$\label{eq: Matematuчeckas} \mbox{Математическая логика} - 2 \\ \mbox{V семестр}$

Лектор: Виктор Львович Селиванов Записывали: Глеб Минаев, Иван Кабашный Редактировал: Борис Алексеевич Золотов

МКН СПбГУ, осень 2022

Содержание

1	Лог	ика предикатов
	1.1	Истинность и доказуемость
		1.1.1 Структура
		1.1.2 Термы и формулы
		1.1.3 Значение термов и формул
		1.1.4 Ультрафильтры
		1.1.5 Декартово и фильтрованное произведения структур
		1.1.6 Теорема Гёделя о компактности
	1.2	3 лекция
	1.3	Лекция 4
	1.4	Лекция 5
	1.5	Аксиоматизированные классы
	1.6	Лекция 6
		1.6.1 Полнота, модельная полнота, элиминация кванторов
	1.7	Лекция 7
	1.8	Лекция 8
		1.8.1 Элиминация кванторов
2	Нер	разрешимость и неполнота
	2.1	Лекция 10
		2.1.1 Свойства выводимости, теория Хенкина
		$2.1.2$ Теоремы о существовании модели и полноте И Π_{σ}
	2.2	Лекция 11
		2.2.1 Рекурсивные функции и предикаты
	2.3	Лекция 12
		$2.3.1$ Кодирование ИП $_{\sigma}$
		$2.3.2$ Представимость ИП $_{\sigma}$ в минимальной арифметике
		2.3.3 Неразрешимость и неполнота арифметики. Проблемы разреши-
		мости

1 Логика предикатов

1.1 Истинность и доказуемость

1.1.1 Структура

Бурбаки классифицировал структуры как:

- 1) операции,
- 2) частичные порядки,
- 3) топологические структуры.

Последние не имеют приложения в логике — их мы рассматривать не будем. "Операции" — это структуры алгебраические, "частичные порядки" — это структуры, снабжённые каким-либо отношением.

Определение 1. *Сигнатура* — набор функциональных, предикатных и константных символов вместе с функцией, задающей арность этих символов.

Функциональные символы интерпретируются как функции $A^n \to A$, предикатные символы — как функции $A^m \to \{u; \pi\}$, а константы — как элементы A (или, что равносильно, функции $\{\varnothing\} \to A$).

Будем называть σ -структурой (структурой сигнатуры σ) пару (A, I), где A — непустое множество, а I — интерпретация сигнатурных символов σ в A.

Пример 1. Сигнатура упорядоченного кольца — $\langle +, \cdot; <; 0, 1 \rangle$. Можно добавить вычитание и взятие противоположного, но они выражаются в имеющейся сигнатуре.

Определение 2. \mathbb{A} , $\mathbb{B} - \sigma$ -структуры. Тогда отображение $\varphi : \mathbb{A} \to \mathbb{B}$ называется гомоморфизмом, если оно задаёт $\varphi : A \to B$, что для всякой функции f^n из сигнатуры σ и для всяких $a_1, \ldots, a_n \in A$

$$\varphi(f_A(a_1,\ldots,a_n)) = f_B(\varphi(a_1),\ldots,\varphi(a_n)),$$

для всякого предиката P^m в сигнатуре σ и всяких $a_1, \ldots, a_m \in A$

$$P_A(a_1,\ldots,a_m) \implies P_B(\varphi(a_1),\ldots,\varphi(a_m))$$

и для всякой константы c сигнатуры σ

$$\varphi(c_A) = c_B$$
.

 φ — изоморфизм, если φ — гомоморфизм, биективен, и φ^{-1} — гомоморфизм.

 $\mathbb A$ называется $nodcmpy\kappa mypoù$ $\mathbb B$ ($\mathbb A\subseteq\mathbb B$), если $A\subseteq B$ и $\varphi:A\to B, a\mapsto a$ гомоморфизм.

1.1.2 Термы и формулы

Определение 3. Фиксируем некоторое множество V — "множество переменных" — символы \land , \lor , \rightarrow , \neq и символы $\forall x$ и $\exists x$ для всякого $x \in V$.

Терм — это понятие, рекурсивно определяемое следующими соотношениями:

- переменная терм,
- константа терм,
- ullet для всяких термов t_1,\ldots,t_n и функции f^n выражение $f(t_1,\ldots,t_n)$ терм.

 Φ ормула — это понятие, рекурсивно определяемое следующими соотношениями:

- для всяких термов t_1, t_2 выражение $t_1 = t_2$ формула,
- ullet для всяких предиката P^n из σ и термов t_1,\ldots,t_n выражение $P(t_1,\ldots,t_n)$ формула,
- для всяких формул φ и ψ выражения $\varphi \land \psi$, $\varphi \lor \psi$, $\varphi \to \psi$, $\neq \varphi$ формулы,
- для всяких формулы φ и переменной x выражения $\forall x \varphi$ и $\exists x \varphi$ формулы.

 $\operatorname{For}_{\sigma}$ — множество всех формул с сигнатурой σ .

Пример 2. В кольцах всякий терм можно свести к полиному с целыми коэффициентами. В мультипликативных группа — моному с целым коэффициентов.

Задача 1. Семейства термов и формул задаются контекстно свободными грамматиками.

Определение 4. Переменная x называется csofoolnoй в формуле φ , если есть вхождение x не покрывается никаким квантором $\forall x$ и никаким квантором $\exists x$. $\mathrm{FV}(\varphi)$ — множество всех свободных переменных формулы φ .

1.1.3 Значение термов и формул

Определение 5. Пусть t — терм в сигнатуре σ , а \mathbb{A} — σ -структура. Тогда $t^{\mathbb{A}}: A^n \to A$ — σ -означивание t, некоторая функция, полученная подставлением вместо констант их значений в \mathbb{A} и последующим рекурсивным означиванием по синтаксическому дереву t. Аналогично получается означивание формулы $f^{\mathbb{A}}: A^n \to \{u; \pi\}$.

Определение 6. *Предложение* в сигнатуре σ — формула без свободных переменных.

$$\varphi^{\mathbb{A}} \in \{T, F\},$$

$$\varphi^{\mathbb{A}} = T \Longleftrightarrow \mathbb{A} \models \varphi.$$

Определение 7. *Моделью* данного множества предложения Γ называется структура, в которой все предложения из Γ истины. Если \mathbb{A} — это модель, то иногда пишут $\mathbb{A} \models \Gamma$.

Если Γ — множество предложений, φ — предложение. Говорят, что φ логически следует из Γ ($\Gamma \models \varphi$), если φ истино в любой модели Γ .

Определение 8. Предложение φ называется тождественно истино, если оно истино в любой структуре. Иногда пишут $\models \varphi$.

Утверждение 1.

- $\Gamma \models \varphi$ тогда и только тогда, когда $\Gamma \cup \{\neg \varphi\}$ не имеет модели.
- ullet arphi тождественная истина тогда и только тогда, когда $\models arphi$.
- Γ конечное; $\Gamma \models \varphi$ тогда и только тогда, когда $(\land \Gamma) \rightarrow \varphi$ тожественная истина.

1.1.4 Ультрафильтры

Определение 9. Пусть I — непустое множество. Фильтром на множестве I называется непустое множество $F \subseteq \mathcal{P}(I)$ (где $\mathcal{P}(I)$ — множество всех подмножеств), которое не содержит $\emptyset \subset I$, а также замкнуто относительно пересечения:

$$\forall A, B \in F \ A \cap B \in F$$

и взятия надмножеств:

$$\forall A \in F \ A \subseteq B \subseteq I \implies B \in F.$$

Фильтр F называется yльтpа фильтpом, если $A \in F$ или $\overline{A} \in F$ для любого $A \subseteq I$.

Утверждение 2.

- 1) Фильтр F является ультрафильтром тогда и только тогда, когда он является максимальным по включению среди всех фильтров (то есть, нет фильтра, который бы его расширял).
- 2) Пусть F ультрафильтр и $A, B \subseteq I,$ тогда

$$A \in F \iff \overline{A} \notin F,$$

$$A \cup B \in F \iff A \in F \text{ unu } B \in F.$$

3) Любой фильтр содержится в некотором ультрафильтре.

Доказательство. Докажем 1.

Пусть F — ультрафильтр. Утверждается, что нет фильтра F', который содержал бы F ($F' \supseteq F$). Предположим противное, т.е. что существует такое A, что оно принадлежит F' и не принадлежит F. Раз $A \notin F$, то $\overline{A} \in F$. В силу того, что $F \subseteq F'$, то \overline{A} также принадлежит F'. Таким образом, $\emptyset = A \cap \overline{A} \in F'$, противоречие.

В обратную сторону, F — максимальный по включению фильтр. От противного, пусть есть множество $A\subseteq I$ такое, что $A,\overline{A}\notin F$. Рассмотрим

$$F' = \{ X \subseteq I \mid \exists B \in F \ A \cap B \subseteq X \}.$$

F' должно быть фильтром (замкнутость вверх по включению понятна, замкнутость относительно пересечения также верна, так как если $X,Y \in F'$, $A \cap B \subseteq X$, $A \cap C \subseteq Y$ для $B,C \in F$, то $A \cap B \cap C \subseteq (X \cap Y)$. $B \cap C \in F$, а значит, $X \cap Y \in F'$. и последнее, если бы $\emptyset \in F'$, то получается очевидное противоречие из того, что $A \cap B$ всегда непусто).

