

UK Patent Application GB 2 224 418 A

(43) Date of A publication 02.05.1990

(21) Application No 8819834.6

(22) Date of filing 20.08.1988

(71) Applicant
Rigby Electronics Limited

(Incorporated in the United Kingdom)

Clifton Technology Park, Wynne Avenue, Clifton,
Swinton, Manchester, M27 2HB, United Kingdom

(72) Inventor
Arthur Lawrence Dargan

(74) Agent and/or Address for Service
Wilson, Gunn and Ellis
41-51 Royal Exchange, Cross Street, Manchester,
M2 7BD, United Kingdom

(51) INT CL⁴
G01M 15/00

(52) UK CL (Edition J)
H4L LASS
U1S S1737 S1820

(56) Documents cited
GB 2169173 A GB 2155720 A GB 1543910 A
EP 0309346 A1 US 4602127 A

(58) Field of search
UK CL (Edition J) H4L LACX LASS
INT CL⁴ G01N
Online database: WPI

(54) Automatic vehicle recognition and service data transmission system

(57) An automatic vehicle recognition system comprises a transmitter 3 attached to a vehicle and a receiver at a vehicle station for receiving information transmitted by the transmitter. A loop 1 embedded in the ground at the station is connected to the receiver and the system is powered up by the presence of the vehicle when the vehicle wheels 2 are within the loop. Information is then transmitted by the transmitter 3 to the receiver and manipulated to provide information about fuel consumption, mileage, vehicle identification and other relevant data.

Fle1

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

The claims were filed later than the filing date within the period prescribed by Rule 25(1) of the Patents Rules 1982.

GB 2 224 418 A

b4

FIE 1

FIG.3

-1-

AUTOMATIC VEHICLE RECOGNITION SYSTEM
AND DATA TRANSFER SYSTEM

The present invention relates to an automatic
5 vehicle recognition system and data transfer
system.

According to the invention there is provided
an automatic vehicle recognition system comprising
10 a transmitter for affixing to the vehicle a
receiver for connecting to a vehicle station and
means enabling the transmitter to be triggered
when the vehicle reaches the station to send
information to the receiver and means for
15 manipulating the information.

In a preferred embodiment of the invention, a
loop is embedded in the ground at the vehicle
station. This is disposed to receive
20 information transmitted by the vehicle
transmitter. The loop is connected to the receiver
and the receiver to a central computer for
information processing.

25 The system may be powered up by means of an
external switch, by switching the vehicle ignition
off and by proximity, for example, when the

vehicle is inside the loop. Information relating to vehicle mileage, weight, fuel consumption and reserve, fleet number and depot number and other non-variable vehicle information may be
5 transferred.

In order that the invention may be more clearly understood one embodiment thereof will now be described by way of example with reference to
10 the accompanying drawings, in which:-

Figure 1 shows a block circuit diagram of a vehicle servicing station.

15 Figure 2 is a circuit diagram of a vehicle receiver,

Figure 3 is a circuit diagram of a vehicle recognition interface, and

20 Figure 4 is a circuit diagram of a vehicle transmitter.

Referring to Figure 1, the system includes a
25 vehicle station which comprises a ground embedded loop 1 into which a vehicle represented by its four wheels 2 may be driven. The vehicle carries a transmitter 3 connected to receive information

regarding fuel consumption, mileage, vehicle
identification, and any other relevant data
derived from condition monitors disposed about the
vehicle data. This transmitter is operative to
5 transmit data received to a receiver disposed at
the station. This receiver comprises a low Q RF
front end tuning unit 4, a detection carrier
remover 5, a square wave generator 6, an NRZ-F2F
decoder 7 and a personal computer 8.

10

The circuit will now be described with
reference to Figures 2, 3 and 4.

Transmitter Hardware Description

15

This circuit description applies to circuit
diagram 12875.

Operation.

20 The transmitter is designed to count tacho
pulses and store them in non-volatile memory.
When power is removed from the ignition input, the
information stored in the memory is transmitted as
F/2F modulation of a 67KHz carrier. Radiation is
25 by a ferrite rod aerial which couples inductively
to a ground loop.

Microprocessor

The microprocessor chosen is an 80C35 from

the 8048 family of Intel microcontrollers. It is a CMOS part as this gives reduced power dissipation in the voltage regulator pass transistor and a wide operating temperature range. It is also sourced by several manufacturers including

5 Mullard, NEC and Intel.

The microprocessor runs at a low clock speed of 4MHz, chosen to give 67KHz (Carrier) when ALE
10 is used to drive a simple divider.

