14 Двумерные массивы (матрицы): группа Matrix

Условие вида «дана матрица размера $M \times N$ » означает, что вначале дается фактический размер двумерного массива-матрицы (количество строк M и количество столбцов N), а затем приводятся элементы этого массива (количество элементов равно $M \cdot N$). Если в задании явно не указывается, какие значения могут принимать размеры исходной матрицы, то предполагается, что и число строк, и число столбцов может меняться в пределах от 2 до 10. Порядковые номера начальной строки и начального столбца матрицы считаются равными 1. Ввод и вывод элементов матрицы осуществляются по строкам.

Kвадратной матрицей порядка M называется двумерный массив-матрица размера $M \times M$.

Если в задании, связанном с созданием (преобразованием) матрицы, не описан результирующий набор данных, то предполагается, что этим набором является созданная (преобразованная) матрица, и необходимо вывести все ее элементы.

14.1 Формирование матрицы и вывод ее элементов

В заданиях на формирование матрицы предполагается, что размер результирующей матрицы не превосходит 10×10 .

- **Matrix1**. Даны целые положительные числа M и N. Сформировать целочисленную матрицу размера $M \times N$, у которой все элементы I-й строки имеют значение $10 \cdot I$ (I = 1, ..., M).
- **Matrix2**. Даны целые положительные числа M и N. Сформировать целочисленную матрицу размера $M \times N$, у которой все элементы J-го столбца имеют значение $5 \cdot J$ (J = 1, ..., N).
- **Matrix3**. Даны целые положительные числа M, N и набор из M чисел. Сформировать матрицу размера $M \times N$, у которой в каждом столбце содержатся все числа из исходного набора (в том же порядке).
- **Matrix4**. Даны целые положительные числа M, N и набор из N чисел. Сформировать матрицу размера $M \times N$, у которой в каждой строке содержатся все числа из исходного набора (в том же порядке).
- **Matrix5**. Даны целые положительные числа M, N, число D и набор из M чисел. Сформировать матрицу размера $M \times N$, у которой первый столбец совпадает с исходным набором чисел, а элементы каждого следующего столбца равны сумме соответствующего элемента предыдущего столбца и числа D (в результате каждая строка матрицы будет содержать элементы $apu\phi$ метической прогрессии).
- **Matrix6**. Даны целые положительные числа M, N, число D и набор из N чисел. Сформировать матрицу размера $M \times N$, у которой первая строка совпадает

- с исходным набором чисел, а элементы каждой следующей строки равны соответствующему элементу предыдущей строки, умноженному на D (в результате каждый столбец матрицы будет содержать элементы геометрической прогрессии).
- **Matrix7**°. Дана матрица размера $M \times N$ и целое число K ($1 \le K \le M$). Вывести элементы K-й строки данной матрицы.
- **Matrix8**. Дана матрица размера $M \times N$ и целое число K ($1 \le K \le N$). Вывести элементы K-го столбца данной матрицы.
- **Matrix9**. Дана матрица размера $M \times N$. Вывести ее элементы, расположенные в строках с четными номерами (2, 4, ...). Вывод элементов производить по строкам, условный оператор не использовать.
- **Matrix10**. Дана матрица размера $M \times N$. Вывести ее элементы, расположенные в столбцах с нечетными номерами (1, 3, ...). Вывод элементов производить по столбцам, условный оператор не использовать.
- **Matrix11**. Дана матрица размера $M \times N$. Вывести ее элементы в следующем порядке: первая строка слева направо, вторая строка справа налево, третья строка слева направо, четвертая строка справа налево и т. д.
- **Matrix12**. Дана матрица размера $M \times N$. Вывести ее элементы в следующем порядке: первый столбец сверху вниз, второй столбец снизу вверх, третий столбец сверху вниз, четвертый столбец снизу вверх и т. д.
- Маtrix13. Дана квадратная матрица A порядка M. Начиная с элемента $A_{1,1}$, вывести ее элементы следующим образом («уголками»): все элементы первой строки; элементы последнего столбца, кроме первого (уже выведенного) элемента; оставшиеся элементы второй строки; оставшиеся элементы предпоследнего столбца и т. д.; последним выводится элемент $A_{M,1}$.
- Маtrix14. Дана квадратная матрица A порядка M. Начиная с элемента $A_{1,1}$, вывести ее элементы следующим образом (*«уголками»*): все элементы первого столбца; элементы последней строки, кроме первого (уже выведенного) элемента; оставшиеся элементы второго столбца; оставшиеся элементы предпоследней строки и т. д.; последним выводится элемент $A_{1,M}$.
- Matrix15. Дана квадратная матрица A порядка M (M нечетное число). Начиная с элемента $A_{1,1}$ и перемещаясь по часовой стрелке, вывести все ее элементы *по спирали*: первая строка, последний столбец, последняя строка в обратном порядке, первый столбец в обратном порядке, оставшиеся элементы второй строки и т. д.; последним выводится центральный элемент матрицы.
- Matrix16. Дана квадратная матрица A порядка M (M нечетное число). Начиная с элемента $A_{1,1}$ и перемещаясь против часовой стрелки, вывести все ее элементы *по спирали*: первый столбец, последняя строка, последний столбец в обратном порядке, первая строка в обратном порядке, оставшиеся

элементы второго столбца и т. д.; последним выводится центральный элемент матрицы.

