## Range

## What is Range?

The range of a dataset is the simplest measure of spread (variability).

Range = Maximum Value - Minimum Value

## **Example with Dataset**

Dataset:

[12, 18, 25, 26, 30, 34, 40, 45, 50]

- **Minimum (min)** = 12
- **Maximum (max)** = 50

Range = 
$$50 - 12 = 38$$

## How to Interpret Range

`- A **small range** → all values are close together.

- A large range → data is more spread out.
- Range depends only on 2 values (min & max), so it is very sensitive to outliers.

#### **Example:**

If one extra score = 100 is added  $\rightarrow$ 

New Range = 100 - 12 = 88 This makes the spread look huge, even though most values are still between 12 and 50.

## Variance Formula (Simplified)

Variance = 
$$\frac{1}{N} \sum (x_i - \mu)^2$$

- $x_i$ : each data value
- $\mu$ : mean
- N: number of data points

It's the **average of the squared differences** from the mean.

#### What is Standard Deviation?

Standard Deviation (SD) is the square root of variance.

It tells you how much the data varies from the mean in the original units (like marks, rupees, etc.).

Standard Deviation = 
$$\sqrt{\text{Variance}}$$

## Example: score={10,20,30,40,50}

## Step 1: Calculate the Mean (μ)

$$\text{Mean} = \frac{10 + 20 + 30 + 40 + 50}{5} = \frac{150}{5} = 30$$

So, the average score is 30.

## Step 2: Find Deviations from the Mean

| Score (X) | Deviation (X – μ) | Squared Deviation ((X - $\mu$ )^2) |
|-----------|-------------------|------------------------------------|
| 10        | 10 - 30 = -20     | $(-20)^2 = 400$                    |
| 20        | 20 - 30 = -10     | $(-10)^2 = 100$                    |
| 30        | 30 - 30 = 0       | $0^2 = 0$                          |
| 40        | 40 - 30 = 10      | $10^2 = 100$                       |
| 50        | 50 - 30 = 20      | $20^2 = 400$                       |

## Step 3: Calculate Variance (σ²)

Variance = 
$$\frac{\sum (X - \mu)^2}{N} = \frac{400 + 100 + 0 + 100 + 400}{5} = \frac{1000}{5} = 200$$

★ Variance tells us how spread out the data is (in squared units).

## Step 4: Calculate Standard Deviation (σ)

Standard Deviation = 
$$\sqrt{\text{Variance}} = \sqrt{200} \approx 14.14$$

★ This means, on average, each score is about **14.14 points away** from the mean.

This way you'd see that:

The middle value (30) sits on the mean.

Values (10 and 50) are 20 away from the mean (biggest deviations).

Values (20 and 40) are 10 away from the mean.

these deviations give you the variance = 200 and SD  $\approx$  14.14.

- **Mean** is the average score: 30
- Variance shows the average of the squared differences from the mean: 200
- **Standard Deviation** is the square root of variance: ≈ 14.14
- A **low standard deviation** means scores are tightly clustered around the mean.
- A **high standard deviation** means the scores are more spread out.



#### Normal PDF for Scores Normal PDF Mean=30.0 0.025 Peak=0.028 0.020 Density 0.015 0.010 0.005 20 10 40 30 50 60 Score

## **Percentile**

- A percentile is a number that tells us what percentage of the data lies below that value.
- It helps us understand where a particular data point stands in the dataset.

## Step-by-Step Quartile Calculation

Dataset:[12, 18, 25, 26, 30, 34, 40, 45, 50]

Number of elements, n = 9

$$position = (n-1) * q$$

#### Where:

- n is the number of elements
- q is the desired quantile (e.g., 0.25, 0.5, 0.75)

## Step-by-Step Example

## Q1 (25th percentile):

- $Position = (9-1) * 0.25 = 2.0 \rightarrow index2$
- Value at index 2 = **25.0**

#### Q2 (50th percentile / Median):

- $Position = (9-1) * 0.50 = 4.0 \rightarrow index4$
- Value at index 4 = **30.0**

#### Q3 (75th percentile):

- $Position = (9-1) * 0.75 = 6.0 \rightarrow index6$
- Value at index 6 = **40.0**

## IQR (Interquartile Range)

$$IQR = Q3 - Q1 = 40.0 - 25.0 = 15.0$$

$$LowerBound = Q1 - 1.5 \times IQR = 25.0 - 1.5 \times 15.0 = 25.0 - 22.5 = **2.5 **$$

$$UpperBound = Q3 + 1.5 \times IQR = 40.0 + 1.5 \times 15.0 = 40.0 + 22.5 = **62.5 **$$

| Metric      | Value |
|-------------|-------|
| Q1          | 25.0  |
| Q2 (Median) | 30.0  |
| Q3          | 40.0  |
| IQR         | 15.0  |
| Lower Bound | 2.5   |
| Upper Bound | 62.5  |

Any data point outside **[2.5, 62.5]** would be considered an **outlier.** The dataset is: [12, 18, 25, 26, 30, 34, 40, 45, 50] (N = 9).

$$Q1 = 25.0$$
,  $Q2$  (Median) = 30.0,  $Q3 = 40.0$ 

This means that 25% of the values are less than or equal to 25.

