A.03.04 – Modelos de Propriedades Energéticas

(Sistemas Fechados)

Prof. C. Naaktgeboren, PhD

https://github.com/CNThermSci/ApplThermSci Compiled on 2020-06-03 17h43m12s UTC

- Modelos de Propriedades Energéticas
 - Energia Interna e Entalpia

2 Tópicos de Leitura

O sistema fechado de massa m, ilustrado:

• Recebe uma diferencial de calor a volume constante, $(\delta q)_V$;

O sistema fechado de massa *m*, ilustrado:

- Recebe uma diferencial de calor a volume constante, $(\delta q)_V$;
- $m \in V$ constantes implicam em $v \equiv V/m$ constante, tal que $(\delta q)_V = (\delta q)_V$;

O sistema fechado de massa *m*, ilustrado:

- Recebe uma diferencial de calor a volume constante, $(\delta q)_V$;
- $m \in V$ constantes implicam em $v \equiv V/m$ constante, tal que $(\delta q)_V = (\delta q)_V$;
- A temperatura experimenta uma variação de $(dT)_{v}$.

$$\delta e_{ent} - \delta e_{sai} = de_{sist}$$

$$\delta e_{ent} - \delta e_{sai} = de_{sist}$$
 \rightarrow $(\delta q)_v = du.$

O balanço de energia na forma diferencial do sistema fica:

$$\delta e_{ent} - \delta e_{sai} = de_{sist} \quad \neg$$
$$(\delta q)_v = du.$$

Assim, o calor transferido a volume constante a um sistema fechado é a variação de sua energia interna!

Define-se o calor específico a volume constante da substância do sistema, c_v , como

$$c_{v} \equiv \left(\frac{\partial u}{\partial T}\right)_{v}.$$

Define-se o calor específico a volume constante da substância do sistema, c_v , como

$$c_v \equiv \left(\frac{\partial u}{\partial T}\right)_v$$
.

Ainda, $C_v = (\partial U/\partial T)_v = mc_v$ é a capacidade térmical a volume constante do sistema.

Entalpia – Relação com Temperatura

O sistema fechado de massa *m*, ilustrado:

• Recebe uma diferencial de calor a pressão constante, $(\delta q)_P$;

Entalpia – Relação com Temperatura

O sistema fechado de massa *m*, ilustrado:

- Recebe uma diferencial de calor a pressão constante, $(\delta q)_P$;
- Realiza uma diferencial de trabalho a pressão constante, $(\delta w)_P = P dv$;

Entalpia – Relação com Temperatura

O sistema fechado de massa m, ilustrado:

- Recebe uma diferencial de calor a pressão constante, $(\delta q)_P$;
- Realiza uma diferencial de trabalho a pressão constante, $(\delta w)_P = P dv$;
- A temperatura experimenta uma variação de $(dT)_P$, possivelmente diferente de $(dT)_v$.

$$\delta e_{ent} - \delta e_{sai} = de_{sist}$$

$$\delta e_{ent} - \delta e_{sai} = de_{sist} \quad \neg$$
$$(\delta q)_P - (\delta w)_P = du$$

$$\delta e_{ent} - \delta e_{sai} = de_{sist} \quad \neg$$

$$(\delta q)_P - (\delta w)_P = du \quad \neg$$

$$(\delta q)_P = du + P dv = d(u + Pv).$$

O balanço de energia na forma diferencial do sistema fica:

$$\delta e_{ent} - \delta e_{sai} = de_{sist} \quad \neg$$

$$(\delta q)_P - (\delta w)_P = du \quad \neg$$

$$(\delta q)_P = du + P dv = d(u + Pv).$$

A quantidade (u+Pv) aparece frequentemente o suficiente para ser definida como uma nova propriedade, $h \equiv u+Pv$, denominada "entalpia".

Assim,

$$H \equiv U + PV$$
 [kJ], e

Assim,

$$H \equiv U + PV$$
 [kJ], e
 $h \equiv u + Pv$ [kJ/kg],

Assim,

$$H \equiv U + PV$$
 [kJ], e
 $h \equiv u + Pv$ [kJ/kg],

são a entalpia e a entalpia específica, respectivamente: novas propriedades termodinâmicas.

O termo origina do verbo grego "ενθάλπω", que significa: "(eu) aqueço", conforme a própria ilustração. Ou seja: a "entalpia" de um sistema pode ser mnemonizada como o seu "nível de aquecimento" à pressão constante, desde um outro estado de referência.

O termo origina do verbo grego "ενθάλπω", que significa: "(eu) aqueço", conforme a própria ilustração. Ou seja: a "entalpia" de um sistema pode ser mnemonizada como o seu "nível de aquecimento" à pressão constante, desde um outro estado de referência.

Mais importantemente, da expressão $(\delta q)_P = dh$, tem-se que o calor transferido a pressão constante a um sistema fechado é a variação de sua entalpia!

Define-se

Define-se

$$c_v \equiv \left(\frac{\partial u}{\partial T}\right)_v,$$

Define-se

$$c_{\scriptscriptstyle \mathcal{V}} \equiv \left(rac{\partial u}{\partial T}
ight)_{\scriptscriptstyle \mathcal{V}},$$

denominado de calor específico a volume constante da substância do sistema. Ainda,

Define-se

$$c_{v} \equiv \left(\frac{\partial u}{\partial T}\right)_{v},$$

denominado de calor específico a volume constante da substância do sistema. Ainda, $C_v = (\partial U/\partial T)_v = mc_v$ é a capacidade térmical a volume constante do sistema.

Tópicos de Leitura I

Çengel, Y. A. e Boles, M. A.

Termodinâmica 7ª Edição. Seções 4-3 a 4-5.

AMGH. Porto Alegre. ISBN 978-85-8055-200-3.

