Elaborato di

Calcolo Numerico

Giovanni Bindi - 5530804 - giovanni.bindi@stud.unifi.it Gabriele Gemmi - 5602433 - gabriele.gemmi@stud.unifi.it Gabriele Puliti - 5300140 - gabriele.puliti@stud.unifi.it

March 3, 2017

Contents

1	Cap	pitolo 1			3
	1.1	Esercizio 1.1	 	 	3
	1.2	Esercizio 1.2	 	 	3
	1.3	Esercizio 1.3	 	 	3
	1.4	Esercizio 1.4	 	 	3
	1.5	Esercizio 1.5	 	 	3
	1.6	Esercizio 1.6	 	 	3
	1.7	Esercizio 1.7	 	 	5
	1.8	Esercizio 1.8	 	 	5
	1.9	Esercizio 1.9	 	 	5
	1.10	0 Esercizio 1.10	 	 	5
	1.11	1 Esercizio 1.11	 	 	5
	1.12	2 Esercizio 1.12	 	 	5
2	-	pitolo 2			5
	2.1	Esercizio 2.1			
	2.2				-
	2.3				
	2.4				
	2.5				
	2.6	Esercizio 2.6			
	2.7				
	2.8	Esercizio 2.8	 	 	5
3	Can	pitolo 3			5
J	3.1	Esercizio 3.1			_
	3.2	Esercizio 3.2			_
	3.3				-
	3.4				
	3.5				
	3.6				
	3.7				
	3.8	Esercizio 3.8	 	 	-
	3.9				
	0.0	0 Esercizio 3.10			
		1 Esercizio 3.11			
		2 Esercizio 3.12			
		3 Esercizio 3.13			
		4 Esercizio 3.14			
		5 Esercizio 3.15			
		6 Esercizio 3.16			

3.17	Esercizio	3.17														 				5
3.18	Esercizio	3.18														 				5
3.19	Esercizio	3.19														 				5
3.20	Esercizio	3.20														 				5
3.21	Esercizio	3.21														 				5

1 Capitolo 1

1.1 Esercizio 1.1

Per definizione di metodo iterativo convergente si ha che

$$\lim_{k \to +\infty} x_k = x^*$$

Supponendo la funzione $\Phi(x_n)$ uniformemente continua vale

$$\lim_{k \to +\infty} \Phi(x_k) = x^* = \Phi(\lim_{k \to +\infty} x_k) = x^*$$

Per definizione é $\Phi(x_n) = x_{k+1}$ e quindi

$$\lim_{k \to +\infty} \Phi(x_k) = \lim_{k \to +\infty} x_{k+1} = x^*$$

Da cui otteniamo che x^* e' un punto fisso per la funzione $\Phi(x_n)$, ovvero che $x^* = \Phi(x^*)$.

1.2 Esercizio 1.2

Dal momento che le variabili intere di 2 byte in Fortran vengono gestite in Modulo e Segno, la variabile n, inizializzata con

```
integer*2 n
```

1.3 Esercizio 1.3

Per definizione si ha che la precisione di macchina u per arrotondamento e' data da $u=\frac{1}{2}b^{1-m}$. Se b=8, m=5 si ha $u=\frac{1}{2}\cdot 8^{-4}=1,2207031\cdot 10^{-4}$

- 1.4 Esercizio 1.4
- 1.5 Esercizio 1.5
- 1.6 Esercizio 1.6

```
format long
   x = [2,1.5];
   y = [];
   rad = sqrt(2)
4
6
    for i = 2:15
7
       x(i+1) = ((x(i)*x(i-1) +2)/(x(i) + x(i-1)));
8
   end
9
   for i=1:15
11
        y(i) = x(i) - rad;
12
   end
```

- 1.7 Esercizio 1.7
- 1.8 Esercizio 1.8
- 1.9 Esercizio 1.9

```
x=0; delta = 1/10;
while x ~= 1, x = x+delta, end

the code is not working because the x will never be exactly 1. So it
loops forever
```

- 1.10 Esercizio 1.10
- 1.11 Esercizio 1.11
- 1.12 Esercizio 1.12
- 2 Capitolo 2
- 2.1 Esercizio 2.1
- 2.2 Esercizio 2.2
- 2.3 Esercizio 2.3
- 2.4 Esercizio 2.4
- 2.5 Esercizio 2.5
- 2.6 Esercizio 2.6
- 2.7 Esercizio 2.7
- 2.8 Esercizio 2.8
- 3 Capitolo 3
- 3.1 Esercizio 3.1
- 3.2 Esercizio 3.2
- 3.3 Esercizio 3.3
- 3.4 Esercizio 3.4
- 3.5 Esercizio 3.5
- 3.6 Esercizio 3.6
- 3.7 Esercizio 3.7
- 3.8 Esercizio 3.8
- 3.9 Esercizio 3.9
- 3.10 Esercizio 3.10
- 3.11 Esercizio 3.11
- 3.12 Esercizio 3.12
- 3.13 Esercizio 3.13
- 3.14 Esercizio 3.14
- 3.15 Esercizio 3.15
- 3.16 Esercizio 3.16
- 3.17 Esercizio 3.17
- 3.18 Esercizio 3.18
- 3.19 Esercizio 3.19
- 3.20 Esercizio 3.20
- 3.21 Esercizio 3.21