Package 'sptemExp'

August 27, 2017

Type Package

Title Ensemble Spatiotemporal Mixed Models for Exposure Estimation

Version 0.1.0

Author Lianfa Li

Maintainer Lianfa Li < lspatial@gmail.com>

Description The approach of ensemble spatiotemporal mixed models is to make reliable estimation of air pollutant concentrations at high resolutions.

This package is an ensemble spatiotemporal modeling tool with constrained optimization and also provides the functionality of grid mapping of air pollutants.

Specifically, it includes the following functionality:

(1) Extraction of covariates from the satellite images such as Geo-

Tiff and NC4 raster (e.g NDVI, AOD, and meteorological parameters);

- (2) Generation of temporal basis functions to simulate the seasonal trends in the study regions;
- (3) Generation of the regional monthly or yearly means of air pollutant concentration;
- (4) Generation of Thiessen polygons and spatial effect modeling;
- (5) Ensemble modeling for spatiotemporal mixed models, supporting multicore parallel computing;
- (6) Integrated predictions with or without weights of the model's performance, supporting multicore parallel computing;
- (7) Constrained optimization to interpolate the missing values;
- (8) Generation of the grid surfaces of air pollutant concentrations at high resolution;
- (9) Block kriging for regional mean estimation at multiple scales.

Depends R (>= 2.14)

Imports Rcpp (>= 0.12.12), methods, rgdal, raster, deldir, Spatio Tempo-

 $ral, plyr, sp, limSolve, \ R2Bayes X, Bayes X, Bayes X src, ncdf4, \ bcv, \ rgeos, \ splines, \ parallel, \ for each, doParallel, automap$

LinkingTo Rcpp, RcppEigen

SystemRequirements C++11

License GPL

Encoding UTF-8

LazyData true

NeedsCompilation yes

RoxygenNote 6.0.1

2 abatchModel

R topics documented:

weightedstat	. 33
weiA2Ens	
voronoipolygons2	
trainsample	
tpolygonsByBorder	
spointspre	
shdSeries2014	
shd140401pcovs	
samplepnt	
rSquared	. 26
rmse	. 26
prnside	. 25
pol_season_trends	
points2Raster	. 24
perMdPrediction	. 23
parTemporalBImp	. 23
parSpModel	
parATimePredict	. 20
noweiAvg	. 19
inter2conOpt	. 18
gtifRst	. 17
getTidBKMean	. 17
getTBasisFun	
getRidbytpoly	
getPolyMMean	
GetARegionBK	
genRaster	
fillNASVDSer	
fillNASVD	. 11
extractVTIF	
extractVNC4	-
countylayer	
conOpt	
colorGrinf	
bnd	
bkriging	
allPre500	
abatchModel	

abatchModel

A Batch Modeing Training Inner Functions

Description

This function is for a batch training models. The users can call parSpModel rather than this for training of multiple models.

abatchModel 3

Usage

```
abatchModel(td,bnd,fS,iF,iT,tidF,tids,mPath,idF="siteid",dateF="date",obsF="obs"
```

Arguments

td	Training dataset
bnd	Map object used in spatial effect model. For specific format, refer to BayesX
fS	Formular string
iF	Staring time id
iT	Ending time id
tidF	Time field name
tids	Time vector
mPath	The path for the models trained to be saved
idF	location id name
dateF	Date or time field name
obsF	observed value field name
nM	number of models to be trained

Details

This is an inner function to be called by parSpModel.

Value

The trained models will be saved on the appointed path. No direct output for this function.

```
#An example of PM2.5 data from Shandong

dPath=tempdir()
modelPath=paste(dPath, "/models", sep="")
unlink(modelPath, recursive = TRUE)
dir.create(modelPath)

data("trainsample", "bnd")
aform=paste0('logpm25 ~sx(rid,bs ="mrf",map =bnd)+sx(monthAv,bs="rw2")')
aform=paste0(aform, '+sx(ndvi,bs="rw2")+sx(aod,bs="rw2")+sx(wnd_avg,bs="rw2")')

formulaStrs=c(aform)

trainsample$tid=as.numeric(strftime(trainsample$date,format= "%j"))
trainsample$logpm25=log(trainsample$pm25)
tids=c(91)
abatchModel(trainsample,bnd,formulaStrs,1,1,"tid",tids,modelPath,"siteid","date","pm25",3
```

4 bkriging

allPre500	Dataset of the prediction result for some days for 2014 Shandong, interpolated by constrained optimization.

Description

The dataset of the prediction result for some days for 2014 Shandong, interpolated by constrained optimization.

Usage

allPre500

Format

DataFrame

dk predicted (by ensemble mixed model) or interpolated (by constrained optimization) estimate for rowname id and the kth year of day

row name location id, corresponding to the raster id #'

Source

Collected

Examples

allPre500

bkriging

Regional Mean Estimation by Block Kriging

Description

Block kriging can use the measured or prediceted values to estimate the regional mean with minimum variance.

