14 Nombres complexes

Bref historique des nombres complexes

L'apparition des racines carrées de nombres négatifs remonte à Héron d'Alexandrie (env. 75–150 apr. J.-C.), qui, en étudiant le volume d'un tronc de pyramide, rencontre l'expression $\sqrt{81-144}$, représentant une quantité non réelle.

Au xvr^e siècle, en Italie, les mathématiciens s'affrontent dans des concours autour de la résolution des équations du troisième degré. Tartaglia (1499–1557) découvre une méthode qu'il transmet à Cardano (1501–1576), lequel introduit des expressions du type $a+\sqrt{-b}$, où $a\in\mathbb{R}$ et $b\in\mathbb{R}^+$. Cette seconde partie, ne pouvant être additionnée à la première, sera appelée *partie imaginaire*. Descartes (1596–1650) popularise le terme « imaginaire », et Wallis (1616–1703) en propose une interprétation géométrique. Puis, Euler (1707–1783) introduit le symbole i = $\sqrt{-1}$, appelé *l'unité imaginaire*.

Aujourd'hui, les nombres complexes sont essentiels en sciences, notamment pour modéliser le courant alternatif en électrotechnique, et en télécommunications (WiFi, GPS, téléphonie), où les signaux sont traités à l'aide de calculs sur les nombres complexes.

Activité d'introduction 1 1. L'ensemble de nombres le plus simple est celui de nombres entiers naturels, noté \mathbb{N} et qui contient les nombres que vous connaissez depuis longtemps : 0; 1; 2; 3...

- (a) Quel est le nombre entier naturel qui ajouté à 7 donne 12?
- (b) Quel est le nombre entier naturel qui ajouté à 12 donne 7?
- 2. L'exemple précédent montre que l'ensemble $\mathbb N$ est « insuffisant» car certaines équations simples n'y trouvent pas de solution. On peut alors utiliser l'ensemble des entiers relatifs, noté $\mathbb Z$, et qui contient $\mathbb N$ et les opposés des entiers naturels (par exemple : -3; -2).
 - (a) Résoudre dans \mathbb{N} puis dans \mathbb{Z} l'équation : 2x + 8 = 0.
 - (b) Même question avec l'équation : 2x + 7 = 0.
- 3. De nouveau l'ensemble \mathbb{Z} est en quelque sorte insuffisant pour exprimer les solutions de certaines équations.
 - (a) De quel autre ensemble de nombres a-t-on au minimum besoin pour que l'équation du 2x + 7 = 0 ait une solution?
 - (b) Dans ce nouvel ensemble quelles sont les solutions de l'équation : $9x^2 = 16$?
 - (c) Décrire l'ensemble de nombres dont on a besoin au minimum pour que l'équation précédente ait une solution. On notera Q cet ensemble.
- 4. Modifier l'équation précédente pour qu'elle n'admette pas de solution dans l'ensemble des rationnels. Dans quel ensemble faut-il travailler pour pouvoir dire qu'elle a deux solutions?
- 5. Que pouvez-vous dire de l'équation $x^2+1=0$ en terme de solutions dans les ensembles de nombres précédents?

6. Dresser un schéma qui montre les inclusions successives des ensembles de nombres en donnant à chaque fois une équation qui n'a pas de solution dans l'ensemble, mais en a une dans le suivant.

Activité d'introduction 2

On considère l'équation du second degré suivant : $x^2 + 4 = 0$.

- 1. Peut-on trouver des nombres réels solutions de l'équation? Expliquer pourquoi.
 - Les mathématiciens définissent le nombre imaginaire i tel que $i^2=-1$, et que donc $i=\sqrt{-1}$.
- 2. Peut-on utiliser ce fait pour résoudre l'équation, en exprimer la réponse en fonction de i?
- 3. Utiliser la forme canonique pour résoudre l'équation $x^2 2x + 5 = 0$. Donner les racines en fonctions de i.

I - Forme algébrique d'un nombre complexe

Définition 3

Un nombre complexe z est un nombre qui peut s'écrire sous la forme z = a + ib où a et b sont des réels et i un nombre imaginaire tel que $i^2 = -1$.

Vocabulaire

a est appelé **partie réelle** du nombre complexe z. On note a = Re(z).

b est appelé **partie imaginaire** du nombre complexe z . On note b = Im(z).

L'écriture a + ib est appelée la **forme algébrique** (ou cartésienne) du nombre complexe z.

Remarque 4

Les parties réelle et imaginaire d'un nombre complexe sont des nombres réels.

Un nombre complexe de la forme **ib** est appelé un **imaginaire pur**.

On note iR l'ensemble des imaginaires purs.

Exemple 5 • z = 3 + 2i est un nombre complexe de partie réelle Re(z) = 3 et de partie imaginaire Im(z) = 2.

- $z = -\frac{\sqrt{3}}{2} 6i$ est un nombre complexe de partie réelle $Re(z) = -\frac{\sqrt{3}}{2}$ et de partie imaginaire Im(z) = -6.
- z = 4i est un nombre complexe de partie réelle Re(z) = 0 et de partie imaginaire Im(z) = 4.
- z = -5 est un nombre complexe de partie réelle Re(z) = -5 et de partie imaginaire

$$Im(z) = 0.$$

Remarque 6 — L'ensemble \mathbb{R} est inclus dans \mathbb{C} car tout nombre réel est un nombre complexe de partie imaginaire nulle.

