经济学原理第一次作业

1.

(偏好与选择)已知张三的效用函数为 $U=X^{\alpha}+Y^{\alpha}$,参数 $\alpha>0$ 。求 X=10,Y=5 时的边际替代率 MRS_{XY} 。

由定义。

$$MRS_{XY} = rac{\partial U/\partial X}{\partial U/\partial Y} = rac{lpha 10^{lpha - 1}}{lpha 5^{lpha - 1}} = 2^{lpha - 1}$$

2.

(交换、分工与货币) 荒岛上只有鲁滨逊和星期五两个人,他们可以通过劳动摘到椰子或者捕鱼。假定鲁滨逊只捕鱼的话每天最多能捕 10 条鱼,只摘椰子的话最多能摘 5 个。星期五只捕鱼的话每天最多能捕 8 条鱼,只摘椰子的话最多能摘 12 个。(假设两人的生产可能性边界都是线性的,且鱼和椰子树都是整数,即鲁滨逊少捕 2 条鱼就可以多摘 1 个椰子,而星期五少捕 2 条鱼就可以多摘 3 个椰子)。

两人的效用函数分别如下: 假设X为鱼的数量, Y为椰子的数量,

鲁滨逊的效用函数为: U = X + 1.6Y

星期五的效用函数为: U = XY

(1)

假设两人无法进行交易,此时求他们每个人的最优选择。(注意 X, Y 都只能取整数)。

计算可得, 鲁滨逊的生产可能性边界上的效用函数 U 的值为:

Х	Υ	U = X + 1.6Y
10	0	10(此时最大)
8	1	9.6
6	2	9.2
4	3	8.8
2	4	8.4
0	5	8

星期五的生产可能性边界上的效用函数 U 的值为:

Х	Υ	Z = XY
8	0	0
7	1	7
6	3	18
5	4	20
4	6	24(此时最大)
3	7	21
2	9	18
1	10	10
0	12	0

因此,鲁滨逊的最优选择是 (X,Y)=(10,0),星期五的最优选择是 (X,Y)=(4,6) (X) 鱼的数量,Y为椰子的数量)。

(2)

假设两人在劳动时选择了(1)中的最优选择,然后两人碰头进行交易。求可能的交易结果以及此时椰子和鱼的价格。(假设只有两个人在交易后的效用都严格大于交易前的效用,此时交易才会发生。)(此处价格指的是鱼和椰子的相对价格。)

假设交易过后,鲁滨逊的 $(X',Y')=(10-\Delta X,0+\Delta Y)$, 星期五的 $(X',Y')=(4+\Delta X,6-\Delta Y)$,则 $\Delta X,\Delta Y$ 为正整数,且需要满足:

$$egin{cases} -\Delta X + 1.6\Delta Y > 0 \ (4 + \Delta X)(6 - \Delta Y) > 24 \end{cases}$$

考虑其函数图像的相交部分:

解得 $(\Delta X, \Delta Y) = (1, 1)$ 或(3, 2)。

所以,可能的交易结果为:

- 1. 鲁滨逊用1个鱼换了1个椰子。此时的相对价格(鱼/椰子)为1。
- 2. 鲁滨逊用 3 个鱼换了 2 个椰子。此时的相对价格(鱼/椰子)为 1.5 。

(3)

假设两人在劳动时选择了(1)中的最优选择,此时岛上又来了罗宾斯,他愿意以 1:1 的比例交易鱼和椰子(数量不限)。求鲁滨逊和星期五此时的最优选择。

此时,设最后鲁滨逊的组合为 (X_1,Y_1) ,星期五的组合为 (X_2,Y_2) 。

假设鲁滨逊和星期五不进行交易。

考虑鲁滨逊的决策。他在 $\Delta X+\Delta Y=0$ 的前提下,要最大化 X+1.6Y。换句话说,要最大化 $\Delta X+1.6\Delta Y=0.6\Delta Y$ 。很明显,鲁滨逊只需要最大化 ΔY 即可。此时他的最优选择为 $(X_1,Y_1)=(0,10)$ 。

考虑星期五的决策。他在 $\Delta X + \Delta Y = 0$ 的前提下,要最大化

$$(4 + \Delta X)(6 + \Delta Y) - 24 = 2\Delta X - \Delta X^2 = 1 - (1 - \Delta X)^2$$

此时当 $\Delta X > 0$ 时有【略,原因见下】

作业第2题的第3小问因为题目出的有些歧义,所以第3小问就不用写了

——助教

3.

(消费者选择与需求曲线)假设一个双人间宿舍住着 A、B 两个同学,面对两种商品:辣条(用 x 表示)和可乐(用 y 表示)。A 同学的效用函数为 $U_A=\min(\frac{x}{2},y)$,这一效用函数形式被称作 Leontief 效用函数,此时两种商品对 A 来说是完全互补关系。B 同学的效用函数为线性形式 $U_B=x+2y$,此时两种商品对 B 来说是完全替代关系

为了理解完全替代和完全互补的含义,请考虑以下场景:

(1)

假设 A 同学拿着 10 元钱去超市买辣条和可乐,辣条的市场价格 $p_x=1$,可乐的市场价格 $p_y=3$,假设 A 同学想让自己的效用最大,则 A 同学最终购买辣条和可乐的量是多少?

显然,当 $xp_x+yp_y\leq 10$ 时,由 $p_x,p_y>0$ 可知,当 U_A 最大时, $U_A=\min(\frac{x}{2},y)=\frac{x}{2}=y$:解

$$\left\{ egin{aligned} xp_x + yp_y = 10 \ rac{x}{2} = y \end{aligned}
ight.$$

得 (x,y)=(4,2)。

(2)

将(1)中的 A 同学换成 B 同学, B 同学最终购买辣条和可乐的量是多少?

相当于求 $x + 3y \le 10$ 时 $U_B = x + 2y$ 的最大值。

$$U_B = x + 2y = (x + 3y) - y \le 10 - y \le 10$$

等号当 y = 0, x = 10 时取到。

(3)

(交换、分工与货币)假设 A、B 两个人在宿舍里屯了 20 袋辣条和 10 瓶可乐,除此之外没有别的食物。一天深夜里,A、B 两人都饥肠辘辘,与此同时,宿舍深夜门禁导致他们不能出门买其他食物。因此理性的他们只能分配这些现有的辣条和可乐(Hint:可以用埃奇沃思盒分析下面的题目)。

(3) 假设 A 拥有 8 袋辣条、4 瓶可乐,剩下都由 B 拥有,如果双方可以交换,且不存在任何的交易成本,则理性的 A、B 二人交换后,A 拥有多少辣条和可乐?

由题意, $(x_A, y_A) = (8, 4)$, $(x_B, y_B) = (12, 6)$:

如图,显然任何使 U_A 增加的交易都会使得 U_B 减小,反之亦然。

所以,交换后,
$$(x'_A, y'_A) = (x_A, y_A) = (8, 4), (x'_B, y'_B) = (x_B, y_B) = (12, 6).$$

另外,也可以用数学语言进行证明。

因为 A、B 都理性,所以在交易后的 $U_A' \geq U_A$,因为开始时 $x_A = \frac{y_A}{2}$,故 $x_A' - x_A \geq 0, y_A' - y_A \geq 0$ 。

又因为 B 理性,故 $U_B' \geq U_B$,即 $(x_B' - x_B) + (y_B' - y_B) \geq 0$ 。

又因为交易在两者之间进行,所以 $(x_A'-x_A)=-(x_B'-x_B),\;(y_A'-y_A)=-(y_B'-y_B).$

所以,有

$$0 \leq (x_B' - x_B) + (y_B' - y_B) = -(x_A' - x_A) - (y_B' - y_B) \leq 0$$

因此,交换后, $(x'_A, y'_A) = (x_A, y_A) = (8, 4), (x'_B, y'_B) = (x_B, y_B) = (12, 6).$

