1 Grundlagen

Linearisierung um Arbeitspunkt:

$$x_a(t) = x_{a,AP} + \Delta x_a(t) \approx x_{a,AP} + \sum \left(\frac{\partial f}{\partial x_{e,AP}} \cdot \Delta x_e(t) \right)$$
$$f(x) = y_0 + k \cdot (x - x_0) = y_0 + \left(\frac{y_2 - y_1}{x_2 - x_1} \right) \cdot (x - x_0)$$

Kräftegleichungen:

Federkraft: $F_F = k_F \cdot x$

Dampfkraft: $F_D = k_D \cdot v = k_D \cdot \dot{x}$ Trägheitskraft: $F_{Tr} = m \cdot a = m \cdot \ddot{x}$ Erdanziehungskraft: $F_G = m \cdot g$

Moment Gleichungen:

Widerstandsmoment: $M_w = k_D \cdot \omega$ Trägheitsmoment: $M_{TR} = J \cdot \dot{\omega}$

Spannungsgleichung:

$$U = L \cdot \frac{di}{dt} + i \cdot R + \frac{1}{C} \cdot \int i$$

Für kleine Winkel α gilt: $\sin(\alpha) = \alpha$ Rotation in Flüssigkeit:

$$M = M_{\texttt{Träg}} + M_{\texttt{Brems}} = J \cdot \dot{\omega} + k_{\texttt{Flüssigkeit}} \cdot \omega$$

Partialbruchzerlegung (siehe Papula s.157ff)

Anfangswertsatz: $x(t \to +0) = \lim_{s \to \infty} s \cdot X(s)$ Endwertsatz: $x(t \to \infty) = \lim_{s \to 0} s \cdot X(s)$

2 Systemtechnik

2.1 Modellbildung

Hinweise zum aufstellen der Differentialgleichung eines Systems:

- 1. Bestimmung der Ein- und Ausgangsgrößen
- 2. Suche nach dem beschreibenden Gleichgewicht
- In der Gleichung dürfen nur Konstanten, sowie die Ein- und Ausgangsgrößen in beliebiger Ableitung vorkommen
- Andere Variablen müssen durch erlaubte Größen ersetzt werden (Dazu können i.a. physikalische Gleichungen benutzt werden)

2.2 Signalflussplan/Blockschaltbild

Erzeugung des Signalflussplans aus der Zugehörigen DGL.

- 1. für technische Realisierung gilt: m < n;
- 2. DGL. nach höchster Ableitung der Ausgangsgröße auflösen
- 3. höchste Ableitung der Ausgangsgröße geht auf den Eingang des ersten Integrators (Laplace-Trans ersetzt das Integrieren mit einer Division mit "s")

Erzeugung des Signalflussplans (und Übertragungsfunktion) eines Systems mit der DGL.:

Signalflussplan kann allgemein gezeichnet werden: (nötig, falls eine Ableitung von x_e existiert)

2.3 Zusammenhang DGL, Frequenzgang, Übertragungsfkt.

$$F_e = m\ddot{x} + k_D\dot{x} + k_Fx$$

$$F(j\omega) = \frac{\sum x_e}{\sum x_a} \qquad j^2 = -1$$

$$F(j\omega) = \frac{1}{m(j\omega)^2 + k_Dj\omega + k_F}$$

$$= \frac{1}{-m\omega^2 + h_D\omega + h_F}$$
konj. komp. erweitert
$$= \frac{\left(k_F - m\omega^2\right) - k_Dj\omega}{\left(k_F - m\omega^2\right)^2 - \left(-1\right)\left(k_D\omega\right)^2}$$

$$= \frac{\left(k_F - m\omega^2\right) - k_Dj\omega}{\left(k_F - m\omega^2\right)^2 + \left(k_D\omega\right)^2}$$

$$F(s) = \frac{1}{ms^2 + k_Ds + h_F}$$

2.4 Ortskurven und Frequenzkennlinien

Ortskurvendarstellung:

(In Darstellung $F(j\omega) = a + jb$ eintragen)

Bodediagramm Darstellung: (In Darstellung $F(j\omega) = Arg \angle \varphi$ eintragen)

Beispiel PT1-Glied

Verstärkung wird multipliziert und Phasenverschiebung addiert.

Das heißt: Sowohl Phasengang und Amplitudengang werden graphisch addiert!

