Dados do Plano de Trabalho										
Título do Plano de Trabalho:	Calibração de parâmetros hidrodinâmicos em aquíferos.									
Modalidade de bolsa solicitada:										
	Modelagem do escoamento de água subterrânea empregando o Método Iterativo do Gradiente Hidráulico com aplicação na Região do Cariri cearense.									

1. OBJETIVOS

1.1 Objetivos Gerais

Tem-se como objetivo geral, desenvolver e aprimorar o procedimento de calibração de parâmetros hidrodinâmicos através da modificação do Método Iterativo do Gradiente Hidráulico, em um programa computacional aplicado à modelagem de aqüíferos.

1.2 Objetivos Específicos

- (a) Aprimorar o desenvolvimento de um programa computacional, implementado em linguagem computacional Java, ampliando as rotinas de composição das informações de entrada requeridas pelos modelos de fluxo subterrâneo;
- (b) Equacionar a calibração da condutividade hidráulica horizontal em modelos de uma camada e multicamadas, através do Método Iterativo do Gradiente Hidráulico;
- (c) Incorporar ao Método Iterativo do Gradiente Hidráulico técnicas estatísticas baseadas em regressão linear para estimativa inicial da matriz de cargas observadas:
- (d) Determinar a distribuição de condutividade hidráulica horizontal e identificar o comportamento do fluxo hídrico subterrâneo em aqüífero poroso, utilizando exemplos hipotéticos;
- (e) Produzir mapas temáticos, contendo informações sobre o nível potenciométrico de aquíferos:
- (f) Elaborar um manual de utilização do programa computacional desenvolvido.

2. METODOLOGIA

O processo metodológico a ser seguido inicia-se com a fundamentação teórica dos fenômenos envolvidos no estudo e tem como seqüência a aplicação prática em exemplos hipotéticos. A descrição dos métodos empregados, incluindo os *softwares* a serem utilizados, estão apresentados a seguir:

2.1 Métodos de calibração de parâmetros

Para avaliação dos resultados, a calibração será realizada empregando o MIGH, comparada à estimação utilizando o programa computacional PEST.

2.1.1 Parameter Estimation – PEST

Na forma clássica, a estimação de parâmetros hidrodinâmicos é realizada a partir da minimização da função objetivo, dada pela Equação (1), através da técnica inversa dos mínimos quadrados.

$$F_{obj} = \sum_{i=1}^{N} \left(h_i^{obs} - h_i^{calc} \right)^2 \tag{1}$$

Em que:

F_{obj} : a função objetivo a ser minimizada; N: número total de cargas observadas;

 h_i^{obs} : cargas observadas [L] h_i^{calc} : cargas calculadas [L]

As técnicas matemáticas de minimização da Equação (1) estão implementadas em diversos códigos computacionais; dentre os quais destaca-se o PEST (acrônimo para *Parameter ESTimation*).

2.1.2 Método Iterativo do Gradiente Hidráulico – MIGH

No Método Iterativo do Gradiente Hidráulico (MIGH), conforme Guo e Zhang (2000) e Schuster e Araújo (2004) a função objetivo a ser minimizada é:

$$F_{OBJ} = \int_{R} (\nabla h^{calc} - \nabla h^{obs}) \cdot (\nabla h^{calc} - \nabla h^{obs}) dxdy$$
 (2)

Em que:

 ∇h^{obs} : gradiente hidráulico observado [L/L] ∇h^{calc} : gradiente hidráulico calculado [L/L]

R: domínio do fluxo.

Na execução do método, utiliza-se, em lugar do mapa potenciométrico observado gerado por interpolação matemática, um mapa potenciométrico calculado (simulado) a partir das próprias cargas observadas. O procedimento consiste em obter o mapa potenciométrico observado a partir da modelagem do fluxo subterrâneo, tornando invariáveis as cargas observadas em campo.

2.2 Utilização de técnicas estatísticas através de regressão para estimativa inicial da matriz de cargas observadas

Adicionalmente, no Método Iterativo do Gradiente Hidráulico, a estimativa inicial da matriz de cargas observadas se apresenta como ponto fundamental para obtenção da convergência eficiente do parâmetro calibrado. Em geral, devido a extensão das áreas simuladas, a quantidade de observações aferidas em campo é insuficiente para determinar uma estimação correta dos parâmetros hidrodinâmicos.

As técnicas de regressão serão aplicadas ao processo de calibração após os ciclos de iterações, baseando-se na relação entre cargas reais observadas e cargas calculadas, portanto, serão inseridas no momento em que os ciclos de iterações atingem o valor ótimo de solução, ampliando a estimativa inicial das cargas consideradas observadas.

3. CRONOGRAMA DE ATIVIDADES

Para execução do projeto, são requeridos 02 (DOIS) bolsistas. O Bolsista 01 trabalhará no aprimoramento metodológico do processo de calibração e o Bolsista 02 terá suas atividades concentradas na implementação computacional dos métodos. Importante destacar que a equipe deve apresentar integração entre os trabalhos, com complementaridade das atividades.

N°		2019					2020						
		09	10	11	12	01	02	03	04	05	06	07	
AT1: Revisão de Literatura -	X	X	X										
Escoamento de água subterrânea.	Λ	Λ	Λ										
AT2: Estudo e equacionamento do				X	X								
fluxo em meio poroso.				Λ	Λ								
AT3: Estudo e equacionamento do													
Método Iterativo do Gradiente						X	X						
Hidráulico.													
AT4: Estudo e equacionamento das								X	X				
técnicas estatísticas de regressão.								Λ	Λ				
AT5: Aplicação em exemplos													
hipotéticos para aplicação da										\mathbf{X}	\mathbf{X}		
calibração.													
AT6: Produção de artigos a serem													
publicados em eventos e periódicos e												X	
elaboração do relatório final da												Λ	
pesquisa													

REFERÊNCIAS

GUO, X; ZHANG, C.-M.. Hydraulic gradient comparison method to estimate aquifer hydraulic parameters under steady-state conditions. **Ground Water**. v. 38, n. 6, p. 815-826, 2000.

SCHUSTER, H. M. D.; ARAÚJO, H. D. B. Uma formulação alternativa do método iterativo de gradiente hidráulico no procedimento de calibração dos parâmetros hidrodinâmicos do sistema aquífero. **Revista Brasileira de Recursos Hídricos**, v. 9, n. 2, p. 31-37, 2004.