

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

2400 - 2483.5 MHZ TRANSCEIVER

MODEL NUMBER: A20737A, A20737C*

FCC ID: X7J-A14070701 IC: 8975A-A14070701

REPORT NUMBER: 14M18350- E1

ISSUE DATE: SEPTEMBER 12, 2014

Prepared for
ANAREN, INC.
6635 KIRKVILLE ROAD
EAST SYRACUSE, NEW YORK 13057-9600, U.S.A.

Prepared by

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000

FAX: (510) 661-0888

*Model differences are explained in the body of this report

Revision History

Rev.	Issue Date	Revisions	Revised By
	09/12/14	Initial Issue	F. Ibrahim

TABLE OF CONTENTS

1. AT	TESTATION OF TEST RESULTS	5
2. TE	ST METHODOLOGY	€
3. FA	CILITIES AND ACCREDITATION	е
4. CA	ALIBRATION AND UNCERTAINTY	6
4.1.	MEASURING INSTRUMENT CALIBRATION	6
4.2.	SAMPLE CALCULATION	6
4.3.	MEASUREMENT UNCERTAINTY	7
5. EG	QUIPMENT UNDER TEST	8
5.1.	DESCRIPTION OF EUT	8
5.2.	MANUFACTURER'S DESCRIPTION OF MODEL DIFFERENCES	8
5.3.	MAXIMUM OUTPUT POWER	8
5.4.	DESCRIPTION OF AVAILABLE ANTENNAS	8
5.5.	SOFTWARE AND FIRMWARE	8
5.6.	WORST-CASE CONFIGURATION AND MODE	9
5.7.	DESCRIPTION OF TEST SETUP	10
6. TE	ST AND MEASUREMENT EQUIPMENT	12
7. ME	EASUREMENT METHODS	12
8. AN	ITENNA PORT TEST RESULTS	13
8.1.	ON TIME AND DUTY CYCLE	13
8.2.	6 dB BANDWIDTH	14
8.3.	99% BANDWIDTH	17
8.4.	OUTPUT POWER	20
8.5.	AVERAGE POWER	23
8.6.	POWER SPECTRAL DENSITY	24
8.7.	CONDUCTED SPURIOUS EMISSIONS	27
9. RA	ADIATED TEST RESULTS	31
9.1.	LIMITS AND PROCEDURE	31
9.2.	TX ABOVE 1 GHz FOR BLE MODE IN THE 2.4 GHz BAND	32
	2.1. A20737A (Module with PCB Antenna)	
	2.2. A20737C (Connectorized Module with Monopole Antenna)	
<i>9.3.</i> 9.3	WORST-CASE ABOVE 18 GHz	
	3.2. A20737C (Connectorized Module with Monopole Antenna)	
	Page 3 of 70	

	94 1	WORST-CASE BELOW 1 GHz	54
		. A20737A (Module with PCB Antenna)	
		. A20737C (Connectorized Module with Monopole Antenna)	
10). AC	POWER LINE CONDUCTED EMISSIONS	58
11	I. SE	TUP PHOTOS	62
	11.1.	ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP	62
	11.2.	RADIATED RF MEASUREMENT SETUP FOR PORTABLE CONFIGURATION	V63
	11.3.	RADIATED RF MEASUREMENT SETUP (BELOW 1 GHz)	66
	11.4.	RADIATED RF MEASUREMENT SETUP (ABOVE 1 GHz)	68
	11.5.	POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP	70

REPORT NO: 14M18350-E1 FCC ID: X7J-A14070701

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: ANAREN, INC.

6635 KIRKVILLE ROAD

EAST SYRACUSE, NEW YORK 13057-9600, U.S.A.

EUT DESCRIPTION: 2400 – 2483.5 MHZ TRANSCEIVER

MODEL: A20737A (for radiated testing)

A20737C (for conducted testing and radiated testing)

SERIAL NUMBER: For Conducted: S/N 15

For Radiated: S/N 14 (PCB Antenna), S/N 15 (Monopole Antenna)

DATE: SEPTEMBER 12, 2014

IC: 8975A-A14070701

DATE TESTED: SEPTEMBER 2 to 3, 2014

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Pass

INDUSTRY CANADA RSS-210 Issue 8 Annex 8 Pass

INDUSTRY CANADA RSS-GEN Issue 3 Pass

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For

UL Verification Services Inc. By:

FRANK IBRAHIM
PROGRAM MANAGER
UL Verification Services Inc.

