Análise de desempenho do algoritmo *bucketsort* com diferentes subalgoritmos de ordenação

Eugenio Souza Carvalho¹, Hugo Santos Piauilino Neto¹

¹Departamento de Computação Universidade Federal do Piauí (UFPI) Teresina – PI – Brazil

{hugos94, eugeniucarvalho}@gmail.com

Abstract. This paper presents a performance analysis of bucketsort algorithm with different sorting sub-algorithms, in addition to a general overview of the history and operation of the algorithm.

Resumo. Este trabalho apresenta uma análise de desempenho do algoritmo de ordenação buicksort com diferentes subalgoritmos de ordenação, além de apresentar um resumo geral sobre a história e funcionamento do algoritmo.

1. Introdução

Problemas são questões propostas em busca de uma solução. Algoritmos são utilizados com o propósito de conceder uma solução para certo problema. Para todo problema decidível existe um algoritmo que determina uma solução para as instâncias desse problema.

Algoritmos descrevem passo a passo os procedimentos para chegar a uma solução de um problema e podem ser representados de três formas: descrição narrativa, fluxograma e a linguagem algorítmica. Neste trabalho focaremos na utilização da última forma.

Algoritmo de ordenação, em ciência da computação, é um algoritmo que coloca os elementos de uma dada sequência em uma certa ordem. Em outras palavras efetua sua ordenação completa ou parcial de acordo com uma necessidade pré-estabelecida. O objetivo da ordenação é facilitar a recuperação dos dados de uma lista.

Os mais populares algoritmos de ordenação são: *insertionsort*, *selectionsort*, *bubblesort*, *combsort*, *quicksort*, *mergesort*, *heapsort* e *shellsort*. Neste artigo, o algoritmo *quicksort* será analisado, explicando o seu funcionamento, suas peculiaridades e o comportamento do seu particionamento.

2. Bucketsort

3. Estratégia Utilizada

O *quicksort* adota a estratégia de divisão e conquista. Essa estratégia consiste em rearranjar as chaves do problema de modo que chaves "menores" precedam chaves "maiores". Em seguida o *quicksort* ordena as duas sub-listas de chaves menores e maiores recursivamente até que a lista completa se encontre ordenada [?].

O algoritmo *quicksort* executa os seguintes passos:

1. Escolha um elemento da lista, denominado pivô;

- 2. Rearranje a lista de forma que todos os elementos anteriores ao pivô sejam menores que ele, e todos os elementos posteriores ao pivô sejam maiores que ele. Ao fim do processo o pivô estará em sua posição final e haverão duas sub-listas não-ordenadas. Essa operação é denominada particionamento;
- 3. Recursivamente ordene a sub-lista dos elementos menores e a sub-lista dos elementos maiores.

A base da recursão são as listas de tamanho zero ou um, que estão sempre ordenadas. O processo é finito, pois a cada iteração pelo menos um elemento é posto em sua posição final e não será mais manipulado na iteração seguinte.

3.1. Pseudo-Código

O Algoritmo 1 demonstra o pseudo-código para o algoritmo *quicksort*. Podemos verificar que a função *quicksort* recebe como parâmetros de entrada um *array* e suas posições inicial e final. Logo, o método de particionamento escolhido é chamado e como resultado retorna um elemento pivô. Este pivô é utilizado para realizar as chamadas recursivas das sub-listas à esquerda e direita do elemento pivô. Quando as listas se tornarem de tamanho 1, o algoritmo retorna o *array* devidamente ordenado.

O método *Partition* do Algoritmo 1 dependerá do particionamento escolhido para executar o algoritmo.

```
Function quicksort (A[], primeiro, ultimo)

if primeiro < ultimo then

pivo = Partition(A, primeiro, ultimo);
quicksort(A, primeiro, pivo-1);
quicksort(S, pivo+1, ultimo);
end

Result: O algoritmo retorna o vetor ordenado.
Algorithm 1: Pseudo-código do algoritmo quicksort.
```

3.2. Dimensão de Desempenho

Em uma base teórica, podemos determinar o número de comparações de elementos e trocas para comparar o desempenho. Além disso, o tempo de funcionamento real será influenciado por outros fatores, como desempenho de *caches* e escalonamento de *threads*.

Como será mostrado abaixo, os métodos possuem comportamento semelhante em permutações aleatórias, exceto pelo número de trocas. Aqui, o método de *Lomuto* necessita de três vezes mais trocas do que o particionamento de *Hoare*.

3.3. Número de Comparações

Ambos os métodos podem ser implementados utilizando n-1 comparações para particionar um array de comprimento n. Isto é essencialmente ideal, uma vez que precisamos comparar cada elemento com o pivô para decidir onde colocá-lo.

3.4. Número de Trocas

O número de trocas é aleatório para ambos os algoritmos, dependendo dos elementos no array. Se assumirmos permutações aleatórias, ou seja, todos os elementos são distintos

e cada permutação dos elementos é igualmente provável, podemos analisar o número esperado de trocas.

Como apenas a ordem relativa conta, assumimos que os elementos são os números 1, ..., n. Isso faz com que a discussão abaixo se torne mais fácil pois a posição de um elemento e seu valor coincidem.

3.5. Método de Lomuto

A variável índice j escaneia o array completo e sempre que encontra um elemento A[j] menor que o pivô x, a troca é realizada. Entre os elementos 1, ..., n, exatamente x-1 são menores que x, então nós teremos x-1 trocas se o pivô for x.

