Kasun Gayashan Hettihewa

Bangkok, Thailand | (+66) 623306505 | hettihewak@gmail.com | LinkedIn | GitHub Portfolio

A Computer Engineering Master's graduate with a Deep Learning research focus. Passionate about Machine Learning and Data Science. Seeking opportunities in Data Science and Machine Learning where I can apply my skills to solve real-world business and technical problems.

SKILLS

Programming: Python, NumPy, Pandas, Matplotlib, PyTorch, Scikit-learn, SQL **Machine Learning:** Regressions, Random Forest, SVM, XGBoost, Deep Learning

EDUCATION

Chulalongkorn University

December 2023

M.Eng. in Computer Engineering

Asian Institute of Technology (AIT)

May 2017

B.Sc(Eng) in Mechatronics Engineering

EXPERIENCE

PIC Lab, Chulalongkorn University

Bangkok, Thailand

Jan. 2022 - Present

Research Assistant (Deep Learning)

- Design and develop a fully convolutional network (FCN) to segment liver tumors using computed tomography (CT) imaging data.
- Fine-tune the model and validate it with other datasets and radiological imaging.
- Improve the architecture using state-of-the-art deep learning approaches to reduce computational complexity while boosting the effectiveness of the network for segmentation.

Global-Thaixon Precision Industry Company Limited

Chacheongsao, Thailand

Automation Engineer Sep. 2017 - Aug. 2021

- Design automation concepts to improve the quality control and efficiency of production. Implement cost-effective and time-saving automation methodologies.
- Experience in Keyence and Cognex machine vision systems.

PROJECTS (more details at https://kasunhettihewa.github.io/portfolio/)

Automatic liver tumor segmentation in computed tomography (CT) imaging (Master's Thesis)

- Developed a novel Multi Attention Network (MANet) for liver tumor segmentation task.
- The network is designed based on FCN with attention mechanisms to highlight important features while suppressing irrelevant features for the tumor segmentation task.
- The novel network demonstrated promising results compared to state-of-the-art methods with comparatively small parameter overhead. The developed network is evaluated with two datasets.
- The research outcome was published in an international journal (Scientific Reports, Q1, Impact Factor: 4.9) and achieved the highest grade for the thesis research (Grade: Very Good).

Development of a Vision-Based Ball Catching Robot (Capstone Project)

- The project investigates an automated solution for the ball-catching task using a static camera and an automatically controlled mechanical system.
- The moment method and contour techniques are implemented in the image processing algorithm to track the ball and recognize the ball-catching plane.
- The research project is published in an IEEE conference.