1 引言 1

微波铁磁共振 实验报告

王国胜,201511140243 指导教师: 廖红波

实验日期: 2018年4月18日

摘要

本实验将测量微波体效应管的工作特性,并用它产生的微波激发铁氧体样品的铁磁共振,进而测量样品的相关参数。我们将首先测出微波体效应管的电流-电压关系,频率-电压关系和频率-输出功率关系,而后再测量谐振腔的谐振性质,根据谐振曲线求出品质因数 Q。其中单晶样品和多晶样品的共振曲线将采用示波器法和逐点法分别测量。最后,我们将用高斯计标定电磁铁电流与磁感应强度的关系,进而算得多晶样品的共振线宽 ΔB =27.41mT,旋磁比 $\gamma=1.831\times10^5$ T、g 因子 g=1.655 和弛豫时间 $\tau=1.586\times10^{-4}$ s。

1 引言

一般实验条件下可得到的磁感应强度有限,磁共振所涉及的共振频率处于射频与微波频段。对磁化强度较小的材料(比如核磁共振)或者当较弱的磁场(比如光泵磁共振),常用射频电磁波做磁共振的激励信号即可;但在铁磁和电子顺磁共振中,磁矩较大,磁效应比较显著,常采用频率更高的微波观测其磁共振效应。因为微波的能量量子大约是 10^{-6~-3}eV,而许多原子和分子发射和吸收的电磁波的能量正好处在这个波段,所以微波与特定物质相互作用时可以发生铁磁共振。

本实验首先说明微波体效应振荡器的工作原理、微波传输的基本原理、方法和元件,测试微波体效应二极管和传输式谐振腔的工作特性,进而通过测量谐振腔中的微波场随磁场的变化观测铁磁共振现象,得出铁氧体样品的相关参数。

2 实验原理

2.1 微波

2.1.1 微波的性质

微波即波长范围在 1mm-1m 的电磁波的总称,对应频率为 3×10^{8~11}Hz。微波的振荡周期接近真空电子管中的电子渡越时间(~10⁻¹⁰s),使得电子在微波振荡中的滞后效应不可忽略;微波的波长与一般宏观物体(包括通常的电子元件)相当,因此会在宏观物体表面产生反射,并可由一般电子元件产生,且只能在波导管/谐振腔等中传输,而其电磁场参量在一般电路中需要用分布参数来描述;微波传播类似可见光,有直线传播/反射/吸收/折射等效应,而又可穿透电离层(区别于其它无线电波),常被用于卫星通信等领域,但借助微波的地面通讯则须借助中继站;微波量子能量许多原子/分子的振动-转动能级和磁能级相近,适用于相关研究。由于这些特性与其它波段电磁波都有不同,微波的产生/传播等都有专门的理论描述和技术实现。[1]

2.1.2 微波的产生

一般采用微波固体振荡器或微波电子管产生微波;前者包括微波晶体管振荡器/体效应管振荡器等,而后者包括磁控管等,多用于需要较高微波功率的应用场景。本实验中用微波体效应管产生微波。

微波体效应管振荡器即耿氏二极管振荡器主要利用有双能谷结构的半 导体材料的负阻特性形成的电流震荡输出微波。这类材料包括砷化镓/磷化 铟/碲化镉/硒化锌/砷化铟等。以下以砷化镓为例。

300K 下, 砷化镓的能带结构如图 1。图中可见其导带中的主能谷附近还有子能谷; 能量最低的子能谷能量比主能谷高出约 0.36eV, 故其中电子迁移率 (电子散射频率) 小于主能谷。常温下电子能量不足以进入子能谷; 加外电场到 $E > E_{\rm th}$ 时, 部分电子被激发到子能谷中, 于是平均电子迁移率将下降,

图 1 砷化镓的能带结构

材料电阻下降,表现负阻特性;待电场增大到全部电子都被及发到子能谷中时,效应结束。

设晶体管阴极附近有一因接触电阻和杂质不均匀分布产生的电阻率较大的区域,则在晶体管两端加逐渐增大的电压时,此区域分压较大,电场较强,首先超过阈值电场,表现负阻特性,电子迁移率较低;于是其阴极一侧电子堆积,阳极一侧电子抽空,内部电场进一步增大,形成高场畴。由于总电压由外电路给定,此畴一旦形成,即将抑制其他区域的电场增大,故只会产生一个高场畴。

