Anomaly detection with kernel density estimation on manifolds

Keywords: manifold learning, variable bandwidth, Riemannian metric, highest density region, Gaussian kernels

1 Introduction

Background (anomaly detection with density) with summarized contribution

Anomaly detection on very high-dimensional data. Applications. Main contribution.

Anomaly detection using densities, other methods for anomaly detection. Based manifold lea

Density estimation methods, KDE with distortion, 2-D variable kernel denstiy estimate with

- Main contributions: better anomaly detection

fix distortion with Riemmannian matrix

anomaly detection using density estimates

kernel density estimate is not accurate

improve density estimation with distortion in the embedding plot

In manifold learning, the underlying idea is that the data lies on a low-dimensional smooth manifold which is embedded in a high-dimensional space. One of the fundamental objectives of manifold learning is to explore the geometry of the dataset, including the distances between points and volumes of regions of data. These intrinsic geometric attributes of the data, such as distances, angles, and areas, however, can be distorted in the low-dimensional embedding, leading to failure to recover the geometry of the manifold (Goldberg et al. 2008). To tackle this problem and measure the distortion incurred in manifold learning, Perrault-Joncas & Meila (2013) propose the Metric

Learning algorithm to augment any existing embedding output with geometric information in the Riemannian metric of the manifold itself. By applying the Metric Learning algorithm, the outputs of different manifold learning methods can be unified and compared under the same framework, which would highly benefit in improving the effectiveness of the embedding.

The Riemannian metric defined at each point of the manifold is used to compute the geometric quantities, including angle, length, and volume, of the low-dimensional manifold embedding in any coordinate system, and be further applied to correct the distortion caused by the manifold learning algorithms. In variable kernel density estimate, the bandwidth matrix H is also defined to control the amount of smoothing for each data point. Therefore, if we could replace the bandwidth matrix with the Riemannian metric, we could further get the kernel density estimation of the manifold M. This kernel density estimate can then be used to produce the highest density region plots (Hyndman 1996) for anomaly detection. The proposed schematic is shown in Figure ??.

Now I briefly describe different steps involved in this main chapter. By applying an existing manifold learning algorithm to the data $X \in \mathbb{R}^r$ with n observations, a low-dimensional embedding $f_n \in \mathbb{R}^d$ can be computed. Most manifold learning methods involve the construction of the nearest neighbor graph based on which the Laplace-Beltrami operator Δ_M is built. The Laplacian is quite useful because it can be coordinate-free while containing all the important geometry. Perrault-Joncas & Meila (2013) have stated one way to compute the approximated Δ_M with a discrete consistent estimator, the geometric graph Laplacian $\mathfrak{L}_{\varepsilon,n}$ (Zhou & Belkin 2011), where ε is the radius parameter for the nearest neighbor graph. The graph Laplacian together with the embedding can be used in the Metric Learning algorithm to achieve the augmented embedding with the Riemannian metric (f_n, g_n) . The highlighted two steps in Figure ?? are the main contributions of this main chapter, replacing the bandwidth matrix H_i with the Riemannian metric g_i for each point in variable kernel density estimate, and computing the highest density region plots based on the density estimates, $\hat{f}()$, for anomaly detection.

The rest of the paper is organized as follows. In Section 2, we present the proposed algorithm to detect anomalies based on variable kernel density estimates of manifold embeddings. In this section, we provide justification for the use of Riemannien matrix as the bandwidth of variable kernel density estimation, including the comparison with fixed bandwidth. Section 3 is composed with two simulations with the proposed algorithm; the first deals with a 2-dimensional meta data and the second with a 100-dimensional meta data. Section 4 contains the application to visualize and identify anomalies in the [TODO] data. Conclusions and discussions are presented in Section 5.

