18.5 BESSEL FUNCTION
To determine the required boundary condition for this result to hold, let us consider the functions $f(x) = J_v(\alpha x)$ and $g(x) = J_v(\beta x)$, which, as will be proved below, respectively satisfy the equations

$$x^{2}f + xf + (\alpha^{2}x^{2} - v^{2})f = 0,$$

$$x^{2}g + xg + (\beta^{2}x^{2} - v^{2})f = 0,$$

Show that $f(x) = J_y(\alpha x)$ satisfies (18.85).

If $f(x) = nJ_{\nu}(ax)$ and we write $w = \alpha x$, then

$$\frac{df}{dx} = \alpha \frac{dJ_y(w)}{dw}$$

and

$$\frac{d^2f}{dx^2} = \alpha^2 \frac{d^2J_v(w)}{dw^2}$$

When these expressions are substitutes into 918.85), its LHS becomes

$$x^{2}\alpha^{2} \frac{d^{2}J_{v}(w)}{dw^{2}} + x\alpha \frac{dJ_{v}(w)}{dw} + (\alpha^{2}x^{2} = v^{2})J_{v}(w)$$

$$= w^{2} \frac{d^{2} J_{v}(w)}{dw^{2}} + w \frac{d J_{v}(w)}{dw} + (w^{2} - v^{2}) J_{v}(w)$$

But, from Bessel's equation itself, this final expression is equal to zero, thus verifying that f(x) does satisfy(18.85) \triangle

Now multiplying (18,85) by f(x) and (18,85) by g(x) and subtracting them gives

$$\frac{d}{dx}x\bigg[(fg'-gf')\bigg] = (\alpha^2 - \beta^2)xfg$$

where we have used the fact that

$$\frac{d}{dx}\left[\left(x(fg'-gf')\right)\right] = x(fg''-gf'') + (fg'-gf').$$

By integrating (18,87)over any given range $x = \alpha$ to $x = \beta$, we obtain

$$\int_{a}^{b} x f(x)g(x)dx = \frac{1}{\alpha^2 - \beta^2} \left[x f(x)g'(x) - xg(x)f'(x) \right]_{a}^{b}$$

which, on setting $f(x)J_v(\alpha x)$ and $g(f)=J_v(\beta x)$, becomes

$$\int_{a}^{b} x J_{v}(\alpha x) J_{v}(\beta x) dx = \frac{1}{\alpha^{2} - \beta^{2}} \left[\beta x J_{v}(\alpha x) J_{v}'(\beta x) = \alpha x J_{v}(\beta x) J_{v}'(\alpha x) \right]_{a}^{b} (18, 88)$$

If $x \neq \beta$, and the interval [a,b] is such that the expression on the RHS of (18,88) equals zero, then we obtain the orthogonality condition (18,84). This happends, for example, if $J_v(xx)$ and $J_v()$ vanish at x=a and x=b, or if $J_v(xx)$ $J_v()$ vanish at x=a) and x=b, or more for many general conditions. It should be noted that the boundary term is automatically zero at the point x=0, as one might expect from the fact that the Sturm-Liouville from of Bessel's equation has p(x) = x.

If $\alpha = \beta$, the RHS of (18.88) takes the indeterminant from 0/0. This may be