Computer Arithmetic

David Marchant Based on slides by Troels Henriksen

2025-09-08

Inspired by slides by Randal E. Bryant and David R. O'Hallaron.

Some material by Michael Kirkedal Tomsen.

Summary

Hopefully from the material you've learnt:

- What unsigned, biased and two's compliment numbers are and what numbers they can represent
- Why floats cannot be represented in the same way as integers
- How we can represent fractions
- What numbers we can represent as fractions
- How the IEEE float format works
- How rounding works in C
- How different numeric datatypes behave under addition, multiplication etc and what their limits are

Agenda

Floating point arithmetic

Biased numbers

Background: Fractional binary numbers

IEEE floating point standard

Examples and properties

Rounding, addition, and multiplication

Floating point in C

Summary

Floating point arithmetic

Biased numbers

Background: Fractional binary numbers IEEE floating point standard Examples and properties Rounding, addition, and multiplication Floating point in C

Summary

For biased numbers, the raw bits are interpreted as unsigned, and then a constant bias is subtracted.

Unsigned

Two's complement

Biased

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \quad B2S(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \qquad B2I(X) = \left(\sum_{i=0}^{w-1} x_i \cdot 2^i\right) - \text{Bias}$$

Typically

$$Bias = 2^{w-1} - 1$$

For biased numbers, the raw bits are interpreted as unsigned, and then a constant bias is subtracted.

Unsigned

Two's complement

Biased

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \quad B2S(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \qquad B2I(X) = \left(\sum_{i=0}^{w-1} x_i \cdot 2^i\right) - \text{Bias}$$

Typically

$$Bias = 2^{w-1} - 1$$

For biased numbers, the raw bits are interpreted as unsigned, and then a constant bias is subtracted.

Unsigned

Two's complement

Biased

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \quad B2S(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \qquad B2I(X) = \left(\sum_{i=0}^{w-1} x_i \cdot 2^i\right) - \text{Bias}$$

Typically

$$Bias = 2^{w-1} - 1$$

For biased numbers, the raw bits are interpreted as unsigned, and then a constant bias is subtracted.

Unsigned

Two's complement

Biased

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \quad B2S(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \qquad B2I(X) = \left(\sum_{i=0}^{w-1} x_i \cdot 2^i\right) - \text{Bias}$$

Typically

$$Bias = 2^{w-1} - 1$$

	B2U	B2S	B2I
000000002	010	010	-127_{10}
011111111_2			

For biased numbers, the raw bits are interpreted as unsigned, and then a constant bias is subtracted.

Unsigned

Two's complement

Biased

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \quad B2S(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \qquad B2I(X) = \left(\sum_{i=0}^{w-1} x_i \cdot 2^i\right) - \text{Bias}$$

Typically

$$Bias = 2^{w-1} - 1$$

	B2U	B2S	B2I
000000002	010	010	-127_{10}
01111111_2	127_{10}		

For biased numbers, the raw bits are interpreted as unsigned, and then a constant bias is subtracted.

Unsigned

Two's complement

Biased

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \quad B2S(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \qquad B2I(X) = \left(\sum_{i=0}^{w-1} x_i \cdot 2^i\right) - \text{Bias}$$

Typically

$$Bias = 2^{w-1} - 1$$

	B2U	B2S	B2I
000000002	010	010	-127_{10}
011111111_2	127_{10}	127_{10}	

For biased numbers, the raw bits are interpreted as unsigned, and then a constant bias is subtracted.

Unsigned

Two's complement

Biased

$$Bias = 2^{w-1} - 1$$

 $B2U(X) = \sum_{i=1}^{w-1} x_i \cdot 2^i$ $B2S(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=2}^{w-2} x_i \cdot 2^i$ $B2I(X) = \left(\sum_{i=0}^{w-1} x_i \cdot 2^i\right) - \text{Bias}$

- 0	, Dias — 121			
		B2U	B2S	B2I
	000000002	010	010	-127_{10}
	011111111_2	127_{10}	127_{10}	010
	11111111 ₂			

For biased numbers, the raw bits are interpreted as unsigned, and then a constant bias is subtracted.

Unsigned

Two's complement

Biased

$$Bias = 2^{w-1} - 1$$

 $B2U(X) = \sum_{i=1}^{w-1} x_i \cdot 2^i$ $B2S(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=2}^{w-2} x_i \cdot 2^i$ $B2I(X) = \left(\sum_{i=0}^{w-1} x_i \cdot 2^i\right) - \text{Bias}$

= 0, Dias $= 127$					
		B2U	B2S	B2I	
	000000002	010	010	-127_{10}	
	011111111_2	127_{10}	127_{10}	010	
	11111111_2	255_{10}			

For biased numbers, the raw bits are interpreted as unsigned, and then a constant bias is subtracted.