Докажем 2. Пусть F — ультрафильтр. Одновременно A и \overline{A} принадлежать F не могут. Имеем $A \in F \vee \overline{A} \in F$, откуда понятно. Второе утверждение очевидно в левую сторону.

В другую сторону, имеем $A \cup B \in F$, предоположим противное. Пусть $A, B \notin F$, значит, $\overline{A}, \overline{B} \in F$, а тогда $\overline{A} \cap \overline{B} \in F$. По закону деМоргана, $\overline{A \cup B} \in F$, откуда $A \cup B \notin F$.

Докажем 3. Пусть имеется F. Утверждается, что существует ультрафильтр F^* , который сожержит F ($F^* \supseteq F$). Данное утверждение нетривиально и в каком-то смысле схоже с аксиомой выбора. Применим лемму Цорна.

Лемма 3 (Цорн). Пусть $(P; \leq)$ — частичный порядок, в котором всякая линейная цепь $A \supseteq P$ имеет верхнюю границу. Тогда в этом частичном порядке есть максимальный элемент.

Рассмотрим множество всех фильтров $P = \{G - \text{фильтр} \mid F \subseteq G\}$, и порядок \subseteq . Пусть \mathfrak{F} — множество фильтров $F_1 \subseteq F_2 \vee F_2 \subseteq F$, а $F' = \bigcup \mathfrak{F}$. F' — фильтр, что проверяется ручками. По лемме, существует F^* — максимальное расширение.

Пример 3.

- Пусть есть I, тогда $\{I\}$ фильтр.
- $\Pi ycmb \emptyset \neq A \subseteq I$, $morda F = \{X \subseteq |A \subseteq X\} \phiunbmp$.

Задача 2. Если I бесконечное, то в P(I) есть неглавные ультрафильтры. Для доказательства рассматриваем $F = \{A \subseteq I | A - \text{коконечно}\}$, и существующий по доказанному ранее $F^* \supseteq F$.

1.1.5 Декартово и фильтрованное произведения структур

Пусть имеется некоторое проиндексированное семейство σ -структур $\{A_i\}_{i\in I}$.

Определение 10 (Декартово произведение). Определим σ -структуру на декартовом произведении нескольких σ -структур. Мы будем обозначать её $\mathbb{A} = \prod_{i \in I} \mathbb{A}_i$.

Носителем структуры будет множество

$$A = \prod_{i \in I} A_i = \left\{ a \colon I \longrightarrow \bigsqcup_{i \in I} A_i \mid a(i) \in A_i \right\}.$$

Константы, функции и предикаты интерпретируются следующим образом:

1) $c^{\mathbb{A}}(i) = c^{\mathbb{A}_i}$ — отображение, возвращающее в каждой структуре соответствующую константу;

- 2) $(f^{\mathbb{A}}(a_1,\ldots,a_n))(i) = f^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))$ действуем функцией в каждой структуре, собираем из образов элемент декартова произведения;
- 3) $P^{\mathbb{A}}(a_1,\ldots,a_n) \iff P^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))$ выполнен для всех $i\in I$.

Определение 11 (Фильтрованное произведение). Пусть F — фильтр на множестве I. Фильтрованное произведение нескольких структур (обозначается \mathbb{A}_F) получается факторизацией их декартова произведения по следующему отношению эквивалентности:

$$a \equiv_F b \stackrel{\text{def}}{\iff} \{i \in I \mid a(i) = b(i)\} \in F$$

(говорят, что a(i) = b(i) для F-большинства i).

Носителем фильтрованного произведения будет фактор-множество A/\equiv_F , состоящее из классов эквивалентности $\{[a] \mid a \in A\}$. Константы, функции и предикаты интерпретируются следующим образом:

- 1) $c^{\mathbb{A}_F} = [c^{\mathbb{A}}]$ класс элемента, собранного из соответствующих констант во всех структурах;
- 2) $f^{\mathbb{A}_F}([a_1], \dots, [a_n]) = [f^{\mathbb{A}}(a_1, \dots, a_n)]$ надо проверить, что определено однозначно (потому что пересечение множеств фильтра принадлежит фильтру);
- 3) $P^{\mathbb{A}_F}([a_1],\ldots,[a_n]) \iff P^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))$ для F-большинства i.

Если F — ультрафильтр, то \mathbb{A}_F называется ультрапроизведением.

Теорема 4 (об ультрапроизведениях). Пусть F — ультрафильтр на множестве I, \mathbb{A}_i — семейство стркутур, $\varphi(x_1,\ldots,x_k)$ — σ -формула и пусть $a_1,\ldots,a_k\in\prod_i A_i$. Тогда $\mathbb{A}_F\models\varphi([a_1],\ldots,[a_k])$ тогда и только тогда, когда $\mathbb{A}_i\models\varphi(a_1(i),\ldots,a_n(i))$ для F-большинства индексов.

1.1.6 Теорема Гёделя о компактности

Теорема 5. Весконечное множество предложений Γ имеет модель, если каждое его конечное подмножество Γ' имеет модель.

1.2 3 лекция

Утверждение 6.

$$\varphi([a_1], \dots, [a_k]) \iff \{i | \mathbb{A} \models \varphi(a_1(i), \dots, a_k(i))\} \in F.$$

Утверждение 7 (Следствие).

$$\mathbb{A}_F \models \varphi \iff \{i | \mathbb{A}_i \models \varphi\} \in F.$$

Ультрапроизведения. Доказательство приведём индукцией по построению формулы. Простейшие формулы в виде предиката и равенства двух термов рассматриваются

очевидно, это - база. Обратим внимание на функциональный символ $f \in \sigma$. Как он интерпретируется?

$$f^{\mathbb{A}_F}([a_1], \dots, [a_k]) := [\lambda_i f^{\mathbb{A}_i}(a_1(i), \dots, a_k(i))]$$

Из определения декартового у нас было

$$f^{\mathbb{A}}([a_1], \dots, [a_k]) := \lambda_i f^{\mathbb{A}_i}(a_1(i), \dots, a_k(i)),$$

где $i \mathbb{A} pstof^{\mathbb{A}_i}(a_1(i),\ldots,a_k(i))$, и $\lambda x f(x) = f$. Причём согласно фильтру

$$a_1 \equiv_F a'_1$$
 \vdots
 $a_k \equiv_F a'_k$
 $f^{\mathbb{A}}(a_1, \dots, a_k) \equiv_F f^{\mathbb{A}}(a'_1, \dots, a'_k).$

 $J_i\{i|a_1(i)=a_1'(i)\}\in F,\ f^{\mathbb{A}_i}(a_1(i),\ldots,a_k(i))=J_1\cap\ldots,\cap J_k\in F=f^{\mathbb{A}}(a_1',\ldots,a_k').$ Константы $c^{\mathbb{A}}$ интерпретируются как $\lambda_i c^{\mathbb{A}_i}$, переменные означиваются каким-то образом $x_j\mathbb{A}pstoa_j(i),\ t^{\mathbb{A}_i}=f^{\mathbb{A}_i}(t_1^{\mathbb{A}_i},\ldots,t_k^{\mathbb{A}_i}),$ значит, $t^{\mathbb{A}}(a_1,\ldots,a_k)=f^{\mathbb{A}}(t_1^{\mathbb{A}}(\overline{a}),\ldots,t_k^{\mathbb{A}}(\overline{a})).$ Соответственно, из определения это верно для простейших формул. Перейдём теперь к сложным формулам.

Более сложные формулы строятся из простых при помощи логических связок и кванторов. Достаточно рассматривать только конъюнкцию, отрицанию и существование (остальные выражаются через них). Пусть мы хотим проверить

$$\mathbb{A}_F \models (\varphi \wedge \psi)(a_1, \dots, a_k).$$

Это означает, что $\mathbb{A}_F \models \varphi([\overline{a}])$ и $\mathbb{A} \models \psi([\overline{a}])$. $J = \{i | \mathbb{A}_i \models \varphi(\overline{a(i)})\} \in F$. Проверяется $i \in J \cap K$,

$$\{\mathbb{A}_i \models (\varphi \wedge \psi)(a_1(i), \dots, a_k(i))\} \in F.$$

Отрицание также легко проверяется для ультрафильтров, так как есть свойство дополнения.

$$\mathbb{A}_F \models \neg \varphi([\overline{a}])$$
$$\neg (\mathbb{A}_F \models \varphi([\overline{a}]))$$

Существование проверяется следующим образом:

$$arphi=arphi(x_1,\ldots,x_k),$$
 $arphi=\exists x heta(x,x_1,\ldots,x_k).$ $\mathbb{A}_F\models arphi([a_1],\ldots,[a_k]),$ $\mathbb{A}_F\models heta([b],[a_1],\ldots,[a_k])$ для некоторого $b\in\mathbb{A}.$

И нам нужно доказать в две стороны. Для этого рассматриваем

$$J = \{i | \mathbb{A}_i \models \theta(b(i), a_1(i), \dots, a_k(i))\},$$

$$K = \{i | \mathbb{A}_i \models \varphi(a_1(i), \dots, a_k(i))\}.$$

Это – элементы F, которые в разных случаях лежат друг в друге. Не уловил суть, надо будет дописать и переписать.

Теорема 8. Бесконечное множество Γ имеет модель, если каждое его конечное поднмонжество Γ имеет модель.

