```
In [2]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        %matplotlib inline
In [3]: pip install pandas openpyxl
       Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-pack
       ages (2.2.2)
       Requirement already satisfied: openpyxl in /usr/local/lib/python3.11/dist-pa
       ckages (3.1.5)
       Requirement already satisfied: numpy>=1.23.2 in /usr/local/lib/python3.11/di
       st-packages (from pandas) (2.0.2)
       Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/pyth
       on3.11/dist-packages (from pandas) (2.9.0.post0)
       Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dis
       t-packages (from pandas) (2025.2)
       Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/d
       ist-packages (from pandas) (2025.2)
       Requirement already satisfied: et-xmlfile in /usr/local/lib/python3.11/dist-
       packages (from openpyxl) (2.0.0)
       Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-pa
       ckages (from python-dateutil>=2.8.2->pandas) (1.17.0)
In [5]: df2 = pd.read_excel("ADIDAS.xlsx", engine="openpyxl")
```

Out[6]:		Unnamed: 0	Unnamed:	Unnamed: 2	Unnamed:	Unnamed: 4	Unnamed: 5	ΙU
	0	NaN	NaN	Adidas Sales Database	NaN	NaN	NaN	
	1	NaN	NaN	NaN	NaN	NaN	NaN	
	2	NaN	NaN	NaN	NaN	NaN	NaN	
	3	NaN	Retailer	Retailer ID	Invoice Date	Region	State	
	4	NaN	Foot Locker	1185732	2020-01- 01 00:00:00	Northeast	New York	
	9647	NaN	Foot Locker	1185732	2021-01- 24 00:00:00	Northeast	New Hampshire	Ma
	9648	NaN	Foot Locker	1185732	2021-01- 24 00:00:00	Northeast	New Hampshire	Ma
	9649	NaN	Foot Locker	1185732	2021-02- 22 00:00:00	Northeast	New Hampshire	Ma
	9650	NaN	Foot Locker	1185732	2021-02- 22 00:00:00	Northeast	New Hampshire	Ma
	9651	NaN	Foot Locker	1185732	2021-02- 22 00:00:00	Northeast	New Hampshire	Ma

9652 rows \times 14 columns

Out[8]:

		index	Retailer	Retailer ID	Invoice Date	Region	State	City	Pro
_	0	NaN	NaN	Adidas Sales Database	NaN	NaN	NaN	NaN	
	1	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
	2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
	3	NaN	Retailer	Retailer ID	Invoice Date	Region	State	City	Pr
	4	NaN	Foot Locker	1185732	2020- 01-01 00:00:00	Northeast	New York	New York	: Foo
	9647	NaN	Foot Locker	1185732	2021- 01-24 00:00:00	Northeast	New Hampshire	Manchester	٨ţ
	9648	NaN	Foot Locker	1185732	2021- 01-24 00:00:00	Northeast	New Hampshire	Manchester	Ar Wo
	9649	NaN	Foot Locker	1185732	2021- 02-22 00:00:00	Northeast	New Hampshire	Manchester	; Foo
9	9650	NaN	Foot Locker	1185732	2021- 02-22 00:00:00	Northeast	New Hampshire	Manchester	At Foo
g	9651	NaN	Foot Locker	1185732	2021- 02-22 00:00:00	Northeast	New Hampshire	Manchester	Wo ! Foo

9652 rows × 14 columns

Out[11]:

	Retailer	Retailer ID	Invoice Date	Region	State	City	Product
0	NaN	Adidas Sales Database	NaN	NaN	NaN	NaN	NaN
1	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3	Retailer	Retailer ID	Invoice Date	Region	State	City	Product
4	Foot Locker	1185732	2020- 01-01 00:00:00	Northeast	New York	New York	Men's Street Footwear
9647	Foot Locker	1185732	2021- 01-24 00:00:00	Northeast	New Hampshire	Manchester	Men's Apparel
9648	Foot Locker	1185732	2021- 01-24 00:00:00	Northeast	New Hampshire	Manchester	Women's Apparel
9649	Foot Locker	1185732	2021- 02-22 00:00:00	Northeast	New Hampshire	Manchester	Men's Street Footwear
9650	Foot Locker	1185732	2021- 02-22 00:00:00	Northeast	New Hampshire	Manchester	Men's Athletic Footwear
9651	Foot Locker	1185732	2021- 02-22 00:00:00	Northeast	New Hampshire	Manchester	Women's Street Footwear

