Double Turán Problem

January 20, 2025

Contents

1	Introduction		2
	1.1	Definitions and Notation	2
2	Induced Version		
	2.1	Complete Graph Case	4
	2.2	Non-bipartite F	6
3	General Version		10
	3.1	Triangle F	11
	3.2	Bipartite F	13

1 Introduction

Let $\exp_2(n, m, F)$ be the maximum possible sum of the number of edges over m subgraphs G_1, \ldots, G_m on the same vertex set [n], with the constraint that $E(G_i) \cap E(G_j)$ does not contain graph F for $i \neq j$. Our goal is to determine $\exp_2(n, m, F)$ for different forbidden graphs F. A trivial construction with $G_1 = K_n$ and G_2, \ldots, G_m to be extremal graphs for F yields the lower bound $\binom{n}{2} + (m-1)\exp(n, F)$. In this work, we use this bound as a benchmark to either show the tightness of $\exp_2(n, m, F)$ or to provide a better bound.

Additionally, we are also interested in a more restrictive version where G_1, \ldots, G_m are induced subgraphs of $G_1 \cup \cdots \cup G_m$. We denote $\exp(n, m, F)$ as the maximum possible sum of the number of edges over m induced subgraphs G_1, \ldots, G_m on the same vertex set [n] such that $E(G_i) \cap E(G_j)$ does not contain graph F for $i \neq j$. The trivial construction by taking G_1, \ldots, G_m to be extremal graphs for F yields the lower bound $m \cdot \exp(n, F)$. This is the benchmark we use to determine $\exp(n, m, F)$.

In this work, we will first discuss the induced case, and then shift our focus to the general case. At the end, we will discuss the case where F is bipartite.

1.1 Definitions and Notation

Let G = (V, E) be a graph. Let V(G) = V denote the vertex set and E(G) = E denote the edge set of G. We note by v(G) = |V| the number of vertices and e(G) = |E| the number of edges in G. For vertex $v \in V(G)$, we denote by $N_G(v) = \{u \in V(G) : \{u, v\} \in E(G)\}$ the neighborhood of v.

Given G_1, \ldots, G_m subgraphs of G, we denote G_{i_1,\ldots,i_k} as the subgraph of G with edge set $E(G_{i_1,\ldots,i_k}) = \bigcap_{\alpha=1}^k E(G_{\alpha})$.

In this thesis, we reserve n to denote the number of vertices in a graph. Given a graph F, we denote ex(n, F) to be the extremal number for F on a graph with n vertices, i.e. the maximum number of edges in a n-vertex graph that does not contain F as a subgraph.

We call a *n*-vertex complete graph K_n , and a complete bipartite graph $K_{a,b}$, where a, b are the size of its parts. We denote P_n as a path with n edges, and C_n as a cycle with n edges. Given graph G, H, define G + H as the graph fully connecting G, H, i.e. $V(G+H) = V(G) \cup V(H)$ and $E(G+H) = E(G) \cup E(H) \cup \{\{u,v\} : u \in V(G), v \in V(H)\}.$

We also denote the set of first n positive integers as $[n] = \{1, 2, ..., n\}$. Given a set X, we denote 2^X as the power set of X.

2 Induced Version

In this section, we assume that G_1, \ldots, G_m are induced subgraphs of $G_1 \cup \cdots \cup G_m$ and $E(G_i) \cap E(G_j)$ does not contain F for $i \neq j$. Here, we say that the extremal condition for m subgraphs is met if $\sum_{i=1}^m e(G_i) = \exp_2^*(n, m, F)$.

TODO: add the condition for all G_i 's to be extremal graphs for F for all m, and generalize to hypergraph.

The following lemma shows that the problem can be reduced to only two graphs.

Lemma 2.1. Let $n, m, k \ge 1$ such that $2 \le k \le m$, and let F be some graph. Then

$$ex_2^*(n, m, F) \le \frac{m}{k} \cdot ex_2^*(n, k, F).$$

Moreover, if the extremal condition for k induced subgraphs is met only when $G_1 = \cdots = G_k$, then the above equality holds and the extremal condition for m induced subgraphs is met if and only if $G_1 = \cdots = G_m$.

Not putting equality because I'm unsure if a construction for k subgraphs can always generalize to m subgraphs. For example, if $F=K_3$ and n is odd, the $G_1=K_{\left\lceil\frac{n-1}{2}\right\rceil,\left\lfloor\frac{n-1}{2}\right\rfloor}$ and $G_2=K_{\left\lceil\frac{n-1}{2}\right\rceil,\left\lfloor\frac{n-1}{2}\right\rfloor}+K_1$ construction cannot be generalized to m=n+1 subgraphs.

Proof. Let G_1, \ldots, G_m be induced subgraphs of $G_1 \cup \cdots \cup G_m$ with $E(G_i) \cap E(G_j)$ not containing F for $i \neq j$. Put $G_{i+m} = G_i$ for all $i \in [m]$. Then

$$\sum_{i=1}^{m} e(G_i) = \frac{1}{k} \sum_{i=1}^{m} [e(G_i) + \dots + e(G_{i+k-1})] \le \frac{1}{k} \sum_{i=1}^{m} \exp_2^*(n, k, F) = \frac{m}{k} \cdot \exp_2^*(n, k, F),$$

which establishes the upper bound.

