

Computer Networks: A Systems Approach, 5e

Larry L. Peterson and Bruce S. Davie

Chapter 2 (Subset of topics)

Getting Connected

- Framing
- Error Detection. Reliable Transmission
- Sharing: Ethernet and Multiple Access Networks, Wireless Networks

Framing, Reliability, Sharing

- Delineating the sequence of bits transmitted over the link into complete messages that can be delivered to the end node
- Techniques to detect transmission errors and take the appropriate action (conceptually same as RPC)
- Making the links reliable in spite of transmission problems
- Media Access Control Problem
- Carrier Sense Multiple Access (CSMA) networks
- Wireless Networks with different available technologies and protocol

Framing

- We are focusing on packet-switched networks, which means that blocks of data (called *frames* at this level), not bit streams, are exchanged between nodes.
- It is the network adaptor that enables the nodes to exchange frames.

Bits flow between adaptors, frames between hosts

Framing

- When node A wishes to transmit a frame to node B, it tells its adaptor to transmit a frame from the node's memory. This results in a sequence of bits being sent over the link.
- The adaptor on node B then collects together the sequence of bits arriving on the link and deposits the corresponding frame in B's memory.
- Recognizing exactly what set of bits constitute a frame—that is, determining where the frame begins and ends—is the central function of the adaptor

Framing: Byte oriented

- BISYNC original Sentinel Approach (late 60s, IBM)
 - Frames transmitted beginning with leftmost field
 - Beginning of a frame is denoted by sending a special SYN (synchronize) character
 - Data portion of the frame is contained between special sentinel character STX (start of text) and ETX (end of text)
 - SOH : Start of Header
 - DLE : Data Link Escape
 - CRC: Cyclic Redundancy Check

BISYNC Frame Format

Framing: Bit-oriented Protocol

- HDLC: High Level Data Link Control Beginning and Ending Sequences: 0 1 1 1 1 1 1 0
- Sender: any time five consecutive 1's have been transmitted from the body of the message sender inserts 0 before transmitting the next bit (bit stuffing)
- Receiver: 5 consecutive 1's received:
 - Next bit 0 : Stuffed, so discard it
 - Next bit 1 : Either End of the frame marker, Or Error has been introduced in bitstream
 - If $0 (011111110) \rightarrow \text{End of the frame marker}$
 - If 1 (011111111) → Error, discard the whole frame

HDLC Frame Format

Error Detection

- Bit errors are introduced into frames
 - Because of electrical interference and thermal noises
- Common technique for detecting transmission error
 - CRC (Cyclic Redundancy Check)
 - Used in HDLC, CSMA/CD
 - Other approaches
 - Checksum (IP)

Error Detection

- Basic Idea of Error Detection
 - To add redundant information to a frame that can be used to determine if errors have been introduced
 - Imagine (Extreme Case)
 - Transmitting two complete copies of data
 - Identical → No error
 - Differ → Error
 - Poor Scheme ???
 - n bit message, n bit redundant information
 - Error can go undetected
 - In general, we can provide strong error detection technique efficiently
 - k redundant bits, n bits message, k << n</p>
 - In Ethernet, a frame carrying up to 12,000 bits of data requires only 32bit CRC

Error Detection

- Extra bits are redundant
 - They add no new information to the message
 - Derived from the original message using some algorithm
 - Both the sender and receiver know the algorithm
 - IP weak checksum (sum of '16 bit' words)
 - Link Level: CRC (see book/wikipedia for details as interested)

Receiver computes *r* using *m*, If they match, no error

Error Correction

- Need to: Detect Error, Correct/Recover from Error
- Two approaches when the recipient detects an error
 - Using error correction algorithm, the receiver reconstructs the message
 - The overhead is often considered too high for wired links...more relevant to wireless...some errors go uncorrected
 - Corrupt frames must be discarded.
 - "Notify" the sender that the message was corrupted, so the sender can send again.
 - If the error is rare, then the retransmitted message will be errorfree

Reliable Transmission

- A link-level protocol that wants to deliver frames reliably must recover from discarded frames.
- Combination of two fundamental mechanisms
- An acknowledgement (ACK for short) is a small control frame that a protocol sends back to its peer saying that it has received the earlier frame.
 - A control frame is a frame with header only (no data).
- The receipt of an acknowledgement indicates to the sender of the original frame that its frame was successfully delivered.

