

HACETTEPE ÜNIVERSITESI FEN FAKÜLTESI İSTATİSTİK BÖLÜMÜ 2022-2023 GÜZ DÖNEMİ İST 489 - ZAMAN SERİLERİ ANALİZİ ÖDEVİ Prof. Dr. Cem KADILAR Arş. Gör. Dr. Ceren ÜNAL AKDENİZ

YİĞİT SAÇIK 21936277 YUSUF ZİYA ATEŞ 21935621

İçindekiler

1.	ZAMAN SERİSİ TANITIMI	3
	1.1 Zaman Serisi Verisi:	3
	1.2 Özet İstatistikler	3
	1.3 Veriyi Zaman Serisi Olarak Tanımlama	3
	1.4 Zaman Serisi Grafiği Çizme	3
	1.5 Durağanlaştırma işlemi	4
2.	AYRIŞTIRMA YÖNTEMLERİ	4
	2.1 Toplamsal Ayrıştırma Yöntemi	4
	2.2 Çarpımsal Ayrıştırma Yöntemi	5
3.	ZAMAN SERİLERİNDE REGRESYON ANALİZİ	6
	3.1 Toplamsal Regresyon Analizi	6
	3.2 Çarpımsal Regresyon Analizi	7
4.	WINTERS ÜSTEL DÜZLEŞTİRME YÖNTEMİ	7
	4.1 Toplamsal Winters Üstel Düzleştirme Yöntemi	7
	4.2 Çarpımsal Winters Üstel Düzleştirme Yöntemi	9
5.	BOX JENKINS MODELLERİ	10
	5.1 Model-1 : ARIMA(2,1,0)(1,1,0)	10
	5.2 Model-2 : ARIMA(0,1,0)(2,1,0)	11
6.	R KODLARI	12
7	KVANVKCV	28

1. ZAMAN SERİSİ TANITIMI

1.1 Zaman Serisi Verisi:

Aşağıda bir havayolu şirketinin 1949-1960 yılları arasında aylık yolcu sayılarını görmekteyiz.

Aylar	Ocak	Subat	Mart	Nisan	Mayis	Haziran	Temmuz	Agustos	Eylul	Ekim	Kasim	Aralik
Yillar												
1949	112	118	132	129	121	135	148	148	136	119	104	118
1950	115	126	141	135	125	149	170	170	158	133	114	140
1951	145	150	178	163	172	178	199	199	184	162	146	166
1952	171	180	193	181	183	218	230	242	209	191	172	194
1953	196	196	236	235	229	243	264	272	237	211	180	201
1954	204	188	235	227	234	264	302	293	259	229	203	229
1955	242	233	267	269	270	315	364	347	312	274	237	278
1956	284	277	317	313	318	374	413	405	355	306	271	306
1957	315	301	356	348	355	422	465	467	404	347	305	336
1958	340	318	362	348	363	435	491	505	404	359	310	337
1959	360	342	406	396	420	472	548	559	463	407	362	405
1960	417	391	419	461	472	535	622	606	508	461	390	432

1.2 Özet İstatistikler

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 104.0 180.0 265.5 280.3 360.5 622.0
```

1949-1960 yıllarında arasında en az yolcu sayısının 104 en fazla yolcu sayısının ise 622 olduğu görülmektedir. Bu yıllar arasında ortalama yolcu sayısı ise 280 kişidir.

1.3 Veriyi Zaman Serisi Olarak Tanımlama

```
Time Series:

Start = 1

End = 144

Frequency = 1

[1] 112 118 132 129 121 135 148 148 136 119 104 118 115 126 141 135 125 149 170 170 158 133 114 140 145 150 [27] 178 163 172 178 199 199 184 162 146 166 171 180 193 181 183 218 230 242 209 191 172 194 196 196 236 235 [53] 229 243 264 272 237 211 180 201 204 188 235 227 234 264 302 293 259 229 203 229 242 233 267 269 270 315 [79] 364 347 312 274 237 278 284 277 317 313 318 374 413 405 355 306 271 306 315 301 356 348 355 422 465 467 [105] 404 347 305 336 340 318 362 348 363 435 491 505 404 359 310 337 360 342 406 396 420 472 548 559 463 407 [131] 362 405 417 391 419 461 472 535 622 606 508 461 390 432
```

1.4 Zaman Serisi Grafiği Çizme

Yorum: Zaman serisi grafiğine bakarak edindiğimiz önsel bilgi artış ve azalışlar olduğundan dolayı mevsimsellikten şüphe edebileceğimizdir.

Yorum: ACF grafiğinde ilk dört gecikmeye baktığımızda güven aralığının dışında olan gözlemler görürüz bu sebeple verimizin trende sahip olduğunu söyleyebiliriz.

1.5 Durağanlaştırma işlemi

Yorum: Verimizi durağanlaştırdık. Periyot 12 olarak bariz bir şekilde gözlemlenmiştir. Mevsimsellik vardır ve başkındır.

2. AYRIŞTIRMA YÖNTEMLERİ

2.1 Toplamsal Ayrıştırma Yöntemi

Yorum: Tahmin serimiz ve orijinal serimiz birbirine benzediğinden modelin başarılı bir şekilde tahmin edildiğini söyleyebiliriz.

Hatalar Akgürültü müdür?

Yorum: ACF grafiklerine baktığımızda sınır dışında kalan birden fazla değer görmekteyiz. Bu nedenle hataların ak gürültü olmadığından şüpheleniriz.

Box-Ljung Testi

```
> Box.test(hata, lag = 42, type = "Ljung")

Box-Ljung test

data: hata
X-squared = 408.44, df = 42, p-value < 2.2e-16</pre>
```

 H_0 : Hatalar arası ilişki yoktur.

 H_S : Hatalar arası ilişki vardır.

Yorum: P değeri < 0.05 olduğundan H_0 hipotezi reddedilir. %95 güven düzeyinde hataların akgürültü serisi olmadığını yani hatalar arasında ilişki olduğunu söyleyebiliriz.

2.2 Çarpımsal Ayrıştırma Yöntemi

Yorum: Orijinal serimiz ile tahmin serisi grafiği birlikte çizildiği zaman uyumlu olduğu görülüyor. Modelin geçerli olduğundan söz edebiliriz

Yorum: Toplamsal ve Çarpımsal ayrıştırma yöntemlerinin hata ACF grafikleri ve Box-Ljung testleri dikkate alındığında serilerin akgürültü serisi olmadığı görülür. Bu modeller istatistiksel olarak anlamlı değildir.

3. ZAMAN SERİLERİNDE REGRESYON ANALİZİ

3.1 Toplamsal Regresyon Analizi

```
summary(regresyonmodeli)
lm(formula = y \sim t + sin1 + cos1)
Residuals:
                       Median
-4.146
 Min 1Q
-66.068 -22.390
                                  3Q Max
17.128 119.986
Coefficients:
                  Estimate Std.
                                     Error
                                                 value Pr(>|t|)
(Intercept)
                  88.18267
sin1
                                     .86616
cos1
                                   3.85891
                                                -10.91
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 '
Residual standard error: 32.74 on 140 degrees of freedom
Multiple R-squared: 0.9271, Adjusted R-squared: 0.9255
F-statistic: 593.4 on 3 and 140 DF, p-value: < 2.2e-16
  dwtest(regresyonmodeli)
           Durbin-Watson test
         regresyonmodeli
DW = 0.80565, p-value = 5.348e-14
alternative hypothesis: true autocorrelation is greater than 0
```

 H_0 : Model anlamsızdır.

 H_S : Model anlamlıdır.

Yorum: sin1 ve cos1 değerlerinin p değerleri <0.05 olduğu için katsayılarının anlamlı olduğunu söyleyebiliriz. Durbin-Watson test sonucunda p değeri 0,05'ten küçük olduğu için model anlamlıdır.

3.2 Çarpımsal Regresyon Analizi

 H_0 : Model anlamsızdır.

 H_S : Model anlamlıdır.

Yorum: sin1 ve cos1 değerlerinin p değerleri < 0.05 olduğu için katsayılarının anlamlı olduğunu söyleyebiliriz. Durbin-Watson test sonucunda p değeri 0,05'ten küçük olduğu için model anlamlıdır. H_0 reddedilir.

Toplamsal regresyon ve çarpımsal regresyon modellerimiz anlamsız çıktığı için kübik, karesel, üstel ve lojistik regresyonun anlamlı çıkmasını bekleyemeyiz.

4. WINTERS ÜSTEL DÜZLEŞTİRME YÖNTEMİ

4.1 Toplamsal Winters Üstel Düzleştirme Yöntemi

