

MOBILE APPLICATION TO SECURE TENURE

Technical Software Documentation

Abstract

This document provides details on the technical design, deployment and configuration of different components of Mobile Application to Secure Tenure (MAST) application.

CONTENTS

1	IN ⁻	TRO	DUCTION AND BACKGROUND	. 1
	1.1	Do	cument Overview	. 1
	1.2	Co	ntext for MAST	. 1
	1.3	App	olication Overview	. 2
2	O۷	/ER	VIEW OF MAST APPLICATION SUITE	. 4
	2.1	Wo	rkflow of Mobile Data Capture Application	. 4
	2.2	Wo	rkflow of Land Rights Data Infrastructure Web Application	. 6
	2.3	Fur	nctionality Role Matrix	. 9
3	AR	RCHI	TECTURE OF MAST	10
	3.1	Arc	hitecture of Mobile Data Capture Application	11
	3.2	Arc	hitecture of Land Rights Data Infrastructure Web Application	12
	3.3	Ove	erall Architectural Considerations	15
	3.3	3.1	Data Collection	15
	3.3	3.2	Data Management	15
	3.3	3.3	Data Processing	18
	3.3	3.4	Reporting	22
	3.3	3.5	Security	22
	3.3	3.6	Platform	22
	3.3	3.7	Data Storage	23
	3.3	3.8	System Performance	24
4	MA	AST	SOLUTION INTEGRATION	25
	4.1 N	/IAS	T Technology Stack	25
	4.1	1.1	Mobile Data Capture Application	25
	4.1	1.2	Land Rights Data Management Web Application	25
	4.2	MA	ST Solution Integration	25
	4.2	2.1	Cloud Web Application Server	27
	4.2	2.2	Cloud RDS	27
	4.2	2.3	Client Tier (MAST Android Mobile Application)	27
	4.2	2.4	External Data Preprocessing	27
	4.3	Co	nfiguration and Deployment	28
	4.3	3.1	Operational Requirement	28
	4.3	3.2	Deployment of Prerequisites & MAST	29
	4.3	3.3	Deployment on Amazon Architecture	31

5 DATABASE DESIGN	33
5.1 MAST Framework (PostgreSQL/PostGIS)	33
5.1.1 Table Details	34
5.2 Mobile Data Capture Application (SQLLite)	70
5.2.1 Table Details	70

1 INTRODUCTION AND BACKGROUND

1.1 Document Overview

The objective of this document is to provide the detail of technical design, deployment and configuration of different components of Mobile Application to Secure Tenure (MAST) application. It also provides configuration details of external third party tools that are utilized in MAST application framework.

1.2 Context for MAST

The technology framework outlined in this document was developed to support the collection of land rights information using mobile technology and effectively storing information to create an inventory of land information that creates a greater degree of tenure security.

The Mobile Technology and Crowd sourcing to Strengthen Land Tenure Security Pilot (hereafter referred to as Mobile Application to Secure Tenure (MAST) is testing the viability of an innovative participatory or "crowdsourced approach" to capturing land rights information, including information about customary holdings, using mobile technologies.

The Cloudburst Group is implementing this project for the United States Agency for International Development (USAID). The MAST pilot is issued under the Evaluation, Research and Communication (ERC) contract, which focuses on Strengthening Tenure and Resource Rights. This contract is managed by USAID's Washington-based Land Tenure and Resource Management Office. The MAST Pilot program fits into USAID's strategic reform agenda pertaining to the use of science and technology to resolve development problems.

The development of the information technology platforms for the Mobile Application to Secure Tenure (MAST) has been implemented been implemented in Tanzania. The objectives of the Pilot are congruent with the needs of the Government of Tanzania related to helping to demarcate and secure land rights. Tanzanian development priorities are focused on lowering the cost of land titling programs and improving land governance in order to stimulate economic development, particularly by promoting large-scale investment in agriculture.

For the first phase of the pilot a relatively small village, Ilalasimba, was selected in Iringa Rural District. Iringa falls in the important Southern Agricultural Growth Corridor of Tanzania (SAGCOT), a zone of interest for both the Government of Tanzania and USAID. The Ilalasimba village is fairly representative of the average Tanzanian village. Most of the economic activities within the village are focused on agriculture. Maize is the predominant crop, and several secondary cash crops are grown by inhabitants (tomatoes, sunflower and tobacco). It has an estimated area of 31 sq. km and a small population (325 households). On average, each household occupies 2 or 3 parcels. Parcel sizes range from 5 to 10 acres and larger holdings are farmed in peripheral areas of the village.

1.3 Application Overview

The MAST application provides a suite of applications to support collection and management of land rights information with a mobile application to capture land rights information in the field and a back-end land rights data management infrastructure application with tools to manage an inventory of land information.

The initial pilot of MAST application has been implemented in Illalasimba, Iringa, Tanzania. The key components of MAST Framework are:

- Mobile Data Capture Application Key component of MAST Framework is Android based Mobile application that is focused on the capture of land rights information (spatial, alphanumeric and multimedia). The Mobile application allows for the collection of data without being connected to a central cloud based server in offline mode. Data is collected and stored on users' handheld device, and once the user is within the influence region of the internet, data can be synced and sent back to the server.
- Land Rights Data Management (Web) Application MAST data capture application is provided with a back-end web application which provides the facility to configure the mobile application, manage data collection projects, and manage land rights information data that has been collected in the field. Key modules of web application are:
 - Configuration Tool The Web based configuration tool provides the facility to configure the land rights data collection mobile application. Configuration tool provides the facility to configure the attribute fields of data collection form that are collected in the field. This enables the land rights information survey exercise to be performed in multiple environments by configuring the data collection form for the specific needs of the area, for a specific project.
 - Administration Tool The Administration tool provides the facility to manage users, roles; import and configure data layers; configure layer groups; configure survey projects; and configure master attributes that can be used in projects. This module facilitates in creation and configuration of survey projects, and the association of layer groups and users.
 - Data Management Infrastructure The Data collected on mobile devices is transferred to a cloud based Data Management application, which provides tools to ingest, manage and store data of land rights information. It also provides mapping tool as well as reporting components so that required Land Rights reports can be generated.

Mobile Application to Capture Land Rights Information in Field for building a reliable inventory of land.

Web Application to ingest, manage and store data of land rights information and generate Land Rights reports.

2 OVERVIEW OF MAST APPLICATION SUITE

The MAST Application suite consists of following sub-systems to provide the requirements of Land Rights Data Capture, Configuration and Data Management functionalities.

- 1. Mobile Application to Secure Tenure
- 2. Land Rights Data Infrastructure Web Application
 - Administration Tool
 - o Mobile Configuration Tool
 - o Land Rights Data Management Tool

This section lists the functional overview of various components and tools of Mobile and Web Application, which describe the general functions of the MAST software system.

2.1 Workflow of Mobile Data Capture Application

The Mobile Application to Secure Tenure of the MAST application suite provides the facility to capture spatial, attribute and multimedia data in the field. Figure 1 depicts the high level workflow of the mobile application of the MAST System, along with the user interaction with the different components of the system.

Figure 1: Workflow of Mobile Data Capture Application

Trusted Intermediaries or parasurveyors (individuals that are trained specifically to capture land rights information with the MAST application) will utilize the mobile data capture application to capture land rights information (consisting of spatial, attribute and multimedia data) of spatial units in field.

- Users will download the data has been configured for the project, before the initiation of data capture.
- Users will download the project configuration information (as a one-time activity) in the device before initiation of data capture process.
- User will also download the base data for allocated project as a onetime activity on mobile device.

The download of the data provides the basis for data capture. Once the data capture is completed, data will be synced to the back-end cloud server (automatically and also via a user initiated event of data sync up).

At this time, an adjudicator (authorized user with authority) will download the collected data on their device for review and adjudication. Using the mobile data capture application, he/she will be able to review and approve the data of spatial units collected by trusted intermediaries.

A Project Manager and other users can also utilize the same application for data review.

2.2 Workflow of Land Rights Data Infrastructure Web Application

The Web application of MAST System provides functionalities to manage the users and data layers, configure a data collection project and administer data that has been collected in the field. The following figure # depicts a workflow of web application starting from user creation to final generation of reports. It is configured so that different users will have access privileges to different components of web application as depicted in the workflow. A designated System Administrator will have access to all the components/features of web application.

Different functionalities provided in the web application are categorized into following modules which will be accessed by authorized users to manager survey project and data collected in the field and then generate reports/certificates on approved data:

- Administration Tool
- Mobile Configuration Tool
- Data Management Tool
- Reporting Tool

Figure 2: Workflow of Web based Data Infrastructure Application

 Administration Tool – This tool will be accessed by System Administrator to create and manage users who will be accessing the system. It will also provide facility to add/configure spatial data layers in the application, which have been loaded and configured in Geoserver. It will also facilitate the creation of layer groups.

Whenever a new data collection project is initiated, a new survey project is created in the System which will then be mapped to the users who will have permission to access and work on the survey project. Layers will also be configured in the survey project which will be accessible in the Data Management tool (which has a Map Viewer component) of web application when a specific project is accessed in it.

- Master Attribute Repository The administration user will be able to manage the
 master data and configure data collection attributes. The uer will have the ability to
 define custom attributes. Attributes which will be then mapped to different survey
 projects for data collection using the mobile configuration tool.
- Mobile Configuration Tool Once the survey project is created in the system using Administration Tool, authorized user (Project Manager of the designed survey project) can configure the data that will be ported to the mobile application. The MAST Configuration Tool will provide the facility to:
 - Upload and configure base data layers (in the form of MbTiles) that will be downloaded by the mobile application users.
 - User can configure the data collection attributes which will be collected in the field in a specific survey project. User will need to select the desired attributes for a project from the master list of attributes.
- Data Management Tool The MAST Web Application provides a data management tool which will be utilized once the data collection is collected in the field and data is synced back to the cloud-based (back-end) server. All the data that is synced by the mobile data capture application will be stored in the centralized database in the cloudbased server post sync-up. Using the Data management tool, authorized users will be able to validate, view, edit and approve the land rights data collected in the field.
 - Web Mapping Tool Web mapping tools are a set of tools to perform basic to advanced functions based on user rights. These tools includes
 - Layer Manager Enable/disable layer view, set transparency
 - Navigation Tools
 - Query builder
 - Spatial Editing
 - Attribute Editing
 - Export
 - Print
 - Reporting Tool The Land Administration Officials will then utilize the reporting tool to generate reports/land rights certificates.

