1. Substitution Method Proof

To show that the solution to the $T(n) = 5T(n/3) + \Theta(n^2)$ is $O(n^2)$

To show that $T(n) \in O(n^2)$ means to show that there is a constant c such that $T(n) \leq cn^2$ for $n \geq n_0$

Base case: $T(n_0) \le c$ for some n_0 Inductive case: $T(n/3) \le c(n/3)^2$

If 'a' is the upper-bound constant associated with the Θ (n^2), then

$$T(n) \le 5T(n/3) + an^2$$

$$\leq 5c(n/3)^2 + an^2$$

$$\leq 5cn^2/9 + an^2$$

$$\leq (5\frac{c}{9} + a)n^2$$

As long as $a \le \frac{4c}{9}$, the above inequality becomes

 $T(n) \le cn^2 \dots \text{ (provided } a \le \frac{4c}{9} \text{ for sufficiently large } n)$

(For base case, $T(1) \le c$)