)^T x \le x_i^T x_i - x_0^T x_0$$

So
$$V = \{Ax \le b, A = \begin{bmatrix} 2(x_1 - x_0) \\ \vdots \\ 2(x_K - x_0) \end{bmatrix}, b = \begin{bmatrix} x_1^T x_1 - x_0^T x_0 \\ \vdots \\ x_K^T x_K - x_0^T x_0 \end{bmatrix} \}.$$

(b) assume $P = \{x | Ax \leq b, A \in R^k \times n, b \in R^k\}$, then choose a x_0 in polyhedron P. So x_i can be expressed as the mirror point if x_0 with hyperplane $a_i^T x = b_i$. The distance between x_0 and hyperplane $a_i^T = b_i$ is $\frac{|a_i^T x_0 - b_i|}{||a_i||_2}$. So the distance between x_i and hyperplane $a_i^T = b_i$ is $\frac{|a_i^T x_i - b_i|}{||a_i||_2}$. The two distances are equal, which means $b_i - a_i^T x_0 = a_i^T x_i - b_i$.

Since x_i is the mirror point of $x_0, x_i = x_0 + \frac{a_i}{||a_i||_2} \frac{|a_i^T x_0 - b_i|}{||a_i||_2}$.

5 Question 5

For any two points (x_1, y_1+y_2) , (x_2, y_3+y_4) in S, (x, y_1) , $(x, y_3) \in S_1$, (x, y_2) , $(x, y_4) \in S_2$.

 $\theta(x_1, y_1 + y_2) + (1 - \theta)(x_2, y_3 + y_4) = (\theta x_1 + (1 - \theta)x_2, \theta y_1 + (1 - \theta)y_3 + \theta y_2 + (1 - \theta)y_4), 0 \le \theta \le 1.$

Because $(x, y_1), (x, y_3) \in S_1$ and S_1 is a convex set, $\theta(x, y_1) + (1 - \theta)(x, y_3) = (\theta x + (1 - \theta)x, \theta y_1 + (1 - \theta)y_3) \in S_1, 0 \le \theta \le 1$. Then we have $(\theta x_1 + (1 - \theta)x_2, \theta y_1 + (1 - \theta)y_3) \in S_1$. Similarly, we have $(\theta x_1 + (1 - \theta)x_2, \theta y_2 + (1 - \theta)y_4) \in S_2$.

So $(\theta x_1 + (1 - \theta)x_2, \theta y_1 + (1 - \theta)y_3 + \theta y_2 + (1 - \theta)y_4) \in S \Rightarrow \theta(x_1, y_1 + y_2) + (1 - \theta)(x_2, y_3 + y_4) \in S, 0 \le \theta \le 1.$