高场畴中电子仍将在电场作用下向阳极运动,故整个高场畴将向阳极渡越;同时,畴内电场增大使得内部电子迁移率重新增大,逐渐又与外部的迁移率相等;于是畴内电场不再增大,场畴成为成熟畴;成熟畴将稳定地渡越到阳极,在阳极被吸收后在电路激起一个电流脉冲,同时晶体管内开始下一个畴的形成。[1]

在上述过程中, 砷化镓表现如子图 (2b)的电流-电压特性。当电压 V 小于阈值电压 $V_{\rm th}$ 时, 高场畴尚未形成, 通过晶体管的电流与其两端的电压成正比。到达 A 点时, 两端电压接近阈值电压后, 高场畴开始形成, 整体电阻随总电压增长而下降; 达到 C 点后形成成熟畴, 电流随着电压增长又略有上升。到达 D 点后再降低电压,则在 B 点后畴内电场仍高于阈值, 高场畴仍可维持, 直到总电压小于 $V_{\rm s}$ (维持电压)时, 高场畴不能维持, 电流跃变到与上升阶段相同的位置 F。

图 2 体效应二极管

通过外电路向体效应管提供振荡电压 $V = V_b + V_{ac} \cos \omega_0 t$,并令 $V_b - V_{ac} > V_{th}$ (子图 (2c))。电压零开始上升的过程激发了最初的一次振荡: 在外电压最小时高场畴即可开始形成并向阳极渡越,到下一个最小值时被阳极吸收,形成一个电流脉冲,同时下一个高场畴开始成核。晶体管与外电路相互作用,就形成了频率为 ω_0 的

一组电流脉冲。[1]晶体管与外电路的阻抗的实部与虚部则分别决定了电路的频率与功率。

2.1.3 微波的传播

波导管是一段中空金属管。波导管中传播的电磁波一定由纵向分量,但没有横向电场分量或横向磁场分量,分别称为横磁波(TM)/横电波(TE)。同时有电磁场横向分量的微波(TEM)只能在多层金属组成的电缆中传输。标准的矩形波导管只传输 TE 波,没有纵向电场。

设有均匀无限长无损耗 $a\times b$ 矩形波导管,其中介质均匀,介电常数为 ε ,磁导率为 μ ,一端输入角频率为 ω 的代电磁波,沿 z 轴方向传播(方向如图 3所示)。其中 TE_{10} 波解为

图 3 矩形波导管

$$\begin{cases} E_y = E_0 \sin \frac{\pi x}{a} e^{i(\omega t - \beta z)}, & E_x = E_y = 0; \\ H_x = -\frac{\beta}{\omega \mu} E_0 \sin \frac{\pi x}{a} e^{i(\omega t - \beta z)}, & H_y = 0, \\ H_z = i \frac{\pi}{\omega \mu a} E_0 \cos \frac{\pi x}{a} e^{i(\omega t - \beta z)}. \end{cases}$$
(1)

其中,

$$\beta = \frac{2\pi}{\lambda_{\rm g}}$$
是相位常数, 波导波长 $\lambda_{\rm g} = \frac{\lambda}{\sqrt{1 - (\lambda/\lambda_0)^2}},$ (2)

 $\lambda_0 = 2a, \lambda$ 是微波在真空中的波长。

由式 (1)可以看出此波导管中的电磁波分布具有以下特征:

- 1. $\lambda_g > \lambda$;
- 2. 只有 $\lambda < \lambda_0 = 2a$ 的电磁波可以在此波导管中传输;
- 3. $E/\!\!/\hat{e}_{u}, H\perp\hat{e}_{u};$
- 4. 电场在 x 方向是驻立半波;
- 5. E_y 与 H_x 分布情况相同,相位相差为 π 。磁场的这种结构是行波的特点(图 4)。

2.1.4 微波测量

图 5 微波测量

图 4 波导管中 TE₁₀ 波的电磁场结构

1. 频率测量(谐振式频率计)

吸收式谐振频率计(子图 (5a))是一个长度 L 可调的谐振腔,可以通过耦合孔与波导管相连,调节 L 至 腔体对微波功率发生强烈的共振吸收,功率监测示数减小,即可通过频率校正表得到微波频率。

2. 功率测量(晶体检波器)

