المنحان شهدة البكالوريا دولة: 2013 المنحان شهدة البكالوريا دولة: علوم تجريبية

العلامة		/ h & h h \ " 1 . h	محاور
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)	موضوع
		التمرين الأول: (04 نقاط) K	
	0.5	1− رسم الدارة الكهربائية:	
		$u_C + u_R = E$: المعادلة التفاضلية $u_C + u_R = E$	
	0.5	$E \cap \bigcup_{\mathbf{U}_{\mathbf{C}}} \mathbf{U}_{\mathbf{C}} \qquad u_{C} + u_{R} = E \cdot \underbrace{\frac{dq}{2} - \frac{1}{2} \cdot \frac{1}{2}}_{\mathbf{U}_{\mathbf{C}}} \qquad 2$	
	0.05	dt RC R i $g(t) = A \cdot e^{\alpha t} + B$ عبارة الثوابت: $g(t) = A \cdot e^{\alpha t} + B$ عبارة الثوابت: dt	
	0.25	1. 7	
	0.25	(1) ومنه $q(0) = A + B = 0$	
	0.5	$A \cdot e^{\alpha \cdot t} (\frac{1}{RC} + \alpha) + \frac{B}{RC} = \frac{E}{R}$ بتعويض الحل في المعادلة التفاضلية نجد:	
04		$\cdot lpha = -rac{1}{RC}$ و منه $B = CE$ و منه $B = CE$	
	0.5	$q(\tau) = 0,63 \; q_{max} = 0,63 \times 4,8 \times 10^{-4} = 3,0 \times 10^{-4} C \; : au$ أ– قيمة τ	
		au = 39 ms	
	0.5	$C = \frac{\tau}{R} = 39 \times 10^{-6} F = 39 \mu\text{F}$	
	0.5	$\cdot E \simeq 12V$ ومنه: $q_{max} = cE$: E قيمة $q_{max} = cE$	
	0.5	$E_C(200 ms) = \frac{q^2}{2C} = 2,9 \times 10^{-3} J \rightarrow$	
		التمرين الثاني: (04 نقاط)	
	0.25	المركة: المرحلة الأولى: $v lpha t = 0 , 16 s$ فالحركة مستقيمة متسارعة. -1	
	0.25	$a_{GI} = \frac{\Delta v}{\Delta t} = \frac{2-0}{4-0} = 0,5 \ m \cdot s^{-2}$ تسار عها:	
	0.25	$a_{G2} = \frac{\Delta v}{\lambda} = 0$ المرحلة الثانية: $v = cte \ [16\ s\ , 24\ s\]$ المرحلة الثانية:	
	0.5	Δt	
	0.25	$AC = d = d_1 + d_2 = 64 + 64 = 128 \ m$ بطريقة المساحات : AC	
	0.5	2− أ− نص القانون الثاني لنيوتن. y'م	
04	0.5	\vec{F}	
	0.5	$x \xrightarrow{\alpha} F_x \xrightarrow{x'} m \cdot a$	
		\overrightarrow{P} \overrightarrow{P} B $F = 5,77 N$: ومنه $F = \frac{m \cdot a_{GI}}{\cos 30^{\circ}}$	
	0.5	y', y' ↑	
	0.5	$f = 5 N$ ومنه: $f = F \cdot \cos 30^\circ$	
	0.5	$x \xrightarrow{\vec{f}} x \xrightarrow{R} \alpha \xrightarrow{\vec{F}_X} x'$	
		\overrightarrow{B} \overrightarrow{P} \overrightarrow{C}	
	0.25	د- لما أصبح الجزء خشن نشأت مقاومة أبدتها الجملة لتغير	
		$v=cte$ ومنه: $f=F\coslpha$ ومنه:	

امة	العلا		حبے ہو۔ محاور
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)	محاور موضوع
	3×0.25 0.5 3×0.25 3×0.25	Z=2 ، $A=4$ -1 $Z=2$ ، $A=4$ -1 $Z=2$. $Z=3$	
04	0.5	$rac{E_{\ell}(rac{4}{2}X)}{4}$ = 7 ,102 MeV / nucleon و $E_{lib}=E_{\ell}(rac{4}{2}X)-(E_{\ell}(rac{2}{1}H)+E_{\ell}(rac{3}{1}H))$ ومنه: $E_{lib}=17,61$ MeV	
	0.75	طاقة ΔE_1 ΔE_2 ΔE_2 ΔE_3 ΔE_4 ΔE_4 ΔE_5 ΔE_6 ΔE_6 ΔE_7 ΔE_8 ΔE_9	
	0.5	(المعادلة: $(aq) + H_3O(\ell) = CH_3COO^-(aq) + H_3O^+(aq)$ $(aq) + H_3O^+(aq)$	
		ر ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	
	0.5	ر الإ c _a V - x بوفرة x x	
04		رفرة ما ک. ن ع. ن	
	0.5	$\boldsymbol{\sigma} = (\lambda_{\text{H}_3\text{O}^+} \cdot \left[\text{H}_3\text{O}^+\right] + \lambda_{\text{CH}_3\text{COO}^-} \cdot \left[\text{CH}_3\text{COO}^-\right])$	
	0.25	$[H_3O^+(aq)] = 0.4 \times 10^{-3} \text{ mol} \cdot L^{-1} $ ($[H_3O^+] = \frac{\sigma}{(\lambda_{H_3O^+} + \lambda_{CH_3COO^-})}$: نِذِن	
	0.5	$pH = -log[H_3O^+] = 3.4 \qquad -3$	
	0.5	$K_{a} = \frac{\left[H_{3}O^{+}\right]_{f}\left[CH_{3}COO^{-}\right]_{f}}{\left[CH_{3}COOH\right]_{f}} = 1,65 \times 10^{-5}$	
	0.75	$ m V_{be} = 20~mL$ ومنه $ m V_b = 10~mL$: عند نصف النكافؤ	
	0.5	$Va=rac{c_b\cdot V_{be}}{c_a}=4mL$: عند التكافؤ	