On a les inclusions suivantes $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$

- Un nombre complexe est réel si et seulement si sa partie imaginaire est nulle.
- Un nombre complexe est imaginaire pur si et seulement si sa partie réelle est nulle.

Exercice 7 1. Pour quelles valeurs du réel x, le nombre complexe : z = x(-x+2i)+i(x-3i) est-il un imaginaire pur?

2. Pour quelles valeurs du réel x, le nombre complexe z = (x - i)[x + 4 - i(x - 6)] est-il un réel?

Somme, produit et quotient de deux nombres complexes

L'addition + et la multiplication \times dans $\mathbb C$ ont les mêmes propriétés que les opérations analogues dans $\mathbb R$.

Soient z = a + ib et z' = a' + ib' deux nombres complexes.

Somme

$$z + z' = (a + ib) + (a' + ib') = (a + a') + i(b + b')$$

Produit

$$z \times z' = (a + ib) \times (a' + ib') = (aa' - bb') + i(ab' + a'b)$$

Quotient

Si
$$z \neq 0$$

$$\frac{1}{z} = \frac{1}{a + ib} = \frac{a - ib}{(a + ib)(a - ib)} = \frac{a - ib}{a^2 + b^2} = \frac{a}{a^2 + b^2} - i\frac{b}{a^2 + b^2}$$

$$\frac{z'}{z} = \frac{a' + ib'}{a + ib} = \frac{(a' + ib')(a - ib)}{(a + ib)(a - ib)} = \frac{(a' + ib')(a - ib)}{a^2 + b^2}$$

Remarque 8

Pour mettre le quotient sous forme algébrique, on rend réel le dénominateur a+ib en multipliant le numérateur et le dénominateur par a-ib.

Les puissances de i

Soit *n* et *m* deux entiers naturels non nuls.

On a : $i^0 = 1$, $i^1 = i$, $i^2 = -1$, $i^3 = -i$, $i^4 = 1$ et plus généralement :

 $i^{4n} = (i^4)^n = 1$ et $i^m = i^{4n+r} = (i^4)^n \times i^r = i^r$ où r est le reste de la division de m par 4.

Exemple 9

$$i^{2023} = i^{4 \times 505 + 3} = i^3 = -i$$

Exercice 10 1. Mettre sous forme algébrique les nombres complexes suivants :

$$a = (3+2i) + (5-4i),$$

$$b = (3+2i) - (5-4i),$$

$$c = (2-3i)(1-i),$$

$$d = (3-2i)^{2},$$

$$e = (1+i)^{3}.$$

2. Mettre sous forme algébrique les quotients de nombres complexes suivants :

$$x = \frac{1}{4+3i}$$
, $y = \frac{i-4}{1-2i}$, $z = \frac{1+i}{5i} + \frac{2i}{2+i}$.

Remarque 11

La relation d'ordre n'existe pas dans \mathbb{C} , en d'autres termes, on ne peut pas comparer deux nombres complexes par les symboles < et >. Par contre la comparaison peut se faire par l'égalité = ou la différence \neq .

Égalité de deux nombres complexes

• Deux nombres complexes sont égaux si et seulement si ils ont même partie réelle et même partie imaginaire.

$$z = z' \iff Re(z) = Re(z')$$
 et $Im(z) = Im(z')$

• En particulier $z = 0 \iff Re(z) = 0$ et Im(z) = 0

Conjugué d'un nombre complexe

Définition 12

Soit z un nombre complexe de forme algébrique a + ib.

On appelle conjugué de z et on note \overline{z} le nombre complexe $\overline{z} = a - ib$.

Ainsi:
$$Re(z) = Re(\overline{z})$$
 et $Im(\overline{z}) = -Im(z)$

Exemple 13

$$\overline{-2+5i} = -2-5i$$
, $\overline{4i} = -4i$, $\overline{9} = 9$

Conséquence 14 • Soit z un nombre complexe de forme algébrique a+ib et \overline{z} son conjugué. Alors $\overline{z}z=a^2+b^2$.

Ainsi $\overline{z}z$ est un réel strictement positif ou nul si z = 0.

Démonstration

$$\overline{z}z = (a - ib)(a + ib) = a^2 + b^2$$

• La notion de conjugué permet de caractériser les nombres réels et les nombres imaginaires purs parmi les nombres complexes.

$$z \in \mathbb{R} \longleftrightarrow \overline{z} = z$$
 et $z \in i\mathbb{R} \longleftrightarrow \overline{z} = -z$

Démonstration

On note a + ib la forme algébrique de z.

$$\overline{z} = z \Longleftrightarrow a - \mathrm{i}b = a + \mathrm{i}b \Longleftrightarrow -2\mathrm{i}b = 0 \Longleftrightarrow b = 0 \Longleftrightarrow z = a \Longleftrightarrow z \in \mathbb{R}$$

$$\overline{z} = -z \iff a - \mathrm{i}b = -a - \mathrm{i}b \iff 2a = 0 \iff a = 0 \iff z = \mathrm{i}b \iff z \in \mathrm{i}\mathbb{R}$$

