Nume și prenume	Nr. matricol	S ₁ = suma cifrelor numărului matricol S ₂ = suma cifrelor impare din numărul matricol	$a = S_1 mod7$ $b = S_2 mod3$	Data completării formularului
Berejnec Adrian-	12403	S1 = 10	a = 3	23.10.2021
Daniel		<i>S2 = 4</i>	b = 1	

TEMA DE CASĂ NR. 3

(Tema de casă se depune pe CV în săptămâna consecutivă celei în care s-a efectuat lucrarea de laborator. Formularul completat se depune în format pdf.)

1.1. Pentru circuitul din fig. -a- de la pag. 2 din lucrarea de laborator avem R_1 = 10 k Ω , C_1 = 420 μ F, R_2 = (100+5a) k Ω , C_2 = (180+2b) μ F. Să se particularizeze numeric modelul operațional (10).

1.2. Circuitul din figura -a- de la pag. 2 din lucrarea de laborator se consideră ca sistem orientat $u \rightarrow i_2$. Să se determine un MM-II în domeniul timp care leagă cele două semnale.

Se inserează calcul prin care se ajunge la MM-II cerut.

1.2

$$N \rightarrow ni_{2}$$
 $Y_{2} = i_{2} \cdot 2c_{2}$
 $Y_{4} = i_{2}(2c_{2}+R_{2})$
 $\Rightarrow \frac{Y_{2}}{Y_{4}} = \frac{2c_{2}}{2c_{2}+R_{2}} \Rightarrow Y_{2} = \frac{2c_{2}}{2c_{2}+R_{2}} \cdot Y_{1}$
 $Y_{2}(A) = \frac{1}{R_{2} \cdot C_{2} \cdot S + 1} \cdot \frac{R_{2} \cdot C_{2} \cdot S + 1}{R_{2} R_{2} \cdot C_{4} \cdot C_{2} + R_{2} \cdot C_{4} \cdot R_{2} \cdot C_{2} \cdot S + 1}$
 $\Rightarrow Y_{2}(A) = \frac{1}{R_{1} R_{2} \cdot C_{1} \cdot C_{2} \cdot S^{2} + (R_{1} C_{1} + R_{1} C_{2} + R_{2} C_{2}) \cdot S + 1} \cdot M(S)$
 $\Rightarrow R_{1} R_{2} \cdot C_{1} \cdot C_{2} \cdot S^{2} + (R_{1} \cdot C_{1} + R_{1} \cdot C_{2} + R_{2} \cdot C_{2}) \cdot S + 1 \cdot M(S)$
 $\Rightarrow R_{1} R_{2} \cdot C_{1} \cdot C_{2} \cdot S^{2} + (R_{1} \cdot C_{1} + R_{1} \cdot C_{2} + R_{2} \cdot C_{2}) \cdot S \cdot M(S)$
 $\Rightarrow R_{1} R_{2} \cdot C_{1} \cdot C_{2} \cdot S^{2} + (R_{1} \cdot C_{1} + R_{1} \cdot C_{2} + R_{2} \cdot C_{2}) \cdot S \cdot M(S)$
 $\Rightarrow R_{1} R_{2} \cdot C_{1} \cdot C_{2} \cdot S^{2} + (R_{1} \cdot C_{1} + R_{1} \cdot C_{2} + R_{2} \cdot C_{2}) \cdot S \cdot M(S)$
 $\Rightarrow R_{1} R_{2} \cdot C_{1} \cdot C_{2} \cdot S^{2} + (R_{1} \cdot C_{1} + R_{1} \cdot C_{2} + R_{2} \cdot C_{2}) \cdot S \cdot M(S)$
 $\Rightarrow R_{1} R_{2} \cdot C_{1} \cdot C_{2} \cdot S^{2} \cdot M(S) \cdot M(S)$
 $\Rightarrow R_{1} R_{2} \cdot C_{1} \cdot C_{2} \cdot S^{2} \cdot M(S) \cdot M(S)$
 $\Rightarrow R_{1} R_{2} \cdot C_{1} \cdot C_{2} \cdot S^{2} \cdot M(S) \cdot M(S)$
 $\Rightarrow R_{1} R_{2} \cdot C_{1} \cdot C_{2} \cdot S^{2} \cdot M(S) \cdot M(S)$
 $\Rightarrow R_{1} R_{2} \cdot C_{1} \cdot C_{2} \cdot S^{2} \cdot M(S) \cdot M(S)$
 $\Rightarrow R_{1} R_{2} \cdot C_{1} \cdot C_{2} \cdot S^{2} \cdot M(S) \cdot M(S)$
 $\Rightarrow R_{1} R_{2} \cdot C_{1} \cdot C_{2} \cdot S^{2} \cdot M(S) \cdot M(S)$
 $\Rightarrow R_{1} R_{2} \cdot C_{1} \cdot C_{2} \cdot S^{2} \cdot M(S) \cdot M(S)$
 $\Rightarrow R_{1} R_{2} \cdot C_{1} \cdot C_{2} \cdot S^{2} \cdot M(S) \cdot M(S)$
 $\Rightarrow R_{1} R_{2} \cdot C_{1} \cdot C_{2} \cdot S^{2} \cdot M(S) \cdot M(S)$
 $\Rightarrow R_{1} R_{2} \cdot C_{1} \cdot C_{2} \cdot S^{2} \cdot M(S) \cdot M(S)$
 $\Rightarrow R_{1} R_{2} \cdot C_{1} \cdot C_{2} \cdot M(S) \cdot M(S)$
 $\Rightarrow R_{2} \cdot C_{2} \cdot C_{2} \cdot M(S) \cdot M(S)$
 $\Rightarrow R_{2} \cdot C_{2} \cdot C_{2} \cdot M(S) \cdot M(S)$
 $\Rightarrow R_{2} \cdot C_{2} \cdot C_{2} \cdot M(S) \cdot M(S)$
 $\Rightarrow R_{2} \cdot C_{2} \cdot C_{2} \cdot M(S) \cdot M(S)$
 $\Rightarrow R_{2} \cdot C_{2} \cdot C_{2} \cdot M(S) \cdot M(S)$
 $\Rightarrow R_{3} \cdot C_{2} \cdot M(S) \cdot M(S) \cdot M(S)$
 $\Rightarrow R_{3} \cdot C_{2} \cdot M(S) \cdot M(S) \cdot M(S)$
 $\Rightarrow R_{3} \cdot C_{2} \cdot M(S) \cdot M(S) \cdot M(S)$
 $\Rightarrow R_{3} \cdot C_{2} \cdot M(S) \cdot M(S) \cdot M(S) \cdot M(S)$
 $\Rightarrow R_{3} \cdot C_{2} \cdot M(S) \cdot M(S) \cdot M(S) \cdot M(S)$
 $\Rightarrow R_{3} \cdot C_{2} \cdot M(S) \cdot M(S) \cdot M(S) \cdot$