9652 rows × 13 columns

In [12]: df = df2.copy()

In [13]: **df**

Out[13]:

	Retailer	Retailer ID	Invoice Date	Region	State	City	Product
0	NaN	Adidas Sales Database	NaN	NaN	NaN	NaN	NaN
1	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3	Retailer	Retailer ID	Invoice Date	Region	State	City	Product
4	Foot Locker	1185732	2020- 01-01 00:00:00	Northeast	New York	New York	Men's Street Footwear
9647	Foot Locker	1185732	2021- 01-24 00:00:00	Northeast	New Hampshire	Manchester	Men's Apparel
9648	Foot Locker	1185732	2021- 01-24 00:00:00	Northeast	New Hampshire	Manchester	Women's Apparel
9649	Foot Locker	1185732	2021- 02-22 00:00:00	Northeast	New Hampshire	Manchester	Men's Street Footwear
9650	Foot Locker	1185732	2021- 02-22 00:00:00	Northeast	New Hampshire	Manchester	Men's Athletic Footwear
9651	Foot Locker	1185732	2021- 02-22 00:00:00	Northeast	New Hampshire	Manchester	Women's Street Footwear

9652 rows \times 13 columns

In [14]: df.dtypes

```
Out[14]: 0
```

```
Retailer ID object
Invoice Date object
Region object
State object
City object
Product object
Price per Unit object
Units Sold object
Total Sales object
Operating Profit object
Sales Method object
```

dtype: object

```
In [30]: numeric_cols = [
          "Price per Unit", "Units Sold", "Total Sales",
          "Operating Profit", "Operating Margin"
]

for col in numeric_cols:
          df[col] = pd.to_numeric(df[col].astype(str).str.replace(',', '').str.str

# Verify the result
print(df.dtypes)
```

Retailer object Retailer ID object Invoice Date datetime64[ns] Region object State object City object Product object Price per Unit float64 Units Sold int64 Total Sales float64 Operating Profit float64 Operating Margin float64 Sales Method object

dtype: object

```
<ipython-input-30-f53f300c1a82>:7: SettingWithCopyWarning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row indexer,col indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/
        stable/user guide/indexing.html#returning-a-view-versus-a-copy
          df[col] = pd.to numeric(df[col].astype(str).str.replace(',', '').str.strip
        ())
        <ipython-input-30-f53f300c1a82>:7: SettingWithCopyWarning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row indexer,col indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/
        stable/user guide/indexing.html#returning-a-view-versus-a-copy
          df[col] = pd.to numeric(df[col].astype(str).str.replace(',', '').str.strip
        ())
        <ipython-input-30-f53f300c1a82>:7: SettingWithCopyWarning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row indexer,col indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/
        stable/user guide/indexing.html#returning-a-view-versus-a-copy
          df[col] = pd.to numeric(df[col].astype(str).str.replace(',', '').str.strip
        ())
        <ipython-input-30-f53f300c1a82>:7: SettingWithCopyWarning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/
        stable/user guide/indexing.html#returning-a-view-versus-a-copy
          df[col] = pd.to numeric(df[col].astype(str).str.replace(',', '').str.strip
        ())
        <ipython-input-30-f53f300c1a82>:7: SettingWithCopyWarning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row indexer,col indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/
        stable/user quide/indexing.html#returning-a-view-versus-a-copy
          df[col] = pd.to numeric(df[col].astype(str).str.replace(',', '').str.strip
       ())
In [31]: df["Invoice Date"] = pd.to datetime(df["Invoice Date"], errors="coerce")
        <ipython-input-31-63e3fb4dbc3c>:1: SettingWithCopyWarning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row indexer,col indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/
        stable/user quide/indexing.html#returning-a-view-versus-a-copy
          df["Invoice Date"] = pd.to datetime(df["Invoice Date"], errors="coerce")
In [32]: df.isna().sum()
```

```
Retailer 0
Retailer ID 0
Invoice Date 0
Region 0
State 0
City 0
Product 0
Price per Unit 0
Units Sold 0
Total Sales 0
Operating Profit 0
Sales Method 0
```

