МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Тульский государственный университет»

Интернет-институт

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ

по дисциплине «Модели и методы анализа проектных решений 1» Семестр 6

Вариант 3

Выполнил: студент гр. ИБ262521-ф Артемов Александр Евгеньевич Проверил: канд. техн. наук, доц. Французова Юлия Вячеславовна

Лабораторная работа № 1.

Название работы: Анализ и решение задач линейного программирования.

Цели работы: Приобретение навыков анализа и решения задач линейного программирования.

Задание:

- 1. Решить задачу из примера геометрически. Для этого в осях x_1 и x_2 построить прямые ограничений и целевой функции.
- 2. Для заданного варианта задачи составить уравнения целевой функции и системы ограничений. Решить задачу численно симплекс методом.

Выполнение лабораторной работы.

Изучены теоретические сведения лабораторной работы и методические указания к выполнению работы.

1. Решение задачи из примера геометрически.

Условие задачи из примера:

Завод выпускает два вида узлов Y_1 и Y_2 системы управления, используя для этой цели два вида технологических линеек $T\mathcal{I}_1$ и $T\mathcal{I}_2$. На производство узла Y_1 на $T\mathcal{I}_1$ затрачивается 2 часа, а на $T\mathcal{I}_2 - 1$ час; на изготовление одного узла Y_2 затрачивается соответственно 1 и 2 часов. Завод может использовать $T\mathcal{I}_1$ в течение 10, а $T\mathcal{I}_2$ в течение 8 часов. Прибыль от реализации одного Y_1 , составляет 5, а от реализации одного $Y_2 - 4$ рублей. Определить количество x_1 узлов Y_1 и количество x_2 узлов Y_2 , которое необходимо выпустить заводу с тем, чтобы:

был полностью использован весь фонд времени двух технологических линеек;

завод получил максимальную прибыль.

Решение:

Представим условие задачи в табличном виде.

ттредетавии ј	enobile sugarin brace	VIII 11101/1 211AV.	
Технологическая	Затраты време	ени на единицу	Производственная
линейка	продукц	ии, н-час	мощность, н-час
	Узел Үі	Узел У2	
$T\mathcal{I}_I$	2	1	10
$T\mathcal{J}_2$	1	2	8
Прибыль от реализации ед.	5	4	

Из таблицы получаем целевую функцию $Z = 5x_1 + 4x_2$ и систему ограничений, где x_1 и x_2 больше θ :

$$\begin{cases} 2x_1 + x_2 = 10 \\ x_1 + 2x_2 = 8 \end{cases}$$

Выразим в ограничениях переменную x_2 и построим прямые в системе координат x_1 и x_2 :

$$\begin{cases} x_2 = 10 - 2x_1 \\ x_2 = 8 - x_1/2 \end{cases}$$

На данном графике выделена и заштрихована желтым цветом область допустимых значений x_1 и x_2 .

При перемещении графика целевой функции параллельно самому себе (т. е. увеличении параметра h) в области допустимых значений x_1 и x_2 окажется, что точка A является оптимальным решением задачи: $x_1 = 4$, $x_2 = 2$, $5x_1 + 4x_2 = 5 \times 4 + 4 \times 2 = 28$ рублей — максимальная прибыль завода в день.

Проверяя решение задачи при помощи пакета Maple получаем аналогичные значения:

Ответ: $x_1 = 4$, $x_2 = 2$, 28 рублей — максимальная прибыль завода.

2. Условие задачи.

Для перевозок груза на трёх линиях могут быть использованы суда трёх типов. Производительность судов при использовании их на различных линиях характеризуются данными, приведёнными в таблице. В ней же указаны общее время, в течение которого суда каждого типа находятся в эксплуатации, и минимально необходимые объёмы перевозок на каждой линии. Определить, какие суда, на какой линии и в течение какого времени следует использовать, чтобы обеспечить максимальную загрузку судов с учётом возможного времени их эксплуатации.

Тип судна		цительность линии онн-миль в		Общее время эксплуатации
	1	2	3	судов
1	8	14	11	300
2	6	15	13	300
3	12	12	4	300
Заданный объём перевозок (млн. тонн-миль)	3000	5400	3300	

Решение:

Пусть i = 1, 2, 3 — тип судна, а j = 1, 2, 3 — линия.

Производительность судов: p_{ij} — объём перевозок судна типа i на линии j за единицу времени. Время эксплуатации судов: T_i — общее время, в течение которого судно типа i может быть использовано. Минимальные объёмы перевозок: Q_j — минимальный объём перевозок, который необходимо обеспечить на линии j. Переменная x_{ij} — время, в течение которого судно типа i используется на линии j.

Цель — максимизировать общую загрузку судов, т. е.:

$$Z = \sum_{i=1}^{3} \sum_{j=1}^{3} p_{ij} \cdot x_{ij} \rightarrow max, \text{ откуда}$$

$$Z = 8x_1 + 14x_2 + 11x_3 + 6x_4 + 15x_5 + 13x_6 + 12x_7 + 12x_8 + 4x_9 \rightarrow max.$$
 Ограничения:

Суммарное время использования судна конкретного типа на всех линиях не должно превышать его общего времени эксплуатации, т.е. $\sum_{i=1}^{3} x_{ij} \le T_i$.

Суммарный объём перевозок на каждой линии должен быть не меньше минимально необходимого, т.е. $\sum_{i=1}^{3} p_{ij} \cdot x_{ij} \ge Q_j$. Так же помним про неотрицательность всех переменных x_{ij} . Получаем систему ограничений:

$$\begin{vmatrix} x_1 + x_2 + x_3 \le 300 \\ x_4 + x_5 + x_6 \le 300 \\ x_7 + x_8 + x_9 \le 300 \\ 8x_1 + 6x_4 + 12x_7 \ge 3000 \\ 14x_2 + 15x_5 + 12x_8 \ge 5400 \\ 11x_3 + 13x_6 + 4x_9 \ge 3300 \end{vmatrix}$$

Для каждого ограничения с неравенством добавляем дополнительные переменные x_{10} , x_{11} , x_{12} — для ограничений времени, x_{13} , x_{14} , x_{15} — для ограничений на объем перевозок:

$$x_1 + x_2 + x_3 + x_{10} = 300$$

$$x_4 + x_5 + x_6 + x_{11} = 300$$

$$x_7 + x_8 + x_9 + x_{12} = 300$$

$$8x_1 + 6x_4 + 12x_7 - x_{13} = 3000$$

$$14x_2 + 15x_5 + 12x_8 - x_{14} = 5400$$

$$11x_3 + 13x_6 + 4x_9 - x_{15} = 3300$$

Составим начальную симплекс-таблицу, включая целевую функцию и все ограничения:

C_j	8	14	11	6	15	13	12	12	4	0	0	0	0	0	0	0
базис	x_1	x_2	x_3	<i>X</i> ₄	X ₅	x_6	X 7	<i>X</i> ₈	<i>X</i> ₉	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	X ₁₄	<i>x</i> ₁₅	b
<i>x</i> ₁₀	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	300
<i>x</i> ₁₁	0	0	0	1	1	1	0	0	0	0	1	0	0	0	0	300
x_{12}	0	0	0	0	0	0	1	1	1	0	0	1	0	0	0	300
?1	8	0	0	6	0	0	12	0	0	0	0	0	-1	0	0	3000
?2	0	14	0	0	15	0	0	12	0	0	0	0	0	-1	0	5400
?3	0	0	11	0	0	13	0	0	4	0	0	0	0	0	-1	3300

Дополнительные переменные x_{13} , x_{14} , x_{15} имеют отличный знак от свободного члена, поэтому для решения используем метод искусственного базиса. Для 4-ой, 5-ой и 6-ой строк добавляем искусственные переменные u_i и делаем их базисными. В целевую функцию добавляем искусственные переменные с коэффициентом -M, где M — очень большое число.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
C_j	8	14	11	6	15	13	12	12	4	0	0	0	0	0	0	-M	-M	-M	0
базис	x_1	x_2	<i>X</i> ₃	X4	<i>X</i> ₅	x_6	X 7	<i>X</i> ₈	X9	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	X14	<i>x</i> ₁₅	u ₁	u ₂	и3	b
X10	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	300
<i>x</i> ₁₁	0	0	0	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0	300
X12	0	0	0	0	0	0	1	1	1	0	0	1	0	0	0	0	0	0	300
u_1	8	0	0	6	0	0	12	0	0	0	0	0	-1	0	0	1	0	0	3000
u ₂	0	14	0	0	15	0	0	12	0	0	0	0	0	-1	0	0	1	0	5400
из	0	0	11	0	0	13	0	0	4	0	0	0	0	0	-1	0	0	1	3300

