Matemática Discreta

16^a AULA

Universidade de Aveiro 2014/2015

http://moodle.ua.pt

Matemática Discreta

Princípios combinatórios básicos:

Princípio da bijecção

Princípio da multiplicação

Princípio da adição

Referências e bibliografia

Princípios combinatórios básicos:

Alguns exemplos de problemas de contagem

- 1. Quantos números de 4 algarismos se podem escrever com os dígitos do conjunto {1, 2, 3, 4, 5, 6, 7, 8, 9}?
- 2. De quantas maneiras é possível escolher uma equipa de 11 jogadores de futebol de um conjunto de 20 jogadores?
- 3. Qual é a probabilidade de ganhar o Euromilhões?

Matemática Discreta

Princípio da bijecção

Princípio da bijecção

Descrição do princípio da bijecção

O princípio da bijecção consiste na identificação dos objectos de um conjunto *A* com os elementos de outro conjunto *B* com o qual, em princípio, é mais fácil trabalhar.

$$f: A \rightarrow B$$
.

Note-se que se existe uma bijecção entrea A e B, então podemos concluir a igualdade |A| = |B|.

Exemplo. Se $X = \{x_1, x_2, \dots, x_n\}$ e $\mathcal{B} = \{0, 1\}$, então $|\mathcal{P}(X)| = |\mathcal{B}^n|$. Com efeito, a função $f : \mathcal{P}(X) \to \mathcal{B}^n$, definida por $f(A) = (a_1, a_2, \dots, a_n)$ tal que $\begin{cases} a_i = 1, & \text{se } x_i \in A \\ a_i = 0, & \text{se } x_i \notin A \end{cases}$ é uma bijecção (verificar).

Exemplo

O número de possibilidades de colocar k bolas iguais em n caixas distintas é igual ao número de sequências binárias com n-1 zeros e k uns.

Matemática Discreta

Princípio da multiplicação

Princípio da multiplicação

Teorema

Se A_1, A_2, \ldots, A_n são conjuntos não vazios finitos, então o conjunto dos n-uplos $(a_1, a_2, \ldots, a_n) \in A_1 \times A_2 \times \cdots \times A_n$ é tal que $|A_1 \times \cdots \times A_n| = |A_1| \cdot |A_2| \cdot \cdots \cdot |A_n|$.

Exemplo. Vamos determinar quantos números de 4 algarismos se podem escrever com os dígitos em

$$A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$
?

Denotando por C o conjunto dos números de 4 algarismos pertencentes a A, então $f: A^4 \rightarrow C$ tal que

$$f(a_1, a_2, a_3, a_4) = \sum_{k=1}^4 a_k \times 10^{k-1}$$

é uma bijecção entre A^4 e C (verificar). Logo, pelos princípios da bijecção e multiplicação, $|C| = |A^4| = |A|^4 = 9^4 = 6561$.

Princípio da multiplicação generalizada

Teorema

Admitindo que um processo de escolha das componentes de um n-uplo se pode fazer em *n* passos sucessivos, de tal forma que existem

- ▶ p₁ escolhas possíveis para a 1^a componente,
- p₂ escolhas possíveis para a 2^a componente,

...

▶ p_n escolhas possíveis para a n-ésima componente, então podemos escolher $p_1 \times p_2 \times \cdots \times p_n$ n-uplos distintos.

Matemática Discreta

Princípio da multiplicação

Exemplo

Vamos determinar de quantas maneiras é possível escolher uma equipa de 11 jogadores de futebol de um conjunto de 20 jogadores?

Interessa a ordem pela qual vão sendo feitas as escolhas.

- ▶ Para a 1^a escolha existem 20 jogadores disponíveis,
- para a 2^a escolha existem 19 jogadores disponíveis,
- ▶ para a última escolha restam 20 10 = 10 jogadores disponíveis.

Pelo princípio da multiplicação generalizada, existem $20 \times 19 \times \cdots \times 10 = 6.704425728 \times 10^{11}$ maneiras de escolher uma equipa de 11 jogadores de futebol de um conjunto de 20 jogadores.

Princípio da adição

Observação. Note-se que, relativamente ao exemplo anterior, o problema da determinação do número de maneiras (sequências de decisões) de escolher uma equipa é distinto do problema da determinação do número de equipas que se podem formar.

Descrição do princípio da adição

Se A_1, A_2, \ldots, A_n são conjuntos finitos, dois a dois disjuntos (ou seja, tais que $A_i \cap A_j = \emptyset$ para $i \neq j$), então

$$|\bigcup_{i=1}^n A_i| = \sum_{i=1}^n |A_i|.$$

Matemática Discreta

Princípio da adição

Exemplo

Vamos determinar quantos números de telefone fixo podem ser atribuídos (de acordo com a actual numeração) na zona de Coimbra, Aveiro e Porto? Note-se que

- os números de telefone fixo da zona de Coimbra são da forma 239 — — — — —,
- os números de telefone fixo da zona de Aveiro são da forma 234 - - - - -,
- e os números de telefone fixo da zona do Porto são da forma 22 - - - - - -

Sejam C, A e P, respectivamente, os conjuntos das sequências de números com este formato. Então, pelo princípio da adição, o número máximo de telefones que podem ser atribuídos nestas 3 zonas é: $|C| + |A| + |P| = 10^6 + 10^6 + 10^7 = 12 \times 10^6$ (a primeira igualdade vem do princípio da multiplicação).

Referências e bibliografia I

D. M. Cardoso, J. Szymanski e M. Rostami, *Matemática* Discreta: combinatória, teoria dos grafos e algoritmos, Escolar Editora, 2008.