Remarque 15 • $\overline{\overline{z}} = z$

- $\overline{z} + z = 2Re(z)$
- $z \overline{z} = 2iIm(z)$

Propriétés du conjugué d'un nombre complexe

Pour tous nombres complexes z et z' :

- $\bullet \ \overline{z+z'} = \overline{z} + \overline{z'}$
- $\overline{zz'} = \overline{z}\overline{z'}$
- De plus si $z' \neq 0$, $\overline{\left(\frac{1}{z'}\right)} = \frac{1}{z'}$
- $\bullet \ \overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}$
- Pour tout entier naturel n, $\overline{z^n} = \overline{z}^n$

Exercice 16 1. Déterminer le conjugué des nombres complexes $z_1 = (3-5i)(1+i)$, $z_2 = \frac{2+2i}{3-i}$ et $z_3 = (4+9i)^3$.

2. Déterminer les nombres complexes z tels que $Z = \frac{1 - \mathrm{i} z}{1 + \mathrm{i} z}$ soit réel.

II - Interprétation géométrique

Activité d'introduction 17

Dans un repère orthonormé (O, I, J) du plan, on considère les points : A(1,3), B(0,-2), E(-4,3).

- 1. Placer ces points dans le repère.
- 2. Calculer les coordonnées du vecteur \overrightarrow{AE}
- 3. Calculer les coordonnées du milieu *C* du segment [*BE*].
- 4. Calculer la distance *OE*.
- 5. Déterminer les coordonnées du point *F* tel que le quadrilatère *ABEF* soit un parallélogramme.
- 6. Déterminer les coordonnées du point E' symétrique du point E par rapport à l'origine O.
- 7. Déterminer les coordonnées du point *A'* symétrique du point *A* par rapport à l'axe (*OI*).
- 8. Les droites (BI) et (EJ) sont-elle perpendiculaires?

Le plan complexe

Dans le plan muni d'un repère orthonormé (O, I, J), on associe un unique point du plan à chaque nombre complexe et réciproquement.

En posant $\vec{u} = \overrightarrow{OI}$ et $\vec{v} = \overrightarrow{OI}$ le repère se note aussi (O, \vec{u}, \vec{v}) .

Ainsi:

- à z = x + iy avec x et y des réels, on associe le point M de coordonnées (x, y); on dit que M est l'image de z et on note M(z).
- à M(x, y), on associe le nombre complexe $z_M = x + iy$; on dit que z_M **est l'affixe de** M, le vecteur \overrightarrow{OM} ayant les mêmes coordonnées que le point M, on dit aussi que x + iy est **l'affixe du vecteur** \overrightarrow{OM} .
- l'axe des abscisses $(O; \vec{u})$ est appelé **axe réel**, celui des ordonnées $(O; \vec{v})$ est appelé **axe imaginaire**.
- Le plan où les points sont repérés par leurs affixes est appelé **plan complexe.**

Exemples:

Les points O, I et J ont pour affixes respectives 0, 1 et i.

 \overrightarrow{IJ} a pour coordonnées $\begin{pmatrix} -1\\1 \end{pmatrix}$ donc le vecteur \overrightarrow{IJ} a pour affixe -1+i notée $z_{\overrightarrow{IJ}}$.

Remarque 18 • Les point d'affixes z et \overline{z} sont symétriques par rapport à l'axe réel.

• Les point d'affixes z et -z sont symétriques par rapport à l'origine.

Propriété 19

Pour tous points A et B du plan complexe,

- l'affixe du vecteur \overrightarrow{AB} est $z_{\overrightarrow{AB}} = z_A z_B$.
- le milieu *I* du segment [*AB*] a pour affixe $z_I = \frac{z_A + z_B}{2}$.
- le barycentre G de (A, a) et (B, B) a pour affixe $z_G = \frac{az_A + bz_B}{a + b}$.

Condition d'alignement de trois points

Soit A, B et C trois points distincts et **alignés** du du plan complexe.

On a par exemple \overrightarrow{AC} et \overrightarrow{AB} colinéaires et il existe un réel k tel que $\overrightarrow{AC} = k\overrightarrow{AB}$.

Ainsi:
$$z_C - z_A = k(z_B - z_A) \Longleftrightarrow \frac{z_C - z_A}{z_B - z_A} = k \in \mathbb{R}.$$

À retenir

A, B et C sont trois points distincts et alignés si et seulement si $\frac{z_C - z_A}{z_B - z_A}$ est un réel.

Exercice 20

Dans le plan complexe, on considère les points A(2-3i), B(4i) et C(1-i).

- 1. Calculer l'affixe du milieu I de [AB] et celle du point D tel que ABCD soit un parallélogramme.
- 2. Calculer l'affixe de G barycentre de (A, 2); (B, -1) et (C, -2).
- 3. Soit A' le symétrique de A par rapport à l'axe réel. Montrer que A', D et G sont alignés.

III - Forme trigonométrique d'un nombre complexe

Activité d'introduction 21

Le plan orienté est muni d'un repère orthonormé (O, I, J); \vec{u} et \vec{v} deux vecteurs non nuls.

