Basis SMEFTsim_topU31 (EFT SMEFT)

Basis used in the SMEFTsim_topU31 UFO models, version 3.0.0 or later. Implements Warsaw basis with $U(2)^3$ flavor symmetry in the quarks sector and $U(3)^2$ in the leptons sector. Q,t,b are left- and right-handed 3rd gen quarks, q,u,d are the left- and right-handed quark fields containing only the first two generations, and transforming as U(2)-flavor doublets. ℓ,e are left- and right-handed lepton fields. Y_u,Y_d are the 2x2 Yukawas of up and down quarks in the first two generations. Y_l is the 3x3 lepton Yukawa. Yukawas defined by $L_{SM} \supset \bar{d}Y_dH^{\dagger}q$ and analogously for the others. Spurions connecting the first two generations with the 3rd are absent. In the UFO models, both Y_u and Y_d are assumed diagonal at the scale of evaluation, and the CKM is taken to be the unit matrix. Flavor indices are indicated with p,r,s,t with Einstein conventions on repeated indices. They run over 1,2 for quarks ans 1,2,3 for leptons. This basis definition corresponds to a fixed LambdaSMEFT=1e+3 in the UFO models. Notation and conventions can vary compared to the Warsaw basis paper, see arXiv:2012.11343 for all definitions.

Sectors

The effective Lagrangian is defined as

$$\mathcal{L}_{\text{eff}} = -\mathcal{H}_{\text{eff}} = \sum_{O_i = O_i^{\dagger}} C_i O_i + \sum_{O_i \neq O_i^{\dagger}} \left(C_i O_i + C_i^* O_i^{\dagger} \right).$$

dB=dL=0

WC name	Operator	Type
cG	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}/{ m TeV}^2$	R
cGtil	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}/\text{TeV}^{2}$ $f^{ABC}\widetilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}/\text{TeV}^{2}$	R
cW	$\varepsilon^{IJK}W_{\mu}^{I u}W_{ u}^{J ho}W_{ ho}^{K\mu}/{ m TeV}^2$	\mathbf{R}
cWtil	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I u}W_{ u}^{J ho}W_{ ho}^{K\mu}/{ m TeV^2}$	\mathbf{R}
сН	$(H^\dagger H)^3/{ m TeV}^2$	\mathbf{R}
cHbox	$(H^{\dagger}H)\Box(H^{\dagger}H)/\text{TeV}^2$	\mathbf{R}
cHDD	$(D_{\mu}H^{\dagger}H)(H^{\dagger}D^{\mu}H)/\mathrm{TeV}^{2}$	R
cHG	$G^{A}_{\mu\nu}G^{A\mu u}H^{\dagger}H/{ m TeV}^{2}$	R
cHGtil	$\widetilde{G}^{A}_{\mu u}G^{A\mu u}H^{\dagger}H/\mathrm{TeV}^{2}$	R
cHW	$W^{I}_{\mu\nu}W^{I\mu\nu}H^{\dagger}H/\text{TeV}^2$	R
cHWtil	$\widetilde{W}^{I}_{\mu u}W^{I\mu u}H^{\dagger}H/\mathrm{TeV}^{2}$	${ m R}$
сНВ	$B_{\mu\nu}^{}B^{\mu\nu}H^{\dagger}H/\text{TeV}^2$	\mathbf{R}
cHBtil	$\widetilde{B}_{\mu u}B^{\mu u}H^{\dagger}H/\mathrm{TeV}^{2}$	\mathbf{R}
cHWB	$B_{\mu\nu}W^{I\mu\nu}H^{\dagger}\sigma^{I}H/\text{TeV}^{2}$	R
