Calculus I Recap

Aryaman Maithani

https://aryamanmaithani.github.io/tuts/ma-109

IIT Bombay

Autumn Semester 2020-21

Start recording!

Definition 1 (Sequences)

Definition 1 (Sequences)

A sequence in X

Definition 1 (Sequences)

A sequence in X is a function $a: \mathbb{N} \to X$.

Definition 1 (Sequences)

A sequence in X is a function $a : \mathbb{N} \to X$. We usually write a_n instead of a(n).

Definition 1 (Sequences)

A sequence in X is a function $a : \mathbb{N} \to X$. We usually write a_n instead of a(n).

Definition 2 (Convergence)

Let X be a space.

Definition 1 (Sequences)

A sequence in X is a function $a : \mathbb{N} \to X$. We usually write a_n instead of a(n).

Definition 2 (Convergence)

Let X be a space. Let (a_n) be a sequence in X.

Definition 1 (Sequences)

A sequence in X is a function $a : \mathbb{N} \to X$. We usually write a_n instead of a(n).

Definition 2 (Convergence)

Let X be a space. Let (a_n) be a sequence in X. Let $L \in X$.

Definition 1 (Sequences)

A sequence in X is a function $a : \mathbb{N} \to X$. We usually write a_n instead of a(n).

Definition 2 (Convergence)

Let X be a space. Let (a_n) be a sequence in X. Let $L \in X$. We write

$$\lim_{n\to\infty}a_n=L$$

Definition 1 (Sequences)

A sequence in X is a function $a: \mathbb{N} \to X$. We usually write a_n instead of a(n).

Definition 2 (Convergence)

Let X be a space. Let (a_n) be a sequence in X. Let $L \in X$. We write

$$\lim_{n\to\infty}a_n=L$$

if for every $\epsilon > 0$,

Definition 1 (Sequences)

A sequence in X is a function $a: \mathbb{N} \to X$. We usually write a_n instead of a(n).

Definition 2 (Convergence)

Let X be a space. Let (a_n) be a sequence in X. Let $L \in X$. We write

$$\lim_{n\to\infty}a_n=L$$

if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$

Definition 1 (Sequences)

A sequence in X is a function $a: \mathbb{N} \to X$. We usually write a_n instead of a(n).

Definition 2 (Convergence)

Let X be a space. Let (a_n) be a sequence in X. Let $L \in X$. We write

$$\lim_{n\to\infty}a_n=L$$

if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

Definition 1 (Sequences)

A sequence in X is a function $a: \mathbb{N} \to X$. We usually write a_n instead of a(n).

Definition 2 (Convergence)

Let X be a space. Let (a_n) be a sequence in X. Let $L \in X$. We write

$$\lim_{n\to\infty}a_n=L$$

if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|a_n - L| < \epsilon$$

Definition 1 (Sequences)

A sequence in X is a function $a: \mathbb{N} \to X$. We usually write a_n instead of a(n).

Definition 2 (Convergence)

Let X be a space. Let (a_n) be a sequence in X. Let $L \in X$. We write

$$\lim_{n\to\infty}a_n=L$$

if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|a_n - L| < \epsilon$$

for every n > N.

Definition 1 (Sequences)

A sequence in X is a function $a: \mathbb{N} \to X$. We usually write a_n instead of a(n).

Definition 2 (Convergence)

Let X be a <u>space</u>. Let (a_n) be a sequence in X. Let $L \in X$. We write

$$\lim_{n\to\infty}a_n=L$$

if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|a_n - L| < \epsilon$$

for every n > N. L is said to be the *limit* of the sequence.

Definition 1 (Sequences)

A sequence in X is a function $a: \mathbb{N} \to X$. We usually write a_n instead of a(n).

Definition 2 (Convergence)

Let X be a <u>space</u>. Let (a_n) be a sequence in X. Let $L \in X$. We write

$$\lim_{n\to\infty}a_n=L$$

if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|a_n - L| < \epsilon$$

for every n > N. L is said to be the *limit* of the sequence.

In this case, we say that (a_n) converges

Definition 1 (Sequences)

A sequence in X is a function $a: \mathbb{N} \to X$. We usually write a_n instead of a(n).

Definition 2 (Convergence)

Let X be a <u>space</u>. Let (a_n) be a sequence in X. Let $L \in X$. We write

$$\lim_{n\to\infty}a_n=L$$

if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|a_n - L| < \epsilon$$

for every n > N. L is said to be the *limit* of the sequence.

In this case, we say that (a_n) converges in X.

Note the highlights.

Note the highlights. They are important.

Note the highlights. They are important. Consider $X=\mathbb{R}$

Note the highlights. They are important. Consider $X = \mathbb{R}$ and the sequence $a_n := 1/n$.

Note the highlights. They are important. Consider $X=\mathbb{R}$ and the sequence $a_n:=1/n$.

As we saw in class, (a_n) converges to $0 \in \mathbb{R}$.

Note the highlights. They are important. Consider $X = \mathbb{R}$ and the sequence $a_n := 1/n$.

As we saw in class, (a_n) converges to $0 \in \mathbb{R}$. Thus, (a_n) converges in \mathbb{R} .

