Optimisation in pattern recognition:

Principal Component Analysis (PCA)

Maximum variance formulation Minimum error formulation

Prerequisite:

Linear algebra (EE310)

Optimisation (EE429)

- Lagrange multipliers
- Gradient method

Matrix and vector derivatives

Further reading:

Appendix A: Mathematical Foundations,

R.Duda, P.Hart, D.Stork, Pattern

Classifcation (Second Edition), JOHN

WILEY & SONS, Inc. 2001.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.320.4607&rep=rep1&type=pdf

http://cns-classes.bu.edu/cn550/Readings/duda-etal-00.pdf

Chapter 12, C.M.Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

Matrix and Vector Derivatives

Matrix and vector derivatives are obtained first by element-wise derivatives and then reforming them into matrices and vectors.

$$\frac{\partial \mathbf{x}}{\partial t} = \begin{bmatrix} \frac{\partial x_1}{\partial t} \\ \vdots \\ \frac{\partial x_n}{\partial t} \end{bmatrix} \qquad \frac{\partial \mathbf{F}}{\partial t} = \begin{bmatrix} \frac{\partial F_{1,1}}{\partial t} & \cdots & \frac{\partial F_{1,m}}{\partial t} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_{n,1}}{\partial t} & \cdots & \frac{\partial F_{n,m}}{\partial t} \end{bmatrix}$$

$$\frac{\partial f}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}$$

$$\frac{\partial \mathbf{f}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_m} \end{bmatrix} \qquad \frac{\partial f}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial f}{\partial X_{1,1}} & \cdots & \frac{\partial f}{\partial X_{n,1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial X_{1,m}} & \cdots & \frac{\partial f}{\partial X_{n,m}} \end{bmatrix}$$

Matrix and Vector Derivatives

Useful formula for linear and quadratic functions:

$$\frac{\partial \mathbf{a}^T \mathbf{x}}{\partial \mathbf{x}} = \frac{\partial \mathbf{x}^T \mathbf{a}}{\partial \mathbf{x}} = \mathbf{a}^T$$

$$\frac{\partial \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \frac{\partial \mathbf{x}^T \mathbf{A}}{\partial \mathbf{x}^T} = \mathbf{A}$$

$$\frac{\partial \mathbf{x}^T \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \chi^{\uparrow} \left(\Lambda^{\uparrow} + \Lambda^{\uparrow} \right) =$$

Maximum variance formulation of PCA

- PCA (also known as Karhunen-Loeve (KL) transform) is a technique for: dimensionality reduction, lossy data compression, feature extraction, and data visualisation.
- PCA is defined as the orthogonal projection of the data onto a lower dimensional linear space such that the variance of the projected data is maximised.

Maximum variance formulation of PCA

- Given a data set $\{\mathbf{x}_n\}$, n = 1,...,N and $\mathbf{x}_n \in \mathbb{R}^D$, our goal is to project the data onto a space of dimension M << D while maximising the projected data variance.
- − For simplicity, M = 1. The direction of this space is defined by a vector $\mathbf{u}_1 \in \mathbb{R}^D$ s.t. $\mathbf{u}_1^\mathsf{T} \mathbf{u}_1 = 1$.
- Each data point \mathbf{x}_n is then projected onto a scalar value $\mathbf{u}_1^\mathsf{T} \mathbf{x}_n$.

Maximum variance formulation of PCA

- The mean is $\mathbf{u}_1^T \overline{\mathbf{x}}$, where

$$\overline{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n.$$

The variance is given by

$$\frac{1}{N} \sum_{n=1}^{N} \mathcal{E}_{y_{n}} \chi_{n} - u_{n}^{T} \chi_{n}^{2} = u_{n}^{T} \cdot S_{y_{n}}^{2}$$

where **S** is the data covariance matrix defined as

Maximum variance formulation of PCA

- We maximise the projected variance $\mathbf{u}_1^\mathsf{T} \mathbf{S} \mathbf{u}_1$ with respect to \mathbf{u}_1 with the normalisation condition $\mathbf{u}_1^\mathsf{T} \mathbf{u}_1 = 1$.
- The Lagrange multiplier formulation is

- By setting the derivative with respect to \mathbf{u}_1 to zero, we obtain

- \longrightarrow \mathbf{u}_1 is an eigenvector of **S**.
- By multiplying \mathbf{u}_1^T to both sides and using the condition $\mathbf{u}_1^T \mathbf{u}_1 = 1$, the variance is obtained by $\mathbf{u}_1^T \mathbf{S} \mathbf{u}_1 = \lambda_1$.

Maximum variance formulation of PCA

- We obtain the maximum variance, when u₁ is the eigenvector with the largest eigenvalue λ₁.
- The eigenvector is also called the *principal component*.
- For the general case of an M dimensional subspace, we obtain the M eigenvectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_M$ of the data covariance matrix \mathbf{S} corresponding to the M largest eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_M$.

Minimum error formulation of PCA

– Alternative (equivalent) formulation of PCA is to minimise the reconstruction error. Given a data set $\{\mathbf{x}_n\}$, n = 1,...,N and $\mathbf{x}_n \in \mathbb{R}^D$, we consider an orthonormal set of D-dimensional basis vectors $\{\mathbf{u}_i\}$, i=1,...,D (when the data covariance matrix is of full rank) s.t.

$$\mathbf{u}_i^T \mathbf{u}_j = \delta_{ij}.$$
 $\delta_{i,j} = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$

Each data point is represented by a linear combination of the basis vectors

Minimum error formulation of PCA

- The coefficients $\alpha_{ni} = \mathbf{x}_n^T \mathbf{u}_i$, and without loss of generality we have

$$\mathbf{x}_n = \sum_{i=1}^D \left(\mathbf{x}_n^T \mathbf{u}_i \right) \mathbf{u}_i.$$

Our goal is to approximate the data point using M << D. Using M-dimensional linear subspace, we write each data point as

$$\chi_{n} = \sum_{i=1}^{M} z_{n_{i}} u_{i} + \sum_{i=M+1}^{M} z_{i} u_{i}$$

where b_i are constants for all data points.

Minimum error formulation of PCA

We minimise the distortion measure (or reconstruction error)

$$J = \frac{1}{N} \sum_{n=1}^{N} ||\mathbf{x}_n - \widetilde{\mathbf{x}_n}||^2 \ge \int_{-\infty}^{\infty} (\chi_{\mathbf{y}} - \chi_{\mathbf{y}})^{\gamma}$$

with respect to \mathbf{u}_i , \mathbf{z}_{ni} , b_i .

- Setting the derivative with respect to z_{nj} to zero, from the orthonormality conditions, we have

$$Z_{\eta} = \chi_{\eta} U$$

where j = 1, ..., M.

- Setting the derivative of J w.r.t. b_i to zero gives

where
$$j = M + 1, ..., D$$
.

Minimum error formulation of PCA

- We substitute for z_{ni} and b_i , then we have

$$\mathbf{x}_n - \widetilde{\mathbf{x}}_n = \sum_{i=1}^{N} \mathcal{E}(\mathbf{x}_N - \widetilde{\mathbf{x}})^{T} \cdot \mathbf{u}_{i}^{T} \mathcal{E}(\mathbf{x}_i)^{T} \cdot \mathbf{u}_{i}^{T} \mathcal{E}(\mathbf{x}_i)^{T} \mathcal{E}(\mathbf{x}_i)^{T}$$

- We see that the displacement vectors lie in the space orthogonal to the principal subspace, as it is a linear combination of u_i , where i = M + 1, ..., D.
- We further get

$$J = \frac{1}{N} \sum_{n=1}^{N} \sum_{i=M+1}^{D} (\mathbf{x}_n^T \mathbf{u}_i - \overline{\mathbf{x}}^T \mathbf{u}_i)^2 = \underbrace{\sum_{i=M+1}^{N} \mathbf{u}_i^T \mathbf{u}_i}_{\text{odd}}$$

Minimum error formulation of PCA

- Consider a two-dimensional data space i.e. D = 2 and a one-dimensional principal subspace M = 1. Then, we choose \mathbf{u}_2 that minimises

$$\widetilde{J} = \mathbf{u}_2^T \mathbf{S} \mathbf{u}_2 + \lambda_2 (1 - \mathbf{u}_2^T \mathbf{u}_2).$$

- Setting the derivative w.r.t. \mathbf{u}_2 to zero yields $\mathbf{S}\mathbf{u}_2 = \lambda_2 \mathbf{u}_2$

- We therefore obtain the minimum value of J by choosing \mathbf{u}_2 as the eigenvector corresponding to the smaller eigenvalue.
- We choose the principal subspace by the eigenvector with the larger eigenvalue.

Minimum error formulation of PCA

 The general solution is to choose the eigenvectors of the covariance matrix with *M* largest eigenvalues:

$$\mathbf{S}\mathbf{u}_i = \lambda_i \mathbf{u}_i$$

where i = 1, ..., M.

The distortion measure (or reconstruction error) becomes

(Recap) PCA

- Principal components are the vectors in the direction of the maximum variance of the projection data.
- For given 2D data points, u1 and u2 are found as PCs.

