Symbols

This list describes several symbols that will be commonly used within the text. The page number indicates where its definition, or first appearance, is found.

$(\cdot,\cdot)_2$	The Euclidean inner product, page 849
$(\cdot,\cdot)_{L_h^2}$ $[\mathbf{x}]_i$	The discrete inner product on $V_0(\bar{\Omega}_h)$, page 673
	The <i>i</i> th component of the <i>n</i> -vector x , page 840
$[\cdot,\cdot]_{L_h^2}$	The discrete inner product on $\mathcal{V}(\bar{\Omega}_h)$, page 673
$[A]_{i,j}$ "	The element in the <i>i</i> th row and <i>j</i> th column of the matrix A, page 4
\bar{Z}	The complex conjugate of $z \in \mathbb{C}$, page 838
$ar{\delta}_h$	Backward difference operator, page 669
$\bar{\Omega}_h$	$[0,1]^d\cap\mathbb{Z}_h^d$, with $d\in\mathbb{N}$, page 666
$u \otimes v$	The exterior product of u and v , also denoted uv^H , page 27
\mathcal{C}	In the context of parabolic equations, this is the space–time cylinder, $\Omega \times (0,T)$, page 646
$\mathcal{D}_h^j v$	For a periodic grid function v and $j \in \{1, 2\}$, this denotes its pseudo-spectral derivative of order j , page 732
$\mathcal{F}_n[\cdot]$	For $n \in \mathbb{N}$, this denotes the Discrete Fourier Transform (DFT),
$J^{\prime}n[\cdot]$	page 350
\mathcal{G}_h^B	For a grid domain \mathcal{G}_h , these are the boundary points (with respect
\mathcal{G}_h	to a finite difference operator), page 670
\mathcal{G}_h^I	For a grid domain \mathcal{G}_h , these are the interior points (with respect to
	a finite difference operator), page 670
\mathcal{I}_X	For a nodal set $X \subset [a,b] \subset \mathbb{R}$, this denotes the interpolation operator subordinate to X , page 234
$\mathcal{K}_m(A, \boldsymbol{q})$	The Krylov subspace of the matrix A of degree m, page 169
\mathcal{L}_X	For a nodal set X , this denotes the Lagrange nodal basis, page 235
$\mathcal{R}(a,b)$	The same as $\mathcal{R}([a,b])$, page 862
$\mathcal{R}(a,b;\mathbb{C})$	The collection of complex-valued Riemann integrable functions,
- ()	page 865
$\mathcal{R}(I)$	For <i>I</i> a finite interval, this denotes the collection of functions that are Riemann integrable, page 862
$\mathcal{V}(\mathcal{G}_h)$	For a grid domain $\mathcal{G}_h \subseteq \mathbb{Z}_h^d$ with $h = 1/(N+1)$, this is the collection
	of grid functions, page 666
$\mathcal{V}(\mathbb{C})$	The space of functions $\mathbb{Z} \to \mathbb{C}$, page 348
$\mathcal{V}_0(\bar{\Omega}_h)$	The collection of functions in $\mathcal{V}(\bar{\Omega}_h)$ that vanish on the discrete boundary $\partial\Omega_h$, page 667

