Segmentation des clients d'un site de e-commerce

Introduction

Objectif d'Olist: optimiser ses campagnes de communication

- Contexte:
 - Consultant Olist
 - Equipe marketing: nouvelle segmentation clients pour mieux comprendre les différents types d'utilisateurs
 - Segmentation RFM réalisée par prédécesseur

- But de cette étude:
 - Tester différentes approches de modélisation
 - Description actionable de la segmentation
 - Proposer un contrat de maintenance

Description du jeu de données

 Infos principales: commandes, produits achetés, notes de satisfaction...

9 fichiers csv => sélection

Fusion nécessaire

- Nettoyage:
 - Valeurs manquantes
 - Pas de valeurs aberrantes
 - Peu de doublons

Analyse exploratoire

Partie 1: Feature engineering

Transformation des dates d'achat => Récence

nb days, qcut (10 quantiles)

Création de features

Aggrégation commande / client **Commandes** Fréquence Aggrégation review_score / client (moyenne) Review_score par client Review_score par commande Aggrégation montant / client (moyenne) Montant moyen par commande et par client Montant par commande

Passage au log du montant

- Réduire l'amplitude de variables sans perte d'information
- Réduire l'influence des valeurs atypiques

Partie 2: Essais de modélisation

Démarche

- Essais de 3 modèles de clustering non-supervisés avec RFM
 - K-means
 - Clustering hiérarchique
 - DBSCAN

Essais du meilleur modèle avec RFM + review_score

Etapes de modélisation à répéter

Recherche des hyperparamètres

Entraînement du modèle Caractérisation des clusters

Evaluation des performances

K-means avec RFM (1/2) - Hyperparamètres

- Qualité clustering: Homogénéité et la séparation des clusters
- Recherche du nombre optimal de clusters (K=5)
- Initialisation: k-means++

K-means avec RFM (2/2) - Caractérisation

Clustering hiérarchique avec RFM (1/2)

- Qualité clustering: Homogénéité et la séparation des clusters
- Recherche du nombre optimal de clusters (K=6)

Clustering hiérarchique avec RFM (2/2) - Caractérisation

Exigence CAH: ressources mémoires élevées
 => on se limite à 40% des clients

- Taille des clusters
 - Cluster 1: 6503 clients
 - o Cluster 2: 1185 clients
 - Cluster 3: 8266 clients
 - Cluster 4: 8083 clients
 - Cluster 5: 6762 clients
 - Cluster 6: 7644 clients

DBSCAN avec RFM

 Pas besoin de déterminer au préalable nombre de clusters

K=4 choisi

 Qualité clustering (homogénéité et séparation des clusters): coefficient de silhouette élevé

 Inconvénient métier: 97% des clients dans le même cluster (1 commande)

Comparaison des performances

Inconvénient majeur	Taille des partitions	Coefficient de silhouette	Nb optimal de clusters	Recherche nb de clusters	Modèle de clustering
AUCUN	ClusterMin=2903, ClusterMax=26787	0.37	5 clusters	Silhouette + coude	K-Means
Ressources mémoires élevés (40% du dataset)	ClusterMin=1185, ClusterMax=8266	0.33	6 clusters	Silhouette + dendogramme	Clustering hiérarchique
97% des clients dans le même cluster	ClusterMin=18, ClusterMax=92377	0.65	4 clusters	Ne peut pas être prédéfini	DBSCAN

- K-means: meilleur modèle pour notre segmentation
 - Qualité: le coefficient de silhouette atteint 0.37, ce qui est acceptable pour de la segmentation de clients
 - Métier: les 5 clusters trouvés par k-means sont caractérisables
 - Pas d'inconvénient majeur contrairement aux 2 autres modèles

K-means avec RFM + review_score

Partie 3: Simulation contrat de maintenance

Principes et étapes de la simulation

Principes

- Evaluation de la stabilité du modèle dans le temps afin d'en assurer la maintenance
- Cette simulation nous permettra de déterminer la fréquence nécessaire de mise à jour du modèle de segmentation

Etapes

Filtrage des données initiales

Entraînement de Ré-entraînement du modèle sur du modèle sur données initiales

+ n semaines

Calcul de l'ARI après n semaines

Stabilité du modèle dans le temps

- L'ARI décroît et passe sous la valeur de 0.8 dès la 5ème semaine
- Fréquence nécessaire de mise à jour du modèle de segmentation: toutes les 5 semaines

Conclusion

• Le K-means est le plus adapté à notre segmentation client => 5 segments

Stabilité du modèle dans le temps: mise à jour toutes les 5 semaines

- Axes d'amélioration:
 - plus de données (plusieurs commandes par client)
 - intégrer plus de features (géographique, saison achat, ...)