Numerical Optimisation: Constraint Optimisation Assignment Project Exam Help

Marta M. Betcke

https://powerl.ag.uk, f.rullan@cs.ucl.ac.uk

Add Votred Media In Ige Booth Coder Centre for Inverse Problems
University College London

Lecture 12

Constraint optimisation problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
 subject to $\left\{ egin{array}{ll} c_i(x) = 0, & i \in \mathcal{E} \\ c_i(x) \geq 0, & i \in \mathcal{I} \end{array}
ight.$ (COP)

- $c_i: \mathbb{R}^n \to \mathbb{R}$: constraint function, assume smooth $i \in \mathcal{E}$ equality constraints, $\begin{array}{c} \text{ here } \text{ is consistent, } \\ \text{ optimisation variable} \end{array}$

Feasible set
$$\Omega$$
 is a set of all points satisfying the constraints
$$A \underset{\Omega}{\text{dot}} \bigvee_{x \in \mathcal{D}: \ c_i(x) = 0, \ i \in \mathcal{E}; \ c_i \geq 0, \ i \in \mathcal{I} \}.$$

Optimal value: $x^* = \inf_{x \in \Omega} f(x)$

- $x^* = \infty$ if (COP) is infeasible i.e. $\Omega = \emptyset$
- $x^* = -\infty$ if (COP) is unbounded below

Examples: smooth constraints

Smooth constraints can describe regions with *kinks*.

Example: 1-norm:

Assignment Project Exam Help

can be described as

*1https://poweoder.com2 < 1.

Example: Convict Power Properties of the power of the po

can be reformulated as

min t, s.t.
$$t \ge x$$
, $t \ge x^2$.

Types of minimisers of constraint problems

A point $x^* \in \Omega$ is a **global minimiser** if

Assignment Project Exam Help

https://powcoder.com

A point $x^{\star} \in \Omega$ is a strict (or strong) local minimiser if

Add WeChat powcoder

A point $x^* \in \Omega$ is an **isolated local minimiser** if

 $\exists \mathcal{N}(x^*) : x^*$ is the only local minimiser in $\mathcal{N}(x^*) \cap \Omega$.

Assignment Project Exam Help

Active set $\mathcal{A}(x)$ at any feasible $x \in \Omega$ consists of the equality constraint indices set \mathcal{E} and the inequality constraints $i \in \mathcal{I}$ for which $\mathbf{R} \in \mathcal{L}$ $\mathbf{POWCOder.com}$

$$\mathcal{A}(x) = \mathcal{E} \cup \{i \in \mathcal{I}: \ c_i(x) = 0\}.$$

At a facility point the frequency of the productive if the strict inequality holds $c_i(x) > 0$.

Single equality constraint

$$\min x_1 + x_2$$
 s.t. $x_1^2 + x_2^2 - 2 = 0$.

The only situation that such s does not exist is if for some scalar λ_1

$$\nabla f(x) = \lambda_1 \nabla c_1(x).$$

Single inequality constraint

$$\min x_1 + x_2$$
 s.t. $2 - x_1^2 - x_2^2 \ge 0$.

Case: x inside the circle, i.e. $c_1(x) > 0$

$$s = -\alpha \nabla f(x)$$

Single inequality constraint

$$\min x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \geq 0.$$

Assignment Project DExam Help

 $0 \leq c_1(x+s) \approx c_1(x) + \nabla c_1(x)^{\mathrm{T}} s$

https://powcoder.com

Decrease direction: (Taylor expansion of f)

Adjustinity of a good and a fpowood of strain to the control of th

Case: x on the boundary of the circle, i.e. $c_1(x) = 0$

$$\nabla f(x)^{\mathrm{T}} s < 0, \quad \nabla c_1(x)^{\mathrm{T}} s \geq 0$$

Empty only if $\nabla f(x) = \lambda_1 \nabla c_1(x)$ for some $\lambda_1 \geq 0$.

Linear independent constraint qualification (LICQ)

Given the point x in the active set $\mathcal{A}(x)$, the linear independent $\mathbf{P}(x)$ is the sex of that in the constraint gradients $\{\nabla c_i(x),\ i\in\mathcal{A}(x)\}$ is linearly independent.

Note that for LICQ to be satisfied, none the the active constraint gradient Laple 0/POWCOGET. COM

Example: LICQ is not satisfied if we define the equality constraint $c_1(x_2^2 + x_2^2 - 2)^2 = 0$ (same feasibility region, different constraint)

There are other constraint qualifications e.g. Slater's conditions for convex problems.

