TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN ĐỀ THI GIỮA HK1 (2019-2020)

KHOA KỸ THUẬT MÁY TÍNH

KIÉN TRÚC MÁY TÍNH

Đề 01

Thời gian: 70 phút

(Sinh viên không được sử dụng tài liệu. Làm bài trực tiếp trên đề)

<u>STT</u>	Họ và tên:	<u>ĐIỂM</u>
	Phòng thi:	<u></u>

TRẮC NGHIỆM (9.2 điểm, 0.4 điểm/câu), SV chọn 1 đáp án đúng

Câu 1	Câu 2	Câu 3	Câu 4	Câu 5	Câu 6	Câu 7	Câu 8
Câu 9	Câu 10	Câu 11	Câu 12	Câu 13	Câu 14	Câu 15	Câu 16
Câu 17	Câu 18	Câu 19	Câu 20	Câu 21	Câu 22	Câu 23	

Câu 1 Một Terabyte bằng bao nhiều byte? (G1)

A. 2^10 byte	B. 2^20 byte	C. 2^30 byte	D. 2^40 byte
--------------	--------------	--------------	--------------

Câu 2 Trong các loại bộ nhớ sau, bộ nhớ nào có tốc độ nhanh nhất (G1)

A. RAM	B. Cache	C. Đĩa Quang	D. Bô nhớ Flash

Câu 3 Đoạn lệnh sau tương ứng với đoạn lệnh C nào, với i và k tương ứng với thanh ghi s3 và s5, địa chỉ nền của mảng save là thanh ghi s6? (G1)

> Loop: sll \$t1,\$s3,2 add \$t1,\$t1,\$s6 lw \$t0,0(\$t1) bne \$t0,\$s5, Exit addi \$s3,\$s3,1 j Loop

Exit

	Extt.
A.	while $(save[i*4] == k)$
	i += 1;
B.	while $(save[i] == k)$
	i = i + 1;
C.	while (save[i] # k)
	i += 1;
D.	while $(save[i]*4 == k)$
	i += 1;

Câu 4 Một bạn sinh viên sử dụng gói cước super 50 (50Mbps) của nhà mạng FPT và bạn sinh viên đó đang cần download 1 tập phim "Tiếng sét trong mưa tập 33.mp4" có kích thước là 600MB để cho mẹ bạn xem. Hỏi bạn sinh viên đó cần ít nhất bao nhiều thời gian (s) để download xong bộ phim, giả sử rằng toàn bộ băng thông mạng chỉ sử dụng cho việc download phim đó.? (G3)

A 12g	R 96c	C 92g	D 15g
A. 128	D. 908	C. 838	D. 138

Câu 5 Một bức ảnh có độ phân giải 2K có kích thước 2560x1440 pixels. Mỗi pixel chứa thông tin 3 màu cơ bản đỏ, xanh lá cây, xanh lam. Mỗi màu cơ bản được thể hiện bởi 8 bits. Để lưu trữ bức ảnh đó trên bộ nhớ thì dung lượng tối thiểu của bộ nhớ là bao nhiều Mbytes? (G3)

	-		
I A 10	l D 11	1 (12	I D 20
I A 10	IKII		1 1) /()
11.10	D. 11	C. 12	D. 20

Câu 6 Máy tính Acer E1 có tần số xung clock là 2.0 GHz. Để thực thi một chương trình gồm 2019 lệnh thì máy tính thực hiện trong bao lâu? Biết trung bình mỗi lệnh kéo dài 5 chu kì. (G2)

A. 2024s	B. 2014ns	C. 5047.5s	D. 5047.5ns
A. 20248	D. 2014IIS	C. 5047.5s	D. 5047.5ns

Câu 7 Điện thoại thông minh (smart phone) thuộc nhóm máy tính nào? (G1)

A.	Máy tính cá nhân
B.	Máy tính nhúng
C.	Máy tính chủ
D.	Siêu máy tính

Câu 8 Trong các câu lệnh assembly MIPS bên dưới. Câu lệnh nào chuyển đúng cho câu lệnh cấp cao a = b - 5, biết biến a, b lưu trữ trong thanh ghi \$s3, \$s4 (G1)

A.	addi \$s3, \$s4, -5
B.	add \$s3, \$s4, -5
C.	sub \$s3, \$s4, 5
D.	subi \$s3, \$s4, 5

Câu 9 Bảng dưới đây mô tả số lệnh và thời gian thực thi tương ứng trên máy tính Acer E1 khi thực hiện một chương trình, trong đó tập lệnh này gồm 4 lớp lệnh (instruction class) A, B, C và D.

