EC3204: Programming Languages and Compilers

Lecture 6 — Syntax Analysis (2): Top-down Parsing

> Sunbeom So Fall 2024

Top-Down Parsing

- Parsing is a process of constructing a parse tree of a given input string.
- Top-down parsing begins with the root of the parse tree, and extends the tree downward in preorder (root-left-right), until leaves match the input string.
- Equivalently, top-down parsing can be viewed as finding a leftmost derivation for an input string.

Rewriting Grammars for Top-Down Parsing

Unfortunately, not all grammars can be parsed by top-down parsing algorithms. To enable top-down parsing, we should first rewrite the grammar. Two representative transformations are:

- Eliminating ambiguity
- Eliminating left-recursion

Eliminating Ambiguity

Consider the grammar¹:

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathrm{id}$$

The grammar is ambiguous because it permits multiple parse trees, e.g.,

- 1 + 2 * 3: (1 + 2) * 3 vs. 1 + (2 * 3)
- 1+2+3: (1+2)+3 vs. 1+(2+3)

To eliminate the ambiguity, we should impose:

- (precedence) bind * tighter than +
 - ▶ 1+2*3 is always parsed by 1+(2*3)
 - (associativity) make * and + left-associative
 - ightharpoonup 1+2+3 is always parsed by (1+2)+3

Q. How to remove the ambiguity?

¹In this course, we rely on P to define G=(V,T,S,P), if the first three are clear.

General facts about Ambiguity

We hope to transform ambiguous grammars into unambiguous ones. However,

- There is no algorithm to remove ambiguity from a CFG.
- There is no algorithm that can even tell us whether a CFG is ambiguous or not.
- There are context-free languages that are inherently ambiguous, i.e., there are context-free languages for which removing the ambiguity is impossible.

In practice, we can manually design an unambiguous grammar.

• Our original ambiguous grammar:

$$E \rightarrow E + E \mid E * E \mid (E) \mid id$$

An equivalent unambiguous grammar:

$$E o E+T\mid T$$
 $T o T*F\mid F\mid^*$ introduce terms (T) to prefer $*$ $^*/F o \mathrm{id}\mid (E)$

Exercises

• Draw a parse tree for id + id + id.

• Draw a parse tree for id + id * id.

Transform the grammar

$$\begin{split} E &\rightarrow E + T \mid T \\ T &\rightarrow T * F \mid F \\ F &\rightarrow \operatorname{id} \mid (E) \end{split}$$

so that * associate to the right.

Exercises

• Draw a parse tree for id + id + id.

$$E \Rightarrow_l E+T \Rightarrow_l E+T+T \Rightarrow_l T+T+T \Rightarrow_l \cdots \Rightarrow_l \mathrm{id}+\mathrm{id}+\mathrm{id}$$

• Draw a parse tree for id + id * id.

$$E \Rightarrow_{l} E + T \Rightarrow_{l} T + T \Rightarrow_{l} F + T \Rightarrow_{l} id + T$$

\Rightarrow_{l} id + (T * F) \Rightarrow_{l} id + (F * F) \Rightarrow_{l} \cdots \Rightarrow_{l} id + id * id

Transform the grammar

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id} \mid (E)$

so that * associate to the right.

Replace T * F with F * T.

 A grammar is left-recursive if it has a non-terminal A such that there A appears as the first right-hand-side symbol in the production of A. For example, the grammar below is left-recursive.

$$E \rightarrow E + T \mid T$$

 A grammar is left-recursive if it has a non-terminal A such that there A appears as the first right-hand-side symbol in the production of A. For example, the grammar below is left-recursive.

$$E \rightarrow E + T \mid T$$

ullet The left-recursive grammars are not suitable for top-down parsing; we may go into an infinite loop. For example, to parse T, we may apply E o E + T forever.

 A grammar is left-recursive if it has a non-terminal A such that there A appears as the first right-hand-side symbol in the production of A. For example, the grammar below is left-recursive.

$$E \rightarrow E + T \mid T$$

- ullet The left-recursive grammars are not suitable for top-down parsing; we may go into an infinite loop. For example, to parse T, we may apply E o E + T forever.
- ullet We can remove left-recursion using transformation rules that produce non-left-recursive productions. For example, we can transform the left-recursive production $A o A lpha \mid eta$ into

$$A o \beta A', \quad A' o \alpha A' \mid \epsilon$$

 A grammar is left-recursive if it has a non-terminal A such that there A appears as the first right-hand-side symbol in the production of A. For example, the grammar below is left-recursive.

