

- 1 -

SEQUENCE LISTING

<110> Yan, Riqiang
Tomasselli, Alfredo G.
Gurney, Mark E.
Emmons, Thomas L.
Bienkowski, Mike J.
Heinrikson, Robert L.

<120> SUBSTRATES AND ASSAYS FOR BETA-SECRETASE ACTIVITY

<130> 29915/00281A.US1

<140> 09/908,943
<141> 2001-07-19

<150> 60/219,795
<151> 2000-07-19

<160> 197

<170> PatentIn Ver. 2.0

<210> 1
<211> 2070
<212> DNA
<213> Homo sapiens

<400> 1
atggcccaag ccctgcccgt gctcctgctg tggatggcg cgggagtgt gcctgcccac 60
ggcacccagg acggcatccg gctccccctg cgacgcggcc tggggggcgc ccccccgtggg 120
ctgcggctgc cccgggagac cgacgaagag cccgaggagc cggccggag gggcagctt 180
gtggagatgg tggacaacct gagggcaag tcggggcagg gctactacgt ggagatgacc 240
gtgggcagcc cccgcagac gctcaacatc ctggtgata caggcagcag taactttgca 300
gtgggtgctg ccccccaccc ctccctgtcat cgctactacc agaggcagct gtccagcaca 360
taccggacc tccggaaggg tggatgttg ccctacaccc agggcaagtg ggaaggggag 420
ctgggcaccc acctggtaag catccccat ggcggcaacg tcactgtgcg tgccaacatt 480
gctgccatca ctgaatcaga caagttttc atcaacggct ccaactggga agcatcctg 540
gggctggcct atgctgagat tgccaggcct gacgactcc tggagcctt ctttgactct 600
ctggtaaagg agacccacgt tcccaaccc ttccctgc acctttgtgg tgctggcttc 660
ccctcaacc agtctgaagt gctggccctt gtcggaggga gcatgtatc tgaggtatc 720
gaccactcgc tgtacacagg cagttctgg tatacacca tccggggga gtggatttat 780
gaggtcatca ttgtcgggg ggagatcaat ggacaggat tgaaaatggg ctgcaaggag 840
tacaactatg acaagagcat tggacagt ggcacccacca accttcgtt gcccaagaaa 900
gtgtttaagg ctgcagtcaa atccatcaag gcagccctt ccacggagaa gtccctgtat 960
ggtttctggc taggagagca gctgggtgc tggcaagcag gcaccacccc ttggAACATT 1020
ttcccaagtca tctcactcta cctaattgggt gaggttacca accagtccctt ccgcattacc 1080
atccctccgc agcaataacct gcccggactg gaagatgtgg ccacgtccca agacgactgt 1140
tacaagtttgc ccatctcaca gtcatccacg ggcactgtt tggagctgt tatcatggag 1200
ggcttctacg ttgtctttga tcggggccga aaacgaattt gctttgtgt cagcgcttgc 1260
catgtgcacg atgagtttag gacggcagcg gtggaaaggcc ttttgcac ctggacatg 1320
gaagactgtg gtcacaacat tccacagaca gatgagtcaa ccctcatgac catagcctat 1380
gtcatggctg ccatctgcgc cctcttcatg ctggccactt ccctcatgtt gtgtcagtgg 1440
cgctgcctcc gtcgcctgc ccagcagcat gatgactttt ctgtatgacat ctcctgtgt 1500
aagtggagg gcccattggc agaagataga gattcccctg gaccacaccc ccgtggttca 1560
ctttggtcac aagttaggaga cacagatggc acctgtggcc agagcaccc aggacccctc 1620
ccacccacca aatgccttg ccttgatgga gaaggaaaag gctggcaagg tgggtccag 1680
ggactgtacc tggtagaaac agaaaagaga agaaaagaagc actctgtgtt cggaaataact 1740
cttggtcacc tcaaatttaa gtcggaaat tctgtgtt gaaacttcag ccctgaaccc 1800
ttgtccacca ttcccttaaa ttctccaacc caaagtattt ttcttttctt agtttcagaa 1860
gtactggcat cacacgcagg ttaccttggc gtgtgtccct gtggtaaccc ggcagagaag 1920
agaccaagct tgttccctg ctggccaaag tcagtaggag agatgcaca gtttgctatt 1980

tgcttagag acagggactg tataaacaag cctaacattg gtgcaaagat tgcccttga 2040
attaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa 2070

<210> 2
<211> 501
<212> PRT
<213> Homo sapiens

<400> 2
Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
1 5 10 15
Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
20 25 30
Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45
Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60
Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80
Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95
Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110
Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125
Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140
Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160
Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175
Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp
180 185 190
Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro
195 200 205
Asn Leu Phe Ser Leu His Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln
210 215 220
Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile
225 230 235 240
Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg
245 250 255
Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln
260 265 270
Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val
275 280 285

Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala
290 295 300

Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp
305 310 315 320

Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr
325 330 335

Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val
340 345 350

Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg
355 360 365

Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala
370 375 380

Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu
385 390 395 400

Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala
405 410 415

Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu
420 425 430

Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro
435 440 445

Gln Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met Ala Ala
450 455 460

Ile Cys Ala Leu Phe Met Leu Pro Leu Cys Leu Met Val Cys Gln Trp
465 470 475 480

Arg Cys Leu Arg Cys Leu Arg Gln Gln His Asp Asp Phe Ala Asp Asp
485 490 495

Ile Ser Leu Leu Lys
500

<210> 3
<211> 1977
<212> DNA
<213> Homo sapiens

<400> 3
atggcccaag ccctgccctg gtcctgtctg tggatggcg cgggagtgtc gcctgcccac 60
ggcacccagc acggcatccg gctgccctg cgacggccgc tggggggcgc cccccctgggg 120
ctgcggctgc cccgggagac cgacgaagag cccgaggagc cggccggag gggcagctt 180
gtggagatgg tggacaacct gagggcaag tcggggcagg gctactacgt ggagatgacc 240
gtggcagcc ccccgagac gctcaacatc ctggtgata caggcagcag taactttgca 300
gtgggtgctg ccccccaccc ctccctgtcat cgctactacc agaggcagct gtccagcaca 360
taccgggacc tccggaagggt tggatgtc cctacaccg agggcaagtg ggaaggggag 420
ctgggcaccg acctggtaag catccccat gggccaaacg tcactgtgcg tgccaacatt 480
gctgccatca ctgaatcaga caagttcttc atcaacggct ccaactggga aggcatcctg 540
gggctggct atgctgatgat tgccaggctt tggatgtct gcttccccct caaccatgt 600
gaagtgtgg cctctgtcg agggagcatg atcattggag gtatcgacca ctcgctgtac 660
acaggcagtc tctggatac acccatccgg cgggagtgg attatgaggt gatcattgtg 720
cgggtggaga tcaatggaca ggatctgaaa atggactgca aggagttaca ctatgacaag 780
agcattgtgg acagtggcac caccacccctt cgttggccca agaaagtgtt tgaagctgca 840

gtcaaatcca tcaaggcago ctctccacg gagaagttcc ctgatggttt ctggcttagga 900
gagcagctgg tggctggca agcaggcacc accccttggaa acattttccc agtcatactca 960
ctctaccta tgggtgaggt taccaaccag tccttccgca tcaccatcct tccgcagcaa 1020
tacctgcggc cagtggaaaga tgtggccacg tcccaagacg actgttacaa gtttgcac 1080
tcacagtcat ccacgggcac tggtatggaa gctgttatca tggagggctt ctacgttgc 1140
tttgatcgaa cccgaaaacg aattggctt gctgtcagcg cttgccatgt gcacgatgag 1200
ttcaggacgg cagcggtgga aggcccttt gtcacccctt acatggaaaga ctgtggctac 1260
aacattccac agacagatga gtcaaccctc atgaccatag cctatgtcat ggctgcac 1320
tgccgcctct tcatactgcactctgcctc atgggtgtc agtggcgctg cctccgctgc 1380
ctgcgcacg agcatgatga ctttgcgtat gacatctccc tgctgaagtg aggaggccca 1440
tggcagaag atagagattc ccctggacca cacccctgt gttcacccctt gtcacaagta 1500
ggagacacag atggcacctg tggccagac acctcaggac cctcccccacc caccataatgc 1560
ctctgccttg atggagaagg aaaaggctgg caaggtgggt tccaggact gtacctgttag 1620
gaaacagaaa agagaagaaa gaagcactct gctggcggga atactcttgg tcacctcaaa 1680
tttaagtctgg gaaattctgc tgcttggaaac ttccagccctg aaccccttgc caccattcct 1740
ttaaattctc caacccaaag tattctctt ttcttagttt cagaagactt ggcacatcac 1800
gcagggttacc ttggcgtgtc tccctgtggt accctggcag agaagagacc aagcttgg 1860
ccctgcgtgc caaagtcaatg aggagaggat gcacagttt ctatttgctt tagagacagg 1920
gactgtataaa acaaggctaa cattggtgca aagattgcctt cttggaaaaaaa aaaaaaaaaa 1977

<210> 4
<211> 476
<212> PRT
<213> Homo sapiens

<400> 4

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
20 25 30

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45

Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Leu Cys Gly
180 185 190

Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly

195	200	205
Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu		
210	215	220
Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val		
225	230	235
240		
Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr		
245	250	255
Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu		
260	265	270
Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser		
275	280	285
Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val		
290	295	300
Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser		
305	310	315
320		
Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile		
325	330	335
Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln		
340	345	350
Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val		
355	360	365
Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala		
370	375	380
Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu		
385	390	395
400		
Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu		
405	410	415
Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser Thr Leu Met Thr		
420	425	430
Ile Ala Tyr Val Met Ala Ala Ile Cys Ala Leu Phe Met Leu Pro Leu		
435	440	445
Cys Leu Met Val Cys Gln Trp Arg Cys Leu Arg Cys Leu Arg Gln Gln		
450	455	460
His Asp Asp Phe Ala Asp Asp Ile Ser Leu Leu Lys		
465	470	475

<210> 5
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 5
Lys Val Glu Ala Asn Tyr Glu Val Glu Gly Glu Arg Lys Lys
1 5 10

<210> 6
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 6
Lys Val Glu Ala Asn Tyr Glu Val Glu Gly Glu Arg Cys Lys Lys
1 5 10 15

