Primeira lista de exercícios

"Na Europa está circulando um fantasma - o fantasma do comunismo."

(Karl Marx, filósofo alemão, 1818 - 1883)

1. Sejam A, B, C, D e E, pontos. Prove que:

(a)
$$\overrightarrow{AB} = \overrightarrow{CD} \implies \overrightarrow{AC} = \overrightarrow{BD}$$

(b)
$$\overrightarrow{BC} = \overrightarrow{AE} \implies \overrightarrow{EC} = \overrightarrow{AB}$$

2. Prove, usando as propriedades da soma entre vetores, que, para todos vetores \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} no espaço, as seguintes propriedades são verdadeiras:

(a)
$$\vec{u} + \vec{v} = \vec{w} + \vec{v} \implies \vec{u} = \vec{w}$$
,

(b)
$$\vec{u} + \vec{v} = \vec{w} \implies \vec{u} = \vec{w} - \vec{v}$$
.

3. Dados representantes de vetores \vec{u} e \vec{v} conforme a figura:

Ache um representante de \vec{x} tal que $\vec{u} + \vec{v} + \vec{x} = \vec{0}$.

- 4. Justifique a seguinte regra. Para calcular $\vec{x} = \vec{u} + \vec{v} + \vec{w}$ tome um representante (A, B) de \vec{u} , um representante (B, C) de \vec{v} , um representante (C, D) de \vec{w} . Então \vec{x} tem como representante (A, D).
- 5. Ache a soma dos vetores indicados na figura nos casos:

(c) Quadrado:

(b) Cubo:

(d) Cubo:

¹Original: Ein Gespenst geht um in Europa - das Gespenst des Kommunismus, em Manifest der Kommunistischen Partei, 1872, Karl Marx e Friedrich Engels.

- 6. Prove que, para todos vetores \overrightarrow{u} e \overrightarrow{v} no espaço e para todo escalar $k, m \in \mathbb{R}$, as seguintes propriedades são verdadeiras:
 - (a) $-(\vec{u} + \vec{v}) = -\vec{u} \vec{v}$,
 - (b) $k(\vec{u} \vec{v}) = k\vec{u} k\vec{v}$,
 - (c) $(k-m)\vec{u} = k\vec{u} m\vec{u}$,
 - (d) $k\vec{v} = \vec{0} \implies k = 0$ ou $\vec{v} = \vec{0}$
 - (e) $k\vec{u} = k\vec{v}$ e $k \neq 0 \implies \vec{u} = \vec{v}$,
 - (f) $(-1)\vec{v} = -\vec{v}$,
 - (g) $2\vec{v} = \vec{v} + \vec{v}$,
- 7. Resolva a equação na incognita \vec{x} :

$$2\overrightarrow{x} - 3\overrightarrow{u} = 10(\overrightarrow{x} + \overrightarrow{v})$$

- 8. Sejam A e B pontos, e \overrightarrow{u} e \overrightarrow{v} vetores. Prove que, se $A + \overrightarrow{u} = B + \overrightarrow{v}$, então $\overrightarrow{u} = \overrightarrow{AB} + \overrightarrow{v}$.
- 9. Determine \overrightarrow{AB} em função de \overrightarrow{u} , sabendo que $A + (-\overrightarrow{u}) = B + \overrightarrow{u}$.
- 10. Determine a relação entre \vec{u} e \vec{v} , sabendo que, para um dado ponto A, $(A + \vec{u}) + \vec{v} = A$.
- 11. Dados os pontos $A, B \in C$, determine X, sabendo que $(A + \overrightarrow{AB}) + \overrightarrow{CX} = C + \overrightarrow{CB}$.
- 12. Prove que, se $B = A + \overrightarrow{DC}$, então $B = C + \overrightarrow{DA}$.
- 13. Prove que $\overrightarrow{BC} \overrightarrow{BA} = \overrightarrow{AC}$.
- 14. Prove que, se $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{BC}$, então A = B.
- 15. Seja ABCDEFGH o cubo:

Determine:

- (a) $A + \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AE}$
- (b) $\overrightarrow{CD} \overrightarrow{DH} \overrightarrow{GH} + \overrightarrow{AH} + \overrightarrow{AB}$
- (c) $\overrightarrow{AB} + \overrightarrow{DC} + \overrightarrow{AE} + \overrightarrow{FG} + \overrightarrow{EH} + \overrightarrow{BF}$
- (d) $\overrightarrow{DF} \overrightarrow{EG} + \overrightarrow{FC} + \overrightarrow{BE} + \overrightarrow{AG} \overrightarrow{BH}$
- 16. (a) Seja \overrightarrow{ABC} um triângulo e $\overrightarrow{AX} = \lambda \overrightarrow{XB}$. Exprima \overrightarrow{CX} em função de \overrightarrow{CA} , \overrightarrow{CB} e λ .
 - (b) Seja \overrightarrow{ABC} um triângulo e $\overrightarrow{AX} = \lambda \overrightarrow{XB}$, $\overrightarrow{BY} = \mu \overrightarrow{YC}$ e $\overrightarrow{CZ} = \rho \overrightarrow{ZA}$. Exprima \overrightarrow{CX} , \overrightarrow{AY} e \overrightarrow{BZ} em função de \overrightarrow{CA} , \overrightarrow{CB} .

17. Sejam M, N e P os pontos médios respetivamente dos lados AB, BC e AC de um triângulo ABC. Mostre que

$$\overrightarrow{AN} + \overrightarrow{BP} + \overrightarrow{CM} = \overrightarrow{0}$$

- 18. Seja \overrightarrow{OABC} um tetraedro e X o ponto da reta \overrightarrow{BC} definido por $\overrightarrow{BX} = m\overrightarrow{BC}$ por um $m \in \mathbb{R}$. Exprima \overrightarrow{OX} e \overrightarrow{AX} em função de \overrightarrow{OA} , \overrightarrow{OB} e \overrightarrow{OC} .
- 19. Seja \overrightarrow{ABC} um triângulo, X um ponto na reta \overrightarrow{AB} tal que $\overrightarrow{AX} = 2\overrightarrow{XB}$ e Y um ponto na reta \overrightarrow{BC} tal que $\overrightarrow{BY} = 3\overrightarrow{YC}$. Prove que as retas CX e AY se cortam num ponto.
- 20. Sejam A, B, C e D pontos quaisquer no espaço, M o ponto médio de AC e N o de BD. Exprima $\overrightarrow{x} = \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{CD}$ em função de \overrightarrow{MN} .
- 21. Seja ABCD um quadrilátero e O um ponto qualquer no espaço. Seja P o ponto médio do segmento que une os pontos médios das diagonais AC e BD. Prove que

$$P = O + \frac{1}{4} \left(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} \right)$$

22. Sejam A, B e C e D três pontos quaisquer com $A \neq B$. Prove que:

$$X$$
é um ponto do segmento $AB \iff \overrightarrow{CX} = \overrightarrow{aC}A + \overrightarrow{bC}B$
$$\text{com } a \geq 0, \ b \geq 0, \ \text{e} \ a+b=1.$$

- 23. Prove que, o conjunto $\{\vec{v}\}$ é LD, se e somente se a equação $x\vec{v}=\vec{0}$ admite solução não trivial.
- 24. Prove que, se o conjunto $\{\vec{u}, \vec{v}, \vec{w}\}$ é LI, então os conjuntos $\{\vec{u} + \vec{v} + \vec{w}, \vec{u} \vec{v}, 3\vec{v}\}$ e $\{\vec{u} + \vec{v}, \vec{u} + \vec{w}, \vec{v} + \vec{w}\}$ também são LI.
- 25. Seja $\{\vec{u}, \vec{v}, \vec{w}\}$ um conjunto LI. Dado um vetor \vec{t} qualquer, sabemos que existem escalares $a, b, c \in \mathbb{R}$ tais que $\vec{t} = a\vec{u} + b\vec{v} + c\vec{w}$. Prove que:

$$\{\overrightarrow{u}+\overrightarrow{t},\overrightarrow{v}+\overrightarrow{t},\overrightarrow{w}+\overrightarrow{t}\} \text{ \'e LD } \iff a+b+c+1=0$$

26. Prove que, se o conjunto $\{\vec{u} + \vec{v}, \vec{u} - \vec{v}\}$ é LI, então o conjunto $\{\vec{u}, \vec{v}\}$ é LI.

Segunda lista de exercícios

"A burguesia tirou da relação familiar o seu véu sentimental e a reduziu a uma pura condição monetária." $^{\!2}$

(Karl Marx, filósofo alemão, 1818 - 1883)

- 27. Prove que, para qualquer base $\mathcal{B}, \vec{0} = (0,0,0)_{\mathcal{B}}$.
- 28. Seja \mathcal{B} uma base de \mathbb{R}^3 e $\overrightarrow{u}=(1,-1,3)_{\mathcal{B}}, \ \overrightarrow{v}=(2,1,3)_{\mathcal{B}}$ e $\overrightarrow{w}=(-1,-1,4)_{\mathcal{B}}$. Ache as coordenadas de:
 - (a) $\sqrt{2}\vec{u}$,

(e) $5\vec{u} - \vec{v} - \frac{3}{7}\vec{w}$,

- (b) $\vec{u} + \vec{v}$,
- (c) $\vec{u} 2\vec{v}$,

(d) $\vec{u} + 2\vec{v} - 3\vec{w}$,

(f) $\sqrt{5}\vec{u} - \vec{v} + \frac{3}{2}\vec{w}$.

- 29. Seja \mathcal{B} uma base de \mathbb{R}^3 e $\overrightarrow{u} = (1, -1, 3)_{\mathcal{B}}$, $\overrightarrow{v} = (2, 1, 3)_{\mathcal{B}}$ e $\overrightarrow{w} = (-1, -1, 4)_{\mathcal{B}}$. Verifique se \overrightarrow{u} é combinação linear de \overrightarrow{v} e \overrightarrow{w} .
- 30. Seja \mathcal{B} uma base de \mathbb{R}^3 e $\overrightarrow{u} = (1, -1, 3)_{\mathcal{B}}$, $\overrightarrow{v} = (2, 1, 3)_{\mathcal{B}}$ e $\overrightarrow{w} = (-1, -1, 4)_{\mathcal{B}}$. Escreva o vetor $\overrightarrow{t} = (4, 0, 13)_{\mathcal{B}}$ como combinação linear de \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} .
- 31. O vetor $\vec{u}=(1,-1,3)$ pode ser escrito como combinação linear dos vetores $\vec{v}=(-1,1,0)$ e $\vec{w}=\left(2,3,\frac{1}{3}\right)$?

32. Seja $\mathcal{B} = \{\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3\}$ uma base de \mathbb{R}^3 e

$$\overrightarrow{u}_1 = \overrightarrow{v}_1 + \overrightarrow{v}_2 + \overrightarrow{v}_3,$$

$$\vec{u}_2 = \vec{v}_1 + \vec{v}_2,$$

$$\vec{u}_3 = \vec{v}_3$$
.

Decida se $C = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ é base de \mathbb{R}^3 .

- 33. Seja $\mathcal{B} = \{\vec{u}, \vec{v}, \vec{w}\}$ uma base de \mathbb{R}^3 e $a, b, c \in \mathbb{R}$. Prove que $\mathcal{C} = \{a\vec{u}, b\vec{v}, c\vec{w}\}$ é base de \mathbb{R}^3 se e somente se a, b e c são não nulos.
- 34. Sejam OABC um tetraedro e M o ponto médio de BC:
 - (a) explique porque $\mathcal{B} = \{\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}\}$ é base de \mathbb{R}^3 ,

²Original: Die Bourgeoise hat dem Familienverhältnis seinen rührend sentimentalen Schleier abgerissen und es auf ein reines Geldverhältnis zurückgeführt, em Manifest der Kommunistischen Partei, 1872, Karl Marx e Friedrich Engels.

- (b) determine as coordenadas de \overrightarrow{AM} , na base \mathcal{B} (dica: use o exercício ??).
- 35. Explique porque um conjunto $\{\vec{u}, \vec{v}, \vec{w}\}$ de vetores dois a dois ortogonais tem que ser LI.
- 36. Seja $\mathcal B$ uma base ortonormal. Calcule as normas dos seguintes vetores na base $\mathcal B$:
 - (a) (1, 1, 1),
 - (b) (1,0,0),
 - (c) (-1,1,1),
 - (d) $(3, 4, \sqrt{11}),$
 - (e) $(-3, -4, \sqrt{11}),$

- (f) $\left(\frac{1}{2}, -\frac{1}{2}, \frac{1}{\sqrt{2}}\right)$,
- $(g) \ \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right),$
- (h) $\left(-\frac{3}{4}, \frac{\sqrt{3}}{4}, \frac{1}{2}\right)$.
- 37. Normalize os vetores do Exercício anterior.
- 38. Explique porque o produto interno não pode ser associativo.
- 39. Sejam $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3$ e $k \in \mathbb{R}$. Prove as seguintes propriedades utilizando as propriedades básicas do produto escalar:
 - $(P4) \ \overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w},$
 - $(P5) \ \vec{u} \cdot \vec{0} = \vec{0} \cdot \vec{u} = 0,$
 - (P6) $\vec{u} \cdot k \vec{v} = k(\vec{u} \cdot \vec{v}),$
 - (P7) $(\vec{u} \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} \vec{v} \cdot \vec{w}$,
 - (P8) $\vec{u} \cdot (\vec{v} \vec{w}) = \vec{u} \cdot \vec{v} \vec{u} \cdot \vec{w}$.
- 40. Sejam \vec{u} , $\vec{v} \in \mathbb{R}^3$ não nulos. Prove:
 - (a) $\vec{u} \perp \vec{v} \iff \vec{u} \cdot \vec{v} = 0$,
 - (b) $\vec{u} \parallel \vec{v} \iff |\vec{u} \cdot \vec{v}| = ||\vec{u}|| \cdot ||\vec{v}||$.
- 41. Ache a medida (em radianos) dos ângulos entre \overrightarrow{u} e \overrightarrow{v} nos casos:
 - (a) $\vec{u} = (1, 0, 1), \vec{v} = (-2, 10, 2),$
 - (b) $\vec{u} = (3,3,0), \vec{v} = (2,1,-1),$
 - (c) $\vec{u} = (-1, 1, 1), \vec{v} = (1, 1, 1),$
 - (d) $\vec{u} = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}, 0\right), \ \vec{v} = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}, \sqrt{3}\right),$
 - (e) $\vec{u} = (300, 300, 0), \vec{v} = (-2000, -1000, 2000),$
- 42. Ache x de modo que \overrightarrow{u} e \overrightarrow{v} sejam ortogonais nos casos:
 - (a) $\vec{u} = (x, 0, 3), \vec{v} = (1, x, 3),$
 - (b) $\vec{u} = (x, x, 4), \vec{v} = (4, x, 1),$
 - (c) $\vec{u} = (x+1, 1, 2), \ \vec{v} = (x-1, -1, -2),$
 - (d) $\vec{u} = (x, -1, 4), \vec{v} = (x, -3, 1).$
- 43. Calcule $||2\vec{u}+4\vec{v}||^2$ sabendo que $||\vec{u}||=1$, $||\vec{v}||=2$ e a medida do ângulo entre \vec{u} e \vec{v} é $\frac{2}{3}\pi$.

5

- 44. Se A, B e C são os vértices de um triângulo equilátero de lado unitário, calcule $\overrightarrow{AB} \cdot \overrightarrow{BC} + \overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{CA} \cdot \overrightarrow{AB}$.
- 45. Se $\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w} = \overrightarrow{0}$, $||\overrightarrow{u}|| = \frac{3}{2}$, $||\overrightarrow{v}|| = \frac{1}{2}$ e $||\overrightarrow{w}|| = 2$, calcule $\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u}$.
- 46. Prove que se $\vec{u} \perp (\vec{v} \vec{w})$ e $\vec{v} \perp (\vec{w} \vec{u})$, então $\vec{w} \perp (\vec{u} \vec{v})$.
- 47. Seja $\mathcal{B} = \{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\}$ uma base ortonormal positiva. Calcule $\overrightarrow{u} \times \overrightarrow{v}$ e $\overrightarrow{v} \times \overrightarrow{u}$ nos casos seguintes:
 - (a) $\vec{u} = (6, -2, -4), \vec{v} = (-1, -2, 1),$
 - (b) $\vec{u} = (7, 0, -5), \vec{v} = (1, 2, -1),$
 - (c) $\vec{u} = (1, -3, 1), \vec{v} = (-4, 2, 4),$
 - (d) $\vec{u} = (2, 1, 2), \vec{v} = (4, 2, 4).$
- 48. A medida em radianos do ângulo entre \vec{u} e \vec{v} é $\frac{\pi}{6}$. Sendo $||\vec{u}|| = 1$ e $||\vec{v}|| = 7$, calcule $||\vec{u} \times \vec{v}||$ e $||\frac{1}{3}\vec{u} \times \frac{3}{4}\vec{v}||$.
- 49. Seja ABCD um tetraedro regular de lado unitário. Calcule $||\overrightarrow{AB} \times \overrightarrow{CD}||$.
- 50. Seja $\mathcal{B} = \{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\}$ uma base ortonormal positiva. Calcule a área do paralelogramo \overrightarrow{ABCD} sendo $\overrightarrow{AB} = (1, 1, -1)$ e $\overrightarrow{AD} = (2, 1, 4)$.
- 51. Seja $\mathcal{B} = \{\vec{i}, \vec{j}, \vec{k}\}$ uma base ortonormal positiva. Calcule a área do triângulo \overrightarrow{ABC} sendo $\overrightarrow{AB} = (0, 1, 3)$ e $\overrightarrow{AC} = (-1, 1, 0)$.
- 52. Seja $\mathcal{B}=\{\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\}$ uma base ortonormal positiva. Ache um vetor unitário ortogonal a $\overrightarrow{u}=(1,-3,1)$ e $\overrightarrow{v}=(-3,3,3)$.
- 53. Seja $\mathcal{B} = \{\vec{i}, \vec{j}, \vec{k}\}$ uma base ortonormal positiva. Ache \vec{x} tal que $\vec{x} \times (\vec{i} + \vec{k}) = 2(\vec{i} + \vec{j} \vec{k})$ e $||\vec{x}|| = \sqrt{6}$.
- 54. Prove:
 - (a) $||\overrightarrow{u} \times \overrightarrow{v}||^2 + (\overrightarrow{u} \cdot \overrightarrow{v})^2 = ||\overrightarrow{u}||^2 \cdot ||\overrightarrow{v}||^2$,
 - (b) $||\overrightarrow{u} \times \overrightarrow{v}||^2 \le ||\overrightarrow{u}||^2 \cdot ||\overrightarrow{v}||^2$,
 - (c) $||\vec{u} \times \vec{v}||^2 = ||\vec{u}||^2 \cdot ||\vec{v}||^2 \iff \vec{u} \perp \vec{v},$
 - (d) $(\vec{u} + \vec{v}) \times (\vec{u} \vec{v}) = 2(\vec{v} \times \vec{u}),$
 - (e) $(\vec{u} \vec{v}) \times (\vec{v} \vec{w}) = \vec{u} \times \vec{v} + \vec{v} \times \vec{w} + \vec{w} \times \vec{u}$,
 - $(\mathbf{f}) \ (\overrightarrow{u} \overrightarrow{t}) \times (\overrightarrow{v} \overrightarrow{w}) + (\overrightarrow{v} \overrightarrow{t}) \times (\overrightarrow{w} \overrightarrow{u}) + (\overrightarrow{w} \overrightarrow{t}) \times (\overrightarrow{u} \overrightarrow{v}) = 2(\overrightarrow{u} \times \overrightarrow{v} + \overrightarrow{v} \times \overrightarrow{w} + \overrightarrow{w} \times \overrightarrow{u}).$
- 55. Prove que se $\vec{u} \times \vec{v} = \vec{w} \times \vec{t}$ e $\vec{u} \times \vec{w} = \vec{v} \times \vec{t}$ então $\vec{u} \vec{t}$ e $\vec{v} \vec{w}$ são vetores linearmente dependentes.

- 56. Prove que a altura do triângulo ABC relativa à base AB mede $h = \frac{||\overrightarrow{AB} \times \overrightarrow{AC}||}{||\overrightarrow{AB}||}$.
- 57. Expressa a distância do ponto C à reta r que passa por dois pontos A e B em termos dos vetores \overrightarrow{AB} e \overrightarrow{AC} .
- 58. Seja $\mathcal{B} = \{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\}$ uma base ortonormal positiva. Calcule $[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}]$ sendo $\overrightarrow{u} = (-1, -3, 1)$, $\overrightarrow{v} = (1, 0, 1)$ e $\overrightarrow{w} = (2, 1, 1)$.
- 59. Seja $\mathcal{B} = \{\vec{i}, \vec{j}, \vec{k}\}$ uma base ortonormal positiva. Calcule o volume do paralelepípedo definido pelo vetores $\vec{u} = (2, -2, 0), \vec{v} = (0, 1, 0)$ e $\vec{w} = (-2, -1, -1)$.
- 60. Seja $\mathcal{B} = \{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\}$ uma base ortonormal positiva. Calcule o volume do tetraedro \overrightarrow{ABCD} dados $\overrightarrow{AB} = (1, 1, 0), \overrightarrow{AC} = (0, 1, 1)$ e $\overrightarrow{AD} = (-4, 0, 0)$.
- 61. Seja $\mathcal{B} = \{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\}$ uma base ortonormal positiva. Verifique:
 - (a) $[\vec{u}_1 + \vec{u}_2, \vec{v}, \vec{w}] = [\vec{u}_1, \vec{v}, \vec{w}] + [\vec{u}_2, \vec{v}, \vec{w}],$
 - (b) $[a\vec{u}, \vec{v}, \vec{w}] = a[\vec{u}, \vec{v}, \vec{w}],$
 - (c) $[\overrightarrow{u} + a\overrightarrow{v} + b\overrightarrow{w}, \overrightarrow{v} + c\overrightarrow{w}, \overrightarrow{w}] = [\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}].$
- 62. Seja $\mathcal{B} = \{\vec{i}, \vec{j}, \vec{k}\}$ uma base ortonormal positiva. Calcule $[\vec{u}, \vec{v}, \vec{w}]$ sabendo $||\vec{u}|| = 1$, $||\vec{v}|| = 2$, $||\vec{w}|| = 3$ e que $\{\vec{u}, \vec{v}, \vec{w}\}$ é base negativa com $\vec{u}, \vec{v}, \vec{w}$ dois a dois ortogonais.
- 63. A medida em radianos do ângulo entre \overrightarrow{u} e \overrightarrow{v} é $\frac{\pi}{6}$ e \overrightarrow{w} é ortogonal a \overrightarrow{u} e \overrightarrow{v} . Sendo $||\overrightarrow{u}||=1$, $||\overrightarrow{v}||=1$. $||\overrightarrow{w}||=4$ e $\{\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\}$ base positiva, ache $[\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}]$.
- 64. Prove que:
 - (a) $|[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}]| \leq ||\overrightarrow{u}|| \cdot ||\overrightarrow{v}|| \cdot ||\overrightarrow{w}||$,
 - (b) $|[\vec{u}, \vec{v}, \vec{w}]| \le ||\vec{u}|| \cdot ||\vec{v}|| \cdot ||\vec{w}||$ se e somente se algum dos vetores for nulo ou sendo todos não nulos, forem dois a dois ortogonais.
- 65. Prove que se $\vec{u} \times \vec{v} + \vec{v} \times \vec{w} + \vec{w} \times \vec{u} = \vec{0}$, então $\{\vec{u}, \vec{v}, \vec{w}\}$ é conjunto linearmente dependente.
- 66. Prove que a altura do tetraedro ABCD relativa à base ABC é:

$$h = \frac{|[\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}]|}{||\overrightarrow{AB} \times \overrightarrow{AC}||}.$$

Observe que o volume de um tetraedro é um terço da a área do triângulo base vezes a altura.

67. Sejam \overrightarrow{ABCD} um tetraedro, $P = A + 2\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}$, $Q = B - \overrightarrow{AB} - \overrightarrow{AC} + \overrightarrow{AD}$ e $R = C + \overrightarrow{AB} + \overrightarrow{AC}$. Mostre que PQRD forma tetraedro e determine a razão entre os volumes de PQRD e ABCD.

7

Terceira lista de exercícios

"Os trabalhadores não tem pátria."³ (Friedrich Engels, empresário e filósofo alemão, 1820 - 1895)

Estudo da reta

68. Sejam A = (3, 6, -7), B = (-5, 2, 3) e C = (4, -7, -6) pontos no espaço.

(a) Escreva as equações vetorial e paramétrica para a reta r determinada pelos pontos B e C e obtenha sua forma simétrica, caso existir. O ponto D = (3, 1, 4) pertence a r?

(b) Verifique que os pontos A, B e C são vértices de um triângulo.

(c) Escreva as equações paramétricas da mediana relativa ao vértice C do triângulo.

69. Obtenha equações paramétricas para os três eixos coordenados.

70. Dados os pontos A = (1, 2, 5) e B = (0, 1, 0), determine P sobre a reta que passa por A e B tal que o comprimento do segmento PB seja o triplo do comprimento do segmento PA.

71. Escreva as equações paramétricas para a reta r que passa pelo ponto A=(2,0,-3) tal que:

(a) r é paralela à reta s: $\frac{1-x}{5} = \frac{3y}{4} = \frac{z+3}{6}$,

(b) r é paralela à reta que passa pelos pontos B = (1,0,4) e C = (2,1,3),

(c) r é paralela à reta s': $\begin{cases} x = 4 - 5\lambda, \\ y = -7 + 11\lambda, \\ z = 6 + 4\lambda. \end{cases} \lambda \in \mathbb{R}$

72. Passe a forma simétrica, quando for possível, das equações no exercício anterior.

73. Verifique se r = s nos casos:

(a)

$$r \colon \left\{ \begin{array}{l} x = 1 - \lambda, \\ y = 2 + 2\lambda, \\ z = 1 + \lambda. \end{array} \right. \qquad \qquad s \colon \left\{ \begin{array}{l} x = 1 - \frac{1}{2}\mu, \\ y = 2 + \mu, \\ z = 1 + \frac{1}{2}\mu. \end{array} \right.$$

(b)

$$r: \begin{cases} x = \frac{1}{3} - \lambda, \\ y = -\frac{1}{2} + \lambda, \\ z = \frac{2}{3} - \lambda. \end{cases}$$

$$s: \begin{cases} x = 1 - \mu, \\ y = -1 + \mu, \\ z = 2 - \mu. \end{cases}$$

³Original: *Die Arbeiter haben kein Vaterland*. Em Manifest der kommunistischen Partei, 1872, Karl Marx e Friedrich Engels.

(c)
$$r \colon X = (1, 1, 0) + \lambda \left(1, 0, -\frac{1}{2}\right), s \colon X = \left(0, 1, \frac{1}{2}\right) + \mu(-2, 0, 1).$$

- 74. Dados o ponto A=(0,2,1) e a reta $r\colon X=(0,2,-2)+a(1,-1,2)$ ache os pontos de r que distam $\sqrt{3}$ de A. Em seguida diga se a distância do ponto A à reta r é maior, menos ou igual a $\sqrt{3}$ e por quê.
- 75. Dados o ponto A = (1, 1, 1) e a reta r: $\begin{cases} x = 1 + \lambda, \\ y = 1 \lambda, \text{ ache os pontos de } r \text{ que distam } \sqrt{11} \text{ de } z = 4. \end{cases}$

A. Em seguida diga se a distância do ponto A à reta r é maior, menos ou igual a $\sqrt{11}$ e por quê.

- 76. Dados os pontos A=(1,1,1) e B=(0,0,1) e a reta $r\colon X=(1,0,0)+\lambda(1,1,1)$ ache o ponto de r equidistante de A e B.
- 77. Ache as equações paramétricas da reta r que passa por A=(3,3,3) e é paralela à reta BC, sendo B=(1,1,0) e C=(-1,0,-1).
- 78. Estude a posição relativa das retas r e s nos seguintes casos:

(a)
$$r: X = (1, -1, 1) + \lambda(-2, 1, -1),$$
 $s: \begin{cases} y + z = 3, \\ x + y - z = 6. \end{cases}$

(b)
$$r: \begin{cases} x-y-z=2, \\ x+y-z=0. \end{cases}$$
, $s: \begin{cases} 2x-3y+z=5, \\ x+y-2z=0. \end{cases}$

(c)
$$r: \frac{x+1}{2} = \frac{y}{3} = \frac{z+1}{2}$$
, $s: X = (0,0,0) + \lambda(1,2,0)$

(d)
$$r: \frac{x+3}{2} = \frac{y-1}{4} = z$$
, $s: \begin{cases} 2x - y + 7 = 0, \\ x + y - 6z + 2 = 0. \end{cases}$

(e)
$$r: X = (8, 1, 9) + \lambda(2, -1, 3),$$
 $s: X = (3, -4, 4) + \lambda(1, -2, 2),$

(f)
$$r : \frac{x-1}{3} = \frac{y-5}{3} = \frac{z+2}{5}$$
, $s : x = -y = \frac{z-1}{4}$,

(g)
$$r: \frac{x+1}{2} = y = -z,$$
 $s: \left\{ \begin{array}{l} x+y-3z = 1, \\ 2x-y-2z = 0. \end{array} \right.$

(h)
$$r: x + 3 = \frac{2y - 4}{4} = \frac{z - 1}{3}$$
, $s: X = (0, 2, 2) + d(1, 1, -1)$.

- 79. Sejam r: $\begin{cases} x = \alpha y 1, \\ z = y 1. \end{cases}, s: x = \frac{y}{\alpha} = z$
 - (a) $r \in s$ sejam paralelas,
 - (b) $r \in t$ sejam concorrentes,
 - (c) $s \in t$ sejam coplanares,
 - (d) $r \in s$ sejam reversas.

