FLUIDOS 0

DENSIDAD – PRESIÓN – EMPUJE – MOVIMIENTO DE FLUIDOS- VISCOSIDAD-TENSIÓN SUPERFICIAL

FASES DE LA MATERIA

- PLASMA: se presenta a altas temperaturas y consiste en átomos ionizados (electrones separados de los núcleos)
- CRISTALES LÍQUIDOS: fase intermedia entre solidos y liquidos

LAS PANTALLAS PLASMA ESTÁN FORMADAS POR CELDAS DE GASES NOBLES EMISORES DE LUZ, TANTO LAS LCD COMO LAS LED SON PANTALLAS DE CRISTAL LÍQUIDO QUE DIVERGEN EN LA FORMA EN QUE RETROILUMINAN LA IMAGEN.

DENSIDAD – GRAVEDAD ESPECÍFICA

$$ho = rac{m}{v}$$
 Donde: $ho = densidad m = masa v = volumen$
Despejando tenemos

 $ho = rac{m}{v}$ Donde: $ho = densidad m = masa v = volumen$
 $ho = rac{m}{
ho}$ Para la masa $ho =
ho * v$

Sustancia	ρ		
	kg/m³	g/cm³	D, lb/ft ³
Sólidos:			
Acero	7800	7.8	487
Aluminio	2700	2.7	169
Cobre	8890	8.89	555
Hielo	920	0.92	57
Hierro	7850	7.85	490
Latón	8700	8.7	540
Oro	19300	19.3	1204
Plata	10.500	10.5	654
Plomo	11300	11.3	705
Roble	810	0.81	51
Vidrio	2600	2.6	162
Líquidos:			
Agua	1000	1.0	62.4
Alcohol	790	0.79	49
Benceno	880	0.88	54.7
Gasolina	680	0.68	42
Mercurio	13600	13.6	850
Gases (0°C):			
Aire	1.29	0.00129	0.0807
Helio	0.178	0.000178	0.0110
Hidrógeno	0.090	0.000090	0.0058
Nitrógeno	1.25	0.00126	0.0782

$$\bullet \ [\rho] = \frac{[m]}{[V]} = \frac{kg}{m^3}$$

• LA GRAVEDAD ESPECÍFICA DE UNA SUSTANCIA SE DEFINE COMO LA RAZÓN DE LA DENSIDAD DE ESA SUSTANCIA A LA DENSIDAD DEL AGUA A 4.0°C

PRESION EN FLUIDOS

CUANDO SE SUMERGE UN CUERPO EN UN FLUIDO COMO EL AGUA, EL FLUIDO EJERCE
UNA FUERZA PERPENDICULAR A LA SUPERFICIE DEL CUERPO EN CADA PUNTO DE LA SUPERFICIE

$$p = \frac{F}{A}$$

$$[p] = \frac{[F]}{[A]} = \frac{N}{m^2} = Pa$$

fuerza sobre los muros de un embalse

VARIACIÓN DE LA PRESIÓN EN EL SENO DE UN FLUIDO, CON DENSIDAD CONSTANTE Y VARIABLE (TEOREMA GENERAL DE LA HIDROSTÁTICA)

•
$$PA - (P+dP) A - W = 0$$

•
$$PA - (P+dP) A - \rho gAdy = 0$$

•
$$\frac{dP}{dy} = -\rho g$$

SI LA DENSIDAD ES CONSTANTE:

•
$$dp = - \rho g dy$$

•
$$p_2 - p_1 = - \rho g(y_2 - y_1)$$

•
$$p = p_0 + \rho gh$$

SI LA DENSIDAD ES VARIABLE: $\frac{p}{p_0} = \frac{\rho}{\rho_0}$

$$dp = -\frac{\rho_0}{\rho_0} p g dy$$

$$\int_{p_0}^p \frac{1}{p} dp = -\int_0^h \frac{\rho_0}{\rho_0} g dy$$

$$\ln (p/p0) = -\frac{\rho_0}{\rho_0} gh$$

$$\ln (p/p0) = \frac{\rho_0}{p_0}gh$$
 $p = p_0 e^{-\frac{\rho_0}{p_0}gh}$

VARIACIÓN DE LA PRESIÓN CON LA ALTURA Y PROFUNDIDAD

PRINCIPIO DE PASCAL

• LA PRESIÓN APLICADA A UN FLUIDO ENCERRADO SE TRANSMITE SIN DISMINUCIÓN A TODAS LAS PARTES DEL FLUIDO Y LAS PAREDES DEL RECIPIENTE

A la relación F_2/F_1 se le llama

VENTAJA MECÁNICA

LA PRENSA HIDRÁULICA

$$F_1 d_1 = F_2 d_2$$

$$d_1 = \frac{F_2}{F_1} d_2 = \frac{A_2}{A_1} d_2$$

La multiplicada fuerza de salida es compensada por una fuerza de entrada más pequeña, pero ejercida a lo largo de una distancia mayor.

