HOMEWORK 2 SOLUTIONS - MATH 4341

Problem 1. Suppose X is a finite set of cardinality n. Show that $\mathcal{P}(X)$, the power set of X, is a finite set of cardinality 2^n .

Proof. The cardinality of $\mathcal{P}(X)$ is equal to the number of subsets of X.

Method 1: If A is a subset of X, then each $x \in X$ has 2 possibilities: either $x \in A$ or $x \notin A$. Since X has n elements, the number of ways to choose a subset A of X is 2^n . Hence $|\mathcal{P}(X)| = 2^n$.

<u>Method 2</u>: The number of subsets of X of cardinality m, where $0 \le m \le n$, is equal to the number of ways to choose m elements from n elements of X which is equal to $\binom{n}{m}$. Hence, by the binomial theorem we have

$$|\mathcal{P}(X)| = \sum_{m=0}^{n} \binom{n}{m} = (1+1)^n = 2^n.$$

Note that $(a+b)^n = \sum_{m=0}^n \binom{n}{m} a^m b^{n-m}$.

Problem 2. Describe all possible topologies on the set $X = \{a, b, c\}$. Justify your answer.

Proof. All subsets of X are \emptyset , $\{a\}$, $\{b\}$, $\{c\}$, $\{a,b\}$, $\{b,c\}$, $\{a,c\}$ and X. The trivial and discrete topologies are always topologies.

If a topology \mathcal{T} contains exactly three 2-elements subsets then it is discrete.

If \mathcal{T} contains exactly two 2-element sets, say $\{a,b\}$ and $\{b,c\}$, then it contains $\{b\}$. In this case \mathcal{T} contains at most one of the 1-element sets $\{a\}$ and $\{c\}$. Hence \mathcal{T} is either $\{\emptyset, X, \{a,b\}, \{b,c\}, \{b\}\}$ or $\{\emptyset, X, \{a,b\}, \{b,c\}, \{b\}, \{x\}\}$ where $x \in \{a,c\}$. The other 6 topologies which contain exactly two 2-element sets are obtained in the same way.

If \mathcal{T} contains exactly one 2-element set, say $\{a,b\}$, then it contains either no 1-element set, exactly one 1-element set, or exactly two 1-element sets $\{a\}$ and $\{b\}$. Hence \mathcal{T} is either $\{\emptyset, X, \{a,b\}\}, \{\emptyset, X, \{a,b\}, \{x\}\}, \text{ or } \{\emptyset, X, \{a,b\}, \{a\}, \{b\}\}, \text{ where } x \in \{a,b,c\}.$ The other 10 topologies which contain exactly one 2-element set are obtained in the same way.

If \mathcal{T} contains no 2-element set, then it contains at most one 1-element set. In this case \mathcal{T} is either trivial or $\{\emptyset, X, \{x\}\}$, where $x \in \{a, b, c\}$.

There are totally 2+9+15+3=29 topologies on $X=\{a,b,c\}$.

Problem 3. Let \mathcal{I} be the set of all irrational numbers. We define \mathcal{T} to be the collection of all subsets U of \mathcal{I} such that either $U = \emptyset$ or $\mathcal{I} \setminus U$ is countable. Show that \mathcal{T} is a topology on \mathcal{I} .

Proof. We will check 3 conditions for \mathcal{T} to be a topology.

- (T1): $\emptyset \in \mathcal{T}$ by definition. $\mathcal{I} \in \mathcal{T}$ since $\mathcal{I} \setminus \mathcal{I} = \emptyset$ is a countable set.
- (T2): Suppose $\{U_i\}_{i\in I}$ is an indexed family of nonempty elements of \mathcal{T} . Since $U_i \in \mathcal{T}$ and $U_i \neq \emptyset$, we have $\mathcal{I} \setminus U_i$ is countable. This implies that $\bigcap_{i\in I}(\mathcal{I} \setminus U_i)$ is also countable. But $\bigcap_{i\in I}(\mathcal{I} \setminus U_i) = \mathcal{I} \setminus \bigcup_{i\in I}U_i$, hence $\bigcup_{i\in I}U_i \in \mathcal{T}$.
- (T3): Suppose U_1, \dots, U_n are nonempty elements of \mathcal{T} . Since $U_i \in \mathcal{T}$ and $U_i \neq \emptyset$, we have $\mathcal{I} \setminus U_i$ is countable for all $i = 1, \dots, n$. This implies that $\bigcup_{i=1}^n (\mathcal{I} \setminus U_i)$ is also countable. But $\bigcup_{i=1}^n (\mathcal{I} \setminus U_i) = \mathcal{I} \setminus \bigcap_{i=1}^n U_i$, hence $\bigcap_{i=1}^n U_i \in \mathcal{T}$.

Problem 4. Let

$$\mathcal{B}_{\ell} = \{ [a, b) \mid a, b \in \mathbb{R} \}.$$

Show that \mathcal{B}_{ℓ} is a basis for a topology on \mathbb{R} .

Proof. We will check 2 conditions for \mathcal{B}_{ℓ} to be a basis.

- (B1): Suppose $x \in \mathbb{R}$. Let $B = [x, x + 1) \in \mathcal{B}_{\ell}$. Then $x \in B$.
- (B2): Suppose $x \in B_1 \cap B_2$ where $B_1, B_2 \in \mathcal{B}_{\ell}$. We write $B_1 = [a, b)$ and $B_2 = [c, d)$. Take $B_3 = B_1 \cap B_2 = [\max\{a, c\}, \min\{b, d\}) \in \mathcal{B}_{\ell}$. Then $x \in B_3 \subset B_1 \cap B_2$.

Problem 5. Let $K = \{1/n \mid n \in \mathbb{N}\} \subset \mathbb{R}$ and let

$$\mathcal{B}_K = \{(a,b) \mid a,b \in \mathbb{R}\} \bigcup \{(a,b) \setminus K \mid a,b \in \mathbb{R}\}.$$

Show that \mathcal{B}_K is a basis for a topology on \mathbb{R} .

Proof. We will check 2 conditions for \mathcal{B}_K to be a basis.

- (B1): Suppose $x \in \mathbb{R}$. Let $B = (x 1, x + 1) \in \mathcal{B}_K$. Then $x \in B$.
- (B2): Suppose $x \in B_1 \cap B_2$ where $B_1, B_2 \in \mathcal{B}_\ell$. We write $B_1 = (a, b)$ or $B_1 = (a, b) \setminus K$, and $B_2 = (c, d)$ or $B_2 = (c, d) \setminus K$. Take $B_3 = B_1 \cap B_2$. Then $x \in B_3 \subset B_1 \cap B_2$. Note that $B_3 = (\max\{a, c\}, \min\{b, d\})$ or $B_3 = (\max\{a, c\}, \min\{b, d\}) \setminus K$, hence in both cases we have $B_3 \in \mathcal{B}_K$.