2.3 Functionality Role Matrix

This section provides an overview of the mapping of different functional roles in the system.

S.No	User Role	Group Name	Detail Description
1	System Administrator	Manager	Super User is the administrator of the MAST Framework who will have full access permissions of all the functionalities of application including all data and will be in charge of system maintenance.
			They will be responsible for master data management, managing MAST projects, managing users and allocating roles and responsibilities to the users.
			System Administrator will also be able to configure data collection forms for specific survey projects.
2	Trusted Intermediary	Data Collector	Trusted Intermediaries will collect land rights data in the field using mobile devices. They will capture spatial, attribute and multimedia information of spatial units in the field. They will also verify the data before transferring the collected to backend Land Rights Data Management application.
3	Adjudicator	Data Collector	Adjudicator will utilize Mobile Data Capture application to review, approve and validate the collected data on the mobile device. They will download the data collected by Trusted Intermediaries from the back-end for verification and validation. After validation, they will upload the data to the MAST Data Management Application.
4	Land Administration Official	Designated User	These are government land officials in state agencies. They will access the Land Rights Data Management Application to view and print spatial data (maps) and produce reports that are required for the formalization of land rights. They will have full access of data for a designated survey project.
5	Project Manager	Manager	The Project Manager will have full access to entered data into the MAST database using Land Rights Data Management application and be able to review and edit data. He or she will have full permissions to add, delete, or modify data. The primary function will be to validate data that has been committed to the MAST database.

3 ARCHITECTURE OF MAST

MAST Application suite consists of following sub-systems to provide the requirements of Land Rights Data Capture, Configuration and Data management functionalities.

- Mobile Application to Secure Tenure
- Land Rights Data Infrastructure Web Application

This section provides details of high level design and architecture of MAST mobile and web application.

Figure 3: Conceptual Design of MAST Mobile Application Framework

3.1 Architecture of Mobile Data Capture Application

The MAST Mobile Data Capture framework consists of tools for offline spatial and textual data capturing and editing and connects to custom rest based services to download the mobile configuration data on mobile devices and allows for syncing of the collected data to the server. Spatial Editing and info functionalities are integrated into the using open source JTS library. Layer Manager is built to give user accessibility to toggle between layers. The MAST Mobile Data Capture framework also provides support for viewing application in multiple languages, customizing capture data features and changing colors of captured features according to the user preferences. It also provides accessibility to authenticate user using credentials created on the server for a specific project. This prevents any non-user using the application.

Figure 4: N-Tier architecture of MAST Mobile application

As shown in the figure above MAST mobile application can be broadly divided into three layers:

UI/UX Layer

UI Layer, which interacts with the user and is responsible for showing results and taking user inputs. A typical user interface of the application consists of action bar and the application content area. A UI is defined in an xml file. During compilation, each element in the XML is compiled into equivalent Android GUI class with attributes represented by methods.

Platform Service Layer

Service Layer which is responsible for all the operations in the application and connects all three layers. Service layers are responsible to make calls to the rest services for authentication and authorization when online and saving the user details in Data service layer.

Platform service layer also uses the libraries and tools to perform business operations and Displaying maps using Google Map API for spatial layer display and manipulation in device.

Google Maps API is also used to show google satellite map and also offline maps using Tile overlays (in .mbtiles format) to ease in the data capture in remote locations with very poor internet connectivity. Geometry classes of Marker, Circle, Polyline and Polygon from the Google Maps API are used for showing features on the map.

Data Service Layer

Data Service Layer deals with interacting with the underlying database and processing data requests originating from the service layer. Data service layer consists of read only mbtiles file and SQLite database in WKT format for easy read and write capabilities of geometries along with their attributes. All the form data is also stored in SQLite database for faster fetching and editing of data. The offline data is stored on the device in folders configured for the application.

All the above sub sections combined makes the MAST Mobile Data Capture Application which is wrapped in an .apk file using Android Software development kit (SDK) and Android development toolkit (ADT).

3.2 Architecture of Land Rights Data Infrastructure Web Application

Implementation of web based application is based on open standards such as WMS, WFS, WCS from Open Geospatial Consortium implemented using GeoServer, PostgreSQL/PostGIS database for spatial database. It is flexible, reliable and scalable as the underlying architecture is based on stateless protocol using rest based services.

The solution utilizes web based n-tier architecture on Java2 Enterprise Edition (J2EE) platform and PostgreSQL/PostGIS Relational Database. The solution proposed consists of a centralized database server.

Figure 5: Multi-tier solution of WebGIS Application

MAST web application is developed as a Web GIS platform to manage, visualize and analyze spatial data through a standard web browser. MAST web application is purely based on OGC standards such as WMS, WFS and WPS and can use any OGC Compliant commercial or Open Source web mapping engines such as Geoserver.

Presentation/ Web Tier: It is the user interface which is responsible for gathering inputs from the user and passing the same to the business layer for processing. The presentation layer ensures that the communications passing through are in the appropriate form for the recipient business objects in the business tier. In the proposed system, the user interface constitutes this tier.

- This tier is based on XHTML/ CSS and interact with the business tier via a set of Java Server Pages and JavaScript Libraries.
- This interaction will leverage on the AJAX (Asynchronous JavaScript and XML) technology to give a seamless experience to the user. This will also enhance the response time as only the relevant dataset will be fetched from the server at any given time.
- This implementation is scalable, platform-independent and complies with the web standards.

Service Layer: Service layer implements service level requirement through which the solution achieves scalability, manageability, maintainability and extensibility. In MAST, the service layer allows following flexibility –

- Enables developer to make a clear distinction between web type activity best suited to be done in controller or a generic business logic that is not web-related.
- Enables testing of service enabled business logic separately from controller logic.
- Enables transactional behaviour, encompasses multiple data objects that should be part of same transaction.

Business Tier: The Business logic tier implements the business rules for the system, but it treats data as objects and is not concerned with how the data is stored or displayed. When the client tier requests some information, the business logic tier manages that request, deciding what information to retrieve and whether the client is entitled to that piece of information. When the client performs some action on a piece of information, such as updating a field, adding a new object, or deleting an object, again it is the responsibility of the business logic tier to decide whether the client is entitled to make the change, and making the change if so, in a manner that is consistent with the requirements of the system.

In MAST, two engines - mapping engine and data computation engine - constitute this tier.

- The Mapping Engine will interact with the Web Tier and the Database Tier through OGC-Compliant Web Mapping Service (WMS) and Web Feature Service (WFS). This ensures faster performance, interoperability between different systems and thus, unlimited scalability
- The Data Exchange Engine process the AJAX requests from the Web Tier and return the response from the Integration Tier back to the Web Tier. This engine will be custom built based on the requirements of the project.

Data Access Layer: The data access tier lives between the business logic tier and the data tier and handles the translation from data in its native format, such as SQL tables or XML elements, to a form more suitable for the business logic tier, such as objects. The integration tier is often referred to as a data abstraction layer because it allows the business logic tier to treat the data

in an abstract manner; that is, it can treat the data as objects without being concerned with the details of how the data is actually stored.

Database Tier: This consists of environment that allows persistence of the user information – both lookup and computed date. Physical implementation of this layer could be files on the system or databases.

This enables easy change of the data tier to a completely different database server application or from a database server to a set of XML files. If the data tier is changed, the only modification required will be in the integration tier and the rest of the application will work just as before without any modification.

Database tier consists of Hibernate an object relational mapping framework that maps the underlying PostgresSQL relational database. Database tier maps Java classes with underlying relational database tables with high level object handling functions.

MAST infrastructure uses PostgreSQL an open source RDMS as backend database. Spatial data is stored using PostGIS a spatial extension of postgreSQL.

3.3 Overall Architectural Considerations

3.3.1 Data Collection

MAST mobile application is used to collect data in offline mode. The spatial data is stored in the SQLite database in WKT format. The form data associated with a parcel is also stored in SQLite database. This storage method helps the device to work seamlessly in offline mode as fetching and editing the data is much faster as compared to parsing xml or GeoJson based storage techniques.

To ease in the data collection offline spatial data configured through web is stored in local storage and is fetched as tiles to give uninterrupted base map even with no internet connectivity.

3.3.2 Data Management

3.3.2.1 Data Loading

MAST web infrastructure

Varity of spatial data can be loaded to MAST web infrastructure by publishing them in Geoserver.

- Geoserver supports variety of Vector and raster data formats (refer data formats section).
- In Geoserver data can be published from either flat files like shape files or spatial tables from RDBMS like PostGIS, Oracle spatial or Microsoft sq server spatial.

- Since MAST web infrastructure is build over PostgreSQL/Postgis we would refer to the methodology adopted to load data to spatial table in PostGIS.
- PGADMIN module of PostgreSQL have a plugin (PostGIS shapefile and DBF loader) to load shape file to load data to postgis table.
- Shape files can be directly stored in Geoserver Data folder and accessed for publishing.

MAST Mobile application

MAST mobile application required MBtiles created from raster files to act as base layer for offline mode. MBTiles can be generated from raster images using Tilemill application from Mapbox. Once mbtiles are created they can copied to device using usb connection at defined location.

3.3.2.2 Data Formats

Data Management Infrastructure

The MAST Web application supports multiple data formats and follow OGC standards. Data collected from the mobile device will be auto-synced to the back-end server which can then be viewed, edited and approved on the web application. The web application supports the following data formats:

Attribute Data - PostgreSQL – Attribute data is stored in postgres rdbms tables.

