INTRO TO DATA SCIENCE LECTURE 5: MACHINE LEARNING

AGENDA

I. WHAT IS MACHINE LEARNING?
II. MACHINE LEARNING PROBLEMS
III. CLASSIFICATION PROBLEMS
IV. KNN CLASSIFICATION
V. BUILDING EFFECTIVE CLASSIFIERS

LEARNING?

from Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can learn from data."

from Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can learn from data."

"The core of machine learning deals with representation and generalization..."

from Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can learn from data."

"The core of machine learning deals with representation and generalization..."

representation – extracting structure from data

from Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can learn from data."

"The core of machine learning deals with representation and generalization..."

- representation extracting structure from data
- generalization making predictions from data

II. MACHINE LEARNING PROBLEMS

making predictions discovering patterns

labeled examples no labeled examples

	continuous	categorical
supervised unsupervised	regression dimension reduction	classification clustering

What type of problem is this?

Priority Inbox

What type of problem is this?

Priority Inbox

Probably either.

Priority Inbox: Supervised Learning

Predict which mails users are most likely to star

Priority Inbox: Unsupervised Learning

Group mails into groups and decide which group represents important mails

TYPES OF ML SOLUTIONS 18

What type of problem is this?

Music Recommendation

TYPES OF ML SOLUTIONS 19

What type of problem is this?

Music Recommendation

Probably either.

TYPES OF ML SOLUTIONS

What type of problem is this?

Music Recommendation as Supervised Learning

Predict which songs a user will 'thumbs-up'

What type of problem is this?

Music Recommendation As Unsupervised Learning

Cluster songs based on attributes and recommend songs in the same group

HOW DO YOU DETERMINE

THE RIGHT
APPROACH?

continuous

regression
dimension reduction

classification clustering

categorical

ANSWER

The right approach is determined by the desired solution and the data available.

HOW DO YOU REPRESENT

YOUR
DATA?

continuous	categorical
quantitative	qualitative

color

ratings

continuouscategoricalRGB-values{red, blue}1 - 10 rating1-5 star rating

HOW DO YOU MEASURE QUALITY?

making predictions extracting structure

test out your predictions

--

QUESTION

NHAT DO YOU WITH YOUR RESULTS?

ANSWER

Interpret them and react accordingly.

III. CLASSIFICATION PROBLEMS

CLASSIFICATION PROBLEMS

Q: How does a classification problem work?

Q: How does a classification problem work? A: Data in, predicted labels out.

Figure 4.2. Classification as the task of mapping an input attribute set x into its class label y.

CLASSIFICATION PROBLEMS

continuouscategoricalsupervised??????unsupervised??????

supervised
unsupervisedregression
dimension reductionclassification
clustering

Here's (part of) an example dataset:

Fisher's Iris Data

Sepal length \$	Sepal width \$	Petal length \$	Petal width \$	Species +
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa

Here's (part of) an example dataset:

Fisher's Iris Data

independent variables

Sepal length \$	Sepal width \$	Petal length \$	Petal width \$	Species \$
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa

Here's (part of) an example dataset:

Fisher's Iris Data

independent variables

1 10.101 0 11.10 2 11.11							
Sepal length \$	Sepal width \$	Petal length \$	Petal width \$	Species +			
5.1	3.5	1.4	0.2	I. setosa			
4.9	3.0	1.4	0.2	I. setosa			
4.7	3.2	1.3	0.2	I. setosa			
4.6	3.1	1.5	0.2	I. setosa			
5.0	3.6	1.4	0.2	I. setosa			
5.4	3.9	1.7	0.4	I. setosa			
4.6	3.4	1.4	0.3	I. setosa			
5.0	3.4	1.5	0.2	I. setosa			

Q: What does "supervised" mean?

Q: What does "supervised" mean?

A: We know the labels.

```
Welcome to R! Thu Feb 28 13:07:25 2013
> summary(iris)
 Sepal.Length
                Sepal.Width
                               Petal.Length
                                                Petal.Width
Min. :4.300
                Min. :2.000
                                Min.
                                       :1.000
                                               Min.
                                                      :0.100
                1st Qu.:2.800
                                1st Qu.:1.600
                                               1st Qu.:0.300
 1st Qu.:5.100
                Median :3.000
Median :5.800
                                Median :4.350
                                               Median :1.300
Mean
      :5.843
                       :3.057
                                      :3.758
                                                      :1.199
                Mean
                                Mean
                                               Mean
 3rd Qu.:6.400
                3rd Qu.:3.300
                                3rd Qu.:5.100
                                               3rd Qu.:1.800
       :7.900 max
                       :4.400
                                       :6.900
                                                      :2.500
                                Max.
                                               Max.
      Species
 setosa
versicolor:50
 virginica:50
```


Q: What steps does a classification problem require?

1) split dataset

model

dataset

- 1) split dataset
- 2) train model

- 1) split dataset
- 2) train model
- 3) test model

- 1) split dataset
- 2) train model
- 3) test model
- 4) make predictions

IV. KNN CLASSIFICATION

KNN CLASSIFICATION

Suppose we want to predict the color of the grey dot.

1) Pick a value for k.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.
- 3) Assign the most common color to the grey dot.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.
- 3) Assign the most common color to the grey dot.

OPTIONAL NOTE

Our definition of "nearest" implicitly uses the Euclidean distance function.

