Prefix Compression

You are in charge of data transfer between two Data Centers. Each set of data is represented by a pair of strings. Over a period of time you have observed a trend: most of the times both strings share some prefix. You want to utilize this observation to design a data compression algorithm which will be used to reduce amount of data to be transferred.

You are given two strings, x and y, representing the data, you need to find the longest common prefix (p) of the two strings. Then you will send substring p, x' and y', where x' and y' are the substring left after stripping p from them.

For example, if x= "abcdefpr" and y= "abcpqr", then p= "abc", x'= "defpr", y'= "pqr".

Input Format

The first line contains a single string denoting x.

The second line contains a single string denoting y.

Constraints

- x and y will contain only lowercase Latin characters ('a'-'z').
- $1 \leq length(x), length(y) \leq 10^5$

Output Format

In first line, print the length of substring p, followed by prefix p. In second line, print the length of substring x', followed by substring x'. Similarly in third line, print the length of substring y', followed by substring y'.

Sample Input 0

abcdefpr abcpqr

Sample Output 0

3 abc

5 defpr

3 pqr

Sample Input 1

kitkat kit

Sample Output 1

3 kit

3 kat

0

Sample Input 2

puppy			

Sample Output 2

Explanation

Sample Case 0:

Already explained above in the problem statement.

Sample Case 1:

p= "kit", which is also y. So x' will be "kat" and y' will be an empty string.

Sample Case 2:

Because both strings are the same, the prefix will cover both the strings. Thus, x' and y' will be empty strings.