PhD defense of Justine Falque PhD advisor: Nicolas M. Thiéry

Laboratoire de Recherche en Informatique Université Paris-Sud (Orsay)

November 29th of 2019

• Permutation

Intro

Intro

First notions

• Permutation

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$

Intro

• Permutation

 $3 \quad 2 \quad 7 \quad 6 \quad 5 \quad 1 \quad 4$

Intro

First notions

• Permutation

6

1 7 2

3

• Permutation

Intro

• Permutation

Intro

• Permutation

- Permutation
- Permutation group

• Permutation

Intro

• Permutation group

- Permutation
- Permutation group

• Permutation

Intro

• Permutation group

- Permutation
- Permutation group

- Permutation
- Permutation group

• Permutation

Intro

• Permutation group

• Permutation

Intro

• Permutation group

Let's count!

• Permutation

Intro

• Permutation group

• Permutation

Intro

• Permutation group

Let's count!

• Permutation

Intro

• Permutation group

Let's count!

• Permutation

Intro

• Permutation group

Let's count!

• Permutation

Intro

• Permutation group

• Permutation

Intro

• Permutation group

• Permutation

Intro

• Permutation group

Let's count!

 \bullet \rightarrow

• Permutation

Intro

• Permutation group

Let's count!

 \bullet \rightarrow

• Permutation

Intro

• Permutation group

Let's count!

ightharpoonup

• Permutation

Intro

• Permutation group

Let's count!

 \rightarrow

• Permutation

Intro

• Permutation group

• Permutation

Intro

• Permutation group

Let's count!

 \bullet \rightarrow

• Permutation

Intro

• Permutation group

Let's count!

• →

• Permutation

Intro

• Permutation group

Permutation

Intro

• Permutation group

Permutation

Intro

• Permutation group

• Permutation

Intro

• Permutation group

Permutation

Intro

• Permutation group

• Permutation

Intro

• Permutation group

• Permutation

Intro

• Permutation group

Intro

- Permutation
- Permutation group

Intro

- Permutation
- Permutation group

• Permutation

Intro

• Permutation group

• Permutation

Intro

• Permutation group

• Permutation

Intro

• Permutation group

Permutation

Intro

• Permutation group

Permutation

Intro

• Permutation group

• Permutation

Intro

• Permutation group

• Permutation

Intro

- Permutation group
- Orbit of an element

• Permutation

Intro

- Permutation group
- Orbit of an element

• Permutation

Intro

- Permutation group
- Orbit of an element

Let's count!

Orbit of 1

• Permutation

Intro

- Permutation group
- Orbit of an element

Let's count!

Orbit of 1: 1

• Permutation

Intro

- Permutation group
- Orbit of an element

Let's count!

Orbit of 1: 1, 2

• Permutation

Intro

- Permutation group
- Orbit of an element

Let's count!

Orbit of 1: 1, 2, 3

Permutation

Intro

- Permutation group
- Orbit of an element

Let's count!

Orbit of 1: 1, 2, 3, 4

Permutation

Intro

- Permutation group
- Orbit of an element

Let's count!

Orbit of 1: 1, 2, 3, 4, 5

• Permutation

Intro

- Permutation group
- Orbit of an element

Let's count!

Orbit of 1: 1, 2, 3, 4, 5, 6

• Permutation

Intro

- Permutation group
- Orbit of an element

Let's count!

Orbit of 1: 1, 2, 3, 4, 5, 6, 7

• Permutation

Intro

- Permutation group
- Orbit of an element

Let's count!

Orbit of 1: 1, 2, 3, 4, 5, 6, 7

• Permutation

Intro

- Permutation group
- Orbit of an element
- Orbit of a subset (degree)

Let's count!

Orbit of 1: 1, 2, 3, 4, 5, 6, 7

Permutation

Intro

- Permutation group
- Orbit of an element
- Orbit of a subset (degree)

Let's count!

Orbit of $\{1, 2, 4\}$: $\{1, 2, 4\}$

Permutation

Intro

- Permutation group
- Orbit of an element
- Orbit of a subset (degree)

Let's count!

Orbit of $\{1, 2, 4\}$: $\{1, 2, 4\}$, $\{2, 3, 5\}$

- Permutation
- Permutation group
- Orbit of an element
- Orbit of a subset (degree)

Let's count!

Orbit of $\{1, 2, 4\}$: $\{1, 2, 4\}$, $\{2,3,5\}, \{3,4,6\}$

Permutation

Intro

- Permutation group
- Orbit of an element
- Orbit of a subset (degree)

Orbit of
$$\{1,2,4\}$$
 : $\{1,2,4\}$, $\{2,3,5\}$, $\{3,4,6\}$...

Permutation

Intro

- Permutation group
- Orbit of an element
- Orbit of a subset (degree)

Orbit of
$$\{1,2,4\}$$
 : $\{1,2,4\}$, $\{2,3,5\}$, $\{3,4,6\}$...

Permutation

Intro

- Permutation group
- Orbit of an element
- Orbit of a subset (degree)

Orbit of
$$\{1, 2, 4\}$$
: $\{1, 2, 4\}$, $\{2, 3, 5\}$, $\{3, 4, 6\}$...

Permutation

Intro

- Permutation group
- Orbit of an element
- Orbit of a subset (degree)

Let's count!

Orbit of $\{1, 2, 4\}$: $\{1, 2, 4\}$, $\{2,3,5\}, \{3,4,6\} \dots$

Permutation

Intro

- Permutation group
- Orbit of an element
- Orbit of a subset (degree)

Orbit of
$$\{1,2,4\}$$
 : $\{1,2,4\}$, $\{2,3,5\}$, $\{3,4,6\}$...

Permutation

Intro

- Permutation group
- Orbit of an element
- Orbit of a subset (degree)

Orbit of
$$\{1,2,4\}$$
 : $\{1,2,4\}$, $\{2,3,5\}$, $\{3,4,6\}$...

