Comprehensive Laplace Transform Cheat Sheet for Linear Circuit Analysis

Table of Contents

- 1. Laplace Transform Fundamentals
- 2. Six Essential Properties
- 3. Inverse Laplace Transform
- 4. Circuit Analysis with Laplace
- 5. Initial and Final Value Theorems
- 6. Step-by-Step Problem Solving Guide

Laplace Transform Fundamentals

Definition

The Laplace Transform converts time-domain functions f(t) into s-domain functions F(s):

$$F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty f(t) e^{-st} dt$$

where $s = \sigma + j\omega$ is a complex variable.

Why Use Laplace Transforms?

- Converts differential equations \rightarrow algebraic equations
- · Handles initial conditions automatically
- Simplifies circuit analysis dramatically

Common Laplace Transform Pairs

Time Domain $f(t)$	S-Domain $F(s)$	ROC (Region of Convergence)
$\delta(t)$ (unit impulse)	1	All s
u(t) (unit step)	$\frac{1}{8}$	Re(s) > 0
t (unit ramp)	$\frac{1}{s}$ $\frac{1}{s^2}$	$\operatorname{Re}(s) > 0$
t^n	$\frac{n!}{s^{n+1}}$	Re(s) > 0
e^{at}	$\frac{1}{s-a}$	Re(s) > a
te^{at}	$\frac{1}{(s-a)^2}$	Re(s) > a
$\cos(\omega t)$	$\frac{\frac{1}{(s-a)^2}}{\frac{s}{s^2 + \omega^2}} \frac{s^2 + \omega^2}{\frac{s^2 + \omega^2}{(s+a)^2 + \omega^2}}$	Re(s) > 0
$\sin(\omega t)$	$\frac{\omega}{s^2+\omega^2}$	$\operatorname{Re}(s) > 0$
$e^{-at}\cos(\omega t)$	$\frac{s+a}{(s+a)^2+\omega^2}$	$\operatorname{Re}(s) > -a$
$e^{-at}\sin(\omega t)$	$\frac{\omega}{(s+a)^2+\omega^2}$	$\operatorname{Re}(s) > -a$

Poles and Zeros

- Poles: Values of s where $F(s) \to \infty$ (denominator = 0)
- **Zeros**: Values of s where F(s) = 0 (numerator = 0)
- Poles determine the **nature of the time response** (exponential decay, oscillation, etc.)

Six Essential Properties

1. Linearity

$$\mathcal{L}\{af(t) + bg(t)\} = aF(s) + bG(s)$$

Use this to: Break complex functions into simpler parts and transform each separately.

2. Frequency Shift (Multiply by e^{-at})

$$\mathcal{L}\{e^{-at}f(t)\} = F(s+a)$$

Use this to: Handle exponential envelopes. Replace s with s + a in F(s).

Example:

$$\mathcal{L}\{e^{-2t}\cos(3t)\} = \frac{s+2}{(s+2)^2+9}$$

3. Time Shift (Delay Property)

$$\mathcal{L}\{f(t-T)u(t-T)\} = e^{-sT}F(s)$$

Use this to: Handle delayed signals. The term e^{-sT} indicates a delay of T seconds.

4. Differentiation Property CRITICAL FOR CIRCUITS

$$\mathcal{L}\left\{\frac{df}{dt}\right\} = sF(s) - f(0^-)$$

$$\mathcal{L}\left\{\frac{d^2f}{dt^2}\right\} = s^2F(s) - sf(0^-) - f'(0^-)$$

Use this to: Transform differential equations. Initial conditions appear as source terms!

5. Integration Property

$$\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{1}{s}F(s)$$

Use this to: Handle integrals in your equations (less common in basic circuit analysis).

6. Multiply by t Property

$$\mathcal{L}\{tf(t)\} = -\frac{dF(s)}{ds}$$

Use this to: Handle terms multiplied by t, or deal with multiple-order poles in inverse transforms.

Inverse Laplace Transform

Goal

Convert F(s) back to f(t) using Partial Fraction Expansion (PFE).

