Painel / Meus cursos / SC26EL / 8-Representação de Sistemas em Espaço de Estados

/ Questionário sobre Representação de Sistemas em Espaço de Estados

Iniciado em	segunda, 8 nov 2021, 21:33
Estado	Finalizada
Concluída em	terça, 9 nov 2021, 18:12
Tempo	20 horas 38 minutos
empregado	
Notas	28,0/28,0
Avaliar	10,0 de um máximo de 10,0(100 %)

Questão **1**

Correto

Atingiu 10,0 de 10,0

Considere o circuito da figura abaixo onde u(t) representa uma fonte de corrente CC. Os valores dos componentes são L=1 mH, $C=100~\mu F$ e $R=1~\Omega$. Obtenha uma representação em espaço de estados para o sistema onde $x_1(t)=i_L(t)=y(t)$ e $x_2(t)=v_C(t)$. Considere 3 algarismos significativos nas respostas.

O sistema tem uma representação na forma:

$$\dot{x} = Ax + Bu$$

$$y = Cx$$

Os elementos a_{ij} da matriz $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ são:

$$a_{11} = 0$$

✓ ,
$$a_{12} = 1000$$

~

Os elementos b_{ij} da matriz $B = \left[egin{array}{c} b_{11} \ b_{21} \end{array}
ight]$ são:

$$b_{11} = 0$$

~

Os elementos c_{ij} da matriz $C = [c_{11} \quad c_{12}]$ são:

$$c_{11} = 1$$

~

Os polos do sistema, em ordem decrescente, são: $p_1 =$

~

Questão **2**

Correto

Atingiu 18,0 de 18,0

Considere o circuito da figura abaixo onde u(t) representa uma fonte de corrente CC. Os valores dos componentes são L=1 mH, C=100 μF e R=1 Ω . Considere 3 algarismos significativos nas respostas.

A função de transferência desses sistema é $G(s) = \frac{Y(s)}{U(s)} = \frac{I_L(s)}{U(s)} = \frac{Num(s)}{Den(s)}$

O polinômio do numerador de G(s) é Num(s) =

0

✓ s²+

0

✓ s+

10000000

~

O polinômio do denomidador de G(s) é Den(s) =

1

y s²+ 10000

✓ *s*+ 10000000

~

A partir da função de transferência, os polos do sistema, em ordem decrescente, são: $p_1 =$

-1127,017

✓ e **p**₂ = -8872,983

~

A partir da função de transferência G(s), considerando $x_1(t) = y(t)$ pode-se obter uma representação para o sistema em espaço de estados, isto é,

 $\dot{x} = Ax + Bu$

y = Cx

Os elementos a_{ij} da matriz $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ são:

 $a_{11} = 0$

✓ , a₁₂ =1

✓ , a₂₁ =
 -10000000

✓ e a₂₂ =-10000

~	

Os elementos b_{ij} da matriz $B = \begin{bmatrix} b_{11} \\ b_{21} \end{bmatrix}$ são:

$$b_{11} = 0$$

~

Os elementos c_{ij} da matriz $C = [c_{11} \quad c_{12}]$ são:

$$c_{11} = 1$$

~

 $oxed{A}$ partir da representação do sistema em espaço de estados, os polos do sistema, em ordem decrescente, são: $oldsymbol{p}_1=$

-1127,017

✓ e **p**₂ =

-8872,983

V

■ Script Python

Seguir para...

Aula 9 - Formas Canônicas e Transformações de Similaridade -