

Partha Pratim Das

Week Recap

Objectives & Outline

Outline

1NF 2NF

Module Summar

Database Management Systems

Module 26: Relational Database Design/6: Normal Forms

Partha Pratim Das

Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ac.in

Partha Pratir Das

Week Recap

Outline
Normal Form

1NF 2NF 3NF

Module Summa

- Identified the features of good relational design
- Familiarized with the First Normal Form
- Introduced the notion and the theory of functional dependencies
- Discussed issues in "good" design in the context of functional dependencies
- Studied Algorithms for Properties of Functional Dependencies
- Understood the Characterization for and Determination of Lossless Join and Determination of Dependency Preservation

Module Objectives

Module 26

Partha Pratir Das

Week Reca

Objectives & Outline

Normal Forms

Module Summa

• To Understand the Normal Forms and their Importance in Relational Design

Module Outline

Module 26

Partha Pratin Das

Week Reca

Objectives & Outline

Outline

1NF 2NF

odule Summai

Normal Forms

IIT Madras

Partha Prat Das

Week Recap

Objectives &

Normal Forms

2NF

Module Summar

Normal Forms

Partha Prat Das

Week Recap

Normal Forms

Module Summa

- Normalization or Schema Refinement is a technique of organizing the data in the database
- A systematic approach of decomposing tables to eliminate data redundancy and undesirable characteristics
 - Insertion Anomaly
 - Update Anomaly
 - Deletion Anomaly
- Most common technique for the Schema Refinement is decomposition.
 - Goal of Normalization: Eliminate Redundancy
- Redundancy refers to repetition of same data or duplicate copies of same data stored in different locations
 - Normalization is used for mainly two purpose:
 - o Eliminating redundant (useless) data
 - o Ensuring data dependencies make sense, that is, data is logically stored

Partha Pratir Das

Week Recap
Objectives &
Outline

Normal Forms

1NF

2NF

3NF

Module Summar

a) **Update Anomaly:** Employee 519 is shown as having different addresses on different records

Employees' Skills

Employee ID	Employee Address	Skill	
426	87 Sycamore Grove	Typing	
426	87 Sycamore Grove	Shorthand	
519 <	94 Chestnut Street	Public Speaking	
519 <	96 Walnut Avenue	Carpentry	

Resolution: Decompose the Schema

a) Update: (ID, Address), (ID, Skill)

b) Insert: (ID, Name, Hire Date), (ID, Code)

c) Delete: (ID, Name, Hire Date), (ID, Code)

 Insertion Anomaly: Until the new faculty member, Dr. Newsome, is assigned to teach at least one course, his details cannot be Faculty and Their Courses

recorded

Deletion Anomaly: All information about Dr. Giddens is lost if he temporarily ceases to be assigned to any courses. Faculty and Their Courses

Desirable Properties of Decomposition

Module 26

Partha Pratir Das

Week Recap Objectives & Outline

Normal Forms 1NF 2NF

Module Summa

- Lossless Join Decomposition Property
 - o It should be possible to reconstruct the original table
- Dependency Preserving Property
 - No functional dependency (or other constraints should get violated)

Normalization and Normal Forms

Module 26

Partha Pratir Das

Week Recap Objectives & Outline

Normal Forms

1NF 2NF

Module Summar

- A normal form specifies a set of conditions that the relational schema must satisfy in terms of its constraints they offer varied levels of guarantee for the design
 - Normalization rules are divided into various normal forms. Most common normal forms are:
 - First Normal Form (1NF)
 - Second Normal Form (2NF)
 - Third Normal Form (3NF)
- Informally, a relational database relation is often described as "normalized" if it meets third normal form. Most 3NF relations are free of insertion, update, and deletion anomalies

