

PROGRAMA DE ASIGNATURA¹

NOMBRE ASIGNATURA: Inteligencia Artificial

Código: INFO267

Identificación general					
	Jorge MATURANA				
Docente	jorge.maturana@inf.uach.cl				
responsable	Eliana SCHEIHING	Docentes colaboradores			
	escheihi@inf.uach.cl	Correo electrónico			
Correo electrónico	Pablo HUIJSE				
	phuijse@inf.uach.cl				
	Lunes 9.50 hrs – 11.20 hrs				
Horario y	Martes 11.30 hrs – 13.00 hrs				
sala de clases	Viernes 11.30 hrs – 13.00 hrs				
	Edificio 10.000 – Sala Llancahue				
Año y semestre	2019 – Segundo semestre				

Programa de Asignatura aprobado por Vicerrectoría Académica, Resolución N°140, 2014.

	Antece	edentes	de la asign	atura, se	egún proyec	cto curricular de l	a carrera			
Unidad Académica	Instituto de Informática		Carrera	arrera Ingeniería civil en Informática		Semest	re en plan de	(nuev	estre X ra malla: estre VII)	
Asignaturas- requisito (con código)	Programación (nueva malla: - Programació - Diseño y aná	n en para	adigmas fun	ŕ	paralelo		Créditos SCT-Chile 6			
Horas cronológicas semestre	Teóricas presenciales	36	Práctic		36	Trabajo Autónomo	80	Total	<u> </u>	252
Ciclo formativo	Bachillerato		Licenci	atura	(nueva malla: X)	Profesional	x			
Área de formación	Especialidad	X	Genera	al		Vinculante-prof esional		Optativa		
Descripción de la asignatura	temáticas ref	eridas a	inteligenc	ia artific	ial, aplican	omo principal pr do estrategias de ísticas para resol	e aprendi	izaje supervis	sado, a	

Competencias	Nivel de de	ominio que alca	nza la competer	ncia en la asigna
-Específicas:	Básico	Medio	Superior	Avanzado
C4-Aplicar principios de la ciencias de la computación, para el				
manejo de la información y conocimiento				
				X
d2- Modela soluciones basado en los principios, teorías, modelos y				
técnicas de ciencias de la computación para manejar información y				
conocimiento.				
C5-Desarrollar soluciones robustas y eficientes que manejan				
información y conocimiento, considerando un enfoque				
sistémico e integrando teoría y práctica				V
				X
d1- Diseña programas computacionales considerando un enfoque				
sistémico e integrando teoría y práctica				x
d2- Implementa programas computacionales considerando un				
enfoque sistémico e integrando teoría y práctica				

-Genéricas:	Básico	Medio		Superior	Avanzado
C3- Manifestar una actitud innovadora, emprendedora y de adaptación al cambio en contextos globales y locales del ejercicio de la Ingeniería Civil en Informática.					
d1- Examina escenarios que ejemplifican acciones asociadas a la innovación, emprendimiento y cambio, en el contexto de las experiencias formativas que la UACh ofrece a los estudiantes			X		
-Sello:	Básico	Medio		Superior	Avanzado
C1- Demostrar compromiso con el conocimiento, la naturaleza y el					
desarrollo sustentable, en el contexto formativo del desarrollo					
personal y profesional del estudiante sello UACh			X		
d2- Asume posturas críticas frente a las acciones de compromiso con el					
conocimiento, la naturaleza y el desarrollo sustentable, en el contexto					
de las experiencias formativas que la UACh ofrece a los estudiantes					

Programación por Unidades de Aprendizaje							
Unidad 1: Aprendizaje Supervisado Pablo Huijse (13 clases: 26/08 – 24/09) • Fundamentos: Ambiente Jupyter, Álgebra lineal, Función de costo, Optimización, Aprendizaje, Validación, Sobreajuste, Generalización, Regularización • Algoritmos clásicos de	Programación Resultados de aprendizaje Es capaz de - Aplicar un protocolo de aprendizaje supervisado para resolver un problema de clasificación utilizando un entorno de programación en Python - Describir los conceptos y algoritmos utilizado para entrenar ensambles de árboles y redes neuronales	Estrategias de enseñanza y aprendizaje - Clases prácticas-guiadas con uso de cuadernos interactivos Jupyter para definir conceptos y ponerlos en práctica de manera progresiva. - Clases Expositivas-Activas: con uso de preguntas orientadas a que los estudiantes expliquen	Estrategias de evaluación de los aprendizajes y ponderación Evaluación sumativa con calificación basada: - una parte práctica (aplicar un protocolo de aprendizaje supervisado y explicar el rendimiento de un modelo de clasificación) - una parte teórica (describir las	Horas presencial es 19,5 horas	Horas de trabajo autónomo 19,5 horas		
 Algoritmos clásicos de aprendizaje supervisado: Árbol de decisión, Neurona Artificial, Ensambles de árboles (Random Forest, Gradient Boosting), Red Neuronal MLP Aprendizaje profundo con aplicaciones en visión computacional: Red Neuronal Convolucional para clasificar, localizar y segmentar imágenes Práctica: Python, Scikit-Learn, Pytorch 	1		· ·				

