HOMEWORK 3 SA405, FALL 2018 INSTRUCTOR: FORAKER

1. 3.2

$\underline{\mathrm{Indices}}$

$m \in M$	machines, $M = \{1, 2, 3, 4, 5\}$
$j \in J$	jobs, $J = \{1, 2, 3, 4, 5\}$
$(m,j) \in P$	$P = \{(m, j) m \text{ can do job } j\}$

$\underline{\text{Data}}$

 $setup_m$ setup time (in minutes) if machine m is used $work_{m,j}$ time to complete job j on machine m (if applicable) additional extra 20 minutes needed if machines 1 and 2 are used

Binary Decision Variables

 USE_m 1 if machine m is used, 0 otherwise

 $OPERATE_{m,j}$ 1 if machine m is used to do job j, 0 otherwise BOTH 1 if both machines 1 and 2 are used, 0 otherwise

Formulation

$\min_{USE,OPERATE,BOTH}$	$\sum_{(m,j)\in P} work_{m,j}OPERATE_{m,j}$	$+\sum_{m\in M} setup_m USE_m$	+ additional BOTH
s.t.	$\sum OPERATE_{m,j} \ge 1$	$\forall j \in J$	(Job Completion)
	$\sum_{\{m (m,j)\in P\}} OPERATE_{m,j} \le 2$	$\forall m \in M$	(Machine Utilization)
	\sum_{i}	$\forall m \in M$	(Can't operate unless do setup)
	$ \begin{cases} j (m,j) \in P\} \\ BOTH \le USE_1 \\ BOTH \le USE_2 \end{cases} $		(Logical Constraints on $BOTH$ to ensure $BOTH = 1$ if use
	$BOTH \leq USE_2$ $BOTH + 1 \geq USE_1 + USE_2$ $BOTH, OPERATE_{m,j}, USE_m \in \{0,1\}$	$\forall m \in M, \forall j \in J$	machines 1 and 2)

2. 3.3

<u>Indices</u>

$p \in P$	products, $P = \{1, 2, 3\}$
$l \in L$	lines, $L = \{1, 2, 3\}$
\mathbb{N}	natural numbers (including zero)

$\underline{\text{Data}}$

 $setup_cost_l$ setup cost if line l used in given week

 $worker_cost_l$ pay per worker on line l

 $production_{p,l}$ production per worker for product p on line l $max_workers$ maximum number of workers, 20 in this instance $demand_p$ number of product p that must be produced

Integer Decision Variables

 $WORKERS_{p,l}$ number of workers assigned to product p on line l

Binary Decision Variables

 $OPEN_l$ 1 if line l is open, 0 otherwise

$\underline{Formulation}$

min WORKERS,OPEN	$\sum_{l \in L, p \in P} worker_cost_l WORKERS_{p,l}$	$+ \sum_{l \in L} setup_cost_l OPEN_l$	
s.t.	$\sum WORKERS_{p,l} \leq max_workersOPEN_l$	$\forall l \in L$	(No workers unless line open)
	$\sum_{l \in L}^{p \in P} production_{p,l} WORKERS_{p,l} \ge demand_p$	$\forall p \in P$	(Demand constraint)
	$\sum WORKERS_{p,l} \leq max_workers$		(Total workers constraint)
		$\forall p \in P, l \in L \\ \forall l \in L$	(integer constraint) (binary constraint)

Not to be handed in.

1. 3.5:

<u>Indices</u>

$$i \in I$$
 cities (alias j), $I = \{AT, BO, CH, DA, LA, NY, OC, PI, RI, SL, SF, SE\}$

 $\underline{\text{Data}}$

$$served_{i,j}$$
 1 if city i is within 1200 miles of city j, 0 otherwise

Binary Decision Variables

$$HUB_i$$
 1 if hub is to be located in city i , 0 otherwise

$\underline{Formulation}$

$$\begin{array}{ll} \underset{HUB}{\min} & \sum_{i \in I} HUB_i \\ \text{s.t.} & \sum_{i \in I} served_{i,j} HUB_i \geq 1 \quad \forall j \in I \quad \text{(Must service all locations)} \\ & HUB_i \in \{0,1\} \qquad \qquad \forall i \in I \quad \text{(binary constraint)} \end{array}$$

2. 3.8 The formulation below assumes a maximum of 1 TV per location b and s.

