Alberta E-Vent Control Software

Release and Development Overview for Software Versions: $\begin{array}{c} 042920 \\ 060920 \end{array}$

0225221

March 8, 2021

Document History

Date	Document Status	Originator	Approver
May 1, 2020	Initial Release	C. Hill & D. Quinn	
March 8, 2021	Improved calibration procedures	C. Hill & D. Quinn	

Approval

Date	Name	Role	Signature

Software Versions

Version Number	Description
042920	Initial Release
060920	Change of pin assignments for production PCB
0225021	Improved calibration at startup and on-the-fly re- calibration

Contents

1	Summary	5
2	Acronyms	6
3	Software Classification	7
4	IEC 62304.2006 Overview	8
5	Quality Management	13
6	Functionality Overview	14
7	Software Specifications	15
	7.1 Hardware	15
	7.2 Software of Unknown Pedigree (SOUP)	15
	7.2.1 Published Anomaly Lists for SOUP	15
	7.3 Supported Modes	15
	7.4 Adjustable Ventilation Parameters	16
	7.5 Alarms and Fault Detection	16
	r	16
	7.7 Software Repository	16
8	Architecture Description	17
•	8.1 Startup and Calibration	17
	8.2 Assist Control Mode	17
	8.3 Volume Control Mode	17
	8.4 Alarm Conditions	18
	8.4.1 High Peak Inspiratory Pressure (PIP)	18
	8.4.2 Low Peak Inspiratory Pressure (PIP)	18
	8.4.3 High Peak End-Expiratory Pressure (PEEP)	18
	8.4.4 Low Peak End-Expiratory Pressure (PEEP)	18
	8.4.5 High Respiratory Rate (AC Mode Only)	19
	8.5 Fault Conditions	19
	8.5.1 Mechanical Failure	19
	8.5.2 Homing Failure	19
	0.0.2	
9	Risk Management	2 0
	9.1 Motor Calibration	20
	9.2 Inhale	20
	9.3 Exhale	21
	9.4 Alarms and Fault Detection	21
10	Verification and Validation	23
	10.1 Ventilation Testing	23
	10.2 Alarm Testing	23
	10.2.1 High PIP Alarm	23
	10.2.2 Low PIP Alarm	23
	10.2.3 High PEEP Alarm	24
	10.2.4 Low PEEP Alarm	24
	10.2.5 High Respiratory Rate Alarm	24
	10.3 Verification of Risk Control Methods	25

	10.3.1 Mechanical Fault Detection	
	10.3.2 Watchdog Timer	25
	10.4 Anomalies	25
11	Maintenance	27
	11.1 Software Problem Identification	27
	11.2 Verification and Release of Modified Software	27
A	Software Flow Charts	28
В	Risk Assessment	35
\mathbf{C}	Software Change Request Tracking	4 4

1 Summary

This report outlines the Alberta E-Vent software design, development and testing that has been undertaken. The report is composed of four main parts:

- Sections 3 to 5 cover how the development of the software has been undertaken in accordance with the IEC 62304.2006 standard.
- Sections 6 to 9 describes the function and design of the software in detail.
- Section 10 covers verification and validation testing performed to check the performance of the software.
- Section 11 covers the proposed maintenance plan for continuing support of the Alberta E-Vent software.

2 Acronyms

AC Assist Control

 ${f BPM}$ Breaths per Minute

 ${\bf IT}$ Inspiratory Time

PEEP Positve End-Expiratory Pressure

PIP Peak Inspiratory Pressure

 ${f RR}$ Respiratory Rate

TP Trigger Pressure

 \mathbf{TV} Tidal Volume

VC Volume Control

3 Software Classification

The Alberta E-Vent has been designed as a emergency ventilation system which requires human supervision. The intent of the system is to offload the physical burden of manually running a bag-valve-mask setup while still utilizing the trained supervision of medical professional. Further, it is expected that the device will be used on patients capable of spontaneous breathing which requires the Assist Control Mode of ventilation.

The Alberta E-Vent utilizes an external mechanical relief valve to limit the maximum operating pressure of the ventilator. This valve prevents the ventilator from generating pressures that would cause severe harm to the patient. Further, the ventilator acts as an aid to patient's breathing but does not prevent them from spontaneous inhalation or exhalation during operation. The anticipated operating conditions of the ventilator, as detailed in the preceding paragraph, would mean that a software malfunction will not cause suffocation. The primary risks associated with a software failure relate to asynchronous breathing and the associated lung injury associated with this operating condition. This rationalization provides the justification for treating the software as Class B in accordance with IEC 62304.2006.

4 IEC 62304.2006 Overview

The Alberta E-Vent Software has designated Class B. See Section 3.

Ref.	Software Lifecycle Process	_	Class	S	Relevant Section
		A	В	C	
4.1.0	Quality Management Systems	X	X	X	See Section 5
4.2.0	Risk Management	X	X	X	See Section 9
4.3.0	Software safety classification	X	X	X	See Section 3
5.1	Software development planning				
5.1.1	Software Development Plan	X	X	X	N/A; See footnote 1
5.1.2	Software Development Plan mainte-	X	X	X	N/A; See footnote 1
	nance				
5.1.3	Software development plan reference	X	X	X	N/A; See footnote 1
	to system design and development				
5.1.4	Software development standard,			X	N/A; Class B software
	methods and tools planning				
5.1.5	Software integration and integration		X	X	N/A; See footnote 3
	testing planning				
5.1.6	Software verification planning	X	X	X	See Section 10
5.1.7	Software risk management planning	X	X	X	See Section 9
5.1.8	Documentation planning	X	X	X	N/A; See footnote 1
5.1.9	Software configuration management	X	X	X	N/A; See footnote 1
	planning				
5.1.10	Supporting Items to be controlled		X	X	See Section 5
5.1.11	Software configuration item con-		X	X	See Section 5
	trolled before verification				
5.2	Software requirements analysis				
5.2.1	Define and document software re-	X	X	X	See Section 7
	quirements from system require-				
	ments				
5.2.2	Software requirements content	X	X	X	See Section 7
5.2.3	Include risk control measures in soft-		X	X	See Section 7
	ware requirements				
5.2.4	Re-evaluate medical device risk	X	X	X	See Section 9
	analysis			1	
5.2.5	Update requirements	X	X	X	See Section 7
5.2.6	Verify software requirements task	X	X	X	See Section 10
5.3	Software architectural design				
5.3.1	Transform software requirements		X	X	See Section 8
	into an architecture				
5.3.2	Develop an architecture for the in-		X	X	See Section 8
F 0 0	terfaces of software items			1	77/A C C
5.3.3	Specify functional and performance		X	X	N/A; See footnote 2
F 0 4	requirements of SOUP item		37	37	NT / A CO C · · · · · · · · · · · · · · · · ·
5.3.4	Specify system hardware and soft-		X	X	N/A; See footnote 2
F 0 F	ware required by SOUP item			37	NI /A CI D C
5.3.5	Identify segregation necessary for			X	N/A; Class B software
	risk control				