Reliable Transmission

- If the sender does not receive an acknowledgment after a reasonable amount of time, then it retransmits the original frame.
- The action of waiting a reasonable amount of time is called a *timeout*.
- The general strategy of using acknowledgements and timeouts to implement reliable delivery is sometimes called Automatic Repeat reQuest (ARQ).
- Build up the concept so you understand why we don't use the simplest form...

- Idea of stop-and-wait protocol is straightforward
 - After transmitting one frame, the sender waits for an acknowledgement before transmitting the next frame.
 - If the acknowledgement does not arrive after a certain period of time, the sender times out and retransmits the original frame

Timeline showing four different scenarios for the stop-and-wait algorithm.

(a) The ACK is received before the timer expires; (b) the original frame is lost; (c) the ACK is lost; (d) the timeout fires too soon

- If the acknowledgment is lost or delayed in arriving
 - The sender times out and retransmits the original frame, but the receiver will think that it is the next frame since it has correctly received and acknowledged the first frame
 - As a result, duplicate copies of frames will be delivered
- How to solve this
 Same conceptual issue as with TCP, RPC
 - Use 1 bit sequence number (0 or 1)
 - When the sender retransmits frame 0, the receiver can determine that it is seeing a second copy of frame 0 rather than the first copy of frame 1 and therefore can ignore it (the receiver still acknowledges it, in case the first acknowledgement was lost)

Timeline for stop-and-wait with 1-bit sequence number

Sender Stop and Wait Protocol -- Limitations

- The sender has only one outstanding frame on the link at a time
 - This may be far below the link's capacity
- Consider a slow 1.5 Mbps link with a 45 ms RTT
 - The link has a delay × bandwidth product of 67.5 Kb or approximately 8 KB
 - Since the sender can send only one frame per RTT and assuming a frame size of 1 KB
 - Maximum Sending rate
 - Bits per frame \div Time per frame = $1024 \times 8 \div 0.045 = 182$ Kbps Or about one-eighth of the link's capacity
 - To use the link fully, then sender should transmit up to eight frames before having to wait for an acknowledgement
 - QUIZ QUESTION

Sliding Window Protocol: Parallelism

Timeline for Sliding Window Protocol

Sender Sliding Window Protocol

- Sender assigns a sequence number denoted as SeqNum to each frame
- Sender maintains three variables
 - Sending Window Size (SWS)
 - Upper bound on the number of outstanding (unacknowledged) frames that the sender can transmit
 - Last Acknowledgement Received (LAR)
 - Sequence number of the last acknowledgement received
 - Last Frame Sent (LFS)
 - Sequence number of the last frame sent
- Sender maintains invariant: LFS LAR ≤ SWS

Sender Sliding Window Protocol

- When an acknowledgement arrives
 - the sender moves LAR to right, thereby allowing the sender to transmit another frame
- Also the sender associates a timer with each frame it transmits
 - It retransmits the frame if the timer expires before the ACK is received
- Note that the sender has to be willing to buffer up to SWS frames

Receiver Sliding Window Protocol

- Receiver maintains three variables
 - Receiving Window Size (RWS)
 - Upper bound on the number of out-of-order frames that the receiver is willing to accept
 - Largest Acceptable Frame (LAF)
 - Sequence number of the largest acceptable frame
 - Last Frame Received (LFR)
 - Sequence number of the last frame received
- Receiver maintains invariant: LAF LFR ≤ RWS

Receiver Sliding Window Protocol

- When a frame with sequence number SeqNum arrives:
 - If SeqNum ≤ LFR or SeqNum > LAF
 - Discard it (the frame is outside the receiver window)
 - If LFR < SeqNum ≤ LAF</p>
 - Accept it
 - Decide whether or not to send an ACK
 - Let SeqNumToAck Denote the largest sequence number not yet acknowledged, such that all frames with sequence number less than or equal to SeqNumToAck have been received
 - The receiver acknowledges the receipt of SeqNumToAck even if higher-numbered packets have been received
 - This acknowledgement is said to be cumulative.
 - The receiver then sets
 - LFR = SeqNumToAck and adjusts
 - LAF = LFR + RWS

Sliding Window Protocol Inefficiencies

- When timeout occurs, the amount of data in transit decreases
 - Since the sender is unable to advance its window
- When the packet loss occurs, this scheme is no longer keeping the pipe full
 - The longer it takes to notice that a packet loss has occurred, the more severe the problem becomes
 - How to improve this -- Will discuss nuances in context of TCP in future lecture
 - Negative Acknowledgement (NAK)
 - Additional Acknowledgement
 - Selective Acknowledgement

NAKs, Duplicate Acks, Selective Acks...

