

Lecture 4 - Model Selection - Bias Variance Decomposition - Gaussian Posteriors -Sequential Bayesian Learning - Bayesian Predictive Distributions

Erik Bekkers

Lecture 3.5 - Supervised Learning

Regularized Least Squares

Erik Bekkers

(Bishop 3.1.4)

Slide credits: Patrick Forré and Rianne van den Berg

Example: Overfitting and Underfitting

Figure: Fits of different polynomials (Bishop 1.4)

Example: Overfitting (M=9)

	M = 0	M = 1	M = 3	M = 9
$\overline{w_0^{\star}}$	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
$\bar{w_3^{\star}}$			17.37	48568.31
w_4^\star				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^\star				1042400.18
w_8^\star				-557682.99
$\overset{\circ}{w_9^\star}$				125201.43

Table: Polynomial coefficients (Bishop 1.1)

Regularized Least Squares

Instead of manually constraining the number of parameters for small datasets, add penalty term for large parameter values:

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} \{t_i - y(\mathbf{x}_i, \mathbf{w})\}^2 + \frac{\lambda}{2} \sum_{i=1}^{M} W_i^2$$

$$- Ridge regression$$

$$- L_2 regularization$$

$$- weight decay$$

The bias term w_0 is often not included in regularization

Parameter estimates with Gaussians

Given Likelihood/Data model:

$$p(t | x, \mathbf{w}, \beta) = \mathcal{N}(t | y(x, \mathbf{w}), \beta^{-1})$$

The ML parameter estimate is obtained via least squares:

$$\mathbf{w}_{ML} = \underset{\mathbf{w}}{\operatorname{argmin}} \frac{\beta}{2} \sum_{i=1}^{N} (y(x_i, \mathbf{w}) - t_i)^2$$

Additionally, given Gaussian weight Prior:

When
$$\lambda = \frac{8}{\beta}$$
- Ridge

$$p(\mathbf{w} \mid \alpha) = \prod_{i=1}^{M} \mathcal{N}(w_i \mid 0, \alpha^{-1})$$

The MAP parameter estimate is obtained via regularized least squares:

Example: Regularized Polynomial Regression

Figure: Regularized polynomial regression (Bishop 1.7)

Example: Regularized Polynomial Regression

Figure: train and test errors for regularized M=9 polynomial regression (Bishop 1.8)

Regularized Least Squares (II)

• Weight decay:
$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} \{t_i - \mathbf{w}^T \phi(\mathbf{x}_i)\}^2 + \frac{\lambda}{2} \sum_{i=1}^{M-1} |w_i|^2$$

General penalty:

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} \left\{ t_i - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i) \right\}^2 + \frac{\lambda}{2} \sum_{i=1}^{M-1} |w_i|^q$$

• Case q = 1: Lasso + $\frac{\lambda}{2}$ $\lesssim |w_i|$ - Sparsification

Figure: regularization as constrained optimization (Bishop 3.4)

Equivalent to some constraint optimization problem (Bishop App. E)

minimize
$$\frac{1}{2} \sum_{i=1}^{N} \{t_i - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i)\}^2 \quad \text{subject to constraint} \quad \sum_{i=1}^{M} |w_i|^q \leq \eta$$

Regularized Least Squares: sparse weights

Figure: regularization as constrained optimization (Bishop 3.4)

Example: Prostate specific antigen predediction

q=2 (Ridge regression)

Coefficients gleason lcp 0 2 6 8 $df(\lambda)$

FIGURE 3.8. Profiles of ridge coefficients for the prostate cancer example, as the tuning parameter λ is varied. Coefficients are plotted versus $df(\lambda)$, the effective degrees of freedom. A vertical line is drawn at df = 5.0, the value chosen by cross-validation.

q=1 (Lasso regression)

FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter t is varied. Coefficients are plotted versus $s = t/\sum_{1}^{p} |\hat{\beta}_{j}|$. A vertical line is drawn at s = 0.36, the value chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso profiles hit zero, while those for ridge do not. The profiles are piece-wise linear, and so are computed only at the points displayed; see Section 3.4.4 for details.

Figures from the Elements of Statistical Learning (ESL - Hastie et al.)

Lecture 4.1 - Supervised Learning

Model Selection

Erik Bekkers

(Bishop 1.3)

Slide credits: Patrick Forré and Rianne van den Berg

Supervised Learning: Evaluating Errors

Q: How can we reliably estimate the model performance properly for unknown data?

