Hierarchical interpolative factorization

Kenneth L. Ho (Stanford)

Joint work with Lexing Ying

Darve Group Meeting, Jan 2014

Introduction

Elliptic PDEs in differential or integral form:

$$-\nabla \cdot (a(x)\nabla u(x)) + v(x)u(x) = f(x)$$
$$a(x)u(x) + \int_{\Omega} K(x,y)u(y) d\Omega(y) = f(x)$$

- Fundamental to physics and engineering
- Interested in 2D/3D, complex geometry
- ▶ Discretize \rightarrow structured linear system Ax = b

Goal: fast and accurate algorithms for the discrete operators

- Fast matrix-vector multiplication
- Fast solver, good preconditioner
- Linear or nearly linear complexity, high practical efficiency

Previous work

Fast matrix-vector multiplication

- Trivial for differential operators (sparse)
- ightharpoonup Achieved for integral operators by FMM, treecode, \mathcal{H} -matrices, etc.

However, fast solvers have been much harder to come by

- Iterative methods
 - Number of iterations can be large
 - Inefficient for multiple right-hand sides
- Nested dissection/multifrontal, HSS matrices/recursive skeletonization
 - Small constants, optimal in quasi-1D
 - Rank growth in higher dimensions yields superlinear cost
- ▶ H-matrices
 - Optimal complexity but large prefactor
- MF/RS with structured matrix algebra
 - Improved prefactor, complex geometry can be difficult

Many contributors; apologies for not listing names

Overview

Hierarchical interpolative factorization

- ► MF/RS + recursive dimensional reduction
- ▶ Same idea as with using structured algebra but in a new matrix framework
- Explicit sparsification, generalized LU decomposition
- Extends to 3D, complex geometry, etc.

Tools: Schur complement, interpolative decomposition, skeletonization

Schur complement

Let

$$A = \begin{bmatrix} A_{pp} & A_{pq} \\ A_{qp} & A_{qq} & A_{qr} \\ & A_{rq} & A_{rr} \end{bmatrix}.$$

(Think of A as a sparse matrix.) If A_{pp} is nonsingular, define

$$R_p^* = \begin{bmatrix} I & I \\ -A_{qp}A_{pp}^{-1} & I & I \end{bmatrix}, \quad S_p = \begin{bmatrix} I & -A_{pp}^{-1}A_{pq} & I & I & I \end{bmatrix}$$

so that

$$R_p^*AS_p = \begin{bmatrix} A_{pp} & & & \\ & * & A_{qr} \\ & A_{rq} & A_{rr} \end{bmatrix}.$$

- DOFs p have been eliminated
- Interactions involving r are unchanged

Interpolative decomposition

If $A_{:,q}$ is numerically low-rank, then there exist

- lacktriangledown redundant (\check{q}) and skeleton (\hat{q}) columns partitioning $q=\check{q}\cup\hat{q}$
- lacktriangle an interpolation matrix T_q with $\|T_q\|$ small

such that

$$A_{:,\check{q}} \approx A_{:,\hat{q}} T_q.$$

- Essentially an RRQR written slightly differently
- Can be computed adaptively to any specified precision
- ▶ Fast randomized algorithms are available

Interactions between separated regions are low-rank.

Skeletonization

- Use ID + Schur complement to eliminate redundant DOFs
- ► Let $A = \begin{pmatrix} A_{pp} & A_{pq} \\ A_{qp} & A_{qq} \end{pmatrix}$ with A_{pq} and A_{qp} low-rank
- $\blacktriangleright \text{ Apply ID to } \begin{bmatrix} A_{qp} \\ A_{pq}^* \end{bmatrix} \colon \ \begin{bmatrix} A_{q\check{p}} \\ A_{\check{p}q}^* \end{bmatrix} \approx \begin{bmatrix} A_{q\hat{p}} \\ A_{\hat{p}q}^* \end{bmatrix} T_p \implies \begin{array}{c} A_{q\check{p}} \approx A_{q\hat{p}} T_p \\ A_{\check{p}q} \approx T_p^* A_{\hat{p}q} \end{array}$
- Sparsify via ID: $Q_p^*AQ_p \approx \begin{bmatrix} * & * \\ * & A_{\hat{p}\hat{p}} & A_{\hat{p}q} \\ A_{q\hat{p}} & A_{qq} \end{bmatrix}$
- Schur complement: $R_p^* Q_p^* A Q_p S_p \approx \begin{bmatrix} * & & & \\ & * & A_{\hat{p}q} \\ & A_{q\hat{p}} & A_{qq} \end{bmatrix}$

