## 实验十一 EDA应用——电压比较电路

#### 一、实验目的

- 1. 学习集成运算放大器用作比较器时的典型电路。
- 2. 掌握电压比较器的传输特性分析。

#### 二、实验原理

#### 三、实验内容

对图 11-3 进行仿真,观察滞回比较器的传输特性,并测量阈值电压及输出电压的幅值。





图 11-3 滞回比较器的仿真电路图

#### 仿真结果:



分析仿真结果可得:滞回比较器的传输特性为:滞回比较器具有滞回特性,虽然又两个阈值电压,但当输入电压单一方向变化时输出电压

#### 仅跃变一次。

| 阈值电压(V) | ±11.993V≈±12V                   |
|---------|---------------------------------|
| 幅值电压(V) | $\pm 2.014$ V $\approx \pm 2$ V |

# 实验十二、EDA应用——功率放大电路

## 一、实验目的

- 1.了解功率放大电路的组成及其放大特性。
- 2.研究功率放大电路交越失真及其产生的原因。

## 二、实验原理

| 输入信   | 直流电流   | 直流电流   | 电源消耗 | 瓦特表读   | OCL 电路输出信      |  |
|-------|--------|--------|------|--------|----------------|--|
| 号     | 表1读数   | 表 2 读数 | 的功率  | 数 Po/W | 号正、负向峰值        |  |
| V1 峰值 | lc1/mA | Ic2/mA | Pv/W |        | UomAx+, uomAx- |  |
| /V    |        |        |      |        | /V             |  |
| 0     | 0      | 0      | 0 0  |        | 0, 0           |  |
| 11    | 62.46  | 62.64  | 1.51 | 1.00   | +10.11,-10.19  |  |

| 输入  | +Vcc 功  | -Vcc    | 电源总功         | 输出功率 Pom/W     | 效率/%   |
|-----|---------|---------|--------------|----------------|--------|
| 电压  | 耗       | 功耗      | 耗 Pv/W       |                |        |
| 峰值  | Pv+/W   | Pv-/W   |              |                |        |
| 为   |         |         |              |                |        |
| 11V |         |         |              |                |        |
| 计算  | Ic1 Vcc | Ic2 Vcc | (Ic1+Ic2)Vcc | (Uomax+Uomax-) | Pom/Pv |
| 公式  |         |         |              |                |        |
| 结果  | 0.734   | 0.738   | 1.501        | 1.049          | 69.9%  |