功率的绝对测量可以用热敏电阻等测量微波转化的热能,也可以用晶体检波器用于检测功率的相对值。晶体检波器(子图 (5b))中的微波二极管将微波信号转化为直流电信号,微波电信号很弱,处于非线性区;若微波检波信号电流在 $5\sim 10\mu A$,大致有 $I \propto V^2$,即平方检波律(子图 (5c)),由此可知 I=KP,故可用 I 作为 P 的相对值。

3. 驻波比测量(测量线)

如子图 (5d), 在一段波导管宽壁中线上沿微波传输方向开一个长为几个波长的狭槽, 将一探针在槽中来回移动,即可测出沿槽线方向的相对强度分布。

2.2 铁磁共振

利用铁磁材料在相互垂直的稳恒磁场和交变磁场共同作用下发生的铁磁共振现象可以测定材料的 g 银子/共振线宽/弛豫时间等性质。

2.2.1 铁磁共振原理

磁畴是铁磁体中自发磁化的小区域,其自发磁化强度记为 $M_{\rm S}$ 。铁磁体中磁化系数 $\chi \sim 10^{1\sim6}$,故只要加以很小的磁场,就能使铁磁体达到饱和磁化。

设所加磁场为

$$H = H_0 + h$$
 (H_0 为 z 方向恒定磁场, h 为横向微波交变磁场) (3)

时,铁磁体饱和磁化,则 $M_{\rm S}$ 将从原来的平衡方向与 H_0 夹角 θ 处开始绕 H_0 以角频率 $\omega_0=\gamma H_0$ 进动,其中旋磁比 $\gamma=g\frac{\mu_0e}{2m}$ 。

只有钟祥磁场时,磁矩进动将受到阻尼作用,振幅不断衰减,以至指向 z 方向;若加微波场为其补充能量,则到 $\omega = \omega_0$ 时,微波能量被磁矩进动吸收的部分恰可弥补进动阻尼消耗的能量,即为铁磁共振。

此时磁导率张量为

$$\boldsymbol{\mu} = \begin{pmatrix} \mu & -\mathrm{i}\kappa & 0\\ \mathrm{i}\kappa & \mu & 0\\ 0 & 0 & \mu_z \end{pmatrix}, \quad (\mu = \mu' - \mathrm{i}\mu'', \kappa = \kappa' - \mathrm{i}\kappa'', \mu_z = \mu_z' - \mathrm{i}\mu_z'')$$
(4)

其中实部表示色散特性,虚部表示损耗特性。

若固定微波频率 ω_0 ,调节 H_0 大小,则调至 $H_0=H_r$ 时发生共振。此式可以在 $\mu''-H_0$ 关系中观察到共振峰 (子图 (6a))。共振磁场强度 H_r 即图中 $\mu''_{\max}=\mu''_r$ 处对应的磁场强度。 $\Delta H=|H_1-H_2|$ 称为共振线宽,其中 $\mu''|_{H_0=H_1,H_2}=\frac{\mu''_r}{2}$ 。通常铁磁体的弛豫时间满足

$$\tau = \frac{2}{\gamma \Delta H}. \quad (\sim 10^{-6 \sim -9} \text{s}) \tag{5}$$

图 6 铁磁共振曲线和传输式谐振腔的谐振曲线

2.2.2 传输式谐振腔

传输式金属谐振腔时一段矩形波导管两端加上带耦合孔的短路金属板。电磁场被导体壁局限在空腔内部连续反射;只有有合适波型和频率的电磁波能在其中形成驻波,发生谐振。

- 1. 谐振条件: 腔长 $l = p \cdot \frac{\lambda_g}{2}, p = 1, 2, \cdots$;
- 2. 振荡模式:本实验中的矩形波导管只传输 TE_{10} 波,腔内电磁场表示为 TE_{10p} 。p 表示长度方向的半波数。
- 3. 回路本身的品质因数 $Q_0 = \omega_0$ 谐振时总储能 表示谐振效率或频率选择性,即无载品质因数;加外电路后, Q 值通常下降成为有载品质因数 $Q_L = \frac{Q_0Q_e}{Q_0 + Q_e}$,其中 Q_e 是谐振腔的外观品质因数,描述它与外电路耦合的强度。通常 Q_e 越小时 Q_L 也越低。
- 4. 谐振曲线 (传输系数-频率曲线,子图 (6b)): T(f) 曲线中可以得到 $Q_L = \frac{f_0}{|f_1 d_2|}$ (f_0 表示腔的谐振频率)。

