

Closing the gap between single-user and multi-user VoiceFilter-Lite

Rajeev V. Rikhye, Quan Wang, Qiao Liang, Yanzhang He, Ian McGraw

Abstract

Problem:

- Most speaker conditioned speech models (eg. VoiceFilter-Lite) only allows a single enrolled speaker
- Our previous multi-user VoiceFilter-Lite model suffered from worse performance compared to the best single-user version when a single speaker is enrolled

Our solution:

- A novel **attention mechanism** to identify which of the *N* enrolled users is speaking in a particular frame
- We used **feature-wise linear modulation** (FiLM) to condition the *VoiceFilterNet* with the attended speaker embedding
- We developed a dual learning rate schedule to train the AttentionNet at a lower rate than the VoiceFilterNet

Outcome:

- We significantly improved the performance of the multi-user VoiceFilter-Lite model
 - Single enrolled user case: EER is on-par with the best single-user VoiceFilter-Lite model
 - Two enrolled users case: slight degradation compared with single-user; still significant improvement compared with no-VoiceFilter-Lite

Speaker conditioned speech models

Generic speech model

Speaker conditioned speech model

VoiceFilter-Lite enhances target user speech in multitalker environments

Model size: 2.62 MB

- The VoiceFilter-Lite (SUVF) [1] takes as input the target speaker embedding and a stacked log Mel filterbank energies (LFBE) and returns an "enhanced" LFBE and a noise label prediction.
- SUVF suppresses overlapping speech from non-enrolled users.
- Noise label is used to disable the SUVF when the frame does not contain overlapping speech.

VoiceFilter-Lite improves speaker verification robustness to overlapping background speech

Vendor-collected d	ataset (303 speakers,	92K queries, 97 hours)
--------------------	-----------------------	------------------------

Noise source	Room	SNR (dB)	EER (%)	
			No VFL	With VFL
Speech	Additive	-5	12.83	4.24
		0	8.34	2.35
		5	4.99	1.47
	Reverb	-5	17.76	7.03
		0	11.04	3.63
		5	6.41	2.09

Speech Background Noise

- Identifying the target speaker when there is overlapping speech is a known challenge. [2]
- Adding VoiceFilter-Lite in the speaker verification frontend helps to improve target speaker verification, reducing the number false rejects in the keyphrase detection.
- However, the VoiceFilter-Lite model only supports a single-enrolled user, which is undesirable since most
 smart speakers have multiple users.

Extending VoiceFilter-Lite to support an arbitrary number of enrolled users

Multi-user VoiceFilter-Lite (MUVF) model Architecture

MUVF uses attention to compute the *most likely* target speaker embedding from the input conditioned on a set of known speaker profiles

Multi-user VoiceFilter-Lite (MUVF) has poor single user performance

Speaker Verification task under various noise conditions.

Vendor-collected dataset (958 speakers, 220K utterances)

Note: Only SNR 0dB, additive noise condition is shown

Our previously published results showed that although having an MUVF reduces the overall equal error rate (EER), performance with just 1 enrolled user is **significantly worse** than the current SUVF.

Improving the multi-user VoiceFilter-Lite model to match single-user performance

Updated multi-user VoiceFilter-Lite (MUVF) model Architecture

Model size: 3.47 MB

- AttentionNet to compute the most likely speaker (attended embedding) from a given frame.
- Feature-wise Linear modulation (FiLM) to condition the input to the VoiceFilterNet with the attended embedding.
- Dual learning rate scheduler, which trains the AttentionNet with a slower learning rate.

AttentionNet Architecture

- The **ScorerNet** computes a similarity score between the KeyVector and each of the speaker embeddings and outputs a set of N attention weights
- The Attended Embedding is the dot product of the weights and the embedding inputs

Experimental setup

Data

- Webhound dataset
 - 958 speakers,
 - 220K utterances
- Noisified with MTR:
 - overlapping speech (other webhound speakers)
 - Non-speech noise
 - No noise (clean)
- Using 3 different SNR levels
 -5 dB, 0 dB and 5 dB

Evaluation Pipeline

Evaluation Metric

 We measure the impact that MUVF has on speaker verification accuracy via the Equal Error Rate (EER) metric.

We are optimizing for matched single-enrolled user performance (compared to current SUVF) and improved two-user performance (compared to previous MUVF).

Experiment 1: Is Attention necessary?

Models with no attention

Model 1 : Averaging Model

Model 2: Concat Model

Models with attention

Model 3: AttentionNet + Weighted Sum Model

Model 4 : AttentionNet + Concat-Top-K Model

Experiment 1: Attention is required for accurate voice separation

- Compared with the no-attention variant, AttentionNet improves both 1-user and 2-user performance.
- Within the AttentionNet models, using a weighted sum (dot product) rather than concatenating the top 2 predicted speakers results in better 2-user performance.
 - The WeightedSum model (3.47 MB) is smaller than the Concat. Model (3.99 MB)

AttentionNet and VoiceFilterNet are trained by minimizing 3 loss functions

$$L_{\text{total}} = w_1 L_{\text{asym}} + w_2 L_{\text{noise}} + w_3 L_{att}$$

Asymmetric reconstruction loss - ensures that the enhanced Spectrogram matches the clean spectrogram (Ground Truth)

$$L_{asym} = \sum_{t} \sum_{f} (g_{asym}(S_{clean}(t, f) - S_{enh}(t, f), \alpha))^{2}$$

Noise label prediction loss - ensures that predicted noise label is close to the ground truth label

$$L_{\text{noise}} = \sum_{i} (n_{pred} - n_{gt})^2$$

Attention loss - minimizes the binary cross entropy between the attention weights and the ground truth embedding order.

$$L_{\mathrm{att}} = \sum_{t} \mathrm{CrossEntropy}(\alpha^{(t)}, \mathbf{w}_{\mathrm{gt}}) + \lambda ||\alpha^{(t)}||_{\infty}$$

Experiment 2: Can we improve the training objective function?

Model 1 : Jointly trained VFNet and AttentionNet

$$L_{\text{total}} = w_1 L_{\text{asym}} + w_2 L_{\text{noise}} + w_3 L_{\text{attn}}$$

Current Parameter value
$$W_{t+1} = W_t - \alpha \frac{\partial L_{total}}{\partial t}$$
 Updated Parameter value Learning Rate

Model 2: Dual Learning rate schedule

$$L_{vf} = w_1 L_{asym} + w_2 L_{noise}$$

$$W_{t+1}^{vf} = W_t^{vf} - \alpha_{vf} \frac{\partial L_{vf}}{\partial t}$$

$$W_{t+1}^{attn} = W_t^{attn} - \alpha_{attn} \frac{\partial L_{attn}}{\partial t}$$

In the dual learning rate scheduler, VFNet and AttentionNet are trained with different learning rates.

Experiment 2: Using a Dual Learning Rate Schedule improves performance

** Independently trained with same LR

1e-6

**

1e-5

**

- Reducing the learning rate, increases the EER for SUVF and MUVF.
- Training AttentionNet independently but with same LR helps marginally.
- Using a 10⁻⁵ LR for the *VoiceFilterNet* and a 10⁻⁶ LR for the *AttentionNet* allows us to train the model for more steps, achieving better 1- and 2-enrolled user performance

Experiment 3: Is conditioning via concatenation optimal?

Model 1: Concat the attended embedding to each noisy input frame

Model 2: Use FiLM to transform each frame

FiLM applies an *affine transformation* to condition each input frame with the speaker embeddding in a feature-wise manner. The transformed input frame as the same size as the original input

Experiment 3: Using a FiLM to condition the VoiceFilterNet is better

- Using FiLM to condition the VoiceFilterNet on the attended embedding significantly improves both 1- and 2-enrolled user performance.
- This is because, unlike concatenation, FiLM transforms the input depending on the values in the attended embedding.

Experiment 4: Extending the multi-user VoiceFilter-Lite model to 4 enrolled users

Model Name	Number of enrolled speakers	EER(%) on Clean	EER(%) on Speech Noise		
			-5 dB	0 dB	5 dB
No VoiceFilter-Lite	-	0.71	12.40	8.29	5.13
Single-user VoiceFilter-Lite	1	0.71	3.97	2.42	1.65
Four-user VoiceFilter-Lite	1	0.71	3.88	2.37	1.60
	2	0.71	8.24	4.73	2.66
	3	0.72	9.78	5.38	2.99
	4	0.72	10.10	5.70	3.10

The same model architecture and training regime used for the two user model can be easily extended to support 4 enrolled users **without degrading** single user performance.

Summary

- Through a series of experiments, we found that:
 - AttentionNet is required for accurate speaker selection by computing the most likely speaker given a frame.
 - Training the AttentionNet with a slower learning rate than the VoiceFilterNet prevents overfitting and results in a better model.
 - Using FiLM to condition the VoiceFilterNet with the attended embedding also improves performance of the model.
- The multi-user VoiceFilter-Lite (MUVF) achieves identical single-user performance as the original VoiceFilter-Lite model (SUVF).
- We observe a degradation in performance with more enrolled users. This is because the
 AttentionNet has a difficult task of selecting the correct speaker from noisy input.
 - Our future work aims at addressing this discrepancy.

Thank you.

