

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- ✓ C.Maths
- Physics
- Chemistry

+ more

தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும்

இரண்டாம் தவணைப் பரீட்சை - 2021

Conducted by Field Work Centre, Thondaimanaru. 2nd Term Examination - 2021

இணைந்த	கணிதம்	$-\mathbf{A}$
Combined	mathematics	$-\mathbf{A}$

Three Hours	10 T	\overline{A}
Gr -12 (2022)		

சுட்டெண்

அறிவுறுத்தல்கள்:

- பகுதி A இன் எல்லாவினாக்களுக்கும் விடைஎழுதுக. ஒவ்வொரு வினாவுக்கும் விடைகளைத் தரப்பட்ட இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.
- பகுதி B இல் உள்ள 7 வினாக்களில் விரும்பிய 5 வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- ஒதுக்கப்பட்ட நேரம் முடிவடைந்ததும் பகுதி A ஆனது பகுதி B யிற்கு மேலே இருக்கக் கூடியதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- வினாத்தாளின் பகுதி B யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

	இணைந்த கண	ரிதம் I		
பகுதி	வினா எண்	கிடைத்த புள்ளிகள்		
	1			
	2			
	3	4 001		
	4			
A	5			
A	6			
	7			
	8			
	9			
	10			
	11			
	12			
	13			
В	14			
	15			
	16			
	17			
வினாத்தா	ள் I இன் மொத்தம்			

இணைந்த கணிதம் I	
இணைந்த கணிதம் II	
இறுதிப் புள்ளிகள்	

1)	$a,b\in R$ எனவும் $f(x)=ax^3+bx^2-3x+4$ எனவும் கொள்வோம். $f(x)$ ஐ $(x-1)^2$ இனால்
	வகுக்க வரும் மீதி $2x+1$ எனின் a,b இன் பெறுமானங்களைக் காண்க.
	
2)	சமனிலி $\frac{2}{x} > 3 - \frac{1}{x^2}$ ஐத் தீர்க்க.

3)	$rac{1}{x+x^3}$ ஐப் பகுதிப்பின்னங்களாக்குக. இதிலிருந்து,
	$rac{x^2+4}{x+x^3}$ ஐப் பகுதிப்பின்னங்களாக்குக.
4)	$\log_3 x - 4\log_{3x} 3 = 2$ ஐத் தீர்க்க.

