

557261

Development of a Low-Cost, Subscale Test System to Evaluate Particle Impingement Erosion in Nozzle Ablative Materials

M.Lansing and T. Lawrence

NASA Marshall Space Flight Center

Development of a Low-Cost, Subscale Test System to Evaluate Particle Impingement Erosion in Nozzle Ablative Materials

- IDENTIFICATION OF NEED FOR NEW TEST BED
 - Observation of Ply Lifting in motors
 - Plasma Torch provided low cost testing
 - Small heating area
 - Thiokol Seventy Pound Charge test motor induced Ply Lift in test sections
 - New low cost test bed needed for Ply Lift testing
 - Solid Fuel Torch (SFT) development began with Thiokol

Development of a Low-Cost, Subscale Test System to Evaluate Particle Impingement Erosion in Nozzle Ablative Materials

SOLID FUEL TORCH COMPONENTS

**Development of a Low-Cost, Subscale Test System
to Evaluate Particle Impingement Erosion
in Nozzle Ablative Materials**

SOLID FUEL TORCH CUT-AWAY

**Development of a Low-Cost, Subscale Test System
to Evaluate Particle Impingement Erosion
in Nozzle Ablative Materials**

SOLID FUEL TORCH TEST

Development of a Low-Cost, Subscale Test System to Evaluate Particle Impingement Erosion in Nozzle Ablative Materials

- DEVELOPMENT EVOLVED ADDITIONAL USES
 - Ply Lift issue overtaken by other/higher priorities
 - Maturing SFT used to evaluate several joint issues for RSRM
 - Nozzle to Case Joint polysulfide gas paths
 - Throat to Forward Exit Cone Joint study of void volumes and o-ring burning
 - Identified need for supersonic test with particle impingement
 - Operating parameters of SFT already characterized

Development of a Low-Cost, Subscale Test System to Evaluate Particle Impingement Erosion in Nozzle Ablative Materials

- DEVELOPMENT OF SUPERSONIC BLAST TUBE (SSBT)
 - NASA and Thiokol performed iterative design for expansion/contraction of SSBT contours
 - Demonstrated performance with 0%, 18%, and 36% Al
 - Low C* Efficiency at 36% Al
 - Subsequent testing at 26% Al resulted in unacceptable pressure fluctuations
 - Accepted 18% Al as standard
 - Demonstrated particle impingement capability for material discrimination

**Development of a Low-Cost, Subscale Test System
to Evaluate Particle Impingement Erosion
in Nozzle Ablative Materials**

SFT #125 SSBT #52
11/13/00

SUPersonic BLAST TUBE (SSBT)

Development of a Low-Cost, Subscale Test System to Evaluate Particle Impingement Erosion in Nozzle Ablative Materials

PARTICLE IMPINGEMENT MATERIAL DISCRIMINATION

Development of a Low-Cost, Subscale Test System to Evaluate Particle Impingement Erosion in Nozzle Ablative Materials

PARTICLE IMPINGEMENT MATERIAL DISCRIMINATION

Development of a Low-Cost, Subscale Test System to Evaluate Particle Impingement Erosion in Nozzle Ablative Materials

- CURRENT STATUS
 - Solid Fuel Torch developed as low cost materials test bed
 - Standard operating parameters characterized
 - Supersonic Blast Tube developed for evaluating particle impingement sensitivity of materials
 - SFT/SSBT testing implemented in Rayon Replacement program for candidate screening