$$E o E + T \mid T$$

- ullet The left-recursive grammars are not suitable for top-down parsing; we may go into an infinite loop. For example, to parse T, we may apply E o E + T forever.
- ullet We can remove left-recursion using transformation rules that produce non-left-recursive productions. For example, we can transform the left-recursive production $A o A lpha \mid eta$ into

$$A o \beta A', \quad A' o \alpha A' \mid \epsilon$$

• Using the transformation above, we can rewrite the grammar that has the right recursion:

$$E
ightarrow T \; E', \quad E'
ightarrow + T \; E' \mid \epsilon$$

Exercise

Describe an equivalent grammar without the left recursion.

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow \operatorname{id} \mid (E)$$

Your answer:

Exercise

Describe an equivalent grammar without the left recursion.

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow id \mid (E)$$

Your answer:

$$\begin{array}{cccc} E & \rightarrow & T \; E' \\ E' & \rightarrow & + \; T \; E' \mid \epsilon \\ T & \rightarrow & F \; T' \\ T' & \rightarrow & * \; F \; T' \mid \epsilon \\ F & \rightarrow & (E) \mid \mathrm{id} \end{array}$$

Recap

So far, we learned transformations to obtain grammars suitable for top-down parsing.

Expression grammar:

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathrm{id}$$

Unambiguous version:

$$E \to E + T \mid T$$

$$T \to T * F \mid F$$

$$F \to id \mid (E)$$

Non-left-recursive version:

$$\begin{array}{cccc} E & \rightarrow & T \; E' \\ E' & \rightarrow & + \; T \; E' \mid \epsilon \\ T & \rightarrow & F \; T' \\ T' & \rightarrow & * \; F \; T' \mid \epsilon \\ F & \rightarrow & (E) \mid \mathrm{id} \end{array}$$

Top-down parsing sequence for the input string id + id * id:

The Key Problem in Top-Down Parsing

Top-down parsing replaces the leftmost nonterminals with the body of some production. How to determine which production to use?

- Recursive-decent parsing uses backtracking.
- **Predictive parsing** uses a parsing table without backtracking (more efficient).

In particular, we will cover $LL(1)^2$ parsing, a type of predictive parsing looking at $\bf 1$ symbol ahead in the input. $\bf 3$

12 / 24

²Left-to-right scanning, Leftmost derivation, 1-symbol lookahead

 $^{^3}$ Predictive parsers looking at k symbols ahead are called LL(k) parsers.

Parsing Table

To look ahead at the input string, a predictive parser uses a **parsing table** for the expression grammar:

	id	+	*	()	\$
$oldsymbol{E}$	E o T E'			E o T E'		
E'		$E' \rightarrow + T E'$			$E' o \epsilon$	$E' o \epsilon$
T	T o F T'			T o F T'		
T'		$T' o \epsilon$	T' o *FT'		$T' o \epsilon$	$T' o \epsilon$
\boldsymbol{F}	$F o \mathrm{id}$			F o (E)		

- The leftmost column indicates non-terminal symbols.
- The topmost row indicates the next input symbols (look-ahead tokens).
- \$ is a special "endmarker" to indicate the end of an input string.
- If a nonterminal symbol X is given and the next input symbol is y, apply the production in the entry (X, y) of the table.

Predictive Parsing Example

The sequence of predictive parsing for id + id * id:

	id	+	*	()	\$
E'	$E \rightarrow T E'$			$E \rightarrow T E'$		
E'		$E' \rightarrow + T E'$			$E' ightarrow \epsilon$	$E' ightarrow \epsilon$
T	$T \rightarrow F T'$	·		$T \rightarrow F T'$		
T'		$T' o \epsilon$	$T' \rightarrow *FT'$		$T' o \epsilon$	$T' o \epsilon$
F	$F o \mathrm{id}$			F o (E)		

Stack	Input	Action
E\$	id + id * id\$	
TE'\$	id + id * id	
FT'E'\$	id + id * id	
$\mathrm{id}T'E'\$$	id + id * id	match
T'E'\$	+id*id\$	
E'\$	+id*id\$	
+TE'\$	+id*id\$	match
TE'\$	id * id	
FT'E'\$	id * id\$	
$\mathrm{id}T'E'\$$	id * id\$	match
T'E'\$	*id\$	
*FT'E'\$	*id\$	match
FT'E'\$	id\$	
$\mathrm{id}T'E'\$$	id\$	match
T'E'\$	\$	
E'\$	\$	
\$	\$	accept