<210> 7
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 7
Lys Val Glu Ala Asn Tyr Ala Val Glu Gly Glu Arg Lys Lys
1 5 10

<210> 8
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 8
Lys Val Glu Ala Asn Tyr Ala Val Glu Gly Glu Arg Cys Lys Lys
1 5 10 15

<210> 9
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 9
Glu Ala Asn Tyr Glu Val Glu Phe
1 5

<210> 10
<211> 8

<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 10
Gly Val Leu Leu Ala Ala Gly Trp
1 5

<210> 11
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 11
Ile Ile Lys Met Asp Asn Phe Gly
1 5

<210> 12
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 12
Asp Ser Ser Asn Leu Glu Met Thr His Ala
1 5 10

<210> 13
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (7)
<223> Xaa=cysteic acid

<400> 13
Thr His Gly Phe Gln Leu Xaa His
1 5

<210> 14
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 14
Cys Tyr Thr His Ser Phe Ser Pro
1 5

<210> 15
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>
<221> SITE
<222> (4)
<223> Xaa= any amino acid

<220>
<221> SITE
<222> (7)
<223> Xaa= any amino acid

<400> 15
Ser Thr Phe Xaa Gly Ser Xaa Gly
1 5

<210> 16
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>
<221> SITE
<222> (1)
<223> Xaa= any amino acid

<220>
<221> SITE
<222> (4)..(7)
<223> Xaa= any amino acid

<400> 16
Xaa Phe Ala Xaa Xaa Xaa Xaa Asn
1 5

<210> 17
<211> 8
<212> PRT
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>
<221> SITE
<222> (1)..(2)
<223> Xaa=any amino acid

<220>
<221> SITE
<222> (4)..(7)
<223> Xaa= any amino acid

<400> 17
Xaa Xaa Gln Xaa Xaa Xaa Xaa Ser
1 5

<210> 18
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>
<221> SITE
<222> (1)..(2)
<223> Xaa= any amino acid

<220>
<221> SITE
<222> (4)..(7)
<223> Xaa= any amino acid

<400> 18
Xaa Xaa Glu Xaa Xaa Xaa Xaa Glu
1 5

<210> 19
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 19
Ser Glu Val Asn Leu Asp Ala Glu Phe Arg
1 5 10

<210> 20
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic

peptide sequence

<400> 20
Ser Glu Val Lys Met Asp Ala Glu Phe Arg
1 5 10

<210> 21
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>
<221> MOD_RES
<222> (5)
<223> Nle

<400> 21
Ser Glu Val Asn Xaa Asp Ala Glu Phe Arg
1 5 10

<210> 22
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 22
Gly Ser Glu Ser Met Asp Ser Gly Ile Ser Leu Asp Asn Lys Trp
1 5 10 15

<210> 23
<211> 17
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 23
Trp Lys Lys Gly Ala Ile Ile Gly Leu Met Val Gly Val Val Lys
1 5 10 15

Lys

<210> 24
<211> 11
<212> PRT
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 24
Ala Asn Leu Ser Thr Phe Ala Gln Pro Arg Arg
1 5 10

<210> 25
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 25
Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu Val
1 5 10 15

Phe Phe Ala Glu
20

<210> 26
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 26
Leu Thr Gly Lys Thr Ile Thr Leu Glu Val Glu Pro Ser Asp Thr Ile
1 5 10 15

<210> 27
<211> 30
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>
<221> SITE
<222> (7)
<223> Xaa= cysteic acid

<220>
<221> SITE
<222> (19)
<223> Xaa = cysteic acid

<400> 27
Phe Val Asn Gln His Leu Xaa Gly Ser His Leu Val Glu Ala Leu Tyr
1 5 10 15
Leu Val Xaa Gly Glu Arg Gly Phe Phe Tyr Thr Pro Lys Ala

20

25

30

<210> 28
<211> 21
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic

<220>
<221> SITE
<222> (6)
<223> Xaa=cysteic acid

<220>
<221> SITE
<222> (7)
<223> Xaa=cysteic acid

<220>
<221> SITE
<222> (11)
<223> Xaa=cysteic acid

<220>
<221> SITE
<222> (20)
<223> Xaa=cysteic acid

<400> 28
Gly Ile Val Glu Gln Xaa Xaa Ala Ser Val Xaa Ser Leu Tyr Gln Leu
1 5 10 15
Glu Asn Tyr Xaa Asn
20

<210> 29
<211> 23
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 29
Tyr Arg Tyr Gln Ser His Asp Tyr Ala Phe Ser Ser Val Glu Lys Leu
1 5 10 15
Leu His Ala Leu Gly Gly Cys
20

<210> 30
<211> 23
<212> PRT
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 30
Tyr Arg Tyr Gln Ser His Asp Tyr Ala Phe Ser Ser Val Glu Lys Leu
1 5 10 15
Leu His Ala Leu Gly Gly Cys
20

<210> 31

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 31

Leu Val Asn Met Ala Glu Gly Asp
1 5

<210> 32

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 32

Arg Gly Ser Met Ala Gly Val Leu
1 5

<210> 33

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 33

Gly Thr Gln His Gly Ile Arg Leu
1 5

<210> 34

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 34

Ser Ser Asn Phe Ala Val Gly Ala
1 5

<210> 35
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 35
Gly Leu Ala Tyr Ala Glu Ile Ala
1 5

<210> 36
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 36
His Leu Cys Gly Ser His Leu Val
1 5

<210> 37
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 37
Cys Gly Glu Arg Gly Phe Phe Tyr
1 5

<210> 38
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 38
Gly Val Leu Leu Ser Arg Lys
1 5

<210> 39
<211> 7
<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 39

Val Gly Ser Gly Val Leu Leu
1 5

<210> 40

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 40

Val Gly Ser Gly Val
1 5

<210> 41

<211> 12

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic peptide sequence

<220>

<231> SITE

<222> (9)

<223> Xaa= cysteic acid

<400> 41

Lys Val Glu Ala Leu Tyr Leu Val Xaa Gly Glu Arg
1 5 10

<210> 42

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 42

Trp Arg Arg Val Glu Ala Leu Tyr Leu Val Glu Gly Glu Arg Lys
1 5 10 15

<210> 43

<211> 14

<212> PRT

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 43
Lys Val Glu Ala Asn Tyr Leu Val Glu Gly Glu Arg Lys Lys
1 5 10

<210> 44
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 44
Met Leu Leu Leu
1

<210> 45
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 45
Asp Ala Ala His Pro Gly
1 5

<210> 46
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 46
Lys Val Glu Ala Asn Tyr Asp Val Glu Gly Glu Arg Lys Lys
1 5 10

<210> 47
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 47
Lys Val Glu Ala Asn Leu Ala Val Glu Gly Glu Arg Lys Lys
1 5 10

<210> 48
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 48
Lys Val Glu Ala Leu Tyr Ala Val Glu Gly Glu Arg Lys Lys
1 5 10

<210> 49
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (1)
<223> Xaa = E, G, I, D, T, cysteic acid or S

<400> 49
Xaa Ala Asn Tyr Glu Val Glu Phe
1 5

<210> 50
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (2)
<223> Xaa= A, V, I, S, H, Y, T or F

<400> 50
Glu Xaa Asn Tyr Glu Val Glu Phe
1 5

<210> 51
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>

<221> SITE
<222> (3)
<223> Xaa= N, L, K, S, G, T, D, A, Q, or E

<400> 51
Glu Ala Xaa Tyr Glu Val Glu Phe
1 5

<210> 52
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (4)
<223> Xaa= Y, L, M, Nle, F or H

<400> 52
Glu Ala Asn Xaa Glu Val Glu Phe
1 5

<210> 53
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (5)
<223> Xaa= E, A, D, M, Q, S or G

<400> 53
Glu Ala Asn Tyr Xaa Val Glu Phe
1 5

<210> 54
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (6)
<223> Xaa= V, A, N, T, L, F or S

<400> 54
Glu Ala Asn Tyr Glu Xaa Glu Phe

1

5

<210> 55
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (7)
<223> Xaa= E, G, F, H, cysteic acid or S

<400> 55
Glu Ala Asn Tyr Glu Val Xaa Phe
1 5

<210> 56
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (8)
<223> Xaa= F, W, G, A, H, P, G, N, S or E

<400> 56
Glu Ala Asn Tyr Glu Val Glu Xaa
1 5

<210> 57
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (1)
<223> Xaa= E, G, I, D, T, cyeteic acid or S

<400> 57
Xaa Val Leu Leu Ala Ala Gly Trp
1 5

<210> 58
<211> 8
<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic peptide sequence

<220>

<221> SITE

<222> (2)

<223> Xaa= A, V, I, S, H, Y, T or F

<400> 58

Gly Xaa Leu Leu Ala Ala Gly Trp
1 5

<210> 59

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic peptide sequence

<220>

<221> SITE

<222> (3)

<223> Xaa= N, L, K, S, G, T, D, A, Q or E

<400> 59

Gly Val Xaa Leu Ala Ala Gly Trp
1 5

<210> 60

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic peptide sequence

<220>

<221> SITE

<222> (4)

<223> Xaa= Y, L, M, Nle, F or H

<400> 60

Gly Val Leu Xaa Ala Ala Gly Trp
1 5

<210> 61

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (5)
<223> Xaa= E, A, D, M, Q, S or G

<400> 61
Gly Val Leu Leu Xaa Ala Gly Trp
1 5

<210> 62
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>
<221> SITE
<222> (6)
<223> Xaa= V, A, N, T, L, F or S

<400> 62
Gly Val Leu Leu Ala Xaa Gly Trp
1 5

<210> 63
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>
<221> SITE
<222> (7)
<223> Xaa= E, G, F, H, cysteic acid or S

<400> 63
Gly Val Leu Leu Ala Ala Xaa Trp
1 5

<210> 64
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>
<221> SITE
<222> (8)
<223> Xaa= F, W, G, A, H, P, G, N or S

<400> 64

Gly Val Leu Leu Ala Ala Gly Xaa
1 5

<210> 65
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (1)
<223> Xaa= E, G, I, D, T, cysteic acid or S

<400> 65
Xaa Ile Lys Met Asp Asn Phe Gly
1 5

<210> 66
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (2)
<223> Xaa= A, V, I, S, H, Y, T or F

