

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

mmn. xirenepalers.com

ADDITIONAL MATHEMATICS

4037/01, 0606/01

Paper 1

October/November 2009

MARK SCHEME

Maximum Mark: 80

IMPORTANT NOTICE

Mark Schemes have been issued on the basis of **one** copy per Assistant examiner and **two** copies per Team Leader.

1(i) $2a^3 - 7a^2 + 7a^2 + 16 = 0$	M1	M1 for use of $x = a$
leading to $a^3 = -8$, $a = -2$	A1	
leading to $u = -8$, $u = -2$	[2]	
(ii)		
$2\left(-\frac{1}{2}\right)^3 - 7\left(-\frac{1}{2}\right)^2 - 14\left(-\frac{1}{2}\right) + 16$	M1	M1 for substitution of $x = -\frac{1}{2}$
= 21	A1 [2]	
2 (i) (ii)	B1,B1	B1 for each matrix, must be in
$ \begin{pmatrix} 6 & 3 & 1 & 2 \\ 3 & 2 & 4 & 3 \\ 2 & 5 & 5 & 0 \\ 1 & 2 & 2 & 7 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 43 \\ 32 \\ 35 \\ 22 \end{pmatrix} $	[2]	correct order
	B2,1,0	-1 for each error
$(1 \ 2 \ 2 \ 7)(1) \ (22)$	[2]	
	M1	251.6
$3 \ 4(2k+1)^2 = 4(k+2)$	A1	M1 for use of ' $b^2 - 4ac$ ' Correct quadratic equation
$4k^2 + 3k - 1 = 0$	111	Correct quadratic equation
leading to $k = \frac{1}{4}, -1$	M1	M1 for correct attempt at solution
4,	A1	A1 for both l values
	[4]	
$4 (13-3y)^2 + 3y^2 = 43$	M1	M1 for eliminating one variable
(or $x^2 + \frac{(13-x)^2}{3} = 43$)		
$6(2y^2 - 13y + 21) = 0$	A1	A1 for correct quadratic
(or $2(2x^2-13x+20)=0$)	711	711 101 correct quadratic
(2y-7)(y-3)=0	N/1	M1 for coment attempt at coloring
(or (2x-5)(x-4)=0	M1	M1 for correct attempt at solving quadratic
$y = 3 \text{ or } \frac{7}{2} \left(x = \frac{5}{2} \text{ or } 4 \right)$	A1,A1	A1 for each correct pair
(or $x = 4$ or $\frac{5}{2}$ ($y = \frac{7}{2}$ or 3)	[5]	
$ \frac{2}{5} (i) (3 + \sqrt{2})^2 + (3 - \sqrt{2})^2 = 22 $	M1	M1 for use of Pythagoras
$AC = \sqrt{22}$	A 1	
110 - 722	A1 [2]	
$3-\sqrt{2}$	[4]	
(ii) $\tan A = \frac{3 - \sqrt{2}}{3 + \sqrt{2}}$	M1	M1 for correct ratio
$\frac{(3-\sqrt{2})(3-\sqrt{2})}{(3+\sqrt{2})(3-\sqrt{2})} = \frac{11-6\sqrt{2}}{7}$	M1, A1	M1 for rationalising
/(.)	[3]	

(°) 2 ² 10 0 0	M1	M1 for attempt to solve quadratic
6 (i) $3x^2 - 10x - 8 = 0$	IVII	M1 for attempt to solve quadratic
(3x+2)(x-4)=0		
2 4		A 1 6
critical values $-\frac{2}{3}$,4	A1	A1 for critical values
2		
$A = \{x : -\frac{2}{3} \le x \le 4\}$	A1	
3	[3]	
(ii)		
$B = \{x : x \ge 3\}$	B1	B1 for values of x that define B.
$A \cap B = \{x : 3 \le x \le 4\}$	B1	B1 for attempt to combine the sets
([2]	correctly and correct use of notation
7 (i) ${}^{13}C_8 = 1287$	M1, A1	M1 for correct C notation
$C_8 = 1287$	[2]	Wil for correct C notation
	[2]	
	D1	
(ii) 7 teachers, 1 student: 6	B1	
6 teachers, 2 students ${}^{7}C_{6} \times {}^{6}C_{2}$:105	B1	
, <u> </u>	B1	
5 teachers, 3 students ${}^{7}C_{5} \times {}^{6}C_{3}$:420		
531	B1	
	[4]	
8 (i) When $t = 0$, $N = 1000$	B1	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[1]	
dN		
$\frac{\mathrm{d}N}{\mathrm{d}t} = -1000k\mathrm{e}^{-kt}$	M1	M1 for differentiation
dt	1411	Wife for differentiation
when $t = 0$, $\frac{dN}{dt} = -20$ leading to	B1	AN
dt	ы	B1 for $\frac{dN}{dt} = -20$ stated
. 1		$\mathrm{d}t$
$k = \frac{1}{50}$	A1	
	[3]	
(iii) $500 = 1000e^{-kt}$	M1	M1 for attempt to formulate
		equation using half life
$t = -50 \ln \frac{1}{2}$ leading to 34.7 mins	M1	M1 for a correct attempt at solution
$t = -30 \text{ m} - \frac{1}{2}$ leading to 34.7 mins	A1	P
	[3]	
9 (i) $20 \times -2(1-2x)^{19}$	B1,B1	B1 for 20 and $(1-2x)^{19}$
$\int (1)^{20} \langle -2(1-2x) \rangle$	ĺ	
	[2]	B1 for -2
	[-]	
(ii) 12 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1	M1	M1 for attempt to differentiate a
(ii) $x^2 \frac{1}{x} + 2x \ln x$		product.
, A	B1	-
	A1	B1 for $\frac{1}{r}$
		X
	[3]	
(***)		3.61.6
(iii)	M1	M1 for attempt to differentiate a
$x(2\sec^2(2x+1)) - \tan(2x+1)$	B1	quotient.
$\frac{x(2\sec^2(2x+1))-\tan(2x+1)}{x^2}$	A1	B1 for differentiation of $tan(2x+1)$
X	[3]	
1	F. 1	1

