Méthodes de Monte Carlo en finance (G. Pagès) M2 Probabilités & Finance, UPMC-X 28 mars 2008

3 h, polycopié et notes de cours autorisées

Problème I (Rejet avec recyclage)

On se place sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. On considère deux vecteurs aléatoires X et Y définis sur cette espace et à valeurs dans \mathbb{R}^d . On suppose que X et Y ont des densités respectives f et g par rapport à la mesure de Lebesgue λ_d sur \mathbb{R}^d . On suppose en outre que les fonctions f et g sont strictement positives λ_d -p.p. Sur un plan pratique, on suppose que f et g sont aussi "facilement" calculables et que la variable Y est "aisément" simulable. Enfin on suppose qu'il existe un réel c > 0 explicite tel que

$$f < cg$$
 λ_d - $p.p.$

- **1.a.** Montrer que c > 1.
- **1.b.** Soir $r \in [1, \infty[$. Montrer que si $\varphi : \mathbb{R}^d \to \mathbb{R}$, fonction borélienne, vérifie $\varphi(Y) \in L^r(\mathbb{P})$ alors $\varphi(X) \in L^r(\mathbb{P})$.
- **2.** Soit φ une fonction borélienne générique telle que $\varphi(Y) \in L^1(\mathbb{P})$.
- **2.a.** Soit U une variable aléatoire uniformément distribuée sur [0,1], indépendante de Y. Montrer que

$$\mathbb{E}\left(\varphi(Y)\mathbf{1}_{\{cUg(Y)\leq f(Y)\}}\right) = \frac{1}{c}\mathbb{E}(\varphi(X)).$$

2.b. Établir l'existence d'une fonction borélienne $\rho_c : \mathbb{R}^d \to \overline{\mathbb{R}}_+$ que l'on déterminera, λ_d -p.p. finie (et ne dépendant pas de φ), telle que

$$\mathbb{E}\left(\varphi(Y)\mathbf{1}_{\{cUq(Y)>f(Y)\}}\right) = \mathbb{E}\left(\varphi(X)\rho_c(X)\right).$$

3.a. En déduire l'existence d'une fonction borélienne $\Pi_c:[0,1]\times\mathbb{R}^d\to\mathbb{R}_+$ telle que

$$\mathbb{E}(\varphi(Y)\Pi_c(U,Y)) = \mathbb{E}\,\varphi(X).$$

- **3.b.** Proposer à partir de ces résultats une méthode de calcul de $\mathbb{E}\varphi(X)$ par simulation de Monte Carlo de rendement 1 fondée sur la simulation d'une suite i.i.d. de vecteurs aléatoires $(Y_k, U_k)_{k\geq 1}$ de même loi que (Y, U) définies ci-avant.
- 4. Montrer que

$$\operatorname{Var}\left(\varphi(Y)\Pi_{c}(U,Y)\right) = \frac{c}{4}\mathbb{E}\left(\varphi(X)^{2} \frac{1}{1 - \frac{f(X)}{cg(X)}}\right) - (\mathbb{E}\varphi(X))^{2}.$$

5. On veut se donner les moyens de comparer cette approche avec celle du rejet "standard". Dans cette question (**5.a.** et **5.b.**) on ne suppose plus que X a f pour densité mais que f est simplement dans $L^1_{\mathbb{R}_+}(\lambda_d)$ tout en conservant l'ensemble des autres hypothèses : X a donc

pour loi $\frac{f}{\int_{\mathbb{R}^d} f d\lambda_d} . \lambda_d$. On reprend la suite i.i.d. de vecteurs aléatoires $(Y_k, U_k)_{k \geq 1}$ de même loi que (Y, U) et on pose $\tau_0 = 0$ puis

$$\tau_k = \min\{\ell > \tau_{k-1} \mid c \, U_{\ell} g(Y_{\ell}) \le f(Y_{\ell})\}, \quad k \ge 1.$$

- **5.a.** Montrer que maintenant $c = \frac{\int_{\mathbb{R}^d} f d\lambda_d}{\mathbb{P}(c U g(Y) \leq f(Y))} > \int_{\mathbb{R}^d} f d\lambda_d$.
- **5.b.** Montrer que τ_1 suit une loi géométrique $G^*(p)$ avec une valeur de p que l'on précisera puis que Y_{τ_1} a même loi que X.
- **6.** On admet dans la suite que la suite $(\tau_n \tau_{n-1})_{n\geq 1}$ est i.i.d. et que $(Y_{\tau_n})_{n\geq 1}$ est i.i.d. de même loi que X. Soit φ une fonction borélienne bornée.
- **6.a.** Montrer que la complexité (aléatoire) du calcul de

$$\frac{1}{N} \sum_{n=1}^{N} \varphi(Y_{\tau_n})$$

est de la forme $(\tau_N - N)\kappa_1 + \kappa_2 N$ où $\kappa_1 < \kappa_2$.