Usage

```
bkriging(samples, rtargets,tarStr,paras,model)
```

Arguments

samples	the sample data used to estimate the regional mean, must include the \boldsymbol{x} and \boldsymbol{y} coordinates. Format: DataFrame.
rtargets	the points within the target region used to represent the region to be predicted for the regional means. The points determines the density, shape and size of the region. Format:dataframe
tarStr	The target variable name (field name)
paras	variogram parameters: format: vector, (range, sill, nugget)
model	variogram model: default: "exponential"

bkriging 5

Value

vector format: (kriged mean, kriged standard deviation, regular average, regular standard deviation)

Author(s)

Lianfa Li Ispatial@gmail.com

```
#Test for simulated data
dataDt = data.frame(x=sample(c(1:3000),500),y=sample(c(1:2500),500))
dataDt$z=(2*dataDt$x+5*dataDt$y)$%10+rnorm(500)
dataDtSp=dataDt
sp::coordinates(dataDtSp) <- ~x+y
cl=colorGrinf(dataDt$z)
raster::plot(dataDtSp,col=cl$cols[cl$index])
tarDt=data.frame()
for(i in c(1:20)){
  for(j in c(1:20)){
    index=(i-1)*20+j
   tarDt[index, "x"]=i*10
    tarDt[index, "y"] = j*10
  }
}
varg=automap::autofitVariogram(z~1,input_data =dataDtSp,model="Exp")
paras=c(varg$var_model[2,3],varg$var_model[2,2],varg$var_model[1,2])
krigeMean=bkriging(dataDt, tarDt, "z", paras, model="Exp")
krigeMean
#Test using PM2.5 data of the 2014 PM2.5 of Shandong province
data("spointspre")
spointspresub=spointspre[!is.na(spointspre$pre_m),]
spointspresub$log_pre=log(spointspresub$pre_m)
sz=as.integer(nrow(spointspresub)/1)
index=sample(c(1:sz), size=as.integer(sz/2))
samples=spointspresub[index,]
rtargets=(spointspresub[c(1:sz),])[-index,]
paras=c(50000,0.0278,0.2)
samples@data$x=sp::coordinates(samples)[1]
samples@data$y=sp::coordinates(samples)[2]
rtargets@data$x=sp::coordinates(rtargets)[1]
rtargets@data$y=sp::coordinates(rtargets)[2]
sampledata=samples@data
rtargetsdata=rtargets@data
krigeMean=bkriging(sampledata, rtargetsdata, "log_pre", paras, model="Exp")
exp(krigeMean)
```

6 colorCusGrinf

bnd

BND spatial topology data for use in spatial effect modeling.

Description

BND spatial topology data for use in spatial effect modeling.

Usage

bnd

Format

```
BND format for use in BayesX package #'List data object
```

Source

Collected

Examples

bnd

colorCusGrinf

Customed Color Generation by the Number of the Levels

Description

A function for generation of colors by the number of levels for use in the map making.

Usage

```
colorCusGrinf(brkpts, cols)
```

Arguments

brkpts a vector to contain the breakpoints

cols Selection of colors for different timelines.

Value

A colors of gradient levels

colorGrinf 7

Examples

colorGrinf

Generation of Customed Gradient Colors

Description

This function is to generate the color gradient with the customed levels

Usage

```
colorGrinf(x, levels=NA, colors=c("green", "yellow", "red"), colsteps=10)
```

Arguments

X	A vector value
levels	levels of gradient colors
colors	Color ranges
colsteps	Levels of color gradient.

Value

levels	Level of values for legend use
cols	Color ranges for legeng use
index	Color values for map.

```
#Example
x=sample(c(1:1000),size=100)
x=x[order(x)]
ret=colorGrinf(x)

# A block kriging example :
data("spointspre","countylayer")
tarF="d91" # target variable to be kriged
regionName="NAME_3"
```

8 conOpt

```
bkRes=sptemExp::getTidBKMean(spointspre, countylayer, regionName, tarF,2)
bkRes=bkRes[!is.na(bkRes$bkm_fill),]
levels=c(30,60,100,150,250)
cr=sptemExp::colorGrinf(bkRes$bkm_fill,levels,colors=c("darkgreen","yellow","darkred"))
par(mar=c(1,1,1,1))
title=expression("Regional Block Kriged PM"[2.5]*" Concentration Estimated")
raster::plot(bkRes,col =cr$cols[cr$index],main=title)
legend("bottomright", fill =cr$cols, legend = cr$levels,col =cr$cols, cex=1,bty="n",bg="r
```

conOpt

Function of Constrained Optimization

Description

Constrained optimization to construct the long-term series of air pollutants .

Usage

```
conOpt(ptrends,tSet,preF="con",paras=c(2.5,-5.5,-0.6,-0.1,-0.25,0.25),maxC)
```

Arguments

ptrends	seasonal trends such as temporal basis functions.
tSet	Train dataset (observed or estimated values) to get the solution.
preF	Predicted field name.
paras	A vector, constraints for the coefficients of temporal basis functions, respectively correponding to b0, b1 and b2. Different pollutants have different constraint parameters.

Maximum values for conentration of air pollutants.

Value

 ${\tt maxC}$

a vector of the coefficients for temporal basis functions.

