HW #4

Sam Fleischer

October 26, 2015

Problem 1

Let $a < b \in \mathbb{R}$. Prove that C([a,b]) with sup norm is a separable metric space.

Define the set of polynomials with rational coefficients on [a, b] as $\mathbb{P}_{\mathbb{Q}}([a, b])$. We will show this set is countable and dense in C([0, 1]), proving C([0, 1]) is separable.

To show $\mathbb{P}_{\mathbb{Q}}([a,b])$ is countable, it suffices to show $\bigcup_{n=0}^{\infty} \mathbb{Q}^n$ is countable, since there is a bijection f between these two sets. Namely,

$$f(q_0, q_1, \dots, q_k) = q_0 + q_1 x + \dots + q_k x^k$$

However, the countably infinite union of countable sets is countable. Thus $\bigcup_{n=0}^{\infty} \mathbb{Q}^n$ is countable, whice proves $\mathbb{P}_{\mathbb{Q}}([a,b])$ is countable.

To show $\mathbb{P}_{\mathbb{Q}}([a,b])$ is dense in C([a,b]), we will show it is dense in the set of polynomials with real coefficients on [a,b] (denoted $\mathbb{P}_{\mathbb{R}}([a,b])$) and use a diagonal argument to show it is dense in C([a,b]).

Lemma (1). $\mathbb{P}_{\mathbb{Q}}([a,b])$ is dense in $\mathbb{P}_{\mathbb{R}}([a,b])$.

Proof. Choose $p \in \mathbb{P}_{\mathbb{R}}([a,b])$. Then $p = r_0 + r_1 x + \cdots + r_k x^k$ for some $k \in \mathbb{N}$. Since \mathbb{Q} is dense in \mathbb{R} , there exist sequences $(q_{a,j})_j \in \mathbb{Q}$ such that $q_{a,j} \to r_a$ for $a = 1, \ldots, k$. Then construct a sequence $(q_\ell)_\ell \in \mathbb{P}_{\mathbb{Q}}([a,b])$ by

$$q_{\ell} = q_{\ell,0} + q_{\ell,1}x + \dots + q_{\ell,k}x^{k}$$

Then $\lim_{\ell\to\infty}q_\ell=p$ for each $x\in[a,b]$. Thus q_ℓ converges to p in a pointwise manner. However, since p is continuous, and each q_ℓ is continuous, $q_\ell\to p$ uniformly. Thus $\mathbb{P}_{\mathbb{Q}}([a,b])$ is dense in $\mathbb{P}_{\mathbb{R}}([a,b])$.

By the Weierstrauss approximation theorem, $\mathbb{P}_{\mathbb{R}}([a,b])$ is dense in C([a,b]). Thus for any $f \in C([a,b])$, $\exists (p_n)_n \in \mathbb{P}_{\mathbb{R}}([a,b])$ such that $p_n \to f$ uniformly. Choose a subsequence of p_n (for ease, call this subsequence p_n) such that $||p_n - f|| < \frac{1}{2n}$ for all $n \in \mathbb{N}^+$.

By Lemma 1, for each p_n in the sequence, $\exists (q_{n,\ell})_{\ell} \in \mathbb{P}_{\mathbb{Q}}([a,b])$ such that $q_{n,\ell} \to p_n$ uniformly. Then we can construct a sequence in $\mathbb{P}_{\mathbb{Q}}([a,b])$ which converges to f. Choose $w_1 = q_{1,L_{1/2}}$ where $\ell \geq L_{1/2} \implies ||q_{1,\ell} - p_1||_{\sup} < \frac{1}{2}$. Then choose $w_2 = q_{2,L_{1/4}}$ where $\ell \geq L_{1/4} \implies$

 $\|q_{2,\ell}-p_2\|_{\sup}<\frac{1}{4}$. In general, for all $m\in\mathbb{N}^+$, choose $w_m=q_{m,L_{1/2m}}$ where $\ell\geq L_{1/2m}\Longrightarrow \|q_{m,\ell}-p_m\|_{\sup}<\frac{1}{2m}$. Then

$$||w_n - f||_{\sup} \le ||w_n - p_n||_{\sup} + ||p_n - f||_{\sup}$$

$$< \frac{1}{2n} + \frac{1}{2n}$$

$$= \frac{1}{n} \to 0 \text{ as } n \to \infty$$

Thus any arbitrary $f \in C([a, b])$ is the limit of a sequence of polynomials in the countable set $\mathbb{P}_{\mathbb{Q}}([a, b])$ under the supremum norm. Thus C([a, b]) is a separable metric space.