6.b. On suppose à nouveau dans cette question que f est une densité de probabilité pour pouvoir comparer les deux méthodes. Montrer que, en moyenne la méthode du rejet dite "avec recyclage" (dont la moyenne empirique associée a une complexité de la forme $\kappa_3 N$, $\kappa_2 < \kappa_3$) est préférable si

$$\frac{1}{4}\mathbb{E}\left(\varphi(X)^2 \frac{1}{1 - \frac{f(X)}{ca(X)}}\right) - \frac{1}{c}(\mathbb{E}\varphi(X))^2 < \frac{\frac{\kappa_2 - \kappa_1}{c} + \kappa_1}{\kappa_3} \operatorname{Var}(X).$$

6.b. En déduire que, si $\kappa_3 < 4\kappa_1$, ce sera toujours le cas si la méthode du rejet a été suffisamment "mal conditionnée" (*i.e.* faire tendre c vers ∞).

COMMENTAIRE : En fait le principal atout de la méthode du rejet tient au fait que l'on peut la mettre en œuvre lorsque l'on ne connait la densité f qu'à une constante multiplicative près (le meilleur c connu étant alors souvent loin d'être optimal).

Problème II : Schémas de discrétisation implicites d'un modèle C.I.R.

Rappel. Soit b et σ deux fonctions boréliennes de \mathbb{R} dans \mathbb{R} vérifiant

$$|b(x)| + |\sigma(x)| \le C(1+|x|).$$

Alors toute solution forte $(X_t)_{t\geq 0}$, d'une EDS $dX_t = b(X_t)dt + \sigma(X_t)dW_t$, $X_0 = x$, $(W = (W_t)_{t\geq 0}$ mouvement brownien défini sur un espace probabilisé) vérifie, dès qu'elle existe,

$$\forall p \in [1, \infty[, \forall T > 0, \|\sup_{t \in [0,T]} |X_t|]_p \le K_p(C)e^{K_p(C)T}(1+|x|)$$

où $C \mapsto K_p(C)$ est une fonction croissante de C > 0.

On considère maintenant un mouvement brownien défini sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. On note $(\mathcal{F}_t)_{t\geq 0}$ la filtration complétée de W sur $(\Omega, \mathcal{A}, \mathbb{P})$ (qui s'avère satisfaire aux conditions habituelles).

On considère l'équation du C.I.R. de paramètres $a,k, \vartheta > 0$:

$$dX_t = k(a - X_t)dt + \vartheta\sqrt{X_t} dW_t, X_0 = x > 0$$

- **1.** Soit $\varepsilon \in]0, x[$ et $M \in]x, +\infty[$.
- 1.a. Montrer que l'EDS

$$d\xi_t = k(a - (\xi_t \vee \varepsilon) \wedge M)dt + \vartheta \sqrt{(\xi_t \vee \varepsilon) \wedge M} dW_t, \quad \xi_0 = x > 0$$

admet une solution unique sur $(\Omega, \mathcal{A}, \mathbb{P})$ que l'on notera $\xi^{\varepsilon, M}$.

