Office Hour: 1:30-3:30 PM, Th

STAT 610: Discussion 3

1 Summary

- Know how to find Method of moments estimate.
- Know how to find MLE.
- Know how to find Bayes estimators.
 - Risk(MSE): The risk of an estimator T(X) of $g(\theta)$ is athe function of θ defined by

$$R_T(\theta) = E_{\theta}[T(X) - g(\theta)]^2.$$

- Bayes risk: Let $\pi(\theta)$ be a pdf (or pmf) on Θ . The Bayes risk is the averaged MSE

$$r_T = \int_{\Theta} R_T(\theta) \pi(\theta) d\theta.$$

- Bayes estimators is the estimators minimize Bayes risk.

$$T_{\pi} = \frac{\int g(\theta) f_{\theta} \pi(\theta) d\theta}{\int f_{\theta} \pi(\theta) d\theta} = E[g(\theta)|X].$$

– Sufficient statistics can reduce the calculation of bayes estimator. Let S be the sufficient statistics for θ , then

$$T_{\pi} = E[g(\theta)|S].$$

2 Questions

1. Let $X_1, ..., X_n$ be iid with pdf

$$f(x|\theta) = \theta x^{\theta-1}, \ 0 \le x \le 1, \ 0 < \theta < \infty$$

- (a) Find the MLE of θ , and show that its variance $\to 0$ as $n \to \infty$.
- (b) Find the method of moments estimator of θ .

Office Hour: 1:30-3:30 PM, Th

- 2. Let X_1, \ldots, X_n be i.i.d. binary random variables with $P(X_i = 1) = \theta \in (0, 1)$. Consider estimating θ with the squared error loss. Calculate the risks of the following estimators:
 - (a) \bar{X}
 - (b)

$$T_0(X) = \begin{cases} 0 & \text{if more than half of } X_i \text{ are } 0\\ 1 & \text{if more than half of } X_i \text{ are } 1\\ \frac{1}{2} & \text{if exactly half of } X_i \text{ are } 0 \end{cases}$$

3. Let X_1, \ldots, X_n be i.i.d. $Exp(\theta), \theta \in (0, \infty)$. Calculate the MSE of the sample mean \bar{X} and $cX_{(1)}$ for some contant c. Is \bar{X} better than $cX_{(1)}$?

4. Let \bar{X} be the sample mean of n i.i.d. observations from $N(\theta, \sigma^2)$ with a known $\sigma > 0$, and unknown $\theta \in \mathbb{R}$. Let π be a piror p.d.f on \mathbb{R} . Show that the Bayes estimator of θ , given $\bar{X} = x$, is of the form

$$T(x) = x + \frac{\sigma^2}{n} \frac{d \log(x)}{dx},$$

where p(x) is the marginal p.d.f. of \bar{X} .