Making Electronic Structure Theory work

Ralf Gehrke

Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin, 23th June 2009

Hands-on Tutorial on *Ab Initio* Molecular Simulations:
Toward a First-Principles Understanding of Materials Properties and Functions

Outline

- Achieving Self-Consistency
 - Density Mixing
 - Linear Mixing, Pulay Mixer, Broyden Mixer
 - Electronic Smearing
 - Fermi-Dirac, Gaussian, Methfessel-Paxton
 - Preconditioning
 - Direct Minimization
- Spin Polarization
- Energy Derivatives
- Local Atomic Structure Optimization
- Outlook on Global Structure Optimization

Outline

- Achieving Self-Consistency
- Spin Polarization
 - * Fixed Spin vs. Unconstrained Spin Calculation
- Energy Derivatives
- Local Atomic Structure Optimization
- Outlook on Global Structure Optimization

Outline

- Achieving Self-Consistency
- Spin Polarization
- Energy Derivatives
 - Atomic Forces
 - → Numeric vs. Analytic Second Derivative
 - Vibrational Frequencies
- Local Atomic Structure Optimization
- Outlook on Global Structure Optimization

Outline

- Achieving Self-Consistency
- Spin Polarization
- Energy Derivatives
- Local Atomic Structure Optimization
 - → Steepest Descent
 - → Conjugate Gradient
 - → Broyden-Fletcher-Goldfarb-Shannon (BFGS)
 - * Cartesian vs. Internal Coordinates
- Outlook on Global Structure Optimization

Outline

- Achieving Self-Consistency
- Spin Polarization
- Energy Derivatives
- Local Atomic Structure Optimization
- Outlook on Global Structure Optimization

Achieving Self-Consistency

Density Mixing

$$n_{\rm in}^{(\mu+1)} = n_{\rm out}^{(\mu)}$$

 $N_2 = 1.1 \text{ Å PBE}$

Achieving Self-Consistency

Density Mixing

Density Mixing but we can still do better... $\hat{h}^{\mathrm{KS}} = -\frac{\nabla^2}{2} + V^{\mathrm{eff}}([n_{\mathrm{in}}^{(\mu)}], \mathbf{r})$ $\hat{h}^{\mathrm{KS}} | \psi_l \rangle = \epsilon_l | \psi_l \rangle$ $n_{\mathrm{in}}^{(\mu+1)} = f(n_{\mathrm{in}}^{(\mu)}, n_{\mathrm{in}}^{(\mu-1)}, n_{\mathrm{in}}^{(\mu-2)}, \cdots, n_{\mathrm{out}}^{(\mu)}, n_{\mathrm{out}}^{(\mu-1)}, n_{\mathrm{out}}^{(j-2)}, \cdots)$ $n_{\mathrm{out}}^{(\mu)}(\mathbf{r}) = \sum_{l} \psi_l^2(\mathbf{r})$ $n_{\mathrm{out}}^{(\mu)}([n_{\mathrm{in}}^{(\mu)}], \mathbf{r}) - n_{\mathrm{in}}^{(\mu)}(\mathbf{r}) \equiv \Delta n(\mathbf{r})$ $|\Delta n| \equiv \int (\Delta n)^2 \, \mathrm{d}^3 \mathbf{r} \, < \delta \, ?$

Achieving Self-Consistency

finished!

Density Mixing

 $N_2 = 1.1 \text{ Å PBE}$

Achieving Self-Consistency

The Pulay Mixer

• take more previous densities into account under the constraint of norm conservation

$$n_{\rm in}^{\rm opt} = \sum_{\mu} \alpha_{\mu} n_{\rm in}^{(\mu)}$$

$$\sum_{\mu} \alpha_{\mu} = 1$$

The Pulay Mixer

• take more previous densities into account under the constraint of norm conservation

$$n_{\rm in}^{\rm opt} = \sum_{\mu} \alpha_{\mu} n_{\rm in}^{(\mu)}$$

$$\sum_{\mu} \alpha_{\mu} = 1$$

• main assumption: the charge density residual is linear w.r.t. to the density

$$R[n_{\rm in}^{\rm opt}] = R\left[\sum_{\mu} \alpha_{\mu} n_{\rm in}^{(\mu)}\right] = \sum_{\mu} \alpha_{\mu} R\left[n_{\rm in}^{(\mu)}\right]$$

