Supplements for "Multi-way block localization via sparse tensor clustering"

Yuchen Zeng

University of Wisconsin – Madison yzeng58@wisc.edu

Miaoyan Wang

University of Wisconsin – Madison miaoyan.wang@wisc.edu

A Proofs

A.1 Proof of Proposition 1

Let $\mathcal{S} = \{\mathbb{P}_{\Theta} \colon \Theta \in \mathcal{P}\}$ be the family of (either Gaussian or Bernoulli) tensor block models (2), where $\Theta = \mathcal{C} \times_1 M_1 \times_2 \cdots \times_K M_K$ parameterizes the mean block tensor. Since the mapping $\Theta \mapsto \mathbb{P}_{\Theta}$ is one-to-one, Θ is identifiable. Now suppose there are two decompositions of $\Theta = \Theta(\{M_k\}, \mathcal{C}) = \Theta(\{\tilde{M}_k\}, \tilde{\mathcal{C}})$. Based on the Assumption 1, we have

$$\Theta = \mathcal{C} \times_1 M_1 \times_2 \cdots \times_K M_K = \tilde{\mathcal{C}} \times_1 \tilde{M}_1 \times_2 \cdots \times_K \tilde{M}_K, \tag{1}$$

where $C, \tilde{C} \in \mathbb{R}^{R_1 \times \cdots \times R_K}$ are two irreducible cores, and $M_k, \tilde{M}_k \in \{0, 1\}^{R_k \times d_k}$ are membership matrices for all $k \in [K]$. We will prove by contradiction that M_k and \tilde{M}_k induce the same partition of $[d_k]$, for all $k \in [K]$.

Suppose the above claim does not hold. Then there exists a mode $k \in [K]$ such that the M_k, \tilde{M}_k induce two different partitions of $[d_k]$. Without loss of generality, we assume k=1. The definition of partition implies that there exists a pair of indices $i \neq j, i, j \in [d_1]$, such that, i, j belong to the same cluster based on M_k , but they belong to different clusters based on \tilde{M}_k . Let $\mathcal{C} \subset [d_1]$ denote the cluster that i (or j) belong to based on M_k , and $\mathcal{A}, \mathcal{B} \subset [d_1]$ denote the two different clusters that i, j belongs to based on \tilde{M}_k . Based on the left-hand side of (1)

$$\Theta_{i,i_2,\dots,i_K} = \Theta_{j,i_2,\dots,i_K}, \quad \text{for all } (i_2,\dots,i_K) \in [d_2] \times \dots \times [d_K]. \tag{2}$$

On the other hand, (1) implies

$$\Theta_{i,i_2,\dots,i_K} = \Theta_{k,i_2,\dots,i_K}, \quad \text{for all } k \in \mathcal{A} \text{ and } (i_2,\dots,i_K) \in [d_2] \times \dots \times [d_K], \tag{3}$$

and

$$\Theta_{j,i_2,\dots,i_K} = \Theta_{k,i_2,\dots,i_K}, \quad \text{for all } k \in \mathcal{B} \text{ and } (i_2,\dots,i_K) \in [d_2] \times \dots \times [d_K]. \tag{4}$$

Combining (2), (3) and (4), we have

$$\Theta_i, i_2, \dots, i_K = \Theta_{k, i_2, \dots, i_K}, \quad \text{for all } k \in \mathcal{A} \cup \mathcal{B} \text{ and } (i_2, \dots, i_K) \in [d_2] \times \dots \times [d_K].$$

Therefore, one can merge \mathcal{A}, \mathcal{B} into one cluster along the mode 1. This contradicts the irreducibility of the core tensor $\tilde{\mathcal{C}}$. Therefore, M_1 and \tilde{M}_1 induce a same partition of $[d_1]$, and thus they are equal up to permutations. The proof is now complete.

