笔记前言:

本笔记的内容是去掉步骤的概述后,视频的所有内容。 本猴觉得,自己的步骤概述写的太啰嗦,大家自己做笔记时, 应该每个人都有自己的最舒服最简练的写法,所以没给大家写。 再是本猴觉得,不给大家写这个概述的话,大家会记忆的更深, 掌握的更好!

所以老铁!一定要过呀!不要辜负本猴的心意! ~~~

【祝逢考必过,心想事成~~~~】

【一定能过!!!!!】

ZINOC MAZINOC MAZINOC

1/5 求样本均值、样本方差、样本标准差

样本均值
$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$
 样本方差 $S^2 = \frac{(X_1 - \overline{X})^2 + (X_2 - \overline{X})^2 + \dots + (X_n - \overline{X})^2}{n-1}$ 样本标准差 $S = \sqrt{S^2}$

$$\overline{X} = \frac{1.1+1.3+1.2+1.2+1.2+1.2+1.2+1.2+1.2+1.2}{10} = 1.2$$

$$S^{2} = \frac{(1.1-1.2)^{2} + (1.3-1.2)^{2} + (1.2-1.2)^{2} + (1$$

$$S = \sqrt{\frac{1}{450}} = \frac{\sqrt{2}}{30}$$

2/5 求统计量的期望和方差

例2. 设总体 X 服从参数为 5 的泊松分布, X_1, X_2, X_3 是取自总体 X 的简单随机样本,试求 $E\overline{X}$ 、 $E(S^2)$ 、 $D\overline{X}$

$$E\overline{X} = EX = 5$$

$$E(S^2) = DX = 5$$

$$D\overline{X} = \frac{1}{n}DX = \frac{1}{3} \times 5 = \frac{5}{3}$$

 $E\overline{X} = EX$

$$E(S^2) = DX$$

$$D\overline{X} = \frac{1}{n}DX$$

3/5 已知服从三大分布,求某东西

例3. 已知随机变量 $M\sim\chi^2(3)$,求 DM

$$DM = 2 \times 3 = 6$$

例4. 设随机变量
$$M{\sim}t(n)$$
,且 $P\{M{>}c\}=\alpha$,则 $P\{M{<}-c\}=$ ___。
$$P\{M{<}-c\}=P\{M{>}c\}=\alpha$$

若 M~
$$\chi^2$$
(n),则: M 可经处理后 = $A_1^2 + A_2^2 + \cdots + A_n^2$ 【 $A_1, A_2 \dots \sim N(0,1)$ 并且相互独立(没有重复的 X_i)】
$$EM = n, DM = 2n$$

若
$$M\sim\chi^2(n_1)$$
、 $N\sim\chi^2(n_2)$ 且 M 与 N 相互独立,则:
$$M+N\sim\chi^2(n_1+n_2)$$

$$n_1>n_2$$
 时, $M-N\sim\chi^2(n_1-n_2)$

若 M~t(n),则: M 可经处理后 =
$$\frac{B}{\sqrt{(A_1^2+A_2^2+\cdots+A_n^2)\cdot\frac{1}{n}}}$$
 【 A_1,A_2 …与 B~N(0,1)并且相互独立(没有重复的 X_i)】

【
$$A_1, A_2$$
 …与 $B \sim N(0,1)$ 并且相互独立(没有重复的 X_i) 】
$$EM = 0$$

$$P\{M > 某数\} = P\{M < - 某数\}$$

$$N \sim F(1,n)$$
 时, $N = M^2$

若 M~F(n,m),则: M 可经处理后 =
$$\frac{(A_1^2 + A_2^2 + \dots + A_n^2) \cdot \frac{1}{n}}{(B_1^2 + B_2^2 + \dots + B_m^2) \cdot \frac{1}{m}}$$
 【 $A_1, A_2 \dots B_1, B_2 \dots \sim N(0,1)$ 并且相互独立(没有重复的 X_i)】
$$\frac{1}{M} \sim F(m,n)$$

