Semiconductor memories Technology

Contents (I)

- 1. Basic Organization of semiconductor memories.
 - 1.1. Storage capacity. Sizes of the information.

 - 1.2. CPU-memory connection.1.3. Basic structure of semiconductor memories
- 2. Types of semiconductor memories.
 - 2.1. Non-volatile:
 - 2.1.1. ROM, PROM, EEPROM, FLASH. Elementary cells. Examples
 - 2.2. Volatile random access memory (RAM):
 - 2.2.1. Static RAM (SRAM). Elementary cells. Structure. Examples. Basic reading and writing chronograms.
 - 2.2.2. Dynamic RAM (DRAM). Basic cell. Internal structure. Concept of refreshing.
- 3. RAM memory modules. Structure and types.
 - 3.1. Introduction. Basic concepts.

Bibliography

Bibliography

- Floyd, T.L. Digital systems principles. Ed. Prentice Hall, 1997.
 Ch. 12 y 14.
- * J. F. Wakerly. Digital design. Ed. Prentice-Hall, 2006.
- Prince, B. Semiconductor memories. A handbook of design manufacture and application. Ed. Wiley,1991
- * R. Tokheim: Digital electronics, Principles and applications. 2010. Ch. 11: Memorias.
- * Jan M. Rabaey. Digital integrated circuits. Ed. Pearson Prentice Hall, 2004.

Memory system of a computer

- The main system memory of a computer usually consists of a set of modules
- The system memory and bus structure are consistent with an organization determined by the processor

1. Basic organization. 1.1. Storage capacity

- Quantity of stored information: bits or bytes
 - * Terminology: B = 1 byte, b = 1 bit
- ¿How is expressed the capacity?
 - * Overall capacity: bytes or multiples of bytes
- Prefixes
 - * Depending on the context, there are of 2ⁿ type or 10ⁿ type
 - Example: main memory capacity is always expressed in units of the type 2ⁿ

Applicable prefixes :	Name Kilo (K) Mega (M)	Value (2 ⁿ) 2 ¹⁰ 2 ²⁰	Value (10 ⁿ) 10 ³ 10 ⁶
	Giga (G)	2 ³⁰	10 ⁹
	Tera (T)	2 ⁴⁰	10 ¹²
	Peta (P)	2 ⁵⁰	10 ¹⁵

1.1. Storage capacity examples

- Overall capacity expressed in bytes
 - * $1024 \text{ bytes} = 2^{10} \text{ bytes} = 1 \text{ KB}$
- The memory has 128K words of 16 bits each
 - * $128K \times 16 \text{ bits} = 128K \times 2^4 \text{ bits} = 128K \times 2^1 \text{ bytes} = 256 \text{ KB}$
- The memory has 8 MB in words of 32 bits
 - * 8 MB = $2^3 \times 2^{20} \times 2^3$ bits = $2^1 \times 2^{20} \times 2^5$ bits = $2M \times 32$ bits
- Other examples:
 - * 64 Kbits = $64K \times 1$ bits = 2^{16} bits = $2^{13} \times 2^{3}$ bits = 2^{13} bytes
 - * 256 Mbits = $2^8 \times 2^{20}$ bits = $2^5 \times 2^{20} \times 2^3$ bits = 32 MB

1.1. Information sizes

Word

- * Maximum Transfer Unit in an access
- * The length in bits is usually an integer power of 2 (1, 2, 4, 8, 16, 32, 64)
- * Example
 - Transfers between main memory and processor without cache memory

Block

- * Set of words to be accessed in a single request
- * Examples
 - Transfers between disk and main memory
 - Transfers between cache and main memory

1.2. CPU-memory interconnection

Bus Lines

- * Control: The CPU selects memory and determines the operation to do (read or write)
- * Address: The CPU determines the address
- * Data: According to the operation, the data go:
 - In case of reading: from memory to the CPU
 - In case of writing: from the CPU to memory

1.3. Basic structure of semiconductor memories

The decoder reduces the number of selection lines (S) $K = log_2N$

2. Types of semiconductor memories.

Read/write memory		Read/write Read only Non-volatile Memories Memories	
Random access	Not random access	EPROM E ² PROM	Mask programmable ROM
SRAM	FIFO	FLASH	Programmable ROM (PROM)
DRAM	LIFO Shift Register CAM		

