

In the Claims:

This listing of claims will replace all prior versions and listings of claims in the application.

- 1 1-5. (canceled).
- 1 6. (currently amended) The method of claim [[1]] 76, wherein producing an array of session
2 random encryption [[key]] keys at the first station includes:
 - 3 providing a buffer at the first station;
 - 4 generating said keys and storing said keys in the buffer;
 - 5 associating respective session random key initiation intervals with said keys stored in said
6 buffer;
 - 7 [[using]] selecting keys from said buffer as said selected session random symmetric
8 encryption key [[keys]] in response to corresponding requests received by said first station
9 during said respective session random key initiation intervals ~~for use in a first exchange of said~~
10 ~~plurality of exchanges~~;
 - 11 removing keys from said buffer after expiry of [[the]] respective session random key
12 lifetimes, where the session random key lifetimes expire after the session random symmetric
13 encryption key initiation intervals lifetime in the buffer.
- 1 7. (original) The method of claim 6, wherein said buffer is managed as a circular buffer.
- 1 8. (original) The method of claim 6, wherein a session random key lifetime in the buffer for said
2 plurality of exchanges has a value within which the plurality of exchanges can be completed in
3 expected circumstances, and said keys are removed from said buffer after a multiple M times
4 said value of session random key lifetime to engage into establishing a communication session,
5 where M is less than or equal to 10.
- 1 9. (currently amended) The method of claim 6, wherein a session random key lifetime in the
2 buffer for said plurality of exchanges has a value within which the plurality of exchanges can be
3 completed in expected circumstances, and said keys are removed from said buffer after a

4 multiple M times said value, and the session random key lifetime to engage into establishing a
5 communication session is less than about 90 second seconds.

1 10. (canceled).

1 11. (currently amended) The method of claim [[1]] 76, wherein producing an encryption key at
2 the first station includes:

3 — assigning, in said first station, a session random key for use within a session random key
4 initiation interval in response to requests received by said first station during said session random
5 key initiation interval for use in a first exchange of said plurality of exchanges;

6 — associating, in said first station, a plurality of intermediate data random keys with said
7 request for use in said plurality of exchanges;

8 wherein said plurality of exchanges includes

9 a first exchange including sending a first message from the first station carrying said
10 selected session random symmetric encryption key to the second station, where
11 the second station returns a second message carrying a shared parameter the
12 identifier of the second station encrypted using [[the]] said selected session
13 random symmetric encryption key, and decrypting the shared parameter identifier
14 of the second station at the first station to validate the second station, or a user at
15 the second station; and

16 a second exchange including sending a further message from the first station to the
17 second station, the further message carrying a particular data random symmetric
18 encryption key from said sub-array plurality of intermediate data random keys
19 encrypted using [[the]] said selected session random symmetric encryption key,
20 where the second station returns another message carrying a hashed version of
21 said particular data random symmetric key encrypted using said particular
22 enryptiondata random symmetric key to the first station, and decrypting said
23 hashed version of said particular data random symmetric key at the first station
24 using said particular data random symmetric key.

1 12. (currently amended) The method of claim [[1]] 76, including wherein producing an
2 encyption key at the first station includes:
3 assigning, in said first station, a session random key for use within a session random key
4 initiation interval in response to requests received by said first station during said session random
5 key initiation interval for use in a first exchange of said plurality of exchanges;
6 associating, in said first station, a plurality of intermediate data random keys with said
7 request for use in said plurality of exchanges; and

8 after said request for initiation of a communication session, presenting to the second
9 station a user interface along with [[the]] said selected session random symmetric encryption
10 key, said user interface including a prompt for entry of said identifier of the second station a
11 shared parameter and at least one of said first and second shared secrets secret.

