

FUNCIONES CONVEXAS

ALAN REYES-FIGUEROA MÉTODOS NUMÉRICOS II

(AULA 16) 08.SEPTIEMBRE.2022

Definición

Un subconjunto $\Omega \subseteq \mathbb{R}^n$ es **convexo** si para todo $\mathbf{x}, \mathbf{y} \in \Omega$, el segmento de recta $[\mathbf{x}, \mathbf{y}] = \{(1-t)\mathbf{x} + t\mathbf{y} : t \in [0,1]\}$ está totalmente contenido en Ω .

(a) Conjunto no convexo, (b) Conjunto convexo.

Ejemplos:

- Convexos: esferas, hiperplanos, semiespacios, conos, ...
- No Convexos: conjunto no conexos, uniones de rectas, uniones en general, ...

Definición

Una función $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$ es **convexa** si $\Omega=\mathrm{dom}\, f$ es un conjunto convexo, y para todo $\mathbf{x},\mathbf{y}\in\Omega$, y todo $t\in[0,1]$ vale

$$f((1-t)\mathbf{x}+t\mathbf{y}) \le (1-t)f(\mathbf{x})+tf(\mathbf{y}). \tag{1}$$

Geométricamente, la desigualdad (1) significa que el segmento de recta entre $(\mathbf{x}, f(\mathbf{x}))$ y $(\mathbf{y}, f(\mathbf{y}))$ está por encima de la gráfica de f.

La función f es **estrictamente convexa** si en (1) vale la desigualdad estricta, siempre que $\mathbf{x} \neq \mathbf{y}$ y $t \neq 0, 1$. Decimos que f es **cóncava** (**estrictamente cóncava**) si -f es convexa (estrictamente convexa).

A la desigualdad (1) se le llama usualmente **desigualdad de Jensen**.

Propiedad

Sea $\Omega \subseteq \mathbb{R}^n$ conjunto convexo. La función $f:\Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ es convexa \iff para todo $\mathbf{x}_1,\ldots,\mathbf{x}_k \in \Omega$, y cualesquiera $t_1,\ldots,t_k \in [0,1]$, con $\sum_{i=1}^k t_i = 1$, se tiene que

$$f\Big(\sum_{i=1}^k t_i \, \mathbf{x}_i\Big) \le \sum_{i=1}^k t_i f(\mathbf{x}_i). \tag{2}$$

<u>Prueba</u>: (\Leftarrow) Para k=2, tome $\mathbf{x}_1=\mathbf{x}, \mathbf{x}_2=\mathbf{y}\in\Omega$, y sean $t_1=1-t, t_2=t$, con $t\in[0,1]$. La designaldad (2) se reduce a $f((1-t)\mathbf{x}+t\mathbf{y})\leq (1-t)f(\mathbf{x})+tf(\mathbf{y})$, lo que implica que f es convexa.

(\Rightarrow) Mostramos la desigualdad (2) por inducción sobre k. Para k=1, necesariamente $t_1=1$ de modo que $f(\mathbf{x}_1) \leq f(\mathbf{x}_1)$ y (2) se cumple de manera automática. El caso k=2 se cumple a partir de la definición de convexidad (1).

Suponga que (2) se cumple para cualesquiera k puntos $\mathbf{p}_1, \dots, \mathbf{p}_k \in \Omega$, siempre que se forme una combinación lineal convexa $s_1\mathbf{p}_1 + \dots + s_k\mathbf{p}_k$, con $0 \le s_i \le 1$ y $\sum_{i=1}^k s_i = 1$.

Suponga ahora que $\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{x}_{k+1} \in \Omega$, se combinan para formar un punto

$$\mathbf{x} = t_1 \mathbf{x}_1 + t_2 \mathbf{x}_2 + \ldots + t_{k+1} \mathbf{x}_{k+1} \in \Omega, \quad \sum_{i=1}^{k+1} t_i = 1, \ 0 \le t_i \le 1.$$