50% of the values are less than or equal to 30 (so 30 is the middle of the dataset).

75% of the values are less than or equal to 40.

So the box in the boxplot (between Q1 = 25 and Q3 = 40) contains the middle 50% of the data values.

The box plot shows:

Middle 50% of values (IQR = Q3 - Q1 = 40 - 25 = 15) lies between 25 and 40.

Median (30) is exactly in the center of the dataset, showing balanced distribution.

Whiskers extend to min = 12 and max = 50, and no outliers are detected.







# Probability Density Curve (PDF) for Continuous Data – Normal Distribution

## What is a Probability Density Function (PDF)?

A **Probability Density Function (PDF)** describes the **likelihood** of a **continuous random variable** taking on a specific range of values.

For continuous data:

- The probability at a single point is zero
- Probability is calculated over an interval
- The **area under the curve** between two values gives the probability of falling in that range

The total area under the curve = 1, representing 100% probability.

## **Example: Heights of Students**

Suppose we collected the **heights of 200 students**, and they follow a **normal distribution**.

- Mean height ( $\mu$ ) = 165 cm
- Standard deviation ( $\sigma$ ) = 10 cm

We want to understand:

- The shape of the distribution
- What percentage of students are between 155 and 175 cm



■ The curve represents the **probability density** of students' heights.

The shaded area between 155 cm and 175 cm gives the **probability that a** randomly selected student falls in that range.

## Curve Properties

• **Peak (Center)**: At μ = 165 cm

- **Symmetry**: The curve is symmetrical around the mean
- **Spread**: Controlled by standard deviation ( $\sigma = 10$  cm)

Using the normal distribution rule:

- ~68% of students fall within **1 standard deviation** (155 cm to 175 cm)
- ~95% fall within **2 standard deviations** (145 cm to 185 cm)

So, probability that height is between 155 and 175 cm ≈ 68%

#### Formula for Normal Distribution PDF

$$f(x) = rac{1}{\sigma\sqrt{2\pi}} \cdot e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

Where:

- $\mu$ : Mean
- $\sigma$ : Standard deviation
- x: Value of the random variable

| Feature                     | Value              |
|-----------------------------|--------------------|
| Variable                    | Height of students |
| Mean (μ)                    | 165 cm             |
| Std. Deviation ( $\sigma$ ) | 10 cm              |
| Distribution Type           | Normal             |
| Probability (155–175)       | ≈ 68%              |

- PDF is used to understand how values are distributed in continuous data.
- The area under the curve between two points gives the actual probability.

## **CLT Central Limit Theorem**

## **Central Limit Theorem (CLT)**

The **Central Limit Theorem (CLT)** states that the distribution of sample means approximates a **normal distribution** as the sample size gets larger (assuming that all samples are identical in size), **regardless of the population distribution shape**.

#### **CLT** in one sentence:

"Even if I'm not normal, the average is normal."

#### Rule of thumb:

When collecting means of samples from any distribution, the sample size should be  $n \ge 30$  for the normal approximation to be reliable.

### Why is the Central Limit Theorem (CLT) Useful?

#### • Hypothesis Testing

We can use z-tests and t-tests because CLT ensures sample means follow an approximately normal distribution.

#### Confidence Intervals

Allows estimation of population parameters (like mean or proportion) with a known margin of error and reliability.

#### • Machine Learning

Forms the foundation for statistical inference, model evaluation, and many algorithms that rely on sampling distributions.

## **Classroom Analogy for CLT**

Imagine you want to know "How tall is the average person in a classroom of 30?"

- Take one classroom (n = 30).
- Compute the average height.
- This gives you **one number** (e.g., 5.6 feet).

To study the **distribution of averages**, you'd need to:

- Sample many classrooms, each with 30 people.
- Compute the average height for each classroom.
- Collect all those averages.

Plotting those averages shows the **Central Limit Theorem in action**:

the distribution of averages approaches a **normal (bell-shaped) curve**, even if individual heights aren't perfectly normal.

## 

## Step 1: One sample (n = 30)

- You roll a die 30 times.
- You calculate the **average** of those 30 rolls.
- This gives you **one number** (e.g., 3.47).

So one sample of size 30 → one average value.

### Step 2: Many samples

To study CLT, we don't stop at one sample.

We repeat the process (say 10,000 times):

- Roll 30 dice.
- Take the average.
- Record that average.

Now we have 10,000 average values.

## Step 3: Histogram of averages

- We then plot those 10,000 averages in a histogram.
- That histogram is called the sampling distribution of the mean.
- For n = 30, the histogram looks smooth and bell-shaped (close to normal).

## **Scaling**

**Scaling** is the process of transforming features (variables) so they fit into a specific range or distribution.

This is important in machine learning and statistics because many algorithms (e.g., KNN, SVM, gradient descent) are sensitive to differences in scale.

