M01.2 Mechanik

M01 Physik für Mediziner*innen

Prof. Melanie Stefan - melanie.stefan@medcialschool-berlin.de

SoSe 2022

Neulich auf olympics.com . . .

Carissa Moore verändert das Surfen und die Gesetze der Schwerkraft, ist aber nervös vor Tokio

In dieser Vorlesung geht es um ...

Bewegung und Verformung von Körpern und damit einhergehende Kräfte

Nach dieser Vorlesung sollten Sie:

Wissen:

- Zusammenhang zwischen Strecke, Geschwindigkeit und Beschleunigung erklären
- Periodendauer, Frequenz und Kreisfrequenz definieren
- die Newtonschen Axiome nennen
- Impuls und Kraft definieren
- den Impulserhaltungssatz wiedergeben und Beispiele geben
- Arbeit, Leistung und Energie definieren
- Arten von Energie unterscheiden
- den Energieerhaltungssatz erklären
- Drehmoment definieren und das Hebelgesetz
- Trägheitsmoment und Drehimpuls definieren
- den Drehimpulserhaltungssatz erklären und Beispiele nennen

Nach dieser Vorlesung sollten Sie:

Können:

- Bewegungsdiagramme lesen und verstehen/auswerten
- Mittelwert und Momentanwert der Geschwindigkeit errechnen
- Parameter einer Kreisbewegung berechnen
- das Hebelgesetz anwenden

Fühlen:

- mechanische Prozesse im täglichen Leben erkennen
- über Anwendungen von Mechanik in der Medizin nachdenken

Outline

- Bewegungen
- 2 Kraft und Impuls
- 3 Arbeit, Energie, Leistung
- 4 Drehmoment, Trägheitsmoment, Drehimpuls

Ermittlung der Geschwindigkeit

gleichförmige Bewegung mit konstanter Geschwindigkeit

)

8/39

mittlere Geschwindigkeit

$$v = \frac{s_i - s_0}{t_i - t_0} = \frac{\Delta s}{\Delta t} \qquad \frac{m}{s}$$

Differenzquotient

Wie schnell war ich heute morgen?

$$v = \frac{\Delta s}{\Delta t} = \frac{7 \text{ km}}{21 \text{ min}} = \frac{1 \text{ km}}{3 \text{ min}} = 20 \frac{\text{km}}{h}$$

10

mittlere Geschwindigkeit

$$v = \frac{s_i - s_0}{t_i - t_0} = \frac{\Delta s}{\Delta t} \qquad \frac{m}{s}$$

Wir können die Strecke berechnen...

$$\Delta s = v \cdot \Delta t$$
 $\frac{\mathrm{m}}{\mathrm{s}} \cdot \mathrm{s}$

...oder die benötigte Zeit.

$$\Delta t = \frac{\Delta s}{v} \qquad \qquad \frac{m}{\frac{m}{s}} = m \cdot \frac{s}{m}$$

11

mittlere Geschwindigkeit

$$v = \frac{s_i - s_0}{t_i - t_0} = \frac{\Delta s}{\Delta t} \qquad \frac{r_0}{s}$$

Differenzquotient

mittlere Geschwindigkeit

$$v = \frac{s_i - s_0}{t_i - t_0} = \frac{\Delta s}{\Delta t} \qquad \frac{m}{s}$$

Differenzquotient

momentane Geschwindigkeit

$$v(t) = \frac{ds}{dt}$$

Differentialquotient

Momentane Geschwindigkeit - Beispiel

7⁵⁵ Uhrzeit momentane Geschwindigkeit

$$v(t) = \frac{ds(t)}{dt}$$

Differentialquotient

750

Graphische Integration - Beispiel

Wie groß war die Strecke Δs_2 ?

$$s2 = 5 \min \cdot 60 \frac{km}{h}$$
$$= 5 \min \cdot 60 \frac{km}{60 \min}$$
$$= 5 km$$

Beschleunigung

Beschleunigung ist die Voraussetzung für Geschwindigkeitsänderungen.

$$\vec{a} = \frac{d\vec{v}}{dt}$$
 $\frac{\text{m/s}}{\text{s}}$

Sie besagt um wieviel sich \vec{v} pro t ändert.

Bremsen ist auch eine Beschleunigung!

Kreisbewegung

Wie schnell dreht sich ein Rad?

