Nipun Batra

IIT Gandhinagar

July 29, 2025

1. One v/s All

1. One v/s All Blue (+1) v/s All (-1) : $\overline{w}.\overline{x}_{test}+b=0.8$ Yellow (+1) v/s All (-1) : $\overline{w}.\overline{x}_{test}+b=0.6$ Red (+1) v/s All (-1) : $\overline{w}.\overline{x}_{test}+b=-0.2$ argmax = Blue

1. One v/s One

1. One v/s One

 $\mathsf{Majority} = \mathsf{Blue}$

1. One v/s One $1 \;\; \mathsf{Blue} \; \mathsf{v/s} \; \mathsf{Yellow} \to \mathsf{Blue}$

 $\mathsf{Majority} = \mathsf{Blue}$

- 1. One v/s One
 - 1 Blue v/s Yellow \rightarrow Blue
 - 2 Yellow $v/s \text{ Red} \rightarrow \text{Red}$

Majority = Blue

- 1. One v/s One
 - 1 Blue v/s Yellow \rightarrow Blue
 - 2 Yellow $v/s Red \rightarrow Red$
 - 3 Red v/s Blue \rightarrow Blue

$$\mathsf{Majority} = \mathsf{Blue}$$

Support Vector Regression

Hard Margin or ϵ -SVR $\hat{y}(x) = \overline{w}.\overline{x} + b$