目 次

1	$\mathbf{D}\mathbf{y}$	Dynamics		
	1.1	Basic	Equations	2
		1.1.1	Basic Equations	2
		1.1.2	Boundary Conditions	:

1 Dynamics

1.1 Basic Equations

1.1.1 Basic Equations

The basic equations are a system of primitive equations at the spherical (λ, φ) and η coordinates, given as follows (Arakawa and Konor 1996).

1. Continuity equation

$$\frac{\partial m}{\partial t} + \nabla_{\eta} \cdot (m\mathbf{v}_H) + \frac{\partial (m\dot{\eta})}{\partial \eta} = 0 \tag{1}$$

2. Hydrostatic equation

$$\frac{\partial \Phi}{\partial \eta} = -\frac{RT_v}{p}m\tag{2}$$

3. Equation of motion

$$\frac{\partial \zeta}{\partial t} = \frac{1}{a \cos \varphi} \frac{\partial A_v}{\partial \lambda} - \frac{1}{a \cos \varphi} \frac{\partial}{\partial \varphi} (A_u \cos \varphi) - \mathcal{D}(\zeta)$$
(3)

$$\frac{\partial D}{\partial t} = \frac{1}{a\cos\varphi} \frac{\partial A_u}{\partial\lambda} + \frac{1}{a\cos\varphi} \frac{\partial}{\partial\varphi} (A_v\cos\varphi) - \nabla_\eta^2 (\Phi + R\bar{T}\pi + E) - \mathcal{D}(D)$$
 (4)

4. Thermodynamic equation

$$\frac{\partial T}{\partial t} = -\frac{1}{a\cos\varphi} \frac{\partial uT'}{\partial\lambda} - \frac{1}{a} \frac{\partial}{\partial\varphi} (vT'\cos\varphi) + T'D$$
 (5)

$$- \dot{\eta} \frac{\partial T}{\partial \eta} + \frac{\kappa T}{\sigma} \left[B \left(\frac{\partial \pi}{\partial t} + \mathbf{v}_H \cdot \nabla_{\eta} \pi \right) + \frac{m \dot{\eta}}{p_s} \right] + \frac{Q}{C_p} + \frac{Q_{diff}}{C_p} - \mathcal{D}(T)$$
 (6)

5. Tracers

For any tracer whose mixing ratio is denoted as q,

$$\frac{\partial q}{\partial t} = -\frac{1}{a\cos\varphi} \frac{\partial uq}{\partial\lambda} - \frac{1}{a\cos\varphi} \frac{\partial}{\partial\varphi} (vq\cos\varphi) + qD \tag{7}$$

$$- \dot{\eta} \frac{\partial q}{\partial \eta} + S_q - \mathcal{D}(q) \tag{8}$$

Here,

$$m \equiv \left(\frac{\partial p}{\partial \eta}\right)_{p_s},\tag{9}$$

$$\theta \equiv T(p/p_0)^{-\kappa}, \tag{10}$$

$$\kappa \equiv R/C_p, \tag{11}$$

$$\Phi \equiv gz, \tag{12}$$

$$\pi \equiv \ln p_S, \tag{13}$$

$$\dot{\eta} \equiv \frac{\mathrm{d}\eta}{\mathrm{d}t},\tag{14}$$

$$T_v \equiv T(1 + \epsilon_v q), \tag{15}$$

$$T \equiv \bar{T} + T', \tag{16}$$

$$\bar{T} \equiv 300 \text{ K}, \tag{17}$$

$$\zeta \equiv \frac{1}{a\cos\varphi} \frac{\partial v}{\partial\lambda} - \frac{1}{a\cos\varphi} \frac{\partial}{\partial\varphi} (u\cos\varphi), \tag{18}$$

$$D \equiv \frac{1}{a\cos\varphi} \frac{\partial u}{\partial\lambda} + \frac{1}{a\cos\varphi} \frac{\partial}{\partial\varphi} (v\cos\varphi), \tag{19}$$

$$A_u \equiv (\zeta + f)v - \dot{\eta}\frac{\partial u}{\partial \eta} - \frac{RT'}{a\cos\varphi}\frac{\partial \pi}{\partial \lambda} + \mathcal{F}_x, \tag{20}$$

$$A_v \equiv -(\zeta + f)u - \dot{\eta}\frac{\partial v}{\partial \eta} - \frac{RT'}{a}\frac{\partial \pi}{\partial \varphi} + \mathcal{F}_y, \tag{21}$$

$$E \equiv \frac{u^2 + v^2}{2},\tag{22}$$

$$\mathbf{v}_H \cdot \nabla \equiv \frac{u}{a \cos \varphi} \left(\frac{\partial}{\partial \lambda} \right)_{\sigma} + \frac{v}{a} \left(\frac{\partial}{\partial \varphi} \right)_{\sigma}, \tag{23}$$

$$\nabla_{\eta}^{2} \equiv \frac{1}{a^{2} \cos^{2} \varphi} \frac{\partial^{2}}{\partial \lambda^{2}} + \frac{1}{a^{2} \cos \varphi} \frac{\partial}{\partial \varphi} \left[\cos \varphi \frac{\partial}{\partial \varphi} \right]. \tag{24}$$

 $\mathcal{D}(\zeta), \mathcal{D}(D), \mathcal{D}(T), \mathcal{D}(q)$ are horizontal diffusion terms, $\mathcal{F}_{\lambda}, \mathcal{F}_{\varphi}$ are forces due to small-scale kinetic processes (treated as 'physical processes'), Q are forces due to radiation, condensation, small-scale kinetic processes, etc. Heating and temperature change due to 'physical processes', and S_q is a water vapor source term due to 'physical processes' such as condensation and small-scale motion. Q_{diff} is the heat of friction and

$$Q_{diff} = -\mathbf{v} \cdot \left(\frac{\partial \mathbf{v}}{\partial t}\right)_{diff}.$$
 (25)

 $(\frac{\partial \mathbf{v}}{\partial t})_{diff}$ is a time-varying term of u, v due to horizontal and vertical diffusion.

1.1.2 Boundary Conditions

Upper and lower boundary conditions for the vertical velocity is:

$$\dot{\eta} = 0 \quad at \quad \eta = 0, \ 1. \tag{26}$$

The prognostic equation for p_s and the diagnostic equation for the vertical velocity can be derived by integrating the continuity equation and applying these boundary conditions.