計算機結構(數位邏輯與電子學)

陳鍾誠 於金門大學

邏輯閘

邏輯閘是由電晶體所組成的

- ●電品體
 - 類型
 - 雙極接面電晶體 (TTL、ECL)
 - 金氧半導體場效電晶體 (MOSFET)

- •特徵
 - 某些狀況下、電會流過、某些狀況下不會。
 - 穿遂效應。

MOSFET

P-Channel MOSFET: 斷路狀態

因為正電對正電排斥,正電進不來,因此不通。

P-Channel MOSFET: 斷路狀態

因為正電對正電排斥,正電進不來,因此不通。

P-Channel MOSFET: 通路狀態

因為負電吸引下,正電穿過 N 型矽,通了,稱為穿隧效應。

P-Channel v.s. N-Channel

CMOS Inverter (not)

CMOS Inverter (not)

CMOS NAND

結語

- ●資工系的硬體課程都學完了
- 對硬體有與趣的同學請到電子系修電子學與計算機結構!
- 對系統軟體有興趣的同學請 修系統程式與作業系統!

計算機結構 - 邏輯電路的背後

陳鍾誠 於金門大學

邏輯閘

OR

NOT

Logic Function Implementation

- Using Switches
 - For inputs:
 - logic 1 is switch closed
 - logic 0 is switch open
 - For outputs:
 - logic 1 is <u>light on</u>
 - logic 0 is <u>light off</u>.
 - NOT uses a switch such
 - that:
 - logic 1 is switch open
 - logic 0 is <u>switch closed</u>

Switches in parallel => OR

Switches in series => AND

Normally-closed switch => NOT

Logic Function Implementation (Continued)

Example: Logic Using Switches

• Light is on (L = 1) for

$$L(A, B, C, D) =$$

and off (L = 0), otherwise.

 Useful model for relay circuits and for CMOS gate circuits, the foundation of current digital logic technology

Logic Gates

- In the earliest computers, switches were opened and closed by magnetic fields produced by energizing coils in *relays*. The switches in turn opened and closed the current paths.
- Later, vacuum tubes that open and close current paths electronically replaced relays.
- Today, transistors are used as electronic switches that open and close current paths.
- Optional: Chapter 6 Part 1: The Design Space

Logic Gate Symbols and Behavior

Logic gates have special symbols:

(a) Graphic symbols

• And waveform behavior in time as follows:

Gate Delay

- In actual physical gates, if one or more input changes causes the output to change, the output change does not occur instantaneously.
- The delay between an input change(s) and the resulting output change is the gate delay denoted by t_G:

Logic Diagrams and Expressions

Equation	th Table	Tru
	$\mathbf{F} = \mathbf{X} + \overline{\mathbf{Y}} \cdot \mathbf{Z}$	XYZ
$\mathbf{F} = \mathbf{X} + \mathbf{I}$	0	000
	1	001
Logic Diagr	0	010
X	0	011
\ \ \ \ - \ \	1	100
Y	1	101
z —	1	110
	1	111

$$F = X + \overline{Y} Z$$

am

- Boolean equations, truth tables and logic diagrams describe the same function!
- Truth tables are unique; expressions and logic diagrams are not. This gives flexibility in implementing functions.

Boolean Algebra

 An algebraic structure defined on a set of at least two elements, B, together with three binary operators (denoted +, · and ¬) that satisfies the following basic identities:

1
$$X + 0 = X$$

$$3 X + 1 = 1$$

5.
$$X+X=X$$

7.
$$X + \overline{X} = 1$$

9.
$$\overline{\overline{X}} = X$$

$$2. \quad X \cdot 1 = X$$

4.
$$X \cdot 0 = 0$$

6.
$$X \cdot X = X$$

8.
$$X \cdot \overline{X} = 0$$

$$10. \quad X + Y = Y + X$$

12.
$$(X + Y) + Z = X + (Y + Z)$$

$$14. \quad X(Y+Z) = XY+XZ$$

16.
$$\overline{X+Y} = \overline{X} \cdot \overline{Y}$$

11.
$$XY = YX$$

13.
$$(XY)Z = X(YZ)$$

15.
$$X + YZ = (X + Y)(X + Z)$$

17.
$$\overline{X} \cdot \overline{Y} = \overline{X} + \overline{Y}$$

Cost Criteria (continued)

- GN = G + 2 = 9Example 1:
- $\mathbf{F} = \mathbf{A} + \mathbf{B} \cdot \mathbf{C} + \mathbf{B} \cdot \mathbf{C} \quad \mathbf{C}$

- L (literal count) counts the AND inputs and the single literal OR input.
- G (gate input count) adds the remaining OR gate inputs
- GN(gate input count with NOTs) adds the inverter inputs

Cost Criteria (continued)

- Example 2:
- $F = A B C + \overline{A} \overline{B} \overline{C}$
- L = 6 G = 8 GN = 11
- $\mathbf{F} = (\mathbf{A} + \overline{\mathbf{C}})(\overline{\mathbf{B}} + \mathbf{C})(\overline{\mathbf{A}} + \mathbf{B})$
- L = 6 G = 9 GN = 12
- Same function and same literal cost
- But first circuit has <u>better</u> gate input count and <u>better</u> gate input count with NOTs
- Select it!

