CLAIMS

What Is Claimed Is:

1	1. A device for measuring pressure, the device comprising:
2	a housing comprising an inlet;
3	a transducer coupled to the inlet in the housing to generate an electrical signal
4	representative of pressure at the inlet;
5	a visual indicator coupled to the inlet in the housing to indicate pressure at the inlet;
6	and
7	a data communication device coupled to the transducer in the housing to transmit a
8	wireless signal corresponding to the electrical signal, whereby pressure information is
9	provided both locally and remotely.
1	2. The device of claim 1, wherein:
2	the housing comprises a stem extending to the inlet;
3	the transducer comprises a Bourdon tube coupled to the inlet to arcuately displace in
4	response to pressure at the inlet; and
5	the visual indicator comprises:
6	a shaft coupled to the Bourdon tube to rotate in response to displacement of
7	the Bourdon tube, and
8	a pointer attached to the rotatable shaft to indicate pressure values.
1	3. The device of claim 2, wherein the transducer further comprises:
2	an inductive target coupled to the Bourdon tube, the target being movable in response
3	to displacement of the Bourdon tube; and
4	an eddy current sensor positioned to sense movement of the inductive target and, in
5	response to movement of the inductive target, to generate the electrical signal.

1	4.	The device of claim 1, wherein the transducer comprises a piezo-type sensor
2	coupled to the	e inlet to generate an electrical signal in response to pressure at the inlet.
1	5.	The device of claim 1, wherein the visual indicator comprises a digital
2	display.	
1	6.	The device of claim 1, wherein the data communication device comprises an
2	infrared emitt	er.
1	7.	The device of claim 1, further comprising a processor coupled between the
2	transducer and	d the data communication device.
1	8.	The device of claim 7, wherein the processor is operable to generate pressure
2	characterizati	on data based on the signal representing pressure at an inlet, wherein the
3	characterizati	on data is transmitted as part of the wireless signal.
1	9.	The device of claim 8, wherein characterization data comprises warnings
2	based on the p	pressure at the inlet.
1	10.	The device of claim 7, wherein the processor is operable to control the
2	frequency at v	which pressure information is transmitted.
1	11.	The device of claim 10, wherein the processor is operable to control the
2	pressure infor	mation transmission frequency based on pressure data set points, the frequency
3	being altered	in response to the pressure crossing a pressure data set point.

1	12.	The device of claim 7, wherein the processor is operable to place itself and
2	other electron	nic components into a power conservation mode.
1	13.	The device of claim 7, wherein the processor is operable to compensate for
2	non-linearity	of the sensed pressure.
1	14.	The device of claim 7, wherein the processor is operable to compensate for
2	temperature of	coefficients.
	1.5	The decise of claim 7. Godson conscious on L.Com J. Data Acceptation
1	15.	The device of claim 7, further comprising an Infrared Data Association
2	interface cou	pled to the processor, wherein the processor may be remotely programmed via
3	the interface.	
1	16.	The device of claim 15, wherein the processor may be programmed to change
2	pressure data	
2	pressure data	set points.
1	17.	The device of claim 7, further comprising externally accessible terminals
2	coupled to th	e processor.
1	18.	The device of claim 17, wherein the processor is operable to accept a discrete
2	status input v	ria the terminals
1	19.	The device of claim 17, wherein the processor is operable to output pulse
2	accumulation	information via the terminals.
1	20.	The device of claim 1, further comprising a visual indicator at the housing to

indicate mode of operation.

2

- 1 21. The device of claim 1, further comprising a data communication device on-
- off switch.

