

Turing Machines

The tape is infinite (Initially it contain an input string and is blank everywhere else)

The read-write head can move left and right

Proposed by Alan Turing in 1936 as a result of studying algorithmic processes by means of a computational model

Similar to FA, but with unlimited and unrestricted memory

Can do everything a real computer can do

Can read and write on the tape

Formal Definition

- \circ A Turing Machine is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_o, q_{accept}, q_{reject})$, where Q, Σ, Γ are all finite sets and
 - 1. Q is the set of states
 - 2. Σ is the input alphabet not containing the blank symbol B
 - 3. Γ is the tape alphabet, where $B \in \Gamma$ and $\Sigma \subseteq \Gamma$
 - 4. $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ is the transition function
 - 5. $q_0 \in Q$ is the start state
 - 6. $q_{accept} \in Q$ is the accept state (Once a Turing machine enters the accept state, the input string is accepted regardless of the tape content)
 - 7. $q_{reject} \in Q$ is the reject state, where $q_{reject} \neq q_{accept}$
- Observations
 - The TM continues computing until it produces an output, which can be accept and reject if the TM enter the designated q_{accept} and q_{reject} states, or it can go on forever, never halting

Languages

- The language of a TM M is denoted L(M)
- A language is Turing-decidable (decidable language or recursive language) if some
 Turing Machine decides it
- A language is Turing-recognizable (or recursive enumerable language) if some Turing Machine recognizes it

Tape

Operations

Write

Replaces a symbol on the tape w/ another symbol & then shifts to a new (or current)
 state

Move

 Moves the tape head one cell to the right (left, respectively) & then shift to a new (or current) state

Halt

 Halts when the TM encounters a <state, input symbol > pair for which no transition is defined

Transitions

q

q

Configurations

Symbols to the left-hand side of the tape head

Symbols to the right-hand side of the tape head

Examples

 $q_o w$

Initial configuration

 $w q_{accept}$

Accepting configuration

 $u q_x av$

 $u q_x av$

 $a \rightarrow a$, R

 $a \rightarrow b$, R

 $ua q_y v$

 $ub q_y v$

A new configuration

Designing a Turing Machine

Come up with a high level description of how you'll achieve your goal, i.e., creating a TM that accepts valid strings in a given language

Consider if it is easier (or at least possible) to design a *sub-machine* for each step of the algorithm (i.e., requirement in the language)

Take a step back and think about the requirements of the language and how can you keep track of them prior to drawing a TM

Designing a TM

- Requirements
 - Takes **q₀wB** as an input configuration, where w is a string over {a, b}
 - Transforms a's (in w) into b's and b's into a's
 - Ends on acceptance on the following configuration w'BBq₂
- Tape contains input string, tape head is at the beginning of the tape
- Repeat until a "B" symbol is found:
 - Read "a" and write "b" or read "b" and write "a"
- Read "B", write "B", and mover Right
- Read "B", write "B", and mover Right
- Reach acceptance state

δ	В	a	b
90	q _{1, B, R}	q _{0, b, R}	q _{0, a, R}
q_1	q _{2, B, R}		
q_2			

Example 1

∘ TM that accepts language L= $\{a^nb^nc^n \mid n \ge 0\}$

FA

a*b*

PDA

aⁿbⁿ, ww^r

Finite tape and

 $a^nb^nc^n$

Storage

Example

Read only

infinite stack

Infinite tape

Tape **Operations**

Finite tape

Read only

Read and write

Tape Head

Move right

Move right

Move left or right

Accepts

Stops in a final state after reading an input string

Enters the accept state

Rejects

Stops in a non-final state after reading a string or no possible transitions to take

Enters reject state (no more transitions to take) or loops

Example 2

- ∘ Consider a TM M that produces a copy of input string over $\{a, b\}$ with input BuB and terminates with tape BuBuB, where $u \in (a \cup b)^*$, e.g., BabB yields BabBabB
 - How does the computation of BabB using M looks like?

Variants of TM

- Acceptance by Halting
 - Equivalent (in power) to an ordinary TM that accepts by final state
- \circ Example : A TM that accepts $(a \cup b)^*aa(a \cup b)^*$ by halting

Variants of TM

- Multitape TM
 - Ordinary TM with more than one tape
 - Equivalent in power to ordinary TM

Multitape TM

- Example: TM for L = {a^k | k is a perfect square }
 - Tape 1 holds the input string, a string of a's
 - Tape 2 holds a string of X's whose length is a perfect square
 - ∘ Tape 3 holds a string of X's whose length is $\sqrt{|S|}$, where S is the string on Tape 2

Step 1: Since the input is not a null string, initialize tapes 2 and 3 with an X, and all the tape head move to Position 1

Step 2: Move the heads of tapes 1 and 2 to the right, since they have scanned a *nonblank* square

Accept: if both read a blank
Reject: if tape head 1 reads a blank
and tape head 2 reads an X

Multitape TM

Step 3: Reconfiguration for comparison with the next perfect square by

- adding an X on tape 2 to yield k^2+1 X's
- appending two copies of the string on tape 3 to the end of the string on tape 2 to yield (k+1)² X's
- adding an X on tape 3 to yield (k + 1) X's on tape 3
- moving all the tape heads to Position 1

Step 4: Repeat Steps 2 through 3

Another iteration of Step 2 halts and <u>rejects</u> the input

Multitape TM

Variants of TM

- "Stay Put"
 - Besides moving left (L) and right (R), the TM may "stay put" (S) after reading/writing on a tape
 - Equivalent in power to ordinary TM

Another Multitape, "Stay-Put" Example

- ∘ A 2-tape TM that accepts { $uu \mid u \in \{a, b\}^*$ }
 - Computation:
 - 1) Make a copy of the input S (on tape 1) to tape 2; tape heads: right of S.
 - 2) Move both tape heads one step to the left.
 - 3) Move the head of tape 1 two squares for each square move of tape 2.
 - 4) Reject the input S if the TM halts in q_3 . (i.e. |S| is odd.)
 - 5) Compare the 1st half with the 2nd half of S in q4
 - 6) Accept S in q₅

(1)
$$[x \rightarrow x R, B \rightarrow x R]$$

(2) $[B \rightarrow B L, B \rightarrow B L]$ (3) $[x \rightarrow x L, y \rightarrow y L]$
 $q_1 \rightarrow q_2 \rightarrow q_3$ (4) $q_2 \rightarrow q_3$ (4) $q_3 \rightarrow q_4 \rightarrow q_4$

Variants of TM

- Nondeterministic, multitape TMs
 - A TM will explore several possibilities in determining if a string is accepted/rejected
 - The computation of a nondeterministic TM is a tree whose branches correspond to different possibilities for the machine. If some branch of the computation leads to the accept state, then the TM accepts its input

Turing Machine TM₁

Nondeterministic TM

- NTM M accepts strings over {a, b, c}* containing a 'c', which is either preceded or followed by 'ab'
 - Is "ccb" accepted by M?
 - Are "abc" / "cab" accepted by M?

Chomsky Hierarchy

Remember

A language accepted by a TM is a recursively enumerable language (or <u>TM-recognizable</u>)

A language that is accepted by a TM that halts for all input strings is said to be **recursive**(or <u>TM-decidable</u>)

It is often accepted that any algorithm that can be carried out at all (by humans, a computer, or a computation model) can be carried out by a TM.

(Church –Turing Thesis)

Definition: An **algorithm** is a procedure that can be executed on a TM. (If a problem cannot be solved by an algorithm, i.e., no TM can be designed for it, then a real computer cannot solve it.)