A SIMPLER PROOF

Lemma (2). If A is dense in B and B is dense in C, then A is dense in C.

Proof. Since A is dense in B, then $\overline{A} = B$. Since B is dense in C, then $\overline{B} = C$. Then $\overline{A} = \overline{\overline{A}} = \overline{B} = C$. Thus A is dense in C.

By lemmas 1 and 2 and the Weierstrauss Approximation Theorem, $\mathbb{P}_{\mathbb{Q}}$ is dense in C([0,1]). Since $\mathbb{P}_{\mathbb{Q}}([a,b])$ is countable, C([0,1]) is separable.

Problem 2

Let $k \in C([0,1] \times [0,1])$, and define a map $T: C([0,1]) \to C([0,1])$ by

$$(Tf)(x) = \int_0^1 k(x, y) f(y) dy$$

Prove that the set $\{Tf \mid ||f||_{sup} \leq 1\}$ is equicontinuous.

Pick $x \in [0,1]$ and let $\varepsilon > 0$. Then the continuity of k implies $\exists \delta > 0$ such that $d((x,y),(x_0,y_0)) < \delta \implies d(k(x,y),k(x_0,y_0)) < \varepsilon$. Consider $\tilde{x} \in [0,1]$ and assume $d(x,\tilde{x}) < \delta$. Then $d((x,y),(\tilde{x},y)) < \delta$ for any $y \in [0,1]$. Then $d(k(x,y),k(\tilde{x},y)) < \varepsilon$. Now choose $g \in \{Tf \mid ||f||_{\sup} \leq 1\}$. Then

$$\begin{split} d(g(x),g(\tilde{x})) &= \left| \int_0^1 (k(x,y) - k(\tilde{x},y) f(y) \mathrm{d}y \right| &\quad \text{for some } f \text{ such that } \|f\|_{\sup} \leq 1 \\ &\leq \int_0^1 |k(x,y) - k(\tilde{x},y)| \, |f(y)| \mathrm{d}y \\ &< \varepsilon \int_0^1 |f(y)| \mathrm{d}y \\ &< \varepsilon \int_0^1 \mathrm{d}y \quad \text{since } \|f\|_{\sup} < 1 \\ &= \varepsilon \end{split}$$

Thus $\{Tf \mid ||f||_{\sup} \leq 1\}$ is equicontinuous.

Problem 3

Let (X, \mathcal{T}) be a topological space. If $G \subset X$ is open and $F \subset X$ is closed, prove that $G \setminus F$ is open.

Since F in closed, F^C is open. Also, $G \setminus F = G \cap F^C$. Since the finite intersection of open sets in open, $G \setminus F$ is open.

Problem 4

Let \mathcal{T}_1 and \mathcal{T}_2 be two topologies on a non-empty set X.

a)

Is $\mathcal{T}_1 \cap \mathcal{T}_2$ is topology on X?

Yes.

Let $\mathcal{T} = \mathcal{T}_1 \cap \mathcal{T}_{\in}$. Since \emptyset and X are elements of all topologies, they are elements of the arbitrary intersection of topologies. Thus $\emptyset, X \in \mathcal{T}$.

Consider $\{G_{\alpha} \mid \alpha \in I\}$ where each $G_{\alpha} \in \mathcal{T}$. Then each $G_{\alpha} \in \mathcal{T}_1$ and each $G_{\alpha} \in \mathcal{T}_2$. Then $\bigcup_{\alpha \in I} G_{\alpha} \in \mathcal{T}_1$ and $\bigcup_{\alpha \in I} G_{\alpha} \in \mathcal{T}_2$. Thus $\bigcup_{\alpha \in I} G_{\alpha} \in \mathcal{T}$.

Consider $\{G_i \mid i = 1, ..., N\}$ where each $G_i \in \mathcal{T}$. Then each $G_i \in \mathcal{T}_1$ and each $G_i \in \mathcal{T}_2$. Then $\bigcap_{i=1}^n G_i \in \mathcal{T}_1$ and $\bigcap_{i=1}^n G_i \in \mathcal{T}_2$. Thus $\bigcap_{i=1}^n G_i \in \mathcal{T}$.

