MRAC vstupno-výstupný

Obsah

1	SPR prenosové funkcie, MKY lemma	1
1.1	Striktne pozitívne reálne prenosové funkcie	1
1.2	Meyerova-Kalmanova-Yakubovichova Lemma	2
2	Adaptačná odchýlka	2
2.1	Model sústavy a referenčný model	
2.2	Zákon riadenia	3
2.3	Rovnica adaptačnej odchýlky	3
3	Zákon adaptácie pri $n^* = 1$	4
4	Zákon adaptácie pri $n^* = 2$	7
4.1	Priamočiary postup	7
4.2	Metóda doplnenej odchýlky	9
4.2.1	Prvá možnosť	10
[.2.2]	Druhá možnosť	10
5	Otázky a úlohy	12

V tejto časti odvodíme adaptívny algoritmus riadenia, ktorý sa zaraďuje do triedy priame adaptívne riadenie. Pripomeňme priame adaptívne riadenie:

Model sústavy je parametrizovaný pomocou ideálnych parametrov zákona riadenia

Model sústavy je parametrizovaný pomocou ideálnych parametrov zákona riadenia. Pretože tieto parametre sú neznáme, sú priebežne identifikované - adaptované. Výstupom zákona adaptácie sú priamo parametre zákona riadenia.

Pri odvodení zákona adaptácie sa v tejto časti bude využívať Ljapunovova priama metóda.

1 SPR prenosové funkcie, MKY lemma

1.1 Striktne pozitívne reálne prenosové funkcie

Pojem Pozitívne reálna (PR) a Striktne pozitívne reálna (SPR) prenosová funkcia zohráva dôležitú úlohu v analýze stability nie len adaptívnych systémov [1]. Je preto dôležité disponovať kritériom, ktoré umožní zistiť, či príslušná prenosová funkcia je SPR ([3] str. 164).

Podľa definície 3.5.1 a 3.5.2 v [1], str. 127, prenosová fukcia G(s) komplexnej premennej s sa nazýva pozitívne reálna (PR) ak

- 1. G(s) je reálna pre reálne s.
- 2. $\Re \{G(s)\} \ge 0$ pre všetky $\Re \{s\} > 0$.

Prenosová funkcia G(s) je striktne pozitívne reálna (SPR) ak existuje reálne kladné číslo ε také, že $G(s-\varepsilon)$ je PR.

Prakticky nie je jednoduché zistiť, či uvedené podmienky sú splnené. V nasledujúcom uvedieme ekvivalentné nutné a postačujúce podmienky pozitívnej reálnosti. Platnosť týchto podmienok sa dá ľahko overiť. Prenosová funkcia G(s) je PR keď vyhovuje všetkým nasledujúcim podmienkam

- 1. G(s) je reálna pre všetky reálne s.
- 2. Menovateľ G(s) má korene v ľavej polrovine komplexnej roviny alebo má reálne korene na imaginárnej osi.
- 3. $\Re \{G(j\omega)\} \ge 0$ pre všetky reálne ω .

Pre vyjadrenie reálnej časti funkcie $G(j\omega)$ je výhodné využiť, že platí:

$$\frac{a+jb}{c+jd} = \frac{(a+jb)(c-jd)}{(c+jd)(c-jd)} = \frac{(a+jb)(c-jd)}{c^2+d^2}$$

1.2 Meyerova-Kalmanova-Yakubovichova Lemma

Pre danú stabilnú maticu A, vektory b, c a skalár $d \ge 0$, platí nasledujúce: Ak

$$G(s) = d + c^{\mathsf{T}} (sI - A)^{-1} b$$

je SPR, potom pre danú maticu $L=L^{\mathsf{T}}>0$ existujú skalár v>0, vektor q a matica $P=P^{\mathsf{T}}>0$ také, že

$$A^{\mathsf{T}}P + PA = -qq^{\mathsf{T}} - vL$$
$$Pb - c = \pm q\sqrt{2d}$$

Tak znie veta, ktorá, ako sa ukáže, je veľmi užitočná pri návrhu MRAC využívajúceho len vstupno-výstupné informácie.

V tomto kurze ju využijeme v menej všeobecnom tvare: Nech je systém daný trojicou A_c , \overline{B}_c , C_c a A_c nech je stabilná matica. Ak $W_m(s) = C_c^{\mathsf{T}} \left(sI - A_c \right)^{-1} \overline{B}_c$ je SPR, potom platí, že

$$A_c^{\mathsf{T}} P + P A_c = -Q$$
$$P \overline{B}_c = C_c$$

kde $Q = Q^{\mathsf{T}} > 0$. A je to práve fakt, že ak je $W_m(s)$ SPR tak platí $P\overline{B}_c = C_c$, ktorý umožní zredukovať zákon adaptácie tak, že v ňom vystupuje len odchýlka výstupných veličín sústavy a referenčného modelu [2].

2 Adaptačná odchýlka

2.1 Model sústavy a referenčný model

Uvažujme sústavu opísanú prenosovou funkciou v tvare

$$\frac{y(s)}{u(s)} = k_p \frac{Z_p(s)}{R_p(s)} \tag{1}$$

kde $Z_p(s)$ je monický Hurwitzov polynóm stupňa $m, R_p(s)$ je monický polynóm stupňa n a k_p je tzv. $vysokofrekvenčné zosilnenie sústavy. Relatívny stupeň sústavy je <math>n^* = n-m$. Predpokladajme, že relatívny stupeň n^* sústavy je známy. Pre zjednodušenie tiež predpokladajme, že aj stupne n a m polynómov sú známe, pričom vo všeobecnosti známe nemusia byť. Koeficienty polynómov $Z_p(s)$ a $R_p(s)$ (parametre sústavy) sú neznáme. Hodnota a znamienko zosilnenia k_p nech je známe.

Sústava v tvare (1) môže byť reprezentovaná opisom v stavovom priestore v tvare

$$\dot{x} = Ax + bu \tag{2a}$$

$$y = c^{\mathsf{T}} x \tag{2b}$$

kde x je vektor stavových veličín sústavy a A, b, c^{T} sú matice (vektory) zodpovedajúcich rozmerov pričom hodnoty ich prvkov sú neznáme.

Cieľom riadenia je: Nech všetky signály uzavretého regulačného obvodu sú ohraničené a výstupná veličina y sústavy nech sleduje výstupnú veličinu referenčného modelu, ktorý je daný prenosovou funkciou v tvare

$$\frac{y_m(s)}{r(s)} = W_m(s) = k_m \frac{Z_m(s)}{R_m(s)}$$
(3)

kde k_m je vysokofrekvenčné zosilnenie, $Z_m(s)$ monický Hurwitzov polynóm stupňa m_m , $R_m(s)$ monický Hurwitzov polynóm stupňa n_m , pričom relatívny stupeň $n_m^* = n_m - m_m = n^*$. Všetky parametre (koeficienty polynómov a k_m) referenčného modelu sú známe, dané "projektantom".

