দশম অধ্যায়

যোগজীকরণ (Integration)

10.1. নির্দিষ্ট যোগজ (ক্ষেত্রফল হিসাবে নির্দিষ্ট যোগজ)

ধরি, y = f(x) সমীকরণটি একটি বক্ররেখা নির্দেশ করে এবং f(x) ফাংশনটি $a \le x \le b$ ব্যবধিতে অবিচ্ছিন্ন। $a \le b$ নির্দিষ্ট এবং b > a.

x=a, x=b বিন্দুতে দুইটি কোটি যথাক্রমে AC ও BE অজ্ঞকন করি। তাহলে OA=a এবং OB=b, যখন O মূলবিন্দু। সূতরাং AB=b-a.

আমরা AB কে x=a+h, a+2h...বিলুতে h দৈর্ঘ্যের n সংখ্যক সমান অংশে বিভক্ত করি যেন nh=b-a বা, b=a+nh হয়।

এখন x=a+h, a+2h.... বিন্দুতে $A_1D_1, A_2D_2....$ কোটি অজ্ঞন করি। তাহলৈ [a,b] ব্যবধির মধ্যে ক্ষেত্রটি কতকগুলি ক্ষুদ্র ক্ষুদ্র আয়তক্ষেত্রে বিভক্ত হলো।

মনে করি, y=f(x) বক্ররেখা এবং x- অক্ষ ও x=a, x=b দুইটি কোটি দ্বারা আবন্ধ ক্ষেত্র S দ্বারা সূচিত হলো।

আবার, নিচের ক্ষুদ্র আয়তক্ষেত্রগুলির (যথা : $ACC_2A_1....$) ক্ষেত্রফলের সমিটি S_1 এবং উপরিভাগের ক্ষুদ্র আয়তক্ষেত্রগুলির (যথা : $AC_1D_1A_1....$) ক্ষেত্রফলের সমিটি S_2 দ্বারা সূচিত হলে স্পর্যত: $S_2 > S > S_1$. যেখানে,

$$S_1 = hf(a) + hf(a+h) + \dots + h(a+\overline{n-1}.h) = h\sum_{r=0}^{n-1} f(a+rh) \dots$$
 (i)

এখন n এর মান খুব বেশি বৃশ্বি করলে অর্থাৎ $n o \infty$ হলে h o 0 হবে এবং (i) থেকে আমরা পাই,

$$S_1 = \lim_{h \to 0} h \sum_{r=0}^{n-1} f(a+rh) = \int_a^b f(x) dx$$

আবার (ii) থেকে পাই,

$$S_2 = \lim_{h \to 0} h \sum_{r=0}^{n-1} f(a+rh) = \int_a^b f(x) \, dx$$
 থেছেছু $\lim_{h \to 0} h f(a) = 0$ এবং $\lim_{h \to 0} h f(b) = 0$

$$\Rightarrow S_1 = S_2 = S.$$
সূতরাং $S = \int_a^b f(x) \, dx = \int_a^b y \, dx$

জ্যামিতিকভাবে, নির্দিষ্ট যোগজ $\int_a^b f(x) \, \mathrm{d}x$ কে y = f(x), x-অক্ষ, x = a এবং x = b দারা আবন্ধ কেত্রের ক্ষেত্রফল নির্দেশ করে। এখানে a কে নিম্নপ্রান্ত এবং b কে উর্ধ্বপ্রান্ত বলা হয়।

10.2. প্রতিঅম্ভরজ্ঞ হিসাবে যোগজ্ঞ

যোগজীকরণ হলো অন্তরীকরণের বিপরীত বা প্রতিঅন্তরজ্ব প্রক্রিয়া (Integration is the inverse process of differentiation). যদি $\frac{d}{dx}$ ϕ $(x) = \phi'$ (x) = f(x) হয়, তবে f(x) এর যোজিত ফল হবে $\phi(x)$. এ বিবৃতিটি আমরা $\int f(x) \ dx = \phi(x)$ সংকেতে লিখি। এখানে \int প্রতীকটি লম্মা S বুঝায়। কারণ এটি Summation শব্দটির প্রথম অক্ষর যা যোগজ্ব প্রক্রিয়ার অন্যদিক। কাজেই এ প্রতীকটি যোগজীকরণের জন্য ব্যবহার করা হয়। ফাংশন f(x)-এর পরে dx দারা x-এর সাপেক্ষে যোগজীকরণ বুঝায়। ফাংশন f(x) কে যোজ্য রাশি (Integrand) বলা হয়। যেমন, $\frac{d}{dx}$ $(\sin x) = \cos x$, কাজেই $\cos x$ এর যোজিত ফল $\sin x$. অর্থাৎ, $\int \cos x \ dx = \sin x$.

10.3. নির্দিষ্ট যোগজ সম্পর্কিত মূল উপপাদ্য

মনে করি, x একটি স্বাধীন চলক এবং ফাংশন f(x) এর জনির্দিন্ট যোগন্ধ F(x). চলক x এর মান a থেকে b- তে পরিবর্তনের ফলে F(x) এর মানের যে পরিবর্তন হয় তাকে জর্থাৎ F(b) - F(a) কে a এবং b সীমার মধ্যে f(x) এর নির্দিন্ট যোগন্ধ বলে এবং একে $\int_a^b f(x) \; \mathrm{d}x$ প্রতীক দ্বারা সূচিত করা হয়।

G(x) যদি f(x) এর যেকোনো প্রতিঅন্তরন্ধ হয় তবে, $\int_a^b f(x) \ \mathrm{d}x = G(b) - G(a)$ এ ফলটি নির্দিষ্ট যোগন্ধ সম্পর্কিত মূল উপপাদ্য নামে পরিচিত। অর্থাৎ $\int_a^b f(x) \ \mathrm{d}x = \left[G\left(x\right)\right]_a^b = G(b) - G(a)$; এখানে a কে নিয়প্রান্ত এবং b কে উর্ম্পপ্রান্ত বলে।

দ্রুফব্য : $\int_a^b f(x) \ \mathrm{d} x$ এর মান নির্ণয়ের জন্য নিচের তিনটি ধাপে সমস্যাটি সমাধান করতে হবে ।

- (i) অনির্দিষ্ট যোগজ $\int f(x) \, \mathrm{d}x = F(x)$ নির্ণয় করতে হবে।
- (ii) F(x) কে তৃতীয় বন্ধনীর মধ্যে দিখে দক্ষিণ পার্শ্বে উপরে উর্ধ্বপ্রান্ত b এবং নিচে নিম্নপ্রান্ত a দিখতে হবে।
- (iii) F(x)-এ x=b এবং x=a বসিয়ে F(b)-F(a) নির্ণয় করতে হবে। এই মানটি নির্ণেয় নির্দিষ্ট যোগন্ধ।

10.4. নির্দিষ্ট যোগজ ব্যবহার করে ক্ষেত্রফল

জনুচ্ছেদ 10.1 থেকে আমরা পেয়েছি, y=f(x) বক্ররেখা, x=a, x=b এবং x—জক্ষ দ্বারা আবন্ধ ক্ষেত্রের ক্ষেত্রফগ = $\int_a^b f(x) \mathrm{d}x = \int_a^b y \, \mathrm{d}x$.

10.4.1. দুইটি বক্ররেখা হারা আবন্ধ ক্লেত্রের ক্লেত্রফল নির্ণয়

মনে করি, $y_1 = f_1(x)$ ও $y_2 = f_2(x)$ দুইটি বক্ররেখা এবং OM = a, ON = b, x = a, x = b বিন্দুতে x-অক্ষের উপর PM ও QN দুইটি লম্ম অংকন করি, যা বক্ররেখা দুইটিকে যথাক্রমে P, R এবং Q, S বিন্দুতে ছেদ করে।

 $y_1 = f_1(x)$, $y_2 = f_2(x)$ বক্ররেখা এবং x = a, x = b বিন্দুতে অংকিত দুইটি কোটি দারা আবন্ধ ক্ষেত্র PRSQ-এর ক্ষেত্রফল নির্ণয় করতে হবে।

মস্তব্য: নির্দিষ্ট যোগজ এবং নির্দিষ্ট যোগজ ব্যবহার করে ক্ষেত্রফল সংক্রান্ত উদাহরণ ও অনুশীলনীর জন্য অনুচ্ছেদ 10.7.1 ও 10.7.2 দুষ্টব্য।

10.5. অনির্দিষ্ট যোগজ

F(x) ফাংশনটির অন্তরজ্ব F'(x)=f(x) অর্থাৎ $\frac{\mathrm{d}}{\mathrm{d}x}\,F(x)=f(x)$ হলে, F(x) ফাংশনটিকে f(x) এর প্রতিঅন্তরজ্ব বা অনির্দিষ্ট যোগজ বলে।

অনির্দিষ্ট যোগজ অনন্য নয়। কারণ x^3 , x^3+4 , x^3+7 এ তিনটি ফাংশনের প্রতিটির অন্তরজ্ঞ $3x^2$. উপরে উল্লিখিত তিনটি ফাংশনই হলো $3x^2$ এর প্রতিঅন্তরজু বা অনির্দিষ্ট যোগজ।

f(x) এর অনির্দিষ্ট যোগন্ধ প্রকাশ করার জন্য f(x) dx চিহ্নটি ব্যবহার করা হয়। সূতরাং $3x^2dx = x^3 + c$, যেখানে c এর মান যথাক্রমে 0, 4, 7. এজন্য অনির্দিষ্ট যোগন্ধীকরণের ক্ষেত্রে সর্বদাই একটি ধ্রবক c অন্তর্ভুক্ত থাকবে।

যোগজীকরণ ধ্বক (Constant of integration)

আমরা জানি , $\frac{\mathrm{d}}{\mathrm{d}x} \phi(x) = \phi'(x) = f(x)$ (ধরি) এবং যে–কোন ধ্রুবক c এর জন্য $\frac{\mathrm{d}}{\mathrm{d}x} \left\{ \phi(x) + c \right\} = f(x)$. কাজেই $\int f(x) \, \mathrm{d}x = \phi(x) + c$

c কে যোগজীকরণের ধ্রুক (constant of integration) বলা হয়।

नक्षीय है
$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\int f(x) \, \mathrm{d}x \right] = \frac{\mathrm{d}}{\mathrm{d}x} \left[\phi(x) + c \right] = \phi'(x) + 0 = f(x) \Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left[\int f(x) \, \mathrm{d}x \right] = f(x)$$

দ্রুক্টব্য ঃ অনির্দিষ্ট যোগজের ক্ষেত্রে যোগজীকরণ ধ্রুবক c অবশ্যই লিখতে হবে। সুবিধার জন্য উত্তরমালাতে ধ্রুবক বাদ দেয়া হয়েছে।

10.5.1. যোগজের ধর্ম :

(1) যে কোন ধ্বক a এর জন্য
$$\int a \phi(x) dx = a \int \phi(x) dx$$

প্রমাণ ঃ থেহেত্
$$\frac{\mathrm{d}}{\mathrm{d}x} \Big[\mathrm{a} \int \phi(x) \, \mathrm{d}x \Big] = \mathrm{a} \, \frac{\mathrm{d}}{\mathrm{d}x} \Big[\int \phi(x) \, \mathrm{d}x \Big] = \mathrm{a} \, \phi(x)$$
 সূতরাং $\int \mathrm{a} \, \phi(x) \, \mathrm{d}x = \mathrm{a} \int \phi(x) \, \mathrm{d}x$

(2)
$$\int [\phi(x) + \psi(x) + f(x) + ...] dx = \int \phi(x) dx + \int \psi(x) dx + \int f(x) dx + ...$$

প্রমাণ :
$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\int \phi(x) \, \mathrm{d}x + \int \psi(x) \, \mathrm{d}x + \int f(x) \, \mathrm{d}x + \ldots \right]$$

$$= \frac{\mathrm{d}}{\mathrm{d}x} \int \phi(x) \, \mathrm{d}x + \frac{\mathrm{d}}{\mathrm{d}x} \int \psi(x) \, \mathrm{d}x + \frac{\mathrm{d}}{\mathrm{d}x} \int f(x) \, \mathrm{d}x + \dots = \phi(x) + \psi(x) + f(x) + \dots$$

খতএব,
$$\int [\phi(x) + \psi(x) + f(x) + ...] dx = \int \phi(x) dx + \int \psi(x) dx + \int f(x) dx + ...$$

चामता जानि,
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{x^{n+1}}{n+1} \right) = (n+1) \frac{x^n}{n+1} = x^n$$
 $\therefore \int x^n \, \mathrm{d}x = \frac{x^{n+1}}{n+1} + c \cdot [$ यथन $n \neq -1]$

কতিপয় ফাংশনের অস্তরজ্ঞ ও প্রতিঅস্তরজ্ঞ নিচে প্রদত্ত হলো :

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(x) = 1, \frac{d}{dx}(c) = 0.$$

$$\frac{d}{dx}(\ln x) = \frac{1}{x}, (x > 0)$$

$$\frac{d}{dx}(e^{mx}) = me^{mx}$$

$$\frac{d}{dx}(e^x) = e^x$$

$$\frac{d}{dx}(a^x) = a^x. \ln a$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\sin mx) = m\cos mx$$

$$\frac{d}{dx}(\cos mx) = -m\sin mx$$

$$\frac{d}{dx}(\cos mx) = -m\sin mx$$

$$\frac{d}{dx}(\cot x) = \sec^2 x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\Rightarrow \int x^n dx = \frac{x^{n+1}}{n+1} + c \text{ [ANFI } n \neq -1]$$

$$\Rightarrow \int dx = x + c$$

$$\Rightarrow \int \frac{dx}{x} = \ln x + c$$

$$\Rightarrow \int e^{mx} dx = \frac{1}{m} e^{mx} + c$$

$$\Rightarrow \int e^{x} dx = e^{x} + c$$

$$\Rightarrow \int a^{x} dx = a^{x} / \ln a + c$$

$$\Rightarrow \int \cos x dx = \sin x + c$$

$$\Rightarrow \int \sin x dx = -\cos x + c$$

$$\Rightarrow \int \cos mx dx = \frac{1}{m} \sin mx + c$$

$$\Rightarrow \int \sin mx dx = -\frac{1}{m} \cos mx + c$$

$$\Rightarrow \int \sec^2 x dx = \tan x + c$$

$$\Rightarrow \int \csc^2 x dx = -\cot x + c$$

$$\Rightarrow \int \sec^2 x dx = -\cot x + c$$

$$\Rightarrow \int \sec^2 x dx = -\cot x + c$$

$$\Rightarrow \int \sec^2 x dx = -\cot x + c$$

$$\Rightarrow \int \sec^2 x dx = -\cot x + c$$

$$\Rightarrow \int \sec^2 x dx = -\cot x + c$$

$$\Rightarrow \int \csc^2 x dx = -\cot x + c$$

= 109 an = In logae

উচ্চতর গণিত প্রথম পত্র

$$\frac{d}{dx}(\csc x) = -\csc x \cot x,$$

$$\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}}$$

$$\Rightarrow \int \csc x \cot x \, dx = -\csc x + c$$

$$\Rightarrow \int \frac{dx}{\sqrt{1 - x^2}} = \sin^{-1} x + c$$

$$\Rightarrow \int \frac{dx}{1 + x^2} = \tan^{-1} x + c$$

$$\Rightarrow \int \frac{dx}{1 + x^2} = \tan^{-1} x + c$$

$$\Rightarrow \int \frac{dx}{1 + x^2} = \tan^{-1} x + c$$

$$\Rightarrow \int \frac{dx}{1 + x^2} = \cot^{-1} x + c$$

$$\Rightarrow \int \frac{1}{\sqrt{1 - x^2}} = -\cos^{-1} x + c$$

$$\Rightarrow \int \frac{1}{1 + x^2} = -\cot^{-1} x + c$$

$$\Rightarrow \int \frac{1}{1 + x^2} = -\cot^{-1} x + c$$

$$\Rightarrow \int \frac{1}{x \sqrt{x^2 - 1}} = -\csc^{-1} x + c$$

$$\Rightarrow \int \frac{1}{x \sqrt{x^2 - 1}} = -\csc^{-1} x + c$$

$$\Rightarrow \int \frac{1}{x \sqrt{x^2 - 1}} = -\csc^{-1} x + c$$

$$\Rightarrow \int \frac{1}{x \sqrt{x^2 - 1}} = -\csc^{-1} x + c$$

$$\Rightarrow \int \frac{1}{x \sqrt{x^2 - 1}} = -\csc^{-1} x + c$$

$$\Rightarrow \int \frac{1}{x \sqrt{x^2 - 1}} = -\csc^{-1} x + c$$

$$\Rightarrow \int \frac{1}{x \sqrt{x^2 - 1}} = -\csc^{-1} x + c$$

$$\Rightarrow \int \frac{1}{x \sqrt{x^2 - 1}} = -\csc^{-1} x + c$$

সমস্যা ও সমাধান

উদাহরণ 1.
$$\int 5x^7 dx = \frac{5x^{7+1}}{7+1} + c = \frac{5}{8}x^8 + c$$
, যেখানে c যোগজীকরণ ধ্বক।
উদাহরণ 2.
$$\int (ax^3 + bx^2 + cx) dx$$
 নির্ণয় কর
সমাধান $x = \frac{5x^{7+1}}{4} + \frac{5x^3}{3} + \frac{5x^2}{2} + c$ নের্থানে $x = \frac{5x^3}{4} + \frac{5x^3}{3} + \frac{5x^2}{2} + c$ ভিদাহরণ 3.
$$\int (3\cos x - 5\sec^2 x) dx$$
 নির্ণয় কর
সমাধান $x = \frac{3\cos x}{4} + \frac{3\cos x}$

প্রশালা 10.1

অনির্দিউ যোগজগুলি নির্ণয় কর ঃ

$$1. \int 5 x^9 dx.$$

4.
$$(4 \sin x + 3 \cos x) dx$$
.

