А. Программа лояльности

Ограничение по времени: **2000 миллисекунд** Ограничение по памяти: **65000 кибибайт**

Одна из форм реализации программы лояльности — предоставление клиентам накопительной дисконтной карты. В некоторой компании на каждый товар определено начисление бонусных баллов как доли от стоимости приобретённого товара. То есть на виртуальном счету, «привязанном» к дисконтной карте, накапливаются бонусные баллы при каждой покупке пользователем товара и предъявления этой карты.

Компанией при расчёте бонусов по каждому товару округление стоимости производится до сотых денежной единицы в пользу клиента.

Входные данные

На первой строке содержится одно единственное положительное число $N (0 < N < 10^4)$ – количество записей в файле. Далее идут N строк, на каждой строке расположена одна запись.

Каждая запись содержит следующие данные: номер предъявленной карты — последовательность из 16 десятичных цифр, артикул товара (уникальный идентификатор товара) — последовательность из 9 десятичных цифр, название товара заключённого в двойные кавычки — может содержать только следующие символы: буквы латинского алфавита, пробелы и десятичные цифры (не более 50 символов), цена товара $P = (0.00 < P \le 10000.00)$ — всегда дано с точностью до 2-х знаков после запятой, количество приобретённого товара $P = (0.00 < P \le 10000.00)$ — количество товара может быть указано с десятичной составляющей до 3-х знаков после запятой, процент начисления бонусов — целое число $P = (0.00 < P \le 1000)$.

Все данные в записях отделены друг от друга единственным пробелом. Гарантируется, что во всех записях один и тот же товар имеет одно и то же наименование.

Выходные данные

R1 строк (где R1 – количество уникальных карт во входных данных), в каждой из которых уникальный номер карты из входных данных и через пробел величина бонусных баллов на счету этой бонусной карты. Порядок следования карт может быть любым.

Далее R2 строк (где R2 – количество уникальных товаров во входных данных), в каждой из которых артикул, название товара соответствующее артикулу и, какое количество этого товара было продано. Название должно быть в двойных кавычках. Артикул и название должны быть отделены пробелом.

Примеры

Ввод	Вывод
5	0000000000000000 0.39
1234567890123456 123456789 "abc" 1.01 10.9 2	1234567890123456 0.23
000000000000000 123456789 "abc" 10.9 1.01 3	3141592653589793 660.00
00000000000000000000000000000000000000	000000000 " e " 99.990
3141592653589793 123454789 "abc" 10000 1 6	123454789 "abc" 1
3141592653589793 123654789 "AbC" 1 999.999 6	123456789 "abc" 11.91
	123654789 "AbC" 999.999

В. Непростая последовательность

Ограничение по времени: **2000 миллисекунд** Ограничение по памяти: **65000 кибибайт**

Введём несколько определений для описания задачи: под последовательностью понимается упорядоченное множество всех натуральных чисел из диапазона [L,R], где R и L также натуральные числа, при этом $R \geq L$; непростая последовательность — это та, которая не содержит ни одного простого числа; простое число K — это натуральное число, которое имеет в точности два различных делителя из ряда натуральных чисел (1 и K).

Требуется по заданной через L и R последовательности определить, является ли она непростой.

Входные данные

Два целых положительных числа (1 \leq L \leq R \leq 10¹⁴) записанные через пробел.

Выходные данные

«Yes» без кавычек, если последовательность непростая или любое простое число P ($L \le P \le R$) в качестве доказательства, что она такой не является.

Примеры

Ввод	Вывод
1 3	2
1 1	Yes
15 17	17
24 28	Yes
29 30	29

С. Проверка бит

Ограничение по времени: **2000 миллисекунд** Ограничение по памяти: **65000 кибибайт**

Вам дан ряд байт (целые числа от 0 до 255), и вам нужно определить, сколько бит находится в состоянии «1» в данных байтах с номерами от A до B (включительно).

Входные данные

В первой строке дано целое число N $(1 \le N \le 10^4)$ – количество байт, в следующей строке через один пробел дано N целых чисел d_i $(0 \le d_i \le 255)$ – значения байт. На следующей строке дано целое число M $(1 \le M \le 10^5)$ – количество запросов. Далее на M строках даны пары целых числе A_j , B_j , разделённые одним пробелом $(1 \le A_j, B_j \le N)$ – границы интервалов, на которых нужно подсчитать количество бит.

Выходные данные

Для каждого интервала на отдельной строке выведите количество бит в состоянии «1».

Пример

Ввод	Вывод
5	2
12 130 250 11 56	12
3	11
1 1	
3 5	
2 4	

D. Папа у Васи

Ограничение по времени: **2000 миллисекунд** Ограничение по памяти: **65000 кибибайт**

Папа у Васи силён в ..., нет, не в математике, а в гирях. Имеются четыре цельнолитые спортивные гири следующих номиналов масс: 8, 16, 24 и 32 кг, а также разновес из набора гирь, который шёл в комплекте к весам – 1, 2 и 4 кг (по одной гире каждой массы). Васе потребовалось на одну из чаш рычажных весов положить гири общей массой N кг.

