2. gyakorlat

DIFFERENCIÁLSZÁMÍTÁS 2.

Érintő

Emlékeztető.

Definició. Az $f \in \mathbb{R} \to \mathbb{R}$ függvény grafikonjának az (a, f(a)) pontban van érintője, ha $f \in D\{a\}$. Az f függvény grafikonjának (a, f(a)) pontbeli érintőjén az

$$y = f'(a) \cdot (x - a) + f(a)$$

egyenletű egyenest értjük.

1. Feladat. Írja fel az f függvény grafikonjának az a abszcisszájú pontjához tartozó érintőegyenesének az egyenletét!

a)
$$f(x) := e^{2x} \sin x \quad (x \in \mathbb{R}), \qquad a = 0,$$

b)
$$f(x) := \ln \frac{3x - 1}{x^2 + 1}$$
 $(x \in (1/3, +\infty)), \quad a = 1.$

Megoldás.

a) A deriválási szabályok szerint

$$f'(x) = (e^{2x})'\sin x + e^{2x}(\sin x)' = 2e^{2x}\sin x + e^{2x}\cos x. \qquad (x \in \mathbb{R})$$

Ezért $f \in D\{0\}$ és f'(0) = 1, így az érintő definíciója szerint a függvény grafikonjának van érintője a (0, f(0)) pontban. Mivel f(0) = 0 és f'(0) = 1, ezért az érintőegyenes egyenlete:

$$y = f'(0) \cdot (x - 0) + f(0)$$
 \Longrightarrow $\underline{y = x}$.

b) A deriválási szabályok szerint

$$f'(x) = \frac{1}{\frac{3x-1}{x^2+1}} \cdot \left(\frac{3x-1}{x^2+1}\right)' = \frac{x^2+1}{3x-1} \cdot \frac{(3x-1)'(x^2+1) - (3x-1)(x^2+1)'}{(x^2+1)^2} = \frac{3(x^2+1) - (3x-1)2x}{(3x-1)(x^2+1)} = \frac{-3x^2+2x+3}{(3x-1)(x^2+1)} \quad (x > 1/3).$$

Ezért $f \in D\{1\}$ és f'(1) = 1/2, így az érintő definíciója szerint a függvény grafikonjának van érintője az (1, f(1)) pontban. Mivel f(1) = 0 és f'(0) = 1/2, ezért az érintőegyenes egyenlete:

$$y = f'(1) \cdot (x - 1) + f(1)$$
 \Longrightarrow $y = \frac{x}{2} - \frac{1}{2}$.

1

Megjegyzés. Ebben az esetben a függvényt könnyeben tudjuk deriválni, ha alkalmazzuk az alábbi átalakítást:

$$f(x) := \ln \frac{3x - 1}{x^2 + 1} = \ln(3x - 1) - \ln(x^2 + 1) \qquad (x > 1/3),$$

és így

$$f'(x) = \frac{3}{3x - 1} - \frac{2x}{x^2 + 1}.$$

Logaritmikus deriválás

2. Feladat. Határozzuk meg az alábbi függvények deriváltját!

a)
$$f(x) := \frac{\sqrt{1+x}}{(x^2+1)^5}$$
 $(x > -1),$ b) $f(x) := (1+\frac{1}{x})^{1-x}$ $(x > 0),$

c)
$$f(x) := (\ln x)^{x+1}$$
 $(x > 1)$.