### Standardization and Normalization

## 1. Standardization (Z-score Scaling)

- **Definition:** Rescales data so it has mean = 0 and standard deviation = 1.
- Formula:

$$Zscore = rac{X - ar{x}}{s}$$

• Example:

Data: [10, 20, 30]

■ Mean (x') = 20, Std  $(s) \approx 8.16$ 

■ Transformed: [-1.22, 0, +1.22]

#### **Z-Score Standardization**

• **Formula:** (X - μ) / σ

• **Range:** Not fixed (can be negative, >1, or < -1).

• Typically: most values lie between -3 and +3 (for normal data).

### 2. Normalization (Min-Max Scaling)

- **Definition:** Rescales data into a fixed range, usually [0, 1].
- Example:

Data: [10, 20, 30]

- Min = 10, Max = 30
- Transformed: [0, 0.5, 1]

#### Importance of Z-Score

#### 1. Standardization

Converts different datasets into a common scale (mean = 0, std = 1).

#### 2. Outlier Detection

• If  $|Z| > 3 \rightarrow$  the point is usually considered an outlier.

#### 3. Comparison Across Variables

• Useful when features have different units (e.g., height in cm vs. weight in kg).

#### 4. Probability & Normal Distribution

- Z-scores are directly linked to probabilities in the standard normal distribution.
- Example: About 68% of data falls within Z = -1 to +1.

## Z-Score and Probability Examples

We'll explore how to calculate:

- Z-scores
- Probabilities from Z-scores
- Number of values above or below a certain score in a dataset

## Dataset Used:

| Student | Score |
|---------|-------|
| А       | 60    |
| В       | 70    |
| С       | 80    |
| D       | 90    |
| E       | 100   |

- Mean  $(\mu) = 80$
- Standard Deviation ( $\sigma$ )  $\approx$  14.14

## Example 1: How many values are **below 80**?

## Step 1: Z-score for X = 80

$$Z = \frac{X - \mu}{\sigma} = \frac{80 - 80}{14.14} = 0$$

**II** Step 2: Z-table Probability

$$P(Z = < 0) = 0.5$$

← This means 50% of values are less than 80.

Step 3: Apply to Dataset

 $0.5 \times 5 = 2.5 \approx 2 \text{ or } 3 \text{ } values$ 

Manual Check:

| Score | < 80?     |
|-------|-----------|
| 60    | ~         |
| 70    |           |
| 80    | 🗶 (equal) |
| 90    | ×         |
| 100   | ×         |

✓ Matches: 2 values below 80.

## Example 2: How many values are greater than 90?

**Step 1: Z-score for X = 90** 

$$Z = \frac{90-80}{14.14} \approx 0.71$$

📊 Step 2: Z-table Probability

$$P(Z < 0.71) \approx 0.7611$$

$$P(Z > 0.71) = 1 - 0.7611 = 0.2389$$

So 23.89% of values are greater than 90.

#### **Step 3: Apply to Dataset**

 $0.2389 \times 5 = 1.1945 \approx 1 \text{ value}$ 

### Manual Check:

| Score | > 90?     |
|-------|-----------|
| 60    | ×         |
| 70    | ×         |
| 80    | ×         |
| 90    | 🗙 (equal) |
| 100   | <u>~</u>  |

Matches: 1 value greater than 90.

## **Summary Table**

#### Query Z-score Probability Approx. Count in Dataset

| X < 80 | 0    | 0.5    | 2 or 3 values |
|--------|------|--------|---------------|
| X > 90 | 0.71 | 0.2389 | ~1 value      |

```
In [21]: import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         # Sample dataset (column)
         #scores = [45, 52, 67, 70, 81, 90, 55, 60, 72, 85, 95, 100]
         scores = [60,70,80,90,100]
         # Convert to numpy array
         data = np.array(scores)
         # Plot histogram + probability density curve
         plt.figure(figsize=(8,5))
         # Histogram (normalized so area = 1 → probability density)
         sns.histplot(data, bins=6, kde=False, stat="density", color="skyblue", edgecolor
         # KDE = kernel density estimate (smooth probability distribution curve)
         sns.kdeplot(data, color="red", linewidth=2, label="Estimated PDF")
         # Mean and SD
         mean = np.mean(data)
         std_dev = np.std(data)
         plt.axvline(mean, color="green", linestyle="--", label=f"Mean = {mean:.1f}")
         plt.axvline(mean+std_dev, color="purple", linestyle=":", label=f"±1 SD = {mean-s
         plt.axvline(mean-std_dev, color="purple", linestyle=":")
```

```
plt.title("Probability Distribution of Exam Scores", fontsize=14)
plt.xlabel("Score")
plt.ylabel("Probability Density")
plt.legend()
plt.show()
```



## **Hypothesis Testing**



## What Is Hypothesis Testing?

Hypothesis testing is a way for scientists or researchers to test ideas or claims using

Think of it like a trial: you make a claim (the hypothesis), collect evidence (data), and then decide if your claim makes sense based on the evidence.

## Real-Life Example

Let's say school canteen says:

"Students eat an average of 2 apples a day."

You and your friends think, "That can't be right. We don't eat that many apples!"

So you decide to **test their claim** by collecting data.

