

TMA4245 Statistikk Vår 2017

Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

Anbefalt øving 12

Denne øvingen består av oppgaver om enkel lineær regresjon. De handler blant annet om å estimere modellparametre, tolke tilpassede modeller, og predikere fremtidige observasjoner.

Oppgave 1

Figuren viser vinnertidene på 800 m løping for menn i alle Olympiske Leker (OL), altså de 28 offisielle sommerlekene mellom 1896 og 2016, samt ekstralekene i 1906.

Totalt er det n = 29 vinnertider. Vi lar Y_i være vinnertiden i OL nummer i, og x_i årstallet for OL nummer i. Vi antar følgende regresjonsmodell for vinnertidene:

$$Y_i = \alpha + \beta x_i + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2).$$

I tillegg antas at støyleddene $\epsilon_1, \ldots, \epsilon_n$ er uavhengige.

a) Gi en kort forklaring av minste kvadraters metode (også kalt minste kvadratsums metode eller method of least squares) for linjetilpasning.

Vis at denne metoden gir estimatorer:

$$\hat{\alpha} = \bar{Y} - \hat{\beta}\bar{x}, \quad \text{og} \quad \hat{\beta} = \frac{\sum_{i=1}^{n} x_i Y_i - n\bar{x}\bar{Y}}{\sum_{i=1}^{n} x_i^2 - n\bar{x}^2}$$

der gjennomsnittene er $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$ og $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.

En alternativ skrivemåte for stigningstall-estimatoren er $\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) Y_i}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$.

Det oppgis at $\bar{Y} = 109.0114$, $\bar{x} = 1956.6$, $\sum_{i=1}^{n} (x_i - \bar{x}) Y_i = -6364.6$ og $\sum_{i=1}^{n} (x_i - \bar{x})^2 = 40$ 169. Et estimat for variansen til støyleddene er $s^2 = 3.32^2$.

b) Det kan vises at

$$T = \frac{(\hat{\beta} - \beta)}{s / \sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}} \sim t_{n-2}$$

Bruk dette resultatet til å utlede et 95% konfidensintervall for β .

Regn ut konfidensintervallet ved bruk av tall oppgitt over.

Vi vil predikere vinnertiden i neste OL, altså Tokyo 2020.

c) Regn ut predikert vinnertid i 2020.

Finn et 95% prediksjonsintervall for vinnertiden i 2020.

d) Bruk modellen til å anslå året da 90-sekundersgrensen brytes, altså det første året da vinnertiden er under 90 sekunder.

Vurder modellantakelsene som gjøres. Hvilke metoder kan brukes for å undersøke antakelsene?

Oppgave 2

Når prøver fra ett og samme sted i en sølvåre analyseres med hensyn på sølvinnholdet, fåes analyseresultater som vi skal anta er uavhengige og normalfordelte med forventning μ (g/tonn) og varians σ^2 .

a) Anta i dette punktet at $\mu = 500$ og at $\sigma = 80$.

La Y betegne en slik måling. Hva blir sannsynligheten for at Y skal overskride 550?

La Y_1 og Y_2 være 2 slike målinger. Hvor stor er sannsynligheten for at disse skal avvike fra hverandre med minst 80 g/tonn.

Den nevnte sølvåren er 40 meter lang og rettlinjet og går fra vest mot øst. Det er av interesse å anslå hvor mye sølv som finnes i sølvåren. Erfaringer fra andre sølvårer av tilsvarende type tilsier at sølvinnholdet i store trekk endrer seg lineært fra den ene enden av sølvåren til den andre.

