Álgebra

Licenciatura em Ciências da Computação/Licenciatura em Matemática - 2° ano

Exercícios - Folha 8 2020/21

49. Sejam A e B anéis e $A \times B = \{(a,b) : a \in A \text{ e } b \in B\}$. Considere em $A \times B$ as operações binárias + e \cdot definidas por:

$$(a,b) + (a',b') = (a+a',b+b')$$
 e $(a,b) \cdot (a',b') = (aa',bb')$,

para todos $a, a' \in A$ e $b, b' \in B$. Prove que:

- (a) O triplo $(A \times B, +, \cdot)$ é um anel;
- (b) O anel $A \times B$ tem identidade se e só se os anéis A e B têm identidade.
- 50. Seja $n \in \mathbb{N}$. Identifique os divisores de zero de \mathbb{Z}_n , para $n \geq 2$.
- 51. Identifique os divisores de zero de $\mathbb{Z}_3 \times \mathbb{Z}_5$ e de $\mathbb{Z}_6 \times \mathbb{Z}_4$.
- 52. Sejam A e B dois domínios de integridade. Justifque que $A \times B$ não é um domínio de integridade.
- 53. Prove que, num anel não nulo com identidade, uma unidade não é divisor de zero.
- 54. Sejam A um anel de característica zero e $a \in A \setminus \{0_A\}$ um elemento de ordem finita. Prove que a é um divisor de zero.
- 55. Prove que, num anel com identidade, um elemento idempotente não nulo e diferente da identidade é um divisor de zero. Conclua que o único idempotente não nulo num domínio de integridade é a sua identidade.
- 56. Prove que um domínio de integridade finito é um corpo.
- 57. Um elemento a de um anel A diz-se *nilpotente* se $a^n = 0_A$, para algum natural n. Mostre que 0_A é o único elemento nilpotente num domínio de integridade A.