EE204: Analog Circuits

Dept of Electrical Engineering, IITB

Autumn Semester 2023

Assignment 4 Date: 02-10-2023

Total Marks: 10

Submission Deadline: 11:59 p.m., 07-10-2023

Mode of submission: Scan your assignment and upload on Moodle as a single pdf file.

Consider ideal op-amps for both questions.

Q1: The Circuit shown in Figure 1(a) uses a thermistor to indicate

- If temperature(T) is already below T_{MIN} or above T_{MAX} and
- will generate a falling edge or rising edge when temperature is going below T_{MIN} or going above T_{MAX} .

 D_1 and D_2 are LEDs (light emitting diodes). R_{TH} is the resistance of the thermistor of which the thermal characteristic is expressed as $R_{TH}(T) = R_{TH}(T_0)e^{B\left(\frac{1}{T} - \frac{1}{T_0}\right)}$, where T is absolute temperature in Kelvin (K). $T_0 = 298$ K (25°C), $R_{TH}(T_0) = 25$ k Ω , B = 4000 K.

- When the temperature rises above T_{MAX} then V_{IN} exceeds V_{TH} i. e. $V_{IN} > V_{TH}$ D₂ should turn on(emitting light).
- When the temperature falls below T_{MIN} and V_{IN} is lower than V_{TL} i.e. $V_{IN} < V_{TL}$ D₁ should turn on(emitting light).
- Op-Amp output saturates at ± 13V.

Figure 1(b) shows the V_{OUT} vs V_{IN} hysteresis transfer characteristic for the circuit in Figure 1(a).

You will design the schmitt trigger as per following requirements

- (1) Choose R1 and R2 for your design according to limits: $1k\Omega \le R1$, $R2 \le 25k\Omega$.
- (2) $V_{TH} = 1.x$ and $V_{TL} = -1.x$, where x is last digit of your roll number.
- (3) LED D_1 has safe forward current between 1 mA and 5 mA and forward drop is 1V.
- (4) LED D₂ has safe forward current between 1 mA and 5 mA and forward drop is 2V.
- (a) Determine V_{TH} and V_{TL} for your roll number. [0.5 Marks]
- (b) Determine R₁ and R₂ for above V_{TH} and V_{TL}. [1.5 Marks]
- (c) Determine R₃ and R₄ as per instructions (3) and (4). [1.5 Marks]
- (d) Calculate T_{MAX} and T_{MIN} . [1.5 Marks]

Q2: For the circuit shown in Figure 2(a), Op-Amps are dual supply Op-Amps and turn on voltages for D_1 and D_2 are equal to 0.7V .

- (a) Derive an expression for V_{OUT} when $V_{IN}>0.$ [1 Marks]
- (b) Derive an expression for V_{OUT} when $V_{IN} < 0$. [1 Marks]
- (c) To achieve relation $V_{OUT}=A|V_{IN}|$, where A represents slope in Figure 2(b), what should be the relation between R1, R2 and R3. [1 Marks]
- (d) Consider condition for R_1, R_2, R_3 and R_4 as $1k\Omega \le R_1, R_2, R_3, R_4 \le 10k\Omega$, design the full wave rectifier for A=3. [2 Marks]

Figure 2