العلامة		عناصر الإجابة (الموضوع الأول)	محاور موضوع
مجموع	2×0.25 0.25 0.75 0.25 0.5 0.5 2×0.25	لتمرین التجریبي: (40 نقاط) $ - \text{ Ligation of Missing in the proof of the model} $ $ - \text{ Ligation of Missing in the model} $ $ - \text{ Ligation of Missing in the model} $ $ - \text{ Ligation of Missing in the model} $ $ - \text{ Ligation of Missing in the model} $ $ - \text{ Ligation of Missing in the model} $ $ - \text{ Ligation of Missing in the model} $ $ - \text{ Ligation of Missing in the model} $ $ - \text{ Ligation of Missing in the model} $ $ - \text{ Ligation of Missing in the model} $ $ - \text{ Ligation of Missing in the model} $ $ - \text{ Ligation of Missing in the model} $ $ - \text{ Ligation of Missing in the model} $ $ - \text{ Ligation of Missing in the model} $ $ - \text{ Ligation of Missing in the model} $ $ - \text{ Ligation of Missing in the model} $ $ - \text{ Ligation of Missing in Missing in the model} $ $ - Light in Missing in Mis$	موضوع
	0.25	6- رسم البيان كيفيا.	

امة	العلا	عناصر الإجابة (الموضوع الثاني)	محاور
مجموع	مجزأة	عاصر (پجابد (الموصوع التاتي)	موضوع
		<u>التمرين الأول</u> : (04 نقاط)	
	0.50	1- دور التسخين المرتد تكثيف البخار المتصاعد ومنع ضياعه فيعود إلى الأرلينة.	
		- إضافة حمض الكبريت المركز هو تسريع التفاعل.	
	0.25	2- فصل المو اد	
	0.50	$CH_3COOH + C_4H_9OH = CH_3COOC_4H_9 + H_2O - 1 - 3$	
	0.75	$ au_f < 1$: نلاحظ أن $ au_f = rac{x_f}{x_{ m max}} = rac{0.6}{1} = 0.6$ ب	
		للتأكد عمليا من تحول الأسترة غير تام نضيف قطرات من كاشف ملون.	
04		ج- سرعة التفاعل.	
		$v(t_1) = \frac{\Delta n_E}{\Delta t} = 0,0080 mol \cdot min^{-1}$	
	4×0.25	$v(t_2) = 0.0035 mol \cdot min^{-1}$	
		$v(t_3) = 0,0020 mol \cdot min^{-1}$	
		نلاحظ أن السرعة تتناقص فالتحول بطئ.	
		r = $ au_{f}$ $ imes 100$ = 60 % د - المردود:	
	0.50	يمكن تحسينه بنزع الماء الناتج من التحول وذلك لجعل التحول يتطور في اتجاه الأسترة.	
		ه- صنف الكحول المستعمل: ثانو <i>ي</i>	
	0.50	2 – الصيغة الجزيئية نصف المفصلة للكحول: CH_3 – $CHOH$ – CH_2 CH بوتانول	
		التمرين الثاني: (04 نقاط)	
	0.25	1- القيمتان هما العدد الكتلي و يمثلان عدد النويات (النيوكليونات) في كل نظير.	
	0.25	الرمز: 36 17 17	
04	4×0.25	$E_{\ell} = (Z \cdot m_p + (A - Z) \cdot m_n - m(\frac{36}{17}Cl)) \cdot c^2 = 307,54125 MeV$ طاقة الربط: -2	
	4.025	$^{36}_{17}Cl ightarrow ^{36}_{18}Ar+^{A}_{Z}X$ معادلة التفكك: $^{-3}$	
	4×0.25	$^{36}_{17}Cl ightarrow ^{36}_{18}Ar+ ^{0}_{-1}e$. eta^- ومنه: نمط التفكك: $Z=-1$ ، $A=0$	
	6×0.25	$t = \frac{-t_{1/2}}{\ln 2} \cdot \ln(\frac{N}{N_0}) = \frac{-301 \times 10^3}{\ln 2} \cdot \ln(\frac{38}{100}) = 420 \times 10^3 \text{ ans} -4$	
	0.5	(L,r) الرسم: $u_B + u_R = E$ الرسم: $u_B + u_R = E$ المعادلة التفاضلية: $u_R + u_R = E$ ومنه:	
	0.75	(L, r) الرسم: $u_{R} + u_{R} = E$ المعادلة التفاضلية: $u_{R} + u_{R} = E$ ومنه: $u_{R} + u_{R} = E$ أي: $u_{R} + u_{R} = E$ أي: $u_{R} + u_{R} = E$	
04	4×0.25		
	0.5	$\cdot [\tau] = \frac{[U][T]}{[I]} \cdot \frac{[I]}{[U]} = [T] \equiv s$:التحليل البعدي -4	
	0.5	$ au=1,2ms$: فيمته: $u_{_R}(au)=0,63u_{_{Rmax}}=2V$ فيمته:	
	0.75	$E = \frac{u_{Rmax} \cdot (R+r)}{R} = 4.8 \text{ V}$ و فيمة $L = \tau (R+r) = 18 \times 10^{-3} \text{ H}$: $L = \frac{18 \times 10^{-3} \text{ H}}{R}$	

