Molecular and Distributional Properties of Tanimoto Similarities for Hypoxia-inducible Factor Prolyl Hydroxylase Inhibitors

Jeff Cromwell, PhD

The Mathematical Learning Space Research Portfolio

1 Abstract

The cancer cell is very adapative to resist the immune system response and chemotherapy with neoplastic cells of altered lipid metabolism that generates cellular wall diversity with outlier membrane compositional chemical arrangements. These cells have higher concentrations of cholesterol and increase the membrane thickness and rigidity along with a greater number of gangliosides in the lipid bilayer with enhanced invasive properties.

Hypoxia changes the equilibrium of energy supply and demand and can cause cell death and organ failure with production increases in reactive oxygen (O2) and nitrogen species and limitations on antioxidant capacity in a red blood cell (RBC). B cells can produce lymphotoxin for angiogenesis in tumor growth. Tumor-derived extracellular vesicles (tEVs) can activate B cells to produce antibodies that bind antigen and form immune complexes.

L-lactate dehydrogenase (EC 1.1.1.27) is an Oxidoreductases for the CH-OH group of donors with NAD+ or NADP+. Based on the HIF-1 Pathway several molecular properties with respect to stability, binding potential, temperature and charge at three different pH values were calculated. For a collection of Tanimoto similarities for Roxadustat a hypoxia-inducible factor prolyl hydroxylase inhibitor, Pearson type distributions were identiified based on maximum likelihood estimation with moments for 4 different atom types.

2 Introduction

B cells are in bone marrow hypoxic (pO2 1.3 percent) with extravascular oxygen tension ranging between pO2 0.6–2.8 percent. The B-cells present in secondary lymphoid tissue like the spleen(i.e hypoxic environment (pO2 0.5–4.5 percent) along with the concentration of oxygen within lymph nodes where T cells are primed has an interval of 0.5 and 6 percent. [1A]

Email address: http://mathlearningspace.weebly.com/ @ copyright 2022 Jeff Cromwell, PhD All Rights Reserved. (Jeff Cromwell, PhD)

L-lactate dehydrogenase(EC 1.1.1.27) is an oxidoreductases that acts on the CH-OH group of donors with NAD+ or NADP+ as acceptor sysname (S)-lactate:NAD+ oxidoreductase with reaction(IUBMB) (S)-lactate + NAD+ = pyruvate + NADH + H+ [RN:R00703] with pathways listed as [401]

- 1. ec00010 Glycolysis / Gluconeogenesis
- 2. ec00270 Cysteine and methionine metabolism
- 3. ec00620 Pyruvate metabolism
- 4. ec00640 Propanoate metabolism
- 5. ec01100 Metabolic pathways
- 6. ec01110 Biosynthesis of secondary metabolites
- 7. ec01120 Microbial metabolism in diverse environments

Figure 1 has an example of the pathway for Pyruvate metabolism.

Figure 1: Pyruvate metabolism is part of overall Metabolism and Carbohydrate metabolism with ec00620 [401]

Hypoxia-inducible factor 1 (HIF-1) is a transcription factor master regulator of oxygen homeostasis with two subunits: an (1) inducibly-expressed HIF-1alpha subunit and a (2) constitutively-expressed HIF-1beta subunit. Under normoxia, HIF-1 alpha undergoes hydroxylation at specific prolyl residues with immediate ubiquitination and subsequent proteasomal degradation of the subunit. In hypoxia, HIF-1 alpha subunit becomes stable and interacts with coactivators such as p300/CBP to modulate its transcriptional activity. The target genes of HIF-1 encode proteins to increase O2 delivery and mediate adaptive responses to O2 deprivation. HIF-1 is induced in response to reduced oxygen availability and stimulants, such as nitric oxide, or various growth factors. [401]

HIF-1 is one the primary genes involved in the homeostatic process to increase vascularization in hypoxic areas such as localized ischemia and tumors. [1A] Figure 2 has the HIF-1 pathway.