Terminology

- PRF (Proper Rational Function): Order of numerator < order of denominator
- IRF (Improper Rational Function): Order of numerator ≥ order of denominator

General Form After PFE

$$F(s)=\frac{k_1}{s-p_1}+\frac{k_2}{s-p_2}+\cdots+\frac{k_n}{s-p_n}$$

where: - p_i = pole locations (determine exponential rates) - k_i = residues (determine weights/amplitudes)

Case 1: Distinct Real Poles

PFE Form:

$$F(s) = \frac{k_1}{s - p_1} + \frac{k_2}{s - p_2} + \dots + \frac{k_n}{s - p_n}$$

Time Domain:

$$f(t) = k_1 e^{p_1 t} u(t) + k_2 e^{p_2 t} u(t) + \dots + k_n e^{p_n t} u(t)$$

Finding Residues: Cover-Up Method

The cover-up method is a quick technique for finding residues in partial fraction expansion.

Basic Principle: To find residue k_i for pole at $s = p_i$:

$$k_i = \left. (s - p_i) F(s) \right|_{s = p_i}$$

Step-by-Step Procedure:

- 1. Multiply both sides of F(s) by the factor $(s-p_i)$ corresponding to the pole you're solving for
- 2. "Cover up" (mentally or physically) the factor $(s-p_i)$ in the original denominator
- 3. Substitute $s = p_i$ into what remains
- 4. Evaluate the expression to get k_i

Why It Works: Multiplying by $(s - p_i)$ cancels that factor in the denominator. When we set $s = p_i$, all other fractions in the PFE become zero (they have $(s - p_i)$ in their numerators), leaving only k_i .

Detailed Example:

$$F(s) = \frac{3s+5}{(s+1)(s+2)}$$

Set up PFE:

$$\frac{3s+5}{(s+1)(s+2)} = \frac{k_1}{s+1} + \frac{k_2}{s+2}$$

Find k_1 (pole at s = -1): 1. Multiply by (s + 1):

$$k_1 + \frac{k_2(s+1)}{s+2} = \frac{3s+5}{s+2}$$

2. Set s = -1 (the second term vanishes):

$$k_1 = \frac{3(-1) + 5}{(-1) + 2} = \frac{2}{1} = 2$$

Find k_2 (pole at s = -2): 1. Multiply by (s + 2):

$$\frac{k_1(s+2)}{s+1} + k_2 = \frac{3s+5}{s+1}$$

2. Set s = -2 (the first term vanishes):

$$k_2 = \frac{3(-2) + 5}{(-2) + 1} = \frac{-1}{-1} = 1$$

Result: $f(t) = 2e^{-t}u(t) + e^{-2t}u(t)$

Practical Shortcut (the actual "cover-up"):

For
$$F(s) = \frac{N(s)}{(s-p_1)(s-p_2)...(s-p_n)}$$

To find k_i : - Cover up $(s-p_i)$ in the denominator - Replace all remaining s with p_i - Calculate the result

Visual Example:

$$F(s) = \frac{10}{(s+2)(s+3)(s+5)}$$

Find k_2 at s=-3: - Cover up (s+3) in denominator: $\frac{10}{(s+2)(s+5)}$ - Substitute s=-3: $\frac{10}{(-3+2)(-3+5)}=\frac{10}{(-1)(2)}=-5$

Three-Pole Example:

$$F(s) = \frac{s+7}{(s+1)(s+2)(s+4)}$$

Find all residues:

 k_1 at s = -1:

$$k_1 = \frac{(-1) + 7}{(-1 + 2)(-1 + 4)} = \frac{6}{(1)(3)} = 2$$

 k_2 at s = -2:

$$k_2 = \frac{(-2) + 7}{(-2 + 1)(-2 + 4)} = \frac{5}{(-1)(2)} = -\frac{5}{2}$$

 k_3 at s = -4:

$$k_3 = \frac{(-4) + 7}{(-4+1)(-4+2)} = \frac{3}{(-3)(-2)} = \frac{1}{2}$$

Answer:

$$f(t) = \left[2e^{-t} - \frac{5}{2}e^{-2t} + \frac{1}{2}e^{-4t}\right]u(t)$$

Important Notes: - Cover-up method only works for distinct (simple) poles - For repeated poles, use the derivative method (see Case 3) - For complex poles, you can use cover-up but will get complex residues (see Case 2) - Always verify: multiply out your PFE to check it equals the original F(s)

Case 2: Complex Conjugate Poles

PFE Form (poles at $s = -\alpha \pm j\beta$):

$$F(s) = \frac{k}{s - (-\alpha + j\beta)} + \frac{k^*}{s - (-\alpha - j\beta)}$$

where k and k^* are complex conjugates.

