que debe ser la ecuación del plano tangente a la gráfica de f en (x_0, y_0) , si f es "suficientemente suave" (véase la Figura 2.3.3).

Nuestra definición de diferenciabilidad significará que, en efecto, el plano definido por la aproximación lineal (1) es una "buena" aproximación de f cerca de (x_0, y_0) . Para hacerse una idea de lo que se debe entender por una buena aproximación, volvamos al cálculo de una variable. Si f es diferenciable en un punto x_0 , entonces sabemos que

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(x_0).$$

Si $x = x_0 + \Delta x$ podemos escribir lo anterior como sigue

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0).$$

Utilizando el límite trivial $\lim_{x\to x_0} f'(x_0) = f'(x_0)$, podemos escribir la ecuación anterior como

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} f'(x_0);$$

es decir,

$$\lim_{x \to x_0} \left[\frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \right] = 0;$$

es decir,

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - f'(x_0)(x - x_0)}{x - x_0} = 0.$$

Por tanto, la recta tangente l en $(x_0, f(x_0))$ con pendiente $f'(x_0)$ está cerca de f en el sentido de que la diferencia entre f(x) y $l(x) = f(x_0) + f'(x_0)(x - x_0)$, la ecuación de la recta tangente, tiende a cero, incluso si dividimos entre $x - x_0$, cuando x tiende a x_0 . Este es el concepto de "buena aproximación" que adoptaremos para las funciones de varias variables, con la recta tangente reemplazada por el plano tangente (véase la Ecuación (1), dada anteriormente).

Figura 2.3.3 Para los puntos (x, y) próximos a (x_0, y_0) , la gráfica del plano tangente se acerca a la gráfica de f.