HA 05: Rezension von: Development of a Motion Controlled Robotic Arm (Jiang et al.) (Rohversion)

Das wird behandelt:

In dem Artikel von Jiang et al. " Development of a otion Controlled Robotic Arm" wird ein technisches System vorgestellt, mit welchem ein Roboterarm mit der eigenen Armbewegung gesteuert wird. Dabei wird detailliert auf di technische Umsetzung eingegangen.

Verortung im Forschungsdiskurs:

Eine klare Begründung für den Bau und den Einsatz eines solchen Systems wird in der Einleitung geliefert. ("hazardous materials"). Eine wissenschaftliche Recherche, inwieweit das entwickelte System schon von anderen gebaut wurde oder diverse Vorgänger besitzt, wurde nicht geliefert.

Gelungen:

Die Hardware, bestehend aus dem Arduino Uno, 4 Servomotoren und diversen Sensoren wird eingehend erklärt und die Funktionsweise ist klar verständlich gemacht worden. Auch die Zusammensetzung der Komponenten ist ersichtlich. Zum Beispiel kann man gut nachvollziehen, wie die Stromverorgung asugelegt wurde.

Unverständlich/ Fehlerhaft/ Unverständlich:

Die Software dagegen kommt etwas zu kurz. Es wird erwähnt welche Ein- und Ausgaben der Mikrocontroller hat und wie die Positionierung des Roboters mithilfe des Kompasses abläuft. Dabei bleibt aber unklar, wie die genaue Berechnung der einzelnen Winkel für die Servomotoren abläuft. Dies wird nur mit einem Satz erwähnt ("Additionally, two of the

accelerometer outputs are used to determine the vertical angles

that the bicep and the forearm of the robot should be at.") Diese Info ist sehr wichtig, da sie den Kern der ganzen Arbeit ausmacht und das größte zu lösende Problem darstellt. Des Weiteren wird nicht auf die Theorie eingegangen, welche hinter der Kinematik eines menschlichen Arms steht. Das wäre bezüglich der Auswahl der Servomotoren relevant gewesen und bleibt ungeklärt.

offene Fragen:

Wie funktioniert die Umrechnung der Beschleunigungen des menschlichen Arms auf die Motoren des Roboters?

Jiang, J., McCoy, A., Lee, E., & Tan, L. (2017). Development of a motion controlled robotic arm. *2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON)*, 101–105.