Time Domain:

$$f(t) = 2|k|e^{-\alpha t}\cos(\beta t + \angle k)u(t)$$

Steps: 1. Find residue k at one pole using cover-up method 2. Express k in polar form: $k = |k|e^{j\angle k}$ 3. Apply formula above **Alternative Form** (using real coefficients):

$$f(t) = e^{-\alpha t} [A\cos(\beta t) + B\sin(\beta t)] u(t)$$

where: $-A = 2\text{Re}\{k\} - B = -2\text{Im}\{k\}$

Case 3: Multiple-Order Poles

PFE Form (pole at $s = p_1$ with multiplicity m):

$$F(s) = \frac{k_{1m}}{(s - p_1)^m} + \frac{k_{1(m-1)}}{(s - p_1)^{m-1}} + \dots + \frac{k_{11}}{s - p_1} + \text{(other poles)}$$

Time Domain:

$$f(t) = \left[k_{1m}\frac{t^{m-1}}{(m-1)!} + k_{1(m-1)}\frac{t^{m-2}}{(m-2)!} + \dots + k_{11}\right]e^{p_1t}u(t) + (\text{other terms})$$

Finding Residues - Method 1: Matching Coefficients 1. Find highest-order residue k_{1m} using cover-up method 2. Multiply both sides by $(s - p_1)^m$ 3. Expand and match coefficients of powers of s

Finding Residues - Method 2: n-to-1-Order-Poles For highest order residue:

$$k_{1m} = \left. (s - p_1)^m F(s) \right|_{s = p_1}$$

For next lower order:

$$k_{1(m-1)}=\left.\frac{d}{ds}\left[(s-p_1)^mF(s)\right]\right|_{s=n},$$

And so on with higher derivatives.

Case 4: Improper Rational Functions (IRF)

If numerator order \geq denominator order:

1. **Perform long division** first

- 2. Write as: $F(s) = Q(s) + \frac{R(s)}{D(s)}$
- 3. Apply PFE to the proper fraction $\frac{R(s)}{D(s)}$
- 4. Inverse transform polynomial terms:
 - $\mathcal{L}^{-1}\{1\} = \delta(t)$ (impulse)
 - $\mathcal{L}^{-1}\{s\} = \delta'(t)$ (derivative of impulse)

Case 5: Delayed Functions (e^{-sT} terms)

$$\mathcal{L}^{-1}\{F(s)e^{-sT}\}=f(t-T)u(t-T)$$

The function is delayed by T seconds and is zero for t < T.

Circuit Analysis with Laplace

S-Domain Component Models

Component	Time Domain	S-Domain Impedance	Initial Condition Handling
Resistor Inductor	$v(t) = Ri(t)$ $v(t) = L\frac{di}{dt}$	$\begin{split} Z_R &= R \\ Z_L &= sL \end{split}$	None Voltage source $Li(0^-)$ in series
Capacitor	$i(t) = C \frac{dv}{dt}$	$Z_C = \frac{1}{sC}$	Voltage source $\frac{v(0^-)}{s}$ in series OR current source $Cv(0^-)$ in parallel

Inductor S-Domain Model (Detailed)

Circuit representation with initial condition:

Equation: $V_L(s) = sLI(s) - Li(0^-)$

Capacitor S-Domain Model (Detailed)

Series representation:

Parallel representation:

Equation: $I_C(s) = sCV(s) - Cv(0^-)$

Kirchhoff's Laws in S-Domain

KVL (Kirchhoff's Voltage Law):

$$\sum V_i(s)=0$$

Sum of voltages around any closed loop equals zero (same as time domain, but with V(s)).

KCL (Kirchhoff's Current Law):

$$\sum I_i(s)=0$$

Sum of currents entering a node equals sum leaving (same as time domain, but with I(s)).

Zero-Input Response (ZIR) and Zero-State Response (ZSR)

Total Response:

$$y(t) = y_{ZIR}(t) + y_{ZSR}(t) \label{eq:y_zir}$$

- **ZIR**: Response due to initial conditions only (no external input)
- **ZSR**: Response due to external input only (zero initial conditions)

Initial and Final Value Theorems

Initial Value Theorem (IVT)

$$f(0^+) = \lim_{s \to \infty} sF(s)$$

Requirements: - F(s) must be a Proper Rational Function (PRF) - If IRF, IVT gives ∞ (not useful)

Use: Quickly find initial value without doing full inverse transform.