Figure 2: HIF-1 Pathway [401]

The genes involved are: HSA: 160287 (LDHAL6A) 3939(LDHA) 3945(LDHB) 3948(LDHC) 92483(LDHAL6B) [401]

2.1. O2 deprivation

Electrons accumulate in the electron transport system with stoppage of the production of ATP. Oxygen saturation values of 95 to 100 percent are normal with values under 90 percent could quickly deteriorate status and values under 70 percent are life-threatening. The minimum oxygen concentration in the air for a human is 19.5 percent. Tumor hypoxia has (a) uncontrollable cell proliferation, (b) altered metabolism, and (c) abnormal tumor blood vessels from a reduced transport of oxygen and nutrients. Hypoxia is one of the main features of solid tumors and correlates with a poor prognosis of cancer patients. Low oxygen levels in cells can be a primary cause of uncontrollable tumor growth in some cancers. The typical pH for blood in the arteries is 7.35 to 7.45 and healthy cells have a slightly alkaline internal environment with a pH of around 7.2. Cancer cells are more alkaline and have an internal pH that is higher than 7.2. [1B]

When oxygen levels decrease, the HIF protein inhibits oxygen-consuming processes of the cells through gene activity changes and the cells adapt quickly and survive the low oxygen environment. 38 ATP molecules per oxidized glucose molecule during cellular respiration (2 from glycolysis, 2 from the Krebs cycle, and about 34 from the electron transport system). Due to the acid-base properties of ATP, ADP, and inorganic phosphate, the hydrolysis of ATP has the effect of lowering the pH of the reaction medium. ATP is stable in aqueous solutions between pH 6.8 and 7.4 without catalysts. At more extreme pHs, it rapidly hydrolyses to ADP and phosphate with the total quantity of ATP in an adult about 0.10 mol/L. One hundred to 150 mol/L of ATP are required daily so each ATP molecule is recycled some 1000 to 1500 times per day in other words, the human body turns over its weight in ATP daily. ATP is highly soluble in water and is quite stable in solutions between pH 6.8 and 7.4 and rapidly hydrolysed at extreme pH so ATP is best stored as an anhydrous salt. ATP is unstable in unbuffered water and hydrolyses to ADP and phosphate. [1B]

Figure 3 has the chemical arrangement of Cholesterol.

Figure 3: Cholesterol [?key1] [2] [1002]

A greater number of gangliosides in the lipid bilayer is associated with enhanced invasive properties of cancer (Groux-Degroote et al., 2017). [?key1]

3 Molecular Properties of HIF Genes

Molecular properties are abundant in dimensional reduction for collections of sequences. Examples such as stability, binding potential aliphatic and hydrophobicity along with the charge at different pH is a few of available molecular properties to examine based on the gene ontology ids in Table 1. The net charge of a protein sequence based on the Henderson-Hasselbalch equation based on

pH 5, 7 and 9. The aliphatic index is the relative volume occupied by aliphatic side chains (Alanine, Valine, Isoleucine, and Leucine) and is a positive factor for the increase of thermostability of globular proteins. The potential protein interaction index proposed by Boman (2003) based in the amino acid sequence of a protein and provides an overall estimate of the potential of a peptide to bind to membranes or other proteins as receptors. A protein have high binding potential if the index value is higher than 2.48. This index predicts the stability of a protein based on its amino acid composition, a protein whose instability index is smaller than 40 is predicted as stable, a value above 40 predicts that the protein may be unstable. Hydrophobicity is an important stabilization force in protein folding; this force changes depending on the solvent in which the protein is found. [10011]

