LVS

一、LVS四种工作模式原理

LVS 简介

LVS 是 Linux Virtual Server: Linux 虚拟服务器; 是一个虚拟的服务器集群【多台机器 LB IP】。

LVS 集群分为三层结构:

负载调度器(load balancer):

位于整个集群系统的最前端,有一台或者多台负载调度器(Director Server)组成,LVS模块就安装在Director Server上,而Director的主要作用类似于一个路由器,它含有完成LVS功能所设定的路由表,通过这些路由表把用户的请求分发给Server Array层的应用服务器(Real Server)上。同时,在Director Server上还要安装对Real Server服务的监控模块Ldirectord,此模块用于监测各个Real Server服务的健康状况。在Real Server不可用时把它从LVS路由表中剔除,恢复时重新加入。

服务器池(server pool):

由一组实际运行应用服务的机器组成,Real Server可以是WEB服务器、MAIL服务器、FTP服务器、DNS服务器、视频服务器中的一个或者多个,每个Real Server之间通过高速的LAN或分布在各地的WAN相连接。在实际的应用中,Director Server也可以同时兼任Real Server的角色。

共享存储(shared stored):

是为所有Real Server提供共享存储空间和内容一致性的存储区域,在物理上,一般有磁盘阵列设备组成,为了提供内容的一致性,一般可以通过NFS网络文件系统共享数据,但是NFS在繁忙的业务系统中,性能并不是很好,此时可以采用集群文件系统,例如Red hat的GFS文件系统,oracle提供的OCFS2文件系统等。

常用术语:

2 VS: Virtual Server #虚拟服务,一个抽象的服务,用于最开始接收 web 请求的服务 Director, Balancer #负载均衡器、分发器 3 4 RS: Real Server # 真正提供服务的服务器 CIP: Client IP #用户端IP, 发起请求的客户端 IP, 一般是公网 IP 5 VIP: Director Virtual IP #负载均衡器虚拟IP 6 7 DIP: Director IP #负载均衡器IP 8 RIP: Real Server IP #真正提供 web 服务的服务器的 IP 9 # 详细说明 10 VRRP路由器(VRRP Router):运行VRRP协议的设备,如RouterA和 11 RouterB_o 12 虚拟路由器(Virtual Router): 又称VRRP备份组,由一个Master设 13 备和多个Backup设备组成,被当作一个共享局域网内主机的缺省网关。如 RouterA和RouterB共同组成了一个虚拟路由器。 14 15 Master路由器(Virtual Router Master): 承担转发报文任务的 VRRP设备,如RouterA。 16 17 Backup路由器(Virtual Router Backup): 一组没有承担转发任务的 VRRP设备,当Master设备出现故障时,它们将通过竞选成为新的Master 设备,如RouterB。 18 vrid: 虚拟路由器的标识,如图中RouterA和RouterB组成的虚拟路由器 19 的vrid为1,需手工指定,范围1-255。 20 21 虚拟IP地址(Virtual IP Address):虚拟路由器的IP地址,一个虚拟 路由器可以有一个或多个IP地址,由用户配置。如RouterA和RouterB组 成的虚拟路由器的虚拟IP地址为10.1.1.254/24。 22 IP地址拥有者(IP Address Owner): 如果一个VRRP设备将真实的接口 23 IP地址配置为虚拟路由器IP地址,则该设备被称为IP地址拥有者。如果IP 地址拥有者是可用的,则它将一直成为Master。 24 25 虚拟MAC地址(Virtual MAC Address):虚拟路由器根据vrid生成的 MAC地址。一个虚拟路由器拥有一个虚拟MAC地址,格式为: 00-00-5E-00-01-{vrid}。当虚拟路由器回应ARP请求时,使用虚拟MAC地址,而不 是接口的真实MAC地址。如RouterA和RouterB组成的虚拟路由器的vrid

为1,因此这个VRRP备份组的MAC地址为00-00-5E-00-01-01。

(1) 直接路由模式 (LVS-DR)

互联网使用比较多的一种模式。

DR模式是通过改写请求报文的目标MAC地址,将请求发给真实服务器的,而真实服务器响应后的处理结果直接返回给客户端用户。同TUN模式一样,DR模式可以极大的提高集群系统的伸缩性。而且DR模式没有IP隧道的开销,对集群中的真实服务器也没有必要必须支持IP隧道协议的要求。但是要求调度器LB与真实服务器RS都有一块网卡连接到同一物理网段上,必须在同一个局域网环境。

DR模式:

- 1、通过在调度器LB上修改数据包的目的MAC地址实现转发。注意源地址仍然是CIP,目的地址仍然是VIP地址。
- 2、请求的报文经过调度器,而RS响应处理后的报文无需经过调度器 LB,因此并发访问量大时使用效率很高(和NAT模式比)
- 3、因为DR模式是通过MAC地址改写机制实现转发,因此所有RS节点和调度器LB只能在一个局域网里面
- 4、RS主机需要绑定VIP地址在LO接口上,并且需要配置ARP抑制。
- 5、RS节点的默认网关不需要配置成LB,而是直接配置为上级路由的网关,能让RS直接出网就可以。
- 6、由于DR模式的调度器仅做MAC地址的改写,所以调度器LB就不能 改写目标端口,那么RS服务器就得使用和VIP相同的端口提供服务

DR模式特点:

优点:和TUN (隧道模式)一样,负载均衡器也只是分发请求,应答包通过单独的路由方法返回给客户端。与VS-TUN相比,VS-DR这种实现方式不需要隧道结构,因此可以使用大多数操作系统做为物理服务器。

