Généralités

$$\frac{\partial u}{\partial x} = u_x$$

$$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$$

1.1 Dérivée

$$u'(x) = \lim_{h \to 0} \frac{u(x+h) - u(x)}{h} = \lim_{h \to 0} \frac{u(x) - u(x-h)}{h}$$

EDO du premier ordre 1.2

$$\frac{dy}{dt} = ky \longrightarrow y = Ce^{kt}$$

EDP du premier ordre

$$\begin{split} F\Big(x,y,u(x,y),u_x(x,y),u_y(x,y)\Big) \\ &= F\Big(x,y,u,u_x,u_y\Big) = 0 \end{split}$$

1.3.1 Résolution

$$a(x,y)u_x + \frac{\mathbf{b}}{\mathbf{b}}(x,y)u_y = 0 \longrightarrow \frac{dy}{dx} = \frac{\mathbf{b}(x,y)}{a(x,y)}$$

 $au_x + bu_y$ est la dérivée directionnelle dans le sens du vecteur $\mathbf{v} = \begin{pmatrix} a \\ b \end{pmatrix}$

Tout ce qui suit à vérifier (ok pour les coefficients constants mais peut-être quelques modificiations pour les coefficients variables)

Coefficients constants Droite caractéristique : bx - ay = c (solution constante sur ces droites)

$$u(x,y) = f(\frac{bt}{a}x)$$

Puis appliquer les conditions données.

Coefficients variables Trouver les courbes car- 1.5.1 Homogénéité (seulement si linéaire) actéristiques (solution constante sur les courbes) en résolvant l'équation $\frac{dy}{dx} = \frac{b}{a}$ avec, par exemple :

$$\underbrace{\int \frac{dy}{dx} dx}_{y} = \underbrace{\int \frac{b(x,y)}{a(x,y)} dx}_{\cdots + c} \longrightarrow u(x,t) = f("c")$$

OU

si
$$\frac{dy}{dx} = y \longrightarrow y = Ce^x$$

 $u(x,t) = f("C") = f(ye^{-x})$

Autres cas: par exemple $3u_y + u_{xy}$ on effectue une substitution $v = u_y$ pour simplifier le problème. Combinaison linéaire de plusieurs solutions est aussi une solution

1.4 EDP du deuxième ordre

$$F(x, y, u, u_x, u_y, u_{xx}, u_{xy}, u_{yy}) = 0$$

$$Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G$$

Parabolique : $B^2 - 4AC = 0$

Hyperbolique : $B^2 - 4AC > 0$

Elliptique : $B^2 - 4AC < 0$

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

1.5**Opérateurs**

Linéarité

$$\mathcal{L}(u+v) = \mathcal{L}u + \mathcal{L}v$$
 et $\mathcal{L}(cu) = c\mathcal{L}u$

linéaire non linéaire

$$u_{tt} - u_{xx} + u^3 = 0$$
 $u_t + uu_x + u_{xxx} = 0$

$$u_x + u_y = 0$$
 $u_x + yu_y = 0$ $u_{xx} + u_{yy} = 0$
 $u_x + u_{yy} = 0$ $u_{tt} + u_{xxxx} = 0$ $u_t - ju_{xx} = 0$

Équation linéaire homogène $\mathcal{L}u=0$

Équation linéaire non-homogène $\mathcal{L}u=q$

$$u_x + u_y + 1 = 0 \longrightarrow \text{ inhomogène}$$

solution homogène + solution inhomogène = solution inhomogène

Conditions initiales

$$u(x,t_0) = \phi(x)$$

OU

$$u(x, t_0) = \phi(x) \qquad u_t(x, t_0) = \psi(x)$$

Conditions aux bords

Dirichlet: u est spécifié

Neumann : $\frac{\partial u}{\partial n}$ est spécifié

Robin : $\frac{\partial u}{\partial n} + au$ est spécifié

Problèmes bien posés

Les problèmes bien posés (au sens d'Hadamard) sont constitués d'une EDP dans un domaine et avec les propriétés suivantes :

Existence: il existe au moins une solution u(x,t)qui satisfait toutes les conditions

Unicité : il existe au plus une solution

Stabilité : La solution unique u(x,t) dépende de manière stable des données (peu de changement \rightarrow peu de variation)

