STID 1ère année - AJUSTEMENT ET SÉRIES CHRONOLOGIQUES

ETUD'+, Centre de formation Et Cours de soutien 11 place de la Tour 641610, Morlaàs

FEUILLE DE TRAVAUX DIRIGÉS N° 3

ETUD'+, Centre de formation Et Cours de soutien 11 place de la Tour 641610, Morlaàs

Recherche de tendance

Enseignant-Formateur: H. El-Otmany

A.U.: 2019-2020

Exercice $n^{\circ}1$ On considère la série chronologique Y_t représentant l'effectif de la population des États-Unis de 1780 à 1860 (en millions), voir le tableau

Année	Temps t	Effectif Y_t
1780	1	2,78
1790	2	3,93
1800	3	5,31
1810	4	7,24
1820	5	9,64
1830	6	12,87
1840	7	17,07
1850	8	23,49
1860	9	31,44

- 1. Représenter graphiquement la série. Quelle est l'allure de la courbe obtenue.
- 2. Déterminer et représenter graphiquement la droite de régression sur le même graphique.
- 3. Calculer et représenter graphiquement les résidus.
- 4. Calculer et commenter le coefficient de corrélation linéaire.
- 5. Que donnera la représentation graphique de $\ln(y_t)$.
- 6. Calculer et commenter le coefficient de corrélation linéaire de la nouvelle série.
- 7. Calculer et représenter graphiquement les résidus.
- 8. Déterminer et représenter graphiquement cette nouvelle série. En déduire un ajustement de la série y_t par une fonction de t (indication : utiliser la fonction exponentielle).
- 9. Représenter cette fonction sur le premier graphique.
- 10. Si on utilise ces tendances pour faire des prévisions, quelles sont les valeurs obtenues pour chacune des tendances au mois t = 10? Interpréter le résultat.

Exercice n°2 (Tendances linéarisables)

- a. On souhaite ajuster la tendance d'une série par une fonction logarithmique.
 - (a) Donner l'expression algébrique de la tendance.
 - (b) Illustrer graphiquement cette tendance par un exemple.
 - (c) Expliciter la démarche d'ajustement.
- b. Répondre aux mêmes questions précédentes pour un ajustement par une fonction puissance.
- c. Répondre aux mêmes questions précédentes pour un ajustement par une fonction exponentielle.
- d. Répondre aux mêmes questions précédentes pour un ajustement par une fonction hyperbolique (voir l'exercice suivant).

Exercice n°3 On considère la série suivante :

	t	1	2	3	4	5	6	7	8	9	10
Ì	Y_t	58	40	31	15	18	15	9	91	0	8

- 1. Représenter graphiquement cette série.
- 2. On se propose d'ajuster une tendance f de la forme $f(t) = \frac{1}{a+bt}$. Justifier ce choix.
- 3. Déterminer les coefficients a et b en utilisant un changement de variables approprié :
 - a. par la méthode des deux points (en les choisissant judicieusement);
 - b. par régression linéaire.
- 4. Représenter les deux tendances ainsi obtenues sur le graphique précédent et comparer les résultats. Est-ce que les résidus ont une allure irrégulière ?

Exercice n°4 On considère la série chronologique suivante :

	1		ı				l								
Y_t	7.5	4.4	3.3	7.6	3.9	2.4	6.9	4.5	2.7	8.2	4.1	3.0	7.5	3.5	2.8

- 1. Représenter graphiquement cette série.
- 2. Quel modèle proposeriez-vous pour cette série? Donner des justifications.
- 3. Calculer les facteurs saisonniers $s=(s_j)_{1\leqslant j\leqslant p}$ ainsi que leur moyenne $\frac{1}{p}\sum_{j=1}^p s_j$, en supposant la tendance constante égale à un nombre a $(m_t=a \text{ pour tout } t)$.
- 4. En notant $e = (e_i)_{1 \le i \le n}$, la série des fluctuations irrégulières, calculer e_1 , e_2 et e_3 .
- 5. Proposer une méthode pour l'estimation des paramètres, en supposant cette fois une tendance affine $m_t = at + b$. (On pourra implémenter le calcul à l'aide d'un logiciel spécifique, ou tenter de faire le calcul à l'aide d'une calculatrice.) Proposer un test pour choisir entre les deux modèles.