- Negative Acknowledgement (NAK)
 - Receiver sends NAK for frame 6 when frame 7 arrive (in the previous example)
 - However this is unnecessary since sender's timeout mechanism will be sufficient to catch the situation
- Additional Acknowledgement
 - Receiver sends additional ACK for frame 5 when frame 7 arrives
 - Sender uses duplicate ACK as a clue for frame loss
- Selective Acknowledgement
 - Receiver will acknowledge exactly those frames it has received, rather than the highest number frames
 - Receiver will acknowledge frames 7 and 8
 - Sender knows frame 6 is lost
 - Sender can keep the pipe full (additional complexity)

Sequence numbers

- How to distinguish between different incarnations of the same sequence number?
 - Number of possible sequence number must be larger than the number of outstanding frames allowed
 - Stop and Wait: One outstanding frame
 - 2 distinct sequence number (0 and 1)
 - Let MaxSeqNum be the number of available sequence numbers
 - SWS + 1 ≤ MaxSeqNum
 - Is this sufficient?

Sequence number space

```
SWS + 1 ≤ MaxSeqNum
```

- Is this sufficient?
- Depends on RWS
- If RWS = 1, then sufficient
- If RWS = SWS, then not good enough
- For example, we have eight sequence numbers

```
0, 1, 2, 3, 4, 5, 6, 7

RWS = SWS = 7

Sender sends 0, 1, ..., 6

Receiver receives 0, 1, ..., 6
```

Receiver acknowledges 0, 1, ..., 6

ACK (0, 1, ..., 6) are lost

Sender retransmits 0, 1, ..., 6

Receiver is expecting 7, 0, ..., 5

To avoid this, If RWS = SWS, SWS < (MaxSeqNum + 1)/2</p>

Sharing Links

- Ethernet
- Wifi

Ethernet

- Most successful local area networking technology of last 30 years.
- Developed in the mid-1970s by researchers at the Xerox Palo Alto Research Centers (PARC).
- Uses CSMA/CD technology
 - Carrier Sense Multiple Access with Collision Detection.
 - A set of nodes send and receive frames over a shared link.
 - Carrier sense means that all nodes can distinguish between an idle and a busy link.
 - Collision detection means that a node listens as it transmits and can therefore detect when a frame it is transmitting has collided with a frame transmitted by another node.
- Interesting design lessons for higher level distributed systems (pub/sub bus)

Ethernet -- Origins

- Uses ALOHA (packet radio network) as the root protocol
 - Developed at the University of Hawaii to support communication across the Hawaiian Islands (early '70s).
 - For ALOHA the medium was atmosphere, for Ethernet the medium is a coax cable.
- DEC and Intel joined Xerox to define a 10-Mbps Ethernet standard in 1978.
- This standard formed the basis for IEEE standard 802.3
- 802.3 was later extended to include a 100-Mbps Fast
 Ethernet and a 1000-Mbps Gigabit Ethernet.

Ethernet -- hardware

- Ethernet segment original was coaxial cable of up to 500 m.
 - Up to 5 segments can be joined by repeaters -- total reach 2500 m.
 - Later thinner cable known as 10Base2 up to 200 m; Twisted pair 10Base1 up to 100 m (used with Ethernet Hubs that xmit onto all links)
- Hosts connect to an Ethernet segment by tapping into it.
- A transceiver (a small device directly attached to the tap)
 detects when the line is idle and drives signal when the host is
 transmitting, and receives incoming signal transceiver
- Ethernet adaptor plugs into host and implements protocol

Ethernet is a "Bus"

- Any signal placed on the Ethernet by a host is broadcast over the entire network
 - Signal is propagated in both directions.
 - Repeaters forward the signal on all outgoing segments.
 - Terminators attached to the end of each segment absorb the signal.
- Ethernet hubs rebroadcast onto all attached links so still one broadcast network

Hub

Hub

Access Protocol for Ethernet -- Framing

- Ethernet's Media Access Control (MAC).
 - implemented in Hardware on the network adaptor.
- Frame format
 - Preamble (64bit): allows the receiver to synchronize with the signal (sequence of alternating 0s and 1s).
 - Host and Destination Address (48bit each).
 - Packet type (16bit): acts as demux key to identify the higher level protocol.
 - Data (up to 1500 bytes)
 - Minimally a frame must contain at least 46 bytes of data.
 - Frame must be long enough to detect collision.
 - CRC (32bit)

