

Atividade Complementar IV Interação **Humano-Computador** (Teorias de IHC -**Engenharia Cognitiva)**

Prof. Me. Diogo Tavares da Silva contato: diogotavares@unibarretos.com.br

"A interface de usuário é como uma piada. Se você precisa explicá-la, então não é boa!"

Prof. Me. Diogo Tavares da Silva contato: diogotavares@unibarretos.com.br

Contextualização

- Vimos anteriormente que IHC é uma área multidisciplinar
 - Influência direta de teorias de áreas como
 - Psicologia
 - Semiótica
 - Etnografia
 - etc.

Contextualização

- Nas próximas aulas vamos estudar algumas bases teóricas dessas áreas que fundamentam os projetos de sistemas interativos
 - Compreender como essas teorias explicam comportamentos do usuário e influência o bom projeto de sistemas

Cognição

- Processos mentais utilizados no aprendizado
- Modo como percebemos o mundo, identificamos problemas e aprendemos a resolvê-los

- Engenharia cognitiva (Donald Norman, 1986)
 - Uso de métodos cognitivos
 - técnicas mentais pelas quais aprendemos na construção de sistemas intuitivos
 - Sistemas que sejam fáceis de compreender e utilizar
 - Usuário deve sentir-se "confortável" ao utilizar o sistema
 - além do conceito ergonômico
 - Evitar o desgaste cognitivo
 - soluções simples de usar e aprender

- Fazer escolhas de projeto que encontre o melhor tradeoff (ajuste) entre como o usuário projeta mentalmente a execução e como ela ocorre realmente
 - Discrepância
 - objetos expressos <u>psicologicamente</u>

X

Controles e variáveis <u>físicas</u> de um sistema

- Usuário
 - Variáveis psicológicas
 - metas e intenções
- Sistema
 - Variáveis físicas/lógicas
 - conjunto de mecanismos de operação

Tradução das intenções psicológicas em ações físicas sobre os mecanismos do sistema

Interpretação das variáveis em termos relevantes às metas psicológicas

- Muitas vezes as variáveis de manipulação que o sistema oferece não são as mesmas que o usuário deseja controlar
 - Dificuldades de mapeamento
 - Dificuldades de controle
 - Dificuldades de avaliação

- Exemplo:
 - Variáveis físicas:
 - Fluxo de água quente
 - Fluxo de água fria
 - Variáveis Psicológicas
 - Fluxo total de água
 - Temperatura da água

- Qual é qual? (mapeamento)
- Giram pro mesmo lado?
 Quanto eu abro de cada?
 (controle)
- Será que já está bom? Está variando? (avaliação)

- Exemplo:
 - Variáveis físicas:
 - níveis individuais das cores luz vermelho (R),
 Azul (B) e Verde (G)
 - Matiz (H), Saturação(S),
 Iuminância (L)
 - Variáveis Psicológicas
 - Cor gerada da combinação

- Dificuldades?
 - Mapeamento
 - Controle
 - Avaliação

problemas de mapeamento das componentes RGB e HSL

dificuldade de controle das componentes HSL

dificuldade de avaliação, pois não se vê a cor definida

reduz **problemas de mapeamento e dificuldade de controle**das componentes RGB e
HSL

Teoria da Ação (Norman, 1986)

- "Como as pessoas realizam as coisas"
 - Atividades mentais x atividades físicas
- Passos mentais necessários para interagir com um sistema é dividido em dois "golfos"
 - Golfo da Execução
 - Golfo da Avaliação

Teoria da Ação (Norman, 1986)

Teoria da Ação (Norman, 1986)

- Foco da engenharia cognitiva
 - Reduzir a carga cognitiva da utilização de um sistema
 - mínimo esforço seja necessário para o usuário atravessar os golfos da execução e avaliação
 - Como?

- Carga cognitiva do sistema
 - Influenciada principalmente por duas medidas:

distância semântica

 quão distante é a intenção mental de um usuário em relação ao significado na linguagem da interface?

distância articulatória

 quão distante é a representação de uma informação no sistema em relação ao seu real significado?

- Papel do designer
 - Abreviar o golfo de execução:
 - Mapeamento adequado de variáveis de interesse do usuário para variáveis físicas do sistema
 - Mecanismos e controles de interação para manipular dados de entrada
 - Representação eficiente dos dados
 - Ergonomia eficiente

- Papel do designer
 - Abreviar o golfo de avaliação:
 - Representação eficiente dos dados de saída
 - Mensagens de resposta do sistema adequadas
 - Apresentações de prévias e comparações entre dados pré e pós processados

- Outras formas de abreviar os golfos:
 - Treinamento e aumento da experiência do usuário com o sistema
 - designer de qualquer forma deve reduzir a necessidade desse treinamento
 - Importância crescente da Experiência de uso
 - Manter boas métricas de usabilidade
 - facilidade de aprendizado
 - facilidade de memorização

Deve-se considerar três modelos:

Atividade Complementar VI Interação **Humano-Computador** Teorias de IHC -Engenharia Semiótica

Prof. Me. Diogo Tavares da Silva diogotavares@unibarretos.com.br

Contextualização

- Vimos anteriormente que IHC é uma área multidisciplinar
 - Influência direta de teorias de áreas como
 - Psicologia
 - Semiótica
 - Etnografia
 - etc.