cHWBtil	$B_{\mu\nu}\widetilde{W}^{I\mu\nu}H^{\dagger}\sigma^{I}H/\mathrm{TeV}^{2}$	${ m R}$
ceHRe	$(Y_l^{\dagger})_{pr}(\bar{\ell}_p H e_r)(H^{\dagger} H)/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}

WC name	Operator	Type
ceHIm	$i(Y_l^{\dagger})_{pr}(\bar{\ell}_p H e_r)(H^{\dagger} H)/\text{TeV}^2 + \text{h.c.}$	R
cuHRe	$(Y_u^{\dagger})_{pr}(\bar{q}_p \tilde{H} u_r)(H^{\dagger} H)/\text{TeV}^2 + \text{h.c.}$	R
cuHIm	$i(Y_u^{\dagger})_{pr}(\bar{q}_p\tilde{H}u_r)(H^{\dagger}H)/\text{TeV}^2 + \text{h.c.}$	R
ctHRe	$(\bar{Q}\tilde{H}t)(H^{\dagger}H)/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
ctHIm	$i(\bar{Q}\tilde{H}t)(H^{\dagger}H)/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cdHRe	$(Y_d^{\dagger})_{pr}(\bar{q}_p H d_r)(H^{\dagger} H)/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cdHIm	$i(Y_d^{\dagger})_{pr}(\bar{q}_p H d_r)(H^{\dagger} H)/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cbHRe	$(\bar{Q}Hb)(H^{\dagger}H)/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cbHIm	$i(\bar{Q}Hb)(H^{\dagger}H)/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
ceWRe	$(Y_l^{\dagger})_{pr}(\bar{\ell}_p\sigma^I H \sigma^{\mu\nu} e_r)W_{\mu\nu}^I/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
ceWIm	$i(Y_l^{\dagger})_{pr}(\bar{\ell}_p\sigma^I H \sigma^{\mu\nu} e_r) \dot{W}_{\mu\nu}^I / \text{TeV}^2 + \text{h.c.}$	\mathbf{R}
ceBRe	$(Y_l^{\dagger})_{pr}(\bar{\ell}_p H \sigma^{\mu\nu} e_r) B_{\mu\nu}/\text{TeV}^2 + \text{h.c.}$	R
ceBIm	$i(Y_l^{\dagger})_{pr}(\bar{\ell}_p H \sigma^{\mu\nu} e_r) B_{\mu\nu}/\text{TeV}^2 + \text{h.c.}$	${ m R}$
cuGRe	$(Y_u^{\dagger})_{pr}(\bar{q}_p\tilde{H}\sigma^{\mu\nu}T^Au_r)G_{\mu\nu}^A/\text{TeV}^2 + \text{h.c.}$	R
cuGIm	$i(Y_u^{\dagger})_{pr}(\bar{q}_p\tilde{H}\sigma^{\mu\nu}T^Au_r)\tilde{G}_{\mu\nu}^A/\text{TeV}^2 + \text{h.c.}$	R
ctGRe	$(\bar{Q}\tilde{H}\sigma^{\mu\nu}T^At)G^A_{\mu\nu}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
ctGIm	$i(\bar{Q}\tilde{H}\sigma^{\mu\nu}T^At)\dot{G}^A_{\mu\nu}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cuWRe	$(Y_{u}^{\dagger})_{nr}(\bar{q}_{n}\sigma^{I}\tilde{H}\sigma^{\mu\nu}u_{r})W_{uu}^{I}/\text{TeV}^{2}+\text{h.c.}$	\mathbf{R}
cuWIm	$i(Y_u^{\dagger})_{pr}(\bar{q}_p\sigma^I\tilde{H}\sigma^{\mu\nu}u_r)W_{\mu\nu}^I/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
ctWRe	$(Q\sigma^{1}H\sigma^{\mu\nu}t)W_{\mu\nu}^{1}/\text{TeV}^{2}+\text{h.c.}$	\mathbf{R}