$\mathcal{V}_{M,p}(\mathbb{C})$	For $M \in \mathbb{N}$, this denotes the space of complex-valued grid functions
<i>V IVI</i> ,p(♥)	that are, in addition, periodic, page 722
$\mathcal{Z}[\cdot]$	The Fourier- \mathbb{Z} , or Discrete Fourier, transform on grid functions in
	$L^2_h(\mathbb{Z}_h;\mathbb{C})$, page 794
χ _A	The characteristic polynomial of the matrix A, page 12
$clo_s(K)$	For a subset <i>K</i> of a Hilbert space, this denotes its closure, page 455
$clo_w(K)$	For a subset K of a Hilbert space, this denotes its weak closure, page 455
col(A)	The column space of the matrix A, page 6
\mathbb{C}	The set of complex numbers, page 838
\mathbb{C}^n	The vector space of complex <i>n</i> -vectors, page 840
\mathbb{C}^n_\star	The collection of nonzero vectors in \mathbb{C}^n , page 9
\mathbb{C}^n_{\star} $\mathbb{C}^{n \times n}_{Her}$	The space of Hermitian matrices of size n , page 57
$\Delta \phi$	For a smooth scalar-valued function ϕ , this denotes its Laplacian,
	page 618
$\delta^{n,p}$	The <i>n</i> -periodic grid delta function, page 349
Δ_h	The discrete Laplacian, page 669
δ_h	Forward difference operator, page 669
$egin{array}{l} \delta_h \ \delta_h^{\diamondsuit} \ \Delta_h^{\Box} \end{array}$	The discrete mixed derivative, page 669
$\Delta_h^{\overline{h}}$	The two-dimensional skew Laplacian, page 670
$\delta_{i,j}$ $\ell^2(\mathbb{Z};\mathbb{C})$	The Kronecker delta, page 842
€ (ℤ, ℂ)	The collection of all sequences $\{a_j\}_{j\in\mathbb{Z}}\subset\mathbb{C}$ that are square summable, page 330
$\mathfrak{B}(\mathbb{V})$	The same as $\mathfrak{B}(\mathbb{V}, \mathbb{V})$, page 457
$\mathfrak{B}(\mathbb{V},\mathbb{W})$	For normed spaces $\mathbb V$ and $\mathbb W$, this denotes the vector space of
((, , , ,)	bounded linear operators $\mathbb{V} \to \mathbb{W}$, page 457
$\mathfrak{L}(\mathbb{V})$	The same as $\mathfrak{L}(\mathbb{V},\mathbb{V})$, page 3
$\mathfrak{L}(\mathbb{V},\mathbb{W})$	The set of linear operators from $\mathbb V$ to $\mathbb W$, page 3
$\Im z$	The imaginary part of the complex number z , i.e., $\Im z = b$, if $z =$
	a+ib, page 838
im(A)	The image (or range) of the matrix A, also denoted $\mathcal{R}(A)$, page 6
i	The imaginary unit, page 838
$\kappa(A)$	The condition number of the matrix A, page 80
$\kappa_2(A)$	The spectral condition number of the matrix A, page 80
ker(A)	The kernel (or null space) of the matrix A, also denoted $\mathcal{N}(A)$, page 6
$\langle \cdot, \cdot \rangle$	The duality pairing between a Hilbert space ${\cal H}$ and its dual ${\cal H}'$, page 464
$[u \star v]^{n,p}$	For $u, v \in \mathcal{V}_{n,p}(\mathbb{C})$, this denotes their discrete periodic convolution,
[4 ^ V]	page 352
<u> </u>	For a vector space $\mathbb V$ and $\mathbb W\subseteq\mathbb V$, $\mathbb W\le\mathbb V$ denotes that $\mathbb W$ is a
_	subspace of \mathbb{V} . If $\mathbb{W} \neq \mathbb{V}$, then we denote $\mathbb{W} < \mathbb{V}$, page 841
$\mathcal{B}_{lpha}(-1,1)$	For α the Chebyshev weight function, this denotes the subspace
	of $C^1([-1,1])$ of functions such that $\alpha(x)g(x) \to 0$ as $x \to \pm 1$,
	page 743
$\mathcal{F}^m(S)$	For $m \in \mathbb{N}$, this is $F^1(S) \cap C^m(S; \mathbb{R}^d)$, page 517

```
\mathcal{V}_{n,p}(\mathbb{C})
                  For n \in \mathbb{N}, this denotes the space of n-periodic grid functions,
