Componentes Fortemente Conexas

prof. Leandro Alvim

- Crie uma lista vazia.
- Execute a busca em profundidade computando os tempos de finalização.
 Quando um nó é finalizado, insira o nó na frente da lista.
- A partir de G, calcule grafo G^t. Basta inverter as arestas
- Execute a Busca em Profundidade em G^T, com os vértices na ordem da lista gerada.

Quais são as componentes fortemente conexas neste grafo?

Busca em profundidade Gerar lista de vértices na ordem decrescente por tempo de finalização

Inverter sentido das arestas (G^t)

- Busca em Profundidade gera uma Floresta
 - Cada árvore é uma componente fortemente conexa
- Para o exemplo anterior temos quatro árvores geradas. Logo temos quatro componentes fortemente conexas

Análise

- Crie uma lista vazia. O(1)
- Execute a busca em profundidade computando os tempos de finalização. O(| V| + |E|), estrutura de adjacência. Quando um nó é finalizado, insira o nó na frente da lista. O(1)
- A partir de G, calcule grafo G^t. Basta inverter o sentido das arestas. O(|E|), estrutura de adjacências.
- Execute a Busca em Profundidade em G^t, com os vértices na ordem da lista gerada.

Análise

- Componentes Fortemente Conexas O(|V|+|E|), estrutura de adjacência.
- E se utilizarmos uma matriz de adjacência?
- E se o grafo for completo?
- E se o grafo for esparso (|E| << |V|) ?</p>