- 1. Как соотносятся машинное обучение и искусственный интеллект?
 - Это одно и то же.
 - Машинное обучение это часть искусственного интеллекта.
 - Искусственный интеллект это часть машинного обучения.
 - Это не связанные между собой области.
- 2. В чём отличие машинного обучения от обычного программирования?
 - Машинное обучение преобразует входные данные в логику и выходные данные.
 - Машинное обучение преобразует входные данные и логику в выходные данные.
 - Машинное обучение преобразует входные и выходные данные в логику.
 - Машинное обучение преобразует логику в данные.
- 3. Что такое задача машинного обучения?
 - Используя данные научиться решать задачу так, чтобы метрика производительности улучшалась.
 - Используя данные и задачу, построить метрику производительности, которая будет улучшаться.
 - Подобрать данные, при которых для данной задачи метрика производительности улучшается.
 - Используя данные и задачу, выбрать метрику производительность, которая улучшается сильнее других.
- 4. Как связаны модель и алгоритм в машинном обучении?
 - Модель используется для построения алгоритма.
 - Алгоритм используется для построения модели.
 - Модель и алгоритма независимы и выводятся из данных.
 - Модель и алгоритм это одно и то же.
- 5. Как ведут себя параметры и гиперпараметры модели при её обучении?
 - Параметры и гиперпараметры могут изменяться.
 - Параметры и гиперпараметры не могут изменяться.
 - Параметры могут изменяться, гиперпараметры не могут изменяться.
 - Параметры не могут изменяться, гиперпараметры могут изменяться.
- 6. Что из этого не является методом борьбы с переобучением модели?
 - Увеличение количества данных.
 - Упрощение модели.
 - Увеличение тестовой выборки.
 - Уменьшение времени обучения.
- 7. Что из этого не является методом борьбы с недообучением модели?
 - Усложнение модели.
 - Увеличение размерности данных.
 - Уменьшение шума в данных.
 - Уменьшение времени обучения.
- 8. В чём основная цель кросс-валидации?
 - Найти самый эффективный размер обучающей выборки.
 - Оценить эффективности модели, используя все имеющиеся данные.
 - Настроить гиперпараметры модели.
 - Убедиться, что ошибка работы модели минимальна.
- 9. Что из этого не является требованием к интерпретации модели машинного обучения?
 - Соответствие экспертным ожиданиям.
 - Высокая скорость.
 - Возможность сравнения результатов работы модели для разных данных.

- Краткость выводов.
- 10. Что из перечисленного не является способом машинного обучения?
 - Обучение без учителя.
 - Обучение с учителем.
 - Обучение без подкрепления.
 - Обучение с подкреплением.
- 11. Какая ключевая особенность данных, используемых в обучении с учителем?
 - Описание объекта содержит значения характеристик объекта.
 - Для каждого описания объекта известен ожидаемый ответ модели.
 - Различные описания объектов не могут иметь одинаковый ожидаемый ответ.
 - Количество различных ожидаемых ответов должно быть значительно меньше количества описаний объектов.
- 12. В чём состоит задача, решаемая обучением без учителя?
 - Обнаружить неизвестные зависимости между данными.
 - Оценить качество данных.
 - Предсказать значение некоторой величины для каждого элемента данных.
 - Уменьшить размерность данных.
- 13. С помощью чего обучается агент при использовании обучения с подкреплением?
 - Заранее известные ожидаемые ответы.
 - Информация о реакции внешней среды на действия агента.
 - Информация о предыдущих действиях агента.
 - Экспертная оценка действий агента.
- 14. Что из перечисленного не является задачей машинного обучения?
 - Регрессия.
 - Кластеризация.
 - Прогрессия.
 - Классификация.
- 15. Что представляет собой задача регрессии?
 - Разбивка множества объектов на группы исходя из их похожести.
 - Определение принадлежности объекта к одной из заранее известных групп объектов.
 - Вычисление уникального идентификатора на основании описания объекта.
 - Вычисление числа или числового вектора на основании описания объекта.
- 16. Что из перечисленного неверно при решении задачи классификации?
 - Все классы должны быть известны заранее.
 - Количество классов может быть бесконечно.
 - Классификация это задача обучения с учителем.
 - Каждый объект должен относиться хотя бы к одному классу.
- 17. Что из перечисленного не применяется в качестве метрики производительности задачи классификации?
 - Precision.
 - Reward.
 - Accuracy.
 - Recall.
- 18. Что из перечисленного верно при решении задачи кластеризации?
 - Элементы данных должны иметь заранее известные метки.
 - Все метрики основаны на экспертной информации.
 - Количество кластеров определяется в процессе решения задачи.

- Необходимо задать функцию похожести элементов.
- 19. Из чего состоит набор данных?
 - Значение параметра.
 - Элемент данных.
 - Параметр.
 - Тип данных.
- 20. Что не является способом борьбы с несбалансированными данными?
 - Использование различных алгоритмов.
 - Сбор дополнительных данных.
 - Уменьшение размерности данных.
 - Использование специальной метрики производительности.
- 21. Если набор данных на 90% относится к классу A и на 10% к классу B, то что представляет из себя undersampling?
 - Удаление элементов класс А из набора данных.
 - Удаление элементов класс В из набора данных.
 - Добавление элементов класс А в набор данных.
 - Добавление элементов класс В в набор данных.
- 22. Преобразование данных в формат, приспособленный для хранения и обработки с помощью компьютера это:
 - Структурирование данных.
 - Оцифровка данных.
 - Очистка данных.
 - Обогащение данных.
- 23. С какой проблемой не борется очистка данных?
 - Шум в данных.
 - Несбалансированность данных.
 - Несоответствие значений.
 - Неполнота данных.
- 24. Какой процесс помогает улучшить визуализируемость данных?
 - Очистка данных.
 - Нормализация данных.
 - Синтетическая генерация новых данных.
 - Уменьшение размерности данных.
- 25. Какие из перечисленных данных являются категориальными?
 - Имена.
 - Даты рождения.
 - Города рождения.
 - Всё вышеперечисленное.
- 26. Унитарное кодирование (one-hot encoding) позволяет преобразовать
 - Числовой параметр в категориальный.
 - Категориальный параметр в числовой.
 - Числовой параметр в несколько категориальных.
 - Категориальный параметр в несколько числовых.
- 27. Обогащение данных приводит к
 - Увеличению количества элементов в наборе данных.
 - Уменьшению количества элементов в наборе данных.
 - Увеличению количества параметров элементов в наборе данных.
 - Уменьшению количества параметров элементов в наборе данных.