ANALISIS REGRESI LINIER BERGANDA

Data

Langkah Analisis

Analisis regresi linier berganda dilakukan melalui beberapa tahapan, yaitu pengecekan asumsi dan analisis data. Secara rinci, analisis regresi linier berganda dilakukan melalui tahapan berikut:

- 1. Analisis Normalitas Residual
- 2. Analisis Linieritas
- 3. Analisis Multikolinieritas
- 4. Analisis Heteroskedastisitas
- 5. Analisis Regresi Linier Berganda

Analisis Normalitas Residual

Hipotesis Uji Normalitas Residual:

 H_0 : Residual berdistribusi normal.

 H_1 : Residual tidak berdistribusi normal.

Analisis normalitas residual dilakukan dengan langkah berikut:

1. Klik Analyze → Regression → Linear.

2. Masukkan variabel KBB ke dalam kotak Dependent Variable, lalu variabel HP, WT, dan DISP ke dalam kotak Independent Variables.

3. Klik kotak Save → centang bagian Unstandardized pada kolom Residual → Continue.

Linear Regression: Save	×					
Predicted Values Unstandardized Standardized Adjusted S.E. of mean predictions	Residuals Unstandardized Standardized Studentized Deleted Studentized deleted					
Distances Mahalanobis Cook's Leverage values Prediction Intervals Mean Individual Confidence Interval: 95 %	Influence Statistics DfBetas Standardized DfBetas DfFits Standardized DfFits Covariance ratios					
Coefficient statistics Create coefficient statistics Create a new dataset Dataset name: Write a new data file File						
Export model information to XML file Browse Include the covariance matrix						
Continue Cancel Help						

4. Klik OK.

5. Hiraukan output yang muncul dan kembali ke Data Editor, maka akan muncul kolom baru berisikan variabel Unstandardized Residual.

6. Klik Analyze → Nonparametric Test → Legacy Dialogs → 1-Sample K-S.

7. Masukkan Unstandardized Residual ke kotak Test Variable List.

8. Klik OK dan hasil uji normalitas residual dapat dilihat pada output One-Sample Kolmogorov-Smirnov Test.

One-Sample Kolmogorov-Smirnov Test

			Unstandardiz ed Residual	
N			32	
Normal Parameters a,b	Mean		,0000000	
	Std. Deviation	Std. Deviation		
Most Extreme Differences	Absolute		,108	
	Positive		,108	
	Negative		-,079	
Test Statistic			108	
Asymp. Sig. (2-tailed) ^c			,200 ^d	
Monte Cano Sig. (2-	org.		,441	
tailed) ^e	99% Confidence Interval	Lower Bound	,428	
		Upper Bound	,454	

- a. Test distribution is Normal.
- b. Calculated from data.
- c. Lilliefors Significance Correction.
- d. This is a lower bound of the true significance.
- e. Lilliefors' method based on 10000 Monte Carlo samples with starting seed 926214481.

Keputusan dan Kesimpulan:

Berdasarkan hasil tersebut, nilai P-Value (Asymp. Sig. 2-Tailed) sebesar 0,200 lebih besar dari α sebesar 0,05. Maka dari itu, keputusannya adalah gagal tolak H_0 dan kesimpulannya residual data berdistribusi normal.

Analisis Linieritas

Hipotesis Analisis Linieritas:

 H_0 : Terdapat hubungan linier antara variabel dependen dan variabel independen.

 H_1 : Tidak terdapat hubungan linier antara variabel dependen dan variabel independen.

Analisis linieritas dilakukan dengan langkah berikut:

1. Klik Analyze → Regression → Linear.

- 2. Masukkan variabel KBB ke dalam kotak Dependent Variable, lalu variabel HP, WT, dan DISP ke dalam kotak Independent Variables.
- 3. Klik kotak Save → centang bagian Unstandardized pada kolom Residual dan Unstandardized pada kolom Predicted Value → Continue.
- 4. Klik OK.
- 5. Hiraukan output yang muncul dan kembali ke Data Editor, maka akan muncul kolom baru berisikan variabel Unstandardized Residual dan Unstandardized Predicted value.

6. Klik Analyze → Compare Means → Means.

7. Masukkan Unstandardized Residual pada kotak Dependent Variable dan Unstandardized Predicted Value pada kotak Independent Variable.

