$11a_{152} \ (K11a_{152})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 3.06173 \times 10^{60} u^{58} - 4.84579 \times 10^{60} u^{57} + \dots + 7.53869 \times 10^{60} b - 6.50731 \times 10^{60},$$

$$3.66584 \times 10^{60} u^{58} - 7.89631 \times 10^{60} u^{57} + \dots + 7.53869 \times 10^{60} a - 4.93339 \times 10^{60}, \ u^{59} - 2u^{58} + \dots - 2u + 1$$

$$I_2^u = \langle 3b - 2, \ 3a - 1, \ u - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 60 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle 3.06 \times 10^{60} u^{58} - 4.85 \times 10^{60} u^{57} + \dots + 7.54 \times 10^{60} b - 6.51 \times 10^{60}, \ 3.67 \times 10^{60} u^{58} - 7.90 \times 10^{60} u^{57} + \dots + 7.54 \times 10^{60} a - 4.93 \times 10^{60}, \ u^{59} - 2u^{58} + \dots - 2u + 1 \rangle$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.486270u^{58} + 1.04744u^{57} + \dots - 3.97604u + 0.654410 \\ -0.406136u^{58} + 0.642788u^{57} + \dots + 0.0112412u + 0.863189 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.162396u^{58} - 0.0414876u^{57} + \dots - 0.620453u + 0.289562 \\ 0.264365u^{58} - 0.566519u^{57} + \dots - 0.385454u - 0.631376 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.418108u^{58} + 0.310255u^{57} + \dots - 0.686190u + 0.663142 \\ -0.104972u^{58} + 0.436443u^{57} + \dots - 0.736202u + 0.995922 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.892406u^{58} + 1.69023u^{57} + \dots - 3.96480u + 1.51760 \\ -0.406136u^{58} + 0.642788u^{57} + \dots + 0.0112412u + 0.863189 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.855262u^{58} + 1.72021u^{57} + \dots - 3.82594u + 1.72628 \\ -0.432378u^{58} + 0.672814u^{57} + \dots + 1.00305u + 0.933233 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.0187345u^{58} - 0.208269u^{57} + \dots - 0.169215u - 0.637633 \\ -0.0593368u^{58} + 0.0928833u^{57} + \dots - 1.26241u - 0.102333 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.0187345u^{58} - 0.208269u^{57} + \dots - 0.169215u - 0.637633 \\ -0.0593368u^{58} + 0.0928833u^{57} + \dots - 1.26241u - 0.102333 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $0.834501u^{58} 3.42749u^{57} + \cdots 17.5070u 8.87218$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_5	$u^{59} - 2u^{58} + \dots + 2u - 1$
c_2	$u^{59} + 24u^{58} + \dots - 4u - 1$
c_3, c_4, c_{10}	$u^{59} + 2u^{58} + \dots - 2u - 1$
c_6, c_9	$u^{59} - 2u^{58} + \dots - 32u - 9$
c ₇	$3(3u^{59} + 29u^{58} + \dots + 96336u - 7216)$
<i>c</i> ₈	$3(3u^{59} - 44u^{58} + \dots - 96u - 64)$
c_{11}	$u^{59} - 5u^{58} + \dots + 108u - 18$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1,c_5	$y^{59} + 24y^{58} + \dots - 4y - 1$
c_2	$y^{59} + 16y^{58} + \dots - 76y - 1$
c_3, c_4, c_{10}	$y^{59} + 60y^{58} + \dots - 4y - 1$
c_6, c_9	$y^{59} - 44y^{58} + \dots + 3472y - 81$
C ₇	$9(9y^{59} - 787y^{58} + \dots + 4.57874 \times 10^9y - 5.20707 \times 10^7)$
c ₈	$9(9y^{59} - 424y^{58} + \dots - 148480y - 4096)$
c_{11}	$y^{59} + 9y^{58} + \dots - 6300y - 324$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.772835 + 0.630169I		
a = 0.486457 + 0.408560I	-2.98475 + 11.82370I	0 9.15160I
b = -1.20441 + 0.80693I		
u = 0.772835 - 0.630169I		
a = 0.486457 - 0.408560I	-2.98475 - 11.82370I	0. + 9.15160I