	Particle	Otale What Landau	Diadian Detectal	Al lulusti	4.4	0-115	0-117	0-110
1	Protein (RefSeq) cullin 2	Stability Index 44.6	Binding Potential 1.844	ALiphatic 84.4	f.1 -0.42242	CpH5 25.1269	-1.00613	-18.672
2	(RefSeq) ring-box 1	38.6	1.620	66.0	-0.27963	4.9946	-0.05752	-7.946
3	(RefSeq) elongin B	63.0	2.124	71.9	-0.49661	-3.1775	-5.82704	-8.416
4	(RefSeq) elongin C	27.8	1.309	74.9	-0.19911	-3.3070	-7.38072	-11.447
5 6	(RefSeq) vascular endothelial growth factor A (RefSeq) egl-9 family hypoxia inducible factor 2	52.3 54.0	2.390 1.691	57.5 72.0	-0.78276 -0.41622	29.0728 14.8349	18.08444 4.53108	0.795 -8.809
7	(RefSeq) egl-9 family hypoxia inducible factor 3	34.7	1.707	86.5	-0.27992	10.7516	2.40263	-7.622
8	(RefSeq) egl-9 family hypoxia inducible factor 1	40.1	2.027	61.7	-0.65704	24.3588	11.95413	-3.560
9	(RefSeq) von Hippel-Lindau tumor suppressor	68.7	2.515	75.4	-0.77653	-8.9520	-16.84300	-20.713
10 11	(RefSeq) aryl hydrocarbon receptor nuclear translocator (RefSeq) CREB binding protein	52.4 65.9	2.157 1.849	60.8 60.9	-0.61445 -0.69034	15.1446 110.5404	-4.53891 44.96053	-20.604 -12.504
12	(RefSeq) E1A binding protein p300	67.0	1.866	59.7	-0.72531	113.8659	45.12499	-14.271
13	(RefSeq) hypoxia inducible factor 1 subunit alpha	56.0	2.078	75.0	-0.57288	-0.6261	-28.10190	-47.451
14	(RefSeq) solute carrier family 2 member 1	36.6	0.238	108.9	0.53415	14.0814	7.01605	-0.471
15 16	(RefSeq) epidermal growth factor (RefSeq) insulin like growth factor 1	48.7 64.1	1.598	77.3	-0.30389 -0.73231	14.5310 25.4716	-28.77182 20.60987	-89.371
17	(RefSeq) insulin like growth factor i	40.3	2.358 0.573	51.6 102.9	0.19273	0.0165	-2.71938	10.255 -8.594
18	(RefSeq) epidermal growth factor receptor	44.6	1.633	80.7	-0.31603	31.1671	-6.30946	-61.899
19	(RefSeq) erb-b2 receptor tyrosine kinase 2	56.1	1.455	82.4	-0.24749	15.3392	-25.30958	-80.635
20 21	(RefSeq) insulin like growth factor 1 receptor	48.0	1.781	77.6	-0.40080	13.5161	-21.71694	-65.808
22	(RefSeq) insulin receptor (RefSeq) phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha	48.3 48.4	1.755 1.643	80.0 91.4	-0.35933 -0.30609	25.8921 38.8740	-19.43797 3.30162	-68.129 -31.943
23	(RefSeq) phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta	46.9	1.445	95.9	-0.20056	31.9840	1.10459	-26.874
24	(RefSeq) phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta	48.6	1.531	90.6	-0.25498	38.5201	2.60868	-30.606
25 26	(RefSeq) phosphoinositide-3-kinase regulatory subunit 1	48.9 50.4	2.261	81.5	-0.71602	13.1583	-8.52487	-20.819
