

KNOWLEDGE PROCESSING FOR ROBOTS

Kayode Hadilou ADJE

Sup: Sashidhar Kanuboddi, Institute for Artificial

Intelligence, RWU

MOTIVATION

 Robots are required to perform complex tasks e.g pick up and place can on the table

• **Problem**: A robot need spatial information about the scene, and a deep semantic knowledge of its surrounding, the task to perform, access to different reasoning mechanisms...

SOTA: KnowRob2.0¹

• **Developed Solution**: Package for ontology-based knowledge representation of the robot, the scene and manipulation tasks.

KNOWROB

- End-to-end framework built at the University of Bremen for knowledge representation and reasoning in robotics¹
 - Core Layer / Hybrid reasoning
 - Ontologies-based reasoning
 - Simulation-based reasoning
 - Reasoning from previous experiences
 - Logic-based language
 - Interface Layer
 - Querying interface via Prolog predicates
 - Perception modules

Learning modules (Weka platform)

KnowRob2.0 is under migration, so what could be done?

The Core layer is under migration

- DUL¹ is used as standard ontology
- Physical and social concepts of tasks are modelled with SOMA²

Logic and interface layers are obsolete

Package for knowledge representation and processing

- On top of ROS stack
- Python3 binding to allow use of ontology directly in robot's control code
- Ontology in OWL language for :
 - Tiago
 - Surrounding environment
 - Simplified manipulation task
- Spatial reasoning, some tasks-related constraints

1 http://ontologydesignpatterns.org/wiki/Ontology:DOLCE+DnS_Ultralite

ONTOLOGY

Inspired by SOMA, simplified, in OWL

- Representation for:
 - the robot
 - its surrounding
 - manipulation tasks (simplified)

Table

MobileBase

Gripper

Object

Link

SpatialLocation

SPATIAL REASONING

?right(ObjA,ObjB)

- diff on x axis less than threshold
- right obj has higher coord on Y

?left(ObjA,ObjB)

- diff on x axis less than threshold
- left obj has lower coord on Y

?on(ObjA,ObjB)

- Obj A can fit in Obj B
- Comparison of dims and coords

• ?in(ObjA,ObjB)

- diff on Z axis less than threshold
- Object on top has higher Z coord

TASK MODELING

- Relations between :
 - tasks and agents
 - tasks and agents' lower components
- Semantic information on tasks specific details
- Manipulation constraints:
 - Affordance
 - Availability of a region

EXAMPLE- Pg 1

- ROS nodes to listen to models's pose, joint states
- A pick up and place task is used
- Knowledge base populated and saved
- Knowledge base can be visualised in Protege, queries can be runned with DL, SparkQL, or Python3 (Python is used in this case)

EXAMPLE- Pg 2

- Examples of questions that can be answered?
 - which object(s) are/is where ?
 - what is the location of an object ?
 - what are the performed tasks?
 - who are the participants of a task? (robots, joints)
 - how much effort needed to grasp a goal object ?
 - on which object to place the goal object?

WHAT IS NEXT?

- Some improvements :
 - Automatic parsing of description files to OWL ontology
 - Integration of perception modules
- Deeper representation to allow extraction of more semantics from tasks
- Learning methods to allow predictions of unknown behaviours using large data in knowledge base

TAL TECH

THANK YOU