Practice Problems

Problem 11.8:

Rathbun (1988) reported on experiments in surveying manatees along Florida's Crystal and Indian Rivers by observation from airplanes and helicopters. He initially suspected that helicopters, due to their slower speed, would provide higher and more accurate counts. Helicopter counts were intended to provide a "truth" count for judging the airplane counts. Data failed to support this expectation, however, partly because helicopters frighten manatees. Rathbun concluded that "there is no significant advantage" in using helicopters, which are much more expensive.

Manatee Count			
From Airplane	From Helicopter		
24	30		
31	30		
32	33		
39	38		
47	58		
47	58		
35	48		
76	75		
95	85		
85	55		
	From Airplane 24 31 32 39 47 47 47 35 76 95		

SAS Printout:

Model: MODEL1

Dependent Variable: Y Analysis of Variance

		Sum o	of Mean	1	
Source	DF	Square	es Square	F Value	Prob>F
Model	1	2439.6036	55 2439.60365	24.692	0.0011
Error	8	790.3963	98.79954		
C Total	9	3230.0000	00		
Root MSE	9	9.93980	R-square	0.7553	
Dep Mean	51	L.00000	Adj R-sq	0.7247	
C.V.	19	9.48980			

Parameter Estimates

	Parameter	Standard	T for H0:	
Variable	Estimate	Error	Parameter=0	Prob > T
INTERCEP	17.388852	7.45862853	2.331	0.0481
X	0.657752	0.13236717	4.969	0.0011

- (a) Given that $SS_{xx} = 5638.9$ and $\bar{x} = 51.1$. Find the 99% confidence interval of \hat{y} at x = 50.
- (b) Find the 95% prediction interval of y at x = 50.

Problem 11.9:

Given that $SS_{xx} = 47.6$, $SS_{yy} = 168.1$, $\bar{x} = 1.2$, $SS_{xy} = 85.6$, $\hat{y} = -2.458 + 1.7983x$, and n = 10.

- (a) Find the 95% confidence interval to estimate the mean value of y at x = 5.
- (b) Find the 95% confidence interval to estimate the mean value of y at x = 1.2.