To mount the drive from google.colab import drive drive.mount('/content/gdrive')

Drive already mounted at /content/gdrive; to attempt to forcibly remount, call drive.mount("/content/gdrive", force_remount=True).

#importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

import warnings
warnings.filterwarnings('ignore')

Data-Analysis

#loading the diabetes dataset to pandas dataframe
data=pd.read_csv('/content/gdrive/MyDrive/My_Final_Project/health care diabetes - health care diabetes.csv')

#printing first five rows of the dataset
data.head()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunctio
0	6	148	72	35	0	33.6	0.62
1	1	85	66	29	0	26.6	0.35
2	8	183	64	0	0	23.3	0.67
3	1	89	66	23	94	28.1	0.16
4	0	137	40	35	168	43.1	2.28

#printing first five rows of the dataset
data.tail()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunct
763	10	101	76	48	180	32.9	0.
764	2	122	70	27	0	36.8	0.
765	5	121	72	23	112	26.2	0.
766	1	126	60	0	0	30.1	0.
767	1	93	70	31	0	30.4	0.

#no of rows and columns of the data data.shape

(768, 9)

data.describe()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	Diabetes
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	

```
data['Outcome'].value_counts()
     0
          500
     1
          268
     Name: Outcome, dtype: int64
dtype_counts = data.dtypes.value_counts()
print(dtype_counts)
     int64
     float64
                2
     dtype: int64
plt.bar(dtype_counts.index.astype(str), dtype_counts.values)
plt.xlabel('Data Types')
plt.ylabel('count')
plt.title('Data Types and value of count of variables')
plt.show()
```


data.info()

```
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
                              Non-Null Count Dtype
# Column
---
    Pregnancies
a
                              768 non-null
                                              int64
1
    Glucose
                              768 non-null
                                              int64
                              768 non-null
     BloodPressure
                                              int64
 3
     {\tt SkinThickness}
                              768 non-null
                                              int64
 4
    Insulin
                              768 non-null
                                              int64
                              768 non-null
                                               float64
    DiabetesPedigreeFunction 768 non-null
                                               float64
                               768 non-null
                                              int64
    Age
    Outcome
                              768 non-null
                                              int64
dtypes: float64(2), int64(7)
memory usage: 54.1 KB
```

<class 'pandas.core.frame.DataFrame'>

data.isna().sum()

```
Pregnancies 0
Glucose 0
BloodPressure 0
SkinThickness 0
Insulin 0
BMI 0
DiabetesPedigreeFunction Age 0
Outcome 0
dtype: int64
```

Columns with the value 0 is the missing value, so missing value treatment to be done.

```
columns_to_check=['Glucose','BloodPressure','SkinThickness','Insulin','BMI','DiabetesPedigreeFunction','Age']
```

```
for column in columns_to_check:
    data[column] = data[column].replace(0, float('nan'))
print(data)
```

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	
0	6	148.0	72.0	35.0	NaN	33.6	
1	1	85.0	66.0	29.0	NaN	26.6	
2	8	183.0	64.0	NaN	NaN	23.3	
3	1	89.0	66.0	23.0	94.0	28.1	
4	0	137.0	40.0	35.0	168.0	43.1	
763	10	101.0	76.0	48.0	180.0	32.9	
764	2	122.0	70.0	27.0	NaN	36.8	
765	5	121.0	72.0	23.0	112.0	26.2	
766	1	126.0	60.0	NaN	NaN	30.1	
767	1	93.0	70.0	31.0	NaN	30.4	

	DiabetesPedigreeFunction	Age	Outcome
0	0.627	50	1
1	0.351	31	0
2	0.672	32	1
3	0.167	21	0
4	2.288	33	1
763	0.171	63	0
764	0.340	27	0
765	0.245	30	0
766	0.349	47	1
767	0.315	23	0

[768 rows x 9 columns]

data.isna().sum()

Pregnancies	0
Glucose	5
BloodPressure	35
SkinThickness	227
Insulin	374
BMI	11
DiabetesPedigreeFunction	0
Age	0
Outcome	0
dtype: int64	

The columns with the missing value are Glucose with 5 missing value, Bloodpressure with 35 missing value, SkinThickness with 227 missing value, Insulin with 374 missing value, and BMI with 11 missing value.

data.head()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunctio
0	6	148.0	72.0	35.0	NaN	33.6	0.62
1	1	85.0	66.0	29.0	NaN	26.6	0.35
2	8	183.0	64.0	NaN	NaN	23.3	0.67
3	1	89.0	66.0	23.0	94.0	28.1	0.16
4	0	137.0	40.0	35.0	168.0	43.1	2.28

data.tail()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunct
763	10	101.0	76.0	48.0	180.0	32.9	0.
764	2	122.0	70.0	27.0	NaN	36.8	0.
765	5	121.0	72.0	23.0	112.0	26.2	0.
766	1	126.0	60.0	NaN	NaN	30.1	0.
767	1	93.0	70.0	31.0	NaN	30.4	0.