Indices

$b \in B$	locations for 100 inch TV's, $B = \{A, B, C, D, E, F\}$
$s \in S$	locations for 32 inch TV's, $S = \{1, 2,, 22\}$
$z \in Z$	zones, $Z = \{1, 2,, 12\}$
$(b,z) \in P$	$P = \{(b, z) \text{can see 100 inch TV at location } b \text{ in zone } z\}$
$(s,z) \in Q$	$Q = \{(s, z) \text{can see } 32 \text{ inch TV at location } s \text{ in zone } z\}$

Data

$cost_big$	cost of 100 inch TV's, \$5000 in this instance
$cost_small$	cost of 32 inch TV's, \$750 in this instance
min_big	minimum number of 100 inch TV's to buy, 2 in this instance
min_small	minimum number of 32 inch TV's to buy, 8 in this instance

Binary Decision Variables

TV_BIG_b	1 if 100 inch TV at location b , 0 otherwise
TV_SMALL_s	1 if 32 inch TV at location s , 0 otherwise
CAN_SEE_z	1 if can see 100 inch TV in zone z , 0 otherwise

Formulation

$$\begin{aligned} & \min & & \sum_{b \in B} cost_bigTV_BIG_b + \sum_{s \in S} cost_smallTV_SMALL_s \\ & \text{s.t.} & & \sum_{\{b \mid (b,z) \in P\}} TV_BIG_b + \sum_{\{s \mid (s,z) \in Q\}} TV_SMALL_s \geq 2CAN_SEE_z + 3\left(1 - CAN_SEE_z\right) & \forall z \in Z \\ & & & CAN_SEE_z \leq \sum_{\{b \mid (b,z) \in P\}} TV_BIG_b & \forall z \in Z \\ & & & CAN_SEE_z \geq TV_BIG_b & \forall z \in Z, \forall b \mid (b,z) \in P \\ & & \sum_{s \in S} TV_SMALL_s \geq min_small \\ & & \sum_{b \in B} TV_BIG_b \geq min_big \\ & & & TV_BIG_b, TV_SMALL_s, CAN_SEE_z \in \{0,1\} & \forall b \in B, \forall s \in S, \forall z \in Z \end{aligned}$$

The first constraint ensures that at least 2 TV's can be seen or at least 3 TV's can be seen if the 100 inch TV is not visible. The second and third constraints are logical constraints to ensure that CAN_SEE takes on a value of 1 only when appropriate. The fourth constraint ensures that at least 8 of the 32 inch TV's are purchased. The fifth constraint ensures that at least 2 of the 100 inch TV's are purchased.

3. 3.8 The formulation below assumes a maximum of 1 TV per location b and s. This is an alternate, but equivalent, form of the formulation provided above.

Indices

$b \in B$	locations for 100 inch TV's, $B = \{A, B, C, D, E, F\}$
$s \in S$	locations for 32 inch TV's, $S = \{1, 2,, 22\}$
$z \in Z$	zones, $Z = \{1, 2,, 12\}$

Data

 $view_big_{b,z}$ 1 if can see 100 inch TV at location b in zone z, 0 otherwise $view_small_{s,z}$ 1 if can see 32 inch TV at location s in zone z, 0 otherwise $cost_big$ cost of 100 inch TV's, \$5000 in this instance $cost_small$ cost of 32 inch TV's, \$750 in this instance min_big minimum number of 100 inch TV's to buy, 2 in this instance min_small minimum number of 32 inch TV's to buy, 8 in this instance

Binary Decision Variables

 TV_BIG_b 1 if 100 inch TV at location b, 0 otherwise TV_SMALL_s 1 if 32 inch TV at location s, 0 otherwise CAN_SEE_z 1 if can see 100 inch TV in zone z, 0 otherwise

Formulation

$$\begin{array}{ll} \min & \sum_{b \in B} cost_bigTV_BIG_b + \sum_{s \in S} cost_smallTV_SMALL_s \\ \text{s.t.} & \sum_{b \in B} view_big_{b,z}TV_BIG_b + \sum_{s \in S} view_small_{s,z}TV_SMALL_s \geq 2CAN_SEE_z + 3\left(1 - CAN_SEE_z\right) & \forall z \in Z \\ & CAN_SEE_z \leq \sum_{b \in B} view_big_{b,z}TV_BIG_b & \forall z \in Z \\ & CAN_SEE_z \geq view_big_{b,z}TV_BIG_b & \forall z \in Z, \forall b \in B \\ & \sum_{s \in S} TV_SMALL_s \geq min_small & \\ & \sum_{b \in B} TV_BIG_b \geq min_big \\ & TV_BIG_b, TV_SMALL_s, CAN_SEE_z \in \{0,1\} & \forall b \in B, \forall s \in S, \forall s \in S,$$

The first constraint ensures that at least 2 TV's can be seen or at least 3 TV's can be seen if the 100 inch TV is not visible. The second and third constraints are logical constraints to ensure that CAN_SEE takes on a value of 1 only when appropriate. The fourth constraint ensures that at least 8 of the 32 inch TV's are purchased. The fifth constraint ensures that at least 2 of the 100 inch TV's are purchased.