Sigma algebre

Def: Družina množic \mathcal{A} je σ -algebra (algebra), če

- $\bullet \emptyset \in \mathcal{A}$
- $A \in \mathcal{A} \implies A^c \in \mathcal{A}$
- $A_i \in \mathcal{A} \implies \bigcup_{i=0}^{\infty} \in \mathcal{A}$ (le za končne unije)

Mera

Def: (X, \mathcal{A}) merljiv prostor. Preslikava $\mu \colon \mathcal{A} \to [0, \infty]$ je pozitivna **mera**, če velja:

- $\bullet \ \mu(\emptyset) = 0$
- $\{E_n\}_{n\in\mathbb{N}}$ paroma disjunktne $\implies \mu(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \mu(E_n)$

Def: Družina množic $\mathcal{S} \subset \mathcal{P}(X)$ je **polalgebra**, če

- $\bullet \ \emptyset \in \mathcal{S}$
- $A, B \in \mathcal{S} \implies A \cap B \in \mathcal{S}$
- $\forall A \in \mathcal{S}$ je A^c končna unija disjuntnih množic iz \mathcal{S} (ni nujno $A^c \in \mathcal{S}$).

Merljiv prostor je $\mathbf{poln},$ če velja:

 $N \in \mathcal{A}, \mu(N) = 0, A \subseteq N \Rightarrow A \in \mathcal{A}.$

Velja $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$, števna gubaditimost, monotonost

subaditivnost, monotonost.

Izrek: (X, \mathcal{A}, μ) prostor z mero. Potem je $\mathcal{B} = \{B = A \cup S; A \in \mathcal{A}, S \subseteq N \in \mathcal{A}, \mu(N) = 0\}$, $\tilde{\mu}(B) = \mu(A)$. Potem je \mathcal{B} σ-algebra na $X, \mathcal{A} \subseteq \mathcal{B}$, $\tilde{\mu}$ je mera na \mathcal{B} , ki se na \mathcal{A} ujema z μ . Poleg tega je prostor $(X, \mathcal{B}, \tilde{\mu})$ poln.

Def: (X, \mathcal{A}, μ) prostor z mero.

- μ je končna, če je $\mu(X) < \infty$
- μ je σ -končna (predpogoj je $\mu(X)=\infty$), če je $X=\bigcup_{n=1}^{\infty}E_n, \mu(E_n)<\infty$ (BŠS E_n disj. ali naraščajoče)
- μ je semi-končna, če za vsako $E \in \mathcal{A}$ z $\mu(E) = \infty$ obstaja $F \in \mathcal{A}, F \subseteq E$ in $0 < \mu(F) < \infty$

Velja: (X, \mathcal{A}, μ) .

- Če μ je σ -končna, potem je semi-končna.
- Če μ je semi-končna, potem za vsak c>0 obstaja $F\in\mathcal{A}$, da je $c\leq\mu(F)<\infty$ (tj. končne množice imajo lahko poljubno veliko mero).
- $A = \bigcup_{j=1}^{\infty} A_j, A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots \Rightarrow \mu(A) = \lim_{n \to \infty} \mu(A_n)$
- $A = \bigcap_{j=1}^{\infty} A_j, A_1 \supseteq A_2 \supseteq A_3 \supseteq \dots$ in $\mu(A_1) < \infty \Rightarrow \mu(A) = \lim_{n \to \infty} \mu(A_n)$
- $\mu(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \mu(A_n)$ za vsako zaporedje množic $A_n \in \mathcal{A}$

Def: Preslikava $\zeta\colon \mathcal{P}(X)\to [0,\infty]$ je zunanja mera, če velja:

- $\zeta(\emptyset) = 0$
- $\zeta(A) \leq \zeta(B)$ za $A \subseteq B$
- $\zeta(\bigcup_{n=1}^{\infty} A_n) \le \sum_{n=1}^{\infty} \zeta(A_n)$

Velja: X, ζ zunanja mera:

- $\zeta(N) = 0 \Rightarrow N$ je ζ -merljiva
- $E \subseteq X, E \in \mathcal{A}_{\zeta}$, potem za vsako $A \subseteq X$ velja $\zeta(A \cup E) + \zeta(A \cap E) = \zeta(A) + \zeta(E)$
- $A \subseteq X, \forall \varepsilon > 0 \exists E \in \mathcal{A}_{\zeta}, E \subseteq A : \zeta(A \setminus E) < \varepsilon$, potem je $A \in \mathcal{A}_{\zeta}$

Def: $E \subseteq X$ je ζ -merljiva, če $\forall A \subseteq X : \zeta(A) = \zeta(A \cap E) + \zeta(A \cap E^c)$ (\leq vedno velja).

Karateodorijev izrek: \mathcal{A}_{ζ} = družina vsej ζ -merljivih množic, je σ -algebra. Prostor $(X, \mathcal{A}_{\zeta}, \zeta)$ je poln.

Def: \mathcal{A} algebra nad X. Preslikava $\nu \colon \mathcal{A} \to [0,\infty]$ je pozitivna **mera na algebri**, če velja:

- $\bullet \ \nu(\emptyset) = 0$
- $\{E_n\}_{n\in\mathbb{N}}$ paroma disjunktne in $\bigcup_{n=0}^{\infty} E_n \in \mathcal{A} \implies \nu(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \nu(E_n)$

Velja: μ inducira zunanjo mero ζ na Xs predpisom

 $\zeta(B) = \inf \{ \sum_{i=0}^{\infty} \mu(A_i); B \subseteq \bigcup_{i=0}^{\infty} A_i, A_i \in \mathcal{A} \}.$

Def: Polmera na S je preslikava $\lambda \colon S \to [0, \infty]$ z lastnostmi:

- $\lambda(\emptyset) = 0$
- $A = \bigcup_{i=0}^{n} A_i, A_i \in \mathcal{S}$ paroma disjunktne $\implies \lambda(A) = \sum_{i=0}^{n} \lambda(A_i)$
- $A = \bigcup_{i=0}^{\infty} A_i, A_i \in \mathcal{S}$ paroma disjunktne, $A \in \mathcal{S} \implies \lambda(A) \leq \sum_{i=0}^{\infty} \lambda(A_i)$

Velja: Če je \mathcal{S} polalgebra, potem je družina vseh unij $A = A_1 \cup \cdots \cup A_n$ $A_i \in \mathcal{S}$ paroma disjunktne; algebra in s predpisom $\nu(A) = \lambda(A_1) + \cdots + \lambda(A_n)$ je definirana mera na njej.

Lebesgue-Stieltjesove mere

Def: Naj bo $f: \mathbb{R} \to \mathbb{R}$ naraščajoča in zvezna z leve. Definiramo družino $\mathcal{S} = \{[a,b), (-\infty,a), [b,\infty); a,b \in \mathbb{R}\}$. in polmero μ_f na njej: $\mu_f(\emptyset) = 0, \mu_f([a,b)) = f(b) - f(a), \mu_f((-\infty,a)) = f(a) - f(-\infty), \mu_f([b,\infty)) = f(\infty) - f(b)$ Polmero μ_f po vseh možnih izrekih razširimo do mere na σ-algebri. Velja $\mu_f(E) = \inf\{\sum_{n=1}^{\infty} \mu_f(I_n); E \subseteq \bigcup_{n=1}^{\infty} I_n\}$.

Razširjeno mero za f=id imenujemo Lebesguova mera m in je edina traslacijsko invariantna mera, kjer so kompakti končni. Velja $m(E)=\inf\{\sum_{n=1}^{\infty}(b_n-a_n); E\subseteq\bigcup_{n=1}^{\infty}[a_n,b_n)]\}$. Mera števne množice je 0. Množica je Lebesgueovo merljiva, če je unija množice z ničelno mero in množice tipa F_{σ} (= števna unija zaprtih množic))

V splošnem so mere intervalov enake: $\mu_f([a,b)) = f(b) - f(a)$, $\mu_f((a,b)) = f(b) - f(a+)$, $\mu_f([a,b]) = f(b+) - f(a)$, $\mu_f((a,b]) = f(b+) - f(a+)$ in $\mu_f(\{a\}) = f(a+) - f(a)$. Od tod sledi, da je f zvezna, natanko tedaj, ko je mera vsakega singeltona enaka 0.

