Ранжирование (часть 1)

Свербягин Никита

Факультет компьютерных наук, ПМИ НИУ ВШЭ

18 января 2019

Оглавление

- Постановка задачи
- Примеры
 - Поисковая выдача
 - Рекомендательная система
- Признаки для ранжирования поисковой выдачи
 - Типы признаков
 - TF-IDF
 - PageRank
 - Еще несколько примеров
- Метрики качества
 - MAP
 - Доля «дефектных» пар
 - nDCG
 - pFound

Постановка задачи

Постановка задачи

Дано:

X - множество объектов $X_l = \{x_1, \dots, x_l\}$ - обучающая выборка Задан порядок на парах $(x_i, x_i) \in X_l^2$

Найти:

Ранжирующую модель $a: X \to \mathbb{R}$, такую что $x_i < x_j \Rightarrow a(x_i) < a(x_j)$

Пример: линейная модель ранжирования

$$a(x \mid w) = \langle x, w \rangle$$

Примеры

Поисковая выдача

 ${\it D}$ - коллекция текстовых документов

 ${\it Q}$ - множество запросов

 $D_q \subseteq D$ - множество документов, найденных по запросу q

X=Q imes D - объекты - это пары «запрос, документ»

Y - упорядоченное множество рейтингов

 $y: X \to Y$ - асессорские оценки

Чем выше оценка, тем релевантнее документ.

Правильный порядок определен среди документов по одному запросу.

$$(q,d) < (q,d') \Leftrightarrow y(q,d) < y(q,d')$$

Рекомендательная система

U- пользователи I- предметы (товары, фильмы, книги и т.п.) $X = U \times I$ - объекты - это пары «пользователь, предмет»

Правильный порядок определен среди предметов, относящихся к одному пользователю:

$$(u,i) < (u,i') \Leftrightarrow y(u,i) < y(u,i')$$

В роли признаков объекта (u,i) могут выступать y(u',i) - рейтинги, поставленные предмету другими пользователями.

Признаки для ранжирования поисковой выдачи

Типы признаков

Признаки могут являться функцией:

- только документа $\,d\,$
- ullet только запроса q
- запроса и документа (q,d)

Признаки можно разделить на:

- текстовые
 - кол-во вхождений слов из q в d
 - слова из q есть в заголовках или выделены в d
- ссылочные
 - кол-во ссылок на документ d
 - полезность ссылок, содержащихся в $\it d$
- кликовые
 - кол-во кликов на $\it d$
 - кол-во кликов на d по запросу q

TF-IDF

 n_{dw} (term frequency) - число вхождений слова W в текст d N_w (document frequency) - число документов, содержащих W

N- число документов в коллекции. $N = \lceil D \rceil$

 N_{w}/N - оценка вероятности встретить слово w в документе

 $(N_w/N)^{n_{dw}}$ - оценка вероятности встретить его n_{dw} раз

$$P = \prod_{w \in q} (N_w/N)^{n_{dw}}$$
 - оценка вероятности встретить

в документе d слова запроса $q = \{w_1, \dots, w_k\}$ случайным образом.

TF-IDF

Оценка релевантности документа $\,d\,$ запросу $\,q\,$:

$$-logP = \sum_{w \in q} n_{dw} log(N/N_w)$$

$$TF(w,d) IDF(w)$$

$$TF(w,d) = n_{dw}$$
 - term frequency $IDF(w) = log(N/N_w)$ - inverted document frequency

PageRank

Важность документа d определяется:

- кол-вом документов $\it C$, ссылающихся на $\it d$
- важностью документов $\it C$, ссылающихся на $\it d$
- кол-вом других ссылок в документах $\it C$ Вероятность попасть на страницу $\it d$, если кликать случайно:

$$PR(d) = \frac{1 - \delta}{N} + \delta \sum_{c \in D_d^{in}} \frac{PR(c)}{|D_c^{out}|}$$

 $D_d^{in}\subset D$ - мн-во документов, ссылающихся на d $D_c^{out}\subset D$ - мн-во документов, на которые ссылается C $\delta=0.85$ - вероятность продолжать клики (damping factor) N - кол-во документов в коллекции.