Author(s)

```
Lianfa\; Li < \texttt{lspatial@gmail.com} >
```

References

Lianfa Li et al, 2017, Constrained Mixed-Effect Models with Ensemble Learning for Prediction of Nitrogen Oxides Concentrations at High Spatiotemporal Resolution, ES & T, DOI: 10.1021/acs.est.7b01864

countylayer 9

Examples

```
#PM2.5 exmaple:
data("allPre500", "shdSeries2014")
#Get the temporal basis functions
season_trends=getTBasisFun(shdSeries2014,idStr="siteid",dateStr="date",
                           valStr="obs", df=10, n.basis=2, tbPath=NA)
asiteMe=allPre500[1,]
ndays=ncol(allPre500)
trainSet=NA
days=as.integer(gsub("d","",colnames(allPre500)))
for(k in c(1:ndays)){
  aday=paste("d",days[k],sep="")
  if(!is.na(asiteMe[,aday])){
    atrainPnt=data.frame(b0=1,b1=season_trends$pv1[days[k]],
          b2=season_trends$pv2[days[k]],con=log(asiteMe[,aday]))
    if(inherits(trainSet, "logical")){
      trainSet=atrainPnt
    }else{
      trainSet=rbind(trainSet,atrainPnt)
}
#Set the PM2.5 constriants:
paras=c(2.5,-5.5,-0.6,-0.1,-0.25,0.25)
maxCon=750
res=conOpt(season_trends,trainSet,preF="con",paras,maxCon)
```

countylayer

County layer map for illustration of block kriging.

Description

County layer map for illustration of block kriging.

Usage

```
countylayer
```

Format

SpatialPolygonDataFrame

ID_0 Privence name

NAME 3 county name

... ... #'

Source

Collected

10 extractVNC4

Examples

countylayer

extractVNC4

Extract Values for Point from NC4 Image

Description

A program to extarct the values from the NC4 image by overlaying the subject locations.

Usage

```
extractVNC4(tarshp, ncin, bandVar, prj)
```

Arguments

tarshp The point objects, format: SpatialPointDataFrame

ncin the nc4 object by nc_open.

bandVar The band name to be used for extration from the NC4 file

prj The project information, default: NA

Details

This function can be used to extract values from the NC4 images (such as satellite images)

Value

The values extracted in the same sequence with the point object. Format: vector

Author(s)

```
Lianfa Li, <lspatial@gmail.com>
```

References

http://disc.sci.gsfc.nasa.gov/daac-bin/FTPSubset2.pl)

```
data("samplepnt")
nc4File=file.path(system.file(package = "sptemExp"), "extdata", "ancdata.nc4")
ncin0=ncdf4::nc_open(nc4File)
extRes=extractVNC4(samplepnt,ncin0,"TLML")
extRes
```

extractVTIF 11

Description

Extract geotiff image.

Usage

```
extractVTIF(tarshp, tifRaster)
```

Arguments

tarshp spatial point object, data format: PointDataFrame

tifRaster tifRaster object

Value

values for extracted. Format: vector

fillNASVD	Function to Use SVD to Impute the Missing Values for Training
	Dataset

Description

Singular value decomposition (SVG) is used to impute the missing values for the training dataset. For each monitoring location, the time series of multivariate data is leveraged to impute the missing values using SVD.

Usage

```
fillNASVD(dset, cols, idF, dateF)
```

Arguments

dset	The dataframe having many missing values. Data format: dataframe
cols	A character vector to contain the column names (including the columns with missing values) used to impute the missing valeus
idF	Unique location identification
dateF	Date column name if any

Value

A dataframe base on the input dset, but with filled values.

12 fillNASVDSer

Examples

```
# Use the covariates for PM2.5 data as a example:
data("trainsample")
cols=c("ndvi", "aod", "wnd_avg", "monthAv")
n=nrow(trainsample)
p=0.05
pn=as.integer(p*n)
trainsample2missed=trainsample
for(col in cols){
 index=sample(n,pn)
  trainsample2missed[index,col]=NA
trainsample2filled=fillNASVD(trainsample2missed,cols,"siteid","date")
#Examine the accuracy:
for(col in cols){
  index=which(is.na(trainsample2missed[,col]))
  obs=trainsample[index,col]
 missed=trainsample2missed[index,]
  sindex=match(interaction(missed$siteid,missed$date),
               interaction(trainsample2filled$siteid,trainsample2filled$date))
 pre=trainsample2filled[sindex,col]
  print(paste(col, " missing value correlation: ",round(cor(obs,pre),2)))
 print(paste(col, " missing value cv rmse: ",round(rmse(obs,pre),2)))
```

fillNASVDSer

SVD to Interpolate the Missing Values in the Time Series Data

Description

Function to Use SVD to Interpolate the Missing Values in the Time Series Data

Usage

```
fillNASVDSer(dset, idF, dateF, valF, k)
```

Arguments

dset	The data frame for time series. Data format: siteid, date, obs dataframe.
idF	The unique location id like siteid.
dateF	The time column name.
valF	The target variable column name.
k	the priciple component, default 1

Details

This function can be used to fill the missing values in time series for many locations.

genRaster 13

Value

The data frame similar to the input dset's structure but with filled values.

Examples

```
#Using the 2014 PM2.5 time series as an example
data("shdSeries2014")
n=nrow(shdSeries2014)
p=0.1 # Set the proportion of missing values
np=as.integer(n*p)
index=sample(n,np)
shdSeries2014missed=shdSeries2014
shdSeries2014missed[index,"obs"]=NA
shdSeries2014filled=fillNASVDSer(shdSeries2014missed,"siteid","date","obs",k=1)
#Exmine the accuracy:
cor(shdSeries2014filled[index,"obs"],shdSeries2014[index,"obs"])
rmse(shdSeries2014filled[index,"obs"],shdSeries2014[index,"obs"])
```

genRaster

Generation of Raster Covering the Side Map

Description

Generaye the raster to cover the study region with the preset resolution.

