Automaten und Formale Sprachen SoSe 2017 in Trier

Henning Fernau

Universität Trier fernau@uni-trier.de

4. Mai 2017

Automaten und Formale Sprachen Gesamtübersicht

- Organisatorisches
- Einführung
- Endliche Automaten und reguläre Sprachen
- Kontextfreie Grammatiken und kontextfreie Sprachen
- Chomsky-Hierarchie

Endliche Automaten und reguläre Sprachen

- 1. Deterministische endliche Automaten
- 2. Nichtdeterministische endliche Automaten
- 3. Reguläre Ausdrücke
- 4. Nichtreguläre Sprachen
- 5. Algorithmen mit / für endliche Automaten

Eine algebraischere Betrachtungsweise von Sprachoperationen

Erinnerung: Eine Sprache $L \subseteq \Sigma^*$ gehört zu **REG** gdw. es ein endliches Monoid (M, \circ, e) , einen Monoidmorphismus $h : (\Sigma^*, \cdot, \lambda) \to (M, \circ, e)$ sowie eine endliche Menge $F \subseteq M$ gibt mit

$$L = \{ w \in \Sigma^* \mid h(w) \in F \}.$$

Satz: REG ist gegen Komplementbildung abgeschlossen.

Beweis: Sei $L \subseteq \Sigma^*$ durch ein endliches Monoid (M, \circ, e) , einen Monoidmorphismus $h : (\Sigma^*, \cdot, \lambda) \to (M, \circ, e)$ sowie eine endliche Menge $F \subseteq M$ spezifiziert. Dann spezifizieren (M, \circ, e) , h und $M \setminus F$ gemeinsam $\Sigma^* \setminus L$. (Beweiseinzelheiten zur Übung.)

Monoide aus Monoiden I

Es seien (M, \circ, e) und $(N, \square, 1)$ Monoide.

Dann kann man die Menge $M \times N$ zu einem Monoid machen durch *komponentenweises Anwenden* der Operationen; definiere daher:

$$(\mathfrak{m},\mathfrak{n}) [\circ,\square] (\mathfrak{m}',\mathfrak{n}') := (\mathfrak{m} \circ \mathfrak{m}',\mathfrak{n} \square \mathfrak{n}').$$

Satz: $(M \times N, [\circ, \square], (e, 1))$ ist ein Monoid, das *Produktmonoid*. (siehe DS)

Satz: Sind $h_M: (X, \Delta, I) \to (M, \circ, e)$ und $h_N: (X, \Delta, I) \to (N, \Box, 1)$ Monoidmorphismen, so auch der *Produktmorphismus* $h_M \times h_N: X \to M \times N, x \mapsto (h_M(x), h_N(x)).$

Beide Sätze lassen sich auf Produkte endlich vieler Monoide bzw. Morphismen verallgemeinern. In dieser Form werden wir sie im Folgenden benutzen.

Wenn wir von k-stelligen Mengenoperationen reden, so meinen wir solche, die durch Mengenausdrücke mit Vereinigung und Komplementbildung ausgedrückt werden können.

Mengenoperationen als Sprachoperationen allgemein

Satz: Ist f eine k-stellige Mengenoperation, so ist REG gegen f abgeschlossen.

Beweis: Betrachte k reguläre Sprachen L_i , spezifiziert durch endliche Monoide (M_i, \circ_i, e_i) , Morphismen h_i und endliche Mengen $F_i \subseteq M_i$. Dann spezifizieren das Produktmonoid $M_1 \times \cdots \times M_k$, der Morphismus $h_1 \times \cdots \times h_k$ und die endliche Menge $f(F'_1, \ldots, F'_k)$ die Sprache $f(L_1, \ldots, L_k)$; hierbei sei $F'_i = \{(x_1, \ldots, x_k) \mid (\forall 1 \leq j \leq k : x_j \in M_j) \land x_i \in F_i\}$. Mithin ist $f(L_1, \ldots, L_k)$ regulär. \square

