616: Homotopy Theory

Nir Elber

Spring 2025

CONTENTS

How strange to actually have to see the path of your journey in order to make it.

—Neal Shusterman, [Shu16]

Contents	2
1 Homotopy Theory 1.1 January 22	
Bibliography	5
List of Definitions	6

THEME 1 HOMOTOPY THEORY

What we didn't do is make the construction at all usable in practice! This time we will remedy this.

—Kiran S. Kedlaya, [Ked21]

1.1 January 22

In this course, we would like to do computations.

1.1.1 CW Complexes

We would like to compute the homology and cohomology of interesting spaces. CW complexes are a good mix between being simple enough to work with while being flexible enough to have many interesting examples.

Definition 1.1 (CW complex). A CW complex is a topological space X equipped with an ascending chain of subspaces

$$\emptyset = X_{-1} \subseteq X_0 \subseteq X_1 \subseteq \cdots \subseteq$$

satisfying the following.

- (i) $X = \bigcup_{k > -1} X_k$.
- (ii) X_{k+1} is obtained inductively be adjoining (k+1)-disks $\{D_{\alpha}^{k+1}\}_{\alpha}$ to X_k as follows: some $x \in S_{\alpha}^k$ is identified with its image in X_k via some continuous map $f \colon \bigsqcup_{\alpha} S_{\alpha}^k \to X_k$.
- (iii) The topology is on X is given by asserting $U \subseteq X$ is open if and only if $U \cap X_k$ is open for all k.

We call the interior $e_{\alpha}^n := (D_{\alpha}^n)^{\circ}$ an n-cell, and we call X_n the n-skeleton. If the total number of cells if finite, then X is finite; if merely each X_n is finite, then X is finite type.

Example 1.2. Compact manifolds have the structure of a CW-complex with only finitely many disks.

Remark 1.3. Note that we only ever identify points on the new disks for X_{k+1} along boundaries. In particular, we see that X can be seen as a union of the spaces e^n_α as n and α vary; thus, $e^n_\alpha \cap e^{n'}_{\alpha'} = \varnothing$ whenever $(n,\alpha) \neq (n',\alpha')$.

The point is that a CW complex allows us to work combinatorially with many topological spaces.

Example 1.4. We realize S^n as a CW complex as follows: simply attach D^n to a point $\{*\}$ by attaching the entire boundary to the point. Note that this is certainly continuous by definition of the quotient topology, and one can check that this is a bijection by doing casework at and away from $\{*\}$. Thus, we have a continuous bijection between compact Hausdorff spaces, so we have produced a homeomorphism.

Example 1.5. Here is another way to realize S^n . We do this inductively: note n=0 has no content (simply take a point). Then supposing that we have already produced S^{n-1} , we simply attach a top and bottom hemisphere of n-cells to produce S^n .

Example 1.6. We can realize \mathbb{RP}^n as a CW complex. Simply realize \mathbb{RP}^n as S^n modulo the antipodal map, so we see that we can identify \mathbb{RP}^n as \mathbb{RP}^{n-1} union with a single n-cell (as in the previous example) but identified "twice-over" on the boundary.

Example 1.7. We realize $T^2=S^1\times S^1$ as a CW complex. Think of T^2 as a rectangle with the bottom/top and left/right edge pairs identified. Then we have a single point e_0 as our 0-cell, two 1-cells corresponding to the two edges (after identification), and then there is the 2-cell e^2 embedded. Here is the picture.

Example 1.8. We realize \mathbb{CP}^n as a CW complex. The idea is that we can think about complex lines in \mathbb{C}^{n+1} as intersecting

$$S^{2n+1} = \left\{ (z_0, \dots, z_n) \in \mathbb{C}^{n+1} : |z_0|^2 + \dots + |z_n|^2 = 1 \right\},$$

and $p,q\in S^{n+1}$ both live on the same line if and only if $p/q\in S^1$. This explains that \mathbb{CP}^{n+1} should be topologically a quotient S^{2n+1}/S^1 .

We are now ready to give our CW structure, which we do inductively, beginning by noting that \mathbb{CP}^0 is a point. We would now like to attach D^{2n} to \mathbb{CP}^{n-1} to produce \mathbb{CP}^n . To begin, note we can realize S^{2n} inside S^{2n+1} as above by adding the requirement $z_n \in \mathbb{R}$, and then we can realize D^{2n} inside this S^{2n} by further requiring $z_n \geq 0$. Then note that D^{2n} surjects onto S^{2n+1}/S^1 (by using the S^1 -action), so we induce a homeomorphism of a quotient of D^{2n} onto S^{2n+1}/S^1 . We take a moment to note that this quotient behaves as follows: distinct points (z_0,\ldots,z_n) and (w_0,\ldots,w_n) in D^{2n} are identified if and only if $z_n=w_n=0$ (because we are only multiplying by scalars in S^1) and further (z_0,\ldots,z_{n-1}) and (w_0,\ldots,w_{n-1}) define the same line in \mathbb{CP}^{n-1} . In this way, we see that \mathbb{CP}^{2n} is realized as \mathbb{CP}^{2n-1} together with a D^{2n} attached as described above.

BIBLIOGRAPHY

[Shu16] Neal Shusterman. Scythe. Arc of a Scythe. Simon & Schuster, 2016.

[Ked21] Kiran S. Kedlaya. Notes on Class Field Theory. 2021. URL: https://kskedlaya.org/papers/cft-ptx.pdf.

LIST OF DEFINITIONS

CW complex, 3