Program Memory

The memory is a 27C64 or 27C128 EPROM (the parts are interchangeable in this design). CMOS
15 parts are again chosen. U2 is a latch which multiplexes the data/address bus. It is possible to use a version of the 8035 with on-board EPPROM (8748) or use a masked microporcessor (8048) in which case the memory and latch integrated
20 circuits should not be fitted.

Memory access time is not critical in this application because of the slow clock speed, and the slowest speed parts may be used.

25

Data Memory

The 8035 has 32 bytes of data memory on-chip which is used for the normal program operation,

storage of tacho pulses and the tens of kilometres count. The remaining kilometres information is stored in non-volatile memory in the form of a PCD8582. This component is an Electrically
5 Eraseable PROM (EEPROM). Although it contains 256 bytes of storage, only just over 64 bytes is actually used. This means that alternative devices such as the PCD8572 from GE or the X2402I from XICOR may also be used. The alternative parts
10 must be the wide temperature range parts, which are readily available. Communication with the memory is by a serial protocol. Briefly, communication is over a 2-wire bus (clock and data) started with a device address from the
15 master (the 8035 in this case) and controlled by acknowledges from the device receiving data.
Three blocks of data are stored in the non-volatile memory; the vehicle ID, the tacho calibration (pulses per kilometre) and the current
20 tach reading (up to 6 digits) excluding tens of kilometres. Data is stored in blocks of four bytes; three bytes of data and a checksum. Each memory location may be written to 10,000 times.
The software design means that each tacho location
25 is written to every 160 kilometres, giving a memory life of 1,600,000 kilometres. The data storage allows a maximum figure of 9,999,990 kilometres to be stored. Both of these figures

should exceed the requirements.

Loss of power will cause loss of the tens of
kilometres reading and the tacho pulse count; this
5 should be a rare event however, as in normal
operation the power is never removed.

Watchdog timer

ALE is divided down by U4 and then U6 to give
10 a reset pulse on pin 3 of U6 approximately every 8
seconds. In normal operation, the microprocessor
will output negative (watch dog) pulses
periodically which will couple through C12 to the
reset pin on U6. This will normally prevent U6
15 applying a reset to the microprocessor. The
microprocessor output is coupled capacitively to
the counter reset input so that a reset is caused
by an active transition on the processor output
rather than a level.

20

Reset

The microprocessor is held in reset by Q4
until the input voltage to the voltage regulator
exceeds approximately 8V. At this level the
25 current drawn through R8 is more than the current
supplied by R10. Q4 therefore turns off, releasing
the reset input.

If the watchdog timer should time out, then the Q14 output of U6 will go high, forcing Q4 on by forward biasing the collector-base junction of Q5.

5

If a read or write to external data memory is attempted, then D6 or D7 will conduct, discharging C5 and also causing a reset.

10

Carrier generation and modulation.

15

The carrier is generated by taking the Q2 output of U4, giving a carrier frequency of 66.667kHz. This is applied to the push-pull fet pair Q6 and Q7. The power for this pair of transistors is provided by microprocessor outputs switching to ground. These outputs are arranged in triples to obtain sufficient current sinking ability. One triple switches directly to ground, causing the full 5V rail to be applied to Q6 and Q7. The other triple switches to ground via a zener diode which drops some of the supply voltage so that a reduced supply voltage is applied to Q6 and Q7. When both triples are off (high) no voltage is applied to Q6 and Q7 and the transmitter is turned off.

25

The modulation is therefore Amplitude modulation switching between two possible

amplitudes. The data to be transmitted is NRZ
(RS232) data, but before transmission, it is
converted to F/2F coding. This method of encoding
involves a level change at the start of each bit
5 cell, and an additional level change in the middle
of the bit cell if the bit being transmitted is a
zero. The reason for choosing this method of
modulation is that the amplitude is caused to
change frequently regardless of the data pattern
10 being transmitted. The average received carrier
level is therefore independent of the data pattern
and the AGC circuit in the receiver does not
attempt to track long term changes in signal level
caused by varying data patterns. This in turn
15 reduces the amount of 'skew' on the received data
signal, improving the quality.

The signal at the drains of Q6 and Q7 is a
square wave (rich in odd harmonics), so a series
20 resonant circuit is chosen to pass the signal on
to the transmitting coil. A Q-factor of 10 is
chosen to pass the signal onto the transmitting
coil. A Q-factor of 10 is chosen for this
circuit, so that a reasonable sinewave is obtained
25 without requiring tuning of individual components.
(A Q-factor of 10 can be achieved with 5%
components without having to trim the component
values further). This signal is then applied to

the tuned ferrite rod aerial which further improves the wave shape. The loading on this circuit and thus the series resonant circuit is determined by R13 and the metal transmitter plate.

