

## Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

# «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

### ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

### ОТЧЕТ

по домашнему заданию № 1

|                                 |                                      | •   |                |                |  |  |  |
|---------------------------------|--------------------------------------|-----|----------------|----------------|--|--|--|
| Название:                       | Синтез и анализ комбинационной схемы |     |                |                |  |  |  |
| Дисциплина: <u>Схемотехника</u> |                                      |     |                |                |  |  |  |
|                                 |                                      |     |                |                |  |  |  |
|                                 |                                      |     |                |                |  |  |  |
|                                 |                                      |     |                |                |  |  |  |
|                                 |                                      |     |                |                |  |  |  |
| Студент                         | _ИУ6-52Б_                            |     |                | С.В. Астахов   |  |  |  |
|                                 | (Группа)                             | (Π  | Іодпись, дата) | (И.О. Фамилия) |  |  |  |
|                                 |                                      |     |                |                |  |  |  |
| Преподавате                     | ЛЬ                                   |     |                |                |  |  |  |
|                                 |                                      | (II | Годпись, дата) | (И.О. Фамилия) |  |  |  |
|                                 |                                      |     |                |                |  |  |  |

**Цель работы:** Синтез и анализ комбинационных и последовательностных схем.

Вариант 1 (1, 3, 7, 8, 12, 13, 14, 15)

### Ход работы. Часть 1.

Составим таблицу истинности ФАЛ (таблица 1).

Таблица 1 - Таблица истинности ФАЛ

| N  | x4 | x3 | x2 | <b>x</b> 1 | F |
|----|----|----|----|------------|---|
| 0  | 0  | 0  | 0  | 0          | 0 |
| 1  | 0  | 0  | 0  | 1          | 1 |
| 2  | 0  | 0  | 1  | 0          | 0 |
| 3  | 0  | 0  | 1  | 1          | 1 |
| 4  | 0  | 1  | 0  | 0          | 0 |
| 5  | 0  | 1  | 0  | 1          | 0 |
| 6  | 0  | 1  | 1  | 0          | 0 |
| 7  | 0  | 1  | 1  | 1          | 1 |
| 8  | 1  | 0  | 0  | 0          | 1 |
| 9  | 1  | 0  | 0  | 1          | 0 |
| 10 | 1  | 0  | 1  | 0          | 0 |
| 11 | 1  | 0  | 1  | 1          | 0 |
| 12 | 1  | 1  | 0  | 0          | 1 |
| 13 | 1  | 1  | 0  | 1          | 1 |
| 14 | 1  | 1  | 1  | 0          | 1 |
| 15 | 1  | 1  | 1  | 1          | 1 |

Составим СДН $\Phi$  и СКН $\Phi$  на основе таблицы.

СДНФ: 
$$F = (\overline{x4} \ \overline{x3} \ \overline{x2} \ x1) \ v \ (\overline{x4} \ \overline{x3} \ x2 \ x1) \ v \ (\overline{x4} \ x3 \ x2 \ x1) \ v \ (x4 \ \overline{x3} \ \overline{x2} \ \overline{x1}) \ v \ (x4 \ x3 \ \overline{x2} \ \overline{x1}) \ v \ (x4 \ x3 \ x2 \ x1)$$

CKH
$$\Phi$$
: F =  $(x4 \text{ v } x3 \text{ v } x2 \text{ v } x1) (x4 \text{ v } x3 \text{ v } \overline{x2} \text{ v } x1) (x4 \text{ v } \overline{x3} \text{ v } x2 \text{ v } x1) (x4 \text{ v } \overline{x3} \text{ v } x2 \text{ v } x1) (x4 \text{ v } \overline{x3} \text{ v } x2 \text{ v } x1) (x4 \text{ v } \overline{x3} \text{ v } x2 \text{ v } x1) (x4 \text{ v } x3 \text{ v } x2 \text{ v } x1) (x4 \text{ v } x3 \text{ v } x2 \text{ v } x1) (x4 \text{ v } x3 \text{ v } x2 \text{ v } x1) (x4 \text{ v } x3 \text{ v } x2 \text{ v } x1) (x4 \text{ v } x3 \text{ v } x2 \text{ v } x1) (x4 \text{ v } x3 \text{ v } x2 \text{ v } x1) (x4 \text{ v } x3 \text{ v } x2 \text{ v } x1) (x4 \text{ v } x3 \text{ v } x2 \text{ v } x1) (x4 \text{ v } x3 \text{ v } x2 \text{ v } x1) (x4 \text{ v } x3 \text{ v } x2 \text{ v } x1) (x4 \text{ v } x3 \text{ v } x2 \text{ v } x1) (x4 \text{ v } x3 \text{ v } x2 \text{ v } x1) (x4 \text{ v } x3 \text{ v } x2 \text{ v } x1) (x4 \text{ v } x3 \text{ v } x2 \text{ v } x1) (x4 \text{ v } x3 \text{ v } x2 \text{ v } x1) (x4 \text{ v } x3 \text{ v } x2 \text{ v } x1) (x4 \text{ v } x3 \text{ v } x2 \text{ v } x1) (x4 \text{ v } x3 \text{ v } x2 \text{ v } x1) (x4 \text{ v } x3 \text{ v } x2 \text{ v } x1) (x4 \text{ v } x3 \text{ v } x2 \text{ v } x1) (x4 \text{ v } x3 \text{ v } x2 \text{ v } x1) (x4 \text{ v } x3 \text{ v } x2 \text{ v } x1) (x4 \text{ v } x3 \text{ v } x2 \text{ v } x1) (x4 \text{ v } x3 \text{ v } x2 \text{ v } x1) (x4 \text{ v } x3 \text{ v } x2 \text{ v } x3 \text{ v } x2 \text{ v } x3) (x4 \text{ v } x3 \text{ v } x3 \text{ v } x2 \text{ v } x3) (x4 \text{ v } x3 \text{$ 