1	22. A device for measuring pressure, the device comprising:	
2	a housing comprising an inlet;	
3	a transducer coupled to the inlet in the housing to generate an electrical signal	
4	representative of pressure at the inlet;	
5	a processor coupled to the transducer in the housing, the processor operable to	
6	receive the electrical signal and to generate a signal including pressure information	
7	corresponding to the signal; and	
8	a data communication device coupled to the processor in the housing to transmit a	
9	wireless signal representative of the processor generated signal, whereby pressure	
10	information is provided remotely.	
1	23. The device of claim 22, further comprising a visual indicator coupled to the	
2	inlet in the housing to indicate pressure at the inlet.	
1	24. The device of claim 22, wherein the transducer comprises:	
2	a Bourdon tube coupled to the inlet to arcuately displace in response to pressure at	
3	the inlet;	
4	an inductive target coupled to the Bourdon tube, the inductive target being moveable	
5	in response to displacement of the Bourdon tube; and	
6	an eddy current sensor positioned to sense movement of the inductive target and, in	
7	response to movement of the inductive target, to generate the electrical signal.	
1	25. The device of claim 22, wherein the processor is further operable to generate	
2	pressure characterization data based on the electrical signal, wherein the characterization	
3	data is transmitted as part of the wireless signal.	

1	26.	The device of claim 22, wherein the processor is further operable to control
2	the frequency	at which pressure information is transmitted.
1	27.	The device of claim 22, wherein the processor is further operable to place
2	itself and othe	r electronic components into a power conservation mode.
1	28.	The device of claim 22, wherein the processor is further operable to
2	compensate for	or non-linearity of the sensed pressure.
1	29.	The device of claim 22, wherein the processor is further operable to
2	compensate for	or temperature coefficients.
1	30.	The device of claim 22, further comprising an Infrared Data Access interface
2	coupled to the	processor, wherein the processor may be remotely programmed via the
3	interface.	
1	31.	The device of claim 22, further comprising externally accessible terminals
2	coupled to the	processor.

	ለ
1	32. A device for measuring pressure, the device comprising:
2	a housing comprising an inlet;
3	a Bourdon tube coupled to the inlet in the housing to displace in response to pressure
4	at the inlet;
5	a shaft coupled to the Bourdon tube to rotate in response to displacement of the
6	Bourdon tube;
7	a pointer attached to the rotatable shaft to indicate pressure at the inlet;
8	an inductive target coupled to the Bourdon tube to move in response to displacement
9	of the Bourdon tube;
10	an eddy current sensor positioned to sense movement of the inductive target and, in
11	response to movement of the inductive target, to generate an electrical signal
12	a data communication device coupled to the sensor in the housing to transmit a
13	wireless signal corresponding to the electrical signal, whereby pressure information is
14	provided both locally and remotely.
1	33. The device of claim 32, further comprising a processor coupled between the
2	eddy current sensor and the data communication device.
1	34. The device of claim 33, wherein the processor is operable to generate
2	pressure characterization data based on the electrical signal, wherein the characterization
3	data is transmitted as part of the wireless signal.
1	35. The device of claim 33, wherein the processor is operable to control the
2	frequency at which pressure information is transmitted.

1	36.	The device of claim 35, wherein the processor is operable to control the
2	pressure infor	mation transmission frequency based on pressure data set points, the frequency
3	being altered	in response to the pressure crossing a pressure data set point.
1	37.	The device of claim 33, wherein the processor is operable to place itself and
2	other electron	ic components into a power conservation mode.
1	38.	The device of claim 33, wherein the processor is operable to compensate for
2	non-linearity	of the sensed pressure.
1	39.	The device of claim 33, wherein the processor is operable to compensate for
2	temperature c	oefficients.
1	40.	The device of claim 33, further comprising an Infrared Data Access interface
2	coupled to the	processor, wherein the processor may be remotely programmed via the
3	interface.	

1		41.	A method performed at a pressure measurement device, the method
2	compr	ising:	
3		sensin	g pressure at an inlet of a housing;
4		conve	rting the sensed pressure to a visual indication of pressure at the housing;
5		conve	rting the sensed pressure to an electrical signal at the housing; and
6		sendin	g a wireless signal corresponding to the electrical signal from the housing,
7	where	by press	sure information is provided both locally and remotely.
1		42.	The method of claim 41, wherein converting the sensed pressure to a visual
2	indica	tion of p	pressure comprises:
3		conve	rting the sensed pressure to a mechanical displacement; and
4		transla	ating the mechanical displacement to a pointer.
1		43.	The method of claim 42, wherein converting the sensed pressure to an
2	electri	cal sign	al comprises:
3		transla	ating the mechanical displacement to an inductive target; and
4		sensin	g eddy currents generated in response to displacement of the target.
1		44.	The method of claim 41, wherein sending a wireless signal comprises
2	emittii	ng infra	red radiation pulses.
1		45.	The method of claim 41, further comprising:
2		genera	ating characterization data for the sensed pressure based on the electrical signal
3	and		
4		sendin	ng the characterization data as part of the wireless signal.

