

DT 3926552

APR 1991

RODN ★ P31

91-118192/17 ★ DE 3926-652-A

Ophthalmic equipment for angiographic examination of eye - has detector with confocal shutter of dia. corresp. to that of beam focussed on image

RODENSTOCK G INSTRU 11.08.89-DE-926652

S05 (18.04.91) A61b-03/10

11.08.89 as 926652 (929BD)

Light (14) from a laser source (16) is focused on the part of the eye to be examined. A scanning arrangement, moving the light beam over the section to be observed, has beam deflecting and imaging optical elements. A detector arrangement (18) intercepts the light reflected from the section to be observed. A wavelength-selective filter (20) can be switched in-front of the detector to receive angiographic images.

An evaluating and synchronising unit generates an image of the selected object structure from the time-sequence signal of the detector arrangement. The detector arrangement includes a confocal shutter (19). A focussing arrangement (14) shifts the focal plane of the illuminating and observation beam path during registration of an angiographic image. An evaluating and synchronising unit controls the shift of the focal plane. Pref., the light source has at least two lasers (16a, 16b) of different wavelengths, are pref. in the i.r. range.

USE/ADVANTAGE - Present information from various layers of the eye, esp. from eye background using only one fluorescent marker. (8pp Dwg.No.2/2)

N91-090991

⑯ BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES

PATENTAMT

⑯ Offenlegungsschrift
⑯ DE 3926652 A1

⑯ Int. Cl. 5:

A 61 B 3/10

A 61 B 3/12

DE 3926652 A1

⑯ Aktenzeichen: P 39 26 652.4
⑯ Anmeldetag: 11. 8. 89
⑯ Offenlegungstag: 18. 4. 91

⑯ Anmelder:

G. Rodenstock Instrumente GmbH, 8012 Ottobrunn,
DE

⑯ Vertreter:

Münich, W., Dipl.-Phys. Dr.rer.nat., Pat.-Anw., 8000
München

⑯ Erfinder:

Klingbeil, Ulrich, Dr.; Plesch, Andreas, Dr., 8000
München, DE; Umathum, Reiner, Dr., 6900
Heidelberg, DE; Schrödel, Karsten, Dr., 8000
München, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

⑯ Vorrichtung zur angiographischen Untersuchung des Auges

Beschrieben wird eine Vorrichtung zur angiographischen Untersuchung des Auges mit einer Beleuchtungslichtquelle, deren Licht auf dem zu untersuchenden Teil des Auges fokussierbar ist, einer Abtasteinrichtung, die eine Abtastbewegung des Lichtstrahls der Beleuchtungslichtquelle über dem zu beobachtenden Abschnitt erzeugt und strahlenablenkende sowie abbildende optische Elemente aufweist, einer Detektoreinrichtung, die das an dem zu beobachtenden Abschnitt reflektierende Licht empfängt und der Wellenlängen-selektive Filter zur Aufnahme von Angiographie-Bildern vorschaltbar sind, und einer Auswerte- und Synchroniereinheit, die aus dem zeitsequentiellen Ausgangssignal der Detektoreinrichtung ein Bild der ausgewählten Objektstrukturen erzeugt.

Die erfindungsgemäße Vorrichtung zeichnet sich durch die Kombination folgender Merkmale aus:

- die Detektoreinrichtung weist eine konfokale Blende auf, deren Durchmesser in etwa dem Durchmesser des Bildes fokussierten Strahlflecks entspricht,
- eine Scharfeinstell-Einrichtung verschiebt die Schärfenebene des Beleuchtungs- und Beobachtungsstrahlengangs während der Aufnahme eines Angiographie-Bildes.

DE 3926652 A1

1 Beschreibung

Die Erfindung bezieht sich auf eine Vorrichtung zur angiographischen Untersuchung des Auges gemäß dem Oberbegriff des Patentanspruchs 1.

Bei der Beobachtung der hinteren Augenabschnitte besteht die Schwierigkeit, daß die Beleuchtung und die Beobachtung durch die Augenpupille und die häufig optisch nicht klaren vorderen Augenmedien erfolgen muß, an denen Reflexe auftreten, und die Abbildungsfehler erzeugen.

