Homework 5

Exercise 1 Show that if $\lim_{n\to\infty} a_n = 0$ and (b_n) is bounded, then

$$\lim_{n\to\infty} (a_n b_n) = 0.$$

Proof. We have (a_n) converges to 0 and (b_n) is bounded. Then there exists $l, u \in \mathbb{R}$ such that $l \leq b_n \leq u$ for all $n \in \mathbb{N}$. For $\varepsilon > 0$ we have there exists $N \in \mathbb{N}$ such that for all n > N, $a_n \in (-\varepsilon; \varepsilon)$ and $b_n \in (l; u)$. Then using Lemma 12.10 we have $a_n b_n \in (\min(-\varepsilon l, \varepsilon l, \varepsilon u, \varepsilon u); \max(-\varepsilon l, \varepsilon l, \varepsilon u, \varepsilon u))$. But then let $\varepsilon = \max(-\varepsilon l, \varepsilon l, \varepsilon u, \varepsilon u)$ so that for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all n > N we have $|a_n| < \varepsilon$.

Exercise 2 Prove that the sequence $a_n = 2^{-n}$ converges to 0.

Proof. Note that for all $n \in \mathbb{N}$ we have $a_n \in (0; 1)$. Let (p; q) be a region such that $0 \in (p; q)$. If $1/2 \le q$ then there are no elements of $(a_n) \in (p; q)$ and so there are finitely many $n \in \mathbb{N}$ with $a_n \notin (p; q)$. Suppose that $q \in (0; 1/2)$. Then 1/q > 1. By the Archimedean Property exists $n \in \mathbb{N}$ with 1/q < n. But since 1/q > 1, we have $1/q < 2^n$. Then 2^n for $n \in \mathbb{N}$ is a subset of \mathbb{N} so there exists a least $k \in \mathbb{N}$ such that $2^k > 1/q$. Then $q < 2^{-k}$. But there are a finite number of elements of \mathbb{N} which are less than or equal to k and so there are a finite number of $n \in \mathbb{N}$ with $a_n > q$. Thus $\lim_{n \to \infty} a_n = 0$.

Exercise 3 Show that if s > 1 and $n \in \mathbb{N}$, we have

$$s^n > 1 + n(s-1)$$

Proof. Use induction on n. We see that for s > 1 with n = 1 we have s = 1 + s - 1 = 1 + n(s - 1). Now assume that for $k \in \mathbb{N}$ we have $s^k \ge 1 + k(s - 1)$. Consider

$$s^{k+1} > s + sn(s-1) = s + s^2n - sn.$$

At this point notice that

$$0 < (s-1)^2 = s^2 - 2s + 1.$$

Thus $s^2 - s > s - 1$ so $ns^2 - ns > ns - n$. Note that this implies

$$s + s^{2}n - sn > ns - n + s = 1 + (n+1)(s-1)$$

as desired. \Box

Exercise 4 Prove that for each real number t with 0 < t < 1, the sequence $x_n = t^n$ converges to 0.

Proof. Let $s = t^{-1}$ for 0 < t < 1 so that we have s > 1. Then $s^n \ge 1 + n(s-1)$ so $(t^{-1})^n \ge 1 + n(t^{-1}-1)$ which means

$$t^{n} \leq \frac{1}{1 + n(t^{-1} - 1)}$$

$$= \frac{1}{1 + n(\frac{1-t}{t})}$$

$$= \frac{1}{\frac{t + n(1-t)}{t}}$$

$$= \frac{t}{t + n(1-t)}$$

$$= \frac{\frac{t}{n}}{\frac{t}{n} + (1-t)}.$$

Using sum and product rules from Theorem 13.5 and convergent functions from Exercise 13.4 we have this expression converges to 0. Using comparative limits from Theorem 13.5 and since $t^n > 0$ for all $n \in \mathbb{N}$ we know that (a_n) must converge to 0 as well.

