Spring RR Project

Sam Howley, 06/26/2024

*These figures are not publication ready!!

Site	Mean Stage (m)	Mean Reach (m)	Mean Discharge (m³ day-¹)	Study Period	h _{high}	h _{brow}	h _{reversal}	Total floods	Recorded floods
IU	1.1	4950	303	07/20/2023- 06/20/2024	3	0	0	3	3
ID	1.2	2900	668	07/20/2023- 06/20/2024	5	0	0	5	5
GB	0.5	350	141	07/10/2022- 06/20/2024	3	1	2	5	4
LF	0.5	320	58	07/12/2022- 06/25/2024	4	1	1	6	3
OS	1.0	1350	165	07/20/2022 6/25/2024	4	4	1	9	8
АМ	1.4	1000	516	07/20/2023- 06/20/2024	6	5	2	13	13

To "smooth" the transition between one and two station, I took the average between one and two results.

Low-stage metabolism between 1 and 2 are similar. Larger differences during disturbances.

Workflow for estimating historical stage

- Locate two USGS river gages upstream and downstream of spring confluence
- 2. Calculate the "elevation proportion" (x from spring upstream gage/ x from upstream to downstream gage)
- 3. Estimate the elevation of the river at the spring's confluence for the observed study period
- 4. Find relationship between estimated elevation and observed depth
- 5. Estimate elevation for all available data from the two gages
- 6. Apply depth ~ elevation relationship for predicted historical stage

Predicted depth

Workflow for predicting metabolism

- Find relationship between GPP and ER, and depth
 - Lm, lm with interaction, x^2, x^ 2 with interaction
 - Interaction: depth category (high, moderate, low)
- Apply GPP or ER ~ depth to predicted depth

GB

GB

AM

LF

LF

OS

OS

IU

ID

ID

Thoughts

- Lm is terrible. I think lm + interpolation is the best.
- ... and its best at low to moderate-ish stage. It is terrible during high stage/disturbance.
- Different drivers at differing time scales? Stage may be important to spring metabolism during normal conditions but derails beyond a certain depth.
- I can continue to investigate interpolating historical stage at normal conditions.

Next steps

- Continue working on interpolating metabolism
- Model Spring Biomass... I have run the predictions for twos site (GB and IU) for the first year. Running these models take a long time