Chapitre 1

Applications des postulats de la Mécanique Quantique

1.1 Interféromètre de Mech-Zehnder

Cet exemple est tiré de l'optique. Nous allons regarder ce qu'il se passe en optique classique, et nous allons ensuite utiliser le formalisme quantique. Ce faisant, nous pourrons mettre en évidence les différences entre les deux.

FIGURE 1.1 – Représentation du principe de l'interféromètre de Mach-Zehnder. Notons que les longueurs L_i représentent la longueur totale du trajet dans le chemin i suivit.

1.1.1 Brève description des détecteurs

Au niveau des détecteurs, plusieurs chemins sont possibles, comme l'illustre l'image ci-contre.

FIGURE 1.2 – Les ondes incidentes arrivants de A_1 et A_2 poursuivent leur chemin, respectivement en A_3 et A_4 .

Nous avons un miroir semi-transparant. Nous envoyons dessus par le port 1 un faiseau de lumière d'amplitude A_1 , et d'intensité $I_1 = \|A_1\|^2$; par le port 2, nous envoyons un faisceau d'amplitude A_2 et d'intensité $I_2 = \|A_2\|^2$. En supposant qu'il n'y a pas de pertes, nous avons que la somme des intensités entrantes est égale à la somme des intensités sortantes : $I_1 + I_2 = I_3 + I_4$. Puisque les équations de l'électromagnétisme sont linéaires, nous avons $A_3 = \alpha A_1 + \beta A_2$, pour tout $\alpha, \beta \in \mathbb{C}$. Nous pouvons facilement mesurer les valeurs absolues de ces coefficients. En posant $A_2 = 0$, nous pouvons mesurer I_3 ; nous trouverons $\|\alpha\|^2$.

Partons de la description d'une onde plane. Nous aurons

$$A_1(t) = A_1 e^{-i\omega t}, (.1a)$$

$$A_2(t) = A_2 e^{-i\omega t},\tag{.1b}$$

pour les ondes incidentes, ainsi que

$$A_3(t) = cA_1e^{-i\omega t} + isA_2e^{-i\omega t}$$
(.2a)

$$A_4(t) = cA_2e^{-i\omega t} + isA_1e^{-i\omega t} \tag{.2b}$$

pour les ondes sortantes. La discussion précédente nous permet de choisir un des coefficients - soit $\|c\|^2$ - en choissisant le miroir semi-transparent. Le coefficient $\|s\|^2$ est alors fixé par

$$||c||^2 + ||s||^2 = 1.$$
 (.3)

Il nous reste une liberté de phase : nous pouvons redéfinir la phase de $A_1 = e^{i\Phi}A'_1$, et de même pour A_2, A_3 et A_4 . Il s'agit d'une question de convention.

Remarque 1.1.1. Par convention, les ondes transmises ne subissent aucun déphasage, là où les ondes réfléchies bénéficient d'un déphasage de $\frac{\pi}{2}$. D'autres conventions sont possibles.

Remarque 1.1.2. Nous pouvons prendre $c = \cos \theta$ et $s = \sin \theta$ pour un argument θ , ce qui explique la notation utilisée.

1.1.2 Lumière classique

Pour simplifier, prenons $c = \frac{1}{\sqrt{2}} = s$. Notons que nous pouvons introduire un facteur e^{ikL} tenant compte de la distance parcourue, i.e. un point en x = 0 peut-être décrit par $A(t) = Ae^{-i\omega t}$ et un point en x = L peut-être décrit par $A'(t) = Ae^{-i\omega t}e^{ikL}$. Notre détecteur repère le courant électrique I(t) selon $I(t) = e||A(t)||^2$ - soit

$$A(t) = Ae^{-i\omega t}$$
 $I_0 = ||A(t_0 = 0)||^2 = ||A||^2$.

