# Data Modelling Methods-l

CS771: Introduction to Machine Learning
Purushottam Kar









































August 18, 2017











August 18, 2017















# The generative story for labelled data "generative" model August 18, 2017

# The generative story for labelled data "generative" model "discriminative" model August 18, 2017 CS771: Intro to ML















$$\mathbb{P}\left[y \mid \mathbf{x}^t\right] = \frac{\mathbb{P}\left[\mathbf{x}^t, y\right]}{\mathbb{P}\left[\mathbf{x}^t\right]}$$







$$\mathbb{P}\left[y \mid \mathbf{x}^t\right] = \frac{\mathbb{P}\left[\mathbf{x}^t, y\right]}{\mathbb{P}\left[\mathbf{x}^t\right]}$$

$$\mathbb{P}\left[y\,|\,\mathbf{x}^t\right] = \frac{\mathbb{P}\left[\mathbf{x}^t,y\right]}{\mathbb{P}\left[\mathbf{x}^t\right]} \quad \mathbb{P}\left[\bullet\,|\,\mathbf{x}^t\right] > \mathbb{P}\left[\bullet\,|\,\mathbf{x}^t\right] \quad \hat{y}^t = \bullet$$







$$\mathbb{P}\left[y\,|\,\mathbf{x}^{t}\right] = \frac{\mathbb{P}\left[\mathbf{x}^{t},y\right]}{\mathbb{P}\left[\mathbf{x}^{t}\right]} \quad \mathbb{P}\left[\bullet\,|\,\mathbf{x}^{t}\right] > \mathbb{P}\left[\bullet\,|\,\mathbf{x}^{t}\right] \quad \hat{y}^{t} = \bullet$$

$$\mathbb{P}\left[\bullet\,|\,\mathbf{x}^{t}\right] > \mathbb{P}\left[\bullet\,|\,\mathbf{x}^{t}\right] \quad \hat{y}^{t} = \bullet$$

$$\mathbb{P}\left[\bullet \mid \mathbf{x}^t\right] > \mathbb{P}\left[\bullet \mid \mathbf{x}^t\right] \quad \hat{y}^t = \bullet$$

$$\mathbb{P}\left[ullet | \mathbf{x}^t 
ight] > \mathbb{P}\left[ullet | \mathbf{x}^t 
ight]$$





Predict the most likely label



$$\mathbb{P}\left[y \mid \mathbf{x}^t\right] = \frac{\mathbb{P}\left[\mathbf{x}^t, y\right]}{\mathbb{P}\left[\mathbf{x}^t\right]}$$

$$\mathbb{P}\left[y\,|\,\mathbf{x}^{t}\right] = \frac{\mathbb{P}\left[\mathbf{x}^{t},y\right]}{\mathbb{P}\left[\mathbf{x}^{t}\right]} \quad \mathbb{P}\left[\bullet\,|\,\mathbf{x}^{t}\right] > \mathbb{P}\left[\bullet\,|\,\mathbf{x}^{t}\right] \quad \hat{y}^{t} = \bullet$$

$$\mathbb{P}\left[\bullet\,|\,\mathbf{x}^{t}\right] > \mathbb{P}\left[\bullet\,|\,\mathbf{x}^{t}\right] \quad \hat{y}^{t} = \bullet$$

$$\mathbb{P}\left[ullet \left| \mathbf{x}^t 
ight] > \mathbb{P}\left[ullet \left| \mathbf{x}^t 
ight] \ \hat{y}^t = 0$$





Predict the most likely label



$$\mathbb{P}\left[y \mid \mathbf{x}^t\right] = \frac{\mathbb{P}\left[\mathbf{x}^t, y\right]}{\mathbb{P}\left[\mathbf{x}^t\right]}$$

$$\mathbb{P}\left[y \mid \mathbf{x}^{t}\right] = \frac{\mathbb{P}\left[\mathbf{x}^{t}, y\right]}{\mathbb{P}\left[\mathbf{x}^{t}\right]} \quad \mathbb{P}\left[\bullet, \mathbf{x}^{t}\right] > \mathbb{P}\left[\bullet, \mathbf{x}^{t}\right] \quad \hat{y}^{t} = \bullet$$

$$\mathbb{P}\left[\bullet, \mathbf{x}^{t}\right] > \mathbb{P}\left[\bullet, \mathbf{x}^{t}\right] \quad \hat{y}^{t} = \bullet$$

$$\mathbb{P}\left[ullet,\mathbf{x}^{t}
ight]>\mathbb{P}\left[ullet,\mathbf{x}^{t}
ight]\;\;\hat{y}^{t}=0$$





A generative model can make predictions!

