801909

ML TDR 64-79

ELEVATED TEMPERATURE TENSILE AND CREEP PROPERTIES OF M-252 (BAR), INCONEL 700 (BAR), AND INCONEL 713 (CAST) NICKEL BASE ALLOYS

SIDNEY O. DAVIS

COPY Z OF	3 men
HARD COPY MICROFICHE	\$.300 \$.175
	78p

TECHNICAL DOCUMENTARY REPORT No. ML TDR 64-79

JULY 1964

AIR FORCE MATERIALS LABORATORY RESEARCH AND TECHNOLOGY DIVISION AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE. OHIO

DDC:

FOREWORD

This report was prepared by the Materials Engineering Branch, Materials Applications Division, Air Force Materials Laboratory, Research and Technology Division and was initiated under Project No. 7381, "Materials Applications," Task No. 738103, "Data Collection and Correlation," Mr. Sidney O. Davis, project engineer.

Testing was done by the Joliet Metallurgical Laboratories, Inc. under Contract No. AF 33(600)-36462.

Data reduction and curve plotting were performed by the Monsanto Research Corporation under Contract No. AF 33(616)-8483.

TABLE OF CONTENTS

	PAGE
INTRODUCTION	1
MATERIALS TESTED AND APPLICATIONS	2
TEST PROCEDURES	2
CONCLUSIONS	3
APPENDIX-RESULTS OF TEST MATERIALS	5

ABSTRACT

koom and elevated temperature tensile and elevated temperature creep properties to 1000 hours were determined at three representative application temperatures for M-252 (bar), Inconel 700 (bar), and Inconel 713 (cast). Tabulated tensile and creep data, deformation versus time curves, and stress versus time curves for 0.1, 0.3, 0.5, and 1% creep are presented.

This technical documentary report has been reviewed and is approved.

W. P. CONRARDY, Chief

W. P. Comardy

Materials Engineering Branch Materials Applications Division

TABLES

TABLE		PAGE
1.	Chemical Compositions	6
2.	Tensile Test Data - M-252 (Bar)	6
3.	Tensile Test Data - Inconel 700 (Bar)	7
4.	Tensile Test Data - Inconel 713C (Cast)	7
5.	M-252 (Bar) Elongation-Time Data at 1350°F	11
6.	M-252 (Bar) Creep Deformation and Rupture Data at 1350°F	13
7.	M-252 (Bar) Elongation-Time Data at 1500°F	15
8.	M-252 (Bar) Creep Deformation and Rupture Data at 1500°F	17
9.	M-252 (Bar) Elongation-Time Data at 1600°F	19
10.	M-252 (Bar) Creep Deformation and Rupture Data at 1600°F	21
11.	Inconel 700 (Bar) Elongation-Time Data at 1500°F	23
12.	Inconel 700 (Bar) Creep Deformation and Rupture Data at 1500°F	25
13.	Inconel 700 (Bar) Elongation-Time Data at 1600°F	27
14.	Inconel 700 (Bar) Creep Deformation and Rupture Data at 1600°F	29
15.	Inconel 700 (Bar) Elongation-Time Data at 1700°F	31
16.	Inconel 700 (Bar) Creep Deformation and Rupture Data at 1700°F	33
17.	Inconel 713C Elongation-Time Data at 1500°F	35
18.	Inconel 713C Creep Deformation and Rupture Data at 1500°F	37
19.	Inconel 713C Elongation-Time Data at 1600°F	39
20.	Inconel 713C Creep Deformation and Rupture Data at 1600°F	41
21.	Inconel 713C Elongation-Time Data at 1700°F	43
22.	Inconel 713C Creen Deformation and Rupture Data at 1700°F	45

ILLUSTRATIONS

FIGURE		PAGE
i.	Test Specimen Configurations	8
2.	Creep Deformation Versus Log Time of M-252 (Bar) at 1350°F	10
3.	Creep Rupture Properties of M-252 (Bar) at 1350°F	12
4.	Creep Deformation Versus Log Time of M-252 (Bar) at 1500°F	14
5.	Creep Rupture Properties of M-252 (Bar) at 1500°F	16
6.	Creep Deformation Versus Log Time of M-252 (Bar) at 1600°F	18
7.	Creek Rupture Properties of M-252 (Bar) at 1600°F	20
8.	Creep Deformation Versus Log Time of Inconel 700 (Bar) at 1500°F	22
9.	Creep Rupture Properties of Inconel 700 (Bar) at 1500°F	24
10.	Creep Deformation Versus Log Time of Inconel 700 (Bar) at 1600°F	26
11.	Creep Rupture Properties of Inconel 700 (Bar) at 1600°F	28
12.	Creep Deformation Versus Log Time of Inconel 700 (Bar) at 1700°F	30
13,	Creep Rupture Properties of Inconel 700 (Bar) at 1700°F	32
14.	Creep Deformation Versus Log Time of Inconel 713C (Cast) at 1500°F	34
15.	Creep Rupture Properties of Inconel 713C at 1500°F	36
16.	Creep Deformation Versus Log Time of Inconel 713C at 1600°F	38
17.	Creep Rupture Properties of Inconel 713C at 1600°F	40
18.	Creep Deformation Versus Log Time of Inconel 713C at 1700°F	42
19.	Creep Rupt are Properties of Inconel 713C at 1700°F	44

INTRODUCTION

CREEP

At normal ambient temperatures, a structure designed on yield strength deforms to some extent immediately upon load application and then no further deformation occurs with time. At elevated temperatures this same structure will continue to deform with time under a constant load. This continued deformation under load is called creep. Creep eventually can result in creep-rupture when the ultimate strength of the material is reached.

DESIGNING FOR CREEP

The creep rate (the slope of the percent deformation per gage length versus log-time curve) depends on the applied stress, temperature, the composition of the material of interest, and metallurgical considerations. Creep tests establish finite values for the creep rates. This is fortunate from a design point of view for without such data structures might be highly overdesigned. With creep data in hand, the designer can select design stresses which recognize the occurrence of creep, at the same time limiting it to tolerable values within the contemplated life-span of the system.

Fracture due to creep raises another limitation. Here, the designer must consider time when selecting design stresses. The "time until fracture" variable for a given material may be determined by creep-rupture tests. Creep and creep-rupture tests are identical except that in the latter case stresses are higher and the test is carried to failure. The test specimens are held constantly at the temperature of interest, under static load, and elongation is measured periodically. Customary testing time is 1000 hours, although it can range from several hours to over ten years.

The measured creep strength is commonly expressed as (a) the scress producing a creep rate of 0.0001% per hour, or (b) the stress for a creep rate of 0.0001% per hour at the given temperature. Rupture values are usually reported as the stress for fracture in 100, 1000, 10,000, or 100,000 hours at the specific temperature utilized.

Designers of elevated temperature structures, therefore, must base design stresses on longtime creep and rupture strength, and take into account the limiting temperature determined by the scaling or oxidation resistance of the material.

CREEP DATA PRESENTED

This report presents creep data for three elevated temperature nickel base alloys at simulated application temperatures. No attempt was made to interpret these test results on the basis of microstructure and chemistry nor have any conclusions regarding the relative merit of these alloys been made. The intended scope of this report is data compilation in a form which is best suited for potential users of these alloys. The data presented is not to be construed as being representative of all heats of the material, but rather specifically applies to the lots tested.

Manuscript released by author September 1963 for publication as an RTD Technical Documentary Report.