PRESIÓN ATMOSFÉRICA Y PRESIÓN MANOMÉTRICA

La presión del aire en un punto determinado de la tierra varía ligeramente

de acuerdo con el clima atmosférico. A nivel del mar, se considera 1,013x10⁵ N/m². Este valor se usa para medir la presión, recibe el nombre de **atmósfera**Otra unidad de presión es el bar

Cómo resiste el cuerpo humano una presión tan grande?

La presión que se encuentra por encima de la presión

atmosférica, es la llamada PRESIÓN MANOMÉTRICA

La PRESIÓN ABSOLUTA se debe a la suma

de las presiones atmosférica y manométrica

MEDICIÓN DE LA PRESIÓN ($p = p_0 + \rho gh$)

MANÓMETROS

BARÓMETROS

1 bar =
$$10^5$$
 Pa
1 atm = $1,013 \times 10^5$ Pa = $1,013$ bar
1 kgf/cm² = $0,981 \times 10^5$ Pa = $0,981$ bar
1 atm = 760 mmHg
1 mmHg = $133,32$ Pa = $1,33$ mbar (1 Torr \equiv 1mmHg)
1 mH₂O= $9,81$ kPa = $0,0981$ bar "metros de agua"

FLOTACIÓN Y PRINCIPIO DE ARQUIMIDES

SI UN CUERPO ESTÁ TOTAL O PARCIALMENTE SUMERGIDO EN UN FLUIDO, ESTE EJERCE UNA FUERZA HACIA ARRIBA SOBRE EL CUERPO, IGUAL AL PESO DEL FLUIDO DESPLAZADO POR EL CUERPO

$$\sum F = p_2 A - p_1 A - mg = 0$$
 (1)

 $E = p_2 A - p_1 A = (p_2 - p_1)A$ (empuje o fuerza de flotación)

$$E = \rho_{liq} g h A = \rho_{liq} g V$$
 (V liquido desalojado)

De(1)

$$\textbf{E=P}_{\text{ entonces }} \rho_{liq} g V_{liq \, desalojado} = \rho_c g V_c$$

FLOTACIÓN

Estabilidad transversal: cuando un buque se encuentra adrizado (en posición de equilibrio) en aguas tranquilas, el CENTRO DE CARENA (que es el centro de la sección sumergida del bote, Donde se ubica la fuerza ascendente) y el CENTRO DE GRAVEDAD (fuerza descendente) se encuentran en la misma línea vertical por encima de la quilla (k).

Si el buque está inclinado debido a una fuerza externa (es decir, sin que exista ningún movimiento del peso interno), se produce una cuña de emersión a un costado del mismo y otra cuña de inmersión al otro costado.

Como consecuencia, el centro de carena cambiará de posición del punto B al B1.

El METACENTRO (M) es el punto de intersección de las líneas verticales trazadas desde el centro de carena y se puede equiparar a un eje central cuando el buque está inclinado. Su altura se mide desde el punto de referencia (K) y, por consiguiente, se denomina KM.

FLUIDOS EN MOVIMIENTO

FLUJO LAMINAR: es suave, de manera que las capas vecinas del fluido se deslizan entre si suavemente.

FLUJO TURBULENTO: se caracteriza por torbellinos pequeños

y erráticos llamados remolinos

En un flujo laminar cada partícula del fluido sigue una trayectoria uniforme,

llamada líneas de flujo, que no se cruzan entre si.

Si el patrón global del flujo no cambia en el tiempo, se llama flujo estable

(todas las partículas que pasan por un punto tendrán la misma velocidad).

Las líneas de corriente es una curva cuya tangente en cualquier punto tiene

la dirección de la velocidad del fluido en ese punto.

