Detecting Selection in Experimental Evolution Experiment

Arya Iranmehr airanmehr@ucsd.edu

Bafna Lab University of California, San Diego

July, 2016

Arya Iranmehr

Goals of COMALE: Composite Of MArkovian Likelihoods for Experimental evolution

Arya Iranmehr Detecting Selection in Experimental I July, 2016

Simulations

Case I: Exact Allele Frequency

• Given allele frequencies $\{\nu_0, \dots, \nu_T\}$ at each site compute λ -statistic for each SNP by

$$\lambda = \frac{H_1}{H_0} = \frac{\Pr(\nu_0, \dots, \nu_T | s = s^*)}{\Pr(\nu_0, \dots, \nu_T | s = 0)}$$
(1)

where s^* is the maximum likelihood estimate of s (strength of selection).

Arya Iranmehr Detecting Selection in Experimental I July, 2016

Probability of a Sequence: Wright-Fisher Markov Chain

$$P(v_0, ..., v_5) = Q_{1,2} Q_{2,1} Q_{1,1} Q_{1,2} Q_{2,0}$$

Model vs Observation

Depth Heterogeneity

Uncertainty in allele frequency

Case II: Unknown Allele Frequency (Pooled-Seq data)

• Given $\{x_0, \ldots, x_T\}$ at each site where $x_t = (c_t, d_t)$ is a tuple of derived allele read count and the read depth, we are interested in computing λ -statistic for each SNP by

$$\lambda = \frac{H_1}{H_0} = \frac{\Pr(x_0, \dots, x_T | s = s^*)}{\Pr(x_0, \dots, x_T | s = 0)}$$
 (2)

• Hidden Markov Model computes null and alternative likelihoods.

Arya Iranmehr Detecting Selection in Experimental I July, 2016

COMALE statistic and P-Value for a region

- Having computed $\mathcal{L} = \{\lambda_1, \dots, \lambda_M\}$ for each SNP of a region, COMALE is the average of top-10 elements.
- P-Value of the COMALE statistic is computed under empirical null distribution, i.e., negative control.

Arya Iranmehr

10 / 14

Detection Power

Heat Protein Shock genes

Thanks!