1.3 国内外研究概况

1.3.1 国外研究概况

Hanchuan Peng,Giorgio Ascoli 等人在 2015 年发起了 Big Neuron 项目 [2]。BigNeuron是一个定义和推进单个神经元重建和分析领域先进技术的社区,并为分析 3D 神经元几何形态创建了一个通用平台。 BigNeuron 的主要目标是在一个通用的开放平台上测试尽可能多的开源自动化神经元重建算法。它拥有超大规模的公开的通过多种光学显微镜技术获取的单个 3D 神经元图像数据集。算法测试测试结果将使用最快的超级计算机生成,然后使用计算神经科学界精心定义的多个量化标准进行比较和验证。BigNeuron 项目旨在对最先进的神经元重建算法进行客观的比较评估。

Peng 等人在 2011 年提出了一种全路径修剪(all-path pruning)算法[3],用于神经元几何形态的自动重建。该算法首先计算神经元的初始最大完整重构,然后对重构结果的冗余进行修剪得到最终重建结果,保证了重建结果对整个神经元结构的最佳覆盖。Rongjian Li 等人在 2016 年提出了一种基于深度学习的算法[4],使用卷积神经网络(CNNs)改善对不同生物体的噪声污染图像的重建性能。该算法利用深度学习的方法对神经元图像数据进行预处理,以应对不同图像数据之间的差异性。这些差异性可能是由于物种不同,结构复杂程度不同以及图像数据的质量不同等造成的。Zhi Zhou 等人在 2017 年提出了一种新的全自动化 3D 重建算法,称为 TReMAP[5],与多数重建算法直接在 3D 空间中处理图像的做法不同,它首先处理图像数据在 2D 平面上的投影信号,接着将在2D 平面所得到的计算结果反向映射到 3D 空间中的 3D 曲线;然后使用最小生成树方法来组合所有的 3D 曲线以生成最终的 3D 重建结果。 TReMAP 算法能够高效快速地处理大规模神经元图像数据。

1.3.2 国内研究概况

国内关于利用计算机与算法进行神经元形态重建的研究相对较少,蔺想红等人在 2017 年提出了一种三位神经元几何形态的发育生成方法,采用人工基因组对基因调控网络进行编码,用基因表达的动态特性来表示神经元树突树的发育过程^[6],有助于促进神经元机制的相关研究。

1.4 论文的主要研究内容

本论文一共分为五章内容,每一章的主要内容为:

第一章 绪论,本章节首先介绍了本论文选题的背景和重要意义,其次对神经元几何形态重建的国内外研究现状作出概述;之后,简单介绍了虚拟现实技术的发展和对于本论文选题的研究意义;最后是关于本论文结构安排的介绍。

第二章首先介绍了本论文所基于的开发平台, Vaa3D 平台, 以及详细介绍了本论文研究过程中使用到的关键技术与关键工具(虚拟现实技术与 HTC Vive虚拟现实硬件设备)。

第三章首先介绍了本论文研究设计的系统的设计细节,包括系统设计目标,系统架构,系统功能模块以及系统功能概述,接着详细介绍了本论文设计的系统的关键模块的实现方法,包括神经元重建工作流程中的基本数据结构在虚拟现实环境下的显示与交互,系统中各种关键功能的实现方法等。

第四章主要是介绍了本论文所设计的一种全新的虚拟现实环境下的智能交 互方式,详细介绍了该智能交互方式的实现原理,实现步骤以及优势分析。

第五章主要是对本文所做的工作内容进行总结,并展望接下来的研究方向。