La Y_j betegne målt sølvinnhold i en prøve som er tatt x_j meter fra den vestlige enden, $j=1,2,\ldots,n$. Vi skal anta at Y_1,\ldots,Y_n er uavhengige og normalfordelte med samme ukjente varians σ^2 og forventningsverdi

$$E(Y_j) = \alpha + \beta x_j$$

der α og β er ukjente konstanter. Minste kvadratsums-estimatorene for α og β er da gitt ved,

henholdsvis (du skal ikke vise dette):

$$B = \frac{\sum_{j=1}^{n} (x_j - \bar{x}) Y_j}{\sum_{j=1}^{n} (x_j - \bar{x})^2}$$
$$A = \bar{Y} - B\bar{x}$$

der
$$\bar{x} = \frac{1}{n} \sum_{j=1}^{n} x_j$$
 og $\bar{Y} = \frac{1}{n} \sum_{j=1}^{n} Y_j$.

Av praktiske årsaker bestemmer en seg for å ta 5 prøver av sølvinnholdet i hver ende av sølv åren. La Y_1, \ldots, Y_5 betegne målt sølvinnhold i den vestre enden $(x_i = 0)$ og Y_6, \ldots, Y_{10} betegne målt sølvinnhold i den østre enden $(x_i = 40)$.

b) Vis at da er

$$B = \frac{\sum_{j=6}^{10} Y_j - \sum_{j=1}^{5} Y_j}{200}$$

Hva blir det tilsvarende uttrykket for A?

Finn variansen til B uttrykt ved σ^2 .

Resultatet av de 10 målingene i g/tonn er gitt nedenfor:

La \bar{y}_V være gjennomsnittet av målingene i den vestre enden og \bar{y}_E være gjennomsnittet av målingene i den østre enden. Til hjelp for videre utregninger får du opplyst at

$$\bar{y}_V = 130, \ \bar{y}_E = 810, \ \sum_{j=1}^{5} (y_j - \bar{y}_V)^2 = 26064, \ \sum_{j=6}^{10} (y_j - \bar{y}_E)^2 = 22720$$

c) Finn et estimat for σ^2 basert på disse dataene.

Fra erfaring med andre sølvårer med relativt lite sølv i den ene enden, blir det fra økonomisk hold uttalt at β nok må være større enn 12 for at sølvåren skal være lønnsom. Gir dataene grunnlag for å påstå at $\beta > 12$? Formuler spørsmålsstillingen som en hypotesetest og utfør testingen. Hva blir konklusjonen når signifikansnivået settes til 5%?

d) En av personene i ledelsen for firmaet som eier sølvåren, hevder at det hadde blitt et sikrere estimat for β om de 10 prøvene hadde blitt tatt med noenlunde jevne mellomrom langs sølvåren. Anta at dette hadde blitt gjort, og at en fremdeles hadde $\bar{x} = 20$. Ville variansen til estimatoren for β i den gitte modellen da blitt mindre? Begrunn svaret.

Personen insisterte på at det måtte tas en ekstra prøve midt i sølvåren, dvs. for x=20. Resultatet av denne ble 600 g/tonn. Vurder om denne verdien er rimelig ut i fra modellen ved å se om den er inneholdt i et 95% prediksjonsintervall for en slik prøve. Du får opplyst at

$$Var(Y_0 - \hat{Y}_0) = \sigma^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{j=1}^n (x_j - \bar{x})^2} \right)$$

der Y_0 er en ny observasjon for sølvinnholdet i et punkt x_0 , $\hat{Y}_0 = A + Bx_0$, og n er antall observasjonspunkter som estimeringen er basert på.

Oppgave 3

En viktig vitenskapelig oppdagelse fant sted i 1929 da Edwin Hubble oppdaget at universet er ekspanderende. Hubble's tallmateriale bestod blant annet av; x_i = avstanden til galakse i (målt i millioner lysår), og y_i = hastigheten til galakse i (målt i 1000 km/s). Verdiene Hubble benyttet i en av sine analyser er som følger:

Navn	Avstand, x_i	Hastighet, y_i
Virgo	22	1.2
Pegasus	68	3.8
Perseus	108	5.1
Coma Berenices	137	7.5
Ursa Major 1	255	14.9
Leo	315	19.2
Corona Borealis	390	21.4
Gemini	405	23.0
Bootes	685	39.2
Ursa Major 2	700	41.6
Hydra	1100	60.8

