פתרון מטלה -06 פונקציות מרוכבות,

2024 בדצמבר 14

נחשב את האינטגרלים המסילתיים הנתונים.

'סעיף א

$$\int_{\gamma} (2z - 3\overline{z} + 1) dz$$

 $t \in [0,2\pi]$ ב־ן בי $\gamma = 3\cos t + 2i\sin t$ עבור

פתרון נתחיל בחישוב הכרחי:

$$\gamma'(t) = -3\sin t + 2i\cos t$$

ונעבור לחישוב האינטגרל

$$\begin{split} \int_{\gamma} (2z - 3\overline{z} + 1) \; dz &= \int_{0}^{2\pi} (2(3\cos t + 2i\sin t) - 3(3\cos t - 2i\sin t) + 1)(-3\sin t + 2i\cos t) \; dt \\ &= \int_{0}^{2\pi} (-3\cos t + 10i\sin t + 1)(-3\sin t + 2i\cos t) \; dt \\ &= \int_{0}^{2\pi} \frac{9}{2}\sin(2t) - 6 - 24i\sin^{2}t - 10\sin(2t) - 3\sin t + 2i\cos t \; dt \\ &= \int_{0}^{2\pi} -6 - 6(e^{it} - e^{-it})^{2} \; dt \\ &= -6\int_{0}^{2\pi} -1 + e^{2it} + e^{-2it} \; dt \\ &= -6\left[-t - \frac{i}{2}e^{2it} + \frac{i}{2}e^{-2it} \right]_{0}^{2\pi} \end{split}$$

. כאשר במעבר האחרון השתמשנו באינטגרל של פונקציה טריגונומטרית אפס בתחום.

'סעיף ב

$$\int_{\mathcal{C}} \cos(\operatorname{Re}(z)) \ dz$$

 $t \in [-\pi,\pi]$ עבור $\gamma(t)=i+e^{it}$ עבור

פתרון נובע
$$\gamma'(t)=ie^{it}$$
 אונרת, לכן
$$\int_{\gamma}\cos(\operatorname{Re}(z))\ dz = \int_{-\pi}^{\pi}\cos(\operatorname{Re}(i+e^{it}))\cdot ie^{it}\ dt$$

$$= \int_{-\pi}^{\pi}\cos(\cos(t))\cdot ie^{it}\ dt$$

$$= \int_{-\pi}^{\pi}\cos(\cos(t))\cdot ie^{it}\ dt$$

$$= \int_{-\pi}^{\pi}\cos(\cos(t))(i\cos t - \sin t)\ dt$$

$$= i\int_{-\pi}^{\pi}\cos(\cos(t))\cos t\ dt - \int_{-\pi}^{\pi}\cos(\cos(t))\sin t\ dt$$

$$= i\int_{-\pi}^{\pi}\cos(\cos(t))\cos t\ dt - 0$$

$$= 2i\int_{-\pi/2}^{\pi}\cos(\cos(t))\cos t\ dt$$

$$= 2i\int_{-\pi/2}^{\pi/2}\cos(\cos(t))\cos t\ dt$$

$$= 2i\int_{-\pi/2}^{\pi/2}\cos(\cos(u-\pi/2))\cos(u-\pi/2)\ dt$$

$$= 2i\int_{-\pi/2}^{\pi/2}\cos(\sin(u))\sin(u)\ dt$$

$$= 0$$

'סעיף ג

$$\int_{\gamma} \left(\frac{\log(z)}{z} \right)^2 dz$$

$$t\in [-rac{\pi}{2},rac{\pi}{2}]$$
 ב־ $\gamma=e^{-it}$ עבור עבור $\gamma'(t)=-ie^{-it}$ ולכן

$$\begin{split} \int_{\gamma} \left(\frac{\log(z)}{z}\right)^2 dz &= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\log(e^{-it})}{e^{it}}\right)^2 \cdot (-ie^{-it}) \, dt \\ &= i \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t^2 e^{-3it} \, dt \\ &= \left[t^2 \frac{e^{-3it}}{-3}\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + \frac{2}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t e^{-3it} \, dt \\ &= \frac{1}{2} \cdot \frac{1}{-3} + \left[t \frac{e^{-3it}}{-3i}\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + \frac{2}{9i} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-3it} \, dt \\ &= \frac{1}{6} + 0 + \frac{1}{27 \cdot 2} \\ &\quad \cdot e^{-\frac{\pi}{6}i} - e^{-\frac{\pi}{6}i} = \sin(-\frac{\pi}{6}) = -\frac{1}{2}$$
 אמת בשל חישוב ישיר, והעובדה שב המול המוב בשל המוב בש

תהי $\gamma:[a,b] o G$ מסילה. רציפה ותהי $f:G o \mathbb{C}$

'סעיף א

 $.\gamma$ אורך המסילה ור $L(\gamma)$ ו וי $M=\max_{t\in[a,b]}|f(\gamma(t))|$ נסמן

