MCA101: COMPUTER GRAPHICS

2D GEOMETRY REPRESENTATION

Raghav B. Venkataramaiyer

CSED TIET Patiala India.

August 23, 2024

- 1 2D GEOMETRY INTRODUCTION
- 2 MID-POINT ALGORITHM

- 1 2D GEOMETRY INTRODUCTION
 - Straight Lines
 - Conics
- 2 MID-POINT ALGORITHM

PARAMETRIC FORM

For any two vectors $\mathbf{u}, \mathbf{v} \in V$, a point on the line segment joining them is given parameterised by $t \in [0,1]$, as

$$\mathbf{p} = f(t) = (1 - t)\mathbf{u} + t\mathbf{v}$$

PARAMETRIC FORM

Any point on a line in the direction of unit vector $\mathbf{u} : \|\mathbf{u}\|_2^2 = 1$, and an incident point \mathbf{p}_0 may be given parameterised by $t \in \mathbb{R}$ as,

$$\mathbf{p} = f(t) = \mathbf{p}_0 + t\mathbf{u}$$

HESSE NORMAL FORM

Distance from the origin O to the line E calculated with the Hesse normal form. Normal vector in red, line in green, point O shown in blue.

Given, Normal to the line $\mathbf{n}_0: \|\mathbf{n}_0\|_2^2 = 1$, and its distance from origin, d;

The point on the line is given implicitly as the locus of all points \mathbf{p} that satisfy,

$$\mathbf{n}_0 \cdot \mathbf{p} - d = 0$$

- 1 2D GEOMETRY INTRODUCTION
 - Straight Lines
 - Conics
- 2 MID-POINT ALGORITHM

CIRCLE

FIGURE: Image Courtesy: Wikipedia

Implicit Form:

$$f\binom{x}{y} = x^2 + y^2 - r^2 = 0$$

Parametric Form:

$$f(r,t) = \begin{bmatrix} r\cos t \\ r\sin t \end{bmatrix}$$

ELLIPSE

FIGURE: Image Courtesy: Wikipedia

Standard form

$$f\binom{x}{y} = \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0$$

Parametric Form

$$f(t; a, b) = \begin{bmatrix} a\cos t \\ b\sin t \end{bmatrix}$$

- 1 2D GEOMETRY INTRODUCTION
- 2 MID-POINT ALGORITHM

- 1 2D GEOMETRY INTRODUCTION
- 2 MID-POINT ALGORITHM
 - Fundamentals

PROBLEM

In a quantised (pixelated or discrete) 2d plane, find the set of points that visually approximate a given curve, say a straight line or a conic.

METHOD

Iteratively, increment along one axes, with respect to which, the slope of the curve is gentle.

Decide whether it is required to increment along the perpendicular axis or not.

Increment if required.

