UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i MAT-INF 1100 — Modellering og

beregninger.

Eksamensdag: Onsdag 12. oktober 2016.

Tid for eksamen: 15:00-17:00.

Oppgavesettet er på 7 sider.

Vedlegg: Formelark.

Tillatte hjelpemidler: Ingen.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Svarene føres på eget svarark.

De 10 første oppgavene teller 2 poeng hver, de siste 10 teller 3 poeng hver. Den totale poengsummen er altså 50. Det er 5 svaralternativer for hvert spørsmål, men det er bare ett av disse som er riktig. Dersom du svarer feil eller lar være å krysse av på et spørsmål, får du null poeng. Du blir altså ikke "straffet" med minuspoeng for å svare feil. Lykke til!

NB. Husk å sjekke at du har ført inn svarene riktig på svararket!

Oppgaveark

Oppgave 1. Det desimale tallet 219 representeres i totallssystemet som

A: 1101 0111₂

B: 1010 1011₂

C: 1101 1010₂

D: 1110 0111₂

✓E: 1101 1011₂

Løsningsforslag. Bruk algoritme 3.7 i kompendiet.

Oppgave 2. I 16-tallsystemet blir det binære tallet 110 1110.01011 $_2$ skrevet som

 \checkmark **A:** $6e.58_{16}$

B: $7f.68_{16}$

C: 5e.66₁₆

D: $6e.56_{16}$

E: $6e.78_{16}$

Løsningsforslag. Oversett fire og fire binære sifre til ett heksadesimalt, start rundt binærpunktet. For eksempel er

$$1110_2 = 8 + 4 + 2 = 14 = e_{16}$$
.

Oppgave 3. Tallet 401₅ i 5-tallsystemet representerer det desimale tallet

A: 41

B: 51

C: 111

√D: 101

E: 91

Løsningsforslag.

$$401_5 = 4 \cdot 5^2 + 0 \cdot 5 + 1 = 100 + 1 = 101.$$

Oppgave 4. Det rasjonale tallet 5/6 kan skrives i 2-tallsystemet som

A: $0.1111\ 0011\ 0011\ \cdots_2$ der sifrene 0011 gjentas uendelig mange ganger

B: $0.1101\ 0011\ 0011\ \cdots$ der sifrene $0011\ gjentas$ uendelig mange ganger

 $\checkmark\,\mathbf{C} \colon 0.1101\ 0101\ 0101 \cdots_2$ der sifrene 0101 gjentas uendelig mange ganger

D: 0.1111 1011 $1011 \cdot \cdot \cdot \cdot_2$ der sifrene 1011 gjentas uendelig mange ganger

E: 0.1111 0101₂

Løsningsforslag.

Denne oppgaven løses nok enklest ved å gjennomføre algoritme 3.16 i kompendiet.

Oppgave 5. Tallet 3313₄ i 4-tallsystemet skrives i 2-tallsystemet som

✓ A: 1111 0111₂

B: 1101 0011₂

C: 1111 1011₂

D: 1111 0011₂

E: 1101 0111₂

Løsningsforslag. Å konvertere fra 4-tallsystemet til 2-tallsystemet er analogt til det å konvertere fra 16-tallsystemet til 2-tallsystemet, bare at her konverteres hvert siffer i 4-tallsystemet til to sifre i 2-tallsystemet. Skrevet ut i detalj:

$$3313_4 = 3 \cdot 4^3 + 3 \cdot 4^2 + 1 \cdot 4 + 3 = (1 \cdot 2 + 1)2^6 + (1 \cdot 2 + 1)2^4 + (0 \cdot 2 + 1)2^2 + 1 \cdot 2 + 1$$

$$= 1 \cdot 2^7 + 1 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

$$= 1111 \ 0111_2.$$

Oppgave 6. Kun ett av følgende utsagn er sant, hvilket?

 $\checkmark\mathbf{A}\text{:}$ Tallet 3/11 kan representeres med en endelig sifferutvikling i 165-tallsystemet

B: Det rasjonale tallet 7/10 kan representeres med en endelig sifferutvikling i 6-tallsystemet

(Fortsettes på side 3.)

