ANALYSIS OF EXPERIMENTS

Chapter 8: Analysis of Experiments

- ANOVA
- Completely Randomised Design
- Randomised Block Design
- Latin Square
- Factorial Experiments
- Interaction

Analysis of Variance

Analysis of Variance (ANOVA) can be considered as a version of a linear model (so not really anything new!) when all of the explanatory variables are categorical (the response is typically continuous).

Their emphasis is a little different from linear regression models.

In linear regression models (with categorical explanatory variables) the emphasis is on testing *individual differences* between the means of the response for each level of the variable *compared to a baseline level*.

In ANOVA, the emphasis is on how much of the variation in the response variable can be attributed to variation in the explanatory variable.

ANOVA

ANOVA

One-way ANOVA

If we have a single categorical explanatory variable then the ANOVA is called one-way.

If that variable has only 2 levels then in fact the ANOVA is the same as a t-test for the differences between 2 means (not paired), which is in turn the same as the linear regression.

```
> set.seed(12345)
```

```
> irrigation=rep(c("water", "Brawndo"), c(30,30))
```

Simple Example

ANOVA

```
> t.test(yield~irrigation,var.equal=TRUE)
```

```
Two Sample t-test
```

```
data: yield by irrigation
t = -1.4935, df = 58, p-value = 0.1407
alternative hypothesis: true difference in means is
not equal to 0
95 percent confidence interval:
  -15.232545 2.215061
sample estimates:
  mean in group Brawndo mean in group water
114.6734
                      121,1821
```

Example continued

```
> Idiocracy=lm(yield~irrigation)
```

> summary(Idiocracy)

Call:

lm(formula = yield ~ irrigation)

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 114.673 3.082 37.211 <2e-16 ***
irrigationwater 6.509 4.358 1.493 0.141

Residual standard error: 16.88 on 58 degrees of freedom Multiple R-squared: 0.03703, Adjusted R-squared: 0.02043 F-statistic: 2.23 on 1 and 58 DF, p-value: 0.1407

Example continued

ANOVA

>summary(aov(yield~irrigation))

```
Df Sum Sq Mean Sq F value Pr(>F)
                     635.5 2.23 0.141
irrigation
          1
               635
Residuals
          58 16524
                     284.9
```

> anova(Idiocracy)

Analysis of Variance Table

```
Response: yield
              Sum Sq Mean Sq F value Pr(>F)
               635.5 635.46 2.2304 0.1407
irrigation 1
Residuals 58 16524.4 284.90
```

Example: 3-levels

ANOVA

Typically don't see ANOVA with one explanatory variable with only two levels (i.e. usually see more than 2 levels), because it is just the same as a t-test.

```
> set.seed(1234567)
```

- > irrigation=rep(c("Aqua", "Brawndo", "Uber_Gro"), c(30,30,30)
- > Means=rep(NA,90)
- > Means[irrigation=="Aqua"]=120
- > Means[irrigation=="Brawndo"]=115
- > Means[irrigation=="Uber_Gro"]=125
- > yield=Means+rnorm(90,sd=15)

Example continued

- > Idiocracy=lm(yield~irrigation)
- > summary(Idiocracy)

Call:

lm(formula = yield ~ irrigation)

Coefficients:

	Estimate	Std.	Error	t value	Pr(> t)	
(Intercept)	121.412		2.791	43.499	<2e-16	***
irrigation Brawndo	-7.661		3.947	-1.941	0.0555	
irrigationUber_Gro	3.981		3.947	1.009	0.3160	

Residual standard error: 15.29 on 87 degrees of freedom Multiple R-squared: 0.09364, Adjusted R-squared: 0.07281 F-statistic: 4.494 on 2 and 87 DF, p-value: 0.01389

Example continued

> anova(Idiocracy)

Analysis of Variance Table

```
Response: yield
```

```
Df Sum Sq Mean Sq F value Pr(>F) irrigation 2 2100.7 1050.37 4.4942 0.01389 * Residuals 87 20333.2 233.71
```