Q: How can we choose the optimal hyperparameters?

Model selection | Dataset splits

Divide data $D = \{(\mathbf{x}_1, t_1), \dots, (\mathbf{x}_N, t_N)\}$ in 3 groups:

- Training set D_{train} (± 600 % of D):

 - Minimize the error $E(y(\mathbf{x},\mathbf{w}),t)$ obtain where $E(y(\mathbf{x},\mathbf{w}),t)$ so thain where $E(y(\mathbf{x},t) \in D_{\text{train}})$ so the performance of $E(y(\mathbf{x},\mathbf{w}),t)$ and $E(y(\mathbf{x},\mathbf{w}),t)$ so the performance of $E(y(\mathbf{x},\mathbf{w}),t)$ and $E(y(\mathbf{x},\mathbf{w}),t)$ so the performance of $E(y(\mathbf{x},\mathbf{w}),t)$ and $E(y(\mathbf{x},\mathbf{w}),t)$ an

- - for every $(\mathbf{x}_{\text{val}}, t_{\text{val}}) \in D_{\text{val}}$

- $(\pm \sqrt{9} \% \text{ of } D)$: ullet Test set D_{test}
 - final test/generalization error estimate $E(y(\mathbf{x}_{test}, \mathbf{w}^*), t_{test})$ for every $(\mathbf{x}_{\text{test}}, t_{\text{test}}) \in D_{\text{test}}$

cannot be used for model soloction

Supervised Learning: Small Datasets

- Small dataset small validation and test set
- Noisy model selection and estimate of generalization error
- Cross-validation:
 - Split data $D = \{(\mathbf{x}_1, t_1), ..., (\mathbf{x}_N, t_N)\}$ in to K folds
 - Train model y on K-1 folds (fold k left out) \hat{y}^{-k}

Figure: K-fold splitting of dataset (ESL 7.10)

Leave-one-out cross validation: K = N

Cross-Validation

- K trained functions \hat{y}^{-k}
- ▶ Use indexing function κ : $\{1,...,N\}$ \rightarrow $\{1,...,K\}$
- Cross validation error:

$$CV(\hat{y}) = \frac{1}{N} \sum_{i=1}^{N} E(\hat{y}^{-\kappa(i)}(\mathbf{x}_i), t) \qquad \qquad y^{-1}$$

$$model \quad Se \quad \text{find} \quad \qquad y^{-3}$$

$$y^{-3}$$

$$y^{-4}$$

$$y^{-5}$$

Cross-Validation: Model Selection

Hyperparameter selection:

$$CV(\hat{y}_{\alpha}) = \frac{1}{N} \sum_{i=1}^{N} E(\hat{y}_{\alpha}^{-\kappa(i)}(\mathbf{x}_{i}), t)$$

$$\alpha^{*} = \arg\max_{\lambda} CV(\hat{y}_{\lambda})$$

$$\alpha^* = \arg\max_{\lambda} (V(\lambda))$$

- Multiple hyperparameters: $\beta \in \{\beta_1, \beta_2\}$, $\gamma \in (\gamma_1, \gamma_2, \gamma_3)$
 - How many times should CV be performed?

Total number of training runs?

Cross-Validation: Test Error Estimation

After Model selection we obtain some

$$\alpha^*, \beta^*$$
use easemble method

- Retrain y on all train data with α^*, β^*
- Evaluate model on held-out test set

Nested cross validation!

Nested Cross-Validation

Figure: Nested cross-validation https://mlr-org.github.io/mlr-tutorial/devel/html/nested_resampling/index.html (site is offline unfortunately)

Lecture 4.2 - Supervised Learning

Bias Variance Decomposition

Erik Bekkers

(Bishop 1.5.5, 3.2)

Why do models make errors? What kind of errors can we expect?

