

What Is Classification?

Typical Classification Methods

Numerous Classification Applications

Why Pattern-Based Classification?

- Pattern-based classification: An integration of both themes
- Why pattern-based classification?
 - Feature construction
 - Higher order; compact; discriminative
 - E.g., single word → phrase (apple pie, Apple iPad)
 - Complex data modeling
 - Graphs (no predefined feature vectors)
 - Sequences
 - Semi-structured/unstructured data

Pattern-Based Classification on Graphs

Associative or Pattern-Based Classification

- Data: Transactions, microarray data, ... → Patterns or association rules
- □ Classification methods (some interesting work):
 - □ CBA (Liu, Hsu, & Ma, KDD'98): Use high-confidence, high-support *class association* rules to build classifiers To be discussed here
 - Emerging patterns (Dong & Li, KDD'99): Patterns whose support changes significantly between the two classes
 - CMAR (Li, Han, & Pei, ICDM'01): Multiple rules in prediction To be discussed here
 - □ CPAR (Yin & Han, SDM'03): Beam search on multiple prediction rules
 - RCBT (Cong, Tan, Tung, & Xu, SIGMOD'05): Build classifier based on mining top-k covering rule groups with row enumeration (for high-dimensional data)
 - Lazy classifier (Veloso, Meira, & Zaki, ICDM'06): For a test t, project training data D on t, mine rules from D_t, predict on the best rule
 - Discriminative pattern-based classification (Cheng, Yan, Han, & Hsu, ICDE'07)

CBA: Classification Based on Associations

- □ CBA (Liu, Hsu, and Ma, KDD'98)
- Method
 - ☐ Mine high-confidence, high-support class association rules
 - LHS: Conjunctions of attribute-value pairs; RHS: Class labels $p_1 \wedge p_2 \dots \wedge p_l \rightarrow \text{"}A_{class-label} = C"$ (confidence, support)
 - Rank rules in descending order of confidence and support
 - Classification: Apply the first rule that matches a test case; otherwise, apply the default rule
 - Effectiveness: Often found more accurate than some traditional classification methods, such as C4.5
 - Why? Exploring high confident associations among multiple attributes may overcome some constraints introduced by some classifiers that consider only one attribute at a time

CMAR: Classification Based on Multiple Association Rules

- Rule pruning whenever a rule is inserted into the tree
 - Given two rules R_1 and R_2 , if the antecedent of R_1 is more general than that of R_2 and conf(R_1) \geq conf(R_2), then prune R_2
 - Prunes rules for which the rule antecedent and class label are not positively correlated based on the χ^2 test of statistical significance
- Classification based on generated/pruned rules
 - If only one rule satisfies tuple X, assign the class label of the rule
 - If a rule set S satisfies X
 - Divide S into groups according to class labels
 - Use a weighted χ^2 measure to find the strongest group of rules based on the statistical correlation of rules within a group
 - Assign X the class label of the strongest group
- CMAR improves model construction efficiency and classification accuracy

Discriminative Pattern-Based Classification

- Discriminative patterns as features for classification (Cheng et al., ICDE'07)
- Principle: Mining discriminative frequent patterns as high-quality features and then apply any classifier
- Framework (PatClass)
 - □ Feature construction by frequent itemset mining
 - Feature selection (e.g., using Maximal Marginal Relevance (MMR))
 - Select discriminative features (i.e., that are relevant but minimally similar to the previously selected ones)
 - Remove redundant or closely correlated features
 - Model learning
 - Apply a general classifier, such as SVM or C4.5, to build a classification model

On the Power of Discriminative Patterns

- K-itemsets are often more informative than single features (1-itemsets) in classification
- Computation on real datasets shows: The discriminative power of k-itemsets (for k > 1 but often ≤ 10) is higher than that of single features

Information Gain vs. Pattern Length

Information Gain vs. Pattern Frequency

- Computation on real datasets shows: Pattern frequency (but not too frequent) is strongly tied with the discriminative power (information gain)
- Information gain upper bound monotonically increases with pattern frequency

