I2C 개요

I2C란?

Inter-Integrated Circuit

• 발음 : I,I,C 또는 I-two-C 또는 I-Squre-C

속도가 느린 직렬통신

- 손쉽게 여러 장치와 통신 가능
- Normal: 100K bps
- Fast : 400K bps
- Fast Plus : 1M bps
- Ultra Fast : 3.4M bps

I2C 통신

UART와 다른점

- 비동기가 아닌, 동기 통신이기에 Clock 필요.
- Data 전송하는데 Tx / Rx 2개 Line 이 아닌, Data 1개 Line 사용
- UART는 CMOS 회로 / I2C는 Open-Drain 회로 사용

2개의 선을 사용한 통신

- 1. SDA (Serial Data와 Address)
- 2. SCL (Serial Click)

2개의 선을 사용한 통신

uC: 마이크로 컨트롤러 줄임말

- Master Slave 통신
 - Mater가 먼저 통신을 시작한다.
 - Master가 Slave를 지정하고, Read 할지, Write할지 결정한다.

2개의 선을 사용한 통신

풀업 저항 필요

- 풀업 저항이 까지 포함해서, Open-Drain 회로 완성
- 3.3k or 4.7k 를 일반적으로 사용하나, 10k음 + Drive Currnet (High) 로 진행하여 실습

I2C 프로토콜

- 1. Stop / Stop Signal
- 2. Slave Address
- 3. Read / Write
- 4. Data
- 5. Acknowleged Bit (응답을 위한 비트)

RENESAS ELECTRONICS

CORPORATE PRESENTATION

DS3231 제어 (I2C)

DS3231

RTC

달라스를 인수한 Maxim 제품 모듈이 켜진 후 시간을 유지할 수 있음

AT24C32

EERPROM

1 M 횟수 Write 가능한 32 Byte 저장공간 칩

I2C 주소: 0x57

보드이름: HW-084A

사용 안할 핀

- 32K : 32KHz Clock 출력 (오픈드레인, 사용시 풀업 필요)
- SQW : 구형파 / Interrupt 출력 옵션

사용할 핀

- VCC : 3.3V ~ 5V
- GND
- SCL: I2C Clock Pin
- SDA: I2C Data Pin

데이터 시트

maxim 에서 제공하는 datasheet 검색

16 Page

Slave Addr

• 0x68 임을 알수있음

Figure 4. Data Read—Slave Transmitter Mode

11 Page, Address Map

Register Address

해당 Address 읽으면 나오는 값들이 명시되어 있음

ADDRESS	BIT 7 MSB	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0 LSB	FUNCTION	RANGE
00h	0		10 Second	S		Secor	nds		Seconds	00–59
01h	0		10 Minutes	3		Minut	es		Minutes	00–59
02h	0	12/24	AM/PM 20 Hour	10 Hour		Hou	ır		Hours	1–12 + AM/PM 00–23
03h	0	0	0	0	0		Day		Day	1–7
04h	0	0	10	Date		Dat	е		Date	01–31
05h	Century	0	0	10 Month		Mon	th		Month/ Century	01–12 + Century
06h		10	Year			Yea	ir		Year	00–99
07h	A1M1		10 Second	s		Secor	nds		Alarm 1 Seconds	00–59
08h	A1M2		10 Minutes	3		Minut	es		Alarm 1 Minutes	00–59
09h	A1M3	12/24	AM/PM 20 Hour	10 Hour		Hou	ır		Alarm 1 Hours	1–12 + AM/PM 00–23
0Ah	A1M4	DY/DT	40.1	Date		Day	/		Alarm 1 Day	1–7
UAN	ATM4	וטואט	101	Date		Dat	е		Alarm 1 Date	1–31
0Bh	A2M2		10 Minutes	3		Minut	es		Alarm 2 Minutes	00–59
0Ch	A2M3	12/24	AM/PM 20 Hour	10 Hour		Hou	ır		Alarm 2 Hours	1–12 + AM/PM 00–23
0Dh	A2M4	DY/DT	101	Date		Day	y		Alarm 2 Day	1–7
UDII	AZIVI4	וטויוט	101	Date		Dat	е		Alarm 2 Date	1–31
0Eh	EOSC	BBSQW	CONV	RS2	RS1	INTCN	A2IE	A1IE	Control	_
0Fh	OSF	0	0	0	EN32kHz	BSY	A2F	A1F	Control/Status	_
10h	SIGN	DATA	DATA	DATA	DATA	DATA	DATA	DATA	Aging Offset	_
11h	SIGN	DATA	DATA	DATA	DATA	DATA	DATA	DATA	MSB of Temp	_
12h	DATA	DATA	0	0	0	0	0	0	LSB of Temp	_

Figure 1. Timekeeping Registers

Note: Unless otherwise specified, the registers' state is not defined when power is first applied.

