DADOS DE PROPRIEDADES DE FLUIDOS

A-1 DENSIDADE RELATIVA E MASSA ESPECÍFICA

Dados de densidade relativa (ou simplesmente densidade, ou ainda gravidade específica) para diversos líquidos e sólidos comuns estão apresentados nas Figs. A.1a e A.1b e nas Tabelas A.1 e A.2. Para líquidos, a densidade é uma função da temperatura. (Massas específicas da água e do ar são dadas como funções da temperatura nas Tabelas A.7 a A.10.) Para a maioria dos líquidos a densidade diminui com o aumento da temperatura. A água tem um comportamento singular: ela apresenta uma massa específica máxima de 1000 kg/m³ (1,94 slug/pé³) a 4°C (39°F). A massa específica máxima da água é usada como valor de referência para calcular a densidade relativa. Assim,

Fig. A.1 Densidades da água e do mercúrio como funções da temperatura. (Dados de [1].) (A densidade relativa do mercúrio varia linearmente com a temperatura. A variação é dada por SG = 13,60 − 0,00240 T quando T é dada em °C.)

Tabela A.1 Densidades de Materiais de Engenharia Selecionados

(a) Líquidos Comuns de Manômetro a 20°C (Dados de [1, 2, 3].)

Líquido	Densidade Relativa
Óleo azul E. V. Hill	0,797
Óleo vermelho Meriam	0,827
Benzeno	0,879
Dibutilftalato	1,04
Monocloronaftaleno	1,20
Tetracloreto de carbono	1,595
Bromoetilbenzeno (Meriam azul)	1,75
Tetrabromoetano	2,95
Mercúrio	13,55

(b) Materiais Comuns (Dados de [4].)

	Densidade Relativa
Material .	(—)
Alumínio	2,64
Madeira Balsa	0,14
Latão	8,55
Ferro fundido	7,08
Concreto (curado)	2,4*
Concreto (líquido)	2,5*
Cobre	8,91
Gelo (0°C)	0,917
Chumbo	11,4
Carvalho	0,77
Aço	7,83
Espuma Styrofoam (1 pcf**)	0,0160
Espuma Styrofoam (3 pcf)	0,0481
Urânio (exaurido)	18,7
Pinheiro branco	0,43

^{*}dependendo do agregado

Consequentemente a densidade relativa máxima da água é exatamente a unidade.

As densidades de sólidos são relativamente insensíveis à temperatura; os valores dados na Tabela A.1 foram medidos a 20°C.

A densidade relativa da água do mar depende da temperatura e, também, do grau de salinidade. Um valor representativo para a água do oceano é SG = 1,025, como dado na Tabela A.2.

^{**}libra-massa por pé cúbico

Tabela A.2 Propriedades Físicas de Líquidos Comuns a 20°C (Dados de [1, 5, 6].)

Líquido	Módulo de Compressibilidade Isoentrópica ^a (GN/m ²)	Densidade Relativa (—)
Benzeno	1,48	0,879
Tetracloreto de carbono	1,36	1,595
Óleo Castor	2,11	0,969
Óleo cru	_	0,82-0,92
Etanol		0,789
Gasolina	_	0,72
Glicerina	4,59	1,26
Heptano	0,886	0,684
Querosene	1,43	0,82
Óleo lubrificante	1,44	0,88
Metanol	_	0,796
Mercúrio	28,5	13,55
Octano	0,963	0,702
Água do mar ^b	2,42	1,025
Óleo SAE 10W		0,92
Água	2,24	0,998

[°]Calculado a partir da velocidade do som 1 GN/m² = 10^9 N/m² (1 N/m² = $1,45 \times 10^{-4}$ lbf/in²).
bA viscosidade dinâmica da água do mar a 20° C é μ = $1,08 \times 10^{-3}$ N·s/m². (Portanto, a viscosidade cinemática da água do mar é cerca de 5% maior do que a viscosidade da água potável.)

Tabela A.3 Propriedades da Atmosfera Padrão dos EUA (Dados de [7].)

Altitude Geométrica (m)	Temperatura (K)	<i>p/p</i> _{NM} (—)	ρ / ρ _{NM} (—)
-500	291,4	1,061	1,049
0	288,2	1,000°	1,000 ^b
500	284,9	0,9421	0,9529
1.000	281,7	0,8870	0,9075
1.500	278,4	0,8345	0,8638
2.000	275,2	0,7846	0,8217
2.500	271,9	0,7372	0,7812
3.000	268,7	0,6920	0,7423
3.500	265,4	0,6492	0,7048
4.000	262,2	0,6085	0,6689
4.500	258,9	0,5700	0,6343
5.000	255,7	0,5334	0,6012
6.000	249,2	0,4660	0,5389
7.000	242,7	0,4057	0,4817
8.000	236,2	0,3519	0,4292
9.000	229,7	0,3040	0,3813
10.000	223,3	0,2615	0,3376
11.000	216,8	0,2240	0,2978
12.000	216,7	0,1915	0,2546
13.000	216,7	0,1636	0,2176
14.000	216,7	0,1399	0,1860
15.000	216,7	0,1195	0,1590
16.000	216,7	0,1022	0,1359
17.000	. 216,7	0,08734	0,1162
18.000	216,7	0,07466	0,09930
19.000	216,7	0,06383	0,08489
20.000	216,7	0,05457	0,07258
22.000	218,6	0,03995	0,05266
24.000	220,6	0,02933	0,03832
26.000	222,5	0,02160	0,02797
28000	224,5	0,01595	0,02047
30,000	226,5	0,01181	0,01503
40.000	250,4	0,002834	0,003262
50.000	270,7	0,0007874	0,0008383
60.000	255,8	0,0002217	0,0002497
70.000	219,7	0,00005448	0,00007146
80.000	180,7	0,00001023	0,00001632
90.000	180,7	0,000001622	0,000002588

 $^{^{}a}p_{\text{NM}} = 1,01325 = 10^{5} \text{ N/m}^{2} \text{ (abs) } (= 14,696 \text{ psia)}.$ $^{b}\rho_{\text{NM}} = 1,2250 \text{ kg/m}^{3} (= 0,002377 \text{ slug/ft}^{3}).$

A-2 TENSÃO SUPERFICIAL

Os valores de tensão superficial, σ , para a maioria dos compostos orgânicos, são notavelmente semelhantes à temperatura ambiente; a faixa típica é de 25 a 40 mN/m. O da água é mais alto, cerca de 73 mN/m a 20°C. Os metais líquidos têm valores na faixa entre 300 e 600 mN/m; o mercúrio líquido tem um valor de cerca de 480 mN/m a 20°C. A tensão superficial diminui com a temperatura; o decréscimo é aproximadamente linear com a temperatura absoluta. A tensão superficial à temperatura crítica é zero.

Os valores de σ são reportados usualmente para superfícies em contato com o vapor puro do líquido em estudo ou com o ar. Para baixas pressões, os dois valores são aproximadamente iguais.

Tabela A.4 Tensão Superficial de Líquidos Comuns a 20°C (Dados de [l, 5, 8, 9].)

Líquido	Tensão Superficial, σ (mN/m) ^a	Ângulo de Contato, $ heta$ (graus)
(a) Em contato com ar		Ar Líquido θ
Веплепо	28,9	
Tetracloreto de carbono	27,0	
Etanol	22,3	
Glicerina	63,0	
Hexano	18,4	
Querosene	26,8	
Óleo lubrificante	25–35	
Mercúrio	484	140
Metanol	22,6	•
Octano	21,8	
Água	72,8	~0
(b) Em contato com água		Agua Líquido V
Benzeno	35,0	
Tetracloreto de carbono	45,0	•
Hexano	51,1	
Mercúrio	375	140
Metanol	22,7	
Octano	50,8	9 - C

 $^{^{}a}1 \text{ mN/m} = 10^{-3} \text{ N/m}.$

A-3 A NATUREZA FÍSICA DA VISCOSIDADE

A viscosidade é uma medida do atrito interno do fluido, isto é, da resistência à deformação. O mecanismo da viscosidade gasosa é razoavelmente bem compreendido, mas a teoria para líquidos ainda não está bem desenvolvida. Podemos entender melhor a natureza física do escoamento viscoso discutindo brevemente esses mecanismos.

