

Beyond Retrieval: A Study of Using LLM Ensembles for Candidate Filtering in Requirements Traceability

Dominik Fuchß, Stefan Schwedt, Jan Keim, Tobias Hey

01/09/2025

Idea: Small LLMs to *lightweightly* filter all requirement pairs

Evaluation: Reduction of Search Space & Maintaining Recall

Retrieved combinations + Recall per project

Mode

Gemma-2:2b

Gemma-2:9b

Phi-4:14b

Mistral-Nemo:12b

01/09/2025

Evaluation: Comparison to State of the Art Approaches

- Approaches for Comparison
 - VSM: IR with similarity threshold
 - LSI: IR with similarity threshold
 - Embeddings: IR with Top-K
 - LiSSA: RAG-based with Top-K
- Metrics
 - F₁-score (esp. full automation)
 - F₂-score (esp. semi-automatic)

Approach	F ₁ -score	F ₂ -score
VSM _{GO}	.27	.34
LSI _{GO}	.23	.33
Embeddings _{GO}	.40	.50
LiSSA (GPT-4o)	.50	.51
Majority Voting	.18	.34
Chaining	.28	.45
Chaining + GPT-4o	.34	.50

Conclusion

- Problem: "guessing" thresholds and good "k"s for IR is hard / project-dependent
- Approach: Use small LLMs to reduce search space while maintaining recall
- Results: Ensembles of small LLMs ...
 - can filter non-linked candidate pairs
 - can outperform classical methods like VSM / LSI
 - do not outperform embedding-based top-k approaches
 - have higher computational costs, but no thresholds
 - → trade-off decisions

Backup

Evaluation: Reduction of Search Space & Maintaining Recall

Evaluation: Comparison to State of the Art Approaches

- Approaches for Comparison
 - VSM: IR with similarity threshold
 - LSI: IR with similarity threshold
 - Embeddings: IR with Top-K
 - LiSSA: RAG-based with Top-K
- Metrics
 - Precision
 - Recall
 - F₁-score (esp. full automation)
 - F₂-score (esp. semi-automatic)

Approach	Precision	Recall	F ₁ -score	F ₂ -score
VSM _{GO}	.22	.56	.27	.34
LSI _{GO}	.17	.61	.23	.33
Embeddings _{GO}	.30	.61	.40	.50
LiSSA (GPT-40)	.52	.52	.50	.51
Majority Voting	.10	.95	.18	.34
Chaining	.18	.88	.28	.45
Chaining + GPT-4o	.25	.77	.34	.50

Research Questions

RQ1:

To what extent does the **performance** of IR techniques for TLR is **affected by thresholds** or **top-k**?

RQ2:

To what extent can **small LLMs** effectively **reduce the search space** for inter-requirements traceability?

RQ3:

How does an LLM **ensemble compare** to **existing** retrieval-based methods for TLR?

