The Potentials Theory on Denumerable Markov Chain

Boren(Wells) Guan

Date: April 29, 2024

1 Basic Definition

Definition 1.1. (Irreducible Markov Chain)

 $x \leftrightarrow y$ if $x \to y$ and $y \to x$ and we call x and y communicate and easy to be checked an equivalence relation on X. Then we call an equivalence class w.r.t. \leftrightarrow as an irreducible class. We call (X, P) to be irreducible if it is an irreducible class.

Definition 1.2. (Harmonic Functions)

Let (X, P) be a finite, irreducible Markov chain. We choose and fix a subset $X^{\circ} \subset X$ called the interior, and $\partial X = X - X^{\circ}$, we suppose X° is connected i.e. $P_{X^{\circ}}$ is irreducible.

We call a function $h: X \to \mathbb{R}$ harmonic on X° if h(x) = Ph(x) for every $x \in X^{\circ}$, where $Ph(x) = \sum_{y \in X} p(x, y)h(y)$, which is also called mean value property. We denote by $\mathcal{H}(X^{\circ}) = \mathcal{H}(X^{\circ}, P)$ is the linear space of all functions on X and harmonic on X° .

For a general finite Markov chain, we define the linear space of harmonic functions on X with

$$\mathcal{H} = \mathcal{H}(X, P) = \{ h : X \to \mathbb{R}, h(x) = Ph(x), x \in X \}$$

Definition 1.3. (Hitting distribution)

Let $s = s^{\partial X}$, then $P_x(s^{\partial X} < \infty) = 1$ for any $x \in X$.

Then we may define

$$v_{x}(y) = P_{x}(s < \infty, Z_{s} = y), y \in \partial X$$

and then v_x will become a probability distribution on ∂X , called the hitting distribution of ∂X .

Proof. Here we introduce \tilde{P} which is defined by $\tilde{p}(x,y) = p(x,y)$ for $x \in X^{\circ}$ and $\tilde{p}(x,y) = \delta_x$ for $x \in \partial X$, then it is easy to check $h \in \mathcal{H}(X^{\circ}, P)$ iff $h \in \mathcal{H}(X^{\circ}, \tilde{P})$ and s is the same on (X, P) and (X, \tilde{P}) . So consider s on (X, \tilde{P}) , we know

$$P(s^{\partial X} < \infty) = 1$$

by corollary 1.3. \Box

Definition 1.4. (Superharmonic functions)

All functions $f: X \to \mathbb{R}$ are assumed to be *P*-integrable (which is a subspace) i.e.

$$\sum_{y \in X} p(x, y) |f(y)| < \infty$$

for all $x \in X$.

A real function h on X is called harmonic if h(x) = Ph(x) and superharmonic if $h(x) \ge Ph(x)$ for every $x \in X$.

Addition to \mathcal{H} , we define

$$\mathcal{H}^+ = \{h \in \mathcal{H}, h(x) \ge 0\}$$
 $\mathcal{H}^\infty = \{h \in \mathcal{H}, h \text{ is bounded on } X\}$

and lett S = S(X, P) the space of all superharmonic functions and similarly S^+, S^{∞}

Definition 1.5. (Invariant and excessive measures)

Here we assume the invariant measure must satisfy nonnegative and

$$vP(y) = \sum_{x \in X} v(x)p(x, y) < \infty$$

Recall we call a measure on X is invariant or stationary if v = vP and excessive or superinvariant v = vP. We denote $I^+ = I^+(X, P)$ and $E^+ = E^+(X, P)$ the cones of all invariant and excessive measures.

Definition 1.6. (Induced Markov chain)

Suppose (X, P) is irreducible and substochastic. Let $A \subset X$ and we may define

$$p^{A}(x, y) = P_{x}(t^{A} < \infty, Z_{t^{A}} = y)$$

where $p^A(x, y) = 0$ if $y \notin A$. Then we may know $P^A = (p^A(x, y))$ is substochastic and (A, P^A) is called the Markov chain induced by (X, P) on A.

Here the irreducibility of (X, P) implies irreducibility of the induced chain.

Proof. For $x, y \in A$ there are n > 0 and $x_1, \dots, x_{n-1} \in X$ such that $p(x, x_1)p(x_1, x_2) \dots p(x_{n-1}, y) > 0$ and let $x_{i_k} \in A$ and we know $p^A(x_{i_k}, x_{i_{k+1}}) \le p^A(x_{i_k}, x_{i_{k+1}})$.

Definition 1.7. If P^A is stochastic, then we call A is recurrent for (X, P).

Definition 1.8. For $A, B \subset X$, define the restriction of P to $A \times B$ by $P_{A,B} = (p(x,y))_{x \in A, y \in B}$.

Definition 1.9. (Potentials)

A *G*-integrable function $f: X \to \mathbb{R}$ is one that satisfies $\sum_{y} G(x,y)|f(y)| < \infty$ for each $x \in X$. In this case, $g(x) = Gf(x) = \sum_{y \in X} G(x,y)f(y)$ is called the potential of f, while f is called the charge of g. The support of f is $\{x \in X, f(x) \neq 0\}$.

We may know $(I - G)^{-1}$ convergent.

Definition 1.10. (F and L functions)

For $A \subset X$, $x, y \in X$, we define

$$F^{A}(x, y) = \sum_{n=0}^{\infty} P_{x}(Z_{n} = y, Z_{j} \notin A \text{ for } 0 \le j < n) \chi_{A}(y)$$

and

$$L^{A}(x, y) = \sum_{n=0}^{\infty} P_{x}(Z_{n} = y, Z_{j} \notin A \text{ for } 0 < j \le n) \chi_{A}(x)$$

And for P and an excessive measure v, define the v-reversal \hat{P} of P as (to secure \hat{p} is substochastic)

$$\hat{p}(x, y) = v(y)p(y, x)/v(x)$$

Definition 1.11. (Reduced measure)

Reduced measure on A is defined by

$$R^{A}[v](x) = \inf\{\mu \in E^{+}, \mu(y) \ge v(y), y \in A\}$$

Definition 1.12. (Potential of measures and Balayee)

Define the potential of an excessive measure v by vG.

If f is a non-negative G-integrable function on X, then the balayee of f is the function $f^A = L^A f$. If μ is a non-negative, G-integrable measure on X, then the balayee of μ is the measure $\mu^A = \mu F^A$.

2 Solution of Dirichelet problem

Lemma 2.1. We call a set $B \subset X$ convex if $x, y \in B$ and $x \to w \to y$ implies $w \in B$. For $B \subset X$ finite, convex set containing no essential elements. Then there is $\epsilon > 0$ such that for each $x \in B$ and all but finitely many $n \in \mathbb{N}$

$$\sum_{y \in B} p^{(n)}(x, y) \le (1 - \epsilon)^n$$

Proof. B is a disjoint union of finite nonessential irreducible classes $C(x_1), \dots, C(X_k)$ and assume $C(x_1), C(x_2), \dots, C(x_j)$ are the maximal elements in the partial order \rightarrow restricted on $C(x_i), 1 \le i \le k$. We know there is $v_i \in X$ such that $x_i \to v_i$ but $v_i \not\to x_i$ for $1 \le i \le j$ with $v_i \in X - B$. For $x \in B$, $x \to x_i$ for some i and hence $x \to v_i$ while $v_i \not\to x$ for some i. So we may find m_x such that

$$\sum_{y \in B} p^{(m_x)}(x, y) < 1$$

Let $m = \max\{m_x, x \in B\}$ and $x \in B$, we know

$$\sum_{y \in B} p^{(m)}(x,y) = \sum_{y \in B} \sum_{\omega \in X} p^{(m_x)}(m_x)(x,\omega) p^{(m-m_x)}(\omega,y) < 1$$

since B is finite, there is $\kappa > 0$ such that

$$\sum_{y \in B} p^{(m)}(x, y) \le 1 - \kappa$$

let $n \ge m$ and we assume n = km + r and we know

$$\sum_{y \in B} p^{(n)}(x,y) = \sum_{w \in B} p^{(km)}(x,w) = \sum_{y \in B} p^{(k-1)m} \sum_{\omega \in B} p^{(m)}(y,\omega) \le \dots \le (1-\kappa)^k = (1-\epsilon)^n$$
 where $\epsilon = 1 - (1-\kappa)^{1/2m}$.

Lemma 2.2. For C finite, non-essential irreducible class. The expected number of visits C starting from $x \in C$ is finite, i.e.

$$E_x(v^C) \le 1/\epsilon + M$$

Then we may know

$$P_x(\exists k, Z_n \in C \ for \ all \ n > k) = 1$$

since $P(v^C = \infty) = 0$.

Lemma 2.3. If the set of all non-essential states in X is finite, then the Markov chain reaches some essential class with probability one:

$$P_{x}(s^{X_{ess}} < \infty) = 1$$

where X_{ess} is the union of all essential classes.

Lemma 2.4. (Maximum principle) Let $h \in \mathcal{H}(X^{\circ})$ and $M = \max_{X} h(x)$, then there is $y \in \partial X$ such that h(y) = M.

If h is non-constant then h(x) < M for every $x \in X^{\circ}$.

Proof. Here we may know if $x \in X^{\circ}$ and h(x) = M, then choose any $y \in X$ and we have

$$M = h(x) = p^{(n)}(x, y)h(y) + \sum_{v \neq y} p^{(n)}(x, v)h(v)$$

$$\leq p^{(n)}(x, y)h(y) + (1 - p^{(n)}(x, y))M$$

where *n* such that $p^{(n)}(x, y) > 0$ and hence h(y) = M, which means *h* is then constant. And we are done.

Theorem 2.5. (Solution of the Dirichlet problem) For every function $g: \partial X \to \mathbb{R}$ there is a unique function $h \in \mathcal{H}(X^{\circ}, P)$ such that h(y) = g(y) for all $y \in \partial(X)$ which is given by

$$h(x) = \int_{\partial X} g d\nu_x$$

Proof. We firstly prove that the uniqueness of the solution, if $h, h' \in \mathcal{H}(X^{\circ}, P)$, then we know h - h' should be the solution of the Dirichlet problem when g = 0 and by the maximum principle, we know $h - h' \le 0$ and $h' - h \le 0$ and we know h = h'.

Now we prove the existence of h, firstly we would like to show that $x \mapsto v_x(y)$ is harmonic, since

$$\begin{split} \sum_{v \in X} p(x, v) v_v(y) &= \sum_{v \in X} p(x, v) P_v(s < \infty, Z_s = y) \\ &= \sum_{v \in X} p(x, v) P_x(s < \infty, Z_s = y | Z_1 = v) \\ &= \sum_{v \in X} P_x(s < \infty, Z_s = y, Z_1 = v) \\ &= v_x(y) \end{split}$$

and hence $h = \int_{\partial x} g dv_x$ is actually a combination of harmonic functions with h(y) = g(y) for $y \in \partial X$.

Theorem 2.6. Let (X, P) be a finite Markov chain, and denote its essential classes by C_i , $i \in I = \{1, \dots, m\}$.

- a. If h is harmonic on X, then h is constant on each C_i .
- b. For each function $g: I \to \mathbb{R}$ there is a unique function $h \in \mathcal{H}(X, P)$ such that for all $i \in I$ and $x \in C_i$ one has h(x) = g(i).

Proof. a. We know for any $x \in C_i$, $x \to y$ iff $y \in C_i$ and then if $M_i = \max_{C_i} h = h(x)$, $x \in C_i$, then for any $y \in C_i$, we know

$$h(x) = \sum_{y \in X} p^{(n)}(x, y) h(y) \le \sum_{v \in C_i, v \ne y} p^{(n)}(x, y) M + p^{(n)}(x, y) h(y)$$

for any $n, y \in C_i$ and we are done.

b. Let prove the uniqueness at first, if h, h' are harmonic functions on X, then assume $M = \max_X h$ and be obtained at $x \in X - X_{ess}$, then we know since $P_x(s < \infty)$ by corollary 1.3. where $s = s^{X_{ess}}$, then there will be an $y \in X_{ess}$ such that

$$M = h(x) \le p^{(n)}(x, y)h(y) + (1 - p^{(n)}(x, y))M$$

and hence the maximum has to be obtained at X^{ess} and the rest is easy to be checked.