회로 연결하기

10K : 갈,검,주,골드

MCU 어디에 연결을 할까?

RA6E1 Datasheet를 살펴보자.

12C 제어 방법

- 1. SCI로 Simple IIC 사용
 - 단순 Master 개발용

2. IIC Interface

Simple IIC 를 먼저 실습해보고, IIC Interface도 사용해보자.

29. Serial Communications Interface (SCI)

29.1 Overview

The Serial Communications Interface (SCI) × 6 channels have asynchronous and synchronous

- Asynchronous interfaces (UART and Asynchronous Communications Interface Ada
- 8-bit clock synchronous interface
- Simple IIC (master-only)
- Simple SPI
- · Smart card interface
- Manchester interface
- · Extended Serial interface

30. I²C Bus Interface (IIC)

30.1 Overview

The I²C bus interface (IIC) has 2 channels. The IIC Integrated Circuit) bus interface functions.

Table 30.1 lists the IIC specifications, Figure 30.1 st connections to external circuits, with an I²C bus con

[참고] Simple IIC vs IIC Interface

• https://www.renesas.com/document/apn/rx-family-specification-differences-between-riic-and-scisimple-i2c-mode-and-selection-guide-rev100?language=en

Simple IIC 사용하기

SCI 채널 0, 1, 2, 3, 9 모두 사용할 수 있음

하지만 아두이노 헤더만 현재 사용할 수 있으므로 (납땜..) SCI 9번 채널을 사용하여 실습하자.

Table 29.2 Functions of SCI Channel (1 of 2)

Item	SCI0, SCI9	SCI3, SCI4	SCI1	SCI2
Asynchronous mode	Available	Available	Available	Available
Clock synchronous mode	Available	Available	Available	Available
Smart card interface mode	Available	Available	Available	Available
Simple I2C mode	Available	Available	Available	Available
Simple SPI mode	Available	Available	Available	Available
FIFO mode	Available	Available	Not Available	Not Available
Address match	Available	Available	Not Available	Not Available
Manchester mode	Not Available	Available	Not Available	Not Available

SCI 9번 채널

SDA: P109

SCL: P110

연결완료

UART I2C 연결

SCI 핀 설정

SCI0

• UART 설정

SCI9

• Simple I2C로 설정

Pin Configuration									
Name	Value								
Pin Group Selection	Mixed								
Operation Mode	Simple I2C								
✓ Input/Output									
-	None								
-	None								
SCL9	✓ P110								
-	None								
SDA9	✓ P109								

친절한 가이드

- 1. Simlple I2C를 선택하면 오픈드레인 설정할 것
- 2. 동작모드를 Disable 부터 누르고 Simple I2C를 선택할 것
- 3. PIN 이름은 TXD는 SDA 이고, RXD는 SCL 이다.

핀 설정 설정

P110, P109 핀 설정 (2개 핀 모두 설정해주세요)

- 1. Open-Drain Output 회로
- 2. Drive Capacity: High

HAL Stack 추가하기

r_sci_i2c : SCI Interface의 I2C (Simple IIC)

r_iic_master : I2C Interface

Stack 설정

Channel: 9 (SCI 9번)

Slave Addr: 0x68

Speed: Standard

자동으로 Callback 함수명이 지정되어있음

HAL UART Stack 추가하기

Callback : user_uart_callback 으로 이름 지정

printf를 쓰기위한 Heap 설정

힙 사이즈 0x1000 으로 세팅

HAL 추가 완료

Generate Project

WarmStart

Open 코드 추가

```
void R_BSP_WarmStart(bsp warm start event t event)
   if (BSP WARM START RESET == event)
    if (BSP WARM START POST C == event)
       /* C runtime environment and system clocks are setup. */
       /* Configure pins. */
       R_IOPORT_Open(&g_ioport_ctrl, g_ioport.p_cfg);
       R_SCI_UART_Open(&g_uart0_ctrl, &g_uart0_cfg);
       R_SCI_I2C_Open(&g_i2c0_ctrl, &g_i2c0_cfg);
```

