QTL mapping and GWAS

Bioinformatics Applications (PLPTH813)

Sanzhen Liu

3/28/2016

Phylogenic trees

Outgroup rooting

- Many methods (NJ) construct unrooted tree. An outgroup can be introduced to identify the "root". Although the inferred tree for all species is still unrooted, the root is believed to be located along the branch that leads to the outgroup so that the tree for the ingroup species is rooted. This strategy is called outgroup rooting.
- A good outgroup needs to satisfy:
- 1. not a member of the ingroup
- 2. close related to the ingroup

Tree evaluation: Bootstrap analysis

Boostrapping measures how consistently the data support given taxon bipartitions (Hedges, 1992).

Plo6 and Pga11 are grouped together in 99% bootstrap replicates.

^{*} B = 200 bootstrap replications.

An R package - ape

Analysis of Phylogenetics and Evolution ("ape") is an R software package for use in molecular evolution and phylogenetics.

Table 1. Special functions available in APE 1.1

Application	Available commands	
Input/output	<pre>read.dna, write.dna, read.nexus, write.nexus, read.tree, write.tree, read.GenBank</pre>	
Graphics	<pre>add.scale.bar, plot.mst, plot.phylo, plot.skyline, lines.skyline, ltt.plot</pre>	
Tree manipulation	<pre>bind.tree, drop.tip, is.binary.tree, is.ultrametric</pre>	
Comparative method	<pre>compar.gee, compar.lynch, pic, vcv.phylo</pre>	
Diversification	<pre>birthdeath, cherry, diversi.gof, diversi.time, gamma.stat</pre>	
Population genetics	branching.times, coalescent.intervals, collapsed.intervals, find.skyline.epsilon, heterozygosity, skylineplot, skyline, theta.h, theta.k, theta.s	
Molecular dating	chronogram, ratogram, NPRS.criterion	
Miscellaneous	<pre>all.equal.phylo, balance, base.freq, dist.dna, dist.gene, dist.phylo, GC.content, klastorin, mantel.test, mst, summary.phylo</pre>	
Data sets	<pre>bird.families, bird.orders, hivtree, landplants, opsin, woodmouse, xenarthra</pre>	

Outline

- QTL mapping
- Genome-wide association study (GWAS)

What is the goal to perform QTL or GWAS?

Acknowledgements: some slides were prepared by Dr. Lei Li.

QTL mapping

A **Q**uantitative **T**rait **L**ocus (QTL) is **a genomic locus** that genetically influence variation in a phenotype of a quantitative trait.

Genetic linkage map or a physical map would be helpful to identify QTLs and locate the QTL on a map

Sequencing technology is an excellent tool to genotype many loci in parallel

ATCGCTGCCGATCTGCGTCATACGGAATCGTCGGCTTCAG
ATCGCTGCCGATCTGCGTGATACGGAATCGTCGGCTTCAG
ATCGCTGCCGATCTGCGTCATACGGAATCGTCGGCTTCAG
ATCGCTGCCGATCTGCGTGATACGGAATCGTCGGCTTCAG
ATCGCTGCCGATCTGCGTGATACGGAATCGTCGGCTTCAG
ATCGCTGCCGATCTGCGTGATACGGAATCGTCGGCTTCAG
ATCGCTGCCGATCTGCGTCATACGGAATCGTCGGCTTCAG
ATCGCTGCCGATCTGCGTCATACGGAATCGTCGGCTTCAG
ATCGCTGCCGATCTGCGTCATACGGAATCGTCGGCTTCAG
ATCGCTGCCGATCTGCGTCATACGGAATCGTCGGCTTCAG
ATCGCTGCCGATCTGCGTCATACGGAATCGTCGGCTTCAG

Mapping a causal genetic controlling component (X)

Approach 1: t-test or ANOVA

Based on the genotype data, individuals are divided into groups

	into groups	genotype	phenotype
2.	Perform t-test or ANOVA	1	35
3.	Repeat for all markers	1	24
(use t-test if only two groups exist)		1	20
		1	45
Pros:		0	3
	 Simple 	0	18
	 No genetic map required 	0	12

Cons:

- Individuals with missing data are excluded
- Suffers in low density markers

Approach 2: Interval mapping (IM)

- Assume a single QTL model (QTL at a certain genetic position)
- Determine the confidence of each QTL model
- Scan the whole genome (interval by interval)

Interval mapping – estimate genotypes

Estimate genotypes:

each estimated genotype is associated with a certain probability

- 1. Genetic map
- 2. Mapping function

Assume a single QTL model (QTL at a certain genetic position)

Genetic linkage map

Describe the linear order of markers within a linkage group

 Recombination frequency: the percentage of recombinant gametes produced in a cross

Recombination frequency (r) = #recombinants / total x 100%

 1 centimorgan (cM) apart on a genetic map indicates approximately 1% of recombination events.

