

Background

- * Technical HCHs (tech-HCHs) are cheaplyproduced organochlorine pesticides (OCPs), but caused environmental pollution;
- * Tech-HCHs contains (Kutz, 1991):
 - * α-HCH (60-70%);
 - * β-HCH (5–12%);
 - * γ-HCH (10–12%);
 - * σ-HCH (6–10%).

Properties

 β -HCH has stronger lipophilicity, hydrosolubility, and longer half-lives than α -HCH.

Xiao, 2004

β-HCH was transported to the Arctic Ocean mostly by ocean current, not air

Li, 2002

Methods

Comparing with AMBBM 1.0

	AMBBM 1.0	AMBBM 2.0		
Phases considered	Air, surface water, deep water	Air, surface water, deep water, snowpack, sea ice, and soil phases		
Processes	gas-phase dry and wet depositions, particle- phase dry and wet depositions, volatilization, degradation, etc.	Add snowfall, melt & refreeze processes of snow and ice, etc.		
Input data	Concentrations in the Arctic air, the seawater in the Bering Strait and the North-Atlantic Ocean, and the rivers to the Arctic Ocean	Monitoring data is no longer needed as the input data		
Times step	One year	One day, but output data for every half year (six months)		
Particle/gas (P/G) partitioning	Based on equilibrium theory (Harner-Bidleman Equation)	Based on the steady-state theory (Li-Ma-Yang Equation) [25]		

Methods

Advection and mass transfer

Source zone

$$\frac{dM_{\text{Air_S}}}{dt} = - \begin{pmatrix} D_{\text{Tran_Air_SA}} + D_{\text{Deg_Air_S}} + D_{\text{Air_Seawater_S}} \\ + D_{\text{Air_Soil_S}} + D_{\text{Rain_S}} + D_{\text{DD_S}} + D_{\text{WD_S}} + D_{\text{Air_Strat_S}} \end{pmatrix} \frac{M_{\text{Air_S}}}{V_{\text{Air_S}}Z_{\text{Air_S}}}$$

$$\frac{Gas}{\text{phase}} + D_{\text{Air_Water}} \frac{M_{\text{Seawater_S}}}{V_{\text{Seawater_S}}Z_{\text{Seawater_S}}} + D_{\text{Air_Soil}} \frac{M_{\text{Soil_S}}}{V_{\text{Soil_S}}Z_{\text{Soil_S}}} + E_{\text{Air}}$$

$$\frac{dM_{\text{Seawater_S}}}{dt} = - \begin{pmatrix} D_{\text{Tran_Seawater_SA}} + D_{\text{Deg_Seawater_S}} \\ + D_{\text{Seawater_Sink_S}} + D_{\text{Air_Water_S}} \end{pmatrix} \frac{M_{\text{Seawater_S}}}{V_{\text{Seawater_S}}Z_{\text{Seawater_S}}}$$

$$\frac{dM_{\text{Seawater_S}}}{V_{\text{Air_S}}Z_{\text{Air_S}}} + \frac{dM_{\text{Air_Water_S}}}{V_{\text{Air_Water_S}}Z_{\text{Seawater_S}}} + \frac{dM_{\text{Soil_S}}}{V_{\text{Air_S}}Z_{\text{Air_S}}} + E_{\text{Seawater_S}}$$

$$\frac{dM_{\text{Soil_S}}}{V_{\text{Coil_S}}Z_{\text{Soil_S}}} + E_{\text{Seawater_S}} + \frac{dM_{\text{Soil_S}}}{V_{\text{Soil_S}}Z_{\text{Soil_S}}} + E_{\text{Soil_S}} + \frac{dM_{\text{Soil_S}}}{V_{\text{Soil_S}}Z_{\text{Soil_S}}} + E_{\text{Soil_S}} + \frac{dM_{\text{Soil_S}}}{V_{\text{Air_S}}Z_{\text{Air_S}}} + E_{\text{Soil_S}} + \frac{dM_{\text{Soil_S}}}{V_{\text{Air_S}}Z_{\text{Air_S}}} + E_{\text{Soil_S}} + \frac{dM_{\text{Air_S}}}{V_{\text{Air_S}}Z_{\text{Air_S}}} + \frac{dM_{\text{Air_S}}}{V_{\text{Air_S}}Z_{\text{Air_S}}} + \frac{dM_{\text{Air_S}}}{V_{\text{Air_S}}Z_{\text{Air_S}}} + \frac{dM_{\text{Air_S}}}{V_{\text{Air_S}}Z_{\text{Air_S}}} + \frac{dM_{\text{Air_S}}}{V_{\text{Air_S}}Z_{\text{Air_S}}} + \frac{dM_{\text{Air_S}}}{V_{\text{Air_S}}Z_{\text{Air_S}}} + \frac{dM_{\text{Air_S}$$

