Exercise 3.1.5

Suppose a and b are real numbers. Prove that if a < b < 0 then $a^2 > b^2$.

So we want to prove that $(a < b < 0) \rightarrow (a^2 > b^2)$

First we assume the antecedent and make the consequent our goal to prove.

Givens	Goals
a < b < 0	$a^2 > b^2$

Suppose
$$a < b < 0$$

[proof of $a^2 > b^2$]
So if $a < b < 0$ then $a^2 > b^2$

If we multiply the inequality a < b on both sides by the negative number b we have $ab > b^2$ and multiplying a < b on both sides by the negative number a we have $a^2 > ab$. Therefore $a^2 > ab > b^2$ and we have proven our goal and now we can write our proof.

Theorem. Suppose a and b are real numbers. Prove that if a < b < 0 then $a^2 > b^2$.

Proof. Suppose a < b < 0. Multiplying the inequality a < b by the negative number a we can conclude $a^2 > ab$, and, similarly, multiplying a < b by the negative number b we get $ab > b^2$. Therefore, $a^2 > ab > b^2$ and $a^2 > b^2$. Thus, if a < b < 0 then $a^2 > b^2$.

Exercise 3.1.6

Suppose a and b are real numbers. Prove that if 0 < a < b then 1/b < 1/a.

So we want to prove that $(0 < a < b) \rightarrow (1/b < 1/a)$.

First we assume the antecedent and make the consequent our goal to prove.

Givens	Goals
0 < a < b	1/b < 1/a

Suppose
$$0 < a < b$$

[proof of $1/b < 1/a$]
So if $0 < a < b$ then $1/b < 1/a$.

If we multiply both sides of the inequality a < b by 1/ab we see that 1/a < 1/b, which is our goal.

Theorem. Suppose a and b are real numbers. If 0 < a < b then 1/b < 1/a.

Proof. Suppose 0 < a < b. Multiplying both sides of the inequality a < b by 1/ab we can conclude that 1/b < 1/a. Therefore, if 0 < a < b then 1/b < 1/a.

Exercise 3.1.7

Suppose that a is a real number. Prove that if $a^3 > a$ then $a^5 > a$. (Hint: One approach is to start by completing the following equation: $a^5 - a = (a^3 - 1) \cdot \underline{?}$.) So we want to prove that $(a^3) \to (a^5)$.

First we assume the antecedent and make the consequent our goal to prove.

Givens	Goals
$a^3 > a$	a^5

Suppose $a^3 > a$ [proof of $a^5 > a$] So if $a^3 > a$ then $a^5 > a$.

If we multiply both side of $a^3 - a > 0$ by $a^2 + 1$ we can conclude that $a^5 - a > 0$ or $a^5 > a$, which was our goal.

Theorem. Suppose a is a real number. If $a^3 > a$ then $a^5 > a$.

Proof. Suppose $a^3 > a$, then $a^3 - a > 0$. Multiplying both sides of the inequality $a^3 - a > 0$ by $a^2 + 1$ we can conclude $a^5 - a > 0$. Therefore, if $a^3 > a$ then $a^5 > a$.

Exercise 3.1.8

Suppose $A \setminus B \subseteq C \cap D$ and $x \in A$. Prove that if $x \notin D$ then $x \in B$. So we want to prove that $(x \notin D) \to (x \in B)$.

The contrapositive of the goal is $\neg(x \in B) \to \neg(x \notin D)$, or in other words $x \notin B \to x \in D$. First we assume the antecedent and make the consequent our goal.

Givens	Goals
$A \setminus B \subseteq C \cap D$	$x \in D$
$x \in A$	
$x \notin B$	

Looking at our givens we can rewrite $A \setminus B \subseteq C \cap D$ as $(x \in A \land x \notin B) \to (x \in A \land x \in D)$. Looking at our other givens $x \in A$ and $x \notin B$ we can conclude that $x \in C \cap D$ and therefore $x \in D$, which was our goal to prove.

Theorem. Suppose $A \setminus B \subseteq C \cap D$ and $x \in A$. If $x \notin D$ then $x \in B$.

Proof. We will prove the contrapositive. Suppose $x \notin B$. Since $x \in A$ and $x \notin B$ we can conclude that $x \in C \cap D$ and it follows that $x \in D$. Therefore, if $x \notin D$ then $x \in B$.