P. Pulay, Chem. Phys. Lett. 73 (1980), 393

Achieving Self-Consistency

The Pulay Mixer

• take more previous densities into account under the constraint of norm conservation

$$n_{\rm in}^{\rm opt} = \sum_{\mu} \alpha_{\mu} n_{\rm in}^{(\mu)}$$

$$\sum_{\mu} \alpha_{\mu} = 1$$

• main assumption: the charge density residual is linear w.r.t. to the density

$$R[n_{\rm in}^{\rm opt}] = R\left[\sum_{\mu} \alpha_{\mu} n_{\rm in}^{(\mu)}\right] = \sum_{\mu} \alpha_{\mu} R\left[n_{\rm in}^{(\mu)}\right]$$

 $\mbox{\ }^{\bullet}$ coefficients α are determined by minimizing the residual

$$\frac{\partial}{\partial \alpha_{I}} \left(\left\langle R \left[n_{\text{in}}^{\text{opt}} \right] \middle| R \left[n_{\text{in}}^{\text{opt}} \right] \right\rangle - \lambda \sum_{\mu} \alpha_{\mu} \right) = 0$$

system of equations for α

P. Pulay, Chem. Phys. Lett. **73** (1980), 393

The Pulay Mixer

• illustration in one dimension with two densities

P. Pulay, Chem. Phys. Lett. 73 (1980), 393

Achieving Self-Consistency

The Pulay Mixer

illustration in one dimension with two densities

• to prevent trapping in subspace, add fraction of residual

P. Pulay, Chem. Phys. Lett. **73** (1980), 393

The Pulay Mixer

additional preconditioner might accelerate convergence

$$n_{\text{in}}^{(\mu+1)} = n_{\text{in}}^{\text{opt}} + \hat{G}R\left[n_{\text{in}}^{\text{opt}}\right]$$
 preconditioning matrix: $\hat{G} = A\frac{k^2}{k^2 + k^2}$

long-range components of density changes are stronger damped than short-range

G. Kerker, Phys. Rev. B 23 (1981), 3082

P. Pulay, Chem. Phys. Lett. **73** (1980), 393

Achieving Self-Consistency

The Pulay Mixer

additional preconditioner might accelerate convergence

$$n_{\rm in}^{(\mu+1)} = n_{\rm in}^{\rm opt} + \hat{G}R \left[n_{\rm in}^{\rm opt}\right]$$

 $n_{\rm in}^{(\mu+1)} = n_{\rm in}^{\rm opt} + \hat{G}R[n_{\rm in}^{\rm opt}]$ preconditioning matrix: $\hat{G} = A\frac{k^2}{k^2 + k^2}$

long-range components of density changes are stronger damped than short-range

G. Kerker, Phys. Rev. B 23 (1981), 3082

two spin channels are to be mixed in the case of spin polarization

charge density:
$$n^{\uparrow}(\mathbf{r}) + n^{\downarrow}(\mathbf{r})$$

spin density: $n^{\uparrow}(\mathbf{r}) - n^{\downarrow}(\mathbf{r})$

combine both channels to one matrix!

$$\left\langle R\left[n^{\uparrow},n^{\downarrow}\right]\right|R\left[n^{\uparrow},n^{\downarrow}\right]\right\rangle = \sum_{\sigma}\int d\mathbf{r}\left(\Delta n^{\sigma}\right)^{2}(\mathbf{r})$$

$$\Delta n^{\sigma}(\mathbf{r}) = n_{\text{out}}^{\sigma}\left(\left[n_{\text{in}}^{\sigma}\right],(\mathbf{r})\right) - n_{\text{in}}^{\sigma}(\mathbf{r})$$

stable convergence

P. Pulay, Chem. Phys. Lett. 73 (1980), 393

The Broyden Mixer

secant method

$$f(x_n) - f(x_{n-1}) \approx f'(x_n)(x_n - x_{n-1})$$

$$f(x_{n+1}) \stackrel{!}{=} 0$$

$$\Rightarrow x_{n+1} = x_n - \frac{1}{f'(x_n)} f(x_n)$$

Achieving Self-Consistency

The Broyden Mixer

The Broyden Mixer

D.D. Johnson, Phys. Rev. B 38 (1988), 12807

Achieving Self-Consistency

The Broyden Mixer

D.D. Johnson, Phys. Rev. B 38 (1988), 12807

Electronic Smearing

• level crossing may lead to charge sloshing

Achieving Self-Consistency

Electronic Smearing

• level crossing may lead to charge sloshing

• electronic smearing softens the change of electronic density

Electronic Smearing

Fermi-Dirac¹:
$$f \left(\frac{\epsilon - E_{_{\rm F}}}{\sigma} \right) = \frac{1}{\exp\left((\epsilon - E_{_{\rm F}})/\sigma \right) + 1}$$