MATERIALS TESTED AND APPLICATIONS^a

1. M-252 (Bar) - This material was purchased from Universal Cyclops as 5/8-inch-diameter rolled bar. Heat treatment procedure was as follows:

1950°F - 4 hours - air cool 1400°F - 15 hours - air cool

M-252 is a vacuum melted nominal 54 Ni - 19 Cr - 10 Co - 10 Mo - 2.5 Ti material used for torque rings and gas turbine buckets.

2. Incomel 700 (Bar) - Purchased from the Huntington Alloys Division of the International Nickel Co. as 5/8-inch-diameter hot rolled bar from heat number 5982U. Heat treatment procedure was as follows:

2160°F - 2 hours - air cool 1600°F - 4 hours - air cool

Inconel 700 (Bar) is used as rotor turbine blades up to 1650°F. It is a nominal 46 Ni - 28.5 Co - 15 Cr - 3.75 Mo - 3.0 Al - 2.35 Ti alloy.

3. Incomel 713C - Supplied by the Huntington Alloys Division of the International Nickel Co. as investment cast rounds with threaded ends. The material came from heat number X-4027 and was tested in the as-cast condition. 713C is noted for its high rupture strength at 1700°F, good castability, and exceptional resistance to thermal fatigue. A present application is turbine blades in advanced engines. It is a nominal Ni (+Co) Bal - 13 Cr - 6 Al - 4.5 Mo - 2.0 Cb - .6 Ti - .13 C alloy.

TEST PROCEDURES

Tensile and creep specimens for M-252 and Inconel 700 were machined to a nominal 0.3-inch diameter and 2-inch gage length. The cast Inconel 713C specimens were tested as-received with a 1-inch gage length. Specimen drawings are shown in Figure 1.

A Tinius Olsen tensile machine was used for all tensile tests. Standard loading rates were used with strain measured with an extensometer at all test temperatures. The resultant tensile data are presented in Tables 2, 3, and 4. The results compare favorably with typical test results in the literature.

Tatnall lever-type creep test frames were used for creep testing. Load accuracy checked by a Tatnall representative indicated a ±0.5% of nominal load accuracy for the test stands used.

^a·See Table 1 for chemical compositions of M-252, Inconel 700 (Bar) and Inconel 713C.

The test furnaces were provided with quartz viewing ports to permit optical measurement of creep deformation. Deformation was monitored using platinum strips and a Gaertner Model M115A optical microscope. This microscope uses an 8-inch relay lens with a 50X objective giving sensitivity of 20 microinches over a total measuring range of 0.080 inches.

Creep data are presented both as deformation versus time for constant stress and stress versus time for a constant deformation. These creep tests were performed at stress levels calculated to produce deformation of 0.3, 0.5, and 1.0% in 1000 hours. Also included on the constant deformation plots is a 0.1% curve which was determined from the elongation-time data. Whenever possible stress rupture data are also included.

For 1000-hour tests at 1600°F and 1700°F difficulties were encountered with the platinum strips, etched reference lines becoming indistinguishable from the strip upon which the lines were etched. This was due to the platinum strips' etched lines deteriorating as a function of time. When this occurred it is noted in the tabular data. However, in those cases when the test was continued with replacement strips, the creep curve before and after the interruption was found to be continuous.

The creep curves derived from testing are presented in Figures 2 through 19. Corresponding tabulated data are presented in Tables 5 through 22.

CONCLUSIONS

The specific mode of presentation of the creep data reported here allows potential users of M-252, Inconel 700, and Inconel 713C to evaluate them more completely than is usually found in literature from other sources. Tensile comparisons with vendors' literature indicate a good correlation with typical tensile results.

1

APPENDIX

RESULTS OF TEST MATERIALS

TABLE I

	CHEMICAL COMPOSITIONS							
ELEMENT	M-252	INCONEL 700	INCONEL 713C					
Cr	18.64	14:87	11.90					
Si	0.60	0.22	0.49					
F●	0.84	0.40	0.86					
Mn	1.15	0.21	0.13					
Mo	9.86	3.27	5.00					
Ni	BAL	BAL	BAL					
C	0.14	0.14	0.11					
AI	0.89	3.27	5.60					
Ti	2.58	2.10	0.52					
СЬ	9.77	-	2.10					
S	0.006	0.007	-					
P	0.016	-	-					
Co	-	29.35	-					
Cu	_	0.03	-					

TABLE 2

		TEST DATA - M-25			
TEST	ULTIMATE	0.2% OFFSET	ELONGATION	REDUCTION	
TEMPERATURE(°F)	TENSILE STRENGTH	YIELD STRENGTH	(% IN 2 INCHES)	IN AREA (%)	
	(PSI)	(PSI)		·	
75	179,000	121,500	23.0	26.5	
75	176,500	119,000	23.5	26.0	
75	181,000	124,000	22.0	27.0	
1350	144,000	118,500	8.0	10.5	
1350	139,500	114,500	9.5	12.0	
1350	¹ 42,5 00	105,000	16.0	17.0	
1500	100,000	90,500	24.0	35.5	
1500	98,500	92,000	14.0	21.5	
1500	102,500	92,000	21.0	31.5	
1600	71,000	59,500	30.0	47.5	
1600	68,000	63,500	31.0	52. 5	
1600	72,000	65,000	38.5	55.5	

TABLE 3

TENSILE TEST DATA — INCONEL 700(BAR)							
TEST TEMPERATURE (°F)	ULTIMATE TENSILE STRENGTH (PSI)	0.2% OFFSET YIELD STRENGTH (PSI)	ELONGATION (% IN 2 INCHES)	REDUCTION IN AREA (%)			
75	1 69,500	1 12,000	29.0	32.5			
75	1 70,000	112,000	27.5	30.0			
75	169,500	109,500	28.0	30.0			
1500	101,000	90,500	4.0	7.0			
1500	103,000	92,000	4.5	8.5			
1500	105,000	93,000	5.0	7.0			
1600	75,500	65,500	6.0	8.0			
1600	77,000	72,500	6.5	9.0			
1600	78,500	74,000	4.5	4.5			
1700	54,000	50,000	12.0	13.0			
1700	53,000	49,000	10.5	; 3.5			
1700	54,000	50,500	15.0	17.5			

TABLE 4

	TENSILE TE	ST DATA -INCONE	L 713C (CAST)	
TEST TEMPERATURE (°F)	ULTIMATE TENSILE STRENGTH (PSI)	0.2% OFFSET YIELD STRENGTH (PSI)	ELONGATION (% IN I INCH)	REDUCTION IN AREA (%)
75	123,000	105,500	6.5	10,5
75	117,000	105,000	7.0	12.0
75	116,000	102,000	6.5	12.0
1500	119,000	88,000	5.0	11.0
1500	117,000	88,500	6.0	11,5
1500	120,500	94,000	3.5	3.5
1600	105,500	81,000	5.0	8.0
1600	104,000	80,500	3.5	6.5
1600	104,500	77,000	6.0	10.0
1700	82,500	56,500	10.0	13.0
1700	82,000	60,000	10.0	12.5
1700	83,500	59,500	10.0	10.5
	<u> </u>	<u> </u>		

Figure 1. Test Specimen Configurations

Figure 2. Creep Deformation Versus Log Time of M-252 (Bar) at 1350°F

LOG TIME (HOURS)

TABLE 5

		1-252 (BA	TABL R) ELONGATIO		TA AT 1350°	F	
7146	DEFORMATION	TIME	DEFORMATION	TIME	DEFORMATION	TIME	DEFORMATION
TIME (HOURS)	(% IN 2 INCHES)	(HOURS)	(% IN 2 INCHES)	(HOURS)	(% M 2 INCHES)	(HOURS)	(% IN 2 INCHES)
80,00	0-9.1 ⁶	7.3	0.382	11.3	0.293	113.1	0.463
0.1	0.023	7.7	0.387	11.5	0.300	118.6	0.504
0.2	0.045	8.1	0. 406	12.9	0.318	120.5	0.521
0.3	0.066	8.5	0. 451	14.1	0.342	46,0	00-99.2
0.4	0.076	8.7	0. 473	16.9	0.441	1.9	0.022
0.5	0.090	8.9	0.458	17.7	0.470	18.5	0.066
0.7	011.0	8.95	0.502	18.0	0.490	25.9	0.078
0.9	0.145	9.0	0.506	18.1	0,495	42.7	0.129
1.1	0.161	9.5	0. 527	18.2	0.500	44.0	0.137
1.6	0.253	10.0	0.569	19.1	0.522	48.0	0.161
1.8	0.266	10.5	0. 598	20.6	0.579	65.1	0,198
2.1	0.316	11.0	0, 616	22.2	0.719	73.2	0.229
2.6	0.386	11.5	0. 684	23.3	0.741	91.1	0.282
3.0	0.473	12.0	0.715	24.1	0.793	96.6	0.293
3.1	0.510	12.5	0.751	24.7	0.824	98.1	0. 311
3.6	0,628	13.0	0.797	25.8	0.864	99.2	0.324
4.1	0.796	13.5	0.841	26.8	0.956		
4.4	0.875	14.0	0.869	27.2	0.991		
4.6	0.951	14.5	0.927	27.3	0.999		
4.7	0.953	15.0	0. 965	52,00	0-114.8		
4.9	1.044	15.2	0. 990	1.0	0.023		
5.0	1.092	15.4	1. 004	6.6	0.069		
0.0		15.5	1. 011	20.1	0.142		
70,00	0-41.5			25.3	0.188		
•	0.043	64,00	0- 90.9	41.8	0.251		
0.15		0.5	0.049	49.7	0.295		
ა.4	0.045	1.0	0.057	66.5	0.399		
0.9	0.067	1.5	0,079	73.4	0.461		
1.2	0.102	2.1	160.0	90.4	0.698		
1.5	0, 103	2.6	0.095	96.9	0.801		
2.1	C. 138	3.1	0.106	111.6	1.021		
2.6	0.164	3.6	0.112	114.8	1.061		
3.2	0.176	4.5	0.123		0-120.6		
3.4	0.179	5.4	0.137				
3.8	0. 189	6.6	0.157	0.6	0.010		
4.3	0. 214	7.9	0.208	0.8	0.012		
4.5 5.1	0. 221 0. 246	8.9	0.231	17.6	0.081		
5. I 5. 5	0. 279	9.1	0.221	24.9	0.103		
5.6	0. 273	9.5	0.243	41.5	0.163		
5.6 5.7	0. 293	9.9	0.243	48.2	0.18 8		
5.8	0,308	10.2	0.244	65.1	0.241		
5. 6	0,308	10.5	0 263	71.7	0.279		
6.9	0.361	10.7	0.273	69 .7	0.357		
0.3	0. 301	11.1	0.285	96 .5	0.387		

a. STRESS LEVEL RUPTURE TIME (HOURS)

TABLE 6

STRESS TIME (PSI) (HOURS)	··· -	REDUCTION IN AREA(%)	REDUCTION LOADING IN AREA(%) (DEFORMATION	TIME TO REACH INDICATED DEFORMATION-HOURS			
				%)	0.3%	0.5%	i.0 %
80,000	9.10	3.0	-	0.35	2.0	3.1	4.8
76,000	b	-		0.34	-	_	_
70,000	41.5	16.0	12.5	0.32	5.7	9.2	15.4
64,000	90.9	23.0	24.0	0.26	11.5	18.2	27,3
52,000	114.8 ^b	_		0.21	50,0	75.0	110.5
48,000	120.6b	_	-	0.18	76.0	118.0	_
46,000	99.25] _	_	0.17	97.5	_	-

a. NO FAILURE. TEST BAR PULLED OUT OF ADAPTER IN TIME INDICATED.

b. TEST TERMINATED AT TIME INDICATED. NO FAILURE.

火

TO SERVICE OF THE SER

1/2 Frances

Figure 4. Creep Deformation Versus Log Time of M-252 (Bar) at 1500°F

1

	N	1-252 (BAI	R) ELONGATION	N-TIME DA	ATA AT 1500°F		
TIME (HOURS)	DEFORMATION (% IN 2 IN CHES)	TIME (HOURS)	DEFORMATION (% IN 2 INCHES)	TIME (HOURS)	DEFORMATION (%IN2INCHES)	TIME (HOURS)	DEFORMATION
55,00	0 - 4.0°	1.8	0.291	13.0	0.938	17.9	0.161
0.1	0.062	1.9	0.302	13,5	0.976	22.3	0.203
0.2	0.113	2.0	0.321	13.6	0.985	38.2	0.339
0.3	0.193	2.2	0.336	13.8	1.003	46.5	0.436
0.4	0.325	2.5	0.380	13.9	1.018	66.6	0.619
0.5	0.437	2.8	0.414	26,0	00-167.1	73.7	0.752
0.55	0.497	3.0	0.445	0.4	0.037	90.0	1.025
0.6	0.551	3.2	0.459	1.0	0.051		00 - 96.1
0.7	0.742	3.4	0.491	1.6	0.058	2.1	0.023
0.8	0.898	3.5	0.503	2.1	0.071	16.8	0.100
0.9	1,119	3.6	0.522	2.7	0.083	19.1	0.113
1.0	1.369		00-30.8	3.3	0.088	23.8	0.143
	0-11.0	0.3	0.036	4.1	0.092	41.4	0.206
0.2	0.071	0.5	0.051	5.1	0.100	47.4	0.255
0.4	0.099	0.8	0.059	5.7	0.116	63.7	0.379
0.7	0.203	1.0	0.082	6.3	0.118	69.8	0.401
1.0	0.264	1.5	0.117	7.6	0.136	88.9	0.513
1.15	0.317	2.0	0.156	8.8	0.155	96.0	0.552
1.45	0.415	2.5	0.169	9,9	0.173		00-119.6
1.6	0.447	3.0	0.206	10.2	0.200	2.2	0.028
1.7	0.510	3.5	0.262	11.2	0.210	16.6	0.106
2.0	0.599	3.7	0.277	11.6	0.219	24.1	0.114
2.3	0.763	3.9	0.287	12.6	0.227	40.4	0,165
2.4	0.791	4.0	0.298	13.7	0.240	42.6	0.207
2.5	0.828	4.1	0.309	16.7	0.291	47.8	0.211
2.6	0.903	4.5	0.323	17.3	0.300	65.1	0.281
2.7	0.951	5.0	0.352	18.8	0.303	71.1	0.323
2.8	1.012	5,5	0.379	20.1	0.323	87.5	0.388
2.9	1.057	6.0	0.416	23.1	0.399	93.1	0.399
	00-17.1	6.5	0.443	24.4	0.409	112.3	0.478
0.15	0.037	6.8	0.479	25.1	0.426	119.6	0.531
0.25	0.068	7.0	0.492	26.0	0.458	t	3,01-00
0.25	0.080	7.1	0.492	26.9	0.458	1.8	0.019
0.5	0.093	7.2	0.503	27.5	0.481	16.4	0.019
0.7	0.122	7.3	0.503	28.0	0.485	23.4	0.105
0.85	0.148	7.5	0.511	28.3	0.490	40.7	0.137
1.0	0.169	8.0	0.568	28.5	0.498	47.9	0.137
1.2	0.196	9.0	0.605	42.7	0.899	63 9	0.202
1.3	0.130	10.0	0.661	45.2	0.994	70.3	0.202
1.4	0,240	11.0	0.381	45.3	1.002	37,1	0.247
1.5	0.256	11.5	0.799	45.6	1,014	95.8	0.247
1.6	0.267	12.0	0.799		1.017	108.8	0.235
1.7	0.281	12.5	0.891	1.1	0.018	110.2	0.296

