Семинар 6

Мы продолжаем рассматривать линейное неоднородное ОДУ n-го порядка с постоянными коэффициентами:

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = f(x), \quad a_0 \neq 0.$$
 (1)

Соответствующее ему однородное уравнение:

$$a_0 \bar{y}^{(n)} + a_1 \bar{y}^{(n-1)} + \dots + a_{n-1} \bar{y}' + a_n \bar{y} = 0.$$
 (2)

Соответствующее ХУ:

$$a_0 \lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n = 0.$$
(3)

Продолжим изучать методы решения линейного неоднородного уравнения (1). Как мы уже упоминали на прошлом семинаре, ОР линейного неоднородного уравнения (1) имеет вид $y(x) = \bar{y}(x) + \bar{y}(x)$,

где $\bar{y}(x)$ — ОР линейного однородного уравнения (2), $\bar{y}(x)$ — ЧР линейного неоднородного уравнения (1).

Изученные на прошлом семинаре метод вариации постоянных и метод построения ЧР уравнения (1) с помощью функции Коши — это универсальные методы, т. е. они годятся для произвольной правой части f(x). Сегодня мы рассмотрим ещё пару методов построения ЧР, которые годятся только для функций f(x) особого вида.

3. Метод неопределённых коэффициентов.

- 1) Пусть $f(x) = P_m(x)e^{\alpha x}$, где $P_m(x)$ многочлен m-й степени (такая функция f(x) называется κ вазимногочленом). Тогда
 - а) если α не корень XУ (3) (*нерезонансный* случай), то ЧР уравнения (1) нужно искать в виде $\bar{y}(x) = Q_m(x)e^{\alpha x}$, где $Q_m(x)$ многочлен m-й степени с неизвестными коэффициентами;
 - б) если α корень ХУ (3) кратности p (*резонансный* случай), то ЧР уравнения (1) нужно искать в виде $\bar{y}(x) = x^p Q_m(x) e^{\alpha x}$.
- 2) Пусть $f(x) = P_m(x)e^{\alpha x}\cos\beta x$ (или $f(x) = P_m(x)e^{\alpha x}\sin\beta x$).
 - а) Первый способ. ЧР уравнения (1) будет иметь вид $\bar{\bar{y}}=\text{Re }\tilde{y}$ (или $\bar{\bar{y}}=\text{Im }\tilde{y}$), где $\tilde{y}(x)$ ЧР уравнения (1) с правой частью $\tilde{f}(x)=P_m(x)e^{(\alpha+i\beta)x}$.
 - б) Второй способ. Можно не переходить к комплексным функциям, а искать ЧР уравнения (1) в виде $\bar{y}(x) = x^p e^{\alpha x} [Q_m(x) \cos \beta x + R_m(x) \sin \beta x]$ (Здесь обязательно должны присутствовать и синус, и косинус одновременно, даже если в исходном уравнении был только синус или только косинус!), где p = 0, если $\alpha \pm i\beta$ не корни ХУ (3), и p их кратность в противном случае.
- 3) Принцип суперпозиции. Если $f(x) = f_1(x) + f_2(x)$, то ЧР уравнения (1) будет функция $\bar{y}(x) = \bar{y}_1(x) + \bar{y}_2(x)$, где $\bar{y}_1(x)$ и $\bar{y}_2(x)$ ЧР уравнения (1) с правой частью $f_1(x)$ и $f_2(x)$, соответственно.

Пример 1 (Филиппов № 534). Решить уравнение $y'' + y = 4xe^x + \cos x$.

1) Найдём ОР соответствующего линейного однородного уравнения:

$$\bar{y}^{\prime\prime} + \bar{y} = 0.$$

Его ХУ

$$\lambda^2 + 1 = 0$$

имеет корни

$$\lambda = \pm i$$
.

Тогда ОР однородного уравнения:

```
\bar{y}(x) = C_1 \cos x + C_2 \sin x.
```

- 2) В силу принципа суперпозиции ЧР $\bar{y}(x)$ неоднородного уравнения с правой частью $f(x) = 4xe^x + \cos x$ будет являться суммой ЧР $\bar{y}_1(x)$ и $\bar{y}_2(x)$ неоднородных уравнений с правыми частями $f_1(x) = 4xe^x$ и $f_2(x) = \cos x$, соответственно.
- 3) Найдём $\bar{y}_1(x)$ ЧР неоднородного уравнения $y'' + y = 4xe^x$.

