	 	 	1		
Register No.					

BE/BTech Degree Examination May 2022

Fourth Semester

Common to Computer Science and Engineering & Information Technology

20MAT42 - PROBABILITY AND STATISTICS

(Regulations 2020)

Use of statistical table is permitted

Time: Three hours

Maximum: 100 marks

Answer all Questions

 $Part - A (10 \times 2 = 20 \text{ marks})$

[CO1, K2] 1. When a die is thrown, X denotes the number that turns up. Find E(X).

[CO1,K1] 2. Define nth moment about origin of a random variable X.

[CO2,K2] If the probability that a target is destroyed on any one shot is 0.5, what is the probability 3. that it would be destroyed on 6th attempt?

State Memoryless property of exponential distribution. 4.

[CO2,K1]

Define Covariance. 5.

[CO3,K1]

[CO3,K2] The two lines of regression are 8x - 10y + 66 = 0 and 40x - 18y - 214 = 0. Find the mean 6. values of x and y.

What is meant by Type I and Type II errors in hypothesis testing? 7.

[CO4,K1]

List any two applications of F-test. 8.

[CO4,K1]

Name the three basic principles of experimental design. 9.

[CO5,K1]

Is 2×2 Latin square design possible? Why? 10.

[CO5,K1]

Part - B (5 × 16 = 80 marks)

A discrete random variable X has the following probability distribution. i) 11. a.

(10) [CO1,K3]

X	0	1	2	3	4	5	6	7	8
P(X)	a	3a	5a	7a	9a	11a	13a	15a	17a

- Find the value of 'a'.
- Find P(X < 3), P(0 < X < 3) and $P(X \ge 3)$.
- Find the distribution function of X.
- For the triangular distribution ii)

(6) [CO1,K3]

$$f(x) = \begin{cases} x & \text{if } 0 \le x \le 1 \\ 2 - x & \text{if } 1 \le x \le 2 \\ 0 & \text{otherwise} \end{cases}$$

Find the Mean and Variance.

- b. The density function of a random variable X is given by (16) $[Co_{1,K3}]$ $f(x) = Kx(2-x); 0 \le x \le 2$. Find K, Mean, Variance and r^{th} moment.
- a. i) Derive M.G.F, Mean and Variance of Binomial distribution.

(10) [CO2,K2]

- ii) The number of monthly breakdown of a computer is a random variable having a poisson distribution with mean equal to 1.8. Find the probability that this computer will function for a month
 - 1) Without a breakdown
 - 2) With only one breakdown and
 - 3) With atlease one breakdown.

(OR)

b. i) If X is uniformly distributed over (0, 5), find the probability that

(6) [CO2,K2]

- 1) P(X < 2), 2) P(X > 3) and 3) P(2 < X < 5)
- ii) The savings bank account of a customer showed an average balance of (10) [CO2,K2] Rs.150 and a standard deviation of Rs.50. Assuming that the account balances are normally distributed.
 - What percentage of account is over Rs.200?
 - What percentage of account is between Rs.120 and Rs.170?
 - 3) What percentage of account is less than Rs.75?
- 13. a. i) The joint probability mass function of (X,Y) is given by P(x, y) = k(2x + 3y), (6) [CO3,K3] x=0, 1, 2; y=1, 2,3. Find the Marginal distributions of X and Y.
 - ii) Calculate the correlation coefficient for the following data.

(10) [CO3,K3]

X	65	66	67	67	68	69	70	72
Y	67	68	65	68	72	72	69	71

(OR)

b. i) The joint density function of the R.V's X and Y is given by

(6) [CO3,K3]

$$f(x,y) = \begin{cases} 8xy; & 0 \le x \le 1; \ 0 \le y \le x \\ 0 & : \text{ otherwise} \end{cases}$$

- 1) Find the Marginal density functions of X and Y.
- 2) Find the Conditional density function f (y/x).
- ii) Obtain the two regression lines from the following data.

(10) [CO3,K3]

X	1	2	3	4	5	6	7
Y	9	8	10	12	11	13	14

- 14. a. i) In a large city A, 20 percent of a random sample of 900 school boys had a slight physical defect. In another large city B, 18.5 percent of a random sample of 1600 school boys had the same defect. Is the difference between the proportions significant?
 - ii) On the basis of information given below, Use Chi-square test to check whether the new treatment is comparatively superior to the conventional one.

(8) [CO4,K3]

	Favourable	Non-favourable	Total
Conventional	40	70	90
New	60	30	110
Total	100	100	200

(OR)

b. The nicotine contents in milligrams in two samples of tobacco were found to (16) [CO4,K3] be as follows

Sample A	24	27	2.0			
-		21	26	21	25	
Sample B	27	30	28	0.		
an it be sa				31	22	36

Can it be said that two samples come from same normal population.

