Ensembles classifiers in Class Imbalance Learning

Rebecca Leygonie, Nemanja Kostadinovic

Master 2 Big Data & Fouille de Données, Université Paris 8

14 janvier 2021

Plan 2/17

- Problématique
- 2 Méthodes
- Modèles
- Analyse des résultats
- Bilan personnel

Le problème des données déséquilibrées

Données

	Time	V2	V 3	V4	V 5	V 6	V 7	V 8	Amount	Class
0	0.0	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	149.62	0
1	0.0	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	2.69	0
2	1.0	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	378.66	0
3	1.0	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	123.50	0
4	2.0	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	69.99	0
284802	172786.0	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215	7.305334	0.77	0
284803	172787.0	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330	0.294869	24.79	0
284804	172788.0	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827	0.708417	67.88	0
284805	172788.0	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180	0.679145	10.00	0
284806	172792.0	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006	-0.414650	217.00	0

Données

Modèles

- Bagging
 - Bagging Classifier
 - Random Forest Classifier
 - Extra Trees Classifier
 - Logistic Regression
 - Gaussian Naïve Bayes
 - One Class SVM
- Boosting
 - Ada Boost Classifier
 - Gradient Boosting Classifier

Modèles de bagging

Bagging Classifier Process Flow

Modèles de boosting

10/17

Source :https://docs.paperspace.com/machine-learning/wiki/gradient-boosting

Données d'origine Données sous-échantillonnée Données sur-échantillonnées Conclusion

Application des modèles

Données d'origine

Données sous-échantillonnées

Données sur-échantillonnées

Données sur-échantillonnées

Données d'origine Données sous-échantillonnées Données sur-échantillonnées Conclusion

Conclusion de l'analyse

Bilan personnel

- Sukarna BARUA et al. «MWMOTE-majority weighted minority oversampling technique for imbalanced data set learning». In: IEEE Transactions on Knowledge and Data Engineering 26.2 (2012), p. 405-425.
- Eric BAUER et Ron KOHAVI. «An empirical comparison of voting classification algorithms: Bagging, boosting, and variants». In: *Machine learning* 36.1-2 (1999), p. 105-139.
- Leo Breiman. « Bagging predictors ». In: Machine learning 24.2 (1996), p. 123-140.
- Leo Breiman. « Pasting small votes for classification in large databases and on-line ». In: Machine learning 36.1-2 (1999), p. 85-103.
- Yoav Freund et Robert E Schapire. «A decision-theoretic generalization of on-line learning and an application to boosting». In: Journal of computer and system sciences 55.1 (1997), p. 119-139.
- Jerome H FRIEDMAN. «Greedy function approximation: a gradient boosting machine». In: Annals of statistics (2001), p. 1189-1232.
- Mikel GALAR et al. «A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches». In: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42.4 (2011), p. 463-484.
- Pierre GEURTS, Damien ERNST et Louis WEHENKEL. « Extremely randomized trees ». In: Machine learning 63.1 (2006), p. 3-42.
- Tin Kam Ho. « Random decision forests ». In: Proceedings of 3rd international conference on document analysis and recognition. T. 1. IEEE. 1995. p. 278-282.
- Tin Kam Ho. « The random subspace method for constructing decision forests ». In: IEEE transactions on pattern analysis and machine intelligence 20.8 (1998), p. 832-844.

- Xu-Ying Liu, Jianxin Wu et Zhi-Hua Zhou. «Exploratory undersampling for class-imbalance learning». In: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 39.2 (2008), p. 539-550.
- D. OPITZ et R. MACLIN. «Popular Ensemble Methods: An Empirical Study». In: Journal of Artificial Intelligence Research 11 (août 1999), p. 169-198. ISSN: 1076-9757. DOI: 10.1613/jair.614. URL: http://dx.doi.org/10.1613/jair.614.
- Bernhard SCHÖLKOPF et al. «Support Vector Method for Novelty Detection». In: Advances in Neural Information Processing Systems. Sous la dir. de S. SOLLA, T. LEEN et K. MÜLLER. T. 12. MIT Press, 2000, p. 582-588. URL: https://proceedings.neurips.cc/paper/1999/file/8725fb777f25776ffa9076e44fcfd776-Paper.pdf.
- Harry Zhang. «The Optimality of Naive Bayes». In: Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference (FLAIRS 2004). May 17-19, 2004 (Miami Beach, Florida, USA). Sous la dir. de Valerie Barr et Zdravko Markov. AAAI Press, 2004.