Contents

1 Some PL topology

3

2 CONTENTS

Chapter 1

Some PL topology

In this chapter we will collect some basic facts from the piecewise-linear category. Most of the proofs are omitted and can be found in standard references like [1], [2]. If the reader is already familiar with basics from PL topology, the chapter may be skipped without loss of continuity.

Definition 1. Let $v_0, ..., v_k \in \mathbb{R}^n$ be points in some affine space such that $\{v_1 - v_0, ..., v_k - v_0\}$ is a set of linearly independent vectors. We call

$$[v_0,...,v_k] := \left\{ \lambda_0 v_0 + ... + \lambda_k v_k \middle| \sum_{i=0}^k \lambda_i = 1 \text{ and } \lambda_i \ge 0 \text{ for all } i \right\}$$

the simplex spanned by $\{v_0, ..., v_k\}$. Its dimension is k and we call it a k-simplex for short. The points that span a simplex are called vertices. For a simplex σ we say that τ is a **face** of σ if τ is a simplex spanned by a nonempty subset of the vertices of σ and we abbreviate this by writing $\tau < \sigma$.

Definition 2. A simplicial complex K is a set of simplices that satisfies the following conditions:

- Every face of a simplex in K is also contained in K.
- The intersection of any two simplices $\sigma, \tau \in K$ is either empty or a face of both σ and τ .

We define the **plyhedron** of K by $|K| := \bigcup \{\sigma | \sigma \in K\}$. The **p-skeleton** of K is given by $K^{(p)} = \{\sigma \in K | dim(\sigma) \leq p\}$. A **subcomplex** of K is a subset $L \subset K$ such that L itself is a simplicial complex. We denote the set of vertices of K by V(K).

Definition 3. Suppose that there are two simplicial complexes K and K' such that |K| = |K'|. If every simplex of K' is contained in some simplex of K, we say that K' is a **subdivision** of K and write $K' \triangleleft K$.

Example 1. Given a simplicial complex K there is always an inductive process that produces a subdivision of K. Assume that $K^{(p-1)}$ has already been subdivided and let $\sigma = [v_0, ..., v_p]$ be a p-simplex in K. The point $\hat{\sigma} = \frac{1}{p+1} \sum_{i=0}^p v_i$ lies in the interior of σ and is called its **barycenter**. The **barycentric subdivision** of σ is the decomposition of σ into the p-simplices $[\hat{\sigma}, w_0, ..., w_{p-1}]$ where, inductively, $[w_0, ..., w_{p-1}]$ is a (p-1)-simplex in the barycentric subdivision of a face $[v_0, ..., \overline{v_i}, ..., v_p]$. (In this notation, the vertex v_i is omitted.) Continuing this procedure for every p-simplex σ leads to a decomposition of all simplices in $K^{(p)}$. The induction starts at p=0 when the barycentric subdivision of a 0-simplex $[v_0]$ is just $[v_0]$ itself. It is guaranteed that this process delivers a subdivision $K^1 \triangleleft K$, called the **first barycentric subdivision** of K. For details, see [2]. More generally, the r-th barycentric subdivision is inductively given by $K^r = (K^{r-1})^1$.

Definition 4. A topological space X is said to be **triangulable** if there exists a simplicial complex T and a homeomorphism $\phi: |T| \to X$. The triple (T, X, ϕ) is called a **triangulation** of X. In this situation we will simply say that T is a triangulation of X, by abuse of notation.

Definition 5. A **PL** space is a pair (X, \mathcal{T}) consisting of a topological space X and a class \mathcal{T} of locally finite triangulations of X which satisfies the following conditions:

- If $T \in \mathcal{T}$ then $T' \in \mathcal{T}$ for any subdivision $T' \triangleleft T$.
- If $T, T' \in \mathcal{T}$ then there exists $T'' \in \mathcal{T}$ such that both $T'' \triangleleft T$ and $T'' \triangleleft T'$.

We will simply write X for a PL space (X, \mathcal{T}) if there is no danger of confusion. A **closed PL subspace** of X is a subcomplex of a suitable triangulation of X.

Definition 6. Given simplicial complexes K and L we call a map $f:|K| \to |L|$ simplicial if f maps each simplex of K linearly onto some simplex of L. A map $g:|K| \to |L|$ between PL spaces is said to be a PL map if there exist subdivisions $K' \lhd K$ and $L' \lhd L$ such that $g:K' \to L'$ is simplicial.

Note that a simplicial map $f: K \to L$ is given by linear extension of a (set-theoretic) function $V(K) \to V(L)$.

Definition 7. A simplicial isomorphism between two simplicial complexes K and L is given by a bijection $f:V(K)\to V(L)$ such that $[v_0,...,v_k]$ is a k-simplex in K if and only if $[f(v_0),...,f(v_k)]$ is a k-simplex in L. In particular, extending f linearly yields a homeomorphism between the underlying polyhedra |K| and |L|. A map $g:|K|\to |L|$ between PL spaces is a PL isomorphism if there exist subdivisions $K' \lhd K$ and $L' \lhd L$ such that $g:|K'|\to |L'|$ is a simplicial isomorphism.

Theorem 1.

STARS AND LINKS SIMPLICIAL APPROXIMATION DIMENSION PL MANIFOLDS

Definition 8. A 0-dimensional PL stratified pseudomanifold is a countable set of points with the discrete topology. An n-dimensional PL stratified pseudomanifold X is a PL space together with a filtration of closed PL subspaces

$$X = X_n \supset X_{n-1} = X_{n-2} \supset ... \supset X_0 \supset X_{-1} = \emptyset$$

such that the following conditions are satisfied:

- Every $X_{n-k} X_{n-k-1}$ is a (possibly empty) PL manifold of dimension n-k
- $X X_{n-2}$ is dense in X.
- Local normal triviality: For every point $x \in X_{n-k} X_{n-k-1}$ there exists an open neighborhood U of x in X and a compact PL stratified pseudomanifold L of dimension k-1 with filtration

$$L = L_{k-1} \supset L_{k-3} \supset ... \supset L_0 \supset L_{-1} = \emptyset$$

and a PL isomorphism

$$\phi: U \to \mathbb{R}^{n-k} \times c^{\circ}L$$

(where c° denotes the open cone) which restricts to PL isomorphism $\phi_{|}: U \cap X_{n-l} \to \mathbb{R}^{n-k} \times c^{\circ}L_{k-l-1}$. We say that ϕ is **stratum**-preserving.

Bibliography

- $\begin{tabular}{ll} [1] Colin Patrick Rourke, Brian Joseph Sanderson, Introduction to piecewise-linear topology. \end{tabular}$
- [2] Allen Hatcher, Algebraic Topology. p.120.