NAME: SANDRA SUHITHA REG NO: 113323106087 NM ID: aut113323ecb40

DEPT: ECE

Phase 4: Performance Of the Project

Title: Healthcare Diagnostics and Treatment

Objective:

Improve diagnostic precision and treatment suggestions through AI model tuning. Optimize for increased user load and quicker chatbot response. Tighten integration with IoT medical devices for real-time data-driven healthcare. Secure sensitive health data handling and prepare for multilingual interaction.

1. Al Model Performance Enhancement

Overview:

Improve the AI model to increase diagnostic accuracy and manage intricate health conditions better.

Performance Improvements:

Accuracy Testing: Recompile model with larger datasets to identify intricate symptom patterns.

Model Optimization: Implement hyperparameter tuning and pruning to improve speed and efficiency.

Outcome:

Increased diagnostic accuracy, reduced false results, and more trustworthy treatment recommendations.

2. Optimization of Chatbot Performance

Overview:

Enhance chatbot to be quicker, more natural in interaction with better comprehension of diverse English inputs.

Key Improvements:

Quicker Response: Design system for lower latency when subject to high user traffic.

Smarter NLP: Improve natural language understanding to support wide range of input styles and create foundation for multilingual capability.

Result:

Quicker, more natural chatbot with ability to support high volumes of queries with better user interaction quality.

3. IoT Integration Performance

Overview:

Improve real-time integration with wearable devices for effortless health data capture and analysis.

Key Improvements:

Real-Time Processing: Improve system to process live health data (e.g., heart rate, temperature, oxygen levels) with minimal latency.

Faster API Access: Enhance connectivity with Apple Health, Google Fit, and comparable platforms for seamless data sync.

Outcome:

Reliable real-time health monitoring and customized recommendations, enhancing user experience for wearable device users

4. Data Security and Privacy Performance

Overview:

Secure data protection for safe, scalable management of sensitive health data.

Key Improvements:

Stronger Encryption: Use more powerful encryption to protect data as user number grows.

Security Testing: Perform stress and penetration testing to test system strength under load.

Outcome:

Secure, scalable security infrastructure protecting user data and healthcare privacy requirements under high usage.

5. Performance Testing and Metrics Collection Overview:

Test system readiness for high user volume and complex queries through comprehensive performance evaluation.

Implementation:

Load Testing: Test high-traffic scenarios to determine scalability.

Metrics Collection: Track response time, throughput, and system stability.

User Feedback: Collect real-world feedback to refine usability and responsiveness.

Outcome:

A solid, scalable system ready for real-world deployment with optimized performance on all metrics.

Key Phase 4 Challenges

1. Scaling the System

Challenge: Handling large volumes of users and sophisticated health requests.

Solution: Optimize AI model and perform load testing to ensure speed and accuracy.

2. Security Under Load

Challenge: Protecting user data as usage increases.

Solution: Improve encryption and execute aggressive security testing.

3. IoT Device Compatibility

Challenge: Merging data from a wide variety of health-monitoring devices.

Solution: Fine-tune APIs and test on multiple devices for clean connectivity.

Phase 4 Outcomes – Health Care Diagnostics and Treatment

1. Enhanced AI Accuracy: Quicker, more accurate health suggestions, particularly for complicated cases.

- **2. Better Chatbot Performance:** Low-latency, smoother user interactions with sophisticated language comprehension.
- **3. Optimized IoT Data Collection:** Smooth real-time data integration from wearables for customized care.
- **4. Enhanced Data Security:** Strong encryption guarantees secure, privacy-compliant handling of data at scale.

Next Steps for Finalization

Overview:

Get ready for full system deployment and collect final user feedback.

Next Actions:

- Deploy the entire system for real-world use.
- Collect feedback to refine the AI model.
- ➤ Optimize user experience before the official launch.

Code progress:

```
2
3 # Sample symptom-disease-treatment mapping
4 health db = {
        "fever": {
5 -
6
            "diagnosis": "Viral Infection",
7
            "treatment": "Take paracetamol and rest. Stay hydrated."
8
        },
        "cough": {
9 -
            "diagnosis": "Common Cold or Bronchitis",
10
11
            "treatment": "Use cough syrup and stay warm."
12
        },
13 -
        "headache": {
14
            "diagnosis": "Migraine or Tension Headache",
15
            "treatment": "Take pain relievers and avoid screen time."
16
        },
        "stomach pain": {
17 -
            "diagnosis": "Indigestion or Gastritis",
18
19
            "treatment": "Eat light food. Use antacids if needed."
20
        },
21 -
        "sore throat": {
            "diagnosis": "Throat Infection",
22
            "treatment": "Gargle with warm salt water. Use lozenges."
23
24
        }
25 }
26
```

```
get_diagnosis(symptoms):
main.py
        diagnosis report = []
29 -
        for symptom in symptoms:
30 -
            if symptom in health_db:
31
                entry = health_db[symptom]
32
                diagnosis report.append({
33
                    "symptom": symptom,
                    "diagnosis": entry["diagnosis"],
34
35
                    "treatment": entry["treatment"]
36
                })
37 -
            else:
38
                diagnosis_report.append({
39
                     "symptom": symptom,
                    "diagnosis": "Unknown",
40
                    "treatment": "Consult a doctor for further
41
                         evaluation."
42
                })
43
        return diagnosis_report
44
45 def main():
46
        print("Healthcare Diagnostics System\n")
47
        user_input = input("Enter symptoms separated by commas (e.g.
            fever, cough): ").lower()
48
        symptoms = [s.strip() for s in user_input.split(",")]
49
        print("\nDiagnosis Report:")
50
```

```
report = get_diagnosis(symptoms)

for item in report:

print(f"\nSymptom: {item['symptom']}")

print(f"Diagnosis: {item['diagnosis']}")

print(f"Treatment: {item['treatment']}")

for item in report:

print(f"\nSymptom: {item['diagnosis']}")

print(f"Treatment: {item['treatment']}")

main()
```

OUTPUT:

Healthcare Diagnostics System

Enter symptoms separated by commas (e.g. fever, cough): fever

Diagnosis Report:

Symptom: fever

Diagnosis: Viral Infection

Treatment: Take paracetamol and rest.

Stay hydrated.