CSCI 4180 – Tutorial 2 VM Management and Hadoop Setup

Zhao, Jia jzhao@cse.cuhk.edu.hk

2022.09.21

Outline

- VM Management
 - Connect VMs
 - Access VMs
- Hadoop Setup
 - Setup Hadoop Cluster (fully distributed mode)
 - WordCount Example

Outline

- VM Management
 - Overview
 - Access CSE network
 - Power on VM
 - Connect to VM
 - Add new users
 - VM configuration
 - Less password ssh

VM Overview

- Each group has three VMs
 - Check your emails for the VM information(may send next week)
- VM Overview
 - Only VM [a] can access network, can be SSH from external
 - VM [a], VM[b], VM[c] forms a small intra-net

Access CSE network

- Inside CSE network
 - VM can only be accessed inside CSE network
 - CSE Lab (SHB 924), or via CSE VPN (Using OpenVPN), or CSE gateway
- In CSE lab or using CSE VPN
 - Support both HTTP and SSH
 - Can directly access CSE website or SSH to CSE machine
- Using CSE gateway
 - To access CSE website
 - Should setup the CSE gateway as http proxy
 - Check proxy setting <u>here</u>
 - Can directly support SSH

Power on the VM

- Access CSE network
- Web Interface
 - https://esx1.cse.cuhk.edu.hk/ui
 - Check the email for the link to login your group
 - Account
 - Cse unix name
 - Password
 - Cse unix password

Power on the VM

Power on the VMs

Actions in web UI

- After power on the VM
 - Can close ui, and connect to VM via SSH
 - Just keep the VM power on, you don't need to access the web UI again
- Or access VM in UI
 - Click the Console button in the left side of the power on button
 - Would be very slow, we suggest to access VM via SSH

Connect to VM

- Connect to VM
 - Only VM [a] can be accessed from external via SSH
 - Via the eth1 of VM [a]
 - VM [b] and VM [c] can be ssh from VM [a] by the intra-net
 - Default account and password for each VM
 - USER: csci4180, PWD: csci4180test
 - Each VM will require you to modify the password in your first login
 - Make sure your VM doesn't be accessed by others
 - SSH to VM [a] within CSE network
 - \$ssh -p 130xx csci4180@projgw.cse.cuhk.edu.hk
 - xx is your VM group id, check the emails
 - SSH between VM [a|b|c]
 - ssh 10.0.xx.1, ssh 10.0.xx.2, ssh 10.0.xx.3

Transfer file among VMs

- Between external and VM [a]
 - Single file mycode.c
 - to VM [a]: \$scp -P 130xx mycode.c csci4180@projgw.cse.cuhk.edu.hk:~/
 - to external: \$scp mycode.c [external user]@external.ip:~/
 - Directory mydir
 - to VM [a]: \$scp -P 130xx -r mydir csci4180@projgw.cse.cuhk.edu.hk:~/
 - to external: \$scp -r mydir [external user]@external.ip:~/
- Between VM [a|b|c]
 - Single file mycode.c from VM [a] to VM [b]
 - \$scp mycode.c <u>csci4180@10.0.xx.2:~/</u>
 - Directory mydir from VM [b] to VM [c]
 - \$scp -r mydir <u>csci4180@10.0.xx.3:~/</u>

- Access VMs
 - Changed VM hostname from csci4180 to vm1, vm2, vm3
 - So we can better identify different VMs
 - On each VM
 - \$sudo vim /etc/hostname
 - Changed the hostname
 - E.g., changed hostname form csci4180 to vm1 on VM [a]
 - similarly, to vm2 on VM [b], to vm3 on VM [c]
 - Also change the hosts \$sudo vim /etc/hosts
 - E.g., Change line "127.0.1.1 csci4430" to "10.0.0.x vm[x]"
 - \$sudo reboot
 - Make the change takes effect, it takes about 1~2 minutes to reboot
 - Login VMs after reboot
 - Now the prompt of VM [a] should be csci4180@vm1

- Access VMs
 - Create a new user hadoop for each VM
 - Later we will use this user for our hadoop cluster
 - On each VM
 - \$sudo adduser hadoop
 - Just press enter for all requirements
 - This creates a new user hadoop
 - \$sudo usermod -aG sudo hadoop
 - Add the user hadoop to sudo group, so we will have root privileges
 - \$su hadoop
 - Change to hadoop user
 - Now the prompt should be hadoop@vm1

- Configure hosts
 - On each VM
 - \$sudo vim /etc/hosts
 - Mapping the ip with host name, append the following at the end

```
10.0.0.1 vm1
10.0.0.2 vm2
10.0.0.3 vm3
```

- Now you can ssh using the host name rather than using ip
 - e.g., \$ssh hadoop@vm2, \$ssh vm2
 - Also works when you transfer file

- Configure ssh without entering password
 - On each VM as hadoop user
 - \$ssh-keygen
 - Always press enters for any requirements
 - \$ssh-copy-id hadoop@vm1
 - \$ssh-copy-id hadoop@vm2
 - \$ssh-copy-id hadoop@vm3
 - Now to verify
 - On vm1 you can ssh to vm2 and vm3 without entering password
 - -\$ssh hadoop@vm2
 - -\$ssh hadoop@vm3
 - Similar on vm2 and vm3