 $B2U(X) = \sum_{i=1}^{w-1} x_i \cdot 2^i$ $B2S(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=2}^{w-2} x_i \cdot 2^i$ $B2I(X) = \left(\sum_{i=0}^{w-1} x_i \cdot 2^i\right) - \text{Bias}$

Unsigned

Two's complement

Biased

$$lacktriangle$$
 Typically ${\it Bias}=2^{w-1}-1$

_ 0	, Dias — 121			
		B2U	B2S	B2I
	000000002	010	010	-127_{10}
	011111111_2	127_{10}	127_{10}	010
	11111111 ₂	255_{10}	-1_{10}	

For biased numbers, the raw bits are interpreted as unsigned, and then a constant bias is subtracted.

Unsigned

Two's complement

Biased $B2U(X) = \sum_{i=1}^{w-1} x_i \cdot 2^i$ $B2S(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=2}^{w-2} x_i \cdot 2^i$ $B2I(X) = \left(\sum_{i=0}^{w-1} x_i \cdot 2^i\right) - \text{Bias}$

Typically

$$Bias = 2^{w-1} - 1$$

w = o,	$\mathbf{Dias} = 121$			
		B2U	B2S	B2I
-	000000002	010	010	-127_{10}
	01111111_2	127_{10}	127_{10}	010
	1111111112	255_{10}	-1_{10}	128_{10}

Floating point arithmetic

Biased numbers

Background: Fractional binary numbers

IEEE floating point standard Examples and properties Rounding, addition, and multiplication

Floating point in C

Summary

Integral binary numbers

We have seen that

100101012

is basically interpreted like

 149_{10}

"Structure" is the same, just with 2 instead of 10.

Integral binary numbers

We have seen that

100101012

is basically interpreted like

 149_{10}

"Structure" is the same, just with 2 instead of 10.

Can we do the same thing for fractional numbers?

 1011.101_2

Fractional numbers

$$123.456 = 1 \cdot 10^{2} + 2 \cdot 10^{1} + 3 \cdot 10^{0} + 4 \cdot 10^{-1} + 5 \cdot 10^{-2} + 6 \cdot 10^{-3}$$

Fractional numbers

$$123.456 = 1 \cdot 10^{2} + 2 \cdot 10^{1} + 3 \cdot 10^{0} + 4 \cdot 10^{-1} + 5 \cdot 10^{-2} + 6 \cdot 10^{-3}$$

Generally

$$a_{m-1} \cdots a_0.a_{-1} \cdots a_{-n} = \sum_{i=-n}^{m-1} a_i \cdot 10^i$$

Fractional numbers

$$123.456 = 1 \cdot 10^{2} + 2 \cdot 10^{1} + 3 \cdot 10^{0} + 4 \cdot 10^{-1} + 5 \cdot 10^{-2} + 6 \cdot 10^{-3}$$

Generally

$$a_{m-1} \cdots a_0.a_{-1} \cdots a_{-n} = \sum_{i=-n}^{m-1} a_i \cdot 10^i$$

Even more generally, for radix r

$$a_{m-1}\cdots a_0.a_{-1}\cdots a_{-n}=\sum_{i=-n}^{m-1}a_i\cdot r^i$$

Fractional binary numbers

Representation

- Bits to the right of "binary point" represents fractional powers of 2.
- Represents rational number.

$$b_{m-1}\cdots b_0.b_{-1}\cdots b_{-n} = \sum_{i=-n}^{m-1} b_i \cdot 2^i$$

Examples of fractional binary numbers

Value $5\frac{3}{4}$	Representation 101.11 ₂
$2\frac{7}{8}$	10.111 ₂
$1\frac{7}{16}$	1.01112

Observations

- Divide by 2 by logical shifting right.
- Multiply by 2 by shifting left.
- Numbers of form 0.111... are just below 1.0.
 - $1/2 + 1/4 + 1/8 + \cdots + 1/2^n + \cdots \sim 1.0.$
 - ▶ Use notation 1.0ϵ .

Representable numbers

Limitation #1

- Can only represent fractional part of form $x/2^k$
- Other rational numbers have repeating bit representation

Value $\frac{1}{3}$	Representation $0.0101010101[01] \cdots_2$
$\frac{1}{5}$	$0.001100110011[0011] \cdots_2$
$\frac{1}{10}$	$0.0001100110011[0011] \cdot \cdot \cdot_2$

Limitation #2

- Just one setting of binary point within the w bits.
 - Limited range of numbers—very small values? Very large?