<400> 66
Ile Xaa Lys Met Asp Asn Phe Gly
1 5

<210> 67
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (3)
<223> Xaa= N, L, K, S, G, T, D, A, Q or E

<400> 67
Ile Ile Xaa Met Asp Asn Phe Gly
1 5

<210> 68
<211> 8

<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (4)
<223> Xaa= Y, L, M, Nle, F or H

<400> 68
Ile Ile Lys Xaa Asp Asn Phe Gly
1 5

<210> 69
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (5)
<223> Xaa= E, A, D, M, Q, S or G

<400> 69
Ile Ile Lys Met Xaa Asn Phe Gly
1 5

<210> 70
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (6)
<223> Xaa= V, A, N,T, L, F or S

<400> 70
Ile Ile Lys Met Asp Xaa Phe Gly
1 5

<210> 71
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic

peptide sequence

<220>
<221> SITE
<222> (7)
<223> Xaa= E, G, F, H, cysteic acid or S

<400> 71
Ile Ile Lys Met Asp Asn Xaa Gly
1 5

<210> 72
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>
<221> SITE
<222> (8)
<223> Xaa= F, W, G, A, H, P, G, N or S

<400> 72
Ile Ile Lys Met Asp Asn Phe Xaa
1 5

<210> 73
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>
<221> SITE
<222> (1)
<223> Xaa= E, G, I, D, T, cysteic acid or S

<400> 73
Xaa Ser Ser Asn Leu Glu Met Thr His Ala
1 5 10

<210> 74
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>
<221> SITE
<222> (2)
<223> Xaa= A, V, I, S, H, Y, T or F

<400> 74
Asp Xaa Ser Asn Leu Glu Met Thr His Ala
1 5 10

<210> 75
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (3)
<223> Xaa= N, L, K, S, G, T, D, A, Q or E

<400> 75
Asp Ser Xaa Asn Leu Glu Met Thr His Ala
1 5 10

<210> 76
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (4)
<223> Xaa= Y, L, M, Nle, F or H

<400> 76
Asp Ser Ser Xaa Met Thr His Ala
1 5

<210> 77
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (7)
<223> Xaa= E, A, D, M, Q, S or G

<400> 77
Asp Ser Ser Asn Leu Glu Xaa Thr His Ala
1 5 10

<210> 78

<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (8)
<223> Xaa= V, A, N, T, L, F or S

<400> 78
Asp Ser Ser Asn Leu Glu Met Xaa His Ala
1 5 10

<210> 79
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (8)
<223> Xaa= E, G, F, H, cysteic acid or S

<400> 79
Asp Ser Asn Leu Glu Met Thr Xaa Ala
1 5

<210> 80
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (9)
<223> Xaa= F, W, G, A, H, P, G, N or S

<400> 80
Asp Ser Asn Leu Glu Met Thr His Xaa
1 5

<210> 81
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic

peptide sequence

<220>
<221> SITE
<222> (1)
<223> Xaa= E, G, I, D, T, cysteic acid or S

<220>
<221> SITE
<222> (7)
<223> Xaa= cysteic acid

<400> 81
Xaa His Gly Phe Gln Leu Xaa His
1 5

<210> 82
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>
<221> SITE
<222> (2)
<223> Xaa= A, V, I, S, H, Y, T or F

<220>
<221> SITE
<222> (7)
<223> Xaa= cysteic acid

<400> 82
Thr Xaa Gly Phe Gln Leu Xaa His
1 5

<210> 83
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>
<221> SITE
<222> (3)
<223> Xaa= N, L, K, S, G, T, D, A, Q or E

<220>
<221> SITE
<222> (7)
<223> Xaa= cysteic acid

<400> 83
Thr His Xaa Phe Gln Leu Xaa His
1 5

<210> 84
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (4)
<223> Xaa= Y, L, M, Nle, F or H

<220>
<221> SITE
<222> (7)
<223> Xaa= cysteic acid

<400> 84
Thr His Gly Xaa Gln Leu Xaa His
1 5

<210> 85
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (5)
<223> Xaa= E, A, D, M, Q, S or G

<220>
<221> SITE
<222> (7)
<223> Xaa= cysteic acid

<400> 85
Thr His Gly Phe Xaa Leu Xaa His
1 5

<210> 86
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (6)
<223> Xaa= V, A, N, T, L, F or S

<220>
<221> SITE
<222> (7)
<223> Xaa= cysteic acid

<400> 86
Thr His Gly Phe Gln Xaa Xaa His
1 5

<210> 87
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>
<221> SITE
<222> (7)
<223> Xaa= E, G, F, H, cysteic acid or S

<400> 87
Thr His Gly Phe Gln Leu Xaa His
1 5

<210> 88
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>
<221> SITE
<222> (7)
<223> Xaa= cysteic acid

<220>
<221> SITE
<222> (8)
<223> Xaa= F, W, G, A, H, P, G, N or S

<400> 88
Thr His Gly Phe Gln Leu Xaa Xaa
1 5

<210> 89
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>

<221> SITE
<222> (1)
<223> Xaa= E, G, I, D, T, cysteic acid or S

<400> 89
Xaa Tyr Thr His Ser Phe Ser Pro
1 5

<210> 90
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (1)
<223> Xaa= cysteic acid

<220>
<221> SITE
<222> (2)
<223> Xaa= A, V, I, S, H, Y, T or F

<400> 90
Xaa Xaa Thr His Ser Phe Ser Pro
1 5

<210> 91
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (1)
<223> Xaa= cysteic acid

<220>
<221> SITE
<222> (3)
<223> Xaa= N, L, K, S, G, T, D, A, Q or E

<400> 91
Xaa Tyr Xaa His Ser Phe Ser Pro
1 5

<210> 92
<211> 8
<212> PRT
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (1)
<223> Xaa= cysteic acid

<220>
<221> SITE
<222> (4)
<223> Xaa= Y, L, M, Nle, F or H

<400> 92
Xaa Tyr Thr Xaa Ser Phe Ser Pro
1 5

<210> 93
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (1)
<223> Xaa= cysteic acid

<220>
<221> SITE
<222> (5)
<223> Xaa= E, A, D, M, Q, S or G

<400> 93
Xaa Tyr Thr His Xaa Phe Ser Pro
1 5

<210> 94
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (1)
<223> Xaa= cysteic acid

<220>
<221> SITE
<222> (6)
<223> Xaa= V, A, N, T, L, F or S

<400> 94
Xaa Tyr Thr His Ser Xaa Ser Pro

1

5

```
<210> 95
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence

<220>
<221> SITE
<222> (1)
<223> Xaa= cysteic acid

<220>
<221> SITE
<222> (7)
<223> Xaa=E, G, F, H, cysteic acid or S

<400> 95
Xaa Tyr Thr His Ser Phe Xaa Pro
    1             5

<210> 96
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence

<220>
<221> SITE
<222> (1)
<223> Xaa=cysteic acid

<220>
<221> SITE
<222> (8)
<223> Xaa= F, W, G, A, H, P, G, N or S

<400> 96
Xaa Tyr Thr His Ser Phe Ser Xaa
    1             5

<210> 97
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence

<220>
<221> SITE
<222> (1)
```

<223> Xaa= E, G, I, D, T, cysteic acid or S

<220>

<221> SITE

<222> (7)

<223> Xaa= any amino acid

<220>

<221> SITE

<222> (4)

<223> Xaa= any amino acid

<400> 97

Xaa Thr Asp Xaa Gly Ser Xaa Gly
1 5

<210> 98

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>

<221> SITE

<222> (2)

<223> Xaa=A, V, I, S, H, Y, T or F

<220>

<221> SITE

<222> (4)

<223> Xaa= any amino acid

<220>

<221> SITE

<222> (7)

<223> Xaa= any amino acid

<400> 98

Ser Xaa Asp Xaa Gly Ser Xaa Gly
1 5

<210> 99

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>

<221> SITE

<222> (3)

<223> Xaa= N, L, K, S, G, T, D, A, Q or E

<220>

<221> SITE

<222> (4)

<223> Xaa= any amino acid

<220>

<221> SITE

<222> (7)

<223> Xaa= any amino acid

<400> 99

Ser Thr Xaa Xaa Gly Ser Xaa Gly
1 5

<210> 100

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>

<221> SITE

<222> (4)

<223> Xaa= Y, L, M, Nle, F or H

<220>

<221> SITE

<222> (7)

<223> Xaa= any amino acid

<400> 100

Ser Thr Asp Xaa Gly Ser Xaa Gly
1 5

<210> 101

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>

<221> SITE

<222> (4)

<223> Xaa= any amino acid

<220>

<221> SITE

<222> (7)

<223> Xaa= any amino acid

<220>

<221> SITE

<222> (5)

<223> Xaa= E, A, D, M, Q, S or G

<400> 101

Ser Thr Asp Xaa Xaa Ser Xaa Gly
1 5

<210> 102
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (4)
<223> Xaa= any amino acid

<220>
<221> SITE
<222> (7)
<223> Xaa= any amino acid

<220>
<221> SITE
<222> (6)
<223> Xaa= V, A, N, T, L, F or S

<400> 102
Ser Thr Asp Xaa Gly Xaa Xaa Gly
1 5

<210> 103
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (4)
<223> Xaa= any amino acid

<220>
<221> SITE
<222> (7)
<223> Xaa= E, G, F, H, cysteic acid or S

<400> 103
Ser Thr Asp Xaa Gly Ser Xaa Gly
1 5

<210> 104
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (4)
<223> Xaa= any amino acid

<220>
<221> SITE
<222> (7)
<223> Xaa= any amino acid

<220>
<221> SITE
<222> (8)
<223> Xaa= F, W, G, A, H, P, G, N or S

<400> 104
Ser Thr Asp Xaa Gly Ser Xaa Xaa
1 5

<210> 105
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>
<221> SITE
<222> (1)
<223> Xaa= E, G, I, D, T, cysteic acid or S

<220>
<221> SITE
<222> (4)..(7)
<223> Xaa= any amino acid

<400> 105

Xaa Phe Ala Xaa Xaa Xaa Xaa Asn
1 5

<210> 106
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>
<221> SITE
<222> (1)
<223> Xaa= any amino acid

