Concours d'entrée en première année Cycle ingénieur de l'ENSAO

Epreuve de Mathématiques

Mercredi 27 juillet 2011 - Durée 2 heures

Les calculatrices sont strictement interdites

Question 1

Le développement limité de la fonction $x\mapsto \frac{1}{2+x}$ à l'ordre 2 au voisinage de 0 s'écrit, ε désignant une fonction telle que $\lim_{x\to 0}\varepsilon(x)=0$

(A)
$$1 - \frac{x}{2} + \frac{x^2}{4} + x^2 \varepsilon(x)$$
 (B) $\frac{1}{2} - \frac{x}{4} + \frac{x^2}{8} + x^2 \varepsilon(x)$ (C) $-\frac{x}{4} + \frac{x^2}{8} + x^2 \varepsilon(x)$

(B)
$$\frac{1}{2} - \frac{x}{4} + \frac{x^2}{8} + x^2 \varepsilon (x)$$

(C)
$$-\frac{x}{4} + \frac{x^2}{8} + x^2 \varepsilon(x)$$

(D)
$$\frac{1}{2} - \frac{x}{4} + x^2 \varepsilon(x)$$

Question 2

La fraction rationnelle $\frac{3X^3 + X}{(X+1)^2(X^2+1)}$ se décompose en éléments simples sous la forme

(A) $\frac{3}{X+1} - \frac{2}{(X+1)^2} - \frac{1}{X^2+1}$ (B) $\frac{2}{(X+1)^2} - \frac{1}{X^2+1}$ (C) $\frac{3}{X+1} + \frac{1}{(X+1)^2} - \frac{2}{X^2+1}$ (D) $\frac{1}{X+1} - \frac{3}{(X+1)^2} + \frac{2}{X^2+1}$

(A)
$$\frac{3}{X+1} - \frac{2}{(X+1)^2} - \frac{1}{X^2+1}$$

(B)
$$\frac{2}{(X+1)^2} - \frac{1}{X^2+1}$$

(C)
$$\frac{3}{X+1} + \frac{1}{(X+1)^2} - \frac{2}{X^2+1}$$

(D)
$$\frac{1}{X+1} - \frac{3}{(X+1)^2} + \frac{2}{X^2+1}$$

Question 3

Soit la fonction f définie sur \mathbb{R} par $f(x) = \begin{cases} x \exp\left(\frac{2x}{x^2 - 1}\right) & \text{si } x \neq \pm 1 \\ 0 & \text{si } x = \pm 1 \end{cases}$

- (A) f est continue sur \mathbb{R}
- (B) f est continue à droite en 1
- (C) f est dérivable à droite en 1
- (D) f est dérivable à gauche en 1

Question 4

On considère la matrice suivante : $A = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$

- (A) Les lignes de A sont linéairement indépendantes.
- (B) La matrice A admet -1 pour valeur propre.
- (C) Le vecteur $\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$ est un vecteur propre de A.
- (D) La matrice A admet trois valeurs propres distinctes.

Question 5

La somme de la série numérique $\sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{3^n}$ vaut (A) $\frac{3}{4}$ (B) $-\frac{3}{4}$ (C) $\frac{3}{2}$

(A)
$$\frac{3}{4}$$

(B)
$$-\frac{3}{4}$$

(C)
$$\frac{3}{2}$$

(D)
$$-\frac{3}{2}$$

Question 6

On considère l'équation différentielle (E): 4y''(t) - 5y'(t) + y(t) = 0. Si l'on désigne par λ et μ deux constantes réelles, alors la solution générale de l'équation (E) s'écrit sous la forme

(A)
$$y(t) = \lambda e^{\frac{t}{2}} + \mu e^{2t}$$

(B)
$$y(t) = \lambda e^{-\frac{t}{4}} + \mu e^{t}$$

(C)
$$y(t) = \lambda e^{\frac{t}{4}} + \mu e^{t}$$

(D)
$$y(t) = \lambda e^{-\frac{t}{4}} + \mu e^{-t}$$

Question 7

Pour tout $n \in \mathbb{N}$, on pose l'intégrale $I_n = \int_0^1 \frac{dx}{(x^2+1)^n}$

