数据库系统

LAB3: 数据库原型实现

陈世敏

(中科院计算所)

课程安排

- 13:30-13:50 Lab3说明(陈世敏)
- 13:50-14:20 AIMDB说明(陈乐滢)
- 14:20-16:10 当堂练习

课程安排

周次	内容	
第11周	查询处理(1)	
第12周,5月12日	实验2验收	
第13周,5月19日	实验3:分析型数据库系统实现布置(每组3人)	25%
第14周	查询处理(2)	
第15周	查询优化	
第16周,6月9日	事务处理	提交1
第17周	数据仓库;并行/分布式数据库等	
第18周,6月23日	实验3验收	提交2
第19-20周	期末考试	50%

实验3安排

- 内容: 在一个原型内存数据库系统AimDB上 实现select查询处理功能
 - □掌握多种关系运算的查询处理实现
- 本堂课: 5月19日
 - □实验3具体要求
 - □ AimDB介绍、编程环境说明
- 6月9日(3周后)
 - □ 提交1: 完成选择、投影、连接
- 6月23日 (5周后)
 - □ 提交2: 完成分组聚集、排序

- An implementation of main memory DataBase
- 我们自己实现的一个简单的内存数据库原型
 - □ C/C++实现
 - □ Database, Table, Index的定义和实现
 - □数据类型和操作的支持:每个类型有一个class
- 预留了查询处理部分
 - □预留的调用接口
 - □定义了输入参数和返回值类型
 - □要求实验3实现查询处理部分

实验3: 内存数据库中查询处理实现

• 支持Select语句的基础功能

□选择:过滤条件

□投影: 提取部分列

□连接: 找匹配的记录

□分组聚集:进行统计运算

□排序

- · Select的内容将会形成一个结构体, 作为调用参数
- 需要实现的是查询处理的功能

Select语句的子句

SELECT ...

FROM ...

WHERE ...

GROUP BY ...

HAVING ...

ORDER BY ...

每个子句中, 最多出现4个子项

需求1: TableScan Operator

- 实现一个扫描Table的Operator
- 顺序访问给定Table的所有tuple

需求2: Where条件

- 最多有4个条件
- 条件之间是AND关系
 - □ (条件1) AND (条件2) ...
- 两种形式的条件
 - □列名 op 常量
 - 记录在单独某一列上的属性值与一个常量进行比较
 - □列名1 op 列名2
 - 连接条件
- 可以使用数据类型的相关操作计算单个条件

需求3: FilterProject Operator

- 下层输入是tuple
- 对tuple实现过滤
- 并对满足过滤条件的tuple, 进行投影
- 产生结果记录

需求4: From子句和2种Join Operator

- 最多4个Table
- 连接条件在where子句中给定
- HashJoin Operator
 - □ 当join key上没有index时
 - □采用Hash Join: 可以用simple hash join实现
- IndexNestedLoopJoin Operator
 - □当至少一个表的join key上有hash index时
 - □直接用Index Nested Loop Join实现

需求5: Group By + Aggregation

- 实现GroupByAggr Operator
 - □Group By的分组组别最多可以有4个列
 - □Aggregation最多在4个列上计算
 - SUM, AVG, COUNT, MAX, MIN
 - □采用基于哈希的方式实现
 - 分组组别列→Hash table的key
 - Hash table的value是一个指针,指向分组组别列和Aggregation的中间结果

需求6: 在Group By之后可以有Having

• 构造query operator tree时, 允许在GroupByAggr上有FilterProject

需求7: OrderBy Operator

- •排序的键最多包含4个列
- 全部是从小到大顺序
- 采用quick sort算法实现

需求8: Select子句输出

- 最多有4个列
- 有可能是Aggregation

需求9: 采用Tuple-at-a-time方式计算

- 每个Operator实现
 - □ open
 - □ getNext
 - □ close
- •根据Select的内容,构造Operator Tree
- 确定具体的初始化参数

提示

- AimDB提供了hash table的class
- ●可以用libc中的quicksort来实现排序 □也可以自己写quicksort算法

评分标准

- 总分: 25分
 - □代码说明和注释,提交doxygen产生的pdf: 3分
 - 注释需要对每个函数的实现进行说明
 - 是否确实实现了上述规定的Operator
 - 采用doxygen规定的格式 (https://en.wikipedia.org/wiki/Doxygen)
 - 用doxygen产生pdf的程序设计文档
 - □ select语句: 22分
 - 我们将产生22个测试,每一个测试占1分
 - 选择投影:5分
 - 连接: 10分
 - 分组聚集:5分
 - 排序: 2分
 - □提交代码,进行抄袭相似性检查
 - 如果发现抄袭,那么0分,并通知教务处
 - □ 我们验收时会给定输入,检查输出是否正确
- 提交: executor.cc, executor.h, pdf文档

时间节点

- 本堂课: 5月19日
 - □发布实验3
- 6月9日 (3周后)
 - □提交1:完成选择、投影、连接:15分
- 6月23日 (5周后)
 - □ 提交2: 完成分组聚集、排序: 7分
 - □ 提交doxygen产生的程序设计文档: 3分