## **Steps in Hypothesis Testing**

#### 1. State the Hypotheses

- Null Hypothesis (H<sub>0</sub>): The canteen is correct. Students eat 2 apples a day.
- Alternative Hypothesis (H<sub>1</sub>): The canteen is wrong. Students eat less (or more) than 2 apples a day.

#### 2. Collect Data

Ask 30 students how many apples they eat per day and find the average.

#### 3. Analyze the Data

Use math (like calculating the mean and standard deviation) to check if the new average is **significantly different** from 2.

#### 4. Make a Decision

- If your results show a big enough difference, you can reject the null hypothesis.
- If not, you **fail to reject it** meaning the canteen's claim might still be true.

## **Important Terms**

- Hypothesis: A guess or claim you test.
- Null Hypothesis (H<sub>0</sub>): The claim you're testing (usually that nothing has changed).
- Alternative Hypothesis (H<sub>1</sub>): The opposite of the null (something has changed).
- **Significance level (\alpha):** A cutoff (like 5%) to decide if the result is rare or not.

## Type I and Type II Errors

When we make a decision in hypothesis testing, there's always a chance we could be wrong.

These wrong decisions are called **Type I and Type II errors**.

## **Continuing Our Apple Example**

The school canteen claims:

"Students eat 2 apples per day."

You test this claim using hypothesis testing.

- Null Hypothesis (H<sub>0</sub>): Students eat 2 apples per day.
- Alternative Hypothesis (H<sub>1</sub>): Students do **not** eat 2 apples per day.

You reject H<sub>0</sub> even though it's actually true.

Example: You say the canteen is wrong (students *don't* eat 2 apples), but in reality, they **do** eat 2 apples per day.

- It's like punishing an innocent person.
- The chance of making this error is called **alpha** (α), usually 5%.

## X Type II Error (False Negative)

You fail to reject H<sub>0</sub> even though it's actually false.

Example: You say the canteen is correct (students eat 2 apples), but in reality, they **don't** — maybe they eat only 1 apple per day.

- It's like letting a guilty person go free.
- The chance of this error is called beta (β).

## Quick Summary

| Decision                      | Reality (H <sub>0</sub> True) | Reality (H <sub>0</sub> False) |
|-------------------------------|-------------------------------|--------------------------------|
| Reject H₀                     | X Type I Error                | Correct Decision               |
| Fail to Reject H <sub>0</sub> | Correct Decision              | X Type II Error                |

## What Is a Correct Decision?

In hypothesis testing, a **correct decision** happens when your conclusion **matches the actual truth** about the claim.

## **Example: Apple-Eating at School**

The school canteen says:

"Students eat 2 apples per day."

You test this claim using data from your classmates.

## **Two Types of Correct Decisions**

## 1. Fail to Reject H<sub>0</sub> — and H<sub>0</sub> is True

• You say:

"The canteen's claim seems correct — students eat 2 apples."

- And in reality, this is **true**.
- **✓** You accepted a true claim → Correct Decision!

## 2. Reject H<sub>0</sub> — and H<sub>0</sub> is False

- You say:
   "The canteen's claim is wrong students do NOT eat 2 apples."
- And in reality, they actually **don't** (maybe only 1 apple per day).
- You rejected a false claim → Correct Decision!

## **Summary Table**

| Your Decision     | Reality     | Outcome          |
|-------------------|-------------|------------------|
| Reject H₀         | H₀ is False | Correct Decision |
| Fail to Reject H₀ | H₀ is True  | Correct Decision |

A correct decision is like giving the **right answer** in a multiple-choice question after checking the facts!

## Hypothesis Testing: Significance Value ( $\alpha$ ) and Confidence Interval (CI)

## 1. Significance Value ( $\alpha$ )

The significance value  $(\alpha)$  is the threshold probability we set before hypothesis testing.

It determines when to reject the null hypothesis (H<sub>0</sub>).

#### 1.1 What is $\alpha$ ?

$$\alpha = 0.05$$
 (5%),  $\alpha = 0.01$  (1%),  $\alpha = 0.10$  (10%)

Formula:

$$\alpha = 1 - \text{Confidence Level}$$

#### **Example:**

• Confidence level = 95%

$$\alpha = 1 - 0.95 = 0.05$$

#### **Step 1 — Choose Confidence Level**

- Typical values: 90%, 95%, 99%.
- **Z-values** table:

| <b>Confidence Level</b> | α    | Z-value |
|-------------------------|------|---------|
| 90%                     | 0.10 | 1.645   |
| 95%                     | 0.05 | 1.96    |
| 99%                     | 0.01 | 2.576   |

#### Step 2 — Gather Data

- Sample size **n**
- Sample mean  $\bar{x}$
- Standard deviation s or  $\sigma$

#### **Step 3 — Apply Formula**

#### **Example (Engineering Context)**

- n = 30
- $\bullet \quad \bar{x}=5.3~\mathrm{mm}$
- s = 0.4 mm
- Confidence level = 95%

Step 1: Z-value Z=1.96

Step 2: Standard Error  $SE=rac{s}{\sqrt{n}}=rac{0.4}{\sqrt{30}}pprox 0.073$ 

**Step 3: CI Calculation** 

$$\mathrm{CI} = 5.3 \pm 1.96 \times 0.073$$

$$CI = [5.16, 5.44] \text{ mm}$$

## P-value

## P-Value (Beginner Definition)

- The p-value tells us how likely our sample result (or something more extreme) is, if the null hypothesis (H<sub>0</sub>) were true.
- Small p-value → evidence against H<sub>0</sub>.
- Rule of thumb:
  - If  $\mathbf{p} < \mathbf{0.05} \rightarrow \text{Reject H}_0$  (significant).
  - If  $\mathbf{p} \ge \mathbf{0.05} \rightarrow \text{Fail to reject H}_0$  (not significant).

