8. Preparing Data for Analysis - tidyr

Data Science for OR - J. Duggan

Data Science for OR - J. Duggan

8. Preparing Data for Analysis - tidyr

1/18

Tidy Data - Overview

- What is data tidying?
 - Structuring datasets to facilitate analysis
- The tidy data standard is designed to:
 - Facilitate initial exploration and analysis of data
 - Simplify the development of data analysis tools that work well together
- Principles closely related to relational algebra (Codd 1990)

Data Science for OR - J. Duggan

8. Preparing Data for Analysis - tidyr

Why Tidy Data (Wickham 2017)

- Advantage to picking one consistent way of storing data. Easier to learn tools that work with tidy data because they have a underlying uniformity
- Specific advantage to placing variables in columns because it allows R's vectorised functions to shine.
- dplyr, ggplot2 designed to work with tidy data

Data Science for OR - J. Duggan

8. Preparing Data for Analysis - tidyr

3/18

A Typical Presentation Data Set (Wickham 2014)

	${\it treatmenta}$	${\it treatmentb}$
John Smith	_	2
Jane Doe	16	11
Mary Johnson	3	1

Table 1: Typical presentation dataset.

	John Smith	Jane Doe	Mary Johnson
treatmenta	_	16	3
${\it treatmentb}$	2	11	1

Table 2: The same data as in Table 1 but structured differently.

Data Science for OR - J. Duggan

In R

```
## # A tibble: 3 x 3
##
    name
                treatmenta treatmentb
                                 <dbl>
## <chr>
                      <dbl>
## 1 John Smith
                         NA
                                     2
## 2 Jane Doe
                        16
                                    11
## 3 Mary Johnson
                          3
                                     1
```

Data Science for OR - J. Duggan

8. Preparing Data for Analysis - tidyr

5/18

Rules for a Tidy Data Set

- Each variable must have its own column
- Each observation must have its own row
- Each value must have its own cell

In a tidy data set:

Each variable is saved in its own column

Each observation is saved in its own row

Problems with the data set

- Treatment types (treatmenta or treatmentb) are column names
- Good for presentation, not for automated analysis
- There are 6 observations, and three variables (Person, Treatment, Outcome)

untidy

```
## # A tibble: 3 x 3
            treatmenta treatmentb
##
     name
##
     <chr>
                       <dbl>
                                  <dbl>
## 1 John Smith
                          NA
                                      2
## 2 Jane Doe
                          16
                                      11
## 3 Mary Johnson
                           3
                                       1
```

Data Science for OR - J. Duggan

8. Preparing Data for Analysis - tidyr

7 / 18

The Goal

> untidy

	name	treatmenta	treatmentb		
1	John Smith	NA	2		
2	Jane Doe	16	11		
3	Mary Johnson	3	1		

>	tidy		
	name	Treatment	Outcome
1	John Smith	treatmenta	NA
2	Jane Doe	treatmenta	16
3	Mary Johnson	treatmenta	3
4	John Smith	${\tt treatmentb}$	2
5	Jane Doe	${\tt treatmentb}$	11
6	Mary Johnson	treatmentb	1

tidyr package - 4 key functions

- gather() takes multiple columns, and gathers them into key-value pairs: it makes "wide" data longer
- separate() splits a single column into multiple columns
- spread() takes two columns (key and value) and spreads into multiple columns, it makes long data wider
- unite() combines multiple columns into a single column

Data Science for OR - J. Duggan

8. Preparing Data for Analysis - tidyr

9/18

The Gather Process

Function Call

https://rpubs.com/bradleyboehmke/data_wranglin

```
gather(data, key, value, ..., na.rm = FALSE, convert = FALSE)
Function:
                data %>% gather(key, value, ..., na.rm = FALSE, convert = FALSE)
Same as:
Arguments:
        data:
                        data frame
                        column name representing new variable
        key:
                        column name representing variable values
        value:
                        names of columns to gather (or not gather)
        . . . :
                        option to remove observations with missing values (represented by NAs) \,
        na.rm:
                        if TRUE will automatically convert values to logical, integer, numeric, complex or
        convert:
                        factor as appropriate
```

```
> tidy <- gather(untidy,key=Treatment,value=Outcome,treatmenta:treatmentb)</pre>
> tidy
          name Treatment Outcome
   John Smith treatmenta
1
                                                        > untidy
      Jane Doe treatmenta
                                16
                                                                   name treatmenta treatmentb
3 Mary Johnson treatmenta
                                 3
                                                            John Smith
                                                                                 NA
                                                                                              2
   John Smith treatmentb
                                 2
                                                              Jane Doe
                                                                                 16
                                                                                             11
      Jane Doe treatmentb
                                11
                                                        3 Mary Johnson
                                                                                  3
                                                                                              1
6 Mary Johnson treatmentb
                                 1
```

Data Science for OR - J. Duggan

8. Preparing Data for Analysis - tidyr

11 / 18

Challenge 3.2

Convert the following data to tidy data format. Process the resulting data using ggplot2 and dplyr.

