7.9.6 Find the orthogonal projection of $\mathbf{x} = (1, 2, 0, -1)$ on the subspace of R^4 spanned by the given orthonormal vectors:

(a)
$$\mathbf{v}_1 = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}), \mathbf{v}_2 = (\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2})$$

(b)
$$\mathbf{v}_1 = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}), \mathbf{v}_2 = (\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}), \mathbf{v}_3 = (\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2})$$

Solution. (a)
$$\operatorname{proj}_W \mathbf{x} = (\mathbf{x} \cdot \mathbf{v}_1)\mathbf{v}_1 + (\mathbf{x} \cdot \mathbf{v}_2)\mathbf{v}_2 = \mathbf{v}_1 + 2\mathbf{v}_2 = (\frac{3}{2}, \frac{3}{2}, -\frac{1}{2}, -\frac{1}{2})$$

(b)
$$\operatorname{proj}_W \mathbf{x} = (\mathbf{x} \cdot \mathbf{v}_1) \mathbf{v}_1 + (\mathbf{x} \cdot \mathbf{v}_2) \mathbf{v}_2 + (\mathbf{x} \cdot \mathbf{v}_3) \mathbf{v}_3 = \mathbf{v}_1 + 2 \mathbf{v}_2 = (\frac{3}{2}, \frac{3}{2}, -\frac{1}{2}, -\frac{1}{2})$$

7.9.13 Find the standard matrix for the orthogonal projection onto the subspace of R^3 spanned by $\mathbf{v}_1 = (\frac{2}{3}, \frac{1}{3}, \frac{2}{3}), \mathbf{v}_2 = (\frac{1}{3}, \frac{2}{3}, -\frac{2}{3}).$

Solution. Using Formula (6), we have
$$P = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \end{bmatrix} = \begin{bmatrix} \frac{5}{9} & \frac{4}{9} & \frac{2}{9} \\ \frac{4}{9} & \frac{5}{9} & -\frac{2}{9} \\ \frac{2}{9} & -\frac{2}{9} & \frac{8}{9} \end{bmatrix}$$

7.9.16 Use the matrix obtained in Exercise 7.9.13 to find the orthogonal projection of $\mathbf{w} = (4, -5, 1)$ onto span $\{\mathbf{v}_1, \mathbf{v}_2\}$, and check the resulting Formula (7).

Solution. Using the matrix P found in Exercise 13, the orthogonal projection of \mathbf{w} onto $W = \operatorname{span}\{\mathbf{v}_1,\mathbf{v}_2\}$ is

$$P\mathbf{w} = \begin{bmatrix} \frac{5}{9} & \frac{4}{9} & \frac{2}{9} \\ \frac{4}{9} & \frac{5}{9} & -\frac{2}{9} \\ \frac{2}{9} & -\frac{2}{9} & \frac{8}{9} \end{bmatrix} \begin{bmatrix} 4 \\ -5 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{9} \\ -\frac{11}{9} \\ \frac{26}{9} \end{bmatrix}.$$

On the other hand, using Formula (7), we have

$$\mathrm{proj}_W \mathbf{w} = (\mathbf{w} \cdot \mathbf{v}_1) \mathbf{v}_1 + (\mathbf{w} \cdot \mathbf{v}_2) \mathbf{v}_2 = (\frac{5}{3})(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}) + (-\frac{8}{3})(\frac{1}{3}, \frac{2}{3}, -\frac{2}{3}) = (\frac{2}{9}, -\frac{11}{9}, \frac{26}{9}),$$

so it coincides. \Box

7.9.26 Let
$$P = \begin{bmatrix} \frac{8}{9} & -\frac{2}{9} & \frac{2}{9} \\ -\frac{2}{9} & \frac{5}{9} & \frac{4}{9} \\ \frac{2}{9} & \frac{4}{9} & \frac{5}{9} \end{bmatrix}$$
.