#### **Example**

Claim: Students eat 1 apple/day ( $H_0$ :  $\mu$  = 1). Sample: Average = 1.3 apples/day, p-value = 0.02.

#### Interpretation:

- If students really ate 1 apple/day, the chance of seeing a sample average of 1.3 or more is only 2%.
- Since p = 0.02 < 0.05, we reject H<sub>0</sub> → evidence that students eat more than 1 apple/day.

#### one Tail and two tail

## P-value: One-Tailed vs Two-Tailed Tests

## One-Tailed Test

- Hypothesis checks only **one direction** (greater than or less than).
- Example: Test if students eat **more than 1 apple/day** ( $H_1$ :  $\mu > 1$ ).
- The p-value is the **area in one tail** (right side for  $\mu >$ , left side for  $\mu <$ ).

## Two-Tailed Test

- Hypothesis checks for any difference (not equal).
- Example: Test if students eat **different from 1 apple/day** ( $H_1$ :  $\mu \neq 1$ ).
- The p-value is the area in both tails (extreme low and extreme high).
- Rule:
  - One-tailed → Use when you care about only one direction.
  - **Two-tailed** → Default choice when testing for "difference."

## **Hypothesis Testing**

Hypothesis testing is a method used to **make decisions using data**. It helps us decide whether a claim about a **population** is likely to be true.

# Hypothesis Testing Process – With Simple Examples

## **Step-by-Step Process**

- 1. Set up Null and Alternate Hypotheses
  - H<sub>0</sub> (Null Hypothesis): The statement we test (no change/no effect)
  - H<sub>1</sub> (Alternative Hypothesis): What we want to prove (there is a change/effect)
- 2. Decide the Significance Level (α)
  - Common choices: 0.05 (5%) or 0.01 (1%)
- 3. Select the Right Test
  - Use **Z-test** if population standard deviation is known
  - Use **T-test** if population standard deviation is unknown and sample size < 30
- 4. Calculate the Test Statistic (Z or T score)
  - Formula for Z-score:

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

• Formula for T-score:

$$T = \frac{\bar{X} - \mu}{s / \sqrt{n}}$$

- 5. Find the p-value
- 6. Compare p-value and  $\alpha$ 
  - If  $p < \alpha$ , reject the null hypothesis
  - If  $p > \alpha$ , accept the null hypothesis

## Hypothesis Testing with P-value and Confidence Intervals

## **Example Scenario**

A machine produces **bolts** with a target diameter of **5 mm**.

We want to check if the average diameter has increased.

#### Given:

- Population standard deviation,  $\sigma = 0.4$  mm
- Sample size, n=25
- $\bullet \ \ {\rm Sample\ mean,}\ \bar{x}=5.3\ {\rm mm}$
- Significance level,  $\alpha=0.05$

## **Step 1 — Define Hypotheses**

## Case A: Right-Tailed Test (Check if diameter has increased)

 $H_0: \mu = 5 \pmod{\text{machine is producing correct size}}$ 

 $H_1: \mu > 5$  (machine produces larger bolts)

## Step 2 — P-value Approach

#### Formula:

$$Z = rac{ar{x} - \mu_0}{\sigma / \sqrt{n}}$$

**Calculation:** 

$$Z = \frac{5.3 - 5}{0.4/\sqrt{25}} = \frac{0.3}{0.08} = 3.75$$

#### **Find P-value**

Using **Z** = **3.75** and right-tailed test:

$$p = P(Z > 3.75) \approx 0.00009$$

#### **Decision Rule:**

- If  $p < \alpha \rightarrow \text{Reject } \backslash (H_0 \backslash)$
- Here, p = 0.00009 < 0.05

#### **Conclusion:**

The bolts are **significantly larger** than 5 mm.

