本试卷适应范围 经济管理类2014 级各专业(5学分)

南京农业大学试题纸.

2014-2015 学年第 一 学期 课程类型: 必修 试卷类型: A

课程 微积分 I	班级		学号		姓名
题号 —	=		四	总分	签名
得分		,			
ZE /\ 2020ET	1	· · · · · · · · · · · · · · · · · · ·	<u> </u>		
得分 评阅人	一、客观题(〔每题 2 分, 	失24分)		
	•				
1. $x = 0 \not\equiv f(x) = \frac{e^{\frac{1}{x}}}{1}$		-	间断点.		
1. $x = 0 = f(x) = \frac{1}{1 + e}$	1 4577 JC		ALL STATE OF THE S		-
x^2	· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		!		
2. 曲线 $f(x) = \frac{x^2}{2x+1}$	內斜湖近域力程	刀	**	.•	
3. 设函数 $f(x) = x(2x)$	-1) $(3x-2)(4x$	-3)(20	0.015x - 2014),	则 f'(0) =	· ·
4. 设方程 x = y ' 确定)	, 是 x 的函数, !	则 <i>dy</i> =	<u> </u>		· ·
	;	į			
5. 函数 $f(x) = x(x-1)$				······································	
6. 设某商品的需求函数	女为 Q(p)=100	$-4p, p \in (0,$	20),其中 Q 为	为需求量, p 为商	丽品价格,则需求函数
p=5 处的需求弹性	$E_d(5) = $	<u></u> -			
$\binom{n}{n}$	n	n)		
$7. \lim_{n \to +\infty} \left(\frac{n}{n^2 + 1} + \frac{n}{n^2 + 1} \right)$	$\frac{1}{2^2} + \frac{1}{n^2 + 3^2} + \cdots$	$\frac{\cdots + \overline{n^2 + n^2}}{n}$	2) =	•	
$\int_{-\pi}^{\pi} \sin x +$	$\cos x$				
8. 定积分 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin x + \sin x}{1 + \sin x}$	$\frac{1}{\ln^2 x} ax = \frac{1}{\ln^2 x}$	*			
9. 若连续函数 <i>f(x)</i> 满	足 $f(x) = e^x + x$	$x \int_{0}^{1} f(x) dx$,	则 $\int_{0}^{1} f(x)dx$	=	, ,
. ,		J 0	3 ()	•	
10. 若 e^x 和 $e^x + 2e^x$ 是	:一阶非齐次线性	上微分方程 x^2	$y'-cy=\varphi($	x)的两个解,则	c =
11. 当 $x \to 0$ 时,设有	$\cos x - 1 = \alpha(x)$:)sin x 成立,	则当 $x \to 0$ 时,	$\alpha(x)$ 是().
A: 与 x 等价的无线			, 不等价的无穷小		
C: 比 x 低阶的无线		比x 高阶的			
12. 设 $f(x)$ 在 $x=0$ 的		f(z)	() () _2 /m1 f	(火) 在占 v — 0 外	
12. 设 $f(x)$ 在 $x=0$ 的]杲邻项内连续,	$\lim_{x\to 0} \frac{1-cc}{1-cc}$	$\sum_{i=1}^{n} - Z_i$ $\sum_{i=1}^{n} \int ($	(A) TLM A - 0 X	` ' '

A: 取得极小值 f(0)=0 B: 取得极大值 f(0)=0 C: 未取得极值 D: 极值情况无法确定

得分	评阅人	

二、计算题 I (每题 6 分, 共 30 分)

- 13. 求极限 $\lim_{x\to 0} \frac{\tan x \sin x}{x^2(\sqrt{1+\sin x}-1)}$
- 14. 求极限 $\lim_{x \to +\infty} \frac{\int_{1}^{x} \arctan t \ dt}{\sqrt{1+x^2}}$.
- 15. 已知方程 $e^{y} + 6xy + x^{2} 1 = 0$ 确定了函数 y = f(x), 求 $\frac{d^{2}y}{dx^{2}}\Big|_{x=0}$.

16. 已知函数 y = f(x) 由参数方程 $\begin{cases} x = t^3 + 3t + 1 \\ y = t^3 - 3t + 1 \end{cases}$ 所确定,求其凹凸弧所对应的 x 的取值范围及拐点坐标.

17. 已知某商品的成本函数为 $C(x) = 21 + 2x^3$, x 为产量, 求x = 10 时的边际成本以及[0,10] 内成本平均值.

得分	评阅人

三、计算题 II (每题 6 分, 共 30 分)

- 18. 已知 $\frac{\sin x}{x}$ 是函数 f(x) 的一个原函数,求不定积分 $\int x f'(x^2) dx$.
- 19. 已知 $f(x) = \begin{cases} -xe^{-x^2} & x \ge -1 \\ e^x & x < -1 \end{cases}$,求定积分 $\int_0^3 f(1-x) dx$.
- 20. 计算抛物线 $y=x^2-4, y=0, x=0, x=4$ 所围平面图形绕 y 轴旋转一周所得旋转体的体积.

21. 求常数c,使得广义积分 $\int_0^{+\infty} (\frac{2x}{x^2+1} - \frac{c}{x+2}) dx$ 收敛,并求出积分值 .

22. 已知二阶可导函数 f(x) 满足方程 $f(x) + \int_0^x (x-t)f(t)dt = e^x$, 求 f(x).

得分 评阅人

四、综合题 (每题8分,共16分)

23. 证明不等式: 当x > 0时, $(x^2 - 1) \ln x \ge (x - 1)^2$.

24. 设 f(x), g(x)在 [-a,a](a>0) 上连续,g(x) 为偶函数,且 f(x) 满足 f(x)+f(-x)=A (A 为常数),证明: $\int_{-a}^{a} f(x)g(x)dx = A \int_{0}^{a} g(x)dx$; 并计算 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \arctan e^{x} \cdot \cos x dx$ 的值.

系主任 李 强

出卷人 李爱萍

2014-2015 学年第一学期经管类微积分 I 的 A 卷答案

一、客观题(每题2分,共24分)

1. ఎ. v =
$$\frac{1}{2}x - \frac{1}{4}$$
 3. 2014! 4. $\frac{dv}{dy} = \frac{1}{y^y(1 + \ln y)} \frac{dx}{dy} = \frac{1}{x(1 + \ln y)} \frac{dx}{dx}$ 5. $2\sqrt[3]{3}$ 6. 0.25

7.
$$\frac{\pi}{4}$$
 8. $\frac{\pi}{2}$ 9. $2(e-1)$ 10. -1 11. B 12. A

二、计算题 I (每题 6 分, 共 30 分)

13.
$$\lim_{x \to 0} \frac{\tan x - \sin x}{x^2 (\sqrt{1 + \sin x} - 1)} = \lim_{x \to 0} \frac{\tan x (1 - \cos x)}{x^2 \cdot \frac{1}{2} \sin x} = \lim_{x \to 0} \frac{x \cdot \frac{1}{2} x^2}{x^2 \cdot \frac{1}{2} x} = 1$$

14.
$$\lim_{x \to +\infty} \frac{\int_{1}^{x} \arctan t \, dt}{\sqrt{1+x^2}} = \lim_{x \to +\infty} \frac{\arctan x}{2x} = \frac{\pi}{2}$$

$$e^{y} + 6xy + x^{2} - 1 = 0 \Rightarrow e^{y}y' + 6y + 6xy' + 2x = 0 \Rightarrow e^{y}(y')^{2} + e^{y}y'' + 6y' + 6y' + 6xy'' + 2 = 0$$

15.
$$x = 0$$
, $y = 0$, $y'|_{x=0} = 0$, $\frac{d^2y}{dx^2}|_{x=0} = -2$

16.
$$\begin{cases} x = t^3 + 3t + 1 \\ y = t^3 - 3t + 1 \end{cases} \Rightarrow \frac{dy}{dx} = \frac{3t^2 - 3}{3t^2 + 3} \Rightarrow \frac{d^2y}{dx^2} = \frac{4t}{3(t^2 + 1)^3}, \Leftrightarrow \frac{d^2y}{dx^2} = 0 \ \text{#index} \ t = 0, \ \text{#index} \ x = 1$$

凸弧 $(-\infty,1)$, 凹弧 $(1,+\infty)$, 拐点(1,1)

17.
$$C'(x) = 6x^2$$
, $C'(10) = 600$, $\frac{\int_0^{10} c(x)dx}{10} = \frac{\int_0^{10} (21 + 2x^3)dx}{10} = \frac{(21x + \frac{1}{2}x^4)\Big|_0^{10}}{10} = 521$

三、计算题 II (每题 6 分, 共 30 分)

18.
$$f(x) = (\frac{\sin x}{x})' = \frac{x \cos x - \sin x}{x^2}$$
, $\int x f'(x^2) dx = \frac{1}{2} \int f'(x^2) dx^2 = \frac{1}{2} f(x^2) + C = \frac{1}{2} \frac{x^2 \cos x^2 - \sin x^2}{x^4} + C$

19.
$$\int_{0}^{3} f(1-x)dx \stackrel{t=1-x}{=} \int_{1}^{-2} f(t)d(-t) = \int_{-2}^{1} f(t)dt = \int_{-2}^{-1} e^{t}dt + \int_{-1}^{1} -te^{-t^{2}}dt$$
$$= \int_{-2}^{-1} e^{t}dt + 0 = e^{t}\Big|_{-2}^{-1} = e^{-1} - e^{-2}$$

20.
$$V_y = \int_{-4}^{0} \pi(y+4)dy + \left[\pi \cdot 4^2 \cdot 12 - \int_{0}^{12} \pi(y+4)dy\right] = 80\pi$$

$$\int_{0}^{+\infty} \left(\frac{2x}{x^{2}+1} - \frac{c}{x+2}\right) dx = \lim_{b \to \infty} \int_{0}^{b} \left(\frac{2x}{x^{2}+1} - \frac{c}{x+2}\right) dx = \lim_{b \to \infty} \ln \frac{x^{2}+1}{(x+2)^{c}} \Big|_{0}^{b}$$

$$= \lim_{b \to \infty} \left[\ln \frac{b^{2}+1}{(b+2)^{c}} - \ln \frac{1}{2^{c}} \right], \text{ if } \mathbb{E} \text{ (\mathbb{Q} if \mathbb{Z} i$$

$$f(x) + x \int_0^x f(t)dt - \int_0^x tf(t)dt = e^x, f(0) = 1 \Rightarrow f'(x) + \int_0^x f(t)dt + xf(x) - xf(x) = e^x, f'(0) = 1$$

$$22. \Rightarrow f''(x) + f(x) = e^x \Rightarrow f(x) = \frac{1}{2}(\cos x + \sin x + e^x)$$

23. 证明:设 $f(x) = (x^2 - 1) \ln x - (x - 1)^2$,其在 $(0, +\infty)$ 上连续、可导,

 $f'(x) = 2x \ln x + \frac{x^2 - 1}{x} - 2(x - 1) = 2x \ln x - x - \frac{1}{x} + 2, \quad f''(x) = 2 \ln x + 2x \cdot \frac{1}{x} - 1 + \frac{1}{x^2} = 2 \ln x + \frac{1}{x^2} + 1$ 令 f'(x) = 0 得唯一x = 1,而 f''(1) > 0,故 f(1) 极 小值,故 $f(x) \ge f(1) = 0$,即 f(x) = 10 用 $f(x) \ge f(1) = 0$,即 f(x) = 10 有 $f(x) \ge f(1) = 0$,即 f(x) = 10 有 $f(x) \ge f(1) = 0$,即 f(x) = 10 有 $f(x) \ge f(1) = 0$,即 f(x) = 10 有 $f(x) \ge f(1) = 0$,即 f(x) = 10 有 $f(x) \ge f(1) = 0$,即 f(x) = 10 有 $f(x) \ge f(1) = 0$,即 f(x) = 10 有 $f(x) \ge f(1) = 0$,即 f(x) = 10 有 f(x) = 11 有 f(x) = 11

$$\int_{-a}^{0} f(x)g(x)dx \stackrel{x=-t}{=} \int_{a}^{0} f(-t)g(-t)d(-t) \stackrel{g(t)}{=} \int_{0}^{a} f(-x)g(x)dx$$
24. 证明:
$$\int_{-a}^{a} f(x)g(x)dx = \int_{-a}^{0} f(x)g(x)dx + \int_{0}^{a} f(x)g(x)dx$$

$$= \int_{0}^{a} [f(-x) + f(x)]g(x)dx = A \int_{0}^{a} g(x)dx$$

$$f(x) = \arctan e^x, g(x) = \cos x$$

$$[f(x) + f(-x)]' = \left[\arctan e^x + \arctan e^{-x}\right]' = \frac{e^x}{1 + e^{2x}} + \frac{-e^{-x}}{1 + e^{-2x}} = 0$$