Si el flujo no es estable, las líneas de corriente no coinciden con las de flujo

TUBO DE FLUJO

ECUACIÓN DE CONTINUIDAD

FLUJO LAMINAR, ESTABLE

LA TASA DE FLUJO:
$$\frac{\Delta m}{\Delta t}$$

$$\frac{\Delta m_1}{\Delta t} = \frac{\rho_1 \Delta V}{\Delta t} = \frac{\rho_1 A_1 \Delta l_1}{\Delta t} = \rho_1 A_1 v_1$$

LA MASA DE UN FLUJO EN MOVIMIENTO NO CAMBIA AL

FLUIR:
$$\frac{\Delta m_1}{\Delta t} = \frac{\Delta m_2}{\Delta t}$$

$$\rho_1 A_1 v_1 = \rho_2 A_2 v_2$$
 ECUACION DE CONTINUIDAD

$$A_1v_1=A_2v_2$$
 LA TASA DE FLUJO DE VOLUMEN (VOLUMEN DE FLUIDO QUE PASA

POR UN PUNTO DADO POR SEGUNDO --- CAUDAL

ECUACIÓN DE BERNOULLI

- El PRINCIPIO DE BERNOULLI establece que donde la velocidad de un fluido es alta, la presión es baja y viceversa
- FLUIDO IDEAL: INCOMPRESIBLE (ρ constante), No VISCOSO (sin fricción interna), No ROTATORIO (una partícula sobre el flujo no experimenta rotación alrededor de su centro de masa) ESTACIONARIO (la densidad, la velocidad y la presión de un fluido en un punto es la misma)
- En el tubo de flujo, analizamos un elemento de fluido en movimiento. el trabajo efectuado sobre este

elemento durante un tiempo dt será:

$$\begin{aligned} \mathsf{dW} &= \mathsf{p}_1 \mathsf{A}_1 \mathsf{ds}_1 \text{-} \; \mathsf{p}_2 \mathsf{A}_2 \mathsf{ds}_2 \text{-} \; \mathsf{dm} \; \mathsf{g} \; (\mathsf{y}_2 \text{-} \mathsf{y}_1) \quad \mathsf{como:} \; \mathsf{dW} = \Delta \mathsf{K} \\ \mathsf{p}_1 \mathsf{A}_1 \mathsf{dx}_1 \text{-} \; \mathsf{p}_2 \mathsf{A}_2 \mathsf{dx}_2 \text{-} \; \mathsf{dm} \; \mathsf{g} \; (\mathsf{y}_2 \text{-} \mathsf{y}_1) = \frac{1}{2} \; \mathsf{dm} \; \mathsf{v}_2^2 \text{-} \frac{1}{2} \; \mathsf{dm} \; \mathsf{v}_1^2 \\ \mathsf{p}_1 \mathsf{dV} \text{-} \; \mathsf{p}_2 \mathsf{dV} \text{-} \; \mathsf{\rho} \mathsf{dV} \; \mathsf{g} \; (\mathsf{y}_2 \text{-} \mathsf{y}_1) = \frac{1}{2} \; \mathsf{\rho} \mathsf{dV} \; \mathsf{v}_2^2 \text{-} \frac{1}{2} \; \mathsf{\rho} \mathsf{dV} \mathsf{v}_1^2 \end{aligned}$$

$$p_1 + \rho g y_1 + \frac{1}{2} \rho v_1^2 = p_2 + \rho g y_2 + \frac{1}{2} \rho v_2^2$$

 $p + \rho g y + \frac{1}{2} \rho v^2 = constante$

APLICACIONES

MEDIDOR DE VENTURI I

Se usa para medir la rapidez de flujo de un tubo. La parte angosta del tubo se llama garganta. ¿Cuál es la expresión para la rapidez de flujo v₁ en función de las áreas transversales A₁ y A₂ .y la diferencia de altura h en los tubos

Aplicando Bernoulli entre puntos 1 y 2 $(y_1 = y_2)$,

$$p_1 + \frac{1}{2}\rho v_1^2 = p_2 + \frac{1}{2}\rho v_2^2$$

Y como

$$\mathbf{v}_2 = \mathbf{A}_1 \mathbf{v}_1 / \mathbf{A}_2$$

$$p_1 - p_2 = \rho g h$$

$$v_1 = \sqrt{\frac{2gh}{(A_1/A_2)^2 - 1}}$$

No depende de la densidad

El Efecto Venturi consiste en que la corriente de un fluido dentro de un conducto cerrado disminuye la presión del fluido al aumentar la velocidad cuando pasa por una zona de sección menor. Si en este punto del conducto se introduce el extremo de otro conducto, se produce una aspiración del fluido contenido en este segundo conducto.

Sustentación de aviones

El efecto Bernoulli es también en parte el origen de la sustentación de los aviones.

Gracias a la forma y orientación de los perfiles aerodinámicos, el ala es curva en su cara superior y está angulada respecto à las líneas de corriente incidentes.