2.2 Zákon riadenia

Ako bolo ukázané v predchádzajúcich témach predmetu, zákon riadenia v tvare

$$u = \Theta_1^{\star \mathsf{T}} \frac{\alpha(s)}{\Lambda(s)} u + \Theta_2^{\star \mathsf{T}} \frac{\alpha(s)}{\Lambda(s)} y + \Theta_3^{\star} y + \Theta_4^{\star} r \tag{4}$$

zabezpečí, že priebeh výstupnej veličiny y sa zhoduje s priebehom výstupnej veličiny referenčného modelu y_m ak sú parametre zákona vypočítané z podmienok zhody

$$\Theta_4^{\star} = \frac{k_m}{k_p} \tag{5a}$$

$$\Lambda = \Lambda_0 Z_m \tag{5b}$$

$$R_p\left(\Lambda - \Theta_1^{\star \mathsf{T}} \alpha(s)\right) - k_p Z_p\left(\Theta_2^{\star \mathsf{T}} \alpha(s) + \Theta_3^{\star} \Lambda\right) = Z_p \Lambda_0 R_m \tag{5c}$$

Pretože parametre sústavy (1) sú neznáme, zákon riadenia (4) nemožno použiť. Použije sa zákon riadenia v tvare

$$u = \Theta_1^{\mathsf{T}} \frac{\alpha(s)}{\Lambda(s)} u + \Theta_2^{\mathsf{T}} \frac{\alpha(s)}{\Lambda(s)} y + \Theta_3 y + \Theta_4 r \tag{6}$$

kde Θ_1 , Θ_2 , Θ_3 a Θ_4 sú odhadmi ideálnych parametrov Θ_1^* , Θ_2^* , Θ_3^* a Θ_4^* v každom čase t. Je potrebné nájsť zákon adaptácie, ktorý priebežne generuje (identifikuje) hodnoty $\Theta_1(t)$, $\Theta_2(t)$, $\Theta_3(t)$ a $\Theta_4(t)$.

Pomocné filtre vystupujúce v zákone riadenia v stavovom priestore sú (viď predch. článok)

$$\dot{\nu}_1 = \Lambda \nu_1 + qu \tag{7a}$$

$$\dot{\nu}_2 = \Lambda \nu_2 + q c^{\mathsf{T}} x \tag{7b}$$

a uvažovaný zákon riadenia je

$$u = \Theta_c^{\mathsf{T}} DX + \Theta_4 r \tag{8}$$

kde $\Theta_c = \begin{bmatrix} \Theta_3^{\star} & \Theta_1^{\mathsf{T}} & \Theta_2^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}, \, \Theta_4$ sú parametre zákona riadenia a

$$D = \begin{bmatrix} c^\mathsf{T} & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix}$$

2.3 Rovnica adaptačnej odchýlky

Pridanie pomocných filtrov (7) k stavovému opisu sústavy (2) vedie k "doplnenej sústave" (viď predch. časti predmetu) v tvare

$$\dot{X} = A_o X + B_c u \tag{9a}$$

$$y = C_c^{\mathsf{T}} X \tag{9b}$$

Parametrizácia doplnenej sústavy (9) pomocou ideálnych parametrov zákona riadenia sa dosiahne pripočítaním a odpočítaním ideálneho vstupného výrazu $B_c u^* = B_c \Theta_c^{*\mathsf{T}} DX + B_c \Theta_4^* r$

$$\dot{X} = A_o X + B_c u + B_c \Theta_c^{\star \mathsf{T}} D X + B_c \Theta_4^{\star} r - B_c \Theta_c^{\star \mathsf{T}} D X - B_c \Theta_4^{\star} r \tag{10a}$$

$$\dot{X} = \left(A_o + B_c \Theta_c^{\star \mathsf{T}} D\right) X + B_c \Theta_4^{\star} r + B_c \left(u - \Theta_c^{\star \mathsf{T}} D X - \Theta_4^{\star} r\right) \tag{10b}$$

Z predchádzajúcich častí vieme, že $A_c = A_o + B_c \Theta_c^{\star \mathsf{T}} D$, $\overline{B}_c = B_c \Theta_4^{\star}$ a tiež, že neminimálnu reprezentáciu referenčného modelu (3) možno (teoreticky) zapísať v tvare

$$\dot{X}_m = A_c X_m + \overline{B}_c r \tag{11a}$$

$$y_m = C_c^{\mathsf{T}} X_m \tag{11b}$$

Potom parametrizovaná doplnená sústava (10b) je

$$\dot{X} = A_c X + \overline{B}_c r + \overline{B}_c \frac{1}{\Theta_4^*} \left(u - \Theta_c^{*\mathsf{T}} D X - \Theta_4^* r \right)$$
 (12a)

$$y = C_c^{\mathsf{T}} X \tag{12b}$$

Definujme adaptačnú odchýlku v tvare

$$e = X - X_m \tag{13}$$

$$e_1 = y - y_m \tag{14}$$

potom:

$$\dot{X} - \dot{X}_m = A_c \left(X - X_m \right) + \overline{B}_c r - \overline{B}_c r + \overline{B}_c \frac{1}{\Theta_A^*} \left(u - \Theta_c^{\star \mathsf{T}} D X - \Theta_4^* r \right) \tag{15a}$$

$$y - y_m = C_c^\mathsf{T} \left(X - X_m \right) \tag{15b}$$

a teda

$$\dot{e} = A_c e + \overline{B}_c \frac{1}{\Theta_4^*} \left(u - \Theta_c^{\star \mathsf{T}} DX - \Theta_4^* r \right) \tag{16a}$$

$$e_1 = C_c^{\mathsf{T}} e \tag{16b}$$

čo je základná rovnica opisujúca dynamiku adaptačnej odchýlky v stavovom priestore, ktorú možno vyjadriť v tvare prenosovej funkcie uvážením, že platí

$$W_m(s) = C_c^{\mathsf{T}} \left(sI - A_c \right)^{-1} \overline{B}_c \tag{17}$$

Potom (16) v tvare prenosovej funkcie je

$$e_1 = W_m(s) \frac{1}{\Theta_4^*} \left(u - \Theta_c^{\star \mathsf{T}} DX - \Theta_4^* r \right) \tag{18}$$

Odhadom odchýlky e_1 nech je \hat{e}_1 , ktorá je závislá od odhadov $\Theta_c(t)$, $\Theta_4(t)$.

$$\hat{e}_1 = W_m(s)l\left(u - \Theta_c DX - \Theta_4 r\right) \tag{19}$$

kde l je odhadom hodnoty $\frac{1}{\Theta_4^*}$. Pretože uvažujeme zákon riadenia $u = \Theta_c^\mathsf{T} D X + \Theta_4 r$, tak $\hat{e}_1 = 0$; $\forall t$. To znamená, že rovnica (19) nie je potrebná pre identifikáciu neznámych parametrov Θ_c^{\star} , Θ_d^{\star} a ako chybu odhadu týchto parametrov možno použiť priamo rovnicu adaptačnej odchýlky (18).

