GCDC16 Local Message Set

Albin Severinson

August 15, 2015

Contents

1	Intr	oducti	on	2
2	CA 2.1 2.2 2.3	acceler exterio	rationControlStatus	. 5
	∠.⊍	2.3.1 2.3.2 2.3.3 2.3.4	ositionVector address or timestamp or position or confidence And Speed or conf	. 5 . 5 . 6
3	DEI	2.3.5	headingDegreesFromNorth	
4	iGA	\mathbf{ME}		6

Version: 0.1 First draft

1 Introduction

This document presents the local message set (LMS) to be used for GCDC16. LMS will be used by the sensor fusion system to generate CAM messages, and by the scenario control models to generate DENM/iGAME messages.

The communication stack includes a vehicle adapter that will receive these messages and use them to create proper CAM/DENM/iGAME messages that will be forwarded to other vehicles. The LMS follows the ETSI specification as closely as possible, but makes some changes to make is possible to create the messages in Simulink.

Different network ports will be used for CAM/DENM/iGAME messages in order to distinguish them.

All data is in network byte order, which is identical to big endian.

2 CAM

- How is time measured? How is an Instant defined?
- Define:
 - Time, Instant
 - curvature
 - yawRate
 - headingDegreesFromNorth

CAM consists of a single large message that is sent to the communication stack periodically. The communication stack will pick up the message and make a decision on what parts of the message to forward to other vehicles. The message should contain the specified data, in the specified order. Data marked as N/A should be all zeroes.

Datatype:	Data:	Notes:
int	curvature	How is this defined?
byte	${\it curvature} \\ {\it Confidence}$	
byte	${\it acceleration} Control Status$	Details below
byte	${\it exterior Lights Status}$	Details below
byte	${ m drive Direction}$	forward=0, backward=1, unavailable=2
$_{ m int}$	yawRate	How is this defined?
byte	yawRateConfidence	
byte	$\operatorname{stationType}$	5 for passenger cars
byte	${ m vehicleRole},$	specialTransport=2, default=0
boolean	${\it embarkation Status}$	N/A
byte	${ m dangerous}{ m Goods}$	N/A
byte	${ m dangerousGoodExt}$	N/A
byte	${ m lightBarSiren}$	N/A
byte	$\operatorname{ptActivationType}$	N/A
byte[]	$\operatorname{ptActivationData}$	N/A, How many bytes?
$\mathrm{byte}[]$	long Position Vector	Details below

Listed as unavailable in GeoNetworking stack:

- SemiAxisLength
- \bullet HeadingValue
- AltitudeValue
- AltitudeConfidence
- $\bullet \ \ Heading Confidence$
- $\bullet \ \ SpeedConfidence$

Spec. according to D3.2

• What happened to curvature?

Bytes:	Data:	Notes	
1	header		
4	$\operatorname{GenerationDeltaTime}$		
4	Station ID		
1	Station Type		
1	Vehicle Role		
2	Vehicle Length		
2	Vehicle Width		
0	Reference position		
4	Latitude		
4	Longitude		
?	Position Confidence Ellipse 95%	Need more details	
?	Altitude	Not in D3.2?	
2	Heading		
1	Heading confidence 95%		
2	Speed		
1	Speed Confidence 95%		
2	Yaw Rate		
1	Yaw Rate Confidence 95%		
2	Longitudinal vehicle acceleration		
1	Longitudinal vehicle acceleration confidence 95%		

2.1 accelerationControlStatus

Bit:	Data:
0	${ m brake Pedal Engaged}$
1	${ m gasPedalEngaged}$
2	${\rm emergency Brake Engaged}$
3	${\rm collision} Warning Engaged$
4	${\it accEngaged}$
5	${\it cruise Control Engaged}$
6	${ m speedLimiterEngaged}$

2.2 exteriorLightsStatus

Bit:	Data:
0	${ m low}{ m Beam}{ m Headlights}{ m On}$
1	${ m highBeamHeadlightsOn}$
2	${ m left} { m TurnSignalOn}$
3	$\operatorname{right} \operatorname{TurnSignalOn}$
4	daytime Running Lights On
5	${ m reverseLightOn}$
6	$\operatorname{fogLightOn}$
7	$\operatorname{parkingLightsOn}$

2.3 longPositionVector

Byte:	Datatype:	Data:	Notes:
0-8	Address	address	Details below
9-12	Instant	$_{ m timestamp}$	Details below
13-20	Position	position	Details below
21-22	short	${\rm confidence And Speed}$	Details below
23 - 24	short	heading Degrees From North	Details below

2.3.1 address

Bit:	Data:	Notes:
63	isManual	Should be 1
62 - 58	$\operatorname{stationType}$	5 for passenger cars
57 - 48	$\operatorname{country} \operatorname{Code}$	Haven't found Sweden
47-0	low Level Address	Unique station address

2.3.2 timestamp

Time according to the TAI spec. From http://stjarnhimlen.se/comp/time.html: TAI = International Atomic Time (Temps Atomique International = TAI) is defined as the weighted average of the time kept by about 200 atomic clocks in over 50 national laboratories worldwide. TAI-UT1 was approximately 0 on 1958 Jan 1.

GPS time = TAI - 19 seconds

This is to account for leap seconds, which are not added to GPS time. The time is sent as an unsigned 32-bit integer.

2.3.3 position

Type:	Data:
-int	latitude Degrees
int	longitudeDegrees

2.3.4 confidenceAndSpeed

Bit:	Data:	Notes:
0-14	speed	Signed units of speed, in 0.01 meters per second
15	position accuracy indicator	1 if position is confident and 0 otherwise. When is it confident?

${\bf 2.3.5} \quad {\bf heading Degrees From North}$

Heading is sent as an unsigned units of 0.1 degrees from North.

3 DENM

ID:	Message:	Bytes:	Data:
38	Event Type	1	ID
		8	Timestamp
		1	Cause Code
		1	Sub Cause Code
39	Closed Lanes	1	ID
		8	Timestamp
		1	Driving Lane Status
40	Lane Position	1	ID
		8	Timestamp
		1	Lane Position

4 iGAME

The iGAME message set is still under proposal. Details on this set will be presented in a future release of this document.