Tested By:

VICKY NGUYEN EMC ENGINEER

UL Verification Services Inc.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
	☐ Chamber D
☐ Chamber B	☐ Chamber E
☐ Chamber C	☐ Chamber F
	☐ Chamber G
	☐ Chamber H

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers A through H are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-8, respectively.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://ts.nist.gov/standards/scopes/2000650.htm.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m REPORT NO: 14M18350-E1 FCC ID: X7J-A14070701

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	± 3.52 dB
Radiated Disturbance, 30 to 1000 MHz	± 4.94 dB
Radiated Disturbance, 1 to 6 GHz	± 3.86 dB
Radiated Disturbance, 6 to 18 GHz	± 4.23 dB
Radiated Disturbance, 18 to 26 GHz	± 5.30 dB
Radiated Disturbance, 26 to 40 GHz	± 5.23 dB

Uncertainty figures are valid to a confidence level of 95%.

DATE: SEPTEMBER 12, 2014

IC: 8975A-A14070701

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a 2.4 GHz BLE module.

The transceiver is manufactured by Anaren, Inc.

5.2. MANUFACTURER'S DESCRIPTION OF MODEL DIFFERENCES

The two models are identical except that model A20737A has an integral printed antenna while model A20737C has a U.FL connector.

Based on the above, for antenna port testing, model A20737C was considered representative of model A20737A.

5.3. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)
2402 - 2480	GFSK 1Mbps 250kHz deviation	3.23	2.10

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

Module A20737A utilizes a PCB antenna, with a maximum gain of 2 dBi. Module A20737C utilizes an external Monopole antenna, with a maximum gain of 3 dBi.

5.5. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was FTDI 2232H D2xx, Ver. 2.10.0.0.

The test utility software used during testing was A20737x_cert_test.exe, Ver. 1.0.0.0.

REPORT NO: 14M18350-E1 FCC ID: X7J-A14070701

5.6. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X, Y, Z, it was determined that X orientation was worst-case orientation for module A20737A and Y orientation was worst-case orientation for module A20737C. Final radiated testing was performed with EUT laid out in its worst-case orientation.

Data rate is fixed for this device which is 1 Mbps.

Based on feedback from the manufacturer, there is no colocation in the device covered by this report.

DATE: SEPTEMBER 12, 2014

IC: 8975A-A14070701

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List						
Description	Manufacturer	Model	Serial Number	FCC ID		
Laptop	Lenovo	2349CW5	PB05HPL	N/A		
AC / DC Adapter	Lenovo	42T4430	11S42T4430Z1ZGWE28	N/A		
Test Board	Anaren	WES-12288	N/A	N/A		

I/O CABLES

	I/O Cable List					
Cable	Port	# of identical	Connector	Cable Type	Cable Length	Remarks
No		ports	Туре		(m)	
1	DC	1	DC	Unshielded	1	DC Output
2	USB	1	USB	Unshielded	0.5	USB to EUT
3	AC	1	AC	Unshielded	1	AC input

TEST SETUP

The EUT is connected to a host laptop computer by USB cable during the tests. Test software exercised the radio module.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List						
Description	Manufacturer	Model	Asset	Cal Date	Cal Due	
Spectrum Analyzer, 3 Hz-44GHz	Agilent	N9030A	F00491	05/09/14	05/09/15	
Antenna, Horn 1-18GHz	ETS Lindgren	3117	C01022	02/28/14	02/28/15	
Antenna, 30 to 2000MHz	Sunol Sciences	JB3	F00215	05/29/14	05/29/15	
Filter, HPF 3.0GHz	Micro-Tronics	HPM17543	T486	01/11/14	01/11/15	
Filter, LPF 5.0GHz	Micro-Tronics	LPS17541	T481	01/11/14	01/11/15	
Filter, HPF 6.0GHz	Micro-Tronics	HPS17542	T484	01/11/14	01/11/15	
Silver Box Amplifier	Miteq	AFS42-0010180	F00002	08/19/14	08/19/15	
Amplifier, 10KHz to 1GHz	Agilent	8447D	C00885	04/03/14	04/03/15	
Antenna, Horn 18-26.5GHz	ARA	MWH-1826/B	C00980	11/26/13	11/26/14	
Amplifier, 1-26.5GHz	Agilent	8449B	F00167	03/25/14	03/25/15	
Spectrum Analyzer, 40GHz	Agilent	8564E	C00951	08/06/14	08/06/15	
Spectrum Analyzer, 3Hz-26.5GHz	Agilent	E4440A	C01179	07/25/14	07/25/15	
Power Meter, P-Series Single	Agilent	N1911A	F00017	06/30/14	06/30/15	
Power Sensor, 50MHz-6GHz	Agilent	E9323A	F00162	05/02/14	05/02/15	

