





# From Historical Trends to Future Predictions: A Comprehensive Analysis of Arctic Sea Ice Concentration

by Tien Ly, Satellite Data Scientist Intern, Summer 2024

NOAA National Marine Fisheries Service, CoastWatch, PolarWatch Node CSU Council on Ocean Affairs, Science, & Technology (COAST)



### **Table of Contents**

Summer 2024 Internship at NOAA PolarWatch (06/03 - 08/16)

| 01 | Recap of Milestone 3: Statistical Analysis |
|----|--------------------------------------------|
| 02 | Background and Motivation                  |
| 03 | Milestone 4: Predictive Modeling           |
| 04 | Conclusion                                 |
| 05 | Acknowledgements                           |

## Milestone 3: Statistical Analysis and Visualization

Mapping anomalies and sea ice concentration

Sea Ice Concentration, NOAA/NSIDC Climate Data Record V4, Northern Hemisphere, 25km, Science Quality, 1978-Present, Daily https://polarwatch.noaa.gov/erddap/griddap/nsidc G02202v4nhldav.html



## Milestone 3: Statistical Analysis and Visualization

Mapping anomalies and sea ice concentration

Sea Ice Concentration, NOAA/NSIDC Climate Data Record V4, Northern Hemisphere, 25km, Science Quality, 1978-Present, Daily https://polarwatch.noaa.gov/erddap/griddap/nsidc G02202v4nhldav.html



### Background

Key Role of Sea Ice in Climate Change

 Sea ice decline: Arctic sea ice extent has halved since 1979, signaling rapid Arctic warming and occurring at nearly twice the global rate.

 Global impact: Affects transportation routes, resource development, coastal erosion, Arctic communities, and wildlife

 Climate indicator: Rapid sea ice loss is a clear marker of human-caused climate change.



### Why It Matters

Importance of Accurate Sea Ice Predictions

- Vital for climate science: Crucial for understanding Arctic amplification and its influence on global climate patterns
- Policy and decision-making: Improved forecasts guide shipping, resource extraction, and infrastructure planning
- Need for advanced models: Current forecasting models face limitations, underscoring the need for techniques like the attention-based LSTM for enhanced accuracy.



### Research Question and Objective

**Research Question** 

How can we predict future sea ice extent using historical data and machine learning techniques?

Objective Replicate and develop an attention-based Long Short-Term Memory (LSTM) model for predicting monthly sea ice extent with a I-month lead time, based on the model presented in the paper Sea Ice Forecasting using Attention-based **Ensemble LSTM** 

#### **LSTM and Attention Mechanisms**

### Long Short-Term Memory (LSTM)

- Handle sequential data and capture long-term dependencies
- Consist of memory cells, input gates, output gates, and forget gates
- Applications
  - Time series

     forecasting, natural
     language processing,
     etc.

#### **Attention Mechanisms**

Enhance model
 performance by focusing
 on important parts of the
 input sequence



### Milestone 4: Machine Learning Modeling

#### **Dataset**

- Variables: 10 atmospheric/ocean variables and sea ice extent (derived from sea ice concentration)
- Sources: ERA-5 global reanalysis product and National Snow and Ice Data Center
- Time span: 39 years (1979-2018)

Added variable: Sea Ice Thickness (SIT), [0, 10], m Sea Ice Thickness and Multi-variable Extended AVHRR Polar Pathfinder APP-X NCEI Climate Data Record V2, Arctic, 1982-Present, Twice Daily https://polarwatch.noaa.gov/erddap/griddap/ncei\_polarAPPX20\_nhem.html

| Table 1 | Variables | included | in the | Dataset |
|---------|-----------|----------|--------|---------|

| Variable                | RANGE      | Unit    |
|-------------------------|------------|---------|
| SURFACE PRESSURE        | [400,1100] | нРа     |
| WIND VELOCITY           | [0,40]     | M/S     |
| SPECIFIC HUMIDITY       | [0,0.1]    | KG/KG   |
| AIR TEMPERATURE         | [200,350]  | K       |
| SHORTWAVE RADIATION     | [0,1500]   | $W/m^2$ |
| LONGWAVE RADIATION      | [0,700]    | $W/m^2$ |
| RAIN RATE               | [0,800]    | MM/DAY  |
| SNOWFALL RATE           | [0,200]    | MM/DAY  |
| SEA SURFACE TEMPERATURE | [200,350]  | K       |
| SEA SURFACE SALINITY    | [0,50]     | PSU     |
| SEA ICE CONCENTRATION   | [0, 100]   | %       |
|                         |            |         |

### **Data Preparation**

- Load the SIT data
  - Import twice-daily sea ice thickness data from 1982 to 2018 using xarray
- Compute the monthly means
  - For each month, compute the mean SIT over the spatial dimensions
- Read the CSV file (the original dataset) in the DataFrame using pandas
- Data alignment
  - Merge the SIT mean as a new column in the original dataset, aligning by month and year to maintain temporal consistency across all features
- Handling missing data
  - o Fill missing SIT values by replacing them with the mean of the column

### **Data Preparation**

- Lag target values
  - Correctly lag the target variable to align with the features
- Sequential split
  - Divide data into training and validation sets (80:20)
- Normalization
  - Use StandardScaler to standardize features and target values for effective model training

### **Building the Model**

#### LSTM with attention mechanism

- Implemented an LSTM model to handle sequential monthly data
- Added attention layers to focus on the most relevant time steps and features.

#### Input features

- 10 atmospheric/ocean variables + sea ice thickness
- Monthly input data from 1979-2018

| Layer (type)                        | Output Shape  | Param # | Connected to                     |
|-------------------------------------|---------------|---------|----------------------------------|
| <pre>input_layer (InputLayer)</pre> | (None, 1, 12) | 0       | -                                |
| lstm (LSTM)                         | (None, 1, 64) | 19,712  | input_layer[0][0]                |
| dropout (Dropout)                   | (None, 1, 64) | 0       | lstm[0][0]                       |
| lstm_1 (LSTM)                       | (None, 1, 32) | 12,416  | dropout[0][0]                    |
| lstm_2 (LSTM)                       | (None, 1, 16) | 3,136   | lstm_1[0][0]                     |
| lstm_3 (LSTM)                       | (None, 1, 16) | 2,112   | lstm_2[0][0]                     |
| attention (Attention)               | (None, 1, 16) | 0       | lstm_3[0][0],<br>lstm_3[0][0]    |
| concatenate (Concatenate)           | (None, 1, 32) | 0       | lstm_3[0][0],<br>attention[0][0] |
| dropout_1 (Dropout)                 | (None, 1, 32) | 0       | concatenate[0][0]                |
| flatten (Flatten)                   | (None, 32)    | 0       | dropout_1[0][0]                  |
| dense (Dense)                       | (None, 32)    | 1,056   | flatten[0][0]                    |

dense[0][0]

dense 1[0][0]

(None, 16)

(None, 1)

Total params: 38,977 (152.25 KB)
Trainable params: 38,977 (152.25 KB)
Non-trainable params: 0 (0.00 B)

dense 1 (Dense)

dense 2 (Dense)

Model: "functional"

#### Output

Predict monthly sea ice extent with a 1-month lead time

### Training the Model

#### **Callbacks**

 Utilize EarlyStopping and ModelCheckpoint to prevent overfitting and save the best model