Now we define $v_x(i) = P_x(s < \infty, Z_s \in C_i)$ which will be an harmonic function since

$$\sum_{v \in X} p(x, y) P_y(s < \infty, Z_s \in C_i) = v_x(i)$$

and it is easy to check that

$$h(x) = \sum_{i \in I} g(i) v_x(i)$$

will be a solution.

3 Infinite cases

In the section we assume P is irreducible on X.

Lemma 3.1. (Maximum principle) (Assume |X| > 1) If $h \in \mathcal{H}(X, P)$ and there is $x \in X$ such that $h(x) = M = \max_X h$, then h is constant, where P is substochatic. Furthermore, if $M \neq 0$ then P is stochastic.

Proof. We still have

$$M \le \sum_{y \ne x'} p^{(n)}(x, y) M + p^{(n)}(x, x') h(x') \le (1 - p^{(n)}(x, x')) M + p^{(n)}(x, x') h(x')$$

and hence h = M, if $M \neq 0$. we know the equality has to be reached by P is stochastic.

Lemma 3.2. a. If $h \in S^+$ then $P^n h \in S^+$ for each n, and either h = 0 for h > 0.

b. If h_i , $i \in I$ is a family of superharmonic functions and $h(x) = \inf_I h_i(x)$ defines a P-integrable function if I is finite or h_i is bounded below, then also h is superharmonic.

Proof. a. Firstly, the *P*-integrability of *h* implies that of *Ph* since

$$\sum_{y \in X} p(x, y) |Ph(y)| \le \sum_{y \in X, w \in X} p(x, y) |h(y)| < \infty$$

and by induction $P^nh \in S^+$, and it is easy to check that $P^nh \le h$ by $f \ge g$ implies $Pf \ge Pg$, for each 0 and so if h(x) = 0 for some x, then h will be 0.

b. We know $Ph \le Ph_i \le h_i$ implies $Ph \le h$.

For the *P*-integrability, we may use the MCT for the first cases for h^- and Fatou for h^+ . On the other case h^- is easier.

Lemma 3.3. If (X, P) is transient, then for each $y \in X$, the function $G(\cdot, y)$ is superharmonic and positive. There is at most one $y \in X$ for which $G(\cdot, y)$ is a constant function. If P is stochastic, then $G(\cdot, y)$ is non-constant for every y.

Proof. We know

$$PG(x, y) = \sum_{w \in X} p(x, w)G(w, y) = G(x, y)$$

and

$$PG(y, y) = \sum_{w \in X} p(y, w)G(w, y) = G(y, y) - 1$$

and hence $G(\cdot, y) \in S^+$. Suppose $y_1, y_2 \in X$ and $y_1 \neq y_2$ such that $G(\cdot, y_i)$ are constant, then

$$F(y_1, y_2) = G(y_1, y_2)/G(y_2, y_2) = 1, F(y_2, y_1) = 1$$

and then $F(y_1, y_1) \ge F(y_1, y_2)F(y_2, y_1) \ge 1 = 1$ and y_1 is recurrent, which is a contradiction.

If P is stochastic, since $G(\cdot, y)$ is strictly superharmonic and there will be a contradiction since constant function is harmonic.

Lemma 3.4. a. If $v \in E^+$ then $vP^n \in E^+$ for each n and either v = 0 or v(x) > 0 for every x.

b. If v_i , $i \in I$ is a family of excessive measures, then also $v(x) = \inf_I v_i(x)$ is excessive.

c. If (X, P) is transient, then for each $x \in X$, the measure $G(x, \cdot)$ defined by $y \mapsto G(x, y)$ is excessive.

Proof. a. Here we know

$$vP^{(n)}(x) = \sum_{y \in X} p^{(n)}(y, x)v(y) \le v(x)$$

and hence if v(x) = 0, then v(y) = 0 since (X, P) irreducible.

