Introduction Etat de l'art Solution Proposée Implémentation et résultats Conclusion et perspectives Références

Institut Francophone International Université Nationale du Vietnam

Dockerisation du MaaS

Pour une architecture Micro-services

Perrault André¹

¹ Orange Lab Networks Encadrant: Luiz-Otavio Goncalves BURITY

23 Octobre 2018

Sommaire

- Introduction
 - Contexte
 - Problématique
- 2 Etat de l'art
 - Tableau de comparaison des Orchestrateurs
 - Tableau de comparaison des GUIs
 - Tableau de comparaison des Overlay
 - Tableau de comparaison des outils d'automatisation
- 3 Solution Proposée
- Implémentation et résultats
- 5 Conclusion et perspectives
- Références

Introduction Etat de l'art Solution Proposée Implémentation et résultats Conclusion et perspectives Référence

Introduction

Département et équipe

- Orange Labs Networks (OLN) : définit et pilote la stratégie et la politique réseau du groupe.
- Routing IP VPN (RIV): missions principales, d'être le spécialiste du plan de contrôle et des protocoles de routage des réseaux IP/MPLS, de son monitoring, des mécanismes de sécurité associés et de préparer les évolutions de son automatisation

Contexte général du MaaS¹

1. Monitoring as a Service (MaaS): permet de déployer sur vos postes de travail une application de supervision en ligne.

23 Octobre 2018

Problématique

Comment:

- Créer un réseau privé et sécurisé situées sur des réseaux hétérogènes?
- Mettre en place une architecture d'orchestration open source, sécurisé et utilisable en entreprise?
- Permettre aux applications de monitoring dockerisées de fonctionner sur le même principe des micro-services?

Orchestration

Introduction

Orchestration

L'orchestration de conteneur désigne le processus d'organisation du travail des composants individuels et des niveaux d'application.

Différents composant de l'orchestration

- Orchestrateur
- GUI
- Overlay
- Outils d'automatisation

Tableau de comparaison des Orchestrateurs

Introduction

Tableau de comparaison des Orchestrateurs

	Nomad	Mesos Marathon	Swarm	Kubernetes		
Crée par	Hashicorp	Mesosphere, Microsoft	Docker	Linux Fondations, Google		
Année	2015	2011	2013	2014		
Туре	Conteneur d'orchestration et planification	Conteneur d'orchestration et gestion d'infrastructure	Conteneur d'orchestration et planification	Conteneur d'orchestration et planification		
Réseau virtuel	Calico, weave, flannel, etc.	Calico, weave, flannel, etc.	Calico, weave, flannel, etc.	Calico, weave, flannel, etc		
		Critères important	s			
Niveau de complexité d'in- stallation et de configuration	Moyen	Moyen	Simple	Complexe		
Contributeurs	251	259	165	1798		
Support pour entreprise	Oui	Oui	Oui	Oui		
Plusieurs Datacenter	Oui	Oui	Docker Cloud, Docker Machine Drivers, Docker for AWS/ Azure	Oui		
Support Bare Metal	Oui	Oui	Oui	Oui		
Gestion des secrets	vault	Oui	Oui	Oui		
Montage de volume	-	Oui	Oui	Oui		
On-premise		Oui	Oui	Oui		
Clusters	Jusqu'à 5000 nodes	Jusqu'à 10000 nodes	Jusqu'à 4700 nodes	Jusqu'à 5000 nodes		
Pods	-	-	-	Jusqu'à 150000		
Conteneurs	Jusqu'à 1000000	-	- Jusqu'à 50000		- Jusqu'à 50000	
Self-healing	Non	Non	Non	Oui		

