5 Induction

Induction is a powerful method for showing a property is true for all nonnegative integers. Induction plays a central role in discrete mathematics and computer science. In fact, its use is a defining characteristic of discrete—as opposed to continuous—mathematics. This chapter introduces two versions of induction, Ordinary and Strong, and explains why they work and how to use them in proofs. It also introduces the Invariant Principle, which is a version of induction specially adapted for reasoning about step-by-step processes.

5.1 Ordinary Induction

To understand how induction works, suppose there is a professor who brings a bottomless bag of assorted miniature candy bars to her large class. She offers to share the candy in the following way. First, she lines the students up in order. Next she states two rules:

- 1. The student at the beginning of the line gets a candy bar.
- 2. If a student gets a candy bar, then the following student in line also gets a candy bar.

Let's number the students by their order in line, starting the count with 0, as usual in computer science. Now we can understand the second rule as a short description of a whole sequence of statements:

- If student 0 gets a candy bar, then student 1 also gets one.
- If student 1 gets a candy bar, then student 2 also gets one.
- If student 2 gets a candy bar, then student 3 also gets one.

:

Of course, this sequence has a more concise mathematical description:

If student n gets a candy bar, then student n+1 gets a candy bar, for all nonnegative integers n.

So suppose you are student 17. By these rules, are you entitled to a miniature candy bar? Well, student 0 gets a candy bar by the first rule. Therefore, by the second rule, student 1 also gets one, which means student 2 gets one, which means student 3 gets one as well, and so on. By 17 applications of the professor's second rule, you get your candy bar! Of course the rules really guarantee a candy bar to *every* student, no matter how far back in line they may be.

5.1.1 A Rule for Ordinary Induction

The reasoning that led us to conclude that every student gets a candy bar is essentially all there is to induction.

The Induction Principle.

Let P be a predicate on nonnegative integers. If

- P(0) is true, and
- P(n) IMPLIES P(n + 1) for all nonnegative integers n

then

• P(m) is true for all nonnegative integers m.

Since we're going to consider several useful variants of induction in later sections, we'll refer to the induction method described above as *ordinary induction* when we need to distinguish it. Formulated as a proof rule as in Section 1.4.1, this would be

Rule. Induction Rule

$$P(0), \quad \forall n \in \mathbb{N}. \ P(n) \text{ IMPLIES } P(n+1)$$

 $\forall m \in \mathbb{N}. \ P(m)$

This Induction Rule works for the same intuitive reason that all the students get candy bars, and we hope the explanation using candy bars makes it clear why the soundness of ordinary induction can be taken for granted. In fact, the rule is so obvious that it's hard to see what more basic principle could be used to justify it. What's not so obvious is how much mileage we get by using it.

¹But see Section 5.3.

139

5.1.2 A Familiar Example

Below is the formula (5.1) for the sum of the nonnegative integers up to n. The formula holds for all nonnegative integers, so it is the kind of statement to which induction applies directly. We've already proved this formula using the Well Ordering Principle (Theorem 2.2.1), but now we'll prove it *by induction*, that is, using the Induction Principle.

Theorem 5.1.1. For all $n \in \mathbb{N}$,

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
 (5.1)

To prove the theorem by induction, define predicate P(n) to be the equation (5.1). Now the theorem can be restated as the claim that P(n) is true for all $n \in \mathbb{N}$. This is great, because the Induction Principle lets us reach precisely that conclusion, provided we establish two simpler facts:

- P(0) is true.
- For all $n \in \mathbb{N}$, P(n) IMPLIES P(n+1).

So now our job is reduced to proving these two statements.

The first statement follows because of the convention that a sum of zero terms is equal to 0. So P(0) is the true assertion that a sum of zero terms is equal to 0(0+1)/2=0.

The second statement is more complicated. But remember the basic plan from Section 1.5 for proving the validity of any implication: *assume* the statement on the left and then *prove* the statement on the right. In this case, we assume P(n)—namely, equation (5.1)—in order to prove P(n + 1), which is the equation

$$1 + 2 + 3 + \dots + n + (n+1) = \frac{(n+1)(n+2)}{2}.$$
 (5.2)

These two equations are quite similar; in fact, adding (n + 1) to both sides of equation (5.1) and simplifying the right side gives the equation (5.2):

$$1 + 2 + 3 + \dots + n + (n + 1) = \frac{n(n + 1)}{2} + (n + 1)$$
$$= \frac{(n + 2)(n + 1)}{2}$$

Thus, if P(n) is true, then so is P(n + 1). This argument is valid for every non-negative integer n, so this establishes the second fact required by the induction proof. Therefore, the Induction Principle says that the predicate P(m) is true for all nonnegative integers m. The theorem is proved.

5.1.3 A Template for Induction Proofs

The proof of equation (5.1) was relatively simple, but even the most complicated induction proof follows exactly the same template. There are five components:

- 1. **State that the proof uses induction.** This immediately conveys the overall structure of the proof, which helps your reader follow your argument.
- 2. **Define an appropriate predicate** P(n)**.** The predicate P(n) is called the *induction hypothesis*. The eventual conclusion of the induction argument will be that P(n) is true for all nonnegative n. A clearly stated induction hypothesis is often the most important part of an induction proof, and its omission is the largest source of confused proofs by students.

In the simplest cases, the induction hypothesis can be lifted straight from the proposition you are trying to prove, as we did with equation (5.1). Sometimes the induction hypothesis will involve several variables, in which case you should indicate which variable serves as n.

- 3. **Prove that** P(0) **is true.** This is usually easy, as in the example above. This part of the proof is called the *base case* or *basis step*.
- 4. Prove that P(n) implies P(n + 1) for every nonnegative integer n. This is called the *inductive step*. The basic plan is always the same: assume that P(n) is true, and then use this assumption to prove that P(n + 1) is true. These two statements should be fairly similar, but bridging the gap may require some ingenuity. Whatever argument you give must be valid for every nonnegative integer n, since the goal is to prove that all the following implications are true:

$$P(0) \to P(1), P(1) \to P(2), P(2) \to P(3), \dots$$

5. **Invoke induction.** Given these facts, the induction principle allows you to conclude that P(n) is true for all nonnegative n. This is the logical capstone to the whole argument, but it is so standard that it's usual not to mention it explicitly.

Always be sure to explicitly label the *base case* and the *inductive step*. Doing so will make your proofs clearer and will decrease the chance that you forget a key step—like checking the base case.

141

5.1.4 A Clean Writeup

The proof of Theorem 5.1.1 given above is perfectly valid; however, it contains a lot of extraneous explanation that you won't usually see in induction proofs. The writeup below is closer to what you might see in print and should be prepared to produce yourself.

Revised proof of Theorem 5.1.1. We use induction. The induction hypothesis P(n) will be equation (5.1).