缺点: (不能说缺点,只能说是不足)要求负载均衡器的网卡必须与物理网卡在一个物理段上。

LVS 的VIP 和 realserver 必须在同一个网段,不然广播后所有的包都会丢掉: 提前确认LVS/硬件LB 是什么模式,是否需要在同一个网段,所有的realserver 都必须绑定VIP的IP地址,否则realserver 收到package后发现dst 不是自己的IP,所有包都会丢掉。

(2) NAT模式 (LVS-NAT)

NAT模式是通过网络地址转换的方法来实现调度的。首先调度器(LB)接收到客户的请求数据包时(请求的目的IP为VIP),根据调度算法决定将请求发送给哪个后端的真实服务器(RS)。然后调度就把客户端发送的请求数据包的目标IP地址及端口改成后端真实服务器的IP地址(RIP),这样真实服务器(RS)就能够接收到客户的请求数据包了。真实服务器响应完请求后,查看默认路由(NAT模式下我们需要把RS的默认路由设置为LB服务器。)把响应后的数据包发送给LB,LB再接收到响应包后,把包的源地址改成虚拟地址(VIP)然后发送回给客户端。

LVS-FULLNAT

NAT模式:

- 1.客户端请求数据,目标IP为VIP。
- 2.请求数据到达LB服务器,LB根据调度算法将目的地址修改为RIP地址及对应端口(此RIP地址是根据调度算法得出的。)并在连接HASH表中记录下这个连接。
- 3.数据包从LB服务器到达RS服务器webserver,然后webserver进行响应。Webserver的网关必须是LB,然后将数据返回给LB服务器。
- 4.收到RS的返回后的数据,根据连接HASH表修改源地址VIP&目标地址CIP,及对应端口80.然后数据就从LB出发到达客户端。
- 5.客户端收到的就只能看到VIP\DIP信息。

NAT模式特点:

- 1、NAT技术将请求的报文和响应的报文都需要通过LB进行地址改写, 因此网站访问量比较大的时候LB负载均衡调度器有比较大的瓶颈,一般要求最多之能10-20台节点
- 2、只需要在LB上配置一个公网IP地址就可以了。
- 3、每台内部的节点服务器的网关地址必须是调度器LB的内网地址。
- 4、NAT模式支持对IP地址和端口进行转换。即用户请求的端口和真实服务器的端口可以不一致。

(3) Full NAT模式 (LVS-FullNAT)

客户端对VIP发起请求,Director接过请求发现是请求后端服务。 Direcrot对请求报文做full-nat,把源ip改为Dip,把目标ip转换为任意后端 RS的rip,然后发往后端,rs接到请求后,进行响应,响应源ip为Rip,目标 ip还是DIP,又内部路由路由到Director,Director接到响应报文,进行fullnat。将源地址为VIP,目标地址改为CIP,请求使用DNAT,响应使用SNAT

LVS-FULLNAT

fullnat模式:

Full NAT模式特点:

- 1.FULL NAT 模式也不需要 LBIP 和realserver ip 在同一个网段;
- 2.full nat 跟nat 相比的优点是:保证RS回包一定能够回到LVS;因为源地址就是LVS==>不确定
- 3.full nat 因为要更新sorce ip 所以性能正常比nat 模式下降 10%

(4) IP隧道模式 (LVS-Tunnel)

采用NAT模式时,由于请求和响应的报文必须通过调度器地址重写,当客户请求越来越多时,调度器处理能力将成为瓶颈。为了解决这个问题,调度器把请求的报文通过IP隧道转发到真实的服务器。真实的服务器将响应处理后的数据直接返回给客户端。这样调度器就只处理请求入站报文,由于一般网络服务应答数据比请求报文大很多,采用VS/TUN模式后,集群系统的最大吞吐量可以提高10倍。

它和NAT模式不同的是,它在LB和RS之间的传输不用改写IP地址。而是把客户请求包封装在一个IP tunnel里面,然后发送给RS节点服务器,节点服务器接收到之后解开IP tunnel后,进行响应处理。并且直接把包通过自己的外网地址发送给客户不用经过LB服务器。

CIP VIP LVS LVS lo:VIP eth0:RIP1 Real Server 1

LVS-TUN模式:

- 1、客户请求数据包,目标地址VIP发送到LB上。
- 2、LB接收到客户请求包,进行IP Tunnel封装。即在原有的包头加上IP Tunnel的包头。然后发送出去。

eth0:RIP2

RealServer 2

- 3、RS节点服务器根据IP Tunnel包头信息(此时就有一种逻辑上的隐形隧道,只有LB和RS之间懂)收到请求包,然后解开IP Tunnel包头信息,得到客户的请求包并进行响应处理。
- 4、响应处理完毕之后,RS服务器使用自己的出公网的线路,将这个响应数据包发送给客户端。源IP地址还是VIP地址。

ip隧道模式特点:

负载均衡器只负责将请求包分发给后端节点服务器,而RS将应答包直接发给用户。所以,减少了负载均衡器的大量数据流动,负载均衡器不再是系统的瓶颈,就能处理很巨大的请求量,这种方式,一台负载均衡器能够为很多RS进行分发。而且跑在公网上就能进行不同地域的分发。

隧道模式的RS节点需要合法IP,这种方式需要所有的服务器支持"IP Tunneling"(IP Encapsulation)协议,服务器可能只局限在部分Linux系统上。

四种模式性能比较:

1.因为 DR模式 IP TUNELL 模式 都是在package in 时经过LVS ,在 package out是直接返回给client,所以二者的性能比NAT 模式高,但 IP TUNNEL 因为是 TUNNEL 模式 比较复杂,其性能不如DR模式;