Перепишем условие задачи с учётом добавленных искусственных переменных:

$$Z = 8x_1 + 14x_2 + 11x_3 + 6x_4 + 15x_5 + 13x_6 + 12x_7 + 12x_8 + 4x_9 - Mu_1 - Mu_2 - Mu_3 \Rightarrow max$$

$$\begin{cases}
x_1 + x_2 + x_3 + x_{10} = 300 \\
x_4 + x_5 + x_6 + x_{11} = 300 \\
x_7 + x_8 + x_9 + x_{12} = 300 \\
8x_1 + 6x_4 + 12x_7 - x_{13} + u_1 = 3000 \\
14x_2 + 15x_5 + 12x_8 - x_{14} + u_2 = 5400 \\
11x_3 + 13x_6 + 4x_9 - x_{15} + u_3 = 3300
\end{cases}$$

Вычислим дельты для каждого столбца (19 столбцов) по формуле:

Bishfulliam densitis diff rational (19 Croinollas) no pophyshe.
$$\Delta_{i} = C_{10} a_{1i} + C_{11} a_{2i} + C_{12} a_{3i} + C_{16} a_{4i} + C_{17} a_{5i} + C_{18} a_{6i} - C_{i}$$

$$\Delta_{1} = C_{10} a_{11} + C_{11} a_{21} + C_{12} a_{31} + C_{16} a_{41} + C_{17} a_{51} + C_{18} a_{61} - C_{1} = 0 \cdot 1 + 0 \cdot 0$$

$$+ 0 \cdot 0 - M \cdot 8 - M \cdot 0 - M \cdot 0 - 8 = -8 - 8M$$

$$\Delta_{2} = C_{10} a_{12} + C_{11} a_{22} + C_{12} a_{32} + C_{16} a_{42} + C_{17} a_{52} + C_{18} a_{62} - C_{2} = 0 \cdot 1 + 0 \cdot 0$$

$$+ 0 \cdot 0 - M \cdot 0 - M \cdot 14 - M \cdot 0 - 14 = -14 - 14M$$

$$\Delta_{3} = C_{10} a_{13} + C_{11} a_{23} + C_{12} a_{33} + C_{16} a_{43} + C_{17} a_{53} + C_{18} a_{63} - C_{3} = 0 \cdot 1 + 0 \cdot 0$$

$$+ 0 \cdot 0 - M \cdot 0 - M \cdot 0 - M \cdot 11 - 11 = -11 - 11M$$

$$\Delta_{4} = C_{10} a_{14} + C_{11} a_{24} + C_{12} a_{34} + C_{16} a_{44} + C_{17} a_{54} + C_{18} a_{64} - C_{4} = 0 \cdot 0 + 0 \cdot 1$$

$$+ 0 \cdot 0 - M \cdot 6 - M \cdot 0 - M \cdot 0 - 6 = -6 - 6M$$

$$\Delta_{5} = C_{10} a_{15} + C_{11} a_{25} + C_{12} a_{35} + C_{16} a_{45} + C_{17} a_{55} + C_{18} a_{65} - C_{5} = 0 \cdot 0 + 0 \cdot 1$$

$$+ 0 \cdot 0 - M \cdot 0 - M \cdot 15 - M \cdot 0 - 15 = -15 - 15M$$

$$\Delta_{6} = C_{10} a_{16} + C_{11} a_{26} + C_{12} a_{36} + C_{16} a_{46} + C_{17} a_{56} + C_{18} a_{66} - C_{6} = 0 \cdot 0 + 0 \cdot 1$$

$$+ 0 \cdot 0 - M \cdot 0 - M \cdot 0 - M \cdot 13 - 13 = -13 - 13M$$

$$\Delta_{7} = C_{10} a_{17} + C_{11} a_{27} + C_{12} a_{37} + C_{16} a_{47} + C_{17} a_{57} + C_{18} a_{67} - C_{7} = 0 \cdot 0 + 0 \cdot 0$$

$$+ 0 \cdot 1 - M \cdot 12 - M \cdot 0 - M \cdot 0 - 12 = -12 - 12M$$

$$\Delta_{8} = C_{10} a_{18} + C_{11} a_{28} + C_{12} a_{38} + C_{16} a_{48} + C_{17} a_{58} + C_{18} a_{69} - C_{9} = 0 \cdot 0 + 0 \cdot 0$$

$$+ 0 \cdot 1 - M \cdot 0 - M \cdot 12 - M \cdot 0 - 12 = -12 - 12M$$

$$\Delta_{9} = C_{10} a_{19} + C_{11} a_{29} + C_{12} a_{39} + C_{16} a_{49} + C_{17} a_{59} + C_{18} a_{69} - C_{9} = 0 \cdot 0 + 0 \cdot 0$$

$$+ 0 \cdot 1 - M \cdot 0 - M \cdot 0 - M \cdot 4 - 4 = -4 - 4M$$

$$\Delta_{10} = C_{10} a_{10} + C_{11} a_{21} + C_{11} a_{210} + C_{12} a_{310} + C_{16} a_{410} + C_{17} a_{510} + C_{18} a_{610} - C_{10} = 0$$

 $\Delta_{11} = C_{10} a_{111} + C_{11} a_{211} + C_{12} a_{311} + C_{16} a_{411} + C_{17} a_{511} + C_{18} a_{611} - C_{11} =$

0.1 + 0.0 + 0.0 - M.0 - M.0 - M.0 - 0 = 0

0.0 + 0.1 + 0.0 - M.0 - M.0 - M.0 - 0 = 0

 $\Delta_{12} = C_{10} a_{1_12} + C_{11} a_{2_12} + C_{12} a_{3_12} + C_{16} a_{4_12} + C_{17} a_{5_12} + C_{18} a_{6_12} - C_{12} =$

План оптимален, если в таблице отсутствуют отрицательные дельты. Данный план не оптимален, т. к. первая же дельта -8-8M отрицательна (помним, что M — это очень большое число). План оптимален, если в таблице отсутствуют отрицательные дельты.

0

0

0

0

0

 \mathbb{Z}

0

 \mathbb{Z}

-1

 \mathbb{Z}

0

0

0

1

0

3300

-11700M

 u_2

из

 Δ_i

0

0

.14-14M

11

-II-IIM

0

M9-9-

13

-13-13M

0

15-15M

0

-12-12M

4

0

-12-12M

Определяем разрешающий столбец — столбец, в котором находится минимальная дельта: 5, Δ_5 : -15 - 15M. Находим симплекс-отношения Q, путём деления коэффициентов b_i на соответствующие значения столбца 5. В найденном столбце ищем строку с наименьшим значением $Q: Q_{min} = 300$, строка 2. На пересечении найденных строки и столбца находится разрешающий элемент: I. В качестве базисной переменной x_{11} берём x_5 . Пересчитываем таблицу.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
C_j	8	14	11	6	15	13	12	12	4	0	0	0	0	0	0	-M	-M	-M	0
Б	x_1	x_2	<i>X</i> ₃	<i>X</i> ₄	X 5	x_6	X 7	<i>X</i> ₈	X9	X10	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	X14	<i>x</i> ₁₅	u ₁	u ₂	и3	b_i
X10	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	300
x_5	0	0	0	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0	300
<i>x</i> ₁₂	0	0	0	0	0	0	1	1	1	0	0	1	0	0	0	0	0	0	300
u_1	8	0	0	6	0	0	12	0	0	0	0	0	-1	0	0	1	0	0	3000
u_2	0	14	0	-15	0	-15	0	12	0	0	-15	0	0	-1	0	0	1	0	900
из	0	0	11	0	0	13	0	0	4	0	0	0	0	0	-1	0	0	1	3300
	Γ	Iene	счит	ътва	ем л	ель	гы л	пяк	ажл	ого	стоі	тбиа	(19	сто	пбис	ов) г	io de	onm	νпе.

