

Question 1

	2. Write down the mode O control words for the following two cases
	(a) Port A = Input port, Port B = not used, Port CU = Input port and
	Port CL = Output port.
	D7 = 1 (mode set flag) Control word! 10011010 = 924
	P6-D5 = OD (Mode O)
	D4 = 1 -7 Port A
	D3 = 1 (Port C upper)
	DR = 0 (POTE & LOWEY)
	DI = 1 (Port B -> Notuled)
	DO = O (Port CL Output)
	b) Port A = Output port, Port B = Input port, Port C = Output port
	Port A = Output (0)
	Post B = Input (1)
	Port 6 - Input (1)
-	Post c = Output -7 PCU = O PCL=O
	Group A mode = 00 Group B Mode = 0
-	137
	Control word: 100 0 0 0 1 0 0
	binary: 10000100 = 84H

Question 2

3. Draw the Interrupt Acknowledge cycles for

(a) RST instruc on

(b) CALL instruc o

Question Number 4

MEMR = 10/M=0 and RD=0 MEMW = 10/M=0 and WR=0 10/M RD WR MEMR MEMW 0 1 0 0 1 0 0 1 1 0 10 1 1 1	5. Sh	WR si	gnals of	PP 80	MEMIN 85	are derived	from 10/M,
10/M RD WR MEMR MEMW 0 1 0 0 1 0 0 1 1 0	ME	MR = 17	0 m = 0	and	RD= O		
0 1 0 0 1 0 0 1 1 0	ME	MW = 1	0/M=0	and	WR = O		
0 0 1 1 0	10/	M RI) WR	MEN	IR N	NEWM	
	0	1	0	0)	
10	0	n	- 1	1		0	
	16	1	0	1		1	
	1	0	1	- 1		1	

Question 5. Design a memory having size $16k \times 8$ from $4k \times 4$ memory modules

