ALGORITHMS AND COMPLEXITY (I)

Blue Waters

An *algorithm* is a well-defined computational procedure that takes some values as input and produces some values as output.

Search a 1024 page dictionary to find which page the word "hippopotamus" is on.

Option 1: start on page 1 and begin reading

Option 2: turn to middle, if word is before that page, it must be in first half; otherwise last half. Repeat.

 $1024/2 \rightarrow 512/2 \rightarrow 256/2 \rightarrow 128/2 \rightarrow 64/2 \rightarrow 32/2 \rightarrow 16/2 \rightarrow 8/2 \rightarrow 4/2 \rightarrow 2/2 \rightarrow 1$

10 comparisons

- 1. Algorithms help us to understand *scalability*
- 2. Algorithmic mathematics provides a *language* for talking about program behavior
- 3. Performance is the currency of computing

Performance often draws the line between what is feasible and what is impossible...

- 1. Correctness
- 2. Time Complexity
- 3. Space Complexity

A (Correct, but Bad) Algorithm for the Assignment Problem:

Enumerate all possible assignments and choose the cheapest one.

```
E.g., assign members of set N1 to members of set N2
Let n = |N1| = |N2| Total: n! possible assignments
Suppose n = 70
```

```
70! =1,978,571,669,969,891,796,072,783,721,689,098,736,458,938,142,546,425,857,555,362,864,628,009,582,789,845,319,680,000,000,000,000,000
```

ALGORITHMS AND COMPLEXITY (II)

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Pseudocode

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Hides program design issues
- Preferred notation for describing algorithms

Example: find max element of an array

Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

 $currentMax \leftarrow A[0]$ $for i \leftarrow 1 to n - 1 do$ if A[i] > currentMax then $currentMax \leftarrow A[i]$ return currentMax

```
JOHNSON(G, w)
     Algorithm 1 Adaboost (with Stump as the base learner)
Al Input: S: training set \{(x(1), \dots, x(N))\} with labels \{y(1), \dots, y(N)\}
                                                                                                              compute G', where G' \cdot V = G \cdot V \cup \{s\},
                                                                                                SAT
                                                                                                                   G'.E = G.E \cup \{(s, v) : v \in G.V\}, \text{ and }
       T: test set \{u(1), u(2) \dots u(N')\}
                                                                                                                    w(s, v) = 0 for all v \in G.V
                                                                                                form.
        K: number of rounds
                                                                                                           2 if Bellman-Ford (G', w, s) == FALSE
                                                                                                cayRe
     Output: predictions \{h(u_1), h(u_2) \dots h(u_{N'})\} for all test instances.
                                                                                                                   print "the input graph contains a negative-weight cycle"
                                                                                                               else for each vertex v \in G'. V
\mathbf{E}\mathbf{n}
                                                                                                _{
m cdure}
       For all i = 1 : N, w_1(i) = 1/N
                                                                                                                        set h(v) to the value of \delta(s, v)
 1:
        for r = 1 to K do
                                                                                                                             computed by the Bellman-Ford algorithm
 2:
                                                                                                                   for each edge (u, v) \in G'.E
          For all i = 1 : N, p_r(i) = w_r(i) / \sum_i (w_r(i))
                                                                                                                        \widehat{w}(u,v) = w(u,v) + h(u) - h(v)
          S_r = sampleByWeight(S, p_r, L), \text{ where } L = N
 3:
                                                                                                                   let D = (d_{uv}) be a new n \times n matrix
          generate a new stump stp_r, call stp_r.learn(S_r)
 4:
                                                                                                                   for each vertex u \in G.V
 5:
          h_r^S = stp_r.classify(S)
                                                                                                                        run DIJKSTRA (G, \hat{w}, u) to compute \hat{\delta}(u, v) for all v \in G.V
          \epsilon_r = \sum_i p_r(i) \mathbf{1} [h_r^S(i) \neq y(i)]
                                                                                                                        for each vertex v \in G.V
          if \epsilon_r > 1/2 or \epsilon_r = 0 then
                                                                                                                             d_{uv} = \hat{\delta}(u, v) + h(v) - h(u)
             K = r - 1
                                                                                                                       urn D
             Exit the loop
 9:
          end if
                                                                                                                        Igorithm 2: Division
          \beta_r = \epsilon_r / (1 - \epsilon_r)
10:
                                                                                                                       (x, y);
          For all i = 1 : N, w_{r+1}(i) = w_r(i)\beta_r^{1-\mathbf{1}[h_r^S(i)\neq y(i)]}
11:
                                                                                                                      put: Two n-bit integers x and y, where y > 1
                                                                                                ical k-mer for x
12:
        end for
                                                                                                                       utput: The quotient and remainder of x divided by y
        For all r = 1 : K, h_r^T = stp_r.classify(T)
13:
                                                                                                                       x = 0 then
        For all i = 1 : N', h(u_i) = \arg\max_{y \in Y} \sum_{r=1}^{K} \log(1/\beta_r) \mathbf{1}[h_r^T(u_i) = y]
                                                                                                                         return (q, r) = (0, 0)
14:
       return \{h(u_1), h(u_2) \dots h(u_{N'})\}
                                                                                                                         set (q, r) = \text{divide}(|\frac{x}{2}|, y);
            end if 10:
16:
                                                                                                                         q = 2 \times q, r = 2 \times r;
                                     add x_{rep} to B
                                                                                                                         if x is odd then
17:
         end for
                       11: for all reads s do
                                                                                                                              r = r + 1
18:
         stepNo \leftarrow 12:
                               for all k-mers x in s do
                                                                                                                          end
19: end loop
                        13:
                                  x_{rep} \leftarrow \min(x, \text{revcomp}(x))
                                                                                                                         if r \geq y then
                                                                                                                              r = r - y, q = q + 1
                                  if x_{rep} \in T then
                                                                                                                         end
                                     T[x_{rep}] \leftarrow T[x_{rep}] + 1
                        15:
                                                                                                                          raturn (a r)
```