A expectativa geral então resulta do cálculo da média de todos os pivôs. Segundo [?], cada valor em $\{1,...,n\}$ tem a mesma probabilidade de $\frac{1}{n}$ de se tornar pivô, então serão realizadas

$$\frac{1}{n}\sum_{x=1}^{n}(x-1) = \frac{n}{2} - \frac{1}{2} \tag{1}$$

trocas, em média, para particionar um array de comprimento n com o método de Lomuto.

3.6. Método de *Hoare*

Para este método, a análise é um pouco mais complexa. Mesmo fixando o pivô x, o número de trocas permanece aleatório.

Os índices i e j correm um em direção ao outro até que eles se cruzem, que sempre acontece em x (por correção do algoritmo de particionamento de Hoare). Isto divide eficazmente o array em duas partes: a parte esquerda que é verificada pela variável índice i e uma parte direita que é verificada pela variável índice j.

Agora, uma troca é feita para cada par de elementos "fora do lugar", isto é, um elemento grande (maior do que x, que pertence a partição direita) que atualmente está localizado na partição esquerda e um elemento pequeno que esteja localizado na partição direita. Note-se que este par formado trabalha sempre para fora, ou seja, o número de pequenos elementos inicialmente na partição direita é igual ao número de grandes elementos na partição esquerda.

[?] mostra que o número destes pares é hiper geometricamente distribuído Hyp(n-1,n-x,x-1): para os n-x maiores elementos nós aleatoriamente traçamos suas posições no array e temos x-1 posições na partição esquerda . Por conseguinte, o número esperado de pares é (n-x)(x-1)/(n-1) dado que o pivô é x.

Segundo [?], a média de todos os valores dos pivôs é calcula para obter o número total esperado de trocas para o método de particionamento de *Hoare*:

$$\frac{1}{n}\sum_{x=1}^{n}\frac{(n-x)(x-1)}{n-1} = \frac{n}{6} - \frac{1}{3}.$$
 (2)

Mais informações podem ser encontradas em [?, Pág. 29].

3.7. Padrão de Acesso a Memória

Ambos os métodos usam dois ponteiros que escaneiam o *array* sequencialmente. Portanto, ambos possuem comportamento quase ideal.

3.8. Elementos Iguais e Listas Ordenadas

A performance dos algoritmos diferem mais drasticamente para listas que não estão aleatoriamente permutadas.

Em um *array* já ordenado, o método de *Hoare* não realiza nenhuma troca, já que não existem pares mal posicionados, ao passo que o método de *Lomuto* realiza cerca de $\frac{n}{2}$ trocas.

A presença de elementos iguais requere cuidados especiais na utilização do algoritmo *quicksort*. Considere um exemplo extremo onde um *array* é preenchido apenas com elementos 0. Para este *array*, o método de *Hoare* realiza um troca para cada par de elementos - configurando o pior caso para o particionamento de *Hoare* - mas i e j sempre encontram-se no meio do *array*. Assim, temos um particionamento ideal e o tempo total de execução permanece em $\mathcal{O}(n \log n)$.

O método de *Lomuto* possui comportamento pior para o *array* apenas com elementos 0: a comparação A[j] <= x sempre irá retornar verdadeira, então serão realizadas trocas para todos os elementos. Entretanto piora: após o loop, sempre teremos i=n, então observamos o pior caso de particionamento, fazendo com que a performance do método seja degradada para $\Theta(n^2)$.

4. Materiais

4.1. Software

O algoritmo *buicksort*foi implementado utilizando a linguagem de programação C. Para a compilação, foi utilizado o compilador gcc (TDM-2 mingw32) versão 4.4.1 2009 [Mingw 2009].

O ambiente de desenvolvimento integrado (IDE - *Integrated Development Environment*) utilizado foi o Code::Blocks versão 13.12 [Code:Blocks 2016].

O sistema operacional utilizado para realizar as simulações foi o *Windows* 10 de 64 bits versão *Professional* [Microsoft 2015].

4.2. Hardware

A máquina utilizada para realizar as simulações possui processador AMD Phenom(tm) II X4 B97 Processor 3.20 GHz com três pentes de memória RAM de 4 GB DDR3 2000Mhz, totalizando 12 GB de memória RAM.

5. Resultados

Para comparar os métodos, foram escolhidos dez diferentes tamanhos para o *array*: 100, 500, 1.000, 5.000, 30.000, 80.000, 100.000, 150.000 e 200.000 elementos.

Para cada tamanho especificado foram gerados *arrays* de números aleatórios, permitindo valores repetidos. Foram realizadas 20 simulações para cada tamanho em cada método. A média dos tempos de execuções foram utilizadas para realizar a análise comparativa.

Figura 1. Gráfico comparativo entre os tempo de execução dos sub-algoritmos de ordenação *Insertion*, *Merge*, *Heap* e *Quick*.

6. Conclusão

Podemos concluir que a escolha do método de particionamento tem impacto no resultado final, tal escolha deve levar em conta o tipo de entrada que será submetida ao algoritmo. Para entradas suficientemente grandes o método de particionamento de *Hoare* comportase melhor que o método de *Lomuto* obtendo menor tempo de execução.

Referências

Code:Blocks (2016). Code::blocks. https://www.codeblocks.org/. Acessado em: 11-06-2016.

Microsoft (2015). Windows 10. https://www.microsoft.com/pt-br/windows/. Acessado em: 11-06-2016.

Mingw (2009). Mingw. https://www.mingw.org/. Acessado em: 11-06-2016.

Figura 2. Gráfico comparativo entre os tempo de execução dos sub-algoritmos de ordenação *Merge*, *Heap* e *Quick*.