Algebraic Topology

Hoyan Mok

February 1, 2022

Contents

Contents	
1 Homotopy and Fundamental Group §1 Homotopy	1
bibliography	3
Symbol List	4
Index	5

ii CONTENTS

Chapter 1

Homotopy and Fundamental Group

§1 Homotopy

Definition 1.1 (Homotopy). $f,g \in C(X,Y)$. If $\exists H \in C(X \times [0,1],Y)$ s.t. H(x,0) = f(x), H(x,1) = g(x), then we say f and g are **homotopic**, denoted by $f \simeq g \colon X \to Y$ or just $X \to Y$. H is called a **homotopy** between f and g, denoted by $H \colon f \simeq g$ or $f \simeq_H g$.

For $t \in [0,1]$, $h_t: X \to Y; x \mapsto H(x,t)$ is called a *t-slice*.

If f is homotopic to a constant mapping, we say that f is **null-homotopic**.

A *linear homotopy* is a homotopy between two functions to $Y \subseteq \mathbb{R}^n$ that change linearly, i.e.

$$H(x,t) = (1-t)f(x) + tg(x).$$

Theorem 1.1 (Maps to convex set are homotopic). $f, g \in C(X, Y)$. If Y is a convex set in \mathbb{R}^n , then $f \simeq g$.

Proof. Consider linear homotopy.

Theorem 1.2. Homotopic relation is an equivalence relation.

Proof. reflexity. $f \simeq f$, just take H(x,t) = f(x) for any t (Such homotopy is called a **constant** homotopy).

Symmetry. $f \simeq g$ then $g \simeq f$. Just take $\bar{H}(x,t) = H(x,1-t)$ (Here \bar{H} is called the inverse of H).

Transivity. $f \simeq g \land g \simeq h \rightarrow f \simeq h$. Let

$$H_1H_2(x,2t) = \begin{cases} H_1(x,2t) & t \in [0,1/2], \\ H_2(x,2t-1) & t \in [1/2,1]. \end{cases}$$

We can see that H_1H_2 is also a homotopy (see Theorem 11.6 in Point Set Topology)

Hence, we can define **homotopy classes** on C(X,Y), denoted by [X,Y].

As you might expect after reading the proof of Theorem 1.2, the homotopies between mappings within a homotopy class form a group.

Theorem 1.3 (Composition of homotopies). $f_1 \simeq f_2 \colon X \to Y$, $g_1 \simeq g_2 \colon Y \to Z$, then $g_1 \circ f_1 \simeq g_2 \circ f_2 \colon X \to Z$.

Proof i. Let $F: f_1 \simeq f_2, G: g_1 \simeq g_2$. Define:

$$F: X \times [0,1] \to Y \times [0,1]; (x,t) \mapsto (F(x,t),t).$$

It can be verified that $G \circ \mathbf{F} \colon g_1 \circ f_1 \simeq g_2 \circ g_2 \colon X \to Z$.

Proof ii. Let $F: f_1 \simeq f_2, G: g_1 \simeq g_2$.

We can verify that $H_1: (x,t) \mapsto g_1 \circ F(x,t)$ is a homotopy between $g_1 \circ f_1$ and $g_1 \circ f_2$; Similarly $H_2: g_1 \circ f_2 \simeq g_2 \circ f_2$ can be defined.

Now consider $H = H_1H_2$, or in detailed,

$$H(x,t) = \begin{cases} g_1 \circ F(x,2t) & (x,t) \in X \times [0,1/2] \\ G(f_2(x),2t-1). & (x,t) \in X \times [1/2,1] \end{cases}$$

Theorem 1.4 (Identity map in convex space is null-homotopic).

Theorem 1.5 (All mappings from a convex set to a path-connected space are null-homotopic). If $X \subseteq \mathbb{R}^n$ is a convex set, Y is path-connected, then any $f: X \to Y$ is null-homotopic.

Proof. First we verify that the identity id_X is null-homotopic. The linear homotopy can be constructed as:

$$H_{x_0}(x,t) = tx + (1-t)x_0.$$

Then, any $f: X \to Y$ can be written as $f = f \circ \mathrm{id}_X$, hence $f \simeq f \circ H_{x_0}(x, 1) = (x \mapsto f(x_0))$, which means f is null-homotopic.

Theorem 1.6 (All constant mappings to a path-connected space belong to one homotopy class). If Y is a path-connected space, $y_0 \in Y$, then $[X,Y] = [x \mapsto y_0]$ (i.e. homotopy class of constant mapping to $\{y_0\}$)

Proof. Let $f_1(x) = y_1$, $f_2(x) = y_2$ be two constant mappings, a is a path from y_1 to y_2 . Then the homotopy between f_1 and f_2 can be defined as:

$$H(x,t) = a(t).$$

Definition 1.2 (Homotopy relative to a set). Let $A \subseteq X$, $H: f \simeq g$. If $\forall a \in A, \forall t \in [0,1], f(a) = g(a) = H(a,t)$, we say that f and g are **homotopic relative to** A, denoted by $H: f \simeq g \operatorname{rel} A$.

We can have parallel results as Theorem 1.2 and Theorem 1.3:

Theorem 1.7. Given $A \subseteq X$, $\simeq \operatorname{rel} A$ is an equivalence relation in C(X,Y).

§1. HOMOTOPY 3

Theorem 1.8 (Composition of relative homotopies). $f_1 \simeq f_2 \colon X \to Y \operatorname{rel} A, \ g_1 \simeq g_2 \colon Y \to Z \operatorname{rel} B,$ and $f_1(A) \subset B$, then $g_1 \circ f_1 \simeq g_2 \circ f_2 \colon X \to Z$.

Definition 1.3 (Fixed-endpoint Homotopy). Let a, b be two paths in X. If $a \simeq b \operatorname{rel}\{0, 1\}$, we say that a and b are *fixed-endpoint homotopic*. The paths in X modulus fixed-point homotopy is denoted by [X], called the *path classes*. The path class which a belongs to is denoted by $\langle a \rangle$.

bibliography

- [1] 尤承业. 基础拓扑学讲义. 北京: 北京大学出版社, 1997. ISBN: 9787301031032.
- [2] 熊金诚, ed. 点集拓扑讲义. 2nd ed. 北京: 高等教育出版社, 1998. ISBN: 9787040062823.

Symbol List

Here listed the important symbols used in this notes

$\langle a \rangle$, 3	$H \colon f \simeq g, 1$
$f \simeq g, 1$	$H : f \simeq g \operatorname{rel} A, \frac{2}{2}$
$f \simeq_H g, 1$	$[X], \frac{3}{}$
$ar{H}, { extbf{1}}$	$[X,Y], \frac{2}{2}$

Index

```
constant homotopy, 1 homotopy classes, 2 linear homotopy, 3 linear homotopy, 1 linear homotopy, 1 null-homotopic, 1 homotopic, 1 path classes, 3 homotopic relative to A, 2 homotopy, 1 t-slice, 1
```