

They this channel to

Motivation -

1524. Number of Sub-arrays With Odd Sum

Medium

Ω Hint

Given an array of integers arr, return the number of subarrays with an odd sum.

Since the answer can be very large, return it modulo $[10^9 + 7]$.

Example: - Give =
$$\{1, 3, 5\}$$

Output = 4

Output = 4

Thought Process

Bruk Force

$$and = \{1, 3, 5, 6, 2\}$$

$$T \cdot C = O(n^3)$$
 Bruke Force.
 $S \cdot C = O(1)$.

Better Approach:

for
$$(i = 0; i \times n; i + t)$$
 for $(inf = 0; j \times n; j + t)$ for $(inf = 0; j \times n; j \times n; j + t)$ for $(inf = 0; j \times n; j \times n$

Optimal Apprach:

Subarray having Sum = 0

CASS =
$$\{2, 2, 5, 6, 2\}$$

Prodix = $\{2, 4, 9, 15, 17\}$

Even Even Even Even copp opp opp $\{2, 5\}$
 $\{7, 2, 5\}$
 $\{5, 5\}$

$$\begin{cases}
 2, 5, 6 \\
 4 \end{cases}$$

$$\begin{cases}
 2, 5, 6 \\
 4 \end{cases}$$

$$\begin{cases}
 5, 6 \\
 4 \end{cases}$$

$$\begin{cases}
 5, 6 \\
 \end{cases}
 \end{cases}$$

⁵ 2, 1, ⁴³ ³

EvenCovit =
$$1+1+1$$

odaCoint = 1