Elemente de trigonometrie

Cercul trigonometric

Un unghi cu vârful în centrul unui cerc care subîntinde un arc de cerc de lungime egală cu raza cercului are măsura l radian. Unghiul cu vârful în centrul cercului de rază l, care subîntinde un arc de lungime l are măsura l radiani. Relația între măsura în radiani, t și măsura în grade a unghiurilor, α , este $\frac{t}{\pi} = \frac{\alpha}{180}$.

Considerăm un sistem de coordonate ortogonale în plan cu originea în O.

Un cerc de rază 1 cu centrul în origine pe care s-a stabilit un sens de parcurs (invers acelor ceasornicului), se numește *cerc trigonometric*. Prin convenție, numim *sens trigonometric* sau *pozitiv* sensul invers acelor de ceas.

Fie cercul trigonometric \mathscr{C} , fie A, B două puncte pe \mathscr{C} și $l \in \mathbb{R}$. Arcul orientat cu originea în A, extremitatea în B, de măsură l este "drumul" pe \mathscr{C} de lungime |l| care se parcurge de la A la B în sens pozitiv dacă l > 0 sau în sens negativ dacă l < 0. Notăm arcul orientat prin $\widehat{(AB}, l)$ sau \widehat{AB} , dacă măsura l este cunoscută.

Un număr $l \in (-\pi, \pi]$ se numește *măsură principală* a unui arc orientat de măsură x, dacă există $k \in \mathbb{Z}$ astfel încât $x = l + 2k\pi$.

Fie \mathscr{C} cercul trigonometric de centru O.

Numim $unghi\ orientat$ o pereche ordonată de semidrepte cu originea în O împreună cu un sens de rotație precizat. Spunem că unghiul este orientat pozitiv dacă sensul de rotație este cel trigonometric și este orientat negativ în caz contrar.

Măsura unui unghi orientat este măsura principală a arcului orientat în același sens, delimitat pe cercul trigonometric de laturile unghiului.

Două unghiuri orientate sunt congruente dacă au aceeași măsură.

Funcții trigonometrice

Într-un cerc trigonometric \mathscr{C} de centru O, fie $A(1, 0) \in \mathscr{C}$. Unui număr real t i se asociază un punct $M(\cos t, \sin t) \in \mathscr{C}$, care are măsura arcului orientat \widehat{AM} egală cu t.

Avem:
$$-1 \le \cos t \le 1$$
; $-1 \le \sin t \le 1$

Identitatea fundamentală a trigonometriei: $\sin^2 t + \cos^2 t = 1$.

Corespondența $t \mapsto \sin t$, definită pe \mathbb{R} cu valori în intervalul [-1, 1] se numește *funcția sinus*.

Funcția sinus are perioda principală
$$T = 2\pi$$
; sin $(t + 2\pi) = \sin t$, $\forall t \in \mathbb{R}$.

Sinus este o funcție impară: sin(-t) = -sint, $t \in \mathbb{R}$.

Corespondența $t\mapsto \cos t$, definită pe $\mathbb R$ cu valori în intervalul $[-1,\,1]$ se numește funcția cosinus.

Funcția cosinus are perioada principală $T=2\pi$; $\cos(t+2\pi)=\cos t$, $\forall t\in \mathbb{R}$. Cosinus este o funcție pară: $\cos(-t)=\cos t$, $t\in \mathbb{R}$.

Funcția t \mapsto tg *t* definită pe $\mathbb{R} \setminus \left\{ (2k+1) \frac{\pi}{2} \mid k \in \mathbb{Z} \right\}$ cu valori în \mathbb{R} , tg $t = \frac{\sin t}{\cos t}$, se numește *tangentă*.

Funcția tangentă este periodică, având perioada principală $T = \pi$.

Funcția tangentă este impară: tg(-t) = -tg t, $\forall t \neq (2k+1)\frac{\pi}{2}$, $k \in \mathbb{Z}$.

