Analiz 3 : Ödev 1

Teslim tarihi: Salı, 23 Temmüz, 2019.

- 1. Aşağıdaki kümelerin açık veya kapalı ya da hem açık hem kapalı olmadığını kanıtlayınız.
 - (a) $E = \{(x, y) \in \mathbb{R}^2 \mid x^2 + 4y^2 \le 1\}.$
 - (b) $E = \{(x, y) \in \mathbb{R}^2 \mid x^2 y^2 < 1, -1 < y < 1\}.$
 - (c) $E = \{(x, y) \in \mathbb{R}^2 \mid y = \sin(x)\}.$
 - (d) $E = \{(x, y) \in \mathbb{Q}^2 \mid -1 < x, y < 1\}.$
 - (e) $\Delta_n := \{ a \in \mathbb{R}^n \mid a_i > 0, i \in [n], a_1 + \ldots + a_n < 1 \}.$
- 2. \mathbb{R}^n uazayının açık ve boş-olmayan alt-kümelerin müteşekkil bir $\{V_{\alpha}\}_{{\alpha}\in I}$ ailesi I içindeki her ${\alpha}\neq{\beta}$ elemanı için $V_{\alpha}\cap V_{\beta}$ olması koşulunu sağlıyorsa, I kümesinin sayılabılır olduğunu ispatlayınız. Açık olmaları koşulu kaldırıldığında, bu hala geçerli mi?
- 3. $A, B \subset \mathbb{R}^n$ ise
 - (a) $(A \cup B)^{\circ} \supset A^{\circ} \cup B^{\circ}$ ve $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$,
 - (b) $\overline{A \cup B} = \overline{A} \cup \overline{B}$ ve $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$,
 - (c) $\partial(A \cup B) \subset \partial(A) \cup \partial(B)$ ve $\partial(A \cap B) \subset (A \cap \partial B) \cup (B \cap \partial A) \cup (\partial B \cap \partial A)$,

olduğunu gösteriniz.

- 4. (Büyük O ve küçük O notasyon) Aşağıdakileri kanıtlayınız
 - (a) $\sin(x) = O(x)$, eğer $x \to 0$.
 - (b) tan(x) x = o(x), eğer $x \to 0$.
 - (c) $x^{1/x} 1 = o(1/x)$ eğer $x \to \infty$.
- 5. $f: \mathbb{R}^n \to \mathbb{R}^m$ ve $g: \mathbb{R}^m \to \mathbb{R}^k$ sürekli ise, $g \circ f: \mathbb{R}^n \to \mathbb{R}^k$ fonksiyonun sürekli olduğunu gösteriniz.
- 6. Çok eğişkenli analiz de ortalama değer teoremi şu diyor : U bir konveks ve açık küme olmak üzere, $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ olsun ve $a,b \in U$ olsun. $c \in \mathbb{R}^m$ bir vektör olsun. O zaman, oyle bir $t \in [0,1]$ vardır ki

$$f [ta + (1-t)b] \cdot c = [f(b) - f(a)] \cdot c.$$

- 7. $f: \mathbb{R}^n \to \mathbb{R}^m$ fonksiyon a noktada sürekli ise, onun a noktada türevlenebilir olduğunu gösteriniz.
- 8. Bir örnek vererek gösteriniz : $f:\mathbb{R}^n\to\mathbb{R}^m$ türevlenebilir ise, onun kısmı türevler sürekli olmak zorunda değil.
- 9. Biz derste şunu gördük : f sürekli ancak ve ancak her açık kümsinin ters görüntüsü $f^{-1}(U)$ açıktır. Bir örnek vererek bunu gösterniz : f sürekli ise, her açık küme U'nın görüntüsü f(U) açık olmak zorunda değil.