scanf / printf 코드 가져오기

https://gist.github.com/mincoding1/8226e90f554eebafdf00ef7d51a73605

(첨부파일 : Source > uart_io.h)

src>uart_io.h 에 추가한다.

```
UART에서 printf, scanf를 사용하기 위한 코드
 □ uart_io.h
    1 #ifndef UART_IO_H_
    2 #define UART_IO_H_
    4 #if 0
       //사용 가이드 (by mincoding)
       //1. 힙 사이즈 (FSP Configuration > BSP > HeapSize) 0x10000
       //2. 인터럽트 콜백함수 이름을 "user_uart_callback"로 변경
       //3. 출력버퍼를 사용 안함으로 설정하기 위해 setbuf(stdout, NULL); 코드 삽입
   10 // (출력 버퍼를 사용하면 \n 을 수행하기 전 까지, 화면출력이 안됨)
   12 //예시 소스코드
   13 void hal_entry(void)
          /* TODO: add your own code here */
          setbuf(stdout, NULL);
   17
          while(1) {
```

소스코드 추가

- 1. uart_io.h 파일 #include
- 2. Callback 함수 등록마우스 드래그로 등록
- 3. 무한루프, printf문 추가

```
#include "hal data.h"
#include "uart io.h"
FSP CPP HEADER
void R_BSP_WarmStart(bsp_warm_start_event_t event);
FSP CPP FOOTER
/* Callback function */
void sci_i2c_master_callback(i2c master callback args t *p args)
   /* TODO: add your own code here */
void hal entry(void)
    setbuf(stdout, NULL);
    while(1) {
        printf("HI\r\n");
        R BSP SoftwareDelay(100, BSP_DELAY_UNITS_MILLISECONDS);
```

UART Test 완료

출력이 잘 된다.

이제 I2C 할 차례

[참고] I2C 르네사스 공식 예제코드

• https://renesas.github.io/fsp/group s c i i2 c.html

```
Examples
Basic Example
This is a basic example of minimal use of the r sci i2c in an application. This example shows how this driver can be used for basic read and write operations.
 void basic_example (void)
     fsp_err_t err;
     uint32_t i;
     uint32_t timeout_ms = I2C_TRANSACTION_BUSY_DELAY;
     /* Initialize the I2C module */
     err = R_SCI_I2C_Open(&g_i2c_device_ctrl_1, &g_i2c_device_cfg_1);
     /+ Handle any errors. This function should be defined by the user. 
 \star/ assert(FSP_SUCCESS == err);
      /* Write some data to the transmit buffer */
      for (i = 0; i < 12C_BUFFER_SIZE_BYTES; i++)
         g_i2c_tx_buffer[i] = (uint8_t) i;
     /* Send data to I2C slave */
     g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;
     err = R_SCI_I2C_Write(&g_i2c_device_ctrl_1, &g_i2c_tx_buffer[0], I2C_BUFFER_SIZE_BYTES, false);
     assert(FSP_SUCCESS == err);
     /* Since there is nothing else to do, block until Callback triggers*/
     while ((I2C_MASTER_EVENT_TX_COMPLETE != g_i2c_callback_event) && timeout_ms)
          R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);
```

