Hierarchical agglomerative clustering

Hierarchical cluster analysis

Ricco RAKOTOMALALA Université Lumière Lyon 2

Outline

- 1. Cluster analysis
- 2. HAC Algorithm
- 3. Detecting the number of clusters
- 4. Assigning an instance to a cluster
- 5. Tools Case study
- 6. Tandem Analysis Factor analysis + HAC
- 7. Two step clustering Processing large datasets
- 8. Conclusion
- 9. References

Cluster analysis

Clustering, unsupervised learning, ...

Cluster analysis

Also called: clustering, unsupervised learning, numerical taxonomy, typological analysis

Input X (all continuous)

No target attribute

Modele	Prix	Cylindree	Puissance	Poids	Consommation	Gr
Daihatsu Cuore	11600	846	32	650	5.7	
Suzuki Swift 1.0 GLS	12490	993	39	790	5.8	
Fiat Panda Mambo L	10450	899	29	730	6.1	
VW Polo 1.4 60	17140	1390	44	955	6.5	
Opel Corsa 1.2i Eco	14825	1195	33	895	6.8	
Subaru Vivio 4WD	13730	658	32	740	6.8	
Toyota Corolla	19490	1331	55	1010	7.1	
Opel Astra 1.6i 16V	25000	1597	74	1080	7.4	
Peugeot 306 XS 108	22350	1761	74	1100	9	
Renault Safrane 2.2. V	36600	2165	101	1500	11.7	
Seat Ibiza 2.0 GTI	22500	1983	85	1075	9.5	
VW Golt 2.0 GTI	31580	1984	85	1155	9.5	
Citroen Z X Volcane	28750	1998	89	1140	8.8	
Fiat Tempra 1.6 Liberty	22600	1580	65	1080	9.3	
Fort Escort 1.4i PT	20300	1390	54	1110	8.6	
Honda Civic Joker 1.4	19900	1396	66	1140	7.7	4
Volvo 850 2.5	39800	2435	106	1370	10.8	
Ford Fiesta 1.2 Zetec	19740	1242	55	940	6.6	
Hyundai Sonata 3000	38990	2972	107	1400	11.7	
Lancia K 3.0 LS	50800	2958	150	1550	11.9	
Mazda Hachtback V	36200	2497	122	1330	10.8	
Mitsubishi Galant	31990	1998	66	1300	7.6	
Opel Omega 2.5i V6	47700	2496	125	1670	11.3	
Peugeot 806 2.0	36950	1998	89	1560	10.8	
Nissan Primera 2.0	26950	1997	92	1240	9.2	
Seat Alhambra 2.0	36400	1984	85	1635	11.6	
Toyota Previa salon	50900	2438	97	1800	12.8	
Volvo 960 Kombi aut	49300	2473	125	1570	12.7	

We want that:

- (1) The objects in the same group are more similar to each other
- (2) Thant to those in other groups

For what purpose?

- → Identify underlying structures in the data
- → Summarize behaviors or characteristics
- → Assign new individuals to groups
- → Identify totally atypical objects

The aim is to detect the set of "similar" objects, called groups or clusters.

"Similar" should be understood as "which have close characteristics".

Consommation Groupe

10.8

11.9

10.8

c hac 1

c hac 1

c hac 1

c hac 1

c_hac_1

11.7 c_hac_1

10.8 c_hac_1

11.6 c hac 1

12.8 c hac 1

12.7 c_hac_1

Cars dataset

c_hac_1 + c_hac_2 ∆ c_hac_3

Modele

Volvo 850 2.5

Lancia K 3.0 LS

Peugeot 806 2.0

Seat Alhambra 2.0

Toyota Previa salon Volvo 960 Kombi aut

Renault Safrane 2.2. V

Hyundai Sonata 3000

Mazda Hachtback V

Opel Omega 2.5i V6

Prix

36600

39800

38990

50800

36200

47700

36950

36400

50900

49300

Ricco Rakotomalala

Cylindree

2165

2435

2972

2958

2497

2496

1998

1984

2438

2473

Tutoriels Tanagra - http://tutoriels-data-mining.blogspot.fr/

Puissance

101

106

107

150

122

125

89

85

97

125

Poids

1500

1370

1400

1550

1330

1670

1560

1635

1800

1570

Cluster Analysis

Principle: Form set of objects (groups, clusters) in such a way that the objects in the same group are "similar" (share close characteristics), and the objects in different groups are "dissimilar".

