Chapter 5: 5.1-5.4, 5.10, 5.21

October 9, 2022 5:47 PM

*5.1 Determine the decimal values of the following unsigned numbers:

(a) (0111011110)₂ (b) (1011100111)₂ (c) (3751)₈ (d) (A25F)₁₆

(e) (F0F0)₁₆ (a) $V = 0 \times 2^9 + 1 \times 2^8 + 1 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^2 + 0 \times 2^6 = (478)_{18}$

(b) $V = 2^{\circ} + 2^{i} + 2^{2} + 2^{5} + 2^{6} + 2^{7} + 2^{9} = (743)_{10}$

(C) $V = (x s^4 + 5x s^1 + 7x s^2 + 3x s^3 = (2025)_{10}$

(d) $V = 15 \times 16^6 + 5 \times 16^4 + 2 \times 16^2 + 10 \times 16^3 = (41567)_{10}$

(e) $V = 0 + 15 \times 16^{1} + 0 + 15 \times 16^{3} = (61686)_{10}$

*5.2 Determine the decimal values of the following 1's complement numbers:

(b) 1011100111

(c) 1111111110

 ${}_{2}^{8} + {}_{2}^{7} + {}_{2}^{6} + {}_{2}^{9} + {}_{2}^{9} + {}_{2}^{3} + {}_{2}^{1} + {}_{2}^{1} = +478$

 $-(2^8+2^4+2^3)=-280$

(c) 000001

*5.3 Determine the decimal values of the following 2's complement numbers:

(a) 0111011110 (b) 1011100111 (c) 1111111110

 $\frac{1011100}{1011100} = + (2^{4} + 2^{7} + 2^{6} + 2^{4} + 2^{5} + 2^{7} + 2^{6}) = +478$ (a)

 $\frac{2^{2} \cdot s \cdot correlated}{10001001} = -(2^{8} + 2^{4} + 2^{3} + 2^{6}) = -281$ (b)

(c)

Convert the decimal numbers 73, 1906, -95, and -1630 into signed 12-bit numbers in the

following representations:

(a) Sign and magnitude

(b) 1's complement

(c) 2's complement

Decimal		Sign	& Ma	gnitude	[/	′	1, 2	complex	nert			2'5	Comp	lement	-	
73	000	06)	001	001	1//	000	001	001	001	//	000	001	100	001		
1906	011	101	110	010	1/	011	101	110	010	//	110	101	110	010		
-95	100	001	011	1 11	$V_{\prime\prime}$	111	110	100	000	//	111	110	100	001		
-1630	[][001	011	110	1.7	100	110	100	001	//	100	110	100	010		

5.10 In section 5.5.4 we stated that a carry-out signal, c_k , from bit position k-1 of an adder circuit can be generated as $c_k = x_k \oplus y_k \oplus s_k$, where x_k and y_k are inputs and s_k is the sum bit. Verify the correctness of this statement.

See the class note

*5.21 Suppose that we want to determine how many of the bits in a three-bit unsigned number are equal to 1. Design the simplest circuit that can accomplish this task.

				\sim	<u> </u>
$\mathcal{X}_{\mathfrak{l}}$	χ ₂	λ3	No. of	٧ _ι	y.
O	U	U	O	0	0
0	O	ı	1	ט	1
Ö	l	٥	1	٥	1
0	ı	1	2	(Ó
l	0	0	l	0	l
l	೦	1	2	l	Ö
1	I	0	2	1	0
t	١	1	3	l	١ ١