Suppose $\sum_{i=1}^k e(G_i) = \exp_2^*(n, k, F)$. By assumption $G_1 = \cdots = G_k$, so $e(G_i) = \exp_2^*(n, k, F)/k$ for $1 \le i \le k$. Hence, the construction $G_1 = \cdots = G_m$ meets the upperbound. On the other hand, if $G_1 \ne G_2$ then $\sum_{i=1}^k e(G_i) < \exp_2^*(n, k, F)$. Since $\sum_{i=1}^k e(G_{i+j}) \le \exp_2^*(n, k, F)$ for all $j \ge 1$, we have $\sum_{i=1}^m e(G_i) < \frac{m}{k} \cdot \exp_2^*(n, k, F)$. Thus the extremal condition is met only when $G_1 = \cdots = G_m$.

Lemma 2.2. Let $n \ge 1$, $m \ge 2$ and F be some graph. If $\operatorname{ex}(c, F) - \operatorname{ex}(c - 1, F) > \frac{c - 1}{2}$ for all $1 \le c \le n$, then

$$ex_2^*(n, m, F) = m \cdot ex(n, F)$$

and the extremal condition is met if and only if $G_1 = \cdots = G_m$ are extremal graphs for F.

Not sure if this statement can be strengthened into if and only if. We would need to show there's no F such that $ex(c, F) - ex(c - 1, F) \le \frac{c-1}{2}$ for some c but f has a unique maximum at c = n. In other words, there can not exist F such that its extremal number increases slowly at some small c but eventually catches up.

Proof. By Lemma 2.1, it suffices to show the case for two subgraphs. Let G_1, G_2 be induced subgraphs of $G_1 \cup G_2$ with $E(G_1) \cap E(G_2)$ not containing F. Moreover, let $C = V(G_1) \cap V(G_2)$ and put $a = |V(G_1) \setminus C|$, $b = |V(G_2) \setminus C|$, and c = |C|. Since G_1, G_2 are induced subgraphs, $G_1[C] = G_2[C] = G_{1,2}$. But then $G_{1,2}$ is F-free, so $e(G_1[C]) = e(G_2[C]) \le \operatorname{ex}(c, F)$. This yields the inequality

$$e(G_1) + e(G_2) \le {a+c \choose 2} + {b+c \choose 2} - 2\left[{c \choose 2} - \operatorname{ex}(c, F)\right].$$

Let f(a, b, c) denote the expression on the right-hand-side of the above inequality.

Claim 1. f has a unique maximum at c = n.

Proof. Suppose b < n. Since $ex(c, F) - ex(c - 1, F) > \frac{c-1}{2}$,

$$f(a,b,c) - f(a,b+1,c-1) = \binom{a+c}{2} - \binom{a+c-1}{2}$$
$$-2\left[\binom{c}{2} - \binom{c-1}{2} - \exp(c,F) + \exp(c-1,F)\right]$$
$$= a - c + 1 + 2[\exp(c,F) - \exp(c-1,F)] > a \ge 0.$$

Thus, f is strictly increasing with respect to c. By symmetry, f has a unique maximum at c = n.

By the claim,

$$e(G_1) + e(G_2) \le 2\binom{n}{2} - 2\left[\binom{n}{2} - \exp(n, F)\right] = 2 \cdot \exp(n, F),$$

and and $G_1 = G_2 = G_{1,2}$ are extremal graphs for F on n vertices.

2.1 Complete Graph Case

Lemma 2.3. For $n \ge 1$ and $r \ge 2$,

$$ex(n, K_{r+1}) - ex(n-1, K_{r+1}) \ge \frac{n-1}{2},$$

with equality if and only if n is odd and r=2.

Proof. By Turán's Theorem,

$$\operatorname{ex}(n, K_{r+1}) - \operatorname{ex}(n-1, K_{r+1}) = \delta(T_r(n)) = n - \left\lceil \frac{n}{r} \right\rceil \ge n - \left\lceil \frac{n}{2} \right\rceil.$$

The result now follows.

The following theorem for complete graphs with more than 3 vertices now follows directly from Lemma 2.2 and Lemma 2.3:

Theorem 2.4. For $n \ge 1$, $m \ge 2$, and $r \ge 3$,

$$ex_2^*(n, m, K_{r+1}) = m \cdot e(T_r(n)),$$

and the extremal condition is met if and only if $G_1 = \cdots = G_m = T_r(n)$.

Surprisingly, the triangle case is more complicated than the case for larger complete graphs. As shown in Lemma 2.3, the condition given by Lemma 2.2 is not satisfied for all n in the triangle case, and there are indeed constructions of induced subgraphs G_1, G_2 that meet the extremal condition but are neither equal nor both complete bipartite graphs. For odd n, consider $G_1 = K_{\frac{n-1}{2},\frac{n-1}{2}}$ and $G_2 = K_{\frac{n-1}{2},\frac{n-1}{2}} + K_1$. The number of edges over G_1, G_2 is $\frac{(n-1)^2}{2} + n - 1 = \frac{n^2-1}{2} = 2 \left\lfloor \frac{n^2}{4} \right\rfloor$, which meets the benchmark construction of two complete bipartite graphs. Hence, for the triangle case we have to make some comprimises.

