# R Markdown Coding Challenge

Vaibhav Shelar

2025-02-27

### library(knitr)

• Link of manuscript

## File Tree

```
library("fs")
fs::dir_tree(path = "Assignments/CodingChallenge4")

## Assignments/CodingChallenge4
## +-- R Markdown Coding Challenge.Rmd
## +-- R-Markdown-Coding-Challenge.docx
## +-- R-Markdown-Coding-Challenge.html
## +-- R-Markdown-Coding-Challenge.md
## +-- R-Markdown-Coding-Challenge.pdf
## \-- R-Markdown-Coding-Challenge.pdf
## \-- R-Markdown-Coding-Challenge_files
## \-- figure-gfm
## \-- unnamed-chunk-6-1.png
## +-- unnamed-chunk-7-1.png
```

## Q1

##

##

## YAML Header:

YAML header is a short blob of text, specially formatted with key: value pairs tags, that seats at the top of our Rmarkdown document. It contains YAML arguments such as "Title", "Author", and "Output", demarcated by three dashes (—) on either end.

## Literate Programming:

+-- unnamed-chunk-8-1.png

\-- unnamed-chunk-9-1.png

A methodology that combines a programming language with a documentation language, thereby making programs more robust, more portable, more easily maintained, and arguably more fun to write than programs that are written only in a high-level language.

```
# Load dataset of MycotoxinData
Mycotoxin_Data <- read.csv("MycotoxinData.csv", na.strings = "na")</pre>
# structure of the dataframe
str(Mycotoxin_Data)
## 'data.frame':
                   375 obs. of 6 variables:
## $ Treatment : chr "Fg" "Fg" "Fg" "Fg" ...
                  : chr "Wheaton" "Wheaton" "Wheaton" ...
## $ Cultivar
## $ BioRep
                   : int 2 2 2 2 2 2 2 2 3 ...
## $ MassperSeed_mg: num 10.29 12.8 2.85 6.5 10.18 ...
## $ DON
                   : num 107.3 32.6 416 211.9 124 ...
## $ X15ADON
                  : num 3 0.85 3.5 3.1 4.8 3.3 6.9 2.9 2.1 0.71 ...
# plotting data using ggplota2 (Boxplot)
library(ggplot2)
cbbPalette <- c("#000000", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7")
library(ggplot2)
library(ggpubr)
DONplot.pwc <- ggplot(Mycotoxin_Data, aes(x = Treatment, y = DON, fill = Cultivar)) +
 geom boxplot(outliers = F) +
 xlab("") +
 ylab("DON (ppm)") +
 geom_point(alpha = 0.6, pch = 21, color = "black", position = position_jitterdodge()) +
 scale_color_manual(values = c(cbbPalette[3], cbbPalette[4])) +
 scale_fill_manual(values = c(cbbPalette[3], cbbPalette[4])) +
 theme_classic() +
 facet_wrap(~Cultivar) +
 stat_compare_means(method = "t.test", label = "p.signif",
                  comparisons = list(c("NTC", "Fg"),
                                     c("Fg", "Fg + 37"),
                                     c("Fg + 37", "Fg + 40"),
                                     c("Fg + 40", "Fg + 70")))
DONplot.pwc
## Warning: Removed 8 rows containing non-finite outside the scale range
## ('stat_boxplot()').
## Warning: Removed 8 rows containing non-finite outside the scale range
## ('stat_signif()').
## Warning: Removed 8 rows containing missing values or values outside the scale range
## ('geom_point()').
```



```
X15ADONplot.pwc <- ggplot(Mycotoxin_Data, aes(x = Treatment, y = X15ADON, fill = Cultivar)) +
  geom_boxplot(outlier.shape = NA) +
  xlab("") +
  ylab("15ADON") +
  geom_point(alpha = 0.6, pch = 21, color = "black", position = position_jitterdodge()) +
  scale_color_manual(values = c(cbbPalette[3], cbbPalette[4])) +
  scale_fill_manual(values = c(cbbPalette[3], cbbPalette[4])) +
  theme_classic() +
  facet_wrap(~Cultivar) +
  stat_compare_means(method = "t.test", label = "p.signif",
                     comparisons = list(
                       c("NTC", "Fg"),
                       c("Fg", "Fg + 37"),
                       c("Fg + 37", "Fg + 40"),
                       c("Fg + 40", "Fg + 70")
                     ))
X15ADONplot.pwc
```

## Warning: Removed 10 rows containing non-finite outside the scale range
## ('stat\_boxplot()').

## Warning: Removed 10 rows containing non-finite outside the scale range
## ('stat\_signif()').

## Warning: Removed 10 rows containing missing values or values outside the scale range

## ## ('geom\_point()').



```
## Warning: Removed 2 rows containing non-finite outside the scale range
## ('stat_boxplot()').

## Warning: Removed 2 rows containing non-finite outside the scale range
## ('stat_signif()').
```

## Warning: Removed 2 rows containing missing values or values outside the scale range
## ('geom\_point()').



```
Combineplot.pwc <- ggarrange(
  DONplot.pwc,
  X15ADONplot.pwc,
  Seed.massplot.pwc,
  labels = c("A", "B", "C"),
  nrow = 1,
  ncol = 3,
  common.legend = TRUE,
  legend = "bottom"
)</pre>
```

```
## Warning: Removed 8 rows containing non-finite outside the scale range
## ('stat_boxplot()').

## Warning: Removed 8 rows containing non-finite outside the scale range
## ('stat_signif()').

## Warning: Removed 8 rows containing missing values or values outside the scale range
## ('geom_point()').

## Warning: Removed 8 rows containing non-finite outside the scale range
## ('stat_boxplot()').
```

```
## Warning: Removed 8 rows containing non-finite outside the scale range
## ('stat_signif()').
## Warning: Removed 8 rows containing missing values or values outside the scale range
## ('geom_point()').
## Warning: Removed 10 rows containing non-finite outside the scale range
## ('stat_boxplot()').
## Warning: Removed 10 rows containing non-finite outside the scale range
## ('stat_signif()').
## Warning: Removed 10 rows containing missing values or values outside the scale range
## ('geom_point()').
## Warning: Removed 2 rows containing non-finite outside the scale range
## ('stat boxplot()').
## Warning: Removed 2 rows containing non-finite outside the scale range
## ('stat_signif()').
## Warning: Removed 2 rows containing missing values or values outside the scale range
## ('geom_point()').
```

#### Combineplot.pwc

