Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технологический университет «СТАНКИН»

Кафедра робототехники и мехатроники

О.Д. Егоров

ПРОЕКТИРОВАНИЕ ВАЛОВ ЦИЛИНДРИЧЕСКИХ МЕХАТРОННЫХ МОДУЛЕЙ

Методические указания к выполнению курсовой работы по дисциплине «Детали мехатронных модулей, роботов и их конструирование»

Москва 2017 УДК 681.323-181.4:621.824.(075) ББК 34.42 Е 30

Е 30 **Егоров О.** Д. Проектирование валов цилиндрических мехатронных модулей // М.: ФГБОУ ВО МГТУ «СТАНКИН», 2017. - 31 с.

Изложены проектный расчет валов цилиндрических мехатронных модулей только по кручению, а также их проверочный расчет с учетом кручения и изгиба.

УДК 681.323-181.4:621.824.(075) ББК 34.42

- © Егоров О. Д., 2017
- © ФГБОУ ВО МГТУ «СТАНКИН», 2017

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
1. ПРОЕКТИРОВАНИЕ ВАЛОВ ЦИЛИНДРИЧЕСКОГО КОСОЗУБОГО МЕХАТРОННОГО МОДУЛЯ	5
1.1. Проектный расчет вала двигателя мехатронного модуля	5
1.2. Проектный расчет входного вала редуктора мехатронного модуля	6
1.3. Геометрические параметры входного вала	
1.4. Реакции опор входного вала	
1.5. Проектный расчет выходного (тихоходного) вала на статическую прочность по текучести	
1.6. Геометрические параметры выходного вала	
1.7. Проверочный расчет выходного вала на статическую прочность по текучести	
2. ПРОЕКТИРОВАНИЕ ВАЛОВ ЦИЛИНДРИЧЕСКОГО ПРЯМОЗУБОГО МЕХАТРОННОГО МОДУЛЯ	21
2.1. Проектный расчет вала двигателя и входного вала редуктора мехатронного модуля	21
2.2. Реакции опор входного вала	
2.3. Проектный расчет выходного вала мехатронного модуля	24
2.4. Проверочный расчет выходного вала мехатронного модуля	26
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	30
Приложение	31

ВВЕДЕНИЕ

Мехатронный модуль — функционально и конструктивно самостоятельное изделие, построенное с взаимопроникновением и синергетической аппаратно-программной интеграцией составляющих его элементов, имеющих различную физическую природу и предназначенное для реализации требуемого управляемого функционального движения его выходного звена.

Рассмотрена методика проектирования валов цилиндрических мехатронных модулей.

Мехатронные модули цилиндрические предназначены для понижения угловых скоростей и повышения вращающих моментов их выходных валов по сравнению с входными валами.

Исходными данными для расчета валов являются: вращающие моменты на входном T_1 и выходном T_2 валах, материалы валов с их характеристиками, усилия в зацеплении зубчатых колес F_r , F_t , F_a .

Необходимо провести проектный и проверочный расчеты валов из условия прочности по текучести, определить линейные и диаметральные параметры валов, линейную базу каждого вала.

1. ПРОЕКТИРОВАНИЕ ВАЛОВ ЦИЛИНДРИЧЕСКОГО КОСОЗУБОГО МЕХАТРОННОГО МОДУЛЯ

1.1. Проектный расчет вала двигателя мехатронного модуля

На рис. 1.1 представлена схема цилиндрического косозубого мехатронного модуля, состоящего из двигателя 1, жестко прикрепленного к корпусу редуктора 2, при этом вал 3 двигателя входит в пустотелый вал-шестерню 4 редуктора и передает ему вращающий момент через шпонку 5 и далее через пару цилиндрических косозубых колес 6 и 7 и шпонку 8 на выходной вал 9.

Определяем предполагаемый диаметр $d_{\rm дв}$ вала двигателя, изготовленного, например, из стали 40XH с пределом текучести при изгибе $\sigma_{\rm T}=750$ МПа и соответственно с пределом текучести при кручении $\tau_{\rm T}=(0.5 \dots 0.6)\sigma_{\rm T}=0.6 \cdot 750=450$ МПа, нагруженного вращающим моментом $T_1=16$ Нм, из условия прочности при кручении (рис. 1.1 и рис. 1.2) [3]

$$d_{\mathrm{AB}} \ge \sqrt[3]{rac{T_1 \cdot 10^3}{0.2[\tau]}} = \sqrt[3]{rac{16 \cdot 10^3}{0.2 \cdot 225}} = 7,08 \ \mathrm{mm},$$

где $[\tau]$ – допускаемое касательное напряжение при кручении

$$[\tau] = \frac{\tau_{\scriptscriptstyle \mathrm{T}}}{n} = \frac{450}{2} = 225 \text{ M}\Pi a.$$

Здесь n = (2 ... 2,5) — коэффициент запаса прочности при кручении.

Принимаем диаметр вала двигателя по ГОСТ $6636-69\ d_{\rm лв}=8\ {\rm мм}.$

Проверяем диаметр вала двигателя на прочность при кручении с учетом наличия в нем шпоночной канавки

$$\tau = \frac{T_1 \cdot 10^3}{W_{\text{P.H.}}} \le [\tau],$$

Рис. 1.1

где $W_{\text{Р.H.}}$ – полярный момент сопротивления поперечного сечения вала двигателя по шпоночной канавке [1]

$$W_{\rm P.H.} = 0.2 d_{\rm дB}^3 - \frac{bt \big(d_{\rm дB} - t\big)^2}{2d_{\rm дB}} = 0.2 \cdot 8^3 - \frac{2 \cdot 1.2 (8 - 1.2)^2}{2 \cdot 8} = 95.464 \ {\rm mm}^3.$$

Здесь b и t — соответственно ширина и глубина шпоночной канавки. Для диаметра $d_{\rm дв}=8$ мм по стандарту b=2 мм, t=1,2 мм [2].