We can also say that cluster analysis enables to:

- Identify groups of objects with homogeneous characteristics
- Provide a summary of the data by highlighting its main dimensions (oppositions and similarities)
- Highlight the underlying patterns in the data
- Build a taxonomy of objects

Visualization in a two dimensional representation space

Key points in the construction of the groups.

We must quantify:

- The similarity between 2 objects
- The similarity between 2 sets of objects
- The similarity between 1 objects and a group (set of objects) (needed during the construction but also for the deployment)
- The compactness of each group.
- The distance between the groups (separability).

Hierarchical agglomerative clustering

A very popular approach... for many reasons

HAC - Algorithm

Input: dataset (X)

Output: an indicator of group membership of individuals

Calculate the distance matrix between pairs of objects Each instance form a group (cluster)

REPEAT

Detect the two closest groups
Merge them to form only one group

UNTIL All the objects are gathered in an unique group

Determining the number of clusters Assign each instance to a group We must define the distance measure between objects

Linkage criterion i.e. defining a cluster dissimilarity, which is a function of the pairwise distance of instances in the groups.

Among other, in the specific context of the hierarchical clustering, the dendrogram enables to understand the structure of the groups.

HAC – Example (1)

Dataset (Row = Object)

	x 1 **	x2 [‡]
1	8	3
2	5	3
3	6	4
4	1	б
5	2	8

Pairwise distance matrix

Euclidean distance between two instances

$$d(1,3) = \sqrt{(8-6)^2 + (3-4)^2}$$
$$= \sqrt{4+1}$$
$$= 2.236$$

HAC – Example (2)

The cluster **dendrogram** is very important to describe the step-by-step merging process. We can also evaluate the closeness of the groups each other.

HAC – Example (3) – Linkage criterion

We obtain an indexed hierarchy. The merging levels correspond to the measure of dissimilarity between the two groups.

Distance between (1) and (2,3)

	x1 [‡]	x2 [‡]
1	8	3
2	5	3
3	6	4
4	1	6
5	2	8

Coordinates of the cluster (2,3): cluster centroid

$$\left(\frac{5+6}{2}=5.5, \frac{3+4}{2}=3.5\right)$$

Ward's distance between (1) and (2,3)

$$D^{2} = \frac{n_{1} \times n_{23}}{n_{1} + n_{23}} \times d^{2}(1,23)$$
$$= \frac{1 \times 2}{1 + 2} \times 6.5 = 4.333$$

Note: Surprisingly, the software R (3.3.1 - hclust) displays

Height =
$$\sqrt{2 \times D^2}$$
 = 2.9439

HAC – Example (4) – Details under R

```
#dataset (2 variables)
x1 \leftarrow c(8,5,6,1,2)
x2 < -c(3,3,4,6,8)
#plotting
                                                                         Cluster Dendrogram
plot(x1,x2,xlim=c(0,10),ylim=c(0,10))
text(x1-0.5,x2,1:5,cex=0.75)
                                                                Height
#pairwise distance
X <- data.frame(x1,x2)</pre>
d \leftarrow dist(X)
print(d)
#HAC
cah <- hclust(d,method="ward.D2")</pre>
                                                                           hclust (*, "ward.D2")
plot(cah)
#aggregation levels
print(cah$height) <</pre>
                                                 > #hauteurs d'agrégation
                                                 > print(cah$height)
                                                 [1] 1.414214 2.236068 2.943920 9.398581
```

HAC – Ultrametric space (Ultrametric distance)

Is an inversion can occur in the dendrogram?

For all indexed hierarchy corresponds a distance between two objects of H [d(A,B)] which is their aggregation level.

There is an additional property compared with the standard distance: the **ultrametric inequality**

$$d(A,B) \le \max\{d(A,C),d(B,C)\}$$
whatever C

13

Pairwise distance matrix

E.g.
$$d(2,3) \le \max \{d(2,1), d(3,1)\}\$$

 $d(1,2) \le \max \{d(1,3), d(2,3)\}$

HAC – Distance between instances

(there are others...)