A viscosidade de um fluido newtoniano é definida pelo estado do material. Assim, $\mu = \mu(T,p)$. A temperatura é a variável mais importante, por isso vamos considerá-la primeiro. Existem excelentes equações empíricas para a viscosidade como uma função da temperatura.

Efeito da Temperatura sobre a Viscosidade

a. Gases

Todas as moléculas gasosas estão em contínuo movimento aleatório. Quando há um movimento da massa de gás em decorrência do escoamento, o movimento de massa sobrepõe-se aos movimentos aleatórios. Ele é, então, distribuído por todo o fluido pelas colisões moleculares. Análises baseadas na teoria cinética predizem

$$\mu \propto \sqrt{T}$$

A previsão da teoria cinética concorda muito bem com as tendências experimentais, mas a constante de proporcionalidade e um ou mais fatores de correção devem ser determinados; isto limita a aplicação prática dessa equação simples.

Se dois ou mais pontos experimentais estão disponíveis, os dados podem ser correlacionados pela equação empírica de Sutherland [7]

$$\mu = \frac{bT^{1/2}}{1 + S/T} \tag{A.1}$$

As constantes $b \in S$ podem ser determinadas com mais facilidade escrevendo

$$\mu = \frac{bT^{3/2}}{S+T}$$

ou

$$\frac{T^{3/2}}{\mu} = \left(\frac{1}{b}\right)T + \frac{S}{b}$$

(Compare isso com y = mx + c.) De um gráfico de $T^{9/2}/\mu$ versus T, pode-se obter a inclinação, 1/b, e o intercepto, S/b. Para o ar,

$$b = 1,458 \times 10^{-6} \frac{\text{kg}}{\text{m} \cdot \text{s} \cdot \text{K}^{1/2}}$$

S = 110,4 K

Estas constantes foram usadas com a Eq. A.1 para calcular as viscosidades para a atmosfera padrão em [7], os valores da viscosidade do ar para várias temperaturas mostrados na Tabela A.10 e, usando fatores de conversão apropriados, os valores mostrados na Tabela A.9.

b. Líquidos

As viscosidades dos líquidos não podem ser bem estimadas teoricamente. O fenômeno da transferência de quantidade de movimento por colisões moleculares é ofuscado nos líquidos pelos efeitos de campos de força interagindo entre grupos de moléculas líquidas muito próximas.

As viscosidades dos líquidos são fortemente afetadas pela temperatura. Esta dependência da temperatura absoluta é bem representada pela equação empírica

$$\mu = Ae^{B/(T-C)} \tag{A.2}$$

Os gráficos para o ar e para a água foram elaborados a partir da planilha do *Excel Viscosidades Absolutas*, usando a Eq. A.1 e a Eq. A.3, respectivamente. A planilha pode ser usada para calcular viscosidades de outros fluidos, se as constantes b e S (para um gás) ou A, B e C (para líquidos) são conhecidas.

Fig. A.2 Viscosidade dinâmica (absoluta) de fluidos comuns como uma função da temperatura. (Dados de [1, 6, e 10].)

ou pela forma equivalente

$$\mu = A10^{B/(T-C)} \tag{A.3}$$

onde T é a temperatura absoluta.

A Eq. A.3 requer pelo menos três pontos para ajustar A, B e C. Em teoria, é possível determinar as constantes a partir de medidas da viscosidade em apenas três temperaturas. Uma prática melhor é usar mais dados e obter as constantes por meio de um ajuste estatístico dos dados.

Após o desenvolvimento da curva de ajuste (regressão), compare sempre a linha ou curva resultante com os dados disponíveis. A melhor maneira é fazer uma inspeção crítica de um gráfico da curva obtida comparada com os dados disponíveis. Em geral, os resultados da regressão são satisfatórios somente quando a qualidade dos dados disponíveis e aquela da correlação empírica são sabidamente excelentes.

Fig. A.3 Viscosidade cinemática de fluidos comuns (à pressão atmosférica) como uma função da temperatura. (Dados de [1, 6, e 10].)