47-49 AUT UN

TABLE 8

STRESS TIME (PSI) (HOURS)	TIME ELONGATION REDUCTION (HOURS) (%IN2INCHES) IN AREA (%	REDUCTION IN AREA (%)	LOADING (DEFORMATION	TIME TO REACH INDICATED DEFORMATION—HOURS			
				%)	0.3%	0.5%	1.0%
55,000	4.C	21.0	30.0	0.26	0.4	0.55	0.9
48,000	11.0	23.0	33.0	0.24	1.0	1.7	2.6
42,000	17,1	32.0	35.0	0.23	1.9	3.5	-
35,000	30.8	41.0	46.0	0.20	4.0	7.2	13.6
26,000	167.1	24.0	31.5	0.13	17.3	28.5	45.3
20,000	90.1 a	-	~	0.11	35.0	56.0	90.0
16,500	96.10	-	-	0.09	53.0	88.0	-
16,000	119.62	_	-	0.09	68.0	115.0	-
13,000	110.20	_		0.08	109.0	_	

TABLE 8

STRESS (PSI)	TIME (HOURS)	ELONGATION (%IN2INCHES)	REDUCTION IN AREA (%)	LOADING (DEFORMATION	TIME TO REACH INDICATED DEFORMATION HOURS			
				%)	0.3%	0.3% 0.5%		
55,000	4.C	21.0	30.0	0.26	0.4	0.55	0.9	
48,000	11.0	23.0	33.0	0.24	1.0	1.7	2.8	
42,000	17,1	32.0	35.0	0.23	1.9	3.5	-	
35,000	30.8	41.0	46.0	0.20	4.0	7.2	13.8	
26,000	167.1	24.0	31.5	0.13	17.3	28.5	45.3	
20,00C	90.1°a	-	_	0.11	35.0	56.0	90.0	
16,500	96.1ª	-	-	0.09	53.0	88.0	_	
16,000	119.67	l -	_	0.09	68.0	115.0	-	
13,000	110.20	_	_	0.08	109.0	-	_	

Figure 6. Creep Deformation Versus Log Time of M-252 (Bar) at 1600 °F

TABLE 9

1,**********		-252 (BAF	TABL		TA AT 1600°F		
TIME (HOURS)	DEFORMATION (%IN2INCHES)	TIME	DEFORMATION (%IN 2 INCHES)	TIME (HOURS)	DEFORMATION (%IN2INCHES	TIME (HOURS)	DEFORMATION
32,000 - 3.70		1,6	0.276	7.9	0.371	27.3	0.235
0.1	0.278	1.8	0.301	9.2	0.402	43.6	0.346
0 2	0.454	2.3	0.392	9.7	0.430	51.1	0.438
0.25	0.490	2.7	0.491	10.0	0.446	68.1	0.599
0.3	0.598	2.8	0.504	10.4	0.465	75.0	0.711
0.35	0.762	3.3	0.619	10.6	0.481	91.8	0.989
0.4	0.902	3.5	0.674	10.8	0.504	98.7	1.181
0.45	1.000	3.85	0.741	118	0.557	6,000	-107.6
0.5	1.104	4. 1	0.795	14.7	0.735	1.7	0.027
27,00	00 - 8.6	4, 5	0.898	15.3	0.763	18.9	0.128
0.1	0.123	4,7	0.928	15.9	0 782	25 .9	0.144
0.25	0.172	4.9	0.990	16.6	0. 825	42.4	0.255
0.3	0.216	5.0	1.011	18.2	0.965	49.9	0.289
0.4	0.290	5.2	1.062	18.7	1.001	66.1	0.372
0.45	0.319	15,00	0-99.3	18.9	1.007	68.4	0. 369
0.6	0.447	0.8	0.069	10,5	00 - 73,5	73.8	0.403
0.7	0.510	1.2	0.058	0.5	0.031	91.0	0.466
0.85	0.679	2.2	0.097	1.6	0.074	107.6	0,571
1.1	0919	3.1	0.148	18.1	0.240	5,00	0-90.2
1.2	0.959	3.7	0.196	25.2	0.330	1.6	0.030
1.3	1.110	4.0	0. 215	42.4	0.583	18.3	0.038
20,0	00 - 40.7	4.3	0.228	50.2	0.74 I	23.7	0.041
0.1	0.024	4.9	0.241	66.0	1,110	41.6	0.063
0.2	0.031	5.4	0.258	73.4	1.318	48.8	0.069
0.3	0.046	5.6	0.265	7,50	00-98.8	65 8	0.078
0.5	0.078	5.8	0.266	0.4	0.010	73.1	0.094
07	0,103	6.0	0.280	1,3	0.033	89.9	0.110
1.0	0.158	6.2	0.291	2.3	0.045		
1.2	0.200	6.4	0.304	20.5	0.181		
1.4	0.238	6.5	0.315	258	0.232		

a STRESS LEVEL - RUPTURE TIME (HOURS)

Figure 7. Creep Rupture Properties of M-252 (Bar) at 1600°F

TABLE 10

STRESS (PSI)	(HOURS) (%INZINCHES	ELONGATION (%IN2INCHES)	REDUCTION IN AREA(%)	LOADING (DEFORMATION %)	TIME TO REACH INDICATED DEFORMATION-HOURS			
					0.3%	0.5%	1,0 %	
32,000	3.7b	51.0		0.25	0.15	0.25	0.45	
27,000	8.6	42.0	48.0	0.18	0.4	0.7	1.2	
20,000	40.7	46.0	50.0	0.14	1.8	2.8	5.0	
15,000	99.3	42.5	45.5	0.10	6.4	10.8	18.7	
10,500	73,50	_	_	0.07	22.5	36.5	61.0	
7,500	98.8°	_	_	0.05	36.0	60.0	92.5	
6,000	107.6ª	_	_	_	55.0	94.5	- ,	
5,000	90.2ª	_	_	0.04	c	- 1	-	