Outline

- Hadoop Setup (Fully distributed mode)
 - Install java
 - Download hadoop
 - Setup hadoop configuration
 - Test hadoop
 - Run the wordcount example
 - In assignment-1 1-4 parts, you only need to configure Hadoop in pseudo-distributed mode. For the bonus part, you will need to configure Hadoop in fully distributed mode. (See details in specification)
 - In this tutorial, we focus on fully distributed mode

Install Java

- Install java
 - On each VM as hadoop user
 - Download openjdk-8u342:
 - vm1 can download java by wget, or download in your local and scp to vm1
 - vm2 and vm3 should be copy from vm1 by scp
 - \$sudo mkdir /usr/lib/jvm
 - Or any directory you like
 - \$tar xvf openlogic-openjdk-8u342-b07-linux-x64.tar
 - \$sudo mv openlogic-openjdk-8u342-b07-linux-x64//usr/lib/jvm/jdk8u342
 - Update environment variable, \$vim ~/.bashrc
 - export JAVA_HOME=/usr/lib/jvm/jdk8u342
 - export PATH=\$PATH:\$JAVA_HOME/bin
 - \$source ~/.bashrc
 - \$java -version
 - You can check the value of JAVA_HOME and PATH by
 - echo \$JAVA_HOME
 - echo \$PATH

- Overview of our hadoop cluster
 - Architecture

Download Hadoop

- Download Hadoop
 - Download Hadoop on vm1
 - Set http&https proxy(Add to ~/.bashrc)
 - export http_proxy="http://proxy.cse.cuhk.edu.hk:8000/"
 - export https_proxy="http://proxy.cse.cuhk.edu.hk:8000/"
 - wget https://archive.apache.org/dist/hadoop/core/hadoop-2.7.3/hadoop-2.7.3.tar.gz
 - Decompress Hadoop
 - \$tar zxvf hadoop-2.7.3.tar.gz
 - Download Hadoop on vm2 and vm3
 - On vm1, scp the binary file to vm2 and vm3
 - scp hadoop-2.7.3.tar.gz hadoop@vm2:~/
 - scp hadoop-2.7.3.tar.gz hadoop@vm3:~/
 - Then do the same thing as on vm1
 - Note: It is more convenient that you configure everything in vm1 and directly copy the whole hadoop directory on vm1 to vm2 and vm3

- Setup environment
 - Add following \$vim ~/.bashrc
 - export HADOOP HOME=/home/hadoop/hadoop-2.7.3
 - export PATH=\$PATH:\$HADOOP_HOME/bin:\$HADOOP_HOME/sbin
 - export HADOOP CLASSPATH=\${JAVA HOME}/lib/tools.jar
 - \$source ~/.bashrc
 - Similarly, you can finish all configuration in vm1, and directly copy the configuration file ~/.bashrc to vm2 and vm3, source it

- Configuration file of Hadoop
 - We have provided these file in course website
 - Download the csci4180_tuto2.tar.gz in tutorial page
 - On EACH node
 - \$tar zxvf csci4180_tuto2.tar.gz
 - \$cp csci4180_tuto2/csci4180_hadoop_conf/* hadoop-2.7.3/etc/hadoop

 Again: It is more convenient that you configure everything in vm1 and directly copy the whole hadoop directory on vm1 to vm2 and vm3

- Format namenode on vm1
 - Check your configuration
 - \$hadoop version
 - You should see the hadoop information
 - \$hadoop namenode -format
 - Start hadoop cluster on namenode
 - \$start-dfs.sh
 - \$start-yarn.sh

- Setup hadoop cluster
 - Operations related to HDFS
 - List files in hdfs
 - \$hadoop fs –ls <hdfs URI>
 - Make directory
 - \$hadoop fs -mkdir -p <hdfs URI>
 - Remove file from hdfs
 - \$hadoop fs -rm <hdfs URI>
 - Write into hdfs
 - \$hadoop fs -put <local flie> <hdfs URI>
 - Read from hdfs
 - \$hadoop fs -get <hdfs URI> <local file>
 - Show the content of the file in hdfs
 - \$hadoop fs -cat <hdfs URI>

- WordCount Example
 - Find the source code WordCount.java in csci4180_tuto2.tar.gz
 - Compile the source code
 - \$mkdir ~/wordcount
 - \$cp ~/csci4180_tuto2/WordCount.java ~/wordcount
 - \$cd ~/wordcount
 - \$hadoop com.sun.tools.javac.Main WordCount.java
 - \$jar cf wc.jar WordCount*.class

- WordCount Example
 - Make the HDFS directories
 - /user/hadoop/wordcount/input
 - The input directory in HDFS, which contains all the input file for MapReduce
 - \$hdfs dfs -mkdir /user && hdfs dfs -mkdir /user/hadoop && hdfs dfs -mkdir /user/hadoop/input
 - /user/hadoop/wordcount/output
 - The output directory in HDFS
 - Make sure this doesn't exist before running, otherwise will casue error
 - Run the example
 - \$hadoop jar wc.jar WordCount /user/hadoop/input /user/hadoop/output
 - Then check the result in output directory

Simple Demo

Target of Assignment-1

- Pseudo-distributed mode
 - https://hadoop.apache.org/docs/stable/hadoop-projectdist/hadoop-common/SingleCluster.html

CSCI 4180 – Tutorial 2 VM Management and Hadoop Setup

- End -

References:

- MapReduce Tutorial
- Parameters of MapReduce