3 Zákon adaptácie pri $n^* = 1$

Uvažujme, že relatívny stupeň sústavy (1) je $n^* = 1$. Prenosová funkcia referenčného medelu $W_m(s)$ sa volí tak, aby jej relatívny stupeň bol zhodný s relatívnym stupňom

sústavy. Relatívny stupeň referenčného modelu $n_m^* = 1$ umožňuje aby prenosová funkcia $W_m(s)$ bola navrhnutá ako striktne pozitívne reálna (SPR).

Nech $W_m(s)=C_c^{\sf T}\left(sI-A_c\right)^{-1}\overline{B}_c$ je SPR. Potom podľa MKY lemmy v časti 1.2 existuje taká matica P, pre ktorú platí

$$A_c^{\mathsf{T}}P + PA_c = -Q \tag{20a}$$

$$P\overline{B}_c = C_c \tag{20b}$$

kde $Q=Q^{\mathsf{T}}>0$. Táto skutočnosť sa v ďalšom využije pri voľbe kandidáta na Lyapunovovu funkciu.

Dosadením (8) za u do (18) máme

$$e_1 = W_m(s) \frac{1}{\Theta_4^*} \left(\theta_c^\mathsf{T} D X + \theta_4 r \right) \tag{21}$$

kde $\theta_c = \Theta_c - \Theta_c^{\star}$ a $\theta_4 = \Theta_4 - \Theta_4^{\star}$. Zavedením vektora chyby nastavenia parametrov zákona riadenia $\theta = \begin{bmatrix} \theta_c^{\mathsf{T}} & \theta_4 \end{bmatrix}^{\mathsf{T}}$ a signálneho vektora $\omega = \begin{bmatrix} (DX)^{\mathsf{T}} & r \end{bmatrix}^{\mathsf{T}}$ máme známy tvar adaptačnej odchýlky

$$e_1 = W_m(s) \frac{1}{\Theta_4^{\star}} \left(\theta^{\mathsf{T}} \omega \right) \tag{22}$$

alebo

$$\dot{e} = A_c e + \overline{B}_c \frac{1}{\Theta_A^*} \left(\theta^\mathsf{T} \omega \right) \tag{23a}$$

$$e_1 = C_c^{\mathsf{T}} e \tag{23b}$$

V tomto prípade rovnica (22) alebo (23) dáva do vzťahu chybu nastavenia parametrov zákona riadenia Θ a adaptačnú odchýlku e_1 cez SPR prenosovú funkciu.

Predpokladajme, že štruktúra zákona adaptácie je daná diferenciálnou rovnicou všeobecne zapísanou v tvare

$$\dot{\theta} = f(e_1, \omega) \tag{24}$$

teda aby zákon adaptácie bol funkciou len výstupnej adaptačnej odchýlky e_1 a nie aj jej derivácií e, pretože tieto nie sú dostupné, nakoľko nie sú dostupné stavové veličiny sústavy.

Zvoľme kandidáta na Ljapunovovu funkciu v tvare

$$V = e^{\mathsf{T}} P e + \left| \frac{1}{\Theta_4^{\star}} \right| \theta^{\mathsf{T}} \Gamma^{-1} \theta \tag{25}$$

kde $\Gamma>0$ je ľubovolná diagonálna matica, $\left|\frac{1}{\Theta_4^\star}\right|$ je absolútna hodnota prevrátenej hodnoty parametra Θ_4^\star a $P=P^\mathsf{T}>0$ spĺňa rovnice (20), ktoré vyplývajú z MKY lemmy.

$$\dot{V} = \dot{e}^{\mathsf{T}} P e + e^{\mathsf{T}} P \dot{e} + \left| \frac{1}{\Theta_4^{\star}} \right| \left(\dot{\theta}^{\mathsf{T}} \Gamma^{-1} \theta + \theta^{\mathsf{T}} \Gamma^{-1} \dot{\theta} \right) \tag{26}$$

Poznáme (23) odkiaľ $\dot{e}^{\mathsf{T}} = e^{\mathsf{T}} A_c^{\mathsf{T}} + \omega^{\mathsf{T}} \theta \frac{1}{\Theta_a^*} \overline{B}_c^{\mathsf{T}}$, po dosadení týchto výrazov:

$$\dot{V} = \left(e^{\mathsf{T}} A_c^{\mathsf{T}} + \omega^{\mathsf{T}} \theta \frac{1}{\Theta_{\Delta}^{\star}} \overline{B}_c^{\mathsf{T}} \right) P e + e^{\mathsf{T}} P \left(A_c e + \overline{B}_c \frac{1}{\Theta_{\Delta}^{\star}} \theta^{\mathsf{T}} \omega \right) + 2 \left| \frac{1}{\Theta_{\Delta}^{\star}} \right| \theta^{\mathsf{T}} \Gamma^{-1} \dot{\theta}$$
 (27)

$$\dot{V} = e^{\mathsf{T}} \left(-Q \right) e + 2e^{\mathsf{T}} P \overline{B}_c \frac{1}{\Theta_4^{\star}} \theta^{\mathsf{T}} \omega + 2 \left| \frac{1}{\Theta_4^{\star}} \right| \theta^{\mathsf{T}} \Gamma^{-1} \dot{\theta}$$
(28)

Pripomeňme, že platí $P\overline{B}_c = C_c$ (to vďaka tomu, že $W_m(s)$ je SPR), potom

$$\dot{V} = e^{\mathsf{T}} \left(-Q \right) e + 2e^{\mathsf{T}} C_c \frac{1}{\Theta_{\mathsf{A}}^{\star}} \theta^{\mathsf{T}} \omega + 2 \left| \frac{1}{\Theta_{\mathsf{A}}^{\star}} \right| \theta^{\mathsf{T}} \Gamma^{-1} \dot{\theta}$$
 (29)

Všimnime si, že $e^{\mathsf{T}}C_c = C_c^{\mathsf{T}}e = e_1$. Práve tento moment umožní aby zákon adaptácie $\dot{\theta} = f(e_1, \omega)$ bol funkciou e_1 a nie e. Časová derivácia \dot{V}

$$\dot{V} = e^{\mathsf{T}} \left(-Q \right) e + 2e_1 \frac{1}{\Theta_4^{\star}} \theta^{\mathsf{T}} \omega + 2 \left| \frac{1}{\Theta_4^{\star}} \right| \theta^{\mathsf{T}} \Gamma^{-1} \dot{\theta}$$
 (30)

