

Report No. : EED32K00312401 Page 1 of 82

TEST REPORT

Product : 10 inch WIFI Digital Photo Frame

Trade mark : N/A

Model/Type reference : Skylight 2, D104S

Serial Number : N/A

Report Number : EED32K00312401 **FCC ID** : 2AABK-SKYLIGHT2

Date of Issue : Dec. 19, 2018

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

Shenzhen Chuangwei Electronic Appliance Tech Co., Ltd.
4F & 6F, Overseas plant south, Skyworth Industrial Park, Shiyan Street,
Bao'an District, Shenzhen, P. R. China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested by: Tom chen

Ware Xin

Date: Dec. 19, 2018

Compiled by:

Report Sea

Peter

Kevin yang

Check No.:3096321893

Page 2 of 82

2 Version

Version No.	Date		Description)
00	Dec. 19, 2018		Original	
	*	-	795	75
	(3)			

Report No. : EED32K00312401 Page 3 of 82

3 Test Summary

o rest outilitiary		(20)	
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

Model No.: Skylight 2, D104S

Only the model Skylight 2 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, Only the models are different.

Report No.: EED32K00312401 Page 4 of 82

4 Content

•	Jointoint			
1 (COVER PAGE		•••••	1
۷ 2	VERSION	•••••		2
3 -	TEST SUMMARY	•••••	•••••	3
4 (CONTENT			4
5 -	TEST REQUIREMENT		•••••	5
	5.1 TEST SETUP			5
	5.1.1 For Conducted test setup			
	5.1.2 For Radiated Emissions test setup			
	5.1.3 For Conducted Emissions test setup			
	5.3 TEST CONDITION			
6 (GENERAL INFORMATION			
	6.1 CLIENT INFORMATION			
	6.2 GENERAL DESCRIPTION OF EUT			
	6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDAL			
	6.4 DESCRIPTION OF SUPPORT UNITS			
	6.5 TEST LOCATION			
	6.6 DEVIATION FROM STANDARDS			
	6.7 ABNORMALITIES FROM STANDARD CONDITIONS			
	6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVE			
7 1	EQUIPMENT LIST			
	RADIO TECHNICAL REQUIREMENTS SPECIFICATION			
וכ	Appendix A): Conducted Peak Output Power			
	Appendix A): Conducted Peak Output Power			14
	Appendix 6): 6db Occupied Bandwidth			
	Appendix D): RF Conducted Spurious Emissions			
	Appendix E): Power Spectral Density			
	Appendix F): Antenna Requirement			
	Appendix G): AC Power Line Conducted Emission			
	Appendix H): Restricted bands around fundamental fit Appendix I): Radiated Spurious Emissions			
DL	HOTOGRAPHS OF TEST SETUP			
7	HOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS)	•••••	68

Report No. : EED32K00312401 Page 5 of 82

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:		
Temperature:	20 °C	
Humidity:	53 % RH	 -11
Atmospheric Pressure:	1010mbar	(41)

5.3 Test Condition

Test channel:

Took Mode	T ₁ /D ₁ /	RF Channel			
Test Mode	Tx/Rx	Low(L)	Middle(M)	High(H)	
902 11h/a/a/LIT20)	2412MHz ~2462 MHz	Channel 1	Channel 6	Channel11	
802.11b/g/n(HT20)	24 2 VIH2 ~2402 VIH2	2412MHz	2437MHz	2462MHz	
Transmitting mode:	The EUT transmitted the continuous signal at the specific channel(s).				