итываем дельты для каждого столоца (19 столоцов) по формуле:

$$\Delta_i = C_{10} a_{1i} + C_5 a_{2i} + C_{12} a_{3i} + C_{16} a_{4i} + C_{17} a_{5i} + C_{18} a_{6i} - C_i$$

$$\Delta_1 = C_{10} a_{11} + C_5 a_{21} + C_{12} a_{31} + C_{16} a_{41} + C_{17} a_{51} + C_{18} a_{61} - C_1 = 0.1 + 15.0$$

$$+ 0.0 - M.8 - M.0 - M.0 - 8 = -8 - 8M$$

$$\Delta_2 = C_{10} a_{12} + C_5 a_{22} + C_{12} a_{32} + C_{16} a_{42} + C_{17} a_{52} + C_{18} a_{62} - C_2 = 0.1 + 15.0$$

$$+0.0 - M.0 - M.14 - M.0 - 14 = -14 - 14M$$

$$\Delta_3 = C_{10} a_{13} + C_5 a_{23} + C_{12} a_{33} + C_{16} a_{43} + C_{17} a_{53} + C_{18} a_{63} - C_3 = 0.1 + 15.0$$

$$+0.0 - M.0 - M.0 - M.11 - 11 = -11 - 11M$$

$$\Delta_4 = C_{10} a_{14} + C_5 a_{24} + C_{12} a_{34} + C_{16} a_{44} + C_{17} a_{54} + C_{18} a_{64} - C_4 = 0.0 + 15.1$$

$$+0.0 - M.6 - M.(-15) - M.0 - 6 = 9 + 9M$$

$$\Delta_5 = C_{10} a_{15} + C_5 a_{25} + C_{12} a_{35} + C_{16} a_{45} + C_{17} a_{55} + C_{18} a_{65} - C_5 = 0.0 + 15.1$$

$$+0.0-M.0-M.0-M.0-15=0$$

$$\Delta_6 = C_{10} a_{16} + C_5 a_{26} + C_{12} a_{36} + C_{16} a_{46} + C_{17} a_{56} + C_{18} a_{66} - C_6 = 0.0 + 15.1$$

$$+0.0 - M.0 - M.(-15) - M.13 - 13 = 2 + 2M$$

$$\Delta_7 = C_{10} a_{17} + C_5 a_{27} + C_{12} a_{37} + C_{16} a_{47} + C_{17} a_{57} + C_{18} a_{67} - C_7 = 0.0 + 15.0$$

$$+0.1 - M.12 - M.0 - M.0 - 12 = -12 - 12M$$

$$\Delta_8 = C_{10} a_{18} + C_5 a_{28} + C_{12} a_{38} + C_{16} a_{48} + C_{17} a_{58} + C_{18} a_{68} - C_8 = 0.0 + 15.0$$

$$+0.1 - M.0 - M.12 - M.0 - 12 = -12 - 12M$$

$$\Delta_9 = C_{10} a_{19} + C_5 a_{29} + C_{12} a_{39} + C_{16} a_{49} + C_{17} a_{59} + C_{18} a_{69} - C_9 = 0.0 + 15.0$$

$$+ 0.1 - M.0 - M.0 - M.4 - 4 = -4 - 4M$$

$$\Delta_{10} = C_{10} a_{1_10} + C_5 a_{2_10} + C_{12} a_{3_10} + C_{16} a_{4_10} + C_{17} a_{5_10} + C_{18} a_{6_10} - C_{10} =$$

$$0.1 + 15.0 + 0.0 - M.0 - M.0 - M.0 - 0 = 0$$

$$\Delta_{II} = C_{I0} a_{I_II} + C_5 a_{2_II} + C_{I2} a_{3_II} + C_{I6} a_{4_II} + C_{I7} a_{5_II} + C_{I8} a_{6_II} - C_{II} =$$

$$0.0 + 15.1 + 0.0 - M.0 - M.(-15) - M.0 - 0 = 15 - 15M$$

$$\Delta_{12} = C_{10} a_{1_12} + C_5 a_{2_12} + C_{12} a_{3_12} + C_{16} a_{4_12} + C_{17} a_{5_12} + C_{18} a_{6_12} - C_{12} =$$

$$0.0 + 15.0 + 0.1 - M.0 - M.0 - M.0 - 0 = 0$$

$$\Delta_{13} = C_{10} a_{1_13} + C_5 a_{2_13} + C_{12} a_{3_13} + C_{16} a_{4_13} + C_{17} a_{5_13} + C_{18} a_{6_13} - C_{13} =$$

$$0.0 + 15.0 + 0.0 - M.(-1) - M.0 - M.0 - 0 = M$$

$$\Delta_{14} = C_{10} a_{114} + C_{5} a_{214} + C_{12} a_{314} + C_{16} a_{414} + C_{17} a_{514} + C_{18} a_{614} - C_{14} =$$

$$0.0 + 15.0 + 0.0 - M.0 - M.(-1) - M.0 - 0 = M$$

$$\Delta_{15} = C_{10} a_{1_15} + C_5 a_{2_15} + C_{12} a_{3_15} + C_{16} a_{4_15} + C_{17} a_{5_15} + C_{18} a_{6_15} - C_{15} =$$

$$0.0 + 15.0 + 0.0 - M.0 - M.0 - M.(-1) - 0 = M$$

$$\Delta_{16} = C_{10} a_{1_16} + C_5 a_{2_16} + C_{12} a_{3_16} + C_{16} a_{4_16} + C_{17} a_{5_16} + C_{18} a_{6_16} - C_{16} =$$

$$0.0 + 15.0 + 0.0 - M.1 - M.0 - M.0 - (-M) = 0$$

$$\Delta_{17} = C_{10} a_{1_17} + C_5 a_{2_17} + C_{12} a_{3_17} + C_{17} a_{4_17} + C_{17} a_{5_17} + C_{18} a_{6_17} - C_{17} = 0 \cdot 0 + 15 \cdot 0 + 0 \cdot 0 - M \cdot 0 - M \cdot 1 - M \cdot 0 - (-M) = 0$$

$$\Delta_{18} = C_{10} a_{1_18} + C_5 a_{2_18} + C_{12} a_{3_18} + C_{18} a_{4_18} + C_{17} a_{5_18} + C_{18} a_{6_18} - C_{18} = 0 \cdot 0 + 15 \cdot 0 + 0 \cdot 0 - M \cdot 0 - M \cdot 0 - M \cdot 1 - (-M) = 0$$

$$\Delta_b = C_{10} b_1 + C_5 b_2 + C_{12} b_3 + C_{16} b_4 + C_{17} b_5 + C_{18} b_6 - C_{19} = 0 \cdot 300 + 15 \cdot 300$$

 $\Delta_b = C_{I0}b_1 + C_5b_2 + C_{I2}b_3 + C_{I6}b_4 + C_{I7}b_5 + C_{I8}b_6 - C_{I9} = 0.300 + 15.300 + 0.300 - M.3000 - M.3000 - M.3300 - 0 = 4500 - 7200M$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
C_j	8	14	11	6	15	13	12	12	4	0	0	0	0	0	0	-M	-M	-M	0
Б	x_{I}	x_2	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	x_6	<i>x</i> ₇	<i>x</i> ₈	<i>X</i> ₉	<i>x</i> ₁₀	x_{II}	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>X</i> 14	<i>x</i> ₁₅	u_1	u_2	u_3	b_i
Δi	-8-8M	-14-14M	-III-IIM	M6+6	0	2+2M	-12-12M	-12-12M	-4-4M	0	15+15M	0	M	M	M	0	0	0	4500-7200M

План не оптимален, т. к. первая же дельта -8-8M отрицательна. Определяем разрешающий столбец — столбец, в котором находится минимальная дельта: 2, Δ_2 : -14-14M. Находим симплекс-отношения Q, путём деления коэффициентов b_i на соответствующие значения столбца 5. В найденном столбце ищем строку с наименьшим значением Q: $Q_{min}=64.28571$, строка 5. На пересечении найденных строки и столбца находится разрешающий элемент: 14. В качестве базисной переменной u_2 берём x_2 .

Пересчитываем таблицу.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
C_j	8	14	11	6	15	13	12	12	4	0	0	0	0	0	0	-M	-M	-M	0
Б	x_1	x_2	<i>x</i> ₃	<i>X</i> ₄	X 5	x_6	<i>x</i> ₇	<i>X</i> ₈	<i>X</i> ₉	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	X ₁₄	<i>X</i> ₁₅	u ₁	u ₂	из	b_i
x_{10}	1	0	1	1,0714	0	1,0714	0	-0,8571	0	1	1,0714	0	0	0,0714	0	0	-0,0714	0	235,7143
X 5	0	0	0	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0	300
<i>x</i> ₁₂	0	0	0	0	0	0	1	1	1	0	0	1	0	0	0	0	0	0	300
u_1	8	0	0	6	0	0	12	0	0	0	0	0	-1	0	0	1	0	0	3000
x_2	0	1	0	-1,0714	0	-1,0714	0	0,8571	0	0	-1,0714	0	0	-0,0714	0	0	0,0714	0	64,2857
<i>u</i> ₃	0	0	11	0	0	13	0	0	4	0	0	0	0	0	-1	0	0	1	3300

