Chetan Arora

Department of Computer Science and Engineering Joint Faculty: School of Artificial Intelligence Indian Institute of Technology Delhi

• Coined in 2021, it references the recent paradigm shift to develop a single model that can implicitly support many downstream tasks.

Beyond Pretraining and Fine-Tuning Paradigm

Pre-Training

Large unlabelled datasets (e.g. Wikipedia, BookCorpus)

Self-supervised training (hours to days)

Fine-Tuning

Smaller labelled datasets (SQuAD, MNLI Similarity)

Task-specific fine-tuning (minutes to hours)

Beyond Pretraining and Fine-Tuning Paradigm

Large unlabelled datasets (e.g. Wikipedia, BookCorpus)

Self-supervised training (hours to days)

Neural Architecture for Foundational Models Transformers

CNNs as Pattern Detector

Convolutional layers are locally connected

 a filter/kernel/window slides on the image or the previous map

 the position of the filter explicitly provides information for localizing

local spatial information w.r.t. the window is encoded in the channels

CNNs for Translation Invariance Features

 Convolutional layers share weights spatially leading to translation-invariant features

 Translation-invariance: a translated region will produce the same response at the correspondingly translated position

 A local pattern's convolutional response can be re-used by different candidate regions

Limitations of CNN's Inductive Bias

Limitations of CNN's Inductive Bias

Limitations of CNN's Inductive Bias

What is a Class to a CNN

Alternate Paradigm: Attention

What is attention

• In psychology attention is defined as the cognitive ability of humans to focus on the relevant things while processing a lot of information.

Attention mechanism in neural networks tries to do the same, by focusing on the few important things/regions among many.

Inputs:

Query vector: Q (Shape: $N_O \times D_O$)

Input vectors: X (Shape: $N_X \times D_O$)

Key matrix: $W_K(Shape: D_X \times D_O)$

Value matrix: $W_V(Shape: D_X \times D_V)$

Computation:

Key vectors: $K = XW_K (Shape: N_X \times D_Q)$

Value Vectors: $V = XW_V (Shape: N_X \times D_V)$

Similarities: $E = \frac{QK^T}{\sqrt{D_Q}} \left(Shape: N_Q \times N_X \right), E_{i,j} = (Q_i \cdot K_j) / \sqrt{D_Q}$

Attention weights: $A = \operatorname{softmax}(E, \dim = 1)$ (Shape: $N_O \times N_X$)

Output vectors: $Y = AV \left(Shape: N_Q \times D_X \right) Y_i = \Sigma_j A_{i,j} V_j$

 X_1

 X_2

 X_3

Inputs:

Query vector: Q (Shape: $N_Q \times D_Q$)

Input vectors: X (Shape: $N_X \times D_O$)

Key matrix: $W_K(Shape: D_X \times D_O)$

Value matrix: $W_V(Shape: D_X \times D_V)$

Computation:

Key vectors: $K = XW_K (Shape: N_X \times D_Q)$

Value Vectors: $V = XW_V (Shape: N_X \times D_V)$

Similarities: $E = \frac{QK^T}{\sqrt{D_Q}} \left(Shape: N_Q \times N_X \right), E_{i,j} = (Q_i \cdot K_j) / \sqrt{D_Q}$

Attention weights: $A = \operatorname{softmax}(E, \dim = 1)$ (Shape: $N_O \times N_X$)

Inputs:

Query vector: Q (Shape: $N_O \times D_O$)

Input vectors: X (Shape: $N_X \times D_O$)

Key matrix: $W_K(Shape: D_X \times D_O)$

Value matrix: $W_V(Shape: D_X \times D_V)$

Computation:

Key vectors: $K = XW_K (Shape: N_X \times D_Q)$

Value Vectors: $V = XW_V (Shape: N_X \times D_V)$

Similarities: $E = \frac{QK^T}{\sqrt{D_O}} \left(Shape: N_Q \times N_X \right), E_{i,j} = (Q_i \cdot K_j) / \sqrt{D_Q}$

