Basic Exercises on Data Importing - Understanding - Manipulating - Analysis - Visualization

Section-1: The pupose of the below exercises (1-7) is to create dictionary and convert into dataframes, how to diplay etc...

The below exercises required to create data

1. Import the necessary libraries (pandas, numpy, datetime, re etc)

```
In [3]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import re

# set the graphs to show in the jupyter notebook
%matplotlib inline

# set seabor graphs to a better style
sns.set(style="ticks")
```

2. Run the below line of code to create a dictionary and this will be used for below exercises

3. Assign it to a object called pokemon and it should be a pandas DataFrame

```
In [3]: pokemon=pd.DataFrame(raw_data)
```

4. If the DataFrame columns are in alphabetical order, change the order of the columns as name, type, hp, evolution, pokedex

```
In [10]: pokemon=pokemon[['name','type','hp','evolution','pokedex']]
pokemon
```

Out[10]:

	name	type	hp	evolution	pokedex
0	Bulbasaur	grass	45	lvysaur	yes
1	Charmander	fire	39	Charmeleon	no
2	Squirtle	water	44	Wartortle	yes
3	Caterpie	bug	45	Metapod	no

```
In [17]: pokemon.shape[1]
```

Out[17]: 5

5. Add another column called place, and insert places (lakes, parks, hills, forest etc) of your choice.

```
In [22]: pokemon['place']='lakes','parks','hills','forest'
pokemon
```

Out[22]:

	name	type	hp	evolution	pokedex	place
0	Bulbasaur	grass	45	Ivysaur	yes	lakes
1	Charmander	fire	39	Charmeleon	no	parks
2	Squirtle	water	44	Wartortle	yes	hills
3	Caterpie	bug	45	Metapod	no	forest

6. Display the data type of each column

7. Display the info of dataframe

```
In [26]: pokemon.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 4 entries, 0 to 3
         Data columns (total 6 columns):
                         Non-Null Count Dtype
              Column
              name
                         4 non-null
                                        obiect
                       4 non-null
                                        object
              type
                        4 non-null
             hp
                                        int64
              evolution 4 non-null
                                        object
                         4 non-null
                                        object
              pokedex
              place
                         4 non-null
                                        obiect
         dtypes: int64(1), object(5)
         memory usage: 320.0+ bytes
```

Section-2: The pupose of the below exercise (8-20) is to understand deleting data with pandas.

The below exercises required to use wine.data

8. Import the dataset wine.txt from the folder and assign it to a object called wine

Please note that the original data text file doesn't contain any header. Please ensure that when you import the data, you should use a suitable argument so as to avoid data getting imported as header.

In [58]: wine=pd.read_table('wine.txt',',',header=None)
wine

Out[58]:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735
173	3	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	1.06	7.70	0.64	1.74	740
174	3	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	1.41	7.30	0.70	1.56	750
175	3	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	1.35	10.20	0.59	1.56	835
176	3	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	1.46	9.30	0.60	1.62	840
177	3	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	1.35	9.20	0.61	1.60	560

178 rows × 14 columns

9. Delete the first, fourth, seventh, nineth, eleventh, thirteenth and fourteenth columns

In [59]: #wine.drop(columns='0') wine.drop(columns=wine.iloc[:,[0,3,6,8,10,12,13]],inplace=True) wine

Out[59]:

	1	2	4	5	7	9	11
0	14.23	1.71	15.6	127	3.06	2.29	1.04
1	13.20	1.78	11.2	100	2.76	1.28	1.05
2	13.16	2.36	18.6	101	3.24	2.81	1.03
3	14.37	1.95	16.8	113	3.49	2.18	0.86
4	13.24	2.59	21.0	118	2.69	1.82	1.04
173	13.71	5.65	20.5	95	0.61	1.06	0.64
174	13.40	3.91	23.0	102	0.75	1.41	0.70
175	13.27	4.28	20.0	120	0.69	1.35	0.59
176	13.17	2.59	20.0	120	0.68	1.46	0.60
177	14.13	4.10	24.5	96	0.76	1.35	0.61

178 rows × 7 columns

10. Assign the columns as below:

The attributes are (dontated by Riccardo Leardi, riclea '@' anchem.unige.it):

- 1) alcohol
- 2) malic_acid
- 3) alcalinity_of_ash
- 4) magnesium

- 5) flavanoids
- 6) proanthocyanins
- 7) hue

In [60]: wine.columns=['alcohol','malic_acid','alcalinity_of_ash','magnesium','flavanoids','flavanoids','hue']
wine

Out[60]:

	alcohol	malic_acid	alcalinity_of_ash	magnesium	flavanoids	flavanoids	hue
0	14.23	1.71	15.6	127	3.06	2.29	1.04
1	13.20	1.78	11.2	100	2.76	1.28	1.05
2	13.16	2.36	18.6	101	3.24	2.81	1.03
3	14.37	1.95	16.8	113	3.49	2.18	0.86
4	13.24	2.59	21.0	118	2.69	1.82	1.04
173	13.71	5.65	20.5	95	0.61	1.06	0.64
174	13.40	3.91	23.0	102	0.75	1.41	0.70
175	13.27	4.28	20.0	120	0.69	1.35	0.59
176	13.17	2.59	20.0	120	0.68	1.46	0.60
177	14.13	4.10	24.5	96	0.76	1.35	0.61

178 rows × 7 columns

11. Set the values of the first 3 values from alcohol column as NaN

Out[61]:

	alcohol	malic_acid	alcalinity_of_ash	magnesium	flavanoids	flavanoids	hue
0	NaN	1.71	15.6	127	3.06	2.29	1.04
1	NaN	1.78	11.2	100	2.76	1.28	1.05
2	NaN	2.36	18.6	101	3.24	2.81	1.03
3	14.37	1.95	16.8	113	3.49	2.18	0.86
4	13.24	2.59	21.0	118	2.69	1.82	1.04
173	13.71	5.65	20.5	95	0.61	1.06	0.64
174	13.40	3.91	23.0	102	0.75	1.41	0.70
175	13.27	4.28	20.0	120	0.69	1.35	0.59
176	13.17	2.59	20.0	120	0.68	1.46	0.60
177	14.13	4.10	24.5	96	0.76	1.35	0.61

178 rows × 7 columns

12. Now set the value of the rows 3 and 4 of magnesium as NaN

In [62]: wine.iloc[[2,3],[3]]=float("NaN")
wine

Out[62]:

	alcohol	malic_acid	alcalinity_of_ash	magnesium	flavanoids	flavanoids	hue
0	NaN	1.71	15.6	127.0	3.06	2.29	1.04
1	NaN	1.78	11.2	100.0	2.76	1.28	1.05
2	NaN	2.36	18.6	NaN	3.24	2.81	1.03
3	14.37	1.95	16.8	NaN	3.49	2.18	0.86
4	13.24	2.59	21.0	118.0	2.69	1.82	1.04
173	13.71	5.65	20.5	95.0	0.61	1.06	0.64
174	13.40	3.91	23.0	102.0	0.75	1.41	0.70
175	13.27	4.28	20.0	120.0	0.69	1.35	0.59
176	13.17	2.59	20.0	120.0	0.68	1.46	0.60
177	14.13	4.10	24.5	96.0	0.76	1.35	0.61

178 rows × 7 columns

13. Fill the value of NaN with the number 10 in alcohol and 100 in magnesium

In [63]: wine.alcohol=wine.alcohol.fillna(10)

In [65]: wine.magnesium=wine.magnesium.fillna(100)

14. Count the number of missing values in all columns.

15. Create an array of 10 random numbers up until 10 and save it.

```
In [72]: array1=np.random.randint(0,10,10)
array1

Out[72]: array([3, 3, 6, 4, 8, 6, 5, 1, 1, 1])

In [102]: list(array1)

Out[102]: [3, 3, 6, 4, 8, 6, 5, 1, 1, 1]
```

16. Set the rows corresponding to the random numbers to NaN in the column *alcohol*

```
In [109]: wine.iloc[list(array1),0]=float("NaN")
```

17. How many missing values do we have now?

18. Print only the non-null values in alcohol

In [111]: wine[wine.alcohol.notna()]