- 2.FULL NAT 模式因为不仅要更换 DST IP 还更换 SOURCE IP 所以性能比NAT 下降10%。
- 3.4种模式的性能如下: DR ==> IP TUNNEL ==>NAT ==>FULL NAT

二、VRRP

1.VRRP简介

VRRP(虚拟路由冗余协议),是一种用于提高网络可靠性的容错协议。 通过VRRP,可以在主机的下一跳设备出现故障时,及时将业务切换到备份 设备,从而保障网络通信的连续性和可靠性。

随着网络的快速普及和相关应用的日益深入,各种增值业务(如 IPTV、视频会议等)已经开始广泛部署,基础网络的可靠性日益成为用户 关注的焦点,能够保证网络传输不中断对于终端用户非常重要。

现网中的主机使用缺省网关与外部网络联系时,如果Gateway出现故障,与其相连的主机将与外界失去联系,导致业务中断。

VRRP的出现很好地解决了这个问题。VRRP将多台设备组成一个虚拟设备,通过配置虚拟设备的IP地址为缺省网关,实现缺省网关的备份。当网关设备发生故障时,VRRP机制能够选举新的网关设备承担数据流量,从而保障网络的可靠通信。如下图所示,当Master设备故障时,发往缺省网关的流量将由Backup设备进行转发。

CSDN @混子不当

2.VRRP工作的三种状态

VRRP协议中定义了三种状态机:初始状态(Initialize)、活动状态(Master)、备份状态(Backup)。其中,只有处于Master状态的设备才可以转发那些发送到虚拟IP地址的报文。

Initialize: 该状态为VRRP不可用状态,在此状态时设备不会对VRRP通告报文做任何处理。

通常设备启动时或设备检测到故障时会进入Initialize状态。

Master当VRRP设备处于Master状态时,它将会承担虚拟路由设备的所有转发工作,并定期向整个虚拟内发送VRRP通告报文。

Backup: 当VRRP设备处于Backup状态时,它不会承担虚拟路由设备的转发工作,并定期接受Master设备的VRRP通告报文,判断Master的工作状态是否正常。

3.VRRP的选举机制

当Master设备出现故障时,路由器B和路由器C会选举出新的Master设备。新的Master设备开始响应对虚拟IP地址的ARP响应,并定期发送VRRP通告报文。

VRRP的详细工作过程如下:

- 1.VRRP备份组中的设备根据优先级选举出Master。Master设备通过发送免费ARP报文,将虚拟MAC地址通知给与它连接的设备或者主机,从而承担报文转发任务。
- 2.Master设备周期性向备份组内所有Backup设备发送VRRP通告报文,通告其配置信息(优先级等)和工作状况。
- 3.如果Master设备出现故障,VRRP备份组中的Backup设备将根据优先级重新选举新的Master。
- 4.VRRP备份组状态切换时,Master设备由一台设备切换为另外一台设备,新的Master设备会立即发送携带虚拟路由器的虚拟MAC地址和虚拟IP地址信息的免费ARP报文,刷新与它连接的设备或者主机的MAC表项,从而把用户流量引到新的Master设备上来,整个过程对用户完全透明。
- 5.原Master设备故障恢复时,若该设备为IP地址拥有者(优先级为 255),将直接切换至Master状态。若该设备优先级小于255,将首先 切换至Backup状态,且其优先级恢复为故障前配置的优先级。
- 6.Backup设备的优先级高于Master设备时,由Backup设备的工作方式 (抢占方式和非抢占方式)决定是否重新选举Master。

4.VRRP的应用场景

在网络中,VRRP不仅仅在设备故障时触发Master设备的切换,它也能感知某个接口、某条路由的状态。

1) 与接口状态联动

如下图所示,VRRP可以与上行接口的状态绑定在一起,当承担转发任务的Master设备的上行接口出现异常时,Master设备会降低一定的优先级,当优先级低于Backup设备的优先级时,Backup设备就会切换为Master设备,从而防止因为上行接口的异常导致业务受损。

2) 与路由状态联动

如下图所示,VRRP可以与上行路由的状态绑定在一起,当上行路由出现异常时,Master设备可以降低一定的优先级,当优先级低于Backup设备的优先级时,Backup设备就会切换为Master设备,从而防止因为上行路由的异常导致业务受损。

三、实践LVS的NAT模式

1.实验环境

三台服务器,一台作为 director,两台作为 real server,director 有一个外网网卡(192.168.3.121) 和一个内网ip(172.16.0.130),两个 real server 上只有内网 ip (172.16.0.100) 和 (172.16.0.120),并且需要把两个 real server 的内网网关设置为 director 的内网 ip(192.168.0.8)

一台Director:

版本: Red Hat Enterprise Linux Server release 7.9

双网卡:

eth1: VIP:192.168.3.129/24(真实生产环境下一定将网关指向运营商的公网IP)

eth2: DIP:172.16.0.130/24(此IP必须和后台的RealSever在同一个网段内)

两台RealServer:

版本: Red Hat Enterprise Linux Server release 7.9

单网卡:

RealServer1: RIP1:172.16.0.100/24(网关必须指向Director的DIP)
RealServer2: RIP2:172.16.0.120/24(网关必须执行Director的DIP)

