Naive bayes implementation over Amazon fine food reviews dataset

```
In [13]: #IMPORTING RELEVANT LIBRARIES
         %matplotlib inline
         import warnings
         warnings.filterwarnings("ignore")
         import sqlite3
         import pandas as pd
         import numpy as np
         import nltk
         import string
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.feature_extraction.text import TfidfTransformer
         from sklearn.feature_extraction.text import TfidfVectorizer
         import itertools
         from sklearn.feature_extraction.text import CountVectorizer
         from sklearn.metrics import confusion_matrix
         from sklearn import metrics
         from sklearn.cross_validation import train_test_split
         from sklearn.metrics import accuracy_score
         from sklearn.cross_validation import cross_val_score
         from collections import Counter
         from sklearn import cross_validation
         from sklearn.model_selection import train_test_split
         from sklearn.naive_bayes import MultinomialNB
         from sklearn.model_selection import KFold
         from sklearn.naive_bayes import BernoulliNB
         from imblearn.over_sampling import SMOTE
         from prettytable import PrettyTable
         from sklearn.model_selection import cross_validate
         from random import *
 In [2]: #Connecting to the SQL table
         con = sqlite3.connect('final.sqlite')
         #Reading data from the database
         Data = pd.read_sql_query("""
         SELECT *
         FROM Reviews """,con)
         Data.shape
 Out[2]: (364171, 12)
 In [3]: # Drop index column
         Data.drop(columns=['index'],inplace=True)
 In [4]: Data["Time"]=pd.to_datetime(Data.Time)
         Data.head(5)
```

Out[4]:									
		ld	ProductId	Userld	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	
0	0 1505	24	0006641040	ACITT7DI6IDDL	shari zychinski	0	0	positive	1970- 00:00:00.9393

1 150506 0006641040 A2IW4PEEKO2R0U Tracy 1 1 positive 1970-00:00:01.1947

2 150507 0006641040 A1S4A3IQ2MU7V4 sally sue 1 1 positive 1970-00:00:01.1914

3 150508 0006641040 AZGXZ2UUK6X Hallberg " 1 positive 1970-(Kate)" 1 positive 00:00:01.0760

4 150509 0006641040 A3CMRKGE0P909G Teresa 3 4 positive 1970-00:00:01.0183

In [5]: #Setting Time column as index of the dataframe
Data.set_index("Time",inplace=True)

#Sampling the above data
Sorted=Data.sort_index()

In [6]: Sorted.head()

Out[6]:

	ld	ProductId	Userld	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Sc
Time							
1970-01-01 00:00:00.939340800	150524	0006641040	ACITT7DI6IDDL	shari zychinski	C	0	posit
1970-01-01 00:00:00.940809600	150501	0006641040	AJ46FKXOVC7NR	Nicholas A Mesiano	2	2	posit
1970-01-01 00:00:00.944092800	451856	B00004CXX9	AIUWLEQ1ADEG5	Elizabeth Medina	C	0	posit
1970-01-01 00:00:00.944438400	374359	B00004CI84	A344SMIA5JECGM	Vincent P. Ross	1	2	posit
1970-01-01 00:00:00.946857600	451855	B00004CXX9	AJH6LUC1UT1ON	The Phantom of the Opera	C	0	posit
4							•

In [7]: #Sampling the above data

Sampled_data=Sorted.sample(n=50000,replace='False')
Sample_sort=Sampled_data.sort_index()
Sample_sort.shape

Out[7]: (50000, 10)

```
In [8]: Class=Sorted["Score"]
    label=Sample_sort["Score"]
    sns.countplot(x="Score",data=Sorted,palette="hls")
    plt.show()
    plt.savefig("count_plot")
```


<Figure size 432x288 with 0 Axes>

```
In [9]: #Dropping the Score column which are the actual class labels of the dataset
    Sorted.drop(columns=['Score'],inplace=True)
    Sorted.shape

Out[9]: (364171, 9)

In [10]: #Dropping the Score column from the sampled_set which are the actual class labels of the dataset
    Sample_sort.drop(columns=['Score'],inplace=True)
    Sample_sort.shape

Out[10]: (50000, 9)
```

Observations

- Here after all the text-preprocesing and the data-cleaning only 364k datapoints remained.
- I have taken a sample size of 50k and also the whole data out of the total population for the purpose of analyzing and studying the behaviour of the data by applying the Naive bayes algorithm.
- First I took the "TIME" column and set as the index of the new sampled dataframe and then sorted accordingly in ascending order since the data has a temporal nature.
- By setting the "SCORE" column as a class label for classifying the reviews as a positive and negative.
- By observing the above bar plot it is clear that the above dataset is highly imbalanced and this may cause problems in the future analysis.