 $\mathbf{C} \text{:}\ \mathrm{Det}\ \mathrm{rasjonale}\ \mathrm{tallet}\ 3/7\ \mathrm{kan}\ \mathrm{representeres}\ \mathrm{med}\ \mathrm{en}\ \mathrm{endelig}\ \mathrm{sifferutvikling}$ i 16-tallsystemet

D: I 60-tallsystemet kan alle rasjonale tall med nevner 2, 3, 4, 5, 6, 7, 8, 9 representeres med en endelig sifferutvikling

 $\mathbf{E} \text{:}\ \mathrm{Det}\ \mathrm{rasjonale}\ \mathrm{tallet}\ 5/12\ \mathrm{kan}\ \mathrm{representeres}\ \mathrm{med}\ \mathrm{en}\ \mathrm{endelig}\ \mathrm{sifferutvikling}\ \mathrm{i}\ 9\text{-tallsystemet}$

Løsningsforslag. Dette følger fra Lemma 3.22 i kompendiet siden $165 = 3 \cdot 5 \cdot 11$.

Oppgave 7. Tallet

$$\frac{1-\sqrt{2}}{1+\sqrt{2}}-2\sqrt{2}$$

er

√A: −3

B: 1

C: 0

D: 2

E: irrasjonalt

Løsningsforslag. Hvis vi trekker sammen får vi

$$\frac{1-\sqrt{2}}{1+\sqrt{2}} - 2\sqrt{2} = \frac{1-\sqrt{2}-2\sqrt{2}-4}{1+\sqrt{2}} = -\frac{3+3\sqrt{2}}{1+\sqrt{2}} = -3.$$

Oppgave 8. Hva er største nedre skranke for mengden

$${x \in \mathbb{R} \mid 0 < x < 1 \text{ og } 1 < \tan x < 2}$$
?

A: 0

B: $\pi/2$

 \checkmark C: $\pi/4$

D: $\pi/6$

E: 1

Løsningsforslag. Største nedre skranke er gitt ved tallet som tilfredstiller $\tan x = 1$, altså $\arctan 1 = \pi/4$.

Oppgave 9. Multiplikasjonen $11_6 \cdot 13_6$ (der begge tallene er representert i 6-tallsystemet) gir som resultat

A: 131₆

B: 141₆

✓ C: 143₆

D: 133₆

E: 123₆

Løsningsforslag. Det enkleste og tryggeste er nok å gjøre om de to tallene til 10-tallsystemet, gange sammen, og så konvertere til 6-tallsystemet.

$$11_6 \cdot 13_6 = 7 \cdot 9 = 63 = 36 + 24 + 3 = 1 \cdot 6^2 + 4 \cdot 6^1 + 3 \cdot 6^0.$$

(Fortsettes på side 4.)

Oppgave 10. For hvilken verdi av $\beta > 3$ har vi $2_{\beta} \cdot 23_{\beta} = 101_{\beta}$ (der alle tallene er representert i β -tallsystemet)?

A: $\beta = 4$

 $\sqrt{\mathbf{B}}$: $\beta = 5$

C: $\beta = 6$

D: $\beta = 7$

E: $\beta = 8$

Løsningsforslag. Relasjonen sier at

$$2 \cdot (2\beta + 3) = \beta^2 + 1$$

eller

$$\beta^2 - 4\beta - 5 = 0$$

som har løsningene $\beta=-1$ og $\beta=5$. Det er bare den siste løsningen som gir mening.

Oppgave 11. Vi tilnærmer et tall a med et tall \tilde{a} og den relative feilen blir 0.000047. Omtrent hvor mange sifre vil i så fall a og \tilde{a} ha felles?

A: 1

B: 3

√C: 5

D: 7

E: Ingen

Løsningsforslag. Den relative feilen er 4.7×10^{-5} . Da vet vi fra observasjon 5.20 at a og \tilde{a} har omtrent 5 felles sifre.