StudentID	CX1000	CX1001	CX1002	CX1003	CX1004	CX1005	CX1006	CX1007	CX1008	CX1009
1111111	56	51	78	85	63	45	55	59	52	76
1111112	56	64	68	80	70	39	46	60	55	74
1111113	52	61	63	81	71	49	54	61	54	76
1111114	50	42	72	81	63	44	62	59	56	68
1111115	67	53	77	84	65	52	63	62	52	71
1111116	45	57	62	32	61	56	62	51	55	79
1111117	67	58	54	77	75	44	58	62	57	77
1111118	69	50	66	78	72	39	60	58	57	84
1111119	70	56	62	80	71	52	60	63	54	70
1111120	51	52	46	82	74	42	66	63	55	73

separate()

- Separate pulls apart one column into multiple columns
- It splits the information based on finding a non-alphanumeric character
- Separator can be defined (sep="/")
- A converter can find best type for the result, if needed.

Data Science for OR - J. Duggan

8. Preparing Data for Analysis - tidyr

13 / 18

Example using tidyr::table3

```
Function:
                separate(data, col, into, sep = " ", remove = TRUE, convert = FALSE)
               data %>% separate(col, into, sep = " ", remove = TRUE, convert = FALSE)
Same as:
Arguments:
                       data frame
                       column name representing current variable
       col:
       into:
                      names of variables representing new variables
                      how to separate current variable (char, num, or symbol)
       remove:
                       if TRUE, remove input column from output data frame
                       if TRUE will automatically convert values to logical, integer, numeric, complex or
       convert:
                       factor as appropriate
```

```
> table3
# A tibble: 6 x 3
      country year
                                 rate
        <chr> <int>
                                <chr>
1 Afghanistan 1999
                        745/19987071
2 Afghanistan 2000
                        2666/20595360
       Brazil 1999
3
                      37737/172006362
4
       Brazil 2000
                      80488/174504898
5
       China 1999 212258/1272915272
        China 2000 213766/1280428583
```

```
> table3 %>%
    separate(rate,into=c("cases","population"),
            convert=TRUE)
# A tibble: 6 x 4
     country year cases population
        <chr> <int>
                    <int>
                               <int>
1 Afghanistan 1999
                      745
                            19987071
2 Afghanistan 2000
                     2666
                            20595360
3
       Brazil
             1999
                    37737 172006362
4
       Brazil 2000
                   80488
                          174504898
5
       China 1999 212258 1272915272
6
       China 2000 213766 1280428583
```

spread() function

- Spreading is the opposite of gathering
- Useful when observations are scattered across multiple rows

```
untidy <- spread(tidy, Treatment, Outcome)
untidy</pre>
```

```
## # A tibble: 3 x 3
##
     name
                   treatmenta treatmentb
##
     <chr>
                         <dbl>
                                     <dbl>
## 1 Jane Doe
                            16
                                        11
## 2 John Smith
                            NA
                                         2
## 3 Mary Johnson
                             3
                                         1
```

Data Science for OR - J. Duggan

8. Preparing Data for Analysis - tidyr

15 / 18

unite()

- The inverse of **separate()**
- Combines multiple columns into a single column
- Can use this to revert the transformed table3 back to its original

```
## # A tibble: 6 x 4
##
    country year cases population
    <chr>
##
            <int>
                       <int>
                                  <int>
                         745 19987071
## 1 Afghanistan 1999
## 2 Afghanistan 2000
                      2666 20595360
## 3 Brazil
                 1999
                       37737 172006362
## 4 Brazil
                 2000
                       80488
                              174504898
## 5 China
                 1999 212258 1272915272
```

Data Science for OR - J. Duggan

8. Preparing Data for Analysis - tidyr

unite() - sample code

```
unite(table3new, "rate", c("cases", "population"),
      sep = "/")
## # A tibble: 6 x 3
            year rate
##
    country
##
    <chr>
                 <int> <chr>
## 1 Afghanistan 1999 745/19987071
## 2 Afghanistan 2000 2666/20595360
## 3 Brazil
                 1999 37737/172006362
## 4 Brazil
                 2000 80488/174504898
                 1999 212258/1272915272
## 5 China
                 2000 213766/1280428583
## 6 China
```

Data Science for OR - J. Duggan

8. Preparing Data for Analysis - tidyr

17 / 18

Summary

- Tidy Data
 - every row is an obervations
 - Every column a variable
- tidyr provides tools to reshape data
- dplyr and ggplot2 operate on tidy data