T-Distribution

$$T = \frac{Z}{\sqrt{\frac{V}{v}}} = \frac{\textit{standard normal distribution}}{\sqrt{\frac{\textit{X}^2 random variable}}{\textit{degree of distribution}}} = \frac{\bar{\textit{X}} - \mu \, (\textit{of ten 0})}{\frac{\textit{S}}{\sqrt{n}}} = \frac{\textit{sample mean}}{\textit{sample standard deviation}}$$

$$v = n - 1$$

$$t_{1-\alpha} = -t_{\alpha}$$

Symmetric around t = 0

When
$$v \to \infty \Rightarrow T \to Z$$

$$Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

Confidence intervals:

$$\bar{x} - z_{\frac{a}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + z_{\frac{a}{2}} \frac{\sigma}{\sqrt{n}}$$

$$\bar{x} - t_{\frac{a}{2}} \frac{s}{\sqrt{n}} < \mu < \bar{x} - t_{\frac{a}{2}} \frac{s}{\sqrt{n}}$$

$$\bar{x} - z_{\frac{a}{2}} \frac{s}{\sqrt{n}} < \mu < \bar{x} - z_{\frac{a}{2}} \frac{s}{\sqrt{n}}$$

Prediction intervals:

$$\bar{x} - z_{\frac{a}{2}} \sigma \sqrt{1 + \frac{1}{n}} < x_0 < \bar{x} + z_{\frac{a}{2}} \sigma \sqrt{1 + \frac{1}{n}}$$

$$\bar{x} - t_{\frac{a}{2}} s \sqrt{1 + \frac{1}{n}} < x_0 < \bar{x} + t_{\frac{a}{2}} s \sqrt{1 + \frac{1}{n}}$$
 $v = n - 1$

Hypothesis

$$H_0$$
: $\mu = 0.25 \text{ # mean}$

$$H_1$$
: $\mu = 0.5$

$$x > x_c \Rightarrow critical region$$

	$H_0^{}$ is true	H ₁ is true
Fail to reject H ₀	Correct	Type 2 error
Reject H ₀	Type 1 error	Correct

$$\alpha = P(type\ 1\ error) = level\ of\ significance = rejected\ H_0$$
, but it was true $\beta = P(type\ 2\ error);\ 1-\beta = power\ of\ the\ test = did\ not\ reject\ H_0$, but H_1 is true

$$\alpha = P(x > 8 \text{ if } H_0 \text{ is true}) = P(x > 8 \text{ if } p = 0.25) = \sum_{k=9}^{20} p^k (1 - p)^{20-k} {20 \choose k} = 0.0409$$

$$\beta = P(x \le 8 \text{ if } H_0 \text{ is false}) = P(x \le 8 \text{ if } p = 0.5) = \sum_{k=0}^{8} p^k (1-p)^{20-k} {20 \choose k} = 0.2517$$

if a is desc, b is asc

if n is asc, a and b is desc

 α - level of significance (divide by 2 for two directional)

P-value - the probability of this or more extreme result (in both directions)

Reject H_0 if \bar{x} is in two sided critical region $(-\infty, \mu_0 - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}) \cup (\mu_0 + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}; \infty)$

Reject H_0 if $\frac{x-\mu}{\frac{\sigma}{2}}$ is in two sided critical region $(-\infty, -z_{\frac{\alpha}{2}}) \cup (z_{\frac{\alpha}{2}}; \infty)$ (or $\sigma \to s, s \to t$)

$$P(-z_{\frac{\alpha}{2}} < Z < z_{\frac{\alpha}{2}}) = P(\mu_0 - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}; \mu_0 + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}) = (1 - \alpha)?$$

$$P_{value} = 2P(Z < - \lfloor \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \rfloor)$$
 (or $\sigma \to s$, $s \to t$). if $< \alpha$, reject H_0

For
$$H_1$$
: $\mu > \mu_0$: reject H_0 if $\frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$ is in $(z_{\alpha}; \infty)$ or for $<$, $(-\infty, -z_{\alpha})$ (or $\sigma \to s$, $s \to t$)

$$P_{value} = P(Z > \frac{\bar{x} - \mu}{\frac{\sigma}{c - \mu}})$$
 or < (or $\sigma \to s$, $s \to t$). if < α , reject H_0

Can use s instead of σ and t-values with v = n - 1 to replace z-values

EXAM

$$T = \frac{Z}{\sqrt{\frac{V}{v}}} = \frac{standard\ normal\ distribution}{\sqrt{\frac{X^2\ random\ variable}{degree\ of\ distribution}}} = \frac{\bar{X} - \mu\ (of\ ten\ 0)}{\frac{S}{\sqrt{n}}} = \frac{sample\ mean}{sample\ standard\ deviation} \ \text{(used\ for\ n<30)}$$

$$v = n-1 \qquad t_{1-\alpha} = -t_{\alpha} \quad \text{Symmetric\ around}\ t = 0 \qquad When\ v \to \infty \ \Rightarrow \ T \to Z$$

$$v = n - 1$$
 $t_{1-\alpha} = -t_{\alpha}$ Symmetric around $t = 0$ When $v \to \infty \Rightarrow T \to Z$

$$Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{\mu}}}$$

 $100(1 - \alpha)\%$

Confidence intervals:

$$\bar{x} - z_{\frac{a}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + z_{\frac{a}{2}} \frac{\sigma}{\sqrt{n}}$$

 $z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \leq 10$ within hours how large n 95% confident

$$\bar{x} - t_{\frac{a}{2}} \frac{s}{\sqrt{n}} < \mu < \bar{x} - t_{\frac{a}{2}} \frac{s}{\sqrt{n}}$$

$$\bar{x} - z_{\frac{a}{2}} \frac{s}{\sqrt{n}} < \mu < \bar{x} - z_{\frac{a}{2}} \frac{s}{\sqrt{n}}$$
?

Prediction intervals:

$$\begin{split} & \bar{x} - z_{\frac{a}{2}} \sigma \sqrt{1 + \frac{1}{n}} < x_0 < \bar{x} + z_{\frac{a}{2}} \sigma \sqrt{1 + \frac{1}{n}} \\ & \bar{x} - t_{\frac{a}{2}} s \sqrt{1 + \frac{1}{n}} < x_0 < \bar{x} + t_{\frac{a}{2}} s \sqrt{1 + \frac{1}{n}} \quad v = n - 1 \end{split}$$

Tolerance limits: $x \pm ks$ where k is from the t-factor table (γ tollerance, $100(1 - \alpha)$ % of all, n)

 $\alpha = P(type\ 1\ error) = level\ of\ significance = rejected\ H_0$, but it was true (/use normal μ)

$$\beta = P(type\ 2\ error);\ 1-\beta = power\ of\ the\ test = did\ not\ reject\ H_0,\ but\ H_1\ is\ true$$

$$\alpha = P(x > 8 \text{ if } H_0 \text{ is true}) = P(x > 8 \text{ if } p = 0.25) = \sum_{k=9}^{20} p^k (1 - p)^{20-k} {20 \choose k} = 0.0409$$

$$\beta = P(x \le 8 \text{ if } H_0 \text{ is false}) = P(x \le 8 \text{ if } p = 0.5) = \sum_{k=0}^{8} p^k (1-p)^{20-k} {20 \choose k} = 0.2517$$

if a is desc, b is asc if n is asc, a and b is desc

 α - level of significance (divide by 2 for two directional)

P-value - the probability of this or more extreme result (in both directions)

Reject
$$H_0$$
 if \bar{x} is in two sided critical region $(-\infty, \mu_0 - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}) \cup (\mu_0 + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}; \infty)$

Reject H_0 if $\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{\mu}}}$ is in two sided critical region $(-\infty, -z_{\frac{\alpha}{2}}) \cup (z_{\frac{\alpha}{2}}; \infty)$ (or $\sigma \to s, z \to t$)

$$P(-z_{\frac{\alpha}{2}} < Z < z_{\frac{\alpha}{2}}) = P(\mu_0 - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}; \mu_0 + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}) = (1 - \alpha)?$$

$$P_{value} = 2P(Z < - \lfloor \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \rfloor) \text{ (or } \sigma \to s, z \to t). if < \alpha, reject } H_0$$

For
$$H_1: \mu > \mu_0$$
: reject H_0 if $\frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{h}}}$ is in $(z_{\alpha}; \infty)$ or for $<$, $(-\infty, -z_{\alpha})$ (or $\sigma \to s$, $z \to t$)

$$P_{value} = P(Z > \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{h}}})$$
 or < (or $\sigma \to s$, $z \to t$). if < α , reject H_0

Can use s instead of σ and t-values with v = n - 1 to replace z-values