Out[111]:

	alcohol	malic_acid	alcalinity_of_ash	magnesium	flavanoids	flavanoids	hue
0	10.00	1.71	15.6	127.0	3.06	2.29	1.04
2	10.00	2.36	18.6	100.0	3.24	2.81	1.03
7	14.06	2.15	17.6	121.0	2.51	1.25	1.06
9	13.86	1.35	16.0	98.0	3.15	1.85	1.01
10	14.10	2.16	18.0	105.0	3.32	2.38	1.25
173	13.71	5.65	20.5	95.0	0.61	1.06	0.64
174	13.40	3.91	23.0	102.0	0.75	1.41	0.70
175	13.27	4.28	20.0	120.0	0.69	1.35	0.59
176	13.17	2.59	20.0	120.0	0.68	1.46	0.60
177	14.13	4.10	24.5	96.0	0.76	1.35	0.61

172 rows × 7 columns

19. Delete the rows that contain missing values

In [112]: wine.dropna(axis=0, how='any')

Out[112]:

	alcohol	malic_acid	alcalinity_of_ash	magnesium	flavanoids	flavanoids	hue
0	10.00	1.71	15.6	127.0	3.06	2.29	1.04
2	10.00	2.36	18.6	100.0	3.24	2.81	1.03
7	14.06	2.15	17.6	121.0	2.51	1.25	1.06
9	13.86	1.35	16.0	98.0	3.15	1.85	1.01
10	14.10	2.16	18.0	105.0	3.32	2.38	1.25
173	13.71	5.65	20.5	95.0	0.61	1.06	0.64
174	13.40	3.91	23.0	102.0	0.75	1.41	0.70
175	13.27	4.28	20.0	120.0	0.69	1.35	0.59
176	13.17	2.59	20.0	120.0	0.68	1.46	0.60
177	14.13	4.10	24.5	96.0	0.76	1.35	0.61

172 rows × 7 columns

20. Reset the index, so it starts with 0 again

In [113]: wine.reset index()

Out[113]:

	index	alcohol	malic_acid	alcalinity_of_ash	magnesium	flavanoids	flavanoids	hue
0	0	10.00	1.71	15.6	127.0	3.06	2.29	1.04
1	1	NaN	1.78	11.2	100.0	2.76	1.28	1.05
2	2	10.00	2.36	18.6	100.0	3.24	2.81	1.03
3	3	NaN	1.95	16.8	100.0	3.49	2.18	0.86
4	4	NaN	2.59	21.0	118.0	2.69	1.82	1.04
173	173	13.71	5.65	20.5	95.0	0.61	1.06	0.64
174	174	13.40	3.91	23.0	102.0	0.75	1.41	0.70
175	175	13.27	4.28	20.0	120.0	0.69	1.35	0.59
176	176	13.17	2.59	20.0	120.0	0.68	1.46	0.60
177	177	14.13	4.10	24.5	96.0	0.76	1.35	0.61

178 rows × 8 columns

Section-3: The pupose of the below exercise (21-27) is to understand filtering & sorting data from dataframe.

The below exercises required to use chipotle.tsv

This time we are going to pull data directly from the internet.

Import the dataset directly from this link (https://raw.githubusercontent.com/justmarkham/DAT8/master/data/chipotle.tsv (https://raw.githubusercontent.com/justmarkham/DAT8/master/data/chipotle.tsv)) and create dataframe called chipo

Out[234]:

	order_id	quantity	item_name	choice_description	item_price
0	1	1	Chips and Fresh Tomato Salsa	NaN	\$2.39
1	1	1	Izze	[Clementine]	\$3.39
2	1	1	Nantucket Nectar	[Apple]	\$3.39
3	1	1	Chips and Tomatillo-Green Chili Salsa	NaN	\$2.39
4	2	2	Chicken Bowl	[Tomatillo-Red Chili Salsa (Hot), [Black Beans	\$16.98

21. How many products cost more than \$10.00?

Use str attribute to remove the \$ sign and convert the column to proper numeric type data before filtering.

```
In [ ]: chipo['item_price'] = chipo['item_price'].str.replace('$', '')
In [236]: chipo['item_price'] = pd.to_numeric(chipo['item_price'])
```

```
In [237]: chipo.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 4622 entries, 0 to 4621
          Data columns (total 5 columns):
                                  Non-Null Count Dtype
              Column
                                  4622 non-null int64
              order id
           1 quantity
                                  4622 non-null int64
                                  4622 non-null object
           2 item name
               choice description 3376 non-null object
              item price
                                  4622 non-null
                                                 float64
          dtypes: float64(1), int64(2), object(2)
          memory usage: 180.7+ KB
In [238]: chipo[chipo.item price > 10].count()
Out[238]: order id
                                1130
          quantity
                                1130
          item name
                                1130
          choice description
                                1123
          item price
                                1130
          dtype: int64
 In [2]: def remove dollar(a):
              out=''
              for i in range(1,len(a)):
                  out=out+a[i]
              return float(out)
 In [3]: remove dollar('$45.23')
 Out[3]: 45.23
```

22. Print the Chipo Dataframe & info about data frame

In [239]: chipo

Out[239]:

	order_id	quantity	item_name	choice_description	item_price
0	1	1	Chips and Fresh Tomato Salsa	NaN	2.39
1	1	1	lzze	[Clementine]	3.39
2	1	1	Nantucket Nectar	[Apple]	3.39
3	1	1	Chips and Tomatillo-Green Chili Salsa	NaN	2.39
4	2	2	Chicken Bowl	[Tomatillo-Red Chili Salsa (Hot), [Black Beans	16.98
4617	1833	1	Steak Burrito	[Fresh Tomato Salsa, [Rice, Black Beans, Sour	11.75
4618	1833	1	Steak Burrito	[Fresh Tomato Salsa, [Rice, Sour Cream, Cheese	11.75
4619	1834	1	Chicken Salad Bowl	[Fresh Tomato Salsa, [Fajita Vegetables, Pinto	11.25
4620	1834	1	Chicken Salad Bowl	[Fresh Tomato Salsa, [Fajita Vegetables, Lettu	8.75
4621	1834	1	Chicken Salad Bowl	[Fresh Tomato Salsa, [Fajita Vegetables, Pinto	8.75

4622 rows × 5 columns

In [240]: chipo.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 4622 entries, 0 to 4621 Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	order_id	4622 non-null	int64
1	quantity	4622 non-null	int64
2	item_name	4622 non-null	object
3	choice_description	3376 non-null	object
4	item_price	4622 non-null	float64
dtyp	es: float64(1), int6	4(2), object(2)	

memory usage: 180.7+ KB

23. What is the price of each item?

- Delete the duplicates in item name and quantity
- Print a data frame with only two columns item_name and item_price
- Sort the values from the most to less expensive

In [241]: chipo.head()

Out[241]:

	order_id	quantity	item_name	choice_description	item_price
0	1	1	Chips and Fresh Tomato Salsa	NaN	2.39
1	1	1	Izze	[Clementine]	3.39
2	1	1	Nantucket Nectar	[Apple]	3.39
3	1	1	Chips and Tomatillo-Green Chili Salsa	NaN	2.39
4	2	2	Chicken Bowl	[Tomatillo-Red Chili Salsa (Hot), [Black Beans	16.98

In [242]: chipo2=chipo.drop_duplicates(subset=['item_name', 'quantity'])

In [243]: chipo2.head()

Out[243]:

	order_id	quantity	item_name	choice_description	item_price
0	1	1	Chips and Fresh Tomato Salsa	NaN	2.39
1	1	1	Izze	[Clementine]	3.39
2	1	1	Nantucket Nectar	[Apple]	3.39
3	1	1	Chips and Tomatillo-Green Chili Salsa	NaN	2.39
4	2	2	Chicken Bowl	[Tomatillo-Red Chili Salsa (Hot), [Black Beans	16.98

```
In [244]: chipo2[['item_name','item_price']]
```

Out[244]:

	item_name	item_price
0	Chips and Fresh Tomato Salsa	2.39
1	lzze	3.39
2	Nantucket Nectar	3.39
3	Chips and Tomatillo-Green Chili Salsa	2.39
4	Chicken Bowl	16.98
3890	Carnitas Crispy Tacos	17.98
3973	Canned Soft Drink	5.00
4152	Bottled Water	15.00
4354	Steak Soft Tacos	18.50
4489	Chips and Guacamole	17.80

103 rows × 2 columns

In [245]: chipo2.sort_values(by="item_price", ascending=False)

