

Explorando 'Toy Models' do Big-Bang Baseados em Mecânica Newtoniana Clássica de N-Corpos

Exploring Big Bang toy models based on N-body classical newtonian mechanics

Octavio Augusto Potalej Eduardo Colli (Orientador)

IME - USP

oapotalej@usp.br

Objetivos

- A evolução de sistemas gravitacionais é complexa. Simular o problema de N-corpos é uma forma de estudá-los;
- Adicionamos colisões elásticas para evitar singularidades;
- Simular numericamente tem desafios, como a precisão nos resultados e o custo de computação. Utilizaremos Fortran para isso;
- A Dinâmica de Formas é uma teoria de gravidade que, entre outras coisas, propõe setas do tempo baseadas na gravidade. Podemos visualizar estas setas com simulações.
- Precisamos de algumas condições iniciais específicas...

Figura: Simulação de um problema de N-corpos¹. No final, são apenas pontos.

 $^{^1}$ Feita com o simulador de Marc Vivas: https://github.com/MarcVivas/N-body+ 4 = 1 ~ 9

Integrais primeiras e condições iniciais

Integrais primeiras do problema de N-corpos

O problema de N-corpos é conservativo. Isso significa que existem valores que se conservam durante toda a evolução do sistema, chamados *integrais* primeiras. São eles:

- **1** Energia total: $E = \frac{1}{2} \sum_{a=1}^{N} m_a ||\dot{r}_a||^2 + V$, onde V é o potencial;
- ② Momento linear total: $\mathbf{P} = \sum_{a=1}^{N} m_a \dot{\mathbf{r}}_a = \sum_{a=1}^{N} \mathbf{p}_a$;
- **③** Centro de massas: $r_{cm} = \frac{1}{M} \sum_{a=1}^{N} m_a r_a$, $M = \sum_{a=1}^{N} m_a$;
- **1** Momento angular total: $J = \sum_{a=1}^{N} r_a \times p_a$.

Consideramos o caso E = 0, P = 0, $r_{cm} = 0$ e J = 0.

Condicionando valores iniciais

- Anular $E: \dot{r}_a \mapsto \dot{r}_a \sqrt{-V/(E-V)};$
- Anular r_{cm} : $r_a \mapsto r_a r_{cm}$;
- Anular $P: \dot{r}_a \mapsto \dot{r}_a \frac{1}{M} \sum_{a=1}^N m_a \dot{r}_a;$
- Anular $J: \dot{r}_a \mapsto \dot{r}_a + r_a \times \omega$, para ω solução de $I_{tot}\omega = -J$.

Simulação - Integradores numéricos

O problema de N-corpos é descrito por um sistema de equações diferenciais ordinárias. Para simular o sistema é preciso integrar numericamente essas equações. Métodos:

Runge-Kutta de Quarta Ordem (RK4)

- Método de propósito geral;
- Precisa de passo de integração pequeno para oferecer bons resultados.

Velocity Verlet (VV)

- Método simplético;
- Não precisa de passos tão pequenos para integrar sistemas conservativos.

Figura: Uma das trajetórias em um problema de 3 corpos, integrado via RK4 e VV.

Simulação - Corretor numérico

Motivação: se a solução obtida com a integração numérica for suficientemente precisa, as integrais primeiras devem estar próximas de zero. Assim, a solução correta deve estar a uma projeção de distância!

Figura: Projeção de uma aproximação x_k no plano de nível, encontrando a solução $x(t_{k+1})$.

Corretor conservativo (Formalização)

Considere um sistema conservativo $\ddot{x}(t) = F(x(t))$, $t \in I$ intervalo aberto, com valor inicial $x(t_0) = x_0, t_0 \in I$. Seja o vetor de k integrais primeiras do sistema $\Psi(x) = (\psi_1(x), ..., \psi_k(x))$ e sua matriz jacobiana $J\Psi(x)$. Seja x^* uma aproximação para $y = x(t^*)$, $t^* \in I$, $t^* \neq t_0$. Vale que

$$\mathbf{y} - \mathbf{x}^* = \mathbf{J} \mathbf{\Psi} (\mathbf{x}^*)^\mathsf{T} \boldsymbol{\alpha}, \tag{1}$$

onde α é a solução de $J\Psi(\mathbf{x}^{\star})J\Psi(\mathbf{x}^{\star})^{T}\alpha=\Psi(\mathbf{x}_{0})-\Psi(\mathbf{x}^{\star}).$

Simulação - Corretor numérico (visualização)

Figura: Mesmo problema de 3 corpos em forma de lemniscata, mas inclusa a trajetória com correção.