 $\hbox{\tt\#replace the null column with mean}$

import numpy as np

data_1 = data.replace(to_replace= np.nan,value=data[columns_to_check].median())

data_1

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunct
0	6	148.0	72.0	35.0	125.0	33.6	0.
1	1	85.0	66.0	29.0	125.0	26.6	0.
2	8	183.0	64.0	29.0	125.0	23.3	0.
3	1	89.0	66.0	23.0	94.0	28.1	0.
4	0	137.0	40.0	35.0	168.0	43.1	2.
763	10	101.0	76.0	48.0	180.0	32.9	0.
764	2	122.0	70.0	27.0	125.0	36.8	0.
765	5	121.0	72.0	23.0	112.0	26.2	0.
766	1	126.0	60.0	29.0	125.0	30.1	0.
767	1	93.0	70.0	31.0	125.0	30.4	0.

768 rows × 9 columns

data_1.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 768 entries, 0 to 767 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	float64
2	BloodPressure	768 non-null	float64
3	SkinThickness	768 non-null	float64
4	Insulin	768 non-null	float64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(6), int64(3)
memory usage: 54.1 KB

data_1.isna().sum()

Pregnancies 0
Glucose 0
BloodPressure 0
SkinThickness 0
Insulin 0
BMI 0
DiabetesPedigreeFunction 0
Age 0
Outcome 0
dtype: int64

Visualization of the dataset

```
d = data.iloc[:,1:6]
plt.figure(figsize=(25,25))
for i, column in enumerate(d.columns, 1):
    plt.subplot(4,3,i)
    sns.histplot(d[column])
```


observation:

- Glucose concentration is high between 90-125
- BloodPressure high between 65-80
- Skin thickness more between 20-40
- Insulin high near 150
- BMI high between 29-37

```
#plot outcome s vs age
plt.figure(figsize=(15,5))
sns.countplot(x='Age',hue='Outcome',data=data_1)
plt.show()
```


Female Patients with age between 30-55 suffer from diabetics problem more.

```
#plot outcome vs Glucose
plt.figure(figsize=(60,30))
sns.countplot(x='Glucose',hue='Outcome',data=data_1)
plt.xticks(rotation=45)
plt.show()
```


Diabetic patients with high glucose level.

```
#outcome vs BloodPressure
plt.figure(figsize=(18,5))
sns.countplot(x='BloodPressure',hue='Outcome',data=data_1)
plt.xticks(rotation=45)
plt.show()
```



```
data_1['Outcome'].value_counts()
```

0 500

1 268

```
Name: Outcome, dtype: int64
```

```
sns.countplot(x=data_1['Outcome'])
plt.show()
```


268 Diabetic and 500 Non-Diabetic.

```
import matplotlib.pyplot as plt
plt.figure(figsize=(10,6))
sns.heatmap(data_1.corr(), annot=True, fmt='.0%',cmap='YlGnBu')
plt.show()
```



```
cols_to_plot =['Glucose','BloodPressure','SkinThickness','Insulin','BMI','DiabetesPedigreeFunction','Age']
sns.set_style('darkgrid')
sns.pairplot(data_1[cols_to_plot])
plt.show()
```



```
Data split
```

```
#segregate data into dependent and independent variables 
 #independent variables 
 x=data_1.drop(columns='Outcome') 
 y=data_1.Outcome
```

Solving the data imbalance with smote.

```
from imblearn.over_sampling import SMOTE
smk = SMOTE()
x_train_smote,y_train_smote=smk.fit_resample(x,y)
from collections import Counter
print('Original dataset shape {}'.format(Counter(y)))
print('Resampled dataset shape {}'.format(Counter(y_train_smote)))
     Original dataset shape Counter({0: 500, 1: 268})
     Resampled dataset shape Counter({1: 500, 0: 500})
# split the data into train and test
from sklearn.model_selection import train_test_split
X\_train\_X\_test\_y\_train\_y\_test\_train\_test\_split(x\_train\_smote\_y\_train\_smote\_test\_size=0.2\_, random\_state=2)
#Standardise data(so that no biased occur towards one data)
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
scaler.fit(X train)
scaler.fit(X_test)
x_train_std = scaler.transform(X_train)
x_test_std = scaler.transform(X_test)
x_train_std.shape
     (800, 8)
x_test_std.shape
     (200, 8)
```

