Übungsblatt 7 zur Kommutativen Algebra

Aufgabe 1. (4) Ein konkretes Beispiel zur Noether-Normalisierung

Sei K ein Körper. Gib eine Zahl $r \geq 0$ und einen endlichen, injektiven K-Algebren-Homomorphismus $K[Y_1, \ldots, Y_r] \to K[A, B]/(AB-1)$ an.

Aufgabe 2. (3) Oberringe von Bewertungsringen

Sei A ein Bewertungsring mit Quotientenkörper K. Sei $A \subseteq B \subseteq K$ eine Zwischenerweiterung. Finde ein Primideal \mathfrak{p} von A mit $B \cong A_{\mathfrak{p}}$.

Aufgabe 3. (m) Noether-Normalisierung für Integritätsbereiche

Sei $A \subseteq B$ eine Erweiterung von Integritätsbereichen. Sei B als A-Algebra endlich erzeugt. Zeige, dass ein Element $s \in A \setminus \{0\}$ und eine A-Algebra $B' \subseteq B$ mit $B' \cong A[Y_1, \ldots, Y_n]$ existieren, sodass $B[s^{-1}]$ ganz über $B'[s^{-1}]$ ist.

Aufgabe 4. (2) Matrizen über Bewertungsringen

Sei M eine Matrix über einem Bewertungsring. Zeige, dass M äquivalent zu einer (rechteckigen) Diagonalmatrix mit Einsern und Nullern auf der Hauptdiagonale ist.

Aufgabe 5. (3+m) Geschenkte Bijektivität

Sei $\varphi: M \to M$ ein Endomorphismus eines Moduls M. Zeige:

- a) Ist φ surjektiv und M noethersch, so ist φ bijektiv.
- b) Ist φ injektiv und M artinsch, so ist φ bijektiv.

Aufgabe 6. (m+3+2) Endlichkeit minimaler Primideale

- a) Sei A ein Ring, in dem das Nilradikal Schnitt endlich vieler Primideale ist. Zeige, dass A nur endlich viele minimale Primideale besitzt.
- b) Zeige, dass das Nilradikal eines artischen Rings Schnitt endlich vieler Primideale ist.
- c) Zeige die Behauptung aus b) auch für noethersche Ringe.
 - Tipp. Führe die Betrachtung eines Wurzelideals, das maximal mit der Eigenschaft ist, nicht endlicher Schnitt von Primidealen zu sein, (wieso existiert ein solches?) zu einem Widerspruch.