Theorem 2.5. For $n \ge 1$ and $m \ge 2$,

$$\operatorname{ex}_2^*(n, m, K_3) = m \left| \frac{n^2}{4} \right|.$$

Moreover, if n is even or m is odd, then the extremal condition is met if and only if $G_1 = \cdots = G_m$ are complete balanced bipartite graphs on n vertices. Otherwise, the extremal condition is met if and only if when either $G_1 = \cdots = G_m = K_{\frac{n+1}{2},\frac{n-1}{2}}$ or $G_{2k+1} = K_{\frac{n-1}{2},\frac{n-1}{2}}$ and $G_{2k} = K_{\frac{n-1}{2},\frac{n-1}{2}} + K_1$ for all $k \in [m/2]$.

Proof. We first show the following claim.

Claim 2. $\exp_2^*(n,2,K_3) = 2\left\lfloor \frac{n^2}{4} \right\rfloor$, and the extremal condition is met only when $G_1 = G_2 = K_{\left\lfloor \frac{n}{2} \right\rfloor, \left\lceil \frac{n}{2} \right\rceil}$, unless n is odd, $G_1 = K_{\frac{n-1}{2}, \frac{n-1}{2}}$, and $G_2 = K_{\frac{n-1}{2}, \frac{n-1}{2}} + K_1$.

Proof. Let a, b, c, and f(a, b, c) be defined as in the proof of Lemma 2.2. Then

$$f(a,b,c) - f(a,b+2,c-2) = \binom{a+c}{2} - \binom{a+c-2}{2}$$
$$-2\left[\binom{c}{2} - \binom{c-2}{2} - \left\lfloor \frac{c^2}{4} \right\rfloor + \left\lfloor \frac{(c-2)^2}{4} \right\rfloor\right]$$
$$= 2(a+c) + 1 - 2[2c+1 - (c+1)]$$
$$= 2a+1 > 0.$$

This shows that f has a maximum of $2\left\lfloor \frac{n^2}{4} \right\rfloor$ at c=n-1 and c=n, which implies $\exp_2^*(n,2,K_3)=2\left\lfloor \frac{n^2}{4} \right\rfloor$. We are done if c=n, so assume that c=n-1 and a=0. Then $G_1=G_{1,2}=K_{\left\lfloor \frac{n-1}{2} \right\rfloor, \left\lceil \frac{n-1}{2} \right\rceil}$ and

$$e(G_1) + e(G_2) = 2 \left| \frac{(n-1)^2}{4} \right| + \deg(v),$$

where v is the only vertex not in C. But then to meet the extremal condition,

$$\deg(v) = 2\left\lfloor \frac{n^2}{4} \right\rfloor - 2\left\lfloor \frac{(n-1)^2}{4} \right\rfloor = \begin{cases} n & \text{if } n \text{ is even,} \\ n-1 & \text{if } n \text{ is odd.} \end{cases}$$

Hence, n must be odd and G_2 must be a copy of G_1 with all vertices adjacent to the only remaining vertex, i.e. $G_2 = G_1 + K_1$.

By Lemma 2.1 and the above claim, it remains to show that for odd m, $G_1 = \cdots = G_m = K_{\frac{n+1}{2},\frac{n-1}{2}}$ when the extremal condition is met. Suppose not. the above claim then guarantees $G_i = K_{\lceil \frac{n-1}{2} \rceil, \lfloor \frac{n-1}{2} \rfloor} + K_1$ for some i. Put $G_{j+m} = G_j$ for all j. By applying the claim repeatedly,

$$G_{i} = K_{\lceil \frac{n-1}{2} \rceil, \lfloor \frac{n-1}{2} \rfloor} + K_{1}$$

$$G_{i+1} = K_{\lceil \frac{n-1}{2} \rceil, \lfloor \frac{n-1}{2} \rfloor}$$

$$G_{i+2} = K_{\lceil \frac{n-1}{2} \rceil, \lfloor \frac{n-1}{2} \rfloor} + K_{1}$$

$$\vdots$$

$$G_{i+m} = K_{\lceil \frac{n-1}{2} \rceil, \lfloor \frac{n-1}{2} \rfloor},$$

as m is odd. But then $G_{i+m} = G_i = K_{\left\lceil \frac{n-1}{2} \right\rceil, \left\lfloor \frac{n-1}{2} \right\rfloor}$, and this contradiction completes the proof.

Since n cannot be both even and odd, we have the following corollary:

Corollary 2.6. For $n \geq 1$,

$$\operatorname{ex}_{2}^{*}(n, n, K_{3}) = n \left\lfloor \frac{n^{2}}{4} \right\rfloor,$$

and the extremal condition is met if and only if $G_1 = \cdots = G_n$ are complete balanced bipartite graphs on n vertices.

Combining Theorem 2.4 and Theorem 2.5, we have the following theorem for complete graphs:

Theorem 2.7. For $n \geq 1$ and $m, r \geq 2$,

$$ex_2^*(n, m, K_{r+1}) = m \cdot ex(n, K_{r+1}).$$

Moreover, the extremal condition is met if and only if $G_1 = \cdots = G_m = T_r(n)$, unless r = 2, n is odd, and m is even, in which case the extremal condition is met if and only if when either $G_1 = \cdots = G_m = K_{\frac{n+1}{2},\frac{n-1}{2}}$ or $G_{2k-1} = K_{\frac{n-1}{2},\frac{n-1}{2}}$ and $G_{2k} = K_{\frac{n-1}{2},\frac{n-1}{2}} + K_1$ for all $k \in [m/2]$.