Training the model

• LogisticRegression

```
lr scores = lr model.predict proba(x test std)[:,1]
```

```
1r_scores
     array([0.55642143, 0.32741626, 0.65750061, 0.8453835, 0.84695024,
             0.75325147, 0.28706516, 0.88406636, 0.85309893, 0.17925646,
              0.08965054,\ 0.67561535,\ 0.63474523,\ 0.17592044,\ 0.92782503,
             0.12781439,\ 0.15516056,\ 0.44966683,\ 0.81524512,\ 0.53781764,
             0.6269031 , 0.59738565, 0.82421305, 0.82175065, 0.13889867,
              \hbox{0.0312921 , 0.04676597, 0.78802149, 0.681653 , 0.35441014,} 
             0.05190196, 0.78112729, 0.19031265, 0.89984966, 0.33055733,
             0.09060499, 0.65835502, 0.64772087, 0.98465181, 0.48647143,
             0.10747914, 0.26899277, 0.9332487 , 0.08168614, 0.01869934,
             0.98801018, 0.10698925, 0.39159776, 0.73076926, 0.69748841,
             0.29586477, 0.34585917, 0.25772559, 0.66494482, 0.9461863,
             0.89840535, 0.14286397, 0.05142824, 0.41121657, 0.23390992,
             0.13792821,\ 0.90857675,\ 0.34665348,\ 0.57405871,\ 0.97368366,
             0.03452611, 0.11625928, 0.88279257, 0.91315272, 0.16236432,
             0.18386716, 0.06872657, 0.25197667, 0.36052394, 0.94350965,
             0.16771139, 0.91378877, 0.93247552, 0.82002319, 0.27480445,
             0.39019035,\ 0.04639515,\ 0.79014424,\ 0.93130089,\ 0.65349093,
             0.48261191, 0.79773822, 0.10317224, 0.53291259, 0.15286484,
             0.797792 , 0.56421464, 0.59900014, 0.10946968, 0.10866258,
             0.05982851, 0.96811165, 0.73451159, 0.6695032, 0.29248205,
             0.24355108, 0.81330121, 0.76196822, 0.22563977, 0.34293727,
             0.78118489, 0.05565396, 0.08947414, 0.321412 , 0.24308706, 0.9297281 , 0.46350531, 0.52638351, 0.79650871, 0.71741225,
             0.95999059,\; 0.94522217,\; 0.19935154,\; 0.44429933,\; 0.8357235\;\;,
             0.28362439, 0.11706013, 0.46933628, 0.45654646, 0.78381007,
             0.89884049, 0.66190356, 0.22585277, 0.65875612, 0.96621933, 0.79082032, 0.95249763, 0.95214987, 0.41202054, 0.46663067,
             0.0802649 , 0.40736588, 0.03682107, 0.09992511, 0.16942909,
             0.26954294, 0.0623374, 0.27118504, 0.93355993, 0.46158176,
             0.04326205, 0.95557195, 0.814037 , 0.66445202, 0.85409149, 0.86972591, 0.63679691, 0.33724205, 0.99867617, 0.50609877,
             0.42922782, 0.32787935, 0.06926825, 0.13532678, 0.69916917,
              0.30031612, \ 0.79346762, \ 0.74276877, \ 0.04964473, \ 0.14859063, 
             0.93453841, 0.20452578, 0.4560791 , 0.82607834, 0.84911162,
             0.32281482,\ 0.68192533,\ 0.45105175,\ 0.91159115,\ 0.55746892,
             0.05820184,\ 0.06125643,\ 0.11931183,\ 0.59351215,\ 0.80459794,
             0.88614076,\ 0.12955227,\ 0.91703052,\ 0.80927931,\ 0.12309253,
             0.28094622, 0.59848827, 0.82553998, 0.42417736, 0.1740318,
             0.76537444, 0.39328796, 0.57656023, 0.30332428, 0.37459784
             0.25658219, 0.37053979, 0.64778102, 0.25256197, 0.45427322])
from sklearn.metrics import roc_curve
fpr,tpr, thresholds = roc_curve(y_test,lr_scores)
thresholds
     array([1.99867617, 0.99867617, 0.89984966, 0.89884049, 0.88614076,
             0.88279257, 0.84695024, 0.8453835 , 0.82002319, 0.81524512,
             0.814037 , 0.81330121, 0.78802149, 0.78381007, 0.78118489,
             0.78112729, 0.76196822, 0.75325147, 0.71741225, 0.69916917,
              0.6695032 \;\; , \; 0.66494482, \; 0.65875612, \; 0.65835502, \; 0.59848827, \\
             0.59351215, 0.57656023, 0.57465871, 0.56421464, 0.55746892, 0.55642143, 0.53781764, 0.53291259, 0.52638351, 0.46933628,
             0.46350531, 0.45654646, 0.4560791 , 0.44966683, 0.42922782,
             0.41121657, 0.40736588, 0.39159776, 0.37459784, 0.35441014,
             0.34665348, 0.34585917, 0.34293727, 0.33724205, 0.33055733,
             0.32787935, 0.30031612, 0.29586477, 0.28362439, 0.28094622,
             0.27480445, 0.27118504, 0.26954294, 0.25658219, 0.24308706,
             0.23390992, 0.17925646, 0.17592044, 0.16771139, 0.16236432,
             0.15286484, 0.14859063, 0.14286397, 0.13889867, 0.12309253,
             0.11931183, 0.01869934])
fpr
                                                   , 0.01098901, 0.01098901,
     array([0.
             0.03296703, 0.03296703, 0.04395604, 0.04395604, 0.05494505,
             0.05494505, 0.06593407, 0.06593407, 0.07692308, 0.07692308,
              0.08791209, \ 0.08791209, \ 0.0989011 \ , \ 0.0989011 \ , \ 0.10989011, \\
             0.10989011, 0.12087912, 0.12087912, 0.13186813, 0.13186813,
             0.15384615, 0.15384615, 0.16483516, 0.16483516, 0.17582418,
             0.17582418, 0.18681319, 0.18681319, 0.1978022, 0.1978022, 0.21978022, 0.21978022, 0.23076923, 0.23076923, 0.25274725,
              0.25274725, \ 0.26373626, \ 0.26373626, \ 0.28571429, \ 0.28571429, \\
              0.2967033 \ , \ 0.2967033 \ , \ 0.30769231, \ 0.30769231, \ 0.31868132, 
             0.31868132,\ 0.37362637,\ 0.37362637,\ 0.40659341,\ 0.40659341,
             0.41758242, 0.41758242, 0.42857143, 0.42857143, 0.47252747,
```

