Reinforcement Learning

A Quick Introduction

Nir Ben-Zvi

June 11, 2017

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 1 / 82

Outline

- What is Reinforcement Learning About
 - Reinforcement Learning Examples
 - Formal Introduction
- Approaches to Reinforcement Learning
 - Model-based RL
 - Markov Decition Processes
 - Value-based RL
 - Bellman Equations
 - Partially Observable Markov Decision Processes
 - Policy-based RL
- 3 Solving RL in Practice
 - Q-Learning
 - Policy Gradient Methods
 - Policy Gradients Explained
 - REINFORCE
 - Algorithm Comparison
- Using Policy Gradients with Neural Networks
 - Quick Example
- Wrapping Up
 - Further Reading/Acknoledgements

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 2 / 82

Outline

- What is Reinforcement Learning About
 - Reinforcement Learning Examples
 - Formal Introduction
- Approaches to Reinforcement Learning
 - Model-based RL
 - Markov Decition Processes
 - Value-based RL
 - Bellman Equations
 - Partially Observable Markov Decision Processes
 - Policy-based RL
- 3 Solving RL in Practice
 - Q-Learning
 - Policy Gradient Methods
 - Policy Gradients Explained
 - REINFORCE
 - Algorithm Comparison
- Using Policy Gradients with Neural Networks
 - Quick Example
- Wrapping Up
 - Further Reading/Acknoledgements

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● めぬ◎

3 / 82

Nir Ben-Zvi RL Intro June 11, 2017

Why is RL Cool?

- RL has been getting a lot of wins in academy in recent years
- Like many other branches of ML which got the 'deep' treatment
- We'll later see why the two fuse together nicely

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 4 / 82

What Makes It Different?

- Unformally, RL is about processes (or actions)
- It's not strictly supervised or unsupervised learning
- Instead, it's about learning how to interact with a certain process
- Games are one of the famous examples

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 5 / 82

Examples

- Atari Games (DeepMind)
- Pong (From Karpathy's Blogpost)

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 6 / 82

Example: Learning Pong

taken from Karpathy's Blogpost

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 7 / 82

Example: Learning Pong

taken from Karpathy's Blogpost

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 8 / 82

Other Non-Game Uses

- Visual Attention Models (Mnih et Al, now DeepMind)
- StarCraft (DeepMind)
- Robotics
- Neural Turing Machines (DeepMind) and followup works
- Alpha Go and games

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 9 / 82

Outline

- What is Reinforcement Learning About
 - Reinforcement Learning Examples
 - Formal Introduction
- 2 Approaches to Reinforcement Learning
 - Model-based RL
 - Markov Decition Processes
 - Value-based RL
 - Bellman Equations
 - Partially Observable Markov Decision Processes
 - Policy-based RL
- 3 Solving RL in Practice
 - Q-Learning
 - Policy Gradient Methods
 - Policy Gradients Explained
 - REINFORCE
 - Algorithm Comparison
- Using Policy Gradients with Neural Networks
 - Quick Example
- Wrapping Up
 - Further Reading/Acknoledgements

Nir Ben-Zvi RL Intro June 11, 2017 10 / 82

Agent Environment Interaction

Reinforcement Learning usually includes an environment and an agent

- For the purpose of this intro lecture assume a single agent
- Environment/agent combos can be a casino/gambler, maze/robot etc.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

11 / 82

Agent Environment Interaction

Reinforcement Learning usually includes an environment and an agent

- For the purpose of this intro lecture assume a single agent
- Environment/agent combos can be a casino/gambler, maze/robot etc.
- RL is about learning how to interact with the environment with accorance to timesteps
- Many approaches exist, and we'll present a few today

Nir Ben-Zvi June 11, 2017 11 / 82

Agent Environment Interaction, cont.

- The agent learns what to do so as to maximize a numerical reward
- The learner is not told which actions to take, but instead must discover which actions yield high rewards from experience
- Rewards are not immediate
- These two characteristics trial-and-error search and delayed reward are the two most important distinguishing features of RL

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 12 / 82

Agent Environment Interaction, cont.

- The agent learns what to do so as to maximize a numerical reward
- The learner is not told which actions to take, but instead must discover which actions yield high rewards from experience
- Rewards are not immediate
- These two characteristics trial-and-error search and delayed reward are the two most important distinguishing features of RL

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 12 / 82

Outline

- What is Reinforcement Learning About
 - Reinforcement Learning Examples
 - Formal Introduction
- Approaches to Reinforcement Learning
 - Model-based RL
 - Markov Decition Processes
 - Value-based RL
 - Bellman Equations
 - Partially Observable Markov Decision Processes
 - Policy-based RL
- 3 Solving RL in Practice
 - Q-Learning
 - Policy Gradient Methods
 - Policy Gradients Explained
 - REINFORCE
 - Algorithm Comparison
- 4 Using Policy Gradients with Neural Networks
 - Quick Example
- Wrapping Up
 - Further Reading/Acknoledgements

Nir Ben-Zvi June 11, 2017 13 / 82

Reinforcement Learning Approaches

An RL agent usually includes one or more of the following:

- Model: agent's understanding of the true environment
- Value Function: how good is each state and/or action
- Policy: the agent's behavior function

Outline

- What is Reinforcement Learning About
 - Reinforcement Learning Examples
 - Formal Introduction
- Approaches to Reinforcement Learning
 - Model-based RL
 - Markov Decition Processes
 - Value-based RL
 - Bellman Equations
 - Partially Observable Markov Decision Processes
 - Policy-based RL
- 3 Solving RL in Practice
 - Q-Learning
 - Policy Gradient Methods
 - Policy Gradients Explained
 - REINFORCE
 - Algorithm Comparison
- Using Policy Gradients with Neural Networks
 - Quick Example
- Wrapping Up
 - Further Reading/Acknoledgements

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 15 / 82

Model-based RL

- Build a model of the environment
- Plan (e.g. by lookahead) using model
- We won't discuss this today