1.9 Exemples

1.

$$au_x + bu_y = 0$$
 $u(x, y) = f(bx - ay)$

Avec bx - ay = c les droites caractéristiques

2.

$$u_t + cu_x = 0$$

Au temps t + h, déplacement de $c \cdot h$

3.

$$u_{xx} = 0 \xrightarrow{\int dx} u_x = f(y) \xrightarrow{\int dx} u = g(y) + xf(y)$$

$$u(x,y) = f(y)x + g(y)$$

4.

$$u_{xx} + u = 0 \rightarrow u(x, y) = f(y)\cos(x) + g(y)\sin(x)$$

5.

$$u_{xy} = 0 \longrightarrow u(x, y) = f(y) + g(x)$$

A noter que f(y) et g(x) sont les intégrales de fonctions intermédiaires.

6.

$$u_x + yu_y = 0 \longrightarrow u(x, y) = f(e^{-x}y)$$

Séparation de variables 1.10

$$u(x,y) = X(x)Y(y)$$
 ou $u(x,t) = X(x)T(t)$

Équation d'onde

$$u_{tt} = c^2 u_{xx}$$

c est la vitesse de l'onde. Pour une corde on a

$$c = \sqrt{\frac{T}{\rho}}$$

Avec T la tension et ρ la densité

2.11D

Modèle ressorts-masses

$$F_{\text{newton}} = ma(t) = m \frac{\partial^2}{\partial t^2} u(x, t)$$

$$F_{\text{hooke}} = k\left(u(x+h),t\right) - u(x,t)\right) - k\left(u(x,t) - u(x-h,\mathbf{E})\right)$$
s fréquences sont $\frac{n\pi c}{l}$ avec la fondemantale en $n=1$

 $F_{\text{newton}} = F_{\text{hooke}}$

Avec $N \to \infty$ et donc $h \to 0$ (L = Nh)

$$\frac{\partial^2 u(x,t)}{\partial t^2} = \frac{KL^2}{M} \frac{\partial^2 u(x,t)}{\partial x^2}$$

Solution générale:

$$u(x,t) = f(x+ct) + g(x-ct)$$

avec f et q des fonctions quelconques à une seule variable

2.1.1 Propriétés

Deux familles de droites caractéristiques $x \pm ct =$ constante. Somme de deux fonctions : g(x-ct) qui va à droite et f(x+ct) qui va à gauche. La vitesse est c.

2.1.2 Conditions initiales, pas de conditions aux bords

$$u_{tt} = c^2 u_{xx}$$
 $-\infty < x < \infty$
 $u(x,0) = \phi(x)$ $u_t(x,0) = \psi(x)$

$$u(x,t) = \frac{1}{2} \left(\phi(x+ct) + \phi(x-ct) \right) + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(s) ds \quad \mathbf{3}$$

Conditions aux bords de Dirichlet

La solution est de la forme (séparation de variable)

$$u(x,t) = X(x)T(t)$$

$$\begin{cases} X(x) = C\cos(\beta x) + D\sin(\beta x) \\ T(t) = A\cos(\beta ct) + B\sin(\beta ct) \end{cases}$$

 λ est une constante tel que $\lambda = \beta^2$ $\beta > 0$

$$u(x,0) = \sum_{n=1}^{\infty} A_n \sin(\beta x) = \phi(x)$$

$$u_t(x,0) = \sum_{n=1}^{\infty} \beta c \sin(\beta x) = \psi(x)$$

Conditions aux bords = 0

$$u_n(x,t) = \left(A_n \cos\left(\frac{n\pi c}{l}t\right) + B_n \sin\left(\frac{n\pi c}{l}t\right)\right) \sin\left(\frac{n\pi c}{l}x\right)$$

2.3 Conditions aux bords de Neumann

$$u(x,0) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} A_n \cos\left(\frac{n\pi}{l}x\right)$$

$$u_t(x,0) = \frac{1}{2}B_0 + \sum_{n=1}^{\infty} \frac{n\pi c}{l} B_n \cos\left(\frac{n\pi}{l}x\right)$$

Conditions aux bords mixtes

 $u(0,t) = u_x(l,t) = 0$ par exemple.

