- **54.1.** Ассоциативна ли операция * на множестве M, если
- а) $M=\mathbb{N},\quad x*y=x^y;$ б) $M=\mathbb{N},\quad x*y=\mathrm{HO} \ensuremath{\mathcal{I}}(x,y);$
- B) $M = \mathbb{N}$, x * y = 2xy; $r) M = \mathbb{Z}$, x * y = x y;
- д) $M = \mathbb{Z}$, $x * y = x^2 + y^2$; e) $M = \mathbb{R}$, $x * y = \sin x \cdot \sin y$;
- ж) $M = \mathbb{R}^*, \quad x * y = x \cdot y^{x/|x|}$?
- **54.2.** Пусть S полугруппа матриц $\begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix}$, где $x,y \in \mathbb{R}$, с операцией умножения. Найти в этой полугруппе левые и правые нейтральные элементы, элементы, обратимые слева или справа относительно этих нейтральных.
- **54.3.** На множестве M определена операция \circ по правилу $x \circ y = x$. Доказать, что (M, \circ) полугруппа. Что можно сказать о нейтральных и обратимых элементах этой полугруппы? В каких случаях она является группой?
- **54.4.** На множестве M^2 , где M некоторое множество, определена операция \circ по правилу $(x,y)\circ(z,t)=(x,t)$. Является ли M^2 полугруппой относительно этой операции? Существует ли в M^2 нейтральный элемент?
- **54.5.** Сколько элементов содержит полугруппа, состоящая из всех степеней матрицы

$$\left(\begin{array}{rrr} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right)?$$

Является ли эта полугруппа группой?

- **54.6.** Доказать, что полугруппы $(2^M, \cup)$ и $(2^M, \cap)$ изоморфны.
- **54.7.** Сколько существует неизоморфных между собой полугрупп порядка 2?

$\Pi 1$ 1

Примеры. Множество матриц $n \times n$ с элементами из $\mathbb N$ (натуральные числа), рассматриваемое с операцией умножения, является полугруппой (поскольку умножение ассоциативно).

Множество матриц $n \times n$, элементы которых суть целые неотрицательные числа, является моноидом. Единичным элементом является единичная матрица.

Множество целочисленных матриц $n \times n$ является моноидом.

Множество $\mathrm{Map}(X,X)$ отображений X в себя с операцией взятия композиции отображений является моноидом. Единицей является тождественное отображение $id = id_X$.

Подмоноидами в $\mathrm{Map}(X,X)$ являются подмножества инъективных и сюръективных

отображений.

Подмножества неинъективных и несюръективных отображений в $\mathrm{Map}(X,X)$ являются полугруппами, но не моноидами (нет единицы).