Bayesian calibration using UQLab WINDTRUE: WP2

Vinit Dighe & Benjamin Sanderse July 21, 2020

Motivation

Problem statement:

- For a given computational model, learn about the unknown (say θ) using data y
- ► The Bayesian model calibration framework allows computation of the distribution of the unknown conditioned on data $(\pi(\theta|y))$

Posterior computation is challenging!

Bayesian calibration framework

Given parameters $\theta \sim \pi(\theta)$ and measurement data y, the Bayesian calibration (inverse) problem reads:

$$\pi(\theta|\mathbf{y}) = \frac{\pi(\mathbf{y}|\theta) \times \pi(\theta)}{Z}$$
 where $Z = \int \pi(\mathbf{y}|\theta) \times \pi(\theta) d\theta$

with:

- $ightharpoonup \pi(\mathbf{y}|\theta)$: likelihood function (measure of how well the model fits the data)
- $\blacktriangleright \pi(\theta|\mathbf{y})$: posterior density function

Z is usually hard to determine!

Solution

MCMC sampling (needn't be normalized!) combined with simulation-based forward propagation to estimate: Qol $\mathbb{E}[\theta|\mathbf{y}]$

Computationally expensive!

Under the assumption that the measurement errors ϵ are iid and normally distributed, likelihood function:

$$\pi(\mathbf{y}|\theta) = \frac{1}{(2\pi\sigma^2)^{\frac{n}{2}}}e^{SS_{\theta}/2\sigma^2}$$
 with $SS_{\theta} = \sum_{i=1}^{n} [\mathbf{y}_i - f_i(\theta)]^2$

is replaced by a surrogate likelihood function:

$$\widetilde{\pi}(\mathbf{y}|\theta) = \frac{1}{(2\pi\sigma^2)^{\frac{n}{2}}} e^{\widetilde{SS}_{\theta}/2\sigma^2} \quad \text{with} \quad \widetilde{SS}_{\theta} = \sum_{i=1}^{n} [\mathbf{y}_i - \widetilde{f}_i(\theta)]^2$$

PCE using LARS

Outline

- ► Simple beam model calibration
- ► ECN AeroModule calibration
- ► Conclusions

Simple beam model calibration

Ingredients for Bayesian calibration

► Data (y): {12.84, 13.12, 12.13, 12.19, 12.67} (mm)

Forward model: $V = \frac{5}{32} \frac{pL^4}{Ebh^3}$

► Likelihood: $\pi(\mathbf{y}|\theta)$: $\sigma^2 = 10^{-6}$

θ	$\pi(\theta)$		
b (m)	0.15		
h (m)	0.3		
L (m)	5		
p (kN/m)	$\mathcal{N}(0.012, 0.0006)$		
E (MPa)	$\mathcal{LN}(30000, 4500)$		

► Prior distribution:

Prior and posterior distribution

Figure: Prior and posterior samples.

MAP estimate

Figure: Bayesian estimate using posterior distribution against the experimental data.

MAP estima	te: $\mathbb{E}[heta \mathbf{y}]$		
р	E		
2.4 × 10 ⁴	0.0012		

ECN AeroModule calibration

Ingredients for Bayesian calibration

- \blacktriangleright Axial force data $(y) = \{y_1, y_2, y_3, y_4\}$
- ► Forward model : ECN Aero-Module
- ► Likelihood: $\pi(\mathbf{y}|\theta) = \prod_{i=1}^{n} \mathcal{N}[\mathbf{y}_i f_i(\theta)]^2$
- ► Prior distribution:

θ	$\pi(\theta)$
Р	Constant
C_L	Uniform
σ^2	Uniform

Name of Matlab file representing the turbine data for calibration

```
turbineName = 'NM80_calibrate'; % 'NM80', 'AVATAR'
% check |NM80_calibrate.m| or |(TurbineName_calibrate).m| for turbine-
specific
% settings and definition of uncertainties
```

Marco's (ECN) script for reading the data in N/m

```
filename_exp = ('.../../Experimental/MINDRUME/raw.dat');
output_raw = read_exp_data(filename_exp_2);
% Because the model has different discrepancy options at different
radial locations,
% the measurement data is stored in four different data structures:
Data(1).y = mean(output_raw.Fy03); % [N/m]
Data(1).Wame = 'Fy03';
Data(1).Wame = 'Fy03';
Data(1).Wame = 1; % Wodel Output Wap 1
```

Name of Matlab file representing the model

```
Model.mHandle = @earo_module_calibration;

% Optionally, one can pass parameters to model stored in the cell

array P = getParameterAeroModule(turbineName);

Model.Parameters = P;

Model.iaVectorized = false;
```

```
DiscrepancyPriorOpts1.Name = 'Prior of sigma 1';
DiscrepancyPriorOpts1.Marginals(1).Name = 'Sigmal';
DiscrepancyPriorOpts1.Marginals(1).Type = 'Uniform';
DiscrepancyPriorOpts1.Marginals(1).Parameters = [0.5*std(output_raw.Fy03)];
DiscrepancyPriorI = u_createInput(DiscrepancyPriorOpts1);
DiscrepancyOpts(1).Type = 'Gaussian';
```

DiscrepancyOpts(1).Type = 'Gaussian'; DiscrepancyOpts(1).Prior = DiscrepancyPrior1;

Switch for Bayesian analysis with the AeroModule or with the surrogate model Bayes full = 0; % 0: use surrogate model (PCE); 1: run full model for Bayes (Computationally expensive!) % If Bayes full = 0, we need to specify options for loading a surrogate model Surrogate model type = 0; % 0: Uses a stored PCE surrogate model, 1: create surrogate model % Options for loading a surrogate model Surrogate model filename = 'surrogate/PCE 60.mat'; % Specify the surrogate model file to be used % Options for creating a surrogate model % These are used if Bayes full = 0 and Surrogate model type = 1 MetaOpts.Type = 'Metamodel'; MetaOpts.MetaTvpe = 'PCE'; MetaOpts.Method = 'LARS'; % Ouadrature, OLS, LARS MetaOpts.ExpDesign.Sampling = 'LHS'; MetaOpts.ExpDesign.NSamples = 60; MetaOpts.Degree = 1:4; MetaOpts.TruncOptions.gNorm = 0.75;

MCMC parameters

```
Solver.Type = 'MCMC';
% MCMC algorithms available in UQLab
MH = 0; % Metropolis-Hastings
AM = 0; % Adaptive Metropolis
AIES = 1; % Affine invariant ensemble
HMC = 0; % Hamilton Monte Carlo
```


Convergence diagnostics

Figure: Trace plots and convergence for y4

Prior and posterior distribution

Figure: Prior and posterior samples.

MAP estimate

Figure: Violin plot showing distributions of Bayesian prediction against the DANAERO data.

MAP estimate: $\mathbb{E}[\theta|y]$

ΔC_{L1}	ΔC_{L2}	ΔC_{L3}	ΔC_{L4}	σ_{1}^{2}	σ_{2}^{2}	σ_{3}^{2}	σ_{4}^{2}
-0.2025	-0.1604	-0.1087	-0.2067	73.7666	100.2012	138.4856	112.8861

Calibrated polars

Figure: C_L polars comparison.

Qol validation

Figure: Comparison of axial force obtained using: experimental, non-calibrated Aero-Module run and calibrated Aero-Module run.

Conclusions

Bayesian model calibration with MCMC sampling and PCE suurogate model is successfully applied using the DANAERO experimental data.

Next steps

- ► Further validation
- ► Code testing
- ► Article preparation