$$\lambda_n = \frac{\left(n + \frac{1}{2}\right)^2 \pi^2}{l^2}$$

$$X_n(x) = \sin\left(\frac{\left(n + \frac{1}{2}\right)\pi}{l}x\right)$$

Équation de diffusion

$$u_t = u_{xx}$$

Plus difficile à résoudre que l'équation d'ondes

Principe du maximum

Valeur maximale de u(x,t) atteinte à t=0 ou sur les côtés (x = 0 ou x = l). Pareil pour la valeur minimale

3.2 Résolution

- 1. Résoudre l'équation pour une solution $\phi(x)$ particulière
- 2. Construire la solution générale

3.3 Propriétés

1. Une **translation** de la solution est aussi une solution

$$u(x-n,t) \equiv u(x,t)$$

2. **Dérivée** d'une solution est aussi une solution

$$u_t \equiv u_x \equiv u_{xx} \equiv u$$

- 3. Une **combinaison linéaire** de solutions est une solution
- 4. Une **intégrale** est aussi une solution

$$\int S(x-n,t)g(y)dy \equiv u(x,t)$$

5. Une solution dilatée est aussi une solution

$$u(\sqrt{a}x, at) \equiv u(x, t)$$

3.4 Résolution sans conditions aux bords

On résout le problème simplifié avec

$$Q(x,0) = \begin{cases} 1 & x > 0 \\ 0 & x < 0 \end{cases}$$

$$Q(x,t) = g(p)$$
 $p = \frac{x-y}{\sqrt{4kt}}$

Solution générale :

$$u(x,t) = \frac{1}{2\sqrt{\pi kt}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4kt}} \phi(y) dy$$

1. Remplacer la condition initiale $\phi(x)$

- 2. Développer l'intégrale et effectuer un changement de variable si nécessaire (voir 11)
- 3. Exprimer en fonction de erf(...) si c'est nécessaire

Si nécessaire, on utilise la fonction d'erreur

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-p^2} dp$$

$$\operatorname{erf}(x) = -\operatorname{erf}(-x)$$
 (impaire)

Si $\phi(y)=e^{...}$ alors on peut utiliser la fonction suivante (à adapter) pour mettre tous les y dans le ()²

$$(y+2kt-x)^2 = y^2 + 4k^2t^2 + x^2 + 4kty - 2xy - 4ktx$$

3.4.1 Notes

$$\int_{-\infty}^{\infty} e^{-p^2} dp = \sqrt{\pi}$$

Si on a deux intégrales (chacune avec un $\phi(y)$ différent, par exemple un ϕ par morceaux), alors on fait deux changements de variables différents : une fois $p=\frac{x-y}{\sqrt{4kt}}$ et une fois $p=\frac{y-x}{\sqrt{4kt}}$

3.5 Résolution avec conditions aux bords

Par séparation de variables on a

$$u(x,t) = X(x)T(t)$$

$$\frac{T'}{kT} = \frac{X''}{X} = -\lambda$$

- 4 Problèmes bornés
- 5 Fonctions harmoniques
- 6 Transformée de Laplace
- 7 Séries de Fourier
- 8 Différences finies
- 9 Différences finies
- 9.1 Différences finies progressives
- **9.1.1** f'(x)

Ordre	f(x)	f(x+h)	f(x+2h)	f(x+3h)	f(x+4h)	f(x+5h)	f(x+6h)
1	-1	1					
2	-3/2	2	-1/2				
3	-11/6	3	-3/2	1/3			
4	-25/12	4	-3	4/3	1/4		
5	-137/60	5	-5	10/3	-5/4	1/5	
6	-49/20	6	-15/2	20/3	-15/4	6/5	-1/6

$$n=2$$

$$f'(x) = \frac{-\frac{3}{2}f(x) + 2f(x+h) - \frac{1}{2}f(x+2h)}{h} + \mathcal{O}(h^2)$$

9.1.2 f''(x)

	Ordre	f(x)	f(x+h)	f(x+2h)	f(x+3h)	f(x+4h)	f(x+5h)	f(x+6h)
	1	1	-2	1				
	2	2	-5	4	-1			
Г	3	35/12	-26/3	19/2	-14/3	11/12		
Г	4	15/4	-77/6	107/6	-13	61/12	-5/6	
	5	203/45	-87/5	117/4	-254/9	33/2	-27/5	137/180

$$n = 3$$

$$f''(x) = \frac{-\frac{26}{3}f(x+h) + \frac{19}{2}f(x+2h)}{-\frac{14}{3}f(x+3h) + \frac{11}{12}f(x+4h)} + \mathcal{O}(h^3)$$

