Київський національний університет імені Тараса Шевченка ННІ "Інститут геології" Кафедра геоінформатики

Практична робота № 1 Просторовий аналіз та статистичне моделювання в геології

Виконала студентка 3 курсу, групи «Big Data» Яковенко Марія Ігорівна

Завдання

- а) У просторі R^2 заданий вектор $\vec{\iota}$. Визначити, яким буде результат застосування в заданій послідовності наступних перетворень:
 - 1) $R(\theta)$ обертання у площині O_{xy} на θ градусів;
 - 2) T(x, y) зсув на площині O_{xy} ;
 - 3) S(x, y) масштабування (розтягування та/або стиснення).

Вирішити завдання для двох варіантів вхідних даних.

б) Запрограмувати мовою Python операцію лінійного відображення вхідного вектора (матриці) у вихідних за допомогою перетворень: обертання R, зсуву T та масштабування S.

Вхідні дані

Таблиця 1. Варіант 2

Послідовність	$\vec{\iota}(x,y)$		$R(\theta)$	$T(x_T, y_T)$		$S(x_S, y_S)$	
S-R-T	3	2	12.6°	2.0	2.0	1.0	2.2
T-R-S			36.4°	1.0	1.0	1.3	1.2

Таблиця 2. Варіант 3

Послідовність	$\vec{\iota}(x,y)$		$R(\theta)$	$T(x_t, y_t)$		$S(x_s, y_s)$	
S-R-T	6	2	15.0°	2.0	2.0	1.5	2.7
T-R-S			51.0°	3.0	2.0	1.0	3.2

Хід роботи (GitHub: https://github.com/mashaven/sheva-stats/ – task-1)

Для спрощення побудови алгоритму в якості нульової операції для даної задачі будемо розглядати операцію тотожного перетворення E:

$$E \cdot \vec{x} = \vec{x}$$
,

де матриця трансформації E — одинична матриця:

$$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Вигляд матриць трансформації для операцій обертання R, зсуву T та масштабування S, відповідно, буде наступним:

$$R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{pmatrix}$$
 (1)

$$T(x_T, y_T) = \begin{pmatrix} 1 & 0 & x_T \\ 0 & 1 & y_T \\ 0 & 0 & 1 \end{pmatrix}$$
 (2)

$$S(x_S, y_S) = \begin{pmatrix} x_S & 0 & 0 \\ 0 & y_S & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (3)

Операція лінійного перетворення матриці $T(\vec{x}) = \vec{y}$ володіє властивістю асоціативності, тобто:

$$T_1 \cdot (T_2 \cdot \vec{x}) = (T_1 \cdot T_2) \cdot \vec{x}$$

Таким чином, якщо відомі операції трансформацій $T = \{R, T, S\}$ та послідовність їх застосування $Seq = \{t_i | t_i \in T, i = \overline{1,n}\}$ — можна розрахувати матрицю лінійного відображення вхідного вектора $T: \vec{x} \to \vec{y}$ за наступним алгоритмом:

```
transformMatrix(operations: dict[Name: Matrix], sequence: list[Name]):

Tr: Matrix = identity(3)

for each name in sequence:

Tr = Tr * operations[name]

return Tr
```

Запрограмуємо розрахунок матриць (1-3) мовою Python:

а) обертання, R

```
def rotate(theta):
    theta = theta * np.pi / 180
    return np.array([
        [np.cos(theta), -np.sin(theta), 0],
        [np.sin(theta), np.cos(theta), 0],
        [0, 0, 1]
    ])
```

б) зсув, Т

```
def move(x, y):
    return np.array([
        [1, 0, x],
        [0, 1, y],
        [0, 0, 1]
    ])
```

в) масштабування, S

```
def scale(x, y):
    return np.array([
        [x, 0, 0],
        [0, y, 0],
        [0, 0, 1]
    ])
```

Та виконаємо реалізацію методу modelMatrix(inMatrix, sequence) як функції мовою Python для вирішення поставленого завдання за отриманими варіантами:

```
def modelMatrix(inMatrix, sequence):
    V = np.array(inMatrix['V'] + (1,)) # V(x, y, 1)
    # calculate transformation matrix for each operation
    Tr = {}
    Tr['R'] = rotate( inMatrix['R'])
    Tr['T'] = move (*inMatrix['T'])
    Tr['S'] = scale (*inMatrix['S'])
    # calculate a transformation matrix for the `sequence`
    T = np.identity(3)
    for op in sequence:
    T = T @ Tr[op] # @ is a binary operator for the matrix mul.
# apply the transformation matrix to the vector `V`
    Vtr = T @ V
    return Vtr
```

За допомогою отриманої функції обчислимо розв'язок поставленого завдання:

а) варіант 2

Рисунок 1. Результати перетворень вектору $\vec{i}(3,2)$ в послідовності **S-R-T**

Рисунок 2. Результати перетворень вектору $\vec{\iota}(3,2)$ в послідовності *T-R-S* б) варіант 3

Рисунок 3. Результати перетворень вектору $\vec{i}(6,2)$ в послідовності **S-R-T**

```
In [11]: inMatrix = {
    'R': 51,
    'T': (3, 2),
    'S': (1, 3.2),
    'V': (6, 2),
}
modelMatrix(inMatrix, 'TRS')

Out[11]: array([ 1.80218819, 10.69052627, 1. ])
```

Рисунок 4. Результати перетворень вектору $\vec{\iota}(6,2)$ в послідовності *T-R-S*