

Nel 1960 il batiscafo "Trieste" discese alla profondità di 10911 metri

- Un batiscafo si muove (verso l'alto o il basso)
- ...Bilanciando l'effetto della forza di galleggiamento e di gravità
- ...Usando una zavorra per variare la massa del veicolo

Proveremo a calcolare alcune forze agenti su un veicolo simile

Consideriamo la forza di gravità (equivalente) agente sul batiscafo

Assumento un asse y orientato verso l'alto, questa è data da:

$$F_g = -g(m_s + m_b + m_f)$$

Dove g è l'accelarazione di gravità e:

- $lacktriangleq m_s$ è la massa equivalente (galleggiamento incluso) della cabina
- $lacktriangleright m_b$ quella della zavorra e m_s quella del galleggiante

Se assumiamo che il galleggiante sia sferico, abbiamo che:

$$m_f = \rho_f V_f$$
 con: $V_f = \frac{4}{3} \pi r^3$

Dove ho_f è la densità del galleggiante e r il suo raggio

Nelle celle seguenti, si calcoli il valore della forza $F_{g}\,$

Si stampino anche i valori di V_f ed m_f

```
In [1]: rho_f = 979
    m_s = 8000
    m_b = 9000 - 1143
    g = 9.81
    r = 2
    pi = 3.14156
```


Consideriamo la forza di galleggiamento agente sul galleggiante

Questa è data da:

$$F_b = g \rho_w V_f$$

Nella cella seguente, si calcoli il valore di ${\cal F}_b$

Nella cella seguente, si determini (per tentativi) un valore di r...

...Tale per cui $F_{\mathcal{g}}$ ed F_b approssimaticamente si compensano

```
In [3]: rho_f = 979
m_s = 8000
m_b = 9000 - 1143
rho_w = 1000
g = 9.81
r = 5.64900975
pi = 3.14156
```


