Лабораторная работа №3

студента группы ИТ – 42 Курбатовой Софьи Андреевны

Выполнение:	Защита	
-------------	--------	--

ПОСТРОЕНИЕ ГРАФИКОВ.

Содержание работы

1. Ввела команду: $plot(\sin(x)/x, x = -4*Pi ... 4*Pi, labels = [x, y], labelfont = [TIMES, ITALIC, 12], thickness = 2) для построения графика на рисунке 3.1.$

Рис. 3.1. График функции

Ввела команду $plot(x/(x^2-1), x = -3 ... 3, y = -3 ... 3, color = magenta)$ для построения графика на рисунке 3.2.

Рис. 3.2. График разрывной функции

Ввела команду plot($[\sin(2*t), \cos(3*t), t=0 ... 2*Pi]$, axes = BOXED, color = blue) для построения графика на рисунке 3.3.

Рис. 3.3. График параметрической кривой

Ввела команду plot(1+cos(x), x = 0 ... 2*Pi, title = "Cardioida", coords = polar, color = coral, thickness = 2) для построения графика на рисунке 3.4.

Рис. 3.4. График в полярных координатах

Ввела команду plot([ln(3*x-1), 3*((1/2)*x)-ln(2)], x = 0...6, scaling = CONSTRAINED, color = [violet, gold], linestyle = [1, 2], thickness = [3, 2]) для построения двух графиков на рисунке 3.5.

Рис. 3.5. График функции и касательной к ней

Для построения графика неявной функции представленной на рисунке 3.6. ввела команды: with(plots); implicitplot($(1/4)*x^2-(1/2)*y^2=16$, x=-20...20, y=-16...16, color = green, thickness = 2)

Рис. 3.6. График неявной функции

Для построения астроиды вписанной в эллипс был введен следующий набор команд:

> with(plots);

 $> eq := (1/16)*x^2+(1/4)*y^2 = 1$; el := implicitplot(eq, x = -4 ... 4, y = -2 ... 2, scaling = CONSTRAINED, color = green, thickness = 3);

 $> as1 := 4*cos(t)^3; as2 := 2*sin(t)^3;$

> as := plot([as1, as2, t = 0 .. 2*Pi], color = blue, scaling = CONSTRAINED, thickness = 2);

> eq1 := convert(eq, string);

> t1 := textplot([1.5, 2.5, eq1], font = [TIMES, ITALIC, 10], align = RIGHT);

> t2 := textplot([.2, 2.5, "Ellips:"], font = [TIMES, BOLD, 10], align = RIGHT);

> t3 := textplot([1.8, .4, Astroida], font = [TIMES, BOLD, 10], align = LEFT);

> display([as, el, t1, t2, t3]);

График представлен на рисунке 3.7.

Рис. 3.7. График астроиды вписанной в элипс

Для построения области ограниченной линиями ввела следующие команды: > with(plots);

> inequal($\{x+y>0, y=2, x-y \le 1\}, x=-3 ... 3, y=-3 ... 3, options feasible = (color = red),$ optionsopen = (color = blue, thickness = 2), optionsclosed = (color = green, thickness = 3), optionsexcluded = (color = yellow));

Результат на рисунке 3.8:

Рис. 3.8. График области ограниченной линиями

2. Для построения графика двух поверхностей и получения результата, представленного на рисунке 3.9., ввела следующую команду: $plot3d(\{x*sin(2*y)+y*cos(3*x), sqrt(x^2+y^2)-7\}, x = -Pi ... Pi, y = -Pi ... Pi, grid = [30, 30], axes = FRAMED, color = x+y)$

Рис. 3.9. График двух поверхностей

Для построения поверхности с линиями уровня ввела следующую команду: plot3d($1/(x^2+y^2)+.2/((x+1.2)^2+(y-1.5)^2)+.3/((x-9)^2+(y+1.1)^2)$, x=-2 ... 2, y=-2 ... 2.5, view = [-2 ... 2, -2 ... 2.5, 0 ... 6], grid = [60, 60], shading = NONE, light = [100, 30, 1, 1, 1], axes = NONE, orientation = [65, 20], style = PATCHCONTOUR, color = x+y)

Рис. 3.10. График поверхности с линиями уровня

Для построения примерной формы атомарного облака ввела следующий набор команд. Результаты для l = 1, l = 2, l = 3 представлена на рисунке 3.11, 3.12, 3.13.