常用公式: 当 $X \sim N(\mu, \sigma^2)$ 时, $\frac{X_i - \mu}{\sigma} \sim N(0, 1)$

4/5 判断服从啥分布

$$\frac{8 \cdot ({\mathsf{X}_{5}}^2 + {\mathsf{X}_{6}}^2 + {\mathsf{X}_{7}}^2)}{3{\mathsf{X}_{1}}^2 + 6\sqrt{3}{\mathsf{X}_{1}}{\mathsf{X}_{2}} + 9{\mathsf{X}_{2}}^2 + 3{\mathsf{X}_{3}}^2 + 6\sqrt{3}{\mathsf{X}_{3}}{\mathsf{X}_{4}} + 9{\mathsf{X}_{4}}^2}$$

$$=\frac{8\cdot X_5^2+8\cdot X_6^2+8\cdot X_7^2}{3(X_1+\sqrt{3}X_2)^2+3(X_3+\sqrt{3}X_4)^2}$$

$$=\frac{8\cdot2^{2}\cdot\left(\frac{X_{5}-0}{2}\right)^{2}+8\cdot2^{2}\cdot\left(\frac{X_{6}-0}{2}\right)^{2}+8\cdot\sigma^{2}\cdot\left(\frac{X_{7}-0}{2}\right)^{2}}{3\cdot\left[1+\left(\sqrt{3}\right)^{2}\right]\cdot2^{2}\cdot\left[\frac{X_{1}+\sqrt{3}X_{2}-\left(1+\sqrt{3}\right)\cdot0}{\sqrt{1+\left(\sqrt{3}\right)^{2}}\cdot2}\right]^{2}+3\cdot\left[1+\left(\sqrt{3}\right)^{2}\right]\cdot2^{2}\cdot\left[\frac{X_{3}+\sqrt{3}X_{4}-\left(1+\sqrt{3}\right)\cdot0}{\sqrt{1+\left(\sqrt{3}\right)^{2}}\cdot2}\right]^{2}}$$

$$= \frac{2 \cdot \left[\left(\frac{X_5}{2} \right)^2 + \left(\frac{X_6}{2} \right)^2 + \left(\frac{X_7}{2} \right)^2 \right]}{3 \cdot \left[\left(\frac{X_1 + \sqrt{3}X_2}{4} \right)^2 + \left(\frac{X_3 + \sqrt{3}X_4}{4} \right)^2 \right]}$$

$$= \frac{\left[\left(\frac{X_5}{2} \right)^2 + \left(\frac{X_6}{2} \right)^2 + \left(\frac{X_7}{2} \right)^2 \right] \cdot \frac{1}{3}}{\left[\left(\frac{X_1 + \sqrt{3}X_2}{4} \right)^2 + \left(\frac{X_3 + \sqrt{3}X_4}{4} \right)^2 \right] \cdot \frac{1}{2}} \sim F(3,2)$$

$$\overline{y}^2 + \overline{y}^2 + \cdots \sim \chi^2(\overline{y})$$

$$\frac{(\bar{y}^2 + \bar{y}^2 + \cdots) \cdot \frac{1}{\hat{n}$$
 面括号内项的个数}}{(\bar{y}^2 + \bar{y}^2 + \cdots) \cdot \frac{1}{\hat{n}} \sim F(蓝数, 黄数)

5/5 总体服从正态分布的小题

【下表大量公式可根据 $M\sim\chi^2(n)$ \Rightarrow EM=n、DM=2n 推出 】

例6. 设 X_1, X_2, \cdots, X_n (n ≥ 2) 为来自总体 N(0,1) (σ > 0) 的简单随机样本,则

(A)
$$\frac{\sqrt{n} \cdot \overline{X}}{S} \sim t(n)$$

(A)
$$\frac{\sqrt{n} \cdot \overline{X}}{S} \sim t(n)$$
 (B) $\frac{\sqrt{n} \cdot \overline{X}}{S} \sim t(n-1)$

(C)
$$\frac{\sqrt{n} \cdot \overline{X}}{S-1} \sim t(n)$$

(C)
$$\frac{\sqrt{n} \cdot \overline{X}}{S-1} \sim t(n)$$
 (D) $\frac{\sqrt{n} \cdot \overline{X}}{S-1} \sim t(n-1)$

$$X \sim N(\mu, \sigma^2)$$
 ⇒ $t 分布$ $\frac{\sqrt{n}(\overline{X} - \mu)}{S} \sim t(n-1)$

即
$$\frac{\sqrt{n}\cdot \overline{X}}{S} \sim t(n-1)$$
, 选(B)

1/3 矩估计法

例1. 设总体 X 的概率分布为

X	0	1	2	3
P	θ^2	$2\theta(1-\theta)$	θ^2	1–2θ

其中 θ ($0 < \theta < \frac{1}{2}$)是未知参数, $X_1, X_2, ..., X_n$ 是来自总体的简单随机样本, \overline{X} 是样本均值,求 θ 的矩估计

$$EX = 0 \times \theta^{2} + 1 \times 2\theta(1-\theta) + 2 \times \theta^{2} + 3 \times (1-2\theta)$$
$$= 3-4\theta$$
$$\Leftrightarrow 3-4\theta = \overline{X} \implies \hat{\theta} = \frac{3-\overline{X}}{4}$$

2/3 最大似然估计法

例2. 设总体 X 的概率分布为

X	0	1	2	3
P	θ^2	$2\theta(1-\theta)$	θ^2	1-20

其中 $\theta(0 < \theta < \frac{1}{2})$ 是未知参数,利用总体X的

以下样本值: 3, 1, 3, 0, 3, 1, 2, 3, 求 θ 的最大似然

估计值

$$\frac{\frac{d[\ln(P\{X=3\}\cdot P\{X=1\}\cdot P\{X=3\}\cdot P\{X=0\}\cdot P\{X=3\}\cdot P\{X=1\}\cdot P\{X=2\}\cdot P\{X=3\})]}{d\theta}} = 0$$

$$\Rightarrow \frac{d[\ln(4\theta^6(1-\theta)^2(1-2\theta)^4)]}{d\theta} = 0$$

$$\Rightarrow \frac{24\theta^2 - 28\theta + 6}{\theta(1 - \theta)(1 - 2\theta)} = 0$$

$$\Rightarrow \qquad \theta(1-\theta)(1-2\theta)$$

$$\theta = \frac{7\pm\sqrt{13}}{12}$$

$$\frac{24\theta^2 - 28\theta + 6}{\theta(1 - \theta)(1 - 2\theta)} = 0$$

$$\Rightarrow 24\theta^2 - 28\theta + 6 = 0$$

$$\Rightarrow 12\theta^2 - 14\theta + 3 = 0$$

$$\Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\Rightarrow \theta = \frac{-(-14) \pm \sqrt{(-14)^2 - 4 \times 12 \times 3}}{2 \times 12}$$

$$\Rightarrow \theta = \frac{7 \pm \sqrt{13}}{12}$$

$$\because 0 < \theta < \frac{1}{2}$$

$$\therefore \widehat{\theta} = \frac{7 - \sqrt{13}}{12}$$

$$\frac{d[\ln(4\theta^{6}(1-\theta)^{2}(1-2\theta)^{4})]}{d\theta} \ln(a \cdot b \cdot c \cdot \cdots) = \ln a + \ln b + \ln c + \cdots$$

$$\ln(a \cdot b \cdot c \cdot \cdots) = \ln a + \ln b + \ln c + \cdots$$

$$\frac{d\left[\ln 4 + \ln\left(\theta^{6}\right) + \ln\left[(1-\theta)^{2}\right] + \ln\left[(1-2\theta)^{4}\right]\right]}{d\theta}$$

$$\ln\left(a^{b}\right) = b\ln a$$

$$=\frac{d[\ln 4+6\ln \theta+2\ln (1-\theta)+4\ln (1-2\theta)]}{d\theta}$$

$$=\frac{d(\ln 4)}{d\theta}+\frac{d(6\ln \theta)}{d\theta}+\frac{d[2\ln (1-\theta)]}{d\theta}+\frac{d[4\ln (1-2\theta)]}{d\theta}$$

$$= 0 + 6 \times \frac{1}{\theta} + 2 \times \frac{(1-\theta)'}{1-\theta} + 4 \times \frac{(1-2\theta)'}{1-2\theta}$$

$$=\frac{6}{\theta} + 2 \times \frac{-1}{1-\theta} + 4 \times \frac{-2}{1-2\theta}$$