Definamos $t=t_{k+1}$, $1-t=\sum_{j=1}^k t_j=t_1+\ldots+t_k$. Ambos coeficientes satisfacen $0\leq t, 1-t\leq 1$. En particular, si $\mathbf{p}=\sum_{j=1}^k s_j\mathbf{x}_j\in\Omega$, con $\sum_{j=1}^k s_j=1$, podemos escribir

$$\mathbf{x} = (1-t)\mathbf{p} + t\mathbf{x}_{k+1} = (1-t)\sum_{j=1}^{K} s_j \mathbf{x}_j + t_{k+1} \implies t_j = (1-t)s_j, \ j = 1, \ldots, k;$$

$$\begin{array}{lcl} f\big(\sum_{i=1}^{k+1} t_i \, \mathbf{x}_i\big) & = & f\big((1-t)\mathbf{p} + t \, \mathbf{x}_{k+1}\big) \, \leq \, (1-t)f(\mathbf{p}) + t f(\mathbf{x}_{k+1}) \\ & \leq & (1-t)f\big(\sum_{j=1}^{k} s_j \, \mathbf{x}_j\big) + t f(\mathbf{x}_{k+1}) \, \leq \, (1-t) \, \sum_{j=1}^{k} s_j f(\mathbf{x}_j) + t f(\mathbf{x}_{k+1}) \\ & \leq & \sum_{j=1}^{k} t_j f(\mathbf{x}_j) + t f(\mathbf{x}_{k+1}) \, \leq \, \sum_{i=1}^{k+1} t_i f(\mathbf{x}_i). \, \Box \end{array}$$

Definición

Sea $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$. Definimos el **epígrafo** de f, como el conjunto

$$\mathsf{Epi}(f) = \{(\mathbf{x}, y) \in \mathbb{R}^{n+1} : y \ge f(\mathbf{x})\} \subseteq \mathbb{R}^{n+1}.$$

Teorema

f es convexa \iff su epígrafo Epi(f) es un conjunto convexo.

<u>Prueba</u>: (\Rightarrow) . Supongamos que f es convexa, y sean $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_k, y_k) \in \text{Epi}(f)$.

Tomemos cualquier juego de coeficientes $t_1, t_2, \dots, t_k \in [0, 1]$, tales que $\sum_{i=1}^k t_i = 1$. Consideramos el punto

$$(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{k} t_i (\mathbf{x}_i, \mathbf{y}_i) = \Big(\sum_{i=1}^{k} t_i \mathbf{x}_i, \sum_{i=1}^{k} t_i \mathbf{y}_i\Big) \in \mathbb{R}^{n+1}.$$

Este punto satisface

$$y = \sum_{i=1}^{k} t_i y_i \ge \sum_{i=1}^{k} t_i f(\mathbf{x}_i) \ge f\left(\sum_{i=1}^{k} t_i \mathbf{x}_i\right) = f(\mathbf{x}),$$

de modo que $(\mathbf{x}, y) \in Epi(f)$, lo que muestra que Epi(f) es convexo.

(\Leftarrow) Tomamos $(\mathbf{x}_1, f(\mathbf{x}_1)), \dots, (\mathbf{x}_k, f(\mathbf{x}_k)) \in \mathsf{Epi}(f)$. Como $\mathsf{Epi}(f)$ es convexo, entonces se cumple que

$$\sum_{i=1}^k t_i\left(\mathbf{x}_i, f(\mathbf{x}_i)\right) = \Big(\sum_{i=1}^k t_i \, \mathbf{x}_i, \sum_{i=1}^k t_i f(\mathbf{x}_i)\Big) \in \mathsf{Epi}(f).$$

Esto implica que $f(\sum_{i=1}^k t_i \mathbf{x}_i) \leq \sum_{i=1}^k t_i f(\mathbf{x}_i)$, y portanto f es convexa. \Box

Observaciones:

- Directamente de la definición, tenemos que f es convexa $f|_{[\mathbf{a},\mathbf{b}]}$ es convexa, cuando se restringe a cualquier segmento $[\mathbf{a},\mathbf{b}]$, con $\mathbf{a},\mathbf{b}\in\Omega$.

 De ahí que f es convexa para todo $\mathbf{x}\in\Omega$, y para todo $\mathbf{h}\in\mathbb{R}^n$, la función $g(t)=(\mathbf{x}+t\mathbf{h})$ es convexa en el dominio $\{t\in\mathbb{R}:\ \mathbf{x}+t\mathbf{h}\in\Omega\}$.
- En ocasiones conviene extender una función convexa $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$ a valores en la recta extendida $\widehat{f}:\mathbb{R}^n\to\mathbb{R}\cup\{+\infty\}$, por

$$\widehat{f}(\mathbf{x}) = egin{cases} f(\mathbf{x}), & \mathsf{si} \ \mathbf{x} \in \Omega; \ +\infty, & \mathsf{si} \ \mathbf{x}
otin \Omega. \end{cases}$$

Claramente $\widehat{f}|_{\Omega} = f$, y se tiene que f es convexa $\iff \widehat{f}$ es convexa.