Base case: P(0) is true, because both sides of equation (5.1) equal zero when n = 0.

Inductive step: Assume that P(n) is true, that is equation (5.1) holds for some nonnegative integer n. Then adding n + 1 to both sides of the equation implies that

$$1 + 2 + 3 + \dots + n + (n+1) = \frac{n(n+1)}{2} + (n+1)$$

$$= \frac{(n+1)(n+2)}{2}$$
 (by simple algebra)

which proves P(n + 1).

So it follows by induction that P(n) is true for all nonnegative n.

It probably bothers you that induction led to a proof of this summation formula but did not provide an intuitive way to understand it, nor did it explain where the formula came from in the first place.² This is both a weakness and a strength. It is a weakness when a proof does not provide insight. But it is a strength that a proof can provide a reader with a reliable guarantee of correctness without *requiring* insight.

5.1.5 A More Challenging Example

During the development of MIT's famous Stata Center, as costs rose further and further beyond budget, some radical fundraising ideas were proposed. One rumored plan was to install a big square courtyard divided into unit squares. The big square would be 2^n units on a side for some undetermined nonnegative integer n, and one of the unit squares in the center³ occupied by a statue of a wealthy potential donor—whom the fund raisers privately referred to as "Bill." The n=3 case is shown in Figure 5.1.

A complication was that the building's unconventional architect, Frank Gehry, was alleged to require that only special L-shaped tiles (shown in Figure 5.2) be

²Methods for finding such formulas are covered in Part III of the text.

³In the special case n=0, the whole courtyard consists of a single central square; otherwise, there are four central squares.

Figure 5.1 A $2^n \times 2^n$ courtyard for n = 3.

Figure 5.2 The special L-shaped tile.

used for the courtyard. For n=2, a courtyard meeting these constraints is shown in Figure 5.3. But what about for larger values of n? Is there a way to tile a $2^n \times 2^n$ courtyard with L-shaped tiles around a statue in the center? Let's try to prove that this is so.

Theorem 5.1.2. For all $n \ge 0$ there exists a tiling of a $2^n \times 2^n$ courtyard with Bill in a central square.

Proof. (doomed attempt) The proof is by induction. Let P(n) be the proposition that there exists a tiling of a $2^n \times 2^n$ courtyard with Bill in the center.

Base case: P(0) is true because Bill fills the whole courtyard.

Inductive step: Assume that there is a tiling of a $2^n \times 2^n$ courtyard with Bill in the center for some $n \ge 0$. We must prove that there is a way to tile a $2^{n+1} \times 2^{n+1}$ courtyard with Bill in the center

Now we're in trouble! The ability to tile a smaller courtyard with Bill in the

5.1. Ordinary Induction

Figure 5.3 A tiling using L-shaped tiles for n = 2 with Bill in a center square.

center isn't much help in tiling a larger courtyard with Bill in the center. We haven't figured out how to bridge the gap between P(n) and P(n + 1).

So if we're going to prove Theorem 5.1.2 by induction, we're going to need some *other* induction hypothesis than simply the statement about n that we're trying to prove.

When this happens, your first fallback should be to look for a *stronger* induction hypothesis; that is, one which implies your previous hypothesis. For example, we could make P(n) the proposition that for *every* location of Bill in a $2^n \times 2^n$ courtyard, there exists a tiling of the remainder.

This advice may sound bizarre: "If you can't prove something, try to prove something grander!" But for induction arguments, this makes sense. In the inductive step, where you have to prove P(n) IMPLIES P(n+1), you're in better shape because you can assume P(n), which is now a more powerful statement. Let's see how this plays out in the case of courtyard tiling.

Proof (successful attempt). The proof is by induction. Let P(n) be the proposition that for every location of Bill in a $2^n \times 2^n$ courtyard, there exists a tiling of the remainder.

Base case: P(0) is true because Bill fills the whole courtyard.

Inductive step: Assume that P(n) is true for some $n \ge 0$; that is, for every location of Bill in a $2^n \times 2^n$ courtyard, there exists a tiling of the remainder. Divide the $2^{n+1} \times 2^{n+1}$ courtyard into four quadrants, each $2^n \times 2^n$. One quadrant contains Bill (**B** in the diagram below). Place a temporary Bill (**X** in the diagram) in each of the three central squares lying outside this quadrant as shown in Figure 5.4.

Figure 5.4 Using a stronger inductive hypothesis to prove Theorem 5.1.2.

Now we can tile each of the four quadrants by the induction assumption. Replacing the three temporary Bills with a single L-shaped tile completes the job. This proves that P(n) implies P(n+1) for all $n \ge 0$. Thus P(m) is true for all $m \in \mathbb{N}$, and the theorem follows as a special case where we put Bill in a central square.

This proof has two nice properties. First, not only does the argument guarantee that a tiling exists, but also it gives an algorithm for finding such a tiling. Second, we have a stronger result: if Bill wanted a statue on the edge of the courtyard, away from the pigeons, we could accommodate him!

Strengthening the induction hypothesis is often a good move when an induction proof won't go through. But keep in mind that the stronger assertion must actually be *true*; otherwise, there isn't much hope of constructing a valid proof. Sometimes finding just the right induction hypothesis requires trial, error, and insight. For example, mathematicians spent almost twenty years trying to prove or disprove the conjecture that every planar graph is 5-choosable.⁴ Then, in 1994, Carsten Thomassen gave an induction proof simple enough to explain on a napkin. The key turned out to be finding an extremely clever induction hypothesis; with that in hand, completing the argument was easy!

⁴5-choosability is a slight generalization of 5-colorability. Although every planar graph is 4-colorable and therefore 5-colorable, not every planar graph is 4-choosable. If this all sounds like nonsense, don't panic. We'll discuss graphs, planarity, and coloring in Part II of the text.

145

5.1.6 A Faulty Induction Proof

If we have done a good job in writing this text, right about now you should be thinking, "Hey, this induction stuff isn't so hard after all—just show P(0) is true and that P(n) implies P(n+1) for any number n." And, you would be right, although sometimes when you start doing induction proofs on your own, you can run into trouble. For example, we will now use induction to "prove" that all horses are the same color—just when you thought it was safe to skip class and work on your robot program instead. Sorry!

False Theorem. All horses are the same color.

Notice that no n is mentioned in this assertion, so we're going to have to reformulate it in a way that makes an n explicit. In particular, we'll (falsely) prove that

False Theorem 5.1.3. In every set of $n \ge 1$ horses, all the horses are the same color.

This is a statement about all integers $n \ge 1$ rather than ≥ 0 , so it's natural to use a slight variation on induction: prove P(1) in the base case and then prove that P(n) implies P(n+1) for all $n \ge 1$ in the inductive step. This is a perfectly valid variant of induction and is *not* the problem with the proof below.