Пересчитываем дельты для каждого столбца (19 столбцов) по формуле:

$$\Delta_i = C_{10} a_{1i} + C_5 a_{2i} + C_{12} a_{3i} + C_{16} a_{4i} + C_2 a_{5i} + C_{18} a_{6i} - C_i$$

$$\Delta_{1} = C_{10} a_{11} + C_{5} a_{21} + C_{12} a_{31} + C_{16} a_{41} + C_{2} a_{51} + C_{18} a_{61} - C_{1} = 0.1 + 15.0$$

$$+0.0 - M.8 + 14.0 - M.0 - 8 = -8-8M$$

$$\Delta_2 = C_{10} a_{12} + C_5 a_{22} + C_{12} a_{32} + C_{16} a_{42} + C_2 a_{52} + C_{18} a_{62} - C_2 = 0.0 + 15.0 + 0.0 - M.0 + 14.1 - M.0 - 14 = 0$$

$$\Delta_3 = C_{10} a_{13} + C_5 a_{23} + C_{12} a_{33} + C_{16} a_{43} + C_2 a_{53} + C_{18} a_{63} - C_3 = 0.1 + 15.0 + 0.0 - M.0 + 14.0 - M.11 - 11 = -11-11M$$

$$\Delta_4 = C_{10} a_{14} + C_5 a_{24} + C_{12} a_{34} + C_{16} a_{44} + C_2 a_{54} + C_{18} a_{64} - C_4 = 0 \cdot 1,0714 + 15 \cdot 1 + 0 \cdot 0 - M \cdot 0 + 14 \cdot (-1,0714) - M \cdot 0 - 6 = -6 - 6M$$

$$\Delta_5 = C_{10} a_{15} + C_5 a_{25} + C_{12} a_{35} + C_{16} a_{45} + C_2 a_{55} + C_{18} a_{65} - C_5 = 0.0 + 15.1 + 0.0 - M.0 + 14.0 - M.0 - 15 = 0$$

```
\Delta_6 = C_{10} a_{16} + C_5 a_{26} + C_{12} a_{36} + C_{16} a_{46} + C_2 a_{56} + C_{18} a_{66} - C_6 = 0 \cdot 1,0714 + 1
15\cdot 1 + 0\cdot 0 - M\cdot 0 + 14\cdot (-1,0714) - M\cdot 13 - 13 = -13-13M
              \Delta_7 = C_{10} a_{17} + C_5 a_{27} + C_{12} a_{37} + C_{16} a_{47} + C_2 a_{57} + C_{18} a_{67} - C_7 = 0.0 + 15.0
+0.1 - M.12 + 14.0 - M.0 - 12 = -12 - 12M
              \Delta_8 = C_{10} a_{18} + C_5 a_{28} + C_{12} a_{38} + C_{16} a_{48} + C_2 a_{58} + C_{18} a_{68} - C_8 = 0 \cdot (-0.8571)
+15.0 + 0.1 - M.0 + 14.0,8571 - M.0 - 12 = 0
              \Delta_9 = C_{10} a_{19} + C_5 a_{29} + C_{12} a_{39} + C_{16} a_{49} + C_2 a_{59} + C_{18} a_{69} - C_9 = 0.0 + 15.0
+0.1 - M.0 + 14.0 - M.4 - 4 = -4 - 4M
              \Delta_{10} = C_{10} a_{1\_10} + C_{5} a_{2\_10} + C_{12} a_{3 10} + C_{16} a_{4 10} + C_{2} a_{5 10} + C_{18} a_{6 10} - C_{10} =
0.1 + 15.0 + 0.0 - M.0 + 14.0 - M.0 - 0 = 0
              \Delta_{II} = C_{I0} a_{I\ II} + C_{5} a_{2\ II} + C_{I2} a_{3\ II} + C_{I6} a_{4\ II} + C_{2} a_{5\ II} + C_{I8} a_{6\ II} - C_{II} = 0
1,0714 + 15\cdot 1 + 0\cdot 0 - M\cdot 0 + 14\cdot (-1,0714) - M\cdot 0 - 0 = 0
              \Delta_{12} = C_{10} a_{112} + C_{5} a_{212} + C_{12} a_{312} + C_{16} a_{412} + C_{2} a_{512} + C_{18} a_{612} - C_{12} =
0.0 + 15.0 + 0.1 - M.0 + 14.0 - M.0 - 0 = 0
              \Delta_{13} = C_{10} a_{113} + C_{5} a_{213} + C_{12} a_{313} + C_{16} a_{413} + C_{2} a_{513} + C_{18} a_{613} - C_{13} =
0.0 + 15.0 + 0.0 - M.(-1) + 14.0 - M.0 - 0 = M
              \Delta_{14} = C_{10} a_{114} + C_{5} a_{214} + C_{12} a_{314} + C_{16} a_{414} + C_{2} a_{514} + C_{18} a_{614} - C_{14} =
0.0,0714 + 15.0 + 0.0 - M.0 + 14.(-0.0714) - M.0 - 0 = -1
              \Delta_{15} = C_{10} a_{115} + C_{5} a_{215} + C_{12} a_{315} + C_{16} a_{415} + C_{2} a_{515} + C_{18} a_{615} - C_{15} =
0.0 + 15.0 + 0.0 - M.0 + 14.0 - M.(-1) - 0 = M
              \Delta_{16} = C_{10} a_{116} + C_{5} a_{216} + C_{12} a_{316} + C_{16} a_{416} + C_{2} a_{516} + C_{18} a_{616} - C_{16} =
0.0 + 15.0 + 0.0 - M.1 + 14.0 - M.0 - (-M) = 0
              \Delta_{17} = C_{10} a_{1} a_{7} + C_{5} a_{2} a_{7} + C_{12} a_{3} a_{7} + C_{2} a_{4} a_{7} + C_{2} a_{5} a_{7} + C_{18} a_{6} a_{7} - C_{17} =
0 \cdot (-0.0714) + 15 \cdot 0 + 0 \cdot 0 - M \cdot 0 + 14 \cdot 0.0714 - M \cdot 0 - (-M) = 1 + M
              \Delta_{18} = C_{10} a_{118} + C_{5} a_{218} + C_{12} a_{318} + C_{18} a_{418} + C_{2} a_{518} + C_{18} a_{618} - C_{18} =
0.0 + 15.0 + 0.0 - M.0 + 14.0 - M.1 - (-M) = 0
              \Delta_b = C_{10} b_1 + C_5 b_2 + C_{12} b_3 + C_{16} b_4 + C_2 b_5 + C_{18} b_6 - C_{19} = 0.235,7123 + C_{18} b_{18} + C_{18} b_{19} + C_{18} b
15.300 + 0.300 - M.3000 + 14.64,2857 - M.3300 - 0 = 5400 - 6300M
       1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
```

		2	3	4)	O	/	0	9	10	11	12	13	14	13	10	1/	10	19
C_j	8	14	11	6	15	13	12	12	4	0	0	0	0	0	0	-M	-M	-M	0
Б	x_I	x_2	<i>x</i> ₃	x_4	x_5	x_6	x_7	<i>x</i> ₈	<i>X</i> ₉	<i>x</i> ₁₀	x_{II}	x_{12}	x_{13}	x_{14}	<i>x</i> ₁₅	u_I	u_2	u_3	b_i
Δί	-8-8M	0	MII-III	W9-9-	0	-13-13M	-12-12M	0	-4-4M	0	0	0	M	<i>I-</i>	M	0	I+M	0	5400-6300M
	Т	Гпотт	ш	ОП	TIINA	пан	T	10	папг	оп	NICO.	папі	то	&	_ 21/	1 от	niii	отап	1 110

План не оптимален, т. к. первая же дельта -8-8M отрицательна. Определяем разрешающий столбец — столбец, в котором находится минимальная дельта: 6, Δ_6 : -13-13M. Находим симплекс-отношения Q, путём деления коэффициентов b_i на соответствующие значения столбца 5. В найденном столбце ищем строку с наименьшим значением Q: $Q_{min} = 220$, строка 1. На пересечении найденных строки и столбца находится разрешающий элемент: 1,0714. В качестве базисной переменной x_{10} берём x_6 . Пересчитываем таблицу.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
C_j	8	14	11	6	15	13	12	12	4	0	0	0	0	0	0	-M	-M	-M	0
Б	x_1	x_2	<i>X</i> ₃	<i>X</i> ₄	X 5	<i>x</i> ₆	X 7	<i>X</i> ₈	<i>X</i> 9	X10	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	X14	<i>x</i> ₁₅	u_1	u_2	из	\boldsymbol{b}_i
x_6	0,9333	0	0,9333	1	0	1	0	-0,8	0	0,9333	1	0	0	0,0667	0	0	-0,0667	0	220
x_5	-0,9333	0	-0,9333	0	1	0	0	0,8	0	-0,9333	0	0	0	-0,0667	0	0	0,0667	0	80
<i>x</i> ₁₂	0	0	0	0	0	0	1	1	1	0	0	1	0	0	0	0	0	0	300
u_1	8	0	0	6	0	0	12	0	0	0	0	0	-1	0	0	1	0	0	3000
x_2	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	300
u ₃	-12,1333	0	-1,1333	-13	0	0	0	10,4	4	-12,1333	-13	0	0	-0,8667	-1	0	0,8667	1	440
		Па	naciliam	I IDA	ΔM	пап	TTT	тппа	Tran	TCHOEO C	топ	биа	<u>/10</u>	СТОПБ	ΠΩD) 110	hone	иπа	