```
> summary(winters1)
ETS(A,A,A)
 ets(y = passengers_ts1, model = "AAA")
  Smoothing parameters:
    alpha = 0.9935
    beta = 2e-04
     gamma = 6e-04
  Initial states:
    1 = 120.9608
    b = 1.3934
    5 = -29.1816 -54.3842 -20.7169 15.0727 65.1554 66.1846
33.5822 -4.232 -8.0946 -3.8205 -34.3364 -25.2288
  sigma: 18.0471
     AIC
              AICC
1565.872 1570.729 1616.359
Training set error measures:
                                                      MPE
                               RMSE
 Fraining set 0.9638247 17.01495 12.81203 0.3539818 5.224715 0.3999971 0.1875311
```

Toplamsal Winters Yöntemi hata kareler ortalamasının karekökü (RMSE) 17.01495'tir. BIC değeri 1616.359'dur.

Orijinal serimiz ile tahmin serisine baktığımızda birbirine yakın değerleri görebiliriz. Tahmin ve orijinal serinin benzerliğinden söz edebiliriz.

Yorum: Çarpımsal Winter Yöntemi istatistiksel olarak %95 güven düzeyinde anlamlıdır. Hata serimizde ACF grafiği incelendiğinde sınır dışı gecikmeler görülür. Bu gecikmelerin önemli olup olmadığını Box-Ljung testiyle görürüz. p-değerleri çok küçük bir değer olduğundan gecikmelerin önemli olmadığını söyleriz. Bu seri modelle çalışılabilir.

4.2 Çarpımsal Winters Üstel Düzleştirme Yöntemi

Çarpımsal Winters Yöntemi hata kareler ortalamasının karekökü (RMSE) 10.74726'dır. BIC değeri 1448.623'tür.

0.00 --0.05 -

Yorum: Hataların akgürültü olduğunu ve bu modelin anlamlı olduğunu %95 güven düzeyinde söyleyebiliriz. Toplamsal winters ve çarpımsal winters modellerimizin ikisi de anlamlıdır. Bu yüzden BIC değeri düşük olan yöntemi seçeriz, seçeceğimiz model 1448.623 değerini alan çarpımsal modeldir.

5. BOX JENKINS MODELLERİ

5.1 Model-1: ARIMA(2,1,0)(1,1,0)

ARİMA (p,d,q) (P,D,Q) d=1, D=1, q=0, p=2, P=1, Q=0

```
coeftest(data_arima1)
z test of coefficients:
      Estimate Std. Error z value Pr(>|z|)
                  0.087421 -3.4336 0.0005956
     -0.300168
                  0.088677 -0.1418 0.8872178 0.098495 -1.4308 0.1524970
     -0.012577
sar1 -0.140923
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
> summary(data_arima1)
Series: passengers_ts
ARIMA(2,1,0)(1,1,0)[12]
Coefficients:
                    ar2
           ar1
                             sar1
      -0.3002
                -0.0126
                          -0.1409
       0.0874
                           0.0985
                0.0887
s.e.
sigma^2 = 137.8: log likelihood = -507.19
AIC=1022.37
              AICc=1022.69
                               BIC=1033.87
Training set error measures:
                             RMSE
                                        MAE
                                                    MPE
                                                            MAPE
                                                                       MASE
                      ME
Training set 0.2941451 11.06892 8.061242 0.04019788 2.85429 0.2516755
```

Yorum: Ar2 ve sar1 p değerleri 0,05'ten büyük olduğu için önemsizdir. %95 güven düzeyinde model anlamsızdır. Bu nedenle modelin devamı incelenmez.

Şimdi sırada "P" değişkenine 0 verip "Q" değişkenini denemek kalıyor.

5.2 Model-2 : ARIMA(0,1,0)(2,1,0)

ARİMA (p,d,q) (P,D,Q) d=1, D=1, q=0, p=2, P=1, Q=0

```
coeftest(data_arima2)
z test of coefficients:
Estimate Std. Error z value Pr(>|z|)
ar1 -0.2991886 0.0878628 -3.4052 0.0006612 ***
ar2 -0.0084551 0.0885257 -0.0955 0.9239093
sma1 -0.1035225  0.0836785 -1.2371  0.2160330
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
> summary(data_arima2)
Series: passengers_ts
ARIMA(2,1,0)(0,1,1)[12]
Coefficients:
             ar1
                        ar2
        -0.2992
                   -0.0085
                               -0.1035
         0.0879
                  0.0885
                               0.0837
s.e.
sigma^2 = 138.5: log likelihood = -507.45
AIC=1022.9 AICc=1023.22 BIC=1034.41
Training set error measures:
                                  RMSE
                                               MAE
                                                             MPE
                                                                       MAPE
                                                                                    MASE
                                                                                                     ACF1
Training set 0.2729692 11.09613 8.103246 0.03609403 2.876587 0.2529869 -0.003017041
```

Yorum: Ar2 ve sma1 p değerleri 0,05'ten büyük olduğu için önemsizdir. %95 güven düzeyinde model anlamsızdır. Bu nedenle diğer modellere bakmaya gerek yoktur.

6. R KODLARI

```
##Veri Okutma
install.packages("fpp")
install.packages("forecast")
install.packages("haven")
library(fpp)
library(forecast)
library(haven)
library(readxl)
library(readxl)
zamanserisi <- read_excel("C:/Users/90545/Desktop/Zaman Serisi
Ödevi/zamanserisi.xlsx'')
View(zamanserisi)
passengers<-zamanserisi$Passengers
summary(passengers)
##Veriyi Zaman Serisi Olarak Tanımlama
passengers_ts <- ts(passengers, frequency=12, start=c(1949,1))
passengers_ts
zamanserisi
##Zaman Serisi Grafiği
plot.ts(passengers_ts,lwd=3, xlab = "Year", ylab = "Number of Passengers")
# ACF ve PACF grafikleri
Acf(passengers,main="Series Passenger",lag.max = 42, ylim= c(-1,1),lwd=3)
Pacf(passengers,lag.max = 42, ylim= c(-1,1),lwd=3)
```

```
# Durağanlaştırma İşlemi
Acf(diff(passengers_ts), main="Series Passenger", lag.max = 42, ylim = c(-1,1), lwd=3)
Pacf(diff(passengers_ts),main="Series Passenger",lag.max = 42,lwd=3)
ap_trend <- tslm(passengers_ts~trend)</pre>
periyot <- passengers_ts-ap_trend[["fitted.values"]]</pre>
Acf(periyot, lag.max = 42, ylim=c(-1,1), lwd=3)
Pacf(periyot,lag.max = 42, ylim=c(-1,1), lwd=3)
# Toplamsal Ayırma İşlemi
# Merkezsel Hareketli Ortalama Hesabı
map <- ma(passengers, order= 12, centre = TRUE) # Germe sayısı 12
Mevsim <- passengers-map
ort <- t(matrix(data = Mevsim, nrow = 12, ncol = 12))
ort
colMeans(ort, na.rm = TRUE)
sum(colMeans(ort, na.rm = TRUE))
mean(colMeans(ort, na.rm = TRUE))
endeks<- colMeans(ort, na.rm = T)-mean(colMeans(donemort, na.rm = T))</pre>
indeks <- matrix(data = endeks, nrow = 144)
indeks
```

```
trenthata <- passengers - indeks
trenthata
trent <- tslm(ts(trenthata)~trend)</pre>
tahmin <- indeks+trent[["fitted.values"]]</pre>
tahmin
hata<- ts(passengers)-indeks-trent[["fitted.values"]]
hata
### Modelin GÜvenilirliği ###
plot(window(passengers_ts),
xlab="Zaman", ylab="", main="Model Güvenirliği", lty=1,col=1, lwd=2,
ylim=c(19,600)
lines(window(tahmin), lty=3,col=6,lwd=3)
legend("topleft", c(expression(paste(Yolcu)),
expression(paste(Tahmin))),
lwd = c(2,2), lty = c(1,3), cex = 0.6, col = c(1,6)
# Hatalar akgürültü mü?
Acf(hata, main = "Hata", lag.max = 42, ylim = c(-1,1), lwd = 3)
Pacf(hata, main = "Hata",lag.max = 42, ylim = c(-1,1), lwd = 3)
Box.test(hata, lag = 42, type = "Ljung")
```

```
# Mevsimsel bileseni bulunmasi
mevsim1 <- ts(passengers)/ ts(map)</pre>
# Her bir periyot icin ortalama degerlerinin hesabi
donemort1 <- t(matrix(data = mevsim1, nrow = 12, ncol=12))
colMeans(donemort1, na.rm = T)
#toplam
sum(colMeans(donemort1, na.rm = T))
#ortalamalarin ortalamasi
mean(colMeans(donemort1, na.rm = T))
#mevsimsel endeks degerlerinin bulunusu
endeks1<- colMeans(donemort1, na.rm = T)/mean(colMeans(donemort1, na.rm = T))</pre>
mean(endeks1)
#endeks degerlerini seri boyunca yazdirma islemi
indeks1<- matrix(data = endeks1, nrow = 144)</pre>
#trent serisi
trenthata1 <- ts(passengers) /indeks1</pre>
```

trenthata1 #hatadan arindirma islemi library(forecast) trent1<- tslm(ts(trenthata1)~trend)</pre> tahmin1<- indeks1*trent1[["fitted.values"]] #hata terimi hata1<- ts(passengers) - tahmin1 #orijinal seri ile tahmin serisinin uyumu plot(window(passengers_ts), xlab="Zaman", ylab="",lty=1, col=1, lwd=2) lines(window(tahmin1) ,lty=3,col=6,lwd=3) legend("topleft",c(expression(paste(Orjinal)), expression(paste(Tahmin))), lwd=c(2,2),lty=c(1,3), cex=0.6, col=c(1,6))Box.test(hata, lag = 41, type = "Ljung") #hatalar akgurultu mu? Acf(hata1,main="Hata", lag.max = 42, ylim=c(-1,1), lwd=3)Pacf(hata1,main="Hata",lag.max = 42, ylim=c(-1,1), lwd=3)

Box.test(hata1, lag = 41, type = "Ljung")

```
# Toplamsal Regresyon Modeli
t <-1: 1: 144 # t terimini olusturalim
\sin 1 < -\sin(2*3.1416*t/12)
\cos 1 < -\cos(2*3.1416*t/12)
toplamsalveri <-as.data.frame(cbind(passengers_ts, t, sin1, cos1))
names(toplamsalveri)<- c("y", "t", "sin1", "cos1")
attach(toplamsalveri)
regresyonmodeli<-lm(y~t+sin1+cos1)
summary(regresyonmodeli)
dwtest(regresyonmodeli)
# Carpimsal Regresyon Modeli
s1<-t*sin(2*3.1416*t/12)
c1 < -t*cos(2*3.1416*t/12)
carpimveri <-as.data.frame(cbind(passengers_ts, t, s1, c1))</pre>
names(çarpımveri)<- c("y", "t", "s1", "c1")
attach(çarpımveri)
çarpımsalregresyon<-lm(y~t+s1+c1)</pre>
summary(çarpımsalregresyon)
dwtest(çarpımsalregresyon)
```

```
### Karesel, Kubik, Lojistik ###
### 1. Karesel Regresyon
install.packages("Rcmdr", dependencies = TRUE)
install.packages("FitAR")
install.packages("devtools")
library(fpp)
library(stats)
library(forecast)
library(FitAR)
library(haven)
library(devtools)
library(ggplot2)
month = seq(1,144)
#zaman serisi grafiği çizme
ts.plot(passengers_ts,gpars=list(xlab="Month", ylab="Yolcular"))
kareselmodel <- lm(passengers_ts \sim month + I(month^2))
summary(kareselmodel)
kareseltahmin <- predict(kareselmodel) #tahmin serisinin elde edilmesi
kareselsinir <- predict(kareselmodel, interval='confidence',level=0.95) # Güven aralığı
k.altsinir<- (kareselsinir[,2]) # Alt sinir
k.ustsinir<- (kareselsinir[,3]) # Üst sinir
kareselhata<- passengers-kareseltahmin #hata serisi
kareselongoru1 <- predict(kareselmodel, data.frame(month=145))
kareselongoru2 <- predict(kareselmodel, data.frame(month=146))</pre>
```

```
kareselongoru3 <- predict(kareselmodel, data.frame(month=147))
kareselongoru4 <- predict(kareselmodel, data.frame(month=148))
# Hatalar akgurultu mu?
Acf(karesel.hata,lag.max = 42, ylim=c(-1,1), lwd=3)
Pacf(karesel.hata,lag.max = 42, vlim=c(-1,1), lwd=3)
# H0:hatalar arasında iliski yoktur.
Box.test (karesel.hata, lag = 42, type = "Ljung")
#LjungBoxTest(karesel.hata,k=2, StartLag=1, lag=30)
plot( window(passengers),
xlab="passengers_ts", ylab="",type="l", lty=1, col=4, lwd=2, ylim=c(0,250))
lines( window(karesel.tahmin) ,lty=3,col=2,lwd=3)
legend("topleft",c(expression(paste(Veri)),
expression(paste(KareselTahmin))),
lwd=c(2,2),lty=c(1,3), cex=0.7, col=c(4,2)
plot( window(passengers_ts), main="Karesel",
xlab="passengers_ts", ylab="", type="l", lty=3, col=2, lwd=2, ylim=c(0,550))
lines(window(k.altsinir) ,type="l",lty=1,col=4,lwd=2)
lines(window(k.ustsinir),type="l",lty=1,col=3,lwd=2)
legend("topleft",c(expression(paste(Veri)),
expression(paste(AltSınır)),
expression(paste(ÜstSınır))),
lwd=c(2,2,2),lty=c(3,1,1), cex=0.7, col=c(2,4,3))
```

KÜbik Regresyon

```
kubik.model <- lm(formula=passengers_ts ~ month + I(month^2)+ I(month^3))
summary(kubik.model)
kubik.tahmin <- predict(kubik.model) # Tahmin serisinin elde edilmesi
kubik.sinir <- predict(kubik.model, interval='confidence',level=0.95) # Guven araligi
ku.altsinir<- (kubik.sinir[,2]) #alt sinir
ku.ustsinir<- (kubik.sinir[,3]) #ust sinir</pre>
kubik.hata<- month-kubik.tahmin #hata serisi
kubik.ongoru1 <- predict(kubik.model, data.frame(month=145))
kubik.ongoru2 <- predict(kubik.model, data.frame(month=146))</pre>
kubik.ongoru3 <- predict(kubik.model, data.frame(month=147))
kubik.ongoru4 <- predict(kubik.model, data.frame(month=148))
plot( window(passengers_ts),
xlab="Zaman", ylab="",type="l", lty=1, col=4, lwd=2, ylim=c(55,1200))
lines( window(kubik.tahmin) ,lty=3,col=2,lwd=3)
legend("topleft",c(expression(paste(veri)),
expression(paste(K?bikTahmin))),
lwd=c(2,2), lty=c(1,3), cex=0.7, col=c(4,2))
plot( window(passengers_ts), main="Kübik",
xlab="Zaman", ylab="", type="l", lty=3, col=2, lwd=2, ylim=c(55,1200))
lines( window(ku.altsinir) ,type="l",lty=1,col=4,lwd=2)
lines( window(ku.ustsinir) ,type="l",lty=1,col=3,lwd=2)
legend("topleft",c(expression(paste(data)),
expression(paste(Altsinir)),
expression(paste(Üstsinir))),
```

```
lwd=c(2,2,2), lty=c(3,1,1), cex=0.7, col=c(2,4,3))
#Hatalar akgurultu mu?
Acf(kubik.hata,lag.max = 42, ylim=c(-1,1), lwd=3)
Pacf(kubik.hata,lag.max = 42, ylim=c(-1,1), lwd=3)
Box.test (kubik.hata, lag = 42, type = "Ljung")
#LjungBoxTest(kubik.hata,k=2, StartLag=1, lag=30)
plot( window(passengers_ts),
xlab="passengers_ts", ylab="",type="l", lty=1, col=4, lwd=2, ylim=c(0,240))
lines( window(kubik.tahmin) ,lty=3,col=2,lwd=3)
legend("topleft",c(expression(paste(ap)),
expression(paste(KübikTahmin))),
lwd=c(2,2),lty=c(1,3), cex=0.7, col=c(4,2))
plot( window(month), main="Kübik",
xlab="passengers_ts", ylab="", type="l", lty=3, col=2, lwd=2, ylim=c(0,240))
lines( window(ku.altsinir) ,type="l",lty=1,col=4,lwd=2)
lines( window(ku.ustsinir) ,type="l",lty=1,col=3,lwd=2)
legend("topleft",c(expression(paste(AP)),
expression(paste(AltSınır)),
expression(paste(ÜstSınır))),
lwd=c(2,2,2),lty=c(3,1,1), cex=0.7, col=c(2,4,3))
### Lojstik Regresyon ###
L=700
seri1<- log((L/month)-1)
```