Gaussian²:
$$f\left(\frac{\epsilon - E_{_{\mathrm{F}}}}{\sigma}\right) = \frac{1}{2} \left(1 - \mathrm{erf}\left[\frac{\epsilon - E_{_{\mathrm{F}}}}{\sigma}\right]\right)$$

$$f_0(x) = \frac{1}{2} \left(1 - \operatorname{erf}(x) \right) \qquad \qquad x = \frac{\epsilon - E_F}{\sigma}$$

$$f_N(x) = f_0(x) + \sum_{m=1}^N A_m H_{2m-1}(x) e^{x^2} \xrightarrow[N \to \infty]{} \Theta(x)$$

Achieving Self-Consistency

Electronic Smearing

• Kohn-Sham functional not a variational quantity anymore

$$\tilde{E}[\{c\}]$$
 \Longrightarrow $\tilde{E}[\{c\},\{f\}]$ \Longrightarrow $\frac{\partial \tilde{E}}{\partial f_i}\Big|_{n_0} \neq 0$

¹ N. Mermin, Phys. Rev. **137** (1965), A1441

² C.-L. Fu, K.-H. Ho, Phys. Rev. B 28 (1983), 5480

³ M. Methfessel, A. Paxton, Phys. Rev. B **40** (1989), 3616

Electronic Smearing

• Kohn-Sham functional not a variational quantity anymore

$$\tilde{E}[\{c\}]$$
 \Longrightarrow $\tilde{E}[\{c\},\{f\}]$ \Longrightarrow $\frac{\partial \tilde{E}}{\partial f_i}\Big|_{r_0} \neq 0$

• electronic *free* energy F is variational

$$F = E - \underbrace{\sigma S(\sigma, \{f_n\})}_{\text{entropy term}} \qquad \Longrightarrow \qquad \frac{\partial F}{\partial f_i} \bigg|_{n_0} = 0$$

Achieving Self-Consistency

Electronic Smearing

Kohn-Sham functional not a variational quantity anymore

$$\tilde{E}[\{c\}]$$
 \Longrightarrow $\tilde{E}[\{c\},\{f\}]$ \Longrightarrow $\frac{\partial \tilde{E}}{\partial f_{c}}\Big|_{p_{c}} \neq 0$

• electronic *free* energy *F* is variational

$$F = E - \sigma S(\sigma, \{f_n\})$$
entropy term
$$\frac{\partial F}{\partial f_i}\Big|_{n_0} = 0$$

• systems with continuous density of states at the Fermi edge:

$$F(\sigma) = E_{\sigma=0} + \begin{cases} O(\sigma^2) \\ O(\sigma^{2+N}) \end{cases} \qquad E_{\sigma=0} \approx \begin{cases} \frac{1}{2} (F(\sigma) + E(\sigma)) & \text{Fermi-Dirac / Gaussian} \\ \frac{1}{N+2} ((N+1)F(\sigma) + E(\sigma)) & \text{Methfessel-Paxton} \end{cases}$$

desired total energy E for zero smearing can be backextrapolated

M. Gillan, J. Phys.: Condens. Matter 1 (1989), 689

M. Methfessel, A. Paxton, Phys. Rev. B 40 (1989), 3616

F. Wagner, T. Laloyaux, M. Scheffler, Phys. Rev. B 57 (1998), 2102

Alternative: Direct Minimization

- constrained minimum of Kohn-Sham functional:
- $\tilde{E} = E^{KS} \sum_{l} \epsilon_{l} \left(\langle \phi_{l} | \phi_{l} \rangle 1 \right) E_{F} \left(\sum_{l} f_{l} N \right)$

• gradient:

 $\frac{\delta \tilde{E}}{\delta \left\langle \boldsymbol{\phi}_{l}\right|} \!\equiv\! \left|\boldsymbol{g}_{l}\right\rangle \!=\! \boldsymbol{f}_{l}\!\!\left(\hat{\boldsymbol{h}}^{\mathrm{KS}} \!-\! \boldsymbol{\epsilon}_{l}\right) \!\!\left|\boldsymbol{\phi}_{l}\right\rangle$

• steepest-descent:

 $\left|\boldsymbol{\phi}_{l}^{(\mu+1)}\right\rangle = \left|\boldsymbol{\phi}_{l}^{(\mu)}\right\rangle - \Delta \left|\boldsymbol{g}_{l}\right\rangle$

Spin Polarization

Fixed Spin vs. Unconstrained Spin

total spin is relaxed

Fixed Spin vs. Unconstrained Spin

obtained multiplicity the lowest one

Energy Derivatives

Atomic Forces

• total energy of the system is the total minimum of the Kohn-Sham-functional under the normalization constraint:

$$E_{\text{tot}} = \min_{\{c\}} \left(E^{\text{KS}} - \sum_{i\sigma} \epsilon_{i\sigma} \left(\left\langle \boldsymbol{\phi}_{i\sigma} \middle| \boldsymbol{\phi}_{i\sigma} \right\rangle - 1 \right) \right) = \tilde{E} \left[\left[c_0 \left[\mathbf{R}_{\alpha} \right] \right], \left[\epsilon \left[\mathbf{R}_{\alpha} \right] \right], \left[\mathbf{R}_{\alpha} \right] \right] \qquad \frac{\partial \tilde{E}}{\partial \{c\}} \bigg|_{c = c_0} = 0 \qquad \frac{\partial \tilde{E}}{\partial \{\epsilon\}} \bigg|_{c = c_0} = 0$$

Atomic Forces

• total energy of the system is the total minimum of the Kohn-Sham-functional under the normalization constraint:

$$E_{\text{tot}} = \min_{\{c\}} \left(E^{\text{KS}} - \sum_{i\sigma} \epsilon_{i\sigma} \left(\left\langle \boldsymbol{\phi}_{i\sigma} \middle| \boldsymbol{\phi}_{i\sigma} \right\rangle - 1 \right) \right) = \tilde{E} \left[\left[c_0 \left[\mathbf{R}_{\alpha} \right] \right], \left[\epsilon \left[\mathbf{R}_{\alpha} \right] \right], \left[\mathbf{R}_{\alpha} \right] \right] \qquad \frac{\partial \tilde{E}}{\partial \{c\}} \bigg|_{c = c_0} = 0 \qquad \frac{\partial \tilde{E}}{\partial \{\epsilon\}} \bigg|_{c = c_0} = 0$$

• since the Kohn-Sham-functional is variational, only the partial derivative remains:

$$\begin{split} \mathbf{F}_{\alpha} &= -\frac{\mathrm{d}\,E_{\mathrm{tot}}}{\mathrm{d}\,\mathbf{R}_{\alpha}} \\ &= -\frac{\partial\,\tilde{E}}{\partial\,\mathbf{R}_{\alpha}} - \sum_{[c_{0}]} \frac{\partial\,\tilde{E}}{\partial\,\{c_{0}\}} \frac{\partial\,\{c_{0}\}}{\partial\,\mathbf{R}_{\alpha}} - \sum_{[\epsilon]} \frac{\partial\,\tilde{E}}{\partial\,\{\epsilon\}} \frac{\partial\,\{\epsilon\}}{\partial\,\mathbf{R}_{\alpha}} \\ &= -\frac{\partial\,\tilde{E}}{\partial\,\mathbf{R}_{\alpha}} = -\frac{\partial\,E^{\mathrm{KS}}}{\partial\,\mathbf{R}_{\alpha}} - \frac{\partial}{\partial\,\mathbf{R}_{\alpha}} \sum_{i\sigma} \epsilon_{i\sigma} \Big(\Big\langle \boldsymbol{\phi}_{i\sigma} \Big| \boldsymbol{\phi}_{i\sigma} \Big\rangle - 1 \Big) \end{split}$$

Energy Derivatives

The Individual Force Contributions

classical Coulomb interaction:

$$\mathbf{F}_{\mathrm{HF},\alpha} = Z_{\alpha} \sum_{\beta \neq \alpha} Z_{\beta} \frac{\mathbf{R}_{\alpha} - \mathbf{R}_{\beta}}{\left| \mathbf{R}_{\alpha} - \mathbf{R}_{\beta} \right|^{3}} - Z_{\alpha} \int d\mathbf{r} \, n(\mathbf{r}) \frac{\mathbf{R}_{\alpha} - \mathbf{r}}{\left| \mathbf{R}_{\alpha} - \mathbf{r} \right|^{3}}$$

