Arquitetura de Computadores

PROF. ISAAC

Mecanismos de Interrupção e Exceção

Praticamente todos os computadores oferecem um mecanismo por meio do qual outros módulos (E/S, memória) podem interromper o processamento normal do computador.

A tabela abaixo lista as classes mais comuns de interrupção:

Programa	Gerada por alguma condição que ocorre como resultado da execução de uma instrução, como o <i>overflow</i> aritmético, divisão por zero, tentativa de executar uma instrução de máquina ilegal ou referência fora do espaço de memória permitido para o usuário.
Timer	Gerada por um timer dentro do processo. Isso permite que o sistema operacional realize certas funções regularmente.
E/S	Gerada por um controlador de E/S para sinalizar o término normal de uma operação ou para sinalizar uma série de condições de erro.
Falha de hardware	Gerada por uma falha como falta de energia ou erro de paridade de memória.

Interrupções básicas

Formas de Gerenciamento de Variáveis num Sistema Microcontrolado (Por varredura e por interrupção)

- Por varredura: é realizado dentro do programa principal;
- Por interrupção: quando um sinal elétrico conectado a um pino do microcontrolador dispara a execução de uma instrução de chamada a sub-rotina de atendimento a uma fonte de interrupção que deve ser armazenada num endereço prédefinido pelo fabricante;

Funcionamento da Interrupção no programa

Interrupções, timers e contadores no 8051

- Acontecem quando o controlador recebe um sinal requisitando a execução de uma sub-rotina específica;
- > O controlador troca a execução do código principal pelo da interrupção e depois retorna ao código principal

- > Temos 4 tipos de interrupções:
 - Interrupção externa;
 - Temporizador (timer);
 - Contador;
 - Serial.

- Usam registradores de 8 bits;
- > Internas (software) ou externas (hardware);
- Uma interrupção faz com que uma subrotina específica seja chamada;

Sub-rotina das interrupções

- > A sub-rotina deve estar em um endereço determinado pelo fabricante;
- > O programa deve chamar o endereço certo para trabalhar com a interrupção;
- Todo final de retorno de interrupção deve ser feito com a instrução RETI

Interrupções do 8051

- > 2 temporizadores/contadores: TF0 e TF1;
- > 2 interrupções externas: INT0 e INT1;
- > 1 comunicação serial: SI

Configuração das interrupções

É necessário usar registradores especiais:

- > IE: Interrupt Enable Register;
- > IP: Interrupt Priority Register;
- > TCON: Timer/Counter Control Registrer;
- > TMOD: Timer/Counter Modes Register;
- > TLx e THx: registradores de timers;

Registrador: IE (Interrupt Enable)

O registrador IE (Interrupt Enable) permite um controle completo e individual sobre a habilitação e a desabilitação das interrupções.

Existe um bit de habilitação geral, denominado **EA**, sendo que as interrupções só podem acontecer se esse bit estiver em 1.

bit	7	6	5	4	3	2	1	0
	IE.7	IE.6	IE.5	IE.4	IE.3	IE.2	IE.1	IE.0
(IE) =	EA		ET2	ES	ET1	EX1	ET0	EX0

Registrador: IE (Interrupt Enable)

Descrição dos bits do registrador IE, responsável pela habilitação e desabilitação das interrupções.

Registrador: IE (Interrupt Enable)

bit	7	6	5	4	3	2	1	0
					IE.3			
(IE) =	EA		ET2	ES	ET1	EX1	ET0	EX0

Símbolo	Posição	Função
EA	IE.7	Desabilitador geral de todas as interrupções
		0: nenhuma interrupção é vetorizada
		1: cada fonte de interrupção é individualmente habilitada ou desabilitada por setar ou limpar seu correspondente <i>bit</i> habilitador
-	IE.6	Reservada
ET2	IE.5	Habilita/desabilita a fonte de interrupção de overflow ou captura do timer/contador 2
ES	IE.4	Habilita/desabilita a fonte de interrupção da interface do canal de comunicação serial
ET1	IE.3	Habilita/desabilita a fonte de interrupção de overflow do timer/contador 1
EX1	IE.2	Habilita/desabilita a fonte de interrupção externa 1
ET0	IE.1	Habilita/desabilita a fonte de interrupção de overflow do timer/contador 0
EX0	IE.0	Habilita/desabilita a fonte de interrupção externa 0

Endereço de desvio das interrupções

Fonte de interrupção	Nome da fonte de interrupção	Endereço vetor
RESET	Reset	0000h
IE0	Fonte de interrupção externa 0	0003h
TF0	Fonte de interrupção do timer/contador 0	000Bh
IE1	Fonte de interrupção externa 1	0013h
TF1	Fonte de interrupção do timer/contador 1	001Bh
RI + TI	Fonte de interrupção do canal de comunicação serial	0023h
TF2 + EXF2	Fonte de interrupção do timer/contador 2 + externa 2	002Bh

Exemplo com temporizador com acionamento externo

Crie um programa com interrupção externa INTO (pino P3.2) que pare/corre a contagem do contador, o contador deverá iniciar com valor zero e realizar o complemento do pino P1.0 cada vez que a interrupção do temporizador for acionada (usar no modo 1).

Solução:

```
org 0000h
     L.IMP START
                               ;Pula incondicionalmente para START
org 000Bh
INT TEMP0:
     CPL P1.0
                               ;complementa P1.0
     RETI
                               ;Retorna da interrupção
org 0080h
START:
     MOV TMOD,#00001001b
                               ;Usa modo 01 e Habilita o Gate
     SETB EA
                               ;Habilita as interrupções
     SETB ET0
                               ;Habilita o temporizador 0
     SETB TRO
                               ;Liga o temporizador
     SJMP$
                               ;Laço de repetição
```

Solução:

org 0000h

org 000Bh

org 0080h

START:

INT TEMP0:

RETI

org 0000h

Solução:

LJMP START

;Pula incondicionalmente para START

org 000Bh

INT_TEMP0:

CPL P1.0

;complementa P1.0

RETI ;Retorna da interrupção

org 0080h

START:

AKI:		
MOV TMOD,#00	0001001b	;Usa modo 01 e Habilita o Gate
SETB EA		;Habilita as interrupções
SETB ET0		;Habilita o temporizador 0
SETB TRO		;Liga o temporizador
SJMP\$;Laço de repetição

Exemplo com Contador

Contador/temporizador – CT0 e CT1

A família 8051 disponibiliza dois contadores, denominados contador/temporizador 0 e contador/temporizador 1 (CT0 e CT1).

Eles são construídos com dois contadores binários independentes, de 16 bits.

Contador/temporizador – CT0 e CT1

Esses bytes TH0, TL0, TH1 e TL1, podem ser lidos ou escritos a qualquer momento. Tais contadores binários contam de forma ascendente e, a cada vez que ultrapassam seu limite, que é o valor 65.535, a flag de overflow é ativada.

O interessante é que essa flag, além de poder ser consultada a qualquer instante, também pode provocar interrupção.

Contador/temporizador – CT0 e CT1

CT0 e CT1 podem operar como contador ou temporizador.

- Para operar como temporizador ele utiliza o clock do Cristal.
- Para operar como contador ele utiliza os pinos T0 e T1.

Operando como TEMPORIZADOR

Operando como CONTADOR

Registrador: TMOD

M1	M0	Modo	Descrição
0	0	0	THi é CT de 8 bits e TLi é pré-escala de 5 bits.
0	1	1	THi e TLi formam CT de 16 bits.
1	0	2	TLi é CT de 8 bits e THi armazena valor de recarga.
1	1	3	TL0 é CT de 8 bits (usando TR0, #INT0 e TF0), TH0 é CT de 8 bits (usando TR1, #INT1 e TF1)
			TH1 e TL1 parado (pode operar em outros modos).

Registrador: TCON (Timer Controller)

Registrador TCON, onde se especifica se as interrupções externas trabalharão por nível ou por flanco.

Registrador: TCON (Timer Controller)

Os quatro *bits* menos significativos do registrador de controle dos *timers*/contadores chamado de TCON gerenciam o funcionamento das interrupções externas.

bits	7	6	5	4	3	2	1	0
	TCON.7	TCON.6	TCON.5	TCON.4	TCON.3	TCON.2	TCON.1	TCON.0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

São 2 entradas de interrupção externas:

- ➤ interrupção 0 (P3.2/ INT0)
- ➤ interrupção 1 (P3.3/ INT1)

Pinagem do 8051

Pino	Descrição
P3.2 (#INTO)	Usado como entrada para o pedido de interrupção 0.
P3.3 (#INT1)	Usado como entrada para o pedido de interrupção 1.
P3.4 (T0)	Entrada de contagem para CTO, quando operando no modo contador.
P3.5 (T1)	Entrada de contagem para CT1, quando operando no modo contador.

Crie um programa com interrupção acionado pelo contador, que realize uma contagem do pino TO (pino P3.4), a interrupção deve ser acionada para uma contagem de 10 e que realize o complemento do pino P1.0 cada vez que a interrupção for acionada.

Solução:

```
org 0000h
     LJMP START
                               ;Pula incondicionalmente para START
org 000Bh
INT TEMP0:
     CPL P1.0
                               ;complementa P1.0
     RETI
                               ;Retorna da interrupção
org 0080h
START:
     MOV TMOD,#00000110b
                               ;Usa modo 02 e Habilita o Contador
     MOV TH0, #246
                               ;valor para a recarga
     MOV TL0, #246
                               ;valor para a contagem
     SETB EA
                               ;Habilita as interrupções
     SETB ETO
                               ;Habilita o temporizador 0
     SETB TR0
                               ;Liga o temporizador
     SJMP$
                               ;Laço de repetição
```


Solução:

org 0000h

LJMP START ;Pula incondicionalmente para START

org 000Bh

INT_TEMP0:

CPL P1.0 ;complementa P1.0

RETI ;Retorna da interrupção

org 0080h

START:

;Usa modo 02 e Habilita o Contador
;valor para a recarga
;valor para a contagem
;Habilita as interrupções
;Habilita o temporizador 0
;Liga o temporizador
;Laço de repetição

Solução:

org 0000h

LJMP START ;Pula incondicionalmente para START

org 000Bh

INT_TEMP0:

CPL P1.0 ;complementa P1.0

RETI ;Retorna da interrupção

org 0080h

START:

MOV TMOD,#00000110b ;Usa modo 02 e Habilita o Contador

MOV TH0, #246 ;valor para a recarga

MOV TL0, #246 ;valor para a contagem

SETB EA ;Habilita as interrupções

SETB ETO ;Habilita o temporizador 0

SETB TR0 ;Liga o temporizador

org 0000h

Solução:

LJMP START

;Pula incondicionalmente para START

org 000Bh

INT_TEMP0:

CPL P1.0

;complementa P1.0

RETI

;Retorna da interrupção

org 0080h

START:

MOV TMOD,#00000110b ;Usa modo 02 e Habilita o Contador

MOV TH0, #246 ;valor para a recarga

MOV TL0, #246 ;valor para a contagem

SETB EA ;Habilita as interrupções

SETB ETO ;Habilita o temporizador 0

SETB TR0 ;Liga o temporizador

;complementa P1.0

;Retorna da interrupção

;Pula incondicionalmente para START

org 0000h

Solução:

LJMP START

org 000Bh

INT_TEMP0:

CPL P1.0

RETI

org 0080h

START:

MOV TMOD,#00000110b ;Usa modo 02 e Habilita o Contador

MOV TH0, #246 ;valor para a recarga

MOV TL0, #246 ;valor para a contagem

SETB EA ;Habilita as interrupções

SETB ET0 ;Habilita o temporizador 0

SETB TR0 ;Liga o temporizador

Solução:

```
org 0000h
     LJMP START
                               ;Pula incondicionalmente para START
org 000Bh
INT TEMP0:
     CPL P1.0
                               ;complementa P1.0
     RETI
                               ;Retorna da interrupção
org 0080h
START:
     MOV TMOD,#00000110b
                               ;Usa modo 02 e Habilita o Contador
     MOV TH0, #246
                               ;valor para a recarga
     MOV TL0, #246
                               ;valor para a contagem
     SETB EA
                               ;Habilita as interrupções
     SETB ETO
                               ;Habilita o temporizador 0
     SETB TR0
                               ;Liga o temporizador
     SJMP$
                               ;Laço de repetição
```

Exemplo de Contador com botão Externo que para a contagem

Crie um programa com interrupção acionado pelo contador, que realize uma contagem do pino TO (pino P3.4), a interrupção deve ser acionada para uma contagem de 5 e que realize o complemento do pino P1.0 cada vez que a interrupção for acionada.

