Receiver-Based Flow Control for Networks in Overload

Chih-ping Li
Massachusetts Institute of Technology

joint work with Eytan Modiano (MIT) IEEE INFOCOM April 18, 2013

Traditional Flow Control

- Sources adjust transmission rates in response to network congestion
 - TCP flow control
 - Network utility maximization problems

maximize: $\sum U_n(x_n)$

subject to: $(x_n) \in \Lambda$

Not All Sources Perform Flow Control

- Greedy users
- Malicious users launch attacks to crash prominent websites
- UDP-based flows

If flow 2 overloads the network, then flows 1 & 3 are adversely affected

Not All Sources Perform Flow Control

- Greedy users
- Malicious users launch attacks to crash prominent websites
- UDP-based flows

If flow 2 overloads the network, then flows 1 & 3 are adversely affected

Task I:

In-network packet dropping by all intermediate network nodes to optimize per-flow throughput without source cooperation

When Source-Based Flow Control is Ineffective

• Flash crowd - lots of small flows yield congestion close to a web server (e.g., news websites experience high delay after the 911 attack)

When Source-Based Flow Control is Ineffective

 Flash crowd - lots of small flows yield congestion close to a web server (e.g., news websites experience high delay after the 911 attack)

Task 2: Let the receiver control the aggregate rate of a class of flows without source cooperation

When Source-Based Flow Control is Ineffective

 Flash crowd - lots of small flows yield congestion close to a web server (e.g., news websites experience high delay after the 911 attack)

Task 2: Let the receiver control the aggregate rate of a class of flows

without source cooperation

Provide fairness (differentiated services) over classes of flows, instead of individual flows

Task I: Maximizing weighted sum throughput by in-network packet dropping

Maximum Weighted Sum Throughput

r_i - long-term throughput of flow i

Maximize: $3 r_1 + 2 r_2 + 1 r_3 \longrightarrow Optimal throughput (1, 0, 1)$

B serves flow 1, A serves flow 3

Maximum Weighted Sum Throughput

r_i - long-term throughput of flow i

Maximize: $3 r_1 + 2 r_2 + 1 r_3 \longrightarrow Optimal throughput (1, 0, 1)$

B serves flow I, A serves flow 3

Maximize: $3 r_1 + 5 r_2 + 1 r_3 \longrightarrow Optimal throughput (0, 1, 0)$

A & B serve flow 2

Each node has a network-layer queue Q(t) and a drop queue D(t) for each flow

The use of D(t): directly control average packet dropping rate

Dropping policy for flow 2 at node A:

Dropping policy for flow 2 at node A:

 d_{max} : a finite constant guaranteeing the network can be stabilized by packet dropping

Dropping policy for flow 2 at node A:

 d_{max} : a finite constant guaranteeing the network can be stabilized by packet dropping

Overload Resilient Algorithm

Maximize: $\theta_1 r_1 + \theta_2 r_2 + \theta_3 r_3$

Back-pressure routing over queues Q_c(t)

Theorem:

 $Q_c(t) \le V\theta_c + 2d_{max}$ for all t (using finite-size buffer $\propto \theta_c$)

 $\sum \theta_c r_c \ge \text{optimal - } O(1/V)$ (performance gap diminishes as buffer size increases)

Independent of arrival rates

Distributed algorithm

If node B is misconfigured and forwards everything

If node B is misconfigured and forwards everything

In source-based flow control, if B fails to filter packets then C & R are overloaded greedy user

New defense perimeter (A, C) is seamlessly formed without any changes in network operation

Simulation

Unit capacity links Arrival rates (2, 2, 2)

/ \	1	\circ		
(0)	\/\0\V1\\\171\\\\\	7 m	1 ') ma	-
lai	Maximizing	•) 7 1	$+$ $\angle 10$	$+$ 1 γ
()	1,100,111111111111111111111111111111111	\sim . I	1 —	' ' '

V	r_1	r_2	r_3
10	.787	.168	.099
20	.867	.133	.410
50	.992	.008	.967
100	.999	0	.999
opt	1	0	1

(b) Maximizing $3r_1 + 5r_2 + r_3$

V	r_1	r_2	r_3
10	.185	.815	.083
20	.107	.893	.095
50	.031	.969	.031
100	.002	.998	.001
opt	0	1	0

Buffer size is $V\theta_c$ + $2d_{max}$

As buffer size

increases

Simulation

Time-varying arrival rates $(0.8, 0.1, 0.8) \rightarrow (0.8, 2, 0.8) \rightarrow (0.8, 0.1, 0.8)$ stable overload stable