##:
$$f(x) + f(-x) = C = f(0) + f(-0) = \arctan 1 + \arctan 1 = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$$

$$\therefore \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \arctan e^x \cdot \cos x dx = \frac{\pi}{2} \cdot \int_{0}^{\frac{\pi}{2}} \cos x dx = \frac{\pi}{2} \cdot \sin x \Big|_{0}^{\frac{\pi}{2}} = \frac{\pi}{2}$$

本试卷适应范围 经济管理类2013

南京农业大学试题纸

级行专业(0 于月)	2013-2014 字年	弟 一 字期	保程失型	: 少修 试卷	突型: A	
课程微积分 I	班级		_ 学号_		姓名	
题号 一	= [四	总分	签名	
得分						
得分 评阅人						
	一、客观题(每题 2 分,扌	失24分)			
$1. \lim_{x \to \infty} x \sin \frac{1}{x} = \underline{\hspace{1cm}}$						
	$\cos x - 1$ 是 $\sin^k x$ 的	同阶无穷小量	量,则 k =	***************************************		
3. 设函数 <i>f</i> (x)满	$\mathbb{E}\lim_{x\to 0}\frac{f(2+2x)-f}{x}$	$\frac{f(2)}{f(2)} = 6$,则	$ f(x) \times x = 2$	处可导,且 $f'(2)$:		•
4. 定积分 $\int_{-1}^{1} \left(1 + \frac{1}{2}\right)^{-1}$	$x^{2014} \ln \frac{2+x}{2-x} dx$		*			
5. 设函数 <i>f</i> (x) 连	续,则 $\frac{d^2}{dx^2}\int_0^x (x-t)^2$	-t)f(t)dt =	=	.		
6. 若 $2 f(x) = 1+$	$x\int_0^1 f(x)dx , \text{if } \int_0^1$	f(x)dx =		·		
7. 下列函数中, 在	$\mathbf{E} x = 0$ 处可导的是	()				
A: f(x) = x	$B: f(x) = \left \sin x \right $	C: f(x) =	$\begin{cases} x^2 \sin \frac{1}{x}, & x \\ 0, & x = 0 \end{cases}$	$\neq 0$ D: $f(x) = 0$	$= \begin{cases} x^2 + 1 \\ x \end{cases}$	$x \le 0$ $x > 0$
8. 设 $f(x_0+t)-f$	$f(x_0) = 2t + \sqrt{1 - t^2}$	-1, 那么 <i>f</i>	(x)在x ₀ 处().		
	B: 不可导 C: 可					
9. 设 $f(x)$ 在 x_0 的]某邻域内连续,且 l	$\lim_{x \to x_0} \frac{f(x) - f(x)}{(x - x_0)}$	$\frac{f(x_0)}{a^3} = a^2 (a \neq a)$	0),则 <i>f</i> (x) 在点	x ₀ 处().
A: 取得极大值	B: 取得极小值	C: 未取行	等极值 D: i	观 a 的取值而定		
10. 若 $x \ln x$ 是 $f(x)$:)的一个原函数,则	$\int x f'(x) dx =$	= ()			
A: $x+c$			$2\ln x + c$			
			$(1+\ln x)+c$			
11. 下列反常积分中			. 1			
$A: \int_{-\infty}^{+\infty} \frac{1}{1+x^2}$	$dx \qquad \text{B:} \int_{-\infty}^{+\infty} \frac{1}{1+}$	$\frac{x}{x^2}dx$	$C: \int_0^1 \frac{1}{\sqrt{x}} dx$	$D: \int_0^{+\infty} x e^{-x} dx$	łx	
12. 连续函数 f(x)) 满足关系式 <i>f</i> (x) =	$= \int_0^x f(t)dt$	$+\ln 2$,则 $f($	x) = (

A: $e^x \ln 2$

B: $e^{2x} \ln 2$ C: $e^x + \ln 2$ D: $e^{2x} + \ln 2$

评阅人 得分

二、计算题 I (每题 6 分, 共 30 分)

- 13. 求极限 $\lim_{x\to 0} \frac{\ln(1-x) + \ln(1+x)}{x \sin x}$.
- 14. 求极限 $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}}$.

15. 已知方程 $ye^y = e^{1+x}$ 确定了函数 y = f(x) ,求 $\frac{d^2y}{dx^2}$ _____.

16. 已知 $f(x) = (x-2)^{\frac{5}{3}}$,求其单调区间与极值、凹凸区间与拐点 .

17. 求不定积分 $\int \frac{1}{1-\sqrt{1-x^2}} dx$.

得分	评阅人

三、计算题 II (每题 6 分, 共 30 分)

18. 己知 $f(x) = e^{-x}$, 求定积分 $\int_{2}^{3} f(2-x)dx$.

19. 计算抛物线 $y^2 = x$ 与直线 y = x - 2 所围平面图形绕 y 轴旋转一周所得旋转体的体积.

20. 求微分方程 y'(2xy+y)=1 的通解 .

21. 求微分方程 $y'' + 2y' = e^{-x}$ 的通解,及满足初始条件 $y|_{x=0} = 1$, $y'|_{x=0} = 0$ 的特解 .

22. 生产某产品的固定成本为 10(单位),当产量为 x 单位时边际成本为 $C'(x)=3x^2+20x-28$,而边际收益为 R'(x)=20x-16 . 试求: 总利润最大时的产量 x_0 及最大利润 .

得分	评阅人

四、综合题 (每题8分,共16分)

23. 设函数 f(x) 在 $(-\infty, +\infty)$ 上有定义,对任意的 $x, y \in (-\infty, +\infty)$,有 f(x+y)=f(x)+f(y)+2xy ,且 f(x) 在 x=0 处可导, f'(0)=3 . 试证明 f(x) 在 $(-\infty, +\infty)$ 上点点可导; 并由此求出 f(x) .

24. 设 f(x) 在 [a,b] 上连续,证明: $\int_a^b f(x) dx = \int_a^b f(a+b-x) dx ;$ 由此证明等式 $\int_{-1}^1 \frac{x^2}{1+e^x} dx = \int_{-1}^1 \frac{x^2}{1+e^{-x}} dx ,$ 并计算 $\int_{-1}^1 \frac{x^2}{1+e^x} dx$ 的值.

系主任 李 强

2013-2014 学年第一学期经管类微积分 I 的 A 卷答案

一、客观题(每题2分,共24分)

1.
$$\underline{1}$$
; 2. $\underline{2}$; 3. $\underline{3}$; 4. $\underline{2}$; 5. $\underline{f(x)}$ 6. $\underline{\frac{2}{3}}$ 7. \underline{C} ; 8. \underline{C} ; 9. \underline{C} ; 10. \underline{A} ; 11. \underline{B} ; 12. \underline{A} ;

二、计算题 I (每题 6 分, 共 30 分)

13.
$$\lim_{x \to 0} \frac{\ln(1-x) + \ln(1+x)}{x \sin x} = \lim_{x \to 0} \frac{\ln(1-x^2)}{x^2} = \lim_{x \to 0} \frac{-x^2}{x^2} = -1$$

14.
$$\lim_{x \to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^{2}}} = e^{\lim_{x \to 0} \frac{1}{x^{2}} \ln \left(\frac{\sin x}{x}\right)} = e^{\lim_{x \to 0} \frac{\ln \sin x - \ln x}{x^{2}}} = e^{\lim_{x \to 0} \frac{\cos x - 1}{2x}} = e^{\lim_{x \to 0} \frac{\cos x - \sin x}{2x}} = e^{\lim_{x \to 0} \frac{x \cos x - \sin x}{2x^{2} \sin x}}$$

$$= e^{\lim_{x \to 0} \frac{x \cos x - \sin x}{2x^{3}}} = e^{\lim_{x \to 0} \frac{\cos x - x \sin x - \cos x}{6x^{2}}} = e^{\lim_{x \to 0} \frac{-x \sin x}{6x^{2}}} = e^{-\frac{1}{6}}$$

$$ye^{y} = e^{1+x} \Rightarrow y'e^{y} + ye^{y}y' = e^{1+x} \Rightarrow y''e^{y} + y'e^{y}y' + y'e^{y}y' + ye^{y}y' + ye^{y}y'' = e^{1+x}$$

15.
$$x = 0 \Rightarrow y|_{x=0} = 1 \Rightarrow y'|_{x=0} = \frac{1}{2} \Rightarrow y''|_{x=0} = \frac{1}{8}$$

16.
$$f(x) = (x-2)^{\frac{5}{3}} \Rightarrow f'(x) = \frac{5}{3}(x-2)^{\frac{2}{3}} \Rightarrow f''(x) = \frac{10}{9}(x-2)^{\frac{1}{3}}$$
, $f'(x) = 0 \Rightarrow x = 2, f''(2)$ π \neq $f''(x) = 0 \Rightarrow x = 2, f''(2)$

	$(-\infty,2)$	2	$(2,+\infty)$	
f'(x)	+	0	1	
f''(x)	_	不存在	+	
f(x)	单调递增,凸的	无极值,有拐点(2,0)	单调递减,凹的	

$$\int \frac{1}{1 - \sqrt{1 - x^2}} dx = \int \frac{\cos t}{1 - \cos t} dt = \int \frac{\cos t(1 + \cos t)}{\sin^2 t} dt = \int \frac{\cos t}{\sin^2 t} + \cot^2 t dt = \int \frac{\cos t}{\sin^2 t} + \csc^2 t - 1 dt$$

$$= -\csc t - \cot t - t + c = -\frac{1}{x} - \frac{\sqrt{1 - x^2}}{x} - \arcsin x + c$$

18.
$$\int_{2}^{3} f(2-x)dx = \int_{0}^{-1} f(t)(-dt) = \int_{-1}^{0} f(t)dt = \int_{-1}^{0} e^{-t}dt = -e^{-t}\Big|_{-1}^{0} = e - 1$$

19.
$$y^2 = x 与 y = x - 2$$
的交点为(1,-1) 、(4,-2)

20.
$$y'(2xy+y) = 1 \Rightarrow \frac{dx}{dy} - 2yx = y \Rightarrow x = e^{-\int -2ydy} \left[\int ye^{\int -2ydy} dy + c \right] = e^{y^2} \left(-\frac{1}{2}e^{-y^2} + c \right) = ce^{y^2} - \frac{1}{2}, c \in \forall$$

 $(1)y'' + 2y' = 0 \Rightarrow r^2 + 2r = 0 \Rightarrow r_1 = 0, r_2 = -2 \Rightarrow Y = c_1 + c_2e^{-2x}$

21.
$$(2)y^* = ae^{-x} \Rightarrow y^{*'} = -ae^{-x}, y^{*''} = ae^{-x} \Rightarrow a = -1 \Rightarrow y^* = -e^{-x}$$

$$\Rightarrow y = y^* + Y = -e^{-x} + c_1 + c_2 e^{-2x} \Rightarrow c_1 = \frac{3}{2}, c_2 = \frac{1}{2} \Rightarrow y = -e^{-x} + \frac{3}{2} + \frac{1}{2} e^{-2x}$$

22.
$$L(x) = R(x) - C(x) = \int_0^x R'(t)dt - \left[\int_0^x C'(t)dt + C_0\right] = \int_0^x (20t - 16)dt - \left[\int_0^x (3t^2 + 20t - 28)dt + 10\right]$$

= $-x^3 + 12x - 10$, $L''(x) = -3x^2$, 令 $L'(x) = -3x^2 + 12 = 0$ 得 $x = 2(x = -2$ 舍去), $L''(2) = -12$ 故 $x = 2$ 处总利润最大, $L_{max}(2) = 6$ 单位.

