II. kolo kategorie Z5

Z5-II-1

Z pravé kapsy kalhot jsem přendal 4 pětikoruny do levé kapsy a z levé kapsy jsem přendal 16 dvoukorun do pravé kapsy. Teď mám v levé kapse o 13 korun méně než v pravé. Ve které kapse jsem měl na začátku víc korun a o kolik? (Bednářová)

Řešení. Příklad řešíme od konce, použijeme k tomu tabulku:

	levá kapsa (L)	pravá kapsa (P)	rozdíl
stav na konci		13	13
přesun 16 dvoukorun z P do L	32	$dlu\check{z}\acute{\imath}m$ 19	51
přesun 4 pětikorun z L do P	12	1	11

Závěr: v levé kapse jsem měl o 11 korun víc než v pravé.

Z5-II-2

Na obrázku vidíte čtverec rozdělený na šest mnohoúhelníků. Všechny tyto mnohoúhelníky mají vrcholy v mřížových bodech čtvercové sítě a největší z nich má obsah $35 \, \mathrm{mm}^2$. Zjistěte obsah celého čtverce. (Bednářová)

ŘEŠENÍ. Nejprve si očíslujeme dané mnohoúhelníky. Číslo 1 bude mít mnohoúhelník v levém horním rohu čtverce, mnohoúhelníky číslujeme po obvodu ve směru hodinových ručiček, číslo 6 bude mít mnohoúhelník uprostřed. Jejich obsahy vyjádřené v počtu čtverečků potom budou:

$$S_1 = 3$$
; $S_2 = 2.5$; $S_3 = 2.5$; $S_4 = 2.5$; $S_5 = 3.5$; $S_6 = 2$.

Největší obsah má mnohoúhelník číslo 5 (v levém dolním rohu čtverce), a to 3,5 čtverečku. Jestliže 3,5 čtverečku má obsah $35\,\mathrm{mm}^2$, potom 7 čtverečků má obsah 70 mm². Odtud 1 čtvereček má obsah $70:7=10\,\mathrm{mm}^2$. Protože celý čtverec na obrázku je složen ze 16 takovýchto čtverečků, má obsah $16\cdot 10=160\,\mathrm{mm}^2$.

Z5-II-3

V čekárně u lékaře sedí Anežka, Boris, Cecilka, Dana a Emil. Vypište všechna možná pořadí, jak je mohla lékařka volat do ordinace, víte-li, že po každém děvčeti šel chlapec, Anežka nešla první a Emil nešel poslední. (Bednářová)

ŘEŠENÍ. Jestliže po každém děvčeti šel chlapec, nemohlo se stát, že by šla dvě děvčata bezprostředně za sebou. Protože v čekárně seděli dva chlapci a tři děvčata, situace musela vypadat takto: dívka, chlapec, dívka, chlapec, dívka. Možnosti jsou tedy následující:

Cecilka,	Boris,	Anežka,	Emil,	Dana
Cecilka,	Boris,	Dana,	Emil,	Anežka
Cecilka,	Emil,	Anežka,	Boris,	Dana
Cecilka,	Emil,	Dana,	Boris,	Anežka
Dana,	Boris,	Anežka,	Emil,	Cecilka
Dana,	Boris,	Cecilka,	Emil,	Anežka
Dana,	Emil,	Anežka,	Boris,	Cecilka
Dana,	Emil,	Cecilka,	Boris,	Anežka

II. kolo kategorie Z9

Z9-II-1

Petr a Michal si v kempinku postavili stany. Když jde Petr nejdříve pro Michala a až potom do jídelny, ujde o 20 metrů víc, než kdyby šel přímo do jídelny. Když jde Michal nejdříve pro Petra a potom do jídelny, ujde o 16 metrů více, než by ušel při cestě přímo do jídelny. Kolik metrů jsou vzdálené stany kamarádů? Který z nich to měl přímou cestou do jídelny dál? O kolik metrů?

(Dillingerová)

ŘEŠENÍ. Označme p vzdálenost (v metrech) Petrova stanu od jídelny, m vzdálenost (v metrech) Michalova stanu od jídelny a s vzdálenost (v metrech) obou stanů. Petrova cesta do jídelny kolem Michalova stanu: s+m metrů, Michalova cesta do jídelny kolem Petrova stanu: s+p metrů, Pro Petrovu cestu platí: s+m=p+20, Pro Michalovu cestu platí: s+p=m+16. Po sečtení obou rovnic dostáváme: 2s+m+p=m+p+36, tedy s=18 metrů, což je odpověď na první otázku.

Odpověď na druhou a třetí otázku získáme po dosazení vzdálenosti mezi stany do jedné z rovnic. Dostaneme: 18+m=p+20, tedy m=p+2. To znamená, že Michalův stan stojí o 2 m dál od jídelny než Petrův.