Exercice n°5 (*Différences-Stationnarités*) On rappelle ici la définition d'une série stationnaire. On dit qu'une série est stationnaire si sa tendance est constante sur la période d'observation.

- a. Tendance linéaire : on considère (Y_t) une série sous forme d'une fonction linéaire en temps, que peut-on dire de la série de ses différences premières définies par $\nabla Y_t = Y_t Y_{t-1}$?
- b. Tendance quadratique : soit (Y_t) une série de polynôme du second degré en temps, par quel procédé peut-on rendre cette série stationnaire ?
- c. Tendance exponentielle : soit (Y_t) une série de polynôme du second degré en temps, par quel procédé peut-on rendre cette série stationnaire? soit (Y_t) une série de fonction exponentielle en temps, par quel procédé peut-on rendre cette série stationnaire?

Exercice n°6 Dans un hypermarché, on souhaite étudier l'évolution mensuelle des ventes de produits alimentaires durant l'année 2019. Le tableau ci-dessous présente les résultats de cette enquête.

t	1	2	3	4	5	6	7	8	9	10
Ventes Y_t	1380	1392	1400	1200	1250	1112	1030	900	1500	1380

1. Représenter graphiquement la série. Quelle est l'allure de la courbe obtenue.

- 2. Déterminer et représenter graphiquement la droite de régression sur le même graphique.
- 3. Calculer et représenter graphiquement les résidus.
- 4. Calculer et commenter le coefficient de corrélation linéaire.
- 5. Que donnera la représentation graphique de $ln(y_t)$.
- 6. Calculer et commenter le coefficient de corrélation linéaire de la nouvelle série.
- 7. Calculer et représenter graphiquement les résidus.
- 8. Déterminer et représenter graphiquement cette nouvelle série. En déduire un ajustement de la série y_t par une fonction de t (indication : utiliser la fonction exponentielle).
- 9. Représenter cette fonction sur le premier graphique.
- 10. Si on utilise ces tendances pour faire des prévisions, quelles sont les valeurs obtenues pour chacune des tendances au mois t = 12? Interpréter le résultat.

Exercice n°7

- a. On considère une série chronologique Y_t périodique de période 2p+1. Montrer que cette série est transformée en série constante par l'opérateur des moyennes mobiles (MA) d'ordre impaire 2p+1.
- b. Citer le principe de conservation des aires. Supposons maintenant que Y_t est une série de composantes saisonnières dans le cadre d'un modèle additif. Que peut-on dire de la série MA d'ordre 2P+1.
- c. On suppose que Y_t peut s'écrire sous forme d'une fonction linéaire en t telle que $Y_t = at + b$ pour $1 \le t \le n$. Montrer que Y_t est invariante pour tout opérateur de moyennes mobiles centrées d'ordre impaire.
- d. Soit Y_t la série des indices bruts de la production de miel par une association de moyen-atlas au Maroc durant l'année 2015.

Mois	janv.	févr.	mars	avr.	mai	juin	juil.	août	sept.	oct.	nov.	déc.
t	1	2	3	4	5	6	7	8	9	10	11	12
Y	97,5	92,7	100,9	102,2	94	102	97,8	90,3	112,2	107	102,5	100,9

- 1. Calculer l'ajustement d'une tendance linéaire par la méthode des moindres carrés.
- 2. Effectuer un ajustement du même type sur le traitement de cette série par une moyenne mobile centrée d'ordre 5.
- 3. Comparer les équations de tendance obtenues par chacun des deux procédés. Représenter graphiquement ces tendances.
- e. On reprend les mêmes démarches de la question d pour le tableau ci-dessous.

- 1		1						l					
	Y	26,4	40	45	35	57,3	53,2	40	61,5	48,4	64	62,8	67,6