Note the highlights. They are important. Consider $X = \mathbb{R}$ and the sequence $a_n := 1/n$.

As we saw in class, (a_n) converges to $0 \in \mathbb{R}$. Thus, (a_n) converges in \mathbb{R} .

However, consider X = (0, 1]

Note the highlights. They are important. Consider $X = \mathbb{R}$ and the sequence $a_n := 1/n$.

As we saw in class, (a_n) converges to $0 \in \mathbb{R}$. Thus, (a_n) converges in \mathbb{R} .

However, consider X = (0,1] and (a_n) be as earlier.

Note the highlights. They are important. Consider $X = \mathbb{R}$ and the sequence $a_n := 1/n$.

As we saw in class, (a_n) converges to $0 \in \mathbb{R}$. Thus, (a_n) converges in \mathbb{R} .

However, consider X = (0,1] and (a_n) be as earlier. This sequence does not converge (in X) anymore.

Note the highlights. They are important. Consider $X = \mathbb{R}$ and the sequence $a_n := 1/n$.

As we saw in class, (a_n) converges to $0 \in \mathbb{R}$. Thus, (a_n) converges in \mathbb{R} .

However, consider X = (0,1] and (a_n) be as earlier. This sequence does not converge (in X) anymore.

Similarly, consider $X = \mathbb{Q}$

Note the highlights. They are important. Consider $X = \mathbb{R}$ and the sequence $a_n := 1/n$.

As we saw in class, (a_n) converges to $0 \in \mathbb{R}$. Thus, (a_n) converges in \mathbb{R} .

However, consider X = (0,1] and (a_n) be as earlier. This sequence does not converge (in X) anymore.

Similarly, consider $X=\mathbb{Q}$ and define $a_n=rac{\lfloor 10^n\pi\rfloor}{10^n}.$

Note the highlights. They are important. Consider $X = \mathbb{R}$ and the sequence $a_n := 1/n$.

As we saw in class, (a_n) converges to $0 \in \mathbb{R}$. Thus, (a_n) converges in \mathbb{R} .

However, consider X = (0,1] and (a_n) be as earlier. This sequence does not converge (in X) anymore.

Similarly, consider
$$X=\mathbb{Q}$$
 and define $a_n=\frac{\lfloor 10^n\pi\rfloor}{10^n}$. $3.1,3.14,3.141,\ldots$

Note the highlights. They are important. Consider $X = \mathbb{R}$ and the sequence $a_n := 1/n$.

As we saw in class, (a_n) converges to $0 \in \mathbb{R}$. Thus, (a_n) converges in \mathbb{R} .

However, consider X = (0,1] and (a_n) be as earlier. This sequence does not converge (in X) anymore.

Similarly, consider
$$X=\mathbb{Q}$$
 and define $a_n=\frac{\lfloor 10^n\pi\rfloor}{10^n}.$ $3.1,3.14,3.141,\dots$

The above is a sequence in \mathbb{Q} .

Note the highlights. They are important. Consider $X = \mathbb{R}$ and the sequence $a_n := 1/n$.

As we saw in class, (a_n) converges to $0 \in \mathbb{R}$. Thus, (a_n) converges in \mathbb{R} .

However, consider X = (0,1] and (a_n) be as earlier. This sequence does not converge (in X) anymore.

Similarly, consider
$$X=\mathbb{Q}$$
 and define $a_n=\frac{\lfloor 10^n\pi\rfloor}{10^n}.$ 3.1, 3.14, 3.141, . . .

The above is a sequence in \mathbb{Q} . However, it does not converge in \mathbb{Q} .

Definition 3 (Cauchy Sequences)

Definition 3 (Cauchy Sequences)

Let X be a space.

Definition 3 (Cauchy Sequences)

Let X be a space. Let (a_n) be a sequence in X.

Definition 3 (Cauchy Sequences)

Let X be a space. Let (a_n) be a sequence in X. (a_n) is said to be Cauchy

Definition 3 (Cauchy Sequences)

Let X be a <u>space</u>. Let (a_n) be a sequence in X. (a_n) is said to be Cauchy if for every $\epsilon > 0$,

Definition 3 (Cauchy Sequences)

Let X be a <u>space</u>. Let (a_n) be a sequence in X. (a_n) is said to be *Cauchy* if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$

Definition 3 (Cauchy Sequences)

Let X be a <u>space</u>. Let (a_n) be a sequence in X. (a_n) is said to be *Cauchy* if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

Definition 3 (Cauchy Sequences)

Let X be a <u>space</u>. Let (a_n) be a sequence in X. (a_n) is said to be *Cauchy* if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|a_n - a_m| < \epsilon$$

Definition 3 (Cauchy Sequences)

Let X be a <u>space</u>. Let (a_n) be a sequence in X. (a_n) is said to be *Cauchy* if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|a_n - a_m| < \epsilon$$

for all n, m > N.

Definition 3 (Cauchy Sequences)

Let X be a <u>space</u>. Let (a_n) be a sequence in X. (a_n) is said to be *Cauchy* if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|a_n - a_m| < \epsilon$$

for all n, m > N.

