Name - Pranjal Sarkari

Data Science & Business Analytics

Task2 - Prediction using Unsupervised ML(Level Beginner)

Objective:

In this unsupervised learning we will do some basics of K-means clustering to predict the optimum number of clusters and represent it visually.

In [1]:

```
# Importing all useful library for this task.
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn import datasets

# Loading of iris dataset through dataset command
iris = datasets.load_iris()
iris_df = pd.DataFrame(iris.data, columns = iris.feature_names)
iris_df.head()
```

Out[1]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

In [2]:

```
# Shape of data iris_df.shape
```

Out[2]:

(150, 4)

In [3]:

```
# Info of data iris_df.info()
```

```
#Full description(statistics) of the data
iris_df.describe()
```

Out[4]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Calculation of the optimum number of clusters for classification(K-means)

In [5]:

```
# To find the optimum number of clusters for classification(K-means)

from sklearn.cluster import KMeans
SS = [] # Sum of squares cluster

for i in range(1, 10):
    kmeans = KMeans(n_clusters = i)
    kmeans.fit(iris_df.values)
    SS.append(kmeans.inertia_) # Inertia is the sum of squared error for each cluster

# Now plotting our results onto a line graph for better evaluation i.e to find where 'elbow' occur s.
plt.plot(range(1, 10), SS)
plt.title('Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('SS(sum of squares cluster)')
plt.show()
```


Clearly optimum cluster is at the region where elbow occurs i.e when the SS(sum of squares cluster) not decreases significantly with every iteration.

Creation of Kmeans classifier

```
In [6]:
```

```
# Making the kmeans classifier(taking n_clusters value as 3)
```

Plotting the graph for Visualization

In [7]:

Out[7]:

<matplotlib.legend.Legend at 0x266c5b2e8c8>

In []: