基底と次元

核空間の場合を参考にして、部分空間のパラメータ表示を与えるために基 準として固定するベクトルの集合を定式化すると、基底という概念になる

基底は、座標空間の「座標軸」に相当するものであり、部分空間を生成する 独立なベクトルの集合として定義される

ref: 行列と行列式の基 礎 p96、p99~100 ref: 図で整理!例題で 納得!線形空間入門 p33 ~35

ightharpoonup 基底 V を \mathbb{R}^n の部分空間とする

ベクトルの集合 $\{\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_k\} \subset V$ は、次を満たすとき Vの基底であるという

i. $\{\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_k\}$ は線型独立である

ii. $V = \langle \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k \rangle$

線形空間 V の基底 $\{\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_k\}$ を 1 つ見つけたら、ベクトルの個 数を数えて、V の次元がk であるとする

V の基底をなすベクトルの個数を V の χ 元といい、 $\dim V$ と 書く

また、 $dim{0} = 0$ と定義する

基底の例:標準基底

たとえば、基本ベクトルの集合 $\{e_1, e_2, \ldots, e_n\}$ は \mathbb{R}^n の基底であり、 ref: 図で整理!例題で これを \mathbb{R}^n の標準基底という

標準基底 $\{e_1, e_2, \ldots, e_n\}$ は n 個のベクトルからなるため、 \mathbb{R}^n の次元 は n, である

納得!線形空間入門 p35

数ベクトル空間の標準基底 数ベクトル空間 K^n において、基本ベクトルの集合 $\{ {m e}_1, {m e}_2, \ldots, {m e}_n \}$ は K^n の基底である

証明

部分空間を生成すること

任意のベクトル $\boldsymbol{v} \in K^n$ は、次のように表せる

$$\boldsymbol{v} = v_1 \boldsymbol{e}_1 + v_2 \boldsymbol{e}_2 + \cdots + v_n \boldsymbol{e}_n$$

したがって、 K^n は $\{e_1, e_2, \ldots, e_n\}$ によって生成される

線型独立であること

 e_1, e_2, \ldots, e_n の線形関係式

$$c_1\boldsymbol{e}_1+c_2\boldsymbol{e}_2+\cdots+c_n\boldsymbol{e}_n=\mathbf{0}$$

を考える

このとき、左辺は

$$c_1 \boldsymbol{e}_1 + c_2 \boldsymbol{e}_2 + \cdots + c_n \boldsymbol{e}_n = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$

と書き換えられるので、これが零ベクトルになるためには、

$$c_1=0$$
, $c_2=0$, \cdots , $c_n=0$

でなければならない

よって、 $\{e_1, e_2, \ldots, e_n\}$ は線型独立である

基底と次元を定義するにあたって、次の保証が必要になる

- i. 任意の部分空間に、基底の定義を満たす有限個のベクトルが存在すること(基底の存在)
- ii. 任意の部分空間に対して、基底をなすベクトルの個数が、基底の選 び方によらず一定であること(次元の不変性)

基底の存在

[Todo 1: ref: 行列と行列式の基礎 p98~99]

ref: 行列と行列式の基

礎 p98~99

部分空間と数ベクトル空間の同一視

「Todo 2: ref: 行列と行列式の基礎 p99]

8

ref: 行列と行列式の基

礎 p99

線形写像の核空間と基底

核空間について先ほど述べたことは、基底の言葉で言い換えると次のよう になる

線形写像の像空間と基底

\$
Ϋ́

[Todo 3:	ref: 行列と行列式の基礎 p96~97]	ref: 行列と行列式の基
		礎 p96~97

Zebra Notes

Туре	Number
todo	3