

Caderno de acompanhamento

Workshop Matemática

2021

Professor:	Agnaldo Cieslak		
Gerência de Produto:	Da	ata:	29/03/2021

1. Sobre o curso

1.1. Curso: Workshop

1.2. Unidade curricular: Matemática

1.3. Carga horária da unidade curricular: 06 h

2. Competências a desenvolver:

Operações básicas

Regra de três

Potenciação

Conversão Binário/decimal/hexadecimal

Cálculo de probabilidade

Porcentagem

Operação com Frações

Agenda:

- ✓ Apresentação
- ✓ Objetivos
- ✓ Introdução com explanação da dinâmica do WS;
 - o Temas em debate
 - o Rally de exercícios
 - o Correções
- ✓ Distribuir material de apoio;

Atividade 1: Exposição dos conceitos de operações básicas, regra de três e potenciação

1. Regra de três

1.1) Simples diretamente proporcional

Com uma área de absorção de raios solares de 1,2m², uma lancha com motor movido a energia solar consegue produzir 400 watts por hora de energia. Aumentando-se essa área para 1,5m², qual será a energia produzida?

Solução: montando a tabela:

Área (m²)	Energia (Wh)
1,2	400
1,5	Χ

Identificação do tipo de relação:

Colocamos uma seta para baixo na coluna que contém o x (2ª coluna).

Aumentando a área de absorção, a energia solar **aumenta**. Como ambas as características aumentam (aumentando - aumenta), as grandezas são **diretamente proporcionais**.

Assim, colocamos outra seta no mesmo sentido (para baixo) na 1ª coluna.

Montando a proporção e resolvendo a equação temos:

Resposta: a energia produzida será de 500 Wh.

1.2) Simples inversamente proporcional

Um arquivo de dados é transmitido em uma rede com taxa de 400Mbps. A transmissão de todo o arquivo é feito em um tempo de 3 segundos. Em quanto tempo este arquivo seria transmitido, se a taxa utilizada fosse de 480Mbps?

Solução: montando a tabela:

Taxa (Mbps)	Tempo (s)
400	3
480	X

Identificação do tipo de relação:

Velocidade	Tempo
400	3
480	x 🗸

Inicialmente colocamos uma seta para baixo na coluna que contém o x (2ª coluna). **Aumentando** a taxa, o tempo de transferência do arquivo **diminui**. Há antagonismo (aumentando - diminui), então as grandezas são **inversamente proporcionais**.

Assim uma outra seta é colocada no sentido contrário (para cima) na 1ª coluna.

Montando a proporção e resolvendo a equação temos:

$$\frac{3}{x} = \frac{480}{400}$$
Invertemos os termos

$$480x = 3.400$$
$$x = \frac{3.400}{480} = \frac{1200}{480} = 2,5$$

2. Regra de três composta

A regra de três composta é utilizada em problemas com mais de duas grandezas, direta ou inversamente proporcionais.

Exemplos:

1) Em 8 horas, 20 caminhões descarregam 160m³ de areia. Em 5 horas, quantos caminhões serão necessários para descarregar 125m³?

Solução: montar a tabela, com grandezas de mesma espécie nas colunas e de espécies diferentes em cada linha:

Horas	Caminhões	Volume
8	20	160
5	X	125

Identificação dos tipos de relação:

Inicialmente colocamos uma seta para baixo na coluna que contém o x (2ª coluna).

loras	Caminhões	Volume
8	20	160
5	x 🗸	125

A seguir, devemos comparar cada grandeza com aquela onde está o x.

Aumentando o número de horas de trabalho, podemos **diminuir** o número de caminhões. Ou seja, é *inversamente proporcional* (**seta para cima na 1**^a **coluna**).

Aumentando o volume de areia, devemos **aumentar** o número de caminhões. Relação é *diretamente proporcional* (**seta para baixo na 3**^a **coluna**).

Igualar a razão que contém o termo x com o produto das outras razões de acordo com o sentido das setas.