Dados para a viscosidade dinâmica da água são bem ajustados usando as constantes $A = 2,414 \times 10^{-5} \,\mathrm{N} \cdot \mathrm{s/m^2}$, $B = 247,8 \,\mathrm{K}$ e $C = 140 \,\mathrm{K}$. A Referência 10 afirma que, usando essas constantes na Eq. A.3, prediz-se a viscosidade da água com erro de $\pm 2,5\%$ numa faixa de temperaturas de 0°C a 370°C. A Eq. A.3 e o *Excel* foram usados para calcular os valores da viscosidade da água para várias temperaturas mostrados na Tabela A.8 e, usando fatores de conversão apropriados, os valores mostrados na Tabela A.7.

Note que a viscosidade de um líquido diminui com a temperatura, enquanto a de um gás aumenta com a temperatura.

Efeito da Pressão sobre a Viscosidade

a. Gases

A viscosidade dos gases é essencialmente independente da pressão numa faixa entre uns poucos centésimos de uma atmosfera e algumas poucas atmosferas. Entretanto, a viscosidade aumenta em pressões elevadas (ou com o aumento da massa específica).

b. Líquidos

As viscosidades da maioria dos líquidos não são afetadas por pressões moderadas, porém grandes aumentos têm sido verificados em pressões muito altas. Por exemplo, a viscosidade da água a 10.000 atm é duas vezes aquela a 1 atm. Compostos mais complexos apresentam um aumento de viscosidade de várias ordens de grandeza para a mesma faixa de pressão.

Mais informações podem ser encontradas em [11].

A-4 ÓLEOS LUBRIFICANTES

Os óleos lubrificantes de motores e de transmissões são classificados pela viscosidade de acordo com normas estabelecidas pela SAE — *Society of Automotive Engineers* [12]. As faixas de viscosidades permitidas para os diversos graus são dadas na Tabela A.5.

Os números de viscosidade com W (p. ex., 20W) são classificados pela viscosidade a 0°F (-17,8°C). Aqueles sem W são classificados pela viscosidade a 210°F (100°C).

Os óleos multigraus (p. ex., 10W-40) são formulados para minimizar a variação da viscosidade com a temperatura. Na mistura desses óleos são empregados altos polímeros que "melhoram o índice de viscosidade". Tais aditivos são altamente não-newtonianos; eles podem sofrer perda permanente de viscosidade causada pelo cisalhamento.

Existem gráficos especiais para estimar a viscosidade de produtos do petróleo como uma função da temperatura. Os gráficos foram usados para desenvolver os dados para os óleos lubrificantes típicos plotados nas Figs. A.2 e A.3. Para mais detalhes, consulte [15].

Tabela A.5 Faixas de Viscosidades Permitidas para Lubrificantes (Dados de [12-14].)

· · ·	Grau de Viscosidade	Viscosidade Máx. (cP) ^a		(cSt) ^b a 100°C
Óleo de Motor	SAE	à Temp. (°C)	Mín.	Máx.
	0W	3250 a −30	3,8	
	5W	3500 a −25	3,8	- -
4	10W	3500 a −20	4,1	
	15W	3500 a -15	5,6	_
	20W	4500 a −10	5,6	
	25W	6000 a −5	9,3	
	20		5,6	<9,3
	30	_	9,3	<12,5
	40	_	12,5	<16,3
	50	· —	16,3	<21,9
Lubrificante de Transmissão de	Grau de Viscosidade	Temp. Máx. (°C) para viscosidade	Viscosidade (cSt) a 100°C
Eixo e Manual	SAE	de 150.000 cP	Mín.	Máx.
	70W	-55	4,1	·
	75W	-40	4,1	_
	80W	-26	7,0	_
	85W	-12	11,0	
	90		13,5	<24,0
	140	_	24,0	<41,0
	250	_	41,0	. <u></u>
Fluido de	Viscosidade			
Transmissão	Máxima	Temperatura	Viscosidade (cSt) a 100°C	
Automática (Típico)	(cP)	(°C)	Mín.	Máx.
	50.000	-40	6,5	8,5
	4000	-23,3	6,5	8,5
	1700	-18	6,5	8,5

^a1 centipoise = 1 cP = 1 mPa·s = 10^{-3} Pa·s (= 2.09×10^{-5} lbf·s/ft²).

