

# ALGEBRA Chapter 17



<u>Desigualdades e</u> <u>Inecuaciones de 1º Grado</u>





# HELICO MOTIVATING



#### MOTIVATING STRATEGY



#### Aplicaciones de las Desigualdades e Inecuaciones









# HELICO THEORY CHAPTHER 16



# DESIGUALDADES E INECUACIONES



1) INTERVALOS

a

Éstos pueden ser: Acotados o No Acotados

#### **INTERVALOS ACOTADOS:**

**Intervalos Abiertos** 

**Intervalos Cerrados** 





## Intervalos Semiabiertos



b

$$\{a;b\} = \{x \in \mathbb{R} / a < x \le b\}$$

[a;b> ={x
$$\in$$
R / a $\le$  x 

#### **INTERVALOS NO ACOTADOS:**



$$\langle a; +\infty \rangle = \{x \in \mathbb{R} / x > a\}$$

$$[a; +\infty > = \{x \in \mathbb{R} / x \ge a\}$$



$$<-\infty$$
;  $a>=\{x\in R / x< a\}$ 

$$<-\infty$$
; a] ={x $\in$ R / x $\le$ a}

#### 2) TEOREMAS DE DESIGUALDADES

$$∀a,b ∈ R, m>0$$
Si: a>b ⇒ am > bm
$$Si: a>b ⇒ \frac{a}{m} > \frac{b}{m}$$

$$\forall a,b \in R, m < 0$$
Si: a>b ⇒ am < bm
Si: a>b ⇒  $\frac{a}{m} < \frac{b}{m}$ 

Si a y b tienen el mismo signo, además:  

$$a < x < b$$

$$\Rightarrow \frac{1}{b} < \frac{1}{x} < \frac{1}{a}$$



#### 3) INECUACIONES DE PRIMER GRADO

#### **Ejemplo explicativo**

#### Resuelva:

$$\frac{x+2}{2} - \frac{2x-3}{4} < \frac{2x-1}{3} + \frac{3}{2}$$

Resolución 
$$m.c.m(4-3-4) = 12$$

$$6x + 12 - 6x + 9 < 8x - 4 + 18$$

$$\Rightarrow \frac{7}{8} < x$$

$$\Rightarrow C.S = <\frac{7}{8}; +\infty >$$

# HELICO PRACTICE





Resuelva 
$$1 \le \frac{3x+10}{7} < 2$$

#### **Resolución**

$$1 \leq \frac{3x+10}{7} < 2$$

$$\rightarrow$$
 7  $\leq$  3 $x$  + 10  $<$  14

$$-3 \le 3x < 4$$

$$-1 \le x < 4/3$$
 ÷ 3

$$C.S = [-1; 4/3 >$$



## PROBLEMA 2 Halle la variación de x en la inecuación:

$$\frac{3x-1}{4}-\frac{x-1}{3}\geq \frac{3}{4}$$

#### Resolución m.c.m (4-3-4) = 12

$$\rightarrow$$
 3(3x-1) - 4(x-1)  $\geq$  3(3)

$$\Rightarrow$$
 9x -3 -4x +4  $\geq$  9

$$\Rightarrow x \ge \frac{8}{5}$$

$$\Rightarrow x \ge \frac{8}{5}$$

$$\stackrel{\longrightarrow}{\longrightarrow} C.S = \left[\frac{8}{5}; +\infty \right]$$



## PROBLEMA 3 ¿Cuántas soluciones naturales admite?

$$\frac{2x+1}{5} + \frac{3x-2}{6} > \frac{2x+1}{2} + \frac{2}{3}$$

Resolución m.c.m (5-6-2-3) = 30

$$\rightarrow$$
 6(2x+1) + 5(3x-2) > 15(2x+1)+10(2)

$$\rightarrow$$
 12x +6 +15x -10 > 30x+15 +20

$$\rightarrow$$
 27 $x$ -4 > 30 $x$ +35

**NO ADMITE SOLUCIONES NATURALES** 

$$\rightarrow$$
 -39 > 3x  $\rightarrow$  -13 > x  $\rightarrow$  C.  $S = < -\infty; -13 >$ 

## PROBLEMA 4 Resuelva la inecuación mostrada y dé su conjunto solución.

$$6(x^2+1) < 3(5x+21) + (2x-4)(3x+2)$$

Resolución 
$$\rightarrow 6(x^2+1) < 3(5x+21) + (2x-4)(3x+2)$$

$$6x^2 + 6 < 15x + 63 + 6x^2 + 4x - 12x - 8$$

$$\Rightarrow 6x^2 + 6 < 6x^2 + 7x + 55$$

$$-49 < 7x$$
Abierto

$$\rightarrow$$
  $-7 < x  $\rightarrow$   $C.S = < -7; +\infty >$$ 

# PROBLEMA 5 Si (3x-2) $\epsilon$ <1;4>, indique el intervalo al que pertenece: $\frac{-1}{(-1)}$

#### Resolución

$$1 < 3x - 2 < 4$$
 $3 < 3x < 6$ 
 $+2$ 
 $+3$ 
 $1 < x < 2$ 
 $\times 2$ 
 $\times 2$ 





PROBLEMA 6 La edad en años de Andrea y Mariel está determinada, respectivamente, por el mayor y menor valor entero del conjunto solución de

$$\frac{3x-1}{5} < \frac{2x-1}{3} \le \frac{x+3}{2}$$

¿Dentro de 8 años cuánto sumarán las edades de Andrea y Mariel?

Resolución
$$3x-1 < 2x-1 < x+3$$

$$0 > 2x-1 < 2x-1 < x+3$$

$$0 > 2x-1 < 2x-1$$

$$0 > 3x-1 < 3x-1$$

$$0 > 3x-1$$

De 
$$2 \rightarrow \frac{2x-1}{3} \le \frac{x+3}{2}$$

$$4x-2 \le 3x+9$$

$$x \le 11 \dots (\beta)$$
De( $\alpha$ )  $y$  ( $\beta$ ):  $2 < x \le 11$ 

$$C.S = < 2; 11$$
 menor: (3)  $y$  mayor (11)

Rapta: Dentro de 8 años = 30

PROBLEMA 7 Un ómnibus parte de Ica a Lima con cierto número de pasajeros y se detiene en Pisco. Si bajase la tercera parte en el ómnibus, quedaría más de 15 personas. En cambio, si bajase la mitad, en el ómnibus quedaría menos de 13.¿Cuántas personas partieron de Ica?

#### Resolución Cantidad de pasajeros : x

$$\begin{array}{c} \longrightarrow x - \frac{x}{3} > 15 \qquad \wedge \qquad x - \frac{x}{2} < 13 \\ \longrightarrow 3x - x > 45 \qquad \wedge \qquad 2x - x < 26 \\ \longrightarrow 2x > 45 \qquad \wedge \qquad x < 26 \end{array}$$

$$x > 22,5 \land x < 26$$
 $22,5 < x < 26$ 

Rapta: partieron 23,24ó 25 personas