Oppgave 12. Hvilket av følgende uttrykk vil gi stor relativ feil om det evalueres for flyttall med liten absoluttverdi?

A: $x + x^3$

✓B: 1 - 1/(1 + x)

C: $x + \sin x$

D: $x^4 - x^2$

E: $\sqrt{x^2+2}+x^4$

Løsningsforslag. Uttrykket i (B) er det eneste som fører til subtraksjon av to nesten like tall for små verdier av x.

Oppgave 13. Hvilken av følgende differensligninger er lineær, inhomogen og av tredje orden?

A: $x_{n+1} + 2x_n = 3$

B: $x_{n+2} + x_{n+1}x_nx_{n+3} = 1$

C: $x_{n+4} + x_{n+2} + 3x_{n+1} - nx_n = \cos n$

 $\sqrt{\mathbf{D}}: x_{n+3} + nx_{n+1} - x_n = 4$

E: $x_{n+2} + 4x_{n+1} - x_n = 0$

Oppgave 14. Differensligningen

$$x_{n+1} - x_n = 2^n, \ n \ge 0$$

med startverdi $x_0 = 1$ har løsningen

A:
$$x_n = n + 1$$

√B:
$$x_n = 2^n$$

C:
$$x_n = (n+1)2^n$$

D:
$$x_n = (n^2 + 1)2^n$$

E:
$$x_n = 1/(n+1)$$

Løsningsforslag. Vi ser at løsningen av den homogene ligningen er $x_n^h = C$. Prøver vi med en partikulærløsning på formen $x_n^p = A2^n$ og setter inn får vi relasjonen $A2^{n+1} - A2^n = 2^n$ eller 2A - A = 1. Altså er A = 1. Den generelle løsningen er derfor

$$x_n = C + 2^n.$$

Startverdien gir da $1 = x_0 = C + 1$, altså C = 0.

Oppgave 15. For hvilken verdi av a har ligningen

$$x_{n+1} - 2x_n = -n, \quad n \ge 0$$

med startverdi $x_0 = a$ løsningen $x_n = n + 1$?

A:
$$a = 1/2$$

B:
$$a = -2$$

C:
$$a = -1$$

D:
$$a = 0$$

✓ E:
$$a = 1$$

Løsningsforslag. Hvis $x_n = n + 1$ ser vi at $x_0 = 1$. Altså er (E) riktig.

Oppgave 16. Differensligningen

$$x_{n+2} + 2x_{n+1} - 3x_n = 0$$
, $n \ge 0$, $x_0 = 0$, $x_1 = 4$

har løsningen

A:
$$x_n = 4(n+1)$$

✓ **B:**
$$x_n = 1 - (-3)^n$$

C:
$$x_n = 4n$$

D:
$$x_n = n2^{n+1}$$

E:
$$x_n = 8n/(n+1)$$

Løsningsforslag. Den karakteristiske ligningen $r^2 + 2r - 3 = 0$ har løsningene $r_1 = -3$ og r = 1. Vi ser at den eneste løsningen som kombinerer disse røttene på riktig måte er (B), og den passer også med de to startverdiene.

Oppgave 17. En partikulærløsning av ligningen

$$x_{n+2} - 4x_{n+1} + 3x_n = -2$$

er

A: $x_n = n^2$

 $\sqrt{\mathbf{B}}: x_n = n$

C: $x_n = -2$

D: $x_n = -1$

E: $x_n = 0$

Løsningsforslag. Vi ser $x_n = 1$ er en løsning av den homogene ligningen og denne er på samme form som høyresiden. Derfor må vi øke graden på partikulærløsningen og prøve med $x_n^p = An$. Setter vi inn får vi relasjonen

$$A(n+2) - 4A(n+1) + 3An = -2.$$

Trekker vi sammen og løser faller n-leddene og vi får A=1.

