

CIRCUITOS LÓGICOS DIGITALES SEMANA 12 MAQUINAS DE ESTADO

Ejercicio 1: Diseñar un generador de paridad par de cadenas de 3 bits serie. Por ejemplo, si la secuencia de entrada es X = 000110101..., la salida deberá ser Z=000100010...

En base a lo descrito líneas arriba, se solicita diseñar el sistema secuencial síncrono indicando claramente lo siguiente:

- 1. El diagrama de estados.
- 2. El número de estados.
- 3. El número de biestables o FFs del sistema. Utilizar como elementos de memoria FFs tipo D.
- 4. La tabla de codificación de los estados del sistema.
- 5. La tabla de transición de estados, tabla de salida(s) y también la tabla de excitación del sistema secuencial sincrono.
- 6. Simplificar o minimizar las funciones lógicas de la(s) salida(s) del sistema y también de las entradas de los FFs.
- 7. El circuito lógico utilizando FFs y puertas lógicas básicas.

Ejercicio 2: A partir del diagrama de estados de la Fig.1, desarrollar la tabla de transición de estados.

Ejercicio 3: Completar la tabla de transición de estados y de salida (Tabla 2) y también realizar el diagrama de estados que genera la siguiente tabla de funcionamiento (Tabla 1) cuyo estado inicial y secuencia de entrada se indican a continuación:

Secuencia de entrada = $\{0,1,1,0,1,0,1,1,0,0,0,...\}$ Estado inicial = $\{A\}$

Próximo estado/z

Tabla 1

Secuencia	0	1	2	3	4	5	6	7	8	9	10
Entrada	0	1	1	0	1	0	1	1	0	0	0
Estado actual	A		-)					
Próximo estado						,					
Salida											

Tabla 2

2

Ejercicio 4: Completar la tabla de transición de estados y de salida (Tabla 3) para el siguiente autómata de Moore cuyo diagrama de estados se muestra a continuación (Fig.2).

i	0	1	2	3	4	5
Entrada	0	0	0	1	1	1
Estado presente	С					
Estado próximo						
Salida						

Tabla 3

Ejercicio 5: A partir del diagrama de estados de la Fig.3; determinar la tabla de transición de estados cuyo estado inicial es C y, además, tiene como secuencia de entrada 0, 0, 0, 1, 1, 1, ...

Fig. 3

Ejercicio 6: Determinar el diagrama de transición de estados de una maquina que produce una salida alta, 1, cada vez que detecta la secuencia 0101 en su entrada; y produce una salida baja, 0, en el resto de los casos. Finalmente, completar la tabla de transición de estados y de salida (Tabla 4) para la siguiente secuencia de entrada: 010110011...

Entrada	0	1	0	1	1	0	0	1	1	
Salida										
Pxo. Estado	,					,				

Tabla 4

Ejercicio 7: Diseñar sistemas secuenciales síncronos que generen las siguientes secuencias:

- a. 1, 3, 6, 5, 4, 7
- b. 0, 1, 2, 3 o 3, 2, 1, 0
- c. 1, 3, 2, 6, 7, 5, 1