### Минимизируем ДНФ и КНФ с помощью карт Карно

Для ДНФ:

|    | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| 00 |    |    | 1  | 1  |
| 01 | 1  |    | 1  |    |
| 11 | 1  | 1  | 1  |    |
| 10 |    |    | 1  |    |

МДНФ: 
$$F = (x4 \text{ v } \overline{x3} \text{ v } x2) (\overline{x4} \text{ v } x3 \text{ v } \overline{x1}) (x4 \text{ v } x1) (x3 \text{ v } \overline{x2} \text{ v } x1)$$

Для КНФ:

|    | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| 00 | 0  | 0  |    |    |
| 01 |    | 0  |    | 0  |
| 11 |    |    |    | 0  |
| 10 | 0  | 0  |    | 0  |

MKHΦ: 
$$F = (x4 \text{ v } \overline{x3} \text{ v } x2) (\overline{x4} \text{ v } x3 \text{ v } \overline{x1}) (x4 \text{ v } x1) (x3 \text{ v } \overline{x2} \text{ v } x1)$$

Преобразуем МДНФ и МКНФ в базисы И-НЕ и ИЛИ-НЕ соответственно:

МДНФ: F1 = 
$$\overline{x4} \overline{x3} \overline{x1} ^{\overline{}} \overline{x3} \overline{x2} \overline{x1} ^{\overline{}} \overline{x4} \overline{x2} \overline{x1} ^{\overline{}} \overline{x4} \overline{x3}$$

MKHΦ: F2 = 
$$(\overline{x4 \ v \ \overline{x3} \ v \ x2}) v (\overline{x4} \ v \ x3 \ v \overline{x1}) v (\overline{x3} \ v \ x1) v (\overline{x3} \ v \overline{x2} \ v \ x1)$$

Составим схему, реализующую данную ФАЛ в базисах И-НЕ и ИЛИ-НЕ (рисунок 1).



Рисунок 1 - Комбинационная схема

Проведем анализ временной диаграммы сигналов (рисунок 2). Тime (s)



Рисунок 2 - Временная диаграмма сигналов

Как видно из временной диаграммы, схема реализует ФАЛ согласно таблице истинности, однако при изменении входного сигнала могут возникать помехи, вызванные гонкой сигналов.

### Часть 2.

Преобразуем КНФ и ДНФ исходной ФАЛ, введя в них сигнал стробирования.

KH
$$\Phi$$
: F1 =  $\overline{x4}$   $\overline{x3}$   $x1$   $EN$   $^{\wedge}$   $\overline{x3}$   $x2$   $x1$   $EN$   $^{\wedge}$   $\overline{x4}$   $\overline{x2}$   $\overline{x1}$   $EN$   $^{\wedge}$   $\overline{x4}$   $x3$   $EN$ 

ДНФ: F2 = 
$$(\overline{x4\ v\ \overline{x3}\ v\ x2}\ )v\ (\overline{x4}\ v\ x3\ v\ \overline{x1})\ v\ (\overline{x3}\ v\ x1)\ v\ (\overline{x3}\ v\ \overline{x2}\ v\ x1)\ v\ \overline{EN}$$

Из временной диаграммы на рисунке 2 удалось определить, что максимальная продолжительность помех - 1 мкс, поэтому добавим в цепь сигнала стробирования соответствующую задержку. Изменим схему (рисунок 3).



Рисунок 3 - комбинационная схема с сигналом стробирования

Отобразим временную диаграмму сигналов (рисунок 4).



Рисунок 4 - временная диаграмма сигналов

Как видно из временной диаграммы, благополучно удалось избавиться от помех.

### Часть 3.

Устраним помехи в схеме с помощью синхронизации приема выходных сигналов логических схем в синхронные триггеры (рисунок 5).



Рисунок 5 - Схема с синхронизацией приема выходных сигналов

С помощью временной диаграммы сигналов убедимся, что помехи удалось устранить, причем учтем отставание выходного сигнала от входного на 1 такт (рисунок 6).



Рисунок 6 - Временная диаграмма сигналов

**Вывод:** в ходе выполнения данного домашнего задания были развиты навыки минимизации логических функций, синтеза комбинационных схем, изучены методы борьбы с ложными сигналами в комбинационных и последовательностных схемах.