Procesamiento de Señales e Imágenes Digitales: Diseño de Filtros Digitales

MSc. Renán Rojas G.

Pontificia Universidad Católica del Perú

Introducción

Métodos para diseñar sistemas FIR e IIR, de acuerdo a la respuesta deseada en frecuencia. (Magnitud y Fase).

$$H(e^{j\omega}) = |H(e^{j\omega})|e^{j\Theta\{H(e^{j\omega})\}}.$$

- Filtros ≡ Sistema (enfocándose en su respuesta en frecuencia).
- El diseño de filtros nos permite obtener los coeficientes de un filtro causal FIR o un filtro causal IIR que se aproxime a la respuesta en frecuencia deseada.

Filtros ideales

- Los filtros ideales no son realizables dado que son **no causales**.
- En caso tener una respuesta al impulso de duración infinita, la respuesta del sistema debe ser calculada de manera recursiva.

Figura: Filtro pasa-bajos ideal: No causal

Entonces, es posible enfocarse en sistemas LTI basados en ecuaciones de diferencias:

$$y[n] = -\sum_{k=1}^{N} a_k y[n-k] + \sum_{k=0}^{M} b_k x[n-k]$$

Los cuales son causales y físicamente realizables.

$$H(e^{j\omega}) = \frac{\sum_{k=0}^{M} b_k e^{-j\omega k}}{1 + \sum_{k=1}^{N} a_k e^{-j\omega k}}$$

■ A partir de ello, la idea es aproximar las características de un sistema LTI a la respuesta en frecuencia deseada $H_d(e^{j\omega})$ eligiendo apropiadamente sus coeficientes $\{a_k\}$; $\{b_k\}$

- Relajando las características deseadas en frecuencia, es posible obtener aproximaciones basadas en sistemas causales.
 - I. Banda de paso (passband): rango de frecuencia en el cual el filtro no atenua los componentes frecuenciales de la señal de entrada. el tamaño del rango de frecuencias se denomina ancho de banda.
 - * No es necesario que la magnitud del filtro $|H(e^{j\omega})|$ en la banda de paso sea constante. Un ligero rizado es favorable.
 - * δ_1 :rizado de la banda de paso.
 - * ω_p : frecuencia de paso (límite de la banda de paso).
 - II. Banda de rechazo (stopband): rango de frecuencia en el cual el filtro atenua los componentes frecuenciales de la señal de entrada.
 - * No es necesario que la magnitud del filtro $|H(e^{j\omega})|$ en la banda de rechazo sea cero. Un valor pequeño o un pequeño rizado es tolerable.
 - * δ_1 : rizado de la banda de rechazo.
 - * w_s frecuencia de rechazo (límite de la banda de rechazo).

- III. Banda de transición (transition band): El rango de frecuencia entre la banda de paso y la banda de rechazo.
- Ejemplo: diseñar un filtro pasa-bajos con una banda de paso $[0,\omega_p]$ y banda de rechazo $[\omega_s,\pi]$
 - *Se infiere que la banda de transición está definida en $[\omega_p,\omega_s]$ con un ancho de $\omega_s-\omega_p$.

Usualmente el rango dinámico del filtro en frecuencia se representa en escala logaritmica: $20\log_{10}(|H(e^{j\omega})|)$.

- Entonces, las especificaciones clásicas requeridas para diseñar un filtro son:
 - I. ganancia δ_1
 - II. ganancia δ_2
 - III. frecuencia de paso w_p
 - IV. frecuencia de rechazo w_s
- A partir de esto, es posible elegir $\{a_k\}$; $\{b_k\}$ de tal manera que la respuesta en frecuencia del filtro sea lo más fiel posible a $H_d(e^{j\omega})$.

Figura: Características del espectro de magnitud de filtros realizables

Diseño de filtros FIR

Diseño de filtros FIR

■ Forma:

$$y[n] = \sum_{k=0}^{M-1} b_k x[n-k];$$
 (Basada en una ecuación no recursiva)

- * $b_k \equiv h[k]$ (Respuesta al impulso del sistema).
- * Dado que tiene coeficientes finitos: $\{h[0], h[1], ..., h[M-1]\}$, su respuesta puede ser calculada directamente a partir de la sumatoria de convolución.
- Su respuesta en frecuencia es expresada como:

$$H(z) = \sum_{k=0}^{M-1} h[k]z^{-k}$$

■ Entonces, el diseño de un filtro FIR consiste en hallar los M coeficientes de h[n] a partir de características del filtro deseado.