2.2.3 用传输式谐振腔测量铁磁共振线宽

1. 谐振腔微扰公式: 谐振腔中加入铁磁样品后, 谐振频率受到微扰, 谐振频率变化很小时, 除了样品所在位置, 电磁场变化都可以忽略, 在 TE₁₀₂ 腔内, 有

$$\frac{f - f_0}{f_0} = -A(\mu' - 1), \quad \Delta\left(\frac{1}{Q_L}\right) = 2A\mu''.$$
 (6)

其中 A 是与谐振腔振荡模式和体积以及样品体积相关的常量,一般满足

$$A = \frac{2}{1 + l^2/a^2 p^2} \frac{V_s}{V_0}. (V_s$$
是样品体积, V_0 是谐振腔体积) (7)

2. 测量方式: TE_{10p} 腔内磁场只在 xz 平面内,外场应沿 y 方向(如子图 (7a))。若铁氧体样品很小且放在磁场最大处,腔内保持谐振,输入功率恒定,则有

$$T(f_0) = \frac{P_{\text{out}}(f_0)}{P_{\text{in}}(f_0)} = \frac{4Q_{\text{L}}^2}{Q_{\text{e},1}Q_{\text{e},2}} (Q_{\text{e},1}, Q_{\text{e},2}, 分别是输入和输出孔的外观品质因数)$$

$$\Rightarrow P_{\text{out}}(f_0) = \frac{4P_{\text{in}}(f_0)Q_{\text{L}}^2}{Q_{\text{e},1}Q_{\text{e},2}} \propto Q_{\text{L}}^2.$$
(8)

测出上式的变化关系后就得到 Q_L 随着 f_0 的变化,即可由式 (6)得到 μ'' ,进而按以下方法求出 ΔH (子

3 实验内容 6

图 7 测量共振线宽和 P-B 关系曲线

图 (7b)):

由以上测量得出 P_{out} 随着 H_0 的变化曲线, P_0 , P_r 分别表示远离共振和共振点处的输出功率, $P_{\frac{1}{2}}$ 为半共振点,即 $\mu''=\frac{\mu''_r}{2}$ 的点,于是有

$$P_{\frac{1}{2}} = \frac{4P_0}{(1 + \sqrt{P_0/P_r})^2}. (9)$$

找到 $P_{\frac{1}{2}}$ 对应的点就可以在图中测出 ΔH 。

 μ 的存在会影响到谐振腔的谐振频率,即频散效应。此效应可以通过每次测量 $P_{\mathrm{out}}-H_0$ 曲线时都重新调谐来消除。

3 实验内容

图 8 传输式谐振腔铁磁共振实验光路图

1. 体效应微波振荡器工作曲线测量及性能测量

3 实验内容 7

(a) 打开体效应微波振荡器总电源,调节"频率"旋钮使频率读数位于 9.000GHz 左右,预热至少 30 分钟。按图 8所示光路图检查光路是否连接妥当。

- (b) 按下微波源信号的"等幅"和"教学"工作钮,在 0~13V 的电压范围内连续改变体效应管的主作电压,记录相应的工作电流值,画出体效应管在 0~13V 区间电流·电压曲线。利用光路中的吸收式波长计和检波器 1 测量工作电压在 10~13V 区间频率-电压曲线,分析体效应管的负阻区和微波工作区的电压范围。
- (c) 弹起"教学"工作钮,此时体效应管工作在标准电压 12.0V 左右。调节体效应管功率钮和微波衰减器,使与检波器 1 连接的微安表的示数合适,调节频率旋钮,改变微波的频率范围 (8.9GHz-9.2GHz),测量不同频率下的微波输出功率。