ctWIm	$i(\bar{Q}\sigma^I\tilde{H}\sigma^{\mu\nu}t)W^I_{\mu\nu}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cuBRe	$(Y_u^{\dagger})_{pr}(\bar{q}_p H \sigma^{\mu\nu} u_r) B_{\mu\nu}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cuBIm	$i(Y_u^{\dagger})_{pr}(\bar{q}_p\tilde{H}\sigma^{\mu\nu}u_r)B_{\mu\nu}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
ctBRe	$(\bar{Q}\tilde{H}\sigma^{\mu\nu}t)B_{\mu\nu}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
ctBIm	$i(\bar{Q}\tilde{H}\sigma^{\mu\nu}t)B_{\mu\nu}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cdGRe	$(Y_d^{\dagger})_{pr}(\bar{q}_p H \sigma^{\mu\nu} T^A d_r) G_{\mu\nu}^A / \text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cdGIm	$i(Y_d^{\dagger})_{pr}(\bar{q}_p H \sigma^{\mu\nu} T^A d_r) G_{\mu\nu}^A/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cbGRe	$(\bar{Q}H\sigma^{\mu\nu}T^Ab)G^A_{\mu\nu}/\text{TeV}^2 + \text{h.c.}$	R
cbGIm	$i(\bar{Q}H\sigma^{\mu\nu}T^Ab)\dot{G}^A_{\mu\nu}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cdWRe	$(Y_d^{\dagger})_{pr}(\bar{q}_p\sigma^I H \sigma^{\mu\nu} d_r) W_{\mu\nu}^I/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cdWIm	$i(Y_{\bullet}^{\dagger})_{\bullet\bullet}(\bar{q}_{\bullet}\sigma^{I}H\sigma^{\mu\nu}d_{\bullet})W^{I}/\text{TeV}^{2} + \text{h.c.}$	\mathbf{R}
cbWRe	$(\bar{Q}\sigma^I H \sigma^{\mu\nu} b)W^I_{\mu\nu}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cbWIm	$i(Q\sigma^{1}H\sigma^{\mu\nu}b)W_{\mu\nu}^{1}/\text{TeV}^{2}+\text{h.c.}$	\mathbf{R}
cdBRe	$(Y_d^{\dagger})_{pr}(\bar{q}_p H \sigma^{\mu\nu} d_r) B_{\mu\nu}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cdBIm	$i(Y_d^{\dagger})_{pr}(\bar{q}_p H \sigma^{\mu\nu} d_r) B_{\mu\nu}/\text{TeV}^2 + \text{h.c.}$	R
cbBRe	$(\bar{Q}H\sigma^{\mu\nu}b)B_{\mu\nu}/\text{TeV}^2 + \text{h.c.}$	R
cbBIm	$i(\bar{Q}H\sigma^{\mu\nu}b)B_{\mu\nu}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cHl1	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overleftarrow{\ell_{p}}\gamma^{\mu}\ell_{p})/\mathrm{TeV}^{2}$	R
cH13	$(H^{\dagger}i\overset{\leftarrow}{D}_{\mu}^{I}H)(\bar{\ell}_{p}\gamma^{\mu}\sigma^{I}\ell_{p})/\text{TeV}^{2}$ $(H^{\dagger}i\overset{\leftarrow}{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{p})/\text{TeV}^{2}$	R
cHj1	$(H^{\dagger}i\vec{D},H)(\bar{q}_{n}\gamma^{\mu}q_{n})/\text{TeV}^{2}$	R
٠٦ ١	$(11 \ \nu D \mu^{11})(4p \mid 4p)/10$	10

WC name	Operator	Type
cHj3	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}_{p}\gamma^{\mu}\sigma^{I}q_{p})/\text{TeV}^{2}$	R
cHQ1	$(H^{\dagger}i\dot{D}_{\mu}H)(\bar{Q}\gamma^{\mu}Q)/\text{TeV}^2$	\mathbf{R}