Lớp	CPI cho Acer E1	Số lệnh
A	1	650
В	5	120
C	5	500
D	2	50

Tính thời gian thực thi của chương trình biết máy tính có tần số 2Ghz? (G2)

A. 2340ns B. 660ns	C. 1925ns	D. 7700ns
--------------------	-----------	-----------

Câu 10 Trong các câu lệnh assembly MIPS bên dưới. Câu lệnh nào nhảy đến nhãn KTMT, biết thanh ghi \$s1 = \$s0 (G1)

A.	slt \$s1, \$s0, KTMT
B.	beq \$s1, \$s0, KTMT
C.	bne \$s1, \$s0, KTMT
D.	blt \$s1, \$s0, KTMT

Câu 11Trong các câu lệnh nhị phân biểu diễn dưới dạng thập lục phân bên dưới. Câu lệnh nào dùng để biểu diễn lệnh addi \$t3, \$t5, -146 (G1)

A.	0x21ABFF6E
B.	0x31ABFFD2
C.	0x35ABFF6E
D.	0x29ABFFD2

Câu 12 Trong các câu lệnh assembly MIPS bên dưới. Câu lệnh nào dùng để biểu diễn lệnh 0x29ABFF79 (G1)

A.	slti \$t3, \$t5, -135
B.	addi \$t3, \$t5, -135
C.	slti \$t3, \$t5, 135
D.	addi \$t3, \$t5, 135

Câu 13 Trong theo slide về kiến trúc tập lệnh đã học kiến trúc MIPS có bao nhiều loại toán hạng? (G1)

1 4 2	D 4	l a .	D 5
ΙΛ΄)	I R 3	I (' /I	1 1) 5
Λ , Δ	D. J	C. T	D. J

Câu 14 Cho đoạn mã chương trình assembly như bên dưới:

slti \$t0, \$s1, 5 beq \$t0, \$zero, ELSE sll \$t1, \$s1, 2 add \$s2, \$s2, \$t1 j End ELSE: add \$s2, \$s1, \$zero

End

Biết thanh ghi \$s1 = 1, thanh ghi \$s2 = 0. Cho biết thanh ghi \$s2 bằng bao nhiều sau khi thực hiện đoạn lệnh chương trình trên (G1)

A. 3		B. 4	C. 5		D. 6
Câu 15	Chức năn	ng của thanh gh	i \$ra (G1)		
A.	Thanh ghi lưu	tham số truyền	tham số cho hàn	n/thủ tục	
B.	Thanh ghi dùn	g để lưu giá trị	trả về của hàm		
C.	Thanh ghi chứa	a địa chỉ của lệ	nh ngay sau lệnh	gọi thủ tục	
D.	Thanh ghi dùn	g để lưu địa chi	i của stack		

Câu 16 Thanh ghi nào sau đây mà giá trị của nó không thể thay đổi (G1)

A. Stack Pointer

B.	Zero
C.	Frame Pointer
D_	Return Address
Cân 17	Cho hiết giá trị của thanh ghi \$t3 sau khi thực hiện lệnh sau

Cho biết giá trị của thanh ghi \$t3 sau khi thực hiện lệnh sau

add \$t2, \$t1, \$t0 addi \$t3, \$t2, 8<u>0000</u> J O bit > 16 bit

Giả sử giá trị ban đầu chứa trong thanh ghi t0 = 0, t1 = 1, t2 = 2 (G1)

A.	\$t3 = 80000
B.	\$t3 = 80001
C.	\$t3 = 80003
D.	Cả 3 đáp án trên đều sai

Câu 18

Cho t1 = 0xfffffff1

Giá trị của thanh ghi \$t2 và \$t3 là bao nhiều sau khi thực thi lệnh sau: (G1)

sltiu \$t2, \$t1, 0x73 slti \$t3, \$t1, 0x73

A.	\$t2 = 1; \$t3 = 1
B.	t2 = 0; $t3 = 1$
C.	t2 = 1; $t3 = 0$
D.	t2 = 0; $t3 = 0$

Trong kiến trúc máy tính MIPS, khi máy tính thực thi lệnh "jal 400" thì (G1) Câu 19

A.	\$ra = PC + 4 và PC = 400
B.	ra = PC và PC = PC + 400
C.	$\frac{\text{$ra = PC + 4 và PC = 1600}}{\text{$ra = PC + 4 và PC = 1600}}$
D.	\$ra = PC và PC = PC + 1600

Cần ít nhất bao nhiều lệnh hợp ngữ để biểu diễn câu lệnh trong C sau : (G1) Câu 20 f = g - A/B/4

A. 3	B. 4	C. 5	D. 6

Câu 21 Lệnh MIPS nào tương đương với mã lệnh C sau đây: (G1)

> if (\$s2 < \$s3)\$s1 = 1;else

\$s1 = 0

A.	beq \$s1,\$s2,\$s3
B.	slt \$s1,\$s2,\$s3
C.	sltu \$s1,\$s2,\$s3
D.	sltu \$s2,\$s1,\$s3

Thực hiện phép nhân cho 2 số 4 bit sau 0010_2 x 0011_2 trên phần cứng 3 thanh ghi. Câu 22 Cho biết giá trị của thanh ghi tích bằng bao nhiều sau bước lặp số 2. (G3)

A. 0000 0110	B. 0000 0011	C. 0000 0001	D. 0000 0010
11. 0000 0110	D . 0000 0011	C. 0000 0001	D. 0000 0010

Câu 23 Kết quả thực hiện phép tính $01000110_2+01011100_2$ dưới dạng thập phân là: (G3)

A. 154	B. 168	C. 162	D. 160

Tự Luận	(0.8)	điểm)	(G1,	G4)
---------	-------	-------	------	-------------

Chuyển đoạn lệnh C sau sang assembly của MIPS (tối đa 10 câu lệnh). Biết i và j tương ứng với các thanh ghi \$s0 và \$s1. Mảng A là mảng mà các phần tử là số nguyên, mỗi phần tử chiếm 1 từ nhớ (4 bytes) và địa chỉ nền của mảng A lưu trong thanh ghi \$s3

	for(i = 1; i < j; i++) A[3] = 5 + A[i*8]; j = 6;			
••••••			•••••	,
		•••••		
•••••			•••••	• • • • • • • • • • • • • • • • • • • •
•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •
••••••		••••••••••••	•••••	• • • • • • • • • • • • • • • • • • • •
••••••				
•••••			•••••	• • • • • • • • • • • • • • • • • • • •
•••••			•••••	
•••••			•••••	• • • • • • • • • • • • • • • • • • • •
•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •
••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
••••••			•••••	• • • • • • • • • • • • • • • • • • • •
•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••			•••••	

Duyệt đề Khoa/Bộ Môn

Giáo viên ra đề

MIPS Reference Data

CORE INSTRUCTI	ON SE	Т			OPCODE
		FOR-			/ FUNCT
NAME, MNEMO		MAT	OPERATION (in Verilog)		(Hex)
Add	add	R	R[rd] = R[rs] + R[rt]	(1)	0 / 20 _{hex}
Add Immediate	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}
Add Imm. Unsigned	addiu	I	R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		$0/21_{hex}$
And	and	R	R[rd] = R[rs] & R[rt]		0 / 24 _{hex}
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	c_{hex}
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4_{hex}
Branch On Not Equal	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	$5_{ m hex}$
Jump	j	J	PC=JumpAddr	(5)	2_{hex}
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3 _{bex}
Jump Register	jr	R	PC=R[rs]		0 / 08 _{hex}
Load Byte Unsigned	1bu	I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	$25_{ m hex}$
Load Linked	11	I	R[rt] = M[R[rs]+SignExtImm]	(2,7)	$30_{ m hex}$
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16b0\}$		f_{hex}
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	23 _{hex}
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}
Or	or	R	R[rd] = R[rs] R[rt]		0 / 25 _{hex}
Or Immediate	ori	I	R[rt] = R[rs] ZeroExtImm	(3)	d_{hex}
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2a _{hex}
Set Less Than Imm.	sltí	I	R[rt] = (R[rs] < SignExtImm)? 1	: 0(2)	a _{hex}
Set Less Than Imm. Unsigned	sltiu	I	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	b _{hex}
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	0 / 2b _{hex}
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		0 / 00 _{hex}
Shift Right Logical	srl	R	R[rd] = R[rt] >>> shamt		0 / 02 _{hex}
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28 _{hex}
Store Conditional	sc	I	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	$38_{ m hex}$
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	$29_{ m hex}$
Store Word	sw	I	M[R[rs]+SignExtImm] = R[rt]	(2)	2b _{hex}
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	0 / 22 _{hex}
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		0 / 23 _{hex}
-	(2) Sig	nExtI	se overflow exception mm = { 16{immediate[15]}, immediate } mm = { 16{1b'0}, immediate }	ediate	}

	a) Signia Admini –	٦.	ro{minediate[15]}, minediate	,
(ZeroExtImm =	{	16{1b'0}, immediate }	
	4) Dronoh Adde - (14(immadiata[15]) immadiata	

