Programming Assignment 2

Each team/student may choose one of the tracts for the programming assignment 2.

Compiler Track:

Augment your *MiniJ* parser with semantic actions for constructing parse trees, and write a *C* code generator for your *MiniJ* compiler.

- > See an attached package for the reference files.
- You are requested to separate the C code, the Lex/Flex specification, the Yacc/Bison specification into distinct files.

Programming Languages Track:

Practice on programming the same exercises in 5 different programming languages: Java, Python, R, ML, and Prolog. You may integrate the two programming exercises into one program for each programming language.

- **Programming Exercises**: The attached file HW2data.csv has the scores of a class: HW1, HW2, HW3, Midterm, and Final.
 - A) The overall score of a student is calculated by the following formula:
- Score = HW1 * 0.1 + HW2 * 0.1 + HW3 * 0.1 + Midterm * 0.3 + Final * 0.4

 Write a program in the above 5 different programming languages to calculate the overall score of each student.
 - B) The grade of a student is translated according to the following table:

Score	Grade
0-49	Е
50-59	D
60-62	C-
63-66	С
67-69	C+
70-72	В-
73-76	В
77-79	B+
80-84	A-
85-89	А
90-100	A+

Write a program in the above 5 different programming languages to translate the overall score of each student into a grade.

Guideline:

- 1. You have to demonstrate your program in person and have the report in paper with you.
- 2. You may get up to additional 15% bonus if you succeed in each of the following conditions:
 - > Redesign the overall data structures for parse trees.
 - Rewrite all pieces of the C code generator.
 - > Implement a type analyzer for the *MiniJ* Compiler.

And, up to 15% penalty will be given for lateness. More precisely, if you get X in demonstration, and Y for the report:

- \blacktriangleright (6/7th or 9th) Your score = (X * 70%) * 115% + Y * 30%
- \triangleright (6/14nd or 16th) Your score = X * 70% + Y * 30%
- ightharpoonup (Late) Your score = (X * 70% + Y * 30%) * 85%
- 3. Your report has to include the following elements:
 - A cover page.
 - > The problem description.
 - ➤ Highlight of the way you write the program.
 - > The program listing.
 - > Test run results.
 - > Discussion.
- 4. For remote demonstration, you may choose to demonstrate in one of the two suggested ways:
 - A) Install all the software tools for programming assignment 2 on the same computer that you are going to use for connecting to the remote classroom.
 - B) Connect to the remote classroom with a mobile device with web cam, and demonstrate your programs with live video.

A Sample Input Program

```
/* This is a comment line in the sample program. */
INT f2 ( INT x, INT y )
BEGIN
   INT z;
   z := x*x - y*y;
   RETURN z;
END
INT MAIN f1 ()
BEGIN
   INT x;
   READ(x, "Please input an integer number x: ");
   INT y;
   READ(y, "Please input another integer number y: ");
   INT z;
   z := f2(x, y) + f2(y, x);
   WRITE(z, "f2(x, y) + f2(y, x) = ");
END
```

A Sample Generated C Code

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
void tiny_readint ( int *x, char *s ) {
 printf("%s ", s);
 scanf("%d", x);
void tiny writeint ( int x, char *s ) {
 printf("%s ", s);
 printf("%d\n", x);
int f2 (int x, int y)
{ int z;
z = x * x - y * y;
return z;
int main ( )
{ int x;
tiny readint(&x,"A41.input");
int y;
tiny readint(&y,"A42.input");
int z;
z = f2(x, y) + f2(y, x);
tiny writeint(z, "A4.output");
```