In []:	<pre>import numpy as np</pre>
	<pre>import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn import preprocessing from sklearn.linear_model import LinearRegression</pre>
	<pre>from sklearn.model_selection import train_test_split from sklearn import metrics from sklearn.metrics import classification_report from itertools import product %matplotlib inline</pre>
	<pre>import pylab from pylab import rcParams import statsmodels.api as sm import statistics from scipy import stats import sklearn</pre>
	<pre>import skieain import warnings warnings.filterwarnings('ignore') import matplotlib as mpl COLOR = 'white' mpl.rcParams['text.color'] = COLOR</pre>
	<pre>mpl.rcParams['axes.labelcolor'] = COLOR mpl.rcParams['xtick.color'] = COLOR mpl.rcParams['ytick.color'] = COLOR # Import the dataset to datafram</pre>
	<pre># Import the dataset to dataTram medical_df = pd.read_csv('C:/Users/MichaelRupert/Downloads/e9d8sm5uf8df75k650df/medical_cleaned_data.csv'); # Rename columns/variables of survey to easily recognizable features (ex: "Item1" to "TimelyResponse"). medical_df.rename(columns = {'Income' : 'Household_Income',</pre>
	<pre>'Item3':'Timely_Visits',</pre>
	<pre>print (medical_df.describe()) print("") #Check for duplicaes Is_dups_bool = medical_df.duplicated() print("Are there duplicates? ") print(Is_dups_bool.value_counts()) print("")</pre>
	<pre>medical_df.columns medical_df['intercept'] = 1 model_VitD = sm.OLS(medical_df['VitD_levels'], medical_df[['State', 'Zip', 'Lat', 'Lng', 'Population', 'Area',</pre>
	'Additional_charges', 'Timely_Admission', 'Timely_Treatment', 'Timely_Visits', 'Reliability', 'Options', 'Hours_Treatment', 'Courteous_Staff', 'Active_Listening']]).fit() #print(Im_ReAdmis.params) print(model_VitD.summary()) #Remove Unwanted columns
	<pre>new_Med_DF = medical_df.drop(labels=['ReAdmis', 'Soft_drink',</pre>
	<pre>print (new_Med_DF) print ("") print (new_Med_DF.shape) print (new_Med_DF.describe()) print (" ")</pre>
	<pre># print(new_Med_DF.head(1)) nan values = new Med DF.isnull()</pre>
	<pre>nan_columns = nan_values.any() columns_with_nan = new_Med_DF.columns[nan_columns].tolist() print("Is the columns with null values.") print(columns_with_nan) print("") print(new_Med_DF.columns)</pre>
In []:	<pre>#Let's Create Two arrays one for Continuous varaibles and one for non-Continuous or Categorical continuous_Ar = {'Lat', 'Lng', 'Population', 'Children', 'Age',</pre>
	<pre>categorical_Ar = {'State', 'Zip', 'Area',</pre>
	<pre>full_ar = {'State', 'Zip', 'Lat', 'Lng', 'Population', 'Area',</pre>
	'Options', 'Hours_Treatment', 'Courteous_Staff'} #Univariate Distributions new_Med_DF[['Lat', 'Lng', 'Population', 'Children', 'Age',
In []:	<pre>#preform boxplots on categorical vairbales for x in categorical_Ar: sns.boxplot(x, data = new_Med_DF) plt.show()</pre>
In []:	<pre>for s in categorical_Ar: sns.catplot(x=s, y="VitD_levels", data=new_Med_DF) plt.show()</pre>
In []:	<pre># Run scatterplots to show direct or inverse relationships between target & independent variablesfor x in Varia for v in (continuous_Ar): sns.scatterplot(x=new_Med_DF[v], y=new_Med_DF['VitD_levels'],color='red') plt.show();</pre>
In []:	<pre>new_Med_DF['intercept'] = 1 model_VitD_clean = sm.OLS(new_Med_DF['VitD_levels'], new_Med_DF[['State', 'Zip', 'Lat',</pre>
	<pre>'Timezone', 'Children', 'Age', 'Education', 'Employment',</pre>
In []:	<pre>v2_Med_data_cleaned = new_Med_DF.drop(labels=['State','Population','Timezone','Children',</pre>
	<pre># print(v2_Med_data_cleaned.columns) # print(v2_Med_data_cleaned.shape) v2_Med_data_cleaned.to_csv('D208_prepared_Dataset.csv', index=False) model_V2_Med_Data_cleaned = sm.OLS(new_Med_DF['VitD_levels'], new_Med_DF[['Zip', 'Lat',</pre>
	<pre>'Household_Income', 'Gender', 'Doc_visits', 'Full_meals_eaten', 'Overweight', 'Daily_Average_Charges', 'Additional_charges', 'Timely_Admission', 'Options', 'Hours_Treatment']]).fit() print(model_V2_Med_Data_cleaned.summary())</pre>
In []:	<pre>v3_med_data_cleaned = new_Med_DF.drop(columns=['Zip', 'Education', 'Timely_Admission',</pre>
In []:	<pre>model_v3_Med_Data = sm.OLS(v3_med_data_cleaned["VitD_levels"],v3_med_data_cleaned[['Lat', 'Lng', 'Household_1</pre>
In []:	<pre>print(model_v3_Med_Data.summary()) print(model_v3_Med_Data.params)</pre>
In []:	<pre>mse_mdl_v2 = model_V2_Med_Data_cleaned.mse_resid mse_mdl_v3 = model_v3_Med_Data.mse_resid print(np.sqrt(mse_mdl_v2)) print(np.sqrt(mse_mdl_v3))</pre>
In []:	<pre># start exploring the models using imput variables and categorical variables Lat = np.arange(0,80, 10) Lng = np.arange(-180,-30, 10) HouseHold_incm = np.arange(0,300000, 10000) Meals = v3_med_data_cleaned["Full_meals_eaten"].unique() overweight = v3_med_data_cleaned["Overweight"].unique() Daily_Average_Charges = np.arange(1000,50000, 2000) p = product(Lat,Lng,HouseHold_incm,Meals,overweight,Daily_Average_Charges) explanatory_data = pd.DataFrame(p, columns = ['Lat', 'Lng', 'Household_Income',</pre>
	<pre>'Full_meals_eaten', 'Overweight',</pre>
In []:	<pre># start exploring the models using imput variables and categorical variables Lat = np.arange(0,80, 10) Lng = np.arange(-180,-30, 10) HouseHold_incm = np.arange(0,300000, 10000) VitD = np.arange(5,80, 5) Meals = v3_med_data_cleaned["Full_meals_eaten"].unique()</pre>
	<pre>overweight = v3_med_data_cleaned["Overweight"].unique() Daily_Average_Charges = np.arange(1000,50000, 2000) p = product(Lat, Lng, HouseHold_incm , Meals, overweight, Daily_Average_Charges)</pre>
In []:	<pre>explanatory_data = pd.DataFrame(p, columns = ['Lat', 'Lng', 'Household_Income', 'Full_meals_eaten', 'Overweight prediction_data_Daily_Charge= explanatory_data.assign(VitD_Levels = model_v4_Med_Data.predict(explanatory_data)</pre>
	<pre>print(prediction_data_Daily_Charge)</pre>