The fixed-point dilemma

Consider
$$w = 8$$

1 bit for fraction

- **L**argest number: $11111111.1_2 = 127.5_{10}$
- Increment: $0000000.1_2 = 0.5_{10}$

7 bits for fraction

- **L**argest number: $1.11111111_2 = 1.9921875_{10}$
- Increment: $0.0000001_2 = 0.0078125_{10}$

4 bits for fraction

- **L**argest number: $1111.1111_2 = 15.9375_{10}$
- Increment: $0000.0001_2 = 0.0625_{10}$

Fixed-point has same absolute precision everywhere, but this means relative precision is worse for numbers close to 0!

Floating point arithmetic

Biased numbers

Background: Fractional binary numbers

IEEE floating point standard

Examples and properties

Rounding, addition, and multiplication

Floating point in C

Summary

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point.
 - Many idiosyncratic formats before then.
- Supported by all major CPUs, GPUs, and most other processors.

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow.
- Hard to make fast in hardware.
 - Numerical analysts predominated over hardware designers in defining standard.
 - but (later) Turing Award winner William Kahan secretly knew that Intel had figured out how to make accurate computation fast.
 - Beware the wrath of Kahan!
 - http://people.eecs.berkeley.edu/~wkahan/

Essentially scientific notation

$$3.5 \times 10^2 = 350$$

- Significand is 3.5
 - ightharpoonup Conventionally a number in range [1, 10), with sign.
- **Exponent** is 2.
 - Can also be negative.

Essentially scientific notation

$$3.5 \times 10^2 = 350$$

- **Significand** is 3.5
 - ightharpoonup Conventionally a number in range [1, 10), with sign.
- Exponent is 2.
 - Can also be negative.

To keep significand in range, adjust exponent:

$$\begin{array}{ccc} 35 \times 10^1 & \Rightarrow & 3.5 \times 10^2 \\ 0.35 \times 10^3 & \Rightarrow & 3.5 \times 10^2 \end{array}$$

IEEE 754 uses bits instead of digits, and specifies a fixed-size encoding, but idea is the same.

Floating Point Representation

Numerical form

$$(-1)^S \cdot M \cdot 2^E$$

- **Sign bit** S determines whether number negative or positive.
- Significand M normally a fractional value in range [1,2).
- **Exponent** *E* weights value by power of two.

Encoding

- Most significant bit is sign bit.
- Exp field encodes E (but is not equal to E).
- Frac field encodes M (but is not equal to M).

S	Exp	Frac
- 1		

Why such a weird format?

The point is floating

- No fixed number of bits allocated to "fraction".
- More bits close to 0, fewer bits for numbers with large magnitude.
- Symmetric around 0.

Density of floats

https://stackoverflow.com/a/24179424/6131552

Precision options

Newer standards contain more variants (16 bits, decimal floats) that we will not cover.

Main problem: not all numbers are representable

Format trouble

For example the number

$$0.1_{10}$$

cannot be represented on the form

$$(-1)^S \cdot M \cdot 2^E$$

Precision trouble

- A fixed number of bits cannot represent all numbers.
- Integer types represent an interval of natural numbers.
- Any nontrivial interval of rational numbers contains infinity elements.
- "Neighbouring" floats are separated by a "step size" 2^E (we'll see).

Consequence

Rounding.

Rounding of floating point numbers

 Floating point arithmetic returns the floating point number closest to the mathematically correct result.

Example

Mathematically,

$$1/10 = 0.1$$

But since 0.1 cannot be represented in binary floating point, we instead get the number that is closest:

$$1/10 = 0.10000000000000000555111512312578270211815834045410156250$$

(With 64-bit floats).

We will return to this, but writing algorithms that are robust to roundoff errors is a *big topic* that is outside the scope of this course.

Normalised values when $Exp \neq 0 \cdots 0$ and $Exp \neq 1 \cdots 1$

$$v = (-1)^S \cdot M \cdot 2^E$$
 S Exp Frac

Exponent encoded as biased value

$$E = \mathsf{Exp} - \mathsf{Bias}$$

- Exp: unsigned value of Exp field.
- ▶ Bias = $2^{k-1} 1$, where k is number of Exp bits.
 - ► Single precision: 127 (Exp \in [1, 254], $E \in$ [-126, 127]).
 - ▶ Double precision: 1023 (Exp \in [1,2046], $E \in$ [-1022,1023]).
- Significand coded with implied leading 1:

$$M = 1.xxx \cdots x_2$$

- xxx ··· x: bits of Frac field.
- ▶ Minimum when Frac = $0000 \cdots 0$ (M = 1).
- Maximum when Frac = $1111 \cdots 1$ ($M = 2 \epsilon$).
- ► Get extra leading bit for free.

