Lecture 16: Machine learning

IST5573

統計方法 Statistical methods

2016/12/28

Machine learning

- Closely related to
 - Computational statistics
 - Mathematical optimization
 - Data mining
 - Supervised / unsupervised learning
- We will be studying
 - Support vector machine
 - Neural networks
 - Classification and regression tree
 - K-nearest neighbor

Support vector machine

These slides are courtesy of Jinwei Gu 2008/10/16

http://slideplayer.com/slide/4043415/

Support vector machine (SVM)

- A classifier derived from statistical learning theory by Vapnik, et al. in 1992
- SVM became famous when, using images as input, it gave accuracy comparable to neuralnetwork with hand-designed features in a handwriting recognition task
- Currently, SVM is widely used in object detection & recognition, content-based image retrieval, text recognition, biometrics, speech recognition, etc.

Discriminant function

• The classifier is said to assign a feature vector X to class π_i if

$$g_i(\mathbf{x}) > g_j(\mathbf{x})$$
 for all $j \neq i$

- For two-class case, $g(x) \equiv g_1(x) g_2(x)$ Decide π_1 if g(x) > 0; otherwise decide π_2
- An example we've learned before:

LDA, QDA for equal priors and misclassification cost:

$$g(\mathbf{x}) \equiv f_1(\mathbf{x}) - f_2(\mathbf{x})$$

where $f_i(\cdot)$: probability density functions for π_i

Discriminant function

• It can be arbitrary functions of x, such as:

Nearest Neighbor

Decision Tree

Linear Functions

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

Nonlinear Functions

• g(x) is a linear function:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

- A hyper-plane in the feature space
- (Unit-length) normal vector of the hyperplane:

$$n = \frac{w}{\|w\|}$$

 How would you classify these points using a linear discriminant function in order to minimize the error rate?

Infinite number of answers!

- How would you classify these points using a linear discriminant function in order to minimize the error rate?
- Infinite number of answers!

- How would you classify these points using a linear discriminant function in order to minimize the error rate?
- Infinite number of answers!

 How would you classify these points using a linear discriminant function in order to minimize the error rate?

Infinite number of answers!

• Which one is the best?

- The linear discriminant function (classifier) with the maximum margin is the best
- Margin is defined as the width that the boundary could be increased by before hitting a data point
- Why it is the best?
 - Robust to outliners and thus strong generalization ability

denotes + l

- denotes + I
- denotes I

• Given a set of data points: $\{(x_i, y_i)\}, i = 1, \dots, n,$

where

For
$$y_i = +1$$
, $\mathbf{w}^T \mathbf{x}_i + b > 0$
For $y_i = -1$, $\mathbf{w}^T \mathbf{x}_i + b < 0$

 With a scale transformation on both w and b, the above is equivalent to

For $y_i = +1$, $\mathbf{w}^T \mathbf{x}_i + b > 1$ For $y_i = -1$, $\mathbf{w}^T \mathbf{x}_i + b < -1$

- denotes + I
 - denotes I

We know that

$$\mathbf{w}^T \mathbf{x}^+ + b = 1$$
$$\mathbf{w}^T \mathbf{x}^- + b = -1$$

• The margin width is:

$$M = (x^{+} - x^{-}) \cdot n$$

$$= (x^{+} - x^{-}) \cdot \frac{w}{\|w\|} = \frac{2}{\|w\|}$$

The margin is the projection of $(x^+ - x^-)$ along the direction of w

- denotes + I
- denotes I

• Formulation:

maximize
$$\frac{2}{\|\boldsymbol{w}\|}$$

For
$$y_i = +1$$
, $\mathbf{w}^T \mathbf{x}_i + b > 1$
For $y_i = -1$, $\mathbf{w}^T \mathbf{x}_i + b < -1$

- denotes + I
- denotes I

• Formulation:

minimize
$$\frac{1}{2} \| \boldsymbol{w} \|^2$$

For
$$y_i = +1$$
, $\mathbf{w}^T \mathbf{x}_i + b > 1$
For $y_i = -1$, $\mathbf{w}^T \mathbf{x}_i + b < -1$

