EIO – Laboratorium 2

Algorytm wstecznej propagacji błędu

Zadanie 1

Schemat sieci neuronowej:

Zbiór uczący:

$$X_1 = (0, \hat{y} = 0)$$

 $X_2 = (4, \hat{y} = 2)$

Funkcja aktywacji: ReLU

Funkcja błędu: MSE

a) Korzystając z reguły łańcuchowej wyprowadź wzory na obliczenie pochodnych cząstkowych:

$$\frac{\partial E}{\partial w^{(2)}} =$$

$$\frac{\partial E}{\partial w^{(1)}} =$$

$$\frac{\partial E}{\partial b^{(2)}} =$$

$$\frac{\partial E}{\partial b^{(1)}} =$$

b) Oblicz zaktualizowane wagi dla $\mu=0.1$ oraz następujących wartości wag: $w^{(1)}=0.2, b^{(1)}=0.5, w^{(2)}=0.5, b^{(2)}=-0.5$

Zadanie 2

Schemat sieci neuronowej:

Zbiór uczący:

$$X_1 = (0, \hat{y} = (0, 1))$$

 $X_2 = (4, \hat{y} = (2, 5))$

Funkcja aktywacji: ReLU

Funkcja błędu: MSE

a) Korzystając z reguły łańcuchowej wyprowadź wzory na obliczenie pochodnych cząstkowych:

$$\frac{\partial E}{\partial w_{11}^{(2)}} =$$

$$\frac{\partial E}{\partial w_{12}^{(2)}} =$$

$$\frac{\partial E}{\partial w^{(1)}} =$$

$$\frac{\partial E}{\partial b^{(1)}} =$$

b) Oblicz zaktualizowane wagi dla $\mu=0.1$ oraz następujących wartości wag: $w^{(1)}=0.2, b^{(1)}=0.5, w_{11}^{(2)}=0.5, b_1^{(2)}=-0.5, w_{12}^{(2)}=0.0, b_2^{(2)}=0.5$