

F3N120140

Part Number	Package
UF3N120140	Undiced wafer
UF3N120140Z	Die on tape

1200V-142m Ω SiC Normally-on JFET

Rev. A, February 2022

Description

UnitedSiC offers the high-performance G3 SiC normally-on JFET transistors. This series exhibits ultra-low on resistance (R_{DS(ON)}) and gate charge (Q_G) allowing for low conduction and switching loss. The device normally-on characteristics with low $R_{DS(ON)}$ at $V_{GS} = 0$ V is also ideal for current protection circuits without the need for active control, as well as for cascode operation.

Features

- Typical on-resistance $R_{DS(on),typ}$ of $142m\Omega$
- Voltage controlled
- Maximum operating temperature of 175°C
- Extremely fast switching not dependent on temperature
- Low gate charge
- Low intrinsic capacitance
- RoHS compliant

Typical applications

- Over Current Protection Circuits
- DC-AC Inverters
- Switch mode power supplies
- Power factor correction modules
- Motor drives
- Induction heating

Maximum Ratings

Parameter	Symbol	Test Conditions	Value	Units
Drain-source voltage	V_{DS}		1200	V
Gate-source voltage	V_{GS}	DC	-20 to +3	V
		AC ¹	-30 to +20	٧
Continuous drain current ^{2,3}	I _D	T _C = 25°C	18.7	Α
		T _C = 100°C	14	Α
Pulsed drain current ^{3,4}	I _{DM}	T _C = 25°C	38	Α
Maximum junction temperature ⁵	$T_{J,max}$		175	°C
Operating and storage temperature	T_J, T_{STG}		-55 to 175	°C

- 1. +20V AC rating applies for turn-on pulses <200ns applied with external $R_G > 1\Omega$.
- 2. Limited by $T_{J,max}$
- 3. Assumes a maximum junction-to-case thermal resistance of 0.9°C/W
- 4. Pulse width t_p limited by $T_{J,max}$
- 5. Package limited

Electrical Characteristics (T_J = +25°C unless otherwise specified)

Typical Performance - Static

Parameter	Symbol	Test Conditions	Value			Linita	
		Test Conditions	Min	Тур	Max	- Units	
Drain-source breakdown voltage	BV _{DS}	V_{GS} =-20V, I_D =1mA	1200			V	
Total drain leakage current		V _{DS} =1200V, V _{GS} =-20V, T _J =25°C		1.4	60		
	I _{DSS}	V _{DS} =1200V, V _{GS} =-20V, T _J =175°C		7		- μΑ	
Total gate leakage current	I _{GSS}	V _{GS} =-20V, T _J =25°C		0.2	15	μΑ	
		V _{GS} =-20V, T _J =175°C		1.4		μА	
Drain-source on-resistance	R _{DS(on)}	V_{GS} =2V, I_D =14A, T_J =25°C		123			
		V _{GS} =0V, I _D =14A, T _J =25°C		142	180	mΩ	
		V _{GS} =2V, I _D =14A, T _J =175°C		303			
		V _{GS} =0V, I _D =14A, T _J =175°C		360			
Gate threshold voltage	V _{G(th)}	V_{DS} =5V, I_{D} =17.5mA	-11.3	-8.7	-6.7	V	
Gate resistance	R_{G}	f=1MHz, open drain		2.4		Ω	