Nir Ben-Zvi June 11, 2017 16 / 82

Outline

- What is Reinforcement Learning About
 - Reinforcement Learning Examples
 - Formal Introduction
- Approaches to Reinforcement Learning
 - Model-based RL
 - Markov Decition Processes
 - Value-based RL
 - Bellman Equations
 Partially Observable Markov Decision Processes
 - Policy-based RL
- Solving RL in Practice
 - Q-Learning
 - Policy Gradient Methods
 - Policy Gradients Explained
 - REINFORCE
 - Algorithm Comparison
- Using Policy Gradients with Neural Networks
 - Quick Example
- Wrapping Up
 - Further Reading/Acknoledgements

Nir Ben-Zvi RL Intro June 11, 2017 17 / 82

Background; Markov Chains

• A Markov Chain (or Markov Process) is a memoryless random process - i.e. a sequence of random states s_1, s_2, \ldots which abide the *Makov Property*

Nir Ben-Zvi June 11, 2017 18 / 82

Background; Markov Chains

• A Markov Chain (or Markov Process) is a memoryless random process - i.e. a sequence of random states s_1, s_2, \ldots which abide the *Makov Property*

Makov Property

A state s_t is *Markov* if and only if:

$$\mathbb{P}\left[s_{t+1} \mid s_t\right] = \mathbb{P}\left[s_{t+1} \mid s_1, \dots, s_t\right]$$

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 18 / 82

Background; Markov Chains

• A Markov Chain (or Markov Process) is a memoryless random process - i.e. a sequence of random states s_1, s_2, \ldots which abide the *Makov Property*

Makov Property

A state s_t is *Markov* if and only if:

$$\mathbb{P}\left[s_{t+1} \mid s_t\right] = \mathbb{P}\left[s_{t+1} \mid s_1, \dots, s_t\right]$$

- In other words; the state captures all relevant information about the past
- When a state is known, previous events are meaningless

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・恵 ・ 夕久で

State Transition Matrix

The Markov State transition matrix defines a Markov Process;

$$\mathcal{P}_{ss'} = \mathbb{P}\left[s_{t+1} = s' \mid s_t = s\right]$$

• The State Transition matrix \mathcal{P} defines transition probabilities from all states s to all successor states s':

$$\mathbb{P} = \begin{bmatrix} \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \\ \vdots & & \vdots \\ \mathcal{P}_{n1} & \dots & \mathcal{P}_{nn} \end{bmatrix}$$

- ...such that rows and columns sum to one
- Also called doubly stochastic

Nir Ben-Zvi

Markov Process, Revisited

We'll now define a Markov Process more rigorously:

June 11, 2017

20 / 82

Nir Ben-Zvi RL Intro

Markov Process, Revisited

We'll now define a Markov Process more rigorously:

Makov Property

A Markov Process is a tuple $\langle \mathcal{S}, \mathcal{P} \rangle$:

- ullet ${\cal S}$ is a finite set of states
- ullet ${\cal P}$ is a state transition probability matrix

Nir Ben-Zvi RL Intro

20 / 82

Markov Process, Revisited

We'll now define a Markov Process more rigorously:

Makov Property

A Markov Process is a tuple $\langle \mathcal{S}, \mathcal{P} \rangle$:

- ullet ${\cal S}$ is a finite set of states
- ullet ${\cal P}$ is a state transition probability matrix

Nir Ben-Zvi

Agent/Environment interaction in Reinforcement Learning is usually modeled as a *Markov Decision Process* (MDP from now on)

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 21 / 82

Agent/Environment interaction in Reinforcement Learning is usually modeled as a *Markov Decision Process* (MDP from now on)

ullet $s \in \mathcal{S}$ - state of the system

Nir Ben-Zvi RL Intro June 11, 2017 21 / 82

Agent/Environment interaction in Reinforcement Learning is usually modeled as a *Markov Decision Process* (MDP from now on)

- ullet $s \in \mathcal{S}$ state of the system
- $a \in \mathcal{A}$ agent's action

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 21 / 82

Agent/Environment interaction in Reinforcement Learning is usually modeled as a *Markov Decision Process* (MDP from now on)

- ullet $s \in \mathcal{S}$ state of the system
- $a \in \mathcal{A}$ agent's action
- $\mathcal{P} = p(s'|s,a)$ the dynamics of the system

Nir Ben-Zvi June 11, 2017 21 / 82

Agent/Environment interaction in Reinforcement Learning is usually modeled as a Markov Decision Process (MDP from now on)

- $s \in \mathcal{S}$ state of the system
- $a \in \mathcal{A}$ agent's action
- $\mathcal{P} = p(s'|s,a)$ the dynamics of the system
- $\mathcal{R}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ the reward function (possibly stochastic)

Nir Ben-Zvi RL Intro June 11, 2017 21 / 82

Agent/Environment interaction in Reinforcement Learning is usually modeled as a *Markov Decision Process* (MDP from now on)

- ullet $s \in \mathcal{S}$ state of the system
- $a \in \mathcal{A}$ agent's action
- $\mathcal{P} = p(s'|s, a)$ the dynamics of the system
- $\mathcal{R}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ the reward function (possibly stochastic)

Definition

MDP is the tuple $\langle \mathcal{S}, \mathcal{P}, \mathcal{A}, \mathcal{R} \rangle$

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 21 / 82

Agent/Environment interaction in Reinforcement Learning is usually modeled as a *Markov Decision Process* (MDP from now on)

- ullet $s \in \mathcal{S}$ state of the system
- $a \in \mathcal{A}$ agent's action
- $\mathcal{P} = p(s'|s,a)$ the dynamics of the system
- $\mathcal{R}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ the reward function (possibly stochastic)

Definition

MDP is the tuple $\langle \mathcal{S}, \mathcal{P}, \mathcal{A}, \mathcal{R} \rangle$

- \bullet $\pi(a|s)$ the agent's policy
- A discount function/factor γ also usually exists

4 D > 4 P > 4 B > 4 B > B 9 Q P

Nir Ben-Zvi June 11, 2017 21 / 82

Why Discount?