Test mode:

Pre-scan under all rate at lowest channel 1

Mode			802	2.11b					
Data Rate	1Mb	os 2MI	ops	5.5Mbps	11Mbp	s		>	
Power(dBm)	13.2	5 13	.87	14.01	14.26		/25		
Mode	(63)			(63	80	2.11g	(65)		(6
Data Rate	6Mb	ps 9M	bps	12Mbps	18Mbps	s 24Mbp	s 36Mbp	s 48Mbps	54Mbps
Power(dBm) 18.4	0 18	.20	18.00	17.85	17.64	17.21	17.01	16.87
Mode		1	2/		802.11n	(HT20)		/15	
Data Rate	6.5Mbps	13Mbp	s 1	9.5Mbps	26Mbps	39Mbps	52Mbps	58.5Mbps	65Mbps
Power(dBm)	18.56	18.34		18.14	17.94	17.75	17.54	17.21	17.01

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20).

6 General Information

6.1 Client Information

Applicant:	Shenzhen Chuangwei Electronic Appliance Tech Co., Ltd.
Address of Applicant:	4F & 6F, Overseas plant south, Skyworth Industrial Park, Shiyan Street, Bao'an District, Shenzhen, P. R. China
Manufacturer:	Shenzhen Chuangwei Electronic Appliance Tech Co., Ltd.
Address of Manufacturer:	4F & 6F, Overseas plant south, Skyworth Industrial Park, Shiyan Street, Bao'an District, Shenzhen, P. R. China
Factory:	Shenzhen Chuangwei Electronic Appliance Tech Co., Ltd.
Address of Factory:	4F & 6F, Overseas plant south, Skyworth Industrial Park, Shiyan Street, Bao'an District, Shenzhen, P. R. China

6.2 General Description of EUT

Product Name:	10 inch WIFI D	10 inch WIFI Digital Photo Frame		
Model No.(EUT):	Skylight 2, D10	Skylight 2, D104S		
Test Model No.:	Skylight 2		(4)	
Trade Mark:	N/A		6	
EUT Supports Radios application:	5GHz: Wi-Fi: U U-NII-2C: 5.47	802.11b/g/n(HT20)(HT40): 2412MHz ~2472 MHz J-NII-1: 5.15-5.25GHz; U-NII-2A: 5.25-5.35GHz 0-5.725GHz; U-NII-3: 5.725-5.850GHz I1n(20MHz/40MHz)		
Power Supply:	Adapter	Model:TPA-46050150UU Input:100~240V~ 50/60Hz, 0.3A Output:5V1500mA		
Firmware version:	D104.V2.05(ma	anufacturer declare)	_0_	
Hardware version:	V01(manufactu	urer declare)	(4)	
Sample Received Date:	Nov. 19, 2018			
Sample tested Date:	Nov. 22, 2018	to Dec. 19, 2018		

6.3 Product Specification subjective to this standard

Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz	
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels	
Channel Separation:	5MHz	
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g: OFDM(64QAM, 16QAM, QPSK, BPS IEEE for 802.11n(HT20): OFDM (64QAM, 16QAM, QPSK)	
Sample Type:	Fixed production	
Test Power Grade:	N/A	
Test Software of EUT:	Ampak RFTestTool, VER:5.3(manufacturer declare)	~
Antenna Type:	Integral antenna	(25)
Antenna Gain:	4dBi@2.4G 2dBi@5G	
Test Voltage:	AC 120V, 60Hz	

Report No. : EED32K00312401 Page 8 of 82

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		6.
Operation	Frequency ea	ch of channe	el(802.11n HT4	10)			
Channe	Frequ	ency	Channel	Frequenc	cy Char	nel f	requency
1	2422	MHz	4	2437MH	z 7	128	2452MHz
2	2427	MHz	5	2442MH	z		
3	2432	MHz	6	2447MH	7		

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

	sociated oment name	Manufacture	model	serial number	Supplied by	Certification
AE1	Phone	Apple	A1367	TTF20120027	CTI	FCC
AE2	Router	HuaWei	WS550	K8E8W1531400278 4	СТІ	FCC

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

Report No. : EED32K00312401 Page 9 of 82

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Dedicted Churique emission test	4.3dB (30MHz-1GHz)
	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
46	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$