V. BUILDING EFFECTIVE CLASSIFIERS

1) training error

- 1) training error
- 2) generalization error

- 1) training error
- 2) generalization error
- *3) 00S error*

NOTE

BUILDING EFFECTIVE CLASSIFIERS

- 1) training error
- 2) generalization error
- *3) 00S error*

Thought experiment:

Suppose instead, we train our model using the entire dataset.

Thought experiment:

Suppose instead, we train our model using the entire dataset.

Q: How low can we push the training error?

Thought experiment:

Suppose instead, we train our model using the entire dataset.

- Q: How low can we push the training error?
- We can make the model arbitrarily complex (effectively "memorizing" the entire training set).

Thought experiment:

Suppose instead, we train our model using the entire dataset.

Q: How low can we push the training error?

- We can make the model arbitrarily complex (effectively "memorizing" the entire training set).

A: Down to zero!

Thought experiment:

Suppose instead, we train our model using the entire dataset.

Q: How low can we push the training error?

- We can make the model arbitrarily complex (effectively "memorizing" the entire training set).

A: Down to zero!

NOTE

This phenomenon is called overfitting.

OVERFITTING 65

FIGURE 18-1. Overfitting: as a model becomes more complex, it becomes increasingly able to represent the training data. However, such a model is overfitted and will not generalize well to data that was not used during training.

OVERFITTING - EXAMPLE

Underfitting and Overfitting

OVERFITTING - EXAMPLE

Thought experiment:

Suppose instead, we train our model using the entire dataset.

Q: How low can we push the training error?

- We can make the model arbitrarily complex (effectively "memorizing" the entire training set).

A: Down to zero!

NOTE

This phenomenon is called overfitting.

A: Training error is not a good estimate of OOS accuracy.

GENERALIZATION ERROR

Suppose we do the train/test split.

GENERALIZATION ERROR

Suppose we do the train/test split.

Q: How well does generalization error predict OOS accuracy?

Suppose we do the train/test split.

Q: How well does generalization error predict 00S accuracy? Thought experiment:

Suppose we had done a different train/test split.

Suppose we do the train/test split.

Q: How well does generalization error predict 00S accuracy?

Thought experiment:

Suppose we had done a different train/test split.

Q: Would the generalization error remain the same?

Suppose we do the train/test split.

Q: How well does generalization error predict 00S accuracy?

Thought experiment:

Suppose we had done a different train/test split.

Q: Would the generalization error remain the same?

A: Of course not!

Suppose we do the train/test split.

Q: How well does generalization error predict 00S accuracy?

Thought experiment:

Suppose we had done a different train/test split.

Q: Would the generalization error remain the same?

A: Of course not!

A: On its own, not very well.

GENERALIZATION ERROR

Something is still missing!

GENERALIZATION ERROR

Something is still missing!

Q: How can we do better?

GENERALIZATION ERROR

Something is still missing!

Q: How can we do better?

Thought experiment:

Different train/test splits will give us different generalization errors.

Something is still missing!

Q: How can we do better?

Thought experiment:

Different train/test splits will give us different generalization errors.

Q: What if we did a bunch of these and took the average?

Something is still missing!

Q: How can we do better?

Thought experiment:

Different train/test splits will give us different generalization errors.

Q: What if we did a bunch of these and took the average?

A: Now you're talking!

Something is still missing!

Q: How can we do better?

Thought experiment:

Different train/test splits will give us different generalization errors.

Q: What if we did a bunch of these and took the average?

A: Now you're talking!

A: Cross-validation.

Steps for n-fold cross-validation:

1) Randomly split the dataset into n equal partitions.

- 1) Randomly split the dataset into n equal partitions.
- 2) Use partition 1 as test set & union of other partitions as training set.

- 1) Randomly split the dataset into n equal partitions.
- 2) Use partition 1 as test set & union of other partitions as training set.
- 3) Find generalization error.

- 1) Randomly split the dataset into n equal partitions.
- 2) Use partition 1 as test set & union of other partitions as training set.
- 3) Find generalization error.
- 4) Repeat steps 2-3 using a different partition as the test set at each iteration.

- 1) Randomly split the dataset into n equal partitions.
- 2) Use partition 1 as test set & union of other partitions as training set.
- 3) Find generalization error.
- 4) Repeat steps 2-3 using a different partition as the test set at each iteration.
- 5) Take the average generalization error as the estimate of OOS accuracy.

Features of n-fold cross-validation:

1) More accurate estimate of OOS prediction error.

- 1) More accurate estimate of OOS prediction error.
- 2) More efficient use of data than single train/test split.
 - Each record in our dataset is used for both training and testing.

- 1) More accurate estimate of OOS prediction error.
- 2) More efficient use of data than single train/test split.
 - Each record in our dataset is used for both training and testing.
- 3) Presents tradeoff between efficiency and computational expense.
 - 10-fold CV is 10x more expensive than a single train/test split

- 1) More accurate estimate of OOS prediction error.
- 2) More efficient use of data than single train/test split.
 - Each record in our dataset is used for both training and testing.
- 3) Presents tradeoff between efficiency and computational expense.
 - 10-fold CV is 10x more expensive than a single train/test split
- 4) Can be used for model selection.

INTRO TO DATA SCIENCE

DISCUSSION