Use Theorem 7.7.6 to confirm that P is the standard matrix for an orthogonal projec-

tion, and then use Theorem 7.9.3 to find the dimension of the range of that projection.

Solution. P is symmetric, and it's easy to check that $P^2 = P$. Then, by Theorem 7.9.3,

$$rank(P) = tr(P) = \frac{8}{9} + \frac{5}{9} + \frac{5}{9} = 2.$$

7.9.32 Use the Gram-Schmidt process to transform the basis $\mathbf{w}_1 = (1, 2, 1, 0)$, $\mathbf{w}_2 = (1, 1, 2, 0)$, $\mathbf{w}_3 = (0, 1, 1, -2)$, $\mathbf{w}_4 = (1, 0, 3, 1)$ into an orthonormal basis.

Solution. Let $\mathbf{v}_1 = \mathbf{w}_1 = (1, 2, 1, 0), \ \mathbf{v}_2 = \mathbf{w}_2 - \frac{\mathbf{w}_2 \cdot \mathbf{v}_1}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 = (1, 1, 2, 0) - (\frac{5}{6})(1, 2, 1, 0) = (\frac{1}{6}, -\frac{2}{3}, \frac{7}{6}, 0),$

$$\mathbf{v}_{3} = \mathbf{w}_{3} - \frac{\mathbf{w}_{3} \cdot \mathbf{v}_{1}}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1} - \frac{\mathbf{w}_{3} \cdot \mathbf{v}_{2}}{\|\mathbf{v}_{2}\|^{2}} \mathbf{v}_{2} = (0, 1, 1, -2) - (\frac{3}{6})(1, 2, 1, 0) - (\frac{\frac{1}{2}}{\frac{11}{6}}) \left(\frac{1}{6}, -\frac{2}{3}, \frac{7}{6}, 0\right)$$

$$= \left(-\frac{6}{11}, \frac{2}{11}, \frac{2}{11}, -2\right)$$

and

$$\begin{split} \mathbf{v}_4 &= \mathbf{w}_4 - \frac{\mathbf{w}_4 \cdot \mathbf{v}_1}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \frac{\mathbf{w}_4 \cdot \mathbf{v}_2}{\|\mathbf{v}_2\|^2} \mathbf{v}_2 - \frac{\mathbf{w}_4 \cdot \mathbf{v}_3}{\|\mathbf{v}_3\|^2} \mathbf{v}_3 \\ &= (1,0,3,1) - (\frac{4}{6})(1,2,1,0) - \left(\frac{\frac{11}{3}}{\frac{11}{6}}\right) \left(\frac{1}{6}, -\frac{2}{3}, \frac{7}{6}, 0\right) - \left(-\frac{2}{\frac{48}{11}}\right) \left(-\frac{6}{11}, \frac{2}{11}, \frac{2}{11}, -2\right) \\ &= \left(-\frac{1}{4}, \frac{1}{12}, \frac{1}{12}, \frac{1}{12}\right) \end{split}$$

Then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is an orthogonal basis for \mathbb{R}^4 , and the vectors

$$\mathbf{q}_{1} = \frac{\mathbf{v}_{1}}{\|\mathbf{v}_{1}\|} = \left(\frac{\sqrt{6}}{6}, \frac{\sqrt{6}}{3}, \frac{\sqrt{6}}{6}, 0\right), \quad \mathbf{q}_{2} = \frac{\mathbf{v}_{2}}{\|\mathbf{v}_{2}\|} = \left(\frac{\sqrt{66}}{66}, -\frac{2\sqrt{66}}{33}, \frac{7\sqrt{66}}{66}, 0\right)$$

$$\mathbf{q}_{3} = \frac{\mathbf{v}_{3}}{\|\mathbf{v}_{3}\|} = \left(-\frac{\sqrt{33}}{22}, \frac{\sqrt{33}}{66}, \frac{\sqrt{33}}{66}, -\frac{\sqrt{33}}{6}\right), \quad \mathbf{q}_{4} = \frac{\mathbf{v}_{4}}{\|\mathbf{v}_{4}\|} = \left(-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{6}, \frac{\sqrt{3}}{6}, \frac{\sqrt{3}}{6}\right)$$

form an orthonormal basis for R^4 .