1 13. (currently amended) The method of claim [[1]] 76, including wherein producing an
2 encyption key at the first station includes:
3 assigning, in said first station, a session random key for use within a session random key
4 initiation interval in response to requests received by said first station during said session random
5 key initiation interval for use in a first exchange of said plurality of exchanges;
6 associating, in said first station, a plurality of intermediate data random keys with said
7 request for use in said plurality of exchanges; and

8 after said request for initiation of a communication session, presenting to the second
9 station a user interface along with the session random key, said user interface including a prompt
10 for entry of said identifier of the second station a shared parameter and said first and second at
11 least two shared secrets.

1 14. (currently amended) The method of claim [[1]] 11, including wherein producing an
2 encyption key at the first station includes:
3 assigning, in said first station, a session random key for use within a session random key
4 initiation interval in response to requests received by said first station during said session random
5 key initiation interval for use in a first exchange of said plurality of exchanges;
6 associating, in said first station, a plurality of intermediate data random keys with said
7 request for use in said plurality of exchanges;

8 — wherein said plurality of exchanges includes
9 a first exchange including sending a first message from the first station carrying said
10 session random key to the second station, where the second station returns a
11 second message carrying a shared parameter encrypted using the session random
12 key, and decrypting the shared parameter at the first station; and—
13 a second exchange including sending a third message from the first station to the second
14 station, the third message carrying a particular data random key from said
15 plurality of intermediate data random keys encrypted using the session random
16 key, where the second station returns a fourth message carrying a hashed version
17 of said particular data random key encrypted using said particular data random
18 key to the first station, and decrypting said hashed version of said particular data
19 random key at the first station using said particular data random key;
20 and then executing at least one additional exchange in said plurality of exchanges,
21 where

22 said at least one additional exchange includes sending an additional message from the
23 first station to the second station carrying a next data random symmetric key from
24 said sub-array the plurality of intermediate data random keys associated with said
25 request, encrypted using a data random symmetric key from said sub-array
26 exchanged during a previously completed exchange in said plurality of
27 exchanges, where the second station decrypts said next data random symmetric
28 key and returns a responsive message carrying a hashed version of said next data
29 random symmetric key encrypted using said next data random symmetric key, and
30 decrypting at the first station said hashed version of said next data random
31 symmetric key using said next data random symmetric key.

1 15. (canceled).

1 16. (original) The method of claim 14, including executing more than one of said additional
2 exchanges.

1 17-21. (canceled).

1 22. (currently amended) The method of claim 76 [[17]], including upon request for initiation of a
2 communication session, presenting to the second station a user interface for initiation of an
3 authentication session including a compiled version of [[the]] said selected session random
4 symmetric encryption key and parameters for one or more conversion arrays, said user interface
5 including a prompt for entry of the said identifier of the second station shared parameter and at
6 least one of said first and second shared secrets secret.

1 23-24. (canceled).

1 25. (currently amended) The method of claim [[14]] 76, including ~~executing a further exchange~~
2 ~~including~~

3 ~~sending a message from the first station to the second station carrying said encryption key~~
4 ~~encrypted using a first shared secret to the second station, where the second~~
5 ~~station returns a message carrying a hashed version of said encryption key~~
6 ~~encrypted using said first shared secret, and decrypting said encryption key at the~~
7 ~~first station;~~

8 ~~sending a message from the first station to the second station carrying said encryption key~~
9 ~~encrypted using a second shared secret, where the second station decrypts said~~
10 ~~encryption key, and returns a message to the first station carrying a hashed~~
11 ~~version of the encryption key encrypted using said second shared secret; and~~
12 sending a message from the first station to the second station carrying an authentication
13 signal indicating success or failure of mutual authentication and establishment of
14 the final symmetric encryption key, said authentication signal being encrypted
15 using one of said intermediate data random symmetric keys from a previous
16 exchange in the plurality of exchanges.

1 26-30. (canceled).