- b. $vP \leq v_i P \leq v_i$.
- c. We know

$$G(x,\cdot)P(y) = \sum_{w \in X} G(x,w)p(w,y) \le G(x,y)$$

Lemma 3.5. In the recurrent as well as in the transient case, for each $x \in X$, the measure $L(x, \cdot)$ defined by $y \mapsto L(x, y)$ is finite and excessive.

Theorem 3.6. (X, P) is recurrent iff every nonnegative superharmonic function is constant.

Proof. (Here notice (X, P) is either transient or recurrent since it is irreducible).

a. Suppose that (X, P) is recurrent, we show that $S^+ = \mathcal{H}^+$, let $h \in S^+$, we have

$$g = h - Ph$$

is non-negative and P-integrable. We have

$$\sum_{k=0}^{n} P^{k} g = h - P^{n+1}(x)$$

If g(y) > 0 for some y, then

$$\sum_{k=0}^{n} p^{(k)}(x, y)g(y) \le \sum_{k=0}^{n} P^{k}g(x) \le h(x)$$

and then we have

$$G(y, y) \le h(y)/g(y) < \infty$$

which is a contradiction since y is recurrent. So g = 0 and hence h is harmonic.

Then consider for any $h \in S^+ = \mathcal{H}^+$, let $x, y \in X$ and define $g(v) = \min_{h(v), h(x)}$, then we know

$$Pg(y) = \sum_{x \in X} p(y, x)g(x) \le Ph(y)$$

if $h(y) \le h(x)$ and the RHS is less than h(x) since P is substochastic, so g is subharmonic and hence harmonic, then g should be constant and hence for any $y \ne x h(y) \ge h(x)$ and then we know h is constant.

b. If (X, P) is transient, then since all the superharmonic functions are constant, then it has to be |X| = 1 which is a contradiction.

Theorem 3.7. Let (X, P) be substochastic and irreducible. Then (X, P) is recurrent iff there is a non-zero invariant measure v such that each excessive measure is a multiple of v. Then P must be stochastic.

4 Induced Markov chains

Lemma 4.1. If A is recurrent for (X, P) then

$$P_{x}(t^{A} < \infty) = 1$$
, for all $x \in X$

Proof. We know

$$P_{\scriptscriptstyle X}(t^A < \infty) = \sum_{y \in A} p(x,y) + \sum_{y \in X-A} p(x,y) P_y(t^A < \infty)$$

If we have $P_y(t^A < \infty) = 1$, then we know $h(x) = P_x(t^A < \infty)$ and hence to be a constant on (X, P). \Box

Lemma 4.2.
$$P^A = P_A + P_{A,X-A}G_{X-A}P_{X-A,A}$$

Proof. Notice for $x, y \in A$, we have

$$p^A(x,y) = p(x,y) + \sum_{v \in X-A} p(x,v) P_v(t^A < \infty, Z_{t^A} = y)$$

and then

$$P_v(t^A < \infty, Z_{t^A} = y) = \sum_{w \in X-A} P_v(t^A < \infty, Z_{t^A-1} = \omega, Z_{t^A} = y)$$

$$\sum_{w \in X-A} \sum_{n \ge 1} P_v(t^A = n, Z_{n-1} = w, Z_n = y)$$

$$= \sum_{w \in Y-A} G_{X-A}(v, w) p(w, y)$$

and we have

$$p^{A}(x, y) = p(x, y) + \sum_{v \in X - A} \sum_{w \in X - A} p(x, v) G_{X - A}(v, w) p(w, y)$$

Theorem 4.3. If $A \subset B \subset X$, then $(P^B)^A = P^A$.

Proof. We should give an interpretation of Z_n^B and define $w_N^B(\omega) = k$ if $n \le v^B(\omega)$ and k is the instant of the n-th return visit to B, then $Z_n^B = Z_{w_n^B}$ if $n \le v^B$.

