CS70 - Lecture 13 Notes

Name: Felix Su SID: 25794773

Spring 2016 GSI: Gerald Zhang

Countability Summary:

- S is countable if there is a bijection between S and some subset of \mathbb{N} .
- If the subset of \mathbb{N} is finite, S has finite cardinality.
- If the subset of $\mathbb N$ is infinite, S is countably infinite.
- Bijection with natural numbers \implies countably infinite.
- Enumerable (listing) \equiv countable.
- Subset of countable set is countable.
- All countably infinite sets have the same cardinality
- Natural numbers have finite number of digits

Digonalization:

- The set of all subsets S_i of \mathbb{N} (powerset of \mathbb{N} is not countable
 - Arbitrary Listing: L
 - Diagonal set D: For each index i of L, if $i \notin S_i$, put i in D, otherwise omit i
 - D is not in L by construction: D is different from each ith set S_i in L, for every i
 - -D is a subset of N: every element in D is a natural number
 - -L does not contain all subsets of N: Contradiction

Diagonalization Algorithm:

- 1. Assume that set S can be enumerated.
- 2. Consider an arbitrary list of all the elements of S.
- 3. Use the diagonal from the list to construct a new element t.
- 4. Show that t is different from all elements in the list $\implies t$ is not in the list.
- 5. Show that t is in S.
- 6. Contradiction.

Cardinalities:

Continuum Hypothesis:

- Goedel proved this hypothesis cannot be proven with math we currently know
- There is no infinite set whose cardinality is between the cardinality of an infinite set and its power set.

Uncountable Sets:

- Prove equivalence between cardinalities
- Show bijection exists between two sets: uncountable sets cannot be enumerated
- Create function $f: B \to A$ (can include multiple cases for certain domains)
- Prove mapping is one to one by testing on arbitrary values: x, y (Need to validate for multiple cases)
 - Example: $|[0,1]| \equiv |\mathbb{R}|$
 - $-f: \mathbb{R}^+ \to [0,1]$

Undecidability:

Russell's Paradox:

• Naive Set Theory: Any definable collection is a set.

$$\exists y \forall x (x \in y \iff P(x)) \tag{1}$$

- NST : y = the set of elements that satisfies P(x)
- Make statement: $P(x) = x \notin x$
- By NST: There exists a y that satisfies above statement for P(x)
- Plug in x = y to NST

$$y \in y \iff y \notin y \tag{2}$$

• Methematic system is broken, because conditions and statements are false and contradictions

HALT: DNE

- HALT(P, I): P = program, I = input to program
 - Theoretically determines if P(I) halts or loops forever

Halt Turing Proof:

- Assume HALT(P, I) exists
- Set P = Turing(P)
- Use Diagonalization

```
def Turing(P):
if(HALT(P,P)): #halts
    go into infinite loop
else
    halt immediately
```

- Assume Turing(Turing) halts
- Run HALTS(Turing, Turing)
 - if 'halts', Turing(Turing) 'goes into infinite loop'
 - if loops forever, Turing(Turing) 'halts immediately'
- Contradiction, so HALT(P, P) does not exist

Halt Diagonlization Proof:

- Program and input are both enumerable (fixed length strings)
- Program either halts or loops on any input
- Create list: $P_i \to P_j(P)$ where $i, j \in \mathbb{N}$
- \bullet Each entry of list is arbitrarily HALT or LOOP
- ullet Diagonal exists, so create Turing() s.t. it returns opposite values along the diagonal
- This means Turing() is not in the list $\implies Turing()$ is not a prgoram
 - $-\ Turing$ is a simple function constructed from HALT
 - :: Turing() DNE $\implies HALT()$ DNE

Undecidable Problems

•