федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

ОТЧЕТ

по учебно-исследовательской работе №4 «Исследование сетевых моделей массового обслуживания» по дисциплине «**Моделирование**»

Вариант 51/3

Авторы:

Кулаков Н. В.

Нестеров Н. К.

Группа: РЗ4312

Преподаватель: Алиев Т. И

Санкт-Петербург 2023

Содержание

1. Постановка задачи	3
1.1. Цель	
1.2. Начальные данные	
2. Исследование модели 3CeMO	
2.1. Программа GPSS	
2.2. Результаты имитационного моделирования	7
2.3. Анализ результатов устранения узкого места	9
2.3.1. Поиск узкого места	9
2.4. Влияние кол-ва заявок на характеристики функционирования	при разных вариациях 13
3. Исследование модели РСеМО	15
3.1. Программа GPSS	15
3.2. Результаты имитационного моделирования	18
3.2.1. Сравнение РСеМО с 3CeMO	18
3.2.2. Предельная интенсивность поступления заявок	21
3.2.3. Характеристики при загрузке узкого места 0.8-0.95	
3.3. Влияние характера входного потока	
4. Итоги	
4. ИТОГИ	

1. Постановка задачи

1.1. Цель

Исследовать свойства системы, моделируемых в виде замкнутых и разомкнутых сетей массового обслуживания (CeMO) с однородным потоком заявок с

применением имитационного моделирования при различных предположениях о параметрах структурно-функциональной организации и нагрузки.

Исследованием проводится с целью исследования зависимостей характеристик от параметров и выявление свойств замкнутых и разомкнутых СеМО, а также их [замкнутых и разомкнутых СеМО] сравнительного анализа эффективностей.

1.2. Начальные данные

Вариант 51/3.

Структурные параметры и количество заявок в 3СеМО:

- Количество узлов: 4
- Количество приборов в узлах:
 - У1: 2, У2: 1, У3: 3, У4: 1
- Номер узла с H2 v=2 и Э2: 1

Для гиперэкспоненциального распределения используется v=2, q=0.3. Так при t=100: t1≈287, t2≈19.8 по формулам, использованным в УИР1.

• Тип модели: МЗ

Dugues 1. Madage CaMO No

- Вероятности передач:
 - o p10=0.25, p12=0.25, p13=0.25

- Средние длительности обслуживания:
 - ∘ b1=4 c, b2=2.5 c, b3=14 c, b4=5 c. c модельные секунды (модельные единицы времени).