Function for Spltting the dataset into Train,CV and Test sets (70:30)

```
In [11]: def data_split(x,y):
    #Splitting the model into 70:30 split of Training and Cross_validate split
    X_1, X_test, y_1, y_test = train_test_split(X, Y, test_size=0.3,shuffle=False,random_state=None)

# split the train data set into cross validation train and cross validation test
    X_tr, X_cv, y_tr, y_cv = train_test_split(X_1, y_1, test_size=0.3,shuffle=False,random_state=None)

return X_tr,y_tr,X_cv,y_cv,X_test,y_test
```

Preparing and printing the Train,cv and test sets

```
In [12]: X=Sorted
Y=Class

X_tr,y_tr,X_cv,y_cv,X_test,y_test=data_split(X,Y)

print("The shape of x_train is:",X_tr.shape)
print("the shape of y_train is:",y_tr.shape)
print("the shape of x_cv is:",X_cv.shape)
print("the shape of y_cv is:",y_cv.shape)
print("the shape of x_test is:",X_test.shape)
print("the shape of y_test is:",y_test.shape)

The shape of x_train is: (178443, 9)
the shape of y_train is: (178443,)
the shape of y_cv is: (76476, 9)
the shape of y_cv is: (76476,)
the shape of x_test is: (109252, 9)
the shape of y_test is: (109252,)
```

Utility function for training and calculating the missclassification error of the model

```
In [14]: #function for training the model
         def train(X_tr,Y_tr,X_cv,y_cv):
             clf = MultinomialNB()
             clf.fit(X_tr, y_tr)
             pred= clf.predict(X_cv)
             acc = accuracy_score(y_cv, pred, normalize=True) * float(100)
             print('\n The train accuracy by using default alpha over cv set is = %f%% ' % ( acc))
             return pred,acc
         def test(X_tr,y_tr,X_test,y_test):
             Nb = MultinomialNB()
             Nb.fit(X_tr,y_tr)
             pred = Nb.predict(X_test)
             acc = accuracy_score(y_test, pred, normalize=True)*float(100)
             print('\n**** The Test accuracy by using default alpha is %d%%' % (acc))
         def optimal_test(optimal_a,X_tr,y_tr,X_cv,y_cv,X_test,y_test):
             # instantiate learning model a = optimal_alpha
             B_optimal =MultinomialNB(alpha=optimal_a)
         # fitting the model
             B_optimal.fit(X_tr, y_tr)
         # predict the response
             pred = B_optimal.predict(X_test)
             Y_pred=B_optimal.predict(X_cv)
             TRAIN_acc = accuracy_score(y_cv, Y_pred, normalize=True) * float(100)
             print("\n The train accuracy of the NB classifier for the best alpha=%f%% is %f%% "%(optimal_a,TRA
         IN_acc))
             print("*"*100)
         # evaluate accuracy
             Acc = accuracy_score(y_test, pred,normalize=True) * float(100)
             print('\nThe Test accuracy of the NB classifier by using the best alpha = %f%% is %f%%' % (optimal
         _a, Acc))
             return pred, Acc
         def cross_validation(X_cv,y_cv):
             a=[0.001, 0.0001, 0.12, 0.42, 0.25, 0.50, 0.33, 0.0065, 0.72, 1]
             multinom= a
             cv_Scores=[]
             for a in multinom:
                 clf =MultinomialNB(a)
                 scores = cross_val_score(clf, X_cv, y_cv, cv=10,scoring='accuracy')
                 cv_Scores.append(scores.mean())
             #printing the 10 Cross-Validation scores
             print(cv_Scores)
             return cv_Scores,multinom
```

