Algebra-1 Note

lin150117

Contents

1	Rings and Fields	1
	1.1 Gauss elimination	3
2	Determinant	4
3	vector space	4
1	Rings and Fields	
	efinition 1.0.1 (Group). A group is a set G with an operation $\cdot: G \times G \to G$ the that:	G
(1)	(associative law) $\forall x, y, z \in G, (x \cdot y) \cdot z = x \cdot (y \cdot z)$	
(2)	There is an identity element 1 such that $1 \cdot x = x \cdot 1 = x, \forall x \in G$	
(3)	For any $x \in G$, \exists an inverse x^{-1} such that $x \cdot x^{-1} = x^{-1} \cdot x = 1$	
A g	group G is called Abelian/commutative , if $\forall x, y \in G, x \cdot y = y \cdot x$	
	efinition 1.0.2 (Ring). A ring is a set with two operations $+$ and \cdot such the $x,y,z\in\mathbb{R}$	at
(1)	(commutative law) $x + y = y + x$	
(2)	(associative law) $(x + y) + z = x + (y + z)$, $(x \cdot y) \cdot z = x \cdot (y \cdot z)$	

(3) (distribution law) $(x+y) \cdot z = x \cdot z + y \cdot z$, $z \cdot (x+y) = z \cdot x + z \cdot y$

Moreover, there is a zerojjj element 0 and identity element $1 \neq 0$ s.t. $\forall x \in \mathbb{R}$

- (4) $x + 0 = 0 + x = x = x \cdot 1 = 1 \cdot x$
- (5) \exists opposite -x of x such that -x + x = 0 = x + (-x)

 $x \in R$ is called **invertible** or a **unit** if $\exists x^{-1} \in R$ s.t. $x^{-1} \cdot x = x \cdot x^{-1} = 1$. Then x^{-1} is called the **inverse** of x.

A ring $(R, +, \cdot)$ is called **commutative** if $\forall x, y \in R, xy = yx$ (say x **commutes** y)

Remark 1. If xy = 1, then y is called a **right inverse** of x

Proposition 1 (Cancellation law). If $x, y, z \in R, x + y = x + z$, then y = z. If x is unit, $x \cdot y = x \cdot z$, then y = z.

Definition 1.0.3 (Field). A commutative ring is a **field** if every nonzero element is a unit

Remark 2. Columns of $C = A \cdot B$ is combination of columns of A. Rows of $C = C \cdot B$ is combination of rows of B.

Definition 1.0.4 (Elementary row operations). Type 1: Interchange r_i with r_j , $i \neq j$

Type 2: For a unit $u \in \mathbb{R}$, replace r_i with $u \cdot r_i$.

Type 3: Replace r_i with $r_i + cr_j$, $i \neq j, c \in \mathbb{R}$

There are three elementary matrices not mentioned and they are invertible. We write it as $E_{i,j}$, $E_{i,u}$, $E_{i,j,c}$ and

$$E_{i,j}^{-1} = E_{i,j}, \ E_{i,u}^{-1} = E_{i,u^{-1}}, \ E_{i,j,c}^{-1} = E_{i,j,-c}$$

Remark 3. Elementary row operations on A is multiply on the left elementary matrices.

Definition 1.0.5 (Transpose). $A = (a_{i,j})$ of $m \times n$ define the **transpose** of A: $A^T = (a_{j,i})$

1.1 Gauss elimination

Given an equation $A\vec{x} = \vec{b}$, call $(A|\vec{b})$ the **augment matrix**

Definition 1.1.1. A matrix is called **reduced row echelon** matrix if

- 1. If $r_i = 0$, then $r_j = 0$ for j > i;
- 2. If $r_i \neq 0$, then the left-most nonzero entry is 1 (let $a_{i,k_i} = 1$), called a **pivot**;
- 3. the pivot of r_i is strictly on the right of the pivot of r_{i-1} ;

Definition 1.1.2. A system of linear equations of form of $a_{j,k_i} = 0$ for all j < i is called a **reduced row echelon system**;

Call x_{k_i}, \dots, x_{k_r} principal unknowns, the others free unknowns

- **Proposition 2.** 1. Any system of linear equations can be reduced to be a r.r.e system, preserving the set of solutions.
 - 2. Any matrix can be reduced to a r.r.e matrix by row denoting operations.

Proposition 3. $A \in M_n(K)$, TAFE:

- 1. A is invertible
- 2. A can be reduced to I_n by row elementary operations
- 3. A is a product of elementary matrices.

Proposition 4. $A \in M_n(K)$, TAFE:

- 1. A is invertible
- 2. Ax = b has a unique solution for any b
- 3. Ax = b has a unique solution.

2 Determinant

Definition 2.0.1. A permutation of $\{1, \dots, n\}$ is a bijective map $\sigma : \{1, \dots, n\} \rightarrow \{1, \dots, n\}$ denote $(\sigma(1), \dots, \sigma(n))$.

A transposition is a permutation $\tau_{i,j}, i \neq j$ such that $\tau_{i,j}(i) = j, \tau_{i,j}(j) = i, \tau_{i,j} = k, \forall k \neq i, j$

denote: $S_n = \{\text{permutation of}\{1, 2, \dots, n\}\}\$ is called **symmetric group**

Proposition 5. Every permutation is a product of transposition.

Definition 2.0.2. $f(x_{\sigma(1)}, \dots, f(x_{\sigma(n)})) = (-1)^m f(x_1, \dots, x_n)$

 $(-1)^m$ is called the **sign** of σ , denoted by $sign(\sigma)$

If $sign(\sigma) = 1$, then sigma is called an even permutation.

If $sign(\sigma) = -1$, then σ is called an odd permutation.

We can define the determinant with three properties.

Proposition 6. R commutative, $A, B \in M_n(R) \Rightarrow \det(A \cdot B) = \det(A) \det(B)$.

Proposition 7. $\det A = \det A^t$

Proposition 8. det $A = \sum_{(t_1,t_2,\cdots,t_n)} sign(t_1,\cdots,t_n) a_{1,t_1,\cdots,n,t_n}$

3 vector space

Definition 3.0.1. A vector space over k is an Abelian group (V, +) together with a scalar multiplication $k \times V \to V, (c, v) \mapsto c \cdot v$ such that:

- (1) $1 \cdot v = v$ for $1 \in k$, any $v \in V$
- (2) (associative law) $(ab) \cdot v = a \cdot (b \cdot v)$
- (3) (distributive law) $(a+b) \cdot v = a \cdot v + b \cdot v$ $a \cdot (u+v) = a \cdot u + a \cdot v$ for all $a, b \in k, u, v \in V$