cHQ3	$(H^{\dagger}i \overleftrightarrow{D}_{\mu}^{I} H)(\bar{Q}\gamma^{\mu}\sigma^{I}Q)/\text{TeV}^{2}$ $(H^{\dagger}i \overleftrightarrow{D}_{\mu} H)(\bar{e}_{p}\gamma^{\mu}e_{p})/\text{TeV}^{2}$	\mathbf{R}
сНе	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{p})/\text{TeV}^{2}$	\mathbf{R}
сНu	$(H^{\dagger}i\overrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{p})/\text{TeV}^{2}$	\mathbf{R}
cHt	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{t}\gamma^{\mu}t)/\mathrm{TeV}^{2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{p})/\mathrm{TeV}^{2}$	\mathbf{R}
cHd	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{p})/\text{TeV}^{2}$	\mathbf{R}
сНЪq	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{b}\gamma^{\mu}b)/\mathrm{TeV}^{2}$	\mathbf{R}
cHudRe	$(Y_u Y_d^{\dagger})_{pr} (\tilde{H}^{\dagger} i D_{\mu} H) (\bar{u}_p \gamma^{\mu} d_r) / \text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cHudIm	$i(Y_u Y_d^{\dagger})_{pr} (\tilde{H}^{\dagger} i D_{\mu} H) (\bar{u}_p \gamma^{\mu} d_r) / \text{TeV}^2 + \text{h.c.}$	${ m R}$
cHtbRe	$(\tilde{H}^{\dagger}iD_{\mu}H)(\bar{t}\gamma^{\mu}b)/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cHtbIm	$i(\tilde{H}^{\dagger}iD_{\mu}H)(\bar{t}\gamma^{\mu}b)/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cll	$(\bar{\ell}_p \gamma_\mu \ell_p)(\bar{\ell}_r \gamma^\mu \ell_r)/{ m TeV}^2$	\mathbf{R}
cll1	$(\bar{\ell}_p \gamma_\mu \ell_r) (\bar{\ell}_r \gamma^\mu \ell_p) / { m TeV}^2$	\mathbf{R}
clj1	$(ar{\ell_p}\gamma_\mu\ell_p)(ar{q}_r\gamma^\mu q_r)/{ m TeV}^2$	\mathbf{R}
clj3	$(\bar{\ell}_p \gamma_\mu \sigma^I \ell_p) (\bar{q}_r \gamma^\mu \sigma^I q_r) / \text{TeV}^2$	\mathbf{R}
cQl1	$(Q\gamma_{\mu}Q)(\ell_{p}\gamma^{\mu}\ell_{p})/\text{TeV}^{2}$	\mathbf{R}
cQ13	$(\bar{Q}\gamma_{\mu}\sigma^IQ)(\bar{\ell}_p\gamma^{\mu}\sigma^I\ell_p)/\mathrm{TeV}^2$	\mathbf{R}
cjj11	$(\bar{q}_p\gamma_\mu q_p)(\bar{q}_r\gamma^\mu q_r)/{ m TeV}^2$	\mathbf{R}
cjj18	$(\bar{q}_p \gamma_\mu T^A q_p)(\bar{q}_r \gamma^\mu T^A q_r)/\text{TeV}^2$	\mathbf{R}
cjj31	$(\bar{q}_p\gamma_\mu\sigma^Iq_p)(\bar{q}_r\gamma^\mu\sigma^Iq_r)/{ m TeV^2}$	\mathbf{R}
cjj38	$(\bar{q}_p \gamma_\mu \sigma^I T^A q_p) (\bar{q}_r \gamma^\mu \sigma^I T^A q_r) / \text{TeV}^2$	\mathbf{R}
cQQ1	$(ar{Q}\gamma_{\mu}Q)(ar{Q}\gamma^{\mu}Q)/{ m TeV}^2$	\mathbf{R}
cQQ8	$(\bar{Q}\gamma_{\mu}T^{A}Q)(\bar{Q}\gamma^{\mu}T^{A}Q)/\mathrm{TeV}^{2}$	\mathbf{R}
cQj11	$(\bar{Q}\gamma_{\mu}Q)(\bar{q}_{p}\gamma^{\mu}q_{p})/\mathrm{TeV}^{2}$	\mathbf{R}
cQj18	$(\bar{Q}\gamma_{\mu}T^{A}Q)(\bar{q}_{p}\gamma^{\mu}T^{A}q_{p})/\mathrm{TeV}^{2}$	\mathbf{R}
