UK Patent Application (19) GB (11) 2 160 201 A

(43) Application published 18 Dec 1985

(21) Application No 8514648

(22) Date of filing 10 Jun 1985

(30) Priority data

(31) 8415174 8432091 (32) 14 Jun 1984 19 Dec 1984 (33) GB

(71) Applicant John Wyeth & Brother Limited (United Kingdom), Huntercombe Lane South, Taplow, Maidenhead, Berkshire SL6 0PH

(72) Inventors
John Terence Arnott Boyle,
Richard Simon Todd

(74) Agent and/or Address for Service G. R. Porter, c/o Wyeth Laboratories, Patent & Trade Department, Huntercombe Lane South, Taplow, Maidenhead, Berkshire SL6 0PH (51) INT CL⁴
C07D 239/94 A61K 31/635 C07D 237/28 401/10 403/10 //
(C07D 401/10 211:56 237:28 239:54) (C07D 403/10 207:09 239:94)

(52) Domestic classification C2C 1341 1532 1592 1604 213 215 220 22Y 246 250 251 252 25Y 28X 29X 29Y 30Y 311 313 318 31Y 321 322 323 32Y 337 339 342 34Y 385 394 39Y 494 510 51X 535 537 539 60X 620 630 650 660 670 680 694 802 80Y AA RJ SF SG U1S 2415 C2C

(56) Documents cited None

(58) Field of search C2C

(54) Quinazoline and cinnoline derivatives

(57) Novel quinazoline and cinnoline derivatives having the formula

$$x_1$$
 B
 B
 So_2-x_3

(wherein one of A and B is CH and the other one of A and B is N; X_1 is halogen or CF_3 and X_3 is one of the groups II, III, IV or V

(11)

-N $-(Q)_n-NR_2R_3$

(111)

$$-NR_1-(Q)_n-N-R_4$$

(IV)

(V)

where Q is lower alkylene; R_1 is hydrogen or lower alkyl; R_2 and R_3 are independently lower alkyl or R_2 and R_3 are a divalent radical such that HNR₂R₃ is a secondary cyclic amine with 5 to 7 ring atoms; R_4 is lower alkyl; n is 0 or 1; the rings shown in formulae III and IV are piperidine or pyrrolidine optionally substituted by lower alkyl; and the ring shown in formula V is piperazine optionally substituted by lower alkyl) and their pharmaceutically acceptable salts are useful as pharmaceuticals particularly as anti-hypertensives.

Novel intermediates are also described including the corresponding sulphonic acids of formula I (where A, B and X_1 are defined above and X_3 is OH).

(IVd)

10

30

35

50

55

SPECIFICATION

Quinazoline and cinnoline derivatives

The invention relates to novel quinazoline and cinnoline derivatives that are useful as pharmaceuticals, particularly as anti-hypertensive agents. The invention also provides processes for their preparation, pharmaceutical compositions containing them, novel compounds useful as intermediates for the preparation of the said derivatives and a process for the preparation of the intermediate compounds.

The invention provides, as novel quinazoline and cinnoline derivatives, compounds having the general

formula l

$$x_1 \xrightarrow{N}_{B}$$

$$NH \xrightarrow{N}_{SO_2-X_3}$$
(I)

wherein one of A and B is CH whilst the other one of A and B is N; X_1 is halogen or trifluoromethyl and X_2 represents a group having one of formulae II, III, IV and V.

wherein Q is lower alkylene; R₁ is hydrogen or lower alkyl; R₂ and R₃ are, independently, lower alkyl or R₂ and R₃ together form a divalent radical such that R₂R₃NH is a secondary cyclic amine with 5 to 7 ring atoms; R₄ is lower alkyl; n is 0 or 1; the ring illustrated in formulae III and IV is a piperidine or pyrrolidine ring that may be substituted on one or more carbon ring members by lower alkyl and the ring illustrated in formula V is a piperazine ring that may be substituted on one or more carbon ring members by lower alkyl; and the pharmaceutically acceptable salts thereof. These compounds are indicated for pharmaceutical use, particularly as anti-hypertensive agents.

It will be apparent to those skilled in the art that the above definition of X₃ includes moieties possessing an asymmetric carbon atom especially for instance in the cases where Q is present and is a chain of 1 to 4 methylene groups, the chain being mono-substituted by methyl or ethyl or where X₃ is of formula IVa or Illa 40

It is to be understood that formula it is intended to encompass each enantiomer where the compound contains an asymmetric carbon atom and mixtures of enantiomers, for instance, a racemic mixture of enantiomers. Separation of enantiomers can be carried out using general methods known in the literature.

When A is CH whilst B is N the compounds of the invention are quinazoline derivatives. Where A is N whilst B is CH the compounds of the invention are cinnoline derivatives.

X₁ may substitute any of the 5,6,7 and 8 positions of the quinazoline or cinnoline ring system, but is preferably at the 7- or 8- position, advantageously the 7- position. Where X₁ is at the 7- position, formula I may be represented as la

$$x_1$$
 y_2
 y_3
 y_4
 y_4
 y_5
 y_6
 y_7
 y_8
 y_8

50

55

60

X₁ represents halogen, for instance chlorine or bromine, or trifluoromethyl. X₁ is preferably chlorine. in formulae II and IV, R₁ represents hydrogen or lower alkyl (for instance methyl, ethyl, propyl, butyl). R₁ is preferably hydrogen. In formulae II, III and IV Ω is lower alkylene which may be a straight chain i.e. a chain of 1 to 6, preferably 1 to 4, methylene groups. Alternatively Q may be a branched lower alkylene group, for instance, a chain of 1 to 4 methylene groups, the chain being mono- or di-substituted by methyl or monosubstituted by ethyl. R2 and R3 in formulae II and III, when separated, are each lower alkyl (for instance, methyl, ethyl, propyl, butyl). Alternatively R2 and R3 may be joined together to form a divalent radical such that R_1R_2NH is a secondary cyclic amine with 5 to 7 ring atoms, e.g. pyrrolidine, piperidine, morpholine or thiomorpholine. In this case R_1 and R_2 may together have the formula $-(CH_2)_2-X_2-(CH_2)_2-$ where X_2 is $-(CH_2)_n$, O or S where n is 0, 1 or 2. R_2 and R_3 are preferably lower alkyl. n in formula III and IV is 0 or 1. R_4 in formula IV and V is lower alkyl (for instance, methyl, ethyl, propyl, butyl). The ring attached to $-(Q)_n$ – in formulae III and IV is a piperidine or pyrrolidine ring whose nitrogen atom is shown in the formula. The ring may be substituted on one or two ring carbon atoms by lower alkyl (for instance methyl, ethyl, propyl, butyl). The ring carbon atoms are preferably unsubstituted. The ring attached to R4 in formula V is a piperazine ring 15 (whose nitrogen atoms are shown in the formula). The piperazine ring may be substituted on one or two ring carbon atoms by lower alkyl (for instance methyl, ethyl, propyl, butyl), but is preferably unsubstituted. Advantageously X₃ is a group having the formula lia or IVa

20
$$-NH-Q-NR_2R_3$$
 (IIa) 20 $-NH-Q-NR_2R_3$ (IVa) 25

where Q is alkylene of 1 to 4 carbon atoms; R_2 , R_3 and R_4 are, independently, alkyl of 1 to 4 carbon atoms and m is 0 or 1.

The term "lower" as used herein to refer to such groups as alkyl, alkoxy, alkanoyl and alkylene, indicates that the group contains up to 6, preferably up to 4, carbon atoms. The group may be in the form of a straight chain or may be branched.

The compounds having formula I form acid addition salts with acids. Examples of acid addition salts are those formed from inorganic and organic acids and in particular include the sulphate, hydrochloride, hydrobromide, hydrolodide, nitrate, phosphate, sulphonates (for instance the methanesulphonate or p-toluenesulphonate), acetate, maleate, fumarate, tartrate, malonate, citrate and formate.

The invention also provides, as novel quinazoline and cinnoline derivatives, compounds having the general formula VI

(where X₁, A and B are as defined above and X₄ is −OH or −NR₁R₅ where R₅ is hydrogen or a group having the formula −Q−Z where Q is as defined above and Z is a leaving group or atom, preferably a halogen atom or an organosulphonyloxy group, advantageously chlorine, bromine, C₁-C₆ alkanesulphonyloxy, or substituted or unsubstituted benzenesulphonyloxy, for instance, tosyloxy and R₁ is as defined above) and their salts. Such salts include acid addition salts and also sulphonate salts of the sulphonic acid where X₄ is −OH. The compounds having formula VI and their salts are useful as intermediates for the preparation of compounds having the formula I and their pharmaceutically acceptable acid addition salts.

$$x_1$$
 y_1
 y_2
 y_3
 y_4
 y_5
 y_6
 y_6
 y_7
 y_8
 y_8

20

30

40

15

35

(where A, B and X_1 are as defined above and X_5 represents X_3 , -OH or $-NHR_1$ where X_3 and R_1 are as defined above) or a salt thereof, wherein a compound having the formula VIII

 $_{10}$ (wherein X_5 is as defined above) or a salt thereof is reacted with a compound having the formula IX

$$x_1 \longrightarrow x_1 \longrightarrow x_2 \longrightarrow x_3 \longrightarrow x_4 \longrightarrow x_4$$

(where X_1 , A and B are as defined above and Z is a leaving group or atom, preferably a halogen atom such as iodine, bromine or chlorine) and, if desired, a compound having formula VII (where X_5 is -OH or $-NHR_1$) is converted into a salt thereof or a compound having formula VII (where X_5 is X_3) is converted into a pharmaceutically acceptable salt thereof or a salt of a compound having formula VII is converted into the compound having formula VII.

