Lab 1

Victoire Djuidje

```
In[624]:= Remove["Global`*"]
```

A damped harmonic oscillator moving in one dimension with a spring attached to it has mass m, stiffness k, and a linear damping force with velocity coefficient b.

Angular frequency (w) is defined below

In[625]:=
$$\mathbf{W} = \mathbf{Sqrt[w0^{(2)} - be^{(2)}]}$$

 $\mathbf{w0} = \mathbf{2Pi}$
Out[625]= $\sqrt{-be^2 + \mathbf{w0}^2}$
Out[626]= $\mathbf{2}\pi$

The position is given by x[t] where A and Q are initial conditions representative of x0 and v0.

Applying the given initial conditions into the original equation yields,

In[629]:=
$$x1 = x[t] /. \{A \rightarrow 5, Q \rightarrow 0, be \rightarrow 1\}$$

 $x2 = x[t] /. \{A \rightarrow 5, Q \rightarrow 0, be \rightarrow 0.1\}$
 $x3 = x[t] /. \{A \rightarrow 5, Q \rightarrow (Pi/2), be \rightarrow 0.1\}$
Out[629]= $5 e^{-t} Cos \left[\sqrt{-1 + 4 \pi^2} t \right]$
Out[630]= $5 e^{-0.1t} Cos [6.28239 t]$
Out[631]= $-5 e^{-0.1t} Sin [6.28239 t]$

The new equations with their IC can then be plotted as a function of position vs time. Graph 1 shows the first IC,

ln[632]:= Plot[{x1}, {t, 5, 12}, PlotLegends \rightarrow IC1, PlotStyle \rightarrow Automatic, PlotRange \rightarrow All]

This shows the second IC

 $\label{eq:loss_loss} $$ \operatorname{Plot}[\{x2\}, \ \{t, \ 5, \ 12\}, \ \operatorname{PlotLegends} \to \operatorname{IC2}, \ \operatorname{PlotStyle} \to \operatorname{Red}, \ \operatorname{PlotRange} \to \operatorname{All}] $$ $$ $$ $$$

In[634]:=

This shows the third IC

ln[635]:= Plot[{x3}, {t, 5, 12}, PlotLegends \rightarrow IC3, PlotStyle \rightarrow Black, PlotRange \rightarrow All]

This combines all three IC in one plot. Rate of decrease of IC1 is much significant than the other two.

 $\label{eq:loss_loss} $$ \inf[636]:=$ Plot[\{x1, x2, x3\}, \{t, 0, 12\}, PlotLegends \rightarrow \{IC1, IC2, IC3\}, $$ PlotStyle \rightarrow \{Automatic, Red, Black\}, PlotRange \rightarrow All] $$$

Testing for different IC. A will be altered while Q and beta stay the same

 $ln[637] = x4 = x[t] /. \{A \rightarrow 1, Q \rightarrow 0, be \rightarrow 1\}$

 $x5 = x[t] /. \{A \rightarrow 1, Q \rightarrow 0, be \rightarrow 0.1\}$

 $x6 = x[t] /. \{A \rightarrow 1, Q \rightarrow (Pi/2), be \rightarrow 0.1\}$

Out[637]= $e^{-t} \cos \left[\sqrt{-1 + 4 \pi^2} t \right]$

Out[638]= $e^{-0.1t}$ Cos [6.28239 t]

Out[639]= $-e^{-0.1t} \sin[6.28239t]$

 $log(640) = Plot[\{x4\}, \{t, 5, 12\}, PlotLegends \rightarrow IC4, PlotStyle \rightarrow Purple, PlotRange \rightarrow All]$

ln[641]= Plot[{x5}, {t, 5, 12}, PlotLegends \rightarrow IC5, PlotStyle \rightarrow Green, PlotRange \rightarrow All]

 $log(642) = Plot[\{x6\}, \{t, 5, 12\}, PlotLegends \rightarrow IC6, PlotStyle \rightarrow Yellow, PlotRange \rightarrow All]$

 $\label{eq:local_local_local_local_local} $$ \inf[43]=$ Plot[\{x4,\ x5,\ x6\},\ \{t,\ 0,\ 12\},\ PlotLegends \to \{IC4,\ IC5,\ IC6\}, $$ PlotStyle \to \{Purple,\ Green,\ Yellow\},\ PlotRange \to All]$$$

