MOZA Projekt Wzmacniacz Kaskodowy 4 (wariant B)

Jakub Półtorak 22 maja 2022

Spis treści

1	Opis problemu	2
2	Sformułowanie matematyczne zadań optymalizacji	2
3	Wyznaczenie przybliżenia początkowego rozwiązania 3.1 Opis kodu	3
4	Metody rozwiązania numerycznego	4
5	Funckje celu i ograniczeń, skalowanie	5
6	Wykorzystane algorytmy 6.1 Interior Point	5 5
7	Porównanie punktu startowego, optymalnego i zbioru Pareto	5
8	Podsumowanie	5

Etap 1

1 Opis problemu

Zadanie polega na doborze wartości elementów wzmacniacza tak, aby uzyskać makymalnie duży iloczyn GBW. Na układ nałożono dodatkowe ograniczenia w postaci minimalnego wzmocnienia dla małych częstotliwości $k_{u0} > 10dB$ oraz minimalnej częstotliwości granicznej $f_g > 200MHz$ (rozumianej jako częstoliwość spadku o 3 dB względem k_{u0}).

2 Sformułowanie matematyczne zadań optymalizacji

Poszukiwane jest minimum funkcji celu:

$$\min_{x_1, \dots x_T} f(x)$$

p.o.

$$g_i(\mathbf{x}) \le 0$$
 $i = 1..n_q$

gdzie:

$$f(\mathbf{x}) = -(k_{u0} \cdot f_q)$$

 \mathbf{x} - wektor zmiennych optymalizowanych:

$$\mathbf{x} = \begin{bmatrix} REE1 & REE2 & RE & RC2 & RC3 & CEE & CG \end{bmatrix},$$

 k_{u0} - wzmocnienie dla małych częstoliwości, rozumiane jako wzmocnienia dla częstoltiwości 1 kHz.

 f_g - częstoliwość graniczna, rozumiana jako częstotliwość, dla której wzmocnienie spada o 3 dB względem $k_{u_0}({\bf x}).$

Parametry $k_{u0}(\mathbf{x})$ oraz $f_g(\mathbf{x})$ obliczane są w Matlabie na pdostawie surowych danych $(U_{out}^{AC}(x,f))$ zwaracnych przez symulator LTSpice.

Dodatkowo, w zadaniu pojawiają się ogarniczenia nieliniowe związane z wymaganiami projektowymi:

- $g_1(\mathbf{x}):-(\frac{k_{u0}(\mathbf{x})}{k_{u_{min}}}-1)<0$ Warunek minimalnego wzmocnienia, $k_{umin}=20dB$
- $g_2(\mathbf{x}):-(\frac{f_g(\mathbf{x})}{f_{g_{min}}}-1)<0$ Warunek minimalnej częstotliwości granicznej, $f_{gmin}=200MHz$
- $g_3(\mathbf{x}): b(\mathbf{x}) b_{max} < 0$ Ograniczenie podbicia charakterystyki, $b_{max} = 1dB$. Podbicie b rozumiane jest jako różnica między maksymalnym poziomem wzmocnienia a k_{u0} . Podbicie jest obliczane w Matlabie.

3 Wyznaczenie przybliżenia początkowego rozwiązania

Zgodnie z poleceniem zmodyfiokowano domyślne parametry tak, aby uzyskać rozwiąznie spełniające warunek minmalnej częstotliwości granicznej i wzmocnienia. Ostatecznie, po wybraniu wartości, wektor \mathbf{x} wygląda następująco:

$$\mathbf{x} = \begin{bmatrix} 5\Omega & 15\Omega & 320\Omega & 220\Omega & 200\Omega & 45p & 50p \end{bmatrix},$$

Wyniki w punkcie początkowym można zobaczyć na poniższym wykresie:

Rysunek 1: Charakterystyka układu w punkcie startowym.

Jak widać spełnione są warunki postawione w zadaniu (minimalna wartość wzmocnenia to 20 dB, przy źródle AC mającym 1V amplitudy).

Aby potwierdzić, że Matlab i Spice zwracją te same wyniki przeprowadzono symulację w LTSpice:

Rysunek 2: Charakterystyka układu w punkcie startowym.

3.1 Opis kodu

4 Metody rozwiązania numerycznego

Etap 2

- 5 Funckje celu i ograniczeń, skalowanie
- 6 Wykorzystane algorytmy
- 6.1 Interior Point

Jakość, zbieżność

6.2 Patternsearch

Jakość, zbieżność

- 7 Porównanie punktu startowego, optymalnego i zbioru Pareto
- 8 Podsumowanie
 - Czy zadania optymalizacji sformułwoano prawidłowo?
 - tak
 - Czy uzsykano widoczną poprawę właśności obiektu?
 - tak
 - Jaka jest złozoność obliczeniowa procesu optymalizacji?
 - hahahah

Wykresy w dużej rozdzielczości

Rysunek 3: Charakterystyka układu w punkcie startowym.

Rysunek 4: Charakterystyka układu w punkcie startowym (LTSpice).

Rysunek 5: Przebieg wartości funkcji celu.

Rysunek 6: Porównanie wyników w punkcie optymalnym i startowym.