COMP90042 Web search and text analysis

Workshop Week 6

xudong.han@unimelb.edu.au https://github.com/HanXudong/COMP90042 Workshops

Review

- 1. N-gram model
- 2. Backoff and interpolation

- 1. <s> <s> how much wood would a wood chuck chuck if a wood chuck would chuck wood </s>
- <s> <s> a wood chuck would chuck the wood he could chuck if a wood chuck would chuck wood </s>

<s> <s> a wood chuck would chuck the wood he could chuck if a wood chuck would chuck wood </s></s></s>

$$P(w_1, w_2, \dots, w_m) = \prod_{i=1}^m P(w_i | w_{i-2} | w_{i-1})$$

$$P_{add1}(w_i \mid w_{i-2} \mid w_{i-1}) = \frac{C(w_{i-2} \mid w_{i-1} \mid w_i) + 1}{C(w_{i-2} \mid w_{i-1}) + V}$$

Q3: What does back-off mean, in the context of smoothing a language model? What does interpolation refer to?

- The idea in a Backoff model is to build an Ngram model based on an (N-1) model
- https://en.wikipedia.org/wiki/Katz%27s_back-off_model
- Interpolation: instead of just backing off to the non-zero Ngram, it is possible to take into account all Ngrams.
- Estimate lambdas from held-out dataset.

This workshop

- Words and senses
- Wordnet and lexical semantics
- Distributional semantics and word embedding

Senses

Senses

Senses

•Meronym: Part of a whole

WordNet

WordNet Search - 3.1

- WordNet home page - Glossary - Help

Word to search for: information Search WordNet

Display Options: (Select option to change) ▼ Change

Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations Display options for sense: (gloss) "an example sentence"

Noun

- S: (n) information, info (a message received and understood)
 - <u>direct hyponym</u> I <u>full hyponym</u>
 - <u>direct hypernym</u> / <u>inherited hypernym</u> / <u>sister term</u>
 - S: (n) message, content, subject matter, substance (what a communication that is about something is about)
 - S: (n) communication (something that is communicated by or to or between people or groups)
 - S: (n) <u>abstraction</u>, <u>abstract entity</u> (a general concept formed by extracting common features from specific examples)
 - S: (n) entity (that which is perceived or known or inferred to have its own distinct existence (living or nonliving))
 - derivationally related form
- S: (n) information (knowledge acquired through study or experience or instruction)
- S: (n) information (formal accusation of a crime)
- S: (n) data, information (a collection of facts from which conclusions may be drawn)
 "statistical data"
- S: (n) information, selective information, entropy ((communication theory) a numerical measure of the uncertainty of an outcome) "the signal contained thousands of bits of information"

		entity		
		abstraction		
		communication		
		message		entity
entity	entity	statement	entity	abstraction
abstraction	abstraction	pleading	abstraction	measure
communication	psychological	charge	group	system of meas
message	cognition	accusation	collection	information meas

information

```
entity
                 entity
physical...
                 abstraction...
                psychological...
                                   entity
process...
processing
                cognition...
                                   abstraction...
data process... process...
                                   psychological...
operation
                 basic cog...
                                   event
computer op...
                                   act...
                 memory...
```

retrieval

information is more similar to the word retrieval or the word science

$$WuP_sim(c_1, c_2) = \frac{2 \times depth(LCS(c_1, c_2))}{depth(c_1) + depth(c_2)}$$

		information				
		1	2	3	4	5
retrieval	1	0.154	0.154	0.118	0.154	0.143
	2	0.308	0.615	0.235	0.308	0.286
	3	0.364	0.545	0.267	0.364	0.333

Q4a PMI

	cup	not (cup)	Total
world	55	225	280
not (world)	315	1405	1720
Total	370	1630	2000

$$PMI(x, y) = log_2 \frac{p(x, y)}{p(x)p(y)} = log_2 P(x, y) - log_2 p(x) - log_2 P(y)$$

$$PMI(x, y) = log_2 \frac{p(x, y)}{p(x)p(y)} = log_2 \frac{p(y|x)}{p(y)} = log_2 \frac{p(x|y)}{x}$$

Q6 word to vector

https://skymind.ai/wiki/word2vec

hawthorn

Gaussian Word Embedding

 $f_w(\vec{x}) = \mathcal{N}(\vec{x}; \vec{\mu}_w, \Sigma_w)$ $= \frac{1}{\sqrt{(2\pi)^D |\Sigma_w|}} e^{-\frac{1}{2}(\vec{x} - \mu_w^{-1})^T \Sigma_w^{-1}(\vec{x} - \mu_w^{-1})}$