#### Sage Quick Reference: Elementary Number Theory

William Stein (modified by nu) Sage Version 3.4

http://wiki.sagemath.org/quickref GNU Free Document License, extend for your own use

以下  $m,n,a,b,\ldots$  は ZZ の元とする. ZZ  $=\mathbb{Z}=$ 全ての整数

Everywhere m, n, a, b, etc. are elements of ZZ ZZ = Z all integers

```
整数 Integers
```

 $\ldots, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \ldots$ 

n を m で割ると余りは n % m

gcd(n,m), gcd(list)

拡張された公約数  $g = sa + tb = \gcd(a,b)$ : g,s,t=xgcd(a,b)

lcm(n,m), lcm(list)

二項係数  $\binom{m}{n}$  = binomial(m,n)

base 進法による表示: n.digits(base)

base 進法による桁数: n.ndigits(base)

(base は省略可, デフォルトは 10)

割り切る.  $n \mid m$ : n.divides(m), nk = m を満たす k があるか.

約数  $-d \mid n$  を満たす d 達: n.divisors()

階乗 -n! = n.factorial()

n divided by m has  $remainder \, {\tt n} \, \, \, {\tt \%} \, \, {\tt m}$ 

gcd(n,m), gcd(list)

extended gcd g = sa + tb = gcd(a, b): g,s,t=xgcd(a,b)

lcm(n,m), lcm(list)

binomial coefficient  $\binom{m}{n} = \text{binomial(m,n)}$ 

digits in a given base: n.digits(base)

number of digits: n.ndigits(base)

(base is optional and defaults to 10)

divides  $n \mid m$ : n.divides(m) if nk = m some k

divisors – all d with  $d \mid n$ : n.divisors()

factorial – n! = n.factorial()

#### 素数 Prime Numbers

 $2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, \dots$ 

素因数分解: factor(n)

素数判定: is\_prime(n), is\_pseudoprime(n)

素冪判定: is\_prime\_power(n)

 $\pi(x) = \#\{p : p \le x \text{ is prime}\} = \texttt{prime\_pi(x)}$ 

素数の集合: Primes()

 $\{p : m \le p < n \text{ and } p \text{ prime}\} = prime\_range(m,n)$ 

n以上m以下の素冪の集合: prime\_powers(m,n)

最初の n 個の素数: primes\_first\_n(n)

次の素数, ひとつ前の素数: next\_prime(n),

previous\_prime(n), next\_probable\_prime(n)

次の素冪, ひとつ前の素冪: next\_prime\_power(n), pevious\_prime\_power(n)

 $2^p - 1$  の素数性に関する Lucas-Lehmer テスト def is\_prime\_lucas\_lehmer(p):

 $s = Mod(4, 2^p - 1)$ 

for i in range(3, p+1):  $s = s^2 - 2$ 

return s == 0

factorization: factor(n)

primality testing: is\_prime(n), is\_pseudoprime(n)

prime power testing: is\_prime\_power(n)

 $\pi(x) = \#\{p : p \le x \text{ is prime}\} = \text{prime_pi(x)}$ 

set of prime numbers: Primes()

 $\{p: m \le p < n \text{ and } p \text{ prime}\} = prime\_range(m,n)$ prime powers: prime\_powers(m,n)

first n primes: primes\_first\_n(n)

next and previous primes: next\_prime(n),

previous\_prime(n), next\_probable\_prime(n)
prime powers: next\_prime\_power(n),

pevious\_prime\_power(n)

Lucas-Lehmer test for primality of  $2^p - 1$ 

def is\_prime\_lucas\_lehmer(p):

 $s = Mod(4, 2^p - 1)$ 

for i in range(3, p+1):  $s = s^2 - 2$  return s == 0

### 合同式, モジュラ計算 Modular Arithmetic and Congruences

k=12; m = matrix(ZZ, k, [(i\*j)%k for i in [0..k-1] for j in [0..k-1]]); m.plot(cmap='gray')



オイラーの  $\phi(n)$  関数: euler\_phi(n)

クロネッカーシンボル  $\left(\frac{a}{b}\right) = \text{kronecker\_symbol(a,b)}$ 

平方剰余: quadratic\_residues(n)

平方非剰余: quadratic\_residues(n)

環  $\mathbb{Z}/n\mathbb{Z} = \text{Zmod(n)} = \text{IntegerModRing(n)}$ 

 $\mathbb{Z}/n\mathbb{Z}$  の元としての  $a\ (a \bmod n)$ : Mod(a, n)

 $\mathbb{Z}/n\mathbb{Z}$  での原始根 =  $primitive\_root(n)$ 

 $\mathbb{Z}/n\mathbb{Z}$  での逆元: n.inverse\_mod(m)

 $\mathbb{Z}/n\mathbb{Z}$  での幕  $a^n \pmod{m}$ : power\_mod(a, n, m)

中国の剰余定理: x = crt(a,b,m,n)

 $x \equiv a \pmod{m}$  かつ  $x \equiv b \pmod{n}$  を満たす x を探す

離散対数: log(Mod(6,7), Mod(3,7))

 $a \pmod{n}$  の次数 = Mod(a,n).multiplicative\_order()

$$a \pmod{n}$$
 の平方根 =  $Mod(a,n).sqrt()$ 

Euler's  $\phi(n)$  function: euler\_phi(n)