1 31. (currently amended) The apparatus of claim [[26]] 77, wherein said logic to produce an array
2 of session random symmetric encryption keys provide ephemeral encryption keys at the first
3 station includes instructions:

4 providing a buffer at the first station;
5 generating said keys and storing said keys in the buffer;
6 associating respective session random key initiation intervals with said keys stored in said
7 buffer;
8 [[using]] selecting keys from said buffer as said selected session random symmetric
9 encryption keys in response to requests received by said first station during said respective
10 session random key initiation intervals ~~for use in a first exchange of said plurality of exchanges;~~
11 removing keys from said buffer after expiry of the respective session random key
12 lifetimes, where the session random key lifetimes expire after the session random key initiation
13 intervals lifetime in the buffer.

1 32. (original) The apparatus of claim 31, wherein said buffer is managed as a circular buffer.

1 33. (currently amended) The apparatus of claim 31, wherein a session random key lifetime in the
2 buffer for said plurality of exchanges has a value within which the plurality of exchanges can be
3 completed in expected circumstances, and said keys are removed from said buffer after a
4 multiple M times said value ~~session random key lifetime~~ to engage into establishing a
5 communication session, where M is less than or equal to 10.

1 34. (currently amended) The apparatus of claim 31, wherein a session random key lifetime in the
2 buffer for said plurality of exchanges has a value within which the plurality of exchanges can be
3 completed in expected circumstances, and said keys are removed from said buffer after a
4 multiple M times said value ~~session random key lifetime~~ to engage into establishing a
5 communication session, and the session random key lifetime to engage into establishing a
6 communication session is less than about 90 seconds ~~second~~.

1 35. (canceled).

1 36. (currently amended) The apparatus of claim [[26]] 77, wherein said logic to provide
2 ephemeral encryption keys at the first station includes instructions:

3 assigning, in said first station, a session random key for use within a session random key
4 initiation interval in response to requests received by said first station during said session random
5 key initiation interval for use in a first exchange of said plurality of exchanges;

6 associating, in said first station, a plurality of intermediate data random keys with said
7 request for use in said plurality of exchanges;

8 wherein said plurality of exchanges includes

9 a first exchange including sending a first message from the first station carrying said
10 selected session random symmetric encryption key to the second station, where
11 the second station returns a second message carrying said identifier of the second
12 station a shared parameter encrypted using [[the]] said selected session random
13 symmetric encryption key, and decrypting said identifier of the second station the
14 shared parameter at the first station to validate the second station; and

15 a second exchange including sending a further message from the first station to the
16 second station, the further message carrying a particular data random symmetric
17 key from said sub-array plurality of intermediate data random keys encrypted
18 using [[the]] said selected session random key, where the second station returns
19 another message carrying a hashed version of said particular data random
20 symmetric key encrypted using said particular encryption-data random symmetric
21 key to the first station, and decrypting said hashed version of said particular data
22 random symmetric key at the first station using said particular data random
23 symmetric key.

1 37. (currently amended) The apparatus of claim [[26]] 77, wherein said logic to provide
2 ephemeral encryption keys at the first station includes instructions:

3 assigning, in said first station, a session random key for use within a session random key
4 initiation interval in response to requests received by said first station during said session random
5 key initiation interval for use in a first exchange of said plurality of exchanges;

6 associating, in said first station, a plurality of intermediate data random keys with said
7 request for use in said plurality of exchanges; and

8 logic to present, after said request for initiation of a communication session, presenting to
9 the second station a user interface along with the selected session random symmetric encryption

10 key, said user interface including a prompt for entry of said identifier of the second station a
11 shared parameter and at least one of said first and second shared secrets secret.

