Введение в численные методы. Нелинейные уравнения

Баев А.Ж.

Казахстанский филиал МГУ

22 февраля 2020

План на семестр

- 1. СЛАУ (точные методы)
- 2. СЛАУ (итерационные методы)
- 3. решение нелинейных уравнений
- 4. интерполяция
- 5. аппроксимация
- 6. интегрирование
- 7. дифференцирование

Линейная алгебра

Дана функция $f \in C[a,b]$. Найти решение:

$$f(x) = 0$$

на отрезке [a,b]. Считаем, что корень существует и единственный. Необходимо вычислить корень x с заранее заданной точностью arepsilon:

$$|x^*-x|<\varepsilon, f(x)=0.$$

Метод деления отрезка пополам

Этот метод также называется «бинарный поиск» или «дихотомия». Пусть

$$f(I)f(r)<0,$$

если I < x < r, где x — корень.

Вычислим значение в середине отрезка $m=rac{l+r}{2}$.

Если f(m) и f(r) одного знака, то $x^* \in [I;m]$.

Если f(m) и f(r) разного знака, то $x^* \in [m;r]$.

Метод деления отрезка пополам (пример)

Найдем решение уравнения $x^2=2$ на отрезке [0;2] с точностью $\varepsilon=0.2$. Рассмотрим $f(x)=x^2-2$. Знаки на границах:

$$f(0) = -2 < 0, f(2) = 2 > 0.$$

1.
$$I = 0$$
, $r = 2$. $f(m) = f(1) = -1$. Уменьшаем отрезок до $[1; 2]$.

2.
$$I=1$$
, $r=2$. $f(m)=f\left(\frac{3}{2}\right)=\frac{1}{4}$. Уменьшаем отрезок до $\left[1;\frac{3}{2}\right]$.

3.
$$I=1,\ r=\frac{3}{2},$$
 $f(m)=f\left(\frac{5}{4}\right)=-\frac{7}{16}.$ Уменьшаем отрезок до $\left[\frac{5}{4};\frac{3}{2}\right].$

4.
$$I=\frac{5}{4},\ r=\frac{3}{2},$$
 $f(m)=f\left(\frac{11}{8}\right)=-\frac{7}{64}.$ Уменьшаем отрезок до $\left[\frac{11}{8};\frac{3}{2}\right].$

5.
$$\left| \frac{7}{5} - \frac{4}{3} \right| = \frac{1}{15} < 0.2$$
.
Ответ: $\frac{23}{16}$ с точностью до 0.2.

Метод деления отрезка пополам (код)

Метод деления отрезка пополам (сходимость)

Количество итераций можно определить из неравенства:

$$\frac{b-a}{2^n}\leq \varepsilon.$$

Откуда легко найти количество итераций:

$$n \ge \left\lceil \log_2 \frac{b-a}{\varepsilon} \right\rceil.$$

Скорость сходимости «линейная» с параметром $\frac{1}{2}$:

$$|x-x_{k+1}| \leq \frac{1}{2}|x-x_k|.$$

Метод хорд

Дана функцию $f(x) \in C^2[a,b]$. Функции f'(x) и f''(x) не изменяет знак на всем отрезке.

Проведем хорду через точки (a; f(a)) и (b; f(b)):

$$\frac{x-a}{b-a}=\frac{y-f(a)}{f(b)-f(a)}.$$

Если f'(x)f''(x) > 0:

$$\begin{cases} x_0 = a, \\ x_{k+1} = b - f(b) \frac{b - x_k}{f(b) - f(x_k)} \end{cases}$$

Если f'(x)f''(x) < 0:

$$\begin{cases} x_0 = b, \\ x_{k+1} = a - f(a) \frac{x_k - a}{f(x_k) - f(a)} \end{cases}$$

Метод хорд (пример)

Найдем решение уравнения $x^2-2=0$ на отрезке [0;2] с точностью $\varepsilon=0.2$. Так как f'(x)f''(x)>0, итерации слева направо $(x_0=0)$ с фиксированным правым концом хорд.

Вычисления:

$$x_{k+1} = 2 - 2 * \frac{2 - x_k}{2 - f(x_k)}.$$

1.
$$x_0 = 0$$
, $f(x_0) = -2$.
 $x_1 = 2 - 2 * \frac{2 - x_0}{2 - f(x_0)} = 1$.

$$\begin{array}{c}
\overrightarrow{3} \ 2. \ x_1 = 1, \ f(x_1) = -1. \\
x_2 = 2 - 2 * \frac{2 - x_1}{2 - f(x_1)} = \frac{4}{3}.
\end{array}$$

3.
$$x_1 = \frac{4}{3}$$
, $f(x_1) = -\frac{2}{9}$.
 $x_3 = 2 - 2 * \frac{2 - x_2}{2 - f(x_2)} = \frac{7}{5}$.