5.3.6	Verify software architecture		X	X	N/A; See footnote 1
5.4	Software detailed design				
5.4.1	Subdivide software into software		X	X	N/A; See footnote 3
	units				, ,
5.4.2	Develop detailed design for each			X	N/A; Class B software
	software unit				, ,
5.4.3	Develop detailed design for inter-			X	N/A; Class B software
	faces				
5.4.4	Verify detailed design task			X	N/A; Class B software
5.5	Software unit implementation				
5.5.1	Implement each software unit	X	X	X	N/A; See footnote 3
5.5.2	Establish software unit verification		X	X	N/A; See footnote 3
	process				' '
5.5.3	Software unit acceptance criteria		X	X	N/A; See footnote 3
5.5.4	Additional software unit acceptance			X	N/A; Class B software
	criteria				' '
5.5.5	Software unit verification		X	X	N/A; See footnote 3
5.6	Software Integration Testing				
5.6.1	Integrate software units		X	X	N/A; See footnote 3
5.6.2	Verify software integration		X	X	N/A; See footnote 3
5.6.3	Software integration testing		X	X	N/A; See footnote 3
5.6.4	Software integration testing content		X	X	N/A; See footnote 3
5.6.5	Evaluate software integration test		X	X	N/A; See footnote 3
0.0.0	procedures			11	11,11, 200 10011000 0
5.6.6	Conduct regression tests		X	X	N/A; See footnote 3
5.6.7	Integration test record contents		X	X	N/A; See footnote 3
5.6.8	Use software problem resolution		X	X	N/A; See footnote 3
0.0.0	process			11	11,11, 200 10011000 0
5.7	Software system testing				
5.7.1	Establish tests for software require-	X	X	X	See Section 10
V.,	ments				
5.7.2	Use software problem resolution	X	X	X	See Section 10
	process				
5.7.3	Retest after changes	X	X	X	See Section 10
5.7.4	Evaluate software system testing	X	X	X	See Section 10
5.7.5	Software system test record contents	X	X	X	See Section 10
5.8	Software release				
5.8.1	Ensure software verification is com-	X	X	X	See Section 10
	plete				
5.8.2	Document known residual anoma-	X	X	X	See Section 10.4
	lies				
5.8.3	Evaluate known residual anomalies		X	X	See Section 10.4
5.8.4	Document released versions	X	X	X	Addressed by this doc-
					ument in its entirety
5.8.5	Document how released software		X	X	Addressed by this doc-
0.0.0					
0.0.0	was created				ument in its entirety
5.8.6	was created Ensure activities and tasks are com-		X	X	ument in its entirety Addressed by this doc-
			X	X	Addressed by this document in its entirety

5.8.8	Assure reliable delivery of released software	X	X	X	See Section 5
6	Software maintenance process				
6.1	_	X	X	X	See Section 11; See
	Establish software maintenance plan	Λ	Λ	Λ 	footnote 4
6.2	Problem and Modification				
6.2.1	Document and evaluate feedback	X	X	X	See Section 11; See footnote 4
6.2.1.1	Monitor feedback	X	X	X	See Section 11; See footnote 4
6.2.1.2	Document and evaluate feedback	X	X	X	See Section 11; See footnote 4
6.2.1.3	Evaluate problem report's affects on safety	X	X	X	See Section 11; See footnote 4
6.2.2	Use software problem resolution process	X	X	X	See Section 11; See footnote 4
6.2.3	Analyze change requests	X	X	X	See Section 11; See footnote 4
6.2.4	Change request approval	X	X	X	See Section 11; See footnote 4
6.2.5	Communicate to users and regulators	X	X	X	See Section 11; See footnote 4
6.3	Modification Implementation				
6.3.1	Use established process to implement modification	X	X	X	See Section 11; See footnote 4
6.3.2	Re-release modified software system	X	X	X	See Section 11; See footnote 4
7	Software risk management process				
7.1.1	Identify software items that could contribute to a hazardous situation		X	X	See Section 9
7.1.2	Identify potential causes of contribution to a hazardous situation		X	X	See Section 9
7.1.3	Review published SOUP anomaly lists		X	X	See Section 7.2
7.1.4	Document potential causes		X	X	See Section 9
7.2	Risk control measures				
7.2.1	Define Risk control measures		X	X	See Section 9
7.2.2	Risk control measures implemented in software		X	X	See Section 9
7.3	Verification of Risk control				
	measures				
7.3.1	Verify Risk control measures		X	X	See Section 10.3
7.3.3	Document traceability		X	X	Addressed by this doc- ument in its entirety
7.4	Risk management of software changes				
7.4.1	Analyze changes to medical device software with respect to safety	X	X	X	See Section 11; See footnote 4

7.4.2	Analyze impact software changes on existing risk control measures		X	X	See Section 11; See footnote 4
7.4.3	Perform risk management activities based on analyses		X	X	See Section 11; See footnote 4
8	Software configuration manage-				
	ment Process				
8.1.1	Establish means to identify configu-	X	X	X	See Section 7.2
0.4.0	ration items	77	37	177	
8.1.2	Identify SOUP	X	X	X	See Section 7.2
8.1.3	Identify system configuration docu-	X	X	X	See Section 7
8.2	mentation				
	Change control	37	37	37	0 0 1 11 0
8.2.1	Approve Change requests	X	X	X	See Section 11; See footnote 4
8.2.2	Implement changes	X	X	X	See Section 11; See footnote 4
8.2.3	Verify changes	X	X	X	See Section 11; See footnote 4
8.2.4	Provide means for traceability of change	X	X	X	See Section 11; See footnote 4
8.3	Configuration status accounting				
8.3.1	Configuration status accounting task	X	X	X	See Section 11; See footnote 4
9	Software problem resolution Process				
9.1	Prepare problem reports	X	X	X	See Section 11; See footnote 4
9.2	Investigate the problem	X	X	X	See Section 11; See footnote 4
9.3	Advise relevant parties	X	X	X	See Section 11; See footnote 4
9.4	Use change control process	X	X	X	See Section 11; See footnote 4
9.5	Maintain records	X	X	X	See Section 11; See footnote 4
9.6	Analyze problems for trends	X	X	X	See Section 11; See footnote 4
9.7	Verify software problem resolution	X	X	X	See Section 11; See footnote 4
9.8	Test documentation contents	X	X	X	See Section 11; See footnote 4

1. The development of the Alberta E-Vent occurred over 1-month period to respond to the immediate need for emergency ventilation systems for use in the COVID-19 pandemic. The rapid development schedule meant that not all aspects of the IEC 62304 software development criteria could be followed. The Alberta E-Vent hardware and software was developed using an agile development procedure with a small team. The focus of the development procedure has been to iterate quickly, solicit clinician feedback, and implement requested changes.