A contagem deve ser interrompida usando pino INTO (P3.2)

Solução:

```
org 0000h
     LJMP START
                               ;Pula incondicionalmente para START
org 000Bh
INT TEMP0:
                               ;complementa P1.0
     CPL P1.0
     RETI
                               ;Retorna da interrupção
org 0080h
START:
     MOV TMOD,#00001110b
                               :Usa modo 02 e Habilita o Contador
     MOV TH0, #251
                               ;valor para a recarga
     MOV TL0, #251
                               ;valor para a contagem
     SETB EA
                               ;Habilita as interrupções
     SETB ETO
                               ;Habilita o temporizador 0
     SETB TR0
                               ;Liga o temporizador
     SJMP$
                               ;Laço de repetição
```


Solução:

org 0000h

LJMP START ;Pula incondicionalmente para START

org 000Bh

INT_TEMP0:

CPL P1.0 ;complementa P1.0

RETI ;Retorna da interrupção

org 0080h

START:

111111	
MOV TMOD,#00001110b	;Usa modo 02 e Habilita o Contador
MOV TH0, #251	;valor para a recarga
MOV TL0, #251	;valor para a contagem
SETB EA	;Habilita as interrupções
SETB ET0	;Habilita o temporizador 0
SETB TRO	;Liga o temporizador
SJMP\$;Laço de repetição

org 0000h

Solução:

LJMP START ;Pula incondicionalmente para START

org 000Bh

INT_TEMP0:

CPL P1.0 ;complementa P1.0

RETI ;Retorna da interrupção

org 0080h

START:

MOV TMOD,#00001110b ;Usa modo 02 e Habilita o Contador

MOV TH0, #251 ;valor para a recarga

MOV TL0, #251 ;valor para a contagem

SETB EA ;Habilita as interrupções

SETB ETO ;Habilita o temporizador 0

SETB TR0 ;Liga o temporizador

org 0000h

Solução:

LJMP START

;Pula incondicionalmente para START

org 000Bh

INT_TEMP0:

CPL P1.0

;complementa P1.0

RETI

;Retorna da interrupção

org 0080h

START:

MOV TMOD,#00001110b ;Usa modo 02 e Habilita o Contador

MOV TH0, #251 ;valor para a recarga

MOV TL0, #251 ;valor para a contagem

SETB EA ;Habilita as interrupções

SETB ET0 ;Habilita o temporizador 0

SETB TR0 ;Liga o temporizador

Registrador: TCON

7 6 5 4 3 2 1 0

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

→ 0 - Nível / 1 - Borda
→ Flag Externa 0
→ 0 - Nível / 1 - Borda
→ Flag Externa 1
→ Pára/Corre Temporizador 0
→ Overflow Temporizador 1
→ Overflow Temporizador 1

;complementa P1.0

;Retorna da interrupção

;Pula incondicionalmente para START

org 0000h

Solução:

LJMP START

org 000Bh

INT_TEMP0:

CPL P1.0

RETI

org 0080h

START:

MOV TMOD,#00001110b ;Usa modo 02 e Habilita o Contador

MOV TH0, #251 ;valor para a recarga

MOV TL0, #251 ;valor para a contagem

SETB EA ;Habilita as interrupções

SETB ETO ;Habilita o temporizador 0

SETB TR0 ;Liga o temporizador

Solução:

```
org 0000h
     LJMP START
                               ;Pula incondicionalmente para START
org 000Bh
INT TEMP0:
                               ;complementa P1.0
     CPL P1.0
     RETI
                               ;Retorna da interrupção
org 0080h
START:
     MOV TMOD,#00001110b
                               :Usa modo 02 e Habilita o Contador
     MOV TH0, #251
                               ;valor para a recarga
     MOV TL0, #251
                               ;valor para a contagem
     SETB EA
                               ;Habilita as interrupções
     SETB ETO
                               ;Habilita o temporizador 0
     SETB TR0
                               ;Liga o temporizador
     SJMP$
                               ;Laço de repetição
```

Bibliografia

ZELENOVSKY, R.; MENDONÇA, A. Microcontroladores Programação e Projeto com a Família 8051. MZ Editora, RJ, 2005.

Gimenez, Salvador P. Microcontroladores 8051 - Teoria e Prática, Editora Érica, 2010.