Diseño de filtros FIR

Método de enventanado

$$H_d(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h_d[n]e^{-j\omega n};$$
 Respuesta del filtro deseado

- lacksquare $h_d[n]$ es por lo general de duración infinita y por lo tanto debe ser truncado a M coeficientes.
- lacktriangle Entonces, un acercamiento inicial es multiplicar $h_d[n]$ por una ventana rectangular:

$$w[n] = \begin{cases} 1 & n = 0, 1, ..., M - 1 \\ 0 & \text{otros} \end{cases}$$

$$h[n] \triangleq h_d[n] \cdot w[n]$$

■ Efecto de enventanado: producto en espacio de muestras implica convolución en frecuencia. Por lo tanto, $H(e^{j\omega})$ será una versión distorsionada de $H_d(e^{j\omega})$.

Efecto de enventanado en frecuencia:

$$H(e^{j\omega}) = \frac{1}{2\pi} H_d(e^{j\omega}) * W(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\theta}) W(e^{j(\omega-\theta)}) d\theta$$

Figura: Convolución en frecuencia debido al producto por una ventana en espacio de muestras.

■ Ejemplo: Para el caso de ventana rectangular.

$$W(e^{j\omega}) = \frac{1 - e^{-j\omega(M+1)}}{1 - e^{-j\omega}} = e^{-j\omega\frac{M}{2}} \cdot \frac{\sin\left[\frac{\omega(M+1)}{2}\right]}{\sin\left[\frac{\omega}{2}\right]}$$

Cuyo espectro de magnitud es:

$$|W(e^{j\omega})| = \frac{|\sin[\frac{\omega(M+1)}{2}]|}{|\sin[\frac{\omega}{2}]|}; \quad -\pi \le \omega \le \pi.$$

Figura: Espectro de Magnitud de una ventana rectangular (M=7)

- lacktriangle A medida que M crece, el ancho del lóbulo principal decrece. Sin embargo, esto también implica que las amplitudes de los lóbulos secundarios crecen.
- El efecto de los lóbulos laterales al convolucionar es denominado **efecto rizado** (ringing effect). Adicionalmente, el ancho del lóbulo principal genera un suavizado en los bordes del filtro.
- Estos efectos son contrarrestados con diferentes tipos de ventanas.

Rectangular

$$w[n] = \begin{cases} 1, & 0 \le n \le M, \\ 0, & \text{otherwise} \end{cases}$$

Bartlett (triangular)

$$w[n] = \begin{cases} 2n/M, & 0 \le n \le M/2, \\ 2 - 2n/M, & M/2 < n \le M, \\ 0, & \text{otherwise} \end{cases}$$

Hanning

$$w[n] = \begin{cases} 0.5 - 0.5\cos(2\pi n/M), & 0 \le n \le M, \\ 0, & \text{otherwise} \end{cases}$$

Hamming

$$w[n] = \begin{cases} 0.54 - 0.46\cos(2\pi n/M), & 0 \le n \le M, \\ 0, & \text{otherwise} \end{cases}$$

Figura: Ventanas comunmente utilizadas

Figura: Ventanas comunmente utilizadas

Figura: Espectro de magnitud de ventanas comunmente utilizadas

Type of Window	Peak Side-Lobe Amplitude (Relative)	Approximate Width of Main Lobe	Peak Approximation Error, 20 log ₁₀ δ (dB)	Equivalent Kaiser Window, β	Transition Width of Equivalent Kaiser Window
Rectangular	-13	$4\pi/(M+1)$	-21	0	$1.81\pi/M$
Bartlett	-25	$8\pi/M$	-25	1.33	$2.37\pi/M$
Hanning	-31	$8\pi/M$	-44	3.86	$5.01\pi/M$
Hamming	-41	$8\pi/M$	-53	4.86	$6.27\pi/M$
Blackman	-57	$12\pi/M$	-74	7.04	$9.19\pi / M$

Figura: Comparación de ventanas comunmente utilizadas

FIR: Método de Muestreo en Frecuencia

2 Muestreo en Frecuencia:

■ Especificando la respuesta en frecuencia deseada $H_d(e^{j\omega})$ en un conjunto de frecuencias separadas uniformemente.

