第二章映射

定义1.1

设X和Y是两个非空集合。一个从X到Y的映射是一个满足以下两个条件的 $X \times Y$ 的子集f:

- 1. 对X的每一个元素x,存在一个 $y \in Y$,使得 $(x,y) \in f$;
- 2. 若 $(x,y) \in f$, $(x,y') \in f$, 则y = y'。

 $(x,y) \in f$ 记为y = f(x),y称为x在f下的\$,而x称为y的原\$。X称为f的定义域;集合 $\{f(x)|x \in X\}$ 称为f的值域,记为Im(f)。

定义1.2

设 $f: X \to Y$, $A \subseteq X$, 当把f的定义域限制在A上时,就得到了一个 $\phi: A \to Y$, $\forall x \in A$, $\phi(x) = f(x)$ 。 ϕ 称为f在A上的限制,并且常用f|A来表示 ϕ 。反过来,我们也称f是 ϕ 在X上的扩张。

定义1.2

设 $f: X \to Y$, $A \subseteq X$, 当把f的定义域限制在A上时,就得到了一个 $\phi: A \to Y$, $\forall x \in A$, $\phi(x) = f(x)$ 。 ϕ 称为f在A上的限制,并且常用f|A来表示 ϕ 。反过来,我们也称f是 ϕ 在X上的扩张。

定义1.3

设 $f: A \to Y, A \subseteq X, 则称f是X上的一个部分映射。$

定义1.2

设 $f: X \to Y$, $A \subseteq X$, 当把f的定义域限制在A上时,就得到了一个 $\phi: A \to Y$, $\forall x \in A$, $\phi(x) = f(x)$ 。 ϕ 称为f在A上的限制,并且常用f|A来表示 ϕ 。反过来,我们也称f是 ϕ 在X上的扩张。

定义1.3

设 $f: A \rightarrow Y, A \subseteq X, 则称f是X上的一个部分映射。$

定义1.4

两个映射f与g称为是<mark>相等</mark>的当且仅当f和g都是X到Y的映射,并且 $\forall x \in X$ 总有f(x) = g(x)。

定义1.2

设 $f: X \to Y$, $A \subseteq X$, 当把f的定义域限制在A上时,就得到了一个 $\phi: A \to Y$, $\forall x \in A$, $\phi(x) = f(x)$ 。 ϕ 称为f在A上的限制,并且常用f|A来表示 ϕ 。反过来,我们也称f是 ϕ 在X上的扩张。

定义1.3

设 $f: A \rightarrow Y$, $A \subseteq X$, 则称f是X上的一个<mark>部分映射</mark>。

定义1.4

两个映射f与g称为是<mark>相等</mark>的当且仅当f和g都是X到Y的映射,并且 $\forall x \in X$ 总有f(x) = g(x)。

定义1.5

设 $f: X \to Y$,如果 $\forall x \in X, f(x) = x$,则称f为X上的恒等映射。X上的恒等映射常记为 I_X 。

定理2.1 (鸽笼原理)

如果把n+1个物体放到n个盒子里,则必有一个盒子里至少放了两个物体。

定理2.1 (鸽笼原理)

如果把n+1个物体放到n个盒子里,则必有一个盒子里至少放了两个物体。

例:

已知m个整数 a_1, a_2, \ldots, a_m ,试证:存在两个整数k, I, $0 \le k < I \le m$,使得 $a_{k+1} + a_{k+2} + \ldots + a_I$ 能被m整除。

定理2.2 (鸽笼原理的强形式)

设 q_1 , q_2 , ..., q_n 为n个正整数。如果把 $q_1 + q_2 + \cdots + q_n - n$ +1 个物体放到n个盒子中,则或者第一个盒子中至少含有 q_1 个物体,或者第二个盒子中至少含有 q_2 个物体,..., 或者第n个盒子中至少含有 q_n 个物体。

定理2.2 (鸽笼原理的强形式)

设 q_1 , q_2 , ..., q_n 为n个正整数。如果把 $q_1 + q_2 + \cdots + q_n - n$ +1 个物体放到n个盒子中,则或者第一个盒子中至少含有 q_1 个物体,或者第二个盒子中至少含有 q_2 个物体,..., 或者第n个盒子中至少含有 q_n 个物体。

推论2.1

如果把n(r-1)+1个物体放入n个盒子里,则至少有一个盒子里放了不少于r个物体。

定理2.2 (鸽笼原理的强形式)

设 q_1 , q_2 , ..., q_n 为n个正整数。如果把 $q_1 + q_2 + \cdots + q_n - n + 1$ 个物体放到n个盒子中,则或者第一个盒子中至少含有 q_1 个物体,或者第二个盒子中至少含有 q_2 个物体,..., 或者第n个盒子中至少含有 q_n 个物体。

