AUTOENCODERS FOR MOLECULAR DESIGN

Logan Ward Asst. Computational Scientist Argonne National Laboratory

17 February 2022

Chemical space is enormous

Searching through even small fraction of "all molecules" is impractical

We need a way to sample through space efficiently

What if I just want to search nearest neighbors?

Pick a solvent that could replace ethanol!

$$H_3C$$
C H_3

Same composition, very different behavior

Different composition, similar behavior

We need complicated rules to tell us how to navigate chemical space

Today's topic: What if machine learning could just "invent" new molecules for us?

Generating data with machine learning

Autoencoders: Data to coordinates

GANs: Noise to meaningful data

Autoregression: Fill in missing bits

AUTOENCODERS

(Because we are doing GANs later)

Simple autoencoder

loss =
$$||\mathbf{x} - \hat{\mathbf{x}}||^2 = ||\mathbf{x} - \mathbf{d}(\mathbf{z})||^2 = ||\mathbf{x} - \mathbf{d}(\mathbf{e}(\mathbf{x}))||^2$$

Autoencoders learn a simple, continuous representation that captures higher-dimensional data

PCA: Autoencoder without neural networks

PCA learns a <u>simple</u>, <u>continuous</u> representation that captures higher-dimensional data

Point	Initial	Encoded	Decoded
Α	(-0.50, -0.40)	-0.63	(-0.54, -0.33)
В	(-0.40, -0.10)	-0.39	(-0.34, -0.20)
C	(0.10, 0.00)	0.09	(0.07 0.04)
D	(0.30, 0.30)	0.41	(0.35, 0.21)
Е	(0.50, 0.20)	0.53	(0.46, 0.27)

Autoencoders can learn this for even more complex data

Simple autoencoder

loss =
$$||\mathbf{x} - \hat{\mathbf{x}}||^2 = ||\mathbf{x} - \mathbf{d}(\mathbf{z})||^2 = ||\mathbf{x} - \mathbf{d}(\mathbf{e}(\mathbf{x}))||^2$$

What makes sure this compressed space (z) makes sense?

Given enough complexity, I can learn any decoding

... but I don't want *any* latent space.

I want one with meaning, where: similar points have similar encodings

Variational autoencoder

loss =
$$|| x - x^2 ||^2 + KL[N(\mu_x, \sigma_x), N(0, I)] = || x - d(z)||^2 + KL[N(\mu_x, \sigma_x), N(0, I)]$$

Train <u>distribution</u> to be like a normal distribution (KL is distance for distributions) 100

Using point distributions

Predicting distributions helps ensure nearby encoded points decode to ~same data

Ref: Joseph Rocca's excellent blog

Benefits of regularization (KL Divergence)

Without regularization, encodings can be anywhere...

... KL-divergence forces them to be near

what can happen without regularisation

what we want to obtain with regularisation

KL encourages center to be close to zero

KL[$N(\mu_x, \sigma_x)$, N(0, I)]

Autoencoders for anything!

Ref: TF Documentation

EXAMPLES OF AUTOENCODERS FOR CHEMISTRY

Encoders and decoders of molecules

And it works nicely!

Nearby molecules have similar functional groups!

Average distance between ZINC molecules latent space(19.66)

Can express interpolations between different molecules

Breaking down the encoder

A few good points to know about training this VAE

Strings are broken into tokens
 (Vocabulary is limited to observed compounds)

string:

O=C(C)Oc1ccccc1C(=O)O

• The output is probabilistic

(More than one option per decoding)

(Trained to maximize log-likelihood of original input)

The problem: No guarantee of validity

Table 1. Reconstruction accuracy and prior validity results. Baseline results are copied from Kusner et al. (2017); Dai et al. (2018); Simonovsky & Komodakis (2018); Li et al. (2018).

Method	Reconstruction	Validity
CVAE	44.6%	0.7%
GVAE	53.7%	7.2%
SD-VAE	76.2%	43.5%
GraphVAE	-	13.5%
Atom-by-Atom LSTM	-	89.2%
JT-VAE	76.7%	100.0%

Big problem: You must decode many times to get a valid molecule

Ex: CC=O is valid, CO=O is not

Newer methods improve reconstruction by encouraging/enforcing validity

Improve by enforcing grammar (Kusner (2017))

Encoder: Given grammar, parse molecule into a series of rules, encode as digits, compress rules to a latent space

Decoder: Given latent space, decompress to rule probabilities, sample rules (enforcing grammar!), rebuild

Building up graphs: Junction-Tree VAE (Jin 2019)

Encode with message-passing networks

Decoding is complex.
Ex: picking between possible coarse-to-fine

Last note: "Valid" does not mean "synthesizable"

Fig: Gao et al. JCIM (2020)

Take Home Points

• Why choose VAEs?
Easily generate new molecules

• How do VAEs work? Enforcing meaningful distances on latent space

How to make better VAEs?
 Design better encoders / decoders

Ref: Gómez-Bombarelli et al. ACS Cent. Sci. (2018)

Ref: Joseph Rocca's excellent blog

Ref: Jin et al. 2019