- 2. Software of Unknown Pedigree (SOUP) has been avoided where possible, however, the software developed utilizes the Arduino suite of IDE, compiler, and libraries. The use of an a widely available platform intended for rapid development, like Arduino, was necessitated by the short development timelines associated with this project. A selection of additional open-source libraries not associated with the Arduino suite have been used when necessary. Full details of the the SOUP utilized in the Alberta E-Vent is given in Section 7.2 of this document. Risks associated with using SOUP has been reduced by extensively testing the full ventilator to ensure it functions as expected in reliable manner.
- 3. The software developed for the Alberta E-Vent is relatively compact (less than 10k lines). As such, the entire software suite required to operate the ventilator has been treated as a single unit. The software has been developed and tested as a single unit. The small size of the code base enabled this type of testing to be effective for debugging and verification testing.
- 4. Items related to ongoing maintenance of the software are not addressed in detail by the current set of documents. A brief overview of the maintenance polices to be employed is given in Section 11. The intent of the current set of documents is to outline the software development procedure.

5 Quality Management

Quality management of Alberta E-Vent software is paramount to ensuring that all software delivered with the ventilator is of high-quality. Accomplishing this outcome relies on a number of important components:

- Documented software design and risk analysis that ensures the ventilator will operate in a safe manner under the foreseeable operating conditions
- Rigorous verification and validation testing
- Revision control processes that ensure documentation and consistent published software quality

This document provides a summary of the steps that have been taken to fulfill the requirements of the listed components. Software specifications and functionality documentation is provided in Sections 6 through 8. The combination of these sections provides a clear outline of the purpose and scope of the software utilized by the Alberta E-Vent. A failure mode and effects analysis is provided in Section 9 and outlines the strategies that have been implemented to minimize the risk of software and hardware related failures. A complete summary of the verification and validation testing that was conducted in collaboration with a variety of medical professional, including RRTs and MDs, is provided in Section 10. Finally, the revision control processes to be used during the maintenance period of this software are outlined in Section 11. Note that the primary intent of this document is to cover the initial development and testing of the Alberta E-Vent software and the maintenance plan outlined herein is a high-level overview only. The 1-month long time frame for the development of the software has necessitated that a fully detailed software support and maintenance plan will need to be developed at a later date.

6 Functionality Overview

The Alberta E-Vent is a positive displacement ventilator which uses feedback control to deliver a set volume of air/oxygen to a patient. The software supports two modes of ventilation:

- Assist Control (AC) Mode
- Volume Control (VC) Mode

Volume Control mode is the most basic mode offered by the ventilator. When VC mode is selected, the ventilator delivers breaths at a set rate and volume which are defined by the following properties:

- 1. Tidal Volume the total volume delivered to the patient during inspirations
- 2. Respiratory Rate the number of breaths delivered per minute
- 3. Inspiratory Time the duration, in seconds, over which the inhalation portion of the breath is delivered

These three settings fully define the behavior of the ventilator. Note that the expiratory time and corresponding inhalation:exhalation (I:E) ratio are implicitly set by these three parameters and as such, neither exhale time or I:E ratio are offered as user adjustable settings. Full details on the operation of VC Mode are given in Section 8.3.

In Assist Control (AC) Mode, the ventilator will respond to patient triggered-breaths in addition to delivering the base-line ventilation rate set by the respiratory therapist. A patient-triggered breath occurs when the breathing circuit pressure drops by a set amount below the PEEP pressure. This set amount is user adjustable and is referred to as the trigger pressure. Note that the trigger pressure is always taken to be relative to the measure PEEP pressure and should not be considered an absolute pressure. Full details on the operation of AV Mode are given in Section 8.2.

7 Software Specifications

This section outlines the performance of the ventilator software including supported ventilation modes, user adjustable parameters, and built in system alarms and checks. Verification and validation of these specifications are provided in Section 10.

7.1 Hardware

The current software has been developed and tested with the Arduino MEGA 2560 microcontroller.

Microcontroller: Arudino MEGA 2560 R3

Clock Speed: 16 MHz

SRAM: 8 kB

Flash Memory: 256 kB

7.2 Software of Unknown Pedigree (SOUP)

The following libraries have been used in the Alberta E-Vent Software:

Table 2: Software of Unknown Pedigree used by Alberta E-Vent

Name	Publisher	Purpose
RoboClaw	Basic Micro ¹	Used for communication with the RoboClaw Solo
		30A motor controller
LiquidCrystal	Arduino LLC ²	Used for display of parameters and alarms on the
		ventilator LCD screens
elapsedMillis	Paul Stoffregen ³	Used for timing
Encoder	Paul Stoffregen ⁴	Used for user interface rotary encoder
SBWire	Steve Bian ⁵	Used for I2C communication with pressure sensor

^{1.} https://github.com/basicmicro/roboclaw_arduino_library

7.2.1 Published Anomaly Lists for SOUP

Published anomaly lists are not available for many of the open-source software libraries used. As such, verification of these libraries has relied on testing specific to the Alberta E-Vent to ensure that the functionality expected is delivered over the full range of ventilator operating conditions. Further details on the verification and validation testing performed for the ventilator can be found in Section 10.

7.3 Supported Modes

The ventilator software supports the following features and specifications:

- 1. Assist Control Mode
- 2. Volume Control Mode

^{2.} https://github.com/arduino-libraries/LiquidCrystal

^{3.} https://github.com/pfeerick/elapsedMillis

^{4.} https://github.com/PaulStoffregen/Encoder

^{5.} https://github.com/freespace/SBWire

7.4 Adjustable Ventilation Parameters

Parameter	Range	Increment	Default
Tidal Volume	40-100%*	1%	50%
Respiratory Rate	5-30 BPM	1 BPM	16 BPM
Inspiration Time	0.5-3.0 s	0.1 s	1.0 s
Trigger Pressure**	$2-5 \text{ cm H}_2\text{O}$	$1 \text{ cm H}_2\text{O}$	$3 \text{ cm H}_2\text{O}$

^{*} Corresponds to a tidal volume range of approximately 400-800 milliliters

7.5 Alarms and Fault Detection

Alarm	Range	Increment	Default
High PIP	$10-70 \text{ cm H}_2\text{O}$	$1 \text{ cm H}_2\text{O}$	$40 \text{ cm H}_2\text{O}$
Low PIP	$0-40 \text{ cm H}_2\text{O}$	$1 \text{ cm H}_2\text{O}$	$5 \text{ cm H}_2\text{O}$
High PEEP	$5-35 \text{ cm H}_2\text{O}$	$1 \text{ cm H}_2\text{O}$	$20 \text{ cm H}_2\text{O}$
Low PEEP	$1-15 \text{ cm H}_2\text{O}$	$1 \text{ cm H}_2\text{O}$	$3 \text{ cm H}_2\text{O}$
High Respiratory Rate*	15-35 BPM	1 BPM	20 BPM
Mechanical Failure	N/A	N/A	N/A
Homing Failure	N/A	N/A	N/A

^{*} Only applies during AC Mode

7.6 Software and Compiler Versions

All verification and validation of the Alberta E-Vent software has been carried out using the following versions and tools:

IDE/Compiler: Arudino IDE Version 1.8.12Alberta E-Vent Software: Version 042920

7.7 Software Repository

Software revisions have been tracked using GitHub. The automated revision tracking associated with this platform was critical for the fast-paced development style used. A full development revision history can be viewed at the repository URL.