 $^{^{}b}1$ centistoke = 10^{-6} m²/s (= 1,08 × 10^{-5} ft²/s).

Tabela A.6 Propriedades Termodinâmicas de Gases Comuns na Condição Padrão ou STP# (Dados de [7, 16, 17].)

Gás	Símbolo Químico	Massa Molecular, M _m	$\begin{pmatrix} R^b \\ J \\ kg\cdot K \end{pmatrix}$	$\begin{pmatrix} c_p \\ \frac{\mathbf{J}}{\mathbf{k}\mathbf{g}\cdot\mathbf{K}} \end{pmatrix}$	$\left(egin{array}{c} c_v \ \mathbf{J} \ \hline \mathbf{k} \mathbf{g} \cdot \mathbf{K} \end{array} ight)$	$k = \frac{c_p}{c_p}$	$\begin{pmatrix} R^b \\ \text{ft} \cdot \text{lbf} \\ \overline{\text{lbm}} \cdot {}^\circ\!R \end{pmatrix}$	$\left(\frac{\mathbf{gtu}^p}{\mathbf{Btu}}\right)$	$\left(rac{c_v}{ ext{Btu}} ight)$
Ar		28,98	286.9	1004	717.4	1.40	53 33	0.7399	0.1713
Dióxido de carbono	co CO	44,01	188,9	840,4	651,4	1.29	35.11	0.2007	0.1556
Monóxido de carbono	8	28,01	296,8	1039	742,1	1,40	55,17	0.2481	0,1772
Hélio	He	4,003	2077	5225	3147	1.66	386,1	1.248	0.7517
Hidrogênio	H_2	2,016	4124	14,180	10,060	1,41	766,5	3,388	2.402
Metano	СЩ	16,04	518,3	2190	1672	1,31	96,32	0,5231	0,3993
Nitrogênio	Z,	28,01	296,8	1039	742,0	1,40	55,16	0,2481	0.1772
Oxigênio	o _z	32,00	259,8	909,4	649,6	1,40	48,29	0.2172	0.1551
Vapor d'água ^c	H_2O	18,02	461,4	~2000	~1540	~1,30	82,78	~0,478	~0,368

"STP = temperatura e pressão na condição padrão ou "standard", $T = 15^{\circ}\text{C} = 59^{\circ}\text{F}$ e p = 101,325 kPa (abs) = 14,696 psia. $^{b}R = R_{u}/M_{m}$; $R_{u} = 8314,3$ J/(kgmol·K) = 1545,3 ft·lbf/(lbmol·R); 1 Btu = 778,2 ft·lbf, $^{\circ}$ C vapor d'água comporta-se como um gás ideal quando superaquecido de 55°C (100°F) ou mais.

Tabela A.7 Propriedades da Água (Unidades Usuais nos EUA)

Temperatura, T (°F)	Massa Específica, ρ (slug/ft³)	Viscosidade Dinâmica, μ (lbf·s/ft²)	Viscosidade Cinemática, ν (ft²/s)	Tensão Superficial, σ(lbf/ft)	Pressão de Vapor, p_v (psia)	Módulo de Compressibilidade E_v (psi)
32	1,94	3,68E-05	1,90E-05	0,00519	0,0886	2,92E + 05
40	1,94	3,20E-05	1,65E-05	0,00514	0,122	
50	1,94	2,73E-05	1,41E-05	0,00509	0,178	
59	1,94	2,38E-05	1,23E-05	0,00504	0,247	
60	1,94	2,35E-05	1,21E-05	0,00503	0,256	
68	1,94	2,10E-05	1,08E-05	0,00499	0,339	
70	1,93	2,05E-05	1,06E-05	0,00498	0,363	3,20E + 05
80	1,93	1,80E-05	9,32E-06	0,00492	0,507	
90	1,93	1,59E-05	8,26E-06	0,00486	0,699	
100	1,93	1,43E-05	7,38E-06	0,00480	0,950	•
110	1,92	1,28E-05	6,68E-06	0,00474	1,28	
120	1,92	1,16E-05	6,05E-06	0,00467	1,70	3,32E + 05
130	1,91	1,06E-05	5,54E-06	0,00461	2,23	
140	1,91	9,70E-06	5,08E-06	0,00454	2,89	
150	1,90	8,93E-06	4,70E-06	0,00448	3,72	
160	1,89	8,26E-06	4,37E-06	0,00441	4,75	
170	1,89	7,67E-06	4,06E-06	0,00434	6,00	
180	1,88	7,15E-06	3,80E-06	0,00427	7,52	
190	1,87	6,69E-06	3,58E-06	0,00420	9,34	
200	1,87	6,28E-06	3,36E-06	0,00413	11,5	3,08E + 05
212	1,86	5,84E-06	3,14E-06	0,00404	14,7	