Attention weights: $A = \operatorname{softmax}(E, \dim = 1)$ (Shape: $N_Q \times N_X$)

Inputs:

Query vector: Q (Shape: $N_Q \times D_Q$)

Input vectors: X (Shape: $N_X \times D_O$)

Key matrix: $W_K(Shape: D_X \times D_O)$

Value matrix: $W_V(Shape: D_X \times D_V)$

Computation:

Key vectors: $K = XW_K (Shape: N_X \times D_Q)$

Value Vectors: $V = XW_V (Shape: N_X \times D_V)$

Similarities: $E = \frac{QK^T}{\sqrt{D_Q}} \left(Shape: N_Q \times N_X \right), E_{i,j} = (Q_i \cdot K_j) / \sqrt{D_Q}$

Attention weights: $A = \operatorname{softmax}(E, \dim = 1)$ (Shape: $N_Q \times N_X$)

Inputs:

Query vector: Q (Shape: $N_Q \times D_Q$)

Input vectors: X (Shape: $N_X \times D_O$)

Key matrix: $W_K(Shape: D_X \times D_Q)$

Value matrix: $W_V(Shape: D_X \times D_V)$

Computation:

Key vectors: $K = XW_K (Shape: N_X \times D_Q)$

Value Vectors: $V = XW_V (Shape: N_X \times D_V)$

Similarities: $E = \frac{QK^T}{\sqrt{D_Q}} \left(Shape: N_Q \times N_X \right), E_{i,j} = (Q_i \cdot K_j) / \sqrt{D_Q}$

Attention weights: $A = \operatorname{softmax}(E, \dim = 1)$ (Shape: $N_O \times N_X$)

Inputs:

Query vector: Q (Shape: $N_Q \times D_Q$)

Input vectors: X (Shape: $N_X \times D_O$)

Key matrix: $W_K(Shape: D_X \times D_O)$

Value matrix: $W_V(Shape: D_X \times D_V)$

Computation:

Key vectors: $K = XW_K (Shape: N_X \times D_O)$

Value Vectors: $V = XW_V (Shape: N_X \times D_V)$

Similarities: $E = \frac{QK^T}{\sqrt{D_Q}} \left(Shape: N_Q \times N_X \right), E_{i,j} = (Q_i \cdot K_j) / \sqrt{D_Q}$

Attention weights: $A = \operatorname{softmax}(E, \dim = 1)$ (Shape: $N_O \times N_X$)

One query per input vector

Inputs:

Query vector: Q (Shape: $N_O \times D_O$)

Input vectors: X (Shape: $N_X \times D_O$)

Key matrix: $W_K(Shape: D_X \times D_O)$

Value matrix: $W_V(Shape: D_X \times D_V)$

Computation:

Key vectors: $K = XW_K (Shape: N_X \times D_Q)$

Value Vectors: $V = XW_V (Shape: N_X \times D_V)$

Similarities: $E = \frac{QK^T}{\sqrt{D_Q}} \left(Shape: N_Q \times N_X \right), E_{i,j} = (Q_i \cdot K_j) / \sqrt{D_Q}$

Attention weights: $A = \operatorname{softmax}(E, \dim = 1)$ (Shape: $N_Q \times N_X$)

Output vectors: $Y = AV \left(Shape: N_Q \times D_X \right) Y_i = \Sigma_j A_{i,j} V_j$

 X_1

 X_2

 X_3

One query per input vector

Inputs:

Input vectors: X (Shape: $N_X \times D_O$)

Key matrix: $W_K(Shape: D_X \times D_O)$

Value matrix: $W_V(Shape: D_X \times D_V)$

Query matrix: W_Q (Shape: $D_Q \times D_Q$)

Computation:

Query Vectors $Q = XW_Q$

Key vectors: $K = XW_K (Shape: N_X \times D_O)$

Value Vectors: $V = XW_V (Shape: N_X \times D_V)$

Similarities: $E = \frac{QX^T}{\sqrt{D_Q}} (Shape: N_X \times N_X) E_{i,j} = (Q_i \cdot K_j) / \sqrt{D_q}$

