Gauss-Seidel & SOR Methods

Solvers for Symmetric Positive Definite Systems

Outline

- Review
- Gaussian Seidel iteration
- The algorithm
- Convergence conditions
- The Successive Over Relaxation (SOR) method
- Optimal SOR

Review

- Linear system: Ax = b,
- General form of iterative method:

$$A = N - P$$
, $N \approx A$, $P = N - A$.
 $Ax = b \rightarrow Nx = b + Px$.
 $Nx^{(k+1)} = b + Px^{(k)}$.

• The convergence condition

$$\begin{split} e^{(k)} &= x - x^{(k)}. \\ e^{(k+1)} &= (N^{-1}P)e^{(k)}, M = N^{-1}P. \\ e^{(k)} &= M^k e^{(0)}. \\ \|e^{(k)}\| &= \|M^k e^{(0)}\| \le \|M^k\| \cdot \|e^{(0)}\| \le \|M\|^k \|e^{(0)}\|. \\ \|M\| &< 1. \end{split}$$

Gauss-Seidel Iteration

 N is the lower triangular matrix and P is the strictly upper triangular matrix of A.

$$n_{ij} = \begin{cases} a_{ij}, i \ge j. \\ 0, \text{ otherwise.} \end{cases}$$

$$p_{ij} = \begin{cases} -a_{ij}, i < j, \\ 0, \text{ otherwise.} \end{cases}$$

The shape of A, N, and P A = N - P

$$\bullet \quad A = \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix}$$

•
$$N = \begin{bmatrix} a_{00} & 0 & 0 & 0 \\ a_{10} & a_{11} & 0 & 0 \\ a_{20} & a_{21} & a_{22} & 0 \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & -a_{01} & -a_{02} & -a_{03} \\ 0 & 0 & -a_{12} & -a_{13} \\ 0 & 0 & 0 & -a_{23} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Gauss-Seidel Iteration

- N is the lower triangular matrix and P is the strictly upper triangular matrix of A.
- The iteration:

strictly upper triangular matrix of
$$A$$
.

The iteration:
$$Nx^{(k)} = b + Px^{(k-1)}.$$

//consider the ith equation:
$$\sum_{j=0}^{i} a_{ij} x_{j}^{(k)} = b_{i} - \sum_{j=i+1}^{n-1} a_{ij} x_{j}^{(k-1)},$$

$$a_{i0} x_{0}^{(k)} + \dots + a_{ii-1} x_{i-1}^{(k)} + a_{ii} x_{i}^{(k)} = b_{i} - \sum_{j=i+1}^{n-1} a_{ij} x_{j}^{(k-1)},$$

$$P = \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$x_i^{(k)} = \frac{1}{a_{ii}} [b_i - \sum_{j=0}^{i-1} a_{ij} x_j^{(k)} -$$

$$A = \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$N = \begin{bmatrix} a_{00} & 0 & 0 & 0 \\ a_{10} & a_{11} & 0 & 0 \\ a_{20} & a_{21} & a_{22} & 0 \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & -a_{01} & -a_{02} & -a_{03} \\ 0 & 0 & -a_{12} & -a_{13} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The Pseudo-Codes

```
//Initialize the solution.
                                           x_i^{(k)} = \frac{1}{a_{ii}} \left[ b_i - \sum_{i=0}^{i-1} a_{ij} x_j^{(k)} - \sum_{i=i+1}^{n-1} a_{ij} x_j^{(k-1)} \right]
 x[] = \{0.0\};
 err = \infty;
//Iterate until being converged
 while(err>\epsilon){
     for(i=0;i\leq n-1;i++)
       sum = b[i];
       for(j=0; j \le n-1; j++) if(j!=i) sum = sum -A[i][j]*x[j];
       x[i] = sum/A[i][i];
     //Compute the residual
     r[] = b[] - A[][]*x[];
     err = norm_inf(r, n); //Compute the norm
  return (x[]);
```

Convergence of Gauss-Seidel

- Theorem1: Gauss-Seidel converges, if *A* is diagonal dominant.
 - See the proof of convergence of Jacobi method. $M = N^{-1}P$, ||M|| < 1. //using ∞ norm.
- Theorem2: Gauss-Seidel converges, if *A* is **Symmetric Positive Definite** (SPD).
- Definition of SPD: if A is SPD, then A is symmetric and $x^T A x > 0$, $\forall x \in \mathbb{R}^n, x \neq 0$.

Properties

• P1, If *A* is SPD, then $a_{ii} > 0$.

