

Correction du sujet Math 1(Maths-Physique): Session: Juin 2003

Exercice

1) a) La fonction g est continue sur \mathbb{R} , paire et 2π -périodique, donc $b_n=0, \forall n\in\mathbb{N}^*.$

De plus, un calcul direct donne $a_0 = \frac{\pi^2}{6}$ et $a_n = -\frac{1}{n^2}, \forall n \in \mathbb{N}^*$. $o_1S + 2$ Donc la série de Fourier de g est donnée par:

$$Sg(x) = \frac{\pi^2}{6} - \sum_{n \ge 1} \frac{\cos nx}{n^2}, \text{ pour } x \in \mathbb{R}.$$

b) D'aprés le théorème de Dirichlet, on a pour $x \in [0, 2\pi]$

$$g(x) = \frac{\pi}{2}x - \frac{x^2}{4} = \frac{\pi^2}{6} - \sum_{n \ge 1} \frac{\cos nx}{n^2}. \quad g(n) \qquad 1.5$$
Ce qui donne que pour tout $x \in [0, \pi]$,
$$\frac{\pi^2}{6} - \sum_{n \ge 1} \frac{1 - 2\sin^2 nx}{n^2} = x(\pi - x).$$

4

En remarquant qu' en prenant x=0, on obtient $\frac{\pi^2}{6}=\sum_{n\geq 1}\frac{1}{n^2}$ et par conséquent:

$$\sum_{n\geq 1} \frac{\sin^2 nx}{n^2} = \frac{x(\pi - x)}{2}, \forall x \in [0, \pi].$$

2) D'aprés la question précédente, on a pour $x \in \]0,\pi]\,,$

$$\sum_{n\geq 1} \frac{\sin^2 nx}{n^2 x} = \frac{\pi - x}{2} \le \frac{\pi}{2}.$$

Soit x > 0, alors il existe $k \in \mathbb{N}$ tel que $x \in [k\pi, (k+1)\pi]$. Donc on a:

$$\sum_{n\geq 1} \frac{\sin^2 nx}{n^2 x} \leq \sum_{n\geq 1} \frac{\sin^2 n (x - k\pi)}{n^2 (x - k\pi)} \leq \frac{\pi}{2}.$$

3) a) Soient $p,q \in \mathbb{N}$ tel que p < q et x > 0, alors d'aprés la question précédente on a:

b) Comme $\lim_{n\to+\infty} \alpha_n = 0$, alors $\forall \varepsilon > 0, \exists p \in \mathbb{N}$ tel que $\forall n \geq p$, on a $|\alpha_n| \leq \varepsilon$.

D'où pour q > p, on a: $|U_m(x)| \le \frac{\pi}{2} \sup_{n \ge p} |\alpha_n| \le \frac{\pi}{2} \cdot \varepsilon.$ We say $|\alpha_n| \le \frac{\pi}{2} \cdot \varepsilon.$ Ce qui montre que la série $\sum_{n \ge 1} u_n$ converge uniformément vers une fonction $|\alpha_n| \le \frac{\pi}{2} \cdot \varepsilon.$

continue sur \mathbb{R}^+ .

Maintenant, en remarquant que la fonction u_n est paire, on conclut que la série $\sum_{n\geq 1} u_n$ converge vers une fonction continue sur \mathbb{R} .

Problème

Soit $E = \{ f \in C_b([0, +\infty[, \mathbb{R}) : \forall x > 0; \int_0^{+\infty} \frac{tf(t)}{x^2 + t^2} dt \text{ converge} \}.$ Partie I

- 1) Soient $\varphi(t) = \frac{t}{1+t^2}$, $t \ge 0$ et $\psi(t) = \begin{cases} 1 & \text{si } 0 \le t \le e, \\ \frac{1}{Loct} & \text{si } t > e. \end{cases}$
 - a) On a $\forall t \geq 0$, $0 \leq \varphi(t) \leq \frac{1}{2}$ et φ est continue sur $[0, +\infty[$.

De plus
$$0 \le \int_0^{+\infty} \frac{t\varphi(t)}{x^2 + t^2} dt = \int_0^{+\infty} \frac{t^2}{(1 + t^2)(x^2 + t^2)} dt$$

$$\le \int_0^{+\infty} \frac{1}{(1 + t^2)} dt = \frac{\pi}{2} < +\infty.$$

Donc $\varphi \in E$.