Normalization and Normal Forms

Module 26

Partha Pratir Das

Week Recap

Normal Forms

1NF

Additional Normal Forms

- Elementary Key Normal Form (EKNF)
- Boyce-codd Normal Form (BCNF)
- Multivalued Dependencies And Fourth Normal Form (4NF)
- Essential Tuple Normal Form (ETNF)
- Join Dependencies and Fifth Normal Form (5NF)
- Sixth Normal Form (6NF)
- Domain/Key Normal Form (DKNF)

Partha Pratir Das

Week Recap Objectives & Outline

Normal Forms

1NF

2NF

3NF

Module Summa

• A relation is in First Normal Form if and only if all underlying domains contain atomic
values only (doesn't have multivalued attributes (MVA))

• STUDENT(Sid, Sname, Cname)

Students			
SID	Sname	Cname	
S1	A	C,C++	
S2	В	C++, DB	
S3	A	DB	
SID : Primary Key			
MVA exists \Rightarrow Not in 1NF			

Students			
SID	Sname	Cname	
S1	A	С	
S1	A	C++	
S2	В	C++	
S2	В	DB	
S3	A	DB	

SID, Cname : Primary Key

No MVA ⇒ In 1NF

Partha Pratir Das

Week Recar

Normal Forms
1NF
2NF

Module Summa

• Example: Supplier(SID, Status, City, PID, Qty)

Supplier:				
SID	Status	City	PID	Qty
S1	30	Delhi	P1	100
S1	30	Delhi	P2	125
S1	30	Delhi	P3	200
S1	30	Delhi	P4	130
S2	10	Karnal	P1	115
S2	10	Karnal	P2	250
S3	40	Rohtak	P1	245
S4	30	Delhi	P4	300
S4	30	Delhi	P5	315
Key : (SID, PID)				

Drawbacks:

- Deletion Anomaly: If we delete <\$3,40,Rohtak,P1,245>, then we lose the information that \$3 lives in Rohtak.
- Insertion Anomaly: We cannot insert a Supplier S5 located in Karnal, until S5 supplies at least one part.
- Update Anomaly: If Supplier S1 moves from Delhi to Kanpur, then it is difficult to update all the tuples having SID as S1 and City as Delhi.

Normalization is a method to reduce redundancy. However, sometimes 1NF increases redundancy.

Database Management Systems Partha Pratim Das 26.12

Partha Pratio

Week Recap
Objectives &
Outline

Normal Forms 1NF 2NF 3NF

Module Summa

• When LHS is not a Superkey :

- Let X → Y be a non trivial FD over R with X is not a superkey of R, then redundancy exist between X and Y attribute set.
- Hence in order to identify the redundancy, we need not to look at the actual data, it can be identified by given functional dependency.
- \circ Example : $X \to Y$ and X is not a Candidate Key
 - $\Rightarrow X$ can duplicate
 - \Rightarrow Corresponding Y value would duplicate also.

X	Y
1	3
1	3
2	3
2	3
4	6

• When LHS is a Superkey:

- If X → Y is a non trivial FD over R with X is a superkey of R, then redundancy does not exist between X and Y attribute set.
- \circ Example : $X \to Y$ and X is a Candidate Key $\Rightarrow X$ cannot duplicate
 - \Rightarrow Corresponding Y value may or may not duplicate.

X	Y
1	4
2	6
3	4

Partha Pratii Das

Week Recap
Objectives &

Normal Forms INF **2NF** 3NF

Module Summa

- Relation **R** is in Second Normal Form (2NF) only iff:
 - ∘ **R** is in 1NF and
 - o **R** contains no Partial Dependency

Partial Dependency:

Let R be a relational Schema and X, Y, A be the attribute sets over R where X: Any Candidate Key, Y: Proper Subset of Candidate Key, and A: Non Prime Attribute

If $Y \to A$ exists in R, then R is not in 2NF.

