Deep Learning and Practice

#Lab03 EEG classification 309505002 鄭紹文

1. Introduction:

腦電波圖是記錄頭上某兩端點的電位差,緣由於人在清醒、壓力環境、昏迷等不同狀況時,腦電波的振動頻率會有不同變化,由於人類的大腦裡有許多神經細胞,細胞活動會發出電磁波。此次lab時做兩種不同的網路,EEGNet以及Deep convolution network 搭配三種activation function:ELU、ReLU、Leaky-ReLu來分析已經經過preprocessing的 BCI competition的資料fig.1)。

2. Experiment setups:

A. The detail of your model

EEGNet

fig. 2

Layer (type)	Output Shape	Param #
Conv2d-1 BatchNorm2d-2 Conv2d-3 BatchNorm2d-4 ReLU-5 AvgPool2d-6 Dropout-7 Conv2d-8 BatchNorm2d-9 ReLU-10 AvgPool2d-11 Dropout-12 Linear-13	[-1, 16, 2, 750] [-1, 16, 2, 750] [-1, 32, 1, 750] [-1, 32, 1, 750] [-1, 32, 1, 187] [-1, 32, 1, 187] [-1, 32, 1, 187] [-1, 32, 1, 187] [-1, 32, 1, 187] [-1, 32, 1, 187] [-1, 32, 1, 23] [-1, 32, 1, 23] [-1, 32, 1, 23] [-1, 32, 1, 23]	816 32 64 64 0 0 15,360 64 0 0

Total params: 17,874 Trainable params: 17,874 Non-trainable params: 0

Input size (MB): 0.01

Forward/backward pass size (MB): 1.16

Params size (MB): 0.07

Estimated Total Size (MB): 1.23

fig. 3

主要利用 Spec 上所附的架構,使用 PyTorch 建構 network,同時將靠近輸出的 dropout 設為 0.5 做優化調整。需要注意最後要有 flatten layer,將 output 將值傳入最後的 classification layer。

DeepConvNet

Layer (type)	Output Shape	Param #
Conv2d-1	[-1, 25, 2, 746]	150
Conv2d-2	[-1, 25, 1, 746]	1,275
BatchNorm2d-3	[-1, 25, 1, 746]	50
ReLU-4	[-1, 25, 1, 746]	0
MaxPool2d-5	[-1, 25, 1, 373]	0
Dropout-6	[-1, 25, 1, 373]	0
Conv2d-7	[-1, 50, 1, 369]	6,300
BatchNorm2d-8	[-1, 50, 1, 369]	100
ReLU-9	[-1, 50, 1, 369]	0
MaxPool2d-10	[-1, 50, 1, 184]	0
Dropout-11	[-1, 50, 1, 184]	0
Conv2d-12	[-1, 100, 1, 180]	25,100
BatchNorm2d-13	[-1, 100, 1, 180]	200
ReLU-14	[-1, 100, 1, 180]	0
MaxPool2d-15	[-1, 100, 1, 90]	0
Dropout-16	[-1, 100, 1, 90]	0
Conv2d-17	[-1, 200, 1, 86]	100,200
BatchNorm2d-18	[-1, 200, 1, 86]	400
ReLU-19	[-1, 200, 1, 86]	0
MaxPool2d-20	[-1, 200, 1, 43]	0
Dropout-21	[-1, 200, 1, 43]	0
Linear-22	[-1, 2]	17,202

Total params: 150,977 Trainable params: 150,977 Non-trainable params: 0

Input size (MB): 0.01

Forward/backward pass size (MB): 2.49

Params size (MB): 0.58

Estimated Total Size (MB): 3.07

Layer	# filters	size	# params	Activation	Options
Input		(C, T)			
Reshape		(1, C, T)			
Conv2D	25	(1, 5)	150	Linear	$\bmod e = valid, \max norm = 2$
Conv2D	25	(C, 1)	25 * 25 * C + 25	Linear	$\bmod e = valid, \max norm = 2$
BatchNorm			2 * 25		${\rm epsilon} = 1\text{e-}05, \text{momentum} = 0.1$
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	50	(1, 5)	25*50*C+50	Linear	mode = valid, max norm = 2
BatchNorm			2 * 50		${\rm epsilon} = 1\text{e-}05, \text{momentum} = 0.1$
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	100	(1, 5)	50 * 100 * C + 100	Linear	mode = valid, max norm = 2
BatchNorm			2 * 100		${\rm epsilon} = 1\text{e-}05, \text{momentum} = 0.1$
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	200	(1, 5)	100 * 200 * C + 200	Linear	mode = valid, max norm = 2
BatchNorm			2 * 200		epsilon = 1e-05, $momentum = 0.1$
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Flatten					
Dense	N			softmax	$\max norm = 0.5$

fig. 4

DeepConv EEGNet

fig. 5

DeepConvNet同樣照著Spec建構network,並且在參數上把drop out做調整,靠近input端的drop out設成0.2。

B. Explain the activation function(ReLU \ Leaky ReLU \ ELU)

fig. 6

□ ReLU:

fig. 7

ReLU函數圖形如fig.7,若值為正數時,則輸出該值大小,反之若值為負數,則輸出為0。ReLU函數並非全區間皆可微分,但是不可微分的部分可使用Sub-gradient進行取代。