Mapping function

- Conversion between the recombination frequencies and genetic distances
- Different formula (Haldane and Kosambi)
- Haldane's mapping function

$$r = \frac{1}{2} \left(1 - e^{-2d} \right)$$

$$d = -\frac{1}{2}(1 - 2r)$$

r = recombination rate (0-0.5) d = distance in Morgans

Interval mapping – estimate genotypes

Estimate genotypes:

each estimated genotype is associated with a certain probability

- 1. Genetic map
- 2. Mapping function

Assume a single QTL model (QTL at a certain genetic position)

Estimate likelihood of a QTL model

Maximum likelihood estimates (MLE)

Prob(pheno data | geno data; a QTL at a given position)

e.g., EM algorithm, Haley-Knott regression (HK)

No QTL Likelihood

Prob(pheno data | geno data; no QTL)

LOD (logarithm of the odds)

$$LOD = log_{10}$$
 $\frac{Prob(\text{pheno data} \mid \text{geno data; a QTL at a given position})}{Prob(\text{pheno data} \mid \text{geno data; no QTL})}$

LOD = log_{10} likelihood ratio, comparing a single-QTL model to the "no QTL anywhere".

The **LOD score** is a measure of the strength of evidence for the presence of a QTL at a particular location.

LOD scores must be closer to 3 before they will generally be deemed interesting. - Broman, Lab Animal, 30(7):44–52, 2001

Permutation tests to infer a LOD threshold

- Permute/shuffle the phenotypes; keep the genotype data intact.
- QTL analysis and get the max(LOD) (maxLOD₁)
- Repeat 1000 times to have (maxLOD₁, maxLOD₂, ... maxLOD₁₀₀₀)
- The 95th percentile of MaxLOD is a genome-wide LOD threshold.

Question

Can we perform a QTL study on a human population?

Genome-wide association study (GWAS)

GWAS is the study to correlate a great number of **genomic variants** with a large number of individuals to identify variants that are significantly associated with **the phenotype of interest**.

Goal: to identify causal variants

Linkage disequilibrium (LD): a nonrandom association of alleles at different loci; genotyping data at two loci have some level of correlations

Balding et al., Nature Review Genetics, 2006, 7:781

Genotyping data and filtering

- Typically only bi-allelic markers are used
- Of two alleles, the allele with a smaller frequency is the minor allele. Its frequency is minor allele frequency (MAF). A MAF cutoff is needed to filter SNPs (e.g., 1%)
- Filter out markers with high missing data (e.g., 30%)
- Imputation can reduce missing data

Mapping populations

Natural population

Diverse individual plant lines/animals/human beings.

- Multi-parent crosses
- Nested association mapping lines (NAM)
- Multiparent Advanced Generation Inter-Cross (MAGIC)

Huang et al., Plant Biotechnology Journal 2012; 10:826–839

Statistical test for each SNP

$$y \sim X\beta + S\alpha + e$$

y: trait data

 $X\beta$: all non-variant fixed effect

 $S\alpha$: variant effects

This simple model is not sufficient to explain phenotypic data.

quantile-quantile (Q-Q) p-value plot

Balding et al., Nature Review Genetics, 2006, 7:781

Spurious associations

Flowering time is confounded with Populations

Population structure (Q)

Population structure (Q)

Confounding structure leads to false positive.

- Define a set of non-redundant markers
- Population structure:
- 1. Principal Component Analysis (PCA) (EIGENSOFT)
- Distance-based cluster (R/stats)
- Model-based clustering (STRUCTURE)

$$y \sim X\beta + S\alpha + Qv + e$$

Fixed effect

Q + K model explains more phenotypic variants

- Population structure (Q)
- **Kinship coefficient (K):** The probability that two homologous genes are identical by descent, estimated by using all genotyped markers

Mixed linear model (MLM)

$$y \sim X\beta + S\alpha + Qv + Zu + e$$

Random effect

The mixed model (blue) dramatically reduces inflation of p-values

Manhattan plot

McCarthy et al., Nature Review Genetics, 2008: 9:356-369

association does not imply causation

Comparison between QTL and GWAS

Attribute	QTL mapping	Association genetics
Populations	Typically from biparental lines; Limited recombination	from diverse lines, taking advantage of historic recombination
Markers for genome coverage	No high-density markers required	high-density markers required
Resolution	Limited	High