Report No. : EED32K00312401 Page 10 of 82

7 Equipment List

RF test system							
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019		
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019		
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019		
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398-0 02	(4)	01-10-2018	01-09-2019		
High-pass filter	MICRO-TRO NICS	SPA-F-63029-4		01-10-2018	01-09-2019		
DC Power	Keysight	E3642A	MY54426035	03-13-2018	03-12-2019		
PC-1	Lenovo	R4960d		03-13-2018	03-12-2019		
BT&WI-FI Automatic control	R&S	OSP120	101374	03-13-2018	03-12-2019		
RF control unit	JS Tonscend	JS0806-2	15860006	03-13-2018	03-12-2019		
RF control unit	JS Tonscend	JS0806-1	15860004	03-13-2018	03-12-2019		
RF control unit	JS Tonscend	JS0806-4	158060007	03-13-2018	03-12-2019		
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-13-2018	03-12-2019		
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019		

Page 11 of 82	Page	11	of 82	
---------------	------	----	-------	--

Conducted disturbance Test						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019	
Temperature/ Humidity Indicator	Defu	TH128	1	07-02-2018	07-01-2019	
Communication test set	Agilent	E5515C	GB47050 534	03-16-2018	03-15-2019	
Communication test set	R&S	CMW500	152394	03-16-2018	03-15-2019	
LISN	R&S	ENV216	100098	05-10-2018	05-10-2019	
LISN	schwarzbeck	NNLK8121	8121-529	05-10-2018	05-10-2019	
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020	
Current Probe	R&S	EZ-17 816.2063.03	100106	05-30-2018	05-29-2019	
ISN	TESEQ	ISN T800	30297	02-06-2018	02-05-2019	

Report No. : EED32K00312401 Page 12 of 82

	3M	Semi/full-anecho			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	10-28-2018	10-27-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC051845SE	980380	01-19-2018	01-18-2019
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021
Horn Antenna	ETS-LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	6042	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041	06-05-2018	06-04-2021
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Receiver	R&S	ESCI7	100938- 003	11-22-2017	11-23-2018
Receiver	R&S	ESCI7	100938- 003	11-23-2018	11-22-2019
Multi device Controller	maturo	NCD/070/10711 112		01-10-2018	01-09-2019
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019
Signal Generator	Agilent	E4438C	MY45095 744	03-13-2018	03-12-2019
Signal Generator	Keysight	E8257D	MY53401 106	03-13-2018	03-12-2019
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB47050 534	03-16-2018	03-15-2019
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019
Cable line Communication	Fulai(3M) R&S	SF106 CMW500	5217/6A 104466	01-10-2018 02-05-2018	01-09-2019 02-04-2019
test set High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398- 002		01-10-2018	01-09-2019
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	('A)	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001	(C.)	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001		01-10-2018	01-09-2019

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
Test R	esults List:	

oot itoodito biot.				
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Appendix A): Conducted Peak Output Power

Result Table

Mode	Channel	Conducted Peak Output Power [dBm]	Verdict
11B	LCH	14.26	PASS
11B /	MCH	15.73	PASS
11B	НСН	13.91	PASS
11G	LCH	18.4	PASS
11G	MCH	20.48	PASS
11G	НСН	18.46	PASS
11N20SISO	LCH	18.56	PASS
11N20SISO	MCH	20.07	PASS
11N20SISO	НСН	18.2	PASS

Test Graph

Report No.: EED32K00312401

Page 16 of 82

Report No. : EED32K00312401 Page 18 of 82

Appendix B): 6dB Occupied Bandwidth

Result Table

		The second secon		The State of the S	
Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
11B	LCH	8.558	11.992	PASS	
11B	MCH	9.026	12.056	PASS	(1)
11B	нсн	8.583	12.083	PASS	(6)
11G	LCH	16.32	16.434	PASS	
11G	MCH	16.30	16.416	PASS	Peak
11G	НСН	16.32	16.447	PASS	detector
11N20SISO	LCH	16.98	17.638	PASS	
11N20SISO	MCH	16.92	17.612	PASS	
11N20SISO	HCH	17.08	17.625	PASS	500