7. MEASUREMENT METHODS

6 dB BW: KDB 558074 D01 v03r02, Section 8.1.

Output Power: KDB 558074 D01 v03r02, Section 9.1.1.

Average Power: KDB 558074 D01 v03r02, Section 9.2.3.1.

Power Spectral Density: KDB 558074 D01 v03r02, Section 10.2.

Out-of-band emissions in non-restricted bands: KDB 558074 D01 v03r02, Section 11.0.

Out-of-band emissions in restricted bands: KDB 558074 D01 v03r02, Section 12.1.

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.

RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		х	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
GFSK 1Mbps	1.000	1.000	1.000	100.00%	0.00	0.010
250kHz						
deviation						

8.2. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.810	0.5
Middle	2440	0.813	0.5
High	2480	0.797	0.5

6 dB BANDWIDTH

8.3. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	1.0932
Middle	2440	1.0930
High	2480	1.0979

99% BANDWIDTH

8.4. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

RESULTS

Channel	Frequency	Peak Power Reading	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	3.19	30	-26.81
Middle	2440	3.23	30	-26.77
High	2480	3.20	30	-26.80

OUTPUT POWER

8.5. AVERAGE POWER

LIMITS

None; for reporting purposes only.

RESULTS

The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency (MHz)	AV power (dBm)
Low	2402	3.07
Middle	2440	3.15
High	2480	3.10

8.6. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

RESULTS

Channel	Frequency (MHz)	PSD (dBm)	Limit (dBm)	Margin (dB)		
Low	2402	-12.04	8	-20.04		
Middle	2440	-12.11	8	-20.11		
High	2480	-12.25	8	-20.25		

POWER SPECTRAL DENSITY

8.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

9.2. TX ABOVE 1 GHz FOR BLE MODE IN THE 2.4 GHz BAND

9.2.1. A20737A (Module with PCB Antenna)

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T136 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	*2.353	42.35	PK	31.9	-24.1	50.15	-	-	74	-23.85	115	218	Н
4	*2.387	30.23	RMS	32.2	-24	38.43	54	-15.57	-	-	115	218	Н
1	*2.39	38.9	PK	32.2	-24.1	47	-	-	74	-27	115	218	Н
3	*2.39	29.58	RMS	32.2	-24.1	37.68	54	-16.32	-	-	115	218	Н

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

RMS - RMS detection

DATE: SEPTEMBER 12, 2014

IC: 8975A-A14070701

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Marker	Frequency	Meter	Det	AF T136	Amp/Cbl/	Corrected	Average	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	Fltr/Pad	Reading	Limit	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)			(dB)	(dBuV/m)	(dBuV/m)						
2	*2.377	41.27	PK	32.1	-24	49.37	-	-	74	-24.63	11	318	V
4	*2.385	30.04	RMS	32.2	-24	38.24	54	-15.76	-	-	11	318	V
1	*2.39	39.33	PK	32.2	-24.1	47.43	-	-	74	-26.57	11	318	V
3	*2.39	29.29	RMS	32.2	-24.1	37.39	54	-16.61	-	-	11	318	V