Out[245]:

	order_id	quantity	item_name	choice_description	item_price
3598	1443	15	Chips and Fresh Tomato Salsa	NaN	44.25
3480	1398	3	Carnitas Bowl	[Roasted Chili Corn Salsa, [Fajita Vegetables,	35.25
1254	511	4	Chicken Burrito	[Fresh Tomato Salsa, [Fajita Vegetables, Rice,	35.00
3601	1443	3	Veggie Burrito	[Fresh Tomato Salsa, [Fajita Vegetables, Rice,	33.75
409	178	3	Chicken Bowl	[[Fresh Tomato Salsa (Mild), Tomatillo-Green C	32.94
40	19	1	Chips	NaN	2.15
6	3	1	Side of Chips	NaN	1.69
263	114	1	Canned Soft Drink	[Coke]	1.25
34	17	1	Bottled Water	NaN	1.09
28	14	1	Canned Soda	[Dr. Pepper]	1.09

103 rows × 5 columns

24. Sort by the name of the item

In [246]: chipo2.sort_values(by="item_name")

Out[246]:

	order_id	quantity	item_name	choice_description	item_price
298	129	1	6 Pack Soft Drink	[Sprite]	6.49
3389	1360	2	6 Pack Soft Drink	[Diet Coke]	12.98
39	19	1	Barbacoa Bowl	[Roasted Chili Corn Salsa, [Fajita Vegetables,	11.75
21	11	1	Barbacoa Burrito	[[Fresh Tomato Salsa (Mild), Tomatillo-Green C	8.99
1903	768	2	Barbacoa Crispy Tacos	[Fresh Tomato Salsa, [Sour Cream, Cheese, Rice]]	18.50
1653	668	1	Veggie Crispy Tacos	[Fresh Tomato Salsa (Mild), [Pinto Beans, Rice	8.49
1694	686	1	Veggie Salad	[[Fresh Tomato Salsa (Mild), Roasted Chili Cor	8.49
186	83	1	Veggie Salad Bowl	[Fresh Tomato Salsa, [Fajita Vegetables, Rice,	11.25
3889	1559	2	Veggie Soft Tacos	[Fresh Tomato Salsa (Mild), [Black Beans, Rice	16.98
738	304	1	Veggie Soft Tacos	[Tomatillo Red Chili Salsa, [Fajita Vegetables	11.25

103 rows × 5 columns

25. What was the quantity of the most expensive item ordered?

In [247]: chipo2.item_price.max()

Out[247]: 44.25

```
In [248]: chipo2[chipo2.item_price==chipo2.item_price.max()]

Out[248]:

order_id quantity item_name choice_description item_price

3598 1443 15 Chips and Fresh Tomato Salsa NaN 44.25
```

26. How many times were a Veggie Salad Bowl ordered?

```
chipo2[chipo2.item name=='Veggie Salad Bowl']
In [249]:
Out[249]:
                 order_id quantity
                                                                        choice_description item_price
                                        item_name
            186
                      83
                               1 Veggie Salad Bowl [Fresh Tomato Salsa, [Fajita Vegetables, Rice,...
                                                                                              11.25
In [255]: chipo[chipo.item name=='Veggie Salad Bowl'].count()
Out[255]: order id
                                    18
           quantity
                                    18
           item name
                                    18
           choice description
                                    18
           item price
                                    18
           dtype: int64
```

27. How many times people orderd more than one Canned Soda?

Section-4: The purpose of the below exercises is to understand how to perform aggregations of data frame

The below exercises (28-33) required to use occupation.csv

28. Import the dataset occupation.csv and assign object as users

```
In [4]: users=pd.read_csv('occupation.csv',sep='|')
```

29. Discover what is the mean age per occupation

```
In [5]: users
```

Out[5]:

	user_id	age	gender	occupation	zip_code
0	1	24	М	technician	85711
1	2	53	F	other	94043
2	3	23	М	writer	32067
3	4	24	М	technician	43537
4	5	33	F	other	15213
938	939	26	F	student	33319
939	940	32	М	administrator	02215
940	941	20	М	student	97229
941	942	48	F	librarian	78209
942	943	22	М	student	77841

943 rows × 5 columns

```
In [6]: users.groupby('occupation').age.mean()
Out[6]: occupation
        administrator
                          38.746835
        artist
                         31.392857
        doctor
                         43.571429
                         42.010526
        educator
        engineer
                         36.388060
        entertainment
                         29.22222
                         38.718750
        executive
                         41.562500
        healthcare
        homemaker
                         32.571429
        lawyer
                         36.750000
                         40.000000
        librarian
        marketing
                         37.615385
        none
                         26.555556
        other
                         34.523810
        programmer
                         33.121212
        retired
                         63.071429
        salesman
                         35.666667
        scientist
                         35.548387
        student
                         22.081633
                         33.148148
        technician
        writer
                         36.311111
        Name: age, dtype: float64
```

30. Discover the Male ratio per occupation and sort it from the most to the least.

Use numpy.where() to encode gender column.

Name: gender, dtype: float64

```
In [19]: | users[users.gender=='M'].occupation.value counts(normalize=True)
Out[19]: student
                          0.202985
         other
                          0.102985
         educator
                          0.102985
         engineer
                          0.097015
         programmer
                          0.089552
         administrator
                          0.064179
         executive
                          0.043284
         scientist
                          0.041791
         writer
                          0.038806
         technician
                          0.038806
         librarian
                          0.032836
         entertainment
                          0.023881
         marketing
                          0.023881
         artist
                          0.022388
         retired
                          0.019403
         lawyer
                          0.014925
         salesman
                          0.013433
         doctor
                          0.010448
         healthcare
                          0.007463
         none
                          0.007463
         homemaker
                          0.001493
         Name: occupation, dtype: float64
```

```
In [14]: users.groupby(['occupation','gender'])['user_id'].count().reset_index()
```

Out[14]:

	occupation	gender	user_id
(administrator	F	36
•	l administrator	М	43
2	2 artist	F	13
;	3 artist	М	15
4	doctor	М	7
ţ	educator	F	26
•	e ducator	М	69
7	engineer	F	2
8	B engineer	М	65
9	entertainment	F	2
10	entertainment	М	16
1′	l executive	F	3
12	2 executive	М	29
13	B healthcare	F	11
14	healthcare	М	5
1	5 homemaker	F	6
16	6 homemaker	М	1
17	7 lawyer	F	2
18	B lawyer	М	10
19	librarian	F	29
20) librarian	М	22
2′	l marketing	F	10
22	2 marketing	М	16
23	3 none	F	4

	occupation	gender	user_id
24	none	М	5
25	other	F	36
26	other	М	69
27	programmer	F	6
28	programmer	М	60
29	retired	F	1
30	retired	М	13
31	salesman	F	3
32	salesman	М	9
33	scientist	F	3
34	scientist	М	28
35	student	F	60
36	student	М	136
37	technician	F	1
38	technician	М	26
39	writer	F	19
40	writer	М	26

31. For each occupation, calculate the minimum and maximum ages

```
In [38]: users.groupby('occupation').age.agg(['min','max'])
```

Out[38]:

	min	max
occupation		
administrator	21	70
artist	19	48
doctor	28	64
educator	23	63
engineer	22	70
entertainment	15	50
executive	22	69
healthcare	22	62
homemaker	20	50
lawyer	21	53
librarian	23	69
marketing	24	55
none	11	55
other	13	64
programmer	20	63
retired	51	73
salesman	18	66
scientist	23	55
student	7	42
technician	21	55
writer	18	60

32. For e	ach combination	of occupation	and gender, c	alculate the m	ean age	

```
In [39]: pd.crosstab(index = users.occupation, columns = users.gender, values = users.age, aggfunc='mean')
Out[39]:
                                F
                 gender
                                          М
              occupation
            administrator 40.638889 37.162791
                   artist 30.307692 32.333333
                  doctor
                              NaN 43.571429
                         39.115385 43.101449
                educator
                engineer 29.500000 36.600000
           entertainment 31.000000 29.000000
               executive 44.000000 38.172414
              healthcare 39.818182 45.400000
             homemaker 34.166667 23.000000
                  lawyer 39.500000 36.200000
                librarian 40.000000 40.000000
               marketing 37.200000 37.875000
                   none 36.500000 18.600000
                   other 35.472222 34.028986
             programmer 32.166667 33.216667
                  retired 70.000000 62.538462
               salesman 27.000000 38.555556
                scientist 28.333333 36.321429
                 student 20.750000 22.669118
```