Bogus proof. The proof is by induction on n. The induction hypothesis P(n) will be

In every set of
$$n$$
 horses, all are the same color. (5.3)

Base case: (n = 1). P(1) is true, because in a size-1 set of horses, there's only one horse, and this horse is definitely the same color as itself.

Inductive step: Assume that P(n) is true for some $n \ge 1$. That is, assume that in every set of n horses, all are the same color. Now suppose we have a set of n + 1 horses:

$$h_1, h_2, \ldots, h_n, h_{n+1}.$$

We need to prove these n + 1 horses are all the same color.

By our assumption, the first n horses are the same color:

$$\underbrace{h_1, h_2, \ldots, h_n}_{\text{same color}}, h_{n+1}$$

Also by our assumption, the last n horses are the same color:

$$h_1, \underbrace{h_2, \ldots, h_n, h_{n+1}}_{\text{same color}}$$

So h_1 is the same color as the remaining horses besides h_{n+1} —that is, h_2, \ldots, h_n . Likewise, h_{n+1} is the same color as the remaining horses besides h_1 —that is, h_2, \ldots, h_n , again. Since h_1 and h_{n+1} are the same color as h_2, \ldots, h_n , all n+1 horses must be the same color, and so P(n+1) is true. Thus, P(n) implies P(n+1).

By the principle of induction, P(n) is true for all $n \ge 1$.

We've proved something false! Does this mean that math broken and we should all take up poetry instead? Of course not! It just means that this proof has a mistake.

The mistake in this argument is in the sentence that begins "So h_1 is the same color as the remaining horses besides h_{n+1} —that is h_2, \ldots, h_n, \ldots " The ellipsi notation ("...") in the expression " $h_1, h_2, \ldots, h_n, h_{n+1}$ " creates the impression that there are some remaining horses—namely h_2, \ldots, h_n —besides h_1 and h_{n+1} . However, this is not true when n=1. In that case, $h_1, h_2, \ldots, h_n, h_{n+1}$ is just h_1, h_2 and there are no "remaining" horses for h_1 to share a color with. And of course, in this case h_1 and h_2 really don't need to be the same color.

This mistake knocks a critical link out of our induction argument. We proved P(1) and we *correctly* proved $P(2) \longrightarrow P(3)$, $P(3) \longrightarrow P(4)$, etc. But we failed to prove $P(1) \longrightarrow P(2)$, and so everything falls apart: we cannot conclude that P(2), P(3), etc., are true. And naturally, these propositions are all false; there are sets of n horses of different colors for all $n \ge 2$.

Students sometimes explain that the mistake in the proof is because P(n) is false for $n \ge 2$, and the proof assumes something false, P(n), in order to prove P(n+1). You should think about how to help such a student understand why this explanation would get no credit on a Math for Computer Science exam.

5.2 Strong Induction

A useful variant of induction is called *strong induction*. Strong induction and ordinary induction are used for exactly the same thing: proving that a predicate is true for all nonnegative integers. Strong induction is useful when a simple proof that the predicate holds for n + 1 does not follow just from the fact that it holds at n, but from the fact that it holds for other values $\leq n$.

5.2. Strong Induction 147

5.2.1 A Rule for Strong Induction

Principle of Strong Induction.

Let P be a predicate on nonnegative integers. If

- P(0) is true, and
- for all $n \in \mathbb{N}$, P(0), P(1), ..., P(n) together imply P(n + 1),

then P(m) is true for all $m \in \mathbb{N}$.

The only change from the ordinary induction principle is that strong induction allows you make more assumptions in the inductive step of your proof! In an ordinary induction argument, you assume that P(n) is true and try to prove that P(n+1) is also true. In a strong induction argument, you may assume that P(0), $P(1), \ldots$, and P(n) are *all* true when you go to prove P(n+1). So you can assume a *stronger* set of hypotheses which can make your job easier.

Formulated as a proof rule, strong induction is

Rule. Strong Induction Rule

$$P(0), \quad \forall n \in \mathbb{N}. \ \left(P(0) \text{ AND } P(1) \text{ AND } \dots \text{ AND } P(n)\right) \text{ IMPLIES } P(n+1)$$

$$\forall m \in \mathbb{N}. \ P(m)$$

Stated more succintly, the rule is

Rule.

$$P(0)$$
, $[\forall k \le n \in \mathbb{N}. P(k)]$ IMPLIES $P(n+1)$
 $\forall m \in \mathbb{N}. P(m)$

The template for strong induction proofs is identical to the template given in Section 5.1.3 for ordinary induction except for two things:

- you should state that your proof is by strong induction, and
- you can assume that P(0), P(1), ..., P(n) are all true instead of only P(n) during the inductive step.

5.2.2 Fibonacci numbers

The numbers that bear his name arose out of the Italian mathematician Fibonacci's models of population growth at the beginning of the thirteenth century. Fibonacci numbers turn out to describe the growth of lots of interesting biological quantities

such as the shape of pineapple sprouts or pine cones, and they also come up regularly in Computer Science where they describe the growth of various data structures and computation times of algorithms.

To generate the list of successive Fibonacci numbers, you start by writing 0, 1 and then keep adding another element to the list by summing the two previous ones:

$$0, 1, 1, 2, 3, 5, 8, 13, 21, \dots$$

Another way to describe this process is to define nth Fibonacci number F(n) by the equations:

$$F(0) := 0,$$

 $F(1) := 1,$
 $F(n) := F(n-1) + F(n-2)$ for $n \ge 2$.

Note that because the general rule for finding the Fibonacci F(n) refers to the two previous values F(n-1) and F(n-2), we needed to know the two values F(0) and F(1) in order to get started.

One simple property of Fibonacci numbers is that the even/odd pattern of Fibonacci numbers repeats in a cycle of length three. A nice way to say this is that for all $n \ge 0$,

$$F(n)$$
 is even IFF $F(n+3)$ is even. (5.4)

We will verify the equivalence (5.4) by induction, but strong induction is called for because properties of F(n) depend not just on F(n-1) but also on F(n-2).

Proof. The (strong) induction hypothesis P(n) will be (5.4).

Base cases:

- (n = 0). F(0) = 0 and F(3) = 2 are both even.
- (n = 1). F(1) = 1 and F(4) = 3 are both not even.

Induction step: For $n \ge 1$, we want to prove P(n + 1) is true assuming by strong induction that P(n) and P(n - 1) are true.