5)	$\lim\limits_{x \longrightarrow 0} rac{\sin^2 3x}{\sqrt{1+x^2}-1}$ ஐப் பெறுமானங் கணிக்க
6)	கிடைத்தரையில் இருந்து புவியீர்ப்பின் கீழ் நிலைக்குத்தாக மேல்நோக்கி u வேகத்துடன் ஒரு
6)	கிடைத்தரையில் இருந்து புவியீர்ப்பின் கீழ் நிலைக்குத்தாக மேல்நோக்கி u வேகத்துடன் ஒரு துணிக்கை எறியப்படுகின்றது. துணிக்கை எறியப்பட்டதில் இருந்து அதி உயர் உயரத்தை
6)	துணிக்கை எறியப்படுகின்றது. துணிக்கை எறியப்பட்டதில் இருந்து அதி உயர் உயரத்தை
6)	துணிக்கை எறியப்படுகின்றது. துணிக்கை எறியப்பட்டதில் இருந்து அதி உயர் உயரத்தை அடைந்து பின் துணிக்கை கிடைத்தரையில் இருந்து அதி உயர் உயரத்தின் $\frac{3}{4}$ மடங்கு உயரத்தில்
6)	துணிக்கை எறியப்படுகின்றது. துணிக்கை எறியப்பட்டதில் இருந்து அதி உயர் உயரத்தை
6)	துணிக்கை எறியப்படுகின்றது. துணிக்கை எறியப்பட்டதில் இருந்து அதி உயர் உயரத்தை அடைந்து பின் துணிக்கை கிடைத்தரையில் இருந்து அதி உயர் உயரத்தின் $\frac{3}{4}$ மடங்கு உயரத்தில் உள்ள வரையுமான துணிக்கையின் இயக்கத்துக்கான வேக நேர வரையை வரைந்து அதில்
6)	துணிக்கை எறியப்படுகின்றது. துணிக்கை எறியப்பட்டதில் இருந்து அதி உயர் உயரத்தை அடைந்து பின் துணிக்கை கிடைத்தரையில் இருந்து அதி உயர் உயரத்தின் $\frac{3}{4}$ மடங்கு உயரத்தில் உள்ள வரையுமான துணிக்கையின் இயக்கத்துக்கான வேக நேர வரையை வரைந்து அதில்
6)	துணிக்கை எறியப்படுகின்றது. துணிக்கை எறியப்பட்டதில் இருந்து அதி உயர் உயரத்தை அடைந்து பின் துணிக்கை கிடைத்தரையில் இருந்து அதி உயர் உயரத்தின் $\frac{3}{4}$ மடங்கு உயரத்தில் உள்ள வரையுமான துணிக்கையின் இயக்கத்துக்கான வேக நேர வரையை வரைந்து அதில்
6)	துணிக்கை எறியப்படுகின்றது. துணிக்கை எறியப்பட்டதில் இருந்து அதி உயர் உயரத்தை அடைந்து பின் துணிக்கை கிடைத்தரையில் இருந்து அதி உயர் உயரத்தின் $\frac{3}{4}$ மடங்கு உயரத்தில் உள்ள வரையுமான துணிக்கையின் இயக்கத்துக்கான வேக நேர வரையை வரைந்து அதில்
6)	துணிக்கை எறியப்படுகின்றது. துணிக்கை எறியப்பட்டதில் இருந்து அதி உயர் உயரத்தை அடைந்து பின் துணிக்கை கிடைத்தரையில் இருந்து அதி உயர் உயரத்தின் $\frac{3}{4}$ மடங்கு உயரத்தில் உள்ள வரையுமான துணிக்கையின் இயக்கத்துக்கான வேக நேர வரையை வரைந்து அதில்
6)	துணிக்கை எறியப்படுகின்றது. துணிக்கை எறியப்பட்டதில் இருந்து அதி உயர் உயரத்தை அடைந்து பின் துணிக்கை கிடைத்தரையில் இருந்து அதி உயர் உயரத்தின் $\frac{3}{4}$ மடங்கு உயரத்தில் உள்ள வரையுமான துணிக்கையின் இயக்கத்துக்கான வேக நேர வரையை வரைந்து அதில்
6)	துணிக்கை எறியப்படுகின்றது. துணிக்கை எறியப்பட்டதில் இருந்து அதி உயர் உயரத்தை அடைந்து பின் துணிக்கை கிடைத்தரையில் இருந்து அதி உயர் உயரத்தின் $\frac{3}{4}$ மடங்கு உயரத்தில் உள்ள வரையுமான துணிக்கையின் இயக்கத்துக்கான வேக நேர வரையை வரைந்து அதில்
6)	துணிக்கை எறியப்படுகின்றது. துணிக்கை எறியப்பட்டதில் இருந்து அதி உயர் உயரத்தை அடைந்து பின் துணிக்கை கிடைத்தரையில் இருந்து அதி உயர் உயரத்தின் $\frac{3}{4}$ மடங்கு உயரத்தில் உள்ள வரையுமான துணிக்கையின் இயக்கத்துக்கான வேக நேர வரையை வரைந்து அதில்
6)	துணிக்கை எறியப்படுகின்றது. துணிக்கை எறியப்பட்டதில் இருந்து அதி உயர் உயரத்தை அடைந்து பின் துணிக்கை கிடைத்தரையில் இருந்து அதி உயர் உயரத்தின் $\frac{3}{4}$ மடங்கு உயரத்தில் உள்ள வரையுமான துணிக்கையின் இயக்கத்துக்கான வேக நேர வரையை வரைந்து அதில்
6)	துணிக்கை எறியப்படுகின்றது. துணிக்கை எறியப்பட்டதில் இருந்து அதி உயர் உயரத்தை அடைந்து பின் துணிக்கை கிடைத்தரையில் இருந்து அதி உயர் உயரத்தின் $\frac{3}{4}$ மடங்கு உயரத்தில் உள்ள வரையுமான துணிக்கையின் இயக்கத்துக்கான வேக நேர வரையை வரைந்து அதில்
6)	துணிக்கை எறியப்படுகின்றது. துணிக்கை எறியப்பட்டதில் இருந்து அதி உயர் உயரத்தை அடைந்து பின் துணிக்கை கிடைத்தரையில் இருந்து அதி உயர் உயரத்தின் $\frac{3}{4}$ மடங்கு உயரத்தில் உள்ள வரையுமான துணிக்கையின் இயக்கத்துக்கான வேக நேர வரையை வரைந்து அதில்