On a pour x > 0 et $x \neq 1$:

$$\frac{u}{(1+u)(x^2+u)} = \frac{1}{(1-x^2)} \frac{1}{(1+u)} + \frac{x^2}{(x^2-1)} \frac{1}{(x^2+u)}.$$
 1,5

Ce qui donne:
$$\int_0^{+\infty} \frac{t\varphi(t)}{(x^2 + t^2)(1 + t^2)} dt = \frac{\pi}{2(x+1)}$$
; si $x \neq 1$.

D'autre part on a :
$$\frac{t^2}{(1+t^2)^2} = \frac{1}{(1+t^2)} - \frac{1}{(1+t^2)^2}$$
.

D'où
$$\int_0^{+\infty} \frac{t^2}{(1+t^2)^2} dt = \frac{\pi}{2} - \int_0^{+\infty} \frac{1}{(1+t^2)^2} dt.$$

En posant
$$t = tg\theta$$
, on obtient $\int_0^{+\infty} \frac{1}{(1+t^2)^2} dt = \int_0^{\frac{\pi}{2}} \cos^2 \theta \ d\theta = \frac{\pi}{4}$. 1

Ce qui donne
$$\int_0^{+\infty} \frac{t^2}{(1+t^2)^2} dt = \frac{\pi}{4}.$$

En somme, on a:
$$\forall x > 0$$
, $\int_0^{+\infty} \frac{t\varphi(t)}{x^2 + t^2} dt = \frac{\pi}{2(x+1)}$.

b) Comme
$$\forall x > 0$$
, $\frac{t\psi(t)}{x^2 + t^2} \sim \frac{1}{tLogt}$ (quand $t \to +\infty$) et
$$\int_{a}^{+\infty} \frac{1}{tLogt} dt = +\infty$$
, alors $\psi \notin E$.

2) Les fonctions e^{-t} , $\sin t$ et $\cos t$ sont continues et bornées sur $[0, +\infty[$. De plus on a: $\forall x > 0$

•
$$\frac{te^{-t}}{x^2+t^2} \sim \frac{e^{-t}}{t} \ (t \longrightarrow +\infty)$$
, donc $\int_0^{+\infty} \frac{te^{-t}}{x^2+t^2} dt$ converge.

Ce qui montre que $t \mapsto e^{-t}$ est dans E.

Ainsi les fonctions $\sin t$ et $\cos t$ sont dans E.

- 3) Soit f une fonction réelle continue sur $[0,+\infty[$ telle que $\lim_{t\to +\infty} f(t)=l\in\mathbb{R}.$
- a) $\lim_{t \to +\infty} f(t) = l \Longrightarrow \exists a > 0 \text{ tq } \forall t \geq a, |f(t)| \leq |l| + 1.$ Comme f est continue sur $[0, +\infty[\Longrightarrow \max_{0 \leq t \leq a} |f(t)|]$ existe et est fini.

Donc $\forall t \geq 0$, $|f(t)| \leq \max_{0 \leq t \leq a} |f(t)| + |l| + 1$.

- b) Supposons que l > 0, alors $\exists \alpha > 0$ tel que $\forall t \geq \alpha$; $f(t) \geq \frac{l}{2}$.
- $\text{Donc } \int_{0}^{+\infty} \frac{t f(t)}{x^2 + t^2} dt \ge \int_{0}^{\alpha} \frac{t f(t)}{x^2 + t^2} dt + \frac{l}{2} \int_{\alpha}^{+\infty} \frac{t}{x^2 + t^2} dt = +\infty.$ $\text{Donc } f \notin E.$
 - Si l < 0, $\lim_{t \to +\infty} (-f(t)) = -l > 0 \Longrightarrow -f \notin E \Longrightarrow f \notin E$.
 - c) Pour le cas l=0, on a:
- $\lim_{t \to +\infty} \varphi(t) = 0 \text{ et } \varphi \in E.$ $\lim_{t \to +\infty} \psi(t) = 0 \text{ et } \psi \notin E.$
 - * Dans la suite pour $f \in E$ et x > 0, on pose $Tf(x) = \int_0^{+\infty} \frac{tf(t)}{x^2 + t^2} dt$.
 - 4) Soit $f \in E$, positive sur $[0, +\infty[$.
 - (1) a) Si $0 < x \le y \Longrightarrow \forall t \ge 0$; $x^2 + t^2 \le y^2 + t^2$

$$\implies 0 \leq \frac{tf(t)}{y^2 + t^2} \leq \frac{tf(t)}{x^2 + t^2} \Longrightarrow Tf(y) \leq Tf(x).$$

Donc Tf est décroissante sur $]0, +\infty[$.

