Logarithmic Regret for Online Control

NeurlPS 2019

Naman Agarwal, Elad Hazan, Karan Singh

Controlling Dynamical Systems

$$\min_{\mathbf{u}(\mathbf{x})} \mathbb{E}\left[\sum_{t=1}^{T} c(\mathbf{x}_t, \mathbf{u}_t)\right]$$
s.t. $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_t)$

 x_t is the state.

 u_t is the <u>control</u> input.

 w_t is the perturbation sequence.

Success Stories

- Robotics
- Autonomous Vehicles
- Physical systems

[Cohen et al '18]

Setting: Changing Costs

Control a noisy Linear Dynamical System with Changing Convex Costs

$$x_{t+1} = Ax_t + Bu_t + w_t; w_t \sim N(0, \Sigma)$$

Strongly Convex: $c_t(x_t, u_t)$

- Generalizes the classical Tracking problem
 - $c_t(x_t, u_t) = |x_t x_t^*|^2 + |u_t|^2$
 - x_t^* = state sequence of exogenous target

Goal: Low-regret Control

• Goal: POLICY REGRET (compete with "what would have happened")

$$\max_{w_{1:T}} \left(\sum_{t=1}^{T} c_t(x_t, u_t) - \min_{K} \sum_{t=1}^{T} c_t(\hat{x}_t, K\hat{x}_t) \right)$$

- The comparator K has the complete foreknowledge of $c_{1:T}$.
- \hat{x}_t = counterfactual state sequence under

$$\hat{u}_t = K\hat{x}_t, \quad \hat{x}_{t+1} = A\hat{x}_t + B\hat{u}_t + w_t$$

Main Result

Efficient online algorithm s.t.

$$\sum_{t=1}^{T} c_t(x_t, u_t) - \min_{K \in stable} \sum_{t=1}^{T} c_t(\widehat{x_t}, K\widehat{x_t}) \le O(\text{polylog } T)$$

- First logarithmic regret (fast rate) for control with changing costs.
 - Efficient → Polynomial in system parameters, logarithmic in T
 - K is stable if $\rho(A + BK) < 1$.
- DP-based approach [Abbasi-Yadkori et al 2014, Cohen et al 2018] yields \sqrt{T} .

Ingredient 1: Error Feedback Policy

- Even if $c_{1:T}$ is known, computing optimal K is a non-convex problem
- Linear Policy (K):

$$u_{t+1}(K) = Kx_{t+1} = K \cdot \left(\sum_{i=0}^{t} (A + BK)^{i} w_{t-i}\right)$$

• Relaxation $(\overrightarrow{M} = \{M_1 \dots M_t\})$: $\min_{M} \left(\sum_{t=1}^{T} c_t \left(x_t \left(\overrightarrow{M} \right), u_t \left(\overrightarrow{M} \right) \right) \right)$ is convex!

$$u_{t+1}\left(\overrightarrow{M}\right) = \overrightarrow{M_t} \cdot \overrightarrow{w_t} = \left(\sum_{i=0}^t M_i w_{t-i}\right)$$

Ingredient 2: Enforcing stability

- Let K be any fixed stabilizing linear policy (determined completely from A, B).
- Choose optimal controls as:

$$u_t = Kx_t + \sum_{i=1}^H M_i w_{t-i}$$

- Representational Power: With $H \approx \log T$, can emulate any strongly stable policy.
- Stability: K is stable \Rightarrow any (even non-stationary) error feedback policy is stable.

Ingredient 3: OCO with memory

Adversarial sequence with time dependency:

$$c(x_t, u_t) = f_t\left(\vec{M}^t, \vec{M}^{t-1}, \dots, \vec{M}^{t-H}\right)$$

• Regret vs. best fixed decision

$$\sum_{t=1}^{T} f_t\left(\vec{M}^t, \vec{M}^{t-1}, \dots, \vec{M}^{t-H}\right) - \min_{\vec{M}} \sum_{t} f_t\left(\vec{M}, \vec{M}, \dots, \vec{M}\right) = O(H\sqrt{T})$$

Efficient algorithms that guarantee low regret [Anava et al 2013, Even-Dar et al 2009]

The Online Algorithm

Initialize matrices $\overrightarrow{M}=M_1,\ldots,M_H$ For $t=1,2,\ldots,T$ do

- 1. Use $u_t = Kx_t + \sum_{i \le H} M_i w_{t-i}$.
- 2. Observe state x_{t+1} , estimate $w_{t+1} = x_{t+1} Ax_t Bu_t$.
- 3. Construct the "counterfactual" cost function:

$$\ell_t\left(\overrightarrow{M}\right) = c\left(x_t\left(\overrightarrow{M}\right), u_t\left(\overrightarrow{M}\right)\right)$$

4. Update \vec{M} .

$$\vec{M} \leftarrow \vec{M} - \eta \nabla_{\vec{M}} \ell_t (\vec{M})$$

Key Challenge

Previous Reduction:

$$c_t\left(x_t\left(\overrightarrow{M}\right), u_t\left(\overrightarrow{M}\right)\right)$$
, cost_t of error feedback policy.

- Strongly convex $c_t(x, u) \neq \text{Strongly convex cos} t_t(\text{policy})$.
- Challenge: overparameterization!

$$K$$
 is a $|X| \times |U|$ matrix.

 \overrightarrow{M} has $|X| \times |U| \times \log T$ parameters.

Key Observation

- Theorem: $c_t\left(x_t\left(\overrightarrow{M}\right), u_t\left(\overrightarrow{M}\right)\right)$ is strongly convex in \overrightarrow{M} .
- Say f is 1-strongly convex. f(Ax) is α -strongly convex (in x) iff $AA^T \ge \alpha I$.
- <u>1-d case:</u>

$$\mathbb{E}\left[\left(\frac{dx_{t}}{d\vec{M}}\right)\left(\frac{dx_{t}}{d\vec{M}}\right)^{T}\right] \approx \begin{bmatrix} S_{\gamma^{2}}(H) & \gamma S_{\gamma^{2}}(H-1) & \gamma^{2} S_{\gamma^{2}}(H-1) & \dots & \gamma^{H-1} S_{\gamma^{2}}(1) \\ \gamma S_{\gamma^{2}}(H-1) & S_{\gamma^{2}}(H) & \gamma S_{\gamma^{2}}(H-1) & \dots & \gamma^{H-2} S_{\gamma^{2}}(2) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \gamma^{H-1} S_{\gamma^{2}}(1) & \gamma^{H-2} S_{\gamma^{2}}(2) & \dots & \gamma^{H-1} S_{\gamma^{2}}(1) & S_{\gamma^{2}}(H) \end{bmatrix}$$

$$\geq \Omega(\gamma, H^{-1})I$$

Summary: Efficient *gradient-based* **control** algorithms achieving $\log T$ regret for LDS with changing costs, a generalization of the <u>tracking</u> problem.

Thank you!

Naman Agarwal

Elad Hazan