8. Klik Option → Centang Test for Linearity → Continue.

9. Klik OK dan hasil uji linieritas dapat dilihat pada output ANOVA Table.

ANOVA Table

			Sum of Squares	df	Mean Square	F	Sig.
Unstandardized Residual * Unstandardized Predicted Value	Between Groups	(Combined)	194,011	30	6,467	6,599	200
		Linearity	,000	1	,000	,000	1,000
		Deviation from Linearity	194,011	29	6,690	6,827	,290
	Within Groups		,980	1	,980		
	Total		194,991	31			

Keputusan dan Kesimpulan:

Berdasarkan hasil tersebut, nilai P-Value (Asymp. Sig. 2-Tailed) Linearity sebesar 1,000 lebih besar dari α sebesar 0,05. Maka dari itu, keputusannya adalah gagal tolak H_0 dan kesimpulannya terdapat hubungan linier antara variabel dependen dan variabel independen.

Analisis Multikolinieritas

Hipotesis Analisis Multikolinieritas:

 H_0 : Tidak ada multikolinieritas antara variabel independen dalam model regresi.

 H_1 : Terdapat multikolinieritas antara satu atau lebih variabel independen dalam model regresi.

Analisis linieritas dilakukan dengan langkah berikut:

- 1. Klik Analyze \rightarrow Regression \rightarrow Linear.
- 2. Masukkan variabel KBB ke dalam kotak Dependent Variable, lalu variabel HP, WT, dan DISP ke dalam kotak Independent Variables.
- 3. Klik kotak Statistics → centang bagian Covariance Matrix dan Colinearity Diagnostics → Continue.

4. Klik OK dan hasil uji linieritas dapat dilihat pada output Coefficients.

Coefficientsa

		Collineari	
Model		Tolerance	VIF
1	Tenaga Kuda	,365	2,737
	Berat Mobil (dalam x 1000 lbs)	,206	4,845
	Kapasitas Total dari Semua Silinder Mesin (in^3)	,137	7,325

 a. Dependent Variable: Konsumsi Bahan Bakar (Mil/Galon US)

Keputusan dan Kesimpulan:

Berdasarkan hasil tersebut, nilai VIF ketiga variabel independen kurang dari 10. Maka dari itu, keputusannya adalah gagal tolak H_0 dan kesimpulannya tidak ada multikolinieritas antara variabel independen dalam model regresi.

Analisis Heteroskedastisitas

Hipotesis Analisis Heteroskedastisitas:

 H_0 : Tidak ada multikolinieritas antara variabel independen dalam model regresi.

 H_1 : Terdapat multikolinieritas antara satu atau lebih variabel independen dalam model regresi.

Analisis linieritas dilakukan dengan langkah berikut:

- 1. Klik Analyze \rightarrow Regression \rightarrow Linear.
- 2. Masukkan variabel KBB ke dalam kotak Dependent Variable, lalu variabel HP, WT, dan DISP ke dalam kotak Independent Variables.
- 3. Klik kotak Save → centang bagian Unstandardized pada kolom Residual → Continue.
- 4. Klik OK.
- 5. Hiraukan output yang muncul dan kembali ke Data Editor, maka akan muncul kolom baru berisikan variabel Unstandardized Residual.
- 6. Ubah Unstandardized Residual agar nilainya positif semua dengan klik Tansform → Compute Variable.

7. Tulis nama variabel baru yang sudah diabsolutkan dengan nama "ABS_RES_1" pada kotak Target Variabel → Pilih All pada kotak Function Group → Klik dua kali Abs pada kotak Function and Special Variables → Masukkan Unstandardized Residual ke kotak Numeric Expression → OK.

8. Hiraukan output yang muncul dan kembali ke Data Editor, maka akan muncul kolom baru berisikan variabel Absolut (mutlak) dari Unstandardized Residual.

9. Klik Analyze → Regression → Linear.

- 10. Masukkan variabel Absolut Unstandardized Residual ke dalam kotak Dependent Variable, lalu variabel HP, WT, dan DISP ke dalam kotak Independent Variables.
- 11. Klik OK dan hasil uji linieritas dapat dilihat pada output Coefficients.

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model	l	В	Std. Error	Beta	t	Sig.
1	(Constant)	2,489	1,323		1,881	070
	Tenaga Kuda	-,002	,007	-,095	-,306	,762
	Berat Mobil (dalam x 1000 lbs)	-,028	,668	-,017	-,042	,966
	Kapasitas Total dari Semua Silinder Mesin (in^3)	-,001	,006	-,057	-,113	,911

a. Dependent Variable: ABS_RES_1

Keputusan dan Kesimpulan:

Berdasarkan hasil tersebut, nilai P-Value (Asymp. Sig. 2-Tailed) ketiga variabel lebih besar dari α sebesar 0,05. Maka dari itu, keputusannya adalah gagal tolak H_0 dan kesimpulannya tidak ada multikolinieritas antara variabel independen dalam model regresi.