1 38. (currently amended) The apparatus of claim [[26]] 77, ~~wherein said logic to provide~~
2 ~~ephemeral encryption keys at the first station includes instructions:~~
3 ~~— assigning, in said first station, a session random key for use within a session random key~~
4 ~~initiation interval in response to requests received by said first station during said session random~~
5 ~~key initiation interval for use in a first exchange of said plurality of exchanges;~~
6 ~~— associating, in said first station, a plurality of intermediate data random keys with said~~
7 ~~request for use in said plurality of exchanges; and~~
8 ~~logic to present, after said request for initiation of a communication session, presenting to~~
9 ~~the second station a user interface along with the selected session random symmetric encryption~~
10 ~~key, said user interface including a prompt for entry of said identifier of the second station a~~
11 ~~shared parameter and at least two said first and second shared secrets.~~

1 39. (currently amended) The apparatus of claim [[26]] 36, ~~wherein said logic to provide~~
2 ~~ephemeral encryption keys at the first station includes instructions:~~
3 ~~— assigning, in said first station, a session random key for use within a session random key~~
4 ~~initiation interval in response to requests received by said first station during said session random~~
5 ~~key initiation interval for use in a first exchange of said plurality of exchanges;~~
6 ~~— associating, in said first station, a plurality of intermediate data random keys with said~~
7 ~~request for use in said plurality of exchanges;~~
8 wherein said plurality of exchanges includes
9 ~~a first exchange including sending a first message from the first station carrying said~~
10 ~~session random key to the second station, where the second station returns a~~
11 ~~second message carrying a shared parameter encrypted using the session random~~
12 ~~key, and decrypting the shared parameter at the first station; and~~
13 ~~a second exchange including sending a third message from the first station to the second~~
14 ~~station, the third message carrying a particular data random key from said~~
15 ~~plurality of intermediate data random keys encrypted using the session random~~
16 ~~key, where the second station returns a fourth message carrying a hashed version~~

17 ~~of said particular data random key encrypted using said particular data random~~
18 ~~key to the first station, and decrypting said hashed version of said particular data~~
19 ~~random key at the first station using said particular data random key;~~
20 ~~and then executing~~ at least one additional exchange in said plurality of exchanges,
21 where

22 said at least one additional exchange includes sending an additional message from the
23 first station to the second station carrying a next data random symmetric key from
24 said sub-array~~the plurality of intermediate data random keys associated with said~~
25 request, encrypted using a data random symmetric key from said sub-array
26 exchanged during a previously completed exchange in said plurality of
27 exchanges, where the second station decrypts said next data random symmetric
28 key and returns a responsive message carrying a hashed version of said next data
29 random symmetric key encrypted using said next data random symmetric key, and
30 decrypting at the first station said hashed version of said next data random
31 symmetric key using said next data random symmetric key.

1 40. (canceled).

1 41. (original) The apparatus of claim 39, including logic executing more than one of said
2 additional exchanges.

1 42-46. (canceled).

1 47. (currently amended) The apparatus of claim 77 [[42]], including upon request for initiation of
2 a communication session, logic to present to the second station a user interface for initiation of
3 an authentication session including a compiled version of the session random symmetric
4 encryption key and parameters for one or more conversion arrays, said user interface including a
5 prompt for entry of said identifier of the second station the shared parameter, and at least one of
6 said first and second shared secrets secret.

1 48-49. (canceled).

1 50. (currently amended) The apparatus of claim [[39]] 77, including logic executing a further
2 exchange including instructions

3 ~~sending a message from the first station to the second station carrying said encryption key~~
4 ~~encrypted using a first shared secret to the second station, where the second~~
5 ~~station returns a message carrying a hashed version of said encryption key~~
6 ~~encrypted using said first shared secret, and decrypting said encryption key at the~~
7 ~~first station;~~

8 ~~sending a message from the first station to the second station carrying said encryption key~~
9 ~~encrypted using a second shared secret, where the second station decrypts said~~
10 ~~encryption key, and returns a message to the first station carrying a hashed~~
11 ~~version of the encryption key encrypted using said second shared secret; and~~
12 sending a message from the first station to the second station carrying an authentication
13 signal indicating success or failure of mutual authentication and establishment of
14 the final symmetric encryption key, said authentication signal being encrypted
15 using one of said intermediate data random symmetric keys from a previous
16 exchange in the plurality of exchanges.

