Image Compression

- 1. What and why image compression
- 2. Basic concepts
- 3. Encoding/decoding, entropy

What is Data and Image Compression?

- Data compression is the art and science of representing information in a compact form.
- Data is a sequence of symbols taken from a discrete alphabet.

Why do we need Image Compression?

Still Image

- One page of A4 format at 600 dpi is > 100 MB.
- One color image in digital camera generates 10-30 MB.
- Scanned 3"×7" photograph at 300 dpi is 30 MB.

Digital Cinema

•4K×2K×3 ×12 bits/pel = 48 MB/frame or 1 GB/sec or 70 GB/min.

Why do we need Image Compression?

- 1) Storage
- 2) Transmission
- 3) Data access

1990-2000

Disc capacities : 100MB -> 20 GB (200 times!)

but seek time : 15 milliseconds → 10 milliseconds

and transfer rate: 1MB/sec -> 2 MB/sec.

Compression improves overall response time in some applications.

Source of images

- Image scanner
- Digital camera
- Video camera,
- •Ultra-sound (US), Computer Tomography (CT), Magnetic resonance image (MRI), digital X-ray (XR), Infrared.
- •etc.

Image types

Why we can compress image?

- Statistical redundancy:
 - 1) Spatial correlation
 - a) Local Pixels at neighboring locations have similar intensities.
 - b) Global Reoccurring patterns.
 - 2) Spectral correlation between color planes.
 - 3) Temporal correlation between consecutive frames.
- Tolerance to fidelity:
 - 1) Perceptual redundancy.
 - 2) Limitation of rendering hardware.

Lossy vs. Lossless compression

Lossless compression: reversible, information preserving text compression algorithms, binary images, palette images

Lossy compression: irreversible grayscale, color, video

Near-lossless compression: medical imaging, remote sensing.

Rate measures

Bitrate:
$$\frac{\text{size of the compressed file}}{\text{pixels in the image}} = \frac{C}{N} \quad \text{bits/pel}$$

Compression ratio:
$$\frac{\text{size of the original file}}{\text{size of the compressed file}} = \frac{N \cdot k}{C}$$

Distortion measures

Mean average error (MAE):

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - x_i|$$

Mean square error (MSE):

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - x_i)^2$$

Signal-to-noise ratio (SNR):

$$SNR = 10 \cdot \log_{10} \left[\sigma^2 / MSE \right]$$

(decibels)

Pulse-signal-to-noise ratio (PSNR): $PSNR = 10 \cdot log_{10} [A^2/MSE]$

(decibels)

A is amplitude of the signal: $A = 2^8-1=255$ for 8-bits signal.

Other issues

- Coder and decoder computation complexity
- Memory requirements
- Fixed rate or variable rate
- Error resilience
- Symmetric or asymmetric
- Decompress at multiple resolutions
- Decompress at various bit rates
- Standard or proprietary

Entropy

Set of symbols (alphabet) $S=\{s_1, s_2, ..., s_N\}$,

N is number of symbols in the alphabet.

Probability distribution of the symbols: $P=\{p_1, p_2, ..., p_N\}$

According to Shannon, the entropy H of an information source S is defined as follows:

$$H = -\sum_{i=1}^{N} p_i \cdot \log_2(p_i)$$

Entropy

The amount of information in symbol s_i , in other words, the number of bits to code or code length for the symbol s_i :

$$H(s_i) = -\log_2(p_i)$$

The average number of bits for the source S:

$$H = -\sum_{i=1}^{N} p_i \cdot \log_2(p_i)$$

Entropy for binary source: N=2

$$S=\{0,1\}$$
 $p_0=p$
 $p_1=1-p$

$$H = -(p \cdot \log_2 p + (1-p) \cdot \log_2 (1-p))$$

H=1 bit for
$$p_0 = p_1 = 0.5$$

Entropy for uniform distribution: $p_i=1/N$

Uniform distribution of probabilities: p_i=1/N:

$$H = -\sum_{i=1}^{N} (1/N) \cdot \log_2(1/N) = \log_2(N)$$

Examples:

N= 2:
$$p_i=0.5$$
; $H=log_2(2) = 1$ bit

N=256:
$$p_i$$
=1/256; H= $log_2(256)$ = 8 bits

How to get the probability distribution?

- 1) Static modeling:
 - a) The same code table is applied to all input data.
 - b) One-pass method (encoding)
 - c) No side information
- 2) Semi-adaptive modeling:
 - a) Two-pass method: (1) analysis and (2) encoding.
 - b) Side information needed (model, code table)
- 3) Adaptive (dynamic) modeling:
 - a) One-pass method: analysis and encoding
 - b) Updating the model during encoding/decoding
 - c) No side information

Static vs. Dynamic: Example

 $S = \{a,b,c\}; Data: a,a,b,a,a,c,a,a,b,a.$

- 1) Static model: $p_i=1/10$ H = $-\log_2(1/10)=1.58$ bits
- **2**) Semi-adaptive method: $p_1=7/10$; $p_2=2/10$; $p_3=1/10$;

