

Previsione: Random Forest vs BART

Statistical Learning - Contest

Arianna Russo e Simone Capucci

Laurea Magistrale in Data Science, Calcolo Scientifico e Intelligenza Artificiale

Recidiva del cancro alla tiroide

Obiettivo: Prevedere la recidiva del cancro alla tiroide

Il dataset:

Il dataset si compone di 383 osservazioni su 18 variabili (collegate o possibilmente collegate al tema trattato), raccolte da soggetti differenti. Le variabili sono per lo più categoriche (a parte la variabile Age).

Data Visualization

Data Visualization

All'aumentare
dell'età aumenta
anche il rischio
per il paziente
associato al tumore

Random Forest

L'error rate dell'oob si stabilizza con un numero di alberi pari circa a 50

Random Forest

Il grafico mostra che il valore migliore di mtry (con ntree impostato a 50) è circa 5

Random Forest

rf_50_3

Treatment_Response Risk Risk_Rate_Out_of_3 Lymph_Nodes Age Adenopathy Stage Tumor Gender Physical.Examination Smoking Types_of_Thyroid_Cancer Thyroid.Function Focality Cancer Metastasis Smoking_History Radiothreapy History

Dal grafico si può notare che la variabile Treatment response è la più importante del modello

Bayesian Additive Regression Trees

Passi inferenziali nell'analisi bayesiana

- Sulla base delle conoscenze a priori si specifica un modello di probabilità iniziale (prior);
- Si aggiorna il modello sulla base dei dati osservati (posterior);
- Infine, si valuta la bontà del modello e la sensibilità delle conclusioni.

Bayesian Additive Regression Trees

Passi inferenziali nell'analisi bayesiana

- Sulla base delle conoscenze a priori si specifica un modello di probabilità iniziale (prior);
- Si aggiorna il modello sulla base dei dati osservati (posterior);
- Infine, si valuta la bontà del modello e la sensibilità delle conclusioni.

Modello assunto:

$$Y = f(\mathbf{x}) + \varepsilon_i$$
 $\varepsilon \sim N(0, \sigma^2)$

$$f(\boldsymbol{x}) = \sum_{j=1}^{m} g(\boldsymbol{x}; \mathcal{T}_j, \mathcal{M}_j)$$

with $T_j = \text{structure of the tree } j, m = \text{number of trees}$ $\mathcal{M}_j = (\mu_1, \dots \mu_{M_j})$: vector of parameters for the leaves

Bayesian Additive Regression Trees

```
> summary(modello_BART)
bartMachine v1.3.4.1 for classification
training data size: n = 256 and p = 57
built in 1.8 secs on 1 core, 50 trees, 1000 burn-in and 2000 post. samples
confusion matrix:
          predicted 1 predicted 0 model errors
actual 1
              69.000
                          7.000
                                      0.092
actual 0
               1.000 179.000
                                      0.006
               0.014
                          0.038
                                      0.031
use errors
```


T_EC: 0.03937

Cosa succede al variare del numero di alberi?

Modello con il numero di alberi ottimale

```
> summary(modello_BART)
bartMachine v1.3.4.1 for classification
training data size: n = 256 and p = 57
built in 0.4 secs on 1 core, 3 trees, 1000 burn-in and 2000 post. samples
confusion matrix:
           predicted 1 predicted 0 model errors
actual 1
                69.000
                             7.000
                                          0.092
                          178.000
actual 0
                2.000
                                          0.011
                             0.038
                                          0.035
                 0.028
use errors
```

```
> table(predictions, Y_test)
Y_test
predictions 0 1
0 94 3
1 1 29
```


T_EC: 0.03149