Introduction to Simulink

Bruno Korst - bkf@comm.utoronto.ca, David Ding - davidy.ding@mail.utoronto.ca

• Name:	Lab Date:	
• Student No.:	Day of the week:	Time:
• Name:	TA Signature:	
• Student No.:	Grade:	

1. Matlab Exercises

1.1 Creating and Plotting a Sinusoid

a. Re-write the program to plot three periods of your 1KHz sine wave. (0.5pt)

```
T=1;

Fs = 48000;

N = T*Fs;

t = 0 : 1/Fs : T;

Fn = 1000;

y = sin(Fn*2*pi*t);

plot(t,y);

axis([0 3*48/48000 -1 1])
```

1.2 Listening to a Sine Wave

a. Play the program and hear the 1KHz sine wave.

```
T=1;

Fs = 48000;

N = T*Fs;

t = 0 : 1/Fs : T;

Fn = 1000;

y = sin(Fn*2*pi*t);

sound(2*y,Fs);

%db change = 20log(v2/v1) = 6.02
```

- b. Change the frequency to 500Hz and play it again.
- c. Now change it to hear 2KHz and play it again.

a. Show the TA a clear 1KHz sine wave with 1/48000 sampling time displayed on your Simulink scope. (1.0pts)

2.2 The Four Operations

2.2.1 Adding and Subtracting a Constant to/from Sinusoid

a. Show the TA a positive DC shift of 2 on your Simulink scope. (1.0pt)

2.2.2 Gain

a. Apply a 10dB gain to your sine wave and show it to the TA on the Simulink scope. (1.0pt)

2.2.4 Operating on Two Sines

a. Show to the TA on your Simulink scope the resulting addition of 2 sinusoids: a 1Vp, 1KHz and a $\frac{1}{2}$ Vp, 2KHz. Use the slider gain blocks to assign the magnitudes for the 2 sinusoids. (1.0pt)

2.2.5 Multiplying Two Sines

a. Show to the TA your working (and sounding) model that multiplies two sinusoids: a 31.25Hz and a 500Hz, both with amplitude 1. (1.0pt)