Funcția $t\mapsto \operatorname{ctg} t$ definită pe $\mathbb{R}\setminus \left\{k\pi\mid k\in\mathbb{Z}\right\}$ cu valori în \mathbb{R} , $\operatorname{ctg} t=\frac{\cos t}{\sin t}$, se numește *cotangentă*.

Funcția cotangentă este periodică, având perioada principală $T = \pi$.

Funcția cotangentă este impară: $ctg(-t) = -ctg \ t, \ \forall \ t \neq k\pi, \ k \in \mathbb{Z}$.

Reducerea la primul cadran

$$\sin(\pi + \alpha) = -\sin\alpha$$
; $\cos(\pi + \alpha) = -\cos\alpha$; $\sin(2\pi - \alpha) = -\sin\alpha$; $\cos(2\pi - \alpha) = -\cos\alpha$;

Identități trigonometrice:

 $\cos(a \pm b) = \cos a \cdot \cos b \mp \sin a \cdot \sin b$; $\sin(a \pm b) = \sin a \cdot \cos b \pm \sin b \cdot \cos a$;

$$\cos 2a = \cos^2 a - \sin^2 a$$
; $\sin 2a = 2\sin a \cdot \cos a$; $\cos^2 a = \frac{1 + \cos 2a}{2}$; $\sin^2 a = \frac{1 - \cos 2a}{2}$;

$$tg(a+b) = \frac{tg a + tg b}{1 - tg a \cdot tg b}; \quad tg(a-b) = \frac{tg a - tg b}{1 + tg a \cdot tg b};$$

$$tg 2a = \frac{2tg a}{1 - tg^2 a}; \qquad \sin t = \frac{2tg \frac{t}{2}}{1 + tg^2 \frac{t}{2}}; \qquad \cos t = \frac{1 - tg^2 \frac{t}{2}}{1 + tg^2 \frac{t}{2}}; \qquad tg t = \frac{2tg \frac{t}{2}}{1 - tg^2 \frac{t}{2}}.$$

Formulele de transformare a unei sume sau diferențe în produs sunt:

$$\sin a + \sin b = 2\sin\frac{a+b}{2} \cdot \cos\frac{a-b}{2}; \quad \sin a - \sin b = 2\sin\frac{a-b}{2} \cdot \cos\frac{a+b}{2};$$

$$\cos a + \cos b = 2\cos\frac{a+b}{2} \cdot \cos\frac{a-b}{2}; \quad \cos a - \cos b = -2\sin\frac{a+b}{2} \cdot \sin\frac{a-b}{2}.$$

Ecuații trigonometrice

Ecuațiile $\sin t = a$; $\cos t = a$; $\tan t = m$ se numesc *ecuații trigonometrice fundamentale*. Se vor rezolva numai ecuații trigonometrice a căror soluție se obține folosind valorile principale ale funcțiilor trigonometrice și reducerea la primul cadran pe cercul trigonometric.

Relații metrice în triunghiul oarecare

Considerăm $\triangle ABC$ cu laturile a, b, c și h_a înălțimea coborâtă din vârful A pe latura BC.

Teorema sinusurilor: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$, R fiind raza cercului circumscris $\triangle ABC$.

Teorema cosinusului: $a^2 = b^2 + c^2 - 2bc \cdot \cos A$.

Formula lui Heron. Notăm $p = \frac{a+b+c}{2}$. Aria $\triangle ABC$ este $S = \sqrt{p(p-a)(p-b)(p-c)}$.

Aria $\triangle ABC$ este $S = \frac{a \cdot h_a}{2} = \frac{ab \cdot \sin C}{2} = \frac{abc}{4R} = rp$, unde r este raza cercului înscris.

$$\sin\frac{A}{2} = \sqrt{\frac{(p-b)(p-c)}{bc}} , \quad \cos\frac{A}{2} = \sqrt{\frac{p(p-a)}{bc}} .$$