

 \mathcal{O}

基

礎

知

#283

骨髄球系の単球・マクロファージ・樹状細胞

https://l-hospitalier.github.io

2021.4

→ ② → ⑥ → ⑧ 顆粒球 (好中球 好強基球) 骨髓芽球 前骨髓球 骨髓球 $\bullet \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \bigcirc$ 顆粒球系 単芽球 前単球 単球系幹細胞 単球 マクロファージ 0 $\bullet \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc$ 骨髓系 造血幹細胞 赤血球系幹細胞 前赤芽球 赤芽球 赤血球 (a). \bullet (a) \rightarrow (b) 血小板系幹細胞 巨核球 血小板 多能性 造血幹細胞 • (6) Tリンパ芽球

【白血球】の中では骨髄系が重要な役割を持つ。 顆粒球については血算で細菌感染反応を日常的に見ているが単球ーマクロファージ(貪食細胞、組織球とも)は 1892 年 【. メチニコフが食作用を発見。 白血球の 45%は好中球。好酸球と好塩基球は合計 10%程度。 リンパ球は 40%で単球ーマクロファージ系は5%。 単球は 48 時間血流に滞在後組織に遊走してマクロファージ(組織球)となる。組織での寿命は数か

レフ・トルストイ (左) とイリヤ・メチニコフ (右)。 下はパウ ル・ランゲルハンス

月で分裂して増殖も可能。
【単球系の悪性化】
は急性単球性白血病、悪性繊維性組織球腫(MFH)、ランゲルハンス細胞組織球症(1953 年リヒテンシュタインが Hand-Schüller-Christian 病、好酸球性肉芽腫症、Letterer-Siwe 病など組織球浸潤を伴う疾患をまとめてヒスチオサイトーシス X と呼ぶことを提案、1987 年国際学会はランゲルハンス細胞組織球症と命名)など。 1973 年ラルフ・スタインマン(加)は骨髄系造血幹細胞由来でマクロファージとは異なる貪食能を持つ細胞を発見、樹状細胞(dendritic cell)と命名(2011 年ノーベル賞。 樹状細胞は上図には記載されていない)。 【樹状細胞】はマクロファージ、顆粒球に次ぐ第3の貪食細胞。 皮膚の樹状細胞はランゲルハンス細胞*1 とよばれる*2。 樹状細胞の貪食能はマクロファージが異物をファゴサイトーシスで細胞内に取り込み(ファゴゾーム)、リソソームと融合してファゴリソゾームになりH2O2やNOで殺菌処理するのと異なり、貪食した異物の化学構造をT細胞に提示する

上から単塚、マクロ ファージ、樹状細胞

抗原提示細胞(APC antigen presenting cell)として機能。 樹状細胞は 末梢組織で病原体の粒状物質を貪食、活性化されるとリンパ管を通って リンパ節に入る(左図)。 リンパ節でナイーブ<mark>【T細胞】</mark>と接触、活

性化する。ナイーブ T 細胞には $CD8^+$ と $CD4^+$ があり $CD8^+$ は細胞障害性 T 細胞になる。 $CD4^+$ 細胞には $T_{H}1$ (helper T cell 1) と $T_{H}2$ があり $T_{H}1$ は \mathbb{O} マクロファージを活性化して細胞内寄生生物(結核菌/癩菌)の制御 \mathbb{O} \mathbb{O} サイトカイン産生、 \mathbb{O} $\mathbb{$

用して抗体を産生させる。 結核菌はマクロファージ内小胞に感染し生存を続けることができる (このため細胞壁作用型の抗生剤無効)。 しかし適切な T_H1 細胞が結核に感

activates

染したマクロファージを検出すると T_{H1} はリソゾーム融合を起こしマクロファージの殺菌活性を誘導するサイトカインを放出、結核菌は死滅 (左図)。 T_{H2} はナイーブ B 細胞を活性化が主な役割。 細胞障害性の【 $CD8^{\dagger}T$ 細胞】は感染した標的細胞の MHC1 分子と結合、【 $CD4^{\dagger}T$ 細胞】は MHC2 分子と結合する。 MHC1 分子は細胞質内で(ウイルスにより)合成された蛋白由来ペプチドと結合し MHC2 分子は細胞の小胞蛋白由来のペプチドと選択

的に結合するので CD8⁺T 細胞はウイルス感染、CD4⁺T 細胞は細菌感染に有効。 MCH1 は全ての細胞に発現しており、ウイルス感染細胞は CD8⁺T 細胞で捕捉されて殺される。 一方 CD4⁺T 細胞が活性化するのは樹状細胞、マクロファージ、B 細胞に限られる。

¹1868 年 P ランゲルハンスが皮膚で発見、実は樹状細胞であった。 翌 1869 年膵のランゲルハンス島を発見。² 単球・マクロファージ系と樹状細胞の関係は樹状細胞は単球由来という説明もあり、今一つはっきりしない。 Janeway 「免疫生物学」7 販 p5 は共通骨髄系幹細胞から別系列のように記載。