Montando a proporção e resolvendo a equação temos:

Reposta: serão necessários 25 caminhões.

2) Numa fábrica de brinquedos, 8 homens montam 20 carrinhos em 5 dias. Quantos carrinhos serão montados por 4 homens em 16 dias?

Solução: montando a tabela:

Homens	Carrinhos	Dias
8	20	5
4	X	16

Vamos analisar:

Aumentando o número de homens, a produção de carrinhos **aumenta**. Portanto a relação é *diretamente proporcional* (não precisamos inverter a razão).

Aumentando o número de dias, a produção de carrinhos **aumenta**. Portanto a relação também é *diretamente proporcional* (não precisamos inverter a razão). Igualar a razão que contém o termo x com o produto das outras razões.

Montando a proporção e resolvendo a equação temos:

$$\frac{20}{x} = \frac{8}{4} \cdot \frac{5}{16}$$

$$x = \frac{20.4.16}{8.5} = 32$$

Logo, serão montados 32 carrinhos.

3) Dois pedreiros levam 9 dias para construir um muro com 2m de altura. Trabalhando 3 pedreiros e aumentando a altura para 4m, qual será o tempo necessário para completar esse muro?

Colocamos uma seta para baixo na coluna que contém o x. Colocar flechas concordantes para as grandezas diretamente proporcionais com a incógnita e discordantes para as inversamente proporcionais, como mostra a figura abaixo:

Montando a proporção e resolvendo a equação temos:

$$\frac{9}{x} = \frac{2}{4} \cdot \frac{3}{2}$$
Termos foram invertidos (seta contrária)
$$x = \frac{9 \cdot 8}{6}$$

$$x = 12$$
Termos foram invertidos (seta contrária)
$$x = \frac{9 \cdot 8}{6} \Rightarrow x = \frac{9 \cdot 8}{6} \Rightarrow x = \frac{72}{6} \Rightarrow x = 12$$

Logo, para completar o muro serão necessários 12 dias.

Rally de exercícios - A1

- 1) Um robô trabalhando 8 horas por dia, durante 10 dias, efetua 7500 pontos de solda em uma estrutura metálica. Quantas horas por dia o robô deve trabalhar para efetuar 6000 pontos de solda em 4 dias? Resposta:
- 2) Três torneiras enchem uma piscina em 10 horas. Quantas horas levarão 10 torneiras para encher 2 piscinas? Resposta: 6 horas.
- **3)** Uma equipe composta de 15 homens extrai, em 30 dias, 3,6 toneladas de carvão. Se for aumentada para 20 homens, em quantos dias conseguirão extrair 5,6 toneladas de carvão? Resposta: 35 dias.
- **4)** Vinte operários, trabalhando 8 horas por dia, gastam 18 dias para construir um muro de 300m. Quanto tempo levará uma turma de 16 operários, trabalhando 9 horas por dia, para construir um muro de 225m? Resposta: 15 dias.
- **5)** Um caminhoneiro entrega uma carga em um mês, viajando 8 horas por dia, a uma velocidade média de 50 km/h. Quantas horas por dia ele deveria viajar para entregar essa carga em 20 dias, a uma velocidade média de 60 km/h? Resposta: 10 horas por dia.
- **6)** Com uma certa quantidade de fio, uma fábrica produz 5400m de tecido com 90cm de largura em 50 minutos. Quantos metros de tecido, com 1 metro e 20 centímetros de largura, seriam produzidos em 25 minutos? Resposta: 2025 metros.

3. Propriedades da potenciação

3. Propriedades da potenciação
$$a^{1} = a \qquad 1^{n} = 1$$

$$a^{-n} = \frac{1}{a^{n}} \qquad \frac{1}{a^{-n}} = a^{n}$$

$$a^{0} = 1$$

-(2)4 é diferente de -24

Produto de potências de mesma base

$$a^m$$
. $a^n = a^{m+n}$

Divisão de potências de mesma base

$$a^m \div a^n = a^{m-n}$$

Potência da potência

$$(a^m)^n = a^{m \cdot n}$$

Distributiva da potenciação em relação à multiplicação

$$(a.b.c)^n = a^n.b^n.c^n$$

Distributiva da potenciação em relação à divisão

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

Calcular o valor da expressão:

$$\frac{-(2^{10};-2^7).\,2^5}{[(3^6,3);3^4].\,3}$$

Desafio:

Para atender todas as ligações feitas a uma empresa são utilizadas 3 telefonistas, atendendo cada uma delas, em média, a 125 ligações diárias.

