

MLCA Mini-Project: Identifying recyclable/organic waste

Professor: Haris Papageorgiou

Students: Michail Kalligas, F2822103

Panagiotis Iolos, F2822105

The Business Problem

- Recycling has become ever more important
- 5% projected growth on a yearly basis until 2028
- Technology has made recycling easier in various ways
- Separation of organic from recyclable waste is done manually

Proposed Solution

- 1) Identify organic waste during the filtering process of recyclable waste
- 2) Categorize organic waste instead of removing it
- 3) Deliver each type of organic waste to an appropriate plant

The purpose of this project is to automate step 1 of the above by:

- Utilizing TensorFlow's MobileNetV2 image recognition model
- Using transfer learning to fine-tune the model for the classification of organic and recyclable waste

The Dataset

- Waste Classification Data by Sashaank Sekar
- Obtained from Kaggle
- 25077 images
- 56% organic, 44% recyclable
- 85% training, 15% testing

MobileNetV2

A convolutional neural network pretrained on the ImageNet Dataset, a dataset containing over 1.4 million images spread among 1000 classes.

Implements:

- Depthwise separable convolutions
- Linear bottlenecks
- Inverted residual blocks

Pretrained for:

- Image classification
- Object detection
- Semantic segmentation

Feature extraction

Pipeline:

- Reshaping inputs
- Data augmentation layer
- Preprocessing layer
- MobileNetV2 base pretrained model (frozen weights)
- Global average pooling layer
- Dropout layer
- Dense prediction layer

Model: "model"

Layer (type)	Output Shape	Param #
input_2 (InputLayer)	[(None, 160, 160, 3)]	0
sequential (Sequential)	(None, 160, 160, 3)	0
tf.math.truediv (TFOpLambda)	(None, 160, 160, 3)	0
tf.math.subtract (TFOpLambd a)	(None, 160, 160, 3)	0
mobilenetv2_1.00_160 (Functional)	(None, 5, 5, 1280)	2257984
global_average_pooling2d (G lobalAveragePooling2D)	(None, 1280)	0
dropout (Dropout)	(None, 1280)	0
dense (Dense)	(None, 1)	1281

Total params: 2,259,265 Trainable params: 1,281

Non-trainable params: 2,257,984

non crainable paramst 2,257,504

Training and results

Parameters

- Loss function:Binary Cross-Entropy
- Learning rate: 0.0001
- 20 Epochs

Results

- Optimal number of epochs: 17
- Accuracy: ~90%
- Loss: 0.2

Fine-tuning

- Unfroze 56 layers of MobileNetV2
- Trainable Parameters: 1,862,721
- Lowered learning rate

- model.summary()
 - Model: "model"

Layer (type)	Output Shape	Param #	
input_2 (InputLayer)	[(None, 160, 160, 3)]	0	
sequential (Sequential)	(None, 160, 160, 3)	0	
tf.math.truediv (TFOpLambda)	(None, 160, 160, 3)	0	
tf.math.subtract (TFOpLambd a)	(None, 160, 160, 3)	0	
<pre>mobilenetv2_1.00_160 (Funct ional)</pre>	(None, 5, 5, 1280)	2257984	
global_average_pooling2d (G lobalAveragePooling2D)	(None, 1280)	0	
dropout (Dropout)	(None, 1280)	0	
dense (Dense)	(None, 1)	1281	

Total params: 2,259,265 Trainable params: 1,862,721 Non-trainable params: 396,544

Training and results

Parameters

- Loss function: Binary Cross-Entropy
- Learning rate: 0.00001
- 10 Epochs

Results

- Optimal number of epochs: 23
- Validation accuracy: ~95%
- Validation loss: ~0.14

Predictions

Qualitative & Error Analysis

Recyclable

Recyclable

Recyclable

Organic

Recyclable

Recyclable

Recyclable

Recyclable

Recyclable

Method shortcomings & Future work

Limitations:

- Limited knowledge in sciences related to the recycling industry
- Business need for a lightweight, easily mountable system
- Limitations concerning the variety and number of items in the dataset

Up next:

- Binary Classifier → Multiclass Classifier
- Model deployment in a real sorting line of a recycling plant
- Try more complex architectures (Microsoft's Swin, Google's ViT)

"Waste isn't waste until we waste it"