Вычисляем касательное напряжение

$$\tau = \frac{16 \cdot 10^3}{95,464} = 167,6 \text{ M}\Pi a.$$

Следовательно,

$$\tau$$
 = 167,6 MΠa < [τ] = 225 ΜΠa.

Условие статической прочности вала при кручении обеспечено. В случае невыполнения условия статической прочности необходимо диаметр $d_{\rm дв}$ вала двигателя увеличить или выбрать материал вала с более высоким пределом текучести.

1.2. Проектный расчет входного вала редуктора мехатронного модуля

Внутренний диаметр d_0 входного вала (втулки) редуктора мехатронного модуля равен диаметру $d_{\rm дв}$ вала двигателя, т.е. $d_0=d_{\rm дв}$ (рис. 1.2).

Определяем наружный диаметр d_1 входного вала редуктора, изготовленного, например, из стали $40{\rm X}$ с пределом текучести при изгибе $\sigma_{\rm T}=690~{\rm M}\Pi{\rm a}$ (рис. 1.2)

$$d_1 = (1.5 \dots 1.6) d_0 = 1.5 \cdot 8 = 12 \text{ MM}.$$

Проверяем его на прочность по текучести при кручении с учетом, что он пустотелый и имеет шпоночную канавку

$$\tau = \frac{T_1 \cdot 10^3}{W_{\text{P.H.}}} \le [\tau],$$

где $W_{\text{Р.H.}}$ — полярный момент сопротивления поперечного сечения входного вала по шпоночной канавке [4]

$$\begin{split} W_{\mathrm{P.H.}} &= 0.2 d_1^3 \left[1 - \left(\frac{d_0}{d_1} \right)^4 \right] - \frac{b t_1 (d_0 - t_1)^2}{d_0} = \\ &= 0.2 \cdot 12^3 \left[1 - \left(\frac{8}{12} \right)^4 \right] - \frac{2 \cdot 1 (8 - 1)^2}{8} = 264,\!23 \, \mathrm{mm}^3. \end{split}$$

Здесь b и t_1 — соответственно ширина и глубина шпоночной канавки входного отверстия $d_0 = d_{\rm дв}$ вала (втулки) редуктора мехатронного модуля (рис. 1.2).

Для $d_0 = 8$ мм имеем по стандарту b = 2 мм, $t_1 = 1$ мм.

Рис. 1.2

Вычисляем касательное напряжение при кручении

$$\tau = \frac{T_1 \cdot 10^3}{W_{\text{P.H.}}} = \frac{16 \cdot 10^3}{264,23} = 60,55 \text{ M}\Pi \text{a.}$$

Определяем предел текучести материала вала при кручении

$$\tau_{\rm T} = 0.6\sigma_{\rm T} = 0.6 \cdot 690 = 414 \, {\rm M}\Pi{\rm a}.$$

Находим допускаемое касательное напряжение

$$[\tau] = \frac{\tau_{\text{T}}}{n} = \frac{414}{2} = 207 \text{ M}\Pi \text{a}.$$

Таким образом

$$\tau = 60,55 \text{ M}\Pi \text{a} < [\tau] = 207 \text{ M}\Pi \text{a}.$$

Условие статической прочности входного вала редуктора по текучести при кручении обеспечено.

При невыполнении условия прочности необходимо наружный диаметр d_1 входного вала редуктора мехатронного модуля увеличить или выбрать материал вала с более высоким пределом текучести.

Расчет на статическую прочность входного вала с учетом изгиба и кручения не проводим, так как его диаметр значительно увеличен, т.е. в 1,5 раза по сравнению с расчетным из условия кручения, и кроме того, наибольшее нормальное напряжение возникает в сечении вала, соответствующего зацеплению колеса и сплошного вала-шестерни, изготовленного как единое целое, диаметр которого в этом месте равен внутреннему диаметру d_{1f} шестерни.

1.3. Геометрические параметры входного вала

Линейная база вала, т.е. расстояние между его опорами (рис. 1.2) при установке вала на радиально-упорных или конических подшипни-ках враспор

$$\ell = a + b$$
,

где a – длина участка вала от середины шестерни до левой опоры

$$a = \frac{b_1}{2} + C_1 + \Delta;$$

b — длина участка вала от середины шестерни до правой опоры

$$b=\frac{b_1}{2}+C_2+\Delta;$$

 b_1 — ширина зубчатого венца шестерни; $C_1 = (5 ... 10)$ мм — ширина упорного буртика; $C_2 = (5 ... 10)$ мм — ширина распорного кольца;

 Δ - смещение точки приложения радиальной реакции от торца подшипника

$$\Delta = 0.5T - \frac{d_{1\Pi} + D_{1\Pi}}{4} tg\alpha.$$

T — монтажная высота конического подшипника. Для радиально-упорных подшипников в формуле заменяют T на B — ширину радиально-упорного подшипника.