a. TEST TERMINATED AT TIME INDICATED. NO FAILURE

b. NO FAILURE, EXCESSIVE ELONGATION OF TEST BAR SHUT OFF TEST STAND

c. TEST TERMINATED, OBTAINED ONLY 0.11% DEFORMATION IN 89.9 HOURS

Figure 8. Creep Deformation Versus Log Time of Inconel 700 (Bar) at 1500°F

ML TDR 64-79

TABLE II

	TABLE II INCONEL 700 (BAR) ELONGATION - TIME DATA AT 1500 ° F									
	INC	CONEL 700	(BAR) ELONGA	TION - TIME		00 • F				
TIME	DEFORMATION	TIME	DEFORMATION	TIME	DEFORMATION	TIME	DEFORMATION			
(HOURS)	(% IN E INCHES)	(HOURS)	(%IN 2 INCHES)	(HOURS)	(% IN E INCHES)	(HOURS)	(%IN 2 MCHES)			
	00-3.10	7.6	0.494	187.6	0.657	647 4	0.555			
0.1 03	0.105 0 207	7.7 8.2	0.499 0.531	195.1 211.9	0.693 0.794	700.3 742.7	0.606 0.641			
0.4	0.247	8.6	0.546	218.8	0.844	816.1	0.698			
0.5	0.311	9.2	0.584	235.7	0.942	865 2	0.752			
0.6 0.8	0.356 0.435	10.0 10.8	0.632 0.673	243.2 260.0	1.010 1.121	910.8 984.2	0.791 0.869			
0.9	0,477	11.7	0.728	26,500	0-1282.1	1031.8	0.913			
1.0	0.539	12.5	0.785	17.5	0.027	1079.1	0.971			
1.15 1.35	0. 593 0.701	13.3 13.8	0. 849 0.889	24.8 41.8	0.041 0.065	1128.8	1.029 1.039			
1.5	0.766	14.4	0.943	49.0	0.075	21,500	-1026.5			
1.75	0.900 0 923	14.7	0.968	65.8	0.098	18.3	0.024			
1.8 2.0	1.031	15.0 15.1	0 9 89 0. 998	73.2 90.0	0,109 0,131	66.1 139.2	0 041 0.072			
	0-10.1	15.2	1.011	113.9	0.160	1686	0 092			
0.i 0. 2	0.031	40,00	0 77.0	138.1	0.193	235 C	0 124			
0.2	0.057 0.086	0.4 0.9	0.058 0.089	163.8 169.8	0 225 0.240	282.9 331.1	0.155 0.181			
0.4	0.116	1.2	0.103	186.7	0.264	4023	0 216			
0.5 0.6	0.134 0.167	1.9 2.7	0.120	210.5 217.5	0.292 0.305	473 6 570.2	0 259			
0.8	0.202	5.9	0.145 0.206	234.7	0.328	617.8	0.311 0.333			
1.0	0.237	10.4	0.311	240.9	0.332	667.4	0 365			
1.2	0.272 0.296	14.7 18.8	0.389 0.473	258.4 282.0	0.354 0.383	738 8 786 .1	0 402 0.421			
1.4	0.315	21.1	0.526	289.7	0.398	858.1	9.460			
1.55	0.335	26.6	0.688	331.2	0.457	9063	0.493			
2.0	0.360 0.424	35.1	0.971 1.033	336.8	0.468	954.1	0.518			
2.1	0.453	36.6 39.8	1.150	354.5 361.8	0.491 0.507	1026.4	0.561 0-1113 4			
2.5	0.517		0-220.3	380.5	0.541	18 7	0 018			
2.9 3.3	0.599 0.687	1.3 5.2	0.062 0.090	403.2 426.8	0.5 89 0 643	43.8 67.4	0.020 0.028			
3.6	0.739	13.8	0.030	451.3	0 707	105.2	0.028			
3.9	0.793	212	0 233	499.7	0.825	128.4	0.038			
4.15	0 860 0 896	27.8 36.1	0.297	505.4 522.6	0.847 0.884	177.1 207.1	0.059 0.05 9			
4.3 4.4	0.896 0.920	43.0	0.381 0.438	546.6	0.951	274.2	0.083			
4.5 4.6	0.947 0.988	50.2 66.8	0.511 0.720	553.9 570.4	0.971 1.016	320 4 370 0	0 0 9 2 0 1 0 6			
4.7	1.013	73.6	0.812	24,000		442.4	0.128			
45,00	0-22.9	90.4	i.077	23.2	0.022	513.2	0 148			
0.2	0.043 0.072	2.6	0-565.9 0. 019	46.5 71.1	0 046 0.056	610.0 657.0	0.165 0.183			
0.6	0 088	19.7	0 102	94.7	0.087	706.5	0 197			
1,1	0.131	27.1	0.122	144.6	0.116	778	0 209			
1.4	0.151 0 209	43.8 51.1	0.168 0.200	169.9 192.7	0 151 0.168	825 I 896.3	0 223 0 248			
2.5 3.2	O 25C	67.7	0.239	218.2	0 187	9466	0.262			
3 6	0 272 0 289	75.1 91.8	0.259	243.1	0 218	994.7	0.269			
4.1	0.299	98.2	0, 308 0, 326	262,9 311 2	0 232 0 269	1064.7	0.290 0.303			
50	0.348	116.1	0.383	335.4	0 289		5 5 5 5			
5.6 6.0	0 381 0 407	121.7	0 402 0 453	360 3 407.8	0.314 0.359	1				
6.5	0 428	146.6	0 480	456.2	0 400	1				
7 1	0.466	1643	0 539	506.3	0 437	1				
7.5	0 490	1/06	0 582	576 5	0.504					
						A				

a. STRESS LEVEL RUPTURE TIME (HOURS)

Figure 9. Creep Rupture Properties of Inconel 700 (Bar) at 1500°F

TABLE 12

STRESS (PSI)	TIME (HOURS)	ELONGATION R	REDUCTION IN AREA(%)	LOADING (DEFORMATION %)	TIME TO I SACHINDICATED DEFORMATION-HOURS			
					0.3 %	05%	10%	
56,000	G							
56,000	3 1	5.0 ^b	5 5	0 28	0.5	0.95	1.95	
50,000	10.1	7.0	90	0 25	14	2 4	4 7	
45,000	22.9	4.5b	4 5	0.21	4.1	7.7	15 1	
40,000	77.0	105	8.5	018	10.0	20 0	35.8	
35,000	220.3	12.0	14 5	0.17	28.0	49.0	86.0	
31,000	565.9	11.0	14.0	0.16	88.0	153.0	242.0	
26,500	1282.1	10.0	11.5	0.14	214.0	360.0	565.0	
24,000	1151 1 ^C	_	-	0.12	345.0	575 0	1110.0	
21,500	1026.5°	_	_	0.10	550.0	920.0	_	
18,000	1113.4°	_	_	0 09	1100.0			

a TEST DISCONTINUED DUE TO MALFUNCTION OF TEST STAND DURING LOADING OPERATION.

b. FAILURE OCCURRED IN GAGE MARK

C.TEST TERMINATED IN TIME INDICATED. NO FA'LURE.

FRAMILS

Figure 10. Creep Deformation Versus Log Time of Inconel 700 (Bar) at 1600°F

li.

TABLE 13

a STRESS LEVEL-RUPTURE TIME (HOURS)

b NEW PLATINUM STRIPS

Figure 11. Creep Rupture Properties of Inconel 700 (Bar) at 1600°F

TABLE 14

(PSI) (I	TIME ELONGATION (MOURS) (%IN2INCHES)		REDUCTION IN AREA(%)	LOADING (DEFORMATION	TIME TO REACH INDICATED DEFORMATION - HOURS			
				%)	03%	05%	1.0 %	
38,000	3.2	105	10.0	0.22	0.3	0.6	10	
35,000	9.6	16.0	16.0	0.18	0 75	13	2 2	
28,000	43.3	13.5	14.0	014	58	10.3	161	
24,000	133.6	16.5	18.5	0.13	17,3	29.5	50 5	
20,000	344.8	12.0	16.0	0.10	56.0	88.0	141.0	
16,500	1027 9	12.0	11.5	ಎ.၁8	212.0	360,0	507 0	
14,500	809.70	_	-	0.065	250.0	405.0	691.0	
13,500	925.9 ⁰) –	0.06	300.0	515.0	9200	
11,500	1029.50	-	-	J 04	625.0	1030.0	-	
11,000	813.40	-	_	0.03	795.0	-	_	
10,000	1087.10] -		0.03	1100.0 ^b	-	-	

a. TEST TERMINATED IN TIME INDICATED. NO FAILURE.

b. EXTRAPOLATED VALUE.