Distance properties

- Non negativity: d(a,b) ≥ o
- Symmetry: d(a,b) = d(b,a)
- Identity : $d(a,b) = o \Leftrightarrow a = b$
- Triangle inequality: $d(a,c) \le d(a,b) + d(b,c)$

Euclidean distance

$$d^{2}(a,b) = \sum_{j=1}^{p} (x_{j}(a) - x_{j}(b))^{2}$$

Euclidean distance weighted by the inverse of the variance

$$d^{2}(a,b) = \sum_{j=1}^{p} \frac{1}{\sigma_{j}^{2}} (x_{j}(a) - x_{j}(b))^{2}$$

Allows to handle the problem of difference of scale between variables. Can be obtained by applying the Euclidean distance to standardized data.

Cosine distance

$$d(a,b) = 1 - \cos(a,b) = 1 - \frac{\langle a,b \rangle}{\|a\| \times \|b\|}$$
$$= 1 - \frac{\sum_{j=1}^{p} x_j(a) \times x_j(b)}{\sqrt{\sum_{i} x_j^2(a)} \times \sqrt{\sum_{i} x_j^2(b)}}$$

Popular in text mining when the row vectors have many null values (because the texts are of different lengths).

Distance

3.000000

٠ .

matrix

2.236068 1.414214

4 7.615773 5.000000 5.385165

5 7.810250 5.830952 5.656854 2.236068

The distance between two clusters is determined by a single element pair, namely those two elements (one in each cluster) that are closest to each other. It tends to produce long thin clusters..

$$d(C1, C2) = \min_{a \in C1, b \in C2} d(a, b)$$

The distance between clusters equals the distance between those two elements (one in each cluster) that are farthest away from each other. It tends to produce compact clusters but particularly sensitive to outliers.

$$d(C1, C2) = \max_{a \in C1, b \in C2} d(a, b)$$

The distance between clusters equals to the weighted distance between their centroids. Ward's method.

$$d^{2}(C1, C2) = \frac{n_{1} \times n_{2}}{n_{1} + n_{2}} d^{2}(G1, G2)$$

→ With the square of the Euclidean distance, this criterion allows to minimize the total within-cluster variance or, equivalently, maximize the between-cluster variance.

(there are others...)

HAC – Cluster distance

Example

Distance

2 3.000000
3 2.236068 1.414214

matrix
4 7.615773 5.000000 5.385165
5 7.810250 5.830952 5.656854 2.236068

```
#HAC - single linkage
cah <- hclust(d,method="single")
plot(cah)

#Aggregation levels
print(cah$height)</pre>
```


Determining the number of clusters

The HAC provides a hierarchy of nested partitions which are as many solution scenarios

Determining the "right" number of clusters

Identifying the number of groups is an "open" problem in clustering

It can be defined as a parameter (to specify) of the algorithm (ex. K-means)

One can also try different solutions and use measures insensitive to the number of classes to find the good solution (e.g. the average silhouette)

The situation is different in the HAC.

The dendrogram describes a set of coherent nested partitions, which are as many potential solutions.

Gap between the aggregation levels

<u>Principle:</u> Strong differences between two successive aggregation levels indicate a "significant" change in the structure of the data when the grouping was performed.

A solution with 2 clusters is possible, but a solution with 3 clusters is also credible.

Variance criterion (1)

The variance can be computed on multidimensional dataset. G is the overall centroid (without consideration of the clusters).

$$\sum_{\omega} d^2(X(\omega), G)$$

König-Huygens theorem: The total variance can be splitted into the between-cluster variance (explained by the cluster membership) and the total within-cluster variance (residual, internal to the clusters).

$$\sum_{\omega} d^{2}(X(\omega), G) = \sum_{g} n_{g} \times d^{2}(G_{g}, G) + \sum_{g} \sum_{\omega \in g} d^{2}(X(\omega), G_{k})$$

T. Total variance.

B. Scattering of group centroids around the overall centroid.

W. Scattering inside the groups.

Explained variance: (to maximize)

$$R^2 = \frac{B}{T}$$

R² = 0, only one group R² = 1, Perfect subdivision. Often trivial (singleton) partition i.e. 1 object = 1 group.