• Pulay-correction due to incomplete or nuclear-dependent basis set:

$$\mathbf{F}_{\text{Pulay},\alpha} = -2\sum_{l\sigma} \left| \frac{\partial \psi_{l\sigma}}{\partial \mathbf{R}_{\alpha}} \right| \hat{h}^{\text{KS}} - \epsilon_{l\sigma} | \psi_{l\sigma} |$$
 "moving basis functions"

• Multipole-correction due to "incomplete" Hartree-potential:

• gradient-dependency of exchange-correlation energy in case of a GGA functional:

$$\mathbf{F}_{\text{GGA},\alpha} = -\int d\mathbf{r} n(\mathbf{r}) \frac{\partial \epsilon_{\text{XC}}}{\partial \left| \nabla n \right|^2} \frac{\partial \left| \nabla n \right|^2}{\partial \mathbf{R}_{\alpha}}$$

The Convergence of the Forces

• total energy is variational

error in the density enters total energy to <u>second</u> order $\frac{\tilde{E}}{|}$ = 0

$$\frac{\partial \tilde{E}}{\partial \{c\}} \bigg|_{c=c_0} = 0$$

• atomic forces are not variational error in the density enters total energy to first order

$$\frac{\partial \mathbf{F}_{\alpha}}{\partial \{c\}} \Big|_{c=c_{0}} = \frac{\partial^{2} \tilde{E}}{\partial \mathbf{R}_{\alpha} \partial \{c\}} \Big|_{c=c_{0}} \neq 0$$

$$\begin{array}{c}
10^{0} \\
10^{-1} \\
10^{-2} \\
\hline{\searrow} \\
10^{-3} \\
4 \\
10^{-4}
\end{array}$$

convergence of atomic forces more expensive than total energy

Energy Derivatives

Forces and Electronic Smearing

• Kohn-Sham functional not variational w.r.t. the occupation numbers

$$\tilde{E}[\{c\}, \{\epsilon\}, \{\mathbf{R}\}, \{f\}, E_F]$$
 $\frac{\partial \tilde{E}}{\partial f_i}\Big|_{n_0} \neq 0$

atomic forces are not consistent with the total energy of the system!

$$\mathbf{F}_{\alpha} = -\frac{\mathrm{d}\,E_{\text{tot}}}{\mathrm{d}\,\mathbf{R}_{\alpha}}$$

$$= -\frac{\partial\,\tilde{E}}{\partial\,\mathbf{R}_{\alpha}} - \sum_{\{f\}} \frac{\partial\,\tilde{E}}{\partial\,\{f\}} \frac{\partial\,\{f\}}{\partial\,\mathbf{R}_{\alpha}} - \underbrace{\partial\,\tilde{E}}_{\mathcal{E}_{F}} \frac{\partial\,E_{F}}{\partial\,\mathbf{R}_{\alpha}} \quad \neq -\frac{\partial\,\tilde{E}}{\partial\,\mathbf{R}_{\alpha}}$$

atomic forces are consistent with the electronic free energy

$$\frac{\partial F}{\partial f_i}\bigg|_{n_0} = 0$$

$$\mathbf{F}_{\alpha} = -\frac{\partial F}{\partial \mathbf{R}_{\alpha}}$$

M. Weinert and J.W. Davenport, Phys. Rev. B 45 (1992), 13709

R.M. Wentzcovitch, J.L. Martin and P.B. Allen, Phys. Rev. B 45 (1992), 11372

The Second Derivative and Vibrations analytical

• first derivative was simple

$$\mathbf{F}_{\alpha} = -\frac{\partial \tilde{E}}{\partial \mathbf{R}_{\alpha}}$$

Energy Derivatives

The Second Derivative and Vibrations analytical

• first derivative was simple

$$\mathbf{F}_{\alpha} = -\frac{\partial \tilde{E}}{\partial \mathbf{R}_{\alpha}}$$

• second derivative more nasty

$$\mathbf{H}_{\alpha\beta} = \frac{d^{2}E_{\text{tot}}}{d\mathbf{R}_{\alpha}d\mathbf{R}_{\beta}} = -\frac{d\mathbf{F}_{\alpha}}{d\mathbf{R}_{\beta}} = \frac{\partial^{2}\tilde{E}}{\partial\mathbf{R}_{\alpha}\partial\mathbf{R}_{\beta}} + \sum_{\{c\}} \frac{\partial^{2}\tilde{E}}{\partial\mathbf{R}_{\alpha}\partial\{c\}} \frac{\partial\{c_{0}\}}{\partial\mathbf{R}_{\beta}}$$