Thus
$$\mathcal{T} = \mathcal{T}_1 \cap \mathcal{T}_2$$
 is a topology on X .

b)

Is $\mathcal{T}_1 \cup \mathcal{T}_2$ is topology on X?

No. We form a counterexample:

Let
$$X = \{1, 2, 3\}$$
, and let $\mathcal{T}_1 = \{\emptyset, \{1\}, X\}$ and $\mathcal{T}_2 = \{\emptyset, \{2\}, X\}$. Then $\mathcal{T}_1 \cup \mathcal{T}_2 = \{\emptyset, \{1\}, \{2\}, X\}$ is not a topology since $\{1\} \cup \{2\} = \{1, 2\} \notin \mathcal{T}_1 \cup \mathcal{T}_2$.

Problem 5

Give an example of two metric spaces (X_1, d_1) and (X_2, d_2) , such that X_1 and X_2 are homeomorphic as topological spaces but X_1 is a complete metric space while X_2 is not.

Let $X_1 = [1, \infty)$ and $X_2 = (0, 1]$. Then choose $f: X_1 \to X_2$ by $f(x) = \frac{1}{x}$. f is clearly bijective and continuous, and $f^{-1}: X_2 \to X_1$ by $f^{-1}(x) = \frac{1}{x}$ is also continuous. Thus X_1 and X_2 are homeomorphic as topological spaces, but X_1 is a complete metric while X_2 is not. \square

Problem 6

Two metrics, d_1 and d_2 , on the same space X are called equivalent if there exist constants c, C > 0 such that

$$cd_1(x,y) \le d_2(x,y) \le Cd_1(x,y)$$
, for all $x,y \in X$

a)

Show that the topologies on X defined by two equivalent metrics are identical.

Let \mathcal{T}_1 and \mathcal{T}_2 be the topologies defined by the open sets as defined by the metrics d_1 and d_2 , respectively. Denote open balls, with respect to the metric d_i , of radius ε around x as $B_{i,\varepsilon}(x)$ for i = 1, 2.

Let $G \in \mathcal{T}_1$. Then G is open with respect to d_1 . Then $\forall x \in G$, $\exists \varepsilon$ such that $B_{1,\varepsilon}(x) \in G$. Note that $d_1(x,y) < \varepsilon$ for each $y \in B_{1,\varepsilon}(x)$. Now consider $B_{2,c\varepsilon}(x)$. If $y \in B_{2,c\varepsilon}(x)$, then $d_2(x,y) < c\varepsilon \iff \frac{1}{c}d_2(x,y) < \varepsilon$. But since $d_1(x,y) \le \frac{1}{c}d_2(x,y)$ for all $x,y \in X$, this implies $d_1(x,y) < \varepsilon$, which then implies $y \in B_{1,\varepsilon}(x)$. Thus $B_{2,c\varepsilon}(x) \subset B_{1,\varepsilon}(x)$, and so $B_{2,c\varepsilon}(x) \subset G$. Thus there is an open ball with respect to the metric d_2 around any point x in G (in particular $B_{2,c\varepsilon}(x)$). Thus G is open with respect to the metric d_2 , which shows $G \in \mathcal{T}_2$. Thus $\mathcal{T}_1 \subset \mathcal{T}_2$.

Lemma (3). Metric equivalence is an equivalence relation.

Proof. If d_1 is a metric on X, then $1 \cdot d_1(x,y) \leq d_1(x,y) \leq 1 \cdot d_1(x,y)$. Thus d_1 is equivalent to d_1 . If d_1 is equivalent to d_2 , then $\exists c, C > 0$ such that $cd_1(x,y) \leq d_2(x,y) \leq Cd_1(x,y)$ for all $x,y \in X$. But this implies $\frac{1}{C}d_2(x,y) \leq d_1(x,y) \leq \frac{1}{c}d_2(x,y)$. Since $\frac{1}{C}$ and $\frac{1}{c}$ are greater than 0, this shows d_2 is equivalent to d_1 . If d_1 is equivalent to d_2 and d_2 is equivalent to d_3 , then $\exists c_1, C_1 > 0$ such that $c_1d_1(x,y) \leq d_2(x,y) \leq C_1d_1(x,y)$ for all $x,y \in X$, and $\exists c_2, C_2 > 0$ such that $c_2d_2(x,y) \leq d_3(x,y) \leq C_2d_2(x,y)$ for all $x,y \in X$.

$$c_1c_2d_1(x,y) \le c_2d_2(x,y) \le d_3(x,y) \le C_2d_2(x,y) \le C_1C_2d_1(x,y)$$

and since c_1c_2 and C_1C_2 are greater than 0, this shows d_1 is equivalent to d_3 . Thus metric equivalence is an equivalence relation.

