```
/* Montgomery 13.7 */
proc import datafile="/home/u63048916/STAT571B/Homework/Homework 7/Q13-2.xlsx"
    dbms=xlsx
    out=randr
    replace;
    getnames=yes;
/* 2.2: mixed effect (1 fixed: operator + 1 random: part) model */
/* for the fixed factor "operator", specify its' denominator for the others just use the usual ANOVA table output*//* need to do hand calculation for the "part" or just use the result from the first table for "part" */
class Inspector Part;
model Impedance=Inspector Part;
random Part Inspector*Part/test;
lsmeans Inspector / adjust=tukey E=Inspector*Part tdiff stderr;
run:
/* unrestriced*/
/* (by glm) */
/* no need to do any hand calculation */
proc glm data=randr;
class Inspector Part;
model Impedance=Inspector | Part;
random Part Inspector*Part/test;
lsmeans Inspector / adjust=tukey E=Inspector*Part tdiff stderr;
/* unrestriced*/
/* (by mixed) */
proc mixed data=randr alpha=.05 cl covtest;
class Inspector Part;
model Impedance=Inspector / ddfm=kr;
random Part Inspector*Part;
```

Need to check assumptions

lsmeans Inspector / alpha=.05 cl diff adjust=tukey;

run:

Figure 13.7.3

See Figure 13.7.3, pairwise comparisons indicate that Inspector 1 is different from 2 and 3, but 2 and 3 are not different. Figure 13.7.2 show the Part factor and the Inspector*Part interaction factor are individually significant at an $\alpha=0.05$ level.

$$\hat{\sigma}^2 = MS_{Error} = 0.511$$

$$\hat{\sigma}_{\beta}^{2} = \frac{MS_{Part} - MS_{Error}}{n} = \frac{437.33 - 0.511}{3 * 3} = 48.535$$

$$\hat{\sigma}^2_{\tau\beta} = \frac{MS_{Inspector*Part} - MS_{Error}}{n} = \frac{2.695 - 0.511}{3} = 0.728$$

13.7. Reanalyze the measurement system experiment in Problem 13.2, assuming that operators are a fixed factor. Estimate the appropriate model components using the ANOVA method.

13.2. An article by Hoof and Berman ("Statistical Analysis of Power Module Thermal Test Equipment Performance," *IEEE Transactions on Components, Hybrids, and Manufacturing Technology* Vol. 11, pp. 516–520, 1988) describes an experiment conducted to investigate the capability of measurements in thermal impedance (C°/w × 100) on a power module for an induction motor starter. There are

10 parts, three operators, and three replicates. The data are shown in Table P13.2.

■ TABLE P13.2 Power Module Thermal Test Equipment Data for Problem 13.2

	Inspector 1			Inspector 2			Inspector 3		
	Test			Test			Test		
Part No.	1	2	3	1	2	3	1	2	3
1	37	38	37	41	41	40	41	42	41
2	42	41	43	42	42	42	43	42	43
3	30	31	31	31	31	31	29	30	28
4	42	43	42	43	43	43	42	42	42
5	28	30	29	29	30	29	31	29	29
6	42	42	43	45	45	45	44	46	45
7	25	26	27	28	28	30	29	27	27
8	40	40	40	43	42	42	43	43	41
9	25	25	25	27	29	28	26	26	26
10	35	34	34	35	35	34	35	34	35

- (a) Analyze the data from this experiment, assuming that both parts and operators are random effects.
- (b) Estimate the variance components using the analysis of variance method.
- (c) Estimate the variance components using the REML method. Use the confidence intervals on the variance components to assist in drawing conclusions.

about:blank 1/1