Доказательство. Пусть $I = \{i | i$ – конечное подмножество $\Gamma \}$. Для каждого $i \in I \mapsto \mathbb{A}_i$ существует своя структура. Тогда можно построить следующее семейство структур $\{\mathbb{A}_i\}_{i\in I}$, где $\mathbb{A}_i \models i$. Рассмтрим декартово произведение $\mathbb{A} = \prod_i \mathbb{A}_i$ и $G_i = \{j \in I | i \subseteq j\}$. Если $k \in I$, то $G_i \cap G_k = G_{i \cup k}$ (I - бесконечно). Утверждается, что $F = \{A \subseteq I | \exists_i (G_i \subseteq A)\}$ - ультрафильтр. Свойства проверяются очевидно.

Определение 12.

- $\mathbb{A} \subseteq \mathbb{B}$ iff значения простых формул в \mathbb{A} и \mathbb{B} совпадают;
- $\mathbb{A} \leq \mathbb{B}$, если $\mathbb{A} \subseteq \mathbb{B}$ и значения любых формул в A и B совпадают (элементарная подструктура);
- $\mathbb{A} \equiv \mathbb{B}$, если они удовлетворяют одни и те же предложения (элементарная эквивалентность).

Утверждение 9. $\mathbb{A} \leq \mathbb{B}$, тогда $\mathbb{A} \subseteq \mathbb{B}$ $u \mathbb{A} \equiv \mathbb{B}$.

Теорема 10 (Лёвингейма-Сколема, понижение). Пусть есть \mathbb{A} , $X \subseteq \mathbb{A}$, $|X| \leq |For_{\sigma}|$. Тогда существует $\mathbb{B} \leq \mathbb{A}$: $X \subseteq \mathbb{B}$ $u \mid \mathbb{B}| \leq |For_{\sigma}|$.

1.3 Лекция 4

Доказательство. Построим последовательность $X = S_0 \subseteq S_1 \subseteq \ldots$, где

$$S_{n+1} = S_n \cup \{ \eta(e) | e \in E_n \},$$

где E_n и $\eta: E_n \to A$ определены следующим образом:

$$E_n = \{(\overline{a}, \varphi(\overline{x}, y)) | \overline{a} \in S_n \text{ и } \mathbb{A} \models \exists y \varphi(\overline{a}, y)\}$$

и $\mathbb{A} \models \varphi(\overline{a}, \eta(e)) \ (e \in E)$. В качестве B просто возьмём $\bigcup_n S_n$. Нужно проверить, что $|B| \leq |\operatorname{For}_{\sigma}|$ – это делается по индукции по S_i . E_n по мощности не превосходит $\operatorname{For}_{\sigma}$ посредством сравнения через $\operatorname{For}_{\sigma}^2$, откуда и получаем требуемое.

Рассмторим теперь $\mathbb{B}=(B,I)$ с сигнатурой σ и проверим, что B замкнуто относительно интерпретаций элементов сигнатуры. Это получается несложно, а предикаты мы зададим как

$$P^{\mathbb{B}}(b_1,\ldots,b_n) \Longrightarrow P^{\mathbb{A}}(b_1,\ldots,b_n) = T.$$

Осталось лишь проверить, что для любой формулы $\varphi(x_1, \ldots, x_k)$ и для любых значений переменных $(a_1, \ldots, a_k) = \overline{a} \in B$, тогда значение на этих элементах в $\mathbb B$ будет совпадать со занчением в $\mathbb A$:

$$\mathbb{B} \models \varphi(\overline{a}) \Longleftrightarrow \mathbb{A} \models \varphi(\overline{a}).$$

Проверяется это, конечно, индукцией по построению формулы. Рассмотрим \land, \neg и \exists , через них всё выражается и провреим для них. Конъюнкция – очевидна, ровно как и отрицание. Интерес представляет существование. Пусть $\psi(\overline{x}) = \exists y \varphi(\overline{x}, y)$. Пусть для φ уже доказано, что $\mathbb{B} \models \varphi(\overline{a}, c) \iff \mathbb{A} \models (\overline{a}, c)$. Слева направо требуемое очевидно, а справа налево я проспал.

Замечание. На этом месте могло бы быть лирическое отступление про ZFC.

Пусть теперь $\mathbb{A} \equiv \mathbb{B}$, $\mathbb{A} \preceq \mathbb{B}$. τ называется обогащением структуры σ , если последняя лежит в первой и дополнение непусто.

Определение 13.

- 1) Пусть $\mathbb{A} \sigma$ -структура. $\sigma_{\mathbb{A}} = \sigma \cup \{c_a | a \in A\}$, c_a новые константные символы, причём $c_a \neq c_b$ при $a \neq b$. $D(\mathbb{A})$ множество атомарных формул сигнатуры $\sigma_{\mathbb{A}}$ и их отрицаний, истинных в \mathbb{A} при интерпретации $\sigma_a \models a$. ($\partial uarpamma \ \mathbb{A}$)
- 2) Элементарная диаграмма \mathbb{A} это множество $D^*(\mathbb{A})$ всех предлжений $\sigma_{\mathbb{A}}$, истинных в \mathbb{A} . $(D(\mathbb{A}) \subseteq D^*(\mathbb{A}))$

Утверждение 11.

- 1) Если $\mathbb{B} \models D(\mathbb{A})$, то $\mathbb{B}|_{\sigma}$ содержит подструктуту $\mathbb{A}' \subseteq \mathbb{B}|_{\sigma}$, такую что $\mathbb{A}' \simeq \mathbb{A}$.
- 2) Если $\mathbb{B} \models D^*(\mathbb{A})$, то $\mathbb{B}|_{\sigma}$ содержит элементарную подструктуру, изоморфную \mathbb{A} .

Доказательство. *на доске рисуются картинки*

Теорема 12. Пусть имеется бесконечная \mathbb{A} – σ -структура и $H \geq \max(|A|, |For_{\sigma}|)$. Тогда найдётся $\mathbb{B} \succeq \mathbb{A}$ можности хотя бы H.

Доказательство. Рассмотрим $\sigma \mapsto \sigma_{\mathbb{A}} \models \tau = \sigma_{\mathbb{A}} \cup \{d_x | x \in H\}$ так, что $x \neq x' \Rightarrow d_x \neq d_{x'}$. И построим

$$\Gamma = D^*(A) \cup \{ \neg (d_x = d_{x'} | x, x' \in H, x \neq x') \}$$

множество предложений сигнатуры τ . Любое конечное $\Gamma_0 \subseteq \Gamma$ имеет модель, являющуюся τ -расширением структуры \mathbb{A} (легко проверяется). По теореме о компактности существует $\mathbb{C} - \tau$ -структура, такая, что $\mathbb{C} \models \Gamma$. И как-то завершаем доказательство. \square

Определение 14. *Теория* (T) – множество всех предложений в структуре σ .

1.4 Лекция 5

Утверждение 13 (следствие Лёвингейма-Сколема).

- 1) Если σ -теория имеет бесконечную модель, то она имеет модель любой мощности хотя бы $|For_{\sigma}|$;
- 2) Если σ -теория имеет конечные модель сколь угодно большой мощности, то она имеет модель любой мощности хотя бы $|For_{\sigma}|$.

Доказательство. *рисуются картинки*

Теорема 14 (без доказательства). Логика предикатов – единственная логика, для которой верны и теорема о компактности и теорема о понижении мощности.

1.5 Аксиоматизированные классы

Определение 15.

- 1) Sent $_{\sigma} \supseteq T$, Str $_{\sigma} \supseteq K$. Сопоставим $T \mapsto \operatorname{Mod}(T)$, $K \mapsto \operatorname{Th}(K) = \{\varphi | \forall \mathbb{A} \in K(\mathbb{A} \models \varphi)\}$. Класс K называется аксиоматизируемым, если $K = \operatorname{Mod}(T)$ для всех T;
- 2) K конечно аксиоматизируемый, если $K = \operatorname{Mod}(T)$ для некоторого конечного $T = \{\varphi_1, \dots, \varphi_n\} \ (\varphi_1 \wedge \dots \wedge \varphi_n)$

Предложение 15.

- 1) $T \subseteq T'$, $mor\partial a \; Mod(T) \supseteq Mod(T')$;
- 2) $K \subseteq K'$, $mor \partial a \ Th(K) \supseteq Th(K')$;
- 3) $K \subseteq Mod(Th(K)) : T \subseteq ThMod(T);$
- 4) Любое пересечение аксиоматизированных классов является аксиоматизированным классом. Объединение двух аксиоматизированных классов является аксиоматизированным классом;
- 5) Класс K является аксиоматизированным тогда и только тогда, когда K = Mod(Th(K));

- 6) K конечно аксиоматизируемый тогда и только тогда, когда K и $Str_{\sigma}\backslash K$ аксиоматизируемы;
- 7) K аксиоматизируемый тогда и только тогда, когда K замкнут относительно $\equiv u$ ультрапроизведений.

Доказательство. Докажем (7) в левую сторону (в правую – д/з). Пусть $\{A\}_{i\in I} \in K$, тогда $\mathsf{MA}_F \in K$. Проверим, что K совпалает с множеством $\mathsf{Mod}(\mathsf{Th}(K))$ (5), причём из третьего свойства включение K в множество моделей очевидно, а с другим придётся повозиться.

Пусть $\mathbb{A} \models \operatorname{Th}(K)$, и нам нужно показать, что $\mathbb{A} \in K$. $\mathbb{A} \equiv \mathbb{B}_{F^*}$, где F^* – некий ультрафильтр на подходящем множестве I; $B_i \in K$. Откуда взять множество I? Недолго думая, возьмём $I := \operatorname{Th}(A)$. Утверждается, что для любого $\varphi \in \operatorname{Th}(\mathbb{A}) \exists \mathbb{B} \in K(\mathbb{B} \models \varphi)$.