Attention weights: $A = softmax(E, dim = 1) (Shape: N_X \times N_X)$

Output vectors: $Y = AV (Shape: N_X \times D_V)Y_i = \Sigma_j A_{i,j}V_j$

One query per input vector

Inputs:

Input vectors: X (Shape: $N_X \times D_O$)

Key matrix: $W_K(Shape: D_X \times D_O)$

Value matrix: $W_V(Shape: D_X \times D_V)$

Query matrix: W_Q (Shape: $D_Q \times D_Q$)

Computation:

Query Vectors $Q = XW_Q$

Key vectors: $K = XW_K (Shape: N_X \times D_O)$

Value Vectors: $V = XW_V (Shape: N_X \times D_V)$

Similarities: $E = \frac{QX^T}{\sqrt{D_Q}} (Shape: N_X \times N_X) E_{i,j} = (Q_i \cdot K_j) / \sqrt{D_q}$

Attention weights: $A = softmax(E, dim = 1) (Shape: N_X \times N_X)$

Output vectors: $Y = AV (Shape: N_X \times D_V)Y_i = \Sigma_j A_{i,j}V_j$

One query per input vector

Inputs:

Input vectors: X (Shape: $N_X \times D_O$)

Key matrix: $W_K(Shape: D_X \times D_O)$

Value matrix: $W_V(Shape: D_X \times D_V)$

Query matrix: W_Q (Shape: $D_Q \times D_Q$)

Computation:

Query Vectors $Q = XW_Q$

Key vectors: $K = XW_K (Shape: N_X \times D_O)$

Value Vectors: $V = XW_V (Shape: N_X \times D_V)$

Similarities: $E = \frac{QX^T}{\sqrt{D_Q}} (Shape: N_X \times N_X) E_{i,j} = (Q_i \cdot K_j) / \sqrt{D_q}$

Attention weights: $A = softmax(E, dim = 1) (Shape: N_X \times N_X)$

Output vectors: $Y = AV (Shape: N_X \times D_V)Y_i = \Sigma_j A_{i,j} V_j$

One query per input vector

Inputs:

Input vectors: X (Shape: $N_X \times D_O$)

Key matrix: $W_K(Shape: D_X \times D_O)$

Value matrix: $W_V(Shape: D_X \times D_V)$

Query matrix: W_Q (Shape: $D_Q \times D_Q$)

Computation:

Query Vectors $Q = XW_Q$

Key vectors: $K = XW_K (Shape: N_X \times D_Q)$

Value Vectors: $V = XW_V (Shape: N_X \times D_V)$

Similarities: $E = \frac{QX^T}{\sqrt{D_Q}} (Shape: N_X \times N_X) E_{i,j} = (Q_i \cdot K_j) / \sqrt{D_q}$

Attention weights: $A = softmax(E, dim = 1) (Shape: N_X \times N_X)$

Output vectors: $Y = AV (Shape: N_X \times D_V)Y_i = \Sigma_j A_{i,j}V_j$

softmax (↑)

One query per input vector

Inputs:

Input vectors: X (Shape: $N_X \times D_O$)

Key matrix: $W_K(Shape: D_X \times D_O)$

Value matrix: $W_V(Shape: D_X \times D_V)$

Query matrix: W_Q (Shape: $D_Q \times D_Q$)

Computation:

Query Vectors $Q = XW_Q$

Key vectors: $K = XW_K (Shape: N_X \times D_O)$

Value Vectors: $V = XW_V (Shape: N_X \times D_V)$

Similarities: $E = \frac{QX^T}{\sqrt{D_Q}} (Shape: N_X \times N_X) E_{i,j} = (Q_i \cdot K_j) / \sqrt{D_q}$

Attention weights: $A = softmax(E, dim = 1) (Shape: N_X \times N_X)$

Output vectors: $Y = AV (Shape: N_X \times D_V)Y_i = \Sigma_j A_{i,j}V_j$

One query per input vector

Inputs:

Input vectors: X (Shape: $N_X \times D_O$)

