Aula 02

- Q1. Sejam as linguagens $L_1 = \{w \in \{0,1\}^* \mid 1 \le |w| \le 10\}$ e $L_2 = \{y1 \mid y \in \{0,1\}^*\}$. Descreva as linguagens abaixo através de união, interseção, complemento, diferença ou concatenação das linguagens L_1 e L_2 . O primeiro item já foi feito como exemplo.
 - A) $\{w \in \{0,1\}^* \mid 1 \le |w| \le 10 \ \forall \ w \text{ termina com } 1\} = L_1 \cup L_2$
 - B) $\{w \in \{0,1\}^* \mid w = \lambda \lor |w| > 10\}$
 - C) $\{w \in \{0,1\}^* \mid |w| \ge 2 \land w \text{ termina com } 1\}$
 - D) $\{w \in \{0,1\}^* \mid |w| \ge 2 \land \text{ o último } 1 \text{ de } w \text{ não ocorre antes da posição } |w| 11\}$

R:

- ? Q2. (Vieira 1.2.13) Sejam $\Sigma = \{0,1\}, A = \Sigma^5, B = \{0\}\Sigma^*$. Para cada uma das linguagens a seguir, dê uma propriedade necessária e suficiente para que uma palavra pertença à mesma. Não é preciso dizer que a palavra contém apenas os símbolos 0 e 1.
 - A) A^*
 - B) B^+
 - C) $A \cap B$
 - D) *AB*
 - E) $A^* \cap B^*$

R:

- ? Q3. (Vieira 1.2.12) Seja $\Sigma = \{0,1\}$. Descreva formalmente as linguagens a seguir:
 - A) O conjunto das palavras com, no mínimo, um 0.
 - B) O conjunto das palavras de tamanha par.
 - C) O conjunto das palavras com um prefixo de um ou mais 0s e um sufixo de zero ou mais 1s
 - D) O conjunto dos palíndromos que não tenham símbolos consecutivos idênticos.

R:

- ? Q4. Considere o alfabeto $\Sigma = \{0\}$. Mostre:
 - A) Que qualquer linguagem $L \subseteq \Sigma^*$ é enumerável.
 - B) Que o conjunto $\mathcal{P}(\Sigma^*)$ não é enumerável.

R: