2/2

0/2

-1/2

2/2

0/2

0/2

2/2

2/2

-1/2

2/2

THLR Contrôle (35 questions), Septembre 2016

THER Controls (so questions), septembre 2010	
Nom et prénom, lisibles :	Identifiant (de haut en bas):
POCHARI	
Hu.cyo	
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ② » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. I j'ai lu les instructions et mon sujet est complet: les 5 entêtes sont +223/1/xx+···+223/5/xx+.	
Q.2 Soit L_1 et L_2 deux langages sur l'alphabet Σ . S	Si $L_1 \cap \overline{L_2} = \emptyset$ alors
$\Box L_1 \cap L_2 = \emptyset \qquad \Box L_1 \supseteq L$	$L_1 \subseteq L_2$ \square $L_1 = L_2$
Q.3 Pour $L_1 = \{ab\}^*, L_2 = \{a\}^* \{b\}^*$:	
Q.4 Que vaut $\{\varepsilon, a, b\} \cdot \{a, b\}$?	
Q.5 Que vaut <i>Suff</i> ({ <i>ab</i> , <i>c</i> }):	
$\Box \{b,\varepsilon\} \qquad \Box \{b,c,\varepsilon\} \qquad \Box$	\emptyset \square $\{a,b,c\}$ \boxtimes $\{ab,b,c,\varepsilon\}$
Q.6 Que vaut $\overline{\{a\}^*}$, avec $\Sigma = \{a, b\}$.	
	□ (a)(b)* (b)* □ (a h)*(b)(a h)*
Q.7 Pour toute expression rationnelle e , on a $\emptyset e \equiv$	$e\emptyset \equiv e$.
□ vrai	
Q.8 Pour toutes expressions rationnelles e, f , on a	
•	☐ faux
vrai	laux
Q.9 Pour $e = (ab)^*, f = (a+b)^*$:	
	$\Box L(e) \stackrel{\not\subseteq}{\not\supseteq} L(f) \qquad \qquad \Box L(e) = L(f)$
Q.10 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L \subseteq \Sigma^*$, on a $\forall n > 1$, $L^n = \{u^n u \in L\}$.	
□ vrai	faux
Q.11 Ces deux expressions rationnelles :	

 $(a^* + b)^* + c((ab)^*(bc))^*(ab)^*$ $c(ab + bc)^* + (a + b)^*$

2/2

☐ Thompson, déterminimisation, évaluation.

Thompson, élimination des transitions spontanées, déterminisation, minimisation, évaluation. 2/2 ☐ Thompson, déterminisation, élimination des transitions spontanées, évaluation. ☐ Thompson, déterminisation, Brzozowski-McCluskey. Déterminiser cet automate. . Q.21 2/2 Quelle(s) opération(s) préserve(nt) la rationnalité? ☑ Intersection Différence Union 0/2☐ Aucune de ces réponses n'est correcte. ☑ Différence symétrique Soit Rec l'ensemble des langages reconnaissables par DFA, et Rat l'ensemble des langages définissables par expressions rationnelles. □ Rec ⊈ Rat 2/2 Rec = Rat Rec ⊇ Rat \square Rec \subseteq Rat Q.24 Duelle(s) opération(s) préserve(nt) la rationnalité? Suff☑ Transpose☑ Fact☐ Aucune de ces réponses n'est correcte. Sous − mot ☑ Pref 0/2On peut tester si un automate déterministe reconnaît un langage non vide. Q.25 ☐ Cette question n'a pas de sens □ Non 2/2 Oui Seulement si le langage n'est pas rationnel En soumettant à un automate un nombre fini de mots de notre choix et en observant ses réponses, mais sans en regarder la structure (test boîte noire), on peut savoir s'il... accepte le mot vide est déterministe a des transitions spontanées 0/2 accepte un langage infini On peut tester si un automate nondéterministe reconnaît un langage non vide. O.27 0/2oui, toujours souvent ☐ rarement jamais Si L et L' sont rationnels, quel langage ne l'est pas nécessairement? O.28 0/2

Combien d'états a l'automate minimal qui accepte le langage {a, b}+?

Q.29

+223/4/49+

2/2

- □ Il en existe plusieurs!
- 1
- □ 3
- 2

Il est possible de déterminer si une expression rationnelle et un automate correspondent au même langage.

0/2

- vrai en temps fini
- ☐ faux en temps infini □ vrai en temps constant
- ☐ faux en temps fini

Q.31

Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à :

0/2

- \Box $(a+b+c)^*$
- \Box $a^* + b^* + c^*$

Q.32 🕏 Quels états peuvent être fusionnés sans changer le langage reconnu.

2/2

- 1 avec 2
- 3 avec 4
- ☐ 0 avec 1 et avec 2
- 2 avec 4
- ☐ 1 avec 3
- ☐ Aucune de ces réponses n'est correcte.

Considérons \mathcal{P} l'ensemble des palindromes (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}$.

0/2

- □ Il existe un ε -NFA qui reconnaisse \mathcal{P} □ Il existe un NFA qui reconnaisse P
- \square Il existe un DFA qui reconnaisse \mathcal{P}
- \square ne vérifie pas le lemme de pompage

Q.34

Sur $\{a,b\}$, quel est le complémentaire de .

0/2

Sur {a, b}, quel automate reconnaît le complémentaire du langage de

2/2

215.

+223/6/47+