Permutation

Intro

- Permutation group
- Orbit of an element
- Orbit of a subset (degree)

$$\begin{array}{cccc}
\circ & \rightarrow & 1 \\
\bullet & \rightarrow & 1 \\
\bullet & \rightarrow & 3 \\
\bullet & \rightarrow & 5 \\
\bullet & \rightarrow & 5 \\
\bullet & \rightarrow & 3 \\
\bullet & \rightarrow & 1 \\
\bullet & \rightarrow & 1
\end{array}$$

Orbit of
$$\{1,2,4\}$$
: $\{1,2,4\}$, $\{2,3,5\}$, $\{3,4,6\}$...

- Permutation
- Permutation group
- Orbit of an element
- Orbit of a subset (degree)

Orbit of
$$\{1, 2, 4\}$$
: $\{1, 2, 4\}$, $\{2, 3, 5\}$, $\{3, 4, 6\}$... of degree 3

- Permutation
- Permutation group
- Orbit of an element
- Orbit of a subset (degree)
- Profile of a group

Orbit of
$$\{1, 2, 4\}$$
: $\{1, 2, 4\}$, $\{2, 3, 5\}$, $\{3, 4, 6\}$... of degree 3

- Permutation
- Permutation group
- Orbit of an element
- Orbit of a subset (degree)
- Profile of a group

$$\varphi(0) \rightarrow 1$$
 $\varphi(1) \rightarrow 1$
 $\varphi(2) \rightarrow 3$
 $\varphi(3) \rightarrow 5$
 $\varphi(4) \rightarrow 5$
 $\varphi(5) \rightarrow 3$
 $\varphi(6) \rightarrow 1$
 $\varphi(7) \rightarrow 1$

Orbit of
$$\{1, 2, 4\}$$
: $\{1, 2, 4\}$, $\{2, 3, 5\}$, $\{3, 4, 6\}$... of degree 3

Series of the profile

$$1 + 1z + 3z^2 + 5z^3 + 5z^4 + 3z^5 + 1z^6 + 1z^7$$

$$1 + 1z + 3z^2 + 5z^3 + 5z^4 + 3z^5 + 1z^6 + 1z^7$$

G infinite
$$\rightarrow \mathcal{H}_G(z) = \sum_n \varphi_G(n) z^n$$

Series of the profile

$$1 + 1z + 3z^2 + 5z^3 + 5z^4 + 3z^5 + 1z^6 + 1z^7$$

$$G \text{ infinite} \quad \rightarrow \quad \mathcal{H}_G(z) = \sum_n \varphi_G(n) z^n$$

Hypothesis

G is P-oligomorphic: φ_G is bounded by a polynomial in n

$$1 + 1z + 3z^2 + 5z^3 + 5z^4 + 3z^5 + 1z^6 + 1z^7$$
 $G \text{ infinite } \rightarrow \mathcal{H}_G(z) = \sum_n \varphi_G(n) z^n$

Hypothesis

G is P-oligomorphic: φ_G is bounded by a polynomial in n

Example

$$\mathcal{H}_{\mathfrak{S}_{\infty}}(z) = 1 + z + z^2 + \dots = \frac{1}{1-z}$$

$$1 + 1z + 3z^2 + 5z^3 + 5z^4 + 3z^5 + 1z^6 + 1z^7$$
 $G \text{ infinite } \rightarrow \mathcal{H}_G(z) = \sum_n \varphi_G(n) z^n$

Hypothesis

G is P-oligomorphic: φ_G is bounded by a polynomial in n

Example

$$\mathcal{H}_{\mathfrak{S}_{\infty}}(z) = 1 + z + z^2 + \cdots = \frac{1}{1-z}$$

Conjecture 1 - Cameron, 70's

G P-oligomorphic $\Rightarrow \varphi_G(n) \sim an^k, k \in \mathbb{N}$

Orbit algebra

Orbit algebra (Cameron, 80's) Structure of graded algebra $A_G = \bigoplus_n A_n$ on the orbits

• vector space formally spanned by the orbits of G (i.e. of basis indexed by the orbits)

Orbit algebra

- vector space formally spanned by the orbits of G (i.e. of basis indexed by the orbits)
- combinatorial description of the product

- vector space formally spanned by the orbits of G (i.e. of basis indexed by the orbits)
- combinatorial description of the product
- graded according to the orbital degree:

Profile and conjectures

00000

Orbit algebra

- vector space formally spanned by the orbits of G (i.e. of basis indexed by the orbits)
- combinatorial description of the product
- graded according to the orbital degree: $orb_1.orb_2 = linear$ combination of orbits of degree $d_1 + d_2$

Orbit algebra

Orbit algebra (Cameron, 80's)

Structure of graded algebra $\mathcal{A}_G = \bigoplus_n \mathcal{A}_n$ on the orbits

- vector space formally spanned by the orbits of G (i.e. of basis indexed by the orbits)
- combinatorial description of the product
- graded according to the orbital degree: $orb_1.orb_2 = linear$ combination of orbits of degree $d_1 + d_2$
- $\dim(\mathcal{A}_n) = \varphi_G(n)$, so $\mathcal{H}_G(z) = \sum_n \dim(\mathcal{A}_n) z^n$

Orbit algebra (Cameron, 80's)

00000

Structure of graded algebra $\mathcal{A}_G = \bigoplus_n \mathcal{A}_n$ on the orbits

- vector space formally spanned by the orbits of G (i.e. of basis indexed by the orbits)
- combinatorial description of the product
- graded according to the orbital degree: $orb_1.orb_2 = linear$ combination of orbits of degree $d_1 + d_2$
- $\dim(\mathcal{A}_n) = \varphi_G(n)$, so $\mathcal{H}_G(z) = \sum_n \dim(\mathcal{A}_n) z^n$

Hilbert series of the graded algebra

Example. $\mathcal{A}_{\mathfrak{S}_{\infty}} \simeq \mathbb{Q}[X]$

Example. $\mathcal{A}_{\mathfrak{S}_{\infty}} \simeq \mathbb{Q}[X]$

Conjecture 2 (stronger) - Macpherson, 85 G P-oligomorphic $\Rightarrow \mathcal{A}_G$ is finitely generated

Conjecture of Macpherson

Example.
$$\mathcal{A}_{\mathfrak{S}_{\infty}} \simeq \mathbb{Q}[X]$$

Conjecture 2 (stronger) - Macpherson, 85 G P-oligomorphic \Rightarrow A_G is finitely generated

Theorem (F. 2018)

The orbit algebra of a P-oligomorphic group is finitely generated, and Cohen-Macaulay.

