International Olympiad in Informatics 2015

26th July - 2nd August 2015 Almaty, Kazakhstan Day 2

sorting

Language: pt-BR

Sorting

Aizhan possui uma sequência de inteiros $S[0], S[1], \ldots, S[N-1]$. A sequência consiste de números distintos de 0 a N-1. Ela está tentando ordenar essa sequência em ordem crescente, trocando alguns pares de elementos. Seu amigo Ermek também vai trocar alguns pares de elementos — não necessariamente de forma a ajudar Aizhan.

Ermek e Aizhan irão modificar a sequência em uma série de turnos. Em cada turno, primeiro Ermek executa uma troca e então Aizhan executa outra troca. Mais precisamente, a pessoa executando a troca escolhe dois índices válidos e troca os elementos correspondentes a esses índices. Note que os dois índices não precisam ser distintos. Se eles são iguais, a pessoa corrente troca um elemento com ele mesmo, o que não altera a sequência.

Aizhan sabe que Ermek não se importa em ordenar a sequência S. Ela também conhece os índices exatos que Ermek irá escolher. Ermek planeja tomar parte em M turnos de trocas. Vamos numerar esses turnos de $\mathbf{0}$ a $M-\mathbf{1}$. Para cada i entre $\mathbf{0}$ e $M-\mathbf{1}$ inclusive, Ermek escolherá os índices X[i] e Y[i] no turno i.

Aizhan deseja ordenar a sequência S. Antes de cada turno, se Aizham notar que a sequência já está ordenada, ela terminará o processo. Dados a sequência original S e os índices que Ermek irá escolher, sua tarefa é encontrar uma sequência de trocas que Aizhan pode usar para ordenar a sequência S. Adicionalmente, em algumas sub-tarefas você deve também encontrar uma sequência de trocas que seja tão curta quanto possível. Você pode considerar que é possível ordenar a sequência S em S0 ou menos turnos.

Note que se Aizhan notar que a sequência S está ordenada após uma troca de Ermek, ela pode escolher trocar dois índices iguais (por exemplo 0 e 0). Como resultado a sequência S também estará ordenada após o término do turno, de forma que Aizhan atinge seu objetivo. Note também que se a sequência original S já está ordenada, o número mínimo de turnos necessários para ordená-la é 0.

Exemplo 1

Considere que:

- A sequência inicial é S = 4, 3, 2, 1, 0.
- Ermek se dispõe a fazer M = 6 trocas.
- As sequências $X \in Y$ que descrevem os índices que Ermek vai escolher são $X = 0, 1, 2, 3, 0, 1 \in Y = 1, 2, 3, 4, 1, 2$. Em outras palavras, os pares de índices que Ermek planeja escolher são $(0, 1), (1, 2), (2, 3), (3, 4), (0, 1) \in (1, 2)$.

Nesse cenário Aizhan pode ordenar a sequência S na ordem 0, 1, 2, 3, 4 em três turnos. Ela pode fazê-lo escolhendo os pares de índices (0, 4), (1, 3) e então (3, 4).

A seguinte tabela mostra como Ermek e Aizhan modificam a sequência.

Turno	Jogađor	Par de índices para troca	Sequência
início			4, 3, 2, 1, 0
0	Ermek	(0,1)	3, 4, 2, 1, 0
0	Aizhan	(0,4)	0, 4, 2, 1, 3
1	Ermek	(1,2)	0, 2, 4, 1, 3
1	Aizhan	(1,3)	0, 1, 4, 2, 3
2	Ermek	(2,3)	0, 1, 2, 4, 3
2	Aizhan	(3,4)	0, 1, 2, 3, 4

Exemplo 2

Considere que:

- A sequência inicial é S = 3, 0, 4, 2, 1.
- Ermek se dispõe a fazer M = 5 trocas.
- Os pares de índices que Ermek planeja escolher são (1, 1), (4, 0), (2, 3), (1, 4), e (0, 4).

Nesse cenário Aizhan pode ordenar a sequência S em três turnos, por exemplo escolhendo os pares de índices (1,4), (4,2), e então (2,2).

A seguinte tabela mostra como Ermek e Aizhan modificam a sequência.

Turno	Jogador	Par de índices para troca	Sequência
início			3, 0, 4, 2, 1
0	Ermek	(1,1)	3, 0, 4, 2, 1
0	Aizhan	(1,4)	3, 1, 4, 2, 0
1	Ermek	(4,0)	0, 1, 4, 2, 3
1	Aizhan	(4,2)	0, 1, 3, 2, 4
2	Ermek	(2,3)	0, 1, 2, 3, 4
2	Aizhan	(2,2)	0, 1, 2, 3, 4

Tarefa

Você receberá a sequência S, o número M e as sequências de índices X e Y. Compute a sequência de trocas que Aizhan pode usar para ordenar a sequência S. Nas sub-tarefas S e S0 você deve computar a menor sequência de tarefas possível.

Você deve implementar a função findSwapPairs:

- findSwapPairs (N, S, M, X, Y, P, Q) Essa função será chamada pelo avaliador exatamente uma vez.
 - N: o comprimento da sequência S.
 - \blacksquare S: um vetor de inteiros contendo a sequência inicial S.

- M: o número de trocas que Ermek planeja fazer.
- **1** X, Y: vetores de inteiros de comprimento M. Para $0 \le i \le M-1$, no turno i Ermek planeja trocar os números de índices X[i] e Y[i].
- P, Q: vetores de inteiros. Use esses vetores para informar uma possível sequência de trocas que Aizhan pode fazer para ordenar a sequência S. Denote por R o comprimento da sequência de trocas que seu programa encontrou. Para cada i entre 0 e R-1 inclusive, os índices que Aizhan deve escolher no turno i devem ser armazenados em P[i] e Q[i]. Você pode considerar que os vetores P e Q já foram alocados com M elementos cada.
- lacktriangle Esta função deve retornar o valor de $m{R}$ (definido acima).

Sub-tarefas

s ub- tare fa	pontos	N	M	restrições extras para X, Y	requisitos em R
1	8	$1 \le N \le 5$	$M=N^2$	X[i] = Y[i] = 0 para todo i	$R \leq M$
2	12	$1 \le N \le 100$	M = 30N	X[i] = Y[i] = 0 para todo i	$R \leq M$
3	16	$1 \le N \le 100$	M=30N	X[i] = 0, Y[i] = 1 para todo i	$R \leq M$
4	18	$1 \le N \le 500$	M = 30N	nenhuma	$R \leq M$
5	20	$6 \leq N \leq 2,000$	M=3N	nenhuma	mínimo possível
6	26	$6 \leq N \leq 200,000$	M=3N	nenhuma	mínimo possível

Você pode considerar que existe uma solução que requer ${\pmb M}$ ou menos turnos.

Avaliador exemplo

O avaliador exemplo lê a entrada do arquivo sorting.in, no seguinte formato:

- linha 1: N
- linha 2: S[0] ... S[N 1]
- linha 3: M
- linhas 4, ..., M + 3: X[i] Y[i]

O avaliador exemplo escreve na saída:

- linha 1: o valor R retornado por findSwapPairs
- linha 2+i, para $0 \le i < R$: P[i] Q[i]