Predict the most likely label



$$\mathbb{P}\left[y \mid \mathbf{x}^t\right] = \frac{\mathbb{P}\left[\mathbf{x}^t, y\right]}{\mathbb{P}\left[\mathbf{x}^t\right]}$$

$$\mathbb{P}\left[ullet,\mathbf{x}^{t}
ight] > \mathbb{P}\left[ullet,\mathbf{x}^{t}
ight] \;\; \hat{y}^{t} = ullet$$

$$\mathbb{P}\left[ullet , \mathbf{x}^t
ight] > \mathbb{P}\left[ullet , \mathbf{x}^t
ight] \;\; \hat{y}^t = ullet$$





A generative model can make predictions!

Predict the most likely label



$$\mathbb{P}\left[y \mid \mathbf{x}^t\right] = \frac{\mathbb{P}\left[\mathbf{x}^t, y\right]}{\mathbb{P}\left[\mathbf{x}^t\right]}$$

$$\mathbb{P}\left[ullet,\mathbf{x}^{t}
ight] > \mathbb{P}\left[ullet,\mathbf{x}^{t}
ight] \;\; \hat{y}^{t} = ullet$$

$$\mathbb{P}\left[ullet , \mathbf{x}^t
ight] > \mathbb{P}\left[ullet , \mathbf{x}^t
ight] \;\; \hat{y}^t = ullet$$







A generative model can make predictions!

Predict the most likely label



$$\mathbb{P}\left[y \mid \mathbf{x}^t\right] = \frac{\mathbb{P}\left[\mathbf{x}^t, y\right]}{\mathbb{P}\left[\mathbf{x}^t\right]}$$

$$\mathbb{P}\left[ullet,\mathbf{x}^{t}
ight] > \mathbb{P}\left[ullet,\mathbf{x}^{t}
ight] \ \hat{y}^{t} = ullet$$

$$\mathbb{P}\left[ullet , \mathbf{x}^t
ight] > \mathbb{P}\left[ullet , \mathbf{x}^t
ight] \;\; \hat{y}^t = ullet$$







A generative model can make predictions!

Predict the most likely label



$$\mathbb{P}\left[y \mid \mathbf{x}^t\right] = \frac{\mathbb{P}\left[\mathbf{x}^t, y\right]}{\mathbb{P}\left[\mathbf{x}^t\right]}$$

$$\mathbb{P}\left[ullet,\mathbf{x}^{t}
ight] > \mathbb{P}\left[ullet,\mathbf{x}^{t}
ight] \ \hat{y}^{t} = ullet$$

$$\mathbb{P}\left[ullet ,\mathbf{x}^{t}
ight] > \mathbb{P}\left[ullet ,\mathbf{x}^{t}
ight] \;\; \hat{y}^{t} = ullet$$







A generative model can make predictions!

Predict the most likely label



$$\mathbb{P}\left[y \mid \mathbf{x}^t\right] = \frac{\mathbb{P}\left[\mathbf{x}^t, y\right]}{\mathbb{P}\left[\mathbf{x}^t\right]}$$

$$\mathbb{P}\left[ullet,\mathbf{x}^{t}
ight] > \mathbb{P}\left[ullet,\mathbf{x}^{t}
ight] \ \hat{y}^{t} = ullet$$

$$\mathbb{P}\left[ullet ,\mathbf{x}^{t}
ight] > \mathbb{P}\left[ullet ,\mathbf{x}^{t}
ight] \;\; \hat{y}^{t} = ullet$$



A generative model can generate data!







A generative model can make predictions!

Predict the most likely label



$$\mathbb{P}\left[y \mid \mathbf{x}^t\right] = \frac{\mathbb{P}\left[\mathbf{x}^t, y\right]}{\mathbb{P}\left[\mathbf{x}^t\right]}$$

$$\mathbb{P}\left[ullet,\mathbf{x}^{t}
ight]>\mathbb{P}\left[ullet,\mathbf{x}^{t}
ight]\ \hat{y}^{t}=ullet$$

$$\mathbb{P}\left[ullet,\mathbf{x}^{t}
ight]>\mathbb{P}\left[ullet,\mathbf{x}^{t}
ight]\ \hat{y}^{t}=ullet$$





A generative model can generate data!

torch.ch







My First Generative Model
"Mixture" of 3 Gaussians

















"Mixture" of 3 Gaussians

Can we try something simpler first?

On the real line

 $x \in \mathbb{R}$ ,  $y \in \{1, 2, 3\}$ 



0

1



"Mixture" of 3 Gaussians

Can we try something simpler first?

On the real line

 $x \in \mathbb{R}$ ,  $y \in \{1, 2, 3\}$ 



















"Mixture" of 3 Bernoulli's

Can I learn this mixture?