$$f'(x) = \lim_{y \to 0} \frac{f(x+y) - f(x)}{y} = \lim_{y \to 0} \frac{f(x) + f(y) + 2xy - f(x)}{y} = \lim_{y \to 0} \frac{f(y)}{y} + 2x$$

23. 证明:
$$f(x+y) = f(x) + f(y) + 2xy \Rightarrow f(0+0) = f(0) + f(0) + 0 \Rightarrow f(0) = 0$$

$$\Rightarrow \lim_{y \to 0} \frac{f(y)}{y} = \lim_{y \to 0} \frac{f(y) - f(0)}{y} = f'(0) \Rightarrow f'(x) = 3 + 2x$$

解:
$$f'(x) = 3 + 2x \Rightarrow f(x) = x^2 + 3x + c \Rightarrow c = 0 \Rightarrow f(x) = x^2 + 3x$$

本试卷适应范围 经济管理类 2012 级各专业(5

南京农业大学试题纸

2012-2013 学年第 一 学期 课程类型: 必修 试卷类型: A

诣	限程	微积分 I	班级	· · · · · · · · · · · · · · · · · · ·	学号	姓名	
	题号		_		四	总分	签名
	得分						
	得分	评阅人				÷	
			一、填空题与选排	¥题 (每题2分	,共 20 分)	·	
1.	$\lim_{n\to\infty} \left(\frac{n}{n}\right)$	$(\frac{n+1}{n})^{(-1)^n} = \underline{\hspace{1cm}}$					
2.	函数 f	$(x) = \frac{ x (x+1)}{(x^2-1)\sin x}$	– 的第一类可去[x	间断点为 x =		-	
3.	己知一	元四次多项式 $f(x)$	x) 满足等式 $f(x)$	$(x^2 - 1) \int_{-2}^{x} dx$	xg(t)dt,则	方程 $f'(x) = 0$ 的	的实根所在的区间
依	医次为						
4.	$\int_{-3}^{3} (\sin \theta)$	$1x+1+\frac{x}{9-x^2}$	$\sqrt{9-x^2}dx = $				
5.	生产	某种产品的质	一定成本为10	0 单位,而当	当产 量 为 <i>x</i>	单位时的边	际成本函数为
	C'(x)	$=3x^2-12x+1$	15 ,则成本函数	女 C(x) 为		•	
6.	设对任	意的 x ,总有 h(x	$) \le f(x) \le g(x)$,且 $\lim_{n \to \infty} [g(x)]$	-h(x)=0,	则 $\lim_{x\to 0} f(x)$ ().
	A: 存	在且一定等于 0		B: 存在但不一	定等于 0	<i>x</i> →0	
7.	C: 一方 设 f(x)	定存在) 连续、三阶可导		D: 不一定存在 $f''(x_0) = 0, f$		则().	
		$f'(x_0)$ 是 $f'(x)$ 的			-		
	C: f	(x_0) 是 $f(x)$ 的极	小值 I	$0: (x_0, f(x_0))$)) 是曲线 <i>y</i> =	f(x) 的拐点	
8.	设 f(x)	与 g(x) 在 [0,1]	上连续且 $f(x) \le$	g(x),则对于 f	迁意的 <i>c</i> ∈ (0,1	l),有()	
		$f(t)dt \le \int_{\frac{1}{2}}^{c} g(t)$					
	C: $\int_{\frac{1}{2}}^{c}$	$f(t)dt \ge \int_{\frac{1}{2}}^{c} g(t)$	t)dt	D: $\int_{c}^{1} f(t) dt$	$r \ge \int_c^1 g(t)dt$	* 1	
9.	反常积约	$\int_{-1}^{1} \frac{\ln(x+1)}{x} dx$	dx 的被积函数的]瑕点为().		
		$= 0 \qquad \qquad \mathbf{B} : \mathbf{x} = \mathbf{x}$					
10		-* 是微分方程 y" + - a ^{-x} + c cos					
		$= e^{-x} + c_1 \cos x$ $= e^{-x} + c(\cos x)$				_	
			,	-	- (-	,	

得分	评阅人
1973	VI Day
 	1
	1

二、计算题 I (每题 6 分, 共 30 分)

- 11. 求极限 $\lim_{x\to 0} \frac{x-(1+x)\ln(1+x)}{x\ln(1+x)}$ 12. 求极限 $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}}$

- 13. 已知方程 $y^{\frac{1}{x}} = x^{\frac{1}{y}}$ 确定了函数 x = f(y),求 dx.
- 14. 设函数 y = f(x) 由参数方程 $\begin{cases} x = t^2 + 2t \\ y = \ln(1+t) \end{cases}$ 确定,求曲线 y = f(x) 在 x = 3 处的切线方程.

15. 已知通过点(-2,44)的曲线 $y = ax^3 + bx^2 + cx + d$ 在 x = -2 处有水平切线,拐点为(1,-10), 求a、b、c、d的值.

得分	 评阅人

三、计算题 II (每题 6 分, 共 30 分)

16. 求不定积分 $\int e^{-x+2\ln x} dx$

17. 求定积分 $\int_{-2}^{6} \frac{1}{1+\sqrt[3]{x+2}} dx$

18. 试判断反常积分 $\int_1^{+\infty} \frac{1}{x \ln^2 x} dx$ 的敛散性并说明理由.

19. 求直线 $y = \frac{1}{e}x$ 和曲线 $y = \ln x \ Q x$ 轴所围平面图形绕 y轴旋转一周所得旋转体的体积.

20. 求微分方程 $x^2 - 6y + 2xy' = 0$ 的通解.

得分 评阅人

四、综合题 (第 21、22 题每题 7 分, 第 23 题 6 分, 共 20 分)

21. 可导函数 f(x) 满足方程 $f(x)=x+\int_0^x (x-t)f(t)dt$, 求 f(x). (7分)

22. 设函数 f(x) 在区间[0,2]上连续,在(0,2)内可导,且 $f(0) = \int_1^2 e^{-x} f(x) dx$, 试证: 在(0,2)内至少存在一点 ξ ,使 $f'(\xi) = f(\xi)$. (7分)

- 23. (1) 证明: 当x > 1时, $f(x) = x \ln x$ 为单调递增函数.
 - (2) 不求出两数的具体值,试判断 $\ln(\sqrt{2}+1)$ 与 $\sqrt{2}-1$ 的大小关系,并说明理由.

(6分)

系主任 李 强

出卷人 李爱萍

2012 级经管微积分 I-A 答案

一、填空题与选择题 (每题 2 分, 共 20 分)

1.1; 2.-1; 3.
$$(-2,-1)(-1,0)(0,1)$$
; 4.4.5 π ;

5,
$$C(x) = x^3 - 6x^2 + 15x + 10$$
; 6, D; 7, D; 8, B; 9, C; 10, A;

二、计算题 I (每题 6 分, 共 30 分)

11.
$$\lim_{x \to 0} \frac{x - (1+x)\ln(1+x)}{x\ln(1+x)} = \lim_{x \to 0} \frac{x - (1+x)\ln(1+x)}{x^2} = \lim_{x \to 0} \frac{1 - \ln(1+x) - (1+x) \cdot \frac{1}{1+x}}{2x} = \lim_{x \to 0} \frac{-\ln(1+x)}{2x} = -\frac{1}{2}$$

$$12, \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}} = e^{\lim_{x \to 0} \frac{1}{x^2} \ln \left(\frac{\sin x}{x}\right)} = e^{\lim_{x \to 0} \frac{\ln \sin x - \ln x}{x^2}} = e^{\lim_{x \to 0} \frac{\cos x}{2x}} = e^{\lim_{x \to 0} \frac{\cos x - \sin x}{2x}} = e^{\lim_{x \to 0} \frac{\cos x - \sin x}{2x}} = e^{\lim_{x \to 0} \frac{\cos x - \sin x}{2x^2}} = e^{\lim_{x \to 0} \frac{\cos x}{2x^2}} = e^{\lim_{x \to 0} \frac{\cos x - \sin x}{2x^2}} = e^{\lim_{x \to 0} \frac{\cos x}$$

13.
$$\frac{1}{x}\ln y = \frac{1}{y}\ln x \to y\ln y = x\ln x \to \ln ydy + y \cdot \frac{1}{y}dy = \ln xdx + x \cdot \frac{1}{x}dx \to dx = \frac{\ln y + 1}{\ln x + 1}dy$$

$$\begin{cases} x = t^{2} + 2t \\ y = \ln(1+t) \end{cases} \Rightarrow \frac{dy}{dx} = \frac{\frac{1}{1+t}}{2t+2} = \frac{1}{2(1+t)^{2}}$$
$$x = 3 \Rightarrow t^{2} + 2t = 3 \Rightarrow t = -3(\stackrel{\triangle}{r}) , t = 1 \Rightarrow y = \ln 2, y' = \frac{1}{8} \Rightarrow y - \ln 2 = \frac{1}{8}(x-3)$$

15.
$$y = ax^3 + bx^2 + cx + d \Rightarrow y' = 3ax^2 + 2bx + c \Rightarrow y'' = 6ax + 2b$$
$$-8a + 4b - 2c + d = 44,12a - 4b + c = 0, a + b + c + d = -10, 6a + 2b = 0$$
$$\Rightarrow \begin{cases} a = 1; b = -3 \\ c = -24; d = 16 \end{cases}$$

三、计算题Ⅱ (每题6分,共30分)

$$\int e^{-x+2\ln x} dx = \int x^2 e^{-x} dx = \int -x^2 de^{-x} = -x^2 e^{-x} + \int e^{-x} dx^2 = -x^2 e^{-x} + \int 2x e^{-x} dx$$

$$= -x^2 e^{-x} - 2 \int x de^{-x} = -x^2 e^{-x} - 2(x e^{-x} - \int e^{-x} dx) = -x^2 e^{-x} - 2x e^{-x} - 2e^{-x} + c$$

$$\int_{-2}^{6} \frac{1}{1 + \sqrt[3]{x + 2}} dx = \int_{0}^{2} \int_{0}^{2} \frac{1}{1 + t} d(t^{3} - 2) = \int_{0}^{2} \frac{3t^{2}}{1 + t} dt = 3 \int_{0}^{2} \frac{t^{2} - 1 + 1}{1 + t} dt$$

$$= 3 \int_{0}^{2} (t - 1 + \frac{1}{1 + t}) dt = 3 \left[\frac{1}{2} t^{2} - t + \ln(1 + t) \right]_{0}^{2} = 3 \left[2 - 2 + \ln 3 \right] = 3 \ln 3$$

四、综合题 (第 21、22 题每题 7 分, 第 23 题 6 分, 共 20 分)

$$f(x) = x + \int_0^x (x - t) f(t) dt \Rightarrow f(x) = x + x \int_0^x f(t) dt - \int_0^x t f(t) dt, \quad f(0) = 0$$

$$\Rightarrow f'(x) = 1 + \int_0^x f(t) dt + x f(x) - x f(x) \Rightarrow f'(x) = 1 + \int_0^x f(t) dt, \quad f'(0) = 1$$

$$\Rightarrow f''(x) - f(x) = 0 \Rightarrow r^2 - 1 = 0 \Rightarrow r_1 = 1, r_2 = -1 \Rightarrow f(x) = c_1 e^x + c_2 e^{-x}$$

$$\Rightarrow c_1 + c_2 = 1, c_1 - c_2 = -1 \Rightarrow c_1 = \frac{1}{2}, c_2 = -\frac{1}{2} \Rightarrow f(x) = \frac{1}{2} e^x - \frac{1}{2} e^{-x}$$

 $22 f(0) = \int_{1}^{2} e^{-x} f(x) dx \Rightarrow f(0) = e^{-\eta} f(\eta)(2-1), \eta \in (1,2) \Rightarrow e^{-\theta} f(0) = e^{-\eta} f(\eta)$

设函数 $F(x)=e^{-x}f(x)$,则其在区间 $\left[0,\eta\right]$ 上连续,在 $\left(0,\eta\right)$ 内可导,且 $F(0)=F(\eta)$,满足罗尔定理,则至

少有一点 $\xi \in (0, \eta) \subset (0,2)$,使 $F'(\xi)=0$,即 $-e^{-\xi}f(\xi)+e^{-\xi}f'(\xi)=0$,即 $f'(\xi)=f(\xi)$ 成立.