                  page 348
\mathring{\mathcal{V}}_{\mathsf{M},\mathsf{p}}(\mathbb{C})
                  For M \in \mathbb{N}, this denotes the space of mean-zero, complex-valued,
                  periodic grid functions, page 723
\delta_h
                  Centered difference operator, page 669
\mathring{\mathscr{S}}_{N}(0,1;\mathbb{C})
                 For N \in \mathbb{N}, this is the space of complex-valued, mean-zero, trigono-
                  metric polynomials of degree at most N, page 730
\mathring{\mathcal{C}}_{p}^{\infty}(0,1;\mathbb{C})
                 The space infinitely differentiable, complex-valued, periodic functions
                 that have mean-zero, page 884
\mathring{C}_{\rm p}^m(0,1;\mathbb{C})
                 For m \in \mathbb{N}_0, this denotes the space functions in C_p^m(0,1;\mathbb{C}) that
                 have mean-zero, page 884
\mathring{H}^{m}_{p}(0,L;\mathbb{C})
                 For m \in \mathbb{N}_0, this is the space of functions in H_p^m(0, L; \mathbb{C}) that have
                  mean-zero, page 892
A \approx B
                 The matrix A is similar to the matrix B, page 13
A(S)
                  For A \in \mathbb{C}^{n \times n} and S \subseteq \{1, ..., n\}, this denotes the sub-matrix
                 obtained by deleting the rows and columns whose indices are not in
                  S, page 36
\mathsf{A}^\mathsf{H}
                  The conjugate transpose of the matrix A, page 7
A^{\dagger}
                  The Moore-Penrose pseudo-inverse of A, page 30
Αт
                 The transpose of the matrix A, page 7
A^{-1}
                  The inverse of the matrix A, page 8
\nabla v
                  For a smooth scalar-valued function, this denotes its gradient,
                 page 612
\nabla \cdot u
                 For a smooth vector-valued function \mathbf{u}, this denotes its divergence,
\|A\|_{\max}
                  The matrix max-norm of the matrix A, page 9
\|\cdot\|_{H^{1}_{h}}
                  The discrete H_h^1-norm on the space of grid functions on \mathcal{V}(\bar{\Omega}_h),
\|\cdot\|_{L_p^p}
                  For p \in [1, \infty], this denotes the discrete L_h^p-norm on the spaces of
                  grid functions on (0,1)^d, page 671
                  The Frobenius norm of the matrix A, page 9
\|A\|_F
                 The induced p-norm of the matrix A, page 10
\|A\|_p
||f||_{L^p(\Omega;\mathbb{C})}
                  For a function f: \Omega \to \mathbb{C}, this denotes its L^p-norm, p \in [1, \infty],
||f||_{L^p_w(a,b;\mathbb{C})}
                  For a function f:[a,b]\to\mathbb{C}, this denotes its weighted L^p-norm,
                  p \in [1, \infty), with weight w, page 882
                 (0,1)^d \cap \mathbb{Z}_h^d, with d \in \mathbb{N}, page 666
\Omega_h
                 \bar{\Omega}_h \backslash \Omega_h, page 666
\partial\Omega_h
\partial_{\rho}C
                 The parabolic boundary of C, page 646
                 For a complex Hilbert space H, this denotes the anti-dual, page 736
\mathbb{H}^*
\mathbb{K}^n
                  The vector space of n-vectors, page 840
\mathbb{K}^{m \times n}
                 The set of matrices with m rows and n columns with coefficients in
                 \mathbb{K}, page 4
```