注意,每次改变频率后,检波器要调谐。

2. 铁磁共振实验

- (a) 检查传输式谐振腔中的金属耦合片是否装上。
- (b) 本实验是在 3 厘米微波波段进行的,传输式谐振腔采用 TE_{10p} 矩型谐振腔(本实验中 p=8, a=2.295cm, l=19.30cm),样品采用直径大约为 1-2mm 的多晶或单晶铁氧体小球。电磁铁提供的外磁场强度为 $0\sim0.5$ T。根据式 (2)估算谐振腔的谐振频率。
- (c) 检测电磁铁电钮旋钮是否为最小,然后打开共振仪电源,工作方式设为检波。根据预习中对理论谐振频率的计算结果,在该频率附近连续调节微波频率,观察共振仪上的检波示数的变化,当表头示数发生变化时,及时调整检波器 2 的调谐活塞和灵敏度,使检波指针示数合适。观察示数随微波频率的变化关系。
- (d) 仔细调节微波频率观察谐振腔的输出功率,找到其谐振频率 f_0 ,将检波器 2 连接到微安电流表上,调节衰减器,使微安表示数合适,在此频率左右单调、逐点测量传输式谐振腔的谐振曲线,并计算其品质因数。
- (e) 将微波频率设置为 f_0 ,工作方式设为扫场,放入铁磁样品,调节磁场电流扫场为最大,调节磁场电流,直到在示波器 (x-y 扫描方式)观察到共振曲线,调节相移钮,使左右信号重合,调节各参数(电磁铁电流/相移/微调谐振频率),使共振曲线接近理想图形。
- (f) 分别观察不同铁氧体样品的共振线宽。
 - i. 在谐振腔中放入不同的铁氧体样品,观察共振信号的变化,记录共振曲线的图像,分析不同样品 共振信号的差异与成因。
 - ii. 用逐点法测量样品的共振曲线:
 - A. 将待测样品放入谐振腔,铁磁共振仪设为扫场方式,调节磁场电流,在示波器上观察样品的共振特征:
 - B. 铁磁共振仪设为检波,将检波器 2 连接到微安表上,从小到大调节磁场电流,用逐点法测量样品的共振曲线,注意合理设置测量点的步长,测量前一定要使谐振腔调谐,使曲线左右远离共振时的信号功率尽量相等(如果共振曲线左右功率不等,应微调谐振频率),绘制 P-B 图,测量多晶样品的共振线宽 ΔB 。
- (g) 用高斯计测量电磁铁电流与磁场强度的关系。
- (h) 计算样品的旋磁比 $\gamma = \frac{\omega_0}{B_0}$ 、g 因子和弛豫时间 τ 。
- (i) 比较分析不同样品的弛豫时间不同的原因。
- 3. 关机:将铁磁共振仪的电磁铁电流调至最小,关仪器电源开关。

4 实验结果与分析讨论 8

4 实验结果与分析讨论

4.0.1 体效应微波振荡器工作曲线及性能

预热后接图 8连接仪器,接下微波源信号的"等幅"和"教学"工作钮,固定频率为 $9.000 \, \mathrm{GHz}$,测得的体效应管在 $0 \sim 13 \, \mathrm{V}$ 区间电流-电压曲线如子图 (9a)与表 1,可见大致在 $3.00 \sim 4.50 \, \mathrm{V}$ 之间有一个负阻区 (指二极管的微分电阻 $\frac{\mathrm{d}V}{\mathrm{d}I}$ 小于零),这一阶段高场畴逐渐形成,电流随电压升高而减小;由此可见微波工作区应在 $4.50 \, \mathrm{V}$ 以上,即令交变电压的最小值仍大于此值,使得一个高场畴被阳极吸收时下一个畴能同时在阴极成核,从而不断地发射电流脉冲,产生微波。

用吸收式波长计和检波器 1 测得的 $10\sim13V$ 区间内的频率-电压曲线如子图 (9b)与表 2。可见微波二极管输出的频率随着工作电压升高而缓慢减小。这是由于输出频率由高场畴的渡越时间 T_D 决定[2]:

$$f = \frac{1}{T_D} = \frac{v_D}{L} \tag{10}$$

而畴的平均速率 v_D 主要是由成熟畴的电荷量决定的,电压越高,高场畴越大,渡越速度越慢,所以输出频率就越低。

图 9 体效应微波振荡器工作特性

	11 · 1 · 1 · 1 · 1	11 · 1	
表 1	工作电流.	- 丁作田	压无系

工作电压 U/V	工作电流 I/mA	工作电压 U/V	工作电流 I/mA	工作电压 U/V	工作电流 I/mA
13.00	417	6.00	414	0.30	68
12.50	417	5.50	414	0.70	155
12.00	418	5.00	410	0.80	176
11.50	418	4.50	409	1.25	263
11.00	419	4.00	410	1.75	340
10.50	420	3.50	417	2.25	389
10.00	421	3.00	427	2.75	415
9.50	422	2.50	420	3.20	427
9.00	424	2.00	366	3.30	429
8.50	425	1.50	302	3.40	430
8.00	423	1.00	213	3.50	431
7.50	422	0.50	112	3.52	427
7.00	420	0.00	0	3.60	424
6.50	418	0.10	24	3.80	424