Utility function for visualizing the model scores and CV error of the model

```
In [15]: from sklearn.metrics import confusion_matrix
         def Confusion_metric(y_test,y_pred,acc):
             print(metrics.confusion_matrix(y_test,y_pred))
              confusion=metrics.confusion_matrix(y_test,y_pred)
              plt.figure(figsize=(9,9))
             sns.heatmap(confusion, annot=True, fmt=".3f", linewidths=.5, square = True, cmap = 'Blues_r');
             plt.ylabel('Predicted label');
             plt.xlabel('Actual label');
             all_sample_title = 'Accuracy Score: {0}'.format( acc)
             plt.title(all_sample_title, size = 15);
             plt.show()
         #Storing the values of the confusion matrix
             TN=confusion[0,0]
             FP=confusion[0,1]
             FN=confusion[1,0]
             TP=confusion[1,1]
         # use float to perform true division, not integer division
             Class_acc=((TP + TN) / float(TP + TN + FP + FN))*100
         #Code for classification error
              classification_error = ((FP + FN) / float(TP + TN + FP + FN))*100
         #Code for finding the TPR, FPR, TNR, FNR
             TPR = (TP / float(FN + TP))*100
             FNR = (FN / float(FN + TP))*100
             TNR=(TN / float(TN + FP))*100
             FPR=(FP / float(TN + FP))*100
         #Code for finding the Precision, Recall & F1_score
             precision = (TP/float(TP+FP))*100
             recall= (TP / float(FN + TP))*100
             F1_s= ((float(precision*recall))float(precision+recall))*2)
             print()
              ptable=PrettyTable()
              ptable.title="The performance metrics of the above model are as follows: "
             ptable.field_names=["Metrics","Scores"]
             ptable.add_row(["Classification_accuracy",Class_acc])
              ptable.add_row(["Classification_error",classification_error])
              ptable.add_row(["True positive",TP])
              ptable.add_row(["False positive",FP])
             ptable.add_row(["True negative",TN])
              ptable.add_row(["False negative",FN])
              ptable.add_row(["True positive rate",TPR])
              ptable.add_row(["False negative rate",FNR])
              ptable.add_row(["True negative rate",TNR])
              ptable.add_row(["False positive rate",FPR])
              ptable.add_row(["Precision value",precision])
             ptable.add_row(["Recall value", recall])
             ptable.add_row(["f1_score value",F1_s])
             print(ptable)
         #Function for plotting the missclassification errors
          def MSE_plot(CV_scores, multinom):
         #Calculating the minimum Missclassification error of the above model
             MSE = [1 - x \text{ for } x \text{ in } CV \text{ scores}]
         # determining best a
             optimal_a =multinom[MSE.index(min(MSE))]
             print('\nThe optimal number of alpha value is %f%%.' % optimal_a)
         # plot misclassification error vs a
             plt.plot(multinom, MSE)
             for xy in zip(multinom, np.round(MSE,3)):
                  plt.annotate('(%s, %s)' % xy, xy=xy, textcoords='data')
              plt.xlabel('Number of alpha')
              plt.ylabel('Misclassification Error')
             plt.show()
```

```
print("the misclassification error for alpha value is : ", np.round(MSE,3))
return optimal_a
```

Utility function for vectorizing the given data & finding the top features

```
In [16]: #Function for vectorizing the train data
         from sklearn.preprocessing import StandardScaler
         def vec_train(vect,X_tr):
             import warnings
             warnings.filterwarnings("ignore")
             count_vect = vect #in scikit-learn
             BOW = count_vect.fit_transform(X_tr.values)
             return count_vect,BOW
         #Function for vectorizing the CV data
         def vec_cv(count, X_cv):
             cv=count.transform(X_cv.values)
             cv.get_shape()
             return cv
         #Function for vectorizing the test data
         def vec_test(count, X_test):
             test=count.transform(X_test.values)
             test.get_shape()
             return test
         #Funtion for printing the total number of top features
         def top_tfidf_feats(name,row, features, top_n=25):
             ''' Get top n tfidf values in row and return them with their corresponding feature names.'''
             topn_ids = np.argsort(row)[::-1][:top_n]
             top_feats = [(features[i], row[i]) for i in topn_ids]
             df = pd.DataFrame(top_feats)
             df.columns = ['feature', name]
             return df
```