The Second Derivative and Vibrations

analytical

• first derivative was simple

$$\mathbf{F}_{\alpha} = -\frac{\partial \tilde{E}}{\partial \mathbf{R}_{\alpha}}$$

second derivative more nasty

$$\mathbf{H}_{\alpha\beta} = \frac{d^{2}E_{\text{tot}}}{d\mathbf{R}_{\alpha}d\mathbf{R}_{\beta}} = -\frac{d\mathbf{F}_{\alpha}}{d\mathbf{R}_{\beta}} = \frac{\partial^{2}\tilde{E}}{\partial\mathbf{R}_{\alpha}\partial\mathbf{R}_{\beta}} + \sum_{\{c\}} \frac{\partial^{2}\tilde{E}}{\partial\mathbf{R}_{\alpha}\partial\{c\}} \frac{\partial\{c_{0}\}}{\partial\mathbf{R}_{\beta}}$$

• set of coupled equations needs to be solved

$$\sum_{\{c\}} \frac{\partial^2 E}{\partial \{c\}^2} \frac{\partial \{c_0\}}{\partial \mathbf{R}_{\alpha}} = \frac{\partial^2 E}{\partial \mathbf{R}_{\alpha} \partial \{c\}}$$

e.g. A. Komornicki and G. Fitzgerald, J. Chem. Phys. 98 (2), 1398 (1993)

Energy Derivatives

The Second Derivative and Vibrations

<u>numerical</u>

$$\frac{d\mathbf{F}_{\alpha}}{d\mathbf{R}_{\beta}} \approx \frac{\mathbf{F}_{\alpha}(\mathbf{R}_{\beta,0} + \Delta) - \mathbf{F}_{\alpha}(\mathbf{R}_{\beta,0} - \Delta)}{2\Delta}$$

$$M_{\alpha}\ddot{\mathbf{R}}_{\alpha} = -\frac{d}{d\mathbf{R}_{\alpha}}E(\{\mathbf{R}\}) \qquad E(\{\mathbf{R}\}) = E(\{\mathbf{R}_{0}\}) + \frac{1}{2}\sum_{\alpha\beta}\frac{d^{2}E}{d\mathbf{R}_{\alpha}d\mathbf{R}_{\beta}}\Big|_{[\mathbf{R}_{0}]}\mathbf{u}_{\alpha}\mathbf{u}_{\beta} \qquad \mathbf{u}_{\alpha} = \mathbf{R}_{\alpha} - \mathbf{R}_{\alpha,0}$$

$$\mathbf{u}_{\alpha}(t) = \mathbf{u}_{\alpha} e^{i\omega t} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \det \left(\mathbf{H}_{\alpha\beta} - \omega^2 M_{\alpha} \right) \stackrel{!}{=} 0$$

talk by Gert von Helden, Friday, 26th June, 11:30,

"Fingerprinting molecules: Vibrational Spectroscopy, Experiment and Theory"

Local Atomic Structure Optimization

Potential Energy Surface (PES) $E_{\text{tot}}(|\mathbf{R}_{\alpha}|)$

Local Atomic Structure Optimization

Potential Energy Surface (PES) $E_{\text{tot}}(|\mathbf{R}_{\alpha}|)$

Steepest Descent

$$\mathbf{R}_{\alpha,i+1} = \mathbf{R}_{\alpha,i} + \boldsymbol{\gamma}_i \mathbf{F}_{\alpha} \left(\left[\mathbf{R}_{\alpha,i} \right] \right)$$

Local Atomic Structure Optimization

Local Atomic Structure Optimization

Conjugate Gradient

take information of previous search directions into account

$$\mathbf{R}_{\alpha,i+1} = \mathbf{R}_{\alpha,i} \underbrace{\mathbf{y}_{i}}_{\mathbf{G}_{\alpha,i}} \left\{ \left[\mathbf{R}_{\alpha,i} \right] \right\}$$
line minimization

$$\mathbf{G}_{\alpha,i} = \mathbf{F}_{\alpha,i} + \beta_i \mathbf{G}_{\alpha,i-1}$$

 constructions of search directions based upon the assumption that PES is perfectly harmonic

$$\mathbf{G}_{\alpha,i} = \mathbf{F}_{\alpha,i} + \beta_i \mathbf{G}_{\alpha,i-1} \qquad \qquad \beta_i^{\text{Fletcher-Reeves}} = \frac{\mathbf{F}_{\alpha,i} \circ \mathbf{F}_{\alpha,i}}{\mathbf{F}_{\alpha,i-1} \circ \mathbf{F}_{\alpha,i-1}}$$
 ons based upon the tly harmonic
$$\beta_i^{\text{Polak-Ribiere}} = \frac{\mathbf{F}_{\alpha,i} \circ \left(\mathbf{F}_{\alpha,i} - \mathbf{F}_{\alpha,i-1} \right)}{\mathbf{F}_{\alpha,i-1} \circ \mathbf{F}_{\alpha,i-1}}$$