코드 추가하기

Callback의 이벤트를 전역변수에 저장

1, 2, 3 중에 하나의 값이 대입 됨

초 읽을 예정

Addr: 0x00

Size: 1 Byte

ADDRESS	BIT 7 MSB	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0 LSB	FUNCTION	RANGE
00h	0		10 Second	S		Secor	nds		Seconds	00–59
01h	0		10 Minutes	S		Minut	es		Minutes	00–59
02h	0	12/24	AM/PM 20 Hour	10 Hour		Hou	ır		Hours	1–12 + AM/PM 00–23
03h	0	0	0	0	0		Day		Day	1–7
04h	0	0	10	Date		Dat	е		Date	01–31
05h	Century	0	0	10 Month		Mon	th		Month/ Century	01–12 + Century
06h		10	Year			Yea	r		Year	00–99
07h	A1M1		10 Second	s		Secor	nds		Alarm 1 Seconds	00–59
08h	A1M2		10 Minutes	S		Minut	es		Alarm 1 Minutes	00–59
09h	A1M3	12/24	AM/PM 20 Hour	10 Hour		Hou	ır		Alarm 1 Hours	1–12 + AM/PM 00–23
046	0.414.4	DV/DT	40	Data		Day	/		Alarm 1 Day	1–7
0Ah	A1M4	DY/DT	101	Date		Dat	е		Alarm 1 Date	1–31
0Bh	A2M2		10 Minutes	3		Minut	es		Alarm 2 Minutes	00–59
0Ch	A2M3	12/24	AM/PM 20 Hour	10 Hour		Hou	ır		Alarm 2 Hours	1–12 + AM/PM 00–23
0Dh	A2M4	DY/DT	10	Date		Day	/		Alarm 2 Day	1–7
UDII	AZIVI4	וטווט	101	Date		Dat	е		Alarm 2 Date	1–31
0Eh	EOSC	BBSQW	CONV	RS2	RS1	INTCN	A2IE	A1IE	Control	_
0Fh	OSF	0	0	0	EN32kHz	BSY	A2F	A1F	Control/Status	_
10h	SIGN	DATA	DATA	DATA	DATA	DATA	DATA	DATA	Aging Offset	_
11h	SIGN	DATA	DATA	DATA	DATA	DATA	DATA	DATA	MSB of Temp	_
12h	DATA	DATA	0	0	0	0	0	0	LSB of Temp	_

Figure 1. Timekeeping Registers

Note: Unless otherwise specified, the registers' state is not defined when power is first applied.

Delay 함수 하나 추가하기

가독성을 위한 delay 함수 하나 추가.

```
void delay(int ms) {
    R_BSP_SoftwareDelay(ms, BSP_DELAY_UNITS_MILLISECONDS);
}
```

소스코드 추가

- 1. 읽을 곳 Addr Write로 지정
 - restart = true로 해둔다.
- 2. 읽을 곳을 Read한다.

```
void hal entry(void)
    setbuf(stdout, NULL);
    uint8 t addr = 0x0;
    uint8 t buf[100] = \{0\};
    while(1) {
       //select addr (by I2C WRITE)
        addr = 0x0;
        R_SCI_I2C_Write(&g_i2c0_ctrl, &addr, 1, true);
        while(g i2c callback event != I2C MASTER EVENT TX COMPLETE);
        //read data
        memset(buf, 0, sizeof(buf));
        R_SCI_I2C_Read(&g_i2c0_ctrl, buf, 1, false);
        while(g_i2c_callback_event != I2C_MASTER EVENT RX COMPLETE);
        //print
        printf("%s\r\n", buf);
        delay(500);
```

[참고] i2c Guide

SCI i2c 사용 가이드

[도전] 시, 분, 초 읽어보기

ADDRESS	BIT 7 MSB	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0 LSB	FUNCTION	RANGE
00h	0		10 Second	s	Seconds				Seconds	00–59
01h	0		10 Minutes	S		Minut	es		Minutes	00–59
02h	0	12/24	AM/PM 20 Hour	10 Hour		Hou	ır		Hours	1–12 + AM/PM 00–23
03h	0	0	0	0	0		Day		Day	1–7
04h	0	0	10	Date		Date	е		Da≝	
05h	Century	0	0	10 Month		Mon	th		Mor Cent	· –
06h		10	Year			Yea	r			sec 59 min 0 hours
07h	A1M1		10 Second	s		Secor	nds		Alarm 1 3	sec 59 min 0 hours
08h	A1M2		10 Minutes	S		Minut	es		I Alarm 1 II	sec 59 min 0 hours
09h	A1M3	12/24	AM/PM 20 Hour	10 Hour		Hou	ır		Alarm 1 5 7	sec 59 min 0 hours sec 59 min 0 hours sec 59 min 0 hours
046	A1M4	DY/DT	10	Date		Day	/		Alarm	sec 57 min 0 hours
0Ah	ATIVI4	וט/זט	101	Date		Date	е		Alarm 1	sec 57 min 0 hours
0Bh	A2M2		10 Minutes	S		Minut	es		Alorm 2	sec 59 min 0 hours
0Ch	A2M3	12/24	AM/PM 20 Hour	10 Hour		Hou	ır		Alarm 2	ec 0 min 1 hours ec 0 min 1 hours
OD!	00044	DV/DT	40	D-4-		Day	/		Alarm :	ec 0 min 1 hours
0Dh	A2M4	DY/DT	101	Date		Date	е			ec 0 min 1 hours
0Eh	EOSC	BBSQW	CONV	RS2	RS1	INTCN	A2IE	A1IE		ec 0 min 1 hours
0Fh	OSF	0	0	0	EN32kHz	BSY	A2F	A1F	Control/	ec 0 min 1 hours
10h	SIGN	DATA	DATA	DATA	DATA	DATA	DATA	DATA	Aging	
11h	SIGN	DATA	DATA	DATA	DATA	DATA	DATA	DATA	MSB of	
12h	DATA	DATA	0	0	0	0	0	0	LSB of	
Figure 1. Tir	nekeeping	Registers								