$$w_k=\frac{2\pi}{M}(k+\alpha);$$
 Si M impar: $k=0,1,...,\frac{M-1}{2}.$ Si M par: $k=0,1,...,\frac{M}{2}-1;$ $\alpha=0$ o $\frac{1}{2}$

■ A partir de dicha especificación, es posible hallar h[n] de la siguiente forma:

$$H(e^{j\omega}) = \sum_{n=0}^{M-1} h[n]e^{-j\omega n}$$

FIR: Método de Muestreo en Frecuencia

$$\therefore H(k+\alpha) \equiv \sum_{n=0}^{M-1} h[n]e^{-j\frac{2\pi(k+\alpha)n}{M}}; \quad k=0,1,...,M-1$$
 (1)

■ Si invertimos (1) de tal forma que permita expresar h[n] en función a $H(k+\alpha)$ obtenemos:

$$h[n] = \frac{1}{M} \sum_{k=0}^{M-1} H(k+\alpha) e^{j\frac{2\pi(k+\alpha)n}{M}}; \quad n = 0, 1, ..., M-1$$

- ullet Si lpha=0, las relaciones se reducen a la DFT e IDFT, correspondientemente.
- Dado que $\{h[n]\}$ es real, $\{H[k+\alpha]\}$ satisface:

$$H(k+\alpha) = H^*(M-k-\alpha)$$

■ Esta propiedad de simetría permite reducir a $\frac{M+1}{2}$ las muestras en caso M sea impar y $\frac{M}{2}$ las muestras en caso M sea par.

Pontificia Universidad Católica del Perú

Diseño de filtros IIR

Diseño de filtros IIR (a partir de filtros analógicos)

- Existen múltiples métodos que permiten el diseño de filtros de duración infinita IIR a partir del diseño de filtros analógicos.
- Un filtro analógico puede ser descrito como el siguiente sistema:

$$H_a(s) = \frac{B(s)}{A(s)} = \frac{\sum_{k=0}^{M} \beta_k s^k}{\sum_{k=0}^{N} \alpha_k s^k}$$

■ También es posible representarlo a partir de su respuesta al impulso h(t), la cual se relaciona a $H_a(s)$ por:

$$H_a(s) = \int_{-\infty}^{\infty} h(t)e^{-st}dt$$

■ La relación entrada / salida del filtro puede ser descrita por una ecuación diferencial:

$$\sum_{k=0}^{N} \alpha_k \frac{d^k}{dt^k} y(t) = \sum_{k=0}^{M} \beta_k \frac{d^k}{dt^k} x(t)$$

Diseño de filtros IIR

- *Recordatorio: H(s) es estable si todos sus polos están en el semiplano izquierdo.
- Entonces, para que la conversión de un filtro analógico a un filtro digital sea coherente, se deben cumplir las siguientes propiedades:

Condiciones para mantener estabilidad en un sistema discreto

- I. El eje $j\Omega$ del plano s debe proyectarse en el círculo unitario en el plano z. Entonces, debe haber una relación directa entre s y z
- II. El semiplano izquierdo del plano s debe ser mapeado en el interior del círculo unitario del plano z. Entonces, un filtro analógico estable será convertido en un filtro discreto estable.

Diseño por Invarianza del Impulso

lacktriangle Diseño a partir de una respuesta al impulso h[n], la cual es una versión muestrada de la respuesta al impulso del filtro analógico correspondiente.

$$h[n] = h_a(nT); \quad n = 0, 1, 2, ...; \quad T = \frac{1}{F_s}$$

- Entonces, dado un filtro analógico h_a con respuesta en frecuencia $H_a(j\Omega)$, su versión muestreada con periodo uniforme T $(h_a(nT))$ tiene una respuesta en frecuencia $\frac{1}{T}H_a(j\Omega)$ en múltiplos de Ω_s .
- Finalmente, el filtro digital con respuesta al impulso $h[n] \triangleq h_a(nT)$ tiene una respuesta en frecuencia:

$$H(e^{j\omega}) \triangleq \frac{1}{T} \sum_{k=-\infty}^{+\infty} H_a (j(\Omega - k \cdot \Omega_s \cdot T)) \Big|_{\Omega = \frac{\omega}{T}}$$

