

# CBSE Question Paper 2019 (Set-1) Class 11 Chemistry Mahanhi Palanjall VldyaMandir, Prayagraj

Time: 3 hours

MM 60

### GENERAL INSTRUCTIONS:

- i. All Questions are compulsory
- Ch etildents ii. Question no. 1 are very short answer questions and carry 1 marks each
- iii. Question 6 to 14 are short answer questions and carry 2 marks each.
- iv. Question no 15 to 23 are also short answer questions and carry 3 marks each.
- v. Question no 24 and 25 are long answer questions and carry 5 marks each.
- vi. Use log table if necessary.
- 1. What is the formula of a compound in which element Y forms ccp lattice and atoms of X occupy 1/3rd of the octahedral voids?
- 2. Why do alkali metals give blue colour when dissolved in liquid ammonia?
- 3. On heating a crystal of KCl in potassium vapours, the crystal starts exhibiting a violet colour. What is this due to?
- State the second law of thermodynamics.

OR

When 430 J of work was done on a system, it lost 120 J of energy as heat. Calculate the value of Internal energy change for the process.

- Give the complete redox reaction for the cell representation:  $Cu(s)/Cu^{2+}(aq)//Ag^{+}(aq)/Ag(s)$
- 6. The density of 1M solution of NaCI is 1.25 g ml<sup>3</sup>. Calculate the molality of the solution (NaCI = 58.5).
- 7. Write the electronic configuration of  $Cr^{-1}$  and  $Sc^{+1}$  Ionic species. (Cr = 24, Sc = 21).
- 8. Calculate the velocity of a particle of matt 0.1mg which is associated with a wavelength of  $3.3 \times 10^{29}$  m (h =  $6.6 \times 10^{-34}$  M kgm<sup>2</sup>s<sup>1</sup>)



9. Give the molecular orbital configuration of  $N_2^+$  and  $O_2^{2-}$  (At. No. O = 8, N = 7)

OR

Give the shapes of the following molecules:

$$PCl_5$$
,  $SF_6$ ,  $BeF_2$ ,  $NH_4^+$ (At. No. P = 15, S = 16, Cl = 17, F = 9, Be = 4, N = 7, H = 1)

- Arrange the following in decreasing order of ionic character of the bond and give reasons NaCl, NaF, NaBr and NaI
- Calculate the pH of 0.4 gm of NaOH dissolved in water to give 200 ml of solution.(NaOH = 40 g)

OR

Determine the solubility of Silver chromate,  $K_{sp}$  of  $Ag_2CrO_4$  = 1.1 imes 10<sup>-12</sup>.

- 12. How would you explain the following:
  - a. Lil is more soluble in ethanol than KI.
  - b. A solution of sodium carbonate is alkaline. why?
- 13. Account for the following(any two):
  - a. Boron halides do not dimerise like boron hydride.
  - b. PbCl<sub>4</sub> is a good oxidizing agent.
  - c. SiCl<sub>4</sub> can be easily hydrolysed by water but CCl<sub>4</sub> does not.
- 14. What happens when(give equations) (any two):
  - i. Borax is heated strongly.
  - ii. B<sub>2</sub>H<sub>6</sub> is reacted with ammonia.
  - iii. Aluminium is treated with dilute NaOH.
- 15. Give reasons for the following:
  - Halogens acts as good oxidizing agents.
  - ii. Electron gain enthalpy of noble gas is almost zero.
  - iii. Na and Mg<sup>+</sup> has same number of electrons but removal of electron from Mg<sup>+</sup> requires more energy.
- 16. An element occurs in bcc structure. It has a cell edge length of 250 pm. Calculate the molar mass if its density is 8.0 gm cm<sup>-3</sup>. Also, calculate the radius of an atom of this element.



### OR

Niobium crystallizes in bcc structure of the density 8.6 g/cm<sup>3</sup>. Calculate the atomic radius J. Stillents of niobium using atomic mass = 93  $\mu$ .

17. Calculate the enthalpy change for the process  $CCl_4(g) \rightarrow C(g) + 4Cl(g)$ and calculate bond enthalpy of C-Cl in CCl<sub>4</sub>(g).

$$\Delta \operatorname{vapH}^{s}(\operatorname{CCl}_{4}) = 30.5 \text{ kJ mol}^{-1}$$

$$\Delta f H^{\theta}(CCl_4) = -135.5 \text{ kJ mol}^{-1}$$

$$\Delta a H^{\theta}$$
 (C) = 715.0 kJ mol<sup>-1</sup>.