2.2 Non-bipartite F

For non-bipartite F, it is hard to determine the extremal graphs for F in general, but their structures becomes more apparent when n is large. More specifically, the Erdős-Stone Theorem tells us that for large n, the extremal graph for F mimics the structure of the Turán graph. With this idea in mind, the following theorem is a generalization of Theorem 2.7 for large n.

Theorem 2.8. For $n \ge 1$, and $m, r \ge 2$, if F is (r+1)-colorable, then large enough n

$$\operatorname{ex}_2^*(n, m, F) = m \cdot \operatorname{ex}(n, F),$$

and the extremal condition is met if and only if $G_1 = G_2 = \cdots = G_n$ are extremal graphs for F, unless r = 2, n is odd, and m is even, in which case the extremal condition is met if and only if when either $G_1 = \cdots = G_m = K_{\frac{n+1}{2},\frac{n-1}{2}}$ or $G_{2k-1} = K_{\frac{n-1}{2},\frac{n-1}{2}}$ and $G_{2k} = K_{\frac{n-1}{2},\frac{n-1}{2}} + K_1$ for all $k \in [m/2]$.

Proof. It suffices to show for m=2 by Lemma 2.1. Let a,b,c and f(a,b,c) be defined as in the proof of Lemma 2.2. We first show that f fails to meet the desired bound for small c.

Claim 3. If $c \leq \frac{n}{2}$, then $f(a, b, c) < 2 \cdot ex(n, F)$.

Proof. Write c = kn for some $k \in [0, 1/2]$. Since

$$f(a,b,kn) \le 2\binom{(1-k)n/2}{2} - 2\left[\binom{kn}{2} - \exp(kn,F)\right],$$

it suffices to show that

$$ex(n,F) - ex(kn,F) > \binom{(1-k)n/2}{2} - \binom{kn}{2}$$

for all $k \in [0, 1/2]$. By the Erdős-Stone theorem, $\exp(n, F) = (1 - \frac{1}{r}) \frac{n^2}{2} + o(n^2)$ and so the left-hand-side is at least

$$\operatorname{ex}(n,F) - \operatorname{ex}(kn,F) \ge \operatorname{ex}(n,F) - \operatorname{ex}(n/2,F) \ge \left(1 - \frac{1}{r}\right) \left(\frac{n^2}{2} - \frac{n^2}{8}\right) - o(n^2) \ge \frac{3n^2}{16} - o(n^2).$$

On the right-hand-side,

$$\binom{(1-k)n/2}{2} - \binom{kn}{2} = (1-2k-3k^2)\frac{n^2}{8} + o(n^2) \le \frac{n^2}{8} + o(n^2).$$

Combining the above inequalities now yields the claim, as n is large.

Thus we may assume that $c > \frac{n}{2}$. A theorem of Simonovits states that for large enough n, $\operatorname{ex}(n, F) = \operatorname{ex}(n, K_{r+1}) + \operatorname{ex}(n, \tilde{F})$, where \tilde{F} is the family of residue subgraphs of F after F is embedded into $T_r(n)$. This implies

$$ex(n, F) - ex(n - 1, F) \ge ex(n, K_{r+1}) - ex(n - 1, K_{r+1}).$$

Thus by Lemma 2.2 and Lemma 2.3, we are done for r > 3 or n is even. For r = 2 and n odd, the proof is follows the argument for the triangle case. TODO: maybe write this out.

Lemma 2.9. Let F be (r+1)-colorable, with $r \geq 2$. Suppose $E(G_1) \cap E(G_2)$ does not include F. For large enough n,

$$e(G_1) + e(G_2) \le 2 \cdot \operatorname{ex}(n, F),$$

with equality if and only if $G_1 = G_2$ are n-vertex extremal graphs for F, unless n is odd, G_1 is an (n-1)-vertex extremal graph for F, and $G_2 = G_1 + K_1$.

Proof. Let $C = V(G_1) \cap V(G_2)$, $A = V(G_1) \setminus C$, and $B = V(G_2) \setminus C$. Put a = |A|, b = |B|, c = |C|. Since G_1, G_2 are induced graphs, $E(G_1[C]) = E(G_2[C]) = E(G[C]) = E(G_i) \cap E(G_i)$, which is F-free. Hence,

$$e(G_1) + e(G_2) \le {a+c \choose 2} + {b+c \choose 2} - 2\left[{c \choose 2} - \exp(c, F)\right].$$
 (2.1)

Define f(a, b, c) as the function on the right-hand-side of (2.2). We show that f(a, b, c) attains its maximum at a = b = 0 and c = n.

Claim 4. If $c \leq \frac{n}{2}$, then $f(a, b, c) < 2 \cdot ex(n, F)$.

