

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехника и комплексная автоматизация

КАФЕДРА Системы автоматизированного проектирования

ОТЧЕТ ПО ПРОИЗВОДСТВЕННОЙ ПРАКТИКЕ

Студент	Эвоян Эрик Боррисович	
Группа	РК6-72Б	
Тип практики	эксплуатационная	
Название предприятия	«НИИ Автоматизации Производственных Процессов МГТУ им. Н.Э. Баумана»	
Студент	подпись, дата	Эвоян Э. Б. фамилия, и.о.
Руководитель практики	подпись, дата	Витюков Ф.А. фамилия, и.о.
Оценка:		

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

	УТВЕРЖДАЮ Заведующий кафедрой
	Заведующий кафедрой
	«»20г.
2 А П А	ниг
ЗАДА	
на прохождение произв	_
	стики
iiii iipai	XIIIXII
Студент	
Anogu Anur Fonycopyy	4 VIVIOR PRIVILLY DV6 725
<u>Эвоян Эрик Борисович</u> Фамилия Имя Отчество	4 курса группы <u>РК6-72Б</u>№ курса индекс группы
Tambing That Of Relibe	те курса
в период с <u>1</u> . <u>07</u> . <u>2022</u> г. по <u>31</u> . <u>08</u>	<u>.2022</u> г.
Предприятие: «НИИ Автоматизации Производст	твенных Процессов МГТУ им. Н.Э. Баумана»
Подразделение:	
	(отдел/сектор/цех)
Руководитель практики от предприятия (наставни	κ):
-	о Андреевич
(Фамилия Имя Отчество п Руководитель практики от кафедры:	олностью, должность)
Оглоблин Дмиг	грый Игоревии
Отлослин Дми (Фамилия Имя Отчество і	1 -
Задание:	,,, , , , , , , , , , , , , , , , , ,
Во время прохождения производственной практ	тики студент должен:
1. Разработать все необходимые классы для	я реализации случайного графа;
2. Добавить возможность хождения кубов п	о сетке графа;
3. Разработать все необходимые класс для	визуализации гранулярного фильтра
Дата выдачи задания « <u>1</u> » <u>августа</u> <u>2</u>	<u>022</u> _ г.
Руководитель практики от предприятия	/_Витюков Ф.А /
Руководитель практики от кафедры	/_Оглоблин Д.И. /

Эвоян Э. Б.__/

Студент

Оглавление

Введение (первая задача)	
Обзор исходного кода (первая задача)	
Результаты работы программы (первая задача)	
Введение (вторая задача)	12
Обзор исходного кода (вторая задача)	
Результаты работы программы (вторая задача)	
Заключение	19
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ	20

Введение (первая задача)

Для решения задачи, необходимо установить движок UE4, а также Visual Studio, которую движок использует в качестве основной среды разработки. Затем необходимо создать проект внутри стартового окна Unreal Engine. После создания проекта можно редактировать уровень в визуальном редакторе, создавать классы визуальных скриптов Blueprints.

Для разработки использовалась Visual Studio 2017 и Unreal Engine версии 4.27

При создании проекта использовался следующий шаблон:

- 1) Game > Blank
- 2) C++, Maximum Quality, Raytracing Disabled, Desktop/Console, WithStarter Content

Обзор исходного кода (первая задача)

Помимо стандартного кода, генерируемого при создании проекта, в проекте присутствуют следующие файлы, реализующие функционал для конкретной задачи:

NetActor(.h/.cpp) — файлы содержат объявление и описание класса ANetActor и его методов. Класс NetActor реализует функционал визуализации сетки, а также управление созданием объектов, перемещающихся по ней.

NetGenerator(.h/.cpp) — здесь объявляется и реализуется класс NetGenerator, который содержит набор алгоритмов для генерации сетки, а также реализует хранение этих данных.

WalkerActor(.h/.cpp) — здесь объявляется и реализуется класс AWalkerActor, который отвечает за поведение и анимацию объекта, перемещающегося по сетке.

NetActor.h

В эданном файле объявляется класс сетки, который наследуется от класса AActor. В этом классе объявляется набор полей, которые могут быть изменены из визуального редактора UE4.

Список полей:

- 1. NetWidth ширина сетки в юнитах.
- 2. NetHeight высота сетки в юнитах.
- 3. NetWidthPointCount количество точек сетки по ширине.
- 4. NetHeightPointCount количество точек сетки по высоте.
- 5. MaxOffsetX максимальное смещение точки сетки по X при генерации.
- 6. MaxOffsetY максимальное смещение точки сетки по Y при генерации.
- 7. MaxOffsetZ максимальное смещение точки сетки по Z при генерации.
- 8. AdditionLines вероятность добавления дополнительного ребра к остову графа (для каждого ребра).

- 9. CrossWays если true, то в графе будут создаваться ребра,лежащие на обоих диагоналях квадрата, состоящего из соседних четырех вершин графа, составляющих квадрат. Если false, то будет создаваться только одна диагональ.
- 10.LineWidth ширина трубок, составляющих сетку.
- 11.LineHeight высота трубок, составляющих сетку.
- 12. Number Of Walkers количество объектов, которые будут распологаться в узлах сетки.
- 13. Velosity скорость объектов в юнит/сек

NetActor.cpp

В данном файле находятся определения следующих методов:

В конструкторе класса ANetActor происходит инициализация объектагенератора инстансов кубов, которые будучи трансформированнымисоздают визуальное отображение сетки.

void generate()- инициализирует генератор сетки.

void createWalkers() – создаёт объекты (кубы) которые будут анимироваться на графе.

void draw () – отрисовка линий сетки

Помимо этого, переопределяются два унаследованных метода:

В методе vois PostRegisterAllComponents() вызывается метод generate и draw(). Этот метод нужен для отрисовки сетки в визуальном редакторе Unreal Engine 4 на этапе настройки параметров объекта.

void BeginPlay() – метод, в котором вызываются методы generate(), createWalkers() и draw().

NetGenerator.h

В этом файле объявляется три класса.

NetLine – класс, хранящий вершины отрезка.

NetNode – структура, хранящая данные вершины графа, необходимые в процессе работы алгоритма Дейкстры.

NetGenerator – класс-генератор сетки. Хранит список вершин графа с координатами NetPoints и список инцидентности NetIndices.

NetGraph.cpp

В этом файле реализуются следующие методы класса NetGenerator:

В конструкторе NetGraph происходит генерация вершин и ребер остовного графа по алгоритму Прима и добавление дополнительных ребер.

std::vector<NetLine> getLines() - генерирует список ребер графа с координатами вершин каждого ребра в виде массива отрезков.

std::vector<FVector> getPoints() - возвращает список координат вершин графа.

Метод std::vector<NetLine> getPath(int start_ind, int end_ind) генерирует список отрезков, составляющих кратчайший маршрут из точки start_ind до точки end_ind вдоль существующих ребер графа с использованием алгоритма Дейкстры.

WalkerActor.h

Содержит объявление класса AWalkerActor, унаследованного от класса Aactor. Класс содержит следующие значимые поля:

NetGenerator* Generator — ссылка на генератор, получаемый откласса NetActor.

std::vector<NetLine> LinesList; - список отрезков маршрута объекта вдоль ребер сетки.

int start_point, end_point - индексы начальной и конечной точек.

bool path_created — true, если путь сгенерирован, false, если нет.

int cur_line_index - индекс текущего отрезка в списке LinesList, на котором в данный момент находится объект.

FVector cur_pos, next_pos — индекс текущей и следующей вершины графа, между которыми находится объект.

float velosity — скорость объекта в юнит/сек.

FLinearColor line_color — цвет линий пути объекта.

Класс содержит также набор set методов для некоторых полей.

WalkerActor.cpp

В этом файле реализуются следующие методы класса AWalkerActor:

В конструкторе класса AWalkerActor происходит инициализация статического меша (куба) для визуализации объекта и объекта для отрисовки линий UlineBatchComponent.

void createPath() - генерирует следующую конечную точку для объекта и получает список отрезков пути с помощью объекта Generator класса NetGenerator.

Переопределение унаследованного метода void Tick(floatDeltaTime) — в этом методе вычисляется текущая позиция объекта.

