第五章

时间序列 计量经济学模型

第五章 时间序列计量经济学模型

□ 5.1 时间序列的平稳性及其检验

□ 5.2 协整与误差修正模型

□ 5.3 格兰杰因果关系检验

5.2 协整与误差修正模型

经典回归模型是建立在平稳变量基础上的,对于非平稳变量,不能使用经典回归模型,会出现虚假回归等问题。许多经济变量是非平稳的,这就给经典的回归分析方法带来了很大限制。

然而,**如果变量之间(数据)有着长期的稳定关 系,**即它们之间是**协整**的,则可以使用经典回归分析方 法建立回归模型。

一、长期均衡关系

经济理论指出,某些经济变量间确实 存在着长期均衡关系。这些均衡关系意味 着系统不存在破坏均衡的内在机制。

如果变量在某时期受到干扰后偏离其长期均衡点,则均衡机制将会在下一期进行调整以使其重新回到均衡状态。

假如X和Y之间的长期"均衡关系"由式

$$Y_t = \alpha_0 + \alpha_1 X_t + \mu_t$$

描述,该均衡关系意味着:给定X的值,Y相应的均衡值 也随之确定为 $\alpha_0 + \alpha_1 X_t$ 。

那么在 t-1期末,必然存在下述三种情形之一:

(1) Y等于它的均衡值 $Y_{t-1} = \alpha_0 + \alpha_1 X_{t-1}$ (2) Y小于它的均衡值 $Y_{t-1} < \alpha_0 + \alpha_1 X_{t-1}$ (3) Y大于它的均衡值 $Y_{t-1} > \alpha_0 + \alpha_1 X_{t-1}$

在 t 期,假设 X 有一个变化量 ΔX_t :

- 若 t 和 t-1 期末满足上述第一种情况 (Y等于它的均衡

$$Y_t - Y_{t-1} = (\alpha_0 + \alpha_1 X_t + \mu_t) - (\alpha_0 + \alpha_1 X_{t-1} + \mu_{t-1})$$
$$\Delta Y_t = \alpha_1 \Delta X_t + \nu_t , \ \nu_t = \mu_t - \mu_{t-1}$$

- 若t 1期末Y小于它的均衡值(情况2),则Y的相应变化量 ΔY_t
- 若t 1期末Y大于它的均衡值(情况3),则Y的相应变化量 ΔY_t

该模型表明:

(1)如果

$$Y_t = \alpha_0 + \alpha_1 X_t + \mu_t$$

正确地提示了X和Y之间的长期稳定的"均衡关系",

则意味着Y对其均衡点的偏离从本质上说是"临时性"

的。因此,一个重要假设就是,随机干扰项 μ_t 必须

是平稳序列。

(2) 式中的随机误差项 μ_t 也被称为**非均衡误差,**他是变量X和Y的一个线性组合:

$$\mu_t = Y_t - \alpha_0 - \alpha_1 X_t$$

如果X和Y之间的长期均衡关系成立,上述非均衡 误差应是一<mark>平稳时间序列</mark>,并且具有零期望值,为 白噪声序列,即 μ_t 是具有零均值的I(0)序列。

【注意】如果μ_t有随机性趋势(上升或下降),则会导致Y对其均 衡点的偏离会被长期累积下来而不能被消除。

二、协整

许多经济变量都是非平稳的,即他们是1阶 或者更高阶的单整时间序列,通过上述模型, 我们发现,非平稳时间序列,他们的线性组合 也可能成为平稳的。这时,我们称变量X和Y是 **协整**的。记做CI(d,b) , d 为变量单整阶数 , 变 量线性组合为I(d-b) 阶单整。

1. 两变量协整及检验

对于两个序列X和Y,均是I(d)序列,X和Y长期均衡关

系成立,而且存在一组非零常数 α_1 、 α_2 ,使得

$$\alpha_1 X_t + \alpha_2 Y_t \sim I(0)$$

(即 $\mu_t = Y_t - \alpha_0 - \alpha_1 X_t \sim I(0)$)。这时,就称变量X和Y是协整的。

【注意】只有单整阶数相同的两个变量,才可能协整; 如果它们的单整阶数不相同,就不可能协整。

两变量协整的Engle-Granger检验

在时间序列分析中,最受关注的一种协整关系是(1,1)阶协整。

为了检验两个均呈现1阶单整的变量X和Y是否为协整, 恩格尔和格兰杰与1987年提出两步检验法, 也称为EG检验。

EG检验目的:检验两个 1 阶单整变量 X_t 、 Y_t 是否为协整。

EG检验的步骤:

(1)用普通最小二乘法估计

$$\hat{Y}_t = \hat{\alpha}_0 + \hat{\alpha}_1 X_t$$

并计算非均衡误差,得到

$$e_t = Y_t - \hat{Y}_t$$

称为协整回归或静态回归。

(2) 检验 e_t 的单整性,如果 e_t 为平稳序列I(0),则认为变量 Y_t 、 X_t 为(1,1)阶协整;

否则就认为变量 Y_t 、 X_t 不存在协整关系。

\square 检验 e_t 的单整性

检验 e_t 的单整性的方法是运用ADF检验,由于协整回归已含有截距项,则检验模型中无需再用截距项;如果协整回归中还含有趋势项,则检验模型中也无需再用时间趋势。

使用模型1:

$$\Delta e_t = \delta e_{t-1} + \sum_{i=1}^p \beta_i \, \Delta e_{t-i} + \varepsilon_t$$

进行检验时,拒绝零假设,意味着残差项 e_t 是平稳序列,变量 Y_t 、 X_t 是协整的。

【注意】

这里的ADF检验是针对协整回归计算出的残差项 e_t ,而非真正的非均衡误差 μ_t 。

OLS法采用了残差最小平方和原理,因此估计量δ是 向下偏倚的,这样将导致拒绝零假设的机会比实际情形 大。

于是对e_t平稳性检验的ADF临界值应该比正常的ADF临界值还要小,麦金农(1991)通过模拟实验给出了协整检验的临界值。

【例5.2.1】两变量协整关系检验

对经居民消费价格指数调整过的1980-2013年中

国居民消费总量 Y_t 与总支配收入 X_t 的数据,检

验他们的对数序列 lnY_t 和 lnX_t 间的协整关系。

Obs	Y	X	Obs	Υ	X
1980	4605.29	7944.20	1997	18080.16	35956.20
1981	5063.90	8438.00	1998	19363.89	38140.90
1982	5482.34	9235.20	1999	20989.59	40277.00
1983	5983.52	10074.60	2000	22864.42	42964.60
1984	6745.99	11565.00	2001	24480.49	46413.60
1985	7728.61	11601.70	2002	26485.92	51337.44
1986	8211.40	13036.50	2003	28436.74	57512.99
1987	8839.97	14627.70	2004	30963.54	64943.70
1988	9560.27	15794.00	2005	34026.07	73987.90
1989	9085.15	15035.50	2006	37939.58	86334.55
1990	9450.90	16525.90	2007	42232.57	96877.35
1991	10375.75	18939.60	2008	46232.67	112093.6
1992	11815.05	22056.50	2009	51530.08	120607.7
1993	13004.83	25897.30	2010	56817.07	133045.0
1994	13944.59	28783.40	2011	64712.02	146647.1
1995	15467.91	31175.40	2012	69002.39	155244.4
1996	17092.47	33853.70	2013	77198.39	173230.8

(一) 平稳性检验:

- 首先,对 lnY_t 和 lnX_t 序列分别进行平稳性检验。得到的结论为 lnY_t 和 lnX_t 序列均为非平稳时间序列。
- 继而,对InY_t和InX_t的一阶差分序列分别进行平稳性 检验,发现其一阶差分序列均为平稳时间序列。
- 因此,可以对 lnY_t 和 lnX_t 进行协整关系检验。

(二) EG协整检验

第一步:

估计模型

$$lnY_t = \beta_0 + \beta_1 lnX_t + \mu_t$$

得到

$$ln\hat{Y}_t = 0.6837 + 0.871lnX_t$$
(7. 126) (95. 275)

$$\bar{R}^2 = 0.9964$$
, $D.W. = 0.5907$

第二步:

计算et进行ADF检验,由软件自动选择模型中的滞后项,得到适当的检验模型为

$$\Delta \hat{e}_t = -0.897 e_{t-1} + 0.405 \Delta e_{t-1} + 0.485 \Delta e_{t-2} + 0.568 \Delta e_{t-3} + 0.643 \Delta e_{t-4}$$

$$(-6.106) \quad (2.869) \quad (3.370) \quad (3.779) \quad (4.355)$$

计算临界值(附录六),得到临界值为-3.521,拒绝存在单位根假设,残差序列为平稳时间序列。

结论: 中国居民消费总量的对数列与总可支配收入的对数序列是协整的。

● 重要的协整类型——(d,d)阶协整

协整类型中的(*d*, *d*)阶协整(即变量为*d*阶单整,线性组合为平稳)是一类非常重要的协整关系,它的经济意义在于:

两个变量,虽然它们具有各自的波动规律,但是它们之间存在着一个长期稳定的比例关系。

如上例所示,中国居民消费总量Y和总支配收入X,它们

各自都是2阶单整序列,取对数后的序列 lnY_t 和 lnX_t 都是

1阶单整序列, 经检验, lnY_t 和 lnX_t 是(1,1)协整的,

说明它们的对数序列间存在一个长期稳定的比例关系。

从计量经济学模型的意义上讲,建立如下居民总量消费 函数模型

$$lnY_t = \beta_0 + \beta_1 lnX_t + \mu_t$$

变量的选择是合理的,随机干扰项也一定是一个白噪声, 而且模型参数有合理的经济解释。

这也解释了,尽管两个时间序列是非平稳的,但却可以 用经典的回归分析方法建立双对数因果关系回归模型的 原因。

2. 多变量协整关系

如果序列 X_{1t} , X_{2t} , ... , X_{kt} , 都是d阶单整的 , 存在向量

$$\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k)$$

使得

$$\mathbf{Z}_t = \alpha \mathbf{X}_t' \sim I(d-b)$$

$$X_t \sim CI(d,b)$$

 α 为协整向量。

【例】三变量协整关系

三个以上的变量,如果具有不同的单整阶数, 有可能经过线性组合构成低阶单整变量。

$$A_t \sim I(1), B_t \sim I(2), C_t \sim I(2)$$

$$P_t = \alpha B_t + \beta C_t \sim I(1)$$
$$Q_t = \gamma A_t + \delta P_t \sim I(0)$$

 B_t , $C_t \sim CI(2,1)$

 A_t , $P_t \sim CI(1,1)$

【例】四变量协整关系

假设存在4个I(1)变量A,B,C,D,它们有如下长期均衡关系

$$A_t = \alpha_0 + \alpha_1 B_t + \alpha_2 C_t + \alpha_3 D_t + \mu_t$$

其中, 非均衡误差 μ_t 是I(0)序列

$$\mu_t = A_t - \alpha_0 - \alpha_1 B_t - \alpha_2 C_t - \alpha_3 D_t$$

- 29/62页 -

协整向量为 $(1, -\alpha_0, -\alpha_1, -\alpha_2, -\alpha_3)$ 。

然而,如果A与B,C与D之间分别存在长期均衡关系

$$A_t = \beta_0 + \beta_1 B_t + v_{1t}$$

$$C_t = \gamma_0 + \gamma_1 D_t + v_{2t}$$

则非均衡误差项 v_{1t} 和 v_{2t} 一定是平稳序列I(0),于是它

们的任意线性组合也是稳定的, 如

$$v_t = v_{1t} + v_{2t} = A_t - \beta_0 - \gamma_0 - \beta_1 B_t + C_t - \gamma_1 D_t$$

 v_t 一定是I(0)序列, v_t 式也成为该四变量的另一稳定线

性组合, 其协整向量为 $(1, -\beta_0, -\gamma_0, -\beta_1, 1, -\gamma_1)$ 。

也就是说,在四个变量A,B,C,D之间,至少存在两种稳定的线性组合

$$\mu_t = Z_t - \alpha_0 - \alpha_1 W_t - \alpha_2 X_t - \alpha_3 Y_t$$

$$v_{t} = Z_{t} - \beta_{0} - \gamma_{0} - \beta_{1}W_{t} + X_{t} - \gamma_{1}Y_{t}$$

其对应的协整向量分别为 $(1,-\alpha_0,-\alpha_1,-\alpha_2,-\alpha_3)$ 和

$$(1, -\beta_0, -\gamma_0, -\beta_1, 1, -\gamma_1)$$
.