Predictive Parsing Algorithm

Input: a string w and a parsing table M for grammar G Output: a leftmost derivation of w or an error indication

```
let a be the first symbol of w
let X be the top stack symbol
while (X \neq \$) { /* repeat until stack becomes empty */
   if (X=a) pop the stack and let a be the next symbol of w
   else if (X \text{ is a terminal}) error
   else if (M[X,a]) is empty) error
   else if (M[X,a]=X\to Y_1Y_2\cdots Y_k) {
      output the production X \to Y_1 Y_2 \cdots Y_k
      pop the stack (remove the top stack symbol)
      push Y_k, Y_{k-1}, \ldots, Y_1 onto the stack (with Y_1 on top)
   let X be the top stack symbol /* update the top stack symbol */
```

Constructing Parsing Table

A predictive parser processes an input string using a parsing table. How to construct the parsing table?

- lacktriangledown Compute FIRST and FOLLOW sets of the grammar.
 - ▶ Both sets are used to look 1 symbol ahead.
- 2 Construct the parsing table using these sets.

FIRST and FOLLOW

Definition

Given a string α of terminal and non-terminal symbols, $FIRST(\alpha)$ is the set of all terminal symbols that can begin any string derived from α .

- If $\alpha \Rightarrow^* c\beta$, then $c \in FIRST(\alpha)$.
- As an exception, if $\alpha \Rightarrow^* \epsilon$, $\epsilon \in FIRST(\alpha)$.

Definition

For a non-terminal X, FOLLOW(X) is the set of terminals a that can appear immediately to the right of X in some sentential form.

- If $S \Rightarrow^* \alpha X a \beta$, then $a \in FOLLOW(X)$.
- As an exception, if $S \Rightarrow^* \alpha X$, $\$ \in FOLLOW(X)$.

$$\begin{array}{cccc} E & \rightarrow & T & E' \\ E' & \rightarrow & + & T & E' \mid \epsilon \\ T & \rightarrow & F & T' \\ T' & \rightarrow & * & F & T' \mid \epsilon \\ F & \rightarrow & (E) \mid \mathrm{id} \end{array}$$

- FIRST(E)
- FIRST(E')
- FIRST(T)
- FIRST(T')
- FIRST(F)
- \bullet FOLLOW(E)
- FOLLOW(E')
- FOLLOW(T)
- FOLLOW(T')
- FOLLOW(F)

$$\begin{array}{cccc} E & \rightarrow & T & E' \\ E' & \rightarrow & + & T & E' \mid \epsilon \\ T & \rightarrow & F & T' \\ T' & \rightarrow & * & F & T' \mid \epsilon \\ F & \rightarrow & (E) \mid \mathrm{id} \end{array}$$

• FIRST(E) =

$$E \rightarrow T E'$$

$$E' \rightarrow + T E' \mid \epsilon$$

$$T \rightarrow F T'$$

$$T' \rightarrow * F T' \mid \epsilon$$

$$F \rightarrow (E) \mid id$$

- $FIRST(E) = FIRST(TE') = FIRST(FT') = \{(, id)\}$
- FIRST(E') =

$$\begin{array}{cccc} E & \rightarrow & T & E' \\ E' & \rightarrow & + & T & E' \mid \epsilon \\ T & \rightarrow & F & T' \\ T' & \rightarrow & * & F & T' \mid \epsilon \\ F & \rightarrow & (E) \mid \mathrm{id} \end{array}$$

- $FIRST(E) = FIRST(TE') = FIRST(FT') = \{(, id)\}$
- $\bullet \ \mathit{FIRST}(E') = \mathit{FIRST}(+\mathit{TE}') \cup \{\epsilon\} = \{+, \epsilon\}$
- FIRST(T) =

$$\begin{array}{cccc} E & \rightarrow & T & E' \\ E' & \rightarrow & + & T & E' \mid \epsilon \\ T & \rightarrow & F & T' \\ T' & \rightarrow & * & F & T' \mid \epsilon \\ F & \rightarrow & (E) \mid \mathrm{id} \end{array}$$

- $FIRST(E) = FIRST(TE') = FIRST(FT') = \{(, id)\}$
- $FIRST(E') = FIRST(+TE') \cup \{\epsilon\} = \{+, \epsilon\}$
- $FIRST(T) = FIRST(FT') = \{(, id)\}$
- FIRST(T') =

