

UNIVERSIDADE FEDERAL FLUMINENSE

Escola de Engenharia HidroUFF – Laboratório de Hidráulica

	FENÔMENOS DE TRANSPORTE FORMULÁRIO (revisado em 15/06/2022)					Profs.: Gabriel Nascimento (Depto. de Eng. Agrícola e Meio Ambiente) Elson Nascimento (Depto. de Eng. Civil)							
Massa espec	ifica: ρ =	$=\frac{dm}{dV}$		viscosa: so geral)	$\tau_{ij} = \mu \frac{d\theta_{ij}}{dt} = \mu \left(\frac{du_i}{dx_j} + \frac{du_j}{dx_i} \right) \qquad \begin{cases} x_1 = x \\ x_2 = y \\ x_3 = z \end{cases} \begin{cases} u_1 = u \\ u_2 = v \\ u_3 = w \end{cases}$								
Peso espec	ifico: $\gamma =$		Lei de Newton da viscosidade: $\tau = \mu \frac{d\theta_{xy}}{dt} = \mu \frac{du}{dy}$ com perfil linear de distribuição de velocidades: $\tau = \mu \frac{d\theta_{xy}}{dt} = \mu \frac{du}{dy}$								$\tau = \mu \frac{V}{h}$		
Linhas de corrente:	$\frac{dx}{u} = \frac{dy}{v} =$	$=\frac{dz}{w}$	Campo de velocidade: Viscosidade $\vec{V}(x,y,z,t) = u(x,y,z,t)\hat{\imath} + v(x,y,z,t)\hat{\jmath} + w(x,y,z,t)\hat{k}$										
Reynolds: 1	$Re = \frac{\rho VL}{\mu}$	$=\frac{VL}{v}$	Vazão vo	lumétrica	a: $Q = \int_A$	V_{nr}	dA Vazão mássica: $\dot{m}=\int_{A} ho V_{nr}dA$						
Equações integrais para N_a aberturas uniformes (+ saídas - entradas):													
Quantidade de movimento angular: $ \sum \vec{M} = \frac{d}{dt} \left(\int_{VC} \vec{r} \times \vec{V} \rho \ dV \right) + \sum_{i=1}^{N_a} (\pm \vec{r} \times \vec{V} \ \dot{m})_i $ $ \begin{vmatrix} Vaz\~ao: \\ \vec{v} = \rho \ \overrightarrow{V_{nr}A} = \rho Q \end{vmatrix} $													
Energia: $\dot{Q} - \dot{W}_{visc} - \dot{W}_{m\acute{a}q} - \dot{W}_{outros} = \frac{d}{dt} \int_{VC} e \rho d\Psi + \sum_{i=1}^{N_a} \pm \left(\hat{u}_i + \frac{p_i}{\rho_i} + \frac{V_i^2}{2} + gz_i \right) \dot{m}_i$ $H_i = \frac{p_i}{\gamma} + \alpha_i \frac{V_i^2}{2g} + z_i$													
permanente:	$H_1 = H$	$H_2 + h_{turb}$	$h_{bina} - h_{ba}$	$_{omba} + h$	a_{perda} [Berno	ulli:	$H_1 = H_2 =$	$\cdots = I$	$H_n = consta$	nte		
				Equaçõ	es diferen	ciais	:						
					dade: $\vec{v}) = 0$	ade: Rotação: Taxa de dilatação $\vec{\omega} = \frac{1}{2} \nabla \times \vec{V}$ volumétrica: $\frac{1}{\delta \mathcal{V}} \left[\frac{d(\delta \mathcal{V})}{dt} \right] = \nabla$					$= \nabla \cdot \vec{V}$		
Euler:	$\rho \vec{g} - \nabla p =$	$\rho \frac{d\vec{V}}{dt}$	ou		ier-Stokes:			$-\nabla p + \mu \nabla^2 \bar{V}$			ou		
$\rho g_x - \frac{\partial p}{\partial x} = \rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right) \qquad \rho g_x - \frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) = \rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right)$													
$\rho g_{y} - \frac{\partial p}{\partial y} = \mu$ ∂p					- 2		-)	,		$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + \frac{\partial v}{\partial y}$	- '		
$\rho g_z - \frac{\partial p}{\partial z} = \rho$	$\left(\frac{\partial t}{\partial t} + u \frac{\partial u}{\partial x}\right)$	$\frac{1}{c} + v \frac{1}{\partial y} + \frac{1}{c}$	$+ w {\partial z}$	ρg_z -	$-\frac{\partial \rho}{\partial z} + \mu \left(\frac{\partial}{\partial z} \right)$	$\frac{v}{x^2}$ +	$\frac{\partial w}{\partial y^2} +$	$-\frac{\partial w}{\partial z^2}\Big) = \rho\Big($	$\frac{\partial w}{\partial t} + i$	$u\frac{\partial w}{\partial x} + v\frac{\partial w}{\partial y} -$	$+ w \frac{\partial w}{\partial z}$		
				CONVER	SÃO DE UNI	DADE	S						
1" (polegada) = 25,4 mm					$= 0,001 \text{ m}^3$	0,001 m³ 1 b (barril) ≅ 159 L					1 St (Stoke) = 10 ⁻⁴ m ² /s		
1 ft (pé) = 0,3048	galão) ≅ 3,79												
					fluida) $\cong 0.02$		P (Poise) = 0,1 Pa.s 1 Pa.s = 1 kg/m.s						
							CP = 0,001 Pc		API = 141,5	/d - 131,5			
Fluido (20°C e 1atm)	μ (Pa.s)	ρ (kg/m³)	Flui (20°C e	a 1atm)	μ (Pa.s)	ր (kg/	m³)	Fluido (20°C e 1atm)		μ (Pa.s)	ρ (kg/m³)		
Hidrogênio	9,05x10 ⁻⁶	0,0839	Álcool		1,20x10 ⁻³	789		Água do mar		1,07x10 ⁻³	1.025		
Ar	1,80x10 ⁻⁵	1,20	Merc		1,56x10 ⁻³			Glicerin		1,49	1260		
Gasolina	2,92x10 ⁻⁴	680	Óleo SA Óleo SA		1.04x10 ⁻¹	87 80		Gás carbô		1,48x10 ⁻⁵	1,82		
Agua	1,00x10 ⁻³	998	OIEU SA	\∟ 3UVV	2.90x10 ⁻¹	89	<i>,</i> 1	Azeite de	uiiva	84,0x10 ⁻³	890		

Hidrostática:											
$p_2 = p_1 - \int_{z_1}^{z_2} \gamma$	dz Incompres	sível: p	$p_2 = p_1 - \gamma$	$ u\Delta z$	Múltip (n) fluic	olos dos: ¹	$p_2 = p_1 + \sum_{i=1}^n$	$\pm \gamma_i h_i$	Empuxo: $E = \gamma_f V_{sub}$		
Forças so	$y_{CP} = -\gamma \ sen\theta \ I_{xx}/F$			Superfície simétricas:		Retângulo: Triângulo isósceles:		$I_{xx} = bL^3/12$ $I_{xx} = bL^3/36$			
superfícies pla submers	$x_{CP} = -\gamma \ sen\theta \ I_{xy}/F$			$I_{xy} = 0$			Círculo: I_{xx}				
Tubulação c		$F_{eff} = p_i A_i - p_e A_e$ $F_{eff} = \sqrt{2(1 - \cos\theta)} F_{eff}$			Altura metacêntrica:			$\overline{GM} = \frac{I_0}{V_{sub}} - \overline{GC}$			
Transferência de calor e massa:											
1ª Lei da Condução: $\vec{q} = -k\nabla T$ Coord. cartesianas: $\nabla^2 T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}$											
Termodinâmica:	7 177	дТ	Coord.	cilíno	dricas:	,					