2. Исследование модели 3СеМО

Рисунок 2: Граф модели ЗСеМО

2.1. Программа GPSS

```
**** количество транзактов в ЗСеМО ****
M_tr EQU
**** Количество приборов в узлах ****
           STORAGE
uzel_1
uzel_2
                       1; тоже самое, что и без STORAGE (для упрощения чтения)
           STORAGE
uzel_3
           STORAGE
                       3
uzel_4
           STORAGE
**** среднее время обслуживания в узлах ****
t_b_1 EQU
**** для гиперэкспоненциального распределения узла 1 *****
h_b_11
           EQU
                 100
h_b_12
           EQU
                 10
```

```
h_b_1q
           EOU
                0.30
t_b_2 EQU
           2.5
t_b_3 EQU
           14
t_b_4 EQU
           5
**** номера генераторов для узлов ****
RN_b_11
           EQU
                13
RN_b_12
           EQU
                47
RN_b_2
           EQU
                5
RN_b_3
           EQU
                23
RN_b_4
           EQU
                31
**** вероятности передач *****
           0.25
p_10 EQU
p_12 EQU
           0.25
p_13 EQU
           0.25
**** Метрики ****
     TABLE M1, 40, 40, 30; время пребывания в сети
*TU_buf_1 QTABLE ch_1,0.1,0.1,100
*TU_buf_2 QTABLE ch_2, 0.1, 0.1, 100
*TU_buf_3 QTABLE ch_3, 0.1, 0.1, 100
*TU_buf_4 QTABLE
                     ch_4,0.1,0.1,100
**** функция TRANSFER по окончании обслуживания в узле 1****
trans_1
           FUNCTION
                     RN77, D4
0.25, mu_0/0.5, mu_2/0.75, mu_3/1, mu_4 ; нельзя подставить переменные выше
*****************
               Система ЗСеМО (МЗ)
****************
     START 1
     GENERATE
                1000000
                           ; таймер на выполнение в системе
     TERMINATE
                1
mu_0 TABULATE
                T_U ; (узел 0) время пребывания в сети
                ; отметка момента поступления заявки в сеть (для TABULATE)
     MARK
     TRANSFER
                ,mu_1 ; безусловный переход в узел 1
     GENERATE
                ,,,M_tr ; генерация m транзактов, поступивших в сеть
mu_1 QUEUE ch_1 ; регистрация момента поступления в очередь
     ENTER uzel_1
     DEPART
                ch_1 ; регистрация момента покидания очереди
     ADVANCE
                (erl2(RN_b_11,RN_b_12,t_b_1))
     ADVANCE
                (hyper2(RN_b_11, h_b_1q, h_b_11, h_b_12))
     LEAVE uzel_1
     TRANSFER
                ,FN$trans_1
```

```
mu_2 QUEUE ch_2
      ENTER uzel_2
      DEPART
                  ch_2
      ADVANCE
                  (Exponential(RN_b_2,0,t_b_2))
      LEAVE uzel_2
      TRANSFER
                  , mu_1
mu_3 QUEUE ch_3
      ENTER uzel_3
      DEPART
                  ch_3
      ADVANCE
                  (Exponential(RN_b_3,0,t_b_3))
      LEAVE uzel_3
      TRANSFER
                  , mu_1
mu_4 QUEUE ch_4
      ENTER uzel_4
      DEPART
      ADVANCE
                  (Exponential(RN_b_4, 0, t_b_4))
      LEAVE uzel_4
      TRANSFER
                  , mu_1
PROCEDURE hyper2(RN_H, qq, tt_1, tt_2) BEGIN
      if (uniform(1,0,1) < qq) then return exponential(RN_H,0,tt_1);</pre>
      else return exponential(RN_H,0,tt_2);
END;
PROCEDURE erl2(RN_A, RN_B, tt) BEGIN
      return (Exponential(RN_A,0,tt/2))+(Exponential(RN_B,0,tt/2));
END;
```

2.2. Результаты имитационного моделирования

На данном этапе определяется, чему равна производительности в сети в зависимости от количества транзактов в 3СеМО.

Для сети с распределением времени обслуживания с распределением Эрланга 2-ого порядка и гиперэкспоненциального распределения с вариацией, равной 2.

Таблица 1: Параметры гиперэкспоненциального распределения в У1

mean	V	q	t1	t2
4	2	0.3	11.483	0.7929

Таблица 2: Зависимость производительности ЗСеМО от числа заявок М

M	U (эрланг)	λ0 (эрланг)		U (гипер)	λ0 (гипер)	
1	37.638	0.02657		37.731	0.02650	
2	38.485	0.05197	48.87%	38.518	0.05192	48.96%
3	40.727	0.07366	29.45%	41.57	0.07217	28.05%
4	44.260	0.09038	18.49%	46.18	0.08662	16.68%
5	48.928	0.10219	11.56%	51.912	0.09632	10.07%
6	54.469	0.11015	7.23%	58.095	0.10328	6.74%
7	60.643	0.11543	4.57%	64.618	0.10833	4.66%
8	67.323	0.11883	2.86%	71.399	0.11205	3.32%
9	74.330	0.12108	1.86%	78.305	0.11494	2.51%
10	81.622	0.12252	1.17%	85.366	0.11714	1.88%
11	89.078	0.12349	0.79%	92.565	0.11884	1.42%
12	96.694	0.12410	0.50%	99.835	0.12020	1.13%
13	104.425	0.12449	0.31%	107.198	0.12127	0.88%

Зависимость производительности ЗСеМО от количества заявок в ней видна на графике. Чем ближе мы к максимально возможному значению производительности, тем меньше изменения, то стремится к максимуму асимпототически.