Theorem: 1st order necessary conditions

Lagrangian function

Assignment Project Exam Help Let x be a local solution of (COP) and f and c_i be continuously

differentiable and LICQ hold at x^* . Then there exists a **Lagrange** multiplier λ^* with components λ^* $i \in \mathcal{B} \cup \mathcal{I}$ such that the following Karush-Kuhp Tucker conditions are satisfied at (x^*, λ^*)

Add We ball powcoder powcode powcoder powcode powcoder powcoder powcoder powcoder powcoder powcoder po

$$c_i(x^*) \ge 0, \quad \forall i \in \mathcal{I},$$
 (1c)

$$\lambda^* \ge 0, \quad \forall i \in \mathcal{I},$$
 (1d)

$$\lambda_i^{\star} c_i(x^{\star}) = 0, \quad \forall i \in \mathcal{E} \cup \mathcal{I}.$$
 (1e)

Strong complementarity condition

The complementarity condition (2)(e) can be made stronger.

Assignment of Coject Examping the p KKT conditions (2), the strict complementarity condition holds

if exactly one of λ_i^* and $c_i(x^*)$ is zero for each $i \in \mathcal{I}$. In other words λ_i^* for each $i \in \mathcal{I}$. In other

Strict complementarity makes it easier for the algorithms to identify the active set and converge quickly to the solution.

For a given solution x^* of (COP), there may be many vectors λ^* which satisfy the KKT condition (2). However, if LICQ holds, the optimal λ^* is unique.

Lagrangian: primal problem

For convenience we change (and refine) our notation for the constraint optimisation problem. The following slides are based on Boyd (Convex Optimization I).

Assignment Project Exam Help

The Lagrangian
$$\mathcal{L}$$
 $\mathcal{L}(x, \lambda, \nu) = f(x) + \sum_{i=1}^{R} \lambda_i f_i(x) + \sum_{i=1}^{R} \nu_i h_i(x)$

- λ_i are Lagrange multipliers associated with $f_i(x) \leq 0$
- ν_i are Lagrange multipliers associated with $h_i(x) = 0$

Lagrange dual function

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

Assignment Project Exam Help $= \inf_{x \in \mathcal{D}} \left(f(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x) \right).$ https://powcoder.com

Lower bound property: If $\lambda \geq 0$, then $g(\lambda, \nu) \leq p^{\star}$. Proof A (and) at when $g(\lambda, \nu) \leq p^{\star}$.

$$f(\tilde{x}) \geq \mathcal{L}(\tilde{x}, \lambda, \nu) \geq \inf_{x \in \mathcal{D}} \mathcal{L}(x, \lambda, \nu) = g(\lambda, \nu).$$

Minimising over all feasible \tilde{x} gives $p^* \geq g(\lambda, \nu)$.

Convex problem

Convex problem in standard form Assignment Project Exam Help

subject to $f_i(x) \leq 0$, i = 1, ..., m, https://poweoder.com

- f is convex and \mathcal{D} is convex
- f_i AredordexWeChat powcoder h_i are affine i.e. $a_i^T x = b_i$

Feasibility set Ω of a convex problem is a convex set.

Example: least norm solution of linear equations

$$\min_{x \in \mathbb{R}^n} x^{\mathrm{T}} x$$
subject to $Ax = b$

Assignment Project-Exam Help

- Dual function:
 - $g(\nu) = \inf_{x \in \mathbb{R}^n} \mathcal{L}(x, \nu) = \inf_{x \in \mathbb{R}^n} \left(x^{\mathrm{T}} x + \nu^{\mathrm{T}} (Ax b) \right)$
- https://powcontess.com/gradient equal zero:
- $\begin{array}{ccc} \nabla_{x}\mathcal{L}(x,\nu) = 2x + \mathcal{A}^{\mathrm{T}}\nu = 0 & \Rightarrow & x_{\mathsf{min}} = -1/2\mathcal{A}^{\mathrm{T}}\nu \\ \bullet & \text{chat powcoder} \end{array}$

$$g(\nu) = \mathcal{L}(x_{\min}, \nu) = -\frac{1}{4}\nu A^{\mathrm{T}}A\nu - b^{\mathrm{T}}\nu.$$

g is a concave function of ν .