The reaction of the compounds VIII and IX can be carried out in aqueous alcohol with or without acid catalysis. The compounds of formula IX are generally known or, if new, can be prepared in known manner. The sulphonamides (VIII where X_5 is - NHR $_1$ or X_3) can be prepared by acetylating the sulphanilic acid, converting the N-(acetyl) sulphanilic acid into its sulphonyl chloride derivative, sulphonylating a compound of formula R_1 NH $_2$ or X_3 H or a salt thereof with the sulphonyl chloride and hydrolysing the sulphonylation product to give the desired aminobenzenesulphonamide. Alternatively, the preparation can be carried out by converting 4-nitrobenzenesulphonic acid into its sulphonyl chloride derivative, sulphonylating a compound of formula R_1 NH $_2$ or X_3 H or a salt thereof with the sulphonyl chloride and reducing the nitro group to give the desired aminobenzenesulphonamide.

A further class of novel intermediates according to the invention are useful for the preparation of compounds having formula I where X₃ has formula IV where n is 1. These novel intermediates have formula IVb

$$Y - \left(\sum_{n=1}^{\infty} So_2 - NR_1 - Q - CN - R_4 \right)$$
 (IVb)

and their acid addition salts where Y is $-NH_2$ (amino), protected amino, for instance lower alkanoylamino, preferably acetamido, or latent amino, preferably nitro and R_1 , Q, R_4 and the ring attached to R_4 have the same meanings as in formula IV. The compounds having formula IVb may be prepared by sulphonylating a compound having the formula IVc

to introduce a sulphonyl group having the formula

where Y₁ is protected amino or latent amino and, where Y is -NH₂, converting the protected amino or latent amino group Y₁ of the sulphonation product into amino, for instance, by reduction of nitro or hydrolysis of lower alkanoylamino.

The compounds obtained by the aforesald process where R₅ is hydroxy and their salts can be used to prepare the sulphonamide intermediates and end products by forming a sulphonylating agent, preferably the sulphonyl chloride, and sulphonylating ammonia or an appropriate amine or a salt thereof. Accordingly a second process provided by this invention is for the preparation of compounds having the formula X

20

30

15

20

35

40

$$x_1 \xrightarrow{N \searrow_A} B$$

$$So_2^-x_6$$
(X)

(where X_1 , A and B are as defined above and X_6 is X_3 (as defined above) or $-NR_1R_5$ where R_1 and R_5 are as defined above) and the salts thereof. According to this process a compound of general formula X_6H (XI) where X_6 is as defined above or a salt thereof is sulphonylated to introduce the sulphonyl group of general formula XII

15'

(where X_1 , A and B are as defined above) and, if desired, a compound having formula X is converted into a salt thereof or a salt of a compound having formula X is converted into the compound having formula X.

As sulphonylating agent, the sulphonyl chloride is preferably used. The reaction can be carried out in known manner for sulphonylation of ammonia and amines. The sulphonylation can be carried out in a suitable solvent, for instance, chloroform or methylene chloride, in the presence of a base to neutralise the hydrogen chloride formed. The base may be provided by using, for instance, an alkali metal carbonate or bicarbonate or a tertiary amine, for instance, triethylamine or an excess of the basic compound having formula X₆H.

The chemical intermediate sulphonamides of the invention (formula VI where X4 is $-NR_1R_5$) may be prepared as described above with reference to formula VII where X5 is $-NR_1R_5$. In the case where X4 is $-NR_1$ 1 the sulphonamide may be converted into some of the end product sulphonamides by alkylation under basic conditions. Accordingly a third process provided by the invention is for the preparation of a compound having the general formula XIII

$$\begin{array}{c|c}
x_1 & & & & \\
\downarrow & & & \\
NH & & & \\
\end{array}$$

$$\begin{array}{c}
SO_3 - NR_1 - X_7
\end{array}$$
(XIII)

(wherein X_1 , A, B and R_1 are as defined above and X_7 represents a group having the formula XIV or XV

45
$$-Q-NR_2R_3$$
 (XIV) 45 $-(Q)_n - (N-R_4)$ (XV) 50

(wherein Q, n, R₂, R₃, R₄ and the ring shown in formula XV have the same meanings as defined under formulae II and (IV) or a pharmaceutically acceptable salt thereof, wherein a compound having the formula XVI

$$x_1 \xrightarrow{N}_{B}$$

$$SO_2-NHR_1$$
(XVI)

15

20

30

35

65

10

15

20

55

60

(where X_1 , X_2 , A, B and R are as defined above) is reacted with a compound having the formula Z- X_7 (XVII) (where Z and X_7 are as defined above) under basic conditions and, if desired, the resultant compound of formula XII is converted into pharmaceutically acceptable salt thereof.

The above process may be carried out in known manner for the alkylation of sulphonamides. The product 5 XIII may be recovered as such or as an acid addition salt by known isolation procedures.

The intermediate sulphonamides of formula VI where X₄ is -NH₂ and the sulphonamides of formula XIII (where R₁ is hydrogen) may also be alkylated to introduce R₁ as lower alkyl. Accordingly the invention also provides a process for the preparation of a compound having the formula XVIII

$$x_1 \xrightarrow{N}_{B} \xrightarrow{R_1^*}_{SO_2-N-X_8} (XVIII)$$

(where X_1 , A and B as defined above; R_1^* is lower alkyl and X_8 is X_7 or hydrogen) or a salt thereof, wherein a compound having the formula XIX

$$x_1 \xrightarrow{N}_B$$

$$NH \xrightarrow{SO_2-NH-X_8}$$
(XIX)

30 (wherein X₁, X₈, A and B are as defined above) is reacted with an alkylating agent under basic conditions to introduce the lower alkyl group R₁* and, if desired, the resultant compound having formula XVIII is converted into a salt thereof. This process may be carried out in accordance with known procedures for alkylation of sulphonamides. The product (XIX) may be recovered as such or as an acid addition salt by known isolation procedures.

It will be apparent that the sulphonamides of formula I where X_3 is of formula II or IV in which R_1 is lower alkyl and their pharmaceutically acceptable salts can be prepared from corresponding sulphonamides whose sulphonamide nitrogen atom is unsubstituted by applying the third and fourth procedures of the invention in either order. Either one of X_7 and the lower alkyl group represented by R_1 is introduced as a first step and the other one of X_7 and the lower alkyl group is introduced as a second step.

The intermediate sulphonamides having formula VI where X_4 is $-NR_1-Q-Z$ can also be used to prepare some of the end compounds of the invention. Accordingly the invention also provides a process for the preparation of a compound having the formula

$$x_1 \xrightarrow{N}_B$$

$$SO_2^{-NR}_1^{-Q-NR}_2^{R}_3$$
(XX)

(wherein X_1 , A and B are as defined under formula I and R_1 , R_2 , R_3 and Q are as defined under formula II) or a pharmaceutically acceptable salt thereof, wherein a compound having the formula

$$x_1 \xrightarrow{N} A$$

$$NH \xrightarrow{SO_2-NR_1-Q-Z}$$

$$60$$

wherein X_1 , A, B, Q and R_1 are as defined under formula XX, and Z is as explained under formula VI) is reacted with a compound having the formula HNR₂R₃ (XXII) in which R₂ and R₃ are as defined under formula XX or a salt thereof and, if desired, a compound having formula XX is converted into a pharmaceutically acceptable salt thereof or a salt of a compound having formula XX is converted into a compound having

35

45

50

formula XX. The reaction of the compound XXI with the amine XXII can be carried out in conventional manner for the conversion of secondary amines into tertiary amines, preferably under pressure.

The novel compounds having general formula I and their pharmaceutically acceptable salts are indicated for use as anti-hypertensive agents. The compounds may be tested for their response on the blood pressure 5 of spontaneously hypertensive rats in the following procedure:-

The blood pressure of male or female conscious rats that are spontaneously hypertensive are measured in a 39°C constant temperature housing by means of a tail cuff. Rats with systolic pressures below 155mm Hg are not used. Groups of rats (4 per group) are dosed orally with the test substance in a suitable vehicle or with vehicle alone. Systolic pressures are recorded before dosing and at selected time points afterwards (2 hours, 6 hours and 24 hours).

The following table indicates results obtained in the procedure described above:-

15	Compound (identified by Example No.)	Dose (millimoles per Kg)	Blood pro (as % of l before de	blood pressure	3	15
			After	After	After	
			2 hours	6 hours	24 hours	
20						20
		0.03	80	67	102	
	3	0.03	77	70	85	
	•	0.015	84	75 ·	86	
		0.003	92	85	91 .	•
25	5	0.03	83	· 7 5	95	25
	6	0.03	77	67	97	25
	7	0.03	71	73	98	
	8 .	0.03	98	85	107	
	9	0.03	71	62	- 70	
30	16b	0.03		58	. 85	30

The invention also provides a pharmaceutical composition comprising a compound having formula I or a pharmaceutically acceptable acid addition salt thereof in association with a pharmaceutically acceptable carrier. Any suitable carrier known in the art can be used to prepare the pharmaceutical composition. In such a composition, the carrier is generally a solid or liquid or a mixture of a solid and a liquid.

