Some simple algorithms for detecting anomalous bright pixels

Alessandro Gentilini

March 2, 2014

Abstract

I describe some simple algorithms I am using for detecting anomalous bright pixels in images taken by a laptop webcam. The webcam lens is covered with black tape and so the visible light is not collected by the sensor; the grey levels different from zero in the image are usually due to the so called *dark current*; sometimes there are bright pixels (and I classify the image as an *event*) and an hypothesis is that the bright pixels are the result of the interaction of cosmic ray muons with the semiconductor sensor of the webcam.

1 Algorithms

I am experimenting various algorithms in order to classify an image as an event.

I have a sequence of images, let I_i be the *i*-th image in the sequence. The image has R rows and C columns. Let $I_i(r,c)$ be the grey value of the pixel at row = r and column = c in the image I_i . The program computes M_i as

$$M_i = \max_{\substack{0 \le r \le R-1 \\ 0 \le c \le C-1}} I_i(r, c)$$

So M_i is the maximum grey level in the image I_i .

The simplest algorithm uses a fixed threshold t and the image I_i is classified as an event if

$$M_i > t$$
 (1)

For example formula 1 is used in $dkirkby/cosmic^1$ with an additional filter stage with the aim to filter out the so-called *hot pixels*. If the maximum grey level M_i happens at the same pixel position (r_H, c_H) more than a certain number of times then the pixel at (r_H, c_H) is classified as an hot pixel and any following images with maximum at (r_H, c_H) is discarded².

A different algorithm considers the average grey level avg_i of the image I_i and the standard deviation sd_i of the grey levels of the image I_i , the image I_i is then classified as an event if

$$M_i > avg_i + n \cdot sd_i \tag{2}$$

In a third algorithm, the program keeps running statistics for M_i , in particular \overline{M}_i is the mean of the maximum grey levels and it is computed as

$$\overline{M}_i = \frac{1}{i} \sum_{k=1}^i M_k$$

and σ_{Mi} is the standard deviation of the maximum grey level and it is computed as

$$\sigma_{Mi} = \sqrt{\frac{1}{i(i-1)} \left(i \sum_{k=1}^{i} M_k^2 - \left(\sum_{k=1}^{i} M_k \right)^2 \right)}$$

The image I_i is then considered an event if

$$M_i > \overline{M}_i + n \cdot \sigma_{Mi} \tag{3}$$

2 Data

Figures 2 to 14 show data collected in various days. The time between two images acquisition has a mean value of 0.13s and a standard deviation of 8ms. The exposure time is unknown. The images were collected with a laptop webcam, the location is in Northern Italy, the time is local.

¹Cosmic ray detector for iOS available at https://github.com/dkirkby/cosmic

 $^{^2{\}rm See}$ https://github.com/dkirkby/cosmic/blob/master/Cosmic/CosmicBrain.m accessed March 2, 2014, where the number of time is MAX_REPEATS and the threshold t is MIN_INTENSITY.

Figure 1: A crop from an image classified as an event using formula 3 with n=10.

The graphs should be considered as a work in progress, in particular I have some issues with them:

- 1. The range for M_i in Figures 2 and 3 seems quite different with respect to the remaining Figures.
- 2. The curve for \overline{M}_i seems too low in Figure 2 and 3.
- 3. The curve for \overline{M}_i does not properly follow the trend of M_i in Figures 6 and 14.

The above issues could have been caused by some errors in the program collecting the data, I should investigate further.

The summary for the hourly rate event is the following:

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.700 1.355 1.840 1.991 2.468 4.460
```

This table summarize the data collected so far.

events	elapsed time	events per hour
9	03h14m18s	2.78
12	08h03m03s	1.49
23	09h27m57s	2.43
15	$06\mathrm{h}37\mathrm{m}57\mathrm{s}$	2.26
6	08h37m23s	0.70
10	08h06m30s	1.23
8	09h05m33s	0.88
22	08h44m34s	2.52
17	08h44m33s	1.94
7	05h21m33s	1.31
12	07h16m38s	1.65
11	$06\mathrm{h}19\mathrm{m}07\mathrm{s}$	1.74
20	$08\mathrm{h}04\mathrm{m}50\mathrm{s}$	2.48

Figure 2: Data collected using formula 3 with n = 10.

Figure 3: Data collected using formula 3 with n = 10.

Figure 4: Data collected using formula 3 with n = 10.

Figure 5: Data collected using formula 3 with n = 10.

Figure 6: Data collected using formula 3 with n = 10.

Figure 7: Data collected using formula 3 with n = 10.

Figure 8: Data collected using formula 3 with n = 10.

Figure 9: Data collected using formula 3 with n = 10.

Figure 10: Data collected using formula 3 with n = 10.

Figure 11: Data collected using formula 3 with n = 10.

Figure 12: Data collected using formula 3 with n = 10.

Figure 13: Data collected using formula 3 with n = 10.

Figure 14: Data collected using formula 3 with n = 10.