- $FIRST(E) = FIRST(TE') = FIRST(FT') = \{(, id)\}$
- $FIRST(E') = FIRST(+TE') \cup \{\epsilon\} = \{+, \epsilon\}$
- $FIRST(T) = FIRST(FT') = \{(, id)\}$
- $FIRST(T') = FIRST(*FT') \cup \{\epsilon\} = \{*, \epsilon\}$
- FIRST(F) =

$$\begin{array}{cccc} E & \rightarrow & T & E' \\ E' & \rightarrow & + & T & E' \mid \epsilon \\ T & \rightarrow & F & T' \\ T' & \rightarrow & * & F & T' \mid \epsilon \\ F & \rightarrow & (E) \mid \mathrm{id} \end{array}$$

- $FIRST(E) = FIRST(TE') = FIRST(FT') = \{(, id)\}$
- $\bullet \ \mathit{FIRST}(E') = \mathit{FIRST}(+\mathit{TE}') \cup \{\epsilon\} = \{+, \epsilon\}$
- $FIRST(T) = FIRST(FT') = \{(, id)\}$
- $FIRST(T') = FIRST(*FT') \cup \{\epsilon\} = \{*, \epsilon\}$
- $FIRST(F) = FIRST("(E)") \cup FIRST(id) = \{(,id)\}$
- FOLLOW(E) =

- $FIRST(E) = FIRST(TE') = FIRST(FT') = \{(, id)\}$
- $FIRST(E') = FIRST(+TE') \cup \{\epsilon\} = \{+, \epsilon\}$
- $FIRST(T) = FIRST(FT') = \{(, id)\}$
- $FIRST(T') = FIRST(*FT') \cup \{\epsilon\} = \{*, \epsilon\}$
- $FIRST(F) = FIRST("(E)") \cup FIRST(id) = \{(,id)\}$
- $FOLLOW(E) = \{\$\} \cup FIRST(")") = \{\$, \}$
- $FOLLOW(E') = FOLLOW(E) = \{\$, \}$
- FOLLOW(T) = FOLLOW(E)

$$\begin{array}{cccc} E & \rightarrow & T & E' \\ E' & \rightarrow & + & T & E' \mid \epsilon \\ T & \rightarrow & F & T' \\ T' & \rightarrow & * & F & T' \mid \epsilon \\ F & \rightarrow & (E) \mid \mathrm{id} \end{array}$$

- $FIRST(E) = FIRST(TE') = FIRST(FT') = \{(, id)\}$
- $FIRST(E') = FIRST(+TE') \cup \{\epsilon\} = \{+, \epsilon\}$
- $FIRST(T) = FIRST(FT') = \{(, id)\}$
- $FIRST(T') = FIRST(*FT') \cup \{\epsilon\} = \{*, \epsilon\}$
- $FIRST(F) = FIRST("(E)") \cup FIRST(id) = \{(,id)\}$
- $FOLLOW(E) = \{\$\} \cup FIRST(")") = \{\$, \}$
- $FOLLOW(E') = FOLLOW(E) = \{\$, \}$
- $FOLLOW(T) = FOLLOW(E) \cup (FIRST(E') \setminus \{\epsilon\}) = \{+, \$, \}$
- $FOLLOW(T') = FOLLOW(T) = \{+, \$, \}$
- $FOLLOW(F) = FOLLOW(T') \cup FOLLOW(T')$

$$\begin{array}{cccc} E & \rightarrow & T & E' \\ E' & \rightarrow & + & T & E' \mid \epsilon \\ T & \rightarrow & F & T' \\ T' & \rightarrow & * & F & T' \mid \epsilon \\ F & \rightarrow & (E) \mid \mathrm{id} \end{array}$$

- $FIRST(E) = FIRST(TE') = FIRST(FT') = \{(, id)\}$
- $FIRST(E') = FIRST(+TE') \cup \{\epsilon\} = \{+, \epsilon\}$
- $FIRST(T) = FIRST(FT') = \{(, id)\}$
- $FIRST(T') = FIRST(*FT') \cup \{\epsilon\} = \{*, \epsilon\}$
- $FIRST(F) = FIRST("(E)") \cup FIRST(id) = \{(id)\}$
- $FOLLOW(E) = \{\$\} \cup FIRST(")") = \{\$, \}$
- $FOLLOW(E') = FOLLOW(E) = \{\$, \}$
- $FOLLOW(T) = FOLLOW(E) \cup (FIRST(E') \setminus \{\epsilon\}) = \{+, \$, \}$
- $FOLLOW(T') = FOLLOW(T) = \{+, \$, \}$
- \bullet FOLLOW(F) = $FOLLOW(T) \cup FOLLOW(T') \cup (FIRST(T') \setminus \{\epsilon\}) = \{*, +, \$, \}$