```
lojistik.model <- lm(seri1 ~ month)
summary(lojistik.model)
lojistik.tahmin <- (L/(1+exp(predict(lojistik.model)))) # tahmin serisinin elde edilmesi
lojistik.sinir <- predict(lojistik.model, interval='confidence',level=0.95) # guven araligi
l.altsinir<- (L/(1+exp(lojistik.sinir[,2]))) # alt sinir</pre>
l.ustsinir<- (L/(1+exp(lojistik.sinir[,3]))) # ust sinir</pre>
lojistik.hata<- passengers_ts-lojistik.tahmin # hata serisi
serinin her donemine denk gelen ongoru degerlerinin elde
lojistik.ongoru1 <- (L/(1+exp(predict(lojistik.model, data.frame(month=145)))))
lojistik.ongoru2 <- (L/(1+exp(predict(lojistik.model, data.frame(month=146)))))
lojistik.ongoru3 <- (L/(1+exp(predict(lojistik.model, data.frame(month=147)))))
lojistik.ongoru4 <- (L/(1+exp(predict(lojistik.model, data.frame(month=148)))))
#Hatalar akgurultu mu?
Acf(lojistik.hata,lag.max = 42, ylim=c(-1,1), lwd=3)
Pacf(lojistik.hata,lag.max = 42, ylim=c(-1,1), lwd=3)
Box.test (lojistik.hata, lag = 42, type = "Ljung")
plot( window(passengers ts), main="Lojistik Regresyon Grafiği",
xlab="Zaman", ylab="", type="l", lty=3, col=1, lwd=2, ylim=c(55,1200))
lines( window(l.altsinir) ,type="l",lty=1,col=6,lwd=2)
lines( window(l.ustsinir) ,type="l",lty=1,col=4,lwd=2)
legend("topleft",c(expression(paste(Veri)),
```

```
expression(paste(Altsınır)),
expression(paste(Üstsınır))),
lwd=c(2,2,2),lty=c(3,1,1), cex=0.7, col=c(2,4,3))
# Üstel Regresyon
ustel.model <- lm(log(passengers ts) ~ month)
summary(ustel.model)
ustel.tahmin <- predict(ustel.model) #t ahmin serisinin elde edilmesi
ustel.tahmin<- exp(ustel.tahmin)</pre>
ustel.sinir <- predict(ustel.model, interval='confidence',level=0.95) #guven araligi
u.altsinir<- exp(ustel.sinir[,2]) #alt sinir</pre>
u.ustsinir<- exp(ustel.sinir[,3]) #ust sinir</pre>
ustel.hata<- passengers_ts-ustel.tahmin #hata serisi015
#serinin her donemine denk gelen ongoru degerlerinin elde
ustel.ongoru1 <- predict(ustel.model, data.frame(month=145))</pre>
ustel.ongoru2 <- predict(ustel.model, data.frame(month=146))
ustel.ongoru3 <- predict(ustel.model, data.frame(month=147))
ustel.ongoru4 <- predict(ustel.model, data.frame(month=148))</pre>
plot( window(passengers),
xlab="Zaman", ylab="",type="l", lty=1, col=4, lwd=2, ylim=c(55,1200))
lines( window(ustel.tahmin) ,lty=3,col=2,lwd=3)
legend("topleft",c(expression(paste(veri)),
expression(paste(LojistikTahmin))),
lwd=c(2,2), lty=c(1,3), cex=0.7, col=c(4,2))
```

```
plot( window(passengers), main="Ustel",
xlab="Zaman", ylab="", type="l", lty=3, col=2, lwd=2, ylim=c(55,1200))
lines( window(u.altsinir) ,type="l",lty=1,col=4,lwd=2)
lines( window(u.ustsinir) ,type="l",lty=1,col=3,lwd=2)
legend("topleft",c(expression(paste(passengers)),
expression(paste(Altsinir)),
expression(paste(Ustsinir))),
lwd=c(2,2,2),lty=c(3,1,1), cex=0.7, col=c(2,4,3))
# TOPLAMSAL WINTERS USTEL DUZLESTIRME YONTEMI
#AAN=Holt, AAA=Toplamsal Winters, MAM=Carpimsal Winters
install.packages("forecast")
library(forecast)
passengers_ts1<-ts(passengers,frequency = 12)</pre>
winters1<- ets(passengers_ts1, model = "AAA")</pre>
summary(winters1)
tahmin1<- winters1[["fitted"]]
ts.plot(passengers_ts)
plot( window(passengers_ts1),
xlab="Zaman", ylab="",lty=1, col=1, lwd=2)
lines(window(tahmin1),lty=3,col=6,lwd=3)
legend("topleft",c(expression(paste(Orjinalseri)),
expression(paste(Winters1Tahmin))),
lwd=c(2,2),lty=c(1,3), cex=0.7, col=c(1,6))
hata1<- winters1[["residuals"]]
hata1
```