Usage

```
genRaster(sideSdf, dx, dy, idStr)
```

Arguments

sideSdf The SpatialPolygonDataFrame obejct used to constrain the grid border.

 $\begin{array}{ll} \text{dx} & x \text{ resolution} \\ \text{dy} & y \text{ resolution} \\ \text{idStr} & \text{id name} \end{array}$

Value

PntObj The SpatialPointDataFrame extracted from the generated raster.

Rst The raster object covering the study region.

```
## Use the Shandong province as an example:
data("prnside")
ret=genRaster(prnside,dx=2000,dy=2000,idStr="gid")
raster::plot(ret$Rst)
raster::plot(ret$PntObj)
```

14 getPolyMMean

egional Kriging		
-----------------	--	--

Description

Estimate a regional mean for the regions.

Usage

```
GetARegionBK(rNames,rF,rT,rlayer,paras,spnts,regF,obsF="pre_mf_log")
```

Arguments

rNames	region data
rF	id of the start region
rT	id of the end
rlayer	regional layer
paras	parameters of variogram
spnts	spatial points for preiction
regF	region field name
obsF	observed field name

Value

Regiona means by block kriging.

getPolyMMean Generation of Regional Monthly Mean Based on the Input Polygons	
--	--

Description

Generate the regional monthly mean of air pollutant concentrations based on the input polygons

Usage

```
getPolyMMean(polys, samp, tse, idF="siteid", ridF="rid", obsF="obs", dateF="date")
```

Arguments

polys	The input region polygon map object (SpatialPolygonsDataFrame) to be used the regions for generation of the regiona monthly means
samp	The sample spatial location map. Data format: SpatialPointDataFrame
tse	Time series for the siteid and date used for generation of monthly mean.
idF	location id name
ridF	region id name
obsF	observed value field name.
dateF	Date name

getRidbytpoly 15

Value

A data frame of data format: rid, year, month, mean

Author(s)

```
Lianfa Li < 1 spatial@gmail.com>
```

Examples

```
#Use the PM2.5 concentration as an example.
data("samplepnt", "prnside", "shdSeries2014")
tpolys=tpolygonsByBorder(samplepnt, prnside)$tpolys
regionmmean=getPolyMMean(tpolys, samplepnt, shdSeries2014, "siteid", "rid", "obs", "date")
```

getRidbytpoly

getRidbytpoly for Assignment of Thiessen polygon id to point object

Description

Assign the polygon id to the data points.

Usage

```
getRidbytpoly(tpolys,pntlayer,isnearest)
```

Arguments

tpolys Thiessen polygons, data format: SpatialPolygonsDataFrame.
pntlayer Points for assignment for polygons. SpatialPointsDataFrame.

isnearest whether to use nearest method to assign polygon id for no overlay with poly-

gons, default: TRUE

Value

polygon id

Author(s)

Lianfa Li <1spatial@gmail.com>

```
data("samplepnt","prnside")
# Point
x=samplepnt
# Border
sidepoly=prnside
# Get the Thiessen polygons
```

16 getTBasisFun

```
res=tpolygonsByBorder(x, sidepoly)
# Assign the regional id
rids=getRidbytpoly(res$tpolys,x)
```

getTBasisFun

Generation of Temporal Basis Function

Description

Generation of temporal basis function

Usage

```
getTBasisFun(serDf, idStr, dateStr, valStr, df = 25, n.basis = 2, tbPath = NA)
```

Arguments

serDf	Time series dataframe, format: (siteid,date,observed value)
idStr	Location id name
dateStr	Date id name
valStr	The target variable's name
df	Degree of freedom
n.basis	Number of temporal basis function
tbPath	The path to save the plots of each temporal basis component. Default: NA, no plots generated

Value

A dataframe of temporal basis function: (date, pvi (the ith temporal basis function output for a date))

References

 $Finken stadt, B., Held, L., Isham, V., 2007. \ Statistical \ Methods \ for \ Spatio-Temporal \ Systems. \ Chapman \ \& \ Hall/CRC, \ New \ York.$

```
#Use PM2.5 as example:
data("shdSeries2014")
result=getTBasisFun(shdSeries2014, "siteid", "date", "obs", df=10, n.basis=2)
```

getTidBKMean 17

getTidBKMean Batch Block Kriging for Estimate of Regional Means

Description

A batch program to implement block kriging for estimate of regional mean for air pollutant. Support the multi-core parallel computation.

Usage

```
getTidBKMean(spt,rlayer,regF="NAME_3",tarF="pre_mf",n=1)
```

Arguments

spt	Spatial point layer (shape file) corresponding to the grid spointspre
rlayer	Regional layer to crop the points for estimate of regional means regionlayer
regF	Regiona field name regionName
tarF	the target variable to be estimated tarVar
n	Core number of CPU for parallel support ncore

Value

The spatial polygon dataframe including the field of kriged means.

Author(s)

```
Lianfa Li < lspatial@gmail.com>
```

Examples

```
# PM2.5 example

data("spointspre", "countylayer")
regionName="NAME_3"
tarF="d91" # field target name to be estimated (2014-04-01 for 91 day of 2014)
bkRes=getTidBKMean(spointspre, countylayer, regionName, tarF="d91", n=2)
```

gtifRst	The 2014 time series of PM2.5 concentrations of Shandong province,
	with many missing values.

Description

The 2014 time series of PM2.5 concentrations of Shandong province, with many missing values.

