Contents

L	Cha	pter 02 - Basic Structures
	1.1	Sets
		1.1.1 Definition 2
		1.1.2 Definition 3
		1.1.3 Definition 4
		1.1.4 Countable and Uncountable Sets
		1.1.5 Example
		1.1.6 Definition 6
	1.2	Set Operations
		1.2.1 Definition 1
		1.2.2 Definition 2
		1.2.3 Definition 3
		1.2.4 Definition 4
		1.2.5 Definition 5
	1.3	Functions
	1.4	Sequences and Summations
	1.5	Cardinality of Sets
	1.6	Matrices

1 Chapter 02 - Basic Structures

1.1 Sets

 \in : belong to, is in

1.1.1 Definition 2

Two sets are equal if and only if they have the same elements. Therefore, if A and B are sets, then A and B are equal if and only if $\forall x (x \in A \iff x \in B)$. We write A = B if A and B are equal sets.

1.1.2 Definition 3

The set A is also a subset of B, and B is a superset of A, if and only if every element of A is also an element of B. We use the notation $A \subseteq B$ to indicate that A is a subset of the set B. If, instead, we want to stress that B is a superset of A, we use the equivalent notation $B \supseteq A$. (So, $A \subseteq B$ and $B \supseteq A$ are equivalent statements.)

1.1.3 Definition 4

Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a finite set and that n is the cardinality of S. The cardinality of S is denoted by |S|.

1.1.4 Countable and Uncountable Sets

- Countable
 - -N
 - $-\mathbb{Z}$
 - $-\mathbb{Q}$
- Uncountable
 - $-\mathbb{R}$
 - $-\mathbb{C}$

Let $S_0 = \{x\}$, and $S_1 = \{\{x\}\}$.

$$S_0 \neq S_1 \tag{1}$$

1.1.5 Example

- 1. List the members of these sets.
 - a) $\{x \mid x \text{ is a real number such that } x^2 = 1\}$

$$S = \left\{ x \in \mathbb{R} \mid x^2 = 1 \right\}$$

b) $\{x \mid x \text{ is a positive integer less than } 12\}$

$$S = \{ x \in \mathbb{R} \mid 0 \le x < 12 \}$$

1.1.6 Definition 6

Given a set S, the power set of S is the set of all subsets of the set S. The power set of S is denoted by $\mathcal{P}(S)$.

1.2 Set Operations

1.2.1 Definition 1

Let A and B be sets. The union of the sets A and B, denoted by $A \cup B$, is the set that contains those elements that are either in A or in B, or in both.

$$A \cup B = \{x \in U \mid (x \in A) \lor (x \in B)\}$$
 (2)

1.2.2 Definition 2

Let A and B be sets. The intersection of the sets A and B, denoted by $A \cap B$, is the set containing those elements in both A and B.

$$A \cap B = \{ x \in U \mid (x \in A) \land (x \in B) \}$$
 (3)

1.2.3 Definition 3

Two sets are disjoint if their intersection is the empty set.

1.2.4 Definition 4

Let A and B be sets. The difference of A and B, denoted by A - B, is the set containing those elements that are in A but not in B. The difference of A and B is also called the complement of B with respect to A.

1.2.5 Definition 5

Let U be the universal set. The complement of the set A, denoted by \bar{A} , is the complement of A with respect to U. Therefore, the complement of the set A is U - A.

- 1.3 Functions
- 1.4 Sequences and Summations
- 1.5 Cardinality of Sets
- 1.6 Matrices