Final Value Theorem (FVT)

$$f(\infty) = \lim_{s \to 0} sF(s)$$

Requirements: - All poles of sF(s) must have Re(s) < 0 (lie in left half-plane) - If poles on imaginary axis or right half-plane, FVT is **NOT APPLICABLE**

Use: Quickly find steady-state value without doing full inverse transform.

Common Mistake: Applying FVT when poles are at s=0 or in right half-plane. Always check pole locations of sF(s) first!

Step-by-Step Problem Solving Guide

Problem Type 1: Find Laplace Transform of f(t)

Steps: 1. Break down f(t) into simpler additive terms (use linearity) 2. Identify if any special properties apply: - Exponential envelope \rightarrow frequency shift property - Time delay \rightarrow delay property - Derivative \rightarrow differentiation property 3. Apply standard transforms from table 4. Combine results

Example: Find $\mathcal{L}\left\{e^{-2t}\sin(3t) + t^2\right\}$

Solution: - Term 1: $\mathcal{L}\{e^{-2t}\sin(3t)\} \to \text{Use frequency shift: replace } s \text{ with } s+2 \text{ in } \mathcal{L}\{\sin(3t)\} - \mathcal{L}\{\sin(3t)\} = \frac{3}{s^2+9} - \mathcal{L}\{e^{-2t}\sin(3t)\} = \frac{3}{(s+2)^2+9} - \text{Term 2: } \mathcal{L}\{t^2\} = \frac{2!}{s^3} = \frac{2}{s^3} - \text{Answer: } F(s) = \frac{3}{(s+2)^2+9} + \frac{2}{s^3}$

Problem Type 2: Find Inverse Laplace Transform of F(s)

Steps: 1. Check if PRF or IRF - If IRF: Do long division first 2. Factor denominator completely to find all poles 3. Set up PFE based on pole types: - Distinct real poles \rightarrow simple fractions - Complex conjugate poles \rightarrow pair of conjugate fractions - Multiple-order poles \rightarrow multiple fractions with increasing powers 4. Find residues using cover-up method (or other methods for multiple poles) 5. Write time-domain expression using inverse transform formulas 6. Include u(t) for causality

Example: Find $\mathcal{L}^{-1}\left\{\frac{2s+10}{s^2+3s+2}\right\}$

Solution: 1. Check: PRF (numerator order 1 < denominator order 2) \checkmark 2. Factor: $s^2 + 3s + 2 = (s+1)(s+2)$ 3. PFE: $\frac{2s+10}{(s+1)(s+2)} = \frac{k_1}{s+1} + \frac{k_2}{s+2}$ 4. Find residues: $-k_1 = \frac{2s+10}{s+2}\big|_{s=-1} = \frac{2(-1)+10}{-1+2} = \frac{8}{1} = 8 - k_2 = \frac{2s+10}{s+1}\big|_{s=-2} = \frac{2(-2)+10}{-2+1} = \frac{6}{-1} = -6$ 5. **Answer**: $f(t) = 8e^{-t}u(t) - 6e^{-2t}u(t)$

Problem Type 3: Solve Differential Equation with Initial Conditions

Steps: 1. Take Laplace transform of entire equation (term by term) 2. Apply differentiation property: $\mathcal{L}\{f'\} = sF(s) - f(0^-)$ 3. Substitute known initial conditions 4. Solve algebraically for F(s) 5. Apply inverse transform (PFE + cover-up method)

Example: Solve $\frac{dy}{dt} + 3y = e^{-t}$ with $y(0^-) = 2$

Solution: 1. Transform: $\mathcal{L}\{y'\} + 3\mathcal{L}\{y\} = \mathcal{L}\{e^{-t}\}$ 2. Apply property: $sY(s) - y(0^-) + 3Y(s) = \frac{1}{s+1}$ 3. Substitute: $sY(s) - 2 + 3Y(s) = \frac{1}{s+1}$ 4. Solve: $-(s+3)Y(s) = \frac{1}{s+1} + 2 - Y(s) = \frac{1}{(s+1)(s+3)} + \frac{2}{s+3} - Y(s) = \frac{1+2(s+1)}{(s+1)(s+3)} = \frac{2s+3}{(s+1)(s+3)}$ 5. PFE and inverse transform to get y(t)