Для 3CeMO(Э2)¹ Разница между M=10 и M=11 меньше 1%, поэтому M=10 будем считать критическим числом заявок в системе. При таком количестве заявок видим следующие результаты по приборам:

STORAGE	CAP.	REM.	MIN.	MAX.	ENTRIES A	AVL.	AVE.C.	UTIL.	RETRY	DELAY
UZEL_1	2	0	0	2	2466905	1	1.974	0.987	0	4
UZEL_2	1	0	0	1	616454	1	0.308	0.308	0	1
UZEL_3	3	1	0	3	616635	1	1.727	0.576	0	0
UZEL_4	1	0	0	1	616386	1	0.617	0.617	0	0

Здесь загрузка прибора UZEL_1 близка к единице, а также для этого прибора больше всех вхождений заявок. То же самое можно было предположить по структурной организации сети: узел 1 обязателен для посещения всем заявкам системы.

¹ ЗСеМО с распределением Эрланга 2-ого порядка в Узле 1

По такому же принципу для 3CeMO(H2)² разница M=12 и M=13 меньше 1%. Критическое число заявок M=12. Число является большим, потому что узел 1 имеет большую вариацию, а это означает большие простаивания из-за характера обслуживания заявок. При большем числе заявок появляются большие очереди перед этим узлом, а значит узел в среднем меньше простаивает (учитывая, что этот узел, как уже видно, является узким местом).

Рисунок 3: Зависимость производительности от М в 3СеМО

2.3. Анализ результатов устранения узкого места

2.3.1. Поиск узкого места

Для 3CeMO(Э2) количество заявок в сети M=10, для 3CeMO(H2) — M=12.

Графики агрегированных данных в таблицах:

² ЗСеМО с гиперэкспоненциальным распределением с 2-мя параллельными экспонентами

Зависимость производительности от времени обслуживания и кол-ва приборов на У1

Результат, что при увеличении количества приборов или уменьшении длительности обслуживания в узле, являющимся узким местом довольно очевиден. Что касается характера (формы) графика, то тут были получены более интересные результаты. Если посмотреть, что происходит при уменьшении длительности обслуживания при сохранении кол-ва приборов, то тут Э2 при M=10 и H2 при M=12 ведут себя похожим образом, однако при увеличении приборов Н2 показывает лучшие результаты. Это связано предположительно с тем, что при гиперэкспоненте простои возникают из-за пиков времен обслуживания, однако при увеличении кол-ва приборов вероятность, что «большинство» приборов будут заниматься обслуживанием «пиковых» заявок значительно меньше. Кроме того, как мы знаем, в гиперэкспоненциальном распределении гораздо больше заявок обрабатываются временем меньшим медианы. Поэтому, например, если взять 3 и более приборов, какие-то приборы в какой-то ситуации будут заниматься долгой обработкой, а оставшиеся приборы будут с большей долей вероятности быстро обслуживать заявки, а вероятность что все приборы будут долго обслуживать, значительно уменьшается.

Зависимость загрузки узлов от времени обсл. и кол-ва приборов (Э2)

Зависимость загрузки узлов от времени обсл. и кол-ва приборов (H2)

Если добавить в какой-то узел больше узлов или уменьшить длительность обслуживания, то загрузка данного узла уменьшится. При «расширении горлышка» узкого места увеличивается производительность (что видно на предыдущем рисунке), а значит и увеличивается загрузка других узлов.

Увеличивается производительность узла — уменьшаются очереди в этом узле, однако увеличивается загрузка других узлов и увеличиваются очереди в других узлах. Так при Э2 длительность ожидания остается постоянной (так получилось из-за перераспределения и особым образом заданных времен обслуживания)

При увеличении кол-ва приборов уменьшается длина очереди СеМО. При гиперэкспоненциальном распределении длина очереди значительно сильнее уменьшается, что не противоречит выводам, сделанным к графику с производительностью. Однако для гиперэкспоненциального распределения очередь все равно выше, потому что в системе на 2 заявки больше. Так при уменьшении длительности обслуживания разность как раз приблизительно составляет 2 заявки, а при увеличении кол-ва приборов эта разность уменьшается, так как загрузка системы в целом выше из-за более высокой производительности.