27	(RefSeq) phosphoinositide-3-kinase regulatory subunit 2 (RefSeq) phosphoinositide-3-kinase regulatory subunit 3	46.9	2.084 2.504	79.5 73.1	-0.62679 -0.86768	16.4673 8.8100	-6.03851 -9.52162	-17.608 -20.112
28	(RefSeq) AKT serine/threonine kinase 3	34.7	2.139	71.8	-0.59854	8.0435	-7.56731	-18.847
29	(RefSeq) AKT serine/threonine kinase 1	35.5	2.071	71.7	-0.57479	9.1766	-8.05164	-18.887
30	(RefSeq) AKT serine/threonine kinase 2	35.1	2.016	77.0	-0.47297	10.7141	-4.53812	-14.891
31 32	(RefSeq) mechanistic target of rapamycin kinase (RefSeq) cytochrome b-245 beta chain	40.9 34.7	1.537 0.981	95.2 93.7	-0.19259 0.04912	95.6477 33.2672	6.05386 15.60213	-47.588 -2.754
33	(RefSeq) phospholipase C gamma 1	44.4	2.105	74.3	-0.55496	21.1606	-20.13264	-49.994
34	(RefSeq) phospholipase C gamma 2	45.5	2.244	75.4	-0.61257	33.1786	-6.55763	-34.969
35	(RefSeq) protein kinase C alpha	37.4	1.806	71.3	-0.47664	24.8370	0.47611	-22.245
36 37	(RefSeq) protein kinase C beta (RefSeq) protein kinase C gamma	36.9 43.5	1.876 1.664	68.7 72.7	-0.50134 -0.34577	23.3131 28.9934	0.00122 4.64963	-22.178 -19.423
38	(RefSeq) lactate dehydrogenase A like 6A	35.1	1.071	107.7	-0.01114	10.3975	-0.01525	-8.184
39	(RefSeq) lactate dehydrogenase A	24.8	1.083	106.8	-0.00633	13.1590	4.53050	-2.521
40	(RefSeq) lactate dehydrogenase B	26.9	1.001	109.3	0.05599	4.5681	-4.46382	-11.415
41 42	(RefSeq) lactate dehydrogenase C	30.5 34.3	0.912 1.003	113.6 105.6	0.14819 0.05302	11.1281 20.1808	1.74121 9.16195	-6.172 -0.675
43	(RefSeq) lactate dehydrogenase A like 6B (RefSeq) pyruvate dehydrogenase kinase 1	51.4	1.743	82.5	-0.33372	20.8518	8.52125	0.340
44	(RefSeq) pyruvate dehydrogenase E1 subunit alpha 1	33.1	1.726	77.6	-0.31179	16.3178	5.56234	-7.499
45	(RefSeq) pyruvate dehydrogenase E1 subunit alpha 2	37.4	1.701	79.5	-0.28479	20.9161	9.76784	-4.255
46	(RefSeq) pyruvate dehydrogenase E1 subunit beta	41.9	1.094	89.4	0.00167	7.7207	-1.49233	-9.142
47 48	(RefSeq) calcium/calmodulin dependent protein kinase II alpha (RefSeq) calcium/calmodulin dependent protein kinase II beta	47.5 52.7	1.741 1.581	84.5 80.2	-0.38013 -0.34955	22.5179 25.4430	0.76570 2.59058	-13.857 -16.554
49	(RefSeq) calcium/calmodulin dependent protein kinase II delta	42.5	1.723	81.3	-0.40060	21.4949	2.01227	-12.688
50	(RefSeq) calcium/calmodulin dependent protein kinase II gamma	49.9	1.739	82.2	-0.41132	24.5144	2.70283	-13.513
51	(RefSeq) hexokinase 1	37.8	1.728	89.3	-0.21003	24.9563	-2.49010	-25.327
52 53	(RefSeq) hexokinase 2 (RefSeq) hexokinase 3	34.9 41.6	1.669 1.234	87.4 97.1	-0.19084 0.09989	15.9579 1.2049	-16.42367 -23.24994	-43.606 -50.618