Solid form compositions include powders, granules, tablets, capsules (e.g. hard and soft gelatin capsules), suppositories and pessaries. A solid carrier can be, for example, one or more substances which may also act as flavouring agents, lubricants, solubilisers, suspending agents, fillers, glidants, compression aides, binders or tablet-disintegrating agents; it can also be an encapsulating material. In powders the carrier is a finely divided solid which is in admixture with the finely divided active ingredient. In tablets the active ingredient is mixed with a carrier having the necessary compression properties in suitable proportions and compacted in the shape and size desired. The powders and tablets preferably contain up to 99%, e.g. from 0.03 to 99%, preferably 1 to 80% of the active ingredient. Suitable solid carriers include, for example, calcium phosphate, magnesium stearate, talc, sugars, lactose, dextrin, starch, gelatin, cellulose, methyl cellulose, sodium carboxymethyl cellulose, polyvinylpyrrolidine, low melting waxes and ion exchange resins.

The term "composition" is intended to include the formulation of an active ingredient with encapsulating material as carrier to give a capsule in which the active ingredient (with or without other carriers) is surrounded by the carrier, which is thus in association with it. Similarly cachets are included.

Liquid form compositions include, for example, solutions, suspensions, emulsions, syrups, elixirs and pressurised compositions. The active ingredient, for example, can be dissolved or suspended in a pharmaceutically acceptable liquid carrier such as water, an organic solvent, a mixture of both or pharmaceutically acceptable oils or fats. The liquid carrier can contain other suitable pharmaceutical additives such as solubilizers, emulsifiers, buffers, preservatives, sweeteners, flavouring agents, suspending agents, thickening agents, colours, viscosity regulators, stabilisers or osmo-regulators. Suitable examples of liquid carriers for oral and parenteral administration include water (particularly containing additives as above e.g. cellulose derivatives, preferably sodium carboxymethyl cellulose solution), alcohols (including monohydric alcohols and polyhydric alcohols e.g. glycerol and glycols) and their derivatives and oils (e.g. fractionated coconut oil and arachis oil). For parenteral administration the carrier can also be an oily ester such as ethyl oleate and isopropyl myristate. Sterile liquid carriers are used in sterile liquid form compositions for parenteral administration.

Liquid pharmaceutical compositions which are sterile solutions or suspensions can be utilized by, for example, intramuscular, intraperitoneal or subcutaneous injection. Sterile solutions can also be administered intravenously. When the compound is orally active it can be administered orally either in liquid or solid composition form.

Preferably the pharmaceutical composition is in unit dosage form, e.g. as tablets or capsules. In such form, the composition is sub-divided in unit dose containing appropriate quantities of the active ingredient; the unit dosage forms can be packaged compositions, for example packeted powders, vials, ampoules, prefilled syringes or sachets containign liquids. The unit dosage form can be, for example, a capsule or tablet itself, or it can be the appropriate number of any such compositions in package form. The quantity of the active ingredient in unit dose of composition may be varied or adjusted from 0.5 mg or less to 750 mg or more, according to the particular need and the activity of the active ingredient. The invention also includes the compounds in the absence of the carrier where the compounds are in unit dosage form. The invention is illustrated by the following examples:-10 **EXAMPLE 1** 4-(7-Chloro-4-quinazolinylamino)benzenesulphonic acid Sulphanilic acid (12.1g, 0.07 mole) was partly dissolved in 280 millilitres of aqueous ethanol (50% by volume) at reflux and 4,7-dichloroquinazoline (13.9g, 0.07 mole) was added rapidly in a few portions. The mixture was refluxed for a further 15 minutes, cooled and filtered to give the title compound hemihydrate of 15 melting point greater than 300°C. Analysis: Calculated for C₁₄H₁₀ClN₃O₃S.1/2H₂O: C, 48.8%; H, 3.22%; N, 12.2% Found: C, 48.7%, H, 3.32%; N, 11.8% The sulphonyl chloride hydrochloride derivative of the title compound may be prepared by the following 20 procedure. The title compound (12.6g, 0.036 mole) was heated to reflux for 4 hours in thionyl chloride (90ml) containing dimethylformamide (0.75ml). Excess thionyl chloride was evaporated under reduced pressure and the solid was washed with toluene to give the sulphonyl chloride hydrochloride (13.9g). **EXAMPLE 2** 25 4-(7-Chloro-4-cinnolinylamino)benzenesulphonic acid Sulphanilic acid (1.95g) in water (75ml) and ethanol (10ml) at 70°C was treated with 4.7-dichlorocinnoline (2.2g) and ethanol (10ml) was added. The resultant green suspension was stirred vigorously overnight at 70°C. The mixture was cooled, and the solid was filtered, washed with water and dried at room temperature 30 to give 3.45g of the title compound as the monohydrate, melting point greater than 280°C. 30 Analysis: Calculated for C₁₄H₁₀ClN₃O₃S.H₂O: C,47.53%; H, 3.42%; N, 11.88% Found: C, 47.4%; H, 3.36; N, 11.71%. The sulphonyl chloride hydrochloride derivative of the title compound is prepared from the title 35 compound in a similar manner to that used in Example 1, last paragraph. 35 4-(7-Chloro-4-quinazolinylamino)-N-(2-diethylaminoethyl) benzenesulphonamide 4-(7-Chloro-4-quinazolinylamino)benzenesulphonyl chloride hydrochloride (36.0g obtainable from the title compound of Example 1) and methylene chloride (180ml) were cooled under nitrogen to 5°C. N,N-Diethylethylenediamine (35.4g) was then added at 5-10℃ over 20 minutes to give a light yellow solution. The solution was stirred for 2 hours under nitrogen at 5° to 15°C and then water (200ml) was added. A white solid precipitated. The mixture was cooled to 10°C and the solid was filtered off, washed with water (2 x 40ml) and with chloroform (2 x 40ml) and dried in an oven to give 279g of title compound. A 27g sample of the title compound was recrystallised and converted into the hydrochloride by the 45 following procedure. The sample was dissolved in refluxing acetone (350ml). The mixture was filtered hot and solvent was distilled off to give a volume of 100ml of mixture. The mixture was cooled to about 10°C and then filtered. The white solid was collected, washed with acetone (2 x 50ml) and dried in an oven to give 23.5g of title compound. The recrystallised title compound was suspended in isopropyl alcohol (100ml) and water (50ml). •50 Concentrated hydrochloric acid was added until the pH of the mixture was 1. The mixture was stirred for 20 minutes and filtered and the collected solid was washed with water 2 x 15ml), isopropyl alcohol (2 x 30ml) and dried in an oven overnight to yield 185g of the title compound hydrochloride. A sample of the title compound was converted into its hydrochloride by dissolving in warm ethanol and adding ethereal hydrogen chloride to give the title compound as its hydrochloride, three quarters ethanolate, m.p. 203°C. Analysis: Found: C, 51.5%; H, 5.86%; N, 13.5% $C_{20}H_{24}CIN_5O_2S.Hcl.$ % C_2H_6O requires C, 51.1%; H, 5.88%; N, 13.9% 60 **EXAMPLE 4** 1-[4-(7-Chloro-4-quinazolinylamino)benzenesulphonyl]-4-methylpiperazine N-Methylpiperazine (1.0g, 0.01 mole) was dissolved in chloroform (50ml). Sodium carbonate (10g) was dissolved in water (50ml). The solutions were combined and cooled to 10°C. 4-(7-Chloro-4quinazolinylamino)benzenesulphonyl chloride hydrochloride (3.85g, 0.01 mole) was added in portions to the

5	vigorously stirred solution. Stirring was continued for one hour. The chloroform layer was separated, dried and evaporated. The resulting gummy solid was redissolved in chloroform and chromatographed on an alumina column. Elution with chloroform gave a first band which was discarded. The second band was obtained as a low melting solid, which was converted to the hydrochloride by dissolving in ethanol and adding ethereal hydrogen chloride to give the title compound as the sesquihydrochloride (650mg) m.p. 237-239°C.	5
	Analysis:	
	Found: C, 48.3%; H, 4.58%; N, 14.8% C ₁₉ H ₂₀ CIN ₄ O ₂ S.3/2HCl requires C, 48.7%; H, 4.80%; N, 14.7%	•
10		10
	EXAMPLE 5	
15	4-(7-Chloro-4-quinazolinylamino)-N-(1-ethyl-3-piperidyl)benzenesulphonamide 3-Amino-1-ethylpiperidine (1.1g, 0.0087 mole) was dissolved in chloroform (50ml), sodium carbonate (10g) was dissolved in water (50ml) and the combined solutions were cooled to 10°C. 4-(7-Chloro-4-quinazolinylamino) benzenesulphonyl chloride hydrochloride (3.4g, 0.0087 mole) was added in portions to the vigorously stirred solutions. Stirring was continued for one hour. The chloroform layer was separated, dried and evaporated to give a gummy solid which was triturated twice with benzene to give a colourless solid (1.1g). This was found to contain benzene. The solid was therefore chromatographed through an	15
20	alumina column and eluted with chloroform to give a solid which was converted to the hydrochloride by	20
25	Analysis:	. 25
دع	Found: C, 48.2% H, 5.04%; N, 13.1% C ₂₁ H ₂₄ CIN ₅ O ₂ S.2HCl.¼H ₂ O requires C, 48.2%; 5.10%; N, 13.4%	25
	EXAMPLE 6 4-[7-Chloro-4-cinnolinylamino]-N-(2-diethylaminoethyl) benzenesulphonamide	
30	A mixture of anhydrous sodium carbonate (3.08g) and N,N-diethylethylenediamine (0.43ml) in chloroform (30ml) was vigorously stirred at 5°C and treated with 4-(7-Chloro-4-cinnolinylamino)benzenesulphonyl chloride hydrochloride (1.0g). The mixture was stirred at room temperature for 1½ hours and then filtered. The filtrate was evaporated to give a residue that crystallised from ethanol to give the title compound	30
35	(0.456g), m.p. 175-76℃. Analysis:	35
	Found: C,55.3%; H, 5.6%; N, 16.0%	
	C ₂₀ H ₂₄ ClN ₅ O ₂ S requires C, 55.36%; H, 5.57%; N, 16.14%	
4'0	EXAMPLE 7	
40	4-[7-Chloro-4-cinnolylamino]-N-(1-ethyl-3-piperidyl) benzenesulphonamide	40
	3-Amino-1-ethylpiperidine (0.4ml) in chloroform (15ml) was treated with anhydrous sodium carbonate (2.94g) in water (15ml) and cooled to 3°C. The mixture was vigorously stirred and treated with 4-(7-chloro-4-cinnolinylamino)benzenesulphonylchloride hydrochloride (1.0g). The dark orange mixture was	•
15	stirred at 3°C for 15 minutes, then at room temperature for 45 minutes. During this period the colour	45
	lightened considerably. The chloroform layer was separated and dried over magnesium sulphate. The	. 73
	residue on evaporation solidified when triturated with methanol, to give the title compound (0.5g), m.p. 213-15°C (with decomposition). Analysis:	•
50	Found: C, 56.4; H, 5.6; N, 15.65%	50
	C ₂₁ H ₂₄ ClN ₅ O ₂ S requires C, 56.56; H, 5.42; N, 15.7%	
	EXAMPLE 8	
55	4-(7-Chloro-4-quinazolinylamino)-N-[2-(1-pyrrolidinyl)ethyl]benzenesulphonamide 4-(7-Chloro-4-quinazolinylamino)benzene sulphonyl chloride, hydrochloride (3.5g, 0.011 mole) was added portionwise to a well-stirred mixture of sodium carbonate (11.5g) in water (120ml) and N-(2-aminoethyl)-pyrrolidine (1.26g, 0.01 mole) in chloroform (120ml) at about 10°C. After 1 hour at room temperature, the	55
	mixture was filtered. The chloroform layer was separated, dried (MgSO ₄) and evaporated under reduced pressure to give a gum. Trituration from ethyl acetate gave a white solid (1.4g) which could be crystallised	
0	from ethanol-water, m.p. 203-204.5°C.	60
	Analysis: Found: C, 56.0%; H, 5.40%; N, 16.1%	
	C ₂₀ H ₂₂ ClN ₅ O ₂ S requires; C, 55.6%; H, 5.13%; N, 16.2%	

	10	mixture was filtered and the solid washed with water, then dried (vacuum oven). Recrystallisation from ethanol gave the title compound (6.74g), m.p. 199-201°C. Analysis: Found: C, 56.3%; H, 5.43%; N, 15.6% C, H, CM, O, S, Foundard: C, 56.6%; H, 5.43%; N, 15.7%	5
٠.	15	EXAMPLE 10 N-(3-Chloropropyl)-4-(7-chloro-4-quinazolinylamino)-Benzenesulphonamide 4-(7-Chloro-4-quinazolinylamino)benzenesulphonyl chloride hydrochloride (11.7g, 0.03 mole) was added portionwise to a well stirred mixture of sodium carbonate (45g) in water (350ml) and 3-chloropropylamine hydrochloride (3.9g, 0.03 mole) in chloroform (350ml) was added at 10°C. After about 1 hour at room temperature, the mixture was filtered and the solid was washed with water and then dried to give 7.4g of the	15
	20	title compound. A sample was recrystallised from a mixture of ethanol and water to give the title compound, m.p. 168-171°C. Analysis: Found: C, 50.0%; H, 4.07; N, 13.5% C ₁₇ H ₁₆ Cl ₂ N ₄ O ₂ S requires C, 49.6%; H, 3.92%; N, 13.6%	20
••	25	A solution of the title compound of Example 10 (4.1g, 0.01 mole) in ethanol (120ml) containing diethylamine (20ml, 0.2 mole) was heated to 120° in a bomb for 5 hours and then left at room temperature overnight. Evaporation of the solvent under reduced pressure gave a crude red solid, which was	,25
	30	chromatographed with alumina (basic) and 1% ethanol/chloroform. Recrystallisation from ethanol-water gave a white solid (1.43g). A second recrystallisation of a 1.0g sample from ethanol/water gave the title compound as the hemihydrate (0.84g), melting point 163-165°C. Analysis: Found: C, 54.9%; H, 5.61%; N, 15.3% C ₂₁ H ₂₆ CIN ₅ O ₂ S.½H ₂ O requires C, 55.2%; H, 5.96%; N, 15.3%	30
	25		35
	35	EXAMPLE 12 4-(7-Chloro-4-quinazolinylamino)-N-(2-diethylaminoethyl)benzenesulphonamide (a) N-(2-Chloroethyl)-4-(7-Chloro-4-quinazolinylamino)benzenesulphonamide This compound is prepared in a similar manner to Example 10 using 2-chloroethylamine hydrochloride	55
	40	(0.03 moles) instead of 3-chloropropylamine hydrochloride. (b) 4-(7-Chloro-4-quinazolinylamino)-N-(2-diethylaminoethyl)benzenesulphonamide This compound can be prepared in a similar manner to Example 11 using the title compound of part (a) [0.01 mole] instead of the title compound of Example 10 and a bomb temperature of 100°C instead of 120°C.	40
	45	EXAMPLE 13 4-(7-Chloro-4-cinnolinylamino)-N-(2-diethylaminoethyl)benzenesulphonamide	45
	50	(a) 4-(7-Chloro-4-cinnolinylamino)-N-(2-chloroethyl)benzenesulphonamide This compound is prepared in a similar manner to the procedure of Example 10 using equimolar quantities of 2-chloroethylamine hydrochloride instead of 3-chloropropylamine hydrochloride and 4-(7-chloro-4-cinnolinylamino)benzenesulphonyl chloride hydrochloride instead of 4-(7-chloro-4-quinolinylamino) benzenesulphonyl chloride. (b) 4-(7-Chloro-4-cinnolinylamino)-N-(2-diethylaminoethyl)benzenesulphonamide. This compound is prepared in a similar manner to Example 11 using the title compound of part (a) [0.01]	50
		mole] instead of the title compound of Example 10 and a bomb temperature of 100°C instead of 120°C.	
	55	EXAMPLE 14 (a) 4-(6-Chloro-4-quinazolinylamino)benzenesulphonic acid 4,6-Dichloroquinazoline (5.9g, 0.03 mole) was added portionwise to sulphanilic acid (5.2g, 0.03 mole) in 50% aqueous ethanol (200ml) at 90°C with stirring. The mixture was refluxed for 2 hours, cooled and filtered.	55
	60	The solid was washed with 50% aqueous ethanol and dried in an oven to give the title compound (9.2g) as the hemihydrate m.p. greater than 300°C. Analysis: Found: C, 48.6%; H, 3.28%; N, 11.9%	60
		C. H. CIN-O-S requires C 48.8%: H. 3.22%: N. 12.2%	
i	65	(b) 4-(6-Chloro-4-quinazolinylamino)-N-(2-diethylaminoethyl)benzenesulphonamide	65

or a pharmaceutically acceptable salt thereof wherein one of A nd B is CH whilst the other one of A and B is N; X_1 is halogen or trifluoromethyl and X_3 represents a group having one of formulae II, III, IV and V

55

- where Q is lower alkylene; R₁ is hydrogen or lower alkyl; R₂ and R₃ are, independently, lower alkyl or R₂ and R₃ together form a divalent radical such that R₂R₃NH is a secondary cyclic amine with 5 to 7 ring atoms; R₄ is lower alkyl; n is 0 or 1; the ring illustrated in formulae III and IV is a piperidine or pyrrolidine ring or a piperidine or pyrrolidine ring that is substituted on one or more ring carbon atoms by lower alkyl and the ring illustrated in formula V is a piperazine ring or a piperazine ring that is substituted on one or more ring carbon atoms by lower alkyl.
 - 2. A compound as claimed in Claim 1 wherein X₁ is at the 7-position of the quinazoline or cinnoline ring system.
 - 3. A compound as claimed in Claim 1 or Claim 2, wherein X_2 has formula if or IV wherein R_1 is hydrogen.
 - 4. A compound as claimed in any one of Claims 1 to 3, wherein R_2 and R_3 are lower alkyl.
- 5. A compound as claimed in either one of Claims 1 and 2, wherein X_3 is a group having the formula lla or X_3 iva.

$$-NH-Q-NR_{2}R_{3}$$
(IIa)
25
$$-NH-Q - (CH_{2})_{m}$$
30
$$R_{4}$$
(IVa)

wherein Q is alkylene of 1 to 4 carbon atoms; R_2 , R_3 and R_4 are, independently, alkyl of 1 to 4 carbon atoms and m is 0 or 1.

- 6. 4-(7-Chloro-4-quinazolinylamino)-N-(2-diethylaminoethyl)benzenesulphonamide or a pharmaceutically acceptable salt thereof.
 - 7. 4-(7-Chloro-4-cinnolinylamino)-N-(2-diethylaminoethyl)benzenesulphonamide or a pharmaceutically acceptable salt thereof.
- 8. 4-(6-Chloro-4-quinazolinylamino)-N-(2-diethylaminoethyl)benzenesulphonamide or a pharmaceutically acceptable salt thereof.
 - 9. 4-[7-Chloro-4-quinazolinylamino]-N-(1-ethyl-3-piperidyl)benzenesulphonamide or a pharmaceutically acceptable salt thereof.
 - 10. 4-[7-Chloro-4-cinnolinylamino)-N-(1-ethyl-3-piperidyl)benzenesulphonamide or a pharmaceutically acceptable salt thereof.
- 11. 1-[4-(7-Chloro-4-quinazolinylamino)benzenesulphonyl]-4-methylpiperazine or a pharmaceutically acceptable salt thereof.
 - 12. 4-(7-Chloro-4-quinazolinylamino)-N-[2-(1-pyrrolidinyl)ethyl]benzenesulphonamide or a pharmaceutically acceptable salt thereof.
- 13. 4-(7-Chloro-4-quinazolinylamino)-N-[(2-(1-ethyl)pyrrolidinyl)methyl]benzenesulphonamide or a 50 pharmaceutically acceptable salt thereof.
 - 14. 4-(7-Chloro-4-quinazolinylamino)-N-(3-diethylaminopropyl)benzenesulphonamide or a pharmaceutically acceptable salt thereof.
 - 15. N-[2-diethylaminoethyl]-4-[7-trifluoromethyl-4-quinazolinylamino]benzenesulphonamide or a pharmaceutically acceptable salt thereof.
 - 16. A compound as claimed in any one of Claims 1 to 15 for use as a pharmaceutical.
 - 17. Use of a compound as claimed in any one of Claims 1 to 15 to prepare a medicament for anti-hypertensive use.
 - 18. A pharmaceutical composition comprising a compound as claimed in any one of Claims 1 to 15 in association or combination with a pharmaceutically acceptable carrier.

15

20

25

19. A compound having the formula

or a salt thereof, wherein X₁ is halogen or trifluoromethyl; one of A and B is CH whilst the other one of A and B is N; and X₄ represents -OH or -NR₁R₅ where R₁ is hydrogen or lower alkyl and R₅ is hydrogen or a group having the formula -Q-Z where Q is lower alkylene and Z is a leaving group or atom.

20. A compound as claimed in Claim 19 wherein X₁ is at the 7-position of the quinazoline or cinnoline

ring.
21. 4-[7-Chloro-4-quinazolinylamino]benzenesulphonic acid or a salt thereof.

22. 4-[7-Chloro-4-cinnolinylamino]benzenesulphonic acid or a salt thereof.

23. 4-[6-Chloro-4-quinazolinylamino]benzenesulphonic acid or a salt thereof.

24. 4-[7-Trifluoromethyl-4-quinazolinylamino]-benzenesulphonic acid or a salt thereof.

20 25. A compound having the formula

$$y = \sqrt{\sum_{SO_2-NR_1-Q-CN-R_4}}$$
 (IVb)

25

where Y is amino, protected amino or latent amino, R_1 is hydrogen or lower alkyl, R_4 is lower alkyl and the ring attached to Ω and R_4 is a piperidine or pyrrolidine ring or a piperidine or pyrrolidine ring substituted on one or more ring carbon atoms by lower alkyl.

26. 4-Amino-N-[(2-(1-ethyl)pyrrolidinyl)methyl]-benzenesulphonamide or a salt thereof.

30

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS		
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	·¥+	*
FADED TEXT OR DRAWING		
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING		×-
☐ SKEWED/SLANTED IMAGES	· ·	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS		
GRAY SCALE DOCUMENTS		o (o
LINES OR MARKS ON ORIGINAL DOCUMENT		
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE I	POOR QU	ALITY
OTHER:		

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

- (21) Application No 7931441
 - (22) Date of filing 11 Sep 1979 (30) Priority data
 - (31) 53/111484
 - (32) 11 Sep 1978
 - (33) Japan (JP)
 - (43) Application published 29 May 1980
 - (51) INT CL³ C07D 239/94 A61K 31/505
 - (52) Domestic classification C2C 1604 213 220 22Y 250 252 25Y 29X 29Y 30Y 311 313 314 31Y 322 323 32Y 332 337 338 364 36Y 456 45Y 610 611 617 618 620 621 624 660 662 670 671 680 694 698 69Y 775 802 80Y AA LH NF
 - (56) Documents cited Chemical Abstracts Vol 85 63018 : Chemical Abstracts Vol 79 13783e (Indian J. Chem. 11 (6) 538-40) Chemical Abstracts Vol. 76 153706d Chemical Abstracts Vol 76 34199f
 - (58) Field of search C2C
 - (71) Applicants
 Sankyo Company,
 Limited,
 1-6, 3-chome,
 Nihonbashi Honcho,
 Chuo-ku,
 Tokyo,
 Japan.
 - (72) Inventors
 Shinsaku Kobayashi,
 Katsuo Kamoshita,
 Shigeki Nagal,
 Takeo Honda,
 Kiroku Oda,
 Katsutoshi Fujii,
 Takashi Kobayashi,
 Mikio Kojima.
- (74) Agents . Marks & Clerk

- (54) 4-Anilinoquinazolines
- (57) Novel compounds of the formula (I):

$$R^{3}$$
 N R^{2} (11)

(in which:

R¹ represents a hydrogen atom, a halogen atom, a trifluoromethyl group or a nitro group;

R² represents a hydrogen atom, an alkyl group, an alkoxy group or a halogen atom; and

R³ represents a hydrogen atom or an alkyl group) and pharmaceutically acceptable salts thereof are, except where R¹ represents a hydrogen atom or a chlorine atom in the 6- position when R² and R³ both represent hydrogen atoms, which have been found to possess valuable analgesic and anti-inflammatory activities, can be prepared by heating the appropriate 4-haloquinazoline with an appropriate aniline derivative.

15

20

30

40

60

65

New 4-anilinoquinazoline derivatives and their preparation

5 The present invention relates to a series of new 4-anilinoquinazoline derivatives, to a process for their preparation and to their use as analgesic and anti-inflammatory agents.

A wide range of analgesic and anti-inflammatory agents is available, suitable for treating pain of all intensity from mild (treated with a spirin, paracetamol or the like) to intense (treated with a narcotic analgesic, such as morphine or pentazocine). However, all of these known compounds have side effects,

10 which may range from stomach irritation in the case of aspirin to dizziness, drowsiness and nausea and, in the case of the narcotic analgesics, may include dependence The incidence and severity of these side effects varies from person to person and there is, therefore, a continuing need for new classes of anagesic for administration to persons to whom administration of existing analgesics would be inappropriate.

We have now surprisingly discovered that a class of 4-anilinoquinazoline derivatives possesses analgesic and anti-inflammatory activity comparable with, but in many cases substantially better than, that of aspirin. Although aminoquinazolines, including 4-anilinoquinazoline and 4-anilino-6-chloroquinazoline, are known [see, for example, J. Org. Chem., 41, 2646 (1976) and U. S. Patent Specification No. 3,985,749], they have hitherto been proposed for use in the treatment of coccidiosis and we are not aware of any prior suggestions that they have analgesic or anti-inflammatory activity.

The 4-anilinoquinazoline derivatives which may be prepared by the process of the invention are those compounds of formula (I):

$$R^{1}$$
 N R^{2} (i) 25

in which:

25

55

R¹ represents a hydrogen atom, a halogen atom, a trifluoromethyl group or a nitro group;

R² represents a hydrogen atom, an alkyl group, an alkoxy group or a halogen atom; and R³ represents a hydrogen atom or an alkyl group; and pharmacologically acceptable acid addition salts

R³ represents a hydrogen atom or an alkyl group; and pharmacologically acceptable acid addition salts thereof.

Of these compounds, all are *per se* new, except those compounds in which R¹ represents a hydrogen atom or a chlorine atom in the 6- position and R² and R³ both represent hydrogen atoms. Throughout this

35 Specification, the numbering adopted for the ring systems in the anilinoquinazoline derivatives of the invention is as shown below

The process of the invention comprises heating a haloquinazoline derivative of formula (II):

$$R^{1} \longrightarrow R^{1}$$

50 (in which R¹ is as defined above and X represents a halogen atom) with aniline or an aniline derivative of formula (III):

(in which R² and R³ are as defined above).

The invention also provides a pharmaceutical composition comprising a pharmaceutically acceptable carrier or diluent and, as active ingredient, one or more of the new 4-anilinoquinazoline derivatives of the gresent invention.

In the above formulae, R¹ represents a hydrogen atom, a halogen atom, a trifluoromethyl group or a nitro group and, where R¹ represents a halogen atom, it is preferably a fluorine, chlorine or bromine atom.

Where R² represents an alkyl group, this is preferably a lower alkyl group and most preferably a straight of

Where R² represents an alkyl group, this is preferably a lower alkyl group and most preferably a straight or branched chain alkyl group having from 1 to 4 carbon atoms, e.g. a methyl, ethyl, n-propyl, isopropyl, n-butyl 65 or isobutyl group. Where R² represents an alkoxy group, this is preferably a lower alkoxy group and most

preferably a straight or branched chain alkoxy group having from 1 to 4 carbon atoms, e.g. a methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy or isobutoxy group. Where R2 represents a halogen atom, this is preferably a fluorine, chlorine or bromine atom.

Where R³ represents an alkyl group, this is preferably a lower alkyl group and more preferably a straight or branched chain alkyl group having from 1 to 4 carbon atoms e.g. a methyl, ethyl, n-propyl, isopropyl, n-butyl or isobutyl group.

Among the compounds of the invention where R3 represents a hydrogen atom, a preferred class are those compounds of formula (la):

10

$$R^{1a}$$
 NH R^2 (Ia)

(in which R^{1a} represents a halogen atom or a trifluoromethyl group and R² is as defined above, provided that 15 R1a does not represent a chlorine atom at the 6- position when R2 represents a hydrogen atom) and 15 pharmacologically acceptable acid addition salts thereof. More preferred compounds within this class are those in which R1a represents a halogen atom at the 7position or a trifluoromethyl group at the 7- or 8- position and R² is as defined above and most preferred compounds are those in which R¹a represents a chlorine atom at the 7- position or a trifluoromethyl group at 20 the 7- or 8- position and R2 represents a hydrogen atom, a methyl group, a methoxy group or a chlorine Among the compounds in which R³ represents an alkyl group, particularly preferred compounds are those R¹ represents a hydrogen atom, or a chlorine atom, a trifluoromethyl group or a nitro group at the 7- or 8-25 position; 25 R² represents a hydrogen atom, or a methyl group, ethyl group, methoxy group, ethoxy group or chlorine atom at the 4'- position; and R3 represents a methyl group or an ethyl group. Examples of compounds in accordance with the present invention are listed below. The numbers 30 appended to the compounds in the following list are used to identify them subsequently in the Specification. 4-Anilino-5-chloroquinazoline. 4-Anilino-5-chloroquinazoline hydrochloride. 6-Chloro-4-(3-methylanilino)quinazoline. 6-Chloro-4-(3-methylanilino)quinazoline hydrochloride. 35 35 5. 4-Anilino-7-chloroguinazoline. 4-Anilino-7-chloroquinazoline hydrochloride. 7. 7-chloro-4-(4-methylanilino)quinazoline. 7-Chloro-4-(4-methylanilino)quinazoline hydrochloride. 8. 7-CHLORO-1/2-(4-methoxyanilino)quinazoline. 40 10. 7-Chloro-4-(4-methoxyanilino)quinazoline hydrochloride. 7-Chloro-4-(2-chloroanilino)quinazoline. 7-Chloro-4-(2-chloroanilino)quinazoline hydrochloride. 12. 4-Anilino-8-chloroquinazoline. 13. 4-Anilino-8-chloroquinazoline hydrochloride. 45[.] 14. 45 4-Anilino-7-fluoroguinazoline. 15. 4-Anilino-7-fluoroquinazoline hydrochloride. 4-Anilino-7-trifluoromethylquinazoline. 17. 18. 4-Anilino-7-trifluoromethylquinazoline hydrochloride. 4-Anilino-8-trifluoromethylquinazoline. 50 19. 4-Anilino-8-trifluoromethylquinazoline hydrochloride. 20. 6-Chloro-4-(4-chloroanilino)quinazoline. 6-Chloro-4-(4-chloroanilino)quinazoline hydrochloride. 22. 6-Chloro-4-(4-methylanilino)quinazoline. 55 24. 6-Chloro-4-(4-methylanilino)quinazoline hydrochloride. 55 5-Chloro-4-(3-chloroanilino)quinazoline. 25.

 5-Chloro-4-(3-chloroanilino)quinazoline hydrochloride. 6-Chloro-4-(2-chloroanilino)quinazoline.

4-(4-Bromoanilino)-6-chloroquinazoline.

6-Chloro-4-(2-methoxyanilino)quinazoline.

33. 7-Chloro-4-(4-chloroanilino)quinazoline.

6-Chloro-4-(2-chloroanilino)quinazoline hydrochloride.

4-(4-Bromoanilino)-6-chloroquinazoline hydrochloride.

32. 6-Chloro-4-(2-methoxyanilino)quinazoline hydrochloride.

34. 7-Chloro-4-(4-chloroanilino)quinazoline hydrochloride.

	٠	35.	7-Chloro-4-(2-methylanilino)quinazoline.	
		36.		
			6-Chloro-4-(2-methylanilino)quinazoline.	
		20	6 Chloro A /2 methylamino/quinazoime.	
•			6-Chloro-4-(2-methylanilino)quinazoline hydrochloride.	•
	5	39.		5
		40.	7-Chloro-4-(3-chloroanilino)quinazoline hydrochloride.	
		41.		
		42.	7-Chloro-4-(3-methylanilino)quinazoline hydrochloride.	
		.43.	7-Chloro-4-(4-ethylanilino)quinazoline.	
		44.	7-Chloro-4-(4-ethylanilino)quinazoline hydrochloride.	
	10	45.		10
			4-(4-Butylanilino)-7-chloroquinazoline hydrochloride.	
			7-Chloro-4-(4-ethoxyanilino)quinazoline.	
		48.	7-Chloro-4-(4-ethoxyanilino)quinazoline hydrochloride.	
	15		8-Chloro-4-(3-chloroanilino)quinazoline.	15
			8-Chloro-4-(3-chloroanilino)quinazoline hydrochloride.	
•		51.	4-(4-Methoxyanilino)-7-trifluoromethyl-quinazoline.	- 7
		52.	4-(4-Methoxyanilino)-7-trifluoromethyl-quinazoline hydrochloride.	
		53.	4-(N-Methylanilino)quinazoline.	
			4-(N-Methylanilino)quinazoline hydrochloride.	200
	20	55.	7-Chloro-4-(N-methylanilino)quinazoline.	20
			7-Chloro-4-(N-methylanilino)quinazoline hydrochloride.	
		50.	7-Chloro-4-(N-ethylanilino)quinazoline hydrochloride.	
		57.	7-Critoro-4-(V-etny)aniinojquinazoline.	
		50.	7-Chloro-4-(N-ethylanilino)quinazoline hydrochloride.	
:	25	59.	7-Chloro-4-(4,N-dimethylanilino)quinazoline.	25
			7-Chloro-4-(4,N-dimethylanilino)quinazoline hydrochloride.	
		61.	7-Chloro-4-(4-ethyl-N-methylanilino)-quinazoline.	
		62.	7-Chloro-4-(4-ethyl-N-methylanilino)-quinazoline hydrochloride.	
		63.	7-Chloro-4-(4-methoxy-N-methylanilino)-quinazoline.	
	30	64.	7-Chloro-4-(4-methoxy-/V-methylanilino)-quinazoline hydrochloride.	30.
٠	30	65.	7-Chloro-4-(4-ethoxy-N-methylanilino)-quinazoline.	30 .
			7-Chloro-4-(4-ethoxy-N-methylanilino)-quinazoline hydrochloride.	
		67	7-Chloro-4-(4-chloro-N-methylanilino)-quinazoline.	
		68.	7-Chloro-4-(4-chloro-N-methylanilino)-quinazoline hydrochloride.	
		69.	7 Chloro-A (A chloro A (A chloro A) chloro (Chrono)	
	35	70	7-Chloro-4-(4-chloro-N-ethylanilino)-quinazoline.	35
		70.	7-Chloro-4-(4-chloro-N-ethylanilino)-quinazoline hydrochloride.	•
		71.	8-Chloro-4-(N-methylanilino)quinazoline.	
	-		8-Chloro-4-(N-methylanilino)quinazoline hydrochloride.	
		73.	4-(N-Methylanilino)-7-trifluoromethyl-quinazoline.	
. 4	ıo i	74.	4-(N-Methylanilino)-7-trifluoromethyl-quinazoline hydrochloride.	40
_			4-(4-Methoxy-N-methylanilino)-7-trifluoromethylquinazoline.	•••
		76.	4-(4-Methoxy-N-methylanilino)-7-trifluoromethylquinazoline hydrochloride.	
		77.	4-(N-Methylanilino)-8-trifluoromethylquinazoline.	
		78.	4-(N-Methylanilino)-8-trifluoromethyl-quinazoline hydrochloride.	
		79.	4-(N-Methylanilino)-7-nitroquinazoline.	:_ '
4		80.	4 /// Methylaniline 1 7 - identificant in the desired	45
		·.	4-(N-Methylanilino)-7-nitroquinazoline hydrochloride.	
		Oi	these compounds, particularly valuable compounds have been found to be Compounds Nos. 5, 17, 55	• .
		and .	73, as well as their acid addition salts, particularly the hydrochlorides (that is to say, Compounds Nos. 6,	
	•	18, 5	6 and 74); of these, the most preferred compound is Compound No. 5 and its acid addition salts,	
5	ان	parti	cularly the hydrochloride, Compound No. 6.	50
Ī	-	Th	e compounds of formula (I) can be prepared by heating a corresponding haloquinazoline derivative of	
	- 1	form	ula (II):	
			. x	
				,
_	_		R1-F 1 TV	
b	5 ·			55
	٠,	with	aniline or an aniline derivative of formula /III).	
	,	, i ti i	aniline or an aniline derivative of formula (III):	
			$R^3NH - \sum_{s^2}$	
6	0		ζ_2 (III)	60

(in which R¹, R², R³ and X are as defined above). X is preferably a chlorine, bromine or iodine atom.

The process of the invention is preferably carried out in the presence of a solvent, although the nature of the solvent is not critical, provided that it has no adverse effect upon the reaction. Preferred solvents are:

65

55

60

65

alcohols, such as methanol or ethanol; ethers, such as tetrahydrofuran or dioxan; aromatic hydrocarbons, such as benzene or toluene; or halogenated aromatic hydrocarbons, such as 2,4-dichlorobenzene. The precise ratio of haloquinazoline derivative (II) to aniline or aniline derivative (III) is also not critical; however, for reasons of economy, we prefer to employ approximately equimolar amounts of the two reagents. Since 5 the reaction is exothermic, the reaction temperature, too, is not critical. The reaction is most conveniently carried out by heating the reaction mixture to approximately the boiling temperature of the solvent employed. The reaction can be accelerated by the use of a catalytic amount of a mineral acid, such as hydrochloric acid or sulphuric acid. The reagents can be mixed in any order; for example, the haloquinazoline derivative (II) can be mixed with 10 the appropriate amount of the aniline or aniline derivative (III), after which the solvent is added and the 10 mixture is heated; alternatively, the aniline or aniline derivative (III) is added to a solution containing appropriate amount of the haloquinazoline derivative (II) and the resulting solution is heated. The time required for the reaction will depend upon the nature of the reagents, the reaction temperature and other conditions; however, the reaction will normally take from 5 minutes to 5 hours. When the reaction is carried out under the conditions described above, the compound of formula (I) is 15 normally obtained in the form of its salt with the hydrohalic acid HX, although the compound (I) is occasionally obtained in the form of the free base, in which case a portion of the aniline derivative (III) has acted as an acid binding agent, and this can be favoured if the amount of aniline derivative (III) employed is greater than equimolar. However, a better way of ensuring that the compound (I) is obtained in the form of a free base is to carry out the reaction in the presence of a base (e.g. triethylamine) as acid binding agent. In 20 this case, the preferred procedure is to dissolve the haloquinazoline derivative (II) in a water-immiscible organic solvent (such as benzene, toluene or 2,4-dichlorobenzene), to add to the resulting solution the desired amount (preferably an equimolar amount) of the aniline or aniline derivative (III) and 1.2 times an equimolar amount of an acid binding agent, and then to heat the reaction mixture to about the boiling temperature of the solvent employed for a period of from 3 to 5 hours. 25 When the reaction is complete, the desired compound may be recovered from the reaction mixture by conventional means. For example, one suitable recovery sequence comprises: if necessary, distilling off the solvent from the reaction mixture; optionally adding the residue to water or to an inert organic solvent and then separating the compound by filtration; and finally recrystallizing the compound from a suitable organic solvent. Where the desired compound is obtained in the form of a free base by carrying out the reaction in 30 the presence of an acid binding agent and a water-immiscible organic solvent, a preferred recovery sequence comprises: adding water to the reaction mixture; separating and then drying the organic phase; distilling the solvent from this organic phase under reduced pressure; and finally recrystallizing the desired compound from a suitable organic solvent. Where the compound has been produced in the form of an hydrohalide salt and it is desired to obtain the 35 free base, the salt is treated with a dilute aqueous solution of an alkali (such as sodium hydroxide or potassium hydroxide) and the precipitated product is collected by filtration, washed with water and recrystallized from a suitable organic solvent; this may be carried out either before or after separation of the hydrohalide salt from the initial reaction mixture. Where the free base form of the compound of formula (I) has been obtained, this may, if desired, be 40 converted to a pharmacologically acceptable acid addition salt by conventional salification techniques. Suitable salts include acid addition salts of mineral acids (such as hydrochloric acid, hydrobromic acid or hydroiodic acid) or acid addition salts of organic acids (such as oxalic acid, maleic acid, fumaric acid, tartaric

Test for analgesic activity

acid or citric acid).

This test employs a bradykinin-induced nociceptive stimulus and is a partially modified version of the test 50 described by Deffenu [J. Pharm. Pharmac. 18, 135 (1966)] and Blane [J. Pharm. Pharmac., 19, 367 (1967)]. The test animals were female Hartley guinea pigs having a body weight of from 350 g to 400 g. The guinea pigs were divided into groups, each group containing from 5 to 10 animals. The test animals were cannulated retrogradely into the carotid artery under the anesthesia induced by intraperitoneal injection of 20 mg/kg of pentobarbital. The guinea pigs were allowed to recover from the anesthesia for at least 3 hours before the tests commenced.

Surprisingly, the anilinoquinazoline derivatives of the present invention have excellent analgesic and

anti-inflammatory activities, as demonstrated by the following tests.

The test compounds listed in the following Table 1 were administered orally. Immediately before administration of each test compound and then 15, 30, 60, 90 and 120 minutes after administration, each guinea pig was administered with 0.5 ug of bradykinin through the cannula. Turning of the head or twisting of the front legs upon injection was taken as a sign of nociceptive response. The test compounds were 60 administered at various doses and the inhibition rate was determined accordingly.

Test for anti-inflammatory activity

Male Wistar-Imamichi rats, each weighing approximately 150 g, were used in these experiments and were divided into groups, each containing 5 animals. Each of the test compounds listed in Table 2 was 65 administered orally, at various doses, to the rats and then, 30 minutes after oral administration, 0.05 ml of a

60

1% w/v carrageenin suspension was subcutaneously injected into the sole of the right hind paw to induce oedema. The volume of the paw was measured both before and 3 hours after injection of the carrageenin by the method of Winder et al [Arch. Int. Pharmacodyn. 112, 174 (1957)]. The difference between the volume of the paw before and after injection was defined as the oedema intensity. The inhibition rate was the ratio of the oedema intensity in groups to which the test compounds had been administered to control groups, to which no test compounds had been administered.

For both of the above tests, the ID₅₀ was calculated by the method of Litchfield and Wilcoxon [J. Pharmacol. Exptl. Therap. *96*, 99 (1949)] on the basis of the inhibition rates obtained as described above. The results are shown in Table 1, in which the compounds of the invention are identified by the numbers 10 heretofore assigned to them.

TABLE 1

•

	· ·	•			
15	Test Compound		ID ₅₀ (mg/kg) p	er os	15
		Analgesic Activity		Anti-inflammatory Activity	
20	5	25		28	20
	17	16.5		20	
	55	50		36	-
25	73	31		15.5	25
	Controls	•			
30	Mefenamic acid	72		50	· 30
	Aspirin	280		145	
	•				
35	and anti-inflammatory The compounds of the powders or syrups or the	activities comparable with or ne invention can be administe nrough the intestines in the fo	better than those red orally in the orm of a supposit	f the invention have valuable analg e of aspirin and mefenamic acid. form of tablets, capsules, granules tory. The dosage depends on the),
40	a single dose or in divid	led doses.		omg to 2000 mg per day for an adurated by the following non-limiting	40
	EXAMPLE 1				45
		4,5-dichloroquinazoline and 1		20 ml of ethanol was heated, lified. After cooling, the solidified	45
	product was collected a		ol to give 1.8 g (yi	ield 46%) of the desired Compound	d No. 50
	Elemental Analysis: Calculated for C		·		
55	C, 57.55%; H, 3.1 Found: C, 57.70%; H, 4.				55
		ilino)quinazoline hydrochlori	de		
co	(Compound No. 4)		70 1 . É . V		

4.0 g of 4,6-dichloroquinazoline were dissolved in 50 ml of dioxan and then 2.0 g of *m*-toluidine were added. The mixture was then heated to reflux for 3 hours at 100°C. After completion of the reaction, the precipitated product was collected by filtration and recrystallized from ethanol to afford 3.7 g (yield 60%) of the desired Compound No. 4, in the form of pale yellow needles melting at 251 - 254°C (with decomposition).

Elemental Analysis:

Calculated for C₁₅H₁₃N₃Cl₂:
C, 59.01%; H, 4.26%; N, 13.77%.
Found: C, 58.70%; H, 4.20%; N, 13.40%.

EXAMPLES 3 - 5
Following the procedures described in Examples 1 and 2, the hydrochlorides listed and identified in Table 2 were obtained.

10			TABLE	2		10
	Ex. No.	Cpd. No.	Melting point	Appearance	Yield	
15	3	6	271 - 273°C (decomposition)	pale yellow needles	38%	15
	4 .	22	276 - 280°C (decomposition)	pale yellow needles	46%	
20	5	24	264 - 265°C (decomposition)	yellow powder	62%	. 20
25	(Compour	7-chloroquinazolii nd No. 5) 4,7-dichloroquina:	zoline were dissolved in 250 n	nl of benzene, and then 4.	0 g of aniline and 4.8	25 g of
30	stirring. A was shake was distill	fter completion of an and the benzene ed off and the resu	the solution. The resulting m the reaction, 200 ml of water phase was separated and dr ilting crystals were recrystalli in the form of colourless gra	were added to the reaction ied over anhydrous sodiung zed from ethyl acetate to the control of t	n mixture. The mixtum sulphate. The ben give 8.5 a (vield 83%)	zene 30
35	Elemental Ca C,	Analysis: Iculated for C ₁₄ H ₁₀ 65.76%; H, 3.94%;	,N ₃ CI: N, 16.43%.			35
	Found: C,	65.81%; H, 3.61%;	N, 16.29%.	·		
40	EXAMPLE: Followin		escribed in Example 6, there v	were obtained the compo	unds listed in Table 3	40 3, in

which the compounds obtained are identified by the numbers heretofore assigned	to them.
--	----------

45				•	45
Ex. No.	Cpd. No.	Melting Point	Appearance	Yield	
50. 7.	25	133 - 135℃	colourless powder	41%	. 50
8 55	27	245 - 251°C	yellow granules	38%	55
9	29	218 - 220°C	pale yellow needles	24%	55
10 60	31	137 - 139°C	colourless needles	59%	60
11	33	206 - 208°C	colourless powder	35%	`.
65 12	35	155 - 158℃	colourless needles	52%	65

TABLE 3

EXAMPLE 13

4-Anilino-8-chloroquinazoline

(Compound 13)

15 ml of ethanol were added to a mixture of 3.0 g of 4,8-dichloroquinazoline and 1.9 g of aniline, and then 5 the mixture was heated. The reagents dissolved and immediately solidified. After cooling, the solidified product was collected, washed with ethanol and then recrystallized from ethanol to give 1.9 g (yield 48%) of the desired Compound No. 13 in the form of colourless crystals having a melting point of 206°C (with decomposition).

10 Elemental Analysis:

Calculated for C₁₄H₁₀N₃Cl.0.5H₂O: C, 63.52%; H, 4.19%; N,15.87%.

10

Found: C,63.50%; H, 4.30%; N, 15.45%.

15

EXAMPLES 14 - 22

15

Following the procedure described in Example 13, the hydrochlorides listed in Table 4 were obtained; these compounds are identified by the numbers heretofore assigned to them.

20		TABLE 4			20	
Ex. No.	Cpd. No.	Melting point	Appearance	Yield		
25 14	8.	>280°C	yellow powder	33%	25	
15 30	12	237 - 241°C (decomposition)	pale yellow powder	43%	. 30	
16	38	200 - 203°C	pale yellow powder	52%		
35 17	40	286 - 290°C (decomposition)	pale yellow powder	33%	35	
18	42	248 - 251°C (decomposition)	yellow powder	. 38%	4_	
40 19	44	>280°C	yellow granules	40%	40	
20 45	46	247 - 250°C (decomposition)	yellow powder	53%	45	
21	48 .	265 - 268°C (decomposition)	pale yellow needles	55%		
50 22	50	224°C (decomposition)	pale yellow powder	55%	50	

EXAMPLE 23

55 4-Anilino-7-trifluoromethylquinazoline (Compound No. 17) 55

(Compound No. 17)

2.5 g of 4-chloro-7-trifluoromethylquinazoline were dissolved in 10 ml of ethanol, and 1.0 g of aniline was added to the solution. Reaction occurred violently and the reaction mixture solidified immediately. After

added to the solution. Reaction occurred violently and the reaction mixture solidified immediately. After cooling, the solidified product was collected and washed with ethanol. The resulting crystals were pulverized and added to a dilute aqueous solution of sodium hydroxide. Insolubles were filtered off and recrystallized from ethanol to give 1.7 g (yield 60%) of the desired Compound No. 17 in the form of colourless plates melting at 230 - 232°C.

ы

Elemental analysis: Calculated for

Calculated for C₁₅H₁₃N₃Cl₂: C, 59.01%; H, 4.26%; N, 13.77%.

form of pale yellow granules melting at 230 - 233°C (with decomposition).

65 Found: C, 58.95%; H, 4.20%; N, 13.80%.

65 ·

_						
•	EXAMPLE 28					
			quinazoline hydrochloride			
	A mixture of	3.0 g of 4,7-d	ichloroquinazoline and 2.0 g	of N-ethylaniline in 10 ml	of ethanol was heated for	_
•	These were co	llected by filtr	of the reaction the reaction ration and recrystallized from	a small amount of ethano	I to give 2.0 a (vield 47%)	Ş
	of the desired (decomposition	Compound No 1).	o. 58 in the form of pale yello	w needles melting at 222 -	226°C (with	
10	Elemental Ana	lysis: ited for C ₁₆ H ₁₁	NI CL		,	10
		8%; H, 4.70%;				
	Found: C, 60.00	0%; H, 4.85%;	N, 13.10%.		•	
15	EXAMPLES 29					15
	Following the obtained.	e procedures	described in Examples 27 an	d 28, the hydrochlorides st	nown in Table 5 were	•
20	. *		TABLE	5		20
•	Ex.	Cpd.	Melting Point	Appearance	Yield	
	No.	No.				•
25	29	5 4	243 - 245°C			25
		54	(decomposition)	pale yellow needles	80%	
	30	72	179 - 182°C	pale yellow	53%	-00
30	*		(decomposition)	needles		30
	EXAMPLE 31 4-(N-Methylania (Compound No		romethylquinazoline			
35	2.5 g of 4-chlo ethanol, and the the ethanol was ethanol and was	oro-7-trifluoro en the mixture distilled off a ter, to give 1.4	methylquinazoline and 1.2 g was heated until it became and the residual crystals were g (yield 46%) of the desired	homogeneous solution. recrystallized from a 9:1	At the end of this time, by volume mixture of	35
40	granules meltin	g.at 135 - 137	°C.			40
	Elemental Analy	ysis: ed for C ₁₆ H ₁₂ I	N. E.	÷		
		%; H, 3.96%;			•	
45	Found: C, 63.25	%; H, 4.00%;	N, 14.05%.			45
	EXAMPLE 32			•		
	Compound No.		/lanilino)quinazoline		•	
	then the mixture cooling, the soli in the form of its	e was heated. dified crystals hydrochlorid	oline and 2.2 g of p-chloro-N- The mixture became a homo were collected and recrystal le (Compound No. 68). The cr	geneous solution which so lized from ethanol to give ystals of hydrochloride we	olidified soon after. After the desired compound ere crushed and added	50
55	was collected by	filtration, wa	f sodium hydroxide, with stir shed with water and recrysta he form of colourless plates	llized from ethanol to give	base. The precipitate 2.4 g (yield 65%) of the	55
		ed for C ₁₅ H ₁₁ N				
60	C, 59.409	%; H, 3.63%; N	l, 13.86%.			60

Found: c, 59.10%; H, 4.00%; N, 13.86%...

EXAMPLES 33 - 40
65 Following the procedures of Examples 31 and 32, the compounds listed in Table 6 were obtained; the

compounds are identified in the Table by the numbers heretofore assigned to them.

TABLE 6

- 5 Ex. No.	Cpd. No.	Melting point	Appearance	Yield	5
33 10	55.	103 - 105℃	colourless granules	65%	10
34	61	118 - 120°C	colouriess flakes	42%	
15 35	63	130 ÷ 132°C	colourless plates	33%	. 15
36	65	124 - 126°C	colouriess needles	37%	
20 37	69	82 - 85℃	colourless granules	10%	20
38 25	75	122 - 124°C	colourless granules	36%	25
39	77.	135 - 137°C	pale yellow plates	51%	
30 40	79	110-112℃	yellow needles	88%	30

CLAIMS

35

40

Compounds of formula (I):

R¹ N R¹

(1), 40

35

in which:

R¹ represents a hydrogen atom, a halogen atom, a trifluoromethyl group or a nitro group;

R² represents a hydrogen atom, an alkyl group, an alkoxy group or a halogen atom; and

45

R³ represents a hydrogen atom or an alkyl group; provided that R¹ does not represent a hydrogen atom or a chlorine atom in the 6- position when R² and R³ both represent hydrogen atoms; and pharmacologically acceptable acid addition salts thereof.

 Compounds according to Claim 1, in which R² represents an alkyl group or an alkoxy group having from 1 to 4 carbon atoms.

ing 50

3. Compounds according to Claim 1 or Claim 2, in which R³ represents an alkyl group having from 1 to 4 carbon atoms

4. Compounds according to Claim 3, in which:

55 R¹ represents a hydrogen atom, or it represents a chlorine atom, a trifluoromethyl group or a nitro group at 55 the 7- or 8- position;

R² represents a hydrogen atom or it represents a methyl group, an ethyl group, a methoxy group, an ethoxy group or a chlorine atom at the 4'- position; and

R³ represents a methyl group or an ethyl group.

60 5. Compounds of formula (la):

60

(la)

•.	**************************************	
-	in which: R ^{1a} represents a halogen atom or a trifluoromethyl group; and	
:	R ² is as defined in Claim 1 or Claim 2;	
•	provided that R ^{1a} does not represent a chlorine atom in the 6- position when R ² represents a hydrogen atom;	
5	and pharmacologically acceptable acid addition salts thereof.	5
	6. Compounds according to Claim 5, in which R ^{1a} represents a halogen atom at the 7- position or a	
•	trifluoromethyl group at the 7- or 8- position.	
	7. Compounds according to Claim 5, in which:	
	R ^{1a} represents a chlorine atom at the 7- position or a trifluoromethyl group at the 7- or 8- position; and	
10		10
	8. Compounds according to any one of the preceding Claims, in which said acid addition salt is the hydrochloride.	
	9. 4-Anilino-7-chloroquinazoline and pharmaceutically acceptable acid addition salts thereof.	
	10. 4-Anilino-7-chloroquinazoline hydrochloride.	
15		15
	12. 4-Anilino-7-trifluoromethylquinazoline hydrochloride.	
	13. 7-Chloro-4-(N-methylanilino)quinazoline and pharmaceutically acceptable acid addition salts thereof.	
	14. 7-Chloro-4-(N-methylanilino)quinazoline hydrochloride.	
	15. 4-(N-Methylanilino)-7-trifluoromethylquinazoline and pharmaceutically acceptable acid addition salts	
20	thereof.	20
	16. 4-(N-Methylanilino)-7-trifluoromethylquinazoline hydrochloride.	
	17. A process for preparing a compound of formula (I):	
	R ¹	
25	Ŋ(- <u>X</u> -,	25
		٠.
	R'—	
	N.	
-	(in which:	30
30	R ¹ represents a hydrogen atom, a halogen atom, a trifluoromethyl group or a nitro group; R ² represent a hydrogen atom, an alkyl group, an alkoxy group or a halogen atom; and	30
	R ³ represents a hydrogen atom or an alkyl group);	
	or a pharmaceutically acceptable acid addition salt thereof,	
•	which process comprises heating a haloquinazoline derivative of general formula (II):	
35		35
	*	
	R^1 (II)	
40		40
70	(in which R ¹ is as defined above and X represents a halogen atom) with aniline or an aniline derivative of	
	general formula (III):	
		45
45	$R^3NH - \frac{1}{2}$	45
	(111)	
	(in which R ² and R ³ are as defined above).	
50	18. A process according to Claim 17, applied to the production of a compound according to any one of	50
	Claims 2 to 16.	
	19. A process according to Claim 17 or Claim 18, effected in the presence of an inert solvent.	
	20. A process according to any one of Claims 17, 18 and 19, effected in the presence of an acid binding	
	agent.	55
55 ·		55
	22. A process according to Claim 17, substantially as hereinbefore described with reference to any one of foregoing Examples 1 to 26.	
	23. A process according to Claim 17, substantially as hereinbefore described with reference to any one of	
	foregoing Examples 27 to 40.	
60	24. Compounds of formula (I) and acid addition salts thereof when produced by a process according to	60
	any one of Claims 17 to 23.	