Let t_B^A be the stopping time of the first visit of (Z_n^B) in A. Since $A \subset B$, we have for any $\omega \in \Omega$, $t^A(\omega) = \infty$ iff $t_B^A(\omega) = \infty$ and $t^A(\omega) \ge t^B(\omega)$. Hence, if $t^A(\omega) < \infty$, we know

$$Z_{t_{p}^{A}(\omega)^{B}}(\omega) = Z_{t^{A}(\omega)}(\omega)$$

so for $x, y \in A$, we have

$$(p^B)^A(x,y) = P_x(t^A_B < \infty, Z^B_{t^A_B} = y) = P_x(t^A < \infty, Z_{t^A} = y) = p^A(x,y).$$

by consider ω .

Theorem 4.4. Let $v \in E^+(X, P)$, $A \subset X$ and v_A the restriction of v to A. Then $v_A \in E^+(A, P^A)$.

Proof. For $x \in A$, then

$$v_A(x) = v(x) \ge vP(x) = v_A P_A(x) + v_{X-A} P_{X-A,A}(x)$$

and hence

$$v_A \ge v_A P_A + v_{X-A} P_{X_A, A}$$

and similarly

$$v_{X-A} \ge v_{X-A} P_{X-A} + v_A P_{A,X-A}$$

and multiply $\sum_{k=0}^{n-1} P_{X-A}^k$ to RHS and we obtain

$$v_{X-A} \sum_{k=0}^{n-1} P_{X-A}^k \ge v_{X-A} P_{X-A}^n + v_A P_{A,X-A} (\sum_{k=0}^{n-1} P_{X-A}^k)$$

and hence

$$v_{X-A} \ge v_A P_{A,X-A} (\sum_{k=0}^{n-1} P_{X-A}^k)$$

for every $n \ge 1$. And we know

$$v_A P_{A,X-A}(\sum_{k=0}^{n-1} P_{X-A}^k) \rightarrow v_A P_{A,X-A} G(X-A)$$

since $I/(I - P_{X-A}) = G(X - A)$ and then

$$v_A \ge v_A P_A + v_A P_{A,X-A} G(X-A) P_{X-A,A} = v_A P^A$$

5 Potentials, Riesz decomposition

For the rest part, we assume (X, P) is irreducible and transient, which means

$$0 < G(x, y) < \infty$$

for all $x, y \in X$.

Lemma 5.1. a. If g is the potential of f, then f = (I - P)g. Furthermore, $P^n g \to 0$ pointwise.

b. If f is non-negative, then $g = Gf \in S^+$ and g is harmonic on X - supp(f) that is Pg(x) = g(x) for every $x \in X - supp(f)$.

Proof. a. Suppose that $f \ge 0$ firstly, then we know

$$PGf(x) = \sum_{y \in X} p(x, y) \sum_{w \in X} G(w, y) f(y) = GPf = \sum_{n \ge 1} P^n f = Gf - f$$

since

$$Gf = \sum_{y \in X} \sum_{n \ge 0} P^{(n)}(x, y) f(y) = \sum_{n \ge 0} P^n f$$

by MCT. And hence Gf is superharmonic and harmonic on X - supp(f). Then notice

$$P^{n}g(x) = GP^{n}f(x) = \sum_{k=n}^{\infty} f(x)$$

has to be convergent to 0. For general f, decompose it as f^+ and f^- will be fine.

Theorem 5.2. (Riesz decomposition theorem) If $u \in S^+$ then there are a potential $g \in Gf$ and a function $h \in \mathcal{H}^+$ such that

$$u = Gf + h$$

The decomposition is unique.

Proof. Since $u \ge 0$ and $u \ge u$, for every $x \in X$ and every $n \ge 0$, we know

$$P^n u(x) \ge P^{n+1} u(x) \ge 0$$

Therefore, there is the limit function

$$h(x) = \lim_{n \to \infty} P^n u(x)$$

where

$$Ph(x) = P(\lim_{n \to \infty} P^n u)(x) = \lim_{n \to \infty} P^{n+1} u(x) = h(x)$$

by DCT since u is P-integrable. Then let f = u - Pu and then we know

$$u - h = Gf$$

Then let us prove the uniqueness, we consider $u = g_1 + h_1$ another decomposition, then $P^n = P^n g_1 + h_1$ and then we know $P^n u \to h_1$ since $P^n g_1 \to 0$ and we are done.

