Displaying Uncertainty with Shading

Marta Sommer

15th October 2014

Example 1

Density of N(0,1) distribution

Mixture of N(0,1) and N(4,1) distributions

Density of Exp(1) distribution

Densities of different distributions

Example 1 – Point and Probability Region

Density of N(0,1) distribution

Mixture of N(0,1) and N(4,1) distributions

Density of Exp(1) distribution

Densities of different distributions

Example 1 – Point and Probability Region

Advantages:

- easy to draw and understand,
- 2 space-efficient one dimension.

- hides information, e.g. the peaks of the mixtures of normal distributions,
- 2 gives the perception that the data supports all points within the interval equally.

Example 1 – Boxplot

Density of N(0,1) distribution

Mixture of N(0,1) and N(4,1) distributions

Density of Exp(1) distribution

Densities of different distributions

Example 1 – Boxplot

Advantages:

- easy to draw and understand,
- space-efficient.

- hides information, e.g. the peaks of the mixtures of normal distributions,
- gives the perception that the data supports all points within the interval equally.

Example 1 – Box-Percentile Plot

Density of N(0,1) distribution

Mixture of N(0,1) and N(4,1) distributions

Density of Exp(1) distribution

Densities of different distributions

Example 1 – Box-Percentile Plot

Advantages:

- easy to draw and understand,
- space-efficient two dimensions.

- hides information, e.g. the peaks of the mixtures of normal distributions,
- gives the perception that the data supports all points within the interval equally.

Example 1 – Varying-Width Strips

Density of N(0,1) distribution

Mixture of N(0,1) and N(4,1) distributions

Density of Exp(1) distribution

Densities of different distributions

Example 1 – Varying-Width Strips

Advantages:

- easy to draw and understand,
- 2 space efficient two dimensions.

- hides information, e.g. of the mixtures of normal distributions,
- gives the perception that the data support all points within the interval equally.

Example 1 – Sectioned Density Plots

Density of N(0,1) distribution

Mixture of N(0,1) and N(4,1) distributions

Density of Exp(1) distribution

Densities of different distributions

Example 1 – Sectioned Density Plots

Advantages:

- easy to draw and understand,
- space-efficient two dimensions.

- hides information, e.g. the peaks of the mixtures of normal distributions,
- 2 gives the perception that the data supports all points within the interval equally.

Example 1 – Density Strips

Density of N(0,1) distribution

Mixture of N(0,1) and N(4,1) distributions

Density of Exp(1) distribution

Densities of different distributions

Example 1 – Density Strips

Advantages:

- easy to draw and understand,
- 2 space-efficient one dimension.

- hides information, e.g. the peaks of the mixtures of normal distributions,
- gives the perception that the data support all points within the interval equally.

Example 1 – Summary

Density of N(0,1) distribution

How to Draw Density Strips?

$$R, G, B \in \{0, \dots, 255\}$$

$$(0,0,0)$$
 – black

Shades of grey have equal levels of red, green and blue.

How to Draw Density Strips?

Grey level for a density f() at point x is the nearest integer to:

$$\left(1-\frac{f(x)}{f(x_0)}\right)\cdot 255,$$

where x_0 is the mode.

If color display is available, then:

$$p \times (c_R, c_G, c_B) + (1 - p) \times (255, 255, 255),$$

where $p = \frac{f(x)}{f(x_0)}$ and (c_R, c_G, c_B) is a certain dark colour chosen for the maximum density.

How to Draw Density Strips?

Once again:

$$p \times (c_R, c_G, c_B) + (1 - p) \times (255, 255, 255),$$

where
$$p = \frac{f(x)}{f(x_0)}$$
, $p \in [0, 1]$.

Gamma correction:

$$p^{\gamma} \times (c_R, c_G, c_B) + (1 - p^{\gamma}) \times (255, 255, 255),$$

where $\gamma > 0$.

Setting $\gamma < 1$ will darken the tails of the distribution.

Setting $\gamma > 1$ will shorten the black area around the peak.

Example 2 – Multiple Regression

Example 2 – Multiple Regression

Example 3 – Meta-Analysis

Example 3 – Meta-Analysis

Example 4 – Survival Analysis

Kaplan-Meier estimate of survival

Kaplan-Meier estimate of survival

Example 5 – Forecasting

Implementation in R

R package denstrip.

Functions:

- 0 cistrip()
- ② vwstrip()
- bpstrip()
- sectioned.density()
- 4 denstrip()

References

