Instituto de Informática Departamento de Informática Teórica

Dados de identificação

Período Letivo: 2011/2

Professor Responsável: LUCIANA SALETE BURIOL Disciplina: COMPLEXIDADE DE ALGORITMOS - B

Sigla: **INF05515** Créditos: 4 Carga Horária: 60

Súmula

Noção de complexidade. Estudo de complexidade via métodos de desenvolvimento de algoritmos; algoritmos iterativos e recursivos. Análise da complexidade de algoritmos clássicos em várias áreas da computação. Noções de intratabilidade; classes P, NP e NP completa. Algoritmos aproximativos.

Currículos

Currículos	Etapa Aconselhada	Natureza
BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO - ÊNF. SISTEMAS DIGITAIS	8	Eletiva
BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO - ÊNF. SOFTWARE BASICO	8	Obrigatória
BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO - ÊNF. CIÊN. DA COMPUTAÇÃO	4	Obrigatória
ENGENHARIA DE COMPUTAÇÃO	8	Eletiva
BIOINFORMÁTICA	6	Alternativa
BACHARELADO EM MATEMÁTICA - ÊNFASE MATEMÁTICA APLIC COMPUTACIONAL	7	Alternativa

Objetivos

A disciplina tem por objetivo ensinar fundamentos teóricos e práticos sobre análise e projeto de algoritmos, bem como sobre classes de problemas. Tem-se por objetivo ensinar uma metodologia para o cálculo da complexidade de algoritmos e incentivar a análise já na etapa de desenvolvimento do algoritmo. Ao final do curso espera-se que o aluno:

- saiba analisar algoritmos sequencias e recursivos
- conheça e saiba usar adequadamente as principais técnicas de desenvolvimento de algoritmos
- conheça e saiba caracterizar as principais classes de problemas

Conteúdo Programático

Semana	Título	Conteúdo
1 a 4	Análise de Algoritmos	introdução e motivação ao tópico notações assintóticas metodologia de análise exercícios
5 a 10	Projeto de Algoritmos	introdução e motivação ao tópico algoritmos gulosos, programação dinâmica e divisão e conquista análise de algoritmos de divisão e conquista exercícios
11 a 14	Classes de Problemas	introdução e motivação ao tópico principais classes de problemas exercícios
15	Exame	Finalizações da disciplina Prova de Exame

Metodologia

Aulas teóricas e práticas; exercícios individuais e em grupo; Apresentação de relatório dos trabalhos e apresentação oral de pelo menos um trabalho.

Carga Horária

Teórica: 60 horas

Prática: 0 horas

Experiências de Aprendizagem

Exercícios individuais e em grupo

Apresentação de relatório dos trabalhos e apresentação oral de pelo menos um trabalho

Critérios de Avaliação

A avaliação de cada um dos 3 tópicos do conteúdo programático (análise de algoritmos, desenvolvimento de algoritmos e classes de problemas) correspondendo às notas N1, N2 e N3, respectivamente.

Cada nota Ni, para i=1,2,3, a nota pode ser composta por prova, trabalho, ou prova + trabalho.

A nota final é composta por: NF = (3.5N1 + 3.5N2 + 3N3)/10.

A média final será mapeada para as seguintes notas: A, B, C e D, sendo que:

D: NF < 6.0

C: 6.0 <= NF < 7.5

B: 7.5 <= NF < 9.0

A: 9.0 <= NF < 10

Se o aluno tiver mais que 25% de faltas, o conceito do aluno será FF.

Atividades de Recuperação Previstas

Prova de recuperação de todo o conteúdo.

Bibliografia

Básica Essencial

Cormen, Thomas H. - Algoritmos :teoria e prática - Editora Campus (ISBN: 8535209263)

Toscani, Laira Vieira; Veloso, Paulo Augusto Silva - Complexidade de Algoritmos: análise, projeto e métodos - Editora Sagra Luzzatto (ISBN: 9788577803507)

Básica

Sem bibliografias acrescentadas

Complementar

Kleinberg, Jon; Tardos, Éva - Algorithm design - Editora Pearson (ISBN: 0321295358)

Knuth, Donald E. - The art of computer programming - Editora Addison-Wesley

M. Garey and D. Johnson - Computers and Intratability: a guide to the theory and NP-completeness - Editora W.H. Freeman

Papadimitriou, Christos H. - Computational complexity - Editora Addison-Wesley

Udi Manber - Introduction to Algorithms: A Creative Approach - Editora Addison-Wesley

Outras Referências

Não existem outras referências para este plano de ensino.

Observações

Nenhuma observação incluída.