Московский государственный университет имени М. В. Ломоносова

Факультет Вычислительной Математики и Кибернетики Кафедра Математических Методов Прогнозирования

«Сравнение скорости вычисления собственных значений положительно определённых матриц при помощи QR алгоритма»

Выполнил:

студент 1 курса магистратуры 517 группы Королев Николай Сергеевич

Преподаватель:

канд. техн. наук, доцент

Русол Андрей Владимирович

1 Постановка задачи

Исследовать способы ускорения вычисления собственных значений положительно определённых матриц.

1.1 Постановка задачи о вычислении собственных значений положительно определённой матрицы

Дана положительно определённая матрица A размера $n \times n$. Необходимо вычислить все n её собственных значений $\lambda_1, \lambda_2, \ldots, \lambda_n$.

2 QR алгоритм

Для нахождения всех собственных значений положительно определённой матрицы A можно воспользоваться QR алгоритмом, который выглядит следующим образом:

- 1. Обозначим $A_0 := A, k := 0.$
- 2. Представить матрицу A_k в виде произведения унитарной матрицы Q_k и верхнетреугольной матрицы R_k . (Произвести QR разложение матрицы A) $Q_k R_k = A_k$
- 3. Вычислить $A_{k+1} := R_k Q_k$
- 4. Увеличить k на единицу. k := k + 1
- 5. Повторить шаги 2-4 до тех пор пока внедиагональные элементы матрицы A_k не станут близкими к нулю.
- 6. Значения на диагонали матрицы A_k будут являться приближением собственными значениями матрицы A.

2.1 Доказательство корректности алгоритма

Заметим, что все матрицы A_k для $k=0,1,\ldots$ являются подобными, т.к. $A_{k+1}=R_kQ_k=Q_k^{-1}Q_kR_kQ_k=Q_k^{-1}A_kQ_k=Q_k^TA_kQ_k, \text{ а значит их собственные значения совпадают.}$

Также для положительно определённой матрицы A известно [1], что внедиагольные элементы матрицы A_k будут стремиться к нулю при $k \to \infty$.

3 Вычислительные эксперименты

QR алгоритм был реализован тремя различными способами на языке Python 3 при помощи библиотеки Numpy для использования векторизации вычислений, после чего лучшая из имплементаций была ускорена при помощи JIT-компилятора Numba. Результаты измерений приведены в таблице 1.

Имплементация	N = 10	N = 20	N = 30	N = 40	N = 50
Numpy 1	4.9 ± 0.1	32.6 ± 1.1	145.2 ± 2.1	122.0 ± 1.7	298.5 ± 5.3
Numpy 2	4.9 ± 0.2	32.4 ± 0.6	149.4 ± 5.2	117.0 ± 3.7	291.7 ± 3.3
Numpy 3	5.6 ± 0.2	32.6 ± 0.9	139.9 ± 7.1	112.1 ± 1.7	273.2 ± 11.5
Numba JIT	0.6 ± 0.1	$\boxed{4.2\pm0.1}$	25.6 ± 0.8	26.8 ± 1.0	77.1 ± 0.7
Numbda JIT с доп. пар.	0.6 ± 0.0	4.3 ± 0.1	24.6 ± 0.2	27.7 ± 2.0	81.1 ± 4.1
Numba guvectorize	0.5 ± 0.0	4.5 ± 0.2	26.7 ± 0.8	29.1 ± 0.3	88.8 ± 2.7

Таблица 1: Время выполнения QR алгоритма различных имплементаций при различных размерах исходной матрицы в миллисекундах. В таблице приведено среднее время выполнения \pm средне квадратичное отклонение времени по 7 запускам алгоритма.

Все имплементации можно найти по адресу 1

3.1 Анализ полученных результатов

Полученные результаты показывают, что ансамбль промежуточных решений, построенных с использованием функции потерь (??), способен достаточно серьёзно увеличивать обобщающую способность предсказания в сравнении с отдельными нейронными сетями. Также замечен эффект улучшения качества отдельных нейронных

 $^{^{1}} https://github.com/CrafterKolyan/eigenvalues-speed-comparison/blob/main/experiments/python/EigenValues.ipynhouses.pdf$

сетей, построенных данным методом. Попробуем объяснить данный эффект. Предполагается, что он вызван тем, что в случае нахождения недостаточно минимизирующего параметра θ_1 для нейронной сети $\hat{f}_1(x,\theta_1)$, последующие нейронные сети находят параметры θ_i на отдалении от θ_1 . Следовательно, θ_i не находится в области θ_1 , в которой функция потерь не достигает своего минимального значения.

4 Заключение

В процессе выполнения работы были получены следующие результаты:

- Был разработан метод повышения эффективности обучения, основанный на ансамбле промежуточных решений.
- Были проведены вычислительные эксперименты, которые показали возможную применимость данного метода для улучшения качества нейронных сетей, решающих задачу классификации на реальных данных.
- В ходе выполнения эксперимента было замечено улучшения качества работы отдельных нейронных сетей.

Список литературы

[1] Olver Peter J. Orthogonal bases and the QR algorithm. — 2010. — Pp. 25–26.