Econometrics: Methods and Applications

Peer-graded Assignment: Test Exercise 6

Goals and skills being used:

- Experience the process of practical application of time series analysis.
- Get hands-on experience with the analysis of time series.
- Give correct interpretation of outcomes of the analysis.

Questions

This test exercise uses data that are available in the data file TestExer6. The question of interest is to model monthly production of Toyota passenger cars and to investigate whether the monthly production of all other brands of Japanese passenger cars has predictive power for the production of Toyota. Monthly production data are available from January 1980 until December 2000. The data for January 1980 until December 1999 are used for specification and estimation of models, and the data for 2000 are left out for forecast evaluation purposes.

In answering the questions below, you should use the seasonally adjusted production data denoted by 'toyota-sa' and 'other-sa'. We will denote these variables by y = toyota-sa and x = other-sa.

(a) Make time series plots of the variables y_t and x_t , and also of the share of Toyota in all produced passenger cars, that is $y_t / (y_t + x_t)$. What conclusions do you draw from these plots?

series plots of the variables ytand xt,

y = TOYOTA_SA and x = OTHER_SA

TOYOTA_SA Number of passenger cars produced by Toyota Seasonally adjusted 300000 280000 Number of passenger cars 260000 240000 220000 200000 180000 160000 2996 2980 1984 1988 2000 1992 Date

OTHER_SA Number of passenger cars produced by Japanese firms other than Toyota Seasonally adjusted

Answer (a) The share of passage cars produced by Toyota in all produced passenger cars is relatively stable. It fluctuates between 30% and 38%.

(b) (i) Perform the Augmented Dickey-Fuller (ADF) test for y_t . In the ADF test equation, include a constant (α) and three lags of Δy_t , as well as the variable of interest, y_{t-1} . Report the coefficient of y_{t-1} and its standard error and t-value and draw your conclusion.

Calculation (b)i

Augmented Dickey-Fuller (ADF) test for yt

ADF:
$$\Delta y_t = \alpha + \beta t + \rho y_{t-1} + \sum_{j=1}^{3} \gamma_j \Delta y_{t-j} + \varepsilon_t$$

A time series is said to be "stationary" if it has no trend, exhibits constant variance over time, and has a constant autocorrelation structure over time.

One way to test whether a time series is stationary is to perform an augmented Dickey-Fuller test, which uses the following null and alternative hypotheses:

H₀: The time series is non-stationary. In other words, it has some time-dependent structure and does not have constant variance over time.

H_A: The time series is stationary.

If the p-value from the test is less than some significance level (e.g., α = .05), then we can reject the null hypothesis and conclude that the time series is stationary.

Results: Ordinary least squares							
Model: Dependent Variable: Date: No. Observations: Df Model: Df Residuals: R-squared:	OLS delta_y 2023-01-04 1 236 4 231 0.305	L5:50 BIC: Log-Likelihood: F-statistic: Prob (F-statistic):	25.34				
Coef.	Std.Err.	t P> t [0.025	0.975]				
y_lag1 -0.0 delta_y_lag1 -0.5 delta_y-lag2 -0.3	832 0.0368 630 0.0699 243 0.0745	2.2872 0.0231 2671.5701 -2.2623 0.0246 -0.1557 -8.0565 0.0000 -0.7007 -4.3546 0.0000 -0.4710 -0.9835 0.3264 -0.1920	-0.0107 -0.4253 -0.1776				
Omnibus: Prob(Omnibus): Skew: Kurtosis:	0.924 0.630 0.132 3.072	Jarque-Bera (JB): Prob(JB):	2.013 0.736 0.692 1948470				

coefficient of $y_{t-1} = -0.0832$ std error: 0.0368

strong multicollinearity or other numerical problems.

t-value: -2.2623 p-value: 0.0246

Answer (b)i

We reject H₀ and conclude that the time series y_t is stationary.

(ii) Perform a similar ADF test for x_t.

Calculation (b)ii

Results: Ordinary least squares

=======================================								
Model:	DLS	Adj. R-squared:			0.262			
Dependent Var	v	AI	C:	5469.0478				
Date:	-	2023-01-04 18	:10 BI	C:		5486.3670		
No. Observati	ions: 2	236	Lo	g-Likeli	-2729.5			
Df Model:		4	F-statistic:			21.86		
Df Residuals	: 2	231	Pr	ob (F-st	atistic):	2.58e-15		
R-squared:	(ale:	6.6487e+08				
	Coef.	Std.Err.	t	P> t	[0.025	0.975]		
xlag1	-0.069	96 0.0331	-2.105	7 0.0363	-0.1348	-0.0045		
delta_x_lag1	-0.511	12 0.0675	-7.570	1 0.0000	-0.6443	-0.3781		
delta_y_lag2	-0.361	14 0.0703	-5.138	7 0.0000	-0.5000	-0.2228		
delta_y_lag3	-0.10	30 0.0645	-1.596	1 0.1118	-0.2301	0.0241		
const	31540.361	17 14808.7693	2.129	8 0.0342	2362.8412	60717.8822		
Omnibus:		2.655	Dur	bin-Wats	on:	2.050		
Prob(Omnibus):		0.265	Jar	que-Bera	2.495			
Skew:		-0.125	Pro	b(JB):		0.287		
Kurtosis:		3.438		dition N	3959566			
=========			======	======	=======	========		

^{*} The condition number is large (4e+06). This might indicate strong multicollinearity or other numerical problems.

coefficient of $x_{t-1} = -0.0696$ std error: 0.0331

t-value: -2.1057 p-value: 0.0363

Answer (b)ii

The p-value of x_{t-1} is lower than the threshold value of 0.05. We reject H₀ and conclude that the time series x_t is stationary.