- For dimension reduction,
 - Each 2D data point is transformed to a single variable z1 representing the projection of the data point onto the eigenvector u1.
 - The data points projected onto u1 has the max variance.
- PCA infers the inherent structure of high dimensional data.
- The intrinsic dimensionality of data is much smaller.

(Recap) PCA

PCA (also known as Karhunen-Loeve transform) is a useful technique for:

- feature extraction,
- lossy data compression,
- dimensionality reduction,
- and data visualisation.

M = 50

PCA when D>>N

Given a data set $\{\mathbf{x}_n\}$, n = 1,...,N and $\mathbf{x}_n \in \mathbb{R}^D$, our goal is to project the data onto a space of dimension M << D.

- We compute the eigenvectors \mathbf{u}_i of the matrix AA^T (for simplicity, instead of $S=(1/N)AA^T$).
- The matrix AA^{T} (DxD matrix) is typically very large (not practical).

We consider the matrix A^TA (NxN matrix) instead.

- Compute the eigenvectors \mathbf{v}_i of A^TA :

$$A^{T}A\mathbf{v}_{i} = \mu_{i}\mathbf{v}_{i}$$

- What is the relationship between \mathbf{u}_i and \mathbf{v}_i ?

$$\begin{aligned} & A^T A \boldsymbol{v}_i = \boldsymbol{\mu}_i \boldsymbol{v}_i \, \rightarrow \, A A^T A \boldsymbol{v}_i = \boldsymbol{\mu}_i A \boldsymbol{v}_i \, \rightarrow \, S A \boldsymbol{v}_i = \boldsymbol{\mu}_i A \boldsymbol{v}_i \\ & \rightarrow \, S \boldsymbol{u}_i = \boldsymbol{\mu}_i \boldsymbol{u}_i \, \text{ where } \boldsymbol{u}_i \! = \! A \boldsymbol{v}_i \end{aligned}$$

Thus, AA^T and A^TA have the same eigenvalues and their eigenvectors are related s.t. $\mathbf{u}_i = A\mathbf{v}_i$

PCA when D>>N

- Note 1: AA^T can have up to D eigenvalues and eigenvectors.
- Note 2: A^TA can have up to N (or N-1) eigenvalues and eigenvectors.
- Note 3: The M eigenvalues of A^TA (along with their corresponding eigenvectors)
 correspond to the M largest eigenvalues of AA^T (along with their corresponding
 eigenvectors).

Compute the M best eigenvectors of AA^T : $\mathbf{u}_i = A\mathbf{v}_i$ (important: normalize \mathbf{u}_i such that $||\mathbf{u}_i|| = 1$)

Limitations of PCA

Unsupervised learning

 PCA finds the direction for maximum variance of data (unsupervised), while LDA (Linear Discriminant Analysis) finds the direction that optimally separates data of different classes (discriminative or supervised).

Linear model

- PCA is a linear projection method.
- When data lies in a nonlinear manifold, PCA is extended to Kernel PCA by the kernel trick.

Gaussian assumption

 PCA (Principal Component Analysis) models data as Gaussian distributions (2nd order statistics), whereas ICA (Independent Component Analysis) captures higher-order statistics.

PCA vs ICA

Holistic bases

PCA bases are holistic (cf. part-based) and less intuitive.

NMF (Non-negative Matrix Factorisation) yields bases, which capture local Original

facial components.

D.Lee and S.Seung (1999). "Learning the parts of objects by non-negative matrix factorization". Nature 401 (675 5): 788-791.

PCA vs NMF

Uniform prior on the subspace

- A subspace is spanned by the orthonormal bases i.e. eigenvectors computed from the covariance matrix.
- It interprets each observation with the uniform prior on the subspace.
- PPCA (Probabilistic PCA): It estimates the probability of generating each observation with Gaussian distribution,

$$p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

subspace

PCA vs PPCA

Imperial College

London Face Recognition vs Object Categorisation

- Both are as multi-class classification problems.
- Classes are different object categories in object categorisation, while classes are different person identities in face recognition.

Imperial College

London Face Recognition vs Object Categorisation

- Intraclass and Interclass variations in object categorisation are wider, compared to face recognition.
- We extract representations/features that minimise intraclass variations and maximise interclass variations for a classification problem.
- Bag of Words (BoW) is one of dominating-arts for feature extraction for generic object categorisation, while subspace/manifolds are standard techniques for face image analysis.
- Using more advanced classifiers (Support Vector Machine/Randomised Forests/Convolutional Neural Network, cf. NN (Nearest Neighbour) classifier) often improves recognition performance.