15. a. An experiment was designed to study the performance of 4 different detergents (16) [CO5,K3] for cleaning injectors. The following readings were obtained with specially designed equipment for 12 tanks of gas distributed over 3 different models of

Detergents	Engine-I	70	
Δ		Engine-II	Engine-III
	45	43	51
В	47	46	
C	48		52
D		50	55
	ANOVA to to	37	49

Perform the ANOVA, to test whether there are significant differences in the detergents and in the engines.

(OR)

b. Analyse the following results of a Latin square experiments.

(16) [CO5,K3]

	1	2	3	4
1	A(12)	D(20)	C(16)	B(10)
2	D(18)	A(14)	B(11)	C(14)
3	B(12)	C(15)	D(19)	A(13)
4	C(16)	B(11)	A(15)	D(20)

The letters A, B, C, D denote the treatments and the figures in brackets denote the observations.

axonomy Level	Remembering (K1)	Understanding (K2)	Applying (K3)	Analysing	Evaluating	Creating
Percentage	8	21	71	(K4)	(K5)	(K6)

```
20MATHA - Probability & Statistics
```

Answer key

1)
$$E(x) = \frac{1+2+3+4+5+6}{2} = \frac{7}{2}$$
.
2) $\mu_{\gamma}' = \int x^{\gamma} f(x) dx$.

3)
$$P(x=6) = Pq^{2-1} = (0.5)(0.5)^5 = 0.0156$$

Flgf x and y are Rv, s then covariance between

6)
$$\overline{y} = 17$$
, $\overline{x} = 13$.

10) For n=2, d.f of SSE=0 and hence MSE is not defined.

$$\sum P_i = 1 \Rightarrow \alpha = 1 \qquad (2)$$

2)
$$P(X \angle 3) = P(X=0) + P(X=1) + P(X=2)$$

= $90 = \frac{1}{9}$. (2)

$$P(0 \le x \le 3) = P(x = 1) + P(x = 2)$$

= 8/81 (2

```
P(X > 3) = 1 - P(X < 3)
           = 1 - LP(x=0) + P(x=1) + P(x=2)
                                           (2)
            = 8/9.
    0 1 2 3 4 5 6
 P(x=2)/8, 4/8, 9/8, 16 85 36 49 64 1
'ti)
   ECX) = frefrede
   E(x^2) = \int x^2 f(x) dx = \frac{7}{6}
   V(x) = E(x^2) - [E(x)]^2 = \frac{1}{6}
   [ka(2-a)dn=1
  E(x) = \int \pi f(x) dx = 1, E(x^2) = 6/5
  V(x) = \frac{1}{5}
\mu'_{91} = \int x f(x) dx = 3(2)
                                           (3)
                      (r+2) (r+3)
                         (r+2) (r+3)
```

(1) a) i)
$$M_{\chi}(t) = \sum_{x=0}^{h} c^{x} p(x)$$

$$= q^{h} + nc_{1}q^{h} (pe^{t}) + nc_{2}q^{h} (pe^{t})^{h} ...$$

$$M_{\chi}(t) = n(q + pe^{t})^{h} - pe^{t}$$

$$M_{\chi}(t) = n^{2}p^{2} + np(1-p)$$

$$M_{\chi}(t) = n^{2}p^{2} + npq$$

$$V(tx) = npq ...$$
(1)
$$M_{\chi}(t) = n^{2}p^{2} + npq$$

$$V(tx) = npq ...$$
(1)
$$P(x=q) = e^{1/8} = 0.1652 ...$$
(1)
$$P(x=q) = (1/8)e^{1/8} = 0.2975 ...$$
(2)
$$P(\chi = 1) = (1/8)e^{1/8} = 0.2975 ...$$
(3)
$$P(\chi = 1) = (1/8)e^{1/8} = 0.2975 ...$$
(1)
$$P(\chi = 1) = 1.960 ...$$
(2)
$$P(\chi = 1) = 1.960 ...$$
(3)
$$P(\chi = 1) = 1.960 ...$$
(4)
$$P(\chi = 1) = 1.960 ...$$
(1)
$$P(\chi = 1) = 1.960 ...$$
(2)

111) P(2LXL5) = 15/5 dn = 3/5. ____ (2)

```
ii) H = 150, 0=50.
                                                                                                                                                                                                      (1)
                  Z = X - 150
      P(x>,200) = P(x>1) = 0.1587
                    7. of account over Rs 200 4 15.87.
                                                                                                                                                                                                                        (3)
                 P(120 \(\perp \times \times \times \(\perp \times \perp \times \(\perp \times \perp \times \perp \times \perp \times \perp \times \(\perp \times \perp \times \pe
                                                                                  = 0.2257 +0.1554
                                                                                                                                                                                                                    (3)
                                                                                    = 0-3811.
                               7- of account b/W 120 & R$ 170 is 38-11.
      8) P(X 275) = P(Z 4-1.5)
                                                 = 0.0668.
                1. Of account less than Rs 75 is 6.68/ -
                                            0 1 2 PCy=4)
                                               3k 5k 7k 15k
                                                  6K 8K 10K 24K
                             2
                                         9K 11K 13K 33K
                               3
                 P(x=x) 18K 24K 30K 72K.
                                             K=1/12
                                                                                                                                __(3)
                                                                            2
                                                                                                                                                                 P(y=y)
                                                   3/12
                                                                                             5/72 7/12
                                                                                           8/12 10/12
                                             6/72
                            2
                                                                                              1/72 13/72
                                                 9/72
                            3
                                                                                             24/12 30/72
                                              18/72
                    Plx=n)
```