Определите, можно ли получить массу в N кг имеющимися гирями и как её получить, если это возможно!

Входные данные

Одно целое положительное число N ($1 \le N \le 100$).

Выходные данные

«Impossible» без кавычек, если массу в N кг получить не удастся, в противном случае – перечислите веса всех гирь, одновременное выставление которых обеспечит необходимый вес.

Пример

Ввод	Вывод
25	24 1
33	8 24 1
100	Impossible

E. Шина SPI

Ограничение по времени: **4000 миллисекунд** Ограничение по памяти: **65000 кибибайт**

SPI (англ. Serial Peripheral Interface, SPI bus — последовательный периферийный интерфейс, шина SPI) — последовательный синхронный стандарт передачи данных в режиме полного дуплекса, предназначенный для обеспечения простого и недорогого высокоскоростного сопряжения микроконтроллеров и периферии.

Подлежащие передаче данные ведущее и ведомое устройства помещают в сдвиговые регистры. После этого ведущее устройство начинает генерировать импульсы синхронизации на линии SCLK, что приводит к взаимному обмену

данными. Передача данных осуществляется бит за битом от ведущего по линии MOSI и от ведомого по линии MISO. Передача каждого байта осуществляется от старшего бита к младшим. После окончания передачи очередного байта каждым из устройств в регистры сдвига загружаются следующие байты, и процедура передачи повторяется.

Определите, что находится в регистрах сдвига каждого из устройств после N импульсов синхронизации на линии SCLK.

Входные данные

Первая строка содержит число M $(1 \le M \le 10^4)$ – количество байт, предназначенных для передачи в каждом направлении.

Во второй строке через пробел перечислено М чисел, каждое из которых определяет значение очередного байта, предназначенного для передачи от Master к Slave.

В третьей строке через пробел перечислено М чисел, каждое из которых определяет значение очередного байта, предназначенного для передачи от Slave к Master.

В четвёртой строке указано одно число K ($1 \le K \le 10^4$) – количество запросов, на которые надо дать ответы.

На следующей строке идёт K чисел через пробел — запросы. Каждый запрос — число N_i ($0 \le N_i \le 8 \cdot M$) , являющееся количеством импульсов от начала передачи.

Выходные данные

Содержать К строк, каждая из которых содержит ответ для соответствующего запроса – два числа через пробел, соответственно, состояние сдвиговых регистров Master и Slave.

Примеры

Ввод	Вывод
2	255 0
255 1	240 15
0 128	1 128
4	3 0
0 4 8 9	
2	3 0
255 1	240 15
0 128	255 0
5	1 128
9 4 0 8 10	6 0

F. Арифметический корень

Ограничение по времени: **2000 миллисекунд** Ограничение по памяти: **65000 кибибайт**

Достаточно часто из-под знака радикала, когда он соответствует операции взятия арифметического корня второй степени (квадратного корня), требуется вынести множитель.

Пусть имеется выражение $\operatorname{sqrt}(x)$, где sqrt – функция взятия квадратного корня, x – подкоренное числовое значение (x – целое неотрицательное число). Требуется написать программу, которая будет выводить одно целое положительное значение b, если $b^2 = x$, или выводить два целых числа b и d, если $b^2 \cdot d = x$, при этом b и d должны быть больше d0 (единицы) и d1 должно быть минимально возможным. Если уложиться d3 указанные ограничения невозможно, следует вывести одно слово «Impossible» (без кавычек).

Входные данные

Одно число $x (1 \le x \le 10^9)$.

Выходные данные

В единственной строке ответ на задачу. В случае необходимости вывода двух чисел, отделить их друг от друга пробелом, сначала вывести b, затем d.

Примеры

Ввод	Вывод
7	Impossible
12	2 3
4	2

G. Базис

Ограничение по времени: **2000 миллисекунд** Ограничение по памяти: **65000 кибибайт**

Координаты двух точек A и B заданы на плоскости в базисе, определённом двумя неколлинеарными векторами g и f. Вектора g и f заданы в прямоугольной системе координат. Требуется найти длину отрезка в прямоугольной системе координат, концами которого являются точки A и B.

Входные данные

В первой строке дано через пробел два целых числа g_x и g_y ($-10^9 \le g_x$, $g_y \le 10^9$) – координаты вектора g. Координаты вектора f даны аналогичным образом во второй строке. В третьей и четвёртой строке, подобным же образом, указаны координаты двух точек в базисе векторов g и f.

Выходные данные

Одно единственное число — длина отрезка образованного точками A и B. Ответ требуется вывести с точностью не хуже 10^{-6} .

Примеры

Ввод	Вывод
1 1	2
1 -1	
1 0	
0 1	
1 0	1.4142136
0 1	
1 1	
0 0	
2 3	5.000000
-1 -2	
1 -2	
6 8	