# Lab-8

# Raj-202201403, Bhoomish-202201414

# Manthan-202201416, Rakshit-202201426

# **Binary Phase Shift Keying**

# **Experiment 7**

| Data<br>Patter<br>n | Data<br>Freque<br>ncy | CH1                      | CH2                         | Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------|-----------------------|--------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8-Bit               | 2KHz                  | Input Data<br>(TP10<br>) | Carrier<br>Signal<br>(TP11) | RIGOL DSTOCE  WING MARKET THE STATE OF THE S |

| Data<br>Patter<br>n | Data<br>Freque<br>ncy | CH1                         | CH2                | Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------|-----------------------|-----------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8-Bit               | 2KHz                  | Input Data<br>(TP10<br>)    | BPSK Out<br>(TP12) | RIGOL DS1102E  100 100 100 100 100 100 100 100 100 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 32-Bit              | 4KHz                  | Carrier<br>Signal<br>(TP11) | BPSK Out<br>(TP12) | RIGOL DS1102E  DOWN I GRAN DE DOWN I GRAN  RIGOL DS1102E  DOWN I GRAN  AND  WE FICAL B  COTIP  TO AND  COTIP  T |
| 32-Bit              | 4KHz                  | Input Data<br>(TP10<br>)    | BPSK Out<br>(TP12) | RIGOL STOP LINE 100 Aug CP9,00009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

#### **Conclusion:**

- 1. BPSK modulation shifts the phase of the carrier signal by 180 degrees based on input data.
- 2. The modulator successfully encodes binary data into phase-shifted carrier signals, with clear output at TP12.
- 3. BPSK is ideal for robust data transmission in noisy environments.

## **Experiment 8**

| Data<br>Patter<br>n | Data<br>Frequenc<br>Y | CH1                       | CH2                         | Output                                                                              |
|---------------------|-----------------------|---------------------------|-----------------------------|-------------------------------------------------------------------------------------|
| 32-Bit              | 4KHz                  | BPSK<br>Out<br>(TP1<br>2) | Multiplier<br>Out<br>(TP14) | RIGOL DS1102E  CERTA ORGANICATION  THE LAND STOP STOP STOP STOP STOP STOP STOP STOP |
| 8-Bit               | 2KHz                  | BPSK<br>Out<br>(TP1<br>2) | Multiplier<br>Out<br>(TP14) | RIGOL DS100E                                                                        |

#### **Conclusion:**

- 1. The complex multiplier modulates the signal by multiplying the input data with a carrier.
- 2. Clear correlation is observed between BPSK output (TP12) and the multiplier output (TP14).
- 3. The experiment confirms the phase transition behavior of BPSK.

### **Experiment 9**

| Data<br>Patter<br>n | Data<br>Freque<br>ncy | CH1                | CH2                         | Output                                                                                 |
|---------------------|-----------------------|--------------------|-----------------------------|----------------------------------------------------------------------------------------|
| 32-Bit              | 2KHz                  | BPSK Out<br>(TP12) | Integrator<br>Out<br>(TP15) | RIGOL DS1102E  DS110 OCCUSIONE  2 Cameral  INDOE 1009  THE 200 The 200 Aur (2-2-54400) |

### **Conclusion:**

- 1. The integrator smooths the BPSK signal and provides a continuous signal.
- 2. Output at TP15 confirms successful signal integration, helping to filter high-frequency noise.
- 3. This process is crucial in recovering clean signals for

demodulation.

## **Experiment 10**

| Data<br>Patt<br>ern | Data<br>Frequenc<br>Y | CH1                                | CH2                      | Output         |
|---------------------|-----------------------|------------------------------------|--------------------------|----------------|
| 32-Bit              | 2KHz                  | BPSK Out<br>(TP12)                 | Comparator<br>Out (TP16) | PRIGOL 051102E |
| 8-Bit               | 2KHz                  | Encoded<br>Input<br>Data<br>(TP10) | Comparator<br>Out (TP16) | RIGOL DESTRUCT |

### **Conclusion:**

- 1. The comparator successfully recovers digital data by comparing the integrator's output against a threshold.
- 2. The output at TP16 demonstrates accurate signal comparison for 1s and 0s.
- 3. The process aids in the final recovery of binary data from the BPSK modulated signal.

## **Experiment 11**

| Data<br>Patte<br>rn | Data<br>Frequenc<br>Y | CH1                               | CH2                           | Output             |
|---------------------|-----------------------|-----------------------------------|-------------------------------|--------------------|
| 8-Bit               | 2KHz                  | Encoded<br>Input<br>Data<br>(TP10 | Demodulato<br>r Out<br>(TP16) | RIGOL STOP   1.94U |

### **Conclusion:**

- 1. The BPSK demodulator accurately demodulates the phase-shifted signal, recovering the input binary data.
- 2. Output at TP16 confirms successful demodulation.
- 3. This experiment demonstrates the efficiency of BPSK in noise-resistant data recovery.