1 51-55. (canceled).

1 56. (currently amended) The article of claim 78 [[51]], wherein said logic to produce an array of
2 session random symmetric encryption keys ~~provide ephemeral encryption~~ keys at the first
3 station includes instructions:

4 providing a buffer at the first station;

5 generating said keys and storing said keys in the buffer;

6 associating respective session random key initiation intervals with said keys stored in said
7 buffer;

8 ~~[[using]] selecting keys from said buffer as said selected session random symmetric~~

9 ~~encryption keys in response to requests received by said first station during said respective~~

10 ~~session random key initiation intervals for use in a first exchange of said plurality of exchanges;~~

11 removing keys from said buffer after expiry of the respective session random key
12 lifetimes, where the session random key lifetimes expire after the session random key initiation
13 intervals lifetime in the buffer.

1 57. (original) The article of claim 56, wherein said buffer is managed as a circular buffer.

1 58. (currently amended) The article of claim 56, wherein a session random key lifetime in the
2 buffer for said plurality of exchanges has a value within which the plurality of exchanges can be
3 completed in expected circumstances, and said keys are removed from said buffer after a
4 multiple M times said value ~~of session random key lifetime~~ to engage into establishing a
5 communication session, where M is less than or equal to 10.

1 59. (original) The article of claim 56, wherein a session random key lifetime in the buffer for
2 said plurality of exchanges has a value within which the plurality of exchanges can be completed
3 in expected circumstances, and said keys are removed from said buffer after a multiple M times
4 said value, and the session random key lifetime to engage into establishing a communication
5 session is less than about 90 seconds.

1 60. (canceled).

1 61. (currently amended) The article of claim 78 [[51]], ~~wherein said logic to provide ephemeral~~
2 ~~encryption keys at the first station includes instructions:~~

3 ~~assigning, in said first station, a session random key for use within a session random key~~
4 ~~initiation interval in response to requests received by said first station during said session random~~
5 ~~key initiation interval for use in a first exchange of said plurality of exchanges;~~
6 ~~associating, in said first station, a plurality of intermediate data random keys with said~~
7 ~~request for use in said plurality of exchanges;~~

8 wherein said plurality of exchanges includes

9 a first exchange including sending a first message from the first station carrying said
10 selected session random symmetric encryption key to the second station, where
11 the second station returns a second message carrying said identifier of the second

12 station a shared parameter encrypted using [[the]] said selected session random
13 symmetric encryption key, and decrypting said identifier of the second station the
14 shared parameter at the first station to validate the second station; and
15 a second exchange including sending a further message from the first station to the
16 second station, the further message carrying a particular data random symmetric
17 key from said sub-array plurality of intermediate data random keys encrypted
18 using [[the]] said selected session random key, where the second station returns
19 another message carrying a hashed version of said particular data random
20 symmetric key encrypted using said particular encryption-data random symmetric
21 key to the first station, and decrypting said hashed version of said particular data
22 random symmetric key at the first station using said particular data random
23 symmetric key.

1 62. (currently amended) The article of claim 78 [[51]], wherein said logic to provide ephemeral
2 encryption keys at the first station includes instructions:

3 assigning, in said first station, a session random key for use within a session random key
4 initiation interval in response to requests received by said first station during said session random
5 key initiation interval for use in a first exchange of said plurality of exchanges;
6 associating, in said first station, a plurality of intermediate data random keys with said
7 request for use in said plurality of exchanges; and

8 logic to present, after said request for initiation of a communication session, presenting to
9 the second station a user interface along with the selected session random symmetric encryption
10 key, said user interface including a prompt for entry of said identifier of the second station a
11 shared parameter and at least one of said first and second shared secrets secret.

