Getting started with coding and R

 $stirling coding club.github.io/getting_started/slides.pdf$

Stirling Coding Club

26 February 2020

Do I need to learn how to code?

Want to Make It as a Biologist?
Better Learn to Code

https://www.wired.com/2017/03/biologists-teaching-code-survive/.

¹Dreyfuss (2017). Wired.

 $^{^2}$ Mike (2019). https://mikethemadbiologist.com/2019/12/06/biologists-should-not-learn-how-to-code/.

Do I need to learn how to code?

Not only is coding a core skill that gets the basic work of biology done, it's also taught [biologists] to look at problems in new ways. Above all, they agree, **coding liberated them**. As tools evolve to allow biologists to gather ever-more-massive quantities of data, people [...] will find a way to make coding a core part of scientific education¹.

[T]here's nothing wrong with becoming an expert (or close to one) in a given skill set (e.g., statistics, coding), and it also will be a good thing as a biologist. But I don't think coding will be the must-have skill set a few years from now (except for those who develop new tools)².

¹Dreyfuss (2017). Wired.

https://www.wired.com/2017/03/biologists-teaching-code-survive/.

 $^{^2}$ Mike (2019). https://mikethemadbiologist.com/2019/12/06/biologists-should-not-learn-how-to-code/.

Do I need to learn how to code?

Not only is coding a core skill that gets the basic work of biology done, it's also taught [biologists] to look at problems in new ways. Above all, they agree, **coding liberated them**. As tools evolve to allow biologists to gather ever-more-massive quantities of data, people [...] will find a way to make coding a core part of scientific education¹.

[T]here's nothing wrong with becoming an expert (or close to one) in a given skill set (e.g., statistics, coding), and it also will be a good thing as a biologist. But I don't think coding will be the must-have skill set a few years from now (except for those who develop new tools)².

¹Dreyfuss (2017). Wired.

https://www.wired.com/2017/03/biologists-teaching-code-survive/.

 $^{^2}$ Mike (2019). https://mikethemadbiologist.com/2019/12/06/biologists-should-not-learn-how-to-code/.

Most scientific research relies on numeric data.

- Data organisation
- Statistical analysis
- Visualisation

Most scientific research relies on numeric data.

- Data organisation
- Statistical analysis
- Visualisation

Software exists that can do the above without code.

- ▶ JMP
- ► Minitab
- ► Systat
- MSExcel

Most scientific research relies on numeric data.

- Data organisation
- Statistical analysis
- Visualisation

Software exists that can do the above without code.

- ▶ JMP
- ▶ Minitab
- ► Systat
- MSExcel

Practical advantages of using these software tools

▶ Graphical User Interface (no need to work with code).

Practical advantages of learning and using R

▶ R software is entirely free and open source

- ▶ R software is entirely free and open source
- ► Thousands R packages for specific data needs

- R software is entirely free and open source
- ► Thousands R packages for specific data needs
- Standard programming language for statistics

- R software is entirely free and open source
- ► Thousands R packages for specific data needs
- Standard programming language for statistics
- Write papers, slides, and apps in Rmarkdown

- R software is entirely free and open source
- ► Thousands R packages for specific data needs
- Standard programming language for statistics
- Write papers, slides, and apps in Rmarkdown
- Get a job

- R software is entirely free and open source
- Thousands R packages for specific data needs
- Standard programming language for statistics
- ► Write papers, slides, and apps in Rmarkdown
- Get a job
- Write your own solutions to data management problems
- Write your own statistical analyses
- Create your own plots

Practical advantages of learning and using R

- R software is entirely free and open source
- Thousands R packages for specific data needs
- Standard programming language for statistics
- ► Write papers, slides, and apps in Rmarkdown
- Get a job
- Write your own solutions to data management problems
- Write your own statistical analyses
- Create your own plots

A lot of coding is Googling solutions to get the code to work.

Write your own solutions to data organisation problems

##		SPEI	Year	Tree_ID	BAI	cumul_mn
##	1	0.34325052	1966	FR6201	645.3972	NA
##	2	-1.35933830	1967	FR6201	470.0363	NA
##	3	0.49415034	1968	FR6201	830.5755	NA
##	4	-1.38069918	1969	FR6201	414.0594	NA
##	5	0.79613295	1970	FR6201	977.4877	NA
##	6	-0.06371012	1971	FR6201	809.8834	NA

Calc. the cumul_mn for the BAI col. every year for each tree¹:

¹Thanks to Tom Ovenden for letting me use this example.