Normalised encoding example

$$v = (-1)^S \cdot M \cdot 2^E$$
 $E = Exp - Bias$

Value: float F = 15213.0

$$15213_{10} = 11101101101101_2$$
$$= 1.1101101101101_2 \cdot 2^{13}$$

Significand

$$M = 1.1101101101101_2$$

Frac = $11011011011010000000000_2$

Exponent

$$E=13_{10}$$

 ${\sf Bias}=127_{10}$
 ${\sf Exp}=E+{\sf Bias}=140_{10}=10001100_2$

Result 0 10001100 11011011011010000000000

Denormal values

$$v = (-1)^S \cdot M \cdot 2^E$$
 $E = 1 - \text{Bias}$
Occur when $Exp = 000 \cdots 0_2$.

Exponent encoded as

$$E=1-\mathsf{Bias}$$

Significand coded with implied leading 0:

$$M = 0.xxx \cdots x_2$$

- Cases
 - $\blacktriangleright \ \mathsf{Exp} = \mathsf{000} \cdots \mathsf{0_2}, \mathsf{Frac} = \mathsf{000} \cdots \mathsf{0_2}$
 - Represents zero value.
 - ▶ Note distinct values -0, +0 when might that be useful?
 - \triangleright Exp = $000 \cdots 0_2$, Frac $\neq 000 \cdots 0_2$
 - Numbers closest to 0.0.
 - Called subnormal numbers.
 - \blacktriangleright Ensure that $x \neq y \Rightarrow x y \neq 0$, i.e. avoid underflow.

Special values

Occur when
$$Exp = 111 \cdots 1_2$$
.

When
$$Exp = 111 \cdots 1_2$$
, $Frac = 000 \cdots 0_2$

- Represents $\pm \infty$.
- Typically the result of overflow.
 - Overflow can be negative!
 - Underflow is when the result becomes zero due to rounding.
- Both positive and negative.
- Examples:

$$\frac{1}{0} = \frac{-1}{-0} = \infty \qquad \frac{1}{-0} = -\infty$$

When
$$\mathsf{Exp} = 111 \cdots 1_2, \mathsf{Frac} \neq 000 \cdots 0_2$$

- Not A Number (NaN).
- Represents case when no numeric value can be determined.
- Examples:

$$\operatorname{sqrt}(-1)$$
 $\infty-\infty$ $\infty\cdot 0$

The floating point number line

Note that NaNs are unordered:

- NaN is different from everything even other NaNs!
 - ► NaN == NaN is false.
 - Floating-point equality is not reflexive!
- NaN > x and NaN < x is false for all x.

Floating point arithmetic

Biased numbers

Background: Fractional binary numbers

IEEE floating point standard

Examples and properties

Rounding, addition, and multiplication Floating point in C

Summary

Play the game

https://topps.diku.dk/compsys/floating-point.html

Tiny 8-bit floating point example

S	Exp	Frac
1b	4b	3b

8-bit floating point representation

- Sign bit is the most significant bit (leftmost).
- The next four bits are Exp with a bias of 7.
- The last three bits are Frac.

Same general form as IEEE Format

- Normalised, denormalised.
- Representation of 0, NaN, both infinities.

Let's look at their dynamic range.

	Sign	Exp	Frac	E	Value	
Denormalised	0	0000	000	-6	$0/8 \cdot 1/64 = 0/512$	zero
	0	0000	001	-6	$1/8 \cdot 1/64 = 1/512$	closest to zero
	0	0000	010	-6	$2/8 \cdot 1/64 = 2/512$	
	0	0000	111	-6	$7/8 \cdot 1/64 = 7/512$	largest denorm
Normalised	0	0001	000	-6	$8/8 \cdot 1/64 = 8/512$	smallest norm
	0	0001	001	-6	$9/8 \cdot 1/64 = 9/512$	
	0	0110	110	-1	$14/8 \cdot 1/2 = 14/16$	
	0	0110	111	-1	$15/8 \cdot 1/2 = 15/16$	closest to 1
	0	0111	000	0	$8/8 \cdot 1 = 8/8$	1
	0	0111	001	0	$9/8 \cdot 1 = 9/8$	closest to 1
	0	0111	010	0	$10/8 \cdot 1 = 10/8$	
	0	1110	110	7	$14/8 \cdot 128 = 224$	
	0	1110	111	7	$15/8 \cdot 128 = 240$	
	0	1111	000	N/A	∞	
	0	1111	001	N/A	NaN	
					NaN	

Distribution of values

Distribution of values (zooming in)

- Note how the distribution gets denser towards zero.
- Note the big gap there would be around 0 if we did not have subnormals.
- Each of the spans with same distance between neighbors corresponds to numbers with same Exp.

S	Exp	Frac
1b	4b	3b

Useful properties of the IEEE encoding

S Exp Frac

- Floating-point zero same as integer zero
 - ► All bits 0.
 - ...but negative zero is different.
- Can almost compare floats with unsigned integer comparisons
 - Must first compare sign bit.
 - ightharpoonup Must consider -0=0.
 - NaNs problematic:
 - Greater than any other value (because $Exp = 111 \cdots 1_2$).
 - What should comparison yield?
 - Otherwise OK:
 - Normalised and denormalised compare as expected.
 - Infinities ordered properly relative to finities.

Floating point arithmetic

Biased numbers

Background: Fractional binary numbers

IEEE floating point standard

Examples and properties

Rounding, addition, and multiplication

Floating point in C

Summary

Basic idea behind floating point operations

$$x +_f y = \text{Round}(x + y)$$

 $x \times_f y = \text{Round}(x \times y)$

Basic idea

- First compute exact result!
- ► Then round it to fit into desired precision.
 - Overflow if exponent too large.
 - Round to fit into Frac.

	1.40	1.60	1.50	2.50	-1.50
Towards zero	1	1	1	2	-1
Towards $-\infty$					

	1.40	1.60	1.50	2.50	-1.50
Towards zero	1	1	1	2	-1
Towards $-\infty$	1	1	1	2	-2
Towards ∞					

	1.40	1.60	1.50	2.50	-1.50
Towards zero	1	1	1	2	-1
Towards $-\infty$	1	1	1	2	-2
Towards ∞	2	2	2	3	-1
Nearest even	1				

■ There's more than one way to round a number, here to an integer.

	1.40	1.60	1.50	2.50	-1.50
Towards zero	1	1	1	2	-1
Towards $-\infty$	1	1	1	2	-2
Towards ∞	2	2	2	3	-1
Nearest even ∞	1	2	2	2	-2

• "Round to nearest, ties to even" is the default rounding mode.

- Default rounding mode
 - But can be changed dynamically.
 - https:
 //www.gnu.org/software/libc/manual/html_node/Rounding.html
 - Never do this.
 - All others are statistically biased.
 - Biased: Sum of set of positive numbers will consistently be over- or under-estimated.
- Applying to other decimal places / bit positions
 - When exactly halfway between two possible values:
 - Round so that least significant digit is even.
 - E.g. rounding to nearest hundredth:
 - **7.8949999**:

- Default rounding mode
 - But can be changed dynamically.
 - https:
 //www.gnu.org/software/libc/manual/html_node/Rounding.html
 - Never do this.
 - All others are statistically biased.
 - Biased: Sum of set of positive numbers will consistently be over- or under-estimated.
- Applying to other decimal places / bit positions
 - When exactly halfway between two possible values:
 - Round so that least significant digit is even.
 - E.g. rounding to nearest hundredth:
 - **7.8949999:** 7.89
 - **7.8990001**:

Default rounding mode

- But can be changed dynamically.
 - https:

//www.gnu.org/software/libc/manual/html_node/Rounding.html

- Never do this.
- All others are statistically biased.
 - Biased: Sum of set of positive numbers will consistently be over- or under-estimated.

Applying to other decimal places / bit positions

- When exactly halfway between two possible values:
 - Round so that least significant digit is even.
- E.g. rounding to nearest hundredth:
 - **7.8949999:** 7.89
 - **7.8990001:** 7.90
 - **7.8950000**:

Default rounding mode

- But can be changed dynamically.
 - https:

```
//www.gnu.org/software/libc/manual/html_node/Rounding.html
```

- Never do this.
- All others are statistically biased.
 - Biased: Sum of set of positive numbers will consistently be over- or under-estimated.

Applying to other decimal places / bit positions

- When exactly halfway between two possible values:
 - Round so that least significant digit is even.
- E.g. rounding to nearest hundredth:
 - **7.8949999**: 7.89
 - **7.8990001:** 7.90
 - **7.8950000:** 7.90
 - **7.8850000**:

Default rounding mode

- But can be changed dynamically.
 - https:

```
//www.gnu.org/software/libc/manual/html_node/Rounding.html
```

- Never do this.
- All others are statistically biased.
 - ▶ Biased: Sum of set of positive numbers will consistently be over- or under-estimated.

Applying to other decimal places / bit positions

- When exactly halfway between two possible values:
 - Round so that least significant digit is even.
- E.g. rounding to nearest hundredth:
 - **7.8949999:** 7.89
 - **7.8990001:** 7.90
 - **7.8950000:** 7.90
 - **7.8850000:** 7.88

- Binary fractional numbers
 - "Even" when least significant bit is 0.
 - ightharpoonup "Half way" when bits to right of rounding position are $100\cdots_2$.
- Examples
 - Round to nearest 1/4 (2 bits right of binary point).

Value Binary Rounded Action Rounded value

- Binary fractional numbers
 - ► "Even" when least significant bit is 0.
 - \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.
- Examples
 - ▶ Round to nearest 1/4 (2 bits right of binary point).

Value	Binary	Rounded	Action	Rounded value
2 3/32				

- Binary fractional numbers
 - ► "Even" when least significant bit is 0.
 - ightharpoonup "Half way" when bits to right of rounding position are $100\cdots_2$.
- Examples
 - ▶ Round to nearest 1/4 (2 bits right of binary point).

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.00 <mark>011</mark> 2			

- Binary fractional numbers
 - ► "Even" when least significant bit is 0.
 - \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.
- Examples
 - ► Round to nearest 1/4 (2 bits right of binary point).

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.00_2	$(<1/2 extsf{-}down)$	2

- Binary fractional numbers
 - ► "Even" when least significant bit is 0.
 - \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.
- Examples
 - ▶ Round to nearest 1/4 (2 bits right of binary point).

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(<1/2-down)	2
2 3/16				

- Binary fractional numbers
 - ► "Even" when least significant bit is 0.
 - \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.
- Examples
 - ▶ Round to nearest 1/4 (2 bits right of binary point).

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(<1/2-down)	2
2 3/16	10.00110_2			

Binary fractional numbers

- ► "Even" when least significant bit is 0.
- \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(<1/2-down)	2
2 3/16	10.00110_2	10.01_{2}	(>1/2—up $)$	2 1/4

Binary fractional numbers

- ► "Even" when least significant bit is 0.
- \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(<1/2-down)	2
2 3/16 2 7/8	10.001102	10.01 ₂	(>1/2-up)	2 1/4

Binary fractional numbers

- ► "Even" when least significant bit is 0.
- ightharpoonup "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(<1/2-down)	2
2 3/16	10.00110_2	10.01_2	(> 1/2 - up)	2 1/4
2 7/8	$10.11\textcolor{red}{\textbf{100}}_2$			

Binary fractional numbers

- ► "Even" when least significant bit is 0.
- \triangleright "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(<1/2-down)	2
2 3/16	10.00110_2	10.01_{2}	(> 1/2 - up)	2 1/4
2 7/8	$10.11\textcolor{red}{100}_2$	11.00_{2}	(1/2-up)	3

Binary fractional numbers

- ► "Even" when least significant bit is 0.
- \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(<1/2-down)	2
2 3/16	10.00110_2	10.01_{2}	(> 1/2 - up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.00_{2}	(1/2-up)	3
2 5/8				

Binary fractional numbers

- ► "Even" when least significant bit is 0.
- \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(<1/2-down)	2
2 3/16	10.00110_2	10.01_2	(> 1/2 - up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.00_{2}	(1/2-up)	3
2 5/8	$10.10\textcolor{red}{\textbf{100}_2}$			

Binary fractional numbers

- ► "Even" when least significant bit is 0.
- \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(<1/2-down)	2
2 3/16	10.00110_2	10.01_{2}	(>1/2–up $)$	2 1/4
2 7/8	10.11100_2	11.00_{2}	(1/2-up)	3
2 5/8	$10.10\textcolor{red}{\textbf{100}}_2$	10.10_{2}	(1/2-down)	2 1/2

Floating point multiplication (assuming operands are numbers)

$$((-1)^{S_3} \cdot M_3 \cdot 2^{E_3}) = ((-1)^{S_1} \cdot M_1 \cdot 2^{E_1}) \cdot ((-1)^{S_2} \cdot M_2 \cdot 2^{E_2})$$

Exact result

$$S_3 = S_1 \oplus S_2$$

$$M_3 = M_1 \cdot M_2$$

$$E_3 = E_1 + E_2$$

where \oplus is exclusive-or.

- Fixing
 - ▶ If $M_3 \ge 2$, shift M_3 right and increment E_e .
 - ▶ If E_3 out of range, overflow to ∞ .
 - Round M₃ to fit Frac precision.
- Implementation
 - Biggest chore is multiplying significands.

Floating point addition (assuming operands are numbers)

$$((-1)^{S_3} \cdot M_3 \cdot 2^{E_3}) = ((-1)^{S_1} \cdot M_1 \cdot 2^{E_1}) + ((-1)^{S_2} \cdot M_2 \cdot 2^{E_2})$$

Approach

- lacktriangle Assume without loss of generality that $\it E_1 \geq \it E_2$.
- ightharpoonup Rewrite smaller number such that its exponent matches E_1 :

$$((-1)^{S_3} \cdot M_3 \cdot 2^{E_3}) = ((-1)^{S_1} \cdot M_1 \cdot 2^{E_1}) + ((-1)^{S_2} \cdot M_2' \cdot 2^{E_1})$$

Exact result

- ▶ Sign S_3 , significant M_3 :
 - Result of signed addition.