7)		நந்து கிடை, நிலைக்குத்து வேகங்கள் முறையே. u,v
	ஆகுமாறு ஒரு நிலைக்குத்து தளத்தில் எறிய	பப்படும் துணிக்கை இரண்டு செக்கனில் அதன் வேகம்
	கிடையுடன் மேல்நோக்கி 45˚ திசையில் கால	னப்படின். v,u ஐக் காண்க. இங்கு $\frac{\mathrm{v}}{\mathrm{u}}=\tan\frac{\pi}{3}$ ஆகும்.
8)	8) $\underline{a}.(\underline{b}+\underline{c}) = \underline{b}.(\underline{a}-\underline{c})$ எனின் $(\underline{a}+\underline{b})$ ஆன	ரது <u>c</u> க்கு செங்குத்து எனக்காட்டுக.
8)	8) $\underline{a}.(\underline{b}+\underline{c})=\underline{b}.(\underline{a}-\underline{c})$ எனின் $(\underline{a}+\underline{b})$ ஆன	ரது <u>c</u> க்கு செங்குத்து எனக்காட்டுக.
8)	8) $\underline{a}.(\underline{b}+\underline{c})=\underline{b}.(\underline{a}-\underline{c})$ எனின் $(\underline{a}+\underline{b})$ ஆன	ரது <u>c</u> க்கு செங்கு <u>த்து</u> எனக்காட்டுக.
8)	8) $\underline{a}.(\underline{b}+\underline{c})=\underline{b}.(\underline{a}-\underline{c})$ எனின் $(\underline{a}+\underline{b})$ ஆன	எது <u>c</u> க்கு செங்குத்து எனக்காட்டுக.
8)	8) $\underline{a}.(\underline{b}+\underline{c})=\underline{b}.(\underline{a}-\underline{c})$ எனின் $(\underline{a}+\underline{b})$ ஆன	ரது <u>c</u> க்கு செங்குத்து எனக்காட்டுக.
8)	8) $\underline{a}.(\underline{b}+\underline{c})=\underline{b}.(\underline{a}-\underline{c})$ எனின் $(\underline{a}+\underline{b})$ ஆன	
8)		
8)		
8)		
8)		
8)		
8)		
8)		
8)		
8)		
8)		
8)		

9)	அருசம	6 <u>И</u> 160) У	கள் ஒள	5புள்ளியில்	தாககு	_{தை} அடி	பற்றின	മ്പിതബധ്വദ	ான பருமன் இ	இவ்விசைகளின்
	பெருக்	கத்தின்	மூன்று	மடங்கின்	வர்க்க	மூலத்திற்கு	5 சமன்	ஆகும்.	இவ்விசைகளு	க் கிடைப்பட்ட
	கோண	த்தைக்	காண்க.							
					•••••					
	•••••									•••••
										•••••
	•••••									•••••
					4					
10)	25 <i>kg</i>	நிறை	புள்ள	துணிக்கை	ஓர்	இழையால்க	கட்டி செ	ிதாங்கவிட	ப்பட்டுள்ளது.	அது $15kg$
	நிறையு	ள்ள கி	ിെെഖിൽ	சயால் ஒரு	ந பக்கத	ந்திற்கு இழு	க்கப்பட்	டு சமநின	லயிலுள்ளது.	இழையிலுள்ள
	இழுகை	വധെധ്വ	ம் இழை	ழயின் நிலை	லக்குத்த	டுனான சாய்	ப்வையும்	காண்க.		
						MATAN. III.				

தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும்

இரண்டாம் தவணைப் பரீட்சை - 2021

Conducted by Field Work Centre, Thondaimanaru. 2nd Term Examination - 2021

FWC

இணைந்த கணிதம் $-\,{
m B}$

Combined mathematics - B

Gr	-12	(2022)
O1	-14	(4044)