Vrai ou faux : Préciser si les affirmations suivantes sont vraies ou fausses.

- 1. On dit que le repère (O, I, J) est direct lorsque $(\overrightarrow{OI}, \overrightarrow{OJ}) = \frac{\pi}{2}$ $[2\pi]$.
- 2. Si le point M, distinct de O appartient à l'axe des abscisses alors $(\overrightarrow{OI}, \overrightarrow{OM}) = 0$ $[2\pi]$.
- 3. L'ensemble des points tels que $(\overrightarrow{OI}, \overrightarrow{OM}) = \frac{\pi}{2}$ [2 π] est l'axe des ordonnées privé de l'origine.
- 4. Si $(\overrightarrow{OI}, \vec{u}) = (\overrightarrow{OI}, \vec{v})$ [2 π] alors les vecteurs \vec{u} et \vec{v} sont colinéaires.
- 5. Si les vecteurs \vec{t} et \overrightarrow{w} sont colinéaires alors $(\overrightarrow{OI}, \vec{t}) = (\overrightarrow{OI}, \overrightarrow{w})$ [2 π].
- 6. Si M appartient au cercle de centre O et de rayon 1 alors ses coordonnées sont de la forme $(\cos \alpha, \sin \alpha)$ où α est une mesure en radian de l'angle $(\overrightarrow{OI}, \overrightarrow{OM})$.

Module et argument d'un nombre complexe

Définition 22

Le plan complexe est muni d'un repère orthonormé direct (O, I, J).

Soit z un nombre complexe et M son image dans le plan complexe. Le **module de** z, noté |z| est la distance OM: |z| = OM.

Si z est non nul, on appelle **argument** de z, noté arg(z), toute mesure en radians de l'angle orienté $(\overrightarrow{OI}, \overrightarrow{OM})$:

$$arg(z) = (\overrightarrow{OI}, \overrightarrow{OM}) [2\pi].$$

Exemple 23

$$|\mathbf{i}| = 1$$
, $\arg(\mathbf{i}) = \frac{\pi}{2}$, $|-5| = 5$, $\arg(-5) = \pi$ $[2\pi]$, $|3| = 3$, $\arg(3) = 0$ $[2\pi]$, $|-2\mathbf{i}| = 2$, $\arg(-2\mathbf{i}) = \frac{3\pi}{2}$ $[2\pi]$.

Conséquence 24 — z est réel si et seulement si z = 0 ou arg(z) = 0 [π].

— z est imaginaire pur si et seulement si z = 0 arg $(z) = \frac{\pi}{2}$ $[\pi]$.

Remarque 25 — Si z = x + iy avec x et y réels alors $|z| = \sqrt{x^2 + y^2}$

— Si les points A et B ont pour affixe respectives x_A et y_B alors $AB = |x_B - x_A|$.

Propriétés du module d'un nombre complexe

Propriété 26

Pour tous nombres complexes z et z':

- |zz'| = |z||z'|
- $|z| = |-z| = |\overline{z}|$
- $z\overline{z} = |z|^2$
- De plus si $z' \neq 0$, $\left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$
- Pour tout entier naturel n, $|z^n| = |z|^n$

Propriétés de l'argument d'un nombre complexe

Propriété 27

Pour tous nombres complexes z et z' non nuls :

- $arg(zz') = arg(z) + arg(z') [2\pi]$
- De plus si $z' \neq 0$, $\arg\left(\frac{1}{z'}\right) = -\arg(z') [2\pi]$
- $\arg\left(\frac{z}{z'}\right) = \arg(z) \arg(z') [2\pi]$
- $arg(\overline{z}) = -arg(z) [2\pi]$
- $arg(-z) = \pi + arg(z) [2\pi]$
- Pour tout entier naturel n, $arg(z^n) = n arg(z) [2\pi]$

Interprétation géométrique

Soit deux points distincts A et B d'affixes respectives x_A et y_B alors $\arg(x_B - x_A) = (\overrightarrow{OI}, \overrightarrow{AB})$ [2π]. Soit trois points distincts A, B et C d'affixes respectives x_A , y_B et y_C alors :

$$\operatorname{arg}\left(\frac{x_C - x_A}{x_B - x_A}\right) = \left(\overrightarrow{AB}, \overrightarrow{AC}\right) [2\pi].$$

Démonstration

$$\arg\left(\frac{x_C - x_A}{x_B - x_A}\right) = \arg\left(x_C - x_A\right) - \arg\left(x_B - x_A\right) [2\pi]$$
$$= \left(\overrightarrow{OI}, \overrightarrow{AC}\right) - \left(\overrightarrow{OI}, \overrightarrow{AB}\right) [2\pi]$$
$$= \left(\overrightarrow{AB}, \overrightarrow{AC}\right) [2\pi]$$

Conséquence 28

Soit les points distincts M, A et B d'affixes respectives z, z_A et z_B alors : $\arg\left(\frac{z-z_B}{z-z_A}\right) = \left(\overrightarrow{MA}, \overrightarrow{MB}\right)[2\pi].$

Condition d'orthogonalité

Les droites (AB) et (CD) sont perpendiculaires $\iff \arg\left(\frac{z_D-z_C}{z_B-z_A}\right) = \frac{\pi}{2} \left[\pi\right] \iff \frac{z_D-z_C}{z_B-z_A} \in \mathbb{R}.$

Conséquence 1 : cas du triangle rectangle

ABC est un triangle rectangle en A si et seulement si $\frac{z_C - z_A}{z_B - z_A} \in \mathbb{R}$.