 $x \in \{0,1\},\ y \in \{1,2,3\}$ 





"Mixture" of 3 Bernoulli's

Can I learn this mixture?

 $x \in \{0,1\},\ y \in \{1,2,3\}$ 





"Mixture" of 3 Bernoulli's

Can I learn this mixture?

 $x \in \{0,1\},\ y \in \{1,2,3\}$ 





"Mixture" of 3 Bernoulli's

Can I learn/this mixture?

 $x \in \{0,1\},\ y \in \{1,2,3\}$ 





"Mixture" of 3 Bernoulli's

 $x \in \{0,1\},\ y \in \{1,2,3\}$ 

Can I learn/this mixture?

E.g. x can denote whether the word "urgent" appears in the mail or not

What is wrong? Why am I getting  $\mathbb{P}[0, \bullet] + \mathbb{P}[1, \bullet] = 0.5?$ 





"Mixture" of 3 Bernoulli's

 $x \in \{0,1\},\ y \in \{1,2,3\}$ 

Can I learn / this mixture?

E.g. x can denote whether the word "urgent" appears in the mail or not

What is wrong? Why am I getting  $\mathbb{P}[0, \bullet] + \mathbb{P}[1, \bullet] = 0.5?$ 





"Mixture" of 3 Bernoulli's

 $x \in \{0,1\},\ y \in \{1,2,3\}$ 

Can I learn / this mixture?

E.g. x can denote whether the word "urgent" appears in the mail or not

What is wrong? Why am I getting  $\mathbb{P}[0, \bullet] + \mathbb{P}[1, \bullet] = 0.5$ ?





"Mixture" of 3 Bernoulli's  $x \in \{0,1\},\$  $y \in \{1, 2, 3\}$ 

Can I learn this mixture?

E.g. x can denote whether the word "urgent" appears in the mail or not

What is wrong? Why am I getting  $\mathbb{P}[0, \bullet] + \mathbb{P}[1, \bullet] = 0.5?$ 





"Mixture" of 3 Bernoulli's  $x \in \{0,1\},\$  $y \in \{1, 2, 3\}$ 

Can I learn this mixture?

E.g. x can denote whether the word "urgent" appears in the mail or not

What is wrong? Why am I getting  $\mathbb{P}[0, \bullet] + \mathbb{P}[1, \bullet] = 0.5?$ 





"Mixture" of 3 Bernoulli's

Can I learn/this mixture?

0.1

0.15 0.15

 $x \in \{0,1\},\ y \in \{1,2,3\}$ 















#### My First Generative Model $x \in \{0,1\},\$ "Mixture" of 3 Bernoulli's $y \in \{1, 2, 3\}$ E.g. x can denote 0.15 0.16 0.15 whether the word Can I learn 0.1 "urgent" appears in this mixture? the mail or not 0.04 0000000000 0.8 0.8 0.5 0.5 Class proportion/ 0.3 · 0.5 · Training 0.2 weight/popularity/ data imbalance

#### My First Generative Model $x \in \{0,1\},$ "Mixture" of 3 Bernoulli's $y \in \{1, 2, 3\}$ E.g. x can denote 0.15 0.16 0.15 whether the word Can I learn "urgent" appears in 0.1 this mixture? the mail or not 0.04 Can we estimate these parameters 0000000000 using training data? 8.0 0.8 0.5 0.5 Class proportion/ 0.3 · 0.5 · Training 0.2 weight/popularity/ data imbalance



Training

data

"Mixture" of 3 Bernoulli's

Can I learn this mixture?  $x \in \{0,1\},\ y \in \{1,2,3\}$ 





"Mixture" of 3 Bernoulli's  $x \in \{0,1\},\$  $y \in \{1, 2, 3\}$ 

Can I learn this mixture?

E.g. x can denote whether the word "urgent" appears in the mail or not

$$\mathbb{P}\left[ullet\right]pprox rac{| au|}{-}$$

$$\mathbb{P}\left[\bullet\right] \approx \frac{|i:y^i = \bullet|}{}$$

CS771: Intro to ML

Training data

#### My First Generative Model $x \in \{0,1\},\$ "Mixture" of 3 Bernoulli's $y \in \{1, 2, 3\}$ E.g. x can denote 0.15 0.16 0.15 whether the word Can I learn 0.1 "urgent" appears in this mixture? the mail or not 0.04 0000000000 Total number Training of data points data CS771: Intro to ML

#### My First Generative Model $x \in \{0,1\},\$ "Mixture" of 3 Bernoulli's $y \in \{1, 2, 3\}$ E.g. x can denote 0.15 0.16 0.15 whether the word Can I learn 0.1 "urgent" appears in this mixture? the mail or not 0.04 0000000000 Total number Training of data points data CS771: Intro to ML

#### My First Generative Model $x \in \{0,1\},\$ "Mixture" of 3 Bernoulli's $y \in \{1, 2, 3\}$ E.g. x can denote 0.15 0.16 0.15 whether the word Can I learn 0.1 "urgent" appears in this mixture? the mail or not 0.04 0000000000 Total number Training of data points data CS771: Intro to ML



"Mixture" of 3 Bernoulli's

 $x \in \{0,1\},\ y \in \{1,2,3\}$ 

Can I learn this mixture?