 I_n et I_{n+1} sont liées par la relation de récurrence suivante :

(A)
$$I_{n+1} = \frac{2n-1}{2n}I_n + \frac{1}{n2^{n+1}}$$

(B)
$$I_{n+1} = \frac{2n+1}{n}I_n + \frac{1}{2^n}$$

(C)
$$I_{n+1} = \frac{1}{2n}I_n - \frac{1}{2^n}$$

(D)
$$I_{n+1} = \frac{n}{2n+1}I_n - \frac{1}{2^n}$$

Question 8

L'intégrale double $I = \int \int_D \frac{dx\,dy}{1+x^2+y^2}$, où $D = \left\{ (x,y) \in \mathbb{R}^2/y \ge 0 \text{ et } x^2+y^2 \le 1 \right\}$, vaut

(A)
$$\frac{\pi \ln 2}{4}$$
 (B) $\pi \ln 2$ (C) $2\pi \ln 2$ (D) $\frac{\pi \ln 2}{2}$

(B)
$$\pi \ln 2$$

(C)
$$2\pi \ln 3$$

(D)
$$\frac{\pi \ln 2}{2}$$

Soit le nombre complexe $z = \frac{1 + i\sqrt{3}}{\sqrt{3} - i}$.

- (A) La forme algébrique de z est z=1-i. (B) L'argument de z est $Arg(z)=\frac{\pi}{2}$ (modulo 2π).

(C)
$$|z| = \sqrt{2}$$
.

(D)
$$|z| = \frac{\sqrt{2}}{2}$$
.

Question 10

L'espace \mathbb{R}^3 est rapporté à sa base canonique \mathcal{B} , soit f l'endomorphisme de \mathbb{R}^3 qui à tout triplet (x, y, z) de réels associe le triplet (x + 3z, 0, y - 2z). La matrice A de f s'écrit dans la base canonique \mathcal{B} :

(A)
$$A = \begin{pmatrix} 0 & 0 & -3 \\ 0 & 1 & -2 \\ 1 & 0 & 0 \end{pmatrix}$$

(B)
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 3 & 0 & -2 \end{pmatrix}$$

(C)
$$A = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 1 & -2 \end{pmatrix}$$

(D)
$$A = \begin{pmatrix} 0 & 1 & -2 \\ 0 & 0 & 0 \\ 1 & 0 & 3 \end{pmatrix}$$

Question 11

Le rayon de convergence de la série entière $\sum_{n\geq 0}\frac{3n^3+n+1}{n!}x^n$ est (A) R=1 (B) R=0 (C) $R=+\infty$ (D) $R=\frac{1}{3}$

(A)
$$R = 1$$

$$(\mathbf{B}) \quad R = 0$$

(C)
$$R = +\infty$$

(D)
$$R = \frac{1}{3}$$

Question 12

On considère dans l'ensemble des nombres complexes l'équation $z + |z|^2 = 7 + i$. Cette équation admet :

- (A) deux solutions distinctes qui ont pour partie imaginaire 1.
- (B) une solution réelle.
- (C) deux solutions dont une seule a pour partie imaginaire 1.
- (D) une solution qui a pour partie imaginaire 2.

Question 13

La limite en 0 de la fonction $\frac{e^x - \cos x - x}{x^2}$ est égale à

(B)
$$+\infty$$
 (C) 1 (D) $\frac{1}{2}$

(D)
$$\frac{1}{2}$$

Question 14

Soit la fonction f de \mathbb{R}^2 dans \mathbb{R} définie par $f(x,y)=x^3+y^3+3xy$. Parmi les affirmations suivantes laquelle est juste?

- (A) Si le gradient de f s'annule en (a, b) alors a = b = 1.
- **(B)** Le point A(0,0) est un minimum local de f.
- (C) Le point B(-1,-1) est un maximum local de f.
- (D) (1,1) est un point selle de f.

