Question 1

- (a) Suppose $A = \mathbb{CR}^{NXN}$ a symmetric matrix with (λ_1, U_1) , (λ_2, U_2) pairs of eigenvalue-eigenvector of T s.t. $\lambda_1 \neq \lambda_2$. Then $\exists T \in L(V)$ with V the standard inner-product space s.t. T is self-adjoint and A = M(T) relative to the standard base. According to the spectral theorem, T is diagonalizable $u \cdot r \cdot t$. some orthonormal basis $e_1, ..., e_n$. This implies that eigenspaces of different eigenvalues are orthogonal to one another. Therefore $(U_1, U_2) = 0 \rightarrow U_1^T U_2 = 0$.
- (b) Let $\Theta \in \mathbb{R}$ and $B = I + \Theta A$. Bu, = $Iu_1 + \Theta A u_1 = u_1 + \Theta \lambda_1 u_1 = (1 + \Theta \lambda_1) u_1$, meaning that u_1 is an eigenvector of B, with $1 + \Theta \lambda_1$ its eigenvector.
- (c) Define $U = [U_1, ..., U_n]$ where $U_1, ..., U_n$ are A's eigenvectors normalized constituting an orthonormal basis of \mathbb{R}^n . Then A can be decomposed as $U \wedge U^T$ with A being an nxn real diagonal matrix. Since U is orthogonal $U^T = U^T$ and $AA^T = I \rightarrow U \wedge U^T = [U_1, ..., U_n] \begin{bmatrix} 1/2, & 0 \\ 0 & 1/2, & 1 \end{bmatrix} \begin{bmatrix} 1/2, & 0 \\ 0 & 1/2, & 1 \end{bmatrix} \begin{bmatrix} 1/2, & 0 \\ 0 & 1/2, & 1 \end{bmatrix} \begin{bmatrix} 1/2, & 0 \\ 0 & 1/2, & 1 \end{bmatrix}$ under the assumption that $X_1, ..., X_n \neq 0$ (A is invertible).

Question 2

- (a) Suppose $X \in \mathbb{R}^{n\times p}$ s.t. n > p and $A = X^TX$, then $(X^TX)^T = X^TX$, meaning that A is a pxp symmetric signore matrix. Hence $\exists T \in (V)$ with A = M(T) where V is the standard inner product space over the reals, for which $\langle T^*Tv, v \rangle = \langle Tv, Tv \rangle \geqslant 0$. $\forall v \in V$, and T^*T is a positive operator. In addition, if $T^*Tu = \lambda u$ for some $u \in V$ $\lambda \in \mathbb{R}$ s.t. $u \neq 0$. Hen $\lambda \langle u, u \rangle = \langle \lambda u, u \rangle = \langle T^*Tu, u \rangle = \langle Tv, Tv \rangle \geqslant 0$, implying that A's eigenvalues are non-negative.

 Assume (1) that A is invertible, then Col A span \mathbb{R}^p , meaning that A's columns are linearly independent. Assume (2) that A's columns are linearly independent, then rank $A = p \rightarrow \dim$ mull A = 0 and $\forall v \in V$ s.t. $v \neq 0$ $T^*Tv \neq 0 \rightarrow \langle T^*Tv, v \rangle \geqslant 0$, making A a positive definite definite and $T^*Tv = \lambda v$ for some $v \in V$ $\lambda \in \mathbb{R}$ s.t. $v \neq 0$, then $\langle T^*Tv, v \rangle \geqslant 0 \rightarrow \langle \lambda v, v \rangle \geqslant 0 \rightarrow \lambda \langle v, v$
- (b) Let $\Theta \in \mathbb{R}$ s.t. $\Theta > 0$ Hen $B = A + \Theta I$ is symmetric. Let $\lambda \in \mathbb{R}$ $v \in V$ $v \neq 0$ s.t. $Av = \lambda v$ Hen $(A + \Theta I)v = Av + \Theta v = (\lambda + \Theta)v > 0$, implying that B is positive definite. Hence, B is invertible based on (a).

Question 3

Therefore
$$[A]_S = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 & 1 \\ 3 & -1 & 0 \\ 1 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 1 & 3 \end{bmatrix} = \begin{bmatrix} -1 & -4 & -2 \\ 1 & -3 & -1 \\ 1 & 3 & 2 \end{bmatrix}.$$

(b) Suppose $T \in L(V, W)$, $F \in L(W, U)$ and B, C, D are bases of V, W, U respectively. $[F \circ T(v)]_D = [F(T(v))]_D = (D^{-1}M(F)C)(C^{-1}M(T)B)(B^{-1}V) = D^{-1}M(F)M(T)V$ where M(T), M(F), and V are W.r.t. to the standard basis. This shows that matrix multiplication can represent composition of linear maps.

Suppose $T \in (V)$, A = M(T) w.r.t. He standard basis, and $B = [u_1, ..., u_n]$ where $u_1, ..., u_n$ is a basis of V.

