

Departamento de Engenharia Informática e de Sistemas

Investigação Operacional 2020/2021

Atividade 1

Identificação do aluno:			
Nome:	Rúben Mendes Santos		
		Nº:	2019116244
		'	

Considere o problema apresentado em seguida:

"A empresa Felizardo&Filhos, Lda, líder nacional na área de fabrico de plásticos, possui três fábricas, que atualmente se debatem com um problema de excesso de capacidade de produção.

Por essa razão, a empresa pretende produzir um novo produto: contentores de lixo. Este novo produto pode ser fabricado em três tamanhos diferentes - grande (G), médio (M) e pequeno (P) — originando um lucro unitário de 25€, 15€ e 10€, respetivamente.

As fábricas 1, 2 e 3 têm capacidade para produzir diariamente 800, 1000 e 500 contentores, respetivamente, dependendo do tamanho, ou da combinação de tamanhos em causa.

A disponibilidade de espaço de armazenamento impõe uma limitação nas taxas de produção do novo produto. Com efeito, as fábricas 1, 2 e 3 dispõem de 1250, 1000 e 600 metros quadrados, respetivamente, para armazenamento da produção diária. Por outro lado, cada contentor dos tamanhos G, M e P ocupa 0.9, 0.6 e 0.4 metros quadrados, respetivamente.

As previsões de vendas indicam que a procura diária dos tamanhos G, M e P, é de 1000, 1250 e 900 unidades, respetivamente.

Como resultado, a gestão pretende saber quantos contentores de cada um dos tamanhos G, M e P deve cada fábrica produzir, de forma a maximizar o lucro da empresa."

Formule o problema anterior em termos de um modelo de programação linear.

• Variáveis de decisão:

 $x1 - n^{\circ}$ de peças de tamanho grande produzidas diariamente

 x^2 – n^0 de peças de tamanho médio produzidas diariamente

x3 – n^{o} de peças de tamanho pequeno produzidas diariamente

• **Função objetivo** (indique significado e expressão matemática):

Maximizar o lucro da empresa.

 $M \pm x$. z = 25.x1 + 15.x2 + 10.x3

• Restrições:

$$x1 + x2 + x3 \le 800$$
 Limite de peças diárias na fábrica 1
 $x1 + x2 + x3 \le 1000$ Limite de peças diárias na fábrica 2
 $x1 + x2 + x3 \le 500$ Limite de peças diárias na fábrica 3

$$0.9x1 + 0.6x2 + 0.4x3 \le 1250$$
 Capacidade de peças na fábrica 1
 $0.9x1 + 0.6x2 + 0.4x3 \le 1000$ Capacidade de peças na fábrica 2
 $0.9x1 + 0.6x2 + 0.4x3 \le 600$ Capacidade de peças na fábrica 3

$$x1 \ge 0$$
, $x2 \ge 0$, $x3 \ge 0$

Regulamento:

- A atividade é para ser realizada individualmente.
- É cotada para **1 valor** (na escala de 0 a 20).
- A resolução deve ser efetuada no próprio enunciado, nos espaços criados para o efeito. No final, este ficheiro PDF deve ser submetido no Moodle, até às 20:00, do dia 8 de novembro.
 Resoluções entregues fora deste prazo serão ignoradas.
- A designação do ficheiro a submeter deve obedecer ao seguinte formato:

Atividade1_Nome_aluno_Numero_aluno.pdf. Exemplo: Atividade1_Teresa_Rocha_123456789.pdf.