Возьмём любое φ и предположим, что это не верно. То есть, для любой структуры $\mathbb{B} \in K$, $\mathbb{B} \models \neg \varphi$, тогда $\neg \varphi \in \operatorname{Th}(K)$ и в \mathbb{A} истино $\neg \varphi$ – противоречие. Таким образом $\varphi \mapsto \mathbb{B}_{\varphi} \models \varphi$, и мы получили семейство структур. Надо построить ультрафильтр.

Для каждого $\varphi \in I$ рассмотрим $U_{\varphi} := \{ \psi \in \operatorname{Th}(\mathbb{A}) | \models \psi \to \varphi \}, \ \varphi \in U_{\varphi}. \ U_{\varphi} \cap U_{\varphi'} = U_{\varphi \wedge \varphi'} \neq \emptyset$ и принадлежит $\operatorname{Th}(\mathbb{A})$. Пусть $F = \{ J \subseteq \operatorname{Th}(\mathbb{A}) | \exists \varphi (J \supseteq U_{\varphi}) \}$. Это – конечно, ультрафильтр. F^* – любой ультрафильтр, расширяющий F, должен нам подойти.

$$\mathbb{A} \models \varphi, \varphi \in I = \mathrm{Th}(\mathbb{A}), \mathbb{B}_{\varphi} \models \varphi.$$

$$U_{\varphi} \subseteq \{ \psi \in \mathrm{Th}(\mathbb{A}) | \mathbb{B}_{\psi} \models \varphi \} \in F \subseteq F^*$$

$$\psi \in U_{\varphi}, \ \psi \in \operatorname{Th}(\mathbb{A}). \models \psi \to \varphi, \ \mathbb{B}_{\psi} \models \psi, \ \mathbb{B}_{F} \models \varphi.$$

Определение 16. Σ_n ($n \in \mathbb{N}$) – множество σ -формул (равносильных):

- Σ_0 бескванторные формулы;
- Σ_1 формулы вида $\exists \overline{x} \psi(\overline{x}, \overline{y})$, а ψ бескванторная;
- Σ_2 формулы вида $\exists \overline{x_1} \forall \overline{x_2} \psi(\overline{x_1}, \overline{x_2}, \overline{y});$
- и так далее по иерархии σ -формул по числу перемен кванторов в предварённой нормальной форме получаем $\{\Sigma_n\}_{n\in\mathbb{N}}$.

 Π_n – определяется аналогично с заменой \exists на \forall и наоборот.

Предложение 16.

- $\Sigma_n \cup \Pi_n \subseteq \Sigma_{n+1} \cap \Pi_{n+1}$;
- $\varphi \in \Pi_n$ тогда и только тогда, когда $\neg \varphi \in \Sigma_n$;
- $\bigcup \Sigma_n = \bigcup \Pi_n = For_{\sigma}$.

Теорема 17. Аксиоматизируемый класс является Π_1 аксиоматизируемым тогда и только тогда, когда он замкнут относительно подструктур (если какая-то структура лежит в классе, то любая еэ подструктура тоже лежит в нём).

Доказательство. Докажем слева направо. Пусть у нас есть класс K = Mod(T), где T – множество Π_1 предложений. Нам нужно доказать, что он замкнут относительно подструктур. Если $\mathbb{A} \subseteq \mathbb{B} \models T$, то утверждается, что $\mathbb{A} \models T$. По-другому это можно расписать как $A \subseteq \mathbb{B} \models \varphi = \forall \overline{x} \psi(\overline{x})$. И это верно, потому что очевидно. Начнём с конца: $\mathbb{A} \models \psi(\overline{a})$ при $\overline{a} \in A$, тогда $\mathbb{B} \models \psi(\overline{a})$.

1.6 Лекция 6

В прошлый раз мы остановились на доказательстве теоремы.

Теорема 18. Аксиоматизируемый класс Π_1 -аксиоматизируемый тогда и только тогда, когда он замкнут относительно подструктур.

Доказательство. Справа налево. K = Mod(T), и введём класс аксиом $\Gamma = \{\varphi \in \Pi_1 | T \models \varphi\}$. И оказывается, что $K = \text{Mod}(\Gamma)$, мы хотим это доказать. Включение K в $\text{Mod}(\Gamma)$ – очевидно. В другую – возьмём некоторую модель множества Γ ($\mathbb{B} \models \Gamma$), тогда нужно проверить, что $\mathbb{B} \in K$, Конечно, нужно воспользоваться замкнутостью. Достаточно найти $\mathbb{C} \in K$, что $\mathbb{B} \subseteq \mathbb{C}$. Утверждается, что существует $\mathbb{A} \models T$ такая, что $\text{Th}_{\Sigma_1} \supseteq \text{Th}_{\Sigma_1}(\mathbb{B})$.

Определение 17. Если что, $\operatorname{Th}(\mathbb{A}) = \{\varphi | \mathbb{A} \models \varphi\}, \Phi \subseteq \operatorname{Sent}_{\sigma}, \operatorname{Th}_{\Phi}(\mathbb{A}) = \{\varphi \in \Phi | \mathbb{A} \models \varphi\}.$

В точности нам нудно доказать, что для $T \cup \text{Th}_{\Sigma_1}(\mathbb{B})$ имеется модель. Предположим, $T \cup \{\psi_1, \dots, \psi_n\}$ не имеет модель. $\psi = \psi_1 \wedge \dots \wedge \psi_n \in \Sigma_1, T \cup \{\psi\}$ не имеет модели. $T \models \neg \psi \in \Pi_1$, а значит, $\mathbb{B} \models \neg \psi$, а с другой стороны $\mathbb{B} \models \psi$, противоречие.

Нам нужно вложить $\mathbb{B} \subseteq \mathbb{C} \models T$. Это всё равно, что найти модель для её диаграммы. То есть равносильно, что $T \cup D(\mathbb{B})$ имеет модель. Применим в очередной раз теорему о компактности. То есть хочется, чтобы $T \cup \{\delta_1, \ldots, \delta_m\}$ имело модель, где $\delta_1 = \delta_i(\overline{c})$ ($c \in \sigma_B$). Возьмём какие-то новые переменные и подставим: $\mathbb{B} \models \exists \overline{x}(\delta_1(\overline{x}) \land \ldots \land \delta_m(\overline{x}))$. Это предложение истино в \mathbb{B} , лежит в Σ_1 , а значит, истино и в \mathbb{A} . Тогда при подходящей интерпретации \mathbb{A} – искомая модель.

Докажем теперь аналогичную теорему для Π_2 .

Теорема 19 (Теорема Чэна-Лося-Сушко). Аксиоматизируемый класс Π_2 -аксиоматизируемый тогда и только тогда, когда он замкнут относительно объединений цепей стртуктур.

Замечание. Что значит последнее условие? Если у нас есть возрастающая бесконечная цепочка структур $\mathbb{A}_0 \subseteq \mathbb{A}_1 \subseteq \ldots$, тогда можно построить $\mathbb{A} = \bigcup \mathbb{A}_n$. $A = \bigcup \mathbb{A}_n$

 $\bigcup A_n$, предикаты, функции и константы интерпретируются просто через объединение $P^{\mathbb{A}} = \bigcup P^{\mathbb{A}_n}$, и даже если с первого взгляда не верится, это – корректное определение структуры. Таким образом, класс замкнут относительно объединений цепей, если $\forall n(\mathbb{A}_n \in K), \ \mathbb{A}_0 \subseteq \mathbb{A}_1 \subseteq \ldots, \ \bigcup \mathbb{A}_n \in K$.

Доказательство. Докажем сначала в лёгкую сторону, слева направо. Пусть у нас есть $K = \operatorname{Mod}(T), T \subseteq \Pi_2$. А также цепочка $\mathbb{A}_i \in K$, тогда нам нужно показать, что их объединение $\mathbb{A} \in K$. Рассмотрим $\varphi \in T$, мы хотим проверить, что $\mathbb{A} \models \varphi$. $\varphi : \forall \overline{x} \exists \overline{y} \psi(\overline{x}, \overline{y})$, ψ – бескванторная. $\mathbb{A}_n \models \varphi$ при любом n. $\overline{a} \in A$ – значение \overline{x} . Тогда нужно доказать, что $\mathbb{A} \models \exists \overline{y} \psi(\overline{a}, \overline{y})$. $\overline{a} \in A_n$ для некоторого $n \geq 0$ ($\mathbb{A}_n \subseteq \mathbb{A}$). $\mathbb{A}_n \models \exists \overline{y} \psi(\overline{a}, \overline{y})$. И найдутся $\overline{b} \in A_n$, $\mathbb{A}_n \models \psi(\overline{a}, \overline{b})$. Ладно, я не успеваю и теряюсь в логике повествования.

В обратную сторону начало аналогичное. Включение слева направо опять понятно, и далее схема тоже схожа, мы только хотим, чтобы $\mathbb{B} \models T$. Найдём объединение возрастающей цепочки K-структур $\mathbb{B}_{\omega} \succeq \mathbb{B}$. Ну то есть, мы её построим для начала. Доказательство того, что существует $A \models T$ такое, что $\mathrm{Th}_{\Sigma_2}(\mathbb{A}) \subseteq \mathrm{Th}_{\Sigma_2}(\mathbb{B})$, аналогично предыдущей теореме. Докажем ещё одно вспомогательное утверждение.

