Tubo de Pitot no túnel de vento

Nikolas Bernardes Vieira de Freitas

2 de maio de 2018

- 1 Resumo
- 2 Introdução
- 3 Embasamento teórico

Equações utilizadas:

4 Materiais

(i) Paquímetro (incerteza: $1 * 10^{-3} cm$).

5 Montagem

Foi colocado o photogate colado com fita adesiva em uma mesa onde a distância do photogate até a mesa era de 78.5cm, com os sensores virados para fora da mesa. Então foi conectado o photogate ao cronômetro para que o mesmo começar a contar o tempo de queda da esfera.

A placa de pressão vou colocada logo abaixo do photogate, no chão, com o cabo de conexão plugado no cronômetro para que parasse a contagem do tempo de queda da esfera.

Para medição do diâmetro da esfera de aço foi utilizado o paquímetro. E para a altura da mesa foi utilizado a trena.

6 Procedimento

- 6.1 Condução do experimento
- 6.2 Considerações sobre o procedimento

1.

7 Dados obtidos

7.1 Tabela de dados

Quantidade de lançamentos	
Lançamento	${f Tempo(s)}$
1	0,448
2	0,378
3	0,378
4	0,432
5	0,378
6	0,377
7	0,432
8	0,434
9	0,465
10	0,377

7.2 Resultado dos dados obtidos

- 1. Lançamentos: 10
- 2. Média da aceleração da gravidade: $9,53m/s^2$
- 3. Desvio padrão da média da aceleração da gravidade: $1,60m/s^2$
- 4. incerteza da aceleração da gravidade: $0,50m/s^2$

8 Discussão dos dados

8.1 Histograma

9 Conclusão

Referências

[1] Wikipedia: Lei da queda dos corpos,

https://pt.wikipedia.org/wiki/Lei_da_queda_dos_corpos

Figura 1: Histograma da aceleração da gravidade (m/s^2)