- Avoids infinite returns in cyclic Markov Chains
- In a lot of real life scenarios, immediate rewards may be of more interest than delayed awards
- ...as is common human/animal bahavior

Nir Ben-Zvi **RL** Intro June 11, 2017 22 / 82

- It's common to break agent interaction into episodes
- Each episode beigns with state s_0 , drawn from some distribution $\mu(s_0)$ and ends at some terminal state
- ullet An action a_t will be chosen by the agent with accordance to the policy $oldsymbol{\pi}$
- The next state is sampled according to \mathcal{P} presented earlier; $\mathbb{P}(s_{t+1} \mid s_t, a_t)$
- Taking rewards into account, this becomes:

$$\mathbb{P}(s_{t+1}, r_t \mid s_t, a_t)$$

• The process continues until a terminal state is reached

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

June 11, 2017

23 / 82

Trajectories and Episodes

- It's also common to introduce trajectories
- \bullet A trajectory τ is simply a series of states ending at some timestep T

$$\tau = \{(a_t, s_t)\}_{t=1}^T$$

A trajectory can potentially contain multiple episodes

Nir Ben-Zvi June 11, 2017 24 / 82

Trajectories and Episodes

- It's also common to introduce trajectories
- \bullet A trajectory τ is simply a series of states ending at some timestep T

$$\tau = \{(a_t, s_t)\}_{t=1}^T$$

- A trajectory can potentially contain multiple episodes
- Those terms get confused a lot in the literature (and for iterative tasks are often interchangeable)

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 24 / 82

Outline

- What is Reinforcement Learning About
 - Reinforcement Learning Examples
 - Formal Introduction
- Approaches to Reinforcement Learning
 - Model-based RL
 - Markov Decition Processes
 - Value-based RL
 - Bellman Equations
 - Partially Observable Markov Decision Processes
 - Policy-based RL
- 3 Solving RL in Practice
 - Q-Learning
 - Policy Gradient Methods
 - Policy Gradients Explained
 - REINFORCE
 - Algorithm Comparison
- Using Policy Gradients with Neural Networks
 - Quick Example
- Wrapping Up
 - Further Reading/Acknoledgements

→ロト 4回ト 4 三ト 4 三ト 9 Q (*)

Nir Ben-Zvi June 11, 2017 25 / 82

The Value Function

- A value function is a prediction of future award
- ullet Sometimes called state-value function we ask "how much reward will I get from state s_t onwards?"
- The un-discounted value function for a policy π :

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{T} r(s_t, a_t) \mid s_0 = s\right]$$

• Where T denotes the horizon

Nir Ben-Zvi RL Intro June 11, 2017 26 / 82

The Value Function

- A value function is a prediction of future award
- ullet Sometimes called *state-value function* we ask "how much reward will I get from state s_t onwards?"
- The un-discounted value function for a policy π :

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{T} r(s_t, a_t) \mid s_0 = s\right]$$

- Where T denotes the horizon
- The dicsounted value function is then:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{T} \gamma(t) r(s_t, a_t) \mid s_0 = s\right]$$

 \bullet Where typically γ is simply a scalar $0<\gamma<1$ so that $\gamma(t)=\gamma^t$

Nir Ben-Zvi June 11, 2017 26 / 82

The Value Function - Goal

 Our goal is to maximize our value function; performed by finding the policy π^* which maximizes it $\forall s \in \mathcal{S}$:

$$V^*(s) = V^{\pi^*} = \max_{\pi} V^{\pi}(s)$$

June 11, 2017

27 / 82

Nir Ben-Zvi **RL** Intro

Outline

- What is Reinforcement Learning About
 - Reinforcement Learning Examples
 - Formal Introduction
- Approaches to Reinforcement Learning
 - Model-based RL
 - Markov Decition Processes
 - Value-based RL
 - Bellman Equations
 - Partially Observable Markov Decision Processes
 - Policy-based RL
- 3 Solving RL in Practice
 - Q-Learning
 - Policy Gradient Methods
 - Policy Gradients Explained
 - REINFORCE
 - Algorithm Comparison
- Using Policy Gradients with Neural Networks
 - Quick Example
- Wrapping Up
 - Further Reading/Acknoledgements

28 / 82

Nir Ben-Zvi RL Intro June 11, 2017

The Bellman Equation

The value function can be written recursively:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{T} \gamma^{t} r(s_{t}, a_{t}) \mid s_{0} = s\right]$$

$$= \mathbb{E}_{\substack{a \sim \pi(\cdot \mid s) \\ s' \sim p(\cdot \mid s, a)}} \left[r(s, a) + \gamma V^{\pi}(s')\right]$$

The optimal value satisfies the Bellman equation:

$$V^*(s) = \max_{\substack{\pi \\ s' \sim p(\cdot|s,a)}} \mathbb{E} \left[r(s,a) + \gamma V^{\pi}(s') \right]$$

Proof exists in literature

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・恵 ・ 夕久で

Nir Ben-Zvi

Q-Function

- The Q-function gives the expected total reward of
 - ullet from state s_t and action a_t
 - ullet under policy π
 - ullet with discount factor γ

$$Q(s,a) = r(s,a) + \gamma \underset{s' \sim p(\cdot s,a)}{\mathbb{E}} [V(s')]$$

Nir Ben-Zvi June 11, 2017 30 / 82

Q-Function

- The Q-function gives the expected total reward of
 - ullet from state s_t and action a_t
 - ullet under policy π
 - ullet with discount factor γ

$$Q(s,a) = r(s,a) + \gamma \underset{s' \sim p(\cdot s,a)}{\mathbb{E}} [V(s')]$$

• If we know V^* , the optimal policy is to deterministically progress:

$$\pi^*(s) = \operatorname*{argmax}_a Q^*(s, a)$$

This implies a very important relationship between V and Q:

$$V^*(s) = \max_a Q^*(s, a)$$

Nir Ben-Zvi

Optimal Value Functions

An optimal value function is the maximum achievable value

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a) = Q^{\pi^*}(s,a)$$

...at all states:

$$Q^*(s,a) = r_{t+1} + \gamma \max_{a_{t+1}} r_{t+2} + \gamma^2 \max_{a_{t+2}} + \dots$$
$$= r_{t+1} + \gamma \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1})$$

Again, we get the Bellman equation:

$$Q^*(s,a) = \mathbb{E}_{s'}\left[r + \gamma \max_{a'} Q^*(s',a') \mid s,a\right]$$

- 4 ロト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕 Q (C)

Outline

- What is Reinforcement Learning About
 - Reinforcement Learning Examples
 - Formal Introduction
- Approaches to Reinforcement Learning
 - Model-based RL
 - Markov Decition Processes
 - Value-based RL
 - Bellman Equations
 - Partially Observable Markov Decision Processes
 - Policy-based RL
- 3 Solving RL in Practice
 - Q-Learning
 - Policy Gradient Methods
 - Policy Gradients Explained
 - REINFORCE
 - Algorithm Comparison
- Using Policy Gradients with Neural Networks
 - Quick Example
- Wrapping Up
 - Further Reading/Acknoledgements

Fully Observeable Setting

- The framework described above pertain to the fully-observable setting
 where the agent can observe the full dynamics of the system
- A more powerful framework exists, in which the agent only has access to an observation o_t at a given timestep

Nir Ben-Zvi June 11, 2017 33 / 82

Fully Observeable Setting

- The framework described above pertain to the fully-observable setting - where the agent can observe the full dynamics of the system
- A more powerful framework exists, in which the agent only has access to an observation o_t at a given timestep
- In this instance, the true state s_t becomes a summary of experience:

$$s_t = f(o_1, r_1, a_1, \dots, a_{t-1}, o_t, r_t)$$

- If $f(o_t) = s_t$, this reduces back to the observable setting
- The more powerful framework is called a Partially Observable Markov Decision Process (POMDP)

June 11, 2017

33 / 82

POMDPs

Solving POMDPs hard!

34 / 82

June 11, 2017 Nir Ben-Zvi RL Intro

POMDPs.

- Solving POMDPs hard!
- POMDP can be viewed as a natural extension of HMMs similarly to defining MDPs though Markov Chains
- One way of reducing a POMDP to an MDP is by defining a timeframe of last k steps as the agents current state - denoted history in the literature
- This results in:

$$a_{t+1} \sim \pi(a_t \mid \mathbf{h}_t)$$

- One common way of modeling \mathbf{h}_t in practice is to use an RNN
- We'll stick to MDPs today

Nir Ben-Zvi RL Intro 34 / 82

Outline

- What is Reinforcement Learning About
 - Reinforcement Learning Examples
 - Formal Introduction
- Approaches to Reinforcement Learning
 - Model-based RL
 - Markov Decition Processes
 - Value-based RL
 - Bellman Equations
 - Partially Observable Markov Decision Processes
 - Policy-based RL
- 3 Solving RL in Practice
 - Q-Learning
 - Policy Gradient Methods
 - Policy Gradients Explained
 - REINFORCE
 - Algorithm Comparison
- Using Policy Gradients with Neural Networks
 - Quick Example
- Wrapping Up
 - Further Reading/Acknoledgements

35 / 82

Nir Ben-Zvi RL Intro June 11, 2017

Policy

- The Policy is the agent's behavior
- ullet Usually represented by a mapping from current state to action π
 - Deterministic: $a_t = \pi(s_t)$
 - ...or Stochastic: $\pi(a \mid s) = \mathbb{P}(a \mid s)$
- Policy-based RL is about searching directly for an optimal policy π^*
- This is the policy which achieves the maximum future reward

36 / 82

Nir Ben-Zvi RL Intro

Outline

- What is Reinforcement Learning About
 - Reinforcement Learning Examples
 - Formal Introduction
- Approaches to Reinforcement Learning
 - Model-based RL
 - Markov Decition Processes
 - Value-based RL
 - Bellman Equations
 - Partially Observable Markov Decision Processes
 - Policy-based RL
- 3 Solving RL in Practice
 - Q-Learning
 - Policy Gradient Methods
 - Policy Gradients Explained
 - REINFORCE
 - Algorithm Comparison
- Using Policy Gradients with Neural Networks
 - Quick Example
- Wrapping Up
 - Further Reading/Acknoledgements

RL Methods by Type

RL is exploding in current research, but most methods used are pretty old. We will focus on two popular methods;

- ullet Q-Learning learn a value function which satisfies the Bellman equations
- Policy Gradient attempt to directly learn a policy maximizing rewards (using an analytic iterative solution, hence the "gradient")

RL Methods by Type

RL is exploding in current research, but most methods used are pretty old. We will focus on two popular methods;

- ullet Q-Learning learn a value function which satisfies the Bellman equations
- Policy Gradient attempt to directly learn a policy maximizing rewards (using an analytic iterative solution, hence the "gradient")
- These are all model-free methods

Nir Ben-Zvi June 11, 2017 38 / 82

Model-Free Methods

• For the Atari example of DQN, states are 64×64 RGB images and there are 4 actions

39 / 82

Nir Ben-Zvi RL Intro June 11, 2017

Model-Free Methods

- \bullet For the Atari example of DQN, states are 64×64 RGB images and there are 4 actions
- ullet The transition dynamics ${\cal P}$ are of size:

$$|S \times S \times A| \approx (4.68 \times 10^{1954}) \times (4.68 \times 10^{1954}) \times 4$$

Nir Ben-Zvi June 11, 2017 39 / 82

Model-Free Methods

- For the Atari example of DQN, states are 64×64 RGB images and there are 4 actions
- ullet The transition dynamics ${\cal P}$ are of size:

$$|S \times S \times A| \approx (4.68 \times 10^{1954}) \times (4.68 \times 10^{1954}) \times 4$$

- Model-free implies we make no effort to learn the underlying dynamics of the environment
- Instead, we estimate the policy/value-function directly by interacting with the environment

Nir Ben-Zvi June 11, 2017 39 / 82

RL Methods by Type

Many other methods exist:

- Value Based- try to learn a value function satisfying Bellman Equation
 - Q-Learning, Double-Q-Learning
 - Temporal Difference (TD) Learning
 - SARSA
- Policy Search- attempt to directly learn a policy maximizing rewards
 - Gradient Based
 - Policy Gradient methods (Natural Policy Gradients, REINFORCE)
 - Actor-Critic algorithms (AC3)
 - Gradient-Free
 - Simulated Annealing
 - Cross-Entropy Search

Outline

- What is Reinforcement Learning About
 - Reinforcement Learning Examples
 - Formal Introduction
- Approaches to Reinforcement Learning
 - Model-based RL
 - Markov Decition Processes
 - Value-based RL
 - Bellman Equations
 - Partially Observable Markov Decision Processes
 - Policy-based RL
- 3 Solving RL in Practice
 - Q-Learning
 - Policy Gradient Methods
 - Policy Gradients Explained
 - REINFORCE
 - Algorithm Comparison
- Using Policy Gradients with Neural Networks
 - Quick Example
- Wrapping Up
 - Further Reading/Acknoledgements

