Teorema di permanenza del segno

Alessio Serraino

March 6, 2016

<u>Teorema:</u> (di permanenza del segno) Sia $\{a_n\}$ una successione convergente ad a. Se a > 0 allora $a_n > 0$ definitivamente.

Dimostrazione:

Per ipotesi $a_n \to a$, quindi vale $\forall \varepsilon > 0$ $a - \varepsilon < a_n < a + \varepsilon$ definitivamente. Allora scegliamo $\varepsilon = \frac{a}{2}$, poichè a > 0 per ipotesi, anche $\varepsilon > 0$.

Otteniamo: $a - \frac{a}{2} < a_n < a + \frac{a}{2}$ definitivamente, ovvero, "buttando via" la seconda disugualianza, e semplificando l'espressione, $\frac{a}{2} < a_n$ definitivamente.

Ma $\frac{a}{2} > 0$, quindi a maggior ragione anche $a_n > 0$ definitivamente, che è quanto volevamo dimostrare.

Corollario: Se $a_n \to a$ e $a_n > 0$ definitivamente allora a > 0.

Supponiamo per assurdo che sia a < 0, allora dal teorema di permanenza del segno seguirebbe che $a_n < 0$ definitivamente, che contraddice l'ipotesi, assurdo. Quindi a > 0.

Corollario: Se $a_n \to a$, $b_n \to b$, e a > b, allora $a_n > b_n$ definitivamente.

Consideriamo la sequenza $c_n = a_n - b_n$. Per il teorema sul limite della somma $c_n \to a - b > 0$, perchè a > b. Quindi per il teorema di permanenza del segno $c_n > 0$ definitivamente, ovvero $a_n - b_n > 0$ definitivamente, $a_n > b_n$ definitivamente, che è ciò che volevamo dimostrare.

Corollario: Se $a_n \to a$, $b_n \to b$, e $a_n > b_n$ definitivamente allora a > b.

Ragioniamo come prima, consideriamo la sequenza $c_n = a_n - b_n > 0$ definitivamente per ipotesi. Per quanto affermato dal corollario del teorema di permaneza del segno, $c_n \to c > 0$.

Ma per il teorema sulla somma dei limiti c=a-b, quindi a>b, che è quanto volevamo dimostrare.