Usage

```
gtifRst
```

18 inter2conOpt

Format

Raster

GeoTiff format image of AOD to demonstrate use of extractVTIF

Source

NASA MAIMIC data

Examples

gtifRst

inter2conOpt

Batch Interpolation of the Missing Values for Time Series Using Constrained Optimization.

Description

This function provides batch implementation for interpolation of the missing values for multiple locations for a raster, supporting multi-core parallel computing.

Usage

```
inter2conOpt(tarPDf, pol_season_trends, ncore)
```

Arguments

tarPDf

The target data frame with missing values. Each row corresponds to a location (rowname as location id) and each column corresonds to a time point. The sequence of the location and time should be in sequence in spatial and temporal dimension. This dataset comes from the raster dataset and the sequence is kept for convenience of making raster with the interpolated value.

pol_season_trends

The temporal basis function using getTBasisFun

ncore number of cores for parallel computing.

Details

This function aims to implement the batch computing to use constrained optimization to get the concentrations for the missing values of a time series, such as PM2.5 concentration.

Value

A data frame similar to the input data frame, tarPDf but with the missing values interpolated by constrained optimizaiotn.

Author(s)

```
Lianfa Li <1spatial@gmail.com>
```

noweiAvg 19

Examples

noweiAvg Averages over the

Averages over the Ensemble Predictions of Mixed Models (No weighted)

Description

Average and standard deviation of multiple models by ensemble learning.

Usage

```
noweiAvg(path, preStr = "preno2", idStr = "id", dateStr = "s_date")
```

Arguments

path Path for the prediction files from multiple models with the unified format and

field names. File format: CSV with head:(gid,rid,pre)

preStr prediction field names
idStr unique identifier string

dateStr date string. You can set it as the same as idStr

Value

id and corresponding mean and standard deviation. Format: dataframe

Author(s)

```
Lianfa Li: <lspatial@gmail.com>
```

```
# Generate the prediction dataset, but you can use parATimePredict function
# to make the prediction in application

dPath=tempdir()
pPath=paste(dPath, "/preds", sep="")
unlink(pPath, recursive=TRUE, force=TRUE)
dir.create(pPath)
```

20 parATimePredict

```
nr=2000
for(i in c(1:80)) { # i =1
   dset=data.frame(gid=c(1:nr),rid=sample(c(1:30),size=nr,replace=TRUE))
   dset$pre=dset$gid%%80+rnorm(nr,mean=5,sd=9)+runif(nr,0,1)
   afile=paste(pPath,"/m_",i,".csv",sep="")
   write.csv(dset,file=afile,row.names = FALSE)
}
result=noweiAvg(pPath, preStr="pre",idStr="gid",dateStr="gid")
```

parATimePredict

Batch Prediction for Time Series Using the Ensemble Models

Description

Batch predictions for the time series using ensemble models generated by the function, parSpModel

Usage

```
parATimePredict(mdPath, newPnts, cols=NA, bnd, c=1, outPath="/tmp", idF="siteid", ridF=
```

Arguments

mdPath	The path where multiple ensemble models are saved by parSpModel
newPnts	New data locations corresponding to the predcitions.
cols	Columns where there are NAs. NAs must be removed before prediction. Default: NA
bnd	The same BND object as that used in parSpModel, for spatial effect models.
С	CPU cores to support parallel computing.
outPath	The output file path, file named after the model id.
idF	Unique identifier
ridF	Region id used in spatial effect modeling

Details

This function aims to use the muiltiple models with their performance metrics to make the predictions for the new dataset with their spatial location.

Value

The prediction result will be saved in the assigned path

Author(s)

```
Lianfa Li <1spatial@gmail.com>
```

parSpModel 21

References

Breiman, L., 1996. Bagging Predictors. Machine Learning 24, 123-140. Lianfa Li et al, 2017, Constrained Mixed-Effect Models with Ensemble Learning for Prediction of Nitrogen Oxides Concentrations at High Spatiotemporal Resolution, ES & T, DOI: 10.1021/acs.est.7b01864

Examples

```
#Use the PM2.5 examples
dPath=tempdir()
modelPath=paste(dPath, "/models", sep="")
unlink (modelPath, recursive = TRUE)
dir.create(modelPath)
prePath=paste(dPath, "/preds", sep="")
unlink (prePath, recursive = TRUE)
dir.create(prePath)
data("trainsample", "bnd")
aform=paste0('logpm25 ~sx(rid,bs ="mrf",map =bnd)+sx(monthAv,bs="rw2")')
aform=paste0(aform, '+sx(ndvi, bs="rw2")+sx(aod, bs="rw2")+sx(wnd_avq, bs="rw2")')
formulaStrs=c(aform)
trainsample$tid=as.numeric(strftime(trainsample$date, format = "%j"))
trainsample$logpm25=log(trainsample$pm25)
tids=c(91)
parSpModel(trainsample, bnd, formulaStrs, tidF="tid", tids, c=2,
       nM=3, modelPath, idF="siteid", dateF="date", obsF="pm25")
amodelPath=paste(dPath, "/models/t_", tids[1], "_models", sep="")
data("shd140401pcovs", "bnd")
shd140401pcovs_part=shd140401pcovs[c(1:1000),]
cols=c("aod", "ndvi", "wnd_avg", "monthAv")
parATimePredict(amodelPath,newPnts=shd140401pcovs_part,
       cols,bnd=bnd,c=2,prePath,idF="gid",ridF="rid")
```

parSpModel

Generation of Spatiotemporal Models by Bootstrap Aggregating

Description

Generation of multiple models using bootstrap aggregating, supporting multi-cores based parallel computing.