Es ist deshalb bereits seit längerem vorgeschlagen worden, zur Beobachtung der hinteren Augenabschnitte anstelle von konventionellen Funduskameras scannende bzw. abtastende Vorrichtungen zu verwenden, bei denen der Augenhintergrund nicht großflächig ausgeleuchtet wird, sondern die mit einem auf einem möglichst kleinen Fleck fokussierten Beleuchtungslichtstrahl den Augenhintergrund abtasten und das reflektierte Licht in Zuordnung zur Abtastsequenz erfassen. Hierzu wird beispielsweise auf "The Foundations of Ophthalmology, Band 7, S. 307/308, Jahrgang 1962, die US-PS 42 13 678, die japanischen Patentveröffentlichungen 61-5 730 und 50-1 38 822 sowie die EP-A-01 45 563 verwiesen.

Weiterhin ist beispielsweise von R. Webb und Mitarbeitern in den Artikeln "Scanning Laser Ophthalmoscopy" und "Manipulating Laser Light for Ophthalmology" vorgeschlagen worden, scannende bzw. abtastende Vorrichtungen zur Aufnahme von Angiographie-Bildern zu verwenden. Weitergehende Vorschläge hierzu sind diesen Arbeiten nicht zu entnehmen. Ferner ist der PCT-Anmeldung DE 87/00 501 — von der bei der Formulierung des Oberbegriffs des Anspruchs 1 ausgegangen worden ist — zu entnehmen, zur Angiographie Wellenlängenselektive Filter in Verbindung mit entsprechenden Lichtquellen zu verwenden.

Implizit wird bei allen diesen Vorschlägen zur Aufnahme von Angiographie-Bildern mit scannenden bzw. abtastenden Vorrichtungen davon ausgegangen, daß die scannende bildgebende Vorrichtung lediglich eine herkömmliche Funduskamera ersetzt und im übrigen in gleicher oder ähnlicher Weise wie bei der herkömmlichen Aufnahme von Angiographie-Bildern vorgegangen wird.

Erfindungsgemäß ist nun erkannt worden, daß die Verwendung einer scannenden bildgebenden Vorrichtung gemäß dem Oberbegriff des Anspruchs 1 Möglichkeiten bei der Fluoreszenzangiographie bieten, die wesentlich weiter als bei der Verwendung herkömmlicher bildgebender Vorrichtungen gehen, und die insbesondere neuartige diagnostische Möglichkeiten eröffnen.

Insbesondere liegt der Erfindung die Aufgabe zugrunde, eine Vorrichtung zur angiographischen Untersuchung des Auges gemäß dem Oberbegriff des Patentanspruchs 1 derart weiterzubilden, daß die Darstellung von Informationen aus unterschiedlichen Schichten des Auges und insbesondere des Augenhintergrundes mit nur einem Fluoreszenzmarker möglich ist.

Eine erfindungsgemäß weitergebildete Vorrichtung zur angiographischen Untersuchung des Auges ist im Patentanspruch 1 angegeben.

Die erfindungsgemäße Vorrichtung zeichnet sich durch die Kombination folgender Merkmale aus:

- die Detektoreinrichtung weist eine konfokale Blende auf, deren Durchmesser in etwa dem Durchmesser des Bildes fokussierten Strahlflecks

2 entspricht,

— eine Scharfeinstell-Einrichtung verschiebt die Schärfenebene des Beleuchtungs- und Beobachtungsstrahlengangs während der Aufnahme eines Angiographie-Bildes.

Erfindungsgemäß wird dabei ausgenutzt, daß die Verwendung einer kleinen konfokalen Detektor-Blende, d. h. einer Blende, die in einer zur Scharfeinstell- bzw. Schärfenebene konjugierten Ebene liegt, und deren Größe kleiner, gleich oder nur unwesentlich größer als das Bild des Beleuchtungsfleckes in dieser Ebene ist, zu einer sehr geringen Schärfentiefe führt. Insbesondere ist die Halbwertsbreite der axialen Intensitätsübertragungsfunktion deutlich kleiner als beispielsweise der Abstand Netzhaut-Aderhaut-Gefäße.

Durch eine Verschiebung der Schärfenebene des Beleuchtungs- und Beobachtungsstrahlengangs während der Beobachtung des Auges und insbesondere des Augenhintergrundes werden Bilder mit unterschiedlicher Schärfenebene erzeugt, die damit Informationen aus verschiedenen Ebenen enthalten.