(c) Perform the two-step Engle-Granger test for cointegration of the time series y_t and x_t . In step 1, regress y_t on a constant and x_t . In step 2, perform a regression of the residuals e_t in the model $\Delta e_t = \alpha + \rho e_{t-1} + \beta_1 \Delta e_{t-1} + \beta_2 \Delta e_{t-2} + \beta_3 \Delta e_{t-3} + \omega_t$. What is your conclusion?

Calculation (c)

Engle-Granger test for cointegration

Step 1: OLS: $y_t = \alpha + \beta(x_t) + e_t$

Step 2: ADF: $\Delta e_t = \alpha + \rho e_{t-1} + \beta_1 \Delta e_{t-1} + \beta_2 \Delta e_{t-2} + \beta_3 \Delta e_{t-3} + \omega_t$

Results: Ordinary least squares

=======================================		===		=====				
Model:		OLS	6		Ad	j. R-sqı	uared:	0.252
Dependent Varia	able:	y			AI(0:		5146.6454
Date:		202	23-01-04	19:05	BIC	0:		5163.9646
No. Observation	ns:	236	5		Log	g-Likel:	ihood:	-2568.3
Df Model:		4			F-9	statist	20.75	
Df Residuals:		231	L		Pro	ob (F-st	tatistic):	1.26e-14
R-squared:		0.2	264		Sca	ale:		1.6961e+08
	Coef		Std.Err.	t	t	P> t	[0.025	0.975]
e_lag1	-0.29	30	0.0680	-4.3	3057	0.0000	-0.4276	0.1589
delta_e_lag1	-0.28	358	0.0785	-3.6	5396	0.0003	-0.4406	-0.1311
delta_e_lag2	-0.14	16	0.0754	-1.8	3794	0.0614	-0.2901	0.0068
delta_e_lag3	-0.09	60	0.0657	-1.4	1607	0.1454	-0.2254	0.0335
const	24.99	17	847.8255	0.0	295	0.9765	-1645.4676	1695.4510
Omnibus:		1	l2.771		Durk	oin-Wat	son:	2.010
Prob(Omnibus):		6	0.002		Jaro	que-Bera	a (JB):	25.834
Skew:		-	0.214		Prob	o(JB):		0.000
Kurtosis:		4	1.563		Cond	dition	No.:	19350

^{*} The condition number is large (2e+04). This might indicate strong multicollinearity or other numerical problems.

coefficient ρ of $e_{t-1} = -0.2930$ std error: 0.0680

t-value: -4.3057 p-value: 0.0000

Engle-Granger Decision rule (threshold)

- if t-value of $e_{t-1} < -3.8 \rightarrow cointegrated$
- if t-value of $e_{t-1} > -3.8 \rightarrow$ not cointegrated

Result:

t-value e_{t-1} is **-4.3057** < -3.8 \rightarrow cointegrated

Answer (c)

The t-value of e_{t-1} is lower than the threshold value of -3.8. Therefore, we conclude that there is cointegration between y_t and x_t and a linear combination of y_t and x_t can form a stationary time series.

(d) Construct the first twelve sample autocorrelations and sample partial autocorrelations of Δy_t and use the outcomes to motivate an AR(12) model for Δy_t . Check that only the lagged terms at lags 1 to 5, 10, and 12 are significant, and estimate the following model: $\Delta y_t = \alpha + \sum_{i=1}^5 \beta_i \Delta y_{t-i} + \beta_6 \Delta y_{t-10} + \beta_7 \Delta y_{t-12} + \varepsilon_t$

(Recall that the estimation sample is Jan 1980 - Dec 1999).

Calculation (d)

n = 240estimation sample is Jan 1980 - Dec 1999 (monthly data, 20 years)

Significance of the first order sample autocorrelation coefficient. One way to select the orders of an AR model is to test whether the (partial) correlations differ significantly from zero. The null hypothesis of no autocorrelation ($\rho_1 = 0$) can be tested against the alternative $\rho_1 \neq 0$. At (approximate) 5 per cent level, the null hypothesis is rejected if $|r_1| > \frac{2}{\sqrt{n}}$. In this case the first order autocorrelation is significant. (Textbook p.564)

$$\frac{2}{\sqrt{n}} = 0.1291$$
 Significance Threshold estimation sample

These correlations (denoted by rk) can be estimated from the sample by the sample partial autocorrelation function (SPACF). To select the orders, we can plot the correlations rk against the time lag k. (Textbook p.548)

The plot of r_k is called the correlogram.

