Algebraic Topology

•••

Presenter: Jacob Stavrianos Mentor: Joj Helfer

Intro to Topology

- Mathematical structure representing a space
- Represents "geometric" information, but locally/deformably
- T = (X, O) s.t. $X = \{\text{"points"}\}, O = \{\text{"open" sets in }X\}$

Homeomorphisms: the Gold Standard

- How can we tell if two top. spaces T1, T2 are "the same"?
- Homeomorphism: bijection f: $T1 \rightarrow T2$ "preserving open sets"
- "Homeomorphic to" preserves all topological info
 - o Topology ignores embedding information

Homotopy Equivalence: the Silver Standard

- Two functions f, g: $X \rightarrow Y$ are homotopic, $f \sim g$ • h: $X \times [0, 1] \rightarrow Y$ s.t. h(x, 0) = f(x), h(x, 1) = g(x)
- Top. spaces T1, T2 are homotopy equivalent, T1 ~ T2
 - f: T1 \rightarrow T2, g: T2 \rightarrow T1 s.t. g o f \sim ID_{T1}, f o g \sim ID_{T2}

Differentiating between Homotopy Types

- ~ is an equiv. relation on topological spaces
 - Call the equiv. class *homotopy type*
- How to tell if same htpy type: find a homotopy equivalence

Idea: the Fundamental Group π_1

- Describes "noncontractible loops" in a top. space T
 - Continuous paths p: $[0, 1] \rightarrow T$ s.t. p(0) = p(1) = x (base pt)
 - \circ $\pi_1 = (\{paths\} / \sim, concatenation)$
- Invariant under htpy equivalence
 - \circ Non-isomorphic $\pi_1 \to \text{not htpy equivalent}$

Homotopy Groups π_n

- Generalization of the fundamental group π_1
 - \circ Uses maps $[0,1]^n \to T$ (equivalently $S^n \to T$)
 - \circ "nth homotopy group", denoted π_n
- Example: $\pi_n(S^n) = \overline{Z}$
 - o Can't "unwrap" Sⁿ around itself

	S^0	S^1	S^2	\mathbb{S}^3	\mathbb{S}^4	S^5	S ⁶	S^7	S^8
π_1	0	\mathbb{Z}	0	0	0	0	0	0	0
π_2	0	0	\mathbb{Z}	0	0	0	0	0	0
π_3	0	0	\mathbb{Z}	Z	0	0	0	0	0
π_4	0	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0	0
π_5	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0
π_6	0	0	\mathbb{Z}_{12}	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0
π_7	0	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}{\times}\mathbb{Z}_{12}$	\mathbb{Z}_2	\mathbb{Z}_2	Z	0
π_8	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2^2	\mathbb{Z}_{24}	\mathbb{Z}_2	\mathbb{Z}_2	Z
π_9	0	0	\mathbb{Z}_3	\mathbb{Z}_3	\mathbb{Z}_2^2	\mathbb{Z}_2	\mathbb{Z}_{24}	\mathbb{Z}_2	\mathbb{Z}_2
π_{10}	0	0	\mathbb{Z}_{15}	\mathbb{Z}_{15}	$\mathbb{Z}_{24} \times \mathbb{Z}_3$	\mathbb{Z}_2	0	\mathbb{Z}_{24}	\mathbb{Z}_2
π_{11}	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{15}	\mathbb{Z}_2	\mathbb{Z}	0	\mathbb{Z}_{24}
π_{12}	0	0	\mathbb{Z}_2^2	\mathbb{Z}_2^2	\mathbb{Z}_2	\mathbb{Z}_{30}	\mathbb{Z}_2	0	0
π_{13}	0	0	$\mathbb{Z}_{12} \times \mathbb{Z}$	$\mathbb{Z}_2 \mathbb{Z}_{12} \times \mathbb{Z}_2$	\mathbb{Z}_2 \mathbb{Z}_2^3	\mathbb{Z}_2	\mathbb{Z}_{60}	\mathbb{Z}_2	0

Homology Groups H_n

- Instead of top. spaces, we consider cell complexes
 - Singular homology extends theory to top. spaces
- H_n measures Sⁿ-sized "holes" in the space
 - $H_k(S^n) = Z \text{ iff } k = n$ (or $k = 0 \rightarrow \text{ reduced homology}$)
 - Formal definition is technical uses chain complexes

Thank you for listening!

• Any questions?