• En el caso de \widehat{f} , la convexidad sigue siendo definida por la desigualdad (1), con la diferencia que se usa aritmética extendida.

Teorema (Condición de 1er Orden)

Suponga que $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$ es diferenciable y que Ω es convexo. Entonces f es convexa si, y sólo si, para todo $\mathbf{x},\mathbf{x}_0\in\Omega$ vale

$$f(\mathbf{x}) \geq f(\mathbf{x}_{\mathsf{o}}) + \nabla f(\mathbf{x}_{\mathsf{o}})^{\mathsf{T}} (\mathbf{x} - \mathbf{x}_{\mathsf{o}}).$$

Si f es convexa, el plano tangente a f en \mathbf{x}_0 está por debajo del grafo de f.

<u>Prueba</u>: (\Rightarrow) Como Ω es convexo, para $\mathbf{x}, \mathbf{x}_0 \in \Omega$ se tiene que $(1-t)\mathbf{x}_0 + t\mathbf{x} \in \Omega$, $\forall o < t < 1$. Si f es convexa, de la desigualdad de Jensen (1), tenemos

$$f\big(\mathbf{x}_{\mathsf{O}} + t(\mathbf{x} - \mathbf{x}_{\mathsf{O}})\big) = f\big((\mathbf{1} - t)\mathbf{x}_{\mathsf{O}} + t\mathbf{x}\big) \leq (\mathbf{1} - t)f(\mathbf{x}_{\mathsf{O}}) + tf(\mathbf{x}) = f(\mathbf{x}_{\mathsf{O}}) + t\big(f(\mathbf{x}) - f(\mathbf{x}_{\mathsf{O}})\big),$$

para todo o < t < 1. Luego $fig(\mathbf{x}_{ extsf{o}} + t(\mathbf{x} - \mathbf{x}_{ extsf{o}})ig) - f(\mathbf{x}_{ extsf{o}}) \le tig(f(\mathbf{x}) - f(\mathbf{x}_{ extsf{o}})ig)$, y

$$\frac{f\big(\mathbf{x}_{\mathsf{o}} + t(\mathbf{x} - \mathbf{x}_{\mathsf{o}})\big) - f(\mathbf{x}_{\mathsf{o}})}{t} \leq f(\mathbf{x}) - f(\mathbf{x}_{\mathsf{o}}), \quad \text{para } \; \mathsf{o} < t < \mathsf{1}.$$

Como f es diferenciable, tomando el límite cuando $t \rightarrow o^+$, obtenemos

$$abla f(\mathbf{x}_{\mathsf{o}})^{\mathsf{T}}(\mathbf{x}-\mathbf{x}_{\mathsf{o}}) = \lim_{t o \mathsf{o}^+} rac{f\left(\mathbf{x}_{\mathsf{o}} + t(\mathbf{x}-\mathbf{x}_{\mathsf{o}})
ight) - f(\mathbf{x}_{\mathsf{o}})}{t} \leq f(\mathbf{x}) - f(\mathbf{x}_{\mathsf{o}}),$$

lo que produce $f(\mathbf{x}) \geq f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0)$.

$$(\Leftarrow)$$
 Tome **x**, **x**_o ∈ Ω, y sea **z** = $(1-t)$ **x**_o + t **x** ∈ Ω, con o ≤ t ≤ 1. Por hipótesis

$$\begin{array}{lcl} f(\mathbf{x}_{\mathrm{O}}) & \geq & f(\mathbf{z}) + \nabla f(\mathbf{z})^{\mathsf{T}} \, (\mathbf{x}_{\mathrm{O}} - \mathbf{z}), \\ f(\mathbf{x}) & \geq & f(\mathbf{z}) + \nabla f(\mathbf{z})^{\mathsf{T}} \, (\mathbf{x} - \mathbf{z}). \end{array}$$