Question 15

Parmi les intégrales généralisées suivantes, une seule est convergente. Laquelle ?

$$(A) \quad \int_1^{+\infty} \frac{dx}{\sqrt{1+x}}$$

(B)
$$\int_{1}^{+\infty} x \sin^{2}\left(\frac{1}{x}\right) dx$$
(D)
$$\int_{1}^{+\infty} (x^{2} - 1) dx$$

$$(C) \quad \int_1^{+\infty} \frac{\ln x}{x^2} \, dx$$

(D)
$$\int_{1}^{+\infty} (x^2 - 1) dx$$

Question 16

Soit f la fonction définie par $f(x) = \frac{x}{1 + \ln x}$ et soit D son domaine de définition.

(A)
$$D =]0, +\infty[$$

(B)
$$f$$
 est strictement croissante sur $]1, +\infty[$

(C)
$$\forall x \in D, f'(x) = \frac{1 - \ln x}{(1 + \ln x)^2}$$
 (D) $\lim_{x \to 0} f(x) = +\infty$

(D)
$$\lim_{x \to 0} f(x) = +\infty$$

Question 17

Soit l'équation différentielle du premier ordre $(E):y'(t)=\frac{2t-1}{t^2}y(t)+1$. Alors

(A)
$$y(t) = t^2(1 + e^{-1/t})$$
 est solution de (E) sur \mathbb{R} .

(B)
$$y(t) = t^2(1 - e^{1/t})$$
 est solution de (E) sur $]0, +\infty[$.

(C)
$$y(t) = t^2(1 - e^{1/t})$$
 est solution de l'équation homogène associée à (E) .

(D)
$$y(t) = 2t^2 e^{1/t} (1 + e^{-1/t})$$
 est solution de (E) sur $]0, +\infty[$.

Question 18

Parmi les séries numériques suivantes, une seule est convergente. Laquelle?

(A)
$$u_n = \left(1 + \frac{1}{n}\right)^n - 1$$

(B)
$$u_n = \ln\left(1 + \frac{1}{n}\right)$$

(C)
$$u_n = \sqrt{n^2 + 1} - n$$

$$(\widetilde{D}) u_n = \frac{(-1)^n n}{(n+1)!}$$

Question 19

Soit f la fonction 2π -périodique, définie sur $\mathbb R$ par :

$$\begin{cases} f(x) = \frac{\pi - x}{2} & \text{si } 0 < x < 2\pi \\ f(0) = f(2\pi) = 0 \end{cases}$$

On note $S(x) = a_0 + \sum_{n=1}^{+\infty} (a_n \cos nx + b_n \sin nx)$ son développement en série de Fourier. Alors

(A)
$$a_0 = \frac{\pi}{2}$$

(B)
$$\forall n \in \mathbb{N}^*, b_n = \frac{(-1)^n}{n}$$

(C)
$$\forall n \in \mathbb{N}^*, \ a_n = b_n$$

(D)
$$\forall x \in \mathbb{R}, \ S(x) = \sum_{n=1}^{+\infty} \frac{\sin nx}{n}$$

Question 20

Parmi ces affirmations laquelle est juste?

- (A) Le degré de la somme de deux polynômes est le plus grand des deux degrés.
- (B) Si un polynôme est divisible par deux polynômes alors il est divisible par leur produit.
- (C) Le degré du produit de deux polynômes est la somme des deux degrés.
- (D) Tout polynôme de degré n de $\mathbb{C}[X]$ possède n racines distinctes.

Concours d'accès à la première année du cycle ingénieur

ENSA Oujda (27 juillet 2011)

Epreuve de physique, durée : 1h 30mn

- Cochez la bonne réponse
- réponse fausse = -1, pas de réponse = 0 Notation : réponse juste = +2,
- 1- Soit une sphère Σ centrée sur la charge ponctuelle q. En absence de toute autre charge, le flux du champ électrique à travers la sphère Σ ne change pas:
 - 1. si on déplace q à l'intérieur de la sphère ;
 - 2. si on remplace la sphère Σ par une sphère de rayon différent;
 - 3. si on remplace la sphère par un cube;
 - 4. si on approche d'autres charges à l'extérieur de la sphère;
 - 5. si on place d'autres charges à l'intérieur;
 - 6. si on remplace q par 2q et on divise le rayon de Σ par 2.