Assume T is invertible, Hen $B \mid A \mid B \mid T \mid_B = I \rightarrow [T]_B = B \mid A \mid B$ and $[T]_B \mid B \mid A \mid B = I \rightarrow [T]_B = B \mid A \mid B$, meaning that $[T]_B \mid = [T]_B \mid A$. Assume now that $[T]_B \mid = B \mid A \mid B$ is invertible, then $[T]_B \mid = [T]_B \mid B \mid A \mid B$, requiring A to be invertible. Therefore, T is invertible iff $[T]_B$ is invertible, in which case $[T]_B \mid = [T]_B$.

Question 4

- (a) Suppose $X \in \mathbb{R}^{n \times p}$ is full column rank, $Y \in \mathbb{R}^n$ and $\beta \in \mathbb{R}^p$. $\exists T \in L(\mathbb{R}^p, \mathbb{R}^n)$ s.t. X = M(T). rank $X = p \rightarrow null \ T = \{o\} \rightarrow null \ T^*T = \{o\}$ and since T^*T is an injective operator on \mathbb{R}^n , it is invertible. $\|Y T\beta\|^2 = \langle Y T\beta, Y T\beta \rangle = \|YI^2 2\langle Y, T\beta \rangle + \langle T\beta, T\beta \rangle = \|YII^2 2\langle T^*Y, \beta \rangle + \langle T^*T\beta, \beta \rangle$. Hence $\nabla_\beta \|Y T\beta\|^2 = -2T^*Y + 2T^*T\beta = 0$ $\rightarrow T^*Y = T^*T\beta \rightarrow \hat{\beta} = (T^*T)^{-1}T^*Y = (X^TX)^{-1}X^TY$. Logizally, this is a minimum point since $\|Y X\beta\|$ measures distance between two vectors. Let $u_{1,-}Up$ an orthonormal list in \mathbb{R}^n that span ImT, then $T^*Y = T^*T\beta \rightarrow T^*(Y T\beta) = 0$, inplying that $Y T\beta$ is orthogonal to ImT, or $\forall i = 1, ...p \ \langle Y T\beta, Ui \rangle = 0 \rightarrow \langle Y, Ui \rangle = \langle T\beta, Ui \rangle$. Since $T\beta \in ImT$ then $T\beta = \langle T\beta, U_1 \rangle U_1 + ... + \langle T\beta, U_p \rangle U_p \rightarrow T\beta = \langle Y, U_1 \rangle U_1 + ... + \langle Y, U_p \rangle U_p = P_{ImT} Y$.
- (b) Let $n \in \mathbb{N}$ and suppose $u_{i}, u_{2}, Y \in \mathbb{R}^{n}$ s.t. $u_{1} = [1, 1, ..., 1]$, $u_{2} = [x_{1}, ..., x_{n}]$, $Y = [y_{1}, ..., y_{n}]$ for some $x_{i_{1}}, x_{n}, y_{1}, ..., y_{n} \in \mathbb{R}$ s.t. u_{i} and u_{2} are linearly independent, and set $X = [u_{1}, u_{2}]$. Then, $\hat{\beta} = \begin{bmatrix} \beta_{0} \\ \beta_{1} \end{bmatrix} = \begin{pmatrix} \chi^{T}\chi \end{pmatrix}^{-1} \chi^{T}Y = \begin{bmatrix} n & Zx_{1}^{2} \\ Zx_{1} & Zx_{2}^{2} \end{bmatrix} \begin{bmatrix} \Sigma y_{1}^{2} \\ Zx_{1}y_{1} \end{bmatrix} = \frac{1}{n \sum x_{1}^{2} (\Sigma x_{1})^{2}} \begin{bmatrix} \sum x_{1}^{2} \sum y_{1} \sum x_{1} \sum x_{1}y_{1} \\ \sum x_{2}y_{1} \end{bmatrix}$. Assuming $\chi_{i} Y \sim \text{Uniform}(\{1, ..., n\})$ with $P(x = x_{1}) = P(Y = y_{1}) = \frac{1}{n}$, we get $\beta_{1} = \frac{n \sum x_{1}y_{1} \sum x_{1} \sum y_{1}}{n \sum x_{2}^{2} (\sum x_{1})^{2}} = \frac{E(XY) E(X)E(Y)}{E(X^{2}) E(X)^{2}} = \frac{Cov(X, Y)}{Var(X)}$ and $\beta_{0} = \frac{\sum x_{1}^{2} \sum y_{1} \sum x_{2} \sum x_{1} y_{1}}{n \sum x_{1}^{2} (\sum x_{1}^{2})^{2}} = \frac{\sum y_{1}^{2} \sum x_{1} \sum y_{1}^{2} \sum x_{1} \sum x_{2} y_{1}^{2}}{n \sum x_{1}^{2} (\sum x_{1}^{2})^{2}} = \frac{\sum y_{1}^{2} \sum x_{1} \sum y_{1}^{2} \sum x_{1} \sum y_{1}^{2} \sum x_{1} \sum y_{1}^{2}}{n \sum x_{1}^{2} (\sum x_{1}^{2})^{2}} = \frac{\sum y_{1}^{2} \sum x_{1} \sum x_{1}^{2} \sum x_{1} \sum y_{1}^{2} \sum x_{1}^{2} \sum x_{1}^{2}$