dtype: int64

```
In [33]: df.dropna(inplace=True)
    df.reset_index(drop=True, inplace=True)
```

<ipython-input-33-5110ff77c3d8>:1: SettingWithCopyWarning:

```
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/
```

stable/user_guide/indexing.html#returning-a-view-versus-a-copy
df.dropna(inplace=True)

```
In [34]: df.isna().sum()
```

```
Out[34]:
                            0
                  Retailer 0
                Retailer ID 0
              Invoice Date 0
                   Region 0
                     State 0
                      City 0
                   Product 0
             Price per Unit 0
                Units Sold 0
                Total Sales 0
           Operating Profit 0
         Operating Margin 0
             Sales Method 0
        dtype: int64
In [35]: df.duplicated().sum()
Out[35]: np.int64(0)
In [36]: df['Units Sold'] =df['Units Sold'].astype(int)
        <ipython-input-36-8466fce0d082>:1: SettingWithCopyWarning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row indexer,col indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/
        stable/user guide/indexing.html#returning-a-view-versus-a-copy
          df['Units Sold'] =df['Units Sold'].astype(int)
```

In [37]: print(df.dtypes)

```
Retailer
                        object
Retailer ID
                        object
Region
                        object
State
                        object
City
                        object
Product
                        object
Price per Unit
                       float64
Units Sold
                        int64
Total Sales
                       float64
Operating Profit
                       float64
Operating Margin
                       float64
Sales Method
                        object
dtype: object
```

In [38]: df.describe(include=[np.number]).style.background_gradient(cmap="YlGnBu")

Out[38]:	Price per Unit		Units Sold Total Sales		Operating Profit	Operating Margin
	count	9140.000000	9140.000000	9140.000000	9140.000000	9140.000000
	mean	44.720460	224.164223	72956.687637	26628.911264	0.425287
	std	14.594924	165.526529	111750.442367	41158.473480	0.096851
	min	7.000000	0.000000	0.000000	0.000000	0.100000
	25 % 35.000000		102.000000	4070.250000	1831.765000	0.350000
	50 % 45.000000		173.000000	8614.500000	3936.120000	0.410000
	75 %	55.000000	300.000000	120000.000000	40781.250000	0.500000
	max	110.000000	700.000000	735000.000000	321750.000000	0.800000

```
import seaborn as sns
import matplotlib.pyplot as plt

cols_to_plot = df.select_dtypes(include='number').columns
fig, axes = plt.subplots(1, 4, figsize=(16, 10))

for i, col in enumerate(cols_to_plot):
    sns.boxplot(data=df, y=col, ax=axes[i])
    axes[i].set_title(col)
    axes[i].grid(True)

plt.tight_layout()
plt.show()
```



```
In [48]: # Select numeric columns
numeric_cols = df.select_dtypes(include='number').columns

for col in numeric_cols:
    Q1 = df[col].quantile(0.25)
    Q3 = df[col].quantile(0.75)
    IQR = Q3 - Q1
    lower_bound = Q1 - 1.5 * IQR
    upper_bound = Q3 + 1.5 * IQR

    outliers = df[(df[col] < lower_bound) | (df[col] > upper_bound)]
    print(f"{col}: {len(outliers)} outliers")
```