Megoldás. Az előző feladat megjegyzéséből okulva, ha egy függvény előáll pozitív tényezőfüggvények hatványainak szorzataként, hányadosaként, akkor érdemes a függvény logaritmusát deriválni, hiszen egyrést a deriválási szabályok miatt

$$\left(\ln(f(x))\right)' = \frac{1}{f(x)} \cdot f'(x) \implies f'(x) = f(x)\left(\ln(f(x))\right)',$$

másrészt a függvény logaritmusa felírható a tényezőfüggvények logaritmusának konstans szorosának az összege, különbsége. Ez az ötlet is alkalmazható az $f(x)^{g(x)}$ alakú függvények esetén.

a) Vegyük az f függvény logaritmusát!

$$\ln(f(x)) = \ln\frac{\sqrt{1+x}}{(x^2+1)^5} = \ln\sqrt{1+x} - \ln(x^2+1)^5 = \frac{1}{2}\ln(1+x) - 5\ln(x^2+1),$$

ahol x > -1. Ezt már könnyebben tudjuk deriválni:

$$\frac{f'(x)}{f(x)} = \left(\ln(f(x))\right)' = \frac{1}{2} \cdot \frac{1}{1+x} - 5 \cdot \frac{1}{x^2+1} \cdot 2x = \frac{1}{2(1+x)} - \frac{10x}{x^2+1} \quad (x > -1)$$

Ezért minden x > -1 esetén

$$f'(x) = f(x) \cdot \left(\frac{1}{2(1+x)} - \frac{10x}{x^2+1}\right) = \frac{\sqrt{1+x}}{\left(x^2+1\right)^5} \cdot \left(\frac{1}{2(1+x)} - \frac{10x}{x^2+1}\right).$$

b) Vegyük az f függvény logaritmusát!

$$\ln(f(x)) = \ln\left(1 + \frac{1}{x}\right)^{1-x} = (1-x)\cdot\ln\left(1 + \frac{1}{x}\right) = (1-x)\cdot\ln\left(\frac{x+1}{x}\right) = (1-x)\left(\ln(x+1) - \ln x\right) \qquad (x>0).$$

Ezt már könnyebben tudjuk szorzatként deriválni:

$$\frac{f'(x)}{f(x)} = \left(\ln(f(x))\right)' = (1-x)' \cdot \left(\ln(x+1) - \ln x\right) + (1-x) \cdot \left(\left(\ln(x+1) - \ln x\right)\right)' =$$

$$= (-1) \cdot \left(\ln(x+1) - \ln x\right) + (1-x) \cdot \left(\frac{1}{x+1} - \frac{1}{x}\right) = -\ln\left(1 + \frac{1}{x}\right) - \frac{1-x}{x(x+1)}.$$

Ezért

$$f'(x) = f(x) \cdot \left(-\ln\left(1 + \frac{1}{x}\right) - \frac{1 - x}{x(x+1)} \right) =$$

$$= \left(1 + \frac{1}{x}\right)^{1 - x} \cdot \left(-\ln\left(1 + \frac{1}{x}\right) - \frac{1 - x}{x(x+1)} \right) \qquad (x > 0).$$

c) Vegyük az f függvény logaritmusát!

$$\ln(f(x)) = \ln(\ln x)^{x+1} = (x+1) \cdot \ln(\ln x) \qquad (x > 1).$$

Ezt már könnyebben tudjuk szorzatként deriválni:

$$\frac{f'(x)}{f(x)} = \left(\ln(f(x))\right)' = (x+1)'\ln(\ln x) + (x+1)\cdot\left(\ln(\ln x)\right)' = 1\cdot\ln(\ln x) + (x+1)\cdot\ln'(\ln x)\cdot\ln' x = \ln(\ln x) + (x+1)\cdot\frac{1}{\ln x}\cdot\frac{1}{x}$$

Ezért

$$f'(x) = f(x) \cdot \left(\ln(\ln x) + \frac{x+1}{x \ln x} \right) = \left(\ln x \right)^{x+1} \cdot \left(\ln(\ln x) + \frac{x+1}{x \ln x} \right) \qquad (x > 1).$$

Inverz függvény deriváltja

Emlékeztető. Az inverz függvényre vonatkozó szabály:

Tétel. Legyen I egy nyílt intervallum, és $f: I \to \mathbb{R}$. Tegyük fel, hogy

- a) f szigorúan monoton és folytonos az I intervallumon,
- b) valamilyen $a \in I$ pontban $f \in D\{a\}$ és $f'(a) \neq 0$.