Z9-II-2

V šachovnici 5×5 složené z pěti částí (viz obr.) vybarvěte všechna políčka pěti různými barvami tak, aby se v každé části, každé řadě a každém sloupci vyskytovala každá použitá barva právě jednou. ($Volfov\acute{a}$)

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

ŘEŠENÍ. Úloha má jediné řešení. Použijeme barvy: červenou, modrou, žlutou, zelenou a černou.

červená políčka:1, 8, 14, 20, 22,modrá políčka:3, 7, 11, 19, 25,žlutá políčka:4, 6, 15, 17, 23,zelená políčka:2, 10, 13, 16, 24,černá políčka:5, 9, 12, 18, 21.

Políčka doplňujeme v tomto pořadí:

 $20,\ 14,\ 25,\ 19,\ 11,\ 7,\ 3,\ 22,\ 8,\ 1,\ 15,\ 6,\ 17,\ 4,\ 23,\ 2,\ 10,\ 13,\ 24,\ 16$

a zbývající políčka jsou černá.

Z9-II-3

Papírový obdélník s rozměry 48 mm a 64 mm jsme přeložili podél úhlopříčky a vznikl pětiúhelník. O kolik mm² má vzniklý pětiúhelník menší obsah než původní obdélník? (Dillingerová)

ŘEŠENÍ. Takto vzniklý pětiúhelník má menší obsah než původní obdélník o obsah trojúhelníku, který je tvořen překrývajícími se částmi původního obdélníku (tento trojúhelník je na následujícím obrázku vybarven).

Abychom zjistili obsah tohoto trojúhelníku (který je rovnoramenný — úhly při straně c jsou shodné), potřebujeme znát délku základny c a příslušnou výšku. Označíme-li $a=48\,\mathrm{mm}$ a $b=64\,\mathrm{mm}$ strany původního obdélníku, pro stranu c bude platit:

$$c^2 = a^2 + b^2,$$

odtud $c = 80 \,\mathrm{mm}$.

Abychom mohli vypočítat výšku, musíme nejdřív zjistit délku ramen. Využijeme k tomu pravoúhlý trojúhelník, jehož jedna odvěsna je a, tedy 48 mm, druhou odvěsnu označíme jako x. Délku přepony lze vyjádřit jako 64-x (sečteme-li délku odvěsny označené jako x a délku přepony, dostaneme délku delší strany původního obdélníku b, viz obrázek). Použitím Pythagorovy věty dostaneme:

$$\sqrt{48^2 + x^2} = 64 - x,$$

$$48^2 + x^2 = 64^2 - 128x + x^2,$$

$$128x = 1792,$$

$$x = 14 \text{ mm}.$$

Ramena trojúhelníku mají tedy délku $64 - 14 = 50 \,\mathrm{mm}$.

Hledanou výšku v trojúhelníku opět vypočítáme pomocí Pythagorovy věty.

Platí, že $v^2+(\frac{80}{2})^2=50^2$, odtud v=30 mm. Obsah tohoto trojúhelníku je $S=\frac{80\cdot 30}{2}=1~200~\mathrm{mm}^2$.

 $Z\acute{a}v\check{e}r$: Vzniklý pětiúhelník má o 1200 mm² menší obsah než původní obdélník.

Z9-II-4

Najděte nejmenší číslo zapsané jen ciframi 0 a 1, které je beze zbytku dělitelné součinem šesti nejmenších přirozených čísel. (Bednářová)

Řešení. Nejprve určíme součin šesti nejmenších přirozených čísel: $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 = 2^4 \cdot 3^2 \cdot 5 = 10 \cdot 2^3 \cdot 3^2$. Hledané číslo n lze tedy napsat jako $n = 10 \cdot a$, kde číslo a je nejmenší číslo zapsané pouze číslicemi 0 a 1 dělitelné číslem $2^3 \cdot 3^2 = 8 \cdot 3^2$. Podle pravidla dělitelnosti číslem 8 má být poslední trojčíslí čísla a dělitelné 8, přitom ale i toto trojčíslí má být tvořeno jen číslicemi 0 a 1. V úvahu tedy připadá jen trojčíslí 000. To znamená, že číslo $a = 1000 \cdot b$, kde b je nejmenší přirozené číslo zapsané jen pomocí 0 a 1 dělitelné číslem $3^2 = 9$, protože $n = 10 \cdot a = 10\,000 \cdot b$ a číslo 3 nedělí $10\,000$. Podle pravidel dělitelnosti číslem 9 má být ciferný součet hledaného čísla b dělitelný b, což znamená, že číslo b je tvořeno pouze devíti číslicemi b. Hledané číslo b je tedy rovno b0.