# Bayesian data analysis: Theory & practice

Part 3a: Categorical predictors & generalized linear models

Michael Franke

# Main learning goals

for this part

- 1. multiple regression w/ categorical predictors
  - a. contrast coding
  - b. derived variables in Bayesian analysis
- 2. generalized linear models
  - a. logistic
  - b. multinomial
  - c. ordinal
- 3. excursion: "beyond GLMs"
  - a. mixture models
  - b. distributional models



# contrast coding

# Some fake data

three-way categorical variable



# Finding numbers for categories

#### metric predictors

| У  | Χo | <b>X</b> 1 | X <sub>2</sub> |
|----|----|------------|----------------|
| 42 | 1  | 4          | 163            |
| 19 | 1  | 7          | 128            |
| 38 | 1  | 2          | 99             |
| •  | •  | •          | •              |

#### categorical predictor

| У  | gender |
|----|--------|
| 51 | M      |
| 59 | F      |
| 73 | D      |
| •  | •      |

#### Treatment coding

comparing against a reference category

| У  | gender | Xo |   |   |
|----|--------|----|---|---|
| 51 | M      | 1  | 0 | 0 |
| 59 | F      |    | 1 | 0 |
| 73 | D      |    | 0 | 1 |
| •  | •      | •  |   | • |

$$\frac{2}{2}$$

$$\hat{\mu}_{M} = \beta_{0}1 + \beta_{1}0 + \beta_{2}0$$

$$\hat{\mu}_{F} = \beta_{0}1 + \beta_{1}1 + \beta_{2}0$$

$$\hat{\mu}_{D} = \beta_{0}1 + \beta_{1}0 + \beta_{2}1$$

$$y_i = \sum_{j=0}^{k} \beta_j x_{ij} + \epsilon_i$$

#### hypotheses

$$\beta_0 = \hat{\mu}_M$$

$$\beta_1 = \hat{\mu}_F - \hat{\mu}_M$$

$$\beta_2 = \hat{\mu}_D - \hat{\mu}_M$$

A STATE OF STATE OF THE STATE O

### Treatment coding

comparing against a reference category

| У  | gender | Χo | <b>X</b> 1 | X <sub>2</sub> |
|----|--------|----|------------|----------------|
| 51 | M      | 1  | 0          | 0              |
| 59 | F      | 1  | 1          | 0              |
| 73 | D      | 1  | 0          | 1              |
| •  | •      | •  | •          | •              |

$$\beta_0 = \hat{\mu}_M$$

$$\beta_1 = \hat{\mu}_F - \hat{\mu}_M$$

$$\beta_2 = \hat{\mu}_D - \hat{\mu}_M$$



# Cell means coding

estimating a mean for each cell

| У  | gender | Χo | X <sub>1</sub> | <b>X</b> <sub>2</sub> |
|----|--------|----|----------------|-----------------------|
| 51 | M      | 1  | 0              | 0                     |
| 59 | F      | 0  | 1              | 0                     |
| 73 | D      | 0  | 0              | 1                     |
| •  | •      | •  | •              | •                     |

$$\beta_0 = \hat{\mu}_M$$

$$\beta_1 = \hat{\mu}_F$$

$$\beta_2 = \hat{\mu}_D$$

$$\mu_{M}=0 \qquad \mu_{F}=0 \qquad \mu_{D}=0$$

### Simple difference coding

estimating a mean for each cell

| У  | gender | Χo | X <sub>1</sub> | X <sub>2</sub>          |
|----|--------|----|----------------|-------------------------|
| 51 | M      | 1  | -2/3           | <b>-1/</b> <sub>3</sub> |
| 59 | F      | 1  | 1/3            | _1/3                    |
| 73 | D      | 1  | 1/3            | 2/3                     |
| •  | •      | •  | •              | •                       |



$$\beta_0 = \bar{\mu}$$

$$\beta_1 = \hat{\mu}_F - \hat{\mu}_M$$

$$\beta_2 = \hat{\mu}_D - \hat{\mu}_F$$

### Sum coding

comparing k-1 cells to the grand mean

| У  | gender | Χo | <b>X</b> 1 | X <sub>2</sub> |
|----|--------|----|------------|----------------|
| 51 | M      | 1  | 1          | 0              |
| 59 | F      | 1  | 0          | 1              |
| 73 | D      | 1  | -1         | -1             |
| •  | •      | •  | •          | •              |



$$\beta_0 = \bar{\mu}$$

$$\beta_1 = \hat{\mu}_M - \bar{\mu}$$

$$\beta_2 = \hat{\mu}_F - \bar{\mu}$$

# Case study: pitch in context

data from Winter & Grawunder (2012)

```
politeness_data <- aida::data_polite
politeness_data %>% head(5)
```

```
## # A tibble: 5 × 5
     subject gender sentence context pitch
    <chr> <chr> <chr>
                            <chr>
                                     <dbl>
## 1 F1
                                     213.
                             pol
## 2 F1
                            inf
                                     204.
                                      285.
                             pol
                                      260.
## 5 F1
                                      204.
                             pol
```



read more <u>here</u>

### Dummy coding for 2x2 design



Interaction term  $\beta_{\text{pol\&male}}$  is a 'difference of differences'