2.4. Влияние кол-ва заявок на характеристики функционирования при разных вариациях

Здесь табличная информация не приводится. Результаты только в виде графиков. По загрузке критического узла и коэффициентам передач узлов можно рассчитать загрузки остальных узлов и системы в целом, так как сами загрузки линейно зависят от производительности. Для демонстративности в таблице используется загрузка узла 1, узкого места системы.

Производительность и загрузка прямо пропорциально зависят друг от друга. Для замкнутой сети было получено, что при увеличении вариации обслуживания производительность, а значит и загрузка, уменьшаются, однако все равно стремятся к одному.

При увеличении вариации также увеличивается время ожидания и время пребывания. Также на графике видно, что начиная с некоторого числа заявок (на рис. ~5) в системе эти характеристики начинают изменяться линейно. Кроме того, следует отметить, что время ожидания и пребывания для гиперэкспоненциального распределения стремится к одной линии с экспоненциальным и эрланга. Это связано с тем, что узкое место в сети становится загруженным на 100%, а производительность сети не меняется, а время пребывания зависит обратнопропорцианально от нее и прямопропорциально от числа заявок в системе.

2.5. Сравнительный анализ зависимости времени ожидания и времени пребывания

Линии для времени ожидания и времени пребывания для одинаковых законов распределения следуют одинаковому закону. Если к времени ожидания прибавить константу, сдвинув график вверх, то он совпадёт с графиком времени пребывания:

3. Исследование модели РСеМО

3.1. Программа GPSS

***** интервал поступления заявок в РСеМО *****

```
t_a EQU
RN_a1 EQU
          141
**** Количество приборов в узлах ****
          STORAGE
uzel_1
                     2
uzel_2
          STORAGE
                     1; тоже самое, что и без STORAGE (для упрощения чтения)
uzel_3
          STORAGE
uzel_4
          STORAGE
**** среднее время обслуживания в узлах ****
t_b_1 EQU
***** для гиперэкспоненциального распределения узла 1 *****
h_b_11
          EQU
                100
h_b_12
                10
          EQU
h_b_1q
          EQU
                0.30
t_b_2 EQU
          2.5
t_b_3 EQU
          14
t_b_4 EQU
          5
**** номера генераторов для узлов ****
RN_b_11
          EQU
                13
RN_b_12
          EQU
                47
RN_b_2
          EQU
                5
RN_b_3
          EQU
                23
RN_b_4
          EQU
                31
**** вероятности передач ****
p_10 EQU
          0.25
p_12 EQU
          0.25
p_13 EQU
          0.25
**** Метрики ****
T_U TABLE M1, 40, 40, 30; время пребывания в сети
*TU_buf_1 QTABLE ch_1,0.1,0.1,100
*TU_buf_2 QTABLE ch_2,0.1,0.1,100
*TU_buf_3 QTABLE ch_3, 0.1, 0.1, 100
*TU_buf_4 QTABLE ch_4,0.1,0.1,100
**** функция TRANSFER по окончании обслуживания в узле 1****
          FUNCTION
                     RN77, D4
0.25, mu_0/0.5, mu_2/0.75, mu_3/1, mu_4 ; нельзя подставить переменные выше
****************
               Система РСеМО (МЗ)
****************
     START 1
     GENERATE
               1000000 ; таймер на выполнение в системе
     TERMINATE
                1
mu_0 TABULATE
               T_U ; завершение транзакта
```