Algorithm: multifrontal

```
Build quadtree/octree. for each level \ell=0,1,2,\ldots,L from finest to coarsest do Let \mathcal{C}_\ell be the set of all cells on level \ell. for each cell c\in\mathcal{C}_\ell do Schur complement remaining interior DOFs in c. end for end for
```

MF in 2D: level 0

MF in 2D: level 1

MF in 2D: level 2

MF in 2D: level 3

MF in 3D: level 0

MF in 3D: level 1

domain

MF in 3D: level 2

domain

MF analysis

▶ Schur complement operator (assume SPD):

$$W_{\ell} = \prod_{c \in C_{\ell}} S_c$$

Block diagonalization:

$$D \approx W_{l-1}^* \cdots W_0^* A W_0 \cdots W_{l-1}$$

► LU decomposition:

$$A \approx W_0^{-*} \cdots W_{L-1}^{-*} D W_{L-1}^{-1} \cdots W_0^{-1}$$
$$A^{-1} \approx W_0 \cdots W_{L-1} D^{-1} W_l^* \cdots W_0^*$$

Numerically exact: fast direct solver

MF analysis

The cost is determined by the separator/front size.

	1D	2D	3D
Front size Factorization cost Solve cost	$\mathcal{O}(1)$ $\mathcal{O}(N)$ $\mathcal{O}(N)$	$\mathcal{O}(N^{1/2})$ $\mathcal{O}(N^{3/2})$ $\mathcal{O}(N \log N)$	$\mathcal{O}(N^{2/3})$ $\mathcal{O}(N^2)$ $\mathcal{O}(N^{4/3})$

Question: How to reduce the front size in 2D and 3D?

- ▶ Frontal matrices are dense but rank-structured
- Exploit separator geometry by skeletonizing along edges
- ► Dimensional reduction

Algorithm: hierarchical interpolative factorization in 2D

```
Build quadtree. 

for each level \ell=0,1,2,\dots,L from finest to coarsest do Let C_\ell be the set of all cells on level \ell. 

for each cell c\in C_\ell do Schur complement remaining interior DOFs in c. 

end for Let C_{\ell+1/2} be the set of all edges on level \ell. 

for each cell c\in C_{\ell+1/2} do Skeletonize remaining interior DOFs in c. 

end for end for
```

HIF-DE in 2D: level 0

HIF-DE in 2D: level 1/2

HIF-DE in 2D: level 1

HIF-DE in 2D: level 3/2

HIF-DE in 2D: level 2

domain matrix

HIF-DE in 2D: level 5/2

HIF-DE in 2D: level 3

matrix

domain

MF vs. HIF-DE in 2D

Algorithm: hierarchical interpolative factorization in 3D

```
Build octree. 

for each level \ell=0,1,2,\dots,L from finest to coarsest do Let C_\ell be the set of all cells on level \ell. 

for each cell c\in C_\ell do Schur complement remaining interior DOFs in c. 

end for Let C_{\ell+1/2} be the set of all faces on level \ell. 

for each cell c\in C_{\ell+1/2} do Skeletonize remaining interior DOFs in c. 

end for end for
```

- Can also do additional skeletonization along edges for true linear complexity
- ▶ This algorithm is sufficient for $\mathcal{O}(N \log N)$ and better exploits sparsity

HIF-DE in 3D: level 0

HIF-DE in 3D: level 1/2

domain

HIF-DE in 3D: level 1

domain

HIF-DE in 3D: level 3/2

domain

HIF-DE in 3D: level 2

domain

MF vs. HIF-DE in 3D

HIF-DE analysis

Skeletonization operator (assume SPD):

$$U_{\ell} = \prod_{c \in C_{\ell}} Q_{c} S_{c}$$

Generalized LU decomposition:

$$A \approx W_0^{-*} U_{1/2}^{-*} \cdots W_{L-1}^{-*} U_{L-1/2}^{-*} D U_{L-1/2}^{-1} W_{L-1}^{-1} \cdots U_{1/2}^{-1} W_0^{-1}$$

$$A^{-1} \approx W_0 U_{1/2} \cdots W_{L-1} U_{L-1/2} D^{-1} U_{L-1/2}^* W_L^* \cdots U_{1/2}^* W_0^*$$

No longer exact, fast direct solver or preconditioner depending on accuracy

	2D	3D
Skeleton size Factorization cost Solve cost	$ \begin{array}{c c} \mathcal{O}(\log N) \\ \mathcal{O}(N) \\ \mathcal{O}(N) \end{array} $	$ \begin{array}{c} \mathcal{O}(N^{1/3}) \\ \mathcal{O}(N \log N) \\ \mathcal{O}(N) \end{array} $

Numerical results in 2D

Finite difference discretization on a square with

$$a(x) = \prod_{\ell=0}^{L} \left(\frac{3}{8} \sin(2\pi 2^{\ell} x_1) \sin(2\pi 2^{\ell} x_2) + \frac{5}{8} \right), \quad v(x) \equiv 0$$

ϵ	N	ĉ	m_f (GB)	t_f (s)	$t_{a/s}$ (s)	e_a	e_s	ni
	255 ²	20	$1.4e{-1}$	3.6e+0	$1.6e{-1}$	2.3e-08	3.2e-06	3
10^{-6}	511^{2}	22	$5.8e{-1}$	1.7e+1	$6.5e{-1}$	2.2e - 08	1.1e - 05	3
	1023 ²	23	2.4e + 0	8.1e + 1	2.4e+0	2.3e-08	1.8e-05	3
	255 ²	31	1.5e-1	3.8e+0	$2.1e{-1}$	9.9e-12	1.1e-09	2
10^{-9}	511 ²	35	$6.0e{-1}$	1.9e+1	$6.3e{-1}$	$1.5e{-11}$	2.7e - 09	2
	1023 ²	38	2.4e+0	8.1e + 1	2.3e + 0	$1.6e{-11}$	2.5e-08	2
	255 ²	38	$1.5e{-1}$	3.5e+0	$1.4e{-1}$	1.4e-14	$9.9e{-13}$	1
10^{-12}	511 ²	44	$6.0e{-1}$	1.8e+1	$6.2e{-1}$	1.5e-14	6.7e - 12	2
	1023 ²	50	2.5e+0	9.2e+1	2.6e+0	1.7e-14	7.4e-12	2

Numerical results in 3D

Finite difference discretization on a cube with

$$a(x) = \prod_{\ell=0}^{L} \left(\frac{3}{8} \sin(2\pi 2^{\ell} x_1) \sin(2\pi 2^{\ell} x_2) \sin(2\pi 2^{\ell} x_3) + \frac{5}{8} \right), \quad v(x) \equiv 0$$

ϵ	N	ĉ	m_f (GB)	t_f (s)	$t_{a/s}$ (s)	e_a	e_s	ni
10^{-3}	31 ³	83	$1.9e{-1}$	6.5e+0	7.4e-2	4.4e-05	5.8e-04	6
	63^{3}	189	2.1e+0	1.3e + 2	$8.3e{-1}$	5.1e - 05	1.1e-03	7
	127^{3}	388	2.2e+1	2.0e + 3	8.7e + 0	6.4e - 05	3.2e-03	11
	31 ³	152	$2.4e{-1}$	8.1e+0	8.5e-2	2.5e-08	1.3e-07	2
10^{-6}	63 ³	367	3.1e + 0	2.0e + 2	1.1e + 0	3.1e - 08	3.2e - 07	3
	127^{3}	802	3.6e+1	4.1e + 3	$1.1\mathrm{e}{+1}$	4.2e-08	1.3e-06	3
10-9	31 ³	197	$2.7e{-1}$	8.8e+0	7.9e-2	1.9e-11	6.6e-11	2
	63^{3}	531	3.7e + 0	2.4e + 2	1.0e + 0	$1.8e{-11}$	$1.2e{-10}$	2
	127 ³	1225	4.6e+1	6.2e + 3	1.3e+1	$2.7e{-11}$	$4.6e{-10}$	2

Algorithm: recursive skeletonization

```
Build quadtree/octree. for each level \ell=0,1,2,\ldots,L from finest to coarsest do Let C_\ell be the set of all cells on level \ell. for each cell c\in C_\ell do Skeletonize remaining DOFs in c. end for end for
```

RS in 2D: level 0

RS in 2D: level 1

RS in 2D: level 2

RS in 2D: level 3

RS in 3D: level 0

domain

RS in 3D: level 1

RS in 3D: level 2

RS analysis

Skeletonization operators:

$$U_{\ell} = \prod_{c \in C_{\ell}} Q_c R_c, \quad V_{\ell} = \prod_{c \in C_{\ell}} Q_c S_c$$

Block diagonalization:

$$D \approx U_{L-1}^* \cdots U_0^* A V_0 \cdots V_{L-1}$$

Generalized LU decomposition:

$$A \approx U_0^{-*} \cdots U_{L-1}^{-*} D V_{L-1}^{-1} \cdots V_0^{-1}$$
$$A^{-1} \approx V_0 \cdots V_{L-1} D^{-1} U_l^* \cdots U_0^*$$

► Fast direct solver or preconditioner

RS analysis

The cost is determined by the skeleton size.

