Задание 1 2

Динамические системы. Обыкновенное дифференциальное уравнение и его решение. Символьное и численное решение.

1. Решить численно уравнения:

$$\frac{d^2x}{dt^2} + p_1 \cdot \frac{dx}{dt} + p_2 \cdot x = (a_2 \cdot t^2 + a \cdot_1 t + a_0); \quad t \in [-T, T], \quad x(0) = x_0; x'(0) = x_0'; p_1 = 3; p_2 = 1;, \quad (1.1)$$

$$\frac{d^2y}{dt^2} + p_2 \cdot y = (a_2 \cdot \cos(t) + a_1 \cdot \sin(t) + a_0); \quad t \in [-T, T], \quad y(0) = y_0; \quad y'(0) = y_0'; \quad p_2 = 1;. \tag{1.2}$$

$$\frac{d^2z}{dt^2} + p_1 \cdot \frac{dz}{dt} = (a_2 \cdot \cos(t) + a_1 \cdot t + a_0); \quad t \in [-T, T], \quad z(0) = z_0, z'(0) = z'_0; p_1 = 1;$$
 (1.3)

$$\frac{d^2q}{dt^2} = (a_2 \cdot t^2 + a_1 \cdot \sin(t) + a_0); \quad t \in [-T, T], \quad q(0) = q_0, q'(0) = q'_0, \tag{1.4}$$

Коэффициенты уравнения для конкретного варианта приведены в табл. 1.1.

Таблица 1.1. Коэффициенты уравнений

					1 ασταμά 1.1. Κοσφφαιμικά			
N	a_2	a_1	a_0	T	x_0	Уравнение		
1	1	0	0	1	-6	1.1		
2	0	1	0	2	-5	1.1		
3	1	1	0	3	-4	1.1		
4	0	1	1	4	-3	1.1		
5	1	0	1	1	-2	1.1		
6	1	1	1	2	-1	1.1		
7	1	0	0	3	1	1.1		
8	0	1	0	4	2	1.1		
9	1	1	0	1	3	1.1		
10	0	1	1	2	4	1.1		
11	1	0	1	3	5	1.1		
12	1	1	1	4	6	1.1		
N			y_0					
13	1	1	0	1	6	1.2		
14	1	1	0	2	5	1.2		
15	1	1	0	3	4	1.2		
16	-1	1	1	4	3	1.2		
17	1	-1	1	1	2	1.2		
18	1	- 1	1	2	1	1.2		
19	- 1	0	0	3	- 1	1.2		
20	0	1	1	4	-2	1.2		
21	1	1	1	1	- 3	1.2		
22	0	1	1	2	- 4	1.2		
23	1	0	1	3	- 5	1.2		
24	1	- 1	1	4	- 6	1.2		

N	a2	a1	a0	T	z0	Уравнение
25	1	0	0	1	-6	13
2 6	0	1	0	2	5	1.3
27	1	1	0	3	-4	1.3
28	0	1	1	2	3	1.3
29	1	0	1	1	-2	1.3
30	1	1	1	2	1	1.3
31	1	0	0	3	1	1.3
32	0	1	0	2	- 2	1.3
33	1	1	0	1	3	1.3
34	0	1	1	2	- 4	1.3
35	1	0	1	3	5	1.3
36	1	1	1	2	- 6	1.3
N					q0	
37	1	1	0	1	6	1.4
38	1	1	0	2	5	1.4
39	1	1	0	3	4	1.4
40	-1	1	1	2	3	1.4
41	1	-1	1	1	2	1.4
42	1	- 1	1	2	1	1.4
43	- 1	0	0	3	- 1	1.4
44	0	1	1	2	-2	1.4
45	1	1	1	1	- 3	1.4
46	0	1	1	2	- 4	1.4
47	1	0	1	3	- 5	1.4
48	1	- 1	1	2	- 6	1.4

Нарисовать графики построенных численных решений и графики абсолютной и относительной погрешностей (Anydynamics).

- 2. Найти символьное решение приведенной системы:
 - как сумму решений решения однородного уравнения и частного решения неоднородного уравнения.

Указания. Прежде всего, рекомендуется найти решение вручную, а затем используя математический пакет Maple, Mathematica. Они, естественно, должны совпасть. Найденные таким образом решения использовать для проверки численных решений.