54	(RefSeq) hexokinase domain containing 1	35.2	1.658	90.4	-0.18593	24.4776	0.97968	-22.689
55	(RefSeq) phosphofructokinase, liver type	31.0	1.346	88.8	-0.08064	25.5744	3.93689	-13.579
56	(RefSeq) phosphofructokinase, muscle	32.5	1.529	85.4	-0.17167	30.7967	8.15414	-9.872
57 58	(RefSeq) phosphofructokinase, platelet (RefSeq) glyceraldehyde-3-phosphate dehydrogenase	32.3 15.6	1.471 1.195	88.0 84.7	-0.14605 -0.10776	21.9803 15.6558	3.67848 5.30739	-13.971 -1.034
59	(RefSeq) aldolase, fructose-bisphosphate A	36.0	1.373	86.9	-0.26209	15.4733	4.91975	-5.131
60	(RefSeq) aldolase, fructose-bisphosphate B	34.7	1.372	85.3	-0.22665	14.2876	3.88895	-6.713
61	(RefSeq) aldolase, fructose-bisphosphate C	33.7	1.496	88.0	-0.24066	8.9411	-0.52490	-9.302
62 63	(RefSeq) enolase 1 (RefSeq) enolase 2	36.5 35.3	1.451 1.476	88.6 92.6	-0.22143 -0.18825	11.0080 -6.1386	1.27579 -16.71445	-6.662 -24.623
64	(RefSeq) enolase 3	29.9	1.358	90.4	-0.19355	12.7537	2.51368	-5.643
65	(RefSeq) enolase 4	46.7	1.331	90.5	-0.25616	8.5357	-11.50883	-27.383
66	(RefSeq) phosphoglycerate kinase 1	27.3	1.123	90.3	-0.07794	12.5940	4.00492	-3.970
67 68	(RefSeq) phosphoglycerate kinase 2 (RefSeq) 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3	21.9 51.1	1.081 2.141	92.4 80.4	-0.06930 -0.52096	17.2326 24.1632	7.48104 8.47662	-1.053 -7.696
69	(RefSeq) erythropoietin	42.4	1.139	106.7	0.02746	6.8396	2.56001	-2.928
70	(RefSeq) transferrin	34.9	1.586	73.5	-0.33625	24.4504	1.37318	-35.871
71	(RefSeq) transferrin receptor	21.8	1.494	82.1	-0.24263	14.9445	-3.08433	-15.602
72 73	(RefSeq) fms related receptor tyrosine kinase 1 (RefSeq) serpin family E member 1	46.1 35.3	1.750 1.217	82.2 87.8	-0.35000 -0.05896	61.4303 14.2354	24.27481 1.09808	-12.967 -4.398
74	(RefSeq) angiopoletin 1	39.8	2.068	73.1	-0.68092	16.4579	-2.20118	-16.236
75	(RefSeq) angiopoietin 2	36.5	1.940	75.5	-0.59899	2.7666	-9.33338	-20.581
76	(RefSeq) angiopoietin 4	52.3	2.002	84.0	-0.52942	27.9877	13.09819	1.166
77 78	(RefSeq) TEK receptor tyrosine kinase (RefSeq) TIMP metallopeptidase inhibitor 1	37.2 70.5	1.544 1.107	85.6 82.0	-0.27562 -0.01981	33.2805 11.3364	-1.88545 5.06005	-41.182 -6.383
79	(RefSeq) endothelin 1	48.3	2.605	63.0	-0.01961	25.1594	17.33913	6.248
80	(RefSeq) nitric oxide synthase 2	49.0	1.687	79.6	-0.38517	57.1275	14.85501	-18.890
81	(RefSeq) nitric oxide synthase 3	53.5	1.664	79.5	-0.34929	34.6250	3.20061	-27.481
82 83	(RefSeq) heme oxygenase 1 (RefSeq) natriuretic peptide A	60.8 60.6	1.807 1.655	83.0 81.5	-0.42674 -0.26689	10.4235 0.6018	2.44671 -1.82975	-0.688 -4.444
84	(RefSeq) lymphotoxin beta receptor	47.4	1.258	68.7	-0.26689	4.8002	-1.82975	-4.444
