ELC 2137 Lab 07: Binary Coded Decimal

Yiting Wang

October 15, 2020

Summary

In the last lab, we implemented a 7-segment display. We input numbers in binary, and it outputs in hex. When you get used to it, hex is fine to read, but its not as easy as decimal, particularly for multi-digit numbers. In this lab, you will make a cheat button that will turn the display to decimal and then back to hex.

$\mathbf{Q}\&\mathbf{A}$

There is no question in lab7.

Results

Firgure 1 is the simulation waveform and ERT of the Add3.

Time (ns):	0	10	20	30	40	50	60	110	120	130	140	150
num	0000	0001	0010	0011	0100	0101	0110	1011	1100	1101	1110	1111
out	0000	0001	0010	0011	0100	1000	1001	1110	1111	0000	0001	0010

Figure 1: the simulation waveform and ERT of the 4-bit Multiplexer

Firgure 2 is the simulation waveform and ERT of the 6-bit BCD.

Firgure 3 is the simulation waveform and ERT of the 11-bit BCD.

Time (ns):	0	10	20	600	610	620	630
Bin	000000	000001	000010	111100	111101	111110	111111
ones tens	0000	0001 0000		0000 0110	0001 0110	0010 0110	0011 0110

Figure 2: the simulation waveform and ERT of the 6-bit BCD

Code

Listing 1: Add3 Verilog code

Time (ns):	0	10	20	30	40	50	20430	20440	20450	20460
Bin	000	001	002	003	004	005	7fb	$7 \mathrm{fc}$	7fd	7fe
ones	0000	0001	0010	0011	0100	0101	0011	0100	0101	0110
tens	0000	0000	0000	0000	0000	0000	0100	0100	0100	0100
hund	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
thou	0000	0000	0000	0000	0000	0000	0010	0010	0010	0010

Figure 3: the simulation waveform and ERT of the 11-bit BCD

Listing 2: Add3 Test Benches Verilog code

Listing 3: 6-bit BCD Verilog code

```
'timescale 1ns / 1ps
  // Company: ELC 2137
// Engineer: Yiting Wang
// Create Date: 10/08/2020
  module bcd6(
  input [5:0] Bin,
  output [3:0] ones,
  output [3:0] tens
  );
  wire [2:0] w1, w2;
  wire [6:1] Dout;
  add3 C1(
     .num({ 0, Bin[5:3] }),
     .mod({ Dout[6], w1 })
  );
  add3 C2(
     .num({ w1, Bin[2] }),
     .mod({ Dout[5], w2})
  );
```

Listing 4: 6-bit BCD Test Benches Verilog code

```
'timescale 1ns / 1ps
  // Company: ELC 2137
// Engineer: Yiting Wang
// Create Date: 10/08/2020
  module bcd6_test();
  reg [5:0] Bin_t;
  wire [3:0] ones_t, tens_t;
  bcd6 dut_bcd6(
  .Bin(Bin_t),
  .ones(ones_t), .tens(tens_t)
  );
  integer i;
  initial begin
     for(i=6'h0; i<=6'h3f; i=i+1) begin
        Bin_t = i; #10;
     end
     $finish;
  end
endmodule
```

Listing 5: 11-bit BCD Verilog code

^{&#}x27;timescale 1ns / 1ps

```
// Company: ELC 2137
// Engineer: Yiting Wang
// Create Date: 10/08/2020
  module bcd11(
   input [10:0] in,
   output [3:0] ones,
   output [3:0] tens,
   output [3:0] hund,
   output [3:0] thou
   );
   wire [12:1] Y;
   wire [3:0] w1, w2, w3, w4, wa, w5, wb, w6, wc, w7, wd, wA;
   add3 C1_bcd11(
      .num({ 0, in[10:8] }),
      .mod(w1)
   );
   add3 C2_bcd11(
      .num({ w1[2:0], in[7] }),
      .mod(w2)
   );
   add3 C3_bcd11(
      .num({ w2[2:0], in[6] }),
      .mod(w3)
   );
   add3 C4_bcd11(
      .num({ w3[2:0], in[5] }),
      .mod(w4)
   );
   add3 C5_bcd11(
      .num({ w4[2:0], in[4] }),
      .mod(w5)
   );
   add3 C6_bcd11(
      .num({ w5[2:0], in[3] }),
      .mod(w6)
   );
   add3 C7_bcd11(
      .num({ w6[2:0], in[2] }),
```

```
.mod(w7)
    );
    add3 C8_bcd11(
        .num({ w7[2:0], in[1] }),
        .mod(Y[4:1])
    );
    add3 Ca_bcd11(
        .num({ 0, w1[3], w2[3], w3[3] }),
        .mod(wa)
    );
    add3 Cb_bcd11(
        .num({ wa[2:0], w4[3] }),
        .mod(wb)
    );
    add3 Cc_bcd11(
        .num({ wb[2:0], w5[3] }),
        .mod(wc)
    );
    add3 Cd_bcd11(
        .num({ wc[2:0], w6[3] }),
        .mod(wd)
    );
    add3 Ce_bcd11(
        .num({ wd[2:0], w7[3] }),
        .mod(Y[8:5])
    );
    add3 CA_bcd11(
        .num({ 0, wa[3], wb[3], wc[3] }),
        .mod(wA)
    );
    add3 CB_bcd11(
        .num({ wA[2:0], wd[3] }),
        .mod(Y[12:9])
    );
    assign ones = {Y[3:1], in[0]};
    assign tens = Y[7:4];
    assign hund = Y[11:8];
    assign thou = \{2'b00, wA[3], Y[12]\};
endmodule
```

Listing 6: 11-bit BCD Test Benches Verilog code

```
'timescale 1s / 1ps
  // Company: ELC 2137
// Engineer: Yiting Wang
// Create Date: 10/08/2020
  module bcd11_test();
  reg [10:0] in_t;
  wire [3:0] ones_t, tens_t, hund_t, thou_t;
  bcd11 dut_bcd11(
     .in(in_t),
     .ones(ones_t), .tens(tens_t), .hund(hund_t), .thou(thou_t)
  );
  integer i;
  initial begin
     for (i=11'h0; i<=11'h7ff; i=i+1) begin
        in_t = i; #10;
     end
  end
endmodule
```

Listing 7: sseg1 BCD Verilog code

```
);
   wire tens_bcd11, ones_bcd11, hund_bcd11, thou_bcd11, out_mux;
   bcd11 my_bcd11_sseg1(
        .in(sw[10:0]),
        .tens(tens_bcd11), .ones(ones_bcd11), .hund(hund_bcd11), .thou(
           thou_bcd11)
   );
   mux2_4b my_mux_sseg1(
        .in1(tens_bcd11), .in0(ones_bcd11), .sel(sw[15]),
        .out(out_mux)
   );
    sseg_decoder my_sseg_decoder_sseg1(
        .num(out_mux),
        .sseg(seg)
   );
    assign dp = 1;
    assign an[3:2] = 2'b11;
   assign an[1] = ~sw[15];
   assign an [0] = sw[15];
endmodule
```