Proposition 1 (Convergence \implies Cauchy)

Definition 3 (Cauchy Sequences)

Let X be a <u>space</u>. Let (a_n) be a sequence in X. (a_n) is said to be *Cauchy* if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|a_n - a_m| < \epsilon$$

for all n, m > N.

Proposition 1 (Convergence \implies Cauchy)

If (a_n) is a convergent sequence

Definition 3 (Cauchy Sequences)

Let X be a <u>space</u>. Let (a_n) be a sequence in X. (a_n) is said to be *Cauchy* if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|a_n - a_m| < \epsilon$$

for all n, m > N.

Proposition 1 (Convergence \implies Cauchy)

If (a_n) is a convergent sequence in any space X,

Definition 3 (Cauchy Sequences)

Let X be a <u>space</u>. Let (a_n) be a sequence in X. (a_n) is said to be *Cauchy* if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|a_n - a_m| < \epsilon$$

for all n, m > N.

Proposition 1 (Convergence \implies Cauchy)

If (a_n) is a convergent sequence in any space X, then (a_n) is Cauchy.

Definition 4 (Completeness)

Definition 4 (Completeness)

A space X is said to be *complete*

Definition 4 (Completeness)

A space X is said to be *complete* if every Cauchy sequence in X

Definition 4 (Completeness)

A $\underline{\text{space}}\ X$ is said to be $\underline{\text{complete}}\ \text{if every Cauchy sequence in } X$ converges

Definition 4 (Completeness)

A <u>space</u> X is said to be *complete* if every Cauchy sequence in X converges in X.

Definition 4 (Completeness)

A <u>space</u> X is said to be *complete* if every Cauchy sequence in X converges in X.

Theorem $1~(\mathbb{R}$ is complete)

 \mathbb{R} is complete.

Definition 4 (Completeness)

A <u>space</u> X is said to be *complete* if every Cauchy sequence in X converges in X.

Theorem $1~(\mathbb{R}$ is complete)

 \mathbb{R} is complete.

This theorem is trivial and not trivial at the same time.

Definition 4 (Completeness)

A <u>space</u> X is said to be *complete* if every Cauchy sequence in X converges in X.

Theorem $1~(\mathbb{R}$ is complete)

 \mathbb{R} is complete.

This theorem is trivial and not trivial at the same time. You don't know what \mathbb{R} *truly* is.

Definition 4 (Completeness)

A <u>space</u> X is said to be *complete* if every Cauchy sequence in X converges in X.

Theorem 1 $(\mathbb{R}$ is complete)

 \mathbb{R} is complete.

This theorem is trivial and not trivial at the same time. You don't know what \mathbb{R} *truly* is. So you can't really prove this.

Definition 4 (Completeness)

A <u>space</u> X is said to be *complete* if every Cauchy sequence in X converges in X.

Theorem 1 $(\mathbb{R}$ is complete)

 \mathbb{R} is complete.

This theorem is trivial and not trivial at the same time. You don't know what \mathbb{R} *truly* is. So you can't really prove this.

Non-examples:

Definition 4 (Completeness)

A <u>space</u> X is said to be *complete* if every Cauchy sequence in X converges in X.

Theorem 1 $(\mathbb{R}$ is complete)

 \mathbb{R} is complete.

This theorem is trivial and not trivial at the same time. You don't know what \mathbb{R} *truly* is. So you can't really prove this.

Non-examples: We saw some examples earlier.

Definition 4 (Completeness)

A <u>space</u> X is said to be *complete* if every Cauchy sequence in X converges in X.

Theorem $1~(\mathbb{R}$ is complete)

 \mathbb{R} is complete.

This theorem is trivial and not trivial at the same time. You don't know what \mathbb{R} truly is. So you can't really prove this.

Non-examples: We saw some examples earlier. Go back and see that $\mathbb Q$ and (0,1] are **not** complete.

Definition 4 (Completeness)

A <u>space</u> X is said to be *complete* if every Cauchy sequence in X converges in X.

Theorem $1~(\mathbb{R}$ is complete)

 \mathbb{R} is complete.

This theorem is trivial and not trivial at the same time. You don't know what \mathbb{R} truly is. So you can't really prove this.

Non-examples: We saw some examples earlier. Go back and see that \mathbb{Q} and (0,1] are **not** complete.

Exercise: Show that \mathbb{N}, \mathbb{Z} are complete.

Definition 4 (Completeness)

A <u>space</u> X is said to be *complete* if every Cauchy sequence in X converges in X.

Theorem 1 $(\mathbb{R}$ is complete)

 \mathbb{R} is complete.

This theorem is trivial and not trivial at the same time. You don't know what \mathbb{R} truly is. So you can't really prove this.

Non-examples: We saw some examples earlier. Go back and see that \mathbb{Q} and (0,1] are **not** complete.

Exercise: Show that \mathbb{N}, \mathbb{Z} are complete. (What property do you really need? Can you generalise this?)

Now, we digress a bit to see what $\mathbb R$ and completeness really means.

It is okay if you don't understand every single thing. It is more or less for you to know "okay, whatever we say works" even if you don't know the exact details why.

What is \mathbb{R} ?

What is \mathbb{R} ? Well, all one really needs is to know the following two slides about \mathbb{R} .

