Modèle de Markov caché

- Dans une modèle de Markov caché (hidden Markov model ou HMM):
 - il y a des variables cachées H_t et des variables d'observation S_t, toutes les deux discrètes
 - la chaîne de Markov est sur les variables cachées H_t
 - ♦ le symbole observé (émis) $S_t = s_t$ dépend uniquement de la variable cachée actuelle H_t

Illustration

Illustration dans le cas d'une chaîne finie

Probabilité de générer une séquence cachée et une séquence visible

sortie

Simuler d'un HMM

- Il est facile de générer des observations d'un HMM
 - échantillonner une valeur initiale $H_1 = h_1$ de $P(H_1)$
 - pour t = 2 jusqu'à T, répéter les deux échantillonnages suivants:
 - » utiliser les probabilités de transition de l'état caché courant pour obtenir un échantillon h_t , sachant l'état caché précédent: $P(H_t \mid H_{t-1} = h_{t-1})$
 - » utiliser les probabilités de sortie de la variable d'observation étant donné l'état caché courant, pour obtenir le symbole d'observation (émission) s_t : $P(S_t \mid H_t = h_t)$
- On peut aussi générer la séquence des états cachés d'abord et ensuite générer les observations
 - les variables cachées dépendent uniquement des variables cachées précédentes
 - chaque observation (émission) ne dépendra pas des autres

Illustration

Illustration dans le cas d'une **chaîne infinie**, avec visualisation des valeurs de la variable cachée et la variable d'observation

Chaque **nœud caché** (valeur *i,j,k* possible de *H*) a un vecteur de **probabilités de transitions** et un **vecteur de probabilités d'émission (observations)**