- Consider dataset of observations $(\mathbf{x}, t) \sim p(\mathbf{x}, t)$ and a model $y(\mathbf{x})$
- The model makes errors (regression loss function):

$$L(t, y(\mathbf{x})) = (t - y(\mathbf{x}))^2$$

• Every time we make an observation of random variables (\mathbf{x}, t) we make a different error. We now consider the expected loss:

$$\mathbb{E}_{(\mathbf{x},t)\sim p(\mathbf{x},t)}[L(t,y(\mathbf{x}))] = \iint \left(\frac{1}{t} - \frac{1}{t} \right)^2 \rho(x,t) \, dx \, dt$$

• The best model y we can possibly have (Bishop 1.5.5):

Regression
$$y(\mathbf{x}) = |E[+|x]|$$

Example: $t = \sin 2\pi x + \epsilon$, with $\epsilon \sim \mathcal{N}(0, \beta^{-1})$

Consider the expected loss:

$$\mathbb{E}[L] = \iint (y(\mathbf{x}) - t)^2 p(\mathbf{x}, t) dt d\mathbf{x}$$

Let's analyze it relative to the regression function $\mathbb{E}[t \mid \mathbf{x}] := \mathbb{E}_{t \sim p(t \mid \mathbf{x})}[t \mid \mathbf{x}]$:

$$\mathbb{E}[L] = \iint (y(\mathbf{x}) - \mathbb{E}[t \mid \mathbf{x}] + \mathbb{E}[t \mid \mathbf{x}] - t)^2 p(\mathbf{x}, t) dt d\mathbf{x}$$

Consider the expected loss:

$$\mathbb{E}[L] = \iint (y(\mathbf{x}) - t)^2 p(\mathbf{x}, t) dt d\mathbf{x}$$

Let's analyze it relative to the regression function
$$\mathbb{E}[t\,|\,\mathbf{x}] := \mathbb{E}_{t\sim p(t|\mathbf{x})}[t\,|\,\mathbf{x}]$$
:
$$\mathbb{E}[L] = \int \int (y(\mathbf{x}) - \mathbb{E}[t\,|\,\mathbf{x}] + \mathbb{E}[t\,|\,\mathbf{x}] - t)^2 p(\mathbf{x},t) \mathrm{d}t \mathrm{d}\mathbf{x}$$

• Write out the square $((a+b)^2 = a^2 + 2ab + b^2)$ and use product rule $(p(\mathbf{x},t) = p(t \mid \mathbf{x})p(\mathbf{x}))$

$$\mathbb{E}[L] = \iint (y(\mathbf{x}) - \mathbb{E}[t \mid \mathbf{x}])^2 \ p(t \mid \mathbf{x}) dt \ p(\mathbf{x}) d\mathbf{x}$$

$$+ 2 \iint (y(\mathbf{x}) - \mathbb{E}[t \mid \mathbf{x}]) (\mathbb{E}[t \mid \mathbf{x}] - t) \ p(t \mid \mathbf{x}) dt \ p(\mathbf{x}) d\mathbf{x} = 0$$

$$+ \iint (\mathbb{E}[t \mid \mathbf{x}] - t)^2 \ p(t \mid \mathbf{x}) dt \ p(\mathbf{x}) d\mathbf{x}$$

$$+ \iint (\mathbb{E}[t \mid \mathbf{x}] - t)^2 \ p(t \mid \mathbf{x}) dt \ p(\mathbf{x}) d\mathbf{x}$$

Consider the expected loss:

$$\mathbb{E}[L] = \iint (y(\mathbf{x}) - t)^2 p(\mathbf{x}, t) dt d\mathbf{x}$$

Let's analyze it relative to the regression function $\mathbb{E}[t \mid \mathbf{x}] := \mathbb{E}_{t \sim p(t \mid \mathbf{x})}[t \mid \mathbf{x}]$:

$$\mathbb{E}[L] = \iint (y(\mathbf{x}) - \mathbb{E}[t \,|\, \mathbf{x}] + \mathbb{E}[t \,|\, \mathbf{x}] - t)^2 p(\mathbf{x}, t) dt d\mathbf{x}$$

• Write out the square $((a+b)^2 = a^2 + 2ab + b^2)$ and use product rule $(p(\mathbf{x},t) = p(t \mid \mathbf{x})p(\mathbf{x}))$

$$\mathbb{E}[L] = \iint (y(\mathbf{x}) - \mathbb{E}[t \,|\, \mathbf{x}])^2 \ p(t \,|\, \mathbf{x}) dt \ p(\mathbf{x}) d\mathbf{x} + \iiint (\mathbb{E}[t \,|\, \mathbf{x}] - t)^2 \ p(t \,|\, \mathbf{x}) dt \ p(\mathbf{x}) d\mathbf{x}$$

Thus the expected loss can be decomposed in two terms

$$\mathbb{E}[L] = \int (y(\mathbf{x}) - \mathbb{E}[t \,|\, \mathbf{x}])^2 \ p(\mathbf{x}) d\mathbf{x} + \int \text{var}[t \,|\, \mathbf{x}] \ p(\mathbf{x}) d\mathbf{x}$$

Summary so far...

