Thermo 1 - CM2

Rappels

Question

Vrai ou faux ? La température d'un gaz est la mesure de l'énergie cinétique totale du gaz.

- A. Vrai
- B. Faux

Énergie cinétique et température

La température ne mesure que l'énergie cinétique de translation.

Énergie totale - énergie moyenne

La température est une mesure de l'énergie moyenne.

1L d'eau (à 20°C) a 2 fois moins d'énergie que 2 L d'eau (à 20°C).

Système, variables d'état, lois d'état

Système fermé / ouvert

Système fermé:

n'échange pas de matière avec l'extérieur

Système ouvert:

échange de la matière avec l'extérieur

Système isolé

Système fermé non isolé:

échange de l'énergie avec l'extérieur

Système isolé:

n'échange ni matière, ni énergie avec l'extérieur

L'équilibre thermodynamique

Si on attend suffisamment **longtemps**, alors:

- la pression,
- la température,
- la répartition des particules,

d'un système isolé deviennent homogène.

On appelle cela l'équilibre thermodynamique.

Exemple

Variables d'états

Un système à l'**équilibre thermodynamique** est parfaitement décrit à l'échelle macroscopique par un **nombre fini** de variables.

Par exemple:

- sa pression,
- sa température,
- son nombre de particules,
- son volume.

Ces variables sont appelées variables d'états.

Pourquoi faire?

 Trouver une relation mathématique qui permette de relier les différentes variables d'états (P, T, V, n).

Pourquoi faire?

 Trouver une relation mathématique qui permette de relier les différentes variables d'états (P, T, V, n).

Hypothèse:

- La distance moyenne entre les particules est beaucoup plus grande que la taille des particules.
- Les particules interagissent uniquement lors de collisions élastiques (pas de forces inter-particulaires).
- Les particules obéissent aux lois de Newton.

Quelques conséquences

- Les particules se déplacent en lignes droites entre deux collisions.
- La **pression** est uniquement d'origine **cinétique**.

Question

L'une des deux situations suivantes ne respecte pas l'une des hypothèses du modèle de gaz parfait.

Laquelle et pourquoi?

Quelques observations

Loi de Boyle

On baisse le piston et on attend que la température redevienne identique.

On constate que la pression augmente => P ~ 1/V

La loi d'état du gaz parfait

Pour un gaz parfait, on peut **démontrer** que :

$$PV = nRT$$

ou de manière équivalente :

$$P =
ho \, rac{R}{M} \, T$$

R = 8.3 J.mol⁻¹.K⁻¹ est appelée la **constante des gaz parfaits**.

Question

Un gaz parfait est contenu dans un cylindre fermé par un piston bloqué (qui ne peut plus se déplacer).

On le chauffe et la température est alors multipliée par 2.

Comment a évolué la pression ?

- A. Elle a été multipliée par 2.
- B. Elle a été divisée par 2.
- C. Elle est restée identique.

Question

On diminue le volume par 2 à température constante.

Comment a évolué la pression ?

- A. Multipliée par 2
- B. Divisée par 2
- C. Restée identique

Le gaz parfait est-il parfait?

Le mot parfait ne veut pas dire parfait (comme moi), mais simplifié.

Ce modèle est très utilisé:

- il est la base des modèles avancés,
- Il décrit très bien les gaz courants dans les conditions habituelles,
- il est compréhensible facilement et prédit les grandes tendances.

Équation d'état

Un autre modèle : gaz de van der Waals

Une amélioration du modèle du gaz parfait :

- les particules ont un volume non négligeable,
- les particules s'attirent entre elles (forces inter-particulaires).

On obtient alors:

$$igg(P+rac{an^2}{V^2}igg)(V-nb)=nRT$$

Équation d'état

Une relation mathématique qui relie les variables d'états entre elles est appelée une **équation d'état**.

Ex:
$$PV = nRT$$

Gaz parfaits

$$igg(P+rac{an^2}{V^2}igg)(V-nb)=nRT$$

van der Waals

$$p=rac{R\,T}{V_{
m m}-b}-rac{a\,lpha}{V_{
m m}^2+2bV_{
m m}-b^2}$$

Peng Robinson

Et ensuite?

Il existe plusieurs dizaines d'équations d'états.

Le modèle du gaz parfait fonctionne très bien aux conditions standard avec de nombreux gaz (dont N_2 , O_2 donc l'air).

Dans l'industrie, on utilise soit :

- le modèle du gaz parfait,
- des lois plus complexes dans certaines configurations (ex : Peng Robinson),
- des lois d'états tabulées (pas de formule analytique) pour certains gaz.

Et pour ce cours?

Par défaut du gaz parfait (pour les gaz !).

Parfois du van der Waals (ça sera précisé).

Les transformations

Les transformations

En thermodynamique, on étude les variations entre :

- un état initial à l'équilibre,
- et un état **final** à l'**équilibre**.

Ces deux états sont décrits par des variables d'états (ex : n, T, P, V).

Dans ce cours, on étudie uniquement les systèmes fermés (donc n = cste).

Exemple

Transformations rapides ou lentes

Lors de la transformation, le système n'est pas forcément en équilibre

 \Rightarrow P, T et ρ ne sont pas forcément définis durant la transformation,

⇒ mais ils le sont à l'état initial et à l'état final.

Transformations rapides ou lentes

Lors de la transformation, le système n'est pas forcément en équilibre

- \Rightarrow P, T et p ne sont pas forcément définis durant la transformation,
- ⇒ mais ils le sont à l'état initial et à l'état final.

Cependant, si la transformation est **très lente**, alors le système a le temps de revenir **proche d'un état d'équilibre** :

- la transformation est dite quasi statique
- le gaz est homogène : P, T et ρ sont définis à chaque instant.

Représentation graphique

Pour un système fermé (**n fixé**), **3** variables sont suffisantes pour décrire le système (ex : P, V, T).

Mais on dispose aussi d'une équation d'état (ex : PV = n R T).

Donc 2 variables **suffisent à décrire le système**.

Ex: Pet V, Pet Tou Vet T.

Diagramme PV

Diagramme PV

Diagramme PV

Diagramme PV

Question

La transformation représentée est-elle quasi statique ?

- A. Oui
- B. Non
- C. Je ne sais pas

Les transformations usuelles

Trois transformations quasi statiques (lentes) sont très utilisées :

- isotherme.
- isochore,
- isobare.

Transformation isotherme (T)

Deux conditions:

- La transformation est suffisamment lente pour que T soit homogène dans le gaz (=> 1 seul T pour décrire le système) - quasi statique
- La température reste constante pendant toute la transformation

Conséquence:

Pour un Gaz Parfait (GP) dans un système fermé, alors P ~ 1 / V

Transformation isotherme: exemple

La transformation isobare

Question

Quel diagramme correspond à une transformation isobare?

Question

Pour un gaz parfait, quel diagramme correspond à une transformation isobare ?

Transformations isochore

Quasi statique

V = cste

GP:P~T

Pour un système fermé

Nom	Type de transfo.	Condition	Pour un GP
Isobare	quasi statique	P = cste	V ~ T
Isotherme	quasi statique	T = cste	P ~ 1/V
Isochore	quasi statique	V = cste	P ~ T