Question	Answer	Marks	Guidance
5(a)	Show u and u^* in relatively correct positions. Must have sense of scale on axes	B1	$u = 3 - i$, $u^* = 3 + i$ Ignore labels.
	Show $u^* - u$ in a relatively correct position. Must have sense of scale on axes	B1	2i. Scale only on Imaginary axis is sufficient for this mark.
	State that <i>OABC</i> is a parallelogram [independent of previous marks]	B1	Ignore 'quadrilateral'. Allow 'trapezium' from correct work.
		3	x x

Question	Answer	Marks	Guidance		
5(b)	Multiply <i>their</i> numerator and the given denominator by 3 + i and attempt to evaluate either	M1	Can have missing term and arithmetic errors but need $i^2 = -1$ once, seen or implied.		
	Obtain numerator 8 + 6i or denominator 10	A1			
	State final answer $\frac{4}{5} + \frac{3}{5}i$ or $\frac{8}{10} + \frac{6}{10}i$ or $0.8 + 0.6i$	A1	Correct answer with no working scores 0/3.		
	Alternative method for question (b)				
	Obtain two equations in x and y , and attempt to solve for x or for y	M1	3 = 3x + y and $1 = -x + 3y$		
	Obtain $x = \frac{4}{5}$ or $\frac{8}{10}$ or 0.8 $y = \frac{3}{5}$ or $\frac{6}{10}$ or 0.6	A1			
	State final answer $\frac{4}{5} + \frac{3}{5}i$ or $\frac{8}{10} + \frac{6}{10}i$ or $0.8 + 0.6i$	A1	Correct answer with no working scores 0/3.		
		3			

Question	Answer	Marks	Guidance		
(c)	State or imply arg $\frac{u^*}{u} = \arg u^* - \arg u$ or $2\arg u^*$	M1			
	Justify the given statement correctly	A1	AG $\arg \frac{u^*}{u} = \tan^{-1} \frac{3}{4}, \arg u^* = \tan^{-1} \frac{1}{3} \text{ and}$ $\arg u = \tan^{-1} - \frac{1}{3} \text{ (or arg } u = -\tan^{-1} \frac{1}{3} \text{), needed if use first}$ expression in M1; $\operatorname{or arg} \frac{u^*}{u} = \tan^{-1} \frac{3}{4} \text{ and } \arg u^* = \tan^{-1} \frac{1}{3}, \text{ needed if use}$ second expression in M1.		
	Alternative method for question (c)				
	Use $\tan 2A$ formula with $\tan A = \frac{1}{3}$	M1	$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$, $\tan A = \frac{1}{3}$, hence $\tan 2A = \frac{3}{4}$.		
	Justify the given statement correctly		AG So $2A = \tan^{-1} \frac{3}{4} = \arg \frac{u^*}{u}$ and $A = \tan^{-1} \frac{1}{3} = \arg u^*$ hence $\arg \frac{u^*}{u} = 2 \arg u^*$.		
		2			