(2)

- b) Puisque $x \mapsto Tf(x)$ est décroissante sur $]0, +\infty[$ 0,5
- $\Longrightarrow \lim_{x\to 0^+} Tf(x) \text{ existe dans } [0,+\infty].$ D'après le théorème de convergence monotone, on a: $\lim_{x\to 0^+} Tf(x) = \lim_{n\to +\infty} Tf(\frac{1}{n}) = \int_0^{+\infty} \lim_{n\to +\infty} \frac{tf(t)}{\frac{1}{n^2} + t^2} dt = \int_0^{+\infty} \frac{f(t)}{t} dt \leq +\infty.$
 - c) De même, $\lim_{x\to +\infty}Tf(x)$ existe et est positive. D'après le théorème de convergence dominée, on a: 0,5

- $\lim_{x \to 0^+} Tf(x) = \lim_{n \to +\infty} Tf(n) = \int_0^{+\infty} \lim_{n \to +\infty} \frac{tf(t)}{n^2 + t^2} dt = 0.$ 2,5 $(\text{car } 0 \leq \frac{tf(t)}{n^2+t^2} \leq \frac{tf(t)}{1+t^2} \ \forall n \geq 1, \forall t \geq 0 \ \text{et} \ Tf(1) < \infty).$
 - 5) Soit $f \in E$. On suppose que $\int_{0}^{+\infty} \frac{f(t)}{t} dt$ converge et qu'il existe deux constantes c > 0 et $\alpha > 0$ telles que pour tout $t \ge 0$; $|f(t)| \le c t^{\alpha}$.
- a) On a $\forall x > 0$; $\int_{0}^{+\infty} \frac{t f(t)}{x^2 + t^2} dt - \int_{0}^{+\infty} \frac{f(t)}{t} dt = \int_{0}^{+\infty} f(t) \left[\frac{t}{x^2 + t^2} - \frac{1}{t} \right] dt$ $= -x^{2} \int_{0}^{+\infty} \frac{f(t)}{(x^{2} + t^{2})t} dt$ $= -\int_{0}^{+\infty} \frac{f(rx)}{r(1 + r^{2})} dr.$ (2,5)

(On pose $t = rx \Longrightarrow dt = xdr$)

b) $\left| \int_{0}^{+\infty} \frac{tf(t)}{x^2 + t^2} dt - \int_{0}^{+\infty} \frac{f(t)}{t} dt \right| \le c \int_{0}^{+\infty} \frac{r^{\alpha} x^{\alpha}}{r(1 + r^2)} dr$ $= c x^{\alpha} \int_{0}^{+\infty} \frac{r^{\alpha - 1}}{(1 + r^2)} dr \xrightarrow[x \to 0^+]{} 0.$ (2,5)

Donc $\lim_{x\to 0^+} Tf(x) = \int_0^{+\infty} \frac{f(t)}{t} dt$.

6) a) Soient
$$x > 0$$
 et $t \ge 0$

$$\left| \frac{\partial}{\partial x} \left(\frac{t}{x^2 + t^2} \right) \right| = \left| \frac{-2xt}{(x^2 + t^2)^2} \right| \le \frac{2xt}{x^2 + t^2} \frac{1}{x^2 + t^2} \le \frac{1}{x^2 + t^2}, \quad 1,5$$

$$(\text{car } 0 \le \frac{2xt}{x^2 + t^2} \le 1).$$

$$\left| \frac{\partial^2}{\partial x^2} \left(\frac{t}{x^2 + t^2} \right) \right| = \frac{2t \left| 3x^2 - t^2 \right|}{(x^2 + t^2)^3} \le \frac{6t(x^2 + t^2)}{(x^2 + t^2)^3}$$

Donc
$$\forall t \ge 0, \forall x > 0$$
, $\left| \frac{\partial^2}{\partial x^2} \left(\frac{t}{x^2 + t^2} \right) \right| \le \frac{6t}{(x^2 + t^2)^2}$.