Control flow

- if...then... [else ...]
- while... do...
- repeat... until...
- for ...do...
- indentation replaces braces

Method declaration

Algorithm method (arg [, arg...])

 n^2

Input ...

Output ...

 \leftarrow assignment (similar to R)

Expressions

equality testing (like "==") mathematical formulas

and superscripts allowed

```
procedure simulated annealing
procedure iterated hill-climber
                                                                                   begin
begin
   t \leftarrow 0
                                              procedure tabu search
   initialize best
                                              begin
   repeat
                                                 trice - 0
                                                                         Algorithm 3 NSGA-II algorithm
                                                                          1: procedure NSGA-II(\mathcal{N}', g, f_k(\mathbf{x}_k))
                                                                                                                \triangleright \mathcal{N}' members evolved g generations to
    procedure evolutionary algorithm
                                                                             solve f_k(\mathbf{x})
    begin
                                                                   tour
                                                                                Initialize Population \mathbb{P}'
                                                                                Generate random population - size \mathcal{N}'
        t \leftarrow 0
                                                                                Evaluate Objective Values
        initialize P(t)
                                                                                Assign Rank (level) Based on Pareto dominance - sort
                                                                                Generate Child Population
                                                                   a se
        evaluate P(t)
                                                                                  Binary Tournament Selection
                                                                  he be
                                                                                  Recombination and Mutation
        while (not termination-condition) do
                                                                                for i = 1 to g do
                                                                  ppro
        begin
                                                                                   for each Parent and Child in Population do
                                                                   tabu
                                                                                      Assign Rank (level) based on Pareto - sort
           t \leftarrow t + 1
                                                                                      Generate sets of nondominated vectors along PF_{known}
                                                                  ew t
           select P(t) from P(t-1)
                                                                                      Loop (inside) by adding solutions to next generation starting from
                                                                  pdat
                                                                             the first front until \mathcal{N}' individuals found determine crowding distance between
            alter P(t)
                                                                             points on each front
                                                                     COL
                                                                                   end for
            evaluate P(t)
                                                                         14:
                                                                                   Select points (elitist) on the lower front (with lower rank) and are outside
        end
                                                                             a crowding distance
                                                                                   Create next generation
    end
                                                                  rent
                                                                                      Binary Tournament Selection
                                                                                      Recombination and Mutation
                                                     tnen update g
    until \iota - MAA
                                                                                end for
                                                 until tries = MA
end
                                                                         20: end procedure
                                              end
```

