Solució al problema 11 I

a) Notem que M no és un subsespai vectorial. Però si considerem el subespai $M'=\{p\in\mathbb{R}_2[x];\;|\;p(0)=0\}$ podem enunciar el següent problema equivalent: Trobar $p^*\in M'$ més proper a la funció constant $f\equiv 1$.

Tenim que una base de M' és $\varphi_1(x) = x$, $\varphi_2(x) = x^2$. Podem escriure

$$p^*=c_1\varphi_1+c_2\varphi_2,$$

on

$$\langle f, \varphi_1 \rangle = \int_{-1}^1 x \, dx = 0, \quad \langle f, \varphi_2 \rangle = \int_{-1}^1 x^2 \, dx = \frac{2}{3},$$

$$\langle \varphi_1, \varphi_1 \rangle = \frac{2}{3}, \quad \langle \varphi_1, \varphi_2 \rangle = 0, \quad \langle \varphi_2, \varphi_2 \rangle = \frac{2}{5}.$$

Per tant:

$$c_1 = rac{\langle f, arphi_1
angle}{\langle arphi_1, arphi_1
angle} = 0, \qquad c_2 = rac{\langle f, arphi_2
angle}{\langle arphi_2, arphi_2
angle} = rac{5}{3},$$

Solució al problema 11 II

i

$$p^*(x) = \frac{5}{3}x^2,$$

i la solució del nostre problema és el polinomi

$$q^*(x) = 1 - \frac{5}{3}x^2.$$

La seva norma és l'arrel quadrada de

$$\|q^*\|^2 = \|f\|^2 - \|p^*\|^2 = 2 - \int_{-1}^2 \frac{25}{9} x^4 = \frac{8}{9},$$

és a dir $\frac{2\sqrt{2}}{3}$.

Solució al problema 11 III

b) En aquest cas cal calcular $p^* \in M'$ tal que $\|g - p^*\| \le \|g - p\|$, per a tot $p \in M'$, on $g(x) = e^x - 1$. Fem com abans, agafant el sistema ortogonal $\varphi_1, \ \varphi_2$. Tenim que $p^* = c_1 \varphi_1 + c_2 \varphi_2$, on

$$c_1 = rac{\langle g, arphi_1
angle}{\langle arphi_1, arphi_1
angle} = rac{2/e}{2/3} = rac{1}{3e},$$

$$c_2 = \frac{\langle g, \varphi_1 \rangle}{\langle \varphi_1, \varphi_1 \rangle} = \frac{e - 5e^{-1} - \frac{2}{3}}{2/5} = \frac{5}{2}e - \frac{25}{2}e^{-1} - \frac{5}{3}.$$

Finalment, l'element que voliem és

$$q^*(x) = 1 + \frac{1}{3}e^{-1}x + \left(\frac{5}{2}e - \frac{25}{2}e^{-1} - \frac{5}{3}\right)x^2.$$

Solució al problema 11 IV

c) Si $p\in \bar{M}$ tenim que $p(x)=1+x+ax^2$. Per tant, cal trobar el polinomi $p^*(x)=ax^2$ que fa mínima la norma $\|g-p\|$, on $p=bx^2$, i $g(x)=e^x-1-x$. Tenim que

$$a = \frac{\langle g, \varphi_2 \rangle}{\langle \varphi_2, \varphi_2 \rangle} = \frac{5}{2}e - \frac{25}{2}e^{-1} - \frac{5}{3},$$

amb el que l'aproximació és:

$$p(x) = 1 + x + \left(\frac{5}{2}e - \frac{25}{2}e^{-1} - \frac{5}{3}\right)x^2.$$