b) Soit $0 < a \le x \le b < +\infty$. Alors pour $t \ge 0$ et $f \in E$, on a:

$$\left|\frac{\partial}{\partial x}(\frac{t}{x^2+t^2})\right| \leq \frac{1}{a^2+t^2} \text{ et } \left|\frac{\partial^2}{\partial x^2}(\frac{t}{x^2+t^2})\right| \leq \frac{6t}{(a^2+t^2)^2}$$

2

et
$$t \longmapsto \frac{|f(t)|}{a^2 + t^2}$$
; $t \longmapsto \frac{t|f(t)|}{(a^2 + t^2)^2}$ sont intégrables sur $[0, +\infty[$.

Donc $\forall f \in E$, la fonction Tf est de classe C^2 sur $]0, +\infty[$ et on a pour tout x > 0;

$$(Tf)'(x) = -2x \int_0^{+\infty} \frac{tf(t)}{(x^2 + t^2)^2} dt \text{ et } (Tf)''(x) = 2 \int_0^{+\infty} \frac{t(3x^2 - t^2)}{(x^2 + t^2)^3} f(t) dt.$$

c) Soit $M = \sup_{t \ge 0} |f(t)|$. On a pour x > 0:

$$|(Tf)'(x)| \leq 2xM \int_0^{+\infty} \frac{t}{(x^2 + t^2)^2} dt = xM \left[\frac{-1}{x^2 + t^2} \right]_0^{+\infty} = \frac{M}{x}.$$

$$|(Tf)''(x)| \leq 6M \int_0^{+\infty} \frac{t}{(x^2 + t^2)^2} dt = 3M \left[\frac{-1}{x^2 + t^2} \right]_0^{+\infty} = \frac{3M}{x^2}.$$

$$|(Tf)''(x)| \leq 6M \int_0^{+\infty} \frac{t}{(x^2 + t^2)^2} dt = 3M \left[\frac{-1}{x^2 + t^2} \right]_0^{+\infty} = \frac{3M}{x^2}.$$

7) a) Il est facile de vérifier que $\forall (x,t) \neq (0,0)$;

$$\frac{\partial^2}{\partial t^2} (\frac{t}{x^2 + t^2}) = \frac{2t(t^2 - 3x^2)}{(x^2 + t^2)^3} = -\frac{\partial^2}{\partial x^2} (\frac{t}{x^2 + t^2}).$$

b) Soit $f \in E$ telle que f soit de classe C^2 sur $[0, +\infty[$ et $\lim_{t\to +\infty} \frac{f'(t)}{t} = 0$. Soit x>0, on a:

$$\int_{0}^{+\infty} \frac{\partial^{2}}{\partial t^{2}} \left(\frac{t}{x^{2}+t^{2}}\right) f(t) dt = \left[\frac{\partial}{\partial t} \left(\frac{t}{x^{2}+t^{2}}\right) f(t)\right]_{0}^{+\infty} - \int_{0}^{+\infty} \frac{\partial}{\partial t} \left(\frac{t}{x^{2}+t^{2}}\right) f'(t) dt$$

$$= \left[\frac{x^{2}-t^{2}}{(x^{2}+t^{2})^{2}} f(t)\right]_{0}^{+\infty} - \int_{0}^{+\infty} \frac{\partial}{\partial t} \left(\frac{t}{x^{2}+t^{2}}\right) f'(t) dt$$

$$= -\frac{f(0)}{x^{2}} - \int_{0}^{+\infty} \frac{\partial}{\partial t} \left(\frac{t}{x^{2}+t^{2}}\right) f'(t) dt ; \left(\lim_{t \to +\infty} \frac{x^{2}-t^{2}}{(x^{2}+t^{2})^{2}} f(t) = 0 \text{, car } f \text{ est born\'ee}\right)$$

$$= -\frac{f(0)}{x^{2}} - \left[\frac{t}{x^{2}+t^{2}} f'(t)\right]_{0}^{+\infty} + \int_{0}^{+\infty} \frac{t}{x^{2}+t^{2}} f''(t) dt$$