Результаты работы программы (первая задача)

Рис. 1 Остовный граф. Рендеринг линий во viewport редактора до запуска.

Рис. 2 Полный граф (CrossWays on).

Рис. 3 Полный граф(CrossWays off).

Рис. 4 Граф со смещениями узлов и частичным заполнением. Движение объектов после запуска.

Рис. 5 Большой граф со 100 объектами.

Введение (вторая задача)

Для решения задачи, необходимо установить движок UE4, а также Visual Studio, которую движок использует в качестве основной среды разработки. Затем необходимо создать проект внутри стартового окна Unreal Engine. После создания проекта можно редактировать уровень в визуальном редакторе, создавать классы визуальных скриптов Blueprints.

Для разработки использовалась Visual Studio 2017 и Unreal Engine версии 4.27

При создании проекта использовался следующий шаблон:

- 1) Game > Blank
- 2) C++, Scalable 2D/3D Graphichs, Raytracing Disabled, Desktop/Console,No Starter Content

Обзор исходного кода (вторая задача)

Рассматривать весь код целиком будет достаточно трудоемко, поэтому здесь приведён основной обзор структуры проекта.

Необходимо рассмотреть общее взаимодействие компонентов проекта. Главный функционал представляют 5 классов, унаследованных от AActor. Это классы **ACylinderFilter**, **ASphereFactory**, **AWaterGenerator**, **AWaterActor**, **ASphereActor**.

ACylinderFilter – класс фильтра, в качестве главного компонента содержит компонент сцены и вложенного в него компонента процедурного меша (UProceduralMeshComponent). В момент инициализации объекта класса ACylinderFilter создается цилиндр без верхней крышки с утолщенными стенками. Цилиндр состоит из следующих частей: боковые внешняя и внутренняя стенки, нижняя и верхняя грани, ободок между внешней и внутренней стенками на верхней стороне цилиндра. Все эти части генерируются из треугольников и четырехугольников (четырехугольники состоят из двух треугольников с индексами для четырех вершин четырехугольников). Для упрощения работы алгоритма для каждого треугольника и четырехугольника генерируются свои наборы вершин, не буфер связанные через индексный сдругими треугольниками/четырехугольниками.

Параметры цилиндра задаются в визуальном редакторе основываясь на следующих свойствах (**UPROPERTY**):

```
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =
"GeometrySettings")
           float InnerCylinderD = 300.0f; // внутренний диаметр
     UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =
"GeometrySettings")
           float OuterCylinderD = 360.0f; ; // внешний диаметр
     UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =
"GeometrySettings")
           float CylinderH = 300.0f; // высота цилиндра
     UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =
"GeometrySettings")
           float CylinderDelta = 60.0f; // расстояние между нижними
внутренней и внешней гранью
     UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =
"GeometrySettings")
           int RadialVertices = 16; // количество вершин, аппроксимирующих
окружность в
основании цилиндра
```

ASphereFactory – класс генератора гранул для фильтра. Объект класса содержит компонент сцены и имеет свое положение на уровне, относительно которого генерируются шарики, симулирующие жидкость. Шарики генерируются с помощью метода SpawnActor класса UWorld. Им задается трансформация относительно компонента сцены объекта генератора и для компонентов UPrimitiveComponent каждого шарика поле, отвечающее за симуляцию физики устанавливается значение true. В момент, удаления лишних шариков, объект проходится по списку фильтров и удаляет все шарики, которые не находятся хотя бы в одном из них (проверка происходит на базе алгоритма, который вычисляет, находится ли точка центра шарика внутри одного из треугольников нижней поверхности цилиндра + между верхней и нижней гранью цилиндра, алгоритм имеет недостаток необходимо, чтобы цилиндр располагался строго вертикально, либо можно вычислять положение центра шарика в пересчете на систему координат цилиндра, однако сейчас вычисление происходит в глобальных координатах), при этом для всех шариков, оказавшихся внутри фильтра отключается симуляция физики.