2 Variable kernel density estimation with manifold embeddings

Idea: whole process for the main contribution

Kernel density estimate with variable bandwidth

In this section, we introduce the proposed method to detect anomalies based on the kernel density estimates of manifold learning embeddings where the Riemannian matrix is used as the pointwise variable bandwidth to measure the direction and angle of the distortion of the low-dimensional embeddings. For a high-dimensional data set, various manifold learning algorithms including ISOMAP, LLE, Laplacian Eigenmaps, t-SNE, and UMAP, are applied to get a low-dimensional embedding. The manifold learning algorithms map the points through nonlinear functions that stretches some regions of the space while shrinks others. Perrault-Joncas & Meila (2013) gives us an idea of how to measure the direction and angle of the distortion using the Riemannian metric and the Riemannian metric is a positive simi-definite square matrix for each data point. To learn the distribution of the low-dimensional embedding, we use the kernel density estimation with the bandwidth matrix being the Riemannian metric. The outliers could then be defined as the points with lowest density estimates.

To start with, we introduce the notations in this manuscript. Then we introduce the multivariate kernel density estimation method with variable bandwidth matrix and the metric learning algorithm to derive the pointwise Riemannian metrix. Finally, we propose our novel method to detect anomalies for high-dimensional data set.

2.1 Notations

2.2 Two dimensional kernel density estimation

For a bivariate random sample $X_1, X_2, ..., X_n$ drawn from a density f, the kernel density estimate is defined by

$$\hat{f}(\boldsymbol{x};\boldsymbol{H}) = n^{-1} \sum_{i=1}^{n} K_{\boldsymbol{H}}(\boldsymbol{x} - \boldsymbol{X}_{i})$$

where $\mathbf{x} = (x_1, x_2)^T$ and $\mathbf{X}_i = (X_{i1}, X_{i2})^T$, i = 1, 2, ..., n. Here $K(\mathbf{x})$ is the kernel which is a symmetric probability density function, \mathbf{H} is the bandwidth matrix which is symmetric and positive-definite, and $K_{\mathbf{H}}(\mathbf{x}) = |\mathbf{H}|^{-1/2}K(\mathbf{H}^{-1/2}\mathbf{x})$. The choice of K is not crucial: we take $K(\mathbf{x}) = (2\pi)^{-1} \exp(-\frac{1}{2}\mathbf{x}^T\mathbf{x})$ the standard normal throughout.

In contrast, the choice of H is crucial in determining the performance of \hat{f} . The most common parameterizations of the bandwidth matrix are the diagonal and the general or unconstrained which

has no restrictions on H provided that H remains positive definite and symmetric, that is

$$m{H} = egin{bmatrix} h_1^2 & 0 \\ 0 & h_2^2 \end{bmatrix} \text{ or } m{H} = egin{bmatrix} h_1^2 & h_{12} \\ h_{12} & h_2^2 \end{bmatrix}.$$

This latter parameterization allows kernels to have an arbitrary orientation whereas the former only allows kernels which are oriented to the co-ordinate axes.

An alternative way to think of kernel estimation is that kernel densities 'borrow strength' from nearby points and the bandwidth determines what is "nearby". If the bandwidth is large then all points are "nearby" and we get an overly smooth kernel density estimate. The interesting thing about a bandwidth matrix is that it allows for different notions of what is "nearby" along different coordinates and even along diagonal directions.

Riemannian matrix could be used to measure distortion

Use riemannian matrix as variable bandwidth

Bandwidth is a symmetric positive-definite square matrix, similar to riemannian matrix

2.3 Use riemannian matrix as variable bandwidth

The Riemannian estimated using the method of Perrault Joncas and Meila (2009) gives some idea of the distortion of an embedding (or so they claim). Mapping the points through a non-linear function "stretches" some regions of space and "shrinks" others. The Riemannian gives us an idea of the direction and angle of this stretching. The Riemannian is quite a technical concept but an important thing to understand is that the estimate that comes out of Perrault Joncas algorithm is a square matrix.

