#### Insper

# Camada Física da Computação

Projeto 8 - Modulacao AM

2018 - Engenharia da computação

Rodrigo Carareto

### Várias fontes, vários receptores, bandas passantes...



O problema a ser enfrentado: vários emissores, vários receptores



#### Bandas americanas

#### **UNITED**

#### **STATES**

**FREQUENCY** 

**ALLOCATIONS** 

#### THE RADIO SPECTRUM







#### Bandas americanas



### Como colocar informação em uma frequência única de recepção?



#### Modulação AM



#### Modulação AM

• 
$$m(t) = A_m \cos(2\pi f_m t)$$
  
•  $C(t) = A_c \cos(2\pi f_c t) f_c \gg f_m$   
•  $S(t) = [1 + m(t)]C(t)$   
•  $= C(t) + m(t)C(t)$ 

#### Modulação AM

- $C(t) = A_c \cos(2\pi f_c t) f_c \gg f_m$

$$S(t) = [1 + m(t)]C(t)$$
$$= C(t) + m(t)C(t)$$













#### Modulação AM DSBSC





#### Modulação AM DSBSC

$$S(t) = \operatorname{M} \cos(2\pi f_m) \cdot C \cos(2\pi f_c)$$

$$S(t) = \operatorname{M} \sin(2\pi f_m + \phi) \cdot C \sin(2\pi f_c + \phi)$$

$$\sin(a)\cos(b) = \frac{1}{2}(\sin(a+b) + \sin(a-b))$$

$$S(t) = \frac{MC}{2}\sin(2\pi (f_c - f_m)t - \phi) + \frac{MC}{2}\sin(2\pi (f_c + f_m)t + \phi)$$

$$S(t) = \operatorname{S}(t)$$

#### Modulação AM SSB





### Demodulação

$$S(t) = \frac{MC}{2}\sin(2\pi(f_c - f_m)t - \phi) + \frac{MC}{2}\sin(2\pi(f_c + f_m)t + \phi)$$

Multiplica-se o sinal pela portadora novamente

$$S(t) = \left[\frac{MC}{2}\sin(2\pi(f_c - f_m)t - \phi) + \frac{MC}{2}\sin(2\pi(f_c + f_m)t + \phi)\right] C \sin(2\pi f_c t)$$

Como

$$\sin(a)\cos(b) = \frac{1}{2}(\sin(a+b) + \sin(a-b))$$

$$S'(t) = \frac{1}{4} \left[ \cos(2\pi f_m t) - \cos(2\pi (2f_c + f_m)t) \right] + \frac{1}{4} \left[ \cos(-2\pi f_{mt}) - \cos(2\pi (-2f_c + f_m)t) \right]$$
Alta freq

## Insper

www.insper.edu.br