cQj31	$(\bar{Q}\gamma_{\mu}\sigma^{I}Q)(\bar{q}_{p}\gamma^{\mu}\sigma^{I}q_{p})/\text{TeV}^{2}$	\mathbf{R}
cQj38	$(\bar{Q}\gamma_{\mu}\sigma^{I}T^{A}Q)(\bar{q}_{p}\gamma^{\mu}\sigma^{I}T^{A}q_{p})/\text{TeV}^{2}$	\mathbf{R}
cee	$(\bar{e}_p\gamma_\mu e_p)(\bar{e}_r\gamma^\mu e_r)/{ m TeV}^2$	R
cuu1	$(\bar{u}_p \gamma_\mu u_p)(\bar{u}_r \gamma^\mu u_r)/\text{TeV}^2$	R
cuu8	$(\bar{u}_p \gamma_\mu T^A u_p)(\bar{u}_r \gamma^\mu T^A u_r)/\text{TeV}^2$	R
ctt	$(\bar{t}\gamma_{\mu}t)(\bar{t}\gamma^{\mu}t)/\text{TeV}^2$	R
ctu1	$(\bar{t}\gamma_{\mu}t)(\bar{u}_{p}\gamma^{\mu}u_{p})/\text{TeV}^{2}$	R
ctu8	$(\bar{t}\gamma_{\mu}T^{A}t)(\bar{u}_{p}\gamma^{\mu}T^{A}u_{p})/\text{TeV}^{2}$	R
cdd1	$(\bar{d}_p \gamma_\mu d_p)(\bar{d}_r \gamma^\mu d_r)/\text{TeV}^2$	R
cdd8	$(\bar{d}_p \gamma_\mu T^A d_p) (\bar{d}_r \gamma^\mu T^A d_r) / \text{TeV}^2$	R
cbb	$(\bar{b}\gamma_{\mu}b)(\bar{b}\gamma^{\mu}b)/\text{TeV}^2$	R
cbd1	$(\bar{b}\gamma_{\mu}b)(\bar{d}_{p}\gamma^{\mu}d_{p})/\text{TeV}^{2}$	R
cbd8	$(\bar{b}\gamma_{\mu}T^{A}b)(\bar{d}_{p}\gamma^{\mu}T^{A}d_{p})/\text{TeV}^{2}$	R
ceu	$(\bar{e}_p \gamma_\mu e_p)(\bar{u}_r \gamma^\mu u_r)/\text{TeV}^2$	R
cte	$(\bar{e}_p \gamma_\mu e_p)(\bar{t} \gamma^\mu t)/\text{TeV}^2$	\mathbf{R}

	$Typ\epsilon$
$(\bar{e}_p\gamma_\mu e_p)(\bar{d}_r\gamma^\mu d_r)/{ m TeV}^2$	R
$(ar{e}_p \gamma_\mu e_p) (ar{b} \gamma^\mu b) / \mathrm{TeV}^2$	\mathbf{R}
$(\bar{u}_p\gamma_\mu u_p)(\bar{d}_r\gamma^\mu d_r)/{ m TeV}^2$	\mathbf{R}
$(\bar{t}\gamma_{\mu}t)(\bar{d}_{p}\gamma^{\mu}d_{p})/\mathrm{TeV}^{2}$	\mathbf{R}
$(\bar{u}_p\gamma_\mu u_p)(\bar{b}\gamma^\mu b)/{ m TeV}^2$	\mathbf{R}
$(\bar{t}\gamma_{\mu}t)(\bar{b}\gamma^{\mu}b)/\text{TeV}^2$	\mathbf{R}
$(\bar{u}_p \gamma_\mu T^A u_p) (\bar{d}_r \gamma^\mu T^A d_r) / \text{TeV}^2$	\mathbf{R}
$(\bar{t}\gamma_{\mu}T^{A}t)(\bar{d}_{p}\gamma^{\mu}T^{A}d_{p})/\text{TeV}^{2}$	R
$(\bar{u}_p \gamma_\mu T^A u_p) (\bar{b} \gamma^\mu T^A b) / \text{TeV}^2$	\mathbf{R}
$(\bar{t}\gamma_{\mu}T^{A}t)(\bar{b}\gamma^{\mu}T^{A}b)/\text{TeV}^{2}$	\mathbf{R}
od1Re $(Y_u Y_d^{\dagger})_{pr} (\bar{u}_p \gamma_\mu t) (\bar{b} \gamma^\mu d_r) / \text{TeV}^2 + \text{h.c.}$	\mathbf{R}
od1Im $i(Y_uY_d^\dagger)_{pr}(\bar{u}_p\gamma_\mu t)(\bar{b}\gamma^\mu d_r)/\mathrm{TeV}^2 + \mathrm{h.c.}$	R
od8Re $(Y_u Y_d^\dagger)_{pr} (\bar{u}_p \gamma_\mu T^A t) (\bar{b} \gamma^\mu T^A d_r) / \text{TeV}^2 + \text{h.c.}$	R
od8Im $i(Y_uY_d^\dagger)_{pr}(\bar{u}_p\gamma_\mu T^At)(\bar{b}\gamma^\mu T^Ad_r)/\text{TeV}^2 + \text{h.c.}$	R
$(\bar{\ell}_p \gamma_\mu \ell_p)(\bar{e}_r \gamma^\mu e_r)/\text{TeV}^2$	R
