School of Computer Science and Communication Systems Master in Computer Science

Bandwidth efficient object recognition for drone swarms

Supervised by

Student

Prof. Dario Floreano

Marco Zoveralli

Dr. Giuseppe Cocco

Fabian Schilling

Project Overview

- Motivation
 - Detection Accuracy: prediction by single drone may be unreliable
 - False positives and false negatives can occur
 - Consensus: autonomous swarms may need to agree on whether a given target is present
 - Bandwidth efficiency: especially relevant in urban environment
- Goal

Determine the presence/absence of a target object with high

accuracy

Related Work

• A. Rahimpour *et al.*, "Distributed Object Recognition in Smart Camera Networks", 2016 IEEE Int. Conf. on Image Processing (ICIP), 2016.

- Feature extraction performed by each camera
- Features sent to a base station, which performs object detection → no autonomy of devices
- Lack of an autonomous set of devices that triggers other events

- J. Lee et al., "Real-Time Object Detection for Unmanned Aerial Vehicles based on Cloudbased Convolutional Neural Networks", First IEEE International Conference on Robotic Computing (IRC), 2017.
 - Cloud-based object detection
 - Applied to aerial vehicles, but no data aggregation
- A. Giusti et al., "Cooperative sensing and recognition by a swarm of mobile robots", IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012.
 - Interesting communication and consensus
 - Human-computer interaction
 - Different setup, different goal
 - Classification task

Hardware Selection and Validation

- Hardware selection
 - Single-board computers: Odroid XU4
 - Image Acquisition: OpenMV M7
 - Connectivity: WiFi Module 5

Connectivity tests

- Adhoc mode compatibility
- Network throughput
- Network stability
- Object detection tests
 - Setup of a deep learning framework
 - MSCOCO pre-trained neural network

Protocol Design: Inter-host Communication

Protocol Design: Intra-host Computations

Protocol Design: Leader Election

- Assumption: the number of hosts (N) in the network is known
- Any host can be the leader
 - As long it knows who the leader is
- One leader per round
 - It changes at each round
 - More system resiliency
 - Very simple mechanism
- Leader ID = Round ID % N
 - N = #hosts
- The leader classifies an object as present iff #positive predictions > M
 - M = N/K

Protocol: Execution Example

- Limited amount of exchanged messages
 - N-1 probes messages →
 1 single broadcast
 - N-1 status messages
 - 1 final vote + ACK
 - N-1 start round messages → 1 single broadcast

Protocol Validation: Data Fusion

- Precision: TP / (TP+FP)
 - High if there are few false positives
- Recall: TP / (TP + FN)
 - High if there are few false negatives
- Two scenarios
- With the real object
 - Not all optimal views
- With the fake object
 - Some views resemble the real object
- Simulation
 - Take K pictures
 - Fix N
 - For each possible combination of N hosts in K positions (for a total of $C_{k,n}$), compute the prediction with the data fusion mechanism

Protocol Validation: Data Fusion, P(loss) = 0

Protocol Validation: Data Fusion, P(loss) = 10%

Protocol Validation: Data Fusion, P(loss) = 20%

Protocol Validation: Data Fusion, P(loss) = 30%

Protocol Validation: Data Fusion, P(loss) = 40%

Protocol Validation: Data Fusion, P(loss) = 50%

Protocol Validation: Protocol Convergence

- Simple setup
 - Three devices
 - Same object as data aggregation validation
- Two distinct runs
- With the real object
 - False negatives eliminated
- With the fake object
 - False positives eliminated

Conclusion

- ① Distributed object detection system implemented
 - Implemented from scratch
 - Scalable and modular system
 - Improvements over single-host system have been shown
 - Main goal achieved
- Future Work
 - Gather more data
 - Re-train the model
 - Deploy the protocol on more devices
 - Perform tests on flying/moving drones

THANK YOU FOR **YOUR** ATTENTION! ANY QUESTIONS?