Software Repository: https://github.com/colin-hill/Calgary_E_Vent

^{**} Only applies during AC Mode

8 Architecture Description

8.1 Startup and Calibration

Upon power-up, the ventilator LCD screens will display the Albert E-Vent name and the software version for 2-seconds. The ventilator will then proceed into a calibration procedure:

- Arms will move outwards (away from the bag) until a limit switch is reached. An audible click will be heard when the limit switch is depressed by the arms.
- Arms will stop momentarily and then begin to move inwards towards the edge of the bag. They should stop just at the edge, or in slight contact, with the bag. The ventilator will stop in this position for approximately 1-second before transitioning into ventilation.
- This location at the edge of the bag is referred to as the ventilator's zero point.

The full state flow diagram for the motor calibration procedure is provided in Appendix A.

8.2 Assist Control Mode

Assist Control Mode is characterized primarily by the ability to detect patient-triggered breaths. When set to AC Mode, the ventilator will adhere to the following procedure:

- A waiting period occurs in which the ventilator monitors the breathing circuit for a drop in pressure indicative of the patient demanding a breath.
- If this patient trigger is detected, or a sufficient period of time passes such that a breath is required to maintain the baseline respiratory setpoint, the ventilator delivers a breath at the set tidal volume and inspiration time.
- After completing the inhale, the motor arms retract to the zero point location. This retraction period occurs over 20% of the nominal expiration time to allow for the arms to be sufficiently positioned to deliver another breath before the end of the nominal expiration period. Upon returning to the zero point, the ventilator cycle back to the initial waiting period.

The full state flow diagram for AC Mode operation can be found in Appendix A.

8.3 Volume Control Mode

Volume Control mode functions identically to the assist control mode except that patient triggers are not monitored for.

- The ventilator delivers a breath at the set tidal volume and inspiration time.
- The motor arms retract to the zero point location and pause for the duration of the nominal expiration period (determined based on the inspiration time and respiratory rate).
- Upon pausing for the required expiration time period, the cycle restarts and the ventilator delivers another breath.

The full state flow diagram for VC Mode operation can be found in Appendix A.

8.4 Alarm Conditions

Alarm conditions result in an audible (LED) and visual (piezoelectric buzzer) alert. Additionally, the alarm LCD screen displays the currently triggered alarm. If the alarm condition is not triggered on two subsequent breaths, the alarm auto-resets and deactivates the visual, audio and LCD indicators. The exception to this auto-reset feature are the mechanical fault and homing timeout alarms which require a motor calibration or power cycle respectively in order to reset.

An alarm silence button mutes all active alarms for a period of 2-minutes. If a new alarm occurs during this period the audio alert returns and any subsequent pushes of the alarm silence button will silence all active alarms for an additional two-minutes.

Additional details on the functioning of the alarms is provided by the state flow diagrams in Appendix A.

8.4.1 High Peak Inspiratory Pressure (PIP)

The PIP is measured at all times when the motor arms are moving inwards to deliver a breath. If the pressure in the breathing circuit exceeds the high PIP alarm set-point, the breath is immediately aborted. During a breath abort, the motor arms are commanded to stop and immediately move outwards to zero point at the edge of the bag. A high PIP alarm may be triggered at any points during the inhale phase, including the plateau pressure pause that occurs at the top of the breath. After aborting the breath, ventilation will continue with additional high PIP alarms triggering additional aborted breaths. After two consecutive breaths that do not trigger the alarm, the alarm is auto-reset.

8.4.2 Low Peak Inspiratory Pressure (PIP)

The low PIP condition is checked immediately before the pause phase at the top of the breath. This period is where the highest inspiratory pressure is found and if the measured value falls below the low PIP alarm set-point, the alarm will be triggered. Ventilation continues as normal under this alarm but operator attention is required since a persistent low PIP alarm can be indicative of a leak or disconnection in the breathing circuit. After two consecutive breaths that do not trigger the alarm, the alarm is auto-reset.

8.4.3 High Peak End-Expiratory Pressure (PEEP)

The PEEP pressure is measured at either the end of the motor return period (AC Mode) or after the nominal exhalation time (VC Mode). The measured PEEP value is then compared against the high PEEP alarm set-point. If the measured PEEP pressure exceeds the high PEEP alarm set-point, the alarm is activated. After two consecutive breaths that do not trigger the alarm, the alarm is auto-reset.

8.4.4 Low Peak End-Expiratory Pressure (PEEP)

The PEEP pressure is measured at either the end of the motor return period (AC Mode) or after the nominal exhalation time (VC Mode). The measured PEEP value is then compared against the low PEEP alarm set-point. If the measured PEEP pressure is less than the low PEEP alarm set-point, the alarm is activated. After two consecutive breaths that do not trigger the alarm, the alarm is auto-reset. Similar to the low PIP alarm, the low PEEP alarm can be indicative of a leak or disconnection.

8.4.5 High Respiratory Rate (AC Mode Only)

The respiratory rate is calculated during AC mode to account for breaths that are spontaneously triggered by the patient in addition to breaths delivered by the baseline rate set on the ventilator. A new average respiratory rate is calculated every 5-breaths. If the respiration rate calculated during this time exceeds the high respiratory alarm set-point, the alarm will be triggered. If the next 5-breaths result in a calculated respiratory rate below the set-point, the alarm is auto-reset.

8.5 Fault Conditions

Fault conditions require a departure from ventilation in order to correct. There are two fault conditions that are monitored for by the software.

8.5.1 Mechanical Failure

A mechanical failure occurs when the commanded motor position is not reached in the allocated time. Such a failure can occur for a number of reasons such as:

- Faulty wiring
- Encoder failure
- Mechanical obstructions preventing arm motion
- Motor controller failure

If a mechanical failure condition is detected, ventilation is stopped and the motor attempts to recalibrate. If the calibration is successful, ventilation will continue. The software keeps and internal count of the number of mechanical failures that have occurred. In the event that two mechanical failure conditions occur, the ventilator immediately proceeds to the homing failure alarm which requires a full system restart to resolve.

8.5.2 Homing Failure

A homing failure alarm will occur if two mechanical failure conditions are detected during the operation of the ventilator, or if the system times out while waiting for a limit switch activation during calibration. Either of these scenarios will activate the visual and audio annunciation of the alarm and display a message on the LCD requiring the operator to power cycle the device.

9 Risk Management

The ventilator software is composed of a number of discrete states (See Appendix A for further details). Failure modes in each of these states have been analyzed and control measures, either external or internal to the software, have been added to mitigate risk.

9.1 Motor Calibration

Occurs at power-up and after the detection of a mechanical fault. See Section 8.1 for further details. This section examines the possible failure modes of the motor calibration phase and identifies the risk control measures that have been implemented to reduce the risk.

