BANA 273 Session 7

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro Prof. Vibs

The Paul Merage School of Business University of California, Irvine

Agenda

- Assignment due dates on Canvas
- Please work on your projects Exam Help
 - Gather Data
 - Refer to projhttps://eduassistpro.github.io/
- Market Basker Analysishat edu_assist_pro
- Generating and identifying good Association Rules

Weka Memory

- To increase Java virtual memory for WEKA
 - On your soignment of Star Exam Help
 - In "Search "cmd"
 - Use "cd ... https://eduassistpro.github.jo/ Program Filesdd WeChat edu_assist_pro
 - On command prompt type:
 - "Java –Xmx512m –jar weka.jar"

Why mine association rules?

- The goal may be fuzzy or unstructured Assignment Project Exam Help
- More than on https://eduassistpro.github.io/
 - Add WeChat edu_assist_pro
- Interesting patterns (previously unknown) may emerge that can be used within a business

What can we do with this data?

A retailer (e.g. Target) has the following data sources:

1. Shopping transactions, 2. Shopper information, 3. Census data with information for each zip code

Transaction data set:

Shopper ID		Items included in	Store ID	Trans ID
	transaction	the transaction	Tropa IIala	
	Assignme	nt Project E	zaili neip	
Shopper111	09/10/20		_	Tran321
	12:09:01	//aduanaint	ara althub i	
https://eduassistpro.github.io/				

Shopper Information: A 11 TY

Shopper ID	Address	Add WeChased Chacategory	at edu_a (days)	ssist pro	Total \$ (year)
Shopper111	95616	food	12	4/month	\$4000

Census Data:

Zip Code	Median family Income	Median house value	Median age	Population	Population density
95616	70,000	500,000	25	60,000	5700/mile ²

Market Basket Analysis (MBA)

- MBA in retail setting
 - Find out what items are bought together
 - Cross-selling

 - Optimize shelf layout
 Product busing project Exam Help

 - Timing promDiscount plaDiscount pla

 - Product selection under climit edu_assist_pro
 Targeted advertisement. Pers pons, item recommendations
- Usage beyond Market Basket
 - Medical (associated symptoms)

Association Rules

Rule format:

If $\{\underline{\text{set}} \text{ of items}\} \rightarrow \text{Then } \{\underline{\text{set}} \text{ of items}\}$

```
Assignment Project Exam Help

If {D https://eduassistpro.github}io/
Baby

Add WeChat edu_assist_pro
LHS impli
```

An association rule is valid if it satisfies some evaluation measures

Association Rule Discovery: Definition

- Given a set of records each of which contain some number of items from a given collection;
 Assignment Project Exam Help
 Produce dependency rules which will predict occurrence of an
 - Produce dependency rules which will predict occurrence of an item based on https://eduassistpro.github.io/

TID	Items Add WeChai
1	Items Add WeCha Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

```
t edu_assis<sup>reb</sup>ro
{Coke}
{Diaper, Milk} --> {Beer}
```


Association Rule Discovery: Application 1

- Marketing and Sales Promotion:
 - Let the rule discovered be

```
{Bagels, ... } --> {Potato Chips}
```

- Potato Chips as consequent Project Exam determine what should be done to boost its sales.
- Bagels in the ant be affected if the https://eduassistpro.github.io/
- Bagels in antecedent and Potato chi see what products should be sold wiedu_assiston of Potato chips.

 Bagels in antecedent and Potato chi see what products should be sold wiedu_assiston of Potato chips.

Association Rule Discovery: Application 2

- Supermarket shelf management.
 - Goal: Tosidentifyeiter Projecter banglittels ether by sufficiently
 - Approach: https://eduassistpro.githubojpcted with barcode scanners to find de du_assist_pro items.
 - A classic rule --
 - If a customer buys diaper and milk, then he is very likely to buy beer.
 - So, don't be surprised if you find six-packs stacked next to diapers.

Association Rule Discovery: Application 3

Inventory Management:

- Goal: A consumer appliance repair company wants to anticipate the nature of repairs on its consumer products and keep the service vehicles equi on number of visits to consumer ho https://eduassistpro.github.io/
- Approach: Process the data on to Add WeChat edu_assist pro repairs at different consumer loc over the co-occurrence patterns.

Association Rule Mining

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Assignment Project Exam Help

Market-Basket trans

https://eduassistpro.github.io/jation Rules

TID	Items	
1	Bread, Milk Add WeC	hat edu_assist (Beer), ad) → {Eggs,Coke},
2	Bread, Diaper, Beer, Eggs	{Beer, Bread} → {Milk},
3	Milk, Diaper, Beer, Coke	
4	Bread, Milk, Diaper, Beer	Implication means co-occurrence,
5	Bread, Milk, Diaper, Coke	not causality!