	1	
10 (i) $\frac{dy}{dx} = 9x^2 - 4x + 2$ at $P \text{ grad} = 7$ tangent $y - 3 = 7(x - 1)$	M1 A1 M1 A1	M1 for differentiation and attempt to find gradient M1 for attempt to find tangent equation, allow unsimplified
(ii) at Q , $7x-4=3x^3-2x^2+2x$		
leading to $3x^3 - 2x^2 - 5x + 4 = 0$	M1	M1 for equating tangent and curve
$(x-1)(3x^2+x-4)-0$	B1,M1	equations B1 for realising $(x-1)$ is a factor
(x-1)(3x+4)(x-1)=0	M1	and attempt to factorise M1 for factorisation and attempt to
leading to $x = -\frac{4}{3}, y = -\frac{40}{3}$	A1	solve quadratic A1 for both
3 3	[5]	
11 (a) $\tan \theta + \cot \theta = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}$ $= \frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta \sin \theta}$ $= \frac{1}{\cos \theta \sin \theta}$	M1 M1	M1 for attempt to get in terms of sin and cos and attempt to get one fraction M1 for use of identity
$=\cos \operatorname{ec} \theta \sec \theta$	A1 [3]	
(b)(i) $\tan x = 3\sin x$ $\frac{\sin x}{\cos x} = 3\sin x$ $\sin x - 3\sin x \cos x = 0$	M1	M1 for use of $\tan x = \frac{\sin x}{\cos x}$ and correct attempt to solve
leading to $\cos x = \frac{1}{3}$, $\sin x = 0$ $x = 70.5^{\circ}, 289.5^{\circ}$ and $x = 180^{\circ}$	A1√A1 B1	$\sqrt{A1}$ on their <i>x</i> = 70.5° B1 for <i>x</i> = 180°
(ii) $2\cot^2 y + 3\csc y = 0$ $2(\csc^2 y - 1) + 3\csc y = 0$	[4] M1	M1 for use of correct identity
$2 (\csc y - 1) + 3 \cos \cot y - 0$ $2 \cos \cot^2 y + 3 \cos \cot y - 2 = 0$ $(2 \cos \cot y - 1) (\cos \cot y + 2) = 0$ leading to $\sin y = -\frac{1}{2}$, $y = \frac{7\pi}{6}$, $\frac{11\pi}{6}$	M1 M1 A1,A1	M1 for attempt to solve quadratic M1 for dealing with cosec
$\frac{1}{2}$, $\frac{1}{6}$, $\frac{1}{6}$	[5]	

12 EITHER		
(i) $\pi r^2 h = 1000$, leading to	M1	M1 for attempt to use volume
$h = \frac{1000}{\pi r^2}$	A 1	
πr^2	A1 [2]	
(**) A 2 1 2 2	[2]	
(ii) $A = 2\pi rh + 2\pi r^2$ leading to given answer	M1	M1for attempt to use surface area
_ = =	A1	GIVEN ANSWER
$A = 2\pi r^2 + \frac{2000}{r}$	[2]	
(iii) $\frac{dA}{dr} = 4\pi r - \frac{2000}{r^2}$	M1	M1 for attempt to differentiate and
$\frac{d\mathbf{n}}{dr} = 4\pi r - \frac{1}{r^2}$	A1	set to 0
when $\frac{dA}{dr} = 0$, $4\pi r = \frac{2000}{r^2}$	DM1	DM1 for solution
leading to $r = 5.42$	A1	
	[4]	
(iv) $\frac{d^2A}{dr^2} = 4\pi + \frac{4000}{r^3}$	M1	M1 for second derivative method or
dr^2 r^3	1,11	gradient method'
+ ve when $r = 5.42$ so min value		
+ ve when $r = 3.42$ so min value	A1	A1 for minimum, can be given if r
$A_{\min}=554$	A1	incorrect but + ve
	[3]	
12 OR (i) $y = x + \cos 2x$	M1	M1 for attempt to differentiate
$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 - 2\sin 2x$	A 1	
	A1	
when $\frac{dy}{dx} = 0$, $\sin 2x = \frac{1}{2}$	M1	M1 for setting to 0 and attempt to
<u>u</u> x <u>2</u>		solve
leading to $x = \frac{\pi}{12}, \frac{5\pi}{12}$	M1	M1 for correct order of operations
12 12	A1,A1	
(ii) Area = $\int_{12}^{\frac{5\pi}{12}} x + \cos 2x dx$	[6]	
-	M1	M1 for attempt to integrate
$\frac{\pi}{12}$		
$= \left[\frac{x^2}{2} + \frac{1}{2}\sin 2x\right]_{\frac{\pi}{12}}^{\frac{5\pi}{12}}$		
$= \left \frac{\pi}{2} + \frac{1}{2} \sin 2x \right _{\pi}$	A1,A1	A1for each term correct
12	DM1	DM1 for correct use of limits
$=\frac{\pi^2}{12}$		(Trig terms cancel out)
12	A1	
	[5]	