10

```
TERMINATE
```

```
GENERATE
                  (Exponential(RN_a1,0,t_a)); генерация поступающих транзактов
mu_1 QUEUE ch_1 ; регистрация момента поступления в очередь
      ENTER uzel_1
      DEPART
                  ch_1 ; регистрация момента покидания очереди
      ADVANCE
                  (erl2(RN_b_11,RN_b_12,t_b_1))
      ADVANCE
                  (hyper2(RN_b_11, h_b_1q, h_b_11, h_b_12))
      LEAVE uzel_1
      TRANSFER
                  ,FN$trans_1
mu_2 QUEUE ch_2
      ENTER uzel_2
      DEPART
                  ch_2
      ADVANCE
                  (Exponential(RN_b_2,0,t_b_2))
      LEAVE uzel_2
                  , mu_1
      TRANSFER
mu_3 QUEUE ch_3
      ENTER uzel_3
      DEPART
                  ch_3
      ADVANCE
                  (Exponential(RN_b_3,0,t_b_3))
      LEAVE uzel_3
      TRANSFER
                  , mu_1
mu_4 QUEUE ch_4
      ENTER uzel_4
      DEPART
                  ch_4
      ADVANCE
                  (Exponential(RN_b_4,0,t_b_4))
      LEAVE uzel_4
      TRANSFER
                  , mu_1
PROCEDURE hyper2(RN_H, qq, tt_1, tt_2) BEGIN
      if (uniform(1,0,1) < qq) then return exponential(RN_H,0,tt_1);</pre>
      else return exponential(RN_H,0,tt_2);
END;
PROCEDURE erl2(RN_A, RN_B, tt) BEGIN
      return (Exponential(RN_A,0,tt/2))+(Exponential(RN_B,0,tt/2));
END;
```

3.2. Результаты имитационного моделирования

3.2.1. Сравнение РСеМО с ЗСеМО

Для замкнутой сети:

Эрланг	4-2		ЗСеМО							
Номер узла	Вр. обсл.	Кол-во приб.	Загрузка	Коэф. передачи	Вр. ожид.	Вр. ожид сети	Вр. преб. сети	Кол-во заявок	Производ.	
1	4	2	0.98	3.999	2.215					
2	2.5	1	0.306	0.999	10.722	26.186	Q1 622	10	0.1225	
3	14	3	0.571	0.999	1.375	20.100	01.022	10	0.1223	
4	5	1	0.613	1.001	5.238	1				

Эрланг	4-2		PCeMO							
Номер узла	Вр. обсл.	Кол-во приб.	Загрузка	Коэф. передачи	Вр. ожид.	Вр. ожид сети	Вр. преб. сети	Кол-во заявок	Производ.	
1	4	2	0.981	4.004	153.66					
2	2.5	1	0.306	0.999	1.972	635.390	672.07	82.339	0.1225	
3	14	3	0.573	1.002	1.002 6.168 033.390 072.07 82.339	635.390	02.333	0.1225		
4	5	1	0.613	1.001	12.043					

Поскольку задана одинаковая производительность, то у сетей одинаковая загрузка узлов. Сети отличаются количеством заявок (для 3CeMO — параметр, для PCeMO — характеристика), и, соответственно, временами ожидания и обслуживания.

Столбчатые графики сравнения:

Системные характеристики/параметры:

Гиперэксп	4-2		ЗСеМО						
Номер узла	Вр. обсл.	Кол-во приб.	Загрузка	Коэф. передачи	Вр. ожид.	Вр. ожид сети	Вр. преб. сети	Кол-во заявок	Производ.
1	4	2	0.992	3.997	12.08				
2	2.5	1	0.31	0.999	7.058	50 251	96.694	12	0.1241
3	14	3	0.579	1.000	0.946	100.201	30.034	12	0.1241
4	5	1	0.62	0.999	2.976				

Гиперэксп	4-2		PCeMO						
Номер узла	Вр. обсл.	Кол-во приб.	Загрузка	Коэф. передачи	Вр. ожид.	Вр. ожид сети	Вр. преб. сети	Кол-во заявок	Производ.
1	4	2	0.994	4.005	443.203				
2	2.5	1	0.31	0.999	2.031	1796.08	1830 73	227 10	0.1241
3	14	3	0.58	1.001	6.508	1790.00	1030.72	227.13	0.1241
4	5	1	0.621	1.001	12.612				

В РСеМО значительно больше время ожидания и время пребывания из-за наличия большего числа заявок в сети, которые находятся в очереди. Это связано со случайными значениями времен обслуживания, в результате которых возникают очереди и с тем, что система работает почти на полную (загрузка узла 1 близка к 1).