Lower bound property: $p^* \ge -1/4\nu A^T A \nu - b^T \nu$ for all ν .

Example: standard form LP

$$\min_{x \in \mathbb{R}^n} c^{\mathrm{T}} x$$
subject to $Ax = b, x \ge 0$

Assignment Project Exam Help

 $\mathcal{L}(x,\nu) = c^{\mathrm{T}}x + \nu^{\mathrm{T}}(Ax - b) - \lambda^{\mathrm{T}}x = -b^{\mathrm{T}}\nu + (c + A^{\mathrm{T}}\nu - \lambda)^{\mathrm{T}}x$

- Prattyption://powcoder.com $g(\lambda, \nu) = \inf_{x \in \mathbb{R}^n} \mathcal{L}(x, \lambda, \nu) = \inf_{x \in \mathbb{R}^n} \left(-b^{\mathrm{T}} \nu + (c + A^{\mathrm{T}} \nu \lambda)^{\mathrm{T}} x \right)$
- $\mathcal{L}_{\mathbf{A}}$, disaffly he help at \mathbf{p} \mathbf{p}

Lower bound property: $p^* \ge -b^T \nu$ if $A^T \nu + c \ge 0$.

Example: equality constraint norm minimisation

$$\min_{x \in \mathbb{R}^n} \quad \|x\|$$
subject to $Ax = b$

Assignment Project Exam Help

• $\inf_{x \in \mathbb{R}^n} (\|x\| - y^T x) = 0$ if $\|y\|_{\star} \le 1, -\infty$ otherwise, where If $\|y\|_{\star} \le 1$, then $\|x\| - y^T x \ge 0, \forall x$, with equality if x = 0. If $||y||_{\star} > 1$, choose x = tu, $u : ||u|| \le 1$, $u^{\mathrm{T}}y = ||y||_{\star} > 1$ Add-We@hat.poweoder

• Dual function:

$$g(
u) = \inf_{\mathbf{x} \in \mathbb{R}^n} \mathcal{L}(\mathbf{x},
u) = \left\{ egin{array}{ll} b^{\mathrm{T}}
u, & \|A^{\mathrm{T}}
u\|_\star \leq 1 \\ -\infty, & ext{otherwise} \end{array}
ight.$$

Lower bound property: $p^* \ge b^T \nu$ if $||A^T \nu||_* \le 1$.

Conjugate function

The **conjugate** of function f is

Assignment,
$$P_{x \in \mathcal{D}}$$
 iect. Exam Help

https://powcoder.com

Add WeChat powcoder

 $f(x) = \sup_{x \in \mathcal{D}} (y^Tx - f(x))$

https://powcoder.com

Figure: Boyd, Convex Optimization I

Lagrange dual and conjugate function

$$\min_{x \in \mathbb{R}^n} f(x)$$

Assignment Project Exam Help

Dual function: $\frac{\mathbf{A}}{\mathbf{A}} \underbrace{\mathbf{A}}_{\mathbf{x} \in \mathcal{D}} \underbrace{\mathbf{A}}_{\mathbf{$

Lagrangian: dual problem

Lagrange dual problem

Assignment Project Exam Help

- fattless / power other course dual function
- is a convex optimization problem, we denote its optimal value with ddd WeChat, powcoder
- often simplified by making implicit constraint $(\lambda, \nu) \in \text{dom } g$, explicit

Assignment Project Exam Help always holds (for convex and nonconvex problems)

- can be used to find nontrivial lower bounds for difficult https://powcoder.com

Strong duality: $d^* = p^*$

- does not hold in general hat change characterisms

Slater's constraint qualification

Strong duality holds for a convex problem

Assignment
$$P_{fxo}$$
 ject Exam Help

if it is strictly feasible powcoder.com $\exists x \in \text{int} \mathcal{D}: f_i(x) < 0, \quad i = 1, ..., m, \quad Ax = b$

- can be sharpened: e.g. can replace $int\mathcal{D}$ with $relint\mathcal{D}$ (interior of the affine hull); linear inequalities do not need to hold with strict inequality, ...
- other constraint qualifications exist e.g. LICQ

Example: inequality form LP

Primal problem

Assignment Project Exam Help

$$g(\lambda) = \lim_{t \to \infty} \left(\frac{c}{t} + \frac{A^{T}}{t} \right)^{T} \nabla W^{T} \nabla G = \int_{-b^{T}}^{-b^{T}} \lambda, \quad A^{T}\lambda + c = 0$$

$$\int_{-b^{T}}^{b^{T}} \lambda \nabla G = \int_{-b^{T}}^{b^{T}} \lambda \nabla$$

