STA261 Summer 2018

Quiz 2

July 11th, 2018

First Name: SOLUTIONS.	<u>.</u>				
		•			
Last Name:	85.3	1	;		
Student Number:		 :-,			
This quiz is out of 10 marks. Do ALL of your work on the backrough work, but nothing on the front will be marked, or even a		estions are.	You can use the	front for	
If $X \sim N(\mu, \sigma^2)$ then $E(X) = \mu$ and $Var(X) = \sigma^2$.	$=\sigma^2$.				
If $X \sim Exp(\theta)$, the density is $f_X(x) = rac{1}{\theta} e^{-x/\theta}$ for $\theta > 0, x > 0$).				
BELOW SPACE IS FOR ROUGH WORK NOTHING WRIT	TEN HERE WILL BE RE	AD OR M	ARKED.		

1. (4 marks) Let
$$X \sim N(\mu, \sigma^2)$$
. Show that $s^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \bar{X} \right)^2$, with $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$, is consistent for σ^2

1. (4 marks) Let
$$X \sim N(\mu, \sigma^2)$$
. Show that $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$, with $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$, is consistent for σ^2 .

2. By LLN, $\bar{X} \stackrel{P}{\Longrightarrow} \mu$ and $\bar{X}^2 = \frac{1}{n} \sum_{i=1}^n X_i \stackrel{P}{\Longrightarrow} E(\bar{X}^2) = \sigma^2 + \mu^2$

$$S^2 = \frac{N}{N-1} \times \frac{1}{n} \left(\sum_{i=1}^n N_i - n\bar{X}^2 \right)$$

$$= \frac{n}{n-1} \times \left(\overline{X^2} - m\overline{X}^2\right)$$

$$= \sqrt{2} + \left(m \mu^2 - \mu^2\right)$$

$$= \sqrt{2} + m \mu^2$$

2. (6 marks) Let
$$X \sim Exp(\theta)$$
. Find a Method of Moments estimator for θ .

$$f(x) = \frac{1}{6}e^{-x/6}, \theta > 0, x > 0$$

$$E(x) = \frac{1}{\Theta} \int_{0}^{\infty} xe^{-x/\Theta}$$

Let
$$u = x$$
, $du = dx$, $dv = \frac{1}{\Theta}e^{-x/\Theta}dx$, $V = -e^{-x/\Theta}$

$$= \left(-xe^{-x/\Theta}\right)\Big|_{0}^{\infty} - \int_{0}^{\infty} -e^{-x/\Theta}dx$$

$$= \left(0xe^{-0/\Theta} - \lim_{x\to\infty} xe^{-x/\Theta}\right) - \left(e^{-x/\Theta}\right)^{\infty}$$

$$= \Theta.$$

3 Set
$$E(x) = \bar{x}$$

 $\Rightarrow \hat{\theta} = \bar{x}$