2. Types of semiconductor memories.

Non-Volatile Read/write **Read only Read/write memory** Non-volatile Non-volatile **Memories Memories** Random Mask programmable Not random **EPROM ROM** access access E^2 PROM Programmable ROM (PROM) FLASH **FIFO** SRAM LIFO **DRAM** Shift Register CAM

2.1.1. Read-Only Memories (ROM)

- The mask-programmed ROM have 1 transistor per bit
 - They are programmed during manufacturing.
 - The presence or absence of the transistor determines the '1 'or '0'
- They are non-volatile
 - Hold their contents when power is removed

2.1.1. ROM cells

2.1.1. MOS ROM with NOR structure

2.1.1. Example of ROM

4-word x 6-bit ROM

- Dot diagram representation
- * Dots indicate the ROM's 1's

Word 0: **010101**

Word 1: **011001**

Word 2: 100101

Word 3: **101010**

2.1.1 Programable ROM: PROM, PLA, PAL

PLA |

PROM

PAI

- + Programmable connection: transistor with series fuse
- + Fixed connection: transistor

2.1.1. Re-programmable non volatile memories

- Electrically Programmable ROMs (EPROMs)
 - They use a floating gate MOSFET to cut unwanted transistors
 - * EPROM, EEPROM, Flash

FAMOS Transistor

2.1.1. Flash memories

- Non-volatile read/write semiconductor memories:
- Applications
 - * Pen drives
 - Memory cards in digital cameras
 - Portable Audio (MP3)
 - Mobile Phones
 - Solid state discs
 - * ...

Features

- * Small, cheap, low power consumption and flexible
- Based on the EEPROM, but allows the erasure block by block
- Limited number of write and delete cycles

2.1.1. Flash cell: Programming and erasing mechanisms

Programming:

Avalanche injection

voltage, charge remains Stored in floating gate

5 V

5 V

D

when gate control has a "1"level

Erasing: tunnel effect

2.1.1. Internal structure of Flash memory chips

2. Types of semiconductor memories.

Read/write memory		Read/write Non-volatile Memories	Read only Non-volatile Memories	
Random access	Not random access	EPROM E ² PROM	Mask programmable ROM Programmable ROM	
SRAM	FIFO	FLASH	(PROM)	
DRAM	LIFO			
	Shift Register			
	CAM			
Volátiles RAM				

2.2. RAM features

RAM: (Random Access Memory)

- Volatile memories
- Read/write operations
- Random access

Depending on basic cells

Static RAMs (SRAM)

Dynamic RAMs (DRAM)

2.2. SRAM and DRAM classification

- Static (Static RAM = SRAM)
 - * Flip-flop based
 - Data stored when power supply is ON
 - Large cell size (6 transistors / cell)
 - * Fast (caches)
- Dynamic (Dynamic RAM = DRAM)
 - Based on the loading / unloading of a structural capacity
 - Require a periodic refresh
 - * Small cell size (1 to 3 transistors / cell)
 - * More bits / chip
 - * Slower (memory)

2.2.1. Static RAM. External lines of a SRAM

2.2.1. Static RAM. Array structure

2.2.1. Static RAM. 2D ARRAY structure

• The address lines are divided approx. in two halves, so that the row and column decoders are of similar complexity (near square Matrix).

Each address selects a complete word, which is distributed in n similar planes.

The memory is an array of 2^{K-I} rows x 2^I colums x n bits (each bit in a different plane)

(Image with license of creative commons. Downloaded from: http://es.slideshare.net/manuelbarcell/tema08-37160685)

An A1 ... A1-1

2.2.1. Static RAM. 2D ARRAY structure (II)

- Each input/output (data bus) have an amplifier and 2 tristate buffers.
- Control lines manage the input/output lines:
 - CS: Chip select
 - OE: Output enable (reading).
 - WE: Writing enable.

