Discriminação em tempo real de sinais de peixes elétricos pulsadores usando FPGAs

Paulo Matias

Orientador: Prof. Dr. Jan Frans Willem Slaets

Grupo de Física Computacional e Instrumentação Aplicada Departamento de Física e Ciência Interdisciplinar Instituto de Física de São Carlos Universidade de São Paulo

Objeto de estudo: Gymnotus sp. (tuvira)

Motivação

- Compreensão de sistemas de comunicação básicos (baixo nível) da natureza.
- Estudo da ocorrência de mecanismos naturais de multiplexação em um canal comum.
- Aplicações (e.g. possível "sensor" de vazamento de petróleo).

Medir sinais de um único peixe é "simples"

Discriminação

Detecção de timestamps

Intervalo Entre Pulsos (IEP)

Objetivos

- Definir o estado da arte em classificação da origem de DOEs (descargas de órgão elétrico), permitindo:
 - Experimentos *in vivo* com mais de um animal.
 - Alto grau de naturalismo.
- Realizar a detecção em **tempo real**, permitindo:
 - Propor experimentos em *closed loop* com modelo de *peixe artificial*.
 - Mimetizar tempo de resposta de circuitos neuronais do cérebro do peixe.

Montagem experimental

Sistemas de aquisição

aquisição off-line

aquisição em real-time

Implementação off-line

Visão geral do algoritmo

Segmentação

Extração de características

A transformada complexa de dupla árvore de pacote wavelet

Seleção de características

Minimização da probabilidade de sobreposição

Classificação supervisionada

A máquina de vetores de suporte

RBF

VEUROBIOFÍSICA EX

Condição de continuidade

$$\underset{s_{1}, s_{2}}{\operatorname{arg}} \sum_{i, c} \left(A_{c}[i] - \Xi \left(L_{1, c}[i - s_{1}] + L_{2, c}[i - s_{2}] \right) \right)^{2}$$

Acurácia do classificador

Intervalo entre pulsos

Tempo de execução por etapa

Tempos medidos em um Intel Core i3-2120 de 3,30 GHz. Dados de um aquário com 8 eletrodos (7 canais de medida).

Resultados - Parte I

Tempo de resposta do núcleo magnocelular

Medida com eletrodo extracelular

Acima: eletrodo. Abaixo: sinal na água.

Visão geral do hardware

Caracterização da latência de interrupção do PCIe

Construção do sistema de aquisição customizado

Front-end analógico

Sistema de aquisição customizado: montagem final

Infraestrutura de teste

Módulo mimetizador de AD

\$ dd if=exp01.dma_in bs=65536 of=/dev/rtf1
39936+0 registros de entrada
39936+0 registros de saída
2617245696 bytes (2,6 GB) copiados,
155,756 s, 16,8 MB/s

Processa um arquivo previamente gravado em um tempo (10,3 \pm 0,8) vezes inferior ao tempo de duração do experimento.

Módulo de aquisição contínua

Módulo delimitador de janelas (segmentação)

Substituição da soma de quadrados pelo módulo da Transformada de Hilbert:

- Permite prever com antecedência em qual instante ocorrerá o fim da janela.
- Reduz a latência para começar a processar uma janela de sinal.

Módulo de sobreposição de disparos (continuidade)

Software de tempo real: adaptações e otimizações

- Adaptação do RTAI para uso de instruções AVX: substituição da instrução fxsave por xsave.
- Introdução de *array* com *wrap-around* precomputado para vetorização da transformada wavelet:

extin[i] := in[i & (n-1)],
$$i \in [0,off+n+ncoef)$$

■ Otimização manual do classificador SVM com núcleo RBF:

$$D(\mathbf{x}) = -\rho + \sum_{i=0}^{l} \alpha_i \exp(-\gamma \underbrace{\|\mathbf{y}_i - \mathbf{x}\|^2}_{\text{normsq[i]}})$$

Desempenho da implementação de SVM proposta

Tempos medidos em um Intel Core i3-2120 de 3,30 GHz. Dados de um aquário com 12 eletrodos (11 canais de medida).

27 / 31

Desempenho do módulo de sobreposição de disparos

Recursos de hardware consumidos

29 / 31

Aferição da latência total do sistema

\EUROBIOFÍSICA

Conclusões

- Este trabalho define o estado da arte atual em:
 - Classificação do peixe de origem de uma descarga de órgão elétrico (DOE).
 - Instrumentação para detecção dessas DOEs em tempo real.
- Esta instrumentação permitirá a realização, pela primeira vez, de experimentos envolvendo o estudo comparado da resposta de dois indíviduos a estímulos dependentes da atividade elétrica destes.
- Devido ao alto grau de complexidade computacional e aos requisitos de tempo real inerentes a este problema, o uso das modernas técnicas de co-projeto hardware/software aqui empregadas (com FPGA e RTOS) foi crucial para a conclusão do projeto. A aplicação dessas técnicas é inédita em problemas de neuroetologia.

