

Projet Moteur de Jeux

Sommaire

- Graphe de Scene
- Moteur physique
 - Mouvement
 - Collisions
 - Comportements
- Rendu
 - Blinn-Phong
 - Shadow mapping
- Simulation
 - Scenes

Graphe de scène

NodeSG

- Nœud parent
- Nœuds enfants
- Transformation globale
- Transformation locale

PhysicsSystem

- RigidBodyVolumes
- Corrections

PhysicsSystem

- RigidBodyVolumes
- Corrections

RigidBodyVolume

- Liste de Comportements
- Nœud du graphe
 - Position
 - Bounding box

PhysicsSystem

- RigidBodyVolumes
- Corrections

RigidBodyVolume

- Liste de Comportements
- Nœud du graphe
 - Position
 - Bounding box

Sphere

AABB

OBB

PhysicsSystem

- RigidBodyVolumes
- Corrections

RigidBodyVolume

- Liste de Comportements
- Nœud du graphe
 - Position
 - Bounding box

RigidBodyBehavior

• Action : réponse aux collisions

Sphere

AABB

OBB

PhysicsSystem

- RigidBodyVolumes
- Corrections

RigidBodyVolume

- Liste de Comportements
- Nœud du graphe
 - Position
 - Bounding box

Sphere

AABB

OBB

RigidBodyBehavior

• Action : réponse aux collisions

MovementBehavior

• Action : rebond physique

SwitchColorBehavior

• Action : Changement de couleur

Mouvement

PhysicsSystem

Mis à jour indépendamment du taux de rafraîchissement.

Mouvement Mouvement

PhysicsSystem

Mis à jour indépendamment du taux de rafraîchissement.

Différentes intégrations

A toutes les frames on met à jour les positions des RigidBody en fonction de l'intégration choisie paramétrable

Mouvement

PhysicsSystem

Mis à jour indépendamment du taux de rafraîchissement.

Différentes intégrations

A toutes les frames on met à jour les positions des RigidBody en fonction de l'intégration choisie paramétrable

Euler

Application de la vitesse à chaque frame

Mouvement

PhysicsSystem

Mis à jour indépendamment du taux de rafraîchissement.

Différentes intégrations

A toutes les frames on met à jour les positions des RigidBody fonction de l'intégration choisie paramétrable

Euler	Verlet

à chaque frame

Application de la vitesse Application de la vitesse moyenne entre 2 frames

Mouvement

PhysicsSystem

Mis à jour indépendamment du taux de rafraîchissement.

Différentes intégrations

A toutes les frames on met à jour les positions des RigidBody en fonction de l'intégration choisie paramétrable

Euler

Application de la vitesse à chaque frame

Verlet

Application de la vitesse moyenne entre 2 frames

Runge-Kutta Classique

Application de la vitesse en appliquant l'approximation de Runge-Kutta en 4 itérations

Moteur physique Collisions

Collisions

- Collisions entre les boites englobantes
- Impulsions pour résoudre ces collisions
- Correction avec une projection linéaire

```
struct Collision {
   bool colliding;
   glm::vec3 normal;
   float depth;
   std::vector<glm::vec3> contacts;
   RigidBodyVolume* rigid_body_1{};
   RigidBodyVolume* rigid_body_2{};
```

Comportements

RigidBodyBehavior

- Action
- update_physics
- update_render

Comportements

RigidBodyBehavior

- Action
- update_physics
- update_render

Action executée lors d'une collision avec un autre RigidBodyVolume

Comportements

RigidBodyBehavior

- Action
- update_physics
- update_render

Action executée lors d'une collision avec un autre RigidBodyVolume

Appelé à chaque mise à jour du système physique.

Comportements

RigidBodyBehavior

- Action
- update_physics
- update_render

Action executée lors d'une collision avec un autre RigidBodyVolume

Appelé à chaque mise à jour du système physique.

Appelé à chaque frame

• Diffuse texture path

Specular texture path

PositionLightBehavior

- Position
- Attenuation

DirectionLightBehavior

Direction

SpotLightBehavior

Angles du spot

PositionLightBehavior

SpotLightBehavior

DirectionLightBehavior

- Position
- Attenuation

Angles du spot

Direction

Rendu Blinn-Phong

Blinn-Phong

Nous utilisons ce modèle d'éclairage en ajoutant de l'atténuation en fonction de la distance à la lumière de l'objet

Rendu Blinn-Phong

Blinn-Phong

Nous utilisons ce modèle d'éclairage en ajoutant de l'atténuation en fonction de la distance à la lumière de l'objet La couleur des objets est la somme de l'éclairage calculé par ce modèle pour toutes les lumières de la scène

Rendu Shadow maps

Shadow maps

La scène pouvant avoir plusieurs lumières, nous devons avoir une carte de profondeur différente par lumière.

Rendu Shadow maps

Scene simulation

Scene Laboratoire

Character

L'utilisateur peut interagir avec cette scène par le biais d'une classe personnage.

Scene Laboratoire

Character

L'utilisateur peut interagir avec cette scène par le biais d'une classe personnage.

Body

- Nœud du personnage
- Peut seulement se translater

Scene Laboratoire

Character

L'utilisateur peut interagir avec cette scène par le biais d'une classe personnage.

Body

- Nœud du personnage
- Ne tourne jamais

Camera

- Vue du personnage
- Peut tourner

Scene Laboratoire

Character

L'utilisateur peut interagir avec cette scène par le biais d'une classe personnage.

Body

- Nœud du personnage
- Ne tourne jamais

Camera

- Vue du personnage
- Peut tourner

Item

• Objet dans la main

Scene Laboratoire

Déplacement

Les directions de translation du personnage sont calculées en fonction des transformations de la caméra.

```
//Compute translation relative to camera direction
glm::vec3 forward(0, 0, -1);
glm::vec3 forward_vec = character_cam_trsf→apply_to_vector(forward);

forward_vec[1] = 0.; //disable flight
forward_vec = glm::normalize(forward_vec);

glm::vec3 up(0, 1, 0);
glm::vec3 right_vec = glm::cross(forward_vec, up);
```

Scene Laboratoire

Interactions

Attraper un objet revient à le retirer du système physique et l'ajouter comme nœud fils du personnage.

Le personnage peut attraper et lancer un objet de la scène.

Scene Laboratoire

Interactions

Le personnage peut attraper et lancer un objet de la scène.

Pour lancer l'objet on applique une impulsion linéaire.

Scene Laboratoire

Merci de votre attention

