Introdução à Robótica

http://www.coep.ufrj.br/gscar

1/10

Enfoque Exponencial à Murray

Fernando Lizarralde PEE-COPPE/UFRJ

Rio de Janeiro, 14 de julho de 2018

Coordenadas Exponenciais

Enfoque do livro Murray, Li e Sastry.

Considere a configuração de um corpo rígido dado pela transformação homogênea g_{ab} dada por:

$$\begin{bmatrix} p_a \\ 1 \end{bmatrix} = \underbrace{\begin{bmatrix} R_{ab} & p_{ab} \\ 0 & 1 \end{bmatrix}}_{g_{ab}} \begin{bmatrix} p_b \\ 1 \end{bmatrix}$$

Para $R\in SO(3)$ tem-se a seguinte parametrização $R=e^{\hat{\omega}\theta}$, com $\theta\in\mathbb{R}$, $\omega\in\mathbb{R}^3$ e $\|\omega\|=1$.

2/10

E para
$$g \in SE(3)$$
?

Considerando
$$\zeta=\left[egin{array}{c}\omega\\v\end{array}\right]$$
, onde $\omega,v\in\mathbb{R}^3$ e $\|\omega\|=1$,

Define-se então

$$\hat{\zeta} = \left[\begin{array}{cc} \hat{\omega} & v \\ 0 & 0 \end{array} \right]$$

Tendo portanto que $e^{\hat{\zeta}\theta} = \begin{bmatrix} e^{\hat{\omega}\theta} & (I - e^{\hat{\omega}\theta})\hat{\omega}v + \omega\omega^T v\theta \\ 0 & 1 \end{bmatrix}$

Fechar

Voltar

Pode-se provar que dado $R \in SO(3), p \in \mathbb{R}^3$ existem ω, θ, v .

Em particular se $\omega=0$ tem-se que:

$$e^{\hat{\zeta}\theta} = \left[\begin{array}{cc} I & v\theta \\ 0 & 1 \end{array} \right]$$

Velocidade Angular

Considere a representação exponencial da orientação

$$R_{ab} = e^{\theta k \times} = e^{\theta \hat{k}}$$

Suponha que k é fixo em E_a .

Então, diferenciando R_{ab} tem-se

$$\dot{R}_{ab} = \dot{\theta}\hat{k} \ e^{\theta\hat{k}} = \widehat{\dot{\theta}k} \ R_{ab}$$

Então define-se

$$(\vec{\omega}_{ab})_a = \dot{\theta}k$$

e desta forma tem-se,

$$\dot{R}_{ab} = \widehat{(\vec{\omega}_{ab})_a} \ R_{ab}$$

onde $(\vec{\omega}_{ab})_a=$ velocidade angular do sistema de coordenadas \bar{E}_b com respeito a \bar{E}_a , representada em \bar{E}_a .

5/10

44

1

Voltar

Velocidade de um corpo rígido

Considerando a configuração de um corpo rígido

Descrita pela transformação homogênea:

$$T_{ab} = \left[\begin{array}{cc} R_{ab} & (\vec{p}_{ab})_a \\ 0 & 1 \end{array} \right]$$

6/10

A sua derivada é dada por $(\dot{p}_{ab} = \frac{d}{dt}(\vec{p}_{ab})_a)$: $\dot{T}_{ab} = \begin{bmatrix} R_{ab} & \dot{p}_{ab} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} (\vec{\omega}_{ab})_a \times R_{ab} & \dot{p}_{ab} \\ 0 & 0 \end{bmatrix}$

Escrevendo T_{ab} em função de T_{ab} :

$$\dot{T}_{ab} = \begin{bmatrix} (\vec{\omega}_{ab})_a \times & \dot{p}_{ab} - (\vec{\omega}_{ab})_a \times (\vec{p}_{ab})_a \\ 0 & 0 \end{bmatrix} \underbrace{\begin{bmatrix} R_{ab} & (\vec{p}_{ab})_a \\ 0 & 1 \end{bmatrix}}_{T_{ab}}$$

Definição: $\widehat{(\cdot)}$ - dado $\zeta=\left[\begin{array}{c}v\\\omega\end{array}\right]$, $v,\omega\in\mathbb{R}^3$, define-se $\hat{\zeta} = \begin{bmatrix} \hat{\omega} & v \\ 0 & 0 \end{bmatrix}$

Por analogia com a velocidade angular, é definida a velocidade espacial $(V_{ab})_a = \left| \begin{array}{c} \dot{p}_{ab} - (\vec{\omega}_{ab})_a \times (\vec{p}_{ab})_a \\ (\vec{\omega}_{ab})_a \end{array} \right|$

Então tem-se:

$$\dot{T}_{ab} = \widehat{(V_{ab})_a} \ T_{ab}$$

A parte superior do vetor $(V_{ab})_a$ pode ser re-escrita como:

$$\dot{p}_{ab} - (\vec{\omega}_{ab})_a \times (\vec{p}_{ab})_a = R_{ab} \frac{d}{dt} (R_{ab}^T \ (\vec{p}_{ab})_a) = R_{ab} \frac{d}{dt} (\vec{p}_{ab})_b$$

que representa a derivada de \vec{p}_{ab} em E_b com o resultado representado em \bar{E}_a (note que a componente linear de $(V_{ab})_a$ não é a velocidade da origem do sistema de coordenadas do corpo \bar{E}_b).

8/10

Podemos escrever a velocidade do corpo com relação ao sistema de coordenadas do corpo, da seguinte forma:

$$\dot{T}_{ab} = T_{ab} \ \widehat{(V_{ab})_b}; \qquad (V_{ab})_b = \begin{bmatrix} R_{ab}^T \dot{p}_{ab} \\ (\vec{\omega}_{ab})_b \end{bmatrix}$$

A parte superior do vetor $(V_{ab})_b$:

$$R_{ab}^T \dot{p}_{ab} = R_{ba} \frac{d}{dt} (\vec{p}_{ab})_a$$

é a derivada de \vec{p}_{ab} em \bar{E}_a com o resultado representado em \bar{E}_b .

9/10

A velocidade espacial e a velocidade do corpo estão relacionadas através de uma tranformação de similaridade:

$$\widehat{(V_{ab})_a} = T_{ab} \ \widehat{(V_{ab})_b} \ T_{ab}^{-1}$$

ou alternativamente $(\hat{p}_{ab} = (\vec{p}_{ab})_a \times)$:

$$(V_{ab})_a = \underbrace{\begin{bmatrix} R_{ab} & \hat{p}_{ab}R_{ab} \\ 0 & R_{ab} \end{bmatrix}}_{\Phi_{ab} = Ad_{T_{ab}}} (V_{ab})_b$$

onde $Ad_{T_{ab}}$ é chamada de Transformação Adjunta (Operador Adjunto). Note que

$$Ad_{T_{ab}}^{-1} = Ad_{T_{ab}^{-1}} = Ad_{T_{ba}} = \begin{bmatrix} R_{ab}^T & -R_{ab}^T \hat{p}_{ab} \\ 0 & R_{ab}^T \end{bmatrix}$$

Resumo:

- ullet T_{ab} transformação da configuração de $ar{E}_b$ para $ar{E}_a$;
- ullet $Ad_{T_{ab}}$ transformação da velocidade espacial de $ar{E}_b$ para $ar{E}_a$.

0/10

44

→ **→**

Voltar