肺腺癌病理切片影像之腫瘤氣道擴散偵測競賽 II:運用影像分割作法於找尋STAS

壹、環境

● 作業系統: Ubuntu 18.04.6 LTS

語言: Python 3.8.12GPU: NVIDIA-RTX2080TI

• GPU Driver Version: 440.33.01

• CUDA Version: 10.2

● 套件(函式庫):mmdetection

● 預訓練模型:

CBNetV2中的Improved HTC模型, backbone為swin transformer,使用dual backbone方式訓練,表格1為模型細節,以下也附上模型的checkpoint 和configuration。

■ 預訓練 checkpoint

■ 預訓練使用的configuration

表格 1模型細節

Backbone	Lr Sc hd	box mAP (minival/ test-dev)	mask mAP (minival/ test-dev)	#params
DB-Swin-B	20e	58. 4/58. 7	50.7/51.1	235M

● 額外資料集: pretrain on ImageNet-22k

貳、演算方法與模型架構

【模型架構1: CBNetV2】

在這一次的比賽中,我們使用了CBNetV2 神經網路架構進行訓練,這個架構的特色是能適用於各式現存模型,將他們進行組合共同訓練在影像識別任務上取得良好成效。我們在這個比賽選定 swin transformer 作為模型的backbone,CBNetV2會在訓練過程中組合多個相同的backbone,由其中一個 backbone 處於領導地位,偕同複數個支援地位的backbone一同訓練。領導和支援的backbone透過論文提出的dense higher-level composition方式連接,每個backbone淺層stage的輸出都將作為領導地位backbone深層stage的輸入的一環(圖1),配合論文提出的 assistant supervision方法有效提升領導backbone的預測表現。

圖 1 Dense Higher-Level Composition

【模型架構2: Hybrid Task Cascade】

在 CBNetV2 所提出的訓練模式之外,因為這次比賽提供的資料同時涵蓋了object detection 和 semantic segmentation 的標註,因此我們選定了能同時訓練的這兩項任務的 Hybrid Task Cascade 架構進行訓練。該架構融合了 Mask RCNN 和 Cascade RCNN 兩個模型的優點,提出漸進式細化的級聯管道,在訓練的每個 stage,邊界框迴歸和 segmentation 的預測都以多任務方式組合,同時不同 stage 的 mask 分支 (用來預測 semantic segmentation 的分支)之間用直接的信息流串聯。

【backbone 模型: swin transformer】

swin transformer 當初在設計的時候,主要是為了解決兩個問題。首先是物體尺寸變化大,在不同場景下 Vision Transformer 性能未必好,圖像分辨率高。第二個難點是像素點多,Transformer 基於全局自注意力的計算導致計算量較大。為了解決以上兩個問題,swin transformer是一種包含sliding window,具有層級設計的transformer結構。

圖 2 Swin Transformer示意圖

- 如圖2所示,swin transformer會對輸入圖片進行patch embedding,亦即先 將圖片切成一個個圖塊,並嵌入代表位置資訊的embedding。
- 每個stage由patch merging和多個block組成。
- patch merging模塊的功用為在每個stage開始時降低圖片分辨率。
- block具體結構如上面右圖所示,主要由LayerNorm, MLP, window attention n 和 shifted window attention組成。

參、資料處理

【調整輸入格式】

將資料轉換成coco data format (json),用segmentation提供的annotations,其中的bbox 設成segmentation 的min xy, max xy,接下來把object detection的資料轉換成mmdetection需要的middle format (pkl)來訓練。

使用convert_STAS.py 將改變資料格式,使用方式可以參閱我們 github repository的 README.md。

[Testing Time Data Augmentation]

(a) MultiScaleFlipAug

透過將同一張照片翻轉、縮放後投入模型得到複數預測結果,將所有預測結果匯總篩選出更高機率的預測框。

其中我們在multi scale augmentation上採用了以下5種scale的圖片 投入模型後的輸出彙總成最終結果。[(858, 471), (943, 518), (1000, 56 5), (1115, 612), (1200, 660)]。

(b) 將nms改成soft nms, 並將max bbox per image改成比賽方提出的200

肆、訓練方式

我們在這次比賽找到能同時訓練semantic segmentation 和 object dete ction任務的模型Hybrid Task Cascade,配合CBNetV2的訓練模式,達到了約0.88的預測成果。

