Tópicos

Forças exteriores; Trabalho duma força; Sistemas conservativos e dissipativos; Conservação da energia mecânica

Deve rever

- Produto escalar
- · componentes de um vetor
- Conceitos de:
 - referencial
 - posição
 - · velocidade
 - aceleração

Cap 2 e 3 (Fundamentos de Física)

Objetivos de aprendizagem

- descrever o trabalho como uma medida da transferência de energia entre sistemas mecânicos;
- classificar os diferentes tipos de energia envolvidos num sistema energia cinética; energia potencial gravítica; e energia potencial elástica
- distinguir forças conservativas de forças não conservativas
- aplicar os princípios do Trabalho Energia Cinética e da Conservação da Energia na resolução de problemas
- prever as transferências de energia num sistema na presença de forças conservativas e de forças não conservativas.

Estudo recomendado:

 R. Resnick, D. Halliday, "Fundamentos de Física", Livros Técnicos e Científicos Editora, Rio de Janeiro (2011) (cap 7 e 8)

Luís Cunha-DFUM Cap 3_1_1

Energia e Conservação de energia

Cap 3 – Interação Mecânica (parte 1)

A energia de um sistema resulta das características do estado do sistema: o movimento de massas, a temperatura, posições relativas, interacção entre corpos...

A lei de conservação da energia é uma das mais importantes da física, porque é muito geral; é válida em todas as situações e pode ser aplicadas em qualquer problema.

O principio de conservação de energia é válido, se aplicado ao universo como um todo - a energia que "desaparece" num lado, tem sempre que "aparecer" noutro lado.

Luís Cunha-DFUM Cap 3_1_2

Cap 3 - Interação Mecânica (parte 1)

Conservação de energia... sempre?

Não é muito simples considerar o universo todo, quando se quer resolver um problema. A solução é considerar uma pequena parte - a que chamamos "sistema", e aplicar o balanço energético ao sistema a estudar.

Sistema: Porção do Universo em análise.

Sistema - Região ou objeto em estudo

Vizinhança - Tudo o que não pertence ao sistema

Fronteira - Separa o sistema da vizinhança

Pode-se interagir com um sistema de diversos modos. Um deles corresponde à realização de **trabalho** sobre o sistema ou pelo sistema.

Luís Cunha-DFUM Cap 3_1_4

Lei da Conservação de energia

Quando se pretende resolver um problema concreto, o primeiro passo consiste em definir o sistema e verificar se há trocas com o exterior.

Depois deverá ser feito o balanço energético:

Luís Cunha-DFUM Cap 3_1_5

Lei da Conservação de energia

Cap 3 - Interação Mecânica (parte 1)

Um sistema pode "trocar energia" com o exterior através da realização de trabalho ou através de calor. As trocas de energia sob a forma de calor são analisadas numa área da Física denominada Termodinâmica. Neste capítulo as trocas de energia que vamos estudar dão-se por realização de trabalho mecânico.

$$E_{\text{final}}^{\text{Sistema}} = E_{\text{inicial}}^{\text{Sistema}} + E_{\text{"ganha"}} - E_{\text{"perdida"}}$$

$$E_{final}^{Sistem\,a} = E_{inicial}^{Sistem\,a} + W_{exterior}$$

Quando da realização de um determinado processo, a energia final de um sistema é igual à energia inicial mais o trabalho realizado sobre o sistema pelas forças exteriores (o sistema "ganha" energia = trabalho positivo), ou pelo trabalho realizado pelo sistema sobre o exterior (o sistema "perde" energia = trabalho negativo).

Luís Cunha-DFUM

Recordar: trabalho realizado por uma força

Uma partícula move-se ao longo de uma trajectória sob a acção de uma força \vec{F} .

Num intervalo de tempo muito curto, dt, a partícula efectua um deslocamento $d\vec{s}$.