5 The load must be fairly well defined as it in turn determines the load that Q6 and Q7 present to the low pass filter components L1 and C8. A Q-factor of 10 is again aimed for to avoid the need to adjust individual component values. C9 is

10 provided if a trim proves to be necessary.

Filter components L1 and C8 limit the rate of change of amplitude of the carrier and therefore control the bandwidth occupied by the carrier.

15 They are chosen to pass the maximum modulating frequency of 1200Hz (when transmitting a string of zeroes) but to start attenuating at the second harmonic of 1200Hz and above. The filter performance is determined by the load presented by

20 Q6 and Q7 and therefore the load presented by the aerial. If the loading is too small, then the modulating signal will tend to overshoot and 'ring'; if the loading is too great the modulating signal will change too slowly and will distort the

25 data pattern being transmitted.

D9 prevent damage to the microprocessor outputs due to inductive discharge from L1 when

the transmitter turns off.

Voltage regulator

The voltage regulator is a discrete component
5 design, since it must withstand considerable
over-voltage transients applied to the input. It
is a conventional series-pass design with a
reference which is powered mainly from the output
once the regulator has started. R2 and D8 ensure
10 that the regulator starts-up. A negative regulator
is chosen because high voltage, moderate-power NPN
transistors are cheaper than the equivalent PNP
transistors. The pass transistor power
dissipation is small, even when running from a
15 +24V input because the microprocessor and memory
are both CMOS parts. The voltage regulator is
preceded by a diode bridge, so polarity is
unimportant and the nomination of battery and
chassis inputs is arbitrary. R1 gives protection
20 against short voltage transients, such as ignition
noise.

Inputs

Both the Tacho and Ignition inputs are by
25 bridge rectifier and opto-coupler. This gives
great flexibility in the type and connection
(relative to chassis) of each input. Vehicle earth
(positive or negative) is unimportant. The inputs

are also highly immune to damage (e.g. application of excessive or reverse voltages).

TRANSMITTER SOFTWARE DESCRIPTION (Figure 4)

- 5 The software can be in one of three different states:-
1. Ignition on state,
 2. Transmit state,
 3. Calibrate state.
- 10 Each state is described below.

Ignition On State (IGNON)

The software will enter this state when the ignition optocoupler has power applied to it. In
15 this condition the software will wait for pulses to appear on the tacho input and count them. Each pulse will produce a call to TACHO. This reads in the number of pulses per kilometre (TACHOCAL) from the non-volatile memory and compares it with the
20 incremented total in ram (CNT2,CNT1, CNT0)..

TACHOCAL is stored in non-volatile memory as a three byte packed BCD number plus one check byte. If the check fails then a default value of TACHOCAL (DEF2,DEF1,DEF0) is used, otherwise a
25 default of 0 would be used which would cause the tacho count to become very inaccurate very fast.

If the pulse count is equal to TACHOCAL then

the kilometres count in ram (KMS) is incremented by 1. If this count reaches 10 then it is reset to 0 and the non-volatile memory is read for the highest value of valid tacho reading. This count
5 is then increased by 1 and stored in the next non-volatile memory location.

The maximum stored tacho reading is found by calling TACHORDG. This scans 16 blocks each of 4 bytes of non-volatile memory and checks each one for valid data. The check is made by recalculating the check byte from the 3 data bytes and comparing it with the stored check byte. If they are equal, then the new data is accepted,
10 otherwise the data is cleared to all zeroes. This process is repeated on all 16 blocks, storing the maximum value so far found in ram (TMAX), so that at the end, the value in TMAX is the largest tacho reading found. This value, which is in packed BCD form, is incremented by 1 and stored in the next
15 block with block 16 wrapping around onto block 0. This system ensures that if corruption of the last tacho reading should occur (for example if power was removed during the write of the last update)
20 then the next highest count is used, which will be only 1 count less. This system is used only to store the tacho reading because this is the only
25 value which is constantly being re-written to the

non-volatile memory.

Transmit On State (TRANSMIT)

This is the state entered on reset or when
5 power is removed from the ignition optocoupler.