Write your own solutions to data organisation problems

```
##
           SPEI Year Tree ID BAI cumul mn
     0.34325052 1966
                     FR6201 645.3972
                                            NA
  2 -1.35933830 1967 FR6201 470.0363
                                            NΑ
## 3 0.49415034 1968 FR6201 830.5755
                                            NΑ
  4 -1.38069918 1969 FR6201 414.0594
                                            NΑ
     0.79613295 1970 FR6201 977.4877
                                            NΑ
## 6 -0.06371012 1971
                     FR6201 809.8834
                                            NA
```

Calc. the cumul_mn for the BAI col. every year for each tree¹:

- ▶ Do not include *current* BAI record in cumul_mn calc
- ▶ If the Year SPEI is >1 or -1, never include the BAI value
- ▶ If the Year 1 SPEI is >1 or <-1, never include the BAI value
- ▶ If the Year 2 SPEI is >1.5 or <-1.5, never include the BAI value
- ▶ If the Year 3 SPEI is >2 or <-2, never include the BAI value

¹Thanks to Tom Ovenden for letting me use this example.

Write your own solutions to data organisation problems

Solution took 65 lines of code written in 3 custom functions.

```
tree cumulative mean <- function(dat){</pre>
    trees <- unique(dat$Tree ID);
    new table <- NULL;
    for(tree in trees){
        sub dat <- dat[dat$Tree ID == tree,];</pre>
        tree cumul <- get cumulative(tree = sub dat);</pre>
        new tree <- update cumul(tree = sub dat,
                                     vec = tree cumul);
        new_table <- rbind(new_table, new_tree);</pre>
    return(new_table);
```

The above is the 'outermost' function.

Testing the effects of fig tree spatial distributions on pollinator, seed, and parasite distributions.

¹Duthie AB, Nason JD (2016) Oikos 125(11):1597-1606.

##		Year	Site	Tree	Poll	Npoll	Seeds	Vol	Lat
##	1	2010	170	6	0	22	NA	753.6000	28.24057
##	2	2010	170	6	0	10	NA	1025.7333	28.24057
##	3	2010	170	6	7	37	NA	1047.7133	28.24057
##	4	2010	170	6	0	36	NA	1230.8800	28.24057
##	5	2010	170	6	0	34	NA	884.4333	28.24057
##	6	2010	170	6	0	33	NA	1128.3067	28.24057
##	7	2010	170	6	0	36	NA	1025.7333	28.24057
##	8	2010	170	6	0	17	NA	565.2000	28.24057

##	Year	Site	Tree	Poll	Npoll	Seeds	Vol	Lat
## 1	2010	170	6	0	22	NA	753.6000	28.24057
## 2	2010	170	6	0	10	NA	1025.7333	28.24057
## 3	3 2010	170	6	7	37	NA	1047.7133	28.24057
## 4	2010	170	6	0	36	NA	1230.8800	28.24057
## 5	2010	170	6	0	34	NA	884.4333	28.24057
## 6	2010	170	6	0	33	NA	1128.3067	28.24057
## 7	2010	170	6	0	36	NA	1025.7333	28.24057
## 8	3 2010	170	6	0	17	NA	565.2000	28.24057

 Needed to use mean tree values and a custom index of fig wasp dispersal ability

##	Year	Site	Tree	Poll	Npoll	Seeds	Vol	Lat
## 1	2010	170	6	0	22	NA	753.6000	28.24057
## 2	2010	170	6	0	10	NA	1025.7333	28.24057
## 3	2010	170	6	7	37	NA	1047.7133	28.24057
## 4	2010	170	6	0	36	NA	1230.8800	28.24057
## 5	2010	170	6	0	34	NA	884.4333	28.24057
## 6	2010	170	6	0	33	NA	1128.3067	28.24057
## 7	2010	170	6	0	36	NA	1025.7333	28.24057
## 8	2010	170	6	0	17	NA	565.2000	28.24057

- Needed to use mean tree values and a custom index of fig wasp dispersal ability
- ► Wanted to make analysis open source and figures reproducible

##		Year	${\tt Site}$	Tree	Poll	Npoll	Seeds	Vol	Lat
##	1	2010	170	6	0	22	NA	753.6000	28.24057
##	2	2010	170	6	0	10	NA	1025.7333	28.24057
##	3	2010	170	6	7	37	NA	1047.7133	28.24057
##	4	2010	170	6	0	36	NA	1230.8800	28.24057
##	5	2010	170	6	0	34	NA	884.4333	28.24057
##	6	2010	170	6	0	33	NA	1128.3067	28.24057
##	7	2010	170	6	0	36	NA	1025.7333	28.24057
##	8	2010	170	6	0	17	NA	565.2000	28.24057

- Needed to use mean tree values and a custom index of fig wasp dispersal ability
- ► Wanted to make analysis open source and figures reproducible
- ▶ Had to help a colleague use the same analysis on new data

Create your own plots

Custom built plot with R code showing results from an individual-based model.

¹Duthie AB, et al. (2016) Evolution 70(9), 1927–1943.

R is extremely useful for doing scientific research

A bit of coding skill can save a lot of time in the long run.

- You do not need to know everything
- Help is available from many places
- It might eventually become fun

https://stirlingcodingclub.github.io/getting_started/notes.html