1 Ejercicio 9.3

1.1 Filtros FIR

Los filtros FIR (Finite Impulse Response) son filtros de respuesta impulsiva finita. El filtro de la consigna resulta ser un filtro FIR, y en particular nos interesa estudiar aquellos filtros FIR sin distorsión de fase, es decir, aquellos filtros cuya fase sea lineal en función de la frecuencia, o cuyo retardo de grupo sea constante.

1.2 Filtro de fase lineal

Los filtros FIR de fase lineal se dividen en cuatro tipos básicos según la forma de la respuesta impulsiva que los caracteriza.

- 1.3 Tipo I
- 1.4 Tipo II
- 1.5 Tipo III
- 1.6 Tipo IV

1.7 Caso particular

Procedemos a demostrar por qué un filtro de tipo I es un filtro de fase lineal:

Sea $h(n) \in R / h(n) = h(-n)$, con $n \in \mathbb{Z}$. Entonces, su transformada de fourier H(f) será $H(f) \in R / H(f) = H(-f)$, por lo que / |H(f)| = |H(-f)|.

Sea entonces un filtro discreto realizable de la forma $y(n) = \sum_{n=0}^{m} a_j \cdot x(n-j)$, con $a_j \epsilon R$, $m \epsilon N$ de manera tal que $a_j = a_{m-j}$. La respuesta impulsiva a(n) del filtro estará dada entonces por sus coeficientes, que describen una función simétrica con respecto a algún valor $k \epsilon N$. Luego, a(n) = h(n-k), h(n) par. Entonces, si A(f) es la transformada de fourier de a(n), notamos que $A(f) = H(f) \cdot e^{i2\pi f \cdot k}$. De aquí obtenemos las siguientes propiedades para A(f):

- |A(f)| = |H(f)|, función real y par.
- Como H(f) es una función real, entonces la fase de A(f) será lineal con respecto a la frecuencia y por lo tanto su retardo de grupo τ_g será constante.

1.8 Filtro particular

Dado el filtro de consigna descripto por la ecuación:

$$y(nT) = x(nT) + 2x(nT - T) + 3x(nT - 2T) + 4x(nT - 3T) + 3x(nT - 4T) + 2x(nT - 5T) + x(nT - 6T)$$

Observamos que su respuesta impulsiva a(n) resulta ser simétrica con respecto a k=3, por lo que cae dentro del caso particular descripto anteriormente y por ende su retardo de grupo será constante. En particular, dado que $a(n)=a(m-n), \, \forall n \epsilon [0;m]$, su retardo de grupo será $\tau_g=3T$