Information Gain Formula: $IG(C \mid X) = H(C) - H(C \mid X)$

Entropy of given data

$$H(C) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

 $H(C|X) = \sum_{j} P(X = x_{j}) H(Y|X = x_{j})$

Conditional entropy of

study focus

Discriminative Pattern-Based Classification: Experimental Results

Table 1. Accuracy by SVM on Frequent Combined Features vs. Single Features

Table 2. Accuracy by C4.5 on Frequent Combined Features vs. Single Features

Data	Single Feature			Freq. Pattern	
	$Item_All$	$Item_FS$	$Item_RBF$	Pat_All	Pat_FS
anneal	99.78	99.78	99.11	99.33	99.67
austral	85.01	85.50	85.01	81.79	91.14
auto	83.25	84.21	78.80	74.97	90.79
breast	97.46	97.46	96.98	96.83	97.78
cleve	84.81	84.81	85.80	78.55	95.04
diabetes	74.41	74.41	74.55	77.73	78.31
glass	75.19	75.19	74.78	79.91	81.32
heart	84.81	84.81	84.07	82.22	88.15
hepatic	84.50	89.04	85.83	81.29	96.83
horse	83.70	84.79	82.36	82.35	92.39
iono	93.15	94.30	92.61	89.17	95.44
iris	94.00	96.00	94.00	95.33	96.00
labor	89.99	91.67	91.67	94.99	95.00
lymph	81.00	81.62	84.29	83.67	96.67
pima	74.56	74.56	76.15	76.43	77.16
sonar	82.71	86.55	82.71	84.60	90.86
vehicle	70.43	72.93	72.14	73.33	76.34
wine	98.33	99.44	98.33	98.30	100
ZOO	97.09	97.09	95.09	94.18	99.00

Dataset	Single Features		Freque	ent Patterns
	$Item_All$	$Item_FS$	Pat_All	Pat_FS
anneal	98.33	98.33	97.22	98.44
austral	84.53	84.53	84.21	88.24
auto	71.70	77.63	71.14	78.77
breast	95.56	95.56	95.40	96.35
cleve	80.87	80.87	80.84	91.42
diabetes	77.02	77.02	76.00	76.58
glass	75.24	75.24	76.62	79.89
heart	81.85	81.85	80.00	86.30
hepatic	78.79	85.21	80.71	93.04
horse	83.71	83.71	84.50	87.77
iono	92.30	92.30	92.89	94.87
iris	94.00	94.00	93.33	93.33
labor	86.67	86.67	95.00	91.67
lymph	76.95	77.62	74.90	83.67
pima	75.86	75.86	76.28	76.72
sonar	80.83	81.19	83.67	83.67
vehicle	70.70	71.49	74.24	73.06
wine	95.52	93.82	96.63	99.44
ZOO	91.18	91.18	95.09	97.09

Discriminative Pattern-Based Classification: Scalability Tests

Table 3. Accuracy & Time on Chess Data

$\overline{min_sup}$	#Patterns	Time (s)	SVM (%)	C4.5 (%)
1	N/A	N/A	N/A	N/A
2000	68,967	44.703	92.52	97.59
2200	28,358	19.938	91.68	97.84
2500	6,837	2.906	91.68	97.62
2800	1,031	0.469	91.84	97.37
3000	136	0.063	91.90	97.06

Table 4. Accuracy & Time on Waveform Data

$\overline{min_sup}$	#Patterns	Time (s)	SVM (%)	C4.5 (%)
1	9,468,109	N/A	N/A	N/A
80	26,576	176.485	92.40	88.35
100	15,316	90.406	92.19	87.29
150	5,408	23.610	91.53	88.80
200	2,481	8.234	91.22	87.32

Mining Concise Set of Discriminative Patterns

Frequent pattern mining, then getting discriminative patterns: Expensive, large model

DDPMine (Cheng et al., ICDE'08): Direct mining of discriminative patterns: Efficient

DPClass (Shang et al., SDM'16): A better solution (see the next page)—efficient, effective & generating a very limited number of (such as only 20 or so) patterns

DPClass: Discriminative Pattern-Based Classification

Input: A feature table for training data

- Adopt every prefix path in an (extremely) random forest as a candidate pattern
 - □ The split points of continuous variables are automatically chosen by random forest → No discretization!
- □ Run top-k (e.g., top-20) pattern selection based on training data
- Train a generalized linear model (e.g., logistic regression) based on "bag-of-patterns" representations of training data

Explanatory Discriminative Patterns: Generation

- Example: For each patient, we have several uniformly sampled features as follows
 - ☐ Age (A): Positive integers no more than 60
 - ☐ Gender (G): Male or female
 - Lab Test 1 (LT1): Categorical values from (A, B, O, AB)
 - Lab Test 2 (LT2): Continuous values in [0..1]
- The positive label of the hypothetical disease will be given when at least one of the following rules holds
 - \square (age > 18) and (gender = Male) and (LT1 = AB) and (LT2 \ge 0.6)
 - \square (age > 18) and (gender = Female) and (LT1 = 0) and (LT2 \ge 0.5)
 - \square (age \leq 18) and (LT2 \geq 0.9)
- □ Training: 10^5 random patients + add 0.1% noise
 - ☐ Flip the binary labels with 0.1% probability
- \Box Testing: 5×10^4 random patients in test