- La invarianza del impulso requiere de un *T* apropiado para evitar aliasing en la respuesta de frecuencia del filtro analógico.
- Es posible diseñar filtros pasa-bajos a partir de este diseño. Sin embargo, el diseño de filtros pasa-altos no es apropiado a partir de él dado que no es posible evitar el efecto aliasing.
- lacktriangle A partir del muestreo de la frecuencia al impulso, el mapeo del plano s y el plano z está dado por la relación entre la transformada z de h[n] y la transformada de laplace de $h_a(t)$:

$$H(z)\Big|_{z=e^{sT}} = \sum_{n=0}^{\infty} h[n]e^{-sTn} = \frac{1}{T}\sum_{k=-\infty}^{\infty} H_a(s-j\frac{2\pi k}{T})$$

■ Entonces, tenemos una relación directa entre variables: $z=e^{sT}$

■ Expresando $s = \sigma + j\Omega$ y $z = re^{j\omega}$, entonces:

$$z = re^{j\omega} = e^{\sigma T} \cdot e^{j\Omega T}$$

$$\therefore \quad r = e^{\sigma T}; \omega = \Omega T.$$

- Si $\sigma < 0$ (semiplano izquierdo en s), entonces 0 < r < 1 (region interna del círculo unitario en z)
- \blacksquare Si $\sigma>0$ (semiplano derecho en s), entonces r>1 (region externa del círculo unitario en z)
- Entonces, un sistema analógico estable implica un sistema discreto estable.

- Por otro lado, el mapeo del eje $j\Omega$ en el círculo unitario no es una correspondencia de uno a uno. La relación $\omega = \Omega T$ implica que el intervalo $\frac{(2k-1)\pi}{T} \leq \Omega \leq \frac{(2k+1)\pi}{T}$ se proyecta a $-\pi \leq \omega \leq \pi; \quad \forall k \in \mathbb{Z}.$
- Esta correspondencia refleja el efecto de muestreo y aliasing del método empleado.

A partir de esta transformación y asumiendo un sistema analógico representado como fracciones parciales:

$$H_a(s) = \sum_{k=1}^{N} \frac{c_k}{s - p_k}$$

 $\{c_k\}$: coeficientes de fracciones parciales, $\{p_k\}$: polos del filtro analógico

■ Entonces, por la transformada de Laplace:

$$H_a(s) \leftrightarrow h_a(t) = \sum_{k=1}^{N} c_k e^{p_k t}; \quad t \ge 0.$$

Luego, muestreamos $h_a(t)$; t = nT

$$h[n] = h_a(nT) = \sum_{k=1}^{N} c_k e^{p_k T n}$$

■ Entonces, la función de transferencia del sistema IIR diseñado es:

$$H(z) = \sum_{n=0}^{\infty} h[n]z^{-n} = \sum_{n=0}^{\infty} (\sum_{k=1}^{N} c_k e^{p_k T n}) z^{-n}$$

$$= \sum_{k=1}^{N} c_k \sum_{n=0}^{\infty} (e^{p_k T} z^{-1})^n; \quad \sum_{n=0}^{\infty} (e^{p_k T} z^{-1})^n = \frac{1}{1 - e^{p_k T} z^{-1}}$$

$$\therefore H(z) = \sum_{k=1}^{N} \frac{c_k}{1 - e^{p_k T} z^{-1}}; \quad \text{F. de transferencia del filtro discreto diseñado}$$
 (2)

■ Finalmente, la función de transferencia del filtro digital tiene polos en:

$$z_k = e^{p_k T}; \quad k = 1, 2, ..., N$$

Figura: Relación espectro del filtro analógico y espectro del filtro discreto bajo la condición de aliasing

Figura: Redundancia en la proyección del plano s al círculo unitario del plano z

1 Diseño por Transformación Bilineal

- No se restringe unicamente al diseño de filtros pasa-bajos y pasabandas.
- Implica una proyección del eje $j\Omega$ hacia el círculo unitario con relación de uno a uno. Entonces, evita problemas de aliasing.
- Adicionalmente, todo el semiplano de s es mapeado al interior del círculo unitario (y todo el semiplano derecho es mapeado al exterior del círculo unitario).
- Partiendo de un sistema analógico:

$$H(s) = \frac{b}{s+a}$$

■ De la regla trapezoidal [Proakis, Ch. 8.3], es posible expresar el filtro digital equivalente como:

$$H(z) = \frac{b}{\frac{2}{T} \left(\frac{1-z^{-1}}{1+z^{-1}}\right) + a}$$

Entonces, es posible definir la siguiente relación:

$$s = \frac{2}{T} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right); \quad \text{(Transformación Bilineal)}$$