14.2 Анализ элементов матрицы

- **Matrix17**. Дана матрица размера $M \times N$ и целое число K ($1 \le K \le M$). Найти сумму и произведение элементов K-й строки данной матрицы.
- **Matrix18**. Дана матрица размера $M \times N$ и целое число K ($1 \le K \le N$). Найти сумму и произведение элементов K-го столбца данной матрицы.
- Matrix19. Дана матрица размера $M \times N$. Для каждой строки матрицы найти сумму ее элементов.
- **Matrix20**. Дана матрица размера $M \times N$. Для каждого столбца матрицы найти произведение его элементов.
- **Matrix21**. Дана матрица размера $M \times N$. Для каждой строки матрицы с нечетным номером (1, 3, ...) найти среднее арифметическое ее элементов. Условный оператор не использовать.
- **Matrix22**. Дана матрица размера $M \times N$. Для каждого столбца матрицы с четным номером (2, 4, ...) найти сумму его элементов. Условный оператор не использовать.
- **Matrix23**. Дана матрица размера $M \times N$. В каждой строке матрицы найти минимальный элемент.
- **Matrix24**. Дана матрица размера $M \times N$. В каждом столбце матрицы найти максимальный элемент.
- **Matrix25**. Дана матрица размера $M \times N$. Найти номер ее строки с наибольшей суммой элементов и вывести данный номер, а также значение наибольшей суммы.
- **Matrix26**. Дана матрица размера $M \times N$. Найти номер ее столбца с наименьшим произведением элементов и вывести данный номер, а также значение наименьшего произведения.
- **Matrix27**. Дана матрица размера $M \times N$. Найти максимальный среди минимальных элементов ее строк.
- **Matrix28**. Дана матрица размера $M \times N$. Найти минимальный среди максимальных элементов ее столбцов.
- **Matrix29**. Дана матрица размера $M \times N$. В каждой ее строке найти количество элементов, меньших среднего арифметического всех элементов этой строки.
- **Matrix30**. Дана матрица размера $M \times N$. В каждом ее столбце найти количество элементов, больших среднего арифметического всех элементов этого столбца.

- **Matrix31**. Дана матрица размера $M \times N$. Найти номера строки и столбца для элемента матрицы, наиболее близкого к среднему значению всех ее элементов.
- **Matrix32**. Дана целочисленная матрица размера $M \times N$. Найти номер первой из ее строк, содержащих равное количество положительных и отрицательных элементов (нулевые элементы матрицы не учитываются). Если таких строк нет, то вывести 0.
- **Matrix33**. Дана целочисленная матрица размера $M \times N$. Найти номер последнего из ее столбцов, содержащих равное количество положительных и отрицательных элементов (нулевые элементы матрицы не учитываются). Если таких столбцов нет, то вывести 0.
- **Matrix34**. Дана целочисленная матрица размера $M \times N$. Найти номер последней из ее строк, содержащих только четные числа. Если таких строк нет, то вывести 0.
- **Matrix35**. Дана целочисленная матрица размера $M \times N$. Найти номер первого из ее столбцов, содержащих только нечетные числа. Если таких столбцов нет, то вывести 0.
- **Matrix36**. Дана целочисленная матрица размера $M \times N$, элементы которой могут принимать значения от 0 до 100. Различные строки матрицы назовем *похожими*, если совпадают множества чисел, встречающихся в этих строках. Найти количество строк, похожих на первую строку данной матрицы.
- Мatrix37. Дана целочисленная матрица размера $M \times N$, элементы которой могут принимать значения от 0 до 100. Различные столбцы матрицы назовем *похожими*, если совпадают множества чисел, встречающихся в этих столбцах. Найти количество столбцов, похожих на последний столбец данной матрицы.
- **Matrix38**. Дана целочисленная матрица размера $M \times N$. Найти количество ее строк, все элементы которых различны.
- **Matrix39**. Дана целочисленная матрица размера $M \times N$. Найти количество ее столбцов, все элементы которых различны.
- **Matrix40**. Дана целочисленная матрица размера $M \times N$. Найти номер последней из ее строк, содержащих максимальное количество одинаковых элементов.
- **Matrix41**. Дана целочисленная матрица размера $M \times N$. Найти номер первого из ее столбцов, содержащих максимальное количество одинаковых элементов.
- **Matrix42**. Дана матрица размера $M \times N$. Найти количество ее строк, элементы которых упорядочены по возрастанию.
- **Matrix43**. Дана матрица размера $M \times N$. Найти количество ее столбцов, элементы которых упорядочены по убыванию.