Table 3: Motor Calibration Phase Risk Controls

Process Failure	Effect on Patient	ation Phase Risk Controls Possible Cause	Control
Stuck in Prehome		Limit switch stuck	Homing timeout
(outward movement	Ventilation does	open	
not stopped)	not start	Wiring fault	Homing timeout
not stopped)		Mechanical fault	Homing timeout
		Hardware fault	None
		Software fault	None
		Motor wiring fault	Homing timeout
Stuck in Prehome (no	Ventilation does	Mechanical fault	Homing timeout
outward motion)	not start	Hardware fault	None
		Software fault	None
Stuck in Zeroing	Ventilation does	Encoder fault	Motor position check
(continuous inward	not start	Hardware fault	None
motion)	not start	Software fault	None
Stuck in homed		Wiring fault	Motor position check
position (no inward	Ventilation does	Mechanical fault	Motor position check
motion)	not start	Hardware fault	None
motion)		Software fault	None
Post-home position		Encoder fault	Motor position check;
incorrect (not	Tidal volume		visual inspection
touching bag)	setting inaccurate	Mechanical fault	Motor position check
touching bag)		Hardware fault	Visual inspection
		Software fault	Visual inspection
Post-home position		Encoder fault	Motor position check;
incorrect ()inwards of	Tidal volume		visual inspection
bag edge)	setting inaccurate	Mechanical fault	Motor position check
bag euge)		Hardware fault	Visual inspection
		Software fault	Visual inspection

9.2 Inhale

Both the AC and VC Modes of operation include a inhale phase. Refer to Sections 8.2 and 8.3 for further details. This section examines the possible failure modes of the inhale phase and identifies the risk control measures that have been implemented to reduce the risk.

Table 4: Inhale Phase Risk Controls

Process Failure	Effect on Patient	Possible Cause	Control
		Timer calculation	Code review; limit run
		overflow	time to 14-days
Stuck in inhale (no	Ventilation	Timer not working	watchdog timer
motion)	interrupted	Wiring fault	Motor position check
		Encoder fault	Motor position check
		Mechanical fault	Low PIP alarm
		Software fault	None
Inhale duration		Embedded timer runs	High PIP alarm
shorter (due to	Higher PIP	fast	
timing)		Motor controller fault	High PIP alarm
		Motor too fast due to	PIP relief valve
		software fault	
Inhale duration shorter	Reduced tidal vol-	Motor stops before de-	Motor position check
(due to position)	ume	sired position	
Inhale duration longer	Lower PIP; higher	Embedded timer runs	Watchdog timer
(due to timing)	PEEP	slow	
(dde to tilling)		Motor controller fault	High PEEP alarm
		Software fault	PEEP valve
Inhale duration longer	Tidal volume set-	Motor exceeds desired	Motor position check
(due to position)	ting inaccurate	position	
		Motor fault	Motor position check
	Ventilation	Wiring fault	Motor position check
Other inhale failures	interrupted	Mechanical fault	Motor position check
	morrapica	Encoder fault	PIP and PEEP alarms
		Bag failure	PIP and PEEP alarms

9.3 Exhale

Both the AC and VC Modes of operation include a exhale phase. Refer to Sections 8.2 and 8.3 for further details. This section examines the possible failure modes of the exhale phase and identifies the risk control measures that have been implemented to reduce the risk.

9.4 Alarms and Fault Detection

The ventilator includes a number of alarms. Refer to Sections 8.4 and 8.5 for further details. This section examines the possible failure modes these alarms and identifies the risk control measures that have been implemented to reduce the risk.

Table 5: Exhale Phase Risk Controls

Process Failure	Effect on Patient	Possible Cause	Control
		Timer calculation	Code review; limit run-
		overflow	time to 14-days
Stuck in exhale (no	Ventilation	Timer not working	watchdog timer
motion)	interrupted	Wiring fault	Motor position check
		Encoder fault	Motor position check
		Mechanical fault	High PEEP alarm
		Software fault	None
Exhale duration	Asynchronous	Embedded timer runs	High PEEP alarm
shorter (due to	breathing	fast	
position)		Motor controller fault	Motor position check
		Software fault	High PEEP alarm
Exhale duration	No effect	Software or controller	None
shorter (due to timing)		fault	
Exhale duration	Inaccurate tidal	Mechanical fault	Motor position check
longer (due to	volume on next	Motor controller fault	Motor position check
position)	breath	Software fault (arms	Visual inspection re-
		too wide)	quired
Exhale duration longer	Inaccurate tidal	Embedded timer runs	Watchdog timer
(due to timing)	volume on next	slow	
	breath		
		Motor fault	Motor position check
Other exhale failures	Ventilation	Wiring fault	Motor position check
Other exhale landres	interrupted	Mechanical fault	Motor position check
		Encoder fault	Visual inspection re-
			quired

Table 6: Alarm and Fault Detection Risk Controls

Alarm Failure	Effect on Patient	Possible Cause	Control
Mechanism failure not	Inaccurate tidal	Mechanical fault af-	Visual inspection re-
detected	volume and/or	fecting arm motion but	quired
	inspiration time	not the encoder read-	
		ing	
High PIP alarm condi-	Risk of barotrauma	Faulty pressure sensor	Mechanical high pres-
tion not detected			sure relief valve
Low PIP alarm condi-	Insufficient ventila-	Faulty pressure sensor	None (blood gases
tion not detected	tion		monitoring)
High PEEP alarm con-	Persistent occur-	Faulty pressure sensor	Mechanical PEEP
dition not detected	rence could lead to		valve
	pnemeauthorax		
Low PEEP alarm con-	Collapse of patient	Faulty pressure sensor	Mechanical PEEP
dition not detected	lungs		valve
High respiratory rate	Failure to alert RT	Software fault	None
not detected	of increased respi-		
	ratory rate		

10 Verification and Validation

All testing was conducted using an ASL 5000 servo-lung under the direction of an experienced respiratory therapist.

10.1 Ventilation Testing

Full details on testing of the ventilator settings and accuracy can be found in the testing documentation external to this document.

10.2 Alarm Testing

A summary of the alarm testing that was conducted is presented here. External documentation of the testing results should also be considered in addition to this document.

10.2.1 High PIP Alarm

The high PIP alarm is of high importance for the safe operation of the software. As such, testing has been undertaken to characterize the peak pressure experienced by a patient under conditions that cause the ventilator to abort breaths. The inspiration time and tidal volumes were varied to result in different motor speeds and air flow rates in the system. A low-compliance patient was simulated using as ASL 5000 servo-lung. The high PIP and associated breath abort was set at 30 cm $\rm H_2O$. The ASL measured patient pressure was then tracked to ensure the high pressure alarm activated appropriately and the breath abort occurred fast enough to maintain the set maximum pressure.

Due to the safety critical nature of the high PIP alarm extensive testing was carried out at a variety of ventilating settings. Details on this testing can be found in the testing documentation external to this document.

10.2.2 Low PIP Alarm

The low PIP alarm can be used to detect breathing circuit disconnections or changes in patient condition. The low PIP alarm for software version 042920 by adjusting the tidal volume down from 100% until a low PIP alarm was triggered.

Table 7: Low PIP Alarm Test Results

Inspiration Time (s)	Tidal Volume $(\%)$	Measured Inspiration	Alarm Triggered
		Pressure* (cm H_2O)	
2.5	100	30.7	No
	90	26.7	No
	80	23.0	No
2.5	78	22.2	No
2.5	77	21.7	Yes
2.5	75	21.1	Yes
2.5	70	19.3	Yes
2.5 2.5 2.5 2.5 2.5	90 80 78 77 75	26.7 23.0 22.2 21.7 21.1	No No No Yes Yes

^{*}Measured pressures are average values you derived from three consecutive readings performed by the ASL 5000.

