

Основы профессиональной деятельности Часть вторая.

Клименков С.В. 2019-2020 уч. год v.1.41 от 15.02.2020

История и Архитектуры ЭВМ

1

итмо вт

История

- Нулевое поколение механические компьютеры (1642–1945)
 - Налоговый сумматор (Паскаль), калькулятор на 4 действия (Лейбниц)
- Первое поколение электронные лампы (1945–1955)
 - COLOSSUS (1943, Тьюринг), ENIAC (1946, Моушли), IAS (1951, фон Нейман)
- Второе поколение транзисторы (1955–1965)
 - TX-0 (1955, МТИ), PDP-1 (1961, DEC), PDP-8, 7090 (IBM), 6600 (1964, CDC)
- Третье поколение интегральные схемы (1965–1980)
 - Семейство System/360 (1965, IBM), PDP-11 (1970, DEC)
- Четвертое поколение сверхбольшие интегральные схемы (1980–?)
 - IBM PC (1981), Apple, Intel, IBM, Dec, Compaq, HP, Sun...
- Пятое поколение небольшие и «невидимые» компьютеры (1989-?)

История в СССР/России

- Первое поколение электронные лампы
 - Лебедев, 1950, МЭСМ
 - БЭСМ, 1953, БЭСМ 10000 оп/с, 53КВТ.
- Второе поколение транзисторы
 - 5Э92б, 1964, самодиагностика, горячая замена, 500000 оп/с
 - БЭСМ-6, 1965 год, +ковейерная обработка, удаленное управление по телеф. Линиями
- Третье поколение интегральные схемы
 - Директива «Ряд», 1968 год, клонирование S/360, 1971 год ЕС ЭВМ
 - Клоны PDP-11
- Четвертое поколение сверхбольшие интегральные схемы
 - Эльбрус разработка по настоящее время

Канальная организация

Раздельные шины

Общие шины

Мультиплексирование шин

Мультипроцессорность: UMA - Uniform Memory Access

Мультипроцессорность: Коммутатор

Мультипроцессорность: NUMA Non-Uniform Memory Access

Современные коммерческие процессоры

- Разрядность адреса и данных 16/32/64 бита
- Тактовые частоты 500МГЦ-5Ггц.
- Многопроцессорные 1-100+ CPU
- Многоядерные 1-16 ядер
- От 1 ГБ до терабайтов ОЗУ
- Используют кэш-память разных уровней
- Суперскалярные
- CISC, RISC, VLIW

CISC, RISC, VLIW

- Complex Instruction Set Computer
 - Традиционные процессоры (например Intel), отягощенные совместимостью
- Reduced Instruction Set Computer
 - Простой набор инструкций, выполнение инструкции за такт
- Very Long Instructions Word
 - Несколько инструкций, упакованных в одну команду
 - Упаковка операций в инструкцию ложится на компилятор

«Современные» процессоры Intel

Year	Microarchitecture	Pipeline stages	max. Clock	
1989	486 (80486)	3	100 MHz	
1993	P5 (Pentium)	5	300 MHz	
1995	P6 (Pentium II)	14 (17 with load & store/retire)	450 MHz	
1999	P6 (Pentium III)	12 (15 with load & store/retire)	450~1400 MHz	
2000	NetBurst (Pentium 4)	20	800~3466 MHz	
2003	Pentium M	10 (12 with fetch/retire)	400~1000 MHz	
2004	Prescott	31	3800 MHz	
2006	Intel Core	12 (14 with fetch/retire)	3000 MHz	
2008	Nehalem	20	3000 MHz	
2008	Bonnell	16 (20 with prediction miss)	2100 MHz	
2011	Sandy Bridge	14 (16 with fetch/retire)	4000 MHz	
2013	Silvermon	14-17 (16-19 with fetch/retire)	2670 MHz	
2013	Haswell	14 (16 with fetch/retire)	≈4000 MHz	
2015	Skylake	14 (16 with fetch/retire)	≈4000 MHz	
2016	Kaby Lake	14 (16 with fetch/retire)	4500 MHz	
2017	Coffe Lake	14 (16 with fetch/retire)	4700 MHz	
2018	Cannon Lake			

https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures

Intel Skylake block diagram

Арихтектура: Arbor ITX-i89H

SPARC T5 16xCores

(C) Oracle marketing material

Sparc S3 Core

http://www.theregister.co.uk/2011/08/22/oracle_sparc_t4_hot_chips

Двухпроцессорная система на базе SPARC-T5

IBM POWER8

Эльбрус 8с

- Технология 28нм
- 8 ядер х 1300МГц
- L1 I128K + D64K
- L2 512 K
- L3 16Мб

- 3-х канальная DDR3-1600MHZ
- До 80 BT
- Linux 2.2
- Эмуляция х86 (-30%)

http://www.mcst.ru/elbrus-8c

Устройства хранения данных

2

Характеристики памяти

- Месторасположение
 - процессорные, внутренние, внешние
- Емкость
 - В метрических (Кило-) и двоичных (Киби-) множителях
- Единица пересылки
 - Слово, строка кэша, блок на диске
- Метод доступа
 - Произвольный (адресный), ориентированных на записи (прямой), последовательный, ассоциативный

