МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра алгоритмической математики

ОТЧЁТ

по практической работе №4 по дисциплине «Статистический анализ» Тема: Элементы корреляционного анализа.

Проверка статистической гипотезы о равенстве коэффициента корреляции нулю

Студент гр. 9372	 Иванов Р. С.
Преподаватель	Сучков А. И.

Санкт-Петербург 2021

Цель работы

Освоение основных понятий, связанных с корреляционной зависимостью между случайными величинами, статистическими гипотезами и проверкой их «справедливости».

Основные теоретические положения

Определение 1. Статистической называют зависимость, при которой изменение одной из величин влечёт изменение распределения другой. Если при этом изменение одной величины приводит к изменению среднего значения другой, то статистическую зависимость называют корреляционной.

Корреляционная таблица

где $m_(x_i)$ — частота появления варианты x_i , $m_(y_j)$ — частота появления варианты ј $m_(x_iy)$ — частота появления варианты x_i при заданном значении y, $m_(y_jx)$ — частота появления варианты y_j при заданном значении x, n — объём выборки.

Проверка гипотезы о наличии линейной зависимости

Пусть некоторая двумерная генеральная совокупность распределена нормально и из неё извлечена выборка объёма n , для которой найден выборочный коэффициент корреляции

$$r_{\rm B} = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\sigma_X \cdot \sigma_Y}$$

Тогда проверяют нулевую гипотезу $H_0: «r_r = 0$ — линейная зависимость в генеральной совокупности отсутствует» при выдвигаемой альтернативной гипотезе $H_1: «r_r \neq 0$ — линейная зависимость присутствует».

Алгоритм

1. Вычислить статистику
$$T_{\text{набл}} = \frac{r_{\text{в}} \cdot \sqrt{n-2}}{\sqrt{1-r_{\text{в}}^2}},$$

- 2. Определить критическое значение распределения Стьюдента (табл. приложения 4) $t_{\rm кp}=t(\alpha;k=n-2)$. Критической областью при этом является двусторонняя область) $D=(-\infty;-t_{\rm kp})\cup(t_{\rm kp};+\infty)$
- 3. Сделать вывод:

 $T_{\text{набл}} \in D \to \text{гипотезу } H_0$ отвергают, т. е. имеется линейная зависимость;

 $T_{\text{набл}} \notin D \to$ гипотезу H_0 принимают, т. е. линейной зависимости нет;

Постановка задачи

Из заданной генеральной совокупности сформировать выборку по второму признаку. Провести статистическую обработку второй выборки в объеме практических работ №1 и №2, с целью определения точечных статистических оценок параметров распределения исследуемого принака (математического ожидания, дисперсии, среднеквадратичного отклонения, асимметрии и эксцесса). Для системы двух случайных величин X (первый признак) и Y(второй признак) сформировать двумерную выборку и найти статистическую оценку коэффициента корреляции, построить доверительный интервал для коэффициента корреляции и осуществить проверку статистической гипотезы о равенстве коэффициента корреляции нулю. Полученные результаты содержательно проинтерпретировать.

Выполнение работы

1.

Проведена статистическая обработка выборки в объёме работ №1 и №2. По результатам были составлены таблицы:

X	Y
[0, 8200)	[0, 27023)
[8200, 16400)	[27023, 54046)
[16400, 24600)	[54046, 81069)
[24600, 32800)	[81069, 108092)
[32800, 41000)	[108092, 135115)
[41000, 49200)	[135115, 162138)
[49200, 57400)	[162138, 189161)
[57400, 65600)	[189161, 216184)
[65600, 73800)	[216184, 243207)

Таблица 1 – Интервалы

	X	Y
Мат ожидание	17112	50225
Дисперсия	141091232	1565675261
СКО	11878	39569
Ассиметрия	1.2775	1.7157
Эксцесс	917.69	1139
Мода	6938	33259
Медиана	15200	39029
Коэф. вариации	1.37	1.24

Таблица 2 – Вычисления

2.Двумерный интервальный ряд

Построен двумерный интервальный ряд. Результат представлен в виде таблицы:

					X				
	[0, 8200)	[8200, 16400)	[16400, 24600)		[24600, [32800, [41000, 32800)] 41000)	[41000, 49200)	[49200, 57400)	[49200, [57400, 57400]	[65600, 73800)
[0, 27023)	2	3	16	7	2	2	2	0	1
 [27023, 54046)	16	6	8	10		0	0	0	0
[54046, 81069)	5	7	0	2	0	0	0	0	0
[81069, 108092)	9	9	1	0	0	0	0	0	0
[108092, 135115)	3	—	0	0	0	0	0	0	0
 [135115, 162138)	1	0	0	0	0	0	0	0	0
[162138, 189161)	-	-		0	0	0	0	0	0
[189161, 216184)	0	0	0	0	0	0	0	0	0
[216184, 243207)	0	1	0	0	0	0	0	0	0

Таблица 3 – Двумерный интервальный ряд

3. Кореляционная таблица

По полученному двумерному интервальному вариационному ряду была построена корреляционная таблица.

