## THE UNIVERSITY OF HONGKONG DEPARTMENT OF PHYSICS

## Exercise sheet #2

Course: *Machine Learning in Physics (PHYS3151)* – Professor: *Dr. Ziyang Meng*Due date: *Mar.7th*, 2022

## 1. Gradient descent method and steepest descent method

Please read and follow the example of *GradientDescent&ConjugateGradient.ipynb*. Given  $Q = \begin{pmatrix} 5 & 2 \\ 2 & 3 \end{pmatrix}$ , and  $b = \begin{pmatrix} 3 & -1 \end{pmatrix}$ , and c = 5, please draw a 3D plot of the cost function  $J(\theta) = \frac{1}{2}(\theta^T Q\theta - b\theta + c)$ , and draw a contour plot. Take an initial guess of  $(\theta_0, \theta_1)$ , and use gradient descent and steepest gradient methods to find the minimum and plot the trace of the optimization processes. Compare the performance of two methods.

## 2. Conjugate gradient method

Use the conjugate gradient method to solve the equation

$$O\theta = b$$

with  $Q = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$  and  $b = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ . Please set your intial guess as  $\theta_0 = \begin{pmatrix} -2 \\ 0 \end{pmatrix}$ . (a). Write down  $u_k$ ,  $\alpha_k$  and  $\theta_k$  step by step and check that:

- $r_k \cdot r_{k+1} = 0$  , where the residual vector  $r_k = b Q\theta_k$ ;
- $u_k Q u_{k+1} = 0$ , where  $\{u_k\}$  are the conjugate vectors of matrix Q;
- conjugate gradient method converges after 2 steps.
- (b). Please draw a contour plot to show the process above. (Using the code in *GradientDescent&ConjugateGradient.ipynb*)





