Classification

Classification and Representation

Logistic Regression

Classification

- → Email: Spam / Not Spam?
- Online Transactions: Fraudulent (Yes / No)?
- Tumor: Malignant / Benign ?

$$y \in \{0,1\}$$
 0: "Negative Class" (e.g., benign tumor) 1: "Positive Class" (e.g., malignant tumor)

 \rightarrow Threshold classifier output $h_{\theta}(x)$ at 0.5:

$$\longrightarrow$$
 If $h_{\theta}(x) \geq 0.5$, predict "y = 1"

If
$$h_{\theta}(x) < 0.5$$
, predict "y = 0"

 \rightarrow Threshold classifier output $h_{\theta}(x)$ at 0.5:

$$\longrightarrow$$
 If $h_{\theta}(x) \geq 0.5$, predict "y = 1" If $h_{\theta}(x) < 0.5$, predict "y = 0"

Exercise

Which of the following statements is true?

- If linear regression doesn't work on a classification task as in the previous example, applying feature scaling may help.
- If the training set satisfies $0 \le y(i) \le 1$ for every training example (x(i),y(i)), then linear regression's prediction will also satisfy $0 \le h(x) \le 1$ for all values of x.
- If there is a feature x that perfectly predicts y, i.e if y=1 when x≥c and y=0 whenever x<c (for some constant c), then linear regression will obtain zero classification error.
- None of the above statements are true.

Classification:
$$y = 0$$
 or 1

$$h_{\theta}(x) \text{ can be } > 1 \text{ or } < 0$$

Logistic Regression:
$$0 \le h_{\theta}(x) \le 1$$

Logistic Regression Model

Want
$$0 \le h_{\theta}(x) \le 1$$

$$h_{\theta}(x) = 9(\theta^{T}x)$$

$$\Rightarrow 9(3) = 1 + e^{-\frac{\pi}{2}}$$

Sigmoid functionLogistic function

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

Interpretation of Hypothesis Output

 $h_{\theta}(x)$ = estimated probability that y = 1 on input $x \leftarrow$

Example: If
$$\underline{x} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 & \\ \text{tumorSize} \end{bmatrix}$$

$$\underline{h_{\theta}(x)} = \underline{0.7}$$

Tell patient that 70% chance of tumor being malignant

"probability that y = 1, given x, parameterized by θ "

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

Exercise

- Suppose we want to predict, from data x about a tumor, whether it is malignant (y=1) or benign (y=0).
- Our logistic regression classifier outputs, for a specific tumor, $h_{\theta}(x) = P(y=1|x;\theta) = 0.7$, so we estimate that there is a 70% chance of this tumor being malignant.
- What should be our estimate for the probability the tumor is benign?
 - 0.7²
 - 0.7-0.3
 - 0.7-0.5
 - 0.3

Interpretation of Hypothesis Output

 $h_{\theta}(x)$ = estimated probability that y = 1 on input $x \leftarrow$

Example: If
$$\underline{x} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 & \\ \text{tumorSize} \end{bmatrix}$$

$$\underline{h_{\theta}(x)} = 0.7$$

Tell patient that 70% chance of tumor being malignant

$$h_{\Theta}(x) = P(y=1|x;\Theta)$$

$$y = 0 \text{ or } 1$$

"probability that y = 1, given x, parameterized by θ "

$$P(y=0|x;\theta) + P(y + P(y + x;\theta) + x;\theta) = 1 - P(y=1|x;\theta)$$

$$P(y=0|x;\theta) = 1 - P(y=1|x;\theta)$$

Decision Boundary

Logistic regression

$$\rightarrow h_{\theta}(x) = g(\theta^T x) = \rho(y=1) \times 0$$

$$\rightarrow g(z) = \frac{1}{1+e^{-z}}$$

Suppose predict "y=1" if $h_{\theta}(x) \geq 0.5$

predict "
$$y = 0$$
" if $h_{\theta}(x) \stackrel{\iota}{<} 0.5$

Logistic regression

$$\rightarrow h_{\theta}(x) = g(\theta^T x) = \rho(y=1) \times 0$$

$$\rightarrow g(z) = \frac{1}{1+e^{-z}}$$

Suppose predict "y = 1" if $h_{\theta}(x) \ge 0.5$

predict "
$$y = 0$$
" if $h_{\theta}(x) < 0.5$

$$h_0(x) = g(\underline{O}^T x)$$
 $g(\overline{z}) < 0$

$$g(z) \ge 0.5$$

when $z \ge 0$
 $h_0(x) = g(o^Tx) \ge 0.5$
wherever $o^Tx \ge 0$

Decision Boundary

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

Predict "y = 1" if $-3 + x_1 + x_2 \ge 0$

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

Decision Boundary

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

Decision boundary

Predict "
$$y=1$$
" if $-3+x_1+x_2\geq 0$

OTX

X1+X2 >3

Exercise

• Consider logistic regression with two features x1 and x2. Suppose $\theta_0 = 5$ and $\theta_1 = -1$, θ_2 =0, so that $h_{\theta}(x) = g(5 - x_1)$. Which of these shows the decision boundary?

Non-linear decision boundaries

Non-linear decision boundaries

Non-linear decision boundaries

$$\begin{split} h_{\theta}(x) &= g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 \\ + \theta_4 x_1^2 x_2 + \theta_5 x_1^2 x_2^2 + \theta_6 x_1^{\text{Wi3lows'u Etkinleştir}} \end{split} \text{ (a)}$$

Multiclass Classification: One vs All

Multiclass Classification

Logistic Regression

Multiclass classification

Email foldering/tagging: Work, Friends, Family, Hobby

Medical diagrams: Not ill, Cold, Flu

Weather: Sunny, Cloudy, Rain, Snow

Binary classification:

Multi-class classification:

One-vs-all (one-vs-rest):

One-vs-all

Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict the probability that y=i.

On a new input \underline{x} , to make a prediction, pick the class i that maximizes

$$\max_{i} h_{\theta}^{(i)}(x)$$

Exercise

- Suppose you have a multi-class classification problem with k classes $y \in \{1,2,...,k\}$). Using the 1-vs.-all method, how many different logistic regression classifiers will you end up training?
 - K-1
 - K
 - K+1
 - Approximately log₂(k)

Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Note: y = 0 or 1 always

How can we write this function in a single line?

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$