3.2.2. Предельная интенсивность поступления заявок Для РСеМО с распределением Э2 на У1:

Интен-ть пост-ния	Загрузка узкого	Время
MHICH-IB HOCI-HM	места	пребывания
0.1	0.801	69.988
0.105	0.84	79.688
0.11	0.88	95.652
0.115	0.92	128.373
0.12	0.96	238.685
0.121	0.968	291.437
0.1225159883	0.98	441.280
0.123	0.984	544.513
0.124	0.992	1007.539
0.125	0.999	5126.379
0.126	1	24376.995

Предельная интенсивность — 0.125, что сходится, если считать по формулам. Аналогичные результаты и в случае гиперэкспоненциального распределения:

Интен-ть пост-ния	Загрузка узкого	Время
Интен-ть пост-ния	места	пребывания
0.1	0.801	92.094
0.105	0.84	108.418
0.11	0.88	135.797
0.115	0.92	189.918
0.12	0.96	355.77
0.121	0.967	431.536
0.1225159883	0.98	641.149
0.123	0.983	778.543
0.124	0.991	1471.609
0.125	0.999	8162.768
0.126	1	27471.832

Зависимость времени пребывания от интенсивности поступления

На графике видно, что при достижении максимума интенсивности поступления, время обслуживания стремится к бесконечности.

3.2.3. Характеристики при загрузке узкого места 0.8-0.95

На графике отражены время пребывания и время ожидания для РСеМО с распределением Эрланга и Гиперэкспоненциальным на У1. Как видно, время ожидания и время пребывания системы параллельны (это связано с постоянным временем заявки на приборах). Время ожидания и пребывания для Н2 растет быстрее, чем при Э2. Также на графике отображено время ожидания на У1. Как видно, заявка ожидает большую часть времени в накопителе этого узла, в связи с этим такие задержки.

Зависимость числа заявок в системе от интенсивности

Соответственно, также при гиперэкспоненциальном распределении больше заявок в системе, потому что время пребывания и интенсивность связаны соотношением. Число заявок, как и время ожидания, пребывания стремятся к бесконечности при приближении к максимальной интенсивности выходящего потока, так как при его достижении они не смогут успевать обрабатываться, и возникнут бесконечные очереди. Характеристики стремятся к бесконечности из-за случайности входящего потока и интенсивностей обслуживания.

3.3. Влияние характера входного потока

Результаты для простейшего потока были получены на предыдущем этапе.

Сравним с детерминированным потоком (v=0), при увеличении вариации ситуация будет аналогична, учитывая, что похожий анализ уже проводился в предыдущих ЛР.

При уменьшении вариации входящего потока уменьшается число заявок в системе, время ожидания и время пребывания. При увеличении вариации увеличивается число заявок, меньших чем медиана, и в результате в системе накапливается периодически больше заявок, что влияет на их время ожидания и время пребывания.

График числа заявок от интенсивности представлен ниже.

4. Выводы

- Изучены основные сетевые характеристики 3CeMO, их зависимости от сетевых и узловых параметров, а также от закона распределения времени обслуживания
- Найдено предельное значение производительности 3СеМО
- Проведён поиск и устранение узкого места 3СеМО
- По результатам исследования 3СеМО выбраны параметры для РСеМО и проведён их сравнительный анализ
- Изучены основные сетевые и узловые характеристики РСеМО, их зависимости от сетевых и узловых параметров, а также от закона распределения времени обслуживания
- Проведён расширенный сравнительный анализ зависимостей разных сетевых и узловых характеристик PCeMO от её производительности и от количества заявок в сети