DS 503: Advanced Data Analytics

Week 2: Projection Techniques

Gagan Raj Gupta

How to deal with high-dimensions?

- O Project data to a low-dimensional space
- O Fidelity: While doing so, don't disturb the relative distances
- O Where is this used?
 - Principal component analysis
 - Nearest Neighbor Search
 - Clustering
 - Text Embeddings
 - Graph Embeddings
 - Image manifolds

Problem statement

- \bigcirc **D** x **n** data matrix **A** (D rows and **n** columns)
 - O Each row is a D-dimensional vector
 - OColumns are normalized (mean = 0)
- O Assume there is a projection matrix B, such that

$$\bigcirc z = B^T x \in R^M$$

- \bigcirc $B = [b_1, b_2, ..., b_M]$ has orthogonal columns
- \bigcirc B is the best-fit M-dim. subspace S_M for rows of A
 - Minimize reconstruction error
 - \bigcirc Minimize sum of squared distances from A_i to S_M

Minimize:
$$||x - \tilde{x}||^2$$

Best fit subspaces and Maximizing Information

- Let's begin with the following question.
 - \bigcirc Find a direction in which the data ($D \times n$ matrix) has maximum information
 - O Maximize $|Av_1|$, such that $|v_1| = 1$
 - O This is also equivalent to Minimizing the sum of squared distances to the point nearest to the line.
- O By successively solving the above problem, we can find the best-fit k-dimensional subspaces
 - Which preserve the maximum possible information (by maximizing projections)
 - Or equivalently, minimize the sum of squared distances of the vectors to the subspace
- When k=r, the rank of A, we get SVD

Projections, Distances and Data Variance

- Minimizing distance = maximizing projection
 - $|x||_2^2 = (projection)^2 + (distance to line)^2$
- SVD: Find best fit 1-dimensional line
 - $oldsymbol{0}$ u_1 = unit vector along the best fit line
 - \bigcirc x_i = i-th column of A, length of its projection: $|\langle x_i, u \rangle|$
- O Sum of squared projection lengths: $||A^Tu||_2^2$
- First singular vector:

$$\mathbf{u}_1 = \arg\max_{\|u\|_2=1} \|A^T u\|_2$$

- If there are ties, break arbitrarily
 - \circ $\sigma_1(A) = ||A^T u_1||_2$ is the first singular value

Variance of z_1 of $z \in \mathbb{R}^M$

$$V_1 := V[z_1] = \frac{1}{N} \sum_{n=1}^{N} z_{1n}^2$$

 $z_{1n} = b_1^T x_n$

 $V_1 = b_1^T S b_1$

Where S is the data-covariance matrix

$$S = \frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}_n \boldsymbol{x}_n^{\top}.$$

Maximizing Variance using PCA

Optimization Problem

$$\max_{\boldsymbol{b}_1} \boldsymbol{b}_1^{\top} \boldsymbol{S} \boldsymbol{b}_1$$

subject to $\|\boldsymbol{b}_1\|^2 = 1$.

Encoder

$$z_{n1} = b_1^T x_n \in R$$

Decoder

$$\tilde{x}_n = b_1 z_{n1} = b_1 b_1^T x_n \in R^D$$

Lagrangian

$$\begin{split} \mathfrak{L}(\boldsymbol{b}_1, \lambda) &= \boldsymbol{b}_1^{\top} \boldsymbol{S} \boldsymbol{b}_1 + \lambda_1 (1 - \boldsymbol{b}_1^{\top} \boldsymbol{b}_1) \\ \text{Differentiating} \\ \frac{\partial \mathfrak{L}}{\partial \boldsymbol{b}_1} &= 2 \boldsymbol{b}_1^{\top} \boldsymbol{S} - 2 \lambda_1 \boldsymbol{b}_1^{\top} \,, \qquad \frac{\partial \mathfrak{L}}{\partial \lambda_1} = 1 - \boldsymbol{b}_1^{\top} \boldsymbol{b}_1 \,, \\ \boldsymbol{S} \boldsymbol{b}_1 &= \lambda_1 \boldsymbol{b}_1 \,, \qquad \boldsymbol{b}_1 \text{ is an eigenvector of S} \\ \boldsymbol{b}_1^{\top} \boldsymbol{b}_1 &= 1 \,. \end{split}$$

$$V_1 = \boldsymbol{b}_1^{\mathsf{T}} \boldsymbol{S} \boldsymbol{b}_1 = \lambda_1 \boldsymbol{b}_1^{\mathsf{T}} \boldsymbol{b}_1 = \lambda_1,$$

