MAC地址_IP地址

@M了个J 李明杰

https://github.com/CoderMJLee

https://space.bilibili.com/325538782

小码哥教育 SEEMYGO MACHULL

- ■每一个网卡都有一个6字节 (48bit) 的MAC地址 (Media Access Control Address)
- 全球唯一,固化在了网卡的ROM中,由IEEE802标准规定
- □前3字节: OUI (Organizationally Unique Identifier) , 组织唯一标识符
- ✓由IEEE的注册管理机构分配给厂商

□后3字节:	网络接口标识符
--------	---------

✓由厂商自行分配

组织唯一标识符	网络接口标识符		
40-55-82	0A-8C-6D		

- OUI查询
- □ http://standards-oui.ieee.org/oui.txt
- https://mac.51240.com/

MAC地址的表示格式 MAC地址的表示格式

- Windows
- □40-55-82-0A-8C-6D
- Linux、Android、Mac、iOS
- □40:55:82:0A:8C:6D
- Packet Tracer
- □4055.820A.8C6D
- 当48位全为1时,代表广播地址
- □ FF-FF-FF-FF-FF

NAC地址操作 MAC地址操作

- 查看MAC地址: ipconfig /all
- ■修改MAC地址
- □更改适配器选项 属性 配置 高级 网络地址
- □填写的时候需要把减号(-)去掉
- 有时可以通过修改MAC地址蹭网

小码哥教育 SEEMYGO MAC地址的狭取

- 当不知道对方主机的MAC地址时,可以通过发送ARP广播获取对方的MAC地址
- □获取成功后,会缓存IP地址、MAC地址的映射信息,俗称: ARP缓存
- □通过ARP广播获取的MAC地址,属于动态 (dynamic) 缓存
- ✓ 存储时间比较短 (默认是2分钟) , 过期了就自动删除

■相关命令

□arp -a [主机地址]:查询ARP缓存

□arp -d [主机地址]: 删除ARP缓存

□arp -s 主机地址 MAC地址: 增加一条缓存信息 (这是静态缓存,存储时间较久,不同系统的存储时间不同)

- ARP (Address Resolution Protocol), 译为: 地址解析协议
- □通过IP地址获取MAC地址
- RARP (Reverse Address Resolution Protocol), 译为: 逆地址解析协议
- □使用与ARP相同的报头结构
- □作用与ARP相反,用于将MAC地址转换为IP地址
- □后来被BOOTP、DHCP所取代

- ICMP (Internet Control Message Protocol), 译为: 互联网控制消息协议
- □IPv4中的ICMP被称作ICMPv4, IPv6中的ICMP则被称作ICMPv6
- □通常用于返回错误信息
- ✓比如TTL值过期、目的不可达
- □ICMP的错误消息总是包括了源数据并返回给发送者

- IP地址(Internet Protocol Address):互联网上的每一个主机都有一个IP地址
- □最初是IPv4版本, 32bit (4字节), 2019年11月25日, 全球的IP地址已经用完
- □后面推出了IPv6版本, 128bit (16字节)
- ■以后课件中不指定版本,默认就是IPv4版本,后面再单独讨论IPv6

1100 0000 1010 1000		0000 0001	0000 1010	
第1部分 第2部分		第3部分 第4部		
1100 0000 1010 1000		0000 0001	0000 1010	
192 168		1	10	

小码哥教育 IP地址的组成

- IP地址由2部分组成: 网络标识 (网络ID) 、主机标识 (主机ID)
- □通过子网掩码 (subnet mask) 可以得知网络ID、主机ID
- 主机所在的网段 = 子网掩码 & IP地址
- □网段其实
- 计算机和其他计算机通信前,会先判断目标主机和自己是否在同一网段
- □同一网段: 不需要由路由器进行转发
- □不同网段: 交由路由器进行转发

小码哥教育 IP地址的分类

■ A类地址: 默认子网掩码是255.0.0.0

8bit	24bit
网络ID <mark>0</mark> 开头	主机ID

■ B类地址: 默认子网掩码是255.255.0.0

16bit	16bit
网络ID 10开头	主机ID

■ C类地址: 默认子网掩码是255.255.255.0

24bit	8bit
网络ID 110开头	主机ID

■ D类地址:以1110开头,多播地址

■ E类地址:以1111开头,保留为今后使用

- 只有A\B\C类地址才能分配给主机
- □主机ID为全0,表示主机所在的网段
- □主机ID为全1,表示主机所在网段的全部主机(广播)
- ✓可以尝试用ping给某个网段的全部主机发数据

小码哥教育 SEEMYGO A类地址

X	X络ID	主机ID			
第	51部分	第2部分	第3部分	第4部分	
0					
0	0~127 0~255		0~255	0~255	

■ 网络ID

- □0不能用,127作为保留网段。其中127.0.0.1是本地环回地址(Loopback),代表本机地址
- □可以分配给主机的
- ✓ 第1部分的取值范围是: 1~126

■主机ID

- □第2、3、4部分的取值范围是: 0~255
- □每个A类网络能容纳的最大主机数是: 256 * 256 * 256 2 = 2的24次方 2 = 16777214

小码哥教育 SEEMYGO B类地址

网络	ID	主机ID		
第1部分 第2部分		第3部分	第4部分	
10				
128~191	0~255	0~255	0~255	

■网络ID

□可以分配给主机的

□第1部分的取值范围是: 128~191

□第2部分的取值范围是: 0~255

■主机ID

□第3、4部分的取值范围是: 0~255

□每个B类网络能容纳的最大主机数是: 256 * 256 - 2 = 2的16次方 - 2 = 65534

小码哥教育 SEEMYGO C类地址

	主机ID		
第1部分 第2部分		第3部分	第4部分
1 1 0			
192~223	0~255	0~255	0~255

■网络ID

□可以分配给主机的

□第1部分的取值范围是: 192~223

□第2、3部分的取值范围是: 0~255

■主机ID

□第4部分的取值范围是: 0~255

□每个C类网络能容纳的最大主机数是: 256 – 2 = 254

■ D类地址: 没有子网掩码, 用于多播 (组播) 地址

□第1部分取值范围是: 224~239

第1部分	第2部分	第3部分	第4部分	
1 1 1 0				
224~239	0~255	0~255	0~255	

■ E类地址: 保留为今后使用

□第1部分取值范围是: 240~255

第1部分	第2部分	第3部分	第4部分	
1 1 1 1				
240~255	0~255	0~255	0~255	

小照開教息 子网掩码的CIDR表示方法

- CIDR (Classless Inter-Domain Routing): 无类别域间路由
- 子网掩码的CIDR表示方法
- □192.168.1.100/24, 代表子网掩码有24个1, 也就是255.255.255.0
- □123.210.100.200/16, 代表子网掩码有16个1, 也就是255.255.0.0
- 计算工具: https://www.sojson.com/convert/subnetmask.html

Number 2015 为什么要进行子网划分?

- 如果需要让200台主机在同一个网段内,可以分配一个C类网段,比如192.168.1.0/24
- □共254个可用IP地址: 192.168.1.1~192.168.1.254
- □多出54个空闲的IP地址,这种情况并不算浪费资源
- 如果需要让500台主机在同一个网段内,那就分配一个B类网段,比如191.100.0.0/16
- □共65534个可用IP地址: 191.100.0.1~191.100.255.254
- □多出65034个空闲的IP地址,这种情况属于极大的浪费资源
- 如何尽量避免浪费IP地址资源?
- □合理进行子网划分

小码哥教育 SEEMYGO 子网划分

- 子网划分: 借用主机位作子网位, 划分出多个子网
- ■可用分为
- □等长子网划分:将一个网段等分成多个子网,每个子网的可用IP地址数量是一样的
- □变长子网划分:每个子网的可用IP地址数量可以是不一样的
- 子网划分器: http://www.ab126.com/web/3552.html
- ■子网划分的步骤
- □确定子网的子网掩码长度
- □确定子网中第1个、最后1个主机可用的IP地址

等 等 长子 网 划 分 - 等 分 成 2 个 子 网

规律: 如果-个子网是原来网络 $\frac{1}{2}$,子网掩码往后移1位。

■ A子网

□子网掩码: 255.255.255.128/25

□主机可用IP地址: 192.168.0.1~192.168.0.126

M B子网

□子网掩码: 255.255.255.128/25

□主机可用IP地址: 192.168.0.129~192.168.0.254

编录 等长子网划分 — 等分成4个子网

规律:如果一个子网是原来网络 $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$,子网掩码往后移2位。

- 4个子网的子网掩码都是: 255.255.255.192/26
- A子网的主机可用IP地址
- **1**92.168.0.1~192.168.0.62
- B子网的主机可用IP地址
- **□** 192.168.0.65~192.168.0.126
- C子网的主机可用IP地址
- **□** 192.168.0.129~192.168.0.190
- D子网的主机可用IP地址
- **□** 192.168.0.193~192.168.0.254

Maganga 等长子网划分 — 等分成4个子网的广播地址

		网络部分		_	│主机位全1│
	,				`
A子网	192	168	0	0 0	1 1 1 1 1 1
					63
B子网	192	168	0	0 1	1 1 1 1 1 1
					127
c子网 🦳	192	168	0	10	1 1 1 1 1 1
					191
D子网	192	168	0	1 1	1 1 1 1 1 1
					255
子网掩码	11111111	11111111	11111111	1 1	000000
子网掩码	255	255	255		192

增量教息 等长子网划分 — 等分成8个子网

规律: 如果一个子网是原来网络 $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$,子网掩码往后移3位。

■ 4个子网的子网掩码都是: 255.255.255.224/27

■ A子网: 192.168.0.1~192.168.0.30

■ B子网: 192.168.0.33~192.168.0.62

■ C子网: 192.168.0.65~192.168.0.94

■ D子网: 192.168.0.97~192.168.0.126

■ E子网: 192.168.0.129~192.168.0.158

■ F7网: 192.168.0.161~192.168.0.190

■ G子网: 192.168.0.193~192.168.0.222

■ H子网: 192.168.0.225~192.168.0.254

Maganta 等长子网划分 — B类子网划分

	网络部分				主机部分												
A子网	131	107	0	0	0	0	0 0		0	0	0	0	0	0	0	0	0
B子网	131	107	1	0	0	0	0 0) (0	0	0	0	0	0	0	0	0
子网掩码	11111111	11111111	1	0	0	0	0 0) (0	0	0	0	0	0	0	0	0
子网掩码	255	255				12	28						()			

Maganta 等长子网划分 — A类子网划分

	网络部分)		+										Ė	Ξ₩	语	ß为	}	_						-
A子网	42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B子网	42	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
c子网	42	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D子网	42	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
子网掩码	11111111	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
子网掩码	255				19)2							()							()			

小码哥教育 变长子网划分

- 如果一个子网地址块的长度是原网段的(1/2)^n, 那么
- □子网的子网掩码, 就是在原网段的子网掩码基础上增加n个1
- □不等长的子网,它们的子网掩码也不同

■ 假设上图是对192.168.0.0/24进行变长子网划分

□C网段: 子网掩码是255.255.255.128/25

□B网段: 子网掩码是255.255.255.192/26

□A网段:子网掩码是255.255.255.224/27

□D网段:子网掩码是255.255.255.252/30

□E网段:子网掩码是255.255.255.252/30

■ 这2台设备能正常通信么?

■ 超网: 跟子网反过来,它是将多个连续的网段合并成一个更大的网段

■ 需求:原本有200台计算机使用192.168.0.0/24网段,现在希望增加200台设备到同一个网段

□200台在192.168.0.0/24网段, 200台在192.168.1.0/24网段

□合并192.168.0.0/24、192.168.1.0/24为一个网段: 192.168.0.0/23 (子网掩码往左移动1位)

		网络部分		主机部分
192.168.0.0	192	168	0000000	000000000
192.168.1.0	192	168	0000000	100000000
子网掩码	11111111	11111111	1 1 1 1 1 1 1	00000000
子网掩码	255	255	254	0

■ 192.168.0.255/23这个IP地址,可以分配给计算机使用么?

小的母教育 合并4个网段

■子网掩码向左移动2位,可以合并4个网段

		网络部分		主机部分
192.168.0.0	192	168	0000000	00000000
192.168.1.0	192	168	00000001	00000000
192.168.2.0	192	168	00000010	00000000
192.168.3.0	192	168	00000011	00000000
子网掩码	11111111	11111111	11111100	00000000
子网掩码	255	255	252	0

■ 将192.168.0.0/24、192.168.1.0/24、192.168.2.0/24、192.168.3.0/24合并为192.168.0.0/22网段

■下面的2个网段,能通过子网掩码向左移动1位进行合并么?

□不可以

	*	网络部分		-	Ě	三机部	3分	/
192.168.1.0	192	168	000000	1	0 0	0 0	00	0 0
192.168.2.0	192	168	0000001	0	0 0	00	00	0 0
子网掩码	11111111	11111111	$1\ 1\ 1\ 1\ 1\ 1$	0	0 0	0 0	00	0 0
子网掩码	255	255	254			()	

小码哥教育 SEEMYGO 合并网段的规律

- 假设n是2的k次幂 (k≥1)
- □子网掩码左移k位能够将能够合并n个网段

Mygan 合并网段的规律

- 假设n是2的k次幂 (k≥1)
- □如果第一个网段的网络号能被n整除,那么由它开始连续的n个网段,能通过左移k位子网掩码进行合并
- ■比如
- □第一个网段的网络号以二进制0结尾,那么由它开始连续的2个网段,能通过左移1位子网掩码进行合并
- □第一个网段的网络号以二进制00结尾,那么由它开始连续的4个网段,能通过左移2位子网掩码进行合并
- □第一个网段的网络号以二进制000结尾,那么由它开始连续的8个网段,能通过左移3位子网掩码进行合并

MER NYGO 判断一个网段是子网还是超网

- ■首先
- □看看该网段的类型,是A类网络、B类网络、C类网络?
- □默认情况下, A类子网掩码的位数是8, B类子网掩码的位数是16, C类子网掩码的位数是24

■然后

- □如果该网段的子网掩码位数比默认子网掩码多,就是子网
- □如果该网段的子网掩码位数比默认子网掩码少,则是超网
- ■比如
- □25.100.0.0/16是一个A类子网
- □200.100.0.0/16是一个C类超网