 $\Delta a H^{\theta}(Cl_2) = 242 \text{ kJ mol}^{-1}$ , where  $\Delta a H^{\theta}$  is enthalpy of atomisation

- 18. Calculate the bond energy of C H bond if  $\Delta H^{\circ}_{combustion}$  of  $CH_4 = -891.6 \text{ kJmol}^{-1}$ ,  $\Delta H$  of C(s) is 394 kJmol<sup>-1</sup>,  $\Delta H$  of  $H_2$  is -286 kJmol<sup>-1</sup> .heat of sublimation of C(s) if 717 kJmol<sup>-1</sup>, heat of dissociation of H2 is 416 kJmol-1.
- 19. Dihydrogen gas is obtained from natural gas by partial oxidation with steam as per following endothermic reaction:

$$CH_4(g) + H_2O(l) \rightleftharpoons CO_2(g) + 3H_2(g)$$

- a. Write an expression of K<sub>c</sub> for the above reaction
- b. How will the value of K<sub>c</sub> and composition of equilibrium mixture be affected by
  - i. Increasing pressure
  - ii. increasing temperature
  - iii. adding a catalyst
  - iv. adding an inert gas
- 20. Balance the following redox reaction by ion electron method:
  - a.  $MnO_4^- + I^- \rightarrow MnO_4 + I_2$  (in basic medium)
  - b.  $m Cr_2O_7^{2^-} + SO_2 
    ightarrow Cr^{3\,+} \, + HSO_4^-$  (in acidic medium)
- i. Name the class of hydrides to which water and sodium hydride belong.
  - ii. Give the names of different types of molecular hydrides.
  - iii. Explain the term hydride gas.
- 22. Explain the following terms with suitable examples:



- 1. Metamerism
- 2. Electromeric Effect
- 3. R(Resonance)
- 23. Give reasons. (Give chemical equations to support your answer)
  - i. Alkynes are acidic in nature.
  - ii. What happens when 2 bromobutane is treated with alcoholic KOH.
  - iii. Effect of branching of an alkane on its boiling point.

OR

Explain the following with suitable examples:

- i. Saytzeff's Rule
- ii. Markovnikov's Rule
- iii.  $\beta$ -Elimination Reaction
- 24. Explain the following reaction:

OR

What happens when (give chemical equations)

- i. Wurtz reaction
- ii. Freidal Crafts Reaction
- iii. Decarboxylation
- iv. Kolbe's Electrolysis
- v. Nitration in Benzene
- vi. Benzene is reacted with chlorine in the presence of anhydrous AlCl<sub>3</sub>.
- vii. Pent-2-ene is reacted with  $O_3$  and the product is treated with  $Zn/H_2O$ .
- viii. Propyne is treated with Fe at 873 K.
  - Methane is reacted with oxygen in the presence of Mo<sub>2</sub>O<sub>3</sub>.
  - x. Ethyne is hydrolysed in the presence of HgSO<sub>4</sub>/H<sub>2</sub>SO<sub>4</sub>.
- 25. Give the condensed and bond line structural formulae of the following:
  - i. 2-hydroxy-1,2,3-propanetricaboxylic acid
  - ii. Hexanedial
  - iii. 2-(4-isobutylphenyl)propionic acid
  - iv. 2-hydroxy-1,2-diphenylethan-1-one



## v. 4-phenylbut-2-anal

### OR

- 1. Identify the most stable species in the following ions and give reasons:
  - 1. CH<sub>3</sub>, CH<sub>2</sub>-Br, C-HBr<sub>2</sub>, C-Br<sub>3</sub>
  - 2. CH<sub>3</sub>-, CH<sub>2</sub>-Cl, C-HCl<sub>2</sub>, C-Cl<sub>3</sub>
- 2. Arrange the following in order of increasing acidic strength giving reasons:
  - CH<sub>3</sub>CH<sub>2</sub>COOH, (CH<sub>3</sub>)<sub>2</sub>CHCOOH and (CH<sub>3</sub>)<sub>2</sub>CCOOH.
  - 2. CCl<sub>3</sub>COOH, CH<sub>2</sub>ClCOOH, CHCl<sub>2</sub>COOH and CH<sub>3</sub>COOH.
  - 3. CH2ClCH2CH2COOH, CH3CHClCH2COOH, CH3CH2CHClCOOH and CH3CH2CCl2COOH