$(ar{\ell}_p\gamma_\mu\ell_p)(ar{\ell}_r\gamma^\mu\ell_r)/ ext{TeV}^2$	R
$(ar{\ell}_p\gamma_\mu\ell_p)(ar{d}_r\gamma^\mu t)/ ext{TeV}^2$	R
$(ar{\ell}_p \gamma_\mu \ell_p) (ar{d}_r \gamma^\mu d_r) / ext{TeV}^2$	R
$(ar{\ell}_p\gamma_\mu\ell_p)(ar{d}_r\gamma^\mu d_r)/1 ext{EV}$ $(ar{\ell}_p\gamma_\mu\ell_p)(ar{b}\gamma^\mu b)/ ext{TeV}^2$	R
$(ar{q}_p\gamma_\mu q_p)(ar{q}_r\gamma^\mu e_r)/ ext{TeV}^2$	R
$(ar{Q}\gamma_{\mu}Q)(ar{e}_{r}\gamma^{\mu}e_{r})/ ext{TeV}^{2}$	R
$(ar{q}_p\gamma_\mu q_p)(ar{q}_r\gamma^\mu u_r)/{ m TeV}^2$	R
$(ar{Q}\gamma_{\mu}Q)(ar{u}_{r}\gamma^{\mu}u_{r})/ ext{TeV}^{2}$	R
$(ar{q}_p\gamma_\mu q_p)(ar{t}\gamma^\mu t)/ ext{TeV}^2$	R
$(ar{Q}\gamma_{\mu}Q)(ar{t}\gamma^{\mu}t)/{ m TeV}^2$	R
$(\bar{q}_p \gamma_\mu T^A q_p)(\bar{u}_r \gamma^\mu T^A u_r)/\text{TeV}^2$	R
$(\bar{Q}\gamma_{\mu}T^{A}Q)(\bar{u}_{r}\gamma^{\mu}T^{A}u_{r})/\text{TeV}^{2}$	R
$(ar{q}_p\gamma_\mu T^A q_p)(ar{t}\gamma^\mu T^A t)/\mathrm{TeV}^2$	R
$(\bar{Q}\gamma_{\mu}T^{A}Q)(\bar{t}\gamma^{\mu}T^{A}t)/\mathrm{TeV}^{2}$	R
$(ar{q}_p\gamma_\mu q_p)(ar{d}_r\gamma^\mu d_r)/ ext{TeV}^2$	R
$(ar{Q}\gamma_{\mu}Q)(ar{d}_{r}\gamma^{\mu}d_{r})/ ext{TeV}^{2}$	R
$(ar{q}_p\gamma_\mu q_p)(ar{b}\gamma^\mu b)/ ext{TeV}^2$	R
$(ar{Q}\gamma_{\mu}Q)(ar{b}\gamma^{\mu}b)/{ m TeV}^2$	R
$(ar{q}_p\gamma_\mu T^A q_p)(ar{d}_r\gamma^\mu T^A d_r)/ ext{TeV}^2$	R
$(\bar{Q}\gamma_{\mu}T^{A}Q)(\bar{d}_{r}\gamma^{\mu}T^{A}d_{r})/\text{TeV}^{2}$	R
$(\bar{q}_p\gamma_\mu T^Aq_p)(\bar{b}\gamma^\mu T^Ab)/\mathrm{TeV}^2$	R
$(\bar{Q}\gamma_{\mu}T^{A}Q)(\bar{b}\gamma^{\mu}T^{A}b)/\text{TeV}^{2}$	R
culle $(Y_u^{\dagger})_{pr}(\bar{q}_p\gamma_\mu Q)(\bar{t}\gamma^\mu u_r)/{ m TeV}^2 + { m h.c.}$	R
sulIm $i(Y_{\eta}^{\dagger})_{pr}(\bar{q}_{p}\gamma_{\mu}Q)(\bar{t}\gamma^{\mu}u_{r})/\text{TeV}^{2} + \text{h.c.}$	R
sus Re $(Y_n^{\mu})_{pr}(\bar{q}_p\gamma_{\mu}T^AQ)(\bar{t}\gamma^{\mu}T^Au_r)/\text{TeV}^2 + \text{h.c.}$	R
su8Im $i(Y_{\tau}^{\dagger})_{pr}(\bar{q}_p\gamma_{\mu}T^AQ)(\bar{t}\gamma^{\mu}T^Au_r)/\text{TeV}^2 + \text{h.c.}$	R
od1Re $(Y_d^{\overline{u}})_{pr}(\bar{q}_p\gamma_\mu Q)(\bar{b}\gamma^\mu d_r)/\mathrm{TeV}^2 + \mathrm{h.c.}$	\mathbf{R}

WC name	Operator	Type
cjQbd1Im	$i(Y_d^{\dagger})_{pr}(\bar{q}_p\gamma_{\mu}Q)(\bar{b}\gamma^{\mu}d_r)/\text{TeV}^2 + \text{h.c.}$	R
cjQbd8Re	$(Y_d^{\dagger})_{pr}(\bar{q}_p\gamma_{\mu}T^AQ)(\bar{b}\gamma^{\mu}T^Ad_r)/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cjQbd8Im	$i(Y_d^{\dagger})_{pr}(\bar{q}_p\gamma_{\mu}T^AQ)(\bar{b}\gamma^{\mu}T^Ad_r)/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cledjRe	$(Y_l^{\dagger})_{pr}Y_{d,st}(\bar{\ell}_p^I e_r)(\bar{d}_s q_t^I)/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cledjIm	$i(Y_l^{\dagger})_{pr}Y_{d,st}(\bar{\ell}_p^I e_r)(\bar{d}_s q_t^I)/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
