Computer Networks and Internets

《计算机网络与因特网》课件

林坤辉

PART IV Internetworking

Chapter 21 IP: Internet Protocol addresses

IP: 互联网协议地址

21.2 Addresses for the Virtual Internet 虚拟互联网地址

- The goal of internetworking is to provide a seamless(无缝) communication system.
- Internet protocol software must hide the details of physical networks and offer the facilities of a large virtual network.
- An internet is merely an abstraction imagined by its designers and created entirely by software.

- To give the appearance of a single, uniform system, all host computers must use a uniform addressing scheme, and each address must be unique.
- To guarantee uniform addressing for all hosts, protocol software defines an addressing scheme that is independent of the underlying physical addresses.

- Users, application programs, and higher layers of protocol software use the abstract protocol addresses to communication.
- The designers are free to choose addresses, packet formats, and delivery techniques independent of the details of the physical hardware.

21.3 The IP Addressing Scheme IP编址方案

- In the TCP/IP protocol stack, addressing is specified by the Internet Protocol(IP).
- Each host is assigned a unique 32-bit number known as the host's Internet Protocol address(or IP address).
- To transmit information across a TCP/IP internet, a computer must know the IP address of the remote computer to which the information is being sent.

21.4 The IP Address Hierarchy IP地址层次

- Each 32-bit IP address is divided into two parts: a prefix and suffix.
- The address prefix identifies the physical network to which the computer is attached.
- The suffix identifies an individual computer on that network.

- Each physical network in an internet is assigned a unique value known as a network number.
- Network number assignments must be coordinated globally.
- Each computer on a given physical network is assigned a unique address suffix.
- suffixes can be assigned locally without global coordination.

21.5 Original Classes of IP Addresses IP地址分类

bits	01234	8	16	24 31
Class A	0 prefix		suffix	
		•		
Class B	10	prefix	su	ffix
		•		
Class C	1 1 0	prefix	X	suffix
Class D	1110	multicast address		

reserved for future use

Class E

21.6 Computing The Class of An Address 地址类别的计算

- Whenever it handles a packet, IP software needs to separate the destination address into a prefix and suffix.
- Classful IP addresses were called self identifying(自标识的)

First Four	Table Index	Class of
Bits Of Address	(in decimal)	Address
0000	0	A
0001	1	A
0010	2	Α
0011	3	A
0100	4	A
0101	5	A
0110	6	A
0111	7	A
1000	8	В
1001	9	В
1010	10	В
1011	11	В
1100	12	С
1101	13	С
1110	14	D
1111	15	E

21.7 Classes and Dotted Decimal Notation 类别和点分十进制表示法

32-bit Binary Number			Equivalent Dotted Decimal	
10000001	00110100	00000110	00000000	129 . 52 . 6 . 0
11000000	00000101	00110000	00000011	192 . 5 . 48 . 3
00001010	00000010	00000000	00100101	10.2.0.37
10000000	00001010	00000010	00000011	128 . 10 . 2 . 3
10000000	10000000	11111111	00000000	128 . 128 . 255 . 0

Class	Range of Values	
Α	0 through 127	
В	128 through 191	
С	192 through 223	
D	224 through 239	
E	240 through 255	

21.9 Division of the Address Space 地址空间的划分

Address Class	Bits In Prefix	Maximum Number of Networks	Bits In Suffix	Maximum Number Of Hosts Per Network
Α	7	128	24	16777216
В	14	16384	16	65536
С	21	2097152	8	256

21.11 A Classful Addressing Example

21.12 Subnet and Classless Addressing

- Address mask or subnet mask specify the boundary the network prefix and the suffix.
- \blacksquare A==(D & M);
 - D: IP address;
 - M: subnet mask
- CIDR notation: 128.10.0.0/16

21.16 CIDR Host Addresses

21.17 Special IP Addresses

- Network address(网络地址):
- Directed Broadcast Address(直接广播地址).
- Limited Broadcast Address(有限广播地址).
- This Computer address(本机地址).
- Loopback address(回送地址).

21.18 Summary of Special IP Addresses

Prefix	Suffix	Type Of Address	Purpose
all-0s	all-0s	this computer	used during bootstrap
network	all-0s	network	identifies a network
network	all-1s all-1s	directed broadcast	broadcast on specified net
all-1s		limited broadcast	broadcast on local net
127	any	loopback	testing

21.20 Routers and the IP Addressing principle

- An IP address does not identify a specific computer, Instead, each IP address identifies a connection between a computer and a network.
- A computer with multiple network connections must be assigned one IP address for each connection.
- A router has connections to multiple physical networks
- Each router is assigned two or more IP addresses.

作业

- ■已知IP地址
 - -218.193.48.48/27
 - -6.23.136.43/16
- - 地址类型
 - -网络位数、子网位数、主机位数
 - 子网掩码
 - -子网掩码支持的子网数量、一个子网内的主机 数量