We saw how points that are far apart in the embedding may not have been so far apart on the original manifold. The Riemannian gives us some way of correcting this. Similarly a bandwidth matrix in a kernel density estimate is all about determining the "directions" in which there should be more or less "closeness". So the basic idea is to replace the kernel density estimate with

$$\hat{f}(\mathbf{x}) = \sum_{i=1}^{N} K_{\mathbf{H}_i}(\mathbf{x} - \mathbf{x}_i) K_{\mathbf{H}_i}(\mathbf{x} - \mathbf{x}_i) = (2\pi)^{-d/2} |\mathbf{H}_i|^{-1/2} \exp\left[-\frac{1}{2}(\mathbf{x} - \mathbf{x}_i)'\mathbf{H}_i^{-1}(\mathbf{x} - \mathbf{x}_i)\right]$$

where H_i is either the Riemannian or the inverse of the Riemannian (I am not totally sure which one). Notice that the bandwidth matrix is different for each point. This makes it a kernel density estimate with local smoothing, which is quite interesting, but we should take care to understand

the properties of such things.

The Riemannian metric g is a symmetric and positive definite tensor field which defines an inner product <, $>_g$ on the tangent space T_pM for every point $p \in M$. If the inner product of the tangent space is known for a given geometry, the Riemannian metric is a good measure to recover the geometry of manifold. The Metric Learning algorithm (Perrault-Joncas & Meila 2013) then augment the embedded manifold with the Riemannian metric and produce a Riemannian manifold (M, g).

To recover the original geometry of the manifold, we need to know what the inner product corresponds to in the embedding. The inner product between two vectors $u, v \in T_pM$, $< u, v>_g = g_{ij}u^iv^{j1}$, can be used to define some geometric quantities, such as the vector norm $||u|| = \sqrt{< u, v>_g}$ and the angle between two vectors $\cos \theta = \frac{< u, v>_g}{||u|| ||v||}$ in the tangent space. Therefore, for each point $p \in M$ in any coordinate system, the Riemannian metric g is a $d \times d$ symmetric positive definite matrix, where d is the dimension of the manifold.

The line element and volume element of the full manifold or a subset of the manifold can also be computed from g. The arc length of a curve $c \in M$ is defined as

$$l(c) = \int_{a}^{b} \sqrt{g_{ij} \frac{dx^{i}}{dt} \frac{dx^{j}}{dt}} dt,$$

where $(x^1, ..., x^d)$ are the coordinates of chart (U, x) and c(t) is a function mapping [a, b] to M. While the volume of $V \subset M$ is computed by

$$Vol(V) = \int_{V} \sqrt{\|g\|} dx^{1} \dots dx^{d}.$$

Both the concepts of distance and volume are relevant to kernel density estimation.

- Manifold learning distortion

dimension reduction using manifold learning
Riemannian matrix to measure topological distortion
distortion is informative for true embedding

The aim of the project is not to evaluate different manifold learning algorithms. Although ISOMAP worked OK here it is still distorted and in real examples you will never 'know' that the data are uniform on the sphere. Instead the idea of this project is to do kernel density estimation in a way that takes distortion into account.

¹Here the Einstein notation is used where superscripts denote summation over i and j

2.3.1 Metric Learning algorithm

Perrault-Joncas & Meila (2013) propose the Metric Learning algorithm which mainly involves four main steps.

As pointed out by Perrault-Joncas & Meila (2013), if the embedding dimension s is larger than the manifold intrinsic dimension d, the rank of the embedding metric $h_n(p)$ is d; otherwise, the Riemannian metric g_n will be returned. This algorithm is also implemented in a Python library megaman (McQueen et al. 2016). It is designed to apply the manifold learning methods to large-scale data sets, as well as computing the Riemannian metric of the manifold.