Obr. 1: Bloková schéma MRAC so vstupno-výstupnou štruktúrou riadenia pri $n^{\star}=1$

bude záporne definitná ak

$$0 = 2e_1 \frac{1}{\Theta_4^{\star}} \theta^{\mathsf{T}} \omega + 2 \left| \frac{1}{\Theta_4^{\star}} \right| \theta^{\mathsf{T}} \Gamma^{-1} \dot{\theta}$$
 (31a)

$$2\left|\frac{1}{\Theta_4^{\star}}\right|\theta^{\mathsf{T}}G^{-1}\dot{\theta} = -2e_1\frac{1}{\Theta_4^{\star}}\Theta^{\mathsf{T}}\omega\tag{31b}$$

$$\left|\frac{1}{\Theta_4^{\star}}\right|\Gamma^{-1}\dot{\theta} = -e_1\operatorname{sign}\left(\frac{1}{\Theta_4^{\star}}\right)\left|\frac{1}{\Theta_4^{\star}}\right|\omega \tag{31c}$$

$$\Gamma^{-1}\dot{\theta} = -\operatorname{sign}\left(\frac{1}{\Theta_{4}^{\star}}\right)e_{1}\omega\tag{31d}$$

$$\dot{\theta} = -\text{sign}\left(\frac{1}{\Theta_4^{\star}}\right) e_1 \Gamma \omega \tag{31e}$$

Rovnako ako sme zaviedli vektor Θ , zavedieme aj vektor parametrov zákona riadenia

v tvare $\Theta = \begin{bmatrix} \Theta_c^\mathsf{T} & \Theta_4 \end{bmatrix}^\mathsf{T} = \begin{bmatrix} \Theta_3 & \Theta_1^\mathsf{T} & \Theta_2^\mathsf{T} & \Theta_4 \end{bmatrix}^\mathsf{T} \text{ a vektor } \omega \text{ možno zapísať v tvare } \omega = \begin{bmatrix} y & \nu_1^\mathsf{T} & \nu_2^\mathsf{T} & r \end{bmatrix}^\mathsf{T}. \text{ Potom zákon adaptácie je}$

$$\dot{\Theta} = -\operatorname{sign}\left(\frac{1}{\Theta_4^{\star}}\right) \Gamma e_1 \omega \tag{32}$$

a uvažovaný zákon riadenia možno zapísať v tvare $u = \Theta^\mathsf{T} \omega$.

4 Zákon adaptácie pri $n^* = 2$

4.1 Priamočiary postup

Uvažujme relatívny stupeň sústavy (1) $n^* = 2$. Prenosová funkcia referenčného medelu $W_m(s)$ sa volí tak, aby jej relatívny stupeň bol zhodný s relatívnym stupňom sústavy, teda $n_m^* = 2$. To ale znamená (bez dôkazu), že prenosová funkcia $W_m(s)$ nie je SPR. Preto nie je možné použiť predchádzajúci postup a je ho potrebné modifikovať.

Rovnica pre adaptačnú odchýlku (18)

$$e_1 = W_m(s) \frac{1}{\Theta_4^*} \left(u - \Theta_c^{\star \mathsf{T}} DX - \Theta_4^* r \right) \tag{33}$$

je stále platná (pri jej odvodení nehral relatívny stupeň sústavy žiadnu úlohu).

Využime identitu $(s + \rho)(s + \rho)^{-1} = 1$ kde ρ je ľubovolná kladná konštanta a prepíšme rovnicu (18) do tvaru

$$e_1 = W_m(s)(s+\rho)(s+\rho)^{-1} \frac{1}{\Theta_4^*} \left(u - \Theta_c^{*\mathsf{T}} DX - \Theta_4^* r \right)$$
 (34)

čo možno prepísať do tvaru

$$e_1 = W_m(s)(s+\rho)\frac{1}{\Theta_A^*} \left(u_f - {\Theta^*}^\mathsf{T} \omega_f \right) \tag{35}$$

kde sme zaviedli $u_f=(s+\rho)^{-1}u,~\omega_f=(s+\rho)^{-1}\omega$ a Θ^\star je rovnaký ako Θ avšak obsahuje ideálne parametre.

Nech prenosová funkcia $W_m(s)(s+\rho)$ je zvolená tak, že je to SPR prenosová funkcia. Potom rovnica

$$e_1 = W_m(s)(s+\rho)\frac{1}{\Theta_4^{\star}} \left(\theta^{\mathsf{T}}\omega_f\right) \tag{36}$$

kde $\theta = \Theta - \Theta^*$ dáva do vzťahu chybu nastavenia parametrov zákona riadenia θ a adaptačnú udchýlku e_1 cez SPR prenosovú funkciu. Reprezentácia rovnice (36) v stavovom priestore je

$$\dot{e} = A_c e + \overline{B}_c (s + \rho) \frac{1}{\Theta_A^*} \theta^\mathsf{T} \omega_f \tag{37a}$$

$$e_1 = C_c^{\mathsf{T}} e \tag{37b}$$

kde s teraz predstavuje operátor derivácie $\frac{\mathrm{d}}{\mathrm{d}t}$, rovnako ako bodka "" nad e. V ďalšom sa tiež stretneme s takýmto významom symbolu s, pričom na to nebudeme zvlášť upozorňovať, konkrétny význam symbolu s vyplynie z kontextu. Preto

$$se = A_c e + s \left(\overline{B}_c \frac{1}{\Theta_A^*} \theta^\mathsf{T} \omega_f \right) + \rho \left(\overline{B}_c \frac{1}{\Theta_A^*} \theta^\mathsf{T} \omega_f \right)$$
 (38a)

$$s\left(e - \overline{B}_c \frac{1}{\Theta_{\star}^{\star}} \theta^{\mathsf{T}} \omega_f\right) = A_c e + \rho \left(\overline{B}_c \frac{1}{\Theta_{\star}^{\star}} \theta^{\mathsf{T}} \omega_f\right)$$
(38b)

