Receive Antenna Selection in MIMO Systems

Sandeep H M Dinesh Kumar Sonkar

March 7, 2019

Objective of the Paper

- The paper aims to maximize the channel capacity of the MIMO system.
- Reduce the cost of the system
- Optimization problem is solved using low complexity techniques

Convex Optimization Problem

Maximize

$$C_r(\mathbf{\Delta}) = \log_2 \det(\mathbf{I}_M + \gamma \mathbf{\Delta} \mathbf{H} \mathbf{H}^H)$$

subject to

$$0 \leq \Delta_i \leq 1, \ i=1,2,...,M$$

$$trace(oldsymbol{\Delta}) = \sum_{i=1}^{M} \Delta_i = M'$$

where

 $C_r(\Delta)$ is channel capacity **H** is the M×N channel matrix.

Proof of Concavity

We define $g(t) = \log |\mathbf{X} + t\mathbf{V}|$ such that $\mathbf{X} \in S_{++}^N$ and $\mathbf{V} \in S_+^N$ $g(t) = \log |\mathbf{X} + t\mathbf{V}|$ $= \log |\mathbf{X}| + \sum_{i=1}^N \log(1 + t\lambda_i)$

$$g''(t) = \sum_{i=1}^{N} \frac{-\lambda_i^2}{(1+t\lambda_i)^2}$$

Since g''(t) < 0, g(t) is concave

 $\Rightarrow \log |\mathbf{X}|$ is concave

Result

Figure: Ergodic capacity v/s SNR (N_{γ}), M = 6, N = 2,4 M' = N

System Model

Received signal can be represented as

$$x(k) = \sqrt{E_s} \mathbf{H} s(k) + \mathbf{n}(k)$$

where

x(k) is the k^{th} sample of the received signal.

s(k) is the k^{th} sample of the transmitted signal.

 E_s is the average energy per receive antenna and per channel use

n(k) is AWGN with energy $\frac{N_0}{2}$

H is the $M \times N$ channel matrix.

Receive Antenna Selection In MIMO Systems

'**Objective** - Select receive antenna to maximize capacity. The capacity of a system is given by the formula

$$C(\boldsymbol{H}) = \log_2 \det(\boldsymbol{I}_N + \gamma \boldsymbol{R}_{ss} \boldsymbol{H}^H \boldsymbol{H})$$

where

$$\gamma = \frac{E_s}{N_0}$$

 $\mathbf{R}_{ss} = \mathsf{E}[\mathsf{s}(\mathsf{k})\mathsf{s}(\mathsf{k})^H]$ is the co-variance matrix of the transmitted signals with $\mathsf{trace}(\mathbf{R}_{ss}) = 1$

When only M'<M receive antennas are used, the capacity becomes a function of the antennas chosen.

We represent the indices of the selected antennas by $\mathbf{r} = [\mathbf{r}_1, \ldots, \mathbf{r}_{M'}]$

The effective channel matrix becomes \mathbf{H}_r which is a M' \times N matrix.

The channel capacity with antenna selection is given by

$$C_r(\boldsymbol{H}_r) = \log_2 \det(\boldsymbol{I}_N + \gamma \boldsymbol{R}_{ss} \boldsymbol{H}_r^H \boldsymbol{H}_r)$$

Antenna Selection as an Optimization Problem

' We define Δ_i

$$\Delta_i = \begin{cases} 1, & \text{if } i^{th} \text{ antenna is selected} \\ 0, & \text{otherwise.} \end{cases}$$

Now, consider an M×M diagonal matrix Δ that has Δ_i as its diagonal entries.

Let us denote $F = \Delta H$.

F can be written as \mathbf{H}_r with (M-M') zero rows appended to it and left multiplied by a M M row-permutation matrix P. Thus,

$$F = P \begin{bmatrix} H_r \\ 0_{(M-M') \times N} \end{bmatrix} = P \widetilde{H_r}$$

Since P is a permutation matrix, $\mathbf{P}^H \mathbf{P} = \mathbf{I}_M$.

$$F^{H}F = \widetilde{H}_{r}^{H}P^{H}P\widetilde{H}_{r}$$
$$= \widetilde{H}_{r}^{H}\widetilde{H}_{r}$$
$$= H_{r}^{H}H_{r}$$