$dT = V \cdot kVI + q = \rho c \frac{1}{2}$						Iricas: $\nabla^2 T = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2}$ $\text{Pricas:} \nabla^2 T = \frac{1}{r} \frac{\partial^2 (rT)}{\partial r^2} + \frac{1}{r^2 sen\theta} \frac{\partial}{\partial \theta} \left(sen\theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 sen^2\theta} \frac{\partial^2 T}{\partial \phi^2}$					
Convecções	Convecção	$\frac{T - T_{\infty}}{T_i - T_{\infty}} =$	e^{-t/T_k}	T_k	$=\frac{mc}{\overline{z}}$	Radia	ıção: $q = \varepsilon \sigma T$	Tr	ansf. de massa		
Convecção: $q = \bar{h}(T_c - T_{\infty})$	com capacidade		1	hA _ 17/4	$egin{array}{c c} ar{h}A & & \sigma = 5,67x10^{-8} \ \hline \psi/A_s & \sigma = 5,67x10^{-8} \ \hline \end{array}$ série: $R_{eq} = \sum R_i$ Em par			$\vec{i} = -D\nabla c$			
Resistência	concentrada:	Bi = hI	_{-c} /k _c 1	L_c :	$= \frac{V}{A_S}$	0 - 3,	$m^2 K$	4	$\sum e_i$		
equivalente:	$=-qR_{eq}$ R_c	$_{ond} = \frac{2}{k}$	$R_{conv} = \frac{1}{\bar{h}}$	Em	n série: R_e	$_{q}=\sum R_{i}$	Em paral	elo 1	$R_{eq} = \frac{\sum e_i}{\sum (e_i/R_i)}$		
					ionais						
$Re = \frac{\rho V L}{\mu}$	$C_{D/L} =$	$C_{D/L} = \frac{F_{D/L}}{1/2 \rho V^2 A}$			$=\frac{\bar{h}L_c}{k_c}$	$Nu_L =$	$\frac{\bar{h}L}{k_f}$	Ra = Gr Pr			
$We = \frac{\rho V^2 L}{\sigma}$	$Re = rac{ ho V L}{\mu}$ $Eu = rac{\Delta p}{ ho V^2}$ $We = rac{ ho V^2 L}{\sigma}$ $Ma = rac{V}{c}$		$Fr = \frac{V}{\sqrt{g \ H}}$			T_s-T_∞	$Pr = \frac{\mu}{2}$	$\frac{\iota c_P}{k}$	$St = \frac{Nu}{Re.Pr}$		
		E	scoament	o em	ı tubulaç	ões:					
Darcy- Weisbach	$u^* = \sqrt{\tau_p}$	$u^* = \sqrt{\frac{\tau_p}{\rho}} = \sqrt{\frac{f}{8}} V$			ebrook-\			vamee-Jain:			
	$h_p = L \frac{f}{D} \frac{V^2}{2g}$ $= 10,65 \frac{L Q^{1,85}}{C^{1,85} D^{4,8}}$	$\varepsilon^+ = \frac{\varepsilon u^*}{v}$			$\frac{1}{\sqrt{f}} = -2,0$	$\log\left(\frac{\varepsilon_{1}}{3}\right)$	$\frac{D}{71} + \frac{2,51}{Re\sqrt{f}}$	$f \cong \frac{1}{\log n}$	$\frac{0,25}{g\left(\frac{\varepsilon/D}{3,7} + \frac{5,74}{Re^{0,9}}\right)^2}$		
0.08 0.07									E/D = 0.05		
0.06									0.04 0.03		
0.05									0.02 0.015		
0.04									0.01 0.008		
€ 0.03									0.006		
o.025	± \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								0.004		
le ati									0.002		
Pator de atrico (f)									0.001 0.0008 0.0006		
[©] 0.015								0.0004			
									0.0001		
0.01									5e-05		
0.009 0.008	+								le-05		
0.007	+			1					5e-06 1e-06		
0.006	10 ³ 2 3 4 5 6	B ₁₀ ⁴ 2 3	456 8 ₁₀ 5	2 3	456 8 ₁₀ 6	2 3 4	156 8 ₁₀ 7 2 3	3 456 8 ₁₀			
Número de Reynolds (Re)											