Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1

Aufgabe 1.1 (2+1+4 Punkte)

Es sei V die Vorlesung "Grundbegriffe der Informatik", T die Menge aller Tutorien zu V und H die Menge aller Personen, die V hören.

Die Relation $Z \subseteq T \times H$ sei definiert durch:

 $\forall t \in T : \forall h \in H : (t,h) \in Z \iff h \text{ wurde } t \text{ zugeteilt.}$

- a) Welche der Eigenschaften linkstotal, linkseindeutig, rechtstotal, rechtseindeutig sollte Z idealerweise haben/nicht haben?
- b) Welche Eigenschaften wird Z mit Sicherheit nicht haben?
- c) Erklären Sie jeweils, was es bedeutet, wenn Z linkstotal, linkseindeutig, rechtstotal, rechtseindeutig ist.

Lösung 1.1

- a) Die Relation sollte rechtstotal, linkstotal und linkseindeutig sein. Rechtseindeutigkeit ist (vermutlich?) ideal, aber total unrealistisch. (Erklärungen siehe unten)
- b) Rechtseindeutigkeit
- c) linkstotal: in jedem Tutorien ist mindestens ein Student
 - rechtstotal: jeder Student ist mindestens einem Tutorium zugeteilt
 - linkseindeutig: jeder Studenten ist höchstens (!) einem Tutorium zugeteilt
 - rechtseindeutig: in jedem Tutorium ist höchstens (!) ein Student

Aufgabe 1.2 (1+2+2+2 Punkte)

Spieler A und Spieler B spielen folgendes "Spiel":

Eine Münze wird geworfen. Wenn die Oberseite "Kopf" zeigt, gewinnt Spieler A. Wenn die Oberseite "Zahl" zeigt, verliert Spieler B.

Die Münze lande **niemals** auf dem Rand!

a) Geben Sie eine aussagenlogische Formel an, die das Verhältnis der Aussage A: "Spieler A gewinnt" zu der Aussage B: "Spieler B verliert" beschreibt.

- b) Geben Sie eine aussagenlogische Formel an, welche die Spielregel möglichst präzise beschreibt. Verwenden Sie hierzu auch die Aussagen \mathcal{K} : "Die Münze zeigt Kopf" und \mathcal{Z} :"Die Münze zeigt Zahl".
- c) Spieler B behauptet, dass er bei dieser Spielregel immer verlieren würde. Geben Sie eine aussagenlogische Formel an, die dieser Behauptung entspricht. Verwenden Sie dazu Ihre Formeln aus den Teilaufgaben a) und b).
- d) Zeigen Sie durch eine Wahrheitstabelle, dass B mit seiner Behauptung Recht hat.

Lösung 1.2

- a) $(A \Rightarrow B) \land (B \Rightarrow A)$ Erläuterung: Die beiden Aussagen sind äquivalent, das heißt, dass Spieler A genau dann gewinnt, wenn Spieler B verliert.
- b) (K ⇒ A) ∧ (Z ⇒ B) ∧ (K ∨ Z)
 Erläuterung: Die Spielregel an sich lässt sich durch die Formel (K ⇒ A) ∧ (Z ⇒ B) darstellen.
 Weiterhin ist festzuhalten, dass eine der Aussagen K und Z immer gilt: K ∨ Z
 (Noch präziser wäre die Feststellung, dass genau eine dieser Aussagen immer gilt: (K ∧ ¬Z) ∨ (Z ∧ ¬K) Das stand jedoch nicht explizit in der Aufgabenstellung.)
- c) $(A \Rightarrow B) \land (B \Rightarrow A) \land (K \lor Z) \land (K \Rightarrow A) \land (Z \Rightarrow B) \Rightarrow B$
- d) *Erläuterung:* Wir schreiben im folgenden "w" für "wahr" und "f" für "falsch". Als erstes die Wahrheitstabellen für die fünf Implikationen:

				\mathcal{F}_1	\mathcal{F}_2	\mathcal{F}_3	\mathcal{F}_4	\mathcal{F}_5
$\mathcal K$	${\mathcal Z}$	\mathcal{A}	\mathcal{B}	$(\mathcal{K}\Rightarrow\mathcal{A})$	$(\mathcal{Z}\Rightarrow\mathcal{B})$	$(\mathcal{K}\vee\mathcal{Z})$	$(\mathcal{A}\Rightarrow\mathcal{B})$	$(\mathcal{B}\Rightarrow\mathcal{A})$
f	f	f	f	W	W	f	W	W
f	f	f	W	W	W	f	W	f
f	f	W	f	W	W	f	f	W
f	f	W	W	W	W	f	W	W
f	W	f	f	W	f	W	W	W
f	W	f	W	W	W	W	W	f
f	W	W	f	W	f	W	f	W
f	W	W	W	W	W	W	W	W
W	f	f	f	f	W	W	W	W
W	f	f	W	f	W	W	W	\mathbf{f}
W	f	W	f	W	W	W	f	W
W	f	W	W	W	W	W	W	W
W	W	f	f	f	f	W	W	W
W	W	f	W	f	W	W	W	f
W	W	W	f	W	f	W	f	W
W	W	W	W	W	W	W	W	W

Wir werten nun erst $\mathcal{F} = \mathcal{F}_1 \wedge \mathcal{F}_2 \wedge \mathcal{F}_3 \wedge \mathcal{F}_4 \wedge \mathcal{F}_5$ aus und dann die Implikation $\mathcal{F} \Rightarrow \mathcal{B}$:

\mathcal{F}_1	\mathcal{F}_2	\mathcal{F}_3	\mathcal{F}_4	\mathcal{F}_5	\mathcal{B}	\mathcal{F}	$\mathcal{F}\Rightarrow\mathcal{B}$
W	W	f	W	W	f	f	W
W	W	f	W	f	W	f	W
W	W	f	f	W	f	f	W
W	W	f	W	W	W	f	W
W	f	W	W	W	f	f	W
W	W	W	W	f	W	f	W
W	f	W	f	W	f	f	W
W	W	W	W	W	W	W	W
f	W	W	W	W	f	f	W
f	W	W	W	f	W	f	W
W	W	W	f	W	f	f	W
W	W	W	W	W	W	W	W
f	f	W	W	W	f	f	W
f	W	W	W	f	W	f	W
W	f	W	f	W	f	f	W
W	W	W	W	W	W	W	W

Da die letzte Implikation immer den Wert "wahr" hat, folgt, dass die von Spieler Baufgestellte Behauptung korrekt ist.

Aufgabe 1.3 (6 Punkte)

Geben Sie alle surjektiven Funktionen von $\{0,1,2\}$ nach $\{\mathtt{a},\mathtt{b}\}$ an. (Mit anderen Worten: Geben Sie für jede surjektive Funktion $f:\{0,1,2\}\to\{\mathtt{a},\mathtt{b}\}$ die Werte f(0),f(1) und f(2) an, oder interpretieren Sie jede dieser Funktionen als ein Wort über $\{\mathtt{a},\mathtt{b}\}.$)

Lösung 1.3

\boldsymbol{x}	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$	$f_5(x)$	$f_6(x)$
0	a	a b a	a	b	b	Ъ
1	a	b	b	a	a	Ъ
2	b	a	b	a	b	a

Als Wörter also: aab, aba, abb, baa, bab, bba.