Vector Data Sources

- PostGIS Database Spatial data can be loaded to postgreSQL database with postGIS extension in tables with geometry datatype columns. Data coordinate reference system should be defined for the specific table for proper usage.
- PostGIS tables having geometry support can be published using Geoserver, and can be served as base layer in MAST web infrastructure.
- Shapefile ESRI(tm) Shapefiles (*.shp) ESRI shape files can be loaded in Geoserver data folder and then be published in Geoserver to be served as base layer in MAST web infrastructure.
- Web Feature Server (NG) -Web feature server extension for geoserver can be used to publish data in local geoserver that have been already published in 3rd party servers.

Raster Data Sources

- ArcGrid Arc Grid Coverage Format
- GeoTIFF Tagged Image File Format with Geographic information
- MBTiles MBTiles file format
- WorldImage A raster file accompanied by a spatial data file
- Images with tfw, jgw can be published and used as base layer in MAST web infrastructure.

 Image Pyramids - Image pyramids can be created from a local desktop/Laptop using GDal library and can be copied to geoserver data folder in the server. These tiles can then be published in geoserver which in turn can be used as base raster tiles in MAST web infrastructure.

3.3.2.3 Data Export

The MAST Web infrastructure provides the functionality to export spatial data.

- A user can access the export or download available in toolbar.
- By clicking the toolbar, user has access to download data into 3 different formats.
- KML format and shape-zip format for GIS data and csv format for attribute data.

Users have several sub-options to export either complete data set, to select a sub set of features or select features in an area of interest.

3.3.3 Data Processing

3.3.3.1 Data download & Configuration Base Data on Mobile Device

The MAST web infrastructure application will provide the functionality to configure the project attributes that will be collected for a specific survey project using the mobile data capture application in the field.

Whenever a new survey project is created in the system, the Project Manager/Admin user will configure the attributes which will be utilized in the mobile data capture application to collect land rights information in the field for that specific project. The Project Manager/Admin will also configure offline data to be used in the project in the mobile devices. Data Collection attributes and the associated information to the offline spatial data configured for a project are stored in the server database. While the offline spatial data in form of MBTiles is stored in the file system of the server.

The following figure depicts the workflow of the configuration process of a project with specific attributes that are selected and downloaded from the master repository (in cloud server).

Figure 6: Project Specific Attribute Configuration and Data Transfer

When the mobile application user initiates data collection work, they will need to download the project configuration details by clicking on the download option in mobile application. The configured attributes will be fetched from the database server using REST services in JSON format and will be saved to SQLite database in mobile application. The configured offline data is downloaded using 'multipart/form-data' encoding type REST services.

Mobile application attribute pages are rendered according to the configuration saved in the mobile device for specific project. Concept of widgets is used to render dynamic forms in mobile devices according to the type of attributes (Boolean, numeric, text, dropdowns) and the offline data is shown in the layer manager.

Create MBTiles (for high resolution satellite data and base vector data) External application Web Application **MBTiles** paded on cloud server) Project Manager /System Administrator MBTile(s) Informatio Services to fetch MbTiles base data from server Mobile Initiate Download Base Data (from Mobile Device) Application /Adjudicator MBTiles to mobile device) Mobile application will render base data from the MbTiles List of MhTiles will be displayed in the layer manager of mobile application.

Figure 8 below depicts the workflow process of base data download on the mobile device.

Figure 7: Base data Download on Mobile Ddevice

Other than the base data download, Google satellite data is also shown on mobile device which is auto-cached for the region displayed on the map first time when the internet connection is available and hence can be used subsequent times without internet connection.

3.3.3.2 MBTile Processing

This section provides the key steps involved in creation of MBTiles which needs to be precreated for base data rendering on mobile device.

MapBox is used for the creation of MBTiles, which is a file format for storing map tiles in a single file. MBTiles allows us to render high resolution satellite imagery and vector data in a format that can be rendered in the mobile application irrespective of the size of the data as at a time only

few tiles are fetched which are to be displayed on the map, instead of the whole data as in conventional formats of spatial data storage.

Following flowchart depicts the process of creation of MBTiles, which is a one-time process done for each survey project.

Figure 8: High level process workflow to create MBTiles (back ground layers on map device)

3.3.3.3 GIS mapping

The mapping function for MAST web infrastructure is implemented using a combination of technologies and protocols. The MAST web infrastructure is compliant with Open Geospatial Consortium (OGC). The client side features are developed using OpenLayers which makes it easy to put a dynamic map in any web page.

OpenLayers is a pure JavaScript library used for displaying map data in most modern web browsers, with no server-side dependencies. OpenLayers implements a JavaScript API for building rich web-based geographic applications. It interacts with Geoserver to show the GIS layers on the browser.

Navigation, spatial queries, and editing have been developed using a combination of features and functionalities available in OpenLayers client scripting and Geoserver rest services (i.e. WMS and WFS).

3.3.4 Reporting

The MAST web infrastructure reporting tool generates two types of reports Adjudication forms and CCRO reports.

Both these reports are currently hard coded into the system. These reports are generated by fetching data from backend database and rendered on a pre-formatted HTML page.

Map components for these reports are created from getmap call to Geoserver which returns image for the supplied extents. These images are then bound to the page to show parcel geometry in the report html img tag.

3.3.5 Security

3.3.5.1 MAST Mobile Application

MAST mobile application works on the concept of one time authentication. This means that the user has to only authenticate first time it starts using the application. The first authentication is done from the server using authentication web service created on the server. Subsequently, the credentials are stored in the local database to ease in logging into the application.

3.3.5.2 MAST Web Infrastructure

Application Security (Authentication and Authorization) - Security subsystem uses spring security framework to provide out of the box authentication and authorization against credentials stored in database which is configurable without changing application code. Based on authorization details received (role-based), the subsystem implicitly controls the access to the parts of the system by the user.

3.3.6 Platform

3.3.6.1 Mobile Application

To get the best out of the MAST application, minimum configuration recommended for android devices are:

1. Android Version: Android 4.1 (Jelly Bean)

2. RAM: 1GB

3. Internal Storage: 32 GB

4. Camera: 2MP

5. Location capabilities: GPS+GLONASS

6. Battery: 2000 mAh

3.3.6.2 Web Application

Application Server

1. Linux based OS

2. RAM: 8GB

3. Processor: 8 core, 64 bit architecture

4. HDD: 500GB

5. Network speed: Moderate

Database Server

1. Linux based OS

2. RAM: 4GB

3. Processor: 4 core, 64 bit architecture

4. HDD: 100GB

5. Network speed: Moderate

3.3.7 Data Storage

3.3.7.1 Data Storage/Rendering on Mobile Device

MAST uses base data on the mobile device. Base data will be provided in following forms to facilitate data collection on offline mode:

- Google base data (Auto-cached for specific region when the mobile is connected to the internet)
- High resolution satellite data (MBTiles needs to be created for high resolution base data)
- Vector base data (for roads and other layers) MBTiles can be created for vector data layers which needs to be rendered in the mobile application as base data layers.

Figure 9: Data storage in mobile device (for data collection in offline mode)

Other than the base data that is loaded in configuration, the MAST mobile data capture application will manage spatial, alphanumeric and multimedia data of spatial units that are collected in the field; final data that is downloaded from the back-end server for data viewing/reviewing.

These data entities will be stored in the device in the following manner:

- Spatial data Stored in SQLite database in WKT (Well known text) format.
- Alphanumeric data of spatial units Stored in SQLite database in tabular structure.
- Multimedia Files Stored in pre specified application folders in the mobile devices.

In Mobile devices MAST application configures storage of related data in a defined folder structure:

Parent folder: MAST

Sub-folders:

1. **Database** : containes sglite database files

2. Spatialdata: all the offline .mbtiles files are stored in this folder

3. **Multimedia**: containes all the video/images captured using the MAST application.

3.3.8 System Performance

To get best performance from the application following have been kept in mind during the implementation of the system:

Pure browser based HTML application

System has been designed as a pure browser based HTML application that doesn't require plug-in download on browser.

TMS and WMS-C cached map service

Tile Map Service and WMS cache service has been used for quick generation of maps on browser.

Optimizing data access

MAST web infrastructure uses Java persistence API/hibernate ORM combination. Optimization of data access from database server is done by using Hibernate caching.

4 MAST SOLUTION INTEGRATION

4.1 MAST Technology Stack

The tables below provide a listing of development tools that have been used for the development MAST.

4.1.1 Mobile Data Capture Application

Overall implementation of mobile application is based on following software tools listed below:

Software	Purpose	License/ Freeware	Details
Android Google Maps API v2	Android Application programming interface to develop map based application.	Open source	
Eclipse IDE (with Android Development Toolkit plugin)	Development Environment	Freeware	
MBTiles	Specification for storing tiled map data in SQLite databases	Open File format	MBTiles will be used to display Tiled Raster data on mobile device. These files will be pregenerated using an open source tools for high resolution Satellite images and other base data layers.
SQlite	SQL database Engine for local data storage	Open Source	Embedded SQL database engine in Mobile device for storage of attribute data of spatial units.
Android SDK API level 16 – Level21	Develop android native application	Open Source	

4.1.2 Land Rights Data Management Web Application

Overall implementation of web application will be based on following software's as mentioned below:

Software	Purpose	License
Java/JEE	Programming Language/Development Platform	OpenSource
Hibernate Framework 3.x	Java Framework (ORM) for Mapping object- oriented domain model to the database solution	OpenSource
Spring Framework 3.x	Java Framework (MVC framework and Security)	OpenSource
Javascript/HTML/ JQuery	Client side coding	OpenSource
Open Layers	Client side JavaScript library for building rich web-based GIS applications.	OpenSource
Geoserver	Share Geospatial Data	OpenSource
PostgreSQL/PostGIS	RDBMS	OpenSource
Apache Tomcat 7.x	Application Server for hosting the web application.	Open Source

4.2 MAST Solution Integration

Figure 10: Overall Integration of MAST web infrastructure and Mobile application

Mast web infrastructure and mobile application consists of suite of web and mobile application and third part tools utilized for preprocessing of data.

Diagram in figure 7 depicts high level of integration between these components.

4.2.1 Cloud Web Application Server

Cloud web application server and cloud Relational Database service are hosted in Amazon cloud environment.