Any model y will make errors, this expected loss decomposes into

$$\mathbb{E}_{(\mathbf{x},t)\sim p(\mathbf{x},t)}[L(t,y(\mathbf{x})] = \int (y(\mathbf{x}) - \mathbb{E}[t\,|\,\mathbf{x}])^2 \, p(\mathbf{x}) \mathrm{d}\mathbf{x} + \int \text{var}[t\,|\,\mathbf{x}] \, p(\mathbf{x}) \mathrm{d}\mathbf{x}$$

$$\text{Sub-optimal wave}$$

$$\text{intrinsic}$$

The best possible model is the regression function $y(\mathbf{x}) = \mathbb{E}[t \mid \mathbf{x}]$ $y(\mathbf{x}) = \mathbf{x} \cdot \mathbf{x$

$$D_{1} = \{ (x_{1}, t_{1}), \dots (x_{n}, t_{n}) \} \rightarrow Y_{0}$$

$$D_{2} = \{ (x_{1}, t_{1}), \dots \} \rightarrow Y_{0}$$

- In practice we approximate it with fits $y_D = \underset{y}{\operatorname{argmin}} \sum_{(\mathbf{x},t) \in D} L(t,y(\mathbf{x}))$
- What can we say about the expected loss of y_D ?

Let's analyze performance of a learning algorithm by averaging the expected loss over learned y_D for different datasets D

$$\mathbb{E}_{D}[\mathbb{E}[L]] = \int \mathbb{E}_{D}[(\mathbf{y}_{D}(\mathbf{x}) - \mathbb{E}[t \,|\, \mathbf{x}])^{2}] p(\mathbf{x}) d\mathbf{x} + \int var[t \,|\, \mathbf{x}] p(\mathbf{x}) d\mathbf{x}$$

Let's analyze performance of a learning algorithm by averaging the expected loss over learned y_D for different datasets D

$$\mathbb{E}_{D}[\mathbb{E}[L]] = \int \mathbb{E}_{D}[(\mathbf{y}_{D}(\mathbf{x}) - \mathbb{E}[t \,|\, \mathbf{x}])^{2}] p(\mathbf{x}) d\mathbf{x} + \int var[t \,|\, \mathbf{x}] p(\mathbf{x}) d\mathbf{x}$$

• Analyze it relative to the average model $\mathbb{E}_D[y_D(\mathbf{x})]$

$$\mathbb{E}_D[(y_D(\mathbf{x}) - \mathbb{E}[t \mid \mathbf{x}])^2] = \mathbb{E}_D[(y_D(\mathbf{x}) - \mathbb{E}_D[y_D(\mathbf{x})] + \mathbb{E}_D[y_D(\mathbf{x})] - \mathbb{E}[t \mid \mathbf{x}])^2]$$

Let's analyze performance of a learning algorithm by averaging the expected loss over learned y_D for different datasets D

$$\mathbb{E}_{D}[\mathbb{E}[L]] = \int \mathbb{E}_{D}[(\mathbf{y}_{D}(\mathbf{x}) - \mathbb{E}[t \,|\, \mathbf{x}])^{2}] p(\mathbf{x}) d\mathbf{x} + \int var[t \,|\, \mathbf{x}] p(\mathbf{x}) d\mathbf{x}$$

• Analyze it relative to the average model $\mathbb{E}_D[y_D(\mathbf{x})]$

$$\begin{split} \mathbb{E}_D[(y_D(\mathbf{x}) - \mathbb{E}[t \,|\, \mathbf{x}])^2] &= \mathbb{E}_D[(y_D(\mathbf{x}) - \mathbb{E}_D[y_D(\mathbf{x})] + \mathbb{E}_D[y_D(\mathbf{x})] - \mathbb{E}[t \,|\, \mathbf{x}])^2] \\ &= \mathbb{E}_D[(y_D(\mathbf{x}) - \mathbb{E}_D[y_D(\mathbf{x})])^2] + \mathbb{E}_D[(\mathbb{E}_D[y_D(\mathbf{x})] - \mathbb{E}[t \,|\, \mathbf{x}])^2] \\ &+ 2 \, \mathbb{E}_D[(y_D(\mathbf{x}) - \mathbb{E}[y_D(\mathbf{x})]) (\mathbb{E}_D[y_D(\mathbf{x})] - \mathbb{E}[t \,|\, \mathbf{x}])] \end{split}$$