ALGORITHMS AND COMPLEXITY (III)

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, *n*
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

primitive operations

- Basic computations performed by an algorithm
- Largely independent from the programming language
- Exact definition not important
- Assumed to take a constant amount of time

Examples:

- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

```
Algorithm arrayMax(A, n)
  currentMax \leftarrow A[0]
   for i \leftarrow 1 to n-1 do
       if A|i| > current Max then
                currentMax \leftarrow A[i]
   { increment counter i }
   return currentMax
```

```
# operations
    2 + n
   2(n-1)
   2(n-1)
   2(n-1)
```

Total 7m-1

Define:

a =time taken by the fastest primitive operation

b = time taken by the slowest primitive operation

Let T(n) be worst-case time of arrayMax

Then:
$$a(7n - 1) \le T(n) \le b(7n - 1)$$

Hence, the running time T(n) is bounded by two *linear* functions.

The linear growth rate of the running time T(n) is an intrinsic property of algorithm arrayMax

Write an algorithm using pseudocode that reads a positive integer N and calculates the sum of all integers 1..N, i.e., 1 + 2 + ... + N = ?

Algorithm Name: **Sum** (N)

Input: integer $N \geq 0$

Output: sum of integers 1 to N

```
total \leftarrow 0
for i \leftarrow 1 to N do
total \leftarrow total + i
```

return total

```
\begin{array}{c} \text{\# of operations} \\ 1 \\ 3 + N \\ 2N \\ \text{(increment counter)} \\ N \\ \end{array}
```

Algorithm Name: **Sum** (N)

Input: integer $N \geq 0$

Output: sum of integers 1 to N

$$total \leftarrow \frac{N(N+1)}{2}$$

return total

of operations
4
1

ALGORITHMS AND COMPLEXITY (IV)

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, *n*
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Worst-case: (usually)

T(n) =maximum time of algorithm on any input of size n

Average-case: (sometimes)

T(n) =expected time of algorithm over all inputs of size n Need assumption of statistical distribution of inputs

Best-case: (bogus)

Cheat with a slow algorithm that works fast on some input

Example: the problem of sorting

Input: sequence $\langle a_1, a_2, ..., a_n \rangle$ of numbers.

Output: permutation $\langle a'_1, a'_2, ..., a'_n \rangle$ such that $a'_1 \le a'_2 \le \cdots \le a'_n$.

Example:

Input: 8 2 4 9 3 6

Output: 2 3 4 6 8 9

Insertion-Sort
$$(A, n)$$

for $j \leftarrow 2$ to n
do $key \leftarrow A[j]$
 $i \leftarrow j - 1$
while $i > 0$ and $A[i] > key$
do $A[i+1] \leftarrow A[i]$
 $i \leftarrow i - 1$
 $A[i+1] \leftarrow key$


```
8 (2) 4 9 3 6
```

```
j=2
key = A[j] = A[2] = 2
i=j-1=1
```

```
A[i] = A[1] = 8 > \text{key} = 2
so, A[i+1] \leftarrow A[i]
A[2] \leftarrow A[1] = 8
```

```
INSERTION-SORT (A, n) \triangleright A[1 ... n]
   for j \leftarrow 2 to n
           do key \leftarrow A[j]
                i \leftarrow j-1
                while i > 0 and A[i] > key
                       do A[i+1] \leftarrow A[i]
                            i \leftarrow i - 1
                A[i+1] = key
```

$$i \leftarrow i-1 = 0$$
 $A[i+1]=A[0+1]=A[1] \leftarrow key = 2$

INSERTION-SORT $(A, n) \triangleright A[1 ... n]$ for $j \leftarrow 2$ to n**do** $key \leftarrow A[j]$ $i \leftarrow j - 1$ while i > 0 and A[i] > key**do** $A[i+1] \leftarrow A[i]$ $i \leftarrow i - 1$

running time

 Running time depends on the input: e.g., an already sorted sequence is easier to sort Usually: worst-case!