$$= -\frac{f(0)}{x^{2}} + \int_{0}^{+\infty} \frac{t}{x^{2}+t^{2}} f''(t) dt ; \left(\operatorname{car} \left|\frac{t}{x^{2}+t^{2}} f'(t)\right| \le \frac{|f'(t)|}{t} \xrightarrow[t \to +\infty]{0}\right).$$

$$\geq Donc \ \forall x > 0;$$

$$\int_{0}^{+\infty} \frac{\partial^{2}}{\partial t^{2}} \left(\frac{t}{x^{2}+t^{2}}\right) f(t) dt = -\frac{f(0)}{x^{2}} + \int_{0}^{+\infty} \frac{t}{x^{2}+t^{2}} f''(t) dt.$$

c) Comme
$$\frac{\partial^2}{\partial t^2} (\frac{t}{x^2 + t^2}) = -\frac{\partial^2}{\partial x^2} (\frac{t}{x^2 + t^2})$$
, alors $\forall x > 0; \ (Tf)''(x) = \frac{f(0)}{x^2} - \int_0^{+\infty} \frac{t}{x^2 + t^2} f''(t) dt.$

Partie II

- 1) On rappelle que $\int_0^{+\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}$. Soit $f(t) = \sin t$. On pose pour x > 0, $v(x) = T(f)(x) = \int_0^{+\infty} \frac{t \sin t}{x^2 + t^2} dt$.
 - a) On a pour x > 0:

$$v(x) = \left[\frac{-t\cos t}{x^2 + t^2}\right]_0^{+\infty} + \int_0^{+\infty} \frac{x^2 - t^2}{(x^2 + t^2)^2} \cos t \, dt = \int_0^{+\infty} \frac{x^2 - t^2}{(x^2 + t^2)^2} \cos t \, dt.$$

- b) On a $\forall x > 0$.
- $|v(x)| \le \int_0^{+\infty} \frac{1}{(x^2 + t^2)} dt = \frac{\pi}{2x}.$ $\operatorname{Donc} \lim_{x \to +\infty} v(x) = 0.$

		The second secon	Toward .
2	c) Puisque $\int_0^{+\infty} \frac{\sin t}{t} dt$ converge et $ \sin t \le t$, $\forall t \ge 0$. Il s'ensuit d'a (I-5-b), que	près	1
	$\lim_{x \to 0^+} v(x) = \int_0^{+\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}.$		1
(2,5)	d) La fonction $f(t) = \sin t$, est dans E , de classe C^2 sur $[0, +\infty[$ et $\lim_{t \to +\infty} \frac{f'(t)}{t} = \lim_{t \to +\infty} \frac{\cos t}{t} = 0$. Alors d'après (I-7-c), on a pour tout $x > 0$	· 0 :	1
	$(Tf)''(x) = -\int_0^{+\infty} \frac{t}{x^2 + t^2} f''(t) dt.$ C'est à dire		1
	$v''(x) = \int_0^{+\infty} \frac{t}{x^2 + t^2} \sin t dt.$ Donc $\forall x > 0$, $v''(x) - v(x) = 0$.	0,5	
2	e) $\forall x > 0$; $v(x) = ae^x + be^{-x}$, avec $a, b \in \mathbb{R}$. Comme $\lim_{x \to +\infty} v(x) = 0 \Longrightarrow a = 0$	1	
	et $\lim_{x\to 0^+} v(x) = \frac{\pi}{2} \Longrightarrow b = \frac{\pi}{2}$. D'où $\forall x > 0, \ v(x) = \frac{\pi}{2}e^{-x}$.	0,5	_=18
(1,5)	2) On pose $w(x) = \int_{0}^{+\infty} \frac{t}{x^2 + t^2} e^{-t} dt$, pour $x > 0$.		-
	a) Soit $f(t) = e^{-t}$, $t \ge 0$. Alors $f \in E$ et f est positive.	1	
	Donc d'après (I-4-c); $\lim_{x\to +\infty} Tf(x) = \lim_{x\to +\infty} w(x) = 0.$	0,5	
	b) La fonction $f(t) = e^{-t}$, $t \ge 0$, est dans E , de classe C^2 sur $[0, +$	∞ [
	et $\lim_{t \to +\infty} \frac{f'(t)}{t} = 0$. Donc d'après (I-7-c);	1	
(4,5)	$(Tf)''(x) = \frac{1}{x^2} - \int_0^{+\infty} \frac{t}{x^2 + t^2} f''(t) dt., \forall x > 0.$	1	
*:	C'est à dire: $w''(x) + w(x) = \frac{1}{x^2}, \ \forall x > 0.$	c,5	

