Mini-Control 1

Recuperación de Información Multimedia

Autor: Ismael Fernández

Fecha: Abril-2023

Pregunta 1:

Se tiene la siguiente definición de la imagen A, con valores numéricos en 8 bits.

0	100	0	0	0	100
100	0	100	0	100	0
0	0	0	100	0	0
100	0	100	0	100	0
0	100	0	0	0	100

Además, se define el siguiente kernel (K):

1	-1	1
-1	1	-1
1	-1	1

Por la configuración del kernel, podría interpretarse que sirve para detectar bordes diagonales, ya que se maximiza guando existe un puno (valor alto) aislado horizontalmente y verticalmente, pero acompañado por valores alto en las diagonales.

Realizando la convolución entre la imagen A y el kernel K se obtiene el siguiente arreglo:

-300	300	-300	300
400	-300	500	-300
-300	300	-300	300

Pregunta 2:

Se tiene la siguiente definición de la imagen B, con valores numéricos en 8 bits.

255		0	0	255	0	255	0	0		255
0	255	0	255	0	0	0	255	0	255	0
0	0	255	0	0	0	0	0	255	0	0
0	255	0	255	0	0	0	255	0	255	0
255	0	0	0	255	0	255	0	0	0	255
0	0	0		0	255			0		0
255	0	0	0	255	0	255	0	0	0	255
0	255	0	255		0	0	255	0	255	0
0		255	0	0	0	0	0	255	0	0

Realizando la convolución entre la imagen B y el kernel K se obtiene el siguiente arreglo:

765	-765	765	-510	510	-510	765	-765	765
-765	1275	-765	510	0	510	-765	1275	-765
765	-765	765	-510	510	-510	765	-765	765
-510	510	-510	765	-765	765	-510	510	-510
510	0	510	-765	1275	-765	510	0	510
-510	510	-510	765	-765	765	-510	510	-510
765	-765	765	-510	510	-510	765	-765	765

Aplicando un umbral t=1000 al valor absoluto de cada celda, con lo que se obtiene el siguiente arreglo. Se observan solo 3 valores de 255 y el resto con valores cero.

0	0	0	0	0	0	0	0	0
0	255	0	0	0	0	0	255	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	255	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

En el resultado se observa que el filtro con umbral logra detectar los bodes diagonales de la imagen. Estos bodes pueden ser el blanco o en negro.

Pregunta 3:

Ahora se aplica un filtro 3x3 con la función mediana sobre la imagen A, con lo que se obtiene el siguiente resultado.

0	0	0	0	0	0	0	0	0
0	255	0	0	0	0	0	255	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	255	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Puede observarse que el resultado es el mismo que aplicar el kernel K y luego aplicar el umbral, ósea logra detectar bodes diagonales.

Pregunta 4:

Considerar la siguiente imagen C con dimensiones 16x16 y valores en escala de grises (8 bits).

128	128	128	128	128	128	128	128	255	0	255	0	255	0	255	0
128	128	128	128	128	128	128	128	255	0	255	0	255	0	255	0
128	128	128	128	128	128	128	128	255	0	255	0	255	0	255	0
128	128	128	128	128	128	128	128	255	0	255	0	255	0	255	0
128	128	128	128	128	128	128	128	255	0	255	0	255	0	255	0
128	128	128	128	128	128	128	128	255	0	255	0	255	0	255	0
128	128	128	128	128	128	128	128	255	0	255	0	255	0	255	0
128	128	128	128	128	128	128	128	255	0	255	0	255	0	255	0
255	0	255	0	255	0	255	0	255	255	255	255	255	255	255	255
0	255	0	255	0	255	0	255	0	0	0	0	0	0	0	0
255	0	255	0	255	0	255	0	255	255	255	255	255	255	255	255
0	255	0	255	0	255	0	255	0	0	0	0	0	0	0	0
255	0	255	0	255	0	255	0	255	255	255	255	255	255	255	255
0	255	0	255	0	255	0	255	0	0	0	0	0	0	0	0
255	0	255	0	255	0	255	0	255	255	255	255	255	255	255	255
0	255	0	255	0	255	0	255	0	0	0	0	0	0	0	0

El siguiente grafico muestra el histograma normalizado de valores de escala de grises de la imagen C (2x2 zonas):

Pregunta 5:

Aquí se pide calcular el histograma de orientaciones de gradiente de la imagen C.

El gradiente se obtiene directamente de la definición:

$$\frac{\partial I}{\partial x}(x,y) = I(x+1,y) - I(x,y) \qquad \qquad \frac{\partial I}{\partial y}(x,y) = I(x,y+1) - I(x,y)$$

Gradiente en eje x:

0	0	0	0	0	0	0	127	-255	255	-255	255	-255	255	-255	
0	0	0	0	0	0	0	127	-255	255	-255	255	-255	255	-255	
0	0	0	0	0	0	0	127	-255	255	-255	255	-255	255	-255	
0	0	0	0	0	0	0	127	-255	255	-255	255	-255	255	-255	
0	0	0	0	0	0	0	127	-255	255	-255	255	-255	255	-255	
0	0	0	0	0	0	0	127	-255	255	-255	255	-255	255	-255	
0	0	0	0	0	0	0	127	-255	255	-255	255	-255	255	-255	
0	0	0	0	0	0	0	127	-255	255	-255	255	-255	255	-255	
-255	255	-255	255	-255	255	-255	255	0	0	0	0	0	0	0	
255	-255	255	-255	255	-255	255	-255	0	0	0	0	0	0	0	
-255	255	-255	255	-255	255	-255	255	0	0	0	0	0	0	0	
255	-255	255	-255	255	-255	255	-255	0	0	0	0	0	0	0	
-255	255	-255	255	-255	255	-255	255	0	0	0	0	0	0	0	
255	-255	255	-255	255	-255	255	-255	0	0	0	0	0	0	0	
-255	255	-255	255	-255	255	-255	255	0	0	0	0	0	0	0	
255	-255	255	-255	255	-255	255	-255	0	0	0	0	0	0	0	

Gradiente en eje y:

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
127	-128	127	-128	127	-128	127	-128	0	255	0	255	0	255	0	255
-255	255	-255	255	-255	255	-255	255	-255	-255	-255	-255	-255	-255	-255	-255
255	-255	255	-255	255	-255	255	-255	255	255	255	255	255	255	255	255
-255	255	-255	255	-255	255	-255	255	-255	-255	-255	-255	-255	-255	-255	-255
255	-255	255	-255	255	-255	255	-255	255	255	255	255	255	255	255	255
-255	255	-255	255	-255	255	-255	255	-255	-255	-255	-255	-255	-255	-255	-255
255	-255	255	-255	255	-255	255	-255	255	255	255	255	255	255	255	255
-255	255	-255	255	-255	255	-255	255	-255	-255	-255	-255	-255	-255	-255	-255

Utilizando los gradientes en eje x y eje y, se obtienen los ángulos del gradiente en cada punto.

												I	I	
0	0	0	0	0	0	0	90	-90	90	-90	90	-90	90	-90
0	0	0	0	0	0	0	90	-90	90	-90	90	-90	90	-90
0	0	0	0	0	0	0	90	-90	90	-90	90	-90	90	-90
0	0	0	0	0	0	0	90	-90	90	-90	90	-90	90	-90
0	0	0	0	0	0	0	90	-90	90	-90	90	-90	90	-90
0	0	0	0	0	0	0	90	-90	90	-90	90	-90	90	-90
0	0	0	0	0	0	0	90	-90	90	-90	90	-90	90	-90
0	180	0	180	0	180	0	135.2	-90	45	-90	45	-90	45	-90
	400	_		•		•	200.2	-		-		0		_
-135	45	-135	45	-135	45	-135	45	180	180	180	180	180	180	180
-135	45	-135	45	-135	45	-135	45	180	180	180	180	180	180	180
-135 45	45 -135	-135 45	45 -135	-135 45	45 -135	-135 45	45 -135	180 0	180	180	180	180	180	180 0
-135 45 -135	45 -135 45	-135 45 -135	45 -135 45	-135 45 -135	45 -135 45	-135 45 -135	45 -135 45	180 0 180						
-135 45 -135 45	45 -135 45 -135	-135 45 -135 45	45 -135 45 -135	-135 45 -135 45	45 -135 45 -135	-135 45 -135 45	45 -135 45 -135	180 0 180 0						
-135 45 -135 45 -135	45 -135 45 -135 45	-135 45 -135 45 -135	45 -135 45 -135 45	-135 45 -135 45 -135	45 -135 45 -135 45	-135 45 -135 45 -135	45 -135 45 -135 45	180 0 180 0 180						

El siguiente grafico muestra el histograma de orientaciones para cada zona (2x2):

Pregunta 6:

Aquí se pide obtener el histograma de bordes (EHD) para la imagen C, utilizando 2x2 zonas y considerando los siguientes filtros:

Estos son los resultados de aplicar el cada filtro sobre la imagen C:

Bin 1	
1	-1
1	-1

0	0	0	0	510	510	510	510
0	0	0	0	510	510	510	510
0	0	0	0	510	510	510	510
0	0	0	0	510	510	510	510
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Bin 2	
1	1
-1	-1

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	510	510	510	510
0	0	0	0	510	510	510	510
0	0	0	0	510	510	510	510
0	0	0	0	510	510	510	510

Bin 3	
1.41421	0
0	-1.41

0	0	0	0	360.6	360.6	360.6	360.6
0	0	0	0	360.6	360.6	360.6	360.6
0	0	0	0	360.6	360.6	360.6	360.6
0	0	0	0	360.6	360.6	360.6	360.6
0	0	0	0	360.6	360.6	360.6	360.6
0	0	0	0	360.6	360.6	360.6	360.6
0	0	0	0	360.6	360.6	360.6	360.6
0	0	0	0	360.6	360.6	360.6	360.6

Bin 4	
0	1.41
-1.4142	0

0	0	0	0	360.6	360.6	360.6	360.6
0	0	0	0	360.6	360.6	360.6	360.6
0	0	0	0	360.6	360.6	360.6	360.6
0	0	0	0	360.6	360.6	360.6	360.6
0	0	0	0	360.6	360.6	360.6	360.6
0	0	0	0	360.6	360.6	360.6	360.6
0	0	0	0	360.6	360.6	360.6	360.6
0	0	0	0	360.6	360.6	360.6	360.6

Bin 5	
2	-2
-2	2

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1020	1020	1020	1020	0	0	0	0
1020	1020	1020	1020	0	0	0	0
1020	1020	1020	1020	0	0	0	0
1020	1020	1020	1020	0	0	0	0

Ahora utilizando el resultado anterior, se obtiene la siguiente tabla con la frecuencia de cada orientación por zona:

Bin	Z1	Z2	Z3	Z4
1	0	16	0	0
2	0	0	0	16
3	0	0	0	0
4	0	0	0	0
5	0	0	16	0

Con la tabla anterior, se obtiene el grafico de los histogramas por zona.

Pregunta 7:

Se tienen dos imágenes con sus respectivos histogramas de color.

$$H1 = \{(0.8 Bin1), (0.2 Bin2)\}\$$
 $H2 = \{(0.3 Bin1), (0.6 Bin2), (0.1 Bin3)\}\$

Donde los bins (color) de cada histograma están definidos de la siguiente manera:

H1:			
Bin1	250	150	0
Bin2	100	100	150

H2:			
Bin1	50	100	250
Bin2	200	200	250
Bin3	250	0	0

Se pide calcular la el EMD entre los histogramas de ambas imágenes. Esto calculando primero la matriz de distancias y luego obteniendo la matriz de flujos.

Matriz de Distancias (L1):

	Bin1	Bin2
Bin1	500	150
Bin2	350	300
Bin3	150	400

Matriz de Flujos, obtenida con implementación manual del método greedy.

	0.8	0.2	Sum
0.3	0.1	0.2	0.3
0.6	0.6	0	0.6
0.1	0.1	0	0.1
Sum	0.8	0.2	

Con lo anterior se obtienen los componentes de la multiplicación de la matriz de costos y de flujo para obtener el valor de EMD:

50	30
210	0
15	0

