Self-Driving, Autonomous Car for the 2025 American Control Conference QCar Student Competition

Jakob Felts - Zach Copenhaver - Josh Strong - Fred Levins Prof. Bryan Van Scoy, Ph.D. - Prof. Dave Hartup, Ph.D.

Goals/Project Outline

- (1) QCar autonomous, self driving around track
- (2) Completion of Quanser self driving car lab
- (3) Compete in-person at the American Control Conference Self-Driving Quanser Car Student Competition

The American Control Conference and Quanser Overview

Quanser

- Educational product development company
- Sponsor of student event and creator of QCar
- Tiers focused event

American Control Conference

- Annually held by Automatic Control Council and International Federation for Automatic Control
- Professional and academic focused multi-day event

Fall Semester QCar Autonomous Loop

Controls - Motors

Point 18 - Drive Motor; Point 20 - Servo Motor

- Drive motor
 - Motor speed limits
- Servo steering motor
 - -0.5 to 0.5 radians (~28°)
 - \circ $\tau = 0.16 s$
 - Bicycle model:
 - Global position (x, y) and turn angle (ψ)

Controls - Encoder

- 720-count pre-gearing optical encoder
 - Uses hardware velocity to measure position and motor velocity

Feedback speed controller

- Time integration and motor modulation
- Faster acceleration, precise positioning

Image Processing

- 2D CSI Cameras
 - Camera Serial Interface
 - Max 120 Hz Frame Rate

Red: CSI Camera positions. Pink: FOV of CSI

- 160° Horizontal Field of View (FOV)
- 4 Cameras for 360° Vision
- o 640 x 480
- OpenCV for Image Processing
 - Convert color from RBG to HSV or Binary
 - Draw boundary boxes around objects
 - Edge detection
 - Noise filtering

RGBD Camera (Intel Realsense D435)

- Intel Realsense D435
 - 640 x 480 resolution
 - o RGB 60 fps / Depth 90 fps
- Depth Detection
 - IR Projector and two IR Imagers used to calculate depth
 - Distance is tracked in meters

RGBD Camera Components

Driving Algorithm

- Autonomously complete a lap around loop
- Stays in the center of the lane
- Tracks the yellow and white lines
 - When in outer lane, track white line to the right
 - When in inner lane, track yellow line to the left
- Determines if the white pixels are within an acceptable range
 - If true, drive straight
 - If false, turn based on how far out of range white pixels are
- Adjust speed based on turn angle and road lines

Full Road Used for Testing

Camera Trade-off Analysis			
Criteria Camera	Time Efficiency	Visibility	Complexity

Low (due to multiple

cameras in use)

High

Medium (due to

filtering out color)

RGBD

CSI: HSV

CSI: Binary

Medium (all

colours RGB &

grayscale depth)

High (all colors)

Low (only black or

white)

High (two

separate images

of data)

High (3 channels)

Low (only black or

white)

Usefulness

High (depth

capabilities)

Medium

High (more

supported)

YOLO Algorithm

YOLO: You Only Look Once

"You Only Look Once: Unified, Real-Time Object Detection"; Redmon, Girshick, Farhadi, and Divvala

- OpenCV DNN module with a pre-trained YOLOv3 model
 - Trained using COCO (common objects in context from Microsoft) dataset
- Single-pass, multi-output layer filtered using confidence (0.7) and non-max suppression (0.55) thresholds

Spring Semester/ Semester Progression Competition **Line Following Image Processing Autonomous** (YOLO) **Studying Robot**

Future Work

Quanser Simulation Images from Website

Algorithm Development

Improved YOLO with simultaneous localization introduction

Python Simulation

Quanser labs based python simulation of new arena

In-Person Competition

Compete in ACC Quanser 2025 student self driving competition