Let's analyze performance of a learning algorithm by averaging the expected loss over learned y_D for different datasets D

$$\mathbb{E}_{D}[\mathbb{E}[L]] = \int \mathbb{E}_{D}[(\mathbf{y}_{D}(\mathbf{x}) - \mathbb{E}[t \,|\, \mathbf{x}])^{2}] p(\mathbf{x}) d\mathbf{x} + \int var[t \,|\, \mathbf{x}] p(\mathbf{x}) d\mathbf{x}$$

• Analyze it relative to the average model $\mathbb{E}_{D}[y_{D}(\mathbf{x})]$

$$\begin{split} \mathbb{E}_D[(y_D(\mathbf{x}) - \mathbb{E}[t \,|\, \mathbf{x}])^2] &= \mathbb{E}_D[(y_D(\mathbf{x}) - \mathbb{E}_D[y_D(\mathbf{x})] + \mathbb{E}_D[y_D(\mathbf{x})] - \mathbb{E}[t \,|\, \mathbf{x}])^2] \\ &= \mathbb{E}_D[(y_D(\mathbf{x}) - \mathbb{E}_D[y_D(\mathbf{x})])^2] + \mathbb{E}_D[(\mathbb{E}_D[y_D(\mathbf{x})] - \mathbb{E}[t \,|\, \mathbf{x}])^2] \\ &- 2 \, \mathbb{E}_D[(y_D(\mathbf{x}) - \mathbb{E}_D[y_D(\mathbf{x})]) (\mathbb{E}_D[y_D(\mathbf{x})] - \mathbb{E}[t \,|\, \mathbf{x}])] \end{split}$$

(Compute expectation, rewrite) $\begin{aligned} &\text{Variance} \\ &= \mathbb{E}_D[(y_D(\mathbf{x}) - \mathbb{E}_D[y_D(\mathbf{x})])^2] + (\mathbb{E}_D[y_D(\mathbf{x})] - \mathbb{E}[t \mid \mathbf{x}])^2 \end{aligned}$

Bias-Variance Decomposition

- What can we say about the expected loss of y_D ?
- On average (over datasets D) our model y_D will make three types of errors:

$$\mathbb{E}_{D}[\mathbb{E}[L]] = \int \mathbb{E}_{D}[(y_{D}(\mathbf{x}) - \mathbb{E}_{D}[y_{D}(\mathbf{x})])^{2}] p(\mathbf{x}) d\mathbf{x} \qquad \text{Variance}$$

$$+ \int (\mathbb{E}_{D}[y_{D}(\mathbf{x})] - \mathbb{E}[t \mid \mathbf{x}])^{2} p(\mathbf{x}) d\mathbf{x} \qquad \text{Bias}^{2}$$

$$+ \int \text{var}[t \mid \mathbf{x}] p(\mathbf{x}) d\mathbf{x} \qquad \text{Noise}$$

Bias-Variance Decomposition: Example

- Generate L = 100 datasets of N = 50 points:
 - $x \sim U(0,1)$
 - $t = \sin(2\pi x) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \alpha^{-1})$
 - $\mathbf{E}[t|x] = \sin\left(2\pi X\right)$
- Parametrize y with 24 Gaussian basis functions t. The L=100 datasets each gives a model
 - $\mathbf{y}^{(l)}(\mathbf{x}) = (\mathbf{w}^{(l)})^T \boldsymbol{\phi}(\mathbf{x})$
- That minimizes:

$$E_D = \frac{1}{2} \sum_{i=1}^{N} \{t_n - \mathbf{w}^T \phi(x)\}^2 + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$$

Let $\overline{y}(x) = \mathbb{E}_D[y_D(x)]$ the average function

Figure: bias-variance decomposition (Bishop 3.5)

Bias-Variance Decomposition

- What can we say about the expected loss of y_D ?
- On average (over datasets D) our model y_D will make three types of errors:

$$\mathbb{E}_D[\mathbb{E}[L]] = \int \mathbb{E}_D[(y_D(x) - \mathbb{E}_D[y_D(x)])^2] \ p(x) \mathrm{d}x \qquad \text{Variance}$$

$$+ \int (\mathbb{E}_D[y_D(x)] - \mathbb{E}[t \,|\, x])^2 \ p(x) \mathrm{d}x \qquad \text{Bias}^2$$

$$+ \left[\mathrm{var}[t \,|\, x] \ p(x) \mathrm{d}x \right] \qquad \text{Noise}$$