33. For each occupation present the percentage of women and men

technician 38.000000 32.961538

writer 37.631579 35.346154

In [43]: pd.crosstab(index = users.occupation, columns = users.gender, values = users.user_id, aggfunc='count',normalize=True)

Out[43]:

gender	F	М
occupation		
administrator	0.038176	0.045599
artist	0.013786	0.015907
doctor	0.000000	0.007423
educator	0.027572	0.073171
engineer	0.002121	0.068929
entertainment	0.002121	0.016967
executive	0.003181	0.030753
healthcare	0.011665	0.005302
homemaker	0.006363	0.001060
lawyer	0.002121	0.010604
librarian	0.030753	0.023330
marketing	0.010604	0.016967
none	0.004242	0.005302
other	0.038176	0.073171
programmer	0.006363	0.063627
retired	0.001060	0.013786
salesman	0.003181	0.009544
scientist	0.003181	0.029692
student	0.063627	0.144221
technician	0.001060	0.027572
writer	0.020148	0.027572

Section-6: The purpose of the below exercises is to understand how to use lambda-apply-functions

The below exercises (34-41) required to use student-mat.csv and student-por.csv files

34. Import the datasets student-mat and student-por and append them and assigned object as df

```
In [46]: student1=pd.read_csv("student-mat.csv")
In [47]: student2=pd.read_csv("student-por.csv")
```

In [48]: student1

Out[48]:

	school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	 famrel	freetime	goout	Dalc	Walc	health	absences	G1
0	GP	F	18	U	GT3	А	4	4	at_home	teacher	 4	3	4	1	1	3	6	5
1	GP	F	17	U	GT3	Т	1	1	at_home	other	 5	3	3	1	1	3	4	5
2	GP	F	15	U	LE3	Т	1	1	at_home	other	 4	3	2	2	3	3	10	7
3	GP	F	15	U	GT3	Т	4	2	health	services	 3	2	2	1	1	5	2	15
4	GP	F	16	U	GT3	Т	3	3	other	other	 4	3	2	1	2	5	4	6
390	MS	М	20	U	LE3	Α	2	2	services	services	 5	5	4	4	5	4	11	9
391	MS	М	17	U	LE3	Т	3	1	services	services	 2	4	5	3	4	2	3	14
392	MS	М	21	R	GT3	Т	1	1	other	other	 5	5	3	3	3	3	3	10
393	MS	М	18	R	LE3	Т	3	2	services	other	 4	4	1	3	4	5	0	11
394	MS	М	19	U	LE3	Т	1	1	other	at_home	 3	2	3	3	3	5	5	8

395 rows × 33 columns

In [49]: student2

Out[49]:

	school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	 famrel	freetime	goout	Dalc	Walc	health	absences	G1
0	GP	F	18	U	GT3	А	4	4	at_home	teacher	 4	3	4	1	1	3	4	0
1	GP	F	17	U	GT3	Т	1	1	at_home	other	 5	3	3	1	1	3	2	9
2	GP	F	15	U	LE3	Т	1	1	at_home	other	 4	3	2	2	3	3	6	12
3	GP	F	15	U	GT3	Т	4	2	health	services	 3	2	2	1	1	5	0	14
4	GP	F	16	U	GT3	Т	3	3	other	other	 4	3	2	1	2	5	0	11
644	MS	F	19	R	GT3	Т	2	3	services	other	 5	4	2	1	2	5	4	10
645	MS	F	18	U	LE3	Т	3	1	teacher	services	 4	3	4	1	1	1	4	15
646	MS	F	18	U	GT3	Т	1	1	other	other	 1	1	1	1	1	5	6	11
647	MS	М	17	U	LE3	Т	3	1	services	services	 2	4	5	3	4	2	6	10
648	MS	М	18	R	LE3	Т	3	2	services	other	 4	4	1	3	4	5	4	10

649 rows × 33 columns

In [50]: df=student1.append(student2)
df

Out[50]:

	school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	 famrel	freetime	goout	Dalc	Walc	health	absences	G1
0	GP	F	18	U	GT3	Α	4	4	at_home	teacher	 4	3	4	1	1	3	6	5
1	GP	F	17	U	GT3	Т	1	1	at_home	other	 5	3	3	1	1	3	4	5
2	GP	F	15	U	LE3	Т	1	1	at_home	other	 4	3	2	2	3	3	10	7
3	GP	F	15	U	GT3	Т	4	2	health	services	 3	2	2	1	1	5	2	15
4	GP	F	16	U	GT3	Т	3	3	other	other	 4	3	2	1	2	5	4	6
644	MS	F	19	R	GT3	Т	2	3	services	other	 5	4	2	1	2	5	4	10
645	MS	F	18	U	LE3	Т	3	1	teacher	services	 4	3	4	1	1	1	4	15
646	MS	F	18	U	GT3	Т	1	1	other	other	 1	1	1	1	1	5	6	11
647	MS	М	17	U	LE3	Т	3	1	services	services	 2	4	5	3	4	2	6	10
648	MS	М	18	R	LE3	Т	3	2	services	other	 4	4	1	3	4	5	4	10

1044 rows × 33 columns

4

35. For the purpose of this exercise slice the dataframe from 'school' until the 'guardian' column

In [55]: df2 = df.loc[:,'school':'guardian']

36. Create a lambda function that captalize strings (example: if we give at_home as input function and should give At_home as output.

```
In [44]: lambda x:x.capitalize()
Out[44]: <function __main__.<lambda>(x)>
```

37. Capitalize both Mjob and Fjob variables using above lamdba function

```
In [56]: df2.Mjob.apply(lambda x:x.capitalize())
Out[56]: 0
                  At home
                 At home
                 At home
          3
                  Health
                   0ther
                 Services
          644
          645
                 Teacher
                   0ther
          646
          647
                 Services
          648
                 Services
         Name: Mjob, Length: 1044, dtype: object
In [57]: df2.Fjob.apply(lambda x:x.capitalize())
Out[57]: 0
                  Teacher
                    Other
         1
          2
                    0ther
                 Services
                    Other
          644
                    0ther
          645
                 Services
                   0ther
          646
                 Services
          647
                    0ther
          648
         Name: Fjob, Length: 1044, dtype: object
```

38. Print the last elements of the data set. (Last few records)

```
In [58]: df2.tail()
Out[58]:
```

	school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	reason	guardian
644	MS	F	19	R	GT3	Т	2	3	Services	Other	course	mother
645	MS	F	18	U	LE3	Т	3	1	Teacher	Services	course	mother
646	MS	F	18	U	GT3	Т	1	1	Other	Other	course	mother
647	MS	М	17	U	LE3	Т	3	1	Services	Services	course	mother
648	MS	М	18	R	LE3	Т	3	2	Services	Other	course	mother

39. Did you notice the original dataframe is still lowercase? Why is that? Fix it and captalize Mjob and Fjob.

```
In [60]: df2.Mjob=df.Mjob.apply(lambda x:x.capitalize())
         df2.Fjob=df.Fjob.apply(lambda x:x.capitalize())
```

40. Create a function called majority that return a boolean value to a new column called legal drinker

```
In [63]: df2['majority']=np.where(df2.age<18,False,True)</pre>
```

41. Multiply every number of the dataset by 10.

In [64]: df.select_dtypes('int64')*10

Out[64]:

	age	Medu	Fedu	traveltime	studytime	failures	famrel	freetime	goout	Dalc	Walc	health	absences	G1	G2	G3
0	180	40	40	20	20	0	40	30	40	10	10	30	60	50	60	60
1	170	10	10	10	20	0	50	30	30	10	10	30	40	50	50	60
2	150	10	10	10	20	30	40	30	20	20	30	30	100	70	80	100
3	150	40	20	10	30	0	30	20	20	10	10	50	20	150	140	150
4	160	30	30	10	20	0	40	30	20	10	20	50	40	60	100	100
644	190	20	30	10	30	10	50	40	20	10	20	50	40	100	110	100
645	180	30	10	10	20	0	40	30	40	10	10	10	40	150	150	160
646	180	10	10	20	20	0	10	10	10	10	10	50	60	110	120	90
647	170	30	10	20	10	0	20	40	50	30	40	20	60	100	100	100
648	180	30	20	30	10	0	40	40	10	30	40	50	40	100	110	110

