

Learning Learning is essential for unknown environments, i.e., when designer lacks omniscience Learning is useful as a system construction method, i.e. expose the agent to reality rather than trying to write it down Learning modifies the agent's decision mechanisms to improve performance in the future.

Learning Element

- Design of learning element for the improvement depends on:
 - what type of *performance element* is used
 - which functional component is to be learned
 - what prior knowledge the agent already has
 - how that component & data are represented
 - what kind of feedback is available
- Example scenarios

Performance element	Component	Representation	Feedback
Alpha-beta search	Eval. fn.	Weighted linear function	Win/loss
Logical agent	Transition model	Successor-state axioms	Outcome
Utility-based agent	Transition model	Dynamic Bayes net	Outcome
Simple reflex agent	Percept-action fn	Neural net	Correct action

.. continued

- Representation and Prior Knowledge
 - Factored representation (a vector of attribute values) and outputs
 - Linear weighted polynomials for utility function
 - Propositional/first-order logical sentences,
 - probabilistic description: e.g. Bayesian Network
 - Types of learning: inductive learning, deductive learning.
 Generalization/Rules ←/→ Specific Examples/Activities
- Types of feedback
 - Supervised learning: correct answers for each instance
 - Learning a function from examples of its inputs/outputs
 - Reinforcement learning: occasional rewards

 Learning how the environment works
 - 2 zearling now the entire
 - Learning patterns in the input with no specific output values
 - E.g.) clustering

... continued

- Design of learning element is dictated by
 - Type of performance element
 - Functional components to be learned:
 - 1. Direct mapping from conditions on the current state to actions
 - 2. A means to infer relevant properties of the world from the percept sequence
 - Information about the way the world evolves and about the results of possible actions the agent can take.
 - 4. Utility information indicating the desirability of the world states
 - 5. Action-value information indicating the desirability of actions
 - Goals that describe classes of states whose achievement maximizes the agent's utility.

Each of these components can be learned from appropriate feedback.

6

Inductive Learning in Supervised Learning

- Simplest form: learn a function from examples
- f is the target function s.t. y = f(x)
- An example is a pair <x, y>, e.g.
- Task of pure inductive inference (or induction):
 find a hypothesis h
 such that h≈f, given a training set of examples
- The fundamental problem of Induction: how good $h \approx f$?

 A good hypothesis will generalize well; i.e. predict unseen examples correctly.
- Classification: when the output y is one of a finite set of values
- Regression: when y is a number, i.e. to find a conditional expectation of y given examples.

8

Inductive Learning Method

- Construct/adjust h to agree with f on training set
 (h is consistent if it agrees with f on all examples)
- Hypothesis space H: the set of hypotheses
- E.g.) curve fitting:

.. continued

- Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)
- E.g.) curve fitting:

- Hypothesis space H: the set of hypotheses
 - How to choose from among multiple consistent hypotheses?
 - Ockham's razor: maximize a combination of consistency and *simplicity*
- Tradeoff between the complex hypotheses that fit the training data well and simpler hypotheses that may generalize better.

.. continued

- Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)
- Hypothesis space H: the set of hypotheses
 - How to choose from among multiple consistent hypotheses?
- E.g.) curve fitting:

Figure 18.1 FILES: figures/xy-plot.eps (Tue Nov 3 16:24:13 2009). (a) Example (x,f(x)) pairs and a consistent, linear hypothesis. (b) A consistent, degree-7 polynomial hypothesis for the same data set. (c) A different data set, which admits an exact degree-6 polynomial fit or an approximate linear fit. (d) A simple, exact sinusoidal fit to the same data set.

..

.. continued

- Possibility/Impossibility of finding a simple, consistent hypothesis depends on the hypothesis space chosen.
 - E.g.) a polynomial function vs. a sinusoidal function.
 - A learning is realizable if the hypothesis space contains the true function; otherwise, unrealizable.
 - To use *prior knowledge* to derive a hypothesis space in which we know the true function must lie.
 - To use the largest possible hypothesis space => computational complexity of learning.

How probable a hypothesis is: Choose h^* that is most probable given the data. $h^* = \operatorname{avgmax} P(h|data) = \operatorname{avgmax} P(data|h) P(h)$

 $h^* = \underset{h \in \mathcal{H}}{\operatorname{argmax}} P(h|data) .= \underset{h \in \mathcal{H}}{\operatorname{argmax}} P(data|h) P(h)$

 A tradeoff b/t the expressiveness of a hypothesis space and the complexity of finding a simple, consistent hypothesis within that space₂

Decision Tree Representations

- Examples described by the attribute values (Boolean, discrete, continuous, etc.) -- Factored representation, Attribute-based representation.
 - Input: an object/situation described by a vector of attributes
 - Output: a decision the predicted output value for the input
- E.g.) situations where I will/won't wait for a table:

Example	Attributes									Target	
_	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0-10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30-60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0-10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	T	Italian	0-10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0-10	F
X_8	F	F	F	T	Some	55	T	T	Thai	0-10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10-30	F
X11	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30-60	T

- Classification of examples is positive (T) or negative (F)
 - Boolean classification

13