Conséquence 2 : cas du triangle rectangle isocèle

ABC est un triangle rectangle en *A* si et seulement si $\frac{z_C - z_A}{z_B - z_A}$ = i ou -i.

Démonstration

D'une part
$$\left| \frac{z_C - z_A}{z_B - z_A} \right| = |\pm \mathbf{i}| = 1 \text{ càd} : AB = AC \text{ d'autre part } \arg\left(\frac{z_C - z_A}{z_B - z_A}\right) = \arg(\mathbf{i}) = \frac{\pi}{2} = \left(\overrightarrow{AB}, \overrightarrow{AC}\right)$$

Forme trigonométrique

Définition 29

Soit z un nombre complexe non nul; on pose :

$$x = Re(z), \quad y = Im(z), \quad r = |z|, \quad \theta = \arg(z) [2\pi]$$

On a alors : $x = r\cos\theta$ et $y = r\sin\theta$.

On obtient l'écriture $z=r(\cos\theta+\mathrm{i}\sin\theta)$ qui est appelée forme trigonométrique du nombre complexe z.

Passage d'une forme à une autre

Si le nombre complexe z s'écrit x+iy sous forme algébrique et $r(\cos\theta+i\sin\theta)$ sous forme trigonométrique alors :

$$r = \sqrt{x^2 + y^2}$$
 et
$$\begin{cases} \cos \theta &= \frac{x}{f} \\ \sin \theta &= \frac{y}{f} \end{cases}$$

Exemple 30

Déterminons la forme trigonométrique de z = 1 + i.

$$r = \sqrt{1^2 + 1^2} = \sqrt{2} \quad \text{et} \quad \begin{cases} \cos \theta &= \frac{\sqrt{2}}{2} \\ \sin \theta &= \frac{\sqrt{2}}{2} \end{cases} \text{ on trouve } \theta = \frac{\pi}{4} \quad \text{et } z = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$$

Exemple 31

Déterminons la forme trigonométrique de $z = \sqrt{6} - i\sqrt{2}$.

$$r = \sqrt{\left(\sqrt{6}\right)^2 + \left(-\sqrt{2}\right)^2} = 2\sqrt{2} \quad \text{et} \quad \begin{cases} \cos\theta = \frac{\sqrt{3}}{2} \\ \sin\theta = -\frac{1}{2} \end{cases} \quad \text{on trouve } \theta = -\frac{\pi}{6} \text{ et } z = 2\sqrt{2} \left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)$$

Exemple 32

Soit
$$z = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$
.

Déterminons la forme algébrique de $\frac{1}{z}$.

Première méthode

$$\frac{1}{z} = \frac{1}{2} = \left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right) = \frac{1}{2}\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) = \frac{1}{4} - i\frac{\sqrt{3}}{4}$$

Deuxième méthode

$$2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) = 2\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 1 + i\sqrt{3}$$

$$\Rightarrow \frac{1}{1+i\sqrt{3}} \times \frac{1-i\sqrt{3}}{1-i\sqrt{3}} = \frac{1-i\sqrt{3}}{4} = \frac{1}{4}-i\frac{\sqrt{3}}{4}$$

1. Mettre sous forme trigonométrique les nombres complexes suivants :

a)
$$-2 + 2i$$

b)
$$\frac{3}{1+i\sqrt{3}}$$

a)
$$-2+2i$$
 b) $\frac{3}{1+i\sqrt{3}}$ **c)** $\frac{4-4i}{-1+i\sqrt{3}}$.

2. On considère les deux nombres complexes $z_1 = 6\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$ et $z_2 =$ $2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$.

Déterminer **a)**
$$z_1 \times z_2$$
 b) $\frac{z_1}{z_2}$ **c)** $\frac{\overline{z_2}}{-z_1}$.

b)
$$\frac{z_1}{z_2}$$

c)
$$\frac{\overline{z_2}}{-z_1}$$

Notation exponentielle de la forme trigonométrique

Le mathématicien Léonhard Euler (1707-1783) utilisa la notation $e^{i\theta}$ pour désigner le nombre complexe $\cos \theta + i \sin \theta$ de module 1 et d'argument θ .

Ainsi:
$$\cos \theta + i \sin \theta = e^{i\theta}$$

On a alors $|e^{i\theta}| = 1$ pour tout réel θ .

Définition 34

Un nombre complexe z de module r et d'argument θ s'écrit : $z=r\mathrm{e}^{\mathrm{i}\theta}$. Cette écriture est appelée **notation exponentielle** de z.

Exemple 35

$$e^{i\frac{\pi}{2}} = i$$
, $e^{i\pi} = -1$, $e^{i0} = 1$, $e^{-i\frac{\pi}{2}} = -i$, $2e^{i\frac{\pi}{4}} = \sqrt{2} + i\sqrt{2}$, $e^{2ki\pi} = 1$ $\forall k \in \mathbb{Z}$.