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

RMS - RMS detection

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Marker	Frequency	Meter	Det	AF T136	Amp/Cbl/	Corrected	Average	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	Fltr/Pad	Reading	Limit	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)			(dB)	(dBuV/m)	(dBuV/m)						
1	* 2.484	40.31	PK	32.7	-24.2	48.81	-	-	74	-25.19	137	348	Н
3	* 2.484	29.92	RMS	32.7	-24.2	38.42	54	-15.58	-	-	137	348	Н
4	2.531	30.19	RMS	32.9	-24	39.09	54	-14.91	-	-	137	348	Н
2	2.538	41.97	PK	32.9	-23.9	50.97	-	-	74	-23.03	137	348	Н

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

RMS - RMS detection

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Marker	Frequency	Meter	Det	AF T136	Amp/Cbl/	Corrected	Average	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	Fltr/Pad	Reading	Limit	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)			(dB)	(dBuV/m)	(dBuV/m)						
1	* 2.484	40.45	PK	32.7	-24.2	48.95	-	-	74	-25.05	48	342	V
2	* 2.498	42.12	PK	32.8	-24.2	50.72	-	-	74	-23.28	48	342	V
3	* 2.484	29.75	RMS	32.7	-24.2	38.25	54	-15.75	-	-	48	342	V
4	2.526	30.28	RMS	32.9	-24.1	39.08	54	-14.92	-	-	48	342	V

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

RMS - RMS detection

HARMONICS AND SPURIOUS EMISSIONS

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T136 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 4.803	49.6	PK2	34	-29.2	54.4	-	-	74	-19.6	171	108	Н
	* 4.804	44.01	MAv1	34	-29.2	48.81	54	-5.19	-	-	171	108	Н
1	* 4.803	44.49	PK2	34	-29.2	49.29	-	-	74	-24.71	156	223	V
	* 4.804	36.69	MAv1	34	-29.2	41.49	54	-12.51	-	-	156	223	V
3	6	34.41	PK	35.3	-28.5	41.21	-	-	-	-	0-360	100	Н
4	6	41.51	PK	35.3	-28.5	48.31	-	-	-	1	0-360	100	V
6	7.205	48.1	PK	35.2	-27.1	56.2	-	-	-	1	0-360	100	Н
5	7.206	42.86	PK	35.2	-27.1	50.96	-	-	-	-	0-360	201	V

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

PK2 - KDB558074 Method: Maximum Peak

⁻ Compliance for emissions in non-restricted bands is shown in conducted out of band emissions testing

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T136 (dB/m)	Amp/Cbl/F ltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 4.879	42.35	PK2	34	-28.7	47.65	-	-	74	-26.35	168	141	Н
	* 4.88	33.61	MAv1	34	-28.7	38.91	54	-15.09	-	-	168	141	Н
3	* 7.321	47.39	PK2	35.2	-26	56.59	-	-	74	-17.41	285	100	Н
	* 7.321	41.72	MAv1	35.2	-26	50.92	54	-3.08	-	-	285	100	Н
1	* 4.881	40.19	PK2	34	-28.7	45.49	-	-	74	-28.51	222	130	V
	* 4.88	30.21	MAv1	34	-28.7	35.51	54	-18.49	-	-	222	130	V
4	* 7.319	44.91	PK2	35.2	-26	54.11	-	-	74	-19.89	313	101	V
	* 7.319	38.29	MAv1	35.2	-26	47.49	54	-6.51	-	-	313	101	V
5	3.112	31.99	PK	32.8	-30	34.79	-	-	-	-	0-360	201	Н
6	5.632	30.47	PK	34.4	-28.4	36.47	-	-	-	-	0-360	100	V

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

PK2 - KDB558074 Method: Maximum Peak

⁻ Compliance for emissions in non-restricted bands is shown in conducted out of band emissions testing

Trace Markers

Marker	Frequency (GHz)	Meter Reading	Det	AF T136 (dB/m)	Amp/Cbl/F ltr/Pad	Corrected Reading	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)			(dB)	(dBuV/m)							
5	* 7.44	40.25	PK2	35.3	-25.6	49.95	-	-	74	-24.05	356	132	Н
	* 7.439	31.25	MAv1	35.3	-25.6	40.95	54	-13.05	-	-	356	132	
6	* 7.439	40.85	PK2	35.3	-25.6	50.55	-	-	74	-23.45	322	100	V
	* 7.44	32.19	MAv1	35.3	-25.6	41.89	54	-12.11	-	-	322	100	
1	3	39.2	PK	32.8	-31.2	40.8	-	-	-	-	0-360	201	Н
2	3	43.45	PK	32.8	-31.2	45.05	-	-	-	-	0-360	100	V
4	6	35.55	PK	35.3	-28.5	42.35	-	-	-	-	0-360	100	Н
3	6	41.4	PK	35.3	-28.5	48.2	-	-	-	-	0-360	100	V

