OpenStack Awareness Session

Affan A. Syed

Director Engineering,PLUMgrid Inc.

Deliver comprehensive virtual networking solutions that scale, secure, and simplify the modern cloud data center

PLUMgrid Global Alliance Partners

Technical Alliance

Talk outline

Outline

- A view of the Cloud, from the clouds
- What is OpenStack? Why care?
- OpenStack: a 10,000 feet view
- Workshops and their content
- <Break>
- Demo session by Dr. Adnan Iqbal (Namal University)

Cloud(ed) thinking!

debunking the myth of "Cloud"

How the Cloud Business Model started

Excess capacity/Under utilized servers

Machine & Network virtualization

Monetization opportunity through renting

Excess capacity

8

Machine and network virtualization

Money through rental model

Allow services to "scale out" on demand

Types of a cloud

Infrastructure-as-a-Service

Platform-as-a-Service

Software-as-a-Service

(lots of other XaaS)

Enterprises and Private clouds

Build compute powers without vendor lock-in

Provide and build services, at lower cost Facebook has 20,000 server per admin

Scale out easily by adding servers go to public clouds when needed (Cloud bursting)

What happens when using a cloud!

Managing and (re)provisioning a DCN is difficult

Credit: Google

OpenStack: Motivation and history

... and why OpenStack matters!

OpenStack Future (from its past!)

In 2012 Boris Renski (CMO) Mirantis made three arguments for money in OpenStack

Cloud is BIG \$\$\$

Cloud will be open (Google, facebook, Rackspace back OpenStack)

OpenStack won the OpenCloud war (2012)

Mirantis raised **\$100 million** as pureplay OpenStack in Aug 2015

Monetary Motivations

Cloud Price Index

Worldwide OpenStack Vendor Revenue by Segment (\$M) 2013-2018

Cloud Management

DevOps Tools

PaaS on OpenStack

OpenStack Products,
Distributions and Management

OpenStack Service Providers

Job opportunity

OpenStack engineers make 36% more than other cloud engineers.

Src: http://www.datacenterdynamics.com/

"OpenStack continues to gain mindshare among enterprise CIOs We continue to see **OpenStack becoming the de facto open source option** for deploying private clouds. However, this will accelerate **only after** more **OpenStack-trained developers enter the workforce....**" [The 451Research Take (https://451research.com/openstack)]

OpenStack: A Brief History

NASA Launches Nebula

One of the first cloud computing platforms built for Federal Government Private Cloud

March 2010: Rackspace Open Sources Cloud Files software, aka Swift

May 2010: NASA open sources compute software, aka "Nova"

June 2010: OpenStack is formed

July 2010: The inaugural Design Summit

April 2012: OpenStack Foundation

nebula.nasa.gov

OpenStack® Foundation

Independent body to protect, empower and promote OpenStack software

BOARD of DIRECTORS

Board of Directors (Platinum, Gold sponsors)

PROTECT, PROMOTE, & EMPOWER

PLATINUM
Appointed by
Members

BUARD of DIRECTURS

ELECTED
B
ELECTE

Legal Affairs Committee

User Committee Technical Committee

Project Technical Leads (PTL)

Platinum, Gold and Corporate members

Fastest Growing Global Open Source Community

"OpenStack appears to be a more advanced or more modern open source project than some of its predecessors because it's a highly coordinated effort."

Competitors..... Not there!

Src: http://www.qyjohn.net/?p=3801

Src: Bitergia

Cloud tou buss Openstack!

OpenStack

Interrelated Projects to control pools of *compute, storage,* and *networking resources*Managed through API & dashboard that give administrators control and empower users to provision their own resources

Features/Benefit (high level)

Open source (Apache license) software accelerated innovation, community benefits

Plug-in architecture

no vendor lock-in (hypervisors, storage soln, SDN soln)

On demand control of large pools of compute,
network, storage

Enable IT automation

Multi-tenancy support with quotas and isolation ability to control, monitor and monetize resources

OpenStack Core Services – the Spider web!

OpenStack Core Services – Relation ship diagram (2012)

OpenStack as Layers (Compute Centric View)

Nova: Managing Compute

Provides a REST interface to: Spawn, bootstrap, delete VMs

Built using a messaging arch

Supports multiple hypervisor technologies

Controller Node Nova API Nova scheduler Nova conductor **Compute Nodes**

Supports multi-tenancy

Glance: Managing images

Interface to manage images

Storage provided by drivers

Database to manage images

DB abstraction to match any driver

Keystone: Managing identity

Tracking users and their permissions

Providing a catalog of available services (with URLs)

New services first register with keystone

Provides tokens for usage of any service, using the RBAC model

Cinder: Managing block storage

Persistent block storage for VM instances lives through reboots and crashes

Can be used to create bootable volumes No need for ephemeral storage!

Multiple volumes (disks) for a single VM

Can backup volumes, (perhaps) in swift!

http://www.slideshare.net/avishaytraeger/cinder-havana

A frontend to create and manage virtual disks and their VM association

Swift: Managing *object* storage

Object = files, persistent and HA
Flat name-space

consistent behavior

Unstructured blobs, replicated in a ring across different zones

Default to three replicas

Objects accessible with a URL

swift.example.com/v1/account/container/object

Massively scalable, but with eventually

Each zone 1

swift proxy

Zone 1

Zone 2

Zone 3

Zone 4

Storate services: Comparison

On-instance / ephemeral	Block storage (cinder)	Object Storage (swift)
Runs operating systems and provides scratch space	Used for adding additional persistent storage to a virtual machine (VM)	Used for storing virtual machine images and data
Persists until VM is terminated	Persists until deleted	Persists until deleted
Access associated with a VM	Access associated with a VM	Available from anywhere
Implemented as a filesystem underly- ing OpenStack Compute	Mounted via OpenStack Block Storage controlled protocol (for example, iSCSI)	REST API
Administrator configures size setting, based on flavors	Sizings based on need	Easily scalable for future growth
Example: 10 GB first disk, 30 GB/core second disk	Example: 1 TB "extra hard drive"	Example: 10s of TBs of data set storage

Neutron: Managing *networks*

API to create virtual networks Software defined!

Modular and multi-tenant arch

API=service, implementation=vendor Plugins make it technology agnostic

IPAM, load balancer, VPN ...

Services provided by Network node

Evolved Core view (2015)

Understanding this requires lots of time and training

Workshops and their vision

Workshops on each aspect

Cloud and DCN

Openstack Overview: Layer 1 and 2

Details Layer 1: Nova, Glance, Keystone

Details Layer 2: Neutron, Cinder, Swift

Details: Orchestration of a cloud

Details: Monitoring and Billing

Detail: High Availability

Lots of hands on work, content to be developed iteratively Funding expected from Industry and ICTRDF

DevStack: the default installer

Questions?

https://twitter.com/openstack_isb

http://pta.gov.pk/trg/pta_openstack_2015.php

http://docs.openstack.org/developer/devstack/