Nous avons alors que

$$A_2(t) = \frac{A(t)}{\sqrt{2}}$$

$$A_3(t) = i\frac{A(t)}{\sqrt{2}}$$

En particulier, nous pouvons écrire les chemins A_2' et A_3' selon :

$$A_2'(t) = A_2(t)e^{ikL_2} A_3'(t) = A_3(t)e^{ikL_3} (.4a)$$

De même, les chemins A_4 et A_5 s'écrivent :

$$A_4 = \frac{1}{\sqrt{2}}(A_3' + iA_2') = i\frac{A(t)}{2}(e^{ikL_3} + e^{ikL_2})$$

$$A_5 = \frac{A(t)}{2}(e^{ikL_2} - e^{ikL_3})$$
(.4b)

En introduisant le terme $\Delta \Phi = kL_3 - kL_2$, nous pouvons conclure que :

$$I_4 = \frac{\|A\|^2}{4} \|e^{ikL_2} + e^{ikL_3}\|^2 = \|A\|^2 \cos^2 \frac{k(L_3 - L_2)}{2} = \|A\|^2 \cos^2 \frac{\Delta\Phi}{2}$$
 (.5a)

$$I_5 = ||A||^2 \sin^2 \frac{\Delta \Phi}{2} \tag{.5b}$$

Remarquons que $I_4 + I_5 \doteq I_0$ - soit $I_0 = ||A||^2$, comme prévu. Hourra.

1.1.3 Lumière quantique

Le photon peut suivre plusieurs chemin simultanément : par superposition, nous écrivons l'état comme

$$|\psi\rangle = \alpha |1\rangle + \beta |2\rangle + \gamma |3\rangle \tag{.6}$$

Où $|i\rangle$ décrit le photon dans le chemin i.

Dans un beam splitter tel que décrit par (1.2), nous décrivons alors les transitions

$$|1\rangle \to c |3\rangle + is |4\rangle,$$
 (.7)

$$|2\rangle \rightarrow is |3\rangle + c |4\rangle.$$
 (.8)

Cette transition est décrite par la matrice $\begin{pmatrix} c & is \\ is & c \end{pmatrix}$, unitaire.

Soit une mesure dans la base $|1\rangle, |2\rangle$; donnée par l'était $|\psi\rangle = \alpha |1\rangle + \beta |2\rangle$. Dès lors, les probabilités de détection seront données par $P_1 = \|\alpha\|^2$ et $P_2 = \|\beta\|^2$.

Il s'ensuit que la decription de l'interféromètre 1.2 sera la suivante :

— Chemins 2 et 3.

$$|\psi\rangle = \frac{1}{\sqrt{2}}|2\rangle + \frac{1}{\sqrt{2}}|3\rangle \tag{.9}$$

— Chemins 2' et 3'.

$$|\psi\rangle = \frac{e^{ikL_2}}{\sqrt{2}}|2'\rangle + \frac{i}{\sqrt{2}}e^{ikL_3}|3'\rangle \tag{.10}$$

(.11)

— Chemins 4 et 5.

$$|\psi\rangle = \frac{1}{2} (e^{ikL_2} - e^{ikL_3})|5\rangle + \frac{i}{2} (e^{ikL_2} + e^{ikL_3})|4\rangle$$
 (.12)

Dès lors, nous avons que les probabilités de détections en 4 et en 5 seront :

$$P_4 = \cos^2 \frac{\Delta \Phi}{2} \tag{13}$$

$$P_5 = \sin^2 \frac{\Delta \Phi}{2} \tag{.14}$$

Le photon est simultanément dans les chemins 2 et 3.

Remarquons que si nous supprimons le beam splitter à la fin, les probabilités de présence se réduisent à

$$P_4 = \frac{1}{2} = P_5 \tag{.15}$$

Les delayed choice experiment (Wheeler, 1978) - qui consistent à enlever/remettre le beam splitter, ou à changer la phase $\Delta\Phi$ après que le photon soit entré dans l'interféromètre - nous apprennent que toute interprétation ou l'on suppose que le photon "sait à l'avance ce qu'il doit faire", ne tient pas.