23、证明: (1)
$$f(x) = x \ln x \Rightarrow f'(x) = \ln x + x \cdot \frac{1}{x} = \ln x + 1$$

当x > 1时, f'(x) > 1 > 0, 则 $f(x) = x \ln x$ 为单调递增函数.

(2) 由 (1) 可知,
$$f(\sqrt{2}+1) > f(1+1) \Rightarrow (\sqrt{2}+1)\ln(\sqrt{2}+1) > (1+1)\ln(1+1) = 2\ln 2 = \ln 4 > 1$$
 从而 $\ln(\sqrt{2}+1) > \frac{1}{(\sqrt{2}+1)} = \sqrt{2}-1$ 成立.

·			·	
	·			

本试卷适应范围 经济管理类2011 级各专业(5学分)

南京农业大学试题纸

2011-2012 学年第 一 学期

课程类型:必修

试卷类型: A

课程 微积分 I 四 $\overline{+}$ 总分 题号 签名 得分

得分	评阅人

一、填空题 (每题2分,共10分)

- $1. \lim_{x \to \infty} x \sin \frac{2x}{x^2 + 1} = \frac{2x}{1 + 1}$
- 2. 已知函数 $f(x) = x(x-1)(x-2)\cdots(x-2011)$,则 $dy \mid_{x=0}$
- 3. 函数 $y=x+2\cos x$ 在区间 $0,\frac{\pi}{2}$ 上的最大值是 ______
- $4. \frac{d}{dx} \int_0^x f(t-x)dt = \underline{\hspace{1cm}}$
- 5. 已知 y_1 、 y_2 是 y'+p(x)y=q(x) 的两个不同解,则其通解可以表示成 y= _

得分	评阅人

二、选择题 (每题2分,共10分)

6. 当 $x \to 0$ 时,下列四个无穷小量中,比其他三个更高阶的无穷小量是(

- A: x^2 B: $1-\cos x$ C: $\sqrt{1-x^2}-1$ D: $x-\tan x$

- A: 连续点 B: 可去间断点 C: 跳跃间断点 D: 无穷间断点
- 8. 设 f(x) 在 x = a 的某个邻域内有定义,则 f(x) 在 x = a 处可导的一个充分条件是(

A:
$$\lim_{h \to +\infty} h \left[f\left(a + \frac{1}{h}\right) - f(a) \right]$$
存在 B: $\lim_{h \to \infty} h \left[f(a) - f\left(a - \frac{1}{h}\right) \right]$ 存在

B:
$$\lim_{h \to \infty} h \left[f(a) - f\left(a - \frac{1}{h}\right) \right]$$
存在

C:
$$\lim_{h\to 0^-} \frac{f(a+h)-f(a)}{h}$$
存在

C:
$$\lim_{h\to 0^-} \frac{f(a+h)-f(a)}{h}$$
存在 D: $\lim_{h\to 0} \frac{f(a+h)-f(a-h)}{2h}$ 存在

9. 下列等式中,正确的结果是(

- A: $\int f'(x)dx = f(x)$ B: $\int df(x) = f(x)$ C: $\frac{d}{dx} \int f(x)dx = f(x)$ D: $d \int f(x)dx = f(x)$

10. 下列积分中运算结果正确的是(

 $A: \int_{-\infty}^{+\infty} \frac{x}{1+x^2} dx = 0$

B:
$$\int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx = \pi$$

C: $\int_{-1}^{1} \frac{1}{r^2} dx = -2$ D: $\int_{-1}^{1} \frac{1}{r} dx = 0$

D:
$$\int_{-1}^{1} \frac{1}{x} dx = 0$$

得分	评阅人

三、计算题 I (每题 6 分,共 30 分)

- 11. 求极限 $\lim_{x\to 0} \frac{x-\sin x}{x^2(e^x-1)}$
- 12. 求 $y = (2x+1)e^{\frac{1}{x}}$ 的斜渐近线 y = kx + b (其中 $k = \lim_{x \to \infty} \frac{f(x)}{x}, b = \lim_{x \to \infty} (f(x) kx)$)

13. 已知曲线 $y = x^2 + ax + b$ 与 $2y + 1 = xy^3$ 相切于点 (1,-1), 求 a、b 的值.

14. 已知隐函数方程 $xy + e^y = x + 1$ 确定了函数 y = f(x), 求 $\frac{d^2y}{dx^2}|_{x=0}$.

15. 设参数方程 $\begin{cases} x = t^t \\ y = (t \ln t)^2 \end{cases}$ 确定了函数 y = f(x), 求 $\frac{dy}{dx}$.

得分	评阅人	

四、计算题 II (每题 6 分,共 30 分)

16. 已知函数 $y = \frac{x^3}{(x-1)^2}$, 列表讨论函数的凹凸区间与拐点.

- 17. 求不定积分 $\int \frac{1}{\sqrt{1+e^x}} dx$
- 18. 设函数 $f(x) = \begin{cases} \sqrt{4-x^2} & -2 \le x \le 2 \\ e^{-x} & x < -2, x > 2 \end{cases}$, 求 $\int_{-1}^4 f(2-x) dx$

19. 计算抛物线 $y^2 = x$ 与直线 y = x - 2 所围平面图形绕x轴旋转一周所得旋转体的体积.

20. 已知 $\frac{dy}{dx} = \frac{1}{x-y}$, 求微分方程的通解.

五、综合是	〔第21、	22 题每题 7 分,第	23 题 6 分,	共20分)
-------	-------	--------------	-----------	-------

得分

21. 设函数 f(x) 连续,且满足 $f(x) = xe^x + \int_0^x (t-x)f(t)dt$,求 f(x). (7分)

22. 在某产品的生产过程中,设x为产量,已知固定成本为 15 万元,边际成本C'(x)=30+4x,边际收益 R'(x) = 60 - 2x, (1) 求最大利润及取得最大利润时的产量 x_0 ; (2) 求在 $\left[0, x_0\right]$ 上利润的平均值. (7分)

23. 设函数 f(x) 在 $(-\infty, +\infty)$ 上连续、二阶可导,且满足 $\lim_{x\to 0} \frac{f(x)}{x} = 1$,且 f''(x) > 0, 求证: (1) f'(0) = 1; (2) 在 $(-\infty, +\infty)$ 上恒有 $f(x) \ge x$. (6分)

2011-2012 学年第一学期 5 学分微积分 I (A) 卷答案

一、填空题 (每题 2 分,共 10 分): 1: 2; 2: -2011!dx; 3: $\sqrt{3} + \frac{\pi}{6}$; 4: f(-x);

5:
$$y_1 + c(y_1 - y_2)$$
 或 $y_2 + c(y_1 - y_2)$ (c 为任意常数)

二、选择题 (每题 2 分,共 10 分): 6: D; 7: C; 8: B; 9: C; 10: B;

三、计算题 I (每题 6 分,共 30 分)

12:
$$k = \lim_{x \to \infty} \frac{(2x+1)e^{\frac{1}{x}}}{x} (1') = 2(1')$$
;

$$b = \lim_{x \to \infty} \left[(2x+1)e^{\frac{1}{x}} - 2x \right] (1') = \lim_{x \to \infty} \left[2x(e^{\frac{1}{x}} - 1) + e^{\frac{1}{x}} \right] (1') = \lim_{x \to \infty} \left[\frac{2(e^{\frac{1}{x}} - 1)}{\frac{1}{x}} + e^{\frac{1}{x}} \right] = 3(1')$$

所求斜渐近线是 y = 2x + 3(1')

13:
$$y' = 2x + a(1'); 2y' = y^3 + x \cdot 3y^2 \cdot y' \Rightarrow y' = \frac{y^3}{2 - 3xy^2} (2');$$

$$1+a+b=-1(1'); 2+a=\frac{-1}{2-3}(1') \Rightarrow a=-1, b=-1(1')$$

14:
$$y + xy' + e^y \cdot y' = 1(1')$$
; $y' + y' + xy'' + e^y \cdot (y')^2 + e^y \cdot y'' = 0(2')$

将x=0代入原方程得y=0(1'),再一起代入上面左式得y=1(1'),

最后代入上面右式得
$$y'' = -3$$
, 即 $\frac{d^2y}{dx^2}\Big|_{x=0} = -3(1')$

15:
$$x = t^t \Rightarrow \ln x = t \ln t \Rightarrow \frac{1}{x} x' = \ln t + t \cdot \frac{1}{t} \Rightarrow x' = t^t (\ln t + t \cdot \frac{1}{t})(3')$$

$$y = (t \ln t)^2 \Rightarrow y' = 2t \ln t (\ln t + t \cdot \frac{1}{t})(2'); \quad \frac{dy}{dx} = \frac{2t \ln t (\ln t + t \cdot \frac{1}{t})}{t' (\ln t + t \cdot \frac{1}{t})} = 2t^{1-t} \ln t (1')$$

四、计算题 II (每题 6 分,共 30 分)

16:
$$D: (-\infty, 1) \cup (1, +\infty)$$
, $y' = \frac{x^2(x-3)}{(x-1)^3} (1')$, $y'' = \frac{6x}{(x-1)^4} (1')$, $\Leftrightarrow y'' = 0 \Leftrightarrow x = 0 (1')$

3分	$(-\infty, 0)$	0	(0,1)	1	(1,+∞)
<i>y</i> "	_	0	+	/	+
<i>y</i> '	<u> </u>	拐点(0,0)	O	/	U

17:
$$\int \frac{1}{\sqrt{1+e^x}} dx \frac{t = \sqrt{1+e^x}}{x = \ln(t^2 - 1)} = \int \frac{1}{t} \cdot \frac{2t}{t^2 - 1} dt = \int \frac{1}{t - 1} - \frac{1}{t + 1} dt = \ln\left|\frac{t - 1}{t + 1}\right| + C = \ln\left|\frac{\sqrt{1+e^x} - 1}{\sqrt{1+e^x} + 1}\right| + C$$

$$\int_{-1}^{4} f(2-x)dx \frac{t=2-x}{} = \int_{3}^{-2} f(t)d(2-t) = \int_{-2}^{3} f(t)dt = \int_{-2}^{2} \sqrt{4-t^{2}} dt + \int_{2}^{3} e^{-t} dt$$

$$18: = \frac{1}{2}\pi \cdot 2^{2} - e^{-t} \Big|_{2}^{3} = 2\pi - e^{-3} + e^{-2}$$

$$\vec{E} \frac{t=2\sin u}{2} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2\cos u d 2\sin u - e^{-t} \Big|_{2}^{3} = 2\pi - e^{-3} + e^{-2}$$

19: 两线交点(1,-1)(4,2), 直线与x轴交点为(2,0)

$$V_{x} = \int_{0}^{4} \pi x dx - \frac{1}{3} \pi \cdot 2^{2} \cdot 2 = \frac{\pi}{2} x^{2} \Big|_{0}^{4} - \frac{8}{3} \pi = \frac{16}{3} \pi$$

$$\overrightarrow{EX} = \int_{0}^{4} \pi x dx - \int_{2}^{4} \pi (x - 2)^{2} dx = \frac{\pi}{2} x^{2} \Big|_{0}^{4} - \frac{(x - 2)^{3}}{3} \pi \Big|_{2}^{4} = \frac{16}{3} \pi$$

$$\frac{dy}{dx} = \frac{1}{x - y} \Rightarrow \frac{dx}{dy} = x - y \Rightarrow \frac{dx}{dy} - x = -y \Rightarrow x = e^{-\int -1dy} (\int -y \cdot e^{\int -1dy} dy + c)$$

$$= e^{y} (\int -ye^{-y} dy + c) = e^{y} (\int yde^{-y} + c) = e^{y} (ye^{-y} - \int e^{-y} dy + c) = e^{y} (ye^{-y} + e^{-y} + c) = y + 1 + ce^{y}$$

$$\frac{dy}{dx} = \frac{1}{x - y} \frac{u = x - y}{1 - \frac{du}{dx}} = \frac{1}{u} \Rightarrow \frac{du}{dx} = 1 - \frac{1}{u} \Rightarrow \frac{du}{dx} = \frac{u - 1}{u} \Rightarrow \frac{u}{u - 1} du = dx \Rightarrow (1 + \frac{1}{u - 1}) du = dx$$

$$\Rightarrow \int (1 + \frac{1}{u - 1}) du = \int dx \Rightarrow u + \ln|u - 1| = x + c \Rightarrow x - y + \ln|x - y - 1| = x + c \Rightarrow \ln|x - y - 1| = y + c$$