Существуют $\mathbb{A}' \equiv \mathbb{A}$ и $\mathbb{B}' \succeq \mathbb{B}$ такие, что $\mathbb{B} \subseteq \mathbb{A}' \subseteq \mathbb{B}'$. Рассмотрим $\operatorname{Th}(\mathbb{A}) \cup \operatorname{Th}_{\Pi_1}(\mathbb{B}_B)$, где \mathbb{B}_B – естественное σ_B -обогащение \mathbb{B} . Если взять любое конечное множество из второй теории объединения, то аналогично предыдущей теореме, они они имеют константы: $\delta_1(\overline{c}), \ldots, \delta_m(\overline{c})$. Значит,

$$\mathbb{B} \models \exists \overline{x} (\delta_1(\overline{x}) \wedge \ldots \wedge \delta_m(\overline{x})) \in \Sigma_2,$$

следовательно, истино и в \mathbb{A}_B . \mathbb{A}'_B – любая модель $\operatorname{Th}(\mathbb{A}) \cup \operatorname{Th}_{\Pi_1}(\mathbb{B}_B)$ (\mathbb{A}' – объединение до σ -структуры). $\mathbb{A}' \equiv \mathbb{A}$ и $\mathbb{B} \subseteq \mathbb{A}'$, $\operatorname{Th}_{\Sigma_1}(\mathbb{B}_B) \supseteq \operatorname{Th}_{\Sigma_1}(\mathbb{A}'_B)$.

Рассмторим теперь $D(\mathbb{A}'_B) \cup \text{Th}(\mathbb{B}_B)$. Точно так же рассуждая, как и выше, эта теория имеет модель $\mathbb{B}'_{A'}$ такую, что $\mathbb{B} \leq \mathbb{B}'$. Исходя из этого и будем строить цепочку.

Возьмём структуры $\mathbb{B} = \mathbb{B}_0 \subseteq \mathbb{A}_1 (\equiv \mathbb{A}) \subseteq \mathbb{B}_1$. Берём теперь опять \mathbb{A} и \mathbb{B}_1 , для них применяем опять утверждение из третьего абзаца, получаем, что $\mathbb{B}_1 \subseteq \mathbb{A}_2 (\equiv \mathbb{A}) \subseteq \mathbb{B}_2$, и так далее. $\mathbb{A}_n \models T$, $\mathbb{A}_\omega = \bigcup \mathbb{A}_n \models T$. $\mathbb{B} = \mathbb{B}_0 \preceq \mathbb{B}_1 \preceq \ldots$ Значится, $\mathbb{B}_\omega = \mathbb{A}_\omega$, $\mathbb{B}_0 \preceq \mathbb{B}_\omega$, откуда и получается требуемое.

1.6.1 Полнота, модельная полнота, элиминация кванторов.

Определение 18. Теория T называется *полной*, если она имеет модель и из неё следует либо φ , либо $\neg \varphi$ для любого σ -предложения.

Утверждение 20. Для непротиворечивой теории Т равносильны следующие условия:

1) T – non Ha;

- 2) $[T] = Th(\mathbb{A})$, для любой $\mathbb{A} \models T$ (где $[T] = \{\varphi | T \models \varphi\}$);
- 3) $Th(\mathbb{A}) = Th(\mathbb{B})$ для любых \mathbb{A} , $\mathbb{A} \models T$.

Теорема 21 (тест Воота). Если теория не имеет конечных моделей и категорична в некоторой мощности $\geq |For_{\sigma}|$, то она полна.

Определение 19. T называется категоричной в можщности H, если T имеет единственную с точностью до изоморфизма модель мощности H.

Определение 20. T модельно полна, если \subseteq и \preceq на Mod(T) совпадают.

1.7 Лекция 7

Теорема 22.

- 1) T модельно полна;
- 2) Для любой $\mathbb{A} \models T$, теория $T \cup D(\mathbb{A})$ полна;
- 3) (Тест Робинсона) Для любых $\mathbb{A}, \mathbb{B} \models T$ из $\mathbb{A} \subseteq \mathbb{B}$ следует, что любое Σ_1 -предложение в сигнатуре σ_A , которое истинно в \mathbb{B} , будет истинно и в \mathbb{A} ;
- 4) $\Sigma_1 = \Pi_1$ по модулю T, то есть любая Σ_1 -формула $\varphi(\overline{x})$ равносильна подходящей Π_1 -формуле $\psi(\overline{x})$ в T (то есть $T \models \forall \overline{x} \ (\varphi(\overline{x}) \leftrightarrow \psi(\overline{x}))$);
- 5) Любая формула $\varphi(\overline{x})$ равносильна подходящей Π_1 -формуле в T.

Замечание. Пока мы ввели иерархию только для предложений. Она точно так же строится для формул со свободными переменными.

Доказательство. На практиках мы уже доказали $1 \Rightarrow 2, 2 \Rightarrow 3$.

Нетривиальным является следствие $3 \Rightarrow 4$. Пусть $\varphi(\overline{y})$ – Σ_1 -формула. Нам нужно найти Π_1 -формулу $\psi(\overline{y})$ такую, что $T \models \forall \overline{y} \ (\varphi(\overline{y}) \leftrightarrow \psi(\overline{y}))$. Скажем, $\overline{y} = (y_1, \ldots, y_k)$, обогатим сигнатуру константными символами $\overline{c} = (c_1, \ldots, c_k)$. Тогда достаточно доказать, что $T \models \varphi(\overline{c}) \leftrightarrow \psi(\overline{c})$.

Пусть $\Gamma = \{ \gamma \in \Pi_1 \mid T \models \varphi(\overline{c}) \to \gamma \}$. Достаточно доказать, что $T \cup \Gamma \models \varphi(\overline{c})$. Действительно, если это так, то для конечного подмножества Γ выполнено $T \cup \{\gamma_1, \dots, \gamma_m\} \models \varphi$, тогда $\psi = \gamma_1 \wedge \dots \wedge \gamma_k \in \Pi_1$ – искомая формула.

Рассмотрим произвольную модель $\mathbb{A} \models T \cup \Gamma$. Наша цель – показать, что $\mathbb{A} \models \varphi$. Сначала докажем, что $T \cup \{\varphi\} \cup D(\mathbb{A})$ имеет модель. Предположим противное, тогда по теореме о компактности для некоторых $\{\delta_1, \dots, \delta_m\} \subseteq D(\mathbb{A})$ у $T \cup \{\varphi\} \cup \{\delta_1, \dots, \delta_m\}$ нет модели. Пусть $\delta = \delta_1 \wedge \dots \wedge \delta_m$. По определению диаграммы, $\mathbb{A} \models \exists \overline{x} \ \delta(\overline{x})$. С другой стороны, из-за отсутствия модели, $T \cup \{\varphi\} \models \forall x \neg \delta(\overline{x})$, поэтому $T \models \varphi \rightarrow \forall \overline{x} \ \neg \delta(\overline{x})$. По определению $\Gamma, \forall \overline{x} \ \neg \delta(\overline{x}) \in \Gamma$, значит эта формула верна в \mathbb{A} . Но и её отрицание верно в \mathbb{A} . Противоречие.

Пусть $\mathbb{B} \models T \cup \{\varphi\} \cup D(\mathbb{A})$. Тогда $\mathbb{A} \subseteq \mathbb{B}$, $\varphi - \Sigma_1$ -предложение. Тогда из пункта 3 получаем $\mathbb{A} \models \varphi$, что мы и пытались доказать.

 $4 \Rightarrow 5$. Рассмотрим произвольную φ . Она лежит на одном из уровней иерархии формул. Расссмотрим только случаи $\varphi \in \Pi_2$ и $\varphi \in \Sigma_2$. В остальных случаях рассуждения аналогичны.

Для формулы $\varphi(\overline{z}) \in \Pi_2$ существует запись в виде $\forall \overline{x} \exists \overline{y} \ \psi(\overline{x}, \overline{y}, \overline{z})$. Формула $\exists \overline{y} \ \psi(\overline{x}, \overline{y}, \overline{z})$ лежит в Σ_1 , поэтому по пункту 4 существует $\psi'(\overline{x}, \overline{z}) \in \Pi_1$, эквивалентная ей по модулю T. Значит $\varphi \equiv_T \forall \overline{x} \ \psi' \in \Pi_1$.

Для формулы $\varphi \in \Sigma_2$ выполнено $\neg \varphi \in \Pi_2$. Поэтому $\exists \psi \in \Pi_1$ такая, что $\neg \varphi \equiv_T \psi$. Тогда $\varphi \equiv_T \neg \psi \in \Sigma_1$. А $\neg \psi$ в свою очередь эквивалентна формуле Π_1 из пункта 4.

 $5 \Rightarrow 1$. Нам нужно, чтобы выполнялось $\mathbb{A} \subseteq \mathbb{B} \Rightarrow \mathbb{A} \preceq \mathbb{B}$, где \mathbb{A} и \mathbb{B} – модели T. Рассмотрим произвольную формулу φ . Из пункта 5 следует существование универсальной формулы ψ с условием $\varphi(\overline{x}) \equiv_T \psi(\overline{x})$.

Для $\overline{a} \in \mathbb{A}$, если $\mathbb{B} \models \varphi(\overline{a})$, то и $\mathbb{B} \models \psi(\overline{a})$, из универсальности $\mathbb{A} \models \psi(\overline{a})$, из равносильности $\mathbb{A} \models \varphi(\overline{a})$. Мы доказали $\mathbb{B} \models \varphi \Rightarrow \mathbb{A} \models \varphi$. Для доказательства в обратную сторону можно рассмотреть формулу $\neg \varphi$.

Предложение 23 (Свойства модельно полных теорий).

