

实验五: 构建支持向量机模型

实现餐饮客户流失预测

《统计机器学习》 2024年春

目录

本学期实验总体安排

本学期实验课程共 10 个学时, 5 个实验项目, 总成绩为 30 分。

实验项目		=	三	匹	五
学时	2	2	2	2	2
实验内容	Python基础实践	感知机模型	决策树模型	K近邻模型	支持向量机模型
分数	4	6	7	6	7
上课时间	第11周	第13周	第14周	第15周	第16周
检查方式	提交实验截图	图文档		提交实验报告、工程文	5件

一、实验任务

- 餐饮行业作为我国第三产业中的一个传统服务性行业,始终保持着旺盛的增长势头,取得了突飞猛进的发展,展现出繁荣兴旺的新局面,某餐饮企业正面临着房租价格高、人工费用高、服务工作效率低等问题。如何在保证产品质量的同时提高企业利润,成为某餐饮企业急需解决的问题。
- 某餐饮企业的系统数据库中积累了大量的与客户用餐相关的数据,通过对某餐饮企业的数据进行分析,最终为餐饮企业提出改善的建议。
- **◆ 任务一**:构建**支持向量机模型**,构建客户流失预测模型,并对模型进行评价。
- ◆ 任务二:构建已学习过的分类模型(任选两种),构建客户流失预测模型,并对模型进行评价。

二、数据说明

◆ 数据集

- ➤ 包含**训练集train** (共4605条数据), **测试集test** (1400条数据)
- test

- ➤ 每一条数据由5个特征值,1个目标值(type)组成。
- ▶ 每个特征值的含义如下:

客户ID	客户账号	客户最近一次 用餐的时间	是否流线	消费人	数 消费金额
USER ID	ACCOUNT L	AST VISITS	type	number cons	ume expenditure

USER_ID	ACCOUNT	LAST_VISITS	type	number_consume	expenditure
983	邓彬彬	2016/6/20 13:15	准流失	4	753
983	邓彬彬	2016/6/20 13:15	准流失	10	1215
986	莫子建	2016/7/30 13:46	非流失	3	356
986	莫子建	2016/7/30 13:46	非流失	7	1146
986	莫子建	2016/7/30 13:46	非流失	3	605
988	郭仁泽	2016/3/15 17:34	非流失	10	1169
988	郭仁泽	2016/3/15 17:34	非流失	2	436
988	郭仁泽	2016/3/15 17:34	非流失	8	1406
988	郭仁泽	2016/3/15 17:34	非流失	7	1377
989	唐莉	2016/7/21 12:57	准流失	10	1269
989	唐莉	2016/7/21 12:57	准流失	4	516
991	麦凯泽	2016/6/11 11:25	非流失	10	1852
991	麦凯泽	2016/6/11 11:25	非流失	5	725
991	麦凯泽	2016/6/11 11:25	非流失	10	1677
994	刘乐瑶	2016/6/15 12:42	准流失	3	452
994	刘乐瑶	2016/6/15 12:42	准流失	7	1364

🔡 1、数据预处理

- ◆ 通常获得的数据集会存在冗余属性、噪音或非数值类属性等,无 法直接使用,因此需要预先对于数据进行处理加工,得到较高质 量的数据集后再将对其训练。
- ◆ 常见的数据预处理的方法有数据清理、数据集成、数据变换以及数据规约等等,如右图所示,详细内容请自行找资料学习。
- ◆ 对右图做标记的三种数据处理场景做代码示例:

场景	示例代码
删除有缺失值的行记录	info_user_new = info_user_new.dropna(axis=0)
删除numbers为0的客户	<pre>info_user_new = info_user_new[info_user_new['numbers'] != 0]</pre>
合并两张表	<pre>info_user_new = pd.merge(info_user1, info_user2,</pre>
数据标准化 (Z-Score)	from sklearn.preprocessing import StandardScaler X1 = StandardScaler().fit_transform(X)

🔐 2、支持向量机中常用的核函数

输入	含义	适用场合	核函数表达式	gamma	degreee	coef0
linear	线性核	线性	$K(x,y) = x^T y = x \cdot y$	无	无	无
poly	多项式核	偏线性	$K(x,y) = (\gamma(x \cdot y) + r)^{d}$	有	有	有
rbf	高斯径向核	偏非线性	$K(x,y) = e^{-\gamma x-y ^2}, \gamma > 0$	有	无	无
sigmoid	双曲正切核	非线性	$K(x,y) = \tanh(\gamma(x \cdot y) + r)$	有	无	有

预备知识

3、Sklearn库内SVM分类器的参数详解

from sklearn.svm import SVC

```
svm classifier = SVC(C=1.0, kernel= 'rbf',\
decision function shape='ovo', gamma=0.01)
svm classifier.fit(X train, Y train)
print("准确率:", svm classifier.score(X test, Y test))
```

误差项惩罚系数

C为误差项的惩罚系数

- (1) C越大即对分错样本的惩罚程度越 大,因此在训练样本中准确率越高,但 是泛化能力降低;
- (2) float参数, 默认为1。

kernel

表示采用的核函数类型,可选的参数有:

'linear':线性核函数

'poly':多项式核函数

'rbf' : 径向基核函数/高斯核函数

'sigmoid': 双曲正切核函数

决策函数

decision_function_shape

表示决策函数,可选值:

ovo:用于二分类

ovr: 用于多分类

gamma

- (1) float参数,默认为'auto';
- (2) 'rbf', 'poly'和'sigmoid'的

核系数。当前默认值为'auto',

它使用1 / n features

更多参数详解见: https://www.cnblogs.com/solong1989/p/9620170.html

≌ 4、网格搜索

实验四内的要求:

使用交叉验证思想,划分训练集和验证集;

还需要调研其他方法来实现交叉 验证思想,总结分析对比。 **主**·

除了实验三介绍的sklearn中的 model selection.Kfold方法外,

◆ 目的: 是为了让模型准确性更高。

◆ 基本思想:通常情况下,有很多参数是需要手动指定的(如K近邻中的k值, SVM算法中的C以及gamma值等),这种叫超参数。但是手动过程繁杂,所以需要对模型预设几种超参数组合。每组超参数都采用交叉验证来进行评估,最后选出最优参数组合建立模型。

☆ 5、Sklearn中网格搜索和交叉验证集成API

sklearn.model_selection.GridSearchCV(estimator, param_grid=None,cv=None)

其中参数含义为:

estimator: 选择使用的分类器

param_grid:需要最优化的参数的取值,

值为字典或者列表

cv:整数类型,指定K折交叉验证。

还包含常用的2个Methods和4个Attributes:

	GridSearchCV的相关信息				
(1)	(1) Methods (方法-函数)				
1	fit	输入训练数据			
2	score	准确率			
(2)	(2) Attributes (属性-变量)				
1	best_score_	交叉验证中测试的最好的结果			
2	best_estimator_	交叉验证中测试的最好的参数模 型			
3	best_params_	交叉验证中测试的最好的参数			
4	cv_results_	每次交叉验证的结果			

其他参数说明见: https://blog.csdn.net/weixin_41988628/article/details/83098130

示例如下:

```
from sklearn.model selection import GridSearchCV
from sklearn.svm import SVC
svc=SVC(decision_function_shape='ovo')
param grid={'kernel':['linear','sigmoid],
         'C':[0.01,0.1],
         'gamma':[0.01,0.1]
algo=GridSearchCV(estimator=svc,param_grid=param_grid,cv=10)
algo.fit(X train,Y train)
print("训练集:", algo.score(X_train, Y_train))
# 查看最好的参数模型
print("最好的参数模型: \n", algo. best_params_)
```


四、实验数据处理

◆数据处理

在本案例中,客户流失的特征主要体现在以下4个方面。

- > 用餐次数越来越少。
- 》 很长时间没有来店里消费。
- > 平均消费水平越来越低。
- > 总消费金额越来越少。

客户ID	客户账号	客户最近一次 用餐的时间	是否流失	消费人数	消费金额
------	------	-----------------	------	------	------