(Image with license of creative commons. Downloaded from: http://es.slideshare.net/manuelbarcell/tema08-37160685)

2.2.1. Static RAM. SRAM memory cell (6T)

2.2.1. Static RAM. SRAM memory cell (6T). Writing operation

Assume Q = "1", /Q = "0" and we want to write a "0"

- 1) The complementary data are set on BL and /BL
- 2) The cell is selected: WL = "1"
- 3) The flip-flop changes the state:

It is enough that Q is below VDD/2

The feedback makes /Q switch to "1" and Q to "0"

2.2.1. Static RAM. SRAM memory cell (6T). Reading operation

Assume Q = "1", /Q = "0"

- 1) BL y /BL are pre-charged to VDD
- 2) The cell is selected: WL = "1"
- 3) /BL is discharged through M5 and M1 and passes to "0" BL does not change, as BL and Q have a "1" and M3 is OFF

2.2.1. Static RAM. SRAM reading chronogram

Read cycle time (mín.) t_{RC} t_{RC} Access time from an t_A address (max.) Access time from chip t_{CO} Address select (CS) (max.) Access time from toE t_{CO} output enable (OE) cs \\\ (max.) toE Data hold time (min.) t_{OHA} Time to high OE t_DF impedance (max.) t_{OHA} Data

2.2.1. Static RAM. SRAM reading chronogram

2.2.1. Static RAM. SRAM writing chronogram

2.2.2. DynamicRAM. Basic cell.

Basic cell: Capacitor

Tecnología:

- Refreshing required (ms)
- Lower speed
- Very high integration density
- Cheap (cost/stored bit)
- Cycle time> Access time

Commercial chips capacity:

N= 1 ... 128

N M x 4 bit N M x 8 bit N M x 16 bit

2.2.2. DynamicRAM. Basic cell. DRAM-1T.

Datum stored as a charge of a CS capacitor
High integration density (1T)
Periodic refresh needed

2.2.2. Dynamic RAM. DRAM internal structure

2.2.2. Dynamic RAM. DRAM refreshing (I)

- Periodic writeback operation of the DRAM information
- It s performed by a refreshing circuit that can stand alone or be into the DRAM memory
- The refreshing can interfere with memory access cycles of the CPU

2.2.2. Dynamic RAM. DRAM refreshing (II)

In each DRAM access, either for reading or writing cycles, an entire row in the bit array is refreshed.

Refreshing period:

Maximum time that can be elapsed between two consecutive accesses to the same row of the DRAM

3. RAM memory modules- Introduction

- The main memory system of a computer usually consists of a set of memory modules
- RAM modules are printed circuit boards having integrated DRAM chips soldered by one or both sides. The use of DRAM achieves high density memory
- Besides integrated circuits of DRAM, modules have an integrated circuit (SPD) enabling identification thereof to the PC through the serial communication protocol
- Over time various technologies of these modules have appeared:
 - * SDR SDRAM (Single Data Rate Synchronous Dynamic Random Access Memory)
 - * DDR SDRAM (Dual Data Rate SDRAM).
 - DDR2 SDRAM (DDR dual bandwidht)
 - DDR3 SDRAM (DDR quad bandwidht)
 - * RDRAM (Rambus DRAM) (propietary technology and higher bandwidht)

3.2. Standard DRAM memory modules

Terminals

- The address lines are multiplexed
- * A CS * input line acts as module selection
- DMQ inputs * (CAS) are byte-enable lines (for writing)
- Modules are inserted and removed easily from the main board slots.
 - Optional: Parity bits (for each 8-bits block, a redundant bit is added). Also Error Correcting Codes (ECC) (1 bit correction).

3.2.1. RAM memory modules: SIMM modules.

Example: SIMM (Single Inline Memory Module) of 30 contacts

DIMM modules(Dual Inline Memory Module)

 168/184/240 contacts, 64 data bits, 13 cm of lenght

3.2.1. RAM memory modules: SO-DIMMmodules

 Módulos SO-DIMM (Small Outline Dual In Line Memory Module). For laptops. Miniaturized DIMM format.

- 144 contacts connector, used with SDRAM;
- 200 contacts, used with SDRAM DDR, DDR2 y DDR3, with different position of central mark (notch);

3.2.2. Double Data Rate Synchronous DRAM: 3.2.2.1. DDR standard modules

Name	Clock freq.	Delay	CLK fr. I/O	Transfer speed.	Name	Max. Trans. Rate
DDR-200	100 MHz	10 ns	100 MHz	200 million	PC1600	1.600 MB/s
DDR-266	133 MHz	7,5 ns	133 MHz	266 million	PC2100	2.133 MB/s
DDR-300	150 MHz	-ns	150 MHz	300 million	PC2400	2.400 MB/s
DDR-333	166 MHz	6 ns	166 MHz	333 million	PC2700	2.667 MB/s
DDR-366	183 MHz	5,5 ns	183 MHz	366 million	PC3000	2.933 MiB/s
DDR-400	200 MHz	5 ns	200 MHz	400 million	PC3200	3.200 MB/s
DDR-433	216 MHz	4,6 ns	216 MHz	433 million	PC3500	3.500 MB/s
DDR-466	233 MHz	4,2 ns	233 MHz	466 million	PC3700	3.700 MB/s
DDR-500	250 MHz	4 ns	250 MHz	500 million	PC4000	4.000 MB/s
DDR-533	266 MHz	3,7 ns	266 MHz	533 million	PC4300	4.264 MB/s