b = -1.20441 - 0.80693I		
u = 0.893809 + 0.462202I		
a = -0.354680 + 0.593555I	-2.42227 - 6.38133I	0
b = -0.839382 - 0.317177I		
u = 0.893809 - 0.462202I		
a = -0.354680 - 0.593555I	-2.42227 + 6.38133I	0
b = -0.839382 + 0.317177I		
u = -0.769320 + 0.665358I		
a = -0.399111 + 0.329878I	-0.73398 - 6.05254I	0
b = 1.017530 + 0.758404I		
u = -0.769320 - 0.665358I		
a = -0.399111 - 0.329878I	-0.73398 + 6.05254I	0
b = 1.017530 - 0.758404I		
u = 0.871014 + 0.643445I		
a = 0.171049 + 0.483786I	-7.08101 + 2.98588I	0
b = -1.045410 + 0.327693I		
u = 0.871014 - 0.643445I		
a = 0.171049 - 0.483786I	-7.08101 - 2.98588I	0
b = -1.045410 - 0.327693I		
u = -1.058830 + 0.406799I		
a = 0.273276 + 0.303483I	0.196305 + 0.379080I	0
b = 0.621331 - 0.083380I		
u = -1.058830 - 0.406799I		
a = 0.273276 - 0.303483I	0.196305 - 0.379080I	0
b = 0.621331 + 0.083380I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.421425 + 0.652253I		
a = -0.229200 - 0.191547I	1.67726 - 2.08783I	6.30981 + 5.41216I
b = 0.073389 + 0.936603I		
u = -0.421425 - 0.652253I		
a = -0.229200 + 0.191547I	1.67726 + 2.08783I	6.30981 - 5.41216I
b = 0.073389 - 0.936603I		
u = 0.538558 + 0.434252I		
a = -1.52889 - 0.28560I	1.09865 + 6.46666I	3.55713 - 8.78536I
b = 0.560561 - 0.856660I		
u = 0.538558 - 0.434252I		
a = -1.52889 + 0.28560I	1.09865 - 6.46666I	3.55713 + 8.78536I
b = 0.560561 + 0.856660I		
u = -0.564831 + 0.382666I		
a = 1.263980 - 0.143409I	2.45484 - 1.46486I	7.14865 + 3.00711I
b = -0.352394 - 0.726889I		
u = -0.564831 - 0.382666I		
a = 1.263980 + 0.143409I	2.45484 + 1.46486I	7.14865 - 3.00711I
b = -0.352394 + 0.726889I		
u = 0.407938 + 0.495194I		
a = 0.234399 - 0.376842I	0.82881 - 3.06030I	4.18689 + 0.59937I
b = 0.290086 + 1.044180I		
u = 0.407938 - 0.495194I		
a = 0.234399 + 0.376842I	0.82881 + 3.06030I	4.18689 - 0.59937I
b = 0.290086 - 1.044180I		
u = -0.133674 + 1.400600I		
a = 1.029390 - 0.297689I	-3.80970 - 2.30389I	0
b = -0.654687 + 0.290826I		
u = -0.133674 - 1.400600I		
a = 1.029390 + 0.297689I	-3.80970 + 2.30389I	0
b = -0.654687 - 0.290826I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape	
u = 0.065188 + 1.410510I			
a = -0.86471 - 1.34195I	-5.12435 - 1.84537I	0	
b = 0.80222 + 1.22589I			
u = 0.065188 - 1.410510I			
a = -0.86471 + 1.34195I	-5.12435 + 1.84537I	0	
b = 0.80222 - 1.22589I			
u = -0.240543 + 0.535915I			
a = 1.08834 - 2.33107I	-3.33182 - 4.55345I	-4.30626 + 8.52736I	
b = -1.011390 + 0.003314I			
u = -0.240543 - 0.535915I			
a = 1.08834 + 2.33107I	-3.33182 + 4.55345I	-4.30626 - 8.52736I	
b = -1.011390 - 0.003314I			
u = 0.01950 + 1.43251I			
a = -6.58810 + 3.57964I	-6.55441 + 2.12552I	0	
b = 6.56362 - 4.27440I			
u = 0.01950 - 1.43251I			
a = -6.58810 - 3.57964I	-6.55441 - 2.12552I	0	
b = 6.56362 + 4.27440I			
u = -0.087504 + 0.546858I			
a = 0.39073 - 2.81411I	-4.10264 + 1.33087I	-6.62416 - 1.43922I	
b = -0.423741 + 0.227336I			
u = -0.087504 - 0.546858I			
a = 0.39073 + 2.81411I	-4.10264 - 1.33087I	-6.62416 + 1.43922I	
b = -0.423741 - 0.227336I			
u = -0.541912	0.000001	44 5000	
a = 0.611273	0.892681	11.5980	
b = -0.123892			
u = 0.356131 + 0.401711I			
a = -0.91403 - 1.19911I	-1.79094 + 1.03849I	-2.00439 - 5.37844I	
b = 0.886772 - 0.315941I			

