I. Résolution d'une équation du second degré

Définition

Une équation du second degré est une équation du type $ax^2 + bx + c = 0$, où a, b et c sont des nombres quelconques avec $a \neq 0$.

Ce type d'équation possède zéro, une ou deux solutions.

Méthode

1 Pour résoudre une équation du second degré, il faut d'abord calculer le discriminant Δ (delta) de l'équation.

On a:

$$\Delta = b^2 - 4ac$$

2 Le nombre de solutions de l'équation dépend du signe de Δ :

• Si $\Delta > 0$, alors il existe deux solutions distinctes $(x_1 \text{ et } x_2)$. On a :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

• Si $\Delta = 0$, alors il existe une unique solution (x_1) . On a :

1

$$x_1 = \frac{-b}{2a}$$

• Si $\Delta < 0$, alors il n'existe aucune solution.

II. Signe d'un polynôme du second degré

Définition

Un polynôme du second degré (ou trinôme) est une expression de la forme $y = ax^2 + bx + c$ ($a \neq 0$).

Propriété

Le signe d'un polynôme du second degré dépend du signe de a et de celui du discriminant.

• Si a > 0 et $\Delta < 0$ alors le trinôme est positif.

x	$-\infty$	$+\infty$
Signe de $ax^2 + bx + c$	+	

• Si a > 0 et $\Delta = 0$ alors le trinôme est positif.

x	$-\infty$		x_1		$+\infty$
Signe de $ax^2 + bx + c$		+	0	+	

• Si a > 0 et $\Delta > 0$ alors le trinôme est négatif entre les deux solutions $(x_1$ et $x_2)$ et positif en dehors.

x	$-\infty$		x_1		x_2		$+\infty$
Signe de $ax^2 + bx + c$		+	0	_	0	+	

• Si a<0 et $\Delta<0$ alors le trinôme est négatif.

x	$-\infty$		x_1		x_2		$+\infty$
Signe de $ax^2 + bx + c$		+	0	_	0	+	

• Si a < 0 et $\Delta = 0$ alors le trinôme est négatif.

0		
-1	0	2
-2		
-3.		
-4		

x	$-\infty$		x_1		x_2		$+\infty$
Signe de $ax^2 + bx + c$		+	0	_	0	+	

• Si a < 0 et $\Delta > 0$ alors le trinôme est positif entre les deux solutions $(x_1$ et $x_2)$ et négatif en dehors.

		- 2 -			
	1		0	1	2
		-1 -			

x	$-\infty$		x_1		x_2		$+\infty$
Signe de $ax^2 + bx + c$		+	0	_	0	+	