Elementary Differential Geometry

Hassium

1 Calculus on Euclidean Space 6 Geometry of Surfaces in \mathbb{R}^3

2 Frame Fields 7 Riemannian Geometry

3 Euclidean Geometry 8 Global Structure of Surfaces

4 Calculus on a Surface Exercises and Proofs

5 Shape Operators Alphabetical Index

1 Calculus on Euclidean Space

Definition 1.1. The *Euclidean 3-space*, denoted \mathbb{R}^3 , is the set of ordered triples of the form $p = (p_1, p_2, p_3)$, where $p_i \in \mathbb{R}$. An element of \mathbb{R}^3 is called a *point*.

Let $p = (p_1, p_2, p_3), q = (q_1, q_2, q_3) \in \mathbb{R}^3$ and let $a \in \mathbb{R}$. Define the addition to be $p + q = (p_i + q_i)$ and define the scalar multiplication to be $ap = (ap_i)$. The additive identity 0 = (0, 0, 0) is called the *origin* of \mathbb{R}^3 . It is trivial that \mathbb{R}^3 is a vector space over \mathbb{R} .

Definition 1.2. Let x, y, and z be real-valued functions on \mathbb{R}^3 such that for all $p = (p_1, p_2, p_3) \in \mathbb{R}^3$, $x(p) = p_1$. $y(p) = p_2$, and $z(p) = p_3$. We call x, y, and z the natural coordinate functions of \mathbb{R}^3 .

Let x, y, and z be the natural coordinate functions, rewrite $x = x_1$, $y = x_2$, and $z = x_3$. Then we have $p = (p_i) = (x_i(p))$.

Definition 1.3. A real-valued function f on \mathbb{R}^3 is differentiable if all partial derivatives exist and continuous.

Definition 1.4. A subset $O \subset \mathbb{R}^3$ is open if for all $p \in O$, there exists $\varepsilon > 0$ such that $\{x \in \mathbb{R}^3 \mid ||x - p|| < \varepsilon\} \subset O$.

Let $f: O \to \mathbb{R}$ be a function defined on an open set. The differentiability of f at p can be determined entirely from values of f on O. This means that differentiation is a local operation. We will give a proof of this later.

Definition 1.5. A tangent vector v_p is an ordered pair $v_p = (v, p)$, where $v, p \in \mathbb{R}^3$. Here v is called the vector part and p is called its point of application. Two tangent vectors are said to be parallel if they have the same vector part and different points of application.

Definition 1.6. Let $p \in \mathbb{R}^3$. The tangent space at p, denoted $T_p(\mathbb{R}^3)$, is the set of all tangent vectors that have p as point of application.

Fix a tangent space $T_p(\mathbb{R}^3)$.

- 2 Frame Fields
- 3 Euclidean Geometry
- 4 Calculus on a Surface
- 5 Shape Operators
- 6 Geometry of Surfaces in \mathbb{R}^3
- 7 Riemannian Geometry
- 8 Global Structure of Surfaces

Exercises and Proofs

Exercise 1.1.1. Let $f = x^2y$ and $g = y \sin z$ be functions on \mathbb{R}^3 . Express the following functions in terms of $x, y, y \in \mathbb{R}^3$

- 1. fg^2 ;
- 2. $\frac{\partial f}{\partial x}g + \frac{\partial g}{\partial y}f;$ 3. $\frac{\partial^2 (fg)}{\partial y \partial z};$ 4. $\frac{\partial}{\partial y}(\sin f).$

Proof. (i) We have
$$fg^2 = x^2yy^2\sin^2z = x^2y^3\sin^2z$$
. (ii) We have $\frac{\partial f}{\partial x} = 2xy$ and $\frac{\partial g}{\partial y} = \sin z$, then $\frac{\partial f}{\partial x}g + \frac{\partial g}{\partial y}f = 2xy^2\sin z + x^2y\sin z$. (iii) We have $fg = x^2y^2\sin z$, then $\frac{\partial^2(fg)}{\partial y\partial z} = 2x^2y\cos z$. (iv) We have $\sin f = \sin(x^2y)$, then $\frac{\partial}{\partial y}(\sin f) = x^2\cos(x^2y)$.

Exercise 1.1.3. Express $\frac{\partial f}{\partial x}$ in terms of x, y, and z for the following functions.

- 1. $f = x\sin(xy) + y\cos(xz);$
- 2. $f = \sin g$, $g = e^h$, and $h = x^2 + y^2 + z^2$.

Proof. (i) We have
$$\frac{\partial f}{\partial x} = \frac{x \sin(xy)}{\partial x} + \frac{\partial y \cos(xz)}{\partial x} = \sin(xy) + xy \cos(xy) - yz \sin(xz)$$
. (ii) We have $f = \sin(e^{x^2 + y^2 + z^2})$, then $\frac{\partial f}{\partial x} = 2x \cos(e^{x^2 + y^2 + z^2})e^{x^2 + y^2 + z^2}$.

Exercise 1.2.1. Let v = (-2, 1, -1) and w = (0, 1, 3). At an arbitrary point p, express the tangent vector $3v_p - 2w_p$ as a linear combination of $U_1(p)$, $U_2(p)$, and $U_3(p)$.

Alphabetical Index

origin, 1

Euclidean 3-space, 1 $\begin{array}{c} \text{tangent space, 1} \\ \text{tangent vector, 1} \end{array}$

parallel, 1

natural coordinate functions, 1 point, 1 vector part, 1