Corrigé du TD nº1

Solution Exercice 1.

Aucune difficulté particulière (ne pas oublier les boucles)...

Solution Exercice 2.

Les graphes dont tous les sommets sont de degré trois sont appelés graphes 3-reguliers ou graphes cubiques. La figure ci-dessous montre deux graphes cubiques, ayant respectivement 4 et 6 sommets. En effet, on constate aisément qu'il n'existe pas de graphes cubiques ayant un nbr impair de sommets : le nbr d'arêtes d'un graphe cubique à n sommets est 3n/2 qui n'est entier que lorsque n est pair.

Solution Exercice 3.

Les suites: (3,3,2,1,1), (3,3,1,1), (3,3,2,2), (4,2,1,1,1,1), et (5,4,3,1,1,1,1) sont graphiques (le nbr de sommets de degré impair est pair), comme le montrent les graphes A, B, C, D et F de la figure ci-dessous.

F

Les graphes X et Y sont distincts (non isomorphe) et correspondent tous deux à la suite (3,2,2,2,1).

Solution Exo 4.

Nous savons que la somme des degrés entrants doit être égale à la somme des degrés sortants. Nous pouvons ainsi déjà éliminer les suites [(0,2),(1,1),(1,1),(1,1)] et [(1,2),(1,2),(2,1),(2,2),(1,1)].

Les suites [0,1),(1,1),(1,1),(1,1),(1,0)], [(1,1),(1,1),(1,1),(1,1),(1,1)], [(0,2),(1,1),(1,1),(2,0)] et [(1,2),(1,2),(2,1),(2,1)] sont graphiques, comme le montrent respectivement les graphes A, B, D et E ci-dessous.

Solution Exercice 5 Soit G = (V, E) un graphe simple. Quand on calcule la **somme des degrés des sommets**, chaque arête (x,y) de E est **comptée deux fois**, une première fois pour d(x) et une seconde fois pour d(y). Donc, cette somme est finalement égale à **deux fois le nombre d'arêtes.**

Remarque Le lemme des poignées de mains reste valable pour les multigraphes avec boucles en convenant qu'une boucle contribue pour 2 dans le calcul du degré d'un sommet.

Solution Exercice 6. sont possibles si le graphe correspondant admet un chemin eulérien, c'est à-dire s'il contient exactement o ou 2 sommets de degré impair. La réponse est donc positive uniquement pour la deuxième figure...

Solution Exercice 7. Pour qu'un graphe soit eulérien, il faut et il suffit que tous ses sommets soient de degré pair. Si un graphe contient k sommets impairs, il est possible de rajouter un nouveau sommet x, relié à ces k sommets. Dans le graphe

obtenu, les k sommets considérés sont devenus pairs... Cependant, le degré de x étant k, le graphe n'est toujours pas eulérien si k était impair... Remarquons qu'il est possible de rajouter des arêtes entre les sommets de degré impair dans le graphe d'origine... Mais l'ajout d'une telle arête, entre deux sommets impairs a et b par exemple, fait que le nombre de sommets impairs devient k-2, qui a la même parité que k... La réponse est donc : ce n'est possible que si le nombre de sommets impairs est pair...

Solution Exercice 8. Par exemple :

Solution Exercice 9

M2 indique le nombre de chaînes de longueur 2 entre les sommets i et j. M3 indique le nombre de chaînes de longueur 3 entre les sommets i et j.

Solution Exercice 10 Matrice et listes d'adjacences :