Пересчитываем дельты для каждого столбца (19 столбцов) по формуле:

$$\Delta_{i} = C_{6} a_{1i} + C_{5} a_{2i} + C_{12} a_{3i} + C_{16} a_{4i} + C_{2} a_{5i} + C_{18} a_{6i} - C_{i}$$

$$\Delta_{1} = C_{6} a_{11} + C_{5} a_{21} + C_{12} a_{31} + C_{16} a_{41} + C_{2} a_{51} + C_{18} a_{61} - C_{1} = 13 \cdot 0,9333 + 15 \cdot (-0,9333) + 0 \cdot 0 - M \cdot 8 + 14 \cdot 1 - M \cdot (-12,1333) - 8 = 4,1333 + 4,1333M$$

$$\Delta_{2} = C_{6} a_{12} + C_{5} a_{22} + C_{12} a_{32} + C_{16} a_{42} + C_{2} a_{52} + C_{18} a_{62} - C_{2} = 13 \cdot 0 + 15 \cdot 0 + 16 \cdot 0 - M \cdot 0 + 14 \cdot 1 - M \cdot 0 - 14 = 0$$

$$\Delta_{3} = C_{6} a_{13} + C_{5} a_{23} + C_{12} a_{33} + C_{16} a_{43} + C_{2} a_{53} + C_{18} a_{63} - C_{3} = 13 \cdot 0,9333 + 15 \cdot (-0,9333) + 0 \cdot 0 - M \cdot 0 + 14 \cdot 1 - M \cdot (-1,1333) - 11 = 1,1333 + 1,1333M$$

 $15 \cdot (-0.9333) + 0 \cdot 0 - M \cdot 0 + 14 \cdot 1 - M \cdot (-1.1333) - 11 = 1.1333 + 1.1333M$ $\Delta_4 = C_6 a_{14} + C_5 a_{24} + C_{12} a_{34} + C_{16} a_{44} + C_2 a_{54} + C_{18} a_{64} - C_4 = 13 \cdot 1 + 15 \cdot 0$

 $+ 0 \cdot 0 - M \cdot 6 + 14 \cdot 0 - M \cdot (-13) - 6 = 7 + 7M$ $\Delta_5 = C_6 a_{15} + C_5 a_{25} + C_{12} a_{35} + C_{16} a_{45} + C_2 a_{55} + C_{18} a_{65} - C_5 = 13 \cdot 0 + 15 \cdot 1$ $+ 0 \cdot 0 - M \cdot 0 + 14 \cdot 0 - M \cdot 0 - 15 = 0$

 $\Delta_6 = C_6 a_{16} + C_5 a_{26} + C_{12} a_{36} + C_{16} a_{46} + C_2 a_{56} + C_{18} a_{66} - C_6 = 13 \cdot 1 + 15 \cdot 0 + 0 \cdot 0 - M \cdot 0 + 14 \cdot 0 - M \cdot 0 - 13 = 0$

 $\Delta_7 = C_6 a_{17} + C_5 a_{27} + C_{12} a_{37} + C_{16} a_{47} + C_2 a_{57} + C_{18} a_{67} - C_7 = 13 \cdot 0 + 15 \cdot 0 + 0 \cdot 1 - M \cdot 12 + 14 \cdot 0 - M \cdot 0 - 12 = -12 - 12M$

 $\Delta_8 = C_6 a_{18} + C_5 a_{28} + C_{12} a_{38} + C_{16} a_{48} + C_2 a_{58} + C_{18} a_{68} - C_8 = 13 \cdot (-0.8) + 15 \cdot 0.8 + 0 \cdot 1 - M \cdot 0 + 14 \cdot 0 - M \cdot 10.4 - 12 = -10.4 - 10.4M$

 $\Delta_9 = C_6 a_{19} + C_5 a_{29} + C_{12} a_{39} + C_{16} a_{49} + C_2 a_{59} + C_{18} a_{69} - C_9 = 13 \cdot 0 + 15 \cdot 0 + 0 \cdot 1 - M \cdot 0 + 14 \cdot 0 - M \cdot 4 - 4 = -4 - 4M$

 $\Delta_{10} = C_6 a_{1_10} + C_5 a_{2_10} + C_{12} a_{3_10} + C_{16} a_{4_10} + C_2 a_{5_10} + C_{18} a_{6_10} - C_{10} = 13.0,9333 + 15.(-0,9333) + 0.0 - M.0 + 14.1 - M.(-12,1333) - 0 = 12,1333+12,1333M$

 $\Delta_{11} = C_6 a_{1_11} + C_5 a_{2_11} + C_{12} a_{3_11} + C_{16} a_{4_11} + C_2 a_{5_11} + C_{18} a_{6_11} - C_{11} = 13 \cdot 1 + 15 \cdot 0 + 0 \cdot 0 - M \cdot 0 + 14 \cdot 0 - M \cdot (-13) - 0 = 13 + 13M$

 $\Delta_{12} = C_6 a_{1_12} + C_5 a_{2_12} + C_{12} a_{3_12} + C_{16} a_{4_12} + C_2 a_{5_12} + C_{18} a_{6_12} - C_{12} = 13 \cdot 0 + 15 \cdot 0 + 0 \cdot 1 - M \cdot 0 + 14 \cdot 0 - M \cdot 0 - 0 = 0$

 $\Delta_{I3} = C_6 a_{1_I3} + C_5 a_{2_I3} + C_{12} a_{3_I3} + C_{16} a_{4_I3} + C_2 a_{5_I3} + C_{18} a_{6_I3} - C_{I3} = 13 \cdot 0 + 15 \cdot 0 + 0 \cdot 0 - M \cdot (-1) + 14 \cdot 0 - M \cdot 0 - 0 = M$

 $\Delta_{14} = C_6 a_{1_14} + C_5 a_{2_14} + C_{12} a_{3_14} + C_{16} a_{4_14} + C_2 a_{5_14} + C_{18} a_{6_14} - C_{14} = 13 \cdot 0.0667 + 15 \cdot (-0.0667) + 0 \cdot 0 - M \cdot 0 + 14 \cdot 0 - M \cdot (-0.8667) - 0 = -0.1333 - 0.8667M$

 $\Delta_{15} = C_6 a_{1_15} + C_5 a_{2_15} + C_{12} a_{3_15} + C_{16} a_{4_15} + C_2 a_{5_15} + C_{18} a_{6_15} - C_{15} = 13 \cdot 0 + 15 \cdot 0 + 0 \cdot 0 - M \cdot 0 + 14 \cdot 0 - M \cdot (-1) - 0 = M$

 $\Delta_{16} = C_6 a_{1_16} + C_5 a_{2_16} + C_{12} a_{3_16} + C_{16} a_{4_16} + C_2 a_{5_16} + C_{18} a_{6_16} - C_{16} = 13 \cdot 0 + 15 \cdot 0 + 0 \cdot 0 - M \cdot 1 + 14 \cdot 0 - M \cdot 0 - (-M) = 0$

 $\Delta_{17} = C_6 a_{1_17} + C_5 a_{2_17} + C_{12} a_{3_17} + C_2 a_{4_17} + C_2 a_{5_17} + C_{18} a_{6_17} - C_{17} = 13 \cdot (-0.0667) + 15 \cdot 0.0667 + 0 \cdot 0 - M \cdot 0 + 14 \cdot 0 - M \cdot 0.8667 - (-M) = 0.1333 + 0.1333M$

 $\Delta_{18} = C_6 a_{1_18} + C_5 a_{2_18} + C_{12} a_{3_18} + C_{18} a_{4_18} + C_2 a_{5_18} + C_{18} a_{6_18} - C_{18} = 13 \cdot 0 + 15 \cdot 0 + 0 \cdot 0 - M \cdot 0 + 14 \cdot 0 - M \cdot 1 - (-M) = 0$

 $\Delta_b = C_6 b_1 + C_5 b_2 + C_{12} b_3 + C_{16} b_4 + C_2 b_5 + C_{18} b_6 - C_{19} = 13.220 + 15.80 + 0.300 - M.3000 + 14.300 - M.440 - 0 = 8260 - 3440M$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
C_j	8	14	11	6	15	13	12	12	4	0	0	0	0	0	0	-M	-M	-M	0
Б	x_{I}	x_2	<i>x</i> ₃	x_4	<i>X</i> ₅	x_6	<i>x</i> ₇	x_8	<i>X</i> ₉	x_{10}	x_{II}	x_{12}	x_{13}	<i>X</i> ₁₄	<i>x</i> ₁₅	u_I	u_2	u_3	b_i
Δί	4,1333+1333M	0	I,1333+1,1333M	M2+ Z M	0	0	-12-12M	-10,4	-4-4M	12,1333+12,1333M	I3+I3M	0	M	-0.1333-0.8667M	M	0	0,1333+0,1333M	0	8260-3440M

План не оптимален, т. к. дельта $\Delta_7 = -12-12M$ отрицательна. Определяем разрешающий столбец — столбец, в котором находится минимальная дельта: 7, Δ_7 : -12-12M. Находим симплекс-отношения Q, путём деления коэффициентов b_i на соответствующие значения столбца 7. В найденном столбце ищем строку с наименьшим значением Q: $Q_{min} = 250$, строка 4. На пересечении найденных строки и столбца находится разрешающий элемент: 12. В качестве базисной переменной u_1 берём x_7 . Пересчитываем таблицу.