Tabela A.8 Propriedades da Água (Unidades SI)

Temperatura, T (°C)	Massa Específica, ρ (kg/m³)	Viscosidade Dinâmica, μ (N·s/m²)	Viscosidade Cinemática, ν (m²/s)	Tensão Superficial, σ (N/m)	Pressão de Vapor, p _v (kPa)	Módulo de Compressibilidade, E_v (GPa)
0	1000	1,76E-03	1,76E-06	0,0757	0,661	2,01
5	1000	1,51E-03	1,51E-06	0,0749	0,872	
10	1000	1,30E-03	1,30E-06	0,0742	1,23	
15	999	1,14E-03	1,14E-06	0,0735	1,71	
20	998	1,01E-03	1,01E-06	0,0727	2,34	2,21
25	997	8,93E-04	8,96E-07	0,0720	3,17	
30	996	8,00E-04	8,03E-07	0,0712	4,25	
35	994	7,21E-04	7,25E-07	0,0704	5,63	
40	992	6,53E-04	6,59E-07	0,0696	7,38	
45	990	5,95E-04	6,02E-07	0,0688	9,59	
50	988	5,46E-04	5,52E-07	0,0679	12,4	2,29
55	986	5,02E-04	5,09E-07	0,0671	15,8	
60	983	4,64E-04	4,72E-07	0,0662	19,9	
65	980	4,31E-04	4,40E-07	0,0654	25,0	
70	978	4,01E-04	4,10E-07	0,0645	31,2	
75	975	3,75E-04	3,85E-07	0,0636	38,6	
80	972	3,52E-04	3,62E-07	0,0627	47,4	
85	969	3,31E-04	3,41E-07	0,0618	57,8	
90	965	3,12E-04	3,23E-07	0,0608	70,1	2,12
95	962	2,95E-04	3,06E-07	0,0599	84,6	
100	958	2,79E-04	2,92E-07	0,0589	101	

Tabela A.9 Propriedades do Ar à Pressão Atmosférica (Unidades Usuais nos EUA)

Temperatura, T (°F)	Massa Específica, ρ (slug/ft³)	Viscosidade Dinâmica, μ (lbf·s/ft²)	Viscosidade Cinemática, v (ft²/s)
40	0,00247	3,63E-07	1,47E-04
50	0,00242	3,69E-07	1,52E-04
59	0,00238	3,74E-07	1,57E-04
60	0,00237	3,74E-07	1,58E-04
68	0,00234	3,79E-07	1,62E-04
70	0,00233	3,80E-07	1,63E-04
80	0,00229	3,85E-07	1,68E-04
90	0,00225	3,91E-07	1,74E-04
100	0,00221	3,96E-07	1,79E-04
110	0,00217	4,02E-07	1,86E-04
120	0,00213	4,07E-07	1,91E-04
130	0,00209	4,12E-07	1,97E-04
140	0,00206	4,18E-07	2,03E-04
150	0,00202	4,23E-07	2,09E-04
160	0,00199	4,28E-07	2,15E-04
170	0,00196	4,33E-07	2,21E-04
180	0,00193	4,38E-07	2,27E-04
190	0,00190	4,43E-07	2,33E-04
200	0,00187	4,48E-07	2,40E-04