What is \mathbb{R} ? Well, all one really needs is to know the following two slides about \mathbb{R} .

 \mathbb{R} is a field.

What is \mathbb{R} ? Well, all one really needs is to know the following two slides about \mathbb{R} .

 \mathbb{R} is a field. This means that the familiar properties of addition/multiplication are true.

What is \mathbb{R} ? Well, all one really needs is to know the following two slides about \mathbb{R} .

 \mathbb{R} is a field. This means that the familiar properties of addition/multiplication are true. (Commutativity, associativity, existence of identity, inverses, and distributivity.)

What is \mathbb{R} ? Well, all one really needs is to know the following two slides about \mathbb{R} .

 $\mathbb R$ is a field. This means that the familiar properties of addition/multiplication are true. (Commutativity, associativity, existence of identity, inverses, and distributivity.)

 \mathbb{R} is ordered.

What is \mathbb{R} ? Well, all one really needs is to know the following two slides about \mathbb{R} .

 \mathbb{R} is a field. This means that the familiar properties of addition/multiplication are true. (Commutativity, associativity, existence of identity, inverses, and distributivity.)

 ${\mathbb R}$ is ordered. There is a binary operation \le on ${\mathbb R}$ which is

What is \mathbb{R} ? Well, all one really needs is to know the following two slides about \mathbb{R} .

 \mathbb{R} is a field. This means that the familiar properties of addition/multiplication are true. (Commutativity, associativity, existence of identity, inverses, and distributivity.)

 $\mathbb R$ is ordered. There is a binary operation \leq on $\mathbb R$ which is reflexive,

What is \mathbb{R} ? Well, all one really needs is to know the following two slides about \mathbb{R} .

 \mathbb{R} is a field. This means that the familiar properties of addition/multiplication are true. (Commutativity, associativity, existence of identity, inverses, and distributivity.)

 $\mathbb R$ is ordered. There is a binary operation \leq on $\mathbb R$ which is reflexive, anti-symmetric,

What is \mathbb{R} ? Well, all one really needs is to know the following two slides about \mathbb{R} .

 \mathbb{R} is a field. This means that the familiar properties of addition/multiplication are true. (Commutativity, associativity, existence of identity, inverses, and distributivity.)

 $\mathbb R$ is ordered. There is a binary operation \leq on $\mathbb R$ which is reflexive, anti-symmetric, transitive,

What is \mathbb{R} ? Well, all one really needs is to know the following two slides about \mathbb{R} .

 \mathbb{R} is a field. This means that the familiar properties of addition/multiplication are true. (Commutativity, associativity, existence of identity, inverses, and distributivity.)

 $\mathbb R$ is ordered. There is a binary operation \leq on $\mathbb R$ which is reflexive, anti-symmetric, transitive, and any two elements can be compared.

What is \mathbb{R} ? Well, all one really needs is to know the following two slides about \mathbb{R} .

 \mathbb{R} is a field. This means that the familiar properties of addition/multiplication are true. (Commutativity, associativity, existence of identity, inverses, and distributivity.)

 $\mathbb R$ is ordered. There is a binary operation \leq on $\mathbb R$ which is reflexive, anti-symmetric, transitive, and any two elements can be compared.

 \mathbb{R} is an ordered field.

What is \mathbb{R} ? Well, all one really needs is to know the following two slides about \mathbb{R} .

 \mathbb{R} is a field. This means that the familiar properties of addition/multiplication are true. (Commutativity, associativity, existence of identity, inverses, and distributivity.)

 $\mathbb R$ is ordered. There is a binary operation \leq on $\mathbb R$ which is reflexive, anti-symmetric, transitive, and any two elements can be compared.

 $\mathbb R$ is an ordered field. All this means is that there is an order which is actually compatible with + and $\cdot.$

What is \mathbb{R} ? Well, all one really needs is to know the following two slides about \mathbb{R} .

 \mathbb{R} is a field. This means that the familiar properties of addition/multiplication are true. (Commutativity, associativity, existence of identity, inverses, and distributivity.)

 $\mathbb R$ is ordered. There is a binary operation \leq on $\mathbb R$ which is reflexive, anti-symmetric, transitive, and any two elements can be compared.

 $\mathbb R$ is an ordered field. All this means is that there is an order which is actually compatible with + and \cdot . What does this mean?

What is \mathbb{R} ? Well, all one really needs is to know the following two slides about \mathbb{R} .

 \mathbb{R} is a field. This means that the familiar properties of addition/multiplication are true. (Commutativity, associativity, existence of identity, inverses, and distributivity.)

 $\mathbb R$ is ordered. There is a binary operation \leq on $\mathbb R$ which is reflexive, anti-symmetric, transitive, and any two elements can be compared.

 $\mathbb R$ is an ordered field. All this means is that there is an order which is actually compatible with + and \cdot . What does this mean?

$$x < y \implies x + z < y + z \text{ for all } x, y, z \in \mathbb{R},$$

What is \mathbb{R} ? Well, all one really needs is to know the following two slides about \mathbb{R} .

 \mathbb{R} is a field. This means that the familiar properties of addition/multiplication are true. (Commutativity, associativity, existence of identity, inverses, and distributivity.)

 $\mathbb R$ is ordered. There is a binary operation \leq on $\mathbb R$ which is reflexive, anti-symmetric, transitive, and any two elements can be compared.

 $\mathbb R$ is an ordered field. All this means is that there is an order which is actually compatible with + and \cdot . What does this mean?

$$x < y \implies x + z < y + z \text{ for all } x, y, z \in \mathbb{R},$$

 $x < y \implies x \cdot z < y \cdot z \text{ for all } x, y \in \mathbb{R} \text{ and } z \in \mathbb{R}_{>0}.$

Note that all the properties earlier are also satisfied by $\mathbb Q.$ Here's what sets $\mathbb R$ apart:

Note that all the properties earlier are also satisfied by $\mathbb Q.$ Here's what sets $\mathbb R$ apart:

 ${\mathbb R}$ is complete.

Note that all the properties earlier are also satisfied by $\mathbb Q.$ Here's what sets $\mathbb R$ apart:

 \mathbb{R} is complete.

There's another way of defining completeness of \mathbb{R} , which coincides with the usual.

Note that all the properties earlier are also satisfied by $\mathbb Q.$ Here's what sets $\mathbb R$ apart:

 \mathbb{R} is complete.

There's another way of defining completeness of \mathbb{R} , which coincides with the usual. It is the following:

Note that all the properties earlier are also satisfied by $\mathbb Q.$ Here's what sets $\mathbb R$ apart:

 ${\mathbb R}$ is complete.

There's another way of defining completeness of \mathbb{R} , which coincides with the usual. It is the following:

Every non-empty subset of $\ensuremath{\mathbb{R}}$

Note that all the properties earlier are also satisfied by $\mathbb Q.$ Here's what sets $\mathbb R$ apart:

 \mathbb{R} is complete.

There's another way of defining completeness of \mathbb{R} , which coincides with the usual. It is the following:

Every non-empty subset of $\ensuremath{\mathbb{R}}$ which is bounded above

Note that all the properties earlier are also satisfied by $\mathbb Q.$ Here's what sets $\mathbb R$ apart:

 \mathbb{R} is complete.

There's another way of defining completeness of \mathbb{R} , which coincides with the usual. It is the following:

Every non-empty subset of $\ensuremath{\mathbb{R}}$ which is bounded above has a least upper bound.

Note that all the properties earlier are also satisfied by $\mathbb Q.$ Here's what sets $\mathbb R$ apart:

 \mathbb{R} is complete.

There's another way of defining completeness of \mathbb{R} , which coincides with the usual. It is the following:

Every non-empty subset of $\ensuremath{\mathbb{R}}$ which is bounded above has a least upper bound.

The least upper bound is called supremum.

Note that all the properties earlier are also satisfied by $\mathbb Q.$ Here's what sets $\mathbb R$ apart:

 \mathbb{R} is complete.

There's another way of defining completeness of \mathbb{R} , which coincides with the usual. It is the following:

Every non-empty subset of $\mathbb R$ which is bounded above has a least upper bound.

The least upper bound is called supremum.

Note that **neither** of the above grey boxes is true if we replace \mathbb{R} by \mathbb{Q} .

What one must really ask at this point is:

What one must really ask at this point is: how do we know that \mathbb{R} exists?

What one must really ask at this point is: how do we know that \mathbb{R} exists?

That is, how do we know that there is some set $\ensuremath{\mathbb{R}}$

What one must really ask at this point is: how do we know that \mathbb{R} exists?

That is, how do we know that there is some set $\mathbb R$ with some operations $+,\cdot$

What one must really ask at this point is: how do we know that \mathbb{R} exists?

That is, how do we know that there is some set $\mathbb R$ with some operations $+,\cdot$ and binary relation <

What one must really ask at this point is: how do we know that \mathbb{R} exists?

That is, how do we know that there is some set $\mathbb R$ with some operations $+,\cdot$ and binary relation < which satisfies all the listed properties?

What one must really ask at this point is: how do we know that \mathbb{R} exists?

That is, how do we know that there is some set $\mathbb R$ with some operations $+,\cdot$ and binary relation < which satisfies all the listed properties?

That is what I refer to as a non-trivial part.

What one must really ask at this point is: how do we know that \mathbb{R} exists?

That is, how do we know that there is some set $\mathbb R$ with some operations $+,\cdot$ and binary relation < which satisfies all the listed properties?

That is what I refer to as a non-trivial part. It can be done but is not useful to us at the moment.

Back to sequences now.

Definition 5 (Monotonically increasing sequences)

Back to sequences now.

Definition 5 (Monotonically increasing sequences)

A sequence (a_n) is said to be monotonically increasing

Back to sequences now.

Definition 5 (Monotonically increasing sequences)

A sequence (a_n) is said to be monotonically increasing if

$$a_{n+1} \geq a_n$$

Back to sequences now.

Definition 5 (Monotonically increasing sequences)

A sequence (a_n) is said to be monotonically increasing if

$$a_{n+1} \geq a_n$$

for all $n \in \mathbb{N}$.

Back to sequences now.