Die Verwendung einer kleinen konfokalen Blende ist zwar bereits in der EP-A-01 45 563 beschrieben, in dieser Druckschrift findet sich aber kein Hinweis auf eine gleichzeitige Verwendung von Wellenlängen-selektiven Filtern, geschweige denn über die Aufnahme von Angiographie-Bildern mit unterschiedlicher Tiefenlage.

Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet:

Gemäß Anspruch 2 steuert die Auswerte- und Synchronisereinheit die Verschiebung der Schärfenebene. Insbesondere kann damit bei Einsatz einer Echtzeit-Bildverarbeitung eine automatische "Tiefeneinstellung" realisiert werden, die bei einer bevorzugten Ausführungsform der erfindungsgemäßen Vorrichtung während der Einstromphase des Fluoreszenzmarkers die Schärfenebene in die Aderhaut legt, und nach Beginn der Papillenfluoreszenz die Schärfenebene in die Netzhaut verschiebt.

Darüberhinaus ist es aber auch möglich, nach Anspruch 13 die konfokale Blendengöße — von Hand oder gesteuert durch die Auswerteinheit — änderbar auszuführen. Damit können — vor oder nach der Aufnahme von Bildern mit einer geringen Schärfentiefe — Bilder mit einer wesentlich größeren Schärfentiefe aufgenommen werden, die beispielsweise gleichzeitig Informationen aus der Aderhaut und der Netzhaut enthalten.

Darüberhinaus ist es aber auch möglich, zusätzliche Informationen dadurch zu gewinnen, daß gemäß Anspruch 4 wenigstens zwei Detektoren vorgesehen sind, denen Transmissions- und/oder Kanten-Filter mit unterschiedlichen Grenzwellenlängen vorgeschaltet sind, und/oder die unterschiedlich großen konfokalen Blenden aufweisen.

Damit ist es beispielsweise bei Verwendung unterschiedlich großer konfokaler Blenden möglich, gleichzeitig ein Bild mit großer Schärfentiefe und ein Bild mit geringer Schärfentiefe aufzunehmen.

Bei Verwendung unterschiedlicher vorgeschalteter Filter können gleichzeitig ein "normales Fundusbild" und ein Fluoreszenz-Angiographiebild aufgenommen werden.

Hierbei ist es von besonderer Bedeutung, daß durch die Verwendung einer scannenden bildgebenden Vorrichtung gemäß dem Oberbegriff des Anspruchs 1 der Kontrast durch die Unterdrückung von Querstreuungseffekten hoch ist, und bei geringer Lichtbelastung für

die untersuchte Person hohe Fluoreszenz-Ausbeuten erhalten werden.

Die Weiterbildung gemäß Anspruch 5, gemäß der die Beleuchtungslichtquelle wenigstens zwei Laser mit unterschiedlicher Wellenlänge aufweist, bietet eine Reihe weiterer diagnostischer Möglichkeiten:

Beispielweise können bei Verwendung zweier unterschiedlicher Fluoreszenzmarker, wie Natriumfluorescein und Indocyangrün, und entsprechender Anregungslaser gleichzeitig zwei unterschiedliche Fluoreszenzangiographie-Bilder aufgenommen werden. Durch eine Echtzeitverknüpfung der Natriumfluorescein- und Indocyangrün-Bilder kann beispielsweise eine selektive Aderhaut-Darstellung erfolgen.

Weiterhin können ein normales Fundusbild und zusätzlich ein Angiographie-Bild einer bestimmten Schicht aufgenommen werden.

Im Anspruch 6 ist gekennzeichnet, daß die Beleuchtungslichtquelle einen im Infrarot-Bereich arbeitenden Laser aufweist. Die Verwendung eines derartigen Lasers in Verbindung mit einem im Infrarotbereich anregbaren Fluoreszenz-Farbstoff und insbesondere Indocyangrün, hat den Vorteil, daß in diesem Wellenlängenbereich die in der Netzhaut befindlichen Substanzen nur minimal absorbieren, so daß auch Aufnahmen aus tiefen Schichten, wie der Aderhaut mit geringen Intensitäten des Beleuchtungslichtstrahls möglich sind.

