Average Code Length

Two Strategies

Encoding Tables

\boldsymbol{x}_k	codeword _k	I _k
В	11	2
Υ	10	2
G	01	2
R	10	2

В

 I_k = length of codeword_k

\boldsymbol{x}_k	codeword _k	I_k
В	1 2	1
Υ	01	2
G	001	3
R	000	3

Average Code Length

The average length of a random code is the expected value of its length:

$$\overline{L} = \sum_{k=0}^{K-1} p_k I_k$$

The entropy of the distribution p_k is a lower bound on the average code length!

Example

\boldsymbol{x}_k	p_k
В	1/4
Y	1/4
G	1/4
R	1/4

$$H = 2$$

$$\overline{L} = \frac{1}{4} \cdot 2 + \frac{1}{4} \cdot 2 + \frac{1}{4} \cdot 2 + \frac{1}{4} \cdot 2$$

$$= 2$$

$$\overline{L} = \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{4} \cdot 3 + \frac{1}{4} \cdot 3$$

$$= 2.25$$

Example

\boldsymbol{x}_k	p_k
В	1/2
Y	1/4
G	1/8
R	1/8

$$H = 1.75$$

$$\overline{L} = \frac{1}{2} \cdot 2 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 2 + \frac{1}{8} \cdot 2$$

$$= 2$$

$$\overline{L} = \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 3 + \frac{1}{8} \cdot 3$$

$$= 1.75$$