Maximize $3 r_1 + 5 r_2 + r_3$

time interval	throughput in this interval	optimal value
$[0, 3 \cdot 10^5) [3 \cdot 10^5, 6 \cdot 10^5) [6 \cdot 10^5, 10^6)$	(.807, .104, .8) (.002, .998, 0) (.793, .106, .796)	(.8, .1, .8) (0, 1, 0) (.8, .1, .8)

Simulation

Maximize $3 r_1 + 5 r_2 + r_3$

time interval	throughput in this interval	optimal value
$[0, 3 \cdot 10^5) [3 \cdot 10^5, 6 \cdot 10^5) [6 \cdot 10^5, 10^6)$	(.807, .104, .8) (.002, .998, 0) (.793, .106, .796)	(.8, .1, .8) (0, 1, 0) (.8, .1, .8)

(d) Queue $Q_A^{(3)}(t)$

(c) Queue $Q_A^{(2)}(t)$

Task 2: Controlling the aggregate rate of flows by receiver-based flow control

Class-Based Utility Maximization

Assign a utility to a class of flows to control its aggregate throughput

maximize
$$g_1(r_{1A} + r_{1C}) + g_2(r_{2B}) + g_3(r_{3D})$$

subject to $r_{ij} \leq \lambda_{ij}, \ (r_{1A}, r_{1C}, r_{2B}, r_{3D})$ feasible

Generalizing the traditional approach of optimizing per-flow utilities

Class-Based Utility Maximization

maximize
$$g_1(r_{1A} + r_{1C}) + g_2(r_{2B}) + g_3(r_{3D})$$

subject to $r_{ij} \leq \lambda_{ij}, \ (r_{1A}, r_{1C}, r_{2B}, r_{3D})$ feasible

Can we design a distributed control policy?

- non-separable objective function
- how to distributively drop packets, without knowing arrival rates, to optimize aggregate throughput of each class?

Receiver-End Flow Control

Control valve $Z_c(t)$ interacts with back-pressure routing to optimize class-c aggregate throughput

(1) Back-pressure routing, where each node maintains per-class queues. For flow c over link (a, d_c), use the differential backlog

$$W_{I}^{(c)}(t) = Q_{a}^{(c)}(t) - Q_{d_{c}}^{(c)}(t)$$

(1) Back-pressure routing, where each node maintains per-class queues. For flow c over link (a, d_c), use the differential backlog

$$W_{I}^{(c)}(t) = Q_{a}^{(c)}(t) - Q_{d_{c}}^{(c)}(t)$$

$$= 0 \text{ in normal back-pressure}$$

(1) Back-pressure routing, where each node maintains per-class queues. For flow c over link (a, d_c), use the differential backlog

$$W_{I}^{(c)}(t) = Q_{a}^{(c)}(t) - Q_{d_{c}}^{(c)}(t)$$

(1) Back-pressure routing, where each node maintains per-class queues. For flow c over link (a, d_c), use the differential backlog

$$W_{l}^{(c)}(t) = Q_{a}^{(c)}(t) - Q_{d_{c}}^{(c)}(t)$$

$$\text{if } Z_c(t) \geq Q \hspace{0.2cm} \longrightarrow \hspace{0.2cm} Q_{d_c}^{(c)}(t) = w \mathrm{e}^{w(Z_c(t) - Q)} > 0$$

(receiving too many)

(1) Back-pressure routing, where each node maintains per-class queues. For flow c over link (a, d_c), use the differential backlog

$$W_{l}^{(c)}(t) = Q_{a}^{(c)}(t) - Q_{d_{c}}^{(c)}(t)$$

push-back mechanism (slow down)

$$\text{if } Z_c(t) \geq Q \hspace{0.2cm} \longrightarrow \hspace{0.2cm} Q_{d_c}^{(c)}(t) = w \mathrm{e}^{w(Z_c(t) - Q)} > 0$$

(receiving too many)

(1) Back-pressure routing, where each node maintains per-class queues. For flow c over link (a, d_c), use the differential backlog

$$W_{l}^{(c)}(t) = Q_{a}^{(c)}(t) - Q_{d_{c}}^{(c)}(t)$$

$$\text{if } Z_c(t) \geq Q \hspace{0.2cm} \longrightarrow \hspace{0.2cm} Q_{d_c}^{(c)}(t) = w \mathrm{e}^{w(Z_c(t) - Q)} > 0$$

