Name: Roll No.

MA 222: Elementary Number Theory and Algebra

Max. Marks: 10 Quiz- I Max. Time: 50 minutes

 $\mathbb{Z} := \text{the set of integers}, \mathbb{Q} := \text{the set of rational numbers}, \text{ and } \mathbb{R} := \text{the set of real numbers}.$

1. What are the positive integers n such that 11 divides $2^n + 2$? [1]

Answer: $n \equiv 6 \pmod{10}$.

Solution: By Fermat's little theorem, we have $2^{10} \equiv 1 \pmod{11}$. We need to find an n such that $2^n \equiv -2 \pmod{11}$, and note that $2^1 \equiv 2$, $2^2 \equiv 2$, $2^3 \equiv 8$, $2^4 \equiv 5$, $2^5 \equiv 8$ $-1, 2^6 \equiv -2 \pmod{11}$.

For any $k \in \mathbb{N} \cup \{0\}$, $2^{10k+6} = 2^{10k} \cdot 2^6 \equiv 1 \cdot (-2) \pmod{11}$. This implies 11 divides $2^n + 4$ when $n \equiv 6 \pmod{10}$.

[2] 2. For $n \geq 0$, let

$$A_n = 2^{3n} + 3^{6n+2} + 5^{6n+2}.$$

What is the greatest common divisor of the numbers $A_0, A_1, A_2, \ldots, A_{88888}$?

Answer: 7.

Solution: $A_0 = 35$ and gcd of the above numbers will divide A_n for all $n \geq 0$. Therefore, the only possibilities for gcd can be 1, 5, 7, or 35. Also, 5 does not divide A_1 since $A_1 \equiv 4 \pmod{5}$. Thus gcd cannot be equal to 5 or 35.

By Fermat's little theorem, we have $3^6 \equiv 1 \pmod{7}$ and $5^6 \equiv 1 \pmod{7}$. Therefore,

$$A_n \equiv 2^{3n} + 3^2 + 5^2$$

$$\equiv 1 + 6 \equiv 0 \pmod{7}.$$

This implies that 7 divides A_n for all $n \geq 0$ and hence gcd is 7.

[1] 3. What is the remainder of $5 \times 50! + 5!$ when it is divided by 53?

Answer: 38.

Solution: By Wilson's theorem, $52! \equiv -1 \pmod{53}$. Then

$$52 \times 51 \times 50! \equiv -1 \pmod{53}$$

 $(-2) \times (-1) \times 50! \equiv -1 \pmod{53}$
 $50! \equiv -27 \pmod{53}$ $(2 \times 27 = 54 \equiv 1 \pmod{53})$

Now, $5! + (5 \times 50!) = 120 + (5 \times 50!) \equiv 14 - (5 \times 27) \equiv 38 \pmod{53}$.

[1] 4. What is the smallest positive integer x_0 satisfying

$$x_0 \equiv 3 \pmod{5}$$
 and $x_0 \equiv 7 \pmod{13}$?

Answer: 33.

Solution: Here $m_1 = 5$, $m_2 = 13$, $a_1 = 3$, and $a_2 = 7$. Then m = 65. By Chinese remainder theorem, solution is given by

$$x_0 = \frac{m}{m_1} b_1 a_1 + \frac{m}{m_2} b_2 a_2,$$

where $13b_1 \equiv 1 \pmod{5}$ and $5b_2 \equiv 1 \pmod{13}$. We get $b_1 = 2$ and $b_2 = 8$. So, $x_0 = 13 \times 2 \times 3 + 5 \times 8 \times 7 = 358$. The smallest solution is given by 358 (mod 65) = 33.

5. What is the remainder of $7^{493828002}$ when it is divided by 10000? [1] **Answer:** 49.

Solution: By Euler's theorem, $7^{\phi(10^4)} \equiv 1 \pmod{10^4}$, i.e., $7^{4000} \equiv 1 \pmod{10^4}$. Now,

$$7^{493828002} = (7^{4000})^{123457} \cdot 7^2 \equiv 1 \cdot 7^2 \equiv 49 \pmod{10^4}.$$

- 6. For $a, b \in \mathbb{R}$, define $f_{a,b} : \mathbb{R} \to \mathbb{R}$ by $f_{a,b}(x) = ax + b$. Then $G = \{f_{a,b} : a, b \in \mathbb{R}, a \neq 0\}$ is a group under composition of functions.
 - (a) What is the inverse of $f_{1,5}$ in G? [1]

Answer: $f_{1,-5}$ or $f_{1,-5}(x) = x - 5$.

Solution: If $f_{a,b}$ is the inverse of $f_{1,5}$ then $f_{1,5} \circ f_{a,b}(x) = x = f_{a,b} \circ f_{1,5}(x)$, for all $x \in \mathbb{R}$, i.e., $f_{1,5}(ax+b) = ax+b+5=x$, which gives a=1 and b=-5. Hence, $f_{1,-5}$ is the inverse of $f_{1,5}$.

(b) What are the elements of order 2 in G? [1]

Answer: $f_{-1,b}, b \in \mathbb{R}$.

Solution: Let $f_{a,b}^2(x) = x$, for all $x \in \mathbb{R}$. Thus, $f_{a,b}^2(x) = f_{a,b}(ax+b) = a(ax+b) + b = a^2x + ab + b = x$, which implies $a^2 = 1$ and ab = -b. Now, if a = 1 then b = 0, which gives $f_{1,0}$. But it is of order 1. And if a = -1 then b can be any real number. Therefore, for any $b \in \mathbb{R}$, $f_{-1,b}$ is an order 2 element in G.

7. Which of the following group(s) is(are) **not** cyclic? [1]

(A) $(2022\mathbb{Z}, +)$ (B) $(\mathbb{Q}, +)$ (C) $(U(8), \cdot)$ (D) $(U(10), \cdot)$

Answer: (B), (C).

Solution: (A) is cyclic: The group $(2022\mathbb{Z}, +)$ is cyclic with 2022 as a generator since any element of the group is of the form 2022n, for some $n \in \mathbb{Z}$.

- (B) is not cyclic: Suppose $\frac{a}{b}$ is a generator of $(\mathbb{Q}, +)$, where $a, b \in \mathbb{Z}$ and $b \neq 0$. Then we can write $\frac{1}{2b} = n\frac{a}{b}$, for some $n \in \mathbb{Z}$, i.e., $\frac{1}{2} = na$. This is a contradiction since right hand side is an integer whereas left hand side is not.
- (C) is not cyclic: No element in $U(8) = \{1, 3, 5, 7\}$ has order 4.
- (D) is cyclic: In $U(10) = \{1, 3, 7, 9\}$, the order of 3 is 4.
- 8. What are the subsets of \mathbb{Z} which are groups under multiplication? [1] **Answer:** $\{0\}, \{1\}, \{1, -1\}.$