Figure 12. Creep Deformation Versus Log Time of Inconel 700 (Bar) at 1700°F

TA LE 15

	INC	ONEL 7000	BAR) ELONGATI		ATA AT 1700 •		
	<u> </u>		,	·	, -		T
TIME (HOURS)	DEFORMATION (%IN 2 INCHES)	TIME (HOURS)	DEFORMATION (%IN2INCHES)	TIME (HOURS)	DEFORMATION (%IN 2 INCHES)	TIME (HOURS)	DEFORMATION (%IN2INCHES)
23,00	9-450	2 4	0 254	65.2	0.382	3 53.0	0.242
0.1	0.056	2 65	0 283	81,4	0.549	400.0	0.269
0.2	0.134	2.75	0.292	90.2	0.664	449.2	0.311
03	0 2 0 8	2.8	0 298	113.0	0.981	473.5	0.328
0.4	0.291	3 3	0 353	116.6	1.032	568.4	0.413b
0.5	0 383	38	0 415	119.6	1.07	642.6	0.483
0.6	0 460	4.4	0.506	8,00	0-583 2	713,4	0.579
0 7	0 5 4 5	4,6	0 527	167	0.060	808.4	0.736
0.85	0.707	5.0	0,588	19.2	0 0 7 3	908.7	0 9 3 5
10	0.841	5.5	0 671	35.7	0125	978.8	1.097
i i	0.944	5 9	0 747	41.7	0.147	1000.4	1.155
1,2	1.043	6 4	0.836	59.9	0.198	2,50	0-1003.7
1.3	1147	6.8	0.926	6 5.1	0 2 1 3	19 4	0.015
20,00	0-92	70	0.962	82.3	0.263	43.7	0 0 2 2
01	0.036	7.1	0.982	89. i	0.292	113,9	0.043
0.2	0.065	7.2	1.003	106.2	0.338	163,6	0.071
0,4	0.142	7.3	1.028	117.4	0.364	2596	0.104
0.6	0.209	13,00	0-100.5	142.8	0.460	358.6	0.149
08	0289	0.8	0.063	16 3.3	0 517	427.7	0.171
0.85	0.307	1.2	0.080	188.0	0.613	4996	0.199 ^b
0.9	0.343	2.6	0.115	213.3	0.726	571.4	0.223
1.0	0.374	4.1	0.147	239.2	0.849	595.5	0 244
1.1	0.424	5.7	0 191	264.9	0.980	668.6	0.280
12	0 473	7,7	0.233	281.6	1.065	763.9	0 343
1.3	0518	10.0	0.293	6,50	0 - 963.8	838.0	0.420
14	0.569	10.6	0.305	16.9	0.035	908.5	0.475
1.7	0.752	18.1	0.492	40.6	0.067	10036	0.582
1.85	0.827	18.7	0.507	65.2	0.101	1,500	7-1102.3
1.9	0.873	19.7	0.534	90.6	0.153	18.1	0.010
2.0	0.939	22.9	0.636	139.1	0 234	41.1	0.010
2, 1	0996	258	0 749	188.6	0 313	91.8	0.23
2 15	1.032	29.2	0 906	237,4	0 416	139.7	0.037
22	1.066	30,7	0961	285.5	0.551	209.6	0.049
1	00-24.6	31.5	1.013	334.8	0.719	258.2	0 062
0.1	0.019	35 4	1.209	3592	0.826	354.8	0.085
0.2	0.034		00-288.2	ა83.1	0.925	451.9	0 107
0.4	0.054	1.1	0.025	408.6	1.039	5948	0.151 Þ
0.7	0.089	4.9	0.039	3,500	0-10017	689.6	0 166
1.0	0.122	16 1	0.094	16.3	0 022	76 3 .I	0.193
1.25	0.136	23 4	0 126	65.2	0.049	857.5	0.231
1.6	0.180	31.7	0.173	115,7	0089	9307	0 255
19	0.205	41.8	0 217	1637	0.121		
2.0	0.215	50.2	0.264	233.7	0.156	i i	
2.15	0 229	57.9	0.317	3048	0.210		

a STRESS LEVEL - RUPTURE TIME (HOURS) b. NEW PLATINUM STRIPS.

ML TDR 64-79

TABLE 16

STRESS TIME (PSI) (HOURS)		1 1	REDUCTION LOADING IN AREA (%) (DEFORMATION	TIME TO REACH INDICATED DEFORMATION—HOURS			
			%)	0.3%	0.5 %	1.0 %	
23,000	4.9	20.5	22.0	0.12	0.4	0.65	1.15
20,000	9.2	20.0	18.0	0.11	0.85	1.25	2.1
17,500	24.6	18.5	16.5	0.10	2.8	4 4	7 2
13,000	100.5	18.0	17.5	0.07	10.4	18.5	31.3
10,000	288.2	11.0	11.5	0.06	55.5	77.0	114.0
8,000	583.2	10.0	12.0	0.05	93.0	158.0	269.0
6,500	963.8	8.0°	8.5	0.05	180.0	270.0	400.0
3,500	1001.7b	_		0.03	430.0	655.0	940.0
2,500	1003.7 b	_	_	0.02	700.0	930.0	-
1,500	1102.3b		-	-	1020.0 ^c	-	_

a. FAILURE OCCURRED IN GAGE MARK.

b. TEST TERMINATED IN TIME INDICATED. NO FAILURE.

c. EXTRAPOLATED VALUE.

TABLE 17

		NCONEL 71	3C ELONGATI	E 17 ON- TIME	DATA AT IS	500° F	
TIME	DEFORMATION	TIME	DEFORMATION	TIME	DEFORMATION	TIME	DEFORMATION
(HOURS)	(% IN I INCH)	(HOURS)	(%IN FINCH)	(HOURS)	(%IN FINCH)	(HOURS)	(%IN I INCH)
70,0 0.1	00-9.5		0-101.8	186.1	0.725	668.5	0. 735
0.2	0.10 4 0.15 8	0. 2 0 4	0.0 4 0 0.0 98	210.0 234.0	0. 809 0. 884	717.0 761.7	0. 77† 0. 818
0.3	0.196	07	0.100	259.2	0.963	834.1	0.894
0.5 0.6	0. 241 0. 2 6 0	10	0.109	283.0	1.043	883.2	0.944
0.7	0.280	1.4 1.9	0.131 0.155	5 9	0.076	934.4 958.7	0, 987 1,01 6
08	0.294	24	0.162	20.1	0, 159	32,000	-979.0
0.9	0 305	3.0	0.194	28.8	0.182	19.1	0.066
1.0 1.2	0 325 0. 361	3.7 4.4	0 222 0 242	44.3 50.8	0.215 0 226	43.8 68.3	0.096 0.115
1,4	0.388	4.9	0.245	67.3	0.256	91.0	0.128
1.8 2.1	0 448 0 498	8.0	0 278 0.299	75.0 91.7	0.27 8 0.306	115.5	0 140
2.2	0.510	10.1	0.299	99.0	0.306	139.1 187.7	0. 146 0. 173
2.9	0.630	20.6	0.400	116.0	0.358	2 35.0	0.192
3.1 3.3	0.656 0.700	24.7 28.1	0.437 0.476	122.2	0.362	259.6	0.209
3.7	0.700	45,3	0.633	139,7 146,8	0.399 0.412	308.7 334.0	0.2 2! 0.244
4.0	0.835	52.6	0.705	164.3	0.439	378.6	0.260
4, 5 4, 6	0.970 0.988	69.2	1.070	170.2	0 446	403.1	0.279
4. 7	1.022	1.0	0-197.7 0072	1 89. 3 2 13. 3	0.492 0.530	452.0 501.2	0. 301 0 324
4.9	1.073	29	0.158	236.0	0.570	570.9	0.351
	00-50 6	5.1	0.199	259,4	0.618	643.4	0.388
0.1 0.3	0.066 0.110	8,5 18 7	0.232 0.289	283,1 309,4	0.658 0.7i3	690.0 788.5	0.414 0.463
0.9	0.156	20,6	0.304	332,8	0.754	813.3	0.405
1,1	0.164	279	0.338	358.5	0.803	862.0	0.492
2,! 2.7	0.203 0.229	41.7 46.0	0400	381,4 405,6	0,8 48 0, 89 !	906.8	0.519 ~1028.8
3,4	0.262	48.7	0.449	430,1	0.952	19.1	0.038
4. 2	0.288	66.0	0.536	452, 3	0 982	45.1	0 0 6 5
4, 7 5, 7	0.320	749	0567	477.0	1.029	90.9	0.083
6, 2	0.362 0.362	90.1 98.8	0.661 0.732	17.4	0-958,7 0.082	1 39 .0 186.6	0 0 95 0 10 4
7,0	0.410	114.2	0880	26.1	0.101	234.9	0.120
7, 9 8, 7	0.448	123.3	1.007	41.9	0128	309.1	0.159
9 7	0.489 0.523	3.1	0121 -492.7	65.6 89.8	0.154 0.181	333.8 402.7	0.140 0.1 58
10,3	0.555	7.7	0.176	115.1	0.200	475.1	0.171
10.9 11.3	0.576 0. 598	18.0	0 211	150.6	0.242	502.2	0. 177
11,6	0.60 5	25,4 42,4	0.292	186. 2 209. 7	0. 272 0. 297	570.7 643 3	0.197 0.211
12.5	0,648	48.2	0.316	257.9	0340	691.0	0.211
13.3	0.685	67.1	0.3 76	329.7	0.408	7390	0 235
14.1 15.7	0,721 0, 79 2	76.1 91.2	0.389 0.440	401,7 426.0	0.477 0,499	790.2 8633	0.253
17. 2	0.864	115.1	0.517	498.1	0.571	905.8	0 262 0 279
19.1	0.977	139.9	0.593	547 3	0616	978.9	0 290
19.5	1.010	163.6	0667	595.5	0 660	1028.8	0.301

a. STRESS LEVEL - RUPTURE TIME (HOURS)

Figure 15. Creep Rupture Properties of Inconel 713C at 1500°F

WL TDR 64-79

TABLE 18

STRESS TIME (PSI) (HOURS)	1	1 1	REDUCTION IN AREA (%)	LOADING (DEFORMATION	TIME TO REACH INDICATED DEFORMATION - HOURS		
			%)	03%	05%	10%	
70,000	9,5	4.5	3,5	0.44	0.9	2.1	4.6
60,000	50.6	4.0	5.0	0.38	4,4	9.1	194
55,000	101.8	2.0	20	0.35	102	31.0	67.0
50,000	197.7	3.5	4.0	0.31	20.5	60 0	123 0
45,000	0	_	_	0,28	-	-	_
45,0 00	492.7	3.0	4.0	0.27	45.0	110.0	275 0
42,000	903.0	3.0	3.5	0, 25	90.0	195.0	4600
37,000	958.7 ^b	_	_	023	210.0	425.0	945 0
32,000	979.0b	-	_	0 20	450,0	C.088	-
27,000	1028.85	_	_	0.18	1030.0	_	_

a TEST TERMINATED IMMEDIATELY AFTER LOADING DUE TO MALFUNCTIONING OF TEMPERATURE CONTROLLER.

b TEST TERMINATED IN TIME INDICATED, NO FAILURE

64-49 NOLL IW

TABLE 19

	INCO	NEL 713C E	LONGATION -	TIME DATA	AT 1600 °F		
TIME (HOURS)	DEFORMATION (%IN LINCH)	TIME (HOURS)	DEFORMATION (%IN INCH)	TIME (HOURS)	DEFORMATION (%IN I INCH)	TIME (HOURS)	DEFORMATION (%IN TINCH)
01	00 – 7 2 ° 0 0 8 6	5 7 6.5	0 344 0.371	187 5 188 0	1,008	8835 9063	0 988 1 015
02	0 136 0 176	7 2 7.8	0 391 0.420	28,00	90-9282	21,00	00 -342 8
0.4	0.215	8.3	0 441	20	0 096	183	0 041
05	0.250 0.309	9.0 9.8	0.462 0.489	27 6 4% 5	0 i 8 0 52	42 7 67.6	0 073 0 099
0 9	0 374	10.0	0.501	49 2	0 160	116 2	0,134
1.2	0.458 0.516	11.0	0.5 38 0.575	67 2 9i.6	0 186 0,233	165.4 239.5	0 5 4 0 206
17	0.606	13.1	0,575	115.7	0 264	2889	0 245
2.3	0 694 0 7 <i>74</i>	14.7	0 690 0 7 3 2	1402	0.313	3130 342.8	0 259
2.55	C.868	16.7	0.804	167.0 186.4	0.357 0.383		0.271 00- 864 .4
2.8	0.974	180	0.886	210.8	0 429	16 1	0 033
3.1 50.00	1.094 00-1 8. 6	19.0	0. 943 1.010	236.4 261.5	0.473 0.509	40 7 66.9	0 070 0 091
0.1	0 067	38,00	0-123.0	307.2	0 5 3 0	116 5	0 119
0.2	0.102 0.130	0.5	0.081 0.102	355.1 402.0	0.65 8 0.744	165 I 238 I	0 144 0 175
0.5	0.184	1.9	0.118	4518	0816	331.2	0 231
0.7	0 216 0 248	3 7 5.2	0 5! 0, 73	475 5 524 6	0 8 52 0 938	403 7 505.5	0 258 0 317
1 3	0.265	8 5	0.217	549.0	0984	573.5	0.353
1.5	0 286	128	0 267	572 2	1.031	620.5	0 374
1.7	0.302 0.315	17.0	0 325 0 344	17 2	0-673 3	740.9 7900	0 440 0 463
2.2	0.344	238	0.416	409	0 126	813 1	0 468
2.5 2.8	0.358 0.393	41.5	0.640 0.709	89.1 i12 8	0 197 0,224	834 9 859 5	0 485 0 497
3.1	0.416	63.8	0.09	1615	0 297	8672	0 502
3 8 4.3	0.466	65.1	0972	208 9	0 372	8844	0.511
4.9	0.507 0.553	66.5	0.9 88 0.995	281 2 329 9	0 466 0.523	16.7	0 -977 I 0 0 2 8
5.5	0.614	670	1.003	378.2	0 604	904	0064
6.0 6.5	0.670 0.737	33,00	00-318.4	451 2 523 8	0 698 0 8 05	185 O 258 2	0 093
7.1	0.826	2 8 4 .5	0.060 0.07 9	571 0	0862	3535	0 36
7 8 8.0	0. 948 0. 979	16.2	0 158	616.9 6403	0 936 0 959	425 O 525 3	0 160 0 1 89
8.2	1.019	20 t 25.6	0 17! 0.1 9 7	665.8	1011	595 9	0 205b
45,00	00-39.4	40.9	0.276	24,00	0 - 906 3	6185	0 209
0.2	0.079 0.134	48 9 64.5	0 322 0 395	695	0 0 5 6 0 1 ! 9	6430	0 214 0 232
0.8	0 160	73 1	0.440	1438	0 205	7878	0 258
1,1	0.175	88.5	0 512	2172	0 269	809 3 856.7	0 2 6 2 0 27 8
1.5	0.1 87 0. 2 12	97.0 114.7	0 553 0 653	2904 385	0 361 0 459	929 0	0 291
28	0 236	122 6	0 686	479 8	0.551	9771	0 31!
3.5 4.2	0.261 0.289	138.1 147.2	0 752 0 8 11	5750 6688	0 669 ^b 0 770		
4 7	0 307	1621	0 874	7647	0869		
4.9	0.311	170 5	0 9 2 6	8611	0 962		