Kronecker symbol  $\left(\frac{a}{b}\right) = \text{kronecker\_symbol(a,b)}$ 

Quadratic residues: quadratic\_residues(n)

Quadratic non-residues: quadratic\_residues(n)

ring  $\mathbb{Z}/n\mathbb{Z} = \text{Zmod}(n) = \text{IntegerModRing}(n)$ 

 $a \text{ modulo } n \text{ as element of } \mathbb{Z}/n\mathbb{Z}$ : Mod(a, n)

primitive root modulo  $n = primitive\_root(n)$ 

inverse of  $n \pmod{m}$ : n.inverse\_mod(m)

power  $a^n \pmod{m}$ : power\_mod(a, n, m) Chinese remainder theorem: x = crt(a,b,m,n)

finds x with  $x \equiv a \pmod{m}$  and  $x \equiv b \pmod{n}$ 

discrete log: log(Mod(6,7), Mod(3,7))

order of  $a \pmod{n} = Mod(a,n)$ .multiplicative\_order()

square root of  $a \pmod{n} = Mod(a,n).sqrt()$ 

#### 特殊函数 Special Functions

complex\_plot(zeta, (-30,5), (-8,8))



$$\zeta(s) = \prod_{} \frac{1}{1-p^{-s}} = \sum_{} \frac{1}{n^s} = \mathtt{zeta(s)}$$

$$\operatorname{Li}(x) = \int_2^x \frac{1}{\log(t)} dt = \operatorname{Li}(\mathbf{x})$$

$$\Gamma(s) = \int_0^\infty t^{s-1} e^{-t} dt = \text{gamma(s)}$$

$$\zeta(s) = \prod_{p} \frac{1}{1 - p^{-s}} = \sum_{s} \frac{1}{n^s} = \mathbf{zeta(s)}$$

$$\operatorname{Li}(x) = \int_{-\infty}^{x} \frac{1}{\log(t)} dt = \operatorname{Li}(\mathbf{x})$$

$$\Gamma(s) = \int_0^\infty t^{s-1} e^{-t} dt = \text{gamma(s)}$$

#### 連分数 Continued Fractions

continued\_fraction(pi)

$$\pi = 3 + \frac{1}{7 + \frac{1}{15 + \frac{1}{1 + \frac{1}{292 + \dots}}}}$$

連分数: c=continued\_fraction(x, bits)

近似分数 (達): c.convergents()

部分分子  $p_n = c.pn(n)$ 

部分分母  $q_n = c.qn(n)$ 

#### 值: c.value()

```
continued fraction: c=continued_fraction(x, bits)
convergents: c.convergents()
convergent numerator p_n = c.pn(n)
convergent denominator q_n = c.qn(n)
value: c.value()
```

## 楕円曲線 Elliptic Curves

EllipticCurve([0,0,1,-1,0]).plot(plot\_points=300,thickness=3)



E = EllipticCurve([
$$a_1, a_2, a_3, a_4, a_6$$
])  
 $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$ 

$$E$$
 の導手 (conductor)  $N = E.$  conductor()

$$E$$
 の判別式  $\Delta = E.discriminant()$ 

$$E$$
の階数 = E.rank()

$$E(\mathbb{Q})$$
 の自由生成系 = E.gens()

$$N_p = \#\{\text{modulo } p \ \texttt{CO} E \ \texttt{O} m \} = \texttt{E.Np}(prime)$$

$$a_p = p + 1 - N_p = \texttt{E.ap}(prime)$$

$$L(E,s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} = \text{E.lseries}()$$

$$\operatorname{ord}_{s=1} L(E,s) = \texttt{E.analytic\_rank()}$$

$$E = EllipticCurve([a_1, a_2, a_3, a_4, a_6])$$

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

conductor 
$$N$$
 of  $E = \mathbf{E.conductor}()$ 

discriminant  $\Delta$  of  $E = \mathbf{E.discriminant}$ ()

rank of E = E.rank()

free generators for  $E(\mathbb{Q}) = \mathbf{E}.\mathbf{gens}()$ 

j-invariant = E.j\_invariant()

 $N_p = \#\{\text{solutions to } E \text{ modulo } p\} = \texttt{E.Np}(prime)$ 

 $a_p = p + 1 - N_p = \mathbb{E}.ap(prime)$ 

$$L(E,s) = \sum \frac{a_n}{n^s} = \text{E.lseries()}$$

$$L(E,s) = \sum_{n} \frac{a_n}{n^s} = \text{E.lseries()}$$
 
$$\operatorname{ord}_{s=1} L(E,s) = \text{E.analytic\_rank()}$$

# p で合同な楕円曲線 Elliptic Curves Modulo p

EllipticCurve(GF(997), [0,0,1,-1,0]).plot()



$$E = EllipticCurve(GF(p), [a_1, a_2, a_3, a_4, a_6])$$

$$\#E(\mathbb{F}_p) = \texttt{E.cardinality()}$$

$$E(\mathbb{F}_p)$$
 の生成系 = E.gens()

$$E(\mathbb{F}_p) = \mathbb{E}.points()$$

 $E = EllipticCurve(GF(p), [a_1, a_2, a_3, a_4, a_6])$  $\#E(\mathbb{F}_p) = \texttt{E.cardinality()}$ 

generators for  $E(\mathbb{F}_p) = \mathtt{E.gens}()$  $E(\mathbb{F}_p) = \text{E.points()}$