东南大学成贤学院考试卷 (A卷)

课程名称	e ∓tπ:	及分析化学	纟(下)	适用专	* 业	12	化工和	削药		
考试学	期 12-	13-3 考	试形式	式 开卷□闭]卷√	考 试	分分	120 5	分钟	
题号			=	 		四	E	ī.	六	
得 分一、选择	予题 (包	៛题 2 分,	共 20 分)							7
1	2	3	4	5	6	7		8	9	10

1. 某人根据置信度为95%,对某项分析结果计算后,写出了如下五种报告。哪些是合理的?B

A. (25.48 ± 0.1) % B, (25.48 ± 0.13) %

C,(25.48±0.135)%

D, (25.48±0.1348)%

- 2. 以下除那项以外都是基准物应具备的条件: D-()
- A. 物质的组成要与化学式完全相等 B. 纯度要高

- C. 性质稳定
- D. 不含有结晶水
- 3. 以 NaOH 滴定 H₃PO₄(Ka₁=7.5×10⁻³,Ka₂=6.2×10⁻⁸,Ka₃=5.0×10⁻¹³)至生成 Na₂HPO₄时,溶液的 pH 值: B-()

A, 10.7 B, 9.8 C, 8.7 D,7.7

4. H₂PO₄ 的 共轭碱是 B-()

A. H₃PO₄

B. HPO₄² C. PO₄³-

D.HPO42-和PO43-

- 5, 下列这些物质中, 哪几种能用标准强溶液直接滴定? A-()
 - A. 盐酸苯胺 C₆H₅NH₂ · HCl(C₆H₅NH₂ 的 Kb=4·6×10⁻¹⁰)
 - B. (NH₄)₂SO₄ (NH₃·H₂O 的 Kb=1.8×10⁻⁵)

C.苯酚(Ka=1.1×10⁻¹⁰)

- D. NH₄Cl(NH₃·H₂O 的 Kb=1.8×10-5)
- 6. 对于反应: BrO₃+6I+6H+=Br+3I₂+3H₂O

已知其标准电极电位 $\phi^{\circ}_{BrO^{-3/Br}}=1.44V$, $\phi^{\circ}_{I_{2/21}}=0.55V$,则此反应平衡常数 K 的对数值为 c

10

A	$2 \times 6 (0.55 - 1.44)$	$B, 6 \times (0.55 - 1.44)$	
	0.059	0.059	
C	6×(1.44-0.55)	D, $2\times6(1.44-0.55)$	
	0.059	0.059	
7.为了	获得纯净而易于过滤的晶形	%沉淀,下列措施中何者是错误的? D-()	
A	针对不同种类的沉淀,让	选用适当的沉淀剂。	
В	必要时进行再沉淀。		
C,	在适当高的酸度下进行流	元淀。	
D,	在较浓的溶液中进行沉淀	ਏ.	
8. 对1	EDTA 滴定法中所用的金属	离子指示剂,要求它与被测金属离子形成的络合物条件稳定常数 I	K'Min:
В			
A	>K'my B < K'my	$C \approx '_{M}Y$ $D > 100 K'_{MY}$	
		是质与待测物的离子半径相近,在沉淀过程中往往形成()A	
A	混晶 B 吸留	C 包藏 D 后沉淀	
10. 晶	形沉淀的沉淀条件是	.D-()	
A. 稀·	、热、快、搅、陈 B.	浓、热、快、搅、陈	
C. 稀·	、冷、慢、搅、陈 D.	稀、热、慢、搅、陈	
二、境	空题(共10分,每空1分		
1、作	· · 为 基 准 物 的 化 学 物 质	,一般希望其摩尔质量越大越好,这主要是由	
		0 (PDE)	
2. 与	出 NaHCO3 水溶液的质子等	供工(PBE) 。	
	5003 有	有效数字,若要求保留二位有效数字,修约后的数是	
1, 在	酸碱滴定中,选择酸碱指示	剂的原则是。	
		容液滴定 H ₂ C ₂ O ₄ 溶液,反应温度应控制在℃,温度过低	
		,该反应速度受到反应产物的影响,这种影	啊,
这	种影响被称为		
		分或全部落在滴定的突跃范围之内。	
	ii. 75-85℃,使反应速原 H,CO,]=[OH]+[CO,] 1.	定太慢,使 H ₂ C ₂ O ₄ 分解,自催化现象。	
		~ 5. 5 ~]	