Hubble foreslo en modell for hastighet som funksjon av avstand på formen $y = \beta x$, der β senere har blitt kalt Hubble's konstant. En statistisk versjon av ligningen kan gis ved:

$$Y_i = \beta x_i + \varepsilon_i, \qquad i = 1, \dots, 11, \tag{3.1}$$

der ε_i , i = 1, ..., 11, er uavhengige og normalfordelte stokastiske variabler med forventning 0 og varians σ^2 .

- a) Bruk minste kvadraters metode (method of least squares) til å estimere β med utgangspunkt i ligning (3.1), og vis at estimatoren for β da blir gitt ved $\hat{\beta} = \frac{\sum_{i=1}^{11} x_i Y_i}{\sum_{i=1}^{11} x_i^2}$.
 - Finn uttrykk for forventning og varians til $\hat{\beta}$.
- b) Benytt Matlab til å tilpasse den lineære modellen foreslått i (3.1). Hva er estimatet for $\hat{\beta}$?

Hint: funksjonen fitlm(x, y,'Intercept', false) tilpasser den foreslåtte lineære modellen.

- En ønsker å teste hypotesen $H_0: \beta = 0 \text{ mot } H_1: \beta \neq 0$. Hva er p-verdien til testen? Vil du forkaste H_0 ved et 1% signifikansnivå?
- c) Residualene til den tilpassede modellen er gitt som $y_i \hat{y}_i$ for i = 1, ..., 11. Lag et normalsannsynlighetsplott og et residualplott og diskuter om det er rimelig å anta at residualene er normalfordelte med konstant varians.
- d) Anta at en annen galakse befinner seg en avstand $x_0 = 900$ millioner lysår borte. Benytt Matlab til å finne predikert hastighet, \hat{y}_0 , til denne galaksen.

Finn også et 95% prediksjonsintervall for en måling av hastigheten til denne galaksen.

Hint: funksjonen predict(modell, 900, 'Prediction', 'observation') kan være nyttig.

Oppgave 4 Betrakt følgende lineære modell

$$Y_i = \alpha + \beta x_i + \epsilon_i \qquad i = 1, \dots, 50$$

der ϵ_i er er uavhengige og normalfordelte stokastiske variabler med forventning 0 og varians σ^2 . Verdier for x_i og tilhørende y_i er lagret i filen anb12.txt som kan lastes ned fra hjemmesiden til kurset. Du kan laste inn dataene på følgende måte:

```
A = load('anb12.txt');
x = A(:, 1);
y = A(:, 2);
```

a) Benytt Matlab til å plotte x mot y, og avgjør om korrelasjonen er positiv, negativ eller omtrent null.

Tilpass den foreslåtte lineære modellen ved å benytte Matlab. Hva er verdien til estimatene $\hat{\alpha}$ og $\hat{\beta}$? En ønsker å teste hypotesen $H_0: \alpha = 0$ mot den alternative hypotesen $H_1: \alpha \neq 0$. Benytt resultatet fra Matlab til å finne p-verdien for denne testen. Vil du forkaste H_0 ved 5% signifikansnivå?

Benytt for eksempel et normalsannsynlighetsplott og et residualplott til å diskutere om antakelsene for lineær regresjon er oppfylt.

Fasit

- **1. b**) [-0.1925, -0.1244] **c**) 98.88, [91.62, 106.14] **d**) 2076 eller 2080
- **2. a)** 0.266, 0.48 **b)** $\sigma^2/4000$ **c)** $s^2 = 6098$ **d)** [281.1, 658.9]
- **3. b**) 0.056691, 4.7825×10^{-16} **d**) 51.0220, (48.4969, 53.5471)
- **4**. **a**) positiv, 0.043855