GEOMETRIA III

IV Foglio di Esercizi - 7 Aprile 2014

Omologia Singolare - Omologia della coppia

Esercizio 1. Calcolare i gruppi di omologia ridotta dei seguenti spazi topologici:

- $\mathbb{R}^3 \setminus \{r \cup s\}$ dove r, s sono rette di \mathbb{R}^3 sghembe;
- $\mathbb{R}^3 \setminus \{r \cup s\}$ dove r, s sono rette di \mathbb{R}^3 incidenti;
- $\mathbb{R}^4 \setminus \{r \cup s\}$ dove r, s sono rette di \mathbb{R}^4 parallele.

Esercizio 2. Calcolare i gruppi di omologia ridotta di $X = D^2 \setminus \{P, Q, R\}$ dove P, Q, R sono punti che appartengono a D^2 .

Esercizio 3. Sia X lo spazio quoziente di un quadrato rispetto alle identificazioni in figura:

- Calcolare il gruppo fondamentale di X e dire se X è una superficie topologica.
- Calcolare i gruppi di omologia ridotta di X.

Esercizio 4. Sia X la bottiglia di Klein, ottenuta come quoziente del quadrato rispetto alle identificazioni in figura:

- Calcolare i gruppi di omologia ridotta della bottiglia di Klein.
- Calcolare i gruppi di omologia della coppia $(X, \{a\})$.
- Calcolare i gruppi di omologia della coppia $(X, \{b\})$ e li si utilizzi per mostrare che $\{b\}$ non è un retratto di X.

Esercizio 5. In \mathbb{R}^4 sia S^3 la sfera standard $x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1$ e sia S^1 la circonferenza $x_1^2 + x_2^2 - 1 = 0 = x_3 = x_4$. Calcolare i gruppi di omologia di $S^3 \setminus S^1$.

Esercizio 6. Calcolare i gruppi di omologia ridotta di $S^1 \times [0,1]$.

Esercizio 7. Sia X l'unione degli spigoli di un cubo e sia Y l'unione degli spigoli di un tetraedro. Calcolare i gruppi di omologia ridotta di X e di Y.

Esercizio 8. Si consideri il toro $T \subset (\mathbb{R}^3, \varepsilon)$ ottenuto facendo ruotare la circonferenza di centro (2,0) e raggio unitario nel piano \mathbb{R}^2_{xz} attorno all'asse delle z. Sia X lo spazio ottenuto aggiungendo al toro n dischi come in figura:

- Calcolare i gruppi di omologia ridotta di X.
- Per n=1 calcolare i gruppi di omologia relativa della coppia (X, D^2) .

Esercizio 9. Calcolare i gruppi di omologia relativa della coppia $(S^1 \times S^1, S^1 \times \{1\})$.

Esercizio 10. Si considerino i seguenti sottospazi di $(\mathbb{R}^3, \varepsilon)$:

- 1. la sfera S^2 centrata in (0,0,0) e di raggio 1;
- 2. il disco D_1 centrato nell'origine e di raggio unitario che sta nel piano xy;
- 3. la circonferenza Γ centrata in (0,0,0) di raggio unitario che sta nel piano xy.

Calcolare i gruppi di omologia relativa della coppia $(S^2 \cup D_1, D_1)$ ed i gruppi di omologia relativa della coppia (S^2, Γ) .

Esercizio 11. Sia $X = \mathbb{R}^n \setminus \{p \ punti\}$. Dimostrare che l'omologia ridotta di X soddisfa:

$$\tilde{H}_{n-1}(X) \simeq \mathbb{Z} \oplus \cdots p \ volte \cdots \oplus \mathbb{Z},$$

con tutti gli altri gruppi banali.

Esercizio 12. Sia $X = \mathbb{RP}^2$ e sia γ una circonferenza come in figura. Calcolare $H_1(X, \gamma)$ e $H_2(X, \gamma)$.

Esercizio 13. Sia $X = S^2 \subset \mathbb{R}^3$ la sfera di centro (0,0,0) e raggio 1, e siano $P \neq Q$ due suoi punti. Calcolare i gruppi di omologia della coppia $(X, \{P,Q\})$.

Esercizio 14. Si considerino $X = \mathbb{R}^3 \setminus \{(0,0,3)\}$ e $A = \{x \in \mathbb{R}^3 | ||x|| = 1\}$. Determinare se A è un retratto e/o retratto di deformazione di X.

Esercizio 15. Per ogni $n \geq 1$ sia $D^n \subset \mathbb{R}^n$ il disco di raggio unitario e sia $S^{n-1} \subset D^n$ il suo bordo. Mostrare che per $n \geq 1$ S^{n-1} non è retratto di D^n .

Esercizio 16. Per ogni $n \ge 2$ sia $D^n \subset \mathbb{R}^n$ il disco di raggio unitario. Stabilire se per $1 \le k < n$ $D^k \setminus \{0\}$ è retratto e/o retratto di deformazione di $D^n \setminus \{0\}$.