- * A pesar que la relación se halla para una ecuación diferencial de 1er orden, es demostrable que la relación de mantiene para ecuaciones diferenciales de orden N.
- lacksquare Si expresamos $z=re^{j\omega}$ y $s=\sigma+j\Omega$

$$\therefore \quad s = \frac{2}{T} \frac{z-1}{z+1} = \frac{2}{T} \frac{re^{j\omega} - 1}{re^{j\omega} + 1}$$

$$= \frac{2}{T} \left(\frac{r^2 - 1}{1 + r^2 + 2r\cos(\omega)} + j \frac{2r\sin(\omega)}{1 + r^2 + 2r\cos(\omega)} \right)$$

Entonces:

$$\sigma = \frac{2}{T} \left(\frac{r^2 - 1}{1 + r^2 + 2r\cos(\omega)} \right)$$
$$\Omega = \frac{2}{T} \left(\frac{2r\sin(\omega)}{1 + r^2 + 2r\cos(\omega)} \right)$$

- Si r < 1, entonces $\sigma < 0$. Si r > 1, entonces $\sigma > 0$
- Adicionalmente, si r=1, entonces $\sigma=0$ y $\Omega=\frac{2}{T}\cdot\frac{\sin(\omega)}{1+\cos(\omega)}$. De la misma forma:

$$\Omega = \frac{2}{T} \tan(\frac{\omega}{2})$$

$$\omega = 2 \tan^{-1}(\frac{\Omega T}{2})$$

■ Esta relación muestra que Ω se mapea a $-\pi \le \omega \le \pi$ de manera no lineal.

33 / 57

Figura: Proyección de plano s al plano z (sin redundancia)

IIR: Filtros Analógicos comunmente usados

- De lo anterior, se deduce que el diseño de filtros de respuesta al impulso infinita IIR se basa en:
 - 1. Diseño de un filtro analógico con respuesta en frecuencia deseada
 - II. Ejecutar la conversión de H(s) a H(z) reservando las características del filtro analógico.
- Filtros Butterworth: filtro basado solo en polos con la siguiente característica en espectro de magnitud:

$$|H(j\Omega)|^2 = \frac{1}{1 + (\frac{\Omega}{\Omega_c})^{2N}}$$

- * Donde:
 - I. N: orden del filtro
 - II. Ω_c frecuencia de corte. $|H(j\Omega_c)|^2=-3$ dB
- III. Ω_p frecuencia de paso. $|H(j\Omega_p)|^2=\frac{1}{1+\epsilon^2}$ dB
- \blacksquare Los polos s_k ocurren en un círculo de radio Ω_c en puntos igualmente espaciados:

IIR: Filtros Butterworth

- $|H(j\Omega)|^2$ es monotona en la banda de paso y en la banda de rechazo.
- El orden del filtro N requerido para obtener una atenuación δ_2 en una determinada frecuencia Ω_s se deriva de:

$$|H(\Omega_s)|^2 = \frac{1}{1 + (\frac{\Omega_s}{\Omega_c})^{2N}} = \delta_2^2$$

■ De lo anterior, se concluye que el filtro Butterworth está completamente caracterizado por $\{N, \delta_2,$ y el ratio $\frac{\Omega_s}{\Omega_p}\}$

IIR: Filtros Butterworth

Figura: Ubicación de polos en un filtro analógico Butterworth

IIR: Filtros Butterworth

Figura: Espectro de magnitud para filtros Butterworth de diferente orden

38 / 57

IIR: Filtros Chebyshev

- En contraste a lso filtros Butterworth y su comportamiento monótono, es posible obtener un filtro de menor order (usa menos recursos, implementación más simple) al distribuir el error de la aproximación a la respuesta deseada de manera uniforme en la banda de paso y banad de rechazo.
 - * Esto es posible a partir de un diseño que genere un rizado constante en dichas bandas en vez de un comportamiento monótono.

Entonces:

- Filtros Chebyshev tipo I: rizado constante en la banda de paso y monotonicidad en la banda de rechazo.
- II. Filtros Chebyshev tipo II: rizado constante en la banda de rechazo y monotonicidad en la banda de paso.