Usage

22 parSpModel

Arguments

tSet	Dataframe of the training dataset, including the measurements of the target variable and covariates.
bnd	BND object used in saptial effect modeling (BayesX)
fS	Formula string, like that used in BayesX
tidF	time id (ensemble models for each time point)
tids	all the time ids for which multiple models will be trained.
С	CPU core number
nM	Number of ensemble models for each time point.
mPath	Path where the models will be saved.
idF	Unique location name
dateF	Time id
obsF	Target variable name

Details

Batch training of the models using the multi-cores based parallel computing

Value

The model will be saved into the assigned path.

Author(s)

```
Lianfa Li <1spatial@gmail.com>
```

References

Breiman, L., 1996. Bagging Predictors. Machine Learning 24, 123-140. Lianfa Li et al, 2017, Constrained Mixed-Effect Models with Ensemble Learning for Prediction of Nitrogen Oxides Concentrations at High Spatiotemporal Resolution, ES & T, DOI: 10.1021/acs.est.7b01864

```
# Example the PM2.5 data for Shandong

dPath=tempdir()
mPath=paste(dPath, "/models", sep="")
unlink(mPath, recursive = TRUE)
dir.create(mPath)

data("trainsample", "bnd")

aform=paste0('logpm25 ~sx(rid,bs ="mrf",map =bnd)+sx(monthAv,bs="rw2")')
aform=paste0(aform, '+sx(ndvi,bs="rw2")+sx(aod,bs="rw2")+sx(wnd_avg,bs="rw2")')

formulaStrs=c(aform)

trainsample$tid=as.numeric(strftime(trainsample$date, format = "%j"))
trainsample$logpm25=log(trainsample$pm25)
tids=c(91)
```

parTemporalBImp 23

```
parSpModel(trainsample,bnd,formulaStrs,tidF="tid",
    tids,c=2,nM=3,mPath,idF="siteid",dateF="date",obsF="pm25")
```

parTemporalBImp

Function to Fill Missing Values by Constraint Optimization

Description

A function to use constraint pptimization to predict the missing values.

Usage

```
parTemporalBImp(allPre_, siteids_, isite_, pol_season_trends_)
```

Arguments

```
allPre_ Prediction dataset including many mssing values
siteids_ Ponitoring station id
isite_ Target site field name
pol_season_trends_
Temporal basis function.
```

Value

Parameters for temporal basis functions.

perMdPrediction

Batch Prediction Using the Trained Models

Description

Batch Prediction Using the Trained Models

Usage

```
perMdPrediction(mPath, mFiles, mids, mF, mT, bnd, dset, outPath, idF, ridF)
```

24 points2Raster

Arguments

mPath Model path
mFiles Model file path
mids Set of mids
mF From field name
mT To field name

bnd BND object used in spatial effect modeling

dset newDataset to be predicted

outPath Ourput path to save the predictions.

idF id field name

ridF regional id field name

Value

No straightforward output. All output saved in the appointed path.

points2Raster

Generation of Grid Surface Using the predicted/Interpolated Values

Description

This combines the predicted values's output with the corresponding spatial point data frame to generate the grid surface. Please use this function with the output spatial point data frame generated by genRaster

Usage

```
points2Raster(spoints, tarVar, dx = 2000, dy = 2000)
```

Arguments

spoints Spatial point data frame. This data frame is based on the output by the function,

genRaster with its predicted or interpolated value field.

tarVar Field name such as pollutant concentration used to make the grid.

dx Size of resolution along x coordinate dy Size of resolution along y coordinate

Value

Convert the points into Raster

```
data("spointspre")
praster=points2Raster(spointspre, "pre_m", dx=2000, dy=2000)
raster::plot(praster)
```

pol_season_trends 25

```
pol_season_trends pol_season_trends.
```

Description

pol_season_trends. Temoral basis function output of log PM2.5 for Shan dong 2014 data

Usage

```
pol_season_trends
```

Format

DataFrame

date date

pv1 1st temporal basis function

pv2 2st temporal basis function

tid unique temporal identifier #'

Source

simulated

Examples

pol_season_trends

prnside

Side to limit the Thiessen's polygons.

Description

Side shape file

Usage

prnside

Format

Spatial Polygons Data Frame

AREA AREA
PERIMETER PERIMETER
BOU2_4M_ BOU2_4M_ BOU2_4M_ID
BOU2_4M_ID BOU2_4M_ID
ADCODE93 ADCODE93
ADCODE99 ADCODE99

26 rSquared

Source

Collected

Examples

prnside

rmse

RMSE function

Description

A function to calculate rmse.

Usage

```
rmse(obs, pre)
```

Arguments

obs Observed values pre Predicted values

Value

A scalar value, RMSE

Examples

```
obs=runif(400,1,100)
pre=obs+rnorm(400,5,10)
rmse(obs,pre)
```

rSquared

Coefficient of Determination

Description

A function to calculate the rSquared.

Usage

```
rSquared(obs, res)
```

Arguments

obs A vector of the observed values.

res A vector of residuals

samplepnt 27

Value

rsquared value

Examples

```
obs=runif(400,1,100)
pre=obs+rnorm(400,5,10)
res=obs-pre
rSquared(obs,res)
```

samplepnt

Sample data for generation of Thiessen polygons.