Dabei ist gemäß Anspruch 7 bevorzugt der Laser eine IR-Laserdiode ist, deren Wellenlänge durch eine Kühl- und/oder Heizeinrichtung, wie beispielsweise einem Peltierelement in einem bestimmten Bereich durchstimmbar ist. Diese Ausbildung gestattet eine variable Anpassung der Fluoreszenzanregungswellenlänge an das für die Angiographie notwendige Sperrfilter. Die Weiterbildung gemäß Anspruch 8, gemäß der die Grenzwellenlänge des der Detektoreinrichtung vorgeschalteten Sperrfilters in dem Bereich liegt, über den der Laser durchstimmbar ist, gestattet es, von Fall zu Fall zu entscheiden, in welchem Umfange das Anregungslicht unterdrückt werden soll. Beispielsweise kann es bei der IR-Angiographie für die richtige Justierung des Patientenauges vor der Injektion des Farbstoffes von Bedeutung sein, nicht alles Anregungslicht wegzufiltern, so daß auch der nicht-fluoreszierende Fundus sichtbar ist.

Im Anspruch 9 ist angegeben, daß die Abtastzeit pro Bildpunkt durch die Veränderung der horizontalen und/oder vertikalen Bildpunktzahl einstellbar ist.

Durch die Verwendung verschiedener Bild-Aufzeichnungsformate ist nicht nur eine Anpassung an verschiedene Video-Normen bzw. -formate möglich, sondern es können auch Bewegungsunschärfen vermieden werden, wie sie beispielsweise bei der Beobachtung der Weiterbewegung der Farbstoff-Front in einem Gefäß auftreten würden. Beispielsweise ist es durch Umschalten von einer gängigen Video-Norm, also beispielsweise von der europäischen oder US-Video-Norm auf ein bewegungsstörungsfreies Video-Format, das beispielsweise "Non-Interlaced" Bilder mit 100 Hz darstellt, möglich, die Farbstoff-Front mit geringster Verschmierung zu verfolgen, da die "Scan-Verweilzeit" pro Pixel ca. 100 ns beträgt. Bei einer herkömmlichen Funduskamera würde dagegen die Expositionszeit eines Bildes 20 ms betragen. Diese Verweilzeit führt bei einer erfindungsgemäßen Vorrichtung zu einer Bewegungsunschärfe der Farbstoff-Front im Bereich von einigen nm gegenüber einigen 100 µm bei konventionellen Geräten.

Eine weitere Erhöhung der zeitlichen Auflösung läßt sich nicht nur durch eine Vergrößerung der Bildfre-

quenz, sondern auch durch eine Anpassung der vertikalen Zeilenanzahl an die jeweiligen Erfordernisse bestimmen. Sollen beispielsweise mittels Fluoreszenz-Angiographie Kreislaufzeiten bestimmt werden, so läßt sich mit einem Gefäß angepaßten Bildformat die Auflösung entscheidend erhöhen.

Zusätzlich zu der Darstellung schnell ablaufender Vorgänge, wie der Bewegung einer Farbstoff-Front kann auch auf ein örtlich hoch auflösendes Format für die Aufnahme umgeschaltet werden, bei dem dann eine Bilddarstellung mit geringerer zeitlicher Auflösung erfolgt. Dies ermöglicht dann eine genaue Darstellung, beispielsweise einer Gefäßverzweigung.

Da in der Regel die Abtasteinrichtungen für die Horizontal-Ablenkung einen Polygonspiegel und für die Vertikal-Ablenkung einen Galvanometerspiegel aufweisen, kann die Einstellung unterschiedlicher Bildpunktzahlen auch mit einer geänderten Ansteuerung des Galvanometerspiegels einhergehen. Insbesondere kann bei unterschiedlichen Bildformaten eine unterschiedliche Anzahl von Zeilen in einer unterschiedlichen zeitlichen Reihenfolge auf den Augenhintergrund projiziert werden. Zusätzlich ist es möglich, beispielsweise dem horizontalen Abbildungs-Maßstab durch Austauschen von im gemeinsamen Teil des Strahlengangs befindlichen Elementen zu ändern.