A.2 Proof of Theorem 1

To study the performance of the least-square estimator $\hat{\Theta}$, we need to introduce some additional notations. We view the membership matrix M_k as a onto function $M_k \colon [d_k] \mapsto [R_k]$, and with a little abuse of notation, we still use M_k to denote the mapping function. Correspondingly, we use

 $M_k(i) \in [R_k]$ to denote the cluster label for the element $i \in [d_k]$. The parameter space \mathcal{P} can be equivalently written as

$$\mathcal{P} = \left\{\Theta \in \mathbb{R}^{d_1 \times \dots \times d_K} : \Theta_{i_1,\dots,i_K} = \mathcal{C}_{r_1,\dots,r_K} \text{ for } (i_1,\dots,i_K) \in \boldsymbol{M}_1^{-1}(r_1) \times \dots \times \boldsymbol{M}_K^{-1}(r_K) \right.$$
 with some membership matrices \boldsymbol{M}_k 's and a core tensor $\mathcal{C} \in \mathbb{R}^{R_1 \times \dots \times R_K} \right\}$.

In other words, the mean signal tensor Θ is a piecewise constant with respect to the blocks in the Cartesian product of the mode-k clusters, $M_1^{-1}(r_1) \times \cdots \times M_K^{-1}(r_K)$, for all $(r_1, \ldots, r_K) \in [R_1] \times \cdots \times [R_K]$.

Let $d = \prod_k d_k$ and $R = \prod_k R_k$. We define $\mathcal{D}(s)$ to be the set of d-dimensional vectors with at most s distinct entry values. By identifying the tensors in \mathcal{P} as d-dimensional vectors, we have $\mathcal{P} \subset \mathcal{D}^d(R)$.

Now consider the least-estimate estimator

$$\hat{\Theta} = \operatorname*{arg\,min}_{\Theta \in \mathcal{P}} \{-2\langle \mathcal{Y}, \Theta \rangle + \|\Theta\|_F^2\} = \operatorname*{arg\,min}_{\Theta \in \mathcal{P}} \{\|\mathcal{Y} - \Theta\|_F^2\}.$$

Based on Proposition ??, we have

$$\|\hat{\Theta} - \Theta_{\mathrm{true}}\|_F \leq 2 \sup_{\mu \in (\mathcal{P} - \mathcal{P}') \cap B_2^d} \langle \mu, \mathcal{E} \rangle,$$

where $(\mathcal{P} - \mathcal{P}') = \{\mu - \mu' : \mu, \mu' \in \mathcal{P}\}$ and \mathbf{B}_2^d denotes the Euclidean unit ball in dimension d. Based on the definition we have

$$(\mathcal{P} - \mathcal{P}') \subset \mathcal{D}^d(\mathbb{R}^2).$$

(to be finished...)

$$\sup_{\mu \in (\mathcal{P} - \mathcal{P}') \cap \mathbf{B}_2^d} \langle \mu, \mathcal{E} \rangle \le \sup_{\mu \in \mathcal{D}(R^2) \cap \mathbf{B}_2^d} \langle \mu, \mathcal{E} \rangle \tag{5}$$

$$\leq \sup_{|\mathbf{s}|=R^2} \sup_{\mu \in \mathbf{B}_s^s} \langle \mu, \mathcal{E} \rangle \tag{6}$$

$$\leq 2\sigma \log \left(6^{R^2} \binom{d}{R^2} \right) \tag{7}$$

$$\leq 2\sigma R^2 + \dots \tag{8}$$

with probability at least $1 - \exp(R^2)$

For fixed M_k 's, C is a linear space of dimension no greater than R^2 .