Unidad 2:Algoritmos de optimización bioinspirados Jorge Maturana (9 clases: 27/09 – 21/10)	Reconocer los conceptos subyacentes a una búsqueda metaheurística Aplicar un algoritmo de optimización bioinspirado en un problema de optimización	- Clases teórico - prácticas para exposición de conceptos clave - Clases prácticas guiadas para la profundización de los conceptos, organización del trabajo en equipo, e implementación de los algoritmos bioinspirados	Evaluación sumativa con calificación basada: - una parte práctica (desarrollar un algoritmo bioinspirado que resuelva un problema de optimización simple) - una parte teórica (describir los conceptos asociados al proceso de optimización utilizados por los algoritmos bioinspirados) Fecha teórico: Lunes 21 de Octubre	16,5 horas	16,5 horas
Unidad 3: ¿Cómo una máquina puede resolver problemas de agrupamiento? Eliana Scheihing (11 clases: 22/10 – 18/11) • Fundamentos: métricas en R ⁿ , mezcla de distribuciones de	- Aplicar un protocolo de aprendizaje no supervisado para resolver un problema de agrupamiento utilizando un entorno de programación en R y escogiendo el algoritmo más adecuado	-Talleres guiados con uso de cuadernos interactivos Jupyter para definir conceptos y ponerlos en práctica de manera progresiva	Evaluación sumativa con calificación basada: - una parte práctica (aplicar un protocolo de aprendizaje no supervisado, escogiendo el algoritmo más	16,5 horas	16,5 horas

			T	
probabilidad, algoritmo		-Clases	adecuado para los	
EM de optimización.	- Describir los conceptos y	Expositivas-Activas:	datos analizados y	
	estrategias asociadas a	con uso de preguntas	explicando la calidad	
 Algoritmos de 	los algoritmos de	orientadas a que los	del análisis de	
agrupamiento: kmeans,	agrupamiento kmeans,	estudiantes expliquen	agrupamiento)	
mezcla de normales,	mezcla de normales,	el rendimiento de un	- una parte teórica	
jerárquico, mapas	jerárquico y mapas	modelo de	(describir las	
autoorganizados.	autoorganizados.	agrupamiento y	características de	
		describan las	algoritmos de	
		características de los	aprendizaje no	
		algoritmos de	supervisado)	
		aprendizaje.		
			Fecha teórico:	
			Lunes 18 de	
			noviembre 9:50am	

Unidad 4: Aprendizaje		- Clases	Evaluación	16,5 horas	16,5 horas
Reforzado	- Aplicar un protocolo de	prácticas-guiadas	sumativa con		
Pablo Huijse (11 clases: 19/11 –	aprendizaje reforzado	con uso de cuadernos	calificación basada:		
13/12)	para entrenar agentes que	interactivos <i>Jupyter</i>	- una parte práctica		
	tomen una secuencia de	para definir conceptos	(aplicar un protocolo		
 Conceptos básicos: 	decisiones para resolver	y ponerlos en práctica	de aprendizaje		
Agentes, Acciones,	problemas complejos de	de manera progresiva.	reforzado y explicar		
Estados, Decisiones,	forma óptima utilizando un		los resultados)		
Recompensas,	entorno de programación	- Clases	- una parte teórica		
Exploración y	en Python	Expositivas-Activas:	(describir las		
Explotación		con uso de preguntas	características de		
 Aprendizaje reforzado 	- Describir los conceptos y	orientadas a que los	algoritmos de		
clásico: Q-Learning y	algoritmos utilizado para	estudiantes expliquen	aprendizaje		
Q-networks	entrenar modelos de	el rendimiento de un	reforzado)		
 Aprendizaje reforzado 	aprendizaje reforzado	modelo de			
profundo: Deep		clasificación y	Fecha teórico:		
Q-networks (DQN)		describen las	Viernes 6 de		
		características de los	Diciembre 11:30am		
		algoritmos de			
Práctica:		aprendizaje.			
Python, PyTorch					

Requisitos de aprobación

- La asistencia al curso es obligatoria en los términos definidos por el reglamento de la UACh
- La ausencia no justificada a una prueba implicará una nota de 1.0 en la dicha prueba

Normas de Evaluación

Cada unidad será evaluada con un taller práctico y un control escrito. Los promedios de talleres y controles constituirán dos calificaciones parciales independientes, T y C respectivamente.

La nota final se calculará como sigue:

```
Sea Nm = min(T,C),

si Nm >= 4,0 entonces

NF = (T+C)/2

sino

NF=Nm < 4,0 y el estudiante reprueba el curso.
```

El curso no contempla examen

Recursos de aprendizaje

Bibliografía obligatoria:

- I. Goodfellow and Y. Bengio and A. Courville, "Deep Learning", MIT PRESS, 2016, http://www.deeplearningbook.org/
- A. Ng, "Machine learning Yearning", (En desarrollo), https://www.deeplearning.ai/machine-learning-yearning/
- C. Reed (2018). How should we regulate artificial intelligence? PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 376.
- V. Francois-Lavet, et al., "An Introduction to Deep Reinforcement Learning", Foundations and Trends in Machine Learning: Vol. 11, No. 3-4, 2018, https://arxiv.org/abs/1811.12560
- Trevor Hastie, Robert Tibshirani, Jerome Friedman, "The Elements of Statistical Learning: Data Mining, Inference and Prediction", Springer, 2008, https://web.stanford.edu/~hastie/Papers/ESLII.pdf

Otros recursos

- Medio de comunicación: https://escueladeinformatica.slack.com

Channel: info267-i_artificial		