Last name	
First name	

LARSON—MATH 610—CLASSROOM WORKSHEET 31 Determinants.

Concepts & Notation

- (Sec. 5.1) *n-linear* function, alternating function.
- (Sec. 5.2) determinant function.
- (Sec. 5.3) permutation, $\det A$.

Let A be an $n \times n$ matrix over a commutative ring. Let:

$$\det A = \sum_{\sigma \in S_n} [(sgn \ \sigma) \prod_{i=1}^n A_{i,\sigma(i)}]$$
$$= \sum_{\sigma \in S_n} (sgn \ \sigma) A_{1,\sigma(1)} A_{2,\sigma(2)} \dots A_{n,\sigma(n)}.$$

Review

- 1. What is a determinant function?
- 2. What is an example of a determinant function?

Properties of det : $K^{n \times n} \to K$

3. (Claim:) $\det I = 1$.

4. (Claim:) If A is a diagonal matrix then $\det A = A_{11}A_{22} \dots A_{nn}$ (the product of the diagonal entries).

5. (Claim:) If A has a zero row then $\det A = 0$.