推论2.1

如果把n(r-1)+1个物体放入n个盒子里,则至少有一个盒子里放了不少于r个物体。

推论2.2

如果把n个正整数 m_1, m_2, \ldots, m_n 的平均值

$$\frac{m_1+m_2+\ldots+m_n}{n}>r-1,$$

则 m_1, m_2, \ldots, m_n 中至少有一个正整数不小于r。

定义3.1

设 $f: X \to Y$, $A \subseteq X$, A在f下的\$定义为

$$f(A) = \{f(x)|x \in A\}$$

定义3.1

设 $f: X \to Y$, $A \subseteq X$, A在f下的\$定义为

$$f(A) = \{f(x)|x \in A\}$$

例:

说
$$f: \{-1,0,1\} \to \{-1,0,1\}, \ f(x) = x^2, \ f(\{-1,0\}) = ?$$

定义3.2 设
$$f: X \to Y$$
, $B \subseteq Y$, B 在 f 下的原象定义为
$$f^{-1}(B) = \{x \in X | f(x) \in B\}$$

设 $f: X \to Y$, $B \subseteq Y$, B在f下的<mark>原象</mark>定义为

$$f^{-1}(B) = \{x \in X | f(x) \in B\}$$

例:

定理3.1

设 $f: X \to Y$, $A \subseteq Y$, $B \subseteq Y$, 则

- (1) $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$
- (2) $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$
- (3) $f^{-1}(A^c) = (f^{-1}(A))^c$
- (4) $f^{-1}(A \triangle B) = f^{-1}(A) \triangle f^{-1}(B)$

定理3.2

设 $f: X \to Y, A \subseteq X, B \subseteq X,$ 则

- $(1) \ f(A \cup B) = f(A) \cup f(B)$
- (2) $f(A \cap B) \subseteq f(A) \cap f(B)$
- (3) $f(A \triangle B) \supseteq f(A) \triangle f(B)$

4. 映射的合成

定义4.1

设 $f: X \to Y$, $g: Y \to Z$ 为映射, 映射f = g的合成

 $g \circ f: X \to Z$ 定义为

$$(g\circ f)(x)=g(f(x))$$

4. 映射的合成

定义4.1

设 $f: X \to Y$, $g: Y \to Z$ 为映射, 映射f = g的合成 $g \circ f: X \to Z$ 定义为

$$(g\circ f)(x)=g(f(x))$$

定理4.1

设 $f: X \to Y, \ g: Y \to Z, \ h: Z \to W$ 为映射,则 $(h \circ g) \circ f = h \circ (g \circ f)$

定义5.1

设 $f: X \to Y$ 为双射,f的<mark>逆映射 $f^{-1}: Y \to X$ 定义为:对任意的 $y \in Y$,存在唯一的x使得f(x) = y,则 $f^{-1}(y) = x$ 。</mark>

定义5.1

设 $f: X \to Y$ 为双射,f的<mark>逆映射 $f^{-1}: Y \to X$ 定义为:对任意的 $y \in Y$,存在唯一的x使得f(x) = y,则 $f^{-1}(y) = x$ 。</mark>

定义5.1'

设 $f: X \to Y$ 为一个映射。如果存在一个映射 $g: Y \to X$ 使得

$$f \circ g = I_Y \underline{\perp} g \circ f = I_X$$

则称映射f是可逆的,而g称为f的<mark>逆映射</mark>。

定理5.1

设 $f: X \to Y$ 为可逆映射,则 $(f^{-1})^{-1} = f$ 。

定理5.1

设 $f: X \to Y$ 为可逆映射,则 $(f^{-1})^{-1} = f$ 。

定理5.2

设 $f: X \to Y$, $g: Y \to Z$ 都是可逆映射, 则 $g \circ f$ 也是可逆映射并且 $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ 。

定义5.2

设 $f: X \to Y$ 为一个映射,如果存在一个映射 $g: Y \to X$ 使得 $g \circ f = I_X$,则称f是<mark>左可逆</mark>的,g称为f的<mark>左逆映射</mark>;如果存在一个映射 $h: Y \to X$ 使得 $f \circ h = I_Y$,则称f 是右可逆的,h 称为f 的右逆映射。

定义5.2

设 $f: X \to Y$ 为一个映射,如果存在一个映射 $g: Y \to X$ 使得 $g \circ f = I_X$,则称f是左可逆的,g称为f的左逆映射;如果存在一个映射 $h: Y \to X$ 使得 $f \circ h = I_Y$,则称f 是右可逆的,h 称为f 的右逆映射。

