Module LU2IN003 Graphes orientés 9

Exercice 1 – Terminologie de base

Dans cet exercice, on considère le graphe orienté $G_0 = (V_0, A_0)$, avec $V_0 = \{1, 2, 3, 4, 5, 6, 7\}$ et $A_0 = \{(1, 2), (2, 3), (3, 1), (2, 4), (3, 4), (2, 5), (3, 5), (4, 5), (5, 4), (6, 7)\}$. On pose $n_0 = |V_0|$ et $m_0 = |A_0|$.

Question 1

Dessiner le graphe G_0 . Que valent n_0 et m_0 ?

Ouestion 2

Pour chaque sommet x de G_0 , donner l'ensemble des successeurs de x, l'ensemble de ses prédecesseurs, son demidegré sortant et son demi-degré entrant. Que vaut la somme des demi-degrés sortants ? des demi-degrés entrants ?

Question 3

Donner un chemin élémentaire de G_0 et un circuit élémentaire de G_0 , ainsi que leurs longueurs (en nombre d'arcs) respectives.

Question 4

Représenter le graphe non orienté G'_0 associé à G_0 en enlevant l'orientation des arcs. Le graphe G_0 est-il connexe? Justifier la réponse.

Ouestion 5

Le graphe G_0 est-il fortement connexe? Donner ses composantes fortement connexes.

Exercice 2 - Propriétés autour des degrés pour un graphe orienté

Soit G = (V, A) un graphe orienté. On pose n = |V| et m = |A|.

Question 1

Montrer que
$$\sum_{v \in V} d^+(v) = \sum_{v \in V} d^-(v) = m.$$

Question 2

Exprimer le nombre maximum d'arcs de G en fonction de n:

- si G est sans boucle
- si G est avec boucles.

Ouestion 3

- 1. On suppose n > 2 et on pose $V = \{v_1, v_2, \dots, v_n\}$.
 - Calculer $d^+(x)$ et $d^-(x)$ pour tout $x \in V$ dans chacun des cas suivants :
 - (a) G est composé uniquement d'un chemin élémentaire (v_1, v_2, \dots, v_n) passant par tous les sommets
 - (b) G est composé uniquement d'un circuit élémentaire $(v_1, v_2, \dots, v_n, v_1)$ passant par tous les sommets
 - (c) G est composé uniquement d'un chemin $(v_1, v_2, \dots, v_n, v_j)$, avec $2 \le j < n$ passant par tous les sommets.

2. Caractériser, sans preuve, les graphes orientés G=(V,A) tels que $d^+(x)=d^-(x)=1$ pour tout $x\in V$. Facultatif: prouver le résultat trouvé.

Exercice 3 – Représentation d'un graphe orienté

Question 1

Complétez le tableau suivant. Les graphes considérés sont des graphes orientés sans arc double ni boucle.

Définition ensembliste	Matrice sommet-sommet	Matrice sommet-arc	Liste d'adjacence
$V = \{1, 2, 3, 4\}$ $E = \{(1, 2), (2, 3),$ $(3, 1), (2, 4), (3, 4)\}$			J
	$\left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right)$		
		$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	
			$ \begin{array}{ccc} -1 \to & [4, 5] \\ -2 \to & [3] \\ -3 \to & [2] \\ -4 \to & [] \\ -5 \to & [] \end{array} $

Question 2

Que doit vérifier une matrice carrée M pour être la matrice sommet-sommet d'un graphe orienté? Même question pour une matrice R sommet-arc ou une liste d'adjacence L.

Exercice 4 – Forte connexité, relation d'équivalence et graphe réduit

Soit G = (V, A) un graphe orienté. On définit la relation \mathcal{R}_{FC} sur V par : pour tout couple de sommets $(u, v) \in V^2$, $u\mathcal{R}_C v$ si il existe un chemin dans G entre u et v et un chemin de v à u.

Question 1

On considère dans cette question le graphe orienté G = (V, A) représenté par la figure suivante :

1. Donnez les composantes fortement connexes de G.

© 30 mars 2020

- 2. Que vaut \mathcal{R}_{FC} pour cet exemple. \mathcal{R}_{FC} peut être représentée par la matrice carrée R_{FC} tel que $R_{FC}[u,v]=1$ si $u\mathcal{R}_{FC}v$, 0 sinon.
- 3. Vérifiez sur la matrice R_{FC} que \mathcal{R}_{FC} est une relation d'équivalence
- 4. Représentez \mathcal{R}_{FC} par un graphe non orienté G_R ? A quoi correspondent les composantes connexes de G_R ?

Question 2

On souhaite démontrer que les composantes fortement connexes de G coincident avec les composantes connexes de G_R . On rappelle que les composantes fortement connexes de G_R correspondent aux classes d'équivalence de la relation R_{FC} .

- 1. Démontrez que si x et y sont dans une même composante fortement connexe de G, alors ils sont dans une même composante connexe de G_R .
- 2. Démontrez ensuite la réciproque.

Question 3

A tout graphe orienté G=(V,A), on peut associer un graphe réduit $H_R=(V_H,A_H)$ qui est un graphe orienté défini de la manière suivante :

- Les sommets V_H sont les composantes fortement connexes de G;
- A tout arc $(x,y) \in A$ avec x et y dans des composantes fortement connexes C(x) et C(y) différentes, on associe un arc (C(x), C(y)) dans A_H .
- 1. Construire le graphe réduit associé au graphe de la question 1.
- 2. Démontrez par l'absurde que, dans le cas général, H_R est un graphe sans circuit.

© 30 mars 2020

Exercice 5 – Tri topologique

Dans cet exercice, on considère le graphe orienté $G_5=(V_5,A_5)$ suivant :

Question 1

Calculer (x) pour tout $x \in V_5$.

Question 2

En déduire un tri topologique de G_5 .

Ouestion 3

Un tri topologique est-il nécessairement rangé en ordre croissant des rangs?

On rappelle l'algorithme de calcul d'un tri topologique d'un graphe orienté sans circuit.

Algorithm 1 Calcul d'un tri topologique pour un graphe orienté sans circuit

Require: Un graphe orienté sans circuit G = (V, A)

Ensure: Un ordre topologique L

$$L := (), T := V, \Delta(u) := d^{-}(u), \forall u \in V$$

while $T \neq \emptyset$ do

Choisir un sommet $u \in T$ tel que $\Delta(u) = 0$

$$L := L + (u), T := T - \{u\}$$

$$\forall v \in \Gamma^+(u), \, \Delta(v) := \Delta(v) - 1$$

end while

Question 4

Appliquer cet algorithme au graphe G_5 . Pour cela, vous préciserez à la fin de chaque itération les valeurs de u, L, T et Δ . Quand plusieurs sommets sont possibles pour u, vous sélectionnerez le sommet de numéro minimal.

Question 5

En supposant que les listes sont représentées par des listes circulaires doublement chaînées, calculer la complexité de cet algorithme lorsque les graphes sont représentés par :

- (a) des matrices sommets-arcs
- (b) des matrices sommets-sommets
- (c) des listes de successeurs.

© 30 mars 2020