4.
$$\left|\frac{7}{5} - \frac{4}{3}\right| = \frac{1}{15} < 0.2$$
.
Ответ: $\frac{7}{5}$ с точностью до 0.2.

Метод хорд (код)

```
f(x) — исходную функцию,
f1(x) — производная (вычисленная аналитически),
f2(x) — вторая производная (вычисленная аналитически).
m := (r + 1) / 2
if f1(m) * f2(m) > 0
    xnew := a
    fb := f(b)
    dο
         xold := xnew
         xnew := b -
                  fb * (b - xold) / (fb - f(xold))
    while |xold - xnew| > eps
else
    xnew := b
    fa := f(a)
    do
         xold := xnew
         xnew := a -
                  fa * (xold - a) / (f(xold) - fa)
```

4

5

6

8

9

10

11

12

13

14

15

16

Метод хорд (сходимость)

Скорость сходимости «линейная», то есть, существует такая 0 < L < 1, что:

$$|x-x_{k+1}| \le L|x-x_k|.$$

Дана функцию $f(x) \in C^2[a,b]$. Функции f'(x) и f''(x) не изменяет знак на всем отрезке.

Проведем касательную к графику через точку $(x_k; f(x_k))$. Уравнение соответствующей прямой:

$$y = f'(x_k)(x - x_k) + f(x_k).$$

Найдем точку пересечения хорды и с осью абсцисс (y=0). Откуда легко получить формулу для вычисления корня методом касательных:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}.$$

Если f'(x)f''(x) > 0 на всем отрезке [a;b], то $x_0 = b$, а иначе $x_0 = a$.

Метод касательных (пример)

Найдем решение уравнения $x^2-2=0$ на отрезке [0;2] с точностью $\varepsilon=0.2$. Так как f'(x)=2x>0 и f''(x)=2>0 итерации справа налево $(x_0=2)$.

Вычисления:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}.$$

$$\begin{array}{c} x \\ \downarrow \\ \chi \\ \downarrow \\ \chi \\ \chi_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = \frac{3}{2}. \end{array}$$

2.
$$x_1 = \frac{3}{2}$$
, $f(x_1) = \frac{1}{4}$, $f'(x_1) = 3$.
 $x_2 = x_1 - \frac{f(x_1)}{f'(x_2)} = \frac{17}{12}$.

3.
$$\left|\frac{17}{12} - \frac{3}{2}\right| = \frac{1}{12} < 0.2$$

Ответ: $\frac{17}{12}$ с точностью до 0.2.

Метод касательных (код)

Скорость сходимости «квадратичная», то есть, существует такой 0 < L < 1, что:

$$|x - x_{k+1}| \le L|x - x_k|^2$$
.

Theorem

Пусть в некоторой окрестности корня x^* выполнены следующие условия:

$$|f'(x)| \geqslant m_1 > 0$$

$$|f''(x)| \leqslant M_2$$

$$\frac{M_2}{2m_1}|x_0 - x^*| \leqslant q < 1$$

где x_0 — начальное приближение. Тогда итерационный метод Ньютона

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

сходится и справедлива оценка:

$$|x_n - x^*| \le Cq^{2^n}$$

Доказательство.

Разложим f(x) в ряд Тейлора в окрестности точки x_k

$$f(x) = f(x_k) + (x - x_k)f'(x_k) + \frac{(x - x_k)^2}{2}f''(\xi)$$

Подставим вместо x корень уравнения $f(x^*) = 0$.

$$0 = f(x_k) + (x^* - x_k)f'(x_k) + \frac{(x^* - x_k)^2}{2}f''(\xi)$$

Подставим x_{k+1} .

$$x_{k+1} - x^* = \frac{(x^* - x_k)^2}{2f'(x_k)} f''(\xi)$$

Метод простой итерации

Итерационный процесс

$$x_{k+1} = \varphi(x_k)$$

где $\varphi(x)=x+
ho(x)f(x)$, ho(x) постоянного знака.

Theorem

Пусть x^* — корень уравнения $\varphi(x) = x$ и функция $\varphi(x)$ удовлетворяет на отрезке [a,b] условию Липшица

$$|\varphi(x_1)-\varphi(x_2)|\leqslant L|x_1-x_2|$$

с константой L < 1 . Тогда при любом выборе x_0 итерационный процесс сходится к x^st .

Литература

Подробно с методами можно ознакомить в книге $[1, \, {\rm crp.} \,\, 138]$ и $[2, \, {\rm crp.} \,\, 130]$

Самарский А.А., Гулин А.В. Численные методы. - М.: Наука, 1989.