8 Puzzle Problem f=g+h

Definition 1.

g(n) = number of moves taken in going from S_I to S. $h_1(n)$ = number of tiles in S in the "wrong position"

$$S_{I:}$$
 2 8 3 S_{F} : 1 2 3 1 6 4 7 5 7 6 5

$$S_{\rm I} = S_{\rm F}$$

Question: Is h₁ admissible?

$$h_1 \leq h^*$$

Definition 2.

$$f = g + h_2$$

g(n) = number of moves taken in going from S_I to S. (node n)

 $h_2(n) = sum \text{ of the distances of the tiles from } S_F$ position.

$$S_{I:}$$
 2 8 3 S_{F} : 1 2 3 8 4 7 5 7 6 5

$$S_I \Rightarrow S_F$$

Question: Is h2 admissible?

$$\mathbf{h}_1 \leq \mathbf{h}_2 \leq \mathbf{h}^*$$

Move STEPs = 5 Expanding Nodes = 5 times

Queue:

Sı

	^	_		T			
	S11	S10	S 5	96	0.0	0 -	
ŀ					52	S 3	S 7
1	f=5	f=7	f=7	f=7			
ĺ	_	• •	I /	1-/	f=7	f=7	f=8
						•	

SF