Transfer Functions

Agenda

- Transfer Functions
- · A Couple of Examples
- · Circuit Analysis Using MATLAB LTI Transfer Function Block
- Circuit Simulation Using Simulink Transfer Function Block

Transfer Functions for Circuits

When doing circuit analysis with components defined in the complex frequency domain, the ratio of the output voltage $V_{\rm out}(s)$ ro the input voltage $V_{\rm in}(s)$ under zero initial conditions is of great interest. This ratio is known as the *voltage transfer function* denoted $G_{\nu}(s)$:

$$G_{\nu}(s) = \frac{V_{\text{out}}(s)}{V_{\text{in}}(s)}$$

Similarly, the ratio of the output current $I_{out}(s)$ to the input current $I_{in}(s)$ under zero initial conditions, is called the *current transfer function* denoted $G_i(s)$:

$$G_i(s) = \frac{I_{\text{out}}(s)}{I_{\text{in}}(s)}$$

In practice, the current transfer function is rarely used, so we will use the voltage transfer function denoted:

$$G(s) = \frac{V_{\text{out}}(s)}{V_{\text{in}}(s)}$$

Example 6

Derive an expression for the transfer function G(s) for the circuit below. In this circuit R_g represents the internal resistance of the applied (voltage) source ν_s , and R_L represents the resistance of the load that consists of R_L , L and C.

Sketch of Solution

- Replace $v_s(t)$, R_g , R_L , L and C by their transformed (complex frequency) equivalents: $V_s(s)$, R_g , R_L , sL and 1/(sC)
- Use the $Voltage\ Divider\ Rule$ to determine $V_{\mathrm{out}}(s)$ as a function of $V_s(s)$
- Form G(s) by writing down the ratio $V_{\mathrm{out}}(s)/V_s(s)$

Example 7

Compute the transfer function for the op-amp circuit shown below in terms of the circuit constants R_1 , R_2 , R_3 , C_1 and C_2 . Then replace the complex variable s with $j\omega$, and the circuit constants with their numerical values and plot the magnitude $|G(s)| = |V_{\rm out}(s)/V_{\rm in}(s)|$ versus radian frequency ω .

Sketch of Solution

- Replace the components and voltages in the circuit diagram with their complex frequency equivalents
- Use nodal analysis to determine the voltages at the nodes either side of the 50K resistor R_3
- Note that the voltage at the input to the op-amp is a virtual ground
- Solve for $V_{\mathrm{out}}(s)$ as a function of $V_{\mathrm{in}}(s)$
- Form the reciprocal $G(s) = V_{\rm out}(s)/V_{\rm in}(s)$
- Use MATLAB to calculate the component values, then replace s by $j\omega$.
- Plot $|G(j\omega)|$ on log-linear "paper"

The Matlab Bit

See attached script: solution7.m (matlab/solution7.m).

Using Transfer Functions in Matlab for System Analysis

Please use the file <u>tf_matlab.m (matlab/tf_matlab.m)</u> to explore the Transfer Function features provide by Matlab. Use the *publish* option to generate a nicely formatted document.

Using Transfer Functions in Simulink for System Simulation

The Simulink transfer function (**Transfer Fcn**) block shown above implements a transfer function representing a general input output function

$$G(s) = \frac{N(s)}{D(s)}$$

that it is not specific nor restricted to circuit analysis. It can, however be used in modelling and simulation studies.

Example

Recast Example 7 as a Matlab problem using the LTI Transfer Function block. For simplicity use parameters $R_1=R_2=R_3=1~\Omega$ and $C_1=C_2=1~\mathrm{F}$. Calculate the step response using the LTI functions.

The Matlab solution: example8.m (matlab/example8.m)

Verify the result with Simulink.