Test Graph

Report No. : EED32K00312401 Page 22 of 82

Appendix C): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	3.272	-50.325	-26.73	PASS
11B	НСН	3.228	-50.127	-26.77	PASS
11G	LCH	-0.435	-47.254	-30.44	PASS
11G	НСН	-0.855	-46.808	-30.86	PASS
11N20SISO	LCH	-0.247	-42.120	-30.25	PASS
11N20SISO	HCH	-0.689	-47.150	-30.69	PASS

Report No. : EED32K00312401 Page 23 of 82

Test Graph

Report No. : EED32K00312401 Page 24 of 82

Report No. : EED32K00312401 Page 25 of 82

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	4.445	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	4.243	<limit< td=""><td>PASS</td></limit<>	PASS
11B	НСН	3.289	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	1.128	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	0.835	<limit< td=""><td>PASS</td></limit<>	PASS
11G	нсн	0.195	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	0.608	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	1.006	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	НСН	0.095	<limit< td=""><td>PASS</td></limit<>	PASS

Report No. : EED32K00312401 Page 26 of 82

Test Graph

Report No. : EED32K00312401 Page 28 of 82

Report No. : EED32K00312401 Page 29 of 82

Report No. : EED32K00312401 Page 30 of 82

Report No. : EED32K00312401 Page 31 of 82

Report No. : EED32K00312401 Page 32 of 82

Appendix E): Power Spectral Density

Result Table

Ttooutt Tub			1000 0	
Mode	Channel	Power Spectral Density[dBm/3kHz]	Limit [dBm/3kHz]	Verdict
11B	LCH	-12.225	8	PASS
11B	MCH	-10.274	8	PASS
11B	HCH	-11.458	8	PASS
11G	LCH	-13.064	8	PASS
11G	MCH	-10.791	8	PASS
11G	НСН	-12.804	8	PASS
11N20SISO	LCH	-13.467	8	PASS
11N20SISO	MCH	-11.685	8	PASS
11N20SISO	НСН	-13.784	8	PASS

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Test Graph

Report No.: EED32K00312401 Page 35 of 82

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 4dBi.

Report No.: EED32K00312401 Page 37 of 82

Appendix G): AC Power Line Conducted Emission

Test Procedure: Test frequency range: 150KHz-30MHz 1)The mains terminal disturbance voltage test was conducted in a shielded room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2. which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The rear of the EUT

Limit:

Fraguanay ranga (MUT)	Limit (dBμV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

⁵⁾ In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

NOTE: The lower limit is applicable at the transition frequency

Report No.: EED32K00312401 Page 38 of 82

Product: 10 inch WIFI Digital Photo Model/Type reference: Skylight 2

Temperature : 24° Humidity : 53%

Phase : L

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasuren (dBu∀)		Lin (dB			rgin fB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	33.45	30.02	19.75	9.91	43.36	39.93	29.66	65.99	55.99	-26.06	-26.33	Р	
2	0.1660	29.89	25.70	12.29	9.91	39.80	35.61	22.20	65.15	55.15	-29.54	-32.95	Р	
3	0.1940	28.80	25.14	9.11	9.91	38.71	35.05	19.02	63.86	53.86	-28.81	-34.84	Р	
4	0.2500	27.19	24.26	8.91	9.89	37.08	34.15	18.80	61.75	51.75	-27.60	-32.95	Р	
5	0.5740	25.27	21.38	12.59	9.84	35.11	31.22	22.43	56.00	46.00	-24.78	-23.57	Р	
6	12.0219	26.30	23.48	5.88	10.08	36.38	33.56	15.96	60.00	50.00	-26.44	-34.04	Р	