Bag of words vectorization technique

```
In [17]: #Initializing the count vectorizer
         Count_vect=CountVectorizer(binary=True)
         #vectorizing the X train set
         count,x_tr=vec_train(Count_vect,X_tr["CleanedText"])
         print("The shape of the X_train is: ",x_tr.shape)
         #Vectgorizing the X crossvalidation set
         x_cv=vec_cv(count,X_cv["CleanedText"])
         print("The shape of the X_cv is: ",x_cv.shape)
         #Vectorizing the X_test set
         x_test=vec_test(count,X_test["CleanedText"])
         print("The shape of the X_test is: ",x_test.shape)
         #Printing the total length of the features
         print("\nTop 25 feaures acording to the Bow score are as follows")
         features = Count_vect.get_feature_names()
         len(features)
         top_Bow = top_tfidf_feats("bow",x_tr[1,:].toarray()[0],features,25)
         top_Bow
         The shape of the X_train is: (178443, 49468)
         The shape of the X_cv is: (76476, 49468)
         The shape of the X_test is: (109252, 49468)
         Top 25 feaures acording to the Bow score are as follows
```

Out[17]:

	feature	bow
0	someth	1
1	teach	1
2	later	1
3	thirti	1
4	day	1
5	rememb	1
6	tradit	1
7	air	1
8	show	1
9	book	1
10	see	1
11	ago	1
12	preschool	1
13	whole	1
14	use	1
15	televis	1
16	student	1
17	turn	1
18	seri	1
19	school	1
20	song	1
21	purchas	1
22	children	1
23	child	1
24	bought	1

Training the NB model using the train set and testing over the CV set with default values

```
In [19]: pred,acc=train(x_tr,y_tr,x_cv,y_cv)
```

The train accuracy by using default alpha over cv set is = 81.701449%

[[8563 4486] [9508 53919]]

The performance metrics of the above model are as follows:				
Metrics	Scores			
Classification_accuracy	81.70144882054501			
Classification_error	18.298551179454993			
True positive	53919			
False positive	4486			
True negative	8563			
False negative	9508			
True positive rate	85.00953852460309			
False negative rate	14.990461475396913			
True negative rate	65.62188673461567			
False positive rate	34.37811326538432			
Precision value	92.31915075764061			
Recall value	85.00953852460309			
f1_score value	88.51369098430625			

OBSERVATIONS

- The train accuracy usong default parameters of the model is 81.70% which is not that good for a classification model.
- Here the TP is dominating metric as compared to other metric which also results in high TPR value.
- Due to the low TN value the TNR value is very less (65.52%) which is not a good sign for aclassification model.
- The precision, recall and the f1_score cannot be trusted due to high TPR & low TNR values.

Hyperparameter tuning the alpha value by using 10-fold Cross-validation technique

```
In [27]: Score,mutinom =cross_validation(x_tr,y_tr)
```

[0.7844576677081012, 0.7847770971595364, 0.7819526695323858, 0.7803667330368377, 0.781028009694429, 0.780030493409807, 0.7807029745481355, 0.7839196792801396, 0.7794869039976551, 0.7788928809182714]

In [28]: optimal_a=MSE_plot(Score, mutinom) #CODE FOR PLOTTING THE ERROR PLOT

The optimal number of alpha value is 0.000100%.

the misclassification error for alpha value is : [0.216 0.215 0.218 0.22 0.219 0.22 0.219 0.216 0.221 0.221]

Testing the model by using the optimal alpha over the test set

```
In [29]: #Testing the model with default value of alpha over the Test data
    test(x_tr,y_tr,x_test,y_test)
    print("*"*100)

#Testing the model with optimal alpha value over the test data
    y_pred,Test_acc,=optimal_test(optimal_a,x_tr,y_tr,x_cv,y_cv,x_test,y_test)
```

The Test accuracy of the NB classifier by using the best alpha = 0.000100% is 81.199429%

Confusion metric of the above model.