In particular, its profile is polynomial in the strong sense.

• Set partition of the domain into blocks

Block system

- Set partition of the domain into blocks
- such that G acts by permutation on the blocks

Block system

- Set partition of the domain into blocks
- such that G acts by permutation on the blocks

Block system

- Set partition of the domain into blocks
- such that G acts by permutation on the blocks

Example

Block systems of C_4

3

Block system

- Set partition of the domain into blocks
- such that G acts by permutation on the blocks

Example

Block systems of C_4

Block system

- Set partition of the domain into blocks
- \bullet such that G acts by permutation on the blocks

Example

Block systems of C_4

- Set partition of the domain into blocks
- \bullet such that G acts by permutation on the blocks

Example

Block systems of C_4

Block system

- Set partition of the domain into blocks
- \bullet such that G acts by permutation on the blocks

Example

Block systems of C_4

Not a block system \rightarrow

Macpherson:

G P-oligomorphic with no (non trivial) blocks $\Rightarrow \varphi_G(n) = 1 \ \forall n$

The (closed) primitive P-oligomorphic groups

Macpherson:

G P-oligomorphic with no (non trivial) blocks $\Rightarrow \varphi_G(n) = 1 \ \forall n$

Theorem (Classification, Cameron)

Only 5 closed groups such that $\varphi_G(n) = 1 \quad \forall n$

The (closed) primitive P-oligomorphic groups

Macpherson:

G P-oligomorphic with no (non trivial) blocks $\Rightarrow \varphi_G(n) = 1 \ \forall n$

Theorem (Classification, Cameron)

Only 5 closed groups such that $\varphi_G(n) = 1 \quad \forall n$

- $Aut(\mathbb{Q})$: automorphisms of the rational chain
- $\operatorname{Rev}(\mathbb{Q})$: generated by $\operatorname{Aut}(\mathbb{Q})$ and one reflection
- $\operatorname{Aut}(\mathbb{Q}/\mathbb{Z})$, preserving the circular order
- $\operatorname{Rev}(\mathbb{Q}/\mathbb{Z})$: generated by $\operatorname{Aut}(\mathbb{Q}/\mathbb{Z})$ and a reflection
- \mathfrak{S}_{∞} : the symmetric group

Macpherson:

G P-oligomorphic with no (non trivial) blocks $\Rightarrow \varphi_G(n) = 1 \ \forall n$

Theorem (Classification, Cameron)

Only 5 closed groups such that $\varphi_G(n) = 1$

- $Aut(\mathbb{Q})$: automorphisms of the rational chain
- $Rev(\mathbb{Q})$: generated by $Aut(\mathbb{Q})$ and one reflection
- Aut(\mathbb{Q}/\mathbb{Z}), preserving the circular order
- $\operatorname{Rev}(\mathbb{Q}/\mathbb{Z})$: generated by $\operatorname{Aut}(\mathbb{Q}/\mathbb{Z})$ and a reflection
- \mathfrak{S}_{∞} : the symmetric group

Well known, nice groups (called *highly homogeneous*). In particular, their orbit algebra is finitely generated.

Wreath product $\mathfrak{S}_{\infty} \wr \mathfrak{S}_{3}$

Wreath product $\mathfrak{S}_{\infty} \wr \mathfrak{S}_{3} \simeq \mathfrak{S}_{\infty}^{3} \rtimes \mathfrak{S}_{3}$

Wreath product $\mathfrak{S}_{\infty} \wr \mathfrak{S}_{3} \simeq \mathfrak{S}_{\infty}^{3} \rtimes \mathfrak{S}_{3}$ Subset of shape 2, 3, 2

An infinite example: $\mathfrak{S}_{\infty} \wr \mathfrak{S}_3$

Wreath product

 $\mathfrak{S}_{\infty} \wr \mathfrak{S}_{3} \simeq \mathfrak{S}_{\infty}^{3} \rtimes \mathfrak{S}_{3}$

Subset of shape $2, 3, 2 \rightarrow x_1^2 x_2^3 x_3^2$

Wreath product

 $\mathfrak{S}_{\infty} \wr \mathfrak{S}_3 \simeq \mathfrak{S}_{\infty}^3 \rtimes \mathfrak{S}_3$

Subset of shape $2,3,2 \rightarrow x_1^2 x_2^3 x_3^2$

Orbits of subsets \leftrightarrow symmetric polynomials in x_1, x_2, x_3

An infinite example: $\mathfrak{S}_{\infty} \wr \mathfrak{S}_{3}$

Wreath product

$$\mathfrak{S}_{\infty} \wr \mathfrak{S}_{3} \simeq \mathfrak{S}_{\infty}^{3} \rtimes \mathfrak{S}_{3}$$

Subset of shape $2,3,2 \rightarrow x_1^2 x_2^3 x_3^2$

Orbits of subsets

 \leftrightarrow symmetric polynomials in x_1, x_2, x_3

$$\mathcal{A}_{\mathfrak{S}_{\infty} \wr \mathfrak{S}_3} \simeq \operatorname{Sym}_3[X] = \mathbb{Q}[X]^{\mathfrak{S}_3}$$

Wreath product

$$\mathfrak{S}_{\infty} \wr \mathfrak{S}_{3} \simeq \mathfrak{S}_{\infty}^{3} \rtimes \mathfrak{S}_{3}$$

Subset of shape $2,3,2 \rightarrow x_1^2 x_2^3 x_3^2$

Orbits of subsets

 \leftrightarrow symmetric polynomials in x_1, x_2, x_3

$$\mathcal{A}_{\mathfrak{S}_{\infty} \wr \mathfrak{S}_3} \simeq \operatorname{Sym}_3[X] = \mathbb{Q}[X]^{\mathfrak{S}_3}$$

Examples

Integer partitions; combinations; P-partitions... (with optional length and/or hight restrictions)

Further examples

More generally, for H subgroup of \mathfrak{S}_m :

• $G = \mathfrak{S}_{\infty} \wr H$:

 $\mathcal{A}_G \simeq \mathbb{Q}[X_1,\ldots,X_m]^H$, the algebra of invariants of H

Further examples

More generally, for H subgroup of \mathfrak{S}_m :

• $G = \mathfrak{S}_{\infty} \wr H$:

 $\mathcal{A}_G \simeq \mathbb{Q}[X_1, \dots, X_m]^H$, the algebra of invariants of H

 \mathcal{A}_G is finitely generated by Hilbert's theorem.