7.
$$\int \left(x^2 + \frac{1}{x^2}\right)^2 dx$$
.

$$10.\int \frac{3 + 4x^2 + 5x^4}{\sqrt[3]{x}} \, \mathrm{d}x.$$

13.
$$\int \sqrt{1-\sin 2x} \, dx.$$

16.
$$\int \sqrt{1-\cos 2x} \, dx$$
. [5. '3\]

$$18. \int \frac{1-\cos 2x}{1+\cos 2x} \, \mathrm{d}x.$$

$$21. \int (\tan x + \cot x)^2 \, \mathrm{d}x.$$

$$23. \int \frac{\sin x - \csc x}{\tan x} \, \mathrm{d}x.$$

$$25. \int \left(\sqrt{x} + \frac{1}{\sqrt[3]{x}}\right) \mathrm{d}x.$$

28.
$$\int \cos^2 x \, dx \cdot [v] \cdot (v)$$

31.
$$\int_{0}^{2} 3\sin^{2}\frac{\theta}{2} d\theta$$

34.
$$\int (x-2)^3 dx$$
.

$$2. \int \frac{\mathrm{d}x}{6} \, \cdot$$

$$5. \int \frac{\mathrm{d}x}{x^4} \, \cdot$$

6.
$$\int (1 + x^{-1} + x^{-2}) \, dx. \, [\mathfrak{A}, '0\delta]$$
9.
$$\int \frac{x^3 + 4}{x^2} \, dx.$$

$$8. \int \frac{x^3 - 1}{x - 1} \, \mathrm{d}x.$$

11.
$$\int (x^3 - 5e^x + 8) dx$$
. 12. $\int \frac{dx}{1 - \cos 2x}$

12.
$$\int_{\frac{1}{1-\cos^2 2x}}^{x^2} dx$$

14.
$$\int \frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx$$
. 15.
$$\int \frac{dx}{1 + \cos 2x}$$
 [4. 'ob]

$$15. \int \frac{\mathrm{d}x}{1 + \cos 2x} \quad [\mathbf{\Phi}. \text{ 'ob'}]$$

17.
$$\int (\sec x \tan x - 3 \csc^2 x) dx.$$

19.
$$\int \tan^2 x \, dx$$
. [v]. 'oe] 20. $\int \sec x(\sec x + \tan x) \, dx$.

22.
$$\sec^2 x \csc^2 x \, dx$$
. [ति. '১০; क्. ति. '১১; ज. '১২; क्. '১৩]

24.
$$\int \csc x (\csc x - \cot x + \sin x) dx$$
.

$$26. \int \frac{\cos \theta - \cos 2\theta}{1 - \cos \theta} d\theta$$

26.
$$\int \frac{\cos \theta - \cos 2\theta}{1 - \cos \theta} d\theta.$$
 27.
$$\int \frac{1}{x} \left(x + \frac{1}{x} \right) dx. [v]. [v].$$

29.
$$\int \frac{d\theta}{5 \tan^2 \theta}$$
 30.
$$\int \frac{\cos \theta}{\sin^2 \theta} d\theta$$

32.
$$\int \sin x^{\circ} dx \, \left[\overline{b}, \, ' \circ 8 \right] \qquad 33. \int \frac{\tan x}{\cot x} dx.$$

32.
$$\int \sin x^{\circ} dx$$
 [5. of

$$30. \int \frac{\cos \theta}{\sin^2 \theta} \, d\theta$$

$$33. \int \frac{\tan x}{\cot x} \, \mathrm{d}x.$$

35.
$$\int \sqrt{x}(x-3) dx$$
. 36. $\int x(1+\sqrt{x}) dx$. [4. '08]

1.
$$\frac{1}{2}x^{10}$$
. 2. $\frac{1}{6}x$. 3. t. 4. $3 \sin x - 4 \cos x$. 5. $-\frac{1}{3x^3} \cdot 6 \cdot x + \ln x - \frac{1}{x}$. 7. $\frac{1}{5}x^{5} - \frac{1}{3x^3} + 2x$.

8.
$$\frac{1}{3}x^3 + \frac{1}{2}x^2 + x$$
. **9.** $\frac{1}{2}x^2 - \frac{4}{x} \cdot 10$. $\frac{9}{2}x^{2/3} + \frac{3}{2}x^{8/3} + \frac{15}{14}x^{14/3}$. 11 . $\frac{1}{4}x^4 - 5e^x + 8x$. 12 . $-\frac{1}{2}\cot x$.

13.
$$\sin x + \cos x$$
. 14. x 15. $\frac{1}{2} \tan x$. 16. $-\sqrt{2} \cos x$. 17. $\sec x + 3 \cot x$. 18. $\tan x - x$.

19.
$$\tan x - x$$
. 20. $\tan x + \sec x$. 21. $\tan x - \cot x$. 22. $\tan x - \cot x$. 23. $\sin x + \csc x$.

24.
$$-\cot x + \csc x + x$$
 25. $\frac{2}{3}x^{3/2} + \frac{3}{2}x^{2/3}$. **26.** $\theta + 2\sin \theta$. **27.** $x - \frac{1}{x}$.

28.
$$\frac{1}{2}x + \frac{1}{4}\sin 2x$$
. **29.** $\frac{-1}{5}(\cot \theta + \theta)$ **30.** $-\csc \theta$ **31.** $\frac{3}{2}(\theta - \sin \theta)$ **32.** $\frac{-180}{\pi}\cos \frac{\pi x}{180}$

33.
$$\tan x - x$$
 34. $\frac{1}{4}x^4 - 2x^3 + 6x^2 - 8x$ 35. $\frac{2}{5}x^{5/2} - 2x^{3/2}$ 36. $\frac{x^2}{2} + \frac{2}{5}x^{5/2}$

10.6. অনির্দিষ্ট যোগজ নির্ণয়

[প্রতিস্থাপন, আংশিক ভগ্নাংশ, অংশায়ন Integration by parts সূত্রের সাহায্যে]

প্রতিস্থাপন পম্পতিতে (Method of substitution) যোগজ নির্ণুয় ঃ

প্রমাণ কর : 1.
$$\int_{f(x)}^{f'(x)} dx = \ln |(f(x))|$$
.

$$2. \int \sin mx \, dx = -\frac{1}{m} \cos mx + c.$$

3.
$$\int \cos mx \, dx = \frac{1}{m} \sin mx + c$$
. 4. $\int e^{mx} \, dx = \frac{1}{m} e^{mx} + c$.

$$4. \int e^{mx} dx = \frac{1}{m} e^{mx} + c$$

1.
$$\int \frac{f'(x)}{f(x)} dx = \int \frac{dz}{z} = \ln z = \ln |f(x)|.$$

$$\forall \overline{A}, f(x) = z \quad \overline{A}, f'(x) dx = dz$$
2.
$$\int \sin mx dx$$

$$\forall \overline{A}, mx = z \Rightarrow m dx = dz \Rightarrow dx$$

ধরি, m
$$x = z \Rightarrow m dx = dz \Rightarrow dx = \frac{1}{m} dz$$

$$= \frac{1}{m} \int \sin z \, dz = \frac{1}{m} (-\cos z) + c = -\frac{1}{m} \cos mx + c.$$

3.
$$\int \cos mx \, dx$$

ধরি, m
$$x = z \Rightarrow m dx = dz \Rightarrow dx = \frac{1}{m} dz$$

$$= \frac{1}{m} \int \cos z \, dz = \frac{1}{m} \sin z + c = \frac{1}{m} \sin mx + c.$$

4.
$$\int e^{mx} dx$$

ধরি, m
$$x = z \Rightarrow m dx = dz \Rightarrow dx = \frac{1}{m} dz$$

$$=\frac{1}{m}\int e^{z} dz = \frac{1}{m}e^{z} + c = \frac{1}{m}e^{mx} + c.$$

লক্ষণীয় ঃ অন্তরীকরণে
$$x$$
 এর সহগ \mathbf{m} ঘারা গুণ এবং যোগজীকরণে \mathbf{m} ঘারা ভাগ করতে হয়। যেমন $3\frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{e}^{\mathrm{m}x}\right) = \mathrm{m}\;\mathrm{e}^{\mathrm{m}x} \Rightarrow \int \mathrm{e}^{\mathrm{m}x}\;\mathrm{d}x = \frac{1}{\mathrm{m}}\,\mathrm{e}^{\mathrm{m}x} + c.$

উদাহরণ 1. $(1-2x)^4 dx$ নির্ণয় কর।

সমাধান ঃ ধরি, 1-2x=z বা, -2dx=dz বা, $dx=-\frac{dz}{2}$

$$\therefore \int (1-2x)^4 dx = -\frac{1}{2} \int (z)^4 = -\frac{1}{2} \cdot \frac{z^5}{5} + c = -\frac{1}{10} (1-2x)^5 + c.$$

উদাহরণ 2. sin³ 2x dx निर्गय कत।

সমাধান ঃ
$$\int \sin^3 2x \ dx = \frac{1}{4} \int (3\sin 2x - \sin 6x) dx \left[\sin^3 A = \frac{1}{4} \left(3\sin A - \sin 3A \right)$$
 প্রয়োগ করে $\right]$

$$= \frac{1}{4} \left(\frac{-3\cos 2x}{2} + \frac{\cos 6x}{6} \right) + c = -\frac{3}{8} \cos 2x + \frac{1}{24} \cos 6x + c$$

উদাহরণ 3.
$$\int \sin 3x \cos 5x \, dx$$
 নির্ণয় কর।

সমাধান ঃ sin 3x cos 5x dx

$$= \frac{1}{2} \int 2\cos 5x \sin 3x \, dx = \frac{1}{2} \int \{ \sin(5x + 3x) - \sin(5x - 3x) \} dx$$

$$= \frac{1}{2} \int (\sin 8x - \sin 2x) dx = \frac{1}{2} \left(-\frac{\cos 8x}{8} + \frac{\cos 2x}{2} \right) + c = -\frac{1}{16} \cos 8x + \frac{1}{4} \cos 2x + c.$$

২৭৯

উদাহরণ 4.
$$\int \frac{\mathrm{d}x}{\sqrt{x+1} + \sqrt{x-1}}$$
 নির্ণয় কর।

[中. '১0]

नमाशान :
$$\int \frac{\left(\sqrt{x+1} - \sqrt{x-1}\right) \mathrm{d}x}{\left(\sqrt{x+1} + \sqrt{x-1}\right) \left(\sqrt{x+1} - \sqrt{x-1}\right)} = \int \frac{\left(\sqrt{x+1} - \sqrt{x-1}\right) \mathrm{d}x}{(x+1) - (x-1)}$$
$$= \frac{1}{2} \int \{(x+1)^{1/2} - (x-1)^{1/2}\} \ \mathrm{d}x = \frac{1}{2} \left\{ \frac{(x+1)^{3/2}}{3/2} - \frac{(x-1)^{3/2}}{3/2} \right\} + c$$
$$= \frac{1}{3} \{(x+1)^{3/2} - (x-1)^{3/2}\} + c$$

연<u>국</u>মালা 10.2

নিম্নলিখিত অনির্দিউ যোগজগুলো নির্ণয় কর :

1.
$$\int (5x+2)^3 dx$$

2.
$$\int (2-7x)^4 dx$$

3.
$$\int \sqrt{1-x} \, dx$$
.

4.
$$\int \frac{\mathrm{d}x}{\sqrt{2-3x}}$$

$$5. \int \frac{\mathrm{d}x}{(1-x)^2}$$

$$6. \int \frac{\cos 2x \, dx}{\sqrt{1 - \sin 2x}}$$

7. (i)
$$\int \cos \left(5x + \frac{\pi}{3}\right) dx$$

(ii)
$$\int \sin 5x \, dx$$

8. (i)
$$\int \sec^2 (ax + b) dx$$

(ii)
$$\int \sec^2 x \tan^2 x \, dx$$
.

9.
$$\int \cos^2 2x \, dx$$

10.
$$\int \frac{e^{5x} + e^{3x}}{e^x + e^{-x}} dx$$

$$11.\int \frac{(x^2-1)^2}{\sqrt{x}} \,\mathrm{d}x.$$

12. (i)
$$\int \frac{(e^x + 1)^2}{\sqrt{e^x}} dx$$
. (ii) $\int \frac{e^x + 1}{\sqrt{e^x}} dx$

(ii)
$$\int \frac{e^x + 1}{\sqrt{e^x}} \, \mathrm{d}x$$

13. (i)
$$\int_{3}^{2} \sin^{2} x \, dx$$
. (ii) $\int_{4}^{4} \sin^{3} x \, dx$.

(ii)
$$\int 4 \sin^3 x \, dx$$

14. (i)
$$\int \sin^4 x \, dx$$
. [奏・'oを]

(ii)
$$\int \cos^4 x \, dx$$
. [Fig. 'or] 15. (i) $\int 4 \sin x \cos x dx$.

15. (i)
$$\int 4 \sin x \cos x dx$$
.

(ii)
$$\int 5\sin 3x \cos 2x \, dx$$

(ii)
$$\int 5\sin 3x \cos 2x \, dx$$
. (iii) $\int \cos ax \cos bx \, dx$, $(a > b)$ (iv) $\int \sin 2x \sin 4x \, dx$. (ii) $\int \cos ax \cos bx \, dx$, $(a > b)$ (iv) $\int \sin 2x \sin 4x \, dx$.

(v)
$$\int \sin 5x \sin 3x \, dx \, \mathbb{R}$$
. 5. 'All 16. (i) $\int \sin 5x \, dx \, \mathbb{R}$

(v)
$$\int \sin 5x \sin 3x \, dx$$
. F. '>1 16. (i) $\int \sin^2 x \cos 2x \, dx$. (ii) $\int (2\cos x + \sin x) \cos x \, dx$. [v]. 'oo [v]. 'oo [v]. 'oo [v]. 'oo [v]. 'oo [v]. 'oo

17.
$$\int \sin^2 x \cos^2 x \, dx$$
. [5. '04; 51. 41. '39]

18.
$$\int \sqrt{1+\sin x} \, dx.$$

19.
$$\int \frac{1}{1+\sin x} dx$$
 [5. '30; 4. '30] 20

19.
$$\int \frac{1}{1+\sin x} dx$$
 [5. '>o; $\overline{4}$. '>o] 20. $\int \frac{dx}{1+\cos x}$. [7. '>>; $\overline{4}$. '>o; $\overline{4}$

23.
$$\int \sin^2 3\theta \ d\theta$$
.

$$24. \int \frac{1+e^{5x}}{\sqrt{e^{3x}}} dx.$$

25.
$$\int \frac{2x+1}{2x+3} dx$$
.

26.
$$\int \frac{dx}{\sqrt{x+1} + \sqrt{x+2}}$$

27.
$$\int \frac{dx}{\sqrt{2x+5}-\sqrt{2x-3}}$$
 28. $\int \frac{dx}{\sqrt{x+2}-\sqrt{x}}$

$$28. \int \frac{\mathrm{d}x}{\sqrt{x+2} - \sqrt{x}}$$

উত্তরমালা

1.
$$\frac{1}{20}(5x+2)^4$$
 2. $-\frac{1}{35}(2-7x)^5$ 3. $-\frac{2}{3}(1-x)^{\frac{3}{2}}$ 4. $-\frac{2}{3}\sqrt{2-3x}$ 5. $\frac{1}{1-x}$ 6. $-\sqrt{1-\sin 2x}$

7.
$$\frac{1}{5}\sin\left(5x+\frac{\pi}{3}\right)$$
. 8. (i) $\frac{1}{a}\tan\left(ax+b\right)$ (ii) $\frac{1}{3}\tan^3 x$ 9. $\frac{1}{2}\left(x+\frac{1}{4}\sin 4x\right)$ 10. $\frac{1}{4}e^{4x}$.

11.
$$\frac{2}{9}x^{9/2} - \frac{4}{5}x^{5/2} + 2\sqrt{x}$$
. 12. (i) $\frac{2}{3}e^{\frac{3}{2}x} + 4e^{\frac{1}{2}x} - 2e^{-\frac{1}{2}x}$. (ii) $2e^{\frac{1}{2}x} - 2e^{-\frac{1}{2}x}$

13. (i)
$$\frac{3}{2} \left(x - \frac{\sin 2x}{2} \right)$$
 (ii) $\frac{\cos 3x}{3} - 3\cos x$. 14. (i) $\frac{1}{4} \left(\frac{3x}{2} - \sin 2x + \frac{1}{8} \sin 4x \right)$

(ii)
$$\frac{1}{4} \left(\frac{3}{2}x + \sin 2x + \frac{1}{8}\sin 4x \right)$$
 15. (i) $-\cos 2x$ (ii) $-\frac{5}{2} \left(\frac{\cos 5x}{5} + \cos x \right)$

(iii)
$$\frac{1}{2} \left[\frac{\sin{(a+b)x}}{a+b} + \frac{\sin{(a-b)x}}{a-b} \right]$$
 (iv) $\frac{1}{2} \left(\frac{\sin{2x}}{2} - \frac{\sin{6x}}{6} \right)$. (v) $\frac{1}{2} \left(\frac{\sin{2x}}{2} - \frac{\sin{8x}}{8} \right)$

16. (i)
$$\frac{1}{4} \sin 2x - \frac{1}{4}x - \frac{1}{16} \sin 4x$$
. (ii) $x + \frac{1}{2} \sin 2x - \frac{1}{4} \cos 2x$

17.
$$\frac{1}{32}(4x - \sin 4x)$$
 18. $-2\cos\frac{x}{2} + 2\sin\frac{x}{2}$ 19. $\tan x - \sec x$ 20. $\tan\frac{x}{2}$ 21. $\frac{-1}{3}\cot\frac{3x}{2}$

22.
$$\frac{-5}{14}\cos 7x + \frac{5}{2}\cos x$$
. **23.** $\frac{1}{2}\left(\theta - \frac{1}{6}\sin 6\theta\right)$ **24.** $\frac{-2}{3}e^{-3x/2} + \frac{2}{7}e^{7x/2}$. **25.** $x - \ln\left|(2x + 3)\right|$.