#### Main effects & interactions

in 2x2 designs

Interaction term  $\beta_{\rm pol\&male}$  is a 'difference of differences'



context informal polite

#### Bayesian regression

```
# here, we only use fixed effects
fit_dummy_FE <- brm(
  pitch ~ gender * context,
  data = politeness_df,
  cores = 4,
  iter = 1000
)</pre>
```



#### Population-Level Effects:

|                               | Estimate | Est.Error | l-95% CI | u−95% CI |
|-------------------------------|----------|-----------|----------|----------|
| Intercept                     | 260.56   | 7.87      | 244.15   | 275.21   |
| genderM                       | -116.16  | 11.01     | -137.31  | -94.05   |
| contextpol                    | -27.23   | 11.10     | -48.38   | -5.23    |
| <pre>genderM:contextpol</pre> | 15.77    | 16.05     | -16.54   | 46.24    |

Which questions about cell mean differences can we address with this information directly?



#### **Derived variables**

- obtain samples from model parameters
- apply (deterministic) function to each sample
  - to derive (deterministically) a new model variable
- violà: samples from the posterior of a new "derived variable"





### Roadmap "beyond vanilla"

common extensions of linear regression modeling



# Generalized linear regression models

#### Generalized linear regression model

Coefficients → linear predictor → central tendency → likelihood



#### Simple linear regression

$$\eta_i = \mathbf{x}_i \cdot \boldsymbol{\beta}$$
 [linear predictor]

$$\xi_i = \eta_i$$
 [predictor of central tendency]

$$y_i \sim \text{Normal}(\xi_i, \sigma)$$
 [likelihood]

#### Logistic regression

$$\eta_i = \mathbf{x}_i \cdot \boldsymbol{\beta}$$
 [linear predictor]

$$\xi_i = \text{logistic}(\eta_i)$$
 [predictor of central tendency]

$$y_i \sim \text{Bernoulli}(\xi_i)$$
 [likelihood]

#### Poisson regression

$$\eta_i = \mathbf{x}_i \cdot \boldsymbol{\beta}$$
 [linear predictor]

$$\xi_i = \exp(\eta_i)$$
 [predictor of central tendency]

$$\xi_i = \exp(\eta_i)$$
 [predictor of  $y_i \sim \operatorname{Poisson}(\xi_i)$  [likelihood]

# Generalized linear regression model

Coefficients → linear predictor → central tendency → likelihood



| $\mathbf{type}\ \mathbf{of}\ y$ | (inverse) link function                               | likelihood function                         |
|---------------------------------|-------------------------------------------------------|---------------------------------------------|
| metric                          | $\xi=\eta$                                            | $y \sim \operatorname{Normal}(\xi; \sigma)$ |
| binary                          | $\xi = \operatorname{logistic}(\eta)$                 | $y \sim \mathrm{Bernoulli}(\xi)$            |
| nominal                         | $\xi = \operatorname{soft-max}(\eta)$                 | $y \sim \mathrm{Categorical}(\xi)$          |
| ordinal                         | $\xi = \operatorname{cumulative-logit}(\eta; \delta)$ | $y \sim \mathrm{Categorical}(\xi)$          |
| count                           | $\xi=\exp(\eta)$                                      | $y \sim \mathrm{Poisson}(\xi)$              |

read more <u>here</u>

# The BRMS "family of families"

- link- and likelihood function are set by family parameter in brm function
- requires an object of type `brms:: brmsfamily`
  - many predefined families, listed <u>here</u>
    - instantiated by function calls like cumulative()
    - allow flexible parameterization
    - documentation of parameterization: <u>here</u>
  - creating custom families is possible, see <a href="here">here</a>

```
fit_ordinal <- brm(
  formula = prototype_label ~ MAD,
  data = data_MT_prepped2,
  family = cumulative()
)</pre>
```

# Logistic regression

#### Logistic regression

#### **Definition**

```
\begin{split} \eta_i &= \mathbf{x}_i \cdot \boldsymbol{\beta} & \text{[linear predictor]} \\ \xi_i &= \text{logistic}(\eta_i) & \text{[predictor of central tendency]} \\ y_i &\sim \text{Bernoulli}(\xi_i) & \text{[likelihood]} \end{split}
```

