Linear-Time Dynamics Using Lagrange Multipliers

David Baraff CMU

Presentation by: Elif Tosun

Outline

- Introduction
- Motivation
- Lagrange Multiplier Formulation
- Approach
- Sparse Solution
- Auxiliary Constraints
- Results

W

Introduction

Problem: "Forward simulation with constraints"

Properties:

- Sparse constraints for articulated figures n bodies, O(n) constraints
- Nearly or completely acyclic systems robot arms, humans...

Methods:

- 7. Reduced Coordinate: Reduce the # of coordinates needed to describe system's state
- 8. Constraint Forces: Introduce additional forces into system to maintain constraints (*)

Very Basic Example

- Primary Constraints
 - □ n-1
 - Each between 2 bodies
 - □ Acyclic
 - Can be non-holonomic (can be velocity dependent)
 - Must be equality

Example

- Auxiliary Constraints
 - □ Closed loops

Example

- Auxiliary Constraints
 - □ Closed loops
 - □ Between 3+ bodies

Example

- Auxiliary Constraints
 - □ Closed loops
 - □ Between 3+ bodies
 - □ Inequality Constraints

Overview of method

- Direct (non-iterative) method
- Constraints can be of various dimensions
- Bodies need not be rigid
- Uses a very simple sparse-matrix technique
- No steep learning curve
- Easy to implement
- Auxiliary method can be used with reduced coordinate methods too!

Motivation

- Given: a system with m d.o.f (called "maximal coordinates")
 + set of constraints that remove c d.o.f.
- **Reduced Coordinate Methods:**

Method: Parameterize remaining *n=m-c* d.o.f. using reduced set of *n* coordinates (called "*generalized coordinates*")

Cons:

- parameterization very hard
- if one can be found need $O(n^3)$ time needed for acceleration computation.

Pros:

- loop-free articulated bodies O(n) time achievable
- Eliminates drifting problem in multiplier methods (need constraint stabilization)
- "may" run faster due to larger time steps taken by integrator

v

Motivation

Lagrange Multiplier Methods:

Method:

- use the maximal coordinates (m d.o.f.) + *new* constraint forces.
- Basis for constraint forces known apriori.
- Lagrange multipliers: vector of scalar coordinates for linear combination

Pros:

- Allow an arbitrary set of constraints to be combined.
- Allow/encourage highly modular knowledge/software design (bodies, constraints, geometry)
- Handle non-holonomic constraints(e.g. velocity-dependent)
- No need for parameterization

Cons:

solving a $O(n) \times O(n)$ system.

BUT: This method takes linear time!

100

Lagrange Multiplier Formulation

- Bodies: $M\dot{v} = F$
- Constraints: $\mathbf{j}_{i1}\dot{\mathbf{v}}_1 + \cdots + \mathbf{j}_{ik}\dot{\mathbf{v}}_k + \cdots + \mathbf{j}_{in}\dot{\mathbf{v}}_n + \mathbf{c}_i = \mathbf{0}$
 - □ Linear condition on the acceleration
 - □ For primary: Only 2 j_{ik} will be non-zero for constraint i.
 - \Box All constraints: $J\dot{v}+c=0$
 - □ "Workless force"

$$\mathbf{F}_{i}^{c} = \begin{pmatrix} \mathbf{j}_{i1}^{T} \\ \vdots \\ \mathbf{j}_{in}^{T} \end{pmatrix} \boldsymbol{\lambda}_{i} \quad \mathbf{F}^{c} = \mathbf{J}^{\mathsf{T}}\mathbf{I}$$

Want to find \ s.t. constraint force + ext force produce motion that also satisfies constraints