Nir Ben-Zvi June 11, 2017 41 / 82

Learning Optimal Q^*

- \bullet If the agent knows the dynamics p and the reward function r, it can find Q^* by dynamic programming
 - Many methods exist!
 - ...but they are useless if we don't know the dynamics, or if the state-space is huge
- ullet Otherwise, it needs to estimate Q^* from its experience
 - The experience of an agent is a sequence $s_0, a_0, r_0, s_1, a_1, r_1, \ldots$
 - The *n*-th time-step is (s_n, a_n, r_n, s_{n+1})

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 42 / 82

Simulation-Based Q-Value Iteration

- ullet Lets interact with the environment for T timesteps and obtain a trajectory (s_0, a_0, \ldots, s_T) according to policy $\pi^{(n-1)}$
 - $\pi^{(n-1)}$ can be based on Q_{n-1}
- Now update $Q_n(s,a)$ to better represent our sample

Nir Ben-Zvi RL Intro June 11, 2017 43 / 82

Off-Policy vs. On-Policy

- ullet The update can use some a^\prime drawn from some policy
- ullet I.e., it doesn't depend on what action we actually took at state s_{t+1}
- This allows us to sample our environment w.r.t. any policy not only the one we are learning (e.g. $\pi^{(n)}$)
- This is called an off-policy approach

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 44 / 82

Moving to an Online Algorithm

- The general algorithm works for batches/entire tracjectories
- What if we go with n = 1?

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 45 / 82

Moving to an Online Algorithm

- The general algorithm works for batches/entire tracjectories
- What if we go with n = 1?
- We'll receive an online algorithm instead!
- Lets take an estimate of the environment based only on current state and move forward
- This results in the Q-Learning algorithm [WatkinsDayan92]

45 / 82

Nir Ben-Zvi RL Intro June 11, 2017

Q^* -Learning Algorithm

The full Q-Learning algorithm:

Q-Learning

```
input: learning rate \alpha \in (0,1) initialize: Q_0(s,a) for all a \in \mathcal{A} and s \in \mathcal{S} for each time-step n do observe the current state s_n select and execute an action a_n receive reward r_n observe the next sate s_{n+1} let:
```

$$Q_n(s_n, a_n) \leftarrow (1 - \alpha_n)Q_{n-1}(s_n, a_n) + \alpha_n \left(r_n + \gamma \max_a Q_{n-1}(s_{n+1}, a)\right)$$

end for

◆ロト ◆問ト ◆恵ト ◆恵ト ・恵 ・ 夕久で

46 / 82

Nir Ben-Zvi RL Intro June 11, 2017

Update Step Explained

Lets disect the update step:

Q-Learning

$$Q(s_n, a_n) \leftarrow \underbrace{(1 - \alpha_n)Q_{n-1}(s_n, a_n)}_{\text{old value}} + \underbrace{\alpha_n}_{\text{learning rate}} \cdot \underbrace{\begin{pmatrix} & \text{learned value} \\ \hline r_n & + & \gamma & \cdot & \max_{a} Q_{n-1}(s_{n+1}, a) \\ \text{reward discount factor} & \text{estimate of optimal future value} \end{pmatrix}}_{\text{estimate of optimal future value}}$$

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 47 / 82

Why Not V-Learning?

- ullet One might as why we don't see V-Learning in the literature
- Q-values make actions explicit
- Thus, they work when the transition function is not available
- As is usually the case for most interesting problems

→ □ ト → □ ト → 三 ト → 三 → つへの

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 48 / 82

Exploration vs. Exploitation

- How should the agent gain experience in order to learn?
 - If it explores too much it might only run into bad options
 - If it exploites learned Q function too early (or too frequently) it might not learn about better ones!
- This is the RL Exploration vs. Exploitation problem
- ϵ -greedy policy try a new action regardless of current learned policy with probability ϵ

49 / 82

Nir Ben-Zvi RL Intro

Credit Assignment Problem

- How does one know which action contributed to a high award for a given episode?
 - An action can have an effect in the far future
- This is the RL Credit Assignment problem
- Different solutions exist; decaying reward function is one
- The hand-wavvy reasoning behind this is that repeating the same task hundreds of thousands of times eliminates the issue

Nir Ben-Zvi June 11, 2017 50 / 82

$Q ext{-Learning}$ - Wrap Up

- Q-Learning algorithm has been proven to find an optimal result for finite MDPs [Watkins and Dayan, 92]
- Model free only uses Q-function and not system dynamics $\mathbb{P}(s_{t+1}|s_t,a_t)$
- Difficult to adapt to non-Markovian settings
 - Model as a POMDP instead?
 - Partial observability makes the learning problem much harder and often intractable
- Also problematic for continuous or very large action-state spaces
 - Function approximators assist there
- Fuses beautifully with NNs (what would be the loss?)

◆□▶◆□▶◆壹▶◆壹▶ 壹 める◆

Nir Ben-Zvi RL Intro

- What is Reinforcement Learning About
 - Reinforcement Learning Examples
 - Formal Introduction
- 2 Approaches to Reinforcement Learning
 - Model-based RL
 - Markov Decition Processes
 - Value-based RL
 - Bellman Equations
 - Partially Observable Markov Decision Processes
 - Policy-based RL
- 3 Solving RL in Practice
 - Q-Learning
 - Policy Gradient Methods
 - Policy Gradients Explained
 - REINFORCE
 - Algorithm Comparison
- Using Policy Gradients with Neural Networks
 - Quick Example
- Wrapping Up
 - Further Reading/Acknoledgements

→ロト →同ト → 三ト → 三 → りへ○

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 52 / 82

- Optimize a policy end-to-end by computing an estimate of the gradient of the expected reward of the policy
- Assume a stochastic policy $\mu(a_t \mid s_t)$ giving a prob. distribution over actions

June 11, 2017

53 / 82

- Optimize a policy end-to-end by computing an estimate of the gradient of the expected reward of the policy
- Assume a stochastic policy $\mu(a_t \mid s_t)$ giving a prob. distribution over actions
- Optimally, examples with high rewards for good actions and low rewards for bad actions would result in increasing probability of good action
- Vanilla PG runs into a lot of problems and is rarely used in practice
 - REINFORCE is a popular solution

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 53 / 82

- Broadly speaking, if our policy is chosen w.r.t to parameter-set θ , we want $\max_{\theta} \mathbb{E}[R \mid \theta]$
 - ullet Where R is the total reward of en episode
 - ...and actions are chosen from $\pi(a_t \mid s_t; \theta)$

Nir Ben-Zvi June 11, 2017 54 / 82

- Broadly speaking, if our policy is chosen w.r.t to parameter-set θ , we want $\max_{\theta} \mathbb{E}[R \mid \theta]$
 - Where R is the total reward of en episode
 - ...and actions are chosen from $\pi(a_t \mid s_t; \theta)$
- Find gradient of policy w.r.t. current parameter-set θ
- Optimize using SGD

54 / 82

• We should all be familiar with MLE optimization of this form:

$$\max_{\theta} \sum_{n=1}^{N} \log p(y_n \mid x_n; \theta)$$

June 11, 2017

55 / 82

• We should all be familiar with MLE optimization of this form:

$$\max_{\theta} \sum_{n=1}^{N} \log p(y_n \mid x_n; \theta)$$

• Where we maximize the log-probability of outputs y_n for inputs x_n

June 11, 2017

55 / 82

• We should all be familiar with MLE optimization of this form:

$$\max_{\theta} \sum_{n=1}^{N} \log p(y_n \mid x_n; \theta)$$

- Where we maximize the log-probability of outputs y_n for inputs x_n
- ullet Here we instead wish to optimize action a_t for states s_t
- Had we known a^{*} the optimal action for each state; we could simply optimize:

$$\max_{\theta} \sum_{n=1}^{N} \log p(a_n^* \mid s_n; \theta)$$

◆□▶◆□▶◆壹▶◆壹▶ 壹 める◆

Nir Ben-Zvi RL Intro

55 / 82

• We should all be familiar with MLE optimization of this form:

$$\max_{\theta} \sum_{n=1}^{N} \log p(y_n \mid x_n; \theta)$$

- Where we maximize the log-probability of outputs y_n for inputs x_n
- ullet Here we instead wish to optimize action a_t for states s_t
- Had we known a^{\ast} the optimal action for each state; we could simply optimize:

$$\max_{\theta} \sum_{n=1}^{N} \log p(a_n^* \mid s_n; \theta)$$

Alas, we don't

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Nir Ben-Zvi June 11, 2017 55 / 82

- What is Reinforcement Learning About
 - Reinforcement Learning Examples
 - Formal Introduction
- Approaches to Reinforcement Learning
 - Model-based RL
 - Markov Decition Processes
 - Value-based RL
 - Bellman Equations
 - Partially Observable Markov Decision Processes
 - Policy-based RL
- 3 Solving RL in Practice
 - Q-Learning
 - Policy Gradient Methods
 - Policy Gradients Explained
 - REINFORCE
 - Algorithm Comparison
- Using Policy Gradients with Neural Networks
 - Quick Example
- Wrapping Up
 - Further Reading/Acknoledgements

56 / 82

Approximating Good vs Bad Actions

- For a given trajectory
 - $\tau = (s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T)$
- Make a 'guess' at which actions were good and which weren't
- Increase probability of good actions repeating

June 11, 2017

57 / 82

Approximating Good vs Bad Actions

For a given trajectory

$$\tau = (s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T)$$

- Make a 'guess' at which actions were good and which weren't
- Increase probability of good actions repeating
- Let $R = \sum_{t=0}^{T-1} r_t$ the sum of rewards

June 11, 2017

57 / 82

Approximating Good vs Bad Actions

For a given trajectory

$$\tau = (s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T)$$

- Make a 'guess' at which actions were good and which weren't
- Increase probability of good actions repeating
- Let $R = \sum_{t=0}^{T-1} r_t$ the sum of rewards
- Assuming we can get $\nabla_{\theta} \mathbb{E}[R]$ we are done!

June 11, 2017

57 / 82

Getting a Derivative of the Policy

- \bullet We need to get a derivative for the policy function w.r.t. to some weights θ
- We don't actually know which actions resulted in outcomes
- We will use some math trickery to get a gradient-descent step which updates actions w.r.t. their 'usefulness'
- ullet Lets name this mythical gradient \hat{g}

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

Nir Ben-Zvi June 11, 2017 58 / 82

Training in Practice

- \bullet Assume the policy is some parametric model whose parameter set is θ
- Interact with environment 100 times, with 200 steps for each such interaction
- In total, we have 20,000 environment interactions
- Update every interaction which resulted in a 'bad' outcome as 'bad' and vice-versa
- This doesn't make sense for a short period, but does for a long series of such interactions

Nir Ben-Zvi June 11, 2017 59 / 82

Formal Explanation

- Idea based on score function gradient estimator
- \bullet Used for expressions of the form $\mathbb{E}_{x \sim p(x|\theta)}[f(x)]$

◆ロト ◆個ト ◆差ト ◆差ト 差 める()

60 / 82

Formal Explanation

- Idea based on score function gradient estimator
- ullet Used for expressions of the form $\mathbb{E}_{x\sim p(x| heta)}[f(x)]$
 - ullet Expectation of scalar valued score function f
 - For x drawn from p w.r.t θ
 - In our case, f is our reward function (was R earlier)
 - ...and p is the policy $\pi(a \mid s; \theta)$

60 / 82

Formal Explanation

- Idea based on score function gradient estimator
- ullet Used for expressions of the form $\mathbb{E}_{x\sim p(x| heta)}[f(x)]$
 - ullet Expectation of scalar valued score function f
 - For x drawn from p w.r.t θ
 - In our case, f is our reward function (was R earlier)
 - ...and p is the policy $\pi(a \mid s; \theta)$
- Math!

