A Fast Solver For Differential Equations

Catalin-Andrei Ilie Oriel College University of Oxford

A thesis submitted for Part B Student Projects
Trinity 2018

Abstract

plenty of waffle, plenty of waffle.

Contents

1	Mot	tivatio	1	1
	1.1	A class	s of differential equations	1
2	Disc	cretiza	tion of the equations	2
	2.1	Deduc	ing the approximations	2
		2.1.1	Finite differences method	2
		2.1.2	Creating a linear system	2
		2.1.3	Backward Euler	2
	2.2	Sparse	data structures	2
		2.2.1	Requirements	2
		2.2.2	CSR format	2
		2.2.3	Comparison with other formats	2
3	Clas	ssic ite	rative algorithms	3
	3.1	Succes	sive Over-Relaxation Methods	4
		3.1.1	General Formulation	4
		3.1.2	Jacobi	4
			3.1.2.1 Theoretical aspects	4
			3.1.2.2 Experimental results	4
		3.1.3	Gauss-Seidel	4
			3.1.3.1 Theoretical aspects	4
			3.1.3.2 Experimental results	4
		3.1.4	Symmetric Successive Over-Relaxation	4
			3.1.4.1 Theoretical aspects	4
			3.1.4.2 Experimental results	4
		3.1.5	Comparison	4
	3.2	Gradie	ent Methods	4
			Gradient Descent	4

			3.2.1.1 Theoretical aspects	4	
			3.2.1.2 Experimental results	4	
		3.2.2	Conjugate Gradient Method	4	
			3.2.2.1 Theoretical aspects	4	
			3.2.2.2 Preconditioned version	4	
			3.2.2.3 Experimental results	4	
		3.2.3	Comparison	4	
	3.3	Genera	al comparison and comments	4	
4	The	Multi	grid Method	5	
	4.1	Motiva	ation	5	
		4.1.1	Capturing different frequencies	5	
		4.1.2	The 2-grid algorithm	5	
	4.2	Formu	lation	5	
		4.2.1	The V-Cycle	5	
		4.2.2	Smoothers	5	
		4.2.3	Prolongation and restriction operators	5	
	4.3	Experi	imental results	5	
5	Sample Title			6	
\mathbf{A}	Sample Title				
В	Sample Title				

List of Figures

Motivation

1.1 A class of differential equations

Einstein's paper: [?]

Discretization of the equations

- 2.1 Deducing the approximations
- 2.1.1 Finite differences method
- 2.1.2 Creating a linear system
- 2.1.3 Backward Euler
- 2.2 Sparse data structures
- 2.2.1 Requirements
- 2.2.2 CSR format
- 2.2.3 Comparison with other formats

3.2.2.1

3.2.2.2

3.2.2.3

3.2.3

3.3

Theoretical aspects

Experimental results

Comparison

Preconditioned version

Classic iterative algorithms

3.1	Successive Over-Relaxation Methods
3.1.1	General Formulation
3.1.2	Jacobi
3.1.2.1	Theoretical aspects
3.1.2.2	Experimental results
3.1.3	Gauss-Seidel
3.1.3.1	Theoretical aspects
3.1.3.2	Experimental results
3.1.4	Symmetric Successive Over-Relaxation
3.1.4.1	Theoretical aspects
3.1.4.2	Experimental results
3.1.5	Comparison
3.2	Gradient Methods
3.2.1	Gradient Descent
3.2.1.1	Theoretical aspects
3.2.1.2	Experimental results
3.2.2	Conjugate Gradient Method

4

General comparison and comments

The Multigrid Method

- 4.1 Motivation
- 4.1.1 Capturing different frequencies
- 4.1.2 The 2-grid algorithm
- 4.2 Formulation
- 4.2.1 The V-Cycle
- 4.2.2 Smoothers
- 4.2.3 Prolongation and restriction operators
- 4.3 Experimental results

Sample Title

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Appendix A

Sample Title

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Appendix B

Sample Title

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.