Learn metric algorithm

Algorithm 1: Learn metric algorithm

Input : high-dimensional data $x_i \in \mathbb{R}^p$ for all i = 1, ..., N

Output : low-dimensional data $y_i \in \mathbb{R}^d$ and its Riemannian metric h_i for all

 $i = 1, \ldots, N$

parameter : embedding dimension d, bandwidth parameter $\sqrt{\varepsilon}$, manifold

learning algorithm

optimization parameter: manifold learning parameters

1: Construct a weighted neighborhood graph $G_{w,\varepsilon}$ with weight matrix W where $w_{i,j} = \exp(-\frac{1}{\varepsilon}||x_i - x_j||^2)$ for data points $x_i, x_j \in \mathbb{R}^p$;

2: Calculate the $N \times N$ geometric graph Laplacian $\widetilde{\mathcal{L}}_{\varepsilon,N}$ by

$$\widetilde{\mathcal{L}}_{\varepsilon,N} = 1/(c\varepsilon)(\widetilde{D}^{-1}\widetilde{W} - I_N),$$

where $\widetilde{D} = diag\widetilde{W}\mathbf{1}$, $\widetilde{W} = D^{-1}WD^{-1}$, and $D = diagW\mathbf{1}$;

- 3: Embed each data point $x \in \mathbb{R}^p$ to embedding coordinates $y(x) = (y^1(x), \dots, y^d(x))$ by any existing manifold learning algorithm;
- 4: Obtain the matrix $\tilde{h}(x)$ at each point by applying the graph Laplacian $\widetilde{\mathcal{L}}_{\sqrt{\varepsilon},N}$ to the embedding coordinates y with each element being

$$\tilde{h}^{ij} = \frac{1}{2} \left[\tilde{\mathcal{L}}_{\varepsilon,N} \left(y_i \cdot y_j \right) - y_i \cdot \left(\tilde{\mathcal{L}}_{\varepsilon,n} y_j \right) - y_j \cdot \left(\tilde{\mathcal{L}}_{\varepsilon,n} y_i \right) \right];$$

5: Calculate the Riemannian metric h(x) as the rank d pseudo inverse of $\tilde{h}(x)$ with

$$h(x) = Udiag1/(\Lambda[1:d])U',$$

where $[U, \Lambda]$ is the eigendecomposition of matrix $\tilde{h}(x)$, and U is the matrix of column eigenvectors ordered by the eigenvalues Λ in descending order.

2.4 Proposed algorithm

Now we present our proposed method for anomaly detection based on variable kernel density estimates.

Algorithm 2: Variable kernel density estimates with Riemannian metric

Input : high-dimensional data x_i for all i = 1, ..., N

Output: outliers embedding coordinates $y_1, \ldots, y_{n_outliers}$ with their estimated densities

 $f_1, \ldots, f_{n_outliers}$

parameter: number of outliers *n_outliers*, embedding dimension *d*

1: For all $i=1,\ldots,N$, compute the d-dimensional embeddings y_i with any exsiting manifold leanning algorithms and the corresponding Riemannian metric h_i using the Learn metric algorithm with inputs d and $\sqrt{\varepsilon}=0.4$ and c=0.25 for heat kernels;

2: Set the variable bandwidth for each point as $H_i = h_i$;

3: Compute the kernel density estimates for each point as

$$\hat{f}(\mathbf{y}) = \sum_{i=1}^{N} (2\pi)^{-d/2} |\mathbf{H}_i|^{-1/2} \exp\left[-\frac{1}{2} (\mathbf{y} - \mathbf{y}_i)' \mathbf{H}_i^{-1} (\mathbf{y} - \mathbf{y}_i)\right];$$

4: Reorder the embedding coordinates y according to the density estimates f(y) and subset the top n_outliers as the outliers.

Now that we have proposed a way to take into account the distortion of manifold in kernel density estimate, it would be straightforward to produce the highest density region plots [HDR plots; Hyndman (1996)] which are also computed using kernel density estimate of the embedding.

3 Simulation

In this section, we exam two scenarios for both low and high dimensions to test our proposed algorithm. For visualization purpose, Section 3.1 presents a 2-D meta data example. We first simulate the data of size N=2000 from a mixture of four Gaussian kernels with the same covariance but different means, each consisting of 500 points. Different mapping functions are then applied to the 2-D meta data so that they now lie on a 3-D feature space, which gives the input data for different manifold learning algorithms, including ISOMAP, LLE, Laplacian Eigenmaps, t-SNE, and UMAP. The embedded dimension is set as D=2, same as the meta data dimension. This enables us to compare the manifold learning embedding with the true meta data. We could now apply the algorithm described in [TODO]. Similarly, the second simulation in Section 3.2 is based on a 5-D meta data embedded in a 100-D space and the corresponding embedding dimension is D=5.