Aumentando-se para 5 o número de telefonistas, quantas ligações atenderá diariamente cada uma delas em média?

Rally de exercícios - A2

$$1 \qquad \left(-2 - \frac{2}{5}\right) \cdot \left(-\frac{3}{4}\right)^2$$

$$1 - \left(\frac{1}{3}\right)^3 : \left(\frac{1}{2} - 1\right)^2$$

$$\left(5 - \frac{1}{2}\right)^2 : \left(\frac{1}{2} - 2\right)^3$$

$$\left[\left(-\frac{2}{3}\right):\left(\frac{1}{4}\right)\cdot\frac{1}{2}\cdot\left(-\frac{1}{4}\right)\right]^{-2}$$

6
$$\left\{-\frac{1}{8}\cdot\left[\left(-\frac{1}{2}\right)^2+\left(2-\frac{1}{2}\right)^2\right]\right\}:\left(\frac{1}{2}\right)^{-3}$$

Atividade 2: Conversão binário/decimal/hexadecimal

Apresentar as formas de transformações, de forma direta, entre as 3 bases de números, através de exemplos.

Decimal x Binário

$(800)_{10} = (1100100000)_2$

Solução Passo-a-Passo

Passo 1: Divida (800)₁₀ sucessivamente por 2 até que o quociente seja igual a 0:

800/2 = 400, resto = 0 400/2 = 200, resto = 0 200/2 = 100, resto = 0 100/2 = 50, resto = 0 50/2 = 25, resto = 0 25/2 = 12, resto = 1 12/2 = 6, resto = 0 6/2 = 3, resto = 0 3/2 = 1, resto = 1 1/2 = 0, resto = 1

Passo 2: Leia de baixo para cima como 1100100000. Este é o equivalente binário ao número decimal 800 (Resposta).

Decimal x Hexadecimal

 $(800)_{10} = (320)_{16}$

Solução Passo-a-Passo

Passo 1: Divida (800)₁₀ sucessivamente por 16 até que o quociente seja 0:

800/16 = 50, resto 0 50/16 = 3, resto 2 3/16 = 0, resto 3

Passo 2: Leia de baixo para cima como 320. Este é o hexadecimal equivalente ao número decimal 800 (Resposta).

Decimal:	0	1	2	3	4	5	6	7
Hexa	0	1	2	3	4	5	6	7
Decimal:	8	9	10	11	12	13	14	15
Hexa	8	9	А	В	С	D	E	F

Binário x Decimal

Binário x HexaDecimal

$(1100100000)_2 = (800)_{10}$

Solução Passo-a-Passo

Passo 1: Escreva o número binárior:

1100100000

Passo 2: Multiplique cada dígito ao número binário pela potência correspondente de dois:

$$1x2^9 + 1x2^8 + 0x2^7 + 0x2^6 + 1x2^5 + 0x2^4 + 0x2^3 + 0x2^2 + 0x2^1 + 0x2^0$$

Passo 3: Resolva as potências:

1x512 + 1x256 + 0x128 + 0x64 + 1x32 + 0x16 + 0x8 + 0x4 + 0x2 + 0x1 = 512 + 256 + 0 + 0 + 32 + 0 + 0 + 0 + 0 + 0

Passo 4: Some os números escritos acima:

512 + 256 + 0 + 0 + 32 + 0 + 0 + 0 + 0 + 0 = 800. Este é o equivalente decimal ao número binário 1100100000.