Lagrange Multiplier Formulation

$$M\dot{v} = F$$

$$\mathbf{M}\dot{\mathbf{v}} = \mathbf{F}^{\mathsf{c}} = \mathsf{J}^{\mathsf{T}}\mathsf{I}$$

$$\dot{\mathbf{v}} = \mathbf{M}^{-1} \mathbf{J}^{\mathsf{T}} \mathbf{I}$$

$$J\dot{v} + c = 0$$

$$\mathbf{J}\mathbf{M}^{-1}\mathbf{J}^{T}\boldsymbol{\lambda} = \mathbf{c}$$

100

Formulation

- Block-matrix formulation
- Block dimensions: based on body and constraint dimensions:
 - □ Body dim: # d.o.f. when unconstrained
 - Constraint dim: # of d.o.f. it removes
- Let p = largest dimension among bodies. Block operations take const time.

Approach

Newton's Law

$$\mathbf{M}\dot{\mathbf{v}} = \mathbf{J}^{T}\boldsymbol{\lambda} + \mathbf{F}^{\text{ext}}$$

$$\dot{\mathbf{v}} = \mathbf{M}^{-1}\mathbf{J}^{T}\boldsymbol{\lambda} + \mathbf{M}^{-1}\mathbf{F}^{\text{ext}}$$

$$J\dot{v}+c=0$$

$$\mathbf{J}(\mathbf{M}^{-1}\mathbf{J}^{T}\boldsymbol{\lambda} + \mathbf{M}^{-1}\mathbf{F}^{\text{ext}}) + \mathbf{c} = \mathbf{0}$$

$$\mathbf{A} = \mathbf{J}\mathbf{M}^{-1}\mathbf{J}^{T} \quad \text{and} \quad \mathbf{b} = -(\mathbf{J}\mathbf{M}^{-1}\mathbf{F}^{\text{ext}} + \mathbf{c})$$

 \square Now all we need is to solve is: A I = b

AI = b

- ☐ if A not too large : Cholesky
- □ if Serial chain Banded Cholesky can take O(n)

	Α	Α	0	0
	Α	Α	Α	0
JM-¹J [⊤] =	0	Α	Α	Α
	0	0	Α	Α

	X	X			
J =		X	X		
			X	X	
				X	X

AI = b

□ If branched – A is completely dense... $O(n^3)$

	Α	Α	Α	Α
	Α	Α	Α	Α
JM-¹J [⊤] =	Α	Α	Α	Α
	Α	Α	Α	Α

	X	X			
J =	X		X		
	X			X	
	X				X

Need a sparse formulation!

w

Sparse Formulation

$$\begin{pmatrix} \mathbf{M} & -\mathbf{J}^{T} \\ -\mathbf{J} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{y} \\ \boldsymbol{\lambda} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ -\mathbf{b} \end{pmatrix}$$

$$\mathbf{M}\mathbf{y} - \mathbf{J}^{\mathsf{T}}\mathbf{I} = \mathbf{0} \Rightarrow \mathbf{y} = \mathbf{M}^{-1}\mathbf{J}^{\mathsf{T}}\mathbf{I}$$

$$-\mathbf{J}\mathbf{y} = -\mathbf{b} \Rightarrow \mathbf{J}\mathbf{M}^{-1}\mathbf{J}^{\mathsf{T}}\mathbf{I} = \mathbf{b}. \Rightarrow \mathbf{A}\mathbf{I} = \mathbf{b}$$

- Robotics/mech.eng literature
- ☐ H is <u>always</u> sparse
- □ Can be solved in O(n)

Non-Linear Solution

Consider graph of H:

- Where the matrix looks like:
- Factor $H=LDL^T(O(n^3))$
- Then solve $(O(n^2))$ $H=LDL^Tx=(0; -b)$

$$\mathbf{H} = \begin{pmatrix} \mathbf{M}_1 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{j}_{11}^T & \mathbf{0} & \mathbf{0} & \mathbf{j}_{41}^T & \mathbf{0} \\ \mathbf{0} & \mathbf{M}_2 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{j}_{12}^T & \mathbf{j}_{22}^T & \mathbf{j}_{32}^T & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{M}_3 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{j}_{23}^T & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{M}_4 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{j}_{34}^T & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{M}_5 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{j}_{45}^T & \mathbf{j}_{55}^T \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{M}_6 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{j}_{45}^T & \mathbf{j}_{56}^T \\ \mathbf{j}_{11} & \mathbf{j}_{12} & \mathbf{0} \\ \mathbf{0} & \mathbf{j}_{22} & \mathbf{j}_{23} & \mathbf{0} \\ \mathbf{0} & \mathbf{j}_{32} & \mathbf{0} & \mathbf{j}_{34} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{j}_{32} & \mathbf{0} & \mathbf{j}_{45} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{j}_{55} & \mathbf{j}_{56} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix}$$

Linear Solution

Sparse Matrix Theory:

"A matrix whose graph is acyclic possesses a **perfect elimination order**"

→ H can be reordered s.t. when factored the matrix L will be just as sparse as H.

$$\mathbf{H} = \begin{pmatrix} \mathbf{M}_1 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{j}_{11}^T & \mathbf{0} & \mathbf{0} & \mathbf{j}_{41}^T & \mathbf{0} \\ \mathbf{0} & \mathbf{M}_2 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{j}_{12}^T & \mathbf{j}_{22}^T & \mathbf{j}_{32}^T & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{M}_3 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{j}_{23}^T & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{M}_4 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{j}_{34}^T & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{M}_5 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{j}_{45}^T & \mathbf{j}_{55}^T \\ \mathbf{0} & \mathbf{j}_{56}^T \\ \mathbf{j}_{11} & \mathbf{j}_{12} & \mathbf{0} \\ \mathbf{0} & \mathbf{j}_{22} & \mathbf{j}_{23} & \mathbf{0} \\ \mathbf{0} & \mathbf{j}_{32} & \mathbf{0} & \mathbf{j}_{34} & \mathbf{0} \\ \mathbf{j}_{41} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{j}_{45} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{j}_{55} & \mathbf{j}_{56} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix}$$

Linear Solution

Sparse Matrix Theory:

"A matrix whose graph is acyclic possesses a "perfect elimination order"

→ H can be reordered s.t. when factored the matrix L will be just as sparse as H.

$$\begin{pmatrix} \mathbf{M}_3 \ \mathbf{j}_{23}^T & \mathbf{0} \\ \mathbf{j}_{23} & \mathbf{0} & \mathbf{0} & \mathbf{0} \ \mathbf{j}_{22} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{M}_4 \ \mathbf{j}_{34}^T & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \ \mathbf{j}_{34} & \mathbf{0} \ \mathbf{j}_{32} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \ \mathbf{j}_{32}^T & \mathbf{0} \ \mathbf{j}_{32}^T & \mathbf{M}_2 \ \mathbf{j}_{12}^T & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \ \mathbf{j}_{12} & \mathbf{0} \ \mathbf{j}_{11} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \ \mathbf{j}_{11} & \mathbf{M}_1 \ \mathbf{j}_{41}^T & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \ \mathbf{j}_{45} & \mathbf{M}_5 & \mathbf{0} \ \mathbf{j}_{55}^T \\ \mathbf{0} & \mathbf{0} \ \mathbf{M}_6 \ \mathbf{j}_{56}^T \\ \mathbf{0} & \mathbf{0} \ \mathbf{j}_{55} \ \mathbf{j}_{56} \ \mathbf{0} \end{pmatrix}$$

