PBLE01 – Requisitos e programação Semestre 2024.2

Rev 0 - Jul/2024

1 Requisitos

Em linhas gerais, deve ser desenvolvia uma placa de circuito impresso que possua uma unidade de processamento integra a um periférico de entradas de dados e a um periférico de exibição gráfica de informações. A placa deve permitir a atualização do programa embarcado de sua unidade de processamento assim como permitir sua integração(conexão) a outros circuitos e periféricos a partir de conjuntos de pinos de expansão.

A tabela seguinte lista os requisitos técnicos específicos a serem observados ao se desenvolver a placa de circuito impresso.

Tabela 1: Requisitos

Classe	Especificação
Ferramentas de	1.1 – Ambiente de projeto: <i>software KiCad</i> , versão 8;
desenvolvimento	1.2 – Elaboração de documentação: <i>LibreOffice</i> .
Características gerais da PCI	2.1 – Área total de até 50 cm² com dupla face de condução;
	2.2 – Identificar componentes, conectores e os pinos destes;
	2.3 – Possuir identificação do discente e do semestre(2024.2);
	2.4 – Possuir quatro(4) furos de fixação.
Alimentação	3.1 – Alimentada por 5V em corrente contínua através de conector <i>USB</i> ;
	3.2 – Possuir proteção contra curto-circuitos;
	3.3 – Possuir proteção contra tensão de alimentação reversa;
	3.4 – Possuir indicação de presença de alimentação por meio de diodo.
Operação	4.1 – Possuir um microcontrolador;
	4.2 – Possuir chave táctil para reinício de operação;
	4.3 – Permitir a gravação do embarcado pelos modos <i>SWD</i> e <i>UART</i> .
Interação	5.1 – Empregar um codificador com botão ou um teclado de até 3 teclas;
	5.2 – Possuir conector para visor de 16x2 pontos;
	5.3 – Possuir pelo menos um diodo emissor de luz para sinalização diversa.
	6.1 – Possuir transceptor <i>USB-seria</i> l;
Periféricos	6.2 – Possuir memória não-volátil do tipo <i>E2PROM</i> ;
	6.3 – Possuir sensor um sensor de luminosidade ou de temperatura.
Expansão	7.1 – Possuir um conector para sinais <i>I2C</i> , GND, 3.3V e 5V;
	7.2 – Possuir um conector para sinais <i>SPI</i> , GND, 3.3V e 5V;
	7.3 – Possuir um conector para sinais GND, 3.3V e 5V e pinos disponíveis.
	8.1 – Mínima largura para trilhas de sinais: 8 mils;
Espaçamento e dimensões	8.2 – Mínima largura para trilhas de alimentação: 12 mils;
	8.3 – Mínimo espaçamento entre trilhas, furos e ilhas: 8 mils
	8.4 – Mínimo diâmetro de furo de vias: 12 mils;
	8.5 – Mínimo diâmetro de ilhas de vias: 25 mils;
	8.6 – Não utilizar microvias.

2 Recursos disponíveis

Tabela 1: Componentes disponíveis

Classe	Modelo	Fabricante	
Microcontrolador	STM32F030K6T6TR	STMicroelectronics	
Chave de seleção de estados	2454982-1	TE Connectivity	
Transceptor USB–serial	MCP2200-I/SO	Microchip	
Memória E2PROM	24LC512-I/SN	Microchip	
Resistor	CMD 000F	Valores comerciais	
Capacitor	- SMD 0805		
Amplificador operacional	LM358DR/LM358DGKR	Texas Instruments	
Diodos emissores de luz	SM0805UOC	Bivar	
Conector USB	640-USB4215-03-A	GCT	
Conector 63B	1734035-2	TE Connectivity	
Chave táctil	1825910–6	TE Connectivity	
Regulador de tensão	LD1117S33TR	STMicroelectronics	
	LD1117S50TR	STIME OFFICE OFFICE	
Conector para barras de expansão	3-644456-21	TE Connectivity	
Diodo retificador	1N5819HW-7-F	Diodes Incorporated	
V. 1.46.0	1N4001G-T		
Visor de 16x2 pontos	JHD162A	-	
Codificador com botão	PEC12R-3222F-S0024	Bourns	
Trimmer de 10k	3296W-1-103RLF	Bourns Inc.	
	ATS20A		
Cristal	ATS12A	CTS Electronic Components	
Cristal	ATS08A		
	AB38T-32.768KHZ	ABRACON	
	BC857BMB	Nexperia	
Transistor	BC846A		
	MMBT3906	Diotec Semiconductor	
Fotorresistor(LDR)	PDV-P8103	Advanced Photonix	
Sensor de temperatura	LM35DZ/NOPB	Texas Instruments	
	0ZCH0035FF2G		
	0ZCH0020FF2E	D.1-	
Fusível restaurável(<i>PPTC</i>)	0ZCH0050FF2G	Bel Fuse	
	0ZCH0075FF2G		

¹ Exemplo

3 Cronograma de desenvolvimento

Tabela 2: Cronograma de desenvolvimento

Semana	Tema	Entrega/apresentação
1	Apresentação da disciplina	
2	Aspectos elementares	
3	Captura de esquemas elétricos	
4	Circuito do alimentação	
5	Circuito de alimentação	Apresentação
6	Circuito do oporação	
7	Circuito de operação	Apresentação
8	Circuito do porifóricos	
9	Circuito de periféricos	Apresentação
10		Entrega do esquema elétrico
11	Desenho de PCI	
12		Apresentação
13	Elaboração de documentação	Entrega da PCI
14	Acompanhamente	
15	Acompanhamento	Entrega dos resultados de projeto
16	Discussão dos resultados	

4 Instruções de entrega

Para as entregas preliminares, deverão ser apresentados os itens requisitados. Para os resultados finais devem ser entregues os itens seguintes:

- O projeto do esquema elétrico, a conter:
 - Arquivo de projeto do esquema elétrico;
 - Arquivo (biblioteca) que contemple todos os símbolos criados (esquema elétrico).
- O projeto da placa de circuito impresso, a conter:
 - Arquivo de projeto da placa de circuito impresso;
 - Arquivo (biblioteca) que contemple todos os módulos criados (pegadas).
- Documento de projeto (formato digital PDF).