Označme $e - \overline{B}_c \frac{1}{\Theta_4^*} \theta^\mathsf{T} \omega_f = \overline{e}$, potom $e = \overline{B}_c \frac{1}{\Theta_4^*} \theta^\mathsf{T} \omega_f + \overline{e}$ a teda

$$s\overline{e} = A_c \left(\overline{B}_c \frac{1}{\Theta_4^*} \theta^\mathsf{T} \omega_f + \overline{e} \right) + \rho \left(\overline{B}_c \frac{1}{\Theta_4^*} \theta^\mathsf{T} \omega_f \right)$$
 (39a)

$$e_1 = C_c^{\mathsf{T}} e = C_c^{\mathsf{T}} \left(\overline{B}_c \frac{1}{\Theta_A^*} \theta^{\mathsf{T}} \omega_f + \overline{e} \right)$$
 (39b)

$$\dot{\overline{e}} = A_c \overline{e} + A_c \overline{B}_c \frac{1}{\Theta_4^*} \theta^\mathsf{T} \omega_f + \rho \overline{B}_c \frac{1}{\Theta_4^*} \theta^\mathsf{T} \omega_f \tag{40a}$$

$$e_1 = C_c^{\mathsf{T}} \overline{e} + C_c^{\mathsf{T}} \overline{B}_c \frac{1}{\Theta_c^{\star}} \theta^{\mathsf{T}} \omega_f \tag{40b}$$

Pretože $C_c^\mathsf{T} B_c = 0$ tak aj $C_c^\mathsf{T} \overline{B}_c \frac{1}{\Theta_a^*} \theta^\mathsf{T} \omega_f = 0$, potom

$$\dot{\overline{e}} = A_c \overline{e} + \left(A_c \overline{B}_c + \rho \overline{B}_c \right) \frac{1}{\Theta_A^*} \theta^\mathsf{T} \omega_f \tag{41a}$$

$$e_1 = C_c^{\mathsf{T}} \overline{e} \tag{41b}$$

Označme $A_c \overline{B}_c + \rho \overline{B}_c = B_1$, potom

$$\dot{\overline{e}} = A_c \overline{e} + B_1 \frac{1}{\Theta_A^*} \theta^\mathsf{T} \omega_f \tag{42a}$$

$$e_1 = C_c^{\mathsf{T}} \overline{e} \tag{42b}$$

je stavová reprezentácia systému (36) daného prenosovou funkciou $W_m(s)(s+\rho)$, pričom \overline{e} je vektor jeho stavových veličín.

Funkcia $W_m(s)(s+\rho)=C_c^{\mathsf{T}}(sI-A_c)^{-1}B_1$ je SPR. Potom podľa MKY lemmy v časti 1.2 existuje taká matica P, pre ktorú platí

$$A_c^{\mathsf{T}}P + PA_c = -Q \tag{43a}$$

$$PB_1 = C_c \tag{43b}$$

 $kde Q = Q^{\mathsf{T}} > 0.$

Predpokladajme, že štruktúra zákona adaptácie je daná diferenciálnou rovnicou všeobecne zapísanou v tvare

$$\dot{\theta} = f(e_1, \omega_f) \tag{44}$$

Zvoľme kandidáta na Ljapunovovu funkciu v tvare

$$V = \overline{e}^{\mathsf{T}} P \overline{e} + \left| \frac{1}{\Theta_4^{\star}} \right| \theta^{\mathsf{T}} \Gamma^{-1} \theta \tag{45}$$

kde $\Gamma > 0$ je ľubovolná diagonálna matica, $\left| \frac{1}{\Theta_4^*} \right|$ je absolútna hodnota prevrátenej hodnoty parametra Θ_4^* a $P = P^\mathsf{T} > 0$ spĺňa rovnice (43), ktoré vyplývajú z MKY lemmy.

$$\dot{V} = \dot{\overline{e}}^{\mathsf{T}} P \overline{e} + \overline{e}^{\mathsf{T}} P \dot{\overline{e}} + \left| \frac{1}{\Theta_4^{\star}} \right| \left(\dot{\theta}^{\mathsf{T}} \Gamma^{-1} \theta + \theta^{\mathsf{T}} \Gamma^{-1} \dot{\theta} \right)$$
(46)

Poznáme (42) odkiaľ $\dot{\bar{e}}^{\mathsf{T}} = \bar{e}^{\mathsf{T}} A_c^{\mathsf{T}} + \omega_f^{\mathsf{T}} \theta \frac{1}{\Theta_c^*} B_1^{\mathsf{T}}$, po dosadení týchto výrazov:

$$\dot{V} = \left(\overline{e}^{\mathsf{T}} A_c^{\mathsf{T}} + \omega_f^{\mathsf{T}} \theta \frac{1}{\Theta_4^{\star}} B_1^{\mathsf{T}}\right) P \overline{e} + \overline{e}^{\mathsf{T}} P \left(A_c \overline{e} + B_1 \frac{1}{\Theta_4^{\star}} \theta^{\mathsf{T}} \omega_f\right) + 2 \left|\frac{1}{\Theta_4^{\star}}\right| \theta^{\mathsf{T}} \Gamma^{-1} \dot{\theta} \quad (47)$$

$$\dot{V} = \overline{e}^{\mathsf{T}} \left(-Q \right) \overline{e} + 2\overline{e}^{\mathsf{T}} P B_1 \frac{1}{\Theta_4^{\star}} \theta^{\mathsf{T}} \omega_f + 2 \left| \frac{1}{\Theta_4^{\star}} \right| \theta^{\mathsf{T}} \Gamma^{-1} \dot{\theta}$$
(48)

Pripomeňme, že platí $PB_1 = C_c$, potom

$$\dot{V} = \overline{e}^{\mathsf{T}} \left(-Q \right) \overline{e} + 2 \overline{e}^{\mathsf{T}} C_c \frac{1}{\Theta_{\mathsf{A}}^{\mathsf{A}}} \theta^{\mathsf{T}} \omega_f + 2 \left| \frac{1}{\Theta_{\mathsf{A}}^{\mathsf{A}}} \right| \theta^{\mathsf{T}} \Gamma^{-1} \dot{\theta}$$
(49)

Všimnime si, že $\overline{e}^{\mathsf{T}}C_c = C_c^{\mathsf{T}}\overline{e} = e_1$. Časová derivácia \dot{V}

$$\dot{V} = \overline{e}^{\mathsf{T}} \left(-Q \right) \overline{e} + 2e_1 \frac{1}{\Theta_{4}^{\star}} \theta^{\mathsf{T}} \omega_f + 2 \left| \frac{1}{\Theta_{4}^{\star}} \right| \theta^{\mathsf{T}} \Gamma^{-1} \dot{\theta}$$
 (50)

bude záporne definitná ak

$$0 = 2e_1 \frac{1}{\Theta_4^{\star}} \theta^{\mathsf{T}} \omega_f + 2 \left| \frac{1}{\Theta_4^{\star}} \right| \theta^{\mathsf{T}} \Gamma^{-1} \dot{\theta}$$
 (51a)

$$2\left|\frac{1}{\Theta_{\Delta}^{\star}}\right|\theta^{\mathsf{T}}\Gamma^{-1}\dot{\theta} = -2e_{1}\frac{1}{\Theta_{\Delta}^{\star}}\theta^{\mathsf{T}}\omega_{f} \tag{51b}$$

$$\left| \frac{1}{\Theta_4^{\star}} \right| \Gamma^{-1} \dot{\theta} = -e_1 \operatorname{sign} \left(\frac{1}{\Theta_4^{\star}} \right) \left| \frac{1}{\Theta_4^{\star}} \right| \omega_f \tag{51c}$$

$$\Gamma^{-1}\dot{\theta} = -\operatorname{sign}\left(\frac{1}{\Theta_{A}^{\star}}\right)e_{1}\omega_{f} \tag{51d}$$

$$\dot{\theta} = -\operatorname{sign}\left(\frac{1}{\Theta_4^*}\right)e_1\Gamma\omega_f \tag{51e}$$