Definition 5 (Monotonically increasing sequences)

A sequence (a_n) is said to be monotonically increasing if

$$a_{n+1} \geq a_n$$

for all $n \in \mathbb{N}$.

Similarly, one defines a monotonically decreasing sequence.

Back to sequences now.

Definition 5 (Monotonically increasing sequences)

A sequence (a_n) is said to be monotonically increasing if

$$a_{n+1} \geq a_n$$

for all $n \in \mathbb{N}$.

Similarly, one defines a monotonically decreasing sequence. A sequence is said to be monotonic if it is either monotonically increasing or monotonically decreasing.

Definition 6 (Eventually monotonically increasing sequences)

Definition 6 (Eventually monotonically increasing sequences)

A sequence (a_n) is said to be eventually monotonically increasing

Definition 6 (Eventually monotonically increasing sequences)

A sequence (a_n) is said to be *eventually monotonically increasing* if there exists $N \in \mathbb{N}$ such that

Definition 6 (Eventually monotonically increasing sequences)

A sequence (a_n) is said to be *eventually monotonically increasing* if there exists $N \in \mathbb{N}$ such that

$$a_{n+1} \geq a_n$$

Definition 6 (Eventually monotonically increasing sequences)

A sequence (a_n) is said to be *eventually monotonically increasing* if there exists $N \in \mathbb{N}$ such that

$$a_{n+1} \geq a_n$$

for all $n \geq N$.

Definition 6 (Eventually monotonically increasing sequences)

A sequence (a_n) is said to be *eventually monotonically increasing* if there exists $N \in \mathbb{N}$ such that

$$a_{n+1} \geq a_n$$

for all $n \geq N$.

As earlier, we can define eventually monotonically decreasing sequences and simply, eventually monotonic sequences.

Definition 6 (Eventually monotonically increasing sequences)

A sequence (a_n) is said to be *eventually monotonically increasing* if there exists $N \in \mathbb{N}$ such that

$$a_{n+1} \geq a_n$$

for all $n \geq N$.

As earlier, we can define eventually monotonically decreasing sequences and simply, eventually monotonic sequences.

Theorem 2

An eventually monotonic sequence in \mathbb{R} which is bounded converges in \mathbb{R} .

Definition 6 (Eventually monotonically increasing sequences)

A sequence (a_n) is said to be *eventually monotonically increasing* if there exists $N \in \mathbb{N}$ such that

$$a_{n+1} \geq a_n$$

for all $n \geq N$.

As earlier, we can define eventually monotonically decreasing sequences and simply, eventually monotonic sequences.

Theorem 2

An eventually monotonic sequence in \mathbb{R} which is bounded converges in \mathbb{R} .

Again, the above is not true if we take \mathbb{Q} instead of \mathbb{R} .

Definition 6 (Eventually monotonically increasing sequences)

A sequence (a_n) is said to be *eventually monotonically increasing* if there exists $N \in \mathbb{N}$ such that

$$a_{n+1} \geq a_n$$

for all $n \geq N$.

As earlier, we can define eventually monotonically decreasing sequences and simply, eventually monotonic sequences.

Theorem 2

An eventually monotonic sequence in \mathbb{R} which is bounded converges in \mathbb{R} .

Again, the above is not true if we take $\mathbb Q$ instead of $\mathbb R.$ The π sequence shows this.

Definition 6 (Eventually monotonically increasing sequences)

A sequence (a_n) is said to be *eventually monotonically increasing* if there exists $N \in \mathbb{N}$ such that

$$a_{n+1} \geq a_n$$

for all $n \geq N$.

As earlier, we can define eventually monotonically decreasing sequences and simply, eventually monotonic sequences.

Theorem 2

An eventually monotonic sequence in \mathbb{R} which is bounded converges in \mathbb{R} .

Again, the above is not true if we take $\mathbb Q$ instead of $\mathbb R$. The π sequence shows this. In fact, the above is really a consequence of completeness.

We also saw series in the lectures. There's nothing much to be said about it.

We also saw series in the lectures. There's nothing much to be said about it. (As far as this course is concerned.)

We also saw series in the lectures. There's nothing much to be said about it. (As far as this course is concerned.) In reality, there is a lot more to be said about series and various tests for seeing if a series converges.

We also saw series in the lectures. There's nothing much to be said about it. (As far as this course is concerned.) In reality, there is a lot more to be said about series and various tests for seeing if a series converges. Some of you will see this in future courses like MA 205.

We also saw series in the lectures. There's nothing much to be said about it. (As far as this course is concerned.) In reality, there is a lot more to be said about series and various tests for seeing if a series converges. Some of you will see this in future courses like MA 205. Those taking a minor in Mathematics will also come across it in MA 403.

We also saw series in the lectures. There's nothing much to be said about it. (As far as this course is concerned.) In reality, there is a lot more to be said about series and various tests for seeing if a series converges. Some of you will see this in future courses like MA 205. Those taking a minor in Mathematics will also come across it in MA 403. Of course, the ones in the Mathematics department will also see it in various courses.

We also saw series in the lectures. There's nothing much to be said about it. (As far as this course is concerned.) In reality, there is a lot more to be said about series and various tests for seeing if a series converges. Some of you will see this in future courses like MA 205. Those taking a minor in Mathematics will also come across it in MA 403. Of course, the ones in the Mathematics department will also see it in various courses.