2.配置Director网卡

```
1 # 此处我们不指定GATEWAY(真实生产一定要指向SP给的公网IP)
2 TYPE="Ethernet"
 3 PROXY_METHOD="none"
   BROWSER_ONLY="no"
   BOOTPROTO="static"
6 IPADDR=172.16.0.130
7
   NETMASK=255.255.255.0
   #GRTEWAY=172.16.0.1
9 DEFROUTE="yes"
10 DEVICE="ens32"
11 ONBOOT="yes"
12 # 重启网卡
13 ifdown ens32
14 | ifup ens32
15 # 查询网卡信息
   [root@superbox3 network-scripts]# nmcli con show
16
```

```
17 NAME UUID
TYPE DEVICE

18 System ens33 c96bc909-188e-ec64-3a96-6a90982b08ad
ethernet ens33

19 System ens32 152beb06-47c5-c5e8-95a9-385590654382
ethernet ens32

20 有线连接 1 087e6775-a6bc-306f-8aa6-3c4b5dd86ca6
ethernet --
```

```
[root@superbox3 ~]# cat /etc/sysconfig/network-scripts/ifcfg-ens32
TYPE="Ethernet"
PROXY_METHOD="none"
BROWSER_0NLY="no"
BOOTPROTO="static"
IPADDR=172.16.0.130
NETMASK=255.255.255.0
#GRTEWAY=172.16.0.1
DEFROUTE="yes"
DEVICE="ens32"
ONBOOT="yes"
```

3.配置real server1网卡

```
1 TYPE="Ethernet"
 2 PROXY_METHOD="none"
   BROWSER_ONLY="no"
 3
   BOOTPROTO="static"
 4
 5
   IPADDR=172.16.0.100
   NETMASK=255.255.255.0
 6
   GRTEWAY=172.16.0.1
8
   DEFROUTE="yes"
   DEVICE="ens35"
 9
10
   ONBOOT="yes"
11 # 重启网卡
12 | ifdown ens35
   ifup ens35
13
   # 查询网卡信息
14
   [root@superbox ~]# nmcli con show
15
   NAME
16
                UUID
   TYPE
            DEVICE
   System ens35 1777ed92-ff58-7956-b8b3-ed928f82e0c8
17
   ethernet ens35
18
   System ens33 c96bc909-188e-ec64-3a96-6a90982b08ad
   ethernet ens33
19<sup>1</sup>有线连接 1 fd0547f4-3db1-3d9f-be10-9d4e94f6a822
   ethernet --
```

```
[root@superbox ~]# cat /etc/sysconfig/network-scripts/ifcfg-ens35
TYPE="Ethernet"
PROXY_METHOD="none"
BROWSER_ONLY="no"
BOOTPROTO="static"
IPADDR=172.16.0.100
NETMASK=255.255.255.0
GRTEWAY=172.16.0.1
DEFROUTE="yes"
DEVICE="ens35"
ONBOOT="yes"
```

4.配置real server2网卡

```
TYPE="Ethernet"
 1
 2
   PROXY_METHOD="none"
 3
   BROWSER_ONLY="no"
   BOOTPROTO="static"
 4
 5
   IPADDR=172.16.0.120
   NETMASK=255.255.255.0
 6
   GRTEWAY=172.16.0.1
   DEFROUTE="yes"
 8
   DEVICE="ens35"
 9
10
   ONBOOT="ves"
   # 重启网卡
11
   ifdown ens35
12
13
   ifup ens35
   # 查询网卡信息
14
   [root@superbox2 ~]# nmcli con show
15
16
   NAME
                 UUID
   TYPE
             DEVICE
   System ens35 1777ed92-ff58-7956-b8b3-ed928f82e0c8
17
   ethernet ens35
18
   System ens33 c96bc909-188e-ec64-3a96-6a90982b08ad
   ethernet ens33
19 有线连接 1
                164c2207-8e8e-389a-963d-a41cd4bc2f58
   ethernet --
```

```
[root@superbox2 ~]# cat /etc/sysconfig/network-scripts/ifcfg-ens35
TYPE="Ethernet"
PROXY_METHOD="none"
BROWSER_ONLY="no"
BOOTPROTO="static"
IPADDR=172.16.0.120
NETMASK=255.255.255.06
GRTEWAY=172.16.0.1
DEFROUTE="yes"
DEVICE="ens35"
ONBOOT="yes"
```

5.两个 real server 上都安装 nginx 服务

```
1 yum install -y nginx
2 nginx
```

```
[root@superbox ~]# ps -ef | grep nginx
root 3245 1 0 15:58 ?
                                                       00:00:00 nginx: master process nginx
                                                      00:00:02 nginx: worker process 00:00:01 nginx: worker process
nginx
nginx
                       3245 0 15:58 ?
              3246
              3247
                       3245 0 15:58 ?
                                                      00:00:01 nginx: worker process
              3248
                       3245 0 15:58 ?
nginx
                       3245 0 15:58 ?
                                                      00:00:02 nginx: worker process
              3249
                                                      00:00:01 nginx: worker process 00:00:02 nginx: worker process 00:00:02 nginx: worker process 00:00:02 nginx: worker process
nginx
              3250
                       3245 0 15:58 ?
              3251
                       3245
                               0 15:58
                       3245
              3252
                              0
                                  15:58
              3253
                       3245 0 15:58 ?
              4093
                       3174 0 16:15 pts/0 00:00:00 grep --color=auto nginx
root
```

```
1 yum install -y nginx
2 nginx
```

```
[root@superbox2 ~]# ps -ef | grep nginx

root 2691 1 0 16:00 ? 00:00:00 nginx: master process nginx

nginx 2692 2691 0 16:00 ? 00:00:00 nginx: worker process

root 3457 2501 0 16:15 pts/0 00:00:00 grep --color=auto nginx
```

2) Director 上安装 ipvsadm

```
1 yum install -y ipvsadm
```

• LVS-NAT模型的实现方式和iptables的DNAT相似,所以Director节点不能和iptables同时使用,那么会有冲突,这就是我们后面为什么要将iptables的规则清空的目的之一。

```
1 # 清空本地防火墙策略
2 iptables -F
```

