Представлення груп

 $\Pi pedcmae$ лення: відображення $g \to T_g$ таке, що $g_1g_2 \to T_{g_1}T_{g_2}$.

Приклади:

- ullet Самопредставлення: $g \to g$ (векторне представлення груп просторових симетрій)
- Одновимірні представлення групи $C_n \colon c_n^m \to e^{i2\pi m/n}$
- $g \to \det g$, $g \to g \det g$
- Двовимірні представлення групи C_{nv} :

$$T[c_n] = \begin{pmatrix} e^{i2\pi m/n} & 0\\ 0 & e^{-i2\pi m/n} \end{pmatrix}, \quad T[\sigma_v] = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$

• Представлення прямого добутку $G \times I$:

• Indyковане представлення у просторі функцій на \mathbb{R}^3 :

$$T_q \psi(\vec{r}) = \psi(g^{-1}\vec{r})$$

Тензорний добуток представлень:

$$\left(T_g \otimes T_g'\right)_{ii'}^{jj'} = \left(T_g\right)_i^j \left(T_g'\right)_{i'}^{j'}$$

Незвідні представлення

Незвідне представлення неможливо подати у вигляді прямої суми.

Приклади:

Незвідні представлення групи C_{2v} :

g	e	c_2	σ_x	σ_y
T_g	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $	$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
B_1	1	-1	-1	1
B_2	1	-1	1	-1
A_1	1	1	1	1
A_2	?	?	?	?

Дійсне незвідне, але комплексно звідне представлення C_4 :

де
$$T'_g = \frac{1}{2} \begin{pmatrix} -i & 1 \\ 1 & -i \end{pmatrix} T_g \begin{pmatrix} i & 1 \\ 1 & i \end{pmatrix}$$

Розклад на незвідні

Xарактер представлення T: функція $\chi(g) = \operatorname{tr} T_g$.

- постійна на класах спряжених елементів: $\chi(hgh^{-1}) = \chi(g)$
- $\chi(e)$ розмірність представлення
- ортогональна для різних представлень
- кількість незвідних представлень Г у заданому представленні

$$\frac{1}{\operatorname{ord} G} \sum_{C_g} \operatorname{ord} C_g \ \overline{\chi_{\Gamma}(g)} \ \chi(g)$$

Таблиця незвідних представлень: ../PointG/tab_PGrep.dvi (pdf)

Приклад: векторне представлення групи C_{2v}

	g	e	c_2	σ_x	σ_y
	$\chi(g)$	3	-1	1	1
1	A_1	1	1	1	1
1	B_1	1	-1	1	-1
	A_2	1	1	-1	-1
1	B_2	1	-1	-1	1

Приклад: тензорне V^2 представлення групи T_d

	g	e	$8c_3$	$3u_2$	$6c_{4i}$	$6\sigma_v$
	$\chi(g)$	3^2	0	$(-1)^2$	$(-1)^2$	1^2
?	A_1	1	1	1	1	1
?	A_2	1	1	1	-1	-1
?	E	2	-1	2	0	0
?	F_1	3	0	-1	1	-1
?	F_2	3	0	-1	-1	1