Exercise 5 Show that for each real number |t| < 1, the sequence

$$a_n = 1 + t + t^2 + \dots + t^{n-1}$$

satisfies

$$\lim_{n \to \infty} a_n = \frac{1}{1 - t}.$$

Proof. Note that $a_n = 1 + t + t^2 + \dots + t^{n-1} = \frac{1-t^n}{1-t} = \frac{1}{1-t} - \frac{t^n}{1-t}$. From Exercise 4 we have that t^n converges to 0 and using the product rule we have $\frac{t^n}{1-t}$ converges to 0. Then using the addition rule we have $\lim_{n\to\infty} a_n = \frac{1}{1-t}$.

Exercise 6 Prove that for any real number a, the sequence $x_n = a^n/(n!)$ converges to 0.

Proof. If a=0 the theorem is trivial. Let a>0. For all n>a we have $a_{n-1}\leq \frac{a_n}{a_{n-1}}$. But then $\frac{a_n}{a_{n-1}}=\frac{a}{n}$ which converges to 0 from Exercise 13.4. Using the sequence comparisons from Theorem 13.5 we know that $\lim_{n\to\infty}a_n\leq 0$. In the case where a<0 every other element of (a_n) is less than 0. In the case where a>0 we concluded that for every region R with $0\in R$ there were finitely many n such that $a_n\notin R$. If we consider $|a_n|$ for all n then this condition still holds which means that if half of the elements of (a_n) are less than 0 then there are still finitely many $n\in\mathbb{N}$ with $a_n\notin R$.

Exercise 7 Let

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

and

$$q(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0$$

be polynomials. What is

$$\lim_{n \to \infty} \frac{p(n)}{q(n)}?$$

Proof. We have

$$p(x) = x^{n} \left(a_{n} + \frac{a_{n-1}}{x} + \dots + \frac{a_{1}}{x^{n-1}} + \frac{a_{0}}{x^{n}}\right)$$

and

$$q(x) = x^m (b_m + \frac{b_{m-1}}{x} + \dots + \frac{b_1}{x^{m-1}} + \frac{b_0}{x^m}).$$

Then

$$\frac{p(x)}{q(x)} = x^{n-m} \left(\frac{a_n + \frac{a_{n-1}}{x} + \dots + \frac{a_1}{x^{n-1}} + \frac{a_0}{x^n}}{b_m + \frac{b_{m-1}}{x} + \dots + \frac{b_1}{x^{m-1}} + \frac{b_0}{x^m}} \right).$$

When we take the limit as x approaches ∞ , we have $\frac{a_k}{x^{n-k}}$ converges to zero because $\frac{1}{x}$ converges to 0 from Exercise 13.4 and Theorem 13.5. Then if m=n we have $\lim_{x\to\infty} p(x)/q(x) = a_n/b_m$. If n>m then the sequence diverges since n-m>0 and it is no longer bounded. If n< m then n-m<0 and the sequence converges to 0 by the same reasoning as above (i.e. 1/x converges to 0 and we can make use of the product of two sequence).

Exercise 8 What is

$$\lim_{n\to\infty} \sqrt[n]{n}?$$

Proof. Let $\varepsilon > 0$ and consider $(1+\varepsilon)^k$. Let $k = 1/\varepsilon^2$. Then we have $\varepsilon^2(1+\varepsilon)^{1/\varepsilon^2} = \varepsilon^{2\varepsilon^2}(1+\varepsilon) > 1$. By the Archimedean Property there exists some $n \in \mathbb{N}$ such that $n > 1/\varepsilon^2$. Then $(1+\varepsilon)^n > n$ and $\sqrt[n]{n} > 0$ so $|\sqrt[n]{n} - 1| < \varepsilon$. Thus for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all n > N we have $|\sqrt[n]{n} - 1| < \varepsilon$. Therefore $\lim_{n \to \infty} \sqrt[n]{n} = 1$.