7.9.38 Express $\mathbf{w} = (-1, 2, 6, 0)$ in the form $\mathbf{w} = \mathbf{w}_1 + \mathbf{w}_2$, where \mathbf{w}_1 is in the subspace W of R^4 spanned by the vectors $\mathbf{u}_1 = (-1, 0, 1, 2)$ and $\mathbf{u}_2 = (0, 1, 0, 1)$, and \mathbf{w}_2 is orthogonal to W.

Solution. By applying the Gram-Schmidt process to $\{u_1, u_2\}$, we can find an orthonormal basis

$$\mathbf{q}_1 = (-\frac{1}{\sqrt{6}}, 0, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}), \qquad \mathbf{q}_2 = (\frac{1}{\sqrt{12}}, \frac{3}{\sqrt{12}}, -\frac{1}{\sqrt{12}}, \frac{1}{\sqrt{12}})$$

for W. So the orthogonal projection of \mathbf{w} onto W is given by

$$\mathbf{w}_1 = \mathrm{proj}_W \mathbf{w} = (\mathbf{w} \cdot \mathbf{q}_1) \mathbf{q}_1 + (\mathbf{w} \cdot \mathbf{q}_2) \mathbf{q}_2 = (-\frac{5}{4}, -\frac{1}{4}, \frac{5}{4}, \frac{9}{4})$$

and the component of \mathbf{w} orthogonal to W is

$$\mathbf{w}_2 = \mathbf{w} - \mathbf{w}_1 = (-1, 2, 6, 0) - (-\frac{5}{4}, -\frac{1}{4}, \frac{5}{4}, \frac{9}{4}) = (\frac{1}{4}, \frac{9}{4}, \frac{19}{4}, -\frac{9}{4}).$$

- 7.9.D5
- (a) We know from Formula (6) that the standard matrix for the orthogonal projection of \mathbb{R}^n onto a subspace W can be expressed in the form $P = MM^T$. What is the relationship between the column spaces of M and P?
- (b) If you know P, how might you find a matrix M for which $P = MM^T$?
- (c) Is the matrix M unique?

Solution. (a

- (a) col(M) = col(P) = W.
- (b) Find an orthonormal basis for col(P) and use these vectors as the columns of the matrix M.
- (c) No. Any orthonormal basis for col(P) can be used to form the columns of M.

7.9.P2 If A is symmetric and idempotent, then A can be factored as $A = UU^T$, where U has orthonormal columns.

This problem is wrong. [counterexample] A=zero matrix

If A is symmetric and idempotent nonzero matrix, then A is the standard matrix of an orthogonal projection operator; namely the orthogonal projection of R^n onto W = col(A). Thus $A = UU^T$ where U is any $n \times k$ matrix whose column vectors form an orthonormal basis for W .

Typeset by \LaTeX

7.10.6 Find a
$$QR$$
-decomposition of $A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$.

Solution. Application of the Gram-Schmidt process to the column vectors $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ of A yields

$$\mathbf{q}_{1} = \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} \qquad \mathbf{q}_{2} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \qquad \mathbf{q}_{3} = \begin{bmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{\sqrt{2}} \end{bmatrix},$$

where $\mathbf{w}_1 = 2\mathbf{q}_1$, $\mathbf{w}_2 = -\mathbf{q}_1 + \mathbf{q}_2$, and $\mathbf{w}_3 = \frac{1}{2}\mathbf{q}_1 + \frac{3}{2}\mathbf{q}_2 + \frac{1}{\sqrt{2}}\mathbf{q}_3$. This yields the following QR-decomposition of A:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 2 & -1 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix} = QR$$

7.10.10 Use the QR-decomposition of the matrix A in Exercise 7.10.6 and the method of

Example 2 to find the least squares solution of the system
$$A\mathbf{x} = \mathbf{b}$$
, where $b = \begin{bmatrix} 3 \\ -1 \\ 2 \\ 1 \end{bmatrix}$.

