Watermelon Leaf Detection Using Transfer Learning And EX-AI

1st Ibrahim Sakib dept. CSE Brac University Dhaka, Bangladesh ibrahim.sakib@g.bracu.ac.bd

4th M.A.B.Siddique Sanjan

dept. CSE

Brac University

Dhaka, Bangladesh
m.a.b.siddique.sanjan@g.bracu.ac.bd

7th Annajiat Alim Rasel dept. CSE Brac University Dhaka, Bangladesh annajiat@bracu.ac.bd 2nd Md Fuad Islam dept. CSE Brac University Dhaka, Bangladesh md.fuad.islam@g.bracu.ac.bd

5th Humaion Kabir Mehedi dept. CSE Brac University Dhaka, Bangladesh humaion.kabir.mehedi@g.bracu.ac.bd 3rd Md Minhazul Islam Rimon dept. CSE Brac University Dhaka, Bangladesh md.minhazul.islam.rimon@g.bracu.ac.bd

> 6th Farah Binta Haque dept. CSE Brac University Dhaka, Bangladesh farah.binta.haque@g.bracu.ac.bd

Abstract-During summer, one of the most demanded fruits in not only Bangladesh but all across the globe is watermelon. It not only has many nutritional benefits but is also very delicious for consumption. However, spoilage of watermelon due to unhealthy watermelon harvest can be seen every year. Thus it will be greatly beneficial for the farmers to be able to identify and treat the unhealthy watermelon crops as soon as possible. There is already some work being done in this area to automate the process of detecting disease among plants using machine learning, transfer learning, and deep learning approaches. Some common transfer learning models like Inception had 98.01% accuracy in detecting plant diseases. There are also other models like ResNet50 with 98.93% accuracy in some cases. Our goal is to use different transfer learning techniques and experimental AI models to detect watermelon leaf diseases. We will compare and contrast between different transfer learning models and will combine the best model with Grad-CAM, an EX-AI model in order to achieve the optimal way of detecting watermelon leaf diseases.

Index Terms—ResNet, leaf, disease, detection, classifying

I. INTRODUCTION

Watermelon greatly contributes to Bangladesh's farming. This fruit, beloved in the country, bolsters farmer's health, income, and fights climate change. Each year, Bangladesh yields over two million tons of watermelon. In the 2019-20 fiscal year, farmers allocated some 27,000 acres of land for watermelon cultivation, harvesting 188,000 tonnes of this refreshing summer fruit. An investigation into watermelon disease in a couple of specific districts in Bangladesh discovered different rates of downy mildew (a watermelon disease). The highest occurrence was 11.33%, and the worst-case severity reached 4%, specifically in South Kocchopiya in Noakhali.

To be able to automate the process of detecting disease for leaf images will greatly help the farmer as treatment for said crop can begin fast and improve yield. There are already many works done in this area where different plant diseases were identified using machine learning and transfer learning approaches. Inception, ResNet50, ResNet34, VGG16, VGG19, MobileNet, SVM, CNN, KNN are some of the commonly known model used in this field for detecting plant diseases. In our time, technology regarding image processing and object detection from images have seen great strides in their field. In our work, we will compare different transfer learning models like Inception, ResNet50, MobileNet, DenseNet to find the best one which we will combine with Grad-CAM to further improve classifier accuracy to effectively detect watermelon leaf disease.

II. LITERATURE REVIEW

Orchi et al.[1] did an extensive comparative study in his paper to find the difference between traditional machine learning approach and deep transfer learning approach for detecting crop disease. The researchers used PlantVillage dataset to train all their chosen models. For the machine learning approach, the researchers choose Support Vector Machine, k-Nearest Neighbors, Linear Discriminant Analysis, Classification and Regression Trees, NB, and RF models to test accuracy against deep transfer learning models like VGG19, VGG16, ResNet50, CNN and Inception. First and foremost, the researchers pre-processed their dataset images for accelerated computations. Than, features were extracted

from the processed image which was later normalized for training. After the said models were trained using the extracted feature the end result was a classifier model that was used to verify accuracy of the model with test cases After all the experimentation, the researchers concluded that Inception V3 had the best accuracy of all models which was 98.01%. The other models namely RF, CART, CNN, ResNet50 had accuracy of 97.54%, 94.45%, 93.89% and 93.57%. As we are trying to find the comparatively best transfer learning model in order to create a hybrid model with EX-AI, we can also use Inception and Resnet for our study to detect leaf diseases.

