

Prowadzacy: Miłosz Kwiatkowski

Autor: Miłosz Kwiatkowski

Biegunowe – Finaliści

Zadania

Zadanie 1. W trójkącie ABC okrąg ω o środku I jest styczny do boków BC, CA i AB w punktach odpowiednio D, E i F. Proste EF i BC przecinają się w punkcie S. Pokaż, że $SI \perp AD$.

Zadanie 2. (LVII OM) Okrąg o środku I wpisany w czworokąt wypukły ABCD jest styczny do boków AB, BC, CD, DA odpowiednio w punktach K, L, M, N, przy czym proste KL i MN przecinają się w punkcie S. Dowieść, że proste BD i IS są prostopadłe.

Zadanie 3. (LXXI OM) Trapez ABCD o podstawach AB i CD jest wpisany w okrąg Ω . Punkt M jest środkiem tego łuku CD okręgu Ω , na którym nie leży punkt A. Niech ω będzie okręgiem o środku M stycznym do prostej AD. Punkt X jest jednym z punktów przecięcia prostej CD z okręgiem ω . Udowodnić, że prosta styczna do okręgu ω w punkcie X przechodzi przez środek odcinka AB.

Zadanie 4. Okrąg ω o środku w I, wpisany w trójkąt ABC, jest styczny do boków BC, CA i AB w punktach odpowiednio D, E i F. Punkty M i N są środkami odpowiednio odcinków AB i BC. Udowodnić, że proste MN, DF i CI przecinają się w jednym punkcie.

Zadanie 5. Dwa trójkąty ABC i KLM mają wspólny okrąg wpisany ω . Okrąg ω jest styczny do boków BC, CA i AB odpowiednio w punktach D, E i F oraz do boków ML, LK i KM odpowiednio w punktach P, Q i R. Udowodnić, że proste AP, BQ i CR przecinają się w jednym punkcie wtedy i tylko wtedy, gdy proste KD, LE i MF przecinają się w jednym punkcie.

Zadanie 6. Dany jest czworokąt ABCD bez pary boków równoległych, opisany na okręgu ω o środku w punkcie I. Punkty H_1 , H_2 , H_3 i H_4 to ortocentra trójkątów odpowiednio AIB, BIC, CID i DIA. Przekątne AC i BD przecinają się w punkcie O. Udowodnić, że punkty H_1 , H_2 , H_3 , H_4 i O leżą na jednej prostej.

Zadanie 7. Okręgi: wpisany i opisany na trójkącie ABC mają środki odpowiednio w punktach I i O. Okrąg ω_a przechodzi przez punkty B, C i jest styczny do okręgu wpisanego. Analogicznie definiujemy okręgi ω_b i ω_c . Udowodnić, że środek potęgowy okręgów ω_a , ω_b i ω_c leży na prostej OI.

Zadanie 8. Dany jest trójkąt ABC i okrąg wpisany ω styczny do AC i CB w punktach K i L. Niech M i N będą środkami AB i AC. Udowodnij że przecięcie się prostych MN i KL leży na dwusiecznej.