- > 1 := 3:
- > P := proc(x, n) options operator, arrow; $(diff((x^2-1)^n, \hat{x}(x, n)))/(2^n *factorial(n))$ end proc;
- $> Y := proc \ (phi) \ options \ operator, \ arrow; \ abs(sqrt((1/4)*(2*l+1)/Pi)*subs(x = cos(phi), \ P(x, \ l)))$ end proc;
 - > X0 := Y(phi)*sin(phi)*cos(theta);
 - > Y0 := Y(phi)*sin(phi)*sin(theta);
 - > Z0 := Y(phi)*cos(phi);
- > plot3d([X0, Y0, Z0], phi = 0 .. Pi, theta = 0 .. 2*Pi, scaling = CONSTRAINED, title = "Электронное облако");

Рис. 3.11. График примерной формы облака при l = 1

Рис. 3.12. График примерной формы облака при l=2

Рис. 3.13. График примерной формы облака при l = 3

Для построения шара на рисунке 3.14 ввела следующие команды: with(plots); implicitplot3d(x^2+y^2+z^2=4, x=-2 .. 2, y=-2 .. 2, z=-2 .. 2, scaling = CONSTRAINED)

Рис. 3.14. График шара

Для построения пространственной кривой ввела следующий набор команд: with(plots); spacecurve([$\sin(t)$, $\cos(t)$, $\exp(t)$], t=1 .. 5, color = blue, thickness = 2, axes = BOXED);

Рис. 3.15. График пространственной кривой

Для того, чтобы осуществить анимацию объекта ввела указанные ниже команды и выполнила действие указанное на рисунке 3.16 (команда Play): with(plots); animate $3d(\cos(t^*x)^*\sin(t^*y), x = -Pi ... Pi, y = -Pi ... Pi, t = 1 ... 2)$

Рис. 3.16. Анимация графика

3. Выполнила контрольные задания. Результаты работы отражены в файле Курбатова_3.mw. Графики представлены на рисунках 3.17, 3.18, 3.19, 3.20.

Рис. 3.17. График функции Бесселя

Рис. 3.18. График функции в полярных координатах

Рис. 3.19. Построение нескольких графиков на рисунке

Рис. 3.20. Построение листа Мебиуса

Рис. 3.21. Лист Мебиуса с изменением координатах на определенном интервале

Ответы на контрольные вопросы

1. С помощью каких команд строятся графики на плоскости и в пространстве? Какие аргументы имеют эти команды?

Для построения графиков функции f(x) одной переменной используется команда plot(f(x), x=a..b, y=c..d, parameters), где parameters — параметры управления изображением.

- **2.** Как называется пакет дополнительных графических команд? plots
- 3. С помощью какой команды можно построить график неявной функции? Опишите ее параметры.

Для построения графика неявной функции используется команда implicitplot из графического пакета plots: implicitplot(F(x,y)=0, x=x1..x2, y=y1..y2).

4. Для чего предназначена команда display?

Для вывода графических изображений.

5. Какая команда позволяет построить двумерную область, заданную системой неравенств?

Для этого можно использовать команду inequal из пакета plots. Параметры регулируют цвета открытых и закрытых границ, цвета внешней и внутренней областей, а также толщину линий границ:

6. С помощью какой команды можно построить график пространственной кривой?

В пакете plot имеется команда spacecurve для построения пространственной кривой, заданной параметрически: x=x(t), y=y(t), x=z(t).

7. Какие возможности предоставляют команды animate и animate3d?

Maple позволяет выводить на экран движущиеся изображения с помощью команд animate (двумерные) и animate3d (трехмерные) из пакета plot. Среди параметров команды animate3d есть frames – число кадров анимации (по умолчанию frames=8).

Вывод: Таким образом в ходе выполнения лабораторной работы было осуществлено знакомство с командами в Марle для рисования графиков функции. Было выяснено, что можно выводить на экран графики построенные не только на плоскости, но и в пространстве. Были получены графики одной и нескольких поверхностей. Результаты работы были представлены в отчете.