Half-Stationary Vertex Models and Fusion

Amol Aggarwal

Columbia University / Clay Mathematics Institue

September 30, 2020 / New Connections in Integrable Systems

Local Configurations

- Fix some domain $\Lambda \subseteq \mathbb{Z}^2$
- Assign every $v \in \Lambda$ one of six **arrow configurations**, each with a **weight**

0	→	↑	→	→	\rightarrow
a_1	a_2	b_1	b_2	c_1	c_2

Six-vertex ensemble: Assignment of arrow configuration to each vertex of Λ

- Arrows form up-right directed paths in Λ
- **Boundary conditions** prescribe where paths enter and exit Λ

•	→	↑	→	→	→
1	1	b_1	b_2	$1 - b_1$	$1 - b_2$

- Enables a local, row by row, Markovian sampling on quadrant $\mathbb{Z}^2_{>0}$
- Markov process on $\{0,1\}^{\mathbb{Z}_{>0}}$, with y-axis indexing time

•	→	↑	→	ightharpoonup	→
1	1	b_1	b_2	$1 - b_1$	$1 - b_2$

- Enables a local, row by row, Markovian sampling on quadrant $\mathbb{Z}^2_{>0}$
- Markov process on $\{0,1\}^{\mathbb{Z}_{>0}}$, with y-axis indexing time

•	→	↑	→	ightharpoonup	→
1	1	b_1	b_2	$1 - b_1$	$1 - b_2$

- Enables a local, row by row, Markovian sampling on quadrant $\mathbb{Z}^2_{>0}$
- Markov process on $\{0,1\}^{\mathbb{Z}_{>0}}$, with y-axis indexing time

•	→	↑	→	ightharpoonup	→
1	1	b_1	b_2	$1 - b_1$	$1 - b_2$

- Enables a local, row by row, Markovian sampling on quadrant $\mathbb{Z}^2_{>0}$
- Markov process on $\{0,1\}^{\mathbb{Z}_{>0}}$, with y-axis indexing time

•	→	↑	→	ightharpoonup	→
1	1	b_1	b_2	$1 - b_1$	$1 - b_2$

- Enables a local, row by row, Markovian sampling on quadrant $\mathbb{Z}^2_{>0}$
- Markov process on $\{0,1\}^{\mathbb{Z}_{>0}}$, with y-axis indexing time

•	→	↑	→	→	→
1	1	b_1	b_2	$1 - b_1$	$1 - b_2$

- Enables a local, row by row, Markovian sampling on quadrant $\mathbb{Z}^2_{>0}$
- Markov process on $\{0,1\}^{\mathbb{Z}_{>0}}$, with y-axis indexing time

•	→	↑	→	ightharpoonup	→
1	1	b_1	b_2	$1 - b_1$	$1 - b_2$

- Enables a local, row by row, Markovian sampling on quadrant $\mathbb{Z}^2_{>0}$
- Markov process on $\{0,1\}^{\mathbb{Z}_{>0}}$, with y-axis indexing time

•	→	↑	→	ightharpoonup	→
1	1	b_1	b_2	$1 - b_1$	$1 - b_2$

- Enables a local, row by row, Markovian sampling on quadrant $\mathbb{Z}^2_{>0}$
- Markov process on $\{0,1\}^{\mathbb{Z}_{>0}}$, with y-axis indexing time

•	→	↑	→	→	→
1	1	b_1	b_2	$1 - b_1$	$1 - b_2$

- Enables a local, row by row, Markovian sampling on quadrant $\mathbb{Z}^2_{>0}$
- Markov process on $\{0,1\}^{\mathbb{Z}_{>0}}$, with y-axis indexing time

0	→	↑	→	ightharpoonup	→ 1
1	1	b_1	b_2	$1 - b_1$	$1 - b_2$

- ullet Enables a local, row by row, Markovian sampling on quadrant $\mathbb{Z}_{>0}^2$
- Markov process on $\{0,1\}^{\mathbb{Z}>0}$, with y-axis indexing time

0	→	↑	→	→	→ 1
1	1	b_1	b_2	$1 - b_1$	$1 - b_2$

- ullet Enables a local, row by row, Markovian sampling on quadrant $\mathbb{Z}_{>0}^2$
- Markov process on $\{0,1\}^{\mathbb{Z}>0}$, with y-axis indexing time

