Rajalakshmi Engineering College

Name: Gunali A

Email: 241801076@rajalakshmi.edu.in

Roll no: 241801076 Phone: 8124041932

Branch: REC

Department: I AI & DS FB

Batch: 2028

Degree: B.E - AI & DS

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 5

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

In his computer science class, John is learning about Binary Search Trees (BST). He wants to build a BST and find the maximum value in the tree.

Help him by writing a program to insert nodes into a BST and find the maximum value in the tree.

Input Format

The first line of input consists of an integer N, representing the number of nodes in the BST.

The second line consists of N space-separated integers, representing the values of the nodes to insert into the BST.

Output Format

The output prints the maximum value in the BST.

Refer to the sample output for formatting specifications.

241801016

241801076

241801076

```
Sample Test Case
    Input: 5
    1051527
    Output: 15
    Answer
    #include <stdio.h>
    #include <stdlib.h>
    struct TreeNode {
       int data:
       struct TreeNode* left:
       struct TreeNode* right;
    };
    struct TreeNode* createNode(int key) {
       struct TreeNode* newNode = (struct TreeNode*)malloc(sizeof(struct
    TreeNode));
       newNode->data = key;
       newNode->left = newNode->right = NULL;
       return newNode;
    // Function to insert a node into BST
    struct TreeNode* insert(struct TreeNode* root, int data) {
       if (root == NULL) {
         return createNode(data);
       }
       if (data < root->data) {
         root->left = insert(root->left, data);
       } else {
         root->right = insert(root->right, data);
                                                     241801016
return root;
```

```
// Function to find the maximum value in BST
 if (root == NULL) {
         printf("Tree is empty!\n");
         return -1; // Indicating an empty tree
       while (root->right != NULL) {
         root = root->right;
       return root->data:
    // Function to free memory allocated for BST
    void freeTree(struct TreeNode* root) {
      if (root == NULL) return;
       freeTree(root->left);
       freeTree(root->right);
       free(root);
    }
     int main() {
       int N, rootValue;
       scanf("%d", &N);
       struct TreeNode* root = NULL;
    for (int i = 0; i < N; i++) {
         int key;
         scanf("%d", &key);
         if (i == 0) rootValue = key;
         root = insert(root, key);
       }
       int maxVal = findMax(root);
       if (maxVal != -1) {
         printf("%d", maxVal);
       }
return 0;
                                                    241801016
```

241801076

241801016

241801076

Status: Correct

Marks: 10/10

24,180,10,10

24,180,10,10

24,180,10,10