The transmitter is turned on, and data from
non-volatile memory is read into ram prior to
transmission. The data is read in the following
10 sequence, and checked for validity, non-valid
blocks being replaced with OOH,OOH,OOH:-

Three blocks of vehicle ID (9 bytes of ascii
data in total)

15 The tacho calibration figure (3 bytes of
packed BCD)

20 The highest tacho reading (3 bytes of packed
BCD)

The kilometres digit is then fetched from RAM
and appended to the 6 digits fetched from NVRAM.
A dummy zero is also added after the kilometres
25 digit - this should be ignored. This data is then
transmitted after a pre-amble of F/2F encoded '1'
to synchronise the receiver F/2F-to-NRZ decoder.
Note that the vehicle ID data is transmitted

byte-for-byte whereas the packed BCD data is
unpacked and converted to ascii before
transmission. The data is preceded by the
characters <23 and is terminated by > followed by a
5 longitudinal redundancy check byte and a checksum
byte. Neither check byte takes account of data
following the > character.

The longitudinal check byte is formed by
10 forming the exclusive-or function of all the
transmitted characters upto and including the >
character.

The checksum byte is formed by subtracting
15 all the characters from 0, upto and including the
> character.

The transmission is repeated 255 times, so
that the total transmission lasts for about 90
20 seconds.

The data transmitted is 1200 baud, 7-bit
data, odd parity and two stop bits. Timing is
controlled by an interrupt routine CNTINT which
25 interrupts every half-bit. It complements the F1
flag which is then used to decide whether the
interrupt was at the start of a bit cell or
halfway through it. A polling routine called WAIT

decides what to do after each interrupt.

The transmit state cannot be interrupted until complete. It finishes by moving to the
5 Calibrate State.

Calibrate State (CALIB)

This state is entered from the completion of the transmit state and is left if the ignition
10 optocoupler should turn on. It monitors the tacho optocoupler which in this state is used to send new calibration to the transmitter. It continually waits for a start bit transition and monitors and ignition optocoupler (RECSTRT).

15

Calibration data is sent as 9 vehicle ID bytes followed by 6 decimal tacho calibration bytes (in ascii form) followed by a longitudinal redundancy check byte and a checksum byte. These
20 check bytes are formed in the same way as the transmitted data check bytes, and exclude themselves from the calculation.

The data received must be 1200 baud, 7-bit
25 data, odd parity and one or two stop bits. If either check byte fails then the new data is discarded. If it is correct, then it is written to the non-volatile memory and all 16 tacho reading

blocks are reset to zero.

The transmit state is then re-entered so that
the new data can be transmitted and checked. If
either check byte failed then the old, unmodified,
5 data will be transmitted.

Points regarding the 8048

10 The 8048 instruction set does not allow
conditional jumps to occur across page (256 byte)
program boundaries. This cannot be avoided in
advance since the relative position of code and
page boundaries is not known until after
15 assembling and linking the code. The Avocet
assembler will normally produce a language error
at this point. It is then necessary to look at
the avr.prn file to find out which line caused the
problem and to insert NOP codes to push the
20 problem jump 'over' the boundary. It should be
noted that a line which jumps to itself will be
missed as a language error if it lies on the page
boundary. It will certainly not run correctly.
The easiest way to ensure that there are no
25 problems is to have a NOP instruction on all page
boundaries (which can be tedious) or to use the
Avocet simulator to try suspected problem areas
and check them for correct operation.

Since there are only eight registers, only two of which may be used to point to the ram area, it is important to ensure that subroutines do not corrupt registers used by the calling routine.

- 5 There is no instruction that allows data to be saved temporarily on the stack, other than F0,C and AC. An alternate register set is available, but this is only used by the timer interrupt (CNTINT) and only uses one alternate register.
- 10 It's main use is in the debug routine DEBUG which can then be called anywhere in the program to output ram data as a transmitted string for debugging purposes, without corrupting registers in the process.

15

RECEIVER HARDWARE DESCRIPTION (Figure 2)

Power Supply

The receiver power supply is mains derived and is a simple transformer and bridge rectifier giving +12V after regulation to power and analogue section and +5V after regulation to power the digital section.

Receiver front-end

25 The receiver front-end is formed by Q1 and Q2. Q1 is a tuned load common emitter amplifier with gain control achieved by controlling the

transconductance through the bias current. The
5 collector load at resonance is about 5 kohm formed
by Q2 input impedance and bias network. This
gives a maximum stage gain with no agc applied of
about 20. The Q-factor is kept low to allow the
use of standard components without any trimming.
10 The pickup loop is tuned by a capacitor which may
be connected between PL2 pins 3 and 4. A fixed
capacitor may not be used here as the loop
inductance will vary from one site to the next.
The loop Q is controlled by R29 which limits it to
about 10.

Q2 is a tuned collector common emitter
15 amplifier with a fixed gain of approximately 120.
The collector load at resonance is about 3 kohm
giving a Q-factor of about 7. This again allows
the use of standard components without trimming.
The collector load is produced by R27 and the two
20 peak-rectifier diodes and loads which dissipate
the same power as a single 5 kohm resistor
straight across the coil would. (This then gives
the equivalent load resistance from which the
Q-factor may be calculated).