Параметры генератора задаются в визуальном редакторе основываясь на следующих свойствах (**UPROPERTY**):

UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "SpawnSettings")

float SpawnDensity = 100.0f; // расстояние между генерируемыми шариками

UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "SpawnSettings")

float SpawnOffsetsTolerance = 5.0f; // диапазон случайного смещения шарика относительно начального положения спауна

UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "SpawnSettings")

int SpawnBoxElementsCount = 5; // число шариков по ребру облака шариков в форме куба

UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "SpawnSettings")

float SphereDiameter = 75.0f; // начальный диаметр шариков

UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "SpawnSettings")

float SphereDiameterTolerance = 20.0f; // диапазон случайного изменения начального размера шарика

AWaterGenerator — класс генератор частиц жидкости. На основе заданных параметров (по аналогии с **ACylinderFilter**) генерирует тонкостенный цилиндр без верхней и нижней граней. Причем нормали треугольников, составляющих боковую грань, вывернуты внутрь для корректной работы коллизии. По аналогии с **ASphereFactory** в определенный момент начинает генерировать шарики, но в отличии от последнего шарики генерируются по одному слою в некоторый промежуток времени, причем

один слой шариков имеет радиальную форму. До наступления момента начала генерации шариков, у всех объектов данного класса отключена видимость и коллизия, чтобы не мешать засыпанию гранул в фильтры.

Параметры генератора жидкости задаются в визуальном редакторе основываясь на следующих свойствах (**UPROPERTY**):

```
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "WaterSpawnerSettings")
float CylinderD = 300.0f; // диаметр цилиндра
```

```
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "WaterSpawnerSettings")
float CylinderH = 600.0f; // высота цилиндра
```

UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "WaterSpawnerSettings")

float CylinderDelta = 30.0f; // расстояние между локальным началом координат и нижней части цилиндра

UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "WaterSpawnerSettings")

int RadialVertices = 16; // количество вершин, аппроксимирующих окружность в основании цилиндра и задающих количество шариков (вдоль окружности) в одном слое

```
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "WaterSpawnerSettings")
float SphereDiameter = 10.0f; // начальный диаметр шариков
```

UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "WaterSpawnerSettings")

float SphereDiameterTolerance = 60.0f; // диапазон случайного изменения размера шариков (только в большую сторону)

UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "WaterSpawnerSettings")

float SpawnTime = 5.0f; // интервал времени, в течении которого происходит генерация шариков

UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "WaterSpawnerSettings")

float SpawnEvery = 0.3f; // промежуток времени между генерацией слоев шариков

UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "WaterSpawnerSettings")

float SpawnDensity = 60.0f; // расстояние (вдоль радиуса) между шариками

Классы **AWaterActor** и **ASphereActor** практически идентичны между собой и используются классов, на основе которых инстанцируются гранулы ичастицы жидкости.

События удаления выкатившихся гранул и начала генерации частиц жидкости обрабатываются по нажатию на клавиши \mathbf{P} и \mathbf{R} соответственно.

Так же в проекте настроена сцена, на которой уже размещены все необходимые объекты и настроены их параметры, помимо этого настроено отображение подсказок в виде элементов интерфейса и настроены материалы для объектов.

Результаты работы программы (вторая задача)

Рисунок 1. Сцена до запуска с размещенными объектами.

Рисунок 2. Генерация гранул.

Рисунок 3. Гранулы засыпались в фильтры.

Рисунок 4. Удаление лишних гранул.

Заключение

В процессе прохождения практики были получены навыки работы с Unreal Engine 4, получен опыт разработки на языке C++; улучшено представление об организации проектов.

В результате были решены следующие задачи: были реализованы отрисовка случайного графа и хождение по нему кубов, движущихся по алгоритму, Прима. Была визуализирована симуляция гранулярного фильтра.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1. Unreal Engine 4 Documentation // Unreal Engine Documentation URL: https://docs.unrealengine.com/. Дата обращения: 1.07.2021;
- 2. Display aspect ratio // Wikipedia, the free encyclopedia URL: https://en.wikipedia.org/wiki/Display aspect ratio/. Дата обращения: 07.08.2021;
- 3. Geometry instancing // Wikipedia, the free encyclopedia URL: https://en.wikipedia.org/wiki/Geometry_instancing. Дата обращения: 12.07.2022.