$$=\frac{24\theta^2-28\theta+6}{\theta(1-\theta)(1-2\theta)}$$

3/3 区间估计

_			
	关于	已知	置信区间
	μ	X服从正态分布 方差已知	$\mu : \left(\overline{X} \pm \frac{\sqrt{\hat{p} \pm \hat{z}}}{\sqrt{n}} z_{\frac{\alpha}{2}} \text{之间}\right) \mathbf{I} z_{\frac{\alpha}{2}} \text{的求法} : \text{找} \Phi(?) = \frac{\alpha}{2} , ? = z_{\frac{\alpha}{2}} \mathbf{I}$
	r	X服从正态分布 方差未知	μ : $\left(\overline{X} \pm \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1) \stackrel{>}{>} \Pi\right)$
	σ	X服从正态分布 方差未知	$\sigma^2 : \left(\frac{(n-1)S^2}{\chi^2 \frac{\alpha}{2}(n-1)} , \frac{(n-1)S^2}{\chi^2 \frac{1-\frac{\alpha}{2}(n-1)}{2}} \right)$
		X 服从正态分布 方差已知 Y 服从正态分布 方差已知	$\mu_{X} - \mu_{Y} : \left((\overline{X} - \overline{Y}) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_{X}^{2}}{n_{X}} + \frac{\sigma_{Y}^{2}}{n_{Y}}} \right) \mathbf{I} z_{\frac{\alpha}{2}} \text{的求法: 找 } \Phi(?) = \frac{\alpha}{2} \; , \; ? = z_{\frac{\alpha}{2}} \mathbf{I}$
	$\mu_X - \mu_Y$	X 服从正态分布 Y 服从正态分布 仅知他俩方差相等	$\mu_{X} - \mu_{Y} : \left((\overline{X} - \overline{Y}) \pm t_{\frac{\alpha}{2}} (n_{X} + n_{Y} - 2) \sqrt{\left(\frac{1}{n_{X}} + \frac{1}{n_{Y}}\right) \frac{(n_{X} - 1)S_{X}^{2} + (n_{Y} - 1)S_{Y}^{2}}{n_{X} + n_{Y} - 2}} \stackrel{>}{\nearrow} \widetilde{\Pi} \right)$
	$\frac{{\sigma_\chi}^2}{{\sigma_Y}^2}$	X 服从正态分布 Y 服从正态分布 方差均未知	$\frac{\sigma_{X}^{2}}{\sigma_{Y}^{2}} : \left(\frac{S_{X}^{2}}{S_{Y}^{2}} \frac{1}{F_{\frac{\alpha}{2}}(n_{X}-1,n_{Y}-1)}, \frac{S_{X}^{2}}{S_{Y}^{2}} \frac{1}{F_{1-\frac{\alpha}{2}}(n_{X}-1,n_{Y}-1)}\right)$

例3. 设总体 X 服从正态分布 $N(\mu, \sigma^2)$,从总体中抽取容量为 36 的一个样本,样本均值 $\overline{X}=3.5$,样本方差 $S^2=4$ 。求 σ 的置信度为 0.95 的置信区间。

①
$$\diamondsuit \alpha = 1 - 0.95 = 0.05$$

$$3 \Rightarrow 2.631 < \sigma^2 < 6.806$$

$$\Rightarrow$$
 1.622< σ <2.609

$$\Rightarrow$$
 σ : (1.622, 2.609)

: σ 的置信度为 0.95 的置信区间为 (1.622, 2.609)

假设检验

)	7/1/2/10	H ₀	拒绝域	检验统计量
	已知总体的	$\mu = \mu_0$	$ Z_0 \ge z_{\frac{\alpha}{2}}$	_ \bar{X}-u_0
	方差 σ_0^2	$\mu \leq \mu_0$	$Z_0 \ge Z_{\alpha}$	$Z = \frac{\overline{X} - \mu_0}{\frac{\sigma_0}{\sqrt{n}}}$
	/4/0	$\mu \geq \mu_0$	$Z_0 \le -z_{\alpha}$	√n
	只知样本数据	$\mu = \mu_0$	$ t_0 \ge t_{\frac{\alpha}{2}}(n - 1)$	$t = \frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}}$
	不知总体方差	$\mu \leq \mu_0$	$t_0 \ge t_{\alpha}(n-1)$	$t = \frac{1}{\underline{s}}$
	AL MHIM ALLANDE	$\mu \geq \mu_0$	$t_0 \le -t_{\alpha}(n-1)$	√n
_		$\sigma^2 = \sigma_0^2$	$\chi^{2}_{0} \le \chi^{2}_{1-\frac{\alpha}{2}}(n-1) \implies \chi^{2}_{0} \ge \chi^{2}_{\frac{\alpha}{2}}(n-1)$	
		$\sigma^2 \le \sigma_0^2$	$\chi^2_0 \ge \chi^2_{\alpha}(n-1)$	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$
G		$\sigma^2 \ge {\sigma_0}^2$	$\chi^2_0 \le \chi^2_{1-\alpha}(n-1)$	
	已知X、Y总体	$\mu_X - \mu_Y = \delta$	$ Z_0 \ge z_{\frac{\alpha}{2}}$	$Z = \frac{\overline{X} - \overline{Y} - \delta}{}$
	的方差。	$\mu_{X} - \mu_{Y} \leq \delta$	$Z_0 \ge Z_{\alpha}$	$\frac{\sigma_{X0}^2}{\sigma_{X}^2} + \frac{\sigma_{Y0}^2}{\sigma_{Y}^2}$
	$\sigma_{X0}^2 \boxminus \sigma_{Y0}^2$	$\mu_{X} - \mu_{Y} \ge \delta$	$Z_0 \le -z_{\alpha}$	(%) 1 (%) 1
	只知X、Y总体	$\mu_X {-} \mu_Y = \delta$	$ t_0 \ge t_{\frac{\alpha}{2}}(n_X + n_Y - 2)$	$t = \frac{\overline{X} - \overline{Y} - \delta}{}$
	的方差相等	$\mu_{X} - \mu_{Y} \leq \delta$	$t_0 \ge t_\alpha (n_X + n_Y - 2)$	$\sqrt{\left(\frac{1}{n_X} + \frac{1}{n_Y}\right) \frac{(n_X - 1)S_X^2 + (n_Y - 1)S_Y^2}{n_X + n_Y - 2}}$
(H1/1 / TUH-1	$\mu_X - \mu_Y \geq \delta$	$t_0 \le -t_\alpha (n_X + n_Y - 2)$	$\sqrt{(n_X n_Y)} n_{X}+n_{Y}-2$
	只知道俩样本	$\mu_X - \mu_Y = 0$	$ t_0 \ge t_{\frac{\alpha}{2}}(n_X - 1)$	【设D=X-Y,均值D̄,标准差S _D 】
	容量相同,即	$\mu_{X} - \mu_{Y} \leq 0$	$t_0 \ge t_\alpha(n_X - 1)$	-//\/
	$n_X = n_Y$	$\mu_{X} - \mu_{Y} \ge 0$	$t_0 \le -t_\alpha(n_X - 1)$	$t = \frac{\bar{D}}{\frac{S_D}{\sqrt{n_X}}}$
		$\sigma_X^2 = \sigma_Y^2$	$F_0 \le F_{1-\frac{\alpha}{2}}(n_X - 1, n_Y - 1) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	c 2
		$\sigma_{X}^{2} \leq \sigma_{Y}^{2}$	$F_0 \ge F_{\alpha}(n_X - 1, n_Y - 1)$	$F = \frac{S_X^2}{S_Y^2}$
		$\sigma_{\rm X}^2 \ge \sigma_{\rm Y}^2$	$F_0 \le F_{1-\alpha}(n_X - 1, n_Y - 1)$	

- 例1. 设某包装机包装葡萄糖。袋装糖的净重是一个正态 随机变量, 其标准差为 0.015kg, 且长期实践表明 标准差稳定不变,机器正常时均值为 0.5kg。某日 开工后随机地抽取该机器所包装的糖9袋,称得净 重平均值为 0.511kg, 请问机器是否正常? $(\alpha=0.05, z_{0.025}=1.96)$
- ① 设袋装糖的净重为 X, $X\sim N(\mu,\sigma^2)$, 从 X 抽 n 个样本, 样本均值为 \overline{X} ,标准差为S
- ② 在显著性水平 α =0.05 下,

- (6) $Z_0 = \frac{0.511 0.5}{\frac{0.015}{\sqrt{9}}} = 2.2$
- ⑦ 将 $Z_0 = 2.2$ 代入 $|Z_0| \ge z_{\frac{\alpha}{2}}$ 中,得: $|2.2| \ge z_{\frac{\alpha}{2}}$ [α 的值题干已给出]
- $\implies 2.2 \ge z_{0.05}$
- $\implies 2.2 \ge z_{0.025}$
- [z_{0.025} 的值题干已给出 ⇒ 2.2 ≥ 1.96 **√**
- : 净重平均值为 0.511kg
- $\therefore \overline{X} = 0.511$
- $: H_0: \mu = 0.5$,而最上方的表格中 $\mu = \mu_0$
- $\therefore \mu_0 = 0.5$
- ∵标准差为 0.015kg
- $: \sigma_0 = 0.015$

∴ n = 9

- : 随机地抽取该机器所包装的糖 9 袋
- :: Z₀ 在拒绝域中, H₁ 成立
- ⊗ H_1 成立 ⇒ 均值不为 0.5 ⇒ 机器不正常

假设检验的小题

例1.设总体 X 服从正态分布 $N(\mu,\sigma^2)$, X_1,X_2,\cdots,X_n 是来自 总体 X 的简单随机样本,据此样本检验假设:

 $H_0: \mu = \mu_0, \ H_1: \mu \neq \mu_0, \ \text{ ()}$

- (A) 如果在检验水平 α =0.05 下拒绝 H_0 , 那么在 检验水平 $\alpha=0.01$ 下必拒绝 H_0
- (B) 如果在检验水平 $\alpha=0.05$ 下拒绝 H_0 , 那么在 检验水平 α =0.01 下必接受 H_0
- (C) 如果在检验水平 α =0.05 下接受 H_0 , 那么在 检验水平 α =0.01 下必拒绝 H_0
- (D) 如果在检验水平 α =0.05 下接受 H_0 , 那么在 检验水平 $\alpha=0.01$ 下必接受 H_0
- : α 大时 接受 $H_0 \Rightarrow α$ 小时 接受 H_0
- $: \alpha = 0.05$ 下接受 $H_0 \Rightarrow \alpha = 0.01$ 下必接受 H_0 选 (D)
- 例2.在假设检验时,对于 $H_0: \mu=\mu_0; H_1: \mu\neq\mu_0$,

称 ___ 为犯第一类错误。

- (A) H₁ 真,接受 H₁ (B) H₁ 不真,接受 H₁
- (C) H₁ 真, 拒绝 H₁ (D) H₁ 不真, 拒绝 H₁
- 第一类错误 $: \begin{cases} H_0 \underline{a}/H_1 \overline{A} \underline{a} \\ \underline{h} \underline{a}/H_0/\underline{b} \underline{b} \end{bmatrix}$
- :: (B) 正确
- 例3.在假设检验中,显著性水平α的意义是_
 - (A) 原假设 H₀ 成立, 经检验被拒绝的概率
 - (B) 原假设 H₀ 成立, 经检验被接受的概率
 - (C) 原假设 H₀ 不成立, 经检验被接受的概率
 - (D) 原假设 H₀ 不成立, 经检验被拒绝的概率
- $: P\{拒绝了H_0|H_0真\} = \alpha$
- :: 在 H_0 真的前提下,拒绝了 H_0 的概率 = α
- : (A) 正确
- 例4.在假设检验中, α、β分别代表第一类和第二类错误的

概率,则当样本容量 n 一定时,下列说法正确的是 __

- (A) α 减小, β 也减小
- (B) α 增大, β 也增大
- (C) A 和 B 同时成立
- (D) α和β一个减小,另一个往往增大
- : 在 n 固定的条件下, α 小 β 就大,

β小α就大

: α 和 β 一个减小,另一个往往增大, (D) 正确

【 α 越大越容易拒绝 H_0 /接受 H_1 】

 α 小时 拒绝 $H_0/$ 接受 $H_1 \Rightarrow \alpha$ 大时 拒绝 $H_0/$ 接受 H_1

 α 大时 接受 H_0 /拒绝 $H_1 \Rightarrow \alpha$ 小时 接受 H_0 /拒绝 H_1

第一类错误: H_0 真/ H_1 不真 拒绝了 H_0 /接受了 H_1 $P{拒绝了H₀/接受了H₁|H₀真/H₁不真} = \alpha$

第二类错误: H_0 不真 $/H_1$ 真 接受了 H_0 /拒绝了 H_1

 $P{接受了H₀/拒绝了H₁|H₀不真/H₁真} = β$

 α 、 β 的性质: ① $\alpha+\beta$ 不一定等于 1

②在 n 固定的条件下, α 小 β 就大,

β小α就大

线性回归

例1. 为研究某一化学反应过程中温度 x (°C) 对产品 得率 y (%) 的影响,测得数据如下表。求 y 关于 x 的线性回归方程,并求 σ^2 的无偏估计

温度x (℃)	100	110	120	130	140	150	160	170	180	190
	45	51	54	61	66	70	74	78	85	89
① $\bar{x} = \frac{100+110+\dots+190}{10} = 145$ $n = 10$										
$\overline{y} = \frac{45+51+\cdots+89}{10} = 67.3$										
$l_{\rm xx} = 10$	$l_{xx} = 100^2 + 110^2 + \dots + 190^2 - 10 \times 145^2 = 8250$									
$l_{yy} = 45^2 + 51^2 + \dots + 89^2 - 10 \times 67.3^2 = 1932.1$										
$l = 100 \times 45 \pm 110 \times 51 \pm \pm 190 \times 89 \pm 10 \times 145 \times 673 = 398$										