Ist speziell f der <u>Durchschnitt</u>, so gilt: $F'_1 \cap F'_2 = F_1 \times M_2 \cap M_1 \times F_2 = F_1 \times F_2$. Schauen wir uns für diesen Fall beweistechnische Einzelheiten an:

```
L_i = \{w \in \Sigma^* \mid h_i(w) \in F_i\} für i = 1, 2 laut Def.
Für die konstruierte Sprache ist:
L_{\cap} = \{w \in \Sigma^* \mid (h_1 \times h_2)(w) \in (F_1 \times M_2 \cap M_1 \times F_2)\}.
Zu zeigen bleibt: L_{\cap} = L_1 \cap L_2.
w \in L_1 \cap L_2 \iff w \in L_1 \wedge w \in L_2 \iff h_1(w) \in F_1 \wedge h_2(w) \in F_2
```

Alternative Sicht: Operationen auf Sprachen werden zu Operationen auf Zustandsmengen eines deterministischen endlichen Automaten.

 \iff $(h_1(w), h_2(w)) \in F_1 \times F_2 \iff (h_1 \times h_2)(w) \in (F_1 \times M_2 \cap M_1 \times F_2).$

Ein Beispiel

Betrachte als endliche Monoide $\mathcal{M}_1=(\mathbb{Z}_2,+,0)$ und $\mathcal{M}_2=(\mathbb{Z}_3,+,0)$. Dann übersetzt der Morphismus φ aus $\mathcal{M}_1\times\mathcal{M}_2$ in das Monoid $\mathcal{M}_3=(\mathbb{Z}_6,+,0)$ gemäß: $(0,0)\mapsto 0,\,(0,1)\mapsto 4,\,(0,2)\mapsto 2,\,(1,0)\mapsto 3,\,(1,1)\mapsto 1,\,(1,2)\mapsto 5.$

 \mathcal{M}_1 , ℓ_2 und $\{0\}$ beschreiben die Wörter L₁ gerader Länge.

 \mathcal{M}_2 , ℓ_3 und $\{1,2\}$ beschreiben die Wörter L₂, deren Länge beim Teilen durch drei nicht den Rest 0 lässt.

$$\mathcal{M}_1 \times \mathcal{M}_2$$
, $\ell_2 \times \ell_3$ und

$$F = \{(0,0), (0,1), (0,2)\} \cap \{(0,1), (1,1), (0,2), (1,2)\} = \{(0,1), (0,2)\} = \{0\} \times \{1,2\}$$

beschreiben die Wörter, deren Länge gerade ist und beim Teilen durch drei den Rest 1 oder 2 lässt.

Gleichwertig lässt sich $L_1 \cap L_2$ durch das Monoid \mathcal{M}_3 , ℓ_6 sowie $\varphi(F) = \{2,4\}$ darstellen.

Monoide aus Monoiden II (Wdh.)

Ist (M, \circ, e) ein Monoid, so kann die Menge 2^M durch das *Komplexprodukt* zu einem Monoid gemacht werden. Dazu definieren wir:

$$A \circ B := \{a \circ b \mid a \in A \land b \in B\}$$

Das zugehörige neutrale Element ist $\{e\}$.

Beispiel: $(\Sigma^*, \cdot, \lambda)$ ist ein Monoid, und so kann man auch \cdot als Sprachoperation auffassen.

Satz: REG ist gegen Konkatenation abgeschlossen.

Beweis: Es seien $L_1, L_2 \in \mathbf{REG}$.

Wir können davon ausgehen, dass ein λ -NEA

$$A_{i} = (Q_{i}, \Sigma, \delta_{i}, Q_{0,i}, F_{i})$$

L_i akzeptiert, der nur einen Anfangs- und einen Endzustand besitzt; der Anfangszustand hat nur ausgehende Kanten und der Endzustand nur eingehende. (Warum gibt es diese Normalform?)

Wir gehen ferner davon aus, dass $Q_1 \cap Q_2 = F_1 = Q_{0,2}$ gilt.

Setze $Q = Q_1 \cup Q_2$ und $\delta = \delta_1 \cup \delta_2$.

Beh.: $A = (Q, \Sigma, \delta, Q_{0,1}, F_2)$ akzeptiert $L_1 \cdot L_2$.

 $L_1 \cdot L_2 \subset L(A)$ ist durch die Konstruktion einzusehen.

 $L(A) \subseteq L_1 \cdot L_2$ ist die schwierigere Richtung.

Wichtige Eigenschaften von A:

- Jeder Pfad von $Q_{0,1}$ nach F_2 führt durch $F_1 = Q_{0,2}$.
- Es gibt keinen Pfad von Q_2 nach $Q_1 \setminus F_1$.

(Einzelheiten zur Übung. Das nachfolgende Bild soll die Konstruktion erklären.)

П

REG ist gegen Konkatenation abgeschlossen: Skizze

Potenzen in Monoiden: Der Weg zum Kleene-Stern.

Ist (M, \circ, e) ein Monoid, so können wir induktiv die n-te *Potenz* eines Elementes $x \in M$ rekursiv festlegen durch:

$$x^0 = e$$
 sowie $x^{n+1} = x^n \circ x$ für $n \in \mathbb{N}$.

Wie wir gesehen haben, bildet auch $(2^M, \circ, \{e\})$ ein Monoid.

Somit ist auch A^n für $A \subseteq M$ und $n \in \mathbb{N}$ definiert.

(Leider kollidiert diese Schreibweise mit dem von dem kartesischen Mengenprodukt induzierten Potenz, aber nicht arg...)

Dann kann man $A^+ = \bigcup_{n>1} A^n$ definieren und $A^* = \bigcup_{n>0} A^n$.

Somit ist auch L⁺ und L* (*Kleene-Stern*) für L $\subseteq \Sigma^*$ festgelegt. Satz: L⁺ (L*) ist die (das) durch L bezüglich der Konkatenation erzeugte Halbgruppe (Monoid). Satz: **REG** ist gegen Kleene-Stern abgeschlossen.

Beweis: Sei $L \in \textbf{REG}$ akzeptiert durch einen λ -NEA A, der nur einen Anfangs- und einen Endzustand q_0 und q_f besitzt;

der Anfangszustand habe nur ausgehende Kanten und der Endzustand nur eingehende.

Durch Verschmelzen von q_0 und q_f zu neuem Anfangs- und Endzustand q_{0f} erhalten wir einen NEA A' mit $L(A') = L^*$.

Betrachte $w \in L(A')$. Es gibt eine Folge von Zuständen p_1, \ldots, p_n ($n \ge \ell(w)$ und $p_1 = p_n = q_{0f}$), sodass für geeignete Suffixe $w_1 = w, \ldots, w_n = \lambda$ von w gilt: $(p_i, w_i) \vdash_{A'} (p_{i+1}, w_{i+1})$ sowie $w_i = w_{i+1}$ oder $w_i = aw_{i+1}$ für ein Zeichen a, für $i = 1, \ldots, n-1$.

Definiere $J(w) = \{j \mid p_j = q_{0f}\}$. Wir zeigen die Beh. durch Induktion über $|J(w)| \ge 1$.

Für |J(w)| = 1 haben wir $w = \lambda$ vorzuliegen, also gilt sowieso $w \in L^*$.

Ist j > 1 der erste Index mit $p_j = q_{0f}$, so gilt für $w = u_j w_j$: $u_j \in L(A) = L$. Ferner gibt es für $w_j \in L(A')$ einen durch p_j, \ldots, p_n beschriebenen Akzeptierungsweg mit $|J(w_j)| < |J(w)|$, sodass wir hier die IV anwenden können. Also folgt $w \in L \cdot L^* \subseteq L^*$.

Die Inklusion $L^* \subseteq L(A')$ sieht man leichter anhand der Konstruktion ein.

Reguläre Ausdrücke (ähnlich grep) über festem aber bel. Alphabet Σ:

Definition durch *strukturelle Induktion*:

- \emptyset und a sind RA (über Σ) für jedes $\alpha \in \Sigma$.
- Ist R ein RA (über Σ), so auch (R)*.
- Sind R_1 und R_2 RAs (über Σ), so auch R_1R_2 und $(R_1 \cup R_2)$.

Beispiel: $((b \cup a))*aaa(bb)*$ ist ein RA über $\Sigma = \{a, b\}$.

Klammern können weggelassen werden: * bindet stärker als Konkatenation, und jenes wieder stärker als Vereinigung.

