Надёжность программного изделия. Классификация ошибок

Определение надёжности

Одной из важнейших характеристик программного изделия является надёжность.

Надёжность – свойство программного изделия сохранять работоспособность в течение определённого периода времени в определённых условиях эксплуатация с учётом последствий каждого отказа для пользователя.

Работособным называется такое состояние программного изделия, при котором оно способно выполнять заданные функции с параметрами, установленными требованиями ТЗ.

Понятие отказа

С переходом программного изделия в неработоспособное состояние связано событие **отказа**. Причины отказа программы и технических систем различны. Если для технического средства причиной отказа может быть физический износ узлов и деталей, то программы ему не подвержены. Моральный износ, характерный для ПИ, не может быть причиной нарушения его работоспособности.

Причины отказа

Причиной отказа ПИ является невозможность его полной проверки в процессе тестирования и испытания. При эксплуатации ПИ в реальных условиях может возникнуть такая комбинация входных данных, которая вызывает отказ.

Таким образом, работоспособность ПИ зависит от входной информации и чем ниже эта зависимость, тем выше уровень надёжности.

Причины отказа

Причиной отказа программного изделия являются **ошибки**, которые могут быть вызваны:

- внутренним свойством программного изделия
- реакцией программного изделия на изменение внешней среды функционирования.

Последнее значит, что даже при самом тщательном тестировании, если предположить, что удалось избавиться от внутренних ошибок, никогда нельзя с полной уверенностью утверждать, что в процессе эксплуатации программного изделия отказ не возникнет. Естественно, мы можем и должны повышать уровень надежности программного изделия, но достижений сто процентной надежности вне пределах возможного.

Причины ошибок

Причиной ошибок программного изделия является нарушение правильности перевода информации из одного представления в другое.

Создание программного изделия рассматривается как совокупность процессов перевода информации из одной формы представления в другую, с фиксацией множества промежуточных решений с участием специалистов различного профиля и квалификации.

Кроме того, необходимо учитывать возможность взаимного перекрытия процессов и наличия циклов обратной связи.

Необходимо учитывать, что ошибки сделанные в процессе проектирования, могут быть обнаружены при программировании, тогда возникает необходимость возврата к предыдущему этапу и устранению ошибок.

Классификация ошибок

Разнообразие и сложность видов деятельности в процессе создания программного изделия приводит к появлению множества типов ошибок, которые нуждаются в систематизации.

Приведенная ниже классификация ошибок по категориям основана на эмпирических данных, полученных при разработке различных программных изделий.

Под категорией ошибок понимается видовое описание ошибок конкретных типов.

В полной классификации выделено более 100 категорий, объединенных в 20 классов.

Классификация ошибок

Идентификация		Начионавания
Класс	Категория	Наименование
AA 000	AA 010 AA 020	Ошибки вычислений: • неверно определяется общее число элементов; • ошибка в вычислении индекса.
BB 000	BB 010 BB 020	Логические ошибки: • ошибка в определении границ • логически неверное ветвление
CC 000	CC 010	Ошибки ввода/вывода: • информация не выводится
DD 000	DD 030	Ошибки манипулирования данными: - данные потеряны или не хранятся

Правила сбора и анализа статистики ошибок

- При сборке и анализе данных об ошибках придерживаются следующих правил:
- если N общее число прогонов; K априори известное число типов, то определяется это функцией:

$$Y_i = \begin{cases} a_i, N_i > 0; \\ 0, N_i = 0. \end{cases}$$

где a_i — вероятность выявления при тестировании ошибки i-готипа.

В этой модели вероятность должна оцениваться на основании априорной информации или данных предшествующего периода функционирования однотипных программных средств.

Ошибки программы по категориям и вероятности их появления

№ ошибки	Тип	Вероятность появления
1	ошибка вычислений	0,09
2	логическая ошибка	0,26
3	ошибки ввода/вывода	0,16
4	ошибки манипулирования данными	0,18
5	ошибки сопряжения	0,17
6	ошибки определения данных	0,08
7	ошибки в базах данных	0,06