Solution. The normal system for $A\mathbf{x} = \mathbf{b}$ can be expressed as $R\mathbf{x} = Q^T\mathbf{b}$, which is:

$$\begin{bmatrix} 2 & -1 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 3 \\ -1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{5}{2} \\ \frac{5}{2} \\ -\sqrt{2} \end{bmatrix}.$$

Solving this system by back substitution yields $x_3 = -2, x_2 = \frac{11}{2}, x_1 = \frac{9}{2}$.

7.10.16 Find the standard matrix H for the reflection of R^4 about the hyperplane $\mathbf{a}^{\perp} = (-1,2,3,1)^{\perp}$.

Solution. By Formula (16),

$$H = I - \frac{2}{\mathbf{a}^T \mathbf{a}} \mathbf{a} \mathbf{a}^T = I - \frac{2}{15} \begin{bmatrix} 1 & -2 & -3 & -1 \\ -2 & 4 & 6 & 2 \\ -3 & 6 & 9 & 3 \\ -1 & 2 & 3 & 1 \end{bmatrix} = \begin{bmatrix} \frac{13}{15} & \frac{4}{15} & \frac{2}{5} & \frac{2}{15} \\ \frac{4}{15} & \frac{7}{15} & -\frac{4}{5} & -\frac{4}{15} \\ \frac{2}{5} & -\frac{4}{5} & -\frac{1}{5} & -\frac{2}{5} \\ \frac{2}{15} & -\frac{4}{15} & -\frac{2}{5} & \frac{13}{15} \end{bmatrix}$$

7.11.10 Find the coordinate vector of $\mathbf{w} = (4, 3, 0, -2)$ with respect to the orthonormal basis formed by $\mathbf{v}_1 = (\frac{2}{3}, \frac{2}{3}, -\frac{1}{3}, 0), \ \mathbf{v}_2 = (\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, 0, \frac{1}{\sqrt{3}}), \ \mathbf{v}_3 = (\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, 0, -\frac{2}{\sqrt{6}}), \ \mathbf{v}_4 = (\frac{1}{3\sqrt{2}}, \frac{1}{3\sqrt{2}}, \frac{4}{3\sqrt{2}}, 0).$

Solution.
$$(\mathbf{w} \cdot \mathbf{v}_1, \mathbf{w} \cdot \mathbf{v}_2, \mathbf{w} \cdot \mathbf{v}_3, \mathbf{w} \cdot \mathbf{v}_4) = (\frac{14}{3}, -\frac{\sqrt{3}}{3}, \frac{5\sqrt{6}}{6}, \frac{\sqrt{2}}{6}).$$

7.11.11 Let $B = \{\mathbf{v}_1, \mathbf{v}_2\}$ be the orthonormal basis for R^2 for which $\mathbf{v}_1 = (\frac{3}{5}, -\frac{4}{5}), \mathbf{v}_2 = (\frac{4}{5}, \frac{3}{5}).$

- (a) Find the vectors \mathbf{u} and \mathbf{v} that have coordinate vectors $(\mathbf{u})_B = (1,1)$ and $(\mathbf{v})_B = (-1,4)$.
- (b) Compute $\|\mathbf{u}\|$, $\|\mathbf{v}\|$, and $\mathbf{u} \cdot \mathbf{v}$ by applying Theorem 7.11.2 to the coordinate vectors $(\mathbf{u})_B$ and $(\mathbf{v})_B$, and then check the results by performing the computations directly with \mathbf{u} and \mathbf{v} .