1 63. (currently amended) The article of claim 78 [[51]], wherein said logic to provide ephemeral
2 encryption keys at the first station includes instructions:

3 assigning, in said first station, a session random key for use within a session random key
4 initiation interval in response to requests received by said first station during said session random
5 key initiation interval for use in a first exchange of said plurality of exchanges;

6 ————— associating, in said first station, a plurality of intermediate data random keys with said
7 request for use in said plurality of exchanges; and

8 logic to present, after said request for initiation of a communication session, presenting to
9 the second station a user interface along with the selected session random symmetric encryption
10 key, said user interface including a prompt for entry of said identifier of the second station a
11 shared parameter and at least two said first and second shared secrets.

1 64. (currently amended) The article of claim 61 [[51]], wherein said logic to provide ephemeral
2 encryption keys at the first station includes instructions:

3 ————— assigning, in said first station, a session random key for use within a session random key
4 initiation interval in response to requests received by said first station during said session random
5 key initiation interval for use in a first exchange of said plurality of exchanges;

6 ————— associating, in said first station, a plurality of intermediate data random keys with said
7 request for use in said plurality of exchanges;

8 wherein said plurality of exchanges includes

9 a first exchange including sending a first message from the first station carrying said
10 session random key to the second station, where the second station returns a
11 second message carrying a shared parameter encrypted using the session random
12 key, and decrypting the shared parameter at the first station; and

13 a second exchange including sending a third message from the first station to the second
14 station, the third message carrying a particular data random key from said
15 plurality of intermediate data random keys encrypted using the session random
16 key, where the second station returns a fourth message carrying a hashed version
17 of said particular data random key encrypted using said particular data random
18 key to the first station, and decrypting said hashed version of said particular data
19 random key at the first station using said particular data random key;

20 and then executing at least one additional exchange in said plurality of exchanges,

21 where

22 said at least one additional exchange includes sending an additional message from the
23 first station to the second station carrying a next data random symmetric key from
24 said sub-array the plurality of intermediate data random keys associated with said

25 request, encrypted using a data random symmetric key from said sub-array
26 exchanged during a previously completed exchange in said plurality of
27 exchanges, where the second station decrypts said next data random symmetric
28 key and returns a responsive message carrying a hashed version of said next data
29 random symmetric key encrypted using said next data random symmetric key, and
30 decrypting at the first station said hashed version of said next data random
31 symmetric key using said next data random symmetric key.

1 65. (canceled).

1 66. (original) The article of claim 64, including logic executing more than one of said additional
2 exchanges.

1 67-71. (canceled).

1 72. (currently amended) The article of claim 78 [[67]], including upon request for initiation of a
2 communication session, logic to present to the second station a user interface for initiation of an
3 authentication session including a compiled version of the session random symmetric encryption
4 key and parameters for one or more conversion arrays, said user interface including a prompt for
5 entry of said identifier of the second station the shared parameter, and at least one of said first
6 and second shared secrets secret.

1 73-74. (canceled).

1 75. (currently amended) The article of claim 78 [[64]], including logic executing a further
2 exchange including instructions

3 sending a message from the first station to the second station carrying said encryption key
4 encrypted using a first shared secret to the second station, where the second
5 station returns a message carrying a hashed version of said encryption key
6 encrypted using said first shared secret, and decrypting said encryption key at the
7 first station;

8 ~~sending a message from the first station to the second station carrying said encryption key~~
9 ~~encrypted using a second shared secret, where the second station decrypts said~~
10 ~~encryption key, and returns a message to the first station carrying a hashed~~
11 ~~version of the encryption key encrypted using said second shared secret; and~~
12 sending a message from the first station to the second station carrying an authentication signal
13 indicating success or failure of mutual authentication and establishment of the final symmetric
14 encryption key, said authentication signal being encrypted using one of said intermediate data
15 random symmetric keys from a previous exchange in the plurality of exchanges.

