

ReCycle: Resilient Training of Large DNNs using Pipeline Adaptation

Swapnil Gandhi gandhis@stanford.edu Stanford University

Athinagoras Skiadopoulos askiad@stanford.edu Stanford University Mark Zhao myzhao@cs.stanford.edu Stanford University

Christos Kozyrakis kozyraki@stanford.edu Stanford University

汇报人: 黄文豪、陈奕池、王衍杰

目录

1 Introduction

2 Motivation

3 Design

4 Evaluation

5 Conclusion

Introduction Motivation Design Evaluation Conclusion 3

Training background

- **□** Large scale training
 - Llama-3 was trained on 15 trillion tokens, using two clusters of 24K GPUs
- □ Hybrid-parallelism training
 - TP within a multi-GPU server
 - PP across multi-GPU servers

MiniBatch

Batches

DP across pipelines

Data Parallelism

Fault during training

- ☐ High cost of faults
 - Microsoft's training cluster fails about every 45 minutes
 - Meta encountered over 100 hardware failures during OPT-175B training, losing 178,000 GPU hours
- **□** Fault handling
 - **■** Error Detection
 - Checkpoint
 - **■** Fault tolerant training

Related Works

- **□** Fault-tolerant training
 - Bamboo (NSDI 23): redundant computation---- low throughput

■ Oobleck (SOSP 23): re-configure parallel scheme---- suspend overhead

Introduction Motivation Design Evaluation Conclusion

Motivation

1. Peer nodes have the same parameters in data parallelism

Reroute: No need to re-shuffle model parameters.

2. Bubbles in the pipeline parallelism

The warm-up and cool-down phases contain bubbles due to the sequential dispatch of micro-batches.

Introduction Motivation Design Evaluation Conclusion

Motivation

Reroute: No need to re-shuffle model parameters in case of a fault.

2. Bubbles in the pipeline parallelism

The warm-up and cool-down phases contain bubbles due to the sequential dispatch of micro-batches.

Design 1: Adaptive Pipelining

Extra Bubbles in Adaptive Pipeline due to sync. all-reduce

Forward and Backward of data

8

Warm-up Phase Cool-down Phase **Data Parallel Pipeline 1** 1 2 3 4 Stage 0 Stage 1 Stage 3

Stage 0

Stage 3

Time

held in-memory by a stage

(a) Fault-Free 1F1B Schedule

(b) Adaptive Schedule when $W_{1/2}$ fails.

Design 1: Adaptive Pipelining

(a) Fault-Free 1F1B Schedule

(b) Adaptive Schedule when $W_{1/2}$ fails.

10

Design: Efficient bubble filling

- 1. Decoupled BackProp: Filling Unused Bubbles
- 2. Staggered Optimizer: Accessing More Bubbles

Design 2: Decoupled BackProp

□ Backward

- 1. Backward computes input gradients and weights gradients
- 2. Layer i only depends on the input gradients from layer i+1
- 3. Weights gradients can be deferred until the end

Figure 4. Forward and Backward pass for an operator.

Introduction Motivation Design Evaluation Conclusion

Design 2: Decoupled BackProp

- Method
 - □ Prioritize executing B_{Input} in bubbles
 - ✓ Advantage: extra time steps 9 -> 2
 - ✓ Disadvantage: Increases memory pressure
- **□** Memory pressure mitigation
 - □ Avoid decoupling Backward unless necessary

Introduction Motivation Design Evaluation Conclusion

Design 3: Staggered Optimizer

warm-up bubbles

Reduce warm-up bubbles

System Overview

- **□** System
 - **■** Profiler
 - **■** Planner
 - **■** Executor
 - **■** Coordinator

15:

16:

```
x = \arg\min_{x \le f} \left( O[i-1][f-x] \right)
                                    + COST(x)
```

▶ Assignments

```
O[i][f] = O[i-1][f-x] + COST(x)
17:
               A[i][f] = concat(A[i-1][f-x],x)
18:
```

end if 19: end for

end for 22: return A[PP-1][F]