26.
$$\frac{2}{3}(x+2)^{3/2} - \frac{2}{3}(x+1)^{3/2}$$
. **27.** $\frac{1}{24}[(2x+5)^{3/2} + (2x-3)^{3/2}]$ **28.** $\frac{1}{3}[(x+2)^{3/2} + x^{3/2}]$

10.7. অনির্দিউ যোগজ নির্ণয়ের বিভিন্ন কৌশল

1.
$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = -\int \frac{-\sin x}{\cos x} \, dx = -\int \frac{dz}{z} \qquad | \qquad \text{AfR}, \quad z = \cos x \\ \Rightarrow dz = -\sin x \, dx$$
$$= -\ln|z| + c = -\ln|\cos x| + c = \ln\left(\frac{1}{\cos x}\right)| + c = \ln|\sec x| + c.$$

2. তলুগ
$$\int \cot x \, dx = \ln |\sin x| + c = -\ln |\csc x| + c.$$

3.
$$\int \csc x \, dx = \int \frac{dx}{\sin x} = \int \frac{dx}{2 \sin \frac{x}{2} \cos \frac{x}{2}}$$

$$= \int \frac{\frac{1}{2} \sec^2 \frac{x}{2} dx}{\tan \frac{x}{2}} \qquad \left[\text{লব ও হরকে } \sec^2 \frac{x}{2} \text{ দারা গুণ করে} \right]$$

$$= \int \frac{dz}{z} \; ; \; [\tan \frac{x}{2} = z \, \sqrt[4]{\pi} \, c \, \frac{1}{2} \sec^2 \frac{x}{2} \, dx = dz \;] = \ln |z| + c = \ln |\tan \frac{x}{2}| + c$$

4. ১ম পদ্ধতি :
$$\int \sec x \, dx = \int \frac{dx}{\cos x} = \int \frac{dx}{\sin \left(\frac{\pi}{2} + x\right)}$$

$$= \int \frac{dx}{2 \sin \left(\frac{\pi}{4} + \frac{x}{2}\right) \cos \left(\frac{\pi}{4} + \frac{x}{2}\right)} \quad \left[\because \sin 2A = 2 \sin A \cos A\right]$$

$$= \int \frac{\frac{1}{2} \sec^2 \left(\frac{\pi}{4} + \frac{x}{2}\right) dx}{\tan \left(\frac{\pi}{4} + \frac{x}{2}\right)} \quad \left[$$
হর ও লবকে $\sec^2 \left(\frac{\pi}{4} + \frac{x}{2}\right)$ দারা গুণ করে $\right]$

धित्र,
$$z = \tan\left(\frac{\pi}{4} + \frac{x}{2}\right) \Rightarrow dz = \frac{1}{2}\sec^2\left(\frac{\pi}{4} + \frac{x}{2}\right)dx$$

$$\therefore \int \sec x \, dx = \int \frac{dz}{z} = \ln |z| + c = \ln \left| \tan \left(\frac{\pi}{4} + \frac{x}{2} \right) \right| + c$$

২য় পন্ধতি : $\int \sec x \, dx = \int \frac{\sec x (\sec x + \tan x) \, dx}{\sec x + \tan x}$ [হর ও লবকে (sec x+tan x) দারা পুণ করে]

ধরি, $z = \sec x + \tan x \implies dz = (\sec x \tan x + \sec^2 x) dx = \sec x (\sec x + \tan x) dx$

$$\therefore \int \sec x \, dx = \int \frac{dz}{z} = \ln |z| + c = \ln |(\sec x + \tan x)| + c$$

সুতরাং
$$\int \sec x \, dx = \ln \left| \tan \left(\frac{\pi}{4} + \frac{x}{2} \right) \right| + c = \ln \left| (\sec x + \tan x) \right| + c$$

$$5. \int \frac{\mathrm{d}x}{a^2 + x^2} = \int \frac{a \sec^2 \theta}{a^2 \sec^2 \theta} = \frac{1}{a} \int \mathrm{d}\theta = \frac{1}{a} \theta + c = \frac{1}{a} \tan^{-1} \frac{x}{a} + c$$

$$\Rightarrow \mathrm{d}x = a \sec^2 \theta \, \mathrm{d}\theta$$

অনুসিম্পান্ত
$$2 \int \frac{\mathrm{d}x}{1+x^2} = \tan^{-1}x + c$$

$$6. \int \frac{\mathrm{d}x}{a^2 - x^2} = \frac{1}{2a} \int \left\{ \frac{1}{a + x} + \frac{1}{a - x} \right\} \mathrm{d}x = \frac{1}{2a} \left\{ \int \frac{\mathrm{d}x}{a + x} + \int \frac{\mathrm{d}x}{a - x} \right\}$$
 [আংশিক ভগ্নাংশে প্রকাশ করে]
$$= \frac{1}{2a} \left\{ \ln \left| (a + x) \right| - \ln \left| (a - x) \right| \right\} + c = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + c. \quad \text{এখানে} \quad a > x.$$

7.
$$\int \frac{dx}{x^2-a^2} = \frac{1}{2a} \ln \frac{x-a}{x+a} \quad (x > a > 0) \quad [7 \text{ এর প্রমাণ 6-এর অনুরূপ }]$$

8.
$$\therefore \int \frac{dx}{\sqrt{a^2 - x^2}} = \int \frac{a \cos \theta \, d\theta}{\sqrt{a^2 - a^2 \sin^2 \theta}} = \int \frac{a \cos \theta \, d\theta}{a \cos \theta}$$

$$= \int d\theta = \theta = \sin^{-1} \frac{x}{a}$$

$$\Rightarrow dx = a \cos \theta \, d\theta$$
অনুসিম্পান্ত ঃ $\int \frac{dx}{\sqrt{1 - x^2}} = \sin^{-1} x + c$.

সহজ কৌশন ঃ লক্ষ করলে দেখা যাবে যে, প্রতিস্থাপন পশ্বতিতে যোগজ নির্ণয়ের জন্য প্রদন্ত কাংশনটিতে f(x) এবং এর অন্তরজ সহগ f'(x) একত্রে বিদ্যমান থাকে। এক্ষেত্রে f(x)-কে z ধরে সহজেই যোগজ নির্ণয় করা যায়।

যদি ফাংশনটিতে f(x) এবং $f'\left(x
ight)$ একত্রে বিদ্যমান না থাকে, তাহলে সরাসরি সূত্র প্রয়োগ করে যোগজ নির্ণয় করতে হবে।

উদাহরণ । অনির্দিষ্ট যোগজগুলি নির্ণয় কর :

(i)
$$\int \frac{\sin^{-1}x}{\sqrt{1-x^2}} dx$$
 (ii) $\int \frac{\cos x dx}{9+\sin^2 x}$ (iii) $\int \frac{dx}{\sqrt{25-x^2}}$ [5. '50]

সমাধান ঃ (i) মনে করি,
$$I = \int \frac{\sin^{-1}x}{\sqrt{1-x^2}} dx$$
. [এখানে $f(x) = \sin^{-1}x$ এবং $f'(x) = \frac{1}{\sqrt{1-x^2}}$]

ধরি,
$$z = \sin^{-1}x$$
 : $dz = \frac{dx}{\sqrt{1-x^2}}$: $I = \int z \, dz = \frac{1}{2} z^2 + c = \frac{1}{2} (\sin^{-1}x)^2 + c$

ধরি, $z = \sin x$: $dz = \cos x dx$

$$\therefore I = \int \frac{dz}{9 + z^2} = \frac{1}{3} \tan^{-1} \frac{z}{3} + c = \frac{1}{3} \tan^{-1} \left(\frac{\sin x}{3} \right) + c$$

$$\therefore$$
 ধরি, $x = 5 \sin \theta \implies dx = 5 \cos \theta d\theta$

$$\therefore I = \int \frac{dx}{\sqrt{25 - x^2}} = \int \frac{5 \cos \theta d\theta}{\sqrt{25(1 - \sin^2 \theta)}}$$
$$= \int d\theta = \theta + c = \sin^{-1} \frac{x}{5} + c.$$

সমস্যা ও সমাধান

উদাহরণ 1.
$$\int \frac{3x^2}{1+x^6} \, \mathrm{d}x$$
 নির্ণয় কর।

[চ. '০৮; সি. '১২]

সমাধান : মনে করি, $z = x^3$: $dz = 3x^2 dx$

$$\int \frac{3x^2 dx}{1+x^6} = \int \frac{dz}{1+z^2} = \tan^{-1} z + c = \tan^{-1} (x^3) + c$$

ধরি,
$$y = a \sin^{-1} x$$

$$\therefore dy = \frac{a}{\sqrt{1 - x^2}} dx$$
বা, $\frac{dy}{a} = \frac{dx}{\sqrt{1 - x^2}}$

উদাহরণ 3.
$$\int \frac{\mathrm{d}x}{x^2 + 6x + 25}$$
 নির্ণয় কর।

[4, '50]

সমাধান ঃ
$$\int \frac{\mathrm{d}x}{x^2 + 6x + 25} = \int \frac{\mathrm{d}x}{(x^2 + 6x + 9) + 16}$$
$$= \int \frac{\mathrm{d}x}{(x+3)^2 + (4)^2} = \frac{1}{4} \tan^{-1} \frac{x+3}{4} + c$$

উদাহরণ 4. $\int \sin^5 x \, dx$ নির্ণয় কর।

সমাধান ঃ মনে করি, $I = \int \sin^5 x \, dx = \int \sin^4 x \cdot \sin x \, dx = \int (1 - \cos^2 x)^2 \sin x \, dx$

ধরি, $y = \cos x \implies \sin x \, dx = - \, dy$

$$I = -\int (1 - y^2)^2 dy, = -\int (1 - 2y^2 + y^4) dy = -y + \frac{2}{3}y^3 - \frac{1}{5}y^5 + c$$

$$= -\cos x + \frac{2}{3}\cos^3 x - \frac{1}{5}\cos^5 x + c$$

উদাহরণ 5.
$$\int \frac{2x \tan^{-1} x^2}{1 + x^4} dx$$
 নির্ণয় কর।

[রা. '১১]

সমাধান ঃ ধরি,
$$z = \tan^{-1} x^2$$
 .. $dz = \frac{2x dx}{1 + x^4}$

$$\therefore \int \frac{2x \tan^{-1} x^2}{1 + x^4} dx = \int z dz = \frac{1}{2} z^2 + c = \frac{1}{2} \left(\tan^{-1} x^2 \right)^2 + c$$

উদাহরণ 6. $\int \frac{dx}{9-16 x^2}$ নির্ণয় কর।

সমাধান ঃ
$$\int \frac{\mathrm{d}x}{9 - 16x^2} = \int \frac{\mathrm{d}x}{16\left(\frac{9}{16} - x^2\right)} = \frac{1}{16} \int \frac{\mathrm{d}x}{\left(\frac{3}{4}\right)^2 - x^2}$$

$$= \frac{1}{16} \times \frac{4}{2.3} \left| \ln \frac{\frac{3}{4} + x}{\frac{3}{4} - x} \right| + c = \frac{1}{24} \ln \left| \frac{3 + 4x}{3 - 4x} \right| + c$$

উদাহরণ 7. নিচের অনির্দিউ যোগজগুলি নির্ণয় কর।

(i)
$$\int \frac{e^x dx}{1 + e^x} \quad [\Pi, \, \overline{b}, \, ') \in]$$

(ii) $\int e^x \tan e^x \sec^2 e^x dx$

(iii)
$$\int \frac{\mathrm{d}x}{\sqrt{24 + 6x - 9x^2}}$$

সমাধান : (i) ধরি, $I = \int \frac{e^x dx}{1 + e^x}$ মনে করি, $z = 1 + e^x$ \therefore $dz = e^x dx$ $\therefore I = \int \frac{dz}{z} = \ln z + c = \ln(1 + e^x) + c.$

(ii) মনে করি, $I = \int e^x \tan e^x \sec^2 e^x dx$.

ধরি, $z = \tan e^x$: $dz = e^x \sec^2 e^x dx$

$$I = \int z dz = \frac{1}{2} z^2 + c = \frac{1}{2} (\tan e^x)^2 + c$$

(iii)
$$\sqrt[4]{3}, I = \int \frac{dx}{\sqrt{24 + 6x - 9x^2}} = \frac{dx}{\sqrt{25 - (1 - 6x + 9x^2)}}$$

$$= \int \frac{dx}{\sqrt{(5)^2 - (3x - 1)^2}} = \frac{1}{3} \int \frac{dz}{\sqrt{(5)^2 - z^2}} \qquad \text{if } \sqrt[4]{3}, z = 3x - 1$$

$$\therefore dz = 3 dx \Rightarrow dx = \frac{dz}{3}$$

$$= \frac{1}{3} \sin^{-1} \frac{z}{5} + c = \frac{1}{3} \sin^{-1} \frac{3x - 1}{5} + c$$

উদাহরণ 8. $\int \frac{dx}{4x^2+25}$ নির্ণয় কর।

সমাধান ঃ ধরি,
$$I = \int \frac{\mathrm{d}x}{4x^2 + 25} = \int \frac{\mathrm{d}x}{4\left(x^2 + \frac{25}{4}\right)} = \frac{1}{4} \int \frac{\mathrm{d}x}{x^2 + \left(\frac{5}{2}\right)^2} = \frac{1}{10} \tan^{-1} \frac{2x}{5} + c$$

প্রশালা 10.3

1.
$$\int xe^{x^2} dx$$
.

2. $\int \cos x \cos (\sin x) dx$. 3. $\int \sin^2 x \cos x dx$. [VI. '04]

4.
$$\int x \sin x^2 dx$$
.

5. $\int e^x \tan e^x dx$.

6. $\int \sec^2 x e^{\tan x} dx$.

7. (i)
$$\int \frac{1}{x^2} \sin \frac{1}{x} dx$$
. [v]. 'o8] (ii) $\int \frac{\cos \sqrt{x}}{\sqrt{x}} dx$.

(iii) $\int \frac{x^2 dx}{1 - x^6}$ 「新・なる」

8. (i)
$$\int \tan^4 x \sec^2 x \, dx$$
.

8. (i)
$$\int \tan^4 x \sec^2 x \, dx$$
. (ii) $\int \frac{\sin x}{1 + 2 \cos x} \, dx$. (iii) $\int \frac{\tan (\sin^{-1} x)}{\sqrt{1 - x^2}} \, dx$ [7. '\\;\); \(\text{vi. 4. '\(\text{vi.}\)}\)

9. (i)
$$\int \frac{1}{x\sqrt{1+\ln x}} dx$$
 [7. '00] (ii) $\int \frac{\ln (x)}{x} dx$

(iii)
$$\int \cos x e^{\sin x} dx.$$
 [17. '33]

(iv)
$$\int \frac{e^x dx}{1 + e^{2x}} [\text{id ios }]$$

10. (i)
$$\int \frac{e^{3x}}{e^{3x}-1} dx$$
.

10. (i)
$$\int \frac{e^{3x}}{e^{3x} - 1} dx$$
. (ii) $\int \frac{dx}{(x - 3)\sqrt{x + 1}}$ [vi. '>o]

11.
$$\int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx$$
.