Description

Sample data for generation of Thiessen polygons.

Usage

```
samplepnt
```

Format

```
SpatialPointDataFrame
provence Privence name
city city name
geocode geocode
name name
code code
x x
y y
```

Source

Collected

rid region id #'

Examples

samplepnt

28 shdSeries2014

shd140401pcovs	The dataset of 04/01/2014 prediction dataset for the raster spoint_pre
	covering the Shandong with 2km x 2km grid.

Description

The dataset of 04/01/2014 prediction dataset for the raster spoint_pre covering the Shandong with $2km \ x \ 2km \ grid$.

Usage

```
shd140401pcovs
```

Format

```
SpatialPointDataFrame
```

```
layer
gid unique location identifier
rid region id
ndvi ndvi
aod aod
```

monthAv regional monthy average

wnd_avg wind speed

Source

Collected

Examples

shd140401pcovs

shdSeries2014

The 2014 time series of PM2.5 concentrations of Shandong province, with missing approach.

Description

The 2014 time series of PM2.5 concentrations of Shandong province, with missing approach.

Usage

shdSeries2014

spointspre 29

Format

DataFrame

siteid site id for monitoring station

date monitoring date

obs average over the hourly observed values or imputed value by SVD #'

Source

Collected

Examples

shdSeries2014

spointspre

SpatialPointDataFrame as container of raster to geo-link with the specific date prediction of PM2.5.

Description

Container of raster to geo-link with the specific date prediction of PM2.5, and will be used to generate the surface of PM2.5 concentration at high resolution for Shandong Province.

Usage

spointspre

Format

SpatialPointsDataFrame

ogc_fid inner id

layer layers value

pre_m predicted value

pre_sd estimate of standard variance of the predicted value

Source

Collected

Examples

spointspre

30 trainsample

```
tpolygonsByBorder tpolygonsByBorder for Generation of Thiessen polygons
```

Description

Generate Thiessen polygons according to the point spatialframes and border.

Usage

```
tpolygonsByBorder(x, sidepoly)
```

Arguments

Value

A list object:

tpolys Thiessen polygons, data format: SpatialPolygonsDataFrame

bnd BND object used in the model in the BayesX.

Author(s)

```
Lianfa Li <1spatial@gmail.com>
```

Examples

```
data("samplepnt","prnside")
x=samplepnt
sidepoly=prnside
tpoly=tpolygonsByBorder(x, sidepoly) $tpolys
raster::plot(tpoly)
```

trainsample

The dataset of 2014 training sample for the Shandong with missing values imputed using SVD.

Description

The dataset of 2014 training sample for the Shandong with missing values imputed using SVD.

Usage

```
trainsample
```

voronoipolygons2 31

Format

```
DataFrame
provence provence
city city
geocode geocode
name name
code code
\mathbf{x} \ \mathbf{x}
y y
siteid siteid
rid rid
ndvi ndvi
aod aod
wnd_avg wind speed
monthAv regional monthy average
date date
month month
pm25 pm2.5
logpm25 log PM2.5
tid tid
```

Source

Collected

Examples

trainsample

voronoipolygons 2 Generation of Thiesseon Polygons By Points

Description

Generation of Thiessen polygons by spatial points

Usage

```
voronoipolygons2(x, poly)
```

Arguments

x Spatial point object, data format:SpatialPointsDataFrame

poly The border polygons object to limit the Thiessen polygons. Data format: SpatialPolygonsDataE

32 weiA2Ens

Value

The spatial polygongs objects. Data format: SpatialPolygonsDataFrame

Examples

```
data("samplepnt","prnside")
x=samplepnt
sidepoly=prnside
prjinf=sp::proj4string(x)
sidepoly_p=sp::spTransform(sidepoly,prjinf)
extBnd=as(raster::extent(sidepoly_p), 'SpatialPolygons')
sp::proj4string(extBnd)=prjinf
pzn.coords=voronoipolygons2(x,extBnd)
sp::proj4string(pzn.coords)=prjinf
```

weiA2Ens

Ensemble Weighted Prediction of Mixed Models

Description

Weighted average and standard deviation of multiple models. The weights can be the model's performance metrics such as R2 or RMSE.

Usage

```
weiA2Ens(pPath,mFile,metrF="rmse",preF="pre",idF="gid",dateF=NA)
```

Arguments

pPath	Path for the prediction files from multiple models with the unified format and field names. File format: CSV with head.
mFile	File path for the corresponding multiple models's performance. CSV format:mid, r2, rmse.
metrF	target metric such as rmse or r2 to weigh the model's output
preF	prediction field name
idF	unique identifier string
dateF	date string if any