$(1100100000)_2 = (320)_{16}$

Solução Passo-a-Passo

Passo 1: Escreva o número binário

001100100000

Passo 2: Agrupe os dígitos em conjuntos de quatro começado do LSB (direita). Adicione zeros à esquerda do último dígito caso não haja dígitos suficientes para fazer um conjunto de quatro:

0011 0010 0000

Passo 3: Use a tabela abaixo para converter cada conjunto de três em um dígito hexadecimal:

0011 = 3,0010 = 2,0000 = 0

Assim, o hexadecimal 320 é equivalente ao decimal 1100100000.

Para converter de binário para hexadecimal use a seguinte tabela:

Bin:	0000	0001	0010	0011	0100	0101	0110	0111
Hexa:	0	1	2	3	4	5	6	7
Bin:	1000	1001	1010	1011	1100	1101	1110	1111
Hexa:	8	9	Α	В	С	D	E	F

1

 $(320)_{16} = (800)_{10}$

Solução Passo-a-Passo

Step 1: Escreva o número hexadecimal:

(320)16

Step 2: Escreva cada dígito em ordem crecente de potência de 16:

 $3x16^2 + 2x16^1 + 0x16^0$

Step 3: Converta cada valor de dígitos hexadecimais em valores decimais e resolva a expressão:

 $3x256 + 2x16 + 0x1 = (800)_{10}$

Assim, o número decimal 800 é equivalente a 320 em hexa (Resposta).

Hexadecimal x Binário

 $(320)_{16} = (1100100000)_2$

Solução Passo-a-Passo

Passo 1: Procure cada dígito hexadecimal para obter o grupo equivalente de quatro dígitos binários. Você pode usar a tabela abaixo para fazer essas conversões.

 $(3)_{16} = (0011)_2$

 $(2)_{16} = (0010)_2$

 $(0)_{16} = (0000)_2$

Passo 2: Agrupe cada valor do passo 1

0011 0010 0000

Passo 3: Junte esses valores e remova os zeros à esquerda (se necessário) para obter o resultado em binário.

1100100000

Assim, 1100100000 é o equivalente binário ao número hexadecimal 320 (Resposta).

Tabela de Equivalência Hexadecimal-Binário

Hexa	0	1	2	3	4	5	6	7
Bin:	0000	0001	0010	0011	0100	0101	0110	0111
Hexa	8	9	А	В	С	D	Е	F

1) CONVERSÃO DE BINÁRIO PARA DECIMAL:

·	a) 10101101 ₂
2)	CONVERSÃO BINÁRIO PARA OCTAL: b) 101011012
3)	CONVERSÃO BINÁRIO PARA HEXADECIMAL: a)101011012
4)	CONVERSÃO DE DECIMAL PARA BINÁRIO: a) 173
5)	CONVERSÃO DE DECIMAL PARA HEXADECIMAL: a) 173
6)	Converta os seguintes números binários para o sistema decimal: a) 10010 b) 1100 c) 0010 0100 d)1111 1110
7)	Reescreva os seguintes números no sistema binário: a) 71 b) 111
8)	Qual a representação, na forma decimal, dos seguintes números hexadecimais? a) 9A1 b) AAAC
9)	Converta os seguintes números para o formato hexadecimal: a) 1981 b) 17
	ade 3: Desafio para os grupos participantes (divisão em 5 grupos) Que endereço IP, em notação binária, identifica a sub-rede de host com o IP 192.72.92.17/20 ".

Atividade 4: Operação com frações, porcentagem

1. Frações

Dez décimos seis sextos

1 inteiro 1 inteiro

2. Classificação das frações:

Fração própria: o numerador é menor que o denominador:

$$\frac{2}{3}$$
, $\frac{1}{4}$, $\frac{3}{5}$

Fração imprópria: o numerador é maior ou igual ao denominador.

$$\frac{4}{3}$$
, $\frac{5}{5}$, $\frac{6}{4}$

Fração aparente: o numerador é múltiplo do denominador.

$$\frac{6}{3}$$
, $\frac{24}{12}$, $\frac{8}{4}$

Frações equivalentes: são frações que representam a mesma parte do todo.

