25 pt in total, Due date: 10/12 online

Problem 1 (8 pt)

- **3.5** Given vectors $\mathbf{A} = \hat{\mathbf{x}} + \hat{\mathbf{y}}2 \hat{\mathbf{z}}3$, $\mathbf{B} = \hat{\mathbf{x}}2 \hat{\mathbf{y}}4$, and $\mathbf{C} = \hat{\mathbf{y}}2 \hat{\mathbf{z}}4$, find
 - (a) A and \hat{a} ,
 - (b) the component of **B** along **C**,
 - (c) θ_{AC} ,
 - (d) $A \times C$,
 - (e) $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})$,
 - (f) $A \times (B \times C)$,
 - (g) $\hat{\mathbf{x}} \times \mathbf{B}$, and
 - (h) $(\mathbf{A} \times \hat{\mathbf{y}}) \cdot \hat{\mathbf{z}}$.

Problem2 (a) and (d) only (4 pt)

- 3.35 Transform the following vectors into spherical coordinates and then evaluate them at the indicated points:
- (a) $\mathbf{A} = \hat{\mathbf{x}}y^2 + \hat{\mathbf{y}}xz + \hat{\mathbf{z}}4$ at $P_1 = (1, -1, 2)$
- **(b)** $\mathbf{B} = \hat{\mathbf{y}}(x^2 + y^2 + z^2) \hat{\mathbf{z}}(x^2 + y^2)$ at $P_2 = (-1, 0, 2)$
- *(c) $\mathbf{C} = \hat{\mathbf{r}}\cos\phi \hat{\mathbf{\phi}}\sin\phi + \hat{\mathbf{z}}\cos\phi\sin\phi$ at $P_3 = (2, \pi/4, 2)$
- (d) $\mathbf{D} = \hat{\mathbf{x}}y^2/(x^2 + y^2) \hat{\mathbf{y}}x^2/(x^2 + y^2) + \hat{\mathbf{z}}4$ at $P_4 = (1, -1, 2)$

3.49 For the vector field $\mathbf{D} = \hat{\mathbf{R}} 3 R^2$, evaluate both sides of the divergence theorem for the region enclosed between the spherical shells defined by R = 1 and R = 2.

Problem 3 (6pt): Prove that 1) $\nabla \cdot (\nabla \times A) = 0$; and 2) $\nabla \times (\nabla V) = 0$

Problem 4 (3pt): find a, b and d

- **4.5** Find the total charge on a circular disk defined by $r \le a$ and z = 0 if:
- (a) $\rho_s = \rho_{s0} \cos \phi (C/m^2)$
- **(b)** $\rho_{\rm s} = \rho_{\rm s0} \sin^2 \phi \, ({\rm C/m^2})$
- (c) $\rho_{\rm s} = \rho_{\rm s0} e^{-r} \, ({\rm C/m^2})$
- (d) $\rho_{\rm s} = \rho_{\rm s0} e^{-r} \sin^2 \phi \, ({\rm C/m^2})$

where ρ_{s0} is a constant.