#### **MATLAB Exercise Lab 8**

#### Illustrative Problem 5.4

```
N = 20:
A = 1;
t = 0:N;
s0 = A*ones(1,N);
s1 = [A*ones(1,N/2), - A*ones(1,N/2)];
y0 = zeros(1,N);
y1 = zeros(1,N);
%Case 1 noise \sim N(0,0)
noise = randn(1,N);
%Sub case 1 s = s0:
y = s0 + noise;
y0 = conv(y,fliplr(s0));
y1 = conv(y,fliplr(s1));
subplot(3,2,1);
plot(t,[0,y0(1:N)],'-k',t,[0,y1(1:N)],'--k')
set(gca, 'XTickLabel', {'0', '5Tb', '10Tb', '15Tb', '20Tb'})
axis([0 20 -30 30])
xlabel('(a) \sigma_A^2 = 0 & S_0 is transmitted')
%Sub case 2 s = s1:
y = s1 + noise;
y0 = conv(y,fliplr(s0));
y1 = conv(y,fliplr(s1));
subplot(3,2,2);
plot(t,[0,y0(1:N)],'-k',t,[0,y1(1:N)],'--k')
set(gca, 'XTickLabel', {'0', '5Tb', '10Tb', '15Tb', '20Tb'})
axis([0 20 -30 30])
xlabel('(b) \sigma_A^2 = 0 & S_1 is transmitted')
%Case 2 noise \sim N(0,0.1)
noise = randn(1,N)*0.1;
%Sub case 1 s = s0:
y = s0 + noise;
y0 = conv(y,fliplr(s0));
y1 = conv(y,fliplr(s1));
subplot(3,2,3);
plot(t,[0,y0(1:N)],'-k',t,[0,y1(1:N)],'--k')
set(gca, 'XTickLabel', {'0', '5Tb', '10Tb', '15Tb', '20Tb'})
axis([0 20 -30 30])
```

```
xlabel('(c) \sigma A^2 = 0.1 & S 0 is transmitted')
%Sub case 2 s = s1:
y = s1 + noise;
y0 = conv(y,fliplr(s0));
y1 = conv(y,fliplr(s1));
subplot(3,2,4);
plot(t,[0,y0(1:N)],'-k',t,[0,y1(1:N)],'--k')
set(gca, 'XTickLabel', {'0', '5Tb', '10Tb', '15Tb', '20Tb'})
axis([0 20 -30 30])
xlabel('(d) \sigma_A^2 = 0.1 & S_1 is transmitted')
%Case 3 noise \sim N(0,1)
noise = randn(1,N);
%Sub case 1 s = s0:
y = s0 + noise;
y0 = conv(y,fliplr(s0));
y1 = conv(y,fliplr(s1));
subplot(3,2,5);
plot(t,[0,y0(1:N)],'-k',t,[0,y1(1:N)],'--k')
set(gca,'XTickLabel',{'0','5Tb','10Tb','15Tb','20Tb'})
axis([0 20 -30 30])
xlabel('(e) \sigma A^2 = 1 & S 0 is transmitted')
%Sub case 2 s = s1:
y = s1 + noise;
y0 = conv(y,fliplr(s0));
y1 = conv(y,fliplr(s1));
subplot(3,2,6);
plot(t,[0,y0(1:N)],'-k',t,[0,y1(1:N)],'--k')
set(gca,'XTickLabel',{'0','5Tb','10Tb','15Tb','20Tb'})
axis([0 20 -30 30])
xlabel('(f) \sigma_A^2 = 1 & S_1 is transmitted')
sgtitle('Illustrative Problem 5.4');
```

#### Illustrative Problem 5.4



#### **Problem 5.4**

```
N = 20;
A = 1;
t = 0:N;
s0 = A * ones(1, N);
s1 = [A * ones(1, N/2), -A * ones(1, N/2)];
variances = [0.1, 1, 3];
num_variances = length(variances);
figure;
for idx = 1:num_variances
sigma2 = variances(idx);
% Case: noise ~ N(0, sigma2)
noise = randn(1, N) * sqrt(sigma2);
% Sub-case s = s0:
y0 = s0 + noise;
output0 = conv(y0, fliplr(s0));
% Sub-case s = s1:
```

```
y1 = s1 + noise;
output1 = conv(y1, fliplr(s1));
subplot(3, 2, idx * 2 - 1);
plot(t, [0, output0(1:N)], '-k', t, [0, output1(1:N)], '--k');
title(['\sigma^2 = ' num2str(sigma2) ' & S_0 is transmitted']);
set(gca, 'XTickLabel', {'0', '5Tb', '10Tb', '15Tb', '20Tb'});
axis([0 20 -30 30]);
xlabel('Time (Tb)');
subplot(3, 2, idx * 2);
plot(t, [0, output0(1:N)], '-k', t, [0, output1(1:N)], '--k');
title(['\sigma^2 = ' num2str(sigma2) ' & S_1 is transmitted']);
set(gca, 'XTickLabel', {'0', '5Tb', '10Tb', '15Tb', '20Tb'});
axis([0 20 -30 30]);
xlabel('Time (Tb)');
end
sgtitle('Exercise Problem 5.4');
```

#### Exercise Problem 5.4