Tabela A.10 Propriedades do Ar à Pressão Atmosférica (Unidades SI)

Temperatura, T (°C)	Massa Específica, ρ (kg/m³)	Viscosidade Dinâmica, μ (N·s/m²)	Viscosidade Cinemática, ν (m²/s)	
0	1,29	1,72E-05	1,33E-05	
5	1,27	1,74E-05	1,37E-05	
10	1,25	1,76E-05	1,41E-05	
15	1,23	1,79E-05	1,45E-05	
20	1,21	1,81E-05	1,50E-05	
25	1,19	1,84E-05	1,54E-05	
30	1,17	1,86E-05	1,59E-05	
35	1,15	1,88E-05	1,64E-05	
40	1,13	1,91E-05	1,69E-05	
45	1,11	1,93E-05	1,74E-05	
50	1,09	1,95E-05	1,79E-05	
55	1,08	1,98E-05	1,83E-05	
60	1,06	2,00E-05	1,89E-05	
65	1,04	2,02E-05	1,94E-05	
70	1,03	2,04E-05	1,98E-05	
75	1,01	2,06E-05	2,04E-05	
80	1,00	2,09E-05	2,09E-05	
85	0,987	2,11E-05	2,14E-05	
90	0,973	2,13E-05	2,19E-05	
95	0,960	2,15E-05	2,24E-05	
100	0,947	2,17E-05	2,29E-05	

REFERÊNCIAS

- Handbook of Chemistry and Physics, 62nd ed. Cleveland, OH: Chemical Rubber Publishing Co., 1981– 1982.
- 2. "Meriam Standard Indicating Fluids," Pamphlet No. 920GEN: 430-1, The Meriam Instrument Co., 10920 Madison Avenue, Cleveland, OH 44102.
- 3. E. Vernon Hill, Inc., P.O. Box 7053, Corte Madera, CA 94925.
- 4. Avallone, E. A., and T. Baumeister, III, eds., Marks' Standard Handbook for Mechanical Engineers, 9th ed. New York: McGraw-Hill, 1987.
- 5. Handbook of Tables for Applied Engineering Science. Cleveland, OH: Chemical Rubber Publishing Co., 1970.
- **6.** Vargaftik, N. B., *Tables on the Thermophysical Properties of Liquids and Gases*, 2nd ed. Washington, D.C.: Hemisphere Publishing Corp., 1975.
- 7. The U.S. Standard Atmosphere (1976). Washington, D.C.: U.S. Government Printing Office, 1976.
- 8. Trefethen, L., "Surface Tension in Fluid Mechanics," in *Illustrated Experiments in Fluid Mechanics*. Cambridge, MA: The M.I.T. Press, 1972.
- 9. Streeter, V. L., ed., Handbook of Fluid Dynamics. New York: McGraw-Hill, 1961.
- Touloukian, Y. S., S. C. Saxena, and P. Hestermans, Thermophysical Properties of Matter, the TPRC Data Series. Vol. 11—Viscosity. New York: Plenum Publishing Corp., 1975.
- 11. Reid, R. C., and T. K. Sherwood, *The Properties of Gases and Liquids*, 2nd ed. New York: McGraw-Hill, 1966.
- "Engine Oil Viscosity Classification—SAE Standard J300 Jun86," SAE Handbook, 1987 ed. Warrendale, PA: Society of Automotive Engineers, 1987.
- "Axle and Manual Transmission Lubricant Viscosity Classification—SAE Standard J306 Mar85," SAE Handbook, 1987 ed. Warrendale, PA: Society of Automotive Engineers, 1987.
- 14. "Fluid for Passenger Car Type Automatic Transmissions—SAE Information Report J311 Apr86," SAE Handbook, 1987 ed. Warrendale, PA: Society of Automotive Engineers, 1987.
- 15. ASTM Standard D 341-77, "Viscosity-Temperature Charts for Liquid Petroleum Products," American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103.
- NASA, Compressed Gas Handbook (Revised). Washington, D.C.: National Aeronautics and Space Administration, SP-3045, 1970.
- ASME, Thermodynamic and Transport Properties of Steam. New York: American Society of Mechanical Engineers, 1967.

.