Zur erfindungsgemäßen Verschiebung der Schärfeebene lassen sich im Prinzip die bereits aus der EP-A-01 45 563 bekannten Maßnahmen verwenden. Bei dieser Vorrichtung werden sowohl der Beleuchtungs- als auch der Beobachtungslichtstrahl über die Abtasteinrichtung geführt. Die Teilung zwischen Beobachtungs- und Beleuchtungslichtstrahl erfolgt dabei unmittelbar hinter (in Richtung des reflektierten Lichts betrachtet) bzw. vor (in Richtung des Beleuchtungslichts betrachtet) der Abtasteinrichtung. In dem Teil des Lichtwegs, in dem der Beobachtungs- und der Beleuchtungslichtstrahl getrennt sind, sind Einrichtungen zur Refraktionskompensation vorgesehen, die zur Refraktionskompensation synchron bewegt werden.

Besonders vorteilhaft ist jedoch die im Anspruch 10 angegebene Weiterbildung, die eine Verlagerung der Schärfeebene mit vergleichsweise geringem technischen Aufwand ermöglicht, bei der Einrichtung zur Verlagerung der Schärfeebene und zur Refraktionskompensation zwischen der Abtasteinrichtung und dem optischen Element angeordnet ist, durch das der Beleuchtungs- und der Beobachtungslichtweg getrennt werden. Dieses Element kann beispielsweise ein Teilerspiegel sein.

Um den für diese Einrichtung benötigten Platz zu schaffen, wird die Pupillenebene mittels eines "Relais-Systems" zwischenabgebildet. Diese Zwischenabbildung wird durch eine Anordnung von mindestens zwei Linsen und/oder Spiegeln bewirkt (Anspruch 11); ferner können zur Kompensation des Lichtwegs nicht abbildende Spiegel (Anspruch 12) vorgesehen werden, die den Lichtweg umlenken und zur Wegänderung gemeinsam verschoben werden.

Ferner ist es möglich, durch den Austausch bzw. durch Herausnehmen eines abbildenden Elements aus dem Strahlengang eine Änderung der Divergenz des Beleuchtungs- und Beobachtungslichtstrahls herbeizuführen, durch die unterschiedliche Refraktionen beispielsweise der zu untersuchenden Augen ausgeglichen werden. Zusätzlich kann mit mittels dieser Elemente auf verschiedene Ebenen innerhalb des Auges scharf eingestellt werden.

Die Weiterbildung gemäß Anspruch 14, bei der die Auswerte- und Synchronisiereinheit eine Bildverarbeitungseinheit aufweist, die die mit verschiedenen Wellenlängen und/oder zu verschiedenen Zeiten aufgenommenen Bilder verknüpft, erlaubt gegebenenfalls in Echtzeit-Darstellung eine Überlagerung und/oder Hervorhebung der aus einzelnen Schichten aufgenommenen Bilder. Darüberhinaus ist eine Verfolgung der Farbstoff-Front möglich.

Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnung exemplarisch beschrieben, auf die im übrigen bezüglich der Offenbarung aller im Text nicht näher erläuterten erfindungsgemäßen Einzelheiten ausdrücklich verwiesen wird. Es zeigen:

Fig. 1 die erfindungsgemäße Vergrößerungsumschaltung, und

Fig. 2 die erfindungsgemäße Scharfeinstellung.

Die erfindungsgemäße Vorrichtung weist eine nur in Fig. 2 dargestellte Beleuchtungs-Lichtquelle 16 auf, die bei dem gezeigten Ausführungsbeispiel aus zwei Lasern 16' und 16" besteht, die mittels eines Spiegels 16''' alternativ oder gemeinsam einen Beleuchtungslichtstrahl 14 erzeugen. Bei dem gezeigten Ausführungsbeispiel "verlaufen" sowohl der Beleuchtungslichtstrahl 14 als auch der vom Augenhintergrund kommende Lichtstrahl 15 über die Ablenkeinrichtung.

Durch die Kombination von zwei Spiegeln als abbildende und Vergrößerungs-bestimmende Elemente ergeben sich eine Reihe von Vorteilen, wie geringe Abbildungsfehler, Reflexfreiheit, Achromazität sowie durch die Faltung des Strahlenganges ein geringer Platzbedarf.