- O Variance of the data projected onto a one-dimensional subspace equals the **eigenvalue** that is associated with the **basis vector b1** that spans this subspace.
- O To maximize the variance of the low-dimensional code, we choose the basis vector associated with the largest eigenvalue principal component of the data covariance matrix.
- This eigenvector is called the first principal component

General Algorithm

- O In general, the largest M (orthonormal) eigenvectors of the datacovariance matrix span the best M dimensional subspace for A
- They also capture the variance equal to the sum of largest M eigenvalues
- We can iteratively compute the largest eigenvalue/eigenvector of the covariance matrix 'S' and continue till the sum of M eigenvalues captures a large fraction of the trace of S

$$V_M = \sum_{m=1}^M \lambda_m$$

$$1-\frac{V_M}{V_D}$$

Stop when this become small

Properties of SVD

- \bigcirc SVD: $A = U\Sigma V^T$
- Σ = Diagonal matrix (positive real entries σ_{ii})
- \bigcirc *U*, *V*: orthonormal columns:
 - $\mathbf{Q} \ \mathbf{u}_1, \dots, \mathbf{u}_r \in \mathbb{R}^D$ (directions that maximize projections of x_i)
 - $oldsymbol{\circ}$ $v_1, ..., v_r \in \mathbb{R}^n$ (projections of x_i on u_i)
- O Thus, any matrix can be represented as sum of "r" rank-1 matrices

Singular Values vs. Eigenvalues

- O If *A* is a square matrix:
 - \bigcirc Vector \mathbf{v} such that $A\mathbf{v} = \lambda \mathbf{v}$; is an eigenvector with eigenvalue = λ
 - \bigcirc For symmetric real matrices, A, v's are orthonormal
 - \bigcirc A can be expressed as: $A = V\Sigma V^T = U\Sigma U^T$
 - $\bigcirc V'$ s columns are eigenvectors of A
 - O Diagonal entries of Σ are eigenvalues $\lambda_1, \dots, \lambda_n$
- SVD is defined for all matrices (not just square)
 - Orthogonality of singular vectors is automatic

$$A \boldsymbol{v}_i = \sigma_i \boldsymbol{u}_i$$
 and $A^T \boldsymbol{u}_i = \sigma_i \boldsymbol{v}_i$ (will show)

 $AA^Tu_i = \sigma_i^2 u_i \Rightarrow u_i's$ are eigenvectors of AA^T ((N-1) times sample covariance matrix)

SVD: Greedy Construction

- O Find best fit 1-dimensional line, repeat r times (until projection is 0)
- Second singular vector and value:

$$\mathbf{u}_{2} = \arg \max_{u \perp u_{1}, ||u||_{2} = 1} ||A^{T}u||_{2}$$
$$\sigma_{2}(A) = ||A\mathbf{u}_{2}||_{2}$$

k-th singular vector and value:

$$\mathbf{u}_{k} = \arg \max_{u \perp \mathbf{u}_{1}, \dots \mathbf{u}_{k-1}, ||u||_{2}=1} ||A^{T}u||_{2}$$
$$\sigma_{k}(A) = ||A^{T}\mathbf{u}_{k}||_{2}$$

 \bigcirc We can show that: $(\boldsymbol{u}_1, \boldsymbol{u}_2, ..., \boldsymbol{u}_k)$ is best-fit subspace

Best low rank approximations of a Matrix

O Suppose I have to find the best "k" rank approximation A_k matrix.

Let
$$A_k = \sigma_1 u_1 v_1^T + ... + \sigma_k u_k v_k^T$$

Eckart-Young: If B has rank k then $||A - B|| \ge |A - A||_k$

- This result has been proven for multiple norms
- O Spectral: $||A||_2 = \max \frac{||Ax||}{||x||} = \sigma_1$
- O Frobenius: $||A||_F^2 = \sigma_1^2 + \dots + \sigma_r^2 = \sum_{i,j} |a_{i,j}|^2 = trace\ of\ AA^T$
- O Nuclear: $|A_N| = \sigma_1 + ... + \sigma_r$ (the trace norm)

Applications of low rank approximations

- Principal component analysis (fitting a hyperplane to data)
- Model reduction in analyzing physical systems
- Fast algorithms in scientific computing
- PageRank and other spectral methods in data analysis
- Diffusion geometry and manifold learning
- O Many, many more ...

