Fig. 5. Block diagram of registers.

Some Characteristics

- Heavy emphasis on timing, packaging
- * No Cache
- * Chaining
- * Load/Store
- * Single Cycle Issue
- * Scoreboarding
- * Instruction Buffer
- **★** Back Up Registers

Example: DO 10 I = 1, 50 C(I) = (A(I) + B(I))/210 Continue

* Scalar	<u>Cycles</u>
MOVI 50, R0 MOVA A, R1 MOVA B, R2 MOVA C, R3 X: LD R4, (R1) + LD R5, (R2) + ADD R4, R5, R6 SHR R6, R7 ST R7, (R3) + DECBNZ RO, X :	1 1 1 1 11 4 1 1 11 2

* <u>Vector</u>

MOVI 50, VLN MOVI 1, VST	1 1
VLD V ₀ , A	11 + n-1
VLD V ₁ , B	11 + n-1
$VADD V_0, V_1, V_2$	4 + n-1
VHSR V ₂ , V ₃	1 + n-1
VST V ₃ , C	11 + n-1

VECTOR PROCESSING (PAGE 2)

WITH CHAINING

WITH 2 LD, 1 STORE PORTS

79 CYCLES