ME 599/699 Robot Modeling & Control Fall 2021

Optimal Control

Hasan A. Poonawala

Department of Mechanical Engineering University of Kentucky

Email: hasan.poonawala@uky.edu Web: https://www.engr.uky.edu/~hap

In continuous time, we have

min
$$J(q(t), u(t))$$

subject to $q(t)$ satisfies dynamics and state constraints $u(t)$ satisfies input constraints

We may also formulate discrete time versions of this problem.

Linear Quadratic Regulator

For optimal control problems where

- time is discrete.
- ▶ the dynamics are linear, and
- ▶ the cost function is quadratic in state and control,

the optimal control problem may be solved in a straightforward way.

These slides are inspired by Sergey Levine's slides.

Linear Quadratic Regulator

At each time $t \in \{0, 1, 2, \dots, T\}$, we have

$$\mathbf{x}_{t+1} = A_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + a_t; \quad c_t(\mathbf{x}_t, \mathbf{u}_t) = \frac{1}{2} \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{C}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{c}_t$$

Consider a finite time horizon $t \in \{0, 1, 2, ..., T\}$.

$$J = \sum_{t=0}^{T} c_t(x_t, u_t)$$

Focus on T

At time T, we have only one decision to make: pick u_T .

Focus on T

At time T, we have only one decision to make: pick u_T .

The cost of doing so is exactly $c_T(\mathbf{x}_T, \mathbf{u}_T)$

Focus on T

At time T, we have only one decision to make: pick u_T .

The cost of doing so is exactly $c_T(\mathbf{x}_T, \mathbf{u}_T)$

The cost for the first T-1 time steps are some value that is effectively constant at time T, so that the total cost will be $\mathbf{Q}_T(\mathbf{x}_T, \mathbf{u}_T)$

$$\mathbf{Q}_{T}(\mathbf{x}_{T}, \mathbf{u}_{T}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{u}_{T} \end{bmatrix}^{T} \mathbf{C}_{T} \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{u}_{T} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{u}_{T} \end{bmatrix}^{T} \mathbf{c}_{T}$$

Optimize at T

To find the best $\mathbf{u}_{\mathcal{T}}$, we minimize that expression.

It's gradient w.r.t. \mathbf{u}_T is

$$\nabla_{\mathbf{u}_T} \mathbf{Q}_T(\mathbf{x}_T, \mathbf{u}_T) = \mathbf{x}_T^T \mathbf{C}_{\mathbf{x}_T, \mathbf{u}_T} + \mathbf{u}_T^T \mathbf{C}_{\mathbf{u}_T, \mathbf{u}_T} + \mathbf{c}_{\mathbf{u}_T}^T, \text{ where}$$

$$\mathbf{C}_T = \begin{bmatrix} \mathbf{C}_{\mathbf{x}_T, \mathbf{x}_T} & \mathbf{C}_{\mathbf{x}_T, \mathbf{u}_T} \\ \mathbf{C}_{\mathbf{x}_T, \mathbf{u}_T} & \mathbf{C}_{\mathbf{u}_T, \mathbf{u}_T} \end{bmatrix}, \quad \mathbf{c}_T = \begin{bmatrix} \mathbf{c}_{\mathbf{x}_T} \\ \mathbf{c}_{\mathbf{u}_T} \end{bmatrix}.$$

Optimize at T

To find the best \mathbf{u}_T , we minimize that expression.

It's gradient w.r.t. \mathbf{u}_T is

$$\nabla_{\mathbf{u}_{T}} \mathbf{Q}_{T}(\mathbf{x}_{T}, \mathbf{u}_{T}) = \mathbf{x}_{T}^{T} \mathbf{C}_{\mathbf{x}_{T}, \mathbf{u}_{T}} + \mathbf{u}_{T}^{T} \mathbf{C}_{\mathbf{u}_{T}, \mathbf{u}_{T}} + \mathbf{c}_{\mathbf{u}_{T}}^{T}, \text{ where}$$

$$\mathbf{C}_{T} = \begin{bmatrix} \mathbf{C}_{\mathbf{x}_{T}, \mathbf{x}_{T}} & \mathbf{C}_{\mathbf{x}_{T}, \mathbf{u}_{T}} \\ \mathbf{C}_{\mathbf{x}_{T}, \mathbf{u}_{T}} & \mathbf{C}_{\mathbf{u}_{T}, \mathbf{u}_{T}} \end{bmatrix}, \quad \mathbf{c}_{T} = \begin{bmatrix} \mathbf{c}_{\mathbf{x}_{T}} \\ \mathbf{c}_{\mathbf{u}_{T}} \end{bmatrix}.$$