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

PK2 - KDB558074 Method: Maximum Peak

⁻ Compliance for emissions in non-restricted bands is shown in conducted out of band emissions testing

9.2.2. A20737C (Connectorized Module with Monopole Antenna)

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Marker	Frequency	Meter	Det	AF T136	Amp/Cbl/	Corrected	Average	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	Fltr/Pad	Reading	Limit	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)			(dB)	(dBuV/m)	(dBuV/m)						
4	*2.386	29.87	RMS	32.2	-24	38.07	54	-15.93	-	-	120	104	Н
1	*2.39	39.79	PK	32.2	-24.1	47.89	-	-	74	-26.11	120	104	Н
2	*2.39	41.85	PK	32.2	-24.1	49.95	-	-	74	-24.05	120	104	Н
3	*2.39	29.77	RMS	32.2	-24.1	37.87	54	-16.13	-	-	120	104	Н

PK - Peak detector

RMS - RMS detection

DATE: SEPTEMBER 12, 2014

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Marker	Frequency	Meter	Det	AF T136	Amp/Cbl/	Corrected	Average	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading (dBuV)		(dB/m)	Fitr/Pad (dB)	Reading (dBuV/m)	Limit (dBuV/m)	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
2	*2.387	41.24	PK	32.2	-24	49.44	-	-	74	-24.56	303	107	V
4	*2.389	30.15	RMS	32.2	-24.1	38.25	54	-15.75	-	-	303	107	V
1	*2.39	39.14	PK	32.2	-24.1	47.24	-	-	74	-26.76	303	107	V
3	*2.39	28.85	RMS	32.2	-24.1	36.95	54	-17.05	-	-	303	107	V

PK - Peak detector

RMS - RMS detection

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Marker	Frequency	Meter	Det	AF T136	Amp/Cbl/	Corrected	Average	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	Fltr/Pad	Reading	Limit	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)			(dB)	(dBuV/m)	(dBuV/m)						
1	*2.484	39.94	PK	32.7	-24.2	48.44	-	-	74	-25.56	332	110	Н
3	*2.484	31.08	RMS	32.7	-24.2	39.58	54	-14.42	-	-	332	110	Н
4	*2.484	31.15	RMS	32.7	-24.2	39.65	54	-14.35	-	-	332	110	Н
2	2.515	41.9	PK	32.8	-24	50.7	-	-	74	-23.3	332	110	Н

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

RMS - RMS detection

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Marker	Frequency	Meter	Det	AF T136	Amp/Cbl/	Corrected	Average	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading (dBuV)		(dB/m)	Fltr/Pad (dB)	Reading (dBuV/m)	Limit (dBuV/m)	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
1	*2.484	38.89	PK	32.7	-24.2	47.39	-	-	74	-26.61	302	104	V
3	*2.484	30.14	RMS	32.7	-24.2	38.64	54	-15.36	-	-	302	104	V
2	2.507	41.45	PK	32.8	-24.1	50.15	-	-	74	-23.85	302	104	V
4	2.54	30.06	RMS	32.9	-23.8	39.16	54	-14.84	-	-	302	104	V

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

RMS - RMS detection

DATE: SEPTEMBER 12, 2014

HARMONICS AND SPURIOUS EMISSIONS

Trace Markers

Frequency	Meter	Det	AF T136	Amp/Cbl/	Corrected	Avg Limit	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
(GHz)	Reading		(dB/m)	Fltr/Pad	Reading	(dBuV/m)	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
	(dBuV)			(dB)	(dBuV/m)							
* 4.804	44.38	PK2	34	-29.2	49.18	-	-	74	-24.82	316	103	Н
* 4.804	37.23	MAv1	34	-29.2	42.03	54	-11.97	-	-	316	103	Н
* 4.804	41.9	PK2	34	-29.2	46.7	-	-	74	-27.3	87	140	V
* 4.804	32.55	MAv1	34	-29.2	37.35	54	-16.65	-	-	87	140	V