Entourez le groupe de propositions exactes :

$$Q_1:A)1,2,3,6$$

C)R

- **2-** Le générateur entretient entre ses bornes une tension sinusoïdale de la forme $e(t) = E\sqrt{2}\cos\omega t$
- **2-1-** Le groupement de résistance entre A et B est équivalent à une résistance :

$$Q_2$$
: A)R/2

2-2- La valeur efficace de l'intensité du courant débité par le générateur est :

$$Q_{3}$$
, A) $\frac{E}{R}$ B) $\frac{RC\omega E}{\sqrt{1+R^2C^2\omega^2}}$ C) $\frac{3E}{R}$ D) $\frac{C\omega E}{\sqrt{1+R^2C^2\omega^2}}$ E) $\frac{2C\omega E}{\sqrt{4+R^2C^2\omega^2}}$

c)
$$\frac{3E}{R}$$

D)
$$\frac{C\omega E}{\sqrt{1+R^2C^2\omega^2}}$$

E)
$$\frac{2C\omega E}{\sqrt{4+R^2C^2\omega^2}}$$

3- On considère un circuit R, L, C série alimenté par une tension sinusoïdale de valeur efficace E et de pulsation ω réglable. En faisant varier la pulsation on met en évidence

le phénomène de la résonance. On pose $\omega_0 = \frac{1}{\sqrt{IC}}$. Le facteur de surtension Q_0 est défini par l'expression :

$$Q_4:A)\frac{R}{L\omega_0}$$

B)
$$RC\omega_0$$

$$Q_4:A)\frac{R}{L\omega_0}$$
 ; B) $RC\omega_0$; C) $\frac{1}{RCL\omega_0}$; D) $\frac{L}{R^2C}$; E) $\frac{1}{R}\sqrt{\frac{L}{C}}$

D)
$$\frac{L}{R^2C}$$

$$\rightarrow$$
 E) $\frac{1}{R}\sqrt{\frac{L}{C}}$

4-Une bobine torique à section carré de côté 2a, et de rayon R=2a est constituée de N tours d'un fil parcouru par un courant d'intensité I. Son inductance propre L a pour expression :

Q₅: A)
$$\frac{\mu_0 N^2 a \ln 3}{\pi}$$
 B) $\frac{\mu_0 N^2 \ln 5}{\pi}$ C) $\frac{\mu_0 N \ln \frac{1}{2}}{\pi}$

B)
$$\frac{\mu_0 N^2 \ln 5}{\pi}$$

$$C) \frac{\mu_0 N \ln \frac{1}{2}}{\pi}$$

D)
$$\frac{2\mu_0 N^2 a \ln 2}{\pi}$$
 E) $\frac{\mu_0 N I a \ln \frac{3}{2}}{\pi}$

E)
$$\frac{\mu_{_0}NIa\ln\frac{3}{2}}{\pi}$$

5- Un fil rectiligne infini parcouru par un courant d'intensité I est placé dans le plan d'un circuit carré, parallèlement à deux de ses côtés. Le circuit carré, de centre C, est parcouru par un courant d'intensité i.

La force subie par le circuit carré a pour expression :

Q₆: A)
$$\vec{F} = \frac{\mu_0 hia}{\pi (r^2 - a^2)} \vec{e}_x$$
; B) $\vec{F} = -\frac{2\mu_0 hia}{\pi (r^2 - a^2)} \vec{e}_x$; C) $\vec{F} = \frac{2\mu_0 hia^2}{\pi (r^2 - a^2)} \vec{e}_x$

D)
$$\vec{F} = \mu_0 I i \ln \frac{r+a}{r-a} \vec{e}_x$$
; E) $\vec{F} = \mu_0 I i \ln \frac{r^2 - a^2}{ra} \vec{e}_x$

6- On considère le cycle réversible ci contre décrit par un gaz parfait.

