Gradient Descent and Loss Functions

Mengye Ren

(Slides credit to David Rosenberg, He He, et al.)

NYU

September 10, 2024

CSCI-GA 2565 1 / 60

Lecture Slides

- For those of you who want to take notes on your tablets.
- Otherwise, slides will be shared on the course website after the lecture.

CSCI-GA 2565 2 / 60

Homework 1

- Homework 1 will be released soon. You have until Oct 1 noon (12pm) to finish.
- Submit PDF and code to Gradescope.
- Course website: https://nyu-cs2565.github.io/2024-fall/

CSCI-GA 2565 3 / 60

Review: ERM

Our Machine Learning Setup

Prediction Function

A prediction function gets input x and produces an output $\hat{y} = f(x)$.

CSCI-GA 2565 5 / 60

Our Machine Learning Setup

Prediction Function

A **prediction function** gets input x and produces an output $\hat{y} = f(x)$.

Loss Function

A loss function $\ell(\hat{y}, y)$ evaluates an action in the context of the outcome y.

CSCI-GA 2565 5 / 60

Risk and the Bayes Prediction Function

Definition

The **risk** of a prediction function $f: \mathcal{X} \to \mathcal{Y}$ is

$$R(f) = \mathbb{E}\ell(f(x), y).$$

In words, it's the **expected loss** of f on a new example (x,y) drawn randomly from $P_{\mathfrak{X}\times \mathfrak{Y}}$.

CSCI-GA 2565 6 / 60

Risk and the Bayes Prediction Function

Definition

The **risk** of a prediction function $f: \mathcal{X} \to \mathcal{Y}$ is

$$R(f) = \mathbb{E}\ell(f(x), y).$$

In words, it's the expected loss of f on a new example (x,y) drawn randomly from $P_{\mathfrak{X}\times\mathfrak{Y}}$.

Definition

A Bayes prediction function f^* is a function that achieves the *minimal risk* among all possible functions:

$$f^* \in \operatorname*{arg\,min}_f R(f)$$
,

• The risk of a Bayes prediction function is called the **Bayes risk**.

CSCI-GA 2565 6 / 60

The Empirical Risk

Let $\mathfrak{D}_n = ((x_1, y_1), \dots, (x_n, y_n))$ be drawn i.i.d. from $\mathfrak{P}_{\mathfrak{X} \times \mathfrak{Y}}$.

Definition

The **empirical risk** of f with respect to \mathfrak{D}_n is

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

- The unconstrained empirical risk minimizer can overfit.
 - i.e. if we minimize $\hat{R}_n(f)$ over all functions, we overfit.

7 / 60

Constrained Empirical Risk Minimization

Definition

A hypothesis space \mathcal{F} is a set of functions mapping $\mathcal{X} \to \mathcal{Y}$.

• This is the collection of prediction functions we are choosing from.

CSCI-GA 2565 8 / 60

Constrained Empirical Risk Minimization

Definition

A hypothesis space \mathcal{F} is a set of functions mapping $\mathcal{X} \to \mathcal{Y}$.

- This is the collection of prediction functions we are choosing from.
- ullet An empirical risk minimizer (ERM) in ${\mathcal F}$ is

$$\hat{f}_n \in \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

- From now on "ERM" always means "constrained ERM".
- So we should always specify the hypothesis space when we're doing ERM.

CSCI-GA 2565 8 / 60

Error Decomposition Review

• Excess risk decomposition for function \tilde{f}_n returned by an optimization algorithm in practice:

Excess
$$\operatorname{Risk}(\tilde{f}_n) = R(\tilde{f}_n) - R(f^*)$$

$$= \underbrace{R(\tilde{f}_n) - R(\hat{f}_n)}_{\text{optimization error}} + \underbrace{R(\hat{f}_n) - R(f_{\mathcal{F}})}_{\text{estimation error}} + \underbrace{R(f_{\mathcal{F}}) - R(f^*)}_{\text{approximation error}}$$

9 / 60

• Given a loss function ℓ ,

CSCI-GA 2565 10 / 60

- Given a loss function ℓ ,
- Choose a hypothesis space \mathcal{F} .

CSCI-GA 2565 10 / 60

- Given a loss function \(\ell_t \).
- Choose a hypothesis space \mathcal{F} .
- Use an optimization method to find an empirical risk minimizer $\hat{f}_n \in \mathcal{F}$:

$$\hat{f}_n = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

CSCI-GA 2565 10 / 60

- Given a loss function \(\ell_t \).
- Choose a hypothesis space F.
- Use an optimization method to find an empirical risk minimizer $\hat{f}_n \in \mathcal{F}$:

$$\hat{f}_n = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

• Or find a \tilde{f}_n that comes close to \hat{f}_n

10 / 60

- Given a loss function \(\ell_t \).
- Choose a hypothesis space F.
- Use an optimization method to find an empirical risk minimizer $\hat{f}_n \in \mathcal{F}$:

$$\hat{f}_n = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

- Or find a \tilde{f}_n that comes close to \hat{f}_n
- The machine learning scientist's job:
 - Choose \mathcal{F} that balances approximation and estimation error.
 - As we get more training data, we can use a bigger \mathcal{F} .