This is, typically, $\mathbb{P}_n(\mathbb{R})$ or $\mathbb{P}_n(\mathbb{C})$, depending upon the context,

 \mathbb{P}_n

page 840

$\mathbb{P}_n(\mathbb{K})$	The vector space of polynomials of degree no larger than n with
"()	coefficients in K, page 840
TD ,	For $m, n \in \mathbb{N}_0$, this is the set of rational polynomials whose numerator
$\mathbb{P}_{m/n}$	
	and denominator lie in \mathbb{P}_m and \mathbb{P}_n , respectively, page 588
Q	The set of rational numbers, page 838
\mathbb{T}_n	For $n \in \mathbb{N}_0$, this denotes the space of all one-periodic trigonometric
	polynomials, page 321
\mathbb{Z}^d_h	The collection of vectors in \mathbb{R}^d of the form hz with $z \in \mathbb{Z}^d$, page 665
$\Re z$	The real part of the complex number z , i.e., $\Re z = a$, if $z = a + ib$,
	page 838
\mathbb{R}	The set of real numbers, page 838
\mathbb{R}^n	The vector space of real <i>n</i> -vectors, page 840
\mathbb{R}^n_\star	The collection of nonzero vectors in \mathbb{R}^n , page 9
$\mathbb{R}_{sym}^{\hat{n} \times n}$	The space of real symmetric matrices of size n , page 57
$\rho(A)$	The spectral radius of matrix $A \in \mathbb{C}^{n \times n}$, page 73
row(A)	The row space of the matrix A, page 6
$\sigma(A)$	The spectrum of the square matrix A, page 12
	The spectrum of the linear operator <i>A</i> , page 15
$\sigma(A)$	
$\mathscr{S}^{1,0}(\mathscr{T}_h)$	The space of continuous piecewise linear functions subject to the
ca10(as)	triangulation \mathcal{T}_h , page 705
$\mathscr{S}_0^{1,0}(\mathscr{T}_h)$	This is $\mathscr{S}^{1,0}(\mathscr{T}_h) \cap H^1_0(\Omega)$, page 705
$\mathscr{S}^{oldsymbol{p},0}(\mathscr{T}_h)$	For a one-dimensional mesh \mathcal{T}_h , with $\#\mathcal{T}_h = N$ and $\mathbf{p} \in \mathbb{N}^{N+1}$, this
	is the space of functions that are continuous, and for every $I_i \in \mathscr{T}_h$
n 0	their restriction to I_i is a polynomial of degree p_{i+1} , page 710
$\mathscr{S}^{m{p},0}_0(\mathscr{T}_h)$	This is $\mathscr{S}^{p,0}(\mathscr{T}_h) \cap H^1_0(0,1)$, page 710
$\mathscr{S}^{p,-1}(oldsymbol{ au};\mathcal{H})$	For a Hilbert space ${\cal H}$, this is the space of ${\cal H}$ -valued piecewise
	polynomials of degree at most p over the partition $ au$, page 599
$\mathscr{S}^{p,0}(oldsymbol{ au};\mathcal{H})$	This is $\mathscr{S}^{p,-1}(\tau;\mathcal{H})\cap C([0,T];\mathcal{H})$, page 605
$\mathscr{S}^{p,0}(\mathscr{T}_h)$	For $p \in \mathbb{N}$, this is the space of functions that are continuous and
	piecewise polynomials, of degree p , subject to the triangulation \mathcal{T}_h ,
	page 710
$\mathscr{S}^{p,0}_0(\mathscr{T}_h)$	This is $\mathscr{S}^{p,0}(\mathscr{T}_h) \cap H^1_0(\Omega)$, page 710
	This is $\mathscr{S}^{p,-1}(\boldsymbol{\tau};\mathcal{H})\cap C^r([0,T];\mathcal{H})$, page 605
	For $N \in \mathbb{N}$, this denotes the set of polynomials of degree at most N
74,0 (' ')	that vanish at $x = \pm 1$, page 747
span(S)	The span of the set S , also denoted $\langle S \rangle$, page 840
supp g	The support of the function g , page 705
	For a function ϕ , this denotes its support, page 887
$\operatorname{supp}(\phi)$ $ ilde{\delta}^{n,\operatorname{p}}$	
	The singular <i>n</i> -periodic grid delta function, page 353
$\tilde{E}_h^{ au}(\xi)$	The symbol of a two-layer, matrix-valued, finite difference method,
~	page 828
$\tilde{E}_h^{ au}(\xi)$	The symbol of a two-layer finite difference method, page 795
\mathscr{T}_{h}	A mesh with mesh size $h > 0$, page 705
$\{x_k\}_{k=1}^{\infty}$	A sequence of vectors in either \mathbb{C}^d or \mathbb{R}^d , page 854
A^*	The adjoint of the linear operator A, page 7

