Recuperatorio

1- Sea un sistema físico con 2 niveles de energía, el primero con energía ε_1 y degeneración g_1 , mientras que el segundo tiene energía ε_2 y degeneración g_2 . Pruebe que la entropía del sistema es

$$S = -k \left[p_1 Ln \left[\frac{p_1}{g_1} \right] + p_2 Ln \left[\frac{p_2}{g_2} \right] \right]$$

Donde p_i , representa la probabilidad de encontrar al sistema en los niveles i = 1,2.

2- Considere la energía E y la fluctuación de la energía ΔE en un sistema arbitrario, en contacto con un reservorio térmico a una temperatura T.

Obtenga la expresión de $\overline{E^2}$, en términos de la función partición z.

Calcule la dispersión de la energía $\overline{(\Delta E)^2} = \overline{E^2} - \overline{E}^2$.

Muestre que la desviación estándar $\widetilde{\Delta E}=\overline{((\Delta E)^2)^{1/2}}$ se puede escribir en función del calor específico del sistema c_v y de la temperatura T.

Utilice el resultado anterior para calcular $\widetilde{\Delta E}/\overline{E}$, para un gas ideal monoatómico, y utilice este resultado para comparar el ensamble canónico y microcanónico.

3- Los tres primeros niveles energéticos de una cierta molécula son, $E_1=0$, $E_2=\varepsilon$, $E_3=10\varepsilon$. Determine la temperatura característica del sistema y muestre que a bajas temperaturas, solo los niveles E_1 y E_2 , son ocupados.

Calcule la energía promedio E, a una cierta temperatura T.

Calcule la contribución de los niveles energéticos al calor específico de la molécula c_v , y aproxime la expresión del c_v para $T\gg$, y $T\ll$.

Grafique c_v en función de T.

4- Considere un oscilador anarmónico unidimensional, con energía potencial

$$V(x) = cx^2 - gx^3$$

Con $gx^3 \ll cx^2$.

Calcule el calor específico del sistema.

Calcule el valor medio de la posición x, del oscilador.