12. (i)
$$\int \frac{1}{e^x + 1} dx \ [4. '>o]$$

(ii)
$$\int \frac{\mathrm{d}x}{1 + \mathrm{e}^{-x}}$$

(iii)
$$\int \frac{\mathrm{d}x}{x \left\{1 + \ln(x)\right\}^3}.$$

13.
$$\int \frac{dx}{9x^2+4}$$
 [4. '09]

14. (i)
$$\int \frac{dx}{\sqrt{9-16x^2}}$$

(ii)
$$\int \frac{\mathrm{d}x}{\sqrt{2-3x^2}}$$
. [vi. $\sqrt{4}$. $\sqrt{4}$]

15.
$$\int \frac{dx}{\sqrt{5-4x^2}}$$
. [5. 4. '>>; $\frac{1}{4}$.'>> 16. $\int \frac{dx}{16-4x^2}$

16.
$$\int \frac{dx}{16-4x^2}$$

17. (i)
$$\int \frac{x \, dx}{\sqrt{1-x}}$$
 [5. 'o\]

(ii)
$$\int \frac{\mathrm{d}x}{x\sqrt{x^4-1}} \ [\text{at. '33}]$$

(iii)
$$\int \frac{\mathrm{d}x}{x\sqrt{x^3+4}}$$

18.
$$\int \frac{dx}{e^x + e^{-x}}$$
. [7]. '\o; \bar{q}. \bar{q}. \bar{q}. \bar{q}. \bar{q}. \bar{q}. \bar{q}.

$$19. \int \frac{e^x dx}{\sqrt{3-4e^{2x}}}$$

20.
$$\int \frac{dx}{(1+x^2) \tan^{-1} x} [\Re, ' \rangle$$

21. (i)
$$\int \frac{\sin x}{a + b \cos x} dx.$$

(ii)
$$\int \frac{\sin 2x}{3 + 5\cos x} dx.$$

$$22. (i) \int \frac{\sqrt{1 + \ln x}}{x} \mathrm{d}x.$$

(ii)
$$\int \frac{\tan^2{(\ln x)}}{x} \, \mathrm{d}x$$

23.
$$\int \frac{1+\cos x}{x+\sin x} dx. [7.68]$$

24.
$$\int \frac{\cos x \, dx}{(1-\sin x)^2}$$
. [4. '>>]

25.
$$\int \frac{e^{x} (1+x) dx}{\cos^{2} (xe^{x})}$$

$$26.\int \frac{dx}{(1+x^2)\sqrt{\tan^{-1}x+3}}$$

27.
$$\int \frac{x^2 \tan^{-1} x^3}{1 + x^6} dx. \, [\overline{a}, 'ob']$$

$$28. \int \frac{\mathrm{d}x}{\sqrt{(\sin^{-1}x)} \sqrt{1-x^2}}$$

29.
$$\int (1+\cos x)^5 \sin x \, dx$$
.

$$30.\int \frac{\tan x}{\ln(\cos x)} dx. \ [4.5.]{}^{\circ}$$

31.
$$\int \frac{e^{2x}}{1 + e^{4x}} dx$$
. [5. '33]

$$32. \int \frac{\sin x \, \mathrm{d}x}{a^2 + b^2 \cos^2 x}$$

33.
$$\int \frac{\mathrm{d}x}{(a^2+x^2)^{3/2}}$$
. [4. 'o\]

34.
$$\int \frac{x^3 dx}{\sqrt{1-2x^4}}$$
 [5. '03]

$$35. \int \frac{\mathrm{d}x}{x^2 + 4x + 13}$$

36.
$$\int \frac{dx}{\sqrt{15-4x-4x^2}}$$

$$37. \int \frac{2x \sin^{-1} x^2}{\sqrt{1-x^4}} \, \mathrm{d}x.$$

$$38. \int \frac{\mathrm{d}x}{\sqrt{12x - 9x^2}}$$

39. (i)
$$\int \frac{\sec^2 x \, dx}{\sqrt{16 - \tan^2 x}}$$

(ii)
$$\int \frac{\sec^2 x \, dx}{\sqrt{3-5 \tan x}}$$

40.
$$\int \frac{d\theta}{4-5\sin^2\theta}$$

41.
$$\int \frac{dx}{1+3\cos^2x} [\text{til. 'be; f. 'be}]$$

42.
$$\int \frac{\mathrm{d}x}{x^2 - x + 1} [5. '00]$$

43.
$$\int \frac{dx}{1 + \tan x} . [M. '33; \mathfrak{A}. \mathfrak{A}. \mathfrak{A}. '32] 44.$$
 (i) $\int \frac{\sin x \, dx}{\sqrt{5 - \cos^2 x}} [\mathfrak{A}. '08]$

| 44. (i)
$$\int \frac{\sin x \, dx}{\sqrt{5 - \cos^2 x}} \, [\bar{q}, '08]$$

(ii)
$$\int \frac{\cos x \, \mathrm{d}x}{3 + \cos^2 x}$$

(iii)
$$\int \sin^2 \frac{x}{2} \cos \frac{x}{2} \, \mathrm{d}x$$

$$45. \int \sqrt{1 + \sec x} \, \mathrm{d}x.$$

46. (i)
$$\int \frac{\sqrt{x} \, dx}{1 + \sqrt[3]{x}}$$

(ii)
$$\int \frac{\mathrm{d}x}{\frac{1}{x^{2}-x^{4}}} \quad [5, 7, 1/6]$$

47. (i)
$$\int \frac{dx}{5 + 4 \cos x}$$

(ii)
$$\int \frac{1-\cos 5x}{1+\cos 5x} dx$$
. [4. '03] 48. $\int \frac{x^2 dx}{\sqrt{1-x^6}}$. [4. '33]

48.
$$\int \frac{x^2 dx}{\sqrt{1-x^6}}$$
. [4. '33]

49.
$$\int \frac{(\sec^{-1} x)^4}{x\sqrt{x^2 - 1}} \, \mathrm{d}x.$$

$$50. \int \frac{3\sin x \, dx}{4 + 5\cos x}.$$

$$51. \int \frac{\mathrm{d}x}{\cos^2 x \sqrt{\tan x - 1}}.$$

52. (i)
$$\int e^{a \sin^{-1}x} \frac{1}{\sqrt{1-x^2}} dx$$
.

(ii)
$$\int \frac{\mathrm{d}x}{\sqrt{25-x^2}} \left[\widehat{\mathbf{m}}, '33 \right]$$

53.
$$\int \frac{dx}{9x^2-16}$$
. [vi. 'oo]

54.
$$\int (e^x + \frac{1}{x}) (e^x + \ln x) dx$$
.

$$55. \int \frac{\cos 2x \, \mathrm{d}x}{\left(\sqrt{2 + \sin 2x}\right)^3}.$$

56.
$$\int \frac{\cos x \, dx}{\sqrt{\sin x}} \, [\pi, '50]$$

$$57.\int \sqrt{1-\sin x} \cos x \, dx$$

58.
$$\int \sin^3 x \cos^4 x \, dx.$$

59.
$$\int \sin^3 x \cos^3 x \, dx$$
. [4. '04]

60. (i)
$$\int \frac{x}{\sqrt{1-x^2}} dx$$
. [ff. '>>]

$$(ii) \int \frac{x^2 dx}{\sqrt{1-x^6}} \ \text{fig. '} \forall i$$

$$61. \int \sqrt{\frac{1-x}{1+x}} \, \mathrm{d}x.$$

62.
$$\int \frac{\mathrm{d}x}{x(1+\ln x)})|\Psi.'\rangle\langle$$

63.
$$\int \frac{\sin(2+3\ln x)}{x} \, \mathrm{d}x.$$

64.
$$\int \frac{e^{\sin^{-1}x}}{\sqrt{1-x^2}} \, dx$$

65.
$$\int \sqrt{16 - 9x^2} \, dx$$

$$66. \int \frac{\sec x \, dx}{\ln(\sec x + \tan x)}$$

$$67. \int \frac{\mathrm{d}x}{3+4\sin x}$$

68.
$$\int \frac{\sqrt{\tan x} dx}{\sin x \cos x} \left[\sqrt{1 - (x)^2} \right]$$

69.
$$\int \csc x \, dx \, \left[\frac{\pi}{2} \right] \cdot \infty$$
 70. $\int \tan x \, dx \, \left[\frac{\pi}{2} \right] \cdot \infty$

70.
$$\int \tan x \, dx \, [\Re. 'o\]$$

$$71. \int \frac{e^{a \tan^{-1} x}}{1+x^2} dx$$

72.
$$\int \sin^{-1} \sqrt{\frac{x}{a+x}} \, dx \, [\, \bar{x} \,]$$
 73. $\int \frac{x \, dx}{x^4+1}$

74.
$$\int \frac{\mathrm{d}x}{\sqrt{2ax-x^2}} \ [4. \circ b]$$

[मर्दिष : $x = a \tan^2 \theta$]

💥 উত্তরমালা

1. $\frac{1}{2}e^{x^2}$. 2. $\sin{(\sin x)}$ 3. $\frac{1}{3}\sin^3{x}$. 4. $\frac{-1}{2}\cos{x^2}$, 5. $\ln{|\sec{e^x}|}$. 6. $e^{\tan{x}}$. 7. (i) $\cos{\frac{1}{x}}$.

(ii) $2 \sin \sqrt{x}$. (iii) $\frac{1}{6} \ln \left| \frac{1+x^3}{1-x^3} \right|$. 8. (i) $\frac{1}{5} \tan^5 x$. (ii) $-\frac{1}{2} \ln \left| (1+2\cos x) \right|$ (iii) $\ln \left| \sec(\sin^{-1} x) \right|$.

9 (i) $2\sqrt{1 + \ln x}$. (ii) $\frac{1}{2} \{\ln (x)\}^2$. (iii) $e^{\sin x}$.. (iv) $\tan^{-1} e^x$. 10. (i) $\frac{1}{3} \ln (e^{3x} - 1)$. (ii) $\frac{1}{3}$

11. $\ln \left| (e^x + e^{-x}) \right|$.12. (i) $-\ln \left| 1 + e^{-x} \right|$. (ii) $\ln \left| e^x + 1 \right|$. (iii) $\frac{-1}{2\{1 + \ln(x)\}^2}$. 13. $\frac{1}{6} \tan^{-1} \frac{3x}{2}$

14. (i)
$$\frac{1}{4} \sin^{-1} \frac{4x}{3}$$

14. (i)
$$\frac{1}{4} \sin^{-1} \frac{4x}{3}$$
 (ii) $\frac{1}{\sqrt{3}} \sin^{-1} \sqrt{\frac{3}{2}}x$. 15. $\frac{1}{2} \sin^{-1} \frac{2x}{\sqrt{5}}$ 16. $\frac{1}{16} \ln \left| \frac{2+x}{2-x} \right|$.

15.
$$\frac{1}{2} \sin^{-1} \frac{2x}{\sqrt{5}}$$

16.
$$\frac{1}{16} ln \left| \frac{2+x}{2-x} \right|$$

17. (i)
$$\frac{-2}{3}(x+2)\sqrt{1-x}$$
.

(ii)
$$\frac{1}{2} \sec^{-1} x^2$$

17. (i)
$$\frac{-2}{3}(x+2)\sqrt{1-x}$$
. (ii) $\frac{1}{2}\sec^{-1}x^2$. (iii) $\frac{1}{6}\ln\left|\frac{\sqrt{x^3+4}-2}{\sqrt{x^3+4}+2}\right|$. 18. $\tan^{-1}(e^x)$.

19.
$$\frac{1}{2} \sin^{-1} \left(\frac{2e^x}{\sqrt{3}} \right)$$

20.
$$ln (tan^{-1} x)$$

19.
$$\frac{1}{2} \sin^{-1} \left(\frac{2e^x}{\sqrt{3}} \right)$$
 20. $\ln \left(\tan^{-1} x \right)$. 21. (i) $-\frac{1}{b} \ln |a + b \cos x|$.

যোগজীকরণ

২৮-৭

(ii)
$$\frac{2}{25}$$
{ 3 $ln | 3 + 5 \cos x | -(3 + 5 \cos x)$ }. 22. (i) $\frac{2}{3}(1 + ln x)^{3/2}$. (ii) $tan (ln x) - ln x$.

23.
$$\ln |x + \sin x|$$
. 24. $\frac{1}{1 - \sin x}$. 25. $\tan (xe^x)$ 26. $2\sqrt{\tan^{-1} x + 3}$.

27.
$$\frac{1}{6} (\tan^{-1} x^3)^2$$
. **28.** $2\sqrt{\sin^{-1} x}$. **29.** $-\frac{1}{6} (1 + \cos x)^6$. **30.** $-\ln(\ln |\cos x|)$.

31.
$$\frac{1}{2} \tan^{-1} (e^{2x})$$
. 32. $-\frac{1}{ab} \tan^{-1} \left(\frac{b \cos x}{a} \right)$. 33. $\frac{x}{a^2 \sqrt{a^2 + x^2}}$. 34. $-\frac{1}{4} \sqrt{1 - 2x^4}$.

35.
$$\frac{1}{3} \tan^{-1} \left(\frac{x+2}{3} \right)$$
. 36. $\frac{1}{2} \sin^{-1} \left(\frac{2x+1}{4} \right)$. 37. $\frac{1}{2} \left(\sin^{-1} x^2 \right)^2$. 38. $\frac{1}{3} \sin^{-1} \left(\frac{3x-2}{2} \right)$

39. (i)
$$\sin^{-1}\left(\frac{\tan x}{4}\right)$$
. (ii) $-\frac{2}{5}\sqrt{3-5\tan x}$. 40. $\frac{1}{4}\ln\left|\frac{2+\tan\theta}{2-\tan\theta}\right|$. 41. $\frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{\tan x}{\sqrt{2}}\right)$.

42.
$$\frac{2}{\sqrt{3}} \tan^{-1} \frac{2x-1}{\sqrt{3}}$$
. 43. $\frac{1}{2} x + \frac{1}{2} \ln |\cos x + \sin x|$. 44. (i) $-\sin^{-1} \left(\frac{\cos x}{\sqrt{5}}\right)$

(ii)
$$\frac{1}{4} ln \left| \frac{2 + \sin x}{2 - \sin x} \right|$$
. (iii) $\frac{2}{3} \left(\sin \frac{x}{2} \right)^3$ 45. $2 \sin^{-1} \left(\sqrt{2} \sin \frac{x}{2} \right)$

46. (i)
$$6 \left[\frac{1}{7} x^{\frac{7}{6}} - \frac{1}{5} x^{\frac{5}{6}} + \frac{1}{3} \sqrt{x} - x^{\frac{1}{6}} + \tan^{-1} x^{\frac{1}{6}} \right]$$
. (ii) $2 \sqrt{x} - 4x^{\frac{1}{4}} + 4 \ln |x|^{\frac{1}{4}} - 1|$.

47. (i)
$$\frac{2}{3} \tan^{-1} \left(\frac{1}{3} \tan \frac{x}{2} \right)$$
. (ii) $\frac{2}{5} \tan \frac{5x}{2} - x$. 48. $\frac{1}{3} \sin^{-1} (x^3)$ 49. $\frac{1}{5} (\sec^{-1} x)^5$.

50.
$$-\frac{3}{5} \ln |4 + 5 \cos x| + c$$
. **51.** $2 \sqrt{\tan x - 1}$. **52(i)** $\frac{1}{a} e^{a \sin^{-1} x}$ (ii) $\sin^{-1} \frac{x}{5}$.

53.
$$\frac{1}{24} ln \left| \frac{3x-4}{3x+4} \right|$$
. 54. $\frac{1}{2} (e^x + ln x)^2$ 55. $\frac{-1}{\sqrt{2+\sin 2x}}$. 56. $2\sqrt{\sin x}$. 57. $-\frac{2}{3} (1-\sin x)^{3/2}$

58.
$$\frac{1}{7}\cos^7 x - \frac{1}{5}\cos^5 x$$
. **59.** $\frac{1}{4}\sin^4 x - \frac{1}{6}\sin^6 x$. **60.** (i) $-\sqrt{1-x^2}$. (i) $\frac{1}{3}\sin^{-1}x^3$.

61.
$$\sin^{-1} x + \sqrt{1 - x^2}$$
 62. $\ln (1 + \ln x)$. **63.** $\frac{-1}{3} \cos (2 + 3\ln x)$ **64.** $e^{\sin^{-1} x}$

65.
$$\frac{8}{3} \left\{ \sin^{-1} \frac{3x}{4} + \frac{3x}{16} \sqrt{16 - 9x^2} \right\}$$
 66. $\ln \left[\ln \left| \sec x + \tan x \right| \right]$ 67. $\frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2 \tan \frac{x}{2} + 1}{\sqrt{3}} \right)$

68.
$$2\sqrt{\tan x}$$
. **69.** $\ln |\tan \frac{x}{2}|$. **70.** $\ln |\sec x|$. **71.** $\frac{1}{a}e^{a}\tan^{-1}x$. **72.** $(a+x)\tan^{-1}\sqrt{\frac{x}{a}}-\sqrt{ax}$.

73.
$$\frac{1}{2} \tan^{-1} x^2$$
. 74. $\sin^{-1} \frac{x-a}{a}$.

আংশিক ভগ্নাংশ

কোন মূলদ বীচ্চগণিতীয় ভগ্নাংশের জনির্দিন্ট যোগজ নির্ণয় করতে হলে প্রথমে তাকে আংশিক ভগ্নাংশে বিশ্লেষণ করে প্রত্যেক অংশের জন্য পৃথক যোজিত মান নির্ণয় করতে হবে।

সমস্যা ও সমাধান ঃ

উদাহরণ 1.
$$\int \frac{(x+1) dx}{(x-3)(x+2)}$$
 নির্ণয় কর।

সমাধান
$$x$$
 মনে করি, $\frac{x+1}{(x-3)(x+2)} = \frac{A}{x-3} + \frac{B}{x+2}$ বা $x+1 = A(x+2) + B(x-3)$ (i)

$$(x-3)=0$$
 বা, $x=3$ বসিয়ে আমরা পাই. $4=5A \implies A=4/5$

আবার, (x + 2) = 0 বা, x = -2 বসিয়ে আমরা পাই, -1 = -5B বা, $B = \frac{1}{5}$

$$\therefore \quad \frac{x+1}{(x-3)(x+2)} = \frac{4/5}{x-3} + \frac{1/5}{x+2}$$

$$\therefore \int \frac{(x+1) dx}{(x-3)(x+2)} = \frac{4}{5} \int \frac{dx}{x-3} + \frac{1}{5} \int \frac{dx}{x+2} = \frac{4}{5} \ln|x-3| + \frac{1}{5} \ln|x+2| + c.$$

উদাহরণ 2.
$$\int \frac{x \, dx}{(x-1)(x^2+1)}$$
 নির্ণয় কর।

[কু. '১১; ঢা. রা. য. '১৩]

সমাধান ঃ ধরি,
$$I = \int \frac{x \, dx}{(x-1)(x^2+1)}$$
 এবং $\frac{x}{(x-1)(x^2+1)} \equiv \frac{A}{x-1} + \frac{Bx+C}{x^2+1}$

$$x = A(x^2 + 1) + (Bx + C)(x - 1) \dots (i)$$

(i) এ
$$(x-1)=0$$
 অর্থাৎ $x=1$ বসিয়ে আমরা পাই, $1=A\ (1+1)+0$ বা, $2A=1$ বা, $A=\frac{1}{2}$ আবার $x=0$ বসিয়ে আমরা পাই, $0=A-C$ বা, $C=A=\frac{1}{2}$

(i) এর উভয়পক্ষ থেকে x^2 এর সহগ সমীকৃত করে পাই, 0=A+B বা, $B=-A=-rac{1}{2}$

$$\therefore I = \int \left\{ \frac{1/2}{x-1} + \frac{-x/2 + 1/2}{x^2 + 1} \right\} dx = \frac{1}{2} \int \frac{dx}{x-1} - \frac{1}{2} \int \frac{x dx}{x^2 + 1} + \frac{1}{2} \int \frac{dx}{x^2 + 1}$$

$$= \frac{1}{2} \ln |x-1| - \frac{1}{4} \ln |x^2 + 1| + \frac{1}{2} \tan^{-1} x + c.$$

উদাহরণ 3.
$$\int \frac{x^2 dx}{(x^2+x)(x^2-3)}$$
 নির্ণয় কর।

সমাধান ঃ ধরি,
$$I = \int \frac{x^2 dx}{(x^2 + 4)(x^2 - 3)}$$
 এবং $x^2 = y$

$$\therefore \frac{x^2}{(x^2+4)(x^2-3)} = \frac{y}{(y+4)(y-3)}$$

মৰে করি,
$$\frac{y}{(y+4)(y-3)} \equiv \frac{A}{y+4} + \frac{B}{y-3}$$
 $\therefore y \equiv A(y-3) + B(y+4) \dots \dots \dots (i)$

(i) এ
$$y = 3$$
 বসিয়ে, $3 = 7B$ বা, $B = \frac{3}{7}$ এবং $y = -4$ বসিয়ে, $-4 = -7A$ বা, $A = \frac{4}{7}$

$$\therefore I = \int \frac{x^2 dx}{(x^2 + 4)(x^2 - 3)} = \frac{4}{7} \int \frac{dx}{x^2 + 4} + \frac{3}{7} \int \frac{dx}{x^2 - 3}$$

$$= \frac{4}{7} \cdot \frac{1}{2} \tan^{-1} \frac{x}{2} + \frac{3}{7} \cdot \frac{1}{2\sqrt{3}} \ln \left| \frac{x - \sqrt{3}}{x + \sqrt{3}} \right| + c$$

$$= \frac{2}{7} \tan^{-1} \frac{x}{2} + \frac{\sqrt{3}}{14} \ln \left| \frac{x - \sqrt{3}}{x + \sqrt{3}} \right| + c.$$

প্রশালা 10.4

নিচের অনির্দিউ যোগজগুলি নির্ণয় কর :

$$1.\int \frac{\mathrm{d}x}{(x+1)(x-5)}.$$

$$2. \int \frac{\mathrm{d}x}{x^2 + x}.$$

3.
$$\int \frac{x-1}{(x-2)(x-3)} dx$$
.