10 / 60 CSCI-GA 2565

Setup

• Loss: $\ell(\hat{y}, y) = (y - \hat{y})^2$

Setup

- Loss: $\ell(\hat{y}, y) = (y \hat{y})^2$
- Hypothesis space: $\mathcal{F} = \{f : \mathbb{R}^d \to \mathbb{R} \mid f(x) = w^T x, w \in \mathbb{R}^d \}$
- Given a data set $\mathcal{D}_n = \{(x_1, y_1), \dots, (x_n, y_n)\},\$
 - Our goal is to find the ERM $\hat{f} \in \mathcal{F}$.

CSCI-GA 2565

11 / 60

Objective Function: Empirical Risk

We want to find the function in \mathcal{F} , parametrized by $w \in \mathbb{R}^d$, that minimizes the empirical risk:

$$\hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2$$

CSCI-GA 2565 12 / 60

Objective Function: Empirical Risk

We want to find the function in \mathcal{F} , parametrized by $w \in \mathbb{R}^d$, that minimizes the empirical risk:

$$\hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2$$

• How do we solve this optimization problem?

$$\min_{w \in \mathbb{R}^d} \hat{R}_n(w)$$

• (For OLS there's a closed form solution, but in general there isn't.)

12 / 60 CSCI-GA 2565

Unconstrained Optimization

Setting

We assume that the objective function $f : \mathbb{R}^d \to \mathbb{R}$ is differentiable.

We want to find

$$x^* = \arg\min_{x \in \mathsf{R}^d} f(x)$$

14/60

The Gradient

- Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable at $x_0 \in \mathbb{R}^d$.
- The gradient of f at the point x_0 , denoted $\nabla_x f(x_0)$, is the direction in which f(x) increases fastest, if we start from x_0 .
- The **gradient** of f is the partial derivatives of all dimensions: $\nabla f(x) = [\partial f/\partial x_1(x), ..., \partial f/\partial x_d(x)].$

15 / 60

The Gradient

- Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable at $x_0 \in \mathbb{R}^d$.
- The gradient of f at the point x_0 , denoted $\nabla_x f(x_0)$, is the direction in which f(x) increases fastest, if we start from x_0 .
- The gradient of f is the partial derivatives of all dimensions: $\nabla f(x) = [\partial f/\partial x_1(x), ..., \partial f/\partial x_d(x)].$

Figure A.111 from Newtonian Dynamics, by Richard Fitzpatrick.

• To reach a local minimum as fast as possible, we want to go in the opposite direction from the gradient.

CSCI-GA 2565 16 / 60

• To reach a local minimum as fast as possible, we want to go in the opposite direction from the gradient.

Gradient Descent

- Initialize $x \leftarrow 0$.
- Repeat:

•
$$x \leftarrow x - \eta \nabla f(x)$$

• until the stopping criterion is satisfied.

16 / 60

• To reach a local minimum as fast as possible, we want to go in the opposite direction from the gradient.

Gradient Descent

- Initialize $x \leftarrow 0$.
- Repeat:

•
$$x \leftarrow x - \eta \nabla f(x)$$

- until the stopping criterion is satisfied.
- The "step size" η is not the amount by which we update x!

CSCI-GA 2565 16 / 60

• To reach a local minimum as fast as possible, we want to go in the opposite direction from the gradient.

Gradient Descent

- Initialize $x \leftarrow 0$.
- Repeat:

•
$$x \leftarrow x - \eta \nabla f(x)$$

- until the stopping criterion is satisfied.
- The "step size" η is not the amount by which we update x!
- "Step size" is also referred to as "learning rate" in neural networks literature.

CSCI-GA 2565 16 / 60

Gradient Descent Path

Image credit: Amini et al. Spatial Uncertainty Sampling for End-to-End Control. 2018.

CSCI-GA 2565 17 / 60

Gradient Descent: Step Size

A fixed step size will work, eventually, as long as it's small enough

CSCI-GA 2565 18 / 60

Gradient Descent: Step Size

A fixed step size will work, eventually, as long as it's small enough

• If η is too large, the optimization process might diverge

CSCI-GA 2565 18 / 60

Gradient Descent: Step Size

A fixed step size will work, eventually, as long as it's small enough

- If η is too large, the optimization process might diverge
- In practice, it often makes sense to try several fixed step sizes
- Intuition on when to take big steps and when to take small steps?

CSCI-GA 2565 18 / 60

2D Divergence example

CSCI-GA 2565 19 / 60

Notes on Convergence

• Gradient descent with an appropriate step size converges to stationary point (derivative = 0) for differentiable functions.

CSCI-GA 2565 20 / 60

Notes on Convergence

- Gradient descent with an appropriate step size converges to stationary point (derivative = 0) for differentiable functions.
- Stationary points can be (local) minima, (local) maxima, saddle points, etc.

CSCI-GA 2565 20 / 60

Notes on Convergence

- Gradient descent with an appropriate step size converges to stationary point (derivative =

 o) for differentiable functions.
- Stationary points can be (local) minima, (local) maxima, saddle points, etc.
- Gradient descent can converge to global minimum for convex functions.

CSCI-GA 2565 20 / 60

Convergence Theorem for Fixed Step Size

Theorem

Suppose $f: \mathbb{R}^d \to \mathbb{R}$ is convex and differentiable, and ∇f is **Lipschitz continuous** with constant L > 0 (L-smooth), i.e.

$$\|\nabla f(x) - \nabla f(x')\| \le L\|x - x'\|$$

for any $x, x' \in \mathbb{R}^d$. Then gradient descent with fixed step size $\eta \leq 1/L$ converges. In particular,

$$f(x^{(k)}) - f(x^*) \leqslant \frac{\|x^{(0)} - x^*\|^2}{2\eta k}.$$

This says that gradient descent is guaranteed to converge and that it converges with rate O(1/k).