Price per Unit: 0 outliers Units Sold: 39 outliers Total Sales: 64 outliers Operating Profit: 42 outliers Operating Margin: 0 outliers

```
In [45]: for col in numeric_cols:
    Q1 = df[col].quantile(0.25)
    Q3 = df[col].quantile(0.75)
    IQR = Q3 - Q1
```

```
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR

# Filter out the outliers
df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]</pre>
```

```
import seaborn as sns
import matplotlib.pyplot as plt

cols_to_plot = df.select_dtypes(include='number').columns
fig, axes = plt.subplots(1, 4, figsize=(16, 10))

for i, col in enumerate(cols_to_plot):
    sns.boxplot(data=df, y=col, ax=axes[i])
    axes[i].set_title(col)
    axes[i].grid(True)

plt.tight_layout()
plt.show()
```


In [47]: df.describe(include=np.number).style.background_gradient(cmap="YlGnBu")

Out[47]:		Price per Unit	Units Sold	Total Sales	Operating Profit	Operating Margin
	count	5379.000000	5379.000000	5379.000000	5379.000000	5379.000000
	mean	41.416992	126.783975	5353.549916	2434.308987	0.458305
	std	12.743527	64.228787	3250.398982	1490.017459	0.078460
	min	8.000000	0.000000	0.000000	0.000000	0.240000
	25%	33.000000	75.000000	2794.000000	1238.800000	0.400000
	50%	41.000000	119.000000	4719.000000	2147.000000	0.460000
	75 %	50.000000	168.000000	7344.000000	3340.950000	0.510000
	max	75.000000	341.000000	19462.000000	6794.280000	0.670000

In [49]: **df**

Out[49]:

	Retailer	Retailer ID	Invoice Date	Region	State	City	Product
238	Foot Locker	1185732	2021- 11-06	Northeast	Pennsylvania	Philadelphia	Women's Athletic Footwear
525	Foot Locker	1185732	2020- 11-01	Midwest	Minnesota	Minneapolis	Women's Athletic Footwear
531	Foot Locker	1185732	2020- 11-07	Midwest	Minnesota	Minneapolis	Women's Athletic Footwear
717	Foot Locker	1185732	2021- 05-30	Midwest	Nebraska	Omaha	Women's Athletic Footwear
723	Foot Locker	1185732	2021- 06-05	Midwest	Nebraska	Omaha	Women's Athletic Footwear
9135	Foot Locker	1185732	2021- 01-24	Northeast	New Hampshire	Manchester	Men's Apparel
9136	Foot Locker	1185732	2021- 01-24	Northeast	New Hampshire	Manchester	Women's Apparel
9137	Foot Locker	1185732	2021- 02-22	Northeast	New Hampshire	Manchester	Men's Street Footwear
9138	Foot Locker	1185732	2021- 02-22	Northeast	New Hampshire	Manchester	Men's Athletic Footwear
9139	Foot Locker	1185732	2021- 02-22	Northeast	New Hampshire	Manchester	Women's Street Footwear

 $5379 \text{ rows} \times 13 \text{ columns}$

```
df[col] = df[col].str.title()
```

feature engineering

City	Total	Profit	City
	IOCAI	1 10116	

	City	iotal_Fiolit_City
0	Albany	221212.42
1	Albuquerque	393185.41
2	Anchorage	158133.36
3	Atlanta	383372.41
4	Baltimore	106154.62
5	Billings	171634.44
6	Birmingham	314550.81
7	Boise	408981.76
8	Boston	202238.37
9	Burlington	329441.49
10	Charleston	354436.60
11	Charlotte	238761.80
12	Cheyenne	180864.81
13	Chicago	129568.61
14	Columbus	185938.08
15	Dallas	406765.70
16	Denver	197350.08
17	Des Moines	108879.87
18	Detroit	198413.31
19	Fargo	104257.22
20	Hartford	240920.79
21	Honolulu	156921.23
22	Houston	481015.05
23	Indianapolis	112943.50
24	Jackson	344771.57
25	Knoxville	373057.92
26	Las Vegas	372583.36
27	Little Rock	275542.36
28	Los Angeles	480560.81
29	Louisville	134130.23
30	Manchester	332666.37
31	Miami	237755.83
32	Milwaukee	111367.59