0.47252747, 0.54945055, 0.54945055, 0.58241758, 0.58241758,

```
0.6043956 , 0.6043956 , 0.61538462, 0.61538462, 0.67032967,
            0.67032967, 1.
tpr
            [0. , 0.00917431, 0.23853211, 0.23853211, 0.25688073, 0.25688073, 0.30275229, 0.30275229, 0.35779817, 0.35779817,
     array([0.
            0.36697248, 0.36697248, 0.44954128, 0.44954128, 0.4587156 ,
            0.4587156 \ , \ 0.47706422, \ 0.47706422, \ 0.51376147, \ 0.51376147,
            0.55963303, 0.55963303, 0.58715596, 0.58715596, 0.66972477,
            0.66972477, 0.67889908, 0.67889908, 0.68807339, 0.68807339,
            0.69724771, 0.69724771, 0.70642202, 0.70642202, 0.74311927,
            0.74311927, 0.76146789, 0.76146789, 0.78899083, 0.78899083,
            0.81651376, 0.81651376, 0.83486239, 0.83486239, 0.86238532,
            0.86238532, 0.87155963, 0.87155963, 0.88073394, 0.88073394,
            0.88990826, 0.88990826, 0.89908257, 0.89908257, 0.90825688,
            0.90825688,\ 0.91743119,\ 0.91743119,\ 0.94495413,\ 0.94495413,
            0.95412844,\ 0.95412844,\ 0.96330275,\ 0.96330275,\ 0.97247706,
            0.97247706,\ 0.98165138,\ 0.98165138,\ 0.99082569,\ 0.99082569,
                      , 1.
                                   ])
import plotly.graph_objects as go
import numpy as np
# Generate a trace for ROC curve
trace0 = go.Scatter(
    x=fpr,
    y=tpr,
    mode='lines',
    name='ROC curve
# Only label every nth point to avoid cluttering
indices = np.arange(len(thresholds)) % n == 0 # Choose indices where index mod n is 0
trace1 = go.Scatter(
    x=fpr[indices],
    y=tpr[indices],
    mode='markers+text',
    name='Threshold points',
    text=[f"Thr={thr:.2f}" for thr in thresholds[indices]],
    textposition='top center'
)
# Diagonal line
trace2 = go.Scatter(
    x=[0, 1],
    y = [0, 1],
    mode='lines',
    name='Random (Area = 0.5)',
    line=dict(dash='dash')
data = [trace0, trace1, trace2]
# Define layout with square aspect ratio
layout = go.Layout(
    title='Receiver Operating Characteristic',
    xaxis=dict(title='False Positive Rate'),
    yaxis=dict(title='True Positive Rate'),
    autosize=False,
    width=800.
    height=800
    showlegend=False
)
# Define figure and add data
fig = go.Figure(data=data, layout=layout)
# Show figure
fig.show()
```