- 三、判断题: (每题1分, 对的打"√", 错的打"×"。共10分) 二、刊町趣: (母國工力, 公司) 1、当几个数据相加或相减时、它们的和或差的有效数字的保留, 应以小数点后位数最少, 即绝对误差
- 2 酸给出质子后形成的碱,碱接受质子后形成的酸,互称为共轭酸碱对。√
- 示剂与金属离子所形成的络合物的稳定性只是稍差于对应的 EDTA 络合物,因而使 EDTA 与 MIn 之间
- 的反应变得缓慢,终点拖长,这种现象叫做指示剂的封闭现象×
- 4 包藏是指在吸留的过程中,被吸留包藏于沉淀内部的杂质物质为母液的情况。√
- 5 用 K₂Cr₂O₇ 标定 Na₂S₂O₃ 溶液时,不可采取升温的办法来加快反应速率。√
- 6 用摩尔法测定 Cl⁻含量时,指示剂 K₂CrO₄加入的量越多,终点观察越容易,则测定结果的准确度越 高。X
- 7在络合滴定中,溶液的最佳酸度范围是由 EDTA 决定的。×
- 8 在 EDTA 配位滴定中,Fe³+、Al³+对铬黑 T 指示剂有封闭作用。√
- 9、根据同离子效应,可加入大量的沉淀剂以降低沉淀在水中的溶解度。×
- 10、AgCl 的 K_{sp}=1.56×10⁻¹⁰ 比 Ag₂CrO₄ 的 K_{sp}=9×10⁻¹² 大, 所以, AgCl 在水溶液中的溶解度比 Ag₂CrO 4的大。×

三、综合题(共60分)

1. (10 分) 四次标定某溶液的浓度,结果为 0.2041、0.2049、0.2039 和 0.2043 mol/L.计算该测定结果 的平均值、平均偏差、相对平均偏差、标准偏差和相对标准偏差。

解: 平均值
$$\bar{x}=\frac{0.2041+0.2049+0.2039+0.2043}{4}=0.2043 \text{ mol/}_L$$
 平均偏差 $\bar{d}=\frac{0.0002+0.0006+0.0004+0.0000}{4}=0.0003 \text{ mol/}_L$ 相对平均偏差 $\frac{\bar{d}}{\bar{x}}\times 100\%=\frac{0.0003}{0.2043}\times 100\%=0.15\%$ 标准偏差: $Sx=\sqrt{\frac{(0.0002)^2+(0.0006)^2+(0.0004)^2+(0.0000)^2}{4-1}}=0.0004 \text{ mol/}_L$ 相对标准偏差 $RSD=\frac{0.0004}{0.2043}\times 100\%=0.2\%$

- 2. (10 分)某 $KmnO_4$ 溶液以基准 $Na_2C_2O_4$ 在酸性溶液中标定,得到 $KmnO_4$ 的浓度为 $0.01522mol\cdot L^{-1}$. 今用此 $KmnO_4$ 标液在碱性介质中滴定 Mn^{2+} ,(反应方程式为
- 2 MnO₄-+3M²⁺+4OH-==5MnO₂ ↓ +2H₂O)若称取含 Mn 试样 0。5430g,溶解后滴定消耗 KMnO₄29.20mL,计算样品的含锰量(M(Mn)=54.938)

 ✓ ⇔

解: $Mn\%=3/2\times(0.01522\times29.20)\times54.938/1000\times100\%=6.745\%$ 0. 5430

3. (10 分)假定 Pb^{2+} 和 EDTA 溶液的浓度均为 0. $01mol \cdot L^{-1}$, 计算在 pH=2. 0 和 pH=6. 0 两种情况下, $Pb^{2+}EDTA$ 形成络合物的条件稳定常数,并且求出滴定 Pb^{2+} 时的最低允许 pH 值? (已知 $1gK_{ph}=18$. 04, $\alpha_{Y(H)}-pH$ 表 附后)

解:

- E

K

4. (8分) 取水样 50.00ml, 加入 0.01028 溶液 25.00ml,用 4.20ml0.009560 mol·L·l 的 NH4SCN 滴定过程的 AgNO₃,求水中氯离子的含量。 设氯离子的浓度为 Cmol·L·l

$$V_{\pm k \nmid k} C_{Cl^-} + C_{NH_4SCN} V_{NH_4SCN} = C_{AgNO_3} V_{AgNO_3}$$

$$50.00 \times 10^{-3} C_{Cl^{-}} + 4.20 \times 10^{-3} \times 0.009560 = 0.01028 \times 25.00 \times 10^{-3}$$

$$C_{CI^{-}} = 0.005237 mol \bullet L^{-1} = 185.9 mg / L$$

5. (10 分)琥珀酸($H_2C_4O_6$), K_{a1} =6.4×10⁻⁵、 K_{a2} =2.7×10⁻⁶ 是否能用 NaOH 溶液直接滴定? 如果能直接滴定,形成几个 pH 突跃? 选择何种指示剂? 琥珀酸($H_2C_4O_6$)为二元酸。用强碱滴定多元酸,首先要讨论:

$$CK_{a1} \ge 10^{-8}$$
 $CK_{a2} \ge 10^{-8}$

$$CK_{a1}/CK_{a2} \ge 10^4$$

两级解离的 H+均能分别滴定,有两个 pH 突跃。

如果琥珀酸的浓度按 0.1 mol L-1 计算, 第一等量点的 pH 值为:

$$H_2C_4O_6 + NaOH \Leftrightarrow NaHC_4O_6 + H_2O$$

溶液中有 HC_4O_6 和 H_2O 。 HC_4O_6 为两性物质。

PBE:
$$[H^+] + [H_2C_4O_6] = [C_4O_6^{2-}] + [OH^-]$$

$$C/K_{a1} \succ 25$$

$$CK_{a2}/K_w > 25$$

$$[H^+] = \sqrt{K_{a1}K_{a2}} = 1.1 \times 10^{-11}$$

$$pH = -11.0$$

指示剂选择百里酚酞。第二等量点的 pH 值为:

$$H_2C_4O_6 + 2NaOH \Leftrightarrow Na_2C_4O_6 + 2H_2O$$

溶液中有
$$C_4O_6^{2-}$$
和 H_2O_6

PBE: $\left[H^+\right] + \left[HC_2O_4^-\right] + 2\left[H_2C_4O_6\right] = \left[OH^-\right]$

$$K_{b1} = \frac{K_w}{K_{a2}} = 3.7 \times 10^{-9}$$

$$K_{b2} = \frac{K_w}{K_{a1}} = 1.6 \times 10^{-10}$$

$$CK_{b1} \succ 20K_{w} \quad \frac{2K_{b2}}{[OH^{-}]} \approx \frac{2K_{b2}}{\sqrt{CK_{b1}}} \prec 0.05 \quad \frac{C}{K_{b1}} \succ 500$$

 $[OH^-] = \sqrt{CK_{b1}} = 1.9 \times 10^{-5}$ pOH=4.72 pH=9.28 指示剂选择百里酚蓝。

6.(12分)简单题和解释题:

(1) 如何配制和保存 Na₂S₂O₃ 溶液?

答: 水中的 CO₂、细菌和光照都能使其分解,水中的氧也能将其氧化。故配制 Na₂S₂O₃ 溶液时, 先将蒸 馏水煮沸,以除去水中的 CO2 和 O2,并杀死细菌。冷却后加入少量 Na2CO3 使溶液呈弱碱性以抑制 Na₂S₂O₃的分解和细菌的生长,并保存于棕色瓶中。

(2) 什么是指示剂的"封闭"和"僵化"现象?它对配位滴定有何影响?如何 消除?

答:

(1)若用 HCl 调酸度时, Cl-具有还原性,能与 KMnO4作用。若用 HNO3调酸度时, HNO3具有氧化 性。所以只能在 H2SO4介质中进行。滴定必须在强酸性溶液中进行,若酸度过低 KMnO4与被滴定物作 用生成褐色的 MnO(OH)2 沉淀,反应不能按一定的计量关系进行。在室温下,KMnO4 与 Na2C2O4 之间 的反应速度慢,故须将溶液加热到 70~80℃,但温度不能超过 90℃,否则 Na₂C₂O₄ 分解。

(2)当用 EDTA 标准溶液滴定至终点时,稍微过量的 EDTA, 便从显色配合 Mln 中夺取金属离子,释放出 指示剂,从而引起颜色的变化。

$$M \ln + EDTA \Leftrightarrow M - EDTA + \ln$$
 工色 甲色

如果 Mln 比 M-EDTA 更稳定($\lg K'_{MY} - \lg K'_{Mln} \le 2$),终点时 EDTA 就不能从 Mln 中夺取金属离子 而释放出指示剂,滴不出终点,这种现象称为指示剂的封闭。

针对这种现象,解决的办法是:加入适当的配位剂来掩蔽能封闭指示剂的干扰离子,另外配位滴定对蒸 馏水也有一定的要求。

有些指示剂或显色配合物在水中溶解度太小,有的 $K'_{M'}$ 与 K'_{Mln} 相差太小,在终点时,EDTA不能迅速 从显色配合物中置换出指示剂,使终点颜色不敏锐,终点拖长,这种现象叫指示剂的僵化。

解决的办法:加入适当的有机溶剂,以增加其溶解度,适当加热,以加快置换速度。

		附表	不同 pH 值	i时的,lga _{r(H)}	
рН	lga _{Y(H)} pH	1ga _{Y(H)}	pН	$1 ga_{Y(H)}$	1
0. 0	23. 64	3. 4	9. 70	6.8	3. 55
0. 4	21. 32	3. 8	8. 85	7. 0	3. 32
0. 8	18. 08	4. 0	8. 44	7.5	2. 78
1. 0	18. 01	4. 4	7. 64	8. 0	2. 26
1. 4	16. 02	4. 8	6.84	8.5	1. 77
1. 8	14. 27	5. 0	6.60	9. 0	1. 29
2. 0	13. 51	5.4	5.69	9. 5	0. 83
2. 4	12. 19	5.8	4. 98	10. 0	0.45
2. 8	11. 09	6. 0	4. 65	11. 0	0. 07
3. 0	10. 06	6. 4	4. 06	12. 0	0.00