波士顿房价预测实验报告

姓名: 胡延伸 学号: PB22050983

一、实验概述

1.1 实验目标

- •研究网络深度对回归任务性能的影响(浅层/中等/深层网络)
- 分析学习率对模型收敛速度和稳定性的作用
- •比较激活函数(ReLU/Tanh/Sigmoid)的训练效率差异

1.2 数据集

•数据来源:波士顿房价数据集(506个样本,13个特征,1个连续标签 MEDV)

•关键特征:

• RM (房间数): 与房价正相关

• LSTAT (低收入人群比例): 与房价负相关

• CRIM (犯罪率): 区域安全指标

•数据划分:

训练集(60%): 303个样本验证集(20%): 101个样本测试集(20%): 102个样本

二、实验方法

2.1 模型架构

2.2 训练流程

三、实验结果与分析

3.1 网络深度影响

网络类型	最佳训练损失	最佳验证损失
浅层网络	9.4959	12.8394
中等网络	5.4804	10.9627
深层网络	5.0494	11.9117

关键现象:

- 1. 中等网络表现最佳, 测试损失比浅层网络降低42%
- 2. 训练曲线对比:

理论解释:

• 中等网络在模型容量与泛化能力间取得平衡

3.2 学习率影响

学习率	收敛所需Epoch	最终测试损失	训练稳定性
0.1	27	12.6871	迅速下降
0.01	41	12.1968	迅速下降
0.001	100+	12.5205	平稳下降
0.0001	未完全收敛	46.1634	震荡最明显

关键现象:

- 1. 最佳学习率0.01的收敛速度比0.0001快3倍
- 2. 训练曲线对比:

理论解释:

- Adam优化器的自适应学习率特性缓解了手动调参压力
- 过低学习率使得损失下降缓慢

3.3 激活函数对比

激活函数	收敛所需Epoch	测试损失	梯度消失现象
ReLU	40	12.8679	无
Tanh	90	20.8852	轻微
Sigmoid	未完全收敛	38.0054	显著

关键现象:

- 1. ReLU的收敛速度比Tanh快50%
- 2. Sigmoid在100 Epoch后仍未收敛(损失>25)
- 3. 训练曲线对比:

理论解释:

- Sigmoid的梯度饱和区导致深层网络梯度消失
- ReLU的非饱和特性加速了反向传播