A.3 Proof of

A.4 Sparse clustering

Lemma 1

Let $\mathbf{Y} \in \mathbb{R}^n$ be a response vector and $\mathbf{X} \in \mathbb{R}^{n \times p}$ the design matrix. Assume the response vector \mathbf{Y} is mean-centered, i.e., $\sum_i Y_i = 0$. Suppose that \mathbf{X} is an orthogonal design matrix with $X^TX = diag(n_1,...,n_p)$. Define the ordinary least-square estimate $\hat{\boldsymbol{\beta}}_{ols} = (\hat{\beta}_{ols,1},...,\hat{\beta}_{ols,p}^T)^T$. Consider the following constrained optimization:

$$\hat{\boldsymbol{\beta}} = \arg\min\{\frac{1}{2}||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||_2^2 + \lambda pen(\boldsymbol{\beta})\}$$

1. Case 1: L-0 penalization. $pen(\beta) = ||\beta||_0$:

Under the change of tuning parameter $\lambda':=f(\lambda)=\sqrt{2\lambda}$ such that $\hat{\beta}=(\hat{\beta}_1,...,\hat{\beta}_p)^T$ has a closed-form solution:

$$\hat{\beta}_i = \hat{\beta}_{ols,i} \mathbb{I}_{|\hat{\beta}_{ols,i}| > \frac{\lambda'}{\sqrt{n_i}}}$$
 for all $i = 1, ..., p$

2. Case 2: L-1 penalization. $pen(\beta) = ||\beta||_1$:

 $\hat{\boldsymbol{\beta}} = (\hat{\beta}_1, ..., \hat{\beta}_p)^T$ has a closed-form solution:

$$\hat{\beta}_i = sign(\hat{\beta_{ols,i}})(|\hat{\beta_{ols,i}}| - \frac{\lambda}{n_i})_+ \text{ for all } i = 1, 2, ..., p$$

We want to minimize

$$L = \frac{1}{2}||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||_2^2 + \lambda||\boldsymbol{\beta}_0|| = \frac{1}{2}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) + \lambda||\boldsymbol{\beta}||_0 = L_1 + L_2$$

where $L_1 = \frac{1}{2} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}), L_2 = \lambda ||\boldsymbol{\beta}||_0.$

Case 1:

Here we view the optimization problem as a case in linear regression. The L_1 is exactly the RSS/2 in this case. So we compare the increment of L_1 when L_2 takes different values. We denote z as the number of non-zero elements in β .

- (1) Consider the case we have no constraint on z. Thus we only have to minimize L_1 . By the knowledge of linear regression, we know the unique minimizer is $\hat{\beta}_{ols} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}\mathbf{Y}$. Assume there are m zero elements in $\hat{\beta}_{ols}$ where $0 \le m \le p$
- (2) Consider the case we have constraint on z: z=i, where i=0,1,2,...,m. Obviously, among these cases the L can be minimized if and only if i=m. So, z=m and $\hat{\boldsymbol{\beta}}=\hat{\boldsymbol{\beta}}_{ols}$ is the minimizer of L when $0 \le z \le m$. (3) Consider the case that we have constraint on x: z=m+1. Then we have to take one more non-zero element in $\boldsymbol{\beta}$ to be zero. Suppose we take $\hat{\beta}_l \ne 0$ to be 0. Then we obtain

$$2L_1 - SSE(\beta_1, ..., \beta_{l-1}, \beta_{l+1}, ..., \beta_p) = SSR(\beta_l)$$

by the columns in X are orthogonal to each other. Additionally,

$$SSR(\beta_l) = \mathbf{Y}^T (\mathbf{H} - \mathbf{H_l}) \mathbf{Y}$$

where $\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X} = \sum_{i=1}^p \frac{1}{n_i}\mathbf{x_{(i)}}\mathbf{x_{(i)}^T}$, $\mathbf{H_l} = \sum_{i \neq j} \mathbf{x_{(i)}}\mathbf{x_{(i)}^T}$, $\hat{\beta}_l = \frac{1}{n_l}\mathbf{x_l}\mathbf{Y}$. Thus, we can simplify the second equation as:

$$SSR(\beta_l) = n_l \hat{\beta}_l^2$$

Thus, by taking $\hat{\beta}_l$ as 0, there is $\frac{n_l\hat{\beta}_l^2}{2}$ increment on L_1 , λ decrement on L_2 . Obviously, if the increment of L_1 is larger than the decrement L_2 , we should not take $\hat{\beta}_l$ as 0; conversely, if the increment of L_1 is less than the decrement of L_2 , taking $\hat{\beta}_l$ as 0 can lessen the L.