Ekkor az f^{-1} függvény deriválható a b = f(a) pontban és

$$(f^{-1})'(b) = \frac{1}{f'(a)} = \frac{1}{f'(f^{-1}(b))}$$

A differenciálhatóságból következik a folytonosság: $f \in D\{a\} \implies f \in C\{a\}$.

A szigorú monotonitás megállapítható a függvény deriváltjával: Ha $f \in D(a,b)$, akkor

ha
$$f'>0$$
 [illetve $f'<0$] (a,b) -n \implies f \uparrow [illetve \downarrow] (a,b) -n.

3. Feladat. Igazoljuk, hogy az alábbi függvények invertálhatók és inverzei differenciálhatók! Számítsuk ki az $(f^{-1})'$ függvény értékét a megadott b pontban!

a)
$$f(x) := x^3 + x \ (x \in \mathbb{R}), \quad b := -2,$$

b)
$$f(x) := 2x + \ln(x^2 + 1)$$
 $(x > 0)$, $b := 2 + \ln 2$.

Megoldás.

a) Világos, hogy $f \in D(\mathbb{R})$, és

$$f'(x) = (x^3 + x)' = 3x^2 + 1 > 0 \qquad (x \in \mathbb{R}).$$

Ezért f szigorúan monoton növekvő függvény \mathbb{R} -en, és így invertálható.

f folytonos \mathbb{R} -en, mert differenciálható minden $x \in \mathbb{R}$ pontban. Legyen a := -1. Ekkor

$$f(a) = f(-1) = (-1)^3 - 1 = -2 = b$$
 és $f'(a) = f'(-1) = 3 \cdot (-1)^2 + 1 = 4$.

Ekkor az inverz függvényre vonatkozó szabály feltételei teljesülnek, és így

$$(f^{-1})'(-2) = (f^{-1})'(b) = \frac{1}{f'(a)} = \frac{1}{f'(-1)} = \frac{1}{4}.$$

b) Világos, hogy $f \in D(0, +\infty)$, és

$$f'(x) = \left(2x + \ln(x^2 + 1)\right)' = 2 + \frac{2x}{x^2 + 1} > 0 \qquad (x > 0).$$

Ezért f szigorúan monoton növekvő függvény $(0, +\infty)$ -en, és így invertálható.

ffolytonos $(0,+\infty)$ -en, mert differenciálható minden x>0pontban. Legyen a:=1.Ekkor

$$f(a) = f(1) = 2 + \ln 2 = b$$
 és $f'(a) = f'(1) = 2 + \frac{2 \cdot 1}{1^2 + 1} = 3$.

Ekkor az inverz függvényre vonatkozó szabály feltételei teljesülnek, és így

$$(f^{-1})'(2 + \ln 2) = (f^{-1})'(b) = \frac{1}{f'(a)} = \frac{1}{f'(1)} = \frac{1}{3}.$$

Egyoldali pontbeli deriváltak

Emlékeztető. Legyen $b, j \in \mathbb{R} \to \mathbb{R}$, $a \in \mathbb{R}$ olyan pont, hogy $\exists \delta > 0 \colon (a - \delta, a) \subset \mathcal{D}_b$, $(a, a + \delta) \subset \mathcal{D}_j$, és $A \in \mathbb{R}$. Milyen legyenek a b és j függvények ahhoz, hogy az

$$f(x) := \begin{cases} b(x) & (x \in \mathcal{D}_b \text{ és } x < a) \\ A & (x = a) \\ j(x) & (x \in \mathcal{D}_j \text{ és } x > a) \end{cases}$$

függvény differenciálható legyen az a pontban? Ehhez szükséges, hogy $f \in C\{a\},$ és így

$$\boxed{ \text{I.} \quad \exists \lim_{a \to 0} b, \ \exists \lim_{a + 0} j \quad \text{\'es} \quad \lim_{a \to 0} b = A = \lim_{a + 0} j } \ .$$

Pl. ha b balról, j jobbról folytonos a-ban és b(a) = j(a) = A, akkor I. teljesül.