E.g. x can denote whether the word "urgent" appears in the mail or not

Can be shown to be the MLE!



 $i:y^i=$ 

Total number of data points



Training data



"Mixture" of 3 Bernoulli's

 $x \in \{0,1\},\ y \in \{1,2,3\}$ 

Can I learn/this mixture?

E.g. x can denote whether the word "urgent" appears in the mail or not

Can be shown to be the MLE!

Can do Bayesian inference too!



 $i:y^i=$ 

Total number of data points





"Mixture" of 3 Bernoulli's

 $x \in \{0,1\},\ y \in \{1,2,3\}$ 

Can I learn this mixture?

E.g. x can denote whether the word "urgent" appears in the mail or not

Can be shown to be the MLE!

Can do Bayesian inference too!



 $i:y^i=$ 

Total number of data points





"Mixture" of 3 Bernoulli's

Can I learn/this mixture?

 $x \in \{0,1\},\ y \in \{1,2,3\}$ 

E.g. x can denote whether the word "urgent" appears in the mail or not





"Mixture" of 3 Bernoulli's  $x \in \{0,1\},\$  $y \in \{1, 2, 3\}$ 

Can I learn this mixture?

E.g. x can denote whether the word "urgent" appears in the mail or not

$$\mathbb{P}\left[x=0\,|\,\bullet\,\right] \approx \frac{1}{2}$$

$$\mathbb{P}\left[x=0\,|\,\bullet\,\right] \approx \frac{\left|i:x^i=0\cap y^i=\bullet\right|}{\left|i:y^i=\bullet\right|}$$

$$|i:y^i= left$$



"Mixture" of 3 Bernoulli's

 $x \in \{0,1\},\ y \in \{1,2,3\}$ 

Can I learn/ this mixture? E.g. x can denote whether the word "urgent" appears in the mail or not

$$\mathbb{P}\left[x=0 \mid \bullet\right] \approx \frac{\left|i: x^i=0 \cap y^i=\bullet\right|}{\left|i: y^i=\bullet\right|}$$

Total number of data points with label

Training data

Sept 6, 2017

CS771: Intro to ML



"Mixture" of 3 Bernoulli's

 $x \in \{0,1\},\ y \in \{1,2,3\}$ 

Can I learn/ this mixture? E.g. x can denote whether the word "urgent" appears in the mail or not

$$\mathbb{P}[x=1| \bullet] = 1 - \mathbb{P}[x=0| \bullet]$$

$$\mathbb{P}\left[x=0\,|\,\bullet\,\right] \approx \frac{\left|i:x^i=0\cap y^i=\bullet\right|}{\left|i:y^i=\bullet\right|}$$

Total number of data points with label

Sept 6, 2017 Training data

CS771: Intro to ML



"Mixture" of 3 Bernoulli's  $x \in \{0,1\},\$  $y \in \{1, 2, 3\}$ 

Can I learn this mixture?

E.g. x can denote whether the word "urgent" appears in the mail or not

$$\mathbb{P}[x=1| \bullet] = 1 - \mathbb{P}[x=0| \bullet]$$

$$\mathbb{P}\left[x=0 \mid \bullet\right] \approx \frac{\left|i: x^i=0 \cap y^i=\bullet\right|}{\left|i: y^i=\bullet\right|}$$

CS771: Intro to ML

Total number of data points with label



"Mixture" of 3 Bernoulli's

 $x \in \{0,1\},\ y \in \{1,2,3\}$ 

Can I learn/ this mixture? E.g. x can denote whether the word "urgent" appears in the mail or not

$$\mathbb{P}[x=1| \bullet] = 1 - \mathbb{P}[x=0| \bullet]$$

$$\mathbb{P}\left[x=0 \mid \bullet\right] \approx \frac{\left|i: x^i=0 \cap y^i=\bullet\right|}{\left|i: y^i=\bullet\right|}$$