 $(Y \rightarrow A)$ is a Partial dependency only if

- Y: Proper subset of Candidate Key
- A: Non Prime Attribute

A prime attribute of a relation is an attribute that is a part of a candidate key of the relation

• STUDENT(Sid, Sname, Cname) (already in 1NF)

Students:			
SID	Sname	Cname	
S1	Α	С	
S1	Α	C++	
S2	В	C++	
S2	В	DB	
S3	Α	DB	
(SID, Cname): Primary Key			

- Redundancy? O Sname
- Anomaly?
 - o Yes

Functional Dependencies: $\{SID, Cname\} \rightarrow Sname$ SID → Sname

Partial Dependencies:

 $SID \rightarrow Sname$ (as SID is a Proper Subset of Candidate Key {SID, Cname})

Key Normalization

R1:		R2	l:	
SID	Sname	SII	D Cnam	е
S1	Α	S1	С	
S2	В	S1	C++	
S3	Α	S2	C++	
{SID} : Primary		S2	DB	
Key		S3	DB	
			ID,Cname) mary Key	:

The above two relations R1 and R2 are 1.Lossless Join

- 2.2NF
- 3. Dependency Preserving

Source: http://www.edugrabs.com/2nf-second-normal-form/

2NF (3): Possible Redundancy

Module 26

Partha Pratir Das

Week Recap

Objectives

Normal Forms

Module Summa

• Supplier(SID, Status, City, PID, Qty)

Partial Dependencies: SID → Status SID → City

Post Normalization Sup,City: SID Status City FDD of Sup,City: FDD of Sup,City: FDD of Sup,Qty: SID PDD Qty FDD of Sup,qty: FDD of Sup,

Drawbacks:

- Deletion Anomaly: If we delete a tuple in Sup_City, then we not only loose the information about a supplier, but also loose the status value of a particular city.
- Insertion Anomaly: We cannot insert a City and its status until a supplier supplies at least one part.
- Update Anomaly: If the status value for a city is changed, then we will face the problem of searching every tuple for that city.

Partha Prati Das

Week Recap
Objectives &
Outline

Normal Form 1NF 2NF 3NF

Module Summa

Let **R** be the relational schema

- [E. F. Codd,1971] *R* is in 3NF only if:
 - o R should be in 2NF
 - o R should not contain transitive dependencies (OR, Every non-prime attribute of R is non-transitively dependent on every key of R)
- [Carlo Zaniolo, 1982] Alternately, R is in 3NF iff for each of its functional dependencies $X \to A$, at least one of the following conditions holds:
 - $\circ X$ contains A (that is, A is a subset of X, meaning $X \to A$ is trivial functional dependency), or
 - X is a superkey, or
 - \circ Every element of A-X, the set difference between A and X, is a *prime attribute* (i.e., each attribute in A-X is contained in some candidate key)
- [Simple Statement] A relational schema R is in 3NF if for every FD $X \to A$ associated with R either
 - \circ $\mathbf{A} \subseteq \mathbf{X}$ (that is, the FD is trivial) or
 - \circ **X** is a superkey of **R** or
 - A is part of some candidate key (not just superkey!)
- A relation in 3NF is naturally in 2NF

3NF (2): Transitive Dependency

Module 26

- A transitive dependency is a functional dependency which holds by virtue of transitivity. A transitive dependency can occur only in a relation that has three or more attributes.
- Let A, B, and C designate three distinct attributes (or distinct collections of attributes) in the relation. Suppose all three of the following conditions hold:
 - $\circ A \rightarrow B$
 - \circ It is not the case that $B \to A$
 - $\circ B \to C$
- Then the functional dependency $A \to C$ (which follows from 1 and 3 by the axiom of transitivity) is a transitive dependency

3NF (3): Transitive Dependency

Module 26

Partha Pratir Das

Objectives &
Outline

Normal Form 1NF 2NF 3NF

Module Summa

- Example of transitive dependency
- The functional dependency {Book} → {Author Nationality} applies; that is, if we know the book, we know the author's nationality. Furthermore:
 - $\circ \{Book\} \rightarrow \{Author\}$ $\circ \{Author\} \text{ does not } \rightarrow \{Book\}$ $\circ \{Author\} \rightarrow \{Author \ Nationality\}$
- Therefore $\{Book\} \rightarrow \{Author\ Nationality\}$ is a transitive dependency.
- Transitive dependency occurred because a non-key attribute (Author) was determining another non-key attribute (Author Nationality).

