Dynamic Mass of Photons and Its Implications for Nonlocality

Johann Pascher

March 25, 2025

Abstract

This work explores the consequences of a dynamic, frequency-dependent mass for photons within various time models in quantum mechanics. By assigning $m_{\gamma} = \omega$ in natural units, an energy-dependent time is introduced, impacting nonlocality and causality. The theory is supported by experimental predictions.

Contents

1	Introduction	2
2	Natural Units as a Foundation 2.1 Definition of Natural Units	2 2 2
3	Time Models in Quantum Mechanics 3.1 Limitations of the Standard Model	2 2 2 2 2
4	Unification of Models	2
5	Implications for Nonlocality and Entanglement 5.1 Energy-Dependent Correlations	2 2
6	Experimental Verification	3
7	Physics Beyond the Speed of Light	3
8	Conclusion	3

1 Introduction

This work examines the implications of a dynamic, frequency-dependent mass for photons within different quantum mechanical time models [1].

2 Natural Units as a Foundation

2.1 Definition of Natural Units

Theorem 2.1 (Natural Units). With $\hbar = c = G = 1$:

$$[L] = [E^{-1}] \tag{1}$$

$$[T] = [E^{-1}] \tag{2}$$

$$[M] = [E] \tag{3}$$

2.2 Significance for Mass-Energy Equivalence

$$m_{\gamma} = \omega \tag{4}$$

3 Time Models in Quantum Mechanics

3.1 Limitations of the Standard Model

$$i\hbar \frac{\partial \psi}{\partial t} = H\psi \tag{5}$$

3.2 The T0 Model with Absolute Time

$$E = \frac{\hbar}{T_0} \tag{6}$$

3.3 The Intrinsic Time Model

$$T(x) = \frac{\hbar}{mc^2} \tag{7}$$

3.4 Extension for Photons

$$T(x) = \frac{1}{E} \tag{8}$$

4 Unification of Models

$$T(x) = \frac{1}{\max(m, E)} \tag{9}$$

5 Implications for Nonlocality and Entanglement

5.1 Energy-Dependent Correlations

• Delay:
$$\left| \frac{1}{E_1} - \frac{1}{E_2} \right|$$

Figure 1: Energy-dependent time for photons.

6 Experimental Verification

• Frequency-dependent Bell tests.

7 Physics Beyond the Speed of Light

$$E^{2} = (mc^{2})^{2} + (pc)^{2} + \alpha_{c}p^{4}c^{2}/E_{P}^{2}$$
(10)

8 Conclusion

The dynamic mass of photons provides a novel view of nonlocality as an emergent phenomenon.

References

- [1] Pascher, J. (2025). Time as an Emergent Property in Quantum Mechanics.
- [2] Einstein, A. (1905). On the Electrodynamics of Moving Bodies. Annalen der Physik, 322(10), 891-921.
- [3] Planck, M. (1901). On the Law of Distribution of Energy in the Normal Spectrum. Annalen der Physik, 309(3), 553-563.
- [4] Bell, J. S. (1964). On the Einstein Podolsky Rosen Paradox. Physics, 1(3), 195-200.
- [5] Feynman, R. P. (1985). *QED: The Strange Theory of Light and Matter*. Princeton University Press.