

Theorem 5.2.1 (Division of polynomials)

Let f(T) and g(T) be two polynomials over \mathbb{F}_p , then there are polynomials $q(T), r(T) \in \mathbb{F}_p[T]$ such that

$$f(T) = q(T)g(T) + r(T), \qquad \deg(r) < \deg(g).$$

Theorem 5.2.1 (Division of polynomials)

Let f(T) and g(T) be two polynomials over \mathbb{F}_p , then there are polynomials $q(T), r(T) \in \mathbb{F}_p[T]$ such that

$$f(T) = q(T)g(T) + r(T), \qquad \deg(r) < \deg(g).$$

Proof. Suppose the leading terms of f and g are $\overline{a}T^{\deg(f)}$ and $\overline{b}T^{\deg(g)}$ respectively. Since p is a prime, we can always solve the equation a = xb in \mathbb{F}_p . Then $f(T) - (xT^{\deg(f) - \deg(g)})g(T)$ has degree strictly less than $\deg(f)$. Replace f(T) by it and repeat this process, we will get a polynomial of degree less than $\deg(g)$ in the last step.

Example 5.2.2

Over \mathbb{F}_5 . Consider the polynomials $T^3 + \overline{4}T + \overline{2}$ and $T^2 + T + \overline{3}$.

Example 5.2.2

Over \mathbb{F}_5 . Consider the polynomials $T^3 + \overline{4}T + \overline{2}$ and $T^2 + T + \overline{3}$.

$$T - \overline{1}$$

$$T^{2} + T + \overline{3}$$

$$T^{3} + \overline{0}T^{2} + \overline{4}T + \overline{2}$$

$$T^{3} + T^{2} + \overline{3}T \downarrow$$

$$- T^{2} + T + \overline{2}$$

$$- T^{2} - T - \overline{3}$$

$$\overline{2}T + \overline{5}$$

Example 5.2.2

Over \mathbb{F}_5 . Consider the polynomials $T^3 + \overline{4}T + \overline{2}$ and $T^2 + T + \overline{3}$.

Example 5.2.3

Over \mathbb{F}_5 . Consider the polynomials $\overline{2}T^3 + \overline{3}T^2 + T + \overline{1}$ and $\overline{3}T^2 + T + \overline{2}$.

Example 5.2.3

Over \mathbb{F}_5 . Consider the polynomials $\overline{2}T^3 + \overline{3}T^2 + T + \overline{1}$ and $\overline{3}T^2 + T + \overline{2}$.

Note that we cannot do division of integer polynomials this time.

Definition 5.2.4

Let f(T) and g(T) be two polynomials over \mathbb{F}_p . Then we say f divides g, or f is a divisor of g, or g is a multiple of f, written as $f \mid g$ if there is another $h(T) \in \mathbb{F}_p[T]$ such that

$$f(T) = h(T)g(T).$$

Example 5.2.5

Over \mathbb{F}_5 , $\overline{3}T^2 + T + \overline{2}$ divides $\overline{2}T^3 + \overline{3}T^2 + T + \overline{1}$.

It is possible that two distinct polynomials divides each other, this is due to the fact that every nonzero element of \mathbb{F}_p is a unit. Hence, any two polynomials different only by a nonzero constant factor would divide each other.

It is possible that two distinct polynomials divides each other, this is due to the fact that every nonzero element of \mathbb{F}_p is a unit. Hence, any two polynomials different only by a nonzero constant factor would divide each other.

Among the polynomials over \mathbb{F}_p , the following ones play as the role of positive integers.

Definition 5.2.6

A polynomial f(T) over \mathbb{F}_p is *monic* if its leading term (the term of degree $\deg(f)$) has coefficient $\overline{1}$.

So a monic polynomial looks like this: T^n + lower terms.

You can verify that the divisibility of monic polynomials is also a partial order satisfying the 2-out-of-3 principle.

We also have the notions of \gcd and lcm .

Definition 5.2.7 (Greatest common divisor)

Let a(T) and b(T) be two nonzero polynomials over \mathbb{F}_p . Then a monic polynomial g(T) is called a *greatest common divisor* of them if it satisfies the following two defining properties:

- 1. $g \mid a$ and $g \mid b$, i.e. g is a common divisor of a and b; and
- 2. if d is any common divisor of a and b, then $d \mid g$.

We will use gcd(a, b)(T) to denote the greatest common divisor of a(T) and b(T).

Definition 5.2.8 (Least common multiple)

Let a(T), b(T) be two nonzero polynomials over \mathbb{F}_p . Then a monic polynomial l(T) is called a *least common multiple* of them if it satisfies the following two defining properties:

- 1. $a \mid l$ and $b \mid l$, i.e. l is a common multiple of a and b; and
- 2. if m is any common multiple of a and b, then $l \mid m$.

We will use lcm(a, b)(T) to denote the least common multiple of a(T) and b(T).

Theorem 5.2.9

$$\gcd(a,b)(T)\cdot \operatorname{lcm}(a,b)(T) = a(T)\cdot b(T)$$