Setting $\nabla_{u_T} Q_T(x_T, u_T) = 0$ we obtain

$$\mathbf{u}_T = -\mathbf{C}_{\mathbf{u}_T,\mathbf{u}_T}^{-1}(\mathbf{C}_{\mathbf{x}_T,\mathbf{u}_T}\mathbf{x}_T + \mathbf{c}_{\mathbf{u}_T}) = \mathbf{K}_T\mathbf{x}_T + \mathbf{k}_T,$$

which is a linear (well, affine) feedback control.

► To cut a long story short,

$$\mathbf{Q}_T(\mathbf{x}_T, \mathbf{u}_T) = \mathbf{Q}_T(\mathbf{x}_T, \mathbf{K}_T \mathbf{x}_T + \mathbf{k}_T) = V(\mathbf{x}_T) = \mathbf{x}_T^T \mathbf{V}_T \mathbf{x}_T + \mathbf{x}_T^T \mathbf{v}_T,$$

for some appropriate matrix \mathbf{V}_T and \mathbf{v}_T that depends on the problem's parameters.

► To cut a long story short,

$$\mathbf{Q}_T(\mathbf{x}_T, \mathbf{u}_T) = \mathbf{Q}_T(\mathbf{x}_T, \mathbf{K}_T \mathbf{x}_T + \mathbf{k}_T) = V(\mathbf{x}_T) = \mathbf{x}_T^T \mathbf{V}_T \mathbf{x}_T + \mathbf{x}_T^T \mathbf{v}_T,$$

for some appropriate matrix \mathbf{V}_T and \mathbf{v}_T that depends on the problem's parameters.

▶ Because the dynamics are linear, and costs are quadratic, the same thing repeats at t = T - 1

$$\mathbf{Q}_{T-1}(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) = \operatorname{const} + c_{T-1}(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) + V(\mathbf{x}_{T})$$

$$= \operatorname{const} + c_{T-1}(\mathbf{x}_{T-1}, \mathbf{u}_{T-1})$$

$$+ V\left(A_{T-1}\begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + a_{T-1}\right)$$

$$= \operatorname{Quadratic}(\mathbf{x}_{T-1}, \mathbf{u}_{T-1})$$

▶ To cut a long story short,

$$\mathbf{Q}_T(\mathbf{x}_T, \mathbf{u}_T) = \mathbf{Q}_T(\mathbf{x}_T, \mathbf{K}_T \mathbf{x}_T + \mathbf{k}_T) = V(\mathbf{x}_T) = \mathbf{x}_T^T \mathbf{V}_T \mathbf{x}_T + \mathbf{x}_T^T \mathbf{v}_T,$$

for some appropriate matrix \mathbf{V}_T and \mathbf{v}_T that depends on the problem's parameters.

▶ Because the dynamics are linear, and costs are quadratic, the same thing repeats at t = T - 1

$$\begin{aligned} \mathbf{Q}_{T-1}(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) &= \mathrm{const} + c_{T-1}(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) + V(\mathbf{x}_{T}) \\ &= \mathrm{const} + c_{T-1}(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) \\ &+ V\left(A_{T-1}\begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + a_{T-1} \right) \\ &= \mathrm{Quadratic}(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) \end{aligned}$$

▶ The optimal control at t = T - 1 will be linear, and so on

► To cut a long story short,

$$\mathbf{Q}_T(\mathbf{x}_T, \mathbf{u}_T) = \mathbf{Q}_T(\mathbf{x}_T, \mathbf{K}_T \mathbf{x}_T + \mathbf{k}_T) = V(\mathbf{x}_T) = \mathbf{x}_T^T \mathbf{V}_T \mathbf{x}_T + \mathbf{x}_T^T \mathbf{v}_T,$$

for some appropriate matrix \mathbf{V}_T and \mathbf{v}_T that depends on the problem's parameters.

▶ Because the dynamics are linear, and costs are quadratic, the same thing repeats at t = T - 1

$$\begin{aligned} \mathbf{Q}_{T-1}(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) &= \mathrm{const} + c_{T-1}(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) + V(\mathbf{x}_{T}) \\ &= \mathrm{const} + c_{T-1}(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) \\ &+ V\left(A_{T-1}\begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + a_{T-1} \right) \\ &= \mathrm{Quadratic}(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) \end{aligned}$$

- ▶ The optimal control at t = T 1 will be linear, and so on
- ▶ This nice structure persists till t = 0

This procedure nicely illustrates some of the core ideas

1. Solve for the best control by moving backwards in time

This procedure nicely illustrates some of the core ideas

- 1. Solve for the best control by moving backwards in time
- 2. By building up an estimate of the cost-to-go (V)

This procedure nicely illustrates some of the core ideas

- 1. Solve for the best control by moving backwards in time
- 2. By building up an estimate of the cost-to-go (V)
- 3. The function $Q_t(\mathbf{x}_t, \mathbf{u}_t)$ is known as the Q-function in reinforcement learning

This procedure nicely illustrates some of the core ideas

- 1. Solve for the best control by moving backwards in time
- 2. By building up an estimate of the cost-to-go (V)
- 3. The function $Q_t(\mathbf{x}_t, \mathbf{u}_t)$ is known as the Q-function in reinforcement learning
- 4. V is the value function (we minimize, RL maximizes)

The core method was a constructive approach: Solve quadratic optimizations at each step to build V_T

- The core method was a constructive approach: Solve quadratic optimizations at each step to build V_T
- ▶ Instead, some approaches compute $V_T/V(t)$ directly (Hamilton-Jacobi-BelmIman equations)

- The core method was a constructive approach: Solve quadratic optimizations at each step to build V_T
- ▶ Instead, some approaches compute $V_T/V(t)$ directly (Hamilton-Jacobi-BelmIman equations)
- These methods require knowing dynamics and reward functions

▶ What if we don't know cost \mathbf{c}_T , dynamics $x_{T+1} = f(x_T, u_T)$?

- ▶ What if we don't know cost \mathbf{c}_T , dynamics $x_{T+1} = f(x_T, u_T)$?
- ▶ We can't 'solve' for control from known models

- ▶ What if we don't know cost \mathbf{c}_T , dynamics $x_{T+1} = f(x_T, u_T)$?
- ▶ We can't 'solve' for control from known models
- ▶ We must instead learn from a stream of experience data

- ▶ What if we don't know cost \mathbf{c}_T , dynamics $x_{T+1} = f(x_T, u_T)$?
- We can't 'solve' for control from known models.
- ▶ We must instead learn from a stream of experience data
- Main challenge is in trading-off learning and optimizing (exploration-exploitation trade-off)

► Two major steps in learning from experience:

- ► Two major steps in learning from experience:
 - Policy Evaluation: How do we evaluate a choice for actions (called policy π)?

- ► Two major steps in learning from experience:
 - Policy Evaluation: How do we evaluate a choice for actions (called policy π)?
 - ▶ Policy Improvement: How do we improve the policy?

- ► Two major steps in learning from experience:
 - Policy Evaluation: How do we evaluate a choice for actions (called policy π)?
 - ▶ Policy Improvement: How do we improve the policy?
- ► Two basic philosophies:

- ► Two major steps in learning from experience:
 - Policy Evaluation: How do we evaluate a choice for actions (called policy π)?
 - ▶ Policy Improvement: How do we improve the policy?
- Two basic philosophies:
 - ► Model-based: Build models of dynamics and rewards form data, 'solve' to improve/evaluate at the same time.

