Clustering

Prof. Dr. Renato Pajarola
Visualization and MultiMedia Lab
Department of Informatics
University of Zürich

Copyrights

- Most figures of these slides are copyright protected and come from the various sources
- You understand that the slides contain copyright protected material and therefore the following conditions of use apply:
 - ▶ The slides may be used for personal teaching purposes only
 - Publishing the slides to any public web site is not allowed
 - Sharing the slides with other persons or institutions is prohibited

Overview

- 1. What is clustering?
- 2. Clustering properties and types
- 3. K-means clustering algorithm
- 4. Hierarchical clustering

Where are we in the Visualization Pipeline?

- Data preprocessing and transformation
 - Selection of information and mapping to fundamental computer data types
 - Data cleaning, interpolation, sampling, filtering, aggregation, partitioning

- Mapping for visualization
 - Specific visual representation (geometry, color)
 - ▶ Embedding in Euclidean 2D/3D space

- Rendering transformations
 - Final image synthesis by 2D imaging and 3D graphics technology
 - Interactive data and view selection

What is Clustering?

- Task of assigning input objects to groups such that objects in the same group are more similar to each other than to objects from other groups
 - Both procedure and set of groups obtained known as "clustering"
 - Impose structure on data for visualization
- Definition of d_{ij} distance between data objects i and j is of fundamental importance
- Hard to provide a rigorous definition of cluster
 - Often dependent on specific setting
 - Results in many different clustering algorithms

- Common characterization of clustering methods:
 - Centroid-based: each cluster represented by a single data vector (k-means, k-medoids)
 - Connectivity-based: objects more related to nearby objects than to objects farther away (hierarchical)
 - Density-based: clusters as connected dense regions (dbscan, mean-shift)
 - Distribution-based: clusters modeled using statistical distributions (Gaussian mixture models)
 - Hard vs. soft (aka fuzzy) clustering: object can belong to only one or multiple clusters
 - Partitional vs. hierarchical clustering: whether clustering produces a hierarchy of clusters

Partitional Clustering

- Data points divided into non-overlapping subsets
 - Clusters form a partition of the input dataset

Hierarchical Clustering

- Data points divided into nested subsets that form a hierarchy
 - Corresponds to a tree structure

Cluster Separation

- Well separated clusters
 - Any data point in one cluster is closer or more similar to every point in that cluster than to any other point from other clusters

3 well-separated clusters

Cluster Separation

- Well separated clusters
 - Any data point in one cluster is closer or more similar to every point in that cluster than to any other point from other clusters
- Center based clusters
 - Any data point in one cluster is closer to the **center** of that cluster than to the center of any other cluster
 - often the centroid, average of all points, or the medoid, the most representative point

3 center-based clusters

Cluster Separation

Well separated clusters

 Any data point in one cluster is closer or more similar to every point in that cluster than to any other point from other clusters

Center based clusters

- Any data point in one cluster is closer to the **center** of that cluster than to the center of any other cluster
 - often the centroid, average of all points, or the medoid, the most representative point

Contiguous clusters

Any data point in one cluster is closer or more similar to one or more other points in that cluster than to any other point from other clusters

3 contiguous clusters

10

Clustering can be Ambiguous

Clustering Algorithms

- Types of clustering algorithms:
 - ▶ Single-pass, iterative, incremental, hierarchical ...
- Iterative k-means clustering
 - Repeated assignment of data points to k clusters followed by update of cluster center
- Hierarchical clustering
 - ▶ Recursively group 2 or more closest clusters into a new parent cluster
 - ▶ Recursively split one cluster into 2 or more smaller child clusters
- Other clustering methods:
 - k-medoids, mean-shift, dbscan, spectral, Gaussian mixture ...

