

Knowledge-Aware Meta-learning for Low-Resource Text Classification

Huaxiu Yao¹, Yingxin Wu², Maruan Al-Shedivat⁴, Eric P. Xing^{3,4}

¹Stanford University, ²University of Science and Technology of China ³MBZUAI, ⁴Carnegie Mellon University

Background: Low-resource Text classification

Training data

Test data

Politics

Ireland Votes To Repeal Abortion Amendment In Landslide Referendum

Booyah: Obama Photographer Hilariously Trolls Trump's

Bishop Michael Curry Joins Christian March To White House To 'Reclaim Jesus

Entertainments

Jim Carrey Blasts 'Castrato' Adam Schiff And Democrats In New Artwork

Morgan Freeman 'Devastated' That Sexual Harassment Claims Could Undermine Legacy

By Politics or Entertainments?

Meta-learning

Task \mathcal{T}_i : data \mathcal{D}_i ; support \mathcal{D}_i^s /query set \mathcal{D}_i^q sampled from \mathcal{D}_i

ML model: f with initial parameter θ_0

Supervised Adaptation (MAML) [Finn et al. 2017]

Unsupervised Adaptation (ARM) [Zhang et al. 2021]

Sentence Representation

Task Representation

$$f_{\theta^B}(x_{i,j}^q) \qquad c_i = \frac{1}{N^q} \sum_{j=1}^{N^q} f_{\theta^B}(x_{i,j}^q)$$

BERT parameters

$$\theta_{\star}^{B}, \theta_{\star}^{c} \leftarrow \min_{\theta^{B}, \theta^{c}} \frac{1}{n} \sum_{i} \mathcal{L}(f_{\theta^{B}, \theta^{c}}; \mathcal{D}_{i}^{q}, c_{i})$$

Task-specific parameters

Distribution Shifts between Training and Test Tasks

High-dimensional Distribution

Observation-driven: $f = argmin \frac{1}{n} \sum_{i=1}^{n} l(f(x_i), y_i)$

Training task: "Cool weapons and billion ships in the scene"

Can not generalize well to unseen test tasks.

Test task: "demonstrates the liberty of woman"

How to Connect Training and Testing Tasks?

Knowledges shared by training and testing tasks

Tobacco use -> Heart failure

Observations

Stefan-Boltzmann Law

$$\frac{P}{A} = e\sigma T^4$$

Convection-Diffusion Eqn.

$$rac{\partial c}{\partial t} =
abla \cdot (D
abla c) -
abla \cdot (\mathbf{v}c) + R$$

Physics Rules

Knowledge Graph

Knowledge-aware Meta-learning (KGML)

--- Knowledge Extraction & Representation Learning

Reduce inconnectivity and create rich context

Sentence-specific KG = Extract(KG)

Knowledge-aware Meta-learning (KGML)

--- Knowledge Fusion and Overall Framework

Knowledge-aware Representation

Sentence representation

$$\tilde{f}_{\theta^B}(x_{i,j}) = \mathbf{AGG}_{kf}(f_{\theta^B}(x_{i,j}), g_{i,j})$$

Aggregator

Graph representation

Supervised Adaptation

Unsupervised Adaptation

Empirical Comparison

- Supervised Adaptation
 - Backbone: MAML, Prototypical Network
 - Data
 - Amazon Review classifier the category of each review
 - Huffpost classifier the headlines of News
- Unsupervised Adaptation
 - Backbone: Adaptive Risk Minimization (ARM)
 - Data
 - Twitter federated sentiment classification

Results

Data Shot	. •	l Adaptation Review 5-shot		fpost 5-shot	Unsuper Data User Ratio	vised Adap Twi 0.6	tation itter 1.0
MAML	44.35%	56.94%	39.95%	51.74%	ERM	62.91%	66.05%
ProtoNet	55.32%	73.30%	41.72%	57.53%	UW	63.51%	64.13%
InductNet	45.35%	56.73%	41.35%	55.96%	ARM	60.42%	60.42%
MatchingNet	51.16%	69.89%	41.18%	54.41%	DRNN	63.02%	64.02%
REGRAB	55.07%	72.53%	42.17%	57.66%	-	-	-
KGML-MAML	51.44%	58.81%	44.29%	54.16%	KGML	64.92%	67.00%
KGML-ProtoNet	58.62%	74.55%	42.37%	58.75%	-	-	-

Analysis

Ablation

Ablations	Backbone	Amazon	Huffpost
I. Remove AGG_{kf}	MAML	45.68%	41.55%
	ProtoNet	57.94%	41.71%
II. Remove KNN	MAML ProtoNet	51.07% 57.80%	41.20% 41.91%
KGML	MAML	51.44%	44.29 % 42.37%
KGML	ProtoNet	58.62%	

Robustness w/ different settings

Takeaways & Next

 Bridging training and testing tasks can alleviate the effects of task distribution shifts

 Knowledge graph is a useful domain knowledge to connect training and testing tasks

- What's Next?
 - Apply KGML to more few-shot NLP tasks
 - More complex few-shot scenarios (e.g., heterogeneous tasks)

Thanks

Q & A