10) (T) (В
----------------	---

- 11) a) \propto , β என்பன இருபடிச்சமன்பாடு $x^2 px + q = 0$ $(q \neq 0)$ இன் மூலங்களாகும். α^3 , β^3 என்பவற்றை மூலங்களாகக் கொண்ட இருபடிச்சமன்பாடு $x^2 (p^3 3pq) \ x + q^3 = 0$ எனக் காட்டுக. இச்சமன்பாட்டில் $xy = q^3 + 1$ எனும் தொடர்பை பயன்படுத்தி $q^3y^2 p(p^2 3q)(q^3 + 1)y + (q^3 + 1)^2 = 0$ எனக் காட்டுக. இச்சமன்பாட்டின் மூலங்களை α , β சார்பில் எழுதுக.
 - b) $a,b,\in R$ எனக் கொள்வோம். சமன்பாடு $3x^2-2(a+b)x+ab=0$ இன்மூலங்கள் மெய்யானவை எனக்காட்டுக.
 - c) $g(x) = x^3 + a x^2 + bx + 1$ எனக் கொள்வோம். இங்கு $a,b, \in R$ ஆகும். g(x) ஆனது (x-2) இனால் வகுக்கப்படும் போது உள்ள மீதி g(x) ஆனது (x-1) இனால் வகுக்கப்படும் போது உள்ள மீதியின் மும்மடங்கு எனவும் g(x) ஆனது (x-1)(x-2) இனால் வகுக்கப்படும் போது உள்ள மீதி kx+5 எனவும் தரப்பட்டுள்ளது. இங்கு $k \in /R$ ஆகும். a,b,k ஆகியவற்றின் பெறுமானங்களைக் காண்க.
- 12) a) முதற் கோட்பாடுகளிலிருந்து $\sin x$ இன் பெறுதியைக் காண்க.
 - b) பின்வரும் சார்புகளை *x* குறித்து வகையிடுக.
 - (i) $\frac{x^2-x+1}{x^2+x+1}$
 - (ii) $\frac{1-e^x}{1+e^x}$
 - c) $y = x^2 \cos x$ எனின $x^2 \frac{d^2y}{dx^2} 4x \frac{dy}{dx} + (x^2 + 6)y = \odot$ எனக்காட்டுக.
 - d) $x = e^t$, $y = \tan t$ எனின் $x \frac{dy}{dx} = 1 + y^2$ எனக் காட்டி $x \frac{d^2y}{dx^2} + (1 2y) \frac{dy}{dx} = 0$ என்பதை உய்த்தறிக.
- 13) a) பின்வருவனவற்றை நிறுவுக.
 - (i) $\frac{\sin A + \sin 2A}{1 + \cos A + \cos 2A} = \tan A$
 - (ii) $\tan\left(\frac{\pi}{4} + \frac{A}{2}\right) + \tan\left(\frac{\pi}{4} \frac{A}{2}\right) = 2\sec A$
 - (iii) $\cos^2 \frac{\pi}{16} + \cos^2 \frac{3\pi}{16} + \cos^2 \frac{5\pi}{16} + \cos^2 \frac{7\pi}{16} = 2$

- b) (i) $\sin(2\tan^{-1}2) + \cos(2\tan^{-1}2)$ இன் பெறுமானத்தைக் காண்க.
 - (ii) $2\tan^{-1}(\sin x) = \tan^{-1}(2\sec x)$ ஐத் தீர்க்க.
- c) $\cos^{-1}x + \cos^{-1}y + \cos^{-1}z = \pi$ எனின் $x^2 + y^2 + z^2 + 2xyz = 1$ என நிறுவுக.
- 14) a) வழமையான குறியீடுகளுடன் யாதாயினும் ஒரு முக்கோணி ABC இல் சைன் நெறியைக்கூறி நிறுவுக.

வழமையான குறியீடுகளுடன் பின்வருவனவற்றை நிறுவுக.

(i)
$$a \cos\left(\frac{B-C}{2}\right) = (b+c)\sin\frac{A}{2}$$

(ii)
$$(b^2 - c^2) \cot A + (c^2 - a^2) \cot B + (a^2 - b^2) \cot c = 0$$

b) கோசைன் நெறியைக் கூறுக.

$$\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} + \frac{a^2 + b^2 + c^2}{2abc}$$
 எனக்காட்டுக.

$$\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} = k \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right)$$
 எனின் k இன் மிகச்சிறிய பெறுமானத்தைக் காண்க.

- 15) a) கார் ஒன்று ஒரு நேரான கிடைத்தரை வழியே இயங்குகின்றது. அப்பாதையில் புள்ளி A ஐ $25\,ms^{-1}$ கதியுடன் கடந்து 30s களுக்கு அதே கதியை பேணி பின் $10\,ms^{-1}$ கதியை அடையும் வரை சீரான அமர்முடுகலுடன் இயங்கி பின் அதே கதியை பேணி புள்ளி B ஐ 90s இல் கடந்து செல்கின்றது. இங்கு AB=1410m ஆகும்.
 - (i) A இல் இருந்து B வரைக்குமான காரின் இயக்கத்திற்கான வேக நேர வரைபை வரைக.
 - (ii) கார் அமர்முடுகலுடன் இயங்கிய நேரம் யாது?
 - (iii) காரின் அமர்முடுகல் யாது?
 - (iv) கார் அமர்முடுகலுடன் இயங்கிய தூரம் யாது?
 - ${
 m (v)}$ கார் $10\ ms^{-1}$ சீரான வேகத்துடன் இயங்கிய தூரம் யாது?
 - b) கிடைத்தரையில் இருந்து h உயரத்தில் உள்ள ஒரு புள்ளியில் இருந்து கிடையுடன் $an^{-1}\left(\frac{3}{4}\right)$ கோணத்தில் ஒரு நிலைக்குத்து தளத்தில் u வேகத்துடன் மேல்நோக்கி எறியப்படும் துணிக்கை கிடைத்தரையை எறியற் புள்ளிக்கு நேர் கீழே கிடை தரையில் உள்ள புள்ளியில் இருந்து 2h தூரத்தில் அடிக்கின்றது.
 - (i) எறிய கதியின் கிடை நிலைக்குத்து கூறுகளைக் காண்க.
 - (ii) எறியற் புள்ளியின் ஊடான கிடை வீச்சைக் காண்க.
 - (iii) எறியற்புள்ளியின் ஊடான கிடைமட்டத்தில் உள்ள போது துணிக்கையில் கதி யாது?

