分光计的调节和色散曲线的测定

电 62 唐庆虎 2016010931

实验编号: 15 做实验日期: 3月31日

【实验目的】

- 1、了解分光计的原理与构造,学会调节分光计;
- 2、用最小偏向角法测定玻璃折射率;
- 3、掌握三棱镜顶角的两种测量方式;
- 4、探索三棱镜的色散规律

【实验仪器】

分光计、平面反射镜、玻璃三棱镜、氦光谱管及其电源

【实验原理】

- 1、分光计的结构及调节原理
 - (1) 分光计结构

分光计主要由平行光管、望远镜、刻度盘和载物平台构成,如图 1 所示。其中,刻度盘、游标盘平面垂直于仪器主轴,望远镜、平行光管、刻度盘和载物平台都可以绕主轴旋转。

图 1 分光计结构示意图

- 1. 望远镜目镜锁紧螺钉
- 2. 望远镜
- 3. 小平台的调水平螺钉
- 4. 三棱镜
- 5. 分光计主轴
- 6. 小平台
- 7. 平行光管
- 8. 平行光管狭缝锁紧螺钉
- 9. 平行光管俯仰角调节螺钉
- 10. 游标盘止动螺钉
- 11. 底座
- 12. 望远镜止动螺钉
- 13. 望远镜和刻度盘联动螺钉
- 14. 刻度盘与游标盘
- 15. 望远镜俯仰角调节螺钉

(2) 自准直望远镜

如图 2 所示,自准直望远镜中间装有一块分划板,分划板下方与小棱镜的直角面紧贴,直角面上刻有十字形透光叉丝,小灯的光线经过棱镜折射照亮十字叉丝。如果叉丝平面恰好处在物镜焦平面上,叉丝发出的光经物镜折射后成一平行光束。平行光被载物台上的平面反射镜反射后,会经物镜成像于焦平面(即分划

板)上,并且无视差。如果望远镜光轴和平面镜法线平行,则十字像与分划板上 焦点重合。由此可以调节望远镜使其适于观察平行光。

图 2 自准直望远镜结构示意图

(3) 平行光管

如图 3 所示, 当狭缝调节到透镜焦平面上时, 狭缝的光经透镜成为平行光。

B 望远镜 望远镜

图 3 平行光管结构示意图

图 4 自准直法测三棱镜顶角光路

(4) 双游标

为了消除刻度盘的偏心差,采用两个相差 180°的窗口读数。

2、自准直法测量三棱镜顶角

如图 4 所示,测出三棱镜两个光学面法线夹角 ϕ ,则可得顶角 $A=180^{\circ}-\phi$

3、最小偏向角法测玻璃的折射率 如图 5 所示,

入射光和出射光的夹角△称为偏向角

$$\Delta = (i - r) + (i' - r')$$

可以证明, 当入射角 i 等于出射角 i' 时,

偏向角最小,记为 δ

$$\delta = 2(i-r)$$
 (1)
由几何关系可知, $r = \frac{A}{2}$ (2)

图 5 最小偏向角法光路图

将(1)(2)带入折射定律,得

三棱镜折射率
$$n = \frac{\sin i}{\sin r} = \frac{\sin \frac{A+\delta}{2}}{\sin \frac{A}{2}}$$
 (3)

由(3)式知,只要测出三棱镜顶角 A 和最小偏向角 δ ,则可计算玻璃折射率 4、色散及色散曲线

材料对不同波长的光线折射率不同,这种现象称为色散。

对于一般透明材料,折射率随波长的减小而增大。对于一种玻璃材料所作出的折射率和波长的关系曲线称为色散曲线。

不同材料的色散曲线不同,可以用色散本领 V 来表示玻璃色散的程度

$$V = \frac{n_F - n_C}{n_D - 1} \tag{4}$$

其中 n_C 、 n_D 、 n_F 三条线波长为 λ_C = 656.3nm、 λ_D = 589.3nm、 λ_F = 486.1nm 利用经验公式 $n^2 = A_0 + A_1 \lambda^2 + A_2 \lambda^{-2} + A_3 \lambda^{-4} + A_4 \lambda^{-6} + A_5 \lambda^{-8}$ 进行非线性拟合,可以得到色散曲线。

【实验步骤】

- 1、调节望远镜
 - (1) 调节望远镜适于观察平行光
 - (2) 调节望远镜光轴垂直于分光计主轴
- 2、调节平行光管
 - (1) 调节平行光管产生平行光
 - (2) 调节平行光管光轴垂直于分光计主轴
- 3、调节三棱镜两个光学面法线垂直于分光计主轴
- 4、利用自准直法测量三棱镜顶角
- 5、调节三棱镜方向使其位于最小偏向角状态
- 6、测量氦光管谱线的最小偏向角

【实验数据分析处理】

1、自准直法测量三棱镜顶角

分光计编号_15_ 三棱镜编号_15_ Δ_{α} =_1'

表格	1	测量三棱镜顶角实验数据

i	$ heta_{ ext{IT1}}$	$ heta_{ ext{2T1}}$	$ heta_{ ext{1T2}}$	$ heta_{ ext{2T2}}$	$\varphi_i = \frac{1}{2} \left(\left \theta_{1T2} - \theta_{1T1} \right + \left \theta_{2T2} - \theta_{2T1} \right \right)$
1	2°51'	182°47'	122°45'	302°46'	119°56'30"
2	2°51'	182°48'	122°45'	302°46'	119°56'0"
3	2°51'	182°47'	122°45'	302°46'	119°56'30"

注: 表中角标 1、2 分别代表左右游标

$$\overline{\varphi} = \frac{1}{3} (\varphi_1 + \varphi_2 + \varphi_3) = 119^{\circ}56'20"$$