2.5 F(s) in Pol- und Nullstellenform

$$F(s) = Q \cdot \frac{\prod_{\mu=1}^{m} (s - s_{N\mu})}{\prod_{\nu=1}^{n} (s - s_{PV})} \qquad mit \ Q = \frac{b_m}{a_n}$$

stabil, wenn alle Pole s_{PV} in der linken s-Halbebene liegen.

Instabile Pole NICHT durch Reihenschaltung mit Nullstelle kompensieren!

Bedeutung Polstelle:

Je weiter links \Rightarrow schnellerer Einschwingvorgang.

 \Rightarrow Pole weiter links können vernachlässigt werden.

Bedeutung Nullstelle:

bewirken differenzierendes Verhalten (Beschleunigung des Systems) \Rightarrow NS weiter links können vernachlässigt werden.

2.6 Signalflussplan Algebra

• Kettenstruktur:

$$F_{aes}(s) = F_1(s) \cdot F_2(s)$$

• Parallelstruktur:

$$F_{qes}(s) = F_1(s) + F_2(s)$$

• Kreisstruktur:

• Verschieben einer Additionsstelle:

• Verschieben einer Verzweigung:

3 Zusammenwirken mehrerer Systeme

3.1 Regelkreis

Anforderungen:

- Stabilität: Regelkreis muss stabiles Verhalten zeigen (gilt auch für instabile Systeme)
- Gutes Führungsverhalten: Die Differenz zw. Sollwert w(t) und Istwert x(t) muss schnell klein werden.
- Gutes Störverhalten: Einfluss von Störgrößen soll vermindert werden.

Grundstruktur des einschleifigen Regelkreises:

	$F_R(s)$	Regelstrecke F _S (s)	bleibende Regeldifferenz e (oder x_d)	
Regler			für $x_e = a \cdot \sigma(t)$ (Sprung) mit Rückführverstärkung K_r	für $x_e = a \cdot t$ (Rampe) mit Einheitsrückführung
P (D)	K_P		$a\frac{1}{1+K_{P}\cdot K_{S}\cdot K_{r}}$	∞
I	$\frac{K_I}{s}$	P-Verhalten (P, PT1, PT2,)	0	$a\frac{1}{K_I \cdot K_S}$
PI (D)	$K_P + \frac{K_I}{s}$	$F_s(s) = K_s \frac{(1 +s)}{(1 +s)}$	0	$a\frac{1}{K_I \cdot K_S}$
l ²	$\frac{K_I}{s^2}$		0	0
P (D)	K_{P}	<i>I</i> -Verhalten	0	$a\frac{1}{K_P \cdot K_S}$
I	$\frac{K_I}{s}$	$(I, PI, IT1,)$ $F_S(s) = K_S \frac{(1 +s)}{\underline{s}(1 +s)}$	0	0
PI (D)	$K_P + \frac{K_I}{s}$	<u>s</u> (1+s)	o	0

3.2 Wurzelortskurven (WOK)-Verfahren

$$\Rightarrow F_w(s) = \frac{F_R \cdot F_S}{1 + F_R \cdot F_S \cdot F_r}$$

$$F_o(s) = F_R \cdot F_S \cdot F_r$$

$$= K \cdot F_R'(s) \cdot F_S(s) \cdot F_r(s)$$

$$= K \cdot Q \cdot \frac{\prod_{u=1}^m (s - s_N)}{\prod_{v=1}^n (s - s_P)}$$

$$K_{krit} = \frac{1}{|Q|} \cdot \frac{\prod |s_P|}{\prod |s_N|}$$

 K_{neu} bei Polstelle neu:

$$K_{neu} = \frac{\Delta s_{P1}}{Q}$$

3.3 Konstruktion der WOK

$$ax^2 + bx + c$$
 $z_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

- 1. Alle n Äste beginnen in den n POLEN s_pov
- 2. m Äste der WOK enden für K $\rightarrow \pm \infty$
- 3. n -m Äste der WOK enden für K $\rightarrow \pm \infty$ im Unendlichen
- 4. Die n-m ins Unendliche strebende Äste der WOK haben Asymptoten, die
 - a) im Wurzelschwerpunkt

$$S_w = \frac{\sum_{v=1}^n s_P - \sum_{u=1}^m s_{\scriptscriptstyle N}}{n-m} = \frac{\text{Polst.} - \text{Nullst.}}{\text{Polst.} \; \ddot{\text{Uberschuss}}}$$

b) mit der reellen Achse die Winkel Polst. Überschuss 1 \Rightarrow 180°, 2 \Rightarrow 90/270° $\varphi_k = \frac{(2k-1)\cdot 180^\circ}{n-m}$ für KQ > 0 k = 1,2,3,...,n-m