9.1.3 f'''(x)

Ordre	f(x)	f(x+h)	f(x+2h)	f(x+3h)	f(x+4h)	f(x+5h)	f(x+6h)
1	-1	3	-3	1			
2	-5/2	9	-12	7	-3/2		
3	-17/4	71/4	-59/2	49/2	-41/4	7/4	
4	-49/8	29	-461/8	62	-307/8	13	-15/8

n = 1

	$-f\left(x\right) +3f\left(x+h\right)$	
f'''(x) =	$\frac{-3f(x+2h)+f(x+3h)}{}$	$+\mathcal{O}(h^1)$
f(x) =	h^3	+ O(n)

Différences finies rétrogrades

- 1. Remplacer x + kh par x kh
- 2. Si dérivée paire : Pas de changement de coefficient
- 3. Si dérivée impaire : Changement du signe

Différences finies centrées 9.3

9.3.1 f'(x)

Ordre	f(x-4h)	f(x-3h)	f(x-2h)	f(x-h)	f(x)	f(x+h)	f(x+2h)	f(x+3h)	f(x+4h)
2				-1/2	0	1/2			
4			1/12	-2/3	0	2/3	-1/12		
6		-1/60	3/20	-3/4	0	3/4	-3/20	1/60	
8	1/280	-4/105	1/5	-4/5	0	4/5	-1/5	4/105	-1/280

n=2

$$f'(x) = rac{-rac{1}{2}f(x-h) + rac{1}{2}f(x+h)}{h^1} + \mathcal{O}(h^2)$$

С	Ordre	f(x-4h)	f(x-3h)	f(x-2h)	f(x-h)	f(x)	f(x+h)	f(x+2h)	f(x+3h)	f(x+4h)
Г	2				1	-2	1			
	4			-1/12	4/3	-5/2	4/3	-1/12		
	6		1/90	-3/20	3/2	-49/18	3/2	-3/20	1/90	
	8	-1/560	8/315	-1/5	8/5	-205/72	8/5	-1/5	8/315	-1/560

n=2

$$f''(x) = \frac{f(x-h) - 2f(x) + f(x+h)}{h^2} + \mathcal{O}(h^2)$$

9.3.3 f'''(x)

Ordre	f(x-4h)	f(x-3h)	f(x-2h)	f(x-h)	f(x)	f(x+h)	f(x+2h)	f(x+3h)	f(x+4h)
2			-1/2	1	0	-1	1/2		
4		1/8	-1	13/8	0	-13/8	1	-1/8	
6	-7/240	3/10	-169/120	61/30	0	-61/30	169/120	-3/10	7/240

n=2

$$f'''(x) = \frac{-\frac{1}{2}f(x-2h) + f(x-h)}{-f(x+h) + \frac{1}{2}f(x+2h)} + \mathcal{O}(h^2)$$

Éléments finis 10

11 Autres

Intégration par partie

$$\int_a^b u'v = uv \Big|_a^b - \int_a^b uv'$$

Changement de variable 11.2

11.2.1 Méthode 1

Lorsque la dérivée $\varphi'(t)$ est présente

$$\int_{a}^{b} f(\varphi(t))\varphi'(t)dt = \int_{\varphi(a)}^{\varphi(b)} f(x)dx$$

11.2.2Méthode 2

Si $\varphi'(t) = \varphi' = \text{constante}$

$$\int_{a}^{b} f(\varphi(t))dt = \frac{1}{\varphi'} \int_{\varphi(a)}^{\varphi(b)} f(x)dx$$

Solutions générales 11.3

$$f'''(x) = \frac{-\frac{1}{2}f(x-2h) + f(x-h)}{h^3} + \mathcal{O}(h^2)$$

$$X'' = -\beta^2 X \longrightarrow X(x) = A\cos(\beta x) + B\sin(\beta x)$$

$$X'' = \beta^2 X \longrightarrow X(x) = A\cosh(\beta x) + B\sinh(\beta x)$$

$$X'' = 0 \longrightarrow X(x) = Ax + B$$