10 11 12 13 14 15 16 17 18 19 15 | 13 | 12 0 C_j 14 11 12 -M -M -MБ x_2 $x_5 \mid x_6 \mid x_7$ x_8 x_9 x_{10} $x_{11} | x_{12}$ x_{13} x_{15} из x_{14}

x_6	0,9333	0	0,9333	1	0	1	0	-0,8	0	0,9333	1	0	0	0,0667	0	0	-0,0667	0	220
X 5	-0,9333	0	-0,9333	0	1	0	0	0,8	0	-0,9333	0	0	0	-0,0667	0	0	0,0667	0	80
<i>x</i> ₁₂	-0,6667	0	0	-0,5	0	0	0	1	1	0	0	1	0,0833	0	0	-0,0833	0	0	50
X 7	0,6667	0	0	0,5	0	0	1	0	0	0	0	0	-0,0833	0	0	0,0833	0	0	250
x_2	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	300
из	-12,1333	0	-1,1333	-13	0	0	0	10,4	4	-12,1333	-13	0	0	-0,8667	-1	0	0,8667	1	440

Пересчитываем дельты для каждого столбца (19 столбцов) по формуле:

$$\Delta_i = C_6 a_{1i} + C_5 a_{2i} + C_{12} a_{3i} + C_7 a_{4i} + C_2 a_{5i} + C_{18} a_{6i} - C_i$$

 $\Delta_1 = C_6 a_{11} + C_5 a_{21} + C_{12} a_{31} + C_7 a_{41} + C_2 a_{51} + C_{18} a_{61} - C_1 = 13.0,9333 + 15.(-0.9333) + 0.(-0.6667) + 12.0,6667 + 14.1 - M.(-12.1333) - 8 = 12.1333 + 12.1333M$

$$\Delta_2 = C_6 a_{12} + C_5 a_{22} + C_{12} a_{32} + C_7 a_{42} + C_2 a_{52} + C_{18} a_{62} - C_2 = 13 \cdot 0 + 15 \cdot 0 + 0 \cdot 0 + 12 \cdot 0 + 14 \cdot 1 - M \cdot 0 - 14 = 0$$

```
\Delta_3 = C_6 a_{13} + C_5 a_{23} + C_{12} a_{33} + C_7 a_{43} + C_2 a_{53} + C_{18} a_{63} - C_3 = 13.0,9333 + C_{18} a_{18} + 
15 \cdot (-0.9333) + 0.0 + 12.0 + 14.1 - M.(-1.1333) - 11 = 1.1333 + 1.1333M
                                  \Delta_4 = C_6 a_{14} + C_5 a_{24} + C_{12} a_{34} + C_7 a_{44} + C_2 a_{54} + C_{18} a_{64} - C_4 = 13 \cdot 1 + 15 \cdot 0 + 16 \cdot 10 + 
0 \cdot (-0.5) + 12 \cdot 0.5 + 14 \cdot 0 - M \cdot (-13) - 6 = 13 + 13M
                                  \Delta_5 = C_6 a_{15} + C_5 a_{25} + C_{12} a_{35} + C_7 a_{45} + C_2 a_{55} + C_{18} a_{65} - C_5 = 13 \cdot 0 + 15 \cdot 1 + 15 \cdot
0.0 + 12.0 + 14.0 - M.0 - 15 = 0
                                  \Delta_6 = C_6 a_{16} + C_5 a_{26} + C_{12} a_{36} + C_7 a_{46} + C_2 a_{56} + C_{18} a_{66} - C_6 = 13 \cdot 1 + 15 \cdot 0 + 16 \cdot 10 + 
0.0 + 12.0 + 14.0 - M.0 - 13 = 0
                                  \Delta_7 = C_6 a_{17} + C_5 a_{27} + C_{12} a_{37} + C_7 a_{47} + C_2 a_{57} + C_{18} a_{67} - C_7 = 13 \cdot 0 + 15 \cdot 0 + 15 \cdot 0
0.1 + 12.1 + 14.0 - M.0 - 12 = 0
                                  \Delta_8 = C_6 a_{18} + C_5 a_{28} + C_{12} a_{38} + C_7 a_{48} + C_2 a_{58} + C_{18} a_{68} - C_8 = 13 \cdot (-0.8) +
15 \cdot 0.8 + 0.1 + 12 \cdot 0 + 14 \cdot 0 - M \cdot 10.4 - 12 = -10.4 - 10.4M
                                  \Delta_9 = C_6 a_{19} + C_5 a_{29} + C_{12} a_{39} + C_7 a_{49} + C_2 a_{59} + C_{18} a_{69} - C_9 = 13.0 + 15.0 + 10.0
0.1 + 12.0 + 14.0 - M.4 - 4 = -4 - 4M
                                  \Delta_{10} = C_6 a_{1\ 10} + C_5 a_{2\ 10} + C_{12} a_{3\ 10} + C_7 a_{4\ 10} + C_2 a_{5\ 10} + C_{18} a_{6\ 10} - C_{10} =
13.0,9333 + 15.(-0.9333) + 0.0 + 12.0 + 14.1 - M.(-12.1333) - 0 =
12,1333+12,1333M
                                  \Delta_{II} = C_6 a_{I\ II} + C_5 a_{2\ II} + C_{12} a_{3\ II} + C_7 a_{4\ II} + C_2 a_{5\ II} + C_{18} a_{6\ II} - C_{II} =
13 \cdot 1 + 15 \cdot 0 + 0 \cdot 0 + 12 \cdot 0 + 14 \cdot 0 - M \cdot (-13) - 0 = 13 + 13M
                                  \Delta_{12} = C_6 a_{1 \ 12} + C_5 a_{2 \ 12} + C_{12} a_{3 \ 12} + C_7 a_{4 \ 12} + C_2 a_{5 \ 12} + C_{18} a_{6 \ 12} - C_{12} =
13.0 + 15.0 + 0.1 + 12.0 + 14.0 - M.0 - 0 = 0
                                  \Delta_{13} = C_6 a_{1 \ 13} + C_5 a_{2 \ 13} + C_{12} a_{3 \ 13} + C_7 a_{4 \ 13} + C_2 a_{5 \ 13} + C_{18} a_{6 \ 13} - C_{13} =
13.0 + 15.0 + 0.0,0833 + 12.(-0,0833) + 14.0 - M.0 - 0 = -1
                                  \Delta_{14} = C_6 a_{114} + C_5 a_{214} + C_{12} a_{314} + C_7 a_{414} + C_2 a_{514} + C_{18} a_{614} - C_{14} =
13.0,0667 + 15.(-0,0667) + 0.0 + 12.0 + 14.0 - M.(-0,8667) - 0 =
-0.1333-0.8667M
                                  \Delta_{15} = C_6 a_{1 \ 15} + C_5 a_{2 \ 15} + C_{12} a_{3 \ 15} + C_7 a_{4 \ 15} + C_2 a_{5 \ 15} + C_{18} a_{6 \ 15} - C_{15} =
13.0 + 15.0 + 0.0 + 12.0 + 14.0 - M.(-1) - 0 = M
                                  \Delta_{16} = C_6 a_{1 \ 16} + C_5 a_{2 \ 16} + C_{12} a_{3 \ 16} + C_7 a_{4 \ 16} + C_2 a_{5 \ 16} + C_{18} a_{6 \ 16} - C_{16} =
13.0 + 15.0 + 0.(-0.0833) + 12.0.0833 + 14.0 - M.0 - (-M) = 1 + M
                                  \Delta_{17} = C_6 a_{1 \ 17} + C_5 a_{2 \ 17} + C_{12} a_{3 \ 17} + C_2 a_{4 \ 17} + C_2 a_{5 \ 17} + C_{18} a_{6 \ 17} - C_{17} =
13 \cdot (-0.0667) + 15 \cdot 0.0667 + 0.0 + 12 \cdot 0 + 14 \cdot 0 - M \cdot 0.8667 - (-M) =
0,1333+0,1333M
                                  \Delta_{18} = C_6 a_{118} + C_5 a_{218} + C_{12} a_{318} + C_{18} a_{418} + C_2 a_{518} + C_{18} a_{618} - C_{18} =
13.0 + 15.0 + 0.0 + 12.0 + 14.0 - M.1 - (-M) = 0
                                  \Delta_b = C_6 b_1 + C_5 b_2 + C_{12} b_3 + C_7 b_4 + C_2 b_5 + C_{18} b_6 - C_{19} = 13.220 + 15.80
+0.50 + 12.250 + 14.300 - M.440 - 0 = 11260 - 440M
```

