PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ FACULTAD DE CIENCIAS SOCIALES ESPECIALIDAD DE ECONOMÍA

ESTADÍSTICA INFERENCIAL PRÁCTICA CALIFICADA 3

3 de octubre de 2015

Horario 522

Clave del curso: EST241

Ejercicio 1.

(4 puntos)

El modelo probabilístico de Pareto se caracteriza por la función de densidad de la forma siguiente: $F_{\chi_{\lambda}}(x) = F_{\chi_{\lambda}}^{(x)}(x)$

 $f(x) = \frac{\theta x_0^{\theta}}{x^{\theta+1}}, \ x > x_0,$

donde $\theta > 0$ y $x_0 > 0$ son los parámetros del modelo. Si X tiene este modelo probabilístico, denotamos esto por $X \sim Pa(x_0; \theta)$.

Observe que la función de distribución acumulada está dada por

 $F(x) = 1 - \frac{x_0^{\theta}}{x^{\theta}}, \ x > x_0.$

Sean X_1, \ldots, X_n variables aleatorias independientes e idénticamente distribuidas. Determine y, de ser posible, identifique el modelo probabilístico de $X_{(1)}$, si $X_1 \sim Pa(x_0; \theta)$.

Ejercicio 2.

(4 puntos)

Sean X e Y dos variables aleatorias independientes, $X \sim exp(\alpha)$ e $Y \sim exp(\beta)$. Determine y, de ser posible, identifique la distribución de $V := \frac{X}{X+Y}$. Primero use el método del jacobiano para hallar la función de densidad conjunta de V y y, donde y y y.

Ejercicio 3.

M=LA+M

(5 puntos)

La distribución conjunta del vector $(X, Y, Z)^t$ es normal tri-variada con vector de medias y matriz de varianzas-covarianzas:

anzas:
$$\mu = \begin{pmatrix} 40 \\ 60 \\ 80 \end{pmatrix} \quad \text{y} \quad \Sigma = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 1 & 1 & 1 \\ 2 & -1 & -1 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} \chi \\ \gamma \\ 2 & 1 & -1 \\ 2 & 1 & -1 \end{pmatrix} \begin{pmatrix} 40 \\ 60 \\ 0 & 1 & -1 \end{pmatrix}$$

respectivamente. Considere las variables $U=X+Y+Z,\ V=2X-Y-Z$ y W=Y-Z

- a) Exprese en términos de matrices el vector aleatorio $(U, V, W)^t$ en función de $(X, Y, Z)^t$. A partir de dicha expresión determine el vector de medias, la matriz de $(X, Y, Z)^t$ varianza covarianza y la distribución de $(U, V, W)^t$. (3,5 puntos)
- b) Las variables originales X, Y y Z no son independientes, ξ lo son las variables U, V y W? Justifique. (1,5 puntos)

Ejercicio 4.

(7 puntos)

Considere el modelo de regresión lineal sin intercepto: $Y_j = \beta_1 + \beta_2 x_j + \epsilon_j$, para $j = 1, \ldots, n$, donde x_1, \ldots, x_n son constantes conocidas, β_1 y β_2 son parámetros para estimar y los errores $\epsilon_1, \ldots, \epsilon_n$ son variables aleatorias independientes, distribuidas normalmente, $E(\epsilon_j) = 0$ y $V(\epsilon_j) = \sigma^2$, para $j = 1, \ldots, n$.

- a) Determine el vector de medias y la matriz de varianza-covarianza del vector aleatorio $Y = (Y_1, \dots, Y_n)^t$. (2 puntos)
- b) Considere los estimadores

$$\hat{\beta}_1 = \sum_{j=1}^n a_j Y_j \ \mathbf{y} \ \hat{\beta}_2 = \sum_{j=1}^n b_j Y_j, \qquad \qquad \mathcal{B} = \begin{pmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_n \\ b_1 & b_2 & \dots & b_n \end{pmatrix}_{2 \times n}$$

donde
$$b_j = \frac{x_j - \bar{X}}{\sum\limits_{i=1}^{n} (x_i - \bar{X})^2}$$
 y $a_j = \frac{1}{n} - b_j \bar{X}$, $j = 1, \ldots, n$.

Determine el vector de medias, la matriz de varianza-covarianza y la distribución del vector aleatorio $(\hat{\beta}_1, \hat{\beta}_2)^t$, mediante propiedades matriciales del valor esperado y de la varianza. Para esto exprese $(\hat{\beta}_1, \hat{\beta}_2)^t$ en la forma BY, donde $Y = (Y_1, \dots, Y_n)^t$. Obtenga expresiones simplificadas. (4 puntos)

c) Determine la esperanza de $\hat{\beta}_1 + \hat{\beta}_2 x$, donde x es una constante. Para esto debe considerar que $\hat{\beta}_1 + \hat{\beta}_2 x = (1 \cdot x)(\hat{\beta}_1, \hat{\beta}_2)^t$ y resultados de la parte anterior. (1 punto)

Recordatorio

$$Y_{m \times 1} = A + BX \Rightarrow \mu_Y = A + B\mu_X \text{ y } \Sigma_Y = B\Sigma_X B^t.$$

$$X_{n\times 1} \sim N_n(\mu; \; \Sigma) \Rightarrow Y = A_{m\times 1} + B_{m\times n} X \; \sim \; N_m(\mu_Y; \; \Sigma_Y), \; m \leq n.$$

Sean X e Y variables aleatorias continuas. Si W y Z son tales que $X = h_1(W, Z)$ e $Y = h_2(W, Z)$; entonces, $f(w, z) = f(h_1(w, z), h_2(w, z)) | det(J) |$, $\forall (w, z) \in \mathbb{R}^2$, donde

$$J = \begin{pmatrix} \frac{\partial h_1(w,z)}{\partial w} & \frac{\partial h_1(w,z)}{\partial z} \\ \frac{\partial h_2(w,z)}{\partial w} & \frac{\partial h_2(w,z)}{\partial z} \end{pmatrix}.$$

Si X_1, \ldots, X_n son idénticamente distribuidas; entonces, $F_{X_{(1)}}(x) = 1 - [1 - F_{X_1}(x)]^n$.

Si
$$X \sim exp(\beta)$$
: $f(x) = \beta e^{-\beta x}$, $x > 0$; $E(X) = 1/\beta$, donde $\beta > 0$.