USER_ID	ACCOUNT	LAST_VISITS	type	number_consume	expenditure
983	邓彬彬	2016/6/20 13:15	准流失	4	753
983	邓彬彬	2016/6/20 13:15	准流失	10	1215
986	莫子建	2016/7/30 13:46	非流失	3	356
986	莫子建	2016/7/30 13:46	非流失	7	1146
986	莫子建	2016/7/30 13:46	非流失	3	605
988	郭仁泽	2016/3/15 17:34	非流失	10	1169
988	郭仁泽	2016/3/15 17:34	非流失	2	436
988	郭仁泽	2016/3/15 17:34	非流失	8	1406
988	郭仁泽	2016/3/15 17:34	非流失	7	1377
989	唐莉	2016/7/21 12:57	准流失	10	1269
989	唐莉	2016/7/21 12:57	准流失	4	516
991	麦凯泽	2016/6/11 11:25	非流失	10	1852
991	麦凯泽	2016/6/11 11:25	非流失	5	725
991	麦凯泽	2016/6/11 11:25	非流失	10	1677
994	刘乐瑶	2016/6/15 12:42	准流失	3	452
994	刘乐瑶	2016/6/15 12:42	准流失	7	1364

四、实验数据处理

◆数据处理

基于这4个方面,本案例需要构造4个相关客户流失特征。

- > 总用餐次数 (frequence)。即观测时间内每个客户的总用餐次数。
- ▶ 客户最近一次用餐的时间距离观测窗口结束 (2016-7-31 0点) 的天数 (recently)。
- > 客户在观测时间内用餐人均销售额 (average)。即客户在观察时间内的总消费金额除以用餐总人数。
- > 客户在观测时间内的总消费金额 (amount)。

USER_ID	ACCOUNT	LAST_VISITS	type	number_consume	expendi ture
983	邓彬彬	2016/6/20 13:1	1 准流失	4	753
983	邓彬彬	2016/6/20 13:19	1 准流失	10	1215
986	莫子建	2016/7/30 13:40	非流失	3	356
986	莫子建	2016/7/30 13:40	非流失	7	1146
986	莫子建	2016/7/30 13:40	非流失	3	605
988	郭仁泽	2016/3/15 17:3	1 非流失	10	1169
988	郭仁泽	2016/3/15 17:3	1 非流失	2	436
988	郭仁泽	2016/3/15 17:3	1 非流失	8	1406
988	郭仁泽	2016/3/15 17:3	1 非流失	7	1377
989	唐莉	2016/7/21 12:5	准流失	10	1269
989	唐莉	2016/7/21 12:5	准流失	4	516
991	麦凯泽	2016/6/11 11:29	非流失	10	1852
991	麦凯泽	2016/6/11 11:29	非流失	5	725
991	麦凯泽	2016/6/11 11:29	非流失	10	1677
994	刘乐瑶	2016/6/15 12:43	2 准流失	3	452
994	刘乐瑶	2016/6/15 12:43	准流失	7	1364

原数据

处理后的数据样例

五、实验要求

- ◆ 1、按照上一页PPT数据样例对原数据做处理;
- ◆ 2、要求用到**交叉验证和网格搜索方法**;
- ◆ 3、使用**准确率**指标来评价模型,要求最好参数的评价指标>0.9;

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

- ◆ 4、对任务一,还需探究支持向量机参数对预测结果的影响,并分析做出相应结论:
 - (1) 比较4种核函数的分类准确率;
 - (2) 数据标准化对支持向量机分类结果的影响;
 - (3) 高斯核函数、多项式核函数的参数调整;
 - (4) 松弛系数惩罚项C的调整。
- ◆ 5、对任务二,还需要用其他两种分类模型做预测,做好调参记录,分析做出相应结论。

提交方式

实验报告提交至平台 http://labgrader.hitsz.edu.cn:8000/#/courses

注意:

- ▶1、用户名、密码默认均为学号(若之前有修改过密码的,请用新密码登陆);
- ▶2、请提交到相应的条目「2024春-统计机器学习-数学1&2」课程 实验五;
- ▶3、提交截止时间:下周二 6月25号 晚24点;
- ▶4、文件夹&压缩包命名要求: 学号_姓名_统计机器学习实验五
- ▶5、提交内容:实验报告(.pdf文件)+代码(.py/ipynb文件),一起打包为zip格式压缩包。

其他:

- 1) 数学1&2班 作业提交至课程「2024春-统计机器学习-数学1&2」
- 2) 数学3&4班 作业提交至课程「2024春-统计机器学习-数学3&4」
- 3) 计算机/通信/机械/自动化/光电/电气等专业 作业提交至课程「2024春-统计机器学习-综合班」
- 4) 每位同学都只会显示一个统计机器学习课程的,对上实验几提交即可。

统计机器学习实验

同学们,请开始实验吧!