Potom zákon adaptácie je

$$\dot{\Theta} = -\text{sign}\left(\frac{1}{\Theta_{4}^{\star}}\right)\Gamma e_{1}\omega_{f} \tag{52}$$

Signálny vektor ω_f má zložky $\omega_f = \begin{bmatrix} y_f & \nu_1_f^\mathsf{T} & \nu_2_f^\mathsf{T} & r_f \end{bmatrix}^\mathsf{T}$. Tieto signály získame jednoducho prechodom pôvodných signálov $y, \ \nu_1^\mathsf{T}, \ \nu_2^\mathsf{T}$ a r cez filtre s prenosovou funkciou v tvare $\frac{1}{s+\rho}$.

Vstupom do súsťavy je u. Pri odvodení zákona adaptácie sme ale uvažovali $u_f = (s+\rho)^{-1}u$ odkiaľ $u = (s+\rho)u_f$. Signál u_f možno zapísať aj v tvare $u_f = \Theta^{\mathsf{T}}\omega_f$. Teda $u = (s+\rho)\Theta^{\mathsf{T}}\omega_f$, z čoho vyplýva, že

$$u = \Theta^{\mathsf{T}}\omega + \dot{\Theta}^{\mathsf{T}}\omega_f \tag{53}$$

Pre objasnenie (53) naznačíme, že:

$$(s+\rho)\Theta^{\mathsf{T}}\omega_{f}$$

$$s(\Theta^{\mathsf{T}}\omega_{f}) + \rho\Theta^{\mathsf{T}}\omega_{f}$$

$$s(\Theta^{\mathsf{T}})\omega_{f} + \Theta^{\mathsf{T}}s(\omega_{f}) + \rho\Theta^{\mathsf{T}}\omega_{f}$$

$$\dot{\Theta}^{\mathsf{T}}\omega_{f} + \Theta^{\mathsf{T}}s\left(\frac{1}{(s+\rho)}\omega\right) + \rho\Theta^{\mathsf{T}}\frac{1}{(s+\rho)}\omega$$

$$\dot{\Theta}^{\mathsf{T}}\omega_{f} + \Theta^{\mathsf{T}}\frac{s}{(s+\rho)}\omega + \Theta^{\mathsf{T}}\frac{\rho}{(s+\rho)}\omega$$

$$\dot{\Theta}^{\mathsf{T}}\omega_{f} + \Theta^{\mathsf{T}}\frac{s+\rho}{(s+\rho)}\omega$$

$$\dot{\Theta}^{\mathsf{T}}\omega_{f} + \Theta^{\mathsf{T}}\omega$$

4.2 Metóda doplnenej odchýlky

Vo všeobecnosti, zákon riadenia, ktorý rieši MRC problém je $u = \Theta^{\mathsf{T}}\omega$. Pri jeho dosadení do všeobecne platnej rovnice adaptačnej odchýlky (18) máme rovnicu adaptačnej odchýlky v tvare

$$e_1 = W_m(s) \frac{1}{\Theta_{\perp}^{\star}} \theta^{\mathsf{T}} \omega \tag{54}$$

V rovnici (34) sme použili identitu $(s+\rho)(s+\rho)^{-1}=1$, čo vo všeobecnosti je $L(s)L(s)^{-1}=1$.

Rovnicu (54) sme v predchádzajúcom tvare doplnili do tvaru

$$e_1 = W_m(s)L(s)L(s)^{-1} \frac{1}{\Theta_{\star}^{\star}} \theta^{\mathsf{T}} \omega \tag{55}$$

a z rovnice (35) vyplíva, že (55) možno prepísať do tvaru

$$e_1 = W_m(s)L(s)\frac{1}{\Theta_4^*}\theta^{\mathsf{T}}L(s)^{-1}\omega \tag{56}$$

Rovnica (56) može byť zapísaná aj v tvare

$$e_1 = W_m(s) \frac{1}{\Theta_4^*} \left(L(s)\theta L(s)^{-1} \right)^\mathsf{T} \omega \tag{57}$$

kde sme vymenili pozície $\frac{1}{\Theta_4^*}$ a L(s), čo je možné, pretože $\frac{1}{\Theta_4^*}$ je len konštanta a nie funkcia času, a táto rovnica dáva do vzťahu chybu nastavenia parametrov zákona riadenia s adaptačnou odchýlkou. V stavovom priestore má rovnica "doplnenej" adaptačnej odchýlky (57) tvar

$$\dot{e} = A_c e + \overline{B}_c \frac{1}{\Theta_4^*} \left(L(s)\theta L(s)^{-1} \right)^\mathsf{T} \omega \tag{58a}$$

$$e_1 = C_c^{\mathsf{T}} e \tag{58b}$$

Adaptačná odchýlka je definovaná ako $e = X - X_m$ a $e_1 = y - y_m$. Sú dve možnosti ako dosiahnúť aby výsledok odčítania rovníc parametrizovanej doplnenej sústavy, kde stavový vektor je X, a neminimálnej reprezentácie referenčného modelu, kde stavový vektor je X_m , bol v tvare doplnenej adaptačnej odchýlky (58).

4.2.1 Prvá možnosť

Výsledok je rovnaký ako v predchádzajúcej časti:

Rovnicu parametrizovanej doplnenej sústavy (12) po dosadení za $u = \Theta^{\mathsf{T}} \omega$ možno zapísať v tvare

$$\dot{X} = A_c X + \overline{B}_c r + \overline{B}_c \frac{1}{\Theta_A^*} \theta^\mathsf{T} \omega \tag{59a}$$

$$y = C_c^{\mathsf{T}} X \tag{59b}$$

Zavedieme také pravidlo, že keď $W_m(s)$ nie je možné navrhnúť ako SPR, tak v rovnici (59) nahradíme Θ^{T} výrazom $\left(L(s)\theta L(s)^{-1}\right)^{\mathsf{T}}$, kde L(s) je dané tým, že $W_m(s)L(s)$ je zvolená ako SPR prenosová funkcia. Teda

$$\dot{X} = A_c X + \overline{B}_c r + \overline{B}_c \frac{1}{\Theta_A^*} \left(L(s)\theta L(s)^{-1} \right)^\mathsf{T} \omega \tag{60a}$$

$$y = C_c^{\mathsf{T}} X \tag{60b}$$

Pripomeňme

$$\dot{X}_m = A_c X_m + \overline{B}_c r \tag{61a}$$

$$y_m = C_c^{\mathsf{T}} X_m \tag{61b}$$

Odčítaním (61) od (60) získame rovnicu "doplnenej" adaptačnej odchýlky (58), ktorá zabezpečuje (podrobne ukázané v predchádzajúcom), že chyba nastavenia parametrov zákona riadenia θ je vo vzťahu z adaptačnou odchýlkou e_1 cez SPR prenosovú funkciu.