23: end procedure

25: **procedure** cost(f)

return 0 30: end procedure

return min $(0, MB \times f \times 3 - (DP - f) \times (PP - 1) \times 3)$ 27:

end if

if f > 0 then 28:

Planner: Failure Normalization

- Intuition
 - distribute across different peers
 - distribute to peers with more bubbles
- dynamic programming
 - F failures
 - **PP** pipeline stages
 - \blacksquare A[i] = x, x failures in stage i
 - lacksquare O[i][f], handling f failures overhead

additional time slots by heuristic

Planner: Failure Normalization □ Intuitio dynamic programming dynamic programming **Result: interrupted Result: uninterrupted** O[i][f] = COST(f)dynamiq F failures 22: return A[PP - 1] [r]

Planner: Adaptive Schedule Generation

□ MILP

- T_{coom}: communication latency
- \blacksquare T_F, T_{Binput}, T_{Bweight}: execution latency
- **operation** (i, j, k, c, ks), $c \in \{F, Binput, Bweight\}$
- a micro-batch ID 14, rerouted from W2 3 to W1 3: i = 3, j = 14, k = 2, ks = 1.
- $S_{i, i, k}^{ks} \in \{0, 1\}$

- **E** $_{i, i, k, c}^{ks}$: ending time of operation (i, j, k, c, ks)

Planner: Adaptive Schedule Generation

MILP

- T_{coom}
- T_F, T_{Binput}, T_{Bweight}
- operation (i, j, k, c, ks)
- $S_{i, j, k}^{ks} \in \{0, 1\}$

- \mathbf{E}^{ks} i, j, k, c

Cross-Stage Dependencies.

$$\underline{E_{i,j,k,F}^{k_s}} \ge S_{i,j,k}^{k_s} \times \left(\sum_{\hat{k}} \left(E_{\underline{i-1},j,k,F}^{\hat{k}} \times S_{\underline{i-1},j,k}^{\hat{k}}\right) + T_{comm} + \underline{T_F}\right) \tag{2}$$

$$\underline{\underline{E_{i,j,k,B_{Input}}^{k_s}}} \ge S_{i,j,k}^{k_s} \times \left(\sum_{\hat{k}} \left(E_{i+1,j,k,B_{Input}}^{\hat{k}} \times S_{i+1,j,k}^{\hat{k}}\right) + T_{comm} + T_{B_{Input}}\right)$$
(3)

Same-Stage Dependencies.

$$E_{i,j,k,B_{Weight}}^{k_s} \ge S_{i,j,k}^{k_s} \times \left(E_{i,j,k,B_{Input}}^{k_s} + T_{B_{Weight}}\right) \tag{4}$$

No Overlapping Computations.

$$E_{\underline{i,j',k',c'}}^{k'_s} \ge E_{\underline{i,j,k,c}}^{k'_s} + T_{c'} - \\ \infty \left(1 - S_{i,j,k}^{k'_s} \times S_{i,j',k'}^{k'_s} + O_{(i,j,k,c,k'_s) \to (i,j',k',c',k'_s)}\right)$$
(5)

Planner: Adaptive Schedule Generation

- A_B, A_{Bweight}: activation
- A_{Binput}, A_{Bweight}: gradients
- operation (i, j, k, c, ks)

$$\Delta M_{i,j,k,c}^{k_s} = \begin{cases} A_B & \text{, if } c = F \text{ and } S_{i,j,k}^{k_s} = 1 \\ A_B - A_{B_{Input}} & \text{, if } c = B_{Input} \text{ and } S_{i,j,k}^{k_s} = 1 \\ -A_{B_{Weight}} & \text{, if } c = B_{Weight} \text{ and } S_{i,j,k}^{k_s} = 1 \\ 0 & \text{, otherwise} \end{cases}$$

Memory Constraint.