Note: Unless otherwise specified, the registers' state is not defined when power is first applied.

4

Solution

```
void hal entry(void)
   uint8 t addr = 0x0;
   uint8 t buf[100] = {0};
   uint8 t str[100] = {0};
   while(1) {
       //select addr (by I2C WRITE)
       addr = 0x0;
       R SCI I2C Write(&g i2c0 ctrl, &addr, 1, true);
       while(g i2c callback event != I2C MASTER EVENT TX COMPLETE);
       //read data
       memset(buf, 0, sizeof(buf));
       R_SCI_I2C_Read(&g_i2c0_ctrl, buf, 3, false);
       while(g_i2c_callback_event != I2C_MASTER_EVENT_RX_COMPLETE);
        //print
       sprintf(str, "%X sec %X min %X hours\r\n", buf[0], buf[1], (buf[2] & 0xF));
       printf("%s", str);
       delay(500);
```

온도 레지스터

DS3231은 온도 센서도 포함됨

오실레이터가 온도 영향을 받기에, 보정을 위한 센서

ADDRESS	BIT 7 MSB	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0 LSB	FUNCTION	RANGE	
00h	0		10 Second	s		Secor	nds		Seconds	00–59	
01h	0		10 Minutes	S		Minut	es		Minutes	00–59	
02h	0	12/24	AM/PM 20 Hour	10 Hour		Hou	ır		Hours	1–12 + AM/PM 00–23	
03h	0	0	0	0	0		Day		Day	1–7	
04h	0	0	10	Date		Dat	e		Date	01–31	
05h	Century	0	0	10 Month		Mon	th		Month/ Century	01–12 + Century	
06h		10	Year			Yea	r		Year	00–99	
07h	A1M1		10 Second	s		Secor	nds		Alarm 1 Seconds	s 00–59	
08h	A1M2		10 Minutes	S		Minut	es		Alarm 1 Minutes	00–59	
09h	A1M3	12/24	AM/PM 20 Hour	10 Hour		Hou	ır		Alarm 1 Hours	1–12 + AM/PM 00–23	
046	A1M4	DV/DT	40	Dete		Day	/		Alarm 1 Day	1–7	
0Ah	A1M4	DY/DT	10	Date		Dat	е		Alarm 1 Date	1–31	
0Bh	A2M2		10 Minute	S		Minut	es		Alarm 2 Minutes	00–59	
0Ch	A2M3	12/24	AM/PM 20 Hour	10 Hour		Hou	ır		Alarm 2 Hours	1–12 + AM/PM 00–23	
0Dh	A2M4	DY/DT	10	Date		Da	/		Alarm 2 Day	1–7	
UDN	AZIVI4	וט/זט	10	Date		Dat	е		Alarm 2 Date	1–31	
0Eh	EOSC	BBSQW	CONV	RS2	RS1	INTCN	A2IE	A1IE	Control	_	
0Fh	OSF	0	0	0	EN32kHz	BSY	A2F	A1F	Control/Status	_	
IOII	SIGIN	DAIA	DAIA	DAIA	DAIA	DAIA	DAIA	DAIA	Aging Onset		
11h	SIGN	DATA	DATA	DATA	DATA	DATA	DATA	DATA	MSB of Temp	_	
10h	DATA	DATA		^	^			_	I CD of Tomp		

Figure 1. Timekeeping Registers

16진수 BCD 코드

- MSB는 2의 보수, 정수부
- LSB는 0.25의 배수, 소수부

ex)

MSB: 0001 1001

LSB: 01 (6~7번 비트만 유효)

인경우

MSB : 0x19 → (10진수 : 25)