- denotes + I
 - odenotes l

• Formulation:

minimize
$$\frac{1}{2} ||\boldsymbol{w}||^2$$

$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1$$

Quadratic programming with linear constraints

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

s.t.
$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$$

Lagrangian function

minimize
$$L_p(\mathbf{w}, b, \alpha_i) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 \right)$$

s.t.
$$\alpha_i \geq 0$$

minimize
$$L_p(\mathbf{w}, b, \alpha_i) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 \right)$$

s.t. $\alpha_i \ge 0$

$$\frac{\partial L_p}{\partial \mathbf{w}} = 0 \qquad \mathbf{w} = \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i$$

$$\frac{\partial L_p}{\partial b} = 0 \qquad \sum_{i=1}^n \alpha_i y_i = 0$$

minimize
$$L_p(\mathbf{w}, b, \alpha_i) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 \right)$$

s.t.
$$\alpha_i \geq 0$$

Lagrangian dual problem

maximize
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

s.t.
$$\alpha_i \ge 0$$
 , and $\sum_{i=1}^n \alpha_i y_i = 0$

From KKT condition, we know:

$$\alpha_i(y_i(\mathbf{w}^T\mathbf{x}_i+b)-1)=0$$

- Thus, only support vectors have $\alpha_i \neq 0$
- The solution has the form:

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = \sum_{i \in SV} \alpha_i y_i \mathbf{x}_i$$
get b from $y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1$
= 0, where x_i is support vector

The linear discriminant function is:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = \sum_{i \in SV} \alpha_i \mathbf{x}_i^T \mathbf{x} + b$$

- Notice it relies on a dot product between the test point x and the support vectors x_i
- Also keep in mind that solving the optimization problem involved computing the dot products $x_i^T x_i$ between all pairs of training points

Soft margin linear classifier

 What if data is not linear separable? (noisy data, outliers, etc.)

• Slack variables ξ_i can be added to allow mis-classification of difficult or noisy data points, resulting margins are called soft.

denotes + I

Soft margin linear classifier

Formulation:

minimize
$$\frac{1}{2}||\boldsymbol{w}||^2 + C\sum_{i=1}^n \xi_i$$

such that

$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i$$
$$\xi_i \ge 0$$

 Parameter C can be viewed as a way to control over-fitting.

Soft margin linear classifier

• Formulation: (Lagrangian dual problem)

maximize
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j$$

$$\sum_{i=1}^{0 \le \alpha_i \le C} \alpha_i y_i = 0$$

Non-linear SVMs

 Datasets that are linearly separable with noise work out great:

 But what are we going to do if the dataset is just too hard?

• How about... mapping data to a higher-dimensional space: • •

26

Non-linear SVMs: feature space

 General idea: the original input space can be mapped to some higher-dimensional feature space where the training set is separable:

Nonlinear SVMs: the kernel trick

 With this mapping, our discriminant function is now:

$$g(\mathbf{x}) = \mathbf{w}^T \varphi(\mathbf{x}) + b = \sum_{i \in SV} \alpha_i \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}) + b$$

- No need to know this mapping explicitly, because we only use the dot product of feature vectors in both the training and test.
- A kernel function is defined as a function that corresponds to a dot product of two feature vectors in some expanded feature space:

$$K(\mathbf{x}_i, \mathbf{x}_j) \equiv \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_j)$$