Здесь $d_{1\Pi}$ — внутренний диаметр подшипника; $D_{1\Pi}$ — внешний диаметр подшипника; α — угол контакта тел качения с кольцами подшипника. Для конических подшипников $\alpha = 14^{\circ}$ и 15° , для радиально-упорных подшипников $\alpha = 12^{\circ}$ и 26° . Конкретное значение угла α определяют по стандартам (таблицам) для выбранного типа подшипника [1].

Диаметральные размеры участков вала (рис. 1.2): наружный диаметр

$$d_1 = (1,5 \dots 1,6)d_0;$$

диаметр под подшипники

$$d_{1\pi} = d_1 + (2 \dots 5)$$
 MM;

диаметр упорного буртика для шестерни

$$d_2 = d_{1\pi} + (4 \dots 5)$$
 MM.

Наружный диаметр распорной втулки входного вала

$$d_3 = d_2$$
.

Внутренний диаметр распорной втулки входного вала

$$d_4 = d_{1\pi} + 1$$
MM.

1.4. Реакции опор входного вала

Входной вал редуктора мехатронного модуля находится под действием вращающего момента T_1 и двух изгибающих моментов в вертикальной плоскости, возникающих от действия радиальной F_{r_1} и осевой F_{a_1} сил, а также изгибающего момента в горизонтальной плоскости от окружной силы F_{t_1} .

Рисуем схему вала и на ней расставляем все указанные силы в соответствии с их действительным расположением на шестерне (рис. 1.3). Затем рассматриваем схему вала, находящегося под действием только радиальной F_{r_1} и осевой F_{a_1} сил.

Рис. 1.3

Опоры A и B заменяем реактивными силами R_A^B и R_B^B . Их направления выбираем произвольно (вверх или вниз).

Для нахождения значений реакций составляем уравнения статики.

В вертикальной плоскости

$$\Sigma M_A^B = R_B^B(a+b) - F_{a_1} \frac{d_{III}}{2} + F_{r_1} a = 0.$$

Откуда реакция R_B^B будет равна

$$R_B^{\mathrm{B}} = \frac{F_{a_1} \frac{d_{\mathrm{III}}}{2} - F_{r_1} a}{a + b}.$$

$$\Sigma M_B^B = R_A^B(a+b) - F_{a_1} \frac{d_{III}}{2} - F_{r_1}b = 0.$$

Откуда реакция R_A^B будет равна

$$R_A^{\rm B} = \frac{F_{a_1} \frac{d_{\rm III}}{2} + F_{r_1} b}{a + b}.$$

Если значение одной или обеих реакций получилось отрицательным, необходимо их на схеме зачеркнуть R^{B} и направить в противоположную сторону. Затем значения этих реакций записать с плюсом и рассматривать в дальнейшем схему вала со всеми приложенными внешними силами и найденными реакциями в соответствии с их действительными направлениями.

Проверяем правильность нахождения реакций

$$\Sigma F_{\nu} = 0.$$

В горизонтальной плоскости

$$\Sigma \mathsf{M}_A^{\scriptscriptstyle\Gamma} = R_B^{\scriptscriptstyle\Gamma}(a+b) - F_{t_1}a = 0.$$

Откуда реакция опоры B равна

$$R_B^{\Gamma} = \frac{F_{t_1}a}{a+b}.$$

$$\Gamma = -P^{\Gamma}(a+b) + F_{t_1}b = 0$$

$$\Sigma \mathbf{M}_{B}^{\Gamma} = -R_{A}^{\Gamma}(a+b) + F_{t_1}b = 0.$$

Откуда реакция опоры A равна

$$R_B^{\Gamma} = \frac{F_{t_1}b}{a+b}.$$

Проверяем правильность нахождения реакций

$$\Sigma F_{\gamma} = 0.$$

Суммарные реакции в опорах А и В

$$R_{A_{\Sigma}} = \sqrt{(R_A^{\mathrm{B}})^2 + (R_A^{\mathrm{\Gamma}})^2};$$

$$R_{B_{\Sigma}} = \sqrt{(R_B^{\mathrm{B}})^2 + (R_B^{\mathrm{\Gamma}})^2}.$$

Найденные реакции опор будут нужны при выборе подшипников для входного вала мехатронного модуля.

1.5. Проектный расчет выходного (тихоходного) вала на статическую прочность по текучести

Материал выходного вала и его механические характеристики выбираем такие же, как и для входного вала.

Определяем диаметр выходного конца тихоходного вала из условия статической прочности по текучести при кручении для схемы вала с зубчатым колесом, имеющим ступицу $\ell_{\rm cr} \ge b_2$ (рис. 1.4). (Ступица может быть расположена симметрично или несимметрично относительно зубчатого венца колеса.)

$$d_2 = \sqrt[3]{\frac{T_2 \cdot 10^3}{0,2[\tau]}} = \sqrt[3]{\frac{31,36 \cdot 10^3}{0,2 \cdot 207}} = 9,12 \text{ mm,}$$

где T_2 – вращающий момент на колесе

$$T_2 = T_1 u \eta = 16 \cdot 2 \cdot 0,98 = 31,36 \text{ Hm};$$

u=2 — передаточное отношение зубчатой передачи; $\eta=0.98$ — коэффициент полезного действия; $[\tau]$ — допускаемое касательное напряжение равное $[\tau]=207$ МПа (см. п. 1.2).

Принимаем диаметр выходного конца тихоходного вала $d_2 = 10$ мм.