21:
$$f(x) = xe^{x} + \int_{0}^{x} tf(t)dt - x \int_{0}^{x} f(t)dt(1') \Rightarrow f'(x) = e^{x} + xe^{x} + xf(x) - \int_{0}^{x} f(t)dt - xf(x)(1')$$

$$\Rightarrow f''(x) = 2e^{x} + xe^{x} - f(x) \Rightarrow f''(x) + f(x) = (2+x)e^{x}(1'). \ \exists \exists \exists f(0) = 1, f'(0) = 1(1')$$
先求对应齐次方程通解: $f''(x) + f(x) = 0 \Rightarrow r^{2} + 1 = 0 \Rightarrow r_{1} = i, r_{2} = -i \Rightarrow Y = c_{1} \cos x + c_{2} \sin x \ (1')$
再求 $f''(x) + f(x) = (2+x)e^{x}$ 的一个特解:

22:
$$L(x) = \int_0^x R'(t) - C'(t)dt - C_0 = \int_0^x 60 - 2t - 30 - 4t dt - 15 = 30x - 3x^2 - 15$$
 (2')
 $L'(x) = 30 - 6x = 0 \Rightarrow \text{\psi} - \text{E} \times x = 5 \Rightarrow L_{\text{max}} = L(5) = 60 \ (\text{Figs})$

在
$$[0,x_0]$$
上利润的平均值为 $\frac{\int_0^5 L(x)dx}{5-0} = \frac{\int_0^5 30x - 3x^2 - 15dx}{5} = \frac{15x^2 - x^3 - 15x\Big|_0^5}{5-0} = 35$ (万元) (3')

23: (1)
$$\lim_{x\to 0} \frac{f(x)}{x} = 1 \Rightarrow \lim_{x\to 0} f(x) = 0$$
 (1'),结合 $f(x)$ 在 $x = 0$ 连续可得 $f(0) = \lim_{x\to 0} f(x) = 0$ (1') 则 $f'(0) = \lim_{x\to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x\to 0} \frac{f(x)}{x} = 1$ (1')

(2)设
$$F(x) = f(x) - x$$
,则其在 $(-\infty, +\infty)$ 上也连续、二阶可导, $F'(x) = f'(x) - 1 = 0 \Rightarrow x = 0$ (1')

法一:
$$F''(x) = f''(x)$$
 , 结合 $f''(x) > 0$ 可知 $f''(0) > 0$, 则 $x = 0$ 为其极小值点,则

$$F(x) \ge F(0) \Longrightarrow f(x) - x \ge f(0) - 0 = 0 \Longrightarrow f(x) \ge x \tag{2'}$$

法二: $F''(x) \ge 0 \Rightarrow F'(x)$ 在 $(-\infty, +\infty)$ 上递增,

则在
$$(-\infty,0)$$
 上 $F'(x) < F'(0) = 0 \Rightarrow F(x)$ 递减 $\Rightarrow F(x) \ge F(0) = f(x) - x = 0$

则在
$$(0,+\infty)$$
上 $F'(x) > F'(0) = 0 \Longrightarrow F(x)$ 递增 $\Longrightarrow F(x) \ge F(0) = f(x) - x = 0$

综上在
$$(-\infty, +\infty)$$
上恒有 $f(x)-x \ge 0$,即 $f(x) \ge x$ (2')

装订

线

本试卷适应范围 经济管理类 2010级各专业

南京农业大学试题纸

2010-2011 学年一 学期 课程类型: 必修 试卷类型: A

 课程
 微积分 I
 班级
 学号
 姓名

 题号
 一
 二
 三
 四
 五
 六
 总分
 签名

 得分
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日

- 一、填空题(每题2分,共20分)

 - 2. 若 $\lim_{x \to -1} \frac{x^2 x 2}{x^2 + bx + c} = -3$,则 $b = _____$, c= _____。
 - 3. 已知当 $x \to 0$ 时, $\sqrt[3]{1+ax^2} 1$ 与 $\sec x 1$ 是等价无穷小,则 $a = _____$ 。
 - 4. $f(x) = \frac{(x^3 + 3x^2 x 3)\sin x}{x^3 + x^2 6x}$ 的间断点中为第一类可去间断的是______。
- 5. 设函数f(x)满足 $\lim_{x\to 0} \frac{x}{f(1+3x)-f(1)} = 5$,则 f(x)在x = 1处可导,且 f'(1) = 2______。
- 6. 曲线 $y = \ln x$ 上某点的切线平行于直线 y = 2x 5 ,则该点的坐标是_____。
- $7. \int \left(2^x e^{-x} + \left(\frac{x \cos^2 x}{x + \sin x}\right)'\right) dx = \underline{\qquad}$
- 8. 已知 $\begin{cases} x = a\cos t, \\ y = b\sin t, \end{cases}$ 则该参数方程所确定的函数的导数 $\frac{dy}{dx}\Big|_{t=\frac{\pi}{4}} = \underline{\hspace{1cm}}$
- 9. 函数 $f(x) = \frac{1}{x}$ 在x = -1处的 n 阶泰勒公式为(余项用形式 $R_n(x+1)$ 表示): $\frac{1}{x} = \frac{1}{x}$
- 10. 某种产品生产 x 件时,总成本函数为 $C(x) = 100 + 6x 0.4x^2 + 0.02x^3$ (元),则生产 10 件时的边际成本为_____。
- 二、单项选择题(每小题2分,共18分)
- 1. 设 f(x) = (x-1)h(x), h(x) 在 x = 1 处连续,则 f(x) 在 x = 1 处的连续性与可导性为【
 - (A) 连续但不可导 (B) 连续,可导且 f'(1) = h(1) (C) 既不连续,也不可导 (D) 可导但不连续

9	下列各式运算正确的是【	Y
4.	17月10日以20月11月11日 1	A

(A)
$$\lim_{n \to \infty} 2^n \sin \frac{x}{2^n} = x \lim_{n \to \infty} \frac{\sin \frac{x}{2^n}}{\frac{x}{2^n}} = x(x \neq 0)$$
 (B) $\lim_{x \to 0} x \sin \frac{1}{x} = \lim_{x \to 0} x \cdot \lim_{x \to 0} \sin \frac{1}{x}$

(B)
$$\lim_{x \to 0} x \sin \frac{1}{x} = \lim_{x \to 0} x \cdot \lim_{x \to 0} \sin \frac{1}{x}$$

(C)
$$\lim_{x \to 0} x \sin \frac{1}{x} = \lim_{x \to 0} \frac{\sin \frac{1}{x}}{\frac{1}{x}} = 1$$

(D)
$$\lim_{x \to \infty} \frac{x + \cos x}{x - \sin x} = \lim_{x \to \infty} \frac{1 - \sin x}{1 - \cos x}$$

3. 设
$$f(u)$$
可导,且 $y = f(-x^2)$,则 $dy = \mathbb{I}$

(A)
$$xf'(-x^2)dx$$

(B)
$$-2xf'(-x^2)dx$$

(C)
$$2xf'(-x^2)dx$$

(A)
$$xf'(-x^2)dx$$
 (B) $-2xf'(-x^2)dx$ (C) $2xf'(-x^2)dx$ (D) $2f'(-x^2)dx$

4. 若函数
$$y = f(x)$$
 为线性函数,则下列等式中成立的是【 】

(A)
$$dy = \frac{1}{2}\Delta y$$
 (B) $dy = \frac{1}{3}\Delta y$

(B)
$$dy = \frac{1}{3}\Delta y$$

(C)
$$dy = \Delta y$$

(C)
$$dy = \Delta y$$
 (D) $dy = -\Delta y$

5. 曲线
$$y = a - (x - b)^{\frac{1}{3}}$$
 【 】

- (A) 凹的,没有拐点 (B)凸的,没有拐点 (C) 有拐点(a,b) (D) 有拐点(b,a)

6. 设函数
$$f(x) = x^2 - \ln x^2$$
, 那么在区间(-1,0)和(0,1)内, $f(x)$ 分别为【 】

(A) 单调增加,单调减少

(B) 单调增加,单调增加

(C) 单调减少,单调减少

(D) 单调减少,单调增加

- (A) 144π(平方米/秒) (B) 144(平方米/秒) (C) 288(平方米/秒) (D) 288π(平方米/秒)

8. 若
$$\frac{\ln x}{x}$$
是 $f(x)$ 的一个原函数,则 $\int xf'(x)dx = \mathbb{I}$

(A)
$$\frac{\ln x}{x} + c$$

(B)
$$\frac{1 - \ln x}{x} + c$$

(C)
$$\frac{1-2\ln x}{x} + c$$

(A)
$$\frac{\ln x}{x} + c$$
 (B) $\frac{1 - \ln x}{x} + c$ (C) $\frac{1 - 2\ln x}{x} + c$ (D) $\frac{1 - 2\ln x}{x^2} + c$

9. 微分方程
$$(1+e^{2x})dy + ye^{2x}dx = 0$$
 的通解为【 】

$$(A) \quad y = \frac{c}{1 + e^{2x}}$$

(B)
$$y = \frac{1}{1 + e^{2x}}$$

(A)
$$y = \frac{c}{1 + e^{2x}}$$
 (B) $y = \frac{1}{1 + e^{2x}}$ (C) $y = \frac{c}{\sqrt{1 + e^{2x}}}$ (D) $y = 1 - ce^{2x}$

(D)
$$y = 1 - ce^{2x}$$

1. 求极限
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x} \right)$$
 (6分)

2. 设
$$f(x) = \begin{cases} e^{2x} + b & x \le 0 \\ \sin ax & x > 0 \end{cases}$$
, 问 a , b 为何值时, $f(x)$ 在 $x = 0$ 处可导。 (6 分)

3. 设
$$y = e^{x+y} + x^{\sin x}$$
确定 $y \neq x$ 的函数,求 dy (6分)

4. 求不定积分
$$\int \frac{\arcsin t}{\sqrt{1-t^2}} dt$$
 (6分)

5. 求
$$\int_{0}^{\frac{\pi}{2}} x^2 \sin x dx$$
. (6分)

6. 已知
$$\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$
, 求 $\int_0^{+\infty} \frac{e^{-x} - e^{-\sqrt{x}}}{\sqrt{x}} dx$ (6分)

7.	己知函数	f(x) 二阶可导,	它的图像在原点与曲线 $y=x^2+x$ 相切,	且满足关系式
----	------	------------	--------------------------	--------

$$f'(x) + 2 \int_0^x f(t)dt = -3f(x) + 1$$

试求函数 f(x) 的表达式。(6分)

四、应用题(6分)

一商家销售某种商品的价格满足关系 p=7-0.2x (万元/吨),x 为销售量(单位: 吨),商品的成本函数 是 C=3x+1 (万元)。

- (1) 若每销售一吨商品,政府要征税 t (万元),求该商家获最大利润时的销售量;
- (2) t为何值时,政府税收总额最大。

五、求(1)由 $y=e^x,y=e^{-x},x=1$ 所围成图形的面积;(2) $y=e^x,y=e^{-x},x=1$ 所围成图形绕 X 轴旋转所 形成的旋转体的体积。(6分) 六、设f(x)在[0,1]上连续,在(0,1)内可导,且f(0) = 0, f(1) = 1, 证明: (1) 存在一点 $a \in (0, 1)$, 使 f(a) = 1 - a; (2) 存在两个不同的点 $\eta, \xi \in (0, 1)$, 使 $f'(\eta)f'(\xi) = 1$; (8分)

出卷人 吴清太

系主任 李

2010-2011 学年南京农业大学统考

微积分 I 试题答案(管理类)(A)

一、**填空题:** (每空2分,共20分)

1.
$$-2x^2 + 5$$
 2. 3,2 3. $\frac{3}{2}$ 4. $x = -3 \pi 1 x = 0$ 5. $\frac{1}{15}$ 6. $(\frac{1}{2}, -\ln 2)$

