

ME3103

1A 同步降压 DC-DC 转换器

概述

ME3103 是一款同步电流模降压 DC-DC 转换器,电压输入范围 2.5V-5.5V,支持运用单个 Li+/Li-电池、多个碱性 /NiMH 电池及 USB 及其他类型电源应用。输出电压从 0.6V 至输入电压。内部集成了功率 NMOS 开关管及同步 PMOS 整流管,最小化了外部元件及实现高效率。 ME3103 采用恒定频率电流型 PWM 控制模式使其具有较好的稳定性和瞬态特性,在关断状态,输入输出之间断开,关断电流小于 0.1uA ,同时 ME3103 还具有欠压锁定、限流、温度保护等功能。

应用场合

- 便携式电话
- 可携带设备
- 无线设备
- 无线电话
- 计算机外围设备
- 应用电池的装饰品
- 电子测量

特点

- 效率高达96%
- 静态电流40uA (典型)
- 大于1A的输出负载电流
- 内置同步转换结构
- 1.5MHz转换频率
- 软启动
- 欠压锁定
- 短路保护
- 热关断

封装形式

- ●5-pin SOT23-5
- •6-pin DFN2*2-6L

典型应用图

Vo=0.6x(1+R1/R2)

选购指南

1. 产品型号说明

产品型号	产品说明
ME3103AM5G	V _{FB} =0.6V,封装形式: SOT23-5
ME3103AN6G	V _{FB} =0.6V,封装形式: DFN2*2-6L

芯片脚位图

DFN2*2-6L

脚位功能说明

PIN 脚位 (SOT23-5)	PIN 脚位 (DFN2*2-6)	符号名	功能说明	
(30123-3)	(DI 142 2-0)			
1	3	EN	使能引脚	
2	6	GND	地引脚	
3	1	SW	转换引脚	
4	5	VIN	输入电压引脚	
5	4	FB	反馈电压引脚	
	2	NC	空脚	

芯片功能示意图

绝对最大额定值

参数	极限值	单位
电源电压: VIN	6.0	V
EN,FB引脚	-0.3~V _{IN}	V
SW引脚	-0.3∼V _{IN} + 0.3	V
封装功耗(SOT23-5)	300	mW
工作温度范围	-40~150	°C
储存温度范围	-40~150	°C
焊接温度和时间	+260(10秒)	°C

注意: 绝对最大额定值是本产品能够承受的最大物理伤害极限值,请在任何情况下勿超出该额定值。

V01 <u>www.microne.com.cn</u> Page 3 of 11

ME3103 电气参数

(正常条件 TA = 25 °C, VIN= 3.6V, VO=1.8V, CO=22uF, CIN=22uF, L=4.7uH, 除非另行标注)

符号	参数	测词	测试条件		典型值	最大值	单位
VIN	输入电压			2.5	_	5.5	V
V _{FB}	反馈引脚电压			0.588	0.6	0.612	V
ΔV _{FB}	V _{FB} 线性调整率				0.3		%/V
VO	输出电压精度	IO=1	00mA	-3		+3	%
LDR	负载调整率	IO=1mA	to 800mA		0.5	1.5	%
LNR	线性调整率	VIN=2.5V to 8	5.5V,IO=10mA		0.2	0.5	%/V
ΙQ	静态电流	无红	负载		40	70	uA
Isd	关断电流	VEN	VEN=0V		0.1	1	uA
llimit	限流保护				1.5		Α
I _{LSW}	SW 引脚漏电流			-1		1	uA
Fosc	振荡频率	VO=	100%	1.2	1.5	1.8	MHz
		VFB=0V	VFB=0V or VO=0V		500		KHz
В	巨		P MOSFET		0.3	0.45	Ω
R _{DSON}	导通阻抗	I _{DS} =100mA	N MOSFET		0.35	0.5	Ω
η	最高效率				96		%
VEH	使能高阈值			1.5			V
VEL	使能低阈值					0.3	V
OTP	过温保护				160		°C
OTH	过温迟滞				40		°C

典型性能参数

1. Efficiency VS Output Current (V_O=1.8V)

Efficiency VS.Output Current 100 90 80 70 V_{IN}=2.5V V_{IN}=4.2V 60 V_{IN}=3.6V 50 40 30 10 100 200 300 400 500 600 700 800 900 1000 Output Current (mA)

Efficiency VS Output Current (V_O=3.3V)

2. Efficiency VS Input Voltage (Vo=1.8V)

Efficiency VS Input Voltage (Vo=3.3V)

3. V_{FB} VS Input Voltage

4. V_{FB} VS Output Current

5. Output Voltage VS Output Current(V_O=1.8V)

6. V_{FB} VS Temperature

Dynamic Supply Current VS Input Voltage (V_O=1.8V)

8. Dynamic Supply Current VS Temperature $(V_{IN}=3.6V, V_O=1.8V)$

9. Oscillator Frequency VS Input Voltage

应用信息

电感的选择

ME3103 对于多数应用,根据设计的电流纹波值,选择电感的范围在 1uH 到 4.7uH 之间, 选择大电感有小的电流纹波,选择小电感有高的电流纹波,较低的输入或较高输出电压同时也增加电流纹波值,如下公式所示,合理选择电流的纹波在 400mA (1A 的 40%)

$$L_{\text{min}} > \frac{V_{\text{o}} \cdot \left(1 - D_{\text{min}}\right)}{\Delta I \cdot f_{\text{c}}}$$