- **1.b.** On pose pour toute fonction continue $\alpha \in \mathcal{C}(\mathbb{R}_+, \mathbb{R})$ telle que $\alpha(0) = x$, $\tau_{\varepsilon}^x(\alpha) := \inf\{t \geq 0 \mid \alpha(t) = \varepsilon\}$ et $\tau_M^x(\alpha) = \inf\{t \geq 0 \mid \alpha(t) = M\}$. Justifier rapidement que $\tau_{\varepsilon}^x(\xi^{\varepsilon,M})$ et $\tau_M^x(\xi^{\varepsilon,M})$ sont des \mathcal{F}_t -temps d'arrêt.
- **1.c.** Montrer que si $0 < \varepsilon' < \varepsilon < x < M < M'$, alors $(\xi^{\varepsilon',M'})^{\tau_{\varepsilon}^x(\xi^{\varepsilon,M}) \wedge \tau_M^x(\xi^{\varepsilon,M})} = (\xi^{\varepsilon,M})^{\tau_{\varepsilon}^x(\xi^{\varepsilon,M}) \wedge \tau_M^x(\xi^{\varepsilon,M})}$ et que $\varepsilon \mapsto \tau_{\varepsilon}^x(\xi^{\varepsilon,M})$ est décroissante sur]0,x[et que $M \mapsto \tau_M^x(\xi^{\varepsilon,M})$ est croissante sur $]x,\infty[$.
- **1.d.** On note τ_{0+}^x et τ_{∞}^x les limites respectives de ces temps d'arrêt lorsque $\varepsilon \to$ et $M \to \infty$. Montrer que ce sont à nouveau des temps d'arrêt.
- **2.a.** Soit T > 0. Montrer que, pour tout $\varepsilon \in]0, x[$ et $M \in]x, +\infty[$,

$$\mathbb{E}\left(\sup_{t\in[0,T]}|\xi_t^{\varepsilon,M}|\right) \le K(C)e^{K(C)T}(1+|x|).$$

En déduire que $\tau_{\infty}^{x} = +\infty$ \mathbb{P} -p.s..

- **2.b.** En déduire l'existence d'une unique solution forte $X^x = (X_t^x)_{0 \le t \le \tau_{0+}^x}$ à l'équation (CIR) sur l'intervalle aléatoire $[0, \tau_{0+}^x[$. Montrer que $\tau_{0+}^x = \tau_0^x(X^x)$ (premier temps d'atteinte de 0 par X^x).
- **3.a.** Déterminer formellement le générateur infinitésimal L de la diffusion (CIR).
- 3.b. Montrer que la fonction $g: \mathbb{R}_+ \to \mathbb{R}$ définie par

$$g(x) = \int_{1}^{x} e^{\frac{2ku}{\vartheta^2}} \frac{du}{u^{\frac{2ak}{\vartheta^2}}}$$

vérifie Lg = 0.

3.c. Montrer que

$$g(X_{t \wedge \tau^x(X^x)_{\varepsilon} \wedge \tau_M^x(X^x)}^x) = g(x) + \vartheta \int_0^{t \wedge \tau_{\varepsilon}^x(X^x) \wedge \tau_M^x(X^x)} g'(X_s^x) \sqrt{X_s^x} dW_s$$

et en déduire que

$$g(x) = \mathbb{E}(g(X_{t \wedge \tau^x(X^x)_{\varepsilon} \wedge \tau_M^x(X^x)}^x)).$$

3.d. Montrer que $\inf_{\varepsilon \leq x \leq M} g'(x) > 0$. En déduire une minoration de

$$\mathbb{E}\left(\int_0^{t\wedge\tau_\varepsilon^x(X^x)\wedge\tau_M^x(X^x)}g'(X_s^x)\sqrt{X_s^x}dW_s\right)^2$$

puis en conclure que

$$\tau_{\varepsilon}^{x}(X) \wedge \tau_{M}^{x}(X^{x}) < +\infty$$
 P-p.s..

4.a. Montrer que, toujours en supposant $\varepsilon < x < M$, que

$$g(x) = g(\varepsilon) \mathbb{P}(\tau_{\varepsilon}^{x}(X^{x}) < \tau_{M}^{x}(X^{x})) + g(M) \mathbb{P}(\tau_{\varepsilon}^{x}(X^{x}) \ge \tau_{M}^{x}(X^{x}))$$

4.b. On fait l'hypothèse que $\frac{\vartheta^2}{2ka} \leq 1$. Montrer que $\lim_{x\to 0} g(x) = -\infty$. En déduire que $\lim_{\varepsilon\to 0} \mathbb{P}(\tau^x_\varepsilon(X) < \tau^x_M(X^x)) = 0$. En conclure que

$$\mathbb{P}(\tau_0^x(X^x) = \infty) = 1.$$

5. On fait l'hypothèse $\frac{\vartheta^2}{2ka} \leq 1$ dans cette question et la suivante (*i.e.* de **5.a.** à **6.c.**).