4.
$$\int \frac{(2x-1)}{x(x-1)(x-2)} dx$$
. [vi. 'ob] 5. $\int \frac{dx}{x^2-3x+2}$

$$5. \int \frac{\mathrm{d}x}{x^2 - 3x + 2}$$

6.
$$\int \frac{x-3}{(1-2x)(1+x)} dx$$
.

$$7. \int \frac{\mathrm{d}x}{x(x+1)^2} \, .$$

8.
$$\int \frac{x+35}{x^2-25} dx$$
. [5, '08]

$$9. \int \frac{2x+3}{x^3-x} \, \mathrm{d}x.$$

10.
$$\int \frac{dx}{x^2(x-1)}$$
. [4. '\o]

11.
$$\int \frac{(x+1)dx}{x^2 - 5x + 6}$$

12.
$$\int \frac{\mathrm{d}x}{x^2 - 2x - 3}$$

$$13. \int \frac{x \, \mathrm{d}x}{(x-1) \, (x-2)}.$$

14.
$$\int \frac{x}{x^2 - 5x - 6} dx$$

$$15. \int \frac{x^2 \, \mathrm{d}x}{x^2 - 16} \, \cdot$$

16.
$$\int \frac{2x+1}{(2x+3)^2} \, \mathrm{d}x.$$

17.
$$\int \frac{(2x+3) dx}{x^3+x^2-2x}$$

$$18. \int \frac{\mathrm{d}x}{x(x^2+1)} \cdot [\mathfrak{A}. '55]$$

19.
$$\int \frac{x+1}{x^2-7x+10} \, dx$$

20.
$$\int \frac{x d x}{(x-1) (x^2+4)}$$
.

21.
$$\int \frac{x^2 dx}{x^4 - 1}$$

22.
$$\int \frac{(x+1) \, \mathrm{d}x}{3x^2 - x - 2}$$

23.
$$\int \frac{3x+1}{(x+1)^2} dx$$
.

24.
$$\int \frac{x^2 dx}{x^2 - 4}$$
. [7. '08]

25.
$$\int \frac{x^2-1}{x^2-4} dx$$
. जि. '५५; नि. '५५

26.
$$\int \frac{x}{(x-1)^2 (x+2)} dx.$$

$$27. \int \frac{x \, \mathrm{d}x}{(1-x)^2}.$$

🎎 💆 💆

- 1. $\frac{1}{6} \ln \left| \frac{x-5}{x+1} \right|$ 2. $\ln \left| \frac{x}{x+1} \right|$ 3. 2 $\ln \left| x-3 \right| = \ln \left| x-2 \right|$ 4. $\frac{3}{2} \ln \left| x-2 \right| = \frac{1}{2} \ln \left| x \right| = \ln \left| x-1 \right|$
- 5. $\ln \left| \frac{x-2}{x-1} \right|$. 6. $\frac{5}{6} \ln \left| 1-2x \right| \frac{4}{3} \ln \left| 1+x \right|$. 7. $\ln \left| \frac{x}{x+1} + \frac{1}{x+1} \right|$. 8. 4 $\ln \left| x-5 \right| 3 \ln \left| x+5 \right|$.
- 9. $\frac{1}{2}\ln|x+1| + \frac{5}{2}\ln|x-1| 3\ln|x|$. 10. $\ln\left|\frac{x-1}{x} + \frac{1}{x}\right|$. 11. $4\ln|x-3| 3\ln|x-2|$.

12.
$$\frac{1}{4} \ln \left| \frac{x-3}{x+1} \right|$$
. 13. $2 \ln |x-2| - \ln |x-1|$. 14. $\frac{1}{7} \ln |x+1| + \frac{6}{7} \ln |x-6|$.

15.
$$x + 2 \ln \left| \frac{x-4}{x+4} \right| \cdot 16. \frac{1}{2} \ln \left| 2x+3 \right| + \frac{1}{2x+3} \cdot 17. - \frac{3}{2} \ln \left| x \right| + \frac{5}{3} \ln \left| x-1 \right| - \frac{1}{6} \ln \left| x+2 \right|$$
.

18.
$$\ln |x| - \frac{1}{2} \ln |x^2 + 1|$$
. **19.** $2 \ln |x - 5| - \ln |x - 2|$. **20.** $\frac{1}{5} \ln |x - 1| - \frac{1}{10} \ln |x^2 + 4| + \frac{2}{5} \tan^{-1} \frac{x}{2}$

21.
$$\frac{1}{4} ln \left| \frac{x-1}{x+1} \right| + \frac{1}{2} tan^{-1} x$$
. **22.** $\frac{2}{5} ln \left| x-1 \right| - \frac{1}{15} ln \left| 3x+2 \right|$ **23.** $3 ln \left| x+1 \right| + \frac{2}{x+1}$.

24.
$$x + \ln \left| \frac{x-2}{x+2} \right|$$
. **25.** $x + \frac{3}{4} \ln \left| \frac{x-2}{x+2} \right|$. **26.** $\frac{2}{9} \ln |x-1| - \frac{1}{3(x-1)} - \frac{2}{9} \ln |x+2|$.

27.
$$\frac{1}{1-x} + \ln|1-x|$$
.

অংশায়ন সূত্রের সাহায্যে যোগজীকরণ(Integration by parts)

অংশায়ন সূত্রের সাহায্যে যোগজীকরণ (Integration by parts) একটি বিশেষ পশ্বতি যার সাহায্যে দুইটি ফাংশনের গুণফলের যোগজ নির্ণয় করা যায়। এ পশ্বতি ফাংশনের গুণফলের অন্তরজ নির্ণয়ের উপর ভিন্তি করে প্রতিষ্ঠিত।

অংশায়ন সূত্র ঃ যদি u এবং v এর উভয় x- এর ফাংশন হয়, তাহলে

$$\int uv \ dx = u \int v \ dx - \int \left\{ \frac{du}{dx} \int v \ dx \right\} dx.$$

অর্থাৎ দুইটি ফাংশনের গুণফলের যোগজ = ১ম ফাংশন \times (২য় ফাংশনের যোগজ) - $\{$ ১ম ফাংশনের অন্তরজ \times ২য় ফাংশনের যোগজ $\}$ এর যোগজ।

প্রমাণ ঃ দুইটি ফাংশনের গুণফলের অন্তরজ থেকে আমরা জানি , $\frac{d}{dx}$ $(uw)=u\,\frac{dw}{dx}+w\,\frac{du}{dx}$,

যখন u এবং w উভয়ে x- এর ফাংশন এবং অন্তরীকরণযোগ্য । x- এর সাপেকে (with respect to x) উভয়পক্ষকে যোগজীকরণ করে পাই

- দ্রক্তব্য : (1) u এবং v এর মধ্যে বে ফাংশনটি সহচ্চে যোগজীকরণ যোগ্য নয় ঐ ফাংশনটি ১ম ফাংশন u বিবেচনা করতে হবে।
 - (2) যদি u এবং v এর উতয়ে যোগজীকরণ যোগ্য হর অর্ধাৎ সহজে সূত্রের সাহায্যে যোগজ নির্ণয় করা যায়, তাহলে x^n আকারের ফাপেনটিকে yম ফাপেন y ধরতে হবে, যেখানে y হত্যাদি।

সমস্যা ও সমাধান

উদাহরণ 1. $\int x \ln x \, dx$ নির্ণয় কর।

[ঢা. রা. '১৩]

্র এখানে $\ln x$ কৈ সহজে Integration করা যায় না। সূতরাং $\ln x$ কৈ ১ম ফাংশন বিবেচনা করতে হবে।]

লমাধান ঃ $\int x \ln x \, dx = \ln x \int x \, dx - \int \left\{ \frac{d}{dx} (\ln x) \int x \, dx \right\} dx$.

$$= \ln x. \frac{x^2}{2} - \int \frac{1}{x} \cdot \frac{x^2}{2} \, dx = \frac{x^2}{2} \ln x - \frac{1}{2} \int x \, dx = \frac{x^2}{2} \ln |x| - \frac{x^2}{4} + c.$$

উদাহরণ 2. $\int x \cos x \, \mathrm{d}x$ নির্ণয় কর।

[এখানে x ও $\cos x$ এর উভয়কে সহজে যোগজীকরণ করা যায়। সূতরাং x কে ১ম ফাংশন অর্থাৎ u=x ধরতে হবে।]

সমাধান ঃ $\int x \cos x \, dx = x \int \cos x \, dx - \int \left\{ \frac{d}{dx}(x) \int \cos x \, dx \right\} dx$.

$$= x \sin x - \int 1 \cdot \sin x \, dx = x \sin x + \cos x + c.$$

উদাহরণ 3. $\int x^2 \sin x \, dx$ নির্ণয় কর।

সমাধান : $\int x^2 \sin x \, dx = x^2 \int \sin x \, dx - \int \left\{ \frac{d}{dx}(x^2) \int \sin x \, dx \right\} dx.$

$$= -x^2 \cos x - \int 2x. \ (-\cos x) \ dx = -x^2 \cos x + 2 \int x \cos x \ dx$$

$$= -x^2 \cos x + 2 \left[x \int \cos x \, dx - \int 1 \cdot \sin x \, dx \right] = -x^2 \cos x + 2x \sin x + 2 \cos x + c.$$

উদাহরণ 4. $\int \tan^{-1} x \, dx$ নির্ণয় কর।

[ঢা. '08; ব. '১০; দি. '১২; য. '১৩]

সমাধান ঃ $\int \tan^{-1} x \, dx = \tan^{-1} x \int 1 \, dx - \int \left\{ \frac{d}{dx} (\tan^{-1} x) \int 1 \, dx \right\} dx$.

$$= x \tan^{-1} x - \int \frac{x dx}{1 + x^2} = x \tan^{-1} x - \frac{1}{2} \ln (1 + x^2) + c.$$

উদাহরণ 5. $\int e^{x} \sin x \, dx$ নির্ণয় কর।

[ঢা. '১২; কু. '১৩]

সমাধান ঃ মনে করি, $I = \int e^x \sin x \, dx$

 $\therefore I = \sin x \int e^{x} dx - \int \left\{ \frac{d}{dx} (\sin x) \int e^{x} dx \right\} dx = \sin x. e^{x} - \int \cos x e^{x} dx$

$$= e^{x} \sin x - \left[\cos x \int e^{x} dx - \int \left\{ \frac{d}{dx} (\cos x) \int e^{x} dx \right\} dx \right]$$

 $= e^{x} \sin x - \left[\cos x e^{x} - \int (-\sin x) \cdot e^{x} dx\right] = e^{x} \sin x - e^{x} \cos x - \int e^{x} \sin x dx + c_{1}$ $\Rightarrow I = e^{x} \sin x - e^{x} \cos x - I + c_{1} \Rightarrow 2I = e^{x} \sin x - e^{x} \cos x + c_{1}$

$$\therefore \mathbf{I} = \int e^{\mathbf{x}} \sin x \, dx = \frac{1}{2} e^{\mathbf{x}} \left(\sin x - \cos x \right) + c.$$
 যেখানে $c = \frac{c_1}{2}$

একটি বিশেষ সূত্র ঃ
$$\int e^{x} \{f(x) + f'(x)\} dx = e^{x}f(x) + c$$
.

প্রমাণ ঃ দুইটি ফাংশনের গুণফলের অন্তরন্ধ নির্ণয়ের সূত্র থেকে আমরা পাই,

$$\frac{d}{dx}\{e^{x} f(x)\} = e^{x} \frac{d}{dx} \{f(x)\} + f(x) \frac{d}{dx} (e^{x}) = e^{x} f'(x) + f(x) e^{x} = e^{x} \{f(x) + f'(x)\}$$

এখন উভয়পক্ষকে x এর সাপেক্ষে যোগদ্ধীকরণ করে পাই,

$$\int e^{x} \{f(x) + f'(x)\} dx = e^{x} f(x) + c অর্থাৎ \int e^{x} \{f(x) + f(x) \text{ এর অন্তরজ }\} dx = e^{x} f(x).$$

উদাহরণ 6.
$$\int e^{x} \sec x (1 + \tan x) dx$$
 নির্ণয় কর।

(T. '30]

সমাধান $I = \int e^x (\sec x + \sec x \tan x) dx$ ধরি, $f(x) = \sec x \Rightarrow f'(x) = \sec x \tan x$.

$$\therefore \int e^{\mathbf{x}} \left(\sec x + \sec x \tan x \right) dx = \int e^{\mathbf{x}} \left\{ f(x) + f'(x) \right\} dx = e^{\mathbf{x}} f(x) + c = e^{\mathbf{x}} \sec x + c.$$

প্রশালা 10.5

$$1. \int x e^{x} dx$$

3.
$$\int x \sin x \cos x \, dx$$

$$7. \int \frac{x}{\cos^2 x} \, \mathrm{d}x$$

11.
$$\int e^{x} (\sin x + \cos x) dx$$
 [时. '>o; 闭. '>>]

$$13. \int x^3 e^{x^2} dx$$

15.
$$\int \sec^3 x \, \mathrm{d}x$$

(ii)
$$\int x \sin^{-1} x \, dx$$
. [vi. '09]

18.
$$\int e^{x} \cos x \, dx \quad [\pi. '>o]$$

20.
$$\int x \sin^2 \frac{x}{2} dx$$
 [4. '03]

4.
$$\int ln \, x \, dx$$
 [চ. ব. '০৪; সু. '০৬]

6.
$$\int x \tan^{-1} x \, dx$$
 [秦. '〉o; 阳. '〉〉]

8.
$$\int x \sec x \tan x \, dx$$

$$10. \int x \sin 2x \, dx$$

12.
$$\int e^{x} (\tan x - \ln \cos x) dx \quad [5. \]$$

14.
$$\int e^{x} \left(\ln x + \frac{1}{x} \right) dx \quad [4. \ '09]$$

16. (i)
$$\int x \sin^{-1} x^2 dx$$
 [3]. '04, '30]

17.
$$\int \frac{\ln(\sec^{-1} x)}{x\sqrt{x^2-1}} dx$$
 [vi. 'ov]

$$19. \int x^2 \cos x \, \mathrm{d}x$$

$$21. \int \frac{x}{\sin^2 x} \, \mathrm{d}x$$

$$22. \int \csc^3 x \, dx$$

24.
$$\int x^2 e^x dx$$
 [7. '08]

$$26. \int x \cos 2x \cos 3x \, dx$$

28.
$$\int x \tan^{-1} x^2 dx$$
.

$$30. \int x^2 \ln x \, \mathrm{d}x.$$

$$32. \int \frac{\ln(\ln x)}{x} \mathrm{d}x.$$

$$34.\int e^{-2x} \left(\frac{1}{x} - 2 \ln x\right) dx.$$

36.
$$\int x \sin x \sin 2x \, dx$$
. [5. '02]

38.
$$\int e^{x} \left\{ \frac{1}{1-x} + \frac{1}{(1-x)^2} \right\} dx$$
.

$$40.\int \frac{x e^{x} dx}{(1+x)^{2}}$$
. [ঢা. কু. চ. '১১; রা. য. '১২; চ. '১৩]

23. $\int e^{2x} \sin x \, dx$ [ति. '०२]

$$25. \int e^{2x} \cos e^x dx$$

$$27. \int x \sin 2x \cos 3x \, dx$$

29.
$$\int x \cos^{-1} x \, dx$$
. [আলিম '১১]

31.
$$\int (\ln x)^2 dx$$
. যে. '০৫; চ. '০৭]

33.
$$\int e^{5x} \left\{ 5 \ln x + \frac{1}{x} \right\} dx$$
. [5. 'ob]

$$35. \int x \sec^2 3x \, \mathrm{d}x.$$

37.
$$\int e^{x} \sin 2x \, dx$$
. [列. '30]

39.
$$\int e^{x} \frac{(x+1)}{(x+2)^2} dx$$
.

