

Last line pg. 2.
Usually expressed as M(H) rather than B.
Using Using
H = B - M
$H = B - \chi^{B} B$
1 H = B
$(1-\chi^0)$
i.e.
MH = B! Where \m = 1 = permeability
$(1-\chi^8)$
14)0
We also recall the defining relation
VxM = Imat
C

Linear Magnetic Moderials
* Diamagnetic (oppose = dia) $\vec{m} = \chi^B \vec{B}$
XB<0 and p<1 find 2B2105
·η
Typically this is related to orbital motion
of electrons, with all spins paired. The orbits
change to oppose the change in flux
Paramagnetic (samé = para)
Typically related to spin aligning with the
magnetic field
\uparrow
B $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2m 2 and 22) 2m 210-5
Let us understand the order at magnitude
Let us understand the order of magnitude of χ_m^B for diamagnetic and paramagnetic
Substaces

The spins tend to align in terromagnetic substances
because if the spin wave-fon is symmetric, then
the spatial wave-for can be anti-symmetric minimizing
the coulomb emergy. This is a much larger effect
(by (V/c)2) than the dipole-dipole interaction,
which would cause the the spins to anti-align.
In real ferromagnets the domains grow until the
magnetic interaction competes with the short range
coulomb interaction
Coulong (videracl) s

Non-linear magnetic material & Hard Ferromagnets
In ferromagnets the inducted magnetization depends non-linearly on B. Assume B only vector parity odd (thow away)
$f(k) = B(k) (f_g + \hat{k} B^2(k) + \hat{k} (B^2(k))^2 +)$
$+i\vec{k}\times B(\vec{k})\left(\chi_{m}^{B}+C_{+}B^{2}(k)+C_{2}(B^{2}(k))^{2}+\right)$
t higher derive
Thus reasonably generally one finds a constituitive relation
$ \frac{1}{2}mat = \nabla \times M(\vec{B}) $ C a nonliènear fuction of
after fourier transforming back to coordinate space. Thus the macroscopic equations for magnetostatics read
$\nabla \times B = \nabla \times M/B) + j_{ext}/c$
$\Delta \cdot B = 0$
M(B) needs to be specified and generally gives rise to very non-linear equations

Hard Ferromagnets pg. 2
One case that can be handed is that
of hard ferromagnets where M(x) is
of hard ferromagnets where M(x) is a fixed function of space
j(x) = $\nabla x M(x)$
The boundary conditions still apply, namely
nx (Hout - Hin) = K free/c
N× (H== - H") = 1/free/c
n. (Bow - Bin) = 0
$n_{x}(\vec{m}_{z}-\vec{m}_{z})=\vec{k}_{mat}/c$
2 / Mat /

$$\frac{B}{z} = \frac{M}{(v+z)^2} \frac{(v+z)^2}{v^2} \frac{(v+z^2)^{1/2}}{v^2}$$

Picture