• 多变量协整关系的检验

多变量协整关系的检验比双变量复杂一些,主要原因在 于协整变量间可能存在多种稳定的线性组合。

检验原理: 检验过程基本与双变量情形相同,即需检验变量是否具有同阶单整性,以及是否存在稳定的线性组合。

检验步骤:

- (1)在检验是否存在稳定的线性组合时,需通过设置一个变量为被解释变量,其他变量为解释变量, 进行*OLS*估计并检验残差序列是否平稳。
- (2)若不平稳,则需更换被解释变量,进行同样的*OLS* 估计及相应的残差项检验。
- (3)当所有的变量都被作为被解释变量检验之后,仍 不能得到平稳的残差项序列,则认为这些变量间 不存在(d,d)阶协整。

【注意】

- 检验多变量协整的残差项是否平稳的DF和ADF检验临 界值都比通常的DF和ADF检验临界值要小,而且该临 界值还受到所检验的变量个数影响(参加表5.3.2)。
- EG检验针对2个及多个I(1)变量之间的协整关检验而提出,更高阶的单整变量之间的协整关系不能够利用EG检验进行,因为尚没有成熟的临界值分布表。

三、关于均衡与协整的再讨论

协整方程不一定是均衡方程,他们之间至少存在以下差异:

- (一)协整方程具有统计意义,而均衡方程具有经济意义。不能由协整导出均衡关系,只能由协整关系 检验均衡关系。
- (二)均衡方程中应该包含均衡系统中的所有时间序列,而协整方程中可以只包含其中的一部分时间序列。
- (三) 协整方程只要求随机项是<mark>平稳</mark>的,而均衡方程要求随机项是<mark>白噪声</mark>。

(一) 一般差分模型的问题

对于非平稳时间序列

$$Y_t = \alpha_0 + \alpha_1 X_t + \mu_t$$

为了避免虚假回归,消除共同的向上或向下的趋势,可

通过差分的方法将其化为平稳序列,然后才可建立经典

的回归分析模型。

$$\Delta Y_t = \alpha_1 \Delta X_t + v_t$$

其中
$$v_t = \mu_t - \mu_{t-1}$$
。

这种做法会引起两个问题:

(1)如果变量X和Y之间存在长期稳定的均衡关系式 $\Delta Y_t = \alpha_1 \Delta X_t + \nu_t \; , \; 误差项\mu_t \text{不存在序列相关} \; , \; 差$ 分式中 $\nu_t = \mu_t - \mu_{t-1}$ 是一个一阶移动平均时间序 列 , 因而是序列相关的。

(2)模型只表达了*X*和*Y*间的短期关系,而没有揭示它们间的长期关系。关于变量水平值的重要信息将被忽略。

另外,使用差分变量往往无法得出令人满意的回归方程。 截距项很少得到显著为零的情况,即使X保持不变, Y 也会处于长期上升或者下降的过程中。

这意味着X和Y之间不存在静态均衡。这与大多数具有静态均衡的经济理论假设不相符。

可见,简单差分不一定能解决非平稳时间序列所遇到的全部问题,因此,误差修正模型应运而生。

(二) 误差修正模型 (ECM)

误差修正模型是一种具有特定形式的计量经济学模型,它的主要形式被称为*DHSY*模型。

1.简单的误差修正模型(一阶滞后)

假设两个变量X和Y的长期均衡关系为 $Y_t = \alpha_0 + \alpha_1 X_t + \alpha_2 X_t + \alpha_3 X_t + \alpha_4 X_t + \alpha_5 X_t +$

 μ_t , 具有(1,1)阶分布滞后形式

$$Y_t = \beta_0 + \beta_1 X_t + \beta_2 X_{t-1} + \delta Y_{t-1} + \mu_t$$

该模型显示出第t期的Y值,不仅与X的变化有关,而且与第 t-1期X和Y的状态值有关。

$$Y_t = \beta_0 + \beta_1 X_t + \beta_2 X_{t-1} + \delta Y_{t-1} + \mu_t$$

$$\begin{split} Y_t - Y_{t-1} \\ &= \beta_0 + \beta_1 X_t - \beta_1 X_{t-1} + \beta_1 X_{t-1} + \beta_2 X_{t-1} - Y_{t-1} + \delta Y_{t-1} + \mu_t \\ &= \beta_0 + \beta_1 \Delta X_t + (\beta_1 + \beta_2) X_{t-1} - (1 - \delta) Y_{t-1} + \mu_t \end{split}$$

$$\Delta Y_t = \beta_1 \Delta X_t - (1 - \delta) \left(Y_{t-1} - \frac{\beta_0}{1 - \delta} - \frac{\beta_1 + \beta_2}{1 - \delta} X_{t-1} \right) + \mu_t$$

$$\lambda \qquad \alpha_0 \qquad \alpha_1$$

得到

$$\Delta Y_t = \beta_1 \Delta X_t - \lambda (Y_{t-1} - \alpha_0 - \alpha_1 X_{t-1}) + \mu_t$$

