

Pumpkin Seeds Dataset

Model Optimization: Remove outliers

Correctly classif	fied Ürgüp	Sivrisi:	79	
Incorrectly class	sified Ürg	üp Sivris	i: 40	
Correctly classi	fied Çerçe	velik: 28	1	
Incorrectly class	sified Çer	çevelik:	225	
рі	recision	recall	f1-score	support
Çerçevelik	0.56	0.88	0.68	321
Ürgüp Sivrisi	0.66	0.26	0.37	304
accuracy			0.58	62!
macro avg	0.61	0.57	0.53	62!
weighted avg	0.61	0.58	0.53	62!

Testing model	with outlier	removal		
			==	
Correctly clas	sified Ürgüp	Sivrisi:	65	
Incorrectly cl	assified Ürg	üp Sivris	i: 31	
Correctly clas	sified Çerçe	velik: 29	6	
Incorrectly cl	assified Çer	çevelik:	213	
	precision	recall	f1-score	support
Çerçevelik	0.58	0.91	0.71	327
Ürgüp Sivrisi	0.68	0.23	0.35	278
accuracy			0.60	605
macro avg	0.63	0.57	0.53	605
weighted avg	0.63	0.60	0.54	605
Matthews Coef	ficient: 0.1	896064921	3208658	

Model Optimization: Scaling Data

Testing model without scaling

Correctly classified Ürgüp Sivrisi: 79

Incorrectly classified Ürgüp Sivrisi: 40

Correctly classified Çerçevelik: 281 Incorrectly classified Çerçevelik: 225

	precision	recall	f1-score	support
Çerçevelik	0.56	0.88	0.68	321
Ürgüp Sivrisi	0.66	0.26	0.37	304
accuracy			0.58	625
macro avg	0.61	0.57	0.53	625
weighted avg	A 61	A 58	A 53	625

Matthews Coefficient: 0.17218803968747992

Testing model with scaling

Correctly classified Ürgüp Sivrisi: 269
Incorrectly classified Ürgüp Sivrisi: 20

Correctly classified Çerçevelik: 284
Incorrectly classified Çerçevelik: 52

	precision	recall	f1-score	support
Çerçevelik	0.85	0.93	0.89	304
Ürgüp Sivrisi	0.93	0.84	0.88	321
accuracy			0.88	625
macro avg	0.89	0.89	0.88	625
weighted avg	0.89	0.88	0.88	625

Matthews Coefficient: 0.7741229971114867

Model Optimization: Removing Features with Low Correlation

	r			
Correctly classi				
Incorrectly clas	sified Urg	üp Sivris	i: 40	
Correctly classi	fied Çerçe	velik: 28	1	
Incorrectly clas	sified Çer	çevelik:	225	
р	recision	recall	f1-score	support
Çerçevelik	0.56	0.88	0.68	321
Ürgüp Sivrisi	0.66	0.26	0.37	304
accuracy			0.58	625
macro avg	0.61	0.57	0.53	625
weighted avg	0.61	0.58	0.53	625

Correctly classi	fied Ürgüp	Sivrisi:	200	
Incorrectly clas	sified Ürg	üp Sivris	i: 49	
Correctly classi	fied Çerçe	velik: 27	2	
Incorrectly clas	sified Çer	çevelik:	104	
р	recision	recall	f1-score	support
Çerçevelik	0.72	0.85	0.78	321
Ürgüp Sivrisi	0.80	0.66	0.72	304
accuracy			0.76	625
macro avg	0.76	0.75	0.75	625
weighted avg	0.76	0.76	0.75	625

Regularization (C)

- Optimal C value was when C = 9.0
- Value was increased from the default (1.0) so the data points would be classified more accurately
 - Too much of an increase can cause overfitting
- Cleaning the data allows the C value to remain relatively small while still producing accurate results

Kernel & Gamma

- Combining the optimal C value of 9.0, various kernels were explored to see which one gave the most optimal model (linear, rbf, and polynomial)
- Gamma was also looked at (default value="scale")
 - The most optimum range that resulted in higher scores are 1.0-1.1
 - o Gamma value is important in helping to define how strong of a fit is used in kernels
 - However, is only applicable for RBF and Polynomial
- The following results are what were the most optimum values for each kernel:
 - o RBF (gamma = 1.0, C=9.0)
 - Linear()
 - Polynomial(degree=3, gamma=1.1, C=9.0)

ROC AUC

Default parameters:

- kernel = 'rbf'
- C = 1
- gamma = 'scale'

Before standardizing

After standardizing

cleaning and scaling

```
data = pd.read excel("https://github.com/plmorris/XGBoost-Group-5/blob/main/Implementation/Pumpkin Seeds Dataset.xlsx?raw=true")
# remove low correlation features
data high corr = data.loc[:,['Major Axis Length', 'Eccentricity', 'Roundness', 'Aspect Ration', 'Compactness', 'Class']]
# remove outliers for each column if value is greater than 3 standard deviations from the mean
# change each outlier to np.nan
for column in data_high_corr.columns:
    if (pd.api.types.is_numeric_dtype(data_high_corr[column])):
        mean = data high corr[column].mean()
        std = data high corr[column].std()
        data high corr[column] = data high corr[column].apply(lambda x: np.nan if (x < (mean - 3 * std)) | (x > (mean + 3 * std)) else x)
# create new df with outlier rows cleaned
data clean = data high corr.dropna()
data clean = pd.get dummies(data clean,columns=['Class'],drop first=True)
# separate X and y
y = data clean["Class Ürgüp Sivrisi"]
X = data clean.drop(["Class Ürgüp Sivrisi"], axis=1)
# train-test split with scaling
X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.25)
scaler=StandardScaler()
scaler.fit(X train)
X train=scaler.transform(X train)
X_test=scaler.transform(X_test)
```

ROC AUC

rbf kernel (gaussian)

linear kernel

cubic polynomial kernel

sigmoid kernel

References

Dataset from Kaggle

https://www.kaggle.com/datasets/muratkokludataset/pumpkin-seeds-dataset

Research Product

https://github.com/adamwbrew/Research-and-Implementation-of-Machine-Learning-Algorithms

Scikit Learn

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html