

Data Market

Data Analytics will Provide Decision Support to Doctor

Amydis real-time and automated computer vision analytics provides decision support to doctors by indicating presence or absence of biomarkers within minutes and catalyzes early referral to neurologist for treatment

Retinal Tracer Can Help Each Stage in Drug Development

Surrogate biomarkers are being employed by pharma to get FDA drug approvals (example Aβ biomarker and Aducanumab).

Data Analytics will Support Pharma

Amydis real-time automated computer vision software analytics provides quantification & morphology analytics for drug development and clinical trials

Amydis Tracer

Amydis Computer Vision Analytics

Commercially Available Devices

Scan

Analyze tracer change after treatment

Building 3D Molecular Biomarker Retinal Maps To Disease Differentiation

Amydis Tracer Maps + OCT Maps + OCTA Maps = Enhanced Al-Based Analytics

Amydis tracers:

- Provide high signal-to-noise images of disease-related molecular biomarkers
 Current technologies trying to detect and quantify digital molecular biomarker images have low signal-to-noise
- Facilitate 3D mapping of molecular biomarkers relative to retinal structural and vascular changes → Enhance understanding of pathophysiology of diseases
- Enable generation of new dimension in multimodal maps that can be precisely registered over time → Track evolution of changes in molecular biomarkers, structure, and vasculature

Amydis Retinal Tracer Images

Retinal Structure & Vascular Maps Derived from OCT and OCT-A Scans

Enhanced Al-Based Analytics to Build Unique Data Repository

Amydis ocular tracers lead development of unique Big Data retinal image repositories that enable AI-based analytics to detect and differentiate human diseases through the eye

Develop Automated Detection & Quantification of Fluorescent Signals

Amydis analytics:

- Develop software for automated detection & quantification of hyper-fluorescent signals using NHP & Human fundus fluorescent (FF) images collected to date → Convert these data into information, i.e., structured data
- Imaging approach: Acquire triplicate images before injection & triplicate images post injection to enhance signal-to-noise ratio as FF image quality varies image-to-image due to impact of illumination and focus
- Analysis approach: Extract a digital signature from each image, which contains distinct features using computer vision
- Computer vision metrics: brightness, morphology, localization within the retina, district key-point features → Amydis' proprietary software that will be FDA approved
- FF image data curated with FDA-approved software will be analyzed with deep learning convolutional neural network algorithms → disease classification & staging, & patient stratification
- FF data will also be registered with OCT and OCTA data to create data repository for AI analytics → Disease differentiation & monitoring → link between molecular, structural and vascular changes
- Database image storage → rapid delivery of a searchable pool of informative analytics

Build Database & Identify Imaging Patterns with Artificial Intelligence

Amydis is building a database of images & as we acquire images with signal after the injection, indicative of disease, we will stratify based on patterns using deep learning & machine learning techniques

Analysis of baseline fundus image: Difference of Gaussians band-pass filter, which matches the optics, removes camera noise & background fluorescence

3D Mapping of Fluorescent Fundus with Cross-Sectional OCT Images

Axial Plane

A-scan = Single Point Scan (Fluorescent Fundus)

B-scan = Cross Sectional Image (OCT)

Transversal Plane

C-scan = En Face

A cube of data is created by a series of B-scans

En face Structural OCT Map

Fundus Fluorescence (FF) Image

Hyper-Fluorescent Proteins

Fundus Fluorescent, Retinal Layer & Vascular Plexus Image Registration

Amydis will use AI-based classification based on fundus images plus OCT & OCTA en face project images from different retinal layers (OCT) & different retinal vascular plexuses (OCTA)

En Face structural OCT maps can be correlated to distinctive patterns in the retina