定理5.3

设 $f: X \to Y$ 为一个映射,则

- 1. f左可逆当且仅当f为单射;
- 2. f右可逆当且仅当f为满射。

定义6.1

有限集合S到自身的一一对应称为S上的一个<mark>置换</mark>。如果|S| = n,则S上的置换就说成是n次置换。

定义6.1

有限集合S到自身的一一对应称为S上的一个<mark>置换</mark>。如果|S| = n,则S上的置换就说成是n次置换。

定义6.2

设 σ 是S上的一个n次置换,若 $i_1\sigma=i_2$, $i_2\sigma=i_3$,…, $i_{k-1}\sigma=i_k$, $i_k\sigma=i_1$,而 $\forall i \in S \setminus \{i_1,i_2,\ldots,i_k\}$, $i\sigma=i$,则称 σ 为一个k循环置换,记为 $(i_1i_2\cdots i_k)$ 。2—循环置换称为对换。

定理6.1

每个置换都能被分解成若干个没有共同数字的循环置换的乘积。如果不计这些循环置换的顺序以及略去的1-循环置换,这个分解是唯一的。

定理6.2

当 $n \ge 2$ 时,每个n次置换都能被分解成若干个对换的乘积。

定理6.3

如果把置换分解成若干个对换的乘积,则对换个数的奇偶性是不变的。

定理6.3

如果把置换分解成若干个对换的乘积,则对换个数的奇偶性是不变的。

定义6.3

能被分解为偶数个对换的乘积的置换称为<mark>偶置换</mark>;能被分解为奇数个对换的乘积的置换称为<mark>奇置换</mark>。

定理6.3

如果把置换分解成若干个对换的乘积,则对换个数的奇偶性是不变的。

定义6.3

能被分解为偶数个对换的乘积的置换称为<mark>偶置换</mark>;能被分解为奇数个对换的乘积的置换称为<mark>奇置换</mark>。

定理6.4

当 $n \ge 2$ 时,n次奇置换的个数与n次偶置换的个数相等,都等于 $\frac{n!}{2}$ 。

定理7.1

设 $x, y, z \in \mathbb{R}$,则

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x*(y+z) = x*y + x*z
- 10. (y + z) * x = y * x + z * x

定理7.1

设 $x, y, z \in \mathbb{R}$,则

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x * (y + z) = x * y + x * z
- 10. (y + z) * x = y * x + z * x

定义7.1

设X, Y, Z为任意三个非空集合。一个从 $X \times Y$ 到Z 的映射 ϕ 称为X 与Y到Z的一个二元(代数)运算。当X = Y = Z时,则称 ϕ 为X上的二元(代数)运算。

定理7.1

设 $x, y, z \in \mathbb{R}$,则

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x*(y+z) = x*y + x*z
- 10. (y + z) * x = y * x + z * x

定理7.1

设 $x, y, z \in \mathbb{R}$,则

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x * (y + z) = x * y + x * z
- 10. (y + z) * x = y * x + z * x

定义7.2

从集合X到Y的任一映射称为 从X到Y的一元(代数)运算。如 果X = Y,则从X到X的映射称 为X上的一元(代数)运算。

定理7.1

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x*(y+z) = x*y + x*z
- 10. (y + z) * x = y * x + z * x

定理7.1

设 $x, y, z \in \mathbb{R}$,则

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x * (y + z) = x * y + x * z
- 10. (y + z) * x = y * x + z * x

定义7.3

设 A_1, A_2, \cdots, A_n, D 为非空集合。一个从 $A_1 \times A_2 \times \cdots \times A_n$ 到D的映射 ϕ 称为 A_1, A_2, \cdots, A_n 到D 的一个n元(代数)运算。如果 $A_1 = A_2 = \cdots = A_n = D = A$,则称 ϕ 为A 上的n元代数运算。

定理7.1

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x*(y+z) = x*y + x*z
- 10. (y + z) * x = y * x + z * x

定理7.1

设 $x, y, z \in \mathbb{R}$,则

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x*(y+z) = x*y + x*z
- 10. (y + z) * x = y * x + z * x

定义7.4

设"o"是集合X上的一个二元代数运算。如果 $\forall a,b \in X$,恒有 $a \circ b = b \circ a$,则称二元代数运算"o"满足<mark>交换律</mark>。

定理7.1

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x*(y+z) = x*y + x*z
- 10. (y + z) * x = y * x + z * x

定理7.1

设 $x, y, z \in \mathbb{R}$,则

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x*(y+z) = x*y + x*z
- 10. (y + z) * x = y * x + z * x

定义7.5

设"o"是集合X上的一个二元代数运算。如果 $\forall a, b, c \in X$,恒有 $(a \circ b) \circ c = a \circ (b \circ c)$,则称二元代数运算"o"满足<mark>结合律</mark>。

定理7.1

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x*(y+z) = x*y + x*z
- 10. (y + z) * x = y * x + z * x

定理7.1

设 $x, y, z \in \mathbb{R}$,则

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x * (y + z) = x * y + x * z
- 10. (y+z)*x = y*x + z*x 足右分配律。

定义7.6

设"+"与"o"是集合X上的两个二元代数运算。 如果 $\forall a, b, c \in X$,恒有

$$a \circ (b+c) = a \circ b + a \circ c$$

则称二元代数运算"o"对"+"满 足左分配律。

如果 $\forall a, b, c \in X$,恒有

$$(b+c)\circ a=b\circ a+c\circ a,$$

则称二元代数运算"o"对"+"满足右分配律。

定理7.1

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x*(y+z) = x*y + x*z
- 10. (y + z) * x = y * x + z * x

定理7.1

设 $x, y, z \in \mathbb{R}$,则

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x*(y+z) = x*y + x*z
- 10. (y + z) * x = y * x + z * x

定义7.7

设 (X, \circ) 为一个代数系。如果存在一个元素 $e \in X$ 使得对任意的 $x \in X$ 恒有 $e \circ x = x \circ e = x$,则称e为" \circ "的单位元素。

定理7.1

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x*(y+z) = x*y + x*z
- 10. (y + z) * x = y * x + z * x

定理7.1

设 $x, y, z \in \mathbb{R}$,则

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x * (y + z) = x * y + x * z
- 10. (y + z) * x = y * x + z * x

定义7.8

设 (X, \circ) 为一个代数系,"o"有单位元素 $e, a \in X$,如果 $\exists b \in X$ 使得

$$a \circ b = b \circ a = e$$
,

则称b为a的<mark>逆元素</mark>。

定义7.9

设(S,+)与 (T,\oplus) 为两个代数系。如果存在一个一一对 $\phi: S \to T$,使得 $\forall x, y \in S$,有

$$\phi(x+y)=\phi(x)\oplus\phi(y),$$

则称代数系(S, +)与 (T, \oplus) 同构,并记为 $S \cong T$, ϕ 称为这两个代数系之间的一个同构。

定义7.10

设 $(S,+,\circ)$ 与 $(T,\oplus,*)$ 为两个代数系。如果存在一个一一对应 $\phi:S\to T$,使得 $\forall x,y\in S$,有

$$\phi(x+y) = \phi(x) \oplus \phi(y),$$

$$\phi(x \circ y) = \phi(x) * \phi(y),$$

则称代数系 $(S, +, \circ)$ 与 $(T, \oplus, *)$ 同构,并记为 $S \cong T, \phi$ 称为这两个代数系之间的一个同构。

p	q	p∧q
Т	Т	Т
Τ	F	F
F	Т	F
F	F	F

p	q	$p \lor q$
Т	Т	Т
Τ	F	Т
F	Т	Т
F	F	F

p	q	p∧q
Т	Т	Т
Τ	F	F
F	Τ	F
F	F	F

$$\begin{array}{c|ccc} p & q & p \lor q \\ \hline T & T & T \\ T & F & T \\ F & T & F \\ F & F & F \\ \end{array}$$

Х	у	$x \wedge y$
1	1	1
1	0	0
0	1	0
0	0	0

$$\begin{array}{c|cccc} x & y & x \lor y \\ \hline 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ \end{array}$$

$$\begin{array}{c|c}
x & \bar{x} \\
1 & 0 \\
0 & 1
\end{array}$$

8. 集合的特征函数

定义8.1

设X是一个集合, $E \subseteq X$ 。E的特征函数 $\chi_E : X \to \{0,1\}$ 定义为

$$\chi_E(x) = \begin{cases} 1 & \text{m} \mathbb{R} x \in E, \\ 0 & \text{m} \mathbb{R} x \notin E. \end{cases}$$

8. 集合的特征函数

定义8.2

$$\Leftrightarrow Ch(X) = \{\chi | \chi : X \to \{0, 1\}\} \circ \forall \chi, \chi' \in Ch(X) \not \boxtimes x \in X,
(\chi \lor \chi')(x) = \chi(x) \lor \chi'(x)
(\chi \land \chi')(x) = \chi(x) \land \chi'(x)
\bar{\chi}(x) = \overline{\chi(x)}$$
(1)

定理8.1

设X是一个集合,则代数系 $(2^X, \cup, \cap, ^c)$ 与 $(Ch(X), \vee, \wedge, ^-)$ 同构。