85	(RefSeq) toll like receptor 4	43.0	1.154	101.9	0.03278	15.3453	-10.07716	-33.876
86	(RefSeq) nuclear factor kappa B subunit 1	38.1	1.542	84.7	-0.33936	1.3484	-33.04840	-51.806
87 88	(RefSeq) RELA proto-oncogene, NF-kB subunit	54.4 30.3	1.808	73.2 75.2	-0.46352 -0.57771	3.7657	-9.08377 10.37478	-19.699 6.167
88 89	(RefSeq) interferon gamma (RefSeq) interferon gamma receptor 1	48.7	2.127 1.470	75.2 88.8	-0.57771 -0.23906	13.7179 -9.5360	-25.45220	6.167 -39.574
90	(RefSeq) interferon gamma receptor 2	52.5	0.932	94.0	0.03056	0.8186	-6.74531	-14.344
91	(RefSeq) interleukin 6	57.7	1.609	87.5	-0.27075	3.3532	-0.64437	-5.190
92	(RefSeq) interleukin 6 receptor (RefSeq) signal transducer and activator of transcription 3	61.4	1.667	74.6	-0.32842 -0.40338	19.6287	7.28475 -6.25461	-5.704
93 94	(RefSeq) signal transducer and activator of transcription 3 (RefSeq) eukaryotic translation initiation factor 4E binding protein 1	48.2 78.9	1.706 2.272	83.5 52.0	-0.40338 -0.70085	12.5868 0.3046	-6.25461 -1.83289	-22.599 -4.428
95	(RefSeq) eukaryotic translation initiation factor 4E	52.0	2.201	71.4	-0.69677	3.9263	-2.91905	-8.433
96	(RefSeq) eukaryotic translation initiation factor 4E family member 1B	45.7	2.119	83.4	-0.56612	9.4655	0.60041	-4.537
97	(RefSeq) eukaryotic translation initiation factor 4E family member 2	47.6	2.543	64.1	-0.87306	12.8199	5.38125	1.056
98 99	(RefSeq) ribosomal protein S6 kinase B1 (RefSeq) ribosomal protein S6 kinase B2	51.0 58.7	1.870 1.669	73.4 80.4	-0.49105 -0.37614	14.8108 17.4669	-2.78118 1.93643	-12.816 -8.217
100	(RefSeq) ribosomal protein S6	51.8	3.086	77.9	-0.94538	47.5082	42.62344	38.076
101	(RefSeq) mitogen-activated protein kinase 1	39.7	1.563	95.9	-0.28667	13.7514	-0.08872	-10.755
102	(RefSeq) mitogen-activated protein kinase 3	43.1	1.621	91.6	-0.31398	11.2249	-1.53278	-10.898
103 104	(RefSeq) mitogen-activated protein kinase kinase 1 (RefSeq) mitogen-activated protein kinase kinase 2	43.9 49.6	1.504 1.652	87.1 91.1	-0.30458 -0.31850	9.5864 10.0415	-2.00379 -2.72599	-10.350 -10.453
105	(RefSeq) MAPK interacting serine/threonine kinase 2	58.1	1.870	80.6	-0.31630	9.6207	-7.85493	-24.884
106	(RefSeq) MAPK interacting serine/threonine kinase 1	55.0	1.848	78.4	-0.42428	11.4805	-1.96884	-15.757
107	(RefSeq) BCL2 apoptosis regulator	51.6	1.259	78.0	-0.13598	9.7627	1.09193	-3.863
108 109	(RefSeq) cyclin dependent kinase inhibitor 1A (RefSeq) cyclin dependent kinase inhibitor 1B	80.9 66.1	2.785 3.205	56.5 44.4	-0.84512 -1.26111	7.1264 6.8528	3.32435 0.08300	-1.755 -5.167

