

Université de Carthage

Ecole Nationale des Sciences et Technologies Avancées de Borj Cedria

Année Universitaire 2022-2023

Devoir Surveillé

Matière : Conversion de l'énergie thermique Documents Autorisés : Non Classes : 2 SETP Enseignant : D. LOUNISSI

Durée: 1h30 **Date:** 17/03/2020

Nombre de page : 4 pages Heure : 9H

N.B : Les propriétés de l'eau sont fournies dans les tableaux de l'annexe 1 de la page 3.

Problème: Centrale à hydrogène vert

Avant-propos

L'hydrogène fait l'objet d'un nouvel engouement mondial : ses utilisations, actuelles et futures, pourraient éviter le recours aux énergies fossiles dans plusieurs secteurs d'activité.

Et comme il est possible d'obtenir de **l'hydrogène** « **vert** » avec des techniques de production peu polluantes, celui-ci pourrait jouer un rôle déterminant dans la **transition énergétique mondiale** d'ici 2050.

L'hydrogène peut être utilisé comme solution de **stockage d'électricité** afin de paraitre aux problèmes **d'intermittence des sources renouvelables**. Il est entreposé temporairement puis utilisé quand les besoins d'approvisionnement en électricité sont plus importants.

Figure 1 : Principe de la centrale d'appoint

Université de Carthage

Ecole Nationale des Sciences et Technologies Avancées de Borj Cedria

Année Universitaire 2022-2023

Enoncé

Une Centrale photovoltaïque permet la production simultanée d'électricité et d'hydrogène à partir de l'excédent. Un cycle de Rankine à régénération utilisant le dihydrogène comme carburant est utilisé comme appoint pour la production électrique et fonctionne selon le cycle décrit par la figure 1. Une fraction α de la vapeur d'eau sortant de la turbine est extraite à une pression intermédiaire (2 MPa) pour être mélangée dans un régénérateur ouvert avec l'eau liquide provenant du condenseur pour la réchauffer avant de la renvoyer dans la chaudière. La fraction restante, (1-α), est détendue jusqu'à 10 kPa puis condensée et pompée vers le régénérateur. Les détentes et les compressions étant isentropiques dans tout le cycle.

- 1- Tracer le cycle d'eau décrit par les points 1 à 7 sur le diagramme T-S (page 4 à rendre).
- 2- Etablir les bilans d'énergie pour chacun des composants : Turbine, Générateur de vapeur, condenseur, pompe I, pompe II, régénérateur ouvert ainsi que le rendement de la centrale en fonction de α.
- 3- Déterminer la fraction de vapeur x_v au point 3 ainsi que toutes les enthalpies massiques du cycle de 1 à 7.
- 4- Pour un régénérateur adiabatique, déterminer la fraction α ainsi que le rendement thermique de la centrale η .
- 5- En réalité, pour la production de **1kg de dihydrogène** l'énergie consommée est d'environ **58.7 kWh** alors que sa combustion au niveau de la chaudière génère **143MJ/kg**.
 - a. Si la production d'hydrogène par la centrale photovoltaïque permet d'avoir un débit de carburant moyen d'environ **0,2 kg/s**, quel serait la puissance électrique délivrée par la turbine ?
 - b. Quel est la puissance nécessaire pour la production de ce débit de dihydrogène ?
 - c. Que dites-vous du **rendement global** du cycle dès la production d'hydrogène jusqu'à la production électrique au niveau de la turbine? Proposer des solutions et des alternatives pour l'utilisation de l'hydrogène vert.

