Appendix A

Digital System Implementation

Figure A.1 Common 74xx-series logic gates

Note: SystemVerilog variable names cannot start with numbers, but the names in the example code in Figure A.2 are chosen to match the manufacturer's data sheet.

Figure A.2 Medium-scale integration chips

Figure A.3 More medium-scale integration (MSI) chips

Figure A.4 2764 8KB EPROM

Figure A.5 FPGA design flow

Figure A.6 ASIC design flow

Figure A.7 7404 data sheet page 1

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	-0.5 V to 7 V
Input clamp current, I_{IK} ($\overline{V}_I < 0$ or $\overline{V}_I > V_{CC}$) (see Note 1)	±20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC}) (see Note 1)	±20 mA
Continuous output current, I _O (V _O = 0 to V _{CC})	
Continuous current through V _{CC} or GND	±50 mA
Package thermal impedance, θ _{JA} (see Note 2): D package	86° C/W
N package	80° C/W
NS package	76° C/W
PW package	131° C/W
Storage temperature range, T _{stg} 65	°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 3)

			S	SN54HC04		SN74HC04			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage		2	5	6	2	5	6	٧
V _{IH} High-level input voltage		V _{CC} = 2 V	1.5		- 8	1.5			
	High-level input voltage	V _{CC} = 4.5 V	3.15			3.15			٧
	,	V _{CC} = 6 V	4.2			4.2			
V _{IL} Low-level input volt		V _{CC} = 2 V			0.5			0.5	٧
	Low-level input voltage	V _{CC} = 4.5 V	\top		1.35			1.35	
		V _{CC} = 6 V			1.8			1.8	
VI	Input voltage		0		Vcc	0		Vcc	٧
Vo	Output voltage		0		VCC	0		Vcc	٧
Δt/Δv In		V _{CC} = 2 V			1000			1000	
	Input transition rise/fall time	V _{CC} = 4.5 V	\neg		500			500	ns
		V _{CC} = 6 V			400			400	
TA	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Figure A.8 7404 data sheet page 2

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCLS078D - DECEMBER 1982 - REVISED JULY 2003

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		T _A =25 °C			SN54HC04		SN74HC04		UNIT	
PANAMETER	TEST CONDITIONS		V _{cc}	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
V _{OH}		I _{OH} = -20 μA	2V	1.9	1.998		1.9	, i	1.9		
			4.5 V	4.4	4.499		4.4		4.4		
	$V_I = V_{IH}$ or V_{IL}		6 V	5.9	5.999		5.9		5.9		V
		$I_{OH} = -4 \text{ mA}$	4.5 V	3.98	4.3		3.7		3.84		
		$I_{OH} = -5.2 \text{mA}$	6V	5.48	5.8		5.2		5.34		
	$V_I = V_{IH}$ or V_{IL}	I _{OL} = 20 μA	2 V		0.002	0.1		0.1		0.1	
			4.5 V		0.001	0.1		0.1		0.1	
V _{OL}			6 V		0.001	0.1		0.1		0.1	V
		$I_{OL} = 4 \text{ mA}$	4.5 V		0.17	0.26		0.4		0.33	
		$I_{OL} = 5.2 \text{mA}$	6 V		0.15	0.26		0.4		0.33	
I _i	$V_1 = V_{CC}$ or 0		6V		±0.1	±100		±1000		±1000	nA
I _{cc}	$V_1 = V_{CC}$ or 0,	I ₀ =0	6V			2		40		20	μΑ
C _i			2Vto6V		3	10		10		10	pF

switching characteristics over recommended operating free-air temperature range, $CL = 50 \, pF$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	V	T _A = 25 °C			SN54HC04		SN74HC04		UNIT
PANAMETER	ER (INPUT) (OUTF	(OUTPUT)	V _C C	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
t _{pd} A Y	2 V		45	95		145		120			
	Α	Y	4.5 V		9	19		29		24	ns
			6 V		8	16		25		20	
t, Y	Y 4.5	2V		38	75		110		95		
		4.5 V		8	15		22		19	ns	
			6 V		6	13		19		16	

operating characteristics, TA = 25 °C

	PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance per inverter	No load	20	pF

Figure A.9 7404 data sheet page 3

Figure A.10 Integrated circuit packages

Figure A.11 Majority circuit on breadboard

Figure A.12 Majority gate schematic with chips and pins identified

Figure A.13 Printed circuit board cross-section

Figure A.14 Apple II+ circuit board

Figure A.15 Transmission line symbol

Figure A.16 Transmission line with matched termination

Figure A.17 Voltage waveforms for Figure A.16 at points A, B, and C

Figure A.18 Equivalent circuit of Figure A.16 at steady state

Figure A.19 Transmission line with matched source and load impedances

Figure A.20 Voltage waveforms for Figure A.19 at points A, B, and C

Figure A.21 Equivalent circuit of Figure A.19 at steady state

Figure A.22 Transmission line with open load termination

Figure A.23 Voltage waveforms for Figure A.22 at points A, B, and C

Figure A.24 Transmission line with short termination

Figure A.25 Voltage waveforms for Figure A.24 at points A, B, and C

Figure A.26 Transmission line with mismatched termination

Figure A.27 Voltage waveforms for Figure A.26 at points A, B, and C

Figure A.28 Equivalent circuit of Figure A.26 at steady state

Figure A.29 Transmission line with mismatched source and load terminations

Figure A.30 Bounce diagram for Figure A.29

Figure A.31 Voltage and current waveforms for Figure A.29

Figure A.32 Termination schemes: (a) parallel, (b) series

Figure A.33 Transmission line models: (a) semi-infinite cable, (b) lossy, (c) ideal

Figure A.34 Transmission line model: (a) for entire line and (b) with additional length, dx

Figure A.35 Transmission line showing incoming, reflected, and load voltages and currents

Figure A.36 Digital system modeled with transmission line

App M 01

UNN Figure 1