Arctic zone

Arctic Zone

$$\frac{dM_{\text{Air},A}}{dt} = - \begin{pmatrix} D_{\text{Tran,Air},AS} + D_{\text{Deg,Air},A} + D_{\text{Air},\text{Strat},A} + D_{\text{Air},\text{Soil},A} \\ + D_{\text{Air},\text{Snowpack},A} + D_{\text{Air},\text{Sea,Ice},A} + D_{\text{Rain},A} \\ + D_{\text{Snow},A} + D_{\text{DD},A} + D_{\text{WD},\text{Rain},A} + D_{\text{WD},\text{Snow},A} \end{pmatrix} \frac{M_{\text{Air},A}}{V_{\text{Air},A}Z_{\text{Air},A}}$$

$$phase + D_{\text{Tran,Air},SA} \frac{M_{\text{Air},S}}{V_{\text{Air},S}Z_{\text{Air},S}} + D_{\text{Air},\text{Water}} \frac{M_{\text{Seawater},A}}{V_{\text{Seawater},A}} + D_{\text{Air},\text{Soil},A} \frac{M_{\text{Soil},A}}{V_{\text{Soil}}Z_{\text{Soil}}}$$

$$+ D_{\text{Air},\text{Snowpack},V_{\text{Snowpack},A}} \frac{M_{\text{Snowpack},A}}{V_{\text{Seawater},A}} + D_{\text{Air},\text{Sea,Ice}} \frac{M_{\text{Seawater},A}}{V_{\text{Seawater},A}} + D_{\text{Air},\text{Sea,Ice}} \frac{M_{\text{Seawater},A}}{V_{\text{Seawater},A}}$$

$$+ D_{\text{Air},\text{Snowpack},A} + D_{\text{Air},\text{Water},A} + D_{\text{Mir},\text{Seawater},A} \frac{M_{\text{Seawater},A}}{V_{\text{Seawater},A}} \frac{M_{\text{Seawater},A}}{V_{\text{Seawater},A}}$$

$$+ \left(D_{\text{Rain},\text{Seawater},A} + D_{\text{Air},\text{Water},A} + D_{\text{WD},\text{Seawater},A} \right) \frac{M_{\text{Air},A}}{V_{\text{Air},A}Z_{\text{Air},A}}$$

$$+ \left(1 - k_{\text{Runoff}} \right) D_{\text{Runoff},S} \frac{M_{\text{Soil},S}}{V_{\text{Seawater},Soil},S_{\text{Soil},S}} + D_{\text{Runoff},A} \frac{M_{\text{Soil},A}}{V_{\text{Air},A}Z_{\text{Air},A}} + D_{\text{Runoff},A} \frac{M_{\text{Soil},A}}{V_{\text{Soil},A}Z_{\text{Soil},A}} \right)$$

$$+ \left(D_{\text{Deg,Soil},A} + D_{\text{Runoff},A} + D_{\text{Air},\text{Soil},A} \right) \frac{M_{\text{Soil},A}}{V_{\text{Soil},A}Z_{\text{Soil},A}} + D_{\text{Runoff},A} \frac{M_{\text{Soil},A}}{V_{\text{Soil},A}Z_{\text{Soil},A}} + D_{\text{Air},\text{Soil},A} + D_{\text{Noil},A}Z_{\text{Soil},A} \right)$$