Hybrid Task Cascade 架構具有兩個分支,一個負責 semantic segmentation,一個負責 object detection,為了充分利用該模型雙任務協同訓練的特長,我們將 semantic segmentation 標註中的每一個病變的上下左右界找出來,創造出與 semantic segmentation 標註對應的bounding box投入object detection分支。我們訓練了約50個epoch,其中learning rate初始值為5e-5,分別第6、第10 epoch會乘上0.1變小。

伍、分析與結論

我們在 CBNetV2 預設的參數配置之上,調整以下超參數,觀察結果決定最終配置。

【針對object detection分支修改anchor box ratio】

(a) 更改anchor box ratio

我們認為更多樣的 anchor box ratio 能更有效地捕捉不同長寬比的病變部分,因此我們將anchor box ratio的數量從 3 個改成 5 個,並將標記資料的 anchor box ratio 從小到大排列取第 [16.6%, 33.3%, 50.0%, 66.7%, 83.3%] 位置的數值,其分別為 [0.78, 0.92, 1.0, 1.2, 1.41]。

(b) anchor box size

我們統計了所有 bounding box 的 hegiht 、width 的數量,以此獲得 bounding box 的大小分布。如表格 2×3 所顯示。我們發現大多數的bounding box 長寬大小都集中在100左右。在height 的統計中,height 為100單位長度的bounding box 總共佔據了84%。而 width 為 100 單位長度的bounding box 總共佔據了84%。因為發現多數train data中的bbox size偏小,所以我們將base size從8改成4,更好地適應這次的任務。

表格 2 bounding box width frequency

大小	100	200	300	400	500	600	700	800以上
數量	1532	929	205	74	13	17	8	2
比例	0. 550	0. 333	0.073	0.026	0.004	0.006	0.002	<0.001

表格 3 bounding box height frequency

大小	100	200	300	400	500	600	700	800
數量	1628	891	163	55	23	15	5	2
比例	0.584	0.319	0.058	0.019	0.008	0.005	0.001	<0.001

另外,為了設計anchor size我也統計了(height + width /2)後各百分位數的值。

[Loss]

在CBNetV2中,針對Hybrid Task Cascade 這一模型,預設的loss type為GioU。我們在嘗試了CioU、FocalEIoU、FocalCIoU等等的Loss後,使用CioU作為最終定案。

我們的實驗數據紀錄如下,實驗情境為以80%的資料訓練,20%的資料驗證。

(a)更改不同的 Loss

Loss 種類	表現
GIoU	0.930
CIOU	0.934
FocalEIoU	0. 933
FocalCIoU (gamma = 2, 加強好的bbox)	0. 934
FocalCIoU (gamma = 0.5, 加強難的bbox)	0.928

(b) 調整output roi head的loss weight

在模型的預設值中,各種針對不同大小的output roi head都權重皆為10.0,然而我們在分析預測結果後發現模型是判斷小物件時較不精準,因此嘗試將大的bounding box 權重改為5,小的改為20,以此讓模型側重小物件的訓練。但表現不如原先好,因此最後仍沿用舊的20。

(c) 採用OHEM sampler

比較了訓練過程使用random sampler和OHEM sampler的表現,我們選定OHEM更好地平衡正負樣本的比例,讓模型在訓練過程能專注於比較難的bbox。

(d)删去Loss function中預測「類別」的Loss

Object detection分支中, Loss function包含兩大部分,負責物件類別的classification loss和負責位置資訊的regression loss。因為在這次的比賽中,需要預測的物件僅有一類,因此我們移除classification loss。而在Hybrid Task Cascade的架構下,segmentation分支原本就不包含classification loss,故維持不變。

【Training Time Data Augmentation】

- (a) 基本資料擴增
 - multiscale image size: [(376, 686), (520, 950)]
 - randomflip:機率:0.5
 - 標準化
 - mean=[123, 675, 116, 28, 103, 53]
 - std=[58.395, 57.12, 57.375]

