Hw6 pg1

Monday, May 16, 2022 11:34 AM

Monday, May 16, 2022 11:34 AM

Exercise 1 (10 points)
$$[E] = m |V| = n$$

Let $G = (V, E)$ be a bipartite graph with parts $V = V_1 \cup V_2$. Consider the linear program:

$$\min \sum_{u \in V} \sum_{u} Consider the linear program: Constraint that either u and v a$$

- a) If you write the problem in the matrix form $\min\{1^Ty \mid Ay \ge 1; y \ge 0\}$, how is the matrix A defined?

 b) Prove that all extreme points of $P = \{y \in \mathbb{R}^Y \mid Ay \ge 1; y \ge 0\}$ are integral (A defined as in a)).

 c) Which problem that you know from the lecture, does the above LP solve?

where entry $A(e,v) := \begin{cases} 1 & e \text{ incldent to } v \\ 0 & e \text{ blarwise} \end{cases}$

 $A \propto (Node, edge)$ Incident indication polaries of Bipartite graph G of discussions $m = [E \mid n = \mid V]$ Every entry of A is O or I; A is totally unimodular because distantional of all submatters either 0,1,-1 Than by Lemma 54, all extreme points of P are integral (A is totally unimodular & b = vector of I => 66 Zm) ... corollary 56

c) Problem LP Solves = ___ from observation, books like we want to find min subset SSV such that at least every edge has at least one

yut y; yu = 1 => vurtex u included in finel selection; sommetion From my interpretation, this looks like the minimum vertex cover problem

Hw6 pg2

Tuesday, May 17, 2022 3:09 PM

Exercise 2 (10 points)

Not Bipatite (Not 2 colors ble)

Social to triangle graph
$$G = (V, E)$$
 with 3 nodes and 3 edges

Social to 6.1

and the functing polytoge $P_{N^c} = \{x \in \mathbb{R}^c \mid Ax \le b\}$ and give the 6×3 constraint matrix A . What 3 ×3 submatrix A , of A has $dot(A_0) \in [-1, 0.1]$? Which is the extreme point $x = A_1^{-1}(b)$ that belongs to this submatrix?

b) Which of the following matrices is TU? Argue why or why not?

i) write in form
$$P_{M} = \{x \in \mathbb{R}^{E} | Ax \leq b\}$$
; $A \in G \times 3$ constraints x objective variables

Objection X_{1}, X_{2}, X_{3} as edge casts

or edge $\{e_{1}, e_{2}, e_{3}\}$
 $\{e_{2}, e_{3}\}$
 $\{e_{3}, e_{4}\}$
 $\{e_{4}, e_{5}\}$
 $\{e_{5}, e_{5}\}$
 $\{e_{6}, e_{7}\}$
 $\{e_{7}, e_{7}\}$
 $\{e_{7}, e_{7}\}$
 $\{e_{7}, e_{7}\}$
 $\{e_{7}, e_{7}\}$
 $\{e_{7}, e_{7}\}$
 $\{e_{7}, e_{7}\}$

Constraints:
$$C_1: e \in S(\alpha):=\left\{e_1, e_3\right\}; \underbrace{\sum_{e \in S(\alpha)} x_e}_{\in S(\alpha)} = X_1 + X_3 \quad \text{is} \leq 1$$

$$C_2 \quad \cdots \quad C_3 \quad \cdots \quad C_3 \quad \cdots \quad \cdots$$

$$C_4, C_5, C_6:= \text{Non-negativity constraints for edge-costs}$$

Sx3 Submetrix
$$A_{I}$$
 of A with $\frac{\det(A_{I}) \cancel{E} \left\{-1,0,1\right\}}{\det(A_{I}) \cancel{E} \left\{-1,0,1\right\}}$ i.e. which A_{I}^{3x3} is not Totally Unimability Consider Submetrix $A_{I} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$

$$A_{I} \approx \text{Node} - \text{edge} \text{ incident Metrity of Cr}$$

$$A_{I} \approx \text{Node} - \text{edge} \text{ incident Metrity of Cr}$$

$$A_{I} \approx \text{Node} - \text{edge} \text{ incident Metrity of Cr}$$

$$A_{I} \approx \text{Node} - \text{edge} \text{ incident Metrity of Cr}$$

$$A_{I} \approx \text{Node} - \text{edge} \text{ incident Metrity of Cr}$$

$$A_{I} \approx \text{Node} - \text{edge} \text{ incident Metrity of Cr}$$

$$A_{I} \approx \text{Node} - \text{edge} \text{ incident Metrity of Cr}$$

$$A_{I} \approx \text{Node} - \text{edge} \text{ incident Metrity of Cr}$$

$$A_{I} \approx \text{Node} - \text{edge} \text{ incident Metrity of Cr}$$

$$A_{I} \approx \text{Node} - \text{edge} \text{ incident Metrity of Cr}$$

$$A_{I} \approx \text{Node} - \text{edge} \text{ incident Metrity of Cr}$$

$$A_{I} \approx \text{Node} - \text{edge} \text{ incident Metrity of Cr}$$

$$A_{I} \approx \text{Node} - \text{edge} \text{ incident Metrity of Cr}$$

$$A_{I} \approx \text{Node} - \text{edge} \text{ incident Metrity of Cr}$$

$$A_{I} \approx \text{Node} - \text{edge} \text{ incident Metrity of Cr}$$

$$A_{I} \approx \text{Node} - \text{edge} \text{ incident Metrity of Cr}$$

$$A_{I} \approx \text{Node} - \text{edge} \text{ incident Metrity of Cr}$$

$$A_{I} \approx \text{Node} - \text{edge} \text{ incident Metrity of Cr}$$

$$A_{I} \approx \text{Node} - \text{edge} \text{ incident Metrity of Cr}$$

$$A_{I} \approx \text{Node} - \text{edge} \text{ incident Metrity of Cr}$$

$$A_{I} \approx \text{Node} - \text{edge} \text{ incident Metrity of Cr}$$

$$A_{I} \approx \text{Node} - \text{edge} \text{ incident Metrity of Cr}$$

$$A_{x}^{-1} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A_{x}^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 & -1 & 1 \\ -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \end{bmatrix}; b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$X = A_{x}^{-1} b_{x} = \frac{1}{2} A_{x}^{-1} b_{x} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}; b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$X = A_{x}^{-1} b_{x} = \frac{1}{2} A_{x}^{-1} b_{x} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}; b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$A_{x}^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}; b = \begin{bmatrix} 1 \\ 1 \\ 1$$

$$\frac{b)}{\text{consider submatrix }} \frac{A_1 \text{ Not TU};}{\text{consider submatrix }} \frac{A_2' \text{ 3x3}}{\text{consider submatrix }} \frac{A_1' \text{ 3$$

$$A_2$$
 Not TU :

 \overline{X} operation from Linux 55 such that $A_2 = \left(B \mid \frac{C_1}{C_2}\right)$

There change extrate column EB with more than one nonzero entry

