<u>Name of the Experiment:</u>
Familiarization with Vernier Calipers and Screw Gauge by measuring various samples

Data Collection:

Table 1: Reading for Measurement of the length of the sample (using slide Calipers)

Dimension	No.	Main	Vernier	Vernier	Vernier scale	Total	Average	Volume of
to be	of	scale	scale	constant	reading	length/breadth/Th		the Iron
measured	obs	reading	divisions	(V.C)	(V.S.R) =	ickness, l/b/h		block (V)
		(M.S.R)	(V.S.D)	(cm)	$(V.S.D \times V.C)$	(M.S.R + V.S.R)		cm ³
		cm			cm)	(cm)		
Length of	1							
Iron block								
Holl block	2							
	3							

 Table 2: Reading for Measurement of the radius of the sample (using Screw Gauge)

No. of obs.	Liner scale reading (L.S.R) cm	Circular scale divisions (C.S.D)	Least count (L.C) (cm)	Circular scale reading (C.S.R) = (C.S.D × L.C)	Total diameter (D) = (L.S.R + C.S.R) (cm)	Mean diameter D (cm)	Volume of the Lead Shot (V) (cm ³)
1							
2							
3							

Name of the Experiment:

To determine the value of g, acceleration due to gravity, by means of a Compound Pendulum

Data Collection:

Table 1: Data for time period

Starting direction	Hole no.	Distance from Top (cm)	Time for 10 oscillations (sec)	Mean Time, t (sec)	Mean Time Period, $T = \frac{t}{10}$ (sec)
	1	5	(i) (ii)		
	2	10	(i) (ii)		
	3	15	(i) (ii)		
	4	20	(i) (ii)		
Forward	5	25	(i) (ii)		
	6	30	(i) (ii)		
	7	35	(i) (ii)		
	8	40	(i) (ii)		
	9	45	(i) (ii)		
	T	T	T		
	1	55	(i) (ii)		
	2	60	(i) (ii)		
	3	65	(i) (ii)		
	4	70	(i) (ii)		
Reverse	5	75	(i) (ii)		
	6	80	(i) (ii)		
	7	85	(i) (ii)		
	8	90	(i) (ii)		
	9	95	(i) (ii)		

Name of the Experiment:
To determine the spring constant and effective mass of a given spiral spring

Data Collection:

Table 1: Data of time period for different masses

No. of obs.	Loads m ₀	Extension 1	Times for 10 oscillations		Total Perio	Mean T (sec)	T ²	
	(gm)	(cm)	t_1	t_2	$T_1 = \frac{t_1}{10}$	$T_2 = \frac{t_2}{10}$		
1								
2								
3								
4								
5								

Mass of Spring = 75g

Name of the Experiment:
Determination of the Young's Modulus by the flexure of a beam

Data Collection:

Length of the beam, $1 = \dots$ cm

Table 1: Data for load versus elongation

<u> 1 abie 1: 1</u>	Jala 101	ioau vei	sus elon	gation								
Additi				Read	ings for the	elongation	on, x				Mean	Mean
onal]	Load incr	easing		Load decreasing					reading	depress
Load											(cm)	ion
on												y_0
hanger												(cm)
(kg)	L.S.R	C.S.D	L.C	C.S.R	Total	L.S.R	C.S.D	L.C	C.S.R	Total		
	(cm)		(cm)	=	Reading	(cm)		(cm)	=	Reading		
				(C.S.D ×	=(L.S.R				(C.S.D	=(L.S.R		
				L.C)	+				\times L.C)	+		
				(cm)	C.S.R)				(cm)	C.S.R)		
					(cm)					(cm)		

Table 2: Measure the breadth, (b) of beam

No. of obs.	Main scale reading (M.S.R) (cm)	Vernier scale divisions (V.S.D)	Vernier constant (V.C) (cm)	Vernier scale reading (V.S.R) = (V.S.D × V.C) (cm)	Total breadth (b) = (MSR+VSR) (cm)	Mean Breadth b (cm)
1						
2						
3						

Table 3: Measure the depth, (d) of beam

No. of obs.	Main scale reading (M.S.R) (cm)	Vernier scale divisions (V.S.D)	Vernier constant (V.C) (cm)	Vernier scale reading (V.S.R) = (V.S.D × V.C) (cm)	$\begin{aligned} & & Total \\ & & depth \\ & d = (MSR + VSR) \\ & (cm) \end{aligned}$	Mean depth d (cm)
1						
2						
3						

Young's modulus of the material, $Y = \frac{mgl^3}{4bd^3x} = \text{dyne/cm}^2$

Name of the Experiment:
To determine the surface tension of water by capillary tube method

Data collection:

Table 1: Measurement of inside radius (r) of the tubes

	Readings in cm for the bore												
be no.	Left side (X ₂) VSR Total				Right side(X ₁)				Difference diameter	Radius r=D/2	Mean Radius r		
Tu	M.S.R (cm)	V.S.D	V.C (cm)	VSR = (V.S.D ×V.C) (cm)	Total Reading $(x_1) = (M.S.R+V.S.R)$ (cm)	M.S.R (cm)	V.S.D	V.C (cm)	VSR = (V.S.D ×V.C) (cm)	Total Reading $(x_2) =$ $(M.S.R+$ $V.S.R)$ (cm)	D=X ₂ ~X ₁ (cm)	(cm)	
A									,				
В													

Table 2: Determination of the height of the column of water 'h'

No.		Reading	of the wa	ater meni	scus		Readi	ng at the	tip of po	inter	Height	Mean
of								h	Height			
obse											$=h_1\sim h_2$	h
rvati	M.S.R (cm)	V.S.D	V.C (cm)	V.S.R =	Total Reading	M.S.R (cm)	V.S.D	V.C (cm)	V.S.R =	Total Reading	(cm)	
on				(V.S.D ×V.C)	$(h_1)=$ $(M.S.R+$, ,	(V.S.D ×V.C)	$(h_2)=$ $(M.S.R+$		
				(cm)	V.S.R) (cm)				(cm)	V.S.R) (cm)		
1												
2												
3												
4												

Name of the Experiment:

To determine the modulus of rigidity of a wire by Statical method using Barton's apparatus **Data Collection:**

Table 1: Diameter of the fly-wheel (heavy cylinder)

No. of obs.	Main scale reading (M.S.R) (cm)	Vernier scale divisions (V.S.D)	Vernier constant (V.C) (cm)	Vernier scale reading (V.S.R) = (V.S.D × V.C) (cm)	Total Diameter D = (MSR+VSR) (cm)	Mean Diameter d (cm)
1						
2						
3						

Table 2: Radius of the wire (using screw gauge)

No. of obs.	Liner scale reading (L.S.R) (cm)	Circular scale divisions (C.S.D)	Least count (L.C) (cm)	Circular scale reading (C.S.R) = (CSD × L.C)	Total diameter D = (LSR+CSR) (cm)	Mean diameter D (MSR+VSR) (cm)	Mean radius r=D/2 (cm)
1							
2							
3							

 Table 3: Reading for load-twist graph

No. of	Load in each		Pointer readi		Mean point reading	wist 1°)		
Obs.	hanger	Sca	le S ₁		Scale S ₂	S_1	S_2	n tr
	(gm)	Load increasing	Load decreasing	Load increasing	Load decreasing	$(\varphi 1^{\circ})$	$(\varphi 2^{\circ})$	Mean twist $(\varphi 2^{\circ}-\varphi 1^{\circ})$
1								
2								
3								
4								
5								

Calculations:
$$n = \frac{360 lg d}{\pi^2 r^4} \chi \frac{m}{(\varphi_2^{\circ} - \varphi_1^{\circ})}$$

Name of the Experiment:

To determine the modulus of rigidity of a wire by method of oscillations (dynamic method)

Data collection:

Length of the wire, L = cm

Table 1: Readings for the Radius of the cylinder, R (using slide calipers)

No. of obs.	Main scale reading (M.S.R) (cm)	Vernier scale divisions (V.S.D)	Vernier constant (V.C) (cm)	Vernier scale reading (V.S.R) = (V.S.D × V.C) (cm)	Total diameter D = (MSR+VSR) (cm)	Mean diameter D (cm)	Mean radius R= D/2 (cm)
1							
2							
3							

Table 2: Radius of the wire, r (using screw gauge)

No. of obs.	Liner scale reading (L.S.R) (cm)	Circular scale divisions (C.S.D)	Least count (L.C) (cm)	Circular scale reading (C.S.R) = (CSD × L.C)	Total diameter D = (LSR+CSR) (cm)	Mean diameter D (cm)	Mean radius r=D/2 (cm)
1							
2							
3							

Table 3: Reading for the time period T.

No. of obs.	Time for 20 oscillations, t (see)	Period of oscillation $T = \frac{t}{20}$ (sec)	Mean T. (sec)
1			
2			
3			

Calculations:
1.
$$I = \frac{1}{2} m R^2$$

2.
$$\mathbf{n} = \frac{8\pi IL}{T^2r^4} \, \mathbf{dynes/cm^2}$$

Experiment Name:

To determine the refractive index of the material of a prism

Data Collection:

Table 1: Determination of angle of Prism

No. of obs.	Readi	ngs for in	mage in		e AB of	Readings for image in the face AC of the prism				Difference in readings at the two face $(\theta=M-N)$	(θ) of the two venires	Angle of the prism A=θ/2	
	M.S.R	V.S.D	V.C	Value of V.S.R	Total Reading N	M.S.R	V.S.D	V.C	Value of V.S.R	Total Reading M	Difference in the two face	Mean (θ)	Angle of th
1													
2													
3													

Table 2: Determination of angle of minimum deviation

No. of obs.	Readings for the minimum deviation position Readings for the direct position					Angle of minimum deviation (δ_m) =(M-N)	Mean (δ m)					
	M.S.R	V.S.D	V.C	Value of V.S.R	Total Reading N	M.S.R	V.S.D	V.C	Value of V.S.R	Total Reading M	Angle o deviation	Mea
1												
2												
3												

Calculation:

The refractive index of the material of Prism is

$$\mu = \frac{\sin\frac{A+\delta m}{2}}{\sin\frac{A}{2}}$$

Name of the Experiment:

To determine the value of g, acceleration due to gravity, by means of Kater's Pendulum

Data Collection:

- **1.** Distance between K_1 and $CG(h_1)=....cm$
- **2.** Distance between K_2 and $CG(h_2)=.....cm$

Table for time period T_1 (oscillation about K_1)

No. of	Number of	Time of Oscillation	Time Period	Mean Time
Observation	Oscillation, n	$t_1 (sec)$	$T_1 = \frac{t_1}{n}(\sec)$	$T_1(sec)$
1				
2				
3				
4				
5				

3. Table for time period T_2 (oscillation about K_2)

No. of	Number of	Time of Oscillation	Time Period	Mean Time
Observation	Oscillation, n	t_2 (sec)	$T_2 = \frac{t_2}{n} \text{ (sec)}$	$T_2(sec)$
1				
2				
3				
4				
5				