Unit 4

LOS 1. Determinants

• 2 by 2 matrix determinants

$$\circ \ \ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \ A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}, \ \det A = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

- \circ If $\det A \neq 0$, then A^{-1} exists and therefore, $Ax = b \Rightarrow x = A^{-1}b$
- Additionally, Ax=0 only when x=0 if $\det A\neq 0$
- 3 by 3 matrix determinants:
 - o pneumonic for 3 by 3 matrix determinants

$$egin{array}{lll} \circ & A = egin{pmatrix} a & b & c \ d & e & f \ g & h & i \end{pmatrix}, \det A = aei - afh - bdi + bfg + cdh - ceg \end{array}$$

LOS 2. Laplace Expansion:

- used to find the determinant for $n \times n$ matrices
- example for 3×3 matrix:

$$\circ \ A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$

$$\circ \ \det A = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix} = aei - afh - bdi + bfg + cdh - ceg$$
 the above method for all columns and row i.e. we can traverse through d, e, f to calculate the determinants, usually we traverse along columns or rows with the most number of zero.

- the above method for all columns and row i.e. we can traverse through d, e, f to calculate the determinants, usually we traverse along columns or rows with the most number of zeros

LOS 3. Liebniz Formula

- used to find determinant using permutations of the terms in the matrix
- example for 3 × 3 matrix:

$$egin{array}{cccc} \circ & A = egin{pmatrix} a & b & c \ d & e & f \ g & h & i \end{pmatrix}$$

$$\circ \det A == aei - afh - bdi + bfg + cdh - ceg$$

o number of terms: 3! terms

term	column	sign	no. of flips	type
aei	1, 2, 3	+	0	even
afh	1, 3, 2	_	1	odd
bfg	2, 3, 1	+	2	even
bdi	2, 1, 3	_	1	odd
cdh	3, 1, 2	+	2	even
ceg	3, 2, 1	_	1	odd

- o column: column in which each of the value resides
- o no. of flips: number of swaps to rearrange the column into 1, 2, 3
- o for even number flips, the term is positive. for odd number flips, the term is negative
- for $n \times n$ matrix: n! terms

LOS 4. Properties of a determinant

- property 1: $\det I = 1$
- property 2: det changes sign under row interchange

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = - \begin{vmatrix} c & d \\ a & b \end{vmatrix}$$

• property 3: det is a linear function of the first row

$$egin{array}{c|c} ka & kb \ c & d \end{array} = k egin{array}{c|c} a & b \ c & d \end{array}, egin{array}{c|c} a+a' & b+b' \ c & d \end{array} = egin{array}{c|c} a & b \ c & d \end{array} + egin{array}{c|c} a' & b' \ c & d \end{array}$$

- corollary properties
 - o \det is a linear function of any row (does not have to be the first row), \det does not change when we multiply a row by a constant and when add it to another row (the original row itself is not changed) \rightarrow Gaussian elimination does not change the \det , except when rows are exchanged in order or rows are multiplied by a constant
 - \circ det = 0 if there are two identical rows
 - \circ det = 0 if there is a row of zeros
 - \circ det = 0, then the matrix is not invertible
 - $\circ \det D, \det L, \det U$ determinant of a diagonal, lower triangular and upper triangular matrix is equal to the product of the diagonal elements
 - $\circ \ \det AB = \det A \det B$
 - $\circ \det\left(A^{-1}\right) = \frac{1}{\det A}$
 - $\circ \det A^T = \det A$
- we can use Gaussian elimination to convert the matrix to a triangular matrix and then calculate the determinant

