Noções de Lógica

José Antônio O. Freitas

MAT-UnB

Definição

Uma **proposição** é enunciado, por meio de palavras ou símbolos, ao qual podemos atribuir um **valor lógico**.

Definição

Uma **proposição** é enunciado, por meio de palavras ou símbolos, ao qual podemos atribuir um **valor lógico**.

Definição

Diz-se que o **valor lógico** de uma proposição é "verdade" (V) se a proposição é verdadeira ou "falsidade" (F) se a proposição é falsa.

Julgue se as seguintes sentenças são ou não proposições:

Julgue se as seguintes sentenças são ou não proposições:

1) Todo número primo é ímpar.

Julgue se as seguintes sentenças são ou não proposições:

- 1) Todo número primo é ímpar.
- 2) $x^2 + y^2 \ge 0$ para todos $x, y \in \mathbb{R}$.

Julgue se as seguintes sentenças são ou não proposições:

- 1) Todo número primo é ímpar.
- 2) $x^2 + y^2 \ge 0$ para todos $x, y \in \mathbb{R}$.
- 3) x é um número real maior que 2.

"Toda proposição tem um, e um só, dos valores lógicos **verdade** ou **falsidade**."

"Toda proposição tem um, e um só, dos valores lógicos **verdade** ou **falsidade**."

Isso é conhecido como **Princípio da não contradição e do terceiro excluído**.

Se \mathbb{H} , então \mathbb{T} .

 \mathbb{H} é a hipótese

Se \mathbb{H} , então \mathbb{T} .

 \mathbb{H} é a hipótese \mathbb{T} é a tese.

Se \mathbb{H} , então \mathbb{T} .

 \mathbb{H} é a hipótese \mathbb{T} é a tese.

 $\mathbb H$ se, e somente se, $\mathbb T$

Se \mathbb{H} , então \mathbb{T} .

 \mathbb{H} é a hipótese \mathbb{T} é a tese.

 \mathbb{H} se, e somente se, \mathbb{T} ou \mathbb{H} se, e só se, \mathbb{T} .

Se \mathbb{H} , então \mathbb{T} .

 \mathbb{H} é a hipótese \mathbb{T} é a tese.

 \mathbb{H} se, e somente se, \mathbb{T} ou \mathbb{H} se, e só se, \mathbb{T} .

Essa proposição poder decomposta em duas proposições:

Se \mathbb{H} , então \mathbb{T} .

 \mathbb{H} é a hipótese \mathbb{T} é a tese.

 \mathbb{H} se, e somente se, \mathbb{T} ou \mathbb{H} se, e só se, \mathbb{T} .

Essa proposição poder decomposta em duas proposições:

Se \mathbb{H} , então \mathbb{T} .

 \mathbb{H} é a hipótese \mathbb{T} é a tese.

 \mathbb{H} se, e somente se, \mathbb{T} ou \mathbb{H} se, e só se, \mathbb{T} .

Essa proposição poder decomposta em duas proposições:

- 1) Se \mathbb{H} , então \mathbb{T} .
- 2) Se \mathbb{T} , então \mathbb{H} .

$$x^2 + y^2 = 0$$
 se, e somente se, $x = y = 0$

$$x^2 + y^2 = 0$$
 se, e somente se, $x = y = 0$

Nesse caso podemos escrever:

Se
$$x^2 + y^2 = 0$$
, então $x = y = 0$.

$$x^2 + y^2 = 0$$
 se, e somente se, $x = y = 0$

Nesse caso podemos escrever:

Se
$$x^2 + y^2 = 0$$
, então $x = y = 0$.

Se
$$x = y = 0$$
, então $x^2 + y^2 = 0$.

Se \mathbb{H} , então \mathbb{T} .

1) Demonstração direta;

- 1) Demonstração direta;
- 2) Demonstração por contraposição;

- 1) Demonstração direta;
- 2) Demonstração por contraposição;
- 3) Demonstração por contradição ou redução ao absurdo.

- 1) Demonstração direta;
- 2) Demonstração por contraposição;
- 3) Demonstração por contradição ou redução ao absurdo.