21 / 60

Strongly Convex Functions

Definition

A function f is μ -strongly convex if

$$f(x') \ge f(x) + \nabla f(x) \cdot (x' - x) + \frac{\mu}{2} ||x - x'||^2$$

CSCI-GA 2565 22 / 60

Convergence Theorem for Strongly Convex Functions

Theorem

If f is L-smooth and μ -strongly convex, and step size $0 < \eta \leqslant \frac{1}{L}$, then gradient descent converges with the following inequality:

$$||x^{(k)} - x^*||^2 \le (1 - \eta \mu)^k ||x^{(0)} - x^*||^2$$

This means we can get linear convergence, but it depends on μ . If the estimate of μ is bad then the rate is not great.

23 / 60

Gradient Descent: When to Stop?

- Wait until $\|\nabla f(x)\|_2 \le \varepsilon$, for some ε of your choosing.
 - (Recall $\nabla f(x) = 0$ at a local minimum.)

CSCI-GA 2565 24 / 60

Gradient Descent: When to Stop?

- Wait until $\|\nabla f(x)\|_2 \le \varepsilon$, for some ε of your choosing.
 - (Recall $\nabla f(x) = 0$ at a local minimum.)
- Early stopping:
 - evalute loss on validation data (unseen held out data) after each iteration;
 - stop when the loss does not improve (or gets worse).

CSCI-GA 2565 24 / 60

Quick recap: Gradient Descent for ERM

- We have a hypothesis space of functions $\mathfrak{F} = \{f_w : \mathfrak{X} \to \mathfrak{Y} \mid w \in \mathbb{R}^d\}$
 - Parameterized by $w \in \mathbb{R}^d$.

CSCI-GA 2565 26 / 60

Quick recap: Gradient Descent for ERM

- We have a hypothesis space of functions $\mathcal{F} = \{ f_w : \mathcal{X} \to \mathcal{Y} \mid w \in \mathbb{R}^d \}$
 - Parameterized by $w \in \mathbb{R}^d$.
- Finding an empirical risk minimizer entails finding a w that minimizes

$$\hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \ell(f_w(x_i), y_i)$$

26 / 60 CSCI-GA 2565

Quick recap: Gradient Descent for ERM

- We have a hypothesis space of functions $\mathcal{F} = \{ f_w : \mathcal{X} \to \mathcal{Y} \mid w \in \mathbb{R}^d \}$
 - Parameterized by $w \in \mathbb{R}^d$.
- Finding an empirical risk minimizer entails finding a w that minimizes

$$\hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \ell(f_w(x_i), y_i)$$

- Suppose $\ell(f_w(x_i), y_i)$ is differentiable as a function of w.
- Then we can do gradient descent on $\hat{R}_n(w)$

26 / 60 CSCI-GA 2565

Gradient Descent: Scalability

• At every iteration, we compute the gradient at the current w:

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)$$

• How does this scale with *n*?

CSCI-GA 2565 27 / 60

Gradient Descent: Scalability

• At every iteration, we compute the gradient at the current w:

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)$$

- How does this scale with n?
- We have to iterate over all n training points to take a single step. [O(n)]

27 / 60 CSCI-GA 2565

Gradient Descent: Scalability

• At every iteration, we compute the gradient at the current w:

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)$$

- How does this scale with *n*?
- We have to iterate over all n training points to take a single step. [O(n)]
- Can we make progress without looking at all the data before updating w?

CSCI-GA 2565 27 / 60

Stochastic Gradient Descent

"Noisy" Gradient Descent

- Instead of using the gradient, we use a noisy estimate of the gradient.
- Turns out this can work just fine!

CSCI-GA 2565 29 / 60

"Noisy" Gradient Descent

- Instead of using the gradient, we use a noisy estimate of the gradient.
- Turns out this can work just fine!
- Intuition:
 - Gradient descent is an iterative procedure anyway.
 - At every step, we have a chance to recover from previous missteps.

CSCI-GA 2565 29 / 60

Minibatch Gradient

• The full gradient is

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)$$

• It's an average over the **full batch** of data $\mathcal{D}_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$

Minibatch Gradient

• The full gradient is

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)$$

- It's an average over the **full batch** of data $\mathcal{D}_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$
- Let's take a random subsample of size N (called a minibatch):

$$(x_{m_1}, y_{m_1}), \ldots, (x_{m_N}, y_{m_N})$$

30 / 60

Minibatch Gradient

• The full gradient is

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)$$

- It's an average over the **full batch** of data $\mathcal{D}_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$
- Let's take a random subsample of size *N* (called a **minibatch**):

$$(x_{m_1}, y_{m_1}), \ldots, (x_{m_N}, y_{m_N})$$

• The minibatch gradient is

$$\nabla \hat{R}_{N}(w) = \frac{1}{N} \sum_{i=1}^{N} \nabla_{w} \ell(f_{w}(x_{m_{i}}), y_{m_{i}})$$

Batch vs Stochastic Methods

(Slide adapted from Ryan Tibshirani)

Rule of thumb for stochastic methods:

- Stochastic methods work well far from the optimum
- But struggle close the the optimum

• The minibatch gradient is an **unbiased estimator** for the [full] batch gradient. What does that mean?