clebQRe	$(Y_l^{\dagger})_{pr}(\bar{\ell}_p^I e_r)(\bar{b}Q^I)/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
clebQIm	$i(Y_l^{\dagger})_{pr}(\bar{\ell}_p^I e_r)(\bar{b}Q^I)/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cjujd1Re	$(Y_u^{\dagger})_{pr}(Y_d^{\dagger})_{st}(\bar{q}_p^I u_r)(\bar{q}_s^J d_t)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cjujd1Im	$i(Y_u^{\dagger})_{pr}(Y_d^{\dagger})_{st}(\bar{q}_p^I u_r)(\bar{q}_s^J d_t)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cjujd11Re	$(Y_u^{\dagger})_{sr}(Y_d^{\dagger})_{pt}(\bar{q}_p^I u_r)(\bar{q}_s^J d_t)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cjujd11Im	$i(Y_u^{\dagger})_{sr}(Y_d^{\dagger})_{pt}(\bar{q}_p^I u_r)(\bar{q}_s^J d_t)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cQtjd1Re	$(Y_d^{\dagger})_{st}(\bar{Q}^It)(\bar{q}_s^Id_t)arepsilon_{IJ}/{ m TeV}^2 + { m h.c.}$	\mathbf{R}
cQtjd1Im	$i(Y_d^{\dagger})_{st}(\bar{Q}^I t)(\bar{q}_s^J d_t)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cjuQb1Re	$(Y_u^{\dagger})_{pr}(\bar{q}_p^I u_r)(\bar{Q}^J b)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cjuQb1Im	$i(Y_u^{\dagger})_{pr}(\bar{q}_p^I u_r)(\bar{Q}^J b)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cQujb1Re	$(Y_u^{\dagger})_{sr}(\bar{Q}^{\dot{I}}u_r)(\bar{q}_s^Jb)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cQujb1Im	$i(Y_u^{\dagger})_{sr}(\bar{Q}^I u_r)(\bar{q}_s^J b)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cjtQd1Re	$(Y_d^{\dagger})_{pt}(\bar{q}_p^I t)(\bar{Q}^J d_t) \varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cjtQd1Im	$i(Y_d^{\dagger})_{pt}(\bar{q}_p^I t)(\bar{Q}^J d_t) \varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cQtQb1Re	$(\bar{Q}^I t)(\bar{Q}^J b)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cQtQb1Im	$i(\bar{Q}^I t)(\bar{Q}^J b)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cjujd8Re	$(Y_u^{\dagger})_{pr}(Y_d^{\dagger})_{st}(\bar{q}_p^I T^A u_r)(\bar{q}_s^J T^A d_t)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cjujd8Im	$i(Y_u^{\dagger})_{pr}(Y_d^{\dagger})_{st}(\bar{q}_p^I T^A u_r)(\bar{q}_s^J T^A d_t)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cjujd81Re	$(Y_u^{\dagger})_{sr}(Y_d^{\dagger})_{pt}(\bar{q}_p^I T^A u_r)(\bar{q}_s^J T^A d_t)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cjujd81Im	