LUND UNIVERSITY

FYSC12 Pro Forma Lab Report

Daniel Cox, Anton Såmark-Roth

September 23, 2019

Abstract

Elevator pitch for the whole report, just a few lines on what this whole document is.

CONTENTS

1	Introduction [1/2 page]	4			
2	Theory [2-3 pages MAX]				
3	Experimental Setup [1-2 pages]	6			
4	Results [1/2 page each] 4.1 Task 1 4.2 Task 2 4.3 Task N-1 4.4 Task N	7 7 7 7 7			
5	Discussion	7			
6	Conclusion	9			

1 INTRODUCTION [1/2 PAGE]

Introduce the report, the aims of the lab and the learning outcomes. Remember this should be legible to someone who was not at the lab

2 Theory [2-3 pages MAX]

Included are a number of figures from text books relevant to the theory. Feel free to use these to guide what to include. Remember only the relevant theory.

- Detectors
- · Gamma-ray interactions with matter

Don't just transpose sections from the textbook[1, 3]. Give specific references if it's a long text such as a book, e.g. Section 7.1 in Krane[4] or Section 5.3 in Lilley[2]. This shows you've actually read the work you reference.

Figure 2.1: Schematic representation of possible interactions of a γ ray within material. Reproduced from Fig 2.8[1]

Figure 2.2: Electronic band structure of an n-type (a) and a p-type (b) semiconductor. Reproduced from Fig 6.6[2]

Figure 2.3: Depletion zone between a p-n junction without (a) and with (b) an external electric field applied. Reproduced from Fig 6.7[2]

3 EXPERIMENTAL SETUP [1-2 PAGES]

Describing the setup used, explaining the use of components. Use diagrams whenever relevant, not just here but throughout the report.

Figure 3.1: Schematic representation of electronics chain

4 RESULTS [1/2 PAGE EACH]

4.1 TASK 1

Briefly describe the task, method used, result. Use diagrams.

4.2 TASK 2

Briefly describe the task, method used, result. Use tables.

4.3 TASK N-1

Briefly describe the task, method used, result. Don't forget errors.

4.4 TASK N

Briefly describe the task, method used, result. Include the reference for tools used, such as BrIcc[5]

5 DISCUSSION

Link everything together, theory to results. Detector comparison.

Table 5.1: Individual effects of the high voltage and aluminised Mylar absorber foil on the electron energy and full-width at half-maximum (FWHM) of the peaks from the ¹³³Ba decay [6].

	Energy	FWHM	Energy	FWHM
	[keV]	[keV]	[keV]	[keV]
Literature This work	75.28(1)		320.03(1)	
Unsuppressed	75.4(1)	9.7(1)	320.2(1)	6.6(1)
+5 kV	70.0(1)	9.6(1)	315.2(1)	6.9(1)
Absorber foil	63.6(1)	12.9(1)	316.0(1)	7.7(1)

Figure 5.1: Comparison of three setups on detected radiation. Reproduced from [7]

6 CONCLUSION

Any final reflections on the labs, learning outcomes, contextualisation of detectors and gammaray spectroscopy in physics.

REFERENCES

- [1] G.R. Gilmore, Practical Gamma-ray Spectrometry (Wiley, 2008), ISBN 978-0-470-86196-7
- [2] J. Lilley, Nuclears Physics, Principles and Applications (Wiley, 2001), ISBN 978-0-471-97936-4
- [3] G.G. Knoll, Radiation Detection and Measurement (Wiley, 1979), ISBN 978-0-470-13148-0
- [4] K.S. Krane, Introductory Nuclear Physics (Wiley, 1987), ISBN 047180553X
- [5] T. Kibédi et al., Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment **589**(2), 202 (2008), ISSN 01689002, **DOI** 10.1016/j.nima.2008.02.051
- [6] Y. Khazov, A. Rodionov, F.G. Kondev, Nuclear Data Sheets 112, 855 (2009), ISSN 00903752,DOI 10.1016/j.nds.2009.06.002
- [7] P. Papadakis et al., European Journal of Physics A 54 (2018)