В данном случае правая часть $f_1(x) = 4xe^x = P_1(x)e^{1\cdot x}$ — квазимногочлен, $\alpha = 1$ — не корень XV $\lambda^2 + 1 = 0$, поэтому ищем ЧР в виде

$$\overline{\bar{y}}_1(x) = Q_1(x)e^x = (Ax + B)e^x.$$

Тогда

$$\bar{y}'_1(x) = Ae^x + (Ax + B)e^x = (Ax + A + B)e^x$$
,

$$\overline{\bar{y}}_{1}^{"}(x) = Ae^{x} + (Ax + A + B)e^{x} = (Ax + 2A + B)e^{x}.$$

Подставляем это в неоднородное уравнение $y'' + y = 4xe^x$:

$$(Ax + 2A + B)e^{x} + (Ax + B)e^{x} = 4xe^{x}$$
.

После сокращения на e^x имеем:

$$Ax + 2A + B + Ax + B = 4x.$$

Приравняв коэффициенты при одинаковых степенях x, получим

при
$$x^1$$
: $A + A = 4$,

при
$$x^0$$
: $2A + B + B = 0$.

Отсюда
$$A = 2$$
, $B = -2$. Тогда

$$\overline{\bar{y}}_1(x) = 2(x-1)e^x.$$

- 4) Найдём $\bar{y}_2(x)$ ЧР уравнения $y'' + y = \cos x$.
 - а) Первый способ.

$$f_2(x)=\cos x={\rm Re}\ e^{ix}$$
, поэтому $\bar{y}_2(x)={\rm Re}\ \tilde{y}_2(x)$, где $\tilde{y}_2(x)$ — ЧР уравнения $y''+y=e^{ix}$.

Теперь правая часть $\tilde{f}_2(x) = e^{ix} = P_0(x)e^{ix}$ — квазимногочлен, $\alpha = i$ — корень кратности 1 XУ $\lambda^2 + 1 = 0$, поэтому ищем ЧР в виде

$$\tilde{y}_2(x) = xQ_0(x)e^{ix} = xCe^{ix}.$$

Тогда

$$\tilde{y}_2'(x) = Ce^{ix} + ixCe^{ix} = C(1+ix)e^{ix},$$

$$\tilde{y}_{2}^{(i)}(x) = iCe^{ix} + iC(1+ix)e^{ix} = C(2i-x)e^{ix}.$$

Подставляем это в уравнение $y'' + y = e^{ix}$:

$$C(2i - x)e^{ix} + Cde^{ix} = e^{ix}.$$

После сокращения на e^{ix} имеем:

$$2iC - Cx + xC = 1.$$

Отсюда
$$C = \frac{1}{2i} = -\frac{i}{2}$$
. Тогда

$$\tilde{y}_2(x) = -\frac{i}{2}xe^{ix} = -\frac{i}{2}x(\cos x + i\sin x) = -\frac{i}{2}x\cos x + \frac{x\sin x}{2}.$$

$$\bar{\bar{y}}_2(x) = \operatorname{Re}\,\tilde{y}_2(x) = \frac{x\sin x}{2}.$$

б) Второй способ. Поскольку в уравнении $y'' + y = \cos x$ правая часть имеет вид $f_2(x) = \cos x = e^{0 \cdot x} P_0(x) \cos(1 \cdot x)$, и $\alpha \pm i\beta = 0 \pm i \cdot 1$ — корни кратности 1 ХУ $\lambda^2 + 1 = 0$, то мы должны искать ЧР в виде

$$\bar{\bar{y}}_2(x) = xe^{0\cdot x}(Q_0(x)\cos x + R_0(x)\sin x) = x(E\cos x + F\sin x).$$

Тогда

$$\bar{y}_2'(x) = x(-E\sin x + F\cos x) + E\cos x + F\sin x,$$

$$\bar{y}_2''(x) = x(-E\cos x - F\sin x) - 2E\sin x + 2F\cos x.$$

Подставив это в ДУ $y'' + y = \cos x$, получим:

 $-xE\cos x - xF\sin x - 2E\sin x + 2F\cos x + xE\cos x + xF\sin x = \cos x$.

 $-2E\sin x + 2F\cos x = \cos x$.

Приравняв коэффициенты при $\sin x$ и $\cos x$ в левой и правой части, получим

$$E=0$$
, $F=rac{1}{2}$. Отсюда $\bar{\bar{y}}_2(x)=rac{x\sin x}{2}$.