VO	1.2V	1.5V	1.8V	2.5V	3.3V
L	2.2uH	2.2uH	4.7uH	4.7uH	4.7uH

电感的直流额定电流至少等于最大负载加上纹波电流的一半,以防止磁芯饱和,因此一个 1.4A 额定电感应该足够应用需求,为了更好的提高效率,应选择低直流阻抗的电感。

输入输出电容的选择

在连续工作模式下,MOSFET 的峰值电流是与占空比有关,为阻止瞬态尖峰电压传递,必须要应用低 ESR 及最大化 RMS 电流的输入电容,最大化 RMS 电容的电流如下式所示:

$$CIN \ required \ I_{RMS} = I_{OMAX} \frac{\left[VOUT(VIN - VOUT)\right]^{1/2}}{VIN}$$

这个公式最大化在输入电压 VIN=2VOUT , 此时 IRMS=IOUT/2. 这个简单的最差情况普遍应用在设计中,因为即使有意义的偏差也不经常涉及到。

根据 ESR 的需求确定输出电容的选择,典型情况下满足输出电容 CO 的 ESR 需求,RMS 电流比率总体可以超过 纹波 (P-P) 需求,输出电压纹波 由以下公式决定:

$\Delta VO \approx \Delta IL(ESR + 1/8f \times CO)$

式中 f 为电路工作频率,CO 为输出电容, Δ IL 为电感电流纹波,输出电压一定,由于 Δ IL 随输入电压增加,输出纹波在最大输入电压时最大。

陶瓷电容由于其高容值、低成本特性使其适用于更小的体积的应用,其高纹波电流、高电压额定值、低 ESR 等特性使其更佳适用于转换器的应用。运用陶瓷电容可以获得低输出电压纹波和小的外围电路尺寸。选择 X5R 或者 X7R 型号作为输出和输入电容,这些型号的电容有更好的温度和电压特性。

V01 www.microne.com.cn Page 7 of 11

输出电压选择

内部基准电压典型值为0.6V,输出电压由以下公式计算:

$$VO = 0.6 \times (1 + \frac{R1}{R2})$$

VO	R1	R2
1.2V	100k	100k
1.5V	150k	100k
1.8V	200k	100k
2.5V	380k	120k
3.3V	540k	120k

100%占空比工作模式

当输入电压接近输出电压,转换器控制P-MOSFET持续开启,在这种模式下输出电压等于输入电压减去P-MOSFT功率 管上的压降,如下式:

$$VO = VIN - IO \times (R_{DSon} + R_{L})$$

式中VO为输出电压, VIN为输入电压, IO为输出电流, R_{DSon}为P-MOSFET导通阻抗, RL为电感寄生阻抗。

欠压保护与软启动

ME3103内部电路在VIN过UVLO电压后启动,内部有软启动电路限制了启动时浪涌电流,防止输出电压过冲,

短路保护

ME3103逐周期检测峰值电流,限制电感的峰值电流在1.5A以下,在输出短路的情况下以频率400kHz最小站空比工作, 此时输入电流约为200mA。

热关断

当芯片温度超过150°C,温度保护电路启动,停止内部电路工作,当温度降到120°C,电路重新启动工作。

V01 <u>www.microne.com.cn</u> Page 8 of 11

封装信息

●封装类型:SOT23-5

参数	尺寸 (mm)		尺寸 (Inch)	
少奴	最小值	最大值	最小值	最大值
Α	0.9	1.45	0.0354	0.0570
A1	0	0.15	0	0.0059
A2	0.9	1.3	0.0354	0.0511
В	0.2	0.5	0.0078	0.0196
С	0.09	0.26	0.0035	0.0102
D	2.7	3.10	0.1062	0.1220
E	2.2	3.2	0.0866	0.1181
E1	1.30	1.80	0.0511	0.0708
е	0.95REF		0.0374REF	
e1	1.90REF		0.0748REF	
L	0.10	0.60	0.0039	0.0236
a ⁰	00	30°	00	30 ⁰

●封装类型:DFN2*2-6L

参数	尺寸 (mm)		尺寸(Inch)		
少 级	最小值	最大值	最小值	最大值	
Α	0.7	0.9	0.0276	0.0354	
A1	0	0.05	0	0.002	
A2	0.203	(TYP)	0.008	(TYP)	
b	0.2	0.35	0.0078	0.0138	
D	1.924	2.076	0.0757	0.0817	
Е	1.924	2.076	0.0757	0.0817	
E1	0.5	0.9	0.0197	0.0354	
е	0.65(TYP)		0.0256(TYP)		
L	0.25	0.426	0.0098	0.0168	
K	0.2	1	0.0079	1	
D1	1	1.45	0.0393	0.0571	
N	6				
aaa	0.08				
bbb	0	.1			

- 本资料内容,随产品的改进,可能会有未经预告之更改。
- 本资料所记载设计图等因第三者的工业所有权而引发之诸问题,本公司不承担其责任。另 外,应用电路示例为产品之代表性应用说明,非保证批量生产之设计。
- 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等。
- 本资料所记载之产品,未经本公司书面许可,不得作为健康器械、医疗器械、防灾器械、 瓦斯关联器械、车辆器械、航空器械及车载器械等对人体产生影响的器械或装置部件使用。
- 尽管本公司一向致力于提高质量与可靠性,但是半导体产品有可能按照某种概率发生故障或错误工作。为防止因故障或错误动作而产生人身事故、火灾事故、社会性损害等,请充分留心冗余设计、火势蔓延对策设计、防止错误动作设计等安全设计。