m3pm16l20.tex

Lecture 20. 25.2.2015

4. Non-vanishing on the 1-line: $\zeta(1+it) \neq 0$.

Lemma (Hadamard, 1896). $3 + 4\cos\theta + \cos 2\theta \ge 0$.

Proof.
$$3 + 4\cos\theta + \cos 2\theta = 2 + 4\cos\theta + 2\cos^2\theta = 2(1 + \cos\theta)^2$$
. //

Prop. If all $a_n \ge 0$ and the Dirichlet series $f(s) := \sum_{1}^{\infty} a_n/n^s$ converges for $Re \ s = \sigma > \sigma_0$, then

$$3f(\sigma) + 4Ref(\sigma + it) + Ref(\sigma + 2it) \ge 0$$
 $(\sigma > \sigma_0)$.

Proof.

$$3f(\sigma) + 4Ref(\sigma + it) + Ref(\sigma + 2it) = \sum_{n=1}^{\infty} \frac{a_n}{n^{\sigma}} (3 + 4n^{-it} + n^{-2it}).$$

If
$$\theta_n := t \log n$$
, $Re(3 + 4n^{-it} + n^{-2it}) = 3 + 4 \cos \theta_n + \cos 2\theta_n \ge 0$. //

Corollary. For $\sigma > 1$ and all t,

$$H(\sigma) := \zeta(\sigma)^3 |\zeta(\sigma + it)|^4 |\zeta(\sigma + 2it)| \ge 1.$$

Proof. By II.6, $\log \zeta(s)$ has a Dirichlet series with non-negative coefficients, $\log \zeta(s) = f(s) = \sum_{1}^{\infty} a_n/n^s$ for $a_n \geq 0$. By the Proposition, $3f(\sigma) + 4Ref(\sigma + it) + Ref(\sigma + 2it) \geq 0$. So $(\log z = \log(re^{i\theta}) = \log r + i\theta$, so $Re \log z = \log r = \log |z|)$

$$3\log \zeta(\sigma) + 4\log |\zeta(\sigma + it)| + \log |\zeta(\sigma + 2it)| \ge 0.$$

Exponentiating gives the result. //

Theorem (Hadamard, 1896). ζ is non-vanishing on the 1-line: $\zeta(1+it) \neq 0$ for $t \neq 0$.

Proof (by contradiction). If not, $\zeta(1+it)=0$ for some $t\neq 0$. Then differentiating from first principles,

$$\frac{\zeta(\sigma+it)-\zeta(1+it)}{(\sigma+it)-(1+it)} = \frac{\zeta(\sigma+it)}{\sigma-1} \to \zeta'(1+it) \qquad (\sigma\downarrow 1),$$

as ζ is holomorphic at 1+it. In the Corollary,

$$H(\sigma) = \left[(\sigma - 1)\zeta(\sigma) \right]^3 \left(\frac{|\zeta(\sigma + it)|}{\sigma - 1} \right)^4 \left[(\sigma - 1)|\zeta(\sigma + 2it)| \right].$$

Now $(\sigma - 1)\zeta(\theta) \to 1$ $(\sigma \downarrow 1)$ $(\zeta$ has a simple pole of residue 1 at 1). So $[...]^3 \to 1$; $(...)^4 \to (\zeta'(1+it))^4$ by above; $|\zeta(\sigma + 2it)| \to \zeta(1+2it)$. Combining, $H(\sigma) \to 0$ as $\sigma \to 1$, contradicting the Corollary above. //

Note. 1. The critical term in the proof above is the factor $\sigma - 1$ in the last [...] (available because of the "3, 4, 1" coefficients in the Lemma (see below). 2. $\zeta(1+it) \neq 0$ is essentially equivalent to the PNT, below.

Recall: from the Euler product, $\zeta \neq 0$ to the *right* of the 1-line; by the Theorem, $\zeta \neq 0$ on the 1-line. We now extend the zero-free region of ζ to the *left* of the 1-line and into the *critical strip* of $0 \leq \sigma \leq 1$. It suffices to consider t > 0, as $|\zeta(\sigma - it)| = |\zeta(\sigma + it)|$ (since $n^{-s} = e^{-it \log n}/n^{\sigma}$).

Theorem. For 0 < a < b, $\exists \delta > 0$ such that $\zeta(\sigma + it) \neq 0$ in $1 - \delta \leq \sigma \leq 1$, $a \leq t \leq b$ (a rectangle *inside* the critical strip).

Proof. If not, for each n there exists some $s_n = \sigma_n + it_n$ with

$$1 - 1/n \le \sigma_n \le 1, \ a \le t_n \le b, \ \zeta(s_n) = 0.$$

As t_n is an infinite sequence in [a, b], which is compact, it has a convergent subsequence t_{n_k} (Bolzano-Weierstrass Th.), going to t_0 , say. Then $\sigma_n \to 1$, so $s_{n_k} \to 1 + it_0$. So $\zeta(s_{n_k}) \to \zeta(1 + it_0)$ by the continuity of ζ , and this is non-zero by the Theorem above. But each $\zeta(s_n) = 0$, so $\zeta(s_{n_k}) = 0 \to 0$, a contradiction. //

Note. 1. The results above are due to Hadamard in his original proof of PNT in 1896. It is clear and efficient, but seems unmotivated (or like a 'trick'). For an approach which both seems more natural and is more general (non-vanishing of Dirichlet *L*-series, rather than just the zeta function), see Newman [N], VI: A "natural" proof of the non-vanishing of *L*-series. 2. $\zeta(1+it) \neq 0$ (which we use via $-\zeta'/\zeta$ holomorphic on the 1-line) is exactly what is needed to apply the most important Tauberian theorem, Wiener's Tauberian theorem; see 2013, III.10.3 and Handout on Tauberian theorems.