## **Step 3 — Confidence Interval Approach**

#### Formula for CI:

(a) Right-Tailed CI

$$CI = \left[ \left. ar{x} - Z_lpha \cdot rac{\sigma}{\sqrt{n}}, 
ight. + \infty \, 
ight) 
ight]$$

- ullet For lpha=0.05,  $Z_lpha=1.645$
- Lower limit:

$$5.3 - 1.645 \cdot \frac{0.4}{5} = 5.3 - 0.1316 = 5.17$$

$$CI = [5.17, +\infty) \text{ mm}$$

Since  $\mu_0=5$  is below the lower limit, reject  $\backslash \mathbf{H}_0$ 

#### (b) Two-Tailed CI

If we test whether diameter has changed (larger or smaller):

$$H_1: \mu \neq 5$$

$$oxed{CI = \left[ \, ar{x} - Z_{lpha/2} \cdot rac{\sigma}{\sqrt{n}} \; , \; ar{x} + Z_{lpha/2} \cdot rac{\sigma}{\sqrt{n}} \; 
ight]}$$

- ullet For lpha=0.05,  $Z_{lpha/2}=1.96$
- Lower limit:  $5.3-1.96\cdot\frac{0.4}{5}=5.3-0.1568=5.143$  Upper limit:  $5.3+1.96\cdot\frac{0.4}{5}=5.3+0.1568=5.456$

$$CI = [5.143, \ 5.456] \ \mathrm{mm}$$

Since  $\mu_0 = 5$  lies **outside** this range  $\rightarrow$  **Reject**  $\backslash (H_0 \backslash)$ 

## Step 4 — Visualization



## **Step 5 — Summary Table**

| Aspect              | Right-Tailed<br>Test        | Two-Tailed Test   |  |
|---------------------|-----------------------------|-------------------|--|
| Alternative (H_1)   | <i>μ&gt;</i> μ <sub>0</sub> | $\mu  eq \mu_0$   |  |
| Rejection<br>Region | Right tail only             | Both tails        |  |
| Z critical          | $Z_lpha=1.645$              | $Z_{lpha/2}=1.96$ |  |

| Aspect                 | Right-Tailed<br>Test               | iwo-ialled lest                    |  |
|------------------------|------------------------------------|------------------------------------|--|
| Confidence<br>Interval | $[5.17, +\infty)$ ) mm             | \([5.143,<br>5.456]<br>mm          |  |
| Decision               | Reject $\setminus (H_0 \setminus)$ | Reject $\setminus (H_0 \setminus)$ |  |

#### **Final Conclusion**

- P-value Approach: (p = 0.00009 < 0.05) → Reject (H\_0)
- Confidence Interval Approach:
  - One-tailed CI: (5) lies outside → Reject (H\_0)
  - Two-tailed CI: (5) lies outside → Reject (H\_0)
  - ✓ The machine is **producing bolts larger than 5 mm**.

## **Independent Samples t-test**

#### What it does

- Compares the **means** of two *independent groups*.
- Helps to check if the difference in means is **significant** or just due to chance.

### When to use

- Groups are **different people**, not the same measured twice.
- Examples:
  - Test scores of boys vs. girls
  - Average weight of smokers vs. non-smokers
  - Customer satisfaction for Brand A vs. Brand B

## **Assumptions**

- 1. Groups are independent (no overlap of participants).
- 2. Data in each group is approximately normal.
- 3. Variances of the two groups are equal (or use a corrected test if not).

## Simple Example

- Group 1: Students who studied with music → mean score = 75
- Group 2: Students who studied without music → mean score = 70
- Independent t-test checks if the **5-point difference** is statistically significant.

## **Applications**

- **Education**: Compare exam scores of students in two different teaching methods.
- **Medicine**: Compare recovery time of patients given two different treatments.

Perfect! Let's walk through **one simple example each** for:

- 1. Independent Two-Sample t-Test
- 2. Dependent (Paired) t-Test

#### When to use

- Same subjects measured twice (before/after), or matched pairs.
- Examples: weight before vs after diet, BP with vs without drug.

## 1. Independent t-test Example (Unpaired Groups)

Scenario:

You want to compare marks of boys and girls in a math test.

- Group 1 (Boys): [55, 60, 65, 70, 75]
- Group 2 (Girls): [65, 70, 72, 68, 74]

## Step-by-Step:

- Hypotheses:
- **H<sub>0</sub>:**  $\mu_1 = \mu_2$  (No difference in scores)
- **H<sub>1</sub>:**  $\mu_1 \neq \mu_2$  (There is a difference)
- Calculate sample means:
- Mean (Boys) = 65
- Mean (Girls) = 69.8
- Use independent t-test formula or calculator:
- Test statistic t ≈ -2.02
- Degrees of freedom ≈ 8

- Critical t-value ( $\alpha = 0.05$ , two-tailed)  $\approx \pm 2.306$
- Decision:
- |t| = 2.02 < 2.306 → **X** Fail to reject **H**<sub>0</sub>
- **✓ Conclusion:** No significant difference between boys' and girls' scores.

## **2. Dependent t-test Example (Paired Groups)**

### Scenario:

You want to test if a **coaching class improved scores**. You take scores of **same students** before and after the class.

Before: [50, 55, 52, 60, 58]After: [55, 60, 58, 65, 64]

### Step-by-Step:

- **11** Hypotheses:
  - $\mathbf{H_0}$ :  $\mu_d = 0$  (No improvement)
  - $H_1$ :  $\mu_d > 0$  (Improved after class)
- **2** Find differences:

| Student | After | Before | Difference (d) |
|---------|-------|--------|----------------|
| 1       | 55    | 50     | 5              |
| 2       | 60    | 55     | 5              |
| 3       | 58    | 52     | 6              |
| 4       | 65    | 60     | 5              |
| 5       | 64    | 58     | 6              |

- Mean of d = 5.4
- SD of d  $\approx 0.55$
- n = 5
- **3** t-statistic:

$$t=rac{ar{d}}{s_d/\sqrt{n}}=rac{5.4}{0.55/\sqrt{5}}pprox 21.97$$

- Critical t ( $\alpha$  = 0.05, df = 4, one-tailed)  $\approx$  2.132
- Decision:

- 21.97 > 2.132 → **Reject H**<sub>0</sub>
- Conclusion: The class significantly improved scores.

