

Computer Networks

Lecturer: ZHANG Ying

Fall semester 2022

Copyright reserved. No further distribution or posted on Web.

Chapter 1: Introduction

Network Edge

- Devices
 - end systems/hosts
- Access network:
 - end systems to edge router
- Physical media
 - Guided media
 - Unguided media

Physical media – the journey of a "bit"

- Bits travels through multiple sender-receiver pairs from source to destination.
- Each pair via own physical media
- Various medias may exist.

Physical media

physical link: lies between transmitter & receiver

Twisted-Pair Copper Wire

- most commonly-used physical media
- support both digital & analog signal

Unshielded twisted pair cable/ UTP

Outer jacket:

protect the copper wire from physical damage

Twisted-pair:

protect the signal from interference

Color-coded plastic insulation:

electrically isolated wires from each other and identifies each pair

Category 3 UTP & Category 5 UTP

(a) Category 3 UTP.

(b) Category 5 UTP.

Coaxial-Cable

- Special insulation and shielding to well block the signal interference.
- coaxial cable can have higher bit rates than twisted pair.

baseband & broadband coaxial cable

Two common categories

- 50-ohm cable/baseband
 - LAN
 - digital transmission
- 75-ohm cable/broadband
 - cable television systems
 - analog transmission

Fiber Optics

- optical fiber: light pulse represents a bit
- low signal attenuation up to 100 kilometers Preferred long distance transmission media
- But with high cost

Working of Optical Fiber

Working of Optical Fiber

Terrestrial Radio

- carry signal carried in electromagnetic spectrum
- no physical "wire"
- LAN (e.g., WiFi)
 - 54 Mbps
- wide-area (e.g., cellular)
 - 4G cellular: ~ 10 Mbps

Satellite Radio Channels

satellite

- Bandwidth
- end-end delay
- Geostationary vs Low altitude satellite

Outline

1	what is the Internet
2	network edge
3	network core:
	packet switching, circuit switching, message switching
4	delay, loss, throughput in networks
5	protocol layers, service models
6	history

Network core

- Network core/ backbone network is the mesh of routers that interconnect the Internet's end-systems
- Build via:
 - Circuit switching
 - Packet switching
 - (message switching)

How to connect two phones?

Use a single telephone cable to connect 2 phones

How to connect 5 phones?

10 cables to connect 5 phones

How to connect N phones?

N(N−1)/2 cables to connect N phones A huge number!

How to connect N phones efficiently?

Use a switch! – this is named as "circuit switching"

About switching

- Switching: transfer one phone line to another so that they are connected
- allocate the resources of the transmission line

Circuit switching – a quick view

- □ Circuit switching establishes a dedicated channel or circuit before users can speak to each other on a call.
- A channel used in circuit switching is kept reserved at all times and is used once the two users communicate

Circuit switching: connection-oriented networks

- Circuit switching is connection-oriented
- Three phases
 - 1 Establish circuit from end-to-end
 - 2 Transfer/communi cate
 - 3 Disconnect/close circuit

Circuit switching

 end-end resources allocated to, reserved for "call" between source & destination:

Example: each link/segment has four circuits. A wants to send to B via 2nd circuit on link-1 & 4th circuit on link-2

Link: 1Mbps = 1000 kbps 1/4Mbps = 250kbps

- ☐ Each circuit get 250kbps, ¼ link bandwidth
- □ circuit segment wasted if not used by call (no sharing)

How to create multiple circuits on a link?

• Multiplexing: a method combines multiple analog or digital signals into one signal over a shared medium.

Circuit switching: FDM

- Frequency Division multiplexing
- The frequency is divided into multi-bands
- Each user carry one frequency band

Applications of FDM

- Television broadcasting
- FM and AM radio broadcasting
- First generation cellular phones

Circuit switching: TDM

- Time Division Multiplexing
- The time is divided into multiple frames.
- Each frame is divided into multiple time slots

TDM frame

• The slots are allocated in a fixed order to the different incoming channels.

Problems with TDM

bandwidth wastage in case of e.g.,

- slot reservation for station without any data to transmit
- uneven distribution of traffic

Statistical TDM: An improvement from TDM

- Designed to make use of the free time slots
- Time slots used as needed
- But more complex to implement

TAKEAWAYS

- Physical Media
 - Guided media
 - Unguided media

- Circuit Switching
 - Basic principles
 - Multiplexing