Proof by contradiction:

- Assume $a_{ii} \le 0$ for some i.
- Select $e = [0, ...0, 1, 0...0]^T$, e[i] = 1, and e[j] = 0, $i \neq j$.
- Then $e^T A e = a_{ii} \le 0$.
- Thus A is not SPD, a contradiction!
- P2, if A is SPD, then its eigenvalues $\lambda > 0$.

Proof:

– Let w be an eigenvector of A and λ the corresponding eigenvalue.

$$Aw = \lambda w$$
.

$$w^T A w = \lambda w^T w = \lambda ||w||^2 > 0$$
, //by definition of SPD

– It implies $\lambda > 0$.

Properties

- P3, Let D = diag(A), the diagonal matrix of A, then D is SPD.
 - Using property P1.
- P4, If A is SPD, then $N = D + B^T$, where B is the strictly upper triangle matrix of A.
 - See the right figure. $B^T \sim B$.
- P5, $D = A B B^T$
- P6, $w^T B w = w^T B^T w$.
 - Proof by expanding the equation and using $B_{ij} = B_{ji}$.

• A is SPD and it is divided into 3 parts in Gaussian-Seidel method.

Spectral Radius of the Correction Matrix

- Lemma: In Gauss-Seidel method, eigenvalues of $M=N^{-1}P$ are in the range of (-1,1), if A is SPD.
- Proof:

- In Gauss-Seidel iteration
$$(A - B)x^{(k+1)} = b - Bx^{(k)}$$
.
 $x^{(k+1)} = (A - B)^{-1}b - (A - B)^{-1}Bx^{(k)}$.

$$-Mw = \lambda w, -(A-B)^{-1}Bw = \lambda w.$$

- Multiply both sides by (A-B), we have $-Bw = \lambda(A-B)w$.
- Inner-product both sides with w: $-w^T B w = \lambda w^T (A B) w = \lambda w^T A w \lambda w^T B w$.

$$w^T B w = \lambda w^T B w - \lambda w^T A w. (1 - \lambda) w^T B w = -\lambda w^T A w.$$

- Thus,
$$w^T B w = \frac{\lambda}{\lambda - 1} w^T A w$$
. ----- (1).

Spectral Radius of the Correction Matrix

• Lemma: In Gauss-Seidel method, eigenvalues of $M=N^{-1}P$ are in the range of (-1,1), if A is SPD.

Shape of B^T, D, and B.

- Since *D* is SPD,

$$0 < w^T D w = w^T (A - B - B^T) w$$
.

- Using (1) and P6,

$$0 < w^{T}Aw - w^{T}Bw - w^{T}B^{T}w = (1 - 2\frac{\lambda}{\lambda - 1})w^{T}Aw.$$

- Since A is SPD, $w^T A w > 0$ and

$$0 < 1 - 2\frac{\lambda}{\lambda - 1} = 1 - \frac{2\lambda(\lambda - 1)}{(\lambda - 1)^2} = \frac{1 - \lambda^2}{(\lambda - 1)^2}.$$

- Thus, $1 - \lambda^2 > 0$, $-1 < \lambda < 1$.

Convergence of SPD Systems

- Theorem: If A is SPD, Gauss-Seidel converges.
- Proof:
 - Define $e^{(k)} = x x^{(k)}$. $e^{(k+1)} = (N^{-1}P)e^{(k)}, M = N^{-1}P$.
 - From a previous proof, $e^{(k)} = M^k e^{(0)}$ $||e^{(k)}|| = ||M^k e^{(0)}|| \le ||M^k|| \cdot ||e^{(0)}|| \le ||M||^k ||e^{(0)}||.$
 - By the previous lemma, if A is SPD then ||M|| < 1,
 - Thus, $\lim_{k\to\infty} ||M||^K = 0$.
 - The Gauss-Seidel iteration converges.

Relaxation

In Gauss-Seidel method

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left[b_i - \sum_{j=0}^{i-1} a_{ij} x_j^{(k+1)} + \sum_{j=i+1}^{n-1} a_{ij} x_j^{(k)} \right].$$

• Adding and subtracting $a_{ii}x_i^{(k)}$ in the right side

$$x_i^{(k+1)} = x_i^{(k)} + \frac{1}{a_{ii}} \left[b_i - \sum_{j=0}^{i-1} a_{ij} x_j^{(k+1)} + \sum_{j=i}^{n-1} a_{ij} x_j^{(k)} \right].$$

- The 2^{nd} term of the right side contains an approximation of the residual r = b Ax.
 - We modify the value of x by using the approximation.
- It is called a <u>relaxation</u>.

