AMP

Structural induction: to prove $\forall E \Phi(E)$ it suffices to show

- (1) ∀n \(\bar{\Pl}(n)\)
- (2) $\forall X \ \mathfrak{D}(X)$
- (3) $AE(\mathfrak{F}(E) \Rightarrow \mathfrak{L}(-E))$
- $(\Psi) \quad \forall E_1, E_2 \left(\ \underline{Q}(E_1) \& \ \underline{P}(E_2) \ \Rightarrow \ \underline{Q}(E_1 + E_2) \right)$

Suppose (1)-(4) hold. Note that $\#(E) \triangleq \text{number of Symbols in } E$ is always finite; so to prove $\forall E \Phi(E)$ it suffices to prove $\forall k \Psi(k)$, where $\Psi(k) \triangleq \Psi(E) = \mathbb{E}(E)$. We do this by mathematical induction on $\mathbb{E}(E)$.

We so this by mathematical induction on the:

Base case: \(\frac{\(\mathematical\)}{\(\mathematical\)}\) because #(E) ≤0 for

no \(\mathematical\)

Induction step: If I(h) holds, given any E with #(E) = htl

- · eilker E=n in which case P(E) by (1)
- · or Exx-in which case $\mathcal{Q}(E)$ by (2)
- or $E = -E' in which case <math>\#(E') = \#(E) 1 \le \Re$ so by $\Psi(R)$ we have $\Phi(E')$ & hence by (3), $\Phi(E)$.
- or $E = E_1 + E_2 in$ which case $\#(E_i) \le k$ so by $\mathbb{P}(k)$ we have $\mathbb{P}(E_i)$ for i=1,2; hence $\mathbb{P}(E)$ by 14). So in all cases $\mathbb{P}(k)$ implies $\mathbb{P}(k+1)$.

7

E,s Un is defined inonlively: it's the least relation closed under the following axioms & rules: n, S U n(5) if XEdom(S)&S(X)=n X,S Un (6) 2 E, s V n' (7) if n = -n'-E,S Un E,, SUN, E, SUN2 if N=N,+Nz 2 (8)7 EtEz,SUn let 0(∈) be ∀s,n,,n, (E,sUn, & E,sUn, ⇒ n,=n,) and theck (1)-(4) hold. (1) If n, SUN, & n, SUNz, then these could only have been deduced using (5), so n=n=nz. (2) If X, SUn, & X, SUnz, then there would only have been deduced using (6), so X Edom(5) and $n_1 = S(X) = n_2$. (3)/If -E,SUN, & -E,SUN, these can only have been deduced by applying rule (7) to E, S U-n, & E, S U-nz. By I(E) we have $-N_1 = -N_2$, so $N_1 = N_2$. Thus $\overline{\Phi}(-E)$ holds. (4) Assume Q(E1) & Q(E2). If E1+€2,5 Un1 and Ei+Ez, SUnz, these can only have been deduced by applying rule (8) to E_1 , $SU n_{11}$ E_2 , $SU n_{12}$ where $n_1 = n_{11} + n_{12}$

E, SUNZI & Ez, SUNZZ Where Nz= Nz1+nzz.

By $\Phi(E_1)$ He have $n_{11}=n_{21}$ and by $\Phi(E_2)$ we have $n_{12}=n_{22}$. So $n_1=n_{11}+n_{12}=n_{21}+n_{12}=n_2$. Thus $\Phi(E_1+E_2)$ holds.

(F)

If the domain of definition of s contains all the identifiers occurring in E, then there exists n with E, s & n. (Proof by Structural induction on E, but not required.)