<220>
<221> SITE
<222> (2)
<223> Xaa= A, V, I, S, H, Y, T or F

<220>
<221> SITE
<222> (4)..(7)
<223> Xaa= any amino acid

<400> 106
Xaa Xaa Ala Xaa Xaa Xaa Xaa Asn
1 5

<210> 107
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>
<221> SITE
<222> (1)
<223> Xaa= any amino acid

<220>
<221> SITE
<222> (3)
<223> Xaa= N, L, K, S, G, T, D, A, Q or E

<220>
<221> SITE
<222> (4)..(7)
<223> Xaa= any amino acid

<400> 107
Xaa Phe Xaa Xaa Xaa Xaa Xaa Asn
1 5

<210> 108
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>
<221> SITE
<222> (1)
<223> Xaa= any amino acid

<220>
<221> SITE
<222> (4)
<223> Xaa= Y, L, M, Nle, F or H

<220>
<221> SITE
<222> (5)..(7)
<223> Xaa= any amino acid

<400> 108
Xaa Phe Ala Xaa Xaa Xaa Xaa Asn
1 5

<210> 109
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (1)
<223> Xaa= any amino acid

<220>
<221> SITE
<222> (4)
<223> Xaa = any amino acid

<220>
<221> SITE
<222> (5)
<223> Xaa= E, A, D, M, Q, S or G

<220>
<221> SITE
<222> (6)..(7)
<223> Xaa= any amino acid

<400> 109
Xaa Phe Ala Xaa Xaa Xaa Xaa Asn
1 5

<210> 110
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<220>
<221> SITE
<222> (1)
<223> Xaa= any amino acid

<220>
<221> SITE
<222> (4)..(5)
<223> Xaa= any amino acid

<220>
<221> SITE
<222> (6)
<223> Xaa= V, A, N, T, L, F or S

```
<220>
<221> SITE
<222> (7)
<223> Xaa= any amino acid

<400> 110
Xaa Phe Ala Xaa Xaa Xaa Xaa Asn
1 5

<210> 111
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence

<220>
<221> SITE
<222> (1)
<223> Xaa= any amino acid

<220>
<221> SITE
<222> (4)...(6)
<223> Xaa= any amino acid

<220>
<221> SITE
<222> (7)
<223> Xaa= E, G, F, H, cysteic acid or S

<400> 111
Xaa Phe Ala Xaa Xaa Xaa Xaa Asn
1 5

<210> 112
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence

<220>
<221> SITE
<222> (1)
<223> Xaa= any amino acid

<220>
<221> SITE
<222> (4)...(7)
<223> Xaa= any amino acid

<220>
<221> SITE
<222> (8)
<223> Xaa= F, W, G, A, H, P, G, N or S
```

<400> 112
Xaa Phe Ala Xaa Xaa Xaa Xaa Xaa
1 5

<210> 113
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 113
Glu Val Asn Leu Asp Ala Glu Phe Arg
1 5

<210> 114
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 114
Asp Tyr Lys Asp Asp Asp Lys
1 5

<210> 115
<211> 17
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 115
Ala Cys Gly Ser Glu Ser Met Asp Ser Gly Ile Ser Leu Asp Asn Lys
1 5 10 15

Trp

<210> 116
<211> 17
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 116
Trp Lys Lys Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Lys
1 5 10 15

Lys

<210> 117
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 117
Ala Asn Leu Ser Thr Phe Ala Gln Pro Arg Arg
1 5 10

<210> 118
<211> 22
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 118
Tyr Arg Tyr Gln Ser His Asp Tyr Ala Phe Ser Ser Val Glu Lys Leu
1 5 10 15

Leu His Leu Gly Gly Cys
20

<210> 119
<211> 22
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 119
Tyr Arg Tyr Gln Ser His Asp Tyr Ala Phe Ser Ser Val Glu Lys Leu
1 5 10 15

Leu His Leu Gly Gly Cys
20

<210> 120
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 120
Lys Thr Ile Thr Leu Glu Val Glu Pro Ser

1

5

10

<210> 121
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>
<221> SITE
<222> (9)
<223> Xaa= cysteic acid

<400> 121
Val Glu Ala Leu Tyr Leu Val Cys Xaa Gly Glu Arg
1 5 10

<210> 122
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 122
Val Glu Ala Leu Tyr Leu Val Glu Gly Glu Arg
1 5 10

<210> 123
<211> 363
<212> PRT
<213> Homo sapiens

<220>
<223> galactosyltransferase

<400> 123
Met Ala Ser Lys Ser Trp Leu Asn Phe Leu Thr Phe Leu Cys Gly Ser
1 5 10 15

Ala Ile Gly Phe Leu Leu Cys Ser Gln Leu Phe Ser Ile Leu Leu Gly
20 25 30

Glu Lys Val Asp Thr Gln Pro Asn Val Leu His Asn Asp Pro His Ala
35 40 45

Arg His Ser Asp Asp Asn Gly Gln Asn His Leu Glu Gly Gln Met Asn
50 55 60

Phe Asn Ala Asp Ser Ser Gln His Lys Asp Glu Asn Thr Asp Ile Ala
65 70 75 80

Glu Asn Leu Tyr Gln Lys Val Arg Ile Leu Cys Trp Val Met Thr Gly
85 90 95

Pro Gln Asn Leu Glu Lys Lys Ala Lys His Val Lys Ala Thr Trp Ala
100 105 110

Gln Arg Cys Asn Lys Val Leu Phe Met Ser Ser Glu Glu Asn Lys Asp
115 120 125

Phe Pro Ala Val Gly Leu Lys Thr Lys Glu Gly Arg Asp Gln Leu Tyr
130 135 140

Trp Lys Thr Ile Lys Ala Phe Gln Tyr Val His Glu His Tyr Leu Glu
145 150 155 160

Asp Ala Asp Trp Phe Leu Lys Ala Asp Asp Asp Thr Tyr Val Ile Leu
165 170 175

Asp Asn Leu Arg Trp Leu Leu Ser Lys Tyr Asp Pro Glu Glu Pro Ile
180 185 190

Tyr Phe Gly Arg Arg Phe Lys Pro Tyr Val Lys Gln Gly Tyr Met Ser
195 200 205

Gly Gly Ala Gly Tyr Val Leu Ser Lys Glu Ala Leu Lys Arg Phe Val
210 215 220

Asp Ala Phe Lys Thr Asp Lys Cys Thr His Ser Ser Ser Ile Glu Asp
225 230 235 240

Leu Ala Leu Gly Arg Cys Met Glu Ile Met Asn Val Glu Ala Gly Asp
245 250 255

Ser Arg Asp Thr Ile Gly Lys Glu Thr Phe His Pro Phe Val Pro Glu
260 265 270

His His Leu Ile Lys Gly Tyr Leu Pro Arg Thr Phe Trp Tyr Trp Asn
275 280 285

Tyr Asn Tyr Tyr Pro Pro Val Glu Gly Pro Gly Cys Cys Ser Asp Leu
290 295 300

Ala Val Ser Phe His Tyr Val Asp Ser Thr Thr Met Tyr Glu Leu Glu
305 310 315 320

Tyr Leu Val Tyr His Leu Arg Pro Tyr Gly Tyr Leu Tyr Arg Tyr Gln
325 330 335

Pro Thr Leu Pro Glu Arg Ile Leu Lys Glu Ile Ser Gln Ala Asn Lys
340 345 350

Asn Glu Asp Thr Lys Val Lys Leu Gly Asn Pro
355 360

<210> 124
<211> 405
<212> PRT
<213> Homo sapiens

<220>
<223> Homo sapiens sialyltransferase 1

<400> 124
Ile His Thr Asn Leu Lys Lys Lys Phe Ser Cys Cys Val Leu Val Phe

1	5	10	15													
Leu	Leu	Phe	Ala	Val	Ile	Cys	Val	Trp	Lys	Glu	Lys	Lys	Gly	Ser		
20								25						30		
Tyr	Tyr	Asp	Ser	Phe	Lys	Leu	Gln	Thr	Lys	Glu	Phe	Gln	Val	Leu	Lys	
35								40						45		
Ser	Leu	Gly	Lys	Leu	Ala	Met	Gly	Ser	Asp	Ser	Gln	Ser	Val	Ser	Ser	
50								55						60		
Ser	Ser	Thr	Gln	Asp	Pro	His	Arg	Gly	Arg	Gln	Thr	Leu	Gly	Ser	Leu	
65								70						80		
Arg	Gly	Leu	Ala	Lys	Ala	Lys	Pro	Glu	Ala	Ser	Phe	Gln	Val	Trp	Asn	
85								90						95		
Lys	Asp	Ser	Ser	Ser	Lys	Asn	Leu	Ile	Pro	Arg	Leu	Gln	Lys	Ile	Trp	
100								105						110		
Lys	Asn	Tyr	Leu	Ser	Met	Asn	Lys	Tyr	Lys	Val	Ser	Tyr	Lys	Gly	Pro	
115								120						125		
Gly	Pro	Gly	Ile	Lys	Phe	Ser	Ala	Glu	Ala	Leu	Arg	Cys	His	Leu	Arg	
130								135						140		
Asp	His	Val	Asn	Val	Ser	Met	Val	Glu	Val	Thr	Asp	Phe	Pro	Phe	Asn	
145								150						160		
Thr	Ser	Glu	Trp	Glu	Gly	Tyr	Leu	Pro	Lys	Glu	Ser	Ile	Arg	Thr	Lys	
165								170						175		
Ala	Gly	Pro	Trp	Gly	Arg	Cys	Ala	Val	Val	Ser	Ser	Ala	Gly	Ser	Leu	
180								185						190		
Lys	Ser	Ser	Gln	Leu	Gly	Arg	Glu	Ile	Asp	Asp	His	Asp	Ala	Val	Leu	
195								200						205		
Arg	Phe	Asn	Gly	Ala	Pro	Thr	Ala	Asn	Phe	Gln	Gln	Asp	Val	Gly	Thr	
210								215						220		
Lys	Thr	Thr	Ile	Arg	Leu	Met	Asn	Ser	Gln	Leu	Val	Thr	Thr	Glu	Lys	
225								230						240		
Arg	Phe	Leu	Lys	Asp	Ser	Leu	Tyr	Asn	Glu	Gly	Ile	Leu	Ile	Val	Trp	
245								250						255		
Asp	Pro	Ser	Val	Tyr	His	Ser	Asp	Ile	Pro	Lys	Trp	Tyr	Gln	Asn	Pro	
260								265						270		
Asp	Tyr	Asn	Phe	Phe	Asn	Asn	Tyr	Lys	Thr	Tyr	Arg	Lys	Leu	His	Pro	
275								280						285		
Asn	Gln	Pro	Phe	Tyr	Ile	Leu	Lys	Pro	Gln	Met	Pro	Trp	Glu	Leu	Trp	
290								295						300		
Asp	Ile	Leu	Gln	Glu	Ile	Ser	Pro	Glu	Glu	Ile	Gln	Pro	Asn	Pro	Pro	
305								310						315		320
Ser	Ser	Gly	Met	Leu	Gly	Ile	Ile	Met	Met	Thr	Leu	Cys	Asp	Gln		
325								330						335		
Val	Asp	Ile	Tyr	Glu	Phe	Leu	Pro	Ser	Lys	Arg	Lys	Thr	Asp	Val	Cys	