$i(Y_u^{\dagger})_{sr}(Y_d^{\dagger})_{pt}(\bar{q}_p^I T^A u_r)(\bar{q}_s^J T^A d_t)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cQtjd8Re	$(Y_d^{\dagger})_{st}(\bar{Q}^I T^A t)(\bar{q}_s^J T^A d_t) \varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cQtjd8Im	$i(Y_d^{\dagger})_{st}(\bar{Q}^I T^A t)(\bar{q}_s^J T^A d_t) \varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cjuQb8Re	$(Y_u^{\dagger})_{pr}(\bar{q}_p^I T^A u_r)(\bar{Q}^J T^A b)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cjuQb8Im	$i(Y_u^{\dagger})_{pr}(\bar{q}_p^I T^A u_r)(\bar{Q}^J T^A b)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cQujb8Re	$(Y_u^{\dagger})_{sr}(\bar{Q}^IT^Au_r)(\bar{q}_s^JT^Ab)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cQujb8Im	$i(Y_u^{\dagger})_{sr}(\bar{Q}^I T^A u_r)(\bar{q}_s^J T^A b)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cjtQd8Re	$(Y_d^{\dagger})_{pt}(\bar{q}_p^I T^A t)(\bar{Q}^J T^A d_t) \varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cjtQd8Im	$i(\underline{Y}_d^{\dagger})_{pt}(\bar{q}_{p}^I T^A t)(\bar{Q}^J T^A d_t) \varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cQtQb8Re	$(\bar{Q}^I T^A t)(\bar{Q}^J T^A b)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	R
cQtQb8Im	$i(\bar{Q}^I T^A t)(\bar{Q}^J T^A b)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	R
cleju1Re	$(Y_l^{\dagger})_{pr}(Y_u^{\dagger})_{st}(\bar{\ell}_p^I e_r)(\bar{q}_s^J u_t)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	R
cleju1Im	$i(Y_l^{\dagger})_{pr}(Y_u^{\dagger})_{st}(\bar{\ell}_p^I e_r)(\bar{q}_s^J u_t)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	R
cleQt1Re	$(Y_l^{\dagger})_{pr}(\bar{\ell}_{p}^I e_r)(\bar{Q}^J t)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	R
cleQt1Im	$i(Y_l^{\dagger})_{pr}(\bar{\ell}_p^I e_r)(\bar{Q}^J t)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	R
cleju3Re	$(Y_l^{\dagger})_{pr}(Y_u^{\dagger})_{st}(\bar{\ell}_p^I \sigma_{\mu\nu} e_r)(\bar{q}_s^J \sigma^{\mu\nu} u_t) \varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	R

WC name	Operator	Type
cleju3Im	$i(Y_l^{\dagger})_{pr}(Y_u^{\dagger})_{st}(\bar{\ell}_p^I \sigma_{\mu\nu} e_r)(\bar{q}_s^J \sigma^{\mu\nu} u_t) \varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	R
cleQt3Re	$(Y_l^{\dagger})_{pr}(\bar{\ell}_p^I \sigma_{\mu\nu} e_r)(\bar{Q}^J \sigma^{\mu\nu} t) \varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	R
cleQt3Im	$i(Y_l^{\dagger})_{pr}(\bar{\ell}_p^I \sigma_{\mu\nu} e_r)(\bar{Q}^J \sigma^{\mu\nu} t) \varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	R