Pontificia Universidad Católica del Perú Escuela de Posgrado Doctorado en Matemáticas

Variedades Complejas Examen Parcial 2020-II

Indicaciones Generales:

• El examen parcial debe ser subido a la plataforma Paideia en formato pdf a más tardar el viernes 30 de octubre a las 11:59pm.

Parte Obligatoria: (resolver todas las preguntas.)

- 1. [4 puntos.] Muestre que $\mathcal{O}_{\mathbb{P}^{\backslash}}(-1)\backslash s$ (\mathbb{P}^n) es identificado con $\mathbb{C}^{n+1}\backslash\{0\}$, donde $s:\mathbb{P}^n\to\mathcal{O}(-1)$ es la sección cero. Use esto para construir una sumersión $S^{2n+1}\to\mathbb{P}^n$ con fibra S^1 .
- 2. [3 puntos.] Considere X y Y variedades complejas.
 - a) Explique como asociar a X una estructura casi compleja.

$$J_X:TX\to TX$$

y muestre que J_X está bien definida.

b) Sea $\varphi: X \to Y$ una aplicación suave entre X y Y, con respectivas estructuras casi complejas J_X y J_Y . Muestre que φ es holomorfa si y solo si

$$d\varphi \circ J_X = J_Y \circ d\varphi$$

c) Exhiba ejemplos

$$\varphi_1: \mathbb{P}^1 \to \mathbb{P}^1$$
$$\varphi_2: \mathbb{P}^1 \to \mathbb{P}^1$$

tal que φ_1 es holomorfa φ_2 no lo es.

3. [3 puntos.] Sea ρ una raíz quinta de la unidad. El grupo $G=\langle \rho \rangle \cong \mathbb{Z}/5\mathbb{Z}$ actúa sobre \mathbb{P}^3 vía

$$(z_0: z_1: z_2: z_3) \mapsto (z_0: \rho z_1: \rho^2 z_2: \rho^3 z_3)$$

Determine todos los puntos fijos de esta acción. Muestre que la superficie Y definida por $\sum_{i=0}^{3} z_i^5 = 0$ es G-invariante y la acción inducida a Y es libre.

4. [4 puntos.]

Considere la *n*-superficie de Hirzebruch $\Sigma_n = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(n))$. Muestre que Σ_n es isomorfa a

$$Z(x_0^n y_1 - x_1^n y_2) \subset \mathbb{P}^1 \times \mathbb{P}^2$$

donde $[x_0:x_1]$ y $[y_0:y_1:y_2]$ son coordenadas homogéneas de \mathbb{P}^1 y \mathbb{P}^2 respectivamente. Muestre además que Σ_0 es isomorfa a $\mathbb{P}^1 \times \mathbb{P}^1$ y Σ_1 es isomorfa al blow-up de \mathbb{P}^2 en el origen.

Parte Electiva: (resolver solo dos preguntas.)

1. [3 puntos.] Sea M una variedad compleja. Una forma $\alpha \in \Omega^{(p,0)}(M)$ es holomorfa si $\bar{\partial}\alpha=0$. Muestre que en coordenadas locales, α es descrita como

$$\alpha = \sum_{|I|=p} \alpha_I dz^I$$

donde los α_I son funciones holomorfas. Aquí usamos la notación de multi-índice: por ejemplo $I = \{i_1, \dots i_p\}$.

- 2. [3 puntos.] Muestre que un campo X es real holomorfo si [X, JY] = J[X, Y] para todo Y. Además, muestre que si X es real holomorfo entonces JX también lo es.
- 3. [3 puntos.] Sea M una variedad compleja. Si $\pi:E\to M$ es un fibrado vectorial holomorfo, su fibrado proyectivo asociado $\mathbb{P}(E)$ es una variedad compleja.