4 实验结果与分析讨论 9

工作电压 U/V	频率计读数/mm	输出频率 f/MHz	工作电压 U/V	频率计读数/mm	输出频率 f/MHz
13.0	8.353	8990.0	11.0	7.508	9078.5
12.5	8.186	9007.0	10.5	7.149	9119.0
12.0	7.992	9027.5	10.0	6.612	9182.0

表 2 输出频率-电压关系

表 3 谐振电流-频率关系

信源频率 f/GHz	谐振电流 I/μA	信源频率 f/GHz	谐振电流 I/μA	信源频率 f/GHz	谐振电流 I/μA
9.103	91.1	9.050	80.0	8.899	65.0
9.201	85.1	9.000	85.0	8.855	53.0
9.151	102.0	8.949	70.8	8.800	43.0

弹起"教学"工作钮后体效应管工作固定在标准电压 12.0V 左右。在 8.9GHz-9.2GHz 范围内调节输出频率,调谐检波器 1 测得的微波输出功率的变化情况如子图 (9c)与表 3。这是此晶体管本身的工作特性。

4.0.2 铁磁共振实验

本实验中传输式谐振腔采用 TE_{10p} 矩型谐振腔(本实验中 p=8, a=2.295cm, l=19.30cm), 故理论上谐振频率为(据式 (2)):

$$f_0 = \frac{c\sqrt{p^2 + l^2/a^2}}{2l} = 9.014 \times 10^9 \text{Hz}.$$
 (11)

实测谐振频率约为 9.026GHz,与计算结果相近。

在此频率左右连续调节微波频率,用共振仪测出检波示数,即传输式谐振腔的功率指示电流随微波频率的变化关系如图 10与表 4所示。

信源频率 f/GHz	检波 2 电流 I/A	信源频率 f/GHz	检波 2 电流 I/A
9.000	2.4	9.026	65.9
9.008	2.3	9.028	28.8
9.015	2.3	9.029	11.0
9.022	5.9	9.030	7.0
9.023	11.1	9.034	3.2
9.025	54.0	9.039	2.3
9.026	88.0	9.045	2.3

表 4 谐振电流-频率关系

线性插值得到振幅为谐振时一半的频率为

$$f_1 \approx 9.0245 \text{Hz}, \quad f_2 \approx 9.0272 \text{Hz}.$$
 (12)

于是可以求得品质因数

$$Q_{\rm L} = \frac{f_0}{f_2 - f_1} = 3410. \tag{13}$$

图 10 铁磁共振图象

4 实验结果与分析讨论 10

在 f_0 频率和扫场的工作方式下放入铁磁样品(多晶/单晶),调节磁场电流扫场为最大,调节磁场电流,直到在示波器(x-y 扫

描方式)观察到共振曲线(子图 (11a)),调节相移钮,使左右信号重合(子图 (11b)),细调电磁铁电流,可以在的两个位置分别观察到色散信号(子图 (11c))和共振信号。调至接近共振信号的形状后(子图 (11d))再微调谐振频率,即可使共振曲线接近理想图形(子图 (11e)和(11f))。可见单晶铁氧体样品的共振线宽明显比多晶的

更窄。这是因为多晶铁氧体可以看作是许多单晶组成的,组成它的单晶各自的谐振频率略有差异,叠加起来就 体现为共振线宽更大的一个共振信号。

图 12 逐点法测量多晶样品的共振线宽

为测量多晶样品的共振线宽 ΔB ,将检波器 2 连接到微安表上,从小到大调节磁场电流,用逐点法测量其的共振曲线(谐振功率-磁场图象);结果如子图 (12a)与表 5所示。其中每次测量前都已重新将谐振腔调谐。测得远离谐振位置的功率指示电流约为 $I_{P.0}=75.4\mu\mathrm{A}$ (这是功率指示电流稳定部分的几个数据点的均值),谐振位

5 结论与建议 11

电磁铁电流 I_H/A	谐振电流 $I_P/\mu A$	谐振频率 f_0/GHz	电磁铁电流 I_H/A	谐振电流 $I_P/\mu A$	谐振频率 f_0/GHz
0.024	75.2	9.028	1.596	41.2	9.026
1.015	75.9	9.026	1.614	39.6	9.027
1.297	76	9.030	1.662	41.3	9.026
1.366	75.2	9.028	1.679	43.8	9.026
1.421	75.2	9.030	1.698	46	9.029
1.507	72.3	9.027	1.716	57.8	9.029
1.531	68.9	9.026	1.763	72.3	9.029
1.562	48	9.031	1.802	74.9	9.026
1.579	39	9.032	2.089	75	9.030