1044 rows × 16 columns

Section-6: The purpose of the below exercises is to understand how to perform simple joins

The below exercises (42-48) required to use cars1.csv and cars2.csv files

42. Import the datasets cars1.csv and cars2.csv and assign names as cars1 and cars2

```
In [93]: cars1=pd.read_csv('cars1.csv')
    cars2=pd.read_csv('cars2.csv')
```

43. Print the information to cars1 by applying below functions

dtvpe='object')

hint: Use different functions/methods like type(), head(), tail(), columns(), info(), dtypes(), index(), shape(), count(), size(), ndim(), axes(), describe(), memory_usage(), sort_values(), value_counts() Also create profile report using pandas_profiling.Profile_Report

```
In [ ]:
          cars1.head()
In [81]:
          cars1.describe().T
Out[81]:
                                                                  25%
                                                                         50%
                                                                                   75%
                         count
                                                   std
                                                          min
                                      mean
                                                                                          max
                         198.0
                                  19.719697
                                              5.814254
                                                           9.0
                                                                 15.00
                                                                         19.0
                                                                                 24.375
                                                                                          35.0
                   mpg
                         198.0
                                   5.898990
                                              1.785417
                                                                                  8.000
                                                                                           8.0
               cylinders
                                                          3.0
                                                                  4.00
                                                                          6.0
                         198.0
                                                                113.25
                                                                        228.0
                                                                                318.000
                                                                                         455.0
            displacement
                                 223.469697
                                            115.181017
                                                         68.0
                         198.0
                                3177.888889
                                            934.783733
                                                        1613.0
                                                               2302.50
                                                                       3030.0
                                                                               4080.750
                                                                                        5140.0
                 weight
                         198.0
                                  15.005556
                                              2.872382
                                                          8.0
                                                                 13.00
                                                                         15.0
                                                                                 16.800
                                                                                          23.5
             acceleration
                  model
                         198.0
                                  72.818182
                                              1.865332
                                                         70.0
                                                                 71.00
                                                                         73.0
                                                                                 74.000
                                                                                          76.0
                  origin
                         198.0
                                   1.439394
                                              0.708085
                                                          1.0
                                                                  1.00
                                                                          1.0
                                                                                  2.000
                                                                                           3.0
             Unnamed: 9
                           0.0
                                       NaN
                                                  NaN
                                                         NaN
                                                                  NaN
                                                                         NaN
                                                                                   NaN
                                                                                          NaN
            Unnamed: 10
                           0.0
                                       NaN
                                                  NaN
                                                         NaN
                                                                  NaN
                                                                         NaN
                                                                                   NaN
                                                                                          NaN
            Unnamed: 11
                           0.0
                                       NaN
                                                  NaN
                                                         NaN
                                                                  NaN
                                                                         NaN
                                                                                   NaN
                                                                                          NaN
            Unnamed: 12
                           0.0
                                       NaN
                                                  NaN
                                                         NaN
                                                                  NaN
                                                                         NaN
                                                                                   NaN
                                                                                          NaN
            Unnamed: 13
                           0.0
                                       NaN
                                                  NaN
                                                         NaN
                                                                  NaN
                                                                         NaN
                                                                                   NaN
                                                                                          NaN
In [83]: cars1.columns
Out[83]: Index(['mpg', 'cylinders', 'displacement', 'horsepower', 'weight',
                   'acceleration', 'model', 'origin', 'car', 'Unnamed: 9', 'Unnamed: 10',
                   'Unnamed: 11', 'Unnamed: 12', 'Unnamed: 13'],
```

44. It seems our first dataset has some unnamed blank columns, fix cars1

```
In [94]: cars1.dropna(axis=1,how='all', inplace=True)
```

45. What is the number of observations in each dataset?

```
In [95]: cars1.count()
Out[95]: mpg
                          198
         cylinders
                          198
         displacement
                          198
         horsepower
                          198
         weight
                          198
         acceleration
                          198
         model
                          198
         origin
                          198
         car
                          198
         dtype: int64
In [99]: cars2.count()
Out[99]: mpg
                          200
         cylinders
                          200
         displacement
                          200
         horsepower
                          200
         weight
                          200
         acceleration
                          200
         model
                          200
         origin
                          200
         car
                          200
         dtype: int64
```

46. Join cars1 and cars2 into a single DataFrame called cars

In [118]: cars=cars1.append(cars2).reset_index()
 cars

Out[118]:

	index	mpg	cylinders	displacement	horsepower	weight	acceleration	model	origin	car
0	0	18.0	8	307	130	3504	12.0	70	1	chevrolet chevelle malibu
1	1	15.0	8	350	165	3693	11.5	70	1	buick skylark 320
2	2	18.0	8	318	150	3436	11.0	70	1	plymouth satellite
3	3	16.0	8	304	150	3433	12.0	70	1	amc rebel sst
4	4	17.0	8	302	140	3449	10.5	70	1	ford torino
393	195	27.0	4	140	86	2790	15.6	82	1	ford mustang gl
394	196	44.0	4	97	52	2130	24.6	82	2	vw pickup
395	197	32.0	4	135	84	2295	11.6	82	1	dodge rampage
396	198	28.0	4	120	79	2625	18.6	82	1	ford ranger
397	199	31.0	4	119	82	2720	19.4	82	1	chevy s-10

398 rows × 10 columns

47. There is a column missing, called owners. Create a random number Series from 15,000 to 73,000.

In [121]: owner=np.random.randint(15000, 73000, 398)

48. Add the column owners to cars

In [123]: cars['owners']=owner
cars

Out[123]:

	index	mpg	cylinders	displacement	horsepower	weight	acceleration	model	origin	car	owners
0	0	18.0	8	307	130	3504	12.0	70	1	chevrolet chevelle malibu	16014
1	1	15.0	8	350	165	3693	11.5	70	1	buick skylark 320	51570
2	2	18.0	8	318	150	3436	11.0	70	1	plymouth satellite	35549
3	3	16.0	8	304	150	3433	12.0	70	1	amc rebel sst	62116
4	4	17.0	8	302	140	3449	10.5	70	1	ford torino	50091
393	195	27.0	4	140	86	2790	15.6	82	1	ford mustang gl	38832
394	196	44.0	4	97	52	2130	24.6	82	2	vw pickup	21225
395	197	32.0	4	135	84	2295	11.6	82	1	dodge rampage	24419
396	198	28.0	4	120	79	2625	18.6	82	1	ford ranger	16819
397	199	31.0	4	119	82	2720	19.4	82	1	chevy s-10	49782

398 rows × 11 columns

Section-7: The purpose of the below exercises is to understand how to perform date time operations

49. Write a Python script to display the

- a. Current date and time
- b. Current year
- · c. Month of year
- d. Week number of the year

- e. Weekday of the week
- f. Day of year
- g. Day of the month
- h. Day of week

```
In [66]: pd.Timestamp.now()
Out[66]: Timestamp('2022-07-06 17:24:51.745935')

50. Write a Python program to convert a string to datetime.
    Sample String: Jul 1 2014 2:43PM
    Expected Output: 2014-07-01 14:43:00

In [67]: def program1():
    dte=input('enter a date string: ')
    return pd.to_datetime(dte)

In [37]: program1()
    enter a date stringJul 1 2014 2:43PM
Out[37]: Timestamp('2014-07-01 14:43:00')
```

51. Write a Python program to subtract five days from current date.

Current Date: 2015-06-22

5 days before Current Date: 2015-06-17

```
In [44]: current date='2015-06-22'
         current_date=pd.to_datetime(current_date)+pd.DateOffset(days = -5)
         current date
Out[44]: Timestamp('2015-06-17 00:00:00')
         52. Write a Python program to convert unix timestamp string to readable date.
         Sample Unix timestamp string: 1284105682
         Expected Output: 2010-09-10 13:31:22
In [51]: unix time=1284105682
         dt.datetime.fromtimestamp(unix_time).strftime("%Y-%m-%d %H:%M:%S")
Out[51]: '2010-09-10 13:31:22'
         53. Convert the below Series to pandas datetime :
         DoB = pd.Series(["07Sep59","01Jan55","15Dec47","11Jul42"])
         Make sure that the year is 19XX not 20XX
In [73]: DoB = pd.Series(["07Sep59","01Jan55","15Dec47","11Jul42"])
         DoB=pd.to datetime(DoB)
In [74]: DoB
Out[74]: 0
             2059-09-07
             2055-01-01
            2047-12-15
             2042-07-11
         dtype: datetime64[ns]
```

```
In [85]: import datetime
         def fix_date(x):
            if x.year > 1989:
                year = x.year - 100
             else:
                year = x.year
            return datetime.date(year,x.month,x.day)
In [76]: DoB=DoB.apply(fix date)
In [77]: DoB
Out[77]: 0
              1959-09-07
             1955-01-01
             1947-12-15
             1942-07-11
         dtype: object
         54. Write a Python program to get days between two dates.
In [82]: date1=pd.to_datetime("07Sep59")
         date2=pd.to datetime("01Jan55")
         date1-date2
Out[82]: Timedelta('1710 days 00:00:00')
         55. Convert the below date to datetime and then change its display format using the .dt module
```

Date = "15Dec1989"

Result : "Friday, 15 Dec 98"

```
In [85]: Date = pd.to_datetime("15Dec1989")
Date.strftime('%A, %d %b %y')

Out[85]: 'Friday, 15 Dec 89'
```

The below exercises (56-66) required to use wind.data file

About wind.data:

The data have been modified to contain some missing values, identified by NaN.