Si le rapport $\gamma = Cp/Cv = 1.4$, le rendement est alors égal à :

7- Dans un repère galiléen Rg, la condition nécessaire et suffisante pour qu'un système solide ou un système rigide de solide S reste en équilibre par rapport à Rg est que :

Q8: A) La résultante des forces extérieures appliquée au système soit nulle, B) Le moment des actions mécaniques de l'extérieur sur S soit nul, C) Le torseur des actions mécaniques de l'extérieur sur S soit nul, D) Le torseur des actions mécaniques de l'extérieur sur S est réduit un glisseur, E) Autre

8- La variation dS de l'entropie d'un système a deux causes différentes modifications à l'intérieur du système et $modifications \ a \ l'extérieur \ du \ système \ soit ; \ dS = d_eS + d_iS \ où \ d_eS \ est \ due \ aux \ modifications \ extérieures \ et \ d_iS \ est \ due \ due \ des \$ aux modifications intérieures. Propositions :

- 1. $d_iS = 0$ pour une évolution réversible,
- 2. $d_iS < 0$ pour une évolution réversible,
- 3. $d_i S > 0$ pour une évolution irréversible,
- 4. d_eS >dQ/T, dQ la quantité de chaleur échangée et T température absolue
- 5. $d_eS = dQ/T$, dQ la quantité de chaleur échangée et T température absolue
- 6. dS = dQ/T, pour une évolution réversible
- 7. dS > dQ/T, pour une évolution irréversible
- 8. dS < dQ/T, pour une évolution irréversible.

Cochez le groupe de proposition vrai

9-On effectue brusquement une compression monotherme de P_1 à P_2 ($P_1 < P_2$) de n moles de gaz parfait situé dans un cylindre dont la température initiale est égale à la température de l'air ambiant Text constante. Si le système considéré est le gaz et R la constante des gaz parfait, alors :

La chaleur échangée par le gaz avec l'extérieur est :

$$Q_{10:.} \text{ A) } Q_{brusque} = -nR \left(\frac{P_2}{P_1} - 1 \right); \quad \text{B) } Q_{brusque} = -nR \left(\frac{P_1}{P_2} - 1 \right); \quad \text{C) } Q_{brusque} = R^n \left(\frac{P_2}{P_1} - 1 \right);$$

D)
$$Q_{\text{brusque}} = -nR (P_1 - P_2)$$
 E) Autre

1- Conjuguer les verbes aux temps indiqués : Au présent de l'indicatif : Q1 : Je (apparaître) : A) apparais B)/apparaîs C) apparait D) apparis Q2 : Nous (voyager) : A) voyagons B) voyageont C) voyageons D) voyagerons a- A l'imparfait de l'indicatif : Q3 : Ils (siffler) : A) siflent B) siflaient C) sifflent D) sifflaient Q4 : nous (rire) : A) riaient B) rions C) riions D) rierions b- Au futur de l'indicatif Q5 : Nous (mourir) : A) mourrons B) mourons C) mourrirons D) mourions Q6 : Elles (se promener) : A) se sont promenés B) se sont promenées C) se sont promené	
2- Donner les adverbes formés par ces mots : Q7: Furtif : A) furtif B) fûrtivement C) furtivement D) furtivemment Q8: Gai : A) giaement B) gaiement C) gaîmment D) gaimment	
3- Mettre au pluriel: Q9: Laissez-passer: A) laissez-passers B) laissez-passez C) laissez-passer D) laissez passee C) porte-avions D) portes-avions	Z
4- Repérer l'écriture correcte de ce qui se trouve entre parenthèses : Q11 : Vous trouverez (ci-joint) notification de la décision prise A) ci-jointe B) ci-joint C) ci-jointes D) ci joint Q12 : (Ci-inclus) la documentation que vous avez demandée A) ci-incluse B) ci incluse C) ci-inclus D) ci-incluse	
6- Retrouver les significations les plus proches des mots Q13 : béatitude : A) Quiétude B) désarroi C) Anxiété D) inquiétude Q14 : méthodique : A) Déductif B) Ordonné C) Empiriqu D) mathématique	
7- Choisir le terme qui convient le mieux au sens de chaque phrase : Q15 : Pour faire une demande d'emploi, remplissez ces deux	
8- choisir l'écriture correcte des chiffres : Q17: 3 000 000: A) trois millions B) trois Million C) trois milions D) 3 millions Q18: 81: A) quatre-vingt-un B) quatre vingt un C) quatre vingts un D) quatre-vingts-un	
Test de logique cognitive Q19 : Compléter la série: Meknès / Tétouan / Taourirt /	