Proof. Write c = kn for some $k \in [0, 1/2]$. Since

$$f(a,b,kn) \le 2\binom{(1-k)n/2}{2} - 2\left[\binom{kn}{2} - \exp(kn,F)\right],$$

it suffices to show that

$$\operatorname{ex}(n,F) - \operatorname{ex}(c,F) > \binom{(1-k)n/2}{2} - \binom{kn}{2}$$

for all $k \in [0, 1/2]$. By the Erdős-Stone theorem, $\exp(n, F) = (1 - \frac{1}{r}) \frac{n^2}{2} + o(n^2)$ and so the left-hand-side is at least

$$\operatorname{ex}(n,F) - \operatorname{ex}(c,F) \ge \operatorname{ex}(n,F) - \operatorname{ex}(n/2,F) \ge \left(1 - \frac{1}{r}\right) \left(\frac{n^2}{2} - \frac{n^2}{8}\right) - o(n^2) \ge \frac{3n^2}{16} - o(n^2).$$

On the right-hand-side,

$$\binom{(1-k)n/2}{2} - \binom{kn}{2} = (1-2k-3k^2)\frac{n^2}{8} + o(n^2) \le \frac{n^2}{8} + o(n^2).$$

Combining the above inequalities now yields the claim, as n is large.

Thus we may assume that $c > \frac{n}{2}$. A theorem of Simonovits states that for large enough n, $\operatorname{ex}(n, F) = \operatorname{ex}(n, K_{r+1}) + \operatorname{ex}(n, \tilde{F})$, where \tilde{F} is the family of residue subgraphs of F after F is embedded into $T_r(n)$. This implies

$$ex(n+1, F) - ex(n, F) \ge ex(n, K_{r+1}) - ex(n+1, K_{r+1}),$$

and so

$$f(a, b-2, c+2) - f(a, b, c) \ge 2a - 2c - 1 + 2[ex(c+2, K_{r+1}) - ex(c, K_{r+1})].$$

Since $\operatorname{ex}(c+1, K_{r+1}) - \operatorname{ex}(c, K_{r+1}) \ge c - \lfloor \frac{c}{r} \rfloor \ge c - \lfloor \frac{c}{2} \rfloor$, we have

$$\operatorname{ex}(c+2, K_{r+1}) - \operatorname{ex}(c, K_{r+1}) \ge c + 1 - \left\lfloor \frac{c+1}{2} \right\rfloor + c - \left\lfloor \frac{c}{2} \right\rfloor = c + 1,$$

and thus

$$f(a, b-2, c+2) - f(a, b, c) \ge 2a + 1 > 0.$$

By symmetry, we also have f(a-2, b, c+2) > f(a, b, c). Thus, f attains its maximum when c is n-1 or n. Equation (2.2) now yields,

$$e(G_1) + e(G_2) \le \max [2 \cdot \exp(n, F), 2 \cdot \exp(n - 1, F) + n - 1].$$

Assume that a = 0. Since

$$2 \cdot \exp(n, F) - [2 \cdot \exp(n - 1, F) + n - 1]$$

$$\geq 2[\exp(n, K_{r+1}) - \exp(n - 1, K_{r+1})] - n + 1 \qquad (2.2)$$

$$= 2\left(n - \left\lceil \frac{n}{r} \right\rceil \right) - n + 1$$

$$\geq n + 1 - 2\left\lceil \frac{n}{2} \right\rceil \geq 0,$$

we have

$$e(G_1) + e(G_2) \le 2 \cdot \operatorname{ex}(n, F).$$

If c=n, the equality holds only if $G_1=G_2$ are n-vertex extramal graphs for F. Suppose c=n-1 and the equality holds. Observe that equation (2.3) is equal to zero only when r=2 and n is odd. Thus if c=n-1, then the equality could only be achieved when r=2, n is odd, G_1 is an (n-1)-vertex extremal graph for F, and $G_2=G_1+K_1$. \square

3 General Version

TODO: add introduction.

Theorem 3.1. For all n and graph F,

$$ex_2(n, m, F) = m(1 + o(1))ex(n, F)$$

as $m \to \infty$.

Proof. Let r = v(F). Pick $\epsilon > 0$. Reorder G_1, \ldots, G_m so that $G_1, \ldots, G_{m'}$ are all the G_i 's containing at least $(1 + \epsilon) \exp(n, F)$ edges. A theorem of Simonovits states that G contains at least δn^r copies of F for some $\delta = \delta(\epsilon)$. Since there can be at most $\binom{n}{r}$ copies of F across all G_i 's,

$$m'\delta n^r \le \binom{n}{r} \le n^r \implies m' \le \frac{1}{\delta}.$$

It now follows that

$$\sum_{i=1}^{m} e(G_i) = \sum_{i=1}^{m'} e(G_i) + \sum_{i=m'+1}^{m} e(G_i)$$

$$\leq \frac{1}{\delta} \binom{n}{2} + \left(m - \frac{1}{\delta}\right) (1 + \epsilon) \operatorname{ex}(n, F)$$

$$= m \left[1 + \epsilon + \frac{1}{m\delta} \left(\frac{\binom{n}{2}}{\operatorname{ex}(n, F)} - (1 + \epsilon)\right)\right] \operatorname{ex}(n, F).$$

Since ϵ is arbitrary, the result follows.

