近世代数课后习题作业1部分参考解答

3.

证明: 只须证: 对 $\forall x, y \in S$, 若有 $(a \circ b) \circ x = (a \circ b) \circ y$, 则必有x = y。

由 结 合 律 知 $(a\circ b)\circ x=a\circ (b\circ x)$, $(a\circ b)\circ y=a\circ (b\circ y)$, 从 而 $a\circ (b\circ x)=a\circ (b\circ y)$, 又 a 为左消去元, 故有 $b\circ x=b\circ y$, 而 b 也为左消去元, 所以有 x=y 。

4.

证明:由普通加法和乘法满足交换律知所定义的二元运算"。"满足交换律。

- 1) 证(M,o) 为幺半群
- ①由定义知二元运算"。" 显然为M上的一个二元代数运算,即(M. \circ)为一代数系;
- ②又对 $\forall (x_1, y_1), (x_2, y_2), (x_3, y_3) \in M$ 有:

$$((x_1, y_1) \circ (x_2, y_2)) \circ (x_3, y_3) = (x_1, y_1) \circ ((x_2, y_2) \circ (x_3, y_3))$$
,即满足结合律。

- ③单位元: 对 $\forall (x, y) \in M$ 有 $(1,0) \circ (x, y) = (x, y) \circ (1,0) = (x, y)$
- 2) 左消去元

$$(x_1, x_2) \circ (z_1, z_2) = (x_1 z_1 + 2x_2 z_2, x_1 z_2 + x_2 z_1)$$

若
$$(x_1y_1 + 2x_2y_2, x_1y_2 + x_2y_1) = (x_1z_1 + 2x_2z_2, x_1z_2 + x_2z_1)$$
,则:

$$x_1(y_1 - z_1) + 2x_2(y_2 - z_2) = 0$$

$$x_1(y_2 - z_2) + x_2(y_1 - z_1) = 0$$

可得:
$$2x_2^2(y_2-z_2)=x_1^2(y_2-z_2)$$
, 即 $(x_1^2-2x_2^2)(y_2-z_2)=0$

因为
$$x_1^2 - 2x_2^2 \neq 0$$
所以 $y_2 - z_2 = 0$,从而 $y_1 - z_1 = 0$

5.

6.

证明: 设(S, \circ) 为有限半群,且|S|=n。设b\inS,则可得: b^1 , b^2 ,..., b^n , b^{n+1} $\in S$ 则由S 的有限性知, $\exists i, j \in [1, n+1]$ 使得 $b^j = b^i$,不妨设 j > i,即 j = i + k,k > 0。从而有: $b^i \circ b^k = b^i$,则两边同时连续左乘b 可得 $b^p \circ b^k = b^p$,且满足 $p = q \cdot k$,从而运用递归调用可得 $b^p = b^p \circ b^{2k} = \cdots = b^p \circ b^{qk}$,即 $b^p \circ b^p = b^p$,令 $a = b^p$ 即可。

7.

证明:

- I. 证(*M*,*)为半群:
- 1) 由"*"定义知满足封闭性;
- 2) 显然"*"满足结合律。
- II. 设 e' 为 (M,*) 的单位元,则对 $\forall a \in M$,有 a*e'=e'*a=a ,即 $a \circ m \circ e'=a$, $e' \circ m \circ a=a$,由结合律: $a \circ (m \circ e')=a$, $(e' \circ m) \circ a=a$,由 a 的任意性知 $m \circ e'$ 与 $e' \circ m$ 为 M 关于 " \circ " 运算的左右单位元,而 (M,\circ,e) 为 么 半群,故有 $m \circ e'=e$, $e' \circ m=e$,则由逆元素的定义知 e' 为 m 关于 " \circ " 运算的逆元素,即为 m 满足的条件。

8.

证明:

- 1) 结合律:由集合论知识知集合的对称差运算" Δ "满足结合律,故(2^s , Δ)为半群;//这里结合律可以直接调用,不用再验证。
- 2) 单位元: 对 $\forall A \in 2^{S}$ 有 $\phi \Delta A = A \Delta \phi = A$;
- 3) 逆元: 对 $\forall A \in 2^s$ 有 $A\Delta A = A\Delta A = \phi$,即为自身。故 $(2^s, \Delta)$ 为群。

9.

在所有 3 次置换构成的集合 S_3 对置换的乘法构成半群 (S_3,\circ) 中,令 $A=\{(12),(23)\}$,请给出由 S_3 的子集 A 所生成的子半群 (A) 。

解: 直接对A根据生成迭代算法可得 $(A)=S_3$,即包含A的子半群只能是 S_3 。

//这里关于置换的复合运算也就是有限集合上的双射复合运算,请大家查阅前面集合论的内容,这个复合运算后面我们经常用到。//

10.

证明: 主要验证一下结合律,显然。