

New York State Mathematics Association of Two-Year Colleges

Math League Contest ~ Fall 2014 ~ Solutions

1.	$\Gamma\left(\frac{7}{2}\right) = \frac{5}{2}\Gamma\left(\frac{5}{2}\right) = \frac{5}{2} \cdot \frac{3}{2}\Gamma\left(\frac{3}{2}\right) = \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2}\Gamma\left(\frac{1}{2}\right) = \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2}\sqrt{\pi} = \frac{15}{8}\sqrt{\pi}$ Answer: C
2.	If we remove the "outer" layer of painted $1 \times 1 \times 1$ cubes, an unpainted $3 \times 3 \times 3$ cube remains. Hence, there will be $3 \cdot 3 \cdot 3 = 27$ paint-free cubes. Answer: 27
3.	Let's look at each choice. For A, letting $x = \log_2(2014)$ gives $2^x = 2014$, and taking the log base
	2014 gives $x \log_{2014}(2) = 1$ or $\log_{2014}(2) = \frac{1}{x}$. Thus, $\log_2(2014) \cdot \log_{2014}(2) = x \cdot \frac{1}{x} = 1$. For B, we
	know the arcsin function yields results between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ (i.e. in Quadrants I or IV), with the "2"
	in radians (and $2 > \frac{\pi}{2}$). Hence, $\arcsin(\sin(2)) = \pi - 2 \approx 1.14159$, and choice B is <i>not</i> an integer.
	Choices C and D are seen to be integers as follows. $(2+\sqrt{2})^{-2} + (2-\sqrt{2})^{-2} = \frac{1}{6+4\sqrt{2}} + \frac{1}{6-4\sqrt{2}}$
	$= \frac{6 - 4\sqrt{2} + 6 + 4\sqrt{2}}{\left(6 + 4\sqrt{2}\right)\left(6 - 4\sqrt{2}\right)} = \frac{12}{36 - 16 \cdot 2} = \frac{12}{4} = 3 \text{ and } 4^{\log_2(2014)} = \left(2^2\right)^{\log_2(2014)} = 2^{2\log_2(2014)} \text{ which}$
	is $\left(2^{\log_2(2014)}\right)^2 = 2014^2$, clearly an integer. Answer: B
4.	We can immediately put a "2" in the upper left corner, to obtain a sum of 15 in the first row. Then, the lower left corner must be $15-(2+x)=13-x$. Similarly, the 3^{rd} row 2^{nd} column entry must be $15-(9+y)=6-y$, the 2^{nd} 3^{rd} row 3^{rd} row 3^{rd} column entry must be 3^{rd} row 3^{rd} row 3^{rd} column entry must be 3^{rd} row 3^{rd}
	row 3 rd column is $15-(x+y)=15-x-y$, and the lower right corner entry must be
	15 - (13 - x + 6 - y) = x + y - 4. Summing the entries along the diagonals yields:
	2+y+x+y-4=15 or ① $x+2y=17$, and $13-x+y+4=15$ or ② $x-y=2$. Solving ① and ② for x gives $x=7$ (and $y=5$). Answer: 7
5.	Since $\frac{1}{7} = 0.\overline{142857}$, all we need to do is determine where in this 6-digit cycle the 2014 th position
	falls. $2014 \div 6$ is 335 with a remainder of 4. Thus, the 2014^{th} digit after the decimal point passes 335 full cycles, then lands on the 4^{th} digit in the cycle – which is an 8. Answer: 8
6.	If 25 is to have four different factors, they must be -1 , $1,-5$, and 5. Since we are only concerned
	with the sum, the ordering is arbitrary; let $x-a=-1$, $x-b=1$, $x-c=-5$, and $x-d=5$. Now,
	with $x = -2$ we get $a = -1$, $b = -3$, $c = 3$, and $d = -7$. Thus, $a + b + c + d = -8$. Answer: -8
7.	Only choice B is a perfect square, since $99!100! = 99! \cdot 99! \cdot 100 = (99! \cdot 10)^2$. Answer: B

Answer: D

Thus, the results are the same in any case.