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.356131 - 0.401711I		
a = -0.91403 + 1.19911I	-1.79094 - 1.03849I	-2.00439 + 5.37844I
b = 0.886772 + 0.315941I		
u = -0.15816 + 1.47252I		
a = 1.59643 + 0.26788I	-3.60110 - 3.99693I	0
b = -0.817080 - 0.366010I		
u = -0.15816 - 1.47252I		
a = 1.59643 - 0.26788I	-3.60110 + 3.99693I	0
b = -0.817080 + 0.366010I		
u = 0.10761 + 1.48343I		
a = -1.90601 - 0.15341I	-7.99699 + 2.70852I	0
b = 1.253580 - 0.326367I		
u = 0.10761 - 1.48343I		
a = -1.90601 + 0.15341I	-7.99699 - 2.70852I	0
b = 1.253580 + 0.326367I		
u = 0.04741 + 1.49720I		
a = -1.53150 - 0.05275I	-8.07186 + 1.71448I	0
b = 1.18789 - 0.84677I		
u = 0.04741 - 1.49720I		
a = -1.53150 + 0.05275I	-8.07186 - 1.71448I	0
b = 1.18789 + 0.84677I		
u = 0.15594 + 1.49285I		
a = -1.83827 + 0.36366I	-5.23405 + 8.92854I	0
b = 0.915367 - 0.530137I		
u = 0.15594 - 1.49285I		
a = -1.83827 - 0.36366I	-5.23405 - 8.92854I	0
b = 0.915367 + 0.530137I		
u = -0.05816 + 1.52227I		
a = 1.62424 - 0.57913I	-10.18440 - 5.57197I	0
b = -1.082160 - 0.473836I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.05816 - 1.52227I		
a = 1.62424 + 0.57913I	-10.18440 + 5.57197I	0
b = -1.082160 + 0.473836I		
u = -0.02356 + 1.52322I		
a = 0.755412 - 0.573027I	-10.99430 + 0.93911I	0
b = -0.529705 - 0.615962I		
u = -0.02356 - 1.52322I		
a = 0.755412 + 0.573027I	-10.99430 - 0.93911I	0
b = -0.529705 + 0.615962I		
u = 0.226157 + 0.399881I		
a = -0.44978 - 1.85794I	-1.71907 + 0.84714I	-1.58416 - 2.44825I
b = 0.880240 - 0.289353I		
u = 0.226157 - 0.399881I		
a = -0.44978 + 1.85794I	-1.71907 - 0.84714I	-1.58416 + 2.44825I
b = 0.880240 + 0.289353I		
u = 0.338130 + 0.233977I		
a = 0.284402 - 0.906149I	-1.34852 + 1.21434I	-0.61490 - 9.36280I
b = 1.53304 + 0.15644I		
u = 0.338130 - 0.233977I		
a = 0.284402 + 0.906149I	-1.34852 - 1.21434I	-0.61490 + 9.36280I
b = 1.53304 - 0.15644I		
u = 0.25843 + 1.57442I		
a = 1.86661 - 0.09363I	-10.2296 + 15.6414I	0
b = -1.66038 + 1.05895I		
u = 0.25843 - 1.57442I		
a = 1.86661 + 0.09363I	-10.2296 - 15.6414I	0
b = -1.66038 - 1.05895I		
u = -0.25542 + 1.58255I		
a = -1.69347 - 0.15977I	-8.11873 - 9.85959I	0
b = 1.51201 + 1.06731I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.25542 - 1.58255I		
a = -1.69347 + 0.15977I	-8.11873 + 9.85959I	0
b = 1.51201 - 1.06731I		
u = 0.27503 + 1.58999I		
a = 1.46114 + 0.16066I	-14.4364 + 7.1649I	0
b = -1.41360 + 0.76345I		
u = 0.27503 - 1.58999I		
a = 1.46114 - 0.16066I	-14.4364 - 7.1649I	0
b = -1.41360 - 0.76345I		
u = -0.359471 + 0.100084I		
a = -0.622900 - 0.492336I	-2.01075 + 2.52108I	10.02369 + 7.46616I
b = -2.26496 + 0.09975I		
u = -0.359471 - 0.100084I		
a = -0.622900 + 0.492336I	-2.01075 - 2.52108I	10.02369 - 7.46616I
b = -2.26496 - 0.09975I		
u = 0.34658 + 1.62518I		
a = 0.678378 + 0.241908I	-9.14972 - 1.51752I	0
b = -0.828238 + 0.485899I		
u = 0.34658 - 1.62518I		
a = 0.678378 - 0.241908I	-9.14972 + 1.51752I	0
b = -0.828238 - 0.485899I		
u = -0.27841 + 1.64508I		
a = -0.922544 - 0.098475I	-7.26563 - 4.89851I	0
b = 0.925175 + 0.826150I		
u = -0.27841 - 1.64508I		
a = -0.922544 + 0.098475I	-7.26563 + 4.89851I	0
b = 0.925175 - 0.826150I		