K-Means Clustering

- Simple and efficient method to partition the dataset into k clusters
 - ▶ Each cluster represented by a centroid
 - ▶ *k* is a user-defined parameter
- Partitional; centroid-based; produces hard clusters
- Compute centroids v_j that minimize: $E(\Gamma, V) = \sum_{j=1}^k \sum_{i=1}^n \gamma_{ij} ||x_i v_j||^2$

- Iterative algorithm:
 - select *k* points as initial centroids (e.g. pick *k* random points from *X*)
 - repeat
 - form k clusters by assigning each point to its closest centroid
 - recompute the centroid of each cluster (e.g. as mean of its assigned points)
 - until convergence (e.g. centroids do not change)

Data set: $X = \{x_1, \dots x_n\}$

Clusters: $C_1, C_2, \cdots C_k$

Centroids: $V = \{v_1, \dots v_k\}$

Partition matrix: $\Gamma = \{\gamma_{ij}\}$

 $\gamma_{ij} = 1 \text{ iff } \mathbf{x}_i \in C_j$

0 otherwise

- Ask user how many clusters are needed.
 (e.g. k=5)
- 2. Randomly guess *k* cluster center locations.
- 3. Each datapoint finds out which center it is closest to.
 - Voronoi diagram in 2D
- 4. Each center finds the centroid of its closest points ...

- Ask user how many clusters are needed.
 (e.g. k=5)
- 2. Randomly guess *k* cluster center locations.
- 3. Each datapoint finds out which center it is closest to.
 - Voronoi diagram in 2D
- 4. Each center finds the centroid of its closest points ...
- 5. ...and jumps there
- 6. ...Repeat with step 3. until terminated!
 - centroids don't move

- Disadvantages
 - Dependent on initialization

Interactive Data Visualization

16

- Disadvantages
 - Dependent on initialization
 - select random seeds with at least D_{\min} distance
 - or, run the algorithm many times

Interactive Data Visualization

17

- Disadvantages
 - Dependent on initialization
 - Sensitive to outliers
 - use K-medoids: update centroids by picking best data point from those currently assigned to the cluster

Interactive Data Visualization

18

- Disadvantages
 - Dependent on initialization
 - Sensitive to outliers (K-medoids)
 - Can deal only with clusters with spherical symmetrical point distribution
 - kernel trick: corresponds to transforming data points into a higherdimensional space in which they can be more easily separated

- Disadvantages
 - Dependent on initialization
 - Sensitive to outliers (K-medoids)
 - Can deal only with clusters with spherical symmetrical point distribution
 - Deciding K

 Try a couple of K and check objective function

$$E(\Gamma, V) = \sum_{j=1}^{k} \sum_{i=1}^{n} \gamma_{ij} ||x_i - v_j||^2$$

Image: Henry Lin

• When k = 1, the objective function is 873.0

Image: Henry Lin

• When k = 2, the objective function is 173.1

Image: Henry Lin

• When k = 3, the objective function is 133.6

Image: Henry Lin

- We can plot objective function values for k=1 to 6
- The abrupt change at k=2 is highly suggestive of two clusters
 - "knee finding" or "elbow finding"
- Note that the results are not always as clear cut as in this toy example

Image: Henry Lin

Hierarchical clustering

- Produces overlapping (nested) clusters that form a hierarchy
- Hierarchy displayed graphically in a tree structure called dendrogram
 - Cluster-subcluster relationships
 - Order in which clusters were produced
- Two possible strategies:
 - Agglomerative (bottom-up) clustering
 - start with one cluster per data point, merge pairs of clusters
 - Divisive (top-down) clustering
 - start with one combined cluster for all data points, perform splits recursively

- General iterative algorithm:
 - Place each object into a cluster of its own
 - Compute the proximity matrix
 - all pairwise object-to-object distances/similarity scores
 - inter-cluster distances/similarity scores initialized from pairwise object-to-object values

repeat

- merge the closest two clusters
 - replace the two clusters with the new cluster
- update proximity matrix
 - re-compute inter-cluster distances/similarity scores w.r.t. the new cluster
- **until** only *k* cluster remain (*k* can be 1)

- Agglomerative hierarchical clustering, with k = 3
- 2nd iteration

- Agglomerative hierarchical clustering, with k = 3
- 5th iteration

- Agglomerative hierarchical clustering, with k = 3
- 9th iteration
- Reached target of k clusters
 - Terminate

Divisive (top-down) clustering

- General recursive algorithm:
 - Place all input objects into one single cluster
 - if cluster has less than n objects (e.g. n = 3), return this cluster
 - else
 - split cluster into two clusters C_1 , C_2 using flat clustering algorithm (k-means, k=2)
 - perform top-down recursive clustering of C₁
 - perform top-down recursive clustering of C₂

Bottom-up vs. Top-down

- Which one is more complex?
 - ▶ Top-down requires a flat clustering "subroutine"
 - Bottom-up requires updating inter-cluster distance/similarity scores
- Which one is more efficient?
 - Top-down
 - For a *fixed number* of top levels, using an efficient flat algorithm like K-means, divisive algorithms are linear in practice in the number of objects and clusters
 - Agglomerative algorithms are at least quadratic
- Which one is more accurate?
 - Top-down
 - Bottom-up methods make clustering decisions based on local object information without initially taking into account the global distribution
 - early decisions cannot be undone
 - Top-down clustering benefits from complete information about the global distribution when making top-level partitioning decisions

Strength and Weakness of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the tree hierarchy, dendogram at the desired level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)
- Standard hierarchical agglomerative clustering has a time complexity of O(n³) and requires Ω(n²)
 memory
 - Too slow for even medium sized datasets
 - ▶ Runtime of the general (agglomerative) case can be reduced to O(n² log n) using a heap structure
 - but further increasing the memory requirements
- Divisive (top-down) clustering can run in of O(n²)

Inter-Cluster Similarity

- Given two clusters A and B, how do we define their distance?
 - ▶ Determines which clusters should be combined (bottom-up) or where a cluster should be split (top-down)
- Need a measure of similarity between sets of elements, which involves:
 - \blacktriangleright A distance metric d(a,b) (e.g. Euclidean), applied to extract pairwise object-to-object distances
 - A linkage criterion
- Linkage determines the distance between sets as a function of pairwise distances
 - ▶ Single-linkage: minimum distance between any object in the first cluster and any in the second: $\min\{d(a,b): a \in A, b \in B\}$
 - distance defined by the two most similar objects
 - Complete-linkage: maximum distance between any object in the first cluster and any in the second: $\max\{d(a,b):a\in A,b\in B\}$
 - distance defined by the two most dissimilar objects
 - Centroid-linkage: distance between centroids c_s and c_t of two clusters s and t: $d(c_s, c_t)$
 - Average-linkage: average distance between any object in the first cluster and any in the second: $\frac{1}{|A||B|}\sum_{x\in A}\sum_{l\in B}d(a,l)$

Inter-Cluster Similarity

- Single-linkage: min
- Complete-linkage: max
- Centroid-linkage: distance between centroids
- Average-linkage: group average

Comparison

• 3

Ward's method uses initial squared errors between data points and recursively updates inter-cluster distances as:

$$d(C_i \cup C_j, C_k) = \frac{n_i + n_k}{n_i + n_j + n_k} d(C_i, C_k) + \frac{n_j + n_k}{n_i + n_j + n_k} d(C_j, C_k) + \frac{n_k}{n_i + n_j + n_k} d(C_i, C_j)$$

Interactive Data Visualization

Ward's Method

Recap

- Clustering: grouping of data points by similarity/distance; connectivity, centroid, distribution or density based clustering; hard/soft, partitional/hierarchical clustering properties
- Cluster separation: well-separated, center-based, contiguous
- K-means: clustering algorithm, alternates (a) move centroids and (b) reassign points to closest centroid
- Hierarchical clustering: agglomerative (bottom-up) or divisive (top-down), strengths and weaknesses
- Cluster dissimilarity: single, complete, average, centroid linkage as distance measures between sets
 of data points