Assume that fpr, tpr, thresholds have already been calculated
optimal_idx = np.argmax(tpr - fpr)
optimal_threshold = thresholds[optimal_idx]
print("Optimal threshold is:", optimal_threshold)

Optimal threshold is: 0.35441014470216464

• DecisionTreeClassifier

#Fitting a decision tree clasifier
from sklearn.tree import DecisionTreeClassifier
dtree = DecisionTreeClassifier()
dtree.fit(x_train_std,y_train)

r DecisionTreeClassifier
DecisionTreeClassifier()

#test the accuracy of the decision tree
predictions=dtree.predict(x_test_std)
from sklearn.metrics import classification_report,confusion_matrix
print(classification_report(y_test,predictions))

	precision	recall	f1-score	support
0 1	0.68 0.78	0.77 0.70	0.72 0.74	91 109
accuracy macro avg	0.73	0.73	0.73 0.73	200 200
weighted avg	0.74	0.73	0.73	200

dtree_scores = dtree.predict_proba(x_test_std)[:,1]

dtree_scores

```
\mathsf{array}([1.,\ 0.,\ 1.,\ 1.,\ 1.,\ 1.,\ 0.,\ 1.,\ 0.,\ 0.,\ 1.,\ 0.,\ 1.,\ 0.,\ 0.,
           1.,\; 0.,\; 1.,\; 0.,\; 0.,\; 1.,\; 1.,\; 0.,\; 0.,\; 0.,\; 0.,\; 0.,\; 0.,\; 0.,\; 1.,\; 0.,\; 1.,\;
           1., 1., 0., 0., 1., 1., 1., 0., 1., 1., 1., 1., 1., 0., 1., 1., 1.,
           0., 1., 0., 0., 1., 1., 0., 1., 0., 0., 0., 1., 1., 1., 1., 0., 0.,
           1., 0., 1., 1., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0.,
           0., 1., 1., 0., 0., 0., 1., 0., 1., 1., 0., 0., 1., 0., 1., 1., 1.,
           0.,\;0.,\;1.,\;1.,\;0.,\;0.,\;0.,\;0.,\;1.,\;0.,\;0.,\;0.,\;1.,\;0.,\;0.,\;0.,
           1., 1., 0., 1., 1., 1., 0., 0., 0., 1., 0., 1., 1.])
fpr, tpr, thresholds = roc_curve(y_test, dtree_scores)
thresholds
     array([2., 1., 0.])
# Generate a trace for ROC curve
trace0 = go.Scatter(
   x=fpr,
   y=tpr,
   mode='lines'.
   name='ROC curve'
)
# Only label every nth point to avoid cluttering
n = 10
indices = np.arange(len(thresholds)) \% n == 0 # Choose indices where index mod n is 0
trace1 = go.Scatter(
   x=fpr[indices],
   y=tpr[indices],
   mode='markers+text',
   name='Threshold points',
   text=[f"Thr={thr:.2f}" for thr in thresholds[indices]],
   textposition='top center'
)
# Diagonal line
trace2 = go.Scatter(
   x=[0, 1],
   y=[0, 1],
   mode='lines',
   name='Random (Area = 0.5)',
   line=dict(dash='dash')
data = [trace0, trace1, trace2]
# Define layout with square aspect ratio
layout = go.Layout(
   title='Receiver Operating Characteristic',
   xaxis=dict(title='False Positive Rate'),
   vaxis=dict(title='True Positive Rate'),
   autosize=False,
   width=800,
   height=800,
    showlegend=False
# Define figure and add data
fig = go.Figure(data=data, layout=layout)
# Show figure
fig.show()
```


Assume that fpr, tpr, thresholds have already been calculated
optimal_idx = np.argmax(tpr - fpr)
optimal_threshold = thresholds[optimal_idx]
print("Optimal threshold is:", optimal_threshold)

Optimal threshold is: 1.0

SVM

```
from sklearn import svm

svm_model = svm.SVC(kernel='linear')

svm_model.fit(x_train_std,y_train)
```

```
v SVC
SVC(kernel='linear')
```

X_train_prediction=svm_model.predict(x_train_std)
training_data_accuracy = round(accuracy_score(X_train_prediction,y_train)*100,2)

```
 print("The accuracy score of the training data achieved using svm : "+str(training_data_accuracy) + "%") \\
```

The accuracy score of the training data achieved using svm : 76.75%

```
X_test_prediction=svm_model.predict(x_test_std)
test_data_accuracy = round(accuracy_score(X_test_prediction,y_test)*100,2)
```

 $print('The\ accuracy\ score\ of\ the\ testing\ data\ achieved\ using\ svm:',str(test_data_accuracy)+"%")$

The accuracy score of the testing data achieved using svm: 75.5%

```
#SVM model
from sklearn.svm import SVC
svm model = SVC(probability=True)
svm_model.fit(x_train_std, y_train)
svm_scores = svm_model.predict_proba(x_test_std)[:,1]
svm_scores
     array([0.63022862, 0.31302433, 0.71111806, 0.95380196, 0.88032208,
             0.75640867, 0.13371968, 0.78388021, 0.81323747, 0.21635354,
             0.0387127 , 0.73428571, 0.55302389, 0.10836743, 0.77418798,
             0.0978341 , 0.15959372, 0.61413527, 0.5185461 , 0.71565798,
             0.64714478, 0.82626223, 0.64810233, 0.8852491 , 0.03234063,
              0.04735944, \ 0.02851633, \ 0.92512024, \ 0.46615695, \ 0.22002047, 
              0.03338601, \ 0.25326887, \ 0.13834079, \ 0.91366409, \ 0.30115922, 
             0.07326674, 0.71598726, 0.89781028, 0.75694517, 0.50791582,
             0.06596535, 0.75015982, 0.95442158, 0.03781239, 0.02694475,
             0.53597424, 0.34115848, 0.52227787, 0.92317006, 0.83431619,
             0.48178678, 0.74098508, 0.09635517, 0.67838982, 0.86310713,
             0.92650824, 0.08792657, 0.0150946 , 0.75613028, 0.1947659 ,
             0.05523608, 0.83417164, 0.23948247, 0.84737937, 0.93094129,
             0.02992925, 0.07554439, 0.74056739, 0.95853619, 0.28912211,
             0.07867374, 0.03387596, 0.18314479, 0.58356804, 0.91291335,
              0.0593738 \ , \ 0.94847047, \ 0.88977624, \ 0.73337433, \ 0.25711075, 
             0.30522994,\ 0.03172689,\ 0.74029714,\ 0.75147034,\ 0.80477285,
              0.62682434, \ 0.83430874, \ 0.06309396, \ 0.40250391, \ 0.16618795, 
             0.93708237, 0.77723334, 0.72251863, 0.03033039, 0.1238861,
              0.0264568 \ , \ 0.80262054, \ 0.83252417, \ 0.80125392, \ 0.37685578, 
             0.19073952, 0.47303986, 0.83141897, 0.21835446, 0.121426 ,
             0.88115909, 0.02837037, 0.07018094, 0.35022575, 0.22947248,
             0.88753928, 0.21225354, 0.71855444, 0.88545991, 0.32269642,
             0.71125861, 0.80330952, 0.11593498, 0.45988935, 0.84562883,
             0.31565027, 0.03615813, 0.58601637, 0.39964987, 0.87240388,
             0.82651788, 0.79508389, 0.06161307, 0.71395863, 0.86746275,
              0.61748196, \ 0.88134889, \ 0.88809293, \ 0.3444376 \ , \ 0.42316138, 
             0.02996126, 0.5 , 0.02301583, 0.09194509, 0.0700648 , 0.17631885, 0.03267585, 0.16846785, 0.74497176, 0.3353003 ,
              0.02422198,\ 0.87643236,\ 0.51077582,\ 0.70215985,\ 0.86409163,
             0.80830509,\ 0.78868143,\ 0.19019434,\ 0.59247155,\ 0.63521026,
             0.64459555, 0.39784179, 0.04295098, 0.10594887, 0.68042317,
             0.47114127, 0.88667315, 0.79871036, 0.03674052, 0.2725143,
             0.92404465, 0.09092285, 0.5
                                                , 0.87708149, 0.85880873,
             0.23816804, 0.79621583, 0.42154938, 0.93514157, 0.61670798,
             0.06452686, 0.05148414, 0.09874758, 0.66231778, 0.87016058,
             0.91399467, 0.12466949, 0.85013274, 0.87767589, 0.06144232,
              0.65935472, \ 0.83786736, \ 0.81682933, \ 0.61208049, \ 0.08037055, 
            0.90551893, 0.39939959, 0.4419883, 0.26151607, 0.28088318, 0.4398334, 0.45386025, 0.83348482, 0.26222107, 0.34588571])
from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc curve(v test, sym scores)
thresholds
     array([1.95853619, 0.95853619, 0.95442158, 0.95380196, 0.87643236,
             0.87240388, 0.85013274, 0.84737937, 0.83141897, 0.82626223,
             0.78868143, 0.78388021, 0.75694517, 0.75640867, 0.74098508,
             0.74056739, 0.72251863, 0.71565798, 0.70215985, 0.66231778,
             0.64714478, 0.64459555, 0.61748196, 0.61670798, 0.52227787,
            0.35022575, 0.3444376, 0.34115848, 0.32269642, 0.30115922, 0.28912211, 0.28088318, 0.2725143, 0.22247248, 0.22002047,
              0.21225354, \ 0.1947659 \ , \ 0.19073952, \ 0.19019434, \ 0.17631885, 
             0.16846785, 0.11593498, 0.10836743, 0.10594887, 0.09874758,
             0.0978341 , 0.09635517, 0.03267585, 0.03234063, 0.0150946 ])
# Generate a trace for ROC curve
trace0 = go.Scatter(
    x=fpr,
    y=tpr,
    mode='lines'.
    name='ROC curve'
)
# Only label every nth point to avoid cluttering
n = 10
indices = np.arange(len(thresholds)) \% n == 0 # Choose indices where index mod n is 0