Ha az I. feltétel teljesül, és b(a)=j(a)=A, akkor $f\in D\{a\}\iff \boxed{\text{II.}\quad b'_-(a)=j'_+(a)}=f'(a)$.

Pl. ha $b \in D\{a\}$ és $j \in D\{a\}$, akkor a II. feltétel ekvivalens azzal, hogy b'(a) = j'(a).

 $\textbf{4. Feladat.} \ \, \'{A}llap\'{i}tsuk \ meg, \ hogy \ differenci\'{a}lhat\'{o}k\text{-}e \ az \ al\'{a}bbi \ f\"{u}ggv\'{e}nyek \ a \ megadott \ a \ pontokban!$

a)
$$f(x) := \begin{cases} x^2 + 1 & (x < 0) \\ \ln(x^2 + 1) & (x \ge 0), \end{cases}$$
 $a = 0,$

b)
$$f(x) := \begin{cases} 2^x & (x < 1) \\ 2 & (x = 1) \\ \sqrt{x^3 + 3} & (x > 1), \end{cases}$$
 $a = 1,$

c)
$$f(x) := \begin{cases} \cos^2 x & \left(x \le \frac{\pi}{2}\right) \\ (x - \frac{\pi}{2})^2 & \left(x > \frac{\pi}{2}\right), \end{cases}$$
 $a = \frac{\pi}{2}.$

Megoldás. Alkalmazzuk az emlékeztetőben szereplő jelöléseket!

a) $A := f(0) = \ln(0^2 + 1) = 0$, illetve legyen

$$b(x) := x^2 + 1 \quad (x \in \mathbb{R})$$
 és $j(x) := \ln(x^2 + 1) \quad (x \in \mathbb{R}).$

Igaz, hogy $b, j \in C\{0\}$, azonban $1 = b(0) \neq j(0) = 0$. Ezért I. **nem** teljesül, azaz $f \notin C\{0\}$, és így $f \notin D\{0\}$. Fontos megjegyezni, hogy a feladatban $b, j \in D(\mathbb{R})$ és

$$b'(x) = 2x,$$
 $j'(x) = \frac{2x}{x^2 + 1}$ $(x \in \mathbb{R}),$

azaz II. teljesül, hiszen $b, j \in D\{0\}$ és b'(0) = 0 = j'(0), de $f \notin D\{0\}$.

b) A = 2, illetve legyen

$$b(x) := 2^x \quad (x \in \mathbb{R})$$
 és $j(x) := \sqrt{x^3 + 3} \quad (x > 0)$

A deriválási szabályok alapján $b \in D(\mathbb{R}), j \in D(0, +\infty)$ és

$$b'(x) = 2^x \ln 2 \quad (x \in \mathbb{R}), \qquad j'(x) = \frac{3x^2}{2\sqrt{x^3 + 3}} \quad (x > 0).$$

- I. teljesül, hiszen $b, j \in C\{1\}$, és b(1) = j(1) = 2 = A.
- II. nem teljesül, hiszen $b, j \in D\{1\}$, de $2 \ln 2 = b'(1) \neq j'(1) = 3/4$. Ezért $f \notin D\{1\}$.

c) $A := f(\pi/2) = \cos^2(\pi/2) = 0$, illetve legyen

$$b(x) := \cos^2 x \quad (x \in \mathbb{R})$$
 és $j(x) := \left(x - \frac{\pi}{2}\right)^2 \quad (x \in \mathbb{R}).$

A deriválási szabályok alapján $b, j \in D(\mathbb{R})$ és

$$b'(x) = -2\cos x \sin x, \qquad j'(x) = 2\left(x - \frac{\pi}{2}\right) \qquad (x \in \mathbb{R}).$$

- I. teljesül, hiszen $b, j \in C\{\pi/2\}$, és $b(\pi/2) = j(\pi/2) = 0 = A$.
- II. teljesül, hiszen $b, j \in D\{\pi/2\}$ és $b'(\pi/2) = 0 = j'(\pi/2)$.