Pretože rovnica parametrizovanej doplnenej sústavy je modifikovaná podľa zavedeného pravidla, tak aj zákon riadenia je modifikovaný do tvaru $u = (L(s)\Theta L(s)^{-1})^{\mathsf{T}} \omega$. V prípade, že $L(s) = (s + \rho)$ (ako v predchádzajúcom), tak výraz $L(s)\Theta^{\mathsf{T}}L(s)^{-1}$ je funkčne ekvivalentný výrazu

$$L(s)\Theta^{\mathsf{T}}L(s)^{-1} = \Theta^{\mathsf{T}} + \dot{\Theta}^{\mathsf{T}}L(s)^{-1} \tag{62}$$

a teda modifikovaný zákon riadenia má v tomto prípade tvar $u = \Theta^{\mathsf{T}}\omega + \dot{\Theta}^{\mathsf{T}}\omega_f$.

4.2.2 Druhá možnosť

Výsledkom je algoritmus nazývaný metóda doplnenej odchýlky:

Namiesto nahradenia θ^{T} výrazom $\left(L\theta L^{-1}\right)^{\mathsf{T}}$ v rovnici parametrizovanej doplnenej sústavy pridáme vstupný signál v tvare $\frac{1}{\theta_4^\star}\left(\theta-L\theta L^{-1}\right)^{\mathsf{T}}\omega$ do referenčného modelu nasledovne

$$\dot{X}_m = A_c X_m + \overline{B}_c \left(r + \frac{1}{\Theta_A^*} \left(\theta - L\theta L^{-1} \right)^\mathsf{T} \omega \right) \tag{63a}$$

$$y_m = C_c^{\mathsf{T}} X_m \tag{63b}$$

$$\dot{X}_m = A_c X_m + \overline{B}_c r + \overline{B}_c \frac{1}{\Theta_4^{\star}} \left(\theta - L\theta L^{-1} \right)^{\mathsf{T}} \omega \tag{64a}$$

$$y_m = C_c^{\mathsf{T}} X_m \tag{64b}$$

Rovnica parametrizovanej doplnenej sústavy sa teraz nemení (nemodifikuje)

$$\dot{X} = A_c X + \overline{B}_c r + \overline{B}_c \frac{1}{\Theta_4^*} \theta^\mathsf{T} \omega \tag{65a}$$

$$y = C_c^{\mathsf{T}} X \tag{65b}$$

Odčítaním (64) od (65) podľa definície adaptačnej odchýlky máme

$$\dot{e} = A_c e + \overline{B}_c \frac{1}{\Theta_4^*} \theta^\mathsf{T} \omega - \overline{B}_c \frac{1}{\Theta_4^*} (\theta - L\theta L^{-1})^\mathsf{T} \omega$$
 (66a)

$$e_1 = C_c^{\mathsf{T}} e \tag{66b}$$

Výraz

$$(\theta - L\theta L^{-1}) = L\left(L^{-1}\theta - \theta L^{-1}\right) \tag{67}$$

Potom

$$\dot{e} = A_c e + \overline{B}_c \frac{1}{\Theta_4^*} \theta^\mathsf{T} \omega - \overline{B}_c \frac{1}{\Theta_4^*} \left(L \left(L^{-1} \theta - \theta L^{-1} \right) \right)^\mathsf{T} \omega \tag{68a}$$

$$e_1 = C_c^{\mathsf{T}} e \tag{68b}$$

$$\dot{e} = A_c e + \overline{B}_c \frac{1}{\Theta_A^*} \theta^\mathsf{T} \omega - \overline{B}_c \frac{1}{\Theta_A^*} L \left(L^{-1} \theta^\mathsf{T} - \theta^\mathsf{T} L^{-1} \right) \omega \tag{69a}$$

$$e_1 = C_c^{\mathsf{T}} e \tag{69b}$$

Rovnicu (69) je možné prepísať do požadovaného tvaru (58) nasledovne:

$$\dot{e} = A_c e + \overline{B}_c \frac{1}{\Theta_A^*} \theta^\mathsf{T} \omega - \overline{B}_c \frac{1}{\Theta_A^*} L L^{-1} \theta^\mathsf{T} \omega - \overline{B}_c \frac{1}{\Theta_A^*} L \theta^\mathsf{T} L^{-1} \omega \tag{70a}$$

$$e_1 = C_c^{\mathsf{T}} e \tag{70b}$$

$$\dot{e} = A_c e + \overline{B}_c \frac{1}{\Theta_A^*} \theta^\mathsf{T} \omega - \overline{B}_c \frac{1}{\Theta_A^*} \theta^\mathsf{T} \omega - \overline{B}_c \frac{1}{\Theta_A^*} L \theta^\mathsf{T} L^{-1} \omega \tag{71a}$$

$$e_1 = C_c^{\mathsf{T}} e \tag{71b}$$

$$\dot{e} = A_c e + \overline{B}_c \frac{1}{\Theta_c^*} \left(L \theta L^{-1} \right)^\mathsf{T} \omega \tag{72a}$$

$$e_1 = C_c^{\mathsf{T}} e \tag{72b}$$

Rovnica (69) v tvare prenosovej funkcie je

$$e_1 = W_m \frac{1}{\Theta_4^{\star}} \left(\theta^{\mathsf{T}} \omega - L \left(L^{-1} \theta^{\mathsf{T}} - \theta^{\mathsf{T}} L^{-1} \right) \omega \right) \tag{73}$$

$$e_1 = W_m \frac{1}{\Theta_{\perp}^{\star}} \theta^{\mathsf{T}} \omega - W_m \frac{1}{\Theta_{\perp}^{\star}} L \left(L^{-1} \theta^{\mathsf{T}} - \theta^{\mathsf{T}} L^{-1} \right) \omega \tag{74}$$