10

Multiple variables

ANOVA

If there are two explanatory variables it is called a two-way ANOVA.

```
> set.seed(1234567)
> irrigation=rep(c("Aqua", "Brawndo", "Uber_Gro"), c(30,30,30)
> soil=rep(rep(c("Clay", "Loam"), 3), rep(15, 6))
> alpha=120
> MeansI=rep(NA,90)
> MeansI[irrigation=="Aqua"]=0
> MeansI[irrigation=="Brawndo"]=-5
> MeansI[irrigation=="Uber_Gro"]=+5
> MeansS=rep(NA,90)
> MeansS[soil=="Clay"]=0
> MeansS[soil=="Loam"]=-10
> yield=alpha+MeansI+MeansS+rnorm(90,sd=15)
```

↓□ ▶ ↓□ ▶ ∮♀♀

11

Two-way example

```
> Idiocracy=lm(yield~irrigation+soil)
```

> summary(Idiocracy)

Call:

lm(formula = yield ~ irrigation + soil)

Coefficients:

	Estimate	Std.	Error	t value	Pr(> t)	
(Intercept)	116.136		3.041	38.184	<2e-16	***
irrigationBrawndo	-4.825		3.725	-1.295	0.199	
irrigationUber_Gro	4.725		3.725	1.268	0.208	
soilLoam	-3.953		3.041	-1.300	0.197	

Residual standard error: 14.43 on 86 degrees of freedom Multiple R-squared: 0.08766, Adjusted R-squared: 0.05583 F-statistic: 2.754 on 3 and 86 DF, p-value: 0.04738

Two-way example

ANOVA

```
> anova(Idiocracy)
```

Analysis of Variance Table

```
Response: yield
```

```
Sum Sq Mean Sq F value Pr(>F)
irrigation 2 1368.2 684.08 3.2867 0.04212 *
              351.6 351.62 1.6894 0.19716
soil
Residuals 86 17899.6 208.13
```

Two-way with interactions

We can include interaction terms in ANOVA.

- > Idiocracy.int=lm(yield~irrigation+soil+irrigation*soil)
- > summary(Idiocracy.int)

Call:

```
lm(formula = yield ~ irrigation + soil + irrigation * soil)
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                           120.503
                                    3.659
                                          32.933
                                                   <2e-16 **
irrigationBrawndo
                            -9.679
                                    5.175 -1.870
                                                   0.0649 .
irrigationUber_Gro
                            -3.521 5.175 -0.680
                                                   0.4981
soilLoam
                           -12.686
                                    5.175 -2.452
                                                   0.0163 *
irrigationBrawndo:soilLoam
                            9.707
                                    7.318 1.326
                                                   0.1883
                                           2.254
irrigationUber_Gro:soilLoam
                            16.492
                                    7.318
                                                   0.0268 *
```

Residual standard error: 14.17 on 84 degrees of freedom Multiple R-squared: 0.1402, Adjusted R-squared: 0.08901 F-statistic: 2.739 on 5 and 84 DF, p-value: 0.02424

14

Two-way example

> anova(Idiocracy.int)

Analysis of Variance Table

```
Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

irrigation 2 1368.2 684.08 3.4064 0.03780 *

soil 1 351.6 351.62 1.7509 0.18935

irrigation:soil 2 1030.6 515.32 2.5661 0.08285 .

Residuals 84 16868.9 200.82
```

15

Statistical model:

ANOVA

$$Y_{ij} = \mu_i + e_{ij}, \ e_{ij} \sim N(0, \sigma).$$

$$H_0: \mu_1 = \mu_2 = \dots (= \mu).$$

 $H_1:H_0$ is not true.

Analysis: one-way ANOVA.

Randomised block design

ANOVA enables us to partition the total variation into three sources:

- 1. blocks (of little direct interest, but need to be accounted for);
- 2. treatments;
- 3. error.

Effect of drugs on lymphocyte levels in mice

4 mice from each of 5 litters; drugs randomised to mice within litters.

			Litter			
Drug	М	N	0	Р	Q	\bar{x}
A	7.1	6.1	6.9	5.6	6.4	6.42
В	6.7	5.1	5.9	5.1	5.8	5.72
C	7.1	5.8	6.2	5.0	6.2	6.06
D	6.7	5.4	5.7	5.2	5.3	5.66
\bar{x}	6.90	5.60	6.18	5.23	5.93	5.97

Model:

response = overall mean + litter effect + drug effect + error
$$Y_{ij} = \mu + l_j + \alpha_i + e_{ij}$$

$$i = 1, \dots, 4, \quad j = 1, \dots, 5, \quad e_{ij} \sim \mathsf{N}(0, \sigma)$$

Hypothesis testing:

$$H_0: \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 \ (=0).$$
 $H_1: H_0$ is not true.