10.2.3 High PEEP Alarm

The high PEEP alarm was tested by setting the external PEEP valve at a fixed value and then adjusting the high PEEP alarm set point until an alarm condition occurred.

Table 8: High PEEP Alarm Test Results

PEEP Setpoint (cm	PEEP Alarm Set-	Measured PEEP* (cm	Alarm Triggered
$H_2O)$	point (cm H ₂ O)	$H_2O)$	
15	18	15.4	No
15	17	15.5	Yes
15	16	15.3	Yes
15	15	15.3	Yes
20	23	21.9	No
20	22	21.2	No
20	21	21.2	Yes
20	20	21.2	Yes

^{*}Measured pressures are average values you derived from three consecutive readings performed by the ASL 5000.

10.2.4 Low PEEP Alarm

The low PEEP alarm was tested by setting the external PEEP valve at a fixed value and then adjusting the low PEEP alarm set point until an alarm condition occurred.

Table 9: Low PEEP Alarm Test Results

PEEP Setpoint (cm	PEEP Alarm Set-	Measured PEEP* (cm	Alarm Triggered
$H_2O)$	point (cm H ₂ O)	$H_2O)$	
5	3	4.7	No
5	4	4.7	No
5	5	4.7	Yes
5	6	4.7	Yes
8	6	7.8	No
8	7	7.8	No
8	8	7.8	Yes
8	9	7.8	Yes

^{*}Measured pressures are average values you derived from three consecutive readings performed by the ASL 5000.

10.2.5 High Respiratory Rate Alarm

The high respiratory rate alarm was tested by setting the respiratory rate at a fixed value and then adjusting the high respiratory rate alarm set point until an alarm condition occurred. It is important to note that the respiratory rate used for triggering the alarm is calculated independent of the set respiratory rate. This allows for the alarm to be triggered if either patient-triggers or user settings result in a respiratory rate exceeding the alarm setpoint.

Table 10: High Respiratory Rate Alarm Test Results

BPM Setpoint	High Respiratory	Measured Respiratory	Alarm Triggered
	Rate Alarm Set-	Rate* (cm H ₂ O)	
	point		
20	23	19.5	No
20	22	19.5	No
20	21	19.5	No
20	20	19.5	No
20	19	19.5	Yes
30	32	28.7	No
30	31	28.7	No
30	30	28.7	No
30	29	28.7	No
30	28	28.7	Yes

^{*}Measured pressures are average values you derived from three consecutive readings performed by the ASL 5000.

10.3 Verification of Risk Control Methods

Verification of the devices external to the software were evaluated. Results of this testing can be found in external documentation.

10.3.1 Mechanical Fault Detection

Testing of mechanical fault detection was tested on both the inhale and exhale portions of the code. **Inhale:** A incompressible object was position between the arms to prevent closure during inhale. This condition was immediately detected by the software and initiated a homing sequence. Following the homing sequence, ventilation was once again attempted. Upon encountering the incompressible object again, motor motion ceased and the device displayed an unrecoverable error requiring a power-cycle.

Exhale: The arms were mechanically held in place during the exhale phased to cause a motor position alarm. This alarm condition initiated a motor homing sequence. Following the homing sequence, ventilation was once again attempted. Further motor positions errors induced by restraining the mechanism arms resulted in an unrecoverable error message and required a power-cycle to restart.

10.3.2 Watchdog Timer

The watchdog timer reset was tested by artificially introducing a hard-coded delay into the code. The delay caused the watchdog timer to exceed its setpoint and the Arduino was successfully reset demonstrating the watchdog implementation.

10.4 Anomalies

Identified anomalies for software release version 042920.

Table 11: Software Anomalies for Version 042920

Anomaly Name	Anomaly Description
Mode switch breath stack-	When the mode is switched from AC Mode to VC Mode, the
ing	inhale wait period that is characteristic of AC Mode is no longer
	needed. As a result, transitioning from AC to VC mode results in
	a breath being given immediately after the exhale period of the
	last breath in AC mode.
Alarm handling latency	When alarms are triggered, additional algorithms are required to
	silence and debounce the alarms. This causes additional latency
	in the code and the delivered respiratory rate slows from the set-
	point by approximately 10%.

11 Maintenance

Software maintenance may become necessary if the released software has unacceptable anomalies identified. The risk of this occurring has been minimized through extensive testing seeking to verify and validate the performance of the ventilator. Further details on this testing can be found in Section 10. The aim of this section is to outline the procedure that will be followed if software modifications have to be made to the released software.

11.1 Software Problem Identification

Any software anomalies identified will need to undergo a multi-step process to determine the severity of the anomalies and the corrective action required.

- Evaluate the risk to patient health posed by the anomaly. Issues deemed high-risk must be rectified immediately.
- Identify the phase of the ventilator operation the anomaly is associated with. Refer to state flow diagrams as required.
- Correct the issue in the associated code based on the phase of operation identified above.
- Ensure the entire functionality of the ventilator has been maintained using a holistic test procedure.

11.2 Verification and Release of Modified Software

Any modification to the Alberta E-Vent software will required a complete repeat of the verification tests performed for the initial release. Only after a successful completition of this full suite of tests will any modified software be released. Revision tracking will be maintained by utilizing the following procedures:

- All software revisions will be stored in a repository such as GitHub
- Each software revision that is released will be assigned a unique software version code based on the date it is published (see section 5)
- Each software revision will require the following documentation:
 - Date of published revision
 - Unique revision identifier that is displayed at startup
 - Location of the revision in the code repository
 - Reason for revised code, including supporting documentation such as error reports or risk analysis documents
 - Summary of revised code, including supporting documentation such as state flow diagrams
 - Originator of the revised code
 - Independent checker of the revised code
 - Documentation of the verification testing procedure followed to confirm performacne of the ventilator is maintained after the modification have been implemented
 - Final approver of the revised code

An example template to be used for this revision and change tracking procedure is provided in Appendix C.

Appendix A Software Flow Charts

State flow diagrams summarize the behavior of the software. Each diagram provides an overview of a particular aspect of the program.

- 1. The overall program state flow diagram is shown in Fig. A.2.
- 2. The motor homing and zeroing (calibration) state flow diagram is shown in Fig. A.3.
- 3. The Assist control Mode state flow diagram is shown in Fig. A.4.
- 4. The Volume Control Mode state flow diagram is shown in Fig. A.5.

Note that the combined behavior of all of these state flow diagrams is necessary for a complete understanding of how the software interacts.