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
- An itemset that contains k items

 Assignment Project Ex Support count (o)
 - Frequency of occur
 - E.g. $\sigma(\{Milk, Bre\})$
- Support
 - Add WeChat edu Fraction of transactions that contain an itemset
 - E.g. $s(\{Milk, Bread, Diaper\}) = 2/5$

Frequent Itemset

 An itemset whose support is greater than or equal to a minsup threshold

TID	Items
am I	Bread, Milk
2	Bread, Diaper, Beer, Eggs
ro ait	Milk, Diaper, Beer, Coke UD 10/ Bread, Milk, Diaper, Beer
5	
assis	Bread, Milk, Diaper, Coke

Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y

No. of transactions containing items in LHS and RHS

Support =

Total No. of transactions in the dataset

Confidence (c) Measures how often items in Y Project Exam Help appear in transac

contain X

https://eduassistpro.github.io/

	1 40
TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

$$\{Milk, Diaper\} \Rightarrow Beer$$

$$s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

Rule Evaluation - Lift

Transaction No.	Item 1	Item 2	Item 3	Item 4	
100	Beer	Diaper	Chocolate		
101	Milk	Chocolate	Shampoo		
102	Beer	Milk	Vodka	Chocolate	
103 Assign	Beer 1ment F	Milk roject E	Diaper He	Chocolate	
104	Milk	Diaper	Beer	1	

What's the support a https://eduassistpro.github/in/?

Very high support and confidence. Is Chocolate a good predictor of Milk purchase?

No! Because Milk occurs in 4 out of 5 transactions. Chocolate is even decreasing the chance of Milk purchase 3/4 < 4/5, i.e. P(Milk|Chocolate)<P(Milk)

Lift =
$$(3/4)/(4/5) = 0.9375 < 1$$

Rule Evaluation – Lift (cont.)

- Measures how much more likely is the RHS given the LHS than merely the RHS
- Lift = confidence of the rule / benchmark confidence Benchmark Confidence

 = Count of RHS / Number of transactions in database

Example: {Diaper https://eduassistpro.github.io/

- No. of customers buying Chart edu_assist_pro
 No. of customers buying beer.
- No. of customers buying Diaper & beer: 20
- Benchmark confidence of Beer = 50/1000 (5%)
- Confidence = 20/200 (10%)
- Lift = 10%/5% = 2
- Higher Lift indicates better rule

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diape A Setginhent
4	Bread, Milk, Dia
5	Bread, Milk, Dia https://e

Example of Rules:

```
{Milk, Diaper} → {Beer} (s=0.4, c=0.67)

{Milk, Beer} → {Diaper} (s=0.4, c=1.0)

{Diaper} Beer} → {Milk} (s=0.4, c=0.67)

{Beer} → {Milk, Diaper} (s=0.4, c=0.5)

{Beer} (s=0.4, c=0.5)

{Cases} eduassistpro.gripher
```

Observations: Add WeChat edu_assist_pro

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Association Rule Mining Task

- Given a set of transactions T, the goal of associations rule minipgoise to find all rules having
 - support ≥
 - confidence https://eduassistpro.github.io/

- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the *minsup* and *minconf* thresholds
 - ⇒ Computationally prohibitive!

Compute the support for subsets {a}, {b, d}, and {a,b,d} by treating each transaction ID as a market basket.

Assignment Project Exam Help

https://eduassistpro.github.io/

Use the results in the previous problem to compute the confidence for the association rules $\{b, d\} \rightarrow \{a\}$ and $\{a\} \rightarrow \{b, d\}$. State what these values mean in plain English.

Assignment Project Exam Help

https://eduassistpro.github.io/

Compute the support for itemsets {a}, {b, d}, and {a,b,d} by treating each customer ID as a market basket.

Assignment Project Exam Help

https://eduassistpro.github.io/

Use the results in the previous problem to compute the confidence for the association rules $\{b, d\} \rightarrow \{a\}$ and $\{a\} \rightarrow \{b, d\}$.

Assignment Project Exam Help

https://eduassistpro.github.io/

Optional

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

Match each transaction against every candidate

Computational Complexity

- Given d unique items:
 - Total number of itemsets = 2^d
 - Total number of possible association rules:

Assignment Project Exam Help
$$\times \sum_{j=1}^{d-k} \binom{d-k}{j}$$
 https://eduassistpro.github.io/ j]

Add WeChat edu_assist_2fo+1

If d=6, R = 602 rules

Identifying Association Rules

- Two-step approach:
 - 1. Frequentifunation Exam Help
 - Generat insup https://eduassistpro.github.io/
 - 2. Rule Generation
 Add WeChat edu_assist_pro
 Generate high confidence r frequent itemset,
 - where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Phase 1: Finding all frequent itemsets

How to perform an efficient search of all frequent itemsets?

If {diaper, beer} is frequent then {diaper} and {beer} are each frequent as well This means that...

- If an itemset is Act signess test, Projecte Encitems the pincludes wine can be frequent either, such as {wine, beer}.
- We therefore first fin https://eduassistpro.github.jo/
 Then try to "expand" https://eduassistpro.github.jo/ include frequent itemsets of size 1.