Total number of data points with label

Training data

Sept 6, 2017

CS771: Intro to ML



"Mixture" of 3 Bernoulli's

 $x \in \{0,1\},\ y \in \{1,2,3\}$ 

Can I learn/ this mixture? E.g. x can denote whether the word "urgent" appears in the mail or not

$$\mathbb{P}[x=1| \bullet] = 1 - \mathbb{P}[x=0| \bullet]$$

Can be shown to be the MLE!

$$\mathbb{P}\left[x=0 \mid \bullet\right] \approx \frac{\left|i:x^{i}=0 \cap y^{i}=\bullet\right|}{\left|i:x^{i}=0 \cap y^{i}=\bullet\right|}$$

 $i:y^i=$ 

Total number of data points with label

Training data

Sept 6, 2017

CS771: Intro to ML



"Mixture" of 3 Bernoulli's

 $x \in \{0,1\},\ y \in \{1,2,3\}$ 

Can I learn/ this mixture? E.g. x can denote whether the word "urgent" appears in the mail or not

$$\mathbb{P}[x=1| \bullet] = 1 - \mathbb{P}[x=0| \bullet]$$

Can be shown to be the MLE!

CS771: Intro to ML

$$\mathbb{P}\left[x=0\mid\bullet\right]\approx\frac{\left|i:x^{i}=0\cap y^{i}=\bullet\right|}{\left|i:x^{i}=0\right|}$$

$$|i:y^i =$$

Total number of data points with label

Training data

Sept 6, 2017



"Mixture" of 3 Bernoulli's

 $x \in \{0,1\},\ y \in \{1,2,3\}$ 

Can I learn/ this mixture? E.g. x can denote whether the word "urgent" appears in the mail or not

$$\mathbb{P}[x=1| \bullet] = 1 - \mathbb{P}[x=0| \bullet]$$

Can be shown to be the MLE!

Generative ≠ Bayesian

$$= 0 \cap y^i = \bigcirc$$

$$: y^i =$$

Total number of data points with label



Sept 6, 2017





My First Generative Model "Mixture" of

3 Gaussians



"Mixture" of 3 Gaussians

 $x \in \mathbb{R}$ ,  $y \in \{1, 2, 3\}$ 





"Mixture" of 3 Gaussians  $x \in \mathbb{R}$ ,  $y \in \{1, 2, 3\}$ 

E.g. x could be room temperature, y could be comfort level for user, too hot, just right, too cold: ML for AC





"Mixture" of 3 Gaussians

 $x \in \mathbb{R}$ ,  $y \in \{1, 2, 3\}$ 



E.g. x could be room temperature, y could be comfort level for user, too hot, just right, too cold: ML for AC



"Mixture" of 3 Gaussians



We know/assume they are Gaussians

What we don't know/assume is what is their mean etc

E.g. x could be room temperature, y could be comfort level for user, too hot, just right, too cold: ML for AC



"Mixture" of 3 Gaussians



We know/assume they are Gaussians

What we don't know/assume is what is their mean etc

E.g. x could be room temperature, y could be comfort level for user, too hot, just right, too cold: ML for AC





"Mixture" of 3 Gaussians

 $x \in \mathbb{R}$ ,  $y \in \{1, 2, 3\}$ 

We know/assume they are Gaussians

What we don't know/assume is what is their mean etc

E.g. x could be room temperature, y could be comfort level for user, too hot, just right, too cold: ML for AC





Can estimate the class proportions, and means and variances of these 1D Gaussians using training data!



"Mixture" of 3 Gaussians

 $x \in \mathbb{R}$ ,  $y \in \{1, 2, 3\}$ 

We know/assume they are Gaussians

E.g. x could be room temperature, y could be comfort level for user, too hot, just right, too cold: ML for AC

What we don't know/assume is what is their mean etc

Can estimate the class proportions, and means and

variances of these 1D \_\_\_ Gaussians using training data! Read [DAU] Sections 9.1-9.5



"Mixture" of 3 Gaussians

 $x \in \mathbb{R}$ ,  $y \in \{1, 2, 3\}$ 

We know/assume they are Gaussians

What we don't know/assume is what is their mean etc

E.g. x could be room temperature, y could be comfort level for user, too hot, just right, too cold: ML for AC

+

+

Can estimate the class proportions, and means and variances of these 1D

Gaussians using training data!