Exercise 3.1.9

Suppose a and b are real numbers. Prove that if a < b then $\frac{a+b}{2} < b$.

So we want to prove that $(a < b) \to (\frac{a+b}{2} < b)$.

First we assume the antecedent and make the consequent our goal to prove.

Givens	Goals
a < b	$\frac{a+b}{2} < b$

If we add b to both sides of a < b we see that a + b < b + b or a + b < 2b. Then if we divide both sides of a + b < 2b by 2 we can conclude that $\frac{a+b}{2} < b$, which was our goal to prove.

Theorem. Suppose a and b are real numbers. If a < b then $\frac{a+b}{2}$.

Proof. Suppose a < b. Adding b to both sides of the inequality a < b and then dividing both sides by 2, we can conclude that $\frac{a+b}{2} < b$. Therefore, if a < b then $\frac{a+b}{2} < b$.

Exercise 3.1.10

Suppose x is a real number and $x \neq 0$. Prove that if $\frac{\sqrt[3]{x}+5}{x^2+6} = \frac{1}{x}$ then $x \neq 8$.

So we want to prove that $\left(\frac{\sqrt[3]{x}+5}{x^2+6} = \frac{1}{x}\right) \to (x \neq 8)$.

The contrapositive of the goal is $\neg(x \neq 8) \rightarrow \neg(\frac{\sqrt[3]{x}+5}{x^2+6} = \frac{1}{x})$ or in other words $(x=8) \rightarrow (\frac{\sqrt[3]{x}+5}{x^2+6} \neq \frac{1}{x})$. First we assume the antecedent and make the consequent our goal.

Givens	Goals
$x \neq 0$	$\frac{\sqrt[3]{x+5}}{x^2+6} \neq \frac{1}{x}$
x = 8	•

If we evaluate the expression $\frac{\sqrt[3]{x}+5}{x^2+6}$ for x=8 we see that $\frac{\sqrt[3]{8}+5}{8^2+6}=\frac{1}{7}$ and $\frac{1}{7}\neq\frac{1}{8}$, therefore $\frac{\sqrt[3]{x}+5}{x^2+6}\neq\frac{1}{x}$, which was our goal to prove.

Theorem. Suppose x is a real number and $x \neq 0$. If $\frac{\sqrt[3]{x}+5}{x^2+6} = \frac{1}{x}$ then $x \neq 8$

Proof. We will prove the contrapositive. Suppose x=8. Then evaluating the equation $\frac{\sqrt[3]{x+5}}{x^2+6} = \frac{1}{x}$ for x=8 we see that $\frac{1}{7} \neq \frac{1}{8}$ and therefore if $\frac{\sqrt[3]{x+5}}{x^2+6} = \frac{1}{x}$ then $x \neq 8$.

Exercise 3.1.11

Suppose a, b, c, and d are real numbers, 0 < a < b, and d > 0. Prove that if ac > bd then c > d.

So we want to prove that $(ac \ge bd) \to (c > d)$

The contrapositive of the goal is $\neg(c > d) \rightarrow \neg(ac \ge bd)$ or in other words $(c \le d) \rightarrow (ac < bd)$. First we assume the antecedent and make the consequent our goal.

Givens	Goals
$c \leq d$	ac < bd

If we multiply both side of the inequality $c \le d$ by a we see that $ac \le ad$ and multiplying both sides of the inequality a < b by d we see that ad < bd. Therefore, $ac \le ad < bd$ and ac < ad, which was our goal to prove.

Theorem. Suppose a, b, c, and d are real numbers, 0 < a < b and d > 0. If $ac \ge bd$ then c > d.

Proof. We will prove the contrapositive. Suppose $c \leq d$. Multiplying the inequality $c \leq d$ on both sides by a we have $ac \leq ad$ and multiplying the inequality a < b on both sides by d we have ad < bd. It follows that $ac \leq ad < bd$ and ac < bd. Therefore, if $ac \geq bd$ then c > d.

Exercise 3.1.12

Suppose x and y are real numbers, and $3x + 2y \le 5$. Prove that if x > 1 then y < 1.

So we want to prove that $(x > 1) \rightarrow (y < 1)$

First we assume the antecedent and make the consequent our goal.

