Part II - Logic and Set Theory Theorems with Proof

Lectured by I. B. Leader
Lent 2015

Contents

1 Pro		opositional calculus		
	1.1	Semantic implication	3	
	1.2	Syntactic implication	3	

1 Propositional calculus

1.1 Semantic implication

Proposition.

- (i) If v and v' are valuations with v(p) = v'(p) for all $p \in P$, then v = v'.
- (ii) For any function $W: P \to \{0,1\}$, there is a valuation v such that v(p) = w(p) for all $p \in L$, i.e. we can extend w to a full valuation.

This means "A valuation is determined by its values on P, and any values will do".

Proof. (i) Recall that L is defined inductively. We are given that v(p) = v'(p) on L_1 . Then for all $p \in L_2$, p must be in the form $q \Rightarrow r$ for $q, r \in L_1$. Then $v(q \Rightarrow r) = v(p \Rightarrow q)$ since the value of v is uniquely determined by the definition. So for all $p \in L_2$, v(p) = v'(p).

Continue inductively to show that v(p) = v'(p) for all $p \in L_n$ for any n.

(ii) Set v to agree with w for all $p \in P$, and set $v(\bot) = 0$. Then define v on L_n inductively according to the definition.

1.2 Syntactic implication

Proposition (Deduction theorem). Let $S \subset L$ and $p, q \in L$. Then $S \vdash (p \Rightarrow q)$ if and only if $S \cup p \vdash q$.

"- behaves like the connective \(\Rightarrow \) in the language"

Proof. (\Rightarrow) Given a proof of $p \Rightarrow q$ from S, append the lines

$$-p$$
 Hypothesis $-q$ MP

to obtain a proof of q from $S \cup \{q\}$.

 (\Leftarrow) Let $t_1, t_2, \dots, t_n = q$ be a proof of q from $S \cup \{p\}$. We'll show that $S \vdash p \Rightarrow t_i$ for all i.

We consider different possibilities of t_i :

 $-t_i$ is an axiom: Write down

 $-t_i \in S$: Write down

To get $S \models (p \Rightarrow t_i)$

- $t_i = p$: Write down our proof of $p \Rightarrow p$ from our example above.
- t_i is obtained by MP: we have some j, k < i such that $t_k = (t_k \Rightarrow t_i)$. We can assume that $S \vdash (p \Rightarrow t_j)$ and $S \vdash (p \Rightarrow t_k)$ by induction on i. Now we can write down

to get $S \models (p \Rightarrow t_i)$.

This is why Axiom 2 is as it is - it enables us to prove the deduction theorem. \Box

Proposition (Soundness). If $S \subset L$, $t \in L$, then if $S \vdash t$, then $S \models t$.

Proof. Given valuation v with v(s)=1 for all $s\in S$, we need to show that v(t)=1. But v(p)=1 for all axioms p, and v(p)=1 for all $p\in S$, and if v(p)=1 and $v(p\Rightarrow q)=1$, then v(q)=1. Hence each line t_i in a proof t_1,\cdots,t_n of from S has $v(t_i)=1$.