Проверяем выходной конец вала на статическую прочность при кручении с учетом наличия в нем шпоночной канавки

$$\tau = \frac{T_2 \cdot 10^3}{W_{\text{P.H.}}} \le [\tau],$$

где $W_{\rm P.H.}$ — полярный момент сопротивления поперечного сечения вала по шпоночной канавке

$$W_{\rm P.H.}=0.2d_2^3-\frac{bt(d_2-t)^2}{2d_2}=0.2\cdot 10^3-\frac{3\cdot 1.8(10-1.8)^2}{2\cdot 10}=\\=181.84~{\rm mm}^3,$$

Здесь b и t соответственно ширина и глубина шпоночной канавки. Для $d_2=10$ мм имеем по стандарту b=3 мм, t=1,8 мм. Вычисляем касательное напряжение

$$au = \frac{31,36 \cdot 10^3}{181.84} = 172,46 \text{ M}\Pi a.$$

Следовательно

$$\tau = 172,46$$
 ΜΠa $< [τ] = 207$ ΜΠa.

Условие статической прочности выходного конца тихоходного вала по текучести при кручении обеспечено.

В случае невыполнения условия статической прочности необходимо диаметр d_2 вала увеличить или выбрать материал вала с более высоким пределом текучести.

1.6. Геометрические параметры выходного вала

Линейную базу вала, т.е. расстояние между его опорами (рис. 1.4) при установке вала на радиально-упорных или конических подшипни-ках враспор

$$\ell = a + b$$

где a — длина участка вала от середины зубчатого колеса до левой опоры

$$a = \frac{\ell_{\text{CT}}}{2} + C_1 + \Delta;$$

b – длина участка вала от середины зубчатого колеса до правой опоры

$$b = \frac{\ell_{\rm CT}}{2} + C_3 + C_4 + \Delta;$$

где $C_1 = (10 \dots 15)$ мм — ширина распорной втулки; $C_3 = (5 \dots 10)$ мм — ширина упорного буртика для колеса, мм; $C_4 = (5 \dots 10)$ мм — ширина упорного буртика для подшипника. Эти размеры желательно выбирать такими, чтобы зубчатое колесо было расположено посередине вала; $\ell_{\rm cr} = (1,0 \dots 1,5) d_{\rm 2k}$ — длина ступицы зубчатого колеса, мм. Этот размер необходимо согласовывать с требуемой длиной шпонки и принимать минимальным; Δ - смещение точки приложения радиальной реакции от торца подшипника

$$\Delta = 0.5T - \frac{d_{2\Pi} + D_{2\Pi}}{4} tg\alpha,$$

 $d_{2\Pi}$ — внутренний диаметр подшипника; $D_{2\Pi}$ — внешний диаметр подшипника; α — угол контакта тел качения с кольцами подшипников. Для конических подшипников $\alpha=14^\circ$ и 15° , для радиально-упорных подшипников $\alpha=12^\circ$ и 26° . Конкретное значение угла α определяют по стандартам (таблицам) для выбранного типа подшипника [1].

Для радиально-упорных подшипников в формуле T заменяют на B — ширину радиально-упорного подшипника.

Диаметральные размеры участков вала (рис. 1.4): под подшипниками

$$d_{2\pi} = d_2 + (2 \dots 5)$$
 MM;

под зубчатым колесом

$$d_{2K} = d_{2\Pi} + (4 \dots 5) \text{ MM}.$$

Диаметр упорного буртика для зубчатого колеса

$$d_4 = d_{2\kappa} + (8 \dots 10) \text{ MM}.$$

Диаметр участка вала для упора правого подшипника, равный диаметру распорной втулки

$$d_3 = d_{2B} = d_{2\Pi} + (8 \dots 10) \text{ MM}.$$

1.7. Проверочный расчет выходного вала на статическую прочность по текучести

Выходной вал находится под действием вращающего момента T_2 и двух изгибающих моментов в вертикальной плоскости, возникающих от действия радиальной F_{r_2} и осевой F_{a_2} сил, а также изгибающего момента в горизонтальной плоскости от окружной силы F_{t_2} .

Для нахождения наиболее опасных сечений вала необходимо построить эпюры изгибающих моментов в вертикальной $M_{\rm u}^{\rm B}$ и горизонтальной $M_{\rm u}^{\rm G}$ плоскостях и крутящего момента $T_{\rm 2K}$.

Рисуем схему вала и на ней расставляем все указанные силы в соответствии с их действительным расположением на колесе (рис. 1.5).

Затем рассматриваем схему вала, находящегося под действием только радиальной F_{r_2} и осевой F_{a_2} сил.

Опоры A и B заменяем реактивными силами R_A^B и R_B^B . Их направление выбираем произвольно (вверх или вниз).

Для нахождения значений реакций составляем уравнения статики:

$$\Sigma M_{A} = R_{B}^{B}(a+b) - F_{a_{2}} \frac{d_{\kappa}}{2} - F_{r_{2}}a = 0.$$

Откуда реакция $R_{\rm B}^{\rm B}$ будет равна

$$R_{\rm B}^{\rm B} = \frac{F_{a_2} \frac{d_{\rm K}}{2} + F_{r_2} a}{a + b}.$$

$$\Sigma M_{\rm B} = R_{\rm A}^{\rm B}(a+b) - F_{a_2} \frac{d_{\rm K}}{2} + F_{r_2}b = 0.$$

Откуда

$$R_{\rm A}^{\rm B} = \frac{F_{a_2} \frac{d_{\rm K}}{2} - F_{r_2} b}{a + b}.$$

Если значение одной или обеих реакций получились отрицательными, необходимо их на схеме зачеркнуть R^B и направить в противоположную сторону. Затем значения этих реакций записать с плюсом и рассматривать в дальнейшем схему вала со всеми приложенными внешними силами и найденными реакциями в соответствии с их действительными направлениями.

