定理 2.2 の証明

担当:大矢 浩徳 (OYA Hironori)

本資料では、代数学 I 第3回講義資料定理2.2の証明を行う.

定理 2.2

 $n \in \mathbb{Z}_{>0}$ とする. k を n の約数としたとき,

$$H_k := \{ [ka]_n \mid a \in \mathbb{Z} \} \subset \mathbb{Z}/n\mathbb{Z}$$

は $(\mathbb{Z}/n\mathbb{Z}, +)$ の位数 n/k の部分群である. さらに $(\mathbb{Z}/n\mathbb{Z}, +)$ の部分群はこの形のもので尽くされる.

証明. H_k が位数 n/k の部分群であること:任意の 2 元 $[ka]_n, [kb]_n \in H_k$ に対し、

$$[ka]_n + [kb]_n = [ka + kb]_n = [k(a+b)]_n \in H_k, \qquad -[ka]_n = [-ka]_n = [k(-a)]_n \in H_k$$

となるので、命題 1.5 より H_k は $\mathbb{Z}/n\mathbb{Z}$ の部分群である.さらに、 $n=\ell k$ としたとき、 $[\ell k]_n=[n]_n=[0]_n$ であることに注意すると、 H_k は具体的には

$$H_k = \{[0]_n, [k]_n, [2k]_n, \dots, [(\ell-1)k]_n\}$$

と書ける. よって、 H_k の元の個数は $\ell = n/k$ 個である.

部分群が H_k の形のものに限られること:まず,

$$H_1 = \{ [a]_n \mid a \in \mathbb{Z} \} = \mathbb{Z}/n\mathbb{Z}$$

 $H_n = \{ [na]_n \mid a \in \mathbb{Z} \} = \{ [0]_n \}$

なので、自明な部分群は確かに H_k の形で表されることがわかる (1 も n も n の約数であることに注意). 次に、 $\mathbb{Z}/n\mathbb{Z}$ の非自明な部分群 H が必ず n のある約数 k を用いて H_k の形で書けることを示そう。 $[k]_n \in H$ となる $1 \leq k \leq n-1$ で最小のものを k_0 とする.(H は非自明なので $[0]_n$ 以外の元を少なくとも 1 つは含むため、このような k_0 は必ず 1 つ定まる.) このとき、

$$H = H_{k_0} := \{ [k_0 a]_n \mid a \in \mathbb{Z} \}$$

であることを示す。H は部分群であるから, $[k_0]_n$ を何度も足し合わせたもの,およびその逆元を全て含むので,

$$H_{k_0} = \{ [k_0 a]_n \mid a \in \mathbb{Z} \} \subset H$$

である. 次に, $[m]_n \in H$ かつ $[m]_n \notin H_{k_0}$ となる $[m]_n$ $(1 \le m \le n-1)$ が存在したとする. このとき, m を k_0 で割った商を q, 余りを r とすると, $0 \le r < k_0$ で,

$$m = k_0 q + r$$

である. いま, $[k_0q]_n \in H_{k_0} \subset H$ であることに注意すると, H は部分群であることより,

$$[m]_n - [k_0 q]_n = [r]_n \in H$$

である.ここで, $r < k_0$ なので $r \ge 1$ だと,これは k_0 の最小性に反する.よって,r = 0,つまり, $m = k_0 q$ となる.しかし,このとき $[m]_n = [k_0 q]_n \in H_{k_0}$ となり, $[m]_n$ の取り方に矛盾する.よって,背理法により,このような $[m]_n$ は存在せず, $H = H_{k_0}$ であることがわかる.

最後に k_0 が n の約数であることを示そう. n を k_0 で割った商を q', 余りを r' とすると, $0 \le r' < k_0$ で,

$$n = k_0 q' + r'$$

である.ここで, $[n]_n=[0]_n\in H_{k_0}, [k_0q']_n\in H_{k_0}$ であることより, H_{k_0} が部分群であることに注意すると,

$$[n]_n - [k_0 q']_n = [r']_n \in H_{k_0} = H$$

となる.ここで, $r' < k_0$ なので $r' \ge 1$ だと,これは再び k_0 の最小性に反する.よって,r' = 0,つまり, $n = k_0 q'$ となる.よって, k_0 は n の約数である.