NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS

with credits to Chan Yu Ming, Poh Wei Shan Charlotte

MA3209 Mathematical Analysis III

AY 2007/2008 Sem 1

Throughout this document, let \overline{A} denote the closure of A; $N_r(x)$ be the open neighbourhood of x with radius r. Assume that all the metric spaces stated are non-empty.

Question 1

(a) Note that for all $x_1, x_2 \in X, y_1, y_2 \in Y$, since d_X and d_Y are metrics on X and Y respectively, so $d_X(x_1, x_2) < \infty$ and $d_Y(y_1, y_2) < \infty$. Hence, $d((x_1, y_1), (x_2, y_2)) = (d_X(x_1, x_2)^p + d_Y(y_1, y_2)^p)^{\frac{1}{p}} < \infty$.

Since $d_X(x_1, x_2) \ge 0$ and $d_Y(y_1, y_2) \ge 0$, so $d((x_1, y_1), (x_2, y_2)) = (d_X(x_1, x_2)^p + d_Y(y_1, y_2)^p)^{\frac{1}{p}} \ge 0$.

We have

$$d((x_1, y_1), (x_2, y_2)) = 0 \Leftrightarrow (d_X(x_1, x_2)^p + d_Y(y_1, y_2)^p)^{\frac{1}{p}} = 0$$

$$\Leftrightarrow d_X(x_1, x_2)^p + d_Y(y_1, y_2)^p = 0$$

$$\Leftrightarrow d_X(x_1, x_2) = 0 \text{ and } d_Y(y_1, y_2) = 0$$

$$\Leftrightarrow x_1 = x_2 \text{ and } y_1 = y_2$$

$$\Leftrightarrow (x_1, y_1) = (x_2, y_2).$$

We also have

$$d((x_1, y_1), (x_2, y_2)) = (d_X(x_1, x_2)^p + d_Y(y_1, y_2)^p)^{\frac{1}{p}}$$
$$= (d_X(x_2, x_1)^p + d_Y(y_2, y_1)^p)^{\frac{1}{p}}$$
$$= d((x_2, y_2), (x_1, y_1))$$

It suffices to show that d satisfies the triangle inequality.

Take any $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in X \times Y$.

Since d_X is a metric, so $d_X(x_1, x_3) \leq d_X(x_1, x_2) + d_X(x_2, x_3)$. Hence,

$$d_X(x_1, x_3)^p \le [d_X(x_1, x_2) + d_X(x_2, x_3)]^p$$

Similarly,

$$d_Y(y_1, y_3)^p \leq [d_Y(y_1, y_2) + d_Y(y_2, y_3)]^p$$

Recall the Minköwski's inequality:

$$\left[\sum_{i=1}^{n} |a_i + b_i|^p\right]^{\frac{1}{p}} \le \left[\sum_{i=1}^{n} |a_i|^p\right]^{\frac{1}{p}} + \left[\sum_{i=1}^{n} |b_i|^p\right]^{\frac{1}{p}} \tag{1}$$

Putting n = 2, $a_1 = d_X(x_1, x_2)$, $a_2 = d_Y(y_1, y_2)$, $b_1 = d_X(x_2, x_3)$ and $b_2 = d_Y(y_2, y_3)$ into (1), we obtain:

$$d((x_{1}, y_{1}), (x_{3}, y_{3})) = [d_{X}(x_{1}, x_{2})^{p} + d_{Y}(y_{1}, y_{3})^{p}]^{\frac{1}{p}}$$

$$\leq [(d_{X}(x_{1}, x_{2}) + d_{X}(x_{2}, x_{3}))^{p} + (d_{Y}(y_{1}, y_{2}) + d_{Y}(y_{2}, y_{3}))^{p}]^{\frac{1}{p}}$$

$$\leq [d_{X}(x_{1}, x_{2})^{p} + d_{Y}(y_{1}, y_{2})^{p}]^{\frac{1}{p}} + [d_{X}(x_{2}, x_{3})^{p} + d_{Y}(y_{2}, y_{3})^{p}]^{\frac{1}{p}} \quad \text{by (1)}$$

$$= d((x_{1}, y_{1}), (x_{2}, y_{2})) + d((x_{2}, y_{2}), (x_{3}, y_{3}))$$

 $\therefore d$ is a metric on $X \times Y$.

