Flat Slab Design (for flexure)- full design includes the punching shear design

Introduction

Analysis methods

A range of methods is available for designing flat slabs and analysing them in flexure at ultimate limit state.

- Elastic Plane Frame Equivalent Frame Method, Annex I
- Tabular method Equivalent Frame Method, Annex I < selected
- Yield line Plastic method of design
- Finite element analysis
 - Elastic method
 - Elasto plastic

This calculator analyse and design flat slab using tabular method. For a small regular frame, the empirical method using tabular moment and shear coefficients. (Eurocode 2, Concise table 15.3 is used)

According to *Concise Tables 15.3*- The web calculator use the tabular method analysis to determine the respective moments and shear forces.

- Suitable for regular grids and spans of similar length
- Design for full load in both directions
- (Suitable for 2-span)

Figure 1 Flat slab

Figure 2 Series of flat slab span in a floor grid

Column strip and middle strip

The width of column strips is the minimum of $(0.5l_x, 0.5l_y)$. The middle strip will become the span length in X and Y direction minus the column strip.

The strips between column strips are middle strips.

Figure 3 Column and middle strip

Design procedure

Design for bending

□ Loading

Safety Factor				
SF for live load; qk	1.25,1.3, 1.4 ,1.5, 1.6			
SF for dead load; gk	1.25, 1.35, 1.4, 1.5 , 1.6			

Design load = Live load * SF,qk + Dead load * SF,gk

where : SF, $_{\mathsf{qk}}$ and SF, $_{\mathsf{gk}}$ are safety factors for live load and dead load respectively.

☐ Effective span

Span,_{eff} =
$$l_y - 2*$$
 column size + 2 * Slab thickness/2

where : ly is a span length in the Y direction.

(It is assumed $l_v > l_x$)

☐ Moment

☐ Sagging moment (In panel)

$$M_{ED,S} = [SF,_{gk} * gk * 0.09 + SF,_{qk} * qk * 0.100] * l_x*(Span,eff)^2$$

where : gk and qk are dead load and live load respectively.

The coefficient 0.09 is 'Moment gk' from the EC concise table.

☐ Hogging moment (Along support)

$$M_{ED,H}$$
 = Design load * 0.106 * l_x *(Span,eff)²

Where:

The coefficient 0.106 is 'Moment qk' from the EC concise table.

☐ Division of moments

Sagging moment (Positive moments) (50% taken in both column and middle strips)

Column strip

 $M_{ED,+ve} = 0.5 * M_{ED,S} / column strip$

Middle strip

 $M_{ED,+ve} = 0.5 * M_{ED,S} / column strip$

Hogging moments (Negative moments) (70% taken in column strip and 30% in middle strip)

Column strip

$$M_{ED,-ve}$$
 = 0.70 * $M_{ED,H}$ / column strip

Middle strip

 $M_{ED.-ve} = 0.30 * M_{ED.H} / column strip$

From analysis, determine design values for Sagging (column strip and middle strip) and Hogging (column strip and middle strip) moments.

- ☐ Effective depth, d:
 - d = Slab thickness concrete cover bar dia/2
- $\hfill \Box$ Determine K for $M_{ED,+ve}$, $M_{ED,+ve}$, $M_{ED,-ve}$, and $M_{ED,-ve}$

$$K = M/(bd^2f_{ck})$$

where : $d = effective depth = D - cover - \emptyset/2$

b = width = Since the moment is per metre, 1 m is taken

 f_{ck} = characteristic compressive strength (MPa)

☐ Determine lever arm, z for every K

$$z = \frac{d}{2} [1 + \sqrt{1 - 3.53 \, K}] \le 0.95 d$$

 \square Steel area A_s for M_{ED,+ve}, M_{ED,+ve}, M_{ED,-ve}, and M_{ED,-ve} with their respective z

$$A_{s} = \frac{M}{f_{vd} * z}$$

where : $f_{yd} = f_{yk}/Y_s = 500/1.15 = 434.8 \text{ MPa}$

 $y_s = Material safety factor$

 f_{yk} = design yield stress

☐ Spacing, c/c: for every section area.

$$s = b * \frac{as_1}{A_s} \le 2 * D \text{ (mm)}$$

where : $as_1 = area of bar$

 A_s = required amount of steel area

D = slab thickness

b = section width= 1000 mm is taken

Annex

Coefficient method, Concise table 15.3

Coefficient	Location						
	Outer support	Near middle of end span	At 1st interior support	At middle of interior spans	At interior supports		
Moment g_k and q_k	25% spana	_	0.094	-	0.075		
Moment g_k	_	0.090	_	0.066	_		
Moment q _k	_	0.100	_	0.086	_		
Shear	0.45	_	0.63:0.55	_	0.50:0.50		

Conditions

- For slabs, 3 or more spans. (They may also be used for 2 span beams but support moment coefficient = 0.106 and internal shear coefficient = 0.63 both sides).
- Generally Qk ≤ Gk , and the loading should be substantially uniformly distributed.
 Otherwise special curtailment of reinforcement is required.
- Minimum span \geq 0.85 x maximum (and design) span.

Basis: All- and alternate-spans-loaded cases as UK National Annex and 15% redistribution at supports.

 At outer support '15% span' relates to the UK Nationally Determined Parameter for BS EN 1992-1-1 Cl 9.3.1.2 for minimum percentage of span bending moment to be assumed at supports in slabs in monolithic construction.

Minimum thickness regulation

Standard fire resistance, R, integrity, E, insulation, I	Minimum dimensions (mm)					
	Slab thickness h.	Axis distance, a (simply supported)			Axis	
		One-way	Two-way		distance, a (continuous)	
			$l_y/l_x \le 1.5$	1.5 < l _y /l _x ≤ 2		
REI 60	80	20	10	15	10	
REI 90	100	30	15	20	15	
REI 120	120	40	20	25	20	
REI 240	175	65	40	50	40	

Reference

https://civiltoday.com/structural-engineering/54-flat-slab-design-and-detailing-pdf

Narayanan, R. and Goodchild, C. (2006). *Concise Eurocode*. 2nd ed. Crowthorne: British Cement Association.