ER to Relational Mapping (Part I)

So Far We have

How can we go from the ER-diagrams to relational tables?

From ER Model to Relational Model

Basic steps of converting ER model to relational tables:

- > For each entity set: construct a table
- For each <u>relationship set:</u> construct a table if necessary (some relationship sets do not need a table)
- > For each table, decide its schema:
 - > Decide the attributes of these tables
 - Decide primary key, candidate keys, and foreign keys of these tables

Today's lecture

- Translate ER diagrams into relational tables
 - Entity sets
 - Strong entity sets
 - Weak entity sets
 - Relationship sets

Translating Strong Entity Sets

Rule

Schema: Employees (ssn, name, lot)

```
CREATE TABLE Employees (ssn CHAR(11), name CHAR(20), lot INTEGER, PRIMARY KEY (ssn));
```


Translate this ER diagram to relational table.

Schema: course (cno, name, credit_hours, description)

```
CREATE TABLE course (
cno INTEGER,
name CHAR(20),
credit_hours INTEGER,
description CHAR(50),
PRIMARY KEY (cno)
```

);

Translating Weak Entity Sets

- Strong entity set (as usual): E1 = $(\underline{a}_1, ..., a_n)$
 - Primary key (a1)
 - No foreign key
- Weak entity set: E2 = $(\underline{a_1}, \underline{b_1}, ..., b_m, c_1, ..., c_k)$
 - Attributes: $\underline{b_1}$, ..., b_m (i.e., attributes of E2) + c_1 c_k (i.e., attributes of R) + a_1 (i.e., the primary key of E1).
 - Primary key: (a_1, b_1) a composite key
 - Foreign key:
 - a₁ (reference table E1)
- There is NO table for the relation R.

Translating Weak Entity Sets: Example 1

Translate this ER diagram to relational tables.

Translating Weak Entity Sets: Example 1

Translate this ER diagram to relational tables.

<u>Weak</u> entity: *Dep_Policy(pname, ssn_employee, age, cost):*

Strong entity: *Employees (ssn, name, lot),*

Schema:

Translating Weak Entity Sets: Example 2

Write down the schema of Lab and Team tables (including the foreign keys)

Today's lecture

- Translate ER diagrams into relational tables
 - Entity sets
 - Relationship sets
 - Many-to-many cardinality constraint
 - One-to-many cardinality constraint
 - IsA relationship

<u>Many-to-many (M-M)</u> Relationship Sets (Binary relationships)

- Translate a binary M-M relationship set to a relation table R:
 - Attributes: $\langle c_1 \dots c_k \rangle + a_1 + b_1$ (i.e., the primary key of E1 & E2).
 - Primary key: (a_1, b_1) a composite key
 - Foreign keys:
 - a₁ (reference table E1),
 - b₁ (reference table E2).

The ER diagram is mapped to 3 tables

- 2 Tables for entity sets E1 & E2
 - E1(<u>a</u>₁, ..., a_n)
 - E2(\underline{b}_{1}^{-} , ..., b_{m})
- 1 Table for M-M relationship set R
 - R(\underline{a}_1 , \underline{b}_1 , c_1 , ..., c_k) with 2 foreign keys

Example

- 1. What's the schema of Works_In table?
- 2. Write the SQL statement to construct the Works_In table

Example

- 1. What's the schema of *Works_In* table?
- 2. Write the SQL statement to construct the Works_In table

Schema: Works_In(<u>ssn, did</u>, since) with two foreign keys: (ssn) references Employees.ssn, (did) references Departments.did

```
CREATE TABLE Works_In(ssn CHAR(11),

did INTEGER,

since DATE,

PRIMARY KEY (ssn, did),

FOREIGN KEY (ssn) REFERENCES Employees,

FOREIGN KEY (did) REFERENCES Departments);
```

Relationship Sets with Different Roles

Write the SQL statement to construct the *Reports_To* table:

Schema: Employees(<u>supervisor_ssn</u>, <u>subordinate_ssn</u>) with two foreign keys: (supervisor_ssn) references Employees.ssn, (subordinate_ssn) references Employees.ssn

```
CREATE TABLE Reports_To(
    supervisor_ssn CHAR(11),
    subordinate_ssn CHAR(11),
    PRIMARY KEY (supervisor_ssn, subordinate_ssn),
    FOREIGN KEY (supervisor_ssn) REFERENCES Employees(ssn),
    FOREIGN KEY (subordinate_ssn)REFERENCES Employees(ssn))
```

Many-to-many (M-M Relationship Sets (More than 2 Relationships)

Step 1: Create n tables for n entity sets:

- •E₁ (<u>a₁</u>, ... a_n)
- •E₂ (<u>b</u>₁, ...b_m)
- $\bullet E_3 (\underline{c_1}, ...c_t)$
- •...
- $\bullet E_n(\underline{z_1}, ...z_l)$

Step 2: create one table for the relationship R

$$R(\underline{a}_1, \underline{b}_1, \underline{c}_1, ..., \underline{c}_{1}, d_1, ..., d_k)$$

- Attributes: the primary keys a_1 , b_1 , c_1 , ... z_{1} of n entity sets + attributes d_1 , ... d_k of R
- Primary key: $(\underline{a}_{\underline{1}}, \underline{b}_{\underline{1}}, \underline{c}_{\underline{1}}, ...\underline{z}_{\underline{1}})$
- n foreign keys:
 - a_1 (reference table E_1),
 - b₁ (reference table E₂),
 - c_1 (reference table E_3),
 - ...
 - z_1 (reference table E_n).

Translate 1-to-Many (1-M) Relationship Set to Relational Table

- Two alternative solutions
 - Three-table solution: One table for E1, R, E2 each
 - Two-table solution: One table for E1 and E2 each. No table for R.

Solution 1: Translation of 1-M Relationship

- Three-table solution
 - Two tables for E1 and E2 (as usual)
 - $E_1 (\underline{a}_1, ... a_n)$
 - $E_2 (\underline{b}_1, ...b_m)$
 - One table for R

R=
$$(a_1, \underline{b}_1, c_1, ..., c_k)$$

- The key of R: (b1). (Note: the key of R only contains the key of the entity set at Many-side)
- R has two foreign keys:
 - a₁ (reference E1)
 - b₁ (reference E2)

Example


```
CREATE TABLE Manages(
ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments)
```

Note that the key only includes did!

Revisit the Example of M-M Relationship

<u>SSN</u>	<u>did</u>	Since
123-22-3666	1	01/01/2010
123-22-3666	2	02/03/2010
231-31-5368	1	01/01/2010

Why SSN can be removed from the Key in the 1-M relationship?

SSN	<u>did</u>	Since
123-22-3666	1	01/01/2010
123-22-3666	2	02/03/2010
231-31-5368	3	01/01/2010

<u>SSN</u>	<u>did</u>	Since
123-22-3666	1	01/01/2010
123-22-3666	2	02/03/2010
231-31-5368	1	01/01/2010

Manages Relationship (1-to-many relationship) key: (did)

Works-in Relationship (Many-to-many relationship) Key: (SSN, did)

Solution 2: Translation of 1-M Relationship

Two-table solution:

- One table for E1 (entity set at 1-side)
 - $E_1 (\underline{a_1}, ... a_n)$
- One table for E2 (entity set at Many-side)
 - $E2=(\underline{b_1},, b_m, a_1, c_1, ..., c_k)$ (Note: E2 contains attributes of R and key of E1)
 - Foreign key of E2
 - a₁ (reference E1).
- No table for R

Example

Three-table solution:

- Employees (<u>ssn</u>, name, lot)
- Dept_Mgr (ssn, <u>did</u>, since)
- Departments (<u>did</u>, dname, budget)

SSN	did	Since
12345678	1	01/01/2010
12345678	2	02/03/2010
13452121	3	01/01/2010

Dept_Mgr table

did	dname	budget
1	HR	20000
2	Marketing	400000
3	IT	300000

Departments table

Two-table solution:

- Employees (<u>ssn</u>, name, lot)
- Departments (<u>did</u>, dname, budget, ssn, since)

did	dname	budget	SSN	Since
1	HR	20000	12345678	01/01/2010
2	Marketing	400000	12345678	02/03/2010
3	IT	300000	13452121	01/01/2010

Departments table

Note: in both solutions, Employees table is omitted as it is the same for both solutions.

Translating IsA to Relations

Solution 1:

- E1 (\underline{a}_1 , ..., a_n)
- S1 (<u>a</u>₁, b₁, ..., b_m)

Foreign key: a1 references E1(a1)

• S2($\underline{a}_1, c_1 ..., c_k$)

Foreign key: a1 references E1(a1)

Solution 2:

- S1 (<u>a</u>₁,..., a_n, b₁, ..., b_m)
- S2 (<u>a</u>₁, ..., a_n, c₁ ..., c_k)

(no table for E1. All attributes of E1 are added to S1 and S2)

Q: When Solution 2 is wrong?

A: Solution 2 is wrong if IsA relationship does not have the covering constraint

In other words, there are some E1 entities that are neither S1 nor S2

Example: Translating ISA Hierarchies to Relations

- Solution 1:
 - 3 relations: Employees, Hourly_Emps and Contract_Emps.
- Solution 2: Just Hourly_Emps and Contract_Emps (if there is a covering constraint on ISA relationship).