The performance metrics of the above model are as follows:				
Metrics	Scores			
Classification_accuracy Classification_error True positive False positive	81.1994288434079 18.8005711565921 76485 6854			
True negative False negative True positive rate	12227 13686 84.82217120803807			
False negative rate True negative rate False positive rate Precision value	15.17782879196194 64.07945076253864 35.920549237461344 91.77575924837112			
Recall value Recall value f1_score value	84.82217120803807 88.16206558699788			

OBSERVATION

- After training the model over optimal alpha value the model score decreased by 0.51% which is not good.
- This model scores are also similar to the previous model except there is slight decrease is seen on all the parameters.
- Since the model is trained over imbalanced dataset so the it is suffering from the high bias problem.
- So the performance can be increased if data balancing is performed over the dataset which can be done by using the oversampling technique.

Oversampling the data by using the SMOTE technique

```
In [31]: #FUNCTION FOR IMPLEMENTING THE SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE
from imblearn.over_sampling import SMOTE

def Bal_train (X_tr, y_tr,X_cv,y_cv,X_test,y_test):
    sm = SMOTE()
    X_Train_res, y_Train_res = sm.fit_sample(X_tr, y_tr)
    X_cval_res,y_cval_res=sm.fit_sample(X_cv,y_cv)
    X_Test_res,y_Test_res=sm.fit_sample(X_test,y_test)

    clf = MultinomialNB()
    clf.fit(X_Train_res, y_Train_res)
    pred= clf.predict(X_Cval_res)
    acc = accuracy_score(y_Cval_res, pred, normalize=True) * float(100)
    print('\n The TRAIN accuracy by using default alpha over CV set is = %f%% ' % ( acc))
    return X_Train_res, y_Train_res,X_Cval_res,y_Cval_res,X_Test_res,y_Test_res,pred, acc
```

Training the SMOTE model

The TRAIN accuracy by using default alpha over CV set is = 76.550996%

```
In [35]: Confusion_metric(bal_ycv,b_pre,b_acc)
```

[[45707 17720] [12026 51401]]

	+
Metrics	Scores
Classification_accuracy	76.55099563277469
Classification_error	23.449004367225314
True positive	51401
False positive	17720
True negative	45707
False negative	12026
True positive rate	81.03962035095465
False negative rate	18.960379649045358
True negative rate	72.06237091459474
False positive rate	27.93762908540527
Precision value	74.36379682006915
Recall value	81.03962035095465
f1_score value	77.5583184959411

HYPERAMETER TUNING THE ALPHA FOR FINDING THE OPTIMAL ALPHA VALUE

In [36]: BScore,Mutinom =cross_validation(bal_xtr,bal_ytr)

[0.83896452215018, 0.8389808128280135, 0.8388504880422468, 0.8387885845704425, 0.8388374561793419, 0.8387820682143887, 0.8388179073234815, 0.8389319412191141, 0.8387592616051028, 0.8387462288929954]

In [37]: Boptimal_a=MSE_plot(BScore, Mutinom) #CODE FOR PLOTTING THE ERROR PLOT

The optimal number of alpha value is 0.000100%.

the misclassification error for alpha value is : [0.161 0.16

Testing the model by using the optimal alpha over the test set

In [38]: #Testing the model with default value of alpha over the Test data
test(bal_xtr,bal_ytr,bal_xtes,bal_ytes)

print("*"*100)

#Testing the model with optimal alpha value over the test data

Y_pred,BalTest_acc,=optimal_test(Boptimal_a,bal_xtr,bal_ytr,bal_xcv,bal_ycv,bal_xtes,bal_ytes)

The train accuracy of the NB classifier for the best alpha=0.000100% is 76.275876%

The Test accuracy of the NB classifier by using the best alpha = 0.000100% is 75.777689%

In [39]: Confusion_metric(bal_ytes,Y_pred,BalTest_acc)

[[63453 26718] [16965 73206]]

The performance metrics of the above model are as follows:				
Metrics	Scores			
Classification_accuracy	75.7776890574575			
Classification_error	24.222310942542503			
True positive	73206			
False positive	26718			
True negative	63453			
False negative	16965			
True positive rate	81.18574708054696			
False negative rate	18.81425291945304			
True negative rate	70.36963103436803			
False positive rate	29.630368965631966			
Precision value	73.26167887594572			
Recall value	81.18574708054696			
f1_score value	77.02043714984613			

OBSERVATION

- After oversampling the data the accuracy of the model reduced (from 81% to 75%) as compared to the previous model but the model is very stable and sensible because of high TP and TN values.
- There is a considerable increase in the TNR value (64%-70.36%)& considerable decrease in the FPR value(34% to 29.63%) which is a good sign for the improvement of the model.
- So the model is sensible and stable as compared to the previous model which is achieved by balanciing the data.
- The metric as accuracy is very misleading and can't be trusted in a imbalanced data.

