Linear regresjon (enkel og multippel) ISTx1003 Statistisk læring og Data Science

Stefanie Muff, Institutt for matematiske fag

November 1 og 5, 2021

Plan for i dag

- Hvem er vi?
- Statistisk læring og data science
- De tre temaene i modulen:
 - regresjon
 - klassifikasjon og
 - klyngeananlyse
- Læringsressurser og pensum
- Prosjektoppgaven og Blackboard-informasjon
- Tema: regresjon med enkel lineær regresjon

Læringsmål (av modulen)

Etter du har gjennomført denne modulen skal du kunne:

- forstå når du kan bruke regresjon, klassifikasjon og klyngeananlyse til å løse et ingeniørproblem
- kunne gjennomføre multippel lineær regresjon på et datasett
- bruke logistisk regresjon og nærmeste nabo for å utføre en klassifikasjonsoppgave
- \bullet bruke hierarkisk og k-means klyngeanalyse på et datasett, forstå begrepet avstandsmål
- og kunne kommunisere resultatene fra regresjon/ klassifikasjon/klyngeanalyse til medstudenter og ingeniører
- bli en kritisk leser av resultater fra statistikk/maskinlæring/ statistisk læring/data science/kunstig intelligens når disse rapporteres i media, og forstå om resultatene er realistiske ut fra informasjonen som gis
- kunne besvare prosjektoppgaven på en god måte!

Hva er statistisk læring og data science?

Todo

Prosjektoppgaven

• Vi ser hvor informasjonen ligger på Blackboard og hvordan melde seg på gruppe.

• Vi ser på prosjektoppgaven på https://s.ntnu.no/isthub.

Læringsmål (i dag)

- Du kan lage en modell for å forstå sammenhengen mellom en respons og en eller flere forklaringsvariabler.
- Du kan lage en modell for å predikere en respons fra en eller flere forklaringsvariabler.

Læringsressurser

Alle ressurser er tilgjengelig her:

https://wiki.math.ntnu.no/istx1003/2021h/start

Tema Regresjon:

- Kompendium: Regresjon (pdf og html, by Mette Langaas)
- Korte videoer: (by Mette Langaas)
 - Multippel lineær regresjon: introduksjon (14:07 min)
 - Multippel lineær regresjon: analyse av et datasett (15:20 min)
- Denne forelesningen
- Disse slides med notater

Regresjon – motiverende eksempel

(Veiledet læring - vi kjenner responsen)

 Kropssfett er en viktig indikator for overvekt, men vanskelig å måle.

Spørsmål: Hvilke faktorer tillater præsis estimering av kroppsfettet?

Vi undersøer 243 mannlige deltakere. Kroppsfett (%), BMI og andre forklaringsvariabler ble målet. Spredningsplott:

For en model for funker god for prediksjon trenger vi multippel linear regresjon. Men vi begynner med enkel linear regresjon (bare en forklaringsvariabel):

Enkel linear regresjon

- ullet En kontinuerlig respons variabel Y
- Bare en forklaringsvariable x_1
- Relasjon mellom Y og x er antatt å være linear.

Hvis den lineare relasjonen mellom Y og x er perfekt, så gjelder

$$y_i = \beta_0 + \beta_1 x_{1i}$$

for alle i. Men..

Hvilken linje er best?

Enkel linear regresjon

a) Kan vi tilpasse den "rette" linje til dataene?

- $$\begin{split} \bullet & \ \hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i}. \\ \bullet & \ \hat{e}_i = \hat{y}_i y \\ \bullet & \ \hat{\beta}_0 \ \text{og} \ \hat{\beta}_1 \ \text{velges slik at} \end{split}$$

$$SSE = \sum_{i} \hat{e}_{i}^{2}$$

minimeres.

b) Kan vi tolke linja? Hvor sikkert er jeg på $\hat{\beta}_1$ og linja? Vi trenger antakelser, KI og hypothesetest.

c) Fremtidige presisjoner av predikert y (kroppsfett)?

Linear regresjon – antakelser

$$Y_i = \underbrace{\beta_0 + \beta_1 x_{i1}}_{\hat{y}_i} + e_i$$

med

$$e_i \sim \mathsf{N}(0,\sigma^2)$$
 .