العلامة		/ 12th a th 1 1 a bh	
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)	محاور موضوع
		التمرين الرابع: (04 نقاط)	
	3×0.25	أولاً: $1-$ المعاد $\sqrt{2}$ الزمنية: $mg=ma$ ومنه: $g=\frac{dv}{dt}=g$ إذن: $v=g\cdot t$ (مع تمثيل القوى)	
		(2) $ x = \frac{1}{2}gt^2 \text{(a)} v = \frac{dz}{dt} = gt \text{(b)} $	
	0.25	$v = \sqrt{2 gz} = 171,4 \ m \cdot s^{-1}$ ومنه: $v = \sqrt{2 gz} = 171,4 \ m \cdot s^{-1}$ ومنه: $v = \sqrt{2 gz} = 171,4 \ m \cdot s^{-1}$ ومنه: $v = \sqrt{2 gz} = 171,4 \ m \cdot s^{-1}$	
	0.5	$kg \cdot m^{-1}$. وحدثه: $k = \frac{[F]}{[v]^2} = \frac{[M] \cdot [L]}{[T]^2} \cdot \frac{[T]^2}{[L]^2} = \frac{[M]}{[L]}$ ومنه: $k = \frac{f}{v^2}$. وحدثه: $k = \frac{f}{v^2}$	
0.4	0.5	$\Pi = \rho Vg = \frac{\pi \rho D^3 g}{6} = 1.8 \times 10^{-4} N$: دافعة أرخميدس -2	
04	0.25	O $P = mg = 127,4 imes 10^{-3} N$. قوة الثقل	
	0.25	$\overrightarrow{\Pi}$ المقارنة: $P / \overline{\Pi}$ قوة الثقل أكبر بكثير من دافعة أرخميدس. يمكن إهمال	
	0.5	(مع تمثیل القوی) $\frac{dv}{dt} = A - Bv^2$ أي $\frac{dv}{dt} = g - \frac{k}{m}v^2$ ومنه: $mg - kv^2 = m\frac{dv}{dt}$ (مع تمثیل القوی)	
	0.25	\cdot $v_{lim}=\sqrt{rac{A}{B}}$: نكون $rac{dv}{dt}=0$ عند النظام الدائم	
	0.5	$k = \frac{mg}{v_{lim}^2} = 2.0 \times 10^{-4} kg / m \qquad \qquad 9 \qquad \qquad v_{lim} = 25 m / s \stackrel{-}{\Rightarrow}$	
	0.25	د- المقارنة: السرعة الأولى أكبر بكثير لأننا أهملنا قوة الإحتكاك مع الهواء.	
04	0.5 0.5 0.75 0.5 0.5	التمرين التجريبي: (04) -1 الرسم التخطيطي. -1 الرسم التخطيطي. -1 القياس يكون دوما بعد معايرة جهاز الـ pH متر: -1 نخرج المسبار من المحلول الخاص ثم نقوم بتنظيفه. -1 نخمس المسبار في المحلول الذي نريد قياس الـ pH له. -1 نرج المحلول بو اسطة مخلاط مغناطيسي بحذر 1 لا يلامس المسبار القطعة المغناطيسية. -1 نضع جهاز الـ 1 1 1 1 1 1 1 1 1 1	
	0.75	ر الحمص C_6H_5 ر C_2H_5 الحمص $\rho_H > -Log C_a = 0,7$ صعیف $ au_f < 1:$ يمكن استعمال $ au_f < 1:$	
		ملاحظة: يمكن قبول القياسات القريبة حدا مما سبق.	