#### Link function: logistic



# Logistic regression Link & inverse link function

#### Link function: logistic



#### "Inverse" link function: logit



#### Logistic regression

#### interpretation

- linear predictor  $\eta$  encodes the log-odds
  - probability of "heads" vs "tails" (1 vs 0)
- unit change of  $\eta$  can be seen as a change in beliefs corresponding to a Bayes factor of ~2.72

$$\eta_1 - \eta_2 = \log \frac{\xi_1}{1 - \xi_1} - \log \frac{\xi_2}{1 - \xi_2} = \log \left( \frac{\xi_1}{1 - \xi_1} \frac{1 - \xi_2}{\xi_2} \right) 
\Leftrightarrow \frac{\xi_1}{1 - \xi_1} = \exp(\eta_1 - \eta_2) \frac{\xi_2}{1 - \xi_2}$$

#### Link function: logistic





# Multinomial regression

#### Multinomial regression

- we want to predict probabilities  $\mathbf{p} = \langle p_1, ..., p_k \rangle$ 
  - ullet  $p_i$  is the prediction for category j probability of
- it suffices to estimate k-1 probabilities
  - probabilities sum to one
  - fix a reference category (similar to treatment coding!)
- (non-normalized) weights  $s_j$  from linear predictors:

$$s_i = \mathbf{x}_i \cdot \beta^j$$

probabilities from soft-max:

$$p_{j} = \frac{\exp s_{j}}{\sum_{j'=1}^{k} \exp s_{j}'}$$

#### Interpretation

- In linear predictor predictor  $s_j$ represents  $\log(p_i/p_1)$
- Think of this as ...

k-1 parallel logistic regressions

```
fit_multinom <- brm(
  formula = prototype_label ~ target_position,
  data = data_MT_prepped,
  family = categorical()
)</pre>
```

#### Multinomial regression

```
fit_multinom <- brm(
  formula = prototype_label ~ target_position,
  data = data_MT_prepped,
  family = categorical()
)</pre>
```



```
Family: categorical
Links: mucurved = logit; muCoM = logit
Formula: prototype_label ~ target_position
  Data: data_MT_prepped (Number of observations: 2052)
  Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
  total post-warmup draws = 4000
```

#### Population-Level Effects:

|                                          | Estimate | Est.Error | l-95% CI | u-95% CI Rhat |
|------------------------------------------|----------|-----------|----------|---------------|
| mucurved_Intercept                       | -1.71    | 0.09      | -1.89    | -1.53 1.00    |
| muCoM_Intercept                          | -1.71    | 0.09      | -1.90    | -1.53 1.00    |
| <pre>mucurved_target_positionright</pre> | -0.44    | 0.14      | -0.72    | -0.16 1.00    |
| <pre>muCoM_target_positionright</pre>    | -0.00    | 0.13      | -0.26    | 0.25 1.00     |
|                                          | Bulk_ESS | Tail_ESS  |          |               |
| mucurved_Intercept                       | 4595     | 3205      |          |               |
| muCoM_Intercept                          | 3696     | 2886      |          |               |
| <pre>mucurved_target_positionright</pre> | 3925     | 3178      |          |               |
| <pre>muCoM_target_positionright</pre>    | 3910     | 3066      |          |               |

Draws were sampled using sampling(NUTS). For each parameter, Bulk\_ESS and Tail\_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

cumulative logit



cumulative logit





$$\begin{split} \eta_i &= \mathbf{x}_i \cdot \boldsymbol{\beta} \\ \xi_i &= \text{cumulative-logit}(\eta_i; \boldsymbol{\delta}) \\ y_i &\sim \text{Categorical}(\xi_i) \end{split}$$

[linear predictor]
[predictor of central tendency]
[likelihood]

cumulative logit

```
fit_ordinal <- brm(
  formula = prototype_label ~ MAD,
  data = data_MT_prepped2,
  family = cumulative()
)</pre>
```

#### Population-Level Effects:

```
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept[1]
                4.05
                          0.18
                                            4.40 1.00
                                                          2216
                                                                   2247
                                   3.71
Intercept[2]
                9.52
                          0.51
                                   8.56
                                          10.54 1.00
                                                          2003
                                                                  1979
                0.02
                          0.00
                                   0.02
                                            0.03 1.00
                                                          2543
                                                                   2514
MAD
```

#### Family Specific Parameters:

```
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS disc 1.00 0.00 1.00 1.00 NA NA NA
```

Draws were sampled using sampling(NUTS). For each parameter, Bulk\_ESS and Tail\_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

cumulative probit



# one happy families

#### Families in BRMS

- list of available families: <u>link</u>
- explanation of available families: <u>link</u>
- how to write you own: link

### finite mixture models

#### Multi-modal response distributions

Two-component data



Treated as one for analysis



Posterior predictive ... failure



#### Mixture models

mixing multiple components in the LH function

Let  $\langle f_1, ..., f_k \rangle$  be k likelihood functions for data Y. The k-mixture model for Y explains the data as a weighted combination, with mixture weights  $\alpha$  (a probability vector). The mixture likelihood function is:

$$f^{\text{MM}}(y_i) = \alpha_{k(i)} f_{k(i)}$$

where k(i) is the mixture component associated with observation i.