- Application server contains Apache tomcat 7 web container installed in Ubuntu 14.04LTS OS.
- MAST web infrastructure and Geoserver web map server are hosted in this server inside Tomcat servlet container.
- Database configuration and connection pooling is managed by tomcat and the configurations are available in server.xml.

This server is hosted on public domain and calls are made on this server for the MAST web application to work with underlying calls to Geoserver to get spatial layers visible and MAST RDS server to get data from PostgreSQL/PostGIS database.

Geoserver would host the map layers including Vector and Raster layers. Geoserver is deployed in the Amazon Application server along with MAST web infrastructure.

4.2.2 Cloud RDS

- Cloud RDS server hosts the relational database PostgreSQL/PostGIS.
- Calls are made on this server to get the data from MAST web infrastructure.
- MAST android application makes the rest call to Application server which in turn makes call to the RDS server to get spatial and non spatial data.

4.2.3 Client Tier (MAST Android Mobile Application)

- Android MAST application is a native application that synchronizes data by using rest based services available in MAST web infrastructure.
- Native application stores the data in sqlLite for local device.
- MB tiles can be downloaded from the MAST web infrastructure as configured with the Survey project or it can be copied to the device using USB connection.

4.2.4 External Data Preprocessing

- MBTiles are created for high resolution satellite images as well as Vectors layer to be displayed as base layers in MAST android application. Mapbox tool Tilemill is used to create MB tile. MBtiles are created to be used in MAST mobile application as base layer for offline data capturing.
- Image Pyramid is created using GDALutility retile.py which is a python script that is used to create image tiles. This tool splits the larger images to smaller chunks that can be easily displayed on a web application with better performance.

Once pyramids are created they should be copied into Geoserver data folder to be published and used in MAST web infrastructure.

4.3 Configuration and Deployment

This section briefly describes the operational hardware requirement, network requirements and data transfer requirements for optimum performance of MAST web infrastructure application. It also covers lists of prerequisites and their installation, steps to deploy MAST web infrastructure WAR (web application archive) and server.xml configuration in Apache Tomcat for connecting to RDS server with connection pooling parameters.

4.3.1 Operational Requirement

Application Instance

Instance Type : m3 large

Processor Architecture : 64Bit

vCPU : 2

ECU : 6.5

Memory GiB (RAM) : 7.5

Instance Storage : 1 x 32 SSD*6

Network Performance : Moderate

RDS Instance

Instance Type : m3 medium

Processor Architecture : 64Bit

vCPU : 1

ECU : 3

Memory GiB (RAM) : 3.75

Instance Storage : 1 x 4 SSD*6

Network Performance : Moderate

Amazon EBS Volume

No of EBS Volumes : 1

Volume Type : Standard

Storage : 250GB

Data Transfer In/out

100GiB/100GiB

4.3.2 Deployment of Prerequisites & MAST

This section will give a brief introduction on the installation, deployment and configuration of MAST web infrastructure and Geoserver on to a Linux based (Ubuntu) server. (Please refer to installation guide MAST_development_environment_installation_setup_guide_RMSI_final for directions on loading prerequisites)

4.3.2.1 MAST Deployment Prerequisites

Core tools/applications used to deploy MAST web infrastructure and Geoserver on to Ubuntu 14.04 LTS are:

- JavaJDK 7 (64-bit) Java Developer Kit
- PostgreSQL 9.3 (64-bit)
- PostGIS 2.1
- Tomcat 7 (64-bit)

Installing JavaJDK 7

Java JDK 7 can be either be manually installed or can be installed from Ubuntu repository using command in Ubuntu Terminal:

\$sudo add-apt-repository ppa:webupd8team/java

Installing PostgreSQL

Ubuntu's default repositories contain PostgreSQL packages. We can then get the Postgres package and a "contrib" package that adds some additional utilities and functionality by using following command on Ubuntu Terminal:

\$sudo apt-get update \$sudo apt-get install postgresql postgresql-contrib

Installing PostGIS

As mentioned above PostGIS is available in Ubuntu's default repository. We can get install PostGIS by unsig following command on Ubuntu Terminal:

\$sudo apt-get install postgresql-9.3-postgis

Install Tomcat 7

Download Apache Tomcat 7 Server for Linux from http://tomcat.apache.org/download-70.cgi User below command in terminal to extract the tar file to tmp folder

\$tar xvzf apache-tomcat*.tar.gz -C /tmp/

Move the extracted folder to usr folder after providing proper rights

\$sudo su -c "chmod -R root:root /tmp/apache-tomcat* \$mv /tmp/apache-tomcat-7 /usr/lib

Commands to Start and Stop the Tomcat Server

Start /usr/lib/apache-tomcat-7/bin/startup.sh Stop /usr/lib/apache-tomcat-7/bin/shutdown.sh

Pre-requisites

You will require administration privileges on your computer to complete this exercise.

4.3.2.2 MAST Web infrastructure/Geoserver Deployment

After all above installations are done, we are now ready to deploy MAST web Infrastructure and Geoserver in Tomcat.

Stop the Tomcat Server.

Copy MAST.war and Geoserver.war file to folder /usr/lib/apache-tomcat-7/webapps

Go to folder /usr/lib/apache-tomcat-7/conf folder

Open file server.xml file in edit mode amd modify resource type tag to add rds server details and credentials.

```
maxActive="100"
minIdle="10"
maxWait="10000"
initialSize="10"
removeAbandonedTimeout="60"
removeAbandoned="true"
logAbandoned="true"
minEvictableIdleTimeMillis="30000"
jmxEnabled="true"
jdbcInterceptors="org.apache.tomcat.jdbc.pool.interceptor.ConnectionState;
org.apache.tomcat.jdbc.pool.interceptor.StatementFinalizer;
org.apache.tomcat.jdbc.pool.interceptor.SlowQueryReportJmx(threshold=10000)"
```

/>

Save server.xml file.

Start the Tomcat Server.

Check deployment

User need to check whether Tomcat, MAST web infrastructure and Geoserver are deployed properly. For this user have to open any web browser and type the below urls to see whether home pages are loaded properly or not.

Tomcat: http://appserverIP:8080/

Web MAST Infrastructure: http://appserverIP:8080/mast/

Geoserver: http://appserverIP:8080/geoserver

4.3.3 Deployment on Amazon Architecture

Below mentioned details pertains to deployment done in Amazon Cloud AWS and RDS.

- Operating system used for Pilot deployment is Ubuntu 14.04LTS.
- Amazon Web Services (AWS) is used for hosting MAST web infrastructure. Amazon provides highly available and highly scalable platforms on Cloud.

Figure 11: MAST web infrastructure Hosting

In the above diagram Application Server is used to deploy MAST web infrastructure and Geoserver in Apache Tomcat application container. RDS master server stores the PostgreSQL database with PostGIS extension for storing spatial and textual data.

Amazon Web Services provides the reliable, scalable, secure, and high performance infrastructure required for web applications while enabling an elastic, scale-out and scale-down infrastructure to match IT costs in real time as customer traffic fluctuates.

5 DATABASE DESIGN

5.1 MAST Framework (PostgreSQL/PostGIS)

Figure 12: ER Diagram- MAST Web Infrastructure

5.1.1 Table Details

5.1.1.1 action

(Physical Name: action)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
name (PK)	name	VARCHAR(255)	PK	NOT NULL
description	description	VARCHAR(255)		
id	id	INTEGER		NOT NULL
tenantid	tenantid	VARCHAR(50)		

Referenced By

module_action referencing (name)

module_role referencing (name)

5.1.1.2 adjacent_property

(Physical Name: adjacent_property)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
adjpropertyid (PK)	adjpropertyid	INTEGER	PK	NOT NULL
usin (<u>FK</u>)	usin	BIGINT		NOT NULL
adjescent_usin	adjescent_usin	INTEGER		NOT NULL
direction	direction	VARCHAR(2147483647)		NOT NULL

References

spatial_unit through (usin)

5.1.1.3 attachment

(Physical Name: attachment)

Logical Column Name	Physical Column Name	Type	PK	Nullable
associationid (PK)	associationid	INTEGER	PK	NOT NULL
layername (<u>FK</u>)	layername	VARCHAR(25)		NOT NULL
keyfield	keyfield	VARCHAR(25)		NOT NULL
filename	filename	VARCHAR(255)		
description	description	VARCHAR(255)		
extension	extension	VARCHAR(20)		
id	id	INTEGER		NOT NULL
tenantid	tenantid	VARCHAR(25)		
filepath	filepath	VARCHAR(255)		NOT NULL
gid	gid	INTEGER		NOT NULL

References

<u>layer</u> through (layername)

5.1.1.4 attribute

(Physical Name: attribute)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
attributevalueid (PK)	attributevalueid	BIGINT	PK	NOT NULL
value	value	VARCHAR(3000)		NOT NULL
parentuid	parentuid	BIGINT		
uid	uid	BIGINT		NOT NULL

5.1.1.5 attribute_category

(Physical Name: attribute_category)

1. General

- 2. Person
- 3. Tenure

4 Multimedia

etc

Logical Column Name	Physical Column Name	Туре	PK	Nullable
attributecategoryid (PK)	attributecategoryid	INTEGER	PK	NOT NULL
category_name	category_name	VARCHAR(2147483647)		NOT NULL

Referenced By

attribute_master referencing (attributecategoryid)

5.1.1.6 attribute_master

(Physical Name: attribute_master)

Stores all the attributes for lookup purpose

Logical Column Name	Physical Column Name	Туре	PK	Nullable
id (PK)	id	INTEGER	PK	NOT NULL
primary key				
alias	alias	VARCHAR(2147483647)		NOT NULL
Display name				
fieldname	fieldname	VARCHAR(2147483647)		NOT NULL
actual field name				
datatype_id (<u>FK</u>)	datatype_id	INTEGER		NOT NULL
attributecategoryid (<u>FK</u>)	attributecategoryid	INTEGER		NOT NULL
reftable	reftable	VARCHAR(2147483647)		NOT NULL
Stores the actual table na	me that the attribute exter	nds		
size	size	VARCHAR(2147483647)		NOT NULL
mandatory	mandatory	BOOLEAN		NOT NULL
true of the attribute refers	to standard tables	1		

listing	listing	INTEGER	
active	active	BOOLEAN	
alias_second_language	alias_second_language	VARCHAR(2147483647)	
master_attrib	master_attrib	BOOLEAN	

attribute category through (attributecategoryid)

datatype_id through (datatype_id)