Further examples

More generally, for H subgroup of \mathfrak{S}_m :

G = S_∞ \ H :
 A_G \simeq \mathbb{Q}[X_1, ..., X_m]^H, the algebra of invariants of H

 A_G is finitely generated by Hilbert's theorem.

• $G = H \wr \mathfrak{S}_{\infty}$: $\mathcal{A}_G \simeq \mathbb{Q}[(X_o)_{o \in \mathrm{orb}(H)}]$ polynomial algebra generated by $\mathrm{orb}(H)$

$$M
ightharpoonup
i$$

$$\implies G \leqslant \mathfrak{S}_{M} \wr \mathfrak{S}_{N}$$

$$\implies \mathcal{A}_{G} \geqslant \mathcal{A}_{\mathfrak{S}_{M}} \wr \mathfrak{S}_{N}$$

Two cases if G is P-oligomorphic:

• $M < \infty$

Two cases if G is P-oligomorphic:

• $M < \infty$

• $N < \infty$

Two cases if G is P-oligomorphic:

•
$$M < \infty \implies \mathcal{A}_{\mathfrak{S}_M \wr \mathfrak{S}_{\infty}} \rightarrow M$$
 generators

• $N < \infty$

Two cases if G is P-oligomorphic:

•
$$M < \infty \implies \mathcal{A}_{\mathfrak{S}_M \wr \mathfrak{S}_\infty} \to M$$
 generators
 $\implies \varphi_G(n) \geqslant O(n^{M-1})$

• $N < \infty$

Two cases if G is P-oligomorphic:

- $M < \infty \implies \mathcal{A}_{\mathfrak{S}_M \wr \mathfrak{S}_{\infty}} \to M$ generators $\implies \varphi_G(n) \geqslant O(n^{M-1})$
- $N < \infty \implies \mathcal{A}_{\mathfrak{S}_{\infty} \wr \mathfrak{S}_{N}} \rightarrow N$ generators

Two cases if G is P-oligomorphic:

•
$$M < \infty \implies \mathcal{A}_{\mathfrak{S}_M \wr \mathfrak{S}_{\infty}} \to M$$
 generators $\implies \varphi_G(n) \geqslant O(n^{M-1})$

•
$$N < \infty \implies \mathcal{A}_{\mathfrak{S}_{\infty} \wr \mathfrak{S}_{N}} \to N$$
 generators
 $\implies \varphi_{G}(n) \geqslant O(n^{N-1})$

Two cases if G is P-oligomorphic:

•
$$M < \infty \implies \mathcal{A}_{\mathfrak{S}_M \wr \mathfrak{S}_\infty} \to M$$
 generators $\implies \varphi_G(n) \geqslant O(n^{M-1})$

•
$$N < \infty$$
 \Longrightarrow $\mathcal{A}_{\mathfrak{S}_{\infty} \wr \mathfrak{S}_{N}} \to N$ generators \Longrightarrow $\varphi_{G}(n) \geqslant O(n^{N-1})$

Better have big finite blocks and/or "small" infinite ones...

Lattice

Partially ordered set (poset) with notions of join \vee and meet \wedge : any subset has a unique supremum (resp. infinimum).

Lattice

Partially ordered set (poset) with notions of join \vee and meet \wedge : any subset has a unique supremum (resp. infinimum).

Not a lattice:

Lattice

Partially ordered set (poset) with notions of join \vee and meet \wedge : any subset has a unique supremum (resp. infinimum).

Not a lattice:

Join and meet in the lattice of set partitions

Lattice

Partially ordered set (poset) with notions of join \vee and meet \wedge : any subset has a unique supremum (resp. infinimum).

Not a lattice:

Join and meet in the lattice of set partitions

Lattice

Partially ordered set (poset) with notions of join \vee and meet \wedge : any subset has a unique supremum (resp. infinimum).

Not a lattice:

Join and meet in the lattice of set partitions

Lattice

Partially ordered set (poset) with notions of join \vee and meet \wedge : any subset has a unique supremum (resp. infinimum).

Not a lattice:

Join and meet in the lattice of set partitions

 $A \vee B$

Lattice of set partitions \rightarrow lattice on block systems

Lattices of block systems

Lattice of set partitions \rightarrow lattice on block systems

Lattices of block systems

Lattice of set partitions \rightarrow lattice on block systems

Proposition (F.)

- {Systems with $< \infty$ blocks only} = sublattice with maximum
- {Systems with ∞ blocks only} = sublattice with minimum

Lattices of block systems

Lattice of set partitions \rightarrow lattice on block systems

Proposition (F.)

- {Systems with $< \infty$ blocks only} = sublattice with maximum
- ${Systems with \infty blocks only} = sublattice with minimum$

Remark. If G is P-oligomorphic, both of them are actually finite!

Idea

Idea

1. Take the maximal system of finite blocks

Idea

1. Take the maximal system of finite blocks

Idea

1. Take the maximal system of finite blocks

Action on the maximal finite blocks...

Idea

1. Take the maximal system of finite blocks

Action on the maximal finite blocks... that has no finite blocks.

Idea

- 1. Take the maximal system of finite blocks
- 2. Take the *minimal* system of infinite blocks of the action of G on the maximal finite blocks

Action on the maximal finite blocks... that has no finite blocks.

Idea

- 1. Take the maximal system of finite blocks
- 2. Take the minimal system of infinite blocks of the action of G on the maximal finite blocks \rightarrow finitely many superblocks

Action on the maximal finite blocks... that has no finite blocks.

The nested block system

Idea

- 1. Take the maximal system of finite blocks
- 2. Take the minimal system of infinite blocks of the action of G on the maximal finite blocks \rightarrow finitely many superblocks

Action on the maximal finite blocks... that has no finite blocks.