- 1) Любая модельно полная теория Π_2 -аксиоматизируемая;
- 2) (Тест Линдстрёма) Если теория Π_2 -аксиоматизируема, не имеет конечных моделей и категорична в некоторой мощности $\lambda \geq |For_{\sigma}|$, то она модельно полна;
- 3) Если модельно полная теория T имеет модель, котоаря вкладывается в любую модель T, то T полная;
- 4) Если для любых двух моделей модельно полной теории T существует третья модель, в которую они обе вкладываются, то T полна.

Доказательство.

1) T – модель полная. Достаточно доказать, что $\mathrm{Mod}(T)$ замкнут относительно объединения цепей (по теореме Чэна-Лося-Сушко)

$$A_0 \subseteq A_1 \subseteq \dots \quad A = \bigcup_n A_n,$$

где $\mathbb{A}_i \models T_i$. Из модельной полноты имеем $\mathbb{A}_0 \preceq \mathbb{A}_1 \preceq \ldots$, отсюда нетрудно показать, что $\mathbb{A}_n \preceq \mathbb{A}$, тогда $T = \mathbb{A}_n \equiv \mathbb{A}$.

- 2) Остаётся на совесть юных читателей! (доказательство не было закончено)
- 3) \mathbb{A} структура, изоморфная подструктуре любой модели $\mathbb{B} \models T$, тогда из модельной полноты $\forall \mathbb{B} \ (\mathbb{A} \preceq \mathbb{B})$. Для любой φ выполнено либо $\mathbb{A} \models \varphi$, либо $\mathbb{A} \models \neg \varphi$. Тогда одна из этих формул верна во всех моделях T, откуда и получим, что из T следует либо эта формула, либо её отрицание.

4) Рассмотрим \mathbb{A}, \mathbb{B} – модели T. По предположению, существует третья модель \mathbb{C} с двумя подструктурами \mathbb{A}', \mathbb{B}' , причём выполнено $\mathbb{A} \simeq \mathbb{A}' \subseteq \mathbb{C}$ и аналогичное для \mathbb{B} . T модельно полна, поэтому $\mathrm{Th}(\mathbb{A}') = \mathrm{Th}(C)$. Значит $\mathrm{Th}(\mathbb{A}) = \mathrm{Th}(\mathbb{C}) = \mathrm{Th}(\mathbb{B})$. Значит T полна.

1.8 Лекция 8

Утверждение 24 (Тест Линдстрёма). Если некоторая теория T Π_2 -аксиоматизируема, не имеет конечных моделей и категорична в некоторой мощности $\lambda \geq |For_{\sigma}|$, то она модельно полна.

 \square оказательство.

1.8.1 Элиминация кванторов

Определение 21. Теория T допускает элиминацию кванторов, если любая формула равносильна бескванторной.

Предложение 25.

- 1) Если Т допускает элиминацию кванторов, то она модельно полна;
- 2) Если для любой бескванторной формулы $\theta(\overline{x}, y)$ равносильна некоторой бескванторной, то T допускает элиминацию кванторов;
- 3) Если для данной формулы φ выполнено условие \circledast , то φ равносильна бескванторной $\psi(\overline{x})$ в T.
 - Условие \circledast : для любых вложений (то есть изоморфизмов на подструктуры) $f: \mathbb{C} \to \mathbb{A}, \ g: \mathbb{C} \to \mathbb{B}$ σ -структуры \mathbb{C} в модели \mathbb{A}, \mathbb{B} теории T и для любых значений $\overline{c} \in \mathbb{C}$ выполнено $\varphi(f(\overline{c})) = \varphi(g(\overline{c}))$
- 4) Пусть для любой бескванторной $\theta(\overline{x}, y)$ формула $\phi(\overline{x}) = \exists y \ \theta(\overline{x}, y)$ удовлетворяет \circledast . Тогда T допускает элиминацию кванторов.

Доказательство.

- 1) Одно из эквивалентных условие модельно полной теории равносильность любой формулы универсальной, а любая бескванторная формула лежит в Π_1 .
- 2) Доказывается индукцией по сложности формулы, кванторы всеобщности можно представить через кванторы существования.
- 3) Схема доказательства уже неоднократно нами применялась.

Зафиксируем $\varphi(x_1,\ldots,x_k)$, удовлетворяющую \circledast . Обогатим сигнатуру новыми константами $\overline{d}=(d_1,\ldots,d_k)$. Для доказательства нам надо придумать бескванторную ψ , такую что в исходной сигнатуре $T\models \forall \overline{x}\; (\varphi(\overline{x})\leftrightarrow \psi(\overline{x}))$, что эквивалентно $T\models \varphi(\overline{d})\leftrightarrow \psi(\overline{d})$ в обогащённой структуре.

Пусть $\Gamma = \{ \gamma \text{ - }$ бескванторное $\sigma_{\overline{d}}$ -предложение $\mid T \models \varphi(\overline{d}) \to \gamma \}$. Достаточно доказать, что $T \cup \Gamma \models \varphi(\overline{d})$. Действительно, если это так, то по теореме о компакности для конечного $\{\gamma_i\}_i \subset \Gamma$ верно $T \cup \{\gamma_i\}_i \models \varphi(\overline{d})$, откуда для $\gamma = \wedge_i \gamma_i$ верно $T \models \gamma \to \varphi(\overline{d})$.

Будем доказывать от противного. Тогда $T \cup \Gamma \cup \{\neg \varphi(\overline{d})\}$ имеет модель \mathbb{A} . Обозначим через d_i' интерпретацию d_i в структуре \mathbb{A} .

Пусть \mathbb{C} – подструктура \mathbb{A} , порождённая элементами d_1',\ldots,d_k' . Конечно, \mathbb{C} не обязана быть моделью T. Пусть $f:\mathbb{C}\to\mathbb{A}$ – тождественное вложение.

 $\mathrm{Diag}(\mathbb{C})$ – вариант $D(\mathbb{C})$, но без использования новых констант.

Утверждение 26. $T \cup Diag(\mathbb{C}) \cup \{\varphi(\overline{d})\}$ имеет модель.

Доказательство. Доказываем от противного. Тогда для некоторого конечного подмножества Γ $T \cup \{\delta_1(\overline{d},\ldots,\delta_n(\overline{d}))\} \cup \{\varphi(\overline{d})\}$ не имеет модели. Значит $T \models \bigwedge \delta_i(\overline{d}) \to \neg \varphi d$, откуда $T \models \varphi(\overline{d}) \to \bigvee \neg \delta_i(\overline{d})$.

Тогда $\gamma = \bigvee \neg \delta_i(\overline{d})$ лежит в Γ . Значит $\mathbb{A} \models \gamma$, но по определению Diag выполнено $\mathbb{A} \models \neg \gamma$. Противоречие

Пусть \mathbb{B}' – модель, удовлетворяющая утверждению. Рассмотрим её обеднение \mathbb{B} до структуры σ . Существует единственное вложение $g:\mathbb{C}\to\mathbb{B}$, переводящее d_i в d_i' .

Наконец, воспользуемся условием \circledast . По определению, в $\mathbb{A} \varphi(f(\overline{d}))$ ложно, а в $\mathbb{B} \varphi(g(\overline{d}))$ истинно. Противоречие.

4) Очевидно следует из пунктов 2 и 3.

Тарский доказал, что структуры ($\mathbb{R}, <, +, \cdot, 0, 1$) и ($\mathbb{C}, +, \cdot, 0, 1$) допускают элиминацию кванторов. Доказательство конструктивное, но длинное. Мы докажем то же самое утверждение для всех алгебраически замкнутых полей, но не конструктивно.

Пример 4. Теория ACF (теория алгебраически замкнутых полей) допускает элиминацию кванторов

Доказательство.

Сначала докажем, что АСГ модельно полна, используя тест Линдстрёма.

Для доказательства основного факта воспользуемся пунктом 4 предыдущего утверждения. $\hfill\Box$

2 Неразрешимость и неполнота

2.1 Лекция 10

2.1.1 Свойства выводимости, теория Хенкина

2.1.2 Теоремы о существовании модели и полноте И Π_{σ}

Теорема 27 (О существовании модели). Любое непротиворечивое множество предложений имеет модель.

Доказательство. Пусть S – непротиворечивое множество предложений сигнатуры σ . Хотим показать, что S имеет модель. По теореме о компактности можем считать, что S конечна. Тогда в формулы S входит конечное подмножество символов сигнатуры σ , поэтому можно считать, что σ конечна. Тогда, по доказанному выше факту, существует теория Хенкина T сигнатуры σ_C , расширяющая S.

Пусть M – множество всех термов сигнатуры σ_C , не содержащих переменных (то есть это константы с "накрученными"на них функциональными символами). Введём на этом множестве отношение \sim следующим образом: $s \sim t$, если $T \vdash s = t$.

Дальше проверяем несколько несложных утверждений:

- 1) ~ является отношением эквивалентности
- 2) Если $s_1 \sim t_1, \ldots, s_n \sim t_n$, выполняется $T \vdash P(s_1, \ldots, s_n)$, то $T \vdash P(t_1, \ldots, t_n)$
- 3) Если $s_1 \sim t_1, \dots, s_n \sim t_n$, то $f(s_1, \dots, s_n) \sim f(t_1, \dots, t_n)$
- 4) Пусть $t = t(x_1, \ldots, x_n)$ терм, $s_1, \ldots, s_n \in M$. Тогда $t^{\mathbb{A}}([s_1], \ldots, [s_n]) = [t(s_1, \ldots, s_n)]$

5)

2.2 Лекция 11

Теорема 28 (теорема Гёделя о полноте).