- ► Two major steps in learning from experience:
 - Policy Evaluation: How do we evaluate a choice for actions (called policy π)?
 - ▶ Policy Improvement: How do we improve the policy?
- Two basic philosophies:
 - ► Model-based: Build models of dynamics and rewards form data, 'solve' to improve/evaluate at the same time.
 - Model-free: Maintain policy π and V using data

Terms you will come across

Policy Iteration: Evaluate policy π to get $V(\pi)$, improve policy using $V(\pi)$ (many variations for both steps)

- Policy Iteration: Evaluate policy π to get $V(\pi)$, improve policy using $V(\pi)$ (many variations for both steps)
- ▶ Value iteration: Learn value function *V* directly

- Policy Iteration: Evaluate policy π to get $V(\pi)$, improve policy using $V(\pi)$ (many variations for both steps)
- ▶ Value iteration: Learn value function *V* directly
- Monte Carlo (REINFORCE, AlphaGo)

- Policy Iteration: Evaluate policy π to get $V(\pi)$, improve policy using $V(\pi)$ (many variations for both steps)
- ▶ Value iteration: Learn value function *V* directly
- ► Monte Carlo (REINFORCE, AlphaGo)
- Temporal differences (Q-Learning / SARSA)

- Policy Iteration: Evaluate policy π to get $V(\pi)$, improve policy using $V(\pi)$ (many variations for both steps)
- ▶ Value iteration: Learn value function *V* directly
- ► Monte Carlo (REINFORCE, AlphaGo)
- Temporal differences (Q-Learning / SARSA)
- ▶ Policy gradients (PPO, SAC)

- Policy Iteration: Evaluate policy π to get $V(\pi)$, improve policy using $V(\pi)$ (many variations for both steps)
- ▶ Value iteration: Learn value function *V* directly
- ► Monte Carlo (REINFORCE, AlphaGo)
- Temporal differences (Q-Learning / SARSA)
- ► Policy gradients (PPO, SAC)
- ► Optimization (TRPO, iLQR)

► Model-free Deep RL helps escape modeling challenges in robot control

- Model-free Deep RL helps escape modeling challenges in robot control
- ightharpoonup V, Q, π are deep neural networks (challenging in continuous spaces)

- Model-free Deep RL helps escape modeling challenges in robot control
- \triangleright V, Q, π are deep neural networks (challenging in continuous spaces)
- Zoo of approaches (PPO, SAC, MBPO, DDPG)

- Model-free Deep RL helps escape modeling challenges in robot control
- \triangleright V, Q, π are deep neural networks (challenging in continuous spaces)
- Zoo of approaches (PPO, SAC, MBPO, DDPG)
- Learn in sim, fine-tune in reality, or robustify

- Model-free Deep RL helps escape modeling challenges in robot control
- \triangleright V, Q, π are deep neural networks (challenging in continuous spaces)
- Zoo of approaches (PPO, SAC, MBPO, DDPG)
- Learn in sim, fine-tune in reality, or robustify
- Most successful approaches use low-level position-based control (impedance or otherwise) on position-based tasks

► State-of-the-Art is extremely hard to evaluate:

- ► State-of-the-Art is extremely hard to evaluate:
 - new papers out every week

- ► State-of-the-Art is extremely hard to evaluate:
 - new papers out every week
 - videos/sims are always impressive

- ► State-of-the-Art is extremely hard to evaluate:
 - new papers out every week
 - videos/sims are always impressive
 - same trick as robotics: show only the few working cases

- ► State-of-the-Art is extremely hard to evaluate:
 - new papers out every week
 - videos/sims are always impressive
 - same trick as robotics: show only the few working cases
 - often rely on well-tuned low-level controllers or unrealistic amounts of training data

- State-of-the-Art is extremely hard to evaluate:
 - new papers out every week
 - videos/sims are always impressive
 - same trick as robotics: show only the few working cases
 - often rely on well-tuned low-level controllers or unrealistic amounts of training data
- Most papers are opaque about how much human engineering is involved

- State-of-the-Art is extremely hard to evaluate:
 - new papers out every week
 - videos/sims are always impressive
 - same trick as robotics: show only the few working cases
 - often rely on well-tuned low-level controllers or unrealistic amounts of training data
- Most papers are opaque about how much human engineering is involved
- ▶ My opinion: use to choose controller, not to design control

- State-of-the-Art is extremely hard to evaluate:
 - new papers out every week
 - videos/sims are always impressive
 - same trick as robotics: show only the few working cases
 - often rely on well-tuned low-level controllers or unrealistic amounts of training data
- Most papers are opaque about how much human engineering is involved
- ▶ My opinion: use to choose controller, not to design control
- My lab: learn NN models from data, design correct controllers for such models