Fact. The action by permutation of the blocks can be "desynchronized" from the action within them

$$G_{|B_0} = H_0 \geqslant \operatorname{Fix}(B_0)_{|B_1} = H_1$$

• $H \wr \mathfrak{S}_{\infty}$ $\rightarrow H, H, H, H, H, \dots$

Fact. The action by permutation of the blocks can be "desynchronized" from the action within them \longrightarrow left to study: block stabilizer

• $H \wr \mathfrak{S}_{\infty}$

 $\rightarrow H$, H , H , H , H , H

• " $H_0 \times \mathfrak{S}_{\infty}$ "

 \rightarrow H_0 , Id , Id , Id , Id .

- $H \wr \mathfrak{S}_{\infty}$ $\rightarrow H , H , H , H , H , H ...$
- " $H_0 \times \mathfrak{S}_{\infty}$ " $\longrightarrow H_0$, Id , Id , Id , Id , Id ...
- < " $H_0 \times \mathfrak{S}_{\infty}$ ", $H \wr \mathfrak{S}_{\infty} >$

- $H \wr \mathfrak{S}_{\infty}$ $\to H , H , H , H , H , H ...$ • " $H_0 \times \mathfrak{S}_{\infty}$ " $\to H_0$, Id , Id , Id , Id , Id ...
- < " $H_0 \times \mathfrak{S}_{\infty}$ ", $H \wr \mathfrak{S}_{\infty} >$ $H_0 \triangleright H$ w.l.o.g

Fact. The action by permutation of the blocks can be "desynchronized" from the action within them \longrightarrow left to study: block stabilizer

- H ? S_∞ $\rightarrow H$, H , H , H , H
- " $H_0 \times \mathfrak{S}_{\infty}$ " $\rightarrow H_0$, Id, Id, Id, Id, Id
- $\bullet < "H_0 \times \mathfrak{S}_{\infty}", H \wr \mathfrak{S}_{\infty} > \to H_0, H, H, H, H, H$ $H_0 \triangleright H$ w.l.o.g

Notation: $[H_0, H_\infty]$

How to handle synchronizations between blocks?

Subdirect product and synchronization

How to handle synchronizations between blocks?

Subdirect product of two groups, or actions

How to handle synchronizations between blocks?

Subdirect product of two groups, or actions

• Formalizes the *synchronization* between two actions

How to handle synchronizations between blocks?

Subdirect product of two groups, or actions

- Formalizes the *synchronization* between two actions
- For instance, the actions on two different blocks

Subdirect product and synchronization

How to handle synchronizations between blocks?

Subdirect product of two groups, or actions

- Formalizes the *synchronization* between two actions
- For instance, the actions on two different blocks

Remark. The possible synchronizations of a group with another one are linked to its normal subgroups.

Fact. $Stab_G(blocks) = explicit subdirect product of the <math>H_i$

 $\operatorname{Stab}_G(\operatorname{blocks}) = \operatorname{explicit}$ subdirect product of the H_i

0000

The tower determines $Stab_G(blocks)$

Fact. Stab_G(blocks) = explicit subdirect product of the H_i

The tower determines $Stab_G(blocks)$

Fact. $Stab_G(blocks) = explicit subdirect product of the <math>H_i$

• The tower determines $Stab_G(blocks)$

One superblock: classification

- The tower determines $Stab_G(blocks)$
- Hence it determines G

One superblock: classification

- The tower determines $Stab_G(blocks)$
- Hence it determines G
- Computer exploration on finitely many blocks

- The tower determines $Stab_G(blocks)$
- Hence it determines G
- Computer exploration on finitely many blocks
 - \rightarrow Observation: always some $H_0, H, H, H, \dots, H, H_s$ Used the GAP database TransGrp 2.0.4 to browse transitive groups

One superblock

- The tower determines $Stab_G(blocks)$
- Hence it determines G
- Computer exploration on finitely many blocks
 - \rightarrow Observation: always some $H_0, H, H, H, \dots, H, H_s$! Used the GAP database TransGrp 2.0.4 to browse transitive groups

One superblock

- The tower determines $Stab_G(blocks)$
- Hence it determines G
- Computer exploration on finitely many blocks
 - \rightarrow Observation: always some $H_0, H, H, H, \dots, H, H_s$! Used the GAP database TransGrp 2.0.4 to browse transitive groups
 - \rightarrow Proof in the infinite case: always some H_0 , H, H, H \cdots

One superblock

- The tower determines $Stab_G(blocks)$
- Hence it determines G
- Computer exploration on finitely many blocks
 - \rightarrow Observation: always some $H_0, H, H, H, \dots, H, H_s$! Used the GAP database TransGrp 2.0.4 to browse transitive groups
 - \rightarrow Proof in the infinite case: always some H_0 , H, H, H \cdots

Classification

One superblock $\Rightarrow G = [H_0, H_{\infty}]$

- The tower determines Stab_G(blocks)
- Hence it determines G
- Computer exploration on finitely many blocks
 - \rightarrow Observation: always some $H_0, H, H, H, \dots, H, H_s$! Used the GAP database TransGrp 2.0.4 to browse transitive groups
 - \rightarrow Proof in the infinite case: always some H_0 , H, H, H \cdots

Classification

One superblock $\Rightarrow G = [H_0, H_{\infty}]$ $\mathbb{Q}[(X_o)_{o \in \operatorname{orb}(H)}]$

- The tower determines Stab_G(blocks)
- Hence it determines G
- Computer exploration on finitely many blocks
 - \rightarrow Observation: always some $H_0, H, H, H, \dots, H, H_s$! Used the GAP database TransGrp 2.0.4 to browse transitive groups
 - \rightarrow Proof in the infinite case: always some H_0 , H, H, H \cdots

Classification

One superblock $\Rightarrow G = [H_0, H_{\infty}]$

$$\mathcal{A}_G \simeq \mathbb{Q}[(X_o)_{o \in \mathrm{orb}(H)}]^{H_0}$$

that fixes the kernel.

that fixes the kernel.

that fixes the kernel.

