Problem One: Designing Turing Machines

Here is one possible option:

This TM is based on the following recursive observation:

- The strings ε , 0, and 1 are palindromes.
- Any longer string is a palindrome iff it starts and ends with the same character and the string formed by removing those characters is a palindrome.

Notice how the TM uses constant storage to remember what the first character of the string is.

Problem Two: Nondeterministic Algorithms

Prove that if $L \in \mathbf{RE}$ and f is a computable function, then $f(L) \in \mathbf{RE}$. As the title of this problem suggests, you might want to build a nondeterministic Turing machine for f(L).

Theorem: If $L \in \mathbf{RE}$ and $f: \Sigma^* \to \Sigma^*$ is a computable function, then $f(L) \in \mathbf{RE}$.

Proof: Consider any $L \in \mathbf{RE}$ and any computable function f. This means that there is a recognizer R for L and a TM F that computes f.

Consider the following NTM *N*:

```
N = "On input w \in \Sigma^*:

Nondeterministically guess a string x \in \Sigma^*.

Using F as a subroutine, compute f(x).

If f(x) \neq w, reject.

Deterministically run R on x.

If R accepts x, accept.

If R rejects x, reject."
```

We prove that $\mathcal{L}(N) = f(L)$, from which we have that $f(L) \in \mathbf{RE}$. To see this, we will prove that $w \in f(L)$ iff there is some series of choices such that N accepts w. To see this, note that there is some choice of $x \in \Sigma^*$ such that N accepts w iff f(x) = w and R accepts x. Since R accepts x iff $x \in \mathcal{L}(R)$ and $\mathcal{L}(R) = L$, this means that N accepts w iff there is some choice of x such that f(x) = w and $x \in L$. Finally, note that there is some choice of x such that f(x) = w and $x \in L$ iff $w \in f(L)$. Thus N accepts w iff $w \in f(L)$, so $\mathcal{L}(N) = f(L)$, as required.

Problem Three: Unsolvable Problems

Consider the language $L = \{ \langle M, w, q \rangle \mid \text{TM } M \text{ does not enter state } q \text{ when run on string } w \}$. Prove that $L \notin \mathbf{RE}$ by showing if $L \in \mathbf{RE}$, then $L_D \in \mathbf{RE}$.

Theorem: $L \notin \mathbf{RE}$.

Proof: By contradiction; assume $L \in \mathbf{RE}$. Let R be a recognizer for L and consider the following TM H:

```
H = "On input \langle M \rangle:

Run R on \langle M, \langle M \rangle, q_{acc} \rangle, where q_{acc} is M's accepting state.

If R accepts \langle M, \langle M \rangle, q_{acc} \rangle, accept.

If R rejects \langle M, \langle M \rangle, q_{acc} \rangle, reject."
```

We claim that $\mathscr{L}(H) = L_D$. To see this, note that H accepts $\langle M, w \rangle$ iff R accepts $\langle M, \langle M \rangle, q_{acc} \rangle$. R accepts $\langle M, \langle M \rangle, q_{acc} \rangle$ iff M does not enter state q_{acc} when run on $\langle M \rangle$ iff M does not accept $\langle M \rangle$. Finally, M does not accept $\langle M \rangle$ iff $\langle M \rangle \in L_D$. Thus H accepts $\langle M \rangle$ iff $\langle M \rangle \in L_D$, so $\mathscr{L}(H) = L_D$.

Since H is a recognizer for L_D , we have $L_D \in \mathbf{RE}$. But this is impossible, since $L_D \notin \mathbf{RE}$. We have reached a contradiction, so our assumption was wrong. Thus $L \notin \mathbf{RE}$.