DISCRETE MATHEMATICS

PRACTICE CLASS 2

Group: ARA

Date: 13/02/2024

Name: Iván Soler Sánchez

Problem 1

ii)

Problem 2

We have a graph with 15 edges, 3 vertices of degree 4 and all others of degree 3.

Problem 3

Problem 4

i)

Adjacency matrix							
Vertices	1	2	3	4	5	6	
1	0	1	0	1	0	0	
2	0	0	1	1	0	0	
3	0	1	0	1	0	1	
4	0	1	0	0	1	0	
5	0	0	1	1	0	0	
6	0	0	1	0	1	0	

ii) The outdegree of v3 is 3 because in his column we have three ones.

iii)

There are to possible walks of length 2.

iv)
$$\Gamma(v1) = 2 \Gamma(v2) = 2 \Gamma(v3) = 3 \Gamma(v4) = 2$$

 $\Gamma(v5) = 2 \Gamma(v6) = 2$
 $\Gamma-1(v1) = 0 \Gamma-1(v2) = 3 \Gamma-1(v3) = 3 \Gamma-1(v4) = 4$
 $\Gamma-1(v5) = 2 \Gamma-1(v6) = 1$

Problem 5

i)

ii)

The elements are the number of walks of length 2.

iii)

There is only one path of d to a.

iv)

v) a: x1 c: x2,x3,x8 e: x4,x7,x8,x10

b: x1,x2,x4 d: x5,x6,x7 f: x9,x10 g: x6, x9