Solution. (a) $\mathbf{u} = \mathbf{v}_1 + \mathbf{v}_2 = (\frac{7}{5}, -\frac{1}{5}), \mathbf{v} = -\mathbf{v}_1 + 4\mathbf{v}_2 = (\frac{13}{5}, \frac{16}{5}).$

- (b) Using Theorem 7.11.2: $\|\mathbf{u}\| = \|(\mathbf{u})_B\| = \sqrt{2}$, $\|\mathbf{v}\| = \|(\mathbf{v})_B\| = \sqrt{17}$, and $\mathbf{u} \cdot \mathbf{v} = (\mathbf{u})_B \cdot (\mathbf{v})_B = 3$.
 - Computing directly: use (a). The result will be the same.

7.11.18 Let S be the standard basis for R^3 , and let $B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be the basis in which $\mathbf{v}_1 = (1, 2, 1), \mathbf{v}_2 = (2, 5, 0), \text{ and } \mathbf{v}_3 = (3, 3, 8).$

- (a) Find the transition matrix $P_{B\to S}$ by inspection.
- (b) Find the transition matrix $P_{S\to B}$ using row reduction (see Example 7).
- (c) Confirm that $P_{B\to S}$ and $P_{S\to B}$ are inverses of one another.
- (d) Find the coordinate matrix for $\mathbf{w} = (5, -3, 1)$ with respect to B, and use the matrix $P_{B\to S}$ to compute $[\mathbf{w}]_S$ from $[\mathbf{w}]_B$.
- (e) Find the coordinate matrix for $\mathbf{w} = (3, -5, 0)$ with respect to S, and use the matrix $P_{S \to B}$ to compute $[\mathbf{w}]_B$ from $[\mathbf{w}]_S$.

Solution. (a) Since S is a standard basis, $P_{B\to S} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$.

- (b) The matrix $[B|S] = \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 5 & 3 & 0 & 1 & 0 \\ 1 & 0 & 8 & 0 & 0 & 1 \end{bmatrix}$ has $\begin{bmatrix} 1 & 0 & 0 & -40 & 16 & 9 \\ 0 & 1 & 0 & 13 & -5 & -3 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{bmatrix}$ as its reduced row echelon form; thus $P_{S \to B} = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix}$
- (c) Just multiply them.
- (d) Note that v_1 , v_2 , and v_3 are not orthogonal.

The matrix $[B|\mathbf{w}] = \begin{bmatrix} 1 & 2 & 3 & 5 \\ 2 & 5 & 3 & -3 \\ 1 & 0 & 8 & 1 \end{bmatrix}$ has $\begin{bmatrix} 1 & 0 & 0 & -239 \\ 0 & 1 & 0 & 77 \\ 0 & 0 & 1 & 30 \end{bmatrix}$ as its reduced row echelon form; thus $[\mathbf{w}]_B = \begin{bmatrix} -239 \\ 77 \\ 30 \end{bmatrix}$ and $[\mathbf{w}]_S = P_{B \to S}[\mathbf{w}]_B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix} \begin{bmatrix} -239 \\ 77 \\ 30 \end{bmatrix} = \begin{bmatrix} 5 \\ -3 \\ 1 \end{bmatrix}$

(e)
$$[\mathbf{w}]_S = \begin{bmatrix} 3 \\ -5 \\ 0 \end{bmatrix}$$
 and $[\mathbf{w}]_B = P_{S \to B}[\mathbf{w}]_S = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ -5 \\ 0 \end{bmatrix} = \begin{bmatrix} -200 \\ 64 \\ 25 \end{bmatrix}$

7.11.20 Let $B_1 = \{\mathbf{u}_1, \mathbf{u}_2\}$ and $B_2 = \{\mathbf{v}_1, \mathbf{v}_2\}$ be the bases for R^2 in which $\mathbf{u}_1 = (1, 2)$, $\mathbf{u}_2 = (2, 3)$, $\mathbf{v}_1 = (1, 3)$, and $\mathbf{v}_2 = (1, 4)$.