■ Su espectro de magnitud cumple con la siguiente característica:

$$|H(j\Omega)|^2 = \frac{1}{1 + \epsilon^2 T_N^2(\frac{\Omega}{\Omega_p})}$$

$$T_N(x) = \begin{cases} \cos(N\cos^{-1}(x)); & |x| \le 1\\ \cosh(N\cosh^{-1}(x)); & x > 1; \end{cases}$$
 (Polinomio de Chebyshev de orden N)

* $T_N(x)$ puede ser determinado de manera recursiva:

$$T_{N+1}(x) = 2xT_N(x) - T_{N-1}(x); \quad n = 1, 2, ...$$

$$T_0(x) = 1; \quad T_1(x) = x$$

- Propiedades de $T_N(x)$:
 - I. $|T_N(x)| \leq 1 \quad \forall |x| \leq 1$
 - II. $T_N(1) = 1 \quad \forall N$
 - III. Las raices de $T_N(x)$ ocurren en el intervalo $-1 \le x \le 1$
- lacksquare A partir de ello, $T_N^2(0)=0$ para N impar, y por lo tanto $|H(0)|^2=1$
- \blacksquare De la misma forma, $T_N^2(0)=1$ para N par, y por lo tanto $|H(0)|^2=\frac{1}{1+\epsilon^2}$
- lacksquare A partir de estas propiedades, analizamos la respuesta para $\Omega=\Omega_p$:

$$|H(j\Omega)|^2 = (1 - \delta_1)^2 = \frac{1}{1 + \epsilon^2}$$

* Entonces, ϵ está directamente relacionado con el rizado del filtro diseñado.

lacktriangle Los polos (tipo I) están ubicados en los siguientes puntos del plano complejo: $\{x_k,y_k\}$

$$x_k = r_2 \cos(\phi_k)$$

$$y_k = r_1 \sin(\phi_k)$$

$$\phi_k = \frac{\pi}{2} + \frac{(2k+1)\pi}{2N}; \quad k = 0, 1, ..., N-1$$

$$r_1 = \Omega_p \frac{\beta^2 + 1}{2\beta}; \quad r_2 = \Omega_p \frac{\beta^2 - 1}{2\beta};$$

$$\beta = \left(\frac{(1+\epsilon^2)^{1/2} + 1}{\epsilon}\right)^{\frac{1}{N}}$$

■ Es decir, los polos del filtro están ubicados sobre una elipse en el plano complejo con eje mayor r_1 y eje menor r_2 .

Figura: Espectro de magnitud para filtros Chebyshev Tipo I de orden par e impar

■ En este caso, la respuesta en frecuencia incluye ceros:

$$|H(j\Omega)|^2 = \frac{1}{1 + \epsilon^2 \left[\frac{T_N^2(\frac{\Omega_s}{\Omega_p})}{T_N^2(\frac{\Omega_s}{\Omega})} \right]}$$

■ En este caso, los ceros están ubicados en le eje imaginario

$$s_k = j \frac{\Omega_s}{\sin(\phi_k)}; \quad k = 0, 1, ..., N - 1$$

Por otro lado, los polos están ubicados en: $\{v_k, w_k\}$

$$v_k = \frac{\Omega_s x_k}{(x_k^2 + y_k^2)^{1/2}}$$

$$w_k = \frac{\Omega_s y_k}{(x_k^2 + y_k^2)^{1/2}}; \quad k = 0, 1, ..., N - 1$$

* En este caso, x_k , y_k están definidos de la misma forma que en el **Tipo I** pero modificando β

$$\beta = \left(\frac{1 + (1 - \delta_2^2)^{1/2}}{\delta_2}\right)^{\frac{1}{N}}$$

- Finalmente, se concluye que los filtros Chebyshev (ambos tipos) pueden ser diseñados a partir de los siguientes parámetros:
 - * ϵ , δ_2 y el ratio $\frac{\Omega_s}{\Omega_p}$
- Simplificando, podemos determinar el orden el filtro

$$N = \frac{\cosh^{-1}(\frac{\delta}{\epsilon})}{\cosh^{-1}(\frac{\Omega_s}{\Omega_p})}; \quad \delta_2 = \frac{1}{(1+\delta^2)^{1/2}}$$

Figure 8.41 Type II Chebyshev filters.