Explanatory Discriminative Patterns: Evaluation

- Accuracy:
 - DPClass 99.99% (perfect)
 - DDPMine 95.64% (reasonable)
- ☐ Top-3 Discriminative Patterns:
 - DPClass generates a high quality model here:
 - \square (age > 18) and (gender = Female) and (LT1 = O) and (LT2 \ge 0.496)
 - \Box (age ≤ 18) and (LT2 ≥ 0.900)
 - \square (age > 18) and (gender = Male) and (LT1 = AB) and (LT2 \ge 0.601)
 - DDPMine generates a relatively poor quality model here:
 - \Box (LT2 > 0.8)
 - \Box (gender = Male) and (LT1 = AB) and (LT2 \geq 0.6) and (LT2 < 0.8)
 - \Box (gender = Female) and (LT1 = O) and (LT2 \geq 0.6) and (LT2 < 0.8)

A Comparison on Classification Accuracy

- □ DPClass: Discriminative & frequent at the same time, then select top-k
- Only top-20 patterns are used in DPClass
 - Two methods on pattern selection
 - ☐ Forward vs. LASSO
- In comparison with
 DDPMine and Random
 Forest, DPClass maintains
 high accuracy

	Dataset	DPClass (Forward)	DPClass (LASSO)	DDPMine	Random Forest
Low- Dimensional Data	adult	85.66%	84.33%	83.42%	85.45%
	hypo	99.58%	99.28%	92.69%	97.22%
	sick	98.35%	98.87%	93.82%	94.03%
	crx	89.35%	87.96%	87.96%	89.35%
	sonar	85.29%	83.82%	73.53%	83.82%
	chess	92.25%	92.05%	90.04%	94.22%
High- Dimensional Data	namao	97.17%	96.94%	96.83%	97.86%
	musk	95.92%	95.71%	93.29%	96.60%
	madelon	74.50%	76.00%	59.84%	56.50%

- An extension of DPClass has been applied to health study
- Cheng, Q. et al. (2016). Mining discriminative patterns to predict health status for cardiopulmonary patients. ACM-BCB'16

Lazy vs. Eager Learning

- Lazy vs. eager learning
 - **Eager learning** (previously discussed methods): Given a set of training objects, constructs a classification model before receiving new (e.g., test) data to classify
 - **Lazy learning** (e.g., instance-based learning): Simply stores training data (or only minor processing) and waits until it is given a test tuple
- Lazy: Less time in training but more work in predicting
- Accuracy
 - Eager learning: Must commit to a single hypothesis that covers the entire instance space
 - Lazy method may effectively use a richer hypothesis space since it uses many local linear functions to form an implicit global approximation to the target function

Lazy Learner: Instance-Based Methods

- Instance-based learning:
 - Training phase: Only storing the feature vectors and class labels of the training samples
 - Delay the processing ("lazy evaluation") until an instance (queried example) must be classified
- Typical approaches
 - □ <u>k-nearest neighbor approach</u>
 - Instances represented as points in a Euclidean space
 - Locally weighted regression
 - Constructs local approximation
 - Case-based reasoning
 - Uses symbolic representations and knowledge-based inference

The k-Nearest Neighbors Algorithm

- □ Distance metric for k-NN: How to define the nearest neighbor?
 - □ All instances correspond to points in the *n*-D space
 - For continuous variables, commonly used metric: Euclidean distance
 - For text classification: Overlap metric (or Hamming distance)
 - For gene expression microarray data:
 - Correlation coefficients such as Pearson
- KNN can be used for classification or regression
 - k is a user-defined constant
 - k-NN classification: An object is assigned to the class most common among the k nearest neighbors
 - ho k-NN regression: Returns the average of the values of its k nearest neighbors

Distance-Weighted &-NN and Other Discussions

- □ Distance-weighted k-nearest neighbor algorithm
 - ☐ Give greater weight to closer neighbors
 - A common weighting scheme:
 - \Box Giving each neighbor a weight of 1/d (d is the distance to the query x_q)
- For high-dimensional data, first employ dimensionality reduction or feature selection, such as PCA (principal component analysis) or LDA (linear discriminant analysis)
- Efficient pre-computation or indexing
 - Vonoroi diagram: The decision surface induced by 1-NN for a typical set of training examples

Recommended Readings

- Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. *The American Statistician*, 46(3), 175–185. Retrieved from https://www.jstor.org/stable/2685209?seq=1#page_scan_tab_contents
- Cover, T. M. & Hart, P. E. (1967). Nearest neighbor pattern classification. *IEEE Transactions on Information Theory 13*(1), 21–27. Retrieved from http://ieeexplore.ieee.org/document/1053964/
- Zhang, H., Berg, A. C., Maire, M., & Malik, J. (2006). SVM-KNN: Discriminative nearest neighbor classification for visual category recognition. CVPR, 2, 2126-2136. Retrieved from http://ieeexplore.ieee.org/document/1641014/
- Zhang, M. L. & Zhou, Z. H. (2007). ML-KNN: A lazy learning approach to multi-label learning. *Pattern Recognition*, 40(7), 2038-2048. Retrieved from https://www.sciencedirect.com/science/article/pii/S0031320307000027

References

□ All other multimedia elements belong to © 2018 University of Illinois Board of Trustees.