- 5. Die Punkte liegen auf der reellen Achse, oder symmetrisch zur reellen Achse
- 6. Ein Punkt s auf der reellen Achse ist dann ein Punkt der WOK, wenn sich bei KQ > 0 (KQ<0) rechts von ihm eine ungerade (gerade) Anzahl von Polen s_P/\times und (+) Nullstellen s_N/\circ befindet.
- 7. $\times \to \circ$ (Von Pol- nach Nullstellen) Achtung: WOK nicht anwendbar, wenn Übertragungsfunktionen nicht rationale (z.B. Regelkreis mit

3.4 Nyquist Kriterium

Frequenzgangfunktion des offenen Regelkreises:

$$F_o(j\omega) = F_r(j\omega) \cdot F_R(j\omega) \cdot F_S(j\omega)$$

Ausgangssignal:

$$x_a(t) = -F_r(j\omega) \cdot F_R(j\omega) \cdot F_S(j\omega) \cdot x_{e0} sin(\omega t)$$
$$= -F_0(j\omega) \cdot x_e(t)$$

Regler und seine Parameter werden so gewählt, dass $\omega = \omega_{krit}$ gilt:

$$-F_0(j\omega_{krit})=1~{
m oder}~F_0(j\omega_{krit})=-1$$
 (Schwingbedingung 3.4.1 Phasenrad/Phasenreserve:

Die Schwingbedingung ist erfüllt, wenn die Ortskurve von $F_1(j\omega)$ durch den kritischen Punkt ($P_{krit} = -2 + j0$) der komplexen F_0 -Ebene geht.

An diesem Punkt kann man ω_{krit} ablesen (damit kann der Regelkreis Dauerschwingungen ausführen).

Für größere ω ist das System instabil, für kleinere stabil.

Falls F(s) des offenen Kreises keine Pole in der rechten Halbebene hat und nur max. 2 im Ursprung der s-Ebene, ist der Regelkreis stabil, wenn der kritische Punkt von ω immer links von s = -1 + 0j liegt. (gilt immer wenn der offene Kreis stabil ist)

Zur Auswertung des Nyquist-Kriteriums im Bode Diagramm, spaltet man die Ortskurve nach Betrag $A = |F_0(jw)|$ und Phase $\varphi = F_0(jw)$

Falls die Bedingung nicht funktioniert, wird die allgemeine Formulierung verwendet:

Der geschlossene Regelkreis ist stabil, wenn der Fahrstrahl von $P_{krit} = -1 + \mathrm{j}0$ zu $F_0(jw)$ für wachsendes ω von +0 bis $+\infty$ eine Winkeländerung $\underset{\omega=+0}{\omega=+\infty} \Delta \phi_{soll} = n_r \cdot 180^\circ + n_a \cdot 90^\circ$ erfährt.

 n_r : Anzahl der Pole rechts der imaginären Achse n_a : Anzahl der Pole auf der imaginären Achse

Aus Bodediagramm ablesen: Bei Verstärkung von $\boldsymbol{1}$

Winkeln von -180° nach oben rechnen

- befriedigendes Verhalten bei Störungen gilt: $\varphi_R \geq 30 \circ$
- gutes Verhalten (überschwingungsarm) gilt: $\varphi_R \approx 60$ °
- gutes Verhalten (überschwingungsfrei) gilt: $\varphi_R \ge 80^{\circ}$

3.5 Einstellregler Ziegler/Nichols

Reglertyp	K_P	T_N	T_V
Р	$0.50 \cdot K_{P,krit}$	-	-
PI	$0.45 \cdot K_{P,krit}$	$0.85 \cdot T_{krit}$	-
PD	$0.80 \cdot K_{P,krit}$	-	$0.12 \cdot T_{krit}$
PID	$0,60 \cdot K_{P,krit}$	$0.50 \cdot T_{krit}$	$0.12 \cdot T_{krit}$