• The minibatch gradient is an **unbiased estimator** for the [full] batch gradient. What does that mean?

$$\mathbb{E}\left[\nabla \hat{R}_{N}(w)\right] = \nabla \hat{R}_{n}(w)$$

• The minibatch gradient is an unbiased estimator for the [full] batch gradient. What does that mean?

$$\mathbb{E}\left[\nabla\hat{R}_{N}(w)\right] = \nabla\hat{R}_{n}(w)$$

• The bigger the minibatch, the better the estimate.

$$\operatorname{Var}\left[\nabla \hat{R}_{N}(w)\right] = \operatorname{Var}\left[\frac{1}{N}\sum_{i}\nabla \hat{R}_{i}(w)\right] = \frac{1}{N^{2}}\operatorname{Var}\left[\sum_{i}\nabla \hat{R}_{i}(w)\right] = \frac{1}{N}\operatorname{Var}\left[\nabla \hat{R}_{i}(w)\right]$$

32 / 60 CSCI-GA 2565

• The minibatch gradient is an unbiased estimator for the [full] batch gradient. What does that mean?

$$\mathbb{E}\left[\nabla\hat{R}_{N}(w)\right] = \nabla\hat{R}_{n}(w)$$

• The bigger the minibatch, the better the estimate.

$$\operatorname{Var}\left[\nabla \hat{R}_{N}(w)\right] = \operatorname{Var}\left[\frac{1}{N}\sum_{i}\nabla \hat{R}_{i}(w)\right] = \frac{1}{N^{2}}\operatorname{Var}\left[\sum_{i}\nabla \hat{R}_{i}(w)\right] = \frac{1}{N}\operatorname{Var}\left[\nabla \hat{R}_{i}(w)\right]$$

- Tradeoffs of minibatch size:
 - Bigger $N \implies$ Better estimate of gradient, but slower (more data to process)

32 / 60 CSCI-GA 2565

 The minibatch gradient is an unbiased estimator for the [full] batch gradient. What does that mean?

$$\mathbb{E}\left[\nabla\hat{R}_{N}(w)\right] = \nabla\hat{R}_{n}(w)$$

• The bigger the minibatch, the better the estimate.

$$\operatorname{Var}\left[\nabla \hat{R}_{N}(w)\right] = \operatorname{Var}\left[\frac{1}{N}\sum_{i}\nabla \hat{R}_{i}(w)\right] = \frac{1}{N^{2}}\operatorname{Var}\left[\sum_{i}\nabla \hat{R}_{i}(w)\right] = \frac{1}{N}\operatorname{Var}\left[\nabla \hat{R}_{i}(w)\right]$$

- Tradeoffs of minibatch size:
 - Bigger $N \implies$ Better estimate of gradient, but slower (more data to process)
 - Smaller $N \implies$ Worse estimate of gradient, but can be quite fast

 The minibatch gradient is an unbiased estimator for the [full] batch gradient. What does that mean?

$$\mathbb{E}\left[\nabla\hat{R}_{N}(w)\right] = \nabla\hat{R}_{n}(w)$$

• The bigger the minibatch, the better the estimate.

$$\mathsf{Var}\left[\nabla \hat{R}_{N}(w)\right] = \mathsf{Var}\left[\frac{1}{N}\sum_{i}\nabla \hat{R}_{i}(w)\right] = \frac{1}{N^{2}}\mathsf{Var}\left[\sum_{i}\nabla \hat{R}_{i}(w)\right] = \frac{1}{N}\mathsf{Var}\left[\nabla \hat{R}_{i}(w)\right]$$

- Tradeoffs of minibatch size:
 - Bigger $N \implies$ Better estimate of gradient, but slower (more data to process)
 - Smaller $N \Longrightarrow$ Worse estimate of gradient, but can be quite fast
- Because of vectorization, the computation cost of minibatches is sublinear

- For convergence guarantee, use **diminishing step sizes**, e.g. $\eta_k = 1/k$
- Theoretically, GD is much faster than SGD in terms of convergence rate and number of steps:
 - much faster to add a digit of accuracy (more details later)

- For convergence guarantee, use diminishing step sizes, e.g. $\eta_k = 1/k$
- Theoretically, GD is much faster than SGD in terms of convergence rate and number of steps:
 - much faster to add a digit of accuracy (more details later)
 - costlier to compute a single step

- For convergence guarantee, use **diminishing step sizes**, e.g. $\eta_k = 1/k$
- Theoretically, GD is much faster than SGD in terms of convergence rate and number of steps:
 - much faster to add a digit of accuracy (more details later)
 - costlier to compute a single step
 - but most of that advantage comes into play once we're already pretty close to the minimum

- For convergence guarantee, use **diminishing step sizes**, e.g. $\eta_k = 1/k$
- Theoretically, GD is much faster than SGD in terms of convergence rate and number of steps:
 - much faster to add a digit of accuracy (more details later)
 - costlier to compute a single step
 - but most of that advantage comes into play once we're already pretty close to the minimum
 - in many ML problems we don't care about optimizing to high accuracy (why?)

Step Sizes in Minibatch Gradient Descent

Minibatch Gradient Descent (minibatch size *N*)

- initialize w = 0
- repeat
 - randomly choose N points $\{(x_i, y_i)\}_{i=1}^N \subset \mathcal{D}_n$

•
$$w \leftarrow w - \eta \left[\frac{1}{N} \sum_{i=1}^{N} \nabla_{w} \ell(f_{w}(x_{i}), y_{i}) \right]$$

• For SGD, fixed step size can work well in practice.