(b)(i) Let $f \in C[0,1]$ be a limit point of S. Then given any $\varepsilon > 0$, there exists a function $g_{\varepsilon} \in S$ such that $d_{\infty}(f, g_{\varepsilon}) < \varepsilon$. Hence,

$$|f(0)| = |f(0) - g_{\varepsilon}(0)| \text{ since } g_{\varepsilon}(0) = 0$$

$$\leq \sup\{|f(x) - g_{\varepsilon}(x)| : x \in [0, 1]\}$$

$$= d_{\infty}(f, g_{\varepsilon})$$

$$< \varepsilon.$$

Since ε is arbitrary, so |f(0)| = 0, which implies f(0) = 0. So $f \in S$.

 $\therefore S \text{ is } \underline{\text{closed}} \text{ in } (C[0,1], d_{\infty}).$

(b)(ii) For any small positive ε , define the function $f_{\varepsilon}(x):[0,1]\to\mathbb{R}$,

$$f_{\varepsilon}(x) = \begin{cases} \frac{2x}{\varepsilon} & \text{if } 0 \le x < \frac{\varepsilon}{2} \\ 1 & \text{if } \frac{\varepsilon}{2} \le x \le 1 \end{cases}$$

Since f_{ε} is continuous on [0,1] and $f_{\varepsilon}(0)=0$, so $f_{\varepsilon}\in S$.

Consider the function $g:[0,1]\to\mathbb{R},\ g(x)\equiv 1.$ So $g\in C[0,1],$ but $g\notin S.$

Claim: g is a limit point of S.

Proof: Given any $\varepsilon > 0$,

$$d_{1}(f_{\varepsilon},g) = \int_{0}^{1} |f_{\varepsilon}(x) - g(x)| dx$$

$$= \int_{0}^{\frac{\varepsilon}{2}} \left| \frac{2x}{\varepsilon} - 1 \right| dx$$

$$= \int_{0}^{\frac{\varepsilon}{2}} 1 - \frac{2x}{\varepsilon} dx$$

$$= \left[x - \frac{x^{2}}{\varepsilon} \right]_{0}^{\frac{\varepsilon}{2}}$$

$$= \frac{\varepsilon}{4}$$

$$\leq \varepsilon$$

In other words, for every $\varepsilon > 0$, there exists $f_{\varepsilon} \in S$ such that $d_1(f_{\varepsilon}, g) < \varepsilon$. So g is a limit point of S. Since $g \notin S$, so S is not closed in $(C[0, 1], d_1)$.

Question 2

(i) Take any $x, y \in X$.

Since $f(y) = \inf\{d(y, a) : a \in A\}$, so given any $\varepsilon > 0$, there exists $z \in A$ such that $d(y, z) \le f(y) + \varepsilon$. Then $f(x) \le d(x, z) \le d(x, y) + d(y, z) \le d(x, y) + f(y) + \varepsilon$. So $f(x) - f(y) \le d(x, y) + \varepsilon$. Since ε is arbitrary, so $f(x) - f(y) \le d(x, y)$. Similarly, $f(y) - f(x) \le d(x, y)$.

 $|f(x) - f(y)| \le d(x, y)$ for all $x, y \in X$.

Now, given any $\varepsilon > 0$, we let $\delta = \varepsilon$. So whenever $x, y \in X$ and $d(x, y) < \delta$, we have $|f(x) - f(y)| \le d(x, y) < \delta = \varepsilon$. So f is uniformly continuous on X.

Page: 2 of 7

(ii)(a) Since $d(K, A) = \inf\{d(x, a) : x \in K, a \in A\}$, so given any $\varepsilon > 0$, there exists $k \in K$ and $a \in A$ such that $d(k, a) \le d(K, A) + \varepsilon$.

Thus, $\inf\{f(x): x \in K\} \le f(k) = d(k,A) \le d(k,a) \le d(K,A) + \varepsilon$.

Since ε is arbitrary, so

$$\inf\{f(x): x \in K\} \le d(K, A). \tag{2}$$

Furthermore, $\exists k \in K$ such that $f(k) \leq \inf\{f(x) : x \in K\} + \varepsilon$, so

$$\begin{array}{ll} d(K,A) &=& \inf\{d(x,a): a \in A, x \in K\} \\ &\leq& \inf\{d(k,a): a \in A\} \\ &=& d(k,A) \\ &=& f(k) \\ &\leq& \inf\{f(x): x \in K\} + \varepsilon \end{array}$$

Since ε is arbitrary, so

$$d(K,A) \le \inf\{f(x) : x \in K\} \tag{3}$$

By (2) and (3), we have $d(K, A) = \inf\{f(x) : x \in K\}.$

Since f is continuous on the compact set K, so f attains its minimum at some $k_1 \in K$, i.e. $\exists k_1 \in K$ such that $f(k_1) = \inf\{f(x) : x \in K\} = d(K, A)$.

