Reg.No	
--------	--

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL UNIVERSITY, MANIPAL - 576 104

FIRST SEMESTER B.E DEGREE END SEMESTER EXAMINATION

SUB: ENGG. MATHEMATICS I (MAT - 101) (REVISED CREDIT SYSTEM)

Time: 3 Hrs. Max.Marks: 50

- Note: a) Answer any FIVE full questions.
 - b) All questions carry equal marks
- Find the nth derivative of 1A.

i)
$$\frac{x^2}{(x-1)^2(x+2)}$$
 (ii) $\cos^2 x \cdot \sin^3 x$

- Find the evolute of the curve $y^2 = 4ax$ 1B.
- Find the distance of the point (1, -2, 3) from the plane measured parallel to 1C. the line $\frac{x}{2} = \frac{y}{3} = \frac{z}{(-6)}$.

(4+3+3)

- If $\cos^{-1}\left(\frac{y}{b}\right) = \log_e\left(\frac{x}{n}\right)^n$, then prove $x^2 y_{n+2} + (2n+1) xy_{n+1} + 2n^2 y_n = 0$
- 2B. the radius of curvature point the any on at curve $x = a (\theta + \sin \theta), y = a (1 + \cos \theta).$
- 2C. Find the entire length of the cardioid $r = a(1 + \cos\theta)$

(4+3+3)

- 3A. Show that the tangents to the cardioide $r = a (1+\cos\theta)$ at the points $\theta = \left(\frac{\pi}{3}\right)$ and $\theta = \left(\frac{2\pi}{3}\right)$ are parallel and perpendicular to the initial line.
- Find the nature of the series $\sum \frac{(|\underline{\mathbf{n}}|)^2}{|2\mathbf{n}|} x^{2\mathbf{n}}$. 3B.
- The period of simple pendulum is given by $T=2\pi\sqrt{\frac{1}{g}}$. If T is computed 3C. using l = 80 cm and $g = 981 \text{cm} / \text{sec}^2$, find the approximate error in T, if the true values are 80.2 cm and $g = 981.4 / \text{sec}^2$. Also find percentage error.

(4+3+3)

- 4A. Sketch and find the area enclosed by the loop of the curve $3ay^2 = x(x a)^2$.
- 4B. Find the radius of curvature at the point (-2a, 2a) on the curve $x^2y = a(x^2 + y^2)$
- 4C. (i) Define absolute and conditional convergence of an infinite series.
 - (ii) Prove that the series $\frac{\sin x}{1^3} \frac{\sin 2x}{2^3} + \frac{\sin 3x}{3^3}$ converges absolutely.

(4+3+3)

- 5A. (i) Evaluate $\int_{3}^{5} \sqrt{(x-3)^{9}(5-x)^{8}} dx$
 - (ii) Obtain the reduction formula for $\int (\cos^n x) dx$ & hence evaluate $\int_0^{\pi/2} \sin^n x \ dx$.
- 5B. (i) Prove that if a_0 , a_1 , a_2 ,, a_n are real numbers such that $\frac{a_0}{n+1} + \frac{a_1}{n} + \dots + \frac{a_{n-1}}{2} + a_n = 0$, then there exists at least one real number x between 0 and 1 such that $a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n = 0.$
 - (ii) Verify Cauchy's mean value theorem for the functions $f(x) = \log_e x , \quad F(x) = \frac{1}{x} \quad \text{in the interval } [1, e].$
- 5C. Trace with explanation : $a^2 (y^2 x^2) + x^4 = 0$. (4 + 3 + 3)
- 6A. Find the equation of the right circular cone generated when the straight line 2y + 3z = 6 and x = 0 revolves about z axis.
- 6B. Obtain first three non-zero terms in the Maclaurin's series expansion of $f(x) = \tan x$.
- 6C. Find the value of

(i)
$$\lim_{x \to 1} \frac{x^x - x}{x - 1 - \log x}$$

(ii)
$$\lim_{x \to 0} \frac{\log x}{\cot x}$$
 (4 + 3 + 3)

Reg.No	
--------	--

MANIPAL INSTITUTE OF TECHNOLOGY (MANIPAL UNIVERSITY, MANIPAL - 576 104

FIRST SEMESTER B.E DEGREE END SEMESTER EXAMINATION

SUB: ENGG. MATHEMATICS I (MAT – 101) (REVISED CREDIT SYSTEM)

Time: 3 Hrs. Max.Marks: 50

- **∠** Note : a) Answer any FIVE full questions.
 - b) All questions carry equal marks
- 1A. Find the nth derivative of the following
 - (i) $\frac{x}{x^2 + 3x + 2}$
- (ii) sinx cos2x sin3x.
- 1B. Show that the radius of curvature at any point on the catenary is proportional to the square of the ordinate at that point.
- 1C. A line makes an angle α , β , γ and δ with the diagonals of a cube. Prove that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = \frac{4}{3}$.

(4+3+3)

- 2A. If $v = r^m$ where $r^2 = x^2 + y^2 + z^2$ show that $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} = m(m+1)r^{m-2}.$
- 2B. If ρ_1 and ρ_2 be the radii of curvature at the extremities of any chord through the pole of the cardioide $r = a(1 + \cos\theta)$, then prove that $\rho_1^2 + \rho_2^2 = \frac{16a^2}{9}$.
- 2C. Find the entire length of the astroid $x^{2/3} + y^{2/3} = a^{2/3}$. (3 + 4+3)
- 3A. Prove that the evolute of the rectangular hyperbola $2xy = a^2$ is $(x+y)^{2/3} (x-y)^{2/3} = 2a^{2/3}$.

- 3B. A variable plane which lies at a constant distance p from the origin meets the axes at A, B, C. Through A, B, C planes are drawn parallel to coordinate planes. Show that the locus of their point of intersection is given by $x^{-2} + y^{-2} + z^{-2} = p^{-2}$.
- 3C. Find the nature of the series (i) $\sum_{1}^{\infty} \frac{2^{n}}{n!}$ (ii) $\sum_{2}^{\infty} \left(\frac{1}{n \log n}\right)$
- 4A. If u is a homogenous function of order n then show that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = n(n-1)u$
- 4B. Find the area enclosed by the curve $r = a (1 + \cos\theta)$.
- 4C. If $y = a \cos(\log x) + b \sin(\log x)$ then show that $x^{2}(y_{n+2}) + (2n+1)x \quad y_{n+1} + (n^{2}+1)y_{n} = 0$ (4 + 3 + 3)
- 5A. Obtain the formula for $\int_{0}^{\pi/2} \sin^{m} x \, dx$, m > 1.
- 5B. Find the angle of intersection of the curves $r^m = a^m \cos m\theta$ and $r^m = a^m \sin m\theta$
- 5C. Sketch and find the volume formed by revolution of the loop of the curve y^2 (a+x) = x^2 (a x) about the x axis. (4 + 3 + 3)
- 6A. Find the points on the lines $\frac{x-6}{3} = \frac{y-7}{-1} = \frac{z-4}{1}$ and $\frac{x}{-3} = \frac{y+9}{2} = \frac{z-2}{4}$ which are nearest to each other. Hence find the shortest distance between the lines and its equation.
- 6B. Find the equation of the right circular cone with vertex at the origin and axis along the line $\frac{X}{1} = \frac{y}{2} = \frac{z}{3}$, which has semi vertical angle of 30°.
- 6C. State and prove Cauchy's mean value theorem. (4+3+3)