#### Gaussian mixture models

in BRMS

```
brms_fit_2e_GMM <- brm(</pre>
 # intercept only model
  formula = y \sim 1,
  data = data_GMM,
 # declare that the likelihood should be a mixture
 family = mixture(gaussian, gaussian),
 # use weakly informative priors on mu
 prior = c(
    prior(normal(12, 10), Intercept, dpar = mu1),
    prior(normal(12, 10), Intercept, dpar = mu2)
```

special syntax for mixture LH

one intercept for each component

#### Gaussian mixture models

in BRMS

#### Population-Level Effects:

| mu1_Intercept | 10.43 | 1.25 | 8.84  | 12.74 |  |
|---------------|-------|------|-------|-------|--|
| mu2_Intercept | 15.56 | 0.80 | 13.28 | 16.66 |  |

means estimated for each component

#### Family Specific Parameters:

Estimate Est.Error l-95% CI u-95% CI

|   |        | Localide | ESCILITO | C 33 0 CI | u 330 CI |  |
|---|--------|----------|----------|-----------|----------|--|
|   | sigma1 | 2.23     | 0.76     | 1.16      | 3.66     |  |
|   | sigma2 | 1.59     | 0.85     | 0.66      | 3.31     |  |
| Ī |        |          |          |           |          |  |
|   | theta1 | 0.54     | 0.16     | 0.18      | 0.88     |  |
|   | theta2 | 0.46     | 0.16     | 0.12      | 0.82     |  |

SDs estimated for each component

estimated weights of each component

#### Zero-inflation models

zeros can be generated by two independent paths

If *f* is a likelihood function for data *y*, the **zero-inflated** likelihood function is:

$$f^{0\inf}(y; \theta, z) = \begin{cases} z + (1 - z) f(y; \theta) & \text{if } y = 0\\ (1 - z) f(y; \theta) & \text{otherwise} \end{cases}$$

both mixture components contribute to likelihood of "zero"

#### Zero-hurdle models

zeros are generated by one independent path

If *f* is a likelihood function for data *y*, the **zero-hurdle** likelihood function is:

$$f^{0\text{hur}}(y; \theta, z) = \begin{cases} z & \text{if } y = 0 \\ (1 - z) \frac{f(y; \theta)}{1 - f(0; \theta)} & \text{otherwise} \end{cases}$$
only one mixture component contributes to likelihood of "zero"; the other is truncated

#### Zero/one-inflation models

zeros and can be generated by independent paths

If *f* is a likelihood function for data *y*, the **zero/one-inflated likelihood function** is:

$$f^{0/1\inf}(y; \theta, \alpha, \beta) = \begin{cases} \alpha \gamma & \text{if } y = 1\\ \alpha (1 - \gamma) & \text{if } y = 0\\ (1 - \alpha) f(y; \theta) & \text{otherwise} \end{cases}$$

#### Hurdle and inflation models in BRMS

as of March 2025

```
hurdle_poisson(link = "log", link_hu = "logit")
hurdle_negbinomial(link = "log", link_shape = "log", link_hu = "logit")
hurdle_gamma(link = "log", link_shape = "log", link_hu = "logit")
hurdle_lognormal(link = "identity", link_sigma = "log", link_hu = "logit")
hurdle_cumulative(
 link = "logit",
  link_hu = "logit",
  link_disc = "log",
  threshold = "flexible"
zero_inflated_beta(link = "logit", link_phi = "log", link_zi = "logit")
zero_one_inflated_beta(
 link = "logit",
 link_phi = "log",
  link_zoi = "logit",
  link_coi = "logit"
zero_inflated_poisson(link = "log", link_zi = "logit")
zero_inflated_negbinomial(link = "log", link_shape = "log", link_zi = "logit")
zero_inflated_binomial(link = "logit", link_zi = "logit")
zero_inflated_beta_binomial(
  link = "logit",
 link_phi = "log",
  link_zi = "logit"
```

## distributional models

#### Distributional models

linear predictors for parameters of the link- and likelihood functions



#### **Normal GLM:**

$$\eta = X\beta$$

$$\theta_{LF}, \theta_{LH} \sim \text{some prior}$$

#### **Distributional GLM:**

$$\eta = X\beta$$

$$\theta_{LF} = F(X'\beta')$$

$$\theta_{LF} = F(X''\beta'')$$



# recap & preparation

#### Recap & preparation

#### ▶ recap

- multiple regression & categorical predictors
- generalized linear regression (& beyond)

#### preparation

- multi-level models
- model comparison
- model criticism