Bias-Variance Decomposition

- What can we say about the expected loss of y_D ?
- On average (over datasets D) our model y_D will make three types of errors:

$$\mathbb{E}_{D}[\mathbb{E}[L]] \approx \frac{1}{N} \sum_{n=1}^{N} \frac{1}{L} \sum_{l=1}^{L} \left(y^{(l)}(x_n) - \overline{y}(\mathbf{x}_n) \right)^2]$$
 Variance

$$+\frac{1}{N}\sum_{i=1}^{N}\overline{y}(x_n)-\sin 2\pi x_n)^2$$
 Bias ²

Bias-Variance Decomposition: Example

Figure: bias-variance decomposition (Bishop 3.6)

Bias-Variance Decomposition

- In practice we don't want to split our dataset into L datasets to determine the best model complexity (best value of λ)
- Better to keep large dataset
 - Less overfitting.
 - Different optimal model complexity!
- Model averaging? Bayesian regression!

Lecture 4.3 - Supervised Learning
Bayesian Linear Regression - Gaussian
Posteriors

Erik Bekkers

(Bishop 3.3.1 (and 2.3.3)

- Regression problem with:
 - Data: $\mathbf{X} = (\mathbf{x}_1, ... \mathbf{x}_N)^T$, $\mathbf{t} = (t_1, ..., t_N)^T$
 - Predictive distribution $p(t'|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t'|\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}'), \beta^{-1})$

- Probabilistic model with Gaussians:
 - Likelihood: $p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n \mid \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}) = \mathcal{N}(\mathbf{t} \mid \mathbf{W}^$
 - Conjugate prior: $p(\mathbf{w}) = \mathcal{N}(\mathbf{w} \mid \mathbf{m}_0, \mathbf{S}_0)$
 - $p(\mathbf{w} \mid \mathbf{t}, \mathbf{X}) = \frac{p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \beta)p(\mathbf{w})}{p(\mathbf{t} \mid \mathbf{X}, \beta)} = \mathcal{N}(\mathbf{w} \mid \mathbf{x}, \mathbf{x})$ Posterior:
- Maximum A Posteriori estimate:
 - $\mathbf{w}_{\mathrm{MAP}} =$

Bishop Ch 2.3, Eq. 2.116 $\mathbf{S}_N^{-1} = \mathbf{S}_0^{-1} + \beta \mathbf{\Phi}^T \mathbf{\Phi}$ $\mathbf{m}_N = \mathbf{S}_N (\mathbf{S}_0^{-1} \mathbf{m}_0 + \beta \mathbf{\Phi}^T \mathbf{t})$

Special simple prior:

•
$$p(\mathbf{w} \mid \alpha) = \mathcal{N}(\mathbf{w} \mid \mathbf{0}, \alpha^{-1}\mathbf{I})$$
 $(\mathbf{m}_0 = \mathbf{0} \text{ and } \mathbf{S}_0 = \alpha^{-1}\mathbf{I})$

Posterior

$$p(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \alpha, \beta) = \mathcal{N}(\mathbf{w} \mid \mathbf{m}_N, \mathbf{S}_N)$$

With
$$\mathbf{m}_{N} = \mathbf{S}_{N}(\mathbf{S}_{0}^{-1}\mathbf{m}_{0}^{0} + \beta\mathbf{\Phi}^{T}\mathbf{t}) = \beta S_{N} \mathbf{D}^{T}\mathbf{D}^{$$

Limiting cases of the posterior

$$p(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \alpha, \beta) = \mathcal{N}(\mathbf{w} \mid \mathbf{m}_N, \mathbf{S}_N) \qquad \text{with} \quad \mathbf{m}_N = \beta \mathbf{S}_N \mathbf{\Phi}^T \mathbf{t}$$

$$\mathbf{S}_N^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^T \mathbf{\Phi}$$

Infinitely broad prior $(p(\mathbf{w} \mid \alpha) = \mathcal{N}(\mathbf{w} \mid \mathbf{0}, \alpha^{-1}\mathbf{I}), \alpha \to 0)$:

(No restriction/assumption on \mathbf{w})

restriction/assumption on
$$\mathbf{w}$$
)
$$\lim_{\alpha \to 0} \mathbf{m}_N = \lim_{\alpha \to 0} \beta \left(\mathbf{v} \mathbf{t} + \beta \mathbf{\Phi}^T \mathbf{\Phi} \right)^{-1} \mathbf{\Phi}^T \mathbf{t} = \left(\mathbf{v}^T \mathbf{v} \right)^{-1} \mathbf{v}^T \mathbf{t} = \mathbf{w}_{\mathbf{w}}$$