1.2 Oscillations de neutrinos

Une particule est dite élémentaire lorsque sa composition nous est inconnue. L'étude du comportement de ce type de particules fait l'objet de la physique des particules. Le plus récent modèle mathématique décrivant cette réalité est un résultat connu sous le nom de modèle standard des particules élémentaires. Un exemple de telle particule est l'électron, rencontré dans les atomes. Il se trouve que le neutrino en est un autre exemple. Notons que la découverte de cette particule est extrêmement récente à l'échelle de l'histoire de la science et de l'humanité : elle a été prédite par Pauli en 1930, et ne fût observée pour la première fois qu'en 1956.

Une des propriétés fondamentales du neutrino est qu'elle n'intéragit que très faiblement avec la matière. Aussi, ceci explique pourquoi sa découverte n'est que très récente : il aurait auparavent été tout bonnement impossible de l'observer, en raison de limitation technologiques. Les neutrinos sont produites lors de certaines réactions stellaire; notons de plus qu'il existe 3 "saveurs" ¹ de neutrinos :

^{1.} On peut peut-être donner une définition de saveur? Si oui, quoi mettre?

- Neutrino électronique, noté ν_e et l'anti-particule associée;
- Neutrino muonique, noté ν_{μ} et l'anti-particule associée;
- Neutrino tau, noté ν_{τ} et l'anti-particule associée.

La plupart des neutrinos observés sur Terre sont produite par le Soleil, selon la réaction

$$p^+ + p^+ \longrightarrow D^+ + e^+ + \nu_e \tag{16}$$

où p^+ représente un proton, D^+ correspond à un noyeau de deutérium (c'est à dire à un proton et un neutron) et où ν_e et $\bar{\nu}_e$ indiquent respectivement un neutrino électronique et l'anti-neutrino correspondant. Dans cette réaction, on définit le nombre leptonique par la relation

$$Le = \#e^{-} + \#\nu_{e} - (\#e^{+} + \#\bar{\nu}_{e})$$
(.17)

Proposition 1.2.1. Lors d'une intéraction, le nombre leptonique Le constitue une quantité conservée.

Une fois produite, les neutrinos se propagent presque sans absoption jusqu'à la terre - nous pouvons à présent les mesurer, mais cela reste un exercice non trivial (et n'est donc pas laissé en exercice pour le lecteur). Ray David et Masatoshi Koshiba eurent le Prix Nobel de Physique 2002 pour avoir réussi à démontrer que nous détectons approximativement un tiers du flux de neutrino attendu. Dans la résolution qui va suivre, nous supposerons que les neutrinos ont une masse (aussi faible soit-elle), et que les états propre de masse ne sont pas les états produits/absorbés lors de son intéraction avec la matière.

Résolution pour une seule espèce de neutrinos

Supposons que nous ne travaillons qu'avec un neutrino ν dont nous ne préciserons pas la saveur. Soit E son énergie, et $\Psi(x,t)$ sa fonction d'onde : nous pouvons choisir une onde plane pour la décrire, selon

$$\Psi(x,t) = e^{-(Et-px)} \tag{.18}$$

où nous sommes passés dans le système naturelle d'unité avec $\hbar=1=c$. Dans la limite ultra-relativiste, E,p>>m où l'énergie est donnée par la relation de dispersion

$$E^2 = m^2 + p^2 \Rightarrow p \approx E - \frac{m^2}{2E}$$
 (.19)

Nous pouvons alors réécrire la fonction d'onde sous la forme

$$\psi(x,t) = e^{-i\left(E[t-x] + \frac{m^2}{2E}x\right)} = e^{-iE(t-x)e^{-i\frac{m^2x}{2E}}}$$

Finalement, cette égalité peut-être écrite sous forme vectorielle :

$$|\psi(x,t)\rangle = e^{-iE(t-x)e^{-i\frac{m^2x}{2E}}}|\nu\rangle \tag{.20}$$

où $|\nu\rangle$ dénote l'espèce de neutrino en question.