Ethernet Addresses

- Each host on an Ethernet (in fact, every Ethernet host in the world) has a unique Ethernet Address.
- The address belongs to the adaptor, not the host.
 - It is usually burnt into ROM.
- Ethernet addresses printed in a human readable format
 - sequence of six numbers separated by colons.
 - Each number corresponds to 1 byte of the 6 byte address and is given by a pair of hexadecimal digits, one for each of the 4-bit nibbles in the byte; Leading 0s are dropped.
- Each manufacturer of devices is allocated a different prefix
 prepended to address on every adaptor they build (AMD assigned 24bit prefix 8:0:20)

Ethernet Receiver

- Each frame transmitted on an Ethernet is received by every adaptor connected to that Ethernet.
- Each adaptor recognizes those frames addressed to its address and passes only those frames on to the host.
- In addition, to unicast address, an Ethernet address consisting of all 1s is treated as a broadcast address.
 - All adaptors pass frames addressed to the broadcast address up to the host.
- Similarly, an address that has the first bit set to 1 but is not the *broadcast* address is called a *multicast* address.
 - A given host can program its adaptor to accept some set of multicast addresses.

Ethernet Transmitter – Listen before Talk

- When the adaptor has a frame to send and the line is idle, it transmits the frame immediately.
 - The upper bound of 1500 bytes in the message means that the adaptor can occupy the line for a fixed length of time.
- When the adaptor has a frame to send and the line is busy, it waits for the line to go idle and then transmits immediately. ("Carrier Sense"=Listen before talk)
- The Ethernet is said to be 1-persistent protocol because an adaptor with a frame to send transmits with probability 1 whenever a busy line goes idle.

Ethernet Transmitter – Collision Detection

- Since there is no centralized control it is possible for two (or more) adaptors to begin transmitting at the same time,
 - Either because both found the line to be idle,
 - Or, both had been waiting for a busy line to become idle.
- The two (or more) frames are said to be collide on the network.
 - Each sender is able to determine that a collision is in progress (signal is abnormal) by "Listening while transmitting".
- At the moment an adaptor detects that its frame is colliding with another, it first makes sure to transmit a 32bit jamming sequence and then stops transmission.
 - Transmitter minimally sends 96 bits in the case of collision with nearby host: 64-bit preamble + 32-bit jamming sequence

Collision Detection not instantaneous

- The worst case scenario happens when the two hosts are at opposite ends of the Ethernet.
- To know for sure that the frame its just sent did not collide with another frame, the transmitter may need to send as many as 512 bits.
 - Every Ethernet frame must be at least 512 bits (64 bytes) long.
 - 14 bytes of header + 46 bytes of data + 4 bytes of CRC
 - The farther apart two nodes are, the longer it takes for a frame sent by one to reach the other, and the network is vulnerable to collision during this time

Collision detection delay

- A begins frame at time t; d is one link latency
- The first bit of A's frame arrives at B at time t + d
- Suppose an instant before host A's frame arrives, host B begins to transmit its own frame

- Host A must continue to transmit until this time[®] in order to detect the collision (listen while talking)
 - Host A must transmit for 2 * d to be sure that it detects all collisions (d= 51.2 µs if 2500 m→transmit 512 bits on 10 Mbps Ethernet)

Ethernet Transmitter Algorithm

- Consider that a maximally configured Ethernet is 2500 m long, and there may be up to four repeaters between any two hosts, the round trip delay has been determined to be 51.2 μs
 - Which on 10 Mbps Ethernet corresponds to 512 bits
- The other way to look at this situation,
 - We need to limit the Ethernet's maximum latency to a fairly small value (51.2 μs) for the access algorithm to work efficiently
 - Hence the maximum length for the Ethernet is on the order of 2500 m.

Exponential backoff

- What if the network is very busy lots of host want to transmit a lot – Collision rate goes up
- Once an adaptor has detected a collision, and stopped its transmission, it waits a certain amount of time and tries again.
- Each time the adaptor tries to transmit but fails, it doubles the amount of time it waits before trying again.
- This strategy of doubling the delay interval between each retransmission attempt is known as Exponential Backoff.

