

Advanced Skills

Session 1

Session Outline

Data Warehouse

Data Integration

Types of Data Integration

Data Integration Life Cycle

Data Profiling

Data Integration Techniques

Rules and Policies

ETL

Security

Automating the Process

Licenses vs Coding

Master Data Management

Testing Strategies

Recap

Learning Objectives

- Understand concepts of Data Integration and ETL techniques
- **Explain** the difference between **Data Integration** and **Data Migration**
- Explore different testing strategies for Data Integration

ииltiverse

Data Warehouse

'Data Warehousing' is a practice in <u>data</u> management whereby data is <u>copied from</u> various operational systems into a <u>persistant</u> data store in a <u>consistent format</u> to be used for <u>analysis</u>, <u>decision making and reporting</u>.

OLTP provides transaction orientated applications, administering day to day transcations of an organisation. For example:

OLTP provides transaction orientated applications, administering day to day transcations of an organisation. For example:

Supermarkets

OLTP provides transaction orientated applications, administering day to day transcations of an organisation. For example:

Supermarkets

Online banking

OLTP provides transaction orientated applications, administering day to day transcations of an organisation. For example:

Supermarkets

Online banking

Airline ticket booking

OLTP provides transaction orientated applications, administering day to day transcations of an organisation. For example:

Supermarkets

Online banking

Airline ticket booking

Adding items to a shopping cart

OLAP consists of data analytics tools that are used for making business decisions. It provides an environment to leverage insights from multiple database systems at one time. For example:

OLAP consists of data analytics tools that are used for making business decisions. It provides an environment to leverage insights from multiple database systems at one time. For example:

Recommendation algorithms (e.g. Spotify suggested, Amazon products)

OLAP consists of data analytics tools that are used for making business decisions. It provides an environment to leverage insights from multiple database systems at one time. For example:

Recommendation algorithms (e.g. Spotify suggested, Amazon products)

Virtual assisstants (e.g. Alexa, Siri)

OLAP consists of data analytics tools that are used for making business decisions. It provides an environment to leverage insights from multiple database systems at one time. For example:

Recommendation algorithms (e.g. Spotify suggested, Amazon products)

Virtual assisstants (e.g. Alexa, Siri)

Targeted Adverts

OLAP consists of data analytics tools that are used for making business decisions. It provides an environment to leverage insights from multiple database systems at one time. For example:

Recommendation algorithms (e.g. Spotify suggested, Amazon products)

Virtual assisstants (e.g. Alexa, Siri)

Targeted Adverts

Suggested LinekedIn connections

Data Warehouse

Data Warehouse VS

Data Warehouse VS Database

Type of Processing

Type of Processing

OLAP

Type of Processing

OLAP

OLTP

Data Structure

Data Structure

Denormalised table containing repeated data

Data Structure

Denormalised table containing repeated data

Highly normalised with different tables

Data Warehouse vs Database Optimised For

Data Warehouse vs Database Optimised For

Rapid execution of queries on large complex datasets

Optimised For

Rapid execution of queries on large complex datasets

Updating, deleting and modifying data

Data Warehouse vs Database Data Timeline

Data Warehouse vs Database Data Timeline

Historical Data

Data Warehouse vs Database Data Timeline

Historical Data

Current real-time data

Data Warehouse vs Database Uptime

Data Warehouse vs Database Uptime

Regular downtime to allow batch upload

Data Warehouse vs Database Uptime

Regular downtime to allow batch upload

Approx 100%

Data Warehouse vs Database Query Type

Complex queries for in depth analysis

Query Type

Complex queries for in depth analysis

Simple transactional queries

Data Warehouse vs Database

	DATA WAREHOUSE	DATABASE
Processing	OLAP	OLTP
Structure	Denormalised table containing repeated data	Highly normalised with different tables
Optimisation	Rapidly executing low number of complex queries on large multi-dimensional datasets	Updating, deleting and modifying data
Timeline	Historical data	Current real-time data
Uptime (SLA)	Regular downtime to allow batch uploads	Appox. 100% uptime
Query Type	Complex queries for in depth analysis	Simple transactional

Data Warehouses are examples of Data Integration products

ииltiverse

Data Integration

Data Integration is the process of collecting data from a variety of sources into a single target.

Text Files

Text Files

Databases

Text Files

Databases

Spreadsheets

Text Files

Databases

Spreadsheets

Applications

Increased availability of data

Increased availability of data
Superior data integrity and quality

Increased availability of data

Superior data integrity and quality

Collaboration opportunities

Increased availability of data
Superior data integrity and quality
Collaboration opportunities
Greater insights and improvements

Increased availability of data
Superior data integrity and quality
Collaboration opportunities
Greater insights and improvements
Improved data consistency

Data Integration is the process of collecting data from a variety of sources into a unified view for analysis and making data driven business decisions.

Data Integration is the process of collecting data from a variety of sources into a unified view for analysis and making data driven business decisions.

Data Migration is when the data is simply moved from one source to another.

Data Integration is the process of collecting data from a variety of sources into a unified view for analysis and making data driven business decisions.

Data Migration is when the data is simply moved from one source to another.

Companies will typically migrate data when implementing a new system or merging to a new environment.

ииltiverse

Types of Data Integration

Data transfered from source to target in groups periodically

Data transfered from source to target in groups periodically

Data formats and layouts must be consistent between source and target

Real-time

Data transfered from source to target in groups periodically

Data formats and layouts must be consistent between source and target

Source and target are 'asynchronus' (source doesn't wait for target to process data)

Real-time

Data transfered from source to target in groups periodically

Data formats and layouts must be consistent between source and target

Source and target are 'asynchronus' (source doesn't wait for target to process data)

Real-time

Data transfered from source to target instantly

Data transfered from source to target in groups periodically

Data formats and layouts must be consistent between source and target

Source and target are 'asynchronus' (source doesn't wait for target to process data)

Real-time

Data transfered from source to target instantly

Involved a much smaller amount of data and used when it is necessary to complete a single transaction

Data transfered from source to target in groups periodically

Data formats and layouts must be consistent between source and target

Source and target are 'asynchronus' (source doesn't wait for target to process data)

Real-time

Data transfered from source to target instantly

Involved a much smaller amount of data and used when it is necessary to complete a single transaction

Source and target are **'synchronus'** (changes in source are reflected in target)

ииltiverse

Data Integration Life Cycle

- 1. Scoping
- 2. Profiling
- 3. Design
- 4. Testing
- 5. Implementation

Technical Requirements

Business Requirements

Data Requirements

Operational Requirements

- 1. Scoping
- 2. Profiling
- . Design
- 4. Testing
- 5. Implementation

Understand our data

- DuplicatesNull values
- Format
- Data TypesValues

- 1. Scoping
- 2. Profiling
- 3. Design
- 4. Testing
- 5. Implementation

Decide on the architecture of the data warehouse using business, technical and operational metadata

- 1. Scoping
- 2. Profiling
- 3. Design
- 4. Testing
- 5. Implementation

Validation and verification of coding interface

Test the process works

User Acceptance Testing (UAT)

Technical Acceptance Testing (TAT)

Performance Stress Testing (PST)

- 1. Scoping
- 2. Profiling
- 3. Design
- 4. Testing
- 5. Implementation

Implement the process at an operational level

Data Profiling

Data Profiling is the process of reviewing and analysing data to be used in an extract to understand the format and content.