উত্তরমালা

- 1. $e^{x}(x-1)$. 2. $\frac{1}{4}(x^2+x\sin 2x)+\frac{1}{8}\cos 2x$. 3. $\frac{1}{8}\sin 2x-\frac{1}{4}x\cos 2x$. 4. $x\ln x-x$.
- 5. (i) $x \sin^{-1} x + \sqrt{1 x^2}$. (ii) $x \cos^{-1} x \sqrt{1 x^2}$. 6. $\frac{1}{2}(x^2 + 1) \tan^{-1} x \frac{1}{2}x$.
- 7. $x \tan x \ln|\sec x|$. 8. $x \sec x \ln|\sec x + \tan x|$. 9. $x \tan x + \ln|\cos x| \frac{x^2}{2}$.
- 10. $-\frac{1}{2}x\cos 2x + \frac{1}{4}\sin 2x$. 11. $e^{x}\sin x$. 12. $e^{x}\ln|\sec x|$. 13. $\frac{1}{2}(1-x^{2})$. 14. $e^{x}\ln|x|$.
- 15. $\frac{1}{2}$ sec x tan x + $\frac{1}{2}$ ln | tan $\left(\frac{\pi}{4} + \frac{x}{2}\right)$ | . 16. (i) $\frac{1}{2}x^2 \sin^{-1}x + \frac{1}{4}x\sqrt{1 x^2} \frac{1}{4}\sin^{-1}x$.
- (ii) $\frac{1}{2}x^2 \sin^{-1}x^2 + \frac{1}{2}\sqrt{1-x^4}$ 17. $\sec^{-1}x[\ln|\sec^{-1}x|+1]$. 18. $\frac{e^x}{2}(\cos x + \sin x)$.
- **19.** $x^2 \sin x + 2x \cos x 2 \sin x$. **20.** $\frac{x^2}{4} \frac{1}{2}x \sin x \frac{1}{2} \cos x$. **21.** $-x \cot x + \ln|\sin x|$.
- 22. $\frac{1}{2} \ln |\tan \frac{x}{2}| \frac{1}{2} \csc x \cot x$. 23. $\frac{e^{2x}}{5} (2 \sin x \cos x) + c$. 24. $x^2 e^x 2xe^x + 2e^x$.
- **25.** $e^x \sin e^x + \cos e^x + c$. **26.** $\frac{x}{2} \left(\frac{1}{5} \sin 5x + \sin x \right) + \frac{1}{2} \left(\frac{1}{25} \cos 5x + \cos x \right)$.
- 27. $\frac{1}{2}(x\cos x \sin x) + \left(\frac{1}{50}\sin 5x \frac{x}{10}\cos 5x\right)$. 28. $\frac{x^2}{2}\tan^{-1}x^2 \frac{1}{4}\ln|1 + x^4|$.

29.
$$\frac{x^2}{2}\cos^{-1}x + \frac{1}{4}\sin^{-1}x - \frac{1}{4}x\sqrt{1-x^2}$$
. **30.** $\frac{x^3}{3}\ln|x| - \frac{1}{9}x^3$. **31.** $x(\ln x)^2 - 2x\ln|x| + 2x$.

32.
$$\ln x |\ln (\ln x) - 1|$$
. 33. $e^{5x} \ln |x|$. 34. $e^{-2x} \ln |x|$. 35. $\frac{x}{3} \tan 3x - \frac{1}{9} \ln |\sec 3x|$.

36.
$$\frac{1}{2}(x \sin x + \cos x - \frac{1}{3}x \sin 3x - \frac{1}{9}\cos 3x$$
.

37.
$$\frac{1}{5}e^{x}(\sin 2x - 2\cos 2x)$$
. 38. $\frac{e^{x}}{1-x}$. 39 $\frac{e^{x}}{x+2}$. 40. $\frac{e^{x}}{x+1}$.

নির্দিষ্ট যোগজে ধ্রবক c অন্তর্ভুক্ত থাকে না।

মনে করি, $\int f(x) dx$ এর অনির্দিষ্ট যোগন্ধ = G(x) + c

$$\therefore \int_{a}^{b} f(x) dx = [G(x) + c]_{a}^{b}$$

= $\{G(b)+c\}-\{G(a)+c\}=G(b)-G(a)$. অর্থাৎ নির্দিষ্ট যোগজ এর মান c এর উপর নির্ভরশীল নয়। সূতরাৎ, নির্দিষ্ট যোগজে c অন্তর্ভুক্ত করার প্রয়োজন হয় না।

10.7.1. নির্দিষ্ট যোগজ সম্পর্কিত উদাহরণ ও অনুশীলনী

উদাহরণ 1.
$$\int_0^{\pi/2} \sin^2 x \, \mathrm{d}x$$
 এর মান নির্ণয় কর। [কু. '০২]

সমাধান ঃ মনে করি,
$$I = \int_0^{\pi/2} \sin^2 x \, dx = \frac{1}{2} \int_0^{\pi/2} 2 \sin^2 x \, dx$$

$$= \frac{1}{2} \int_0^{\pi/2} (1 - \cos 2x) \, dx = \frac{1}{2} \left[x - \frac{1}{2} \sin 2x \right]_0^{\pi/2}$$

$$= \frac{1}{2} \left[\frac{\pi}{2} - \frac{1}{2} \sin \pi \right] = \frac{\pi}{4}$$

উদাহরণ 2.
$$\int_2^3 \frac{2x \, dx}{1+x^2}$$
 এর মান নির্ণয় কর।

|কু. 'oo; সি. 'o৬ |

সমাধান ঃ ধরি, $z=1+x^2$, $\therefore 2x \, dx = dz$ সীমাঃ x=2 হলে z=5 এবং x=3 হলে z=10

$$\therefore \int_{2}^{3} \frac{2x \, dx}{1+x^{2}} = \int_{5}^{10} \frac{dz}{z} = [\ln z]_{5}^{10} = \ln 10 - \ln 5 = \ln \frac{10}{5} = \ln 2$$

উদাহরণ 3.
$$\int_0^1 \frac{(\tan^{-1} x)^2}{1+x^2} dx$$
 এর মান নির্ণয় কর।

[नि. ह. र. '১o; ঢা. কু. '১১; ব. '১২; ह. '১৩]

সমাধান ঃ মনে করি, $y = \tan^{-1}x$, $\therefore dy = \frac{dx}{1 + x^2}$

এখন x = 0 হলে $y = \tan^{-1} 0 = 0$ এবং x = 1 হলে $y = \tan^{-1} 1 = \tan^{-1} \tan \frac{\pi}{4} = \frac{\pi}{4}$

$$\therefore \int_0^1 \frac{(\tan^{-1}x)^2}{1+x^2} \, \mathrm{d}x = \int_0^{\pi/4} y^2 \, \mathrm{d}y = \left[\frac{y^3}{3}\right]_0^{\pi/4} = \left[\frac{\pi^3}{3 \times 64} - \frac{0}{3}\right] = \frac{\pi^3}{192} \, .$$

উদাহরণ 4.
$$\int_0^{\pi/2} (1 + \cos x)^2 \sin x \, dx$$
 এর মান নির্ণয় কর।

[সি. '০৫; চ. '১১]

সমাধান ঃ মনে করি, $z = 1 + \cos x$: $\sin x \, dx = - \, dz$

এখন
$$x=0$$
 হলে $z=1+\cos 0=1+1=2$, এবং $x=\frac{\pi}{2}$ হলে $z=1+\cos\frac{\pi}{2}=1+0=1$

$$\therefore \int_0^{\pi/2} (1 + \cos x)^2 \sin x \, dx = -\int_2^1 z^2 \, dz = -\left[\frac{z^3}{3}\right]_2^1 = -\frac{1}{3}\left[1^3 - 2^3\right] = \frac{7}{3}.$$

উদাহরণ 5.
$$\int_{-2}^{5} \frac{7x}{\sqrt{x^2+3}} \, \mathrm{d}x \, \, \text{এর মান নির্ণয় কর }$$

[কু. ২০০০]

সমাধান z ধরি, $y^2 = x^2 + 3 \implies 2y \, dy = 2x \, dx$ $\therefore y dy = x \, dx$

প্রান্তঃ যখন
$$x=5$$
 , তখন $y=\sqrt{25+3}=2\sqrt{7}$. যখন $x=-2$, তখন $y=\sqrt{4+3}=\sqrt{7}$

$$\therefore \int_{-2}^{5} \frac{7x \, dx}{\sqrt{x^2 + 3}} = \int_{\sqrt{7}}^{7} \frac{7y \, dy}{\sqrt{y^2}} = 7 \int_{\sqrt{7}}^{2\sqrt{7}} dy = 7 \left[y \right]_{\sqrt{7}}^{2\sqrt{7}} = 7 \left[2\sqrt{7} - \sqrt{7} \right] = 7\sqrt{7}.$$

উদাহরণ 6. $\int_0^{\pi/2} \sin 2x \cos x \, \mathrm{d}x$ এর মান নির্ণয় কর।

नियाशान :
$$\int_0^{\pi/2} \sin 2x \cos x \, dx = \frac{1}{2} \int_0^{\pi/2} 2 \sin 2x \cos x \, dx$$
$$= \frac{1}{2} \int_0^{\pi/2} (\sin 3x + \sin x) \, dx = \frac{1}{2} \int_0^{\pi/2} \sin 3x \, dx + \frac{1}{2} \int_0^{\pi/2} \sin x \, dx$$
$$= \frac{1}{2} \left[-\frac{\cos 3x}{3} \right]_0^{\pi/2} + \frac{1}{2} \left[-\cos x \right]_0^{\pi/2}$$
$$= -\frac{1}{6} \left(\cos \frac{3\pi}{2} - \cos 0 \right) - \frac{1}{2} \left(\cos \frac{\pi}{2} - \cos 0 \right)$$

$$= -\frac{1}{6}(0-1) - \frac{1}{2}(0-1) = \frac{2}{3}.$$

উদাহরণ 7. $\int_0^{\pi/2} \cos^3\theta \ d\theta$ এর মান নির্ণয় কর।

[त्रि. '১২; য. '১৩]

সমাধান ៖
$$I = \int_0^{\pi/2} \cos^3\theta \ d\theta = \int_0^{\pi/2} \cos^2\theta \cos\theta \ d\theta = \int_0^{\pi/2} (1 - \sin^2\theta) \cos\theta \ d\theta$$

$$\therefore I = \int_0^1 (1 - y^2) dy = \left[y - \frac{y^3}{3} \right]_0^1 = \left(1 - \frac{1}{3} \right) - 0 = \frac{2}{3}$$

ধরি, $y = \sin\theta$, $dy = \cos\theta d\theta$

প্রান্তঃ

θ	0	7/2
у	0	1

উদাহরণ 8.
$$\int_{0}^{3} \sqrt{9-x^2} \, dx$$
 এর মান নির্ণয় কর।

সমাধান ঃ
$$\int_{0}^{3} \sqrt{9-x^2} \, dx$$
 $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \\ x = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \\ x = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \cos \theta \, d\theta \\ x = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$ $\begin{cases} x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta \, d\theta \end{cases}$

প্রশ্নালা 10.6

নিচের নির্দিষ্ট যোগজগুলি নির্ণয় কর ঃ

1.
$$\int_{0}^{2} 5x^{4} dx$$
2. $\int_{1}^{2} \frac{(x^{2}-1)^{2}}{x^{2}} dx$
3. $\int_{1}^{4} \frac{(2-x)^{2}}{\sqrt{x}} dx$
4. $\int_{0}^{3} (3-2x+x^{2}) dx$ [4. '08; $\frac{\pi}{4}$. '08] $\frac{\pi}{4}$. '08] 6. $\int_{0}^{1} x e^{x^{2}} dx$ [6. $\int_{0}^{1} x e^{x^{2}} dx$ [7. '32; $\frac{\pi}{4}$. '35] 7. $\int_{0}^{\pi/2} (\sin\theta + \cos\theta) d\theta$ [7. '08] 8. $\int_{0}^{\pi/2} \frac{1}{1+\cos x} dx$. [71. $\frac{\pi}{4}$. '35] 9. $\int_{0}^{\pi/2} \cos^{2}x dx$ [71. '35] 10. $\int_{0}^{\pi/4} \frac{1-\cos 2\theta}{1+\cos 2\theta} d\theta$ 11. $\int_{0}^{\pi} \frac{1-\cos 2x}{2} dx$ 12. $\int_{0}^{4} \frac{1-\sin x}{1-\sin x}$ [71. '30; $\frac{\pi}{4}$. '30] 13. $\int_{0}^{\pi/4} \tan^{2}x \sec^{2}x dx$ [75. '35; $\frac{\pi}{4}$. '30] 14. $\int_{0}^{\pi/3} \frac{dx}{1-\sin x}$ [71. '30; $\frac{\pi}{4}$. '30; $\frac{\pi}{4}$. '30] 15. $\int_{0}^{\pi/6} \sin 3x \cos 3x dx$ 16. $\int_{0}^{\pi/2} \cos^{3}x \sqrt{\sin x} dx$ [72. '32; $\frac{\pi}{4}$. '30] 19. $\int_{0}^{1} \frac{(\cos^{-1}x)^{3}}{\sqrt{1-x^{2}}} dx$ [73. '07; $\frac{\pi}{4}$. '08] 10. $\int_{0}^{\pi/2} \frac{dx}{1-\sin x}$ [74. '30; $\frac{\pi}{4}$. '31. '32] 19. $\int_{0}^{1} \frac{(\cos^{-1}x)^{3}}{\sqrt{1-x^{2}}} dx$ [75. '07; $\frac{\pi}{4}$. '08]

21.
$$\int_{1}^{2} x^{2} e^{x^{3}} dx$$
 ারা. '০৬; ব. '১০ 1

23.
$$\int_{\pi/3}^{\pi/2} \frac{\cos^5 x}{\sin^7 x} dx$$
 [जि. '১১; ज. '১২]

(ii)
$$\int_{a}^{b} \frac{\ln x}{x} \, \mathrm{d}x.$$

26.
$$\int_{0}^{\pi/2} \frac{\cos t \, dt}{\sqrt{9 - \sin^2 t}} \, [5. \, \circ \]$$

28. (i)
$$\int_{0}^{1} x e^{-3x} dx$$
 [Pt. 'So]

29.
$$\int_{-\pi/2}^{\pi/2} (\sin \theta + \cos \theta)^2 d\theta$$

31.
$$\int_{0}^{1} \frac{2x(\tan^{-1}x^{2})^{2}}{1+x^{4}} dx. \ [5. \ 'o@]$$

33.
$$\int_0^{\frac{\pi}{2}} \sin^2 x \sin 3x \, dx$$
 [4. 'o@]

35. (i)
$$\int_0^1 \frac{x \, dx}{\sqrt{4-x^2}} \, [\cup{4}]$$
. '>o; ता. '>>] (ii) $\int_0^1 \frac{x \, dx}{\sqrt{9-x^2}} \, [\cup{5}]$. '>o] (iii) $\int_0^1 \frac{dx}{\sqrt{2x-x^2}} \, [\cup{5}]$

36.
$$\int_0^{\pi/2} \cos^3 x \sqrt[3]{\sin x} \, dx$$

38. (i)
$$\int_{0}^{\pi/4} \frac{1}{1+\sin\theta} d\theta$$
. [जा. शि. '১০; हा. र. '১২]

39.
$$\int_{-\pi/2}^{\pi/2} \frac{\sec \theta + 1}{\sec \theta} d\theta$$
 ্ব. '১৩]

41. (i)
$$\int_{1}^{4} \ln x \, dx$$
 (ii) $\int_{2}^{4} \ln 2x \, dx$ [4. 'ob] (iii) $\int_{0}^{1} \ln (x^{2} + 1) dx$ [51. 'o9]

42.
$$\int_0^{\pi/2} \cos 3\theta \cos 2\theta \ d\theta$$

44.
$$\int_{0}^{\pi/2} \sin^5 x \, \cos^3 x \, dx$$

22.
$$\int_{0}^{\pi/4} (\tan^{3} x + \tan x) dx \quad [4. \ 'oc; \ \overline{4}. \ 'or]$$

24. (i)
$$\int_{1}^{4} \frac{\ln x}{\sqrt{x}} dx$$
 [vi. '> 2]

$$25. \int_{1}^{\sqrt{e}} x \ln x \, \mathrm{d}x.$$

27.
$$\int_{1}^{3} \frac{1}{x} \cos{(\ln x)} dx$$
 [ব. '১২; চ. '১৩]

(ii)
$$\int_{0}^{1} x e^{x} dx.$$

$$30. \int_0^{\pi/2} \sin^3 x \cos x \, \mathrm{d}x$$

32.
$$\int_{0}^{\pi/2} \sin^2 2\theta \ d\theta.$$

34.
$$\int_{1}^{\sqrt{3}} x \tan^{-1}x \, dx$$
. [ব. '১১; দি. রা. চ. '১২]

$$\int_{0}^{1} \frac{x \, dx}{\sqrt{9 - x^2}}$$
 [vi. '\o] (iii) $\int_{0}^{1} \frac{dx}{\sqrt{2x - x^2}}$

$$37. \int_{2}^{5} \frac{\mathrm{d}x}{x^2 - 4x + 13}$$

$$(ii) \int_0^{\pi/2} \frac{\mathrm{d}x}{2 + \cos x}.$$

40.
$$\int_0^1 x^3 \sqrt{1+3x^4} \ dx$$
. [বু. '১০; আ. '১১; লি. ব. '১২]