Figure A.1: Main Program Loop

Figure A.2: Overall Program State Flow Diagram

Figure A.3: Motor Zeroing State Flow Diagram

Figure A.4: Assist Control Mode State Flow Diagram

Figure A.5: Volume Control Mode State Flow Diagram

Figure A.6: Alarm Handler

Appendix B Risk Assessment

The figures contained in this section outline the overall risk assessment of the ventilator system. Not all of the analysis in this section pertains to the software aspect of the ventilator. For an examination of the software-specific risk mitigation implemented refer to Section 9 of this document. This appendix provides the following Figures:

- Figure B.1 provides the risk matrix utilized in evaluation of the risk associated with the ventilator system. The risk matrix employed is based on the ISO 14971 standard.
- Figures B.2 through B.4 outline the unmitigated risk associated with the ventilator.
- Figures B.5 through B.8 detail the risk mitigation steps that have been taken to minimize risk.

catastrophic property Life Threatening or Catastrophic Damage Permanent Injury or serious property Major/Critical Severity of Consequences/Harm damage Moderate/Serious Medically reversible injury or significant property damage property damage Limited Injury or Low property damage Minor injury or Insignificant/ Negligible Occurs with increased frequency Occurs the majority of times but Happens with almost every use More than one occurrence per Less than one occurrence per Likelihood year; isolated events year but still unlikely not every use Improbable of the device Occassional $(W < 10^{-5})$ $(W < 10^{-4})$ Remote $(W < 10^{-6})$ Probable $(W < 10^{-3})$ (W 10-3)

High Extreme

Medium

Figure B.1: Risk Matrix based on ISO 14971

Risk Description	Causes	Consequences	Consequence	Likelihood	Overall Unmitigated Risk
Patient circuit disconnect	- Accidental disconnection - Patient movement - Ventilator falls from table	 Ventilation Interrupted, patient not receiving adequate ventilation if left uncorrected long enough, can lead to possible injury or death 	Catastrophic	Occassional	Extreme
Bag rupture	- pre-existing damage - excessive wear and abrasion	 Ventilation Interrupted, patient not receiving adequate ventilation if left uncorrected long enough, can lead to possible injury or death 	Catastrophic	Remote	High
Bag no longer reinflating	 repetitive movement induced plastic fatigue age of bag (older bags tend to stiffen) 	 Ventilation Interrupted, patient not receiving adequate ventilation if left uncorrected long enough, can lead to possible injury or death 	Catastrophic	Occassional	Extreme
Oxygen leak or not enough O2	 incorrectly attached oxygen hose damaged hose to connection bag O2 reservoir damaged incorrect O2 blending 	- lower oxygen to patient than expected - possible fire hazard with potential spark from motor contacts	Critical	Remote	High
EMI emissions from motor and electronics interacting with surrounding equipment	- EMI emissions from the motor or electronics	- interference with life support systems could cause serious injury or death	Catastrophic	Remote	High
EMI interference with controller	- Possible - EMI emissions from the motor or patient not surrounding medical equipment causing ventilation a failure of the electronics - if left unc	 Possible ventilation Interrupted, patient not receiving adequate ventilation if left uncorrected long enough, can lead to possible injury or death 	Catastrophic	Remote	High
Power loss (unit has no backup battery installed)	- Damaged power supply - Loss of main power (and back-up power) - Accidental disconnection of cable - Accidental switched off (bumped into switch)	- Ventilation Interrupted, patient not receiving adequate ventilation - if left uncorrected long enough, can lead to possible injury or death	Catastrophic	Occassional	Extreme

Figure B.2: Unmitigated Risk Analysis

Risk Description	Causes	Consequences	Consequence	Likelihood	Overall Unmitigated Risk
Power loss (unit has no backup battery installed)	- Damaged power supply - Loss of main power (and back-up power) - Accidental disconnection of cable - Accidental switched off (bumped into switch)	 Ventilation Interrupted, patient not receiving adequate ventilation if left uncorrected long enough, can lead to possible injury or death 	Catastrophic	Occassional	Extreme
Gear drive damage	- erosion of the gears overtime will create slack. - foreign object gets into the gears or between arms	- lower tidal volume than expected - possible total mechanical failure, and inability to home arms, leading to ventilation interruption, patient not receiving adequate ventilation.	Serious	Occassional	High
Motor failure	 damage to motor (e.g. overheated, power surge, controller failure) defective motor encoder damaged 	- Ventilation Interrupted, patient not receiving adequate ventilation - if left uncorrected long enough, can lead to possible injury or death	Catastrophic	Remote	High
Control Box Electronics Failure (see also PFMEA) - Arduino Controller failure	 damage to card (e.g. overheated, power surge) defective component 	 Ventilation Interrupted, patient not receiving adequate ventilation if left uncorrected long enough, can lead to possible injury or death 	Catastrophic	Occassional	Extreme
Accidental change in settings	- tired/fatigued clinicians - hit the wrong button by accident	 worst case loss of ventilation or too high pressure if left uncorrected long enough, can lead to possible injury or death 	Catastrophic	Ocassional	Extreme
Pinch points	- loose clothing or hair can get caught in the gears / mechanism - fingers caught in the gears	- injury to fingers - serious injury in the case of hair or clothing	Serious	Remote	Medium

Figure B.3: Unmitigated Risk Analysis

Risk Description	Causes	Consequences	Consequence	Likelihood	Overall Unmitigated Risk
Bag displacement (bag moves off the holders)	- repetitive movement causing bag to move (not experienced during testing) - bag not placed properly or secured properly	- Ventilation Interrupted, patient not receiving adequate ventilation - if left uncorrected long enough, can lead to possible injury or death	Catastrophic	Remote	High
Mechanism falls from table or cart	- repetitive movement causing - Ventilation Interrupted, patier mechanism to move (not experienced receiving adequate ventilation during testing) - if left uncorrected long enoug read to possible injury or death	- Ventilation Interrupted, patient not receiving adequate ventilation - if left uncorrected long enough, can lead to possible injury or death	Catastrophic	Remote	High
High PIP Pressure	- Obstruction - Cough; - Deterioration of patient status - Pressure sensor failure - Plugged or damaged pressure sensing hose - Modified PEEP valve (precompressing spring) as a pressure relief valve fails	Exceeding H Alarm causes risk of barotrauma (lung damage)	Critical	Probable	Extreme
Software code failure - alarms fail to sound	- Error in software coding - Two Arduino libraries are not possible to review and may contain a bug (although they are widely used and estetd). - Device will not have been long term effect to catch buffer overflow and similar code issues	- Exceeding H Alarm causes risk of barotrauma (lung damage) - Ventilation Interrupted, patient not receiving adequate ventilation - if left uncorrected long enough, can lead to possible injury or death	Catastrophic	Probable	Extreme

