

B

© Determining Genome Targeting Efficiency using T7 Endonuclease I (M0302) V.4

New England Biolabs¹

¹New England Biolabs

1

dx.doi.org/10.17504/protocols.io.bfhqjj5w

New England Biolabs (NEB)
Tech. support phone: +1(800)632-7799 email: info@neb.com

T7 Endonuclease I recognizes and cleaves non-perfectly matched DNA. This protocol describes how to determine genome targeting efficiency by digesting annealed PCR products with T7 Endonuclease I. In the first step PCR products are produced from the genomic DNA of cells whose genomes were targeted using Cas9, TALEN, ZFN etc. In the second step, the PCR products are annealed and digested with T7 Endonuclease I. Fragments are analyzed to determine the efficiency of genome targeting.

DOI

dx.doi.org/10.17504/protocols.io.bfhqjj5w

https://www.neb.com/protocols/2014/08/11/determining-genome-targeting-efficiency-using-t7-endonuclease-i

New England Biolabs 2022. Determining Genome Targeting Efficiency using T7 Endonuclease I (M0302). **protocols.io**

https://dx.doi.org/10.17504/protocols.io.bfhqjj5w New England Biolabs

T7 Endonuclease I, targeting efficiency

_____ protocol ,

Apr 23, 2020

Feb 14, 2022

36112

1

Citation: New England Biolabs Determining Genome Targeting Efficiency using T7 Endonuclease I (M0302) https://dx.doi.org/10.17504/protocols.io.bfhqij5w

REFERENCES:

Guschin DY, Waite AJ, Katibah GE, Miller JC, Holmes MC, Rebar EJ (2010). A rapid and general assay for monitoring endogenous gene modification.. Methods in molecular biology (Clifton, N.J.). https://doi.org/10.1007/978-1-60761-753-2_15

MATERIALS

Biolabs Catalog #M0494S

Biolabs Catalog #M0302S

Required Materials:

- Q5® Hot Start High-Fidelity 2X Master Mix (M0494S)
- T7 Endonuclease I (M0302S)
- 0.25 mM EDTA
- Purified genomic DNA from targeted cells
- PCR primers to amplify a ~1kb region containing the target site
- The target site should be offset from the center of the amplicon so that digestion produces easily resolvable DNA fragments
- PCR primer design is critical. Please visit NEB's <u>Tools and Resources</u> page to optimize your primer design using the <u>NEB T_m Calculator</u>
- A PCR thermocycler with programmable temperature ramp rate
- DNA purification system we recommend Ampure XP beads
- Apparatus to quantitate DNA spectrophotometer or fluorometer
- Apparatus to analyze DNA fragments e.g. Agilent Bioanalyzer, Qiagen Qiaxel, or standard agarose gel electrophoresis

Please refer to the Safety Data Sheets (SDS) for health and environmental hazards.

PCR

1

Set up a $\blacksquare 50 \ \mu L$ PCR reaction using $\sim \blacksquare 100 \ ng$ genomic DNA as a template. For each amplicon set up 3 PCR reactions using the following templates:

- gDNA from targeted cells (e.g. Cas9, or TALEN transfected cells)
- gDNA from negative control cells (e.g. non-specific DNA transfected cells)
- water (i.e. no template control)

PCR using Q5 High-Fidelity DNA Polymerase

2

Citation: New England Biolabs Determining Genome Targeting Efficiency using T7 Endonuclease I (M0302) https://dx.doi.org/10.17504/protocols.io.bfhgji5w

Α	В	С
COMPONENT	50 μl REACTION	FINAL CONCENTRATION
Q5® Hot Start High-Fidelity 2X Master Mix (M0494)	25 μΙ	1X
10 μM Forward Primer	2.5 μΙ	0.5 μΜ
10 μM Reverse Primer	2.5 μΙ	0.5 μΜ
Template DNA	variable	100 ng total
Nuclease-free water	Το 50 μΙ	

Gently mix the reaction.

3 Collect all liquid to the bottom of the tube by a quick spin if necessary.

Transfer PCR tubes to a PCR machine and begin thermocycling: **Cycling Conditions**

Α	В	С
STEP	TEMPERATURE	TIME
Initial Denaturation	98°C	30 seconds
35 cycles	98°C	5 seconds
	*50-72°C	10 seconds
	72°C	20 seconds
Final Extension	72°C	2 minutes
Hold	4-10°C	

^{*}Use of the NEB T_m Calculator is highly recommended.

Note: Q5 Hot Start High-Fidelity 2X Master Mix does not require a separate activation step. Standard Q5 cycling conditions are recommended.

5

Analyze a small amount of the of the PCR product to verify size and appropriate amplification.

6 Purify the PCR reaction using **90 µL Ampure XP beads** following the manufacturer's

recommendations.

Other PCR purification systems (e.g. Monarch PCR & DNA Clean Up Kit, or Zymo DNA Clean and Concentrator $^{\text{\tiny{M}}}$) are acceptable.

7 Elute PCR products in $\square 30 \, \mu L$ water, recovering $\square 25 \, \mu L$.

Measure the concentration of the purified PCR products.

T7 Endonuclease I digestion

Assemble reactions as follows:

Α	В	
COMPONENT	19 μl ANNEALING REACTION	
DNA	200 ng	
10X NEBuffer 2	2 μΙ	
Nuclease-free Water	Το 19 μΙ	

10

Anneal the PCR products in a thermocycler using the following conditions: **Hybridization Conditions**

Α	В	С	D
STEP	TEMPERATURE	RAMP RATE	TIME
Initial Denaturation	95°C		5 minutes
Annealing	95-85°C	-2°C/second	
	85-25°C	-0.1°C/second	
Hold	4°C		Hold

11

Add $\Box 1~\mu L$ T7 Endonuclease I (M0302) to the annealed PCR products for a final volume of $\Box 20~\mu L$.

12

Incubate at § 37 °C for © 00:15:00.

13

14

Purify the reaction using $\blacksquare 36~\mu L$ Ampure XP beads according to the manufacturer's suggestion.

This step is optional since 1 μ I of the reaction will not interfere with analysis on an Agilent Bioanalyzer using DNA1000 reagents.

15 Elute the DNA fragments in $\blacksquare 20~\mu L$ water, recovering $\blacksquare 15~\mu L$.

Analysis

16

Analyze the fragmented PCR products and determine the percent of nuclease-specific cleavage products (fraction cleaved).

17

Calculate the estimated gene modification using the following formula: % gene modification = 100 x (1 - (1- fraction cleaved)^{1/2})