Oppgave 18. Vi har differensligningen

$$5x_{n+2} - 11x_{n+1} + 2x_n = 0$$
, $n \ge 0$, $x_0 = 1, x_1 = 1/5$

og simulerer denne med 64-bits flyttall på datamaskin. For tilstrekkelig store n vil da den beregnede løsningen \bar{x}_n gi som resultat

A: $1/5^n$ og så underflow (0)

 $\sqrt{\mathbf{B}}$: $C2^n$ og så overflow. Her er C en passende konstant

C: $1/5^n$

D: 2

E: 1

Løsningsforslag. Den karakteristiske ligningen $5r^2 - 11r + 2 = 0$ har løsningene $r_1 = 1/5$ og $r_2 = 2$, så den generelle løsningen er

$$x_n = C5^{-n} + D2^n.$$

Ved simulering vil det alltid bli avrundingsfeil siden vi
 må dividere med tallet 5 som ikke kan representeres eksakt med flyttall. Dette svar
er til at konstanten D aldri blir eksakt 0, noe som fører til at det andre leddet før eller siden vil dominere og etterhvert gi overflow.

Oppgave 19. Vi har differensligningen

$$x_{n+2} - \frac{5}{6}x_{n+1} + \frac{1}{6}x_n = 1/3, \quad n \ge 0, \quad x_0 = 3, x_1 = 11/6$$

og simulerer denne med 64-bits flyttall på datamaskin. For tilstrekkelig store n vil da den beregnede løsningen \bar{x}_n gi som resultat

A: $\bar{x}_n = 0$

B: $\bar{x}_n = 2^n$ og deretter overflow

 $\checkmark \mathbf{C} : \bar{x}_n = 1$

D: $\bar{x}_n = 1 + 2^{-n} + 3^{-n}$

E: $\bar{x}_n = 1 + 2^{-n} + 3^{-n}$ og deretter underflow

(Fortsettes på side 7.)

Løsningsforslag. Den karakteristiske ligningen har røttene $r_1 = 1/2$ og $r_2 = 1/3$ så den homogene løsningen er

$$x_n^h = C2^{-n} + D3^{-n}$$

og den endelige løsningen blir

$$1 + 2^{-n} + 3^{-n}$$
.

Simulering vil aldri kunne svare til at koeffisientene C og D er nøyaktig 1, men det gjør ingenting siden de to leddene 2^{-n} og 3^{-n} etterhvert dør ut og domineres fullstendig av den partikulære løsningen $x_n^p = 1$.

Oppgave 20. For hvert naturlige tall n lar vi P_n betegne påstanden

$$P_n: 11^n - 6$$
 er delelig med 5.

Et induksjonsbevis for at P_n er sann for alle naturlige tall kan være som følger:

- 1. Vi ser lett at P_1 er sann.
- 2. Anta nå at vi har bevist at P_1, \ldots, P_k er sanne. For å fullføre induksjonsbeviset, må vi vise at da er også P_{k+1} sann. Siden P_k er sann vet vi at $11^k = 5m + 6$ for et passende naturlig tall m. Vi ser da at

$$11^{k+1} - 6 = 11 \cdot 11^{k} - 6$$
$$= 11(5m + 6) - 6$$
$$= 55m + 60$$
$$= 5(11m + 12)$$

Altså er også $11^{k+1} - 6$ delelig med 5 så P_{k+1} er sann om P_k er sann. Dermed er påstanden P_n sann for alle naturlige tall n.

Hvilket av følgende utsagn er sant?

A: Påstanden P_n er sann for $n \ge 1$, men del 2 av induksjonsbeviset er feil

B: Påstanden P_n er ikke sann for alle $n \ge 1$, og del 2 av induksjonsbeviset er feil

C: Påstanden P_n er ikke sann for alle $n \ge 1$, og del 1 av induksjonsbeviset er feil

 \checkmark **D:** Påstanden P_n er riktig for alle $n \ge 1$ og induksjonsbeviset er riktig

E: Beviset er riktig, men det er ikke noe induksjonsbevis

Løsningsforslag. Her skal det ikke være noen feil.

Det var det!