5.a. Soit $T \in \mathbb{R}_+^*$. On considère le schéma d'Euler complètement implicite *naif* associé aux instants $t_i^n = \frac{iT}{n}$, $i = 0, \ldots, n$ défini par

$$\bar{X}_{t_{i+1}^n} = \bar{X}_{t_i^n} + k(a - \bar{X}_{t_{i+1}^n}) \frac{T}{n} + \vartheta \sqrt{\bar{X}_{t_{i+1}^n}} \Delta W_{t_{i+1}^n}, \ i = 0, \dots, n-1, \ \bar{X}_0 = x,$$

où $\Delta W_{t_{i+1}^n}=W_{t_{i+1}^n}-W_{t_i^n},\ i=0,\dots,n-1.$ Expliquer pourquoi ce schéma est incorrect.

5.b. Justifier heuristiquement (sur le processus CIR lui-même) le fait que

$$\mathbb{E}\left(\left(\sqrt{X_{t_{i+1}^n}} - \sqrt{X_{t_i^n}}\right) \Delta W_{t_{i+1}^n} \mid \mathcal{F}_{t_i^n}\right) \approx \frac{\vartheta}{2} \frac{T}{n}$$

En déduire que le schéma complètement implicite doit être défini par

$$\bar{X}_{t_{i+1}^n} = \bar{X}_{t_i^n} + k \left(a - \frac{\vartheta^2}{2k} - \bar{X}_{t_{i+1}^n} \right) \frac{T}{n} + \vartheta \sqrt{\bar{X}_{t_{i+1}^n}} \Delta W_{t_{i+1}^n}, \ i = 0, \dots, n-1, \ \bar{X}_0 = x.$$

5.c. Montrer que ce schéma peut-être entièrement explicité en

$$\bar{X}_{t_{i+1}^n} = \left(\frac{\vartheta \Delta W_{t_{i+1}^n} + \sqrt{(\vartheta \Delta W_{t_{i+1}^n})^2 + 4(k(a - \frac{\vartheta^2}{2k})\frac{T}{n} + \bar{X}_{t_i^n})(1 + \frac{kT}{n})}}{2(1 + \frac{kT}{n})}\right)^2, \ i = 0, \dots, n-1, \ \bar{X}_0 = x.$$

6.a. On pose $Y_t = \sqrt{X_t}$. Montrer que Y est solution strictement positive de l'EDS

$$(E) \equiv dY_t = \frac{ka}{2} \left(\frac{c}{Y_t} - \frac{Y_t}{a} \right) dt + \frac{\vartheta}{2} dW_t, \quad Y_0 = \sqrt{x},$$

où c est une constante réelle strictement positive que l'on précisera.

6.b. Soit $T \in \mathbb{R}_+^*$. On considère le schéma d'Euler complètement implicite associé aux instants $t_i^n = \frac{iT}{n}, i = 0, \dots, n$ défini par

$$\bar{Y}_{t_{i+1}^n} = \bar{Y}_{t_i^n} + \frac{ka}{2} \left(\frac{c}{\bar{Y}_{t_{i+1}^n}} - \frac{\bar{Y}_{t_{i+1}^n}}{a} \right) \frac{T}{n} + \frac{\vartheta}{2} \Delta W_{t_{i+1}^n}.$$

6.c. En déduire que ce schéma peut-être entièrement explicité en

$$\bar{Y}_{t_{i+1}^n} = \frac{\bar{Y}_{t_i^n} + \frac{\vartheta}{2} \Delta W_{t_{i+1}^n} + \sqrt{(\bar{Y}_{t_i^n} + \frac{\vartheta}{2} \Delta W_{t_{i+1}^n})^2 + 2akc\frac{T}{n}(1 + \frac{kT}{2n})}}{2(1 + \frac{kT}{2n})}, \ i = 0, \dots, n-1, \ \bar{Y}_0 = \sqrt{x}.$$

7.a. Vérifier que si c=0, l'équation (E) admet pour unique solution un processus gaussien (bien connu...). En déduire que, pour ces valeurs des paramètres, l'équation (CIR) admet (au moins) une solution positive sur tout \mathbb{R}_+ , non identiquement nulle, se réfléchissant infiniment souvent en 0. Quelle conclusion peut-on en tirer sur la convergence du schéma \bar{Y} vers Y (sans préjuger de celle de son carré vers X ...) ?

COMMENTAIRES : La situation décrite en 7.a. a lieu lorsque $1 < \frac{\vartheta^2}{2ka} \le 2$. En pratique on s'intéresse souvent à des développements limités de ces schémas qui en préservent néanmoins la positivité.