MÉTODOS ABERTOS:

Anteriormente vimos os métodos intervalares: Bissecção e Falsa Posição.

- Raiz localizada dentro de um intervalo (inferior e superior).
- Aplicações repetidas desse método sempre resultam em estimativas mais próximas do valor verdadeiro da raiz.
- São chamados métodos convergentes.

Métodos abertos:

- Exigem apenas um único valor para x ou dois valores iniciais que não delimitam necessariamente a raíz.
- Em algumas vezes eles divergem e se afastam da raiz verdadeira a medida que os cálculos prosseguem.
- Quando convergem, em geral, o fazem muito mais rápido que os intervalares.

- (a) Método intervalar (Bissecção) raiz está restrita ao interior do intervalor x_1 e x_2 .
- (b) e (c)- é usada uma fórmula para avançar de x_i e x_{i+1} de forma iterativa.
- (b) diverge;
- (c) converge.

Tal fórmula pode ser deduzida para a iteração de ponto fixo simples (ou, também é chamada de, iteração de um ponto, substituições sucessivas ou aproximações sucessivas).

 Reescreve-se a equação f(x)=0 de modo que x esteja isolado do lado esquerdo da equação:

$$\bullet \quad x = g(x) \tag{1}$$

• Pode-se conseguir essa transformação ou por manipulação algébrica ou simplesmente somando x em ambos os lados da equação original. Por exemplo:

 $x^2 - 2x + 3 = 0$ pode ser manipulada de forma simples para obter

$$x = \frac{x^2 + 3}{2}$$

- (a) Método intervalar (Bissecção) raiz está restrita ao interior do intervalor x_l e x_u .
- (b) e (c)- é usada uma fórmula para avançar de x_i e x_{i+1} de forma iterativa.
- (b) diverge;
- (c) converge.

Tal fórmula pode ser deduzida para a iteração de ponto fixo simples (ou, também é chamada de, iteração de um ponto, substituições sucessivas ou aproximações sucessivas).

• Reescreve-se a equação f(x)=0 de modo que x esteja isolado esquerdo da equação:

$$\bullet \quad x = g(x) \tag{1}$$

• Pode-se conseguir essa transformação ou por manipulação algébrica ou simplesmente somando x em ambos os lados da equação original. Por exemplo:

 $x^2 - 2x + 3 = 0$ pode ser manipulada de forma simples para obter

$$x = \frac{x^2 + 3}{2}$$

Enquanto sen (x) = 0 pode ser colocada na forma da equação (1) somando x a ambos os lados da equação:

$$x = sen(x) + x$$

A utilidade da equação (1) é que ela fornece uma fórmula para prever um novo valor de x em função do valor velho de x.

• Portanto, dada uma aproximação inicial para a raiz x_i , a Eq. (1) pode ser usada para calcular a estimativa para x_{i+1} expressa pela fórmula iterativa:

$$X_{i+1} = g(X_i)$$
 (2)

O erro aproximado é dado por:

$$\mathcal{E}_a = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| 100\%$$

Exemplo: Iteração de Ponto Fixo Simples.

Use a iteração de ponto fixo simples para localizar a raiz de:

$$f(x) = e^{-x} - x$$

Solução: A função pode ser separada diretamente e expressa na forma da Eq. (2)

$$x_{i+1} = e^{-x_i}$$

Começando a calcular a aproximação inicial em $x_0 = 0$, essa equação iterativa pode ser usada para calcular

Exemplo: Iteração de Ponto Fixo Simples.

i	X i	$\mathcal{E}_a(\%)$
0	0	
1	1,000000	100,0
2	0,367879	171,8
3	0,692201	46,9
4	0,500473	38,3
5	0,606244	17,4
6	0,545396	11,2
7	0,579612	5,9
8	0,560115	3,48
9	0,571143	1,93
10	0,564879	1,11

Assim a cada iteração traz o valor estimado para mais perto do valor verdadeiro: 0,56714329.

Uma abordagem gráfica alternativa consiste em separar a equação em duas componentes:

Então, as duas equações:

$$y_1 = f_1(x)$$

е

$$y_2 = f_2(x)$$

Podem ser traçadas separadamente. Os valores de x correspondentes às intersecções dessas funções representam as raízes f(x) = 0.

Método Gráfico das Duas Curvas.

Separe a equação $e^{-x} - x = 0$ e determine as suas raízes graficamente.

Solução: Reformular a equação como $y_1=x$ e $y_2=e^{-x}$. Os seguintes valores podem ser calculados.

x ₁	y ₁	y ₂
0,0	0,0	1,000
0,2	0,2	0,819
0,4	0,4	0,670
0,6	0,6	0,549
0.8	0.8	0,449
1,0	1,0	0,368

MÉTODO DE NEWTON-RAPHSON

Talvez a fórmula mais amplamente usada para localizar uma raiz seja a equação de Newton-Raphson.

Se a aproximação inicial da raiz for x_l , pode-se estender uma reta tangente a partir do ponto $[x_l, f(x_l)]$.

O ponto onde essa tangente cruza o eixo x usualmente representa uma estimativa melhorada da raiz.

O método de Newton-Raphson pode ser deduzido com base em sua interpretação geométrica.

A tangente à função em x_i , isto é, f '(x) é prolongada até o eixo x para fornecer uma estimativa da raiz em x_{i+1} .

A partir da figura, a primeira derivada em x é equivalente a inclinação

$$f'(x_i) = \frac{f(x_i) - 0}{x_i - x_{i+1}}$$

Que pode ser reorganizada:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$
 (3)

Que é a chamada fórmula de Newton-Raphson.

Método de Newton-Raphson.

Use o método de Newton-Raphson para fazer uma estimativa da raiz de:

$$f(x) = e^{-x} - x$$

Utilizando uma aproximação inicial de $x_0 = 0$.

Solução: A primeira derivada da função pode ser calculada como:

$$f'(x) = -e^{-x} - 1$$

Que pode ser substituída em (3), o que resulta em:

$$x_{i+1} = x_i - \frac{e^{-x_i} - x_i}{-e^{-x_i} - 1}$$

Começando com a aproximação inicial em $x_0 = 0$, essa equação iterativa pode ser usada para calcular .

i	$\mathbf{x_i}$	$\mathcal{E}_{_t}(\%)$
0	0	100
1	0,500000000	11,8
2	0,566311003	0,147
3	0,567143165	0,0000220
4	0,567143290	<10 ⁻⁸

Assim, a aproximação converge rapidamente para a raiz verdadeira. Observe que o erro relativo percentual verdadeiro converge muito mais rapidamente do que o método da iteração de ponto fixo simples.

Exercício 1)

Determine pelo menos uma raiz real das equações abaixo, com erro menor ou igual a 10^{-3} . Use os métodos ponto fixo simples e Newton-Raphson,

a)
$$f(x)=x^3-x^2-12x=0$$

b)
$$f(x)=2x - senx + 4 = 0$$

Exercício 2)

Use a iteração de ponto fixo simples para localizer a raiz de:

$$f(x) = 2sen(\sqrt{x}) - x$$

Use a aproximação inicial $x_0 = 0.5$ e $\epsilon_a = 0.001\%$. Verifique que o processo é linearmente convergente.