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

PK2 - KDB558074 Method: Maximum Peak

⁻ Compliance for emissions in non-restricted bands is shown in conducted out of band emissions testing

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T136 (dB/m)	Amp/Cbl/F ltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 4.88	40.65	PK2	34	-28.7	45.95	-	-	74	-28.05	170	100	Н
	* 4.88	31.96	MAv1	34	-28.7	37.26	54	-16.74	-	-	170	100	Н
5	3.092	32.26	PK	32.8	-29.8	35.26	-	-	-	-	0-360	201	Н
2	5.902	30.82	PK	35	-27.9	37.92	-	-	-	-	0-360	201	V
6	6.565	29.97	PK	35.5	-27.3	38.17	-	-	-	-	0-360	100	Н
3	8.515	29.27	PK	35.7	-25	39.97	-	-	-	-	0-360	201	V
4	10.14	27.11	PK	37.1	-22.9	41.31	-	-	-	-	0-360	201	V

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

PK2 - KDB558074 Method: Maximum Peak

⁻ Compliance for emissions in non-restricted bands is shown in conducted out of band emissions testing

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T136 (dB/m)	Amp/Cbl/F ltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 4.96	41.88	PK2	33.9	-29	46.78	-	-	74	-27.22	319	118	Н
	* 4.96	32.08	MAv1	33.9	-29	36.98	54	-17.02	-	-	319	118	Н
4	3.38	32.58	PK	33	-30.3	35.28	-	-	-	-	0-360	201	V
5	5.972	30.26	PK	35.2	-27.9	37.56	-	-	-	-	0-360	100	V
6	7.068	29.9	PK	35.3	-26.3	38.9	-	-	-	-	0-360	201	V
2	7.86	30.88	PK	35.5	-26.4	39.98	-	-	-	-	0-360	100	Н
3	10.204	27.45	PK	37.2	-22.8	41.85	-	-	-	-	0-360	100	Н

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

PK2 - KDB558074 Method: Maximum Peak

⁻ Compliance for emissions in non-restricted bands is shown in conducted out of band emissions testing

9.3. WORST-CASE ABOVE 18 GHz

9.3.1. A20737A (Module with PCB Antenna)

18GHz to 26 GHz

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBu¥)	Det	AF T89 (dB/m)	Amp/Cbl (dB)	Dist Corr (dB)	Corrected Reading (dBu¥olts)	Avg Limit (dBu¥/m)	Margin (dB)	Peak Limit (dBu¥/m)	PK Margin (dB)
1	18.979	40.23	PK	32.5	-24.4	-9.5	38.83	54	-15.17	74	-35.17
3	20.331	41.2	PK	32.7	-23.9	-9.5	40.5	54	-13.5	74	-33.5
4	23.009	41.37	PK	33.6	-23.3	-9.5	42.17	54	-11.83	74	-31.83
2	19.665	41.2	PK	32.6	-24.3	-9.5	40	54	-14	74	-34
5	23.968	43	PK	33.6	-22.6	-9.5	44.5	54	-9.5	74	-29.5
6	25.034	44.13	PK	34	-22.8	-9.5	45.83	54	-8.17	74	-28.17

PK - Peak detector

18-26_BLE_2440.DAT 30915 23 Aug 2013 Rev 9.5 19 Jan 2014

DATE: SEPTEMBER 12, 2014

9.3.2. A20737C (Connectorized Module with Monopole Antenna)

18GHz to 26 GHz

DATE: SEPTEMBER 12, 2014

9.4. WORST-CASE BELOW 1 GHz

9.4.1. A20737A (Module with PCB Antenna)

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

DATE: SEPTEMBER 12, 2014

Trace Markers

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF T477 (dB/m)	Amp/Cbl (dB/m)	DC Corr (dB)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	43.09	35.86	PK	11.5	-31	0	16.36	40	-23.64	0-360	300	Н
2	43.175	48.45	PK	11.5	-31	0	28.95	40	-11.05	0-360	101	V
4	199.065	43.12	PK	12.5	-29.9	0	25.72	43.52	-17.8	0-360	101	V
3	199.1075	36.21	PK	12.5	-29.9	0	18.81	43.52	-24.71	0-360	101	Н
5	824	36.55	PK	21.7	-27.6	0	30.65	46.02	-15.37	0-360	300	Н
6	828.1	44.37	PK	21.7	-27.9	0	38.17	46.02	-7.85	0-360	101	V