60 / 82

Likelihood Ratio Trick

Likelihood Ratio Trick

$$\begin{split} \nabla_\theta \mathop{\mathbb{E}}_x[f(x)] &= \nabla_\theta \sum_x p(x;\theta) f(x) & \text{def. of expectation} \\ &= \sum_x \nabla_\theta p(x;\theta) f(x) & \text{insert gradient} \\ &= \sum_x p(x;\theta) \frac{\nabla_\theta p(x;\theta)}{p(x;\theta)} f(x) & \text{multiply and divide by } p(x;\theta) \\ &= \sum_x p(x;\theta) \nabla_\theta \log p(x;\theta) f(x) & \text{note } \nabla_\theta \log(z) = \frac{1}{z} \nabla_\theta z \\ &= \mathop{\mathbb{E}}_x [\nabla_\theta \log p(x;\theta) f(x)] & \text{def. of expectation} \end{split}$$

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 61 / 82

Likelihood Ratio Trick

Likelihood Ratio Trick

$$\begin{split} \nabla_\theta \mathop{\mathbb{E}}_x[f(x)] &= \nabla_\theta \sum_x p(x;\theta) f(x) & \text{def. of expectation} \\ &= \sum_x \nabla_\theta p(x;\theta) f(x) & \text{insert gradient} \\ &= \sum_x p(x;\theta) \frac{\nabla_\theta p(x;\theta)}{p(x;\theta)} f(x) & \text{multiply and divide by } p(x;\theta) \\ &= \sum_x p(x;\theta) \nabla_\theta \log p(x;\theta) f(x) & \text{note } \nabla_\theta \log(z) = \frac{1}{z} \nabla_\theta z \\ &= \mathop{\mathbb{E}}_x[\nabla_\theta \log p(x;\theta) f(x)] & \text{def. of expectation} \end{split}$$

 $\nabla_{\theta} \log p(x; \theta)$ is called the *score function*.

40.40.45.45. 5 000

Nir Ben-Zvi June 11, 2017 61 / 82

Formal Explanation, Cont.

- Using the equality $\nabla_{\theta} \mathbb{E}_x[f(x)] = \mathbb{E}_x[\nabla_{\theta} \log p(x;\theta)f(x)]$
- We can sample values $x \sim p(x; \theta)$ and compute the LHS (over N samples)
- Hence; $\hat{g} = \frac{1}{N} \sum_{n=1}^{N} \nabla_{\theta} \log p(x_i; \theta) f(x_i)$
- Full derivation in the literature!

4□ > 4圖 > 4 臺 > 4 臺 > ■ 9 Q @

62 / 82

Problems

- ullet The estimator \hat{g} is generally very noisy
- Instead of increasing the probability of good episodes we would like to increase the probability of good actions
- This is called *gradient bias* in the literature
- Various solutions exist
- ullet PG usually converges to a local maxima (unlike Q-Learning's guaranteed global)

63 / 82

- What is Reinforcement Learning About
 - Reinforcement Learning Examples
 - Formal Introduction
- 2 Approaches to Reinforcement Learning
 - Model-based RL
 - Markov Decition Processes
 - Value-based RL
 - Bellman Equations
 - Partially Observable Markov Decision Processes
 - Policy-based RL
- 3 Solving RL in Practice
 - Q-Learning
 - Policy Gradient Methods
 - Policy Gradients Explained
 - REINFORCE
 - Algorithm Comparison
- Using Policy Gradients with Neural Networks
 - Quick Example
- Wrapping Up
 - Further Reading/Acknoledgements

Nir Ben-Zvi June 11, 2017 64 / 82

REINFORCE

- REINFORCE → REward Increment = Nonnegative Factor times
 Offset Reinforcement times Characteristic Eligibility
- It turns out that we can improve the above formula by lowering the variance of gradient-estimates

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 65 / 82

REINFORCE

- REINFORCE → REward Increment = Nonnegative Factor times
 Offset Reinforcement times Characteristic Eligibility
- It turns out that we can improve the above formula by lowering the variance of gradient-estimates
- Add stability to the training process
- In practice, REINFORCE often converges where vanilla PG won't

Nir Ben-Zvi June 11, 2017 65 / 82

REINFORCE Algorithm

REINFORCE

```
initialize: \theta at random for each trajectory \tau = \{s_1, a_1, r_1, \ldots, a_{T-1}, r_T\} \sim \pi_{\theta} do for t = 1 \ldots T - 1 do let: \theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) \cdot v_t end for end for
```

Note that \boldsymbol{v}_t represents a stabilized reward and substitutes \boldsymbol{R} in the vanilla PG

◆□▶◆□▶◆壹▶◆壹▶ 壹 める◆

66 / 82

Why Is 'Stabilization' Important?

- A simple example would be to normalize (e.g. subtract mean and divide by variance) of the computed reward R_t
- This would guarantee that the number of 'bad' and 'good' actions (in terms of gradient computations) would be equal

June 11, 2017

67 / 82

- What is Reinforcement Learning About
 - Reinforcement Learning Examples
 - Formal Introduction
- 2 Approaches to Reinforcement Learning
 - Model-based RL
 - Markov Decition Processes
 - Value-based RL
 - Bellman Equations
 - Partially Observable Markov Decision Processes
 - Policy-based RL
- 3 Solving RL in Practice
 - Q-Learning
 - Policy Gradient Methods
 - Policy Gradients Explained
 - REINFORCE
 - Algorithm Comparison
- Using Policy Gradients with Neural Networks
 - Quick Example
- Wrapping Up
 - Further Reading/Acknoledgements

→ロト 4回ト 4 三ト 4 三ト 9 Q (*)

Q-Learning vs. Policy Gradients

	Q-Learning	REINFORCE
Learning objective	Value function	Policy parameters via gradient
Policy Stochasticity	Convergence to essentially deterministic policy	Explicitly stochastic
Model	Modelfree	Modelfree
Markovity Assumption	MDP\POMDP	Problem specific, not inherent
Support for continuous\large state space	Possible via function approximation, difficult to train.	Yes
Main Practical Successes	DeepMind Atari playing net	Visual Attention, robot control

 Q-Learning better adapted to classic observable Markovian setting, PG-based learning more relevant the further problem is from that setting (hidden and continuous states).