25 The total gain before agc is therefore about
2,400. The agc should begin to operate for input
signals greater than about 200uV; the first stage

should not overload until about 20mV input giving an agc range of about 40dB.

Data reception should start at about 150uV
5 input level. Assuming a 14kHz bandwidth and a source impedance not exceeding 470 ohms, the effective input noise should be less than 1uV giving a signal to noise ratio of 46dB at the onset of agc. This will be improved by a factor
10 of about 5dB by filtering after the detector stage.

Detector and AGC

The detector is a full wave rectifier design using D1 and D2 to conduct on alternate half cycles. The loading on each diode is the same, but to achieve this, R6 is twice the value of R7 because it will have twice the voltage across it. (It will have the peak-to-peak voltage rather than peak-to ground voltage across it). C6 and C7 give some initial smoothing and U4 sums the two signals to give an output which is 12x (peak voltage less one diode drop). When this voltage reaches 3V, the agc integrator will start to discharge, reducing the current in the first stage which in turn reduces the first stage gain. C9 removes any modulation information from the agc line.

Filtering

The detected signal is filtered by a three pole filter (U4B) having a roll-off frequency of 2.4kHz. This is formed by a two-pole Butterworth design with an additional pole added on the output to increase the damping and improve the filtering. (Butterworth filters are slightly underdamped and therefore not ideal for digital data).

The filtered signal is capacitively coupled into a Schmitt trigger circuit (U4D). This circuit has an offset of 6V applied to both inputs and positive feedback of +/- 500mV applied added to the non-inverting input depending on the state of the ouput. A minimum voltage swing of 1V is therefore needed to cause the output to change state.

NRZ Data Recovery

The output from U4D is fed into another (digital) Schmitt trigger to increase the edge speeds to digital speeds and to level shift at the same time to 5V.

Each edge is then fed to U2D directly and via R22 and C15 to produce a short positive pulse at the monostable input on every edge (positive or negative). The monostable is non-retriggerable

with a period of 3/4 of a bit cell. It therefore synchronises to the start of each bit cell (which always has a transition) rather than the middle of the bit cell (which only has a transition of a '0' 5 is being transmitted). This recovered clock signal is used to shift data into U1A and then U1B. An exclusive or gate then compares successive data state at the beginning of each bit cell. If the data level is the same at the start 10 of two successive bit cells, then there must have been two intervening transitions and therefore the data bit was a '0'. Otherwise the data compared is different and there was only one intervening transition (the start of the next bit cell) and 15 the data was therefore a '1'.

Data is output by Q3 which is configured as a constant current drive circuit. A received '1' is represented by the constant current being turned 20 on, and a received '0' is represented by no output current.

Q3 is a high voltage device to give it a degree of protection, and D3 protects the power 25 supply from excessive external (positive) voltages. The output is designed to be terminated by an optocoupler at the distant end.

{
-22-

It will be appreciated that the above embodiment has been described by way of example only and that many variations are possible without departing from the invention.

5

10

15

20

25

CLAIMS

1. An automatic vehicle recognition system comprising a transmitter for affixing to the vehicle a receiver for connecting to a vehicle station and means enabling the transmitter to be triggered when the vehicle reaches the station to send information to the receiver and means for manipulating the information.
2. An automatic vehicle recognition system as claimed in claim 1, comprising a loop adapted to be embedded in the ground at the vehicle station and disposed to receive information transmitted by the vehicle transmitter.
3. An automatic vehicle recognition system as claimed in claim 2, in which the loop is connected to the receiver and the receiver to a central computer for information processing.
4. An automatic vehicle recognition system as claimed in claim 1, 2 or 3, in which the system is arranged to be powered up by means of an external switch.
5. An automatic vehicle recognition system as claimed in claim 4, in which the switch is the ignition switch of the vehicle.

6. An automatic vehicle recognition system as claimed in any preceding claim, in which the receiver is operative to receive information regarding fuel consumption, mileage and vehicle identification.

5

7. An automatic vehicle recognition system as claimed in any preceding claim, in which the receiver comprises a low Q RF front end tuning unit, a detection carrier remover, a square-wave generator, a decoder and a computer.

8. An automatic vehicle recognition system as claimed in any preceding claim, in which the transmitter is operative to count tacho pulses and store them in a non-volatile memory.

9. An automatic vehicle recognition system as claimed in claim 2, in which an aerial is connected to the loop.

20

10. An automatic vehicle recognition system substantially as hereinbefore described with reference to the accompanying drawings.

25

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.