杭州电子科技大学学生考试卷(A)卷

考试课程	程 高等数学甲(1)		考试日期	08年	08年1月		成 绩	
课程号		教师号		任课教师姓名				
考生姓名		学号 (8 位)		年级			专业	

题	_	=	11						ш	五	
号			1	2	3	4	5	6	四		/\
得											
分											

填空题(本题共6小题,每小题3分,共18分)

- 1. 极限 $\lim_{x \to \infty} [\ln x \ln \sin(3x)]$ 的值等于_____.

- $b = _____.$ 3. 设 $y = \sin(x^2)\cos\frac{1}{x}$, 则 $dy = _____.$
- 4. 设 f(x) 的一个原函数为 $\sin x$,则 f'(x) =
- 5. 微分方程 $e^x dx (1+e^x)dy = 0$ 的通解为 .
- 6. $\int_{\frac{1}{1}}^{e} \frac{|\ln x|}{x} dx = \underline{\hspace{1cm}}$
- 二、 选择题 (本题共8小题,每小题3分,共24分)

- 1. 函数 f(x) 在 x_0 处有定义是 f(x) 在 x_0 处极限存在的 ()

 - (A) 充分但非必要条件: (B) 必要但非充分条件:

 - (C) 充分必要条件; (D) 既非充分也非必要条件.

- 2. 当 $x \to 0$ 时, $\arctan 3x$ 与 $\frac{ax}{\cos x}$ 是等价无穷小,则a为()
 - (A) 4; (B) 3; (C) 2; (D) 1.
- 3. 已知 $y = \sin x$, 则 $y^{(10)} = ($)
 - (A) $-\sin x$; (B) $-\cos x$; (C) $\sin x$: (D) $\cos x$.
- 4. 若函数 f(x) 在区间 (a,b) 内可导, x_1 和 x_2 是区间 (a,b) 内任意两点,且 $x_1 < x_2$, 则至少存在一点 ξ , 使()
 - (A) $f(b) f(a) = f'(\xi)(b-a)$, $\sharp + a < \xi < b$;
 - (B) $f(b) f(x_1) = f'(\xi)(b x_1)$, $\sharp + x_1 < \xi < b$;
 - (C) $f(x_2) f(x_1) = f'(\xi)(x_2 x_1)$, $\sharp + x_1 < \xi < x_2$;
 - (D) $f(x_2) f(a) = f'(\xi)(x_2 a)$, $\sharp \neq a < \xi < x_2$.
- 5. f(x) 在某区间内(),则它的原函数一定存在.
 - (A) 极限存在; (B) 连续; (C) 有界; (D) 有有限个间断点.

- 6. 设函数 $F(x) = \int_{0}^{x} f(t)dt$, 对自变量 x 给增量 Δx 时, 函数的增量 $\Delta F(x)$

为()

- (A) $\int_{0}^{x} [f(t+\Delta t) f(t)]dt;$ (B) $\int_{0}^{x+\Delta x} f(t)dt;$

- 7. $y = \frac{1}{r}$, $y = x \, \mathcal{R} x = 2$ 所围的平面图形面积为()
 - (A) $\int_{1}^{2} (x \frac{1}{x}) dx$; (B) $\int_{1}^{2} (\frac{1}{x} x) dx$; (C) $\int_{\frac{1}{2}}^{1} (y \frac{1}{y}) dy$; (D) $\int_{0}^{1} x dx + \int_{1}^{2} \frac{1}{x} dx$.
- 8. 函数 $f(x) = \begin{cases} x^n \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ 在 x = 0 处可导的充分必要条件是()
 - (A) n > -1; (B) n > 0; (C) n > 1; (D) n > 2.

1. 求极限 $\lim_{x\to 0} (\frac{1}{x} - \frac{1}{e^x - 1})$.

得分 3. 计算: $\int_0^{+\infty} xe^{-x^2} dx$.

2. $\exists x = \ln(1+t^2)$ $y = t - \arctan t$, $\Rightarrow \frac{d^2y}{dx^2}$.

4. 求不定积分: $\int x \arctan(x^2) dx$.

得分

四、应用题[本题8分]

设抛物线 $y = ax^2 + bx + c$ 通过 (0, 0) 点,当 $0 \le x \le 1$ 时, $y \ge 0$. 又知它和直线 x = 1, y = 0 所围成图形的面积是 $\frac{4}{9}$. 试确定 a, b, c 的值,使这个图形绕 Ox 轴旋转一周的旋转体的体积最小.

得分

6. 计算: $\int_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx$, (a > 0).

六、证明题[本题6分] 五、综合题[本题8分] 得分 得分 一条曲线连接两点 A(0,1) 和 B(1,0) ,且位于弦 AB 的上方, P(x,y) 为 设f(x)在区间[a,b]上有定义,且对[a,b]上任意两点x,y,有 曲线上任一点,已知曲线与弦AP之间的面积为 x^3 ,求曲线的方程. $|f(x)-f(y)| \le |x-y|$, 证明: $\left| \int_a^b f(x)dx - (b-a)f(a) \right| \le \frac{1}{2}(b-a)^2$.