3.2.2. Double Data Rate Synchronous DRAM: 3.2.2.2. DDR2 standard modules.

Name Clock freq.	Delay	CLK fr. I/O	Transfer speed.	Name	Max. Trans. Rate
DDR2-400 100 MHz	10 ns	200 MHz	400 million	PC2-3200	3.200 MB/s
DDR2-533 133 MHz	7,5 ns	266 MHz	533 million	PC2-4300	4.264 MB/s
DDR2-600 150 MHz	6,7 ns	300 MHz	600 million	PC2-4800	4.800 MB/s
DDR2-667 166 MHz	6 ns	333 MHz	667 million	PC2-5300	5.336 MB/s
DDR2-800 200 MHz	5 ns	400 MHz	800 million	PC2-6400	6.400 MB/s
DDR2-1000 250 MHz	3,75 ns	500 MHz	1.000 million	PC2-8000	8.000 MB/s
DDR2-1066 266 MHz	3,75 ns	533 MHz	1.066 million	PC2-8500	8.530 MB/s
DDR2-1150 286 MHz	3,5 ns	575 MHz	1.150 million	PC2-9200	9.200 MB/s
DDR2-1200 300 MHz	3,3 ns	600 MHz	1.200 million	PC2-9600	9.600 MB/s

3.2.2. Double Data Rate Synchronous DRAM: 3.2.2.3. DDR3 standard modules

Name Clo	ock freq.	Delay	CLK fr. I/O	Transfer speed.	Name	Max. Trans. Rate
DDR3-1.066	133 MHz	7,5 ns	533 MHz	1.066 million	PC3-8500	8.530 MB/s
DDR3-1.200	150 MHz	6,7 ns	600 MHz	1.200 million	PC3-9600	9.600 MB/s
DDR3-1.333	166 MHz	6 ns	667 MHz	1.333 million	PC3-10667	7 10.664 MB/s
DDR3-1.375	170 MHz	5,9 ns	688 MHz	1.375 million	PC3-11000	11.000 MB/s
DDR3-1.466	183 MHz	5,5 ns	733 MHz	1.466 million	PC3-11700	11.700 MB/s
DDR3-1.600	200 MHz	z 5 ns	800 MHz	1.600 million	PC3-12800) 12.800 MB/s
DDR3-1.866	233 MHz	z 4,3 ns	933 MHz	1.866 million	PC3-14900) 14.930 MB/s
DDR3-2.000	250 MHz	z 4 ns	1000 MHz	2.000 million	PC3-16000) 16.000 MB/s

3.2.2. Double Data Rate Synchronous DRAM: 3.2.2.3. DDR4 standard modules

Name Clo	ck freq. Delay	CLK fr. I/O Transfer speed.	Name Max. Trans. Rate
DDR4-1.600	200 MHz 5 ns	1600 MHz 3.200 million	PC3-12800 12.800 MB/s
DDR4-1.866	233 MHz 4,3 ns	1864 MHz 3.728 million	PC3-14900 14.930 MB/s
DDR4-2.133	266 MHz 3,76 ns	2128 MHz 4.256 million	PC4-17000 16.000 MB/s
	300 MHz 3,34 ns	2400 MHz 4.800 million	PC3-12800 12.800 MB/s
	333 MHz 3 ns	2664 MHz 5.328 million	PC3-14900 14.930 MB/s
DDR4-3200	400 MHz 2,5 ns	3200 MHz 6.400 million	PC3-16000 16.000 MB/s

3.2.2. Comparison of the shape of modules: DDR, DDR2 y DDR3

- The DDR3 DIMMs have 240 contacts or pins, the same number as DDR2, but the DIMMs are physically incompatible, due to a different location of the notch.
- The DDR4 have 288 pins, also incompatible with previous families of DDR.