5) ЧР исходного уравнения: $\bar{y}(x) = \bar{y}_1(x) + \bar{y}_2(x) = 2(x-1)e^x + \frac{x \sin x}{2}$. В ответе запишем ОР исходного неоднородного уравнения: $y(x) = \bar{y}(x) + \bar{\bar{y}}(x)$. Ombem: $y(x) = C_1 \cos x + C_2 \sin x + 2(x-1)e^x + \frac{x \sin x}{2}$, $C_1, C_2 \in \mathbb{R}$.

4. Операторный метод. Тоже для правых частей в виде квазимногочленов: $f(x) = P_m(x)e^{\alpha x}$.

Введём оператор дифференцирования $D = \frac{d}{dx}$. Тогда $D^k = \frac{d^k}{dx^k}$. Все эти операторы линейны. Линейное неоднородное уравнение (1) запишется в виде

$$\underbrace{(a_0 D^n + a_1 D^{n-1} + \dots + a_{n-1} D + a_n)}_{P(D)} y = f(x),$$

$$P(D)y = f. (4)$$

Оператор P(D) называется операторным многочленом.

Введём обратный к нему оператор $\frac{1}{P(D)}$, который при действии на функцию f даёт некоторое ЧР уравнения (4): $\frac{1}{P(D)}f = \overline{y}$.

Тогда

$$P(D)\left[\underbrace{\frac{1}{P(D)}f}_{\overline{y}}\right] = f, \qquad \frac{1}{P(D)}\underbrace{\left[P(D)\overline{y}\right]}_{f} = \overline{y}.$$

В силу принципа суперпозиции оператор $\frac{1}{P(D)}$ тоже является линейным:

$$\frac{1}{P(D)}[cf(x)] = c\frac{1}{P(D)}f, c = \text{const};$$

$$\frac{1}{P(D)}(f_1 + f_2) = \frac{1}{P(D)}f_1 + \frac{1}{P(D)}f_2.$$

(Докажите самостоятельно.)

Докажем формулу:
$$\frac{1}{P(D)}e^{\alpha x} = \frac{e^{\alpha x}}{P(\alpha)}, \qquad \text{если } P(\alpha) \neq 0.$$
 (I)

Доказательство. Нам нужно доказать, что функция $\frac{e^{\alpha x}}{P(\alpha)}$ удовлетворяет уравнению $P(D)y = e^{\alpha x}$

Но поскольку $De^{\alpha x} = \frac{d}{dx}e^{\alpha x} = \alpha e^{\alpha x}$, имеем:

$$P(D)e^{\alpha x} = (a_0 D^n + a_1 D^{n-1} + \dots + a_{n-1} D + a_n)e^{\alpha x} = \underbrace{(a_0 \alpha^n + a_1 \alpha^{n-1} + \dots + a_{n-1} \alpha + a_n)}_{P(\alpha)} e^{\alpha x} = P(\alpha)e^{\alpha x},$$

т. е.

$$P(D)e^{\alpha x} = P(\alpha)e^{\alpha x}. (5)$$

Теперь, в силу линейности оператора P(D), поскольку $\frac{1}{P(\alpha)}$ — это число, получаем

$$P(D)\frac{e^{\alpha x}}{P(\alpha)} = \frac{1}{P(\alpha)}P(D)e^{\alpha x} \stackrel{(5)}{=} \frac{1}{P(\alpha)}P(\alpha)e^{\alpha x} = e^{\alpha x}$$
, ч.т.д.

Заметим, что $P(\lambda)=0$ — это ХУ (3), т. е. формула (I) применима тогда и только тогда, когда α — не корень XУ.

Пример 2 (Филиппов № 584). Найти ЧР уравнения $y'' - 2y' = 2e^x$.

$$P(D) = D^2 - 2D.$$

$$\overline{\bar{y}}(x) = \frac{1}{P(D)} 2e^x = 2 \frac{1}{P(D)} e^x \stackrel{\text{(I)}}{=} 2 \frac{e^x}{P(1)} = 2 \frac{e^x}{-1} = -2e^x,$$

поскольку $P(1) \neq 0$.

Ответ: $\overline{y}(x) = -2e^x$.