3.

```
# director服务器上开启路由转发功能:
echo 1 > /proc/sys/net/ipv4/ip_forward
# 关闭 icmp 的重定向
echo 0 > /proc/sys/net/ipv4/conf/all/send_redirects
echo 0 > /proc/sys/net/ipv4/conf/default/send_redirects
echo 0 > /proc/sys/net/ipv4/conf/ens32/send_redirects
echo 0 > /proc/sys/net/ipv4/conf/ens33/send_redirects
echo 0 > /proc/sys/net/ipv4/conf/ens33/send_redirects
director设置 nat 防火墙
iptables -t nat -F
```

```
10 | iptables -t nat -X
11 | iptables -t nat -A POSTROUTING -s 172.16.0.0/24 -j
   MASQUERADE
12 # director设置 ipvsadm
13 ipvsadm -A -t 172.16.0.130:80 -s rr
   ipvsadm -a -t 172.16.0.130:80 -r 172.16.0.100:80 -m -w
15
   ipvsadm -a -t 172.16.0.130:80 -r 172.16.0.120:80 -m -w
16 ipvsadm -L -n
17
18
19
   IPVSADM='/sbin/ipvsadm'
20
   $IPVSADM -C
21
   $IPVSADM -A -t 192.168.3.121:80 -s wrr
   $IPVSADM -a -t 192.168.3.121:80 -r 172.16.0.100:80 -m -
22
   w 1
23 | $IPVSADM -a -t 192.168.3.121:80 -r 172.16.0.120:80 -m -
   w 1
24 # 查看ipvsadm设置的规则
25 | ipvsadm -ln
26 #
27 route add default gw 172.16.0.130
```

```
[root@superbox3 -]# curl http://172.16.0.130
<!DOCTYPE html>
chtml>
chtml>
chtml>
chtml>
chtml>
chtml>
color-scheme: Light dark; }
body { xidth: 35ee; margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif; }
</rr>
</ra>

*/style>
html { color-scheme: Light dark; }
body { xidth: 35ee; margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif; }

*/style>

*/style
*/style>

*/style>

*/style
```

四、实践LVS的DR模式

1.环境准备

服务器	服务器IP	服务器说明
Director	192.168.3.130	调度器和后端服务器通信的ip
Real server1	192.168.3.128	真正提供服务的后端服务器1
Real server2	192.168.3.120	真正提供服务的后端服务器2

DR模式中的名词 解释	
DS	调度器,lvs的前端设备
RS	真正提供服务的后端服务器
RIP	后端服务器的ip地址
DIP	调度器和后端服务器通信的ip
源IP	CIP (客户端的IP)
目的IP	VIP(设置的统一入口),对外公布的ip,客户请求进来的ip
源MAC地址	DS调度器的MAC地址
目的MAC地址	RS真正服务器的MAC地址

Director节点下载安装ipvsadm

1 yum install -y ipvsadm

Real server1/2节点下载nginx

1 yum install -y nginx

2.Director

1.director服务器上开启路由转发功能:

```
1 echo 1 > /proc/sys/net/ipv4/ip_forward
```

2.Director添加虚拟网卡

```
1 ifconfig ens33:0 down
2 ifconfig ens33:0 192.168.3.110 broadcast 192.168.3.110
netmask 255.255.255.255 up
3 route add -host 192.168.3.110 dev ens33:0
```

3.清除防火墙规则

```
1 | iptables -t nat -F
```

4.

```
1 ipvsadm -C
2 ipvsadm -A -t 192.168.3.110:80 -s wrr
3 ipvsadm -a -t 192.168.3.110:80 -r 192.168.3.128:80 -g -w
3
4 ipvsadm -a -t 192.168.3.110:80 -r 192.168.3.120:80 -g -w
1
```

5.配置Real server1

```
1 # 添加虚拟网卡和路由
2 ifconfig lo:0 192.168.3.110 broadcast 192.168.3.110
netmask 255.255.255.255 up
3 route add -host 192.168.3.110 lo:0
4 # 关闭arp应答
5 echo "1" >/proc/sys/net/ipv4/conf/lo/arp_ignore
6 echo "2" >/proc/sys/net/ipv4/conf/lo/arp_announce
7 echo "1" >/proc/sys/net/ipv4/conf/all/arp_ignore
8 echo "2" >/proc/sys/net/ipv4/conf/all/arp_announce
```

6.配置Real server2

```
# 添加虚拟网卡和路由
ifconfig lo:0 192.168.3.110 broadcast 192.168.3.110
netmask 255.255.255.255 up
route add -host 192.168.3.110 lo:0
# 关闭arp应答
cho "1" >/proc/sys/net/ipv4/conf/lo/arp_ignore
cho "2" >/proc/sys/net/ipv4/conf/lo/arp_announce
cho "1" >/proc/sys/net/ipv4/conf/all/arp_ignore
echo "2" >/proc/sys/net/ipv4/conf/all/arp_ignore
echo "2" >/proc/sys/net/ipv4/conf/all/arp_announce
```

7.网页测试

1 # 网页输入 192.168.3.110

五、实验LVS+keepalived

LVS可以实现负载均衡,但是不能够进行健康检查,比如一个rs出现故障,LVS 仍然会把请求转发给故障

的rs服务器,这样就会导致请求的无效性。keepalived 软件可以进行健康检查,而且能同时实现 LVS 的

高可用性,解决LVS单点故障的问题。

环境准备:

服务器	服务器IP	服务器说明
Keepalived1 + lvs1(Director1)	192.168.3.130	first master
Keepalived2 + lvs2(Director2)	192.168.3.94	second master
Real server1	192.168.3.128	RS
Real server2	192.168.3.120	RS