Successive Over Relaxation

• The relaxation of Gauss-Seidel

$$x_i^{(k+1)} = x_i^{(k)} + \tfrac{1}{a_{ii}} \big[b_i - \textstyle \sum_{j=0}^{i-1} a_{ij} x_j^{(k+1)} - \textstyle \sum_{j=i}^{n-1} a_{ij} x_j^{(k)} \big].$$

• By parameterizing the **relaxation** part

$$x_i^{(k+1)} = x_i^{(k)} + \frac{\omega}{a_{ii}} \left[b_i - \sum_{j=0}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i}^{n-1} a_{ij} x_j^{(k)} \right].$$

- If $\omega = 1.0$, we have Gauss-Seidel Iteration.
- If $1 < \omega < 2$, we have **Successive Over-Relaxation** (SOR) method.
- If $0 < \omega < 1$, we have under-relaxation.

SOR Algorithm

```
x_i^{(k+1)} = x_i^{(k)} + \frac{\omega}{a_{ii}} b_i - \sum_{j=0}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i}^{n-1} a_{ij} x_j^{(k)}
//Initialize the solution.
 x[] = \{0.0\};
 err = \infty;
//Iterate until being converged
 while(err>\epsilon){
     for(i=0;i\leq n-1;i++)
       sum = b[i];
       for(j=0;j\le n-1;j++) sum = sum - A[i][j]*x[j];
       x[i] = x[i] + \omega * sum/A[i][i];
     //Compute the residual
     r[] = b[] - A[][] *x[];
     err = norm\_inf(r, n); //Compute the norm of the residual
  return (x[]);
```

Relaxation Parameter

- The best ω is hard to compute.
 - But some results are known.
- P1, if A is SPD and $0 < \omega < 2$, SOR converges.
- P2, SOR can converge only if $0 < \omega < 2$.
- P3, Optimal ω :
 - Split the coefficient matrix A = D L U.
 - Let $T = D^{-1}(L+U)$

$$\omega = \frac{2}{1 + \sqrt{1 - \rho^2}},$$

– where ρ is the spectral radius of T,

$$\rho = |\lambda_{max}|.$$

ADI Method

- In Jacobi, Gauss-Seidel, and SOR methods, we update x[] from x[0] to x[n-1] in each iteration.
- In Altered Direction Iteration (ADI) method,
 - We update x[] from x[0] to x[n-1] in most cases.
 - But, in some iterations, we update x[] from x[n-1] to x[0].
- SSOR (Symmetric Successive Over-Relaxation) method:
 - Using SOR to solve the system.
 - Update x[] from x[0] to x[n-1] in odd-numbered iterations.
 - Update x[] from x[n-1] to x[0] in even-numbered iterations.
- SSOR may be slower than SOR.
- SSOR is used as a preconditioner for other iterative methods.
 - What is a preconditioner?

Preconditioners

- The original system Ax = b has a large condition number.
- Modify the system as follows (PA)x = Pb. Then solve the system.
- Or with more efforts
 - Solve (AP)y = b at first.
 - Then solve $P^{-1}x = y$ later to obtain the solution.
- Method: left precondition and right precondition.
- Criteria:
 - P should be simple
 - Don't form AP or PA explicitly. Why? Think about the time complexity of matrix-multiplication.

Reminder

• Hilbert matrix is symmetric positive definite,

$$a_{ij} = \frac{1}{i+j+1}, 0 \le i, j \le n-1.$$

- However, linear systems with Hilbert matrices as coefficient matrices are almost intractable by using Gauss-Seidel method.
- Why?
- Answer:
 - The condition number $cond(A) = O\left(\frac{\left(1+\sqrt{2}\right)^{4n}}{\sqrt{n}}\right)$ is exponentially grows with the dimension n.
 - Numerical errors (perturbations) prevent the computation from converge.

References

- Broyden, C. G. (1964). On convergence criteria for the method of successive over-relaxation. Mathematics of Computation, 18(85), 136-141.
 - Symmetric matrix, $0 < \omega < 2$ converges
 - Positive definite & low-triangular dominant → convergence
- James, K. R., & Riha, W. (1975). Convergence criteria for successive overrelaxation. SIAM Journal on Numerical Analysis, 12(2), 137-143.
 - Convergence criteria of SOR method for general and special matrices
 - Most referenced paper about SOR.
- Yang, S., & Gobbert, M. K. (2009). The optimal relaxation parameter for the SOR method applied to the Poisson equation in any space dimensions. Applied Mathematics Letters, 22(3), 325-331.
 - Optimal ω for Poisson equations (PDE, elliptic PDE)