Résolution pour 2 espèces de neutrinos

Nous supposons à présent l'existence de deux espèces de neutrino : le neutrino électronique et le neutrino muonique, dénotés $|\nu_e\rangle$ et $|\nu_\mu\rangle$ dans nos conventions. Le soleil produit $|\nu_e\rangle$, et nous ne sommes capable de détecter (sur Terre) que cette dernière.

Si nous mesurions un neutrino à un moment quelconque de la propagation, elle aurait une certaine probabilité d'être électronique, et une certaine propabilité d'être muonique. Nous pouvons traduire cela en le fait qu'elle ait une certaine probabilité d'être de masse m_1 , et une certaine probabilité d'être de masse m_2 . Nous noterons ces deux états $|\nu_1\rangle$ et $|\nu_2\rangle$.

Nous travaillons dans les bases $\{|\nu_e\rangle, |\nu_\mu\rangle\}$ et $\{|\nu_1\rangle, |\nu_2\rangle\}$. Nous sommes donc dans un système à deux niveau, c'est à dire tel que dim $\mathcal{H}=2$. Dans ce cas,

$$\begin{cases} |\nu_{e}\rangle = \cos\theta \, |\nu_{1}\rangle + \sin\theta \, |\nu_{2}\rangle \\ |\nu_{\mu}\rangle = -\sin\theta \, |\nu_{1}\rangle + \cos\theta \, |\nu_{2}\rangle \end{cases} \Leftrightarrow \begin{cases} |\nu_{1}\rangle = \cos\theta \, |\nu_{e}\rangle - \sin\theta \, |\nu_{\mu}\rangle \\ |\nu_{2}\rangle = \sin\theta \, |\nu_{e}\rangle + \cos\theta \, |\nu_{\mu}\rangle \end{cases}$$
(.21)

1. Au temps $t_0 = 0$, le soleil produit un neutrino électronique $|\nu_e\rangle$. On peut exprimer ceci dans la base $\{|\nu_e\rangle, |\nu_\mu\rangle\}$, soit

$$|\psi(t_0, x = 0)\rangle = |\nu_e\rangle = \cos\theta |\nu_1\rangle + \sin\theta |\nu_2\rangle.$$

2. Le neutrino se propage vers la Terre. Nous exprimons alors ce déplacement dans la base $\{|\nu_1\rangle, |\nu_2\rangle\}$, afin de prévoir les cas de changement spontané de saveur du neutrino. La fonction d'onde peut alors se réécrire sous la forme suivante, en vertue de (.20).

$$|\psi(t,x)\rangle = e^{-iE(t-x)} \left[e^{-i\frac{m_1^2}{2E}x} \cos\theta |\nu_1\rangle + e^{-i\frac{m_2^2}{2E}x} \sin\theta |\nu_2\rangle \right]$$

3. Finalement, en x = L, le neutrino arrive sur Terre. Retournons dans la base des saveurs, afin de pouvoir les discerner.

$$\begin{split} |\psi(t,x=L)\rangle &= e^{-iE(t-L)} \left[e^{-i\frac{m_1^2}{2E}L} \cos\theta \left\{ \cos\theta \left| \nu_e \right\rangle - \sin\theta \left| \nu_\mu \right\rangle \right\} + e^{-i\frac{m_2^2}{2E}L} \sin\theta \left\{ \sin\theta \left| \nu_e \right\rangle + \cos\theta \left| \nu_\mu \right\rangle \right\} \right] \\ &= e^{-iE(t-L)} \left[\left(\cos^2\theta e^{-i\frac{m_1^2}{2E}L} + \sin^2\theta e^{-i\frac{m_2^2}{2E}L} \right) \left| \nu_e \right\rangle + \left(e^{-i\frac{m_2^2}{2E}L} - e^{-i\frac{m_1^2}{2E}L} \right) \cos\theta \sin\theta \left| \nu_\mu \right\rangle \right] \end{split}$$

Expérimentalement, nous ne pouvons détecter que les neutrino électronique. Pourtant, la probabilité que le neutron électronique du départ devienne un neutrino muonique est non-nulle, et est donnée par

$$P(NO \ \nu) = \|\langle \nu_{\mu} | \psi(t, L) \rangle\|^2 = \left\| \left(e^{-i\frac{m_2^2}{2E}L} - e^{-i\frac{m_1^2}{2E}L} \right) \cos \theta \sin \theta \right\|^2 = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E} \right)$$
(.22)

où nous avons posé $\Delta m^2 = m_1^2 - m_2^2$. Il existe donc une probabilité non-nulle que nous ne puissions pas faire de mesure.

