On a Class of Permutation Polynomials

Francis Castro
Jose Ortiz
Christian A. Rodríguez
Ivelisse Rubio
Alex D. Santos
University of Puerto Rico, Rio Piedras
Department of Computer Science

Abstract

A polynomial f(x) defined over a set A is called a **permutation polynomial** if f(x) acts as a permutation over the elements of A. This is, if $f:A\to A$ is 1-1 and onto. We study the coefficients a and b that make polynomials of the form $F_{a,b}(x)=x^{\frac{p+1}{2}}+ax^{\frac{p+5}{6}}+bx$ permutation polynomials over the finite field \mathbb{F}_q , $a,b\in\mathbb{F}_q^\times$. We show that this family of polynomials is rich in permutations, and that the amount of permutation polynomials for any q is divisible by 6. Our approach in studying $F_{a,b}(x)$ is to use the division algorithm to consider $x=\alpha^n$ where n=6k+r, r=0,...,5. If $F_{a,b}(x)$ is a permutation, this partitions \mathbb{F}_q^\times into 6 classes: $F_{a,b}(\alpha^{6k+r})$ for r=0,...,5.