Проверяем правильность нахождения реакций

$$\Sigma F_{\nu}=0.$$

Определяем изгибающие моменты в вертикальной плоскости. Записываем уравнение моментов на первом участке вала $0 \le x_1 \le a$

$$\mathsf{M}^{\scriptscriptstyle{\mathrm{B}}}_{\scriptscriptstyle{\mathsf{H}_1}} = R^{\scriptscriptstyle{\mathrm{B}}}_{\scriptscriptstyle{\mathsf{A}}} x_1.$$

Если $x_1=0$, то $\mathrm{M}^{\scriptscriptstyle{\mathrm{B}}}_{\scriptscriptstyle{\mathrm{H}_1}}=0$. Если $x_1=a$, то $\mathrm{M}^{\scriptscriptstyle{\mathrm{B}}}_{\scriptscriptstyle{\mathrm{H}_1}}=R^{\scriptscriptstyle{\mathrm{B}}}_{\scriptscriptstyle{\mathrm{A}}}a$.

Аналогично поступаем на втором участке вала $0 \le x_2 \le b$

$$M_{H_2}^B = R_B^B x_2$$
.

Если $x_2 = 0$, то $M_{\mu_2}^{\scriptscriptstyle B} = 0$. Если $x_2 = b$, то $M_{\mu_2}^{\scriptscriptstyle B} = R_{\scriptscriptstyle B}^{\scriptscriptstyle B} b$.

Рис. 1.5

Строим эпюру изгибающих моментов в вертикальной плоскости на сжатых волокнах, т.е. если под действием силы (момента) вал изгиба-, то сжатые волокна вала будут сверху ется в виде чаши или и эпюра изгибающих моментов будет расположена на этом участке вала сверху, если в виде зонтика - сжатые волокна снизу ИЛИ и эпюра изгибающих моментов на этом участке вала будет расположена снизу вала (рис. 1.5).

В зависимости от того, как будут направлены реакции $R_{\rm A}^{\rm B}$ и $R_{\rm B}^{\rm B}$ эпюры на участках вала могут быть расположены как сверху от оси, так и снизу, но скачок между значениями моментов первого и второго участков должен быть равен F_{a_2} $d_{\rm K}/2$.

На рис. 1.5 представлен один из <u>возможных</u> вариантов эпюры изгибающих моментов $M_{\rm u}^{\rm B}$ в вертикальной плоскости.

В зависимости от величины и направления реакций $R_{\rm A}^{\rm B}$ и $R_{\rm B}^{\rm B}$ эпюра изгибающих моментов $M_{\rm u}^{\rm B}$ может иметь другой вид.

Рассмотрим схему вала, нагруженного окружной силой F_{t_2} (рис. 1.5). Опоры A и B заменяем реактивными силами R_A^Γ и R_B^Γ . Их направление выбираем произвольно, но лучше противоположно направлению силы F_{t_2} .

Составляем уравнения статики:

$$\Sigma \mathbf{M}_A = R_B^{\Gamma}(a+b) - F_{t_2}a = 0.$$

Откуда реакция R_B^{Γ} равна

$$R_B^{\Gamma} = \frac{F_{t_2}a}{a+b}.$$

$$\Sigma M_B = F_{t_2}b - R_A^{\Gamma}(a+b) = 0.$$

Откуда

$$R_A^{\Gamma} = \frac{F_{t_2}b}{a+b}$$
.

Проверка:

$$\Sigma F_{x}=0.$$

Определяем изгибающие моменты в горизонтальной плоскости: на первом участке $0 \le x_1 \le a$

$$\mathbf{M}_{\mathsf{H}_1}^{\mathsf{\Gamma}} = R_{\mathsf{A}}^{\mathsf{\Gamma}} x_1.$$

Если $x_1=0$, то $\mathrm{M}^{\scriptscriptstyle\Gamma}_{\mathtt{u}_1}=0$. Если $x_1=a$, то $\mathrm{M}^{\scriptscriptstyle\Gamma}_{\mathtt{u}_1}=R^{\scriptscriptstyle\Gamma}_{\!A}a$;

на втором участке $0 \le x_2 \le b$

$$M_{\mu_2}^{\Gamma} = R_B^{\Gamma} x_2.$$

Если $x_2=0$, то $\mathrm{M}^{\scriptscriptstyle\Gamma}_{\scriptscriptstyle\mathrm{H}_2}=0$. Если $x_2=b$, то $\mathrm{M}^{\scriptscriptstyle\Gamma}_{\scriptscriptstyle\mathrm{H}_2}=R^{\scriptscriptstyle\Gamma}_Bb$.

Строим эпюру изгибающих моментов в горизонтальной плоскости на сжатых волокнах (рис. 1.5).