PK - Peak detector

FCC Part 15 Subpart C 30-1000MHz.TST 30915 15 Jul 2014

Rev 9.5 22 Jul 2014

9.4.2. A20737C (Connectorized Module with Monopole Antenna)

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

DATE: SEPTEMBER 12, 2014

Trace Markers

Marker	Frequency	Meter	Det	AF T477	Amp/Cbl	DC Corr	Corrected	QPk Limit	Margin	Azimuth	Height	Polarity
	(MHz)	Reading		(dB/m)	(dB/m)	(dB)	Reading	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)					(dBuV/m)					
1	43.09	35.86	PK	11.5	-31	0	16.36	40	-23.64	0-360	300	Н
2	43.175	48.45	PK	11.5	-31	0	28.95	40	-11.05	0-360	101	V
4	199.065	43.12	PK	12.5	-29.9	0	25.72	43.52	-17.8	0-360	101	V
3	199.1075	36.21	PK	12.5	-29.9	0	18.81	43.52	-24.71	0-360	101	Н
5	824	36.55	PK	21.7	-27.6	0	30.65	46.02	-15.37	0-360	300	Н
6	828.1	44.37	PK	21.7	-27.9	0	38.17	46.02	-7.85	0-360	101	V

PK - Peak detector

FCC Part 15 Subpart C 30-1000MHz.TST 30915 15 Jul 2014

Rev 9.5 22 Jul 2014

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency range	Conducted limit (dBµV)						
(MHz)	Quasi-peak	Average					
0.15 - 0.5	66 to 56*	56 to 46*					
0.5 – 5	56	46					
5 – 30	60	50					

^{*}Decreases with the logarithm of the frequency.

TEST PROCEDURE

ANSI C63.4

RESULTS

6 WORST EMISSIONS

LINE 1 RESULTS

DATE: SEPTEMBER 12, 2014

LINE 2 RESULTS

Line-L1 .15 - 30MHz

Trace Markers									
Frequency (MHz)	Meter Reading (dBuV)	Det	T24 IL L1 (dB)	LC Cables 1&3 (dB)	Corrected Reading dBuV	CISPR 22 Class B QP	Margin to Limit (dB)	CISPR 22 Class B Avg	Margin to Limit (dB)
.15	54.23	PK	1.4	0	55.63	66	-10.37	-	-
.15	32.92	Av	1.4	0	34.32	-	-	56	-21.68
4.1415	29	PK	.2	.1	29.3	56	-26.7	-	-
4.1415	17.74	Av	.2	.1	18.04	-	-	46	-27.96
8.0475	24.89	PK	.2	.1	25.19	60	-34.81	-	-
8.0475	3.15	Av	.2	.1	3.45	-	-	50	-46.55
	.15 .15 .15 4.1415 4.1415 8.0475	Frequency (MHz) Meter Reading (dBuV) .15 54.23 .15 32.92 4.1415 29 4.1415 17.74 8.0475 24.89	Frequency (MHz) Meter Reading (dBuV) .15 54.23 PK .15 32.92 Av 4.1415 29 PK 4.1415 17.74 Av 8.0475 24.89 PK	Frequency (MHz) Meter Reading (dBuV) Det T24 IL L1 (dB) .15 54.23 PK 1.4 .15 32.92 Av 1.4 4.1415 29 PK .2 4.1415 17.74 Av .2 8.0475 24.89 PK .2	Frequency (MHz) Meter Reading (dBuV) Det T24 IL L1 (dB) (dB) (dB) .15 54.23 PK 1.4 0 .15 32.92 Av 1.4 0 4.1415 29 PK .2 .1 4.1415 17.74 Av .2 .1 8.0475 24.89 PK .2 .1	Frequency (MHz) Meter Reading (dBuV) Det (dB) (dB) (dB) Corrected Reading dBuV .15 54.23 PK 1.4 0 55.63 .15 32.92 Av 1.4 0 34.32 4.1415 29 PK .2 .1 29.3 4.1415 17.74 Av .2 .1 18.04 8.0475 24.89 PK .2 .1 25.19	Frequency (MHz) Meter Reading (dBuV) Det (dB) (dB) (dB) Corrected Reading dBuV CISPR 22 Class B QP dBuV	Frequency (MHz) Meter Reading (dBuV) Det (dB) (dB) (dB) Reading dBuV CISPR 22 Class PATE (Limit (dB) dBuV) C	Frequency (MHz) Meter Reading (dBuV) Det (dB) (dB) (dB) Corrected Reading dBuV CISPR 22 Class B Avg .15 54.23 PK 1.4 0 55.63 66 -10.37 - .15 32.92 Av 1.4 0 34.32 - 56 4.1415 29 PK .2 .1 29.3 56 -26.7 - 4.1415 17.74 Av .2 .1 18.04 46 8.0475 24.89 PK .2 .1 25.19 60 -34.81 -