Referenced By

attribute_options referencing (id)

surveyprojectattributes referencing (id)

5.1.1.7 attribute_options

(Physical Name: attribute_options)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
id (PK)	id	INTEGER	P K	NOT NULL
optiontext	optiontext	VARCHAR(21474836 47)		
attribute_id (<u>FK</u>)	attribute_id	INTEGER		NOT NULL
optiontext_second_langua ge	optiontext_second_langua ge	VARCHAR(21474836 47)		
parent_id	parent_id	INTEGER		

References

attribute_master through (attribute_id)

5.1.1.8 baselayer

(Physical Name: baselayer)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
name (PK)	name	VARCHAR(50)	PK	NOT NULL
id	id	INTEGER		NOT NULL

description	description	VARCHAR(100)	

Referenced By

project_baselayer referencing (name)

5.1.1.9 bookmark

(Physical Name: bookmark)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
name (PK)	name	VARCHAR(255)	PK	NOT NULL
description	description	VARCHAR(255)		
minx	minx	DOUBLE		NOT NULL
miny	miny	DOUBLE		NOT NULL
maxx	maxx	DOUBLE		NOT NULL
maxy	maxy	DOUBLE		NOT NULL
project (<u>FK</u>)	project	VARCHAR(25)		NOT NULL
id	id	INTEGER		NOT NULL
tenantid	tenantid	VARCHAR(25)		

References

project through (project)

5.1.1.10 Cosmetic_Line

(Physical Name: Cosmetic_Line)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
gid (PK)	gid	INTEGER	PK	NOT NULL
id	id	NUMERIC(10,0)		
uid	uid	VARCHAR(100)		
username	username	VARCHAR(100)		
the_geom	the_geom	[1111]		

5.1.1.11 Cosmetic_Point

(Physical Name: Cosmetic_Point)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
gid (PK)	gid	INTEGER	PK	NOT NULL
id	id	NUMERIC(10,0)		
uid	uid	VARCHAR(100)		
username	username	VARCHAR(100)		
label	label	VARCHAR(100)		
the_geom	the_geom	[1111]		

5.1.1.12 Cosmetic_Poly

(Physical Name: Cosmetic_Poly)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
gid (PK)	gid	INTEGER	PK	NOT NULL
id	id	NUMERIC(10,0)		
uid	uid	VARCHAR(100)		
username	username	VARCHAR(100)		
the_geom	the_geom	[1111]		

5.1.1.13 datatype_id

(Physical Name: datatype_id)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
datatype_id (PK)	datatype_id	INTEGER	PK	NOT NULL
datatype	datatype	VARCHAR(25)		NOT NULL

Referenced By

attribute_master referencing (datatype_id)

5.1.1.14 education_level

(Physical Name: education_level)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
level_id (PK)	level_id	INTEGER	PK	NOT NULL
education_level	education_level	VARCHAR(2147483647)		NOT NULL

Referenced By

natural_person referencing (level_id)

5.1.1.15 gender

(Physical Name: gender)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
gender_id (PK)	gender_id	INTEGER	PK	NOT NULL
gender	gender	VARCHAR(2147483647)		NOT NULL
gender_sw	gender_sw	VARCHAR(50)		

Referenced By

natural_person referencing (gender_id)

5.1.1.16 group_person

(Physical Name: group_person)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
gid (PK)	gid	INTEGER	PK	NOT NULL
group_name	group_name	VARCHAR(25)		
rep_person_gid (<u>FK</u>)	rep_person_gid	BIGINT		NOT NULL
ownership_type	ownership_type	VARCHAR(25)		

References

person through (rep_person_gid)

5.1.1.17 group_type

(Physical Name: group_type)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
group_id (PK)	group_id	INTEGER	PK	NOT NULL
group_value	group_value	VARCHAR(50)		
group_value_sw	group_value_sw	VARCHAR(50)		

5.1.1.18 land_type

(Physical Name: land_type)

Logical Column Name	Physical Column Name	Туре	PK	Nullable

landtype_id (PK)	landtype_id	INTEGER	PK	NOT NULL
landtype_value	landtype_value	VARCHAR(50)		
landtype_value_sw	landtype_value_sw	VARCHAR(50)		

5.1.1.19 land_use_type

(Physical Name: land_use_type)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
use_type_id (PK)	use_type_id	INTEGER	PK	NOT NULL
land_use_type	land_use_type	VARCHAR(2147483647)		NOT NULL
land_use_type_sw	land_use_type_sw	VARCHAR(50)		

Referenced By

spatial_unit referencing (use_type_id)

spatial_unit referencing (use_type_id)

5.1.1.20 layer

(Physical Name: layer)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
alias (PK)	alias	VARCHAR(255)	PK	NOT NULL
name	name	VARCHAR(255)		NOT NULL
projection (<u>FK</u>)	projection	VARCHAR(255)		NOT NULL
unit (<u>FK</u>)	unit	VARCHAR(255)		NOT NULL
maxextent	maxextent	VARCHAR(255)		NOT NULL
minextent	minextent	VARCHAR(255)		
maxresolution	maxresolution	INTEGER		
minresolution	minresolution	INTEGER		
numzoomlevels	numzoomlevels	INTEGER		
minscale	minscale	INTEGER		
maxscale	maxscale	INTEGER		
transitioneffect	transitioneffect	VARCHAR(255)		

type (<u>FK</u>)	type	VARCHAR(255)	NOT NULL
style	style	CLOB	
filter	filter	VARCHAR(255)	
url	url	VARCHAR(255)	NOT NULL
tilesize	tilesize	INTEGER	
buffer	buffer	INTEGER	
format (<u>FK</u>)	format	VARCHAR(255)	NOT NULL
apikey	apikey	VARCHAR(255)	
version	version	VARCHAR(255)	
featurens	featurens	VARCHAR(255)	
featuretype	featuretype	VARCHAR(255)	
geometryname	geometryname	VARCHAR(255)	
schemaname	schemaname	VARCHAR(255)	
geomtype	geomtype	VARCHAR(255)	
wfsname	wfsname	VARCHAR(255)	
displayname	displayname	VARCHAR(255)	
tenantid	tenantid	VARCHAR(50)	
isbaselayer	isbaselayer	BOOLEAN	
displayinlayermanager	displayinlayermanager	BOOLEAN	
displayoutsidemaxextent	displayoutsidemaxext ent	BOOLEAN	
wrapdateline	wrapdateline	BOOLEAN	
sphericalmercator	sphericalmercator	BOOLEAN	
editable	editable	BOOLEAN	
queryable	queryable	BOOLEAN	
exportable	exportable	BOOLEAN	

selectable	selectable	BOOLEAN	
tiled	tiled	BOOLEAN	
visibility	visibility	BOOLEAN	

layertype through (type)

outputformat through (format)

projection through (projection)

unit through (unit)

Referenced By

attachment referencing (alias)

layer_field referencing (alias)

maptip referencing (alias)

savedquery referencing (alias)

5.1.1.21 layer_field

(Physical Name: layer_field)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
id (PK)	id	INTEGER	PK	NOT NULL
layer (<u>FK</u>)	layer	VARCHAR(255)		NOT NULL
field	field	VARCHAR(255)		NOT NULL
alias	alias	VARCHAR(255)		NOT NULL
keyfield	keyfield	VARCHAR(255)		NOT NULL
tenantid	tenantid	VARCHAR(50)		

References

layer through (layer)

5.1.1.22 layer_layergroup

(Physical Name: layer_layergroup)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
id (PK)	id	INTEGER	PK	NOT NULL

layer	layer	VARCHAR(255)	NOT NULL
layergroup (<u>FK</u>)	layergroup	VARCHAR(255)	NOT NULL
layerorder	layerorder	INTEGER	NOT NULL
tenantid	tenantid	VARCHAR(50)	
layervisibility	layervisibility	BOOLEAN	NOT NULL

layergroup through (layergroup)

5.1.1.23 layergroup

(Physical Name: layergroup)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
name (PK)	name	VARCHAR(255)	PK	NOT NULL
alias	alias	VARCHAR(255)		
id	id	INTEGER		NOT NULL
tenantid	tenantid	VARCHAR(50)		

Referenced By

layer_layergroup referencing (name)

overviewmap referencing (name)

project layergroup referencing (name)

5.1.1.24 layertype

(Physical Name: layertype)

Logical Column Name	Physical Column Name	Type	PK	Nullable
name (PK)	name	VARCHAR(255)	PK	NOT NULL
description	description	VARCHAR(255)		
id	id	INTEGER		NOT NULL
tenantid	tenantid	VARCHAR(50)		

Referenced By

<u>layer</u> referencing (name)

5.1.1.25 maptip

(Physical Name: maptip)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
project (<u>FK</u>)	project	VARCHAR(255)		NOT NULL
layer (<u>FK</u>)	layer	VARCHAR(255)		NOT NULL
name	name	VARCHAR(25)		NOT NULL
queryexpression	queryexpression	VARCHAR(2147483647)		
field	field	VARCHAR(25)		NOT NULL

References

layer through (layer)

project through (project)

5.1.1.26 marital_status

(Physical Name: marital_status)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
maritalstatus_id (PK)	maritalstatus_id	INTEGER	PK	NOT NULL
maritalstatus	maritalstatus	VARCHAR(2147483647)		NOT NULL
maritalstatus_sw	maritalstatus_sw	VARCHAR(50)		

Referenced By

natural_person referencing (maritalstatus_id)

5.1.1.27 module

(Physical Name: module)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
name (PK)	name	VARCHAR(25)	PK	NOT NULL
description	description	VARCHAR(255)		
tenantid	tenantid	VARCHAR(25)		
id	id	INTEGER		NOT NULL