340

345

350

Tyr Tyr Tyr Gln Lys Phe Phe Asp Ser Ala Cys Thr Met Gly Ala Tyr
355 360 365

His Pro Leu Leu Tyr Glu Lys Asn Leu Val Lys His Leu Asn Gln Gly
370 375 380

Thr Asp Glu Asp Ile Tyr Leu Leu Gly Lys Ala Thr Leu Pro Gly Phe
385 390 395 400

Arg Thr Ile His Cys
405

<210> 125

<211> 518

<212> PRT

<213> Homo sapiens

<220>

<223> Homo sapiens aspartyl protease 1

<400> 125

Met Gly Ala Leu Ala Arg Ala Leu Leu Leu Pro Leu Leu Ala Gln Trp
1 5 10 15

Leu Leu Arg Ala Ala Pro Glu Leu Ala Pro Ala Pro Phe Thr Leu Pro
20 25 30

Leu Arg Val Ala Ala Ala Thr Asn Arg Val Val Ala Pro Thr Pro Gly
35 40 45

Pro Gly Thr Pro Ala Glu Arg His Ala Asp Gly Leu Ala Leu Ala Leu
50 55 60

Glu Pro Ala Leu Ala Ser Pro Ala Gly Ala Ala Asn Phe Leu Ala Met
65 70 75 80

Val Asp Asn Leu Gln Gly Asp Ser Gly Arg Gly Tyr Tyr Leu Glu Met
85 90 95

Leu Ile Gly Thr Pro Pro Gln Lys Leu Gln Ile Leu Val Asp Thr Gly
100 105 110

Ser Ser Asn Phe Ala Val Ala Gly Thr Pro His Ser Tyr Ile Asp Thr
115 120 125

Tyr Phe Asp Thr Glu Arg Ser Ser Thr Tyr Arg Ser Lys Gly Phe Asp
130 135 140

Val Thr Val Lys Tyr Thr Gln Gly Ser Trp Thr Gly Phe Val Gly Glu
145 150 155 160

Asp Leu Val Thr Ile Pro Lys Gly Phe Asn Thr Ser Phe Leu Val Asn
165 170 175

Ile Ala Thr Ile Phe Glu Ser Glu Asn Phe Phe Leu Pro Gly Ile Lys
180 185 190

Trp Asn Gly Ile Leu Gly Leu Ala Tyr Ala Thr Leu Ala Lys Pro Ser
195 200 205

Ser Ser Leu Glu Thr Phe Phe Asp Ser Leu Val Thr Gln Ala Asn Ile
210 215 220

pro Asn Val Phe Ser Met Gln Met Cys Gly Ala Gly Leu Pro Val Ala
225 230 235 240

Gly Ser Gly Thr Asn Gly Gly Ser Leu Val Leu Gly Gly Ile Glu Pro
245 250 255

Ser Leu Tyr Lys Gly Asp Ile Trp Tyr Thr Pro Ile Lys Glu Glu Trp
260 265 270

Tyr Tyr Gln Ile Glu Ile Leu Lys Leu Glu Ile Gly Gly Gln Ser Leu
275 280 285

Asn Leu Asp Cys Arg Glu Tyr Asn Ala Asp Lys Ala Ile Val Asp Ser
290 295 300

Gly Thr Thr Leu Leu Arg Leu Pro Gln Lys Val Phe Asp Ala Val Val
305 310 315 320

Glu Ala Val Ala Arg Ala Ser Leu Ile Pro Glu Phe Ser Asp Gly Phe
325 330 335

Trp Thr Gly Ser Gln Leu Ala Cys Trp Thr Asn Ser Glu Thr Pro Trp
340 345 350

Ser Tyr Phe Pro Lys Ile Ser Ile Tyr Leu Arg Asp Glu Asn Ser Ser
355 360 365

Arg Ser Phe Arg Ile Thr Ile Leu Pro Gln Leu Tyr Ile Gin Pro Met
370 375 380

Met Gly Ala Gly Leu Asn Tyr Glu Cys Tyr Arg Phe Gly Ile Ser Pro
385 390 395 400

Ser Thr Asn Ala Leu Val Ile Gly Ala Thr Val Met Glu Gly Phe Tyr
405 410 415

Val Ile Phe Asp Arg Ala Gln Lys Arg Val Gly Phe Ala Ala Ser Pro
420 425 430

Cys Ala Glu Ile Ala Gly Ala Ala Val Ser Glu Ile Ser Gly Pro Phe
435 440 445

Ser Thr Glu Asp Val Ala Ser Asn Cys Val Pro Ala Gln Ser Leu Ser
450 455 460

Glu Pro Ile Leu Trp Ile Val Ser Tyr Ala Leu Met Ser Val Cys Gly
465 470 475 480

Ala Ile Leu Leu Val Leu Ile Val Leu Leu Leu Pro Phe Arg Cys
485 490 495

Gln Arg Arg Pro Arg Asp Pro Glu Val Val Asn Asp Glu Ser Ser Leu
500 505 510

Val Arg His Arg Trp Lys
515

<211> 255

<212> PRT

<213> Homo sapiens

<220>

<223> Homo sapiens syntaxin 6

<400> 126

Met Ser Met Glu Asp Pro Phe Phe Val Val Lys Gly Glu Val Gln Lys
1 5 10 15

Ala Val Asn Thr Ala Gln Gly Leu Phe Gln Arg Trp Thr Glu Leu Leu
20 25 30

Gln Asp Pro Ser Thr Ala Thr Arg Glu Glu Ile Asp Trp Thr Thr Asn
35 40 45

Glu Leu Arg Asn Asn Leu Arg Ser Ile Glu Trp Asp Leu Glu Asp Leu
50 55 60

Asp Glu Thr Ile Ser Ile Val Glu Ala Asn Pro Arg Lys Phe Asn Leu
65 70 75 80

Asp Ala Thr Glu Leu Ser Ile Arg Lys Ala Phe Ile Thr Ser Thr Arg
85 90 95

Gln Val Val Arg Asp Met Lys Asp Gln Met Ser Thr Ser Val Gln
100 105 110

Ala Leu Ala Glu Arg Lys Asn Arg Gln Ala Leu Leu Gly Asp Ser Gly
115 120 125

Ser Gln Asn Trp Ser Thr Gly Thr Thr Asp Lys Tyr Gly Arg Leu Asp
130 135 140

Arg Glu Leu Gln Arg Ala Asn Ser His Phe Ile Glu Glu Gln Gln Ala
145 150 155 160

Gln Gln Gln Leu Ile Val Glu Gln Gln Asp Glu Gln Leu Glu Leu Val
165 170 175

Ser Gly Ser Ile Gly Val Leu Lys Asn Met Ser Gln Arg Ile Gly Gly
180 185 190

Glu Leu Glu Glu Gln Ala Val Met Leu Glu Asp Phe Ser His Glu Leu
195 200 205

Glu Ser Thr Gln Ser Arg Leu Asp Asn Val Met Lys Lys Leu Ala Lys
210 215 220

Val Ser His Met Thr Ser Asp Arg Arg Gln Trp Cys Ala Ile Ala Ile
225 230 235 240

Leu Phe Ala Val Leu Leu Val Val Leu Ile Leu Phe Leu Val Leu
245 250 255

<210> 127

<211> 1728

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: nucleic acid
encoding recombinant fusion protein

<400> 127

atgctgctgc tgctgctgct gctggccctg aggctacagc tctccctggg catcatcccc 60
gttggaggagg agaaaccggaa cttctggAAC cgcgaggcag ccgaggccct ggggtccccc 120
aagaagctgc agcctgcaca gacagccgcc aagaaccta tcataatccct gggcgatggg 180
atgggggtgt ctacgggtac agctgccagg atccctaaaag ggcagaagaa ggacaaactg 240
gggcctgaga tacccctggc catggaccgc ttcccatatg tggctctgtc caagacatac 300
aatgttagaca aacatgtgcc agacagtggc gccacagcca cggcctaccc gtgcgggggtc 360
aagggaact tccagaccat tggcttgagt gcagccgccc gctttaacca gtgcacacg 420
acacgcggca acgaggcat ctccgtatg aatcgggca agaaagcagg gaagtcagtg 480
ggagtggtaa ccaccacacg agtgcagcac gcctcgccag ccggcaccta cgcccacacg 540
gtgaaccgca actggtaactc ggacgcccac gtgcctgcct cggcccccac ggaggggtgc 600
caggacatcg ctacgcagct catctccaac atggacattt acgtgatccct aggtggaggc 660
cgaaagtaca tgtttcccat gggaaacccca gaccctgagt acccagatga ctacagccaa 720
ggtgggacca ggctggacgg gaagaatctg gtgcaggaat ggctggcga ggcgcagggt 780
gcccggatgt tggtaaccgc cactgagctc atgcaggctt ccctggaccc gtctgtgacc 840
catctcatgg gtctcttga gcctggagac atgaaataacg agatccaccg agactccaca 900
ctggaccctt ccctgtatgg gatgacagag gctgccttcgc gcctgctgag caggaacccc 960
cgccgcttct tcctcttcgt ggaggggtgt cgcatcgacc atggatcatca taaaagcagg 1020
gcttaccggg cactgactga gacgatcatg ttgcacgaccc ccattgagag ggcggggccag 1080
ctcaccagcg aggaggacac gctgagccctc gtcaactgccc accactccca cgtcttcc 1140
ttcggaggct accccctgcg agggagctcc atcttcgggc tggccctgg caaggccccgg 1200
gacaggaagg cctacacggc cctcctatac gaaaacggtc caggctatgt gctcaaggac 1260
ggcgcccccgc cggatgttac cgagagcag agcgggagcc ccgagatatcg gcagcagtc 1320
gcagtgcggcc tggacgaaga gacccacgc ggcgaggacg tggcggtgtt cgcgcgcggc 1380
ccgcaggcgc acctggttca cggcgtcag gacgagacct tcatacgca cgtcatggcc 1440
ttcgccgcgtt gcctggagcc ctacaccgc tcgcacctgg cgccccccgc cggcaccacc 1500
gacgcccgc acccaggtaa ctatgaagtt gaattccgaa gagcactcta cgtagagggt 1560
gaaagaggat tcttctacac tccaaaggca ctctacctcg tagagggta aagaggattc 1620
ttctacacta gtctcatgac catagcttat gtcatggctg ccattgcgc cctttcatg 1680
ctgccactct gcctcatggt ggactacaag gatgatgatg acaagtag 1728