Variance (2) – Ward's criterion

$$\Delta = \frac{n_1 \times n_2}{n_1 + n_2} d^2(G1, G2)$$

Each merging leads to a decreasing of the betweencluster variance. We merge the clusters with the lowest value of Δ . They are the closest within the meaning of Ward's criterion.

We can make a plot which connects the number of clusters and the explained variance (R²).

Number of clusters – Intuition, interpretation

In the end, the visualization techniques and the interpretation of the groups give valuable indications as to the identification of the number of groups. We have several scenarios of solutions. It is also necessary to take into account the specifications of the study.

Partition into 2 groups.

Partition into 3 groups.

Assigning a new instance to a cluster

Deployment phase

To which group can we assign a new instance?

The approach must be consistent with the distance and the linkage criterion used.

"Single linkage": « o » is associated with C2 because of the point n°3 (vs. n°5 for C1)

"Complete linkage": « o » is associated with C1 because of the point n°4 (vs. n°1 for C2)

"Ward": we select the group which minimizes

$$\Delta_o = \frac{1 \times n_c}{1 + n_c} d^2(o, G)$$

... which corresponds *approximately* to the distance to centroids

Data Mining Tools

Cars dataset

Cars dataset

Modele	Prix	Cylindree	Puissance	Poids	Consommation
Daihatsu Cuore	11600	846	32	650	5,7
Suzuki Swift 1.0 GLS	12490	993	39	790	5,8
Fiat Panda Mambo L	10450	899	29	730	6,1
VW Polo 1.4 60	17140	1390	44	955	6,5
Opel Corsa 1.2i Eco	14825	1195	33	895	6,8
Subaru Vivio 4WD	13730	658	32	740	6,8
Toyota Corolla	19490	1331	55	1010	7,1
Opel Astra 1.6i 16V	25000	1597	74	1080	7,4
Peugeot 306 XS 108	22350	1761	74	1100	9
Renault Safrane 2.2. V	36600	2165	101	1500	11,7
Seat Ibiza 2.0 GTI	22500	1983	85	1075	9,5
VW Golt 2.0 GTI	31580	1984	85	1155	9,5
Citroen ZX Volcane	28750	1998	89	1140	8,8
Fiat Tempra 1.6 Liberty	22600	1580	65	1080	9,3
Fort Escort 1.4i PT	20300	1390	54	1110	8,6
Honda Civic Joker 1.4	19900	1396	66	1140	7,7
Volvo 850 2.5	39800	2435	106	1370	10,8
Ford Fiesta 1.2 Zetec	19740	1242	55	940	6,6
Hyundai Sonata 3000	38990	2972	107	1400	11,7
Lancia K 3.0 LS	50800	2958	150	1550	11,9
Mazda Hachtback V	36200	2497	122	1330	10,8
Mitsubishi Galant	31990	1998	66	1300	7,6
Opel Omega 2.5i V6	47700	2496	125	1670	11,3
Peugeot 806 2.0	36950	1998	89	1560	10,8
Nissan Primera 2.0	26950	1997	92	1240	9,2
Seat Alhambra 2.0	36400	1984	85	1635	11,6
Toyota Previa salon	50900	2438	97	1800	12,8
Volvo 960 Kombi aut	49300	2473	125	1570	12,7

28 instances5 continuous variables

The objective is to identify groups of vehicles, and to understand the nature of these groups.