Drugs for HIF-1 are as follows: [?key1]

- 1. D09926 Icrucumab (USAN/INN)
- 2. D10334 Rebastinib (USAN)
- 3. D10386 Cindunistat (USAN/INN)
- 4. D10395 Nesvacumab (USAN)
- 5. D10399 Rebastinib Tosylate (USAN)
- 6. D10419 Cindunistat hydrochloride maleate (USAN)
- 7. D10464 Firtecan pegol (USAN/INN)
- 8. D10593 Roxadustat (JAN/USAN/INN)
- 9. D10874 Daprodustat (JAN/USAN/INN)
- 10. D11078 Vadadustat (JAN/USAN/INN)
- 11. D11273 Molidustat sodium (JAN/USAN)
- 12. D11452 Tomivosertib (USAN/INN)
- 13. D11481 Tomivosertib hydrochloride (USAN)
- 14. D11523 Enarodustat (JAN)
- 15. D11540 Razuprotafib (USAN)
- 16. D11812 Pabinafusp alfa (genetical recombination) (JAN)
- 17. D12122 Molidustat (USAN/INN)

Table 2 has the Drug name and the efficacy.

	Name	EFF					
1	Icrucumab (USAN/INN)	Antineoplastic, Angiogenesis inhibitor, Anti-vascular en- dothelial growth factor receptor-1 antibody					
2	Rebastinib (USAN)	Antineoplastic, Tyrosine kinase inhibitor					
3	Cindunistat (USAN/INN)	Anti-inflammatory, Inducible nitric oxide synthase in- hibitor					
4	Nesvacumab (USAN)	Antineoplastic, Angiogenesis inhibitor					
5	Rebastinib Tosylate (USAN)	Antineoplastic, Tyrosine kinase inhibitor					
6	Cindunistat hydrochloride maleate (USAN)	Anti-inflammatory, Inducible nitric oxide synthase in- hibitor					
7	Firtecan pegol (USAN/INN)	Antineoplastic, Topoisomerase I inhibitor					
8	Roxadustat (JAN/U- SAN/INN);	Anti-anemic, Prolyl hydroxylase inhibitor					
9	Daprodustat (JAN/U- SAN/INN);	Anti-anemic, Prolyl hydroxylase inhibitor					
10	Vadadustat (JAN/U- SAN/INN):	Anti-anemic, Prolyl hydroxylase inhibitor					
11	Molidustat sodium (JAN/U- SAN);	Anti-anemic, Hypoxia inducible factor-prolyl hydroxy- lase (HIF-PH) inhibitor					
12	Tomivosertib (USAN/INN)	Antineoplastic, MAP kinase interacting serine/threonine kinase inhibitor					
13	Tomivosertib hydrochloride (USAN)	Antineoplastic, MAP kinase interacting serine/threonine kinase inhibitor					
14	Enarodustat (JAN);	Anti-anemic, Hypoxia inducible factor-prolyl hydroxy- lase (HIF-PH) inhibitor					
15	Razuprotafib (USAN)	Angiopoietin modulator, TIE2 receptor agonist					
16	Pabinafusp alfa (genetical recombination) (JAN);	Fusion protein					
17	Molidustat (USAN/INN)	Anti-anemic, Hypoxia inducible factor-prolyl hydroxy- lase (HIF-PH) inhibitor					

Roxadustat is an orally bioavailable, hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHI), with potential anti-anemic activity. Roxadustat binds to and inhibits HIF-PHI, an enzyme responsible for the degradation of transcription factors in the HIF family under normal oxygen conditions. This prevents HIF breakdown and promotes HIF activity where increased HIF activity leads to an increase in endogenous erythropoietin production for erythropoiesis. It also reduces the (a) expression of the peptide hormone hepcidin, (b) improves iron availability, and (c) boosts hemoglobin (Hb) levels and HIF regulates the expression of genes in response to reduced oxygen levels such as genes required for erythropoiesis and iron metabolism. [601]

Figure 4 has the Roxadustat chemical configuration.

Figure 4: Roxadustat [601]

Roxadustat is an N-acylglycine resulting from the formal condensation of the amino group of glycine with the carboxy group of 4-hydroxy-1-methyl-7-phenoxyisoquinoline-3-carboxylic acid. It is an inhibitor of hypoxia inducible factor prolyl hydroxylase (HIF-PH) and has a role as an EC 1.14.11.2 (procollagen-proline dioxygenase) inhibitor and an EC 1.14.11.29 (hypoxia-inducible factor-proline dioxygenase) inhibitor. It is a member of isoquinolines, an aromatic ether and a N-acylglycine. [601]

Figure 5 has the Tanimoto Structural Similarities N=845 with CID5884 with (a) oxygen (b) carbon (c) hydrogen (d) Nitrogen with a location scale [0,1] with 0=start and 1=end for the SMILE sequence.

Figure 5: Tanimoto Structural Similarities N=868 with CID11256664 with (a) oxygen (b) carbon (c) hydrogen (d) Nitrogen with a location scale [0,1] with 0=start and 1=end for the SMILE sequence. [601] The Pearson distribution with moments are (a) type 1 a 0.9198973 b=1.711608, location=0.001144165, scale=1.211808, (b) type 3 shape=1.317877, location=0.003236576, scale=0.2965204, (c) type 2, a=0.9742473, location=0.02059497, scale= 0.9783164, and (d) type 3, shape=1.653929, location=0.005221357, scale=0.1935626

4 Conclusion

Based on the HIF-1 Pathway several molecular properties with respect to stability, binding potential, temperature and charge at three different pH values were calculated. For a collection of Tanimoto similarities for Roxadustat a hypoxia-inducible factor prolyl hydroxylase inhibitor, Pearson type distributions were identiified based on maximum likelihood estimation with moments for 4 different atom types.

