Prof. J. Warnatz, Dr. W. Bessler

Aufgabe 1:

Gegeben sind die Vektoren $\vec{a} = (4, 1, 0), \vec{b} = (0, 3, -2), \vec{c} = (1, 3, -1).$

- a.) Berechnen Sie den Winkel zwischen den Vektoren \vec{a} und \vec{b} sowie den Flächeninhalt des von den Vektoren \vec{a} und \vec{b} aufgespannten Parallelogramms.
- b.) Bestimmen Sie die beiden Vektoren, die senkrecht auf \vec{a} und \vec{b} stehen und die Länge 1 besitzen.
- c.) Berechnen Sie das Volumen des von den Vektoren $\vec{a}, \, \vec{b}$ und \vec{c} aufgespannten Parallelepipeds.

Aufgabe 2:

Berechnen Sie für die Vektoren \vec{a} und \vec{b} des Euklidischen R^3 den Summenvektor $\vec{a} + \vec{b}$ und den Differenzvektor $\vec{a} - \vec{b}$ für

a.)
$$\vec{a} = -2\vec{e}_1 + 2\vec{e}_2 - 10\vec{e}_3$$
, $\vec{b} = 3\vec{e}_1 - 3\vec{e}_2 + 8\vec{e}_3$

b.)
$$\vec{a} = (1, 0, 4)$$
, $\vec{b} = (5, 8, -6)$

c.)
$$\vec{a} = -2\vec{e}_1 + 2\vec{e}_2 - 10\vec{e}_3$$
, $\vec{b} = -10\vec{e}_1 + \vec{e}_2 - 10\vec{e}_3$

Aufgabe 3:

Zeigen Sie das gilt

a.)
$$(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2\vec{a} \times \vec{b}$$

b.)
$$(\vec{a} \times \vec{b}) \cdot \vec{c} = \vec{a} \cdot (\vec{b} \times \vec{c})$$

c.)
$$(\vec{a} \times \vec{b}) \cdot ((\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})) = (\vec{a} \cdot (\vec{b} \times \vec{c}))^2$$

Verwenden Sie den Vektorprodukt-Entwicklungssatz: $\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b} (\vec{a} \cdot \vec{c}) - \vec{c} (\vec{b} \cdot \vec{a})$.

Aufgabe 4:

Die Bahn eines Teilchens im Zentralpotential der Gravitation ist charakterisiert durch die Erhaltung des Drehimpulses $\vec{L} = m \, (\vec{r} \times \vec{v})$ und die Erhaltung der Gesamtenergie $E = \frac{m}{2} v^2 + \frac{\alpha}{r}$. Der Vektor \vec{r} steht für den Ort und \vec{v} für die Geschwindigkeit des Teilchens der Masse m. Das Kraftzentrum (Mitte des Zentralpotentials) liegt dabei im Koordinatenursprung. α ist unabhängig vom Teilchen als konstant anzunehmen. (Erhaltung steht für zeitlich konstant.)

- a.) Begründen Sie mit Hilfe der Eigenschaft des Kreuzprodukts, warum die Bahn eines Teilchens innerhalb eines Zentralpotentials immer in einer Ebene liegt.
- b.) Zwei identische Teilchen mit gleichem Drehimpuls mögen das Zentralpotential auf elliptischen Bahnen umkreisen. Zu einem Zeitpunkt t_0 haben beide Teilchen den Abstand r_0 vom Kraftzentrum. Die von \vec{r} und \vec{v} eingeschlossenen Winkel sind zu diesem Zeitpunkt $\beta_1 = \pi/2$ und $\beta_2 = \pi/6$ für Teilchen 1 und 2. Berechnen Sie für t_0 das Verhältnis der Geschwindigkeiten und die Gesamtenergiedifferenz der Teilchen.