ON THE OSCILLATORY INTEGRATION OF SOME ORDINARY DIFFERENTIAL EQUATIONS

OCTAVIAN G. MUSTAFA

ABSTRACT. Conditions are given for a class of nonlinear ordinary differential equations x'' + a(t)w(x) = 0, $t \ge t_0 \ge 1$, which includes the linear equation to possess solutions x(t) with prescribed oblique asymptote that have an oscillatory pseudo-wronskian $x'(t) - \frac{x(t)}{t}$.

1. Introduction

A certain interest has been shown recently in studying the existence of bounded and positive solutions to a large class of elliptic partial differential equations which can be displayed as

(1)
$$\Delta u + f(x, u) + g(|x|)x \cdot \nabla u = 0, \qquad x \in G_R,$$

where $G_R = \{x \in \mathbb{R}^n : |x| > R\}$ for any $R \ge 0$ and $n \ge 2$. We would like to mention the contributions [3], [1], [8] – [11], [13, 14], [18] and their references in this respect.

It has been established, see [8, 9], that it is sufficient for the functions f, g to be Hölder continuous, respectively continuously differentiable in order to analyze the asymptotic behavior of the solutions to (1) by the comparison method [15]. In fact, given $\zeta > 0$, let us assume that there exist a continuous function $A: [R, +\infty) \to [0, +\infty)$ and a nondecreasing, continuously differentiable function $W: [0, \zeta] \to [0, +\infty)$ such that

$$0 \le f(x, u) \le A(|x|)W(u)$$
 for all $x \in G_R, u \in [0, \zeta]$

and W(u) > 0 when u > 0. Then we are interested in the positive solutions U = U(|x|) of the elliptic partial differential equation

$$\Delta U + A(|x|)W(U) = 0, \qquad x \in G_R,$$

for the role of super-solutions to (1).

M. Ehrnström [13] noticed that, by imposing the restriction

$$x \cdot \nabla U(x) \le 0$$
, $x \in G_R$,

²⁰⁰⁰ Mathematics Subject Classification: Primary: 34A30; Secondary: 34E05, 34K25.

Key words and phrases: ordinary differential equation, asymptotic integration, prescribed asymptote, non-oscillation of solutions.

Received May 15, 2007, revised November 2007. Editor O. Došlý.