Code Profiling and Optimization

Vectorization Subhrajit & Pratyush

Focusing on Intel SIMD

Figure 1. Layout of Various Sizes of SIMD Register and How Each Can Be Broken Down into Smaller Subgroups of Elements

Intel AVX

•The Intel® Advanced Vector Extensions (Intel® AVX) family of instruction sets on Intel processors provides a rich variety of capabilities for supporting many different single instruction, multiple data (SIMD) instructions and data types.

AVX Support

Does your CPU have AVX support?

Check the list of CPU flags using lscpu

Vectorization

Auto-Vectorization Explicit-Vectorization

GCC and various other compilers have automatic vectorization support depending on the CPU

For gcc, use –O2 and –O3 flag.

- GCC and various other compilers have automatic vectorization support depending on the CPU
- For gcc, use –O3 flag.
 - By default, it uses SSE (128-bit/16-Byte Vectors)
 - Vectorization also depends upon the alignment of the data. If the data is not aligned properly, the compiler may not be able to vectorize the code.
- https://www.intel.com/content/www/us/en/developer/articles/training/explicit-vector-programming-best-known-methods.html
 - 1. Use Aligned Data Allocation (_mm_malloc(ptr,<alignment-size>) and _mm_free(ptr) for memory allocation and deallocation)
 - 16-byte alignment for SSE
 - 32-byte alignment for AVX (and AVX2)
 - 64-byte alignment for AVX512
 - 2.Hint the Compiler about Alignment (use the assume_aligned attribute)

- Checking whether Vectorization Happened or not
- use the `-fopt-info-vec` flag to generate a report on vectorization.
- Ex:

```
gcc array.c -03 -I.. -fopt-info-vec=vec_report.txt
```

- But my CPU has AVX512 support, it used 16 Byte -> 128-bits, not 512-bit vectors
- Well, we have to provide one more flag for AVX512

gcc array.c -03 -I.. -fopt-info-vec=vec report.txt

Use –mavx512f additionally

```
08_auto_vectorization > array_sum > \bigsize vec_report.txt
                                                       array.c:24:26: optimized: loop vectorized using 16 byte vectors
                                                       array.c:24:26: optimized: loop versioned for vectorization because of possible aliasing
                                                       array.c:24:26: optimized: loop vectorized using 16 byte vectors
/array sum$ gcc array.c -03 -mavx512f -I.. -fopt-info-vec=vec report mavx512.txt
```

08_auto_vectorization > array_sum > vec_report_mavx512.txt array.c:24:26: optimized: loop vectorized using 64 byte vectors array.c:24:26: optimized: loop versioned for vectorization because of possible aliasing array.c:24:26: optimized: loop vectorized using 32 byte vectors array.c:24:26: optimized: loop vectorized using 64 byte vectors 5