In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pylab as plt
executed in 31.3s, finished 21:59:40 2019-07-09
```

In [2]:

```
train = pd.read_csv('train mod.csv')
test = pd.read_csv('test mod.csv')
executed in 473ms, finished 21:59:40 2019-07-09
```

In [3]:

```
train.isnull().sum()
executed in 62ms, finished 21:59:41 2019-07-09
Out[3]:
```

ID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8_1 Q8_2 Q8_3 Q8_4 Q8_5 Q8_6 Q8_7 Q8_8 Q8_9 Q8_10 Q8_11 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Latitude

143

0

0

0

0

0

0

dtype: int64

mobile_money_classification

Longitude

insurance

savings borrowing

mobile_money

In [4]:

region

```
train['region']=train['region'].fillna('0')
executed in 203ms, finished 21:59:41 2019-07-09
```

In [5]:

train.describe().T

executed in 645ms, finished 21:59:41 2019-07-09

Out[5]:

	count	mean	std	min	25%	
ID	7094.0	4742.627291	2731.120086	1.000000	2397.250000	4744.50
Q1	7094.0	38.239498	16.332148	16.000000	25.000000	35.00
Q2	7094.0	1.559910	0.496433	1.000000	1.000000	2.00
Q3	7094.0	1.787426	1.165160	1.000000	1.000000	1.00
Q4	7094.0	3.060051	1.557779	1.000000	2.000000	3.00
Q5	7094.0	2.548915	1.534257	1.000000	1.000000	3.00
Q6	7094.0	1.840569	0.366103	1.000000	2.000000	2.00
Q7	7094.0	1.397942	0.489508	1.000000	1.000000	1.00
Q8_1	7094.0	0.062165	0.241472	0.000000	0.000000	0.00
Q8_2	7094.0	0.630110	0.482809	0.000000	0.000000	1.00
Q8_3	7094.0	0.058077	0.233906	0.000000	0.000000	0.00
Q8_4	7094.0	0.337327	0.472831	0.000000	0.000000	0.00
Q8_5	7094.0	0.009445	0.096730	0.000000	0.000000	0.00
Q8_6	7094.0	0.004793	0.069069	0.000000	0.000000	0.00
Q8_7	7094.0	0.004793	0.069069	0.000000	0.000000	0.00
Q8_8	7094.0	0.018466	0.134640	0.000000	0.000000	0.00
Q8_9	7094.0	0.156752	0.363593	0.000000	0.000000	0.00
Q8_10	7094.0	0.057795	0.233372	0.000000	0.000000	0.00
Q8_11	7094.0	0.001269	0.035598	0.000000	0.000000	0.00
Q9	7094.0	-0.794615	0.895007	-1.000000	-1.000000	-1.00
Q10	7094.0	0.876092	2.172787	-1.000000	-1.000000	1.00
Q11	7094.0	-0.692134	1.411600	-1.000000	-1.000000	-1.00
Q12	7094.0	1.700733	0.457969	1.000000	1.000000	2.00
Q13	7094.0	0.407668	2.281322	-1.000000	-1.000000	-1.00
Q14	7094.0	1.622639	0.484761	1.000000	1.000000	2.00
Q15	7094.0	0.761066	2.420599	-1.000000	-1.000000	-1.00
Q16	7094.0	1.951508	1.580819	1.000000	1.000000	1.00
Q17	7094.0	-0.431914	1.489879	-1.000000	-1.000000	-1.00
Q18	7094.0	1.860164	1.351372	1.000000	1.000000	1.00
Q19	7094.0	3.163378	1.317691	1.000000	2.000000	4.00
Latitude	7094.0	-6.034378	2.720888	-11.467463	-8.275387	-6.08
Longitude	7094.0	35.354029	2.899511	29.639578	32.935429	35.07
mobile_money	7094.0	0.553989	0.497112	0.000000	0.000000	1.00
savings	7094.0	0.461517	0.498552	0.000000	0.000000	0.00

	count	mean	std	min	25%	
borrowing	7094.0	0.432901	0.495512	0.000000	0.000000	0.00
insurance	7094.0	0.151255	0.358322	0.000000	0.000000	0.00
mobile_money_classification	7094.0	1.799267	1.196955	0.000000	1.000000	2.00
4						•

In [6]:

train.drop('ID',axis=1).duplicated().sum()

executed in 78ms, finished 21:59:41 2019-07-09

Out[6]:

0

In [7]:

```
train.info()
executed in 99ms, finished 21:59:42 2019-07-09
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7094 entries, 0 to 7093
Data columns (total 38 columns):
ID
                                7094 non-null int64
Q1
                                7094 non-null int64
Q2
                                7094 non-null int64
                                7094 non-null int64
Q3
04
                                7094 non-null int64
                                7094 non-null int64
Q5
Q6
                                7094 non-null int64
Q7
                                7094 non-null int64
Q8_1
                                7094 non-null int64
Q8_2
                                7094 non-null int64
Q8_3
                                7094 non-null int64
                                7094 non-null int64
Q8 4
Q8_5
                                7094 non-null int64
Q8_6
                                7094 non-null int64
Q8_7
                                7094 non-null int64
Q8_8
                                7094 non-null int64
                                7094 non-null int64
Q8 9
Q8_10
                                7094 non-null int64
                                7094 non-null int64
Q8_11
                                7094 non-null int64
Q9
                                7094 non-null int64
Q10
                                7094 non-null int64
Q11
Q12
                                7094 non-null int64
Q13
                                7094 non-null int64
                                7094 non-null int64
Q14
                                7094 non-null int64
Q15
016
                                7094 non-null int64
                                7094 non-null int64
Q17
Q18
                                7094 non-null int64
                                7094 non-null int64
Q19
Latitude
                                7094 non-null float64
                                7094 non-null float64
Longitude
mobile_money
                                7094 non-null int64
                                7094 non-null int64
savings
                                7094 non-null int64
borrowing
insurance
                                7094 non-null int64
mobile_money_classification
                                7094 non-null int64
                                7094 non-null object
region
dtypes: float64(2), int64(35), object(1)
memory usage: 2.1+ MB
```

In [8]:

```
train.nunique()
executed in 422ms, finished 21:59:42 2019-07-09
```

Out[8]:

ID	7094
Q1	85
Q2	2
Q3	4
Q4	8
Q5	6
Q6	2
Q7	2
Q8_1	2
Q8_2	
Q8_3	2 2
Q8_4	2
Q8_5	2 2 2 2
Q8_6	2
Q8_7	2
Q8_8	2
Q8_9	
Q8_10	2 2
Q8_11	2
Q9	7
Q10	11
Q11	11
Q12	2
Q13	7
Q14	2
Q15	7
Q16	5
Q17	6
Q18	5
Q19	5
Latitude	7056
Longitude	7055
<pre>mobile_money</pre>	2
savings	2
borrowing	2
insurance	2
<pre>mobile_money_classification</pre>	4
region	36
dtype: int64	

In [9]:

```
uninformative=['ID','mobile_money', 'savings', 'borrowing', 'insurance']
un=['ID']
executed in 30ms, finished 21:59:42 2019-07-09
```

In [10]:

```
train.drop(uninformative,axis=1,inplace=True)
test.drop(un,axis=1,inplace=True)
executed in 140ms, finished 21:59:42 2019-07-09
```

In [11]:

```
cat_col=[col for col in train.columns if train[col].nunique()<40]
num_col=list(set(list(train.columns))-set(cat_col))
executed in 219ms, finished 21:59:42 2019-07-09</pre>
```

In [12]:

```
print('Categorical features are:',cat_col)
print('')
print('Numerical features are:',num_col)
executed in 118ms, finished 21:59:43 2019-07-09
```

```
Categorical features are: ['Q2', 'Q3', 'Q4', 'Q5', 'Q6', 'Q7', 'Q8_1', 'Q8_2', 'Q8_3', 'Q8_4', 'Q8_5', 'Q8_6', 'Q8_7', 'Q8_8', 'Q8_9', 'Q8_10', 'Q8_11', 'Q9', 'Q10', 'Q11', 'Q12', 'Q13', 'Q14', 'Q15', 'Q16', 'Q17', 'Q18', 'Q19', 'mobile_money_classification', 'region']
```

Numerical features are: ['Q1', 'Longitude', 'Latitude']

In [13]:

```
plt.figure(figsize=(30,20))
sns.heatmap(train.corr(),annot=True,linewidths=1, linecolor='white',cmap='coolwarm')
plt.show()
```

executed in 10.6s, finished 21:59:53 2019-07-09

In [14]:

```
sc=num_col + ['mobile_money_classification']
sns.pairplot(train[sc],hue='mobile_money_classification',)
executed in 12.0s, finished 22:00:05 2019-07-09
```

Out[14]:

<seaborn.axisgrid.PairGrid at 0x1feb6708b38>

In [15]:

```
for col in cat_col:
    print(col)
    sns.countplot(data=train,x=col,color='blue')
    plt.show()

executed in 10.2s, finished 22:00:15 2019-07-09
```

Q2

Q3

Q5

Q6

Q8_2

Q8_4

Q8_5

Q8_7

Q8_8

Q10

Q13

Q16

mobile_money_classification

region

In [16]:

```
train['mobile_money_classification'].value_counts()/train['mobile_money_classification'].
executed in 63ms, finished 22:00:15 2019-07-09
```

Out[16]:

3 0.440654 1 0.250634 0 0.195376 2 0.113335

Name: mobile_money_classification, dtype: float64

In [17]:

```
train['dummy'] = np.ones(shape = train.shape[0])
  cat_col.remove('mobile_money_classification')
 for col in cat col:
      print(col)
      counts = train[['dummy', 'mobile_money_classification', col]].groupby(['mobile_money_
      temp = counts[counts['mobile_money_classification'] == 0][[col, 'dummy']]
      _ = plt.figure(figsize = (15,4))
      plt.subplot(1, 4, 1)
      temp = counts[counts['mobile money classification'] == 0][[col, 'dummy']]
      plt.bar(temp[col], temp.dummy)
      plt.xticks(rotation=90)
      plt.title('Counts for ' + col + '\n No Mobile Money')
      #plt.ylabel('count')
      plt.subplot(1, 4, 2)
      temp = counts[counts['mobile_money_classification'] == 1][[col, 'dummy']]
      plt.bar(temp[col], temp.dummy)
      plt.xticks(rotation=90)
      plt.title('Counts for ' + col + '\n Other Financial Services')
      #plt.ylabel('count')
      plt.subplot(1, 4, 3)
      temp = counts[counts['mobile_money_classification'] == 2][[col, 'dummy']]
      plt.bar(temp[col], temp.dummy)
      plt.xticks(rotation=90)
      plt.title('Counts for ' + col + '\n Mobile Money Only')
      #plt.ylabel('count')
      plt.subplot(1, 4, 4)
      temp = counts[counts['mobile_money_classification'] == 3][[col, 'dummy']]
      plt.bar(temp[col], temp.dummy)
      plt.xticks(rotation=90)
      plt.title('Counts for ' + col + '\n Mobile Money ++')
      #plt.ylabel('count')
      plt.show()
 del train['dummy']
executed in 41.1s, finished 22:00:56 2019-07-09
```

Q2

Q4

Q5

Q6

Q8_1

Q8_2

Q8_3

Q8_5

Q8_6

Q8_7

Q8_10

Q8_11

Q10

Q11

Q12

Q14

Q15

Q16

Q18

Q19

region

In [18]:

```
for col in num_col:
    sns.barplot(data=train,x='mobile_money_classification',y=col)
    plt.show()
    sns.boxplot(data=train,x='mobile_money_classification',y=col)
    plt.show()
    sns.distplot(train[col])
    plt.show()

executed in 6.32s, finished 22:01:03 2019-07-09
```


C:\Users\ADEBAYO\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "

In [19]:

```
X=train.drop(['mobile_money_classification'],axis=1)
Y=train['mobile_money_classification']
```

executed in 30ms, finished 22:01:03 2019-07-09

In [20]:

```
X.isnull().sum()
executed in 158ms, finished 22:01:03 2019-07-09
```

Out[20]:

Q1 0 Q2 0 Q3 Q4 0 Q5 0 Q6 0 Q7 0 0 Q8_1 Q8_2 0 Q8_3 0 Q8_4 0 0 Q8_5 Q8_6 0 Q8 7 0 Q8_8 0 Q8_9 0 Q8_10 0 Q8_11 0 Q9 0 Q10 0 Q11 0 Q12 0 0 Q13 Q14 0 Q15 Q16 0 Q17 0 Q18 0 Q19

In [21]:

Latitude

Longitude

dtype: int64

region

0

0

```
X['region'].fillna('unknown',inplace=True)
executed in 100ms, finished 22:01:03 2019-07-09
```

In [22]:

```
split_test_size=0.2
from sklearn.model_selection import train_test_split
Xtrain, Xtest, Ytrain, Ytest= train_test_split(X,Y, test_size=split_test_size, random_sta
executed in 4.58s, finished 22:01:08 2019-07-09
```

In [23]:

```
from catboost import CatBoostClassifier
executed in 1.69s, finished 22:01:09 2019-07-09
```

In [24]:

```
X.columns
```

executed in 47ms, finished 22:01:09 2019-07-09

```
Out[24]:
```

```
Index(['Q1', 'Q2', 'Q3', 'Q4', 'Q5', 'Q6', 'Q7', 'Q8_1', 'Q8_2', 'Q8_3',
       'Q8_4', 'Q8_5', 'Q8_6', 'Q8_7', 'Q8_8', 'Q8_9', 'Q8_10', 'Q8_11', 'Q
9'.
       'Q10', 'Q11', 'Q12', 'Q13', 'Q14', 'Q15', 'Q16', 'Q17', 'Q18', 'Q19',
       'Latitude', 'Longitude', 'region'],
      dtype='object')
```

In [26]:

```
cb_cat=CatBoostClassifier(iterations=1000,depth=5,loss_function='MultiClass',
                          cat_features=[i for i in range(1,32) if i not in [29,30]],
                    random seed=10,learning rate=.5,verbose=False)
cb cat.fit(Xtrain,Ytrain,use best model=True,
           eval_set=(Xtest,Ytest),early_stopping_rounds=100,verbose=50)
```

executed in 2m 7s, finished 22:05:08 2019-07-09

```
0:
        learn: -0.9881089
                                test: -0.9935931
                                                         best: -0.9935931 (0)
total: 1.39s
               remaining: 23m 10s
        learn: -0.6791892
                                test: -0.7682336
                                                        best: -0.7631158 (3
        total: 49.6s
                        remaining: 15m 23s
3)
100:
        learn: -0.6167393
                                test: -0.7762152
                                                        best: -0.7631158 (3
3)
        total: 1m 35s
                       remaining: 14m 6s
Stopped by overfitting detector (100 iterations wait)
bestTest = -0.7631158036
bestIteration = 33
Shrink model to first 34 iterations.
```

Out[26]:

<catboost.core.CatBoostClassifier at 0x1feb9afd780>

In [27]:

```
b=list(cb_cat.feature_importances_[:])
pd.DataFrame(index=X.columns,data=b).sort_values(0).plot.barh(figsize=(10,12),legend=Fals
plt.ylabel('Features')
plt.xlabel('Relative Importance in Percentage')
executed in 1.31s, finished 22:05:10 2019-07-09
```

Out[27]:

Text(0.5,0,'Relative Importance in Percentage')

