TENEMOT N MONEDAS X, ... X, ORDENADAS MENOR A MAYOR

TENEROS QUE BUSCAR EL MINIMO DE MONEDAS

	0	1	2	3	4	5	6	7	8	М
0	0	∞	∞	∞	∞	∞	(O)	∞	∞	
2	0	∞	1	∞	2	_∞	3			
3	0	∞	1	1	2	2	2			
7	0	∞	1	1						

 $min\{cambio(i-1,j), cambio(i,j-X_k)+1\}$ $si X_i \le j$

くにつ		0	1	2	3	4	5	6	7	8	М
0	0	0	∞	∞	∞	∞	∞	∞	∞	∞	
1	2	0	∞	1	∞	2	∞	3	∞	4	
2	3	0	∞	1	1	2	2	2	3	3	
3	7	0	∞	1	1	2	2	2	1	3	

 $si(i {>} 1 {\wedge} t[i,j] {=} t[i {-} 1,j]) {\rightarrow} i {:} {=} i {-} 1$ $sino \rightarrow M[i]++; j:=j-X_i$

	0	1	2	3	4	5	6	7	8	М
0	0	∞	∞	∞	∞	∞	∞	∞	8	
2	0	∞	1	∞	2	∞	3	_∞	4	
3	0	_∞	1	1	2	2	2	3	3	2
7	0	∞	1	1	2	2	2	1	3	

 $si(i>1 \land t[i,j]=t[i-1,j]) \rightarrow i:=i-1$ $sino \rightarrow M[i]++; j:=j-X_i$

	0	1	2	3	4	5	6	7	8	М	
0	0	8	8≥	∞	∞	∞	8	∞	∞ +Λ		
2	O	8	1	8	2	∞ 	3	_∞	4	1	1
3	0	∞	1	1	2	2	2	3.5	3	2	1+1
7	0	∞	1	1	2	2	2	1	3		

```
C - CANTIDAD A LLEGAR
           9 - NUMERO DE MONEDAS DE ESE TIPO
                                                                                         0
                                                                                                  C
public static Res cambio(int[] v, int[] q, int C) {
    int n = v.length; // Obtiene la cantidad de tipos de monedas disponibles.
    int[][] NM = new int[n][C + 1]; // Crea una matriz para almacenar las soluciones.
    for (int i = 0; i < n; i++) { // Recorre los diferentes tipos de monedas disponibles.
       for (int c = 0; c <= C; c++) { // Recorre las cantidades desde 0 hasta C.
            if (i == 0 && (c % v[0] != 0 || c / v[0] > q[0])) { \rightarrow au SGR \infty
                // Verifica si estamos en el primer tipo de moneda y si la cantidad no es un múltiplo
                // de la denominación de la moneda o si supera la cantidad máxima permitida.
               NM[i][c] = Integer.MAX_VALUE / 2; // Establece un valor alto para evitar usar esta opción.
            } else if (i == 0) {
               NM[i][c] = c / v[0]; // Calcula la cantidad de monedas del primer tipo que se pueden usar.
            } else
                NM[i][c] = NM[i - 1][c]; // Inicializa con la opción de no usar el tipo de moneda actual.
                for (int k = 1; k \le Math.min(q[i], c / v[i]); k++) {
                    // Comprueba cuántas monedas del tipo actual se pueden usar.
                   NM[i][c] = Math.min(NM[i][c], NM[i - 1][c - v[i] * k] + k);
                   // Calcula el mínimo entre no usar el tipo actual y usarlo k veces.
```

0

DE MONEDAY DISTINTAS

V - CANTIDAD