Theorem 3.2. For large enough n, suppose that G_1, \ldots, G_m are graphs on common vertex set [n] with no copy of F contained in any k of the G_i 's. If there exists extremal F-free subgraph H on n vertices such that $\binom{m}{k}\Delta(H) = o(n^{1/2})$, then

$$ex_2(n, m, F) = (k-1)\binom{n}{2} + ex(n, F)\binom{m}{k}.$$

Proof. For $S \subseteq [m]$, let E_S denote the set of edges that are contained in exactly $\{G_i\}_{i \in S}$. Then

$$\sum_{i=1}^{m} e(G_i) = \sum_{S \subset [m]} |S| |E_S| \le (k-1) \binom{n}{2} + \sum_{S \subset [m], |S| > k} (|S| - k + 1) |E_S|.$$

Let $A_S = \bigcup_{T \supseteq S} E_T$, i.e. the set of edges that are contained in all G_i with $i \in S$. When $|S| \ge k$, the edge set A_S is F-free and thus

$$\sum_{T\supset S} |E_T| \le \operatorname{ex}(n, F).$$

Hence,

$$\sum_{\substack{S \subseteq [m] \\ |S| \ge k}} (|S| - k + 1)|E_S| = \sum_{\substack{S \subseteq [m], T \subseteq S \\ |S| = k}} \sum_{\substack{(|T| - k + 1)|E_T| \\ k}} \le \sum_{\substack{S \subseteq [m], T \subseteq S \\ |S| = k}} \sum_{|E_T| \le {m \choose k}} \exp(n, F),$$

as each $T \in [m]$ with $|T| \ge k$ is counted $\binom{|T|}{k}$ times in total and $|T| - k + 1 \le \binom{|T|}{k}$. This proves the upper bound.

Now we show the bound is tight. In particular, we need to show there exists a construction such that the graph with edge set E_S is an extremal F-free graph, for all $S \subseteq [m]$ of size k. Let $M = \binom{m}{k}$ and H_1, \ldots, H_M be copies of an extremal F-free graph on n vertices with $\Delta(H_i) = o(n^{1/2})$ for all i. It suffices to show that we can embed each H_i onto [n] such that their edge sets are pairwise disjoint. We begin by an arbitrary embedding of each H_i and iteratively decrease the number of intersecting edges. Define a (u, v, i)-swap by swapping the embedding of vertex u and v of H_i , i.e. replacing each edge $\{u, w\} \in E(H_i)$ with the edge $\{v, w\}$. This perserves the type of isomorphism of H_i . Given a vertex v, let $N(v) = N_{H_1}(v) \cup \cdots \cup N_{H_M}(v)$. Suppose there exists an intersecting edge $\{u, w\} \in E(H_i) \cap E(H_j)$. Since $|N(u)| \leq M \cdot \Delta(H_i) = o(n^{1/2})$, $|N(u) \cup N(N(u))| = o(n)$ so there exists a vertex $v \notin N(u) \cup N(N(u))$. Since $N(u) \cap N(v) = \emptyset$, performing a (u, v, i)-swap reduces the number of intersecting edges. The result now follows from iterating this process.

3.1 Triangle F

Consider F to be a triangle. Simply counting the number of triangles in each G_i shows the following:

Theorem 3.3. For all n, m and $\epsilon > 0$,

$$\exp_2(n, m, K_3) < \left(m \cdot \frac{1+\epsilon}{4} + \frac{1}{2\epsilon} - \frac{1}{2}\right)n^2.$$

Claim 5. There are less than $\frac{2}{\epsilon}$ number of G_i 's with at least $(1+\epsilon)\frac{n^2}{4}$ edges.

Proof. Suppose $e(G_i) \geq (1+\epsilon)\frac{n^2}{4}$ for $1 \leq i \leq k$. Let $K_3(G)$ denote the number of triangles in graph G. By the Moon-Moser inequality,

$$K_3(G_i) \ge \epsilon (1+\epsilon) \frac{n^3}{12}.$$

Since there are no overlapping traingles from different G_i 's,

$$\binom{n}{3} \ge \sum_{i=1}^{k} K_3(G_i) \ge \frac{\epsilon(1+\epsilon)}{12} kn^3.$$

Rearranging yields $k < \frac{2}{\epsilon}$.

By the claim,

$$\sum_{i=1}^{m} e(G_i) < \frac{2}{\epsilon} \binom{n}{2} + \left(m - \frac{2}{\epsilon}\right) (1+\epsilon) \frac{n^2}{4} \le m(1+\epsilon) \frac{n^2}{4} + (1-\epsilon) \frac{n^2}{2\epsilon},$$

which proves Theorem 3.3.

When m=2,

$$e(G_1) + e(G_2) \le \binom{n}{2} + e(G_{1,2}) \le \binom{n}{2} + \left\lfloor \frac{n^2}{4} \right\rfloor,$$

which meets the benchmark bound and so $\exp(n, 2, K_3) = \binom{n}{2} + \left\lfloor \frac{n^2}{4} \right\rfloor$.

