1 Define a sequence of real numbers (x_n) by

4 points

$$x_0 = 1,$$
 $x_{n+1} = \frac{1}{2 + x_n}$ for $n \ge 0$.

Show that (x_n) converges, and evaluate its limit.

Solution.

$$|x_{n+2} - x_{n+1}| \le \left| \frac{1}{2 + x_{n+1}} - \frac{1}{2 + x_n} \right| = \left| \frac{x_n - x_{n+1}}{(2 + x_{n+1})(2 + x_n)} \right| \le \frac{1}{4} |x_{n+1} - x_n|$$

So, it is a contractive sequence and therefore Cauchy sequence. (+3 points)

Thus it has a limit. We can get that limit is sqrt2-1 by a simple calculation. (+1 points)

Let (a_n) and (ϵ_n) be sequences of positive numbers. Assume that $\lim_{n\to\infty} \epsilon_n = 0$ and that there is a number k in (0,1) such that $a_{n+1} \leq ka_n + \epsilon_n$ for every n. Prove that $\lim_{n\to\infty} a_n = 0$

(Hint: If you are stuck, start like this. Fix $\delta > 0$, and choose n_0 such that $\epsilon_n < \delta$ for all $n \ge n_0$. Then $a_{n_0+1} \le ka_{n_0} + \epsilon_{n_0} < ka_{n_0} + \delta$)

Solution. Fix $\delta > 0$, and choose n_0 such that $\epsilon_n < \delta$ for all $n \ge n_0$. Then

$$a_{n_0+1} \le ka_{n_0} + \epsilon_{n_0} < ka_{n_0} + \delta$$

$$a_{n_0+2} \le k^2 a_{n_0} + k\delta + \epsilon_{n_0+1} < k^2 a_{n_0} + (1+k)\delta$$

$$a_{n_0+3} \le k^3 a_{n_0} + (k+k^2)\delta + \epsilon_{n_0+2} < k^3 a_{n_0} + (1+k+k^2)\delta$$

and, by the induction Principle

$$a_{n_0+m} < k^m a_{n_0} + (1+k+\dots+k^{m-1}\delta) < k^m a_{n_0} + \frac{\delta}{1-k}$$

Letting $m \to \infty$, we find that

$$\limsup_{n \to \infty} a_n \le \frac{\delta}{1 - k} \qquad (+4 \text{ points})$$

Since δ is arbitraty, we have $\limsup_{n\to\infty} a_n \leq 0$, and thus $\lim_{n\to\infty} a_n = 0$ (+2 points)

MAS241 Quiz 2

Remark.

A lot of mistakes.

- 1. $|a_{n+1} a_n| < \delta$ does not implie that the sequence $\{a_n\}$ is Cauchy or contractive sequence.
- 2. When you don't know if there exists a limit of the sequence, be careful about taking a limit.
- 3. If you fix $\delta>0$ then it is not true that $\frac{\delta}{1-k}<\epsilon$ for all ϵ

Notice about claim.

- 1. If you have any claim on your score, mail dhcho2440@kaist.ac.kr until 6, April, Monday.
- 2. Please read the attached remark in the solution before sending the mail.

Thanks.