其中:
$$\lambda = 1 - \delta$$
 , $\alpha_0 = \beta_0/(1 - \delta)$, $\alpha_1 = (\beta_1 + \beta_2)/(1 - \delta)$ 。

如果参数 α_0 、 α_1 与 $Y_t = \alpha_0 + \alpha_1 X_t + \mu_t$ 中的相应参数视

为相等,则 $Y_{t-1}-\alpha_0-\alpha_1X_{t-1}$ 就是第t-1期的非均衡误

差项。

即

$$\Delta Y_t = \beta_1 \Delta X_t - \lambda \mu_{t-1} + \mu_t$$

表明Y的变化取决于X的变化以及前一时期的非均衡程度。

式①即为一阶误差修正模型,模型可以写作

$$\Delta Y_t = \beta_1 \Delta X_t - \lambda \cdot ecm_{t-1} + \mu_t$$

其中, ecm表示误差修正项, 一般来说, $0 < \lambda < 1$ 。

式①弥补了 $\Delta Y_t = \alpha_1 \Delta X_t + v_t$ 的不足,因为该式含有用X和Y水平值表示的前期非均衡程度。因此,Y的值已经对前期的非均衡程度做出了修正。

● 对一阶误差修正模型的解读

经济含义: 对于 $\Delta Y_t = \beta_1 \Delta X_t - \lambda \cdot ecm_{t-1} + \mu_t$,表示短期内, X_t 变化1%,引起 Y_t 变化 β_1 %,即X对Y的短期弹性; $-\lambda$ 的大小反应了对偏离长期均衡的调整力度。

若t-1期,Y大于其长期均衡值 $\alpha_0+\alpha_1X_{t-1}$,ecm为正, $-\lambda\cdot ecm$ 为负,使得 ΔY_t 减少;

若t-1期,Y小于其长期均衡值 $\alpha_0+\alpha_1X_{t-1}$,ecm为负, $-\lambda\cdot ecm$ 为正,使得 ΔY_t 增大;

【练习2】假设两个时间序列Xt和Yt满足

$$Y_t = \beta X_t + v_{1t}$$

$$\Delta X_t = \alpha \Delta X_{t-1} + v_{2t}$$

其中, $\beta \neq 0$, $|\alpha| < 1$, 且 v_{1t} 和 v_{2t} 分别是两I(0) 序列。

证明: 从上述两个方程可推出一个如下形式的误差修

正模型

$$\Delta Y_t = \alpha_1 \Delta X_{t-1} + \delta (Y_{t-1} - \beta X_{t-1}) + v_t$$

其中, $\alpha_1 = \alpha \beta$, $\delta = -1$, $v_t = v_{1t} + \beta v_{2t}$ 。

2.复杂的误差修正模型(高阶滞后、多变量)

(1)高阶误差修正模型

如具有季度数据的变量,可以在短期非均衡模型引入更多滞

后项,如引入二阶滞后项,模型为

$$Y_t = \beta_0 + \beta_1 X_t + \beta_2 X_{t-1} + \beta_3 X_{t-2} + \delta_1 Y_{t-1} + \delta_2 Y_{t-2} + \mu_t$$

