PARLER DE TAB RÉDUIT OU NON CÀD SANS FACTAUER CARRÉ, DU COUP MULTUIPLICATION MÉCANIQUE ET ON RÉDUIT BROUILLON - CARRÉS PARFAITS ET PRODUITS D'ENTIERS CONSÉCUTIFS – UNE MÉTHODE EFFICACE

CHRISTOPHE BAL

Document, avec son source LATEX, disponible sur la page https://github.com/bc-writing/drafts.

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons « Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International ».

Table des matières

1.	Prenons du recul	2
2.	Sources utilisées	4
3.	AFFAIRE À SUIVRE	5

Date: 25 Jan. 2024 - 6 Fév. 2024.

1. Prenons du recul

L'idée de départ est simple : il faut se concentrer sur les diviseurs sans facteur carré des facteurs (n+i) de $\pi_n^k = n(n+1)\cdots(n+k)$.

Définition 1.1. Considérons $(n,k) \in \mathbb{N}^* \times \mathbb{N}$, $(a_i)_{0 \le i \le k} \subseteq \mathbb{N}^*$ et $(s_i)_{0 \le i \le k} \subseteq {}_*\mathbb{N}$ tels que $\forall i \in [0;k]$, $n+i=a_is_i$. Ce type de situation sera résumé par le tableau suivant que nous nommerons tableau de Vogler en référence à la discussion où l'auteur a vu ce concept.

Exemple 1.1. Supposons avoir le tableau de Vogler suivant où $n \in \mathbb{N}^*$.

Ceci résume la situation suivante.

- $\exists A \in \mathbb{N}^* \text{ tel que } n = 2A^2$.
- $\exists B \in \mathbb{N}^* \ tel \ que \ n+1=5B^2$.
- $\exists C \in \mathbb{N}^* \ tel \ que \ n+2=6C^2$.
- $\exists D \in \mathbb{N}^* \ tel \ que \ n+3=D^2$.

Fait 1.1. Dans les tableaux ci-dessous, les puces • indiquent des valeurs quelconques.

(1) Si nous avons un tableau de Vogler du type suivant, alors $\pi_n^{k-1} \in {}_*^2\mathbb{N}$.

(2) Si nous avons un tableau de Vogler du type suivant, alors $\pi_{n+1}^{k-1} \in {}_*\mathbb{N}$.

Démonstration. Immédiat via le fait ??, car nous avons soit $n+k\in {}^2_*\mathbb{N}$, soit $n\in {}^2_*\mathbb{N}$.

Fait 1.2. Soit $(n, d, a) \in (\mathbb{N}^*)^3$ et $i \in \mathbb{N}$. Les tableaux de Vogler ci-après sont impossibles (les puces • indiquent des valeurs quelconques).

(1) Pas de facteurs carrés trop près.

$n + \bullet$	i	i+1	1	i+d-1	i+d
	ad	•		•	ad

(2) Pas de facteurs carrés pas trop loin.

$n + \bullet$	i	i+1	1	i+2d-1	i+2d
	ad	•	1	•	ad

Démonstration. Tout est contenu dans le fait ??.

(1) Ici, $n+i=adA^2$ et $n+i+d=adB^2$ donnent $ad(B^2-A^2)=d$, puis $a(B^2-A^2)=1$, d'où $B^2-A^2=1$ qui ne se peut pas car $B^2>A^2\geq 1$.

(2) Ici, $n+i=adA^2$ et $n+i+2d=adB^2$ donnent $ad(B^2-A^2)=2d$, i.e. $a(B^2-A^2)=2$, d'où $B^2-A^2\in\{1,2\}$ qui est impossible.

Pour fabriquer des tableaux de Vogler, nous allons « multiplier » des d-tableaux de Vogler qui sont moins restrictifs; ils sont définis comme suit.

Définition 1.2. Soient $(n, k, d) \in (\mathbb{N}^*)^3$, $(q_i)_{0 \le i \le k} \subseteq \mathbb{N}$, $(\epsilon_i)_{0 \le i \le k} \subseteq \{0, 1\}$ et $(f_i)_{0 \le i \le k} \subseteq \mathbb{N}^*$ tels que $\forall i \in [0; k]$, $n + i = d^{2q_i + \epsilon_i} f_i$ avec $f_i \wedge d = 1$. Ce type de situation sera résumé par le tableau suivant que nous nommerons d-tableau de Vogler où $d^{\epsilon_i} \in \{1, d\}$.

Exemple 1.2. Supposons avoir le 5-tableau de Vogler suivant où $n \in \mathbb{N}^*$.

Ceci résume la situation suivante.

- $\exists (a, A) \in \mathbb{N} \times \mathbb{N}^* \text{ tel que } A \wedge 5 = 1 \text{ et } n = 5^{2a}A.$
- $\exists (b, B) \in \mathbb{N} \times \mathbb{N}^* \text{ tel que } B \wedge 5 = 1 \text{ et } n+1 = 5^{2b+1}B$.
- $\exists (c, C) \in \mathbb{N} \times \mathbb{N}^* \text{ tel que } C \wedge 5 = 1 \text{ et } n + 2 = 5^{2c}C$.
- $\exists (d, D) \in \mathbb{N} \times \mathbb{N}^* \text{ tel que } D \land 5 = 1 \text{ et } n + 3 = 5^{2d}D.$

Exemple 1.3. La multiplication de deux d-tableaux de Vogler est « naturelle » lorsqu'elle porte sur des nombres d premiers entre eux. Considérons le 2-tableau de Vogler et le 3-tableau de Vogler suivants.

La multiplication de ces d-tableaux de Vogler est le 6-tableau de Vogler suivant.

Ceci résume la situation suivante avec des notations « évidentes ».

- $A \wedge 6 = 1$ et $n = 2^{2a} 3^{2\alpha+1} A$.
- $B \wedge 6 = 1$ et $n + 1 = 2^{2b+1}3^{2\beta}B$.
- $C \wedge 6 = 1$ et $n + 2 = 2^{2c} 3^{2\gamma} C$.
- $D \wedge 6 = 1$ et $n + 3 = 2^{2d+1}3^{2\delta+1}D$.

Fait 1.3. Dans la deuxième ligne d'un d-tableau de Vogler, les valeurs d sont séparées par exactement (d-1) valeurs 1.

 $D\acute{e}monstration$. Penser aux multiples de d.

Fait 1.4. $\forall p \in \mathbb{P}$, si $\pi_n^k \in {}^2\mathbb{N}$, alors dans le p-tableau de Vogler associé à π_n^k , le nombre de valeurs p est forcément pair.

 $D\acute{e}monstration$. Évident, mais très pratique, comme nous le verrons dans la suite.

2. Sources utilisées

Ce document n'aurait pas vu le jour sans la source suivante.

(1) Une discussion archivée consultée le 28 janvier 2024 :

 $\verb|https://web.archive.org/web/20171110144534/http://mathforum.org/library/drmath/view/65589.html.|$

Cette discussion utilise ce que nous avons nommé les tableaux de Vogler, mais le côté semi-mécanisable de leur utilisation n'est pas souligné.

PARLER DE TAB RÉDUIT OU NON CÀD SANS FACTAUER CARRÉ, DU COUP MULTUIPLICATION MÉCANI	QUE ET O
3. AFFAIRE À SUIVRE	