· this is very small

非

To check if a no q is peine

O (bolylog (g))

Primes is in P

Man-Flow

Criven: d directed graph $G_1 = (V, E)$, & each eadge e has some capacity $G(e) \geqslant 0$. We have a source E, and E into E.

Capacity

bike I chand - man posite rate of flow 9 lites /2

Man-flow 30

Man flow doesn't to edge disjoit h

Sol will be a vector of size (E(G))

C(e) - calocity of edge e NOTATON: +(e) - flow passing thorough edge e.

<u>Onstraints</u>

① CAPACITY: $\forall e$ f(e) $\in [0, C(e)]$.

(CONSERVATION: ∀x ≠8, t

In - flow(x) = Out - fl

Mathematical Del n of FLOW &

 $\sum_{(y, n)} f(y, n) = \sum_{(n, 3)} f$ E INEDGES(n) EOVT-EDGE

Value of flow f:

$$val(f) = \sum_{(\Delta, x) \in E} f(\Delta, x)$$

(x, t) E

H. W. Prove that they

GOAL: Find a 8-t flow 'f" of man possi

D Vece: f(e)=0

(2) While 3 (s,t) path in G:

3 Return f

Residual geaph Gif w.r.t. some fle

For each $(n,y) \in E(G_1)$ with flow

- · Enclude (x,y) ∈ Gg with Cz (x,y) = C(
- Frelicle $(y,x) \in G_f$ with $C_g(y,x) = :$

Corrections