经过恒等变形,转换为误差修正模型

$$\Delta Y_t = -\delta_2 \Delta Y_{t-1} + \beta_1 \Delta X_t - \beta_3 \Delta X_{t-1}$$

$$-\lambda(Y_{t-1}-\alpha_0-\alpha_1X_{t-1})+\mu_t$$

其中:
$$\lambda = 1 - \delta_1 - \delta_2$$
 , $\alpha_0 = \frac{\beta_0}{\lambda}$, $\alpha_1 = (\beta_1 + \beta_2 + \beta_3)/\lambda$

$$Y_t = \beta_0 + \beta_1 X_t + \beta_2 X_{t-1} + \beta_3 X_{t-2} + \delta_1 Y_{t-1} + \delta_2 Y_{t-2} + \mu_t$$

$$\begin{split} \Delta Y_t &= \beta_0 + \beta_1 X_t - \beta_1 X_{t-1} + \beta_1 X_{t-1} + \beta_2 X_{t-1} + \beta_3 X_{t-2} - \beta_3 X_{t-1} + \beta_3 X_{t-1} \\ &+ \delta_1 Y_{t-1} + \delta_2 Y_{t-2} - \delta_2 Y_{t-1} + \delta_2 Y_{t-1} - Y_{t-1} + \mu_t \\ &= \beta_0 + \beta_1 \Delta X_t + \beta_1 X_{t-1} + \beta_2 X_{t-1} - \beta_3 \Delta X_{t-1} + \beta_3 X_{t-1} + \delta_1 Y_{t-1} \\ &- \delta_2 \Delta Y_{t-1} + \delta_2 Y_{t-1} - Y_{t-1} + \mu_t \\ &= \beta_1 \Delta X_t - \beta_3 \Delta X_{t-1} - \delta_2 \Delta Y_{t-1} \\ &- \left[(1 - \delta_1 - \delta_2) Y_{t-1} - \beta_0 - (\beta_1 + \beta_2 + \beta_3) X_{t-1} \right] + \mu_t \\ &= \beta_1 \Delta X_t - \beta_3 \Delta X_{t-1} - \delta_2 \Delta Y_{t-1} \\ &- \frac{1}{(1 - \delta_1 - \delta_2)} \left[Y_{t-1} - \frac{1}{(1 - \delta_1 - \delta_2)} \beta_0 - \frac{\beta_1 + \beta_2 + \beta_3}{(1 - \delta_1 - \delta_2)} X_{t-1} \right] + \mu_t \end{split}$$

(2) 多变量误差修正模型(以三变量模型为例)

三变量存在如下长期均衡关系

$$Y_t = \alpha_0 + \alpha_1 X_t + \alpha_2 Z_t + \mu_t$$

具有(1,1)阶分布滞后的情况下,一阶非均衡关系可以写

成

$$Y_t = \beta_0 + \beta_1 X_t + \beta_2 X_{t-1} + \gamma_1 Z_t + \gamma_2 Z_{t-1} + \delta Y_{t-1} + \mu_t$$

变形为:

$$Y_{t} - Y_{t-1}$$

$$= \beta_{0} + \beta_{1}X_{t} - \beta_{1}X_{t-1} + \beta_{1}X_{t-1} + \beta_{2}X_{t-1} + \gamma_{1}Z_{t}$$

$$- \gamma_{1}Z_{t-1} + \gamma_{1}Z_{t-1} + \gamma_{2}Z_{t-1} + \delta Y_{t-1} - Y_{t-1} + \mu_{t}$$

得到

$$\Delta Y_{t} = \beta_{1} \Delta X_{t} + \gamma_{1} \Delta Z_{t} - (1 - \delta)(Y_{t-1} - \frac{\beta_{0}}{1 - \delta})$$
$$-\frac{\beta_{1} + \beta_{2}}{1 - \delta} X_{t-1} - \frac{\gamma_{1} + \gamma_{2}}{1 - \delta} Z_{t-1}) + \mu_{t}$$

- 51/62页 -

则它的一个误差修正模型为

$$\Delta Y_t = \beta_1 \Delta X_t + \gamma_1 \Delta Z_t - \lambda (Y_{t-1} - \alpha_0 - \alpha_1 X_{t-1} - \alpha_2 Z_{t-1})$$
$$+ \mu_t$$

其中:
$$\lambda=1-\delta$$
 , $\alpha_0=\beta_0/(1-\delta)$, $\alpha_1=(\beta_1+\beta_1)$

$$(\beta_2)/(1-\delta)$$
 , $\alpha_2 = (\gamma_1 + \gamma_2)/(1-\delta)$

- 52/62页 -

(3) 误差修正模型的优点

- 一阶差分项的使用消除了变量可能存在的趋势因素,从而 避免了虚假回归问题;
- 一阶差分项的使用也消除模型可能存在的多重共线性问题;
- 误差修正项的引入保证了变量水平值的信息没有被忽视;
- 由于误差修正项本身的平稳性,使得该模型可以用经典的 回归方法进行估计,尤其是模型中差分项可以使用通常的t 检验与F检验来进行选取。

