Item Response Theory for NLP

EACL2024 Tutorial, 21st March 2024

John P. Lalor, Pedro Rodriguez, João Sedoc, Jose Hernandez-Orallo

https://eacl2024irt.github.io/

In this session

Motivation

Introducing IRT

IRT Models with Artificial Crowds

The py-irt Package

Motivation

Differences between Examples

Natural language inference (NLI)

Premise	Hypothesis	Label	Difficulty
A little girl eating a sucker	A child eating candy	Entailment	easy
People were watching the tournament in the sta-	The people are sitting outside on the grass	Contradiction	hard
dium			
Two girls on a bridge dancing with the city skyline	The girls are sisters.	Neutral	easy
in the background			

Sentiment analysis (SA)

Phrase	Label	Difficulty
The stupidest, most insulting movie of 2002's first quarter.	Negative	easy
Still, it gets the job done - a sleepy afternoon rental.	Negative	hard
An endlessly fascinating, landmark movie that is as bold as anything the cinema has seen in years.	Positive	easy
Perhaps no picture ever made has more literally showed that the road to hell is paved with good	Positive	hard
intentions.		

Leaderboards

https://huggingface.co/spaces/HuggingFaceH4/open llm leaderboard

Differences in Questions

Differences in Questions

Differences in Questions

Introducing IRT

Psychometrics

Psychometrics: study of quantitative measurement practices

- · Building instruments for measurement
- · Development of theoretical approaches to measurement

Item Response Theory (IRT): measure latent traits of test-takers and test questions ("items'")

♦ CollegeBoard

IRT: 1 Parameter Logistic Model (1PL)

Also known as Rasch model

$$p(y_{ij} = 1 | b_i, \theta_j) = \frac{1}{1 + e^{-(\theta_j - b_i)}}$$

 θ_j : latent ability

 b_i : difficulty

$$\begin{split} p(y_{ij} = 1|b_i, \theta_j) &= \frac{1}{1 + e^{-a_i(\theta_j - b_i)}} \\ p(y_{ij} = 0|b_i, \theta_j) &= 1 - p(y_{ij} = 1|b_i, \theta_j) \end{split}$$

$$\begin{split} L &= \prod_{j=1}^J \prod_{i=1}^I p(Y_{ij} = y_{ij} | b_i, \theta_j) \\ q(\Theta, B) &= \prod_j \pi_j^{\theta}(\theta_j) \prod_i \pi_i^{b}(b_i) \end{split}$$

Intro to IRT notebook 1 – 2_IntroToIrt.ipynb

Evaluating DNN Performance with IRT

Premise	Hypothesis	Label	Difficulty
A little girl eating a sucker	A child eating candy	Entailment	-2.74
People were watching the tourna-	The people are sitting outside	Contradiction	0.51
ment in the stadium	on the grass		
Two girls on a bridge dancing with	The girls are sisters.	Neutral	-1.92
the city skyline in the background			
Nine men wearing tuxedos sing	Nine women wearing dresses	Contradiction	0.08
	sing		

Phrase	Label	Difficulty
The stupidest, most insulting movie of 2002's first quarter.	Negative	-2.46
Still, it gets the job done - a sleepy afternoon rental.	Negative	1.78
An endlessly fascinating, landmark movie that is as bold as anything the	Positive	-2.27
cinema has seen in years.		
Perhaps no picture ever made has more literally showed that the road to hell	Positive	2.05
is paved with good intentions.		

IRT for NLP: Human Annotations

Item Set	Ability Score	Percentile	Test Acc.
"Easier"			
Entailment	-0.133	44.83%	96.5%
Contradiction	1.539	93.82%	87.9%
Neutral	0.423	66.28%	88%
"Harder"			
Contradiction	1.777	96.25%	78.9%
Neutral	0.441	67%	83%

Human Bottleneck

- · Gathering human response patterns is expensive
- $\boldsymbol{\cdot}$ Can we use ensembles of models to gather response patterns?
- Even if we can, should we?

IRT Models with Artificial Crowds

Building IRT Test Sets

Artificial Crowd Construction

Human-Machine Correlation

- Spearman ρ (NLI): 0.409 (LSTM) and 0.496 (NSE).

Human-Machine Correlation

- Spearman ho (SA): 0.332 (LSTM) and 0.392 (NSE).

Difficulty Distribution

IRT for Leaderboards (SQuAD)

· 1.9 million subject-item pairs

Ranking Performance

The py-irt Package

```
{"subject id": "pedro", "responses": {"q1": 1, "a2": 0, "q3": 1, "a4": 0}}
        {"subject id": "pinguino", "responses": {"q1": 1, "q2": 1, "q3": 0, "q4": 0}}
        {"subject id": "ken". "responses": {"a1": 1, "a2": 1, "a3": 1, "a4": 1}}
        {"subject id": "burt", "responses": {"q1": 0, "q2": 0, "q3": 0, "q4": 0}}
py-irt train 1pl data/data.jsonlines output/1pl/
                                                   "irt model": "1pl".
                                                   "item ids": {
         "ability": [
           -1.7251124382019043.
           -0.06789101660251617.
           1.6059941053390503.
                                                     "3": "a3"
           -0.20248053967952728
                                                   "subject ids": {
         "diff": [
                                                     "0": "burt".
           0.008014608174562454.
                                                      "1": "pinguino",
           9.654741287231445.
                                                     "2": "ken".
           -5.5452165603637695.
                                                      "3": "pedro"
           -0.2792229950428009
```

IRT in Python: py-irt

Intro to IRT notebook 2 – 2_pyirt_example.ipynb

Break!

- Back in 15 minutes
- · Next section: IRT in NLP