Effect of drugs on lymphocyte levels in mice

```
> lymphocyte <- read.csv("../data/lymphocyte.csv")
> lymphocyte.lm = lm(count ~ litter+drug, data=lymphocyte)
> anova(lymphocyte.lm)
```

Analysis of Variance Table

```
Response: count
```

```
Df Sum Sq Mean Sq F value Pr(>F)
litter 4 6.4030 1.60075 30.155 3.544e-06 ***
drug 3 1.8455 0.61517 11.589 0.0007392 ***
```

Residuals 12 0.6370 0.05308

Randomised block design

What if blocks were wrongly ignored?

```
> lymphocyte.lm.1 <- lm(count ~ drug, data = lymphocyte)
```

> anova(lymphocyte.lm.1)

Analysis of Variance Table

Response: count

Df Sum Sq Mean Sq F value Pr(>F)

drug 3 1.8455 0.61517 1.3981 0.2797

Residuals 16 7.0400 0.44000

Without blocks: residual MS = 0.440

With blocks: residual MS = 0.053

Without blocks:

Residual mean square is related to differences between *any* two mice, rather than differences between mice *within a litter*.

Latin square design

Model:

ANOVA

response = overall mean + row effect + column effect + treatment effect + error
$$Y_{ijk} \ = \ \mu + r_i + c_j + \alpha_k + e_{ijk}$$

ANOVA table for a Latin square design with t treatments:

Source	df	SS	MS	F	Р
rows	t-1	SS_{row}	$SS_{row}/(t-1)$		
columns	t-1	SS_{col}	$SS_{col}/(t-1)$		
treatments	t-1	SS_{trt}	$SS_{trt}/(t-1)$	MS_{trt}/MS_{res}	P
residual	(t-1)(t-2)	SS_{res}	$SS_{res}/[(t-1)(t-2)]$		
tota	$t^2 - 1$	SS_{tot}			

Latin square design

ANOVA

Food supplements and milk yield of cows:

	Period						
Cow					Ш		
1	Α	608	В	885	С	940	
2	В	715	С	1087	Α	766	
3	С	844	Α	711	В	832	

```
> milk.yield.lm <- lm(yield ~ cow + period + supp, data = milk)
> anova(milk.yield.lm)
```

Analysis of Variance Table

```
Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

cow 2 5900 2950 1.2183 0.45079

period 2 47214 23607 9.7490 0.09303 .

supp 2 103436 51718 21.3584 0.04473 *

Residuals 2 4843 2421
```

Latin Square 22

Latin square design

ANOVA

> tapply(milk.yield\$yield, milk.yield\$supp, mean)

A B C 695.0000 810.6667 957.0000

Large differences, but not highly significant.

A single 3×3 Latin square usually does not give sufficient precision:

- It has only 3 replicates;
- The ANOVA has only 2 error DF (t value = 4.303);
- Most experiments need at least 10 error DF.

Latin Square

- Investigate the effect of two or more factors.
- Have the number of **treatment combinations** equal to the product of the number of levels of each factor.
 - e.g. a $3 \times 2 \times 4$ factorial experiment has 24 treatment combinations;
- Are written as a^b if each factor has the same number of levels, e.g. 2^3 for 3 factors at 2 levels.
- Have a **factorial treatment structure**; this doesn't affect the design, which relates to the *blocking* structure.

Quality of pancakes

Experiment to examine the effect of amount of whey and a baking supplement on quality of pancakes:

Amount of whey

		0%	10%	20%	30%	mean
no		4.4	4.6	4.5	4.6	
suppl	ement	4.5	4.5	4.8	4.7	4.63
		4.3	4.8	4.8	5.1	
-		3.3	3.8	5.0	5.4	
suppl	ement	3.2	3.7	5.3	5.6	4.34
		3.1	3.6	4.8	5.3	
mean		3.80	4.17	4.87	5.12	4.49

Quality of pancakes experiment:

> round(tapply(pancakes\$quality, pancakes[, 1:2], mean), 2)

```
whey
supp 0% 10% 20% 30%
no supplement 4.4 4.63 4.70 4.80
supplement 3.2 3.70 5.03 5.43
```

- Interaction between two factors occurs when the differences between levels of one factor depend on the level of the other factor.
- The presence of interaction means that the effects are not additive.
- On an interaction plot, no interaction appears as parallel line segments. The greater the departure from "parallel" (or additivity), the greater the interaction

Interaction plot

ANOVA

27

ANOVA

Statistical model:

quality = overall mean + supplement effect + whey effect + interaction effect + error
$$y_{ijk} \ = \ \mu + \alpha_i + \beta_j + \gamma_{ij} + e_{ijk}$$

Main effects:

- α_i , i=1,2 (supplement effects);
- β_j , j=1 to 4 (whey effects).