Note that $d(K, A) \ge 0$. Suppose d(K, A) = 0. Then from above $f(k_1) = \inf\{d(k_1, a) : a \in A\} = 0$.

Therefore, for any $\varepsilon > 0$, there exists $a_{\varepsilon} \in A$ such that $d(k_1, a_{\varepsilon}) < \varepsilon$. So k_1 is a limit point of A.

Since A is closed, so $k_1 \in A$. However, $K \cap A = \phi$ from the assumption given in the question, and this contradicts $k_1 \in K \cap A$.

d(K,A) > 0.

(ii)(b) From 2(ii)(a), d(K, A) > 0. Let m = d(K, A).

Let $U := \{x \in X : d(x, K) < \frac{m}{2}\}$. Let $V := \{x \in X : d(x, A) < \frac{m}{2}\}$.

So $K \subseteq U$ and $A \subseteq V$.

Claim: $U \cap V = \phi$.

Proof: Suppose $U \cap V \neq \phi$. Take any $y \in U \cap V$. Since $y \in U$, so $d(y,K) < \frac{m}{2}$.

Since $\frac{m}{2} - d(y, K) > 0$, so there exists $k' \in K$ such that $d(y, k') < d(y, K) + \left[\frac{m}{2} - d(y, K)\right] = \frac{m}{2}$.

Similarly, there exists $a' \in A$ such that $d(y, a') < \frac{m}{2}$.

Thus, $d(k', a') \le d(k', y) + d(y, a') < \frac{m}{2} + \frac{m}{2} = m = d(K, A) = \inf\{d(k, a) : k \in K, a \in A\}.$

This is a contradiction. Therefore, U and V are disjoint. \square

It remains to show that U and V are open in X.

Take any $x_0 \in U$.

Case 1: $x_0 \in K$.

For any p in the neighbourhood $N_{\frac{m}{2}}(x_0)$, we have

$$d(p,K) = \inf\{d(p,k) : k \in K\}$$

$$\leq d(p,x_0)$$

$$< \frac{m}{2}.$$

So $p \in U$. Therefore, $N_{\frac{m}{2}}(x_0) \subseteq U$. Thus, every $x_0 \in K$ has an open neighbourhood contained in U.

Case 2: $x_0 \notin K$.

Since K is closed, so $d(x_0, K) > 0$. Let $n = d(x_0, K)$. Consider the neighbourhood $N_{\frac{m}{2}-n}(x_0) := \{x \in X : d(x_0, x) < \frac{m}{2} - n\}$. Then for all $q \in N_{\frac{m}{2}-n}(x_0)$,

$$d(q, K) = \inf\{d(q, k) : k \in K\}$$

$$\leq \inf\{d(q, x_0) + d(x_0, k) : k \in K\}$$

$$< \inf\{(\frac{m}{2} - n) + d(x_0, k) : k \in K\}$$

$$= (\frac{m}{2} - n) + \inf\{(d(x_0, k) : k \in K\}$$

$$= (\frac{m}{2} - n) + d(x_0, K)$$

$$= \frac{m}{2} - n + n$$

$$= \frac{m}{2}$$

Thus, for all $q \in N_{\frac{m}{2}-n}(x_0)$, $q \in U$. Thus, every $x_0 \in U \setminus K$ has an open neighbourhood which is contained in U.

Combining the two cases, we conclude that every $x_0 \in U$ is an interior point of U.

 $\therefore U$ is open in X.

Note that in the above proof that U is open in X, we only made use of the assumption that K is closed in X. Since A being compact implies that A is closed in X, so by the same argument as above, we can conclude that V is open in X.

Question 3

 $(1) \Rightarrow (2)$:

Assume X is connected, and f is locally constant.

Fix a point $p \in X$. Define $S_1 := \{x \in X : f(x) = f(p)\}, S_2 := \{x \in X : f(x) \neq f(p)\}$

Since $p \in S_1$, so S_1 is non-empty. Suppose f is not a constant function, then there exists $x_0 \in X$ such that $f(x_0) \neq f(p)$. So S_2 is non-empty.

For any $x_1 \in S_1$, there exists an open neighbourhood U_{x_1} containing x_1 such that $f(U_{x_1}) = \{p\}$ since f is locally constant. Note that $U_{x_1} \subseteq S_1$. Therefore, S_1 is open in X. Similarly S_2 is open in X.