- that fixes the kernel
- that stabilizes the superblocks

- that fixes the kernel
- that stabilizes the superblocks

- that fixes the kernel
- that stabilizes the superblocks
- that acts as wreath products on the superblocks

- that fixes the kernel
- that stabilizes the superblocks
- that acts as wreath products on the superblocks

- that fixes the kernel
- that stabilizes the superblocks
- that acts as wreath products on the superblocks

- that fixes the kernel
- that stabilizes the superblocks
- that acts as wreath products on the superblocks
- in which Rev(...) are reduced down to Aut(...)

- that fixes the kernel
- that stabilizes the superblocks
- that acts as wreath products on the superblocks
- in which Rev(...) are reduced down to Aut(...)

- that fixes the kernel
- that stabilizes the superblocks
- that acts as wreath products on the superblocks
- in which Rev(...) are reduced down to Aut(...)

• In K, totally independent superblocks (and kernel)

• In K, totally independent superblocks (and kernel) Consequence of the lack of finite index subgroups of \mathfrak{S}_{∞} , Aut(...) and wreath products

- In K, totally independent superblocks (and kernel) Consequence of the lack of finite index subgroups of \mathfrak{S}_{∞} , Aut(...) and wreath products
 - \Rightarrow direct product of the restrictions $K^{(i)}$

• In K, totally independent superblocks (and kernel)

Consequence of the lack of finite index subgroups of \mathfrak{S}_{∞} , Aut(...) and wreath products

 \Rightarrow direct product of the restrictions $K^{(i)}$

$$\Rightarrow \mathcal{A}_K = \bigotimes_i \mathcal{A}_{K^{(i)}}$$

- In K, totally independent superblocks (and kernel)
 - Consequence of the lack of finite index subgroups of \mathfrak{S}_{∞} , Aut(...) and wreath products
 - \Rightarrow direct product of the restrictions $K^{(i)}$
 - $\Rightarrow A_K = \bigotimes_i A_{K(i)}$
- $K^{(i)} = H^{(i)} \wr \mathfrak{S}_{\infty}$ wreath product with finite blocks

- In K, totally independent superblocks (and kernel)
 - Consequence of the lack of finite index subgroups of \mathfrak{S}_{∞} , Aut(...) and wreath products
 - \Rightarrow direct product of the restrictions $K^{(i)}$
 - $\Rightarrow A_K = \bigotimes_i A_{K(i)}$
- $K^{(i)} = H^{(i)} \wr \mathfrak{S}_{\infty}$ wreath product with finite blocks
 - $\Rightarrow \mathcal{A}_K \simeq \bigotimes_i \mathbb{Q}[(X_o)_{o \in \mathrm{orb}(H^{(i)})}]$

free algebra finitely generated by the orbits of the $H^{(i)}$'s

- In K, totally independent superblocks (and kernel)
 - Consequence of the lack of finite index subgroups of \mathfrak{S}_{∞} , Aut(...) and wreath products
 - \Rightarrow direct product of the restrictions $K^{(i)}$
 - $\Rightarrow A_K = \bigotimes_i A_{K(i)}$
- $K^{(i)} = H^{(i)} \wr \mathfrak{S}_{\infty}$ wreath product with finite blocks
 - $\Rightarrow \mathcal{A}_K \simeq \bigotimes_i \mathbb{Q}[(X_o)_{o \in \mathrm{orb}(H^{(i)})}]$

free algebra finitely generated by the orbits of the $H^{(i)}$'s (plus some 2-nilpotent elements brought by the kernel)

- In K, totally independent superblocks (and kernel)
 - Consequence of the lack of finite index subgroups of \mathfrak{S}_{∞} , Aut(...) and wreath products
 - \Rightarrow direct product of the restrictions $K^{(i)}$
 - $\Rightarrow \mathcal{A}_K = \bigotimes_i \mathcal{A}_{K^{(i)}}$
- $K^{(i)} = H^{(i)} \wr \mathfrak{S}_{\infty}$ wreath product with finite blocks
 - $\Rightarrow \mathcal{A}_K \simeq \bigotimes_i \mathbb{Q}[(X_o)_{o \in \operatorname{orb}(H^{(i)})}]$

free algebra finitely generated by the orbits of the $H^{(i)}$'s (plus some 2-nilpotent elements brought by the kernel)

• Fact: G acts by permutation on these generators

• In K, totally independent superblocks (and kernel)

Consequence of the lack of finite index subgroups of \mathfrak{S}_{∞} , Aut(...) and wreath products

- \Rightarrow direct product of the restrictions $K^{(i)}$
- $\Rightarrow A_K = \bigotimes_i A_{K(i)}$
- $K^{(i)} = H^{(i)} \wr \mathfrak{S}_{\infty}$ wreath product with finite blocks
 - $\Rightarrow \mathcal{A}_K \simeq \bigotimes_i \mathbb{Q}[(X_o)_{o \in \operatorname{orb}(H^{(i)})}]$

free algebra finitely generated by the orbits of the $H^{(i)}$'s (plus some 2-nilpotent elements brought by the kernel)

- Fact: G acts by permutation on these generators
 - $\Rightarrow \mathcal{A}_G$ is the algebra of invariants of this finite action (up to some nilpotents)

• In K, totally independent superblocks (and kernel)

Consequence of the lack of finite index subgroups of \mathfrak{S}_{∞} , Aut(...) and wreath products

- \Rightarrow direct product of the restrictions $K^{(i)}$
- $\Rightarrow \mathcal{A}_K = \bigotimes_i \mathcal{A}_{K^{(i)}}$
- $K^{(i)} = H^{(i)} \wr \mathfrak{S}_{\infty}$ wreath product with finite blocks
 - $\Rightarrow \mathcal{A}_K \simeq \bigotimes_i \mathbb{Q}[(X_o)_{o \in \operatorname{orb}(H^{(i)})}]$

free algebra finitely generated by the orbits of the $H^{(i)}$'s (plus some 2-nilpotent elements brought by the kernel)

- Fact: G acts by permutation on these generators
 - $\Rightarrow \mathcal{A}_G$ is the algebra of invariants of this finite action (up to some nilpotents)
- Hilbert's theorem:

 \mathcal{A}_G finitely generated (and even Cohen-Macaulay)

• In K, totally independent superblocks (and kernel)

Consequence of the lack of finite index subgroups of \mathfrak{S}_{∞} , Aut(...) and wreath products

- \Rightarrow direct product of the restrictions $K^{(i)}$
- $\Rightarrow A_K = \bigotimes_i A_{K(i)}$
- $K^{(i)} = H^{(i)} \wr \mathfrak{S}_{\infty}$ wreath product with finite blocks
 - $\Rightarrow \mathcal{A}_K \simeq \bigotimes_i \mathbb{Q}[(X_o)_{o \in \operatorname{orb}(H^{(i)})}]$

free algebra finitely generated by the orbits of the $H^{(i)}$'s (plus some 2-nilpotent elements brought by the kernel)

- Fact: G acts by permutation on these generators
 - $\Rightarrow \mathcal{A}_G$ is the algebra of invariants of this finite action (up to some nilpotents)
- Hilbert's theorem:

 \mathcal{A}_G finitely generated (and even Cohen-Macaulay)

Which ends the proof of the conjectures!