a STRESS LEVEL - RUPTURE TIME (HOURS)

h NEW PLATINUM STRIPS

TABLE 20

STRESS TIME (PSI) (HOURS)	1	1	REDUCTION IN AREA (%)	(DEFORMATION	TIME TO REACH INDICATED DEFORMATION - HOURS		
		%)	0.3 %	0.5 %	1.0 %		
55,000	7.2	5.0	3.5	0.43	0.65	1.35	2.9
50,000	18.6	2.0	3.5	0.40	1.7	4.2	8.1
45,000	39.4	3.0	3.0	0.35	4.6	10.0	20.0
38,000	123.0	3.0	3.5	0.29	15.0	31.0	67.0
33,000	318.4	4.0	5.5	0.26	45.0	86.0	186.0
28,000	928.2	3.0	4.0	0.23	135.0	255.0	560.0
26,000	673.3 ⁰	-	-	0.20	165.0	310.0	660.0
24,000	906.3°	-	_	0.19	240.0	430.0	890,0
21,000	342.8 ^b	-		0.17	380.0 ^c		
20,000	884.40	_	_	0.17	480.0	870.0	
17,000	977.1ª	_	_	0.13	950.0		

a. TEST TERMINATED IN TIME INDICATED NO FAILURE.
b. TEST TERMINATED IN TIME INDICATED DUE TO POOR TEMPERATURE CONTROL.

c. EXTRAPOLATED VALUE.

ML TDR 64-79

TABLE 21

	INC	CONEL 713C	ELONGATIO	N- TIME	DATA AT 170	00° F	
TIME	DEFORMATION	TIME	DE FORMATION	TIME	DEFORMATION	TIME	DEFORMATION
(HOURS)	(% IN 1 INCH)	(HOURS)	(%IN I INCH)	(HOURS)	(%INTINCH)	(HOURS)	(%IN I INCH)
37,0	00-7.8 ^d	0.2	0.038	89.9	0.267	16,9	0.030
0.1	0.064	0.4	0.056	98.1	0.289	40.5	0.043
0.3 0.5	0.109 0.148	0,8 1,0	0.0 9 2 0.102	113.5 138.4	0 32 0 0 36 I	65.1 89.9	0.06! 0.0 75
0.3	0.194	1.5	0. 120	161.0	0.410	137.6	0.100
0.9	0.240	1.9	0.128	185.3	0.462	18 ó. 2	0, 131
1.0	0.262	2.5	0.145	209.4	0506	235,5	0.163
1,2	0.294 0. 3 29	3.4 4.5	0.164 0.200	215.9 2 34 .9	0.52 4 0. 557	307.4 379.0	0.205 0.247
1.6	0.389	5.3	0.219	256.9	0.604	450.8	0.292
1.9	0.456	6,1	0.243	306,4	0.700	521.9	0.336
2.1	0.497	7.0	0.261	331.0	0.751	594.2	0.734
2.3	0.548 0.590	8.0 9.2	0 29 0 0. 32 7	353.5 376.8	0.8 34 0.958	666.7 735.6	0.420 0.464
2.8	0.654	11.5	0.389	384.1	1.008	808.1	0.509
3.1	0.722	12.5	0.407	17,50	0-917.4	831.9	0.523
3.4	0.780	14.1	0.460	19.7	0.042		0-1055,3
3.6 4.0	0.8 3 0 0.912	15.0 16.0	0.482 0.505	43.5 66.8	0.070 0.100	17,1	0.027 0.0 34
4.2	0.968	18.9	0.590	91.1	0.133	47.0	0.034
4.4	1.031	22.1	0.664	139.8	0.199	70,3	0.045
4.5	1.067	26.1	0.773	166.5	0.224	141.8	0.081
0.1	00-19.1 0.0 3 4	29.0 30.0	0.921 0.991	188.1 235.5	0.269 0.317	215.4 309.9	0.11 4 0.1 57
0.4	0.096	30.5	1.020	306.4	0.420	383.0	0.193
0.8	0.144	24,000	- 180.1	337.1	0.462	478.5	0.233
1.2	0.165	0.5	0.049	377.8	0.508	549.8	0.272
1.5	0.1 82 0.1 97	2.6 5.1	0.071 0.086	401.4 475.1	0.549 0.634	650. 2 720. 7	0.314 0.345
2 2	0.223	9.6	0.113	522.9	0.702	814.0	0.398
] 3.1	0.263	13.8	0.140	598.2	0.793	887.9	0.431
3.6	0 2 9 5 0.3 0 2	17.0 24.2	0.156 0.202	647.5 697.1	0.8 56 0.926	936.2 984.7	0. 456 0.470
4.0	0.302	38.7	0.202	722.5	0.966	1006.5	0. 479
4.6	0.346	43.0	0.306	747.0	1,011	1031.7	0.494
5,1	0.382	45.9	0.330	16,00	0-985.5	1055, 3	0,511
6.0 6.7	0. 43 0 0. 470	65.8 73.7	0.432 0.483	17.5 42.1	0.028 0.051	12,000	0-917, 2 0.021
6.9	0.473	89.0	0.568	90.7	0.102	41.0	0.029
7.2	0.494	96.5	0.616	185.1	0.196	89,2	0.043
7.5	0510	113.6	0.710	210.5	0.226	162.8	0.068
8.1	0.5 44 0.5 73	120.3 137.1	0.756 0.845	260.8 308.6	0,276 0,331	245.1 340.9	0.090 0.118
9,2	0.603	144.6	0.891	405.2	0.428	413,7	0.143
10.0	0.642	161.3	0.985	499.2	0.532	486.5	0.170
10.7	0,688 0. 73 0	168.5	1.028 0-391.9	596.0 670.7	0.632 b 0.704 b	580.8 677.0	0.202 _b
12.5	0.730	1.9	0.034	767.3	0.811	772.4	0.254
13.4	0.882	17.0	0.116	839.1	0.883	869.1	0.288
14.0	0.965	24,1	0.134	913.7	0.955	892.8	0.297
14.2	0.999	41.6	0.175	985,5	1.032	917. 2	0.306
30,00	0- 38.5	65.3	0.222	15,00	00-831.9	<u> </u>	

a. STRESS LEVEL - RUPTURE TIME (HOURS).

b. NEW PLATINUM STRIPS.

ML TDR 64-79

TABLE 22

STRESS (PSI)	TIME (HOURS)	ELONGATION (%INTINCH)	1	DUCTION LOADING AREA(%) (DEFORMATION %)	TIME TO REACH INDICATED DEFORMATION - HOURS			
					0.3%	05%	10%	
37,000	7.8	4.0	6.0	0.36	1.2	2.1	4.3	
33,000	19.1	4.0	4.0	0.33	3.7	7 3	14.2	
30,000	38.5	3.0	3.0	0 29	8 4	15.8	30 2	
24,000	180.1	2.5	3.0	0.23	42.0	77.0	165 0	
21,000	391.9	3.0	30	0.21	105.0	205 0	380.0	
17,500	917.4	2.5	2.5	0.18	215.0	370.0	740 0	
16,000	985,5 ⁰	_		0.15	280.0	470.0	950.0	
15,000	831.9 ^a	_	_	015	460.0	790.0	_	
14,000	1055.3 ⁰	-	_	0.13	620.0	1040.0	_	
12,000	917.20	_		0.11	905.0	_	_	