For us, all we need to know is that convergence of a series is just the convergence of the <u>sequence</u> of its *partial sums*.

We also saw series in the lectures. There's nothing much to be said about it. (As far as this course is concerned.) In reality, there is a lot more to be said about series and various tests for seeing if a series converges. Some of you will see this in future courses like MA 205. Those taking a minor in Mathematics will also come across it in MA 403. Of course, the ones in the Mathematics department will also see it in various courses.

For us, all we need to know is that convergence of a series is just the convergence of the <u>sequence</u> of its *partial sums*. Thus, we are back in the case where we study sequences!

We then moved on to the definition of limits of functions defined on intervals.

We then moved on to the definition of limits of functions defined on intervals.

For the remainder, we fix $a,b \in \mathbb{R}$

We then moved on to the definition of limits of functions defined on intervals.

For the remainder, we fix $a, b \in \mathbb{R}$ such that a < b.

We then moved on to the definition of limits of functions defined on intervals.

For the remainder, we fix $a, b \in \mathbb{R}$ such that a < b. (Just to recall, ∞ is not an element of \mathbb{R} .)

We then moved on to the definition of limits of functions defined on intervals.

For the remainder, we fix $a, b \in \mathbb{R}$ such that a < b. (Just to recall, ∞ is not an element of \mathbb{R} .)

Definition 7 (Limit)

Let $f:(a,b)\to\mathbb{R}$ be a function.

We then moved on to the definition of limits of functions defined on intervals.

For the remainder, we fix $a, b \in \mathbb{R}$ such that a < b. (Just to recall, ∞ is not an element of \mathbb{R} .)

Definition 7 (Limit)

Let $f:(a,b)\to\mathbb{R}$ be a function. Let $x_0\in[a,b]$

We then moved on to the definition of limits of functions defined on intervals.

For the remainder, we fix $a, b \in \mathbb{R}$ such that a < b. (Just to recall, ∞ is not an element of \mathbb{R} .)

Definition 7 (Limit)

Let $f:(a,b)\to\mathbb{R}$ be a function. Let $x_0\in[a,b]$ and $l\in\mathbb{R}$.

We then moved on to the definition of limits of functions defined on intervals.

For the remainder, we fix $a, b \in \mathbb{R}$ such that a < b. (Just to recall, ∞ is not an element of \mathbb{R} .)

Definition 7 (Limit)

Let $f:(a,b)\to\mathbb{R}$ be a function. Let $x_0\in[a,b]$ and $l\in\mathbb{R}$. Then, we write

$$\lim_{x\to x_0} f(x) = I$$

We then moved on to the definition of limits of functions defined on intervals.

For the remainder, we fix $a, b \in \mathbb{R}$ such that a < b. (Just to recall, ∞ is not an element of \mathbb{R} .)

Definition 7 (Limit)

Let $f:(a,b)\to\mathbb{R}$ be a function. Let $x_0\in[a,b]$ and $l\in\mathbb{R}$. Then, we write

$$\lim_{x \to x_0} f(x) = I$$

if for every $\epsilon > 0$,

We then moved on to the definition of limits of functions defined on intervals.

For the remainder, we fix $a, b \in \mathbb{R}$ such that a < b. (Just to recall, ∞ is not an element of \mathbb{R} .)

Definition 7 (Limit)

Let $f:(a,b)\to\mathbb{R}$ be a function. Let $x_0\in[a,b]$ and $l\in\mathbb{R}$. Then, we write

$$\lim_{x\to x_0} f(x) = I$$

if for every $\epsilon > 0$, there exists $\delta > 0$

We then moved on to the definition of limits of functions defined on intervals.

For the remainder, we fix $a, b \in \mathbb{R}$ such that a < b. (Just to recall, ∞ is not an element of \mathbb{R} .)

Definition 7 (Limit)

Let $f:(a,b)\to\mathbb{R}$ be a function. Let $x_0\in[a,b]$ and $l\in\mathbb{R}$. Then, we write

$$\lim_{x\to x_0} f(x) = I$$

if for every $\epsilon > 0$, there exists $\delta > 0$ such that

We then moved on to the definition of limits of functions defined on intervals.

For the remainder, we fix $a, b \in \mathbb{R}$ such that a < b. (Just to recall, ∞ is not an element of \mathbb{R} .)

Definition 7 (Limit)

Let $f:(a,b)\to\mathbb{R}$ be a function. Let $x_0\in[a,b]$ and $l\in\mathbb{R}$. Then, we write

$$\lim_{x\to x_0} f(x) = I$$

if for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - I| < \epsilon$$

We then moved on to the definition of limits of functions defined on intervals.

For the remainder, we fix $a, b \in \mathbb{R}$ such that a < b. (Just to recall, ∞ is not an element of \mathbb{R} .)

Definition 7 (Limit)

Let $f:(a,b)\to\mathbb{R}$ be a function. Let $x_0\in[a,b]$ and $l\in\mathbb{R}$. Then, we write

$$\lim_{x\to x_0} f(x) = I$$

if for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - I| < \epsilon$$

for all $x \in (a, b)$

We then moved on to the definition of limits of functions defined on intervals.