This result is also true for m = 3:

Proposition 3.4. For all n,

$$\operatorname{ex}_2(n,3,K_3) = \binom{n}{2} + \left\lfloor \frac{n^2}{2} \right\rfloor.$$

Proof. Define $H_k \subseteq G$ be the graph with edges contained in at least k number of G_i 's and note that $e(G_1) + e(G_2) + e(G_3) = e(H_1) + e(H_2) + e(H_3)$. Thus it suffices to show that $e(H_2) + e(H_3) \le \frac{n^2}{2}$. Notice H_2 must not contain any triangles with two edges in H_3 , so

$$e(H_2) + e(H_3) \le \binom{n}{2} + e(H_3) - |\{\{u, v\} : u \ne v, N_{H_3}(u) \cap N_{H_3}(v) \ne \emptyset\}|.$$

Let H_3' be the graph with the same vertex set as H_3 and edge set $\{\{u,v\}: u \neq v, N_{H_3}(u) \cap N_{H_3}(v) \neq \emptyset\}$. It suffices to show that $\frac{n}{2} \geq e(H_3) - e(H_3')$.

Let $d_1 \geq d_2 \geq \cdots \geq d_n$ and $f_1 \geq f_2 \geq \cdots \geq f_n$ each be the degree sequence of H_3 and H_3' , respectively. We show that $f_i \geq d_i - 1$ for all i. Let v_i denote the vertex in H with degree d_i and u_i be the vertex in H with degree f_i . Let $S_i = |N_{H_3}(v_1) \cup \cdots \cup N_{H_3}(v_i)|$. Since

$$\sum_{u \in S_i} d_{H_3}(u) \ge d_1 + \dots + d_i,$$

we have that $|S_i| \geq i$. But then $S_i \setminus \{u_1, \ldots, u_{i-1}\}$ is non-empty, and every $u \in S_i$ has degree $d_{H'_3}(u) \geq d_i - 1$. Hence, $f_i \geq d_i - 1$ for all i, which yields

$$e(H_3') = \frac{1}{2} \sum_{i=1}^n f_i \ge \frac{1}{2} \sum_{i=1}^n (d_i - 1) = e(H_3) - \frac{n}{2}.$$

However, the bound in Proposition 3.1 is not tight for $m \ge 4$, as shown in the following graph:

12

The number on each edge denotes the set of G_i 's that contain the edge.

The above graph contains 29 edges, which exceeds the bound $\binom{5}{2} + 3\lfloor \frac{5^2}{4} \rfloor = 28$ by 1. By blowing up the above graph, we can construct a graph with $n \in 10\mathbb{Z}$ vertices that contains

$$5\binom{n/5}{2} + 29 \cdot \frac{(n/5)^2}{4}$$

edges, which exceeds the bound $\binom{n}{2} + 3\lfloor \frac{n^2}{4} \rfloor$ by $n^2/100$.

3.2 Bipartite F

In this section, we discuss the case where F is bipartite. In particular, we focus on the cases where $F \subseteq K_{2,2}$ is P_2 , a path of length 2, or M_2 , a matching with two edges.

Theorem 3.5.

$$\exp_2(n, m, P_2) \le \left(\frac{1}{2} + o(1)\right) n^2 \sqrt{m}$$

as $n \to \infty$ or $m \to \infty$.

Proof. Since there are no overlapping P_2 's in different G_i 's,

$$\sum_{i=1}^{m} \#\{P_2 \subseteq G_i\} \le \#\{P_2 \subseteq G\}$$

For each G_i , each vertex v in G_i and two of its neighbors form one unique P_2 , so

$$\#\{P_2 \subseteq G_i\} = \sum_{v \in V(G_i)} \binom{d_{G_i}(v)}{2}.$$

And by Jensen's inequality,

$$\sum_{v \in V(G_i)} \binom{d_{G_i}(v)}{2} \ge n \binom{d_{G_i}(v)/n}{2} = n \binom{2e(G_i)/n}{2} \ge \frac{2(e(G_i))^2}{n} - e(G_i).$$

On the other hand, since each three vertices in G can form at most three P_2 's,

$$\#\{P_2 \subseteq G\} \le 3\binom{n}{3} \le \frac{n^3}{2}.$$

Combining the above inequalities yields

$$\frac{2m}{n} \left(\frac{1}{m} \sum_{i=1}^{m} e(G_i) \right)^2 - \sum_{i=1}^{m} e(G_i) \stackrel{Jensen's}{\leq} \sum_{i=1}^{m} \frac{2(e(G_i))^2}{n} - e(G_i) \leq \frac{n^3}{2},$$

and solving the quadratic equation gives

$$\sum_{i=1}^{m} e(G_i) \le mn \cdot \frac{1 + \sqrt{4n^2/m + 1}}{4} = \left(\frac{1}{2} + o(1)\right) n^2 \sqrt{m},$$

as $n \to \infty$ or $m \to \infty$.

When m = n, the following projective plane construction shows the above bound is tight asymptotically:

Theorem 3.6.

$$\exp(n, n, P_2) = \left(\frac{1}{2} + o(1)\right) n^{5/2},$$

as $n \to \infty$.