Key matrix: $W_K(Shape: D_X \times D_O)$

Value matrix: $W_V(Shape: D_X \times D_V)$

Query matrix: W_Q (Shape: $D_Q \times D_Q$)

Computation:

Query Vectors $Q = XW_O$

Key vectors: $K = XW_K (Shape: N_X \times D_O)$

Value Vectors: $V = XW_V (Shape: N_X \times D_V)$

Similarities: $E = \frac{QX^T}{\sqrt{D_Q}} (Shape: N_X \times N_X) E_{i,j} = (Q_i \cdot K_j) / \sqrt{D_q}$

Attention weights: $A = softmax(E, dim = 1) (Shape: N_X \times N_X)$

Output vectors: $Y = AV (Shape: N_X \times D_V)Y_i = \Sigma_j A_{i,j}V_j$

Inputs:

Input vectors: X (Shape: $N_X \times D_O$)

Key matrix: $W_K(Shape: D_X \times D_O)$

Value matrix: $W_V(Shape: D_X \times D_V)$

Query matrix: W_Q (Shape: $D_Q \times D_Q$)

Computation:

Query Vectors $Q = XW_Q$

Key vectors: $K = XW_K (Shape: N_X \times D_O)$

Value Vectors: $V = XW_V (Shape: N_X \times D_V)$

Similarities: $E = \frac{QX^T}{\sqrt{D_Q}} (Shape: N_X \times N_X) E_{i,j} = (Q_i \cdot K_j) / \sqrt{D_q}$

Attention weights: $A = softmax(E, dim = 1) (Shape: N_X \times N_X)$

Output vectors: $Y = AV (Shape: N_X \times D_V)Y_i = \Sigma_j A_{i,j}V_j$

 X_1

 X_2

X

Inputs:

Input vectors: X (Shape: $N_X \times D_O$)

Key matrix: $W_K(Shape: D_X \times D_Q)$

Value matrix: $W_V(Shape: D_X \times D_V)$

Query matrix: W_Q (Shape: $D_Q \times D_Q$)

Computation:

Query Vectors $Q = XW_Q$

Key vectors: $K = XW_K (Shape: N_X \times D_O)$

Value Vectors: $V = XW_V (Shape: N_X \times D_V)$

Similarities: $E = \frac{QX^T}{\sqrt{D_O}} (Shape: N_X \times N_X) E_{i,j} = (Q_i \cdot K_j) / \sqrt{D_q}$

Attention weights: $A = softmax(E, dim = 1) (Shape: N_X \times N_X)$

Output vectors: $Y = AV (Shape: N_X \times D_V)Y_i = \Sigma_j A_{i,j}V_j$

 $X_{1,1}$ $X_{1,2}$ $X_{1,3}$

 $X_{2,1}$ $X_{2,2}$

 $X_{3,1}$ $X_{3,2}$

Inputs:

Input vectors: X (Shape: $N_X \times D_O$)

Key matrix: $W_K(Shape: D_X \times D_O)$

Value matrix: $W_V(Shape: D_X \times D_V)$

Query matrix: W_Q (Shape: $D_Q \times D_Q$)

Computation:

Query Vectors $Q = XW_O$

Key vectors: $K = XW_K (Shape: N_X \times D_Q)$

Value Vectors: $V = XW_V (Shape: N_X \times D_V)$

Similarities: $E = \frac{QX^T}{\sqrt{D_O}} (Shape: N_X \times N_X) E_{i,j} = (Q_i \cdot K_j) / \sqrt{D_q}$

Attention weights: A = softmax(E, dim = 1) (Shape: $N_X \times N_X$)

Output vectors: $Y = AV (Shape: N_X \times D_V)Y_i = \Sigma_i A_{i,i} V_i$

Inputs:

Input vectors: X (Shape: $N_X \times D_O$)

Key matrix: $W_K(Shape: D_X \times D_O)$

Value matrix: $W_V(Shape: D_X \times D_V)$

Query matrix: W_Q (Shape: $D_Q \times D_Q$)

Computation:

Query Vectors $Q = XW_Q$

Key vectors: $K = XW_K (Shape: N_X \times D_Q)$

Value Vectors: $V = XW_V (Shape: N_X \times D_V)$

Similarities: $E = \frac{QX^T}{\sqrt{D_O}} (Shape: N_X \times N_X) E_{i,j} = (Q_i \cdot K_j) / \sqrt{D_q}$

Attention weights: $A = softmax(E, dim = 1) (Shape: N_X \times N_X)$

Output vectors: $Y = AV (Shape: N_X \times D_V)Y_i = \Sigma_i A_{i,i} V_i$

Inputs:

Input vectors: X (Shape: $N_X \times D_O$)

Key matrix: $W_K(Shape: D_X \times D_O)$

Value matrix: $W_V(Shape: D_X \times D_V)$

Query matrix: W_Q (Shape: $D_Q \times D_Q$)

Computation:

Query Vectors $Q = XW_O$

Key vectors: $K = XW_K (Shape: N_X \times D_Q)$

Value Vectors: $V = XW_V (Shape: N_X \times D_V)$

Similarities: $E = \frac{QX^T}{\sqrt{D_O}} (Shape: N_X \times N_X) E_{i,j} = (Q_i \cdot K_j) / \sqrt{D_q}$

Attention weights: $A = softmax(E, dim = 1) (Shape: N_X \times N_X)$

Output vectors: $Y = AV (Shape: N_X \times D_V)Y_i = \Sigma_i A_{i,i} V_i$

Inputs:

Input vectors: X (Shape: $N_X \times D_Q$)

Key matrix: $W_K(Shape: D_X \times D_Q)$

Value matrix: $W_V(Shape: D_X \times D_V)$

Query matrix: W_Q (Shape: $D_Q \times D_Q$)

Computation:

Query Vectors $Q = XW_O$

Key vectors: $K = XW_K (Shape: N_X \times D_O)$

Value Vectors: $V = XW_V (Shape: N_X \times D_V)$

Similarities: $E = \frac{QX^T}{\sqrt{D_O}} (Shape: N_X \times N_X) E_{i,j} = (Q_i \cdot K_j) / \sqrt{D_q}$

Attention weights: $A = softmax(E, dim = 1) (Shape: N_X \times N_X)$

Output vectors: $Y = AV (Shape: N_X \times D_V)Y_i = \Sigma_j A_{i,j}V_j$

Run self-attention in parallel on each set of input vectors (different weights per head)

Inputs:

Input vectors: X (Shape: $N_X \times D_Q$)

Key matrix: $W_K(Shape: D_X \times D_Q)$

Value matrix: $W_V(Shape: D_X \times D_V)$

Query matrix: W_Q (Shape: $D_Q \times D_Q$)

Computation:

Query Vectors $Q = XW_Q$

Key vectors: $K = XW_K (Shape: N_X \times D_O)$

Value Vectors: $V = XW_V (Shape: N_X \times D_V)$

Similarities: $E = \frac{QX^T}{\sqrt{D_O}} (Shape: N_X \times N_X) E_{i,j} = (Q_i \cdot K_j) / \sqrt{D_q}$

Attention weights: $A = softmax(E, dim = 1) (Shape: N_X \times N_X)$

Output vectors: $Y = AV (Shape: N_X \times D_V)Y_i = \Sigma_j A_{i,j}V_j$

Inputs:

Input vectors: X (Shape: $N_X \times D_Q$)

Key matrix: $W_K(Shape: D_X \times D_Q)$

Value matrix: $W_V(Shape: D_X \times D_V)$

Query matrix: W_Q (Shape: $D_Q \times D_Q$)

Computation:

Query Vectors $Q = XW_Q$

Key vectors: $K = XW_K (Shape: N_X \times D_Q)$

Value Vectors: $V = XW_V (Shape: N_X \times D_V)$

Similarities: $E = \frac{QX^T}{\sqrt{D_O}} (Shape: N_X \times N_X) E_{i,j} = (Q_i \cdot K_j) / \sqrt{D_q}$