Implemnting the Tf-idf vectorizeration technique

```
In [67]: #Initializing the count vectorizer
         TF_vect=TfidfVectorizer(ngram_range=(1,2),binary=True)
         #vectorizing the X train set
         TF_count,X_tr=vec_train(TF_vect,X_tr["CleanedText"])
         print("The shape of the X_train is: ",X_tr.shape)
         #Vectgorizing the X_crossvalidation set
         X_cv=vec_cv(TF_count,X_cv["CleanedText"])
         print("The shape of the X_cv is: ",X_cv.shape)
         #Vectorizing the X_test set
         X_test=vec_test(TF_count, X_test["CleanedText"])
         print("The shape of the X_test is: ",X_test.shape)
         #Printing the total length of the features
         print("\nTop 25 feaures acording to the Bow score are as follows")
         Features = TF_vect.get_feature_names()
         len(Features)
         top_tfidf = top_tfidf_feats("tfidf",X_tr[1,:].toarray()[0],Features,25)
         top_tfidf
         The shape of the X_train is: (178443, 1816552)
         The shape of the X_cv is: (76476, 1816552)
         The shape of the X_test is: (109252, 1816552)
         Top 25 feaures acording to the Bow score are as follows
```

Out[67]:

	feature	tfidf
0	preschool turn	422.426325
1	teach preschool	422.426325
2	whole school	422.426325
3	school purchas	422.426325
4	sister later	422.426325
5	song student	422.426325
6	air televis	422.426325
7	child sister	422.426325
8	book song	422.426325
9	use seri	372.605606
10	seri book	366.076962
11	book children	358.410533
12	televis year	326.201503
13	day thirti	321.245669
14	thirti someth	310.170360
15	children tradit	308.586244
16	show air	297.616678
17	student teach	282.566459
18	ago child	246.284028
19	along book	203.244144
20	see show	196.984144
21	later bought	161.464536
22	tradit live	145.680425
23	turn whole	137.896025
24	rememb see	112.189152

Training the Tf-idf vectorized model over the CV set.

```
In [41]: Predi,Acc=train(X_tr,y_tr,X_cv,y_cv)
```

The train accuracy by using default alpha over cv set is = 85.608557%

Confusion metric of the above model.

```
In [42]: Confusion_metric(y_cv,Predi,Acc)

[[ 4064 8985]
       [ 2021 61406]]
```


The performance metrics of the above model are as follows:				
Metrics	Scores			
Classification_accuracy	85.60855693289398			
Classification_error	14.39144306710602			
True positive	61406			
False positive	8985			
True negative	4064			
False negative	2021			
True positive rate	96.81365979787788			
False negative rate	3.1863402021221248			
True negative rate	31.1441489769331			
False positive rate	68.8558510230669			
Precision value	87.23558409455754			
Recall value	96.81365979787788			
f1_score value	91.77539643396254			

OBSERVATION

- The accuracy of the model by using the default alpha value is 85.60% which is good but the other metrics are very less and very alarming.
- In this model the TP value is very dominating which results in high TPR rate as compared to the other metrics which is not good as the model will become biased towards positive reviews.
- The TNR is very less and this model will fail to clasiffy the negative reviews properly.
- Let's see if the metrics become better after doing hyper-parameter tuning the alpha value.

