

Taller: Introducción a la Programación de Plug-ins de Audio

Agenda

Sobre nosotros

JUCE

Procesamiento de Audio con JUCE

Algoritmo de distorisón

Desarrollo de Plugin

Comunidad

Preguntas

Fernando Garcia

DSP Engineer | Audio Developer

Ingeniero en comunicaciones y electrónica

- Diseño de algoritmos.
- Implementación de estructuras de audio y procesamiento.
- Research and Developement

Jesús Valdez Director de Sofware Ingeniero en Producción Musical

- Dirección de proyectos en ECT.
- Desarrollo de back-end y front-end.
- Especialización en JUCE y desarrollo web.

Herramientas

Integrated Development Environment (IDE)

JUCE

JUCE

- Framework de C++ enfocado al desarrollo de plug-ins y aplicaciones de audio.
- Principal framework de audio usado a nivel mundial.

- Multiplataforma.
- Para MacOs, Windows, Linux, IOS y Android.

Uso actual en la industria

- Desarrollo de plug-ins de audio
- Desarrollo de aplicaciones mobiles
- Desarrollo de librerías/modulos de C++
- Desarrollo de DAWs

Output Plug-ins

DAW Waveform

Arquitectura de desarrollo de plug-ins en JUCE

- Se procesa por audio buffers en "tiempo real"
- Algoritmos:
 - o Fórmula directa / Ecuaciones de diferencias.
 - o Modulos y/o librerías de DSP internas de JUCE o de la comunidad.

Proyecto de JUCE

Estructura de JUCE

Partes de un plugin en JUCE

Processor

- Procesamiento de audio
- Corazón del plugin
- Programación de cualquier tipo de algoritmos para audio
- processBlock()

Editor

- Elemento de interfaz gráfica de usuario (GUI)
- Botones, faders, sliders, imágenes, etc.

Procesamiento de Audio con JUCE

Conceptos importantes de DSP y Audio Digital:

- Frecuencia de muestreo (Sampling Frequency)
- Profundidad de bits (BitDepth)
- Procesamiento por buffers de audio
 - Buffer Size
- Algoritmos**

Práctica: ¡Programemos un plugin de distorsión!

Proceso

Distorsión

$$y[n] = x[n] - \frac{x[n]^3}{3}$$

Otras ecuaciones de distorsión

Half Wave Rectifier	HWR	y = 0.5(x + x)
Full-Wave Rectifier	FWR	y = x
Square Law	SQR	$y = x^2$
Absolute Square Root	ASQRT	$y = \sqrt{ x }$

• Pirkle, W. (2019). Designing audio effect plugins in C++: For AAX, AU, and VST3 with DSP theory (2a ed.). Routledge.


```
1 void Distortion::process(juce::AudioBuffer<float> &inBuffer, float distortionGainValue)
 2 {
       for (int channel = 0; channel < inBuffer.getNumChannels(); channel++)</pre>
 3
 4
           for (int i = 0; i < inBuffer.getNumSamples(); i++)</pre>
 5
 6
               auto inSample = inBuffer.getSample (channel, i);
 8
               // Soft Clip Algorithm
               float gainSample = distortionGainValue * inSample;
 9
               float outSample = gainSample - (powf(gainSample, 3.0f) / 3.0f);
10
               inBuffer.setSample(channel, i, outSample);
11
12
      }
13
14 }
```


Valores que pueden tomar una muestra [-1, 1] (número flotante)


```
1 void Distortion::process(juce::AudioBuffer<float> &inBuffer, float distortionGainValue)
2 {
3
       for (int channel = 0; channel < inBuffer.getNumChannels(); channel++)</pre>
 4
 5
           for (int i = 0; i < inBuffer.getNumSamples(); i++)</pre>
           {
 6
               auto inSample = inBuffer.getSample (channel, i);
               // Soft Clip Algorithm
 8
 9
               float gainSample = distortionGainValue * inSample;
10
               float outSample = gainSample - (powf(gainSample, 3.0f) / 3.0f);
               inBuffer.setSample(channel, i, outSample);
11
12
13
14 }
```


Coding Time

Repositorio de Github

https://github.com/Ear-Candy-Technologies/intro-audio-plugins-expoacustica2023

COMUNIDAD

AMARANTH

¿QUÉ ES?

¿PUEDO PARTICIPAR?

Sintetizador Open Source desarrollado con JUCE

Cualquier persona es libre de participar y desarrollar nuevos features en el.

```
void DryWet::process (juce::A
                            juce::A
                            float d
10
        drywetValue = drywetValue
11
12
        for (int channel = 0; cha
13
14
            for (int i = 0; i < d
15
16
17
                 // Wet sample
                 float wet = wetBu
18
19
                 // Dry sample
20
                 float dry = dryBu
21
22
23
                 // DryWet process
                 float out = dry *
24
25
26
                 // Output
                 wetBuffer.setSamp
27
28
29
30
```

EAR CANDY MEETINGS

¿QUÉ SON?

¿CADA CUANTO?

Livestreams en nuestro canal de YouTube y Facebook donde expertos de la industria platican sobre un tema relacionado a la programación de audio.

Se llevan a cabo el último miércoles de cada mes.

EAR CANDY MEETINGS

by Ear Candy Technologies

RODRIGO UF StageWave

"Librería de audic para Androi

Ear Candy Technologies

nnologies

Ear Candy Technologies

¿Preguntas?

PHONOGRAIN

50% de descuento en Phonograin con el código:

EXPO_ACUSTICA_23

¡Gracias!

- www.earcandytech.com
- **G** Ear Candy Technologies
- Ear Candy Technologies
- earcandytech
- jsvaldezv
- fergarciadle