Homework 12 of Introduction to Analysis(II)

AM15 黃琦翔 111652028

May 14, 2024

- 1. (a) Since $\partial \operatorname{int}(E) = \operatorname{cl}(\operatorname{int}(E)) \setminus \operatorname{int}(\operatorname{int}(E)) = \operatorname{cl}(E) \setminus \operatorname{int}(E) = \partial E$ and $\partial \operatorname{cl}(E) = \partial E$, we can get $\operatorname{Vol}(\partial \operatorname{int}(E)) = \operatorname{Vol}(\partial \operatorname{cl}(E)) = \operatorname{Vol}(\partial E) = 0$ and $\operatorname{int}(E), \operatorname{cl}(E)$ are Jordan regions.
 - (b) Since $\operatorname{cl}(E) = \operatorname{int}(E) \cup \partial E$ and $\operatorname{int}(E) \subseteq E \subseteq \operatorname{cl}(E)$, $\operatorname{Vol}(\operatorname{cl}(E)) \leq \operatorname{Vol}(\operatorname{int}(E)) + \operatorname{Vol}(\partial E) = \operatorname{Vol}(\operatorname{int}(E)) \leq \operatorname{Vol}(E) \leq \operatorname{Vol}(\operatorname{cl}(E)).$ Therefore, $\operatorname{Vol}(\operatorname{cl}(E)) = \operatorname{Vol}(\operatorname{int}(E)) = E$.

(c)

- (\Longrightarrow) From (b), we know Vol(int(E)) = Vol(E) > 0, then we can find a set of rectangles R_n s.t. $\sum |R_n| > 0$ and $\bigcup R_n \subseteq \operatorname{int}(E)$. Therefore, $\operatorname{int}(E) \neq \emptyset$.
- (\longleftarrow) Since $\operatorname{int}(E)$ is non-empty, for any $x_0 \in \operatorname{int}(E)$, there exists $\varepsilon > 0$ s.t. $D(x_0, \varepsilon) \subseteq \operatorname{int}(E)$. Then, we can find a small rectangle R with each length is $\frac{\varepsilon}{2}$ and R is contained in $D(x_0, \varepsilon)$. Thus, $\operatorname{Vol}(\operatorname{int}(E)) > \left(\frac{\varepsilon}{2}\right)^2 > 0$.
- (d) Since f is continuous, for any $x_0 \in [a,b]$, we can find a sequence $x_k \to x_0$ s.t. $f(x_k) \to f(x_0)$. That is, $A = \{(x, f(x)) \mid x \in [a,b]\}$ is closed. And since $\partial A \subseteq A$, $\operatorname{Vol}(\partial A) \leq \operatorname{Vol}(A)$.

Since f is continuous on [a,b] is compact, for all $\varepsilon > 0$, we can find $\delta > 0$ s.t. $|x-y| < \delta$ implies That $|f(x)-f(y)| < \frac{\varepsilon}{b-a}$. Then, we can find a finite increasing sequence $\{x_i \mid x_i \in [a,b]\}_{i=1}^N$ s.t. $[a,b] \subseteq D(x_i,\frac{\delta}{2})$. Therefore, for any y = f(x), $y \in D(f(x_i),\frac{\varepsilon}{b-a})$ for some i.

Then, take $u_0 = a$, $u_i \in D(x_i, \frac{\delta}{2}) \cap D(x_{i+1}, \frac{\delta}{2})$, $u_N = b$, and we can get $[a, b] = \bigcup [u_i, u_{i+1}]$. Thus,

$$A \subseteq \bigcup_{i=0}^{N} [u_i, u_{i+1}] \times D(\xi_i, \frac{\varepsilon}{b-a}) \text{ for some } \xi_i \in \{f(x) \mid x \in [u_i, u_{i+1}]\} \text{ with the sum of the rectangles}$$
 is $2\frac{\varepsilon}{b-a} \cdot (b-a) = 2\varepsilon$. Hence, $\operatorname{Vol}(A) = 0$ and $\operatorname{Vol}(\partial A) = 0$.