- 1) Для любой теории T и любого предложения φ в той же сигнатуре σ $T \vdash \varphi \iff T \models \varphi$
- 2) φ тождественно истинна $\iff \varphi$ выводима в ИП $_{\sigma}$

 \mathcal{A} оказательство. Второй пункт получается из первого при $T=\varnothing$. Теперь докажем первый пункт.

 \Rightarrow Доказательство довалось на первом курсе. На практиках доказали, что все аксиомы тождественно истинны, правила вывода сохраняют истинность.

 $\Leftarrow T \models \varphi$, значит $T \cup \{\neg \varphi\}$ не имеет модели. Из теоремы о существовании модели отсюда следует, что $T \cup \{\neg \varphi\}$. Тогда $T \models \neg \neg \varphi$, из эквивалентности $\varphi \equiv \neg \neg \varphi$ получаем $T \models \varphi$, что и требовалось.

Следствие 29.

- 1) Если σ конечна, то множество $\{\varphi \mid \phi$ ормула φ тождественно истинна $\}$ перечислимо, то есть сущестует алгоритм, перечисляющий элементы этого множества.
- 2) Если σ конечна, T перечислимое множество предложений, то [T] (множество следствий T) перечислимо.
- 3) Если σ конечно, T перечислимо, T полная, то тогда [T] разрешимо, то есть существует алгоритм, распознающий логические следствия из T.
- 4) Множество выводов $\varphi_1, \ldots, \varphi_n$ в ИП $_{\sigma}$ разрешимо.

Доказательство.

- 1) Следует из второго при $T=\varnothing$
- 2) T перечислимо, множество аксиом И Π_{σ}^* тоже перечислимо. Перечисляя формулы из объединения этих двух перечислимых и применяя правила вывода, можно перечислить и все выводимые.
- 3) Пользуемся пунктом 2. Либо $\varphi \in [T]$, либо $\neg \varphi \in [T]$. Запускаем перечисление [T] и ждём, пока встретится φ или $\neg \varphi$.

4) TODO

Замечание. Традиционно логика разбивается на четыре части:

- Теория множеств
- Теория моделей
- Теория доказательств
- Теория вычислимости

Теорема 30 (Линдстрёма). (без доказателства)

- 1) Не существует логической системы, которая более выразительна, чем логика первого порядка и удовлетворяет понижающей теореме Лёвингейма-Сколема и теореме о компактности.
- 2) Не существует логической системы, которая более выразительна, чем логика первого порядка и удовлетворяет понижающей теореме Лёвингейма-Сколема и в которой множество тождественно истинных формул перечислимо.

2.2.1 Рекурсивные функции и предикаты

Ограничимся функциями на № (с нулём). Соответственно, далее все аргументы – натуральные числа.

Введём две функции:

$$l(x,y) = \begin{cases} 0, & \text{если } x < y \\ 1, & \text{в противном случае} \end{cases}$$

$$I_k^n(x_1,\ldots,x_n)=x_k$$

Определение 22. Рекурсивные функции на \mathbb{N} определяются индуктивно:

- $+,\cdot,l,I_k^n$ являются рекурсивными
- Суперпозиция рекурсивных является рекурсивной, то есть если $g = g(y_1, ..., y_k)$ рекурсивна и $h_1(\overline{x}), ..., h_k(\overline{x})$ рекурсивны, то и $g(h_1(\overline{x}), ..., h_k(\overline{x}))$ рекурсивна.
- Минимизация любой рекурсивной функции является рекурсивной. То есть, если $g(\overline{x},y)$ рекурсивна и $\forall \overline{x} \; \exists y \; g(\overline{x},y) = 0$, то функция $f(\overline{x}) = \mu y(g(\overline{x},y) = 0)$ тоже рекурсивна. Здесь $\mu y(P(y))$ наименьшее значение y, при котором предикат истинен.
- Других рекурсивных функция нет.

Замечание. Любая рекурсивная функция вычислима, это доказывается индуктивно. А существует ли вычислимая функция, которая не рекурсивна?

Гипотеза 31 (Тезис Чёрча). Любая тотальная (всюда определённая) вычислимая функция на N рекурсивна.

Почему тезис, а не теорема? Потому что понятие вычислимости не математично.

Определение 23. Предикат $P(\overline{x})$ рекурсивен, если рекурсивна его характеристическая функция

$$\chi_P(\overline{x}) = \begin{cases} 0, & P(\overline{x}) = \mathbf{M} \\ 1, & P(\overline{x}) = \mathbf{M} \end{cases}$$

Предложение 32 (Свойства рекурсивных функций и предикатов).

- Если предикат $P(y_1, \ldots, y_k)$ рекурсивен и функции $h_1(\overline{x}), \ldots, h_k(\overline{x})$ рекурсивны, то $P(h_1(\overline{x}), \ldots, h_k(\overline{x})$ рекурсивен.
- $P(\overline{x},y)$ рекурсивен и $\forall \overline{x} \exists y \ P(\overline{x},y)$, то тогда формула $f(verlinex) = \mu y (P(\overline{x},y) = 0)$ рекурсивна.
- $P(\overline{x}), Q(\overline{x}), R(\overline{x}, y)$ рекурсивны, то рекурсивны и предикаты $P(\overline{x}) \vee Q(\overline{x})$ (и для $\wedge, \to), \neg P(\overline{x}), \forall y < z \to R(\overline{x}, y)$ (по определению это $\forall y \ (y < z \to R(\overline{x}, y))),$ $\exists y < z \ R(\overline{x}, y)$ (экивалентно $\exists y \ (y < z \wedge) R(\overline{x}, y)$) рекурсивны

• Рекурсивна функция

$$f(\bar{x}) = \begin{cases} g_1(\bar{x}), & P_1(\bar{x}) = \mathcal{U} \\ g_2(\bar{x}), & P_2(\bar{x}) = \mathcal{U} \\ \dots & \dots \\ g_k(\bar{x}), & P_k(\bar{x}) = \mathcal{U}, \end{cases}$$

здесь g_i — рекурсивные функции, P_i — дизъюнктные рекурсивные предикаты, $| \ | \ P_i = \mathbb{N}^d$.

Пример 5.

- Все константые функции рекурсивны
- Функции, задаваемые полиномами с натуральными коэффициентами рекурсивны
- \leq ,=, \vdots рекурсивны

peкурсивность констант. Хотим показать, что $f_c(\overline{x}) = c$ рекурсивна индукцией по c.

Если
$$c=0$$
, то $f_0(\overline{x})=\mu y(y=0)=\mu y(I_{n+1}^{n+1}(\overline{x},y)=0)$

Если c=1, то $f_1(\overline{x})=\mu y(0< y)=\mu(l(f_0(\overline{x},y),I_{n+1}^{n+1}(\overline{x},y))=0)$. Или можно было взять $f_1(\overline{x})=l(I_1^n(\overline{x}),I_1^n(\overline{x}))$, если $n\geq 1$.

Если $f_c(\overline{x})$ построена, то $f_{c+1}(\overline{x})=f_c(\overline{x})+f_1(\overline{x})$ рекурсивна как сумма рекурсивных

Предложение 33. Существует рекурсивная фукнция $\beta(a,i)$ такая, что $\beta(0,i) = 0$, $\beta(a+1,i) \le a \ u \ \forall n, a_0, \ldots, a_n \ \exists a(\beta(a,0) = a_0 \land \ldots, \beta(a,n) = a_n)$

Доказательство. Строим вспомогательную функцию $p(x,y) = (x+y)^2 + x + 1$. Она рекурсивна, потому что полином. Обладает свойствами x,y < p(x,y) и $(x,y) \neq (x_1,y_1) \Rightarrow p(x,y) \neq p(x_1,y_1)$. Второе свойство доказывается сравнением x+y с x_1+y_1 : если они отличаются, то значения функции разделены квадратом большей сумма, а в случае равенства, значения функции различаются из-за $x \neq x_1$.

Тогда пусть

$$\beta(a,i) = \mu x (a = 0 \lor x + 1 = a \lor \exists y < a \ \exists z < a \ (a = p(y,z) \land y \ \vdots \ (1 + z \cdot p(x,i))))$$

Первые два свойства следуют из первых двух членов дизъюнкции. Теперь зафиксируем n, a_0, \ldots, a_n и проверим последнее свойство. Пусть $c = \max(p(a_0, 0), \ldots, p(a_n, n)),$ $z = c!, y = \prod_{i=0}^n (1 + z \cdot p(a_n, n)).$ Будем доказывать, что a = p(y, z) подходит.

Проверяем, что $\beta(a,i) = a_i$ для $1 \le i \le n$. Для $x = a_i$ третье условие минимизации выполнено с заданными в предыдущем абзаце y, z. Докажем, что не существует $x < a_i$, удовлетворяющего условиям минимизации.

Предположим противное, такой x нашелся. Первые два члена дизъюнкции не могут выполняться, потому что a > 0, x + 1 < a, 3 начит нашлись y_1, z_1 , такие

что $a=p(y_1,z_1)$ и y_1 : $(1+z\cdot p(x,i))$. Тогда $p(y,z)=a=p(y_1,z_1)$, следовательно $(y,z)=(y_1,z_1)$. Тогда y : $(1+z\cdot p(x,i))$. Распишем y по определению, получим

$$\left(\prod_{i=0}^{n} (1 + z \cdot p(a_n, n))\right) \vdots (1 + z \cdot p(x, i))$$

Заметим, что при $k,l \le c, k \ne l$ числа 1+zk и 1+zl взаимнопросты. Действительно, иначе найдётся простой q|(1+zk)-(1+zl)=z(k-l)=c!(k-l). Тогда $q\le c\Rightarrow q|c!=z\Rightarrow q|zk,q|(1+zk)$, но они взаимнопросты. Все множители в произведении и число $(1+z\cdot p(x,i))$ имеют такой вид, поэтому для некоторого j выполнено $1+z\cdot p(a_j,j)=1+z\cdot p(x,i)\Rightarrow (a_j,j)=(x,i)\Rightarrow i=j, x=a_i$.