For the remainder, we fix $a, b \in \mathbb{R}$ such that a < b. (Just to recall, ∞ is not an element of \mathbb{R} .)

Definition 7 (Limit)

Let $f:(a,b)\to\mathbb{R}$ be a function. Let $x_0\in[a,b]$ and $l\in\mathbb{R}$. Then, we write

$$\lim_{x\to x_0} f(x) = I$$

if for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - I| < \epsilon$$

for all $x \in (a, b)$ such that $0 < |x - x_0| < \delta$.

Note in the above that we can still talk about limits at points at which is the function is *not* defined.

Note in the above that we can still talk about limits at points at which is the function is *not* defined.

If the thing in the previous slide does happen,

Note in the above that we can still talk about limits at points at which is the function is *not* defined.

If the thing in the previous slide does happen, then we say that f(x) tends to I as x tends to x_0 .

Note in the above that we can still talk about limits at points at which is the function is *not* defined.

If the thing in the previous slide does happen, then we say that f(x) tends to I as x tends to x_0 . Or that f has a limit I at x_0 .

Note in the above that we can still talk about limits at points at which is the function is *not* defined.

If the thing in the previous slide does happen, then we say that f(x) tends to I as x tends to x_0 . Or that f has a limit I at x_0 .

If no such I exists, then we say that f does not have any limit at x_0 .

We then also defined limit at $\pm \infty$.

```
Definition 8 (Limit at \infty)
```

We then also defined limit at $\pm \infty$.

Definition 8 (Limit at ∞)

Let $A \subset \mathbb{R}$ be a set which is not bounded above.

We then also defined limit at $\pm \infty$.

Definition 8 (Limit at ∞)

Let $A \subset \mathbb{R}$ be a set which is not bounded above. Let $f : A \to \mathbb{R}$ be a function

We then also defined limit at $\pm \infty$.

Definition 8 (Limit at ∞)

Let $A \subset \mathbb{R}$ be a set which is not bounded above. Let $f : A \to \mathbb{R}$ be a function and let $I \in \mathbb{R}$.

We then also defined limit at $\pm \infty$.

Definition 8 (Limit at ∞)

Let $A \subset \mathbb{R}$ be a set which is not bounded above. Let $f : A \to \mathbb{R}$ be a function and let $I \in \mathbb{R}$. We say

$$\lim_{x\to\infty}f(x)=I$$

We then also defined limit at $\pm \infty$.

Definition 8 (Limit at ∞)

Let $A \subset \mathbb{R}$ be a set which is not bounded above. Let $f : A \to \mathbb{R}$ be a function and let $I \in \mathbb{R}$. We say

$$\lim_{x\to\infty}f(x)=I$$

if for every $\epsilon > 0$,

We then also defined limit at $\pm \infty$.

Definition 8 (Limit at ∞)

Let $A \subset \mathbb{R}$ be a set which is not bounded above. Let $f : A \to \mathbb{R}$ be a function and let $I \in \mathbb{R}$. We say

$$\lim_{x\to\infty}f(x)=I$$

if for every $\epsilon > 0$, there exists $X \in \mathbb{R}$ such that

We then also defined limit at $\pm \infty$.

Definition 8 (Limit at ∞)

Let $A \subset \mathbb{R}$ be a set which is not bounded above. Let $f : A \to \mathbb{R}$ be a function and let $I \in \mathbb{R}$. We say

$$\lim_{x\to\infty}f(x)=I$$

if for every $\epsilon > 0$, there exists $X \in \mathbb{R}$ such that

$$|f(x) - L| < \epsilon$$

We then also defined limit at $\pm \infty$.

Definition 8 (Limit at ∞)

Let $A \subset \mathbb{R}$ be a set which is not bounded above. Let $f : A \to \mathbb{R}$ be a function and let $I \in \mathbb{R}$. We say

$$\lim_{x\to\infty}f(x)=I$$

if for every $\epsilon > 0$, there exists $X \in \mathbb{R}$ such that

$$|f(x) - L| < \epsilon$$

for all $x \in A$

We then also defined limit at $\pm \infty$.

Definition 8 (Limit at ∞)

Let $A \subset \mathbb{R}$ be a set which is not bounded above. Let $f : A \to \mathbb{R}$ be a function and let $I \in \mathbb{R}$. We say

$$\lim_{x\to\infty}f(x)=I$$

if for every $\epsilon > 0$, there exists $X \in \mathbb{R}$ such that

$$|f(x) - L| < \epsilon$$

for all $x \in A$ such that x > X.

We then also defined limit at $\pm \infty$.

Definition 8 (Limit at ∞)

Let $A \subset \mathbb{R}$ be a set which is not bounded above. Let $f : A \to \mathbb{R}$ be a function and let $I \in \mathbb{R}$. We say

$$\lim_{x\to\infty}f(x)=I$$

if for every $\epsilon > 0$, there exists $X \in \mathbb{R}$ such that

$$|f(x) - L| < \epsilon$$

for all $x \in A$ such that x > X.

Similarly, we have the limit at $-\infty$.

Stop recording. Start a new one. Take doubts.