3.1 2-D Meta data from a Gaussian Mixture Model

We first generate a 2-dimensional data of size N=2000 from a Gaussian mixture model with four components with means $\mu_1=(0.25,0.25)', \mu_2=(0.25,0.75), \mu_3=(0.75,0.25), \mu_4(0.75,0.75)$ and the same variance-covariance matrix $\Sigma_i=diag(0.02,0.02), i=1,2,3,4$. The mixture proportions are equally set as $\pi_i=0.25, i=1,2,3,4$. Then the mixture Gaussian mixture density function is a

weighted linear combination of the four component Gaussian densities as

$$P(\mathbf{X} = \mathbf{x}) = \sum_{i=1}^{4} \pi_i \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}_i|^{-1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu_i})' \mathbf{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu_i})\right\}.$$
(1)

Figure 1 shows the 2-dimensional meta data and the colors indicate the true density of all data points, with brighter colors showing high densities and dark colors showing low densities. We then define outliers as points with lowest densities shown in black and typical points with highest densities shown in yellow. Based on the true density plot, the outliers are scattered in the middle and the outer area of the whole structure, while typical points are near the means of four kernels. This is the baseline to be compared with outliers from variable kernel density estimates.

Figure 1: True density of the Gaussian mixture model of four kenels with means (0.25, 0.25), (0.25, 0.75), (0.75, 0.25), (0.75, 0.75) and the same variance-covariance matrix diag(0.02, 0.02)

Given the 2-D meta data, multiple mapping functions could be applied to embed the data in a 3-D space. One of the most famous example in manifold learning is the swiss roll data, with the mapping function as below.

$$\begin{cases} X = X_1 \times \cos X_1, \\ Y = X_2, \\ Z = X_1 \times \sin X_1. \end{cases}$$

Now we are able to apply different manifold learning algorithms to reduce the dimension back to 2, and further estimate the density of the embedding to detect anomalies. According to the density

estimates, we could rank the data points and then identify which observations lie in an highest density region of specified coverage, eg. 1%, 50%, 99%, >99%. The top outliers with lowest densities are also indexed in blue, which we call *true outliers*. For each of the four manifold learning methods, namely ISOMAP, LLE, t-SNE, and UMAP, Figure 2 presents in one column the 2-D embedding plot, with the colors indicating the densities, the top row for true densities from the Gaussian mixture model, the middle row for highest density region plots with densities from our proposed variable KDE, and the bottom for similar HDR plots with densities from KDE with fixed bandwidth. Since there are four kernels in the meta data and darker points are the defined outliers, we could derive that for ISOMAP and LLE, variable kernel density estimates could detect the number of kernels more accurately than the KDE with fixed bandwidth. As for t-SNE and UMAP, both embeddings are quite close to each other with points clustered together, but the mixture of kernel structure is not as clear as ISOMAP and UMAP. Instead, we could roughly compare the location of outliers. For t-SNE, the middle plot have indexed more true outliers than the bottom plot; while for UMAP, both the middle and bottom plot fail to find the true outliers, but the outliers from fixed bandwidth are more scattered along the curved embedding.

For comparison, we use the same meta data with different mapping function, twin peak mapping, with the corresponding 3-D data is shown in Figure 3. The four colors in both mappings represents the four gaussian kernels in the meta data. Similar to Figure 2, four manifold learnings are obtained and used to detect outliers with two bandwidth selection methods in Figure 4.

