Central simple algebras

math center

This is a follow-up to the previous note.

1 Central simple algebras

Fix a field k.

Definition 1.1. An algebra A over k is called *central* if the center of A is the image of $k \hookrightarrow A$.

Example 1.2. The quaternions \mathbb{H} form a central division algebra over \mathbb{R} .

Moreover, the only such algebras are \mathbb{R} and \mathbb{H} . This is a consequence of the Frobenius theorem. Let's see why this is the case. Suppose A is a real division algebra with $\dim_{\mathbb{R}}(A) \geq 2$. Pick any element $x \in A \setminus \mathbb{R}$ and we identify $\mathbb{C} \simeq \mathbb{R}[x] \subset A$. In particular, A is a \mathbb{C} -vector space.

Let $\varphi: a \mapsto iai^{-1}$ where $i^2 = -1$. This is a \mathbb{C} -linear involution of A, i.e., $\varphi^2 = \mathrm{id}$. Thus the possible eigenvalues of φ are ± 1 , and we can decompose A as a direct sum of eigenspaces:

$$A = U_1 \oplus U_{-1}$$
.

Then U_1 is a finite dimensional \mathbb{C} -algebra, hence $U_1 = \mathbb{C}$ as \mathbb{C} is algebraically closed. If $U_{-1} = 0$ then $A = \mathbb{C}$. Otherwise, pick $j \in U_{-1} \setminus \{0\}$. Left multiplication by j gives a \mathbb{C} -linear map $U_{-1} \hookrightarrow U_1$, so we must have $\dim_{\mathbb{C}}(U_{-1}) = \dim_{\mathbb{C}}(U_1) = 1$.

Now, $j^2 \in U_1 = \mathbb{C}$. But we also have $j^2 \in \mathbb{R} \oplus \mathbb{R} j$ due to the minimal polynomial of j having degree 2. Thus $j^2 \in \mathbb{R}$. It is clear that $j^2 < 0$. We see that $A = \mathbb{C} \oplus \mathbb{C} \cdot j/\sqrt{-j^2}$ is identified with \mathbb{H}

2 Brauer group

The End

Compiled on 2025/07/11. Home page