1 76. (new) A method for creating and securely distributing ephemeral random symmetric keys for
2 use in a plurality of concurrent or spaced in time communication sessions on a communication
3 medium between a first data processing station and a plurality of second data processing stations
4 having access to the communication medium, in which the first station and each second station in
5 the plurality of second stations have respective identifiers and first and second shared secrets,
6 and for mutual authentication of the first and second stations without exchanging messages
7 carrying said shared secrets via the communication medium, comprising:

8 receiving at the first station requests from the plurality of second stations for initiation of
9 a communication session;

10 producing an array of session random symmetric encryption keys and plurality of sub-
11 arrays of data random symmetric keys at the first station, where each sub-array is subordinated
12 only to a respective session random symmetric encryption key to service a plurality of
13 communication sessions by continuously generating, storing and obliterating the keys in the
14 array and in the sub-arrays according to a logic at the first station; and

15 after receiving a request from a particular second station, selecting a session random
16 symmetric encryption key from said array, and executing a plurality of exchanges of encrypted
17 messages across said communication medium during an authentication stage of the
18 communication session, the exchanges in the plurality of exchanges including at least one
19 message carrying respective data random symmetric keys from the sub-array which is
20 subordinated to the selected session random symmetric encryption key from the first station to
21 the second station and messages respectively returning the data random symmetric keys, or their
22 hashed equivalents, in an encrypted form from the second station to the first station, to mutually

23 authenticate the first station and the second station without exchanging the first and second
24 shared secrets over the communication medium, and to provide one of the data random
25 symmetric keys from the sub-array to the second station as a final symmetric encryption key for
26 use in subsequent communications during said communication session;

27 wherein in at least one of the plurality of exchanges, the respective data random
28 symmetric key, or its hashed equivalent, is encrypted using an intermediate data random
29 symmetric encryption key, where the intermediate data random symmetric encryption key is one
30 of the data random symmetric keys from said sub-array, exchanged in a previous one of the
31 plurality of exchanges; and

32 wherein in at least one of the plurality of exchanges, the respective data random
33 symmetric key, or its hashed equivalent, is veiled in a conversion array using the first shared
34 secret and then, encrypted using one of the data random symmetric keys from said sub-array
35 exchanged in a previous exchange, and

36 in at least one other of the plurality of exchanges, the respective data random symmetric
37 key, or its hashed equivalent, is veiled in a conversion array using the second shared secret and
38 then, encrypted using one of the data random symmetric keys from said sub-array exchanged in a
39 previous exchange.

1 77. (new) A data processing apparatus for creating and securely distributing ephemeral random
2 symmetric keys for use in a plurality of concurrent or spaced in time communication sessions on
3 a communication medium between the data processing apparatus as a first station and a plurality
4 of second data processing stations having access to the communication medium, in which the
5 first station and each second station in the plurality of second stations have respective identifiers
6 and first and second shared secrets, and for mutual authentication of the first and second stations
7 without exchanging messages carrying said shared secrets via the communication medium,
8 comprising:

9 a processor at the first station, a communication interface adapted for connection to a
10 communication medium, and memory storing instructions for execution by the data processor,
11 the instructions including

12 logic to receive requests via the communication interface from the plurality of second
13 stations for initiation of a communication session;

14 logic to produce an array of session random symmetric encryption keys and plurality of
15 sub-arrays of data random symmetric keys at the first station, where each sub-array is
16 subordinated only to a respective session random symmetric encryption key to service a plurality
17 of communication sessions by continuously generating, storing and obliterating the keys in the
18 array and in the sub-arrays; and