1	46.	The method of claim 41, further comprising controlling the frequency at
2	which pressur	e information is sent.
1	47.	The method of claim 41, further comprising placing electronic components
2	into a power c	conservation mode.
1	48.	The method of claim 41, further comprising:
2	receivi	ing wireless signals that specify operational adjustments; and
3	adjusti	ng pressure measurement device operations.
1	49.	The method of claim 41, further comprising:
2	receivi	ing externally generated data; and
3	sendin	g the data as part of the wireless signal.
1	50.	The method of claim 41, further comprising providing a visual indication of
2	operating mod	le at the housing.

1	51. A device for measuring pressure, the device comprising:
2	means for sensing pressure at an inlet of a housing;
3	means for converting the sensed pressure to a visual indication of pressure at the
4	housing;
5	means for converting the sensed pressure to an electrical signal at the housing; and
6	means for sending a wireless signal corresponding to the electrical signal from the
7	housing, whereby pressure information is provided both locally and remotely.
1	52. The device of claim 51, wherein converting the sensed pressure to a visual
2	indication of pressure comprises:
3	converting the sensed pressure to a mechanical displacement; and
4	translating the mechanical displacement to a pointer.
1	53. The device of claim 52, wherein converting the sensed pressure to an
2	electrical signal comprises:
3	translating the mechanical displacement to an inductive target; and
4	sensing eddy currents generated in response displacement of the target.
1	54. The device of claim 51, wherein sending the wireless signal comprises
2	emitting infrared radiation pulses.
1	55. The device of claim 51, further comprising means for generating
2	characterization data for the sensed pressure based on the electrical signal, wherein the
3	characterization data is sent as part of the wireless signal.
1	56. The device of claim 51, further comprising means for controlling the
2	frequency at which pressure information is sent.

- 1 57. The device of claim 51, further comprising means for adjusting operations in response to received wireless signals.
- The device of claim 51, further comprising means for receiving externally generated data, wherein the data may be sent as part of the wireless signal.
- 1 59. The device of claim 51, further comprising means for providing a visual indication of operating mode at the housing.

l

1	60. A device for measuring pressure, the device comprising:
2	a housing comprising a stem having an inlet;
3	a Bourdon tube coupled to the inlet to arcuately displace in response to pressure at
4	the inlet;
5	a shaft mechanically coupled to the Bourdon tube to rotate in response to
6	displacement of the Bourdon tube;
7	a pointer attached to the shaft to indicate pressure values;
8	an inductive target coupled to the Bourdon tube, the target being movable in response
9	to displacement of the Bourdon tube;
10	an eddy current sensor positioned to sense movement of the inductive target and, in
11	response to movement of the inductive target, to generate an electrical signal;
12	an analog-to-digital converter coupled to the sensor, the converter operable to receive
13	the electrical signal and produce a digitized version of the signal;
14	a microprocessor coupled to the converter, the microprocessor operable to:
15	receive the digitized signal,
16	compensate for non-linearity of the sensed pressure,
17	compensate for temperature coefficients,
18	generate pressure characterization data based on the compensated signal,
19	determine whether the frequency at which pressure information is transmitted
20	should be adjusted,
21	if the frequency should be adjusted, adjust the frequency,
22	determine whether it is time to transmit pressure information,
23	if it is time to transmit pressure information, generate a signal comprising
24	pressure information,
25	place itself and other electronic components into a power conservation mode,
26	an Infrared Data Association interface coupled to the microprocessor, wherein the
27	microprocessor may be remotely programmed via the interface; and

28	an infrared transceiver coupled to the microprocessor to transmit a wireless signal
29	representative of the microprocessor signal, whereby pressure information is provided both
30	locally and remotely.