<210> 128

<211> 575

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: recombinant
fusion protein sequence

<400> 128

Met Leu Leu Leu Leu Leu Gly Leu Arg Leu Gln Leu Ser Leu
1 5 10 15

Gly Ile Ile Pro Val Glu Glu Asn Pro Asp Phe Trp Asn Arg Glu
20 25 30

Ala Ala Glu Ala Leu Gly Ala Ala Lys Lys Leu Gln Pro Ala Gln Thr
35 40 45

Ala Ala Lys Asn Leu Ile Ile Phe Leu Gly Asp Gly Met Gly Val Ser
50 55 60

Thr Val Thr Ala Ala Arg Ile Leu Lys Gly Gln Lys Lys Asp Lys Leu
65 70 75 80

Gly Pro Glu Ile Pro Leu Ala Met Asp Arg Phe Pro Tyr Val Ala Leu
85 90 95

Ser Lys Thr Tyr Asn Val Asp Lys His Val Pro Asp Ser Gly Ala Thr

100 105 110
Ala Thr Ala Tyr Leu Cys Gly Val Lys Gly Asn Phe Gln Thr Ile Gly
115 120 125
Leu Ser Ala Ala Ala Arg Phe Asn Gln Cys Asn Thr Thr Arg Gly Asn
130 135 140
Glu Val Ile Ser Val Met Asn Arg Ala Lys Lys Ala Gly Lys Ser Val
145 150 155 160
Gly Val Val Thr Thr Arg Val Gln His Ala Ser Pro Ala Gly Thr
165 170 175
Tyr Ala His Thr Val Asn Arg Asn Trp Tyr Ser Asp Ala Asp Val Pro
180 185 190
Ala Ser Ala Arg Gln Glu Gly Cys Gln Asp Ile Ala Thr Gln Leu Ile
195 200 205
Ser Asn Met Asp Ile Asp Val Ile Leu Gly Gly Arg Lys Tyr Met
210 215 220
Phe Pro Met Gly Thr Pro Asp Pro Glu Tyr Prc Asp Asp Tyr Ser Gln
225 230 235 240
Gly Gly Thr Arg Leu Asp Gly Lys Asn Leu Val Gln Glu Trp Leu Ala
245 250 255
Lys Arg Gln Gly Ala Arg Tyr Val Trp Asn Arg Thr Glu Leu Met Gln
260 265 270
Ala Ser Leu Asp Pro Ser Val Thr His Leu Met Gly Leu Phe Glu Pro
275 280 285
Gly Asp Met Lys Tyr Glu Ile His Arg Asp Ser Thr Leu Asp Pro Ser
290 295 300
Leu Met Glu Met Thr Glu Ala Ala Leu Arg Leu Leu Ser Arg Asn Pro
305 310 315 320
Arg Gly Phe Phe Leu Phe Val Glu Gly Arg Ile Asp His Gly His
325 330 335
His Glu Ser Arg Ala Tyr Arg Ala Leu Thr Glu Thr Ile Met Phe Asp
340 345 350
Asp Ala Ile Glu Arg Ala Gly Gln Leu Thr Ser Glu Glu Asp Thr Leu
355 360 365
Ser Leu Val Thr Ala Asp His Ser His Val Phe Ser Phe Gly Gly Tyr
370 375 380
Pro Leu Arg Gly Ser Ser Ile Phe Gly Leu Ala Pro Gly Lys Ala Arg
385 390 395 400
Asp Arg Lys Ala Tyr Thr Val Leu Leu Tyr Gly Asn Gly Pro Gly Tyr
405 410 415
Val Leu Lys Asp Gly Ala Arg Pro Asp Val Thr Glu Ser Glu Ser Gly
420 425 430

Ser Pro Glu Tyr Arg Gln Gln Ser Ala Val Pro Leu Asp Glu Glu Thr
435 440 445

His Ala Gly Glu Asp Val Ala Val Phe Ala Arg Gly Pro Gln Ala His
450 455 460

Leu Val His Gly Val Gln Glu Gln Thr Phe Ile Ala His Val Met Ala
465 470 475 480

Phe Ala Ala Cys Leu Glu Pro Tyr Thr Ala Cys Asp Leu Ala Pro Pro
485 490 495

Ala Gly Thr Thr Asp Ala Ala His Pro Gly Asn Tyr Glu Val Glu Pro
500 505 510

Arg Arg Ala Leu Tyr Val Glu Gly Glu Arg Gly Phe Phe Tyr Thr Pro
515 520 525

Lys Ala Leu Tyr Leu Val Glu Gly Glu Arg Gly Phe Phe Tyr Thr Ser
530 535 540

Leu Met Thr Ile Ala Tyr Val Met Ala Ala Ile Cys Ala Leu Phe Met
545 550 555 560

Leu Pro Leu Cys Leu Met Val Asp Tyr Lys Asp Asp Asp Asp Lys
565 570 575

<210> 129

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 129

Lys Met Asp Ala Glu

1 5

<210> 130

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 130

Gly Arg Arg Gly Ser

1 5

<210> 131

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic

peptide sequence

<400> 131
Val Glu Ala Asn Tyr Glu Val Glu Gly Glu
1 5 10

<210> 132
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 132
Val Glu Ala Asn Tyr Ala Val Glu Gly Glu
1 5 10

<210> 133
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 133
Lys Thr Ile Asn Leu Glu Val Glu Pro Ser
1 5 10

<210> 134
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>
<221> MOD_RES
<222> (5)
<223> Nle

<400> 134
Lys Thr Ile Asn Xaa Glu Val Glu Pro Ser
1 5 10

<210> 135
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<221> MOD_RES

<222> (5)
<223> Nle

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 135
Lys Thr Ile Asn Xaa Glu Val Asp Pro Ser
1 5 10

<210> 136
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<221> MOD_RES
<222> (5)
<223> Nle

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 136
Lys Thr Ile Asn Xaa Asp Val Asp Pro Ser
1 5 10

<210> 137
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 137
Lys Thr Ile Ser Leu Asp Val Glu Pro Ser
1 5 10

<210> 138
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 138
Lys Thr Ile Ser Leu Asp Val Asp Pro Ser
1 5 10

<210> 139
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 139
Lys Met Asp Ala
1

<210> 140
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 140
Ser Tyr Glu Val
1

<210> 141
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 141
Ser Glu Val Ser Tyr Glu Val Glu Phe Arg
1 5 10

<210> 142
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 142
Asn Leu Asp Ala
1

<210> 143
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 143
Ser Glu Val Ser Tyr Asp Ala Glu Phe Arg
1 5 10

<210> 144

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 144

Ser Glu Val Ser Tyr Glu Ala Glu Phe Arg
1 5 10

<210> 145

<211> 25

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 145

Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser
1 5 10 15

Glu Val Ser Tyr Glu Val Glu Phe Arg
20 25

<210> 146

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 146

Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Ser Tyr Glu
1 5 10 15

Val Glu Phe Arg
20

<210> 147

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 147

Lys Thr Glu Glu Ile Ser Glu Val Ser Tyr Glu Val Glu Phe Arg
1 5 10 15

<210> 148
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 148
Thr Glu Val Ser Tyr Glu Val Glu Phe Arg
1 5 10

<210> 149
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 149
Ser Glu Val Asp Tyr Glu Val Glu Phe Arg
1 5 10

<210> 150
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 150
Thr Glu Val Asp Tyr Glu Val Glu Phe Arg
1 5 10

<210> 151
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 151
Thr Glu Ile Asp Tyr Glu Val Glu Phe Arg
1 5 10

<210> 152
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic

peptide sequence

<400> 152
Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg
1 5 10

<210> 153
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 153
Ser Glu Ile Asp Tyr Glu Val Glu Phe Arg
1 5 10

<210> 154
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<221> SITE
<222> (11)
<223> Xaa=tryptophan

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 154
Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg Xaa Lys Lys
1 5 10

<210> 155
<211> 18
<212> PRT
<213> Artificial Sequence

<220>
<221> SITE
<222> (16)
<223> Xaa=tryptophan

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 155
Lys Thr Glu Glu Ile Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg Xaa
1 5 10 15

Lys Lys

<210> 156
<211> 23

<212> PRT

<213> Artificial Sequence

<220>

<221> SITE

<222> (21)

<223> Xaa=tryptophan

<220>

<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 156

Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Ile Ser Tyr Glu Val
1 5 10 15

Glu Phe Arg Xaa Lys Lys

20

<210> 157

<211> 28

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>

<221> SITE

<222> (26)

<223> Xaa=tryptophan

<400> 157

Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser
1 5 10 15

Glu Ile Ser Tyr Glu Val Glu Phe Arg Xaa Lys Lys

20 25

<210> 158

<211> 13

<212> PRT

<213> Artificial Sequence

<220>

<221> SITE

<222> (11)