Keepalived1/2节点下载keepalived:

```
1 yum install ipvsadm keepalived -y
2 ifconfig ens33:0 down
```

Real server1/2节点下载nginx

```
1 yum install epel-release -y
2 yum install nginx -y
```

1.配置Real server节点

```
# 配置Real server1
# 添加虚拟网卡和路由
ifconfig lo:0 192.168.3.110 broadcast 192.168.3.110
netmask 255.255.255.255 up

route add -host 192.168.3.110 lo:0
# 关闭arp应答
echo "1" >/proc/sys/net/ipv4/conf/lo/arp_ignore
echo "2" >/proc/sys/net/ipv4/conf/lo/arp_announce
echo "1" >/proc/sys/net/ipv4/conf/all/arp_ignore
echo "2" >/proc/sys/net/ipv4/conf/all/arp_ignore
echo "2" >/proc/sys/net/ipv4/conf/all/arp_announce
# 配置Real server2
# 添加虚拟网卡和路由
ifconfig lo:0 192.168.3.110 broadcast 192.168.3.110
netmask 255.255.255.255.255 up
```

```
route add -host 192.168.3.110 lo:0

# 美闭arp应答

echo "1" >/proc/sys/net/ipv4/conf/lo/arp_ignore

echo "2" >/proc/sys/net/ipv4/conf/lo/arp_announce

echo "1" >/proc/sys/net/ipv4/conf/all/arp_ignore

echo "2" >/proc/sys/net/ipv4/conf/all/arp_announce

echo "2" >/proc/sys/net/ipv4/conf/all/arp_announce
```

2.配置keepalived节点

```
1 # 配置master节点
   mv /etc/keepalived/keepalived.conf
   /etc/keepalived/keepalived.conf.bak
   vim /etc/keepalived/keepalived.conf
4
   vrrp_instance VI_1 {
 5
     state MASTER
     interface ens33
 6
7
     virtual_router_id 51
     priority 100
8
     advert_int 1
9
     authentication {
10
11
    auth_type PASS
12
     auth_pass 1111
13
     }
     virtual_ipaddress {
14
15
     192.168.3.110
16
     }
   }
17
   virtual_server 192.168.3.110 80 {
18
19
     delay_loop 6
     lb_algo rr
20
21
     1b_kind DR
22
     persistence_timeout 0
23
     protocol TCP
24
     real_server 192.168.3.128 80 {
25
     weight 1
     TCP_CHECK {
26
27
     connect_timeout 10
     nb_get_retry 3
28
29
     delay_before_retry 3
```

```
30
     connect_port 80
31
     }
32
   }
33
     real_server 192.168.3.120 80 {
     weight 1
34
35
     TCP_CHECK {
36
    connect_timeout 10
37
     nb_get_retry 3
     delay_before_retry 3
38
     connect_port 80
39
40
    }
41
   }
42
   }
```

3.将keepalived配置文件从master服务器发送至从服务器

```
1 # 发送配置文件
2 ssh root@192.168.3.94 "mv
  /etc/keepalived/keepalived.conf
  /etc/keepalived/keepalived.conf.bak"
3 scp /etc/keepalived/keepalived.conf
  192.168.3.94:/etc/keepalived/keepalived.conf
```

4.配置从节点

```
vim /etc/keepalived/keepalived.conf
 2
   vrrp_instance VI_1 {
 3
     state MASTER
     interface ens33
 4
     virtual_router_id 51
     priority 90
 6
 7
      advert_int 1
      authentication {
 8
 9
      auth_type PASS
     auth_pass 1111
10
11
     }
     virtual_ipaddress {
12
     192.168.3.110
13
14
     }
15
   }
```

```
16
   virtual_server 192.168.3.110 80 {
     delay_loop 6
17
     lb_algo rr
18
     1b kind DR
19
     persistence_timeout 0
20
21
     protocol TCP
22
    real_server 192.168.3.128 80 {
23
     weight 1
24
     TCP_CHECK {
    connect_timeout 10
25
    nb_get_retry 3
26
     delay_before_retry 3
27
28
     connect_port 80
29
     }
30 }
     real_server 192.168.3.120 80 {
31
32
     weight 1
33
    TCP_CHECK {
    connect_timeout 10
34
    nb_get_retry 3
35
     delay_before_retry 3
36
     connect_port 80
37
    }
38
    }
39
   }
40
```

5.keepalived的2个节点执行如下命令,开启转发功能

```
1 echo 1 > /proc/sys/net/ipv4/ip_forward
```

6.启动keepalive

```
1 systemctl start keepalived
```

7.网页测试

```
1 输入虚拟主机IP:192.168.3.110
```


8.关闭master节点keepalived

1 systemctl stop keepalived

```
[root@superbox3 ~]# systemctl stop keepalived
[root@superbox3 ~]# ip a
1 lo: <loopMacK.up(_DMER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lft forever preferred_lft forever
2: ens33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
link/ether 00:0c:29:f4:a2:c7 brd ff:ff:ff:ff:ff
inet 192.168.3.130/24 brd 192.168.3.255 scope global noprefixroute dynamic ens33
valid_lft 82057sec preferred_lft 82057sec
inet6 fe80::1030:2240:390b::d92/64 scope link noprefixroute
valid_lft forever preferred_lft forever

3: ens32: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
link/ether 00:0c:29:f4:a2:bd brd ff:ff:ff:ff:ff:ff
inet 172.16.0.130/24 brd 172.16.0.255 scope global noprefixroute ens32
valid_lft forever preferred_lft forever
inet6 fe80::20c:29ff:fef4:a2bd/64 scope link
valid_lft forever preferred_lft forever
```

