PH 712 Probability and Statistical Inference

Part I: Random Variable

Zhiyang Zhou (zhou67@uwm.edu, zhiyanggeezhou.github.io)

2024/Sep/04 23:12:53

"All models are wrong, but some are useful."

— G. E. P. Box. (1976). Journal of the American Statistical Association, 71:791–799.

What is a statistical model?

- Two types of statistical models (Breiman, 2001)
 - Stochastic model vs. machine learning model (PH 812 Statistical Learning & Data Mining)
- Stochastic model: the distribution of random variables (RVs) of interest
 - Recall the linear regression and logit regression (PH 711 Intermediate Biostatistics)
 - Parametric vs non-parametric vs semi-parametric

Statistical modelling

Confirmed RVs of interest \rightarrow Data collection and cleaning \rightarrow Specified models \rightarrow Model fitting and inference \rightarrow Interpretation

Statistical inference

- To figure out the underlying true model
 - E.g., is the RV distributed as $\mathcal{N}(0,1)$?

Characterization the distribution of an RV (CB/HMC Chp. 1)

- An RV is a real-valued function.
- The cumulative distribution function (cdf) of RV X, say F_X , is defined as

$$F_X(x) = \Pr(X \le x), \quad x \in \mathbb{R}.$$

- $-F_X$ satisfies following three properties:
 - * (Right continuous) $\lim_{u \to x^+} F_X(u) = F_X(x)$ (p.s., $\lim_{u \to x^-} F_X(u) = \Pr(X < x));$
 - * (Non-decreasing) $F_X(x_1) \leq F_X(x_2)$ for $x_1 \leq x_2$;
 - * (Ranging from 0 to 1) $F_X(-\infty) = 0$ and $F_X(\infty) = 1$.
- Reversely, a function satisfying the three above properties must be a cdf for certain RV.
 - * Indicating an one-to-one correspondence between the set of all the RVs and the set of all the
- Knowing the distribution of an RV \Leftrightarrow knowing the cdf

Example Lec1.1

• Given $p \in (0,1)$, suppose

$$F_X(x) = \begin{cases} 1 - (1-p)^{\lfloor x \rfloor}, & x \ge 1, \\ 0, & \text{otherwise,} \end{cases}$$

where |x| represents the integer part of x.

- Show that F_X is a cdf. (Hint: Check all the three properties of cdf, especially the right-continuity of F at positive integers.)

Characterization the distribution of an RV (con'd)

- Discrete RV
 - RV X merely takes countably different values
 - Probability mass function (pmf): $p_X(x) = Pr(X = x)$
 - * $F_X(x) = \sum_{u \le x} p_X(u)$ * $p_X(x) = F_X(x) \lim_{u \to x^-} F_X(u)$ Knowing the distribution of a discrete RV \Leftrightarrow knowing the pmf
 - Examples:
 - * Bernoulli: a discrete RV with two possible outcomes, typically coded as 0 (failure) and 1 (success).
 - · https://en.wikipedia.org/wiki/Bernoulli distribution
 - * Binomial: the number of successes in a fixed number of independent Bernoulli trials.
 - · https://en.wikipedia.org/wiki/Binomial distribution
 - · E.g., flipping a coin 10 times and counting the number of heads.
 - * Geometric: the number of trials until the first success in a series of independent Bernoulli trials.
 - https://en.wikipedia.org/wiki/Geometric distribution
 - · E.g., the number of coin flips needed until the first head appears.
 - * Negative binomial: the number of trials until a specified number of successes is achieved.
 - · https://en.wikipedia.org/wiki/Negative_binomial_distribution
 - E.g., the number of coin flips until you get 3 heads.
 - * Poisson: the number of events that occur in a fixed interval of time or space, where events happen independently.
 - · https://en.wikipedia.org/wiki/Poisson distribution
 - · E.g., the number of emails you receive in an hour.
 - * Hypergeometric: the number of successes in a sample drawn without replacement from a finite population.
 - · https://en.wikipedia.org/wiki/Hypergeometric distribution
 - E.g., drawing a certain number of red balls from a bag containing both red and blue balls without replacement.
 - * Multinomial: a generalization of the binomial RV, representing outcomes in a scenario with more than two categories.
 - · https://en.wikipedia.org/wiki/Multinomial distribution
 - · E.g., rolling a dice and counting the number of each face appearing after multiple rolls.
 - * Uniform (the discrete version): each outcome in a finite set has an equal probability.
 - · https://en.wikipedia.org/wiki/Discrete uniform distribution
 - · E.g., rolling a fair dice, where each of the six faces has an equal chance of landing.
- Continuous RV
 - RV X is continuous \Leftrightarrow its cdf F_X is (absolutely) continuous, i.e., there exists f_X such that

$$F_X(x) = \int_{-\infty}^x f_X(u) du, \quad \forall x \in \mathbb{R}.$$

- * Probability density function (pdf): $f_X(x) = dF_X(x)/dx = \lim_{\delta \to 0^+} \Pr(x < X \le x + \delta)/\delta$.
- Knowing the distribution of a continuous RV ⇔ knowing the pdf