$$M_{Limit} \ge \Delta M_{i,j',k',c'}^{k'_s} + \sum_{j,k,c} \Delta M_{i,j,k,c}^{k'_s} \times O_{(i,j,k,c,k'_s) \to (i,j',k',c',k'_s)}$$

$$(6)$$

Implementation on DeepSpeed

- **□** Rerouting: communication operators
 - ReRouteAct
 - ReRouteGrad
- **□** Decoupling BackProp: pipeline instructions
 - InputBackwardPass
 - WeightBackwardPass
- **□** Rerouting: communication operators
 - optimizer in pipeline stage

Experimental Setup

- □ Cluster Setup
 - 4 Standard_NC96ads_A100_v4 (8 A100 GPUs, 96 vCPUs, and 880 GB memory each) in Azure, 600 GB/s NVLink intra-node, 640 Gbps internode
- **□** Baselines
 - **■** Bamboo, Oobleck
- Workloads
 - GPT-3: Medium (350M), 3.35B, and 6.7B
 - (PP, DP): (2, 16), (4, 8), and (8, 4)
 - WikiText
 - **■** Train 6 hours

Training Throughput Under Failures

- Bamboo: redundant computations and additional model state copies
- Oobleck: imbalanced pipelines and higher reconfiguration latency (re-shuffle)

Table 1. Training throughput (samples/sec) with increasing failure frequency, higher is better. Bamboo ran out of memory for GPT-3 3.35B and 6.7B.

Systems	GPT-3 Medium		GPT-3 3.35B			GPT-3 6.7B			
Failure Frequency	6h	2h	30m	6h	2h	30m	6h	2h	30m
Fault-Free DeepSpeed [60]		27.58			14.87			5.33	
Bamboo [67]	19.47	18.98	15.24	OOM	OOM	OOM	OOM	OOM	OOM
Oobleck [29]	27.26	25.37	19.47	14.55	13.44	9.78	4.98	4.65	2.78
ReCycle	27.27	25.42	22.27	14.59	14.17	12.63	5.17	4.85	3.53

Training Throughput Under Failures

■ 1.64× improvement over Bamboo, 1.46× improvement over Oobleck

Figure 9. Training throughput (samples/sec), higher is better, for the GPT-3 Medium and GPT-3 6.7B models over the GCP trace. In 9b and 9c, the dashed lines represent the average training throughput achieved by each system within the 6h period.

24

ReCycle Scalability

- **□** Simulator
 - simulate maximum discrepancy is 5.98%
 - variations from minor fluctuations by NCCL collectives

Table 2. Gap between real-world and simulated throughput across various models and failure rates.

Models	Fault-Free	6h	2h	30m	
GPT-3 Medium	-0.87%	+5.98%	-1.93%	-1.48%	
GPT-3 3.35B	-0.13%	-1.58%	+2.12%	-1.90%	
GPT-3 6.7B	+3.94%	+2.71%	-1.86%	-0.85%	

ReCycle Scalability

- **□** Large scale simulation
 - At a failure rate of 1%-5%, the performance of ReCycle is comparable to that of Fault-Scaled
 - At a failure rate of 10%, the performance of ReCycle degrades by 0.5% to

ReCycle Performance Breakdown

- Adaptive Pipelining: additional work
- Decoupled BackProp: effectively utilizing bubble, improve 63% to 118%
- Staggered Optimizer: reduce warm-up bubbles, improve 7% to 11%

ReCycle Performance Breakdown

By decoupling BackProp and delaying B_{weight} computation, nearly full utilization of GPU memory is achieved

Planner Overhead

With 25% GPU failure, the Planner finds optimal scheduling with a delay of less than 0.1% of the total training time

Conclusion

□ Pros:

- Technical Advantages: Continuous training using data parallelism
- **■** Technical Advantages: Combined optimization of bubbles
- Paper Advantages: The images clearly express the core design

☐ Cons:

- Dynamic programming will probably interrupt training
- Fine-grained scheduling of bubbles is difficult, and the paper does not explain how to achieve it
- Existing pipeline parallelism techniques have already optimized the bubbles