ISAAC DE FREITAS FRANÇA - LISTA 05

<u>1.</u>

<u>2.</u>

AFN = ({ S, A, B }, { 0, 1 }, S, { A, B })

<u>3.</u>

É um AFN, pois tanto no estado q0, como q1, a entrada de um único símbolo pode tanto levar a outro estado, como a permanecer no mesmo estado.

<u>4.</u>

AFN:

AFD (Convertida pelo software):

<u>5.</u>

a) aa*|bb*

R. -

É uma AFD.

b) (a*|b*)*

R. - (Entendi que $(a^*)^*$ = quantidade nula ou par do símbolo "a")

É uma AFD.

c) (a|b)*abb(a|b)*

R. -

É uma AFN.

<u>6.</u>

<u>a.</u>

<u>b.</u>

<u>c.</u>

٠

<u>7.</u> <u>a.</u>

<u>b.</u>

<u>C.</u>

<u>8.</u>

a. Em Expressão regular;

(01+10+111+000+1100+0011)*

b.Em Gramática regular.

(Considerando e0 = S, e1- A, e2 = B) G = ({S, A, B}, {0, 1}*,P, S) P=> { S -> 1A | 0B | ϵ A -> 0S | 1B

B -> 1S | 0B }

9.Sejam:

que aceitam as linguagens:

- L (M₁) = $\{x \in \{0,1\}^* \mid |x| \mid 0 \mod 3 = |x| \mid 1 \mod 3\}$
- L (M₂) = {x \in {0,1}* | | x | n\u00e30 contem dois 1's consecutivos}

- a) M3 tal que L(M3) = L(M1)*
- b) M_4 tal que $L(M_4) = L(M_1) \cdot L(M_2)$
- c) M_5 tal que $L(M_5) = L(M_1) \cup L(M_2)$
- d) M_6 tal que $L(M_6) = L(M_1) \cap L(M_2)$

10. Considere os autômatos finitos M1 e M2 a seguir:

Utilizando as propriedades das linguagens regulares, e a partir de M_1 e M_2 , construa os autômatos finitos descritos a seguir:

<u>11.</u>

a. G=({ S, A, B }, { a, b }, P, S) P = { S => aA|bB|λ, A => aA|bB, B => bB|b }

b. G=({ S, A, B, C }, { 0, 1, 2 }, P, S) P => { S => 0S|1A|2B|0|0C , A => 1S|1 , B => 2S|2 , C => 0S|0 }