Computing the SVD: Power iteration method

- O Begin with a random vector x_0 that is not in the null space of $S = AA^T$
- O Follow the iteration $x_{k+1} = \frac{S x_k}{||S x_k||}$
- This converges to the eigenvector associated with the largest eigenvalue of S
- Also used in the page-rank algorithm for ranking web-pages based on their hyperlinks
- Issues: S can be very large
- O Alternative 1: If N << D, then we can instead work with the matrix A^TA which also has the same eigenvalues (square of singular values).
- O This can happen, for example, when we are dealing with large size images with millions of pixels.

SVD works well for small matrices (m, n< 5000) or sparse matrices. The function for computing SVD is not so easy to write.

JL Lemma and Random Projections

- O Suppose $x_1, x_2, ..., x_n$ are any n points in R^D and $k \ge \frac{8 \ln n}{\epsilon^2}$.
- \bigcirc \exists a distance preserving projection J from R^D to R^k which works \forall pairwise distances:

$$| (1 - \epsilon) | |x_i - x_j| |^2 \le | |Jx_i - Jx_j| |^2 \le (1 + \epsilon) | |x_i - x_j| |^2$$

- O There are multiple proofs and one of the proof shows that w.h.p. a random projection (kxD) is very likely to keep the n points apart.
- O Project each $x \in A$ onto f(x), where $f: \mathbb{R}^D \to \mathbb{R}^k$
- O Pick k vectors $u_1, ..., u_k$ i.i.d: $u_i \sim N_D(0^D, 1)$ $f(v) = (\langle u_1, v \rangle, ..., \langle u_k, v \rangle)$
 - O Since the k vectors were Gaussian, the projections are also Gaussian.
 - O Application of Gaussian Annulus theorem allows to bound the deviation in the distances

Applications

- O Suppose $x_1, x_2, ..., x_n$ are any n points in \mathbb{R}^D , where D is very large. Tasks:
- \bigcirc Suppose the points almost live on a linear subspace of (small) dimension k.
 - Find a basis for the "best" subspace. (Principal component analysis.)
- O Given k, find the subset of k vectors with maximal spanning volume.
- Suppose the points almost live on a low-dimensional nonlinear manifold.
 Find a parameterization of the manifold.
- O Given k, find for each vector x_i , its k closest neighbors.
- Partition the points into clusters.

Note: Some of these don't have well-defined solutions and some are combinatorially hard. If we can embed the points in a low-dimensional subspace, while preserving distance approximately, then a variety of algorithms for solving these problems become possible.

Application: Nearest Neighbors Search

Goal: Given a database of n points in \mathbb{R}^D where n and D are usually large. Query points in \mathbb{R}^D . Queries should be fast.

- O If the database has n1 points and n2 queries are expected during the lifetime of the algorithm, take n = n1 + n2
- O Project database (using random vectors) to a k-dimensional space
- Store projections in an efficient data structure (more in next lecture)
- On receiving a query, project the query to the same subspace and compute nearby database points.
- OThe JL Lemma says that with high probability this will yield the right answer whatever the query

Linear Regression (Problem setup)

- We are given observations (x, y)
 - O Let us build a linear model to predict y from the observations **x** s. t. $w_0 + \sum_{i=1}^d w_i x_i = y$
- O Compute the "best" solution to the model Xw = y that minimizes SSE (sum of squared distances)
- \bigcirc This problem is very similar to solving Ax = b, a system of linear equations
- In most cases, there may be no exact solution to this problem
- O But, there are many approaches we can take to get the "least squares" solution
 - O This minimizes the sum of square errors $||b A\hat{x}||^2$

Normal Equations

Since $(b - A\hat{x})$ is perpendicular to all vectors Ax in the column space, $(Ax)^T(b - A\hat{x}) = x^TA^T(b - A\hat{x}) = 0$

Normal Equation for solving $\hat{x} : A^T A \hat{x} = A^T b$

Least squares sol to Ax=b: $\hat{x} = (A^T A)^{-1} A^T b$

Projection of b onto Col(A): $p = A\hat{x} = A(A^TA)^{-1}A^Tb$

Projection matrix that multiplies b to give p: $P = A(A^TA)^{-1}A^T$

Pseudo Inverse Method

- O Pseudo Inverse Method: $\hat{x} = A^+b$
 - O If A has independent columns, $A^+ = (A^T A)^{-1} A^T$
 - O If A has independent rows, $A^+ = A^T (AA^T)^{-1}$
 - O Pseudo inverse can be computed using SVD: $A^+ = V\Sigma^+U^T$
 - \circ Σ^+ contains the inverse of all non-zero diagonal elements in Σ