3.5.1 Betragsoptimum

bei einer dominierenden Zeitkonstante (T_d) in der Regelstrecke

$$F_{PI} = K_R \left(1 + \frac{1}{T_d \cdot s} \right)$$
 $K_R = \frac{T_d}{2 \cdot K_{Strecke} \cdot T_{\sum}}$

3.5.2 Symmetrisches Optimum

mehreren Zeitkonstanten (nur reelle Pole)

$$F_{PI} = K_R \left(1 + \frac{1}{4T_{\sum} \cdot s} \right) \qquad K_R = \frac{1}{2 \cdot K_{Strecke} \cdot T_{\sum}}$$

Störgrößenaufschaltung:

Falls Angriffsort einer Störgröße bekannt,kann man wie im Bild kompensieren. Vorteil: einfacher Regler Entwurf, deutlich schnellere Ausregelung.

Vorsteuerung:

Geeignet, falls kein Kompromiss für gutes Stör und Folgeverhalten. Regler ist auf gutes Störverhalten ausgelegt. Mit F_{Rv} wird ein schnelles Folgen auf Führungssignale w(t) erreicht.

Kaskadenregelung:

Ineinander geschachtelte Regelkreise (innere Regelkreise "schneller"). "Innere" Störungen können bereits innen ausgeregelt werden. Können von Innen nach Außen in Betrieb genommen werden.

4 Digitale Regler

4.1 Allgemeines

4.1.1 z-Transformation

Wert der bei $\mathbf{t}=\mathbf{k}\cdot T_A$ ausgegeben wird, wird bei $\mathbf{t}=(\mathbf{k}\text{-}1)\cdot T_A$ eingelesen. (Verzögerung um einen Abtastschritt):

	Kontinuierlich	Zeitdiskret	
Zeitbereich	$x_a(t) = x_e(t - T_A)$	$x_{a, k} = x_{e, k-1}$	
Dildharaiah	$X_a(s) = e^{-s \cdot TA} \cdot X_e(s)$	$X_a(z) = z^{-1} \cdot X_e(z)$	
Bildbereich	(Laplace-Transformation)	(z-Transformation)	

Bei der z-Transformation entspricht $e^{-s\cdot TA}$ der Laplace-Transformation dem Ausdruck z^{-1} . Bzw. z $\hat{=}_{e^{s\cdot TA}}$

Transformation vom s-Bereich in den z-Bereich:

$$s \triangleq e^{s \cdot TA}$$

Vorwärts-Differenzen-quotient

$$s \triangleq \frac{z-1}{T_A}$$

 \Rightarrow Der digitale Regler kann folgend berechnet werden:

$$F(z) = F(z)|_{s = \frac{z-1}{T_A}}$$

Tustinsche Formel

$$s \stackrel{\textstyle \triangle}{=} \frac{2}{T_A} \cdot \frac{z-1}{z+1}$$

Sinnvolle Abtastzeit kleinste Polstelle $S_P \Rightarrow T_P = \frac{1}{S_P}$

$$T_{\text{sinnvoll}} = T_P \cdot \left(\frac{1}{10} \dots \frac{1}{20}\right)$$

5 Systembeschreibung im Zustandsraum

5.1 Allgemein (Mehrgrößensystem MIMO)

$$\dot{\vec{x}}(t) = A\vec{x}(t) + B\vec{u}(t) \quad x(0) = x_0$$
$$\vec{y}(t) = C\vec{x}(t) + D\vec{u}(t)$$

Abbildung 1: Signalflussplan

$$\dot{x}_1 = 0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + 1 \cdot u_1 + 0 \cdot u_2
\dot{x}_2 = K \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + 0 \cdot u_1 + 0 \cdot u_2
\dot{x}_3 = 0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + H \cdot J \cdot u_1 + J \cdot u_2
\dot{y}_1 = 0 \cdot x_1 + 1 + x_2 + 0 \cdot x_3 + 0 \cdot u_1 + 0 \cdot u_2
\dot{y}_2 = 0 \cdot x_1 + 0 \cdot x_2 + l \cdot x_3 + 0 \cdot u_1 + 0 \cdot u_2$$

$$A = \begin{bmatrix} 0 & 0 & 0 \\ K & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} C = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & l \end{bmatrix}$$
$$B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ H \cdot J & J \end{bmatrix} D = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Polstellen (Eigenwerte einer Matrix bestimmen):

$$\det(A - sE) = \det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ab - cd \stackrel{!}{=} 0 \quad sE = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix}$$