②
$$\hat{b} = \frac{3985}{8250} = 0.48303$$

 $\hat{a} = 67.3 - 145 \times 0.48303 = -2.73935$
 $\widehat{\sigma^2} = \frac{1932.1 - \frac{3985^2}{8250}}{10-2} = 0.9$

③ 回归方程: $\hat{y} = -2.73935 + 0.48303x$ σ^2 的无偏估计: $\hat{\sigma}^2 = 0.9$

例2. 为研究某一化学反应过程中温度 x (°C) 对产品 得率 y (%) 的影响,测得数据如下表。试检验 回归效果是否显著 (α=0.05, t_{0.025}(8)=2.3060)

温度x (°C)	100	110	120	130	140	150	160	170	180	190
得率y (%)	45	51	54	61	66	70	74	78	85	89
(1) v - 100+110+···+190 - 145					7		n:	= 10		

①
$$\bar{x} = \frac{100+110+\cdots+190}{10} = 145$$
 $\bar{y} = \frac{45+51+\cdots+89}{10} = 67.3$ $l_{xx} = 100^2+110^2+\cdots+190^2-10\times145^2 = 8250$ $l_{yy} = 45^2+51^2+\cdots+89^2-10\times67.3^2 = 1932.1$ $l_{xy} = 100\times45+110\times51+\cdots+190\times89-10\times145\times67.3 = 3985$

$$\hat{b} = \frac{3985}{8250} = 0.48303$$

$$\hat{a} = 67.3 - 145 \times 0.48303 = -2.73935$$

$$\widehat{\sigma^2} = \frac{1932.1 - \frac{3985^2}{8250}}{10 - 2} = 0.9 \implies \widehat{\sigma} = \sqrt{0.9} = 0.95$$

回归方程: $\hat{y} = -2.73935 + 0.48303x$ σ^2 的无偏估计: $\widehat{\sigma^2} = 0.9$

② 在显著性水平 α =0.05 下, 假设 $H_0: b=0; H_1: b\neq 0$, 检验统计量 $t = \frac{\hat{b}}{\hat{\sigma}} \sqrt{l_{xx}}$,拒绝域为 $|t_0| \ge t_{\frac{\alpha}{2}}(n-2)$

③
$$t_0 = \frac{0.48303}{0.95} \times \sqrt{8250} = 46.2$$

④ 将 $t_0 = 46.2$ 代入 $|t_0| \ge t_{\frac{\alpha}{2}}(n-2)$ 中,得: $|46.2| \ge t_{\frac{\alpha}{2}}(n-2)$

$$\Rightarrow 46.2 \ge t_{\frac{0.05}{2}} (10 - 2)$$

$$\Rightarrow 46.2 \ge t_{0.025}(8)$$

:t₀ 在拒绝域中,回归效果显著

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

$$\bar{y} = \frac{y_1 + y_2 + \dots + y_n}{n}$$

$$l_{xx} = x_1^2 + x_2^2 + \dots + x_n^2 - n\bar{x}^2$$

$$l_{yy} = y_1^2 + y_2^2 + \dots + y_n^2 - n\bar{y}^2$$

$$l_{xy} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n - n\bar{x}\bar{y}$$

$$\hat{b} = \frac{l_{xy}}{l_{xx}} , \ \hat{a} = \bar{y} - \bar{x}\hat{b} , \ \hat{\sigma}^2 = \frac{l_{yy} - \frac{l_{xy}^2}{l_{xx}}}{n-2}$$
回归方程: $\hat{y} = \hat{a} + \hat{b}x$

$$\sigma^2$$
的无偏估计: $\hat{\sigma}^2$

检验统计量 $\mathbf{t} = \frac{\hat{\mathbf{b}}}{\hat{\mathbf{\sigma}}} \sqrt{l_{xx}}$,拒绝域为 $|\mathbf{t}_0| \ge \mathbf{t}_{\frac{\alpha}{2}} (\mathbf{n} - 2)$ "

$$1.86 = 1.8 + 0.06$$

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

X	•••	0.05	0.06	0.07	•••
•••		•••		•••	
1.7	100	0.9599	0.9608	0.9616	50
1.8	沙	0.9678	0.9686	0.9693	•••
1.9	•••	0.9744	0.9750	0.9756	•••
	•••	•••		•••	•••

$$\Phi(1.86) = 0.9686$$

例2. 查 Φ(-1.86)