```
Box.test (hata1, lag = 42, type = "Ljung")
Acf(hata1,main="Hata", lag.max = 42, ylim=c(-1,1), lwd=3)
Pacf(hata1,main="Hata",lag.max = 42, ylim=c(-1,1), lwd=3)
checkresiduals(winters1, lag = 42)
ongoru4 <- forecast(winters1,h=7)</pre>
ongoru4[["mean"]]
#model anlamlı çıktıgı için öngörüde bulunulmuştur.akgürültü serisi.
# Wiinters Çarpımsal Düzleştirme
passengers_ts1<-ts(passengers,frequency = 12)</pre>
winters2 <- ets(abs(passengers_ts1), model = "MAM")</pre>
summary(winters2)
\#BIC = 1448.623
# ikisi de anlamlı,çarpımsal winters modeli bic değeri küçük olduğundan tercih edilir.
tahminb<- winters2[["fitted"]]
plot( window(passengers_ts1),
xlab="Zaman", ylab="",lty=1, col=1, lwd=2)
lines( window(tahminb) ,lty=3,col=6,lwd=3)
legend("topleft",c(expression(paste(Orjinalseri)),
expression(paste(Winters1Tahmin))),
lwd=c(2,2),lty=c(1,3), cex=0.7, col=c(1,6))
hata2<- winters2[["residuals"]]
Box.test (hata2, lag = 42, type = "Ljung")
```

```
Acf(hata2,main="Hata", lag.max = 42, ylim=c(-1,1), lwd=3)
Pacf(hata2,main="Hata",lag.max = 42, ylim=c(-1,1), lwd=3)
checkresiduals(winters2, lag = 42)
ongoru <- forecast(winters2,h=5)</pre>
ongoru[["mean"]]
#######BOX JENKINS MODELLERİ#######
#ARIMA (p,d,q) (P,D,Q) d=0, D=1, q=0, p=0, P=1, Q=0
library(forecast)
Acf(passengers_ts,lag.max = 42, ylim=c(-1,1), lwd=3)
Pacf(passengers_ts,lag.max = 42, ylim=c(-1,1), lwd=3)
data_diff <- diff(passengers_ts, 12)</pre>
Acf(data\_diff,lag.max = 42,ylim=c(-1,1),lwd=2)
Pacf(data\_diff,lag.max = 42,ylim=c(-1,1),lwd=2)
#P=1 Q=0
data_arima1 <- Arima(passengers_ts, order = c(2,1,0), seasonal= c(1,1,0),
include.constant=TRUE)
coeftest(data_arima1)
summary(data_arima1)
Acf(data_arima1$residuals, ylim=c(-1,1), lwd=3)
Box.test(data_arima1$residuals, type="Ljung")
#p değeri alfadan büyük olduğu için model anlamsız bu nedenle
#modelin devamı incelenmez
#P=0 Q=1
data_arima2 <- Arima(passengers_ts, order = c(2,1,0), seasonal= c(0,1,1),
include.constant=TRUE)
coeftest(data_arima2)
summary(data arima2)
```

```
Acf(data_arima2$residuals, ylim=c(-1,1), lwd=3)

Box.test(data_arima2$residuals, type="Ljung")

#Model Anlamlı Çıksaydı Öngörülerin Yapılması

model <- Arima(passengers, order=c(0,1,0), seasonal=c(2,1,0), include.constant = TRUE)

ongoru <- forecast(data_arima1, h=5)

ongoru[['mean']]
```

7. KAYNAKÇA

Spss ve R Uygulamalı Zaman Serileri Analizine Giriş Kitabı (Prof. Dr. Cem Kadılar, Dr. Hatice Öncel Çekim)

https://www.kaggle.com/datasets/chirag19/air-passengers

https://www.statmethods.net/advstats/timeseries.html

https://a-little-book-of-r-for-time-series.readthedocs.io/en/latest/src/timeseries.html

 $\underline{https://medium.com/@ashnumpy/r-ile-mevsimsel-zaman-serilerinde-box-jenkins-modelleri-f2c3f4a7cbd}$

http://rstudio-pubs-

static.s3.amazonaws.com/311446 08b00d63cc794e158b1f4763eb70d43a.html

https://stat-wizards.github.io/Forcasting-A-Time-Series-Stock-Market-Data/