Height Functions

- Assign an integer to each face of the domain, satisfying the above local constraints around every vertex
- This produces a **height function** H on (the dual of) Λ
- Can view H(u) as counting how many paths exist to the right of u
- Bijection between six-vertex ensembles and height function (up to shift)
 - We typically normalize H(0,0) = 0

Step-Bernoulli Boundary Data

- ullet ho Step-Bernoulli boundary data
 - Paths enter through all sites of y-axis
 - Paths enter through each site of x-axis independent with probability ρ
- **Step** (partial domain wall) boundary data: $\rho = 0$
 - Paths enter through all sites of y-axis and through no sites of x-axis

Phase Transition

Run stochastic six-vertex model ($b_1 < b_2 < 1$) under ρ step-Bernoulli boundary data

• $H_t(x)$: Height function at $(x,t) \in \mathbb{Z}^2_{>0}$ (height after running model for time t)

Question

For fixed $\xi > 0$, how does $H_T(\xi T)$ behave, as T tends to ∞ ?

Theorem (A.–Borodin, 2016)

The below limits hold for explicit $\mathcal{H}_{\rho}: \mathbb{R}_{\geq 0} \to \mathbb{R}$; $\theta_{\rho} > 0$; $C_{\xi}, D_{\rho}, E_{\xi, \rho} \geq 0$.

- - Known as a **BBP** (Baik–Ben Arous–Péché, 2004) **phase transition**
- Original proof based on contour integral identities for q-moments of $H_y(x)$
 - ullet Borodin–Gorin–Corwin (2014): Limit shape/fluctuations if ho=0 (no transition appears)
 - A. (2019): Limit shape for any boundary data along axes

Description of $\mathcal{H}_{\rho}(\xi)$ and θ_{ρ}

We will describe \mathcal{H}_{ρ} through its negative derivative $\chi_{\rho}(\xi) = -\mathcal{H}'_{\rho}(\xi)$

- Prescribes **local vertical arrow density** near $(\xi T, T)$
 - If there is a vertical arrow exiting (x, t), then $H_t(x + 1) H_t(x) = -1$
 - If there is no vertical arrow exiting (x, t), then $H_t(x + 1) H_t(x) = 0$
- We have $\mathcal{H}_{\rho}(\xi) = 1 \int_0^{\xi} \chi_{\rho}(\zeta) d\zeta$

Setting $\kappa = \frac{1-b_1}{1-b_2} > 1$, define

$$\chi_{\rho}(\xi) = \max \left\{ \chi_{0}(\xi), \rho \right\};$$

$$\chi_{0}(\xi) = \frac{1}{\kappa - 1} \left(\sqrt{\kappa \xi^{-1}} - 1 \right), \quad \text{if } \kappa^{-1} < \xi < \kappa$$

- Also set $\chi_0(\xi) = 1$ if $\xi \le \kappa^{-1}$ and $\chi_0(\xi) = 0$ if $\xi \ge \kappa$
- Then $\chi_0(\xi)$ denotes local density profile for model run under step boundary data
- The profile $\chi_0(\xi)$ is decreasing from 1 to 0 on $[\kappa^{-1}, \kappa]$

Define θ_{ρ} to be such that $\chi_0(\theta_{\rho})=\rho$

 \bullet Location where local density under step boundary data equals ρ

Density Plots

Simulation of model under step boundary data

Figure by Leonid Petrov (https://lpetrov.cc/2015/03/Spin-models).

Comparison of Density Profiles

 ρ Step-Bernoulli boundary data

Decreasing density $\chi_0(\xi)$

Seems as if one can obtain (most of) step-Bernoulli profile from step profile

- Run stochastic six-vertex model with step boundary data
- Use this step profile to approximate step-Bernoulli profile
 - Left of θ_{ρ} : Copy step profile
 - Right of θ_{ρ} : Place arrows with probability ρ , ignoring step profile
 - Also in fact matches Gaussian variance $E_{\xi,\rho}^2 = (\xi \theta)\rho(1 \rho)$

Goal: Explain how this can be heuristically seen using Yang–Baxter equation

There are also other probabilistic/analytic interpretations of this phenomenon, but seems most direct through the Yang-Baxter equation

Constant density

Outline

Goal: Explain how to see transition using Yang-Baxter equation

- Add row operator at bottom of six-vertex model with step boundary data
 - Comes from **fusion** of fundamental solution to Yang–Baxter equation
- Match the row operator with Bernoulli profile
 - Proceeds through analytic continuation of fused weights
- Use Yang-Baxter equation to commute bottom row operator to the top
 - Probabilistically interpret this operator as copying/ignoring profile