表 5 谐振功率-磁场关系

表 6 电磁铁磁场-电流定标

电流 I/A	磁感应强度 B/mT						
0.024	8	1.070	213	1.502	296	1.990	381
0.123	26	1.242	246	1.601	314	2.126	402
0.255	51	1.305	259	1.656	324	2.327	428
0.495	97	1.356	268	1.714	334	2.580	456
0.828	165	1.406	277	1.791	348	2.848	482
0.963	192	1.450	286	1.825	353	2.986	493

置的功率指示电流为 $I_{P,0}=39\mu\text{A}$ 。于是根据式 (9)可以求出 $I_{P,\frac{1}{2}}=52.8\mu\text{A}$ 。经线性插值可得这一功率对应的电磁铁电流为 1.5549A 和 1.7084A。于是得到多晶样品的共振线宽(以电磁铁电流表示)为 $\Delta I_H\approx 0.15345\text{A}$ 。

用高斯计标定电磁铁电流与磁场强度的关系如子图 (12b)与表 6所示。经线性插值得到上述两个电流 1.5549A 和 1.7084A 对应的磁感应强度分别约为 305.62mT 和 333.03mT;所以共振线宽为

$$\Delta B = 27.41 \text{mT}. \tag{14}$$

同样地可以插值得出谐振位置的磁感应强度为 $B_0 \approx 310.00 \mathrm{mT}$ 。由此可以计算样品的旋磁比

$$\gamma = \frac{\omega_0}{B_0} = 1.831 \times 10^5 \text{T} \cdot \text{s}.$$
 (15)

由此求出 g 因子为

$$g = \frac{2m\gamma}{\mu_0 e} = 1.655. \tag{16}$$

弛豫时间为

$$\tau = \frac{2}{\gamma \Delta H} = 1.586 \times 10^{-4} \text{s.}$$
 (17)

单晶样品由于谐振范围过窄,仪器分辨率难以测出共振线宽。

在示波器图象中可见多晶样品的共振线宽较大,故其弛豫时间较短。这是因为多晶中的磁畴的 M_S 较小,更易受外磁场影响偏转。

5 结论与建议

实验测量了微波体效应管的工作特性,并用它产生的微波激发了铁氧体样品的铁磁共振,进而测出了样品的相关参数。

实验中首先测出了微波体效应管的电流-电压关系和频率-电压关系。发现体效应管的电流随电压的增大先增大后减小再增大或基本稳定,中间有一段负阻区,微分电阻小于零;分析表明负阻区是由高场畴的形成过程引起的,正是利用这一负阻效应,我们得以通过砷化镓晶体管和提供带适当直流偏压的交变电压的外电路的相互作用产生振荡电流,发射微波。测量还表明体效应管的输出频率和电压在10-13V内呈负相关,推测是工作电压对高场畴渡越过程的影响造成的。我们随后还标定了该体效应管的频率-输出功率关系。

此后我们通过测量谐振腔的谐振曲线求出了该体效应管的有载品质因数 Q=3410。而后用示波器分别观察了单晶样品和多晶样品的共振曲线,发现后者的共振线宽较大,弛豫时间较长,这说明铁氧体多晶是由许多共振频率不完全相同的单晶组成的。最后,我们先用逐点法具体测定了多晶样品的铁磁共振曲线,又用高斯计标定了电磁铁电流与磁感应强度的关系,进而算得了多晶样品的共振线宽 $\Delta B=27.41 \mathrm{mT}$,旋磁比 $\gamma=1.831\times 10^5\mathrm{T}$ 、 $\gamma=1.655$ 和弛豫时间 $\gamma=1.586\times 10^{-4}\mathrm{s}$ 。

* * * * * * *

参考文献

- [1]. 北京师范大学物理实验教学中心.2018.3. 近代物理实验 II 讲义.1-13 页.
- [2]. 近代物理实验(第四版). 吴思诚. 等. 高等教育出版社. 2015.
- A 仪器参数
- B 实验注意事项
- C 实验记录