Вычисляем крутящий момент на валу от действия окружной силы ${\cal F}_{t_2}$

$$T_{2K} = T_2 = F_{t_2} \frac{d_K}{2}.$$

Строим эпюру крутящего момента (рис. 1.5). Из эпюр видно, что наиболее опасным сечением вала является сечение под колесом, так как в этом месте на вал действуют наибольшие изгибающие моменты в двух плоскостях и крутящий момент. Действие максимальных изгибающих моментов в двух плоскостях заменяем суммарным моментом

$$\mathbf{M}_{_{\mathbf{H}_{\Sigma}}} = \sqrt{\left(\mathbf{M}_{_{\mathbf{H}_{max}}}^{_{\mathbf{B}}}\right)^{2} + \left(\mathbf{M}_{_{\mathbf{H}_{max}}}^{_{\Gamma}}\right)^{2}} \ .$$

Таким образом, вал находится под действием суммарного изгибающего момента $M_{\rm u_{\Sigma}}$ и крутящего момента $T_{\rm 2K}$.

Проверяем вал на статическую прочность с учетом нормальных и касательных напряжений по энергетической гипотезе прочности

$$\sigma_{_{3KB}} = \sqrt{\sigma_{_{M_{max}}}^2 + 3\tau^2} \le [\sigma]_{p}, \tag{1}$$

где $\sigma_{u_{max}}$ — максимальное нормальное напряжение при изгибе вала с учетом шпоночной канавки под колесом

$$\sigma_{_{\rm H_{max}}} = \frac{\rm M_{_{H_{\Sigma}}}}{W_{_{\rm O.H.}}} = \frac{\rm M_{_{H_{\Sigma}}}}{0.1d_{_{2K}}^3 - \frac{bt(d_{_{2K}} - t)^2}{2d_{_{2K}}}};$$

 $W_{
m o.h.}$ — осевой момент сопротивления поперечного сечения вала по шпоночной канавке

$$W_{\text{O.H.}} = 0.1d_{2\kappa}^3 - \frac{bt(d_{2\kappa} - t)^2}{2d_{2\kappa}}.$$

Шпонку на валу под колесом необходимо взять такой же, как и для его выходного конца, т.е. b=3 мм, t=1,8 мм, так как с увеличением диаметра вала и геометрических параметров шпонки $W_{\text{о.н.}}$ и $W_{\text{р.н.}}$ растут, следовательно, нормальные и касательные напряжения уменьшаются;

т – касательное напряжение при кручении вала с учетом шпоночной канавки

$$\tau = \frac{T_2}{W_{\text{p.H.}}} = \frac{T_2}{0.2d_{2\text{K}}^3 - \frac{bt(d_{2\text{K}} - t)^2}{2d_{2\text{K}}}};$$

 $W_{\rm p.h.}$ — полярный момент сопротивления поперечного сечения вала по шпоночной канавке

$$W_{\text{p.H.}} = 0.2d_{2\kappa}^3 - \frac{bt(d_{2\kappa} - t)^2}{2d_{2\kappa}};$$

 $[\sigma]_{\mathfrak{p}}$ – допускаемое нормальное напряжение при растяжении

$$\left[\sigma\right]_{\mathrm{p}} = \frac{\sigma_{\mathrm{Tp}}}{\left[n\right]}$$
;

 $\sigma_{\rm Tp} = 690~{\rm M\Pi a}$ — предел текучести материала вала при растяжении; $[n] = 1,5 \dots 2,5$ — допускаемый коэффициент запаса.

Если условие (1) выполняется, это означает, что статическая прочность вала по текучести обеспечена. В случае невыполнения условия (1), необходимо диаметр $d_{\rm K}$ вала под колесом увеличить.

2. ПРОЕКТИРОВАНИЕ ВАЛОВ ЦИЛИНДРИЧЕСКОГО ПРЯМОЗУБОГО МЕХАТРОННОГО МОДУЛЯ

2.1. Проектный расчет вала двигателя и входного вала редуктора мехатронного модуля

На рис. 2.1 представлена схема цилиндрического прямозубого мехатронного модуля, состоящего из двигателя 1, жестко прикрепленного к корпусу редуктора 2, при этом вал 3 двигателя входит в пустотелый входной вал-шестерню 4 редуктора и передает ему вращающий момент через шпонку 5 и далее через пару цилиндрических прямозубых колес 6 и 7 и шпонку 8 на выходной вал 9.

Методика расчета валов цилиндрического прямозубого мехатронного модуля аналогична расчету валов цилиндрического косозубого мехатронного модуля. Отличие заключается только в отсутствии осевой силы в зацеплении зубчатых колес, т.е. $F_a = 0$, и валы устанавливают на радиальных шариковых подшипниках. При этом опоры валов располагают посередине подшипников (рис. 2.1 и рис. 2.2).

Геометрические параметры валов цилиндрического прямозубого мехатронного модуля определяют аналогично расчету ва-

Рис. 2.1

лов цилиндрического косозубого мехатронного модуля (см. п. п. 1.1, 1.2, 1.5, 1.6).

Линейная база входного вала-шестерни (рис. 2.2)

$$e = a + b$$
,

где a — расстояние от середины шестерни до середины левого подшипника

$$a = \frac{b_1}{2} + C_1 + \frac{B}{2};$$

b — расстояние от середины шестерни до середины правого подшипника

$$b = \frac{b_1}{2} + C_2 + \frac{B}{2}$$

B — ширина подшипника; $C_1 = (5 \dots 10)$ мм — ширина упорного буртика; $C_2 = (5 \dots 10)$ мм — ширина распорного кольца; b_1 — ширина зубчатого колеса.

Рис. 2.2

2.2. Реакции опор входного вала

Реакции опор входного вала редуктора мехатронного модуля определяем из уравнений статики в соответствии с расстановкой на схеме вала действующих и реактивных сил (рис. 2.3). В вертикальной плоскости

$$\Sigma M_A^B = -R_B^B(a+b) + F_{r_1}a = 0$$
.