<223> Xaa=tryptophan

<220>

<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 158

Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg Xaa Lys Lys
1 5 10

<210> 159

<211> 18

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
peptide sequence

<220>

<221> SITE

<222> (16)

<223> Xaa=tryptophan

<400> 159

Lys Thr Glu Glu Ile Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg
1 5 10 15

Xaa Lys Lys

<210> 160

<211> 23

<212> PRT

<213> Artificial Sequence

<220>

<221> SITE

<222> (21)

<223> Xaa=tryptophan

<220>

<223> Description of Artificial Sequence: synthetic
peptide

<400> 160

Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Ile Ser Tyr
1 5 10 15

Glu Val Glu Phe Arg Xaa Lys Lys
20

<210> 161

<211> 28

<212> PRT

<213> Artificial Sequence

<220>

<221> SITE

<222> (26)

<223> Xaa=tryptophan

<220>

<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 161

Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile
1 5 10 15

Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg Xaa Lys Lys
20 25

<210> 162
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<221> SITE
<222> (11)
<223> Xaa=oregon green

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 162
Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg Xaa Lys Lys
1 5 10

<210> 163
<211> 18
<212> PRT
<213> Artificial Sequence

<220>
<221> SITE
<222> (16)
<223> Xaa=oregon green

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 163
Lys Thr Glu Glu Ile Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg Xaa
1 5 10 15

Lys Lys

<210> 164
<211> 23
<212> PRT
<213> Artificial Sequence

<220>
<221> SITE
<222> (21)
<223> Xaa=oregon green

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 164
Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Ile Ser Tyr Glu
1 5 10 15

Val Glu Phe Arg Xaa Lys Lys
20

<210> 165
<211> 28
<212> PRT
<213> Artificial Sequence

<220>
<221> SITE
<222> (26)
<223> Xaa=oregon green

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 165
Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser
1 5 10 15

Glu Ile Ser Tyr Glu Val Glu Phe Arg Xaa Lys Lys
20 25

<210> 166
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<221> SITE
<222> (11)
<223> Xaa=oregon green

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 166
Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg Xaa Lys Lys
1 5 10

<210> 167
<211> 18
<212> PRT
<213> Artificial Sequence

<220>
<221> SITE
<222> (16)
<223> Xaa=oregon green

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 167
Lys Thr Glu Glu Ile Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg
1 5 10 15

Xaa Lys Lys

<210> 168
<211> 23
<212> PRT
<213> Artificial Sequence

<220>
<221> SITE
<222> (21)
<223> Xaa=oregon green

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 168
Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Ile Ser Tyr
1 5 10 15

Glu Val Glu Phe Arg Xaa Lys Lys
20

<210> 169
<211> 28
<212> PRT
<213> Artificial Sequence

<220>
<221> SITE
<222> (26)
<223> Xaa=oregon green

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 169
Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile
1 5 10 15

Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg Xaa Lys Lys
20 25

<210> 170
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 170
Ser Glu Val Asn Tyr Glu Val Glu Phe Arg
1 5 10

<210> 171
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
primer for site-directed mutagenesis of APP

<400> 171
gagatctctg aaatttagtta tgaagttagaa ttccgacatg actcagg 47

<210> 172
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
primer for site-directed mutagenesis of APP

<400> 172
tgagtcatgt cggaattcta cttcataact aatttcagag atctcctc 48

<210> 173
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
primer for site-directed mutagenesis of APP

<400> 173
gagatctctg aaagtagtta tgaagttagaa ttccgacatg actcagg 47

<210> 174
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
primer for site-directed mutagenesis of APP

<400> 174
tgagtcatgt cggaattcta cttcataact actttcagag atctcctc 48

<210> 175
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
primer for site-directed mutagenesis of APP

<400> 175
gagatctctg aaatttagtta tgaagcagaa ttccgacatg actcagg 47

<210> 176
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
primer for site-directed mutagenesis of APP

<400> 176
tgagtcatgt cggaattctg cttcataact aatttcagag atctcc

48

<210> 177
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 177
Val Ser Tyr Glu Val
1 5

<210> 178
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 178
Val Ser Tyr Asp Ala
1 5

<210> 179
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 179
Ile Ser Tyr Glu Val
1 5

<210> 180
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 180
Val Lys Met Asp Ala
1 5

<210> 181
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
primer for generating mutant construct named
MBPC125-SYEV

<400> 181
gacatctctg aagttagtta ttaggcagaa ttccgacatg actcagg

47

<210> 182
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
primer for generating mutant construct named
MBPC125-SYEV

<400> 182
tgagtcattgt cggaattctg cctaataact cacttcagag atctcctc

48

<210> 183
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 183
Lys Lys Ser Tyr Glu Val
1 5

<210> 184
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 184
Val Glu Ala Asn Tyr Glu Val Glu Gly Glu
1 5 10

<210> 185
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide sequence

<400> 185
Val Glu Ala Asn Tyr Ala Val Glu Gly Glu
1 5 10

<210> 186
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 186
Asp Tyr Lys Asp Asp Asp Asp Lys
1 5

<210> 187
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 187
Ser Tyr Glu Ala
1

<210> 188
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 188
Ser Tyr Ala Val
1

<210> 189
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide sequence

<400> 189
Val Ser Tyr Glu Ala
1 5

<210> 190

<211> 13

<212> PRT

<213> Artificial sequence

<220>

<223> Description of artificial sequence: synthetic peptide sequence

<400> 190

Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg Trp Lys Lys
1 5 10

<210> 191

<211> 23

<212> PRT

<213> Artificial sequence

<220>

<223> Description of artificial sequence: synthetic peptide sequence

<400> 191

Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Ile Ser Tyr Glu
1 5 10 15

Val Glu Phe Arg Trp Lys Lys
20

<210> 192

<211> 15

<212> PRT

<213> Artificial sequence

<220>

<223> Description of artificial sequence: synthetic peptide sequence

<220>

<221> SITE

<222> (1)..(1)

<223> amino acid at position 1 is biotinylated

<220>

<221> SITE

<222> (14)..(14)

<223> cys at position 14 is derivatized with an oregon green

<400> 192

Lys Glu Ile Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg Lys Lys
1 5 10 15

<210> 193

<211> 22

<212> PRT

<213> Artificial sequence

<220>

<223> Description of artificial sequence: synthetic peptide sequence

<220>

<221> SITE

<222> (1)..(1)

<223> amino acid at position 1 is biotinylated

<220>

<221> SITE

<222> (21)..(21)

<223> cys at position 21 is derivatized with an oregon green

<400> 193

Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Ile Ser Tyr Glu
1 5 10 15

Val Glu Phe Arg Lys Lys
20

<210> 194

<211> 6806

<212> DNA

<213> Artificial sequence

<220>

<223> Description of artificial sequence: synthetic DNA sequence

<400> 194
ccgacaccat cgaatggcgc aaaactttc gcggtatggc atgatagcgc ccgaaagaga 60
gtcaattcag ggtggtaat gtgaaaccag taacgttata cgatgtcgca gagtatgccg 120
gtgtctctta tcagaccgtt tcccgcgtgg tgaaccaggc cagccacgtt tctgcgaaaa 180
cgccggaaaa agtggaaagcg gcgatggcgg agctgaatta cattccaaac cgcgtggcac 240
aacaactggc gggcaaacag tcgttgctga ttggcggtgc cacctccagt ctggccctgc 300
acgcgcgcgc gcaaattgtc gcggcgattt aatctcgccg ccatcaactg ggtgccagcg 360
tggtggtgtc gatggtagaa cgaagcggcg tcgaagcctg taaagcggcg gtgcacaatc 420
ttctcgccca acgcgtcagt gggctgatca ttaactatcc gctggatgac caggatgcca 480
ttgctgtgga agctgcctgc actaatgttc cggcgattt tcttgatgtc tctgaccaga 540
caccatcaa cagtattatt ttctccatg aagacggtac gcgactggc gtggagcatc 600
tggtcgcatt gggtcaccag caaatcgccg tggtagcggg cccatatagt tctgtctcg 660
cgctctgcg tctggctggc tggcataat atctcactcg caatcaaatt cagccgatacg 720
cggaacggga aggcgactgg agtgcctgtt ccggtttca acaaaccatg caaatgctga 780
atgagggcat cgccccact gcgatgtgg ttgccaacya tcagatggcg ctggcgcaa 840
tgcgcgcatt taccgagtcc gggctgcgcg ttggcggtt tatctcggtt gtggatacg 900
acgataccga agacagctca tggtatatcc cggcgtaac caccatcaa caggatttc 960
gcctgctggg gcaaaccagc gtggaccgct tgctgcaact ctctcaggc caggcggtga 1020
agggcaatca gctgttgccc gtctcactgg tgaaaagaaa aaccaccctg gcgcctaata 1080
cgcaaaaccgc ctctccccgc gcgttggccg attcattat gcagctggca cgacaggttt 1140
cccgactgga aagcgggcag tgagcgcac gcaattatg tgagtttagct cactcattag 1200
gcacaattct catgtttgac agcttatcat cgactgcacg gtgcaccaat gcttctggcg 1260
tcaggcagcc atcggaaagct gtggatggc tgtgcaggc gtaaatact gcataattcg 1320
tgtcgctcaa ggcgcactcc cggtctggat aatgtttttt gcgcgcacat cataacggtt 1380
ctggcaaata ttctgaaatg agctgttgac aattatcat cggctcgat aatgtgtgga 1440
attgtgagcg gataacaatt tcacacagga aacagccagt ccgtttaggt gttttcacga 1500
gcacttcacc aacaaggacc atagattatg aaaactgaag aaggtaaact ggtaatctgg 1560
attaacggcg ataaaggcta taacggtctc gctgaagtgc gtaagaaatt cgagaaagat 1620
accggaattha aagtcaccgt tgagcatccg gataaaactgg aagagaaatt cccacaggtt 1680
gcggcaactg gcgatggccc tgacattatc ttctggcac acgaccgctt tggtggctac 1740