Report No.: EED32K00312401 Page 39 of 82

Product: 10 inch WIFI Digital Photo Model/Type reference: Skylight 2

Temperature : 24° Humidity : 53%

Phase : N

No. Freq.		Reading_Level (dBuV)			Correct Factor	Measurement (dBuV)			Limit (dBu∀)		Margin (dB)			
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	32.36	29.18	19.25		42.27	39.09	29.16		55.99	-26.90	-26.83	Р	
2	0.5820	27.72	24.35	21.84	9.84	37.56	34.19	31.68	56.00	46.00	-21.81	-14.32	Р	
3	1.0940	22.96	19.12	12.57	9.81	32.77	28.93	22.38	56.00	46.00	-27.07	-23.62	Р	
4	2.3179	21.54	17.42	10.42	9.72	31.26	27.14	20.14	56.00	46.00	-28.86	-25.86	Р	
5	4.3540	20.97	17.56	9.91	9.72	30.69	27.28	19.63	56.00	46.00	-28.72	-26.37	Р	
6	12.0260	24.09	20.17	11.83	10.08	34.17	30.25	21.91	60.00	50.00	-29.75	-28.09	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Radiated)	(6)	16.00	/		N.3 - J	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	(
		Peak 1MHz		3MHz	Peak	-05
	Above 1GHz	Peak	1MHz	10Hz	Average	(65)
Test Procedure:	a. The EUT was placed of at a 3 meter semi-aned determine the position. b. The EUT was set 3 meters was mounted on the total control of the antenna height is a determine the maximum polarizations of the antenna was tuned was turned from 0 degree. The test-receiver systematical at a semi-anal discourse of the antenna was turned from 0 degree.	nre as below: In the top of a rot choic camber. The of the highest ranters away from the post of a variable-head are set to make a set to make a set to make a set to heights from the set to 360 degreem was set to Pear to P	ating table e table wa diation. he interfere eight anter meter to foeld strength make the mwas arran 1 meter to ees to find	ence-receinna tower. ur meters b. Both horneasuremeged to its value maxim	rs above the 360 degrees ving antenna above the grizontal and vent. worst case along the rotate and the rotate and reading.	to a, whice ound to vertical and the able
	f. Place a marker at the of frequency to show combands. Save the spectr	end of the restrict	easure any	emissions	s in the restri	
	f. Place a marker at the	end of the restrict apliance. Also me rum analyzer plot channel wre as below: we is the test site, aber change form 1 meter and table west channel, the ments are perford found the X axi	easure any t. Repeat f , change fr n table 0.8 e is 1.5 me ne Highest med in X, is positioni	om Semi- meter to 1 eter). channel Y, Z axis p	Anechoic Ch.5 meter(Aboositioning for tis worse car	dulation nambe ove
imit:	f. Place a marker at the efrequency to show combands. Save the spectron for lowest and highest Above 1GHz test procedured. g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the lower in the radiation measure Transmitting mode, and	end of the restrict apliance. Also me rum analyzer plot channel wre as below: we is the test site, aber change form 1 meter and table west channel, the ments are perford found the X axi	easure any t. Repeat f , change fr n table 0.8 e is 1.5 me ne Highest med in X, is positioni	om Semi- meter to 1 eter). channel Y, Z axis p ng which in	Anechoic Ch.5 meter(Aboositioning for tis worse car	dulation nambe ove
imit:	f. Place a marker at the efrequency to show combands. Save the spectron for lowest and highest Above 1GHz test procedure. G. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the lower in the radiation measure that the test of the radiation measure to t	end of the restrict apliance. Also me rum analyzer plot channel ure as below: ve is the test site, aber change form 1 meter and table west channel, the ments are perford found the X axines until all frequence.	casure any t. Repeat f , change fr n table 0.8 e is 1.5 me ne Highest med in X, is positioni dencies me	om Semi- meter to 1 eter). channel Y, Z axis p ng which in easured wa	Anechoic Ch.5 meter(Aboositioning for is worse cases complete.	dulation nambe ove