נראה כי מתקיים

$$\left| \int_{\gamma} f(z) \ dz \right| \le M \cdot L(\gamma)$$

הוכחה.

$$\left| \int_{\gamma} f(z) dz \right| = \left| \int_{a}^{b} f(\gamma(t))\gamma'(t) dt \right|$$

$$\leq \int_{a}^{b} |f(\gamma(t))\gamma'(t)| dt$$

$$= \int_{a}^{b} |f(\gamma(t))| \cdot |\gamma'(t)| dt$$

$$\leq \int_{a}^{b} M \cdot |\gamma'(t)| dt$$

$$= M \cdot \int_{a}^{b} |\gamma'(t)| dt$$

$$= M \cdot L(\gamma)$$

$$(1)$$

כאשר

1. טענה ששאבנו מאינטגרלים ממשיים מרובי משתנים, ההוכחה עבור המקרה המרוכב זהה לחלוטין.

2. מאינפי 3.

ובכך הראינו כי אי־השוויון אכן חל.

'סעיף ב

מתקיים $\mu:[c,d] o [a,b]$ מתקיים לכל פונקציה על, מונוטונית עולה וגזירה ברציפות למקוטעין

$$\int_{\gamma} f(z) \, dz = \int_{\gamma \circ \mu} f(z) \, dz$$

היא שלה. בחין מההגדרה פונקציה פונקציה μ רש מההגדרה שלה.

נעבור לבחינת האינטגרל

$$\int_{\gamma \circ \mu} f(z) dz = \int_c^d f(\gamma(\mu(t))) \cdot (\gamma \circ \mu)'(t) dt = \int_c^d f(\gamma(\mu(t))) \cdot \gamma'(\mu(t)) \cdot \mu'(t) dt$$

נובע μ^{-1} אבל מכלל ההצבה האינטגרלי

$$\int_{c}^{d} f(\gamma(\mu(t))) \cdot \gamma'(\mu(t)) \cdot \mu'(t) \ dt = \int_{a}^{b} f(\gamma(\mu(\mu^{-1}(t)))) \cdot \gamma'(\mu(\mu^{-1}(t))) \ dt = \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) \ dt = \int_{\gamma} f(z) \ dz$$

'סעיף ג

נניח ש"ל אנליטית ב-G ונוכיח שמתקיים

$$\int_{\gamma} f'(z) dz = f(\gamma(b)) - f(\gamma(a))$$

"ידי שימוש באינטגרל רימן, באדיטיביות האינטגרל ובתכונה שהוכחנו בסעיף א', נוכל לשחזר את ההוכחה של אינפי 2 לנוסחה היסודית	על	הוכחה.
	.1	הכלליו

בקצרה, נוכל לחלק את המסילה למספר הולך וגדל של תת־מסילות כך שנקודות הקצה הן היחידות שמשפיעות על גודל האינטגרל המלא, זאת תוך שימוש ברציפות הפונקציה ונגזרתה.

'סעיף א

מתקיים ביס ביס לפונקציה שונות אונות ולשתי נקודות ולשתי $f:G\to\mathbb{C}$ אנליטית לפונקציה דוגמה נמצא נמצא לולשתי ולשתי ביס לולשתי וליטית לולשתי ביס לולשתי נקודות אנליטית לולשתי ביס לולשתי ביס

פתרון נגדיר
$$z_1=2\pi i, z_0=0$$
 ולכן $f'(z)=e^z$ ולכן ולכן $f(z)=e^z$ ולכן גדיר נגדיר בנוסף נגדיר $\frac{f(z_1)-f(z_0)}{z_1-z_0}=\frac{1-1}{2\pi i-0}=0$. ולכן נוכל להסיק כי $f'(z)\neq 0$ גם כן אבל אנו יודעים כי $f'(z)\neq 0$ לכל $f'(z)\neq 0$ ולכן נוכל להסיק כי $f'(z)\neq 0$ גם כן

'סעיף ב

 $[z_0,z_1]\subseteq G$ ש־ כך שונות נקודות נקודות וו־ ב $z_0,z_1\in G$ וריטית אנליטית פונקציה ק $f:G\to\mathbb{C}$ נראה שמתקיים נראה שמתקיים

$$\left| \frac{f(z_1) - f(z_0)}{z_1 - z_0} \right| \le \max_{z \in [z_0, z_1]} |f'(z)|$$

ולכן $\gamma = [z_0, z_1]$ את המסילה (גדיר את נגדיר את המסילה)

$$\left| \int_{\gamma} f'(z) \, dz \right| = |f(\gamma(1)) - f(\gamma(0))| = |f(z_1) - f(z_0)|$$

מצד שני מ־ML נובע גם

$$\left| \int_{\gamma} f'(z) \, dz \right| \le L(\gamma) \cdot \max_{z \in [z_0, z_1]} |f'(z)| = |z_1 - z_0| \cdot \max_{z \in [z_0, z_1]} |f'(z)|$$

ולכז נובע משוויונות אלה

$$|f(z_1) - f(z_0)| \le |z_1 - z_0| \cdot \max_{z \in [z_0, z_1]} |f'(z)| \iff \left| \frac{f(z_1) - f(z_0)}{z_1 - z_0} \right| \le \max_{z \in [z_0, z_1]} |f'(z)|$$

כמבוקש.