Откуда

$$R_B^{\mathrm{B}} = \frac{F_{r_1}a}{a+b}.$$

$$\Sigma M_B^B = R_A^B(a+b) - F_{r_1}b = 0$$
. $R_A^B = \frac{F_{r_1}b}{a+b}$.

Если значение одной или обеих реакций получилось отрицательным, необходимо их не схеме зачеркнуть R^B и направить в противоположную сторону. Затем значения этих реакций записать с плюсом и рассматривать в дальнейшем схему вала со всеми приложенными внешними силами и найденными реакциями в соответствии с их действительными направлениями.

Рис. 2.3

Проверка правильности нахождения реакций

$$\Sigma F_y = 0$$
.

Также составляем уравнения статики для входного вала-шестерни в горизонтальной плоскости

$$\Sigma \mathbf{M}_A^{\Gamma} = -R_B^{\Gamma}(a+b) + F_{t_1}a = 0.$$

Откуда

$$R_B^\Gamma = \frac{F_{t_1}a}{a+b}.$$

$$\Sigma \mathbf{M}_B^\Gamma = R_A^\Gamma(a+b) - F_{t_1}b = 0.$$

$$R_A^\Gamma = \frac{F_{t_1}b}{a+b}.$$

Проверка

$$\Sigma F_{x}=0$$
.

Суммарные реакции в опорах А и В

$$R_{A_{\Sigma}} = \sqrt{(R_A^{\rm B})^2 + (R_A^{\rm \Gamma})^2}$$
;

$$R_{B_{\Sigma}} = \sqrt{(R_B^{\rm B})^2 + (R_B^{\rm r})^2}$$
.

Найденные суммарные реакции опор входного вала-шестерни редуктора мехатронного модуля будут нужны при выборе подшипников.

2.3. Проектный расчет выходного вала мехатронного модуля

Расчет выходного (тихоходного) вала цилиндрического прямозубого мехатронного модуля проводят аналогично расчету выходного вала цилиндрического косозубого мехатронного модуля с учетом, что осевая сила в зацеплении зубчатых колес равна нулю, т.е. $F_{a_2} = 0$ (см. п. 1.5 и 1.6).

Линейную базу выходного вала выбираем при условии, что вал установлен на радиальных шариковых подшипниках и опоры вала расположены посередине подшипников (рис. 2.4).

Рис. 2.4

Для зубчатого колеса со ступицей равной или большей ширины колеса $\ell_{_{\mathrm{CT}}} \geq b_2$

$$\ell = a + b$$
.

Здесь a — длина участка вала от середины зубчатого колеса до середины левого подшипника

$$a = \frac{\ell_{\text{CT}}}{2} + C_1 + \frac{B}{2};$$

b — длина участка вала от середины зубчатого колеса до середины правого подшипника

$$b = \frac{\ell_{\rm CT}}{2} + C_3 + C_4 + \frac{B}{2};$$

 $C_1 = (10 \dots 15)$ мм — ширина распорной втулки; $C_3 = (5 \dots 10)$ мм — ширина упорного буртика для колеса; $C_4 = (5 \dots 10)$ мм — ширина распорного буртика для подшипника. Эти размеры желательно выбирать такими, чтобы зубчатое колесо было расположено посередине вала; $\ell_{\rm ct} = (1,0 \dots 1,5) d_{\rm 2k}$ — длина ступицы зубчатого колеса; b_2 — ширина зубчатого венца колеса.

2.4. Проверочный расчет выходного вала мехатронного модуля

Для проведения проверочного расчета выходного вала мехатронного модуля необходимо определить реакции опор, построить эпюры изгибающих и крутящих моментов и определить наиболее опасные сечения вала. Методика расчета аналогична расчету выходного вала цилиндрического косозубого мехатронного модуля с учетом отсутствия осевой силы F_{a_2} .

Реакции опор выходного вала определяем из уравнений статики в соответствии с расстановкой на схеме вала действующих реактивных сил (рис. 2.5).

В вертикальной плоскости при внешней радиальной силе F_{r_2}

$$\Sigma M_A^{\rm B} = R_B^{\rm B}(a+b) - F_{r_2}a = 0$$
.

Откуда

$$R_B^{\rm B} = rac{F_{r_2}a}{a+b}.$$
 $\Sigma M_B^{\rm B} = -R_A^{\rm B}(a+b) + F_{r_2}b = 0.$

Откуда

$$R_A^{\mathrm{B}} = \frac{F_{r_2}b}{a+b}.$$

Проверка

$$\Sigma F_y = 0$$
.

Определяем изгибающие моменты в вертикальной плоскости.

Записываем уравнение изгибающих моментов на первом участке вала $0 \le x_1 \le a$

$$M_{\mathsf{H}_1}^{\mathsf{B}} = R_A^{\mathsf{B}} x_1.$$

Если $x_1=0$, то $M_{\mathtt{H}_1}^{\mathtt{B}}=0$. Если $x_1=a$, то $M_{\mathtt{H}_1}^{\mathtt{B}}=R_{A}^{\mathtt{B}}a$.

Аналогично поступаем на втором участке вала $0 \le x_2 \le b$

$$M_{\mathrm{H}_2}^{\mathrm{B}} = R_B^{\mathrm{B}} x_2.$$

Если $x_2=0$, то $M_{{\rm H}_2}^{{\rm B}}=0$. Если $x_2=b$, то $M_{{\rm H}_2}^{{\rm B}}=R_B^{{\rm B}}b$.