Develop metadata and documentation

Develop metadata and documentation

Report data formats, uniqueness, consistency, correctness and null values

Develop metadata and documentation

Report data formats, uniqueness, consistency, correctness and null values

Compare field names across data stores/tables

Develop metadata and documentation

Report data formats, uniqueness, consistency, correctness and null values

Compare field names across data stores/tables

Can be difficult to arrange if it involves personal or sensitive information

DATASET NAME	FORMAT	DATASET TYPE	
My_dataset	RDBMS	Reference	

Author: Multiverse; Last editied: 01/03/2021

FIELD NAME	DATA TYPE	COUNT	NULL VALUES	% NULLS	MAXIMUM VALUE	MINIMUM VALUE
customer_surname	string	1501	0	0%	zabini	abbots

Activity

- Open the products Jupyter Notebook
- Using pandas, profile the data for:
 - Data Format
 - Field Names
 - Field Data Types
 - Summary Statistics of the data
 - Information on Null values
 - Any other information you think is necessary
- Create a text document to show this information

ииltiverse

Data Integration Techniques

Data Integration Techniques

Manual Data Integration

Middleware Data Integration

Application Based Integration

Uniform Access Integration

Common Storage Integration

Manual Data Integration

Whole process (e.g. data collection and cleaning, connecting sources) done manually by a human

Best for one-time instances

Manual Data Integration

Benefits

Reduced Costs

Greater Freedom

Drawbacks •

Difficulty Scaling

Greater Room for Error

Less Access

Middleware Data Integration

Using softwares that connect applications and transfers between them and databases (no coding)

Acts an interpreter between systems and enacts an automatic transfer

Examples include Microsoft Dynamic CRM, SAP and Sage

Middleware Data Integration

Benefits

Fast and Efficient

Scalable

Time Saving

Drawbacks •

Less Access

Limited Functionality

Application Based Integration

Specialised softwares that locate, retrieve and integrate data

Mostly suited to integrate limited amounts of data and sources

Application Based Integration

Benefits

Simplified Process

Wide Range of Compatibility

Fewer Resources Used

Drawbacks

Complicated Setup

Limited Access

Difficult Data Management

Uniform Access Integration

Also known as "Virtual Integration"

Data is allowed to stay in its original location when being accessed

Provides a unified view quickly to both customers and across platforms

Uniform Access Integration

Benefits

Simplified View of Data

Easy Access

Lower Storage Requirements

Drawbacks •

Data Management can be Difficult

Data Integrity could be Compromised

Common Storage Integration (Data Warehouse)

Similar to uniform access except it creates and stores a copy of the data

One of the most popular integration methods

Common Storage Integration (Data Warehouse)

Benefits

Reduced Burden

Cleaner Data Appearance

Enhanced Data Analytics

Drawbacks

Increased Storage Costs

Higher Maintenance Costs

ииltiverse

Rules and Policies

You must specifiy security policies (e.g. who has access?)

Data integrated should be immutable (unchanging)

Validation checks should be carried out during the process

- Validate the source and target table structure and data types
- Validate the column names against a mapping document

Verification is also carried out on the Data Warehouse

- Verify the data is accurate
- Verify the data is correct
- Verify the data has not been duplicated in the Data Warehouse

If you are wanting to use Business Data...

Get Permission from the Data Owner!

The process involved may be something like this:

The process involved may be something like this:

A person (staff member, contractor, supplier, etc) requests access to information

The process involved may be something like this:

A person (staff member, contractor, supplier, etc) requests access to information

A business resource (Data owner, manager) will review the request

The process involved may be something like this:

A person (staff member, contractor, supplier, etc) requests access to information

A business resource (Data owner, manager) will review the request

A techinical resources (usually a DBA) physically grants permission to an application, database or other data store containing the data.

The process involved may be something like this:

A person (staff member, contractor, supplier, etc) requests access to information

A business resource (Data owner, manager) will review the request

A techinical resources (usually a DBA) physically grants permission to an application, database or other data store containing the data.