查看从服务器是否出现虚拟主机192.168.3.110:

1 ip a

```
[root@superbox ~]# ip a

1: lo: <LOOPBACK,UP,LOMER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
link/loopback 00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lft forever preferred_lft forever
2: ens33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
link/ether 00:50:56:36:30:122 brd ff:ff:ff:ff:ff:ff
inet 192.168.3.94/24 brd 192.168.3.255 scope global noprefixroute dynamic ens33
valid_lft 82826sec preferred_lft 82826sec
inet 192.168.3.110/32 scope global ens33
valid_lft forever preferred_lft forever
inet6 fe80::250:56ff:fe3a:122/64 scope link
valid_lft forever preferred_lft forever
```

五、Keepalived高可用(基于VRRP协议)

1.配置抢占式keepalived高可用架构

在Master的keepalived中调用脚本,抢占式,仅需在master配置即可。(注意,如果配置为非抢占式,那么需要两台服务器都使用该脚本)

环境准备:

服务器	服务器IP	服务器说明
Keepalived1 + lvs1(Director1)	192.168.3.128	master
Keepalived2 + lvs2(Director2)	192.168.3.120	backup
Real server1	192.168.3.194	RS
Real server2	192.168.3.130	RS

Keepalived节点安装keepalived:

```
1 # master服务器
2 yum install keepalived -y
3 # backup服务器
4 yum install keepalived -y
```

2.配置master的Keepalived

```
1 mv /etc/keepalived/keepalived.conf
   /etc/keepalived/keepalived.conf.bak
2 vim /etc/keepalived/keepalived.conf
  #全局配置
   global_defs {
  #表示身份->名称
5
6
       router_id LVS_01
7
   }
8 #1.每5秒执行一次脚本, 脚本执行内容不能超过5秒, 否则会被中断再次重
   新运行脚本
   vrrp_script check_web {
      script "/data/scripts/check_web.sh"
10
11
      interval 5
   }
12
   vrrp_instance VI_1 {
13
```

```
14 # nopreempt
15 #标识角色状态
16
     state MASTER
17 #网卡绑定接口
      interface ens33
18
19 #虚拟路由id
20
      virtual_router_id 50
21
  #优先级
22
      priority 150
23 #监测间隔时间
      advert_int 1
24
  #认证
25
26
      authentication {
27
  #明文认证
28
         auth_type PASS
29 #明文密码
30
         auth_pass 1111
      }
31
32
  #虚拟的VIP地址
      virtual_ipaddress {
33
         192.168.3.119
34
35
      }
36
37
     #2.调用并运行该脚本
38
      track_script {
         check_web
39
40
      }
41 }
42
  ######### 配置监控脚本
  mkdir -R /data/scripts/
43
  cat > /data/scripts/check_web.sh << 'eof'</pre>
44
  #!/bin/sh
45
  nginxpid=$(ps -C nginx --no-header|wc -1)
46
47
  #1.判断Nginx是否存活,如果不存活则尝试启动Nginx
  if [ $nginxpid -eq 0 ];then
48
49
      nginx
50
      sleep 3
51 #2.等待3秒后再次获取一次Nginx状态
52
  nginxpid=$(ps -C nginx --no-header|wc -1)
```

```
#3.再次进行判断,如Nginx还不存活则停止Keepalived,让地址进行漂移,并退出脚本
if [ $nginxpid -eq 0 ];then
systemctl stop keepalived
fi
fi
eof
# 给脚本增加执行权限
chmod +x /data/scripts/check_web.sh
```

3.配置Backup的Keepalived

```
1 mv /etc/keepalived/keepalived.conf
   /etc/keepalived/keepalived.conf.bak
   vim /etc/keepalived/keepalived.conf
   global_defs {
 3
 4
             router_id LVS_02
 5
   }
   vrrp_instance VI_2 {
 6
7
       nopreempt
 8
       state BACKUP
       interface ens33
 9
       virtual_router_id 51
10
       priority 100
11
12
       advert_int 1
       authentication {
13
            auth_type PASS
14
15
            auth_pass 1111
16
       }
       virtual_ipaddress {
17
           192.168.3.119
18
19
   }
20 }
```

4.启动keepalived

```
1 # master服务器
2 systemctl enable keepalived
3 systemctl restart keepalived
4 # backup服务器
5 systemctl enable keepalived
6 systemctl restart keepalived
```

5.查看master主机VIP是否生效

```
1 ip a
```

```
[root@superbox keepalived]# ip a

1: lo: <lOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lft forever preferred_lft forever

2: ens33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
link/ether 00:0c:29:6d:68:la brd ff:ff:ff:ff:ff:ff:
inet 192.168.3.128/24 brd 192.168.3.255 scope global noprefixroute dynamic ens33
valid_lft forever preferred_lft 66083sec
inet 192.168.3.19/32 scope global ens33
valid_lft forever preferred_lft forever
inet6 fe80::20c:29ff:fe6d:681a/64 scope link
valid_lft forever preferred_lft forever
```

6.停掉master主机Keepalived服务后查看backup服务器

```
1 # master执行
2 systemctl stop keepalived
3 # backup服务器执行
4 ip a
5 # 出现VIP的表示搭建成功
```

```
[root@superbox2 keepalived]# ip a
1: lo: <l00PBACK,UP,LOMER UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
link/loopback 00:00:00:00:00:00:00 brd 00:00:00:00:00
inet 127. 0. 0.1/8 scope host lo
    valid_lft forever preferred_lft forever
inet6::1/128 scope host
valid_lft forever preferred_lft forever
2: ens33: <6RBOADCAST,UMITICAST,UP,LOMER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
link/ether 00:0c:29:3b:09:0c brd ff:ff:ff:ff:ff
inet 192.168.3.129:168.3.255 scope global noprefixroute dynamic ens33
valid_lft 7556lsec preferred_lft 7556lsec
inet 192.168.3.129/32 scope global ens33
valid_lft forever preferred_lft forever
inet6 fe80::20c:29ff:fe3b:690c/64 scope link
valid_lft forever preferred_lft forever
```