Haciendo una combinación convexa de ambas ecuaciones, resulta

$$\begin{array}{ll} (\mathbf{1}-t)f(\mathbf{x}_{0})+tf(\mathbf{x}) & \geq & (\mathbf{1}-t)\big[f(\mathbf{z})+\nabla f(\mathbf{z})^{\mathsf{T}}(\mathbf{x}_{0}-\mathbf{z})\big]+t\big[f(\mathbf{z})+\nabla f(\mathbf{z})^{\mathsf{T}}(\mathbf{x}-\mathbf{z})\big] \\ & \geq & \big[(\mathbf{1}-t)+t\big]f(\mathbf{z})+\nabla f(\mathbf{z})^{\mathsf{T}}\left[(\mathbf{1}-t)(\mathbf{x}_{0}-\mathbf{z})+t(\mathbf{x}-\mathbf{z})\right] \\ & \geq & f(\mathbf{z})+\nabla f(\mathbf{z})^{\mathsf{T}}\left[\underbrace{(\mathbf{1}-t)\mathbf{x}_{0}+t\mathbf{x}-\mathbf{z}}_{=0}\right] = f(\mathbf{z}) \\ & \geq & f((\mathbf{1}-t)\mathbf{x}_{0}+t\mathbf{x}). \end{array}$$

Dado que \mathbf{x}, \mathbf{x}_0 son arbitrarios, esto muestra que f es convexa. \Box

Corolario

Sea $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ diferenciable y convexa. Si $\nabla f(\mathbf{x}^*) = \mathbf{0}$, para $\mathbf{x}^* \in \Omega$, entonces \mathbf{x}^* es un mínimo global de f.

<u>Prueba</u>: El teorema anterior implica que $f(\mathbf{x}) \geq f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^\mathsf{T} (\mathbf{x} - \mathbf{x}^*) = f(\mathbf{x}^*), \ \forall \mathbf{x} \in \Omega.$ Portanto, \mathbf{x}^* es mínimo global de f.

Teorema (Condición de 2do Orden)

Suponga que $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ es dos veces diferenciable y que Ω es abierto y convexo. Entonces f es convexa si, y sólo si, para todo $\mathbf{x} \in \Omega$, $D^2 f(\mathbf{x}) \succeq 0$.

<u>Prueba</u>: (\Leftarrow) Suponga que $D^2f(\mathbf{x})$ es positiva semidefinida, para todo $\mathbf{x} \in \Omega$. Tomemos $\mathbf{x}, \mathbf{x}_0 \in \Omega$ y definamos $\mathbf{h} = \mathbf{x} - \mathbf{x}_0$. De la Fórmula de Taylor

$$f(\mathbf{x}) = f(\mathbf{x}_0 + \mathbf{h}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^\mathsf{T} \mathbf{h} + \frac{1}{2} \mathbf{h}^\mathsf{T} D^2 f(\mathbf{x}_0 + t\mathbf{h}) \mathbf{h},$$

para algún o < t < 1.

Peero $\mathbf{x}_{o}+t\mathbf{h}=\mathbf{x}_{o}+t(\mathbf{x}-\mathbf{x}_{o})=(1-t)\mathbf{x}_{o}+t\mathbf{x}\in\Omega$, ya que es una conbinación convexa de $\mathbf{x},\mathbf{x}_{o}\in\Omega$. Esto implica que el término $\frac{1}{2}\mathbf{h}^{T}D^{2}f(\mathbf{x}_{o}+t\mathbf{h})\mathbf{h}\geq \mathbf{o}$, de modo que $f(\mathbf{x})\geq f(\mathbf{x}_{o})+\nabla f(\mathbf{x}_{o})^{T}(\mathbf{x}_{\mathbf{x}o}).$

De la Condición de optimalidad de 1er. orden, f es convexa.

(\Rightarrow) Suponga ahora que f es convexa. Tome $\mathbf{x} \in \Omega$, $\mathbf{p} \in \mathbb{R}^n$. Como Ω es abierto, existe r > o tal que $\mathbb{D}_r(\mathbf{x}) \subseteq \Omega$. Tomamons $\widetilde{\mathbf{p}} = \frac{1}{k}\mathbf{p}$ un múltiplo suficientemente pequeño de \mathbf{p} , de modo que $\mathbf{y} = \mathbf{x} + \widetilde{\mathbf{p}} \in \mathbb{D}_r(\mathbf{x})$. Como f es convexa,

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{y} - \mathbf{x}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}} \widetilde{\mathbf{p}}.$$