Note that $S_1 \cap S_2 = \phi$ and $S_1 \cup S_2 = X$. So X can be written as the union of two non-empty disjoint sets, so X is disconnected. This contradicts our assumption that X is connected.

 $(2) \Rightarrow (1)$:

Suppose X is not connected, then X is a disjoint union of two non-empty open sets A and B. Define $f: X \to \mathbb{R}$,

$$f(x) = \begin{cases} 0 & \text{if } x \in A \\ 1 & \text{if } x \in B \end{cases}$$

For any $x_0 \in X$. $x_0 \in A$ or $x_0 \in B$, but not both. Without loss of generality, assume $x_0 \in A$. Since A is open, there exists an open neighbourhood U_{x_0} of x_0 such that $U_{x_0} \subseteq A$. So $f(U_{x_0}) = \{0\}$. Thus, f is locally constant. By assumption, f must be a constant function. However, f is not a constant function from definition. Therefore, X must be connected.

Question 4

(i) Since T^N is a contraction mapping, so there exists $c \in (0,1)$ such that for all $x,y \in X$,

$$d(T^{N}(x), T^{N}(y)) \le c \ d(x, y) \tag{4}$$

Since X is complete, so by the contraction mapping principle, there exists a unique fixed point $x_0 \in X$ such that $T^N(x_0) = x_0$. Using (4), we obtain:

$$d(T^{N}(T(x_{0})), T^{N}(x_{0})) \leq c d(T(x_{0}), x_{0})$$

$$d(T(T^{N}(x_{0})), T^{N}(x_{0})) \leq c d(T(x_{0}), x_{0})$$

$$d(T(x_{0}), x_{0}) \leq c d(T(x_{0}), x_{0})$$

This can only happen if $d(T(x_0), x_0) = 0$. Thus, $T(x_0) = x_0$. So x_0 is a fixed point of T. It remains to show that T has at most one fixed point.

Suppose T has at least two different fixed points. Denote two of these by x_1 and x_2 . Since $x_1 \neq x_2$, so $d(x_1, x_2) > 0$. We have $d(x_1, x_2) = d(T^N(x_1), T^N(x_2)) \leq c \ d(x_1, x_2)$. Dividing by $d(x_1, x_2)$, we obtain $1 \leq c$, which is a contradiction.

T has a unique fixed point, namely x_0 .

(ii)(a) Suppose ϕ is a contraction mapping on C[0,1], then there exists $c \in (0,1)$ such that for all $f_1, f_2 \in C[0,1]$,

$$d(\phi(f_1), \phi(f_2)) \le c \ d(f_1, f_2)$$

where d stands for the uniform metric. So for all $f_1, f_2 \in C[0, 1]$,

$$\begin{split} d\left(\sin x + \int_0^x f_1(t) \ dt, \sin x + \int_0^x f_2(t) \ dt\right) & \leq c \ d(f_1, f_2) \\ \sup_{x \in [0,1]} \left| \left(\sin x + \int_0^x f_2(t) \ dt\right) - \left(\sin x + \int_0^x f_1(t) \ dt\right) \right| & \leq c \sup_{x \in [0,1]} |f_1(x) - f_2(x)| \\ \sup_{x \in [0,1]} \left| \int_0^x f_2(t) \ dt - \int_0^x f_1(t) \ dt \right| & \leq c \sup_{x \in [0,1]} |f_1(x) - f_2(x)| \end{split}$$

In particular, let $f_1 \equiv 0$ and $f_2 \equiv 1$ on [0,1]. Then

$$\sup_{x \in [0,1]} \left| \int_0^x 1 \, dt \right| \leq c \sup_{x \in [0,1]} 1$$

$$\sup_{x \in [0,1]} x \leq c$$

$$1 \leq c$$

This is a contradiction. Therefore, ϕ cannot be a contraction mapping.

(ii)(b) Claim: ϕ^2 is a contraction mapping on C[0,1]. Proof: For all $f \in C[0,1]$ and for all $x \in [0,1]$,

$$(\phi^2 f)(x) = \phi \left(\sin x + \int_0^x (\phi f)(t) dt \right)$$

$$= \sin x + \int_0^x \left(\sin t + \int_0^t f(u) du \right) dt$$

$$= \sin x + \int_0^x \sin t dt + \int_0^x \int_0^t f(u) du dt$$

So for all $f_1, f_2 \in C[0, 1]$ and for all $x \in [0, 1]$,

$$\begin{aligned} \left| (\phi^{2} f_{2})(x) - (\phi^{2} f_{1})(x) \right| &= \left| \int_{0}^{x} \int_{0}^{t} f_{2}(u) - f_{1}(u) \ du \ dt \right| \\ &\leq \int_{0}^{x} \left| \int_{0}^{t} f_{2}(u) - f_{1}(u) \ du \right| dt \\ &\leq \int_{0}^{x} t \sup_{u \in [0,1]} |f_{2}(u) - f_{1}(u)| \ dt \\ &= \left(\sup_{u \in [0,1]} |f_{2}(u) - f_{1}(u)| \right) \int_{0}^{x} t \ dt \\ &= \frac{x^{2}}{2} \ d(f_{1}, f_{2}) \\ &\leq \frac{1}{2} \ d(f_{1}, f_{2}) \end{aligned}$$

Therefore,

$$\sup_{x \in [0,1]} \left| (\phi^2 f_2)(x) - (\phi^2 f_1)(x) \right| \leq \frac{1}{2} d(f_1, f_2)$$
$$d(\phi^2 f_1, \phi^2 f_2) \leq \frac{1}{2} d(f_1, f_2)$$

So ϕ^2 is a contraction mapping on C[0,1]. Since C[0,1] is complete, so by part (i), ϕ has a unique fixed point.

Question 5

(a)(i) Let (z_i) be a limit point of c. We want to show that $(z_i) \in c$.

Let $\varepsilon > 0$ be given.

Then we can choose a convergent sequence (x_i) such that $d((x_i),(z_i)) = \sup_{i \in \mathbb{N}} |x_i - z_i| < \frac{\varepsilon}{3}$.

Since (x_i) is Cauchy, so there exists $N_0 \in \mathbb{N}$ such that for all $m, n \geq N_0$, we have $|x_m - x_n| < \frac{\varepsilon}{3}$. So for all $m, n \geq N_0$,

$$|z_m - z_n| = |(z_m - x_m) + (x_m - x_n) + (x_n - z_n)|$$

$$\leq |z_m - x_m| + |x_m - x_n| + |x_n - z_n|$$

$$\leq \sup_{i \in \mathbb{N}} |x_i - z_i| + \frac{\varepsilon}{3} + \sup_{i \in \mathbb{N}} |x_i - z_i|$$

$$= \varepsilon$$

Thus, (z_i) is a Cauchy sequence. Since (z_i) is a real sequence, so it is also a convergent sequence, i.e. $(z_i) \in c$.

 $\therefore c$ is closed in (ℓ^{∞}, d) .

- (a)(ii) Since a closed subset of a complete metric space is complete, so c being a closed subset of the complete metric space (ℓ^{∞}, d) is complete.
 - (b) We need to show that $\forall \varepsilon > 0, \exists \delta > 0$ such that $\forall f \in \mathcal{F}$ and $\forall x_1, x_2 \in K, d(x_1, x_2) < \delta \Rightarrow |f(x_1) f(x_2)| < \varepsilon$.

Let $\varepsilon > 0$ be given. Since \mathcal{F} is totally bounded, there exists a finite subset $S = \{f_1, f_2, ..., f_n\} \subseteq C(K)$ such that

$$\mathcal{F} \subseteq \bigcup_{i=1}^{n} N_{\varepsilon}(f_i) \tag{5}$$

where
$$N_{\varepsilon}(f_i) = \{ f \in C(K) : ||f - f_i|| < \varepsilon \}.$$

Since continuous functions on compact sets are uniformly continuous, so $f_1, f_2, ..., f_n$ are all uniformly continuous on K. So for all $i \in \{1, 2, ..., n\}$, $\exists \delta_i > 0$ such that for all $x_1, x_2 \in K$ with $d(x_1, x_2) < \delta_i$, we have $|f_i(x_1) - f_i(x_2)| < \varepsilon$.

Let
$$\delta = \min\{\delta_1, \delta_2, ..., \delta_n\}$$
.

Given any
$$f \in \mathcal{F}$$
, by (5), $f \in N_{\varepsilon}(f_i)$ for some $i \in \{1, 2, ..., n\}$, i.e. $\sup_{x \in K} |f(x) - f_i(x)| < \varepsilon$.

Then $\forall x_1, x_2 \in K$ with $d(x_1, x_2) < \delta$, we have

$$|f(x_1) - f(x_2)| \leq |f(x_1) - f_i(x_1)| + |f_i(x_1) - f_i(x_2)| + |f_i(x_2) - f(x_2)|$$

$$< \varepsilon + \varepsilon + \varepsilon$$

$$= 3\varepsilon.$$

Page: 7 of 7

 $\therefore \mathcal{F}$ is equicontinuous on K.