Лабораторная работа 3.3.5. Эффект Холла в металлах

Норкин Дмитрий

Теория

Проводимость материала образца $\sigma=\frac{IL}{U_{34}al}$ ЭДС Холла $\mathscr E=R_x\cdot\frac{IB}{a}$, где $R_x=\frac{1}{ne}$ - постоянная Холла Таким образом $R_x=\frac{1}{a}\cdot\frac{dk}{dI}$, где $k=\frac{d\mathscr E}{dB}$ - угловой коэффициент в графике $\mathscr E(B)$ В дальнейшем будем использовать обозначение $p=\frac{dk}{dI}\Rightarrow R_x=ap$ Подвижность $b=\frac{\sigma}{en}=\sigma R_x$

Измерения

Калибровка

Перед началом основной части эксперимента прокалибруем электромагнит.

Таблица 1: Калибровка электромагнита

Полученную зависимость мы можем наблюдать на Рис. 1

Проводимость

Шкала вольтметра: 75 дел = 750 мкВ

Медь: L=7.5 мм; l=8 мм; a=0.05 мм; $U_{34}=38$ дел =0.38 мВ Серебро: L=7.1 мм; l=7 мм; a=0.07 мм; $U_{34}=25$ дел =0.25 мВ Цинк: L=4 мм; l=10 мм; a=0.08 мм; $U_{34}=34$ дел =0.34 мВ

Таким образом проводимости: $\sigma_{Cu} = (4.9 \pm 0.1) \cdot 10^7 \text{ Cm}; \quad \sigma_{Ag} = (5.8 \pm 0.1) \cdot 10^7 \text{ Cm}$

Медь

Шкала вольтметра: 75 дел = 3 мкВ

I_m, A	\mathscr{E}_1 , дел	\mathscr{E}_2 , дел	\mathscr{E}_3 , дел	\mathscr{E}_4 , дел	\mathscr{E}_5 , дел	\mathscr{E}_1 , мк B	\mathscr{E}_2 , мк B	\mathscr{E}_3 , мк B	\mathscr{E}_4 , мк B	\mathscr{E}_5 , мк B
0.0	11.0	15.0	18.0	21.0	22.0	0.0	0.0	0.0	0.0	0.0
0.15	14.0	19.0	22.0	25.5	26.0	0.12	0.16	0.16	0.18	0.16
0.3	18.0	22.5	26.5	30.0	32.5	0.28	0.3	0.34	0.36	0.42
0.45	21.0	26.5	30.5	35.5	38.0	0.4	0.46	0.5	0.58	0.64
0.6	24.0	30.0	35.0	40.0	44.0	0.52	0.6	0.68	0.76	0.88
0.75	27.0	33.0	39.0	44.5	48.0	0.64	0.72	0.84	0.94	1.04
0.9	29.0	36.0	41.0	47.0	51.5	0.72	0.84	0.92	1.04	1.18
1.05	30.5	37.5	43.0	49.0	53.0	0.78	0.9	1.0	1.12	1.24
1.2	32.0	39.0	44.5	50.0	55.0	0.84	0.96	1.06	1.16	1.32

Таблица 2: Эффект Холла для меди

Таблица 3: Зависимость k(I) для меди

Погрешность угловых коэффициентов по МНК: $\Delta k \approx 0.01~{\rm mkB/T}{\rm J}$

Рис. 1: Зависимость тока от магнитного поля

Серебро

I_m, A	\mathscr{E}_1 , дел	\mathscr{E}_2 , дел	\mathscr{E}_3 , дел	\mathscr{E}_4 , дел	\mathscr{E}_5 , дел	\mathscr{E}_1 , мк B	\mathscr{E}_2 , мк B	\mathscr{E}_3 , мк B	\mathscr{E}_4 , мк B	\mathscr{E}_5 , мк B
0.0	-2.0	-3.5	-5.0	-6.5	-8.0	0.0	0.0	0.0	0.0	0.0
0.15	1.0	0.0	-1.0	-2.0	-3.0	0.12	0.14	0.16	0.18	0.2
0.3	4.0	4.0	3.5	3.0	2.5	0.24	0.3	0.34	0.38	0.42
0.45	8.0	8.0	8.0	8.0	8.0	0.4	0.46	0.52	0.58	0.64
0.6	11.0	11.5	12.0	13.0	13.0	0.52	0.6	0.68	0.78	0.84
0.75	13.0	14.5	15.5	16.5	17.0	0.6	0.72	0.82	0.92	1.0
0.9	15.0	16.5	18.0	19.0	20.0	0.68	0.8	0.92	1.02	1.12
1.05	16.0	18.0	19.5	20.5	22.0	0.72	0.86	0.98	1.08	1.2
1.2	17.0	19.0	20.5	22.0	24.0	0.76	0.9	1.02	1.14	1.28

Таблица 4: Эффект Холла для серебра

Таблица 5: Зависимость k(I) для серебра

Погрешность угловых коэффициентов по МНК: $\Delta k \approx 0.01~{\rm mkB/Tm}$

Цинк

I_m, A	\mathscr{E} , дел	\mathscr{E} , мк B	B , м T л
0.0	32.0	0.0	21.0
0.15	36.0	0.16	182.0
0.3	40.5	0.34	370.0
0.45	45.0	0.52	565.0
0.6	48.5	0.66	739.0
0.75	51.5	0.78	878.0
0.9	54.0	0.88	969.0
1.05	56.0	0.96	1038.0
1.2	57.0	1.0	1081.0

Таблица 6: Эффект Холла для цинка

Рис. 2: ЭДС Холла для меди

Рис. 3: ЭДС Холла для серебра

Рис. 4: k(I) для меди

Рис. 5: k(I) для серебра

Рис. 6: $\mathscr{E}(B)$ для цинка

Из графиков
$$p_{Cu}=(1.18\pm0.05)~\frac{\text{мкB}}{\text{Тл}\cdot\text{A}};~~p_{Ag}=(1.17\pm0.04)~\frac{\text{мкB}}{\text{Тл}\cdot\text{A}};~~k_{Zn}=(0.93\pm0.01)~\frac{\text{мкB}}{\text{Тл}}$$
 Отсюда постоянные Холла $R_{Cu}=(-0.59\pm0.02)\cdot10^{-10}~\frac{\text{B}}{\text{Тл}\cdot\text{A}\cdot\text{M}};~~R_{Ag}=(-0.82\pm0.03)\cdot10^{-10}~\frac{\text{B}}{\text{Тл}\cdot\text{A}\cdot\text{M}};~~R_{Zn}=(0.7\pm0.1)\cdot10^{-10}~\frac{\text{B}}{\text{Тл}\cdot\text{A}\cdot\text{M}}$ Концентрации носителей тока: $n_{Cu}=(1.06\pm0.04)\cdot10^{29}~\text{M}^{-3};~~n_{Ag}=(0.76\pm0.03)\cdot10^{29}~\text{M}^{-3}$ Подвижности: $b_{Cu}=(29\pm2)~\frac{\text{см}^2}{\text{B}\cdot\text{c}};~~b_{Ag}=(48\pm3)~\frac{\text{см}^2}{\text{B}\cdot\text{c}}$ Теоретические подвижности: $b_{Cu}^{th}=32~\frac{\text{см}^2}{\text{B}\cdot\text{c}};~~b_{Ag}^{th}=56~\frac{\text{см}^2}{\text{B}\cdot\text{c}}$

Выводы

Полученные результаты хорошо согласуются с табличными значениями.