Step Sizes in Minibatch Gradient Descent

Minibatch Gradient Descent (minibatch size N)

- initialize w=0
- repeat
 - randomly choose N points $\{(x_i, y_i)\}_{i=1}^N \subset \mathcal{D}_n$

•
$$w \leftarrow w - \eta \left[\frac{1}{N} \sum_{i=1}^{N} \nabla_{w} \ell(f_{w}(x_{i}), y_{i}) \right]$$

- For SGD, fixed step size can work well in practice.
- Typical approach: Fixed step size reduced by constant factor whenever validation performance stops improving (staircase decay).

34 / 60

Step Sizes in Minibatch Gradient Descent

Minibatch Gradient Descent (minibatch size N)

- initialize w=0
- repeat
 - randomly choose N points $\{(x_i, y_i)\}_{i=1}^N \subset \mathcal{D}_n$

•
$$w \leftarrow w - \eta \left[\frac{1}{N} \sum_{i=1}^{N} \nabla_{w} \ell(f_{w}(x_{i}), y_{i}) \right]$$

- For SGD, fixed step size can work well in practice.
- Typical approach: Fixed step size reduced by constant factor whenever validation performance stops improving (staircase decay).
- Other schedules: inverse time decay (1/t) etc.

Convergence of SGD Theorem (Optional)

More on why we need a diminishing step size.

Theorem

If f is L-smooth and convex, and SGD has bounded variance $Var(\nabla f(x^{(k)})) \leqslant \sigma^2$ for all k, then SGD with step size $\eta \leqslant \frac{1}{I}$ satisifies:

$$\min_{k} \mathbb{E}[||\nabla f(x^{(k)}||^{2}] \leqslant \frac{f(x^{(0)}) - f(x^{*})}{\sum_{k} \eta_{k}} + \frac{L\sigma^{2}}{2} \frac{\sum_{k} \eta_{k}^{2}}{\sum_{k} \eta_{k}}$$

The extra term of variance will dominate if the step size does not decrease. ¹

¹ https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L11.pdf

Summary

- Gradient descent or "full-batch" gradient descent
 - Use full data set of size *n* to determine step direction

Summary

- Gradient descent or "full-batch" gradient descent
 - Use full data set of size *n* to determine step direction
- Minibatch gradient descent
 - Use a **random** subset of size *N* to determine step direction

Summary

- Gradient descent or "full-batch" gradient descent
 - Use full data set of size *n* to determine step direction
- Minibatch gradient descent
 - Use a random subset of size N to determine step direction
- Stochastic gradient descent
 - Minibatch with N=1.
 - Use a single randomly chosen point to determine step direction.

CSCI-GA 2565 36 / 60

Summary

- Gradient descent or "full-batch" gradient descent
 - Use full data set of size *n* to determine step direction
- Minibatch gradient descent
 - Use a random subset of size N to determine step direction
- Stochastic gradient descent
 - Minibatch with N=1.
 - Use a single randomly chosen point to determine step direction.

These days terminology isn't used so consistently, so when referring to SGD, always clarify the [mini]batch size.

SGD is much more efficient in time and memory cost and has been quite successful in large-scale ML.

CSCI-GA 2565 36 / 60

Example: Logistic regression with ℓ_2 regularization

Batch methods converge faster :

(Example from Ryan Tibshirani)

CSCI-GA 2565 37 / 60

Example: Logistic regression with ℓ_2 regularization

Stochastic methods are computationally more efficient:

(Example from Ryan Tibshirani)

CSCI-GA 2565 38 / 60

Example: Logistic regression with ℓ_2 regularization

Batch methods are much faster close to the optimum:

(Example from Ryan Tibshirani)

39 / 60

Loss Functions: Regression

- Examples:
 - Predicting the stock price given history prices

- Examples:
 - Predicting the stock price given history prices
 - Predicting medical cost of given age, sex, region, BMI etc.

- Examples:
 - Predicting the stock price given history prices
 - Predicting medical cost of given age, sex, region, BMI etc.
 - Predicting the age of a person based on their photos

- Examples:
 - Predicting the stock price given history prices
 - Predicting medical cost of given age, sex, region, BMI etc.
 - Predicting the age of a person based on their photos
- Notation:
 - \hat{y} is the predicted value (the action)
 - y is the actual observed value (the outcome)

Loss Functions for Regression

• A loss function in general:

$$(\hat{y}, y) \mapsto \ell(\hat{y}, y) \in \mathsf{R}$$

Loss Functions for Regression

• A loss function in general:

$$(\hat{y}, y) \mapsto \ell(\hat{y}, y) \in \mathsf{R}$$

- Regression losses usually only depend on the **residual** $r = y \hat{y}$.
 - what you have to add to your prediction to get the correct answer.

