# Cryptography Meets Algorithms (15893) Lecture Notes

# Lecture 9: Oblivious Sorting

Scribe: Ying Feng

February 28, 2024

# 1 Oblivious Sorting

**Definition 1.** An algorithm ALG is **oblivious** if for all pairs of inputs  $\mathcal{I}, \mathcal{I}'$  of equal length, we have:

$$ACCESSPATTERN(ALG, \mathcal{I}) \approx ACCESSPATTERN(ALG, \mathcal{I}'),$$

where ACCESSPATTERN(ALG,  $\mathcal{I}$ ) denotes the observed access pattern when executing ALG on input  $\mathcal{I}$ , and  $\approx$  denotes two distributions are indistinguishable (either statistically or computationally, depending on the specific setting.)

Non-Example 2. QuickSort is **not** oblivious because it reads and writes array elements depending on the result of comparing with a pivot. These instructions leak information about the content of the input array.

Consider the following two arrays:

$$Arr_1 := \boxed{7 \mid 6 \mid 5 \mid 4 \mid 3 \mid 2 \mid 1}$$

$$Arr_2 := \boxed{1 \ | \ 2 \ | \ 3 \ | \ 4 \ | \ 5 \ | \ 6 \ | \ 7}$$

If in both  $Arr_1$  and  $Arr_2$ , **4** is picked to be the pivot, then QuickSort would move  $Arr_1[0:2]$  to the right of **4** while keeping  $Arr_2[0:2]$  at the left of **4**. Therefore, one can distinguish the two inputs  $Arr_1$  and  $Arr_2$  by observing the different access patterns.

We can naïvely compile QuickSort to be oblivious using PATHORAM. However, this incurs a log-squared (multiplicative) overhead. Since the runtime of QuickSort is  $\mathcal{O}(n \log n)$  where n is the input length, the resulting oblivious version of QuickSort runs in  $\mathcal{O}(n \log^3 n)$ .

In this lecture, we will see two direct constructions of oblivious sorting that achieve faster runtime than compiling QuickSort with ORAM. Our ultimate goal is to match the runtime of non-oblivious QuickSort, i.e.  $\mathcal{O}(n \log n)$ .

**Remark 1.** The first construction that achieves the desired  $\mathcal{O}(n \log n)$  performance is the AKS sorting network [AKS83]. However, the AKS network is not used in practice due to the large constant factor hidden by the Big-O notation.

#### 2 Bitonic Sort

We first describe the famous bitonic sort algorithm by Batcher [Bat68].

**Definition 3.** A sequence  $A = [A_0, A_1, \dots, A_n]$  is **bitonic** if and only if:

1. There exists some  $i \in [n]$  such that  $A_j \leq A_{j+1}$  for all j < i, and  $A_j \geq A_{j+1}$  for all  $j \geq i$ , i.e.,

$$A_0 \le A_1 \le \dots \le A_i \ge A_{i+1} \ge \dots \ge A_n$$

or

2. There exists a cyclic shift  $\pi$  on A such that  $\pi(A)$  satisfies the above requirement 1.

We say a bitonic sequence is in the *canonical form* if it satisfies requirement 1.

We specify the BitonicSort algorithm as multiple components. We start with introducing the following BITONICSPLIT operation:

### Algorithm 1: BITONICSPLIT

**Input:** A, a bitonic sequence of length n.

**Output:**  $(L_A, R_A)$ , a pair of two sequences each of length n/2.

- 1  $L_A \leftarrow [\min(A_0, A_{\frac{n}{2}}), \min(A_1, A_{\frac{n}{2}+1}), \cdots, \min(A_{\frac{n}{2}-1}, A_{n-1})];$
- **2**  $R_A \leftarrow [\max(A_0, A_{\frac{n}{2}}), \max(A_1, A_{\frac{n}{2}+1}), \cdots, \max(A_{\frac{n}{2}-1}, A_{n-1})];$
- 3 return  $(L_A, R_A)$ ;

Claim 4.  $L_A$  and  $R_A$  are bitonic, and  $\max_i(L_A[i]) \leq \min_j(R_A[j])$ .