Por el Teorema de Taylor,

$$f(\mathbf{y}) = f(\mathbf{x} + \widetilde{\mathbf{p}}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^\mathsf{T} \, \widetilde{\mathbf{p}} + \frac{1}{2} \widetilde{\mathbf{p}}^\mathsf{T} \, D^2 f(\mathbf{x} + t \widetilde{\mathbf{p}}) \, \widetilde{\mathbf{p}}, \quad t \in (0, 1).$$

Combinando las dos expresiones anteriores, obtenemos

$$f(\mathbf{x}) + \nabla f(\mathbf{x})^T \widetilde{\mathbf{p}} + \frac{1}{2} \widetilde{\mathbf{p}}^T D^2 f(\mathbf{x} + t \widetilde{\mathbf{p}}) \widetilde{\mathbf{p}}, \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^T \widetilde{\mathbf{p}}.$$

$$\Rightarrow \ \widetilde{f p}^{\mathsf{T}} \, D^2 f({f x} + t \widetilde{f p}) \, \widetilde{f p} \geq {\mathsf{o}}.$$

Haciendo $t \to 0$, se obtiene que $\widetilde{\mathbf{p}}^T D^2 f(\mathbf{x}) \widetilde{\mathbf{p}} \ge 0$. Y como esto vale para todo $\widetilde{\mathbf{p}} \in \mathbb{D}_r(\mathbf{x})$, se tiene que $D^2 f(\mathbf{x}) \succeq 0$ es positiva semidefinida. \square

Corolario

Si $f: \Omega \subseteq \mathbb{R}^2 \to \mathbb{R}$ es convexa y 2-veces diferenciable, cualquier punto estacionario $\mathbf{x}^* \in \Omega$ de f, es un mínimo global.

<u>Prueba</u>: Como \mathbf{x}^* es punto estacionario de f, entonces $\nabla f(\mathbf{x}^*) = \mathbf{0}$. Además, como f es convexa y 2-veces diferenciable, entonces $D^2 f(\mathbf{x}^*) \succeq \mathbf{0}$. De las condiciones de obtimalidad, se obtiene que para todo $\mathbf{x} \in \Omega$

$$f(\mathbf{x}) \geq f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^\mathsf{T} (\mathbf{x} - \mathbf{x}^*) + \frac{1}{2} (\mathbf{x} - \mathbf{x}^*)^\mathsf{T} D^2 f(\mathbf{x}^*) (\mathbf{x} - \mathbf{x}^*) \geq f(\mathbf{x}^*), \quad \forall \mathbf{x} \in \Omega.$$

Portanto, \mathbf{x}^* es mínimo global de f. \Box

Proposición

Sea $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ diferenciable, Ω convexo. Entonces f es convexa \iff $(\nabla f(\mathbf{x}) - \nabla f(\mathbf{y}))^\mathsf{T} (\mathbf{x} - \mathbf{y}) \geq \mathsf{o}$, $\forall \mathbf{x}, \mathbf{y} \in \Omega$.

<u>Prueba</u>: Como f es convexa, de la condición de 1er orden tenemos

$$\begin{cases} f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{y} - \mathbf{x}) \\ f(\mathbf{x}) \geq f(\mathbf{y}) + \nabla f(\mathbf{y})^{\mathsf{T}} (\mathbf{x} - \mathbf{y}) \end{cases} \quad \Rightarrow \quad 0 \geq (\nabla f(\mathbf{x})^{\mathsf{T}} - \nabla f(\mathbf{y})^{\mathsf{T}}) (\mathbf{y} - \mathbf{x})$$

Portanto, $(\nabla f(\mathbf{x})^{\mathsf{T}} - \nabla f(\mathbf{y})^{\mathsf{T}})(\mathbf{x} - \mathbf{y}) \geq 0$.

 (\Rightarrow) (pendiente).

Proposición

Si $f: \mathbb{R}^n \to \mathbb{R}$ es diferenciable y convexa, entonces \mathbf{x}^* es un óptimo global de $f \iff \nabla f(\mathbf{x}^*)^\mathsf{T} (\mathbf{x} - \mathbf{x}^*) = \geq \mathsf{o}$, para todo $\mathbf{x} \in \mathbb{R}^n$.