Loss Functions for Regression

A loss function in general:

$$(\hat{y}, y) \mapsto \ell(\hat{y}, y) \in \mathsf{R}$$

- Regression losses usually only depend on the **residual** $r = y \hat{y}$.
 - what you have to add to your prediction to get the correct answer.
- A loss $\ell(\hat{y}, y)$ is called **distance-based** if:
 - It only depends on the residual:

$$\ell(\hat{y}, y) = \psi(y - \hat{y})$$
 for some $\psi: R \to R$

2 It is zero when the residual is 0:

$$\psi(0) = 0$$

42 / 60 CSCI-GA 2565

• Distance-based losses are translation-invariant. That is,

$$\ell(\hat{y} + b, y + b) = \ell(\hat{y}, y) \quad \forall b \in R.$$

• Distance-based losses are translation-invariant. That is,

$$\ell(\hat{y} + b, y + b) = \ell(\hat{y}, y) \quad \forall b \in R.$$

• When might you not want to use a translation-invariant loss?

Distance-based losses are translation-invariant. That is,

$$\ell(\hat{y} + b, y + b) = \ell(\hat{y}, y) \quad \forall b \in R.$$

- When might you not want to use a translation-invariant loss?
- Sometimes the relative error $\frac{\hat{y}-y}{y}$ is a more natural loss (but not translation-invariant)

43 / 60

Distance-based losses are translation-invariant. That is,

$$\ell(\hat{y} + b, y + b) = \ell(\hat{y}, y) \quad \forall b \in \mathbb{R}.$$

- When might you not want to use a translation-invariant loss?
- ullet Sometimes the relative error $rac{\hat{y}-y}{v}$ is a more natural loss (but not translation-invariant)
- Often you can transform response y so it's translation-invariant (e.g. log transform)

43 / 60

- Residual: $r = y \hat{y}$
- Square or ℓ_2 Loss: $\ell(r) = r^2$

- Residual: $r = y \hat{y}$
- Square or ℓ_2 Loss: $\ell(r) = r^2$
- Absolute or Laplace or ℓ_1 Loss: $\ell(r) = |r|$

• Residual: $r = y - \hat{y}$

• Square or ℓ_2 Loss: $\ell(r) = r^2$

• Absolute or Laplace or ℓ_1 Loss: $\ell(r) = |r|$

у	ŷ	$ r = y - \hat{y} $	$r^2 = (y - \hat{y})^2$
1	0	1	1
5	0	5	25
10	0	10	100
50	0	50	2500

• An outlier is a data point that differs significantly from other observations.

- Residual: $r = y \hat{y}$
- Square or ℓ_2 Loss: $\ell(r) = r^2$
- Absolute or Laplace or ℓ_1 Loss: $\ell(r) = |r|$

У	ŷ	$ r = y - \hat{y} $	$r^2 = (y - \hat{y})^2$
1	0	1	1
5	0	5	25
10	0	10	100
50	0	50	2500

- An outlier is a data point that differs significantly from other observations.
- Outliers typically have large residuals.

- Residual: $r = y \hat{y}$
- Square or ℓ_2 Loss: $\ell(r) = r^2$
- Absolute or Laplace or ℓ_1 Loss: $\ell(r) = |r|$

У	ŷ	$ r = y - \hat{y} $	$r^2 = (y - \hat{y})^2$
1	0	1	1
5	0	5	25
10	0	10	100
50	0	50	2500

- An outlier is a data point that differs significantly from other observations.
- Outliers typically have large residuals.
- Square loss much more affected by outliers than absolute loss.

Loss Function Robustness

• Robustness refers to how affected a learning algorithm is by outliers.

- Square or ℓ_2 Loss: $\ell(r) = r^2$ (not robust)
- Absolute or Laplace Loss: $\ell(r) = |r|$ (not differentiable)
 - gives median regression
- **Huber** Loss: Quadratic for $|r| \le \delta$ and linear for $|r| > \delta$ (robust and differentiable)
 - Equal values and slopes at $r = \delta$

Classification Loss Functions

- Examples:
 - Predict whether the image contains a cat
 - Predict whether the email is spam

- Examples:
 - Predict whether the image contains a cat
 - Predict whether the email is spam
- Classification spaces:
 - Input space R^d
 - Outcome space $\mathcal{Y} = \{-1, 1\}$

48 / 60

- Examples:
 - Predict whether the image contains a cat
 - Predict whether the email is spam
- Classification spaces:
 - Input space R^d
 - Outcome space $\mathcal{Y} = \{-1, 1\}$
- Inference:

$$f(x) > 0 \implies \text{Predict } 1$$

 $f(x) < 0 \implies \text{Predict } -1$

- Examples:
 - Predict whether the image contains a cat
 - Predict whether the email is spam
- Classification spaces:
 - Input space R^d
 - Outcome space $\mathcal{Y} = \{-1, 1\}$
- Inference:

$$f(x) > 0 \implies \text{Predict } 1$$

 $f(x) < 0 \implies \text{Predict } -1$

How can we optimize the model output?

The Score Function

- Output space $\mathcal{Y} = \{-1, 1\}$
- Real-valued prediction function $f: X \to R$

Definition

The value f(x) is called the **score** for the input x.

The Score Function

- Output space $\mathcal{Y} = \{-1, 1\}$
- Real-valued prediction function $f: X \to R$

Definition

The value f(x) is called the **score** for the input x.

- In this context, f may be called a score function.
- The magnitude of the score can be interpreted as our confidence of our prediction.

49 / 60 CSCI-GA 2565

Definition

The margin (or functional margin) for a predicted score \hat{y} and the true class $y \in \{-1, 1\}$ is $y\hat{y}$.

Definition

The margin (or functional margin) for a predicted score \hat{y} and the true class $y \in \{-1, 1\}$ is $y\hat{y}$.

