Chapter 1

Finite Automata (Q-states, Σ -alphabet, δ -transitions, q_0 -start, $F \subset Q$ -accept). Language is **regular** if a finite automaton recognizes it. Two machines are equivalent if they recognize the same language.

- Derterministic (DFA) Restrict to one transition for each unique symbol.
- Nondeterministic (NFA) Every NFA has an equivalent DFA and any DFA is a valid NFA. Therefore a language is **regular** if and only if some NFA recognizes it.
- <u>DFA to NFA</u> Start at start state(s). Follow and write next possible states per symbol. Create new row for resulting states. Repeat until no new states. Should be 1 more state than the NFA.
- Generalized nondeterministic finite automaton (GNFA) Only one start and reject state. Transitions are regular expressions. Used to convert DFA to a RE.
- <u>DFA to DE</u> Add new start state and accept state. Transition start to old start and from old accept to new accept. Identify destination states from the state that will be removed. Identify all paths destination states have that go through the state that will be removed. Write new transitions excluding the removed state. Repeat.

Regular Languages are closed under union, intersection, complement, concatenation, star (*).

Power Set is the set of all subsets of a language. Size of $P(A) = 2^{|A|}$.

Regular Expression. R is a RE if it is (1) a character in the alphabet associated with R. (2) the empty string. (3) the empty language. (4) two regular languages under union. (5) two regular languages under concatenation. (6) a regular language under star. **Order of Operations** is parenthesis, star, concatenation, union. A language described by a RE is **regular**.

Pumping Lemma for RL A string of length at least pumping-length can be broken up into xyz such that (1) xy^iz is in the language for any $i \ge 0$. (2) |y| > 0 (3) $|xy| \le p$.

Finite Automata Theorems For a finite automata M with n states (1) L(M) is non-empty if and only if M accepts a string of length less than n (2) L(M) is infinite if and only if M accepts a string of length i where $n \le i < 2n$. It is possible to create a FA that can determine if two FA are equivalent and taking a finite amount of time if they are equivalent.