R – Data loading and preparation

Variables are clearly not on the same scale

```
Puissance
     Prix
                   Cylindree
                                                        Poids
                                                                       Consommation
Min.
       :10450
                 Min.
                         : 658
                                 Min.
                                         : 29.00
                                                    Min.
                                                            : 650.0
                                                                      Min.
1st Qu.:19678
                 1st Qu.:1375
                                 1st Qu.: 54.75
                                                    1st Qu.: 996.2
                                                                      1st Qu.: 7.025
                 Median:1984
Median :25975
                                 Median : 79.50
                                                    Median :1140.0
                                                                      Median : 9.100
Mean
       :28394
                 Mean
                         :1809
                                         : 77.71
                                                    Mean
                                                            :1197.0
                                                                              : 9.075
                                 Mean
                 3rd Qu.:2232
                                                    3rd Qu.:1425.0
3rd Qu.:36688
                                 3rd Ou.: 98.00
                                                                      3rd Qu.:10.925
       :50900
                         :2972
                                         :150.00
                                                            :1800.0
                                                                              :12.800
Max.
                 Max.
                                 мах.
                                                    Max.
                                                                      Max.
```

```
#load the dataset
autos <- read.table("voitures_cah.txt",header=T,sep="\t",dec=".",row.names=1)</pre>
#check the dataset
print(summary(autos))
#plotting
pairs(autos)
#center and above all reduce
#in order to avoid that variable with high
#variance distort the calculations
autos.cr <- scale(autos,center=T,scale=T)</pre>
#distance matrix (Euclidean distance)
#on standardized dataset
d <- dist(autos.cr)</pre>
```


The variables are strongly correlated with each other. We can already visually distinguish some groups already.

R hclust() from the "stats" package

```
#HAC - Ward's method
cah <- hclust(d,method="ward.D2")
plot(cah,hang=-1,cex=0.75)

#highlights 3 groups
rect.hclust(cah,k=3)

#division into 3 groups
p <- cutree(cah,k=3)
print(p)</pre>
```


An indicator of the group membership is used to perform all subsequent calculations. Particularly those which are useful for the interpretation of the groups.

Python Data handling

```
#modify the default directory
import os
os.chdir("...")
#load the datafile
import pandas
autos = pandas.read_table("voitures_cah.txt",sep="\t",header=0,index_col=0)
#descriptive statistics
print(autos.describe())
#scatterplot matrice
from pandas.tools.plotting import scatter_matrix
scatter_matrix(autos, figsize=(5,5))
#center and reduce the variables
from sklearn import preprocessing
autos_cr = preprocessing.scale(autos)
```


We have the same graph than under R, with the histogram of variables in the main diagonal.

Python - Package SciPy

```
#import the library for the HAC
import matplotlib.pyplot as plt
from scipy.cluster.hierarchy import dendrogram, linkage, fcluster
#perform the clustering
Z = linkage(autos_cr,method='ward',metric='euclidean')
#displaying the dendrogram
plt.title("CAH")
dendrogram(Z,labels=autos.index,orientation='top',color threshold=0,leaf rotation=90)
plt.show()
#highlighting the 3 clusters (height = 5 for cutting)
plt.title('CAH avec matérialisation des 3 classes')
dendrogram(Z,labels=autos.index,orientation='top',color_threshold=5,leaf_rotation=90)
plt.show()
#cutting at the 5 level ==> indicator for 3 groups
groupes_cah = fcluster(Z,t=5,criterion='distance')
print(groupes_cah)
#sorted index of clusters
import numpy as np
idg = np.argsort(groupes_cah)
#display the cars name and their group membership
print(pandas.DataFrame(autos.index[idg],groupes_cah[idg]))
```


The algorithm is deterministic, we have exactly the same results as under R.

Tanagra

The HAC tool can automatically or not standardize the variables; the number of groups can be detected automatically (based on differences in aggregation levels, ignoring the 2 clusters solution); only Ward's method is available; HAC can assign additional individuals to existing groups.

The Group Characterization tool enables to guide the interpretation.

	Cluster_HAC_1=c_hac_2				Cluster_HAC_1=c_hac_3			
6] 10	Examples	xamples [35.7 %] 10		Examples		[28.6 %] 8		
	Att - Desc	Test value	Group	Overral	Att - Desc	Test value	Group	Overral
	Continuous attributes : Mean (StdDev)				Continuous attributes : Mean (StdDev)			
2.23)	Cylindree	-0.25	1768.40 (257.56)	1809.07 (623.66)	Prix	-3.57	14933.13	
3.75	Puissance	-0.33	75.00 (12.43)	77.71 (32.26)	1112	0.57	(3533.06)	(12386.57)
6.57)	Poids	-0.69	1142.00 (74.32)	1196.96 (308.99)	Poids	-3.81	838.75 (128.64)	1196.96 (308.99)
8.99)	Consommation	-0.72	8.66 (0.81)	9.08 (2.23)	Puissance	-3.86	39.88 (10.45)	77.71 (32.26)
2.26)			25192,00	28393.75	Cylindree	-3.90	1069.25 (259.34)	1809.07 (623.66)
3.66)	Prix	-1.00	(4432.02)	(12386.57)	Consommation	-3.90	6.43 (0.51)	9.08 (2.23)
	Discrete attributes : [Recall] Accuracy			Discrete attributes : [Recall] Accuracy				

