./Bilder/Bild1.jpeg0.4

Zeitreihenvorhersage am Beispiel der Sonnenflecken

***** (anonymisiert)

26. April 2024

[text and total]

Messreihe

Daten von der SIDC

https://blogs.rstudio.com/ai/posts/2018-06-25-sunspots-lstm/

Einfluss auf Erde

DeWikiMan - Eigenes Werk, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=51448298

- Sonnenstrahlung schwankt um ca. 0,1%
- Auswirkung auf Temp. ca. 0,1 °C
- Koronalereignisse, wie 1859, Nordamerika

Inhalt

Datenaufbereitung

LSTM-Netze

Implementierung mit Tensorflow

Ergebnisse

Andere Modelle

Verbesserungsideen

Schlussworte

Teil

Teil

Ziel: Regressionsmodell f welches aus x eine Vorhersage y = f(x) liefert.

\Rightarrow Fragen:

- Klasse der Modelle f?
- ► Länge von *x*?
- ▶ Länge von y?
- Mehrere Zeitreihen zum Trainieren und Validieren?

Ziel: Regressionsmodell f welches aus x eine Vorhersage y = f(x) liefert.

\Rightarrow Fragen:

- ► Klasse der Modelle f? \rightarrow RNN, LM, RW, SARIMA, Markov, ...
- ▶ Länge von $x? \rightarrow nt_x$
- ▶ Länge von y? → nt_y
- Mehrere Zeitreihen zum Trainieren und Validieren?
 - → Rückvergleich

1.1 Aufteilung zur Validierung: verschobene Zeitfenster

https://blogs.rstudio.com/ai/posts/2018-06-25-sunspots-lstm/

- blau: Training, rot: Testen
- statt typischer Kreuzvalidierung: 6 kleine Fenster

1.2 Weitere Aufteilung zum Trainieren und Testen Erzeuge *x*- und *y*- Werte nach Schema:

$$1, 2, 3, 4, 5, 6, 7 \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix}, \begin{pmatrix} 4 & 5 \\ 5 & 6 \\ 6 & 7 \end{pmatrix}$$

https://blogs.rstudio.com/ai/posts/2018-06-25-sunspots-lstm/

1.2 Genauer:

 b_1, b_2, \dots wird zu n_{t_x} wird zu

$$\chi_{train} \cong \begin{pmatrix} b_1 & \dots & b_{nt_x} \\ b_2 & \dots & b_{nt_x+1} \\ \vdots & & \vdots \end{pmatrix}, \gamma_{train} \cong \begin{pmatrix} b_{nt_x+1} & \dots & b_{nt_x+nt_y} \\ b_{nt_x+2} & \dots & b_{nt_x+nt_y} \\ \vdots & & \vdots \end{pmatrix}$$

 $ightharpoonup r_1, r_2, \dots$ wird zu X_{test}, Y_{test}

https://blogs.rstudio.com/ai/posts/2018-06-25-sunspots-lstm/

Möglichkeiten:

- Skalierung und Zentrierung (z.B. wichtig für Gradientenverfahren)
- Differenzieren (kann Stationariät erzeugen)¹

¹kpss.test(sunpots.month)\$statistic = 1.1505, also Stationarität verwerfen! Aber kpss.test(diff(sunspot.month)) = 0.007631239

Teil

Teil

Idee: Informationen merken und wiederverwenden

Training als normales mehrschichtiges Netz

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

- \triangleright O.B.d.A. h_{t-1} und Gedächtnis identitsch
- Problem: Verschwindende/Eplodierende Gradienten

Verschwindende Gradienten

- ► Hier Annahme: $h_t = \sigma(wh_{t-1} + ux_t)$
- Gradienten berechnen:

$$\frac{\partial h_3}{\partial w} = \frac{\partial \sigma(wh_2 + ux_3)}{\partial w} = \sigma' \cdot \left[h_2 + w \frac{\partial h_2}{\partial w} \right] = \sigma' h_2 + \sigma' w \frac{\partial \sigma(wh_1 + ux_2)}{\partial w}$$

$$= \sigma' h_2 + \sigma' w \sigma' \cdot \left[h_1 + w \frac{\partial h_1}{\partial w} \right]$$

$$= \sigma' h_2 + \sigma' \sigma' w h_1 + \sigma' \sigma' w^2 \frac{\partial h_1}{\partial w}$$

Verschwindende/Explodierende Gradienten

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

- ► Hier Annahme: $h_t = σ(wh_{t-1} + ux_t)$
- Gradienten berechnen:

$$\frac{\partial h_3}{\partial w} = \sigma' h_2 + \sigma' \sigma' w h_1 + \sigma' \sigma' w^2 \frac{\partial h_1}{\partial w}$$

- $h_2 = h_2(x_2)$ und $h_1 = h_1(x_1)$
- ▶ Wenn $|\sigma'w|$ < 1, dann x_1 viel weniger Einfluss als x_2 !

