Groepen theorie

Luc Veldhuis

23 Mei 2017

Conjungatieklasse

G een groep. G werkt op A = G door middel van conjungatie:

$$g \cdot a = gag^{-1} \ (g \in G, \ a \in A)$$

De baan van $a = \{gag^{-1}|g \in G\}$ heet de **conjungatieklasse** van a in G.

De stabilisator van
$$a$$
 is $C_G(a) = \{gag^{-1} | g \in G\} \Leftrightarrow \{ga = ag | g \in G\}$

Dus als G eindig is geldt: $|G| = |C_G(a)| \cdot |\text{conjungatieklasse van } a|$ en daarom |conjungatieklasse van $a| = \frac{|G|}{|C_G(a)|} = |G| \cdot |C_G(a)|$

Voorbeeld

- |conjungatieklasse van $a|=1 \Leftrightarrow gag^{-1}=a$ voor alle $g \in G$ $\Leftrightarrow ga=ag \ \forall g \in G \Leftrightarrow a \in Z(G)$
- In D_8 heeft s als conjungatieklasse $\{s, sr^2\}$ en $C_{D_8}(s) = \{e, r^2, s, sr^2\}$ (ga na).

Stelling (klassenformule)

Als G een eindige groep is, g_1, \ldots, g_r representanten van de conjungatieklassen in G met meer dan 1 element, dan

$$|G| = |Z(G)| + \sum_{i=1}^{r} |G| C_G(g_i)|$$

met $GC_G(g_i)$ de conjungatieklassen van g_i met meer dan 1 element.

Voorbeeld

 $G=S_3$, 3 conjungatieklassen: $\{e\},\{2\text{-cykels}\},\{3\text{-cykels}\}.$ Dan zegt de formule: 3!=1+(2+3), want $|Z(S_3)|=1$, en er zijn 3 2-cykels en 2 3-cykels.

Stelling

Als p een priemgetal is en G een groep met $|G|=p^a$ met $a\geq 1$ ('G is een p-groep') dan geldt dat $Z(G)\neq \{e\}$ (niet triviaal.)

Bewijs

In de klassenformule is elke $|G:C_G(g_i)|$ een positieve deler van $|G|=p^a$, groter dan $1.\Rightarrow$ elke $|G:C_G(g_i)|$ is p,p^2,\ldots , want p is priem.

p deelt $|G| = p^a$ met $a \ge 1$. Uit de klassenformule volgt p||Z(G)|

Gevolg

Als $|G| = p^2$ met p priem, dan is G isomorf met $\mathbb{Z}/p^2\mathbb{Z}$ of $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$

Bewijs

Als |G| een element van orde p^2 heeft dan is G cyklisch en dus isomorf met $\mathbb{Z}/p^2\mathbb{Z}$

Als G niet zo'n element bevat, dan heeft elk element $\neq e$ in G orde p (Lagrange).

Kies $e \neq x \in Z(G)$, dat kan, want G is een p-groep, dus x heeft orde p.

 $\mathsf{Kies}\ y \in \mathsf{G},\ y \not\in \langle x \rangle\ \mathsf{en}\ |\langle x \rangle| = \mathsf{p}.$

Dan is $G = \langle x, y \rangle$ (Lagrange) en $G = \{x^i y^j | i, j \in \mathbb{Z}\}$ want $x \in Z(G)$ dus commuteert met alles.

Dan is $\phi: \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \to G$ met $\phi(\overline{a}, \overline{b}) \mapsto x^a y^b$ en welgedefinieerd, surjectief, homomorfisme (want xy = yx) (ga na) Bijde zijden p^2 elementen, dus ϕ is ook injectief $\Rightarrow \phi$ is bijectief,

dus er is een isomorfisme tussen $\mathbb{Z}/p\mathbb{Z}\times\mathbb{Z}/p\mathbb{Z}\cong \mathit{G}$

Gevolg van klassenformule: Stelling van Cauchy

Als G een eindige groep is, p priemdeler van de orde van G, dan bevat G een element van orde p.

Voorbeeld

Groepen van orde 6. Zo'n groep bevat x van orde 2 en y van orde 3 (Cauchy), dan $\langle x,y\rangle=G$, volgens Lagrange, want $\langle x\rangle\leqslant\langle x,y\rangle$ en $\langle y\rangle\leqslant\langle x,y\rangle$. Ook $|G:\langle y\rangle|=\frac{|G|}{|\langle y\rangle|}=\frac{6}{3}=2$, dus $\langle y\rangle$ is een normaaldeler van G.

$$\langle y \rangle = \{e, y, y^2\}$$
. Daarom is $e \neq xyx^{-1} \in \langle y \rangle$. Dus $xyx^{-1} = y$ of $xyx^{-1} = y^2 = y^{-1}$

Uit de eerste oplossing volgt xy=yx met |xy|=6 (Ga na) en $G\cong \mathbb{Z}/6\mathbb{Z}$

Dan is G isomorf met D_6 volgens: $x \mapsto s$, $y \mapsto r$ (Ga na)

Mogelijke isomorfismes

Dus: groepen van orde \leq 10:

Orde	Isomorf met
1	{e}
2	$\mathbb{Z}/2\mathbb{Z}$
3	$\mathbb{Z}/3\mathbb{Z}$
4	$\mathbb{Z}/4\mathbb{Z}$ of $\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/2\mathbb{Z}$
5	$\mathbb{Z}/5\mathbb{Z}$
6	$\mathbb{Z}/6\mathbb{Z}$ of $D_6\cong S_3$
7	$\mathbb{Z}/7\mathbb{Z}$
8	$\mathbb{Z}/8\mathbb{Z}$ of $\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/4\mathbb{Z}$ of $(\mathbb{Z}/2\mathbb{Z})^3$ of D_8 of Q
9	$\mathbb{Z}/9\mathbb{Z}$ of $\mathbb{Z}/3\mathbb{Z} imes \mathbb{Z}/3\mathbb{Z}$
10	$\mathbb{Z}/10\mathbb{Z}$ of D_{10}

Bewijs

• G is abels. Doe inductie naar |G|. |G| = p: al gezien: elk element $x \neq e$ heeft orde p.

Als |G| > p, neem $y \in G$, $y \neq e$. Als m = |y| en p|m dan heeft $y^{\frac{m}{p}}$ orde p.

Als $p \nmid m$ dan deelt p de orde van $G/\langle y \rangle$ (Dat is $\frac{|G|}{m}$) Volgens inductie aanname heeft $G/\langle y \rangle$ een element z van orde p.

Dan deelt p de orde van z want $|\langle z \rangle| = |\overline{z}| \cdot |\langle y \rangle \cap \langle z \rangle|$. Dan heeft $z^{\frac{|z|}{p}}$ orde p.

Bewijs

• *G* is niet abels. Doe weer inductie naar de orde van *G*. Dan geeft de klassenformule:

$$|G| = |Z(G)| + \sum_{i=1}^{r} |G: C_G(g_i)| \text{ met } |G| \text{ deelbaar door } p.$$

Als p||Z(G)| dan heeft Z(G) een element van orde p volgens 1, want Z(G) is abels.

Als $p \nmid |Z(G)|$ dan is er een g_i met $p \nmid |G| : C_G(g_i)| = \frac{|G|}{|C_G(g_i)|}$. Omdat p||G| geldt $p||C_G(g_i)|$. Die groep is kleiner dan |G|, dus volgens inductie bevat de een element van orde p.

Herhaling

$$y$$
 orde m, $n \in \mathbb{Z}$, orde $(y^n) = \frac{m}{ggd(n,m)}$

Stelling

De enige normaaldelers van A_5 zijn $\{e\}$ en A_5 .

Gevolg: de enige normaaldelers van A_n zijn $\{e\}$ en A_n .

Bewijs

Een normaaldeler is een ondergroep de bestaat uit conjungatieklassen.

Conjungatieklassen in A_5 :

$$e=1$$
, 3-cykels $=\binom{5}{3}\frac{3!}{3}=20$, 5-cykels $=\binom{5}{5}\frac{5!}{5}$, 2-2-cykels $=\binom{5}{3}\binom{3}{2}\frac{1}{2!}=15$, dus $|A_5|=60$

Neem σ een 3-cykel: $|C_{S_5}(\sigma)| = \frac{|S_5|}{|3\text{-cykels}|} = \frac{120}{20} = 6$ elementen en $C_{S_5}(\sigma) = \langle (1\ 2\ 3), (4\ 5) \rangle$

$$C_{A_5}(\sigma) = C_{S_5}(\sigma) \cap A_5$$
. |Conjungatieklasse in

$$|A_5| = \frac{|A_5|}{|C_{A_5}(\sigma)|} = \frac{60}{3} = 20$$
, dus $|C_{A_5}(\sigma)| = \langle (1\ 2\ 3) \rangle$

 A_5 heeft $\check{\mathbf{5}}$ conjungatieklassen met groottes 1, 20, 12, 12, 15.

De orde van de normaaldeler van A_5 moet $|A_5| = \frac{5!}{2} = 60$ delen.

(Lagrange), maar heeft ook orde k1 + k20 + k12 + k12 + k15 met $k \in \{0,1\}$. Na wat proberen: dit kan alleen als dat 1 of 60 is. Dus als de normaaldeler $\{e\}$ of A_5 is. Dus $[A_5,A_5]=A_5$

Voorbeeld

$$[S_2, S_2] = A_2 = \{e\}, [S_3, S_3] = A_3 \text{ en } [A_3, A_3] = \{e\}, [S_4, S_4] = A_4, [A_4, A_4] = V_4 = \{e, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$$

 $[S_n, S_n] = A_n \text{ voor } n \le 5 \text{ en } [A_n, A_n] \le A_n \text{ voor } n \ge 5.$