Read [DAU] Sections 9.1-9.5







"Mixture" of 3 Gaussians



"Mixture" of 3 Gaussians

 $x \in \mathbb{R}$ ,  $y \in \{1, 2, 3\}$ 





"Mixture" of 3 Gaussians

 $x \in \mathbb{R}^d$ ,  $y \in \{1, 2, 3\}$ 





$$x \in \mathbb{R}^d$$
,  $y \in \{1, 2, 3\}$ 

$$\mathbb{P}\left[\mathbf{x}, y\right] = \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x} \mid y\right]$$



"Mixture" of 3 Gaussians

$$x \in \mathbb{R}^d$$
,  $y \in \{1, 2, 3\}$ 



$$\mathbb{P}\left[\mathbf{x}, y\right] = \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x} \mid y\right]$$



"Mixture" of 3 Gaussians

$$x \in \mathbb{R}^d$$
,  $y \in \{1, 2, 3\}$ 



$$\mathbb{P}\left[\mathbf{x}, y\right] = \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x} \mid y\right]$$
$$= \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{d} \mid y\right]$$



"Mixture" of 3 Gaussians

 $x \in \mathbb{R}^d$ ,  $y \in \{1, 2, 3\}$ 



$$\mathbb{P}\left[\mathbf{x}, y\right] = \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x} \mid y\right]$$

$$= \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{d} \mid y\right]$$

$$= \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x}_{1} \mid \mathbf{x}_{2}, \mathbf{x}_{3}, \dots, \mathbf{x}^{d}, y\right] \cdot \mathbb{P}\left[\mathbf{x}_{2}, \mathbf{x}_{3}, \dots, \mathbf{x}^{d} \mid y\right]$$



"Mixture" of 3 Gaussians

 $x \in \mathbb{R}^d$ ,  $y \in \{1, 2, 3\}$ 



$$\mathbb{P}\left[\mathbf{x}, y\right] = \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x} \mid y\right] \\
= \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{d} \mid y\right] \\
= \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x}_{1} \mid \mathbf{x}_{2}, \mathbf{x}_{3}, \dots, \mathbf{x}^{d}, y\right] \cdot \mathbb{P}\left[\mathbf{x}_{2}, \mathbf{x}_{3}, \dots, \mathbf{x}^{d} \mid y\right] \\
= \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x}_{1} \mid y\right] \cdot \mathbb{P}\left[\mathbf{x}_{2}, \mathbf{x}_{3}, \dots, \mathbf{x}^{d} \mid y\right]$$



"Mixture" of 3 Gaussians

$$x \in \mathbb{R}^d$$
,  $y \in \{1, 2, 3\}$ 



Chain rule of probabilty

$$\mathbb{P}\left[\mathbf{x}, y\right] = \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x} \mid y\right] \\
= \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{d} \mid y\right] \\
= \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x}_{1} \mid \mathbf{x}_{2}, \mathbf{x}_{3}, \dots, \mathbf{x}^{d}, y\right] \cdot \mathbb{P}\left[\mathbf{x}_{2}, \mathbf{x}_{3}, \dots, \mathbf{x}^{d} \mid y\right] \\
= \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x}_{1} \mid y\right] \cdot \mathbb{P}\left[\mathbf{x}_{2}, \mathbf{x}_{3}, \dots, \mathbf{x}^{d} \mid y\right]$$

Naïve Bayes assumption  $\mathbb{P}[x_j | x_k, y] = \mathbb{P}[x_j | y]$  if  $j \neq k$ 

"Mixture" of 3 Gaussians

 $x \in \mathbb{R}^d$ ,  $y \in \{1, 2, 3\}$ 



Chain rule of probabilty

$$\begin{split} \mathbb{P}\left[\mathbf{x},y\right] &= \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x} \mid y\right] \\ &= \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{d} \mid y\right] \\ &= \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x}_{1} \mid \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}^{d}, y\right] \cdot \mathbb{P}\left[\mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}^{d} \mid y\right] \\ &= \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x}_{1} \mid y\right] \cdot \mathbb{P}\left[\mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}^{d} \mid y\right] \\ &= \ldots \end{split}$$

Naïve Bayes assumption  $\mathbb{P}[x_j | x_k, y] = \mathbb{P}[x_j | y]$  if  $j \neq k$ 

"Mixture" of 3 Gaussians

$$x \in \mathbb{R}^d$$
,  $y \in \{1, 2, 3\}$ 



Chain rule of probabilty

$$\begin{split} \mathbb{P}\left[\mathbf{x},y\right] &= \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x} \mid y\right] \\ &= \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{d} \mid y\right] \\ &= \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x}_{1} \mid \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}^{d}, y\right] \cdot \mathbb{P}\left[\mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}^{d} \mid y\right] \\ &= \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x}_{1} \mid y\right] \cdot \mathbb{P}\left[\mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}^{d} \mid y\right] \\ &= \ldots \end{split}$$

 $= \mathbb{P}\left[y\right] \cdot \prod \mathbb{P}\left[\mathbf{x}_i \mid y\right]$ 