- (a) Find the transition matrix $P_{B_2 \to B_1}$ by row reduction.
- (b) Find the transition matrix $P_{B_1 \to B_2}$ by row reduction.
- (c) Confirm that $P_{B_2 \to B_1}$ and $P_{B_1 \to B_2}$ are inverses of one another.
- (d) Find the coordinate matrix for $\mathbf{w} = (0,1)$ with respect to B_1 , and use the matrix $P_{B_1 \to B_2}$ to compute $[\mathbf{w}]_{B_2}$ from $[\mathbf{w}]_{B_1}$.
- (e) Find the coordinate matrix for $\mathbf{w} = (2, 5)$ with respect to B_2 , and use the matrix $P_{B_2 \to B_1}$ to compute $[\mathbf{w}]_{B_1}$ from $[\mathbf{w}]_{B_2}$.

Solution. (a) $\operatorname{rref}[B_1|B_2] = \operatorname{rref} \begin{bmatrix} 1 & 2 & 1 & 1 \\ 2 & 3 & 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 3 & 5 \\ 0 & 1 & -1 & -2 \end{bmatrix}$; thus $P_{B_2 \to B_1} = \begin{bmatrix} 3 & 5 \\ -1 & -2 \end{bmatrix}$

- (b) Similarly, $\text{rref}[B_2|B_1] = \begin{bmatrix} 1 & 0 & 2 & 5 \\ 0 & 1 & -1 & -3 \end{bmatrix}$; thus $P_{B_1 \to B_2} = \begin{bmatrix} 2 & 5 \\ -1 & -3 \end{bmatrix}$.
- (c) Just multiply them.

(d) $(0,1) = 2\mathbf{u}_1 - \mathbf{u}_2$; thus $[\mathbf{w}]_{B_1} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ and $[\mathbf{w}]_{B_2} = P_{B_1 \to B_2}[\mathbf{w}]_{B_1} = \begin{bmatrix} 2 & 5 \\ -1 & -3 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

(e)
$$(2,5) = 3\mathbf{v}_1 - \mathbf{v}_2$$
; thus $[\mathbf{w}]_{B_2} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$ and $[\mathbf{w}]_{B_1} = P_{B_2 \to B_1}[\mathbf{w}]_{B_2} = \begin{bmatrix} 3 & 5 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$

- 7.11.26 Let $S = \{\mathbf{e}_1, \mathbf{e}_2\}$ be the standard basis for R^2 , and let $B = \{\mathbf{v}_1, \mathbf{v}_2\}$ be the basis that results when the vectors in S are reflected about the line that makes an angle θ with the positive x-axis.
 - (a) Find the transition matrix $P_{B\to S}$.
 - (b) Let $P = P_{B \to S}$ and show that $P^T = P_{S \to B}$. Give a geometric explanation of this.

Solution. (a) We have $\mathbf{v}_1 = (\cos 2\theta, \sin 2\theta)$ and $\mathbf{v}_2 = (\sin 2\theta, -\cos 2\theta)$; thus $P_{B \to S} = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}$.

(b) Since P is an orthogonal matrix (by Theorem 7.11.7), $P^T = P^{-1} = P_{S \to B}$. Geometrically, this corresponds to the fact that reflection about the line preserves length and thus is an orthogonal transformation.

7.11.P2 Let B be a basis for R^n . Prove that the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ span R^n if and only if the vectors $(\mathbf{v}_1)_B, (\mathbf{v}_2)_B, \dots, (\mathbf{v}_k)_B$ span R^n .

Solution. Let $\mathbf{v} \in R^n$ be a vector, and write $\mathbf{v} = c_1 \mathbf{v}_1 + \cdots + c_k \mathbf{v}_k$ for some scalars $c_i \in R$. Since $(\mathbf{v})_B = c_1(\mathbf{v}_1)_B + \cdots + c_k(\mathbf{v}_k)_B$ and the coordinate mapping $\mathbf{v} \to (\mathbf{v})_B$ is bijective, it finishes the proof.