By Lemma 3, we can exchange \mathcal{T}_1 and \mathcal{T}_2 to show that $\mathcal{T}_2 \subset \mathcal{T}_1$, which, combined with the fact $\mathcal{T}_1 \subset \mathcal{T}_2$, proves $\mathcal{T}_1 = \mathcal{T}_2$. Thus, the topologies on X defined by two equivalent metrics are identical.

b)

Let (X, d) be a metric space. Show that there exists a metric d_b with the property that $d_b(x, y) \leq 1$, for all $x, y \in X$, such that the topology on X derived from the metric d_b is the same as the one derived from the metric d.

Define d_b as

$$d_b(x,y) = \begin{cases} d(x,y) & , \text{ if } d(x,y) \le 1\\ 1 & , \text{ if } d(x,y) > 1 \end{cases}$$

Lemma (5). d_b is a metric on X.

Proof. Non-negativity: If x = y, then d(x, y) = 0 since d is a metric on X, and since $0 \le 1$, $d_b(x, y) = d(x, y) = 0$. If $d_b(x, y) = 0$, then $0 = d_b(x, y) = d(x, y)$. But since d is a metric on X, this implies x = y. Symmetry: If $d_b(x, y) = 1$, then $d(x, y) \ge 1$. Thus $d(y, x) \ge 1$ since d is a metric on X, and thus $d_b(y, x) = 1$. If $d_b(x, y) < 1$, then $1 > d_b(x, y) = d(x, y) = d(y, x) = d_b(y, x)$. Triangle Inequality: If $d_b(x, y) < 1$, then $d_b(x, y) = d(x, y) \le d(x, z) + d(z, y)$ for any $z \in X$. If either d(x, y) > 1 or d(y, z) > 1, then $d_b(x, y) < 1 \le d_b(x, z) + d_b(z, y)$. Otherwise, $d_b(x, y) = d(x, y) \le d(x, z) + d(z, y) = d_b(x, z) + d_b(z, y)$ if $d(x, y) \le 1$, then $d_b(x, y) = 1 \le d(x, y) \le d(x, z) + d(z, y) = d_b(x, z) + d_b(z, y)$ if d(x, z) < 1 and d(z, y) < 1. However, if d(x, z) > 1 or d(z, y) > 1, then $d_b(x, z) = 1$ or $d_b(z, y) = 1$. Thus $d_b(x, y) = 1 \le d_b(x, z) + d_b(z, y)$. In all cases, the triangle inequality holds. Thus d_b is a metric on X.

Let \mathcal{T} be the topology defined by the open sets as defined by the metric d, and let \mathcal{T}_{\lfloor} be the topology defined by the open sets as defined by the metric d_b . Also, denote open balls, with respect to the metric d or d_b , of radius ε around x as $B_{\varepsilon}(x)$ or $B_{b,\varepsilon}(x)$, respectively. In this proof, we wish to show $T = T_b$.

Let $G \in T$. Then $\forall x \in G$, $\exists \varepsilon$ such that $B_{\varepsilon}(x) \subset G$. Choose $\hat{\varepsilon} < \min\{\varepsilon, 1\}$. Then $B_{\hat{\varepsilon}}(x) \subset B_{\varepsilon}(x) \subset G$. Since $\hat{\varepsilon} < 1$, then $B_{\hat{\varepsilon}}(x) = B_{b,\hat{\varepsilon}}(x)$. Thus $B_{b,\hat{\varepsilon}} \subset G$. Therefore $\forall x \in G$, $\exists \hat{\varepsilon}$ such that $B_{b,\hat{\varepsilon}}(x) \subset G$. Thus G is open with respect to d_b , showing $G \in T_b$, which then shows $T \subset T_b$.

Let $G \in T_b$. Then $\forall x \in G$, $\exists \varepsilon$ such that $B_{b,\varepsilon}(x) \in G$. Again, choose $\hat{\varepsilon} < \min\{\varepsilon, 1\}$. Then $B_{b,\hat{\varepsilon}}(x) \subset B_{b,\varepsilon}(x) \subset G$. Since $\hat{\varepsilon} < 1$, then $B_{\hat{\varepsilon}}(x) = B_{b,\hat{\varepsilon}}(x)$. Thus $B_{\hat{\varepsilon}}(x) \subset G$. Therefore $\forall x \in G$, $\exists \hat{\varepsilon}$ such that $B_{b,\hat{\varepsilon}} \subset G$. Thus G is open with respect to d, showing $G \in T$, which then shows $T_b \in T$. Thus $T_b \subset T$, and by the result above, $T = T_b$.