Kreisbewegung

Die Geschwindigkeit einer Kreisbewegung kann unterschiedlich definiert werden

Frequenz f: Umdrehungen pro Sekunde.
 Einheit: s⁻¹ = Hz (Hertz)

Winkelgeschwindigkeit (Einheit: rad/s): Geschwindigkeit, mit der sich der Winkel verändert.

$$\omega = \frac{d\phi}{dt}$$

 Bahngeschwindigkeit: Geschwindigkeit an der Außenseite des Rads (mit Radius r).

$$v = \omega \times r$$

Einheit: $\frac{m}{s}$

Outline

- Bewegunger
- 2 Kraft und Impuls
- Arbeit, Energie, Leistung
- 4 Drehmoment, Trägheitsmoment, Drehimpuls

Wie passiert Beschleunigung?

Durch Einwirken von Kraft

 $\mathsf{Kraft} = \mathsf{Masse} \times \mathsf{Beschleunigung}$

$$F = m \times a$$

Einheit: $kg \times \frac{m}{s^2} = Newton (N)$

Beispiel: Freier Fall

Fallende Objekte werden von der Schwerkraft beschleunigt.

Die Beschleunigung ist hier die Fallbeschleunigung auf der Erde $g \sim 10 \, {m \over {\rm s}^2}$

Beispiel: Freier Fall

Fallende Objekte werden von der Schwerkraft beschleunigt.

Die Beschleunigung ist hier die Fallbeschleunigung auf der Erde $g\sim 10~{m\over {
m s}^2}$

Beispiel: Basketball: $\sim 600\,\mathrm{g}$

Beispiel: Freier Fall

Fallende Objekte werden von der Schwerkraft beschleunigt.

Die Beschleunigung ist hier die Fallbeschleunigung auf der Erde $g\sim 10~\frac{m}{\mathrm{s}^2}$

Beispiel: Basketball: $\sim 600\,\mathrm{g}$

$$F = m \times a = 0.6 \text{kg} \times 10 \frac{m}{s^2} \sim 6 \text{ N}$$

Newtonsche Axiome

1. Ein kräftefreier Körper bleibt in Ruhe oder bewegt sich geradlinig mit konstanter Geschwindigkeit ("schwerelos").

Trägkeitsprinzip

2. Kraft gleich Masse mal Beschleunigung.

Aktionsprinzip

3. Kraft = Gegenkraft

Reaktionsprinzip

28

Impuls

"Wucht": Produkt aus Masse und Geschwindigkeit eines Körpers in Bewegung. Einheit: $kg\,m\,s^{-1}$

Impuls

"Wucht": Produkt aus Masse und Geschwindigkeit eines Körpers in Bewegung. Einheit: $\log m \, \mathrm{s}^{-1}$

Impulserhaltung: Der Gesamtimpuls eines geschlossenen Sytsems bleibt gleich*

*Hier und bei allen anderen Erhaltungssätzen: theoretisch (bis auf Reibungsverluste)

Outline

- Bewegunger
- 2 Kraft und Impuls
- 3 Arbeit, Energie, Leistung
- 4 Drehmoment, Trägheitsmoment, Drehimpuls

Arbeit

Arbeit (W) is das Produkt aus Kraft und Weg (in die Richtung, in die die Kraft geht):

$$W = F \times s$$

Einheit: Newton \times meter (Nm) = Joule (J)

Arbeit

Die Arbeit, um von A nach B zu kommen, ist die gleiche, aber ein längerer Weg bedeutet weniger Kraft.

Arbeit

Die Arbeit, um von A nach B zu kommen, ist die gleiche, aber ein längerer Weg bedeutet weniger Kraft.

Aber warum ist die Arbeit um von A nach B zu kommen die gleiche?

Weil es nur darum geht, den Energieunterschied zwischen A und B zu bewältigen. Energie = "gespeicherte Arbeit" (auch in Joule)

Aber warum ist die Arbeit um von A nach B zu kommen die gleiche?

Weil es nur darum geht, den Energieunterschied zwischen A und B zu bewältigen. Energie = "gespeicherte Arbeit" (auch in Joule)

Arten von Energie

- Bewegungsenergie (kinetische Energie)
- Lageenergie (potentielle Energie)
- Verformungsenergie
- Thermische Energie
- Chemische Energie
- Elektrische Energie

Energieerhaltung

Arten von Energie können ineinander umgewandelt werden, aber die Gesamtenerge in einem geschlossenen System ist konstant.

Energieerhaltung

Arten von Energie können ineinander umgewandelt werden, aber die Gesamtenerge in einem geschlossenen System ist konstant.

