Coloured Petri Nets

Modelling and Validation of Concurrent Systems

Chapter 4: Formal Definition of CP-nets

Kurt Jensen &
Lars Michael Kristensen

{kjensen,lmkristensen}

@daimi.au.dk

© February 2008

Syntax

CPN =
$$(P, T, A, \Sigma, V, C, G, E, I)$$

Semantics

$$\sum_{MS} E(p,t) < b > <<= M(p) \text{ for all } p \in P$$

Why do we need a formal definition?

- The formal definition is unambiguous.
- It provides a more precise and complete description than an informal explanation.
- Users who are satisfied with the informal explanation can skip the formal definition.
- Only few programmers know the formal definition of the programming language they are using.
- We define:
 - Multi-sets.
 - Syntax of Coloured Petri Nets.
 - Semantics of Coloured Petri Nets.

Multi-set

Similar to a set but with multiple occurrences of elements.

Elements in multi-set

Non-negative integers

• Function NOxDATA $\rightarrow \mathbb{N}$:

m(s) =
$$\begin{cases} 1 & \text{if } s = (1, \text{"COL"}) \\ 3 & \text{if } s = (2, \text{"OUR"}) \\ 2 & \text{if } s = (3, \text{"ED "}) \\ 0 & \text{otherwise} \end{cases}$$

Formal definition of multi-sets

- Let $S = \{s_1, s_2, s_3, ...\}$ be a non-empty set.
- A multi-set over S is a function m : S → N mapping each element s∈S into a non-negative integer m(s)∈ N called the number of appearances (or coefficient) of s in m.
- A multi-set m is also written as a sum:

$$\sum_{s \in S} m(s)'s = m(s_1)'s_1 + m(s_2)'s_2 + m(s_3)'s_3 + m(s_4)'s_4 + \dots$$

- Notation:
 - S_{MS} is the set of all multi-sets over S.
 - Ø_{MS} is the empty multi-set (polymorphic).

Membership of multi-set

- (1,"COL"), (2,"OUR") and (3,"ED ") are members of the multi-set m.
- (4,"PET") and (17,"CPN") are not members.

Addition of multi-sets

$$\forall s \in S$$
: $(m_1 + + m_2)(s) = m_1(s) + m_2(s)$.

Addition
of multi-sets

Addition
of integers

Scalar multiplication of multi-sets

$$\forall s \in S: (n ** m)(s) = n * m(s).$$

Scalar Multiplication of integers of multi-set

Comparison of multi-sets

$$m_1 <<= m_2 \Leftrightarrow \forall s \in S \colon m_1(s) \leq m_2(s).$$
 Smaller than or equal for multi-sets Smaller than or equal for integers

Size of multi-set

 This multi-set contains six elements.

$$|m| = \sum_{s \in S} m(s).$$

Size of multi-set Summation of integers

When $|m| = \infty$ we say that m is infinite.

Subtraction of multi-sets

• When $m_1 \ll m_2$ we also define subtraction:

$$\forall s \in S: (m_2 -- m_1)(s) = m_2(s) - m_1(s).$$
Subtraction of multi-sets Subtraction of integers

Net inscriptions

Formal definition of Coloured Petri Nets

A Coloured Petri Net is a nine-tuple CPN = (P, T, A, Σ , V, C, G, E, I).

- P set of places.
- T set of transitions.
- A set of arcs.
- Σ set of colour sets.
- V set of variables.

Net structure

Types and variables

- C colour set function (assigns colour sets to places).
- G guard function (assigns guards to transitions).
- E arc expression function (assigns arc expressions to arcs).
- I initialisation function (assigns initial markings to places).

Places and transitions

A finite set of places P.

P = { PacketsToSend, A, B, DataReceived, NextRec, C,D, NextSend }.

- A finite set of transitions T.
- We demand that $P \cap T = \emptyset$.

A node is either a place or a transition – it cannot be both

T = { SendPacket, TransmitPacket, ReceivePacket, TransmitAck, ReceiveAck }.

Arcs

- A set of directed arcs A.
- We demand that $A \subseteq P \times T \cup T \times P$.

Each arc starts in a place and ends in a transition – or it starts in a transition and ends in a place

Arcs

- In the formal definition we do <u>not</u> have:
 - double-headed arcs:

parallel arcs:

- CPN Tools allow these and consider them to be short-hands for:
 - two oppositely directed arcs with the same arc expression:

addition of the two arc expressions:

Colour sets and variables

A finite set of non-empty colour sets Σ.

```
\Sigma = { NO, DATA, NOxDATA, BOOL }.
```

• A finite set of typed variables V. We demand that $Type[v] \in \Sigma$ for all $v \in V$.

