2.2 Introducao.md 1/8/2023

Aula 2

Arquiteturas de RISC e CISC

Intruções

RISC

- Consomem um único de processamento

Baixo númeroSimples padronizadas

CISC

- podem consumir mais de um ciclo

de processamento

- Alto número

- mais complexos

Projetos

RISC

Centrado no software: o compilador é responsaável por compor instruções para comandos deling de alto nivel

CISC

Centrado em hardware: o conjunto de intruções e capaz de executar operações de alto nível

Memória RAM

RISC

CISC

uso menos eficiente

uso mais eficiente

Execução

RISC

CISC

Uma camada de instruções

(direto no hardware)

Suporta microprograma

Tipos de computadores

- Computadores pessoais
- Computadores para jogos (videogames)
 - GPU
- Servidos
- Mainframes
- Microcontroladores

2.2 Introducao.md 1/8/2023

- Computadores descartáveis
- Computador portátil

```
Linguagem
------Conjunto de Instruções
------
Instrução
```

A arquitetura MIPS

MIPS, um acrônimo para microprocessador without pipelines stags, é um conjunto de instruções criado na década de 1980. O MIPS é uma arquitetura CISC baseada em registradores.

Registrador é uma memoria que fica dentro da CPU e que é capaz de armazenar n bits.

Nós usaremos a versão de 32 bits do MIPS. Isso significa que cada registrador possui capacidade de armazenar 32 bits. Por isso, um dado de 32 bits ocorre com frequência nessa arquitetura e recebe o nome de palavra.

A CPU utiliza apenas registradores para realizar as operações. Não obstante, há instruções próprias de acesso à mémoria.

O padrão básico de uma instrução do assembly MIPS trabalha com um mnemônico e três operandos: um de destino e dois de origem.

Exemplo:

Instruções elementares

Temos 3 conjuntos de instruções na ISA do MIPS:

- Lógicas e aritméticos
- Desvio
- · Acesso a memória

2.2_Introducao.md 1/8/2023

As 3 operações aritméticas são as mais elementos em MIPS:

- add a,b,c #a=b+c
- sub a,b,c #a=b-c
- mut a,b,c #a=b*c