 $H = -(0.7*log_20.7 + 0.2*log_20.2 + 0.1*log_20.1) =$ **1.16**bits

3) Adaptive method: Example

 $S = \{a,b,c\}; Data: a,a,b,a,a,c,a,a,b,a.$

Symbo	1	2	3	4	5	6	7	8	9	10	
а	1	2	3	3	4 2	5	5	6	7	7	
b											
C	1	1	1	1	1	1	2	2	2	2	
p _i	0.33 1.58	0.5	0.2	0.5	0.57	0.13	3 0.56	0.6	0 0.	18 0.	.58
Н	1.58	1.0	2.32	1.0	0.81	3.0	0.85	0.7	4 2.4	6 0	.78

$$H=(1/10)(1.58+1.0+2.32+1.0+0.81+3.0+0.85+0.74+2.46+0.78)$$

=**1.45** bits/char

Coding methods

- Shannon-Fano Coding
- Huffman Coding
- Predictive coding
- Block coding

- Arithmetic code
- Golomb-Rice codes

Shannon-Fano Code: A top-down approach

1) Sort symbols according their probabilities:

$$p_1 \le p_2 \le \dots \le p_N$$

2) Recursively divide into parts, each with approx. the same number of counts (probability)

Shannon-Fano Code: Example (1 step)

Shannon-Fano Code: Example (2 step)

Shannon-Fano Code: Example (3 step)

Shannon-Fano Code: Example (Result)

Symbol	p _i	$-log_2(p_i)$	Code	Subtotal
Α	15/39	1.38	00	2*15
В	7/39	2.48	01	2*7
C	6/39	2.70	10	2*6
D	6/39	2.70	110	3*6
E	5/39	2.96	111	3*5

Total: 89 bits

Binary tree

H=89/39=2.28 bits

Shannon-Fano Code: Encoding

A - 00

B - 01

C - 10

D - 110

E - 111

Message: B A B A C A C A D E

Codes: 01 00 01 00 10 00 10 00 110 111

Bitstream: 0100010010001000110111

Binary tree

Shannon-Fano Code: Decoding

A - 00

Bitstream: 0100010010001000110111 (23 bits)

B - 01

Codes: 01 00 01 00 10 00 10 00 110 111

C - 10

Messaage: B A B A C A C A D E

D - 110 E - 111

Binary tree

Huffman Code: A bottom-up approach

INIT:

Put all nodes in an OPEN list, keep it sorted all times according their probabilities;.

REPEAT

- a) From OPEN pick *two* nodes having the *lowest* probabilities, create a parent node of them.
- b) Assign the sum of the children's probabilities to the parent node and inset it into OPEN
- c) Assign code 0 and 1 to the two branches of the tree, and delete the children from OPEN.

Huffman Code: Example

Symbol	p _i	$-log_2(p_i)$	Code	Subtotal			
A	15/39	1.38	0	12 *15			
В	7/39	2.48	100	3*7			
C	6/39	2.70	101	3*6			
D	6/39	2.70	110	3*6			
_ E	5/39	2.96	111	3*5			
Total:	,	39/39		87 bits			
A 15/39 0 1 11/39 Binary tree B 7/39 C D 6/39 E 5/39							

H=87/39=2.23 bits

Huffman Code: Decoding

A - 0

B - 100

C - 101

D - 110

E - 111

Bitstream: 1000100010101010111 (22 bits)

Codes: 100 0 100 0 101 0 101 0 110 111

Message: B A B A C A C A D E

Binary tree

Properties of Huffman code

- Optimum code for a given data set requires two passes.
- Code construction complexity O(N logN).
- Fast lookup table based implementation.
- Requires at least one bit per symbol.
- Average codeword length is within one bit of zero-order entropy (Tighter bounds are known): H ≤ R < H+1 bit
- Susceptible to bit errors.

Unique prefix property

No code is a prefix to any other code, all symbols are the *leaf* nodes

Shannon-Fano and Huffman codes are prefix codes

Legend: Shannon (1948) and Fano (1949);

Huffman (1952) was student of Fano at MIT.

Fano: "Construct minimum-redundancy code → final exam is passed!"

Predictive coding

- 1) Calculate prediction value: $y_i = f(neibourhood of x_i)$.
- 2) Calculating the prediction error: $e_i = y_i x_i$.
- 3) Encode the prediction error e_i.

Predictive model for grayscale images

$$y=x_i-x_{i-1}$$

Histogram of the original image and Residual image

Entropy: $H_o = 7.8$ bits/pel (?)

 $H_r=5.1$ bits/pel (?)

Coding without prediction

•
$$f_0=8$$
; $p_0=p=8/64=0.125$;

O
$$f_1=56$$
; $p_1=(1-p)=56/64=0.875$

Entropy:

 $H = -((8/64)*log_2(8/64)+(56/64)*log_2(56/64))=$ **0.544** bits/pel

Prediction for binary images by pixel above

Entropy:

 $H = -((16/64)*log_2(16/64)+(48/64)*log_2(48/64))=$ **0.811** bits/pel Wrong predictor!

Prediction for binary images pixel to the left

Entropy:

$$H = -((1/64)*log_2(1/64) + (63/64)*log_2(63/64)) = 0.116 bits/pel Good predictor!$$

Comparison of predictors:

- Without prediction: H= 0.544 bits/pel
- Prediction by pixel above: H = 0.811 bits /pel (bad!)
- Prediction by pixel to the left: H=0.116 bits/pel (good!)