. משתנים. בשני בשני פונקציה $f:G\times H\to \mathbb{C}$ ותהי חחומים בשני רציפה פונקציה היוו

נאמר ש $\frac{\partial f}{\partial z}(z_0,w)=\lim_{z\to z_0} \frac{f(z,w)-f(z_0,w)}{z-z_0}$ התלקית ב־z אם הנגזרת החלקית החלקית החלקית ב־z אם הנגזרת החלקית עבור מסילה $\varphi:G\to\mathbb{C}$ את הפונקציה $\gamma:I\to H$ את הפונקציה מסילה עבור מסילה את הפונקציה ב-z

$$\varphi(z) = \int_{\gamma} f(z, w) \, dw$$

'סעיף א

על־ידי $F_{z_0}:G\times H\to \mathbb{C}$ הפונקציה את ונגדיר זנגדיר בקב נקבע

$$F_{z_0}(z, w) = \begin{cases} \frac{f(z, w) - f(z_0, w)}{z - z_0} & z \neq z_0\\ \frac{\partial f}{\partial z}(z_0, w) & z = z_0 \end{cases}$$

. בשתנים בשני בשני רציפה רציפה רציפה בשני משתנים.

 $z=z_0$ המקרה את שנבדוק מספיק ולכן רציפות, פונקציות ההרכבת כהרכבת הציפה היא ביקודות בנקודות בנקודות המקרה הוכחה.

$$\lim_{z \to z_0} F_{z_0} = \lim_{z \to z_0} \frac{f(z, w) - f(z_0, w)}{z - z_0} = \frac{\partial f}{\partial z}(z_0, w) = F_{z_0}(z_0)$$

ולכן היא אכן רציפה.

'סעיף ב

נוכיח כי אנליטית על שמתקיים נוכיח כי אנליטית בי

$$\varphi'(z_0) = \int_{\gamma} F_{z_0}(z_0, w) \ dw = \int_{\gamma} \frac{\partial f}{\partial z}(z_0, w) \ dw$$

הוכחה. נבדוק את הגדרת הנגזרת

$$\begin{split} \lim_{z \to z_0} \frac{\varphi(z) - \varphi(z_0)}{z - z_0} &= \lim_{z \to z_0} \frac{\int_{\gamma} F_{z_0}(z, w) \; dw - \int_{\gamma} F_{z_0}(z_0, w) \; dw}{z - z_0} \\ &= \lim_{z \to z_0} \int_{\gamma} \frac{F_{z_0}(z, w) - F_{z_0}(z_0, w)}{z - z_0} \; dw \\ &= \lim_{z \to z_0} \int_{\gamma} F_{z_0}(z, w) \; dw \\ &= \int_{\gamma} \lim_{z \to z_0} F_{z_0}(z, w) \; dw \\ &= \int_{\gamma} F_{z_0}(z_0, w) \; dw \\ &= \int_{\gamma} \frac{\partial f}{\partial z}(z_0, w) \; dw \end{split}$$

כאשר כלל המעברים נובעים משוויונות נתונים וחוקי אינטגרלים מרובי משתנים שאנו כבר מכירים.

. אכן אכן מוגדרת. נסיק כי φ' נסיק נסיק והפונקציה והפונקציה בהתאם בהתאם בהתאם האינטגרל

'סעיף ג

נסיק כי $\psi(z)=\int_0^{2\pi}\cos(ze^{it})\;dt$ נסיק כי

הוכחה. נגדיר
$$f(z,w)=\frac{\cos(zw)}{iw}$$
 וגם $f(z,w)=\frac{\cos(zw)}{iw}$ ולכן $f(z,w)=\frac{\cos(zw)}{iw}$ הוכחה. נגדיר
$$\varphi(z)=\int_{\gamma}f(z,w)\ dw=\int_{0}^{2\pi}f(z,e^{it})ie^{it}\ dt=\int_{0}^{2\pi}\frac{\cos(ze^{it})}{ie^{it}}ie^{it}\ dt=\psi(z)$$

אנליטית.	ש־ ψ אכן	י ב' נובע	מסעין '	לכן.
----------	---------------	-----------	---------	------