• The margin is often written as yf(x), where f(x) is our score function.

Definition

The margin (or functional margin) for a predicted score \hat{y} and the true class $y \in \{-1, 1\}$ is $y\hat{y}$.

- The margin is often written as yf(x), where f(x) is our score function.
- The margin is a measure of how correct we are:
 - If y and \hat{y} are the same sign, prediction is **correct** and margin is **positive**.
 - If y and \hat{y} have different sign, prediction is **incorrect** and margin is **negative**.

Definition

The margin (or functional margin) for a predicted score \hat{y} and the true class $y \in \{-1, 1\}$ is $y\hat{y}$.

- The margin is often written as yf(x), where f(x) is our score function.
- The margin is a measure of how correct we are:
 - If y and \hat{y} are the same sign, prediction is **correct** and margin is **positive**.
 - If y and \hat{y} have different sign, prediction is **incorrect** and margin is **negative**.
- We want to maximize the margin.

Definition

The margin (or functional margin) for a predicted score \hat{y} and the true class $y \in \{-1, 1\}$ is $y\hat{y}$.

- The margin is often written as yf(x), where f(x) is our score function.
- The margin is a measure of how correct we are:
 - If y and \hat{y} are the same sign, prediction is **correct** and margin is **positive**.
 - If y and \hat{y} have different sign, prediction is **incorrect** and margin is **negative**.
- We want to maximize the margin.
- Most classification losses depend only on the margin (they are margin-based losses).

- If \tilde{f} is the inference function (1 if f(x) > 0 and -1 otherwise), then
- The **0-1 loss** for $f: \mathcal{X} \to \{-1, 1\}$:

$$\ell(f(x), y) = \mathbb{1}[\tilde{f}(x) \neq y]$$

CSCI-GA 2565 51 / 60

- If \tilde{f} is the inference function (1 if f(x) > 0 and -1 otherwise), then
- The **0-1 loss** for $f: \mathfrak{X} \rightarrow \{-1, 1\}$:

$$\ell(f(x), y) = \mathbb{1}[\tilde{f}(x) \neq y]$$

• Empirical risk for 0-1 loss:

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}[y_i f(x_i) \le 0]$$

51 / 60 CSCI-GA 2565

- If \tilde{f} is the inference function (1 if f(x) > 0 and -1 otherwise), then
- The **0-1 loss** for $f: \mathfrak{X} \rightarrow \{-1, 1\}$:

$$\ell(f(x), y) = \mathbb{1}[\tilde{f}(x) \neq y]$$

• Empirical risk for 0-1 loss:

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}[y_i f(x_i) \le 0]$$

Minimizing empirical 0-1 risk not computationally feasible.

51 / 60 CSCI-GA 2565

- If \tilde{f} is the inference function (1 if f(x) > 0 and -1 otherwise), then
- The **0-1 loss** for $f: X \to \{-1, 1\}$:

$$\ell(f(x), y) = \mathbb{1}[\tilde{f}(x) \neq y]$$

• Empirical risk for 0-1 loss:

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}[y_i f(x_i) \le 0]$$

Minimizing empirical 0-1 risk not computationally feasible.

 $\hat{R}_n(f)$ is non-convex, not differentiable, and even discontinuous.

CSCI-GA 2565 51 / 60

Classification Losses

Zero-One loss: $\ell_{0-1} = \mathbb{1}[m \leq 0]$

• x-axis is margin: $m > 0 \iff$ correct classification

CSCI-GA 2565 52 / 60

Hinge Loss

SVM/Hinge loss: $\ell_{\text{Hinge}} = \max(1 - m, 0)$

Hinge is a convex, upper bound on 0-1 loss. Not differentiable at m=1.

We will cover SVM and Hinge loss in more details in future lectures.

CSCI-GA 2565 53 / 60

- Also known as linear classification. Logistic regression is not actually "regression."
- Two equivalent types of logistic regression losses, depending on the labels.

CSCI-GA 2565 54 / 60

- Also known as linear classification. Logistic regression is not actually "regression."
- Two equivalent types of logistic regression losses, depending on the labels.
- If the label is 0 or 1:
- $\hat{y} = \sigma(z)$, where σ is the sigmoid function, and $z = f(x) = w^{\top}x$.

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

CSCI-GA 2565

- If the label is 0 or 1:
- $\hat{y} = \sigma(z)$, where σ is the sigmoid function.

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

CSCI-GA 2565 55 / 60

- If the label is 0 or 1:
- $\hat{y} = \sigma(z)$, where σ is the sigmoid function.

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

• The loss is binary cross entropy:

$$\ell_{\mathsf{Logistic}} = -y \log(\hat{y}) - (1-y) \log(1-\hat{y})$$

CSCI-GA 2565 55 / 60

- If the label is 0 or 1:
- $\hat{y} = \sigma(z)$, where σ is the sigmoid function.

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

• The loss is binary cross entropy:

$$\ell_{\mathsf{Logistic}} = -y \log(\hat{y}) - (1-y) \log(1-\hat{y})$$

Remember the negative sign!

