MATHEMATICAL TOOLS - PROBLEM SET 6

Due Monday, December 26th, 23:55, either in the course mailbox or through the Moodle.

High-Dimensional Bolzano-Weierstrass.

Problem 1. Prove the BW++ theorem from recitation: Let $\{v_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}^d$, and assume there exists some M>0 s.t. for all n, $\|v_n\|_1< M$. Then v_n has an ℓ_1 -convergent subsequence (in other words there exists $v\in\mathbb{R}^d$ and a subsequence $\{v_{n_k}\}_{k\in\mathbb{N}}\subseteq\{v_n\}_{n\in\mathbb{N}}$ s.t. $\lim_{k\to\infty}\|v_{n_k}-v\|_1=0$).

You may rely on the one-dimensional Bolzano-Weierstrass theorem (i.e. the theorem above with d=1).

Norms.

For $A \in M_n(\mathbb{R})$, let

$$||A||_{op} = \max_{x \in \mathbb{R}^n : ||x||_2 = 1} ||Ax||_2$$

and

$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n A_{i,j}^2}$$

Problem 2.

- $(1) \text{ Show that if } D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & \dots \\ \dots & \dots & \dots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix} \text{ then } \|D\|_{op} = \max_{i=1}^n |\lambda_i|.$
- (2) Show that if $U \in M_n(\mathbb{R})$ is orthogonal (i.e. $UU^T = I$) then for every $A \in M_n(\mathbb{R})$, $||UA||_{op} = ||A||_{op}$.

Problem 3. In recitation we proved that if $|\cdot|$ is a norm on \mathbb{R}^n , then there exist C, D > 0 s.t. for all $v \in \mathbb{R}^n$, $C ||v||_1 \le |v| \le D ||v||_1$.

- (1) Prove that if $\left|\cdot\right|_1, \left|\cdot\right|_2$ are norms on \mathbb{R}^n , there are C, D>0 s.t. for all $v\in\mathbb{R}^n, \; C\left|v\right|_1\leq \left|v\right|_2\leq D\left|v\right|_1.$
- (2) Find the best possible constants for ℓ_1, ℓ_2 on \mathbb{R}^n . In other words, find $C_n, D_n > 0$ s.t. for all $v \in \mathbb{R}^n$, $C_n \|v\|_1 \le \|v\|_2 \le D_n \|v\|_1$, and there exist $0 \ne v, w \in \mathbb{R}^n$ s.t. $C_n \|v\|_1 = \|v\|_2$, $\|w\|_2 = D_n \|w\|_1$.

 (3) Find the best possible constants $C_n, D_n > 0$ s.t. for all $A \in M_n(\mathbb{R})$,
- (3) Find the best possible constants $C_n, D_n > 0$ s.t. for all $A \in M_n(\mathbb{R})$ $C_n \|A\|_F \leq \|A\|_{op} \leq D_n \|A\|_F$.

Not all Norms are Induced by Metrics. Let V be a vector space and let d be a metric on V and let $\|\cdot\|$ be a norm on V. We say that d is induced by $\|\cdot\|$ if for all $u, v \in V$, $d(u, v) = \|u - v\|$.

Problem 4. Show that there exists a metric d on \mathbb{R}^n that isn't induced by a norm.

Orthonormality and Inner Products. Let $V = \mathbb{R}^n$ and let $\langle \cdot, \cdot \rangle$ be the standard inner product on V. A set of vectors $v_1, \ldots, v_k \in V$ are called orthonormal if for all $i, j, \langle v_i, v_j \rangle = \delta_{i,j}$ (where $\delta_{i,j}$ is the Kronecker delta). For $S \subseteq V$, we set: $S^{\perp} = \{v \in V : \forall s \in S, \langle v, s \rangle = 0\}$.

Problem 5. The Grahm-Schmidt process: Let $v_1, \ldots, v_k \in V$ be linearly independent. Show that there exist orthonormal $w_1, \ldots, w_k \in V$ s.t. for all $1 \leq i \leq k$, $span \{w_1, \dots, w_i\} = span \{v_1, \dots, v_i\}.$

Hint/partial solution: Assume w_1, \ldots, w_ℓ have been defined. Set $u_{\ell+1} = v_{\ell+1} - \sum_{i=1}^{\ell} \langle v_{\ell+1}, w_i \rangle w_i$ and $w_{\ell+1} = \frac{u_{\ell+1}}{\sqrt{\langle u_{\ell+1}, u_{\ell+1} \rangle}}$.

Problem 6. Let $S \subseteq V$.

- (1) Show that S^{\perp} is a linear subspace of V.
- (2) Let $W \subseteq V$ be a subspace. Show that for every $v \in V$ there exist unique $w \in W, u \in W^{\perp}$ s.t. v = w + u.

Hint: Use Grahm-Schmidt to produce orthonormal bases for W and W^{\perp} .

- (3) Show that $(span(S))^{\perp} = S^{\perp}$.
- (4) Show that $(S^{\perp})^{\perp} = span(S)$.