Beispiel: Stabhochsprung

Zurück zur Arbeit

Ist es eigenartig, dass die Arbeit auf beiden Wegen die gleiche ist?

Zurück zur Arbeit

Ist es eigenartig, dass die Arbeit auf beiden Wegen die gleiche ist? Die Arbeit ist gleich, aber die

<u>Leistung</u> is unterschiedlich! $Leistung = \frac{Arbeit}{Zeit}$

Einheit: Watt (W): $1 W = 1 \frac{J}{s}$

Outline

- Bewegunger
- 2 Kraft und Impuls
- Arbeit, Energie, Leistung
- 4 Drehmoment, Trägheitsmoment, Drehimpuls

Drehmoment

Das Drehmoment T für die Rotation eines Körpers ist das Produkt der Kraft \vec{F} mit der Länge des Hebelarms l.

Drehmoment:

$$T = \vec{F} \cdot l$$

14

Drehmoment und Hebelgesetz

Das Drehmoment T für die Rotation eines Körpers ist das Produkt der Kraft \vec{F} mit der Länge des Hebelarms l.

Drehmoment:

$$T = \vec{F} \cdot l$$

Hebelgesetz:

$$F_1 \cdot l_1 = F_2 \cdot l_2$$

Last mal Lastarm gleich Kraft mal Kraftarm.

45

Beispiel

Trägheitsmoment und Drehimpuls

Trägheitsmoment I (Einheit: kg m²): Trägheit eines Körpers gegenüber Veränderungen in der Winkelgeschwindigkeit bei einer Drehbewegung. I ist größer, je mehr Masse weiter von der Drehachse entfernt ist.

Drehimpuls

Drehimpuls: Trägheitsmoment \times Winkelgeschwindigkeit (Einheit: $kg m^2 s^{-1}$)

$$L = I \times \omega$$

Der Drehimpuls ist eine Erhaltungsgröße

Wie kann die Eisläuferin ihre Pirouette beschleunigen oder verlangsamen?

Jetzt* sollten Sie:

Wissen:

- Zusammenhang zwischen Strecke, Geschwindigkeit und Beschleunigung erklären
- Periodendauer, Frequenz und Kreisfrequenz definieren
- die Newtonschen Axiome nennen
- Impuls und Kraft definieren
- den Impulserhaltungssatz wiedergeben und Beispiele geben
- Arbeit, Leistung und Energie definieren
- Arten von Energie unterscheiden
- den Energieerhaltungssatz erklären
- Drehmoment definieren und das Hebelgesetz
- Trägheitsmoment und Drehimpuls definieren
- den Drehimpulserhaltungssatz erklären und Beispiele nennen

Jetzt* sollten Sie:

Können:

- Bewegungsdiagramme lesen und verstehen/auswerten
- Mittelwert und Momentanwert der Geschwindigkeit errechnen
- Parameter einer Kreisbewegung berechnen
- das Hebelgesetz anwenden

Fühlen:

- mechanische Prozesse im täglichen Leben erkennen
- über Anwendungen von Mechanik in der Medizin nachdenken

Danke für Ihr Feedback!

Bildnachweis

Diese Vorlesung verwendet teilweise Materialien (Folien und Bilder) einer früheren Vorlesung von Prof. Wim Walter.

- Anna Kiesenhofer auf einem Fahrrad. Von Marianne Casamance Eigenes Werk, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=51096042
- Billardspiel. Von No-w-ay in collaboration with H. Caps Eigenes Werk, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=3216565
- Freier Fall. Von MichaelMaggs Eigenes Werk, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2946486
- Logo der MSB. MSB Medical School Berlin, Public Domain, via Wikimedia Commons
- Luftballons mit frohen und traurigen Smilies. Photo by Hybrid on Unsplash
- Pirouette. Photo by Rod Long on Unsplash
- Ruderboot von oben. Photo by Josh Calabrese on Unsplash
- Screenshot eines Artikels auf olympics.com, über Surferin Carissa Moore. https://olympics.com/de/video/carissa-moore-air-surf-gravity-tokyo-finals, aufgerufen im April 2022.
- Stabhochsprung. Photo by Austrian National Library on Unsplash
- Viererbob. Von 1st Class Preston Keres US-Army images, Gemeinfrei, https://commons.wikimedia.org/w/index.php?curid=3363565
- Wanderweg mit Serpentinen. Von Nachtgiger Image (picture) made by Nachtgiger, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6235458. Version mit eingezeichneten Punkten und Wegen von mir, CC-BY-SA 3.0, 2022.