- Examples:
 - * Uniform (the continuous version): all outcomes in a continuous range are equally likely.
 - · https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
 - * Normal (Gaussian): one of the most important and widely used distributions, where data is symmetrically distributed around the mean.
 - · https://en.wikipedia.org/wiki/Normal_distribution
 - * Exponential: the time between events in a Poisson process, often used to describe waiting times.
 - · https://en.wikipedia.org/wiki/Exponential_distribution
 - * Gamma: a generalization of the exponential distribution, useful in queuing models and life-testing.
 - · https://en.wikipedia.org/wiki/Gamma distribution
 - $\ast\,$ Beta: useful in Bayesian statistics and modeling random variables bounded between 0 and 1.
 - · https://en.wikipedia.org/wiki/Beta distribution
 - * Chi-squared: sum of squared standard normal RVs; arising in hypothesis testing, particularly in tests of independence and goodness of fit.
 - · https://en.wikipedia.org/wiki/Chi-squared distribution
 - $\ast\,$ Cauchy: known for its heavy tails and undefined mean and variance; used in robust statistics.
 - · https://en.wikipedia.org/wiki/Cauchy_distribution
 - * Weibull: a generalization of the exponential distribution, used in reliability engineering and failure time analysis.
 - · https://en.wikipedia.org/wiki/Weibull_distribution
 - * Log-normal: $\exp(\mathcal{N}(0,1))$; commonly used to model stock prices and other financial data.
 - · https://en.wikipedia.org/wiki/Log-normal distribution
 - * (Student's) t: used in hypothesis testing, particularly for small sample sizes.
 - · https://en.wikipedia.org/wiki/Student%27s t-distribution

Example Lec1.2

• Given $p \in (0,1)$, suppose

$$F_X(x) = \begin{cases} 1 - (1-p)^{\lfloor x \rfloor}, & x \ge 1, \\ 0, & \text{otherwise,} \end{cases}$$

where |x| represents the integer part of x.

- What is the type of X, discrete or continuous?

Support of RV (CB pp. 50 & HMC pp. 46)

- For discrete RV X with pmf p_X
 - $\text{ supp}(X) = \{x \in \mathbb{R} : p_X(x) > 0\}$
 - E.g., support of Binom(n, p) is $\{0, \ldots, n\}$
- For continuous RV X with pdf f_X
 - $\text{ supp}(X) = \{x \in \mathbb{R} : f_X(x) > 0\}$
 - E.g., support of $\mathcal{N}(0,1)$ is \mathbb{R}

Example Lec1.3

• Revisit F_X defined in Example Lec1.1, i.e.,

$$F_X(x) = \begin{cases} 1 - (1-p)^{\lfloor x \rfloor}, & x \ge 1, \\ 0, & \text{otherwise,} \end{cases}$$

where |x| represents the integer part of x.

- What is the support of X?

Characterization the distribution of an RV (con'd)

- Moment generating function (MGF, CB Sec. 2.3)
 - $M_X(t) = \mathbb{E}\{\exp(tX)\}\$
 - * Continuous X: $M_X(t) = \int_{-\infty}^{\infty} \exp(tx) f_X(x) dx$
 - * Discrete X: $M_X(t) = \sum_{\{x:x \in \text{supp}(X)\}} \exp(tx) p_X(x)$
 - The MGF of X is $M_X(t)$, $t \in A$, $\Leftrightarrow M_X(t)$ is finite for t in a neighborhood of 0, say A; otherwise the MGF does NOT exist or is NOT well defined.
 - $M_{aX+b}(t) = \exp(bt)M_X(at)$
 - Knowing the distribution of an RV

 knowing the MGF (if any)
- Characteristic function (CF, optional)
 - $-\varphi_X(t) = \mathbb{E}\{\exp(itX)\}\$

 - * Continuous X: $\varphi_X(t) = \int_{-\infty}^{\infty} \exp(itx) f_X(x) dx$ * Discrete X: $\varphi_X(t) = \sum_{\{x: x \in \text{supp}(X)\}} \exp(itx) p_X(x)$
 - Always well-defined
 - $-\varphi_{aX+b}(t) = \exp(bt)\varphi_X(at)$
 - Knowing the distribution of an RV \Leftrightarrow knowing the CF

Example Lec1.4

- Find the MGFs of following distributions $\mathcal{N}(\mu, \sigma^2), \text{ i.e., } f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ $\text{ (Cauchy distribution) } f_X(x) = \{\pi(1+x^2)\}^{-1}, \, x \in \mathbb{R}$

Indicator function

Given a set A, the indicator function of A is

$$\mathbf{1}_{A}(x) = \begin{cases} 1, & x \in A, \\ 0, & \text{otherwise.} \end{cases}$$

Example Lec1.5

• Revisit F_X defined in Example Lec1.1, i.e.,

$$F_X(x) = \begin{cases} 1 - (1-p)^{\lfloor x \rfloor}, & x \ge 1, \\ 0, & \text{otherwise,} \end{cases}$$

where |x| represents the integer part of x.

- Please reformulate F_X with the indicator function of $A = \{x : x \ge 1\}$.