	1D	2D	3D
Skeleton size	$\mathcal{O}(\log N)$	$\mathcal{O}(N^{1/2})$	$\mathcal{O}(N^{2/3})$
Factorization cost	$\mathcal{O}(N)$	$\mathcal{O}(N^{3/2})$	$\mathcal{O}(N^2)$
Solve cost	$\mathcal{O}(N)$	$\mathcal{O}(N \log N)$	$\mathcal{O}(N^{4/3})$

Question: How to reduce the skeleton size in 2D and 3D?

- Skeletons cluster near cell interfaces
- Exploit skeleton geometry by skeletonizing along interfaces
- Dimensional reduction

Algorithm: hierarchical interpolative factorization in 2D

```
Build quadtree. 

for each level \ell=0,1,2,\ldots,L from finest to coarsest do Let C_\ell be the set of all cells on level \ell. 

for each cell c\in C_\ell do Skeletonize remaining DOFs in c. 

end for Let C_{\ell+1/2} be the set of all edges on level \ell. 

for each cell c\in C_{\ell+1/2} do Skeletonize remaining DOFs in c. 

end for end for
```

HIF-IE in 2D: level 0

HIF-IE in 2D: level 1/2

HIF-IE in 2D: level 1

HIF-IE in 2D: level 3/2

HIF-IE in 2D: level 2

HIF-IE in 2D: level 5/2

HIF-IE in 2D: level 3

RS vs. HIF-IE in 2D

RS vs. HIF-IE in 2D

Algorithm: hierarchical interpolative factorization in 3D

```
Build octree.
for each level \ell = 0, 1, 2, \dots, L from finest to coarsest do
    Let C_{\ell} be the set of all cells on level \ell.
    for each cell c \in C_{\ell} do
        Skeletonize remaining DOFs in c.
    end for
    Let C_{\ell+1/3} be the set of all faces on level \ell.
    for each cell c \in C_{\ell+1/3} do
        Skeletonize remaining DOFs in c.
    end for
    Let C_{\ell+2/3} be the set of all edges on level \ell.
    for each cell c \in C_{\ell+2/3} do
        Skeletonize remaining DOFs in c.
    end for
end for
```

HIF-IE in 3D: level 0

HIF-IE in 3D: level 1/3

HIF-IE in 3D: level 2/3

HIF-IE in 3D: level 1

HIF-IE in 3D: level 4/3

HIF-IE in 3D: level 5/3

HIF-IE in 3D: level 2

HIF-IE analysis

▶ 2D:
$$A \approx U_0^{-*} U_{1/2}^{-*} \cdots U_{L-1/2}^{-*} D V_{L-1/2}^{-1} \cdots V_{1/2}^{-1} V_0^{-1}$$
$$A^{-1} \approx V_0 V_{1/2} \cdots V_{L-1/2} D^{-1} U_{L-1/2}^* \cdots U_{1/2}^* U_0^*$$

▶ 3D:
$$A \approx U_0^{-*} U_{1/3}^{-*} U_{2/3}^{-*} \cdots U_{L-1/3}^{-*} D V_{L-1/3}^{-1} \cdots V_{2/3}^{-1} V_{1/3}^{-1} V_0^{-1}$$
$$A^{-1} \approx V_0 V_{1/3} V_{2/3} \cdots V_{L-1/3} D^{-1} U_{L-1/3}^* \cdots U_{2/3}^* U_{1/3}^* U_0^*$$

Skeleton size:
$$\mathcal{O}(\log N)$$

Factorization cost: $\mathcal{O}(N)$
Solve cost: $\mathcal{O}(N)$

Numerical results in 2D

First-kind volume integral equation on a square with

$$a(x) \equiv 0$$
, $K(x, y) = -\frac{1}{2\pi} \log ||x - y||$.