Type of variable must be one of those that is defined in Σ

V = { n : NO, k : NO, d : DATA, data : DATA, success : BOOL }.

Colour sets for places

• A colour set function $C: P \to \Sigma$.

Assigns a colour set to each place.

$$\textbf{C(p)} = \left\{ \begin{array}{ll} \text{NO} & \text{if p} \in \{ \text{ NextSend, NextRec, C, D} \} \\ \\ \text{DATA} & \text{if p} = \text{ DataReceived} \\ \\ \text{NOxDATA} & \text{if p} \in \{ \text{ PacketsToSend, A, B} \} \end{array} \right.$$

Guard expressions

All variables must belong to V

■ A guard function $G: T \rightarrow EXPR_V$.

Assigns a guard to each transition.

We demand that Type[G(t)] = Bool for all $t \in T$.

G(t) = true for all $t \in T$.

The guard expression must evaluate to a boolean

- In the formal definition we demand all transitions to have a guard.
- CPN Tools consider a missing guard to be a short-hand for the guard expression true which always evaluates to true.
- Hence we have omitted all guards in the protocol example.

Guard expressions

CPN Tools consider a list of Boolean expressions:

to be a short-hand for:

$$expr_1 \land expr_2 \land ... \land expr_n$$

 We recommend to write all guards as a list even if they only have a single Boolean expression:

 In this way it is easy to distinguish guards from other kinds of net inscriptions.

Arc expressions

An arc expression function E : A → EXPR_V

Assigns an arc expression to each arc.

We demand that Type[E(a)] = $C(p)_{MS}$ for all $a \in A$, where p is the place connected to the arc a.

All variables must belong to V

Arc expression must evaluate to a multi-set of tokens belonging to the colour set of the connected place

$$\textbf{E(a)} = \left\{ \begin{array}{ll} \textbf{1`(n,d)} & \text{if } a \in \{ \text{ (PacketsToSend, SendPacket), ...} \} \\ \textbf{1`n} & \text{if } a \in \{ \text{ (C, TransmitAck), (D, ReceiveAck) ...} \} \\ \textbf{1`data} & \text{if } a = \{ \text{ (DataReceived, ReceivePacket) } \} \\ \dots \end{array} \right.$$

Arc expressions

- In the formal definition we demand all arc expressions to evaluate to multi-sets.
- CPN Tools consider an arc expression expr which evaluates to a single value to be a short-hand for 1`expr.
- Hence we can write n and (n,d) instead of 1`n and 1`(n,d).

Initialisation expressions

An initialisation function I: P → EXPR_Ø.
 Assigns an initial marking to each place.
 We demand that

Initialisation expression is not allowed to contain any variables

■ Type[I(p)] = $C(p)_{MS}$ for all $p \in P$.

Initialisation expression must evaluate to a multi-set of tokens belonging to the colour set of the place

Initialisation expressions

- In the formal definition we demand all places to have an initialisation expression and that these evaluate to multi-sets.
- CPN Tools consider a missing initialisation expression to be a short-hand for Ø_{MS}.
- Hence we are allowed to omit the initialisation expression for place A.
- CPN Tools consider an initialisation expression expr which evaluates to a single value to be a short-hand for 1`expr.
- Hence we could have written 1 instead of 1`1.

Questions about CPN syntax

- A. Can a node be both a place and a transition?
- B. Can we have an infinite number of places?
- C. Can we have an arc from a place to another place?
- D. Can a transition have two guards?
- E. Can a guard evaluate to an integer?
- F. Can an arc expression evaluate to a multi-set of booleans?
- G. Can we have a variable in an initial marking expression?
- H. Can an arc expression always evaluate to empty?

Find those where the answer is YES?

Markings

- A marking is a function M mapping each place p into a multi-set of tokens M(p)∈ C(p)_{MS}.
 - All token values must belong to the colour set of the place
- The initial marking M_0 is defined by $M_0(p) = I(p) \le for all <math>p \in P$.

Initialisation expression has no variables. Hence it is evaluated in the empty binding

Variables of a transition

- The variables of a transition are those that appear in the guard or in an arc expression of an arc connected to the transition.
- The set of variables is denoted Var(t) ⊆ V.
- Var(SendPacket) = {n,d}.