Пример 3. Найти ЧР уравнения $y'' - 7y' + 6y = \sin x$.

$$P(D) = D^2 - 7D + 6.$$

$$\bar{\bar{y}}(x) = \frac{1}{P(D)} \sin x = \frac{1}{P(D)} \operatorname{Im} e^{ix} = \operatorname{Im} \frac{1}{P(D)} e^{ix} \stackrel{\text{(I)}}{=} \operatorname{Im} \frac{e^{ix}}{P(i)} = \operatorname{Im} \frac{e^{ix}}{5 - 7i} = \operatorname{Im} \frac{(5 + 7i)(\cos x + i \sin x)}{25 + 49} = \frac{7 \cos x + 5 \sin x}{74},$$

поскольку $P(i) \neq 0$

Omeem: $\bar{y}(x) = \frac{7\cos x + 5\sin x}{7A}$

Заметим, что
$$\frac{1}{D}$$
 — это оператор взятия первообразной. В частности, можно положить
$$\frac{1}{D}x^{\alpha} = \frac{x^{\alpha+1}}{\alpha+1}, \qquad \text{если } \alpha \neq -1.$$
 (II)

Теперь докажем формулу
$$\frac{1}{P(D)} [e^{\alpha x} g(x)] = e^{\alpha x} \frac{1}{P(D+\alpha)} g(x). \tag{III}$$

Доказательство. Заметим, что

$$D(e^{\alpha x}g) = e^{\alpha x}Dg + gDe^{\alpha x} = e^{\alpha x}Dg + e^{\alpha x}\alpha g = e^{\alpha x}(D+\alpha)g.$$

$$D^{2}(e^{\alpha x}g) = D\left[D(e^{\alpha x}g)\right] = D\left[e^{\alpha x}\underbrace{(D+\alpha)g}_{h}\right] = D(e^{\alpha x}h) = e^{\alpha x}(D+\alpha)h = e^{\alpha x}(D+\alpha)^{2}g.$$

По индукции получим, что

$$D^k(e^{\alpha x}g) = e^{\alpha x}(D+\alpha)^k g.$$

Отсюда

$$P(D)(e^{\alpha x}g) = e^{\alpha x}P(D+\alpha)g. \tag{6}$$

Нам надо доказать, что функция $e^{\alpha x} \frac{1}{P(D+\alpha)} g$ удовлетворяет уравнению

 $P(D)y = e^{\alpha x}g.$

В самом деле,

$$P(D)\left[e^{\alpha x}\frac{1}{\underbrace{P(D+\alpha)}g}\right] = P(D)(e^{\alpha x}h) \stackrel{(6)}{=} e^{\alpha x}P(D+\alpha)h = e^{\alpha x}P(D+\alpha)\left[\frac{1}{P(D+\alpha)}g\right] = e^{\alpha x}g, \quad \text{ч. т. д.}$$

Пример 4. Найти ЧР уравнения $y'' - 4y' + 4y = x^2 e^{2x}$.

$$P(D) = D^2 - 4D + 4 = (D - 2)^2$$
.

$$\bar{\bar{y}}(x) = \frac{1}{P(D)} (x^2 e^{2x}) \stackrel{\text{(III)}}{=} e^{2x} \frac{1}{P(D+2)} x^2 = e^{2x} \frac{1}{(D+2-2)^2} x^2 = e^{2x} \frac{1}{D^2} x^2 = e^{2x$$

$$= e^{2x} \frac{1}{D} \left(\frac{1}{D} x^2 \right) \stackrel{\text{(II)}}{=} e^{2x} \frac{1}{D} \left(\frac{x^3}{3} \right) \stackrel{\text{(II)}}{=} e^{2x} \frac{x^4}{12}.$$

Omeem: $\bar{\bar{y}}(x) = e^{2x} \frac{x^4}{12}$.

Пример 5. Найти ЧР уравнения $y''' - y = e^x$.

$$P(D) = D^3 - 1.$$

$$\bar{\bar{y}}(x) = \frac{1}{P(D)}e^x.$$

Формула (I) неприменима, поскольку P(1) = 0. Поэтому разложим оператор $\frac{1}{P(D)}$ на множители:

$$\bar{\bar{y}}(x) = \frac{1}{P(D)}e^x = \frac{1}{D^3 - 1}e^x = \frac{1}{(D - 1)(D^2 + D + 1)}e^x =$$

$$= \frac{1}{D - 1}\left(\frac{1}{D^2 + D + 1}e^x\right) \stackrel{\text{(I)}}{=} \frac{1}{D - 1}\left(\frac{e^x}{1 + 1 + 1}\right) = \frac{1}{3}\frac{1}{D - 1}e^x.$$

Дальше формулу (I) по-прежнему нельзя применять, поэтому сделаем следующее:

$$\bar{\bar{y}}(x) = \frac{1}{3} \frac{1}{D-1} (e^x \cdot 1) \stackrel{\text{(III)}}{=} \frac{1}{3} e^x \frac{1}{D+1-1} 1 = \frac{1}{3} e^x \frac{1}{D} 1 \stackrel{\text{(II)}}{=} \frac{1}{3} e^x x.$$

Ответ: $\bar{y}(x) = \frac{1}{3}e^x x$.

Замечание. Здесь мы воспользовались свойством

$$\frac{1}{P_1(D)P_2(D)} = \frac{1}{P_1(D)} \cdot \frac{1}{P_2(D)}$$

которое читателю предлагается доказать самостоятельно, исходя из свойства коммутативности операторных многочленов:

$$P_1(D)P_2(D) = P_2(D)P_1(D)$$

(которое также предлагается доказать самостоятельно).

Пример 6. Найти ЧР уравнения $y'' + y = x^2 - x + 2$.

$$P(D) = D^2 + 1.$$

$$\overline{\bar{y}}(x) = \frac{1}{P(D)}(x^2 - x + 2) = \frac{1}{D^2 + 1}(x^2 - x + 2).$$

Поделим 1 на $1 + D^2$ в столбик так, чтобы в остатке был оператор дифференцирования D в степени, большей степени многочлена $x^2 - x + 2$:

$$-\frac{1}{1+D^2} \begin{vmatrix} \frac{1+D^2}{1-D^2} \\ -\frac{D^2}{2} \end{vmatrix}$$

Таким образом,

$$\frac{1}{1+D^2} = 1 - D^2 + \frac{D^4}{1+D^2}.$$

Теперь

$$\bar{y}(x) = \frac{1}{P(D)}(x^2 - x + 2) = \left(1 - D^2 + \frac{D^4}{1 + D^2}\right)(x^2 - x + 2) =
= x^2 - x + 2 - \underbrace{D^2(x^2 - x + 2)}_{=2} + \frac{1}{1 + D^2}\underbrace{D^4(x^2 - x + 2)}_{=0} = x^2 - x.$$
Omsem: $\bar{y}(x) = x^2 - x$.

Замечание. Здесь мы воспользовались свойством коммутативности прямых и обратных операторных многочленов:

$$P_1(D)\frac{1}{P_2(D)} = \frac{1}{P_2(D)}P_1(D) \stackrel{\text{def}}{=} \frac{P_1(D)}{P_2(D)}$$

которое читателю предлагается доказать самостоятельно.

5. Для решения задачи Коши для линейного ОДУ с постоянными коэффициентами можно применять операционный метод (т. е. преобразование Лапласа, см. курс ТФКП).

Уравнение Эйлера

Это линейное ОДУ с переменными коэффициентами вида
$$a_0x^ny^{(n)} + a_1x^{n-1}y^{(n-1)} + \dots + a_{n-1}xy' + a_ny = f(x).$$

$$x = \begin{cases} e^t, & x > 0, \\ -e^t, & x < 0, \end{cases}$$

получится линейное ОДУ с постоянными коэффициентами.

Пример 7 (Филиппов № 595). Решить уравнение $x^3y'' - 2xy = 6 \ln x$.

Заметим, что уравнение имеет смысл лишь в области x > 0. Поделив его на x, получим

$$x^2y'' - 2y = 6\frac{\ln x}{x}.$$

Это уравнение Эйлера. Сделаем замену:

$$x = e^t > 0.$$

Tогла $t = \ln x$.

Теперь $y'' = \frac{d^2y}{dx^2}$ надо выразить через производные функции y по новой переменной t (бу-

дем их обозначать точками: $\dot{y} = \frac{dy}{dt}$, $\ddot{y} = \frac{d^2y}{dt^2}$). Имеем

$$y' = \frac{dy}{dx} = \frac{dy}{d(e^t)} = \frac{dy}{e^t dt} = \frac{1}{e^t} \frac{dy}{dt} = \frac{\dot{y}}{x'}$$

$$y'' = \frac{dy'}{dx} = \frac{d\left(\frac{\dot{y}}{x}\right)}{d(e^t)} = \frac{\frac{d}{dt}\left(\frac{\dot{y}}{x}\right)dt}{e^t dt} = \frac{\frac{\ddot{y}x - \dot{y}\dot{x}}{x^2}}{x} = \frac{\frac{\ddot{y}x - \dot{y}x}{x^2}}{x} = \frac{\ddot{y} - \dot{y}}{x^2}.$$

Подставив это в исходное уравнение, получим

$$\ddot{y} - \dot{y} - 2y = 6te^{-t}.$$

Это линейное уравнение с постоянными коэффициентами. Дома доделать.

ДЗ 6. Филиппов № 538, 540, 542, 543, 544, 546, 548, 598, 599, 606.