

Soluciones Tarea Obligatoria II Métodos Matemáticos Física II

¹Vicente Herrera, ²Marcelo Órdenes, ³Felipe Ortiz, ⁴Fabián Trigo.

 $^{1,2,3,4} Estudiantes de 3er.$ año de la Licenciatura en Física

 $Universidad\ de\ Valpara\'iso,\ Facultad\ de\ Ciencias,\ CHILE.$

 $^1vicente.herrera@alumnos.uv.cl$

 2 marcelo.ordenes@alumnos.uv.cl

 $^3felipe.ortiza@alumnos.uv.cl$

⁴ fabian.triqo@alumnos.uv.cl

10 de junio de 2020

Problema I: Campo Eléctrico y plano infinito cargado

A) Del enunciado tenemos que el plano es infinito y está cargado en toda su extensión, es decir, $\sigma_0 = cte$. Además, esta distribibución de carga coincide con el plano xy. Por otro lado, el campo eléctrico vectorialmente es perpendicular al plano cargado y su magnitud es $|\vec{E}| = \frac{\sigma_0}{2\epsilon_0}$. Se nos pide demostrar para el punto $\vec{R} = (0, 0, z_0)$ que la componente z del campo eléctrico se puede escribir como:

$$E_z = \vec{E} \cdot \hat{k} = |\vec{E}| = ALGO \cdot \int_{-\infty}^{\infty} \frac{dxdy}{(x^2 + y^2 + z_0^2)^{\frac{3}{2}}}$$

Y determinar ese factor ALGO.

- B)
- C)
- D)

Problema II: MoB y funciones singulares en el origen

- A)
- B)

1	4	1	
L)	

D)

E)

Problema III: Integraciones varias

- A)
- B)
- C)