$$+ \left(D_{\text{Rain,Soil},A} + D_{\text{Soil},A} + D_{\text{Soil},A} + D_{\text{Do},\text{Soil},A} \right) \frac{M_{\text{Air},A}}{V_{\text{Air},A}Z_{\text{Air},A}} + D_{\text{Air},\text{Soil},A} + D_{\text{Air},\text{Soil},A} \right) \frac{M_{\text{Soil},A}}{V_{\text{Air},A}Z_{\text{Air},A}} + D_{\text{Air},\text{Soil},A} + D_{\text{Air},\text{Soil},A} \right) \frac{M_{\text{Air},A}}{V_{\text{Air},A}Z_{\text{Air},A}} + D_{\text{Air},\text{Soil},A} + D_{\text{Air},\text{Soil},A} + D_{\text{Air},\text{Soil},A} + D_{\text{Air},\text{Soil},A} \right) \frac{M_{\text{Air},A}}{V_{\text{Air},A}Z_{\text{Air},A}} + D_{\text{Air},\text{Soil},A} + D_{\text{Air},\text{Soil},A} + D_{\text{Air},\text{Soil},A} + D_{\text{Air},\text{Soil},A} + D_{\text{Air},\text{Soil},A} + D_{\text{Air},\text{Soil},A} + D_$$

Air & ocean concentration

AMBBM 1.0 $RMSE_{log} = 4.06$

AMBBM 2.0 $RMSE_{log} = 4.05$

AMBBM 1.0 $RMSE_{log} = 2.92$

AMBBM 2.0 $RMSE_{log} = 2.19$

Model evaluation

Burden

AMBBM 2.0 is about twice the burden of AMBBM 1.0 and is closer to the results of Wania and Mackay, 1999, while AMBBM 1.0 is closer to the results of Macdonald, 2000.

Concentration

Burden

- Seawater stores most of the β-HCH;
- The atmosphere has a considerable amount in the early period, but the mass percentage is almost 0 in the middle and late period;
- * The soil also stored a certain amount of β-HCH, and the proportion increased slowly in the later period;
- The proportion of burden in sea ice is high in the early stage and very low in the late period;
- The proportion of snow cover is negligible.

Burden

- * Accumulation period (AP, 1945-1986)
- * Decay period (DP, 1986-)

Budget

a Total

C DP

Overall period

- Main loading: Ocean current
- Main removal: Ocean current ,degradation、sink into deep sea

AP

- * Effect of ocean currents are relatively weak
- Other processes are correspondingly stronger

DP

- Effect of ocean currentsare relatively strong
- Other processes are correspondingly weaker

Loading to the Arctic Ocean

			α-НСН		β-НСН	
		Flux (t)	Percentage	Flux (t)	Percentage	LRAT loading
Total		52300	100%	2690	100%	
	Gas-ocean exchange	30900	59%	301	11%	
	Gaseous wet deposition	5390	10%	147	5%	
	Deposition	11.7	0%	1.54	0%	
	Ocean current	11600	22%	1910	71%	LROT loading
	River inflow	4420	8%	331	12%	

- * The total amount of α -HCH entering the Arctic is 20 times higher than that of β -HCH;
- * For α -HCH and β -HCH, the sum of LRAT and LROT loading accounted for 92% and 88% of the total input;
- * α -HCH, LRAT loading (69%); β -HCH, LROT (71%).

Re-emission

- * In early period, both air-water exchange and the ocean current are important input pathways, but at a certain point, the direction changed.
- * For ocean currents and air-water exchange, the switching points of α -HCH occurred in 1985 and 1993. β -HCH occurred in 1996 and 1997;
- * Re-emission of α -HCH was mainly via LRAT (55%), and β -HCH was via LROT (94%).

Burden

- * In AP, the growth slopes of α and β HCH were similar, but β -HCH had a slower start.
- * In DP, the decrease rate of β -HCH was slower than α -HCH.

Prediction and the Impact of Climate Change

- Scenario 1: Environmental parameters remain unchanged
- Scenario 2: RCP 8.5 assumptions (Carvalho, 2020; Overland, 2014; Bintanja, 2018; Shu, 2022)
 - Atmospheric temperature rises by 1K;
 - Ocean temperature increased by 2K;
 - * 50% sea ice extent reduction;
 - Rainfall increases by 20%.

- * Under the influence of climate change, the concentration of α -HCH is 1.5%-46% lower than scenario 1; the concentration of β -HCH is 0.3%-16% lower than scenario 1.
- * In the future, the concentration of β -HCH will exceed that of α -HCH (2041, scenario 1; 2036, scenario 2).
- * By 2050, β -HCH remains 4.4-5.3t, and α -HCH remains 1.8-3.4t.