City Total_Profit_City

33	Minneapolis	95279.76
34	New Orleans	314058.48
35	New York	513679.95
36	Newark	123537.22
37	Oklahoma City	233158.19
38	Omaha	118703.41
39	Orlando	349857.20
40	Philadelphia	232903.23
41	Phoenix	316602.08
42	Portland	450539.18
43	Providence	191367.26
44	Richmond	332514.68
45	Salt Lake City	223225.48
46	San Francisco	487892.46
47	Seattle	162689.26
48	Sioux Falls	98680.71
49	St. Louis	128584.36
50	Wichita	121509.79
51	Wilmington	150987.56

```
In [59]: df = df.merge(profit_per_city, on='City', how='left')
df = df.merge(profit_per_year, on='Year', how='left')

In [61]: df.drop(columns=['Total_Profit_City_y'], inplace=True)

In [62]: df.drop(columns=['Total_Profit_Year_y'], inplace=True)

In [63]: df
```

Out[63]:

	Retailer	Retailer ID	Invoice Date	Region	State	City	Product
0	Foot Locker		2021- 11-06	Northeast	Pennsylvania	Philadelphia	Women'S Athletic Footwear
1	Foot Locker		2020- 11-01	Midwest	Minnesota	Minneapolis	Women'S Athletic Footwear
2	Foot Locker		2020- 11-07	Midwest	Minnesota	Minneapolis	Women'S Athletic Footwear
3	Foot Locker		2021- 05-30	Midwest	Nebraska	Omaha	Women'S Athletic Footwear
4	Foot Locker		2021- 06-05	Midwest	Nebraska	Omaha	Women'S Athletic Footwear
5374	Foot Locker		2021- 01-24	Northeast	New Hampshire	Manchester	Men'S Apparel
5375	Foot Locker		2021- 01-24	Northeast	New Hampshire	Manchester	Women'S Apparel
5376	Foot Locker		2021- 02-22	Northeast	New Hampshire	Manchester	Men'S Street Footwear
5377	Foot Locker		2021- 02-22	Northeast	New Hampshire	Manchester	Men'S Athletic Footwear
5378	Foot Locker	1125/3/	2021- 02-22	Northeast	New Hampshire	Manchester	Women'S Street Footwear

 $5379 \text{ rows} \times 16 \text{ columns}$

```
In [64]: df['Profit per Unit'] = df['Operating Profit'] / df['Units Sold']
In [85]: total_profit_per_retailer = df.groupby('Retailer')['Total Sales'].sum().resetotal_profit_per_retailer.columns = ['Retailer', 'Total Sales']
    total_profit_per_retailer.sort_values(by='Total Sales', ascending=False, input total_profit_per_retailer
```

```
Out[85]:
                Retailer Total Sales
          5
               West Gear
                           7230922.0
          1
              Foot Locker
                           6880035.0
          3 Sports Direct
                           6157224.0
          2
                  Kohl'S
                           3425253.0
          4
                Walmart
                           2609507.0
          0
                           2493804.0
                 Amazon
In [87]: total sales per product = df.groupby('Product')['Total Sales'].sum().reset i
         total sales per product.columns = ['Product', 'Total Sales']
         total sales per product sort values(by='Total Sales', ascending=False, inpla
         total sales per product
Out[87]:
                             Product Total Sales
         2
                 Men'S Street Footwear
                                       6048163.0
               Men'S Athletic Footwear
          1
                                       5317221.0
          5
              Women'S Street Footwear
                                       4622625.0
         3
                     Women'S Apparel
                                       4585653.0
            Women'S Athletic Footwear
                                       4144763.0
          0
                        Men'S Apparel
                                       4078320.0
         total sales overall = df['Total Sales'].sum()
In [88]:
         total sales per product['Percentage'] = (total sales per product['Total Sale
         total sales per product
                             Product Total Sales Percentage
Out[88]:
         2
                 Men'S Street Footwear
                                       6048163.0
                                                    21.002940
               Men'S Athletic Footwear
                                       5317221.0
                                                    18.464660
          5
              Women'S Street Footwear
                                       4622625.0
                                                    16.052596
         3
                     Women'S Apparel
                                       4585653.0
                                                    15.924206
            Women'S Athletic Footwear
                                       4144763.0
                                                    14.393165
                                                    14.162434
         0
                        Men'S Apparel
                                       4078320.0
In [90]: df['Month'] = df['Invoice Date'].dt.month
         df['Month']
```

