### **Regression Examples**



Which function f(x) = mx + b best fits the data?

### How to find f(x)

If our data is  $\{(x_1, y_1), ..., (x_n, y_n)\}$ , then

$$\begin{bmatrix} f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix} = m \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + b \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} = \mathbf{w}$$

We find **w** in the span of  $\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$  and  $\begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$  that is closest to  $\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$ .

Then we use  $\mathbf{w}$  to find m, b.

## The function is f(x) = 0.0128349x + 27.1186



### A quadratic fit example



Which function  $f(x) = ax^2 + bx + c$  best fits the data?

### The process is the same every time

If our data is  $\{(x_1, y_1), ..., (x_n, y_n)\}$ , then

$$\begin{bmatrix} f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix} = a \begin{bmatrix} x_1^2 \\ \vdots \\ x_n^2 \end{bmatrix} + b \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + c \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} = \mathbf{w},$$

We find **w** in the span of  $\begin{bmatrix} x_1^x \\ \vdots \\ x_n^z \end{bmatrix}$ ,  $\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$  and  $\begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$  that is closest to  $\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$ .

Then we use  $\mathbf{w}$  to find a, b, c.

# $f(x) = -421.785x^2 + 1651621x - 1615188632$



#### Iris classification



Irises can be Virginica or Versicolor.

Sepal and petal lengths were measured on 50 Irises of each type.

### Virginica and Versicolor measurements



How do we predict the flower type given sepal/petal length?

### Setting up the problem

The data:  $\{(x_1, y_1), \dots, (x_n, y_n)\}$ . We want f(x, y) such that

$$f(x,y) pprox \begin{cases} 1 & \text{if } (x,y) \text{ is Virginica,} \\ -1 & \text{if } (x,y) \text{ is Versicolor.} \end{cases}$$

Assuming f(x,y) = ax + by + c,

$$\begin{bmatrix} f(x_1, y_1) \\ \vdots \\ f(x_n, y_n) \end{bmatrix} = a \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + b \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} + c \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} = \mathbf{w}$$

We find the **w** in the span closest to  $\begin{bmatrix} \pm 1 \\ \vdots \\ \pm 1 \end{bmatrix}$  and then use **w** to find a, b, c.

$$f(x,y) = -0.760161x + 1.463y - 2.41736$$



The blue line is where f(x,y) = 0.

### A quadratic fit



If  $f(x,y) = a_1x^2 + a_2xy + a_3y^2 + a_4x + a_5y + a_6$ , the green line is f(x,y) = 0.