Dinâmica de Formas - Dispersão e Evolução

Voltando para a teoria...

O problema de N-corpos possui dois medidores de dispersão: o momento de inércia I e o potencial V, dados por

$$I = \frac{1}{M} \sum_{a < b} m_a m_b r_{ab}^2, \quad V = -\sum_{a < b} G \frac{m_a m_b}{r_{ab}}.$$
 (2)

A Relação de Lagrange-Jacobi relaciona as duas medidas:

$$\ddot{I} = 4E - 2V. \tag{3}$$

Quando $E \ge 0$, tem-se $\ddot{l} \ge 0$, \dot{l} monótona crescente e l côncava para cima. A metade de \dot{l} é chamada momento de dilatação:

$$D := \frac{1}{2}\dot{I} = \sum_{a=1}^{N} \langle \mathbf{r}_{a}, \mathbf{p}_{a} \rangle. \tag{4}$$

O ponto de virada (mínimo) de I é chamado Ponto de Janus, e coincide com D=0.

Dinâmica de Formas - Complexidade e Setas do Tempo

Comprimentos

Podemos definir dois comprimentos a partir de I e V:

- Comprimento médio da raiz quadrada: $L_{rms} = \sqrt{I/M}$.
- Comprimento harmônico médio: $L_{mhl} = M^2/|V|$.

Complexidade

A razão entre L_{rms} e L_{mhl} é chamada *complexidade*:

$$C_S := \frac{L_{rms}}{L_{mhl}} = \frac{|V|\sqrt{I}}{M^{5/2}}.$$
 (5)

As direções de crescimento de C_S caracterizam setas do tempo, que podem ser medidas por $au=D/D_0$.

Primeiro resultado: Simulações numéricas

As simulações numéricas em Fortran apresentaram o resultado esperado: o método RK4 é menos preciso que o de VV, que é menos preciso que com o corretor numérico. O custo com o corretor, porém, é maior. Utilizá-lo ou não depende do objetivo com a simulação!

Figura: Tempo levado a cada passo de integração por quantidade de corpos em cada método.

Figura: Energia total no problema de 3 corpos em forma de lemniscata.

Segundo resultado: Dinâmica de Formas

As setas do tempo previstas pela Dinâmica de Formas podem ser visualizadas com as simulações de N-corpos.

Figura: Complexidade e momento de inércia em um problema de 100 corpos.

Conclusões e pretensões

Rumos possíveis

- Modelos mais complexos: Os resultados da Dinâmica de Formas dependem das condições iniciais e da conservação. Pretendemos testá-los com "toy-models" mais avançados, e.g.: rotações individuais, colisões inelásticas, etc;
- Caos: Como ficaria o sistema com energia negativa?
- Computação: As simulações podem ser maiores! Computação paralela, processamento em GPU, algoritmos em árvore, etc. Cabe aprender e testar

Referências

BARBOUR, Julian; KOSLOWSKI, Tim; MERCATI, Flavio. Identification of a Gravitational Arrow of Time. *Phys. Rev. Lett.*, American Physical Society, v. 113, p. 181101, 18 out. 2014. DOI: 10.1103/PhysRevLett.113.181101. Disponível em: jhttps://link.aps.org/doi/10.1103/PhysRevLett.113.181101¿.

______. The solution to the problem of time in shape dynamics. Classical and Quantum Gravity, IOP Publishing, v. 31, n. 15, p. 155001, jul. 2014. DOI: 10.1088/0264-9381/31/15/155001. Disponível em: jhttps://dx.doi.org/10.1088/0264-9381/31/15/155001;

BERTSEKAS, Dmitri Panteli. *Nonlinear Programming*. 3ed. Nashua: Athena Scientific, 2016.

HAIRER, Ernst; WANNER, Gerhard; LUBICH, Christian. *Geometric Numerical Integration*: Structure-Preserving Algorithms for Ordinary Differential Equations. [S.I.]: Springer-Verlag, 2006. DOI: 10.1007/3-540-30666-8.

ROMA, Alexandre et al. *Métodos para a solução numérica de equações diferenciais ordinárias a valores iniciais.* São Paulo: Notas de aula, 2019.

VOLCHAN, Sérgio. *Uma Introdução à Mecânica Celeste*. Rio de Janeiro: Instituto Nacional de Matemática Pura e Aplicada - IMPA, 2007.

