EE 110 Homework 3 Name: Xilai Zhang UID: 804796478node analysis, $Y_n = \begin{bmatrix} S+1 & -s \\ -s & 2s+2 \end{bmatrix}$ det $[Y_n] = S^2 + 4s + 2 = 0$ natural frequencies $S_{1,2} = -2 \pm \sqrt{2}$ node analysis. $Y_n = \begin{bmatrix} 1+5 & 0 \\ 1 & 5+1 \end{bmatrix}$ det $[Y_n] = s^2 + 2s + 1$ natural frequencies $s_{1,2} = -1$ b. det [Zn(s]] = *(s+1)2(s+3) =0 => s1,z=+, s3,4=±J3j $\det\left[Y_{n}(s)\right] = \frac{(s+1)^{2}(s^{2}+3)}{s^{2}} = 0 \Rightarrow S_{1,2} = 1, S_{3,4} = \pm \sqrt{3}j \quad \text{The natural frequencies are the same},$ also due to inductive loop, there is an extra natural frequency at D C. $I_{1}(s) = \frac{I_{0} \Delta_{11}}{z_{m}(s)} = I_{0} \frac{s^{4}+s^{3}+3s^{2}+2s+1}{s(s+1)^{2}(s^{2}+3)} \Rightarrow i(t) = \frac{I_{0}}{3} + k_{1}e^{-t} + k_{12}te^{-t} + k_{3}\cos(J_{3}t + Q_{3})$ the constant term 3 in the i(t) expression means that we have a natural frequency at s=0. a. node analysis: $Y_n = \begin{bmatrix} s+2 & -1 \\ + & s+2 \end{bmatrix}$ det $[Y_n] = 0 \Rightarrow s_1 = -1, s_2 = -3$ $b \cdot \theta_{2}(s) = \frac{(s+2)V_{c_{2}}(6^{-}) + V_{c_{1}}(6^{-})}{5^{2} + 4s + 3} = \frac{\frac{V_{c_{1}}(6^{-}) + V_{c_{2}}(6^{-})}{2}}{5 + 1} + \frac{\frac{-V_{c_{1}}(6^{-}) + V_{c_{2}}(6^{-})}{2}}{5 + 3} + \frac{\frac{V_{c_{1}}(6^{-}) + V_{c_{2}}(6^{-})}{2}}{5 + 3} + \frac{\frac{V_{c_{1}}(6^{-}) + V_{c_{2}}(6^{-})}{2}}{5 + 3} + \frac{\frac{V_{c_{1}}(6^{-}) + V_{c_{2}}(6^{-})}{2}}{5 + 3} + \frac{V_{c_{1}}(6^{-}) + V_{c_{2}}(6^{-})}{2} + \frac{V_{c_{2}}(6^{-}) + V_{c_{2}}(6^{-})}{2} + \frac{V_{c_{2}}(6^{-})}{2} + \frac{V_{c_{2}}(6^{-}) + V_{c_{2}}(6^{-})}{2} + \frac{V_{c_{2}}(6^{-}) + V_{c_{2}}(6^{-})}{2} + \frac{V_{c_{2}}(6^{-}) + V_{c_{2}}(6^{-})}{2} + \frac{V_{c_{2}}(6^{-})}{2} + \frac{V_{c_{2}}(6^{-}) + V_{c_{2}}(6^{-})}{2} + \frac{V_{c_{2}}(6^{-})}{2} + \frac{V_{c_$ to eliminate S=-1, let Vc1(0)=-Vc2(0-) would be enough C. to eliminate S=-3, let Vc, (0)=V(2(0)) E= = 1/2 C1 Vc, (0) + 1/2 (2 Vc, (0)) = | thus Vc, (0) = Vc, (0) = IV

5. a.
$$H(s) = \lambda \{h(t)\} = |+\frac{(sta) \cos \varphi - w \sin \varphi}{(sta)^2 + w^2}$$

b. $H(s) = \lambda \{h(t)\} = \frac{1}{s+1} - \frac{1}{(s+3)^2 + \frac{2}{s^2}}$

c. $H(s) = \lambda \{h(t)\} = \frac{1}{s+1} - \frac{1}{(s+3)^2 + \frac{2}{s^2}}$

6. $\frac{1}{2IM_1}$

a. $\frac{1}{2M_2}$

a. $\frac{1}{2IM_1}$

a. $\frac{1}{2M_2}$

b. $\frac{1}{2IM_1}$

b. $\frac{1}{2IM_2}$

c. $\frac{1}{4M_1}$

c. $\frac{1}{4M_2}$

c. $\frac{1}{4M_1}$

c. $\frac{1}{4M_2}$

c. $\frac{1}{4M_1}$

c. $\frac{1}{4M_2}$

c. $\frac{1}{4M_1}$

c. $\frac{1}{4M_$

C. from a and b, $\frac{e_2(s)}{e_1(s)} = \frac{V_2(s)}{V_1(s)} = \frac{s}{s^3 + s^2 + 2s}$