Die durch einen RA beschriebene Sprache ist ebenfalls induktiv gegeben:

•
$$L(\emptyset) = \emptyset$$
; $L(a) = \{a\}$.

- Ist R ein RA, setze L((R)*) = (L(R))*.
- Sind R_1 und R_2 RA, setze $L(R_1R_2) = L(R_1) \cdot L(R_2)$ und $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$.

Ein RA über Σ beschreibt also eine Sprache über Σ .

Beispiel: $L((b \cup a)*) = \{a, b\}^*$

Beispiele

(1) Beschreibe die Sprache zum Ausdruck (ab*)a in Mengennotation.

$$L((ab*)a) = L((ab*)) \cdot L(a)$$

$$= L(a) \cdot L(b*) \cdot \{a\}$$

$$= \{a\} \cdot (L(b))^* \cdot \{a\}$$

$$= \{a\} \cdot \{b\}^* \cdot \{a\}$$

$$= \{ab^n a \mid n \in \mathbb{N}\}$$

(2) Beschreibe die Sprache zum Ausdruck (a * b)* in Worten.

Die Menge aller Wörter über $\{a, b\}$, die nicht mit α enden.

Satz: Jede RA-Sprache ist regulär.

Beweis: (durch strukturelle Induktion)

- Endliche Sprachen sind regulär. (Dies liefert den Induktionsanfang.)
- Reguläre Sprachen sind gegen Kleene-Stern abgeschlossen.
- Reguläre Sprachen sind gegen Vereinigung und Konkatenation abgeschlossen.

Beispiel: (a ∪ ab)* (siehe Tafel)

Zusammenhang zwischen struktureller und vollständiger Induktion

ergeben sich zumeist durch Einführung geeigneter "Zählvariablen". In unserem Fall sei zu RA R die Anzahl der Operationssymbole in R notiert als: $\#_{op}(R)$.

Dies lässt sich auch wiederum strukturell induktiv definieren:

- $\#_{op}(\emptyset) = 0$ und $\#_{op}(a) = 0$ für jedes $a \in \Sigma$.
- Ist R ein RA, so gilt: $\#_{op}((R)*) = \#_{op}(R) + 1$.
- Sind R_1 und R_2 RAs, so gilt: $\#_{op}(R_1R_2) = \#_{op}((R_1 \cup R_2)) = \#_{op}(R_1) + \#_{op}(R_2) + 1.$

Zusammenhang zwischen struktureller und vollständiger Induktion

Die Beweisskizze lässt sich als Beweis durch vollständige Induktion nach $\#_{op}(R)$ begreifen.

```
IA: Für \#_{op}(R) = 0 gilt: R = \emptyset oder R = a für ein \alpha \in \Sigma. Die entsprechenden Sprachen \emptyset bzw. \{\alpha\} sind regulär.
```

IV: Jeder RA mit höchstens n Operationssymbolen beschreibt eine reguläre Sprache.

Betrachte einen RA R mit n + 1 Operationssymbolen.

Hierfür sind drei Fälle möglich:

(a)
$$R = (R_1)*$$
; (b) $R = R_1R_2$; (c) $R = (R_1 \cup R_2)$.

In jedem Fall gilt: $\#_{op}(R_1) \le n$ sowie $\#_{op}(R_2) \le n$ (falls sinnvoll).

Also sind nach IV $L(R_1)$ und $L(R_2)$ regulär.

Da die regulären Sprachen gegen Kleene Stern, Konkatenation und Vereinigung abgeschlossen sind, ist (in jedem Fall) auch L(R) regulär.

Satz: Jede reguläre Sprache ist durch einen RA beschreibbar.

Beweis: Betrachte DEA $A = (Q, \Sigma, \delta, q_0, F)$ mit $Q = \{1, ..., n\}$ und $q_0 = 1$.

R[i, j, k] RA für die Sprache, die von A akzeptiert wird, indem (1) A in Zustand i anfängt, (2) in Zustand j aufhört, und (3) zwischendurch nur Zustände aus $\{1, ..., k\}$ erreicht.

Hinweis: Warshall/Floyd

Offenbar gilt: $L(A) = \bigcup_{j \in F} L(R[1, j, n]) = L(\bigcup_{j \in F} R[1, j, n]).$

 $R[i,j,0] = x_1 \cup \cdots \cup x_\ell$, wobei die x_l alle Beschriftungen von Kanten zwischen i und j auflisten (zusätzlich $\emptyset *$ falls i=j)

Für k > 0 setze induktiv $R[i, j, k] = R[i, j, k - 1] \cup R[i, k, k - 1] R[k, k, k - 1] * R[k, j, k - 1].$

Das liefert sofort einen rekursiven (schlechten) Algorithmus.

Alternativ: besserer Algorithmus durch dynamisches Programmieren.

R[1..n, 1..n, 0..n] ist 3-dim. Array mit regulären Ausdrücken als Einträgen.

```
Für i:=1 bis n tue:  R[i,j,0]:=\bigcup_{\alpha\in\Sigma:\delta(i,\alpha)=j} \alpha   Falls \ i=j, \ so \ setze \ R[i,j,0]:=R[i,j,0]\cup\emptyset*.  Für k:=1 bis n tue:  F\"{u}r \ i:=1 \ bis \ n \ tue:   F\"{u}r \ j:=1 \ bis \ n \ tue:   R[i,j,k]:=R[i,j,k-1]\cup R[i,k,k-1]R[k,k,k-1]*R[k,j,k-1].
```

Damit klar: kubische Komplexität, i.Z.: $O(n^3)$. Vergleiche mit Warshall!

Ein Beispiel

(roter Zustand kann weggelassen werden, da er nicht zur Sprache beiträgt)

Ein Beispiel (Forts.)

$$L(A) = L(0 * \cup (0 * 1(00 * 1) * 0*)).$$

Hinweis: Explosion EA / RA in beiden Richtungen!

Ein alternatives Verfahren (siehe Kinber/Smith) arbeitet direkt auf dem evtl. nichtdeterministischen Automatengraphen. Wichtige Konventionen:

Zustandsmenge $Q = \{1, ..., n\}$ mit

1: Anfangszustand (ohne eingehende Kanten) und

n (einziger) Endzustand (ohne ausgehende Kanten).

Kantenbeschriftungen dürfen hierbei reguläre Ausdrücke sein.

(Tatsächlich kann man auch derartige Automaten betrachten.)

Hilfsroutinen:

- mergearcs(i, j): Sind $\ell_{i,j}^1, \ldots \ell_{i,j}^m$ die Beschriftungen sämtlicher Kanten von i nach j im Automatengraphen, so ersetze diese m Kanten durch eine mit $(\ell_{i,j}^1 \cup \ldots \cup \ell_{i,j}^m)$ beschriftete.
- shortcut(i, j; k): Falls es nur genau eine Kante von i nach k und genau eine Kante von k nach j gibt, tue:
 - 1. Gibt es genau eine Kante von k nach k mit Beschriftung $\ell_{k,k}$, so tue: Ersetze einzige Kante von i nach k mit Beschriftung $\ell_{i,k}$ und einzige Kante von k nach j mit Beschriftung $\ell_{k,j}$ durch neue Kante von i nach j mit Beschriftung $\ell_{i,k}(\ell_{k,k}) * \ell_{k,j}$.
 - 2. Andernfalls: Ersetze einzige Kante von i nach k mit Beschriftung $\ell_{i,k}$ und einzige Kante von k nach j mit Beschriftung $\ell_{k,j}$ durch neue Kante von i nach j mit Beschriftung $\ell_{i,k}\ell_{k,j}$.
- remove(k): Lösche Knoten k und alle mit k inzidenten Kanten.

Der zweite Algorithmus zur Erzeugung äquivalenter RAs

```
Für i := 1 bis n tue:

Für j := 1 bis n tue:

mergearcs(i, j)

Für k := 2 bis n - 1 tue:

Für i := 1 bis n tue:

Für j := 1 bis n tue:

shortcut(i, j; k);

mergearcs(i, j);

remove(k).
```

Der gewünschte reguläre Ausdruck findet sich am Schluss als Kantenbeschriftung von der (einzigen) Kante von Knoten 1 nach Knoten \mathfrak{n} . Sollte keine solche Kante existieren, so ist die Sprache leer und kann durch \emptyset beschrieben werden.

Vorheriges Beispiel an der Tafel!