Remark 2. We will prove Claim 4 for canonical-form bitonic sequences. However, in fact the claim also holds for any bitonic sequence that are not necessarily in the canonical form. From an asymptotical point of view, assuming canonical form is without loss of generality because any bitonic sequence can be converted into its canonical form in linear time by applying the corresponding cyclic shift  $\pi$ . So the asymptotical performance of the sorting algorithm is unaffected.

*Proof of Claim 4.* As mentioned above, we assume that A is in canonical form. We denote the index of the "turning point" as k, such that

$$A_0 \leq A_1 \leq \cdots \leq A_k \geq A_{k+1} \geq \cdots \geq A_n$$
.

Assuming without loss of generality that  $k \ge n/2$  (the case of k < n/2 is symmetric), we can visualize the sequence as the following two columns:



where the blue and black arrows point to the larger values. Note that in the top k - n/2 + 1 rows (until the dashed line), the value on the right column must be greater than or equal to that on the left column.

Moreover, starting from the  $(k-n/2+2)^{\text{th}}$  row (i.e., below the dashed line), if we gradually move down the dashed line, we will find a unique row r (or reach the end) such that:

- Above this row, the value on the right column is greater than or equal to that on the left column, and
- Below this row, the value on the right column is less than or equal to that on the left column.

This is visualized as follows:



After BITONICSPLIT,  $L_A$  is composed of the elements in the red brackets, and  $R_A$  is composed of the elements in the green brackets. Therefore, both  $L_A$  and  $R_A$  are in fact **subsequences** of the original bitonic sequence A, which must be bitonic.

Lastly, we argue that  $\max_i(L_A[i]) \leq \min_i(R_A[j])$ . Observe that

$$\max_{i}(L_A[i]) = \max(A_{\max}^1, A_{\max}^2) \text{ and } \min_{j}(R_A[j]) = \max(A_{\min}^1, A_{\min}^2)$$

in the following figure.



We have that:

$$A_{\max}^1 \leq A_{\min}^1$$
 and  $A_{\max}^2 \leq A_{\min}^2$  as shown by the directions of arrows  $A_{\max}^1 \leq A_{\min}^2$  and  $A_{\max}^2 \leq A_{\min}^1$  as shown by the signs between columns

Therefore  $\max_i(L_A[i]) = \max(A_{\max}^1, A_{\max}^2) \le \min_j(R_A[j]) = \max(A_{\min}^1, A_{\min}^2)$ .

With BITONICSPLIT as a subroutine, we can now specify the following recursive merging step and the general BITONICSORT algorithm. We use  $\parallel$  to denote the concatenation of two sequences and use  $\neg$  to denote flipping the direction, i.e.,  $\neg dec = inc$  and  $\neg inc = dec$ .

#### **Algorithm 2:** BITONICMERGE

**Input:** (A, direction)

A is a bitonic sequence of length n and direction  $\in \{inc, dec\}$ .

Output: result, a sorted sequence.

- 1 **if** |A| = 1 **then**
- $\mathbf{2}$  return A;
- $\mathbf{3} \ (L_A, R_A) \leftarrow \text{BITONICSPLIT}(A);$
- 4 if direction = dec then
- 5 | Swap  $(L_A, R_A)$ ;
- 6 return BITONICMERGE( $L_A$ , direction) || BITONICMERGE( $R_A$ , direction);

In summary, BITONICMERGE sorts a sequence under the assumption that it is bitonic. Claim 4 guarantees that the assumption is maintained during the recursions. Finally, in order to sort a general array, we need to firstly preprocess it to be bitonic. This is again done by recursion.

#### **Algorithm 3: BITONICSORT**

**Input:** (A, direction)

A is a sequence of length n and direction  $\in \{inc, dec\}$ .

Output: result, a sorted sequence.