Lag	r _k	$ r_k > \frac{2}{\sqrt{n}}$ Significance
		Threshold
1	0.45808902	> 0.1291
2	0.31796111	> 0.1291
3	0.08675872	
4	0.12326431	
5	0.17378258	> 0.1291
6	0.01803195	
7	0.21442809	> 0.1291
8	0.00786458	
9	0.20881609	> 0.1291
10	0.23168022	> 0.1291
11	0.19678128	> 0.1291
12	0.22153186	> 0.1291

Answer (d)

Only the lagged terms at lags 1, 2, 5, 7 and 9 to 12 are significant.

(e) Extend the model of part (d) by adding the Error Correction (EC) term ($y_t - 0.45x_t$), that is, estimate the ECM $\Delta y_t = \alpha + \gamma(y_{t-1} - 0.45x_{t-1}) + \sum_{j=1}^5 \beta_j \Delta y_{t-j} + \beta_6 \Delta y_{t-10} + \beta_7 \Delta y_{t-12} + \varepsilon_t$ (estimation sample is Jan 1980- Dec 1999). Check that the EC term is significant at the 5% level, but not at the 1% level.

Calculation (e)

Error correction model

The ADL model can be rewritten in terms of changes of the variables—that is, in terms of the first differences

$$\Delta y_t = y_t - y_{t-1}$$
 and $\Delta x_t = x_t - x_{t-1}$

We consider this reformulation first for the ADL(1,1) model—that is, the model (7.32) with p = 1, r = 1, and q = 0. By subtracting y_{t-1} from both sides of the equation (7.32), we can write this model as

$$\Delta y_t = \beta_0 \Delta x_t - (1 - \phi)(y_{t-1} - \lambda x_{t-1} - \delta) + \varepsilon_t, \tag{7.33}$$

with $\delta = \alpha / (1 - \phi)$ and where $\lambda = (\beta_0 + \beta_1) / (1 - \phi)$ is the long-run multiplier. (Textbook p.639)

Error correction model

Results:	Ordinary	least	squares
----------	----------	-------	---------

==========					======		=======
Model:	0	LS		Adj.	R-squa	red:	0.436
Dependent Var:	iable: d	elta_y		AIC:			4977.7723
Date:		2023-01-05 12:04					5008.5968
No. Observation	ons: 2				Likelih	-2479.9	
Df Model:	8			F-st	atistic	:	22.87
Df Residuals:	2	18		Prob	(F-sta	tistic):	3.18e-25
R-squared:	0	.456		Scal	e:		1.8797e+08
	Coef.	Std.	Err.	t	P> t	[0.025	0.975]
const	4728.00	72 2133.	7034	2.2159	0.0277	522.6791	8933.3353
delta_lag1	-0.52	23 0.	0706	-7.4009	0.0000	-0.6614	-0.3832
delta_lag2	-0.18	66 0.	0833	-2.2403	0.0261	-0.3508	-0.0224
delta_lag3	-0.15	81 0.	0809	-1.9552	0.0518	-0.3175	0.0013
delta_lag4	-0.18	47 0.	0743	-2.4860	0.0137	-0.3311	-0.0383
delta_lag5	-0.13	31 0.	0611	-2.1785	0.0304	-0.2535	-0.0127
delta_lag10	-0.27	37 0.	0520	-5.2649	0.0000	-0.3762	-0.1712
delta_lag12	0.25	16 0.	0542	4.6402	0.0000	0.1448	0.3585
EC_term	-0.15	03 0.	0696	-2.1599	0.0319	-0.2875	-0.0132
Omnibus:		0.012		Durb	in-Wats	 on:	2.043
Prob(Omnibus)		0.994			ue-Bera		0.095
Skew:	-	-0.004			(JB):	0.954	
Kurtosis:		2.900			ition N	76171	
=========				.======	======	=======	

^{*} The condition number is large (8e+04). This might indicate strong multicollinearity or other numerical problems.

coefficient EC_term = -0.1503 std error: 0.0696

t-value: -2.1599 p-value: **0.0319**

Answer (e)

The EC term is significant at the 5% level, but not at the 1% level. The p-value of **0.0319** is below 0.05 (95%-Confidence Level), but above 0.01 (99%-Confidence Level).

(f) Use the models of parts (d) and (e) to make two series of 12 forecasts of monthly changes in production of Toyota passenger cars in 2000. At each month, you should use the data that are then available, for example, to forecast production for September 2000 you can use the data up to and including August 2000. However, do not re-estimate the model and use the coefficients as obtained in parts (d) and (e). For each of the two forecast series, compute the values of the root mean squared error (RMSE) and of the mean absolute error (MAE). Finally, give your interpretation of the outcomes.

Calculation (f)

Part (d) restricted AR(12) model for Δy_t with lag 1,2,3,4,5,10,12

RMSE = 16991.804 MAE = 176438.711 root mean squared error mean absolute error

Part (e) Error correction model for Δy_t with lag 1,2,3,4,5,10,12

RMSE = 18204.759 MAE = 186668.0201 root mean squared error mean absolute error

Answer (f)

The restricted AR(12) model (Model D) produces forecasts with a better fit than the Error correction model (Model E).