Reparameterization and States

- Fix $q \in \mathbb{C}$
- For a spectral parameter $u \in \mathbb{C}$ and reparameterize weights as follows

>
$R_u(i_1,j_1;i_2,j_2)$
$(i_1,j_1;i_2,j_2)$

0	$\longrightarrow \hspace{-0.5cm} \uparrow \hspace{-0.5cm} \longrightarrow$	↑	→	$\stackrel{\longleftarrow}{\uparrow}$	$\longrightarrow \hspace{-0.1cm} \stackrel{\uparrow}{\longrightarrow}$
1	1	$\frac{q(1-u)}{1-qu}$	$\frac{1-u}{1-qu}$	$\frac{(1-q)}{1-qu}$	$\frac{u(1-q)}{1-qu}$
(0,0;0,0)	(1,1;1,1)	(1,0;1,0)	(0, 1; 0, 1)	(1,0;0,1)	(0, 1; 1, 0)

- Define *R*-matrix $R(u) = [R_u(i_1, j_1; i_2, j_2)]$, which is 4×4
- Previous parameterization: Set $q = \frac{b_1}{b_2} < 1$ and $u = \kappa = \frac{1 b_1}{1 b_2}$
- Define $\mathbb{V}_M = V_1 \otimes V_2 \otimes \cdots V_M$, where each V_i is spanned by $\{e_0, e_1\}$
- Interpret basis elements $e_{k_1} \otimes e_{k_2} \otimes \cdots \otimes e_{k_M}$ as **states** of vertical arrows on level

Transfer Matrices

Define **transfer matrix** $T_{ab}(u) : \mathbb{V}_M \to \mathbb{V}_M$ through a row partition function

$$\langle \sigma | T_{ab}(u) | \omega \rangle = u \xrightarrow{e_a} \underbrace{ \begin{array}{c} \sigma \\ -\bullet \\ \omega \end{array}}$$

Satisfies the **Yang–Baxter equation**

Implies **commutation relation** $T_{10}(u_2)T_{10}(u_1) = T_{10}(u_1)T_{10}(u_2)$

Step Profile and Operators

Step boundary data: Probability to see state σ on level N is $\langle \sigma | T_{10}(\kappa)^N | \varnothing \rangle$

- To obtain ρ step-Bernoulli boundary data, insert an operator $\mathbb{X} = \mathbb{X}_{\rho}$ before $T_{10}(\kappa)^N$ that "injects" particles into the system
 - Try taking $X = T_{10}(u_1)T_{10}(u_2)\cdots T_{10}(u_L)$ for some u_1, u_2, \dots, u_L
 - Yang–Baxter equation ensures commutation relation $T_{10}(\kappa)^N \mathbb{X}_{\rho} = \mathbb{X}_{\rho} T_{10}(\kappa)^N$

Fusion

• Try taking $X = T_{10}(u_1)T_{10}(u_2)\cdots T_{10}(u_L)$ for some u_1, u_2, \dots, u_L

Issue: Would like to explicitly evaluate action of X

• Given by a L-row partition function (highly intricate for arbitrary u_1, u_2, \dots, u_L)

Kulish–Reshetikhin–Sklyanin (1981): Fusion

- Suppose that $R(\gamma)$ is a projection for some $\gamma \in \mathbb{C}$
- Then, $T_{10}(u)T_{10}(\gamma u)\cdots T_{10}(\gamma^{L-1}u)$ simplifies considerably
 - The L-row partition functions becomes a single-row one under certain new weights
 - These new **fused weights** satisfy the Yang–Baxter equation

Holds for
$$\gamma=q$$
, as then $R(q)=\left[\begin{array}{ccc}1&&&\\&\frac{q}{1+q}&\frac{1}{1+q}&\\&\frac{q}{1+q}&\frac{1}{1+q}&\\&&1\end{array}\right]$

• Also holds if $\gamma = q^{-1}$

Set
$$\mathbb{B}(u) = \mathbb{B}(u; q^{-L}) = T_{10}(u)T_{10}(qu)\cdots T_{10}(q^{L-1}u)$$

Fused Vertices

The *L*-row partition function $\mathbb{B}(u)$ becomes single row one under new fused weights

• Concatenate the L rows to form one

Fused vertices are of the following form (below, (i, J; i', J') = (1, 2; 3, 0))