Propriété 36

Soit $z_1 = r_1 e^{i\theta_1}$ et $z_2 = r_2 e^{i\theta_2}$

- $\overline{z_1} = r_1 e^{-i\theta_1}$
- $z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$
- $\bullet \quad \frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 \theta_2)}$
- $z_1 = z_2 \Longleftrightarrow r_1 = r_2$ et $\theta_1 = \theta_2 + 2k\pi$ $k \in \mathbb{Z}$

Exemple 37

Soit à calculer $(1+i)^{14}$.

Nous avons sous forme exponentielle $1 + i = \sqrt{2}e^{i\frac{\pi}{4}}$.

Donc
$$(1+i)^{14} = \left(\sqrt{2}\right)^{14} e^{i\frac{14\pi}{4}} = 2^7 e^{\frac{7\pi}{2}i} = 128 \left(\cos\frac{7\pi}{2} + i\sin\frac{7\pi}{2}\right) = 128i$$

Exercice 38

On considère les deux nombres complexes $z = \sqrt{3} + i$ et z' = -1 + i

- a) Donner l'écriture exponentielle des nombres complexes z, z', zz', $\frac{z}{z'}$, z^5 .
- **b)** Déterminer l'écriture algébrique de $\frac{z'^{14}}{\overline{z}^8}$

Le triangle équilatéral

ABC est un triangle équilatéral si et seulement si $\frac{z_C - z_A}{z_B - z_A} = e^{\pm i \frac{\pi}{3}}$.

En effet
$$\left| \frac{z_C - z_A}{z_B - z_A} \right| = \left| e^{\pm i \frac{\pi}{3}} \right| = 1$$
 $\arg \left(\frac{z_C - z_A}{z_B - z_A} \right) = \arg \left(e^{\pm i \frac{\pi}{3}} \right) = \pm \frac{\pi}{3}.$

Ainsi
$$AB = AC$$
 et $\widehat{BAC} = \frac{\pi}{3}$

Formules de Moivre et d'Euler

Activité d'introduction 39

Soit $z = \cos\theta + i\sin\theta$

- 1. Utiliser la formule de multiplication deux nombres complexes écrits en notation exponentielle pour calculer z^2 , z^3 , z^4 et z^5 .
- 2. Donner une formule générale de z^n pour $n \in \mathbb{N}$.
- 3. Que devient la formule pour $n \in \mathbb{Z}$?

Activité d'introduction 40

Soit $z = \cos\theta + i\sin\theta$

1. Utiliser la formule trouvées à l' Activité 37 pour calculer les sommes suivantes :

$$z+\frac{1}{z}$$
, $z^2+\frac{1}{z^2}$, $z^3+\frac{1}{z^3}$ et $z^4+\frac{1}{z^4}$ en simplifiant le résultat.

2. Quelle est la formule générale de $z^n + \frac{1}{z^n}$ pour $n \in \mathbb{Z}$.

Propriété 41

(Formule de Moivre) Pour tout réel θ pour tout entier relatif n:

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

Conséquence 42• $(e^{i\theta})^n = e^{ni\theta}$ et • $(re^{i\theta})^n = r^n e^{ni\theta}$ pour tout réel θ et pour tout entier relatif n:

Exemple 43

Soit à exprimer $\cos 3\theta$ et $\sin 3\theta$ en fonction de $\cos \theta$ et $\cos \theta$.

En développant de deux manières $(\cos \theta + i \sin \theta)^3$

On obtient
$$\cos 3\theta + i \sin 3\theta = (\cos \theta + i \sin \theta)^3$$

$$=\cos^3\theta + 3i\cos^2\theta\sin\theta - 3\cos\theta\sin^2\theta - i\sin^3\theta$$

En identifiant les parties réelles et les parties imaginaires :

$$\cos 3\theta = \cos^3 \theta - 3\cos\theta\sin^2 \theta$$
 et $\sin 3\theta = 3\cos^2\theta\sin\theta - \sin^3\theta$.

Propriété 44

(Formules d'Euler) Pour tout réel θ :

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 et $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

Démonstration

$$e^{i\theta} = \cos\theta + i\sin\theta$$
 et $e^{-i\theta} = \cos(-\theta) + i\sin(-\theta) = \cos\theta - i\sin\theta$

On en déduit que :
$$2\cos\theta = e^{i\theta} + e^{-i\theta}$$
 et $2i\sin\theta = e^{i\theta} - e^{-i\theta}$

Exemple 45

Soit à **linéariser** $\cos^3 \theta$.

$$\cos^{3}\theta = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^{3} = \frac{1}{8} \left(e^{i\theta} + e^{-i\theta}\right)^{3} = \frac{1}{8} \left(e^{3i\theta} + 3e^{i\theta} + 3e^{-i\theta} + e^{-3i\theta}\right)$$

$$= \frac{1}{8} \left(e^{3i\theta} + e^{-3i\theta} + 3e^{i\theta} + 3e^{-i\theta}\right)$$

$$= \frac{1}{8} (2\cos 3\theta + 3 \times 2\cos \theta)$$

$$= \frac{1}{4} (\cos 3\theta + 3\cos \theta)$$

Conséquence 46

$$2\cos n\theta = e^{ni\theta} + e^{-ni\theta}$$
 et $2i\sin n\theta = e^{ni\theta} - e^{-ni\theta}$ pour tout $n \in \mathbb{Z}$.

