Regression 1 Final Project Code

Data Wrangling

```
# loading data from the source
data_raw <- read.csv('./data/raw_data.csv')</pre>
# loading a data dictionary with more readable column names
dic <- openxlsx::read.xlsx("./data/data_dictionary.xlsx")</pre>
# cleaning data
data <-
  data_raw |>
  dplyr::mutate(
    dplyr::across(
      dplyr::where(is.character),
      ~factor(stringr::str_to_title(.x))
    # ordering factors for visualization & intuitive dummy creation
    dplyr::across(
      .cols = c(CAEC, CALC),
      .fns = ~factor(.x, level = c("No", "Sometimes", "Frequently", "Always"))
    ),
    # converting numeric counts to integers (see first paragraph of the results section)
    dplyr::across(
      .cols = c(FCVC, TUE, NCP, CH2O, FAF, Age),
      .fns = as.integer
    ),
    # ordering transit types by their frequency
   MTRANS = forcats::fct_inorder(factor(MTRANS)),
   BMI = Weight/(Height^2)
    ) |>
  # removing unneeded variables
```

```
dplyr::select(-c(Height, Weight, NObeyesdad))
# converting names to the human readable
names(data) <- dic$Name</pre>
# generating a "dirty" copy without integer conversions
data_dirty <-
  data raw |>
  dplyr::mutate(
    dplyr::across(
      dplyr::where(is.character),
      ~factor(stringr::str_to_title(.x))
    ),
    dplyr::across(
      .cols = c(CAEC, CALC),
      .fns = ~factor(.x, level = c("No", "Sometimes", "Frequently", "Always"))
    ),
    MTRANS = forcats::fct_inorder(factor(MTRANS)),
    BMI = Weight/(Height^2)
  ) |>
  dplyr::select(-c(Height, Weight, NObeyesdad))
names(data_dirty) <- dic$Name</pre>
```

Exploratory data analysis

Univariate Analysis

```
psych::describe(data) |>
dplyr::select(-c(median, trimmed, mad))
```

```
max range skew kurtosis
                         n mean
                                  sd min
Gender*
                     1 2111 1.51 0.50
                                     1 2.00 1.00 -0.02
                                                           -2.00 0.01
                     2 2111 23.97 6.31 14 61.00 47.00 1.56
Age
                                                            2.97 0.14
Family_History*
                     3 2111 1.82 0.39 1 2.00 1.00 -1.64
                                                            0.70 0.01
High_Caloric_Food*
                    4 2111 1.88 0.32 1 2.00 1.00 -2.40
                                                           3.74 0.01
                    5 2111 2.21 0.60 1 3.00 2.00 -0.12
Vegetable_Intake
                                                           -0.47 0.01
Number_of_Meals
                    6 2111 2.52 0.83 1 4.00 3.00 -0.88 -0.46 0.02
Snacking*
                    7 2111 2.14 0.47 1 4.00 3.00 1.90
                                                           5.38 0.01
Smoking*
                    8 2111 1.02 0.14 1 2.00 1.00 6.70 42.95 0.00
```

```
Water_Intake
                       9 2111 1.71 0.60
                                              3.00 2.00 0.21
                                                                  -0.60 0.01
Calorie_Monitoring*
                      10 2111
                               1.05 0.21
                                               2.00 1.00 4.36
                                                                  17.02 0.00
Physical_Activity
                      11 2111
                               0.73 0.83
                                              3.00 3.00 0.90
                                                                   0.00 0.02
Screen_Time
                      12 2111
                               0.38 0.58
                                              2.00
                                                    2.00 1.25
                                                                   0.55 0.01
                                           0
Alcohol Consumption*
                       13 2111
                                1.73 0.52
                                              4.00
                                                    3.00 - 0.24
                                                                  -0.33 0.01
Transportation_Type*
                       14 2111
                                1.49 0.87
                                              5.00 4.00
                                                         1.36
                                                                   0.32 0.02
BMI
                       15 2111 29.70 8.01 13 50.81 37.81 0.15
                                                                  -0.81 0.17
```