ϵ	N	ĉ	m_f (GB)	t_f (s)	$t_{a/s}$ (s)	e_a	e_s	n _i
	256 ²	19	9.8e-2	1.0e + 1	$1.6e{-1}$	1.8e-04	$1.1e{-2}$	8
10^{-3}	512^{2}	20	$3.8e{-1}$	4.3e+1	$6.3e{-1}$	1.6e - 04	1.6e-2	8
10	1024^{2}	20	1.5e + 0	1.8e + 2	2.6e + 0	2.1e-04	1.4e-2	9
	2048 ²	21	6.1e+0	7.5e+2	1.1e+1	2.2e-04	3.4e-2	9
	256 ²	85	$3.0e{-1}$	2.7e + 1	$1.2e{-1}$	2.0e-07	$1.6e{-5}$	3
10^{-6}	512^{2}	99	1.3e + 0	1.3e + 2	5.0e-1	1.3e-07	$2.3e{-5}$	3
	1024 ²	115	5.4e + 0	5.9e + 2	2.1e+0	2.5e-07	$3.4e{-5}$	3
	256^{2}	132	$4.4e{-1}$	4.5e+1	$1.2e{-1}$	$7.8e{-11}$	$1.3e{-8}$	2
10^{-9}	512^{2}	155	1.8e + 0	2.1e + 2	4.9e-1	$1.1\mathrm{e}{-10}$	$1.6e{-8}$	2
	1024 ²	181	7.5e + 0	9.7e+2	2.0e+0	$1.8\mathrm{e}{-10}$	3.1e-8	2

Numerical results in 3D

Second-kind boundary integral equation on a sphere with

$$a(x) \equiv 1, \quad K(x,y) = \frac{1}{4\pi \|x-y\|}.$$

ϵ	Ν	ĉ	m_f (GB)	t_f (s)	$t_{a/s}$ (s)	e_a	e_s
10 ⁻³	20480	201	1.4e-1	9.8e+0	3.8e-2	7.2e-4	7.1e-4
	81920	307	5.6e-1	5.0e+1	1.8e-1	1.8e-3	1.8e-3
	327680	373	2.1e+0	2.2e+2	7.5e-1	3.8e-3	3.7e-3
	1310720	440	8.1e+0	8.9e+2	3.2e+0	9.7e-3	9.5e-3
10 ⁻⁶	20480	497	5.2e-1	6.3e+1	5.3e-2	1.1e-7	1.1e-7
	81920	841	2.1e+0	4.1e+2	2.4e-1	2.3e-7	2.3e-7
	327680	1236	8.2e+0	2.3e+3	1.0e+0	1.2e-6	1.2e-6

Numerical results in 3D

First-kind volume integral equation on a cube with

$$a(x) \equiv 0, \quad K(x,y) = \frac{1}{4\pi ||x-y||}.$$

ϵ	Ν	ĉ	m_f	t _f	t _{a/s}	e _a	e _s	ni
10^{-2}	16^{3}	39	1.5e-2	1.5e+0	1.5e-2	6.0e - 3	2.8e-2	10
	32^{3}	51	$1.7e{-1}$	2.1e+1	$1.5e{-1}$	9.0e - 3	5.7e-2	14
	64 ³	65	1.7e+0	2.8e + 2	1.4e+0	1.3e-2	$1.3e{-1}$	17
	16 ³	92	4.3e-2	2.7e+0	9.6e-3	2.2e-4	1.0e-3	6
10^{-3}	32^{3}	171	4.1e-1	4.8e + 1	5.9e-2	$4.0e{-4}$	2.0e - 3	8
	64 ³	364	4.2e+0	8.8e + 2	5.7e-1	$7.1e{-4}$	$2.4e{-3}$	8
	16^{3}	182	6.1e-2	3.1e+0	7.2e-3	1.2e-5	1.2e-4	4
10^{-4}	32^{3}	360	7.7e-1	1.5e+2	$8.6e{-2}$	$2.8e{-5}$	$2.3e{-4}$	5
	64 ³	793	9.1e+0	3.5e+3	9.1e-1	5.7e-5	3.6e-4	5

Conclusions

- Linear-time algorithm for structured operators in 2D and 3D
 - Fast matrix-vector multiplication
 - Fast direct solver at high accuracy, preconditioner otherwise
- ► Main novelties:
 - Dimensional reduction by alternating between cells, faces, and edges
 - Matrix factorization via new linear algebraic formulation
- Explicit elimination of DOFs, no nested hierarchical operations
- Can be viewed as adaptive numerical upscaling
- **Extensions**: $A^{1/2}$, log det A, diag A^{-1}
- ▶ High accuracy for IEs in 3D still challenging, may require new ideas
- ▶ Perspective: structured dense matrices can be sparsified very efficiently
- ► Can borrow directly from sparse algorithms, e.g., RS = MF
- What other features of sparse matrices can be exploited?