МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРОКАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Кафедра

инфокоммуникаций

Институт цифрового

развития

ОТЧЁТ

по лабораторной работе №3.7

Дисциплина: «Основы цифровой обработки изображений в OpenCv»

Выполнила: студентка

2 курса группы Пиж-б-о-

21-1

Джолдошова Мээрим

Бекболотовна

Цель: изучение типов изображений, способов их формирования. Изучение основных функций OpenCv, применяемых для цифровой обработки изображений.

Рисунок 1 – Выполненные примеры лабораторной работы

Рисунок 2 — Выполненное индивидуальное задание лабораторной работы

Вопросы к лабораторной работе №7

- 1. Какие существуют типы изображений?
- бинарные изображения, пиксели которого принимают только два значения: 0 и 1, что соответствует черному или белому цвету;
- полутоновые (серые или изображения в градациях серого) диапазон значений интенсивности пикселов в формате uint8 [0, 255] или в формате double [0,1] (для языка руthon вещественные числа float);
- палитровые каждому пикселу сопоставляется номер ячейки карты цветов, в карте цветов содержится описание цвета пиксела в некоторой цветовой системе (палитре);
- цветные (RGB) пикселы непосредственно хранят информацию об интенсивностях цветного изображен, например, об интенсивности красного, зеленого, синего цвета.

По способу хранения описания изображения оно может быть:

- векторным, если изображение создается набором графических
 примитивов (отрезок прямой, угол, многоугольник, окружность, дуга и т. д.),
 из которых и формируется изображение;
- растровым, если изображение кодируется двумерным массивом,
 элементами которого являются интенсивности серого цвета, либо одного из цветов (красного, зеленого, синего).

2. Как осуществить считывание изображения?

Функция чтения изображения из файла imread(,). Первый аргумент в скобках указывает путь к считываемому файлу, второй – флаг. Синтаксис: img = cv2.imread(", 1). Функция считает изображение из файла и помещает его в массив img. Если второй аргумент равен 0, то цветное изображение в јрд-файле трансформируется в полутоновое (серое) изображение и по нему формируется матрица полутонового изображения, если записано 1, то

формируется матрица цветного изображения, если -1, то изображение загружает изображение как таковое.

- 3. Какие значения можно присвоить флагу функции imread(,)? cv2. imread color: загрузка цветного изображения (по умолчанию); cv2. imread grayscale: загрузка изображения в режиме градаций серого; cv2.imread unchanged: загрузка изображения как такового, включая альфа-канал.
 - 4. Какая функция позволяет вывести изображение на экран?

Функция вывода изображения на экран imshow. Синтаксис: cv2.imshow('image', img) — вывод изображения на экран с именем 'image'. Можно выводить несколько изображений, но у каждого должно быть свое имя. Первый аргумент в скобках — это имя окна, вторым аргументом является массив, из которого информация выводится на экран.

5. За что отвечают команды cv.waitKey(0), cv.destroyAllWindows().

Первая функция позволяет задерживать изображение после его вывода на экран. В скобках указывается время в миллисекундах. Изображение остается на экране пока не сработает клавиатура. Если нажать какую-либо клавишу, программа продолжится. Если задан 0, то работа программы продолжится после нажатия клавиши.

Вторая функция уничтожает все окна, которые мы создали. Если нужно уничтожить конкретное окно, то в скобках указывается имя окна.

6. Как осуществляется запись изображения в файл?

Для создания изображения из его матрицы в виде файла используется функция cv.imwrite (,). Синтаксис: imwrite(<имя файла>.<pасширение>, img) – первый аргумент в скобках – это имя сохраняемого файла, второй аргумент

- это название матрицы изображения, с помощью которой создаем файл с выбранным расширением. Функция imwrite записывает матрицу бинарного, полутонового или полноцветного изображения на диск и сохраняет изображение в файле с именем
- 7. Какие основные свойства матрицы, какие команды позволяют их узнать?
 type(img) тип класса и класс данных изображения,
 img.shape число строк, столбцов и каналов RGB матрицы изображения,
 img.size количество пикселей,
 img.dtype формат матрицы изображения.