(b) albumentation

因為發現圖片間色調有明顯改變,因此我們增加了color jitter,也使用一些blur等技巧讓模型能適應不同圖片。以下是我們使用的配置。

- RandomBrightnessContrast
 - 機率:0.1
 - 亮度範圍: [0.1, 0.3],
 - 對比範圍: [0.1, 0.3]
- 兩種不同顏色變換模式隨機擇一
 - RGBShift
 - ◆ r shift limit=10
 - ◆ g_shift_limit=10
 - ♦ b shift limit=10
 - HueSaturationValue
 - ♦ hue shift limit=20
 - sat_shift_limit=30
 - val_shift_limit=20
- 三種不同模糊模式隨機擇一
 - Blur, blur_limit=3
 - MedianBlur, blur limit=3
 - MotionBlur, blur_limit=6

(c) Mosaic and mixup: 0.2

我們在借鑒了yoloV4的論文後,決定嘗試該篇論文使用過的這兩個資料擴增技巧,成功提升了我們的模型表現。

- Mosaic
 - img scale=(942, 1716)

- pad_val=114.0
- 機率=0.2
- MixUp
 - img_scale=(942, 1716)
 - ratio_range=(0.8, 1.6)
 - pad_va1=114. 0
 - 機率=0.2

【成功案例展示】

semantic segmentation的模型預測的結果以藍色表示,ground truth 以綠色表示,而bounding box皆為預測結果

【透過案例分析潛在問題】

我們發現儘管我們嘗試了test time augmentation輔助邊緣物件的偵測,在某些的結果圖片當中,位於角落的腫瘤組織可能會獲得較低的信心,這暗示了模型可能若篩選標準再嚴格些,邊緣物件可能會被忽略。如圖5當中左下角的區域。

從圖6右上角的預測結果可以觀察出,許多預測框重疊比例高,未來或許 能調整NMS threshold更細緻地篩除冗餘預測結果。

分割結果當中有一類腫瘤組織是較難分割出來的,例如圖6所示,腫瘤與 附近的原有組織沾黏在一起、導致辨識效果下降。顏色上無明顯的色差也是導致 分割效果大打折扣的其中一個因素。如若未來要提升辨識效果,我們認為可以針 對腫瘤邊緣、沾黏嚴重的邊緣加以更詳細的標註與圖像處理。

semantic segmentation的模型預測的結果以藍色表示, ground truth 以綠色表示, 而bounding box皆為預測結果

陸、雲端使用 未使用

柒、程式碼

https://github.com/Howard-Hsiao/AI-CUP_stas_semantic_segmentation.git,使用方式請詳閱 README.md

捌、使用的外部資源與參考文獻

- Solovyev, R., Wang, W., & Gabruseva, T. (2021). Weighted boxes fus ion: Ensembling boxes from different object detection models. Image and Vision Computing, 107, 104117.
- Liu, Y., Wang, Y., Wang, S., Liang, T., Zhao, Q., Tang, Z., & Ling, H. (2020, April). Cbnet: A novel composite backbone network arc hitecture for object detection. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 07, pp. 11653-11660).
- Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., ... & Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 10012-10022).
- Liang, T., Chu, X., Liu, Y., Wang, Y., Tang, Z., Chu, W., ... & Ling, H. (2021). Cbnetv2: A composite backbone network architecture for object detection. arXiv preprint arXiv:2107.00420.

聯絡資料

隊伍

隊伍名稱	Private leaderboard成績	Private leaderboard名次
TEAM_1821	0. 88278	40/307

隊員(隊長請填第一位)

4 X (4 K 3 X 7						
姓名 (中英皆需填寫)	學校系所	電話	E-mail			
蕭昀豪 (YUN-HAO, HSIAO)	國立臺灣大學資訊網路 與多媒體研究所	0963-09 8-836	keepchangingtobe@gmail.			
林揚昇 (YANG-SHENG, LIN)	國立臺灣大學資訊工程 研究所	0975-97 5-176	jason27146913@gmail.com			
陳明心 (MING-HSIN, CHEN)	國立成功大學人工智慧 機器人碩士學位學程	0906-52 1-060	travis.xin@gmail.com			

指導教授

若為「連結課程」的課堂作業或期末專題,請填授課教師,以利依連結課程彙 整。

若非「連結課程」,但有教授實際參與指導,請填寫該位教授。

若以上兩者皆非,可不予填寫。

教授姓名	課程	課號	學校系所	E-mail