O trabalho realizado pela força \vec{F} quando o seu ponto de aplicação efetua um deslocamento $d\vec{s}$ é definido pelo produto escalar:

$$dW = \vec{F} \cdot d\vec{s} \iff dW = F \ ds \ cos\theta \Rightarrow \begin{cases} \text{Se: } 0^{\circ} \leq \theta < 90^{\circ} \Rightarrow W > 0 \\ \text{Se: } \theta = 90^{\circ} \Rightarrow W = 0 \\ \text{Se: } 90^{\circ} < \theta \leq 180^{\circ} \Rightarrow W < 0 \end{cases}$$

Luís Cunha-DFUM Cap 3_1_7

Trabalho realizado por uma força

O **trabalho total** realizado pela força \vec{F} sobre a partícula no trajecto **AB**, é a soma de todos os trabalhos infinitesimais realizados durante os sucessivos deslocamentos infinitesimais:

Ou de um modo mais contínuo (mais correto):

Cap 3 - Interação Mecânica (parte 1)

Luís Cunha-DFUM Cap 3_1_8

Cap 3 - Interação Mecânica (parte 1)

Trabalho realizado por uma força constante

Se **a força** e o **ângulo** entre a direção da força e a direção do deslocamento se mantêm **constantes** durante todo o deslocamento:

Luís Cunha-DFUM Cap 3_1_9

Trabalho Total realizado

Havendo várias forças aplicadas a um corpo que sofre um deslocamento, a soma do trabalho realizado pelas forças é igual ao trabalho realizado pela resultante das forças.

$$W_{\rm Total} = W_{\vec{F}} + W_{\vec{F}_g} + W_{\vec{F}_a} + W_{\vec{R}_N} = W_{\vec{F}_R}$$

Luís Cunha-DFUM Cap 3_1_10

CHECK POINT 3.1- TRABALHO REALIZADO POR UMA FORÇA VARIÁVEL

Cap 3 - Interação Mecânica (parte 1)

Qual o trabalho realizado pela força \vec{F} no deslocamento entre x = 0 m e x = 10 m?

Luís Cunha-DFUM Cap 3_1_11

Quantas formas/tipos de energia há?

Cap 3 – Interação Mecânica (parte 1)

Formas Fundamentais de Energia

Luís Cunha-DFUM Cap 3_1_13

TRABALHO E ENERGIA CINÉTICA

Sendo \vec{F} a **força resultante** aplicada a um corpo, o trabalho realizado pela resultante das forças \acute{e} :

Cap 3 - Interação Mecânica (parte 1)

$$W_{A \to B} = \int_A^B \vec{F} \cdot d\vec{r} \iff W_{A \to B} = \int_A^B F \cos \theta \, dr \iff W_{A \to B} = \int_A^B F_t \, dr$$

$$A tendendo a que:$$

$$v = \frac{dr}{dt} \iff dr = v dt$$

$$W_{A \to B} = \int_A^B m \frac{dv}{dt} \, v dt \iff W_{A \to B} = \int_A^B mv \, dv$$

$$W_{A \to B} = m \frac{v^2}{2} \begin{vmatrix} v_B \\ v_A \iff W_{A \to B} = \frac{1}{2} m v_B^2 - \frac{1}{2} m v_A^2$$

TEOREMA TRABALHO - ENERGIA CINÉTICA

O trabalho total realizado por todas as forças que actuam na partícula (ou o trabalho realizado pela força resultante) no deslocamento da partícula entre a posição A e B é igual à variação de energia cinética da partícula.

$$W_{(\vec{F}_R)A \to B} = E_{c(B)} - E_{c(A)} = \Delta E_c$$

Luís Cunha-DFUM Cap 3_1_15

CHECKPOINT 3.2

Cap 3 - Interação Mecânica (parte 1)

Um corpo de massa 1 kg, chega ao ponto A com velocidade de módulo constante e igual a 2 m/s. Até esse ponto A, o atrito entre o corpo e a superfície é desprezável. A partir do ponto A, a superfície apresenta rugosidade e, em consequência a força de atrito de escorregamento não é desprezável. O corpo para no ponto B $(\overline{AB} = 1 \text{ m})$.

- a) Identifique a resultante das forças a partir do ponto A.
- b) Calcule o trabalho realizado pela resultante das forças a partir do ponto A. Qual o significado do valor encontrado?
- c) Se o trabalho realizado pela força de atrito não é nulo, discuta a transferência de energia entre o corpo e o exterior.
- d) Calcule o coeficiente de atrito de escorregamento dinâmico entre o bloco e a superfície.

A sonda interplanetária da figura é atraída para o Sol por uma força de magnitude: $F = -\frac{1.32 \times 10^{22}}{x^2}(N)$, onde x é a distância do Sol à sonda.