$$\frac{1}{2}$$
, $\frac{2}{4}$, $\frac{4}{8}$

Exemplo: obter frações equivalentes à fração

$$\frac{1}{2}$$

$$\frac{1.2}{2.2} = \frac{2}{4}$$
 $\frac{1.3}{2.3} = \frac{3}{6}$ $\frac{1.4}{2.4} = \frac{4}{8}$ $\frac{1.5}{2.5} = \frac{5}{10}$

Simplificação de frações

Uma fração equivalente a $\frac{9}{12}$, com termos menores, é $\frac{3}{4}$. (Irredutível)

Adição/Subtração

Denominadores iguais

Para somar frações com denominadores iguais, basta somar os numeradores e conservar o denominador.

Para subtrair frações com denominadores iguais, basta subtrair os numeradores e conservar o denominador.

Observe os exemplos:

$$\frac{4}{7} + \frac{2}{7} = \frac{6}{7}$$

$$\frac{5}{7} - \frac{2}{7} = \frac{3}{7}$$

Denominadores diferentes

Exemplo: somar as frações $\frac{1}{5}$

$$mmc(5,2) = 10.$$

Multiplicação/Divisão

Multiplicação de números fracionários

$$\frac{8}{3}x\frac{4}{3} = \frac{8x4}{3x3} = \frac{32}{9}$$

$$\frac{-5}{2}x\frac{4}{3} = \frac{-5x4}{2x3} = \frac{-20}{6} = -\frac{20}{6} = -\frac{10}{3}$$

Divisão de números fracionários:

$$\frac{\frac{8}{3}}{\frac{4}{3}} = \frac{8}{3}x\frac{3}{4} = \frac{24}{12} = 2$$

Exercícios de rally - A4:

1) Observe a figura:

a) Qual a fração que representas a parte azul? E a parte branca?

b) Efetue o cálculo abaixo pela frações representadas pela parte branca da figura.

2) Observe as figuras e diga quanto representa cada parte da figura e a parte pintada:

3) colocar uma expressão completa

3. Porcentagem

Uma dica importante: o FATOR DE MULTIPLICAÇÃO.

A<u>créscimo</u> de 10% a um determinado valor, podemos calcular o novo valor apenas multiplicando esse valor por **1,10**, que é o fator de multiplicação.

Se o acréscimo for de 20%, multiplicamos por **1,20**, e assim por diante. Veja a tabela abaixo:

Acréscimo ou Lucro	Fator de Multiplicação
10%	1,10
15%	1,15
20%	1,20
47%	1,47
67%	1,67

Exemplo: Aumentando 10% no valor de R\$10,00 temos: 10 * 1,10 = R\$ 11,00

D<u>ecréscimo,</u> o fator de multiplicação será:

Fator de Multiplicação = 1 - taxa de desconto (na forma decimal)

Veja a tabela abaixo:

Desconto	Fator de Multiplicação
10%	0,90
25%	0,75
34%	0,66
60%	0,40
90%	0,10

Exemplo: Descontando 10% no valor de R\$10,00 temos: 10 * 0,90 = **R\$ 9,00**

Exercícios de rally: - A5

- 1) Um jogador de futebol, ao longo de um campeonato, cobrou 75 faltas, transformando em gols 8% dessas faltas. Quantos gols de falta esse jogador fez?
- 2) Se eu comprei uma ação de um clube por R\$250,00 e a revendi por R\$300,00, qual a taxa percentual de lucro obtida?

3) Questão ENADE 2014

Os dados estão nas nuvens e a infraestrutura responsável pelos diversos serviços são os *data centers*. Segundo estudos técnicos os grandes *data centers* são os novos vilões do meio ambiente por consumirem cerca de 1% de toda a energia elétrica gerada no mundo. Para reverter esse quadro as grandes empresas do setor de tecnologia estão investindo em *data centers* verdes e algumas apresentam registros de economia energética entre 30% e 50%. O quadro a seguir traz o *ranking* do *Greenpeace* das empresas preocupadas com TI Verde.