Estudo do plano

- 80. Passe para a forma paramétrica as equações gerais dos planos seguintes:
 - (a) x 2 = 0,
 - (b) y + 1 = 0,
 - (c) z + 4 = 0,
 - (d) x + y 1 = 0,
 - (e) x z = 0,
 - (f) y z 2 = 0,
 - (g) x + y + z 1 = 0.
- 81. Seja $(O, \vec{i}, \vec{j}, \vec{k})$ um sistema de coordenadas cartesianas. Um plano coordenado é um dos três planos gerados por dois dos vetores da base e que contém a origem O. Obtenha as equações gerais dos três planos coordenados do sistema.
- 82. Verifique se $\pi_1 = \pi_2$ nos seguintes casos e justifique sua resposta:
 - (a) π_1 : x 3y + 2z + 1 = 0, π_2 : 2x 6y + 4z + 1 = 0.
 - (b) π_1 : $x \frac{y}{2} + 2z 1 = 0$, π_2 : -2x + y 4z + 2 = 0.
- 83. Obtenha as equações gerais para os planos π descritos abaixo, caso for possível:
 - (a) π passa por A = (1, 1, 0) e B = (1, -1, -1) e é paralelo ao vetor $\vec{v} = (2, 1, 0)$,
 - (b) π passa por A=(1,0,1) e B=(0,1,-1) e é paralelo ao segmento CD, com C=(1,2,1) e D=(0,1,0),
 - (c) π passa pelos pontos A = (1,0,1) e B = (2,1,-1) e C = (1,-1,0),
 - (d) π passa pelos pontos A = (1,0,2) e B = (-1,1,3) e C = (3,-1,1).
- 84. Obtenha uma equação geral para o plano determinado pelas retas $r \in s$, onde:
 - (a) $r: \frac{x-1}{2} = \frac{y}{2} = z$, s: x-1 = y = z,
 - (b) $r: \frac{x-1}{2} = \frac{y-3}{3} = \frac{z}{4}$, $r: \frac{x}{2} = \frac{y}{3} = \frac{z-4}{4}$.
- 85. Obtenha uma equação geral para o plano π nos casos:
 - (a) π : $\begin{cases} x = 1 + \lambda \mu, \\ y = 2\lambda + \mu, \\ z = 3 \mu. \end{cases}$
 - (b) π : $\begin{cases} x = 1 + \lambda, \\ y = 2, \\ z = 3 \lambda + \mu. \end{cases}$

 $com \lambda, \mu \in \mathbb{R}.$

- 86. Seja π_1 o plano que passa pelos pontos $A=(1,0,0),\ B=(0,1,0)$ e C=(0,0,1). Seja π_2 o plano que passa pelo ponto Q=(-1,-1,0) e é paralelo aos vetores $\overrightarrow{v}=(0,1,-1)$ e $\overrightarrow{w}=(1,0,1)$. Seja π_3 o plano de equação vetorial $X=(1,1,1)+\lambda(-2,1,0)+\mu(1,0,1)$, com $\lambda,\mu\in\mathbb{R}$.
 - (a) Escreva equações gerais de π_1 , π_2 e π_3 ,

- (b) Mostre que a interseção $\pi_1 \cap \pi_2 \cap \pi_3$ se reduz a um único ponto: determine-o.
- 87. Seja $(O, \vec{i}, \vec{j}, \vec{k})$ um sistema de coordenadas cartesianas. Obtenha um vetor normal ao planos π descritos abaixo:
 - (a) π contendo os pontos A = (1, 1, 1) e B = (1, 0, 1) e C = (1, 2, 3),
 - (b) π tem equações paramétricas π : $\begin{cases} x = 1 + \lambda, \\ y = 2 \lambda + \mu, \\ z = \lambda 2\mu. \end{cases}$
 - (c) π tem equação geral x 2y + 4z + 1 = 0
- 88. Seja $(O, \vec{i}, \vec{j}, \vec{k})$ um sistema de coordenadas cartesianas. Obtenha uma equação geral do plano π nos casos seguintes:
 - (a) π passa por A = (1, 1, 2) e é paralelo a $\pi_1 : x y + 2z + 1 = 0$,
 - (b) π passa pela origem e é perpendicular à reta que passa por A=(1,1,1) e B=(2,1,-1),
 - (c) π passa pelo ponto P=(1,0,1) e é perpendicular à reta $r\colon X=(0,0,1)+\lambda(1,2,-1)$.
- 89. Seja $(O, \vec{i}, \vec{j}, \vec{k})$ um sistema de coordenadas cartesianas. Obtenha equações vetoriais pelas retas nos casos seguintes:
 - (a) r passa por A = (1, 2, 3) e é perpendicular ao plano $\pi_1: 2x + y z = 2$,
 - (b) r é a interseção dos planos:

$$\pi_1: \begin{cases} x = 1 + \lambda, \\ y = -2, \\ z = -\lambda - \mu. \end{cases} \quad \text{e} \quad \pi_2: \begin{cases} x = 1 + \lambda - \mu, \\ y = 2\lambda + \mu, \\ z = 3 - \mu. \end{cases}$$

(c) r passa pela origem e é perpendicular ao plano:

$$\pi \colon \left\{ \begin{array}{l} x = 1 - \lambda - \mu, \\ y = \lambda + \mu, \\ z = \lambda. \end{array} \right.$$

90. Seja $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ um sistema de coordenadas cartesianas. Prove que o conjunto de pontos que são equidistantes de A = (1, -1, 2) e B = (4, 3, 1) é um plano. Mostre em seguida que esse plano passa pelo ponto médio do segmento AB e é perpendicular a AB.

Posições relativas de retas e planos

91. Estude as posições relativas de π_1 e π_2 nos seguintes casos:

(a)
$$\pi_1$$
: $X = (1, 1, 1) + \lambda(0, 1, 1) + \mu(-1, 2, 1)$,
 π_2 : $X = (1, 0, 0) + \rho(1, -1, 0) + \nu(-1, -1, -2)$,

(b)
$$\pi_1: 2x - y + 2z - 1 = 0, \qquad \pi_2: 4x - 2y + 4z = 0$$

(b)
$$\pi_1 : 2x - y + 2z - 1 = 0$$
, $\pi_2 : 4x - 2y + 4z = 0$,
(c) $\pi_1 : x - y + 2z - 2 = 0$, $\pi_2 : X = (0, 0, 1) + \lambda(1, 0, 3) + \mu(-1, 1, 1)$.

92. Calcule m para que os planos

$$\pi_1: X = (1,1,0) + \lambda(m,1,1) + \mu(1,1,m)$$

е

$$\pi_2$$
: $2x + 3y + 2z + n = 0$

sejam planos paralelos distintos, nos casos:

(a)
$$n = -5$$
, e (b) $n = 1$.

93. Mostre que os planos:

$$\pi_1: X = (0,0,0) + \lambda(-1,m,1) + \mu(2,0,1)$$

e

$$\pi_2$$
: $X = (1, 2, 3) + \rho(m, 1, 0) + \nu(1, 0, m)$

são concorrentes, para todo $m \in \mathbb{R}$.