PageRank

Еще несколько примеров

- Факторы домена: возраст домена; срок регистрации; доменная история; подозрительный владелец; наличие национального домена своей страны (.ru) ...
- Факторы страницы: ключевое слово в теге «title», «description» или «H1»; ключевое слово часто встречается в контенте; длина контента; скорость загрузки страницы; давность и частота обновления контента; авторитетность хостинга; ключевое слово в url; приоритет страницы на карте сайта...
- Факторы сайта: уникальность содержимого; кол-во контактной информации; кол-во страниц; наличие карты сайта; uptime;

Еще несколько примеров

- Специальные правила алгоритмов:
 - QDF (query deserves freshness)
 - QDD (query deserves diversity) (для запросов с различной интерпретацией)
 - История посещенных сайтов
 - История поисковых запросов
 - Таргетинг по местоположению
- Социальные сигналы: кол-во лайков, репостов и т.п. постов в социальных сетях

Метрики качества

MAP

Пусть $\mathbb{Y} = \{0,1\}, \ y(q,d)$ - релевантность документа. $d_q^{(i)}$ - і-й документ в отсортированном с помощью ранжирующей модели a(q,d) списке документов по убыванию.

precision at K:

$$p @ K(q) = \frac{1}{K} \sum_{i=1}^{K} y(q, d_q^{(i)})$$

Недостаток данной метрики: не учитывается порядок документов среди первых К.

MAP

Данную проблему нивелирует метрика **average precision at K**: суммаp@i только для релевантных документов среди первых і документов.

$$ap @ K(q) = \frac{1}{K} \sum_{i=1}^{K} y(q, d_q^{(i)}) \cdot p @ i(q)$$

p@Kи ap@Kсчитаются для конкретного запроса.

mean average precision at K:

$$map @ K = \frac{1}{|Q|} \sum_{q \in Q} ap @ K(q)$$

Доля «дефектных» пар

Пусть $\mathbb{Y} = \mathbb{R}$, остальное аналогично.

Доля инверсий среди первых К документов:

$$DP @ K(q) = \frac{2}{K(K-1)} \sum_{i < j}^{K} \left[y(q, d_q^{(i)}) < y(q, d_q^{(j)}) \right]$$

Заметим, что эта метрика тесно связана с AUC-ROC в задачах бинарной классификации:

$$AUC @ K(q) = \frac{1}{l_{-}l_{+}} \sum_{i,j=1}^{K} [y_{i} > y_{j}][a(x_{i}) < a(x_{j})] = \frac{K(K-1)}{2l_{-}l_{+}} DP @ K(q)$$

nDCG

Теперь $\mathbb{Y} = \mathbb{R}$. Остальное аналогично.

Cumulative gain at K:

$$CG@K(q) = \sum_{i=1}^{K} y(q, d_q^{(i)})$$

Недостатки: данная метрика не нормализована и не учитывает позицию релевантных документов.

Discounted cumulative gain at K:

$$DCG@K(q) = \sum_{i=1}^{K} \frac{2^{y(q,d_q^{(i)})} - 1}{log_2(i+1)}$$

nDCG

метрика DCG@K решает проблему учета позиций, но остается ненормированной.

normalized DCG at K:

$$nDCG@K(q) = \frac{DCG@K(q)}{IDCG@K(q)}$$

IDCG@K - ideal DCG@K, отличие от обычного DCG в том, что документы отсортированы по y(q,d)

По аналогии с map@K можно посчитать nDCG@K, усредненный по всем запросам.

pFound

Пусть $\mathbb{Y} = [0,1]$, y(q,d) - оценка вероятности найти ответ на запрос q в документе d.

Оценка вероятности найти ответ в первых K документах: $_{\nu}$

$$pFound@K(q) = \sum_{i=1}^{K} P_i \cdot y(q, d_q^{(i)}),$$

где P_i - вероятность дойти до і-ого документа:

$$P_1 = 1$$
,

$$P_i = P_{i-1} \cdot (1 - y(q, d_q^{(i-1)})) \cdot (1 - P_{out}),$$

 P_{out} - вероятность прекратить поиск без ответа

pFound

Стандартные значения при использовании pFound:

$$P_{out} = 0.15$$

Оценка асессора	y(q, d)
Vital	0.61
Useful	0.41
Relevant+	0.14
Relevant-	0.07
Not Relevant	0.00

Источники

- видеолекция «Методы обучения ранжированию», К.В Воронцов, <u>URL</u>
- Статья «Метрики качества ранжирования» на habr.com, <u>URL</u>
- Курс «Прикладные задачи анализа данных», урок «Задача ранжирования» на coursera.org, URL