2.3 Лекция 12

Используя функцию β любой конечной последовательности натуральных чисел (a_1, \ldots, a_n) можно сопоставить её код:

$$\langle a_1, \dots, a_n \rangle = \mu a \ (\beta(a, 0) = n \land \beta(a, 1) = a_1 \land \dots \land \beta(a, n) = a_n)$$

Например, пустой последовательности соответствует соответствует $\langle \rangle$ – наименьшее a, такое что $\beta(a,0)=0$, то есть $\langle \rangle=0$

Введём новые функции

- Функция «начало»: нач $(a, i) = \mu x \; (\beta(x, 0) = i \land \forall j < i \; (\beta(x, j+1) = \beta(a, j+1)))$
- Предикат Π oc $(a) = \neg \exists x < a \ (\beta(x,0) = \beta(a,0) \land \forall i < \beta(a,0) (\beta(x,i+1) = \beta(a,i+1)))$

Предложение 34 (Свойства кодирования последовательностей).

- Функции нач и $\langle a_1, \dots, a_n \rangle$ при n > 0 рекурсивны, предикат Пос рекурсивен.
- $a = \langle a_1, \dots, a_n \rangle \Rightarrow \beta(a, 0) = n \wedge \beta(a, 1) = a_1 \wedge \dots \wedge \beta(a, n) = a_n$
- $(a_1,\ldots,a_n)\neq(b_1,\ldots,b_n)\Rightarrow\langle a_1,\ldots,a_n\rangle\neq\langle b_1,\ldots,b_n\rangle$
- $a = \langle a_1, \dots, a_n \rangle \Rightarrow \mathcal{H}a_1(a, i) = \langle a_1, \dots, a_i \rangle \ npu \ i \leq n$
- $\mathit{\Pioc}(a)$ $\mathit{ucmuha} \Leftrightarrow a$ kod некоторой последовательности

Теорема 35 (о рекурсивных определениях). Пусть \overline{x} – вектор переменных (возможено пустой)

1) Если функция $g(\overline{x}, y, z)$ рекурсивна, то рекурсивна и функция

$$f(\overline{x}, y) = g(\overline{x}, y, \langle f(\overline{x}, 0), \dots, f(\overline{x}, y - 1) \rangle)$$

Про такую f говорят, что она определена рекурсией c помощью g.

2) Если предикат $Q(\overline{x}, y, z)$ рекурсивен, то рекурсивен и предикат

$$P(\overline{x}, y) = Q(\overline{x}, y, \langle \chi_P(\overline{x}, 0), \dots, \chi_P(\overline{x}, y - 1) \rangle)$$

Доказательство. Второй пункт получается из первого заменой f на χ_P , а g на χ_Q .

Рассмотрим вспомогательную функцию h:

$$h(\overline{x}, y) = \langle f(\overline{x}, 0), \dots, f(\overline{x}, y - 1) \rangle$$

$$= \mu a \left(\Pi oc(a) \land \beta(a, 0) = y \land \forall i < y \ (\beta(a, i + 1) = f(\overline{x}, i)) \right)$$

$$= \mu a \left(\Pi oc(a) \land \beta(a, 0) = y \land \forall i < y \ (\beta(a, i + 1) = g(\overline{x}, i, \text{hay}(a, i))) \right)$$

Значит $h(\overline{x},y)$ рекурсивна, поэтому $f(\overline{x},y)=g(\overline{x},y,h(\overline{x},y))$ тоже рекурсивна.

2.3.1 Кодирование Π_{σ}

Замечание. Повествование в этом (и предыдущем) разделе перекликается с книгой "Краткий курс математической логики"В.Л. Селиванова 1992 года издания.

Пусть σ – конечная сигнатура. Для примера возьмём $\sigma = \{<, =, +, \cdot, 0, 1\}$, а что делать для остальных сигнатур будет понятно.

Из чего состоят формулы? Из счётного набора переменных $\{v_0, v_1, \ldots\}$ и математических символов. Сопоставим им натуральные числа:

$$v_n \land \lor \to \neg \forall \exists = < + \cdot 0 \quad 1$$

 $2n \quad 1 \quad 3 \quad 5 \quad 7 \quad 9 \quad 11 \quad 13 \quad 15 \quad 17 \quad 19 \quad 21 \quad 23$

Теперь закодируем термы. Через $\lceil t \rceil$ будем обозначать код терма. Пусть $\lceil v_n \rceil = \langle 2n \rangle$, $\lceil 0 \rceil = \langle 21 \rangle$, $\lceil 1 \rceil = \langle 23 \rangle$ — взяли значения из таблицы. Остальные термы кодирутся по рекурсии, например $\lceil s + t \rceil = \langle 17, \lceil s \rceil, \lceil t \rceil \rangle$. Формулы кодируются аналогично, например $\lceil s = t \rceil = \langle 13, \lceil s \rceil, \lceil t \rceil \rangle$, $\lceil \forall v_n \varphi \rceil = \langle 9, 2n, \lceil \varphi \rceil \rangle$

Введём несколько новых предикатов и функций:

- $T(a) \Leftrightarrow a \kappa$ од терма
- $\Phi(a) \Leftrightarrow a \text{код формулы}$
- $\Phi_0(a) \Leftrightarrow a$ код формулы, не содержащей свободных переменных, кроме v_0
- $\Pi p(a) \Leftrightarrow a$ код предложения
- отр(a) функция, равная $\neg \varphi$, если $a = \neg \varphi$ и 0 иначе.
- подс(a,b,c): если a код формулы $\varphi(x)$, b код переменной x, а c код терма t, для которого разрешена подстановка $\varphi(t)$, то подс $(a,b,c) = \lceil \varphi(t) \rceil$, иначе 0
- Для множества формул T предикат $P_T(a)$ выполнен когда a код некоторой формулы из T
- Выв $_T(a,b)$ выполнен, если $\Pi p(b)$ и a есть код последовательности кодов формул $\varphi_1, \ldots, \varphi_n$, которая является выводом предложения с кодом b из теории T в $\Pi \Pi_{\sigma}$.

Лекция 13

Предложение 36 (свойства кодирования).

- 1) Разным термам и формулам соответствуют разные коды
- 2) Существует алгоритм, вычисляющий по данному логическому объекту (терму, формуле) его код
- 3) Наоборот: существует алгоритм, вычисляющий по коду этот объект.
- 4) Предикаты $T, \Phi, \Phi_0, \Pi_p, \dots$ и функции отр, подс рекурсивны.
- 5) Если множество формул T рекурсивно (то есть рекурсивен предикат $P_T(x)$), то Bыв $_T(a,b)$ рекурсивен.

Доказательство. Второй и третий пункт не являются строгими математическими утверждениями, потому то понятие алгоритма не математично. Но нестрого утверждение понятно. Доказательство пятого пункта есть в книжке¹. Остальные пункты доказываются несложно □

2.3.2 Представимость И Π_{σ} в минимальной арифметике

Напомним, что МА (минимальная арифметика) состоит из 10 аксиом в сигнатуре $\sigma = \{<,+,\cdot,0,1\}$. Каждому натуральному числу n можно сопоставить терм \hat{n} по следующим правилам: $\hat{0} = 0$, $\hat{1} = 1$, $\widehat{n+1} = (\hat{n}) + 1$

Определение 24. Предикат $P(x_1, ..., x_n)$ на \mathbb{N} называется представимым в MA, если сущесвует формула $\varphi(x_1, ..., x_n)$ такая, что для любых значений $\overline{x} \in \mathbb{N}$ выполнено $P(\overline{x}) = \mathbb{N} \Rightarrow MA \vdash \varphi(\widehat{x_1}, ..., \widehat{x_n})$ и $P(\overline{x}) = \mathbb{N} \Rightarrow MA \vdash \neg \varphi(\widehat{x_1}, ..., \widehat{x_n})$

Функция $f(x_1,\ldots,x_n)$ называется представимой в MA, если сущесвует формула $\varphi(\overline{x},y)$ такая, что для любых $\overline{x}\in\mathbb{N}$ MA $\vdash \forall y\; (\psi(\widehat{x_1},\ldots,\widehat{x_n})\leftrightarrow y=\widehat{f(\overline{x})})$

Теорема 37. Любой рекурсивный предикат представим в МА.

Доказательство. TODO

2.3.3 Неразрешимость и неполнота арифметики. Проблемы разрешимости

Теорема 38 (Чёрча о неразрешимости арифметики). Для любой непротиворечивой теории $T \supseteq MA$ множество $[T] = \{ \varphi \mid T \vdash \varphi \}$ не рекурсивно.

Доказательство. TODO

Теорема 39 (Гёделя о неполноте арифметики). Любая непротиворечивая рекурсивная теория $T \supseteq MA$ неполна.

¹В.Л.Селиванов – «Краткий курс математической логики» 1992 года издания

Теорема 40. Множество тождественно истинных формул неразрешимо (нерекурсивно)

3 Введение в вычислимость