- 1 if |A| = 1 then
- $\mathbf{2} \mid \mathbf{return} \ A;$
- **3**  $S_1 \leftarrow \text{BITONICSORT}(A[0, n/2 1], \text{direction});$
- 4  $S_2 \leftarrow \text{BITONICSORT}(A[n/2, n-1], \neg \text{direction});$
- **5 return** BITONICMERGE( $S_1 \parallel S_2$ , direction);

A concrete example of the recursion is given as follows:

| Original  |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |
|-----------|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|
| sequence  | 3 | 5 | 8 | 9 | 10 | 12 | 14 | 20 | 95 | 90 | 60 | 40 | 35 | 23 | 18 | 0  |
| 1st Split | 3 | 5 | 8 | 9 | 10 | 12 | 14 | 0  | 95 | 90 | 60 | 40 | 35 | 23 | 18 | 20 |
| 2nd Split | 3 | 5 | 8 | 0 | 10 | 12 | 14 | 9  | 35 | 23 | 18 | 20 | 95 | 90 | 60 | 40 |
| 3rd Split | 3 | 0 | 8 | 5 | 10 | 9  | 14 | 12 | 18 | 20 | 35 | 23 | 60 | 40 | 95 | 90 |
| 4th Split | 0 | 3 | 5 | 8 | 9  | 10 | 12 | 14 | 18 | 20 | 23 | 35 | 40 | 60 | 90 | 95 |
|           |   |   |   |   |    |    |    |    | ,  |    |    |    |    |    |    |    |

Analysis. BITONICSORT is oblivious because the behavior of the algorithm does not depend on the content of the input, i.e., the sequence of comparisons is deterministic regardless of the comparison results. At each layer of the recursion, the total number of comparisons made by all calls in this layer is upper bounded by n/2. The depth of the recursion is given by

$$D(n) = D(n/2) + \log n$$

which solves to  $\log n(\log n + 1)/2$ . Therefore the total number of comparisons is upper bounded by  $n/2 \cdot \log n(\log n + 1)/2 = \mathcal{O}(n \log^2 n)$ , where the Big-O notation hides a relatively small constant.

## 3 Bucket Oblivious Sort

We start by introducing the Bucket Oblivious Sorting algorithm [ACN<sup>+</sup>] that has an  $\mathcal{O}(n \log n (\log \log n)^2)$  complexity. Afterward, we will discuss an improvement to speed it up to  $\mathcal{O}(n \log n)$ . In general, the framework of BucketOSort is as follows:

Given a sequence A:

- 1. Apply an **oblivious random permutation** (ORP) on A to get  $A' \leftarrow ORP(A)$ .
- 2. Sort A' using any (potentially non-oblivious) comparison-based sorting algorithm, e.g. QuickSort.

As the name suggested, the specification of ORP is that given a sequence A, outputs a randomly permuted version of A. The obliviousness guarantee is that the access pattern should reveal nothing about the applied random permutation. Our plan is to construct ORP as a randomized algorithm with a deterministic access pattern.

**Non-Example 5.** The Fisher-Yates shuffle is not an oblivious random permutation. It works as follows: Given  $A := [A_0, \dots, A_{n-1}]$ ,

```
• for i \in [0, n-1):

- j \stackrel{\$}{\leftarrow} [i, n);

- \operatorname{Swap}(A_i, A_i);
```

Apparently, one can exactly learn the random permutation applied by observing the Swap instructions.

Remark 3. It is crucial that in the second step of the BucketOSort framework, the sorting algorithm needs to be comparison-based. For example, we cannot use a counting-based sort because even after the sequence is randomly permuted, applying a counting sort would reveal the frequency of elements in each bin, which is exactly what we want to hide. In contrast, a comparison-based sorting will only reveal the relative order between elements, which is fine after we randomly permuted the positions of elements.

#### 3.1 Oblivious Random Permutation

For the purpose of construction ORP, we are going to assign each element to a random bin and then route the elements through a butterfly network to their assigned random bins. A visualization of the network is given on the next page. The behavior of the algorithm is as follows:

- (Set-up): Let Z be a size of buckets (which we will choose later as a function of n). Let B := 2n/Z be the number of buckets. Each bucket is going to contain Z/2 real elements from the input sequence and Z/2 dummy elements.
- Each element is randomly assigned to one of the B buckets indexed by a key of log B bits.