Corollary. a. If g is a non-negative potential then the only function $h \in \mathcal{H}^+$ with $g \ge h$ is h = 0.

b. If $u \in S^+$ and there is a potential g = Gf with $g \le u$, then u is the potential of a non-negative function.

Proof. a. $h = P^n h \le P^n g \to 0$ pointwise.

Theorem 5.3. (Approximation theorem) If $h \in S^+(X, P)$ then there is a sequence of potentials $g_n = Gf_n$, $f_n \ge 0$ such that $g_n(x) \le g_{n+1}(x)$ for x and n, and

$$\lim_{n \to \infty} g_n(x) = h(x)$$

Notice here we do not use that h is G-integrable.

Proof. Define

$$R^A[h](x) = \inf\{u(x), u \in S^+, u(y) \ge h(y) \text{ for all } y \in A\}$$

and $R^A[h] \leq h$. In particular, we have

$$R^A[h](x) = h(x)$$

for $x \in A$. And by lemma 2.3. we know $R^A[h](x) \in S^+$. Let A be a finite subset X. Let $f_0(x) = h(x)$ if $x \in A$ and $f_0(x) = 0$. f_0 is non-negative and finitely supported. Then Gf_0 exists and finite on X, with $Gf_0 \ge f_0$. So Gf_0 is a superharmonic function since $PGf_0 = GPf_0 \le Gf_0$ and with $Gf_0 \ge h$ on A. So we know $R^A[h] \le Gf_0$.

So we know $R^A[h]$ has to be a potential and then let B be another finite subset of X containing A. Then $R^B[h] \ge R^A[h]$. Let A_n be an increasing sequence of finite subsets of X such that $X = \bigcup_n A_n$ and let $g_n = R^{A_n}[h]$ then we know $g_n \le h$ but $g_n = h$ on A_n .

6 Domination principle

Proposition 6.1. a. We have

$$\hat{L}^A(x,y) = \frac{v(y)F^A(y,x)}{v(x)}, \quad \hat{F}^A(x,y) = \frac{v(y)L^A(y,x)}{v(x)}$$
 b. $x \in A \implies F^A(x,\cdot) = \delta_x, y \in A \implies L^A(\cdot,y) = 1_y$.

Proof. a. We have

$$\begin{split} \hat{L}^A(x,y) &= \sum_{n \geq 0} \sum \hat{P}_x(Z_n = y, Z_j = x_j, 0 \leq j < n) \chi_A(x) \\ &= \sum_{n \geq 0} \sum v(y) p(y,\cdot) \cdots p(\cdot,x) / v(x) \\ &= v(y) \sum_{n \geq 0} P_y(Z_n = x, Z_j \not\in A) \chi_A(x) / v(x) \\ &= v(y) F^A(y,x) / v(x) \end{split}$$

and the rest is similar.

b.
$$x \in A$$
, then $F^A(x, y) = P_x(Z_0 = y)$. And the other one is similar.

Lemma 6.2. a. $G = G_{X-A} + F^A G$.

$$b. \ G = G_{X-A} + GL^A.$$

$$c. \ F^AG = GL^A = G - G_{X-A}.$$

Proof. We know

$$\begin{split} p^{(n)}(x,y) &= P_x(Z_n = y, s^A > n) + P_x(Z_n = y, s^A \le n) \\ &= p_{X-A}^{(n)}(x,y) + \sum_{v \in A} \sum_{k=0}^n P_x(Z_n = y, s^A = k, Z_k = v) \\ &= p_{X-A}^{(n)}(x,y) + \sum_{v \in A} \sum_{k=0} P_x(s^A = k, Z_k = v) p^{(n-k)}(v,y) \end{split}$$

then we have

$$G(x, y) = G_{X-A}(x, y) = \sum_{v \in A} (\sum_{k=0}^{\infty} P_x(s^A = k, Z_k = v)) (\sum_{n=0}^{\infty} p^{(n)}(v, y))$$

and hence

$$G(x, y) = G_{X-A}(x, y) + \sum_{v \in X} F^A(x, v)G(v, y)$$

The rest is to enumerate the last time of visiting A.

Lemma 6.3. $P^A = P_{A,X}F^A = L^A P_{X,A}$.