Fixing

- ▶ If $M_3 > 2$, shift M_3 right and increment E_3 .
- ▶ If $M_3 < 1$, shift M left k positions and decrement E_3 by k.
- ▶ If E_3 out of range, overflow to ∞ .
- ► Round *M* to fit Frac precision.

$$-1^{S_3}\cdot M_3$$

Example of floating-point addition with a 2-bit significand

$$\begin{array}{lll} & (-1.01 \cdot 2^2) + (1.1 \cdot 2^4) \\ = & (-1.01 \cdot 2^2) + (110.0 \cdot 2^2) & \text{Align exponents} \\ = & (-1.01 + 110.0) \cdot 2^2 & \text{Distributivity} \\ = & 100.11 \cdot 2^2 & \text{Add significands} \\ = & 1.0011 \cdot 2^4 & \text{Normalise} \\ = & 1.01 \cdot 2^4 & \text{Perform rounding} \end{array}$$

- Compared to those of Abelian Group
 - ► Closed under addition?

- Compared to those of Abelian Group
 - ► Closed under addition? Yes
 - But may generate infinity or NaN.
 - Commutative?

- Compared to those of Abelian Group
 - ► Closed under addition? Yes
 - But may generate infinity or NaN.
 - ► Commutative? **Yes**
 - Associative?

- Compared to those of Abelian Group
 - Closed under addition? Yes
 - But may generate infinity or NaN.
 - ► Commutative? **Yes**
 - ► Associative? **No**
 - Due to overflow and inexactness of rounding.
 - (3.14 + 1e10) 1e10 = 0
 - \triangleright 3.14 + (1e10-1e10) = 3.14
 - 0 is additive identity?

- Compared to those of Abelian Group
 - Closed under addition? Yes
 - But may generate infinity or NaN.
 - ► Commutative? **Yes**
 - ► Associative? **No**
 - Due to overflow and inexactness of rounding.
 - (3.14 + 1e10) 1e10 = 0
 - \triangleright 3.14 + (1e10-1e10) = 3.14
 - 0 is additive identity? Yes
 - Does every element have an additive inverse?

- Compared to those of Abelian Group
 - ► Closed under addition? **Yes**
 - But may generate infinity or NaN.
 - ► Commutative? **Yes**
 - Associative? No
 - Due to overflow and inexactness of rounding.
 - (3.14 + 1e10) 1e10 = 0
 - \triangleright 3.14 + (1e10-1e10) = 3.14
 - 0 is additive identity? Yes
 - ▶ Does every element have an additive inverse? Almost
 - Infinities and NaN do not have inverses.
- Monotonicity
 - $ightharpoonup a \geq b \Rightarrow a + c \geq b + c?$

Compared to those of Abelian Group

- Closed under addition? Yes
 - But may generate infinity or NaN.
- ► Commutative? **Yes**
- Associative? No
 - Due to overflow and inexactness of rounding.
 - (3.14 + 1e10) 1e10 = 0
 - \triangleright 3.14 + (1e10-1e10) = 3.14
- 0 is additive identity? Yes
- ▶ Does every element have an additive inverse? Almost
 - Infinities and NaN do not have inverses.

Monotonicity

- $ightharpoonup a \geq b \Rightarrow a + c \geq b + c$? Almost
 - ► Infinities and NaNs are the exception.

- Compared to those of a commutative ring
 - Closed under multiplication?

- Compared to those of a commutative ring
 - ► Closed under multiplication? **Yes**
 - But may generate infinity or NaN.
 - Commutative?

- Compared to those of a commutative ring
 - Closed under multiplication? Yes
 - ► But may generate infinity or NaN.
 - Commutative? Yes
 - Associative?

- Compared to those of a commutative ring
 - Closed under multiplication? Yes
 - But may generate infinity or NaN.
 - Commutative? Yes
 - Associative? No
 - Due to overflow and inexactness of rounding.
 - $(1e20*1e20)*1e-20=\infty$
 - ► 1e20*(1e20*1e-20) = 1e20
 - 1 is multiplicative identity?

- Compared to those of a commutative ring
 - Closed under multiplication? Yes
 - But may generate infinity or NaN.
 - Commutative? Yes
 - Associative? No
 - Due to overflow and inexactness of rounding.
 - $(1e20*1e20)*1e-20=\infty$
 - ightharpoonup 1e20*(1e20*1e-20) = 1e20
 - ▶ 1 is multiplicative identity? **Yes**
 - Multiplication distributes over addition?