QR (Gram-Schmidt) Method

- O Decompose A = QR
 - O Where Q is an orthogonal matrix, and R is a triangular matrix
- O Then, $A^TA = R^TQ^TQR = R^TR$ and the normal equation $A^TA\hat{x} = A^Tb$, can be solved as

$$\bigcirc \hat{\mathbf{x}} = (R^T R)^{-1} R^T Q^T \mathbf{b} = \mathbf{R}^{-1} \mathbf{Q}^T \mathbf{b}$$

This is computationally efficient to solve

Alternatives to compute Low Rank Approximations

- Let A be an mxn matrix of low numerical rank
- Suppose that you can't afford to compute the full SVD or you don't have a good implementation
- O How can you compute a low-rank approximation to A?
 - Gram-Schmidt: Keep reducing a rank-1 component from A
 - OComplexity: O(mnk)
 - O Krylov Methods: Restrict the matrix A to the k-dimensional "Krylov subspace"
 - OSpan $(r. Ar, A^2r, ..., A^{k-1}r)$
 - Compute eigen-decomposition of resulting matrix

- (1) for k = 1, 2, 3, ...
- (2) Let i denote the index of the largest column of A.
- (3) Set $\mathbf{q}_k = \frac{\mathbf{A}(:,i)}{\|\mathbf{A}(:,i)\|}$.
- (4) $\mathbf{A} = \mathbf{A} \mathbf{q}_k (\mathbf{q}_k^* \mathbf{A})$
- (5) if $\|\mathbf{A}\| \leq \varepsilon$ then break
- (6) end while
- (7) $\mathbf{Q} = [\mathbf{q}_1 \ \mathbf{q}_2 \ \dots \mathbf{q}_k].$

Each of these approximations result in a factorization of the form

$$A \approx Q Q^T A$$

Where Q is an approximate orthonormal basis for the column space of A

Randomized Low Rank Approximations

Range Finding (Basis) Problem: Given an m x n matrix A and an integer k < min(m,n). Find an orthonormal m x k matrix Q such that $A \approx Q Q^T A$

Solving the primitive problem via randomized sampling — intuition:

- 1. Draw Gaussian random vectors $g_1, g_2, \ldots, g_k \in \mathbb{R}^n$
- 2. Form "sample" vectors $y_1 = Ag_1$, $y_2 = Ag_2$, ..., $y_k = Ag_k \in \mathbb{R}^m$
- 3. Form orthonormal vectors $q_1, q_2, \ldots, q_k \in \mathbb{R}^m$ such that

$$Span(q_1, q_2, ..., q_k) = Span(y_1, y_2, ..., y_k)$$

For instance, Gram-Schmidt can be used — pivoting is rarely required.

If A has exact rank k, then $Span\{q_j\}_{j=1}^k = Range(A)$ with probability 1.

Randomized SVD

- O Goal: Given an $m \times n$ matrix **A**, compute an approximate rank-k SVD $A \approx U \Sigma V^T$
- O Algorithm:
- O 1. Draw an $n \times k$ Gaussian random matrix **G**. G = randn(n,k)
- \bigcirc 2. Form the $m \times k$ sample matrix Y = AG Y = A * G
- \bigcirc 3. Form an $m \times k$ orthonormal matrix **Q** such that $Y = \mathbf{QR}$ $[Q, \sim] = qr(Y)$
- O 4. Form the $k \times n$ matrix $\mathbf{B} = \mathbf{Q}^T A$ $\mathbf{B} = \mathbf{Q}' * \mathbf{A}$
- 5. Compute the SVD of the small matrix **B**: $\mathbf{B} = \widehat{U}\Sigma V^T$ [Uhat, Sigma, V] = svd(B,0)
- \bigcirc 6. Form the matrix $\mathbf{U} = \mathbf{Q}\widehat{U}$ $\mathbf{U} = \mathbf{Q} * \mathbf{U}$
- O Power iteration to improve the accuracy: The computed factorization is close to optimally accurate when the singular values of **A** decay rapidly. When they do not, a small amount of power iteration should be incorporated, i.e. replace Step 2 by $\mathbf{Y} = (AA^T)^t \mathbf{AG}$ for a small integer t, say t = 1 or t = 2.

Randomized Embeddings: "Fast" JL Transforms

O So far, the only randomized embedding we have described takes the form

$$f: R^D \to R^k: x \to \frac{1}{\sqrt{k}} Gx$$

where **G** is a matrix drawn from a Gaussian distribution. Evaluating $f(\mathbf{x})$ costs O(nk).

- \bigcirc The cost can be reduced to $O(n \log k)$ or even less, by using structured random maps.
 - Subsampled Fourier transforms. (Or Hadamard transform / cosine transform / . . .)
 - Sparse random embeddings pick matrix that consists mostly of zeros.
 - Chains of random Givens' rotations.