Algorithm for computing FIRST

To compute FIRST(X) for any string X from a grammar, apply the following rules until no more terminals or ϵ can be added to FIRST set for every grammar symbol:

- If X is a terminal, then $FIRST(X) = \{X\}$.
- When X is a nonterminal and $X \to Y_1 Y_2 \cdots Y_k$ is a production, add the followings to $FIRST(X) = FIRST(Y_1 Y_2 \cdots Y_k)$.
 - ightharpoonup $FIRST(Y_1)\setminus \{\epsilon\}$, i.e., all non- ϵ symbols of $FIRST(Y_1)$
 - $FIRST(Y_2) \setminus \{\epsilon\}$ if $\epsilon \in FIRST(Y_1)$
 - ▶ $FIRST(Y_3) \setminus \{\epsilon\}$ if $\epsilon \in FIRST(Y_1)$, $\epsilon \in FIRST(Y_2)$
 - . . .
 - lacksquare $FIRST(Y_k)\setminus \{\epsilon\}$ if $\epsilon\in FIRST(Y_j)$ for every $j\in [1,k-1]$
 - ullet ϵ if $\epsilon \in FIRST(Y_j)$ for every $j \in [1,k]$
- If $X \to \epsilon$ is a production, then add ϵ to FIRST(X).

Algorithm for computing *FOLLOW*

To compute FOLLOW(X) for all nonterminals X, apply the following rules until nothing can be added to any FOLLOW set.

Part 1. Compute an interim FOLLOW(X).

- If X is the start symbol, add \$ to FOLLOW(X).
- For every production $A \to \alpha X \beta$, add everything in $FIRST(\beta)$ except for ϵ to FOLLOW(X).

$$FOLLOW(X) \leftarrow (FIRST(\beta) \setminus \{\epsilon\}) \cup FOLLOW(X)$$

Part 2. Propagate the interim result.

- ullet For every production X o lpha A, add FOLLOW(X) to FOLLOW(A).
- ullet For every production X olpha Aeta, if $\epsilon\in FIRST(eta)$, add FOLLOW(X) to FOLLOW(A).

Construction of Parsing Table

- Goal: Fill in each entry $M[A,a]^4$ of a predictive parsing table M by adding a production $A \to \alpha$ only when that production can be useful for processing the next input symbol a.
- ullet Input: a context-free grammar G
- ullet Output: a predictive parsing table M
- **Algorithm:** For each production $A o \alpha$, do the following.
 - lacktriangledown For every terminal $a \in FIRST(\alpha)$, add $A \to \alpha$ to M[A, a].
 - ② If $\epsilon \in FIRST(\alpha)$, for each terminal $b \in FOLLOW(A)$, add $A \to \alpha$ to M[A,b].
 - $oldsymbol{3}$ Similarly, if $\epsilon \in FIRST(lpha)$ and $\$ \in FOLLOW(A)$, add A o lpha to M[A,\$].

If a resulting parsing table for a grammar contains at most one production (i.e., does not contain conflicting productions), the grammar is in LL(1) grammar.

 $^{{}^{4}}A$ is a nonterminal and a is a terminal or \$.

	id	+	*	()	\$
\boldsymbol{E}	$E \to T E'$			E o T E'		
E'		E' ightarrow + T E'			$E' o \epsilon$	$E' o \epsilon$
T	T o F T'			$T o F \ T'$		
T'		$T' o \epsilon$	T' o *FT'		$T' o \epsilon$	$T' o \epsilon$
$oldsymbol{F}$	$F o \mathrm{id}$			F o (E)		

- $FIRST(F) = FIRST(T) = FIRST(E) = \{(, id)\}.$
- $FIRST(E') = \{+, \epsilon\}.$
- $FIRST(T') = \{*, \epsilon\}.$
- $FOLLOW(E) = FOLLOW(E') = \{\}, \}$.
- $FOLLOW(T) = FOLLOW(T') = \{+, \}.$
- $FOLLOW(F) = \{+, *, \}.$

Summary

- Transformations for top-down parsing: eliminating ambiguity and left-recursion
- LL(k) is a kind of top-down parsing, which predicts productions by looking at the next k input symbols.
- LL(1) parsing algorithm: use FIRST and FOLLOW to predict a production by looking at the next input symbol.