

姜文斌

北京师范大学人工智能学院 2025.04.03

我的位置

智能问答系统

针对用户提出的自然语言问题,从数据库中检索相关信息,并依据相关信息作出回答

问题

人工智能方向保研需要啥 条件?

LLM-RAG 方法 方法

答案

北京师范大学人工智能方 向保研需要满足如下...

数据库 (文档/知识/表格等)

北京师范大学人工 智能学...条例.docx

智能问答线上处理流程

智能问答线下处理模块

问答数据库构建

基于传统方法的数据建库

基于向量方法的数据建库

数据检索模块构建

传统语义匹配模型构建

向量语义匹配模型构建

答案生成模块构建

抽取式答案生成模型构建

RAG式答案生成模型构建

效果评估模块构建

文档检索效果评估

问答整体效果评估

目录

- 人工智能
- LLM局限
- LLM发展趋势
- LLM影响

曾经的科幻

当今的AI

探索未至之境

开始对话

获取手机 App

免费与 DeepSeek-V3 对话 使用全新旗舰模型 DeepSeek 官方推出的免费 AI 助手

77 ---- 1-H- TI II

大语言模型

不久的将来

- 可以执行复杂任务,模仿人类智能行为,执行人类智能活动的智能系统
 - 生成式大模型等技术可以让目前占用人们工作时间 60-70% 的任务实现自动化

人工智能定义

■人工智能的百科定义

- 人工智能是研究、开发用于模拟、 延伸和扩展人的智能的理论、方 法、技术及应用系统的一门新的 技术科学
- 人工智能涉及科学非常广泛,如 计算机科学、心理学、机器学习、 模式识别等

人脑的思考都可以称为计算,人工智能就是用机器模拟人脑的计算

创作智能

决策智能

认知智能

感知智能

运算智能

计算的视角

■ 计算是信息的处理和转化过程,人工智能是智能化的计算

■ 原子计算: 需要对应到某种物理、化学或生物过程

■ 复杂计算: 是按照特定拓扑顺序执行原子计算来实现

■ 智能计算:则根据具体的任务场景动态选择或形成复杂计算逻辑

手摇计算: 机械过程

图灵计算: 电子过程

量子计算: 微观物理过程

目录

- ■人工智能
- LLM局限
- LLM发展趋势
- LLM影响

机器学习

■ 传统机器学习: 人工特征工程+分类器

特征抽取 (PCA等)

分类器 (SVM、CRF等)

■ 深度学习: 自动学习多尺度的特征表示

分类 器

高级

特征

经典编程与机器学习

计算模 式	信息处理的流程架构 (算法/模型)				基础组件	需否训练	适用场景
	整体流程架 构	抽象环节 (特征/表示)	计算环节 (操作/参数)	输出环节 (直出/搜索)	*************************************	而口州沙	之
经典编程	手工编写算 法(搜索、 排序、优化、 规划等)	手工设计数 据结构,自 动填充数值	手工设计操作, 手工设置参数 (通常很少参 数)	手工设计输 出逻辑,通 常直接输出	算术、逻辑、 分支、循环、 递归、顺序等	人工设计所有 逻辑, 无需训 练	输入信息不复 杂, 计算逻辑 不复杂
传统机器学习	手工编写模型(SVM、 CRF、DT等)	手工设计特 征模板,自 动抽取特征 数值	手工设计操作, 自动学习参数	手工设计输 出逻辑,通 常评估+搜索	核函数、损失 函数、决策节 点等	人工设计架构, 需要训练确定 参数,参数量 小	输入信息不复 杂 , 计算逻辑复 杂
深度学习	手工编写模型(RNN、 CNN、TRM 等)	手工设计表 示向量,自 动学习向量 数值	手工设计操作, 自动学习参数	手工设计输 出逻辑,通 常评估+搜索	神经元、层、 损失函数、优 化器等	人工设计架构, 需要训练确定 参数,参数量 大	输入信息复杂 , 计算逻辑复 杂

大模型

- 判别式模型 vs 生成式模型
 - 判别式: 用于"判别",对输入序列进行统一分类标签或者逐符号标注标签
 - 生成式: 用于"生成",根据输入序列,输出任意长度的符号序列

大模型局限性

- 技术要可信的支持业务,首先要做到顶天立地
 - 立地: 技术要一直下探到数学和系统理论层面, 做到原理清楚可解释
 - **顶天**: 技术要充分考虑和遵循具体的业务知识和逻辑, 做到专业可信