Do-it-yourself "by hand"

Her kan du finne de beste parametrene selv:

You can do this here:

https://gallery.shinyapps.io/simple_regression/

Multippel linear regresjon

Nesten det samme some enkel linear regresjon, we bare summerer flere forklaringsvariabler:

$$Y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \ldots + \beta_p x_{pi} + e_i \ , \quad e_i \sim \mathsf{N}(0, \sigma^2) \ .$$

For eksempel:

$$\mathrm{bodyfat}_i = \beta_0 + \beta_1 \mathrm{bmi}_i + \beta_2 \mathrm{age}_i + e_i \ .$$

Regresjonsanalyse i fem steg

Vi skal bruke statmodels.api og statmodels.formula.api for lineær regresjon:

 $\bf Steg~1:~Bli~kjent~med~dataene~ved~å~se~på~oppsummeringsmål og~ulike typer plott$

Steg 2: Spesifiser en matematisk modell

Steg 3: Tilpass modellen

Steg 4: Presenter resultater fra den tilpassede modellen

Steg 5: Evaluer om modellen passer til dataene

Steg 1: Bli kjent med dataene

Vi kan for eksempel se på histogram og boxplot:

Ellers en parplot med kryssplotter for alle forklaringsvariable(r) (x_1, \dots, x_p) og respons y:


```
##
      bodyfat
                         age
                                        weight
                                                         height
   Min. : 0.70
                    Min.
                           :22.00
                                   Min. : 56.75
                                                     Min.
                                                            :162.6
##
    1st Qu.:12.50
                   1st Qu.:35.50
                                    1st Qu.: 72.30
                                                     1st Qu.:173.7
   Median :19.20
                   Median :43.00
                                   Median: 80.02
                                                     Median :177.8
   Mean
          :19.11
                           :44.83
                                           : 80.91
                                                            :178.5
##
                   Mean
                                   Mean
                                                     Mean
##
   3rd Qu.:25.20
                   3rd Qu.:54.00
                                   3rd Qu.: 89.32
                                                     3rd Qu.:183.5
##
   Max. :47.50
                   Max.
                           :81.00
                                   Max.
                                           :119.29
                                                     Max.
                                                            :196.8
                                                         hip
##
        bmi
                        neck
                                       abdomen
##
    Min.
           :19.06
                   Min.
                           :31.10
                                   Min.
                                           : 70.40
                                                     Min.
                                                            : 85.30
##
   1st Qu.:23.07
                   1st Qu.:36.40
                                   1st Qu.: 84.90
                                                     1st Qu.: 95.55
##
   Median :25.10
                   Median :38.00
                                   Median: 91.00
                                                     Median: 99.30
##
   Mean
          :25.34
                   Mean
                         :37.96
                                  Mean
                                         : 92.38
                                                     Mean
                                                            : 99.69
##
   3rd Qu.:27.34
                   3rd Qu.:39.40
                                   3rd Qu.: 99.15
                                                     3rd Qu.:103.15
##
   Max.
           :39.12
                    Max.
                           :43.90
                                    Max.
                                           :126.20
                                                     Max.
                                                            :125.60
```

I Python får du en oppsummering av datasettet (df) med df.describe().

Steg 2: Spesifiser modell

Nå må vi spesifisere en modell med å velge hvile forklaringsvariabler vi vil bruke

$$y \sim x_1 + x_2 + x_3$$
.

Eksempel 1:

 $bodyfat \sim bmi$

hvis den matematiske modellen er

$$\mathrm{bodyfat}_i = \beta_0 + \beta_1 \mathrm{BMI}_i + e_i \ ,$$

Eksempel 2:

 $bodyfat \sim bmi + age$

hvis den matematiske modellen er

$$bodyfat_i = \beta_0 + \beta_1 BMI_i + \beta_2 age_i + e_i$$
.

Steg 3: Tilpass modellen

"Tilpasse" betyr:

- Vi estimerer $\beta_0,\,\beta_1,\,\dots$, og vi får estimater $\hat{\beta}_0,\,\hat{\beta}_1,\dots$
- Vi også estimerer σ^2 .

Steg 4: Resultat og tolkning av estimatene

OLS Regression Results								
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Least Squ Wed, 08 Sep	OLS Add ares F-s 2021 Pro 8:47 Log 243 AIO 241 BIO		:):	0.539 0.537 281.8 2.06e-42 -761.28 1527. 1534.			
	coef std err	======== 1	P> t	[0.025	0.975]			
Intercept -26.9	9844 2.769 8188 0.108	-9.746 16.788		-32.439 1.605	-21.530 2.032			
Omnibus: Prob(Omnibus): Skew: Kurtosis:	-0	.081 Jar .033 Pro	bin-Watson: que-Bera (JB): pb(JB): nd. No.		2.311 3.079 0.215 198.			

Todo: add prediction interval

Steg 5: Passer modellen?

Tukey-Anscome diagram:

Her vil man

- Ikke noe struktur
- Sentrering rundt 0 verdi

Kvantil-kvantil plot:

Her vil man at observasjoner ligger mer og mindre på linja.