Fig. 1 zeigt, daß der Lichtstrahl 14 des Lasers von dem Horizontal-Scanner, der bei dem gezeigten Ausführungsbeispiel ein sich drehender Polygonspiegel 5 ist, in Horizontalrichtung (senkrecht zur Zeichenebene) abgelenkt wird. Der nun in der Horizontalebene aufgefächerte Strahl durchläuft das Spiegelsystem 6 und 7, und trifft auf einen Vertikal-Scanner, der bei dem gezeigten Ausführungsbeispiel ein Schwing- bzw. Galvanometerspiegel 8 ist, auf. Nach dem Spiegel 8 hat das Strahlbündel einen "rechteckigen" Querschnitt. Nach Umlenkung an einem Planspiegel 9 wird er von einem Konkavspiegel 10 auf das zu untersuchende Auge 12 abgebildet. Der reflektierte Lichtstrahl 15 durchläuft in umgekehrter Reihenfolge die genannten Elemente und wird nach dem Horizontal-Ablenkelement 5 von einer nur in Fig. 2 nicht dargestellten Detektoreinheit 18 nach vorheriger Trennung des Beleuchtungs- und des Beobachtungslichtwegs nachgewiesen.

Bei dem gezeigten Ausführungsbeispiel können zur Änderung der Vergrößerung die Elemente 6 und 7 paarweise durch die andere Elemente ersetzt werden. Die Elemente 6 und 7 bilden dabei jeweils ein afokales System, deren Vergrößerungsmaßstäbe bevorzugt zueinander reziprok sind.

Auch der Schwingsspiegel 8 und der abbildende Spiegel 10 bilden (gemeinsam mit dem Spiegel 9) ein afokales System.

Synchron mit der Horizontalvergrößerung muß die Vertikalvergrößerung geändert werden. Dies kann durch eine elektronisch ansteuerbare Ablenkeinrichtung, z. B. einen Galvanometerscanner realisiert werden.

Die erfindungsgemäße Vorrichtung ermöglicht es damit, die Größe des beobachteten Bereichs (also bei-

spielsweise des betrachteten Bereichs des Augenhintergrunds) zu ändern, d. h. die Vergrößerung des Gesamtsystems umzuschalten. Die Variation der Ansteuerung des Galvanometerspiegels ist darüberhinaus bei der Änderung des Aufzeichnungsformates von Bedeutung.

Durch die Kombination von zwei Spiegeln als abbildende und Vergrößerungs-bestimmende Elemente ergeben sich eine Reihe von Vorteilen, wie geringe Abbildungsfehler, Reflexfreiheit, Achromazität sowie durch die Faltung des Strahlenganges ein geringer Platzbedarf. Dabei ist die Achromazität von besonderer Bedeutung, wenn die Beleuchtung gleichzeitig mit Laserlicht unterschiedlicher Wellenlänge, beispielsweise im Infrarotbereich und im sichtbaren Bereich erfolgt.

Fig. 2 zeigt den Teil der erfindungsgemäßen Vorrichtung, in dem die Scharfeinstellung auf unterschiedlichen Ebenen im Auge erfolgt. Darüberhinaus kann eine Refraktionskompensation vorgenommen werden. Ein Teilerspiegel 13 trennt den Beleuchtungslichtweg 14 und den Beobachtungslichtweg 15. Bei dem gezeigten Ausführungsbeispiel ist das trennende optische Element 13 ein teildurchlässiger Spiegel, der zu einer Überlagerung der Eintritts- und Austrittspupille führt.

Es ist selbstverständlich aber auch möglich, andere Pupillenteilungen zu verwenden, beispielsweise eine Pupillenteilung, wie sie in der US-PS 42 13 678 beschrieben ist.

Zwischen dem Teilerspiegel 13 und dem Polygonspiegel 5 der Abtasteinrichtung ist die erfindungsgemäß aufgebaute Einrichtung zur Scharfeinstellung bzw. zur Verschiebung der Schärfenebene sowie zur Refraktionskompensation bzw. zur Scharfeinstellung auf verschiedene Ebenen des untersuchten Objekts vorgesehen.

Diese Einrichtung weist eine verschiebbare Linse 1. 35 eine feststehende Linse 2, zwei gemeinsam in Richtung des Pfeils verschiebbare Planspiegel 3a und 3b sowie einen Konkavspiegel 4 auf. Die Elemente 2 und 4 bewirken eine Zwischenabbildung der Pupillenebene P'', die bei der erfindungsgemäßen Vorrichtung direkt auf die Spiegelfläche des Polygonspiegels 5 gelegt ist. Durch die Verschiebung der Linse 1 kann die Schärfenebene im Auge variiert und beispielsweise nacheinander auf die Netzhaut, die Aderhaut und die Gefäße scharf eingestellt werden. Durch Austauschen der Linse 1 beispielsweise gegen eine Linse 1', die auf einem Revolver 1'' angeordnet ist, kann eine Refraktionskompensation erfolgen.