- The elements are routed to their respective destinations through a butterfly network, which contains log B layers that are connected through MERGESPLIT operators.
- The MERGESPLIT operator takes two buckets from the  $i^{\text{th}}$  level as inputs and reorganize their elements into two buckets for the  $(i+1)^{\text{th}}$  layer, according to the  $(i+1)^{\text{th}}$  most significant bit of the elements' keys. i.e., At the  $i^{\text{th}}$  level, every 2i consecutive buckets are semi-sorted by the most significant i bits of the keys.
- Finally, to obtain a random permutation from our random bin assignments, we obliviously and randomly permute the real elements within each bucket in the final layer. Further, we remove the dummy elements from each bin in the finally layer. The bin-wise oblivious random permutation can be accomplished by assigning a random log n-bit label to each real element in the bin, and and then calling bitonic sort to sort the real elements by their labels, while all dummies at the end of the bin (if two elements are found to have duplicate labels, we can repeat the process). Removing the dummies can be by making a pass over the final-layer bins, writing down only the real elements. During this process, the number of dummies in each final-layer bin is revealed but this information is safe to reveal since it is simulatable without knowledge of the contents of the input array to be sorted.



Efficiency for clients with 2Z storage. If the client has a storage size no less than 2Z, then they can perform MERGESPLIT and random permute the buckets at the final layer locally. In each of the  $\log B = \log \frac{2n}{Z} < \log n$  layers, the 2n-sized sequence (containing n real elements and n dummy elements) is read and written once. So oblivious bin assignment and bucket ORP has  $4n \log n$  cost (measured in terms of reads and writes to memory).

Efficiency for clients with constant storage. With constant-storage clients, we need to implement oblivious MergeSplit using bitonicsort. Specifically, we can sort the two input buckets such that all real elements that want to go left are in the front, all real elements that want to go right are at the end, and some dummy elements can be in the middle. To bound the cost of all Mergesplit operations: observe that at each of the  $\log B$  layers, we invoke B/2 instances of bitonic sort on 2Z elements, and thus the total cost is roughly

$$\log B \cdot B/2 \cdot 2Z \log^2(2Z) \approx 2n \log n \log^2 Z.$$

In particular, if we set  $Z = \log^2 n$  which is sufficient for getting negligibly small failure probability (see Lemma 6), we have that the above expression becomes  $O(n \log n (\log \log n)^2)$ .

The other costs, e.g., cost of preparing the input layer, the cost of bucket-wise permutation in the final layer, and the cost of dummy removal in the final layer, are all asymptotically dominated by the cost of the MERGESPLIT operations.

Success probability. The above algorithm is guaranteed to output a correct, randomly permuted version of the input sequence if none of the buckets ever overflows (i.e., receives more than Z real elements) during the routing.

**Lemma 6.** Overflow happens with at most  $\epsilon(n,Z) = 2n/Z \cdot \log(2n/Z) \cdot e^{-Z/6}$  probability.

*Proof.* Consider a bucket  $B_i$  at level i which has an associated i-bit long prefix b of keys.  $B_i$  receives real elements from  $2^i$  initial buckets in the first layer, each containing  $\mathbb{Z}/2$  real elements. By the construction, any of these elements reaches  $B_i$  only if the most significant i bits of its key match b, which happens with exactly  $2^{-i}$  probability.

A Chernoff bound shows that  $B_i$  overflows with less than  $e^{-Z/6}$  probability. Hence, taking a union bound over all levels and all buckets, we get that overflow happens with less than  $\epsilon(n,Z) := B \cdot \log B \cdot e^{-Z/6}$  probability.

Lemma 6 shows that it suffices to set Z to be any superlogarithmic function for the failure probability to be negligibly small.

## References

- [ACN<sup>+</sup>] Gilad Asharov, T-H. Hubert Chan, Kartik Nayak, Rafael Pass, Ling Ren, and Elaine Shi. Bucket Oblivious Sort: An Extremely Simple Oblivious Sort, pages 8–14.
- [AKS83] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n) sorting network. In *Proceedings* of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC '83, page 1–9, New York, NY, USA, 1983. Association for Computing Machinery.
- [Bat68] K. E. Batcher. Sorting networks and their applications. In Proceedings of the April 30– May 2, 1968, Spring Joint Computer Conference, AFIPS '68 (Spring), page 307–314, New York, NY, USA, 1968. Association for Computing Machinery.