Empresas Líderes em TI Verde	Posição Ranking
Cisco	62
Dell	28
Google	33
HP	41
IBM	42
Intel	27
Microsoft	31

Disponível em http://www.greenpeace.org. Acesso em: 06 jul. 2014 (adaptado).

Se um datacenter tivesse as seguintes possibilidades de consumos de energia: 1000 KVA;

750 KVA;

350 KVA;

Qual seria a faiza de economia em cada caso?

Qual a diferença percentual entre o maior e o menor consumo?

Atividade 5: Probabilidade

Fenômenos estudados na Estatística, o resultado (mesmo em condições normais) variam a cada observação.

Há uma dificuldade de previsão de um resultado futuro.

Para explicação desses fenômenos (aleatórios) ->modelo matemático

Caracterização

O que há de comum em:

E1: retirar carta de baralho c/ 52 cartas e observar o "naipe"

E2: Jogar moeda 10 vezes e observar o número de coroas

E3: Retirar com ou sem reposição bolas de uma urna que contém 5 bolas brancas e 6 pretas

E4: Jogar dado e observar o número de cima

E5: Contar nº de peças defeituosas de uma produção diária da máquina A

•

Análise

Cada experimento pode ser repetido indefinidamente sob as mesmas condições; Não se conhece nenhum valor mas se pode prever resultados possíveis – possibilidades;

Espaço Amostral

É o conjunto de todos os resultados possíveis de um experimento aleatório. Cada um desses resultados é chamado de ponto amostral.

Exemplos:

Lançamento de um dado Ω (S) = {1, 2, 3, 4, 5, 6} Jogar 2 moedas Ω (S) = {(c,c), (c,k), (k,c), (k,k)}

Evento

É qualquer subconjunto do espaço amostral. Representamos os eventos por letras maiúsculas. O conjunto de todos esses eventos é chamado de espaço ou classe de eventos.

Exemplos:

Lança-se um dado, seja o evento A = elementos pares, então:

 $\Omega = \{1, 2, 3, 4, 5, 6\}$ $A = \{2, 4, 6\}$

Exercícios de rally- A6

1- seja o experimento E: jogar 3 moedas e observar os resultados:

Então: S={(

2- Se A é o evento: ocorrer pelo menos 2 caras:

Então: S={(

3- E: lançar um dado e observar o nº de cima

Então: S={

4- Se B é o evento: ocorrer múltiplos de 2

Então: S={

Eventos mutuamente exclusivos

 Se A e B são eventos mutuamente exclusivos, não podem ocorrer simultaneamente (A∩B=0)

Exemplo

- Experimento: jogar um dado e observar o resultado
- Então: S={1,2,3,4,5,6}
- Evento A: ocorrer números pares
- Evento B: ocorrer números ímpares
- Então: A={2,4,6} e B={1,3,5}, logo A∩B=0

Ou seja, A e B são mutuamente exclusivos pois a ocorrência de um nº par e um nº ímpar não pode ser verificada como decorrência da mesma experiência

Definição Clássica

Deve satisfazer as seguintes condições:

0≤P(A)≤1

P(S)=1

Se A e B forem eventos mutuamente exclusivos, (A∩B=0), então P(AUB)= P(A) + P(B)

$$P(A) = \frac{n \text{\'{u}mero de resultados favor\'{a}veis a } A}{n \text{\'{u}mero de resultados poss\'{i}veis}} = \frac{n(A)}{n(\Omega ouS)}$$

Desafio:

Lançam-se dois dados. Calcular a probabilidade dos seguintes eventos:

- a) Saída de faces iguais;
- b) Saída de faces cuja soma seja igual a 10;
- c) Saída de faces cuja soma seja menor que 15;
- d) Saída de faces onde uma face é o dobro da outra.

Exercícios de rally - A7:

1) No lançamento de dois dados, calcule a probabilidade de se obter soma igual a 5.