Allow at most L arrows along horizontal edges and one along vertical edges

Evaluating the Fused Weights

Define for indices $i, i' \in \{0, 1\}$ and sequences $\mathcal{J} = (j_1, j_2, \dots, j_L) \in \{0, 1\}^L$. $\mathcal{J}' = (j_1', j_2', \dots, j_L') \in \{0, 1\}^L$, column weights $R_u(i, \mathcal{J}; i', \mathcal{J}')$. Set

Set
$$W_{u}(i,J;i',\mathcal{J}') = \sum_{|\mathcal{J}|=J} q^{\mathrm{inv}(\mathcal{J})} R_{u}(i,\mathcal{J};i',\mathcal{J}'), \qquad q^{2}u \xrightarrow{j_{3}} \xrightarrow{j'_{3}}$$
where invectors
$$R_{u}(i,\mathcal{J};i'\mathcal{J}') = qu \xrightarrow{j_{2}} \xrightarrow{j'_{2}}$$

where inv counts inversions.

Then
$$W$$
 is q -exchangeable:

$$\mathcal{W}_u(i,J;i',\mathcal{J}') = q^{\mathrm{inv}(\mathcal{J}') - \mathrm{inv}(\mathcal{J}'')} \mathcal{W}_u\big(i,J;i',\mathcal{J}''\big).$$

Define the fused weight

$$W_u(i,J;i',J'|q^L) = \mathcal{W}_u(i,J;i',\mathcal{J}'),$$

where $\mathcal{J}' = 0^{L-J'} 1^{J'}$ (so inv(\mathcal{J}') = 0).

Concatenation

Recall

$$\mathcal{W}_{u}(i,J;i',\mathcal{J}') = \sum_{|\mathcal{J}|=J} q^{\operatorname{inv}(\mathcal{J})} R_{u}(i,\mathcal{J};i',\mathcal{J}'); \qquad W_{u}(i,J;i',J'|q^{L}) = \mathcal{W}_{u}(i,J;i',0^{L-J'}1^{J'});$$

$$\mathcal{W}_{u}(i,J;i',\mathcal{J}') = q^{\operatorname{inv}(\mathcal{J}')-\operatorname{inv}(\mathcal{J}'')} \mathcal{W}_{u}(i,J;i',\mathcal{J}'')$$

$$q^{3}u$$

$$q^{2}u$$

$$q$$

The left side equals

$$\begin{split} & \sum_{\mathcal{J}^{(i)}} R_u(i_1, 1^L; i_1', \mathcal{J}^{(1)}) R_u(i_2, \mathcal{J}^{(1)}; i_2', \mathcal{J}^{(2)}) \cdots = \sum_{\mathcal{J}^{(i)}} q^{\mathrm{inv}(\mathcal{J}^{(1)})} \mathcal{W}_u(i_1, L; i_1', 0^{J_1} 1^{L-J_1}) R_u(i_2, \mathcal{J}^{(1)}; i_2', \mathcal{J}^{(2)}) \cdots \\ & = W_u(i_1, L; j_1', J_1) \sum_{\mathcal{J}^{(i)}} q^{\mathrm{inv}(\mathcal{J}^{(1)})} R_u(i_2, \mathcal{J}^{(1)}; i_2', \mathcal{J}^{(2)}) \cdots = W_u(i_1, L; j_1', J_1) \sum_{\mathcal{J}^{(i)}} \mathcal{W}_u(i_2, J_1; i_2', \mathcal{J}^{(2)}) \cdots \\ & = W_u(i_1, L; j_1', J_1) \sum_{\mathcal{J}^{(i)}} q^{\mathrm{inv}(\mathcal{J}^{(2)})} \mathcal{W}_u(i_2, J_1; i_2', 0^{L-J_2} 1^{J_2}) \cdots = W_u(i_1, L; j_1', J_1) W_u(i_2, J_1; i_2', J_2) \cdots, \end{split}$$

which is the right side

Fused Weights

Above framework enables $W_u(i, J; i', J'|q^L)$ to be solved recursively in L

Weights are rational in $\alpha = q^{-L}$

- Replace all arrow configurations (i, J; i', J') with (i, J L; i', J' L)
 - Tracks **deficit** J L = -d, which cannot be less than -L or more than 0
 - These constraints are guaranteed by factors $q^{d-L} 1 = \alpha q^d 1$ and $1 q^d$

Analytic Continuation

Would like to analytically continue in $\alpha = q^{-J}$

Issue: We must have $L \in \mathbb{Z}_{\geq 0}$, since arrows enter through the fused row