Line-L2 .15 - 30MHz

Trace Markers										
Frequency (MHz)	Meter Reading (dBuV)	Det	T24 IL L2 (dB)	LC Cables 2&3 (dB)	Corrected Reading dBuV	CISPR 22 Class B QP	Margin to Limit (dB)	CISPR 22 Class B Avg	Margin to Limit (dB)	
.1545	54.45	PK	1.4	0	55.85	65.8	-9.95	-	-	
.1545	34.09	Av	1.4	0	35.49	-	-	55.8	-20.31	
3.417	27.02	PK	.2	.1	27.32	56	-28.68	-	-	
3.417	10.36	Av	.2	.1	10.66	-		46	-35.34	
16.494	21.71	PK	.3	.2	22.21	60	-37.79	-	-	
16.494	8.39	Av	.3	.2	8.89	-	-	50	-41.11	
	.1545 .1545 .1545 3.417 3.417	Frequency (MHz) Meter Reading (dBuV) .1545 54.45 .1545 34.09 3.417 27.02 3.417 10.36 16.494 21.71	Frequency (MHz) Meter Reading (dBuV) .1545 54.45 PK .1545 34.09 Av 3.417 27.02 PK 3.417 10.36 Av 16.494 21.71 PK	Frequency (MHz) Meter Reading (dBuV) Det (dB) .1545 54.45 PK 1.4 .1545 34.09 Av 1.4 3.417 27.02 PK .2 3.417 10.36 Av .2 16.494 21.71 PK .3	Frequency (MHz) Meter Reading (dBuV) Det T24 IL L2 (dB) (dB) (dB) .1545 54.45 PK 1.4 0 .1545 34.09 Av 1.4 0 3.417 27.02 PK .2 .1 3.417 10.36 Av .2 .1 16.494 21.71 PK .3 .2	Frequency (MHz) Meter Reading (dBuV) Det (dB) (dB) (dB) Corrected Reading dBuV .1545 54.45 PK 1.4 0 55.85 .1545 34.09 Av 1.4 0 35.49 3.417 27.02 PK .2 .1 27.32 3.417 10.36 Av .2 .1 10.66 16.494 21.71 PK .3 .2 22.21	Frequency (MHz) Meter Reading (dBuV) Det (dB) (dB) (dB) Corrected Reading dBuV CISPR 22 Class B QP dBuV	Frequency (MHz) Meter Reading (dBuV) Det (dB) (dB) (dB) Reading dBuV CISPR 22 Class (Dmit (dB) (dB) Reading dBuV CISPR 22 Class (Dmit (dB) (dB) Reading dBuV CISPR 22 Class (Dmit (dB) (dB) CISPR 22 Class (Dmit (dB) (dB	Frequency (MHz) Meter Reading (dBuV) Det (dB) (dB) (dB) Reading dBuV CISPR 22 Class B QP Limit (dB) B Avg 1.1545 54.45 PK 1.4 0 55.85 65.8 -9.95 - 1.1545 34.09 Av 1.4 0 35.49 55.8 3.417 27.02 PK .2 .1 27.32 56 -28.68 - 3.417 10.36 Av .2 .1 10.66 46 16.494 21.71 PK .3 .2 22.21 60 -37.79 -	

PK - Peak detector

Av - average detection