α) Η κλίση της ευθείας ΟΑ είναι $\lambda_{\rm OA} = \frac{\sqrt{3}-0}{1-0} = \sqrt{3}$ και επειδή διέρχεται από την αρχή των αξόνων θα έχει εξίσωση $y = \sqrt{3} \cdot x$. Η γωνία ω που σχηματίζει με τον x'x έχει εφαπτομένη $\sqrt{3}$, οπότε είναι $\omega = 60^\circ$.

β) Η κλίση της ευθείας ΑΒ είναι $\lambda_{\rm AB} = \frac{\sqrt{3}-1-\sqrt{3}}{\sqrt{3}+1-1} = \frac{-1}{\sqrt{3}} = -\frac{\sqrt{3}}{3}$ και αφού διέρχεται από το σημείο $\, {\rm A}(1,\sqrt{3}) \,$ έχει εξίσωση $\, y-\sqrt{3} = -\frac{\sqrt{3}}{3}(x-1) \Leftrightarrow y = -\frac{\sqrt{3}}{3} \cdot x + \frac{4\sqrt{3}}{3} \, .$

Η γωνία ϕ που σχηματίζει με τον x'x έχει εφαπτομένη $-\frac{\sqrt{3}}{3}$, οπότε είναι ϕ = 150° .

γ) Είναι $\lambda_{\rm OA}\cdot\lambda_{\rm AB}=\sqrt{3}\cdot\left(-\frac{\sqrt{3}}{3}\right)$ = -1, δηλαδή ${\rm OA}\perp{\rm A}\,{\rm B}$, οπότε το τρίγωνο ${\rm OAB}$ είναι ορθογώνιο με $\hat{\rm A}=90^\circ$.

 $\mbox{Epish} (OA) = \sqrt{(1-0)^2 + \left(\sqrt{3} - 0\right)^2} = 2 \ \ , \ \ (AB) = \sqrt{(\sqrt{3} + 1 - 1)^2 + (\sqrt{3} - 1 - \sqrt{3})^2} = 2$ και αφού (OA) = (AB) το OAB είναι και ισοσκελές.

δ) Αν θ η γωνία που σχηματίζει η ευθεία OB με τον x'x, είναι $\theta = \omega - A\hat{O}B = 60^\circ - 45^\circ = 15^\circ$, αφού $A\hat{O}B = 45^\circ$ δεδομένου ότι το τρίγωνο OAB είναι ορθογώνιο και ισοσκελές με $\hat{A} = 90^\circ$. Όμως $\varepsilon \phi \theta = \varepsilon \phi 15^\circ$ είναι η κλίση της ευθείας OB δηλαδή $\frac{\sqrt{3} - 1 - 0}{\sqrt{3} + 1 - 0} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}$. Συνεπώς $\varepsilon \phi 15^\circ = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}$.