- AGI还需支持多模信息,能像人一样高效学习
 - 多模信息: 人可以而且也需要处理多种模态的信息
 - 高效学习: 人可以通过一个例子完全理解任务求解逻辑

业务知识和逻辑

当前大模型技术

- 大规模互联的非线性函数
- 在大规模数据上拟合函数

数学和系统理论

目录

- ■人工智能
- LLM局限
- <u>LLM发展趋势</u>
- LLM影响

AI发展历程

- 人工智能学科历经多次起伏, 随深度学习兴起而蓬勃发展至今
 - 1956年,麦卡锡等人在达特茅斯会议上提出人工智能概念,人工智能学科诞生
 - 历经半个多世纪风雨曲折,2010年起,随深度学习和大数据技术进入新的时代
 - 2022年,大模型ChatGPT的发布引爆新浪潮,为通用人工智能开辟了新的路径

多模态

- 多模态是人类世界的本来样貌,AGI的发展趋势一定是朝向多模态的
 - 未来的大模型框架可能是 "多模态信息对齐融合+统一编码器解码器"
 - AIGC将从文本、图像、视频,到声、光、电、分子、原子等各类模态

小型化

- 大模型的知识密度逐年提高,十亿参数模型效果已达当初百亿参数模型
 - ■模型参数规模正在快速缩小,先进的量化和剪枝技术使开发者能够在不对准确性产生 实质影响的情况下,缩小模型参数规模
 - ■具有丰富功能和良好效果的大模型将在智能手机等终端上的普及,让 AI 能够支持跨边缘侧规模化部署的商用应用

多智能体

- 多智能体协同多个智能体完成更为复杂的任务,实现组织整体的持续提升
 - 智能体之间的关系包括,合作、竞争、竞争+合作、自组织等等

完全合作

智能体的利益一致 获得的奖励相同 有共同的目标

竞争 + 合作

分成多个群组 组内是合作关系 组间是竞争关系

完全竞争

双方利益冲突 一方的收益是另-方的损失

利己主义

多个智能体共存 智能体动作改变 环境从而影响其 他智能体收益

世界模型

- 世界模型:用来建模世界的模型
 - 主要由Schmidhuber和LeCun提出和推动,用于模拟和预测世界
 - ■人的脑海中的有一个世界模型,描述万事万物的属性、规律、状态和变化

人的智能与机器智能

发展阶段	*	*		
人类智能	脑容量小	脑容量大	使用工具	群体组织
人工智能	小模型	大模型	智能体	智能体群

杜占	人类	智能	人工智能		
特点	学校	社会	大模型	智能体	
学习环境	静态	动态	静态	动态	
训练数据	有限	无限	有限	无限	
监督信号	直接	间接	直接	间接	
能力传承	基因复制	制与突变	模型参数更新		

机器智能与人的智能,在发展趋势上呈现出相似性

目录

- ■人工智能
- LLM局限
- LLM发展趋势
- <u>LLM影响</u>

交互范式变革

- 大模型带来了人机交互范式变革,复杂繁琐的交互操作简化为自然语言对话
 - 传统人机交互范式: 复杂繁琐且多样化的交互接口
 - 大模型时代人机交互范式: 统一便捷的自然语言接口

开发范式变革

- 大模型具有多种基础理解和推理能力,可以组合成更为复杂的上层功能
 - 直接支持: 相对简单的信息处理任务,如分类、标注、翻译、摘要、复述、问答等
 - 组合支持: 通过思维链/智能体, 组合基础能力形成复杂能力, 如分析和决策任务等
- 大模型能够提供良好的代码能力,大大提高技术和产品的开发效率
 - 代码生成、代码优化、代码查错等,如百度Comate的内部研发采用率达50%

思维链或智能体 / 计算机系统

LLM / CPU

科研范式变革

- 大模型技术可为科研多个环节提供助力,并已形成Al4Science这一研究领域
 - 经典科研范式: 人类提出问题/猜想假设/设计方案/实验验证(计算机辅助)/分析解释等
 - AI赋能科研范式: 计算机辅助/自动提出问题/猜想假设/设计方案/实验验证/分析解释等

Research Agent: Iterative Research Idea Generation over Scientific Literature with Large Language Models

Jinheon Baek¹ Sujay Kumar Jauhar² Silviu Cucerzan² Sung Ju Hwang^{1,3}
KAIST¹ Microsoft Research² DeepAuto.ai³
{jinheon.baek, sjhwang82}@kaist.ac.kr {sjauhar, silviu}@microsoft.com

Abstract

Scientific Research, vital for improving human life, is hindered by its inherent complexity, slow pace, and the need for specialized experts. To enhance its productivity, we propose a ResearchAgent, a large language model-powered research idea writing agent, which automatically generates problems, methods, and experiment designs while iteratively refining them based on scientific literature. Specifically, starting with a core paper as the primary fo-

生产范式变革

- 大模型为灵魂、智能体为躯干、进而形成组织、有望实现类人的生产力
 - 智能体: 智能体让大模型和数字世界交互, 具身智能体让大模型和物理世界交互
 - 智能体群: 模拟人类的组织协作模式, 群智群力, 进一步放大生产力
- 已有自动化技术适合封闭静态环境,大模型智能体可支持开放动态环境