2.配置非抢占式keepalived

- 1、两个节点的state都必须配置为BACKUP。
- 2、两个节点都必须加上配置 nopreempt。
- 3、其中一个节点的优先级必须要高于另外一个节点的优先级。 两台服务器都角色状态启用nopreempt后,必须修改角色状态统一为 BACKUP,唯一的区分就是优先级。

环境准备:

服务器	服务器IP	服务器说明
Keepalived1 + lvs1(Director1)	192.168.3.128	backup1
Keepalived2 + lvs2(Director2)	192.168.3.120	backup2

1) Keepalived节点安装keepalived:

```
1 # master服务器
2 yum install keepalived -y
3 # backup服务器
4 yum install keepalived -y
```

2) 配置backup1的Keepalived

```
1 mv /etc/keepalived/keepalived.conf
   /etc/keepalived/keepalived.conf.bak
2 vim /etc/keepalived/keepalived.conf
3 #全局配置
4 global_defs {
5 #表示身份->名称
       router_id LVS_01
6
7
   }
8 #1.每5秒执行一次脚本, 脚本执行内容不能超过5秒, 否则会被中断再次重
   新运行脚本
   vrrp_script check_web {
      script "/data/scripts/check_web.sh"
10
      interval 5
11
   }
12
   vrrp_instance VI_1 {
14 | #
        nopreempt
15 #标识角色状态
      state MASTER
16
   #网卡绑定接口
17
      interface ens33
18
19 #虚拟路由id
      virtual_router_id 50
20
   #优先级
21
```

```
22
      priority 150
23
  #监测间隔时间
      advert_int 1
24
  #认证
25
      authentication {
26
27
  #明文认证
28
         auth_type PASS
29
  #明文密码
30
         auth_pass 1111
31
      }
  #虚拟的VIP地址
32
      virtual_ipaddress {
33
34
         192.168.3.119
      }
35
36
      #2.调用并运行该脚本
37
      track_script {
38
         check_web
39
40
      }
41 }
  ########## 配置监控脚本
42
  mkdir -R /data/scripts/
43
  cat > /data/scripts/check_web.sh << 'eof'</pre>
44
  #!/bin/sh
45
  nginxpid=$(ps -C nginx --no-header|wc -1)
46
  #1.判断Nginx是否存活,如果不存活则尝试启动Nginx
47
  if [ $nginxpid -eq 0 ];then
48
49
      nginx
      sleep 3
50
  #2.等待3秒后再次获取一次Nginx状态
51
  nginxpid=$(ps -C nginx --no-header|wc -1)
52
  #3.再次进行判断,如Nginx还不存活则停止Keepalived,让地址进行漂
53
  移,并退出脚本
54 | if [ $nginxpid -eq 0 ];then
55
      systemctl stop keepalived
56
  fi
  fi
57
58 eof
59
  # 给脚本增加执行权限
```

2) 配置backup2的Keepalived

```
mv /etc/keepalived/keepalived.conf
   /etc/keepalived/keepalived.conf.bak
   vim /etc/keepalived/keepalived.conf
   #全局配置
   global_defs {
4
5
   #表示身份->名称
       router_id LVS_02
6
7
   }
8 #1.每5秒执行一次脚本, 脚本执行内容不能超过5秒, 否则会被中断再次重
   新运行脚本
   vrrp_script check_web {
      script "/data/scripts/check_web.sh"
10
      interval 5
11
   }
12
13 | vrrp_instance VI_2 {
14 #
        nopreempt
15 #标识角色状态
       state BACKUP
16
17
   #网卡绑定接口
       interface ens33
18
19 #虚拟路由id
       virtual_router_id 51
20
21
   #优先级
22
       priority 100
   #监测间隔时间
23
24
       advert_int 1
   #认证
25
26
       authentication {
   #明文认证
27
28
           auth_type PASS
29
   #明文密码
30
           auth_pass 1111
       }
31
   #虚拟的VIP地址
32
       virtual_ipaddress {
33
          192.168.3.119
34
```

```
35
36
     #2.调用并运行该脚本
37
      track_script {
38
         check web
39
      }
40
41
  }
42
  ########## 配置监控脚本
  mkdir -R /data/scripts/
43
  cat > /data/scripts/check_web.sh << 'eof'</pre>
44
  #!/bin/sh
45
46
  nginxpid=$(ps -C nginx --no-header|wc -1)
  #1.判断Nginx是否存活,如果不存活则尝试启动Nginx
47
  if [ $nginxpid -eq 0 ];then
48
      nginx
49
50
      sleep 3
  #2.等待3秒后再次获取一次Nginx状态
51
  nginxpid=$(ps -C nginx --no-header|wc -1)
52
  #3.再次进行判断,如Nginx还不存活则停止Keepalived,让地址进行漂
53
  移,并退出脚本
  if [ $nginxpid -eq 0 ];then
54
      systemctl stop keepalived
55
56 fi
  fi
57
58 eof
59 # 给脚本增加执行权限
  chmod +x /data/scripts/check_web.sh
60
```

3) 重启keepalived服务

```
1 # master服务器
2 systemctl enable keepalived
3 systemctl restart keepalived
4 # backup服务器
5 systemctl enable keepalived
6 systemctl restart keepalived
```