Computer Vision for HCI CSE 5524

Homework Assignment #2

1) Perform Gaussian smoothing on **face.jpeg**. Try with multiple sigma values, starting with larger values (e.g., from 20 to 0.5). When does the face become recognizable?

2) Write a MATLAB function to compute and display the 2D Gaussian derivative masks Gx and Gy for a given sigma (see class notes).

Sigma = 0.6

surf(Gx)

imagesc(Gx)

Sigma = 0.6

surf(Gy)

imagesc(Gy)

surf(Gx)

Sigma=2

imagesc(Gx)

surf(Gy)

Sigma=2

imagesc(Gy)

3) Compute and display the gradient magnitude of an image (search the web for an interesting image; convert to grayscale if necessary; make sure to upload the image with code in your submission)

Original image

Vertical edges are more prominent in the filtered image

Sigma=0.6

imfilter(img, Gx, 'replicate')

Original image

Horizontal edges are more prominent in the filtered image

Sigma=0.6

imfilter(img, Gy, 'replicate')

Original image

Sigma=0.6

Gradient magnitude

4) Threshold and display the magnitude image with different threshold T levels.

T=0.5

T=1.5

5) Compare the above results with the Sobel masks.

Threshold=5

Threshold=10

Threshold = 15.95

Threshold = 16.0

6) Run the MATLAB canny edge detector, edge(Im, 'canny'), on your image and display the default results. How does it compare?

