More on Event-B: Relations

© Michael Butler

University of Southampton

January 9, 2013

Ordered Pairs and Cartesian Products

An ordered pair is an element consisting of two parts: a first part and a second part.

An ordered pair with first part x and second part y is written: $x \mapsto v$

The Cartesian product of two sets is the set of pairs whose first part is in S and second part is in T.

The Cartesian product of S with T is written:

Cartesian Products: Definition and Examples

 $\{ \{a\}, \{a,b\} \} \times \{1,2\} = ?$

Defining Cartesian product:

Predicate	Definition
$x \mapsto y \in S \times T$	$x \in S \land y \in T$

$$\{a, b, c\} \times \{1, 2\} = \{a \mapsto 1, a \mapsto 2, b \mapsto 1, b \mapsto 2, c \mapsto 1, c \mapsto 2, \}$$

 $\{a, b, c\} \times \{\} = ?$

Cartesian Product is a Type Constructor

 $S \times T$ is a new type constructed from types S and T.

Cartesian product is the type constructor for ordered pairs.

Given
$$x \in S$$
, $y \in T$, we have

$$x \mapsto y \in S \times T$$

$$\begin{array}{rclcrcl} 4 \mapsto 7 & \in & ? \\ & \{5,6,3\} \mapsto 4 & \in & ? \\ & \{ \ 4 \mapsto 8, \ 3 \mapsto 0, \ 2 \mapsto 9 \ \} & \in & ? \end{array}$$

Sets of Order Pairs

A database can be modelled as a set of ordered pairs:

```
directory = { mary \mapsto 287573,

mary \mapsto 398620,

john \mapsto 829483,

jim \mapsto 398620 }
```

directory has type

$$directory \in \mathbb{P}(Person \times PhoneNum)$$

Relations

A relation is a set of ordered pairs.

A relation is a common modelling structure so Event-B has a special notation for it:

$$T \leftrightarrow S = \mathbb{P}(T \times S)$$

So we can write:

$$directory \in Person \leftrightarrow PhoneNum$$

Do not confuse the arrow symbols:

- \leftrightarrow combines two sets to form a set.
- \mapsto combines two elements to form an ordered pair.

Domain and Range

- ► The domain of a relation R is the set of first parts of all the pairs in R, written dom(R)
- ► The range of a relation R is the set of second parts of all the pairs in R, written ran(R)

Predicate	Definition
$x \in dom(R)$	$\exists y \cdot x \mapsto y \in R$
$y \in ran(R)$	$\exists x \cdot x \mapsto y \in R$

$$dom(directory) = \{mary, john, jim\}$$

$$ran(directory) = \{287573, 398620, 829483\}$$

Telephone Directory Model

- Phone directory relates people to their phone numbers.
- Each person can have zero or more numbers.
- People can share numbers.

```
context PhoneContext
sets Person PhoneNum
end
```

```
machine PhoneBook
variables dir
invariants dir ∈ Person ↔ PhoneNum
```

initialisation
$$dir := \{\}$$

Extending the Directory

Add an entry to the directory:

```
 \begin{array}{ll} \textit{AddEntry} & \triangleq & \textbf{any} \ p, n \ \textbf{where} \\ & p \in \textit{Person} \\ & n \in \textit{PhoneNum} \\ & \textbf{then} \\ & \textit{dir} \ := \ \textit{dir} \cup \{p \mapsto n\} \\ & \textbf{end} \\ \end{array}
```

Relational Image

Assume
$$R \in S \leftrightarrow T$$
 and $A \subseteq S$

The relational image of set A under relation R is written

R[A]

Predicate	Definition
$y \in R[A]$	$\exists x \cdot x \in A \land x \mapsto y \in R$

$$\begin{array}{rcl} \textit{directory} &=& \{ \textit{ mary} \mapsto 287573, \\ & \textit{mary} \mapsto 398620, \\ & \textit{john} \mapsto 829483, \\ & \textit{jim} \mapsto 398620 \ \} \end{array}$$

$$directory[\{mary\}] = \{ 287573, 398620 \}$$

Modelling Queries using Relational Image

Determine all the numbers associated with a person in the directory:

```
GetNumbers \hat{=} any p, ns! where p \in Person ns! = dir[\{p\}] end
```

Determine all the numbers associated with a set of people:

```
 \begin{array}{ll} \textit{GetMultiNumbers} & \hat{=} & \textit{any } \textit{ps}, \textit{ns}! \textit{ where} \\ & \textit{ps} \subseteq \textit{Person} \\ & \textit{ns}! = \textit{dir}[\textit{ ps} \;] \\ & \textit{end} \\ \end{array}
```