(一) 格兰杰表述定理

如果变量X和Y是协整的,则它们间的短期非均衡关系总

能由一个误差修正模型表述,即

 $\Delta Y_t = \text{lagged}(\Delta Y, \Delta X) - \lambda \cdot ecm_{t-1} + \mu_t, 0 < \lambda < 1$

其中, ecm是非均衡误差项, λ是短期调整参数。

【注意】模型中没有明确指出X和Y的滞后项数,可以是 多阶滞后;由于一阶差分项是I(0)变量,因此 模型中允许采用X的非滞后差分项ΔX_t。 ● 建立误差修正模型前必须进行协整检验

对于(1,1)阶自回归分布滞后模型

$$Y_t = \beta_0 + \beta_1 X_t + \beta_2 X_{t-1} + \delta Y_{t-1} + \mu_t$$

如果

$$Y_t \sim I(1)$$
, $X_t \sim I(1)$

则

$$\Delta Y_t = \beta_1 \Delta X_t - \lambda (Y_{t-1} - \alpha_0 - \alpha_1 X_{t-1}) + \mu_t$$

中的 $\Delta Y_t \sim I(0)$, $\Delta X_t \sim I(0)$, 于是 , 只有X与Y协整 , 才能保证等式右边也是I(0)。

• 建立误差修正模型的步骤:

第一步: 首先对经济系统进行观察和分析,提出长期均 衡关系假设。

第二步:对变量进行协整分析,以发现变量之间的协整 关系,即检验长期均衡关系假设,并以这种关 系构成误差修正项。

第三步:建立短期模型,将误差修正项看作一个解释变量,连同其它反映短期波动的解释变量一起, 建立短期模型,即误差修正模型。

(二) *EG*两步法

由协整与误差修正模型的关系,可以得到误差修正模型建立的E-G两步法。

第一步:进行协整回归(*OLS*法),检验变量间的协整 关系,估计协整向量(长期均衡关系参数);

第二步:若协整性存在,则以第一步求到的残差作为非均衡误差项加入到误差修正模型中,并用OLS 法估计相应参数。

【例5.2.2】误差修正模型的建立

建立中国居民消费总量 (Y_t) 与总可支配收入 (X_t) 对数序列间的误差修正模型。

第一步: 协整关系检验 (例5.1.1)

中国居民消费总量的对数列与总可支配收入的对数序列是协整的。

第二步:建立误差修正模型

以 lnY_t 关于 lnX_t 的协整回归中的平稳残差序列 e_t 作为误差修正项,可建立如下误差修正模型

$$\Delta ln\hat{Y}_t = 0.521\Delta lnX_t + 0.393\Delta lnY_{t-1} - 0.226e_{t-1}$$
(5. 847) (3. 854) (-2. 174)
 $\bar{R}^2 = 0.3450$

e_{t-1}的参数估计值为负,表明了前一期的非均衡误差对后一期居民消费的修正。

【注意】如果误差修正模型中的 e_{t-1} 的参数估计值为正,模型肯定是错误的。

【注意1】

在进行变量间的协整检验时,如有必要可在协整回

归式中加入趋势项,这时,对残差项的稳定性检验就无

须再设趋势项。

【注意2】

第二步中变量差分滞后项的多少,可以残差项序列

是否存在自相关性来判断,如果存在自相关,则应加入

变量差分的滞后项。

(三)直接估计法(极少用)

用打开误差修正项括号的方法直接用普通最小二乘法估 计误差修正模型。(仍需提前做协整关系检验)

【例】双变量误差修正模型

$$\Delta Y_t = \beta_1 \Delta X_t - \lambda (Y_{t-1} - \alpha_0 - \alpha_1 X_{t-1}) + \mu_t$$

可以打开非均衡误差项的括号直接估计

$$\Delta Y_t = \beta_1 \Delta X_t - \lambda Y_{t-1} + \lambda \alpha_0 + \lambda \alpha_1 X_{t-1} + \mu_t$$

这时, 短期弹性与长期弹性可一并获得。

【注意】用不同方法建立的ECM结果也往往不一样。