

Probability Basics

Tushar Shanker
Data Scientist

Sample Space

Sample Space S: Set of all possible outcomes

Probability

Sample Space S: Set of all possible outcomes

Probability P(A): Likelihood of event A

- $0 \le P(A) \le 1$
- P(S) = 1 eg. P(H) + P(T) = 1

Probability

Sample Space S: Set of all possible outcomes

Probability P(A): Likelihood of event A

- $0 \le P(A) \le 1$
- P(S) = 1 eg. P(H) + P(T) = 1

Mutually Exclusive Events

Sample Space S: Set of all possible outcomes

Probability P(A): Likelihood of event A

- $0 \le P(A) \le 1$
- P(S) = 1
 - P(H) + P(T) = 1
- For mutually exclusive events *A* and *B*:
 - $P(A \cap B) = 0$
 - $P(A \cup B) = P(A) + P(B)$

Probability

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Using Simulation for Probability Estimation

Steps for Estimating Probability:

- 1. Construct sample space or population.
- 2. Determine how to simulate one outcome.
- 3. Determine rule for success.
- 4. Sample repeatedly and count successes.
- 5. Calculate frequency of successes as an estimate of probability.

Let's practice!

More Probability Concepts

Tushar Shanker
Data Scientist

Conditional Probability

- Conditional Probability
 - $P(A|B) = \frac{P(A \cap B)}{P(B)}$

Conditional Probability

Conditional Probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$lacksquare P(B|A) = rac{P(B\cap A)}{P(A)}$$

$$P(A \cap B) = P(B \cap A)$$

Bayes Rule

Conditional Probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

■ Bayes' rule:
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Independent Events

Independent Events

$$P(A \cap B) = P(A)P(B)$$

■ Conditional Probability:
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$$

Solar Panels & Clean Vehicles

• Number of houses = 150

	Solar Panels	No Solar Panels	
Hybrid / EV	³⁰ / ₁₅₀	⁵⁰ / ₁₅₀	
No Hybrid / EV	¹⁰ / ₁₅₀	⁶⁰ / ₁₅₀	
			150

Solar Panels & Clean Vehicles

$$P(\operatorname{Solar}) = P(\operatorname{Solar} \cap \operatorname{Hybrid}, \operatorname{EV}) + P(\operatorname{Solar} \cap \operatorname{No} \operatorname{Hybrid}, \operatorname{EV}) = \frac{30}{150} + \frac{10}{150} = \frac{40}{150}$$

	Solar Panels	No Solar Panels	
Hybrid / EV	³⁰ / ₁₅₀	50/ ₁₅₀	80/150
No Hybrid / EV	¹⁰ / ₁₅₀	⁶⁰ / ₁₅₀	70/150
	40/150	110/150	150/150

Solar Panels & Clean Vehicles

$$P(\text{Solar}|\text{Hybrid}, \text{EV}) = \frac{P(\text{Solar} \cap \text{Hybrid}, \text{EV})}{P(\text{Hybrid}, \text{EV})} = \frac{30}{80} = 0.375$$

	Solar Panels	No Solar Panels	
Hybrid / EV	³⁰ / ₁₅₀	⁵⁰ / ₁₅₀	80/ ₁₅₀
No Hybrid / EV	¹⁰ / ₁₅₀	⁶⁰ / ₁₅₀	70/ ₁₅₀
	40/ ₁₅₀	110/ ₁₅₀	150/150

Let's practice!

Data Generating Process

Tushar Shanker
Data Scientist

Simulation Steps

- 1. Define Possible Outcomes for Random Variables.
- 2. Assign Probabilities.
- 3. Define Relationships between Random Variables.

Data Generating Process

Cricket

source: Wikipedia

Cricket

Cricket

Let's practice!

eCommerce Ad Simulation

Tushar Shanker
Data Scientist

eCommerce Funnel

Signup Flow

Purchase Flow

Let's practice!