• Infinitely narrow prior $(\alpha \to \infty)$:

$$\lim_{\alpha \to \infty} \mathbf{m}_N = \lim_{\alpha \to \infty} \beta (\alpha \mathbf{I} + \beta \mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{t} \quad = \dots \quad = \quad \underbrace{\mathbb{M} \, \mathbf{0}}_{\mathbf{0}}$$

$$\lim_{\alpha \to \infty} \mathbf{S}_N = \lim_{\alpha \to \infty} (\alpha \mathbf{I} + \beta \mathbf{\Phi}^T \mathbf{\Phi})^{-1} = 0 \quad \left(\begin{array}{c} \frac{\partial}{\partial \mathbf{e}} \mathbf{r} \mathbf{g} \\ \text{watrix} \end{array} \right)$$

Lecture 4.4 - Supervised Learning Bayesian Linear Regression - Sequential

Bayesian Learning

Erik Bekkers

(Bishop 3.3.1)

Slide credits: Patrick Forré and Rianne van den Berg

Image credit: Kirillm | Getty Images

- lacktriangle Data come in as a sequences of observations of input x, target t
- Synthetic data generated by

$$x \sim \mathcal{U}(x|-1,1)$$

$$t = f(x, \mathbf{a}) + \epsilon, \qquad \epsilon \sim \mathcal{N}(0, 0.2^2)$$

•
$$f(x, \mathbf{a}) = a_0 + a_1 x$$
, $a_0 = -0.3$, $a_1 = 0.5$

• Target distribution:
$$p(t'|x', \mathbf{w}, \beta) = \mathcal{N}(t'|y(x', \mathbf{w}), \beta^{-1}), \qquad \beta^{-1} = 0.2$$

Linear model:
$$y(x, \mathbf{w}) = w_0 + w_1 x$$

Prior:
$$p(\mathbf{w} \mid \alpha) = \mathcal{N}(\mathbf{w} \mid \mathbf{0}, \alpha^{-1}\mathbf{I}), \qquad \alpha = 2$$

Sequential Bayesian Learning: Posterior after N-1 observations is prior for arrival of N^{th} datapoint!

Data generated by

$$t = -0.3 + 0.5x + \epsilon$$

Prior

$$p(\mathbf{w} \mid \alpha) = \mathcal{N}(\mathbf{w} \mid \mathbf{0}, \alpha^{-1}\mathbf{I})$$

Sample 1 datapoint

Likelihood

$$p(t_1 | x_1, \mathbf{w}, \beta) = W(t_1 | \mathbf{w}_0 + \mathbf{w}_1 \times_{\beta})$$

likelihood

prior/posterior

data space

Figure: Sequential Bayesian learning (Bishop 3.7)

$$p(\mathbf{w}|x_1,t_1,\alpha,\beta) \propto P(\uparrow | X, \underline{w}, \beta), P(\underline{w}| \propto)$$

likelihood prior/posterior data space Sample 2nd data point Posterior w_0 1 Likelihood w_0 1 $p(t_2 | x_2, \mathbf{w}, \beta)$ P(W|(x1,+1),(x2,+1),B)= = p(t, 1...), p(t2/...), p/w/d)°

Posterior $\rho(t_1|x) \cdot \rho(t_2|x)$ -1 0 w_0 1 -1 0 w_0

 $p(\mathbf{w} | (x_1, t_1), (x_2, t_2), \alpha, \beta) \propto p(t_2 | x_2, \mathbf{w}, \beta) p(\mathbf{w} | (x_1, t_1), \alpha, \beta)$

After 19 data ponts

Prior

$$p(\mathbf{w} | \{(x_n, t_n)\}_{n=1}^{19}, \alpha, \beta)$$

Likelihood

$$p(t_{20} | x_{20}, \mathbf{w}, \beta)$$

Posterior

$$p(\mathbf{w} | \{(x_n, t_n)\}_{n=1}^{20}, \alpha, \beta) \propto p(t_{20} | x_{20}, \mathbf{w}, \beta) p(\mathbf{w} | \{(x_n, t_n)\}_{n=1}^{19}, \alpha, \beta)$$