c) Comme pour tout
$$t > 0$$
, on a $w''(t) + w(t) = \frac{1}{t^2}$, alors pour tout $x > 0$, on obtient
$$\int_{-x}^{+\infty} w(t)dt = \int_{-x}^{+\infty} \frac{1}{t^2}dt - \int_{-x}^{+\infty} w''(t)dt$$

$$= \int_{x}^{1} \frac{1}{t^{2}} dt - \int_{x}^{2} w''(t) dt$$

$$= \frac{1}{x} + w'(x) \quad (\operatorname{car} \lim_{\xi \to +\infty} w'(\xi) = 0 \quad \text{d'après I-6-c})$$

1

1,5

C'est à dire
$$w'(x) = -\frac{1}{x} + \int_{x}^{+\infty} w(t)dt$$
.

d) La fonction
$$w$$
 vérifie (*)
$$\begin{cases} w''(x) + w(x) = \frac{1}{x^2}, & \forall x > 0 \\ \lim_{x \to +\infty} w(x) = 0. \end{cases}$$

Soit u une autre fonction sur $]0, +\infty[$ vérifiant: $\begin{cases} u''(x) + u(x) = \frac{1}{x^2}, \ \forall x > 0 \\ \lim_{x \to +\infty} u(x) = 0, \end{cases}$

alors
$$(u - w) := \rho$$
 vérifie:

$$\begin{cases} \rho'(x) + \rho(x) = 0, & \forall x > 0 \\ \lim_{x \to +\infty} \rho(x) = 0, \end{cases}$$

$$\Longrightarrow \left\{ \begin{array}{l} \rho(x) = a\cos x + b\sin x, \ \forall x > 0 \\ \lim_{x \to +\infty} \rho(x) = 0, \end{array} \right.$$

$$\implies \rho(x) = 0; \ \forall x > 0.$$

C'est à dire u = w.

Donc w est l'unique fonction sur $]0, +\infty[$ vérifiant (*).

e) On a pour tout x > 0;

$$0 < w(x) = \int_0^{+\infty} \frac{t}{x^2 + t^2} e^{-t} dt \le \frac{1}{x^2} \left(\int_0^{+\infty} t e^{-t} dt \right) = \frac{1}{x^2}.$$

Ce qui donne:
$$\forall x > 0, w''(x) = \frac{1}{x^2} - w(x) \ge 0.$$

C'est à dire que w est convexe sur $]0, +\infty[$.

3) a) On a pour x > 0; $0 \le 1 - x^2 w(x) = \int_0^{+\infty} t e^{-t} dt - x^2 \int_0^{+\infty} \frac{t}{x^2 + t^2} e^{-t} dt$ $= \int_0^{+\infty} t e^{-t} (1 - \frac{x^2}{x^2 + t^2}) dt$ $= \int_0^{+\infty} \frac{t^3}{x^2 + t^2} e^{-t} dt$ $\le \frac{1}{x^2} \int_0^{+\infty} t^3 e^{-t} dt = \frac{\Gamma(4)}{x^2} = \frac{6}{x^2} \xrightarrow[x \to +\infty]{} 0.$

Donc $\lim_{x \to +\infty} x^2 w(x) = 1$.

2

b) Pour
$$x > 0$$
, on a
$$w(x) = \int_0^{+\infty} \frac{t}{x^2 + t^2} e^{-t} dt$$

$$= \left[\frac{e^{-t}}{2} Log(x^2 + t^2) \right]_0^{+\infty} + \frac{1}{2} \int_0^{+\infty} e^{-t} Log(x^2 + t^2) dt$$

$$= -Log x + \frac{1}{2} \int_0^{+\infty} e^{-t} Log(x^2 + t^2) dt.$$

c) i) On a pour 0 < x < 1;

$$\left| \frac{w(x)}{Logx} + 1 \right| = \left| \frac{1}{2Logx} \int_0^{+\infty} e^{-t} Log(x^2 + t^2) dt \right|$$

$$\leq \frac{1}{2|Logx|} \int_0^{+\infty} e^{-t} Log(1 + t^2) dt \xrightarrow[x \to 0^+]{} 0.$$

Donc $\lim_{x \to 0^+} \frac{w(x)}{Logx} = -1.$

ii) Soit $0 < a \le x \le b < +\infty$. Alors pour $t \ge 0$, on a:

$$\left| \frac{\partial}{\partial x} (e^{-t} Log(x^2 + t^2)) \right| = \frac{2xe^{-t}}{x^2 + t^2} \le \frac{2be^{-t}}{a^2 + t^2}$$

et $t \longmapsto \frac{e^{-t}}{a^2 + t^2}$ est intégrable sur $[0, +\infty[$.