Now it is easy to verify that for all integers k, m,

$$m + k$$
 is even IFF [m is even IFF k is even]. (*)

So for $n \ge 1$, F(n+1) is even $\text{IFF } F(n) + F(n-1) \text{ is even} \qquad (\text{def of } F(n+1))$ $\text{IFF } [F(n) \text{ is even IFF } F(n-1) \text{ is even}] \qquad (\text{by } (*))$ IFF [F(n+3) is even IFF F(n+2) is even] (by strong ind. hyp. P(n), P(n-1)) $\text{IFF } F(n+3) + F(n+2) \text{ is even} \qquad (\text{by } (*))$ $\text{IFF } F(n+4) \text{ is even} \qquad (\text{by def of } F(n+4)).$

This shows that

$$F(n + 1)$$
 is even IFF $F(n + 4)$ is even,

which means that P(n + 1) is true, as required.

There is a long standing community of Fibonacci number enthusiasts who have been captivated by the many extraordinary properties of these number—a few further illustrative properties appear in Problems 5.8, 5.25, and 5.30.

5.2.3 Products of Primes

We can use strong induction to re-prove Theorem 2.3.1 which we previously proved using Well Ordering.

Theorem. Every integer greater than 1 is a product of primes.

Proof. We will prove the Theorem by strong induction, letting the induction hypothesis P(n) be

n is a product of primes.

So the Theorem will follow if we prove that P(n) holds for all $n \ge 2$.

Base Case: (n = 2): P(2) is true because 2 is prime, so it is a length one product of primes by convention.

Inductive step: Suppose that $n \ge 2$ and that every number from 2 to n is a product of primes. We must show that P(n + 1) holds, namely, that n + 1 is also a product of primes. We argue by cases:

If n + 1 is itself prime, then it is a length one product of primes by convention, and so P(n + 1) holds in this case.

Otherwise, n + 1 is not prime, which by definition means $n + 1 = k \cdot m$ for some integers k, m between 2 and n. Now by the strong induction hypothesis, we know that both k and m are products of primes. By multiplying these products, it follows

Figure 5.5 One way to make 26 Sg using Strongian currency

immediately that $k \cdot m = n + 1$ is also a product of primes. Therefore, P(n + 1) holds in this case as well.

So P(n + 1) holds in any case, which completes the proof by strong induction that P(n) holds for all $n \ge 2$.

5.2.4 Making Change

The country Inductia, whose unit of currency is the Strong, has coins worth 3Sg (3 Strongs) and 5Sg. Although the Inductians have some trouble making small change like 4Sg or 7Sg, it turns out that they can collect coins to make change for any number that is at least 8 Strongs.

Strong induction makes this easy to prove for $n+1 \ge 11$, because then $(n+1)-3 \ge 8$, so by strong induction the Inductians can make change for exactly (n+1)-3 Strongs, and then they can add a 3Sg coin to get (n+1)Sg. So the only thing to do is check that they can make change for all the amounts from 8 to 10Sg, which is not too hard to do.

Here's a detailed writeup using the official format:

Proof. We prove by strong induction that the Inductians can make change for any amount of at least 8Sg. The induction hypothesis P(n) will be:

There is a collection of coins whose value is n + 8 Strongs.

We now proceed with the induction proof:

Base case: P(0) is true because a 3Sg coin together with a 5Sg coin makes 8Sg.

151

Inductive step: We assume P(k) holds for all $k \le n$, and prove that P(n + 1) holds. We argue by cases:

Case (n + 1 = 1): We have to make (n + 1) + 8 = 9Sg. We can do this using three 3Sg coins.

Case (n + 1 = 2): We have to make (n + 1) + 8 = 10Sg. Use two 5Sg coins.

Case $(n + 1 \ge 3)$: Then $0 \le n - 2 \le n$, so by the strong induction hypothesis, the Inductions can make change for (n - 2) + 8Sg. Now by adding a 3Sg coin, they can make change for (n + 1) + 8Sg, so P(n + 1) holds in this case.

Since $n \ge 0$, we know that $n+1 \ge 1$ and thus that the three cases cover every possibility. Since P(n+1) is true in every case, we can conclude by strong induction that for all $n \ge 0$, the Inductians can make change for n+8 Strong. That is, they can make change for any number of eight or more Strong.

5.2.5 The Stacking Game

Here is another exciting game that's surely about to sweep the nation!

You begin with a stack of n boxes. Then you make a sequence of moves. In each move, you divide one stack of boxes into two nonempty stacks. The game ends when you have n stacks, each containing a single box. You earn points for each move; in particular, if you divide one stack of height a + b into two stacks with heights a and b, then you score ab points for that move. Your overall score is the sum of the points that you earn for each move. What strategy should you use to maximize your total score?

As an example, suppose that we begin with a stack of n = 10 boxes. Then the game might proceed as shown in Figure 5.6. Can you find a better strategy?

Analyzing the Game

Let's use strong induction to analyze the unstacking game. We'll prove that your score is determined entirely by the number of boxes—your strategy is irrelevant!

Theorem 5.2.1. Every way of unstacking n blocks gives a score of n(n-1)/2 points.

There are a couple technical points to notice in the proof:

- The template for a strong induction proof mirrors the one for ordinary induction.
- As with ordinary induction, we have some freedom to adjust indices. In this case, we prove P(1) in the base case and prove that $P(1), \ldots, P(n)$ imply P(n + 1) for all $n \ge 1$ in the inductive step.

	Stack Heights										Score
<u>10</u>											
5	<u>5</u>										25 points
<u>5</u>	3	2									6
$\frac{5}{4}$	3	2	1								4
2	<u>3</u>	2	1	2							4
<u>2</u>	2		1	2	1						2
1	<u>2</u>	2	1	2	1	1					1
1	1	2		2	1	1	1				1
1	1	1	1	2	1	1	1	1			1
1	1	1	1	1	1	1	1	1	1		1
Total Score = 45 pc								45 points			

Figure 5.6 An example of the stacking game with n = 10 boxes. On each line, the underlined stack is divided in the next step.

Proof. The proof is by strong induction. Let P(n) be the proposition that every way of unstacking n blocks gives a score of n(n-1)/2.

Base case: If n = 1, then there is only one block. No moves are possible, and so the total score for the game is 1(1-1)/2 = 0. Therefore, P(1) is true.

Inductive step: Now we must show that $P(1), \ldots, P(n)$ imply P(n + 1) for all $n \ge 1$. So assume that $P(1), \ldots, P(n)$ are all true and that we have a stack of n + 1 blocks. The first move must split this stack into substacks with positive sizes a and b where a + b = n + 1 and $0 < a, b \le n$. Now the total score for the game is the sum of points for this first move plus points obtained by unstacking the two resulting substacks:

total score = (score for 1st move)
$$+ (score for unstacking a blocks)$$

$$+ (score for unstacking b blocks)$$

$$= ab + \frac{a(a-1)}{2} + \frac{b(b-1)}{2}$$
 by $P(a)$ and $P(b)$

$$= \frac{(a+b)^2 - (a+b)}{2} = \frac{(a+b)((a+b)-1)}{2}$$

$$= \frac{(n+1)n}{2}$$

This shows that $P(1), P(2), \ldots, P(n)$ imply P(n + 1).