HYPERAMETER TUNING THE ALPHA FOR FINDING THE OPTIMAL ALPHA VALUE

In [43]: CV_Score,Mutinomi =cross_validation(X_tr,y_tr)

[0.8456538275213425, 0.850350012363933, 0.7999472979891289, 0.7642888248070557, 0.781392345001281, 0.7 573846559978202, 0.7729134422929673, 0.8363399278287986, 0.742136071851881, 0.7267473805074696]

In [44]: Optimal_a=MSE_plot(CV_Score,Mutinomi) #CODE FOR PLOTTING THE ERROR PLOT

The optimal number of alpha value is 0.000100%.

the misclassification error for alpha value is : [0.154 0.15 0.2 0.236 0.219 0.243 0.227 0.164 0. 258 0.273]

Testing the model by using the optimal alpha over the test set

The Test accuracy of the NB classifier by using the best alpha = 0.000100% is 83.790686%

Confusion metric of the above model.

[2129 88042]]

```
In [46]: Confusion_metric(y_test,Y_prediction,Test_accuracy)
[[ 3501 15580]
```


The performance metrics of the above model are as follows:				
Metrics	Scores			
Classification_accuracy	83.79068575403655			
Classification_error	16.209314245963462			
True positive	88042			
False positive	15580			
True negative	3501			
False negative	2129			
True positive rate	97.63893047653902			
False negative rate	2.36106952346098			
True negative rate	18.348094963576333			
False positive rate	81.65190503642367			
Precision value	84.96458281060006			
Recall value	97.63893047653902			
f1_score value	90.8618990366009			

Observations

- The accuracy of the model has become low after tuning the alpha which is not good for a classification model.
- The main reason is because of the high FPR and low TNR which affects the model a lot.
- This model is also suffering from the heavy bias problem and may be solved by oversampling the datapoints.
- The high Precision, recall and f1_score value cannot be trusted because of high tpr as compared to other metrics.

Oversampling the data by using the SMOTE technique

The TRAIN accuracy by using default alpha over CV set is = 62.409542%

Confusion metric of the above model.

```
In [48]: Confusion_metric(Bal_ycv,B_pre,B_acc)
```

[[17149 46278] [1407 62020]]

+	
The performance metrics of the a	bove model are as follows:
+ Metrics	+ Scores
+ Classification_accuracy	+ 62.409541677834355
Classification_error	37.59045832216564
True positive	62020
False positive	46278
True negative	17149
False negative	1407
True positive rate	97.78170179891845
False negative rate	2.2182982010815584
True negative rate	27.03738155675028
False positive rate	72.96261844324971
Precision value	57.26790891798556
Recall value	97.78170179891845
f1_score value	72.23176590478964

HYPERAMETER TUNING THE ALPHA FOR FINDING THE OPTIMAL ALPHA VALUE

In [49]: BScoreS,Mutinomial =cross_validation(Bal_xtr,Bal_ytr)

[0.9823736553630698, 0.9827581127274145, 0.9804546256578697, 0.9791383491218069, 0.9797704214348719, 0.978907023152515, 0.9794218046657244, 0.9818979690139731, 0.9783401129138823, 0.977802524154485]

In [50]: Bal_optimal_a=MSE_plot(BScoreS,Mutinomial) #CODE FOR PLOTTING THE ERROR PLOT

The optimal number of alpha value is 0.000100%.

the misclassification error for alpha value is : [0.018 0.017 0.02 0.021 0.02 0.021 0.021 0.018 0.022 0.022]

Testing the model by using the optimal alpha over the test set

The Test accuracy of the NB classifier by using the best alpha = 0.000100% is 57.969857%

Confusion metric of the above model.

```
In [52]: Confusion_metric(Bal_ytes,Y_PRED,BalTest_Acc)
```

[[16221 73950] [1848 88323]]

The performance metrics of the above model are as follows:				
Metrics	Scores			
Classification_accuracy	57.96985727118474			
Classification_error	42.03014272881525			
True positive	88323			
False positive	73950			
True negative	16221			
False negative	1848			
True positive rate	97.95056060152378			
False negative rate	2.0494393984762285			
True negative rate	17.989153940845725			
False positive rate	82.01084605915428			
Precision value	54.42864801907896			
Recall value	97.95056060152378			
f1_score value	69.97433094072348			

Observations:

- Since after doing the data balancing technique the model score decreased very drastically due to poor performance metrics.
- I think the model is overfitting which leads to decrease in accuracy and other factor may be the high dimensions of the tf-idf vectorized data.
- In this model SMOTE didn't improved the model in terms of stability and accuracy.