2) Qual a probabilidade de sair uma figura quando retiramos uma carta de um baralho de 52 cartas?
3) Retira-se uma carta de um baralho completo de 52 cartas. Qual a probabilidade de sair uma carta de copas ou de ouros? Qual a probabilidade de sair um rei ou uma carta de espadas?
4) No lançamento de um dado, qual a probabilidade de se obter um número não inferior a 5?
5) Dois dados são lançados conjuntamente. Determine a probabilidade de a soma ser 10 ou maior que 10.
 Bibliografia: www.somatematica.com.br Matemática Compreensão Prática, Enio Silveira, Claudio Marques – 2ª edição – Editora Moderna Notas de aula Prof. Agnaldo

Tabelas de conversão

Dec	Hex	Oct	Bin
0	0	0	0
1	1	1	1
2	2	2	10
3	3	3	11
4	4	4	100
5	5	5	101
6	6	6	110
7	7	7	111
8	8	10	1000
9	9	11	1001
10	Α	12	1010
11	В	13	1011
12	С	14	1100
13	D	15	1101
14	Е	16	1110
15	F	17	1111

Dec	Hex	Oct	Bin
48	30	60	110000
49	31	61	110001
50	32	62	110010
51	33	63	110011
52	34	64	110100
53	35	65	110101
54	36	66	110110
55	37	67	110111
56	38	70	111000
57	39	71	111001
58	3A	72	111010
59	3B	73	111011
60	3C	74	111100
61	3D	75	111101
62	3E	76	111110
63	3F	77	111111

Dec	Hex	Oct	Bin
16	10	20	10000
17	11	21	10001
18	12	22	10010
19	13	23	10011
20	14	24	10100
21	15	25	10101
22	16	26	10110
23	17	27	10111
24	18	30	11000
25	19	31	11001
26	1A	32	11010
27	1B	33	11011
28	1C	34	11100
29	1D	35	11101
30	1E	36	11110
31	1F	37	11111

Dec	Hex	Oct	Bin
64	40	100	1000000
65	41	101	1000001
66	42	102	1000010
67	43	103	1000011
68	44	104	1000100
69	45	105	1000101
70	46	106	1000110
71	47	107	1000111
72	48	110	1001000
73	49	111	1001001
74	4A	112	1001010
75	4B	113	1001011
76	4C	114	1001100
77	4D	115	1001101
78	4E	116	1001110
79	4F	117	1001111

Dec	Hex	Oct	Bin
32	20	40	100000
33	21	41	100001
34	22	42	100010
35	23	43	100011
36	24	44	100100
37	25	45	100101
38	26	46	100110
39	27	47	100111
40	28	50	101000
41	29	51	101001
42	2A	52	101010
43	2B	53	101011
44	2C	54	101100
45	2D	55	101101
46	2E	56	101110
47	2F	57	101111

Dec	Hex	Oct	Bin
80	50	120	1010000
81	51	121	1010001
82	52	122	1010010
83	53	123	1010011
84	54	124	1010100
85	55	125	1010101
86	56	126	1010110
87	57	127	1010111
88	58	130	1011000
89	59	131	1011001
90	5A	132	1011010
91	5B	133	1011011
92	5C	134	1011100
93	5D	135	1011101
94	5E	136	1011110
95	5F	137	1011111

Dec	Hex	Oct	Bin
96	60	140	1100000
97	61	141	1100001
98	62	142	1100010
99	63	143	1100011
100	64	144	1100100
101	65	145	1100101
102	66	146	1100110
103	67	147	1100111
104	68	150	1101000
105	69	151	1101001
106	6A	152	1101010
107	6B	153	1101011
108	6C	154	1101100
109	6D	155	1101101
110	6E	156	1101110
111	6F	157	1101111

Dec	Hex	Oct	Bin
144	90	220	10010000
145	91	221	10010001
146	92	222	10010010
147	93	223	10010011
148	94	224	10010100
149	95	225	10010101
150	96	226	10010110
151	97	227	10010111
152	98	230	10011000
153	99	231	10011001
154	9A	232	10011010
155	9B	233	10011011
156	9C	234	10011100
157	9D	235	10011101
158	9E	236	10011110
159	9F	237	10011111