(4) As we discussed, if there is still at least one element in β_k that satisfies that $\frac{n_k \hat{\beta}_k^2}{2} \leq \lambda$, we can keep reducing L by taking β_k as 0 until all remain non-zero elements in $\hat{\beta}$ do not satisfy $\frac{n_k \hat{\beta}_k^2}{2} \leq \lambda$. Then we can minimize L.

Over all, the β that minimized L is:

$$\hat{\beta}_i = \hat{\beta}_{ols,i} \mathbb{I}_{|\hat{\beta}_{ols,i}| > \frac{\lambda'}{\sqrt{n_i}}} \text{ for all } i = 1,...,p$$

Case 2:

Here we use the properties of subderivative. Taking subderivative of L, we obtain

$$\frac{\partial L}{\partial \beta_j} = \begin{cases} \{n_j \beta_j - \mathbf{x}_{(j)}^{\mathbf{T}} \mathbf{Y} + \lambda\} & \text{if } \beta_j > 0 \\ [n_j \beta_j - \mathbf{x}_{(j)}^{\mathbf{T}} \mathbf{Y} - \lambda, n_j \beta_j - \mathbf{x}_{(j)}^{\mathbf{T}} \mathbf{Y} + \lambda] & \text{if } \beta_j = 0 \\ \{n_j \beta_j - \mathbf{x}_{(j)}^{\mathbf{T}} \mathbf{Y} - \lambda\} & \text{if } \beta_j < 0 \end{cases}$$

Because β_j minimize L if and only if $0 \in \frac{\partial L}{\partial \beta_j}$ and $\mathbf X$ is orthogonal, we get:

$$\hat{\beta}_{j} = \begin{cases} \frac{\mathbf{x}_{(j)}^{\mathbf{T}} \mathbf{Y} + \lambda}{n_{j}} & \text{if } \hat{\beta}_{j} < 0\\ 0 & \text{if } \hat{\beta}_{j} = 0\\ \frac{\mathbf{x}_{(j)}^{\mathbf{T}} \mathbf{Y} - \lambda}{n_{j}} & \text{if } \hat{\beta}_{j} > 0 \end{cases}$$

Here, $\hat{\boldsymbol{\beta}}_{ols} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y} = diag(1/n_1,...,1/n_p)X^TY$, so $\hat{\beta}_{ols,j} = \frac{\mathbf{x}_{(j)}^T\mathbf{Y}}{n_j}$. Then the solution of $\hat{\beta}_j$ can be simplified as:

$$\hat{\beta}_i = sign(\hat{\beta_{ols,i}})(|\hat{\beta_{ols,i}}| - \frac{\lambda}{n_i})_+ \text{ for all } i = 1, 2, ..., p$$

n_1	n_2	n_3	d_1	d_2	d_3	noise	CER (mode 1)	CER (mode 2)	CER (mode 3)
40	40	40	3	5	4	4	0 (0)	0(0)	0(0)
40	40	40	3	5	4	8	$\mathbf{O}(\mathbf{O})$	0.0095(0.0247)	0.0021(0.0145)
40	40	40	3	5	4	12	0.0038(0.0138)	0.0331(0.0453)	0.0222(0.0520)
40	40	80	3	5	4	4	0 (0)	0.0017(0.0121)	0 (0)
40	40	80	3	5	4	8	$\mathbf{O}(\mathbf{O})$	0 (0)	0 (0)
40	40	80	3	5	4	12	$\mathbf{O}(\mathbf{O})$	0.0257(0.0380)	0.0026(0.0064)
40	40	40	4	4	4	4	$\mathbf{O}(\mathbf{O})$	0 (0)	0 (0)
40	40	40	4	4	4	8	0.0023(0.0165)	0.0034(0.0239)	0 (0)
40	40	40	4	4	4	12	0.0519(0.0744)	0.0414(0.0697)	0.0297(0.0644)
40	40	80	4	4	4	4	0 (0)	0 (0)	0(0)
40	40	80	4	4	4	8	$\mathbf{O}(\mathbf{O})$	$\mathbf{O}(\mathbf{O})$	0 (0)
40	40	80	4	4	4	12	0.0132(0.0405)	0.0106(0.0366)	0.0043(0.0168)

Table 1: Given the true d_1, d_2, d_3 , the simulation results is calculated across 50 tensors each time.

n_1	n_2	n_3	d_1	d_2	d_3	noise	overall accuracy	estimated d_1	estimated d_2	estimated d_3
40	40	40	3	5	4	4	1	3(0)	5(0)	4(0)
40	40	40	3	5	4	8	0.74	3(0)	4.76(0.0610)	3.98(0.02)
40	40	40	3	5	4	12	0.02	2.8(0.0571)	3.58(0.1072)	3.3(0.0915)
40	40	40	4	4	4	4	1	4(0)	4(0)	4(0)
40	40	40	4	4	4	8	0.88	3.94(0.0339)	3.96(0.0280)	3.96(0.0280)
40	40	40	4	4	4	12	0.04	3.08(0.0983)	3.12(0.1016)	3.12(0.0975)
40	40	80	4	4	4	4	1	4(0)	4(0)	4(0)
40	40	80	4	4	4	8	1	4(0)	4(0)	4(0)
40	40	80	4	4	4	12	0.78	3.9(0.0429)	3.92(0.0388)	3.96(0.04)

Table 2: The simulation results across 50 tensors each time from estimating the d_1, d_2, d_3 .

sparsity rate	noise	method	estimated sparsity Rate	Correct Zero Rate	Correct One Rate	Total Correct Rate
0.5	4	$\lambda = 0$	0(0)	0(0)	1(0)	0.5075(0.0676)
0.5	4	$\lambda = 100$	0.5677(0.0667)	1(0)	0.8519(0.0678)	0.9248(0.0377)
0.5	4	$\lambda = 200$	0.5952(0.0688)	1(0)	0.7975(0.0787)	0.8973(0.0433)
0.5	4	$\bar{\lambda} = 86.61396$	0.5606(0.0668)	0.9993(0.0035)	0.8655(0.0685)	0.9312(0.0377)
0.5	8	$\lambda = 0$	0(0)	0(0)	1(0)	0.5075(0.0676)
0.5	8	$\lambda = 100$	0.5072(0.068)	0.879(0.0898)	0.8554(0.0634)	0.8665(0.0559)
0.5	8	$\lambda = 200$	0.5884(0.0618)	0.9753(0.034)	0.7877(0.0776)	0.8794(0.0492)
0.5	8	$\bar{\lambda} = 344.3656$	0.6298(0.0652)	0.9956(0.0128)	0.7259(0.0873)	0.8586(0.0518)
0.8	8	$\lambda = 0$	0(0)	0(0)	1(0)	0.2029(0.0541)
0.8	8	$\lambda = 100$	0.6458(0.0646)	0.7453(0.0616)	0.7136(0.2017)	0.7435(0.0668)
0.8	8	$\lambda = 200$	0.7947(0.0627)	0.9119(0.0601)	0.6259(0.2376)	0.8589(0.0698)
0.8	8	$\bar{\lambda} = 246.9212$	0.826(0.0622)	0.9462(0.0412)	0.6077(0.2495)	0.8841(0.0602)

Table 3: Results for Simulation 6 over 50 simulated data sets $(n_1=40,n_2=40,n_3=40,d_1=3,d_2=5,d_3=4.$