 Add WeChat edu_assist_pro

Example:

If **{wine}** is not frequent we need not try to find out whether **{wine, beer}** is frequent. But if both {wine} & {beer} were frequent then it is possible (though not guaranteed) that {wine, beer} is also frequent.

Then take only itemsets of size 2 that are frequent, and try to expand those, etc.

Phase 2: Generating Association Rules

Assume **{Milk, Bread, Butter}** is a frequent itemset.

- Using items contained in the itemset, list all possible rules
 - $\{Milk\} \rightarrow \{Bread, Butter\}$
 - $\{Bread\} \rightarrow \{Milk, Butter\}$

 - {Butter} > {Milk, Bread} {Milk, Bread} roject Exam Help
 - {Milk, Butt
 - {Bread, Buthttps://eduassistpro.github.io/
- Calculate the confidence Chat redu_assist_pro
- Pick the rules with confidence above the minimum confidence

```
Confidence of {Milk} → {Bread, Butter}:
```

```
<u>Support {Milk, Bread, Butter}</u>
No. of transaction that support {Milk, Bread, Butter}
          No. of transaction that support {Milk}
                                                                     Support {Milk}
```


Algorithm Apriori-Gen to Generate Frequent Itemsets

(Agrawal and Srikant 1994)

```
Input: two itemsets, I and J, of size (k-1)
Output: a supported itemset, L of size k
L=Null
IF (the first (k-4) siegnment Project) Exam Help
{ copy all items of https://eduassistpro.github.io/
           copy the
           FOR (everyddublee Chatoedu_assist_pro
                   IF (l is not supported) discard L and exit;
           Calculate, from data, support(L);
           IF (support(L)< target) discard L and exit;
           return L;
ELSE exit;
```


Agrawal (94)'s Apriori Algorithm—An Example

Transactions

T-ID	Items	
10	A, C, D	
20	B, C, E	
30	A, B, C, E	
40	B, E	

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

An itemset must have been purchased at least twice in order to be considered frequent or supported

Agrawal (94)'s Apriori Algorithm—An Example

Transactions

T-ID	Items	
10	A, C, D	
20	B, C, E	
30	A, B, C, E	
40	B, E	

C_{I}	Itemset	sup
	{A}	2
	{B}	3
can gn n	{C}	3
	nentsPr	ojec

$L_{_{I}}$	Itemset	sup
—1	{A}	2
	{B}	3
Exam	Help	3
zxam.	{E}	3

https://eduassistpro.github.io/

L_2	Itemset	sup
2	{A, C}	2
	{B, C}	2
	{B, E}	3
	{C, E}	2

2		
Add	d WEC	nat e
	{A, C}	2
	{A, E}	1
	{B, C}	2
	{B, E}	3
	{C, E}	2

34.3.3	
	Itemset
du_assist_	P{A,B}
	{A, C}
	{A, E}
	{B, C}
	{B, E}
•	{C, E}

	Itemset		
C_3	{B, C, E}		

3 rd	scan	$L_{\mathbb{R}}$

Itemset	sup
{B, C, E}	2

{A,B,C}, {A, C, E}?

Transaction No.	Item 1	Item 2	Item 3	Item 4
100	Beer	Diaper	Chocolate	
101	Milk	Chocolate	Shampoo	
			Vodka	_
103 ASS1	gnment	Preject]	www Ho	elp
104				Chocolate

https://eduassistpro.github.io/

Given the above list of transactions owing:

Add WeChat edu_assist_pro

1) Find all the frequent itemsets (m port 40)

- port 40%)
- 2) Find all the association rules (minimum confidence 70%)
- 3) For the discovered association rules, calculate the lift

Given table below, the confidence of the rule Bread → Coke is

A: 1/4

B: 2/4

C: 3/4 Assignment Project

D: 4/4

E: None of the

https://eduassistpro.github.io/ ad, Milk, Diaper, Beer Jad, Milk, Diaper, Coke

Items

Bread, Milk

Bread Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke

Add WeChat edu_assist_pro

TID

What is the objective of Apriori?

A: Identify good association rules

B: Identify all frequent itemsets

C: Identify Assignes from Projequentaite Mets

D: Determine t plexity of finding asso https://eduassistpro.github.io/

E: None of the above Chat edu_assist_pro

Other Applications of Association Rules

- Recommendations: Determines which books are frequently purchased together and recommends associated books or products to people who express interest in an item.
- Healthcare Stighting the Pridice of Examplated pts with multiple presc reviously unknown interactions an https://eduassistpro.github.io/
- Fraud detection Finding in the doctor often works with a cert ay indicate potential fraudulent activity. (virtual items)
- Sequence Discovery: looks for associations between items bought over time. E.g., we may notice that people who buy chili tend to buy antacid within a month. Knowledge like this can be used to plan inventory levels.

WEKA

- Find association rules
 - Apriori

https://eduassistpro.github.io/

Nest Week

Clustering using K-Means

Assignment Project Exam Help

https://eduassistpro.github.io/