trace1 = go.Scatter(
    x=fpr[indices],
```

```
y=tpr[indices],
   mode='markers+text',
    name='Threshold points',
    text=[f"Thr={thr:.2f}" for thr in thresholds[indices]],
    textposition='top center'
# Diagonal line
trace2 = go.Scatter(
    x=[0, 1],
   y=[0, 1],
    mode='lines',
    name='Random (Area = 0.5)',
    line=dict(dash='dash')
data = [trace0, trace1, trace2]
# Define layout with square aspect ratio
layout = go.Layout(
   title='Receiver Operating Characteristic',
    xaxis=dict(title='False Positive Rate'),
    yaxis=dict(title='True Positive Rate'),
   autosize=False,
   width=800,
   height=800,
    showlegend=False
# Define figure and add data
fig = go.Figure(data=data, layout=layout)
# Show figure
fig.show()
```



```
optimal_threshold = thresholds[optimal_idx]
print("Optimal threshold is:", optimal_threshold)
     Optimal threshold is: 0.32269641782316993

    KNN

from sklearn.neighbors import KNeighborsClassifier
knn_clf = KNeighborsClassifier()
knn_clf.fit(X_train, y_train)
Y_pred_clf = knn_clf.predict(X_test)
score_knn = round(accuracy_score(Y_pred_clf,y_test)*100,2)
print("The accuracy score achieved using KNN Classifier is: "+str(score_knn)+" %")
     The accuracy score achieved using KNN Classifier is: 76.5 %

    XGROOST

import xgboost as xgb
xgb_model = xgb.XGBClassifier(objective="binary:logistic", random_state=42)
xgb_model.fit(x_train_std, y_train)
Y_pred_xgb = xgb_model.predict(x_test_std)
score_xgb = round(accuracy_score(Y_pred_xgb,y_test)*100,2)
print("The accuracy score achieved using XGBoost is: "+str(score xgb)+" %")
     The accuracy score achieved using XGBoost is: 82.0 %
#XGBOOST model
xgb_model = xgb.XGBClassifier()
xgb_model.fit(x_train_std, y_train)
xgb_scores = xgb_model.predict_proba(x_test_std)[:,1]
fpr, tpr, thresholds = roc curve(y test, xgb scores)
thresholds
     array([1.99975777e+00, 9.99757707e-01, 9.98406470e-01, 9.98137593e-01,
            9.96300459e-01, 9.95809913e-01, 9.86282527e-01, 9.85917628e-01,
            9.85292971e-01, 9.84187126e-01, 9.74204063e-01, 9.72667456e-01,
            9.57571268e-01, 9.49650526e-01, 8.76611173e-01, 8.71230423e-01,
            8.59341741e-01, 8.42847049e-01, 7.32558906e-01, 7.22114921e-01,
            7.14049757e-01, 6.51274681e-01, 6.34288490e-01, 6.34240210e-01,
            5.29427707e-01, 5.28912485e-01, 5.25854647e-01, 4.70783472e-01,
            4.42261308e\hbox{-}01,\ 4.13351893e\hbox{-}01,\ 3.93427432e\hbox{-}01,\ 3.54053378e\hbox{-}01,
            3.00053775 e-01,\ 2.16475204 e-01,\ 2.12766737 e-01,\ 2.08975136 e-01,
            2.01670796e-01, 1.86209515e-01, 1.81560799e-01, 1.26263320e-01,
            1.25755280e-01, 1.15521938e-01, 1.14025824e-01, 1.04601994e-01,
            1.03612922e-01, 9.43389088e-02, 9.37004536e-02, 8.61191228e-02,
            7.10364208e-02, 5.62824830e-02, 5.31572253e-02, 4.56776470e-02,
            4.43487838e-02, 4.25170772e-02, 4.19026539e-02, 1.43044461e-02,
            1.30674271e-02, 8.82233842e-04, 8.11111589e-04, 8.13190127e-05,
            7.62592535e-05, 1.35719492e-05], dtype=float32)
# Generate a trace for ROC curve
trace0 = go.Scatter(
    x=fpr,
    y=tpr,
    mode='lines',
    name='ROC curve'
# Only label every nth point to avoid cluttering
n = 10
indices = np.arange(len(thresholds)) \% n == 0 # Choose indices where index mod n is 0
```

```
trace1 = go.Scatter(
   x=fpr[indices],
   y=tpr[indices],
   mode='markers+text',
   name='Threshold points',
   text=[f"Thr={thr:.2f}" for thr in thresholds[indices]],
    textposition='top center'
# Diagonal line
trace2 = go.Scatter(
    x=[0, 1],
   y=[0, 1],
   mode='lines',
    name='Random (Area = 0.5)',
    line=dict(dash='dash')
data = [trace0, trace1, trace2]
# Define layout with square aspect ratio
layout = go.Layout(
    title='Receiver Operating Characteristic',
   xaxis=dict(title='False Positive Rate'),
   yaxis=dict(title='True Positive Rate'),
    autosize=False,
   width=800,
   height=800,
    showlegend=False
# Define figure and add data
fig = go.Figure(data=data, layout=layout)
# Show figure
fig.show()
```



```
# Assume that fpr, tpr, thresholds have already been calculated
optimal_idx = np.argmax(tpr - fpr)
optimal_threshold = thresholds[optimal_idx]
print("Optimal threshold is:", optimal_threshold)

Optimal threshold is: 0.5294277
```

Conclusion

From the results, we can see that XGBoost and SVM Classifier have done better than the others for this particular dataset.

```
t1=[]
for i in range(len(X_test_prediction)):
  if X_test_prediction[i]>=0.5:
    t1.append(1)
    t1.append(0)
new_pred = pd.Series(t1)
print(new_pred)
     1
            0
            1
     3
            1
     4
            1
     195
            a
     196
            0
     197
     198
     Length: 200, dtype: int64
y_test
     37
            1
     726
            0
     846
            1
     295
            0
     924
            1
     810
            1
     930
     616
            0
     Name: Outcome, Length: 200, dtype: int64
type(y_test)
     pandas.core.series.Series
from sklearn.metrics import confusion_matrix
confusion_matrix(y_test,new_pred)
     array([[72, 19],
            [30, 79]])
conf = confusion_matrix(y_test,new_pred)
tp,fp,fn,tn = confusion_matrix(y_test,new_pred).ravel()
specificity = tn / (tn+fp)
sensitivity= tp / (tp+fn)
print('TP,FP,FN,TN',tp,fp,fn,tn)
print('sensitivity =', sensitivity)
print('specificity =', specificity)
     TP,FP,FN,TN 72 19 30 79
     sensitivity = 0.7058823529411765
specificity = 0.8061224489795918
```

72

```
fp
     19
from sklearn.metrics import roc_curve, roc_auc_score
from sklearn.svm import SVC
# Generate ROC curve data for logistic regression model
lr_fpr, lr_tpr, lr_thresholds = roc_curve(y_test, lr_scores)
lr_auc = roc_auc_score(y_test, lr_scores)
# Generate ROC curve data for SVM model
svm_fpr, svm_tpr, svm_thresholds = roc_curve(y_test, svm_scores)
svm_auc = roc_auc_score(y_test, svm_scores)
# Generate ROC curve data for XGBOOST model
xgb_fpr, xgb_tpr, xgb_thresholds = roc_curve(y_test, xgb_scores)
xgb_auc = roc_auc_score(y_test, xgb_scores)
# Generate a trace for the Logistic Regression ROC curve
trace0 = go.Scatter(
   x=lr_fpr,
   y=lr_tpr,
   mode='lines',
    name=f'Logistic Regression (Area = {lr_auc:.2f})'
# Generate a trace for the SVM ROC curve
trace1 = go.Scatter(
   x=svm_fpr,
   y=svm_tpr,
   mode='lines',
    name=f'SVM (Area = {svm_auc:.2f})'
# Generate a trace for the XGBOOST ROC curve
trace2 = go.Scatter(
   x=xgb_fpr,
    y=xgb_tpr,
   mode='lines',
   name=f'XGB (Area = {xgb_auc:.2f})'
# Diagonal line
trace3 = go.Scatter(
   x=[0, 1],
    y=[0, 1],
    mode='lines',
    name='Random (Area = 0.5)',
    line=dict(dash='dash')
)
data = [trace0, trace1, trace2,trace3]
# Define layout with square aspect ratio
layout = go.Layout(
   title='Receiver Operating Characteristic',
```

• ×