 $\mathbf{c})$

Give an example of the situation in part b) with the metrics d and d_b that are not equivalent.

Let X be the normed linear space \mathbb{R} , and let d be the standard metric on \mathbb{R} . Define d_b as in Problem 6b:

$$d_b(x,y) = \begin{cases} d(x,y) & , \text{ if } d(x,y) \le 1\\ 1 & , \text{ if } d(x,y) > 1 \end{cases}$$

Since d is unbounded on \mathbb{R} , then there is no c > 0 such that $d(x, y) < cd_b(x, y)$ for all $x, y \in X$, because if there was, then we could choose y = x + c + 1, and $d(x, y) = c + 1 < cd_b(x, y) = c$, which is a contradiction. Thus d and d_b are not equivalent metrics.

Problem 7

Prove Theorem 4.7 of the textbook.

Lemma (5). Let (X, \mathcal{T}) be a topological space. Then $G \in \mathcal{T}$ if and only if G is a neighborhood of x for each $x \in G$.

Proof. Let $G \in \mathcal{T}$. Then since $G \subset G$, then G contains an open set which contains every $x \in G$ (namely, G). Then G is a neighborhood of x for each $x \in G$. Now let H be a neighborhood of x for each $x \in H$. Then $\exists H_x \subset H$ such that $x \in H_x$ and $H_x \in \mathcal{T}$ for each $x \in X$. Then since $H_x \subset H$ for each $X \in H$, then $H_x \subset H$ for each $X \in H$, then $X \in H$ for every $X \in H$, then $X \in H$ for every $X \in H$. Then since $X \in H$ is an arbitrary union of open sets, then $X \in H$ is open, i.e. $X \in H$.

Lemma (6). Let (X, \mathcal{T}) be a topological space. Then $G \in \mathcal{T}$ if and only if G contains a neighborhood of x for each $x \in G$.

Proof. Let $G \in \mathcal{T}$. Then by Lemma 5, G is a neighborhood of x for each $x \in G$, but since $G \subset G$, then G contains a neighborhood of x for each $x \in G$. Now let H contain a neighborhood of x for each $x \in H$. Then for each $x \in H$, $\exists H_x \subset H$ such that H_x is a neighborhood of x. Then $\exists G_x \subset H_x$ such that $x \in G_x$ and $G_x \in \mathcal{T}$ for each $x \in H$. Then for each $x \in H$, $G_x \subset H_x \subset H$. Thus H is a neighborhood of x for each $x \in H$. Then by Lemma 5, $x \in \mathcal{T}$.

Theorem (4.7). Let (X, \mathcal{T}) and (Y, \mathcal{S}) be two topological spaces and $f: X \to Y$. Then f is continuous on X if and only if $f^{-1}(G) \in \mathcal{T}$ for every $G \in S$.

Proof. Suppose f is continuous. Then by the definition of continuity, for each $x \in X$, for each neighborhood W of f(x), there is a neighborhood V of x such that $f(V) \subset W$. Now choose $G \in S$. Then for each $x \in f^{-1}(G)$, G is a neighborhood of each f(x) by Lemma 5. Since f is continuous, there is a neighborhood H of x such that $f(H) \subset G$, which implies $H \subset f^{-1}(G)$. Thus $f^{-1}(G)$ contains a neighborhood of each x in $f^{-1}(G)$, thus by Lemma 6, $f^{-1}(G) \in \mathcal{T}$. Now suppose $f^{-1}(G) \in \mathcal{T}$ for every $G \in S$. Then pick $x \in X$ and a neighborhood W of f(x). By the definition of neighborhood, $\exists H \in \mathcal{S}$ such that $f(x) \in H$ and $H \subset W$. By assumption, $f^{-1}(H) \in \mathcal{T}$. Since $f(x) \in H$, then $x \in f^{-1}(H)$. Then by Lemma 5, $f^{-1}(H)$ is a neighborhood of x. Also, $f(f^{-1}(H)) = H \subset W$. Thus f is continuous.