FIGURE - Tableau comparatif entre les orchestrateurs

Etat de l'art

Tableau de comparaison des GUIs

	Panamax	Kitematic	Shipyard	DockStation	Portainer	Kubernetes Dashboard	Rancher		
Gérer les conteneurs docker	Oui	Oui	Oui	Oui	Oui	Oui	Oui		
Accéder à la console des conteneurs	Non	Oui	Oui	Oui	Oui	Oui	Oui		
Gérer les images de docker	Oui	Oui	Oui	Oui	Oui	Oui	Oui		
Tag et push les images docker	Oui	Non	Oui	Oui	Oui	Oui	Oui		
	Critères importants								
Gérer le réseau de docker	Non	Non	Non	Non	Oui	Oui	Oui		
Gérer les volumes de docker	Non	Non	Non	Non	Oui	Oui	Oui		
Regarder les événements de docker	Non	Non	Oui	Oui	Oui	Oui	Oui		
Préconfigurer les modèles de conteneur	Oui	Non	Non	Non	Oui	Oui	Oui		
Vue d'ensemble du cluster	Non	Non	Oui	Non	Oui	Oui	Oui		
Niveau de complexité d'installation et/ou configuration	Simple	Simple	Simple	Simple	Simple	Moyen	Moyen		
Type de conteneurs et/ou orchestrateurs	Docker	Docker	Docker	Docker	Docker / Swarm	Docker / Kubernetes	Tout		
Gérer les Stacks	Non	Non	Non	Non	Oui	Oui	Oui		
Gérer les secrets	Non	Non	Non	Non	Oui	Oui	Oui		
Contributeurs	14	74	45	2	106	141	46		
Gérer les services	Non	Non	Non	Non	Oui	Oui	Oui		
Catalogue	Oui	Oui	Non	Oui	Oui	Non	Oui		

Tableau de comparaison des Overlay

	Docker Overlay Network	Flannel	Weave	Calico	Canal
Modèle réseau	VxLAN	VxLAN or UDP Channel	VxLAN or UDP Channel	Pure Layer-3 Solution	
Isolation d'application	CIDR Schéma	CIDR Schéma	CIDR Schéma	Profile Schéma	
Protocol Support	Tout	Tout	Tout	TCP, UDP, ICMP & IC- MPv6	
Nom de service	Non	Non	Oui	Nom	
Exigences de stockage dis- tribué	Oui	Oui	Non	Oui	
Chaîne de cryptage	Non	TLS	NaCI Library	Oui	
Support réseau par- tiellement connecté	Non	Non	Oui	Non	Flannel + Calico
vNIC séparé pour le con- teneur	Non	Non	Oui	Non	
Prise en charge du chevauchement IP	Oui	Oui	Oui	Non	
Restriction de sous-réseau de conteneur	Oui, configurable après dé- marrage	Non	Oui, configurable après démarrage.	Non	
Approche	Overlay	Routing, overlay	Overlay	Routing	
Spécification	CNM	CNI, CNM	CNI, CNM	CNI, CNM	
Sauvegarde de données externe	Aucun	Aucun	Aucun	Etcd	

FIGURE - Tableau comparatif entre les overlays

Tableau de comparaison des outils d'automatisation

	Puppet	Chef	Ansible	Salt	
Support	Puppet Labs	Opscode	Ansible Works	saltStack	
Année	2005	2009	2012	2011	
Références	Google, eBay, Twitter	Facebook, Ancestry, Splunk	Rackspace, Evernote	LinkedIn, HP Cloud	
Interface de contrôle	Manifest (DSL)	Recipes (DSL: Ruby)	Playbook (YAML, JSON)	SLS (SoLt Sate/YAML)	
Code	Open source	Open source	Open source	Open source	
Cloud	Tout	Tout	Tout	Tout	
		Critères importants			
Sécurité		Chef Vault	Elevé avec SSH		
Prix (Node/année)	Std: \$88 / Prem: \$152	Std: \$72 / Prem: \$137	Up to 100 Nodes Std:\$10000/ Prem:\$14000	Contacter l'entreprise	
Communication	http, SSH/SSL	STOMP, rest/SSL	SSH/JSON	ZeroMQ	
Contrôleur d'exécution	Mcollective, challenging	Knife, challenging	Built-in, easy	Built-in	
Contributeurs	496	557	3616	2105	
Туре	Gestion de configuration	Gestion de configuration	Gestion de configuration	Gestion de configuration	
Langage	Puppet DSL, Ruby	Ruby	Python	Python	
Architecture	Client/Server	Client/Server	Client seulement	Client/Server	
Difficulté de configuration	Difficile	Difficile	Facile	Facile	
Évolutivité	Élevé	Élevé	Élevé	Elevé	
Licence	Apache license v2	Apache license v2	GNU Public license	Apache license v2	
Plus utilisé	Grande entreprise avec un environnement hétérogène.	Adapter pour le développement.	Adapter facilement pour l'automatisation.	-	

FIGURE - Tableau comparatif entre les outils d'automatisation

Solution Proposée

Introduction

Pour ce travail nous proposons :

- Orchestrateur : Kubernetes
- GUI: Kubernetes Dashboard
- Overlay : Calico
- 4 Outil d'automatisation : Ansible
- Métrique : Prometheus et Grafana