Рис. 2.5

На рис. 2.5 представлен один из возможных вариантов эпюры изгибающих моментов $M_{\rm u}^{\rm B}$ в вертикальной плоскости.

Рассмотрим схему вала нагруженного окружной силой F_{t_2} . Составляем уравнения статики:

$$\Sigma M_A^{\Gamma} = R_B^{\Gamma}(a+b) - F_{t_2}a = 0.$$

Откуда

$$R_B^{\Gamma} = \frac{F_{t_2}a}{a+b}.$$

$$\Sigma M_B^{\Gamma} = -R_A^{\Gamma}(a+b) + F_{t_2}b = 0.$$

Откуда

$$R_A^{\Gamma} = \frac{F_{t_2}b}{a+b}.$$

Проверка

$$\Sigma F_{x}=0$$
.

Определяем изгибающие моменты в горизонтальной плоскости: на первом участке $0 \le x_1 \le a$

$$M_{\text{\tiny M}_1}^{\scriptscriptstyle \Gamma} = R_A^{\scriptscriptstyle \Gamma} x_1.$$

Если $x_1=0$, то $M^{\scriptscriptstyle \Gamma}_{\scriptscriptstyle \mathsf{H}_1}=0$. Если $x_1=a$, то $M^{\scriptscriptstyle \Gamma}_{\scriptscriptstyle \mathsf{H}_1}=R^{\scriptscriptstyle \Gamma}_{\!A}a$;

на втором участке $0 \le x_2 \le b$

$$M_{\mathsf{H}_2}^{\mathsf{r}} = R_B^{\mathsf{r}} x_2.$$

Если $x_2=0$, то $M^{\scriptscriptstyle \Gamma}_{\scriptscriptstyle \mathrm{H}_2}=0$. Если $x_2=b$, то $M^{\scriptscriptstyle \Gamma}_{\scriptscriptstyle \mathrm{H}_2}=R^{\scriptscriptstyle \Gamma}_B b$.

Строим эпюры изгибающих моментов в горизонтальной плоскости (рис. 2.5).

Вычисляем крутящий момент на валу от действия окружной силы ${\it F_{t_2}}$

$$T_{2K} = T_2 = F_{t_2} \frac{d_K}{2}.$$

Строим эпюру крутящего момента. Из эпюр видно, что наиболее опасным сечением вала является сечение под колесом, так как в этом месте на вал действуют наибольшие изгибающие моменты в двух

плоскостях и крутящий момент. Действие максимальных изгибающих моментов в двух плоскостях заменяем суммарным моментом

$$M_{_{\mathrm{H}_{\Sigma}}} = \sqrt{\left(M_{_{\mathrm{H}_{max}}}^{_{\mathrm{B}}}\right)^{2} + \left(M_{_{\mathrm{H}_{max}}}^{_{\Gamma}}\right)^{2}} \,.$$

Таким образом, вал находится под действием суммарного изгибающего момента $M_{\rm u_{\Sigma}}$ и крутящего момента $T_{\rm 2\,K}$.

Проверку выходного вала цилиндрического прямозубого мехатронного модуля на статическую прочность с учетом нормальных и касательных напряжений проводим аналогично цилиндрическому косозубому мехатронному модулю по энергетической гипотезе прочности (см. п. 1.7).

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Гуревич Ю. Е., Выров Б. Я., Косов М. Г., Кузнецов А. П. Инженерные основы расчетов деталей машин: учебник. М.: КНОРУС, 2013.-480 с.
- 2. **Дунаев П. Ф., Леликов О. П.** Конструирование узлов и деталей машин: учеб. пособие. М.: Высш. шк., 1985. 416 с.
- 3. **Егоров О. Д.** Конструирование механизмов роботов: учебник. М.: Абрис, 2012. 444 с.
- 4. **Решетов Д. Н.** Детали машин: учебник. М.: Машиностроение, 1989.-496 с.

Приложение

Механические характеристики сталей

Нормализованные (Н), улучшенные (У) и объемно-закаленные стали (ОЗ)					
Марка стали	Предел проч- ности $\sigma_{\rm B}$, МПа	Предел теку- чести $\sigma_{\scriptscriptstyle T}$, МПа	Твердость	Термо-об- работка	
1	2	3	4	5	
40	600	320	192-228	У	
45	600-700	320	167-194 HB	Н	
	650-750	350	180-207 HB	У	
	700-800	400	194-222 HB	У	
	750-850	450	207-236 HB	У	
	800-900	550	223-250 HB	У	
	850-950	600	236-263 HB	У	
50	700-800	370-420	212-235 HB	У	
50Γ	800	550	241-285 HB	У	
35X	650	450	187 HB	У	
40X	700-800	400	200-230 HB	Н	
	750-850	500	215-243 HB	У	
	800-900	550	230-257 HB	У	
	850-950	600	243-271 HB	У	
	900-100	700	257-285 HB	У	
40HX	850-950	600	250-280 HB	У	
	900-1000	700	265-290 HB	У	
20XH3A	1000	850	293-341 HB	У	
38XA	900	800	269-321 HB	У	
37XH3A	1100	950	321-387 HB	У	
40XHMA	1100	950	293-375 HB	У	
45	1000	750	38-42 HRC	O3	
50	620	340	48-52 HRC	О3	