Uguz et al.[2] compared the accuracy of the VGG transfer learning models with their own proposed model according to the change of optimization algorithms. In their paper, they have extensively analyzed the VGG16 and VGG19 transfer models about what the characteristics of the images are and how many convolution layers were used. Then they suggested a model of their own based on CNN which processed images with 16 filters through 3 convolution layers where the filters gradually incremented to 256 filters at the last layer. Whereas the existing VGG models have 13-16 convolution layers and 64-512 filters. They have compared these three models with a few optimization algorithms which are Adam, AdaGrad, SGD and RMSpro. The goal of the paper is to find the difference in performance between their models with the effect of optimization models on olive leafs. There were 3 categories: healthy and two diseases. After running the models, there were complex results as some models performed better than usual with one optimization but performed worse in another. So, we can say that optimization algorithms perform differently in different models and we can apply that knowledge in our case.

AARIZOU et al.[3] studies the use of deep Convolutional Neural Networks(CNN) and shows the usage of transfer learning for plant disease detection on complex images. In this paper they prepared their dataset by combining two public datasets PlantVillage and EdenLibrary where they labeled into two classes 'Healthy' and 'Unhealthy' by splitting a total of 54000 leaves images equally where PlantVillage have lab images and EdenLibrary dataset have field images. Because of having a low number of images in EdenLibrary dataset compared to PlantVillage they used data augmentation to all images of that dataset to make it equal for comparison. They used this dataset to fine tune three state-of-the-art image classifiers AlexNet, ResNet34 and DenseNet121 which are pre-trained on the ImageNet dataset. After training these models on the PlantVillage dataset and testing on the same dataset they got accuracy of 99.63%, 99.91% and 99.85% respectively. Similarly for the EdenLibrary dataset they got 97.31%, 97.85% and 97.35% respectively. But when they trained on only laboratory images and tested on EdenLibrary real field images accuracy drops down to lower than 60%. But after they did combined training of both datasets their accuracy improved significantly. For AlexNet, ResNet34 and DenseNet121 models combined dataset training they got 99.43%, 99.85% and 99.76% when testing for lab images respectively and 97.65%, 97.02% and 98.46% when testing for field images respectively. From these results they concluded that DenseNet121 gave the best accuracy for them. As in this research they have used only healthy and unhealthy classes, their models might not perform as good when it comes to detecting specific diseases. However, as DenseNet yielded the best result out of all the models mentioned here, this model may very well be suited for our tasks.

Arshad et al.[4] did a study where researchers measured the success of ResNet50 against VGG16 and MCNN (Multicolumn Convolutional Neural Network). These models were made and trained independently for the purpose of identifying plant diseases. Tests and authentications were done on the PlantVillage dataset. Different measurements, such as accuracy, precision, recall, and the F1-score evaluated the models' performance. When looking at the results, we find that ResNet50, VGG16, and MCNN were top performers for identifying plant diseases. ResNet50 led the pack with a staggering 98.93% accuracy while VGG16 was not too far behind at 98.3%, and MCNN came in third with 93.7% accuracy. This showcased the model's effectiveness in identifying specific diseases. Certain detailed learning models like ResNet50, VGG16, and MCNN, can precisely pinpoint plant illness. According to the researchers, ResNet50 tops the list in terms of effectiveness. As we are also planning on using an effective transfer learning approach, we can use ResNet50 for our experiments.

III. PROPOSED METHODOLOGY

In our work, we will compare and contrast between different transfer learning models like ResNet50, Inception, MobileNet, DenseNet, VGG. Upon training the models with our dataset, the one with best accuracy will be combined with Grad-CAM to further improve results. We will later compare the classifier accuracy of the best model+Grad-CAM with the rest of the models and evaluate the optimal approach for watermelon leaf disease detection.

REFERENCES

- [1] Orchi, H., Sadik, M., Khaldoun, M., & Sabir, E. (2023). Automation of Crop Disease Detection through Conventional Machine Learning and Deep Transfer Learning Approaches. Agriculture, 13(2), 352. https://doi.org/10.3390/agriculture13020352
- [2] Uğuz, S., & Uysal, N. (2020). Classification of olive leaf diseases using deep convolutional neural networks. Neural Computing and Applications, 33(9), 4133–4149. https://doi.org/10.1007/s00521-020-05235-5
- [3] Aarizou, A., & Merah, M. (2022). Transfer learning for plant disease detection on complex images. 2022 7th International Conference on Image and Signal Processing and Their Applications (ISPA). https://doi.org/10.1109/ispa54004.2022.9786306
- [4] Arshad, M. S., Rehman, U. A., & Fraz, M. M. (2021). Plant disease identification using transfer learning. 2021 International Conference on Digital Futures and Transformative Technologies (ICoDT2). https://doi.org/10.1109/icodt252288.2021.9441512