153

Therefore, the claim is true by strong induction.

5.3 Strong Induction vs. Induction vs. Well Ordering

Strong induction looks genuinely "stronger" than ordinary induction —after all, you can assume a lot more when proving the induction step. Since ordinary induction is a special case of strong induction, you might wonder why anyone would bother with ordinary induction.

Anything that can be proved by strong induction can also be proved by ordinary induction using *essentially the same proof*! In fact a simple text manipulation program with no builtin theorem-proving ability can mindlessly reformat any proof using strong induction into a proof using ordinary induction. This is done just by replacing the strong induction hypothesis P(n) with the ordinary induction hypothesis $Q(n) := \forall k \leq n$. P(k).

Still, it's worth distinguishing these two kinds of induction, since which you use will signal whether the inductive step for n + 1 follows directly from the case for n or requires cases smaller than n, which is generally good for your reader to know.

It may seem surprising that the same thing holds for the Well Ordering Principle because the templates for induction look nothing like the one for well ordering. Even so, there is a mechanical way to reformat any induction proof into a Well Ordering proof, and vice versa. We have no need to go into the reformatting details, but it is illustrated in several examples in this chapter where induction was used to prove something already proved using well ordering. The point is that, theoretically, the three proof methods—well ordering, induction, and strong induction—are simply different formats for presenting the same mathematical reasoning!

So why three methods? Well, sometimes induction proofs are clearer because they don't require proof by contradiction. Also, induction proofs often provide iterative procedures to build up larger outputs from smaller ones. On the other hand, well ordering can come out slightly shorter, and sometimes seem more natural and less worrisome to beginners.

So which method should you use? There is no simple recipe. Sometimes the only way to decide is to write up a proof using more than one method and compare how they come out. But whichever method you choose, be sure to state the method up front to help a reader follow your proof.

Figure 5.7 Gehry's new tile.

Problems for Section 5.1

Practice Problems

Problem 5.1.

Prove by induction that every nonempty finite set of real numbers has a minimum element.

Problem 5.2.

Frank Gehry has changed his mind. Instead of the L-shaped tiles shown in figure 5.3, he wants to use an odd offset pattern of tiles (or its mirror-image reflection), as shown in 5.7. To prove this is possible, he uses reasoning similar to the proof in 5.1.5. However, unlike the proof in the text, this proof is flawed. Which part of the proof below contains a logical error?

False Claim. The proof is by induction. Let P(n) be the proposition that for every location of Bill in a $2^n \times 2^n$ courtyard, there exists a tiling of the remainder with the offset tile pattern.

False proof. Base case: P(0) is true because Bill fills the whole courtyard.

Inductive step: Assume that P(n) is true for some $n \ge 0$; that is, for every location of Bill in a $2^n \times 2^n$ courtyard, there exists a tiling of the remainder. Divide the $2^{n+1} \times 2^{n+1}$ courtyard into four quadrants, each $2^n \times 2^n$. One quadrant contains

Figure 5.8 The induction hypothesis for the false theorem.

Bill (**B** in the diagram below). Place a temporary Bill (**X** in the diagram) in each of the three squares lying near this quadrant as shown in Figure 5.8.

We can tile each of the four quadrants by the induction assumption. Replacing the three temporary Bills with a single offset tile completes the job. This proves that P(n) implies P(n+1) for all $n \ge 0$. Thus P(m) is true for all $m \in \mathbb{N}$, and the ability to place Bill in the center of the courtyard follows as a special case where we put Bill in a central square.

Class Problems

Problem 5.3.

Use induction to prove that

$$1^{3} + 2^{3} + \dots + n^{3} = \left(\frac{n(n+1)}{2}\right)^{2}.$$
 (5.5)

for all $n \ge 1$.

Remember to formally

- 1. Declare proof by induction.
- 2. Identify the induction hypothesis P(n).
- 3. Establish the base case.

- 4. Prove that $P(n) \Rightarrow P(n+1)$.
- 5. Conclude that P(n) holds for all $n \ge 1$.

as in the five part template.

Problem 5.4.

Prove by induction on n that

$$1 + r + r^{2} + \dots + r^{n} = \frac{r^{n+1} - 1}{r - 1}$$
 (5.6)

for all $n \in \mathbb{N}$ and numbers $r \neq 1$.

Problem 5.5.

Prove by induction:

$$1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2} < 2 - \frac{1}{n},\tag{5.7}$$

for all n > 1.

Problem 5.6. (a) Prove by induction that a $2^n \times 2^n$ courtyard with a 1×1 statue of Bill in *a corner* can be covered with L-shaped tiles. (Do not assume or reprove the (stronger) result of Theorem 5.1.2 that Bill can be placed anywhere. The point of this problem is to show a different induction hypothesis that works.)

(b) Use the result of part (a) to prove the original claim that there is a tiling with Bill in the middle.

Problem 5.7.

We've proved in two different ways that

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

But now we're going to prove a *contradictory* theorem!

False Theorem. For all $n \ge 0$,

$$2+3+4+\cdots+n=\frac{n(n+1)}{2}$$

Proof. We use induction. Let P(n) be the proposition that $2 + 3 + 4 + \cdots + n = n(n+1)/2$.

Base case: P(0) is true, since both sides of the equation are equal to zero. (Recall that a sum with no terms is zero.)

Inductive step: Now we must show that P(n) implies P(n+1) for all $n \ge 0$. So suppose that P(n) is true; that is, $2+3+4+\cdots+n=n(n+1)/2$. Then we can reason as follows:

$$2+3+4+\cdots+n+(n+1) = [2+3+4+\cdots+n]+(n+1)$$

$$= \frac{n(n+1)}{2}+(n+1)$$

$$= \frac{(n+1)(n+2)}{2}$$

Above, we group some terms, use the assumption P(n), and then simplify. This shows that P(n) implies P(n + 1). By the principle of induction, P(n) is true for all $n \in \mathbb{N}$.

Where exactly is the error in this proof?

Homework Problems

Problem 5.8.

The Fibonacci numbers F(n) are described in Section 5.2.2.

Prove by induction that for all $n \ge 1$,

$$F(n-1) \cdot F(n+1) - F(n)^2 = (-1)^n. \tag{5.8}$$

Problem 5.9.

For any binary string α let num (α) be the nonnegative integer it represents in binary notation (possibly with leading zeroes). For example, num (10) = 2, and num (0101) = 5.