Empiquement, il se trouve que $\sin^2 2\theta \approx 0.85$ et $\Delta m^2 \approx 810^{-5} eV^2$. Notons qu'en réalité le problème est un peu plus complexe, car il existe 3 saveurs de neutrinos et non deux : cette résolution naïve pour 2 saveurs permet cependant de bien mettre en évidence la réalité physique, et les effets quantiques présents dans ce système.

1.3 Résonance quantique

Nous entamons ici l'étude de 3 exemples différents de systèmes quantiques à 2 états - des systèmes différents, mais liés par le fait qu'ils possèdent une symétrie. Cette symétrie impose des conditions menant à des résultats parfois surprenants.

Exemple 1 : La molécule d'ammoniac NH_3

L'étude de la géométrie de cette molécule montre que les trois atomes d'hydrogène forment la base d'une pyramide dont l'atome d'azote occupe le sommet : l'ammoniac forme une molécule pyramidale trigonale. La figure 1.3 donne une représentation de la géométrie de la molécule d'ammoniac. Dans notre exemple, nous supposerons que les atomes d'hydrogène forme un triangle équilatérale et dont l'axe passe toujours par l'atome d'azote. Nous avons alors que l'énergie potentielle du système n'est fonction que de la distance entre l'atome d'azote et le triangle équilatérale formé par les atomes d'hydrogène. En particulier, le système admet alors une symétrie par rapport au plan x=0: cela impose à la fonction de l'énergie potentielle V(x) d'être paire selon la variable x.

FIGURE 1.3 – Schéma d'une molécule d'ammoniac. La distance x désigne la distance entre le plan formé par les atomes d'hydrogène et l'atome d'azote.

Soit |x| = b la distance minimisant l'énergie potentielle. Puisque l'énergie potentielle est *paire*, nous avons que V(-b) = V(b). Choissons l'échelle de l'énergie de sorte que V(b) = 0. Nous avons alors une barrière de potentiel en x = 0, d'énergie $V_1 > V_0 = 0$.

FIGURE 1.4 – Représentation de l'énergie potentielle en fonction de la distance x. On observe que lorsque ||x|| > b, l'énergie augmente significativement : cela correspond à la croissance de la force de liaison chimique assurant la cohésion moléculaire. La barrière de potentiel en x=0 traduit la force de répulsion entre les atomes d'hydrogène et l'atome d'azote lorsque ce dernier est dans le plan qu'ils forment.

Que prédit la mécanique quantique sur les niveaux d'énergie de ce système? Classiquement, il n'est pas possible pour une particule d'énergie inférieure à V_1 de franchir la barrière de potentiel placée en x=0. Nous aurions alors que l'atome d'azote resterai toujours du même côté du plan formé par les atomes d'hydrogène. Cependant, comme nous l'avons étudié en $\ref{eq:constraint}$, le phénomène d'effet tunnel autorise les états d'énergie inférieur : l'inversion de la molécule est alors une réalité quantique inexpliquée par la mécanique classique.

Notons par $|+\rangle$ l'état dans lequel l'atome d'azote est au-dessus des atomes d'hydrogènes, et par $|-\rangle$ lorsqu'il est en-dessous. Dans la base formé par ces deux états, l'Hamiltonien de ce système s'exprime par

$$H = \begin{pmatrix} E_0 & -A \\ -A & E_0 \end{pmatrix} \tag{23}$$

où E_0 représente l'énergie fondamentale du système, et A est une perturbation que l'on fait subir au système.

De part le postulat de la mesure, les valeurs de la mesure d'une observable sont les valeurs propres associées à celle-ci : un calcul rapide du spectre de (.23) permet de montrer que nous avons un

- état propre $|\psi_{-}\rangle=\frac{1}{\sqrt{2}}\left(|-\rangle+|+\rangle\right)$ d'énergie $E_{0}-A\,;$
- état propre $|\psi_{+}\rangle = \frac{1}{\sqrt{2}}(|-\rangle |+\rangle)$ d'énergie $E_0 + A$.

Nous voyons alors qu'il existe une énergie, $E_0 - A$, plus petite que E_0 : cela montre que la molécule d'ammoniac est très stable.

Exemple 2 : La molécule de benzène

Les chimistes représentent des molécules organiques compliquées avec des schémas somme toute assez simple. Nous discutons ici d'une de ces molécules : la plus intéressante d'entre elles, la molécule de benzène. Selon les représentations utilisées par les chimistes, elle se représente par la figure suivante.

FIGURE 1.5 – Représentation d'une molécule de benzène C_6H_6 . Une bare représente une "paire" d'électrons dans une liaison covalente - de même, les doubles bares correspondent à une double paire d'électrons impliquées dans la liaison.

1.4. $SPIN \frac{1}{2}$

Cette molécule est intéressante sur plusieurs niveaux : nous avons par exemple que l'énergie théorique nécessaire pour former la molécule (calculée en effectuant la somme de l'énergie des composants) est plus petite que l'énergie expérimentalement mesurée. Nous allons nous intéresser ici à un autre aspect de cette molécule. En regardant la figure 1.5, on observe qu'il y a un totale de 3 double liaisons. Deux double liaisons à gauche, et une à doite. Rien ne nous empêche, à priori, de faire l'inverse : une double liaison à gauche, et deux double liaisons à droite. Cela donnerait quelque chose comme représenté par la figure 1.6.

Figure 1.6 – Parallèle entre les deux types de molécule de benzène possible.

Les deux molécules étant la même, elles devraient avoir la même énergie. Nous devons alors les analyser comme un système à deux niveaux : chaque état représente une configuration possible de l'ensemble des électrons, et il existe une probabilité non nulle que l'ensemble passe d'une configuration à l'autre. Notons par $|1\rangle$ la première disposition possible, et par $|2\rangle$ la seconde. Dans la base orthonormale formée par ces états, l'Hamiltonien décrivant le système est à nouveau donné par (.23). L'état de plus basse énergie est alors à nouveau donnée par $|\psi_-\rangle = \frac{1}{\sqrt{2}} (|1\rangle + |2\rangle)$, d'énergie $E_0 - A$. Cette énergie étant plus faible que E_0 , nous avons à nouveau une indication de la stabilité de la molécule de benzène.

Exemple 3 : Ion moléculaire H_2^+

Pour finir, considérons deux protons séparés par une distance r, ainsi qu'une particule d'électron qui peut soit être dans le voisinage du proton de gauche, soit dans le voisinage du proton de droite.

FIGURE 1.7 – Mise en parallèle des deux positions possible de l'électron : soit à gauche, dans l'état $|1\rangle$, soit à droite, dans l'état $|2\rangle$.

Classiquement, une fois que l'électron est stable dans une des deux situations, elle ne peut se retrouver dans l'autre : nous pouvons voir cela en analysant les forces électromagnétiques s'appliquant à l'électron. Quantiquement, l'électron peut librement se déplacer d'un voisinage à l'autre : il s'agit une fois de plus d'une application de l'effet tunnel.

Nous pouvons à nouveau appliquer l'Hamiltonien (.23) à cette situation, à une petite modification clée : $E_0(r)$ et A(r) dépendent ici de la distance r entre les deux protons. Nous avons donc

$$H(r) = \begin{pmatrix} E_0(r) & -A(r) \\ -A(r) & E_0(r) \end{pmatrix} \tag{.24}$$

où $E_0(r)$, lorsque les atomes sont proches, décrit la répulsion entre les protons.