	X								m		
		x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	
	y_1	2	3	16	7	2	2	2	0	1	35
	y_2	16	9	8	10	1	0	0	0	0	44
	y_3	5	7	0	2	0	0	0	0	0	14
Y	y_4	6	6	1	0	0	0	0	0	0	13
	y_5	3	1	0	0	0	0	0	0	0	4
	y_6	1	0	0	0	0	0	0	0	0	1
	y_7	1	1	1	0	0	0	0	0	0	3
	y_8	0	0	0	0	0	0	0	0	0	0
	y_9	0	1	0	0	0	0	0	0	0	1
\boxed{m}		34	28	26	19	3	2	2	0	1	115

Таблица 4 – Корреляционная таблица

По полученной таблице можно сделать вывод от том, что распределение выборки сильно отличается от нормального распределения, в ней присутствуют слишком удалённые элементы, которые было бы целесообразнее исключить на этапе работы \mathbb{N} 1.

4.

По корреляционной таблице вычислена статистическая оценка корреляционного момента(ковариация) и коэффициэнт корреляции Пирсона.

$$K_{ ext{XY}}^* = 353695795$$
 $r_{ ext{XY}}^{\Pi ext{иросона}} = 0.7525$

5.

Получен коэффициент коррелиции.

$$r_{\rm r} = -0.52$$

Значение коэффициэнта отрицательно, значит можно сделать вывод о том, что при увеличении одной переменной вторая убывает и наоборот.

6.

Доверительные интервалы для коэффициента корреляции.

$$r_{\text{\tiny B}} \in (-0.66; -0.35)$$
 при $\gamma = 95\%$ $r_{\text{\tiny B}} \in (-0.72; -0.23)$ при $\gamma = 99\%$

7. Гипотеза о нормальности распределения

Были найдены все необходимые для проверки гипотезы значения

$$T_{ ext{набл}} = -6.47$$
 $t_{ ext{крит}} = 1.98$ $D \in (-\infty; -1.98) \cup (1.98; \infty)$

 $T_{\rm набл}$ попало в критическую область D, поэтому H_0 отвергается, в исходных данных имеется линейная зависимость

Выводы

В процессе работы мы познакомились корреляционной зависимостью. Научились содержательно интерпретировать полученные значения. Выдвинули статистическую гипотезу и получили её опровержение.

ПРИЛОЖЕНИЕ А

```
import numpy as np
import matplotlib.pyplot as plt
3 import math
4 import csv
5 # import scipy
6 import random
9 # import sklearn
# from openpyxl import Workbook
11
def ReadS():
     with open ('Price-Mileage.csv') as csv file:
   Читаем выборку из файла 0 работы
         s = []
14
         spam reader = csv.reader(csv file, quotechar='
15
    ')
         for row in spam reader:
16
              x, y = row[0].split(';')
              if y.isdigit() and x.isdigit():
18
                  s.append([int(x), int(y)])
     return s
23 def find Xs(s):
     x = 0
     for i in range(n):
         x += s[i]
     return x / len(s)
```

```
30 \text{ def find Dx(s, x):}
     d = 0
     for i in range(n):
          d += (s[i] - x) ** 2
     return d / n
35
37 def First Practice(s):
     s.sort() # Используя встроенную функцию
    сортировки получаем ранжированный ряд
     R = s[len(sample) - 1] - s[0] \# Pasmax
     print("R = ", R)
41
42
     k = round(1 + math.log2(len(s))) # Число
43
   интерваловФормула (Стёрджеса)
     print("k = ", k)
     h = round(R / k) \# Длина интервала
     print("h = ", h)
     k += 1 # Иначе интервалы не покроют выборку
50
     x0 = s[0] - h / 2 \# Начало первого частичного
51
   интервала
     if x0 < 0:
52
          x0 = 0
54
     print("x0 = ", x0)
     interval = []
     x = x0
     for i in range(k):
```

```
interval.append([(x, x + h), 0, 0])
61
          x += h
62
     # Получаем интервальный ряд
     for i in s:
          for j in range(k):
              if interval[j][0][0] < i <= interval[j</pre>
    ][0][1]:
                  interval[j][1] += 1
                  break
     for i in interval:
          i[2] = i[1] / len(sample)
73
     print(interval)
     middle int = []
     accum freq = []
     accum afreq = []
78
     accum freq.append(0)
     accum afreq.append(0)
     a = 0
     b = 0
82
     # Вычисляем серидины интервалов и их накопленные
   частоты
     for i in range(len(interval)):
          a = a + interval[i][2]
         b = b + interval[i][1]
         middle int.append(interval[i][0][0] + h / 2)
         accum afreq.append(a)
         accum freq.append(b)
```

```
C = middle int[int(k / 2)] # Число C из теории, h
     было вычислено ранее при построении интервального
    ряда
      con var = [] # Условные варианты
      for i in range(k):
95
          con var.append([int((middle int[i] - C) / h),
    interval[i][1], interval[i][2]])
      SEM = []
               # Выборочные начальные моменты до 4
    порядка
      СЕМ = [] # Выборочные центральные моменты до 4
    порядка
100
      # Вычисляем условные эмп момент 1 порядка
101
     for i in range (4):
          SEM.append(0)
103
          for j in range(k):
              SEM[i] += (con var[j][0] ** (i + 1)) *
105
    con var[j][2]
106
      CEM.append(0) # Центральный момент 1 порядка
107
    выборочное (среднее для усл вариант)
      CEM.append(SEM[1] - SEM[0] ** 2)
                                        # 2 порядка
    выборочная ( дисперсия для усл вариант)
     CEM.append(SEM[2] - 3 * SEM[1] * SEM[0] + 2 * SEM
109
    [0] ** 3)
              # 3 порядка
     CEM.append(SEM[3] - 4 * SEM[0] * SEM[3] + 6 * (SEM
110
    [0] ** 2) * SEM[3] - 3 * SEM[0] ** 4) # 4 порядка
      Xs = 0 # Выборочное среднее по обычной формуле
112
      CXs = 0 # Выборочное среднее через моменты
    условных вариант
      Ds = 0
              # Дисперсия по обычной формуле
```

```
CXs = 0
              # Дисперсия через моменты условных
115
    вариант
     for i in range(k):
117
          Xs += middle int[i] * interval[i][2]
119
     for i in range(k):
          Ds += (middle int[i] - Xs) ** 2 * interval[i
    1[2]
     CXs = SEM[0] * h + C # Из формулы метода
    упрощённых вычислений
     CDs = CEM[1] * (h ** 2) # Из формулы метода
124
    упрощённых вычислений
     ds = math.sqrt(Ds) # Выборочное СКО
     cds = math.sqrt(CEM[1]) # Выборочное СКО для усл
    вариант
     Asym = CEM[2] / (cds ** 3) # Коэффициэнт
128
    ассиметрии для условных вариант как ( я понимаю это
    и есть стат оценка?)
     Excess = CEM[3] / (cds ** 4) # Коэффициент
    эксцесса для условных вариант
130
     sDs = Ds * len(sample) / (len(sample) - 1) #
    Исправленная выборочная дисперсия
     so = math.sqrt(sDs) # Исправленное выборочное СКО
132
     Mod = 0
              # Частость модального интервала
     i0 = 0 \# Ero Homep
     Mod0 = 0 # Истинное значение моды
137
     for i in range(k):
          if interval[i][1] > Mod:
```

```
Mod = interval[i][1]
140
                                                  i0 = i
