Recall

Linear 1st Order ODEs:
$$y' + p(t)y = h(t)$$

- h(t) is called the inhomogeneity
- h(t) = 0: Homogeneous ODE
- $h(t) \neq 0$: Inhomogeneous ODE

General Solution:

$$y_{\text{general}} = y_{\text{particular}} + y_{\text{homogeneous}}$$

 $y_g(t) = y_p(t) + Cy_h(t)$

- Particular part: depends on h(t) no arbitrary constants
 - $h(t) = 0 \Rightarrow y_p = 0$
- ullet Homogeneous part: independent of h(t) multiplicative arbitrary constant

Recall

Linear 1st Order Initial Value Problems (IVPs):

$$y' + p(t)y = h(t);$$
 $y(0) = y_0$

General Solution + Initial Condition:

$$y(0) = y_p(0) + Cy_h(0)$$

= y_0
$$C = \frac{y_0 - y_p(0)}{y_h(0)}$$

1 Integration Constant + 1 Initial condition = Unique Solution

Linear 2nd order ODEs

General:
$$y'' + p(t)y' + q(t)y = h(t)$$

ICs:
$$y(0) = y_0, y'(0) = v_0$$

For this week (and beyond):

1. Constant coefficient, homog.

$$ay'' + by' + cy = 0$$

2. Constant coefficient, inhomog.

$$ay'' + by' + cy = h(t)$$

Where do 2nd order linear ODEs come from?

Spring-dashpot system:

x(t) = displacement from rest positionf(t) = applied force

Newton's 2nd Law:

$$F = ma$$
$$-kx - \beta \frac{dx}{dt} + f(t) = m \frac{d^2x}{dt^2}$$

$$mx'' + \beta x' + kx = f(t)$$

Torsional motion of a weight on a twisted shaft:

$$I\frac{d^2\theta}{dt^2} + c\frac{d\theta}{dt} + k\theta = T(t)$$

L-R-C series circuits:

Q=charge on capacitor

 $\frac{dQ}{dt} = current in circuit$

E(t) = applied voltage

Kirchoff's Laws:

$$L\frac{\mathrm{d}^2 Q}{\mathrm{d}t^2} + R\frac{\mathrm{d}Q}{\mathrm{d}t} + \frac{1}{C}Q = E(t)$$

Small oscillations of a pendulum:

$$mL^{2}\frac{\mathsf{d}^{2}\theta}{\mathsf{d}t^{2}}=-cL\frac{\mathsf{d}\theta}{\mathsf{d}t}-mgL\theta+F(t)$$

Equivalence of Problems

These 4 physical systems are modelled identically by:

$$Ay'' + By' + Cy = D(t)$$

Constants have different physical meaning (& units)

System	Α	В	С	D
Spring Dashpot	Mass	Damping Coeff.	Spring Constant	Applied Force
Pendulum	Mass x (Length) ²	Damping x Length	Gravitational Moment	Applied Moment
Series Circuit	Inductance	Resistance	$Capacitance^{-1}$	Imposed Voltage
Twisted Shaft	Moment of Inertia	Damping	Elastic Shaft Constant	Applied Torque

General Linear 2nd Order DE's

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + p(t)\frac{\mathrm{d}y}{\mathrm{d}t} + q(t)y = h(t)$$

- h(t) represents the "forcing" term, an external influence.
 - h(t) = 0: solutions tell you the intrinsic behaviour of the system
 - e.g., pull on a spring-mass system, and then let it go
 - $h(t) \neq 0$: solutions tell you the response of the system to forcing
 - e.g., periodically hit a spring-mass system
- p(t) and q(t) represent the intrinsic properties of the physical system.
 - Often consant, but not always
 - ullet e.g., an aging spring could be modelled by q=q(t).

ex: y'' + 3y' = 0 We can reduce the order by integrating!

$$y' + 3y = C$$
 $(e^{3t}y)' = ce^{3t}$
 $e^{3t}y = \underbrace{\frac{C}{3}}_{C_1} e^{3t} + c_2$ $y = c_1 + c_2 e^{-3t}$

This is a special ODE where we can simplify by integrating.

In general, solve using the ansatz $y = e^{rt}$:

$$y' = re^{rt}$$

$$r^{2}e^{rt} + 3re^{rt} = 0$$

$$r(r+3) = 0$$

$$\Rightarrow r = 0, -3$$

$$y = c_{1}e^{0} + c_{2}e^{-3t}$$

$$= c_{1} + c_{2}e^{-3t}$$

ex: Solve
$$y'' + 3y' = 0$$
 with $y(0) = 2$ and $y'(0) = -2$

$$y_g(t) = c_1 + c_2 e^{-3t}$$
 $y(0) = c_1 + c_2 = 2$
 $y'_g(t) = -3c_2 e^{3t}$ $y'(0) = -3c_2 = -2$

$$c_2 = \frac{2}{3}$$

$$c_1 + \frac{2}{3} = 2 = \frac{6}{3}$$

$$c_1 = \frac{4}{3}$$

$$y(t) = \frac{4}{3} + \frac{2}{3}e^{-3t}$$

ex: Find the general solution to -2y'' + 5y' + 3y = 0

Hint: guess an ansatz $y = e^{rt}$

$$y' = re^{rt} y'' = r^{2}e^{rt}$$

$$-2r^{2}e^{rt} + 5re^{rt} + 3e^{rt} = 0 -2r^{2} + 5r + 3 = 0$$

$$r_{1,2} = \frac{-5 \pm \sqrt{25 + 24}}{-4} = \frac{-5 \pm 7}{-4} = \frac{2}{-4}, \frac{-12}{-4}$$

$$= -\frac{1}{2}, 3$$

$$y(t) = c_{1}e^{-\frac{t}{2}} + c_{2}e^{3t}$$

Summary

- Linear 2nd order ODEs are useful for modelling many physical systems
- 2^{nd} order $\Rightarrow 2$ Initial Conditions
- Linear 2nd order homogeneous ODEs with constant coefficients

$$ay'' + by' + cy = 0$$

Ansatz method:

- 1. Guess $y(t) = e^{rt}$
- 2. Plug guess into the ODE
- 3. Find (up to) 2 values of r

$$y_h = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$