Preliminary Questions

- 1. Write the reaction and K_{sp} expressions for following dissolving in water:
 - 1. Lead Iodide (PbI_2)

$$PbI_{2}(s) + H_{2}O(l)
ightarrow Pb^{2+}(aq) + 2I^{-}(aq) \ K_{sp} = [Pb^{2+}][I^{-}]^{2}$$

2. Calcium Iodate ($Ca(IO_3)_2$)

$$egin{split} Ca(IO_3)_2(s) + H_2O(l) &
ightarrow Ca^{2+}(aq) + 2IO_3^-(aq) \ K_{sp} &= [Ca^{2+}][IO_3^-]^2 \end{split}$$

2. A student performed titrations in experiment. 25 mL of $Ca(OH)_2$ was titrated with 22.7mL of 0.103 M HCl. Calculate the molar solubility and K_{sp} of $Ca(OH)_2$.

$$egin{split} [OH^-] &= rac{22.7mL imes 0.103M}{25mL} = 0.09352M \ &[Ca^{2+}] &= rac{[OH^-]}{2} = 0.046762M \ &K_{sp} &= [Ca^{2+}][OH^-]^2 = 0.0000409 \end{split}$$

3. A student performed titrations in experiemtn. 25 mL of $Ca(OH)_2$ and 0.05 M Ca^{2+} was titrated with 2.77 mL of 0.103 M HCl. Calculate molar solubility of $Ca(OH)_2$.

$$egin{align} [OH^-] &= rac{2.77mL imes 0.103M}{25mL} = 0.0114M \ &[Ca^{2+}] &= rac{[OH^-]}{2} = 0.0057062M \ &K_{sp} &= [Ca^{2+}][OH^-]^2 = 7.43 imes 10^{-7} \ \end{aligned}$$