Histograms of Integer Variables (Raw)


```
# CH2O, FAF, FCVC, NCP, TUE are discrete
# Age, BMI, Height, Weight are continuous, normal or log normal distributed
```

Histogram of Numeric Variables


```
dplyr::mutate(
    Question = i,
    Total = sum(Freq),
    Proportion = round(Freq/sum(Freq), digits = 2)
)

mean <- data |>
    dplyr::summarise(
    Mean_BMI = mean(BMI),
    .by = i
) |>
    tidyr::pivot_longer(i, names_to = "Question", values_to = "Var2")
    dplyr::left_join(f, mean)
}) |>
    dplyr::select(Question, Var2, Freq, Proportion, Mean_BMI)
```

Bivariate Analysis

```
# Part 2 of Table A
tests <-
  purrr::map_df(factors, \(i){
   q <- colnames(data[,i])</pre>
   bmi <- aov(</pre>
     formula = as.formula(paste("BMI ~ ", i)),
      data = data
   tibble::tibble(
      Question = i,
      P_Value = c(summary(bmi)[[1]][["Pr(>F)"]][1])
 })
analysis <-
  dplyr::left_join(
   x = frequencies,
   y = tests
  ) |>
  dplyr::mutate(dplyr::across(c(4:6), ~round(.x, digits = 2)))
analysis |> gt::gt()
```

Question	Var2	Freq	Proportion	Mean_BMI	P_Value
Alcohol_Consumption	No	639	0.30	27.06	0.00
Alcohol_Consumption	Sometimes	1401	0.66	31.04	0.00
Alcohol_Consumption	Frequently	70	0.03	26.98	0.00
Alcohol_Consumption	Always	1	0.00	22.49	0.00
$Transportation_Type$	$Public_transportation$	1580	0.75	30.11	0.00
Transportation_Type	Walking	56	0.03	23.66	0.00
$Transportation_Type$	Automobile	457	0.22	29.19	0.00
Transportation_Type	Motorbike	11	0.01	25.76	0.00
$Transportation_Type$	Bike	7	0.00	25.17	0.00
Calorie_Monitoring	No	2015	0.95	30.02	0.00
Calorie_Monitoring	Yes	96	0.05	22.94	0.00
Snacking	No	51	0.02	25.43	0.00
Snacking	Sometimes	1765	0.84	31.19	0.00
Snacking	Frequently	242	0.11	20.90	0.00
Snacking	Always	53	0.03	24.32	0.00
Smoking	No	2067	0.98	29.70	0.97
Smoking	Yes	44	0.02	29.66	0.97
Family_History	No	385	0.18	21.50	0.00
Family_History	Yes	1726	0.82	31.53	0.00
High_Caloric_Food	No	245	0.12	24.26	0.00
$High_Caloric_Food$	Yes	1866	0.88	30.41	0.00
Gender	Female	1043	0.49	30.13	0.01
Gender	Male	1068	0.51	29.28	0.01

```
# testing diff between bikes and motorbikes to finalize the merge
transit <- data |>
   dplyr::filter(Transportation_Type %in% c("Motorbike", "Bike"))

t.test(transit$BMI ~ transit$Transportation_Type) # 0.8402
```

Welch Two Sample t-test

data: transit\$BMI by transit\$Transportation_Type

t = 0.20697, df = 10.064, p-value = 0.8402

alternative hypothesis: true difference in means between group Motorbike and group Bike is no percent confidence interval:

-5.790771 6.977841 sample estimates:

BMI vs. Numeric Variables


```
# looking for additional patterns
data |>
    ggplot(aes(Transportation_Type, Age, fill = Transportation_Type)) +
    geom_boxplot() +
    theme(legend.position = "none")
```



```
data |>
    ggplot(aes(factor(Screen_Time), Age, fill = factor(Screen_Time))) +
    geom_boxplot() +
    labs(x = "Screen_Time") +
    theme(legend.position = "none")
```



```
corrplot::corrplot(
  corr = cor(data |> dplyr::select(dplyr::where(is.numeric))),
  method = "pie",
  type = "upper"
  )
```