Compared to those of a commutative ring

- Closed under multiplication? Yes
 - But may generate infinity or NaN.
- Commutative? Yes
- Associative? No
 - Due to overflow and inexactness of rounding.
 - $(1e20*1e20)*1e-20=\infty$
 - ightharpoonup 1e20*(1e20*1e-20) = 1e20
- ▶ 1 is multiplicative identity? **Yes**
- Multiplication distributes over addition? No
 - Overflow and rounding again.
 - ightharpoonup 1e20*(1e20-1e20) = 0.0
 - ► 1e20*1e20 1e20*1e20 = NaN

Floating point arithmetic

Biased numbers

Background: Fractional binary numbers

IEEE floating point standard

Examples and properties

Rounding, addition, and multiplication

Floating point in C

Summary

Floating point in C

C guarantees two types

- float: 32-bit single precision.
- ▶ double: 64-bit single precision.

Conversions/casting

- ▶ Casting between int, float, and double changes bit represensation.
- ▶ double/float to int
 - Truncates fractional part.
 - Like rounding toward zero.
 - Not defined when out of range or NaN: generally sets to SMin.
- ▶ int to double
 - Exact conversion as long as int fits in 53 bits.
- ▶ int to float
 - Will round according to rounding mode.

Floating point is exciting!

First "flight" of the Ariane 5 in 1996.

Floating point is exciting!

First "flight" of the Ariane 5 in 1996.

- A double storing horizontal velocity of the rocket was converted to a 16-bit signed integer.
- The number was larger than 32767 so the conversion failed, causing an exception, crashing the guidance module.

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

```
int x = \dots; float f = \dots; double d = \dots;
```

Assume neither ${\tt d}$ nor ${\tt t}$ is NaN.

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

```
 = x == (int) (float) x
```

```
int x = \dots; float f = \dots; double d = \dots;
```

Assume neither d nor t is NaN.

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

```
x == (int) (float) x
```

$$x == (int) (double) x$$

```
int x = \dots; float f = \dots; double d = \dots;
```

Assume neither d nor t is NaN.

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

```
x == (int) (float) x
x == (int) (double) x
f == (float) (double) f
```

```
int x = \dots; float f = \dots; double d = \dots;
```

Assume neither d nor t is NaN.

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

```
int x = \dots; float f = \dots; double d = \dots;
```

Assume neither d nor t is NaN. Assume int is 32 bits.

```
x == (int) (float) x
x == (int) (double) x
f == (float) (double) f
d == (double) (float) d
```

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

```
int x = \dots; float f = \dots; double d = \dots;
```

Assume neither d nor t is NaN. Assume int is 32 bits

```
" x == (int) (float) x
" x == (int) (double) x
" f == (float) (double) f
" d == (double) (float) d
" f == -(-f)
```

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

```
int x = \dots; float f = \dots; double d = \dots;
```

Assume neither d nor t is NaN. Assume int is 32 bits.

```
x == (int) (float) x
x == (int) (double) x
f == (float) (double) f
d == (double) (float) d
f == -(-f)
2/3 == 2/3.0
```

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

```
int x = \dots;
float f = \dots;
double d = \dots;
```

Assume neither d nor t is NaN. Assume int is 32 bits.

```
" x == (int) (float) x
" x == (int) (double) x
" f == (float) (double) f
" d == (double) (float) d
" f == -(-f)
" 2/3 == 2/3.0
```

 $-d < 0.0 \Rightarrow (d*2) < 0.0$

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

int
$$x = \dots$$
;
float $f = \dots$;
double $d = \dots$;

Assume neither d nor t is NaN. Assume int is 32 bits.

 $d > f \Rightarrow -f > -d$

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

```
int x = \dots;
float f = \dots;
double d = \dots;
```

Assume neither d nor t is NaN. Assume int is 32 bits.

d * d >= 0.0

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

```
int x = ...;
float f = ...;
double d = ...;
Assume neither d nor t is Na
```

Assume neither d nor t is NaN. Assume int is 32 bits.

• d * d >= 0.0• (d+f)-d == f

Floating point arithmetic

Biased numbers

Background: Fractional binary numbers

IEEE floating point standard

Examples and properties

Rounding, addition, and multiplication

Floating point in C

Summary

Summary

- IEEE floating point has clear properties.
 - But they may not match your intuition.
- Represents numbers of the form $M \cdot 2^E$.
- One can reason about operations independent of implementation.
 - Computed with perfect precision and then rounded.
 - ▶ But rounded after *every* "primitive" operation (e.g. addition, multiplication).
- Not the same as \mathbb{Q}/\mathbb{R} arithmetic.
 - Violates associativity and distributivity, mostly due to rounding.
 - Sometimes makes life difficult for heavy-duty numerical programming.
 - ▶ But carefully designed such that "naive" use mostly does what one expects.

Also try this tool: https://evanw.github.io/float-toy/And read this: https://moyix.blogspot.com/2022/09/someones-been-messing-with-my-subnormals.html