139 ii)
$$\sum x = 544$$
 $\sum y = 552$
 $\sum xy = 37560$, $\sum x^2 = 37028$, $\sum y^2 = 38132$
 $\overline{x} = 68$, $\overline{y} = 69$, $\overline{x}\overline{y} = 4692$
 (2)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (4)
 (3)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)

a = 13/14 b= 5/4. Regression line is 14 y= 13x+102. (3) If x=cy+d is line of regression of x & y, then. 28 = 77c +7d & 334 = 875c+77d. $C = \frac{13}{14}$ 1 d = -87reguession of 200 y is 142 = 134 - 87, — (3) $P_1 = 0.2$, 7220.185. (2) Ho: P1 = P2 P= niPi+ nz 12 = 0.1904 -- (4) 9 . Z=0.9375. 121 L 1.96, : Accept No. ii) Ho: No difference blu new and Conventional treatm 70 55 32 for 1 Does at 5 1. to 3.841. 7 al 7 7 0.05

Rejet Ho at 5% LOS.

Ś

1.6) To text i) equality of Variants by using F-text. 4

ii) Equality of means by t-text.

$$\overline{n} = 24.6, \quad \overline{y} = 29.$$
 $\overline{s}_{1}^{2} = 5.5, \quad S_{2}^{2} = 21.6.$

(2)

$$F_{cal} \leftarrow F_{0.5}(5/4). \quad \therefore \quad \text{accept.} \quad \overline{N}_{0} \text{ at } 5.2.205$$
(i) $\overline{N}_{0} \cdot \overline{N}_{1} = \overline{N}_{2}.$

$$\overline{s}_{3} \cdot \overline{\eta}_{1} + \overline{\eta}_{2}.$$
(2)

$$\overline{s}_{3} \cdot \overline{\eta}_{1} + \overline{\eta}_{2}.$$
(2)

$$\overline{s}_{1} \cdot \overline{\eta}_{1} + \overline{\eta}_{2}.$$
(2)

$$\overline{s}_{1} \cdot \overline{\eta}_{1} + \overline{\eta}_{2}.$$
(2)

$$\overline{s}_{1} \cdot \overline{\eta}_{1} + \overline{\eta}_{2}.$$
(2)

$$\overline{s}_{2} \cdot \overline{\eta}_{1} + \overline{\eta}_{2}.$$
(2)

$$\overline{s}_{3} \cdot \overline{\eta}_{1} + \overline{\eta}_{2}.$$
(2)

$$\overline{s}_{1} \cdot \overline{\eta}_{2} + \overline{\eta}_{2}.$$
(3)

$$\overline{s}_{2} \cdot \overline{\eta}_{1} + \overline{\eta}_{2}.$$
(4)

$$\overline{s}_{3} \cdot \overline{\eta}_{1} + \overline{\eta}_{2}.$$
(2)

$$\overline{s}_{4} \cdot \overline{\eta}_{2} + \overline{\eta}_{2}.$$
(2)

$$\overline{s}_{5} \cdot \overline{\eta}_{1} + \overline{\eta}_{2}.$$
(2)

	SSE = 18.84. Some of vari B/W Columns	Sum of SSC = 135.17	D-J 2	Mean 1 Squ MSC = 67.58	aneir Food
	BIW nows	SSR = 110.91	3	Mst = 36.97	Fc=21.52
	Revidual	SSE = 18.84	6	MSE = 3.14	
	70 lee	732 = 264.92		1	— <i>(6)</i>
~	FR(316)=5.14	Fc & Fr reject	No at	5% Los	
b)		- Magical	ant du	Herere b/W.	2060
	Columns of Lu $T = -4.$	et merb		(2)	
		factor = 1 -		(2)	
*	755= 154			_ (2)	
	Source of Variation	Sun Of Squares	D.J	Mean Squares	F-ratio
	Rows	SSR=3.5	3	Ms1=1.167	FR = 1.081
	Columns	SSC= 2.5	3	Msc=0.87	Fe= 1-24
ş ¹ s	Treatments	SST=144.5	3	M87 = 48.17	FT =44.60
	Residuel	SSE = 6.5	6	Ms E = 1.08	,
	FR L Ftab	Accept Tyo, Fo		o, Accept	- 8K.
	FT 7 Ftas	rejelt No		-	(10)