

Sharif University of Technology

Department of Computer Engineering

Low Power Digital System Design

Circuit-Level LPD Techniques (Cont.)

A. Ejlali

Dual- V_{DD} Circuits

• Dual V_{DD} technique is used mainly for dealing with the switching power problem.

- V_{DD} reduction =>
 - Switching Power decreases quadratically
 - Sub-threshold Leakage Power deceases linearly
- V_{th} reduction =>
 - Does not have any impact on switching energy
 - Increases Sub-threshold Leakage Power exponentially

Impact on Circuit Performance

$$P_{SW} = \alpha C_L V_{DD}^2 f$$

$$V_{\scriptscriptstyle DD} \downarrow \Longrightarrow P_{\scriptscriptstyle SW} \downarrow$$

$$Delay \propto \frac{C_L \cdot V_{dd}}{(V_{dd} - V_{th})^{\alpha}} \qquad V_{DD} \downarrow \Rightarrow Delay \uparrow$$

Dual- V_{DD} Circuits

- Main Idea: Similar to dual- V_{th} circuits
 - The circuit part off the critical path is made to operate at the reduced voltage V_{DDL} , while the part on the critical path is made to operate at the original voltage V_{DDH} .

• Not all the gates in non-critical paths can be assigned V_{DDL} , otherwise, the critical path may change.

A Serious Problem in Multi- V_{DD} Circuits

- Occurs due to the direct connection of a VDDL gate to a VDDH one.
 - Short Circuit Static Power
 - Noise Sensitivity Problem

Short Circuit Static Power Problem

• Note: This problem is much more serious than the similar problem in the reduced voltage swing technique used in on-chip interconnects.

Noise Sensitivity

Solution: SDCVSL Level Converter

- Static Differential Cascode Voltage Switch Logic
 - pMOS transistors are not connected to the gate inputs.

Problems in Dual- V_{DD} Technique

- Area and power overhead of level converters.
 - Problem Formulation: choose VDDL gates and/or FFs such that
 - minimize the number of level converters
 - minimize the entire power
 - meet the timing constraints

Placement and routing problem.

Clustered Voltage Scaling Structure

- In the CVS structure the possible connection pattern among gates is any of the following:
 - 1) inter-VDDH gates
 - 2) inter-VDDL gates
 - 3) a VDDH gate to a VDDL gate
- The only portions requiring level converters:
 - a VDDL FF to a VDDH gate

CVS Structure

- Objectives:
 - Reduce the number of level converters
 - the number of needed level converters is at most the same as the number of VDDL flip-flops.
 - Keep VDDL gates together and connected also keep VDDH gates together and connected.
 - Ameliorate placement and routing problems.
- Note: CVS is not the best solution but it is simple yet effective.

CVS Structure: Example

Optimal Voltage of V_{DDL}

- Lower $V_{DDL} =>$
 - Smaller number of VDDL gates
 - More power reduction at a single VDDL gate
- Higher $V_{DDL} =>$
 - Larger number of VDDL gates
 - Less power reduction at a single VDDL gate
- The optimal V_{DDL} voltage varies from circuit to circuit.
 - Several CVS structures are obtained for the same circuit with different V_{DDL} values.
 - The power dissipation of the circuit structures are evaluated and compared.

References

L. Wei, et. al., "Design and Optimization of Dual-Threshold Circuits for Low-Voltage Low-Power Applications", *IEEE Transactions on VLSI*, 1999.

K. Usami, et. al., "Automated Low-Power Technique Exploiting Multiple Supply Voltages Applied to a Media Processor", *IEEE Journal of Solid-State Circuits*, 1998.