7.
$$\frac{2^x e^{-x}}{\ln 2 - 1} + \frac{x \cos^2 x}{x + \sin x} + c$$
 8. $-\frac{b}{a}$ 9. $-1 - (x+1) - (x+1)^2 - (x+1)^3 - \dots - (x+1)^n + R_n(x+1)$ 10. 4 (元/件)

二、选择题: (每小题 2 分, 共 18 分)

1. B 2.A 3.B 4.C 5.D 6.A 7.A 8.C 9.C

三、计算题: (每小题 6分,共 42 分)

$$1.\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x}\right) = \lim_{x\to 0} \frac{\sin^2 x - x^2}{x^2 \sin^2 x} = \lim_{x\to 0} \frac{\sin^2 x - x^2}{x^4} \dots 4$$

$$= \lim_{x\to 0} \frac{\sin 2x - 2x}{4x^3} = \lim_{x\to 0} \frac{\cos 2x - 1}{6x^2} = \lim_{x\to 0} \frac{-\sin 2x}{6x} = -\frac{1}{3} \dots 6$$

2. 解: 首先 f(x)应在 x=0 处连续,故应有 $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} f(x)$,即 $1+b=0 \Rightarrow b=-1$. 2分

其次,要使 f(x)在 x=0 处可导,应有 f'(0)=f'(0)。而

$$f'(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{e^{2x} - 1}{x} = \lim_{x \to 0^{-}} \frac{2x}{x} = 2$$

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{\sin ax}{x} = \lim_{x \to 0^{-}} \frac{ax}{x} = a$$

故
$$a=2$$
. 所以当 $a=2$, $b=-1$ 时, $f(x)$ 在 $x=0$ 处可导。 6 分

3. 两端对
$$x$$
 求导,得 $y' = e^{x+y}(1+y') + x^{\sin x}(\frac{\sin x}{x} + \cos x \ln x)$ 3分

整理, 得
$$(1 - e^{x+y})y' = e^{x+y} + x^{\sin x}(\frac{\sin x}{x} + \cos x \ln x)$$

$$y' = \frac{e^{x+y} + x^{\sin x} (\frac{\sin x}{x} + \cos x \ln x)}{1 - e^{x+y}}, \quad dy = \frac{e^{x+y} + x^{\sin x} (\frac{\sin x}{x} + \cos x \ln x)}{1 - e^{x+y}} dx$$
 6 \(\frac{\frac{1}{x}}{x} + \cdot \frac{1}{x} + \cdot

4.
$$\int \frac{\arcsin t}{\sqrt{1-t^2}} dt = \int \arcsin t d(\arcsin t)$$
 3 \(\frac{\partial}{2}\)

$$=\frac{1}{2}(\arcsin t)^2 + c \tag{6}$$

5.
$$\int_0^{\frac{\pi}{2}} x^2 \sin x dx = -\int_0^{\frac{\pi}{2}} x^2 d(\cos x) = -x^2 \cos x \Big|_0^{\frac{\pi}{2}} + 2 \int_0^{\frac{\pi}{2}} x \cos x dx$$
 3 \(\frac{\pi}{2}\)

$$=2\int_{0}^{\frac{\pi}{2}}xd(\sin x)=2x\sin x\Big|_{0}^{\frac{\pi}{2}}-2\int_{0}^{\frac{\pi}{2}}\sin xdx=\pi+2\cos x\Big|_{0}^{\frac{\pi}{2}}=\pi-2$$

6.
$$\int_0^{+\infty} \frac{e^{-x} - e^{-\sqrt{x}}}{\sqrt{x}} dx = 2 \int_0^{+\infty} e^{-t^2} dt - 2 \int_0^{+\infty} e^{-t} dt$$

$$= 2 \cdot \frac{\sqrt{\pi}}{2} + 2e^{-t} \Big|_{0}^{+\infty} = \sqrt{\pi} - 2$$
 6 分

7. 由 y = f(x) 在原点与曲线 $y = x^2 + x$ 相切可得 f(0) = 0, f'(0) = 1, 方程 $f'(x) + 2 \int_0^x f(t) dt = -3 f(x) + 1$ 两边对 x 求导可得 f''(x) + 3 f'(x) + 2 f(x) = 0

显然它为二阶常系数齐次微分方程,它所对应的特征方程为 $\lambda^2+3\lambda+2=0$, 特征根为 $\lambda_1=-1,\lambda_2=-2$,所以该

微分方程的通解为

$$y = c_1 e^{-x} + c_2 e^{-2x}$$
.

4分

求导得 $y' = -c_1 e^{-x} - 2c_2 e^{-2x}$,由 f'(0) = 1,f(0) = 0 得 $c_1 = 1$, $c_2 = -1$ 。

所以所求函数为

$$y = e^{-x} - e^{-2x}$$

6分

四、应用题

(1) 总税额为 T = tx,利润函数为 $L = R - C - T = -0.2x^2 + (4-t)x - 1$

令 L' = -0.4x + 4 - t = 0,解得唯一驻点 $x = \frac{5}{2}(4 - t)$

因为
$$L'' = -0.4 < 0$$
,所以 $x = \frac{5}{2}(4-t)$ 为利润最大时的销售量。

(2) $8x = \frac{5}{2}(4-t)$ 代入 T = tx, $8T = 10t - \frac{5}{2}t^2$. 9T' = 10 - 5t = 0, 解得唯一驻点 t = 2.

因为 T'' = -5 < 0,所以当 t = 2 时,T 有最大值,此时,政府税收总额最大。 6 分

五、(1)
$$S = \int_0^1 (e^x - e^{-x}) dx = \left[e^x + e^{-x} \right]_0^1 = e + \frac{1}{e} - 2$$
 3分

(2)
$$V_X = \pi \int_0^1 (e^x)^2 dx - \pi \int_0^1 (e^{-x})^2 dx = \pi \int_0^1 (e^{2x} - e^{-2x}) dx$$

$$= \frac{\pi}{2} \Big[e^{2x} + e^{-2x} \Big]_0^1 = \frac{\pi}{2} (e^2 + e^{-2} - 2)$$
6 \$\frac{\pi}{2}\$

六、证明 (1) 令F(x) = f(x) + x - 1,显然F(x)在[0,1]上连续,

$$\nabla F(0) = -1 < 0, F(1) = 1 > 0$$

由零值定理可知,存在一点 $a \in (0, 1)$,使F(a) = 0,即f(a) = 1 - a; 4分

(2) 根据拉格朗日中值定理,存在 $\eta \in (0,a), \xi \in (a,1)$,使

$$f'(\eta) = \frac{f(a) - f(0)}{a - 0} = \frac{1 - a}{a}; \quad f'(\xi) = \frac{f(1) - f(a)}{1 - a} = \frac{a}{1 - a}$$
从而 $f'(\eta) f'(\xi) = 1$ 。

本试卷适应范围 经济管理类 09

南京农业大学试题纸

2009-2010 学年一学期 课程类型: 必修 试卷类型: A

 课程
 微积分 I
 班级
 学号
 姓名

 题号
 二
 三
 四
 五
 六
 七
 八
 九
 总分
 签名

 得分
 -

- 一、填空题(每空2分,共20分)
 - 1. 已知 $f(x)=e^{x^2}$, $f[\varphi(x)]=x+1$,且 $\varphi(x)\geq 0$,则 $\varphi(x)$ 的定义域为_____
 - 2. 已知 $\lim_{n\to\infty} \frac{an^2 + bn + 5}{3n 2} = 2$,则 a =______, b =______

 - 4. 若f(x)在点x = a处连续,则 $\lim_{x \to a} f(x) =$ _____
 - 5. $\lim_{x \to 1} \frac{\sin(x^2 1)}{x 1} = \underline{\hspace{1cm}}$
 - 6. 设函数 y=f(x)在 x_0 点可导,则 $\lim_{h\to 0} \frac{f(x_0+3h)-f(x_0)}{h} = _______$
 - 7. 曲线 $y=x^2+2x-5$ 上点 M 处的切线斜率为 6,则点 M 的坐标为_____。
 - $8. \ d(\int xf'(x)dx) = \underline{\hspace{1cm}}$
 - 9. 设 $\begin{cases} x = \sin t \\ y = \cos t \end{cases}, 则 \frac{dy}{dx} \Big|_{t = \frac{\pi}{4}} = \underline{\hspace{1cm}}.$
- 二、单项选择题(每小题2分,共18分)
 - 1. 数列 $\{a_i\}$ 和 $\{b_n\}$ 的极限分别为a和b,且 $a \neq b$,则数列 $a_1,b_1,a_2,b_2,....,a_n,b_n,...$ 的极限是【 】
 - (A)
- (D)

- (C) a+b
- (D) 一定不存在

- 2. 设 $f(x) = \frac{x^2 3x + 2}{x 1}$, 则 x = 1 为函数 f(x) 的【
 - (A) 可去间断点
- (B) 跳跃间断点
- (C) 无穷型间断点
- (D) 连续点

系主任

出卷人 吴清太

3.
$$\lim_{x \to \infty} (1 + \frac{1}{x})^{3x} = \mathbf{I}$$

- (A) 1
- (B) ∞

- (C) e^2
- (D) e^{3}
- 4. 对需求函数 $Q=e^{-\frac{P}{5}}$,需求价格弹性 $\frac{EQ}{Ep}=-\frac{p}{5}$ 。当价格 $p=\mathbb{I}$ 】时,需求量减少的幅度小于价 格提高的幅度。

- (A)3
- (B) 5

(C) 6

- (D) 10
- 5. 由抛物线 $y = x^2$ 与直线x + y = 2 所围成图形的面积为【 】
 - (A) $\int_{2}^{1} (2-x-x^{2}) dx$ (B) $\int_{2}^{1} (2-x) dx$ (C) $\int_{2}^{1} x^{2} dx$ (D) $\int_{2}^{1} (x^{2}-2+x) dx$

- 6. 曲线 $f(x) = x^3 + ax^2 + bx + 1$ 的拐点个数是【
 - (A) 0
- (B)1
- (C) 2

(D) 3 ·

- 7. 曲线 $y = \frac{4x-1}{(x-2)^2}$ 【 】
 - (A) 只有水平渐近线;
- (B) 只有垂直渐近线;

(C) 没有渐近线;

- (D) 既有水平渐近线,又有垂直渐近线
- 8. 假设 f(x) 连续,其导函数图形如右图所示,则 f(x) 具有【
 - (A) 两个极大值一个极小值 (B) 两个极小值一个极大值
 - (C) 两个极大值两个极小值 (D) 三个极大值一个极小值

- 9. 若 f(x)的导函数是 x^{-2} ,且 f(1) = -1,则 $f(x) = \mathbb{I}$

 - (A) $\ln |x|$ (B) $-\ln |x|$ (C) $-x^{-1}$ (D) $-x^{-3}$

三、计算题(共42分)

1. 求极限
$$\lim_{x\to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$
 (6分)

2. 设
$$f(x) = \begin{cases} \frac{\sin 2x}{x} & x < 0 \\ a & x = 0, \, \text{求} \, a, b \text{ 的值, } \text{使} \, f(x) \text{在} \, x = 0 \text{ 处连续.} \quad (6 \, \text{分}) \\ x \sin \frac{1}{x} + b & x > 0 \end{cases}$$

3. 设
$$e^{x+y} = xy+1$$
, 求 y' 及 $y'|_{x=0}$ (6 分)

4. 求不定积分
$$\int xe^{-2x}dx$$
 (6分)

5. 求定积分
$$\int_{\frac{1}{2}}^{1} \frac{\sqrt{1-x^2}}{x^2} dx$$
 (6分)

6. 求椭圆
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 所围成的图形绕 X 轴旋转所形成的旋转体的体积(6 分)。

7. 计算广义积分
$$\int_{\epsilon}^{+\infty} \frac{1}{x \ln^2 x} dx$$
 (6分)

四、求微分方程 $y''+2y'=e^{-2x}$ 的通解,及满足初始条件 $y|_{x=0}=1, y'|_{x=0}=0$ 的特解. (6 分)

五、某商品的需求量 Q 是单价 P 的函数 Q=12000-80P ,商品的成本 C 是需求量 Q 的函数 C=25000+50Q ,每单位商品需纳税 2,试求使销售利润最大的商品价格和最大利润。(6分)