Nonlinear SVMs: the kernel trick

An example:

```
2-dimensional vectors \mathbf{x} = [x_1 \ x_2];
      let K(\mathbf{x}_i,\mathbf{x}_i) = (\mathbf{I} + \mathbf{x}_i^T \mathbf{x}_i)^2
       Need to show that K(x_i,x_i) = \varphi(x_i)^T \varphi(x_i):
                                               K(\mathbf{x}_i,\mathbf{x}_i) = (\mathbf{I} + \mathbf{x}_i^T \mathbf{x}_i)^2
       = | + x_{i1}^2 x_{i1}^2 + 2 x_{i1} x_{i1} x_{i2} x_{i2} + x_{i2}^2 x_{i2}^2 + 2 x_{i1} x_{i1} + 2 x_{i2} x_{i2}^2
= [\mathbf{I} \ x_{i1}^2 \ \sqrt{2} x_{i1} x_{i2} \ x_{i2}^2 \ \sqrt{2} x_{i1} \ \sqrt{2} x_{i2}]^{\mathsf{T}} [\mathbf{I} \ x_{i1}^2 \ \sqrt{2} x_{i1} x_{i2} x_{i2}^2 \ \sqrt{2} x_{i1} \ \sqrt{2} x_{i2}]
= \varphi(x_i)^T \varphi(x_i), where \varphi(x) = [1 \ x_1^2 \sqrt{2} \ x_1 x_2 \ x_2^2 \ \sqrt{2} x_1 \ \sqrt{2} x_2]
```

Nonlinear SVMs: the kernel trick

- Examples of commonly-used kernel functions:
 - Linear kernel: $K(x_i, x_j) = x_i^T x_j$
 - Polynomial kernel: $K(x_i, x_j) = (1 + x_i^T x_j)^p$
 - Gaussian kernel: $K(x_i, x_j) = \exp(-\frac{\|x_i x_j\|^2}{2\sigma^2})$
 - Sigmoid: $K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(\beta_0 \mathbf{x}_i^T \mathbf{x}_j + \beta_1)$
- In general, functions that satisfy Mercer's condition can be kernel functions.

Nonlinear SVM: optimization

• Formulation: (Lagrangian dual problem)

maximize
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$$

such that

$$\sum_{i=1}^{0} \alpha_i \le C$$

The solution of the discriminant function is

$$g(\mathbf{x}) = \sum_{i \in SV} \alpha_i K(\mathbf{x}_i, \mathbf{x}) + b$$

The optimization technique is the same.

SVM: algorithm

- Choose a kernel function
- 2. Choose a value for C
- Solve the quadratic programming problem (many software packages available)
- 4. Construct the discriminant function from the support vectors

Some issues

- Choice of kernel
 - Gaussian or polynomial kernel is default
 - if ineffective, more elaborate kernels are needed
 - domain experts can give assistance in formulating appropriate similarity measures
- Choice of kernel parameters
 - e.g., σ in Gaussian kernel
 - o is the distance between closest points with different classifications
 - In the absence of reliable criteria, applications rely on the use of a validation set or cross-validation to set such parameters.

Some issues

- Optimization criterion Hard margin v.s.
 Soft margin
 - a lengthy series of experiments in which various parameters are tested
- Scaling before applying SVM is very important.
 - The main advantage of scaling is to avoid attributes in greater numeric ranges dominating those in smaller numeric ranges.
 - Another advantage is to avoid numerical difficulties during the calculation.
 - Of course we have to use the same method to scale both training and testing data.

34

Artificial neural networks

These slides are courtesy of 虞台文
http://aimm02.cse.ttu.edu.tw/class_2004
_2/ANNs/Lecture1----
lntroduction%20to%20ANN.ppt

Artificial neural networks (ANNs)

- To simulate human brain behavior
- A new generation of information processing system

Configuration of ANNs

- An ANN consists of a large number of interconnected processing elements called neurons.
 - A human brain consists of ~10¹¹ neurons of many different types.
- How ANN works?
 - Collective behavior

The biologic neuron

The biologic neuron

Excitatory or Inhibitory

What can be done by M-P neurons?

- A hard limiter.
- A binary threshold unit.
- Hyperspace separation.

What ANNs will be?

- ANN -- A neurally inspired mathematical model.
- Consists a large number of highly interconnected PEs.
- Its connections (weights) holds knowledge.
- The response of PE depends only on local information.
- Its collective behavior demonstrates the computation power.
- With learning, recalling and, generalization capability.

