Apresentação de Projeto(Redes/Tmc)

Lhaíslla Cavalcanti

lhaislla@gmail.com

Objetivo

Este projeto tem a finalidade de integrar uma modelagem computacional a uma infraestrutura física(NodeMCU 8266) por meio da rede para que se possam ser realizadas as ações controladas(as luzes de led ligadas ou desligadas).

Objetivo

Simular a integração de dispositivos em IOT, por meio do controle dos dispositivos.

Problemas

Tratamento dos
 eventos pelo
 controlador (presença
 ou ausência dos
 eventos)

integração web service

Problemas

Tratamento dos
 eventos pelo
 controlador (presença
 ou ausência dos
 eventos)

integração web service

Modelagem Computacional

Modelagem Computacional

```
node lamp(c,b:bool) returns(s:int)
         automaton
             state Off do
                 s = 0;
                 unless c or b then On
             state On do
                 s = 1;
                 unless c or b then Off
         end
     tel
     node task(c1,b1:bool) returns (s:int)
15
         s = inlined lamp(c1,b1);
     tel
```

Ferramentas

- Meio físicos:
 - Node MCU ESP8266
- Modelagem Computacional
 - Linguagem BZR
- Protocolo de Rede
 - MQTT

NodeMCU ESP8266

Modelagem Computacional

- Linguagem BZR → heptc
 - Especificação em Z3Z
- Sigali → BZR
 - heptc(controlador)
 - Código C
 - Inserir no gcc → exe

Web Service

- Um sistema de software projetado para suportar a interoperabilidade entre máquinas sobre rede.
- Possibilita aos recursos da aplicação do software a disponibilidade sobre a rede de forma padronizada.
- Pode invocar uma aplicação para efetuar tarefas simples ou complexas mesmo que duas aplicações estejam em diferentes sistemas e escritas em linguagens diferentes.
- Permite que os seus recursos estejam disponíveis para que qualquer aplicação cliente possa operar e extrair os recursos fornecidos pelo web service.

Como funciona o web Service?

• É uma aplicação cliente servidor, o cliente requisita o serviço o servidor envia uma resposta e as informações são trocadas.

O transporte dos dados é realizados via HTTP

MQTT

• Protocolo de rede que possibilita de forma simples a comunicação entre dispositivos.

 Usa a troca de informações entre equipamentos (em que um envia as informações e outro recebe as informações, ou vice-versa)

Como funciona o MQTT?

- **Publish:** Pública a informação no serviço do Broker para que a informação possa ser entregue a um outro dispositivo.
- **Tópicos:** Cada dispositivo tem que ter seu identificador.
- Broker: Fornece o endereço de IP e uma porta de conexão.
- **Subscribe:** assinante, é quem escuta as informações.
- Uma vez que uma informação é publicada, vários dispositivos poderão receber aquela informação assinando os pacotes e os assinantes só irão buscar as assinaturas associadas ao seu tópico.

Web Service(Rest)

- Estilo de arquitetura de redes para sistemas hipermídia distribuídos.
- Adota a arquitetura cliente-servidor da web. O protocolo mais comumente utilizado é o HTTP.
- Baseia-se em três principais princípios :
 - Addressability
 - Uniform interface
 - Statelessness

Como foi feita a implementação?

- Quando o botão for pressionado ele se conectará a uma máquina da mesma rede com o mesmo tópico e assim irá receber as mensagens.
- A informação do botão estará sendo enviada(os pacotes estarão sendo enviados) pela internet para a máquina virtual.
- Um pacote é enviado e conectado ao broker por meio de um tópico, a mensagem de um tópico passa a ser transmitido para os clientes que estão inscritos nesse tópico específico.

- Controle das lâmpadas e aplicação da regra de controle
 - not(lamp1 & lamp2 & lamp3)
- Envio do código c (web service)
- Código C e tratamento dos eventos por meio controlador
- Envio das ações de controle para o meio físico (web service)
- Execução das ações controladas

Arquitetura do Projeto

Arquitetura do Projeto

Pesquisas para execução do projeto

- Quais os possíveis eventos controlados?
- 2. Como ocorrerá a comunicação?
- 3. Como executar a ação no NODEMCU?

Possíveis eventos

Quais serão os casos de tratamento dos eventos?

- Quais as ações para o recebimento do evento controlado?
 - Mudança de estados, com saída de um booleano.
- Quais as ações para a falta do evento controlado ?
 - Mensagem de aviso e nova solicitação dos eventos necessários.
- Tratamento para a aplicação da regra de controle:
 - A regra só deve ser solicitada caso as 3 lâmpadas sejam ligadas

Comunicação

Qual o protocolo utilizado para o envio das informações ?

- Quais as opções de protocolo poderiam ser utilizadas:
 - MQTT
 - Soket
 - HTTP Rest
- Protocolo escolhido:
 - o HTTP Rest :Por ser uma arquitetura que consiste em um conjunto coordenado de restrições aplicadas a componentes, conectores e elementos de dados dentro de um sistema de hipermídia distribuído.Este protocolo ignora os detalhes da implementação de componentes e a sintaxe do protocolo com o objetivo, dando foco nos objetivos dos componentes.

NodeMCU

Qual as ações esperadas na estrutura física?

- Qual evento controlado será realizado no NodeMCU após o recebimento das informações pelo protocolo HTTP Rest?
 - O controle dos leds da placa, respeitando a regra de controle.

Cronograma

Modelagem de 1 lâmpadas	30/09/2019
Modelagem de 3 lâmpadas	02/10/2019
Tratamento dos eventos (Controlador)	07/10/2019
Comunicação(Web service)	18/11/2019

Cronograma

Modelagem de 1 lâmpadas	30/09/2019
Modelagem de 3 lâmpadas	07/10/2019
Tratamento dos eventos (Controlador)	11/10/2019
Publish (Protocolo)	16/10/2019
Subscribe(Protocolo)	25/10/2019
Publish/Subscribe(Integrado)	11/11/2019
Broker MQTT	18/11/2019

Resultados esperados

- Aprendizado da modelagem computacional;
- Simulação de eventos controlados discretos;
- Integração de dispositivos computacionais por meio da rede;
- Aplicação da gestão de dispositivos por meio de um controlador;
- Obtenção de sólidos conceitos para acompanhar a evolução de TI;
- Domínio de protocolos.

Resultados alcançados

- Aprendizado da modelagem computacional;
- Simulação de eventos controlados discretos;
- Integração de dispositivos computacionais por meio da rede;
- Aplicação da gestão de dispositivos por meio de um controlador;
- Obtenção de sólidos conceitos para acompanhar a evolução de TI;
- Domínio de protocolos.

Referências:

- https://medium.com/@renancprata/mqtt-vs-restperspectiva-de-uma-implementa%C3%A7%C3 %A3o-iot-4c7e1f26689c
- https://drive.google.com/file/d/18V2N80F8kuJM BWLedwC06MzJvHjUo-8m/view?usp=sharing
- https://drive.google.com/file/d/0B1nrvbH9mKucL VVOX0VQcGY0Qm8/view?usp=sharing

Repositório Git:

 https://github.com/lhaislla/Topicos-de-modelage m-computacional.git

Obrigada pela atenção!