六、设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0, $f(\frac{1}{2})=1$,试证:

- (1) 至少存在一点 $\xi \in (\frac{1}{2}, 1)$, 使 $f(\xi) = \xi$;
- (2) 至少存在一点 $\eta \in (0, \xi)$, 使 $f'(\eta)=1$;
- (3) 对任意实数λ, 必存在 $x_0 \in (0, \xi)$,使得 $f'(x_0) \lambda [f(x_0) x_0] = 1$. (8 分)

2009-2010 学年南京农业大学统考 微积分 I 试题答案(管理类)(A)

一、填空题:(每空2分,共20分)

1.
$$[0,+\infty)$$
 2.0,6 3.等价 4. $f(a)$ 5.2 6.3 $f'(x_0)$

7.(2,3) 8. xf'(x)dx 9. -1

二、选择题: (每小题2分,共18分)

三、计算题: (每小题 6分,共42分)

$$1.\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x} = \lim_{x \to 0} \frac{2x}{x(\sqrt{1+x} + \sqrt{1-x})}$$

$$= \lim_{x \to 0} \frac{2}{\sqrt{1+x} + \sqrt{1-x}} = 1$$

$$= 6 \, \text{ fb}$$

要 f(x)在 x=0 处连续, 要 f(x)在 x=0 处连续, 只要 $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x) = f(0)$, 即 2=b=a。

3. 方程两边对 x 求导得
$$e^{x+y}(1+\frac{dy}{dx}) = y + x \frac{dy}{dx}$$
, 2 分

$$\frac{dy}{dx} = \frac{y - e^{x + y}}{e^{x + y} - x}$$
 4 分

把 x=0 代入原方程可得 v=0,所以

$$\frac{dy}{dx}\big|_{x=0} = -1$$

4.
$$\int xe^{-2x}dx = -\frac{1}{2}\int xd(e^{-2x}) = -\frac{x}{2}e^{-2x} + \frac{1}{2}\int e^{-2x}dx$$

$$= -\frac{x}{2}e^{-2x} - \frac{1}{4}\int d(e^{-2x}) = -\frac{x}{2}e^{-2x} - \frac{1}{4}e^{-2x} + c$$
 6 \(\frac{1}{2}\)

5.
$$\int_{-\frac{1}{\sqrt{2}}}^{1} \frac{\sqrt{1-x^2}}{x^2} dx = \sin t$$

$$dx = \cos t dt$$

$$\int_{-\frac{\pi}{4}}^{\pi} \frac{\cos^2 t}{\sin^2 t} dt = \int_{-\frac{\pi}{4}}^{\pi} \cot^2 t dt$$
3 \(\frac{\partial}{2}{\partial}\)

$$= \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (\csc^2 t - 1) dt = -\cot t \Big|_{\frac{\pi}{4}}^{\frac{\pi}{2}} - \frac{\pi}{4} = 1 - \frac{\pi}{4}$$
 6 \(\frac{\pi}{2}\)

6. 椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 所围成的平面图形绕 X 轴旋转所形成的旋转体与椭圆的在 X 轴的上半

部分与 X 轴所围成的图形绕 X 轴旋转所形成的旋转体是相同的, 所以所求旋转体的体积为

$$V_X = \pi \int_{-a}^{a} \left(b \sqrt{1 - \frac{x^2}{a^2}} \right)^2 dx = \frac{b^2 \pi}{a^2} \int_{-a}^{a} (a^2 - x^2) dx$$
 4 \(\frac{1}{2}\)

$$= \frac{2b^2\pi}{a^2} \int_0^a (a^2 - x^2) dx = \frac{2b^2\pi}{a^2} \left[a^3 - \frac{1}{3} x^3 \Big|_0^a \right] = \frac{4\pi ab^2}{3}$$
 6 \(\frac{\frac{1}{3}}{3}\)

7.
$$\int_{e}^{+\infty} \frac{dx}{x \ln^2 x} = \int_{e}^{+\infty} \frac{d(\ln x)}{\ln^2 x}$$

$$= -\frac{1}{\ln x} \bigg|_{e}^{+\infty} = 1$$
 6 \(\phi\)

四、解法 I 令 y'=p=p(x),则 $y''=\frac{dp}{dx}$,代入原方程得 $\frac{dp}{dx}+2p=e^{-2x}$ 变成了一阶线性 微分方程,由一阶线性微分方程的求通解公式,我们得

$$p = e^{-\int 2dx} \left(\int e^{-2x} e^{\int 2dx} dx + c_1 \right) = e^{-2x} (x + c_1)$$

即 $y' = e^{-2x}(x+c_1)$, 由 $y'|_{x=0} = 0$, 得 $c_1 = 0$, 从而可得

所以 $y = \int xe^{-2x} dx = -\frac{1}{2}xe^{-2x} + \frac{1}{2}\int e^{-2x} dx = -\frac{1}{2}xe^{-2x} - \frac{1}{4}e^{-2x} + c_2$,由 $y|_{x=0} = 1$ 可得 $c_2 = \frac{5}{4}$,所以所求方程的通解为

$$y = -\frac{1}{2}xe^{-2x} - \frac{1}{4}e^{-2x} + \frac{5}{4}$$

解法 II 该方程也是二阶常系数非齐次微分方程,它所对应的齐次微分方程的特征方程为 $\lambda^2+2\lambda=0$,特征根为 $\lambda_1=-2$, $\lambda_2=0$,而 $f(x)=e^{-2x}$,所以可设该二阶常系数非齐次微分

方程的一特解为 $y^* = axe^{-2x}$,求导得 $y^{*'} = (a-2ax)e^{-2x}$, $y^{*''} = (4ax-4a)e^{-2x}$,代入微分方程得 $-2ae^{-2x} = e^{-2x}$,即 $a = -\frac{1}{2}$ 。

该二阶常系数非齐次微分方程的一特解为 $y^* = -\frac{1}{2}xe^{-2x}$, 其通解为

 $L = R - C - 2Q = PQ - 25000 - 50Q - 2Q = -80P^{2} + 16160P - 649000$ 3 分

$$\frac{dL}{dP} = -160P + 16160$$
 全 0 , 可得 $P = 101$ 4 分

$$\frac{d^2L}{dP^2}\big|_{P=101} = -160 < 0$$

所以在价格为 P=101 时,可获得利润最大,最大利润为 $L|_{P=101}=167080$ 6 分

六、证明 (1) 令F(x)=f(x)-x,显然F(x)在[0,1]上连续,在(0,1)内可导,又

$$F(1)=f(1)-1=0-1<0$$

$$F(\frac{1}{2})=f(\frac{1}{2})-\frac{1}{2}=1-\frac{1}{2}=\frac{1}{2}>0$$

由零值定理可知,至少存在一点 $\xi \in (\frac{1}{2}, 1)$,使 $F(\xi) = 0$,即 $f(\xi) = \xi$; 3分

(2) $F(0)=f(0)-0=0=F(\xi)$,对F(x)在 $[0,\xi]$ 上用罗尔定理,

则至少存在一点 $\eta \in (0, \xi)$,使 $F'(\eta)=0$,即 $f'(\eta)=1$; 6分

(3)
$$\Leftrightarrow \Phi(x) = e^{-\lambda x} F(x) = e^{-\lambda x} [f(x) - x]$$

则 $\Phi(x)$ 在 $[0,\xi]$ 上连续,在 $(0,\xi)$ 内可导,且 $\Phi(0)=\Phi(\xi)=0$,所以

至少存在一点 $x_0 \in (0, \xi)$, 使得 $\Phi'(x_0)=0$

$$\mathbb{E} = e^{-\lambda x_0} [f'(x_0) - 1] - \lambda e^{-\lambda x_0} [f(x_0) - x_0] = 0$$

因 $e^{-\lambda x_0} \neq 0$,从而有 $f'(x_0) - \lambda [f(x_0) - x_0] = 1$ 。 8 分

本试卷适应范围 经济管理类 09 级各专业

南京农业大学试题纸

试卷类型:B

2009-2010 学年一 学期 课程类型: 必修

W/1±	リメイハフリ	1	 1.5/2		-1	·		\rightarrow - H			
题号			 四	五	六	七	八	九	总分	签名	
得分									!		

- 一、填空题(每空2分,共20分)
 - 1. $\exists x f\left(x + \frac{1}{x}\right) = x^2 + \frac{1}{x^2} + 3$, $y f(x) = \underline{\hspace{1cm}}$

 - 3. 已知当 $x \to 0$ 时, $(1+ax^2)^{\frac{1}{3}}-1$ 与 $1-\cos x$ 是等价无穷小,则 a=______。
 - 4. $f(x) = \frac{x^2 1}{x^2 3x + 2}$ 的类间断点中为第一类可去间断的是______。
 - 5. 设函数 f(x)满足, f(0)=0, f'(0)=A,则 $\lim_{x\to 0} \frac{f(x)}{x} =$ ________。

 - $7. \int \left(e^{-x} + \left(\frac{2^x}{x\sin x}\right)'\right) dx = \underline{\qquad}$
 - 8. 设某商品的需求函数为 $Q=e^{-\frac{P}{5}}$,则需求弹性函数 $\frac{EQ}{Ep}=$ ______。
 - 9. 函数 xe^x 的 n 阶麦克劳林公式为 (余项用形式 $R_n(x)$ 表示):

$$xe^x =$$

- 二、单项选择题(每小题 2 分,共 18 分)
 - 1. 数列 $\{a_n\}$ 和 $\{b_n\}$ 的极限分别为a和b,若数列 $a_1,b_1,a_2,b_2,......,a_n,b_n,...$ 的极限存在,则【 】
 - (A) 极限为a
- B) 极限为 b
- (C) 极限为 a+b
- (D) a = b

1

- 2. 设 f(x) = (x-a)h(x), h(x) 在 x = a 处连续,则 f(x) 在 x = a 处的连续性与可导性为【
 - (A) 连续但不可导 (B) 不连续,但可导 (C) 既不连
 - (C) 既不连续,也不可导 (D) 连续且可导

系主任

出卷人 吴清太

1. 求极限
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{sinx}\right)$$
 (6分)

2. 设
$$f(x) = \begin{cases} \frac{\cos x}{x+2}, & x \ge 0 \\ \frac{\sqrt{a} - \sqrt{a-x}}{x}, & x < 0 \end{cases}$$
 $(a > 0)$, 当 a 取何值时, $f(x)$ 在 $x = 0$ 处连续。 (6 分)

- 3. 设 $\sin(xy) + \ln(y-x) = x$ 确定 $y \neq x$ 的函数,求 $y'|_{x=0}$ (6分)
- 4. 求不定积分 $\int x \ln x dx$ (6分)

- 4. 求定积分 $\int_{1}^{2} \sqrt{4-x^{2}} dx$. (6分)
 - 6. 计算广义积分 $\int_{1}^{e} \frac{dx}{x\sqrt{1-(\ln x)^{2}}}$ (6 分)

7. 求微分方程 y'' - 4y' + 3y = 0 在初始条件 $y|_{x=0} = 6$, $y|_{x=0} = 10$ 下的特解。(6分)

四、应用题(8分)

设生产某产品的边际成本为 $C'(Q)=1000-20Q+Q^2$,固定成本为9000元,该产品的单位售价为3400

- 元,求该产品
 - (1) 成本函数、收益函数、利润函数;
 - (2) 获得最大利润时的产量及最大利润

五、求(1)椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ 所围成图形的面积;(2)椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ 所围成图形绕 Y 轴旋转所形成的旋转体的体积 。(6 分)

六、证明下列不等式:

当
$$x > 0$$
 时, $1 + x \ln\left(x + \sqrt{1 + x^2}\right) > \sqrt{1 + x^2}$ (6 分)

2009-2010 学年南京农业大学统考 微积分 I 试题答案(管理类)(B)

一、**填空题:** (每空2分, 共20分)

1.
$$x^2 + 1$$
 2. 2, -8 **3.** $\frac{3}{2}$ **4.** $x = 1$ **5.** A **6.** $y = -4x + 4$

7.
$$-e^{-x} + \frac{2^x}{x \sin x} + c$$
 8. $-\frac{p}{5}$ 9. $x + x^2 + \frac{x^3}{2!} + \dots + \frac{x^n}{(n-1)!} + R_n(x)$