Referenced By

module_action referencing (name)

module role referencing (name)

5.1.1.28 module_action

(Physical Name: module_action)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
id	id	INTEGER		NOT NULL
action (FK)	action	VARCHAR(25)		NOT NULL
module (<u>FK</u>)	module	VARCHAR(25)		NOT NULL
tenantid	tenantid	VARCHAR(25)		

References

action through (action)

module through (module)

5.1.1.29 module_role

(Physical Name: module_role)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
id	id	INTEGER		NOT NULL
role (<u>FK</u>)	role	VARCHAR(25)		NOT NULL
module (<u>FK</u>)	module	VARCHAR(25)		NOT NULL
action (<u>FK</u>)	action	VARCHAR(25)		NOT NULL
tenantid	tenantid	VARCHAR(25)		

References

action through (action)

module through (module)

role through (role)

5.1.1.30 natural_person

(Physical Name: natural_person)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
gid (PK)	gid	BIGINT	PK	NOT NULL
first_name	first_name	VARCHAR(100)		

last_name	last_name	VARCHAR(100)	
middle_name	middle_name	VARCHAR(100)	
alias	alias	VARCHAR(2147483647)	NOT NULL
gender (<u>FK</u>)	gender	INTEGER	NOT NULL
photo	photo	[-2]	
mobile	mobile	VARCHAR(100)	
identity	identity	VARCHAR(50)	
age	age	INTEGER	
occupation	occupation	VARCHAR(100)	
occ_age_below	occ_age_below	INTEGER	
tenure_relation	tenure_relation	VARCHAR(50)	
household_relation	household_relation	VARCHAR(50)	
witness	witness	VARCHAR(100)	
marital_status (<u>FK</u>)	marital_status	INTEGER	NOT NULL
household_gid	household_gid	INTEGER	
active	active	BOOLEAN	
education (<u>FK</u>)	education	INTEGER	NOT NULL
administator	administator	VARCHAR(100)	
citizenship	citizenship	VARCHAR(100)	
owner	owner	BOOLEAN	
resident_of_village	resident_of_village	BOOLEAN	

education_level through (education)

gender through (gender)

marital_status through (marital_status)

Referenced By

non natural person referencing (gid)

5.1.1.31 non_natural_person

(Physical Name: non_natural_person)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
non_natural_person_gid (PK) (<u>FK</u>)	non_natural_person_gid	BIGINT	PK	NOT NULL
instutution_name	instutution_name	VARCHAR(2147483647)		NOT NULL
address	address	VARCHAR(2147483647)		
phone_number	phone_number	VARCHAR(2147483647)		
poc_gid (<u>FK</u>)	poc_gid	BIGINT		NOT NULL
active	active	BOOLEAN		
group_type	group_type	INTEGER		

References

natural_person through (poc_gid)

person through (non_natural_person_gid)

5.1.1.32 nonspatial_attachment

(Physical Name: nonspatial_attachment)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
associationid (PK)	associationid	INTEGER	PK	NOT NULL
layername	layername	VARCHAR(25)		NOT NULL
keyfield	keyfield	VARCHAR(25)		NOT NULL
filename	filename	VARCHAR(255)		
description	description	VARCHAR(255)		
extension	extension	VARCHAR(20)		
id	id	INTEGER		NOT NULL
tenantid	tenantid	VARCHAR(25)		
filepath	filepath	VARCHAR(255)		NOT NULL

gid	gid	INTEGER	NOT NULL

5.1.1.33 occupancy_type

(Physical Name: occupancy_type)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
occupancy_type_id (PK)	occupancy_type_id	INTEGER	PK	NOT NULL
description	description	VARCHAR(2147483647)		NOT NULL

Referenced By

social_tenure_relationship referencing (occupancy_type_id)

5.1.1.34 outputformat

(Physical Name: outputformat)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
name (PK)	name	VARCHAR(255)	PK	NOT NULL
mimetype	mimetype	VARCHAR(255)		
id	id	INTEGER		NOT NULL
tenantid	tenantid	VARCHAR(25)		

Referenced By

<u>layer</u> referencing (name)

project referencing (name)

5.1.1.35 overviewmap

(Physical Name: overviewmap)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
id	id	INTEGER		NOT NULL
project (FK)	project	VARCHAR(25)		NOT NULL
layer (<u>FK</u>)	layer	VARCHAR(25)		NOT NULL
tenantid	tenantid	VARCHAR(25)		

References

<u>layergroup</u> through (layer)

project through (project)

5.1.1.36 person

(Physical Name: person)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
person_gid (PK)	person_gid	BIGINT	PK	NOT NULL
person_type_gid (<u>FK</u>)	person_type_gid	INTEGER		NOT NULL
resident	resident	BOOLEAN		NOT NULL
mobile_group_id	mobile_group_id	VARCHAR(2147483647)		

References

person type through (person_type_gid)

Referenced By

group_person referencing (person_gid)

non_natural_person referencing (person_gid)

social_tenure_relationship referencing (person_gid)

source_document referencing (person_gid)

5.1.1.37 person_administrator

(Physical Name: person_administrator)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
adminid (PK)	adminid	adminid BIGINT PK		NOT NULL
firstname	firstname	VARCHAR(100)		
middlename	middlename	VARCHAR(100)		
lastname	lastname	VARCHAR(100)		
gender	gender	INTEGER		NOT NULL
age	age	INTEGER		
maritalstatus	maritalstatus	INTEGER		NOT NULL
citizenship	citizenship	VARCHAR(100)		
address	address	VARCHAR(300)		
resident	resident	BOOLEAN		NOT NULL

phonenumber	phonenumber	VARCHAR(10)	

Referenced By

spatialunit_personadministrator referencing (adminid)

5.1.1.38 person_type

(Physical Name: person_type)

Logical Name		Physical Name	Column	Туре	PK	Nullable
person_type_ (PK)	_gid	person_type_	_gid	INTEGER	PK	NOT NULL
person_type		person_type		VARCHAR(2147483647)		NOT NULL

Referenced By

person referencing (person_type_gid)

5.1.1.39 printtemplate

(Physical Name: printtemplate)

Logical Column Name	Physical Column Name	Type	PK	Nullable
name (PK)	name	VARCHAR(255)	PK	NOT NULL
templatefile	templatefile	VARCHAR(2000)		NOT NULL
project	project	VARCHAR(255)		
id	id	INTEGER		NOT NULL
tenantid	tenantid	VARCHAR(50)		

5.1.1.40 project

(Physical Name: project)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
name (PK)	name	VARCHAR(25)	PK	NOT NULL
width	width	INTEGER		
height	height	INTEGER		
projection (FK)	projection	VARCHAR(25)		NOT NULL
unit (<u>FK</u>)	unit	VARCHAR(25)		NOT NULL

minresolutions	minresolutions	DOUBLE	
maxresolutions	maxresolutions	DOUBLE	
numzoomlevels	numzoomlevels	INTEGER	
displayprojection (<u>FK</u>)	displayprojection	VARCHAR(25)	NOT NULL
outputformat (<u>FK</u>)	outputformat	VARCHAR(25)	NOT NULL
copyright	copyright	VARCHAR(255)	
watermask	watermask	VARCHAR(255)	
thumbnail	thumbnail	[-2]	
disclaimer	disclaimer	CLOB	
activelayer	activelayer	VARCHAR(25)	NOT NULL
description	description	VARCHAR(255)	
overlaymap	overlaymap	VARCHAR(25)	
id	id	INTEGER	
tenantid	tenantid	VARCHAR(25)	
active	active	BOOLEAN	
cosmetic	cosmetic	BOOLEAN	
minextent	minextent	VARCHAR(255)	
maxextent	maxextent	VARCHAR(255)	
restrictedextent	restrictedextent	VARCHAR(255)	
admincreated	admincreated	BOOLEAN	
owner	owner	VARCHAR(255)	

outputformat through (outputformat)

projection through (projection)

projection through (displayprojection)

unit through (unit)

Referenced By

bookmark referencing (name)

maptip referencing (name)

overviewmap referencing (name)

project_area referencing (name)

project_baselayer referencing (name)

project_layergroup referencing (name)

project_spatial_data referencing (name)

savedquery referencing (name)

spatial_unit referencing (name)

surveyprojectattributes referencing (name)

user_project referencing (name)

5.1.1.41 project_area

(Physical Name: project_area)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
bounding_box (PK)	bounding_box	VARCHAR(100)	P K	NOT NULL
store values as xmin,xmax,y	min,ymax	'		
area_id (PK)	area_id	INTEGER	P K	NOT NULL
projectid	projectid	INTEGER		
city	city	VARCHAR(50)		
gid	gid	INTEGER		
location	location	VARCHAR(50)		
perimeter	perimeter	VARCHAR(35)		
category	category	VARCHAR(25)		
initiation_date	initiation_date	DATE		NOT NULL
recommendation_date	recommendation_date	DATE		

village_chairman	village_chairman	VARCHAR(2147483 647)	
authority_approve	authority_approve	BOOLEAN	
village_chairman_approval _date	village_chairman_approval _date	DATE	
approving_executive	approving_executive	VARCHAR(2147483 647)	
executive_approve	executive_approve	BOOLEAN	
executive_approval_date	executive_approval_date	DATE	
name (<u>FK</u>)	name	VARCHAR(100)	NOT NULL
country_name	country_name	VARCHAR(30)	NOT NULL
state_name	state_name	VARCHAR(30)	
province	province	VARCHAR(25)	
district_name	district_name	VARCHAR(25)	NOT NULL
municipality	municipality	VARCHAR(25)	
region	region	VARCHAR(25)	NOT NULL
wards	wards	VARCHAR(30)	
village	village	VARCHAR(30)	
hamlet	hamlet	VARCHAR(30)	
district_officer	district_officer	VARCHAR(200)	

project through (name)