Attention weights: $A = softmax(E, dim = 1) (Shape: N_X \times N_X)$

Output vectors: $Y = AV (Shape: N_X \times D_V)Y_i = \Sigma_j A_{i,j}V_j$

The Transformer

 Y_1

 X_2

 X_3

 X_4

Self-Attention

Residual connection All vectors interact with each other

Residual connection All vectors interact with each other

Layer Normalization:

Given h_1, \dots, h_N (Shape: C)

scale: γ (Shape: C)

shift: β (Shape: C)

$$\mu_i = \frac{\Sigma_j h_{i,j}}{C}$$
 (scalar)

shift:
$$\beta$$
 (Shape: C)
$$\mu_i = \frac{\sum_j h_{i,j}}{C} \text{ (scalar)}$$

$$\sigma_i = \left(\frac{\sum_j (h_{i,j} - \mu_i)^2}{C}\right)^{1/2} \text{ (scalar)}$$

$$h_i - \mu_i$$

$$z_i = \frac{n_i - \mu_i}{\sigma_i}$$

$$z_{i} = \frac{h_{i} - \mu_{i}}{\sigma_{i}}$$
$$y_{i} = \gamma * z_{i} + \beta$$

Batch Norm

MLP: independently on each vector

Residual connection All vectors interact with each other

with each other

MLPMLPMLPMLP**Layer Normalization Self-Attention** X_1 X_2

Layer Normalization

Transformer Block:

- Input: Set of vectors x
- Output: Set of vectors y

- Self-attention is the only interaction between vectors!
- Layer norm and MLP work independently per vector
- Highly scalable, highly parallelizable

Post-Norm Transformer

Layer Normalization is after the residual connections

Gives more stable training, commonly used in practice

Transformer Block:

- Input: Set of vectors x
- Output: Set of vectors y

A **Transformer** is a sequence of transformer blocks

Vaswani et al:

12 blocks, $D_Q = 512$, 6 heads

- Self-attention is the only interaction between vectors!
- Layer norm and MLP work independently per vector
- Highly scalable, highly parallelizable

The Transformer: Transfer Learning

"ImageNet Moment for Natural Language Processing"

Pretraining:

- Download a lot of text from the internet
- Train a giant Transformer model for language modeling

Finetuning:

Fine-tune the Transformer on your own NLP task

N input patches, each of shape $3 \times 16 \times 16$

Pretraining Transformers: BERT Vs GPT

Parameter Efficient Fine-Tuning (PEFT)

Full Fine-tuning in Foundational Models

Model Name	η_{params}	η_{layers}	d_{model}	η _{heads}	d _{head}	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	$6.0 X 10^{-4}$
GPT-3 Medium	350M	24	1024	16	64	0.5M	$3.0 X 10^{-4}$
GPT-3 Large	760M	24	1536	16	96	0.5M	$2.5 X 10^{-4}$
GPT-3 XL	1.3B	24	2048	24	128	IM	$2.0 X 10^{-4}$
GPT-3 2.7B	2.7B	32	2560	32	80	IM	$1.6 X 10^{-4}$
GPT-3 6.7B	6.7B	32	4096	32	128	2M	$1.2 X 10^{-4}$
GPT-3 13B	13.0B	40	5140	40	128	2M	$1.0 X 10^{-4}$
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	$0.6 X 10^{-4}$

Full Fine-tuning in Foundational Models

1. Hardware Requirements

Full Fine-tuning in Foundational Models

1. Hardware Requirements

2. Storage

With PEFT

PEFT Benefits

- Reduced computational costs
 - Requires fewer GPUs and GPU time

- Lower hardware requirements
 - Works with smaller GPUs & less memory

- Better modelling performance
 - Reduces overfitting by preventing catastrophic forgetting

- Less storage
 - Majority of weights can be shared across different tasks

Prompts

 Prompts include instructions and, optionally, examples (latter called "In-Context Learning")

• Zero Shot: The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

Translate English to French:

cheese =>

Prompts

 Prompts include instructions and, optionally, examples (latter called "In-Context Learning")

• Single Shot: In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

```
Translate English to French:
sea otter => loutre de mer
cheese =>
```

Prompts

 Prompts include instructions and, optionally, examples (latter called "In-Context Learning")

• Few Shot: In addition to the task description, the model sees a <u>few</u> examples of the task. No gradient updates are performed.

```
Translate English to French:
sea otter => loutre de mer
peppermint => menthe poivre
plush giraffe => giraffe peluche
cheese =>
```

What Prompts to Use?