Figure: Sequential Bayesian learning (Bishop 3.7)

Limiting cases of the posterior

$$p(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \alpha, \beta) = \mathcal{N}(\mathbf{w} \mid \mathbf{m}_N, \mathbf{S}_N) \qquad \text{with} \quad \mathbf{m}_N = \beta \mathbf{S}_N \mathbf{\Phi}^T \mathbf{t}$$

$$\mathbf{S}_N^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^T \mathbf{\Phi}$$

• After infinite amount of data $(N \to \infty)$:

$$\lim_{N\to\infty} \left[\mathbf{\Phi}^T \mathbf{\Phi}\right]_{ij} = \lim_{N\to\infty} \sum_{n=1}^N \phi_i(\mathbf{x}_n) \phi_j(\mathbf{x}_n)$$

$$\lim_{N\to\infty} \mathbf{S}_N =$$

$$\lim_{N\to\infty} \mathbf{m}_N = \lim_{N\to\infty} \beta (\alpha \mathbf{I} + \beta \mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{t}$$

Lecture 4.5 - Supervised Learning
Bayesian Linear Regression - Predictive

Distribution

Erik Bekkers

(Bishop 3.3.2)

Slide credits: Patrick Forré and Rianne van den Berg

Predictive Distribution

- Observed dataset with inputs $\mathbf{X} = (\mathbf{x}_1, ..., \mathbf{x}_N)^T$ and targets $\mathbf{t} = (t_1, ..., t_N)^T$
- Gaussian Posterior distribution (from Gaussian prior and Gaussian likelihood)

$$p(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \alpha, \beta) = \mathcal{N}(\mathbf{w} \mid \mathbf{m}_N, \mathbf{S}_N) \qquad \text{with} \quad \mathbf{m}_N = \beta \, \mathbf{S}_N \, \mathbf{\Phi}^T \, \mathbf{t}$$

$$\mathbf{S}_N^{-1} = \alpha \, \mathbf{I} + \beta \mathbf{\Phi}^T \mathbf{\Phi}$$

Parametrized Gaussian predictive distribution:

•
$$p(t'|\mathbf{x}', \mathbf{w}, \beta) = \mathcal{N}(t|\boldsymbol{\phi}(\mathbf{x}')^T\mathbf{w}, \beta^{-1})$$

Gaussian Bayesian predictive distribution for new input

,
$$p(t'|\mathbf{x}', \mathbf{X}, \mathbf{t}, \alpha, \beta) = \int \mathcal{N}(t'|\boldsymbol{\phi}(\mathbf{x}')^T \mathbf{w}, \beta^{-1}) \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N) d\mathbf{w}$$

$$= \mathcal{N}(t'|\mathbf{x}', \boldsymbol{\phi}(\mathbf{x}')^T \mathbf{m}_N, \sigma_N^2(\mathbf{x}'))$$

With
$$\sigma_N^2(\mathbf{x}') = \beta^{-1} + \phi(\mathbf{x}')^T \mathbf{S}_N \phi(\mathbf{x}')$$

Bishop Eq. 2.115

Predictive Distribution

- Datasets:
 - $t = \sin(2\pi x) + \epsilon$
 - $\epsilon \sim \mathcal{N}(0,\beta^{-1})$
- Dataset sizes:

$$N = 1,2,4,25$$

- Model:
 - $y(x, \mathbf{w}) = \phi(x)^T \mathbf{w}$
 - $\phi_j(x)$: Gaussian basis functions

Figure: Predictive distribution (Bishop 3.8)

- Predictive distribution:
 - $p(t'|\mathbf{x}', \mathbf{X}, \mathbf{t}, \alpha, \beta) = = \mathcal{N}(t'|\mathbf{x}', \boldsymbol{\phi}(\mathbf{x}')^T \mathbf{m}_N, \sigma_N^2(\mathbf{x}'))$

Samples drawn from Bayesian Predictive Distribution

$$p(\mathbf{w} | \mathbf{X}, \mathbf{t}, \alpha, \beta) = \mathcal{N}(\mathbf{w} | \mathbf{m}_N, \mathbf{S}_N), \quad \text{with } \mathbf{m}_N = \beta \mathbf{S}_N \mathbf{\Phi}^T \mathbf{t}$$

$$\mathbf{S}_N^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^T \mathbf{\Phi}$$

Figure: Sample functions $y(x, \mathbf{w})$ with \mathbf{w} sampled from posterior distribution (Bishop 3.9)