8. Как изменить значение пикселя по его координатам?

Необходимо установить библиотеку numpy, затем выполнить обращение к матрице и конкретному пикселю, например, img[100, 150, (0)] — обращение к пикселю матрицы img с координатами 100, 150 (последний аргумент обращается к интенсивности определенного цвета, 0 — синий, 1 — зеленый, 2 — красный), и присвоить ему значение в формате [В, G, R] — где В, R, G — интенсивность синего, красного и зеленого.

9. Как создать бинарное изображения и его негатива из цветного? Бинарное изображение можно получить из полутонового изображения, если провести его пороговую обработку. Алгоритм бинаризации полутонового изображения таков: если значение пикселя больше порогового значения, то ему присваивается 1, если меньше, то 0.

Выполнить данную операцию позволяет функция cv2.threshold(gray,128,255,cv2.THRESH_BINARY), где gray — исходное изображение; 128 — пороговое значение; 255 — значение, которое придаем пикселю, если его значение больше порогового.

Создать негатив из бинарного позволяет функция cv2.THRESH_BINARY_INV

10. Как можно выделить область на изображении?

Выделить область можно путем рисования определеннойфигуры на изоъражении.

Рисование круга: cv2.circle(img, center, radius, color[,thickness [, lineType]])

Параметры:

img — представляет данное изображение; center

— центр круга;

radius — радиус круга; color

— цвет круга;

thickness — обозначает толщину контура круга, если она положительна. А отрицательная толщина означает, что нужно нарисовать закрашенный круг; lineType — определяет тип границы круга;

Рисование прямоугольника: cv2.rectangle(img, pt1, pt2, color[, thickness[,lineType]])

Параметры:

img — представляет собой изображение;

pt1 — обозначает вершину прямоугольника;

pt2 — обозначает вершину прямоугольника напротив pt1;

color — обозначает цвет прямоугольника яркости (оттенки серого); thickness

— представляет толщину линий, составляющих прямоугольник. Отрицательные значения (CV_FILLED) означают, что функция должна рисовать прямоугольник с заливкой;

linetype — представляет типы линии;

Рисование эллипса: cv2.ellipse(img, center, axes, angle, startAngle, endAngle, color[, thickness[, lineType]])

```
cv2.ellipse(img, box, color[, thickness[, lineType]])
Параметры:
img — представляет собой изображение;
      box — представляет собой альтернативное представление эллипса через
RotatedRect или CvBox2D. Это означает, что функция используется для
рисования эллипса в изогнутом прямоугольнике;
color — обозначает цвет эллипса; angle
— обозначает угол поворота;
startAngle — обозначает начальный угол эллиптической дуги в градусах;
endAngle — обозначает конечный угол эллиптической дуги в градусах;
thickness — используется для рисования толщины контура дуги эллипса,
если значение положительное. В противном случае это указывает, что должен
быть нарисован заполненный эллипс;
lineТуре — обозначает тип границы эллипса;
Рисование линий: cv2.line(img, pt1, pt2, color[, thickness[, lineType]])
Параметры:
img — представляет собой изображение;
pt1 — обозначает первую точку отрезка линии;pt2 —
обозначает вторую точку отрезка;
color — представляет цвет линии; thickness —
представляет толщину линии; line Type —тип
линий:
      Рисование полилиний: cv2.polyLine(img, polys, is_closed, color,
thickness=1, lineType=8)
Параметры:
img — представляет собой изображение;
polys — обозначает массив полигональных кривых;
      is closed — это флаг, который указывает, замкнуты ли нарисованные
полилинии или нет;
color — цвет полилиний;
```

thickness — представляет толщину краев полилиний;lineType — тип сегмента линии;