Determine, graficamente e analiticamente, qual o trabalho realizado pela força aplicada pelo Sol na sonda quando a distância entre a sonda e o Sol muda de 1.5×10^{11} m para 2.3×10^{11} m

Luís Cunha-DFUM Cap 3_1_17

Cap 3 – Interação Mecânica (parte 1)

TABLE 7.1 Kinetic Energies for Various Objects						
Object	Mass (kg)	Speed (m/s)	Kinetic Energy (J)			
Earth orbiting the Sun	5.98×10^{24}	2.98×10^{4}	2.65×10^{33}			
Moon orbiting the Earth	7.35×10^{22}	1.02×10^{3}	3.82×10^{28}			
Rocket moving at escape speeda	500	1.12×10^{4}	3.14×10^{10}			
Automobile at 55 mi/h	2 000	25	6.3×10^{5}			
Running athlete	70	10	3.5×10^{3}			
Stone dropped from 10 m	1.0	14	9.8×10^{1}			
Golf ball at terminal speed	0.046	44	4.5×10^{1}			
Raindrop at terminal speed	3.5×10^{-5}	9.0	1.4×10^{-3}			
Oxygen molecule in air	5.3×10^{-26}	500	6.6×10^{-21}			

^a *Escape speed* is the minimum speed an object must attain near the Earth's surface if it is to escape the Earth's gravitational force.

ENERGIA POTENCIAL GRAVÍTICA

 Trabalho realizado pela força gravítica perto da superfície da Terra (quando as variações de altura são muito pequenas quando comparadas com o raio da Terra)

$$W_{\vec{F}_g} = -(E_{pg(f)} - E_{pg(i)}) = -\Delta E_{pg}$$

Luís Cunha-DFUM Cap 3_1_19

A Energia Potencial Gravítica:

Cap 3 - Interação Mecânica (parte 1)

- Está associada ao sistema corpo-Terra (ou corpo-astro)
- Reflete alterações de configuração do sistema
- O trabalho realizado pelo peso do corpo depende apenas das suas posições inicial e final (não depende do percurso) ⇒ Peso é uma Força Conservativa*

$$W_{F_g(0\to f)} = -(mgh_f - mgh_0) = -\Delta E_{pg}$$

- •A energia potencial gravítica de uma partícula com massa *m*, no ponto P é a energia que o objeto possui devido à sua posição em relação à Terra.
- Solo
- •Se as alturas relativamente ao solo forem pequenas quando comparadas com o raio da Terra, podemos saber a altura a que o corpo se encontra (depois de definirmos qual a altura de referência, que pode ser o nível do solo, ou outro).
 - * Não esquecer que uma Força Conservativa é uma força que não altera o conteúdo energético do sistema

NÍVEL DE REFERÊNCIA PARA A ENERGIA POTENCIAL GRAVÍTICA

Uma basquetebolista lança a bola para o cesto a partir de uma altura, relativamente ao solo, de 2,0 m. A massa da bola de básquete é de 550,0 g.

- a. Calcule a energia potencial gravitica do sistema bola+Terra, usando como nível de referência:
 - il o solo A
 - ii) o ponto de lançamento da bola B
 - iii) a altura a que o cesto está colocado C
- b. Calcule a variação de energia potencial gravítica do sistema bola+Terra, desde o momento em que a bola é lançada até ao momento em que a bola entra no cesto, usando cada um dos níveis de referência anteriores.

Luís Cunha-DFUM Cap 3_1_21

Can 2 Interação Mecânica (parte 1)

$$E_{pg} = mgh$$

Nível de referência	Altura inicial h ₁ / m	Energia potencial gravítica inicial $E_{\rm gg}({\rm ii})/{\rm J}$	Altura final h _i / m	Energia potencial gravítica final $E_{pg}(\mathbf{f}) / \mathbf{J}$	Variação de energia potencial gravítica ΔE_{pg} / J
Solo – A	2,00	10,78	3,05	16,44	5,66
Ponto de lançamento da bola – B	0,00	0,00	1,05	5,66	5,66
Altura do cesto – C	-1,05	-5,66	0,00	0,00	5,66

E se as variações de altura forem significativas quando comparadas com o raio da Terra?

Luís Cunha-DFUM Cap 3_1_23

Cap 3 - Interação Mecânica (parte 1)

- A energia potencial gravítica de uma partícula com massa m, no ponto P é a energia que a partícula possui devido à sua posição em relação à Terra.
- Essa energia é igual ao trabalho necessário para deslocar a partícula desde a posição P até ao infinito (onde a energia potencial é nula).

$$W_{F_g (P \to \infty)} = -(E_{pg(\infty)} - E_{pg(P)}) = -(0 - E_{pg(P)})$$

$$W_{F_g (P \to \infty)} = E_{pg(P)}$$

Só é possível associar o conceito de energia potencial a uma força conservativa.

ENERGIA POTENCIAL ELÁSTICA

Trabalho realizado pela força elástica

$$F_e = -kx$$

$$W_{\vec{F}_e} = \int_{x_0}^{x_f} \vec{F}_e \cdot d\vec{r} \Leftrightarrow W_{\vec{F}_e} = \int_{x_0}^{x_f} -kx \, dx \Leftrightarrow W_{\vec{F}_e} = -k \int_{x_0}^{x_f} x \, dx$$

$$W_{\vec{F}_e} = \left(-\frac{1}{2}k\right) \left[x^2\right]_{x_0}^{x_f} \Leftrightarrow W_{\vec{F}_e} = -\left(\frac{1}{2}kx_f^2\right) - \left[\frac{1}{2}kx_0^2\right]$$
Energia potencial
Energia potencial

elástica final

$$W_{\vec{F}_e} = -\Delta E_{pe}$$

$$E_{pe} = \frac{1}{2}kx^2$$

Trabalho só depende da posição inicial e final

Luís Cunha-DFUM Cap 3_1_25

elástica inicial

FORÇAS CONSERVATIVAS

Cap 3 – Interação Mecânica (parte 1)

São forças que obedecem a uma das seguintes condições:

O seu rotacional é igual a zero

$$\vec{\nabla} \times \vec{F} = \vec{0}$$

$$\vec{\nabla} = \frac{\partial}{\partial x}\hat{\imath} + \frac{\partial}{\partial y}\hat{\jmath} + \frac{\partial}{\partial z}\hat{k}$$

O seu trabalho é zero para qualquer percurso fechado

$$W = \oint_C \vec{F} \cdot d\vec{r} = 0$$

Pode ser escrita como o gradiente de uma energia potencial

$$\vec{F} = -\vec{\nabla}E_p$$

CURVAS DE ENERGIA POTENCIAL

Cap 3 - Interação Mecânica (parte 1)

Na mola que oscila entre A e C, sem atrito: Em A e C – Energia potencial máxima e Energia cinética nula

Em B - Energia cinética máxima e Energia potencial nula

1D (direção x)
$$\vec{F} = -\frac{\partial E_p}{\partial x} \hat{\imath}$$

Luís Cunha-DFUM Cap 3_1_27

CURVAS DE ENERGIA POTENCIAL

Cap 3 – Interação Mecânica (parte 1)

$$\vec{F} = -\vec{\nabla}E_P$$

a uma dimensão

$$F = -\frac{\partial E_P}{\partial x}$$

Luís Cunha-DFUM

CURVAS DE ENERGIA POTENCIAL

Vibração de átomos numa molécula

Luís Cunha-DFUM Cap 3_1_29

PRINCÍPIO DA CONSERVAÇÃO DA ENERGIA MECÂNICA

Cap 3 – Interação Mecânica (parte 1)

- Forças Internas (\vec{F}_i) força gravítica, força elástica, força elétrica, força magnética, etc.
 - se conservativas:

$$W_{\vec{F}_{\text{conservativas}}} = -\Delta E_p$$

- Forças Externas (\vec{F}_e)
 - responsáveis pela variação da energia do sistema através da realização de trabalho sobre o mesmo.
 - Energia é "armazenada" sobre a forma de energia potencial ou "usada" como energia cinética
- Trabalho total realizado sobre o corpo

$$W_{Total} = W_{\vec{F}_{e}} + W_{\vec{F}_{i}} = \Delta E_{c}$$

$$W_{Total} = W_{\vec{F}_e} + W_{\vec{F}_i} = \Delta E_c$$

É importante distinguir forças internas e forças externas e sua natureza

Num sistema com forças internas conservativas ($W_{\rm cons} = -\Delta E_P$) se o somatório das forças exteriores for nulo ($\Rightarrow W_{\vec{F}_e} = 0$):

$$W_{\vec{F}_{e}} + W_{\vec{F}_{i}} = \Delta E_{c}$$

$$0 - \Delta E_p = \Delta E_c \Leftrightarrow \Delta E_c + \Delta E_p = 0$$

$$\Delta (E_c + E_p) = 0 \Leftrightarrow \Delta E_{\rm m} = 0$$

Energia Mecânica do sistema ($E_{\rm m}$)