LSB: $0x1 \rightarrow (0.25 \times 1 = 0.25)$

따라서 +25.25 도

DS3231

Extremely Accurate I2C-Integrated RTC/TCXO/Crystal

Temperature Register (Upper Byte) (11h)

NAME: POR:

	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
:	Sign	Data						
	0	0	0	0	0	0	0	0

Temperature Register (Lower Byte) (12h)

NAME: POR:

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Data	Data	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Temperature Registers (11h–12h)

Temperature is represented as a 10-bit code with a resolution of 0.25°C and is accessible at location 11h and 12h. The temperature is encoded in two's complement format. The upper 8 bits, the integer portion, are at location 11h and the lower 2 bits, the fractional portion, are in the upper nibble at location 12h. For example, 00011001 01b = +25.25°C. Upon power reset, the registers are set to a default temperature of 0°C and the controller starts a temperature conversion. The temperature is read on initial application of V_{CC} or I²C access on V_{RAT} and once every 64 seconds afterwards. The temperature registers are updated after each user-initiated conversion and on every 64-second conversion. The temperature registers are read-only.

line while the clock line is high are interpreted as control signals.

Accordingly, the following bus conditions have been

Bus not busy: Both data and clock lines remain high.

START data transfer: A change in the state of the data line from high to low, while the clock line is high, defines a START condition.

STOP data transfer: A change in the state of the data line from low to high, while the clock line is high, defines a STOP condition.

Data valid: The state of the data line represents valid data when, after a START condition, the data line is stable for the duration of the high period of the clock

[도전] 온도 읽어보기

ADDRESS	BIT 7 MSB	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0 LSB	FUNCTION	RANGE		
00h	0		10 Second	S		Secor	nds		Seconds	00–5	Door	Torres Carial Cant
01h	0		10 Minutes	8		Minut	es		Minutes	00–5	Rea	lTerm: Serial Capt
02h	0	12/24	ĀM/PM	10 Hour		Hou	ır		Hours	1–12 + A		
0211		12/24	20 Hour	TOTIOUI					Tiours	00–2		23.50
03h	0	0	0	0	0		Day		Day	1–7		23.50
04h	0	0	10	Date		Date	е		Date	01–3 <mark>1 = 11</mark>	p :	23.50
05h	Century	0	0	10 Month		Mon	th		Month/ Century	01–12 + C	p :	23.50 23.50
06h		10	Year			Yea	r		Year	00-9		
07h	A1M1		10 Second	S		Secor	nds		Alarm 1 Seconds	00-5	p -	23.50
08h	A1M2		10 Minutes	3		Minut	es		Alarm 1 Minutes	00–5 <mark>. □ □ U</mark>	р :	23.50
09h	A1M3	12/24	AM/PM 20 Hour	10 Hour		Hou	ır		Alarm 1 Hours	1-12 + A G III 00-2 G III		23.50 26.25
0.4.6	0.4844	DY/DT	40	Data		Day	/		Alarm 1 Day	1–7 <mark>1</mark> 🚑 🗓	_	26.25
0Ah	A1M4	וטויוט	101	Date		Date	е		Alarm 1 Date	1-31 G III		26.25
0Bh	A2M2		10 Minutes	3		Minut	es		Alarm 2 Minutes	00-5	_	26.25
0Ch	A2M3	12/24	ĀM/PM	10 Hour		Hou	ır		Alarm 2 Hours	1–12 + A		26.25
0011	AZIVIO	12/24	20 Hour	TOTIOUI		1100			Alaini 2 Hours	00-2		
0Dh	A2M4	DY/DT	101	Date		Day	/		Alarm 2 Day	1-7		26.25
ODII	AZIVIT	01/01	101	Date		Date	е		Alarm 2 Date	1–31 <mark>. 🔁 II</mark>	p :	26.25
0Eh	EOSC	BBSQW	CONV	RS2	RS1	INTCN	A2IE	A1IE	Control			
0Fh	OSF	0	0	0	EN32kHz	BSY	A2F	A1F	Control/Status	_]	
10h	SIGN	DATA	DATA	DATA	DATA	DATA	DATA	DATA	Aging Offset	_		
11h	SIGN	DATA	DATA	DATA	DATA	DATA	DATA	DATA	MSB of Temp	_]	
12h	DATA	DATA	0	0	0	0	0	0	LSB of Temp	_		

Figure 1. Timekeeping Registers

45