Lab5 Report

实验目的

Lab5是综合实验,运用整个课程的所学知识,给定账户的一系列特征,预测其是否为虚假账号。需要对数据集进行进行数据预处理、数据划分、模型训练、模型验证、实验分析

实验原理

数据处理:

首先对数据进行编码,对于name, description等离散的,无法编码的数据,采用量化相似度、判断其中token的数量、判断url的数量等等来进行编码,最后得到特征矩阵并进行归一化

特征选择:

特征矩阵中存在一些冗余特征,对其进行无用特征删除来特征选择,由于采用PCA等降维方法会改变 Dataframe的格式,所以通过观察特征分布图来手动删除无用特征

数据划分:

采用四折交叉验证来划分数据和训练样本,保证训练的准确程度

调参:

用网络搜索,遍历所有的参数组合,虽然计算量较大,但是可以找出最优的参数

模型训练与验证:

使用线性回归模型、决策树模型、神经网络模型、支持向量机以及XGBoost等分类模型来完成标签预测任务,调试参数,选择表现最好的模型应用在测试集得到最终的结果

假设检验:

使用t检验来验证模型的泛化性能

实验步骤

读取数据

- 对于属性只有true 和 false 的特征,直接对其编码01即可
- 对于followers_count等数量很大的特征,对其取对数
- 对于create_at创建时间,分离出创建的小时以及星期几,对其编码,考虑是机器人的创建星期以及小时可能会跟人的创建账号时间不同,而月份,年份和创建时间的分和秒影响不大
- 对于语言,统计出17种不同的语言,也是进行编码1-17
- 对于颜色,由于颜色的数据都是十六进制字符串,所以就转换成十进制整数即可
- 处理name 和 screen_name,考虑用字符串相似度的函数来对这两个名字的相似度进行量化,并分为0-4级
- 对于description,我先考虑提取出其中的url,统计个人描述中url的数量。然后分离出emoji,用词法分析器统计description中token的数量
- 最后对得到的特征函数中心化,即得到初步的特征矩阵

```
data_train['label'] = data_train['label'].apply(lambda x: 1 if x == 'human' else
0)
data_train = data_train.drop('id', axis=1)
X = data_train[['label', 'url', 'followers_count', 'friends_count',
'listed_count', 'favourites_count', 'verified', 'geo_enabled', 'lang',
                'statuses_count', 'profile_background_tile',
'profile_use_background_image', 'has_extended_profile', 'default_profile',
                'protected']].copy()
# 对 'url' 进行编码
X.loc[:, 'url'] = X['url'].apply(lambda x: 0 if x is None else 1)
X.loc[:, 'followers_count'] = np.log1p(X['followers_count'])
X.loc[:, 'friends_count'] = np.log1p(X['friends_count'])
X.loc[:, 'listed_count'] = np.log1p(X['listed_count'])
X.loc[:, 'favourites_count'] = np.log1p(X['favourites_count'])
X.loc[:, 'statuses_count'] = np.log1p(X['statuses_count'])
weekdays_mapping = {
    'Mon': 1, 'Tue': 2, 'Wed': 3, 'Thu': 4,
    'Fri': 5, 'Sat': 6, 'Sun': 7
}
split_columns = data_train['created_at'].str.split(' ', expand=True)
split_columns.columns = ['week', 'month', 'day', 'time', 'time_offset',
'zone_year']
time_split = split_columns['time'].str.split(':', expand=True)
time_split.columns = ['hour', 'minute', 'second']
X.loc[:, 'created_hour'] = time_split['hour'].astype(int)
X.loc[:, 'created_week'] = split_columns['week'].map(weekdays_mapping)
X.loc[:, 'geo_enabled'] = data_train['geo_enabled'].apply(lambda x: 1 if x else
x.loc[:, 'verified'] = data_train['verified'].apply(lambda x: 1 if x else 0)
X.loc[:, 'profile_background_tile'] =
data_train['profile_background_tile'].apply(lambda x: 1 if x else 0)
X.loc[:, 'profile_use_background_image'] =
data_train['profile_use_background_image'].apply(lambda x: 1 if x else 0)
X.loc[:, 'has_extended_profile'] =
data_train['has_extended_profile'].apply(lambda x: 1 if x else 0)
x.loc[:, 'default_profile'] = data_train['default_profile'].apply(lambda x: 1 if
x else 0)
X.loc[:, 'protected'] = data_train['protected'].apply(lambda x: 1 if x else 0)
X.loc[:, 'notifications'] = data_train['notifications'].apply(lambda x: 1 if x