Luís Cunha-DFUM Cap 3_1_31

Cap 3 – Interação Mecânica (parte 1)

$$W_{Total} = W_{\vec{F}_e} + W_{\vec{F}_i} = \Delta E_c$$

Num sistema com forças internas conservativas ($W_{cons} = -\Delta E_P$)

Se o somatório das forças exteriores **não for nulo** ($\Rightarrow W_{\vec{F}_{\rho}} \neq 0$):

$$W_{\vec{F}_{\rm e}} + W_{\vec{F}_{\rm i}} = \Delta E_c$$

$$W_{\vec{F}_o} - \Delta E_p = \Delta E_c \Leftrightarrow \Delta E_c + \Delta E_p = W_{\vec{F}_o}$$

$$\Delta(E_c + E_p) = W_{\vec{F}_e} \Leftrightarrow \Delta E_m = W_{\vec{F}_e}$$

Energia Mecânica do sistema (E_m) não se conserva: $\Delta E_m \neq 0$

PRINCÍPIO DA CONSERVAÇÃO DA ENERGIA MECÂNICA (EXEMPLOS)

$$E_m = E_C + E_P = \text{constante}$$

 A variação da energia potencial é simétrica da variação da energia cinética.

Luís Cunha-DFUM

Cap 3_1_33

CHECKPOINT 3.4

Cap 3 - Interação Mecânica (parte 1)

Um corpo de massa 1 kg colide com uma mola de constante 500 N/m. Após a colisão, a mola sofre uma compressão máxima de 5 cm. Despreze todos os atritos.

- a) Calcule o valor da velocidade com que o corpo colide com a mola.
- b) Qual o valor da velocidade com que o corpo abandona a mola?

Um corpo de massa 1 kg colide com uma mola de constante 500 N/m. Após a colisão, a mola sofre uma compressão máxima de 5 cm. O coeficiente de atrito de escorregamento dinâmico entre o corpo e a superfície é 0.7.

- a) Calcule o valor da velocidade com que o corpo colide com a mola.
- b) Após atingir a compressão máxima, o corpo inverte o sentido da velocidade, mas para quando a compressão da mola é 1.5 cm. Calcule o coeficiente de atrito estático.
- c) Calcule a energia dissipada desde que o corpo colide com a mola até que o corpo para.

Luís Cunha-DFUM Cap 3_1_35

POTÊNCIA

Cap 3 – Interação Mecânica (parte 1)

Potência Média

$$P_{m \in dia} = \frac{W}{\Delta t}$$
 J s⁻¹ = W

Potência Instantânea

$$P = \frac{dW}{dt} = \frac{Fdx \cos \theta}{dt} = F \cos \theta \frac{dx}{dt} = \vec{F} \cdot \vec{v}$$

CHECKPOINT 3.6

Um elevador com uma massa de 1000 kg carrega uma carga máxima de 800 kg. Uma força de atrito constante de 4000 N retarda o seu movimento de subida.

- 1. Qual deverá ser a potência mínima fornecida pelo motor para elevar o elevador com uma velocidade constante de 3.0 m/s?
- 2. Qual a potência fornecida pelo motor se se pretender que o elevador suba com uma aceleração constante de 1.00 ms⁻², quando a velocidade é 3.0 m/s?

Luís Cunha-DFUM

Cap 3_1_37

CHECKPOINT 3.7

Cap 3 – Interação Mecânica (parte 1)

Na alínea a) do exemplo anterior, o motor fornece uma potência mínima ao elevador e este deslocase com velocidade constante.

Se a velocidade é constante a energia cinética mantém-se contante. Então, de acordo com o teorema do trabalho energia cinética: $W_{\vec{F}_R} = \Delta E_C = 0$.

Sabendo que: $P_{\text{médio}} = \frac{W}{\Lambda t'}$ concluiu-se que $P_{\text{médio}} = 0$.

Como se explica este aparente paradoxo?

Relembre os objetivos de aprendizagem.....

Objetivos de aprendizagem

- descrever o trabalho como uma medida da transferência de energia entre sistemas mecânicos;
- classificar os diferentes tipos de energia envolvidos num sistema energia cinética; energia potencial gravítica; e energia potencial elástica
- distinguir forças conservativas de forças não conservativas
- · aplicar os princípios do Trabalho Energia Cinética e da Conservação da Energia na resolução de problemas
- prever as transferências de energia num sistema na presença de forças conservativas e de forças não conservativas.

... certifique-se que foram atingidos.