Matouš Trnka swag

Část I

Divná geometrie

1 Projektivní geometrie

1.1 Axiomy

- každé 2 body zadávají právě 1 přímku
- každé 2 přímky se protínají
- existují 3 body neležíí na jedné přímce

Z tohoto plyne:

- každý bod má stejně přímek
- každá přímka má stejně bodů
- je stejně přímek jako bodů $n^2 + n + 1$

2 Afinní rovina

2.1 Axiomy

stejné jako Projektivní geometrie, ale ne každé 2 přímky se musí potkat - existují "rovnoběžky" (právě jedna)

Takže:

- ullet každá přímka má stejný počet bodů n
- každým bodem prochází stejně přímek n+1
- celkem n^2 bodů, $n^2 + n$ přímek

2.2 Příklady

VLOŽTE OBRÁZKY AFFINNÍCH ROVIN PRO N=1, 2, 3, 4

 \bullet vždycky můžeme přímky afinní roviny rozdělit do n kategorií rovnoběžnosti - že vždycky přímky z jedné kategorie jsou navzájem rovnoběžné (ekvivalentní relace)

3 Latinské čtverce

3.1 Motivační úkol od Eulera

 Postavte do čtverce 36 důstojníků z 6 pluků o 6 hodnostech tak, aby v každém řádku i sloupci nebyl dvakrát stejný pluk ani hodnost.

VLOŽTE OBRÁZEK AAAA

• nejde to lol

3.2 Definice

 \bullet Je to n*n čtverec, který musíme zaplnit prvky z n kategorií tak, aby v žádném řádku ani sloupci nebyly dva prvky ze stejné kategorie.

3.3 Počet možností

- Kolik je možností utvořit latinský čtverec pro dané n? Je jich n! * (n-1)! * (n-2)! * ... * 1!
- můžeme to spočítat pomocí perfektních párování bipartitních grafů

AAAAAA VYSVĚTLI TO MAGORE A OBRÁZEK NEJLÉPE

3.4 Vratme se

- Eulerův úkol můžeme vyřešit tak, že zkombinujeme 2 latinské čtverce
- což má nějakou souvislost s afinní rovinou

AAAAAA vybil se mi počítač 1.3., tady zjevena souvislost s afinní rovinou

Část II

Diferenční počet

4 Posloupnosti

• řada čísel idk, jakoby fce ale diskrétní, tj. počitatelné

4.1 Definice

- předpisem pro výpočet prvku je vzorec
- rekursí pro výpočet prvku využíváme hodnoty předchozích prvků
- jako řešení diferenčních rcí (jakože diferenciální, ale diskrétní takže diferenční)

4.2 Operátory na posloupnostech

- unární potřebují jen jeden vstup, např. Δ (diference rozdíl dvou prvků (derivace ekvivalent z fcí)), E (viz níže), umocnění/odmocnění, reciproká hodnota, atd.
- binární potřebují dva vstupy, např. sčítání/odčítání, násobení/dělení, atd.

4.3 Difference - Δ

$$\Delta a_n = a_{n+1} - a_n$$

4.4 Shift operátor - E

$$Ea_n = a_{n+1}$$

Např. M = 1,2,3,..., tak potom E M = 2,3,4,..., můžeme dosadit do diference

$$\Delta a_n = Ea_n - a_n$$

$$\Delta = E - 1$$

 \Rightarrow aritmetika operátorů (fokin pointery v programování, ale v matice) - nepočítám s číslama ale s operacema, tedy takto diference se rovná shift méně jedna, pomocí tohoto operátoru tedy můžeme vyjadřovat diference

4.5 Příklady

- 1. rekurentní posloupnosti převést na předpis
- 2. diferenční rovnice

A zjišťujeme, že když převedem na shift operátor tak je to ten samý problém.

5 Diferenční rovnice

• obecná nehomogenní řádu r:

$$V(\Delta^r a_n, \Delta^{r-1} a_n, ..., \Delta a_n, a_n, n) = 0$$

obecně neumíme řešit

• lineární homogenní diferenční rovnice s konstantními koeficienty:

$$k_r \Delta^r a_n + k_{r-1} \Delta^{r-1} a_n + \dots + k_1 \Delta a_n + k_0 a_n = 0$$

Část III

Vektorové prostory

6 Lineární zobrazení

Def.: $\varphi: V \to U$ je lineární, jestliže:

- $\varphi(x+y) = \varphi(x) + \varphi(y)$
- $\varphi(cx) = c \cdot \varphi(x)$

Část IV

nevim nějaký matice jako rotace

7 $\mathbf{v} \ R^2$

je to celkem zajímavý, dají se tak pěkně znázornit imag. čísla, pěkně definovat ostatní věci (norma, odchylka, vektorový součin) pomocí standardního skalarního součinu

8 v R^3

otázka: jak lze takovou rotaci charakterizovat? ano správně pomocí matice 1) Transformační matice ... báze $\alpha=(e_1,e_2,e_3)$... rotace R jak se píšou matice – odporoučím se na papír

Část V **4tvrtý ročník**

Def.: Relace R je uspořádání, jestliže je:

1. reflexivní: aRa

2. antisymetrická: $aRb \wedge bRa \implies a = b$

3. tranzitivní: $aRb \wedge bRc \implies aRc$

Každé uspořádání se dá zapsat pomocí tzv. Hasseova diagramu

Obrázek 1: Hasseův diagram relace "dělí na \mathbb{N} " pro 1000