Often the permission follows a CRUD schema (create, read, update, delete)

Extract

Extract Transform

Extract
Transform
Load

A process of <u>Data Integration</u> from <u>Multiple Sources</u>

It allows business the ability to gather data from multiple sources and consolidate into a single, centralised location

This can be hard coded or using a licensed product

Extract

For this stage to be effective, a basic understanding of the data is required

For this stage to be effective, a basic understanding of the data is required

There are two methods:

For this stage to be effective, a basic understanding of the data is required

There are two methods:

For this stage to be effective, a basic understanding of the data is required

There are two methods:

• Current system sends out a copy

For this stage to be effective, a basic understanding of the data is required

There are two methods:

- Current system sends out a copy
- Other system comes in and grabs the data

For this stage to be effective, a basic understanding of the data is required

There are two methods:

- Current system sends out a copy
- Other system comes in and grabs the data

Commonly done with SQL queries if data is in databases

Extraction

Can be hard-coded or tool-based

For hard-coding in python:

- CSV Reader (python or R)
- Pandas

```
import pandas as pd

data1=pd.read_csv('dataset1.csv')

data2=pd.read_json('dataset1.json')

data1.info()
data2.info()
```

Pandas is not just a data analysis library but can also be used for extraction

Extraction

You can connect to a SQL server to extract data

This can be done in python using:

- Psycopg2 (for postgreSQL)
- SQLAlchemy
- SQLite3

```
import psycopg2

conn = psycopg2.connect(dbname='DB_NAME', user='USERNAME', password='PASSWORD')

cur = conn.cursor()

cur.execute("SELECT table_name

FROM information_schema.tables

WHERE table_schema='public'

ORDER BY table_name")

query = "SELECT * FROM SALES LIMIT 100"

sales = pd.read_sql_query(query,connection)
```

Activity

Open Jupyter Notebook ETL_python

Complete Section 1: Extraction

Transform

Transform the data to be compatible with the target data structure

Transform

Transform the data to be compatible with the target data structure

Sometimes simple, sometimes near on impossible

Transform

Transform the data to be compatible with the target data structure

Sometimes simple, sometimes near on impossible

Requires detailed requirements elicitation

Mapping field from source to target

- Mapping field from source to target
- String manipulation and manual data standardisation

- Mapping field from source to target
- String manipulation and manual data standardisation
- Aggregation and normalisation

- Mapping field from source to target
- String manipulation and manual data standardisation
- Aggregation and normalisation
- Calculations

- Mapping field from source to target
- String manipulation and manual data standardisation
- Aggregation and normalisation
- Calculations
- Dealing with duplicate values

- Mapping field from source to target
- String manipulation and manual data standardisation
- Aggregation and normalisation
- Calculations
- Dealing with duplicate values
- Data validation

Transformation

Null Values

Convert Datatypes

```
data.fillna("Missing",inplace=True)
data.dropna(inplace=True,subset=["col_A"])
```

```
data["col_A"]=data.col_A.astype("int")
data["col_B"]=data.col_A.astype("float")
data["col_C"]=data.col_A.astype("bool")
```


Transformation

Deduplication Rename Fields

```
# check for duplicates

data.duplicated

# remove duplicates

data.drop_duplicates(inplace=True)
```

data.rename(columns={"col_A":"Col_A"})

Activity

Open Jupyter Notebook ETL_python

Complete Section 2: Transformation

Either write code to insert data or make use of application code that already exists

Either write code to insert data or make use of application code that already exists

Examples include loading into a database or Data Warehouse

Either write code to insert data or make use of application code that already exists

Examples include loading into a database or Data Warehouse

Could involve joining all extracted data into a single table

Loading

Activity

Open Jupyter Notebook ETL_python

Complete Section 3: Loading

Download the data onto a secure server

- Download the data onto a secure server
- Run ETL processes on local files or business/enterprise databases

- Download the data onto a secure server
- Run ETL processes on local files or business/enterprise databases
- If the data owner has not given you the necessary permissions to write data to the target you will need to hand your script to the development team to implement

ииltiverse

Automating the Process

If your ETL process is unlikely to be a one off then it may be more efficient to automate the process.

You will need to assess when new data becomes available to determine how often your scripts need to run.