Figure B.4: Unmitigated Risk Analysis

Risk Description	Risk Control Mitigations (RCM)	Consequence	Likelihood	Residual Risk	Residual Risk Comments and Recommendations
Patient circuit disconnect	Pressure sensor identifies loss of pressure; Alarm will sound and light. Close supervision is advised and convert to manual BVM	Catastrophic	Remote	High	No further risk reduction with device, ALARP. recommend clinical procedures to prevent patients from disconnecting. Likely the same with more advanced ventilators. See pressure sensor failure risk
Bag rupture	Pressure sensor identifies loss of pressure, Alarm will sound and light. Close supervision is advised and convert to manual BVM User Manual procedure of visually inspecting bag on a regular basis, to ensure bag is not damaged. Unlikely to occur quickly	Catastrophic	Improbable	Medium	No further risk reduction necessary, but must enable controls and procedures
Bag no longer reinflating	Pressure sensor identifies loss of pressure; Alarm will sound and light. close supervision is advised and convert to manual BVM . User Manual procedure of visually inspecting bag on a regular basis, to ensure bag is not damaged. Unlikely to occur quickly	Catastrophic	Improbable	Medium	No further risk reduction necessary, but must enable controls and procedures
Oxygen leak or not enough O2	This risk is native to the manual resuscitation bag and is addressed by the bag instructions and existing hospital procedures and training. The bag is exposed and any leaked oxygen will dissipate Blood gases are measured and will show declining oxygen levels Hoser manual indicates that FiO2 will be manually sampled on a regular basis using hand held probe (hospital procedures)	Critical	Improbable	Medium	No further risk reduction necessary, but must enable controls and procedures

Figure B.5: Mitigated Risk Analysis

Risk Description	Risk Control Mitigations (RCM)	Consequence	Likelihood	Residual Risk	Residual Risk Comments and Recommendations
EMI emissions from motor and electronics interacting with surrounding equipment	 Formal EMI testing conducted to ensure low emissions Electronics are contained in steel enclosure Low voltage system with a low motor load 	Catastrophic	Improbable	Medium	No further risk reduction necessary, but must enable controls and procedures If formal testing shows higher than acceptable emissions, consider a faraday cage on motor
EMI interference with controller	 Board traces have been minimized and grounded Controller is in a metal enclosure to shield from outside interference Close supervision is advised and convert to manual BVM 	Catastrophic	Improbable	Medium	No further risk reduction necessary, but must enable controls and procedures
Power loss (unit has no backup battery installed)	 Power loss alarm, which will sound for 30 seconds Power switch has a guard to avoid accidental bumping Power supply is of medical grade and tested in manufacturing for defects Close supervision is advised and convert to manual BVM Power loss alarm is part of user manual checks 	Catastrophic	improbable	Medium	No further risk reduction with the device, ensure procedures and supervision is in place to hear the alarm if further risk reduction is desired or plans to move patient on ventilator, consider use of an uninterruptible power supply (UPS) with an alarm
Gear drive damage	Mechanical failure alarm and/or homing failure alarm will sound and light, indicating damage If arms stop moving completely it can be easily seen visually from a distance Jer manual has a step to check arms for looseness, indicating gear slack (i.e. erosion) Close supervision is advised and convert to manual BVM	Serious	Remote	Medium	No further risk reduction necessary, but must enable controls and procedures
Motor failure	 System will not arrive at a desired position; Encoder will detect failure to reach position; Homing alarm will sound Close supervision is advised and convert to manual BVM 	Catastrophic	Improbable	Medium	No further risk reduction necessary, but must enable controls and procedures

Figure B.6: Mitigated Risk Analysis

Risk Description	Risk Control Mitigations (RCM)	Consequence	Likelihood	Residual Risk	Residual Risk Comments and Recommendations
Control Box Electronics Failure (see also PFMEA) - Arduino Controller failure	1. Power loss alarm (which requires Arduino to be functioning), which will sound for 30 seconds 2. Close supervision is advised and convert to manual BVM 3. Arduino controller will be tested during QA/QC testing 4. Power loss alarm is part of user manual checks	Catastrophic	Improbable	Medium	No further risk reduction necessary, but must enable controls and procedures
Accidental change in settings	Changing the setting is a three part step - 1, press to select parameter, 2, encoder dial to desired value on screen, 3, press to confirm - but does not affect a physical change until confirm button is pressed All controls will be clearly labeled and steps 1-2-3 are clear as well well	Catastrophic	Improbable	Medium	No further risk reduction necessary, but must enable controls and procedures
Pinch points	 Mechanism and gears are covered; Arms project through a slot User manual procedures Emergency Stop on the panel will be accessible to "hit the big red button" to stop the mechanism 	Serious	Improbable	Low	No further risk reduction necessary, but must enable controls and procedures, including tying back hair and no loose fitting clothing.
Pressure sensor and light and light Bag displacement (bag moves off the 2. close supervision holders) basis, to ensure bag basis, to ensure bag the elastic bands are and the supervision are basis.	 Pressure sensor identifies loss of pressure; Alarm will sound and light dose supervision is advised and convert to manual BVM User Manual procedure of visually inspecting bag on a regular basis, to ensure bag is not damaged. Unlikely to occur quickly elastic bands are used to secure the bag in place 	Catastrophic	Improbable	Medium	No further risk reduction necessary, but must enable controls and procedures
Mechanism falls from table or cart	Rubber feet are attached to the mechanism to prevent slippage. Alarms for Mechanical failure, low pressure, and potentially loss of power will all sound and light close supervision is advised and convert to manual BVM	Catastrophic	Improbable	Medium	No further risk reduction necessary, but must enable controls and procedures

Figure B.7: Mitigated Risk Analysis

Risk Description	Risk Control Mitigations (RCM)	Consequence	Likelihood	Residual Risk	Residual Risk Comments and Recommendations
High PIP Pressure	1. High PIP Alarm will sound, and auto reset with one complete breathing cycle with no over pressure 2. QAQQC on pressure sensor in manufacturing to ensure working 3. change out hoses with new patients, and inspect pressure 3. change out hoses with new patients, and inspect pressure 3. change out hoses with new patients, and inspect pressure 4. HME filter prevents plugging material from entering the pressure sensing lines 5. Pressure relief valve will protects over pressure. Each unit is tested and clearly marked to avoid confusion with standard PEEP valves. Spring ajust knob (lid) will be glued in place to prevent tampering with the spring compression.		Improbable	Medium	No further risk reduction necessary, but must enable controls and procedures
Software code failure - alarms fail to sound	1. Code is being verified and validated (however no long term testing is possible with short time line) using testing procedure to ensure accuracy and stability, including alarms 2. close supervision is advised and convert to manual BVM 3. We will do some long term operation once the production model catastrophic is in manufacturing to identify any issues before the units ship. 4. Arduino libraries are very common and have been user tested 5. if Anduino card crashes to the point requiring reboot, the alarm will sound		Improbable	Medium	With any software code, there can be errors, however the software will be verified and tested to reduce likelihood of failure. It is important that the devices be closely monitored, especially upon the first long term operation in a clinical setting. Any found code defects will be corrected with a recall and a code fix uploaded to the Arduino. There is an opening in the control panel case to insert a USB cable to update from a laptop.

Figure B.8: Mitigated Risk Analysis

Appendix C Software Change Request Tracking

The figures contained in this section are examples of the documentation that will used to track changes made to the Alberta E-Vent software. These records will be maintained as part of the software repository and will provide traceability for all modifications that are made to the software.

_		,	
Approver			
Test Protocol Followed			
Checker			
Originator			
Reason for Change Document # Summary of Changes Document # Originator Checker Test Protocol Followed Approver			
Reason for Change Document #			
Revision # Development Branch Name			
Revision #			
Date			

Figure C.1: Software Change Request Tracking