Характеристики памяти

- Быстродействие и временные соотношения
 - Время доступа Тд
 - Длительность цикла памяти (время обращения)
 Тц
 - Время чтения и время записи
 - Время восстановления Тв
 - Скорость передачи информации
- Физический тип и особенности
- Стоимость

Статическая vs Динамическая

Адресуемая память

Диаграммы работы с адресуемой амятью асинхронной памятью

Адресуемая память с фиксацией строк и столбцов

Синхронная память SDRAM

Конструктивные особенности современной памяти

- Burst mode пакетный режим
- Double Data Rate передача данных и по фронту и по спаду
- SPD чип, содержащий идентификационную информацию
- Interleaving расслоение памяти, повышает производительность
- DDR4-2133 8192MB **PC4-17000** индекс производительности

•

Поверхность 0

Память, ориентированная на записи

Память, с последовательным доступом*

* на самом деле эта картинка от видемагнитофона, но принцип тотщже

Расположение дорожек

Лента

Структура ассоциативного запоминающего устройства

Кэш память

Пирамида памяти

	Объем	Тд	*	Тип	Управл.		
CPU	100-1000 б.	<1нс	1c	Регистр	компилятор		
L1 Cache	32-128Кб	1-4нс	2c	Ассоц.	аппаратура		
L2-L3 Cache	0.5-32Мб	8-20нс	19c	Ассоц.	аппаратура		
Основная память	0.5Гб- 4ТБ	60- 200нс	50- 300c	Адресная	программно		
SSD	128Гб- 1Тб/drive	25- 250мкс	5д	Блочн.	программно		
Жесткие диски	0.5Тб- 4Тб/drive	5-20мс	4м	Блочн.	программно		
Магнитные ленты	1-6Тб/к	1-240c	200л	Последов.	программно		

Влияние промахов кэш-памяти

Производительность в % от мак.

Попадания в кэш в %

Сегментно-страничная виртуальная память

Реальный пример

```
root@ra:~# pmap -x $$
         /bin/bash
5081:
           Kbytes
Address
                        RSS
                               Dirty Mode Mapping
              1064
                        852
08048000
                                   0 \text{ r-x--} \text{ bash}
08152000
                          4
                                   4 r--- bash
08153000
                         20
                20
                                  20 rw--- bash
08158000
                20
                         20
                                  20 rw---
                                               [ anon ]
09c79000
              1204
                       1204
                                1204 rw---
                                               [ anon ]
b716a000
                44
                         44
                                   0 r-x-- libnss files-2.23.so
b7176000
                                   4 rw--- libnss files-2.23.so
                 4
                          4
b74e5000
              1724
                       1248
                                   0 \text{ r-x--} \text{ libc-} 2.23.so
b7697000
                 4
                                   4 rw--- libc-2.23.so
                          4
root@ra:~# pmap -x 6964
6964:
         cat
Address
           Kbytes
                        RSS
                               Dirty Mode Mapping
08048000
                48
                         48
                                   0 r-x-- cat
08054000
                          4
                                    4 r--- cat
08055000
                          4
                                   4 rw--- cat
09609000
               132
                                               [ anon ]
b724a000
               136
                          4
                                               [ anon ]
b739e000
             2048
                        372
                                   0 r---- locale-archive
b759e000
              1724
                        964
                                   0 \text{ r-x--} \text{ libc-} 2.23.so
b7750000
                 4
                          4
                                    4 rw--- libc-2.23.so
```


MMU: Трансляция адресов

Архитектура x86: MMU

Архитектура х64

TLB

- Кэширует часто используемые преобразования
- Обычно раздельный для адреса и данных
- Организован в виде ассоциативной памяти

Сетевые технологии

3

Немного истории

- Разжигание костров на возвышенностях =)
- 1792 Клод Шапп оптический телеграф. Семафоры - 2 слова в минуту.
- 1872 Жан Бодо телеграфный аппарат, код Бодо. Бод (бит в секунду).
- 1985,1897 Попов беспроводная передача между берегом и военным судном.
- 1930 Телетайп, сеть Телекс (TELEgraph + EXchange)