Add WeChat powcoder

subject to
$$A^{\mathrm{T}}\lambda + c = 0$$
, $\lambda \geq 0$

- From Slater's condition: $p^* = d^*$ if $\exists \tilde{x} : A\tilde{x} < b$
- In fact, $p^* = d^*$ except when primal and dual are infeasible

Example: Quadratic program

Primal problem (assume *P* symmetric positive definite)

$$\min_{x \in \mathbb{R}^n} x^{\mathrm{T}} P x$$

Assignment Project Exam Help Dual function

$$\text{https://powcoder.com}^{g(\lambda)} = \inf_{x \in \mathcal{P}} (x^{\mathrm{T}} P x + \lambda^{\mathrm{T}} (Ax - b)) = -\frac{1}{2} \lambda^{\mathrm{T}} A P^{-1} A^{\mathrm{T}} \lambda - b^{\mathrm{T}} \lambda$$

Dual problem Add WeChat powcoder

• From Slater's condition: $p^* = d^*$ if $\exists \tilde{x} : A\tilde{x} < b$

subject to $\lambda > 0$

• In fact, $p^* = d^*$ always

Example: nonconvex problem with strong duality

Primal problem

Assignment Project Exam Help

 $A \not\succeq 0$ is not positive definite.

Dual https://powcoder.com

$$\begin{array}{l} g(\lambda) = \inf\limits_{x \in \mathbb{R}^n} \left(x^{\mathrm{T}} (A + \lambda I) x + 2b^{\mathrm{T}} x - \lambda \right) \\ Add \ \ We Chat \ powcoder \end{array}$$

- unbounded below if $A + \lambda I \not\succeq 0$ or if $A + \lambda I \succeq 0$ and $b \notin \mathcal{R}(A + \lambda I)$
- otherwise minimised by $x = -(A + \lambda I)^{\dagger} b$: $g(\lambda) = -b^{T}(A + \lambda I)^{\dagger} b - \lambda$

Dual problem

Assignment $\Pr_{b \in \mathcal{R}(A+\lambda I)}^{\max} \operatorname{Exam}_{b \in \mathcal{R}(A+\lambda I)}^{-b^{\mathrm{T}}(A+\lambda I)^{\dagger}b-\lambda}$

and equivalent semidefinite program: $\frac{\text{https://powcoder.com}}{\text{max}} - t - \lambda$

Add Wechaf powcoder

Strong duality although primal problem is not convex (not easy to show).

KKT conditions revisited

Karush-Kuhn-Tucker conditions are satisfied at x^*, ν^*, λ^* i.e.

Assignment Project Exam Help

$$h_i(x^*) = 0, \quad i = 1, \dots, p$$
 [primary constraints] (2b)

$$https://powersteion (2c)$$

$$(2c)$$

$$(2d)$$

$$(2d)$$

$$\lambda_i^{\star} f_i(x^{\star}) = 0, \quad i = 1, \dots, m \quad [\text{complementary slackness}] \quad (2e)$$

Necessary condition: If strong quality noids and x, y, x are optimal, then they must satisfy KKT conditions.

For any problem for which strong duality holds, KKT are necessary conditions.

KKT conditions for convex problem

Sufficient condition: If x^*, ν^*, λ^* satisfy KKT conditions and the problem is convex, then x^*, ν^*, λ^* are primal and dual optimal:

• from complementary slackness: $f(x^*) =$ Assignment Project Exam Help

• $g(\lambda^{\star}, \nu^{\star}) = \inf_{x} \mathcal{L}(x, \lambda^{\star}, \nu^{\star})$ and from the 1st order necessary condition and convexity of f we have that the minimum is that \mathbf{PS}^* , he $\mathbf{QW}, \mathbf{CQ} \mathbf{G}^*$ \mathbf{C}^* \mathbf{C}^* Thus it follows that $f(\mathbf{x}^*) = g(\lambda^*, \nu^*)$.

If Slater's condition is satisfied:

x* is paintain and only it there a sitts p, o Wa Catalog F conditions

- recall that Slater implies strong duality, and that the dual optimum is attained
- generalises optimality condition $\nabla f(x) = 0$ for unconstrained problem