

BERT: Pre-training of Deep Bidirectional Transformer for Language Understanding

Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova

모두의연구소 김승일 연구소장

BERT: Bidirectional Encoder Representation from Transformer

1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process, BERT has language-processing abilities capable of empowering many models we later need to build and train in a supervised way.

Semi-supervised Learning Step

2 - Supervised training on a specific task with a labeled dataset.

BERT: Bidirectional Encoder Representation from Transformer

- Original transformer: L=6, H=512, A=8
- BERTbase: L=12, H=768, A=12
- BERTlarge: L=24, H=1024, A=16 (L= # of layer, H= hidden size, A= # of self-attention head)

BERTLARGE

Model Input

Q1. segment embedding을 사용하는데, 왜 [SEP] token이 필요한가? Q2. seg/pos embedding 은 어떤 값인지?

Model Output

각각의 position에 대해 H size의 embedding vector가 출력됨

BERT

(Pre) Training

- Transformer는 enc-dec 구조로 decoder에서 loss function을 계산해서 training 했음
- BERT는 encoder만 있음.
 - (1) Masked Language Model
 - (2) Two Sentence Tasks 2가지 방식을 사용

(Pre) Training: Masked LM

0.1% Aardvark Use the output of the Possible classes: masked word's position All English words 10% Improvisation to predict the masked word Zyzzyva FFNN + Softmax 2 **BERT** Randomly mask 15% of tokens stick [MASK] this Input

- 15%의 token을 random하게 mask로 만듬
- Mask token의 80%는 mask로 10%는 random word로 10%는 unchanged word로 넣어줌.

→ context를 고려하는 Language model로 학습시키기 위한 것으로 생각됨.

Mask: 무난한? Context 고려 LM random word: 이상한 단어를 넣어도 주변 단 어들을 고려하여 정답이 나와야 하니 context

를 많이 고려한 LM

unchanged word: 정답을 넣고 정답이 나오

니 context를 덜 고려한 LM

위 3개의 ensemble 같은 (overfitting방지)

효과가 있지 않을까 추측.

Q3. [Mask] token 을 꼭 넣어주어야 하나? CBoW 에서는 자기자신을 어떻게 넣어주는가?

(Pre) Training: Two Sentence Tasks

- BERT를 범용적인 NLP 모델로 만들고 싶은데, Mask LM으로 language model은 만들수 있 지만, 2개의 문장이 주어지는 task를 해결할 수 는 없음.(ex. QA, QQ' similarity 등)
- 입력으로 두 문장을 주고, 이 두 문장이 연속된 의미있는 문장인지를 binary classification

Input

Q4. 512개의 입력 token을 다 못채우는 경우에도, transformer의 오른쪽 노드들은 학습이 잘 되는가?

LS] the man [MASK] to the store [SEP] penguin [MASK] are flightless birds [SEP]

Sentence A Sentence B

Fine Tuning: Supervised manner

Experiments: 11개의 NLP Tasks

- 1. MNLI (Multi-Genre Natural Language Inference) 두 개의 문장을 주고, 두번째 문장이 첫번째 문장과 같은 의미(entailment)인지, 모순(contradiction)이 있는지, 무관한 (neutral) 의미인지 판단
- 2. QQP (Quora Question Pair): 두 질문이 같은 의미의 질문인지 판단
- 3. QNLI(Question Natural Language Inference): 질문과 문장을 주고, 그 문장에 답이 있으면 pos, 없으면 neg를 판단
- 4. SST-2 (Stanford Sentiment Treebank): movie review data에서 sentiment 분석(binary)
- 5. CoLA (Corpus of Linguistic Acceptability): 문장의 문법이 맞는지 판단
- 6. STS-B (Semantic Textual Similarity Benchmark): 두 문장의 의미의 유사도를 1~5 점으로 판단
- 7. MRPC(Microsoft Research Paraphrase Corpus): 두 문장의 sentiment가 같은지 판단
- 8. RTE(Recognizing Textual Entailment): MNLI 와 비슷
- 9. SQuAD 1.1 (Stanford Question Answering Database) : 질문을 보고 지문에서 answer text span을 찾아낸다. 즉, 정답의 시작점과 끝점을 찾아냄
- 10. CoNLL Named Entity Recognition : 단어에 〈Person〉, 〈Organization〉, 〈Location〉, 〈Miscellaneous〉, 〈Other-Not named entity〉를 annotate
- 11. SWAG(Situation with Adversarial Generations): video captioning DB에서 추출한 문장 다음에 올 문장으로 알맞은 것은? (4지선다형)

11개 Tasks에서 SOTA

System	MNLI-(m/mm) 392k	QQP 363k		SST-2 67k	CoLA 8.5k	STS-B 5.7k	MRPC 3.5k		
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERTBASE	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

Table 1: GLUE Test results, scored by the GLUE evaluation server. The number below each task denotes the

System	D	ev	Test		
	EM	F1	EM	F1	
Leaderboard (Oct	8th, 2	(018)			
Human	-	_	82.3	91.2	
#1 Ensemble - nlnet		-	86.0	91.7	
#2 Ensemble - QANet		-	84.5	90.5	
#1 Single - nlnet	-	-	83.5	90.1	
#2 Single - QANet		7.0	82.5	89.3	
Publishe	d				
BiDAF+ELMo (Single)	-	85.8	-	-	
R.M. Reader (Single)	78.9	86.3	79.5	86.6	
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5	
Ours					
BERT _{BASE} (Single)	80.8	88.5	-	-	
BERT _{LARGE} (Single)	84.1	90.9	-	-	
BERT _{LARGE} (Ensemble)	85.8	91.8	-	-	
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8	
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	93.2	

System	Dev F1	Test F1
ELMo+BiLSTM+CRF	95.7	92.2
CVT+Multi (Clark et al., 2018)	-	92.6
BERT _{BASE}	96.4	92.4
$BERT_{LARGE}$	96.6	92.8

Table 3: CoNLL-2003 Named Entity Recognition re-

System	Dev	Test
ESIM+GloVe	51.9	52.7
ESIM+ELMo	59.1	59.2
BERTBASE	81.6	-
BERT _{LARGE}	86.6	86.3
Human (expert)†	-	85.0
Human (5 annotations)†	-	88.0

Table 4: SWAG Dev and Test accuracies. Test results

社会。是四年工程

E-mail: si.kim@modulabs.co.kr

Blog: <u>www.whyDSP.org</u>

FB: <u>www.facebook.com/lab4all</u>

www.facebook.com/groups/modulabs