## Summary:

| Туре        | Groups                          | Example              | Test Used          |
|-------------|---------------------------------|----------------------|--------------------|
| Independent | Different (boys vs girls)       | Math test comparison | Independent t-test |
| Dependent   | Same students (before vs after) | Coaching class       | Paired t-test      |

## **ANOVA (Analysis of Variance)**

#### **Full Form**

**ANOVA** = **Analysis** of Variance

#### Introduction

- A statistical method to compare the **means of 3 or more groups**.
- Checks whether differences in sample means are **statistically significant** or just due to random variation.
- Based on partitioning the total variation into:
  - Between-group variation (differences due to treatments/groups)
  - Within-group variation (random error, natural differences within groups)

#### Uses

- Compare effectiveness of multiple teaching methods.
- Compare average yield of different fertilizers.
- Compare **customer satisfaction** across different brands.
- In general: any case with 3 or more group means.

## **II** One-Way ANOVA Example (Manual Calculation)

## **©** Objective:

Test if there is a significant difference in average scores among **three different classes** of students.

## Data Table:

| Class A | Class B | Class C |
|---------|---------|---------|
| 40      | 42      | 55      |
| 45      | 41      | 60      |
| 50      | 44      | 65      |

- **k** = **3** groups
- **n** = **3** observations per group
- N = 9 total observations

## Step 1: Calculate Group Means

- Mean A = (40 + 45 + 50) / 3 = 45
- Mean B =  $(42 + 41 + 44) / 3 \approx 42.33$
- Mean C = (55 + 60 + 65) / 3 = 60
- **Grand Mean (GM)** = Total sum / 9 = 442 / 9 ≈ 49.11

## Step 2: Sum of Squares

Between Groups (SSB)

$$SSB = n \cdot \sum (ar{X}_{group} - GM)^2 \ = 3 \cdot [(45 - 49.11)^2 + (42.33 - 49.11)^2 + (60 - 49.11)^2] = 544.56$$

Within Groups (SSW)

$$SSW = \sum (X_{ij} - \bar{X}_{group})^2 = 50(A) + 4.66(B) + 50(C) = 104.66$$

◆ Total Sum of Squares (SST)

$$SST = SSB + SSW = 544.56 + 104.66 = 649.22$$

## Step 3: Degrees of Freedom

| Source         | Formula | Value |
|----------------|---------|-------|
| Between Groups | (k - 1) | 2     |
| Within Groups  | (N - k) | 6     |

| Source | Formula | Value |
|--------|---------|-------|
| Total  | (N - 1) | 8     |

## Step 4: Mean Squares

$$MSB = \frac{SSB}{df_{between}} = \frac{544.56}{2} = 272.28$$

$$oldsymbol{M}SW = rac{SSW}{df_{within}} = rac{104.66}{6}pprox 17.44$$

## Step 5: F-Ratio

$$F = \frac{MSB}{MSW} = \frac{272.28}{17.44} \approx 15.61$$

## Final ANOVA Table

| Source         | SS     | df | MS     | F     |
|----------------|--------|----|--------|-------|
| Between Groups | 544.56 | 2  | 272.28 | 15.61 |
| Within Groups  | 104.66 | 6  | 17.44  |       |
| Total          | 649.22 | 8  |        |       |

## Conclusion

Compare the F-value (15.61) with the F-critical value from the F-table at  $\alpha$  = 0.05.

- $(F_{\text{critical}}) \approx 5.14$  for (df1 = 2, df2 = 6)
- Since 15.61 > 5.14, we reject the null hypothesis.
- At least one group has a significantly different average score.

```
In [13]: import numpy as np
   import matplotlib.pyplot as plt
   from scipy.stats import f_oneway

# Raw data
   class_A = [40, 45, 50]
   class_B = [42, 41, 44]
   class_C = [55, 60, 65]

# Store in dictionary
   data = {
        "Class A": class_A,
        "Class B": class_B,
```

```
"Class C": class_C
# Calculate means and standard deviations
classes = list(data.keys())
means = [np.mean(scores) for scores in data.values()]
std_devs = [np.std(scores, ddof=1) for scores in data.values()] # sample SD
# Run ANOVA
F_stat, p_value = f_oneway(class_A, class_B, class_C)
print(f"F-statistic = {F_stat:.2f}, p-value = {p_value:.4f}")
# Plot bar chart with error bars
plt.figure(figsize=(7,5))
plt.bar(classes, means, yerr=std_devs, capsize=8, color=['skyblue','lightgreen',
# Add title + annotation with p-value
plt.title("Average Scores of Three Classes", fontsize=14)
plt.ylabel("Average Score", fontsize=12)
plt.xlabel("Class", fontsize=12)
plt.text(1, max(means)+2, f"ANOVA p = {p_value:.4f}", ha='center', fontsize=12,
# Save and show graph
plt.savefig("anova_with_pvalue.png", dpi=300)
plt.show()
```

F-statistic = 15.60, p-value = 0.0042

#### Average Scores of Three Classes



ince p-value = 0.0009 < 0.05, we reject H<sub>0</sub>.