Če $E \subseteq \mathbb{R}, m(E) > 0$, potem $0 \in (-a, a) \subseteq E - E$ za nek $a \in \mathbb{R}$.

Merljive preslikave

Def: Naj bosta (X, \mathcal{A}) in (Y, \mathcal{B}) merljiva prostora. Preslikava $f: X \to Y$ je **merljiva**, natanko tedaj ko $\forall A \in \mathcal{A}: f^{-1}(A) \in \mathcal{B}$.

Če sta X in Y topološka prostora opremnljena z Borelovimi σ -algebrama, potem je vsaka zvezna preslikava merljiva. Če je le Y takšen, je merljivost dovolj preverjati na odprtih množicah (ni treba na vseh merljivih). Če slikamo v \mathbb{R} , potem je dovolj preveriti, da so $f^{-1}((-\infty, a)) \in \mathcal{A}$ za vsak $a \in \mathbb{R}$. BŠS lahko vzamemo tudi $(-\infty, a], (a, \infty)$ ali $[a, \infty)$.

Če je $f\colon \mathbb{R} \to \mathbb{R}$ odvedljiva, potem je odvodfmerljiva preslikava.

Vsaka naraščajoča funkcija je zvezna povsod, razen v števno mnogo točkah, torej je Borelovo merljiva.

Merljivost je dovolj preverjati na generatorjih σ -algebre.

Izrek: Vsota, produkt, linearne kombunacije in kompozitumi merljivih so merljivi. Limita (po točkah) merljivih preslikav je merljiva. Infimum in supremum merljivih preslikav sta merljiva. Velja: $\lim \sup f_n$ in $\lim \inf f_n$ sta merljivi funkciji.

Def: Produktna σ -algebra: $A_1 \otimes A_2 := \sigma(\{A_1 \times A_2; A_1 \in A_1, A_2 \in A_2\})$

Izrek: (Y_i, \mathcal{B}_i) merljiva, na $Y = Y_1 \times Y_2$ vzamemo produktno σ -algebro $\mathcal{B} = \mathcal{B}_1 \otimes \mathcal{B}_2$. Potem je:

- Koordinatni projekciji $q_i \colon Y \to Y_i$ sta merljivi preslikavi.
- Če (X, A) merljiv, $f: X \to Y$ poljubna. f je merljiva $\iff q_i \circ f$ sta obe merljivi.
- Če imata Y_i števni bazi topologije: f Borelova (na Y vzamemo Borelovo σ -algebro, generirano s produktno topologijo) $\iff q_i \circ f$ Borelovi.

Def: Naj bo $f_n: X \to \mathbb{R}$ zaporedje merljivih preslikav z merljivo limitno funkcijo f.

- $f_n \to f$ skoraj povsod, če je $\mu(\lbrace x; f_n(x) \not\to f(x)\rbrace) = 0$,
- $f_n \to f$ skoraj enakomerno, če za vsak $\varepsilon > 0$ obstaja množica A, da $\mu(A^c) < \varepsilon$ in $f_n \to f$ enakomerno na A,
- $f_n \to f$ konvergira po meri, če za vsak $\varepsilon > 0$ velja $\lim_{n \to \infty} \mu(\{x \in X; |f_n(x) f(x)| \ge \varepsilon\}) = 0$.

Velja: skoraj enakomerno ⇒ skoraj povsod in po meri.

Izrek (Jegorov): μ končna (tj. $\mu(X) < \infty$), f, f_n merljive. Potem $f_n \to f$ skoraj povsod $\implies f_n \to f$ skoraj enakomerno.

Def: Funckija f je stopničasta, če je $f = \sum_{i=1}^n c_i \chi_{A_i}$, za $c_i \in \mathbb{R}$.

Izrek: Za vsako merljivo funkcijo $f: X \to [0, \infty]$ obstaja naraščajoče zaporedje stop. mer. fn. s_n , tako da $s_n \to f$ po točkah. Če je f omejena in slika v \mathbb{C} , potem konvergira enakomerno, a ni naraščajoče. Če je f nenegativna in omejena, obstaja naraščajoče zaporedje, ki konvergira enakomerno.

Random miscellany

Def: Za zaporedje $\{E_n\}_{n\in\mathbb{N}}$ podmnožic v X je

- $\limsup E_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k$ točke, ki so vsebovane v neskončno mnogo množicah E_i
- lim inf $E_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} E_k$ točke, ki so vsebovane v vseh razen končno mnogo množicah E_i .
- Velja $\mu(\liminf E_n) \leq \liminf \mu(E_n) = \lim_{m \to \infty} (\inf_{n > m} \mu(E_n)).$
- Če je $\sum_{n=1}^{\infty} \mu(E_n) < \infty$, je skoraj vsak $x \in X$ vsebovan v končno mnogo množicah E_n , torej je $\mu(\limsup E_n) = 0$ (Borel-Cantellijeva lema).

Primeri:

- X neštevna, $\mathcal{A} = \{E \subseteq X; E$ števna ali E^c števna $\} = \sigma(\{\{x\}; x \in X\})$ je σ -algebra; takšna je tudi Borelova σ -algebra na topologiji končnih komplementov; primer mere na njej: $\mu(E) = 0$ če E števna in 1 sicer"
- $\mathcal{A} = \{E \subseteq X; E \text{ končna ali } E^c \text{ končna}\}$ je algebra, ni pa σ -algebra
- $X = \mathbb{N}$, $A_n = \sigma(\{\{1\}, \dots, \{n\}\}) = \{E \subseteq \mathbb{N}; E \subseteq [n] \text{ ali } E^c \subseteq [n]\}$, velja $A_n \subseteq A_m$ za n < m, $\bigcup_{n=1}^{\infty} A_n$ ni σ -algebra
- $(X, \mathcal{P}(X), \mu), \mu(E) = 0$ če je E števna in neskončno sicer μ ni semi-končna
- mera, ki šteje točke; Diracova mera
- \bullet Zaporedje funkcij $\chi_{[n,\infty)}$ na realni osi konvergira proti 0 povsod, vendar ne skoraj enakomerno.
- Če na [0,1] naredimo karakteristične funkcije $\chi_{[k/2^m,k+1/2^m]}$ za vsak k in m, zaporedje konvergira po meri, vendar nikjer ne po točkah (v vsaki točki ima neskončno funkcij vrednost 1 in neskončno funkcij vrednost 0).

Cantorjeva množica:

- Klasična: presek števno zaprtih intervalov. Je kompaktna, metrizabilna, nima izoliranih točk, popolnoma nepovezana, ni diskretna, ni končna (je neštevna). Njena Leb. mera je 0.
- Posplošena: $C_0 = [0,1], \ 0 < \alpha_n < 1, \ C_n = iz$ notranjosti vsakega intervala v C_{n-1} izvzamemo "sredinski" interval deleža α_n (delež je na vsakem koščku isti, njegova dolžina se pa spreminja). Nato vse te presekamo. Topološke lastnosti enake, a mera ni nujno 0. Velja: $m(C) = \lim m(C_n) = \prod_{n=1}^{\infty} (1-\alpha_n), \ m(C_n) = (1-\alpha_1)(1-\alpha_2)\cdots(1-\alpha_n)$ (limita delnih produktov je padajoča in navzdol omejena, torej konvergira). Velja: $m(C) > 0 \iff \sum_{n=1}^{\infty} \log(1-\alpha_n)$ konvergira $\iff \sum_{n=1}^{\infty} \alpha_n$ konvergira, ker $\log(1-x) = -\sum x^n/n = -x + \dots$

Extra: Zaprto množico lahko zapišemo kot števno unijo kompaktov (v \mathbb{R}).