Naïve Bayes assumption  $\mathbb{P}[x_i|x_k,y] = \mathbb{P}[x_i|y] \text{ if } j \neq k$ 

"Mixture" of 3 Gaussians

$$x \in \mathbb{R}^d$$
,  $y \in \{1, 2, 3\}$ 



Chain rule of probabilty

$$\mathbb{P}\left[\mathbf{x}, y\right] = \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x} \mid y\right] \\
= \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{d} \mid y\right] \\
= \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x}_{1} \mid \mathbf{x}_{2}, \mathbf{x}_{3}, \dots, \mathbf{x}^{d}, y\right] \cdot \mathbb{P}\left[\mathbf{x}_{2}, \mathbf{x}_{3}, \dots, \mathbf{x}^{d} \mid y\right] \\
= \mathbb{P}\left[y\right] \cdot \mathbb{P}\left[\mathbf{x}_{1} \mid y\right] \cdot \mathbb{P}\left[\mathbf{x}_{2}, \mathbf{x}_{3}, \dots, \mathbf{x}^{d} \mid y\right]$$

$$= \mathbb{P}\left[y\right] \cdot \prod_{i=1}^{d} \mathbb{P}\left[\mathbf{x}_{i} \mid y\right]$$

Already seen how to model in 1D

Naïve Bayes assumption  $\mathbb{P}[x_j | x_k, y] = \mathbb{P}[x_j | y]$  if  $j \neq k$ 

# App: Email Categorizer using Naïve Bayes



# App: Email Categorizer using Naïve Bayes

| HEC      | Do          | SA                 | Supervisor                |  |
|----------|-------------|--------------------|---------------------------|--|
| ☐ ☆ □ Ho | > HallPresi |                    | Awesome talk at eSumm     |  |
| □ ☆ □ HE | C           | Urgen <sup>.</sup> | Urgent! Mess bill overdue |  |
| □ ☆ □ HE | С           | Urgen <sup>.</sup> | t! Canteen bill over      |  |





Sept 6, 2017



$$y \in \{ \bullet, \bullet, \bullet \}$$



CS771: Intro to ML

Sept 6, 2017



Sept 6, 2017



Choice of words crucial - stemming, throw away articles etc

Bag of words feature can record just occurrence or count





talk meet project wake meeting wallet keys awesome lost trip lost mess report

$$y \in \{ \bullet, \bullet, \bullet \}$$

HEC DoSA Supervisor

☐ ☆ ☐ HallPresi Awesome talk at eSumm
☐ ☆ ☐ HEC Urgent! Mess bill overdue
☐ ☆ ☐ HEC Urgent! Canteen bill over

Commonly used in NLP

Choice of words crucial
– stemming, throw
away articles etc

Bag of words feature can record just occurrence or count

 $\mathbf{X}$ 



talk meet project wake meeting wallet keys awesome lost trip lost mess report

$$y \in \{ \bullet, \bullet, \bullet \}$$

Commonly used in NLP HEC DoSA Supervisor Choice of words crucial - stemming, throw away articles etc HallPresi Awesome talk at eSumm Bag of words feature Urgent! Mess bill overdue HEC can record just occurrence or count **Urgent! Canteen bill over** HEC ()()0 talk meet project wake meeting wallet keys awesome lost trip lost mess report  $y \in \{ \bullet, \bullet, \bullet, \bullet \}$ Usually very high dimensional

CS771: Intro to ML

Sept 6, 2017

Commonly used in NLP HEC **DoSA** Supervisor Choice of words crucial - stemming, throw away articles etc HallPresi Awesome talk at eSumm Bag of words feature Urgent! Mess bill overdue HEC can record just occurrence or count **Urgent! Canteen bill over** HEC ()()0 talk meet project wake meeting wallet keys awesome lost trip lost mess report  $y \in \{ \bullet, \bullet, \bullet, \bullet \}$ Usually very high Usually very dimensional very sparse

Sept 6, 2017



$$\mathbb{P}[\bullet] = \frac{|\#\text{emails from supervisor}|}{|\#\text{total emails}|}$$



$$\mathbb{P}[\bullet] = \frac{|\text{\#emails from supervisor}|}{|\text{\#total emails}|}$$

```
\mathbb{P}[\mathsf{awesome} = 1 \,|\, \bullet] = \frac{|\mathsf{#emails}\;\mathsf{from}\;\mathsf{sup}.\;\mathsf{with}\;\mathsf{"awesome"}|}{|\mathsf{#total}\;\mathsf{emails}\;\mathsf{from}\;\mathsf{supervisor}|}
```



$$\mathbb{P}[\bullet] = \frac{|\text{\#emails from supervisor}|}{|\text{\#total emails}|}$$

$$\mathbb{P}[\mathsf{awesome} = 1 \mid \bullet] = \frac{|\mathsf{#emails from sup. with "awesome"}|}{|\mathsf{#total emails from supervisor}|}$$