That means: Not all class averages are equal. At least one class differs significantly.

Looking at the bar chart, Class C (mean = 60) is much higher, so it's likely the group that differs.

## **Chi-Square Tests**

## Types of $\chi^2$ Tests

| Feature | Goodness of Fit (Type 1)                                       | Test of Independence                   |
|---------|----------------------------------------------------------------|----------------------------------------|
| Purpose | Does one categorical variable follow a specified distribution? | Are two categorical variables related? |
| Data    | One variable, k categories                                     | Contingency table (r $\times$ c)       |
| $H_0$   | Observed = Expected (per theory)                               | Variables are independent              |
| df      | k – 1 – (#params estimated)                                    | (r-1)(c-1)                             |
| Example | Fair die? (1–6 equally likely)                                 | Gender × Preference                    |

## **Common Formula**

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

• O = observed frequency, E = expected frequency

## Example A — Dice

- Rolls = 60
- Observed: [8, 12, 9, 11, 10, 10]
- Expected (fair): [10, 10, 10, 10, 10, 10]
- Compute:  $\chi^2 = \Sigma (O-E)^2/E = 1.0$
- df = 6 1 = 5
- Decision ( $\alpha$ =0.05): 1.0 < 11.07  $\Rightarrow$  **Fail to reject H<sub>0</sub>** (die looks fair)

## Example B — Independence (2×2)

|       | Science | Arts | Total |
|-------|---------|------|-------|
| Boys  | 30      | 10   | 40    |
| Girls | 10      | 30   | 40    |
| Total | 40      | 40   | 80    |

Expected: all cells =  $(40 \times 40)/80 = 20$   $\chi^2 = \Sigma (O-E)^2/E = 4 \times (100/20) = 20$ df = (2-1)(2-1) = 1Decision ( $\alpha$ =0.05): 20 > 3.84  $\Rightarrow$  **Reject H<sub>0</sub>** (not independent)

## **Example 2** Chi-Square Test (χ² Test)

## What is a Chi-Square Test?

The **Chi-Square** ( $\chi^2$ ) **Test** is a statistical method used to:

- Compare observed values with expected values.
- Check if there is a **significant association** between two categorical variables.

There are two main types:

- Chi-Square Goodness-of-Fit Test Tests how well observed data fits an expected distribution.
- 2. **Chi-Square Test of Independence** Tests if two variables are related in a contingency table.

## Example: Chi-Square Test of Independence

## **©** Situation:

We want to know whether **gender** and **preference for a subject** are related.

## Step 1 — Hypotheses

- H<sub>0</sub>: Gender and subject choice are **independent** (no relation).
- H<sub>1</sub>: Gender and subject choice are **not independent** (there is a relation)

## Data (Observed):

|       | Science | Arts | Total |
|-------|---------|------|-------|
| Boys  | 30      | 10   | 40    |
| Girls | 10      | 30   | 40    |
| Total | 40      | 40   | 80    |

## Step 1: Find Expected Values

Use the formula:

$$E_{ij} = rac{ ext{Row Total} imes ext{Column Total}}{ ext{Grand Total}}$$

#### **Example:**

Expected value for Boys-Science:

$$E=\frac{40\times40}{80}=20$$

|       | Science (E) | Arts (E) |
|-------|-------------|----------|
| Boys  | 20          | 20       |
| Girls | 20          | 20       |

## Step 2: Apply Chi-Square Formula

Formula:

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

#### **Calculations:**

- For Boys–Science:  $(\frac{30 20}^2}{20} = 5)$
- For Boys-Arts:  $(\frac{10 20}^2}{20} = 5)$
- For Girls-Science:  $(\frac{10 20}^2}{20} = 5)$
- For Girls-Arts:  $(\frac{30 20}^2}{20} = 5)$

Total  $\chi^2 = 5 + 5 + 5 + 5 = 20$ 



## Step 3: Degrees of Freedom

$$df = (r-1)(c-1) = (2-1)(2-1) = 1$$

## Step 4: Compare with $\chi^2$ Table

- At  $\alpha = 0.05$  and df = 1, critical value  $\approx 3.84$
- Our  $\chi^2 = 20$ , which is **greater** than 3.84
- **Conclusion**: Reject H₀

There is a significant relationship between gender and subject preference.



| Step               | Result                               |
|--------------------|--------------------------------------|
| Observed Values    | Given in table                       |
| Expected Values    | Calculated using row × col / total   |
| χ² Value           | 20                                   |
| Degrees of Freedom | 1                                    |
| Decision           | Reject H₀ (significant relationship) |

In [ ]: