Итоговая работа, ІІ вариант

 λ -исчисление, 2024

Ha 3:

- 1. Дайте определение комбинатора неподвижной точки. Приведите примеры. Докажите, что выражение $\mathbf{Y}_M \equiv \lambda f.~(\lambda x,y.~f(xxy))(\lambda x,y.~f(xxy))M$ является комбинатором неподвижной точки для любого $M \in \Lambda.$
- 2. Дайте определение *чисел Барендрегта* и *чисел Чёрча*. Постройте λ -выражения H и H^{-1} , которые переводят одни в другие: $H \lceil n \rceil = c_n$, $H^{-1}c_n = \lceil n \rceil$.
- 3. Дайте определение λ -представимости числовой функции. Определите функцию суперпозиции для числовых функций $\chi, \psi_1, \psi_2, ..., \psi_k$.
- 4. Покажите, что функция ${f A}_* \equiv \lambda x, y, z. \ x(yz)$ задаёт умножение на числах Чёрча: ${f A}_* c_n c_m = c_{nm}.$

Ha 4:

- 1. Докажите, что класс λ -представимых функций замкнут относительно минимизации.
- 2. Определите понятие адекватной числовой системы. Докажите, что числовая система $d=(d_0,\mathbf{S}_d^+)$ адекватна в том и только том случае, когда она имеет оператор предшествующего элемента $\mathbf{P}_d^-\colon \mathbf{P}_d^- d_{n+1}=d_n, \ \forall n\in\mathbb{N}_0.$
- 3. Докажите обобщённую теорему о неподвижной точке: $\forall F_1, F_2, ..., F_n \in \Lambda: \exists X_1, X_2, ..., X_n \in \Lambda:$

$$\begin{split} X_1 &= F_1 X_1 X_2 ... X_n, \\ X_2 &= F_2 X_1 X_2 ... X_n, \\ &\vdots \\ X_n &= F_n X_1 X_2 ... X_n. \end{split}$$

Ha 5:

- 1. Докажите теорему Скотта-Карри о неразрешимости.
- 2. Покажите, что следующие две последовательности являются адекватными числовыми системами:
 - [а] $d=(\mathbf{Y},\lambda x.~[x,P])$, где $P\in\Lambda$ произвольно;

[b] $e = (K, \lambda x. [x, Y]).$

(подсказка: для d используйте $\mathsf{Zero}_d \equiv [\mathsf{K}(\mathsf{KK}), \mathsf{I}])$

3. Покажите, что функция $\mathrm{id}:\mathbb{N}_0\to\mathbb{N}_0,\ \mathrm{id}(n)=n$ является рекурсивной. Покажите, что всякий многочлен

$$\begin{split} P:\mathbb{N}_0 \to \mathbb{N}_0, \\ P(n) &= a_0 + a_1 n + a_2 n^2 + \ldots + a_k n^k, \end{split}$$

с коэффициентами $a_0, a_1, ..., a_k \in \mathbb{N}_0$, — рекурсивная функция.