Dans ce modèle, nous avons alors que l'état fondamental est $\frac{1}{\sqrt{2}}(|1\rangle + |2\rangle)$, d'énergie $E_{-}(r) = E_{0}(r) - A(r)$, et que l'état excité est donné par $\frac{1}{\sqrt{2}}(|1\rangle - |2\rangle)$, d'énergie $E_{+}(r) = E_{0}(r) + A(r)$. Ce modèle, naif, forme la base de la compréhension des modèles chimiques. La figure 1.8 donne une idée de l'allure de $E_{-}(r)$ et de $E_{+}(r)$.

1.4 Spin $\frac{1}{2}$

Ce chapitre consistue une brève introduction à la quantification du moment angulaire. Débutons par une introduction au concept de groupes de rotations.

FIGURE 1.8 – Représentation et mise en parallèle de l'évolution de $E_{-}(r)$ et $E_{+}(r)$.

1.4.1 Groupe de rotations

Considérons l'ensemble des matrices $R \in \mathbb{R}^{3\times 3}$ telle que $R^T R = \mathbb{I}$. Si \boldsymbol{n} est un vecteur unitaire de \mathbb{R}^3 et θ un angle, alors $R(\theta, \boldsymbol{n})$ est la rotation (dans le sens trigonométrique) autour de l'axe \boldsymbol{n} d'angle θ .

$$R(\theta, x) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} = \exp(i\theta L_x)$$

$$Où L_x = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & i \\ 0 & -i & 0 \end{pmatrix}$$

$$R(\theta, y) = \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix} = \exp(i\theta L_y)$$

$$Où L_y = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}$$

$$R(\theta, z) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} = \exp(i\theta L_z)$$

$$Où L_z = \begin{pmatrix} 0 & i & 0 \\ -i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Nous avons alors que $R(\theta, \mathbf{n}) = \exp(i\theta \mathbf{n} \cdot \mathbf{L})$, où $\mathbf{n} \cdot \mathbf{L} = n_i L_i$. Les vecteurs L_x, L_y, L_z sont les générateurs du Groupe des Rotations.

Proposition 1.4.1. Les générateurs du groupe des rotations commutent selon

$$[L_i, L_j] = L_k \tag{.25}$$

pour tout $i, j \neq k$.

En physique, de nombreux objets (et non pas seulement les vecteurs) sont invariants ou se transforment sous l'effet d'une rotation. Une autre représentation du \mathcal{G} roupe des \mathcal{R} otations est l'ensemble des 3 opérateurs J_x, J_y, J_z tels que $[J_x, J_y] = J_z$ (et toutes ses permutations cycliques) et tel que, sous toute rotation d'angle θ autour de \boldsymbol{n} , un état $|\psi\rangle$ se transforme en

$$|\psi\rangle \to \exp(i\theta \mathbf{n} \cdot \mathbf{J}) |\psi\rangle$$
 (.26)

Exemple 1.4.2. Les opérateurs

- $-J_x = yp_z zp_y$
- $J_y = zp_x xp_z$
- $J_z = xp_y yp_x$

sont des exemples de représentation du Groupe des Rotations.

Un système est invariant par rotation si

$$\exp(-itH)\exp(i\theta\boldsymbol{n}\cdot\boldsymbol{J})|\psi\rangle = \exp(i\theta\boldsymbol{n}\cdot\boldsymbol{J})\exp(-itH)|\psi\rangle \qquad \forall |\psi\rangle, \forall \boldsymbol{n}, \theta, t \qquad (.27)$$

Cela revient à dire que faire une rotation et ensuite évoluer dans le temps est identique à évoluer dans le temps et puis faire une rotation.

Proposition 1.4.3. Pour tout petit angle sur des temps négigeables,

$$[H, J_x] = [H, J_y] = [H, J_z] = 0.$$
 (.28)

1.4. $SPIN \frac{1}{2}$

Les conséquences en sont nombreuses. Voici quelques exemples.