Verschwindende/Explodierende Gradienten

Lösungsideen:

- Andere Aktivierungsfunktionen (z.B. "Relu")
- ► LSTM, ...

"Normales"RNN:

LSTM-Netz ("Long Short Term Memory"):

LSTM-Netze Memory

Steuerung Forget Gate

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

Steuerung Input Gate

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Update Memory

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Output Gate

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Teil

Teil

Skizze für unser Netz

https://i.stack.imgur.com/nSExT.png

```
n_timesteps_x = n_timesteps_y = 29
batch_size = 4
return_sequences = TRUE
```

Wichtig: Nur ein Neuron mit Speichergröße n₋units! Und die nächste Schicht merkt nichts von den Zeitschritten.

Quellenangabe

- Auf den folgenden Folien: Code von blogs.rstudio.com/ai/posts/2018-06-25-sunspots-lstm/
- Wahl der Parameter:

```
n_timesteps_x <- 12
n_timeststeps_y <- 12
batch_size <- 10</pre>
```

Abgespeckter Code

```
# Tensorflow einbinden
library (keras)
# Fundament:
modell <- model_sequential()
# Zwei Schichten hinzufuegen:
layer_lstm(modell,
        units = 128,
        batch_input_shape = c(batch_size,
                         n_timesteps_x,
                         n_features),
        return_sequences = TRUE
time_distributed(layer_dense(modell, units = 1))
```

LSTM und Tensorflow

```
# Deswegen batch_size fix:
compile (modell,
        loss = "logcosh",
        optimizer = "sgd",
        metrics = list("mean_squared_error")
# Trainieren
history <- fit (modell,
        x = X_{train} # dim = c(770, 12, 1),
        y = Y_{train} # dim = c(770, 12, 1),
        batch_size = batch_size, # 10,
        epochs = 100
```

Abgespeckter Code

```
# Vorhersage fuer Testdatensatz (Validierung)
pred_test <- predict(modell, X_test, batch_size = 10)</pre>
```

Teil

Teil

Fit der Trainingsdaten

RMSE = 21.01

Vorhersage mit Testdaten

RMSE = 31.32

Teil

Teil

(S)ARIMA und Ähnliches

Einfachster Modellansatz:

$$s_n = \sum_{k=1}^p a_k s_{n-k}$$

Erweiterungen: Saisonale Effekte, Differentiation/Integration, ...

Markov-Methoden

https://cdn-images-1.medium.com/max/1600/1*UsePQeFxlK67cGmluHzqsA.png

Paper zu dem Thema: Novitasari, Ardhiyah and Widodo, Flare Identification by Forecasting Sunspot Numbers
Using Fuzzy Time Series Markov Chain Model

Lineares Modell und Regressionswald

Idee: Erzeuge 12 selbstständige Modelle²

$$f_i(s_1,\ldots,s_{12})\approx s_{12+i}, \qquad i=1,\ldots 12$$

Ergebnis:

- RMSE des LM: 21.95295
- RMSE des RW: 24.382

(Bilder siehe Markdown)

Zum Vergleich RMSE des LSTM 31.32

²https://www.r-bloggers.com/2019/09/time-series-forecasting-with-random-forest/

Teil

Teil

Nur die letzte Vorhersage betrachten

https://i.stack.imgur.com/nSExT.png

Bisher musste das Netz die ersten Vorhersagen, ohne Kenntnis der Vergangenheit treffen!

⇒ Vergleiche RMSE nur für letzte Vorhersagen:

LM: 33.22806RW: 37.1156

LSTM: 39.03997

Einstufiges Netz iterieren

https://i.stack.imgur.com/nSExT.png

Idee:

$$f_{LSTM}(s_1, s_2, \dots s_{12}) =: \hat{s}_{13}$$
...
 $f_{LSTM}(s_{12}, \hat{s}_{13}, \dots, \hat{s}_{23}) =: \hat{s}_{24}$

 \Rightarrow RMSE des LSTM: 32.3842

(Erinnerung: LM: 21.95295, RW: 24.382)

Weitere Verbesserungsideen

- Verlängere Zeithorizont
- Validierung mit allen sechs Zeitfenstern
- Physikalisch sinnvolles Modell anpassen (z.B. mit Prophet? https://peerj.com/preprints/3190/)
- Kombination von ARIMA, ETS, SVM: https://link.springer.com/content/pdf/10.1007/s11207-020-01757-2.pdf

Teil

Teil

Schlussworte

- ► LM und RW wesentlich besser.³
- Hauptaufwand: Datenaufbereitung, Parametertuning
- Vorsicht mit Posts zum Thema ML!

³Siehe auch Präsentation von J. Nebel und https://iopscience.iop.org/article/10.1088/1742-6596/1231/1/012022/pdf

Vielen Dank für die Aufmerksamkeit!