Contextualização

- Vimos anteriormente que IHC é uma área multidisciplinar
 - Bases psicológicas
 - Engenharia Cognitiva
 - Engenharia Semiótica

Semiótica

- Teoria geral das representações
- estudo dos signos, processos de significação e processos de comunicação.
- signo: qualquer símbolo, sinal, gesto, som, sonho, conceito, representação, etc ... usado para indicar e "transportar" pensamentos, informações e comandos.
 - Nem toda representação é um signo

Semiótica

- Pierce (1998) define signo como:
 - "Uma coisa que serve para veicular conhecimento de uma outra coisa (o *objeto* do *signo*) que ele representa. A idéia na mente que o signo motiva, que é o <u>signo mental</u> do mesmo objeto, é chamada de *interpretante* do signo."
- Para ser um signo, uma representação deve possuir uma relação triádica com seu objeto e seu interpretante.

Semiótica

- Signo:
 - Relação triádica:
 - Objeto: Aquilo que é representado
 - Representamen (Representação): aquilo que representa
 - Interpretante: processo de interpretação (processo relacional criado na mente do intérprete, que também é um signo mental)

*Processo interpretante faz com que se relacione a representação abstrata da maçã com a maçã de verdade

"A traição das imagens" (1924) - René Magritte

Contexto Social, Cultural e Comunicativo

- Um signo é algo que representa <u>alguma coisa</u> para <u>alguém</u>
- Sempre que há convenções sociais e culturais que nos permitem interpretar signos, temos um sistema de significação, ou seja, um código.
 - Processo de significação:
 - Conteúdos associados a expressões com base em convenções sociais e culturais adotadas pelas pessoas que interpretam e produzem tais signos

Contexto Social, Cultural e Comunicativo

Processo de Comunicação:

- Produtores de signos utilizam sistemas de significação para escolher formas de representar (<u>expressão</u>) seus significados pretendidos (<u>conteúdo</u>) de modo a alcançar uma variedade de objetivos (<u>intenções</u>).
 - utilizar signos conhecidos (convencionados culturalmente)
 - utilizar signos conhecidos de forma criativa
 - inventar signos.

^{*}Processo interpretante faz com que se relacione o ícone com a ação de salvar um documento

Semiose e Semiose ilimitada

- O interpretante de um signo é ele próprio outro signo
 - passível de ser interpretado, gerando outro interpretante, que é outro signo.
- Semiose (Pierce, (1992-1998), Eco(1976)):
 - Processo interpretativo que nos leva a associar cadeias de significados a um signo"

puxa outra" - Tião Carreiro e "Uma coisa Essa foi só pra quebrar o clima tenso rsrs **Pardinho**

Semiose e Semiose ilimitada

Semiose Humana X Semiose Computacional

- Semiose Humana
 - Praticamente Ilimitada
 - Guiada pelas cadeias de pensamentos
- Semiose Computacional:
 - Limitada pela lógica computacional e opções oferecidas pelo designer

- Foco na Comunicação
 - Comunicação entre designers, usuários e sistemas
- Dois focos de investigação:
 - Comunicação direta usuário-sistema
 - Metacomunicação
 - do designer para o usuário mediada pelo sistema, através de sua interface.

- Aplicações computacionais
 - artefatos de metacomunicação
 - Mensagem do designer para os usuários sobre a comunicação usuário sistema.
 - Como podem e devem usar o sistema, por que e com que efeitos

Mensagem de metacomunicação:

"Querido user, este é meu entendimento de como você usuário é, do que entendi que você quer e precisa fazer, de que maneiras prefere fazer e porquê. Esta portanto, é a solução que projetei para você e esta é a forma como você pode ou deve utilizá-la para alcançar uma gama de objetivos que se encaixam nessa visão.

Espaço de Design de IHC

 Baseado no espaço de comunicação de Jakobson (1960)

Papel do Designer de IHC

 Compreender sua posição como emissor e investigar qual é o contexto, canal, perfil dos receptores (usuários). Para criar um código que consiga transmitir sua metamensagem de modo compreensível para seus usuários.

- Cada linguagem possui uma linguagem interativa única, que depende do contexto, canal e receptores do sistema.
- Deve-se avaliar as limitações desses fatores para a escolha do código a ser produzido.

- Três tipos de signos em uma linguagem de interface:
 - Signos estáticos:
 - Expressam o estado do sistema
 - Independem de relações causais e temporais da interface
 - Exemplos:
 - Layout geral, disposição dos elementos, itens de menu, botões de uma barra de ferramentas, campos e botões de um formulário, etc.

- Três tipos de signos em uma linguagem de interface:
 - Signos dinâmicos:
 - Expressam o comportamento do sistema
 - envolvem aspectos temporais e causais
 - exemplos:
 - associações entre escolha de um item e exibição de um diálogo
 - Arrastar ícones na tela
 - Ativação e desativação de botões de comando
 - etc.

- Três tipos de signos em uma linguagem de interface:
 - Signos metalinguísticos:
 - Signos principalmente verbais que se referem a outros signos da interface sejam eles estáticos, dinâmicos ou mesmo metalinguísticos.
 - Exemplo:
 - Mensagens de erro, mensagens de ajuda, dicas, alertas.
 - Permitem ao designer "conversar" com o usuário

- Referência de pesquisa: BARBOSA, S. D. J. Interação Humano-Computador. Ed. Elsevier, 2010.
- Uma visualização pode ser obtida aqui:

