

UNIVERSIDADE FEDERAL DE RORAIMA CENTRO DE CIÊNCIA E TECNOLOGIA DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO PROJETO MALOCA DAS ICOISAS

DISCIPLINA: MIC014 – HANDS-ON BASIC DESENVOLVIMENTO ORIENTADO A TESTES

Sumário

Introdução	2
Requisitos	
Hardware	
Software	
Montagem do Circuito	3
Circuito	4

Introdução

Este projeto tem como finalidade monitorar a presença de pessoas próximas a um

dispenser, como o álcool em gel, utilizando um conjunto de sensores e um ESP32. Ao

detectar movimento com o sensor PIR, o sistema mede a distância pelo sensor

ultrassônico e, se a pessoa estiver muito próxima, emite um alerta sonoro através de um

buzzer. Assim, pode ser empregado em ambientes de uso comum, alertando sobre a

presença próxima do dispenser e incentivando a higienização das mãos.

A integração com o ambiente IoT pode ser realizada posteriormente, permitindo, por

exemplo, enviar dados sobre a frequência de uso para um servidor ou aplicação web. Mas

neste tutorial básico, focaremos na montagem local e no funcionamento autônomo do

sistema.

Requisitos

Hardware

Placa: ESP32

Sensores:

Sensor PIR (ex: HC-SR501) para detecção de movimento.

Sensor Ultrassônico (HC-SR04) para medição de distância.

Atuadores:

Buzzer piezoelétrico para alerta sonoro.

• Outros componentes:

Botão (push-button) para ativar/desativar o sistema.

Jumpers, Protoboard (opcional) e resistores.

Software

- Linguagem: C/C++ (utilizando a Arduino IDE ou PlatformIO)
- IDE: Arduino IDE (com suporte ao ESP32)
- Bibliotecas:
 - Biblioteca padrão do Arduino para pulseln() e I/O digital.

Montagem do Circuito

Abaixo, um guia de conexões típicas:

- Sensor PIR (HC-SR501):
 - \circ VCC \rightarrow 5V do ESP32
 - o GND → GND do ESP32
 - \circ OUT \rightarrow GPIO 23 do ESP32
- Sensor Ultrassônico (HC-SR04):
 - \circ VCC \rightarrow 5V do ESP32
 - \circ GND \rightarrow GND do ESP32
 - $_{\circ}$ TRIG \rightarrow GPIO 13 do ESP32
 - ECHO → GPIO 12 do ESP32
 (Se necessário, use um divisor de tensão no ECHO, pois o ESP32 é 3.3V tolerant.)

Buzzer:

- Terminal positivo → GPIO 5 do ESP32
- Terminal negativo → GND do ESP32
- Botão (com pull-up interno):
 - ∪m terminal do botão → GPIO 22 do ESP32
 - Outro terminal do botão → GND do ESP32

Circuito

