

گزارش آزمایش چهارم طراحی سیستمهای دیجیتال گروه شش

اعضا:

احمد سليمي

همیلا میلی

درنا دهقانی

شرح آزمایش

هدف این آزمایش طراحی پشتهای (LIFO) به عمق ۸ و پهنای ۴ بیت است.

ورودىها:

- Data In: مقدار ورودی ۴ بیتی که میخواهیم وارد پشته کنیم.
 - Push: دستور وارد کردن داده به پشته.
 - Pop: دستور خروج داده از پشته.
 - Clk •
 - RstN •

خروجيها:

- Data Out: مقدار خروجی پشته در صورت وجود و اعمال ورودی Push.
 - Full: خروجی که مقدار یک آن بیانگر پر بودن پشته است.
 - Empty: خروجي كه مقدار صفر آن بيانگر خالي بودن پشته است.

در این آزمایش تنها از دو ماژول استفاده میکنیم که یکی از آنها test bench میباشد.

ماژول Stack

این ماژول، ماژول اصلی آزمایش است و ورودی ها و خروجی های آن قبلاً ذکر شدهاند.

چون این مدار بر پایه کلاک کار میکند، برای مقداردهی ها باید از always block استفاده کنیم که به دو سیگنال حساس است:

- لبه بالارونده كلاك.
- لبه پایین رونده RstN که همان reset کردن مدار است.

از دو متغیر برای شبیه سازی پشته کمک میگیریم که چون در always block استفاده می شوند، از جنس reg هستند:

- که نشان دهنده آخرین خانه خالی پشته است و مقدار اولیه آن برابر با ۱۰ است.
- mem که یک آرایه به طول ۸ است که نشان دهنده عمق پشته می باشد. هم چنین هر عضو آرایه ۴ بیت است
 که بیانگر پهنای پشته است. این متغیر، همان پشته است.

در صورت صفر شدن مقدار RstN، به شكل آسنكرون تمام مقداردهي ها به حالت اوليه باز مي گردند.

در غیر این صورت، با بالا رفتن لبه کلاک مدار شروع به کار میکند:

- اگر ورودی Push فعال شود، در صورت پر نبودن پشته (صفر بودن Full)، مقدار Data_In در اولین خانه خالی پشته که با اندیس a مشخص می شود، قرار می گیرد و در صورت برابر بودن a با ۷، یعنی آخرین خانه پشته، خروجی Full برابر با ۱ می شود. سپس این اندیس به علاوه یک و مقدار خروجی Full برابر صفر می شود.
- اگر ورودی Pop فعال شود، در صورت خالی نبودن پشته (صفر بودن Empty)، مقدار آخرین خانه پر پشته که با اندیس a-1 مشخص می شود در خروجی Data_Out قرار می گیرد و در صورت برابر بودن a با ۱، یعنی خالی شدن اولین خانه پشته، خروجی Empty برابر با ۱ می شود. سپس این اندیس منهای یک می شود و مقدار خروجی Full برابر با صفر می شود.
 - در غیر این دو صورت، اتفاق خاصی نمیافتد و خروجیها ثابت میمانند.

در سنتز مدار، چون میخواهیم به ازای هر یک از بیتهای Full, Empty, Data_Out یک فلیپفلاپ داشته باشیم، از مقداردهی non-blocking استفاده میکنیم.

کد وریلاگ این ماژول به شرح زیر است:

```
module stack (
    input Clk,
    input RstN,
    input [3:0] Data_In,
    input Push,
    input Pop,
    output reg [3:0] Data_Out,
    output reg Full,
    output reg Empty
);

reg [3:0] mem [7:0];
reg [3:0] a = 0;

always @(posedge Clk or negedge RstN) begin
    if (~RstN) begin
    a <= 0;
    Empty <= 1;
    Full <= 0;
    end
    else if (Push & ~Full) begin
    if (a == 7) Full <= 1;
    mem[a] <= Data_In;
    a <= a + 1;
    Empty <= 0;
    end
    else if (Pop & ~Empty) begin
    if (a == 1) Empty <= 1;
    Data_Out <= mem[a-1];
    a <= a-1;
    Full <= 0;
    end
end
end
endmodule</pre>
```

ماژول Stack TB

از این ماژول برای بررسی کارکرد مدار استفاده می شود. کد وریلاگ آن به شرح زیر است:

Waveform

حاصل waveform شبیه سازی test bench این مدار به شکل زیر است:

- 🐔	•	Msgs																
	/stack_TB/clk	1																
	/stack_TB/reset	0																
	/stack_TB/push	1																
	/stack_TB/pop	1																
+	/stack_TB/data_in	0111	0010	0011	0100	0101	0110	0111	1000	1001	1010	0000	0001	0010	0011	0100	0101	0110
	/stack_TB/full	St0																
	/stack_TB/empty	St1																
	/stack_TB/data_out	0010										1001	(1000	0111	0110	0101	0100	\perp

با توجه به حاصل شبیهسازی، به محض رسیدن تعداد دادههای درون پشته به ۸، خروجی Full برابر با ۱ میشود و پس از آن دیگر مقداری وارد پشته نمیشود، تا زمانیکه ورودی Pop برابر با ۱ شود و سپس Full برابر با ۰ شود.

\$ ≥		Msgs															
4	/stack_TB/clk	1															
4	/stack_TB/reset	0															
4	/stack_TB/push	1															
4	/stack_TB/pop	1															
	/stack_TB/data_in	0111	0111	1000	1001	1010	0000	0001	0010	0011	0100	0101	0110	0111	1000	0111	
4	/stack_TB/full	St0															
4	/stack_TB/empty	St1															
	/stack_TB/data_out	0010					1001	1000	(0111	0110	0101	0100	0011	0010			

در شبیهسازی موفق نیز با Pop کردنهای متوالی هر بار مقدار آن در Data_Out قرار میگیرد. پس از ۸ بار Pop کردن، پشته خالی شده و خروجی Empty برابر با ۱ میشود.

سنتز

خلاصه سنتز مدار توسط كوارتوس به شرح زير است:

Flow Summary	
Flow Status	Successful - Mon Apr 12 20:13:56 2021
Quartus II 64-Bit Version	15.0.0 Build 145 04/22/2015 SJ Web Edition
Revision Name	lab4
Top-level Entity Name	stack
Family	Cyclone IV E
Total logic elements	59 / 6,272 (< 1 %)
Total combinational functions	45 / 6,272 (< 1 %)
Dedicated logic registers	42 / 6,272 (< 1 %)
Total registers	42
Total pins	14 / 92 (15 %)
Total virtual pins	0
Total memory bits	0 / 276,480 (0 %)
Embedded Multiplier 9-bit elements	0 / 30 (0 %)
Total PLLs	0 / 2 (0 %)
Device	EP4CE6E22C6
Timing Models	Final

Slow	Slow 1200mV OC Model Fmax Summary											
	Fmax	Restricted Fmax	Clock Name	Note								
1	484.26 MHz	250.0 MHz	Clk	limit due to minimum period restriction (max I/O toggle rate)								