Bindings and binding elements

- A binding of a transition t is a function b mapping each variable v∈Var(t) into a value b(v)∈Type[v].
- Bindings are written in: brackets: <n=1,d="COL">.
- The set of all bindings for a transition t is denoted B(t).

Each variable must be bound to a value in its type

- A binding element is a pair (t,b) such that t is a transition and b∈B(t).
- The set of all binding elements of a transition t is denoted BE(t).
- The set of all binding elements in CPN is denoted BE.

Steps

- A step Y∈BE_{MS} is a non-empty and finite multi-set of binding elements.
- Why forbid empty steps?
 - We would have steps with no effect.
 - It would be impossible to reach a dead marking, i.e., a marking without enabled steps.
- Why forbid infinite steps?
 - We would be able to produce markings which are not multi-sets.

Evaluation of guards and arc expressions

 The rules for enabling and occurrence are based on evaluation of guards and arc expressions.

G(t) 	Evaluation of the guard expression for t in the binding b
E(a) 	Evaluation of the arc expression for a in the binding b
E(p,t) 	Evaluation of the arc expression on the arc from p to t in the binding b. If no such arc exists $E(p,t) = \emptyset_{MS}$
E(t,p) 	Evaluation of the arc expression on the arc from t to p in the binding b. If no such arc exists $E(t,p) = \emptyset_{MS}$

Enabling of single binding element

- A binding element (t,b)∈BE is enabled in a marking M if and only if the following two properties are satisfied:
 - G(t) < b > = true.

E(p,t) <<= M(p) for all p∈P.</p>

Smaller than or equal for multi-sets

Guard must evaluate to true

The tokens demanded by the input arc expressions must be present in the marking M

Occurrence of single binding element

When the binding element (t,b)∈BE is enabled in a marking M, it may occur leading to a new marking M' defined by:

Enabling of step

- A step Y ⊆ BE_{MS} is enabled in a marking M if and only if the following two properties are satisfied:
 - G(t) < b > = true for all $(t,b) \in Y$.

All guards must evaluate to true

The tokens demanded by the input arc expressions must be present in the marking M

a multi-set Y

Occurrence of step

• When the step Y ⊆ BE_{MS} is enabled in a marking M, it may occur leading to a new marking M' defined by:

Notation for occurrence and enabling

$$M_1 \xrightarrow{Y} M_2$$

Step Y occurs in marking M₁ leading to marking M₂

$$M_1 \longrightarrow M_2$$

Marking M₂ can be reached from marking M₁ (by the occurrence of an unknown step)

$$M_1 \xrightarrow{Y}$$

Step Y is enabled in marking M₁ (leading to an unknown marking)

Finite occurrence sequence

$$M_1 \xrightarrow{Y_1} M_2 \xrightarrow{Y_2} M_3 \dots M_n \xrightarrow{Y_n} M_{n+1}$$

- Length $n \ge 0$.
- All markings in the sequence are reachable from M₁.
- An arbitrary marking is reachable from itself by the trivial occurrence sequence of length 0.

Infinite occurrence sequence

$$M_1 \xrightarrow{Y_1} M_2 \xrightarrow{Y_2} M_3 \xrightarrow{Y_3} \dots$$

- ℜ(M) The set of markings reachable from M
- $\Re(M_0)$ The set of reachable markings

Diamond property

Y₁ can occur followed by Y₂

Y₂ can occur followed by Y₁

Y can be divided into two substeps:

$$Y = Y_1 ++ Y_2$$

In all three cases we reach the same marking

- This is called the diamond property.
- It can be proved from the definition of enabling and occurrence.
- It plays an important role in Petri net theory.

Diamond property

- The diamond property follows from the fact that the effect of a step is independent of the marking in which it occurs.
- The diamond property is <u>not</u> satisfied by ordinary programming languages.

- Repeated use of diamond property:
 - When a step Y is enabled in a marking M, the binding elements of Y can occur one by one in any order.
 - The order has no influence on the total effect.

Questions about CPN semantics

- A. Can a transition change the marking of places that are neither input nor output places?
- B. Can a transition occur concurrently with itself?
- C. Can a binding element occur concurrently with itself?
- D. Can two transitions that "reads" the value of the same token occur concurrently?
- E. Can a marking be reachable from itself?
- F. Can we have more than one initial marking?
- G. Can we have an infinite number of reachable markings?

Find those where the answer is YES?