- C(A; B) The vector space of continuous functions with domain A and range in B, page 842
- C(I) For I and interval this denotes the set of functions $f: I \to \mathbb{R}$ that are continuous, page 858
- $C^0(I)$ The same as C(I), page 859
- $C^m(I)$ For $m \in \mathbb{N}$ and I an interval, this denotes the collection of functions $f: I \to \mathbb{R}$ whose derivatives up to and including mth order exist and are continuous on I, page 859
- $C_p^m(0,1;\mathbb{C})$ For $m\in\mathbb{N}_0$, this denotes the space of complex-valued, m-times continuously differentiable periodic functions, page 884
- $C^{0,1}(I)$ For I an interval, this denotes the collection of functions $f:I\to\mathbb{R}$ that are Lipschitz continuous, page 859
- $C^{0,\alpha}([0,1])$ For $\alpha > 0$, this denotes the set of functions $v:[0,1] \to \mathbb{R}$ that are Hölder continuous of order α , page 895
- $C^{0,\alpha}(I)$ For I an interval and $\alpha \in (0,1]$, this denotes the collection of functions $f: I \to \mathbb{R}$ that are Hölder continuous of order α , page 859
- $C_b(\mathbb{R}^d)$ The space of continuous functions $\mathbb{R}^d \to \mathbb{R}$ that, in addition, are bounded on \mathbb{R}^d , page 639
- $C_b^m(I)$ For $m \in \mathbb{N}$ and I an interval, this denotes the collection of functions in $C^m(I)$ such that, in addition, the function and all its derivatives up to and including order m are bounded on I, page 860
- $f=\mathcal{O}(g)$ The Landau symbol. Whenever f and g are two related quantities, this is used to denote that f is, asymptotically, of the order of g, page 856
- $F^1(S)$ The class of slope functions that are continuously differentiable on S and whose partial u-derivatives are bounded, page 517
- $H^1(\Omega)$ For a bounded domain $\Omega \in \mathbb{R}^d$, with $d \in \mathbb{N}$ this denotes the Sobolev space of functions $v \in L^2(\Omega)$ such that $\nabla v \in L^2(\Omega; \mathbb{R}^d)$, page 888
- $H^1_0(\Omega)$ The subspace of $H^1(\Omega)$ of functions that vanish on the boundary, page 888
- $H^1_{\alpha,0}(-1,1)$ The subspace of $H^1_{\alpha}(-1,1)$ of functions that vanish at $x=\pm 1$, page 744
- $H^m_{\alpha}(-1,1)$ For $m \in \mathbb{N}_0$ and α the Chebyshev weight function, this denotes the Chebyshev weighted Sobolev space of order m, page 743
- $H_p^m(0, L; \mathbb{C})$ For L > 0 and $m \in \mathbb{N}_0$, this denotes the space of L-periodic Sobolev functions, page 892
- $L^2_h(\mathbb{Z}_h)$ The collection of grid functions $\mathcal{V}(\mathbb{Z}_h)$ that are square summable, page 793
- $L^2_p(0,1;\mathbb{C})$ The set of all one-periodic, locally square integrable functions, page 886
- For a nodal set X of size n+1 and $0 \le \ell \le n$, this denotes the ℓ th element of the Lagrange nodal basis, page 235
- $S_1 + S_2$ For $S_1, S_2 \leq \mathbb{C}^n$, this denotes their sum, page 94
- $S_1\oplus S_2$ For S_1 , $S_2\leq \mathbb{C}^n$, this means that they are complementary subspaces, i.e., $S_1+S_2=\mathbb{C}^n$, page 94

$S_1 \overset{\perp}{\oplus} S_2$	For $S_1, S_2 \leq \mathbb{C}^n$, this means that they are complementary, and
	orthogonal, subspaces, i.e., $S_1+S_2=\mathbb{C}^n$ and $\mathbf{s}_1\in S_1$ $\mathbf{s}_2\in S_2$
	implies $s_2^H s_1 = 0$, page 95
\mathcal{W}^{\perp}	The orthogonal complement of the set W, page 849
$x \perp y$	The vector x is orthogonal to y , page 849
$X \hookrightarrow Y$	For normed spaces X and Y , this means that X is continuously
	embedded in Y, page 706
$A^{(k)}$	The leading principal sub-matrix of order k of A, page 36
$\ \mathbf{x}\ _{p}$	The <i>p</i> -norm of a complex <i>n</i> -vector x . Also denoted $ x _{\ell^p(\mathbb{C}^n)}$,
	page 844
$H^m(\Omega)$	For $m \in \mathbb{N}$, this denotes the collection of functions $v \in L^2(\Omega)$ whose
, ,	weak derivatives up to order m belong to $L^2(\Omega)$ as well, page 890
$L^p(0,T;\mathbb{V})$	For a Banach space \mathbb{V} , this denotes the space of functions such that
	the mapping $t \mapsto v(t) _{\mathbb{V}}$ belongs to $L^p(0,T)$, page 644
# <i>S</i>	The cardinality of the set S , page 841
z	The modulus of the complex number z , page 839