EXERCISE - IV

ADVANCED SUBJECTIVE QUESTIONS

Prove that:

1. R r (sin A + sin B + sin C) =
$$\Delta$$

2.
$$2R \cos A = 2R + r - r_1$$

3.
$$\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \frac{s^2}{\Lambda}$$

4.
$$\cos^2 \frac{A}{2} + \cos^2 \frac{B}{2} + \cos^2 \frac{C}{2} = 2 + \frac{r}{2R}$$

5.
$$\frac{\tan \frac{A}{2}}{(a-b)(a-c)} + \frac{\tan \frac{B}{2}}{(b-a)(b-c)} + \frac{\tan \frac{C}{2}}{(c-a)(c-b)} = \frac{1}{\Delta}$$

- **6.** If $r_1 = r + r_2 + r_3$ then prove that the triangle is a right angled triangle.
- **7.** If two times the square of the diameter of the circumcircle of a triangle is equal to the sum of the squares of its sides then prove that the triangle is right angled.
- **8.** In acute angled triangle ABC, a semicircle with radius r_a is constructed with its base on BC and tangent to the other two sides r_b and r_c are defined similarly. If r_b is the raidus of the incircle of triangle ABC then prove that, $\frac{2}{r} = \frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c}$.
- **9.** For any triangle ABC , if B = 3 C , show that

$$\cos C = \sqrt{\frac{b+c}{4c}} \ \& \sin \frac{A}{2} = \frac{b-c}{2c}.$$

10. In a triangle ABC, BD is median. If $\ell(BD) = \frac{\sqrt{3}}{4} \cdot \ell(AB)$

and $\angle DBC = \frac{\pi}{2}$. Determine the $\angle ABC$.

11. ABCD is a trapezium sum that AB, DC are parallel & BC is perpendicular to them. If angle ADB = θ ,

$$BC = p \ \& \ CD = q \text{, show that AB} = \frac{(p^2 + q^2)\sin\theta}{p\cos\theta + q\sin\theta} \ .$$

- **12.** Find the angles of a triangle in which the altitude and a median drawn from the same vertex divide the angle at that vertex into 3 equal parts.
- **13.** ABCD is a rhombus. The circumradii of \triangle ABD and \triangle ACD are 12.5 and 25 respectively. Find the area of rhombus.
- **14.** In a triangle ABC if $a^2 + b^2 = 101c^2$ then find the value of $\frac{\cot C}{\cot A + \cot B}$.
- **15.** If I be the in-centre of the triangle ABC and x, y, z be the circmradii of the triangle IBC, ICA & IAB, show that $4R^3 R(x^2 + y^2 + z^2) xyz = 0$.
- **16.** If in a triangle ABC, $\frac{\cos A + 2\cos C}{\cos A + 2\cos B} = \frac{\sin B}{\sin C}$, prove that the triangle ABC is either isosceles or right angled.
- **17.** In a ∆ ABC,

(i)
$$\frac{a}{\cos A} = \frac{b}{\cos B}$$

(ii) $2 \sin A \cos B = \sin C$

(iii)
$$\tan^2 \frac{A}{2} + 2 \tan \frac{A}{2} \tan \frac{C}{2} - 1 = 0$$
, prove that (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i).

- **18.** If p_1 , p_2 , p_3 are the altitudes of a triangle from the vertices A, B, C & Δ denotes the area of the triangle, prove that $\frac{1}{p_1} + \frac{1}{p_2} \frac{1}{p_3} = \frac{2ab}{(a+b+c)\Delta}\cos^2\frac{C}{2}$.
- **19.** The triangle ABC (with side lengths a, b, c as usual) satisfies $\log a^2 = \log b^2 + \log c^2 \log (2bc \cos A)$. What can you say about this triangle?

20. If the bisector of angle C of triangle ABC meets AB in D & the circumcircle in E prove that,

$$\frac{\mathsf{CE}}{\mathsf{DE}} \, = \, \frac{\left(\mathsf{a} + \mathsf{b}\right)^2}{\mathsf{c}^2} \, .$$

- **21.** With reference to a given circle, A_1 and B_1 are the areas of the inscribed and circumscribed regular polygons of n sides, A_2 and B_2 are corresponding quantities for regular polygons of 2n sides. Prove that
- (1) A_2 is a geometric mean between A_1 and B_1 .
- (2) B_2 is a harmonic mean between A_2 and B_1 .
- **22.** The triangle ABC is a right angled triangle, right angle at A. The ratio of the radius of the circle circumscribed to the radius of the circle escribed to

the hypotenuse is, $\sqrt{2}$: ($\sqrt{3}$ + $\sqrt{2}$). Find the acute angle B & C. Also find the ratio of the sides of the triangle other than the hypotenuse.

23. ABC is a triangle. Circles with radii as show are drawn inside the triangle each touching two sides and the incircle. Find the radius of the incircle of the \triangle ABC.

24. In a scalene triangle ABC the altitudes AD & CF are dropped from the vertices A, C to the sides BC & AB. The area of Δ ABC is know the be equal to 18, the area of triangle BDF is equal to 2 and length of segment DF is equal to $2\sqrt{2}$. Find the radius of the circle circumscribed.