5 Bibliography

- [1A] Wikipedia contributors. "Lymphocyte." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 12 Dec. 2021. Web. 3 Jan. 2022.
- [1B] Wikipedia contributors. "Adaptive immune system." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 12 Nov. 2021. Web. 3 Jan. 2022.
- [1C] Wikipedia contributors. "Dendritic cell." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 16 Dec. 2021. Web. 3 Jan. 2022.
- [2] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne. (2000) The Protein Data Bank Nucleic Acids Research. 28: 235-242.
- [3] Cruciani, G., Baroni, M., Carosati, E., Clementi, M., Valigi, R., and Clementi, S. (2004) Peptide studies by means of principal properties of amino acids derived from MIF descriptors. J. Chemom. 18, 146-155.
- [4] Kidera, A., Konishi, Y., Oka, M., Ooi, T., and Scheraga, H. A. (1985). Statistical analysis of the physical properties of the 20 naturally occurring amino acids. Journal of Protein Chemistry, 4(1), 23-55.
- [5] Sandberg M, Eriksson L, Jonsson J, Sjostrom M, Wold S: New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J Med Chem 1998, 41:2481-2491.
- [6] Liang, G., and Li, Z. (2007). Factor analysis scale of generalized amino acid information as the source of a new set of descriptors for elucidating the structure and activity relationships of cationic antimicrobial peptides. Molecular Informatics, 26(6), 754-763.
- [7] Tian F, Zhou P, Li Z: T-scale as a novel vector of topological descriptors for amino acids and its application in QSARs of peptides. J Mol Struct. 2007, 830: 106-115. 10.1016/j.molstruc.2006.07.004.
- [8] van Westen, G. J., Swier, R. F., Wegner, J. K., IJzerman, A. P., van Vlijmen, H. W., and Bender, A. (2013). Benchmarking of protein descriptor sets in proteochemometric modeling (part 1): comparative study of 13 amino acid descriptor sets. Journal of cheminformatics, 5(1), 41.
- [9] Yang, L., Shu, M., Ma, K., Mei, H., Jiang, Y., and Li, Z. (2010). ST-scale as a novel amino acid descriptor and its application in QSAM of peptides and analogues. Amino acids, 38(3), 805-816.
- [10] Georgiev, A. G. (2009). Interpretable numerical descriptors of amino acid space. Journal of Computational Biology, 16(5), 703-723.
- [11] Zaliani, A., and Gancia, E. (1999). MS-WHIM scores for amino acids: a new 3D-description for peptide QSAR and QSPR studies. Journal of chemical information and computer sciences, 39(3), 525-533.
- [400] Kanehisa, Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K.; KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353-D361 (2017).
- [401] Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M.; KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457-D462 (2016).
- [402] Kanehisa, M. and Goto, S.; KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27-30 (2000).
- [403] Petri, V., Jayaraman, P., Tutaj, M., Hayman, G. T., Smith, J. R., De Pons, J., ... Jacob, H. J. (2014). The pathway ontology – updates and applications. Journal of Biomedical Semantics, 5, 7. http://doi.org/10.1186/2041-1480-5-7

- [601] Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, von Mering C. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 Jan; 47:D607-613.PubMed
- [800] Kim, Sunghwan et al. "PubChem in 2021: new data content and improved web interfaces." Nucleic Acids Res. vol. 49,D1 (2021): D1388-D1395. doi:10.1093/nar/gkaa971
- [1000] R Core Team. "R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria." (2015). URL https://www.R-project.org/.
- [1001] Osorio, D., Rondon-Villarreal, P. and Torres, R. Peptides: A package for data mining of antimicrobial peptides. The R Journal. 7(1), 4-14 (2015).
- [1002] Grant, B.J. et al. (2006) Bioinformatics 22, 2695-2696.