CS 440 Exam 2 review 2020-04-14

Lectures 13 & 14 - LL table-driven parsing

- LL(1) parsing is predictive
- Be able to define / calculate First, Follow sets given a grammar
 - With and without ε -rules
- Define / calculate LL(1) Parsing Prediction table given a grammar
 - (Requires First/Follow sets)
- Recognize / simulate some step(s) of a table-driven LL(1) parse

Lecture 15 Typechecking

- What is a type? type variable? monomorphic, polymorphic types?
 - Where can type variables appear given two types we want to check for compatibility
 - What is compatibility?
- Instantiation of a type variable means? (type var replaced by type). Show result of an instantiation,
- Are these two types compatible? With what instantiations? What is the common result type?

Lecture 15 Substitution

- What is substitution? Textual operation, replace a variable by a piece of text.
 - Textual equality \equiv vs semantic equality (everyday =).
- Notation [Var \mapsto Expr], [V1 \mapsto E1, V2 \mapsto E2], vs [V1 \mapsto E1][V2 \mapsto E2] (does V2 appear in E1?)
 - Our uses were pretty much all sequential
- Notation σ for substitution (or sequence of substitutions)
 - term σ
 - $(X * Y) [X \mapsto X+2] \equiv (X+2) * Y$ precedences important
 - term1 * term2 σ -— apply just to term2 (substitution treated as high precedence)

Lectures 15 & 16: Unification

- Unification equation $t \equiv u$ (?) (t and u are terms) find substitution σ that makes t and u textually the same
 - ie t $\sigma \equiv u \sigma$ (exact \equiv here)
- Unification problem set of unification equations $\{t1 \equiv u1, t2 \equiv u2\}$
 - Solve all the equations simultaneously with one σ .
 - $t1 \sigma \equiv u1 \sigma$, $t2 \sigma \equiv u2 \sigma$.
 - $\{X + Y^*z \equiv W^*a + (y+z) * z, X+a \equiv Z+a\}$ solved by $[X \mapsto W^*a][Y \mapsto y+z][Z \mapsto W^*a]$
 - $\{W^*a + (y+z)^*z \equiv W^*a + (y+z)^*, W^*a \equiv W^*a\}$

- Don't want a var to appear in substitutions to its right so that we don't reintroduce the variable when we
 do the sequence of substitutions.
- Unifier solves a unification problem
 - Generally want most general unifier (mgu)
 - Any other unifier can be derived from an mgu by substitutions ("more general" than derived one)
 - $[X \mapsto W^*a][Y \mapsto y+z][Z \mapsto W^*a]$ is more general than $[X \mapsto x^*a][Y \mapsto y+z][Z \mapsto x^*a]$ because we can use $[W \mapsto x]$ to go from first to second.
 - mgu's unique up to renaming. Solutions $[X \mapsto Y][Z \mapsto Y]$ and $[Y \mapsto X][Z \mapsto X]$ are just renamings of each other (variable to variable), so they're both mgu's
 - X*Y+Z goes to Y*Y+Y or X*X+X, which are just renamings of each other
 - $[X \mapsto Y]$ and $[Y \mapsto X]$ are renamings, e.g. take X*X+Y to Y*Y+Y or to X*X+X
 - Be able to solve unification problem or say why you can't or verify a solution

Lecture 17: Bottom-Up and Shift-Reduce Parsing

- How does bottom-up differ from top-down?
 - Direction of tree building, generates reverse rightmost derivation
 - Non-predictive (don't always know exactly what rule we're trying to parse).
 - Go left-to-right through input, keep track of what we've been able to parse so far.
- Shift-Reduce parsing
 - Use stack to hold incompletely processed terminals & nonterminals so far.
 - Shift terminal onto stack.
 - Reduce: take top of stack matching rhs of a rule, pop it off, push nonterminal on lhs
 - $R \rightarrow \alpha$ so stack that had $\beta \alpha$ turns into βR
 - One reduction can lead to another (if we had a rule $T \rightarrow \beta R$, we could apply it)

Lecture 17: LR(0) items

- LR(0) items derived from rules, add dot to indicate where we are in parsing the rule
 - $S \rightarrow \bullet a b, S \rightarrow a \bullet b, S \rightarrow a b \bullet$
 - In n.d. finite state machine for parsing, each item is its own state
 - $\{S \rightarrow \bullet \ a \ b\}$ on $a \rightarrow \{S \rightarrow a \bullet b\}$ on $b \rightarrow \{S \rightarrow a \ b \bullet\}$
 - Action table takes us through this sequence (shift a, shift b, reduce)
 - Have to go back to where we were when we decided to parse the S
 - $\bullet \quad E.g. \; \{T \rightarrow \alpha \bullet S \; \beta \} \; on \; \epsilon \rightarrow \{S \rightarrow \bullet \; a \; b \} \; etc$
 - have to know to get from $\{T \to \alpha \bullet S \beta\}$ on S to $\{T \to \alpha S \bullet \beta\}$
 - This is what the Go-To table is for.
- To get deterministic version of finite state machine, we use set-of-states transformation
 - In any given deterministic state, we may be in one of some number of n.d. states but we don't know which.

Lecture 18: LR(0) and SLR(1) parsing

- All LR family parsers shift exactly same way in same situation (you see symbol c, you push it).
- Differences come in when they decide to reduce.
- LR(0) reduce whenever possible [0 symbols lookahead]
- SLR(1) reduce if next symbol in Follow(lhs nonterminal)
 - For R → α figure out what can follow an R. No point in reducing now if that next symbol can't follow an R (it'll just produce an error when we try to shift).
 - LR(0) parser will reduce $R \to \alpha$ and generate the shift error
- LR(0) parser action table row will all have the same reduce operation (if it has any)
- SLR(1) row could have a mix of this reduce, another reduce, or blanks. (Say r1 on x, r2 on y)
 - LR(0) parser will have both reductions in every entry in the row (r1 and r2 on x, r1 and r2 on y)
 - Reduce-reduce conflict tells you the language is not LR(0).
- SLR(1) can simulate LR(0) [just ignore the lookahead]

Lecture 19: Canonical / Full LR(1) Parsing

- LR(1) parser decides to reduce using an even fine-grained decision.
 - $R \to \alpha$ gets reduced if next symbol \in subset of Follow(R) that can follow this particular use of R.
 - E.g. $S \rightarrow R \times R \times Y$
 - No point in doing first reduction if next symbol \neq x (e.g. y)
 - No point doing second reduction if next symbol \neq y (e.g. x)
 - SLR(1) parser will do both reductions because next symbol x or $y \in Follow(R) = \{x, y\}$
 - LR(1) parser generates error when it can't reduce; SLR(1) reduces and gets error on shift.
- For language that's LR(0), SLR(1) and LR(1) parsers exist also
 - All behave the same except that LR(1) might flag error before SLR(1) before LR(0).
- That's why LR(1) parser has LR(1) items, $R \to \beta \bullet \gamma$, L where $L \subseteq Follow(R)$ is the follow set for this particular use of R.

Kinds of LR questions

- Given a grammar
 - What are the LR(0), LR(1) items?
 - What is the (\varepsilon-transition) closure for an item? What transitions does ... state have?
 - Given bad input, when will LR(0), SLR(1), LR(1) parser generate error?