顶角
$$A = 180^{\circ} - \overline{\varphi} = 180^{\circ} - 119^{\circ}56'20'' = 60^{\circ}3'20''$$

$$\Delta_{A} = \sqrt{\Delta_{\theta_{1}}^{2} + \Delta_{\theta_{2}}^{2}} = \sqrt{2}\Delta_{\chi\chi} = 1.5'$$

2、测量最小偏向角

表格 2 测量最小偏向角实验数据

波长/nm	$ heta_{ ext{l}}$	$ heta_2$	$\delta = \frac{1}{2} (\theta_1 - \theta_{10} + \theta_2 - \theta_{20})$	$n = \frac{\sin\frac{A+\delta}{2}}{\sin\frac{A}{2}}$
入射光	43°28'	223°25'		
447.1	350°7'	170°6'	53°20'	1.6701
471.3	350°42'	170°39'	52°46'	1.6647
492.2	351°6'	171°4'	52°21'30"	1.6607
501.6	351°17'	171°13'	52°11'30"	1.6591
587.6	352°24'	172°22'	51°3'30"	1.6480
667.8	353°00'	172°59'	50°27'	1.6420
706.6	353°16'	173°14'	50°11'30"	1.6394

注:表中望远镜转动时经过了刻度盘零点,故计算角度差时应加上(减去)180°

由表中数据,对波长 λ =587.6nm 的黄色谱线,有

$$n = \frac{\sin\frac{A+\delta}{2}}{\sin\frac{A}{2}} = \frac{\sin\frac{60^{\circ}3'20" + 51^{\circ}3'30"}{2}}{\sin\frac{60^{\circ}3'20"}{2}} = 1.6480$$

$$\Delta_{\delta} = \sqrt{{\Delta_{{\theta_1}}}^2 + {\Delta_{{\theta_2}}}^2} = \sqrt{2}\Delta_{\text{fix}} = 1.5\text{'}$$

根据柯西误差传递公式

$$\Delta_{n} = \sqrt{\left(\frac{\partial n}{\partial A}\Delta_{A}\right)^{2} + \left(\frac{\partial n}{\partial \delta}\Delta_{\delta}\right)^{2}} = \sqrt{\left(\frac{\sin\frac{\delta}{2}}{2}\Delta_{A}\right)^{2} + \left(\frac{\cos\frac{A+\delta}{2}}{2\sin\frac{A}{2}}\Delta_{\delta}\right)^{2}}$$

$$= \sqrt{\left(\frac{\sin\frac{51^{\circ}3'30''}{2}}{2\sin^{2}\frac{60^{\circ}3'20''}{2}} \times \frac{1.5 \times 2\pi}{360 \times 60}\right)^{2} + \left(\frac{\cos\frac{60^{\circ}3'20'' + 51^{\circ}3'30''}}{2\sin\frac{60^{\circ}3'20''}{2}} \times \frac{1.5 \times 2\pi}{360 \times 60}\right)^{2}}$$

$$= 0.0005$$

因此,通过最小偏向角法测得该三棱镜对黄光(λ =587.6nm)的折射率为 $n\pm\Delta_n=1.6480\pm0.0005$

3、探究三棱镜对光的色散规律

- (1) 利用已经测得的各条谱线的偏向角算得各种波长 λ 下对应的折射率 n
- (2) 做 $n^2 \lambda$ 曲线, 并用公式 $n^2 = A_0 + A_1 \lambda^2 + A_2 \lambda^{-2} + A_3 \lambda^{-4} + A_4 \lambda^{-6} + A_5 \lambda^{-8}$ 进行非线性拟合, 结果如图表 1 所示:

图表 1 $n^2 - \lambda$ 色散关系图

(3) 利用内插法取得三条特征谱线的折射率,并计算色散本领

波长	n^2	n
$\lambda_C = 656.3$ nm	2.6985	1.6427
$\lambda_D = 589.3$ nm	2.7154	1.6478
$\lambda_F = 486.1$ nm	2.7616	1.6618

$$V = \frac{n_F - n_C}{n_D - 1} = \frac{1.6618 - 1.6427}{1.6478 - 1} = 0.02948$$

利用 $\lambda_0 = 589.3$ nm 下的折射率 n = 1.6478 查表,

可得三棱镜材料为 ZF1 (重火石玻璃)

对照色散本领 $V_{\text{sol}} = \frac{1}{33.870} = 0.02952$,测量结果较为接近

【实验反思与思考题】

- 1、无法判断小平台是否垂直于主轴,原因有二。首先,小平台法线方向有两个自由度,而旋转 180° 反复调节只保证了一个自由度方向不偏离主轴,另一个自由度方向的情况无法保证。其次由于平面反射镜的底座与镜面不一定垂直,导致根据底座校准的小平台也不一定垂直于主光轴。
- 2、入射光位于图(c)情况时才可能找到最小偏向角。具体光路如图 6 所示,因为位于最小偏向角状态时,入射角等于出射角,整个光路处于对称状态。由于三棱镜折射率大于空气,从空气入射时折射角小于入射角,因此只有(c)情况可能找到最小偏向角。

图 6 光线经三棱镜折射光路图

3、先测量已知波长光线的最小偏向角得到该三棱镜材料的色散曲线,再测

量未知波长光线的最小偏向角,算得材料对其折射率,代入色散曲线利用内插法即可求得未知光线的波长。

4、如图 7 所示,根据焦平面的成像规律,位于焦平面上下方的十字叉丝发出的光线经透镜折射后成平行光,平行光经过平面镜反射再次经过透镜折射,会将十字叉丝在关于主光轴对称的位置成像。

由于十字像与叉丝上横线关于中线(透镜主光轴)对称,故十字反射像会与叉丝上方焦点重合。

图 7 自准直法十字反射像成像光路图