Computability Theory

Fall 2020

Lecture 5: Turing Machines for Functions

Lecturer: Renjie Yang

5.1 Turing Computablity

Definition 5.1 An expression is a finite sequence (possibly empty) of symbols chosen from the list: $q_1, q_2, q_3, \ldots \in Q$; $S_0, S_1, S_2, S_3, \ldots \in \Gamma$; R, L.

Definition 5.2 A quadruple is an expression having one of the following forms:

- 1. $q_i S_i S_k q_l$
- 2. $q_i S_j R q_l$
- 3. $q_i S_j L q_l$

Definition 5.3 A Turing machine is a finite (nonempty) set of quadruples that contains no two quadruples whose first two symbols are the same.

The q's and S's that occur in the quadruples of a Turing machine are called its **internal configurations** and its **alphabet**, respectively.

Definition 5.4 An instantaneous description is an expression that contains exactly one q_i , neither R nor L, and is such that q_i is not the rightmost symbol.

If Z is a Turing machine and α is an instantaneous description, then we say that α is an instantaneous description of Z if the q_i that occurs in α is an internal configuration of Z and if the S_i 's that occur in α are part of the alphabet of Z.

Definition 5.5 An expression that consists entirely of the letters S; is called a **tape expression**.

Definition 5.6 Let Z be a Turing machine, and let α be an instantaneous description of Z, where q_i is the internal configuration that occurs in α and where S_j is the symbol immediately to the right of q_i . Then we call q_i the internal configuration of Z at α , and we call S_j the symbol scanned by Z at α . The tape expression obtained on removing q_i from α is called the **expression on the tape of** Z at α .

Definition 5.7 Let Z be a Turing machine, and let α, β be instantaneous descriptions. Then we write $\alpha \to \beta$ (Z) to mean that one of the following alternatives holds:

1. There exist expressions P and Q (possibly empty) such that

$$\alpha$$
 is Pq_iS_jQ , β is Pq_lS_kQ ,

where

Z contains $q_i S_i S_k q_l$.

2. There exist expressions P and Q (possibly empty) such that

$$\alpha$$
 is $Pq_iS_jS_kQ$, β is $PS_jq_lS_kQ$,

where

Z contains $q_iS_jRq_l$.

3. There exist expressions P and Q (possibly empty) such that α is Pq_iS_j , β is $PS_jq_lS_0$,

where

Z contains $q_iS_jRq_l$.

4. There exist expressions P and Q (possibly empty) such that α is $PS_kq_iS_jQ$, β is $Pq_lS_kS_jQ$,

where

Z contains $q_iS_jLq_l$.

5. There exist expressions P and Q (possibly empty) such that α is q_iS_jQ , β is $q_lS_0S_jQ$,

where

Z contains $q_iS_jLq_l$.

Theorem 5.8 If $\alpha \to \beta$ (Z) and $\alpha \to \gamma$ (Z), then $\beta = \gamma$.

Theorem 5.9 If $\alpha \to \beta$ (Z) and $Z \subset Z'$, then $\alpha \to \beta$ (Z').

Definition 5.10 An instantaneous description α is called terminal with respect to Z if for no β do we have $\alpha \to \beta$ (Z).

Definition 5.11 By a computation of a Turing machine Z is meant a finite sequence $\alpha_1, \alpha_2, \ldots, \alpha_p$ of instantaneous descriptions such that $\alpha_i \to \alpha_{i+1} Z$ for $1 \le i < p$ and such that α_p is terminal with respect to Z. In such a case, we write $\alpha_p = Res_Z(\alpha_1)$ and we call α_p the **resultant** of α_1 with respect to Z.

Definition 5.12 With each number n we associate the tape expression \overline{n} where $\overline{n} = 1^{n+1}$.

Definition 5.13 With each k-tuple $(n_1, n_2, ..., n_k)$ of integers we associate the tape expression $(n_1, n_2, ..., n_k)$, where

$$\overline{(n_1, n_2, \dots, n_k)} = \overline{n_1} B \overline{n_2} B \cdots B \overline{n_k}$$

Definition 5.14 Let M be any expression. Then $\langle M \rangle$ is the number of occurrences of 1 in M.

Definition 5.15 Let Z be a Turing machine. Then, for each n, we associate with Z an n-ary function

$$\Psi_Z^{(n)}(x_1,x_2,\cdots,x_n)$$

as follows. For each n-tuple (m_1, m_2, \ldots, m_n) , we set $a_1 = q_1(m_1, m_2, \ldots, m_n)$ and we distinguish between two cases:

1. There exists a computation of Z, a_1, \ldots, a_p . In this case we set

$$\Psi_Z^{(n)}(m_1, m_2, \dots, m_n) = \langle a_n \rangle = \langle Res_Z(\alpha_1) \rangle.$$

2. There exists no computation a_1, \ldots, a_p . In this case we leave $\Psi_Z^{(n)}(x_1, x_2, \cdots, x_n)$ undefined.

For $\Psi_Z^{(1)}(x)$ we write $\Psi_Z(x)$.