141
142
                    143
               [2] - interval[i0 - 1][2]) / ((interval[i0][2] -
               interval[i0 - 1][2]) + (interval[i0][2] - interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[interval[inte
               i0 + 1|[2])))
144
                     i0 = 0 # Номер медианного интервала
                    Med0 = 0 # Истинное значение медианы
146
                    for i in range(k):
148
                                   if accum afreq[i] > 0.5:
149
                                                  i0 = i
150
                                                  break
                    рх = 0 # Число нужное для линейной интерполяции
              медианы
                    for i in range(i0 - 1):
154
                                   px += 1 / interval[i][2]
156
                     # Med0 = interval[i0][0][1] + (h/interval[i0][2])
157
               *(0.5 - h*px)
                     # При выполнении линейной интерполяции для
              медианы получилось неадекватно большое
               отрицательное число
                    # Я не знаю с чем это связано поэтому найду её
159
              просто как серидину ранжированной ряда
                    Med0 = s[int(len(s) / 2)]
161
                    CV = Xs / ds # Коэффициент вариации
163
```

```
return (interval, middle int, Asym, Excess, Mod0,
165
    Med0, CV)
167
sample = ReadS()
n = len(sample)
_{171} k = math.ceil(math.sqrt(n / 2))
XS = find XS([sample[i][0] for i in range(n)])
    Выброчное среднее по х
Ys = find Xs([sample[i][1] for i in range(n)]) # \Pio y
175
Dsx = find Dx([sample[i][0] for i in range(n)], Xs)
     Дисперсия по х
Dsy = find Dx([sample[i][1] for i in range(n)], Ys)
     По у
sx = math.sqrt(find Dx([sample[i][0] for i in range(n)
            # КОС по х
    ], Xs))
sy = math.sqrt(find Dx([sample[i][1] for i in range(n)
    ], Ys))
            # СКО по у
intervalX, middle intX, AsymX, ExcessX, Mod0X, Med0X,
    CVX = First Practice([sample[i][0] for i in range(n)
    1)
intervaly, middle inty, Asymy, Excessy, ModOy, MedOy,
    CVY = First Practice([sample[i][1] for i in range(n)
    ])
print(f'Xs{Xs}, \nDsx{Dsx} \nsx{sx} \nAsymX {AsymX}, \
    nExcessX {ExcessX}, \nMod0X {Mod0X}, \nMed0X {Med0X
    }, \nCVX {CVX}')
```

```
print(f'Ys{Ys}, \nDsx{Dsy} \nsx{sy}\nAsymY {AsymY}, \
    nExcessY {ExcessY}, \nMod0X {Mod0Y}, \nMed0X {Med0Y
    }, \nCVX {CVY}')
corr = [[0 \text{ for i in range}(10)] \text{ for i in range}(10)]
_{188} i = 0
_{189} \dot{j} = 0
_{190} 1 = 0
while i < len(sample):
      while j != 9:
193
           if intervalX[j][0][0] < sample[i][0] <</pre>
    intervalX[j][0][1]:
                break
195
           j += 1
196
      while 1 != 9:
197
           if intervalY[1][0][0] < sample[i][1] <</pre>
198
    intervalY[1][0][1]:
                break
199
           1 += 1
200
      corr[l][j] += 1
      j = 0
202
      1 = 0
203
      i += 1
204
206 for i in range (10):
      corr[9][i] = sum(map(lambda x: x[i], corr))
207
208
209 for i in range (10):
      corr[i][9] = sum(corr[i])
212 print('\n'.join(map(str, corr)))
213
_{214} Cov = 0
for i in range(9):
```

```
for j in range (9):
216
          Cov += middle intX[j] * middle intX[i] - Xs *
217
    Ys
219 Cov /= len(sample) # Ковариация
220 print("Cov = " + str(Cov))
222 Cov /= sx*sy
                           # Исправленная ковариация
print ("Cov = " + str(Cov))
             # межгрупповое КОС св Х
_{225} DsX = 0
_{226} XY = 0
              # межгруповое серднее выборочное
227 for i in range(k):
    Xyi = 0
228
     for j in range(k):
          XY += corr[i][j]*middle intX[j]*middle intY[i]
          Xyi += corr[i][j]*middle intX[j]
     if corr[i][9] != 0:
          Xyi /= corr[i][9]
     DsX += ((Xyi-Xs)**2)*corr[i][9]
_{236} XY /= n
DsX = math.sqrt(DsX/n)
print("Dsx = " + str(Dsx))
r = (XY - Xs*Ys)/(sx*sy) # Коэффициэнт корреляции
print("r = " + str(r))
243 # 95%
z = 0.5 * math.log((1 + r) / (1 - r))
se = 1 / ((115) ** 0.5)
z = z - 2.306 * se
z_{247} z u = z + 2.306 * se
z = math.tanh(z = 1)
```

```
z = math.tanh(z u)
250 print(f'Доверительный интервал для 95% [{z l};{z u}]')
252 # 99%
z = 0.5 * math.log((1 + r) / (1 - r))
se = 1 / ((99) ** 0.5)
z = z - 3.355 * se
z_{256} z u = z + 3.355 * se
z = math.tanh(z = 1)
259 print(f'Доверительный интервал для 99% [{z l};{z u}]')
T = mp = (r*math.sqrt(n-2))/math.sqrt(1-r**2)
_{262} T crit = 1.98
263 print(f'T emp = {T emp}')
if abs(T emp) < T crit:
  print("НО верна")
266 else:
  print("НО неверна")
```

Листинг 1 – Исходный код программы