At test time ...



$$\mathbb{P}[\bullet] = \frac{|\text{\#emails from supervisor}|}{|\text{\#total emails}|}$$

$$\mathbb{P}[\mathsf{awesome} = 1 \mid \bullet] = \frac{|\mathsf{#emails} \; \mathsf{from} \; \mathsf{sup.} \; \mathsf{with} \; |\mathsf{awesome}||}{|\mathsf{#total} \; \mathsf{emails} \; \mathsf{from} \; \mathsf{supervisor}|}$$

At test time ...

$$\mathbb{P}[\mathbf{x}^t, \bullet] = \mathbb{P}[\bullet] \cdot \prod_{j=1}^{a} \mathbb{P}[\mathbf{x}_i^t | \bullet]$$



$$\mathbb{P}[\bullet] = \frac{|\#\text{emails from supervisor}|}{|\#\text{total emails}|}$$

$$\mathbb{P}[\text{awesome} = 1 \mid \bullet] = \frac{|\text{#emails from sup. with "awesome"}|}{|\text{#total emails from supervisor}|}$$

At test time ...

$$\mathbb{P}[awesome = 0 | \bullet]$$

$$= 1 - \mathbb{P}[awesome = 1 | \bullet]$$

$$\mathbb{P}[\mathbf{x}^t, \bullet] = \mathbb{P}[\bullet] \cdot \prod_{j=1}^{a} \mathbb{P}[\mathbf{x}_i^t | \bullet]$$



$$\mathbb{P}[\bullet] = \frac{|\text{\#emails from supervisor}|}{|\text{\#total emails}|}$$

$$\mathbb{P}[\text{awesome} = 1 \mid \bullet] = \frac{|\text{\#emails from sup. with "awesome"}|}{|\text{\#total emails from supervisor}|}$$

At test time ...

$$\mathbb{P}[awesome = 0 | \bullet] \\
= 1 - \mathbb{P}[awesome = 1 | \bullet]$$

 $\mathbb{P}[\mathbf{x}^{t}, \bullet] = \mathbb{P}[\bullet] \cdot \prod_{j=1}^{a} \mathbb{P}[\mathbf{x}_{i}^{t} | \bullet]$   $\hat{y}^{t} = \arg \max{\{\mathbb{P}[\mathbf{x}^{t}, \bullet], \mathbb{P}[\mathbf{x}^{t}, \bullet], \mathbb{P}[\mathbf{x}^{t}, \bullet]\}}$ 



$$\mathbb{P}[\bullet] = \frac{|\#\text{emails from supervisor}|}{|\#\text{total emails}|}$$

$$\mathbb{P}[\text{awesome} = 1 \mid \bullet] = \frac{|\text{#emails from sup. with "awesome"}|}{|\text{#total emails from supervisor}|}$$

At test time ...

$$\mathbb{P}[awesome = 0 | \bullet]$$

$$= 1 - \mathbb{P}[awesome = 1 | \bullet]$$

$$\mathbb{P}[\mathbf{x}^t, \bullet] = \mathbb{P}[\bullet] \cdot \prod_{i=1}^{a} \mathbb{P}[\mathbf{x}_i^t | \bullet]$$

$$\hat{y}^t = \arg\max\{\mathbb{P}[\mathbf{x}^t, \bullet], \mathbb{P}[\mathbf{x}^t, \bullet], \mathbb{P}[\mathbf{x}^t, \bullet]\}$$



Will give the same result as

 $arg \max{\mathbb{P}[\bullet \mid \mathbf{x}^t], \mathbb{P}[\bullet \mid \mathbf{x}^t], \mathbb{P}[\bullet \mid \mathbf{x}^t]}$ 

#### **App: Automatic Email Generator!**

Class proportions

- Choose a category from {HEC, DoSA,Supervisor}
  - Toss a 3-sided "coin" aka categorical/multinoulii distribution using  $\mathbb{P}[\hat{ullet}]$
  - Say we chose HEC
- ullet For each word in your dictionary of d words, toss a Bernoulli coin to decide whether to include that word in the mail or not
  - For  $j \in [d]$ , toss a coin that lands heads with probability  $\mathbb{P}[x_j = 1 \mid \bullet]$
- Collect all words for which the toss landed heads
- Compose an email using only those words (and maybe a few articles, prepositions etc)

Already learnt from training data!

 Congratulations, you can now ask your HEC to stop sending you emails – you will generate them yourself!

# Please give your Feedback

http://tinyurl.com/ml17-18afb