The channel capacity as a function of Δ is

$$C_r(\mathbf{\Delta}) = \log_2 \det(\mathbf{I}_N + \gamma \mathbf{F}^H \mathbf{F})$$

= $\log_2 \det(\mathbf{I}_N + \gamma \mathbf{H}^H \mathbf{\Delta}^H \mathbf{\Delta} \mathbf{H})$

Since Δ is a diagonal matrix with entries either 0 or 1

$$\mathbf{\Delta}^H\mathbf{\Delta} = \mathbf{\Delta}$$

The MIMO channel capacity with antenna selection can be re-written as

$$C_r(\mathbf{\Delta}) = \log_2 \det(\mathbf{I}_N + \gamma \mathbf{H}^H \mathbf{\Delta} \mathbf{H})$$

Using the identity $det(I_m + AB) = det(I_n + BA)$ we get

$$C_r(\mathbf{\Delta}) = \log_2 \det(\mathbf{I}_M + \gamma \mathbf{\Delta} \mathbf{H} \mathbf{H}^H)$$

Maximize

$$C_r(\mathbf{\Delta}) = \log_2 \det(\mathbf{I}_M + \gamma \mathbf{\Delta} \mathbf{H} \mathbf{H}^H)$$

subject to

$$0 \leq \Delta_i \leq 1, \ i=1,2,...,M$$

$$trace(\mathbf{\Delta}) = \sum_{i=1}^{M} \Delta_i = M'$$

Proof of Concavity

We define
$$\mathbf{g}(\mathbf{t}) = \log |\mathbf{X} + t\mathbf{V}|$$
 such that $\mathbf{X} \in S_{++}^N$ and $\mathbf{V} \in S_-^N$
$$\mathbf{g}(t) = \log |\mathbf{X} + t\mathbf{V}|$$

$$= \log |\mathbf{X}^{\frac{1}{2}}\mathbf{X}^{\frac{1}{2}} + t\mathbf{X}^{\frac{1}{2}}\mathbf{X}^{\frac{-1}{2}}\mathbf{V}\mathbf{X}^{\frac{-1}{2}}\mathbf{X}^{\frac{1}{2}}|$$

$$= \log |\mathbf{X}^{\frac{1}{2}}(\mathbf{I} + t\mathbf{X}^{\frac{-1}{2}}\mathbf{V}\mathbf{X}^{\frac{-1}{2}})\mathbf{X}^{\frac{1}{2}}|$$

$$= \log |\mathbf{X}^{\frac{1}{2}}(\mathbf{I} + t\mathbf{U}\mathbf{\Lambda}\mathbf{U}^T)\mathbf{X}^{\frac{1}{2}}|$$

$$= \log |\mathbf{X}^{\frac{1}{2}}\mathbf{U}(\mathbf{I} + t\mathbf{\Lambda})\mathbf{U}^T\mathbf{X}^{\frac{1}{2}}|$$

$$= \log |\mathbf{X}^{\frac{1}{2}}||\mathbf{U}||\mathbf{I} + t\mathbf{\Lambda}||\mathbf{U}^T||\mathbf{X}^{\frac{1}{2}}|$$

$$= \log |\mathbf{X}||\mathbf{I} + t\mathbf{\Lambda}|$$

$$= \log |\mathbf{X}| + \log |\mathbf{I} + t\mathbf{\Lambda}|$$

$$\begin{split} g(t) &= \log |\mathbf{X}| + \log |\mathbf{I} + t\mathbf{\Lambda}| \\ &= \log |\mathbf{X}| + \log (\prod_{i=1}^N 1 + t\lambda_i) \\ &= \log |\mathbf{X}| + \sum_{i=1}^N \log (1 + t\lambda_i) \\ g''(t) &= \sum_{i=1}^N \frac{-\lambda_i^2}{(1 + t\lambda_i)^2} \end{split}$$

Since g''(t) < 0, g(t) is concave

 $\Rightarrow \log |\mathbf{X}|$ is concave

Result

Receive antenna selection has been approximated to a convex relaxation that can be solved using low complexity techniques. It is of order $O(\mathsf{M}^{3.5})$

The selection algorithm gives an Ergodic capacity which is very close to the optimal one

Figure: Ergodic capacity v/s SNR (N_{γ}), M = 6, N = 2,4 M' = N