二、选择题: (每小题 2 分, 共 18 分)

1. D 2. D 3. A 4. B 5. C 6. D 7. C 8. D 9. A

三、计算题: (每小题 6 分,共 42 分)

$$= \lim_{x \to 0} \frac{\cos x - 1}{2x} = \lim_{x \to 0} \frac{-\sin x}{2} = 0 \dots 6$$

2.
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{\sqrt{a} - \sqrt{a - x}}{x} = \lim_{x \to 0^{-}} \frac{x}{x(\sqrt{a} + \sqrt{a - x})} = \lim_{x \to 0^{-}} \frac{1}{\sqrt{a} + \sqrt{a - x}} = \frac{1}{2\sqrt{a}} \dots 2$$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\cos x}{x+2} = \frac{1}{2} \dots 4$$

要 f(x)在 x=0 处连续,要 f(x)在 x=0 处连续,只要 $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} f(x) = f(0)$,

$$\mathbb{H}\frac{1}{2\sqrt{a}} = \frac{1}{2},$$

3. 方程两边对 x 求导得 $\cos(xy)(y+x\frac{dy}{dx})+\frac{\frac{dy}{dx}-1}{y-x}=1$,得

$$\frac{dy}{dx} = \frac{1 + y - x - y(y - x)\cos(xy)}{1 + x(y - x)\cos(xy)}$$
5 \(\frac{\partial}{2}\)

把 x=0 代入方程 $\sin(xy) + \ln(y-x) = x$ 可得 y=1,所以

$$\frac{dy}{dx}\big|_{(0,1)}=1$$

4.
$$\int x \ln x dx = \frac{1}{2} \int \ln x d(x^2) = \frac{x^2}{2} \ln x - \frac{1}{2} \int x^2 d(\ln x)$$
 3 \(\frac{1}{2}\)

$$L(60) = -\frac{1}{3} \times 60^3 + 10 \times 60^2 + 2400 \times 60 - 9000 = 99000$$

五、(1) 由对称性可知,椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 所围成的平面图形等于该椭圆在第一象限与 X 轴及 Y 轴所围成的图形面积的 4 倍,即

$$S = 4 \int_0^a \frac{b}{a} \sqrt{a^2 - x^2} dx = a \sin t$$

$$dx = a \cos t dt$$

$$= 2ab \left[\frac{\pi}{2} + \sin(2t) \Big|_0^{\frac{\pi}{2}} \right] = ab\pi$$

$$3$$

(2)椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 所围成的平面图形绕 X 轴旋转所形成的旋转体与椭圆的在 X 轴的上半部分与 X 轴所围成的图形绕 X 轴旋转所形成的旋转体是相同的,所以所求旋转体的体积

$$V_X = \pi \int_{-a}^{a} \left(b \sqrt{1 - \frac{x^2}{a^2}} \right)^2 dx = \frac{b^2 \pi}{a^2} \int_{-a}^{a} (a^2 - x^2) dx$$
$$= \frac{2b^2 \pi}{a^2} \int_{0}^{a} (a^2 - x^2) dx = \frac{2b^2 \pi}{a^2} \left[a^3 - \frac{1}{3} x^3 \right]_{0}^{a} = \frac{4\pi a b^2}{3}$$
 6 \(\frac{2}{3}\)

$$f'(x) = \ln(x + \sqrt{1 + x^2}) + x \frac{1}{x + \sqrt{1 + x^2}} (1 + \frac{x}{\sqrt{1 + x^2}}) - \frac{x}{\sqrt{1 + x^2}}$$
$$= \ln(x + \sqrt{1 + x^2}) > 0(\forall x > 0)$$
4 \(\frac{1}{2}\)

所以 f(x) 在 $[0,+\infty)$ 上单调增加,所以当 x>0 , f(x)>f(0)=0

即
$$1+x\ln(x+\sqrt{1+x^2}) > \sqrt{1+x^2}$$
 6分

$$= \frac{x^2}{2} \ln x - \frac{1}{2} \int x dx = \frac{x^2}{2} \ln x - \frac{x^2}{4} + c$$
 6 \(\frac{2}{3}\)

$$=2\int_{0}^{\frac{\pi}{2}}(1+\cos(2t))dt = \pi - \sin(2t)\Big|_{0}^{\frac{\pi}{2}} = \pi$$
 6 \(\frac{\psi}{2}\)

6.
$$\int_{-\infty}^{\infty} \frac{dx}{x\sqrt{1-\ln^2 x}} = \int_{-\infty}^{\infty} \frac{d(\ln x)}{\sqrt{1-\ln^2 x}}$$

$$=\arcsin\left(\ln x\right)\Big|_{1}^{e}=\frac{\pi}{2}$$

7. 方程 y''-4y'+3y=0 是二阶常系数齐次微分方程,它所对应的特征方程为 $\lambda^2-4\lambda+3=0,$ 特征根为 $\lambda_1=3,\lambda_2=1$,所以该微分方程的通解为 $y=c_1e^x+c_2e^{3x}$ 。 4分求导得 $y'=c_1e^x+3c_2e^{3x}$,由 $y'|_{x=0}=10,y|_{x=0}=6$ 得

所以所求微分方程的特解为

$$y = 4e^x + 2e^x \tag{6}$$

四、应用题

解(1) 成本函数为

$$C(Q) = \int_0^Q C'(Q)dQ + C_0 = \int_0^Q (1000 - 20Q + Q^2)dQ + 9000$$
$$= \frac{1}{3}Q^3 - 10Q^2 + 1000Q + 9000$$
 2 $\frac{1}{2}$

收益函数为

$$R(Q) = PQ = 3400Q$$
 3 分

利润函数为

$$L(Q) = L(Q) - C(Q) = -\frac{1}{3}Q^3 + 10Q^2 + 2400Q - 9000$$
 5 \(\frac{1}{2}\)

(2)
$$L'(Q) = R'(Q) - C'(Q) = -Q^2 + 20Q + 2400$$

令 L'(Q) = 0 得, Q = 60或 Q = -40(舍去), L''(Q) = -2Q + 20, L''(60) = -100 < 0 7 分 所以在产量 Q = 60 时,所获得的利润最大,最大利润为:

南京农业大学试题纸

2008/2009 学年 - 第一学期

课程 微	积分I	斑鈎	ž	·	<u> </u>		_姓名	,	<u> </u>	成绩	
题号	_	· <u>-</u>	=	四	j.	六	七	八	九	总分	签名
得分		-									

评阅人

一、选择题(每小题3分, 共计15分)

- 1.函数 $y = \sin(3x 1)$ 的一个原函数是()
- (A) $y = -\cos(3x 1)$ (B) $y = -3\cos(3x 1)$
- (C) $y = -\frac{1}{3}\cos(3x-1)$ (D) $y = \frac{1}{3}\cos(3x-1)$
- 2. こ知 $f(x) = \frac{1}{1-x}$, 则 $f^{(n)}(0) = ($)
- $(A) \leftarrow n! \qquad (B) \quad n!$
- (C) (n-1)! (D) (n+1)!
- 3. 下列函数中,在x=0处可导的是()
- $(A) \cdot f(x) = |x|$

(B) $f(x) = \sin x$

(C)
$$f(x) =\begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 (D) $f(x) =\begin{cases} x^2 + 1, & x \leq 0 \\ x, & x > 0 \end{cases}$

- 4. 当 $x \to 0$ 时,下列无索小量与 $\ln(1-x^2)$ 等价的是(

- (A) $-\sin x^2$ (B) $e^x 1$ (C) x^2 (D) $\arcsin \frac{x^2}{2}$
- 5 微分方程 $y'' 3y' + 2y = xe^x$ 的特解y' 应设为(

(A)
$$y^* = (Ax + B)e^x$$

(A)
$$y^* = (Ax + B)e^x$$
 (B) $y^* = x(Ax + B)e^x$ (C) $y^* = xe^x$ (D) $y^* = x^2(Ax + B)e^x$

得分

评例人 二、填空题(每小题 4 分, 共计 20 分)

7. 极限
$$\lim_{x\to 0} \frac{\int_0^{2x} t \sin t dt}{e^{x^3} - 1} = \frac{1}{1 + 1}$$

- 8. 设 y = y(x) 的方程 $y = x^{\frac{1}{y}}$ 确定,则 $dy = \underline{\qquad}$
- 9. 已知曲线y = f(x)在(0, f(0))处的切线平行于直线y = 1 + x,

$$\text{Im} \lim_{x \to 0} \frac{f(x) - f(-x)}{x} = \underline{\hspace{1cm}}.$$

得分	评阅人

三、计算题(每小题6分,共计54分)。

11. 求极限
$$\lim_{x\to 0} \frac{e^{2x}-1+x^2\sin\frac{1}{x}}{\ln(1+x)}$$

12. 设
$$\begin{cases} x = \ln(1+t^2) \\ y = t - \arctan t \end{cases}$$
 求 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$

13.
$$\vec{x} = \int_{1}^{1} \frac{x^{2}(1+\sin x)}{1+\sqrt{1-x^{2}}} dx$$

14. 设
$$f(x) = \begin{cases} e^{2x}, & x \le 0 \\ ax + b, & x > 0 \end{cases}$$
 在 $x = 0$ 处可导,求 a, b 的值.

17、求微分方程 y'+xy = x 的通解。

18. 求曲线 $y=\sqrt{x}$ 的一条切线 L,使该曲线与切线 L 及直线x=0,x=2 所围成的图形面积最小.

19.求由曲线 $y=x^2$ 和 $y=\sqrt{2-x^2}$ 围成的平面图形绕y轴旋转而成的旋转体体积。

得分	许问人 .

四、证明题(共11分)

20. 安慰显示(x) 在[0,1]上连续,在(0,1)内可导,且f(0) = f(1) = 0

证明: 写在を $\epsilon(0.1)$ 使 $f'(\xi) - f(\xi) = 0$. (本題 6 分)

21. 证明: $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < 1 + \ln n$. (本題 5分)

3

南京农业大学试题纸 经增美 微软分工

一、送择题 1.C 2.B 3.C 4.A 5.B

10 - - (X+y) e + C

$$\frac{dy}{ds} = \frac{dy}{dt} = \frac{dy}{dt} = \frac{dt}{(t-arctant)'} = \frac{1-it}{1+it}$$

$$\frac{dy}{ds} = \frac{dy}{dt} = \frac{dy}{dt} = \frac{(\pm)'}{(t-arctant)'} = \frac{1-it}{1+it}$$

$$\frac{dy}{ds} = \frac{dy}{dt} = \frac{dy}{dt} = \frac{(\pm)'}{(t-arctant)'} = \frac{1-it}{1+it}$$

$$\frac{dy}{ds} = \frac{dy}{dt} = \frac{dy}{dt} = \frac{(\pm)'}{(t-arctant)'} = \frac{1-it}{1+it}$$

= Z (12) (- 16) (145 × 16)] (1度) = Z - 墨(

第平: なナ(も) 在か二0.炒可夢 八九的在少二0处婆续 ne = b=1 f(5)= } 2e28 (850) 2 = 2 1 a=2 b=1 = \frac{\frac{1}{2}}{200} - [-tay=] - = [e-v]_0^2 智率: 叁. 为之二士 ガニとナセ [#+(3-2) d(8) = 0 + tan/ = - = [e-1 -1] = (+(t) d(t+2) = tat = - = + = = (= +(t) d(t) 黑下午一个十分的人的二十十分人的 = for + (s) a (x) + (= + (6) a(x). = 10 1 HOSE (15) + 10 xe-42 (15). = [tan =]] + = 102 e-32 d (-32) 脚平 原光=/ 150m dy-/ 一大部 d(3)/ = 1 2.3 dl() -arctant === 1 - 148 0(152) - arctan >/ === 1 == 1 (182) - arctans = = = [- 1 - arctan + c ア を G= N(G) y= N(G) · チェンス) 梅辛:・亨成 ナッソーロ 7-79 = N'e= + 4 e= [e-= (-x) $\frac{dy}{dy} = -x dx$ ハルニガモ参 (パ) =一学+c' ill= e= +c 八疆产解为 y= e-= (e=+c) = |+ ce+=) y= Ge==

いいけきけまけいナカとけしれ