Figura: Espectro de magnitud para filtros Chebyshev Tipo II de orden par e impar

Filtros analógicos: Chebyshev

■ En general, los filtros **Chebyshev** satisfacen las especificaciones de diseño con menor orden que en el caso de filtros **Butterworth**. Es decir, un filtro **Chebyshev** de orden N tiene una banda de transición más angosta que un filtro **Butterworth** de orden N.

Filtros Wiener

- Sistema que elimine interferencias y preserve la mayor cantidad de información basado en propiedades estocásticas.
- Filtros **Wiener**: sistema óptimo basado en el **error cuadrático medio** entre la respuesta al filtro y la señal deseada.
- Visto como un problema lineal, se establece el siguiente modelo:

Figura: Modelo de estimación y predicción para filtros Wiener.

Filtrado y predición a partir de Filtros Wiener

$$x[n] = s[n] + w[n]$$

- $\blacksquare x[n]$: señal de entrada
- w[n]: interferencia (ruido)
- lacksquare s[n]: señal libre de ruido
- Adicionalmente: d[n] señal deseada (en función a s[n])
 - 1 Si d[n] = s[n], el problema se define como **filtrado**
 - **2** Si d[n] = s[n+D], D > 0, el problema se define como **predicción**
 - **3** Si $d[n] = s[n-D], \quad D > 0$, el problema se define como **suavizado**
- * El curso se enfoca en los casos de **filtrado** y **predicción**.
- Finalmente, e[n]: diferencia entre la respuesta del filtro y la señal deseada (error).

Pontificia Universidad Católica del Perú

Conceptos Previos

1 Proceso estacionario en el sentido estricto: Si las funciones de probabilidad conjunta de un proceso aleatorio $X(t_i)$ y $X(t_i + \tau)$; $i \in \{1; n\}$ son iguales:

$$P(X(t_1), X(t_2), \dots, X(t_n)) = P(X(t_1 + \tau), X(t_2 + \tau), \dots, X(t_n + \tau))$$

Entonces, se trata de un proceso estacionario en el sentido estricto. En consecuencia:

- I. La probabilidad es independiente del instante de tiempo: P_x .
- II. El valor esperado es constante: m_x
- III. La autocorrelación depende solo de la diferencia de instantes:

$$\gamma_{xx}(n,k) = E\{x[n] \cdot x[k]\}; k = n - l$$
$$= E\{x[n] \cdot x[n-l]\}$$
$$= \gamma_{xx}(l)$$

Conceptos Previos

- Proceso estacionario en el sentido amplio (WSS): Un proceso es estacionario en el sentido amplio si cumple con las siguientes condiciones:
 - I. El valor esperado es constante: m_x
 - II. La autocorrelación depende solo de la diferencia de instantes:

$$\gamma_{xx}(n,k) = \gamma_{xx}(l)$$

 \blacksquare Procesos no correlacionados: Dados los procesos no correlacionados X_1 y X_2 :

$$E\{X_1 \cdot X_2\} = E\{X_1\} \cdot E\{X_2\}$$

Condiciones iniciales

- **1** s[n], w[n], d[n] tienen media cero y son señales estacionarias en el sentido amplio (WSS).
- $2 \ s[n], \ w[n]$ son señales no correlacionadas entre sí.
- **3** w[n] corresponde a **ruido blanco**: $w \sim \mathcal{N}(0, \sigma_w^2)$. Entonces:

$$\gamma_{ww}(l) = E\{w[n] \cdot w[n-l]\} = \begin{cases} \sigma_w^2; & l = 0\\ 0; & \text{Otros casos} \end{cases}$$

- **Estrategia**: Se diseña el filtro óptimo (respuesta al impulso h[n]) como aquel que minimice el **error cuadrático medio**.
- Motivación: El error cuadrático medio corresponde a una función convexa, por lo tanto, tiene un mínimo global facilmente hallado a partir de derivadas.
 - 1 Respuesta al filtro FIR de orden P:

$$y[n] = \sum_{k=0}^{P-1} h[k]x[n-k]$$

Error cuadrático medio:

$$\varepsilon = E\{|e[n]|^2\} = E\{|d[n] - y[n]|^2\}$$

3 Finalmente, los coeficientes del filtro óptimo son:

$$h_{\mathrm{opt}} = \mathop{\mathrm{argmin}}_h \quad \varepsilon$$

Cálculo del error cuadrático medio:

$$\varepsilon = E\left\{ \left| d[n] - \sum_{k=0}^{P-1} h[k]x[n-k] \right|^2 \right\}$$

$$\varepsilon = E\left\{ d^2[n] - 2d[n] \sum_{k=0}^{P-1} h[k]x[n-k] + \left(\sum_{k=0}^{P-1} h[k]x[n-k]\right)^2 \right\},$$

Dado que el valor esperado es una función lineal:

$$\varepsilon = E\{d^2[n]\} - 2\sum_{k=0}^{P-1} h[k]E\Big\{d[n]x[n-k]\Big\} + \sum_{k=0}^{P-1} \sum_{l=0}^{P-1} h[k]h[l]E\Big\{x[n-k]x[n-l]\Big\},$$

■ Expresado en forma matricial:

$$\varepsilon = \gamma_{dd}(0) - 2\mathbf{h}^T \gamma_{\mathbf{dx}} + \mathbf{h}^T \mathbf{\Gamma_x} \mathbf{h}.$$

- h: vector de coeficientes del filtro FIR
- lacksquare $\Gamma_{\mathbf{x}}$: matriz de autocorrelación de x[n]
- γ_{dx} : vector de correlación cruzada entre d[n] y x[n].

$$\mathbf{h} = \begin{pmatrix} h(0) \\ h(1) \\ h(2) \\ \vdots \\ h(P-1) \end{pmatrix}_{P \times 1} \text{, } \mathbf{\Gamma_{x}} = \begin{pmatrix} \gamma_{xx}(0) & \gamma_{xx}^{*}(1) & \gamma_{xx}^{*}(2) & \cdots & \gamma_{xx}^{*}(P-1) \\ \gamma_{xx}(1) & \gamma_{xx}(0) & \gamma_{xx}^{*}(1) & \cdots & \gamma_{xx}^{*}(P-2) \\ \gamma_{xx}(2) & \gamma_{xx}(1) & \gamma_{xx}(0) & \cdots & \gamma_{xx}^{*}(P-3) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \gamma_{xx}(P-1) & \gamma_{xx}(P-2) & \gamma_{xx}(P-3) & \cdots & \gamma_{xx}(0) \end{pmatrix}_{P \times P} \text{, } \mathbf{\gamma_{dx}} = \begin{pmatrix} \gamma_{dx}(0) \\ \gamma_{dx}(1) \\ \gamma_{dx}(2) \\ \vdots \\ \gamma_{dx}(P-1) \end{pmatrix}_{P \times 1} .$$

Pontificia Universidad Católica del Perú

■ Cálculo del filtro óptimo (filtro Wiener): derivando ε respecto a \mathbf{h} e igualando a cero:

$$\nabla \varepsilon(\mathbf{h}) = \frac{d}{d\mathbf{h}} \gamma_{dd}(0) - \frac{d}{d\mathbf{h}} 2\mathbf{h}^T \gamma_{\mathbf{dx}} + \frac{d}{d\mathbf{h}} \mathbf{h}^T \mathbf{\Gamma_x} \mathbf{h} = 0 - 2\gamma_{\mathbf{dx}} + 2\mathbf{\Gamma_x} \cdot \mathbf{h} = 0;$$

$$\Gamma_{\mathbf{x}} \cdot \mathbf{h}_{\mathsf{opt}} = \gamma_{\mathbf{dx}}$$
. (Ecuaciones de Wiener-Hopf)

■ Luego, los coeficientes del filtro óptimo (denominado **filtro Wiener**) \mathbf{h}_{opt} son calculados a partir de:

$$\mathbf{h_{opt}} = \mathbf{\Gamma_x}^{-1} \cdot \gamma_{\mathbf{dx}}$$

■ El error cuadrático medio correspondiente a h_{opt}, es decir, el **mínimo error cuadrático** medio es:

$$\varepsilon_{\mathsf{min}} = \gamma_{dd}(0) - 2\mathbf{h}_{\mathsf{opt}}^T \cdot \gamma_{\mathbf{dx}} + \mathbf{h}_{\mathsf{opt}}^T \cdot \Gamma_{\mathbf{x}} \cdot \mathbf{h}_{\mathsf{opt}}.$$

Referencias

- (1) Proakis, J. G. & Manolakis, D. K. (2006), Digital Signal Processing (3rd Edition), Prentice Hall.
- (2) Oppenheim, A.V., Schafer, R. W., & Buck, J.R. (2009), Discrete-Time Signal Processing (3rd Edition), Prentice-Hall.