Relational Inverse

Given $R \in S \leftrightarrow T$, the relational inverse of R is written

 R^{-1}

Predicate	Definition	
$y\mapsto x \in R^{-1}$	$x \mapsto y \in R$	

$$directory^{-1} = \{ 287573 \mapsto mary, \\ 398620 \mapsto mary, \\ 829483 \mapsto john, \\ 398620 \mapsto jim \}$$

$$directory^{-1}[\{398620\}] = \{ mary, jim \}$$

Inverse Queries

Return all the people associated with a number in the directory:

```
GetNames \hat{=} any n, ps! where n \in PhoneNum ps! = dir^{-1}[\ \{n\}\ ] end
```

Return all the people associated with a set of numbers:

```
 \begin{array}{ll} \textit{GetMultiNames} & \hat{=} & \textit{any ns, ps! where} \\ & \textit{ns} \subseteq \textit{PhoneNum} \\ & \textit{ps!} = \textit{dir}^{-1}[\textit{ ns }] \\ & \textit{end} \\ \end{array}
```

Domain Restriction

```
Given R \in S \leftrightarrow T and A \subseteq S,
the domain restriction of R by A is writen A \triangleleft R
```

Restrict relation R so that it only contains pairs whose first part is in the set A.

```
\begin{array}{ll} \textit{directory} &=& \{ \textit{ mary} \mapsto 287573, & \textit{mary} \mapsto 398620, \\ & \textit{ john} \mapsto 829483, & \textit{jim} \mapsto 398620 \ \} \\ \\ \{\textit{john}, \textit{jim}, \textit{jane} \} \lhd \textit{directory} &=& \{ \textit{john} \mapsto 829483, \\ & \textit{jim} \mapsto 398620 \ \} \end{array}
```

Domain Subtraction

```
Given R \in S \leftrightarrow T and A \subseteq S,
the domain subtraction of R by A is written A \triangleleft R
```

Remove those pairs from R whose first part is in A.

```
\{\textit{john}, \textit{jim}, \textit{jane}\} \lessdot \textit{directory} = \{ \textit{mary} \mapsto 287573, \\ \textit{mary} \mapsto 398620 \}
```

Domain and Range, Restriction and Substraction

Assume $R \in S \leftrightarrow T$ and $A \subseteq S$ and $B \subseteq T$

Predicate	Definition	
$x \mapsto y \in A \triangleleft R$	$x \mapsto y \in R \land x \in A$	domain restriction
$x \mapsto y \in A \triangleleft R$	$x \mapsto y \in R \land x \notin A$	domain subtraction
$x \mapsto y \in R \triangleright B$	$x \mapsto y \in R \land y \in B$	range restriction
$x \mapsto y \in R \triangleright B$	$x \mapsto y \in R \land y \notin B$	range subtraction

Removing Entries from the Directory

Remove all the entries associated with a person in the directory:

```
 \begin{array}{ll} \textit{RemovePerson} & \hat{=} & \textbf{any } p \textbf{ where} \\ & p \in \textit{Person} \\ & \textbf{then} \\ & \textit{dir} := \{p\} \lessdot \textit{dir} \\ & \textbf{end} \end{array}
```

Remove all the entries associated with a number in the directory:

```
RemoveNumber \hat{=} any n where n \in PhoneNum then dir := dir \triangleright \{n\} end
```

Relational Composition

Given $Q \in S \leftrightarrow T$ and $R \in T \leftrightarrow U$, the relational composition of Q and R is written Q; R

We have that

$$Q; R \in S \leftrightarrow U$$

Predicate	Definition
$x \mapsto z \in (Q;R)$	$\exists y \cdot x \mapsto y \in Q \land y \mapsto z \in R$

$$M = \{ a \mapsto I, b \mapsto m, c \mapsto n \}$$

$$N = \{ I \mapsto 4, n \mapsto 6, p \mapsto 8 \}$$

$$M : N = ?$$

Composition and Image

Given
$$Q \in S \leftrightarrow T$$
 and $R \in T \leftrightarrow U$ and $A \subseteq S$
$$(Q;R)[A] = R[Q[A]]$$

$$M = \{ a \mapsto I, b \mapsto m, c \mapsto n \}$$

$$N = \{ I \mapsto 4, n \mapsto 6, p \mapsto 8 \}$$

$$(M; N) [\{a, b\}] = ?$$

$$N[M[\{a, b\}]] = ?$$

Extend directory with friends

```
variables dir, friend invariants
```

```
friend \in Person \leftrightarrow Person
dir \in Person \leftrightarrow PhoneNum
```

Return the telephone numbers of all friends of p:

```
\begin{tabular}{ll} GetFriendNumbers & \hat{=} \\ & \textbf{any } p, ns! & \textbf{where} \\ & p \in Person \\ & ns! = (friend; dir)[\ \{p\}\ ] \\ & \textbf{end} \\ \end \\ \end
```

Recap

- Cartesian product is the type constructor for pairs of elements.
- A relation is a set of pairs.
- Range of a relation, domain of a relation.
- ▶ Relational image, relational inverse.
- Restriction and subtraction.
- Relational composition.