Three basic entities of ANN models

- Models of neurons
- Models of synaptic interconnections and structures
- Training or learning rules

Neuron models

Extensions of M-P neurons

 $f(.) \quad a(.)$

What integration functions we may have?

What activation functions we may have?

Integration functions

M-P neuron
$$f_i \equiv net_i = \sum_{j=1}^m w_{ij}x_j - \theta_i$$

Quadratic **Function**

$$f_i = \sum_{j=1}^m w_{ij} x_j^2 - \theta_i$$

Spherical **Function**

$$f_{i} = \sum_{j=1}^{m} (x_{j} - w_{ij})^{2} - \theta_{i}$$

Polynomial Function

$$f_{i} = \sum_{j=1}^{m} \sum_{k=1}^{m} \left(w_{ijk} x_{j} x_{k} + x_{j}^{\alpha_{j}} + x_{k}^{\alpha_{k}} \right) - \theta_{i}$$

M-P neuron: (Step function)

$$a(f) = \begin{cases} 1 & f \ge 0 \\ 0 & otherwise \end{cases}$$

Hard Limiter (Threshold function)

$$a(f) = \operatorname{sgn}(f) = \begin{cases} 1 & f \ge 0 \\ -1 & f < 0 \end{cases}$$

Ramp function:

Unipolar sigmoid function:

$$a(f) = \frac{1}{1 + e^{-\lambda f}}$$

Bipolar sigmoid function:

ANN structure (connections)

Single-layer feedforward networks

Multilayer feedforward networks

Single node with feedback to itself

Single-layer recurrent networks

Multilayer recurrent networks

Learning

- Consider an ANN with n neurons and each with m adaptive weights.
- Weight matrix:

$$\mathbf{W} = \begin{bmatrix} \mathbf{w}_1^T \\ \mathbf{w}_2^T \\ \vdots \\ \mathbf{w}_n^T \end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1m} \\ w_{21} & w_{22} & \cdots & w_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n1} & w_{n2} & \cdots & w_{nm} \end{bmatrix}$$

• Note: θ_i can be viewed as a weight with $x_i = 1$

Learning ow?

- Consider an ANN with n neurons and each with m adaptive weights.
- v To "learn" the weight matrix.

$$\mathbf{W} = \begin{bmatrix} \mathbf{w}_1^T \\ \mathbf{w}_2^T \\ \vdots \\ \mathbf{w}_n^T \end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1m} \\ w_{21} & w_{22} & \cdots & w_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n1} & w_{n2} & \cdots & w_{nm} \end{bmatrix}$$

• Note: θ_i can be viewed as a weight with $x_i = 1$

Learning rules

- Supervised learning
- Reinforcement learning
- Unsupervised learning

Example: 部落格分類

	А	В	С	D	E	F	G
1	blogid	commentscount	articlescount	usagedays	subscribercount	cateid	
2	1	15648	2756	2638	161	0	
3	2	18876	3075	3545	2254	0	
4	3	24614	1465	229	417	0	
5	4	18426	583	1494	101	0	
б	5	15854	1390	2639	757	0	
7	б	14624	1856	2285	487	0	
8	7	7608	1422	2374	1375	0	
9	8	2866	789	2500	657	0	
10	9	2973	1118	1591	1134	0	
11	10	8320	366	979	3650	0	
12	11	11339	1822	1453	99	0	
13	12	7269	1374	2707	805	0	
14	13	12138	2318	2566	50	0	
15	14	2657	565	1791	916	0	
16	15	1654	1795	2519	385	0	

(RMD_example 16.1)

Variable	Description
blogid	部落格 ID
commentscount	累積留言數
articlescount	總發表文章數
usagedays	使用痞客邦天數
subscribercount	訂閱數
cateid	部落格分類編號:0=美食情報,
	I=休閒旅遊,2=職場甘苦

部落格分類

- Support vector machine
 - R: library e | 07 |, function svm
 - RMD_example 16.2
- Artificial neural networks
 - R: library neuralnet, function neuralnet
 - RMD_example 16.3