- Let the number be x = 10a + b, thus $\hat{x} = 10b + a$, where a and b are digits (i.e. from 0 through 9) with $a \neq 0$ and $a \geq b$ (so that $x \hat{x} \geq 0$). This gives ① $x \hat{x} = 9(a b)$ and ② $x + \hat{x} = 11(a + b)$. In order for ① to be a perfect square, a b must be either 0, 1, 4, or 9. In order for ② to be a perfect square, a + b must be 11. Thus, the only digits whose sum is 11 and difference is either 0, 1, 4, or 9 are 5 and 6 (whose difference is 1). Thus, a = 6 and b = 5.
- 17. $\tan(1^{\circ})\tan(2^{\circ})\tan(3^{\circ})\cdots\tan(87^{\circ})\tan(88^{\circ})\tan(89^{\circ}) = \frac{\sin(1^{\circ})}{\cos(1^{\circ})}\frac{\sin(2^{\circ})}{\cos(2^{\circ})}\frac{\sin(3^{\circ})}{\cos(3^{\circ})}\cdots\frac{\sin(87^{\circ})}{\cos(87^{\circ})}\frac{\sin(89^{\circ})}{\cos(89^{\circ})}$ $= \frac{\sin(1^{\circ})}{\cos(1^{\circ})}\frac{\sin(2^{\circ})}{\cos(2^{\circ})}\frac{\sin(3^{\circ})}{\cos(3^{\circ})}\cdots\frac{\sin(44^{\circ})}{\cos(44^{\circ})}\frac{\sin(45^{\circ})}{\cos(45^{\circ})}\frac{\sin(87^{\circ})}{\cos(87^{\circ})}\frac{\sin(88^{\circ})}{\cos(88^{\circ})}\frac{\sin(89^{\circ})}{\cos(89^{\circ})}$

with $cos(x^{\circ}) = sin(90^{\circ} - x^{\circ})$ the product becomes

 $\frac{\sin(1^{\circ})}{\sin(89^{\circ})} \frac{\sin(2^{\circ})}{\sin(88^{\circ})} \frac{\sin(3^{\circ})}{\sin(87^{\circ})} \cdots \frac{\sin(44^{\circ})}{\sin(46^{\circ})} \frac{\sin(45^{\circ})}{\sin(45^{\circ})} \frac{\sin(46^{\circ})}{\sin(44^{\circ})} \cdots \frac{\sin(87^{\circ})}{\sin(3^{\circ})} \frac{\sin(88^{\circ})}{\sin(2^{\circ})} \frac{\sin(89^{\circ})}{\sin(1^{\circ})} = 1.$

Alternate Solution: Referring to the right triangle shown, we know that $\tan(x^\circ) = \frac{a}{b}$ and $\tan(90^\circ - x^\circ) = \frac{b}{a}$, which gives $\tan(x^\circ) \cdot \tan(90^\circ - x^\circ) = 1$. Hence,

 $\tan(1^{\circ})\tan(2^{\circ})\cdots\tan(45^{\circ})\cot(88^{\circ})\tan(89^{\circ})$ = $\tan(1^{\circ})\tan(89^{\circ})\tan(2^{\circ})\tan(88^{\circ})\cdots\tan(44^{\circ})\tan(46^{\circ})\tan(45^{\circ})$ = $1\cdot 1\cdot ...\cdot 1\cdot \tan(45^{\circ}) = \tan(45^{\circ}) = 1$.

Answer: B

- 18. A parabola of the form $y = ax^2 + bx + c$ with vertex at (h,k) can be written as $y = a(x-h)^2 + k = ax^2 2ahx + ah^2 + k$. Thus, b = -2ah and $c = ah^2 + k$. The reflected parabola, $y = dx^2 + ex + f$, can be written as $y = -a(x-h)^2 + k = -ax^2 + 2ahx ah^2 + k$. Thus, d = -a, e = 2ah, and $f = -ah^2 + k$, giving $a + b + c + d + e + f = a + (-2ah) + (ah^2 + k) + (-a) + (2ah) + (-ah^2 + k) = 2k$.

 Answer: D

 19. Let n = the total number of socks in the drawer, and b = the number of blue socks. Thus, the
- Let n= the total number of socks in the drawer, and b= the number of blue socks. Thus, the probability of selecting two blue socks is: $P=\frac{b}{n}\cdot\frac{b-1}{n-1}$, which is $\frac{2}{5}$. Hence, $\frac{b^2-b}{n^2-n}=\frac{2}{5}$ $\Rightarrow 5b^2-5b=2n^2-2n\Rightarrow 2n^2-2n+5b-5b^2=0$. Using the quadratic formula to solve for $n=\frac{2\pm\sqrt{4-4\cdot2\cdot(5b-5b^2)}}{4}=\frac{2\pm2\sqrt{1-(10b-10b^2)}}{4}=\frac{1\pm\sqrt{10b^2-10b+1}}{2}$. Now we need to determine the smallest value for $b\geq 2$ that yields a positive integer for n. The first such value we encounter is b=4, which gives $n=\frac{1\pm\sqrt{121}}{2}$, taking the positive result we get n=6. Answer: 6
- (The next smallest value is b = 16, giving n = 25, and b = 133 with n = 210 after that.)
 20. There are only two problems being referenced: this one (#20) and the one before this one (#19). The entire question can be rephrased like this:
 If the problem you solved before this one (#19) was harder than this one (#20), was the problem you solved before this one (#19) harder than this one (#20)? The answer is obviously "yes."
 Answer: B