1. The data in 'wind.data' has the following format:

```
.. .. ..
Yr Mo Dv
          RPT
                VAL
                      ROS
                            KIL
                                  SHA
                                        BIR
                                              DUB
                                                    CLA
                                                         MUL
                                                               CLO
                                                                     BEL
                                                                           MAL
61 1 1 15.04 14.96 13.17 9.29
                                  NaN 9.87 13.67 10.25 10.83 12.58 18.50 15.04
61 1 2 14.71 NaN 10.83 6.50 12.62 7.67 11.50 10.04 9.79 9.67 17.54 13.83
61 1 3 18.50 16.88 12.33 10.13 11.17 6.17 11.25 NaN 8.50 7.67 12.75 12.71
The first three columns are year, month and day. The remaining 12 columns are average windspeeds in knots at 12
locations in Ireland on that day.
```

56. Import the dataset wind.data and assign it to a variable called data and replace the first 3 columns by a proper date time index

```
In [75]: data=pd.read_csv('wind.data')
```

In [76]: data.tail()

Out[76]:

	Yr	Мо	Dy	RPT	VAL	ROS	KIL	SHA	BIR	DUB	CLA	MUL	CLO	BEL	MAL
6569	78	12	27	17.58	16.96	17.62	8.08	13.21	11.67	14.46	15.59	14.04	14.00	17.21	40.08
6570	78	12	28	13.21	5.46	13.46	5.00	8.12	9.42	14.33	16.25	15.25	18.05	21.79	41.46
6571	78	12	29	14.00	10.29	14.42	8.71	9.71	10.54	19.17	12.46	14.50	16.42	18.88	29.58
6572	78	12	30	18.50	14.04	21.29	9.13	12.75	9.71	18.08	12.87	12.46	12.12	14.67	28.79
6573	78	12	31	20.33	17.41	27.29	9.59	12.08	10.13	19.25	11.63	11.58	11.38	12.08	22.08

In [77]: data['DATE']=data['Yr'].astype(str)+'-'+data['Mo'].astype(str)+'-'+data['Dy'].astype(str)

In [78]: data.drop(data.columns[[0,1,2]], axis=1, inplace=True)

In [298]: data.DATE=pd.to_datetime(data.DATE)

In [83]: data

Out[83]:

		RPT	VAL	ROS	KIL	SHA	BIR	DUB	CLA	MUL	CLO	BEL	MAL	DATE
	0	15.04	14.96	13.17	9.29	NaN	9.87	13.67	10.25	10.83	12.58	18.50	15.04	2061-01-01
	1	14.71	NaN	10.83	6.50	12.62	7.67	11.50	10.04	9.79	9.67	17.54	13.83	2061-01-02
	2	18.50	16.88	12.33	10.13	11.17	6.17	11.25	NaN	8.50	7.67	12.75	12.71	2061-01-03
	3	10.58	6.63	11.75	4.58	4.54	2.88	8.63	1.79	5.83	5.88	5.46	10.88	2061-01-04
	4	13.33	13.25	11.42	6.17	10.71	8.21	11.92	6.54	10.92	10.34	12.92	11.83	2061-01-05
65	569	17.58	16.96	17.62	8.08	13.21	11.67	14.46	15.59	14.04	14.00	17.21	40.08	1978-12-27
65	570	13.21	5.46	13.46	5.00	8.12	9.42	14.33	16.25	15.25	18.05	21.79	41.46	1978-12-28
65	571	14.00	10.29	14.42	8.71	9.71	10.54	19.17	12.46	14.50	16.42	18.88	29.58	1978-12-29
65	572	18.50	14.04	21.29	9.13	12.75	9.71	18.08	12.87	12.46	12.12	14.67	28.79	1978-12-30
65	573	20.33	17.41	27.29	9.59	12.08	10.13	19.25	11.63	11.58	11.38	12.08	22.08	1978-12-31

6574 rows × 13 columns

57. Year 2061 is seemingly imporoper. Convert every year which are < 70 to 19XX instead of 20XX.

In [87]: data['DATE']=data['DATE'].apply(fix_date)

58. Set the right dates as the index. Pay attention at the data type, it should be datetime64[ns].

In []:

59. Compute how many values are missing for each location over the entire record.

They should be ignored in all calculations below.

```
In [88]: data.shape[0]-data.count()
Out[88]: RPT
                 6
         VAL
                 3
         ROS
                 2
         KIL
                 5
         SHA
                 2
         BIR
                 0
         DUB
                 3
         CLA
                 2
         MUL
                 3
         CLO
                 1
         BEL
                 0
         MAL
                 4
         DATE
                 0
         dtype: int64
```

60. Compute how many non-missing values there are in total.

```
In [89]: data.count()
Out[89]: RPT
                 6568
                 6571
         VAL
         ROS
                 6572
         KIL
                 6569
         SHA
                 6572
                 6574
         BIR
         DUB
                 6571
                 6572
         CLA
                 6571
         MUL
         CLO
                 6573
         BEL
                 6574
         MAL
                 6570
         DATE
                 6574
         dtype: int64
```

61. Calculate the mean windspeeds over all the locations and all the times.

A single number for the entire dataset.

```
In [90]: data.mean()
Out[90]: RPT
                 12.362987
         VAL
                 10.644314
                11.660526
         ROS
                 6.306468
         KIL
         SHA
                 10.455834
         BIR
                 7.092254
         DUB
                 9.797343
                 8.495053
         CLA
         MUL
                 8.493590
                 8.707332
         CLO
                13.121007
         BEL
         MAL
                 15,599079
         dtype: float64
In [91]: np.mean(data.mean())
Out[91]: 10.227982360836924
```

62. Create a DataFrame called loc_stats and calculate the min, max and mean windspeeds and standard deviations of the windspeeds at each location over all the days

A different set of numbers for each location.

```
In [283]: data.columns
          data1=data[['RPT','VAL','ROS','KIL','SHA','BIR','DUB','CLA','MUL','CLO','BEL','MAL']]
In [285]: loc stats=data1.apply(fn describe2)
          loc stats
```

Out[285]:

	RPT	VAL	ROS	KIL	SHA	BIR	DUB	CLA	MUL	CLO	BEL	MAL
Min	0.670000	0.210000	1.500000	0.000000	0.130000	0.000000	0.000000	0.000000	0.000000	0.040000	0.130000	0.670000
Max	35.800000	33.370000	33.840000	28.460000	37.540000	26.160000	30.370000	31.080000	25.880000	28.210000	42.380000	42.540000
Mean	12.362987	10.644314	11.660526	6.306468	10.455834	7.092254	9.797343	8.495053	8.493590	8.707332	13.121007	15.599079
STD%	5.618413	5.267356	5.008450	3.605811	4.936125	3.968683	4.977555	4.499449	4.166872	4.503954	5.835037	6.699794

63. Create a DataFrame called day_stats and calculate the min, max and mean windspeed and standard deviations of the windspeeds across all the locations at each day.