An n + 1-bit adder adds two n + 1-bit binary numbers. More precisely, an n + 1-bit adder takes two length n + 1 binary strings

$$\alpha_n ::= a_n \dots a_1 a_0,$$

 $\beta_n ::= b_n \dots b_1 b_0,$

and a binary digit c_0 as inputs, and produces a length-(n + 1) binary string

$$\sigma_n ::= s_n \dots s_1 s_0,$$

and a binary digit c_{n+1} as outputs, and satisfies the specification:

$$num(\alpha_n) + num(\beta_n) + c_0 = 2^{n+1}c_{n+1} + num(\sigma_n).$$
 (5.9)

There is a straighforward way to implement an n + 1-bit adder as a digital circuit: an n + 1-bit *ripple-carry circuit* has 1 + 2(n + 1) binary inputs

$$a_n, \ldots, a_1, a_0, b_n, \ldots, b_1, b_0, c_0,$$

and n + 2 binary outputs,

$$C_{n+1}, S_n, \ldots, S_1, S_0.$$

As in Problem 3.6, the ripple-carry circuit is specified by the following formulas:

$$s_i ::= a_i \text{ XOR } b_i \text{ XOR } c_i \tag{5.10}$$

$$c_{i+1} ::= (a_i \text{ AND } b_i) \text{ OR } (a_i \text{ AND } c_i) \text{ OR } (b_i \text{ AND } c_i)$$
 (5.11)

for $0 \le i \le n$, where we follow the convention that 1 corresponds to **T** and 0 corresponds to **F**.

(a) Verify that definitions (5.10) and (5.11) imply that

$$a_n + b_n + c_n = 2c_{n+1} + s_n. (5.12)$$

for all $n \in \mathbb{N}$.

(b) Prove by induction on n that an n + 1-bit ripple-carry circuit really is an n + 1-bit adder, that is, its outputs satisfy (5.9).

Hint: You may assume that, by definition of binary representation of integers,

$$num(\alpha_{n+1}) = a_{n+1}2^{n+1} + num(\alpha_n).$$
 (5.13)

Problem 5.10.

Divided Equilateral Triangles⁵ (DETs) can be built up as follows:

- A single equilateral triangle counts as a DET whose only unit subtriangle is itself.
- If $T := \Delta$ is a DET, then the equilateral triangle T' built out of four copies of T as shown in in Figure 5.9 is also a DET, and the unit subtriangles of T' are exactly the unit subtriangles of each of the copies of T.

Figure 5.9 DET T' from Four Copies of DET T

Figure 5.10 Trapezoid from Three Triangles

From here on "subtriangle" will mean unit subtriangle.

- (a) Define the *length* of a DET to be the number of subtriangles with an edge on its base. Prove **by induction on length** that the total number of subtriangles of a DET is the square of its length.
- (b) Show that a DET with one of its corner subtriangles removed can be tiled with trapezoids built out of three subtriangles as in Figure 5.10.

Problem 5.11.

The Math for Computer Science mascot, Theory Hippotamus, made a startling discovery while playing with his prized collection of unit squares over the weekend. Here is what happened.

First, Theory Hippotamus put his favorite unit square down on the floor as in Figure 5.11 (a). He noted that the length of the periphery of the resulting shape was 4, an even number. Next, he put a second unit square down next to the first so that the two squares shared an edge as in Figure 5.11 (b). He noticed that the length of the periphery of the resulting shape was now 6, which is also an even number. (The periphery of each shape in the figure is indicated by a thicker line.) Theory Hippotamus continued to place squares so that each new square shared an edge with at least one previously-placed square and no squares overlapped. Eventually, he arrived at the shape in Figure 5.11 (c). He realized that the length of the periphery of this shape was 36, which is again an even number.

⁵Adapted from [49].

Our plucky porcine pal is perplexed by this peculiar pattern. Use induction on the number of squares to prove that the length of the periphery is always even, no matter how many squares Theory Hippotamus places or how he arranges them.

Figure 5.11 Some shapes that Theory Hippotamus created.

Problem 5.12.

Prove the Distributive Law of intersection over the union of n sets by induction:

$$A \cap \bigcup_{i=1}^{n} B_i = \bigcup_{i=1}^{n} (A \cap B_i). \tag{5.14}$$

Hint: Theorem 4.1.2 gives the n = 2 case.

Problem 5.13.

Here is an interesting construction of a geometric object known as the *Koch snowflake*. Define a sequence of polygons S_0 , S_1 recursively, starting with S_0 equal to an equilateral triangle with unit sides. We construct S_{n+1} by removing the middle third of each edge of S_n and replacing it with two line segments of the same length, as illustrated in Figure 5.12.

Let a_n be the area of S_n . Observe that a_0 is just the area of the unit equilateral triangle which by elementary geometry is $\sqrt{3}/4$.

Figure 5.12 S_0, S_1, S_2 and S_3 .

Prove by induction that for $n \ge 0$, the area of the n^{th} snowflake is given by:

$$a_n = a_0 \left(\frac{8}{5} - \frac{3}{5} \left(\frac{4}{9} \right)^n \right). \tag{5.15}$$

Exam Problems

Problem 5.14.

Prove by induction that

$$\sum_{1}^{n} k \cdot k! = (n+1)! - 1. \tag{5.16}$$

Problem 5.15.

Prove by induction:

$$0^3 + 1^3 + 2^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2, \forall n \ge 0.$$

using the equation itself as the induction hypothesis P(n).

(a) Prove the

base case (n = 0).

(b) Now prove the

inductive step.

Problem 5.16.

Suppose P(n) is a predicate on nonnegative numbers, and suppose

$$\forall k. \ P(k) \text{ IMPLIES } P(k+2). \tag{5.17}$$

For P's that satisfy (5.17), some of the assertions below Can hold for some, but not all, such P, other assertions Always hold no matter what the P may be, and some Never hold for any such P. Indicate which case applies for each of the assertions and briefly explain why.

- (a) $\forall n \geq 0$. P(n)
- **(b)** NOT(P(0)) AND $\forall n \geq 1$. P(n)
- (c) $\forall n \geq 0$. NOT(P(n))
- (d) $(\forall n \leq 100. P(n))$ AND $(\forall n > 100. NOT(P(n)))$
- (e) $(\forall n \leq 100. \text{ NOT}(P(n))) \text{ AND } (\forall n > 100. P(n))$
- (f) P(0) IMPLIES $\forall n. P(n+2)$
- (g) $[\exists n. P(2n)]$ IMPLIES $\forall n. P(2n+2)$
- **(h)** P(1) IMPLIES $\forall n. P(2n+1)$
- (i) $[\exists n. P(2n)]$ IMPLIES $\forall n. P(2n+2)$
- (j) $\exists n. \exists m > n. [P(2n) \text{ AND NOT}(P(2m))]$
- (k) $[\exists n. P(n)]$ IMPLIES $\forall n. \exists m > n. P(m)$
- (I) NOT(P(0)) IMPLIES $\forall n$. NOT(P(2n))

Problem 5.17.

We examine a series of propositional formulas $F_1, F_2, \ldots, F_n, \ldots$ containing propo-

sitional variables $P_1, P_2, \ldots, P_n, \ldots$ constructed as follows

$$\begin{array}{llll} F_1(P_1) & ::= & P_1 \\ F_2(P_1,P_2) & ::= & P_1 \text{ IMPLIES } P_2 \\ F_3(P_1,P_2,P_3) & ::= & (P_1 \text{ IMPLIES } P_2) \text{ IMPLIES } P_3 \\ F_4(P_1,P_2,P_3,P_4) & ::= & ((P_1 \text{ IMPLIES } P_2) \text{ IMPLIES } P_3) \text{ IMPLIES } P_4 \\ F_5(P_1,P_2,P_3,P_4,P_5) & ::= & (((P_1 \text{ IMPLIES } P_2) \text{ IMPLIES } P_3) \text{ IMPLIES } P_4) \text{ IMPLIES } P_5 \\ & \vdots & \vdots & \vdots \end{array}$$

Let T_n be the number of different true/false settings of the variables P_1, P_2, \ldots, P_n for which the statement $F_n(P_1, P_2, \ldots, P_n)$ is true. For example, $T_2 = 3$ since $F_2(P_1, P_2)$ is true for 3 different settings of the variables P_1 and P_2 :

$$egin{array}{c|cccc} P_1 & P_2 & F_2(P_1,P_2) \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \\ \hline \end{array}$$

(a) Explain why

$$T_{n+1} = 2^{n+1} - T_n. (5.18)$$

(b) Use induction to prove that

$$T_n = \frac{2^{n+1} + (-1)^n}{3} \tag{*}$$

for $n \ge 1$.

Problem 5.18.

You are given n envelopes, numbered $0, 1, \ldots, n-1$. Envelope 0 contains $2^0 = 1$ dollar, Envelope 1 contains $2^1 = 2$ dollars, ..., and Envelope n-1 contains 2^{n-1} dollars. Let P(n) be the assertion that:

For all nonnegative integers $k < 2^n$, there is a subset of the n envelopes whose contents total to exactly k dollars.

Prove by induction that P(n) holds for all integers $n \ge 1$.

Figure 5.13 OR-circuit from AND-circuit.

Problem 5.19.

Prove by induction that

$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$$
 (5.19)

for all integers $n \ge 1$.

Problem 5.20.

A k-bit AND-circuit is a digital circuit that has k 0-1 valued inputs $d_0, d_1, \ldots, d_{k-1}$ and one 0-1-valued output variable whose value will be

$$d_0$$
 and d_1 and \cdots and d_{k-1} .

OR-circuits are defined in the same way, with "OR" replacing "AND."

(a) Suppose we want an OR-circuit but only have a supply of AND-circuits and some NOT-gates ("inverters") that have one 0-1 valued input and one 0-1 valued output. We can turn an AND-circuit into an OR-circuit by attaching a NOT-gate to each input of the AND-circuit and also attaching a NOT-gate to the output of the AND-circuit. This is illustrated in Figure 5.13. Briefly explain why this works.

Large digital circuits are built by connecting together smaller digital circuits as components. One of the most basic components is a two-input/one-output AND-gate that produces an output value equal to the AND of its two input values. So according the definition in part (a), a single AND-gate is a 1-bit AND-circuit.

⁶Following the usual conventions for digital circuits, we're using 1 for the truth value **T** and 0 for **F**.

Figure 5.14 A 4-bit AND-circuit.

Figure 5.15 An *n*-bit tree-design AND-circuit.

We can build up larger AND-circuits out of a collection of AND-gates in several ways. For example, one way to build a 4-bit AND-circuit is to connect three AND-gates as illustrated in Figure 5.14.

More generally, a *depth-n tree-design* AND-*circuit*—"depth-*n* circuit" for short—has 2^n inputs and is built from two depth-(n-1) circuits by using the outputs of the two depth-(n-1) circuits as inputs to a single AND-gate. This is illustrated in Figure 5.15. So the 4-bit AND-circuit in Figure 5.14 is a depth-2 circuit. A depth-1 circuit is defined simply to be a single AND-gate.

(b) Let gate #(n) be the number of AND-gates in a depth-n circuit. Prove by induction that

gate#
$$(n) = 2^n - 1$$
 (5.20)

for all $n \ge 1$.

Problems for Section 5.2

Practice Problems

Problem 5.21.

Some fundamental principles for reasoning about nonnegative integers are:

- 1. The Induction Principle,
- 2. The Strong Induction Principle,
- 3. The Well Ordering Principle.

Identify which, if any, of the above principles is captured by each of the following inference rules.

(a)
$$P(0), \forall m. (\forall k \leq m. \ P(k)) \text{ IMPLIES } P(m+1)$$

$$\forall n. \ P(n)$$

(b)
$$\frac{P(b), \forall k \ge b. \ P(k) \ \text{IMPLIES} \ P(k+1)}{\forall k \ge b. \ P(k)}$$

(c)
$$\frac{\exists n. \ P(n)}{\exists m. \ [P(m) \ \text{AND} \ (\forall k. \ P(k) \ \text{IMPLIES} \ k \geq m)]}$$

(d)
$$P(0), \forall k > 0. \ P(k) \text{ IMPLIES } P(k+1)$$

$$\forall n. \ P(n)$$

(e)
$$\frac{\forall m. (\forall k < m. P(k)) \text{ IMPLIES } P(m)}{\forall n. P(n)}$$

Problem 5.22.

The Fibonacci numbers F(n) are described in Section 5.2.2.

Indicate exactly which sentence(s) in the following bogus proof contain logical errors? Explain.

False Claim. Every Fibonacci number is even.

Bogus proof. Let all the variables n, m, k mentioned below be nonnegative integer valued. Let Even(n) mean that F(n) is even. The proof is by strong induction with induction hypothesis Even(n).

base case: F(0) = 0 is an even number, so Even(0) is true.

inductive step: We assume may assume the strong induction hypothesis

Even(
$$k$$
) for $0 \le k \le n$,

and we must prove Even(n + 1).

Then by strong induction hypothesis, Even(n) and Even(n-1) are true, that is, F(n) and F(n-1) are both even. But by the definition, F(n+1) equals the sum F(n) + F(n-1) of two even numbers, and so it is also even. This proves Even(n+1) as required.

Hence, F(m) is even for all $m \in \mathbb{N}$ by the Strong Induction Principle.

Problem 5.23.

Alice wants to prove by induction that a predicate P holds for certain nonnegative integers. She has proven that for all nonnegative integers n = 0, 1, ...

$$P(n)$$
 IMPLIES $P(n+3)$.