Por ello, las líneas de corriente arriba del ala están mas juntas que abajo, por lo que la velocidad del aire es mayor y la presión es menor arriba del ala; al ser mayor la presión abajo del ala, sé genera una fuerza neta hacia arriba llamada sustentación.

APLICACIONES

11-10 Tubo Pitot

Se utiliza para medir la velocidad de un fluido gaseoso

$$P_{1} + \frac{1}{2} \cdot \rho . v_{1}^{2} = P_{2} + \frac{1}{2} \cdot \rho . v_{2}^{2}$$

$$P_{1} = P_{2} + \frac{1}{2} \cdot \rho . v_{2}^{2}$$

$$P_{1} - P_{2} = \frac{1}{2} \cdot \rho . v_{2}^{2}$$

$$P_{1} - P_{2} = \rho' . g . h$$

$$\rho' . g . h = \frac{1}{2} \cdot \rho . v_{2}^{2}$$

Se utiliza para medir la velocidad de los aviones $v_2 = \sqrt{\frac{2 \cdot \rho' \cdot g \cdot h}{\rho}}$

$$v_2 = \sqrt{\frac{2 \cdot \rho' \cdot g \cdot h}{\rho}}$$

Aplicaciones del principio de Bernoulli: de Torricelli a los aviones, las pelotas de fútbol y la isquemia

Un bote de velas se puede mover contra el viento, al usar las diferencias de presión en cada lado de la vela, y al usar la quilla para evitar navegar de lado.

menor velocidad resultante del aire = mayor presión

mayor velocidad resultante del aire = menor presión

TEOREMA DE TORRICELLI

1
$$P_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2$$

$$P_1 = P_2 \qquad v_1 = 0$$

$$\rho g h_1 = \frac{1}{2} \rho v_2^2 + \rho g h_2$$

$$\boxed{4} \quad \frac{1}{2}v_2^2 = gh_1 - gh_2$$

$$v_2^2 = 2g(h_1 - h_2)$$

$$v_2 = \sqrt{2gH}$$

VISCOSIDAD

• los fluidos reales tienen una cierta cantidad de fricción interna llamada VISCOSIDAD. existe tanto en liquidos como en gases, y es esencialmente una fuerza de fricción entre capas adyacentes de fluido cuando estas se mueven una con respecto a la otra.

Area (A)

$$F = \eta A \frac{v}{l} \quad [\eta] = \frac{[F]}{[A]} \frac{[l]}{[v]} \quad [\eta] = \frac{Ns}{m^2} = Pas,$$

en el sistema cgs esta unidad recibe el nombre de poise(P)

ECUACIÓN DE POISEUILLE

$$Q = \frac{\pi R^4 (P_1 - P_2)}{8\eta L}$$

TENSIÓN SUPERFICIAL Y CAPILARIDAD

La superficie de un líquido en reposo se comporta, casi como una membrana que se alarga bajo tensión.

Esta actúa paralelamente

a la superficie y surge de la

atracción entre las moléculas.

Este efecto recibe el nombre de

TENSIÓN SUPERFICIAL

Tensión superficial.

Tensión superficial 7.- Se define como la fuerza por unidad de longitud e jencida por una de las superficies. Es decir la cantidad de energía necesario para estinar o aumentar la superficie de un líquido por unidad de área. (Es una monifestación de las fuerzas intermoleculares en los líquidos)

TENSIÓN SUPERFICIAL Y CAPILARIDAD

QUÍMICA

SURFACE TENSION

www.shutterstock.com · 723884107

h

ADHESIÓN COHESIÓN

LOS JABONES Y DETERGENTES TIENEN EL EFECTO DE IR LA TENSIÓN SUPERFICIAL: **SURFATANTES**

TENSIÓN SUPERFICIAL POR ELEVACIÓN CAPILAR

Mediante la acción capilar, podemos determinar la tensión superficial mediante la siguiente ecuación: r.h.d.g

Donde:

✓Y: es la tensión superficial.

✓r: radio del capilar

√h: el desnivel

√d: densidad del líquido

✓g: la fuerza de gravedad (9,8 m/s²)

PROBLEMAS RESUELTOS CON V DE GOWIN

La unidad SI de tensión superficial es el N.m⁻¹, expresada en términos de fuerza por unidad de longitud:

$$\Upsilon = \frac{F}{2L}$$

EN TUBOS DE DIÁMETROS PEQUEÑOS SE OBSERVAN QUE LOS LÍQUIDOS SUBEN O BAJAN RESPECTO AL NIVEL QUE LOS

RODEA. ESTE FENÓMENO SE LLAMA CAPILARIDAD