Interaction effects:

• γ_{ij} (additional effects arising from each combination of supplement and whey).

4 1 1 4 1 1 4 1 4 1 4 1 4 1

ANOVA

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + e_{ijk}$$

Null hypotheses to test:

- $H_0: \alpha_1 = \alpha_2 = 0$ (no main effect of supplement);
- $H_0: \beta_1=\beta_2=\beta_3=\beta_4=0$ (no main effect of whey);
- $H_0: \gamma_{ij} = 0$ for all i, j (no interaction).

ANOVA

- > pancakes.lm <- lm(quality ~ supp * whey, data = pancakes)</pre>
- > anova(pancakes.lm)

Analysis of Variance Table

```
Response: quality

Df Sum Sq Mean Sq F value Pr(>F)

supp 1 0.5104 0.51042 17.014 0.0007942 ***

whey 3 6.6912 2.23042 74.347 1.304e-09 ***

supp:whey 3 3.7246 1.24153 41.384 9.130e-08 ***

Residuals 16 0.4800 0.03000
```

- Small P-values ⇒ reject all three null hypotheses;
- BUT there is significant interaction ⇒ not useful to test main effects, because they are averaged across all the levels of the other factor;
- The null hypothesis concerning the interaction should be tested first;
- If it is accepted, then the null hypotheses about the main effects can be usefully tested.

ANOVA

Inference when the interaction is significant:

Compare pairs of means for factor combinations.

Example: 95% confidence interval for supp + 20% whey vs supp + 30% whey:

$$5.43 - 5.03 \pm t_{16}(.975) \times \sqrt{0.0300(\frac{1}{3} + \frac{1}{3})}$$

= $0.40 \pm 2.120 \times 0.141 = 0.40 \pm 0.30 = (0.10, 0.70)$.

Note that supplement + 30% whey gives the largest mean value for quality. The next largest is supplement + 20%. The above CI suggests that the former is significantly larger than the latter. Hence it will be significantly larger than any other.

Conclusion:

supplement + 30% whey produces the best quality pancakes.

ANOVA

Creating a single factor cookmethod:

 $4 \times 2 = 8$ combinations of supplement \times whey.

An ANOVA with cookmethod as the only factor in the model results in:

- > pancakes.lm.1 <- lm(quality ~ cookmethod, data = pancakes > anova(pancakes.lm.1)

Analysis of Variance Table

```
Response: quality
```

Df Sum Sq Mean Sq F value Pr(>F)

cookmethod 7 10.926 1.5609 52.03 7.94e-10 ***

Residuals 16 0.480 0.0300

Add SS and df for supp, whey, and the supp \times whey interaction.

32

Degrees of freedom for analysing a factorial experiment

- The total df is 1 fewer than the total number of observations.
- The df for a main effect is 1 fewer than the number of levels of the factor.
- The df for an interaction term is the product of the df of the factors making up the interaction (provided there are no missing treatment combinations).

ANOVA

Inference when the interaction is not significant:

Food consumption in male and female rats: fresh vs rancid lard.

Lard							
Gender	Fresh	Rancid	row mean				
	709	592					
М	679	538					
	699	476					
mean	695.7	535.3	615.5				
	657	508					
F	594	505					
	677	539					
mean	642.7	517.3	580.0				
column mean	669.2	526.3					

ANOVA

Analysis of Variance Table

```
Response: food
```

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
gender	1	3781	3781	2.5925	0.1460358	
lard	1	61204	61204	41.9685	0.0001925	***
gender:lard	1	919	919	0.6300	0.4502546	
Residuals	8	11667	1458			

Interaction

35

Because the interaction is not significant, it is useful to compare means for the main effects.

36