The Broyden-Fletcher-Goldfarb-Shanno Method

Newton-Method:

• additional to the atomic forces, the Hessian is taken into account:

$$f(\mathbf{x}) = f(\mathbf{x}_i) + (\mathbf{x} - \mathbf{x}_i) \circ \nabla f(\mathbf{x}_i) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_i) \circ \mathbf{A} \circ (\mathbf{x} - \mathbf{x}_i) + \cdots$$
$$\nabla f(\mathbf{x}) = \nabla f(\mathbf{x}_i) + \mathbf{A} \circ (\mathbf{x} - \mathbf{x}_i) + \cdots$$

$$\nabla f(\mathbf{x}) \stackrel{!}{=} 0 \longrightarrow \mathbf{x} - \mathbf{x}_i = -\mathbf{A}^{-1} \circ \nabla f(\mathbf{x}_i)$$

W. H. Press et al., Numerical Recipes, 3rd Edition, Cambridge University Press

Local Atomic Structure Optimization

The Broyden-Fletcher-Goldfarb-Shanno Method

Newton-Method:

• additional to the atomic forces, the Hessian is taken into account:

$$f(\mathbf{x}) = f(\mathbf{x}_i) + (\mathbf{x} - \mathbf{x}_i) \circ \nabla f(\mathbf{x}_i) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_i) \circ \mathbf{A} \circ (\mathbf{x} - \mathbf{x}_i) + \cdots$$

$$\nabla f(\mathbf{x}) = \nabla f(\mathbf{x}_i) + \mathbf{A} \circ (\mathbf{x} - \mathbf{x}_i) + \cdots$$

$$\nabla f(\mathbf{x}) \stackrel{!}{=} 0 \qquad \Longrightarrow \quad \mathbf{x} - \mathbf{x}_i = -\mathbf{A}^{-1} \circ \nabla f(\mathbf{x}_i)$$

"Quasi"-Newton-Scheme: inverse Hessian is approximated iteratively

$$\mathbf{R}_{\alpha,i+1} = \mathbf{R}_{\alpha,i} + \mathbf{y}_{i} \mathbf{G}_{\alpha,i} \left(\left[\mathbf{R}_{\alpha,i} \right] \right) \qquad \mathbf{G}_{\alpha,i} = \mathbf{H}_{i} \mathbf{F}_{\alpha,i}$$

$$\mathbf{H}_{0} = 1 \qquad \mathbf{R}_{\alpha,i+1} - \mathbf{R}_{\alpha,i} = \mathbf{H}_{i+1} \circ \left(\mathbf{F}_{\alpha,i} - \mathbf{F}_{\alpha,i+1} \right) \qquad \Longrightarrow \qquad \mathbf{H}_{i+1} = \mathbf{H}_{i} + \cdots$$

- 1 ⇒ perfectly harmonic PES is assumed
- line minimization

W. H. Press et al., Numerical Recipes, 3rd Edition, Cambridge University Press

Cartesian vs. Internal Coordinates

$$\left\{\mathbf{R}_{_{1}},\mathbf{R}_{_{2}},\mathbf{R}_{_{3}}\right\} \rightarrow \left\{q_{_{1}},q_{_{2}},q_{_{3}}\right\} \qquad q_{_{1}}=d_{_{1}} \quad q_{_{2}}=d_{_{2}} \quad q_{_{3}}=9$$

$$q_1 = d_1 \quad q_2 = d_2 \quad q_3 = 9$$

$$\mathbf{q} = \mathbf{B} \left(\mathbf{R} - \mathbf{R}_0 \right)$$

$$\mathbf{R} = \mathbf{R} \left(\mathbf{q} \right)$$
 difficult!

$$\rightarrow$$
 $\mathbf{R} = \mathbf{R}(\mathbf{q})$ difficult!