实验记录见图 13至15。

	实验	记录	
1.2 传教验缴	压的器工作曲线		
2级电压/V	-	工作电压/	20c电流/A.
13,00	417	0.10	024
12.50	417	0.30	068
12.00	418	0,70	155
11.50	418	0,80	176
11,00	419	4,25	263
10.50	4-20	175	340
10,00	421	2,25	389
9,50	422	2,75	415
9,00	4 24	3,20	427
8,50	425	3,30	429
8,00	423	3,40	430
7,50	422	3,50	431
7.00	420	3,52	427
6,50	418	3,60	424
6,00	414	3,80	424
5,50	410	工作电压/V 引	欧波动繁大时频季 6
5,00	409	(9)季心	t读如mm)
4,50	410	13.00 8,353	8990,0
4,00	417	12.50 8.186	9007,0
3,50	427	12,00 7,992	
3.00	420	11,50 7,777	9049,5
2,50	402	11,00 7.508	9078.5
2,00	366	10.50 7.149	9119,0
	3 0 2	10.00 6.612	9182,0
1,00	213		
0.50	112	其中以表零点为	1.8 MA / 100MA 3
0.00	000		(,),,,,

图 13 实验记录 1

		No.
		Date. · ·
1.3 嵌车一级波车	新华加峰 (12、02	V, 表减器
信源频率/GHX (4)	到达时) 输出功率指示电流/MA	(100 MA () (2)
9,103	91,1	
9,201	85,1	and the second of the second o
9,151	102.0	
9,050	80,07	
9,000	85.0	
8,949	70.8	100
8,899	65.0	3 2018.4.19
8,855	53.0	
8,800	43,0	
2、铁石钻共振		
$p = \delta, \alpha = 2.$ $f_0 = c$ 2.1 Find $f_0 = 9.0$	$295 \text{ cm}, l = 19.30 \text{ c}$ $\sqrt{P^2 + l^2/a^2} = 9.0$ 26.648	m. 14 ×10 ⁹ HZ.
	12 to 12 12 12 12 12 12 12 12 12 12 12 12 12	
信源.频单/GH	· ·	
9,000	2,0	9,000 2.4
9,013	2,0	9,008 2.3
9,019	3,0	9,015 2,3
9,021	4.1 400	9,022 5,9
9,022	11.9	9,023
9,023	20,5	9,025 54.0
9,025	58.9	9,026 88.0
9.026	2100	9,026 65.9
9,028	35.3	9.028 23.8
9,032	7.0	9,029 11,0
9,034	3,8	9,030 7.0
9,036	2,9	4,034 3,2
9,040	2.5	$\frac{9,039}{9,045}$ 2.3
9.045	2,3	

图 14 实验记录 2

图 15 实验记录 3

				No.	
and the second				Date · ·	
粉裝 (单品) つ		2.4	电磁铁	2年13十岁	
IHA IP/MA.	folaHz		IH/A	B/mT	-
1,302 75.4	9,025	0	1024	8	
1,35/ 78,0	9,029		1/23	26	
1.402 77.3	9,026.		0,255	5/	
1.454 78.7	9,028		0,495	97	
1.501 77.2	9,028		0,828	165	
1,55 76,0	9,028		0-963	192	-
1,595 640	9,028		1,070	213	
1.609. 69.9	9,025		1,242	246	
1,626 761	9,030		1,305	259	
1,651 69,8	9,026		1,356	268	
	9,029		1,406	277	
	9,027		1.450	286	
1,704 65.6			(,502	296	
	9,026		1,601	314	
	. 9,026		1,656	324	
1,784 78,0	9,027			334	
1819 77.0	9,026.		1.714	348	
$\sqrt{3m}$) 1	,	353	
ZH/A Zp/MA	fo/GHZ	120	1,825	38/	
0,024 73,2	31028	12	1,990	'	
1.015 75.9	9,026.	2018.4.19	2,126	402	
1,297 76,0	9,030	/	2,327	428	
1,366 7512	9,028		2.580	456	
1,42/ 75,2	9P3 0.		2.848	482	
1,507 72,3	9,027		2.986	493	
1,507 72,3 1,531 68,9	91026	0	^	0.02/	
1,562 48,0	9.03/	/,679	43,8	1,000	
1,562 48,0	9,032	1,692	46.043.8	9,029	
15.96 41,2 1,614 39,2 1,662 41,3	9,026.	1,7/8	57.8	9,029	
1,614 39,2	9,027	1.76	3 72,3 2 74,9 9 75,0	9,020	
1 662 413	9,026	1,80	2 74,9	9,026	•

图 16 实验记录 4