II.
$$I_2^u=\langle 3b-2,\ 3a-1,\ u-1 \rangle$$

(i) Arc colorings

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0.333333\\ 0.666667 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1\\ 0.666667 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1\\ 1.66667 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -7.11111

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_9, c_{10}	u+1
$c_2, c_3, c_4 \ c_5, c_6$	u-1
c_7	3(3u+2)
<i>c</i> ₈	3(3u+1)
c_{11}	u

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_9, c_{10}	y-1
	9(9y-4)
c_8	9(9y-1)
c_{11}	y

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 0.333333	0	-7.11110
b = 0.666667		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u+1)(u^{59}-2u^{58}+\cdots+2u-1)$
c_2	$(u-1)(u^{59} + 24u^{58} + \dots - 4u - 1)$
c_3, c_4	$(u-1)(u^{59} + 2u^{58} + \dots - 2u - 1)$
<i>c</i> ₅	$(u-1)(u^{59}-2u^{58}+\cdots+2u-1)$
c_6	$(u-1)(u^{59}-2u^{58}+\cdots-32u-9)$
c_7	$9(3u+2)(3u^{59}+29u^{58}+\cdots+96336u-7216)$
c ₈	$9(3u+1)(3u^{59} - 44u^{58} + \dots - 96u - 64)$
<i>c</i> ₉	$(u+1)(u^{59}-2u^{58}+\cdots-32u-9)$
c_{10}	$(u+1)(u^{59}+2u^{58}+\cdots-2u-1)$
c_{11}	$u(u^{59} - 5u^{58} + \dots + 108u - 18)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_5	$(y-1)(y^{59}+24y^{58}+\cdots-4y-1)$
c_2	$(y-1)(y^{59}+16y^{58}+\cdots-76y-1)$
c_3, c_4, c_{10}	$(y-1)(y^{59}+60y^{58}+\cdots-4y-1)$
c_{6}, c_{9}	$(y-1)(y^{59} - 44y^{58} + \dots + 3472y - 81)$
c ₇	$81(9y - 4)(9y^{59} - 787y^{58} + \dots + 4.57874 \times 10^9y - 5.20707 \times 10^7)$
c ₈	$81(9y-1)(9y^{59} - 424y^{58} + \dots - 148480y - 4096)$
c_{11}	$y(y^{59} + 9y^{58} + \dots - 6300y - 324)$