Exponential backoff w/ randomization

- The adaptor first delays either 0 or 51.2 μs, selected at random.
- If this effort fails, it then waits 0, 51.2, 102.4, 153.6 μs (selected randomly) before trying again;
 - This is k * 51.2 for k = 0, 1, 2, 3
- After the third collision, it waits k * 51.2 for $k = 0...2^3 1$ (again selected at random).
- In general, the algorithm randomly selects a k between 0 and 2ⁿ 1 and waits for k * 51.2 μs, where n is the number of collisions experienced so far.

Experience with Ethernet

- Ethernets work best under lightly loaded conditions.
 - Under heavy loads, too much of the network's capacity is wasted by collisions.
- Most Ethernets are used in a conservative way.
 - Have fewer than 200 hosts connected to them which is far fewer than the maximum of 1024.
- Most Ethernets are far shorter than 2500m with a roundtrip delay of closer to 5 μs than 51.2 μs.
- Ethernets are easy to administer and maintain.
 - There are no switches that can fail and no routing and configuration tables that have to be kept up-to-date.
 - It is easy to add a new host to the network.
 - It is inexpensive.
 - Cable is cheap, and only other cost is the network adaptor on each host.

Wireless Links

- Wireless links transmit electromagnetic signals
 - Radio, microwave, infrared
- Wireless links all share the same "wire" (so to speak)
 - The challenge is to share it efficiently without unduly interfering with each other
 - Most of this sharing is accomplished by dividing the "wire" along the dimensions of frequency and space
- Control Range through transmit signal power
- Control Frequency through frequency hopping, spread spectrum...

Wireless across various scales

- Wireless technologies differ in a variety of dimensions
 - How much bandwidth they provide
 - How far apart the communication nodes can be
- Four prominent wireless technologies
 - Bluetooth; Wi-Fi (more formally known as 802.11); WiMAX (802.16); 3G-4G cellular wireless

	Bluetooth (802.15.1)	Wi-Fi (802.11)	3G Cellular
Typical link length	10 m	100 m	Tens of kilometers
Typical data rate	2 Mbps (shared)	54 Mbps (shared)	Hundreds of kbps (per connection)
Typical use	Link a peripheral to a computer	Link a computer to a wired base	Link a mobile phone to a wired tower
Wired technology analogy	USB	Ethernet	DSL

Most wireless networks use asymmetry

- Mostly widely used wireless links today are usually asymmetric--Two end-points are different kinds of nodes
 - One end-point usually has no mobility, but has wired connection to the Internet (known as base station or Access Point (AP))
 - The node at the other end of the link is often mobile

IEEE 802.11

- Also known as Wi-Fi
- Like its Ethernet and token ring siblings, 802.11 is designed for use in a limited geographical area (homes, office buildings, campuses)
 - Primary challenge is to mediate access to a shared communication medium – in this case, signals propagating through space
- 802.11 supports additional features
 - power management and
 - security mechanisms
- Many variants over time, many details, will focus on shared concepts

IEEE 802.11

- Original 802.11 standard defined two radio-based physical layer standard
 - One using the frequency hopping
 - Over 79 1-MHz-wide frequency bandwidths
 - Second using direct sequence
 - Using 11-bit chipping sequence
 - Both standards run in the 2.4-GHz and provide up to 2 Mbps
- Then physical layer standard 802.11b was added
 - Using a variant of direct sequence 802.11b provides up to 11 Mbps
 - Uses license-exempt 2.4-GHz band
- Then came 802.11a which delivers up to 54 Mbps using OFDM
 - 802.11a runs on license-exempt 5-GHz band
- Most recent standard is 802.11g which is backward compatible with 802.11b
 - Uses 2.4 GHz band, OFDM and delivers up to 54 Mbps

Wireless channels more challenging

- Example: each of four nodes able to send and receive signals with select other nodes – not all
 - B can exchange frames with A and C, but it cannot reach D
 - C can reach B and D but not A
- If they were all connected to an Ethernet they would all reach each other

Collision management challenge -- Hidden nodes

- Suppose both A and C want to communicate with B and so they each send it a frame.
 - A and C are unaware of each other since their signals do not carry that far
 - These two frames collide with each other at B
 - But unlike an Ethernet, neither A nor C is aware of this collision
 - A and C are said to hidden nodes with respect to each other

The "Hidden Node" Problem. Although A and C are hidden from each other, their signals can collide at B. (B's reach is not shown.)