11/29

Architecture Orchestration avec Kubernetes

FIGURE - Architecture d'orchestration

Implémentation et résultats

- Installation et configuration des matériels
- Création du réseau privé entre les machines (OpenVPN)
- Installation et configuration des outils nécessaires pour l'orchestration
- Configuration et déploiement automatique de l'orchestration
- Installation et configuration des métrics
- Dockerisation de notre application (Gestion Restaurant)

duction Etat de l'art Solution Proposée Implémentation et résultats Conclusion et perspectives Référence

Représentation de l'espace de travail

FIGURE - Représentation de la connexion entre les machines

FIGURE - Écran de visualisation

FIGURE - Dashboard login avec kubeconfig

FIGURE - Dashboard login avec token

Conclusion et perspectives

Représentation du cluster par le dashboard de Kubernetes

FIGURE - Représentation du cluster par le dashboard de Kubernetes

Représentation des capacité du cluster par Grafana

FIGURE - Représentation des capacité du cluster par Grafana

Introduction Etat de l'art Solution Proposée Implémentation et résultats Conclusion et perspectives Références

Représentation de l'application

FIGURE - Représentation de l'application

FIGURE - Représentation du déploiement de l'application

FIGURE - Représentation de la mise en échelle de l'application 1

FIGURE - Représentation de la mise en échelle de l'application 2

Représentation de la mise en échelle de l'application 3

FIGURE - Représentation de la mise en échelle de l'application 3

Représentation des capacité de l'application par le terminal

FIGURE - Représentation des capacité de l'application par le terminal

Introduction Etat de l'art Solution Proposée Implémentation et résultats Conclusion et perspectives Références

Représentation des capacités de l'application par Grafana

FIGURE - Représentation des capacités de l'application

Représentation du node2, hors service

FIGURE - Représentation du node2, hors service

FIGURE - Représentation des pods du node2, hors service

Représentation de la réatribution des pods sur le node 1

Pods							÷
Name ‡	Namespace	Node	Status ‡	Restarts	Age C		
	kube-system	node2	Running	0	a minute	=	1
ngincproxy-node2	kube-system	node2	Running	0	a minute	=	1
perrault-restaurant-778596b495-nSjzp	default	node1	Running	0	2 minutes	₽	1
perrault-restaurant-778596b495-ophn	default	node1	Running	0	2 minutes	₽	1
persult-restaurant-7785965493-5q5v4	default	node1	Running	0	2 minutes	=	1
persult-restaurant-7785965495-4wsbk	default	node1	Running	0	2 minutes	=	1
perrault-restaurant-778596b495-nbh7s	default	node1	Running	0	2 minutes	=	1
perrault-restaurant-778596b495-gzgiv	default	node1	Running	0	2 minutes	₽	1
perrault-restaurant-778596b495-lb64f	default	node1	Running	0	4 minutes	₽	1
prometheus-operator-856-465 zunhn	monitoring	node1	Running	0	4 minutes	=	1
				1 - 10 of 43	14 4	>	×I

FIGURE - Représentation de la réatribution des pods sur le node 1

troduction Etat de l'art Solution Proposée Implémentation et résultats Conclusion et perspectives Références

Représentation des capacité du cluster par Grafana

FIGURE - Représentation des capacité du cluster par Grafana

Conclusion et perspectives

Introduction

- Nous avons utilisé un ensemble d'outils (Kubernetes, Kubernetes Dashboard, Calico, Ansible, Prometheus et Grafana), sélectionnés à l'aide des critères que nous avons définis afin de mettre en place notre architecture d'orchestration.
- Objectif atteint.
- Projet future.

28 / 29

Références

HUNTER II, Thomas. Advanced Microservices: A Hands-on Approach to Microservice Infrastructure and Tooling. Apress. 2017.

KUTNER, Joe. Deploying with JRuby 9k: deliver scalable web apps using the JVM. Pragmatic Bookshelf, 2016.

VOHRA, Deepak. Kubernetes microservices with Docker. Apress, 2016.

Kubernetes Patterns Patterns, Principles, and Practices for Designing Cloud Native Applications.2017

HOLLA, Shrikrishna. Orchestrating docker. Packt Publishing Ltd, 2015.

FARCIC, Viktor. The DevOps 2.0 Toolkit. Packt Publishing Ltd, 2016.

GIRIDHAR, Chetan. Automate it !-Recipes to upskill your business. Packt Publishing Ltd, 2017.