gctcaatctg gcctgttggc tgaaatcacc ccggacaaag cgttccagga caagctgtat 1800
ccgtttacct gggatgccgt acgttacaac ggcaagctga ttgcttaccc gatcgctgtt 1860
gaagcgttat cgctgattta taacaaagat ctgctgccga acccgccaaa aacctggaa 1920
gagatcccgg cgctggataa agaactgaaa gcgaaaggta agagcgcgt gatgttcaac 1980
ctgcaagaac cgtacttcac ctggccgctg attgctgctg acgggggtta tgcgttcaag 2040
tatgaaaacg gcaagtacga cattaaagac gtgggcgtgg ataacgctgg cgcgaaagcg 2100
ggtctgacct tcctgggtga cctgattaaa aacaaacaca tgaatgcaga caccgattac 2160
tccatcgcaag aagctgcctt taataaaggc gaaacagcga tgaccatcaa cggcccgtgg 2220
gcatggtcca acatcgacac cagcaaagtg aattatggtg taacggtaact gccgaccttc 2280
aagggtcaac catccaaacc gttcggttggc gtgctgagcg caggtattaa cgccgcccagt 2340
ccgaacaaag agctggcgaa agagttcctc gaaaactatc tgctgactga tgaaggtctg 2400
gaagcggtta ataaagacaa accgctgggt gccgtagcgc tgaagtctta cgaggaagag 2460
ttggcgaaag atccacgtat tgccgccacc atggaaaacg cccagaaagg tgaatcatg 2520
ccgaacatcc cgcaagatgtc cgctttctgg tatgccgtgc gtactgcggt gatcaacgcc 2580
gccagcggtc gtcagactgt cgatgaagcc ctgaaagacg cgcaagactaa ttcgagctcg 2640
gtacccggcc ggggatccat cgagggtagg gccgaccgag gactgaccac tgcaccaggt 2700
tctgggttga caaatatcaa gacggaggag atctctgaag tgaatctgga tgcagaattc 2760
cgacatgact caggatatga agttcatcat caaaaattgg tgttcttgc agaagatgtg 2820
ggttcaaaaca aaggtgcaat cattggactc atgggtggcg gtgttgtcat agcgacagt 2880
atcgcatca ccttgggtgat gctgaagaag aaacagtaca catccattca tcatggtg 2940
gtggaggttg acgcccgtgt caccccgagag gagcgccacc tgtccaagat gcagcagaac 3000
ggctacgaaa atccaaccta caagttcttt gagcagatgc agaactagac ccccgccaca 3060
gcagcctctg aagttggaca gcaaaaccat tgcttcacta cccatcggtg tccattata 3120
gaataatgtg ggaagaaaca aacccgaaaa atgatttact cattatcgcc ttttgacagc 3180
tgtgctgtaa cacaagttaga tgcctgaact tgaattaatc cacacatcag taatgtattc 3240
tatctcttt tacatttgg tctctataact acattattaa tgggtttgt gtactgtaaa 3300
gaatttagct gtatcaaact agtaatagcc tgaattcagt aacctaacc tcgatggatc 3360
ctctagagtc gacctgcagg caagcttggc actggccgtc gtttacaac gtcgtgactg 3420
ggaaaaaccct ggcgttaccc aacttaatcg ccttgcagca catccccctt tcgcccagctg 3480
gcgtaatagc gaagaggccc gcaccgatcg cccttcccaa cagttgcgcga ggcgtaatgg 3540
cgaatggcag cttggctgtt ttggcggatg agagaagatt ttcagcctga tacagattaa 3600
atcagaacgc agaagcggtc tgataaaaca gaatttgcct ggcggcagta ggcgggtggt 3660

cccacctgac cccatgccga actcagaagt gaaacgccgt agcgccgatg gtatgtggg	3720
gtctccccat gcgagagtag ggaactgccca ggcataaat aaaacgaaag gctcagtcga	3780
aagactgggc ct当地t tttcggttt atctgttgc tgctcggtgaa cgctctcctg agtaggacaa	3840
atccgccggg agcggattt aacgttgca agcaacggcc cggagggtgg cgggcaggac	3900
gcccgcata aactgccagg catcaaatta agcagaaggc catcctgacg gatggcctt	3960
ttgcgttct acaaactt tttgttatt tttctaaata cattcaaata tgtatccgct	4020
catgagacaa taaccctgat aaatgctca ataatattga aaaaggaaga gtatgagtt	4080
tcaacattc cgtgtcgccc ttattccctt ttttgcggca ttttgccttc ctgttttgc	4140
tcacccagaa acgctggta aagtaaaaga tgctgaagat cagttgggtg cacgagtggg	4200
ttacatcgaa ctggatctca acagcgtaa gatccttgc agtttcgccc cccgaaacg	4260
ttttccaatg atgagcactt ttaaagttct gctatgtggc gcggatttat cccgtgttgc	4320
cggccggcaa gagcaactcg gtcgcccgc acactattct cagaatgact tggttgagta	4380
ctcaccagtc acagaaaagc atcttacgga tggcatgaca gtaagagaat tatgcagtgc	4440
tgccataacc atgagtgata acactgcggc caacttactt ctgacaacga tcggaggacc	4500
gaaggagcta accgctttt tgcacaacat gggggatcat gtaactcgcc ttgatcggt	4560
ggaaccggag ctgaatgaag ccataccaaa cgacgagcgt gacaccacga tgcctgttagc	4620
aatggcaaca acgttgcgca aactattaac tggcgaacta cttactctag ct当地ggca	4680
acaattaata gactggatgg aggcggataa agttgcagga ccacttctgc gtcggccct	4740
tccugctggc tggtttattt ctgataaaatc tggagccggt gagcgtgggt ctgcgggtat	4800
cattgcagca ct当地ggccag atggtaagcc ct当地gtatc gtagttatct acacgacggg	4860
gagtcaggca actatggatg aacgaaatag acagatcgct gagataggtg cctcactgat	4920
taagcatgg taactgtcag accaagttt ctcataatata ctttagattt attaaaaact	4980
tcattttaa tttaaaagga tctaggtgaa gatcctttt gataatctca tgaccaaaat	5040
cccttaacgt gagtttcgt tccactgagc gtcagacccc gtagaaaaga tcaaaggatc	5100
ttcttgagat ccttttttc tgcgctaat ctgctgcttgc caaacaaaaa aaccaccgct	5160
accagcggtg gttgtttgc cggatcaaga gctaccaact cttttccga aggtactgg	5220
cttcagcaga ggcagatac caaatactgt cttctagtg tagccgtatg taggcccacca	5280
cttcaagaac tctgttagcac cgcctacata ctcgtctgc ctaatccgt taccagtggc	5340
tgctgccagt ggcgataagt cgtgtcttac cgggttggac tcaagacgat agttaccgga	5400
taaggcgcag cggcgggct gaacgggggg ttcgtgcaca cagccagct tggagcgaac	5460
gacctacacc gaactgagat acctacagcg tgagctatga gaaagcgcca cgcttcccga	5520
aggagaaaag gcccacaggat atccggtaag cggcagggtc ggaacaggag agcgcacgag	5580

ggagcttcca gggggaaacg cctggtatct ttatagtcct gtcgggttc gccacctctg	5640
acttgagcgt cgattttgt gatgctcgta aggggggcgg agcctatgga aaaacgccag	5700
caacgcggcc ttttacggt tcctggcctt ttgctggcct tttgctcaca tggtctttcc	5760
tgcgttatcc cctgattctg tggataaccg tattaccgco tttgagttagt ctgataccgc	5820
tcgcccgcagc cgaacgaccg agcgcagcga gtcagtgago gaggaagcgg aagagcgcct	5880
gatgcggtat ttttcctta cgcatctgtg cggtattca caccgcatat ggtgcactct	5940
cagtacaatc tgctctgatg ccgcatagtt aagccagtat acactccgct atcgctacgt	6000
gactgggtca tggctgcgcc ccgacacccg ccaacacccg ctgacgcgcc ctgacgggct	6060
tgtctgctcc cggcatccgc ttacagacaa gctgtgaccg tctccggag ctgcattgtgt	6120
cagaggttt caccgtcatt accgaaacgc gcgaggcagc tgccgtaaag ctcatcagcg	6180
tggtcgtgaa gcgattcaca gatgtctgcc tggatcatccg cgtccagctc gttgagttt	6240
tccagaagcg ttaatgtctg gcttctgata aagcgggcca tgttaaggc ggtttttcc	6300
tgttgttca cttgatgcct ccgtgtttaagg gggatttct gttcatgggg gtaatgatac	6360
cgtatgaaacg agagaggatg ctcacgatac gggttactga tggatgaaat gccccgttac	6420
tggAACGTTG tgagggtaaa caactggcg tatggatgcg gcgggaccag agaaaaatca	6480
ctcagggtca atgccagcgc ttctgttata cagatgttgg tggtccacag ggttagccagc	6540
agcatcctgc gatgcagatc cggaaacataa tggtgcaggg cgctgacttc cgcgtttcca	6600
gactttacga aacacggaaa ccgaagacca ttcatgttgg tgctcaggc gcagacgtt	6660
tgcagcagca gtcgttcac gttcgctcgc gtatcggtga ttcatctgc taaccagtaa	6720
ggcaaccccg ccagccttagc cgggtcctca acgacaggag cacgatcatg cgcacccgtg	6780
gccaggaccc aacgctgccc gaaatt	6806

<210> 195

<211> 13

<212> PRT

<213> Artificial sequence

<220>

<223> Description of artificial sequence: synthetic peptide sequence

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION (MCA)

<220>

<221> SITE

<222> (11)..(11)

<223> 2,4-dinitrophenyl group after the Lys at position 11

<400> 195

Ser Glu Val Asn Leu Asp Ala Glu Phe Arg Lys Arg Arg
1 5 10

<210> 196

<211> 12

<212> PRT

<213> Artificial sequence

<220>

<223> Description of artificial sequence: synthetic peptide sequence

<220>

<221> SITE

<222> (4)..(4)

<223> amino acid at position 4 has been derivatized with a statine

<400> 196

Ser Glu Val Asn Val Ala Glu Phe Arg Gly Gly Cys
1 5 10

<210> 197

<211> 10

<212> PRT

<213> synthetic peptide sequence

<220>

<221> SITE

<222> (4)..(4)

<223> amino acid at position 4 has been derivatized with a statine

<220>

<221> SITE

<222> (10)..(10)

<223> amino acid at position 10 has been derivatized with Bodipy FL

<400> 197

Ser Glu Val Asn Val Ala Glu Phe Arg Cys
1 5 10