 $(3N-6) \times (3N) \Rightarrow \text{not invertable !}$

P. Pulay, G. Fogarasi, F. Pang, J.E. Boggs, J. Am. Chem. Soc. 101, 2550 (1979)

Local Atomic Structure Optimization

Cartesian vs. Internal Coordinates

$$\left\{\mathbf{R}_{1},\mathbf{R}_{2},\mathbf{R}_{3}\right\} \rightarrow \left\{q_{1},q_{2},q_{3}\right\}$$
 $q_{1}=d_{1}$ $q_{2}=d_{2}$ $q_{3}=9$

$$q_1 = d_1$$
 $q_2 = d_2$ $q_3 = 3$

$$\mathbf{q} = \mathbf{B} \left(\mathbf{R} - \mathbf{R}_0 \right)$$

$$ightharpoonup \mathbf{R} = \mathbf{R}(\mathbf{q})$$
 difficult!

 $(3N-6) \times (3N) \Rightarrow \text{not invertable } !$

$$E = E_0 - \sum_i \phi_i q_i + \frac{1}{2} \sum_{ij} F^{ij} q_i q_j + \frac{1}{6} \sum_{ijk} F^{ijk} q_i q_j q_k + \cdots$$

$$\phi_i = -\frac{\partial E}{\partial q_i}$$

as "simple" as possible

$$F^{ijk} = -\frac{\partial^{3} E}{\partial q_{i} \partial q_{j} \partial q_{k}}$$

faster convergence of the local geometry optimizer

P. Pulay, G. Fogarasi, F. Pang, J.E. Boggs, J. Am. Chem. Soc. 101, 2550 (1979)

Inverse-Distance Coordinates

· appropriate for weekly bound systems

P.E. Maslen, J. Chem. Phys. **122**, 014104 (2005)

J. Baker, P. Pulay, J. Chem. Phys. 105 (24), 11100 (1996)

Local Atomic Structure Optimization

Inverse-Distance Coordinates

$$\frac{\partial E}{\partial q} = -\frac{\partial E}{\partial R} \circ R^{2}$$

$$\frac{\partial^{2} E}{\partial q^{2}} = \frac{\partial^{2} E}{\partial R^{2}} \circ R^{4} + 2 \frac{\partial E}{\partial R} \circ R^{3}$$

P.E. Maslen, J. Chem. Phys. 122, 014104 (2005)

J. Baker, P. Pulay, J. Chem. Phys. 105 (24), 11100 (1996)

Inverse-Distance Coordinates

P.E. Maslen, J. Chem. Phys. 122, 014104 (2005)

J. Baker, P. Pulay, J. Chem. Phys. 105 (24), 11100 (1996)

Global Structure Optimization

Potential Energy Surface (PES) $E_{\text{tot}}(|\mathbf{R}_{\alpha}|)$

Global Structure Optimization

Potential Energy Surface (PES) $E_{\text{tot}}([\mathbf{R}_{\alpha}])$

Global Structure Optimization

Basin-Hopping

• random variations of atomic coordinates followed by local structural relaxations

• many different flavours of "trial moves" possible

D. J. Wales, J. P. K. Doye, M. A. Miller, P. N. Mortenson, and T. R. Walsh, Adv. Chem. Phys. 115, (2000)

Z. Li, and H. A. Scheraga, Proc. Natl. Acad. Sci. U.S.A. 84, 6611 (1987)

further methods...

- Genetic Algorithms¹:
 - wo "parents" mate and create a "child"
 - ⇒ the fittest (energetically lowest) children "survive"

talk by Matt Probert, Friday, 26th June, 9:00, "Structure predictions in materials science"

• Minima-Hopping, Basin-Paving, Conformational Space Annealing,...

¹D. M. Deaven, K. M. Ho, Phys. Rev. Lett. **75**, 288 (1995)

Summary

- How to get E_{tot} in DFT
 - density-mixing schemes (Pulay, Broyden)
 - direct minimization
- Taking the derivative of E_{tot}
 - atomic forces
 - molecular vibrations
- ullet What to do with $E_{
 m tot}$ and its derivative
 - local structural relaxation (steepestdescent, conjugate gradient, BFGS)
 - global structure optimization (Basin-Hopping, Genetic Algorithms,...)

Summary

- How to get E_{tot} in DFT
 - density-mixing schemes (Pulay, Broyden)
 - direct minimization
- Taking the derivative of E_{tot}
 - atomic forces
 - * molecular vibrations
- ullet What to do with E_{tot} and its derivative
 - local structural relaxation (steepestdescent, conjugate gradient, BFGS)
 - global structure optimization (Basin-Hopping, Genetic Algorithms,...)

Let's do it!!

today, 14:00 – 18:00 first practical session lecture hall