Multippel linear regresjon

Gjenta samme analyse med to kovariabler

		OLS R	egress 	ion Re	sults 		
Dep. Variab	le:	bod	yfat	R-squ	ared:		0.580
Model:			OLS	Adj.	R-squared:		0.577
Method:		Least Squ	ares	F-sta	tistic:		165.9
Date:		Wed, 08 Sep	2021	Prob	(F-statistic):	5.67e-46
Time:		19:55:28		Log-L	ikelihood:		-749.88
No. Observations:			243	AIC:			1506.
Df Residuals:			240	BIC:			1516.
Df Model:							
Covariance	Type:	nonro	bust				
=======	coe	f std err	=====	t	P> t	[0.025	0.975]
Intercept	-31.254	2.790	-11	.203	0.000	-36.750	-25.759
bmi	1.752	0.104	16	5.773	0.000	1.547	1.958
age	0.132	7 0.027	4	.857	0.000	0.079	0.186

Med fem kovariabler:

OLS Regression Results								
Dep. Variable: Model: Method: Date: Tine: No. Observations: Df Residuals: Df Model: Covariance Type:		Least Squ Thu, 09 Sep	2021 .6:49 243 237 5	Adj. F-st Prob	uared: R-squared: atistic: (F-statistic) Likelihood:	:	0.726 0.720 125.3 1.73e-64 -698.26 1409. 1429.	
========	coef	std err		t	P> t	[0.025	0.975]	
Intercept bmi age weight neck abdomen	-35.2802 0.3881 0.0038 -0.1141 -0.4581 0.8888	0.224 0.027 0.029 0.216	1 - 3 - 2	5.809 1.730 0.141 3.883 2.123 0.486	0.000 0.085 0.888 0.000 0.035	-47.245 -0.054 -0.050 -0.172 -0.883 0.722	-23.316 0.830 0.058 -0.056 -0.033 1.056	
Omnibus: Prob(Omnibu Skew: Kurtosis:	s):	- 6	.492).064).056 !.439	Jarq	in-Watson: ue-Bera (JB): (JB): . No.		2.345 3.310 0.191 4.64e+03	

Hva betyr alt dette?

• coef: $\hat{\beta}_j$ • std err: $\hat{\mathrm{SE}}(\hat{\beta}_j)$

• t: $\frac{\hat{\beta}_j - 0}{\operatorname{SE}(\hat{\beta}_j)}$ • P>|t|: p-verdi

Hva betyr alt dette?

	coef	std err	t	P> t	[0.025	0.975]
Intercept bmi	-35.2802 0.3881	6.073	-5.809 1.730	0.000	-47.245 -0.054	-23.316 0.830
age	0.0038	0.027	0.141	0.888	-0.050	0.058
weight	-0.1141	0.029	-3.883	0.000	-0.172	-0.056
neck	-0.4581	0.216	-2.123	0.035	-0.883	-0.033
abdomen	0.8888	0.085	10.486	0.000	0.722	1.056

Prediksjon:

$$\hat{y} =$$

Prediker bodyfat for en ny person med bmi=25, age=50, weight=75, neck=40, abdomen=95:

$$\hat{y} =$$

= 21.88

	coef	std err		P> t	[0.025	0.975]
Intercept	-35.2802	6.073	-5.809	0.000	-47.245	-23.316
bmi	0.3881	0.224	1.730	0.085	-0.054	0.830
age	0.0038	0.027	0.141	0.888	-0.050	0.058
weight	-0.1141	0.029	-3.883	0.000	-0.172	-0.056
neck	-0.4581	0.216	-2.123	0.035	-0.883	-0.033
abdomen	0.8888	0.085	10.486	0.000	0.722	1.056

- Hva betyr $\hat{\beta}_0$?
- Hva betyr $\hat{\beta}_{abdomen} = 0.89$?

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-35.2802	6.073	-5.809	0.000	-47.245	-23.316
bmi	0.3881	0.224	1.730	0.085	-0.054	0.830
age	0.0038	0.027	0.141	0.888	-0.050	0.058
weight	-0.1141	0.029	-3.883	0.000	-0.172	-0.056
neck	-0.4581	0.216	-2.123	0.035	-0.883	-0.033
abdomen	0.8888	0.085	10.486	0.000	0.722	1.056

• 95% konfidensintervall: Intervall vi har stor tro at den inneholder den sanne β_j .

$$\begin{split} &\text{den sanne } \beta_j. \\ \bullet & [\hat{\beta}_j \pm \underbrace{t_{\alpha/2,df}}_{\approx 1.96} \cdot \text{SE}(\hat{\beta}_j)] \end{split}$$

	coef	std err	t	P> t	[0.025	0.975]
Intercept bmi	-35.2802 0.3881	6.073 0.224	-5.809 1.730	0.000	-47.245 -0.054	-23.316 0.830
age	0.0038	0.027	0.141	0.888	-0.050	0.058
weight neck	-0.1141 -0.4581	0.029 0.216	-3.883 -2.123	0.000 0.035	-0.172 -0.883	-0.056 -0.033
abdomen	0.8888	0.085	10.486	0.000	0.722	1.056

ullet p-verdier og hypotesetester

Recap: Formell definisjon av p-verdien

 $p\text{-}\mathbf{verdien}$ er sannsynligheten for det vihar observert eller noe mer ekstremt, dersom H_0 er sann.

 R^2

n