Proposition 1.4.4. Si $|\psi(t)\rangle$ est une solution de l'équation de Schrödinger (??), alors

$$\frac{d}{dt}\langle\psi(t)|J_i|\psi(t)\rangle = 0 \tag{.29}$$

Nous avons en particulier que $\langle \psi(t)|J_i|\psi(t)\rangle = \langle \psi(0)|J_i|\psi(0)\rangle$.

Proposition 1.4.5. Si $|\psi_0\rangle$ est un vecteur propre de J_i tel que $J_i |\psi_0\rangle = j |\psi_0\rangle$, alors le vecteur $|\psi(t)\rangle = e^{-iHt} |\psi_0\rangle$ est également un vecteur propre de J_i :

$$J_i |\psi(t)\rangle = j |\psi(t)\rangle. \tag{30}$$

Le théorème d'Emmy Nöther permet de montrer que la symmétrie de rotation implique la conservation d'une quantité : le moment angulaire.

1.4.2 Quantification du moment angulaire

Théorème 1.4.6. Soit $[J_x, J_y] = iJ_z$. Nous avons alors que les valeurs propres de J_z est un demi-entier : $0, \frac{1}{2}, 1, \frac{3}{2}, \dots$

$$J_z |\psi\rangle = m |\psi\rangle$$

Théorème 1.4.7. Il existe une représentation non triviale du Groupe des Rotations par des matrices $d \times d$. Dans ce cas, $J_z = -\frac{d}{2}, -\frac{d}{2} + 1, ..., +\frac{d}{2}$.

Exemple 1.4.8. Le cas le plus simple est celle des matrices de Pauli (matrices 2×2):

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \middle| \sigma_x = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \middle| \sigma_x = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$J_x = \frac{1}{2}\sigma_x \middle| J_y = \frac{1}{2}\sigma_y \middle| J_z = \frac{1}{2}\sigma_z$$

Nous pouvons vérifier que les différentes relations démontrées ci-dessus sont respectées (exercice).

En particulier, nous pouvons vérifier que

$$\{\sigma_a, \sigma_b\} = 2i\varepsilon_{abc}\sigma_c \mid \{\sigma_a, \sigma_b\} = 2\sigma_{ab}\hat{I} \mid Tr(\sigma_a) = 0 \mid \sigma_a\sigma_b = \delta_{ab}\hat{I} + i\varepsilon_{abc}\sigma_c$$

Les matrices de Pauli sont de valeur propres ±1. Les vecteurs propres associés sont

$$\psi_{x}^{+} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \psi_{x}^{-} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\psi_{y}^{+} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix} \qquad \psi_{y}^{-} = \begin{pmatrix} i \\ i \end{pmatrix}$$

$$\psi_{z}^{+} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |\uparrow\rangle \qquad \psi_{z}^{-} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |\downarrow\rangle$$

Introduisons le vecteur unitaire associé aux coordonnées sphériques $\mathbf{n}=(\sin\theta\cos\varphi,\sin\theta\sin\varphi,\cos\theta)$. Observons que

$$\boldsymbol{n} \cdot \boldsymbol{\sigma} = \begin{pmatrix} \cos \theta & \sin \theta e^{-i\varphi} \\ \sin \theta e^{i\varphi} & -\cos \theta \end{pmatrix} \tag{31}$$

De même, observons que $\begin{pmatrix} \cos \frac{\theta}{2} \\ \sigma \frac{\theta}{2} e^{i\varphi} \end{pmatrix}$ est le vecteur propre de valeur propre +1. Nous pouvons réécrire, dans la base des vecteurs up and down,

$$\begin{pmatrix} \cos\frac{\theta}{2} \\ \sigma\frac{\theta}{2}e^{i\varphi} \end{pmatrix} = \cos\frac{\theta}{2} |\uparrow\rangle + \sin\frac{\theta}{2}e^{i\varphi} |\downarrow\rangle$$
 (.32)

Les particules élémentaires ont un spin 1/2. Elles sont munies d'un espace de Hilbert de dimension 2, se transformant sous rotations par $e^{i\frac{\theta}{2}\mathbf{n}\cdot\boldsymbol{\sigma}}$.