Midterm Examination 1

November 17, 2011

- 1. (20pts) Let X have exponential distribution $f_X(x) = \frac{1}{\mu} e^{-x/\mu} 1_{[0,)}(x)$. Find the conditional density $f_X(x|\mu < X \le 2\mu)$.
- 2. (20pts) Compute the mean and variance of the uniformly distributed random variable X having pdf $f_X(x) = \frac{1}{b-a} 1_{[a,b]}(x)$.
- 3. (20pts) If f(x) = 0 for x < 0, then, for any $\alpha > 0$, prove

$$P\{X \ge \alpha\} \le \frac{E[X]}{\alpha}.$$

- 4. (40pts) Consider a random variable X with characteristic function $\Phi_X(\omega)$.
 - **a.** (10pt) Show that if Y = aX + b, then $\Phi_Y(\omega) = e^{i\omega}\Phi_X(\omega)$.
 - **b.** (10pt) Show that if Y is a Gaussian RV with mean μ and variance σ^2 , then $\Phi_Y(\omega) = e^{i\omega\mu \omega^2\sigma^2/2}$.
 - c. (10pt) Let X_1 and X_2 be independent and identically distributed Gaussian RVs with mean μ and variance σ^2 and $Z = X_1 + X_2$, then find characteristic function $\Phi_Z(\omega)$.
 - **d.** (10pt) Using the result of (b), find the mean and standard deviation of Z in (c).