Ezért $f \in D\{\pi/2\}$ és $f'(\pi/2) = 0$.

5. Feladat. Megadható-e olyan a és b paraméter, hogy differenciálhatóak legyenek a következő függvények?

a)
$$f(x) = \begin{cases} x^2 + b & (x < 1) \\ \frac{a}{x} & (x \ge 1). \end{cases}$$
 b) $f(x) = \begin{cases} \sin ax + b & (x \le 0) \\ e^{x^2} + x & (x > 0). \end{cases}$

Megoldás. A deriválási szabályok szerint a feladatban szereplő függvények mindenütt differenciálhatók a paraméterek értékeitől függetlenül, kivéve az átmeneti pontban, ahol külön meg kell vizsgálni a differenciálhatóságot.

a) Legven

$$b(x) = x^2 + b$$
 $(x \in \mathbb{R})$ és $j(x) = \frac{a}{x}$ $(x > 0)$.

A deriválási szabályok alapján $b \in D(\mathbb{R}), j \in D(0, +\infty)$, valamint

$$b'(x) = 2x \quad (x \in \mathbb{R})$$
 és $j'(x) = -\frac{a}{x^2}$ $(x > 0)$.

Mivel f(x) = b(x) (x < 1) és f(x) = j(x) (x > 1), így $f \in D\{x\}$ $(x \ne 1)$.

Legyen A := f(1) = a/1 = a. $f \in D\{1\}$ akkor és csak akkor teljesül, ha

• I. teljesül, azaz $f \in C\{1\}$. Tudjuk, hogy $b, j \in C\{1\}$. Szükséges még, hogy b(1) = j(1) = A. Mivel b(1) = 1 + b és j(1) = a, így

$$1 + b = a$$
.

• b(1) = j(1) = A mellett II. teljesül. Tudjuk, hogy $b, j \in D\{1\}$. Szükséges még, hogy b'(1) = j'(1). Mivel b'(1) = 2 és j'(1) = -a, így

$$2 = -a$$
.

A kapott egyenletrendszer megoldása a=-2 és b=-3. Ekkor $f\in D(\mathbb{R})$.

b) Legyen

$$b(x) = \sin ax + b$$
 $(x \in \mathbb{R})$ és $j(x) = e^{x^2} + x$ $(x \in \mathbb{R})$.

A deriválási szabályok alapján $b, j \in D(\mathbb{R})$ és

$$b'(x) = a \cos ax \quad (x \in \mathbb{R})$$
 és $j'(x) = e^{x^2} \cdot 2x + 1 \quad (x \in \mathbb{R}).$

Mivel f(x) = b(x) (x < 0) és f(x) = j(x) (x > 0), így $f \in D\{x\}$ $(x \ne 0)$.

Legyen $A := f(0) = \sin(0) + b = b$. $f \in D\{0\}$ akkor és csak akkor teljesül, ha

• I. teljesül, azaz $f \in C\{0\}$. Tudjuk, hogy $b, j \in C\{0\}$. Szükséges még, hogy b(0) = j(0) = A. Mivel b(0) = b és j(0) = 1, így

$$b = 1$$
.

• b(0) = j(0) = A mellett II. teljesül. Tudjuk, hogy $b, j \in D\{0\}$. Szükséges még, hogy b'(0) = j'(0). Mivel b'(0) = a és j'(0) = 1, így

$$a = 1$$
.

Ezért a feladat megoldása a=1 és b=1. Ekkor $f\in D(\mathbb{R})$.