5.2 Programmtechnische Umsetzung

$$F_z(z) = \frac{2z+6}{3z+4} = \frac{2xin+6xin}{3xout+4xout1}$$

Zeitbereich:	Laplace (Frequenz-, s-, Bild-) Bereich:			
$x(t) = \mathcal{L}^{-1}[X(s)] = \frac{1}{2\pi i} \int_{\sigma-j\infty}^{\sigma+j\infty} e^{st} X(s) ds$	$X(s) = \mathcal{L}[x(t)] = \int_{0}^{\infty} e^{-st} x(t) dt$			
$\mathcal{L}[x(t)]$				
x(t) $X(s)$				
$t < 0: x(t) = 0$ $\mathcal{L}^{-1}[y]$	$S = \sigma + j\omega$ $X(s)$			
$x(t)$ $\delta(t)$ Impulsfunktion	1			
1, $\sigma(t)$ Sprungfunktion	$\frac{1}{s}$			
t ⁿ Parabel	$\frac{n!}{s^{n+1}}$			
sin ωt	$\frac{\omega}{s^2 + \omega^2}$			
cos ωt	$\frac{s}{s^2 + \omega^2}$			
e ^{-at}	$\frac{1}{s+a}$			
I-e ^{-at}	$\frac{a}{s(s+a)}$			
$t^n \cdot e^{-at}$	$\frac{n!}{(s+a)^{n+1}}$			
$e^{-at} \cdot \sin \omega t$	$\frac{\omega}{(s+a)^2 + \omega^2} = \frac{\omega}{s^2 + 2as + a^2 + \omega^2}$ (kompl. Pole)			
$e^{-at} \cdot \cos \omega t$	$\frac{s+a}{(s+a)^2+\omega^2} = \frac{s+a}{s^2+2as+a^2+\omega^2}$ (kompl. Pole)			
x(t)	X(s)			
$x_1(t) + x_2(t)$	$X_1(s) + X_2(s)$			
$K \cdot x(t)$	$K \cdot X(s)$			
$\frac{dx(t)}{dt} = \dot{x}(t)$	$s \cdot X(s) - x(-0)$ ($x(-0) = 0$, da $x(t) = 0$ für $t < 0$ und reale Systeme nicht sprungfähig sind)			
$\int_{0}^{t} x(\tau) d\tau$	$\frac{1}{s}X(s)$			
$x(t-T_t)$ (Totzeit)	$e^{-sT_t} \cdot X(s)$			
$e^{-at} \cdot x(t)$	X(s+a)			
$t \cdot x(t)$	$-\frac{dX(s)}{ds}$			
$\int_{0}^{t} x_{1}(t-\tau) \cdot x_{2}(\tau) d\tau = x_{1}(t) * x_{2}(t)$	$X_1(s) \cdot X_2(s)$			
(Faltungsprodukt)				

	$F_R(s)$	Regelstrecke F _S (s)	bleibende Regeldifferenz e (oder x_d)	
Regler			für $x_e = a \cdot \sigma(t)$ (Sprung) mit Rückführverstärkung K_r	für $x_e = a \cdot t$ (Rampe) mit Einheitsrückführung
P (D)	K_{P}		$a\frac{1}{1+K_P\cdot K_S\cdot K_r}$	∞
I	$\frac{K_I}{s}$	P-Verhalten (P, PT1, PT2,)	0	$a\frac{1}{K_I \cdot K_S}$
PI (D)	$K_P + \frac{K_I}{s}$	$F_S(s) = K_S \frac{(1 +s)}{(1 +s)}$	0	$a\frac{1}{K_I \cdot K_S}$
J ²	$\frac{K_I}{s^2}$		0	0
P (D)	K_P	<i>I</i> -Verhalten	0	$a\frac{1}{K_P \cdot K_S}$
I	$\frac{K_I}{s}$	$(I, PI, IT1,)$ $F_S(s) = K_S \frac{(1 +s)}{\underline{s}(1 +s)}$	0	0
PI (D)	$K_P + \frac{K_I}{s}$	<u>s</u> (1+s)	0	0