Out[90]:		Month
	0	11
	1	11
	2	11
	3	5
	4	6
	5374	1
	5375	1
	5376	2
	5377	2
	5378	2

 $5379 \text{ rows} \times 1 \text{ columns}$

dtype: int32

```
In [91]: Sales_per_month = df.groupby('Month')['Total Sales'].sum().reset_index()
    Sales_per_month.columns = ['Month', 'Total Sales']
    Sales_per_month.sort_values(by='Total Sales', ascending=False, inplace=True)
    Sales_per_month
```

Out[91]:		Month	Total Sales
	7	8	2879159.0
	4	5	2710090.0
	11	12	2702920.0
	8	9	2480200.0
	0	1	2446583.0
	3	4	2444918.0
	6	7	2347186.0
	10	11	2287022.0
	1	2	2214024.0
	5	6	2146453.0
	9	10	2088972.0
	2	3	2049218.0

visualizations

```
In [92]: import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
```

In [96]: **df**

Out[96]:

	Retailer	Retailer ID	Invoice Date	Region	State	City	Product
0	Foot Locker	1185732	2021- 11-06	Northeast	Pennsylvania	Philadelphia	Women'S Athletic Footwear
1	Foot Locker	1185732	2020- 11-01	Midwest	Minnesota	Minneapolis	Women'S Athletic Footwear
2	Foot Locker	1185732	2020- 11-07	Midwest	Minnesota	Minneapolis	Women'S Athletic Footwear
3	Foot Locker	1185732	2021- 05-30	Midwest	Nebraska	Omaha	Women'S Athletic Footwear
4	Foot Locker	1185732	2021- 06-05	Midwest	Nebraska	Omaha	Women'S Athletic Footwear
5374	Foot Locker	1185732	2021- 01-24	Northeast	New Hampshire	Manchester	Men'S Apparel
5375	Foot Locker	1185732	2021- 01-24	Northeast	New Hampshire	Manchester	Women'S Apparel
5376	Foot Locker	1185732	2021- 02-22	Northeast	New Hampshire	Manchester	Men'S Street Footwear
5377	Foot Locker	1185732	2021- 02-22	Northeast	New Hampshire	Manchester	Men'S Athletic Footwear
5378	Foot Locker	1185732	2021- 02-22	Northeast	New Hampshire	Manchester	Women'S Street Footwear

5379 rows \times 19 columns

```
In [172... plt.figure(figsize=(10,6))
    plt.ticklabel_format(style='plain')
    sns.barplot(x='Region', y='Total Sales', data=df, palette='mako')
    plt.title('Total Sales per Region')
    plt.xlabel('Region')
    plt.ylabel('Total Sales ($)')
```

```
plt.xticks(rotation=45, ha='right')
plt.show()
```