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
C_j	8	14	11	6	15	13	12	12	4	0	0	0	0	0	0	-M	-M	-M	0
Б	x_I	x_2	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	x_6	<i>x</i> ₇	<i>x</i> ₈	<i>X</i> ₉	x_{10}	x_{11}	<i>x</i> ₁₂	x_{13}	X14	<i>X</i> 15	u_1	u_2	u_3	b_i
Δi	12,1333+12,1333M	0	I,1333+1,1333M	13+13M	0	0	0	-10,4	-4-4M	12,1333+12,1333M	13+13M	0	<i>I-</i>	-0.1333-0.8667M	W	I+M	0,1333+0,1333M	0	11260–440M

Пересчитываем таблицу.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
C_j	8	14	11	6	15	13	12	12	4	0	0	0	0	0	0	-M	-М	-М	0
Б	x_1	x_2	X 3	X4	X 5	<i>x</i> ₆	X 7	<i>X</i> ₈	X9	X10	X11	X12	X13	X14	X15	u_1	u ₂	из	\boldsymbol{b}_i
<i>X</i> ₆	0	0	0,8462	0	0	1	0	0	0,3077	0	0	0	0	0	-0,0769	0	0	0,0769	253,8462
X 5	0	0	-0,8462	1	1	0	0	0	-0,3077	0	1	0	0	0	0,0769	0	0	-0,0769	46,1538
<i>x</i> ₁₂	0,5	0	0,109	0,75	0	0	0	0	0,6154	1,1667	1,25	1	0,0833	0,0833	0,0962	-0,0833	-0,0833	-0,0962	7,6923
X 7	0,6667	0	0	0,5	0	0	1	0	0	0	0	0	-0,0833	0	0	0,0833	0	0	250
x_2	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	300
X8	-1,1667	0	-0,109	-1,25	0	0	0	1	0,3846	-1,1667	-1,25	0	0	-0,0833	-0,0962	0	0,0833	0,0962	43,3077

Пересчитываем дельты для каждого столбца (19 столбцов) по формуле:

$$\Delta_{i} = C_{6} a_{1i} + C_{5} a_{2i} + C_{12} a_{3i} + C_{7} a_{4i} + C_{2} a_{5i} + C_{8} a_{6i} - C_{i}$$

$$\Delta_{1} = C_{6} a_{11} + C_{5} a_{21} + C_{12} a_{31} + C_{7} a_{41} + C_{2} a_{51} + C_{8} a_{61} - C_{1} = 13 \cdot 0 + 15 \cdot 0 + 12 \cdot 0,6667 + 14 \cdot 1 + 12 \cdot (-1,1667) - 8 = 0$$

$$\Delta_{2} = C_{6} a_{12} + C_{5} a_{22} + C_{12} a_{32} + C_{7} a_{42} + C_{2} a_{52} + C_{8} a_{62} - C_{2} = 13 \cdot 0 + 15 \cdot 0 + 12 \cdot 0 + 14 \cdot 1 + 12 \cdot 0 - 14 = 0$$

$$\Delta_3 = C_6 a_{13} + C_5 a_{23} + C_{12} a_{33} + C_7 a_{43} + C_2 a_{53} + C_8 a_{63} - C_3 = 13.0,8462 + 15 \cdot (-0,8462) + 0.0,109 + 12.0 + 14.1 + 12.(-0,109) - 11 = 0$$

$$\Delta_4 = C_6 a_{14} + C_5 a_{24} + C_{12} a_{34} + C_7 a_{44} + C_2 a_{54} + C_8 a_{64} - C_4 = 13 \cdot 0 + 15 \cdot 1 + 0 \cdot 0,75 + 12 \cdot 0,5 + 14 \cdot 0 + 12 \cdot (-1,25) - 6 = 0$$

$$\Delta_5 = C_6 a_{15} + C_5 a_{25} + C_{12} a_{35} + C_7 a_{45} + C_2 a_{55} + C_8 a_{65} - C_5 = 13 \cdot 0 + 15 \cdot 1 + 0 \cdot 0 + 12 \cdot 0 + 12 \cdot 0 - 15 = 0$$

$$\Delta_6 = C_6 a_{16} + C_5 a_{26} + C_{12} a_{36} + C_7 a_{46} + C_2 a_{56} + C_8 a_{66} - C_6 = 13 \cdot 1 + 15 \cdot 0 + 0 \cdot 0 + 12 \cdot 0 + 14 \cdot 0 + 12 \cdot 0 - 13 = 0$$

$$\Delta_7 = C_6 a_{17} + C_5 a_{27} + C_{12} a_{37} + C_7 a_{47} + C_2 a_{57} + C_8 a_{67} - C_7 = 13 \cdot 0 + 15 \cdot 0 + 0 \cdot 1 + 12 \cdot 1 + 14 \cdot 0 + 12 \cdot 0 - 12 = 0$$

$$\Delta_8 = C_6 a_{18} + C_5 a_{28} + C_{12} a_{38} + C_7 a_{48} + C_2 a_{58} + C_8 a_{68} - C_8 = 13 \cdot 0 + 15 \cdot 0 + 0 \cdot 0 + 12 \cdot 0 + 14 \cdot 0 + 12 \cdot 1 - 12 = 0$$

 $\Delta_b = C_6 b_1 + C_5 b_2 + C_{12} b_3 + C_7 b_4 + C_2 b_5 + C_8 b_6 - C_{19} = 13.253,8462 + 15.46,1538 + 0.7,6923 + 12.250 + 14.300 + 12.42,3077 - 0 = 11700$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
C_j	8	14	11	6	15	13	12	12	4	0	0	0	0	0	0	-M	-M	-M	0
Б	x_I	x_2	<i>X</i> ₃	χ_4	x_5	x_6	<i>x</i> ₇	x_8	x_9	x_{10}	x_{II}	x_{12}	x_{13}	<i>x</i> ₁₄	x_{15}	u_I	u_2	u_3	b_i
Δi	0	0	0	0	0	0	0	0	0	0	0	0	<i>I-</i>	<i>I-</i>	<i>I-</i>	M^+	M+	$ M^+ $	700
																I	I	I	II

План не оптимален, т. к. дельта $\Delta_{I3} = -1$ отрицательна. Определяем разрешающий столбец — столбец, в котором находится минимальная дельта: 13, Δ_{I3} : -1. Находим симплекс-отношения Q, путём деления коэффициентов b_i на соответствующие значения столбца 8. В найденном столбце ищем строку с наименьшим значением Q: $Q_{min} = 92,3077$, строка 3. На пересечении найденных строки и столбца находится разрешающий элемент: 0,0833. В качестве базисной переменной x_{I2} берём x_{I3} . Пересчитываем таблицу.

