$\mathbf{H}\mathbf{W}$

2015160046 오재민

Date: May 17, 2020.

Problem 1. Obviously $\left|\frac{1}{z}\right| \leq \frac{1}{\varepsilon}$. Let $\frac{1}{z} = re^{i\theta}$ where $0 < r \leq \frac{1}{\varepsilon}$. Then real part of $\frac{1}{z}=r\cos\theta$. Therefore $\left|e^{\frac{1}{z}}\right|=e^{r\cos\theta}\leq e^{\frac{1}{\varepsilon}}$. Thus, given function is bounded in the region $|z| \geq \varepsilon$.

Problem 2. Let $z = \log (1+i)^{\pi i}$. Then $e^z = (1+i)^{\pi i} = e^{\pi i \log(1+i)}$. Therefore z = 1 $2k\pi i + \pi i \log(1+i) = 2k\pi i + \pi i \left(\ln\sqrt{2} + i\left(\frac{\pi}{4} + 2m\pi\right)\right)$. So $z = (2k + \frac{1}{2}\ln 2)\pi i$ $\pi^2\left(\frac{1}{4}+2m\right)$ where k,m are integers.

Problem 3.

$$(iy)^{(iy)} = e^{iy\log(iy)} = e^{iy\left(\ln|y| + i\left(\frac{\pi}{2} + k\pi\right)\right)}$$
$$= e^{-y\left(\frac{\pi}{2 + k\pi} + iy\ln|y|\right)} = e^{-y\left(\frac{\pi}{2} + k\pi\right)} \left(\cos\left(y\ln|y|\right) + i\sin\left(y\ln|y|\right)\right)$$

where k is even(odd) when y > 0 (y < 0).

Problem 4. $z = re^{i\theta}$. Then $z^{\frac{2}{3}} = e^{\frac{2}{3}\log z} = e^{\frac{2}{3}(\ln r + i\theta)} = r^{\frac{2}{3}} \cdot e^{i\left(\frac{2}{3}\theta\right)} = w$. Therefore $|w| = r^{\frac{2}{3}}$.

Problem 5. Let $a = \frac{1}{2i} \log \frac{z+i}{z-i}$. Then $\sin a = \frac{e^{ai} - e^{-ai}}{2i}$ and $\cos a = \frac{e^{ai} + e^{-ai}}{2}$.

$$\cot a = i \frac{e^{ai} + e^{-ai}}{e^{ai} - e^{-ai}} = i \frac{e^{2ai} + e^{-2ai} + 2}{e^{2ai} - e^{-2ai}}$$

$$=i\frac{\frac{z+i}{z-i}+\frac{z-i}{z+i}+2}{\frac{z+i}{z-i}-\frac{z-i}{z+i}}=i\frac{4z^2}{4zi}=z$$

Therefore $\cot a = z$ which implies $\cot^{-1} z = a$.

Problem 6.

- (1) $\lim_{z\to 0} \frac{\log(1+z)}{z} = 1$ by theorem 5.26. By continuity of e^z , $\lim_{z\to 0} (1+z)^{\frac{1}{z}} = \lim_{z\to 0} e^{\frac{\log(1+z)}{z}} = e$. (2) $z^{\frac{1}{2}} = e^{\frac{1}{2}\ln|z|+i\theta}$ where θ is argument of z. So, $z^{\frac{1}{2}} \to 0$ as $z \to 0$. Therefore,
- $\lim_{z\to 0} \frac{\sqrt{z}-2}{z-2} = \frac{-2}{-2} = 1.$

Problem 7. $u_x = \sqrt{x^2 + y^2} + \frac{x^2}{\sqrt{x^2 + y^2}}, \ u_y = \frac{xy}{\sqrt{x^2 + y^2}}, \ v_x = \frac{xy}{\sqrt{x^2 + y^2}}, \ and \ v_y = \frac{xy}{\sqrt{x^2 + y^2}}$ $\sqrt{x^2+y^2}+rac{y^2}{\sqrt{x^2+y^2}}$. To satisfy Cauchy-Riemann equation, $x^2=y^2$ and xy=0which is impossible except for x = y = 0.

Let's compute values of partials. $u_x(0,0) = \lim_{h\to 0} \frac{h\sqrt{h^2}}{h} = \lim_{h\to 0} |h| = 0.$ Similarly all other partials have 0 at the origin. So given function satisfies Cauchy-Riemann equation at origin. So f is differentiable at origin and f'(0) = 0.

Problem 8. $f(z)=z^2+z^2\bar{z}$. So $\frac{\partial f}{\partial \bar{z}}=z^2$ which is zero if and only if z=0. So fis nowhere differentible except at z=0. $\lim_{z\to 0}\frac{f(z)-f(0)}{z}=\lim_{z\to 0}(z+z\bar{z})=0=$ f'(0). Also, we cannot say about derivative of f on $\mathbb{C}-0$. So we cannot say about second(or higher) order derivative of f at origin.

Problem 9. $u_x = e^x \cos(ay)$, $u_y = -ae^x \sin(ay)$, $v_x = e^x \sin(y+b)$, and $v_y = -ae^x \sin(ay)$ $e^{x}\cos(y+b)$. To satisfy Cauchy-Riemann equation, $a=\pm 1$ and $b=2k\pi$ where $k \in \mathbb{Z}$.

HW 3

Problem 10. Since real part of $f' = f_x$ is zero, $u_x = 0 = v_y$ by Cauchy-Riemann equation. So $u = \phi_1(y)$ and $v = \phi_2(x)$. Then $\phi_1'(y) = -\phi_2'(x)$ for all $x, y \in \mathbb{R}$ because $u_y = -v_x$. Therefore $\phi_1' = -\phi_2' = c \in \mathbb{R}$. So, put $\phi_1 = cy + d_1$ and $\phi_2 = -cx + d_2$ where $d_1, d_2 \in \mathbb{R}$. Therefore $f(x, y) = (cy + d_1) + i(-cx + d_2)$ which is entire function.

Problem 11. Automatically, $u_y = -v_x = 0$. u'(x) = v'(y) for all $x, y \in \mathbb{R}$. So $u' = v' = c \in \mathbb{R}$. So $u(x) = cx + d_1$ and $v(y) = cy + d_2$ where $d_1, d_2 \in \mathbb{R}$. Therefore $f(z) = cz + d_1 + id_2$.

Problem 12. Given function is real function. But analytic real valued function must be constant in the domain. Unfortunately, our function is not constant. So it is not analytic in the domain.

Problem 13. $f(z) = \ln|z| + i\theta$ where $4\pi < \theta \le 6\pi$ is argument of z. (that is, cutting $\theta = 4\pi$)

Clearly, f is analytic on $\mathbb{C} \setminus [0, \infty)$ and $f(-1) = 0 + i\theta$. $\theta = \pi + 2k\pi \in (4\pi, 6\pi]$. So k = 2 and $f(-1) = 5\pi i$.