5.1.1.42 project_baselayer (Physical Name: project_baselayer)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
---------------------	----------------------	------	----	----------

id (PK)	id	INTEGER	PK	NOT NULL
project (<u>FK</u>)	project	VARCHAR(2147483647)		NOT NULL
baselayer (<u>FK</u>)	baselayer	VARCHAR(2147483647)		NOT NULL
baselayerorder	baselayerorder	INTEGER		NOT NULL

<u>baselayer</u> through (baselayer)

project through (project)

5.1.1.43 project_layergroup

(Physical Name: project_layergroup)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
id	id	INTEGER		NOT NULL
project (FK)	project	VARCHAR(255)		NOT NULL
layergroup (<u>FK</u>)	layergroup	VARCHAR(255)		NOT NULL
grouporder	grouporder	INTEGER		NOT NULL
tenantid	tenantid	VARCHAR(25)		

References

layergroup through (layergroup)

project through (project)

5.1.1.44 project_region

(Physical Name: project_region)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
gid (PK)	gid	INTEGER	PK	NOT NULL
country_name	country_name	VARCHAR(30)		
state_name	state_name	VARCHAR(30)		
province	province	VARCHAR(25)		
district_name	district_name	VARCHAR(25)		
municipality	municipality	VARCHAR(25)		

region	region	VARCHAR(25)	
division	division	VARCHAR(30)	
wards	wards	VARCHAR(30)	
village	village	VARCHAR(30)	
hamlet	hamlet	VARCHAR(30)	

5.1.1.45 project_spatial_data

(Physical Name: project_spatial_data)

table to store spatial data upload details

Logical Column Name	Physical Column Name	Туре	PK	Nullable
id (PK)	id	INTEGER	PK	NOT NULL
name (<u>FK</u>)	name	VARCHAR(100)		NOT NULL
file_name	file_name	VARCHAR(50)		NOT NULL
file_extension	file_extension	VARCHAR(10)		NOT NULL
file_location	file_location	VARCHAR(2147483647)		NOT NULL
file_size	file_size	INTEGER		
alias	alias	VARCHAR(50)		

References

project through (name)

5.1.1.46 projection

(Physical Name: projection)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
code (PK)	code	VARCHAR(25)	PK	NOT NULL
description	description	VARCHAR(255)		
id	id	INTEGER		NOT NULL
tenantid	tenantid	VARCHAR(25)		

Referenced By

layer referencing (code)

project referencing (code)

project referencing (code)

5.1.1.47 raster_columns

(Physical Name: raster_columns)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
r_table_catalog	r_table_catalog	VARCHAR(2147483647)		
r_table_schema	r_table_schema	VARCHAR(2147483647)		
r_table_name	r_table_name	VARCHAR(2147483647)		
r_raster_column	r_raster_column	VARCHAR(2147483647)		
srid	srid	INTEGER		
scale_x	scale_x	DOUBLE		
scale_y	scale_y	DOUBLE		
blocksize_x	blocksize_x	INTEGER		
blocksize_y	blocksize_y	INTEGER		
same_alignment	same_alignment	BOOLEAN		
regular_blocking	regular_blocking	BOOLEAN		
num_bands	num_bands	INTEGER		
pixel_types	pixel_types	[2003]		
nodata_values	nodata_values	[2003]		
out_db	out_db	[2003]		
extent	extent	[1111]		

5.1.1.48 raster_overviews

(Physical Name: raster_overviews)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
o_table_catalog	o_table_catalog	VARCHAR(2147483647)		
o_table_schema	o_table_schema	VARCHAR(2147483647)		

o_table_name	o_table_name	VARCHAR(2147483647)	
o_raster_column	o_raster_column	VARCHAR(2147483647)	
r_table_catalog	r_table_catalog	VARCHAR(2147483647)	
r_table_schema	r_table_schema	VARCHAR(2147483647)	
r_table_name	r_table_name	VARCHAR(2147483647)	
r_raster_column	r_raster_column	VARCHAR(2147483647)	
overview_factor	overview_factor	INTEGER	

5.1.1.49 role

(Physical Name: role)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
name (PK)	name	VARCHAR(25)	PK	NOT NULL
description	description	VARCHAR(255)		
id	id	INTEGER		NOT NULL
tenantid	tenantid	VARCHAR(25)		

Referenced By

module_role referencing (name)

user role referencing (name)

5.1.1.50 savedquery

(Physical Name: savedquery)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
name (PK)	name	VARCHAR(25)	PK	NOT NULL
layer (<u>FK</u>)	layer	VARCHAR(25)		NOT NULL
whereexpression	whereexpression	VARCHAR(255)		NOT NULL
description	description	VARCHAR(255)		
project (<u>FK</u>)	project	VARCHAR(25)		NOT NULL
tenantid	tenantid	VARCHAR(25)		

layer through (layer)

project through (project)

5.1.1.51 share_type

(Physical Name: share_type)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
gid (PK)	gid	INTEGER	PK	NOT NULL
share_type	share_type	VARCHAR(2147483647)		NOT NULL

Referenced By

social_tenure_relationship referencing (gid)

5.1.1.52 slope_values

(Physical Name: slope_values)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
id (PK)	id	INTEGER	PK	NOT NULL
slope_value	slope_value	VARCHAR(50)		

social_tenure_relationship

(Physical Name: social_tenure_relationship)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
gid (PK)	gid	INTEGER	PK	NOT NULL
social_tenure_relationship_type (FK)	social_tenure_relationship_type	INTEGER		NOT NULL
usin (<u>FK</u>)	usin	BIGINT		NOT NULL
share	share	INTEGER		
person_gid (<u>FK</u>)	person_gid	BIGINT		NOT NULL
occupancy_type_id (<u>FK</u>)	occupancy_type_id	INTEGER		NOT NULL
tenureclass_id (<u>FK</u>)	tenureclass_id	INTEGER		NOT NULL
social_tenure_startdate	social_tenure_startdate	DATE		
social_tenure_enddate	social_tenure_enddate	DATE		

tenure_duration	tenure_duration	REAL
isactive	isactive	BOOLEAN
ccro_issue_date	ccro_issue_date	DATE

occupancy_type through (occupancy_type_id)

person through (person_gid)

share_type through (social_tenure_relationship_type)

spatial_unit through (usin)

tenure_class through (tenureclass_id)

Referenced By

source_document referencing (gid)

5.1.1.53 soil_quality_values

(Physical Name: soil_quality_values)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
id (PK)	id	INTEGER	PK	NOT NULL
quality	quality	VARCHAR(50)		

5.1.1.54 source_document

(Physical Name: source_document)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
gid (PK)	gid	INTEGER	P K	NOT NULL
id	id	VARCHAR(50		
recordation	recordation	DATE		NOT NULL
scanned_source_document	scanned_source_document	VARCHAR(50 0)		
location_scanned_source_doc ument	location_scanned_source_doc ument	VARCHAR(10 00)		

quality_type	quality_type	VARCHAR(50)	
social_tenure_inventory_type	social_tenure_inventory_type	VARCHAR(50	
spatial_unit_inventory_type	spatial_unit_inventory_type	VARCHAR(50	
comments	comments	VARCHAR(20 00)	
srs_id	srs_id	INTEGER	
source_doc_admin_unit_id	source_doc_admin_unit_id	INTEGER	
usin (<u>FK</u>)	usin	BIGINT	NOT NULL
entity_name	entity_name	VARCHAR(50	
househld_gid	househld_gid	INTEGER	
person_gid (<u>FK</u>)	person_gid	BIGINT	NOT NULL
social_tenure_gid (<u>FK</u>)	social_tenure_gid	INTEGER	NOT NULL
active	active	BOOLEAN	
mediatype	mediatype	VARCHAR(10	
adminid	adminid	BIGINT	

person through (person_gid)

social tenure relationship through (social_tenure_gid)

spatial_unit through (usin)

5.1.1.55 spatial_unit

(Physical Name: spatial_unit)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
---------------------	----------------------	------	----	----------

usin (PK)	usin	BIGINT	P K	NOT NULL
spatial_unit_type	spatial_unit_type	VARCHAR(50)		
project_name (<u>FK</u>)	project_name	VARCHAR(100)		NOT NULL
type_name	type_name	VARCHAR(500)		
identity	identity	VARCHAR(50)		
house_type	house_type	VARCHAR(50)		
total_househld_no	total_househld_no	INTEGER		
other_use_type	other_use_type	VARCHAR(50)		
perimeter	perimeter	DOUBLE		
house_shape	house_shape	VARCHAR(50)		
area	area	DOUBLE		NOT NULL
measurement_unit (<u>FK</u>)	measurement_unit	VARCHAR(25)		NOT NULL
land_owner	land_owner	VARCHAR(100)		
uka_propertyno	uka_propertyno	VARCHAR(21474836 47)		
comments	comments	VARCHAR(21474836 47)		
gtype	gtype	VARCHAR(10)		NOT NULL
current_workflow_status_i d	current_workflow_status_i	BIGINT		NOT NULL
workflow_status_update_ti me	workflow_status_update_ti me	TIMESTAMP		NOT NULL
userid	userid	INTEGER		NOT NULL
survey_date	survey_date	TIMESTAMP		NOT

			NULL
imei_number	imei_number	VARCHAR(21474836 47)	NOT NULL
the_geom	the_geom	[1111]	
Store the common geon	netry for a row		
address1	address1	VARCHAR(21474836 47)	
address2	address2	VARCHAR(21474836 47)	
postal_code	postal_code	VARCHAR(10)	
existing_use (<u>FK</u>)	existing_use	INTEGER	NOT NULL
proposed_use (<u>FK</u>)	proposed_use	INTEGER	NOT NULL
neighbor_north	neighbor_north	VARCHAR(200)	
neighbor_south	neighbor_south	VARCHAR(200)	
neighbor_east	neighbor_east	VARCHAR(200)	
neighbor_west	neighbor_west	VARCHAR(200)	
witness_1	witness_1	VARCHAR(200)	
witness_2	witness_2	VARCHAR(200)	
witness_3	witness_3	VARCHAR(200)	
witness_4	witness_4	VARCHAR(200)	
quality_of_soil	quality_of_soil	INTEGER	
slope	slope	INTEGER	
line	line	[1111]	
point	point	[1111]	
polygon	polygon	[1111]	

usin_str	usin_str	VARCHAR(20)	
active	active	BOOLEAN	

land_use_type through (existing_use)

land_use_type through (proposed_use)

project through (project_name)

unit through (measurement_unit)