19 logic to select, after receiving a request from a particular second station, a session random
20 symmetric encryption key from said array, and to execute a plurality of exchanges of encrypted
21 messages across said communication medium during an authentication stage of the
22 communication session, the exchanges in the plurality of exchanges including at least one
23 message carrying respective data random symmetric keys from the sub-array which is
24 subordinated to the selected session random symmetric encryption key from the first station to
25 the second station and messages respectively returning the data random symmetric keys, or their
26 hashed equivalents, in an encrypted form from the second station to the first station, to mutually
27 authenticate the first station and the second station without exchanging the first and second
28 shared secrets over the communication medium, and to provide one of the data random
29 symmetric keys from the sub-array to the second station as a final symmetric encryption key for
30 use in subsequent communications during said communication session;

31 wherein in at least one of the plurality of exchanges, the respective data random
32 symmetric key, or its hashed equivalent, is encrypted using an intermediate data random
33 symmetric encryption key, where the intermediate data random symmetric encryption key is one
34 of the data random symmetric keys from said sub-array, exchanged in a previous one of the
35 plurality of exchanges; and

36 wherein in at least one of the plurality of exchanges, the respective data random
37 symmetric key, or its hashed equivalent, is veiled in a conversion array using the first shared
38 secret and then, encrypted using one of the data random symmetric keys from said sub-array
39 exchanged in a previous exchange, and

40 in at least one other of the plurality of exchanges, the respective data random symmetric
41 key, or its hashed equivalent, is veiled in a conversion array using the second shared secret and
42 then, encrypted using one of the data random symmetric keys from said sub-array exchanged in a
43 previous exchange.

1 78. (new) An article of manufacture, comprising:
2 a machine readable data storage medium having computer program instructions stored
3 therein, for creating and securely distributing ephemeral random symmetric keys for use in a
4 plurality of concurrent or spaced in time communication sessions on a communication medium
5 between a first data processing station and a plurality of second data processing stations having
6 access to the communication medium, in which the first station and each second station in the
7 plurality of second stations have respective identifiers and first and second shared secrets, and
8 for mutual authentication of the first and second stations without exchanging messages carrying
9 said shared secrets via the communication medium, said instructions comprising:
10 logic to receive at the first station requests from the plurality of second stations for
11 initiation of a communication session;
12 logic to produce an array of session random symmetric encryption keys and plurality of
13 sub-arrays of data random symmetric keys at the first station, where each sub-array is
14 subordinated only to a respective session random symmetric encryption key to service a plurality
15 of communication sessions by continuously generating, storing and obliterating the keys in the
16 array and in the sub-arrays; and
17 logic to select, after receiving a request from a particular second station, a session random
18 symmetric encryption key from said array, and to execute a plurality of exchanges of encrypted
19 messages across said communication medium during an authentication stage of the
20 communication session, the exchanges in the plurality of exchanges including at least one
21 message carrying respective data random symmetric keys from the sub-array which is
22 subordinated to the selected session random symmetric encryption key from the first station to
23 the second station and messages respectively returning the data random symmetric keys, or their
24 hashed equivalents, in an encrypted form from the second station to the first station, to mutually
25 authenticate the first station and the second station without exchanging the first and second
26 shared secrets over the communication medium, and to provide one of the data random
27 symmetric keys from the sub-array to the second station as a final symmetric encryption key for
28 use in subsequent communications during said communication session;
29 wherein in at least one of the plurality of exchanges, the respective data random
30 symmetric key, or its hashed equivalent, is encrypted using an intermediate data random
31 symmetric encryption key, where the intermediate data random symmetric encryption key is one

32 of the data random symmetric keys from said sub-array, exchanged in a previous one of the
33 plurality of exchanges; and

34 wherein in at least one of the plurality of exchanges, the respective data random
35 symmetric key, or its hashed equivalent, is veiled in a conversion array using the first shared
36 secret and then, encrypted using one of the data random symmetric keys from said sub-array
37 exchanged in a previous exchange, and

38 in at least one other of the plurality of exchanges, the respective data random symmetric
39 key, or its hashed equivalent, is veiled in a conversion array using the second shared secret and
40 then, encrypted using one of the data random symmetric keys from said sub-array exchanged in a
41 previous exchange.

///