- If the label is -1 o 1:
- Note: $1 \sigma(z) = \sigma(-z)$

- If the label is -1 o 1:
- Note: $1 \sigma(z) = \sigma(-z)$
- Now we can derive an equivalent loss form:

$$\begin{split} \ell_{\mathsf{Logistic}} &= \begin{cases} -\log(\sigma(z)) & \text{if} \quad y = 1 \\ -\log(\sigma(-z)) & \text{if} \quad y = -1 \end{cases} \\ &= -\log(\sigma(yz)) \\ &= -\log(\frac{1}{1 + e^{-yz}}) \\ &= \log(1 + e^{-m}). \end{split}$$

- If the label is -1 o 1:
- Note: $1 \sigma(z) = \sigma(-z)$
- Now we can derive an equivalent loss form:

$$\ell_{\mathsf{Logistic}} = egin{cases} -\log(\sigma(z)) & \text{if} & y=1 \ -\log(\sigma(-z)) & \text{if} & y=-1 \end{cases}$$

$$= -\log(rac{1}{1+e^{-yz}})$$

$$= \log(1+e^{-m}).$$

- If the label is -1 o 1:
- Note: $1 \sigma(z) = \sigma(-z)$
- Now we can derive an equivalent loss form:

$$\ell_{\mathsf{Logistic}} = \begin{cases} -\log(\sigma(z)) & \text{if} \quad y = 1 \\ -\log(\sigma(-z)) & \text{if} \quad y = -1 \end{cases}$$

$$= \log(1 + e^{-m}).$$

- If the label is -1 o 1:
- Note: $1 \sigma(z) = \sigma(-z)$
- Now we can derive an equivalent loss form:

$$\begin{split} \ell_{\mathsf{Logistic}} &= \begin{cases} -\log(\sigma(z)) & \text{if} \quad y = 1 \\ -\log(\sigma(-z)) & \text{if} \quad y = -1 \end{cases} \\ &= -\log(\sigma(yz)) \\ &= -\log(\frac{1}{1 + e^{-yz}}) \\ &= \log(1 + e^{-m}). \end{split}$$

Logistic Loss

Logistic/Log loss: $\ell_{\text{Logistic}} = \log(1 + e^{-m})$

Logistic loss is differentiable. Logistic loss always rewards a larger margin (the loss is never 0).

CSCI-GA 2565 57 / 60

• Loss
$$\ell(f(x), y) = (f(x) - y)^2$$
.

- Loss $\ell(f(x), y) = (f(x) y)^2$.
- Turns out, can write this in terms of margin m = f(x)y:
- Using fact that $y^2 = 1$, since $y \in \{-1, 1\}$.

$$\ell(f(x), y) = (f(x) - y)^2$$

- Loss $\ell(f(x), y) = (f(x) y)^2$.
- Turns out, can write this in terms of margin m = f(x)y:
- Using fact that $y^2 = 1$, since $y \in \{-1, 1\}$.

$$\ell(f(x), y) = (f(x) - y)^{2}$$

= $f^{2}(x) - 2f(x)y + y^{2}$

- Loss $\ell(f(x), y) = (f(x) y)^2$.
- Turns out, can write this in terms of margin m = f(x)y:
- Using fact that $v^2 = 1$, since $v \in \{-1, 1\}$.

$$\ell(f(x), y) = (f(x) - y)^{2}$$

$$= f^{2}(x) - 2f(x)y + y^{2}$$

$$= f^{2}(x)y^{2} - 2f(x)y + 1$$

- Loss $\ell(f(x), y) = (f(x) y)^2$.
- Turns out, can write this in terms of margin m = f(x)y:
- Using fact that $v^2 = 1$, since $v \in \{-1, 1\}$.

$$\ell(f(x), y) = (f(x) - y)^{2}$$

$$= f^{2}(x) - 2f(x)y + y^{2}$$

$$= f^{2}(x)y^{2} - 2f(x)y + 1$$

$$= (1 - f(x)y)^{2}$$

- Loss $\ell(f(x), v) = (f(x) v)^2$.
- Turns out, can write this in terms of margin m = f(x)y:
- Using fact that $v^2 = 1$, since $v \in \{-1, 1\}$.

$$\ell(f(x), y) = (f(x) - y)^{2}$$

$$= f^{2}(x) - 2f(x)y + y^{2}$$

$$= f^{2}(x)y^{2} - 2f(x)y + 1$$

$$= (1 - f(x)y)^{2}$$

$$= (1 - m)^{2}$$

58 / 60 CSCI-GA 2565

Heavily penalizes outliers (e.g. mislabeled examples).

CSCI-GA 2565 59 / 60

• Gradient descent: step size/learning rate, batch size, convergence

- Gradient descent: step size/learning rate, batch size, convergence
- Loss functions for regression and classification problems.

- Gradient descent: step size/learning rate, batch size, convergence
- Loss functions for regression and classification problems.
- Regression: Squared (L2) loss, Absolute (L1) loss, Huber loss.

- Gradient descent: step size/learning rate, batch size, convergence
- Loss functions for regression and classification problems.
- Regression: Squared (L2) loss, Absolute (L1) loss, Huber loss.
- Classification: Hinge loss, Logistic loss.

- Gradient descent: step size/learning rate, batch size, convergence
- Loss functions for regression and classification problems.
- Regression: Squared (L2) loss, Absolute (L1) loss, Huber loss.
- Classification: Hinge loss, Logistic loss.
- Residual, margin

- Gradient descent: step size/learning rate, batch size, convergence
- Loss functions for regression and classification problems.
- Regression: Squared (L2) loss, Absolute (L1) loss, Huber loss.
- Classification: Hinge loss, Logistic loss.
- Residual, margin
- Logistic regression