Exercice 47

Les questions sont indépendantes.

- 1. Montrer que $\left(3\cos\frac{2\pi}{3} 3i\sin\frac{\pi}{3}\right)^9 = 3^9$.
- 2. Soit $z = \frac{1}{2} + i \frac{\sqrt{3}}{2}$

Déterminer les valeurs de l'entier relatif n pour lesquelles z^n est réel.

3. En utilisant les formules d'Euler, montrer que : $\sin x \cos 3x = \frac{1}{2} \sin 4x - \frac{1}{2} \sin 2x$.

IV - Racines n-ièmes d'un nombre complexe

Activité d'introduction 48

On considère les équations $z^2 - 1 = 0$, $z^3 - 1 = 0$, $z^4 - 1 = 0$.

- 1. Factoriser les expressions puis déterminer toutes les solutions dans C.
- 2. Mettre toutes les solutions sous forme trigonométrique puis les représenter dans le plan complexe.
- 3. Quelles configurations les solutions de la deuxième et troisième forment-elles?
- 4. Peut-on prévoir la configuration formée par les solutions de l'équation $z^5 1 = 0$?
- 5. Quelle est la configuration formée dans le plan complexe par les solutions de l'équation $z^n 1 = 0$, $n \ge 3$?

6. Utiliser la représentation géométrique des solutions pour prédire la forme trigonométrique des solutions de l'équation $z^n - 1 = 0$, $n \ge 3$.

Racines n-ièmes de l'unité

Théorème 49

Pour tout entier naturel non nul n, l'équation $z^n = 1$ admet n racines distinctes définies par

$$z_k = e^{i\frac{2k\pi}{n}}$$
 $k = 0, 1, 2, \dots, n-1$

Les solutions (ou racines) de l'équation $z^n=1$ sont appelées racines n-ièmes de l'unité.

Remarque 50

Le plan complexe étant muni d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$, . Lorsque $n \ge 3$, les points-images des racines n-ièmes de l'unité sont les sommets d'un polygone régulier inscrit dans le cercle trigonométrique.

Exercice 51

Déterminer les racines sixièmes de l'unité.

Théorème 52

(Admis) Étant donné un nombre complexe non nul a, il existe n nombres complexes distincts z tels que $z^n = a$. Ces nombres sont appelés les **racines n-ièmes** de a. Ils sont donnés par :

$$z_k = |a|^{\frac{1}{n}} e^{i\left(\frac{\arg(a)}{n} + \frac{2k\pi}{n}\right)}$$
 $k = 0, 1, 2, \dots, n-1$

Propriété 53

Dans le plan complexe muni du repère orthonormé $(O; \vec{u}, \vec{v})$, les images des racines n-ièmes d'un nombre complexe non nul a forment un polygone régulier à n côtés inscrit dans un cercle de centre O et de rayon $|a|^{\frac{1}{n}}$.

V - Résolution d'équations du second degré

Résolution d'équations du second degré à coefficients réels

Théorème 54

Soit l'équation du second degré (E) d'inconnue $z: az^2 + bz + c = 0$ telle que $a \in \mathbb{R}^*$, $b \in \mathbb{R}$ et $\in \mathbb{R}$.

On pose $\Delta = b^2 - 4ac$ donc Δ est un réel.

— Si
$$\Delta > 0$$
 alors (E) a deux racines réelles distinctes : $z_1 = \frac{-b + \sqrt{\Delta}}{2a}$ et $z_2 = \frac{-b - \sqrt{\Delta}}{2a}$

— Si
$$\Delta = 0$$
 alors (E) a une racine réelle double : $z_0 = \frac{-b}{2a}$.

— Si
$$\Delta < 0$$
 alors (E) a deux racines complexes conjuguées : $z_1 = \frac{-b + i\sqrt{-\Delta}}{2a}$ et $z_2 = \frac{-b - i\sqrt{-\Delta}}{2a}$

Exemple 55

Résoudre dans \mathbb{C} l'équation $3z^2 - z + 5 = 0$.

$$\Delta = 1 - 60 = -59$$

$$z_1 = \frac{1 + i\sqrt{59}}{6}$$
 et $z_2 = \frac{1 - i\sqrt{59}}{6}$

Racines carrées d'un nombre complexe

Définition 56

Soit un nombre complexe $\Delta = a + ib$.

Un nombre complexe z est une racine carrée de Δ si : $z^2 = \Delta$.

Déterminer les racines carrées de Δ revient à résoudre dans $\mathbb C$ l'équation : $z^2 = \Delta$.

Propriété 57

Un nombre complexe a deux racines carrées opposées.

Résolution algébrique de l'équation $z^2 = \Delta$

Posons z = x + iy, x et y des réels.

On a:
$$z^2 = \Delta \iff (x + iy)^2 = a + ib$$

 $\iff x^2 - y^2 + 2ixy = a + ib$

$$\iff \begin{cases} x^2 - y^2 &= a \\ 2xy &= b \end{cases}$$

De plus $|z^2| = |\Delta| \iff x^2 + y^2 = \sqrt{a^2 + b^2}$.