Tandem Clustering

Combining factor analysis and cluster analysis

Tandem Clustering

Principle

Using a dimensions-reduction technique (such as PCA) to create new variables

Launch HAC on some of these new variables (only the relevant ones)

We must not standardize these new variables for the HAC

- The Euclidean distance implicitly considers that the variables are not correlated, which is not true in general. Using the factors which are by definition uncorrelated, the Euclidean distance becomes perfectly appropriate.
- $d^{2}(a,b) = \sum_{j=1}^{p} (x_{j}(a) x_{j}(b))^{2}$

Motivations

- Data cleaning is done by considering only the first relevant factors, by removing redundancies and the noise in the data.
- 3. By converting the original variables in a factors which are all numeric, the factor analysis enables to apply the HAC when the variables are all categorical (multiple correspondence analysis), or when we have a mix of numeric and categorical variables (factor analysis for mixed data).

Tandem clustering – Example

We nevertheless retain two factors for the visualization.

Drawbacks of tandem clustering

Sometimes, retaining only the "relevant" factors can hide the structuring of the data into groups.

Here, the two groups are obvious visually.

But the first factor (F1) carries out 97% of the information, no one would have the idea of retaining the second axis.

On the first axis, the groups are not discernible.

→ We must make graphs again and again to check what the calculation provides us!!!

Two step clustering

How to perform HAC on large dataset

Two step clustering - Principle

Issue

The HAC requires the calculation of distances between each pair of individuals (distance matrix). It also requires to access to this matrix at each aggregation. This is too time consuming on large datasets (in number of observations).

Approach

The idea is to perform a pre-clustering (e.g. in 50 clusters) using methods which can process very large database (e.g. K-means, Kohonen map), and start the HAC from these pre-clusters.

Advantage

The approach allows to handle very large bases, while benefiting from the advantages of HAC (hierarchy of nested partitions, dendrogram for understanding and identification of clusters).

Two step clustering - Example

Core 2 Duo 9400 - 2.53 Ghz - Windows 7 - 4 Go RAM

500.000 instances, 68 variables.

Launching a HAC directly on this dataset is unreasonable.

See the details in "Two-step clustering for handling large databases", June 2009.

The same analysis is performed under R.

Conclusion

Key elements:

- Compute the distance between each pair of individuals
- Successive agglomerations by merging firstly the groups which are closest (in the sense of linking criterion, e.g. Ward, single linkage, complete linkage, ...)
- Height in the dendrogram = distance between groups

Pros

- Hierarchy of nested solutions (taxonomy)
- Dendrogram shows the proximity between the groups

Cons

Processing very large databases (see two-step approaches)

Recurring issues in cluster analysis

- Determining the number of clusters
- Interpretation of the clusters
- Assigning a new instance to a cluster

The representation into the Dendrogram of alternatives solutions is very interesting.

References

French state-of-the-art books

Chandon J.L., Pinson S., « Analyse typologique – Théorie et applications », Masson, 1981.

Diday E., Lemaire J., Pouget J., Testu F., « Eléments d'analyse de données », Dunod, 1982.

L. Lebart, A. Morineau, M. Piron – « Statistique exploratoire multidimensionnelle », DUNOD, 2004.

Saporta G, « Probabilités, analyse des données et statistique », Technip, 2011.

Tutorials (in English)

"Clustering trees", May 2006.

"Combining clustering and graphical approaches", July 2006.

"K-Means - Classification of a new instance", December 2008.

"Two-step clustering for handling large databases", June 2009.

"Cluster analysis for mixed data", February 2014.