													1231 17 17 17 17 17 17 17 17 17 17 17 17 17						
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
C_j	8	14	11	6	15	13	12	12	4	0	0	0	0	0	0	-M	-M	-M	0
Б	x_1	x_2	<i>X</i> ₃	X4	<i>X</i> ₅	<i>X</i> ₆	<i>x</i> ₇	<i>x</i> ₈	X9	X ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂	X ₁₃	X ₁₄	X ₁₅	u_1	u ₂	и3	b_i
<i>X</i> ₆	0	0	0,8462	0	0	1	0	0	0,3077	0	0	0	0	0	-0,0769	0	0	0,0769	253,8462
<i>X</i> ₅	0	0	-0,8462	1	1	0	0	0	-0,3077	0	1	0	0	0	0,0769	0	0	-0,0769	46,1538
X ₁₃	6	0	1,3077	9	0	0	0	0	7,3846	14	15	12	1	1	1,1538	-1	-1	-1,1538	92,3077
X 7	1,1667	0	0,109	1,25	0	0	1	0	0,6154	1,1667	1,25	0	0	0,0833	0,0962	0	-0,0833	-0,0962	257,6923
x_2	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	300
<i>X</i> ₈	-1,1667	0	-0,109	-1,25	0	0	0	1	0,3846	-1,1667	-1,25	0	0	-0,0833	-0,0962	0	0,0833	0,0962	43,3077

```
\Delta_i = C_6 a_{1i} + C_5 a_{2i} + C_{13} a_{3i} + C_7 a_{4i} + C_2 a_{5i} + C_8 a_{6i} - C_i
              \Delta_1 = C_6 a_{11} + C_5 a_{21} + C_{13} a_{31} + C_7 a_{41} + C_2 a_{51} + C_8 a_{61} - C_1 = 13.0 + 15.0 +
0.6 + 12.1,1667 + 14.1 + 12.(-1,1667) - 8 = 6
              \Delta_2 = C_6 a_{12} + C_5 a_{22} + C_{13} a_{32} + C_7 a_{42} + C_2 a_{52} + C_8 a_{62} - C_2 = 13.0 + 15.0 + 10.0
0.0 + 12.0 + 14.1 + 12.0 - 14 = 0
              \Delta_3 = C_6 a_{13} + C_5 a_{23} + C_{13} a_{33} + C_7 a_{43} + C_2 a_{53} + C_8 a_{63} - C_3 = 13.0,8462 + 10.0
15 \cdot (-0.8462) + 0 \cdot 1.3077 + 12 \cdot 0.109 + 14 \cdot 1 + 12 \cdot (-0.109) - 11 = 1.3077
              \Delta_4 = C_6 a_{14} + C_5 a_{24} + C_{13} a_{34} + C_7 a_{44} + C_2 a_{54} + C_8 a_{64} - C_4 = 13.0 + 15.1 + 10.0
0.9 + 12.1,25 + 14.0 + 12.(-1,25) - 6 = 9
              \Delta_5 = C_6 a_{15} + C_5 a_{25} + C_{13} a_{35} + C_7 a_{45} + C_2 a_{55} + C_8 a_{65} - C_5 = 13.0 + 15.1 + 10.0
0.0 + 12.0 + 14.0 + 12.0 - 15 = 0
              \Delta_6 = C_6 a_{16} + C_5 a_{26} + C_{13} a_{36} + C_7 a_{46} + C_2 a_{56} + C_8 a_{66} - C_6 = 13 \cdot 1 + 15 \cdot 0 + 16 \cdot 10 + 16 
0.0 + 12.0 + 14.0 + 12.0 - 13 = 0
              \Delta_7 = C_6 a_{17} + C_5 a_{27} + C_{13} a_{37} + C_7 a_{47} + C_2 a_{57} + C_8 a_{67} - C_7 = 13.0 + 15.0 +
0.1 + 12.1 + 14.0 + 12.0 - 12 = 0
              \Delta_8 = C_6 a_{18} + C_5 a_{28} + C_{13} a_{38} + C_7 a_{48} + C_2 a_{58} + C_8 a_{68} - C_8 = 13.0 + 15.0 +
0.0 + 12.0 + 14.0 + 12.1 - 12 = 0
              15 \cdot (-0.3077) + 0.7.3846 + 12 \cdot 0.6154 + 14.0 + 12.0.3846 - 4 = 7.3846
              \Delta_{10} = C_6 a_{1\ 10} + C_5 a_{2\ 10} + C_{13} a_{3\ 10} + C_7 a_{4\ 10} + C_2 a_{5\ 10} + C_8 a_{6\ 10} - C_{10} = 13.0
+15.0 + 0.14 + 12.1,1667 + 14.1 + 12.(-1,1667) - 0 = 14
              \Delta_{II} = C_6 a_{I\ II} + C_5 a_{2\ II} + C_{I3} a_{3\ II} + C_7 a_{4\ II} + C_2 a_{5\ II} + C_8 a_{6\ II} - C_{II} = 13.0
+15\cdot 1 + 0\cdot 15 + 12\cdot 1.25 + 14\cdot 0 + 12\cdot (-1.25) - 0 = 15
              \Delta_{12} = C_6 a_{1 12} + C_5 a_{2 12} + C_{13} a_{3 12} + C_7 a_{4 12} + C_2 a_{5 12} + C_8 a_{6 12} - C_{12} = 13.0
+15.0 + 0.12 + 12.1 + 14.0 + 12.0 - 0 = 12
              \Delta_{13} = C_6 a_{1 \ 13} + C_5 a_{2 \ 13} + C_{13} a_{3 \ 13} + C_7 a_{4 \ 13} + C_2 a_{5 \ 13} + C_8 a_{6 \ 13} - C_{13} = 13.0
+15.0 + 0.1 + 12.0 + 14.0 + 12.0 - 0 = 0
              \Delta_{14} = C_6 a_{1\ 14} + C_5 a_{2\ 14} + C_{13} a_{3\ 14} + C_7 a_{4\ 14} + C_2 a_{5\ 14} + C_8 a_{6\ 14} - C_{14} = 13.0
+15.0 + 0.1 + 12.0,0833 + 14.0 + 12.(-0,0833) - 0 = 0
              \Delta_{15} = C_6 a_{1 \ 15} + C_5 a_{2 \ 15} + C_{13} a_{3 \ 15} + C_7 a_{4 \ 15} + C_2 a_{5 \ 15} + C_8 a_{6 \ 15} - C_{15} =
13 \cdot (-0.0769) + 15 \cdot 0.0769 + 0 \cdot 1.1538 + 12 \cdot 0.0962 + 14 \cdot 0 + 12 \cdot (-0.0962) - 0 =
0.1538
              \Delta_{16} = C_6 a_{1\ 16} + C_5 a_{2\ 16} + C_{13} a_{3\ 16} + C_7 a_{4\ 16} + C_2 a_{5\ 16} + C_8 a_{6\ 16} - C_{16} = 13.0
+15.0 + 0.(-1) + 12.0 + 14.0 + 12.0 - (-M) = M
              \Delta_{17} = C_6 a_{1 17} + C_5 a_{2 17} + C_{13} a_{3 17} + C_2 a_{4 17} + C_2 a_{5 17} + C_8 a_{6 17} - C_{17} = 13.0
+15.0 + 0.(-1) + 12.(-0.0833) + 14.0 + 12.0.0833 - (-M) = M
              \Delta_{18} = C_6 a_{118} + C_5 a_{218} + C_{13} a_{318} + C_8 a_{418} + C_2 a_{518} + C_8 a_{618} - C_{18} =
13.0,0769 + 15.(-0,0769) + 0.(-1,1538) + 12.(-0,0962) + 14.0 + 12.0,0962 -
(-M) = -0.1538 + M
```

 $\Delta_b = C_6 b_1 + C_5 b_2 + C_{13} b_3 + C_7 b_4 + C_2 b_5 + C_8 b_6 - C_{19} = 13.253,8462 + C_{19} = 13.253,8462$

15.46,1538 + 0.92,3077 + 12.257,6923 + 14.300 + 12.42,3077 - 0 = 11792,3077

Пересчитываем дельты для каждого столбца (19 столбцов) по формуле:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
C_j	8	14	11	6	15	13	12	12	4	0	0	0	0	0	0	-M	-M	-M	0
Б	x_{I}	x_2	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	x_6	<i>X</i> ₇	<i>x</i> ₈	<i>X</i> ₉	<i>x</i> ₁₀	x_{II}	<i>x</i> ₁₂	<i>X</i> 13	X14	<i>x</i> ₁₅	u_1	u_2	u_3	b_i
Δi	9	0	1,3077	6	0	0	0	0	7,3846	14	15	12	0	0	0,1538	M	M	538+M	2,3077
																		-0,1.	11792,

Отрицательные дельты отсутствуют, следовательно план оптимален.

Переменные целевой функции, попавшие в базис:

$$x_2 = 300$$
, $x_5 = 46,1538$, $x_6 = 253,8462$, $x_7 = 257,6923$, $x_8 = 42,3077$.

Следовательно, имеем такой оптимальный план: $x_1 = 0$, $x_2 = 300$, $x_3 = 0$, $x_4 = 0$, $x_5 = 46,1538$, $x_6 = 253,8462$, $x_7 = 257,6923$, $x_8 = 42,3077$, $x_9 = 0$, при которых целевая функция имеет значение $Z = 8\cdot 0 + 14\cdot 300 + 11\cdot 0 + 6\cdot 0 + 15\cdot 46,1538 + 13\cdot 253,8462 + 12\cdot 257,6923 + 12\cdot 42,3077 + 4\cdot 0 = 11792,3077$.

Данное решение проверено при помощи онлайн-калькулятора симплекс-метода на странице https://programforyou.ru/calculators/simplex-method.

Othet: $x_1 = 0$, $x_2 = 300$, $x_3 = 0$, $x_4 = 0$, $x_5 = 46,1538$, $x_6 = 253,8462$, $x_7 = 257,6923$, $x_8 = 42,3077$, $x_9 = 0$, Z = 11792,3077.