Referenced By

adjacent_property referencing (usin)

social_tenure_relationship referencing (usin)

source_document referencing (usin)

spatialunit_personadministrator referencing (usin)

sunit_workflow_status_history referencing (usin)

5.1.1.56 spatialunit_personadministrator

(Physical Name: spatialunit_personadministrator)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
gid (PK)	gid	BIGINT	PK	NOT NULL
usin (<u>FK</u>)	usin	BIGINT		NOT NULL
adminid (<u>FK</u>)	adminid	BIGINT		NOT NULL

References

person_administrator through (adminid)

spatial_unit through (usin)

5.1.1.57 style

(Physical Name: style)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
name (PK)	name	VARCHAR(255)	PK	NOT NULL
filename	filename	VARCHAR(255)		NOT NULL
id	id	INTEGER		NOT NULL

tenantid	tenantid	VARCHAR(50)	

sunit_status

(Physical Name: sunit_status)

1.		New
2.		Adjudicated
3.	Spatially	Validated
4.		Approved
5.		Rejected

6. CCRO Generated

Logical Column Name	Physical Column Name	Туре	PK	Nullable
workflow_status_id (PK)	workflow_status_id	INTEGER	PK	NOT NULL
workflow_status	workflow_status	VARCHAR(2147483647)		NOT NULL

Referenced By

sunit_workflow_status_history referencing (workflow_status_id)

5.1.1.58 sunit_workflow_status_history

(Physical Name: sunit_workflow_status_history)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
status_hist_id (PK)	status_hist_id	BIGINT	PK	NOT NULL
usin (<u>FK</u>)	usin	BIGINT		NOT NULL
workflow_status_id (FK)	workflow_status_id	INTEGER		NOT NULL
userid	userid	BIGINT		NOT NULL
status_change_time	status_change_time	DATE		NOT NULL

References

spatial unit through (usin)

sunit status through (workflow_status_id)

5.1.1.59 surveyprojectattributes

(Physical Name: surveyprojectattributes)

stores the attribute and survey project mapping

Logical Column Name	Physical Column Name	Туре	PK	Nullable
uid	uid	BIGINT		NOT NULL

name (<u>FK</u>)	name	VARCHAR(100)	NOT NULL
id (<u>FK</u>)	id	INTEGER	NOT NULL
primary key			
attributecategoryid	attributecategoryid	INTEGER	NOT NULL
attributeorder	attributeorder	INTEGER	

attribute_master through (id)

project through (name)

5.1.1.60 task

(Physical Name: task)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
tasktypeid (PK)	tasktypeid	INTEGER	PK	NOT NULL
task	task	VARCHAR(50)		
survey_type	survey_type	VARCHAR(50)		

Referenced By

task_scheduler referencing (tasktypeid)

5.1.1.61 task_scheduler

(Physical Name: task_scheduler)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
taskid (PK)	taskid	INTEGER	PK	NOT NULL
priority	priority	SMALLINT		
task_prompt	task_prompt	INTEGER		
target_days	target_days	INTEGER		NOT NULL
tasktype (<u>FK</u>)	tasktype	INTEGER		NOT NULL

References

task through (tasktype)

5.1.1.62 tenure_class

(Physical Name: tenure_class)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
tenureclass_id (PK)	tenureclass_id	INTEGER	PK	NOT NULL
tenure_class	tenure_class	VARCHAR(2147483647)		NOT NULL

Referenced By

social_tenure_relationship referencing (tenureclass_id)

5.1.1.63 unit

(Physical Name: unit)

Logical Column Name	Physical Column Name	Type	PK	Nullable
name (PK)	name	VARCHAR(25)	PK	NOT NULL
description	description	VARCHAR(255)		
id	id	INTEGER		NOT NULL
tenantid	tenantid	VARCHAR(25)		

Referenced By

<u>layer</u> referencing (name)

project referencing (name)

spatial_unit referencing (name)

5.1.1.64 user_project

(Physical Name: user_project)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
id	id	INTEGER		NOT NULL
project (FK)	project	VARCHAR(100)		NOT NULL
tenantid	tenantid	VARCHAR(25)		
userid (<u>FK</u>) (<u>FK</u>)	userid	INTEGER		NOT NULL

References

project through (project)

users through (userid)

users through (userid)

5.1.1.65 user_role

(Physical Name: user_role)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
id	id	INTEGER		NOT NULL
role (<u>FK</u>)	role	VARCHAR(25)		NOT NULL
tenantid	tenantid	VARCHAR(25)		
userid (<u>FK</u>)	userid	INTEGER		NOT NULL

References

role through (role)

users through (userid)

5.1.1.66 users

(Physical Name: users)

Logical Column Name	Physical Column Name	Туре	PK	Nullable
id (PK)	id	INTEGER	PK	NOT NULL
name	name	VARCHAR(75)		NOT NULL
defaultproject	defaultproject	VARCHAR(25)		
email	email	VARCHAR(75)		NOT NULL
passwordexpires	passwordexpires	DATE		
lastactivitydate	lastactivitydate	DATE		
tenantid	tenantid	VARCHAR(25)		
active	active	BOOLEAN		
password	password	VARCHAR(70)		
authkey	authkey	VARCHAR(255)		
phone	phone	VARCHAR(12)		
manager_name	manager_name	VARCHAR(25)		

Referenced By

user_project referencing (id)

user project referencing (id)

user_role referencing (id)

5.2 Mobile Data Capture Application (SQLLite)

Figure 13: Mobile sqlLite ER diagram

5.2.1 Table Details

5.2.1.1 android_metadata

(Physical Name: android_metadata)

Logical Column Name	Physical Column Name	Туре	PK
Locale	Locale	Text	

5.2.1.2 attribute master

(Physical Name: attribute_master)

Logical Column Name	Physical Column Name	Туре	PK
id (PK)	id	Integer	PK

attrib_id	attrib_id	Integer	
attribute_type	attribute_type	Text	
attribute_controltype	attribute_controltype	Integer	
attribute_name	attribute_name	Text	
Listing	listing	Text	
attribute_name_other	attribute_name_other	Text	
Validation	validation	Text	

Referenced By

form values referencing (id)

options referencing (id)

5.2.1.3 bookmarks

(Physical Name: bookmarks)

Logical Column Name	Physical Column Name	Туре	PK
id (PK)	id	Integer	PK
Name	name	Text	
Latitude	latitude	Text	
Longitude	longitude	Text	
Zoomlevel	zoomlevel	Text	

5.2.1.4 form_values

(Physical Name: form_values)

Logical Column Name	Physical Column Name	Туре	PK

group_id	group_id	Integer
attrib_id (FK)	attrib_id	Integer
attrib_value	attrib_value	Text
feature_id (FK)	feature_id	Text

attribute_master through (attrib_id)
spatial_features through (feature_id)

5.2.1.5 groupid_seq

(Physical Name: groupid_seq)

Logical Column Name	Physical Column Name	Туре	PK
Value	value	Integer	

5.2.1.6 media

(Physical Name: media)

Logical Column Name	Physical Column Name	Туре	PK
media_id (PK)	media_id	Integer	PK
feature_id (FK)	feature_id	Text	
Туре	type	Text	
Path	path	Text	
attrib_1	attrib_1	Text	
attrib_2	attrib_2	Text	
Synced	synced	Integer	

References

spatial_features through (feature_id)

5.2.1.7 options

(Physical Name: options)

Logical Column Name	Physical Column Name	Туре	PK
option_id	option_id	Text	
attrib_id (FK)	attrib_id	Integer	
option_name	option_name	Text	
option_name_other	option_name_other	Text	

attribute_master through (attrib_id)

5.2.1.8 person

(Physical Name: person)

Logical Column Name	Physical Column Name	Туре	PK
id (PK)	id	Integer	PK
attrib_1	attrib_1	Text	
attrib_2	attrib_2	Text	
feature_id	feature_id	Text	
server_pk	server_pk	Text	

Referenced By

person_media referencing (id)

social_tenure referencing (id)

5.2.1.9 person_media

(Physical Name: person_media)

Logical Column Name	Physical Column Name	Туре	PK
id (PK) (FK)	id	Integer	PK
person_id	person_id	Text	
Туре	type	Text	

Path	path	Text	
feature_id	feature_id	Text	
Synced	synced	Integer	

person through (id)

5.2.1.10 project_spatial_data

(Physical Name: project_spatial_data)

Logical Column Name	Physical Column Name	Туре	PK
server_pk	server_pk	Integer	
project_name	project_name	Text	
file_name	file_name	Text	
file_ext	file_ext	Text	
Alias	alias	Text	

5.2.1.11 social_tenure

(Physical Name: social_tenure)

Logical Column Name	Physical Column Name	Туре	PK
id (PK) (FK)	id	Integer	PK
attrib_1	attrib_1	Text	
attrib_2	attrib_2	Text	
person_id	person_id	Integer	
feature_id (FK)	feature_id	Text	
server_pk	server_pk	Text	

References

person through (id)

spatial_features through (feature_id)

5.2.1.12 spatial_features

(Physical Name: spatial_features)

Logical Column Name	Physical Column Name	Туре	PK
feature_id (PK)	feature_id	Integer	PK
server_feature_id	server_feature_id	Text	
Coordinates	coordinates	Text	
Geomtype	geomtype	Text	
Createdtime	createdtime	Text	
Status	status	Text	
Completedtime	completedtime	Text	
server_pk	server_pk	Text	
Imei	imei	Text	
person_type	person_type	Text	

Referenced By

social_tenure referencing (feature_id)

media referencing (feature_id)

form values referencing (feature_id)

5.2.1.13 user_

(Physical Name: user_)

Logical Column Name	Physical Column Name	Туре
user_id	user_id	Text
user_name	user_name	Text
Password	password	Text
role_id	role_id	Text
role_name	role_name	Text