LOS 5. Eigenvalue problem

- A $n \times n$ matrix: $Ax = \lambda x$ where λ is the eigenvalue and x is the eigenvectors
- steps:

$$\circ Ax = \lambda Ix$$

$$\circ Ax - \lambda Ix = 0$$

$$\circ (A - \lambda I)x = 0$$

- \circ if $\det{(A-\lambda I)} \neq 0$, then $(A-\lambda I)$ has an inverse and therefore $(A-\lambda I)^{-1}(A-\lambda I)x=0$ and we get the trivial solution of 0
- $\circ~$ to avoid getting the trivial solution, we need $\det{(A-\lambda I)}=0$, which is called the characteristic of A
- $\circ \det (A \lambda I)$ is an n-th order polynomial equation in λ which has n roots
- example for 2 × 2 matrix:

$$\circ \det(A - \lambda I) = \begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix} = \lambda^2 - (a + d)\lambda + ad - bc = 0$$

$$\circ \det(A - \lambda I) = \lambda^2 - \operatorname{Tr} A + \det A = 0$$

- cases for λ :
 - \circ 2 real values of λ

$$\circ \; \; {
m complex} \; \lambda \; {
m i.e.} \; {
m det} \, (A-\lambda I) = \lambda^2 + 1 = 0 \; {
m where} \; A = egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix}$$

 \circ 1 real λ (the eigenvalues are degenerate) i.e. $\det (A-\lambda I)=\lambda^2=0$ where $A=\begin{pmatrix} 0&1\\0&0\end{pmatrix}$

LOS 6. Finding eigenvalues and eigenvectors

- all symmetric matrices have real eigenvalues
- example:

$$A = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$$
 $\det\left(A - \lambda I\right) = egin{bmatrix} -\lambda & 1 \ 1 & -\lambda \end{vmatrix} = \lambda^2 - 1$ $\lambda_1 = -1 \quad ext{OR} \quad \lambda_2 = 1$

$$\lambda_1 = -1: (A+I)x_1 = 0$$
 $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
 $v_1 + v_2 = 0 \Rightarrow v_2 = -v_1$

$$\lambda_1 = 1: (A - I)x_2 = 0$$
 $\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
 $-v_1 + v_2 = 0 \Rightarrow v_2 = v_1$

$$\lambda_1 = -1 \quad x_1 = egin{pmatrix} 1 \ -1 \end{pmatrix} \ \lambda_2 = 1 \quad x_1 = egin{pmatrix} 1 \ 1 \end{pmatrix}$$

LOS 7. Matrix diagonalization

• if *A* is diagonalizable, formula:

$$\circ A = S\Lambda S^{-1}$$

$$\circ \Lambda = S^{-1}AS$$

- ullet in matrix diagonalization, we need to normalize the eigenvectors, therefore S is orthogonal
- example for 2 × 2 matrix:

$$A \in 2 imes 2 \ \lambda_1, x_1 = egin{pmatrix} x_{11} \ x_{12} \end{pmatrix} \ \lambda_2, x_2 = egin{pmatrix} x_{21} \ x_{22} \end{pmatrix} \ A = egin{pmatrix} x_{11} & x_{12} \ x_{12} & x_{22} \end{pmatrix} egin{pmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{pmatrix}$$

- two eigenvectors corresponding to distinct eigenvalues are linearly independent
- ullet if columns of an n imes n matrix are linearly independent, the matrix is invertible

LOS 8. Powers of a matrix

• derivation:

$$A = S\Lambda S^{-1} \ A^2 = (S\Lambda S^{-1})(S\Lambda S^{-1}) = S\Lambda^2 S^{-1} \ A^p = S\Lambda^p S^{-1}$$

- ullet if A is diagonalizable, we can compute its power easily as the eigenvalue matrix Λ is a diagonal matrix
- matrix exponential:

$$e^{x} = 1 + x + rac{1}{2!}x^{2} + rac{1}{3!}x^{3} + \cdots$$
 $e^{A} = I + A + rac{1}{2!}A^{2} + rac{1}{3!}A^{3} + \cdots$
 $e^{A} = Se^{\Lambda}S^{-1}$
 $e^{A} = \begin{pmatrix} e^{\lambda_{1}} & 0 & \cdots & 0 \\ 0 & e^{\lambda_{2}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{\lambda_{n}} \end{pmatrix}$