• Parameterize the running time by the size of the input, e.g. short sequer $\frac{\text{Insertion-Sort}(A, n)}{\text{for } j \leftarrow 2 \text{ to } n} \triangleright A[1 \dots n]$ that long ones

Generally, we seek time, because everybook

Speed of computer

ALGORITHMS AND COMPLEXITY (V)

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, *n*
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

What is insertion sort's worst-case time?

- It depends on the speed of our computer:
 - relative speed (on the same machine)
 - absolute speed (on different machines)

BIG IDEA:

- Ignore machine-dependent constants.
- Look at *growth* of T(n) as $n \rightarrow \infty$

"Asymptotic Analysis"

```
Insertion-Sort (A, n)

for j \leftarrow 2 to n

do key \leftarrow A[j]

i \leftarrow j-1

while i > 0 and A[i] > key

do A[i+1] \leftarrow A[i]

i \leftarrow i-1

A[i+1] = key
```

$$T(n) = \frac{1}{2}p(n^2 - n)$$
 for some $1 \le p \le P$

$$\frac{1}{2}\left(n^2 - n\right) \le T(n) \le \frac{1}{2}P\left(n^2 - n\right)$$

Pro-tip: constants and lower-order terms don't matter

"Big O" notation describes the asymptotic upper bound of an algorithms growth rate

$$T(n) \in \mathcal{O}\left(f(n)\right)$$

The asymptotic lower bound on growth rates is expressed by "Big Omega" notation

$$T(n) \in \Omega(f(n))$$

If the upper and lower bounds are the same, "Big Theta"

$$T(n) \in \Theta(f(n))$$

$$T(n) \in \mathcal{O}(f(n))$$

iff $\exists N \geq 0, c > 0,$
 $T(n) \leq cf(n) \ \forall n \geq N$

$$T(n) \in \mathcal{O}(f(n)) \text{ iff } \exists N \ge 0, c > 0,$$

 $T(n) \le cf(n) \ \forall n \ge N$

Examples:

$$T(n) = 0.01n^3 \in \mathcal{O}(n^3)$$

 $T(n) = 6n^2 + 10n + 7 \in \mathcal{O}(n^2)$
 $T(n) = n^3 + 10^6n^2 \in \mathcal{O}(n^3)$

One possible set of values

$$c = 0.02; N = 0;$$
 $T(n) \le 0.02n^3 \ \forall n \ge 0$
 $c = 10; N = 4$
 $T(n) \le 10n^2 \ \forall n \ge 4$
 $c = 10; N = 112,000$
 $T(n) \le 10n^3 \ \forall n \ge 112000$

Many upper bounds exist...

$$T(n) = n^2 \in \mathcal{O}(n^2), \mathcal{O}(n^3), \dots, \mathcal{O}(n^{100}), \dots$$

Note: usually when people talk about Big-O, they normally talking about the smallest upper bound

$$T(n) \in \mathcal{O}(f(n)) \text{ iff } \exists N \ge 0, c > 0,$$

 $T(n) \le cf(n) \ \forall n \ge N$

More examples:

$$0.0001n^{3} \notin \mathcal{O}(n) \qquad 10n^{2} + 1000n \notin \mathcal{O}(n)$$

$$0.0001n^{3} \notin \mathcal{O}(n^{2}) \qquad 10n^{2} + 1000n \in \mathcal{O}(n^{2})$$

$$0.0001n^{3} \in \mathcal{O}(n^{3}) \qquad 10n^{2} + 1000n \in \mathcal{O}(n^{3})$$