Nir Ben-Zvi RL Intro June 11, 2017 69 / 82

- What is Reinforcement Learning About
 - Reinforcement Learning Examples
 - Formal Introduction
- Approaches to Reinforcement Learning
 - Model-based RL
 - Markov Decition Processes
 - Value-based RL
 - Bellman Equations
 - Partially Observable Markov Decision Processes
 - Policy-based RL
- 3 Solving RL in Practice
 - Q-Learning
 - Policy Gradient Methods
 - Policy Gradients Explained
 - REINFORCE
 - Algorithm Comparison
- 4 Using Policy Gradients with Neural Networks
 - Quick Example
- Wrapping Up
 - Further Reading/Acknoledgements

Policy Gradients in Neural Networks

- Policy Gradients are best paired with function approximators particularly Neural Networks
 - ...this is also true for Q-Learning (e.g. DQN)
- For example, consider an RNN in which output represents action probabilities
 - Softmax output $a_t \in [k]$ for k actions
 - ullet Hidden units of RNN $heta_t$ are policy parameterization.
 - Weights frozen for duration of episode and updated at the end
 - Naturally compatible with backpropagation- $\nabla_{\theta} \log \pi_{\theta} \left(a_t | s_t \right)$ is the gradient of the corresponding RNN evaluated at timestep t

71 / 82

- What is Reinforcement Learning About
 - Reinforcement Learning Examples
 - Formal Introduction
- 2 Approaches to Reinforcement Learning
 - Model-based RL
 - Markov Decition Processes
 - Value-based RL
 - Bellman Equations
 - Partially Observable Markov Decision Processes
 - Policy-based RL
- 3 Solving RL in Practice
 - Q-Learning
 - Policy Gradient Methods
 - Policy Gradients Explained
 - REINFORCE
 - Algorithm Comparison
- Using Policy Gradients with Neural Networks
 - Quick Example
- Wrapping Up
 - Further Reading/Acknoledgements

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 72 / 82

Recurrent Attention Model

- Original paper by (Mnih et al., 2015)
- Policy parameterized by RNN
- At each step 2 types of actions (l_t glimpse location and a_t classification) controlled by 2 sub-networks
- Goal is to learn stochastic policy $\pi\left((l_t,a_t)|s_{1:t};\theta\right)$ maximizing rewards

Nir Ben-Zvi RL Intro June 11, 2017 73 / 82

Example: Recurrent Attention Model (Mnih et al., 2015)

- Trajectory given by $s_{1:t} = x_1, l_1, a_1, ..., x_{t-1}, l_{t-1}, a_{t-1}, x_t$
- At each step 2 types of actions (l_t glimpse location and a_t classification) controlled by 2 sub-networks
- Reward $R = \sum_{t=1}^{T} r_t$ where $r_T = 1$ for correct classification and 0 otherwise

Nir Ben-Zvi RL Intro June 11, 2017 74 / 82

Example: Recurrent Attention Model (Mnih et al., 2015)

 Nir Ben-Zvi
 RL Intro
 June 11, 2017
 75 / 82

Example: Recurrent Attention Model (Mnih et al., 2015) - Dynamic Environment

http://www.cs.toronto.edu/~vmnih/docs/attention.mov

 Same approach used to train agent to play simple game in dynamic environment

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕 Q (C)

- What is Reinforcement Learning About
 - Reinforcement Learning Examples
 - Formal Introduction
- Approaches to Reinforcement Learning
 - Model-based RL
 - Markov Decition Processes
 - Value-based RL
 - Bellman Equations
 - Partially Observable Markov Decision Processes
 - Policy-based RL
- 3 Solving RL in Practice
 - Q-Learning
 - Policy Gradient Methods
 - Policy Gradients Explained
 - REINFORCE
 - Algorithm Comparison
- Using Policy Gradients with Neural Networks
 - Quick Example
- Wrapping Up
 - Further Reading/Acknoledgements

Nir Ben-Zvi June 11, 2017 77 / 82

- What is Reinforcement Learning About
 - Reinforcement Learning Examples
 - Formal Introduction
- Approaches to Reinforcement Learning
 - Model-based RL
 - Markov Decition Processes
 - Value-based RL
 - Bellman Equations
 - Partially Observable Markov Decision Processes
 - Policy-based RL
- 3 Solving RL in Practice
 - Q-Learning
 - Policy Gradient Methods
 - Policy Gradients Explained
 - REINFORCE
 - Algorithm Comparison
- Using Policy Gradients with Neural Networks
 - Quick Example
- Wrapping Up
 - Further Reading/Acknoledgements

Nir Ben-Zvi June 11, 2017 78 / 82

Further Reading/Where I Stole This From

- Sutton, R. S., Mcallester, D., Singh, S., Mansour, Y. (1999). Policy Gradient Methods for Reinforcement Learning with Function Approximation.
- Karpathy, A. (2016). Deep Reinforcement Learning: Pong from Pixels (blogpost)
- Sutton, R. Barto, A. (1998). Reinforcement Learning: An Introduction (Book)
- Watkins, C.J.H., Dayan, P. (1992) Technical Note: Q-Learning
- OpenAl Gym RL Introduction
- Mnih. V et Al. (2014). Playing Atari with Deep Reinforcement Learning
- Grondman. I et Al. (2012). A Survey of Actor-Critic Reinforcement Learning: Standard and Natural Policy Gradients

79 / 82

Further Reading/Where I Stole This From

...I also blatantly stole slides from:

- David Silver's RL Course from UCL
- David Silver's ICML2016 RL Workshop slides
- David Silver's NIPS2016 RL Workshop slides
- Generally anything by David Silver
- REINFORCE presentation by Ronen Tamary of HUJI
- Q-Learning presentation by Noga Zaslavsky of HUJI
 - Both presented at HUJI's own DL seminar good stuff there!

80 / 82

- What is Reinforcement Learning About
 - Reinforcement Learning Examples
 - Formal Introduction
- 2 Approaches to Reinforcement Learning
 - Model-based RL
 - Markov Decition Processes
 - Value-based RL
 - Bellman Equations
 - Partially Observable Markov Decision Processes
 - Policy-based RL
- Solving RL in Practice
 - Q-Learning
 - Policy Gradient Methods
 - Policy Gradients Explained
 - REINFORCE
 - Algorithm Comparison
- Using Policy Gradients with Neural Networks
 - Quick Example
- Wrapping Up
 - Further Reading/Acknoledgements

Nir Ben-Zvi June 11, 2017 81 / 82

Thank You