IEEE 802.11 – Collision Avoidance

- 802.11 addresses these two problems with an algorithm called Multiple Access with Collision Avoidance (MACA).
- Key Idea "less random access, more coordination"
 - Sender and receiver exchange control frames with each other before the sender actually transmits any data.
 - This exchange informs all nearby nodes that a transmission is about to begin
 - Sender transmits a Request to Send (RTS) frame to the receiver.
 - The RTS frame includes a field that indicates how long the sender wants to hold the medium
 - Length of the data frame to be transmitted
 - Receiver replies with a Clear to Send (CTS) frame
 - This frame echoes this length field back to the sender

IEEE 802.11 – Collision Avoidance

- Any node that sees the CTS frame knows that
 - it is close to the receiver, therefore
 - cannot transmit for the period of time it takes to send a frame of the specified length
- Any node that sees the RTS frame but not the CTS frame
 - is not close enough to the receiver to interfere with it, and
 - so is free to transmit

IEEE 802.11 – Collision Avoidance

- Using ACK in MACA
 - Proposed in MACAW: MACA for Wireless LANs
- Receiver sends an ACK to the sender after successfully receiving a frame
- All nodes must wait for this ACK before trying to transmit
- If two or more nodes detect an idle link and try to transmit an RTS frame at the same time
 - Their RTS frame will collide with each other
- 802.11 does not support collision detection
 - So the senders realize the collision has happened when they do not receive the CTS frame after a period of time
 - In this case, they each wait a random amount of time before trying again.
 - The amount of time a given node delays is defined by the same exponential backoff algorithm used on the Ethernet.

IEEE 802.11 – Access Point Distribution System

- Following figure illustrates a distribution system that connects three access points, each of which services the nodes in the same region
- Each of these regions is analogous to a cell in a cellular phone system with the APs playing the same role as a base station
 - Each nodes associates itself with one access point
 - For node A to communicate with node E, A first sends a frame to its AP-1 which forwards the frame across the distribution system to AP-3, which finally transmits the frame to E

Frame Format for Distribution across APs

- Source and Destinations addresses: each 48 bits
- Data: up to 2312 bytes; CRC: 32 bit
- Control field: 16 bits
 6 bit Type field: indicates whether the frame is an RTS or CTS frame or being used by the scanning algorithm; A pair of 1 bit fields: called ToDS and FromDS
- Simplest case: Both DS bits are 0 -- one node sends directly to another,
 Addr1 identifies the target node, and Addr2 identifies the source node
- Complex case: Both DS bits are 1 -- message went from wireless node onto distribution system, and from distribution system to another wireless node
 - Addr1 identifies the ultimate destination,
 - Addr2 identifies the immediate sender (the one that forwarded the frame from the distribution system to the ultimate destination)
 - Addr3 identifies the intermediate destination (the one that accepted the frame from a wireless node and forwarded across the distribution system)
 - Addr4 identifies the original source
 - Addr1: E, Addr2: AP-3, Addr3: AP-1, Addr4: A

16	16	48	48	48	16	48	0-18,496	32
Control	Duration	Addr1	Addr2	Addr3	SeqCtrl	Addr4	Payload	CRC

IEEE 802.11 – AP association

- How do the nodes select their access points
- How does it work when nodes move from one cell to another
- The technique for selecting an AP is called scanning
 - The node sends a Probe frame
 - All APs within reach reply with a Probe Response frame
 - The node selects one of the access points and sends that AP an Association Request frame
 - The AP replies with an Association Response frame
- A node engages this protocol whenever
 - it joins the network, as well as
 - when it becomes unhappy with its current AP
 - This might happen, for example, because the signal from its current AP has weakened due to the node moving away from it
 - Whenever a node acquires a new AP, the new AP notifies the old AP of the change via the distribution system

Bluetooth

- Used for very short range communication between mobile phones, PDAs, notebook computers and other personal or peripheral devices
- Operates in the license-exempt band at 2.45 GHz
- Has a range of only 10 m
- Communication devices typically belong to one individual or group
 - Sometimes categorized as Personal Area Network (PAN)
- Version 2.0 provides speeds up to 2.1 Mbps
- Power consumption is low

ZigBee

- ZigBee competes with Bluetooth
- Devised by the ZigBee alliance and standardized as IEEE 802.15.4
- It is designed for situations where the bandwidth requirements are low and power consumption must be very low to give very long battery life
- It is also intended to be simpler and cheaper than Bluetooth, making it financially feasible to incorporate in cheaper devices such as a wall switch that wirelessly communicates with a ceiling-mounted fan