94. Estude a posição relativa da reta r e do plano π nos seguintes casos:

(a)
$$r: X = (1, 1, 0) + \lambda(0, 1, 1), \qquad \pi: x - y - z = 2,$$

(b)
$$r: \frac{x-1}{2} = y = z, \qquad \pi: X = (3,0,1) + \lambda(1,0,1) + \mu(2,2,0),$$

(c)
$$r: \begin{cases} x-y+z=0, \\ 2x+y-z-1=0. \end{cases}$$
,

$$\pi \colon X = \left(0, \frac{1}{2}, 0\right) + \lambda \left(1, -\frac{1}{2}, 0\right) + \mu(0, 1, 1).$$

(d)
$$r: \begin{cases} x - y = 1, \\ x - 2y = 0. \end{cases}$$
, $\pi: x + y = 2.$

(e)
$$r: X = (0,0,0) + \lambda(1,4,1), \qquad \pi: X = (1,-1,1) + \lambda(0,1,2) + \mu(1,-1,0).$$

(e)
$$r: X = (0,0,0) + \lambda(1,4,1),$$
 $\pi: X = (1,-1,1) + \lambda(0,1,2) + \mu(1,-1,0).$
(f) $r: \frac{x+2}{3} = y - 1 = \frac{z+3}{3},$ $\pi: 3x - 6y - z = 0.$

95. Calcule m tal que:

(a) a reta
$$r: X = (1, 1, 1) + \lambda(2, m, 1)$$
 seja paralela ao plano $\pi: X = (0, 0, 0) + \lambda(1, 2, 0) + \mu(1, 0, 1)$,

(b) a reta
$$r: \frac{x-1}{m} = \frac{y}{2} = \frac{z}{m}$$
 seja transversal ao plano $\pi: x + my + z = 0$.

Quarta lista de exercícios

"Proletários de todos os países uni-vos!"⁴ (Karl Marx, filósofo alemão, 1818 - 1883)

Ângulos

96. Ache o co-seno do ângulo entre as retas:

(a)
$$r: X = \left(-\frac{5}{2}, 2, 0\right) + \lambda \left(\frac{1}{2}, 1, 1\right), \quad s: \begin{cases} 3x - 2y + 16 = 0, \\ 3x - z = 0. \end{cases}$$

(b)
$$r$$
:
$$\begin{cases} x = 3 + \lambda, \\ y = -2 - \lambda, \\ z = \sqrt{2}\lambda. \end{cases}$$
 s:
$$\begin{cases} x = -2 + \mu, \\ y = 3 + \mu, \\ z = -5 + \sqrt{2}\mu. \end{cases}$$

(c)
$$r: \begin{cases} \frac{x+2}{3} = 3 - z, \\ y = 0. \end{cases}$$
, $s: \begin{cases} \frac{x+1}{2} = z + 3, \\ y = 0. \end{cases}$

97. Ache a medida em radianos do ângulo entre a reta e o plano dados:

(a)
$$r$$
:
$$\begin{cases} x = 0, \\ y = z. \end{cases}, \qquad \pi$$
: $z = 0$.

(b)
$$r: x = y = z, \qquad \pi: z = 0$$

(c)
$$r: X = (0,0,1) + \lambda(-1,1,0), \qquad \pi: 3x + 4y = 0.$$

(d)
$$r$$
:
$$\begin{cases} x = 1 + \lambda, \\ y = \lambda, \\ z = -2\lambda. \end{cases}$$
, π : $x + y - z - 1 = 0$.

(e)
$$r: \begin{cases} x+y=2, \\ x=1+2z. \end{cases}$$
, $\pi: \sqrt{\frac{45}{7}}x+y+2z-10=0.$

98. Ache a medida em radianos do ângulo entre os planos:

(a)
$$\pi_1: 2x + y - z - 1 = 0$$
, $\pi_2: x - y + 3z - 10 = 0$.

(b)
$$\pi_1$$
: $X = (1,0,0) + \lambda(1,0,1) + \mu(-1,0,0), \qquad \pi_2$: $x + y + z = 0$.

(c)
$$\pi_1: X = (0,0,0) + \lambda(1,0,0) + \mu(1,1,1), \qquad \pi_2: X = (1,0,0) + \rho(-1,2,0) + \nu(0,1,0).$$

99. Ache as retas que interceptam as retas:

$$r\colon \frac{x-1}{3} = \frac{y-1}{2} = -\frac{z}{3}, \qquad s\colon \left\{ \begin{array}{l} x = -1 + 5\lambda, \\ y = 1 + 3\lambda, \\ z = \lambda. \end{array} \right.$$

e formam ângulos congruentes com os eixos coordenados.

⁴Original: Proletarier aller Länder vereinigt Euch!, em Manifest der Kommunistischen Partei, 1872, Karl Marx e Friedrich Engels.

- 100. Ache um vetor diretor de uma reta paralela ao plano $\pi_1: x+y+z=0$ e que forma um ângulo de $\frac{\pi}{4}$ com o plano $\pi_2: x-y=0$.
- 101. Calcule as medidas dos ângulos entre a diagonal de um cubo e suas faces.
- 102. * Ache uma equação geral de um plano que contém a reta r: $\begin{cases} x=z+1, \\ y=z-1. \end{cases}$, e que forma um ângulo de $\frac{\pi}{3}$ com o plano π : x+2y-3z+2=0.
- 103. * A diagonal BC de um quadrado ABDC está contida na reta $r: X = (1,0,0) + \lambda(0,1,1)$. Conhecendo A = (1,1,0), determine os outros vértices.

Distâncias

- 104. Calcule a distância entre os pontos A e B nos casos:
 - (a) $A = (0, -1, 0), \qquad B = (-1, 1, 0).$
 - (b) $A = (-1, -3, 4), \qquad B = (1, 2, -8).$
- 105. Calcule a distância do ponto P à reta r nos casos:

(a)
$$P = (0, -1, 0),$$
 $r: \begin{cases} x = 2z - 1, \\ y = z + 1. \end{cases}$.