For each orbit of blocks

For each orbit of blocks, choose

1. One group of profile 1

For each orbit of blocks, choose

- 1. One group of profile 1
 - Has to be \mathfrak{S}_{∞} if the blocks are not singletons

For each orbit of blocks, choose

- 1. One group of profile 1
 - Has to be \mathfrak{S}_{∞} if the blocks are not singletons
 - Can alternatively be Id₁ for at most one orbit of one block

For each orbit of blocks, choose

- 1. One group of profile 1
 - Has to be \mathfrak{S}_{∞} if the blocks are not singletons
 - \bullet Can alternatively be Id_1 for at most one orbit of one block

Classification of P-oligomorphic groups (F. 2019) G_0 a finite permutation group, B_0 a block system.

- 1. One group of profile 1
 - Has to be \mathfrak{S}_{∞} if the blocks are not singletons
 - Can alternatively be Id₁ for at most one orbit of one block

Classification of P-oligomorphic groups (F. 2019) G_0 a finite permutation group, \mathcal{B}_0 a block system.

- 1. One group of profile 1
 - Has to be \mathfrak{S}_{∞} if the blocks are not singletons
 - Can alternatively be Id₁ for at most one orbit of one block

Classification of P-oligomorphic groups (F. 2019) G_0 a finite permutation group, \mathcal{B}_0 a block system.

- 1. One group of profile 1
 - Has to be \mathfrak{S}_{∞} if the blocks are not singletons
 - Can alternatively be Id₁ for at most one orbit of one block
- 2. One normal subgroup H of $H_0 = G_{0|B}$ for any B in the orbit

Classification of P-oligomorphic groups (F. 2019) G_0 a finite permutation group, \mathcal{B}_0 a block system.

- 1. One group of profile 1
 - Has to be \mathfrak{S}_{∞} if the blocks are not singletons
 - Can alternatively be Id₁ for at most one orbit of one block
- 2. One normal subgroup H of $H_0 = G_{0|B}$ for any B in the orbit

- First applications
 - Finite data structure \rightarrow possible algorithmics

- First applications
 - Finite data structure \rightarrow possible algorithmics
 - Implementation of P-oligomorphic groups in Sage

- First applications
 - Finite data structure \rightarrow possible algorithmics
 - Implementation of P-oligomorphic groups in Sage
- Short term:
 - count (transitive? kernel-free?) P-oligomorphic groups per growth rate of the profile

- First applications
 - Finite data structure \rightarrow possible algorithmics
 - Implementation of P-oligomorphic groups in Sage
- Short term:
 - count (transitive? kernel-free?) P-oligomorphic groups per growth rate of the profile
 - release a Sage (and/or GAP?) package

- First applications
 - Finite data structure \rightarrow possible algorithmics
 - Implementation of P-oligomorphic groups in Sage
- Short term:
 - count (transitive? kernel-free?) P-oligomorphic groups per growth rate of the profile
 - release a Sage (and/or GAP?) package
- Explore higher growths

- First applications
 - Finite data structure \rightarrow possible algorithmics
 - Implementation of P-oligomorphic groups in Sage
- Short term:
 - count (transitive? kernel-free?) P-oligomorphic groups per growth rate of the profile
 - release a Sage (and/or GAP?) package
- Explore higher growths
 - Bounded: classified before

- First applications
 - Finite data structure \rightarrow possible algorithmics
 - Implementation of P-oligomorphic groups in Sage
- Short term:
 - count (transitive? kernel-free?) P-oligomorphic groups per growth rate of the profile
 - release a Sage (and/or GAP?) package
- Explore higher growths
 - Bounded: classified before
 - Polynomial: classified now

- First applications
 - Finite data structure \rightarrow possible algorithmics
 - Implementation of *P*-oligomorphic groups in Sage
- Short term:
 - count (transitive? kernel-free?) *P*-oligomorphic groups per growth rate of the profile
 - release a Sage (and/or GAP?) package
- Explore higher growths
 - Bounded: classified before
 - Polynomial: classified now
 - Subexponential: some properties remain true, looks possible

- First applications
 - Finite data structure \rightarrow possible algorithmics
 - Implementation of P-oligomorphic groups in Sage
- Short term:
 - count (transitive? kernel-free?) P-oligomorphic groups per growth rate of the profile
 - release a Sage (and/or GAP?) package
- Explore higher growths
 - Bounded: classified before
 - Polynomial: classified now
 - Subexponential: some properties remain true, looks possible
 - Exponential: wilder primitive groups appear...

Thank you for your attention!

Context

- G permutation group of a countably infinite set E
- Profile φ_G : counts the orbits of finite subsets of E
- Hypothesis: $\varphi_G(n)$ bounded by a polynomial
- Conjecture (Cameron): $\varphi_G(n) \sim an^k$
- Conjecture (Macpherson): finite generation of the orbit algebra

Results

- Both conjectures hold!
- Classification of P-oligomorphic permutation groups
- The orbit algebra is an algebra of invariants (up to some 2-nilpotent elements)

Example of a product in the cyclic group \mathcal{C}_5

$$= 0 +$$

$$=$$
 0 + 0 + $\frac{5}{4}$

$$=$$
 0 + 0 + $\frac{5}{4}$ + $\frac{5}{4}$ $\frac{2}{3}$

$$=$$
 2 (5) (4) (3)

$$=$$
 2 (5) (2) (4) (3) (3) (4) (3) (4) (3) (4) (3) (4) (5) (5) (4) (5) (5) (5) (5) (5) (6) (6) (7)

$$= 2 \frac{5}{4} + 2 \frac{5}{4} + \cdots + 1 \frac{5}{4} + \cdots$$

Conjecture of Macpherson

In the end:

Conjecture of Macpherson

In the end:

Non trivial fact

Product well defined (and graded) on the space of orbits.

