MATH 1530 Problem Set 2

Collaborated with Esmé and Kazuya

February 2023

Problem 1. Prove that the set {5, 15, 25, 35} is a group under multiplication mod 40.

Proof. Consider the Cayley Table of this set:

	5	15	25	35
5	25	35	5	15
15	35	25	15	5
25	5	15	25	35
35	15	5	35	25

Closure: As can be seen in the table, $a, b \in \{5, 15, 25, 35\}$ implies $ab \mod 40 \in \{5, 15, 25, 35\}$.

Identity: $(25 \cdot a) \mod 40 = (a \cdot 25) \mod 40 = a$ for all $a \in \{5, 15, 25, 35\}$. Therefore, 25 is the identity of this group.

Inverse: Let $a \in \{5, 15, 25, 35\}$. There exists some $b \in \{5, 15, 25, 35\}$ such that $ab \mod 40 = ba \mod 40 = 25$.

Associativity: We will first prove the following lemma.

Lemma 1. Multiplication modulo $n \in \mathbb{Z}$ is associative over the integers.

Proof. Let $a, b, c, n \in \mathbb{Z}$.

$$(ab \bmod n)c \bmod n = (ab \bmod n \cdot c \bmod n) \bmod n \qquad (definition of mod) \\ = (ab \cdot c) \bmod n \qquad (definition of mod) \\ = (a \cdot bc) \bmod n \qquad (associativity) \\ = (a \bmod n \cdot bc \bmod n) \bmod n \qquad (definition of mod) \\ = a(bc \bmod n) \bmod n \qquad (definition of mod)$$

Associativity follows immediately from lemma 1. $\hfill\Box$

Problem 2. For any integer n > 2, prove that there are at least two elements of U(n) that satisfy $x^2 = 1$.

Proof. For all integers n > 2, we have that $1, (n-1) \in U(n)$ since the linear combinations 1(1) + n(0) and n(1) + (n-1)(-1) both equal 1.

Now, we will prove that both satisfy $x^2 \mod n = 1$.

$$\begin{array}{ll} (n-1)^2 \bmod n = (n^2-2n+1) \bmod n & \quad \text{(distributive property)} \\ &= (n(n-2)+1) \bmod n & \quad \text{(polynomial division)} \\ &= 1 & \quad \text{(definition of mod)} \end{array}$$

$$1^2 \mod n = 1$$
 (definition of mod)

Problem 3. Prove that the set $\{1, 2, ..., n-1\}$ is a group under multiplication mod n if and only if n is prime.

Proof. Let $S = \{1, 2, ..., n - 1\}$.

 \Rightarrow Assume S is a group under multiplication modulo n. Suppose n is not prime. Then, there exists some b, $q \in S$ such that bq = n. Thus, $bq \mod n = 0 \notin S$. We have reached a contradiction, since S being a group implies that it is closed. Thus, n must be prime.

 \Leftarrow Assume n is prime. We will prove that S is a group under multiplication modulo n.

Closure: Let $a,b \in S$. By definition, $0 \le ab \mod n < n$. Additionally, $ab \mod n \ne 0$ because this would imply that ab = nq where $q \in \mathbb{Z}$. By Euclid's Lemma, this implies that n divides a or b which cannot be true. Therefore, since $0 < ab \mod n < n$ we have proven that $ab \mod n \in S$.

Associativity: By lemma 1, we have that multiplication modulo $\mathfrak n$ is associative over the integers.

Identity: $1 \in S$ is the identity since for all $a \in S$, $(1 \cdot a) \mod n = (a \cdot 1) \mod n = a$.

Inverses: We will first prove the following lemma.

Lemma 2. Let $a, x, n \in \mathbb{Z}_{>0}$. $ax \mod n = 1$ has a solution if and only if a and n are relatively prime.

Proof. \Rightarrow Assume $ax \mod n = 1$ has a solution. Then, ax - nq = 1 where q is the largest integer such that $nq \le ax$. Since we have shown that a linear combination of a and n which equals 1 exists, we have proven that they are relatively prime.

 \Leftarrow Assume \mathfrak{a} and \mathfrak{n} are relatively prime. For some $\mathfrak{x},\mathfrak{q}\in\mathbb{Z}$, we have that the linear combination $\mathfrak{a}\mathfrak{x}+\mathfrak{n}(-\mathfrak{q})=1$. Thus, we have proven that $\mathfrak{a}\mathfrak{x} \bmod \mathfrak{n}=1$ has a solution. \square

Let $a \in S$. a is relatively prime with n because n itself is prime. By lemma 2, there exists some $x \in \mathbb{Z}_{>0}$ such that $ax \mod n = 1$.

$$1 = ax \mod n$$
 (lemma 2)
= $(a \mod n \cdot x \mod n) \mod n$ (definition of mod)
= $(a \cdot x \mod n) \mod n$ (a < n)

Let $b = x \mod n$. We have that $b \in S$ since $0 < x \mod n < n$. Therefore, we have proven that for all $a \in S$, there exists some $b \in S$ such that $ab \mod n = ba \mod n = 1$.

Problem 4. Suppose G is a group with identity e such that for all $x \in G$, $x^2 = e$. Prove that G is Abelian.

Proof. Let $\mathfrak{a},\mathfrak{b}\in G$. We will prove that the group operation is commutative by showing that $\mathfrak{a}\mathfrak{b}=\mathfrak{b}\mathfrak{a}$.

$$\begin{array}{ll} a=a \\ a(bb)=a \\ (ab)b=a \\ (ab)(ba)=a^2 \\ (ab)(ba)=e \\ ab=ba \end{array} \qquad \begin{array}{ll} (b^2=e) \\ (associativity) \\ (right multiply a) \\ (a^2=e) \\ (definition of G) \end{array}$$

Problem 5. Let G be a finite group with identity e. Show that the number of elements x of G such that $x^2 \neq e$ is even.

Proof. Let $S \subseteq G$ be the set of elements in G that are not their own inverse. For all $x \in S$, there must be some unique $x' \in S$ such that $x \neq x'$ and xx' = x'x = e (Gallian, 2.3). Let $K \subseteq S = \{x, x'\}$. For any other $y \in S \setminus K$, we have that there exists another $y' \neq y$ that is in $S \setminus K$; together, these two elements form another set $K_2 \subseteq S = \{y, y'\}$ that is disjoint from K. Thus, this process can be repeated until we can partition S cleanly into sets of exactly two elements. This implies that the elements of S can be divided evenly into pairs, proving that the cardinality of S is even.