$$0.0001n^{3} \in \mathcal{O}(n^{4}) \qquad 10n^{2} + 1000n \in \mathcal{O}(n^{4})$$

$$T(n) \in \mathcal{O}(f(n)) \text{ iff } \exists N \ge 0, c > 0,$$

 $T(n) \le cf(n) \ \forall n \ge N$

$$T(n) \in \Omega(f(n)) \text{ iff } \exists N \ge 0, l > 0,$$

 $T(n) \ge lf(n) \ \forall n \ge N$

$$T(n) \in \Theta(f(n)) \text{ iff } \exists N \ge 0, c > 0, l > 0$$

 $lf(n) \le T(n) \le cf(n) \ \forall n \ge N$

Complexity of the dictionary problem?

- How many comparisons as number of pages increases?
- Obviously less than linear growth...

tractability

$\mathcal{O}(1)$	constant	
$\mathcal{O}(\log n)$	logarithmic	
$\mathcal{O}(n)$	linear	
$\mathcal{O}(n \log n)$	loglinear	
$\mathcal{O}(n^2)$	quadratic	
$\mathcal{O}(n^c), c > 1$	polynomial	
$\mathcal{O}(c^n)$	exponential	
$\mathcal{O}(n!)$	factorial	48
•		

ALGORITHMS AND COMPLEXITY (VI)

Pand NP (polynomial time and nondeterministic polynomial time)

NP: class of decision problems whose solutions can be

verified in polynomial time

P: the class of decision problems that can be solved in polynomial time

decision problems vs. optimization problems

A decision problem asks us to check if something is true (possible answers: 'yes' or 'no')

PRIMES

e.g.,

Given: a positive integer *n*

Question: is *n* prime?

decision problems vs. optimization problems

An optimization problem asks us to find, among all feasible solutions, one that maximizes or minimizes a given objective

SHORTEST PATH

e.g.,

Given: weighted graph G and two nodes s and t

Problem: find shortest path from s to t

KNAPSACK PROBLEM

Given: set of items and their value and volume, volume of knapsack

Problem: determine which items to select to maximize value

decision problems vs. optimization problems

A decision version of a given optimization problem can easily be defined using a bound on the value of feasible solutions

SHORTEST PATH DECISION PROBLEM

e.g.,

Given: weighted graph G and two nodes s and t

Question: is there a path from s to t of length at most L?

KNAPSACK DECISION PROBLEM

Given: set of items and their value and volume, volume of knapsack

Question: is there a combination of items that fit within the knapsack

of value greater than or equal to **V**?

discovery vs. verification

- Two important tasks for a scientist are discovery of solutions, and verification of other people's solutions
- It is easier to check that a solution, say to a puzzle, is correct, rather than to find the solution
- That is, verifying a solution is easier than discovering it
- Example: Sudoku

sudoku

9					1		5	
7	6	5			70			
1			3					8
		y: 1			6		4	
			2	1	8			
	9		2 4					
6					4			2
						8	3	7
	3		1					5

sudoku

9	8	3	7	2	1	6	5	4
7	6	5	8	4	9	3	2	1
1	2	4	3	6	5	7	9	8
8	1	7	9	5	6	2	4	3
3	4	6	2	1	8	5	7	9
5	9	2	4	7	3	1	8	6
6	7	8	5	3	4	9	1	2
4	5	1	6	9	2	8	3	7
2	3	9	1	8	7	4	6	5

http://www.claymath.org/millennium-problems

The P vs. NP problem has been called "one of the deepest questions ever asked by human beings"

NP-complete problems are the "hardest" problems in NP

Examples: Sudoku and 3-colorability

If there is a fast (polynomial-time) algorithm for *one* NP-complete problem, then there is a fast algorithm for *every* problem in NP!

For example, a fast algorithm for Sudoku implies P=NP.

The decision versions of Integer programming, TSP, set-covering are all NP-complete. The optimization versions of the problems are NP-hard.

Visualize, assume, simplify, formulate