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

х	···	0.05	0.06	0.07	•••
*	•••	°	•••	×	•••
1.7	•••	0.9599	0.9608	0.9616	
1.8	,50	0.9678	0.9686	0.9693	
1.9	777 ···	0.9744	0.9750	0.9756	•••
	•••				

先查 Φ(1.86)

$$\Phi(-1.86) = 1 - \Phi(1.86)$$

= 1 - 0.9686
= 0.0314

例3. 查 z_{0.025}

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

X		0.05	0.06	0.07	,
		3//	<i></i>		•••
1.7		0.9599	0.9608	0.9616	•••
1.8	•••	0.9678	0.9686	0.9693	•••
1.9		0.9744	0.9750	0.9756	
•••		•••	<i>1</i> 0°	3	9

$$1 - 0.025 = 0.975$$

$$1.9 + 0.06 = z_{0.025} \implies z_{0.025} = 1.96$$

查表 —— χ^2 、t、F

例1. 查 χ²_{0.05}(24)

n a		0.1	0.05	0.025	•••
•••	×	》		•••	×
23	****	32.007	35.172	38.075	×
24		33.196	36.415	39.364	•••
25	•••	34.381	37.652	40.646	•••
	•••			 D ₂	•••

$$P\{\chi^{2}(n) \le \chi^{2}_{\alpha}(n)\} = 1 - \alpha$$

- :下标 α和 等号右边的 1-α 不相同
- :: 式子变为 $P\{\chi^2(n) > \chi^2_{\alpha}(n)\}$
- "P里符号是">",不是"<或≤"且下标α跟表头对应项一致
- :: 直接查表就行

$$\chi^2_{0.05}(24) = 36.415$$

例2. 查 t_{0.025}(35)

$$P\{t(n) > t_p(n)\} = 1-p$$

$t_p(n)$ p	0.05	0.025
35	-1.6896	-2.0301
36	-1.6883	-2.0281

题干给出了: $P\{t(n) > t_p(n)\} = 1-p$

- "下标 p 和 等号右边的 1-p 不相同
- ::式子变为 $P\{t(n) < t_p(n)\}$
- : P 里符号是 "<" 且 下标 p 跟表头对应项一致
- :: 将表里关于 p 的所有取值都变成 1-原取值

$t_p(n)$ p	1-0.05	1-0.025
35	-1.6896	-2.0301
36	-1.6883	-2.0281

	$t_p(n)$ p	0.95	0.975	
>	35	-1.6896	-2.0301	
	36	-1.6883	-2.0281	

【 查不到 $t_A(n)$, 可查 $t_{1-A}(n)$, $t_A(n) = -t_{1-A}(n)$ 】

【 查不到 $F_{\alpha}(n_1,n_2)$,可查 $F_{1-\alpha}(n_2,n_1)$, $F_{\alpha}(n_1,n_2) = \frac{1}{F_{1-\alpha}(n_2,n_1)}$ 】

然后查表,查不到,可查 t_{1-0.025}(35)

$$t_{1-0.025}(35) = t_{0.975}(35) = -2.0301$$

$$t_{0.025}(35) = -t_{1-0.025}(35)$$
$$= -(-2.0301)$$
$$= 2.0301$$

查表 —— χ^2 、t、F

例3. 查 F_{0.05}(12,15)

 $P{F(n_1, n_2) > F_{\alpha}(n_1, n_2)} = \alpha$

		α	=0.05		
n_1 n_2		10	12	15	
•••	•••	"NO.		,	
14	-,,	2.60	2.53	2.46	
15	*	2.54	2.48	2.40	***
•••					

	The contract of	$\alpha = 0.1$	10	
n_1 n_2	10	12	15	•
	 •••			
14	 2.10	2.05	2.01	
15	 2.06	2.02	1.97	
•••	 •••			•••

题干给出了: $P\{F(n_1, n_2) > F_{\alpha}(n_1, n_2)\} = \alpha$

:下标 α 和 等号右边的 α 相同, 且 P 里符号是 ">",不是 "< 或 ≤",下标 α 跟表头对应项一致

:: 直接查表就行

 $F_{0.05}(12,15) = 2.48$

【 查不到 $t_A(n)$, 可查 $t_{1-A}(n)$, $t_A(n) = -t_{1-A}(n)$ 】

【 查不到 $F_{\alpha}(n_1, n_2)$,可查 $F_{1-\alpha}(n_2, n_1)$, $F_{\alpha}(n_1, n_2) = \frac{1}{F_{1-\alpha}(n_2, n_1)}$ 】