Value

id and corresponding mean and standard deviation. Format: dataframe

Author(s)

```
Lianfa Li: <lspatial@gmail.com>
```

weightedstat 33

Examples

```
#First generate the prediction dataset and metrics.
 # In application, you can use parSpModel to train models and
\# get the models's performance metrics, and use the parATimePredict function to make the
 # Simulared data
dPath=tempdir()
pPath=paste(dPath, "/preds", sep="")
unlink(pPath, recursive=TRUE, force=TRUE)
dir.create(pPath)
nr=2000; nmod=80
for(i in c(1:nmod)){    # i =1
      {\tt dset=data.frame(gid=c(1:nr),rid=sample(c(1:30),size=nr,replace=TRUE),stringsAsFactors} = {\tt dset=data.frame(gid=c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1:nr),rid=sample(c(1
      dset$pre=dset$gid%%nmod+rnorm(nr,mean=5,sd=9)+runif(nr,0,1)
      dset$gid=paste("c",dset$gid,sep="")
      afile=paste(pPath, "/m", i, ".csv", sep="")
      write.csv(dset,file=afile,row.names = FALSE)
}
modelsMetrics=data.frame(mid=c(1:nmod),r2=runif(nmod,0.6,0.9),rmse=runif(nmod,20,60))
mfile=paste(dPath, "/model_metrics.csv", sep="")
write.csv(modelsMetrics,file=mfile,row.names = FALSE)
result=weiA2Ens(pPath,mfile,metrF="rmse","pre","gid","gid")
```

weightedstat

Weighted Average for Multiple Models

Description

Returns an R dataframe containing the character vector c ("foo", "bar") c (0, 1).

Usage

```
weightedstat(path, modelpath, metric, preStr, idStr, dateStr)
```

Arguments

```
path path of the prediction dataset files.

modelpath model metric file

metric performance weight

preStr prediction value's name

idStr id name

dateStr date name
```

Author(s)

```
Lianfa Li <1spatial@gmail.com>
```

34 weightedstat

```
# Simulared data
dPath=tempdir()
pPath=paste(dPath, "/preds", sep="")
unlink(pPath, recursive=TRUE, force=TRUE)
dir.create(pPath)
nr=2000;nmod=80
dset=data.frame(gid=c(1:nr),rid=sample(c(1:30),size=nr,replace=TRUE),stringsAsFactors =
       dset$pre=dset$gid%%nmod+rnorm(nr,mean=5,sd=9)+runif(nr,0,1)
       dset$gid=paste("c",dset$gid,sep="")
       afile=paste(pPath,"/m",i,".csv",sep="")
       write.csv(dset,file=afile,row.names = FALSE)
 }
modelsMetrics=data.frame(mid=c(1:nmod),r2=runif(nmod,0.6,0.9),rmse=runif(nmod,20,60))
modelsMetrics$rmse2=1/modelsMetrics$rmse
mfile=paste(dPath,"/model_metrics.csv",sep="")
write.csv(modelsMetrics,file=mfile,row.names = FALSE)
res=weightedstat(pPath,modelpath=mfile,metric="rmse2",preStr="pre",idStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr="gid",dateStr
```

Index

*Topic Regional mean	rmse, 26
getPolyMMean, 14	*Topic \textasciitilderquared
*Topic \textasciitildebootstrap	rSquared, 26
aggregate	*Topic air pollution
parSpModel, 21	conOpt,8
*Topic \textasciitildecolorCusGrinf	getPolyMMean, 14
colorCusGrinf, 6	*Topic datasets
*Topic \textasciitildeensemble	allPre500, 4
learning	bnd, 6
parSpModel, 21	countylayer,9
*Topic \textasciitildefillNASVD	gtifRst, 17
fillnasvd, 11	pol_season_trends,25
*Topic \textasciitildekwd1	prnside, 25
abatchModel, 2	samplepnt, 27
colorGrinf, 7	shd140401pcovs, 28
extractVNC4, 10	shdSeries2014,28
extractVTIF, 11	spointspre, 29
fillNASVDSer, 12	trainsample, 30
genRaster, 13	*Topic ensemble learning
GetARegionBK, 14	noweiAvg, 19
parTemporalBImp, 23	weiA2Ens, 32
perMdPrediction, 23	*Topic machine learning
points2Raster, 24	noweiAvg, 19
voronoipolygons2,31	weiA2Ens, 32
*Topic \textasciitildekwd2	*Topic models
abatchModel, 2	conOpt, 8
colorGrinf, 7	inter2con0pt, 18
extractVNC4, 10	*Topic parallel
extractVTIF, 11	inter2con0pt,18
fillNASVDSer, 12	*Topic regression
genRaster, 13	conOpt, 8
GetARegionBK, 14	*Topic spatiotemporal modeling
parTemporalBImp, 23	getTBasisFun, 16
perMdPrediction, 23	*Topic temporal basis function
points2Raster, 24	getTBasisFun, 16
voronoipolygons2,31	abatchModel, 2
*Topic \textasciitildemissing	allPre500,4
fillnasvD, 11	a1111e300, -
*Topic \textasciitilder2	bkriging,4
rSquared, 26	bnd, 6
*Topic \textasciitilderaster	-, -
colorCusGrinf,6	colorCusGrinf,6
*Topic \textasciitildermse	colorGrinf 7

36 INDEX

```
conOpt, 8
countylayer, 9
extractVNC4, 10
extractVTIF, 11
fillNASVD, 11
fillNASVDSer, 12
genRaster, 13
GetARegionBK, 14
getPolyMMean, 14
getRidbytpoly, 15
getTBasisFun, 16
getTidBKMean, 17
gtifRst, 17
inter2conOpt, 18
noweiAvg, 19
parATimePredict, 20
parSpModel, 21
parTemporalBImp, 23
perMdPrediction, 23
points2Raster, 24
pol_season_trends, 25
prnside, 25
rmse, 26
rSquared, 26
samplepnt, 27
shd140401pcovs, 28
shdSeries2014, 28
spointspre, 29
tpolygonsByBorder, 30
trainsample, 30
voronoipolygons2, 31
weiA2Ens, 32
weightedstat, 33
```