(5) JumpAddr = { PC+4[31:28], address, 2'b0 } (6) Operands considered unsigned numbers (vs. 2's comp.) (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic

BASIC INSTRUCTION FORMATS

\mathbf{R}		pcode			rs			rt			rd		shamt		funct	
	31		26	25		21	20		16	15	11	10	6	5		0
I		pcode			ГS			rt				iı	nmediat	ė		
	31		26	25		21	20		16	15						0
J	(pcode								ad	ldress					
	31		26	25												0

ARITHMETIC CORE INSTRUCTION SET

ARITHMETIC CORE	INSTRU		OPCODE
	FOR		/ FMT /FT / FUNCT
NAME, MNEMONIO			(Hex)
Branch On FP True be		if(FPcond)PC=PC+4+BranchAddr (4)	11/8/1/
Branch On FP False be		if(!FPcond)PC=PC+4+BranchAddr(4)	
Divide di		Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0///1a
Divide Unsigned div		Lo= $R[rs]/R[rt]$; Hi= $R[rs]$ % $R[rt]$ (6)	
FP Add Single add	.s FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add		${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$	
Double	.d FR	{F[ft],F[ft+1]}	11/11//0
FP Compare Single c.x.	s* FR	FPcond = (F[fs] op F[ft])?1:0	11/10//y
FP Compare	d* FR	$FPcond = ({F[fs],F[fs+1]}) op$	11/11//v
Double		{F[ft],F[ft+1]})?1:0	11/11//y
		==, <, or <=) (y is 32, 3c, or 3e)	11/10/ 0
	.s FR	F[fd] = F[fs] / F[ft]	11/10//3
FP Divide Double	.d FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} /$	11/11//3
FP Multiply Single mul	.s FR	{F[ft],F[ft+1]}	11/10//2
FP Multiply		F[fd] = F[fs] * F[ft] $\{F[fd], F[fd+1]\} = \{F[fs], F[fs+1]\} *$	11/10//2
Double mul	.d FR	$\{F[ft],F[ft+1]\} = \{F[ft],F[ft+1]\}$	11/11//2
FP Subtract Single sub	.s FR	F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract		$\{F[fd], F[fd+1]\} = \{F[fs], F[fs+1]\}$	
Double	.d FR	{F[ft],F[ft+1]}	11/11//1
Load FP Single 1w	el I	F[rt]=M[R[rs]+SignExtImm] (2)	31//
Load FP		F[rt]=M[R[rs]+SignExtImm]; (2)	201 1 1
Double 1de	cl I	F[rt+1]=M[R[rs]+SignExtImm+4]	35//
Move From Hi mf:	hi R	R[rd] = Hi	0 ///10
Move From Lo mf	lo R	R[rd] = Lo	0 ///12
Move From Control mf	c0 R	R[rd] = CR[rs]	10 /0//0
Multiply mu	1t R	${Hi,Lo} = R[rs] * R[rt]$	0///18
Multiply Unsigned mul	tu R	$\{Hi,Lo\} = R[rs] * R[rt]$ (6)	0///19
Shift Right Arith. sr	-	R[rd] = R[rt] >> shamt	0///3
Store FP Single sw	el I	M[R[rs]+SignExtImm] = F[rt] (2)	39//
Store FP	-1 I	M[R[rs]+SignExtImm] = F[rt]; (2)	3d///
Double		M[R[rs]+SignExtImm+4] = F[rt+1]	

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fmt	ft		immediate	:
	31 26	25 21	20 16	15		0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	if(R[rs] >= R[rt]) PC = Label
Load Immediate	11	R[rd] = immediate
Move	move	R[rd] = R[rs]

SIERNA	AME, NUME	BER, USE, CALL CONVE	
NAME	NUMBER	USE	PRESERVEDACROSS A CALL?
\$zero	0	The Constant Value 0	N.A.
Şat	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
Sk0-Sk1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
Sra	31	Return Address	Yes

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.