Proof. We know

$$\begin{split} p^A(x,y) &= p(x,y) + \sum_{v \in X-A} p(x,v) P_v(s^A < |infty, Z_{s^A} = y) \\ &= \sum_{v \in A} p(x,v) \delta_v(y) + \sum_{v \in X-A} p(x,v) F^A(v,y) \\ &= \sum_{v \in X} p(x,v) F^A(v,y) \end{split}$$

Then let v = 1 and we have

$$p^{A}(x, y) = \hat{p}(y, x) = \sum_{v \in X} \hat{p}(y, v) \hat{F}(v, x) = \sum_{v \in X} L(x, v) p(v, y)$$

and we are done. (Ensured by proposition 2.1. c)

Lemma 6.4. a. If $h \in S^+(X, P)$, then $F^A h(x) = \sum_{y \in A} F^A(x, y) h(y)$ if finite and

$$F^A h(x) \le h(x)$$

b. If $v \in E^+(X, P)$, then $vL^A(y) = \sum_{x \in A} v(x)L^A(x, y)$ is finite and

$$vL^A(y) \le v(y)$$

Proof. By approximation theorem, we may find $g_n = Gf_n$ such that $g_n \uparrow h$ on X. The f_n can be chosen to have finite support. So

$$F^{A}g_{n} = F^{A}Gf_{n} = Gf_{n} - G_{X-A}f_{n} \le g_{n} \le h$$

and hence $F^A h \leq h$ by MCT.

For the other conclusion, we know

$$vL^A(y) = \sum_{x \in A} v(x)L^A(x, y) = \sum_{x \in A} \hat{F}^A(y, x)v(y) \le v(y)$$

Theorem 6.5. a. If $h \in S^+$ then $R^A[h] = F^A h$. In particular, $R^A[h]$ is harmonic in every point of X - A while $R^A[h] = h$ on A.

b. If $v \in E^+$ then $R^A[v] = vL^A$. In particular, $R^A[v]$ is invariant in every point of X - A while $R^A[v] = v$ on A.

Proof. a. For $x \in X - A$ and $y \in A$, we factorize and then

$$F^{A}(x, y) = p(x, y) + \sum_{v \in X - A} p(x, v) F^{A}(v, y) = \sum_{v \in X} p(x, v) F^{A}(v, y)$$

then

$$F^{A}h(x) = \sum_{y \in A} F^{A}(x, y)h(y) = \sum_{v \in X, y \in X} p(x, v)F^{A}(v, y)h(y) = P(F^{A}h)(x)$$

then for $x \in A$

$$P(F^Ah)(x) = \sum PF^A(x, y)h(y) = P^Ah(x) \le h(x)$$

and it is easy to check $F^A h = h$ on A. sp we know $F^A \in \{u \in S^+, u \ge h, y \in A\}$ then $R^A[h] \le F^A h$. Then for $u \in Sar^+$ and $u \ge h$ on A, we know

$$u(x) \ge \sum_{y \in A} F^A(x, y)u(y) \ge F^A h(x)$$

and we are done.

b. For $x \in X$ we have $L^A(x, y) = 0$ and then

$$vL^{A}P(y) = \sum_{x \in A, w \in A} v(x)L^{A}(x, w)P(w, y) = \sum_{x \in A} v(x)L^{A}P(x, y) = vP^{A} \le v(y)$$

for $y \in A$ and for $x \in X - A$, we have

$$vL^AP(x) = \sum_{y \in A, w \in A} v(y)L^A(y,w)P(w,x) = 0 = vL^A(x)$$

and then since $vL^A(y) = v(y)$ for all $y \in A$, so we are done.

Theorem 6.6. (Domination Principle) Let f be a non-negative, G-integrable function on X with support A. If $h \in S^+$ is such that $h(x) \ge Gf(x)$ for every $x \in A$, then $h \ge Gf$ on the whole of X.

Proof. We know

$$h(x) \ge F^A h(x) \ge \sum_{y \in A} F^A(x, y) Gf(y) = F^A Gf(x) = Gf^A(x) = Gf(x)$$

for every x since $f^A = f$.