Für das rechtsichtige Auge bilden die Linse 2 und der Hohlspiegel 4 ein afokales System. Bei Fehlsichtigkeit 50 wird eine entsprechende Linse 1 des Revolvers bzw. Linsenrades 1'' vorgeschaltet und zum Feinabgleich die Umlenkspiegel 3a und 3b verschoben, so daß der austretende Strahl parallel verläuft. Anders ausgedrückt wird durch den Austausch (bzw. das Weglassen) der Linse 1 die Divergenz des Strahlengangs leicht geändert, so daß unterschiedliche Augenrefraktionen grob kompensierbar sind. Gleichzeitig wird durch Verschieben der Spiegel 3a und 3b die Länge des Lichtwegs verändert und eine Feineinstellung durchgeführt.

In dem Teil des Beobachtungsstrahlenganges 15, in dem dieser vom Beleuchtungsstrahlengang 14 getrennt ist, ist ein weiterer teildurchlässiger Spiegel 17 vorgesehen, der das Licht auf zwei Detektoren 18₁ und 18₂ der Detektoreinrichtung umlenkt. Vor den Detektoren 18₁ und 18₂ sind Blenden 19₁ und 19₂ in Ebenen angeordnet, die zu der Schärfenebene konjugiert sind. Ferner sind vor den Detektoren Filter 20₁ und 20₂ vorgesehen.

Bei dem gezeigten Ausführungsbeispiel weist die

Blende 19₁ einen Durchmesser auf, der in etwa dem Durchmesser des Bildes des fokussierten Strahlflecks entspricht. Diese Anordnung führt insbesondere mit einer Pupillenteilung, wie sie sich bei Verwendung eines teildurchlässigen Spiegels ergibt, zu einer geringen Schärfentiefe, die geringer als der Abstand Netzhaut-Aderhaut-Gefäße ist.

Damit erlaubt die erfundungsgemäße Vorrichtung durch Einstellen auf unterschiedliche Schärfenebenen nacheinander die Beobachtung und Aufnahme beispielsweise der Netzhaut und der Aderhaut.

Die vor dem Detektor 18₂ angeordnete Blende 20₂ weist einen wesentlichen größeren Durchmesser auf; damit ist auch die Schärfentiefe wesentlich größer, so daß beispielsweise gleichzeitig die Netzhaut und die Aderhaut "scharf" abgebildet werden können.

Insbesondere dann, wenn als Laser ein Infrarotlaser verwendet wird, dessen Licht in der Netzhaut nur minimal absorbiert wird, können mit der gezeigten Anordnung nacheinander Schichtbilder des Augenhintergrundes sowie gleichzeitig auch ein die Aderhaut, die Netzhaut sowie gegebenenfalls die Gefäße scharf darstellendes Bild aufgenommen werden.

Dabei ist es bevorzugt, daß die (in den Figuren nicht dargestellte) Auswerte- und Synchronisiereinheit die Verschiebung der Linsen 1 zur Einstellung der Schärfenebene steuert.

Ferner können auch die konfokalen Transmissions- und/oder Kanten-Filter 20₁ bzw. 20₂ vor den Detektoren 18₁ und 18₂ unterschiedliche Grenzwellenlängen haben, so daß gleichzeitig ein "normales" Fundusbild und ein Angiographiebild aufgenommen wird. Weiterhin ist es auch möglich, den Fundus gleichzeitig mit dem Licht beider Laser 16' und 16'' zu beleuchten, von denen bevorzugt einer im Infrarotbereich und einer im sichtbaren Bereich arbeitet. Bei Verwendung zweier Fluoreszenzmarker, wie Natriumfluorescein- und Indiocyan-grün, und entsprechend abgestimmter Filter 20 können dann zwei unterschiedliche Fluoreszenz-Bilder aufgenommen werden.