- (16) a) O, A, B ஒரு நேர்கோட்டில் இல்லாத புள்ளிகள் O குறித்து A, B இன் தானக்காவிகள் முறையே \underline{a} , \underline{b} ஆகும். C என்ற புள்ளியின் தானக்காவி \underline{a} + \underline{b} ஆகும்.
 - $\overrightarrow{OM} = \frac{2}{3} \ \underline{b}$ ஆகும். நீட்டப்பட்ட AM, நீட்டப்பட்ட CB என்பன N இல் சந்திக்கின்றன. $CN = \lambda CB$, $AN = \mu AM$ எனக் கொள்க.
 - (i) \overrightarrow{AM} , \overrightarrow{CB} என்பவற்றை \underline{a} , \underline{b} இல் காண்க.
 - (ii) \overrightarrow{CN} , \overrightarrow{AN} என்பவற்றை $\lambda,\mu,\underline{a}$, \underline{b} சார்பாக காண்க.
 - (iii) முக்கோணி ACN இல் காவிக்கூட்டலை உபயோகித்து λ, μ என்பவற்றைக் காண்க.AM: MN ஐ உய்த்தறிக.
 - b) P, Q என்ற விசைகள் θ கோணத்தில் தாக்கும் போது விளையுள் $5\sqrt{P^2+Q^2}$ ஆகும். இவ்விசைகள் $(90-\theta)$ கோணத்தில் தாக்கும் போது விளையுள் $3\sqrt{P^2+Q^2}$ ஆகும். θ ஐக் காண்க.
 - c) $A\hat{O}B = 30^{\circ}$, $B\hat{O}C = 30^{\circ}$, $C\hat{O}D = 60^{\circ}$, $D\hat{O}E = 90^{\circ}$ ஆகுமாறு A, B, C, D, E, O என்ற புள்ளிகள் உள்ளன. $3,4\sqrt{3}$, 8,4, $2\sqrt{3}$ N விசைகள் முறையே. OA,OB,OC,OD,OE வழியே தாக்குகின்றன. விளையுளின் பருமன், திசை என்பவற்றைக் காண்க.
- 17) a) W நிறையும் (a + b) நீளமும் உள்ள கோல் AB இன் புவியீர்ப்பு மையம் A இலிருந்து a தூரத்திலுள்ளது. இக்கோல் C கிடைத்தூரத்திலுள்ள இரு கத்தி விளிம்புகளில் தாங்கப்பட்டு சமநிலையிலுள்ளது. ஒவ்வொரு கத்தி விளிம்புக்கும் அப்பாலுள்ள தூரங்கள் சமனானவை ஆகுமாறு கிடையாக தூங்கப்படுகிறது. கத்தி விளிம்புகள் மீதுள்ள உதைப்பு $\frac{a-b+c}{2c}w$, $\frac{b-a+c}{2c}w$ எனக் காட்டுக.
 - b) ஒரே மட்டத்திலுள்ள இரு புள்ளிகள் A, D இற்கு ஒரு நீளா இழையின் முனைகள் இணைக்கப்பட்டுள்ளன. இழையிலுள்ள B, C என்ற புள்ளிகளிற்கு, முறையே 30kg, w திணிவுள்ள துணிக்கைகள் கட்டப்பட்டுள்ளன. BC கிடையாகவும் AB, CD என்பன முறையே கிடையுடன் 60°, 30° கோணங்களை அமைக்கின்றன. w இன் பெறுமானத்தைக் காண்க.

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- Biology
- C.Maths
- Physics
- Chemistry
 - + more

