Alternative Cloud-Native Data Platform Architecture on Google Cloud Platform (GCP)

This guide details the implementation of a modern cloud-native data platform architecture on **Google Cloud Platform (GCP)**, leveraging services such as **BigQuery**, **Snowflake**, **Databricks**, and other GCP-native components to enable seamless data processing, storage, transformation, and analytics capabilities.

Table of Contents

- 1. Core Architecture Overview
- 2. Recommended Architecture Components
- 3. Step-by-Step Implementation Guide
- 4. Benefits of the Architecture

1. Core Architecture Overview

This architecture leverages GCP's fully managed services to:

- Enable real-time data processing and advanced analytics.
- Minimize operational overhead by utilizing managed cloud services.
- Incorporate Snowflake as the data warehouse and Databricks for data engineering and machine learning, allowing flexibility for both structured and unstructured data.

2. Recommended Architecture Components

2.1 OLTP Database (Transactional Layer)

Cloud SQL: Use Google Cloud SQL to handle transactional workloads, offering scalability
and high availability.

2.2 NoSQL Database (Catalog Data)

• **Firestore**: Store catalog and metadata in Firestore, which supports serverless, scalable, and low-latency operations.

2.3 Streaming and Real-Time Data Ingestion

• **Pub/Sub**: Capture and process real-time streaming data with Google Cloud Pub/Sub.

2.4 Data Lake Storage

 Cloud Storage: Use Google Cloud Storage as the data lake to store raw and processed data, accessible by both Snowflake and Databricks.

2.5 Data Warehouse

• **Snowflake on GCP**: Use Snowflake for scalable data warehousing, optimized for analytical queries with seamless integration to GCP services.

2.6 Data Processing and Machine Learning

• **Databricks on GCP**: Use Databricks for scalable data processing, advanced analytics, and machine learning. Leverage Delta Lake for lakehouse capabilities.

2.7 Data Orchestration

• **Cloud Composer**: Use Cloud Composer (Apache Airflow on GCP) for orchestrating ETL processes and data workflows.

2.8 Business Intelligence

• **Looker**: Use Looker for business intelligence and reporting, directly connecting it to Snowflake and Databricks for real-time analytics.

3. Step-by-Step Implementation Guide

Module 1: Setting Up the Transactional Database and Real-Time Ingestion

- 1. Set Up Google Cloud SQL for OLTP:
 - Create a **Cloud SQL** instance to manage transactional data.
 - Configure the instance with necessary network and access settings.
- 2. Enable Change Data Capture (CDC):
 - Use **Dataflow** to capture and stream real-time changes from Cloud SQL to Pub/Sub.
- 3. Set Up Google Cloud Pub/Sub for Streaming:
 - Create Pub/Sub topics and subscriptions to ingest and process real-time streaming data from Cloud SQL.

Module 2: NoSQL Catalog Database Setup

- 1. Set Up Firestore for Metadata Storage:
 - Use **Firestore** as a serverless NoSQL database to store product catalog and metadata.
 - Configure Firestore with appropriate security and indexing options.
- 2. Sync Firestore with the Data Lake:
 - Use **Dataflow** or **Firestore export** to periodically sync data from Firestore to **Cloud Storage** for historical analysis and integration with the data lake.

Module 3: Data Lake and Data Warehouse Configuration

- 1. Create Cloud Storage Buckets for the Data Lake:
 - Set up Google Cloud Storage buckets to organize and store raw, processed, and curated data.
- 2. Set Up Snowflake on GCP:

- Provision a Snowflake account on GCP and connect it to Cloud Storage for seamless data access.
- Use **Snowflake's External Tables** feature to directly query data in Cloud Storage without loading it into Snowflake.

3. Establish Lakehouse Capabilities with Delta Lake:

• Use **Databricks Delta Lake** on GCP to provide a unified data layer with ACID-compliant transactions.

Module 4: Data Transformation and Processing

1. Data Ingestion and Transformation with Databricks:

- Set up **Databricks on GCP** for scalable data engineering and machine learning workflows.
- Use **Delta Lake** to transform raw data into structured formats and store it back in Cloud Storage.

2. Process and Enrich Data in Snowflake:

Use Snowflake for transformations on structured data, leveraging its SQL capabilities.

3. Set Up Batch ETL Pipelines with Dataflow:

• Use **Dataflow** for batch ETL processes, including data cleansing and joining datasets, before loading them into Snowflake.

Module 5: Orchestration and Workflow Management

1. Orchestrate ETL Pipelines with Cloud Composer:

- Use Cloud Composer to automate and schedule data workflows across GCP services.
- Set up DAGs (Directed Acyclic Graphs) to connect services like Cloud SQL, Firestore, Pub/Sub, and Cloud Storage.

2. Use Databricks Notebooks for Real-Time Processing:

• Develop **Databricks Notebooks** for real-time transformations and analytics on event-driven data from Pub/Sub.

Module 6: Machine Learning Model Deployment

1. Set Up MLflow for Model Experimentation and Management:

• Use **MLflow** within Databricks to track and manage machine learning models.

2. Deploy Models with AI Platform:

- Register and deploy models to **Google Cloud AI Platform** for inference.
- Connect these services to Snowflake and Looker for real-time inference and analytics.

Module 7: Business Intelligence and Visualization

1. Create Looker Dashboards for Reporting:

- Connect **Looker** to Snowflake for interactive data visualizations and reports.
- Set up data models in Looker to enable efficient and performant reporting on Snowflake data.

2. Enable Real-Time Reporting with Looker:

• Use Looker's **Explore** functionality to allow real-time analysis on data in Snowflake.

4. Benefits of the Architecture

- **Scalability and Flexibility**: GCP's managed services dynamically scale with workloads, allowing cost optimization for varying demand.
- **Real-Time Processing Capabilities**: Pub/Sub and Databricks Delta Lake support real-time data ingestion and transformation for near real-time analytics.
- **Operational Efficiency**: Managed services like Cloud Composer, Dataflow, and Databricks reduce the need for infrastructure management, allowing teams to focus on analytics and insights.
- **Unified Lakehouse Architecture**: Using Delta Lake and Snowflake provides a unified data layer that supports both structured and unstructured data for comprehensive analytics.
- Advanced ML and BI Capabilities: Combining Databricks, AI Platform, and Looker enables a robust platform for advanced machine learning and visualization, enhancing datadriven decision-making.

This architecture offers a scalable, flexible, and robust data platform leveraging the best of GCP, Snowflake, and Databricks for end-to-end data analytics, transformation, and machine learning workflows.