3.2 5-D data embedding in 100-D space

For the high-dimensional case, we generate the meta data from a 5-dimensional semi-hypersphere. First, we simulate N=2000 points from a 4-dimensional Gaussian mixture model with two mixture components, $N(\mu_1, \Sigma_1)$ and $N(\mu_2, \sigma_2)$, where $\mu_1 = \mu_2 = (0,0,0,0)'$, $\Sigma_1 = diag(1,1,1,1)$, and $\Sigma_1 = diag(25,25,25,25,25)$. In order to manually generate anomalies, the mixture proportions are set as $\pi_1 = 0.99$ and $\pi_2 = 0.01$. The fifth dimension is calculated to satisfy $x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 = r^2$ where r is set as 15. Similarly, the Gaussian mixture densities could be calculated using Equation (1) as the true density of the 5-d meta data. Figure 5 shows a scatterplot when animating a 5-D tour path with the R package *tourr* [REFERENCE]. Then we initial the other 95 dimensions in the high-dimensional space as zero columns and further rotate the 100-dimensional data of size N (denote the transpose of the data matrix as X) to get rid of the zeros so that it could be passed to the manifold learning algorithms. The rotation matrix is derived from the QR decomposition of a 100×100 matrix A with all components randomly generated from a uniform distribution $\mathfrak{U}(0,1)$. For any real matrix A of dimension $P \times P$, the QR decomposition could decompose the matrix into the multiplication of two matrix P and P are the dimension of P is a matrix P and P and P is a matrix P in the dimension of P is a matrix P and P is a matrix P and P is a matrix P in the dimension of P is a matrix P in the dimension of P is a matrix P in the dimension of P in the dimension of P is a matrix P in the dimension of P in the dimension of P is a matrix P in the dimension of P in th

Top: True densities from Gaussian mixture model; Middle: Outliers using variable kernel density estimate; Bottom: Outliers from `hdrcde` package with fixed bandwidth;

Figure 2: Highest density region plots of four manifold learning embeddings of the swiss roll data. Colors are indicating densities from top: true densities from the Gaussian mixture model; middle: KDE with Riemannian matrix as variable bandwidth; and bottom: KDE with fixed bandwidth. Variable KDE preforms better in finding kernel structures with ISOMAP and LLE, and in locating outliers with t-SNE. Both methods are not detecting outliers accurately when using UMAP.

Figure 3: 3-D Mappings of the meta data with colors indicating four kernels. Left: swiss roll mapping. Right: twin peak mapping.

Figure 4: Highest density region plots of four manifold learning embeddings of the twin peak data. Variable KDE preforms better in finding kernel structures with ISOMAP and LLE, and in locating outliers with t-SNE and UMAP.

with unit norm orthogonal vectors, Q'Q = I, and R is an upper triangular matrix. Matrix Q is used as the rotation matrix and it satisfies X'X = (QX)'(QX), where the rotated data matrix (QX)' is now the input for the manifold learning algorithms.

Figure 5: *Scatterplot display of the animation of a 5-D tour path.*

4 Application

Dataset

Goal and process

Results (Plots and tables)

Analysis and summary

5 Conclusion

Summary of the contribution and conclusion

Details about the process

Shortcoming and other references for future direction (improvement on density estimation,

References

Goldberg, Y, A Zakai, D Kushnir & Y Ritov (2008). Manifold Learning: The Price of Normalization. *J. Mach. Learn. Res.* **9**(Aug), 1909–1939.

Hyndman, RJ (1996). Computing and Graphing Highest Density Regions. Am. Stat. 50(2), 120–126.

McQueen, J, M Meilă, J VanderPlas & Z Zhang (2016). Megaman: Scalable Manifold Learning in Python. *J. Mach. Learn. Res.* **17**(148), 1–5.

Perrault-Joncas, D & M Meila (2013). Non-linear dimensionality reduction: Riemannian metric estimation and the problem of geometric discovery. arXiv: 1305.7255 [stat.ML].

Zhou, X & M Belkin (2011). Semi-supervised Learning by Higher Order Regularization. In: *Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics*. Vol. 15. Proceedings of Machine Learning Research. JMLR Workshop and Conference Proceedings, pp.892–900.