Designing an end-toend machine learning use case

END-TO-END MACHINE LEARNING

Joshua Stapleton

Machine Learning Engineer

The case study

- Predicting heart disease
- Goal: inform decision-making of cardiologists

¹ Image source: https://www.flaticon.com/free-icons/doctor

The model's role

- Models can inform, but should not make decisions
- Especially important in healthcare

The machine learning lifecycle

Understanding end user requirements

Accuracy Reliability

Security Interpretability

Data collection

- Collect relevant data
 - Private dataset from company
 - Public dataset

- Understand data and context
 - Representation and measurement
 - Potential bias

Let's practice!

END-TO-END MACHINE LEARNING

Exploratory Data Analysis

END-TO-END MACHINE LEARNING

Joshua Stapleton

Machine Learning Engineer

The EDA process

- Examine and analyse the dataset
- Understand the dataset
- Visualize the dataset
- Characterize / classify the dataset

Understanding our data

```
df.head()
```

- Shows first rows of the dataset
- Provides snapshot of data's structure

```
# Print the first 5 columns
print(heart_disease_df.head())
```

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
0	52	1	0.0	125	212.0	0	1.0	168	0	NaN	2	2	3	0
1	53	1	0.0	140	203.0	1	0.0	155	1	NaN	0	0	3	0
2	70	1	0.0	145	174.0	0	1.0	125	1	NaN	0	0	3	0
3	61	1	0.0	148	203.0	0	1.0	161	0	NaN	2	1	3	0
4	62	0	0.0	138	294.0	1	1.0	106	0	NaN	1	3	2	0

```
df.info()
```

- Summarizes features
- Shows non-null entries and feature types

```
# Print out details
print(heart_disease_df.info())
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1076 entries, 0 to 1075
Data columns (total 14 columns):
             Non-Null Count Dtype
# Column
0 age
              1076 non-null int64
              1076 non-null int64
              1023 non-null float64
3 trestbps 1076 non-null
              1021 non-null float64
              1076 non-null
                            int64
             1028 non-null
                            float64
    restecq
    thalach
              1076 non-null
                            int64
              1076 non-null
                            int64
                             float64
    oldpeak
             0 non-null
              1076 non-null
                            int64
              1076 non-null
                            int64
              1076 non-null
                            int64
 13 target 1076 non-null
dtypes: float64(4), int64(10)
memory usage: 117.8 KB
```

Class (im)balance

```
df.value_counts()
```

- Counts number of unique occurrences of each class
- Class: binary presence of heart disease (1/0)
- Important for modeling

```
# print the class balance
print(heart_disease_df['target'].value_counts(normalize=True))
```

```
1 551
```

0 525

Name: target, dtype: int64

Missing values

- Can lead to errors
- Unrepresentative, biased results

```
Use df.isnull()
```

- Checks for null/empty/missing values
- Applied to column or collection of columns

Usage

```
# check whether all values in a column are null
print(heart_disease_df['oldpeak'].isnull().all())
```

True

Outliers

- Anomalous values
 - Measurement errors
 - Data entry errors
 - Rare events
- Can skew model performance
 - Model learns based on extreme values
 - Doesn't capture general data trend
- Sometimes can be useful:
 - Rare values
 - Detection: use boxplot, or IQR

Visualizing our data

Visualizations show:

- General trends
- Missing values and outliers

Other types of visualizations:

- Kernel density estimation
- Empirical cumulative distributions
- Bivariate distributions

```
df['age'].plot(kind='hist')
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.show()
```


¹ https://seaborn.pydata.org/tutorial/distributions.html, https://app.datacamp.com/learn/courses/intermediate-data-visualization-with-seaborn

Goals of EDA

Understand the data

- Are there any patterns?
- Eg: do men have higher rate of heart disease?

Formulate hypotheses

What should we expect from the data?

Detect outliers

- Does any data fall outside what is acceptable?
- Are there incorrect or missing values?

Check assumptions

Does what we expect line up with reality?

Let's practice!

END-TO-END MACHINE LEARNING

Data preparation

END-TO-END MACHINE LEARNING

Joshua Stapleton

Machine Learning Engineer

Data preparation steps

Dataset has:

- Missing values
- Outliers
- Imbalances
- Empty columns
- Duplicates

Data preparation:

- Based on insights from EDA
- Critical for model performance downstream

Null / empty values

- Drop missing or sparse rows/columns
- Null values can break model
- Use df.drop() for columns
- Use df.dropna(how='all') for rows

```
# count missing values
print(df['oldpeak'].isnull().sum())

# Drop empty column(s) and row(s)
columns_dropped = heart_disease_df.drop(['oldpeak'], axis='columns')
rows_and_columns_dropped = columns_dropped.dropna(how='all')
```

Dealing with null / empty values

Data cleaning / dropping values depends on EDA findings

- If given column has too many missing values:
 - Drop column

- If target column has missing values:
 - Drop rows with missing targets
 - Or treat as separate category

Imputation

What to do when there are only a few missing values?

- Imputation:
 - Fill missing values with substitutes
- Strategies
 - Fill with mean or median
 - Use constant or previous value

```
# Calculate the mean cholestrol value
mean_value = heart_disease_df['chol'].mean()

# Fill missing cholestrol values with the mean
heart_disease_df['chol'].fillna(mean_value, inplace=True)
```

Advanced imputation

Advanced techniques:

- K-nearest neighbors
- SMOTE (synthetic minority oversampling technique)

```
from sklearn.impute import KNNImputer

# Initialize KNNImputer
imputer = KNNImputer(n_neighbors=2, weights="uniform")

# Perform the imputation on your DataFrame
df_imputed['oldpeak'] = imputer.fit_transform(df['oldpeak'])
```

Dropping duplicates

- Data must be clean, concise, and rich
- Redundancies are unhelpful
- Duplicates can bias or confuse model
- Look at unique identifiers as a criteria for dropping records / rows.

```
# Drop duplicate rows
heart_disease_duplicates_dropped = heart_disease_column_dropped.drop_duplicates()
```

Let's practice!

END-TO-END MACHINE LEARNING