История сети Internet

- 1957 запуск первого спутника земли
- 1958 Advanced Research Projects Agency (ARPA).
- 1963 J.C.R.Licklider первая концепция компьютерной сети
- 1969 ARPANET в ведущих лабораториях и исследовательских центра США
- 1976 Xerox локальная сеть Ethernet
- 1982 ARPA единый стек протоколов TCP/IP
- 1983-84 FidoNet и BBS, ARPANET → Internet
- 1991 Tim Berners-Lee, CERN, концепция WWW, первый http сервер

Понятие сети ЭВМ

- Средства вычислительной техники (СВТ): ЭВМ, вычислительные комплексы (ВК) и вычислительные системы (ВС) реализуют обработку данных.
- Средства телекоммуникаций (связи) (СТК): совокупность каналов связи и каналообразующей аппаратуры реализуют передачу данных.
- Сеть ЭВМ (вычислительная сеть, компьютерная сеть) = CBT+CTK

Топология сети (Cisco tracer)

Компьютерные сети

Сообщение, пакет

Модель взаимодействия открытых систем (OSI)

Модель ТСР/ІР

Уровень передающей среды

- Коаксиальный кабель (устарел)
 - «толстый» 10Base-5 до 500м
 - «тонкий» 10Base-2 до 50м

- Витая пара 10Base-T, 100Base-T,
 - Категория 3: от 10 до 100 Мбит/с 100BASE-T4 (100м).
 - Категория 5е: 100 Мбит/с (2 пары), 1Гбит/с на (4пары)
 - Категория 6: 10 Гбит/с (55м)

Категория 7а: 40Гбит/с (50м), 100Гбит/с (15м)

Уровень передающей среды

- Оптика (10BASE-F,100BASE-SX,10GBASE-ER...)
 - ST (Straight Tip)
 - SC (Standard Connector)
 - LC (Lucent Connector)
 - Лазер находится в SFP (Small Plugin Factor)
 - ~500 м (Multi-mode fiber), ~80км (Single Mode)
- Wireless (802.11 WiFi, 802.16 WiMAX, 3G, 4G)
 - 2.4, 5, 60 GHZ
 - До 15 Гбит/с

iqb0

224.101.101.101

Канальный уровень Ethernet

01:00:5e:65:65:65

255, 255, 255, 255

Сетевой уровень ІР

• Адресация в IPv4 сетях

Сетевой уровень ІР

Сетевой уровень IP: маршрутизация

DHCP

- Администраторам сложно выделять и контролировать адреса серверов и станций
- Давайте это делать динамически!

```
serge@blonde:~$ cat /etc/dhcp/dhcpd.conf
#
# Sample configuration file for ISC dhcpd for Debian
#
subnet 192.168.231.0 netmask 255.255.255.0 {
    range 192.168.231.10 192.168.231.100;
    option domain-name-servers 8.8.8.8, 8.8.4.4;
    option routers 192.168.231.1;
}
# my smart tv for torrents DLNA broadcasting
# host tv-samsung {
    hardware ethernet 84:a4:66:23:a9:ae;
    fixed-address 192.168.231.5;
}
```


Сервис имен

- Использовать IP в приложениях можно, но неудобно
- Надо дать серверам «человеческие» имена
- Простейший способ /etc/hosts

```
serge@ra:/opt/games/openarena$ cat /etc/hosts
127.0.0.1 localhost
127.0.1.1 ra

# The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

192.168.231.1 blonde30
109.175.71.169 blonde
192.168.44.66 gitlab.tune-it.ru
```


Сервис имен - DNS

Domain Name System

Сервис имен: другие

- А давайте хранить еще и пользователей, телефоны, группы,
- NIS, NIS+ служба каталогов в BSD и OS Solaris
- LDAP Directory Server
 - ForgeRock Directory Services
 - OpenLDAP
 - ApacheDS
 - Microsoft Active Directory

-

Транспортный уровень

- TCP Transmission Control Protocol
 - Надежный, управляет перепосылкой данных
 - Организует виртуальное соединение между гнездами (Socket=IP:port) на двух системах
 - HTTP, FTP, SSH, SMTP, ...
- UDP User Datagramm Protocol
 - Послал сообщение и забыл
 - Контроль надежности оставлен разработику
 - Максимальная скорость передачи
 - SNMP, TFTP, DHCP, DNS, ...

Прикладной уровень

• Протоколы разрабатывает программист