Givens	Goals
x > 1	y < 1

Rearranging the inequality $3x + 2y \le 5$ we see that $\frac{5-2y}{3} > x$. Our given is x > 1 and so we can conclude that $\frac{5-2y}{3} > x > 1$ and $\frac{5-2y}{3} > 1$. Solving the latter inequality for y we have y < 1, which was our goal to prove.

Theorem. Suppose x and y are real numbers and $3x + 2y \le 5$. If x > 1 then y < 1.

Proof. Suppose $3x + 2y \le 5$, then it follows that $\frac{5-2y}{3} > x$. Suppose x > 1, then $\frac{5-2y}{3} > x > 1$ and $\frac{5-2y}{3} > 1$. Then it follows that y < 1. Therefore, if x > 1 then y < 1.

Exercise 3.1.13

Suppose that x and y are real numbers. Prove that if $x^2 + y = -3$ and 2x - y = 2 then x = -1.

So we want to prove that $(x^2 + y = -3 \land 2x - y = 2) \rightarrow (x = -1)$

First we assume the antecedent and make the consequent our goal.

Givens	Goals
$x^2 + y = -3$	x = -1
2x - y = 2	

Solving $x^2 + y = -3$ for y we have $y = -3 - x^2$. Substituting $y = -3 - x^2$ into $x^2 + y = -3$ and solving for x we can conclude that x = -1, which was our goal prove.

Theorem. Suppose x and y are real numbers. If $x^2 + y = -3$, and 2x - y = 2 then x = -1.

Proof. Suppose $x^2 + y = -3$ and 2x - y = 2. If $x^2 + y = -3$ then it follows that $y = -3 - x^2$. Substituting $y = -3 - x^2$ into the equation $x^2 + y = -3$ we can conclude that x = -1. Therefore, if $x^2 + y = -3$ and 2x - y = 2 then x = -1.

Exercise 3.1.14

Prove the first theorem in Example 3.1.1. (Hint: You might find it useful to apply the theorem from Example 3.1.2.)

The first theorem in Example 3.1.1. is: If x > 3 and y < 2, then $x^2 - 2y < 5$. The theorem from Example 3.1.2 states: Suppose a and b are real numbers. If 0 < a < b then $a^2 < b^2$.

So we want to prove that $(x > 3 \land y < 2) \rightarrow (x^2 - 2y < 5)$.

First we assume the antecedent and make the consequent our goal.

Since 0 < 3 < x we can apply theorem 3.1.1 and conclude that $x^2 > 9$. Multiplying the inequality y < 2 by 2 on both sides we have 2y < 4. Then adding

Givens	Goals
$\overline{x} > 3$	$x^2 - 2y > 5$
y < 2	

the two inequalities $x^2 > 9$ and 4 > 2y we can conclude that $4 + x^2 > 9 + 2y$ and if follows that $x^2 - 2y > 5$, which was our goal to prove.

Theorem. Suppose x > 3 and y < 2, then $x^2 - 2y < 5$.

Proof. Suppose x>3 and y<2. Since 0<3< x we can apply theorem 3.1.1 and conclude that $x^2>9$. Multiplying the inequality y<2 by 2 on both sides we have 2y<4. Then adding the two inequalities $x^2>9$ and 4>2y we can conclude that $4+x^2>9+2y$. Therefore, if x>3 and y<2, then $x^2-2y<5$.

Exercise 3.1.15

\mathbf{a}

The theorem has a goal of the form $a \to b$ where a is $\frac{2x-5}{x-4}$ and b is x=7. To prove the theorem we could assume a and prove b is true or prove the contrapositive $\neg b \to \neg a$ and assume $\neg b$ and prove $\neg a$. However the proof given here shows that $b \to a$, which does not suffice to prove the theorem.

b

Theorem. Suppose x is a real number and $x \neq 4$. If $\frac{2x-5}{x-4} = 3$, then x = 7.

Proof. Suppose $\frac{2x-5}{x-4}=3$, then if follows that x=7. Therefore if $\frac{2x-5}{x-4}=3$, then x=7.

Exercise 3.1.16

\mathbf{a}

The mistake is assuming that since $x \neq 3$ then $x^2 \neq 9$, which is not true because if x = -3 then $x^2 = 9$.

b

If x = -3 then $-3^2y = 9y$ then 9y = 9y and y = 1.