Méthode générale pour chercher les racines carrées d'un nombre complexe $a+\mathbf{i}b$ sous forme algébrique :

Soit z = x + iy une telle racine carrée. Alors x et y sont solutions du système suivant :

$$\iff \begin{cases} x^2 + y^2 &= \sqrt{a^2 + b^2} \\ x^2 - y^2 &= a \\ 2xy &= b \end{cases} \tag{2}$$

Remarque 58 — On commence par résoudre le système formé par les deux équations

- (1) et (2) qui a a priori quatre couples (x, y) solutions. Et compte tenu de l'équation
- (3), on ne retient que les deux couples (x, y) tels que le signe de xy soit celui de b.
- On se gardera d'appliquer cette méthode dans le cas où Δ est un nombre réel. Les racines carrées de Δ sont alors évidentes, égales à $\pm \Delta$ si Δ est positif et à $\pm i \sqrt{\Delta}$ si Δ est négatif.

Exemple 59

Déterminons les racines carrées du nombre complexe 3-4i.

Soit x + iy une telle racine racine carrée.

$$\iff \begin{cases} x^2 + y^2 &= 5 & (1) \\ x^2 - y^2 &= 3 & (2) \\ 2xy &= -4 & (3) \end{cases}$$

- (1) + (2) permet d'obtenir $x^2 = 4 \iff x = 2$ ou x = -2
- (1) (2) permet d'obtenir $y^2 = 1 \iff x = 1$ ou x = -1

D'après (3) les racines carrées de 3-4i sont : 2-i et -2+i.

Résolution d'équations du second degré à coefficients complexes

Propriété 60

Soit l'équation du second degré (E) d'inconnue $z: az^2 + bz + c = 0$ telle que $a \in \mathbb{C}^*$, $b \in \mathbb{C}$ et $\in \mathbb{C}$.

On pose $\Delta = b^2 - 4ac$ et soient x + iy et -x - iy ses deux racines carrées opposées.

Alors les solutions de (E) sont :

$$z_1 = \frac{-b + x + iy}{2a}$$
 et $z_2 = \frac{-b - x - iy}{2a}$

Exemple 61

Résoudre dans \mathbb{C} l'équation $z^2 + (2+3i)z - 2 + 4i = 0$.

On trouve $\Delta = 3 - 4i$

Alors

$$z_1 = \frac{-(2+3i)+2-i}{2} = 2i$$
 et $z_2 = \frac{-(2+3i)-2+i}{2} = -2-i$

Exercice 62

Résoudre dans \mathbb{C} les équations :

- 1. $z^2 + (i-1)z 2(1+i) = 0$
- 2. $(2+i)z^2 (5-i)z + 2 2i = 0$
- 3. $(1-i)z^2 + (3i+2)z + 1 + 4i = 0$
- 4. $(z^2 + 3z 2)^2 = -(2z^2 3z + 2)^2$

Un exemple d'équation de degré supérieur ou égal à 3

On considère dans \mathbb{C} l'équation (E) d'inconnue z suivante :

(E):
$$z^3 - (1+2i)z^2 + 3(1+3i)z - 10(1+i)$$

- a) Montrer que l'équation (E) admet une solution imaginaire et la déterminer.
- **b)** Résoudre l'équation (E).

Solution

a) Soit $z_0 = iy$ une éventuelle solution imaginaire pure de (E). On a alors :

$$(iy)^3 + (1-4i)(iy)^2 - (7+3i)(iy) + 6i - 2 = 0$$

 $z_0 \text{ sera solution de (E) si et seulement si } -y^2 + 3y - 2 + \mathrm{i}(-y^3 + 4y^2 - 7y + 6) = 0, \text{ soit}$ $\iff \begin{cases} -y^2 + 3y - 2 &= 0 & (*) \\ -y^3 + 4y^2 - 7y + 6 &= 0 & (**) \end{cases}$

L'équation (*) admet deux solutions qui sont 1 et 2. On vérifie que seul le réel 2 est solution de l'équation (**). Il en résulte que le réel 2 est l'unique solution du système précédent.

On en déduit que $z_0 = 2i$ est l'unique solution imaginaire pure de (E).

D'après le théorème précédent, il s'ensuit que :

$$z^3 + (1-4i)z^2 - (7+3i)z + 6i - 2 = (z-2i)(z^2 + bz + c)$$
 où b et c sont des nombres complexes.

Un développement et une identification terme à terme (ou la méthode Horner) nous donnent b = 1 - 2i et c = -3 - i.

L'équation (E) s'écrit alors $(z-2i)(z^2+(1-2i)-3-i)=0$, ce qui équivaut à :

$$z = 2i$$
 ou $z^2 + (1 - 2i) - 3 - i = 0$.

On vérifie que les solutions de l'équation (E_1) : $z^2 + (1-2i)z - 3 - i = 0$ sont :

$$z_1 = -2 + i$$
 et $z_2 = 1 + i$.

L'ensemble des solutions de l'équation (E) est donc : $S = \{2i, -2 + i, 1 + i\}$.