- (a) Suppose Alice also proves that P(5) holds. Which of the following propositions can she infer?
 - 1. P(n) holds for all $n \ge 5$
 - 2. P(3n) holds for all $n \ge 5$
 - 3. P(n) holds for n = 8, 11, 14, ...
 - 4. P(n) does not hold for n < 5
 - 5. $\forall n. P(3n + 5)$
 - 6. $\forall n > 2$. P(3n 1)
 - 7. P(0) IMPLIES $\forall n. P(3n+2)$
 - 8. P(0) IMPLIES $\forall n. P(3n)$
- (b) Which of the following could Alice prove in order to conclude that P(n) holds for all $n \ge 5$?
 - 1. P(0)

- 2. P(5)
- 3. P(5) and P(6)
- 4. P(0), P(1) and P(2)
- 5. P(5), P(6) and P(7)
- 6. P(2), P(4) and P(5)
- 7. P(2), P(4) and P(6)
- 8. P(3), P(5) and P(7)

Problem 5.24.

Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps.

Class Problems

Problem 5.25.

The Fibonacci numbers are described in Section 5.2.2.

Prove, using strong induction, the following closed-form formula for the Fibonacci numbers.⁷

$$F(n) = \frac{p^n - q^n}{\sqrt{5}}$$

where $p = \frac{1+\sqrt{5}}{2}$ and $q = \frac{1-\sqrt{5}}{2}$. *Hint:* Note that p and q are the roots of $x^2 - x - 1 = 0$, and so $p^2 = p + 1$ and $q^2 = q + 1$.

Problem 5.26.

A sequence of numbers is weakly decreasing when each number in the sequence is ≥ the numbers after it. (This implies that a sequence of just one number is weakly decreasing.)

Here's a bogus proof of a very important true fact, every integer greater than 1 is a product of a unique weakly decreasing sequence of primes—a pusp, for short.

Explain what's bogus about the proof.

Lemma. Every integer greater than 1 is a pusp.

⁷This mind-boggling formula is known as *Binet's formula*. We'll explain in Chapter 16, and again in Chapter 22, how it comes about.

169

For example, $252 = 7 \cdot 3 \cdot 3 \cdot 2 \cdot 2$, and no other weakly decreasing sequence of primes will have a product equal to 252.

Bogus proof. We will prove the lemma by strong induction, letting the induction hypothesis P(n) be

n is a pusp.

So the lemma will follow if we prove that P(n) holds for all $n \ge 2$.

Base Case (n = 2): P(2) is true because 2 is prime, and so it is a length one product of primes, and this is obviously the only sequence of primes whose product can equal 2.

Inductive step: Suppose that $n \ge 2$ and that i is a pusp for every integer i where $2 \le i < n + 1$. We must show that P(n + 1) holds, namely, that n + 1 is also a pusp. We argue by cases:

If n + 1 is itself prime, then it is the product of a length one sequence consisting of itself. This sequence is unique, since by definition of prime, n + 1 has no other prime factors. So n + 1 is a pusp, that is P(n + 1) holds in this case.

Otherwise, n+1 is not prime, which by definition means n+1=km for some integers k, m such that $2 \le k, m < n+1$. Now by the strong induction hypothesis, we know that k and m are pusps. It follows that by merging the unique prime sequences for k and m, in sorted order, we get a unique weakly decreasing sequence of primes whose product equals n+1. So n+1 is a pusp, in this case as well.

So P(n + 1) holds in any case, which completes the proof by strong induction that P(n) holds for all $n \ge 2$.

- 27

Problem 5.27.

Define the *potential* p(S) of a stack of blocks S to be k(k-1)/2 where k is the number of blocks in S. Define the potential p(A) of a set of stacks A to be the sum of the potentials of the stacks in A.

Generalize Theorem 5.2.1 about scores in the stacking game to show that for any set of stacks A if a sequence of moves starting with A leads to another set of stacks B then $p(A) \ge p(B)$, and the score for this sequence of moves is p(A) - p(B).

Hint: Try induction on the number of moves to get from A to B.

Homework Problems

Problem 5.28.

A group of $n \ge 1$ people can be divided into teams, each containing either 4 or 7 people. What are all the possible values of n? Use induction to prove that your answer is correct.

Problem 5.29.

The following Lemma is true, but the *proof* given for it below is defective. Pinpoint *exactly* where the proof first makes an unjustified step and explain why it is unjustified.

Lemma. For any prime p and positive integers n, x_1, x_2, \ldots, x_n , if $p \mid x_1 x_2 \ldots x_n$, then $p \mid x_i$ for some $1 \le i \le n$.

Bogus proof. Proof by strong induction on n. The induction hypothesis P(n) is that Lemma holds for n.

Base case n = 1: When n = 1, we have $p \mid x_1$, therefore we can let i = 1 and conclude $p \mid x_i$.

Induction step: Now assuming the claim holds for all $k \le n$, we must prove it for n + 1.

So suppose $p \mid x_1x_2\cdots x_{n+1}$. Let $y_n = x_nx_{n+1}$, so $x_1x_2\cdots x_{n+1} = x_1x_2\cdots x_{n-1}y_n$. Since the right-hand side of this equality is a product of n terms, we have by induction that p divides one of them. If $p \mid x_i$ for some i < n, then we have the desired i. Otherwise $p \mid y_n$. But since y_n is a product of the two terms x_n, x_{n+1} , we have by strong induction that p divides one of them. So in this case $p \mid x_i$ for i = n or i = n + 1.

Exam Problems

Problem 5.30.

The Fibonacci numbers F(n) are described in Section 5.2.2.

These numbers satisfy many unexpected identities, such as

$$F(0)^{2} + F(1)^{2} + \dots + F(n)^{2} = F(n)F(n+1). \tag{5.21}$$

Equation (5.21) can be proved to hold for all $n \in \mathbb{N}$ by induction, using the equation itself as the induction hypothesis P(n).

(a) Prove the

base case (n = 0).

171

(b) Now prove the

inductive step.

Problem 5.31.

Use strong induction to prove that $n \le 3^{n/3}$ for every integer $n \ge 0$.

Problem 5.32.

A class of any size of 18 or more can be assembled from student teams of sizes 4 and 7. Prove this by **induction** (of some kind), using the induction hypothesis:

S(n) := a class of n + 18 students can be assembled from teams of sizes 4 and 7.

Problem 5.33.

Any amount of ten or more cents postage that is a multiple of five can be made using only 10ϕ and 15ϕ stamps. Prove this *by induction* (ordinary or strong, but say which) using the induction hypothesis

 $S(n) := (5n + 10) \phi$ postage can be made using only 10ϕ and 15ϕ stamps.

I