Platí

$$L^{-1}\theta^{\mathsf{T}} - \theta^{\mathsf{T}}L^{-1} = L^{-1} (\Theta - \Theta^{\star})^{\mathsf{T}} - (\Theta - \Theta^{\star})^{\mathsf{T}} L^{-1}$$

$$= (L^{-1}\Theta^{\mathsf{T}} - \Theta^{\mathsf{T}}L^{-1}) - (L^{-1}\Theta^{\star\mathsf{T}} - \Theta^{\star\mathsf{T}}L^{-1})$$

$$= (L^{-1}\Theta^{\mathsf{T}} - \Theta^{\mathsf{T}}L^{-1})$$
(75)

pretože Θ^{\star} nie je funkciou času a teda $L^{-1}{\Theta^{\star}}^{\mathsf{T}}={\Theta^{\star}}^{\mathsf{T}}L^{-1}.$ Potom

$$e_1 = W_m \frac{1}{\Theta_4^{\star}} \theta^{\mathsf{T}} \omega - W_m L \frac{1}{\Theta_4^{\star}} \left(L^{-1} \Theta^{\mathsf{T}} \omega - \Theta^{\mathsf{T}} L^{-1} \omega \right)$$
 (76)

$$e_1 = W_m \frac{1}{\Theta_4^*} \theta^\mathsf{T} \omega - W_m L \frac{1}{\Theta_4^*} \left(L^{-1} u - \Theta^\mathsf{T} \omega_f \right) \tag{77}$$

kde označíme: $e_m = W_m \frac{1}{\Theta_4^*} \theta^\mathsf{T} \omega$ je odchýlka medzi výstupom pôvodného nemodifikovaného referenčného modelu a signál $e_d = W_m L_{\Theta_4^*} \left(L^{-1} u - \Theta^\mathsf{T} \omega_f \right)$ sa pridá k tejto odchýlke, čím vznikne modifikovaný signál e_1 a tento sa použije v zákone adaptácie.

Rovnicu parametrizovanej doplnenej sústavy (65) sme nezmenili, preto sa v tomto prípade nemení ani zákon riadenia $u = \Theta^{\mathsf{T}}\omega$.

5 Otázky a úlohy

1. Zistite či je prenosová funkcia G(s) striktne pozitívne reálna (SPR).

$$G(s) = \frac{2s+1}{(3s+1)(s+1)}$$

- 2. Pre aké hodnoty a, b, c je prenosová funkcia $G(s) = \frac{as+1}{(bs+1)(cs+1)}$ striktne pozitívne reálna.
- 3. Schematicky znázornite MRAC vstupno-výstupný pri $n^* = 1$
- 4. Schematicky znázornite MRAC vstupno-výstupný pri $n^* = 2$
- 5. Čo je cieľom riadenia pri návrhu adaptívneho riadiaceho systému s referenčným modelom so zákonom adaptácie navrhnutým pomocou Lyapunovovej teórie stability?
- 6. Je daný model systému

$$\dot{x}_1(t) = x_2(t)
\dot{x}_2(t) = -a_1 x_2(t) - a_0 x_1(t) + b_0 u(t)
y(t) = x_1(t)$$

kde $a_0, a_1, b_0 > 0$ sú neznáme parametre systému, u(t) je vstup, y(t) je výstup a $x_1(t)$, $x_2(t)$ sú stavové veličiny systému. Tiež je daný referenčný model v tvare

$$\begin{bmatrix} \dot{x}_{1m}(t) \\ \dot{x}_{2m}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -a_{0m} & -a_{1m} \end{bmatrix} \begin{bmatrix} x_{1m}(t) \\ x_{2m}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ b_{0m} \end{bmatrix} r(t)$$

$$y_m(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_{1m}(t) \\ x_{2m}(t) \end{bmatrix}$$

kde $a_{0m}, a_{1m}, b_{0m} > 0$ sú známe parametre referenčného modelu, r(t) je referenčný signál, $y_m(t)$ je výstup a $x_{1m}(t), x_{2m}(t)$ sú stavové veličiny referenčného modelu.

(a) Napíšte model systému v tvare prenosovej funkcie

$$\frac{y(s)}{u(s)} = k_p \frac{Z_p(s)}{R_p(s)}$$

kde $Z_p(s)$ je monický, hurwitzov polynóm stupňa $m,\ R_p(s)$ je monický polynóm stupňa n a k_p je vysokofrekvenčné zosilnenie sústavy. Napíšte referenčný model v tvare prenosovej funkcie

$$\frac{y_m(s)}{r(s)} = W_m(s) = k_m \frac{Z_m(s)}{R_m(s)}$$

kde k_m je vysokofrekvenčné zosilnenie referenčného modelu, polynóm $Z_m(s)$ je monický Hurwitzov polynóm stupňa m_m , $R_m(s)$ monický Hurwitzov polynóm stupňa n_m .

(b) Ideálnym cieľom riadenia je $y=y_m$. Navrhnite ideálny zákon riadenia v tvare

$$u = \Theta_1^{\star \mathsf{T}} \frac{\alpha(s)}{\Lambda(s)} u + \Theta_2^{\star \mathsf{T}} \frac{\alpha(s)}{\Lambda(s)} y + \Theta_3^{\star} y + \Theta_4^{\star} r$$

kde $\alpha(s)$ je vektor obsahujúci mocniny $s, \alpha(s) = \left[s^{n-2}, \ldots, s, 1\right]^\mathsf{T}$ ak $n \geq 2$, inak $\alpha(s) = 0$. Vektory $\Theta_1^\star, \Theta_2^\star \in \mathbb{R}^{n-1}$ a skaláry $\Theta_3^\star, \Theta_4^\star \in \mathbb{R}^1$ sú konštantné parametre zákona riadenia, ktorých hodnoty hľadáme. $\Lambda(s)$ je ľubovolný monický Hurwitzov polynóm stupňa n-1 obsahujúci $Z_m(s)$ ako faktor

$$\Lambda(s) = \Lambda_0(s) Z_m(s)$$

a teda aj $\Lambda_0(s)$ je ľubovolný monický Hurwitzov polynóm zodpovedajúceho stupňa.

(c) Cieľom riadenia je $y \to y_m$ a stabilita celého riadiaceho systému. Navrhnite adaptívny riadiaci systém, pričom uvažujte model riadeného systému v tvare prenosovej funkcie a tiež referenčný model v tvare prenosovej funkcie z predchádzajúceho bodu 6a.

Literatúra

- [1] P. Ioannou and B. Fidan. *Adaptive Control Tutorial*. Society for Industrial and Applied Mathematics, USA., 2006.
- [2] R. Monopoli. Model reference adaptive control with an augmented error signal. *IEEE Transactions on Automatic Control*, 19(5):474 484, oct 1974.
- [3] J. Murgaš and I. Hejda. Adaptívne riadenie technologických procesov. Slovenská technická univerzita v Bratislave, 1993.