Indian Institute of Technology Delhi Department of Mathematics

MAL 111 MAJOR TEST

MAXIMUM CREDIT: 40 DATE: 29/11/2006 (WEDNESDAY)

JUSTIFY ALL YOUR ANSWERS.

1. Let $f:[0,1]\to\mathbb{R}$ be a Riemann integrable function satisfying the condition

$$|f(x) - f(y)| \le 4|x - y|$$
 for all $x, y \in [0, 1]$.

Show that $\left| \int_0^1 f(t)dt - f(c) \right| \le 2$ for all $c \in [0, 1]$.

[5]

2. Let $f: \mathbb{R} \to [0, \infty)$ be a decreasing function. For $n \in \mathbb{N}$, define

$$a_n = f(1) + f(2) + \cdots + f(n) - \int_1^n f(t)dt.$$

- (a) Show that $a_{n+1} \leq a_n$ for all $n \in \mathbb{N}$.
- (b) Show that a_n ≥ 0 for all n ∈ N.
- (c) Does the sequence $(a_n)_{n=1}^{\infty}$ converge in \mathbb{R} ? Justify your answer.

[3+3+2]

3. Let U be an open subset of \mathbb{R}^2 and $f: U \to \mathbb{R}$ be a function defined on U. Suppose that $f_x(x,y)$ and $f_y(x,y)$ exist at each point (x,y) in U. Moreover, assume that $f_x(x,y) = 0 = f_y(x,y)$ for all $(x,y) \in U$. Is f constant on U? Justify your answer.

[5]

- 4. (a) Let $f:(X,d) \to (Y,\rho)$ be a continuous function between two metric spaces (X,d) and (Y,ρ) , and let A be a nonempty connected subset of X. Show that f(A) is connected in (Y,ρ) .
 - (b) Let (X, d) be a metric space and A and B be two nonempty connected subsets of X such that $A \cap B \neq \emptyset$. Show that $A \cup B$ is also connected in (X, d).

[5+5]

- 5. Let (X, d) be a metric space and $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ be two Cauchy sequences in (X, d). Show that the sequence $\left(d(x_n, y_n)\right)_{n=1}^{\infty}$ converges in \mathbb{R} . (\mathbb{R} has the usual distance metric.)
- 6. Let $f(x) = e^x$ for $x \in \mathbb{R}$. Find the Taylor series for f about 0. For which values of $x \in \mathbb{R}$ does this Taylor series converge to f(x)? Justify your answer.

[4]

7. Find the maximum and minimum values of the function f(x,y) = 3x + 4y on the circle $x^2 + y^2 = 1$.

[5]