<ipython-input-172-56aa08ddcd7a>:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.


```
In [126...
    plt.figure(figsize=(10, 6))
    plt.ticklabel_format(style='plain')
    month_order_desc = Sales_per_month.sort_values(by='Total Sales', ascending=F
    sns.barplot(x='Month', y='Total Sales', data=Sales_per_month, palette='mako'
    plt.title('Monthly Total Sales Over Time')
    plt.xlabel('Month-Year')
    plt.ylabel('Total Sales ($)')
    plt.xticks(rotation=0)
    plt.tight_layout()
    plt.savefig('monthly_sales_bar_chart.png')
    plt.tight_layout()
    plt.show()
```

<ipython-input-126-d66e4cad074e>:4: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x='Month', y='Total Sales', data=Sales_per_month, palette='mak
o', order=month order desc)

In [127... total_sales_per_product.sort_values(by='Total Sales' , ascending=False)

_			-	-	_	
n	1.1	+	- 1	-)	- /	
U	u	L.	_	\angle	/	

	Product	Total Sales	Percentage
2	Men'S Street Footwear	6048163.0	21.002940
1	Men'S Athletic Footwear	5317221.0	18.464660
5	Women'S Street Footwear	4622625.0	16.052596
3	Women'S Apparel	4585653.0	15.924206
4	Women'S Athletic Footwear	4144763.0	14.393165
0	Men'S Apparel	4078320.0	14.162434

```
In [137... plt.figure(figsize=(10,6))
    plt.ticklabel_format(style='plain')
    sns.barplot(x='Product', y='Total Sales', data=total_sales_per_product, pale
    plt.title('Total Sales per Product')
    plt.xlabel('Product')
    plt.ylabel('Total Sales ($)')
    plt.xticks(rotation=45, ha='right')
    plt.show()
```

<ipython-input-137-bc28adf24212>:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x='Product', y='Total Sales', data=total_sales_per_product, pa
lette='mako')


```
In [138... plt.figure(figsize=(10,6))
    plt.ticklabel_format(style='plain')
    sns.scatterplot(x='Total Sales' , y ='Operating Profit', data=df , palette='
    plt.title('Total Sales vs Operating Profit')
    plt.xlabel('Total Sales ($)')
    plt.ylabel('Operating Profit ($)')

<ipython-input-138-9e29c8293631>:3: UserWarning: Ignoring `palette` because
    no `hue` variable has been assigned.
        sns.scatterplot(x='Total Sales' , y ='Operating Profit', data=df , palette
        ='mako')
```

Out[138... Text(0, 0.5, 'Operating Profit (\$)')

In [173... **df**

		Retailer	Retailer ID	Invoice Date	Region	State	City	Product
	0	Foot Locker		2021- 11-06	Northeast	Pennsylvania	Philadelphia	Women'S Athletic Footwear
	1	Foot Locker		2020- 11-01	Midwest	Minnesota	Minneapolis	Women'S Athletic Footwear
	2	Foot Locker		2020- 11-07	Midwest	Minnesota	Minneapolis	Women'S Athletic Footwear
	3	Foot Locker		2021- 05-30	Midwest	Nebraska	Omaha	Women'S Athletic Footwear
	4	Foot Locker		2021- 06-05	Midwest	Nebraska	Omaha	Women'S Athletic Footwear
	5374	Foot Locker		2021- 01-24	Northeast	New Hampshire	Manchester	Men'S Apparel
	5375	Foot Locker	1187/3/	2021- 01-24	Northeast	New Hampshire	Manchester	Women'S Apparel
	5376	Foot Locker		2021- 02-22	Northeast	New Hampshire	Manchester	Men'S Street Footwear
	5377	Foot Locker	1105/21	2021- 02-22	Northeast	New Hampshire	Manchester	Men'S Athletic Footwear
	5378	Foot Locker	1125/3/	2021- 02-22	Northeast	New Hampshire	Manchester	Women'S Street Footwear

5379 rows \times 20 columns

```
In [178... sns.lineplot(x='Price per Unit' , y ='Units Sold' , data=df)
plt.show()
```



```
In [180... df.to_csv('Adidas.csv', index=False)
In [181... from google.colab import files files.download('data.csv')
```

This notebook was converted with convert.ploomber.io