Ordering

- Graph is a rooted tree: parent child relationship between every edge.
- Every node's index greater than its children's indices. (DFS)

$$\begin{pmatrix} \mathbf{M}_3 \ \mathbf{j}_{23}^T & \mathbf{0} \\ \mathbf{j}_{23} & \mathbf{0} & \mathbf{0} & \mathbf{0} \ \mathbf{j}_{22} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \ \mathbf{M}_4 \ \mathbf{j}_{34}^T & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \ \mathbf{j}_{34} & \mathbf{0} \ \mathbf{j}_{32} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{j}_{22}^T & \mathbf{0} \ \mathbf{j}_{32}^T \ \mathbf{M}_2 \ \mathbf{j}_{12}^T & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{j}_{12} \ \mathbf{0} \ \mathbf{j}_{11} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \\ \mathbf{0} \ \mathbf{j}_{11} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \\ \mathbf{0} \ \mathbf{j}_{41} \ \mathbf{0} \ \mathbf{j}_{45} \ \mathbf{0} \ \mathbf{0} \\ \mathbf{0} \ \mathbf{j}_{55} \\ \mathbf{0} \ \mathbf{j}_{55} \ \mathbf{j}_{56} \ \mathbf{0} \end{pmatrix}$$

Bookkeeping (child/parent relations)

- In each row only one non-zero block every occurs to the right of the diagonal (at most 1 parent/node)
- Eliminates one inner for loop in each algorithm

L can be computed in O(n) time and LDLtx=(b) can be solved in O(n) time.

$$\dot{\mathbf{v}} = \mathbf{M}^{-1} (\mathbf{J}^T \boldsymbol{\lambda} + \mathbf{F}^{\text{ext}})$$

Auxiliary Constraints

Idea:

- While computing multipliers for auxiliary constraints "anticipate" responses of primary constraints due to auxiliary forces.
- Once auxiliary constraints are computed, add primary constraints into system, which won't violate auxiliary constraints due to "anticipation"

Notation:

- For auxiliary constraints
 - □ K ~ J
 - □ m ~ l

.

Full Algorithm

1. Formulate sparse matrix H for primary constraints, and factor

O(n)

- 2. Given Fext,
- Solve $AI_1 = -(JM^{-1}F^{ext}+c)$ for I_1
- Compute primary constraint force due to F^{ext}:
 J^T|₁
- Compute system's acceleration without auxiliary constraints: ♥aux = M-¹(JT I₁+Fext).

$$J^{a}\dot{v}+c^{a} = a$$

 $J^{a}(M^{-1}(F^{resp}+k_{i})m + v^{aux}) + c^{a} = a.$

- 3. For each of k auxiliary constraints
- Solve $AI_m = -(JM^{-1}k_m)$
- Compute response force by primary to constraint k m
 Fresp = J^TI_m
- Fill coefficient matrix

O(kn)

4. Solve for auxiliary multipliers m

 $O(k^3)$

5. Given Km (the auxiliary constraint force)

Solve A
$$I_{final} = -(JM^{-1}(K m + F^{ext}) + c)$$

O(n)

Compute primary constraints response to Km +Fext

Total constraint force = \mathbf{K} m + $\mathbf{J}^{\mathsf{T}}\mathbf{I}_{\mathsf{final}}$

Total external forces = Fext

NET FORCE acting = $\mathbf{K} \mathbf{m} + \mathbf{J}^{\mathsf{T}} \mathbf{I}_{\mathsf{final}} + \mathbf{F}^{\mathsf{ext}}$

6.Solve for net acceleration of system and move to next step.

TOTAL RUNNING TIME: $O(n) + O(kn+k^3)$

w

Results

Run on SGI indigo 250Mhz, R4400 processors

2D system: 54 primary constraints 7.75ms

96 primary, 12 auxiliary ~25ms

3D system: 96 primary, 3 auxiliary 18 ms

127 primary: ~45ms

Comparisons:

- □ Baraff (Lagrange, O(n³))
 - For smaller systems 2 fold improvement
 - For bigger systems as big as a factor of 40
- □ Schröder (Reduced Coordinate, O(n))
 - Competitive + no need for SVD which causes ill-conditioning.
- □ Bramble (Lagrange, Iterative, O(n²))
 - For smaller matrices competitive, for larger clearly faster