(4)

假设 A 拥有 8 袋辣条、6 瓶可乐,剩下都由 B 拥有,如果双方可以交 换,且不存在任何的交易成本,最终理性的 A、B 二人交换后,A 可能拥有多少辣条和可乐?(Hint:最终答案是一个区间)

显然,A 最后拥有的 (x_A',y_A') 满足 $\frac{x_A'}{2}=y_A'$ 。否则,,因为 A 是理性的,A 可以把多余的东西和 B 进行交换,甚至送给 B,这对 A 并没有损失。

因此,设 A 最后拥有的 $(x_A',y_A')=(2a,a)$ 。

由 $U_A' \geq U_A, U_B' \geq U_B$ 知:

$$egin{cases} U_A' = a \geq 4 \ U_B' = (20-2a) + 2(10-a) = 40 - 4a \geq U_B = 20 \end{cases}$$

解得 4 < a < 5。

因此,A 可能拥有的 $(x_A',y_A')\in\{(x,y)\mid x=2y,y\in[4,5]\}$ 。B 可能拥有的 $(x_B',y_B')\in\{(x,y)\mid x=2y,y\in[5,6]\}$ 。

4.

(消费者选择与需求曲线)小余前往商店购买两种商品。假设他的总收入为m,两种商品的价格分别为 p_1,p_2 ,而他的购买量分别为 x_1,x_2 ,其效用函数为: $U(x_1,x_2)=x_1+\ln x_2$

(1)

写出他面临的预算约束、消费最优化条件

预算约束为:

$$p_1x_1 + p_2x_2 \le m$$

消费最优化条件为:

$$rac{\partial U(x_1,x_2)/\partial x_1}{\partial U(x_1,x_2)/\partial x_2}rac{\mathrm{d}x_1}{\mathrm{d}x_2}=-1$$
,否则 $x_1=0$ 或 $x_2=0$

其中 $\mathrm{d}x_1/\mathrm{d}x_2$ 表示 $p_1x_1+p_2x_2=m$ 的隐函数导数,它的值为 $-\frac{p_2}{p_1}$ 。

解得条件为:

1. 当
$$m \geq p_1$$
时 $x_2 = rac{p_1}{p_2}, x_1 = rac{m}{p_1} - 1$

2. 当
$$m < p_1$$
时 $x_1 = 0, x_2 = \frac{m}{p_2}$ 。

(2)

(以下两问不考虑角点解,即小余购买的最优产品组合总是满足 x_1 、 x_2 均为正)

(2) 当商品 2 涨价 10%后,小余对 2 种商品的购买量如何变化?收入效应、替代效应对 x_2 的分别作用?

由题意, $p_2' = 1.1p_2$

因为不考虑角点解,所以 $x_2'=rac{p_1'}{p_2'}=rac{10}{11}rac{p_1}{p_2}=rac{10}{11}x_2$ 。

故商品 1 的购买量增加了 $\frac{1}{11}$,商品 2 的购买量减少了 $\frac{1}{11} \frac{p_1}{p_2}$ 。

因为收入变化不影响价格 p_1,p_2 , 所以不影响 $x_2=rac{p_1}{p_2}$, 因此**收入效应为零**。

替代效应相当于考虑当等效用曲线 $x_1+\ln x_2=U$ 固定时, x_2 如何随该曲线的隐函数 $\frac{\mathrm{d}x_1}{\mathrm{d}x_2}$ 变化。

计算得

$$\frac{\mathrm{d}x_1}{\mathrm{d}x_2} = -\frac{1}{x_2}$$

知,当商品 2 相对价格下降,即 $\frac{\mathrm{d}x_1}{\mathrm{d}x_2}$ 上升时, x_2 上升。——**这是替代效应**。

(3)

写出小余选择的商品 1 最优购买量 x_1^st (Hint: x_1 是有关 m,p_1,p_2 的函数)

因为不考虑角点解,由(1)知:

$$x_1^* = \frac{m}{p_1} - 1$$