1

Frequence Offset Synchronization using Luise-Reggiannini (LR) Technique

Sai Manasa, Siddharth Mourya and Theresh Babu, G V V Sharma*

CONTENTS

1 [1]	LR Technique-Actual approximation	
	1.1	Estimated
	1.2	Exact
2	Practical values	
3	Plots	
	3.1	For the fixed SNR
	3.2	For the fixed frequency offset of 5 MHz

References

Abstract—A brief description about the Frequency estimation using the Luise and Reggiannini Technique.

1. LR Technique-Actual approximation

A. Estimated

[1] This is true for small frequency offset , as what we observed , it is true until $800~{\rm Hz}$ frequency offset.

$$\Delta \hat{f} = \frac{1}{\pi T_s(M+1)} arg(\sum_{k=1}^{M} R(k))$$
 (1.0.1)

Where R(k) is the AutoCorrelation, T_s is the sampling time.

Conditions:

$$\Delta \hat{f}: T_s \ge \frac{1}{2\Lambda f} \tag{1.0.2}$$

and

$$M: M\Delta fT_{s} << 1 \tag{1.0.3}$$

*The authors are with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in.

 Calculation of Auto Correlation R(k) which is complex oscillation with added gaussian.

$$R(k) \stackrel{\Delta}{=} \frac{1}{N-k} \sum_{i=k+1}^{N} r_i r_{i-k}^*, 1 \le k \le N-1 \quad (1.0.4)$$

Where N is the length of the received signal. This Estimated part of the technique is only for the small frequency offset(Upto 800Hz). This is the major drawback.

B. Exact

For large frequency, This yields a better approximation even for frequency offset as large as 40 MHz.

$$\Delta \hat{f} = \frac{1}{2\pi T_s} \frac{\sum_{k=1}^{M} Im(R(k))}{\sum_{k=1}^{M} kRe(R(k))}$$
(1.0.5)

Constraints on M is same as 1.0.3.

2. Practical values

- 1) Signal Length N = 36
- 2) frequency offset $\Delta f = 5 \text{MHz}$
- 3) $T_s = 1e-9$
- 4) Central frequency $F_c = 25$ GHz. But Fc isn't required anywhere in code.
- 5) $M = \frac{N}{2} = 18$

3. Plots

A. For the fixed SNR

B. For the fixed frequency offset of 5 MHz

References

- [1] M. Luise and R. Reggiannini: Carrier frequency recovery in all-digital modems for burst mode transmissions, IEEE Trans. Commun., vol. 43, no. 2/3/4, pp. 1169-1178, Feb/Mar/Apr 1995.
- [2] U. Mengali and A. N. D'Andrea: synchronization Techniques for Digital Receivers, New York: Plenum, 1997.