Typical Performance - Dynamic

Parameter	Symbol Test Conditions	Took Conditions	Value			Units	
Parameter		Min	Тур	Max	Units		
Input capacitance	C_{iss}	V _{DS} =100V, V _{GS} =-20V		444			
Output capacitance	C_{oss}	f=100kHz		49		pF	
Reverse transfer capacitance	C_{rss}	1-100KH2		45			
Effective output capacitance, energy related	$C_{oss(er)}$	V_{DS} =0V to 800V, V_{GS} =-20V		29		pF	
C _{OSS} stored energy	E_{oss}	V_{DS} =800V, V_{GS} =-20V		9.3		μJ	
Total gate charge	Q_{G}	- V _{DS} =800V, I _D =14A, -		55		nC	
Gate-drain charge	Q_{GD}	$V_{DS} = -18V \text{ to } 0V$		34			
Gate-source charge	Q_{GS}	$V_{GS} = -18V \text{ to } 0V$		7			
Turn-on delay time	$t_{d(on)}$	$V_{DS}=800V, I_D=14A, Gate$ $Driver=-18V to 0V,$ $R_G=1\Omega,$ $Inductive Load,$ $FWD: UJ3D1210TS$ $T_J=25^{\circ}C$		7		ns	
Rise time	t_r			14			
Turn-off delay time	$t_{d(off)}$			11			
Fall time	t_f			10			
Turn-on energy	E _{ON}			127			
Turn-off energy	E_{OFF}			44		μJ	
Total switching energy	E_TOTAL			171			
Turn-on delay time	t _{d(on)}	$V_{DS}=800V, I_{D}=14A, Gate$ $Driver=-18V to 0V,$ $R_{G}=1\Omega,$ $Inductive Load,$ $FWD: UJ3D1210TS$ $T_{J}=150^{\circ}C$		6			
Rise time	t_r			13		ns	
Turn-off delay time	$t_{\text{d(off)}}$			10		115	
Fall time	t_f			8			
Turn-on energy	E _{ON}			119			
Turn-off energy	E _{OFF}			31		μЈ	
Total switching energy	E_TOTAL			150			

35

30

Typical Performance Diagrams

25 Drain Current, I_D (A) 20 Vgs = 2V Vgs = 0V 15 Vgs = -2V 10 Vgs = -4VVgs = -6V5 - Vgs = -7V 0 2 1 Drain-Source Voltage, V_{DS} (V)

Figure 1. Typical output characteristics at $T_J = -55$ °C, tp < 250 μ s

Figure 2. Typical output characteristics at $T_J = 25$ °C, tp < 250 μ s

Figure 3. Typical output characteristics at T_J = 175°C, tp < 250 μ s

Figure 4. Typical drain-source leakage at $V_{GS} = -20V$

30 25 Tj = -55°C Tj = 25°C 20 Tj = 125°C Tj = 175°C 15 10 5 0 -10 -8 -6 -4 -2 0 Gate-Source Voltage, V_{GS} (V)

Figure 5. Typical capacitances at f = 100kHz and $V_{GS} = -20V$

Figure 6. Typical transfer characteristics at V_{DS} = 5V

Figure 7. Normalized on-resistance vs. temperature at V_{GS} = 0V and I_D = 14A

Figure 8. Typical drain-source on-resistances at $V_{GS} = 0V$

25 20 15 10 5 0 200 400 600 800 1000 1200 Drain-Source Voltage, V_{DS} (V)

Figure 9. Threshold voltage vs. junction temperature at V_{DS} = 5V and I_{D} = 17.5mA

Figure 10. Typical stored energy in C_{OSS} at V_{GS} = -20V

Figure 11. Typical gate leakage at $V_{DS} = 0V$

Figure 12. Typical gate forward current at $V_{DS} = 0V$

250 $V_{DS} = 800V,$ $V_{GS} = -18V/0V$ $R_G = 1\Omega$, 200 Switching Energy (µJ) FWD: UJ3D1210TS 150 100 Eon **Eoff** 50 0 0 5 10 15 20 Drain Current, ID (A)

Figure 13. Typical gate charge at V_{DS} = 800V and I_{D} = 14A

Figure 14. Clamped inductive switching energy vs. drain current at $T_J = 25$ °C

Figure 15. Clamped inductive switching energy vs. junction temperature at V_{DS} = 800V and I_D = 14A

Figure 16. Clamped inductive switching energy vs. gate resistor R_G at $T_J = 25$ °C

Mechanical Characteristics

Parameter	Typical Value	Units
Die dimensions with scribe line (L x W)	1.800 x 1.600	mm
Scribe line width	80	μm
Source pad metal dimensions (L x W)	1.504 x 0.848	mm
Gate pad metal dimensions (L x W)	0.556 x 0.364	mm
Source metallization (AlCu)	5	μm
Gate metallization (AlCu)	5	μm
Backside drain metallization (Ti/Ni/Ag)	0.1/0.2/1	μm
Frontside passivation	Polyimide	
Die thickness	150	μm
Wafer size	150	mm
Gross die per wafer	4939	

Chip Dimensions

Important notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.