Book	Genre	Author	Author Nationality
Twenty Thousand Leagues Under the Sea	Science Fiction	Jules Verne	French
Journey to the Center of the Earth	Science Fiction	Jules Verne	French
Leaves of Grass	Poetry	Walt Whitman	American
Anna Karenina	Literary Fiction	Leo Tolstoy	Russian
A Confession	Religious Autobiography	Leo Tolstoy	Russian

Module 26 Example

 Example: Sup_City(SID, Status, City) (already in 2NF)

Sup_City:			
SID	Status	City	
S1	30	Delhi	
S2	10	Karnal	
S3	40	Rohtak	
S4 30 Delhi			
SID: Primary Key			

Functional Dependencies:

 $\begin{array}{c} \mathsf{SID} \, \to \, \mathsf{Status}, \\ \mathsf{SID} \, \to \, \mathsf{City}, \end{array}$

City→ Status

Transitive Dependency:

 $\begin{array}{l} \mathsf{SID} \to \mathsf{Status} \\ \{\mathsf{As} \; \mathsf{SID} \to \mathsf{City} \; \mathsf{and} \; \mathsf{City} \to \\ \mathsf{Status} \} \end{array}$

Post Normalization

SC:		CS:		
SID	City	City	Status	
S1	Delhi	Delhi	30	
S2	Karnal	Karnal	10	
S3	Rohtak	Rohtak	40	
S4	Delhi	City: Prin	nary Key	
SID: F	Primary			

The above two relations SC and CS are

- Lossless Join
- 3NF

Kev

Dependency Preserving

3NF (5): Example

Module 26

Partha Pratin Das

Objectives & Outline Normal Forms

2NF 3NF

Module Summa

- Relation *dept_advisor*(*s_ID*, *i_ID*, *dept_name*)
- $F = \{s_ID, dept_name \rightarrow i_ID, i_ID \rightarrow dept_name\}$
- Two candidate keys: $s_{-}ID$, $dept_{-}name$, and $i_{-}ID$, $s_{-}ID$
- R is in 3NF
 - \circ s_ID, dept_name \rightarrow i_ID
 - \triangleright $s_ID, dept_name$ is a superkey
 - i₋ID → dept_name
 - ▷ dept_name is contained in a candidate key

A relational schema R is in 3NF if for every FD $X \rightarrow A$ associated with R either

- $A \subseteq X$ (i.e., the FD is trivial) or
- X is a superkey of R or
- A is part of some key (not just superkey!)

(6): Redundancy

Module 26

- There is some redundancy in this schema
- Example of problems due to redundancy in 3NF (*J* : *s_ID*, *L* : *i_ID*, *K* : *dept_name*)

$$\circ R = (J, L, K). F = \{JK \rightarrow L, L \rightarrow K\}$$

J	L	K
<i>j</i> ₁	<i>I</i> ₁	k ₁
j_2	<i>I</i> ₁	k ₁
j_3	<i>I</i> ₁	<i>k</i> ₁
null	12	k ₂

- Repetition of information (for example, the relationship l_1, k_1)
 - ∘ (*i*_*ID*, *dept*_*name*)
- Need to use null values (for example, to represent the relationship l_2 , k_2 where there is no corresponding value for J).
 - o (i_ID, dept_name) if there is no separate relation mapping instructors to

Module Summary

Module 26

Partha Pratin Das

Week Reca

Objectives Outline

Normal Forms

1NF

2NF

Module Summary

• Studied the Normal Forms and their Importance in Relational Design – how progressive increase of constraints can minimize redundancy in a schema

Slides used in this presentation are borrowed from http://db-book.com/ with kind permission of the authors.

Edited and new slides are marked with "PPD".