

UFABC - Universidade Federal do ABC

Sistemas de Controle II Projeto Final - Pêndulo Invertido

Prof^a Dra. Heloise Assis Fazzolari

heloise.fazzolari@ufabc.edu.br Sala 717-1, 7º andar, Torre 1, Bloco A - Campus Santo André

3º Quadrimestre de 2021

Introdução

Ao final do projeto o aluno deve ser capaz de:

- Modelar um sistema de pêndulo invertido usando a descrição de função de transferência;
- Projetar compensadores no domínio da frequência: avanço de fase, atraso e avanço de fase;
- Analisar o comportamento do sistema sem compensação e compensado nos domínios da frequência e do tempo, justificando os resultados obtidos através da teoria desenvolvida durante o curso;
- Analisar o comportamento de cada compensador e verificar as vantagens e desvantagens de cada um deles;
- Inferir sobre possíveis melhorias de desempenho do sistema para cada tipo de compensador.

Pêndulo Invertido

O sistema a ser estudado é um módulo didático de pêndulo invertido existente na UFABC. A documentação do sistema será disponibilizada e deverá ser utilizada para o desenvolvimento do projeto.

O projeto

Cada grupo deverá desenvolver um projeto contendo:

- Modelagem detalhada do sistema de pêndulo invertido;
- Projeto e implementação de simulação computacional do sistema modelado;
- Projeto e implementação de simulação computacional de compensadores para o sistema modelado;
- Análise detalhada dos resultados obtidos:
- Inferência sobre possíveis melhorias nos projetos.

Todos os códigos utilizados devem ser entregues em uma pasta compactada e devem estar funcionando perfeitamente.

Especificações

O módulo didático contém informações sobre os parâmetros físicos do sistema. Porém, como possui algumas configurações customizáveis, seguem os parâmetros necessários para a modelagem, considerando a utilização da haste média (12in) e carro com massa adicional.

Parâmetro	Descrição	Valor	Unidade
R_m	resistência da armadura do motor	2,6	Ω
J_m	momento de inércia do rotor	$3,9 \times 10^{-7}$	$kg.m^2$
k_t	constante de torque-corrente do motor	$7,68 \times 10^{-3}$	N.m/A
η_m	eficiência do motor	1	
k_m	constante de força contra-eletromotriz	$7,68 \times 10^{-3}$	V/(rad/s)
k_g	relação total de engrenagens	3,71	
η_g	eficiência da caixa de engrenagens	1	
M_c	massa do carro	0,94	Kg
r_{mp}	raio da roda dentada do motor	0,0063	m
B_{eq}	coeficiente de amortecimento viscoso	5,4	N.m/(rad/s)
g	aceleração da gravidade	9,81	$kg.m/s^2$

Modelagem

A função de transferência a ser obtida na modelagem é a relação entre a posição linear do carro e a tensão no motor. O atuador do sistema é o motor que realiza a força através da aplicação de uma tensão. Esta força faz o carro se locomover até a posição desejada. Sendo assim, é possível controlar a posição do carro a partir da tensão aplicada no motor.

Compensadores

Para o projeto dos compensadores, considere as seguintes especificações de desempenho:

Avanço de fase	Valor	
e_{ss}	≤ 1%	
M_p	≤ 5%	
Atraso de fase	Valor	
e_{ss}	$\leq 0,1\%$	
M_p	≤ 5%	
Atraso e avanço de fase	Valor	
e_{ss}	$\leq 0,1\%$	
M_p	≤ 5%	
t_p	≤ 0.1 <i>s</i>	

Relatório

O relatório deve conter:

- a modelagem completa do sistema, resultando na função de transferência a ser utilizada.
 É necessário incluir a função algébrica e também numérica (após substituição dos parâmetros).
- Para o sistema sem ajuste de ganho, com o ganho ajustado e compensado (para cada compensador), obter:
 - Os diagramas de Bode;
 - As respostas ao degrau unitário;
 - As respostas à rampa;
 - Todo e qualquer gráfico necessário ao projeto.
- Projeto e análise detalhada do sistema sem compensação e compensado (para cada compensador);
- Comentários sobre possíveis modificações, ajustes e melhorias nas especificações de desempenho para cada tipo de compensador;
- Comentários sobre as vantagens e desvantagens de utilizar cada tipo de compensador.

Relatório

As análises devem se basear na teoria e é desejável que haja pesquisa em mais de uma referência bibliográfica além do conteúdo das aulas (FONTES CONFIÁVEIS, por exemplo, livros). Utilizem o sistema Minha Biblioteca.