Conjecture of Macpherson

In the end:

Non trivial fact

Product well defined (and graded) on the space of orbits.

→ Orbit algebra of a permutation group

Example:
$$G = \mathfrak{S}_{\infty} \wr \mathfrak{S}_{\infty}$$

$$\varphi_G(n) = ?$$

Example: $G = \mathfrak{S}_{\infty} \wr \mathfrak{S}_{\infty}$

$$\varphi_G(n) = ?$$

An orbit of degree $n \longleftrightarrow$ a partition of n

Example: $G = \mathfrak{S}_{\infty} \wr \mathfrak{S}_{\infty}$

$$\varphi_G(n) = ?$$

An orbit of degree $n \longleftrightarrow$ a partition of n

Example: $G = \mathfrak{S}_{\infty} \wr \mathfrak{S}_{\infty}$

$$\varphi_G(n) = ?$$

An orbit of degree $n \longleftrightarrow$ a partition of n

Example: $G = \mathfrak{S}_{\infty} \wr \mathfrak{S}_{\infty}$

$$\varphi_G(n) =$$

An orbit of degree $n \longleftrightarrow$ a partition of n

Example: $G = \mathfrak{S}_{\infty} \wr \mathfrak{S}_{\infty}$

$$\varphi_G(n) = p(n)$$

An orbit of degree $n \longleftrightarrow$ a partition of n

The tower determines the group (1): "straight \mathfrak{S}_{∞} "

 ${\cal G}$ contains a set of "straight" swaps of blocks

The tower determines the group (1): "straight \mathfrak{S}_{∞} "

G contains a set of "straight" swaps of blocks

G contains a set of "straight" swaps of blocks

Hence the actions on and within the blocks are independent.

The tower has shape H_0 , H, H, H ...

Lemma to prove

G has tower H_0 H_1 H_2 $H_3 \Rightarrow H_1 = H_2$

Proof.

An element $s \in G$ stabilizing the blocks \leftrightarrow a quadruple $g \in H_1 \rightarrow \exists (1, g, h, k), h, k \in H_1.$

Let σ be an element of G that permutes "straightforwardly" the first two blocks and fixes the other two.

Conjugation of x by σ in $G \rightarrow y = (g, 1, h, k)$

Then: $x^{-1}y = (q, q^{-1}, 1, 1)$

By arguing that the tower does not depend on the ordering of the blocks, q^{-1} and therefore q are in H_2 .

In the infinite case, apply to each restriction to four consecutive blocks of the fixator of the previous ones in G.

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

 $\rightarrow C_3$ acts on monomials

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$\mathbb{Q}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty} ?$$

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$\mathbb{Q}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty} ?$$

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$\mathbb{Q}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty} ?$$

$$x + x$$
 $x + x$

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$\mathbb{Q}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty} ?$$

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$\mathbb{Q}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty}$$
?

$$O(x_{\circ})$$
 $O(x_{\circ})$

$$O(x_{0})$$

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$\mathbb{Q}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty}$$
?

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$\mathbb{Q}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty} ?$$

$$\mathrm{O}(\ x \bigcirc).\mathrm{O}(\ x \bigcirc) = \ \mathrm{O}(\ x \bigcirc x \bigcirc)$$

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$\mathbb{Q}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty} ?$$

$$\mathrm{O}(\ x \ \bigcirc).\mathrm{O}(\ x \ \bigcirc) = \ \mathrm{O}(\ x \ \bigcirc x \ \bigcirc) + \mathrm{O}(\ x \ \bigcirc x \ \bigcirc)$$

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$\mathbb{Q}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty} ?$$

$$O(x \bigcirc).O(x \bigcirc) = O(x \bigcirc x \bigcirc) + O(x \bigcirc x \bigcirc) + O(x \bigcirc x \bigcirc)$$

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$\mathbb{Q}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty} ?$$

$$O(x \stackrel{\bullet}{\otimes}).O(x \stackrel{\bullet}{\otimes}) = O(x \stackrel{\bullet}{\otimes} x \stackrel{\bullet}{\otimes}) + O(x \stackrel{\bullet}{\otimes} x \stackrel{\bullet}{\otimes}) + O(x \stackrel{\bullet}{\otimes} x \stackrel{\bullet}{\otimes})$$

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$\mathbb{Q}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty} ?$$

$$O(x \stackrel{\bullet}{\otimes}).O(x \stackrel{\bullet}{\otimes}) = O(x \stackrel{\bullet}{\otimes} x \stackrel{\bullet}{\otimes}) + O(x \stackrel{\bullet}{\otimes} x \stackrel{\bullet}{\otimes}) + O(x \stackrel{\bullet}{\otimes} x \stackrel{\bullet}{\otimes})$$

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$\mathbb{Q}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty} ?$$

$$O(x \circ).O(x \circ) = O(x \circ x \circ) + O(x \circ x \circ) + O(x \circ x \circ)$$

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$\mathbb{Q}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty} ?$$

$$O(x \circ) . O(x \circ) = O(x \circ x \circ) + O(x \circ x \circ) + O(x \circ x \circ)$$

$$O(\begin{tabular}{c} O(\begin{tabular}{c} \lozenge \\ O(\begin{tabular}{c} \lozenge$$

"Speak, friend..."

Example 3

 $C_3 \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$\mathbb{Q}[x]^{G'} \longleftrightarrow \text{Orbit algebra of } C_3 \times \mathfrak{S}_{\infty} ?$$

$$O(x \circ).O(x \circ) = O(x \circ x \circ) + O(x \circ x \circ) + O(x \circ x \circ)$$

$$O(\begin{picture}(60,0)(10,0$$

Intro	Profile and conjectures 000000	Nested block system	One superblock	Classification 00000	Bonus
_					