Proof. It suffices to show the tightness of the bound in Theorem 3.5. Consider a finite projective plane of order q. The projective plane has $n=q^2+q+1$ points and n lines. Let $S_1,\ldots,S_n\subseteq [n]$ be the n lines of the projective plane. Note that each line S_i contains q+1 points, and the intersection of any two distinct lines S_i,S_j contains $|S_i\cap S_j|=1$ point. Define G_1,\ldots,G_n to be graphs on [n], each with edge set $E(G_i)=\{\{j,k\}\subseteq [n]:j\neq k,j+k\in S_i\mod n\}$. Note that the intersection of distinct G_i,G_j is P_2 free: since $|S_i\cap S_j|=1$, if $\{a,b\},\{a,c\}\in E(G_i)\cap E(G_j)$, then a+b=a+c so b=c. We now count the number of edges in G_1,\ldots,G_n . Since $|S_i|=q+1$, for each point $j\in [n]$, there are q+1 choices for $k\in [n]$ such that $j+k\in S_i$. But then we have to avoid counting the same edge twice and loops, so the number of edges in G_i is

$$e(G_i) = \frac{n(q+1) - \#\text{loops counted for } G_i}{2}.$$

If $j \in [n]$ is even, then k = j/2 is the unique number in [n] such that $k + k = j \mod n$. If $j \in [n]$ is odd, then k = (n + j)/2 is the unique number in [n] such that $k + k = j \mod n$, as n is even. Hence, for each $j \in S_i$, there exists a unique $k \in [n]$ such that $k + k = j \mod n$, and thus

#loops counted for
$$G_i = |S_i| = q + 1$$
.

Since $q + 1 = (1 + o(1))n^{1/2}$, the number of edges in G_1, \ldots, G_n is

$$\sum_{i=1}^{n} e(G_i) = n \cdot \frac{n(q+1) - (q+1)}{2} = \left(\frac{1}{2} + o(1)\right) n^{5/2},$$

as
$$n \to \infty$$
.

Theorem 3.7. For all n, m,

$$\operatorname{ex}_2(n, m, M_2) \le n^{5/2}.$$

Proof. Notice that $\#\{M_2 \subseteq G\} = \binom{e(G_i)}{2}$. On the other hand, each four vertices in G can form at most three M_2 's, so $\#\{M_2 \subseteq G\} \le 3\binom{n}{4} \le \frac{n^4}{8}$. By the same argument as in Theorem 3.4, we have

$$\sum_{i=1}^{n} \binom{e(G_i)}{2} = \sum_{i=1}^{n} \#\{M_2 \subseteq G_i\} \le \#\{M_2 \subseteq G\} \le \frac{n^4}{8}.$$

By Jensen's inequality,

$$\sum_{i=1}^{n} \binom{e(G_i)}{2} \ge n \binom{\sum_{i=1}^{n} e(G_i)/n}{2} = \frac{1}{2n} \left[\left(\sum_{i=1}^{n} e(G_i) \right)^2 - n \sum_{i=1}^{n} e(G_i) \right].$$

Combining the above inequalities yields

$$\left(\sum_{i=1}^{n} e(G_i)\right)^2 - n \sum_{i=1}^{n} e(G_i) \le \frac{n^5}{4},$$

and solving the quadratic inequality gives

$$\sum_{i=1}^n e(G_i) \le n^{5/2}.$$

We may obtain an exact result if we forbid both P_2 and M_2 at the same time:

Theorem 3.8. For all n, m,

$$\exp(n, m, \{P_2, M_2\}) = n^2 - n.$$

Proof. Denote the set of G_i 's as $\{G_i\} = \{G_1, \ldots, G_n\}$, and the set of distinct pairs of G_i 's as $\{G_i\}^2 = \{\{G_j, G_k\} : j \neq k\}$. Consider the bipartite graph H with vertex set $V(H) = \{G_i\} \sqcup E(K_n)$ and edge set $E(H) = \{\{G_j, e\} \in \{G_i\} \times E(K_n) : e \in G_j\}$. Define $\phi: \{G_i\}^2 \to 2^{E(K_n)}$ by sending each $\{G_j, G_k\}$ to their common edge set $E(G_j) \cap E(G_k)$. Notice that each distinct G_j, G_k have at most one edge in common, so $|\phi(G_j, G_k)| \leq 1$. On the other hand, each edge $e \in E(G)$ can be obtained via ϕ by $\binom{d_H(e)}{2}$ possible distinct pairs (G_j, G_k) , and thus $|\phi^{-1}(e)| = \binom{d_H(e)}{2}$. But then

$$\binom{n}{2} \ge \sum_{(G_j, G_k) \in \{G_i\}^2} |\phi(G_j, G_k)| = \sum_{e \in E(K_n)} |\phi^{-1}(e)| = \sum_{e \in E(K_n)} \binom{d_H(e)}{2}.$$

By Jensen's inequality,

$$\sum_{e \in E(K_n)} {d_H(e) \choose 2} \ge {n \choose 2} {\sum_{e \in E(K_n)} d_H(e) / {n \choose 2} \choose 2} = {n \choose 2} {\sum_{i=1}^n e(G_i) / {n \choose 2} \choose 2}.$$

Combining the above inequalities yields

$$2\binom{n}{2}^{2} \ge \left(\sum_{i=1}^{n} e(G_{i})\right)^{2} - \binom{n}{2} \sum_{i=1}^{n} e(G_{i}),$$

and the result now follows from solving the quadratic inequality.

To see that this bound is tight, consider the construction such that for each distinct $i, j \in [n], E(G_i) \cap E(G_j)$ contains exactly one unique edge $e \in K_n$. The number of edges in this construction is $2\binom{n}{2} = n^2 - n$.