Donc $x \mapsto F(x) := \int_0^{+\infty} e^{-t} Log(x^2 + t^2) dt$ est dérivable sur $]0, +\infty[$ et

on a pour tout x > 0;

$$F'(x) = 2x \int_{0}^{+\infty} \frac{e^{-t}}{x^2 + t^2} dt$$
$$= 2 \int_{0}^{+\infty} \frac{e^{-rx}}{1 + r^2} dr.$$

(on pose $t = rx \Longrightarrow dt = xdr$).

D'où en utilisant (II-3-b) on déduit que pour tout x > 0

$$w'(x) = -\frac{1}{x} + \frac{1}{2}F'(x) = -\frac{1}{x} + \int_{0}^{+\infty} \frac{e^{-rx}}{1+r^2} dr.$$

d) La fonction w est continue. Puisque $\lim_{x\to 0^+} \frac{w(x)}{Log(x)} = -1$ $\Longrightarrow w$ est intégrable sur]0,1[et $\lim_{x\to +\infty} x^2w(x)=1\Longrightarrow w$ est intégrable

1

sur $[1, +\infty[$.

Donc w est intégrable sur $]0, +\infty[$.

On a d'après (II-2-c) et (II-3-c-(ii))

$$\int_{-x}^{+\infty}w(x)dx=\int_{-0}^{+\infty}\frac{e^{-rx}}{1+r^2}dr\xrightarrow[x\to 0^+]{\pi}\frac{\pi}{2} \text{ (d'après le théorème de convergence monotone)}.$$

Donc $\int_{0}^{+\infty} w(t)dt = \frac{\pi}{2}$.

4) On considère la fonction h définie sur $]0, +\infty[$ par:

$$h(x) = \int_0^{+\infty} \frac{\cos t}{x+t} dt.$$

a) Posons x + t = u, alors on a

$$h(x) = \int_{-x}^{+\infty} \frac{\cos(u-x)}{u} du = \cos x \int_{-x}^{+\infty} \frac{\cos u}{u} du + \sin x \int_{-x}^{+\infty} \frac{\sin u}{u} du.$$

b) Les fonctions $x \longmapsto \cos x$; $x \longmapsto \sin x$; $x \longmapsto \int_{-x}^{+\infty} \frac{\cos u}{u} du$ et $x \longmapsto \int_{-x}^{+\infty} \frac{\sin u}{u} du$ sont de classe $C^2 \sup]0, +\infty[$.

Donc h est de classe C^2 sur $]0, +\infty[$ et on a:

$$h'(x) = -\sin x \int_{-x}^{+\infty} \frac{\cos u}{u} du + \cos x \int_{-x}^{+\infty} \frac{\sin u}{u} du - \frac{1}{x}$$

$$h''(x) = -\cos x \int_{-x}^{+\infty} \frac{\cos u}{u} du - \sin x \int_{-x}^{+\infty} \frac{\sin u}{u} du + \frac{1}{x^2}.$$

C'est à dire: $\forall x > 0$; $h''(x) + h(x) = \frac{1}{x^2}$.

c) $\forall x > 0$;

$$h(x) = \int_0^{+\infty} \frac{\cos t}{x+t} dt$$

$$= \left[\frac{\sin t}{x+t}\right]_0^{+\infty} + \int_0^{+\infty} \frac{\sin t}{(x+t)^2} dt$$

$$= \int_0^{+\infty} \frac{\sin t}{(x+t)^2} dt$$

d) On a
$$\forall x > 0$$
; $|h(x)| \le \int_{0}^{+\infty} \frac{1}{(x+t)^2} dt = \frac{1}{x}$.

D'après (II-2-d), On a :
$$h(x) = w(x)$$
, $\forall x > 0$.

^^^^^^^^^^^