Task Scheduling

Microsoft has a 'Task Scheduler' which can create batch files

To help with performance, scripts should be run out of hours to ensure performance is not slowed down

ииltiverse

Licenses vs Coding

Advantages

Advantages

License

- Company may already have license
- Friendly GUI
- Supports various databases and formats
- Customer support and good documentation
- Easy scalability for larger datasets

Advantages

License

- Company may already have license
- Friendly GUI
- Supports various databases and formats
- Customer support and good documentation
- Easy scalability for larger datasets

Coding

- Easy to create if database is small
- Easy to install

Disadvantages

Disadvantages

License

- License costs
- Steep learning curve

Disadvantages

License

- License costs
- Steep learning curve

Coding

- Challenging to create (especially if schema changes frequently)
- Developing scripts is time consuming
- Issues around scaling to larger datasets
- Requires programming expertise

Data Integration Softwares

Data Integration Softwares

иultiverse

Master Data Management

Important data about items in an organisation is called <u>Master Data</u>

This includes <u>customer and product information</u> as well as <u>organisational structure</u>

In business, master data management (MDM) <u>comprises the</u> <u>processes, governance, policies, standards and tools</u> that consistently define and <u>manage the critical data of an organisation</u> to provide a single point of reference.

Benefits

Benefits

Redundancy Elimination

Redundancy Elimination

Master Data Edits

Benefits

Redundancy Elimination

Master Data Edits

Data Consistency

Benefits

Redundancy Elimination

Master Data Edits

Data Consistency

Access Based on Role

ииltiverse

Testing Strategies

Why do we need testing strategies?

To ensure that unified data sets are:

To ensure that unified data sets are:

Correct

- CorrectComplete

- CorrectCompleteUp to Date

Technical Acceptance Testing (TAT)

Technical Acceptance Testing (TAT)

Technical Acceptance Testing (TAT)

User Acceptance Testing (UAT)

Can be done manually or by automation

There are three strategies:

Can be done manually or by automation

There are three strategies:

Can be done manually or by automation

There are three strategies:

Unit tests

Can be done manually or by automation

There are three strategies:

- Unit tests
- Integration tests

Can be done manually or by automation

There are three strategies:

- Unit tests
- Integration tests
- Functional tests

TAT: Unit Tests

Testing individual functions or lines of code

Uses python library unittest

Naming convention test_xxx.py

Run on your command line: python -m unittest

```
import unittest
def fun(x):
    return x+1

class MyTest(unittest.TestCase):
    def test(self):
        self.assertEqual(fun(3),4)
```

Activity

- Open a file in Jupyter Notebook and write a function that sums of a list of numbers
- Write a test case for the function in the same script and name it test_sum.py
- Write a new function in a different file that averages a list of numbers
- Write a test case for the function in the same script and name it test_average.py
- Open a terminal and run python -m unittest

Integration tests verify that different modules or services used by your application work well together.

For example, it can be testing the interaction with a database, i.e. are you able to write queries?

TAT: Functional Tests

These focus on the business requirements of an application. They <u>only verify the output of an action</u> and do not check the intermediate states of the system when performing that action.

Formal tests to verify if a report or system statisfies its business requirements

Can be done manually or by automation

• Does the report meet the original requirements?

- Does the report meet the original requirements?
- Does the report produce sensible information?

- Does the report meet the original requirements?
- Does the report produce sensible information?
- Is the design and layout acceptable?

Focusses on validating performance characteristics of the product such as scalability and reliability

They check the behaviours of the system when it is under a significant load

Scalability

- Scalability
- Reliability

- Scalability
- Reliability
- Stability

- Scalability
- Reliability
- Stability
- Availability

Learning Objectives

- Understand concepts of Data Integration and ETL techniques
- **Explain** the difference between **Data Integration** and **Data Migration**
- Explore different testing strategies for Data Integration

Complete Session Attendance Log and Update Your OTJ