 Chain-of-thought (COT) prompting can help by guiding model to show its intermediate reasoning steps!

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

The answer is 27.

Chain of Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Challenge: What Prompts to Use?

Why COT prompting works? Examples may reveal the target output format as performance still improves with invalid examples; e.g.

COT

Originally, Leah had 32 chocolates and her sister had 42. So in total they had 32 + 42 = 74. After eating 35, they had 74 - 35 = 39 pieces left in total. The answer is 39.

Julie is reading a 120-page book. Yesterday, she read 12 pages and today, she read 24 pages. So she read a total of 12 + 24 = 36 pages. Now she has 120 - 36 = 84 pages left. Since she wants to read half of the remaining pages, she should read 84 / 2 = 42 pages. The answer is 42

Invalid Reasoning

Yet, correct answer

Originally, Leah had 32 chocolates, and her sister had 42. So her sister had 42 – 32 = 10 chocolates more than Leah had. After eating 35, since 10 + 35 = 45, they had 45 – 6 = 39 pieces left in total. The answer is 39.

Yesterday, Julie read 12 pages. Today, she read 12 * 2 = 24 pages. So she read a total of 12 + 24 = 36 pages. Now she needs to read 120 - 36 = 84 more pages. She wants to read half of the remaining pages tomorrow, so she needs to read 84/2 = 42 pages tomorrow. The answer is 42.

PEFT Techniques

P-Tuning

Prefix Tuning

Adapters

Low Rank Adaptation

PEFT Techniques

P-Tuning

Prefix Tuning

Adapters

Low Rank Adaptation

P-Tuning

- Appends a trainable tensor to the model's input embeddings, creating a soft prompt.
- The model weights of the LLM are frozen.
- In contrast to the regular (hard) prompt tuning, in (soft) prompt tuning the prompts are vectors instead of discrete prompts.

P-Tuning

• Treats prompt as a set of learnable parameters that are updated by backpropagation.

 For a specific task, only a small task-specific soft prompt needs to be stored

 Significantly more parameter-efficient than fullfinetuning

 Additionally, a prompt encoder can also be used which can be an LSTM or a Multi-Layer Perceptron.

P-Tuning

Training Task A * Task B *

(Soft) Prompt Tuning: Pros and Cons

 May perform poorly at smaller model sizes and on harder tasks.

 Increasing prompt length improves the performance but increasing beyond 20 tokens may only yield marginal gains.

PEFT Techniques

P-Tuning

Prefix Tuning

Adapters

Low Rank Adaptation

Prefix Tuning

- Add a trainable tensor to <u>each</u> transformer block instead of only the input embeddings, as in soft prompt tuning.
- Add learnable component to each K/V vectors.

Prefix Tuning

Regular Transformer Block

Transformer Block with Prefix

PEFT Techniques

P-Tuning

Prefix Tuning

Adapters

Low Rank Adaptation

Adapter

Regular Transformer Block

Transformer Block with Adapters

Adapter

Adapter: Architecture

Bottleneck Structure

- Reduces the number of parameters
- Reduces d-dimensional features into a smaller m-dimensional vector
 - Example: d = 1024 and m = 24
 - 1024×1024 requires 1,048,576 parameters
 - $2 \times (1024 \times 24)$ requires 49,152 parameters

• *m* determines the number of optimizable parameters and hence poses a parameter vs performance tradeoff.

Adapter: Architecture

Inference Overhead

 Additional adapter in each transformer layer increases the inference latency

 Unlike Prompt tuning, same pretrained model can't be used when fine-tuned with an adapter layer.