else 0)
X.loc[:, 'default_profile_image'] = data_train['notifications'].apply(lambda x:
1 if x else 0)
x.loc[:, 'following'] = data_train['notifications'].apply(lambda x: 1 if x else
0)
```

```
X.loc[:, 'follow_request_sent'] = data_train['notifications'].apply(lambda x: 1
if x else 0)
x.loc[:, 'is_translation_enabled'] = data_train['notifications'].apply(lambda x:
1 if x else 0)
X.loc[:, 'is_translator'] = data_train['notifications'].apply(lambda x: 1 if x
else 0)
X.loc[:, 'contributors_enabled'] = data_train['notifications'].apply(lambda x: 1
if x else 0)
language_mapping = {
    'en': 1, 'pt': 2, 'nl': 3, 'tr': 4, 'it': 5, 'th': 6, 'de': 7, 'en-gb': 8,
    'id': 9, 'es': 10, 'fr': 11, 'ru': 12, 'ar': 13, 'ca': 14, 'ja': 15,
    'pl': 16, 'ko': 17
}
X.loc[:, 'lang'] = data_train['lang'].map(lambda x: language_mapping.get(x, 18))
translator_type_mapping = {
    'none': 0,
    'regular': 1,
    'badged': 2
}
X['translator_type'] = data_train['translator_type'].map(lambda x:
translator_type_mapping.get(x, 3))
def hex_to_int(hex_string):
    return int(hex_string, 16)
X['profile_text_color'] = data_train['profile_text_color'].apply(hex_to_int)
X['profile_sidebar_fill_color'] =
data_train['profile_sidebar_fill_color'].apply(hex_to_int)
X['profile_sidebar_border_color'] =
data_train['profile_sidebar_border_color'].apply(hex_to_int)
X['profile_link_color'] = data_train['profile_link_color'].apply(hex_to_int)
X['profile_background_color'] =
data_train['profile_background_color'].apply(hex_to_int)
def categorize_similarity(name, screen_name):
    similarity = fuzz.partial_ratio(name, screen_name)
    if similarity == 0:
        return 0
    elif 0 < similarity <= 40:
        return 1
    elif 40 < similarity <= 70:
        return 2
    elif 70 < similarity <= 90:
       return 3
    else:
        return 4
X['name_similarity'] = data_train.apply(lambda row:
categorize_similarity(row['name'], row['screen_name']), axis=1)
```

```
def extract_url_count_in_description(entities):
    try:
        urls = entities.get('description', {}).get('urls', [])
        return len(urls)
    except AttributeError:
        return 0
X['num_url_in_description'] =
data_train['entities'].apply(extract_url_count_in_description)
def split_emoji(text):
    emoji_pattern = re.compile("["
                           u"\0001F600-\0001F64F"
                           u"\U0001F300-\U0001F5FF"
                           u"\0001F680-\0001F6FF"
                           u"\U0001F1E0-\U0001F1FF"
                           "]+", flags=re.UNICODE)
    return emoji_pattern.sub(r' \g<0> ', text)
def count_tokens(description):
   if pd.isna(description):
        return 0
    description = split_emoji(description)
    tokens = word_tokenize(description)
    return len(tokens)
X['token_num_description'] = data_train['description'].apply(count_tokens)
pd.set_option('display.max_columns', None)
```

特征选取

绘制各个特征的分布图

```
colors = {0: 'blue', 1: 'orange'}
line_styles = {0: 'dashed', 1: 'solid'}

n_features = X.shape[1]
n_cols = 4
n_rows = n_features // n_cols + (n_features % n_cols > 0)

plt.figure(figsize=(n_cols * 5, n_rows * 4))

for i, feature in enumerate(X.columns):
    plt.subplot(n_rows, n_cols, i + 1)

    for label in np.unique(y):
        feature_values = X[feature][y == label]
        counts, bin_edges = np.histogram(feature_values, bins=20, density=True)
        bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2
        plt.plot(bin_centers, counts, label=f'Label {label}',
color=colors[label],
```

```
linestyle=line_styles[label], alpha=0.7, linewidth=2,
drawstyle='steps')

plt.title(feature)
plt.xlabel('value')
plt.ylabel('Density')
if i % n_cols == 0:
    plt.legend()

plt.tight_layout()
plt.show()
```

各个特征的分布图如下

可以看到,其中有很多特征是只有一个值的,比如 protected ,所有的样本都是0,所以这种无用特征可以直接删除

最后经特征选择,选择的特征:

- created_hour:用户创建账号时间所在的小时
- created_week:用户创建账号时间所在的星期几
- name_similarity:用户的name和screen_name的相似程度,编码0-4
- num_url_in_description: 个人简介中连接的个数
- token_num_description: 个人简介中词token的数量
- url:用户是否提供个人或商业网站链接。
- followers_count: 关注该用户的人数。
- friends_count:该用户所关注的人数。
- listed_count:用户被列入他人列表的次数,反映了受欢迎程度。
- favourites_count:用户标记喜欢的推文或帖子数。
- geo_enabled:用户是否开启地理位置服务。
- verified:用户是否经过官方认证。
- statuses_count:用户发布的总推文或帖子数。
- lang:用户账号设置的语言,编码1-17。
- is_translator: 用户是否担任翻译员角色。
- is_translation_enabled:用户是否开启翻译服务。
- profile_background_color:用户资料的背景颜色。
- profile_background_tile:用户资料背景是否为平铺式。
- profile_link_color:用户资料中链接的颜色。
- profile_sidebar_border_color:用户资料侧栏的边框颜色。
- profile_sidebar_fill_color:用户资料侧栏的填充颜色。
- profile_text_color:用户资料文本的颜色。
- profile_use_background_image:用户是否使用资料背景图片。
- has_extended_profile:用户是否开启扩展资料。
- default_profile:用户是否使用默认资料设置。
- default_profile_image:用户是否使用默认头像。
- following: 当前用户是否关注该用户。
- translator_type:用户的类型,如翻译员等,编码0-2。

t-SNE降维可视化

```
scaler = Standardscaler()
data = scaler.fit_transform(X)

# for j in range(20):
# t-sne
tsne = TSNE(n_components=2, learning_rate=300, n_iter=10000, perplexity=30,
metric='l1')
data_trans = tsne.fit_transform(data)

# plot
cmap = plt.cm.spectral
plt.figure(figsize=(6, 6))
for i in range(2):
    indices = y == i
    plt.scatter(data_trans[indices, 0], data_trans[indices, 1],
color=cmap(i/1.1), label=i, s = 10)
plt.legend()
```

```
plt.tight_layout()
# plt.show()
plt.savefig(f'figs/neighbor.png')
plt.close()
```

降维结果如图,可以看出在每个大的聚类里面,label为0和1的样本都相对形成自己的聚类,降维结果较好

模型训练与参数调整

四折交叉验证

用四折交叉验证,输入到各个模型中,并进行参数调整,以决策树为例,代码如下

```
clf = DecisionTreeClassifier(
    criterion='gini',
    splitter='best',
    max_depth=8,
    min_samples_split=10,
    min_samples_leaf=5,
    max_features=None,
```

```
random_state=42
)

kf = KFold(n_splits=4, shuffle=True, random_state=42)

scores = cross_val_score(clf, X, y, cv=kf, scoring='accuracy')

print("Accuracy scores for each fold:", scores)
print("Average accuracy:", np.mean(scores))
```

网络搜索

运用GridSearchCV方法,系统地遍历多种参数的组合,找出最优参数,代码如下,以调试SVM的参数为例

```
from sklearn.model_selection import GridsearchCv
param_grid = {
    'c': [0.1, 1, 10, 100],
    'gamma': [1, 0.1, 0.01, 0.001],
    'kernel': ['rbf', 'sigmoid', 'poly']
}

svm_clf = SVC()
grid_search = GridSearchCv(svm_clf, param_grid, cv=5, scoring='accuracy', verbose=2)
grid_search.fit(X_train, y_train)

best_params = grid_search.best_params_
best_score = grid_search.best_score_
print(f"Best_parameters: {best_params}")
print(f"Best_cross-validation_accuracy: {best_score}")
```

各个模型的最优参数如下

决策树:

```
clf = DecisionTreeClassifier(
    criterion='entropy',
    splitter='best',
    max_depth=5,
    min_samples_split=2,
    min_samples_leaf=2,
    max_features=None,
    random_state=42
)
```

神经网络:

```
mlp = MLPClassifier(
    hidden_layer_sizes=(100,),
    max_iter=2000,
    activation='tanh',
    solver='adam',
    random_state=1,
    alpha=0.0001,
    learning_rate_init=0.001
)
```

SVM:

```
svm_clf = SVC(kernel='rbf', C=10.0, gamma=0.1)
```

线性回归:

```
learning_rate = 0.01, num_iter=3000, fit_intercept=True, verbose=False
```

XGBoost:

```
xgb_clf = XGBClassifier(
    n_estimators=100,
    learning_rate=0.01,
    max_depth=10,
    min_child_weight=2,
    gamma=0.1,
    subsample=0.6,
    colsample_bytree=0.8,
    objective='binary:logistic',
    eval_metric='logloss',
    use_label_encoder=False
)
```

实验结果

模型对应的四折交叉验证的准确率以及单次运行时间如下

模型	准确率(四折交叉)	运行时间(单次)
线性回归模型 (手工实现)	0.6893	0.8s
决策树模型	0.7235	0.2s
神经网络模型	0.7613	1.6s
支持向量机 (手工实现)	0.7422	0.6s
XGBoost	0.7814	0.8s
线性回归模型 (调库)	0.7620	0.3s

模型	准确率(四折交叉)	运行时间(单次)
支持向量机 (调库)	0.7600	0.4s

ROC曲线

```
from sklearn.metrics import roc_curve, auc
plt.figure(figsize=(8, 8))
models = [
    ('Decision Tree', clf),
    ('Logistic Regression', log_reg),
    ('Neural Network', mlp),
    ('SVM', svm_clf),
    ('XGBoost', xgb_clf)
]
for name, model in models:
    if name == 'SVM':
        y_scores = model.decision_function(X_test)
    else:
        y_scores = model.predict_proba(X_test)[:, 1]
    fpr, tpr, threshold = roc_curve(y_test, y_scores)
    roc_auc = auc(fpr, tpr)
    plt.plot(fpr, tpr, lw=2, label='%s(s = \%0.2f)' % (name, roc_auc))
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('FPR')
plt.ylabel('TPR')
plt.title('ROC')
plt.legend(loc="lower right")
plt.show()
```

其中决策树模型的ROC是斜线构成的,经翻阅资料得知这是正常的,可以看到XGBoost的ROC曲线包裹了其他所有曲线,表现最好

假设检验

用四折交叉验证法的结果进行交叉验证t检验,以Decision Tree为例

特征删除前,未调参的四折交叉验证结果 0.68812877 0.67806841 0.72580645 0.65322581

特征删除后,调参之后的四折交叉验证结果 0.72032193 0.72837022 0.73991935 0.70564516

二者做差,并求均值与标准差

$$\mu = 0.0371, \sigma = 0.0179$$

$$au_t = \left|rac{\sqrt{n}\mu}{\sigma}
ight| = 4.15 > t_{0.05,3} = 2.353$$

故在显著性水平 $\alpha=0.10$ 的条件下,认为特征删除后并调参的模型性能更优

模型验证

将准确率最高、ROC面积最大的XGBoost输入到测试集中,首先将test.json转换成特征矩阵,这个跟前面的代码基本一致,就不重复罗列,然后用XGBoost的模型预测X的结果即可

```
scaler = MinMaxScaler()
X = pd.DataFrame(scaler.fit_transform(X), columns=X.columns)
y_1 = xgb_clf.predict(X)
```

```
import json

with open('./data/test.json', 'r', encoding='utf-8') as file:
    data = json.load(file)

for i, item in enumerate(data):
    label = 'bot' if y_1[i] == 0 else 'human'
    item['label'] = label

with open('./data/test.json', 'w', encoding='utf-8') as file:
    json.dump(data, file, ensure_ascii=True, indent=4)
```

运行check.py检查文件是否规范

F:\Assignments\assignment5>python check.py 检测通过

文件规范

实验分析

本次实验,我根据课程一学期所学的知识,从一个初始的数据集开始,提取特征,降维,分离训练集和测试集,用网络搜索的方法调整参数,四折交叉验证判断准确率,训练了各个模型,并用ROC来找出最优的模型,运用假设检验的方法检验调参的正确性。

对于实验结果,其实基本都符合预期,XGBoost、决策树、神经网络和SVM都可以优秀的训练这次的特征矩阵,只有逻辑回归模型表现得稍微差一点点,不过用sklearn里面的逻辑回归的表现也很好,我认为是sklearn里面的模型泛化能力更佳,效果更好,所以也是合理的

收获不可谓不多,这次实验我经历了机器学习的全过程,关注整个实验流程的完整性和严谨性,最后的 准确率也达到了我的预期,这是一次非常成功的实验

Highlight

特征选取

由于数据集中很多数据无法直接编码,比如name和screen_name, description等等

一般的现象是,对于真人,name和screen_name是会有些相似程度的,但是也不会完全相同或者完全不同,所以我采用了fuzzywuzzy库,用来量化name和screen_name之间的相似程度,这样就可以分层并量化了,并且特征提取效果较好

对于description,我通过对比,也是发现人和机器人的description的词数不会完全相同,故用了nltk库的分词器,提取description中的token,这样就可以编码并作为特征了,并且由于description里面有很多emoji,先把emoji都提取出来。观察特征分布图也能发现,这个特征也确实是有效的

####

调参

运用GridSearchCV网络搜索方法,系统地遍历多种参数的组合,找出最优参数,比如XGBoost,我遍历了几万种参数的组合,找到了最优的参数,而且提升确实非常大,从一开始的70%准确率提升至接近80%

假设检验

运用t检验,判断调参与特征选择是否有效,运用到了课堂所学知识,得出结论调参是非常有效的

ROC曲线

利用ROC曲线判断模型的优劣程度,更准确的选出最佳的模型XGBoost