1.3. Se consideră modelul Simulink de la pag. 4 din lucrarea de laborator. Să se eșantioneze semnalul (12) cu pasul $h = 0.2 \cdot (1+b)$ secunde pentru un interval de timp de 6 secunde.

1.4. Reluați simularea cu modelul Simulink de la pag. 5 din lucrarea de laborator pentru valorile a și b personalizate.

1.1. Soluțiile exemplelor A), B) și C) de la pag. 8 nu depind de pasul de discretizare h. Comentați acest fapt.

Sirurile date nu depinde de pasul de discretizare h deoarece au elemente in timp discret obtinute prin esantionarea unor semnale, cu ajutorul transformatei Z.

2.2 Semnalul $x(t) = 3.5 \cdot \sin(2 \cdot \pi \cdot t + 0.16)$, $t \ge 0$ se eșantionează cu pasul $h = (0.1 + S_1 + S_2)$. Scrieți termenul general x[t] al semnalului $\{x[t]\}_{t \in \mathbb{N}}$ și calculați transformata z a semnalului discretizat.

2.2.
$$x(t) = 3.5 \cdot \sin(2\pi t + 0.16), t \ge 0$$
 $k = (9.1 + 5.4 + 5.2) = 0.14 + 10 + 4 = 14.1$
 $\Rightarrow k = 14.1$
 $x(t) = ?$, $tx. z = ?$
 $x(t) = 3.5 \cdot \sin(2\pi t + 0.16) = x(t) = 3.5 \cdot \frac{x \cdot \sin(2\pi k)}{x^2 - 2x \cdot tos(2\pi k) + 1}$
 $\Rightarrow x(t) = 3.5 \cdot \frac{2 \cdot \sin(28.2\pi)}{x^2 - 2x \cdot tos(28.2\pi) + 1}$
 $\Rightarrow x(t) = \frac{3.5 \cdot 2 \cdot 0.587}{x^2 - 22 \cdot 0.805 + 1}$
 $\Rightarrow x(t) = \frac{2.05 \cdot 2}{x^2 - 1.618x + 1}$