A different set of numbers for each day.

```
In [286]: data2=data
In [289]: data2=data2.sort_values(by='DATE')
In [293]: data2=data2.set_index('DATE').T
```

In [294]: day_stats=data2.apply(fn_describe2)
day_stats

Out[294]:

DATE	1961-01- 01	1961-01- 02	1961-01- 03	1961-01- 04	1961-01- 05	1961-01- 06	1961-01- 07	1961-01- 08	1961-01- 09	1961-01- 10	 1978-12- 22	1978-12- 23	1978-1
Min	9.290000	6.500000	6.170000	1.790000	6.170000	4.420000	4.960000	5.910000	4.750000	6.54000	 2.460000	9.500000	4.7900
Max	18.500000	17.540000	18.500000	11.750000	13.330000	13.210000	14.290000	16.620000	15.370000	19.50000	 13.080000	22.210000	31.7100
Mean	13.018182	11.336364	11.641818	6.619167	10.630000	8.240000	10.385000	10.487500	9.897500	10.47750	 7.000833	15.613333	10.8233
STD%	2.808875	3.188994	3.681912	3.198126	2.445356	2.998063	3.072114	3.547237	2.905954	3.44261	 3.237337	3.850840	7.1950

rows × 6574 columns

64. Find the average windspeed in January for each location.

Treat January 1961 and January 1962 both as January.

In [295]: data.head()

Out[295]:

	RPT	VAL	ROS	KIL	SHA	BIR	DUB	CLA	MUL	CLO	BEL	MAL	DATE
0	15.04	14.96	13.17	9.29	NaN	9.87	13.67	10.25	10.83	12.58	18.50	15.04	1961-01-01
1	14.71	NaN	10.83	6.50	12.62	7.67	11.50	10.04	9.79	9.67	17.54	13.83	1961-01-02
2	18.50	16.88	12.33	10.13	11.17	6.17	11.25	NaN	8.50	7.67	12.75	12.71	1961-01-03
3	10.58	6.63	11.75	4.58	4.54	2.88	8.63	1.79	5.83	5.88	5.46	10.88	1961-01-04
4	13.33	13.25	11.42	6.17	10.71	8.21	11.92	6.54	10.92	10.34	12.92	11.83	1961-01-05


```
In [142]: apple.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 8465 entries, 1980-12-12 to 2014-07-08
         Data columns (total 7 columns):
          # Column
                        Non-Null Count Dtype
            Date Col 8465 non-null datetime64[ns]
                        8465 non-null float64
              0pen
                       8465 non-null float64
             High
                     8465 non-null float64
              Low
          4 Close 8465 non-null float64
          5 Volume
                        8465 non-null int64
             Adj Close 8465 non-null float64
         dtypes: datetime64[ns](1), float64(5), int64(1)
         memory usage: 529.1 KB
```

69. Transform the Date column as a datetime type

```
In [114]: apple['Date']=pd.to_datetime(apple['Date'])
```

70. Set the date as the index

```
In [119]: apple=apple.set_index(apple.Date)
apple
```

Out[119]:

	Date	Open	High	Low	Close	Volume	Adj Close
Date							
2014-07-08	2014-07-08	96.27	96.80	93.92	95.35	65130000	95.35
2014-07-07	2014-07-07	94.14	95.99	94.10	95.97	56305400	95.97
2014-07-03	2014-07-03	93.67	94.10	93.20	94.03	22891800	94.03
2014-07-02	2014-07-02	93.87	94.06	93.09	93.48	28420900	93.48
2014-07-01	2014-07-01	93.52	94.07	93.13	93.52	38170200	93.52
1980-12-18	1980-12-18	26.63	26.75	26.63	26.63	18362400	0.41
1980-12-17	1980-12-17	25.87	26.00	25.87	25.87	21610400	0.40
1980-12-16	1980-12-16	25.37	25.37	25.25	25.25	26432000	0.39
1980-12-15	1980-12-15	27.38	27.38	27.25	27.25	43971200	0.42
1980-12-12	1980-12-12	28.75	28.87	28.75	28.75	117258400	0.45

8465 rows × 7 columns

71. Is there any duplicate dates?

```
In [ ]: No Duplicate dates.
```

72. The index is from the most recent date. Sort the data so that the first entry is the oldest date.

```
In [162]: apple.rename(columns={'Date':'Date_Col','Adj Close':'Adj_Close'}, inplace=True)
In [138]: apple=apple.sort_values(by='Date_Col', ascending=True)
apple
```

Volume Adj Close

Out[138]:

	_	•	•				•
Date							
1980-12-12	1980-12-12	28.75	28.87	28.75	28.75	117258400	0.45
1980-12-15	1980-12-15	27.38	27.38	27.25	27.25	43971200	0.42
1980-12-16	1980-12-16	25.37	25.37	25.25	25.25	26432000	0.39
1980-12-17	1980-12-17	25.87	26.00	25.87	25.87	21610400	0.40
1980-12-18	1980-12-18	26.63	26.75	26.63	26.63	18362400	0.41
2014-07-01	2014-07-01	93.52	94.07	93.13	93.52	38170200	93.52
2014-07-02	2014-07-02	93.87	94.06	93.09	93.48	28420900	93.48
2014-07-03	2014-07-03	93.67	94.10	93.20	94.03	22891800	94.03
2014-07-07	2014-07-07	94.14	95.99	94.10	95.97	56305400	95.97
2014-07-08	2014-07-08	96.27	96.80	93.92	95.35	65130000	95.35

Date_Col Open High Low Close

8465 rows × 7 columns

73. Get the last business day of each month

In [151]: pd.crosstab(index=apple.Date_Col.dt.month, columns=apple.Date_Col.dt.year, values=apple.Date_Col, aggfunc=max)
#pd.crosstab(index = stores.Location, columns = stores.StoreType, values = stores.TotalSales, aggfunc=sum)

\sim	. 4	Гаг	- 4 7
UЛ	IT.	11,	5 I I
٠.	~ -	L	1

Date_Col	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	 2005	2006	2007	2008	2009	2010	2011	2012	2013	20
Date_Col																				
1	NaT	1981- 01-30	1982- 01-29	1983- 01-31	1984- 01-31	1985- 01-31	1986- 01-31	1987- 01-30	1988- 01-29	1989- 01-31	 2005- 01-31	2006- 01-31	2007- 01-31	2008- 01-31	2009- 01-30	2010- 01-29	2011- 01- 31	2012- 01-31	2013- 01-31	
2	NaT	1981- 02-27	1982- 02-26	1983- 02-28	1984- 02-29	1985- 02-28	1986- 02-28	1987- 02-27	1988- 02-29	1989- 02-28	 2005- 02-28	2006- 02-28	2007- 02-28	2008- 02-29	2009- 02-27	2010- 02-26	2011- 02- 28		2013- 02-28	
3	NaT	1981- 03-31	1982- 03-31	1983- 03-31	1984- 03-30	1985- 03-29	1986- 03-31	1987- 03-31	1988- 03-31	1989- 03-31	 2005- 03-31	2006- 03-31	2007- 03-30	2008- 03-31	2009- 03-31	2010- 03-31	2011- 03- 31	2012- 03-30	2013- 03-28	
4	NaT				1984- 04-30						 2005- 04-29	2006- 04-28	2007- 04-30	2008- 04-30	2009- 04-30	2010- 04-30	2011- 04- 29		2013- 04-30	
5	NaT				1984- 05-31								2007- 05-31				2011- 05- 31	2012- 05-31	2013- 05-31	
6	NaT				1984- 06-29								2007- 06-29				2011- 06- 30	2012- 06-29	2013- 06-28	
7	NaT	1981- 07-31	1982- 07-30	1983- 07-29	1984- 07-31	1985- 07-31	1986- 07-31	1987- 07-31	1988- 07-29	1989- 07-31	 2005- 07-29	2006- 07-31	2007- 07-31	2008- 07-31	2009- 07-31	2010- 07-30	2011- 07- 29	2012- 07-31	2013- 07-31	
8	NaT				1984- 08-31								2007- 08-31				2011- 08- 31	2012- 08-31	2013- 08-30	
9	NaT	1981- 09-30	1982- 09-30	1983- 09-30	1984- 09-28	1985- 09-30	1986- 09-30	1987- 09-30	1988- 09-30	1989- 09-29			2007- 09-28				2011- 09- 30	2012- 09-28	2013- 09-30	N
10	NaT				1984- 10-31						 2005- 10-31	2006- 10-31	2007- 10-31	2008- 10-31	2009- 10-30	2010- 10-29	2011- 10- 31	2012- 10-31	2013- 10-31	N
11	NaT	1981- 11-30	1982- 11-30	1983- 11-30	1984- 11-30	1985- 11-29	1986- 11-28	1987- 11-30	1988- 11-30	1989- 11-30	 2005- 11-30	2006- 11-30	2007- 11-30	2008- 11-28	2009- 11-30	2010- 11-30	2011- 11-30	2012- 11-30	2013- 11-29	N