ReLU是近年來最頻繁被使用的activation function,原因在於其存在以下特點:解決gradient vanishing問題、計算速度相當快、收斂速度快等特性。

(1) 梯度消失問題 (vanishing gradient problem):

對於使用誤差反向傳遞運算類的神經網絡來說,更新權重時,梯度計算的考量最為重要,使用Sigmoid以及tanh函數較容易發生梯度消失問題,當輸入值接近飽和區(sigmoid函數在小於-4和大於+4的時候)進行激發時,一階微分值趨近於0,就發生梯度消失的問題,使得誤差反向傳遞計算,無法有效地進行權重更新,而這個現象在神經網路層數加深時會更加明顯,而ReLU函數的分段線性性質能有效地克服梯度消失之問題。

(2) 計算量大幅降低:

ReLU函數相較於Sigmoid以及tanh來說,大幅下降計算量,因為在這裡我們不需要使用任何指數運算,只需要判斷輸入值是否大於0,來進行輸出。

Leaky ReLU:

 $f(x) = \max(0.01x, x)$

Leaky ReLU函數圖形如fig.8,為了解決Dead ReLU Problem (ReLU 在負數區域被kill的現象叫做dead relu。ReLU在訓練的時很脆弱,在x<0 時,梯度為0。這個神經元及之後的神經元梯度會永遠為0,不再對任何資料有所影響,導致相應參數永遠不會被更新。通常兩個原因:(1).參數初始化問題、(2)learning rate太高導致在訓練過程中參數更新太大。)

Leaky ReLU將ReLU的前半段輸出設為0.01x,如此即能**防止值為負號時永遠無法被激活**之問題。理論上,Leaky ReLU擁有ReLU的所有優點,也成功避免Dead ReLU Problem的問題產生,但在實際使用上,並沒有辦法完全證明Leaky ReLU永遠優於ReLU。

ELU:

fig. 9

ELU函數圖形如fig.9,ELU也是為解決ReLU存在的問題而提出,同時也有ReLU的基本所有優點,以及(1)不會有Dead ReLU問題、(2)輸出的均值接近0,zero-centered。

缺點在於**計算量稍大**,類似於Leaky ReLU,理論上雖然好於ReLU,但在實際使用中目前並沒有好的證據ELU總是優於ReLU。

3. Experiment results:

A. The highest testing accuracy:

Plot Comparison Result

```
print("EEGNet v.s DeepConvNet")

data=[{"Net":"EEGNet", "ReLU":acc_EGG_ReLU*100, "Leaky ReLU":acc_EGG_LeakyReLU*100, "ELU":acc_EGG_ELU*100},

{"Net":"DeepConvNet", "ReLU":acc_DeepConv_ReLU*100, "Leaky ReLU":acc_DeepConv_LeakyReLU*100, "ELU":acc_DeepConv_ELU*10

df=pd.DataFrame(data, columns=['Net', 'ReLU', 'Leaky ReLU', 'ELU'])

# print(df)

tb=Texttable()

tb.set_cols_align(['l', 'r', 'r', 'r'])

tb.set_cols_dtype(['t', 'f', 'f'])

tb.add_rows(df.values,header=False)

print(tb.draw())
```

EEGNet v.s DeepConvNet

•	ReLU	Leaky ReLU	ELU
EEGNet	88.704	87.407	83.796
DeepConvNet		•	

Training data有沒有經過shuffle後再進行training,會對結果有所影響(提升),lab做完認為還是要對data做適當程度的shuffle。

```
def shuffle_data(X, Y):
    indices = np.arange(X.shape[0])
    np.random.shuffle(indices)
    X = X[indices]
    Y = Y[indices]
    return X, Y
```

B. Comparison figures:

EEGNet:

DeepConvNet :

4. Discussion:

Batch size

Batch size 決定一次訓練的樣本數目,其影響到模型的優化程度和速度,batch size 是否選擇的好,影響了記憶體效率和記憶體容量之間是否能尋找最佳平衡,其取值方法約略幾種:

1. Full batch:

若**資料集較小**,可採用全資料集。全資料集確定的方向能夠更好的代表樣本 總體,從而更準確的朝向極值所在的方向,但是這個方法在比較大的資料中是不 可行的。

2. mini batch:

選擇一個適中的 Batch Size 值,換言之我們選定一個 batch 的大小後,將會以 batch 的大小將資料輸入深度學習的網路中,然後計算這個 batch 的所有樣本的平均損失,即代價函式是所有樣本的平均。

3. Batch Size=1:

每次修正方向以各自樣本的梯度方向修正,難以達到收斂。

以一個正常資料集來說,當 Batch Size 太小,訓練資料就會非常難以收斂,從而導致 underfitting 的情況發生。

若增大 Batch Size,相對處理速度加快,但是增大 Batch Size,所需要的記憶體需求就會增大,同時 Epoch 的次數也需要增加才能達到最好的結果。

這裡就出現了 trade off 的情況發生,因為雖然因為 Batch Size 變大,處理效率相對提高,但 Epoch 同時也增加,導致耗時增加。

由	fig.10 \overline{p}	丁發現,	這次	lab 當	batch size	較小時	,準確率會	`來得比較高	0

batch size	lr	Accur	NET	A_Func	epochs	shuffle
32	0.001	82.315	EEGNet	ELU	400	Yes
32	0.001	87.037	EEGNet	ReLU	400	Yes
32	0.001	87.407	EEGNet	LeakyReLU	400	Yes
64	0.001	84.722	EEGNet	ELU	400	Yes
64	0.001	88.519	EEGNet	ReLU	400	yes
64	0.001	85.833	EEGNet	LeakyReLU	400	Yes
128	0.001	84.444	EEGNet	ELU	400	Yes
128	0.001	87.315	EEGNet	ReLU	400	Yes
128	0.001	86.667	EEGNet	LeakyReLU	400	no
512	0.001	82.593	EEGNet	ELU	400	Yes
512	0.001	86.019	EEGNet	ReLU	400	Yes
512	0.001	86.019	EEGNet	LeakyReLU	400	Yes
1080	0.001	79.537	EEGNet	ELU	400	Yes
1080	0.001	83.148	EEGNet	ReLU	400	Yes
1080	0.001	82.13	EEGNet	LeakyReLU	400	yes

fig. 10

Learning rate issue :

batch size	lr	Accur	NET	A_Func	epochs	shuffle
32	0.0001	80.741	EEGNet	ELU	400	Yes
32	0.0001	85.093	EEGNet	ReLU	400	Yes
32	0.0001	84.167	EEGNet	LeakyReLU	400	Yes
64	0.0001	77.778	EEGNet	ELU	400	Yes
64	0.0001	85	EEGNet	ReLU	400	yes
64	0.0001	83.519	EEGNet	LeakyReLU	400	Yes
128	0.0001	80.278	EEGNet	ELU	400	Yes
128	0.0001	82.87	EEGNet	ReLU	400	Yes
128	0.0001	81.852	EEGNet	LeakyReLU	400	Yes
512	0.0001	73.519	EEGNet	ELU	400	Yes
512	0.0001	78.148	EEGNet	ReLU	400	Yes
512	0.0001	80.185	EEGNet	LeakyReLU	400	Yes
1080	0.0001	74.074	EEGNet	ELU	400	Yes
1080	0.0001	78.704	EEGNet	ReLU	400	Yes
1080	0.0001	76.204	EEGNet	LeakyReLU	400	Yes

fig. 11

由 fig.10 跟 fig.11 比較可發現,在固定 epochs 的時候,learning rate 越低不依定會學習有更好的成效,反之可能會造成準確率降低,所以當 learning rate 調低時,epochs 要適時的調整。

epochs issue :

上圖為跑 5000epochs 的結果,可以看到準確率確實有提升,但沒有很顯著,我個人認為就是同樣的題目一直看一直看,沒有做變化去思考,自然在遇到新題目時不會變得更棒棒,所以 epochs 的影響到一定的數量後就不再這麼的顯著。

Dropout issue :

Dropout = 0.9

Net	ReLU	Leaky ReLU	ELU
EEGNet	86.389	85.926	84.722
DeepConvNet	86.389	85.741	85.185

drop out 較低的時候正確率在訓練時很高,在測試時就表現差很大,意味著訓練是過擬合(overfitting)的,提高 drop out 後理論上就會改善,所以 drop out 是一種有效降低過擬合(overfitting)的方法,與權重衰減的精神有相似的效果,主要精神都是在訓練模型的時候,不要去過度依賴某些權重,進而達到正則化的效果,雖然實驗結果不明顯,但這個想法可以在之後繼續嘗試。