(receiving too many)

(1) Back-pressure routing, where each node maintains per-class queues. For flow c over link (a, d_c), use the differential backlog

$$W_{I}^{(c)}(t) = Q_{a}^{(c)}(t) - Q_{d_{c}}^{(c)}(t)$$

$$\text{if } Z_c(t) \geq Q \hspace{0.2cm} \longrightarrow \hspace{0.2cm} Q_{d_c}^{(c)}(t) = w \mathrm{e}^{w(Z_c(t) - Q)} > 0$$

(receiving too many)

$$\text{if } Z_c(t) < Q \implies Q_{d_c}^{(c)}(t) = -w \mathrm{e}^{w(Q-Z_c(t))} < 0$$

(receiving too few)

(1) Back-pressure routing, where each node maintains per-class queues. For flow c over link (a, d_c), use the differential backlog

$$W_{l}^{(c)}(t) = Q_{a}^{(c)}(t) - Q_{d_{c}}^{(c)}(t)$$

"receiver asks for data" (speed up)

$$\text{if } Z_c(t) \geq Q \hspace{0.2cm} \longrightarrow \hspace{0.2cm} Q_{d_c}^{(c)}(t) = w \mathrm{e}^{w(Z_c(t) - Q)} > 0$$

(receiving too many)

if
$$Z_c(t) < Q \longrightarrow Q_{d_c}^{(c)}(t) = -we^{w(Q-Z_c(t))} < 0$$

(receiving too few)

(2) Choose $V_c(t)$ that solves

maximize
$$Vh_c(\nu_c(t)) + \nu_c(t) Q_{d_c}^{(c)}(t)$$

subject to $0 \le \nu_c(t) \le \nu_{\text{max}}$
 $h_c(\mathbf{x}) = g_c(\mathbf{x}) - \theta_c \mathbf{x}$

(3) The same packet dropping policy for per-class queues at each node

Theorem:

 $Q_c(t) \le V\theta_c + 2d_{max}$ for all t (using finite buffer)

 $\sum g_c(r_c) \ge$ optimal utility - $O(1/V + \epsilon)$

(large buffer reduces performance gap)

Sketch of analysis

- Given a fixed arrival rate vector, characterizing the set of achievable throughput vectors in terms of queue overflow rates
 - optimal queue overflow rate = optimal packet dropping rate
- Decoupling a utility function into two components
 - new utility functions for receiver-end flow control
 - distributed packet dropping
 - optimizing original utility = max. new utility + min. packet dropping
- Transforming utility optimization problems using auxiliary variables
- Using exponential Lyapunov functions for drift analysis

Utility-Optimal Algorithm / Simulations

Unit capacity links

Arrival rates (2, 2, 2)

Objective: proportional fairness

Optimal throughput: (2/3, 1/3, 2/3)

Throughput

\overline{V}	r_1	r_2	r_3	$\sum \log(r_c)$
10	.522	.478	.522	-2.038
20	.585	.415	.585	-1.952
50	.631	.369	.631	-1.918
100	.648	.352	.647	-1.912
optimal	.667	.333	.667	-1.910

Maximum backlog

V	$Q_B^{(1)}(t)$	$Q_B^{(2)}(t)$	$Q_A^{(2)}(t)$	$Q_A^{(3)}(t)$	$Q_{\mathrm{max}}^{(c)}$
10	140	97	137	137	142
20	237	187	240	236	242
50	539	441	538	540	542
100	1036	865	1039	1039	1042

Finite buffer size: $V\theta_c + 2d_{max}$

Utility-Optimal Algorithm / Simulations

Unit capacity links Arrival rates (2, 2, 2, 2)

Objective: max-min fairness over classes

 r_{2B}

 r_{3D}

Per-class throughput

 $r_{1A} + r_{1C}$

.200 .100 10 .100 As buffer size 20 .364 .206 .205 increases 30 .661 .650.65150 .667 .667 .667 optimal .667 .667 .667

Finite buffer size: $V\theta_c + 2d_{max}$

Remarks

Remarks

Summary

- Key problem: optimizing network performance without source cooperation
- Can't rely on the sources to resolve network overload
 - greedy users, congestion-unaware traffic, flash crowd, DDoS attacks
- We propose a robust, distributed, utility-optimal algorithm:

 This algorithm controls the aggregate rate of flows, providing differentiated services to different classes of flows