Question 2:

a)

Loop:

Category	Instructions	CPI(Clock Cycle per Instruction)	Instruction Count
A: Arithmetic and Comparison	add, addu, sub, slt, etc	1	42
B: Memory	lw, sw	8	2
D: Branch and Jump	beq, bnq, j, jal	2	13

Recursion:

Category	Instructions	CPI(Clock Cycle per Instruction)	Instruction Count
A: Arithmetic and Comparison	add, addu, sub, slt, etc	1	103
B: Memory	lw, sw	8	77
D: Branch and Jump	beq, bnq, j, jal	2	75

b)

Loop:

Clock cycles = Instruction Count x Cycles Per Instruction

Clock cycles =
$$(1 \times 42) + (8 \times 2) + (2 \times 13)$$

= $42 + 16 + 26$
= 84

Recursion:

Clock cycles = Instruction Count x Cycles Per Instruction

Clock cycles =
$$(1 \times 103) + (8 \times 77) + (2 \times 75)$$

= $103 + 616 + 150$
= 869

c)

Loop:

Clock cycles = Instruction Count x Cycles Per Instruction

Clock cycles =
$$(1 \times 42) + (4 \times 2) + (2 \times 13)$$

= $42 + 8 + 26$
= 76

Increase in function speed = (Old Total Clock Cycle - New Total Clock Cycle) / Old Total Clock Cycle

Increase in function speed = (84 - 76) / 84 = 0,095238 ≈ %10

Recursion:

Clock cycles = Instruction Count x Cycles Per Instruction

Clock cycles =
$$(1 \times 103) + (4 \times 77) + (2 \times 75)$$

= $103 + 308 + 150$
= 561

Increase in function speed = (Old Total Clock Cycle - New Total Clock Cycle) / Old Total Clock Cycle

Increase in function speed = $(869 - 561) / 869 = 0,354430 \approx %36$

Question 3:

a)

Minimum Integer Value = -2147483648 ₁₀

Hexadecimal: 80000000₁₆

Maximum Integer Value = 2147483647₁₀

Hexadecimal: 7FFFFFF₁₆

b)

 -22.2_{10} =- $(16+4+2+0,2)_{10}$ =-10110.00110011001100110012 = -1.011000110011001100110012 x 2⁴

$$X = (-1)^S x (1 + Fraction) x 2^{(Exponent - Bias)}$$

S=1 since number is negative

Fraction = 0110001100110011001₂

S Exponent Fraction Exponent - Bias = Exponent - 127 = 4 => Exponent = 131₁₀ = 100000011₂

Therefore 32 bit floating point representation of 22.2₁₀ is:

1 10000011 0110001100110011001