- Factors $\alpha q^d 1$ and $1 q^d$ enable us to let infinitely many paths exist in fused row
- Then, the number of arrows L-d at any point in the fused row no longer well-defined
 - Deficit d is still well-defined (arrows entered row subtracted from arrows exited the row)

Right side induces row operator on \mathbb{V}_M , denoted by $\mathbb{B}(u; \alpha)$, for any $\alpha \in \mathbb{C}$

- Analytic continuation of $\mathbb{B}(u; q^{-L})$
- Preserves commutation relation $T_{01}(\kappa)^N \mathbb{B}(u;\kappa) = \mathbb{B}(u;\alpha) T_{01}(\kappa)^N$

The Operator \mathbb{X}_{ρ} and ρ Step-Bernoulli Boundary Data

Set
$$X_{\rho} = \mathbb{B}(u; \alpha)$$
, where $\alpha = 0$ and $\frac{qu}{qu-1} = \rho$

• Equivalently, $L = -\infty$ (since q < 1) and $u = \frac{\rho}{q(\rho - 1)}$

Action on e_0 : \mathbb{X}_{ρ} outputs vertical arrow with probability ρ (irrelevant of d)

Left side produces ρ step-Bernoulli boundary data

- Similar framework yields (half-)stationary data for colored vertex models
 - Martin (2018): Multi-line queue diagrams

Action of \mathbb{X}_{ρ} on Step Profile

By commutation, $H_T(x)$ under ρ step-Bernoulli can be sampled as follows

- Run T steps of stochastic six-vertex model under step boundary data
- Apply the operator \mathbb{X}_{ρ} to the output

Let $S_T(x)$ denote height function of model under step boundary data

- Denoting the deficit at site x by d(x), we have $H_T(x) = S_T(x) d(x)$
- Copying phase: If $d \ll T^{1/3}$ is small

For $d\gg 1$, we have $q^d\approx 0$, so $q^d(1-\rho)+\rho\approx \rho$ and $(1-q^d)(1-\rho)\approx 1-\rho$

- Vertex weights W(i, -d; i', -d') are approximately independent of i
- **Ignoring phase**: If $d \gg 1$ is large

Deficit Behavior and Local Densities

- Copying phase for small d and ignoring phase for large d
- We start at x = 0 with d = 0 (copying phase)

Analyze circumstances under which copying phase can turn to ignoring phase

- Recall "local vertical arrow density" $\chi_0 = \chi_0(\xi)$ in step profile near $(\xi T, T)$
- Increase d: Probability ρ if no vertical arrow in step profile
 - Near $(\xi T, T)$, happens with approximate proportion $(1 \chi_0)\rho$
- Decrease d: Probability $(1 q^d)(1 \rho) \approx 1 \rho$ above vertical arrow
 - Near $(\xi T, T)$ happens with approximate proportion $(1 \rho)\chi_0$

Increase d if $(1 - \chi_0)\rho > (1 - \rho)\chi_0$ (namely, $\chi_0 > \rho$); decrease d if $\chi_0 > \rho$

- Transition from small d to large d occurs when $\chi_0(\xi) = \rho$
- This is the definition of θ_{ρ}

In fact implies height fluctuations converge to Brownian motion to the right of $\theta(\xi)$

Not entirely transparent how to directly see this from moment identities

Summary

- Phase transition stochastic six-vertex model under ρ step-Bernoulli boundary data
 - For $\xi < \theta_{\rho}$, fluctuations of $H_T(\xi T)$ are F_{GUE} and of order $T^{1/3}$
 - For $\xi = \theta_{\rho}$, fluctuations of $H_T(\xi T)$ are F_{GOE}^2 and of order $T^{1/3}$
 - For $\xi > \theta_{\rho}$, fluctuations of $H_T(\xi T)$ are Gaussian and of order $T^{1/2}$
- Comparison to step asymptotic behavior suggests the following
 - "Copying phase" to the left of θ_{ρ}
 - "Ignoring phase" to the right of θ_{ρ}
- The Yang–Baxter equation provides a way of seeing this
 - Insert fused row operator to inject particles in systematic way
 - Analytic continuation of weights to obtain Bernoulli profile
 - Probabilistic interpretation to see phases from new operator
 - Copying phase: Small deficit d
 - Ignoring phase: Large deficit
 - Small (or large) d when local arrow density $\chi_0 > \rho$ (or $\chi_0 < \rho$, respectively)