HW2.6

February 21, 2019

2.6 Homework

Any polynomial of degree n has the form

$$P(x) = P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where the a_i 's, are the coefficients of P_n and $a_n \neq 0$.

Consider the Horner's Method to evaluate P(x) and P'(x) at specified values as follows:

Theorem (Horner's Method)

Let

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0.$$

Define $b_n = a_n$ and

$$b_k = a_k + b_{k+1}x_0, \qquad k = n-1, n-2, \dots, 1, 0.$$

Then $b_0 = P(x_0)$. Moreover, if

$$Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \dots + b_2 x + b_1,$$

then

$$P(x) = (x - x_0)Q(x) + b_0.$$

Moreover,

$$P'(x) = Q(x) + (x - x)Q'(x)$$
 and $P'(x_0) = Q(x_0)$.

Exercise 1:

We assume that all a_i 's are non zeros.

- 1. Determine how many flops (algebraic operations) we will need to evaluate P(x) at x_0 directly.
- 2. Determine how many flops we will need to evaluate P(x) at x_0 by using Horner's Method.

3. Consider the problem to find *x* such that

$$P(x) = 0.$$

When the Newton's method is being used to find an approximate zero of a polynomial, P(x) and P'(x) can be evaluated. Based on the before items 1. and 2. compute how many flops we will need to apply 10 iterations of Newton Method by evaluating P(x) and P'(x) (a) directly and (b) via Horner's Method. Here you can assume that the calculation of the coefficients of P' is free.

- 4. Implement the Newton Method efficiently by using Horner Method to evaluate P(x) and P'(x) creating a function in JULIA as follows:
- 5. Use it to find the zeros of $x^5 x^4 + 2x^3 3x^2 + x 4$ with a tolerance 10^{-8} .
- 6. Use it to find the critical points of $x^4 + 2x^3 3x^2 + x 4$ with a tolerance 10^{-8} .

Given the coefficients of a polynomial coefs=[list] the Horner evaluation at x is:

Out[1]: horner (generic function with 1 method)

The coefficient of Q(x) such that at some given point \bar{x} , $Q(\bar{x}) = P'(\bar{x})$ are:

Out[2]: hornerVect (generic function with 1 method)

Your Newton function could be something like this: Given a tolerance (tol=1e-6) and maximum of iterations (maxiter=10)

```
qx=horner(derivcoef,x0)
   xold, xnew = x, Inf
    @printf "%4s %22s %22s\n" "k" "x" "p(x)"
   @printf "%4d %22.15e %22.15e\n" k x px
    while abs(xnew - xold) > tol*(1 + abs(xold)) && k < maxiter
       k += 1
       xnew = x - px/qx
       xold = x
       x = xnew
       px=horner(coefs,xnew)
       derivcoef=hornerVect(coefs, xnew)
       qx=horner(derivcoef,xnew)
       @printf "%4d %22.15e %22.15e\n" k x px
    end
   return x
end
```

Out[3]: yourNewtonHorner (generic function with 1 method)

(Re-write the above code if needed!!!)