Example: Llama Adapter

- Prepends tunable prompt tensors to the embedded inputs.
- The prefix is learned and maintained within an embedding table rather than being provided externally.
- Each transformer block in the model has its own distinct learned prefix, allowing for more tailored adaptation across different model layers.

Transformer Block with LLAMA Adapter

Example: Llama Adapter

- Introduces a zero-initialized attention mechanism coupled with gating.
- Prevents adapters and prefix tuning from potentially disrupting the linguistic knowledge of the pretrained LLM during initial training phases.
- Adds the learnable adaption prompts only to the L topmost transformer layers instead of all transformer layers.

Transformer Block with LLAMA Adapter

PEFT Techniques

P-Tuning

Prefix Tuning

Adapters

Low Rank Adaptation

Regular Finetuning

^{*} The pretrained model could be any LLM, e.g. an encoder-style LLM (Like BERT) or a generative decoder-style LLM (like GPT)

Regular Finetuning: Alternate Visualization

Intrinsic Dimension

 While the weights of a pretrained model have full rank on the pretrained tasks, pretrained large language models have a low "intrinsic dimension" when they are adapted to a new task.

- By optimizing only 200 trainable parameters randomly projected back into the full space, one can tune a RoBERTa model to achieve 90% of the full parameter performance.
- Intrinsic dimension of a task: Minimum dimension/number-of-parameters where a model achieves within 90% of the full-parameter model performance

Low Rank Adaptation (LoRA)

LoRA weights W_A and W_B represent ΔW

$$h = W_0 x + \Delta W x = W_0 x + BAx$$

Learns two low-rank matrices A and B that are applied to the self-attention weights

Rank r is a hyperparameter that is used to specify the rank of the low-rank matrices used for adaptation

LoRA: Choosing Rank

Smaller Rank r

- Simpler low-rank matrix, and fewer parameters to learn during adaptation.
- Faster training and reduced computational requirements.
- Decreased capacity of the low-rank matrix to capture task-specific information. Lower adaptation quality. Inferior performance

- Rank in LoRA represents trade-off between model complexity, adaptation capacity, and the risk of underfitting or overfitting.
- Important to experiment with different rank values to find the right balance to achieve the desired performance on the new task.

LoRA Weight Initialization

• By setting B to zero, the product $\Delta W = BA$ initially equals zero. This preserves the behavior of the original model at the start of fine-tuning

• Gaussian distribution helps ensure that the values in A are neither too large nor too biased in any direction, which could lead to disproportionate influence on the updates when B begins to change.

LoRA Variants

QLoRA [Dettmers et al., 2023]

 Backpropagates gradients through 4-bit quantized model for reducing memory usage.

LoRA+ [Hayou et al., 2024]

• Different learning rates for the LoRA adapter matrices A and B. Improves finetuning speed.

DyLoRA [Valipou et al., 2023]

Selects rank without requiring multiple runs of training.

Parameter Efficient Tuning: Summary

Computer Vision Applications

Contrastive Language Image Pre-training (CLIP)

$I_1 \cdot T_1$	$I_1 \cdot T_2$	$I_1 \cdot T_3$	•••	$I_1 \cdot T_N$
$I_2 \cdot T_1$	$I_2 \cdot T_2$	$I_2 \cdot T_3$	•••	$I_2 \cdot T_N$
$I_3 \cdot T_1$	$I_3 \cdot T_2$	$I_3 \cdot T_3$		$I_3 \cdot T_N$
•	•	•	•.	•
$I_N \cdot T_1$	$I_N \cdot T_2$	$I_N \cdot T_3$		$I_N \cdot T_N$

CLIP Inference

Context Optimization (CoOp)

Conditional Context Opt. (CoCoOp)

Multi-modal Prompt Learning (MaPLe)

Classical CLIP

Visual Prompt Tuning

• Learned prompts adapt frozen model (e.g., no fine-tuning required) to different target tasks.

Visual-Prompt Tuning: Deep

Visual-Prompt Tuning: Shallow