Bon travail

Université de Carthage

Ecole Nationale des Sciences et Technologies Avancées de Borj Cedria

Année Universitaire 2022-2023

Annexe 1

Tableau 1 : Propriétés de la vapeur d'eau surchauffée à **50bar**

	Temperature (°C)	Pressure (bar)	Density (kg/m³)	Enthalpy (kJ/kg)	Entropy (kJ/kg-K)
1	300,00	50,000	22,053	2925,7	6,2110
2	350,00	50,000	19,242	3069,3	6,4516
3	400,00	50,000	17,290	3196,7	6,6483
4	450,00	50,000	15,792	3317,2	6,8210
5	500,00	50,000	14,581	3434,7	6,9781
6	550,00	50,000	13,570	3550,9	7,1237
7	600,00	50,000	12,706	3666,8	7,2605

Tableau 2 : Propriétés de l'eau comprimé à 50 bars

	Temperature (°C)	Pressure (bar)	Density (kg/m³)	Enthalpy (kJ/kg)	Entropy (kJ/kg-K)
1	210,00	50,000	855,23	898,71	2,4193
2	210,50	50,000	854,61	900,97	2,4240
3	211,00	50,000	853,99	903,24	2,4286
4	211,50	50,000	853,37	905,51	2,4333
5	212,00	50,000	852,75	907,78	2,4380
6	212,50	50,000	852,13	910,05	2,4427
7	213,00	50,000	851,50	912,33	2,4474
8	213,50	50,000	850,87	914,60	2,4520
9	214,00	50,000	850,25	916,88	2,4567
10	214,50	50,000	849,62	919,15	2,4614
11	215,00	50,000	848,98	921,43	2,4661
12	215,50	50,000	848,35	923,72	2,4707

Tableau3 : Propriétés de la vapeur d'eau à 20bar

	Temperature (°C)	Pressure (bar)	Density (kg/m³)	Enthalpy (kJ/kg)	Entropy (kJ/kg-K)
1	350,00	20,000	7,2150	3137,7	6,9583
2	350,50	20,000	7,2083	3138,8	6,9601
3	351,00	20,000	7,2017	3139,9	6,9619
4	351,50	20,000	7,1951	3141,0	6,9636
5	352,00	20,000	7,1884	3142,1	6,9654
6	352,50	20,000	7,1818	3143,2	6,9672
- 7	353,00	20,000	7,1752	3144,3	6,9690
8	353,50	20,000	7,1687	3145,5	6,9708
9	354,00	20,000	7,1621	3146,6	6,9726
10	354,50	20,000	7,1556	3147,7	6,9743
11	355,00	20,000	7,1490	3148,8	6,9761
12	355,50	20,000	7,1425	3149,9	6,9779
13	356,00	20,000	7,1360	3151,0	6,9796
14	356,50	20,000	7,1295	3152,1	6,9814
15	357,00	20,000	7,1231	3153,3	6,9832
16	357,50	20,000	7,1166	3154,4	6,9849

Tableau 4: Propriétés de l'eau comprimé à 20bar

	Temperature (°C)	Pressure (bar)	Density (kg/m³)	Enthalpy (kJ/kg)	Entropy (kJ/kg-K)
1	40,000	20,000	993,05	169,30	0,57163
2	41,000	20,000	992,66	173,47	0,58494
3	42,000	20,000	992,27	177,65	0,59821
4	43,000	20,000	991,87	181,82	0,61143
5	44,000	20,000	991,46	186,00	0,62462
6	45,000	20,000	991,04	190,17	0,63776
7	46,000	20,000	990,62	194,35	0,65087
8	47,000	20,000	990,19	198,53	0,66393
9	48,000	20,000	989,75	202,70	0,67696
10	49,000	20,000	989,31	206,88	0,68994
11	50,000	20,000	988,86	211,06	0,70289

Tableau 5 : Propriétés de d'eau saturée

(°C) (bar) (kg/m°)	(kg/m ^o)	(kJ/kg)	(kJ/kg)	(kJ/kg-K)	(kJ/kg-K)
1 212,38 20,000 849,80	10,042	908,50	2798,3	2,4468	6,3390
2 45,806 0,10000 989,83	0,068166	191,81	2583,9	0,64920	8,1488