(iii)
$$\int_0^1 ln (x^2 + 1) dx$$
 [vi. '09]

43.
$$\int_{0}^{1} \frac{1+x}{1+x^2} dx$$
 [ঢা. রা. '০১; কু. সি. '১২]

45.
$$\int_{0}^{\pi/2} \cos^{5}x \sin x \, dx$$
 [ম. '১১]

46.
$$\int_0^{\pi/4} \tan^3 x \sec^2 x \, dx$$
 [ঢা. ব. '১১] 47. (i) $\int_0^1 \frac{\mathrm{d}x}{\sqrt{4-3x^2}}$ [ঢা. '৩৩] (ii) $\int_0^1 \frac{x \mathrm{d}x}{\sqrt{1-x^2}}$ [ব. '৩৭]

48.
$$\int_0^{\pi/2} \frac{\cos^3 x \, dx}{\sqrt{\sin x}}$$
 [ব. চ. '১০; রা. '১২]

49. (i)
$$\int_{0}^{\pi/2} \sin x \sin 2x \, dx$$

(ii)
$$\int_0^{\pi/2} \cos 4x \, dx$$
 [st. '08; \mathbf{q} . '09]

50.
$$\int_{0}^{\pi/2} \frac{\cos x}{9 - \sin^2 x} \, dx$$
 [কু. ব. '১০]

52.
$$\int_{0}^{\ln 2} \frac{e^{x} dx}{1 + e^{x}}$$
 [ব. য. চ. আ. '১১; সি. '১২; কু. '১৩]

53.
$$\int_{1}^{e^{2}} \frac{dx}{x(1 + \ln x)^{2}} [\hat{\eta}, ' ; ; , \bar{q}, \bar{q}, ' ; ;]$$

54.
$$\int_0^5 \sqrt{25-x^2} \, dx$$
 রো. '১১]

55. (i)
$$\int_0^4 \sqrt{16-x^2} \, dx$$
 [কু. গি. '১১]

(ii)
$$\int_0^a \sqrt{a^2 - x^2} \, dx$$
. [য. চ. ব. দি. '১২; কু. '১৩]

$$56. \int_0^\pi \cos^3 x \, \mathrm{d}x$$

57. (i)
$$\int_0^1 \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$
 (ii) $\int_0^1 \frac{\tan^{-1} x}{1+x^2} dx$ [य. '১২]

58.
$$\int_0^1 2x^3 e^{-x^2} dx.$$

59.
$$\int_0^1 \frac{dx}{e^x + e^{-x}}$$
 রো. '১২]

60.
$$\int_{0}^{1} \frac{x \, dx}{1 + x^4}$$
 [ता. '\\]

61.
$$\int_0^{\pi/2} \frac{\cos 2\theta}{\cos^2 \theta} d\theta$$
 [ব. '১১]

62.
$$\int_{0}^{\pi/6} \sin 3x \cos x \, dx.$$

63.
$$\int_{-1}^{4} \frac{dx}{(2x+3)^2}$$
 [4. 'o9]

64.
$$\int_0^{\pi/2} \sqrt{\cos x} \sin^3 x \, dx$$
 [য. '১০; চ. '১৩] 65. $\int_0^{\pi/2} \cos^4 x \, dx$ [য. '০৪]

] 65.
$$\int_{0}^{\pi/2} \cos^4 x \, dx \, [4. \, ^{\circ} 8]$$

66.
$$\int_{0}^{1} \frac{1-x}{1+x} dx. [4. '08]$$

67. (i)
$$\int_{0}^{1} \frac{(\sin^{-1} x)^{2}}{\sqrt{1-x^{2}}} dx$$
 [st. '55]

(ii)
$$\int_0^{\sqrt{3}} \frac{(\tan^{-1} x)^2}{1 + x^2} dx$$

68. (i)
$$\int_{0}^{\pi/2} \frac{\cos x \, dx}{(1 + \sin x)^2}$$

(ii)
$$\int_{0}^{\pi/2} \frac{\cos x \, dx}{1 + \sin^2 x}$$
 [রা. '১৩]

(iii)
$$\int_{0}^{\pi} 3\sqrt{(1-\cos x)} \sin x \, dx$$

69.
$$\int_{0}^{\pi/2} x^{2} \cos x \, dx \, [\text{vi. 'ob }]$$

70. দেখাও যে,
$$\int_0^{\frac{\pi}{2}} \frac{d\theta}{a^2 \sin^2 \theta + b^2 \cos^2 \theta} = \frac{\pi}{2ab}$$

71. দেখাও যে,
$$\int_0^{\frac{\pi}{2}} (a \cos^2 \theta + b \sin^2 \theta) d\theta = \frac{1}{4} (a + b) \pi$$
. [চ. '০৩]

উত্তরমালা

1. 32. 2.
$$\frac{5}{6}$$
 · 3. $1\frac{11}{15}$ · 4. 9. 5. 2. 6. $\frac{1}{2}$ (e-1). 7. 2. 8. 1. 9. $\frac{\pi}{4}$. 10. $1 - \frac{\pi}{4}$. 11. $\frac{\pi}{2}$.12. $\frac{128}{15}$.

13.
$$\frac{1}{3}$$
. 14. $\sqrt{3} + 1$. 15. $\frac{1}{6}$. 16. $\frac{2}{3}$. 17. $\frac{2\pi}{3} - \frac{\sqrt{3}}{4}$. 18. $\frac{8}{21}$. 19. $\frac{\pi^4}{64}$. 20. 1. 21. $\frac{1}{3}$ (e⁸ - e).

22.
$$\frac{1}{2}$$
. 23. $\frac{1}{162}$. 24. (i) 8 ln 2 – 4. (ii) $\frac{1}{2}$ ln (ab) . ln $\left(\frac{b}{a}\right)$. 25. $\frac{1}{4}$. 26. $\sin^{-1}\frac{1}{3}$.

27.
$$\sin (\ln 3)$$
. 28. (i) $\frac{1}{9} - \frac{4}{9} e^{-3}$. (ii) 1. 29. π . 30. $\frac{1}{4}$. 31. $\frac{\pi^3}{192}$. 32. $\frac{\pi}{4}$. 33. $\frac{-2}{15}$.

34.
$$\frac{1}{12}$$
 (5 π -6 $\sqrt{3}$ + 6). 35.(i) 2 - $\sqrt{3}$. (ii) 3- 2 $\sqrt{2}$. (iii) $\frac{\pi}{2}$ 36. $\frac{9}{20}$ · 37. $\frac{\pi}{12}$ · 38.(i) (2- $\sqrt{2}$).

(ii)
$$\frac{\pi}{3\sqrt{3}} \cdot 39$$
. $(\pi + 2)$. 40. $\frac{7}{18} \cdot 41$. (i) 8 $ln(2)$ – 3. (ii) 8 $ln(2)$ – 2. (iii) $ln(2) + \frac{\pi}{2} - 2$.

42.
$$\frac{3}{5}$$
 · 43. $\frac{\pi}{4}$ + $\frac{1}{2}$ ln 2· 44. $\frac{1}{24}$ · 45. $\frac{1}{6}$ · 46. $\frac{1}{7}$ · 47. (i) $\frac{\pi}{3\sqrt{3}}$ · (ii) 1. 48. $\frac{8}{5}$ · 49. (i) $\frac{2}{3}$ · (ii) 0.

50.
$$\frac{1}{6}$$
 (ln 2). **51.** $e^{\pi/2}$. **52.** $\ln \frac{3}{2} \cdot 53$. $\frac{2}{3} \cdot 54$. $\frac{25\pi}{4} \cdot 55$. (i) 4π .(ii) $\frac{1}{4}\pi a^2$. **56.** 0. **57.** (i) $2(e-1)$

(ii)
$$\frac{\pi^3}{192}$$
, 58. $\left(1-\frac{2}{e}\right)$ · 59. $\left(\tan^{-1}e-\frac{\pi}{4}\right)$ · 60. $\frac{\pi}{8}$ · 61. $\frac{\pi}{2}$ - 1 · 62. $\frac{5}{16}$ · 63. $\frac{4}{33}$ · 64. $\frac{8}{21}$ · 65. $\frac{3\pi}{16}$

66.
$$\ln \frac{4}{e}$$
 · **67** (i). $\frac{\pi^3}{24}$ · (ii). $\frac{\pi^3}{81}$ · **68.** (i) $\frac{1}{2}$ · (ii) $\frac{\pi}{4}$ · (iii) $4\sqrt{2}$ · **69.** $\left(\frac{\pi^2}{4} - 2\right)$.

10.7.2. নির্দিষ্ট যোগজ ব্যবহার করে ক্ষেত্রফল সম্পর্কিত উদাহরণ ও অনুশীলনী

উদাহরণ $1.\,y^2=4ax$ এবং $x^2=4ay$ পরাবৃত্ত ছারা আবন্দ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। রো. '১৩)

সমাধান
$$y^2 = 4ax$$
(i) $x^2 = 4ay$ (ii)

(ii)
$$-$$
 (i) $\Rightarrow x^2 - y^2 = -4a(x - y)$
 $\Rightarrow x^2 - y^2 + 4a(x - y) = 0$
 $\Rightarrow (x - y)(x + y + 4a) = 0$

$$\therefore x - y = 0 \Rightarrow x = y$$

(i) থেকে, $y^2 = 4ax \Rightarrow x^2 = 4ax$, y = x বসিয়ে

$$\Rightarrow x(x-4a)=0$$

$$\Rightarrow x = 4a$$
 অপবা, $x = 0 = y$

∴ পরাবৃত্ত দুইটির ছেদবিন্দু O(0, 0), B(4a, 4a)

$$\therefore$$
 ক্ষেত্রফল = $\int_0^{4a} (y_1 - y_2) dx$, যখন $y_1 = PR = \sqrt{4ax}$ এবং $y_2 = QR = \frac{x^2}{4a}$.

$$= \int_0^{4a} \left(\sqrt{4ax} - \frac{x^2}{4a} \right) dx$$

$$= 2\sqrt{a} \int_0^{4a} \sqrt{x} dx - \frac{1}{4a} \int_0^{4a} x^2 dx$$

$$= 2\sqrt{a} \left[\frac{2x^{3/2}}{3} \right]_0^{4a} - \frac{1}{4a} \left[\frac{x^3}{3} \right]_0^{4a}$$

$$= \frac{4\sqrt{a}}{3} \left\{ \left(\sqrt{4a^3} \right) - 0 \right\} - \frac{1}{12a} \left\{ (4a)^3 - 0 \right\}$$

$$= \frac{32}{3} a^2 - \frac{16}{3} a^2 = \frac{16}{3} a^2$$
 কাঞ্চক।

উদাহরণ 2. $\frac{x^2}{9} + \frac{y^2}{4} = 1$ বক্ররেখা হারা ভাবন্ধ কেত্রের কেত্রকল নির্ণর কর। হি.দি. '১১; ঢা. রা. হ. হ. ব. '১২। সমাধান ঃ $\frac{x^2}{0} + \frac{y^2}{4} = 1$ বা, $\frac{y^2}{4} = 1 - \frac{x^2}{0}$ বা, $y = \pm \frac{2}{3} \sqrt{9 - x^2}$

(+) নিয়ে , $y=\frac{2}{3}\sqrt{9-x^2}$ [(-) বাদ দেওয়ার কারণ ক্ষেত্র OAB তে y ধনাত্মক এবং আবন্ধ ক্ষেত্রটি OAB ক্ষেত্রের 4 গুণ]

সীমা 8x=0 এবংx=OA=3 এখানে মোট কেত্রফল $=4\times$ কেত্র OAB এর কেত্রফল

ান বিধায় ক্ষেত্ৰকল =
$$4\int_0^3 y \, dx = 4\int_0^3 \frac{2}{3}\sqrt{9-x^2} \, dx$$
 $= \frac{8}{3}\int_0^{\pi/2} \sqrt{9-9\sin^2\theta} \, 3\cos\theta \, d\theta$ $= \frac{8}{3}\int_0^{\pi/2} \sqrt{9-9\sin^2\theta} \, 3\cos\theta \, d\theta$ $= \frac{8}{3}\times 3\times 3\int_0^{\pi/2} \sqrt{1-\sin^2\theta} \, \cos\theta \, d\theta$ $= 24\int_0^{\pi/2} \cos\theta \, \cos\theta \, d\theta = 12\int_0^{\pi/2} 2\cos^2\theta \, d\theta$ $= 12\int_0^{\pi/2} (1+\cos2\theta) \, d\theta = 12\left[\theta + \frac{\sin2\theta}{2}\right]_0^{\pi/2} = 12\left(\frac{\pi}{2} + \frac{1}{2}\sin\pi - 0\right)$ $= 6\pi$ বেগ প্ৰক্ষ।

উদাহরণ 3. $x^2+y^2=16$ বৃত্ত দ্বারা আবন্ধ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। ঢো. কু. ব. '১১; দি. '১২] সমাধান : $x^2+y^2=16$ বা, $y=\pm\sqrt{16-x^2}$

$$(+)$$
 नित्रा, $y = \sqrt{16 - x^2}$

[(-) বাদ দেয়ার করণ OAB ক্ষেত্রের জন্য y ধনাত্মক]

∴ বৃত্তের ক্ষেত্রফশ = 4×6 কন্ত OAB এর ক্ষেত্রফশ = $4 \int_{0}^{4} y \, dx = 4 \int_{0}^{4} \sqrt{16 - x^2} \, dx$ = $4 \int_{0}^{\pi/2} \sqrt{16 - 16 \sin^2 \theta} \cdot 4 \cos \theta \, d\theta$ = $4 \times 4 \times 4 \int_{0}^{\pi/2} \sqrt{1 - \sin^2 \theta} \cdot \cos \theta \, d\theta$ = $32 \int_{0}^{\pi/2} 2 \cos^2 \theta \, d\theta = 32 \int_{0}^{\pi/2} (1 + \cos 2\theta) \, d\theta$

$$= 32 \int_{0}^{\pi/2} 2 \cos^{2} \theta \, d\theta = 32 \int_{0}^{\pi/2} (1 + c)^{\pi/2} d\theta = 32 \left[\theta + \frac{1}{2} \sin 2\theta \right]_{0}^{\pi/2} d\theta = 32 \left[\left(\frac{\pi}{2} + \frac{1}{2} \sin \pi \right) - \left(0 + \frac{1}{2} \sin 0 \right) \right]$$

সীমা ঃ x = 0 থেকে, OA = 4মনে করি, $x = 4 \sin \theta$ $\Rightarrow dx = 4 \cos \theta d\theta$ x = 0 হলে, $\theta = 0$ x = 4 হলে, $\theta = \frac{\pi}{2}$

প্রশুমালা 10.7

- 1. y = 0, y = x এবং x = 6 রেখাত্রয় দ্বারা আবন্ধ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর।
- 2. $x^2 + y^2 = r^2$ বৃত্তের ক্ষেত্রফল নির্ণয় কর। [চ. '১১; সি. '১২]
- 3. $x^2 + y^2 = 4$ বৃত্তের ক্ষেত্রফল নির্ণয় কর। [য. '০৬]

= 16π বর্গ একক।

- 4. (i) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ উপবৃত্তটি দারা আবন্ধ প্রথম চতুর্ভাগের ক্ষেত্রফল নির্ণয় কর ৷ [কু. '১২]
 - (ii) $x^2 + y^2 = 1$ এবং $y^2 = 1 x$ বক্ররেখা দুইটি দারা আবন্ধ ক্লেত্রের ক্লেত্রফল নির্ণয় কর।
- 5. $y^2 = 4x$ পরাবৃত্ত এবং y = x সরল রেখা দ্বারা আবন্ধ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। বি. '১০; সি. '১১; চা. কু. চ. '১৩
- 6. $y^2 = 4x$ পরাবৃত্ত এবং y = 2x সরল রেখা দারা আবদ্ধ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। [চ. '১০]
- 7. (i) $y^2 = 4x$ এবং $x^2 = 4y$ পরাবৃত্তদ্বরের সাধারণ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর।
 - (ii) $y^2 = x$ এবং $x^2 = y$ পরাবৃত্তদয় দারা আবন্দ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। [য. '১০]
- 8. $y^2 = 16x$ পরাবৃত্ত এবং এর উপকেন্দ্রিক লম্ম দারা সীমাবন্ধ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। [সি. '০৫]
- 9. $x^2 = 4ay$ পরাবৃত্ত এবং এর উপকেন্দ্রিক লম্ম দ্বারা সীমাবন্দ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর।
- 10. $y=2\sin x$ বক্ররেখা, x-অক্ষ এবং x=0 থেকে এর মধ্যে সীমাবন্ধ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর।
- 11. 3x + 4y = 12 সরলরেখাটি অক্ষ্যয়ের সাথে যে কেত্র উৎপন্ন করে তার ক্ষেত্রফল নির্ণয় কর।
- 12. বক্ররেখা $y=2x-x^2$ এবং x- অক্ষ দারা সীমাবন্ধ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। [রা. '০১]
- 13. বক্ররেখা $x^2=4y$, x- অক্ষ , x=2 এবং x=4 দ্বারা ভাবন্দ্ধ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর।