Vorstehend ist die Erfindung anhand eines Ausführungsbeispiels ohne Beschränkung des den Ansprüchen entnehmbaren allgemeinen Erfundungsgedankens beschrieben worden. Insbesondere ist die vorstehende Beschreibung nicht dahingehend auszulegen, daß gegebenenfalls unabhängige Erfundungsgedanken nur in Verbindung mit anderen Erfindungen Schutz genießen.

Patentansprüche

1. Vorrichtung zur angiographischen Untersuchung des Auges

mit einer Beleuchtungslichtquelle, deren Licht auf dem zu untersuchenden Teil des Auges fokussierbar ist,

einer Abtasteinrichtung, die eine Abtastbewegung des Lichtstrahls der Beleuchtungslichtquelle über dem zu beobachtenden Abschnitt erzeugt und strahlenablenkende sowie abbildende optische Elemente aufweist,

einer Detektoreinrichtung, die das an dem zu beobachtenden Abschnitt reflektierende Licht empfängt und der Wellenlängen-selektive Filter zur Aufnahme von Angiographie-Bildern vorschaltbar sind, und

einer Auswerte- und Synchronisiereinheit, die aus dem zeitsequentiellen Ausgangssignal der Detektoreinrichtung ein Bild der ausgewählten Objekts-

strukturen erzeugt, gekennzeichnet durch die Kombination folgender Merkmale:

– die Detektoreinrichtung weist eine konfokale Blende (19) auf, deren Durchmesser in etwa dem Durchmesser des Bildes des fokussierten Strahlflecks entspricht,

– eine Scharfeinstell-Einrichtung (1.4) verschiebt die Schärfenebene des Beleuchtungs- und Beobachtungsstrahlengangs während der Aufnahme eines Angiographie-Bildes.

2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Auswerte- und Synchronisiereinheit die Verschiebung der Schärfenebene steuert.

3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß während der Einstromphase des Fluoreszenzmarkers die Schärfenebene in der Aderhaut liegt, und daß nach Beginn der Papillenfluoreszenz die Schärfenebene in die Netzhaut verschoben wird.

4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß wenigstens zwei Detektoren (18₁, 18₂) vorgesehen sind, denen Transmissions- und/oder Kanten-Filter (20₁, 20₂) mit unterschiedlichen Grenzwellenlängen vorgeschaltet sind und/oder die unterschiedlich große konfokale Blenden (19₁, 19₂) aufweisen.

5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Beleuchtungslichtquelle wenigstens zwei Laser (16₁, 16₂) mit unterschiedlicher Wellenlänge aufweist.

6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Beleuchtungslichtquelle einen im Infrarot-Bereich arbeitenden Laser (16) aufweist.

7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der Laser eine IR-Laserdiode ist, deren Wellenlänge durch eine Kühl-/Heizeinrichtung in einem bestimmten Bereich durchstimmbar ist.

8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Grenzwellenlänge des der Detektoreinrichtung vorgeschalteten Sperrfilters in dem Bereich liegt, über den der Laser durchstimmbar ist.

9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die Abtastzeit pro Bildpunkt durch die Veränderung der horizontalen und/oder vertikalen Bildpunktzahl einstellbar ist.

10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß zur Verschiebung der Schärfenebene zwischen dem Auskoppelement (13), das das Beleuchtungslicht (14) und das reflektierte Licht (15) trennt, und der Abtasteinrichtung (5) ein optisches System (1, 2, 4) vorgesehen ist, das die Pupille P'' zwischenabbißt, und das wenigstens eine verschiebbare optische Komponente (1) enthält.

11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß das optische System zwei statio-när angeordnete abbildende optische Elemente (2, 4) aufweist.

12. Vorrichtung nach einem der Ansprüche 10 bis 11, dadurch gekennzeichnet, daß das optische System zusätzlich wenigstens zwei Spiegel (3a, 3b) aufweist, die den Strahlengang in einer Ebene um jeweils 90° umlenken und zur Veränderung der optischen Weglänge gemeinsam verschließbar sind.

13. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die konfokale Blen-

Größe änderbar ist.

14. Vorrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die Auswerte- und Synchronisiereinheit eine Bildverarbeitungseinheit aufweist, die die mit verschiedenen Wellenlängen und/oder zu verschiedenen Zeiten aufgenommenen Bilder verknüpft. 5

Hierzu 2 Seite(n) Zeichnungen

10

15

20

25

30

35

40

45

50

55

60

65