Dec	Hex	Oct	Bin
112	70	160	1110000
113	71	161	1110001
114	72	162	1110010
115	73	163	1110011
116	74	164	1110100
117	75	165	1110101
118	76	166	1110110
119	77	167	1110111
120	78	170	1111000
121	79	171	1111001
122	7A	172	1111010
123	7B	173	1111011
124	7C	174	1111100
125	7D	175	1111101
126	7E	176	1111110
127	7F	177	1111111

Dec	Hex	Oct	Bin
160	A0	240	10100000
161	A1	241	10100001
162	A2	242	10100010
163	A3	243	10100011
164	A4	244	10100100
165	A5	245	10100101
166	A6	246	10100110
167	A7	247	10100111
168	A8	250	10101000
169	A 9	251	10101001
170	AA	252	10101010
171	AB	253	10101011
172	AC	254	10101100
173	AD	255	10101101
174	AE	256	10101110
175	AF	257	10101111

Dec	Hex	Oct	Bin
128	80	200	10000000
129	81	201	10000001
130	82	202	10000010
131	83	203	10000011
132	84	204	10000100
133	85	205	10000101
134	86	206	10000110
135	87	207	10000111
136	88	210	10001000
137	89	211	10001001
138	8A	212	10001010
139	8B	213	10001011
140	8C	214	10001100
141	8D	215	10001101
142	8E	216	10001110
143	8F	217	10001111

Dec	Hex	Oct	Bin
176	В0	260	10110000
177	B1	261	10110001
178	B2	262	10110010
179	В3	263	10110011
180	B4	264	10110100
181	B5	265	10110101
182	B6	266	10110110
183	В7	267	10110111
184	B8	270	10111000
185	В9	271	10111001
186	ВА	272	10111010
187	ВВ	273	10111011
188	ВС	274	10111100
189	BD	275	10111101
190	BE	276	10111110
191	BF	277	10111111

Dec	Hex	Oct	Bin
192	C0	300	11000000
193	C1	301	11000001
194	C2	302	11000010
195	C3	303	11000011
196	C4	304	11000100
197	C5	305	11000101
198	C6	306	11000110
199	C7	307	11000111
200	C8	310	11001000
201	C9	311	11001001
202	CA	312	11001010
203	СВ	313	11001011
204	CC	314	11001100
205	CD	315	11001101
206	CE	316	11001110
207	CF	317	11001111

Dec	Hex	Oct	Bin
208	D0	320	11010000
209	D1	321	11010001
210	D2	322	11010010
211	D3	323	11010011
212	D4	324	11010100
213	D5	325	11010101
214	D6	326	11010110
215	D7	327	11010111
216	D8	330	11011000
217	D9	331	11011001
218	DA	332	11011010
219	DB	333	11011011
220	DC	334	11011100
221	DD	335	11011101
222	DE	336	11011110
223	DF	337	11011111

Dec	Hex	Oct	Bin
224	E0	340	11100000
225	E1	341	11100001
226	E2	342	11100010
227	E3	343	11100011
228	E4	344	11100100
229	E5	345	11100101
230	E6	346	11100110
231	E7	347	11100111
232	E8	350	11101000
233	E9	351	11101001
234	EA	352	11101010
235	EB	353	11101011
236	EC	354	11101100
237	ED	355	11101101
238	EE	356	11101110
239	EF	357	11101111

Dec	Hex	Oct	Bin
240	F0	360	11110000
241	F1	361	11110001
242	F2	362	11110010
243	F3	363	11110011
244	F4	364	11110100
245	F5	365	11110101
246	F6	366	11110110
247	F7	367	11110111
248	F8	370	11111000
249	F9	371	11111001
250	FA	372	11111010
251	FB	373	11111011
252	FC	374	11111100
253	FD	375	11111101
254	FE	376	11111110
255	FF	377	11111111