- (e) Yes. Since f is integrable, for any $\varepsilon > 0$, we can find an partition P s.t. $|U(f,P)-L(f,P)| < \varepsilon$. That is, $\sum_{i=0}^{N} (\sup_{x \in [x_i,x_{i+1}]} \{f(x)\} \inf_{x \in [x_i,x_{i+1}]} \{f(x)\}) \cdot (x_{i+1}-x_i) < \varepsilon$, and each one of the summation is a rectangle that contains all (x,f(x)) in the interval. Thus, $\operatorname{Vol}(A) = 0$ and $\operatorname{Vol}(\partial A) = 0$.
- 2. (a) $\partial(E_1 \cap E_2) = \operatorname{cl}(E_1 \cap E_2) \cap \operatorname{cl}(M \setminus E_1 \cap E_2) \subseteq (\operatorname{cl}(E_1) \cap \operatorname{cl}(M \setminus E_1)) \cup (\operatorname{cl}(E_2) \cap \operatorname{cl}(M \setminus E_2)) =$ $\partial E_1 \cup \partial E_2$. Then, if $E_1 \cap E_2$ is not Jordan region, $\operatorname{Vol}(E_1 \cap E_2) = a > 0$.
 - (b) Since E_1, E_2 are non-overlapping, $E_1 \cap E_2 \subseteq \partial E_1 \cup \partial E_2$. And since E_1, E_2 are Jordan regions, $Vol(E_1) = Vol(int(E_1))$ and $Vol(E_2) = Vol(int(E_2))$. Also we have $int(E_1) \cup int(E_2) \subseteq E_1 \cup E_2$ and $int(E_1) \cap int(E_2) = \emptyset$.

$$\begin{aligned} \operatorname{Vol}(\operatorname{int}(E_1)) + \operatorname{Vol}(\operatorname{int}(E_1)) &= \operatorname{Vol}(\operatorname{int}(E_1) \cup \operatorname{int}(E_2)) \\ &\leq \operatorname{Vol}(\operatorname{int}(E_1) \cup \operatorname{int}(E_2)) + \operatorname{Vol}(E_1 \cap E_2) \\ &= \operatorname{Vol}(E_1 \cup E_2) \\ &\leq \operatorname{Vol}(\operatorname{int}(E_1)) + \operatorname{Vol}(\operatorname{int}(E_1)) + \operatorname{Vol}(\partial E_1) + \operatorname{Vol}(\partial E_2) \\ &= \operatorname{Vol}(\operatorname{int}(E_1)) + \operatorname{Vol}(\operatorname{int}(E_2)) \\ &= \operatorname{Vol}(E_1) + \operatorname{Vol}(E_2) \end{aligned}$$

Thus, $Vol(E_1 \cup E_2) = Vol(E_1) + Vol(E_2)$.

- (c) Let $E_1 \setminus E_1 = S_1$, $E_2 = S_2$. We have S_1 and S_2 are Jordan regions and non-overlapping. Thus, $Vol(E_1) = Vol(S_1 \cup S_2) = Vol(S_1) + Vol(S_1)$ and $Vol(E_1 \setminus E_2) = Vol(E_1) Vol(E_2)$.
- (d) Using (b), (c) and the fact $E_1 \cup E_2 = (E_1 \setminus E_1 \cap E_2) \cup (E_1 \cap E_2) \cup (E_2 \setminus E_2 \cap E_1)$, we can get $Vol(E_1 \cup E_2) = (Vol(E_1) Vol(E_1 \cap E_2)) + Vol(E_1 \cap E_2) + (Vol(E_2) Vol(E_1 \cap E_2)) = Vol(E_1) + Vol(E_2) Vol(E_1 \cap E_2)$.