- 14. $y=4x^2$ ও y=4 দারা পরিবেটিত ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। [কু. '০১]
- 15. $9x^2 + 4y^2 = 36$ উপবৃত্ত ঘারা বেন্টিভ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। [সি. '০১]
- 16. (i) $y^2 = 16x$ পরাবৃত্ত এবং y = x সরলরেখা দারা সীমাবন্দ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। [সি. '০২]
 - (ii) $x^2 + y^2 = 25$ বৃদ্ধ এবং x = 3 সরশরেখা দারা আবন্ধ কেত্রের কেত্রফল নির্ণয় কর। [চা. '০৯; কৃ. '১০; ব. '১০]
- 18. x-y+2=0 এবং $y=x^2$ দারা পরিবেটিত ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। [সি. '০৩]
- 19. $xy = c^2$ অধিবৃত্ত, x- অক্ষ এবং x = a ও b রেখা দুইটি দ্বারা আবন্ধ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। [দি. '১০
- $20. \ \sqrt{x} + \sqrt{y} = \sqrt{a}$ অধিবৃত্ত এবং স্থানাভেকর অক্ষ দুইটির অন্তর্গত ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। [সি. '০৪]

উত্তরমালা

1. 18 বৰ্গ একক 2. πr^2 বৰ্গ একক 3. 4π বৰ্গ একক 4. (i) $\frac{1}{4}\pi ab$ বৰ্গ একক (ii) $\frac{1}{6}(3\pi - 8)$ বৰ্গ একক । 5. $\frac{8}{3}$ বৰ্গ একক 6. $\frac{1}{3}$ বৰ্গ একক 7. (i) $\frac{16}{3}$ বৰ্গ একক (ii) $\frac{1}{3}$ বৰ্গ একক 8. $\frac{128}{3}$ বৰ্গ একক 9. $\frac{8a^2}{3}$ বৰ্গ একক 10. 4 বৰ্গ একক 11. 6 বৰ্গ একক 12. $\frac{8}{3}$ বৰ্গ একক 13. $\frac{14}{3}$ বৰ্গ একক 4. $\frac{16}{3}$ 15. 6π 16.(i) $\frac{128}{3}$ (ii) $\frac{25\pi}{2} - 25\sin^{-1}\frac{3}{5} - 12$ 17. $\frac{342}{3}$ 18. $\frac{9}{2}$ বৰ্গ একক 19. $c^2 ln\left(\frac{b}{a}\right)$. 20. $\frac{1}{6}a^2$

সৃজনশীল প্রশ্ন :

- 1. (a) নির্দিষ্ট যোগজে ধ্রুবক c থাকে না কেন t
 - (b) প্রমাণ কর যে, $\int \frac{dx}{\sqrt{a^2 x^2}} = \sin^{-1} \frac{x}{a} + c$.
 - (c) $y^2 = 16x$ পরাবৃত্ত এবং এর উপকেন্দ্রিক লম্ব দ্বারা সীমাবদ্ধ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। $\frac{128}{3}$ বর্গ একক।
- 2. (a) সেখাও যে, $\int e^x \{f(x) + f'(x)\} dx = e^x f(x) + c$.

(b)
$$\int \frac{xe^x}{(1+x)^2} dx$$
 নির্ণয় কর ৷
$$\mathbf{\mathfrak{G}} : \frac{e^x}{(1+x)}$$

(c)
$$\int_{-1}^{e^2} \frac{dx}{x(1+\ln x)^2}$$
 এর মান নির্ণয় কর।

3. (a)
$$\int \frac{dx}{1+9x^2}$$
 নির্ণয় কর ৷ ${\bf \Bar{v}}: \frac{1}{3} \tan^{-1} 3x$

(b)
$$\int f(x)dx = \ln (x + \sqrt{x^2 - 1})$$
 হলে $f(x)$ নির্ণয় কর।

(c) $4x^2 + 9y^2 = 36$ উপবৃত্ত দারা আবদ্ধ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর। উ:

উ : 6π বর্গ একক।

वहनिर्वप्रनी श्रम :

1.
$$\int \frac{\mathrm{d}x}{x\sqrt{1+\ln x}} = f(x) + c$$
 হলে, $f(x) = \Phi$ ত?

$$(a) \ \frac{2}{\sqrt{1 + \ln x}}$$

$$(b) \quad 2\sqrt{1 + \ln x}$$

(c)
$$\sqrt{1 + \ln x}$$

(d)
$$\left(\sqrt{1+\ln x}\right)^{3/2}$$

$$2. \int \frac{\mathrm{d}x}{\cos^2 x \sqrt{\tan x - 1}} = f(x) + c \ \text{Res}, \ f(x) = \text{AD}$$
?

(a)
$$\sqrt{\tan x - 1}$$

(b)
$$2\sqrt{\tan x - 1}$$

(c)
$$\frac{1}{2\sqrt{\tan x - 1}}$$

$$(d) \quad \left(\sqrt{\tan x - 1}\right)^{3/2}$$

3.
$$\int \sqrt{\frac{1-x}{1+x}} dx = f(x) + c$$
 হল, $f(x) = \overline{\Phi}$?

(a)
$$\cos^{-1}x + \sqrt{1-x^2}$$

(b)
$$\sin^{-1}x + \sqrt{1-x^2}$$

(c)
$$\sin^{-1}x - \sqrt{1-x^2}$$

(d)
$$\cot^{-1}x + \sqrt{1-x^2}$$

4.
$$\int e^x \sec x(1 + \tan x) dx = f(x) + c$$
 হল, $f(x) = \overline{\Phi}$?

$$(b)$$
 $e^{x}sec x$

(c)
$$\frac{e^x}{\tan x}$$

5.
$$\int \cos^{-1} x \, dx = f(x) + c$$
 হল, $f(x) = \overline{\Phi}$?

(a)
$$\cos^{-1} x + \sqrt{1 - x^2}$$

(b)
$$x \cos x - \sqrt{1 - x^2}$$

(c)
$$x\cos^{-1}x + \sqrt{1-x^2}$$

6.
$$\int_0^1 \frac{1-x}{1+x} \, dx \, dx \, dx \, A = \frac{1}{2} = \frac{1-x}{2}$$

(a)
$$ln\left(\frac{2}{e}\right)$$

(b)
$$ln\left(\frac{4}{e}\right)$$

(c)
$$ln\left(\frac{3}{e}\right)$$

7.
$$\int_0^1 \frac{dx}{e^x + e^{-x}}$$
 এর মান কত?

(a)
$$\tan^{-1} e + \frac{\pi}{4}$$

(a)
$$\tan^{-1} e + \frac{\pi}{4}$$
 (b) $\tan^{-1} e - \frac{\pi}{4}$ (c) $\frac{\pi}{2} - \tan^{-1} e$ (d) $\frac{\pi}{3} + \tan^{-1} e$

$$(c) \quad \frac{\pi}{2} - \tan^{-1} \epsilon$$

$$(d) \quad \frac{\pi}{3} + \tan^{-1} e$$

8.
$$\int_{0}^{\frac{\pi}{2}} \sqrt{1 + \sin x} \, dx$$
 এর মান কত?

(a)
$$\frac{\pi}{2}$$

(c)
$$\sqrt{2}$$

(d)
$$\frac{1}{2}$$

9.
$$y^2 = 4x$$
 এবং $y = x$ দারা আদম্ব ক্ষেত্রের ক্ষেত্রফর কত?

$$(b)$$
 $\frac{8}{3}$ বৰ্গএকক

$$(c)$$
 $\frac{5}{6}$ বৰ্গএকক

$$(d)$$
 $\frac{4}{9}$ বর্গএকক

$$y^2 = 16x$$
 এবং $y = 4x$ দারা আদন্দ ক্ষেত্রের ক্ষেত্রফল কড?

$$(a)$$
 $\frac{1}{3}$ বৰ্গএকক

$$(b)$$
 $\frac{2}{3}$ বৰ্গএকক (c) $\frac{4}{3}$ বৰ্গএকক

$$(c)$$
 $\frac{4}{3}$ বৰ্গএকক

$$(d)$$
 $\frac{5}{3}$ বৰ্গএকক

ব্যবহারিক

10.8. y = f(x) সমীকরণের লেখ ও x-অক দারা আবদ্ধ কেত্রের কেত্রফলের আসন্ন মান নির্ণয় কেত্রফলের আসন্নমান নির্ণয়ের জন্য ট্রাপিজিয়াম সূত্র ($Trapezoidal\ Rule$) আলোচনা করা হল।

মনে করি, [a, b] ব্যবধির মধ্যে y = f(x) একটি অবিচ্ছিন্ন (Continuous) ফাংশন। অর্থাৎ a এবং b এর মধ্যে ফাংশনটির লেখে কোথায়ও ছেদ নেই।

y=f(x) এর শেখ, x-জক্ষ, $x_0=a$ এবং $x_0=b$ হারা জাবন্ধ কেত্রটি চিত্রে দেখান হল।

ক্ষেত্র ABQP এর ক্ষেত্রকণ নির্ণয় করতে হবে। [a, b] ব্যবধিকে $a=x_0 < x_1 < x_2 < < x_n = b$ বিন্দুঘারা n সংখ্যক ক্ষুদ্র ব্যবধিতে বিভক্ত করা হল। তাহলে, $nh=x_n-x_0$ অর্থাৎ $h=\frac{1}{n}(x_n-x_0)$.

আবার ক্ষেত্রটি n সংখ্যক কৃদ্র কৃদ্র ট্রাপিঞ্চিয়ামে বিভক্ত করা হল। ধরি, প্রত্যেক কৃদ্র ব্যবধির দৈর্ঘ্য = h অর্থাৎ $x_1 - x_0 = h$, $x_2 - x_1 = h$ ইত্যাদি।

 $x_1 = x_0 + h, x_2 = x_1 + h...$

প্রথমে একটি কুদ্র ট্রাপিজিয়াম ARSP এর কেত্রফল নির্ণয় করি।

প্রথম কোটি $y_0=f(x_0)=A$ P এবং ২য় কোটি $y_1=f(x_1)=RS$ n তম কোটি $y_n=f(x_n)=BQ$ এখন ট্রাপিন্ধিয়াম ARSP এর ক্ষেত্রফল $=\frac{y_0+y_1}{2}\times AR$

$$=\frac{1}{2}(y_0+y_1)h$$
, राजन $AR=h$

তদুপ ২য় কৃদ্র ট্রাপিন্ধিয়ামের কেত্রফল $=\frac{1}{2} h (y_1 + y_2)$ ইত্যাদি।

অতএব সমগ্র ABQP ক্ষেত্রটির ক্ষেত্রফল =A হলে,

$$A = \frac{1}{2}h(y_0 + y_1) + \frac{1}{2}h(y_1 + y_2) + \frac{1}{2}h(y_2 + y_3) + \dots + \frac{1}{2}h(y_{n-1} + y_n)$$

$$= \frac{1}{2}h[y_0 + 2y_1 + 2y_2 + 2y_3 + \dots + 2y_{n-1} + y_n]$$

$$= h\left[\frac{y_0}{2} + y_1 + y_2 + \dots + y_{n-1} + \frac{y_n}{2}\right]$$
 যা ট্রাপিন্সিয়াম সূত্র হিসেবে পরিচিত।

সূতরাং ট্রাপিন্ধিয়াম সূত্রটি $A = h\left[\frac{y_0}{2} + y_1 + y_2 + \dots + y_{n-1} + \frac{y_n}{2}\right]$

 $\int_a^b f(x)\ dx$ নির্দিউ ইন্টিগ্রালটি $y=f(x),\,x$ -অক্স $,\,x=a$ এবং x=b দ্বারা আবন্ধ ক্ষেত্রের ক্ষেত্রফল নির্দেশ করে।

সূতরাৎ
$$\int_{a}^{b} f(x) dx = h \left(\frac{1}{2} y_0 + y_1 + y_2 + \dots + y_{n-1} + \frac{1}{2} y_n \right)$$

 $2. \ n$ এর মান যত বেশি হবে অর্থাৎ h এর মান যত ছোট হবে আসন্নীকরণ তত শুল্ব হবে।

		· · · · · · · · · · · · · · · · · · ·
সমস্যা नং 2.1	j	তারিখ :

সমস্যা : ছয়টি কোটি ব্যবহার করে ট্রাপিন্সিয়াম সূত্রের সাহায্যে $y=\sin x$, x-জক্ষ এবং x=0, $x=\pi/4$ দ্বারা ভাবন্থ ক্ষেত্রের ক্ষেত্রফলের ভাসন্ন মান ভর্ষাৎ, $\sin x \, dx \, \text{ এর মান নির্ণয় করতে হবে ! }$

সমাধান : মনে করি, $y = f(x) = \sin x$ এবং নির্ণেয় ক্ষেত্রফল = A.

তত্ত্ব:
$$A = h\left(\frac{1}{2}y_0 + y_1 + y_2 + y_3 + y_4 + \frac{1}{2}y_5\right)$$

কার্যপন্ধতি:

 $1.0 \le x \le \frac{\pi}{4}$ ব্যবধিকে সমদূরবর্তী 6টি কোটি $(y_0, y_1, y_2, y_3, y_4, y_5)$ এর জন্য (6 - 1) = 5টি ক্ষুদ্র ব্যবধিতে বিভক্ত করি যার প্রত্যেকটির দৈর্ঘ্য h নির্ণয় করি।

2. $x_0 = x_{n-1} + h$ সূত্র প্রয়োগ করে $x_1, x_2 ...$ নির্ণয় করি।

<u> </u>						
$h=\frac{x_{n}-x_{0}}{n}$	<i>x</i> ₀	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅
$\frac{1}{5}\left(\frac{\pi}{4}-0\right)=\frac{\pi}{20}$	0	$\frac{\pi}{20}$	$\frac{\pi}{10}$	$\frac{3\pi}{20}$	$\frac{\pi}{5}$	$\frac{\pi}{4}$

 $3. y = f(x) = \sin x$ ফাংশনে উপরোক্ত ছয়টি x এর মান বসিয়ে প্রতিসঞ্চী ছয়টি কোটি y নির্ণয় করি।

x	$x_0 = 0$	$x_1 = \frac{\pi}{20}$	$x_2 = \frac{\pi}{10}$	$x_3 = \frac{3\pi}{20}$	$x_4 = \frac{\pi}{5}$	$x_{5} = \frac{\pi}{4}$
$y = \sin x$	$y_0 = 0$	$y_1 = 0.15643$	$y_2 = 0.30902$	$y_3 = 0.45399$	$y_4 = 0.58778$	$y_5 = 0.70711$

4. ট্রাপিজিয়াম সূত্র $A = h\left(\frac{1}{2}y_0 + y_1 + y_2 + y_3 + y_4 + \frac{1}{2}y_5\right)$ প্রয়োগ করে A এর মান নির্ণয় করি।

यम সংকলन :

ট্রাপিজিয়াম সূত্র (যখন কোটি 6 টি) :
$$A = h\left(\frac{1}{2}y_0 + y_1 + y_2 + y_3 + y_4 + \frac{1}{2}y_5\right)$$

$$\therefore A = \int_0^{\pi/4} \sin x \, dx$$

$$= \frac{\pi}{20} \left(\frac{1}{2} \times 0 + 0.15643 + 0.30902 + 0.45399 + 0.58778 + \frac{1}{2} \times 0.70711 \right)$$

$$= \frac{\pi}{20} \times 1.86077 = 0.2924 = 0.30 \text{ (213)}$$

উন্তর : নির্ণেয় ক্ষেত্রফল A=0.30 বর্গ একক (প্রায়)।

সমস্যা নং 2.2 তারিখ :

সমস্যা : পাঁচটি কোটি ব্যবহার করে $\begin{cases} 0.8 \\ e^{x^2} dx$ এর মান নির্ণয় করতে হবে। 0

তত্ত্ব: $A = h\left(\frac{y_0}{2} + y_1 + y_2 + y_3 + \frac{y_4}{2}\right)$

কার্যপন্ধতি:

- $1.0 \le x \le 0.8$ ব্যবধিতে সমদূরবতী 5টি কোটি $(y_0, y_1, y_2, y_3, y_4)$ এর জন্য 4টি ক্ষুদ্র ব্যবধিতে বিভক্ত করে প্রত্যেকটির দৈর্ঘ্য h নির্ণয় করি।
 - $2. x_n = x_{n-1} + h$ সূত্র প্রয়োগ করে $x_1, x_2,$ নির্ণয় করি।
- $3. \ y = f(x) = e^{x^2}$ সমীকরণে উপরোক্ত পন্ধতিতে প্রান্ত $x_1, x_2 \dots$ স্থাপন করে y এর অনুসঞ্জী মান নির্ণয় করি।
 - 4. ট্রাপিজিয়াম সূত্র: $A=h\left(\frac{1}{2}y_0+y_1+y_2+y_3+\frac{1}{2}y_4\right)$ ব্যবহার করে A এর মান নির্ণয় করি।

ফল সংকলন :

$h = \frac{x_n - x_0}{n}$	<i>x</i> ₀	x_1	<i>x</i> ₂	x_3	<i>x</i> ₄
$\frac{0.8}{4} = 0.2$	0	0.2	0.4	0.6	0.8

x	$x_0 = 0$	$x_1 = 0.2$	$x_2 = 0.4$	$x_3 = 0.6$	$x_4 = 0.8$
$y = e^{x^2}$	$y_0 = 1$	$y_1 = 1.0408$	$y_2 = 1.1735$	$y_3 = 1.4333$	$y_4 = 1.8964$

ট্রাপিজিয়াম সূত্র থেকে
$$A=h\left(\frac{y_0}{2}+y_1+y_2+y_3+\frac{y_4}{2}\right)$$
, যখন $n=4$
$$=0.2\left(\frac{1}{2}+1.0408+1.1735+1.4333+\frac{1.8964}{2}\right)$$

$$=0.2\times5.0958=1.0192=1.02$$
 (প্রায়)

∴ A = 1.02 (প্রায়)।

উন্তর : নির্ণেয় ক্ষেত্রফল A=1.02 বর্গ একক (প্রায়)