CSCI 1102 Computer Science 2

Spring 2021

Lecture Notes

Week 7: Priority Queues, Binary Heaps, Sets & Relations & Orders

Topics:

- 1. Priority Queues; Binary Heaps
- 2. Sets, Relations & Orders

1. Priority Queues; Binary Heaps

See the slides

2. Sets & Relations

The Idea

- Computer software is often required to keep track of "collections" of things.
- Mathematicians have thought carefully about these collections, and know them as sets.
- Software is also often required to keep track of the association between items from one set (the "keys") and another (the "values").

Preliminaries

Basic Sets

• A set is a collection of items with no duplicates.

Examples: $A = \{1, 2, 3\} B = \{Bob, Alice, Joe\} N = \{0, 1, 2, ...\}$ natural numbers

• NB: Only restriction on elements is identity.

Notation

alpha	beta	Gamma	gamma	delta	epsilon	lambda	sigma	tau
α	β	Γ	γ	δ	ϵ	λ	σ	au

- A, B, C, ..., X, Y, Z for sets;
- Ø or {} for the empty set;
- a, b, c, ... for elements of sets;
- $a \in A$ means that a is an element of set A;
- (a_1,\ldots,a_n) is an n-tuple.

Variables and Quantifiers

- x, y, z for variables (which *vary* over sets!)
- ullet $\forall x \in A$. statement

asserts that statement holds for every element of A. For example, $\forall x \in \{1,2,3\}. \ x < 4$ means 1 < 4 and 2 < 4 and 3 < 4. The occurrence of x adjacent to the quanitifer is called a binding occurrence of x; the occurrence of x to the right of the dot is called an applied occurrence or a use of a. Note that we obtained the relation a by plugging-in (or substituting) a for a in the statement a and a in the a statement a

ullet $\exists x \in A$. statement asserts that statement holds for some element of A.

Set Comprehensions

• { x | statement } means set of all x such that statement holds;

Example

Evens = $\{x\in\mathbb{N}\mid\exists y\in\mathbb{N}\text{ such that }x=2y\}$ or equivalently Evens = $\{x\mid x\in\mathbb{N}\text{ and }\exists y\in\mathbb{N}\text{ such that }x=2y\}$

Basic Sets

- Notation:
 - Subset : $A \subseteq B$ means $\forall x \in A. \ x \in B$;
 - Set Equality : A = B means $A \subseteq B$ and $B \subseteq A$.

Operations on Sets

- Union: $A_1 \cup \ldots \cup A_n = \{a \mid a \in A_i \text{ for some } i \in \{1, \ldots, n\}\};$
- Intersection: $A_1 \cap \ldots \cap A_n = \{a \mid a \in A_i \text{ for every } i \in \{1, \ldots, n\}\};$
- Disjoint Union: $A_1 + \ldots + A_n = \{(i, a) \mid a \in A_i \text{ for some } i \in \{1, \ldots, n\}\};$
- *Product* : $A_1 \times ... \times A_n = \{(a_1, ..., a_n) \mid a_i \in A_i\};$
- Sequences: Let A be a set and let ϵ denote the empty sequence.

$$A^* = \{ w \mid w = \epsilon \text{ or } w = aw' \text{ with } a \in A \text{ and } w' \in A^* \}$$

Example: $\{a,b\}^* = \{\epsilon,a\epsilon,b\epsilon,aa\epsilon,ab\epsilon,\ldots\}$

Relations

- R is a(n n-ary) relation on sets A_1, \ldots, A_n if $R \subseteq A_1 \times \ldots \times A_n$.
- When R is an n-ary relation on sets A_1, \ldots, A_n and $A_1 = \ldots = A_n$ we say that R is an n-ary relation on A_1 ;
- When R is a finite set we say it is a finite relation.

Binary Relations

Let A and B be sets and let R be a relation on A, B.

Domain of Definition: DomDef(R) = $\{a \in A \mid \text{for some } b \in B, (a, b) \in R\}$

Example Relations

 $A = \{1, 2, 3\}, B = \{Bob, Alice\}$

- R1 = A x B = {(1, Bob), (1, Alice), (2, Bob), (2, Alice), (3, Bob), (3, Alice)}
- $R2 = \{\}$
- R3 = {(1, Bob), (3, Alice)} // e.g., DomDef(R3) = {1, 3}
- R4 = {(1, Alice), (2, Alice), (3, Alice)}

Orders

Preorder

- Let R be a relation on A. R is reflexive iff $\forall x \in A$. $(x, x) \in R$;
- Let R be a relation on A. R is *transitive* iff $\forall x,y,z\in A$. If $(x,y)\in R$ and $(y,z)\in R$ then $(x,z)\in R$.
- A relation that is both reflexive and transitive is called a *preorder*.

Partial Orders

- Let R be a binary relation on A. R is symmetric iff $\forall x,y \in A$. if $(x,y) \in R$ then $(y,x) \in R$;
- Let R be as above. R is antisymmetric iff $\forall x,y \in A$. if $(x,y) \in R$ and $(y,x) \in R$ then x=y.
- A symmetric preorder is called an *equivalence relation*.
- An antisymmetric preorder is called a partial order.

Partially Ordered Sets

If R is a reflexive, antisymmetric and transitive binary relation on A, we say that

- R is a partial order on set A
- The set A is partially ordered by R
- A is a partially ordered set (not mentioning R)
- A is a poset

Notation

- If set A is partially ordered by R, we write (A,R) or more often (A,\leq_R) or (A,\leq) if R is implied by context;
- For $a, a' \in A$, instead of writing $(a, a') \in R$ we usually write $a \leq_R a'$ or $a \leq a'$ if R is implied.

• If $a \le a'$ and a! = a' we write a < a'.

Example

```
A = {Bob, Alice}

R5 = {(Bob, Bob), (Alice, Alice), (Bob, Alice)}
```

Hasse Diagram of a Relation

```
Alice
|
Bob
```

Example

```
R6 = (A, \subseteq) = \{(\{\}, \{\}), (\{\}, \{Bob\}), (\{\}, \{Bob, Alice\}), ...\}
```

Total Order

- Let R be a partial order on A. R is a total order on A iff $\forall x,y \in A.$ either $(x,y) \in R$ or $(y,x) \in R$
- Example : (\mathbb{N}, \leq) .

Lexicographic Ordering

Let A be a set and let \leq_A be a partial order on A. We derive a partial order \leq_{A^*} on A^* the sequences of elements from A.

```
w \leq_{A^*} w' iff either w = \epsilon or w = av, w' = a'v' and either a <_A a' or a =_A a' and v \leq_{A^*} v'.
```

Example:

Let A = {p, q}. Then A* = {e, p, q, pq, ppq, ... } and $pq \leq_{A^*} ppq$ because a=p, v=q, a'=p, v'=pq, a=a' and $v \leq_{A^*} v'$ because a=q, $v=\epsilon$, a'=p, v'=q and $v \leq_{A^*} v'$ because $v=\epsilon$.

Note: If \leq is a partial order, then so is \leq_{A^*} .

Summary

In summary: we have type constructors: union, intersection, sum, product, sequence, -o-> and —>. Of these, sum, product, sequence, -o-> and —> have direct computational interpretations.