Definition 5.16 An n-ary function $f(x_1, ..., x_n)$ is **partially computable** if there exists a Turing machine Z such that

$$f(x_1,\ldots,x_n)=\Psi_Z^{(n)}(x_1,\ldots,x_n).$$

In this case we say that Z computes f. If, in addition, $f(x_1, \ldots, x_n)$ is a total function, then it is called **computable**.

5.2 Computable Functions

Examples

- f(x,y) = x + y, p12
- S(x) = x + 1, p12
- f(x,y) = x y, p12
- f(x,y) = x y, p15
- I(x) = x, p16
- $U_i(x_1, x_2, \dots, x_n) = x_i, 1 \le i \le n, \text{ p16}$
- f(x,y) = (x+1)(y+1), p17

Definition 5.17 If Z is a Turing machine we let $\theta(Z)$ be the largest number i such that q_i is an internal configuration of Z.

Definition 5.18 A Turing machine Z is called n-regular (n > 0) if

- 1. There is an s>0 such that, whenever $Res_Z[q_1\overline{(m_1,\ldots,m_n)}]$ is defined, it has the form $q_{\theta(Z)}\overline{(r_1,\ldots,r_s)}$ for suitable r_1,\ldots,r_s , and
- 2. No quadruple of Z begins with $q_{\theta(Z)}$.

Definition 5.19 Let Z be a Turing machine. Then $Z^{(n)}$ is the Turing machine obtained from Z by replacing each internal configuration q_i , at all of its occurrences in quadruples of Z, by q_{n+i} .

Lemma 5.20 (LEMMA 1 in the book) For every Turing machine Z, we can find a Turing machine Z' such that, for each n, Z' is n-regular, and

$$Res_{Z'}[q_1\overline{(m_1,\ldots,m_n)}] = q_{\theta(Z')}\overline{\Psi_Z^{(n)}(m_1,\ldots,m_n)}$$

Proof: Page 26. See the demo in class.

Lemma 5.21 (LEMMA 2) For each n-regular Turing machine Z and each p > 0, there is a (p+n)-regular Turing machine Z_p such that, whenever

$$Res_Z[q_1\overline{(m_1,\ldots,m_n)}] = q_{\theta(Z)}\overline{(r_1,\ldots,r_s)},$$

it is also the case that

$$Res_Z[q_1\overline{(k_1,\ldots,k_p,m_1,\ldots,m_n)}] = q_{\theta(Z)}\overline{(k_1,\ldots,k_p,r_1,\ldots,r_s)},$$

whereas, whenever $Res_Z[q_1\overline{(m_1,\ldots,m_n)}]$ is undefined, so is $Res_Z[q_1\overline{(k_1,\ldots,k_p,m_1,\ldots,m_n)}]$.

Page 29. See the demo in class.

Example The copying machine C_p

For each n > 0 and $p \ge 0$, we shall define a (p + n)-regular Turing machine such that

$$Res_{C_p}[q_1\overline{(k_1,\ldots,k_p,m_1,\ldots,m_n)}] = q_{p+16}\overline{(m_1,\ldots,m_n,k_1,\ldots,k_p,m_1,\ldots,m_n)}.$$

Example The transfer machine R_p

For each n > 0 and $p \ge 0$, we shall define a (p + n)-regular Turing machine such that

$$Res_{R_n}[q_1\overline{(k_1,\ldots,k_p,m_1,\ldots,m_n)}] = q_{p+16}\overline{(m_1,\ldots,m_n,k_1,\ldots,k_p)}.$$

Lemma 5.22 (LEMMA 3) For each n-regular Turing machine Z, there is an n-regular Turing machine Z' such that, whenever

$$Res_Z[q_1\overline{(m_1,\ldots,m_n)}] = q_{\theta(Z)}\overline{(r_1,\ldots,r_s)},$$

it is also the case that

$$Res_{Z'}[q_1\overline{(m_1,\ldots,m_n)}] = q_{\theta(Z')}\overline{(r_1,\ldots,r_s,m_1,\ldots,m_n)},$$

whereas, whenever $Res_Z[q_1\overline{(m_1,\ldots,m_n)}]$ is undefined, so is $Res_{Z'}[q_1\overline{(m_1,\ldots,m_n)}]$.

Proof: By Lemma 2, there is a 2n-regular Turing machine U such that

$$Res_Z[q_1\overline{(m_1,\ldots,m_n,m_1,\ldots,m_n)}] = q_{\theta(Z)}\overline{(m_1,\ldots,m_n,r_1,\ldots,r_s)}.$$

Then we can take

$$Z' = C_0 \bigcup U^{(15)} \bigcup R_n^{(14+\theta(U))}.$$

Z' does the following:

$$q_{1}\overline{(m_{1},\ldots,m_{n})} \rightarrow q_{16}\overline{(m_{1},\ldots,m_{n},m_{1},\ldots,m_{n})} \quad \text{(by } C_{0})$$

$$\rightarrow q_{\theta(U^{(15)})}\overline{(m_{1},\ldots,m_{n},r_{1},\ldots,r_{s})} \quad \text{(by } U^{(15)})$$

$$\rightarrow q_{\theta(Z')}\overline{(r_{1},\ldots,r_{s},m_{1},\ldots,m_{n})} \quad \text{(by } R_{n}^{(14+\theta(U))})$$