#### **Fitting**

Train the model with proper settings for epochs and batch size

```
history = model.fit(
        x train.
        y_train,
        epochs=500.
        batch_size=12,
        validation_split=0.3,
        shuffle=True,
        callbacks=keras_callbacks
27/27 - 10s - 365ms/step - loss: 0.9081 - val_loss: 1.1251
    Epoch 2/500
    27/27 - 0s - 11ms/step - loss: 0.7053 - val_loss: 0.3867
    Epoch 3/500
   27/27 - 0s - 11ms/step - loss: 0.2530 - val_loss: 0.1768
    27/27 - 1s - 20ms/step - loss: 0.0923 - val_loss: 0.1275
   27/27 - 0s - 17ms/step - loss: 0.0607 - val_loss: 0.1370
    27/27 - 0s - 18ms/step - loss: 0.0496 - val_loss: 0.0779
    Epoch 7/500
    27/27 - 0s - 18ms/step - loss: 0.0438 - val loss: 0.0711
    Epoch 8/500
    27/27 - 1s - 22ms/step - loss: 0.0352 - val loss: 0.0624
    Epoch 9/500
    27/27 - 0s - 12ms/step - loss: 0.0307 - val_loss: 0.0453
    Epoch 10/500
    27/27 - 0s - 10ms/step - loss: 0.0291 - val loss: 0.0654
```

```
Epoch 126/500
27/27 - 0s - 10ms/step - loss: 0.0145 - val_loss: 0.0378
Epoch 127/500
27/27 - 0s - 9ms/step - loss: 0.0141 - val_loss: 0.0638
Epoch 128/500
27/27 - 0s - 11ms/step - loss: 0.0136 - val_loss: 0.0634
Epoch 129/500
27/27 - 0s - 9ms/step - loss: 0.0124 - val_loss: 0.0540
Epoch 130/500
27/27 - 0s - 9ms/step - loss: 0.0121 - val_loss: 0.0462
Epoch 131/500
27/27 - 0s - 11ms/step - loss: 0.0133 - val_loss: 0.0621
Epoch 132/500
27/27 - 0s - 12ms/step - loss: 0.0147 - val_loss: 0.0519
```

#### **Model Evaluation**

#### **Performance Metrics**

- Root mean square error (RMSE): Provide an absolute measure of prediction error
- Normalized root mean square error (NRMSE): Normalize RMSE to give a relative error measure
- R-squared: Measures how well your model's predictions match the actual data
  - I: Perfect model with no error
  - 0: Model performs no better than the mean of the actual data.
  - Negative values: Model performs worse than simply predicting the mean of the target values.

### **Model Evaluation**

| Model                                   | RMSE          | NRMSE | R-Squared |
|-----------------------------------------|---------------|-------|-----------|
| Original Model with<br>Original Dataset | 2,126,871.173 | 0.203 | 0.645     |
| Updated Model with<br>Original Dataset  | 854,825.939   | 0.085 | 0.934     |
| Updated Model with Updated Dataset      | 876,238.346   | 0.087 | 0.930     |

### **Model Evaluation**



#### Conclusion

#### Improved Model Performance

- Updating the model with the new architecture significantly enhanced performance.
  - The RMSE decreased from 2.1 M to 854,825.939, a considerable improvement
  - The NRMSE dropped from 0.203 to around 0.085, showing better accuracy.
  - R-Squared improved from 0.645 to 0.934, indicating a stronger correlation between predicted and observed values.
- Adding sea ice thickness as a feature did not affect the performance of the model.

#### Predicted vs. Observed Trends

The forecasted sea ice extent closely follows the observed values.

#### Next Steps

- Further refine model architecture and hyperparameters
- Investigate additional features or external data sources to enhance accuracy.
- Apply the model for longer-term sea ice prediction

#### References

Ali, S., Huang, Y., Huang, X., & Wang, J. (2021). Sea ice forecasting using attention-based ensemble LSTM. Tackling Climate Change with Machine Learning Workshop at ICML 2021. https://s3.us-east-l.amazonaws.com/climate-change-ai/papers/icml2021/50/paper.pdf



### Key Takeaways from My Internship

#### Satellite Data Mastery

- Gained proficiency in accessing, analyzing, and visualizing satellite data, particularly sea ice concentration data using Python and ERDDAP
- Learned advanced data manipulation techniques with xarray and pandas, including computing climatology, filling missing values, and preparing data for machine learning models
- Performed anomaly detection, trend analysis using the Mann-Kendall test, t-tests for significance, and created polar maps for sea ice anomalies

#### Climate Modeling & Predictions

 Developed machine learning skills, including building attention-based LSTM models for sea ice prediction

These core skills have strengthened my ability to work on climate-related projects and enhance my data science skill set.

### Acknowledgements

This work was supported by the CSU COAST Summer Student Internship program and NOAA PolarWatch. I would like to extend my deepest gratitude to the following individuals and organizations for this invaluable learning experience:

- Sunny Hospital, Dale Robinson, and Cara Wilson from NOAA PolarWatch
- Krista Kamer and Adam Paganini from CSU COAST

Your support and guidance have helped me develop essential skills, and I am excited to apply these insights to my future academic and professional journey. Thank you for making this internship an incredible experience!