4

74. What is the difference in days between the first day and the oldest

```
In [153]: apple.Date_Col.max()-apple.Date_Col.min()
Out[153]: Timedelta('12261 days 00:00:00')
```

75. How many months in the data we have?

```
In [161]: timediff=apple.Date_Col.max()-apple.Date_Col.min()
timediff.days/30
```

Out[161]: 408.7

Section-8: The purpose of the below exercises is to understand how to create basic graphs

76. Plot the 'Adj Close' value. Set the size of the figure to 13.5 x 9 inches

```
In [174]: plt.hist(apple.Adj_Close)
    plt.figure(figsize=(13.5,9))
    plt.show()
```


<Figure size 972x648 with 0 Axes>

The below exercises (77-80) required to use Online_Retail.csv file

77. Import the dataset from this Online_Retail.csv and assign it to a variable called online_rt

Out[190]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	12/1/10 8:26	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	12/1/10 8:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	12/1/10 8:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	12/1/10 8:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	12/1/10 8:26	3.39	17850.0	United Kingdom
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	12/9/11 12:50	0.85	12680.0	France
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	12/9/11 12:50	2.10	12680.0	France
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	12/9/11 12:50	4.15	12680.0	France
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	12/9/11 12:50	4.15	12680.0	France
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	12/9/11 12:50	4.95	12680.0	France

541909 rows × 8 columns

78. Create a barchart with the 10 countries that have the most 'Quantity' ordered except UK

```
In [203]: plot_c=online_rt[online_rt.Country!='United Kingdom'].groupby('Country')['Quantity'].sum().\
    reset_index().sort_values(by='Quantity', ascending=False).head(10)

sns.barplot(x=plot_c.Quantity, y=plot_c.Country)
#plt.show()
```

Out[203]: <AxesSubplot:xlabel='Quantity', ylabel='Country'>

79. Exclude negative Quatity entries

```
In [208]: online_rt=online_rt[online_rt.Quantity>0]
```

80. Create a scatterplot with the Quantity per UnitPrice by CustomerID for the top 3 Countries

Hint: First we need to find top-3 countries based on revenue, then create scater plot between Quantity and Unitprice for each country separately

```
online rt['Revenue']=online rt.UnitPrice*online rt.Quantity
In [241]: top coun=online rt.groupby('Country')['Revenue'].sum().reset index().sort values(by='Revenue', ascending=False).head(3)
In [250]: top coun=pd.DataFrame(top coun)
          top coun
Out[250]:
                    Country
                                Revenue
           36 United Kingdom 9.003098e+06
           24
                  Netherlands 2.854463e+05
           10
                      EIRE 2.834540e+05
In [253]: |coun1=online rt[online rt.Country=='United Kingdom']
          coun2=online rt[online rt.Country=='Netherlands']
          coun3=online rt[online rt.Country=='EIRE']
In [271]:
          coun1=coun1[coun1.Revenue>0].sort values(by='UnitPrice')
          coun2=coun2[coun2.Revenue>0].sort values(by='UnitPrice')
          coun3=coun3[coun3.Revenue>0].sort values(by='UnitPrice')
```

In [265]: plt.scatter(coun1.UnitPrice, coun1.Quantity)

Out[265]: <matplotlib.collections.PathCollection at 0x21238f2afa0>

In [272]: plt.scatter(coun2.UnitPrice, coun2.Quantity)

Out[272]: <matplotlib.collections.PathCollection at 0x21234326280>

In [273]: plt.scatter(coun3.UnitPrice, coun3.Quantity)

Out[273]: <matplotlib.collections.PathCollection at 0x21234197c10>

The below exercises (81-90) required to use FMCG_Company_Data_2019.csv file

81. Import the dataset FMCG_Company_Data_2019.csv and assign it to a variable called company_data

Out[303]:

	Month	FaceCream	FaceWash	ToothPaste	Soap	Shampo	Moisturizer	Total_Units	Total_Revenue	Total_Profit
0	Jan-19	2500	1500	5200	9200	1200	1500	21100	3584890	211000
1	Feb-19	2630	1200	5100	6100	2100	1200	18330	2864979	183300
2	Mar-19	2140	1340	4550	9550	3550	1340	22470	4058082	224700
3	Apr-19	3400	1130	5870	8870	1870	1130	22270	2890646	222700
4	May-19	3600	1740	4560	7760	1560	1740	20960	2997280	209600
5	Jun-19	2760	1555	4890	7490	1890	1555	20140	2857866	201400
6	Jul-19	2980	1120	4780	8980	1780	1120	29550	5735655	295500
7	Aug-19	3700	1400	5860	9960	2860	1400	36140	5196932	361400
8	Sep-19	3540	1780	6100	8100	2100	1780	23400	3060720	234000
9	Oct-19	1990	1890	8300	10300	2300	1890	26670	4661916	266700
10	Nov-19	2340	2100	7300	13300	2400	2100	41280	6794688	412800
11	Dec-19	2900	1760	7400	14400	1800	1760	30020	3770512	300200

82. Create line chart for Total Revenue of all months with following properties

- X label name = Month
- Y label name = Total Revenue

```
In [304]: sns.lineplot(x=company_data.Month, y=company_data.Total_Revenue)
```

Out[304]: <AxesSubplot:xlabel='Month', ylabel='Total_Revenue'>

83. Create line chart for Total Units of all months with following properties

- X label name = Month
- Y label name = Total Units
- Line Style dotted and Line-color should be red
- Show legend at the lower right location.

```
In [312]: | sns.lineplot(x=company_data.Month, y=company_data.Total_Units,linestyle="dashed", color='red')
```

Out[312]: <AxesSubplot:xlabel='Month', ylabel='Total_Units'>

84. Read all product sales data (Facecream, FaceWash, Toothpaste, Soap, Shampo, Moisturizer) and show it using a multiline plot

• Display the number of units sold per month for each product using multiline plots. (i.e., Separate Plotline for each product).

```
In [315]: company_data[['FaceCream','FaceWash', 'ToothPaste', 'Soap', 'Shampo', 'Moisturizer']].plot()
```

Out[315]: <AxesSubplot:>

85. Create Bar Chart for soap of all months and Save the chart in folder

```
In [317]: sns.barplot(x=company_data.Month, y=company_data.Soap)
```

Out[317]: <AxesSubplot:xlabel='Month', ylabel='Soap'>

86. Create Stacked Bar Chart for Soap, Shampo, ToothPaste for each month

The bar chart should display the number of units sold per month for each product. Add a separate bar for each product in the same chart.

Out[332]: <AxesSubplot:>

87. Create Histogram for Total Revenue

```
In [20]: sns.histplot(company_data.Total_Revenue)
```

Out[20]: <AxesSubplot:xlabel='Total_Revenue', ylabel='Count'>

88. Calculate total sales data (quantity) for 2019 for each product and show it using a Pie chart. Understand percentage contribution from each product

```
In [346]: company_data[['FaceCream','FaceWash', 'ToothPaste', 'Soap', 'Shampo', 'Moisturizer']].sum().plot(kind='pie')
```

Out[346]: <AxesSubplot:ylabel='None'>


```
In [349]: pieplot=company_data[['FaceCream','FaceWash', 'ToothPaste', 'Soap', 'Shampo', 'Moisturizer']].sum()
plt.pie(pieplot, labels = pieplot.index, autopct = '%.1f%%')
plt.show()
```


89. Create line plots for Soap & Facewash of all months in a single plot using Subplot

```
In [333]: company_data[['FaceWash', 'Soap']].plot()
```

Out[333]: <AxesSubplot:>


```
In [343]: x=company_data.Month
    y=company_data.Soap
    plt.subplot(2,1,1)
    plt.plot(x,y)

    x=company_data.Month
    y=company_data.FaceWash
    plt.subplot(2,1,2)
    plt.plot(x,y)
    plt.show()
```


90. Create Box Plot for Total Profit variable

```
In [23]: sns.boxplot(y=company_data.Total_Profit)
```

Out[23]: <AxesSubplot:ylabel='Total_Profit'>