Problem Type 4: Analyze Circuit with Laplace

Steps: 1. Draw circuit for t < 0: Find initial conditions $i_L(0^-), v_C(0^-)$ 2. Draw s-domain circuit for $\$t \ge 0\$$: - Replace R with R - Replace L with sL and series voltage source $Li(0^-)$ - Replace C with $\frac{1}{sC}$ and series voltage source $\frac{v(0^-)}{s}$ - Transform sources to s-domain 3. Apply circuit analysis (KVL, KCL, node/mesh analysis) in s-domain 4. Solve for desired V(s) or I(s) 5. Apply inverse transform to get time-domain response 6. (Optional) Verify using initial/final value theorems

Example: RL Circuit

Given: $R = 10\Omega$, L = 1H, $i_L(0^-) = 0.5A$, step input $v_s(t) = 5u(t)V$

Find: $i_L(t)$ for $t \ge 0$

Solution: 1. Initial condition: $i_L(0^-)=0.5A$ 2. S-domain circuit: - Voltage source: $V_s(s)=\frac{5}{s}$ - Series elements: $Li(0^-)=1(0.5)=0.5V$, sL=s, R=10 3. KVL: $\frac{5}{s}=0.5+sI_L(s)+10I_L(s)$ 4. Solve: - $\frac{5}{s}-0.5=(s+10)I_L(s)-I_L(s)=\frac{5-0.5s}{s(s+10)}=\frac{5-0.5s}{s(s+10)}$ 5. Apply PFE and inverse transform

Problem Type 5: Apply Initial/Final Value Theorems

Steps: 1. Form sF(s) 2. For IVT: - Check if PRF - Calculate $\lim_{s\to\infty} sF(s)$ 3. For FVT: - Check poles of sF(s) (must all be in left half-plane) - If valid, calculate $\lim_{s\to 0} sF(s)$ 4. (Optional) Verify by finding f(t) and evaluating at $t=0^+$ or $t=\infty$

Quick Reference Formulas

Transform Pairs (Most Common)

$$\mathcal{L}\{u(t)\} = \frac{1}{s}$$

$$\mathcal{L}\{e^{at}\} = \frac{1}{s-a}$$

$$\mathcal{L}\{\sin(\omega t)\} = \frac{\omega}{s^2 + \omega^2}$$

$$\mathcal{L}\{\cos(\omega t)\} = \frac{s}{s^2 + \omega^2}$$

$$\mathcal{L}\{t^n\} = \frac{n!}{s^{n+1}}$$

Properties (Most Used)

$$\begin{split} \mathcal{L}\{af+bg\} &= aF+bG\\ \mathcal{L}\{e^{at}f(t)\} &= F(s-a)\\ \mathcal{L}\{f'\} &= sF(s)-f(0^-)\\ \mathcal{L}\{f(t-T)u(t-T)\} &= e^{-sT}F(s) \end{split}$$

Inverse Transforms (By Pole Type)

$$\begin{split} \mathcal{L}^{-1}\left\{\frac{1}{s-p}\right\} &= e^{pt}u(t)\\ \mathcal{L}^{-1}\left\{\frac{1}{(s-p)^2}\right\} &= te^{pt}u(t)\\ \mathcal{L}^{-1}\left\{\frac{k}{s+\alpha-i\beta} + \frac{k^*}{s+\alpha+i\beta}\right\} &= 2|k|e^{-\alpha t}\cos(\beta t + \angle k)u(t) \end{split}$$

Value Theorems

$$\begin{split} f(0^+) &= \lim_{s \to \infty} s F(s) \quad \text{(PRF only)} \\ f(\infty) &= \lim_{s \to 0} s F(s) \quad \text{(stable systems only)} \end{split}$$

Common Mistakes to Avoid

- oximes Forgetting initial conditions when using differentiation property
- Not checking if FVT is applicable (poles in right half-plane)
- \boxtimes Missing the u(t) in time-domain answers
- ⊠ Incorrect sign on initial condition voltage/current sources
- ⋈ Not factoring denominator completely before PFE
- oximes Using IVT on improper rational functions
- oximes Forgetting to perform long division for IRFs before PFE
- \boxtimes Not checking your answer with IVT/FVT when possible

This cheat sheet covers all major topics for Laplace transform analysis in linear circuits. Practice each problem type systematically, and always verify your answers when possible!