A. Suppose y is an n-dimensional vector.

$$y^T P y = y^T A^T A y$$
 as $P = A^T A$
 $y^T P y = (Ay)^T A y$

Now, Ay is an m-dimensional vector and $(Ay)^T Ay$ is simply the magnitude of that vector. So $y^T P y \ge 0$

Similarly, for Q, z will be an m-dimensional vector and z^TQz will be equal to the magnitude of Az.

If y is an eigenvector for P , Py = λy ,

 $y^T P y = \lambda ||y||_2$. Since, both $y^T P y$ and $||y||_2$ are positive, λ must also be positive. (The same reasoning applies for the eigenvalues of Q.)

B. We know, $Pu = \lambda u$ $u \in \mathbb{R}^{n \times 1}$

 $A^{T}Au = \lambda u$

Now multiply both sides by A.

 $(AA^T)Au = \lambda Au$

Also, $Q = (AA^T)$

Qv = λv where v = Au is the eigenvector of Q. $v \in \mathbb{R}^{m \times 1}$

If, $Qv = \mu v$

Also, $Q = AA^T$

 $AA^Tv = \mu v$

Multiply both sides by A^{T.}

 $(A^TA)A^Tv = \mu A^Tv$

Since, $A^TA = P$, we can write above equation as,

 $P(A^Tv) = \mu(A^Tv)$

We can see that A^Tv is the eigen vector of P with eigen value as μ .

Size of $u = R^{n \times 1}$. Hence, the elements in u are **n**.

Size of $v = R^{m \times 1}$. Hence, the elements in v are \mathbf{m} .

C. We know, $Qv_i = \mu v_i$.

Also,
$$u_i = \frac{A^T v_i}{\|A^T v_i\|_2}$$
.(1)

 $Q = AA^T$

$$A(A^{\mathsf{T}}v_i) = \mu v_i. \qquad \dots (2)$$

Substituting value of ui from eq 1 in eq 2.

$$A u_i ||A^T v_i||_2 = \mu v_i$$

$$A u_i = \frac{\mu}{\|A^T v_i\|_2} v_i \qquad(3)$$

Let
$$\frac{\mu}{\|A^T v_i\|_2} = \lambda_i$$
(4) Using eq 3 and 4,
$$A u_i = \lambda_i v_i$$
. Hence, proved.

D. Consider the matrix V^TV . Since V is the matrix formed by column vectors u_i , the (i, j) th entry of V^TV is given by $u_i^Tu_j$ which is 0 whenever i \neq j and 1 whenever i = j. So V^TV is an identity matrix.

From above part we have, A $u_i = \lambda_i \ v_i$. U Γ = [λ 1 v1 | λ 2 v2 | λ 3 v3 |...| λ m vm] = [Au1 | Au2 | Au3 |...| Aum] = A[u1 |u2 |u3 |...|um] = AV U Γ = AV Multiply both sides by V^T . U ΓV^T = A. Hence, proved.