Analisis Regresi Linier Berganda

Analisis regresi linier berganda dilakukan dengan langkah berikut:

- 1. Klik Analyze → Regression → Linear.
- 2. Masukkan variabel KBB ke dalam kotak Dependent Variable, lalu variabel HP, WT, dan DISP ke dalam kotak Independent Variables.
- 3. Klik kotak Statistics → centang bagian Estimates, Model Fit, R-Square Change, Descriptives → Continue.
- 4. Klik OK.

Hipotesis untuk Uji Parsial Analisis Regresi Linier Sederhana:

- H₀: Variabel independen (HP, WT, atau DISP) tidak berpengaruh signifikan terhadap
 variabel dependen KBB secara parsial.
- H₁: Variabel independen (HP, WT, atau DISP) berpengaruh signifikan terhadap variabel dependen KBB secara parsial.

Coefficients^a Standardized Unstandardized Coefficients Coefficients Std. Error Beta t Sig. Model (Constant) 37,106 2,111 17,579 Tenaga Kuda -,031 .011 -,354 -2,724 .011 Berat Mobil (dalam x -3,801 1,066 -,617 -3,565 ,001 1000 lbs) Kapasitas Total dari -,001 ,010, -,019 -,091 ,929

a. Dependent Variable: Konsumsi Bahan Bakar (Mil/Galon US)

Keputusan dan Kesimpulan:

Semua Silinder Mesin

- 1. Berdasarkan hasil tersebut, nilai P-Value (Sig.) untuk variabel independen HP (Tenaga Kuda) sebesar 0,011 kurang dari α sebesar 0,05. Maka dari itu, keputusannya adalah tolak H_0 dan kesimpulannya adalah variabel independen HP berpengaruh signifikan terhadap variabel independen KBB secara parsial.
- 2. Berdasarkan hasil tersebut, nilai P-Value (Sig.) untuk variabel independen WT (Berat Mobil) sebesar 0,001 kurang dari α sebesar 0,05. Maka dari itu, keputusannya adalah tolak H_0 dan kesimpulannya adalah variabel independen WT berpengaruh signifikan terhadap variabel independen KBB secara parsial.
- 3. Berdasarkan hasil tersebut, nilai P-Value (Sig.) untuk variabel independen DISP (Kapasitas Total dari Semua Silinder Mobil) sebesar 0,929 lebih dari α sebesar 0,05. Maka dari itu, keputusannya adalah gagal tolak H₀ dan kesimpulannya adalah variabel independen DISP tidak berpengaruh signifikan terhadap variabel independen KBB secara parsial.

Model Regresi Linier Berganda

Berdasarkan output sebelumnya, dapat diperoleh model regresi linier berganda sebagai berikut:

$$Y = 37,106 - 0,031HP - 3,801WT - 0,001DISP$$

Hipotesis untuk Uji Simultan Analisis Regresi Linier Sederhana:

- H_0 : Variabel independen (HP, WT, dan DISP) tidak berpengaruh signifikan terhadap variabel dependen KBB secara simultan.
- H₁: Variabel independen (HP, WT, dan DISP) berpengaruh signifikan terhadap variabel dependen KBB secara simultan.

ANOVA ^a							
Model		Sum of Squares	df	Mean Square	F	Sig.	
1	Regression	931,057	3	310,352	44,566	<,001 ^b	
	Residual	194,991	28	6,964			
	Total	1126,047	31				

a. Dependent Variable: Konsumsi Bahan Bakar (Mil/Galon US)

Keputusan dan Kesimpulan:

Berdasarkan hasil tersebut, nilai P-Value (Sig.) ketiga variabel secara simultan sebesar 0,001 kurang dari α sebesar 0,05. Maka dari itu, keputusannya adalah tolak H_0 dan kesimpulannya adalah variabel independen (HP, WT, dan DISP) berpengaruh signifikan terhadap variabel dependen KBB secara simultan.

b. Predictors: (Constant), Kapasitas Total dari Semua Silinder Mesin (in^3), Tenaga Kuda, Berat Mobil (dalam x 1000 lbs)