<u>Prueba</u>: Haga $\mathbf{x} = -\nabla f(\mathbf{x}^*)^T + \mathbf{x}^*$. Entonces, $\nabla f(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*) = -||\nabla f(\mathbf{x}^*)||^2 \leq o$. De ahí que $\nabla f(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*) \geq o$, $\forall \mathbf{x} \in \mathbb{R}^n$ implica que $\nabla f(\mathbf{x}^*)^T = \mathbf{o}$, y \mathbf{x}^* es un punto crítico. La convexidad de f implica entonces que \mathbf{x}^* es un mínimo global. \Box

Ejemplos de funciones convexas en \mathbb{R} :

- (Exponencial): $f(x) = e^{ax}$ es convexa en todo \mathbb{R} , para todo $a \in \mathbb{R}$. Basta ver que $f'(x) = ae^{ax}$ y $f''(x) = a^2e^{ax} \ge 0$. Luego f es convexa. (De hecho, f es estrictamente convexa para $a \ne 0$).
- (Potencias): $f(x) = x^a$ es estrictamente convexa sobre \mathbb{R}^+ , para $a \ge 1$ o $a \le 0$. Basta ver que $f'(x) = ax^{a-1}$ y $f''(x) = a(a-1)x^{a-2} > 0$, cuando a < 0 ó a > 1.
- (Potencias del valor absoluto): Las funciones $f(x) = |x|^p$ son convexas para $p \ge 1$.

$$f'(x) = p|x|^{p-1} \cdot \frac{d}{dx}|x| = p|x|^{p-1} \cdot \frac{x}{|x|} = p \, x|x|^{p-2}.$$

$$f''(x) = p|x|^{p-2} + p(p-2) \, x|x|^{p-3} \cdot \frac{d}{dx}|x| = p|x|^{p-2} + p(p-2) \, x^2|x|^{p-4} \cdot \frac{x}{|x|}$$

$$= p|x|^{p-4} (|x|^2 + (p-2)x^2) = p|x|^{p-4} (x^2 + (p-2)x^2)$$

$$= p(p-1) \, x^2|x|^{p-4} \ge 0$$

cuando $p \ge 1$.

- (Logaritmo negativo): $f(x) = -\log(x)$ es convexa en todo \mathbb{R}^+ , para todo $a \in \mathbb{R}$. Basta ver que $f'(x) = -\frac{1}{x}$ y $f''(x) = \frac{1}{x^2} > 0$. Luego f es estrictamente convexa.
- (Entropía): $f(x) = x \log(x)$ es estrictamente convexa sobre \mathbb{R}^+ . Observe que $f'(x) = \log(x) + 1$ y $f''(x) = \frac{1}{x} > 0$.
- (Funciones lienales): Las funciones f(x) = ax + b son siempre convexas y cóncavas, $\forall a,b \in \mathbb{R}$

Ejemplos de funciones convexas en \mathbb{R}^n :

• (Normas): Toda norma en \mathbb{R}^n es convexa. De la homogeneidad y la desigualdad triangular, tenemos

$$||(1-t)\mathbf{x}+t\mathbf{y}|| \le ||(1-t)\mathbf{x}|| + ||t\mathbf{y}|| = (1-t)||\mathbf{x}|| + t||\mathbf{y}||, \quad \text{para } t \in [0,1].$$

• (Máximos): La función $f(\mathbf{x}) = \max_{1 \le i \le n} \{x_i\}$ es convexa. Recuerde que $\max_i \{a_i + b_i\} \le \max_i \{a_i\} + \max_i \{b_i\}$. (¿Por qué?) De ahí que

$$\max_i \left((1-t)x_i + ty_i \right) \leq \max_i (1-t)x_i + \max_i ty_i = (1-t)\max_i x_i + t \max_i y_i.$$

• (Log-sum-exp): La función $f(\mathbf{x}) = \log \Big(\sum_{i=1}^n e^{x_i} \Big)$ es convexa en \mathbb{R}^n . (Hay que calcular la Hessiana y mostrar que es \succeq o + Cauchy-Schwarz).

- (Media geométrica): La función $f(\mathbf{x}) = \Big(\prod_{i=1}^n x_i\Big)^{1/n}$ es convexa en \mathbb{R}^n . (De nuevo, calcular la Hessiana y mostrar que es \succeq o + Cauchy-Schwarz).
- (Log-det): El logaritmo negativo del determinante $f: \mathbb{R}^{n \times n} \to \mathbb{R}$, dado por $f(X) = -\log \det X$ es convexa en el conjunto de matrices positivas definidas en $\mathbb{R}^{n \times n}$.