imit:	f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest. Above 1GHz test procedured g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the lower in the rediation measure the Transmitting mode, and j. Repeat above procedure. Frequency	end of the restrict apliance. Also me rum analyzer plot channel are as below: The is the test site, aber change form 1 meter and table towest channel, the ments are performed found the X axions are until all frequents (dBµV/r).	easure any t. Repeat f change from table 0.8 e is 1.5 me ne Highest med in X, is positioni dencies me m @3m)	om Semi- meter to 1 eter). channel Y, Z axis p ng which in easured wa	Anechoic Cr.5 meter(Abecositioning for its worse cases complete.	dulation nambe ove
imit:	f. Place a marker at the efrequency to show combands. Save the spectro for lowest and highest Above 1GHz test procedured. g. Different between above to fully Anechoic Chammand 18GHz the distance is how the fully and the fully in the lowest transmitting mode, and it is requency and the frequency an	end of the restrict apliance. Also me rum analyzer plot channel ure as below: ve is the test site, aber change form 1 meter and table west channel, the ments are performed found the X axines until all frequences. Limit (dBµV/rimeter)	casure any t. Repeat f t. Repeat f table 0.8 e is 1.5 me ne Highest med in X, is positioni iencies me m @3m)	om Semi- meter to 1 eter). channel Y, Z axis p ng which in asured wa Rer Quasi-pe	Anechoic Ch.5 meter(About 15 worse care as complete.	dulation nambe ove
Limit:	f. Place a marker at the efrequency to show combands. Save the spectron for lowest and highest Above 1GHz test procedure. G. Different between above to fully Anechoic Chaman 18GHz the distance is h. Test the EUT in the low in the radiation measure. Transmitting mode, and in the procedure. Frequency 30MHz-88MHz 88MHz-216MHz	end of the restrict apliance. Also me rum analyzer plot channel Ire as below: Ire is the test site, aber change form 1 meter and table west channel, the ments are performed found the X axis res until all frequency. Limit (dBµV/r) 40.0 43.5	easure any t. Repeat f , change fr n table 0.8 e is 1.5 me ne Highest med in X, is positioni iencies me m @3m)	om Semi- meter to 1 eter). channel Y, Z axis p ng which in asured wa Rer Quasi-pe Quasi-pe	Anechoic Ch.5 meter(Abecositioning for tis worse cases complete.	dulation nambe ove
Limit:	f. Place a marker at the efrequency to show combands. Save the spectro for lowest and highest Above 1GHz test procedured. g. Different between above to fully Anechoic Chamman 18GHz the distance is how the fully Anechoic Chamman 18GHz the distance is how the fully Anechoic Chamman 18GHz the distance is how the fully Anechoic Chamman 18GHz the distance is how the fully Anechoic Chamman 18GHz the distance is how the fully Anechoic Chamman 18GHz the distance is how the fully Anechoic Chamman 18GHz the distance is how the fully Anechoic Chamman 18GHz the distance is how the fully Anechoic Chamman 18GHz the distance is how the fully Anechoic Chamman 18GHz the distance is how the fully Anechoic Chamman 18GHz the distance is how the fully Anechoic Chamman 18GHz the distance is how the fully Anechoic Chamman 18GHz the distance is how the fully Anechoic Chamman 18GHz the distance is how the fully Anechoic Chamman 18GHz the distance is how the fully Anechoic Chamman 18GHz the distance is how the fully Anechoic Chamman 18GHz the distance is how the fully Anechoic Chamman 18GHz the distance is how the fully Anechoic Chamman 18GHz the fully Anechoic	end of the restrict apliance. Also me rum analyzer plot channel vere as below: vere is the test site, aber change form 1 meter and table towest channel, the ments are performed found the X axion res until all frequency Limit (dBµV/rum 40.0) 43.5 46.0	easure any t. Repeat f t. Repeat f t table 0.8 e is 1.5 me ne Highest med in X, is positioni dencies me m @3m)	om Semi- meter to 1 eter). channel Y, Z axis p ng which in asured wa Rer Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch.5 meter(Above sitioning for the second	dulation nambe ove