(b)
$$P = (1, 0, 1),$$
 $r: \begin{cases} x = \lambda, \\ y = \frac{\lambda}{2}, \\ z = \frac{\lambda}{3}. \end{cases}$

(c)
$$P = (1, -1, 4),$$
 $r: \frac{x-2}{4} = \frac{y}{-3} = \frac{z-1}{-2}.$

(d)
$$P = (-2, 0, 1),$$
 $r: \begin{cases} x = 3\lambda + 1, \\ y = 2\lambda - 2, \\ z = \lambda. \end{cases}$

- 106. Calcule a distância do ponto P ao plano π nos casos:
 - (a) $P = (0, 0, -6), \quad \pi: x 2y 2z 6 = 0.$

(b)
$$P = \left(1, 1, \frac{15}{6}\right), \quad \pi : 4x - 6y + 12z + 21 = 0.$$

(c)
$$P = (9, 2, -2), \qquad \pi \colon X = (0, -5, 0) + \lambda \left(0, \frac{5}{12}, 1\right) + \mu(1, 0, 0).$$

(d)
$$P = (0,0,0), \qquad \pi: 2x - y + 2z - 3 = 0.$$

- 107. Ache os pontos de r: $\begin{cases} x+y=2, \\ x=y+z. \end{cases}$ que distam 3 do ponto A=(0,2,1).
- 108. Ache os pontos de r: x 1 = 2y = z que equidistam dos ponto A = (1, 1, 0) e B = (0, 1, 1). Interprete geometricamente o resultado.

14

- 109. Prove que todo plano que passa pelo ponto médio de um segmento AB é equidistante de A e B.
- 110. Dê uma equação geral do plano que contém os pontos A = (1,1,1) e B = (0,2,1) e equidista dos pontos C = (2,3,0) e D = (0,1,2).
- 111. * Obtenha equações do conjunto de pontos do espaço que equidistam dos planos π_1 : x+y-z=0, π_2 : x-y-z-2=0 e π_3 : x+y+z=1. Descreva-o geometricamente.
- 112. Ache a distância entre as retas dadas:

(a)
$$r: \frac{x-1}{-2} = 2y = z$$
, $s: X = (0,0,2) + \lambda \left(-2, \frac{1}{2}, 1\right)$.

(b)
$$r: x = \frac{y-3}{2} = z-2$$
, $s: x-3 = \frac{y+1}{2} = z-2$.

(c)
$$r:$$

$$\begin{cases} x = -1 + \lambda, \\ y = -2 + 3\lambda, \\ z = \lambda. \end{cases}$$
 $s:$
$$\begin{cases} x = -1 + \frac{2}{3}\lambda, \\ y = 2 + \lambda, \\ z = \lambda. \end{cases}$$

(d)
$$r: \frac{x+4}{3} = \frac{y}{4} = \frac{z+5}{-2},$$
 $s: \begin{cases} x = 21 + 6\lambda, \\ y = -5 - 4\lambda, \\ z = 2 - \lambda. \end{cases}$

(e)
$$r$$
:
$$\begin{cases} x = 2 - \lambda, \\ y = 1 + \lambda, \\ z = -\lambda. \end{cases}$$
 s:
$$\begin{cases} x + y + z = 0, \\ 2x - y - 1 = 0. \end{cases}$$

113. Ache a distância entre os planos paralelos:

(a)
$$\pi_1: 2x - y + 2z + 9 = 0$$
, $\pi_2: 4x - 2y + 4z - 21 = 0$.

(a)
$$\pi_1 \cdot 2x - y + 2z + y = 0$$
, $\pi_2 \cdot 4x - 2y + 4z = 0$
(b) $\pi_1 : \begin{cases} x = 2 - \lambda - \mu, \\ y = \mu, \\ z = \lambda. \end{cases}$, $\pi_2 : x + y + z = \frac{5}{2}$.

(c)
$$\pi_1$$
: $x + y + z = 0$, π_2 : $x + y + z + 2 = 0$.

- 114. Ache os pontos de r: $\begin{cases} x+y=2, \\ x=y+z. \end{cases}$ que distam $\sqrt{\frac{14}{3}}$ de s: x=y=z+1.
- 115. Ache os pontos de r: x 1 = 2y = z que equidistam de $s_1: \begin{cases} x = 2, \\ z = 0. \end{cases}$ e $s_2: x = y = 0.$
- 116. Obtenha a equação vetorial das retas paralelas a s: $\begin{cases} 2x-z=3, \\ y=2. \end{cases}$, concorrentes com t: $X=(-1,1,1)+\lambda(0,-1,2)$ e que distam 1 do ponto P=(1,2,1).
- 117. Um quadrado ABCD tem a diagonal BD contida na reta r: $\begin{cases} x=1, \\ y=z. \end{cases}$. Sabendo que A=(0,0,0), determine os vértices B, C e D.
- 118. Dê uma equação geral do plano π que contém a reta $r\colon X=(1,0,1)+\lambda(1,1,-1)$ e dista $\sqrt{2}$ do ponto A=(1,1,-1).

119. As retas r, s e t determinam com o plano π um tetraedro. Calcule a altura do tetraedro relativa à face situada no plano π com:

$$\pi$$
: $x + y - z + 1 = 0$, r : $x = y = z + 1$, s : $x - y = z + 1 = 0$,

$$t: \left\{ \begin{array}{l} x - y - z = 1, \\ x = 0. \end{array} \right.$$

- 120. * Obtenha as equações do lugar geométrico dos pontos do espaço cujas distâncias ao plano $\pi_1\colon 2x-y+2z-6=0$ são os dobros das suas distâncias ao plano $\pi_2\colon x+2y-2z+3=0$.
- 121. Dicas para leitura nas horas livres:
 - (a) Antônio Callado: Bar Don Juan, Editora Civilização Brasileira, 1972.
 - (b) Antônio Callado: Quarup, Editora José Olympio, 1967.
 - (c) Jorge Castañeda: Che Guevara. A vida em vermelha, Companhia das Letras, 2005.
 - (d) Karl Marx & Friedrich Engels: O manifesto do partido comunista, edipro, 1998.
 - (e) Leonardo Padura: O homem que amava os cachorros, Editora Boitempo, 2013.
 - (f) Mário Magalhães: Marighella. O guerrilheiro que incendiou o mundo, Companhia das Letras, 2012.
 - (g) Mário Magalhães: Sobre lutas e lágrimas Uma biografia de 2018, Editora Record, 2019.
 - (h) Sérgio Haddad: O educador Um perfil de Paulo Freire, Editora todavida, 2019.
 - (i) Simon Singh: O último teorema de Fermat, Editora Record, 1997.
 - (j) Steven Levitsky & Daniel Ziblatt: Como as democracias morrem, Editora Zahar, 2018.
 - (k) Svetlana Aleksievitch: Vozes de Tchernóbil. A história oral do desastre nuclear, Companhia das Letras, 2013.