Lemma 5.23 (LEMMA 4) Let Z_1, \ldots, Z_p be Turing machines. Let n > 0. Then, there exists an n-regular Turing machine Z' such that

$$Res_{Z'}[q_1\overline{(m_1,\ldots,m_n)}] = q_{\theta(Z')}\overline{(\Psi_{Z_1}^{(n)}(m_1,\ldots,m_n),\ldots,\Psi_{Z_p}^{(n)}(m_1,\ldots,m_n))}.$$

Proof: Prove by induction on p. For p = 1, the result is Lemma 1. Assume the result holds for p = k; show that it also holds for p = k + 1.

Let $Z_1, Z_2, \ldots, Z_{k+1}$ be given Turing machines. Let

$$r_i = \Psi_{Z_i}^{(n)}(m_1, \dots, m_n)$$

for $1 \leq i \leq k+1$. By the inductive hypothesis, there is an n-regular Turing machine Y_1 such that

$$Res_{Y_1}[q_1\overline{(m_1,\ldots,m_n)}] = q_{\theta(Y_1)}\overline{(r_1,\ldots,r_k)}.$$

By Lemma 3, there is an n-regular Turing machine Y_2 such that

$$Res_{Y_1}[q_1\overline{(m_1,\ldots,m_n)}] = q_{\theta(Y_2)}\overline{(r_1,\ldots,r_k,m_1,\ldots,m_n)}.$$

By Lemma 1, there is an n-regular Turing machine Y_3 such that

$$Res_{Y_3}[q_1\overline{(m_1,\ldots,m_n)}] = q_{\theta(Y_3)}\overline{r_{k+1}}.$$

By Lemma 2, there is an n-regular Turing machine Y_4 such that

$$Res_{Y_1}[q_1\overline{(r_1,\ldots,r_k,m_1,\ldots,m_n)}] = q_{\theta(Y_4)}\overline{(r_1,\ldots,r_k,r_{k+1})}.$$

We can take $Z' = Y_2 \bigcup Y_4^{(\theta(Y_2)-1)}$ to obtain the result for p = k+1.

5.3 Composition and Minimization

Definition 5.24 The operation of composition associates with the functions $f(y^{(m)})$, $g_1(x^{(n)})$, $g_2(x^{(n)})$, ..., $g_m(x^{(n)})$, the function

$$h(x^{(n)}) = f(g_1(x^{(n)}), g_2(x^{(n)}), \dots, g_m(x^{(n)})).$$

Theorem 5.25 Let $f(y^{(m)}), g_1(x^{(n)}), g_2(x^{(n)}), \ldots, g_m(x^{(n)})$ be (partially) computable. Let

$$h(x^{(n)}) = f(g_1(x^{(n)}), g_2(x^{(n)}), \dots, g_m(x^{(n)})).$$

Then $h(x^{(n)})$ is (partially) computable.

Proof: By Lemma 4, there is an *n*-regular Turing machine Z such that

$$Res_{Z}[q_{1}\overline{(x^{(n)})}] = q_{\theta(Z)}\overline{(g_{1}(x^{(n)}), g_{2}(x^{(n)}), \dots, g_{m}(x^{(n)}))}.$$

Let Z_1 be chosen so that

$$\Psi_{Z_1}^{(m)}(x^{(m)}) = f(x^{(m)}),$$

let $Z' = Z \bigcup Z_1^{(\theta(Z)-1)}$. Then

$$\Psi_{Z'}^{(n)}(\overline{x^{(n)}}) = f(g_1(x^{(n)}), g_2(x^{(n)}), \dots, g_m(x^{(n)})) = h(x^{(n)})$$

Corollary 5.26 The class of (partially) computable functions is closed under the operation of composition.

Corollary 5.27 xy is computable.

Proof:

$$xy = (x+1)(y+1) \div (y+1) \div x$$

Example $x^k = x^{(k-1)}x$ Example |x - y| = (x - y) + (y - x) **Definition 5.28** The operation of minimization associates with each total function $f(y, x^{(n)})$ the function $h(x^{(n)})$ whose value for given $x^{(n)}$ is the least value of y, if one such exists, for which $f(y, x^{(n)}) = 0$, and which is undefined if no such y exists:

$$h(x^{(n)}) = min_y[f(y, x^{(n)}) = 0].$$

Definition 5.29 The total function $f(y, x^{(n)})$ is called regular if

$$min_y[f(y, x^{(n)}) = 0]$$

is total.

Theorem 5.30 If $f(y, x^{(n)})$ is computable, then

$$h(x^{(n)}) = min_y[f(y, x^{(n)}) = 0]$$

is partially computable. Moreover, if $f(y, x^{(n)})$ is regular, then $h(x^{(n)})$ is computable.

Page 38.

Example $x/2 = min_y(|(y+y) - x| = 0)$. See the demo of a Turing machine that computes this function in class.

