Matematički fakultet

Rešenja zadataka sa prijemnih ispita

Autor: Ivana Jankić

23. kolovoza 2017.

Sadržaj

$\mathbf{U}\mathbf{vod}$

Skripta je radjena od poslednjeg prijemnog ispita ka ranijima, p od 2016. DODATI JOS STVAARI :D

Prijemni ispit iz 2016. godine

Koliko litara vode sadrži puna kanta?

B) 33

Zadaci

A) 25

2.	Dvocifreni završetak prirodnog broja a je 16. Ako broj a nije deljiv sa 8, tada je cifra jedinica broja $3a/4$ jednaka:							
	A) 0	B) 2	C) 5	D) 7	E) 8			
3.	Koliko ima prirodnih brojeva manjih od 1000000 koji su deljivi tačno jednim od brojeva 11 i 13?							
	A) 6993	B) 153846	C) 160839	D) 167832	E) 993006			
4.	Najveci koeficijent polinoma $(2x+1)^{10}$ jednak je:							
	A) 120	B) 11520	C) 13440	D) 15360	E) 16480			
5.	Brojevi 2, $\sqrt{6} - \sqrt{2}$ i $4 - 2\sqrt{3}$ čine prva tri člana:							
6.	A) aritmetičkog, ali ne i geometrijskog niza B) geometrijskog, ali ne i arotmetičkog niza C) i aritmetičkog i geomtrijskog niza D) ni aritmetičkog ni geomtrijskog niza E) niza sa opstim članom $a_n = 4 - 2\sqrt{n}$ Data je jednačina $(\frac{1+ix}{1-ix})^2 = i$, gde je x realna nepoznata. Broj rešenja ove jednačine u intervalu $(0,1/2)$ je:							
	A) 0	B) 1	C) 2	D) 4	E) ∞			
7.	Ako su x_1 i x_2 rešenja jedančine $x^2-x+15=0$, tada je $x_1^3+x_2^3-2x_1^2-x_2^2+x_1x_2+2x_1+x_2-15$ jednako:							
	A) 1	B) 87	C) 31	D) 16	E) -14			
8.	Ako su a i b realni brojevi takvi da polinom x^4+ax^3-ax+b daje ostatak $2x+4$ pri deljenju polinomom x^2+2x+1 , tada je ab jednako:							
	A) 1	B) 2	C) 3	D) 4	E) 5			
9.	Date su funkcije $f_1(x) = \ln \frac{1+\sin x}{1-\sin x}$, $f_2(x) = \arcsin x \cdot \arctan x$, $f_3(x) = \sin x + \cos x$ i $f_4(x) = \frac{\ln x^2}{\sqrt[3]{x^2}}$. Ako sa p označimo broj parnih, a sa n broj neparnih među ovim funkcija, tačan je iskaz:							

1. Kada je 25% kante prazno, ona sadrži 25 litara vode vi
[e nego kada je 25% kante puno.

D) 75

E) 90

C) 50

11.	Funkcija f je zadata sa $f(x) = \frac{ax+b}{cx+d}$, gde su a,b,c i d realni brojevi. Ako je $f(0) = 1$, $f(1) = 0$ i $f(2) = 3$, koliko je $f(3)$?							
	A) -1	B) $\frac{3}{2}$	C) 5	D) 2	E) 3			
12.	Broj rešenja sistema jednačina $(x^2-1)(2x-3y+4z)=0$ $4x+5y+8z=-2$ $3x+y+6z=44$ u skupu realnih brojeva je:							
	A) 0	B) 1	C) 2	D) 3	E) ∞			
13.	Ako za realne brojeve x i y važi $7\cdot 3^x - 5\cdot 2^y = 23$ i $2\cdot 3^x + 3\cdot 2^y = 42$, onda je zbir $x+y$ jednak:							
	A) 7	B) 2	C) 3	D) 4	E) 5			
14.	Proizvod svih rešenja jednačine $\log_{36} x^2 + \log_6(x+5) - 1 = 0$ je :							
	A) -36	B) -6	C) 1	D) 12	E) 6			
15.	Broj celobrojnih rešenja nejednačine $\sin x < \cos x $ u intervalu $[0,8]$ jednak j							
	A) 4	B) 5	C) 6	D) 7	E) 8			
16.	Tačke M,N i P su središta tri mejusobno mimoilazne ivice kocke. Ako je duži $4cm$, površina trougla MNP je:							
	A) $8\sqrt{2}cm^2$	B) $\sqrt{2}cm^2$	C) $8\sqrt{3}cm^2$	D) $8cm^2$	E) $6\sqrt{3}cm^2$			
17.	Oko kružnije opisan je četvorouga o $ABCD$ površine $90cm^2$. Ako je zbir dužina naspramnih stranica AB i CD jednak $15cm$, dužina poluprečnika kružnice je :							
	A) 6 <i>cm</i>	B) $5\sqrt{2}cm$	C) $6\sqrt{3}cm$	D) $3\sqrt{3}cm$	E) 3 <i>cm</i>			
18.	Date su dve koncentrične kružnice i duž AB koja je tetiva kružnice većeg, a tangenta na kružnicu manjeg poliprečnika. Ako je $AB=6$, onda je površina prstena izmeju datih kružnica jednaka:							

C) p = 2 i n = 1

D) p = 1 i n = 2

C) 1

10. Za koje vrednosti realnog parametra ajednačina ||x-3|-1|=aima tačno tri realna

E) p = 1 i n = 0

E) 3

D) 2

A) p=1 i n=1

B) p = 2 i n = 2

B) 0

rešenja:

A) -1

A) 12π B) 9π C) π D) 9 E) 6π

19. Površona kvadrata čije su dve stranice na pravim $2x+y-3=0,\,2x+y-8=0$ je :

A) $2\sqrt{3}$ B) 5 C) 4 D) 6 E) $3\sqrt{2}$

20. Dužine stranica oštrouglog trougla su $a=60,\ b=52$ i c, a veličine odgovarajućih uglova su α,β i γ . Ako je $\sin\alpha=\frac{12}{13},$ onda je $\sin\gamma$ jednak:

A) $\frac{56}{65}$ B) $\frac{56}{63}$ C) $\frac{39}{65}$ D) $\frac{39}{63}$ E) $\frac{63}{65}$

5

Rešenje

1. 25% kante je prazne je ekvivalnetno sa tim da je 75% kante puno. Obeležimo sa x zapreminu kante sa vodom. Prevedimo sada tekst zadatka u matematički zapis:

Kada je 25% kante prazno, ona sadrži 25 litara vode više nego kada je 25% kante puno.

75% od x umanjen sa 25 litara je isto sto i 25% od x.

Matematički : $0.75 \cdot x - 25 = 0.25 \cdot x$

Daljim rešavanjem ove jednačine dobijamo: $0.5 \cdot x = 25$. Ako obe strane pomožimo sa brojem 2 dobijamo: x = 50, te je rešenja zadatka 50 litara. **Odgovor je pod C.**

2. Dvocifreni završetak prirodnog broja a je 16, matematički zapisano $a \equiv 16 \pmod{100}$. Znamo da 8 ne sme da deli a, dok po tekstu zadatka zaključujemo da 4 mora da deli a. Uradimo zadatak pešaka, ispišimo sve dvocifrene i trocifrene brojeve kod kojih važi gorenja relacija. Krenućemo od 16 do 916.

16 - ne može jer je deljivo sa 8.

116 je kandidat za a.

216 - ne može jer je deljivo sa 8.

316 je kandidat za a.

416 - ne može jer je deljivo sa 8.

516 je kandidat za a.

616 - ne može jer je deljivo sa 8.

716 je kandidat za a.

816 - ne može jer je deljivo sa 8.

916 je kandidat za a.

Posmatrajmo sada kandidate, svi su deljivi sa 4. Podelimo ih sve sa 4 i dobijamo redom : 29, 79, 129, 179, 229. Pošto nas zanima samo cifra jedinice broja 3a/4, već odavde možemo da zaklučimo da će to biti 9*3(mod10) to jest broj 7. **Odgovor je pod D.**

3. Brojeve koje posmatramo pripadaju skupu $\{n \in N : n < 1000000 = 10^6\}$. Posmatrajmo skupove $A = \{m \in N : 11 \cdot m < 10^6\}$, $B = \{m \in N : 13 \cdot m < 10^6\}$ i $C = \{m \in N : 11 \cdot 13 \cdot m < 10^6\}$. A je skup svih brojeva deljivih sa 11, B je skup svih brojeva deljivih sa 13 i C skup svih brojeva deljivih sa 11 i 13. Pošto u skupu A se nalaze brojevi deljivi i sa 13, a u B se nalaze brojevi koji su deljivi i sa 11. Stoga rešenje predstavlja $|A| + |B| - 2 \cdot |C|$. Gde |A| predstavlja kardinalnost skupa A. Izračunajmo sada kardinalnosti skupova :

6

$$|A| = \left\lfloor \frac{10^6}{11} \right\rfloor = 90909$$

$$|B| = \left\lfloor \frac{10^6}{13} \right\rfloor = 76923$$

$$|C| = \left\lfloor \frac{10^6}{11 \cdot 13} \right\rfloor = \left\lfloor \frac{10^6}{143} \right\rfloor = 6993$$

Te je rešenje $90909 + 76923 - 2 \cdot 6993 = 153846$. **Odgovor je pod B.**

4. Koeficijent uz k-ti član se računa pomoću formule $\binom{n}{k}(2)^k 1^{n-k}$, što je u ovom slučaju isto što i $\binom{n}{k}(2)^k$. Sada tražimo $k \leq 10$ takvo da je gornji izraz maksimalan. Znamo da $\binom{n}{k}$ daje koeficijente simetrične u odnosu na $\frac{n+1}{2}$, pa uočavamo da ce maksimalno biti za $k \geq \lceil \frac{n+1}{2} \rceil = 6$. Najimo sada koeficijente za $6 \leq k \geq 10$:

$$\left(\begin{array}{c} 10\\6 \end{array}\right) \cdot 2^6 = 210 \cdot 2^6 = 6720$$

$$\binom{10}{7} \cdot 2^7 = 120 \cdot 2^7 = 15360$$

$$\left(\begin{array}{c} 10 \\ 8 \end{array}\right) \cdot 2^8 = 45 \cdot 2^8 = 11520$$

$$\left(\begin{array}{c} 10 \\ 9 \end{array}\right) \cdot 2^9 = 10 \cdot 2^9 = 5120$$

 $\begin{pmatrix} 10 \\ 10 \end{pmatrix} \cdot 2^{10} = 1 \cdot 2^{10} = 1024$ Vidimo da je za k=7 koeficijent najveć i iznosi 15360. **Odgovor je pod D.**

Bibliografija

- [1] kkkk
- [2] kkkkk