Le bandit stochastique à *K* bras

Considérons K bras (actions, choix) définis par des distributions $(v_k)_{1 \le k \le K}$ à valeurs dans [0,1], de loi inconnues. A chaque instant, l'agent choisit un bras $I_t \in \{1, ..., K\}$ et observe une récompense conditionnellement indépendante des récompenses passées générée selon la loi du bras I_t . Son objectif est de maximiser l'espérance de somme des récompenses reçues. Nous notons $\{X_{k,i}\}_{i=1}^{\infty}$ la suite des récompenses (inconnues) associées à chacun des bras (ce sont des variables aléatoires indépendantes et identiquement distribuées).

Notons $\{\mu_k\}_{k=1}^N$ l'espérance de récompense de chaque bras, et $\mu^* = \max_k \mu_k$ l'espérance du meilleur bras. Si l'agent connaissait les lois, il choisirait alors le meilleur bras à chaque instant et obtiendrait une récompense moyenne μ^* Comme il ne connait pas l'espérance des différents bras, il doit explorer les différents bras pour acquérir de l'information (exploration); cette connaissance lui servira ensuite pour agir optimalement (exploitation). Cette stratégie illustre le compromis exploration-exploitation.

Pour évaluer la performance d'une stratégie donnée, on va définir à quelle vitesse cette stratégie permet d'atteindre un taux de récompense moyen optimal. Pour cela on définit le *regret cumulé* à instant *n* :

$$R_n = n\mu^* - \sum_{t=1}^n X_{I_t,t},$$

qui représente la différence en récompenses cumulées entre ce qu'il a obtenu et ce qu'il aurait pu obtenir en moyenne s'il avait joué le bras optimal à chaque itération du jeu. On va étudier une stratégie en cherchant à caluler son regret cumulé moyen : $\mathbb{E}[R_n]$.

1. — Calculer l'espérance du regret en fonction de $\Delta_k = \mu^* - \mu_k$ (la différence entre la performance moyenne du k-ième bras et du bras optimal) et $T_k(n) = \sum_{t=1}^n \mathbb{1}\{I_t = k\}$ le nombre de fois où le k-ième bras est choisi.

Un bon algorithme de bandit devra tirer peu souvent les bras sous-optimaux. Pour analyser les algorithmes de bandits, il est nécessaire de disposer de bornes précises sur les fluctuations des sommes.

Soit Z une variable aléatoire réelle. Pour $\lambda \geq 0$, l'inégalité de Markov implique que

$$\mathbb{P}\{Z \ge t\} \le e^{-\lambda t} \mathbb{E}\left[e^{\lambda Z}\right]$$

Comme cette inégalité est satisfaite pour tout $\lambda \geq 0$, on peut choisir la valeur de λ qui minimise cette borne supérieure. Considérons le logarithme de la fonction génératrice des moments

$$\psi_Z(\lambda) = \ln \mathbb{E}\left[e^{\lambda Z}\right] \text{ pour tout } \lambda \geq 0,$$

et en appelant

$$\psi_Z^*(t) = \sup_{\lambda \ge 0} (\lambda t - \psi_Z(\lambda)) ,$$

nous obtenons l'inégalité de Chernoff

$$P\{Z \ge t\} \le \exp(-\psi_Z^*(t))$$

La fonction ψ_Z^* est appelée la transformée de Cramer de Z. Comme $\psi_Z(0)=0$, ψ_Z^* est une fonction positive. Si $\mathbb{E}[Z]$ existe, la convexité de la fonction exponentielle et l'inégalité de Jensen impliquent que $\psi_Z(\lambda) \geq \lambda \mathbb{E}[Z]$ et donc pour toutes les valeurs négatives de λ , $\lambda t - \psi_Z(\lambda) \leq 0$ whenever $t \geq EZ$. Cela signifie que l'on peut prendre le suprêmum sur $\lambda \in \mathbb{R}$ dans la définition de la transformée de Cramer :

$$\psi_Z^*(t) = \sup_{\lambda \in \mathbb{R}} (\lambda t - \psi_Z(\lambda))$$

L'expression apparaissant dans le terme de droite de l'identité précédent est appelée la *fonction duale de Fenchel-Legendre* de ψ_Z . Pour tout $t \geq \mathbb{E}[Z]$, la transformée de Cramér $\psi_Z^*(t)$ coincide avec la fonction duale de Fenchel-Legendre.

Bien entendu, l'inégalité de Chernoff est triviale si $\psi_Z^*(t) = 0$. C'est le cas lorsque $\psi_Z(\lambda) = \infty$ pour tout λ ou si $t \leq \mathbb{E}[Z]$ (en utilisant encore l'inégalité $\psi_Z(\lambda) \geq \lambda \mathbb{E}[Z]$). Pour obtenir des bornes non triviales, nous supposons dans la suite qu'il existe $\lambda > 0$ tel que $\mathbb{E}\left[e^{\lambda Z}\right] < \infty$.

- 2. 1. Montrer que l'ensemble des valeurs de $\lambda \in \mathbb{R}^+$ telles que $\mathbb{E}\left[e^{\lambda Z}\right] < \infty$ est un intervalle de la forme [0,b) où $0 < b \le \infty$
 - 2. Montrer que ψ_Z est convexe (et même strictement convexe si la variable Z n'est pas constante presque-sûrement) et est infiniment différentiable sur I = (0, b).
 - 3. On suppose que $\mathbb{E}[Z] = 0$. Montrer que ψ_Z est continûment différentiable sur [0, b) et que $\psi_Z'(0) = \psi_Z(0) = 0$
 - 4. Montrer que l'on peut alors écrire la transformée de Cramér $\psi_Z^*(t) = \sup_{\lambda \in I} (\lambda t \psi_Z(\lambda))$.
 - 5. Montrer que

$$\psi_Z^*(t) = \lambda_t t - \psi_Z(\lambda_t)$$

où λ_t est tel que $\psi_Z'(\lambda_t) = t$.

6. Montrer que la fonction ψ'_Z admet une fonction inverse croissante $(\psi'_Z)^{-1}$ sur l'intervalle $\psi'_Z(I) := (0, B)$ et donc que, pour tout $t \in (0, B)$,

$$\lambda_t = (\psi_Z')^{-1}(t)$$

7. Soit Z une variable gaussienne de moyenne nulle et de variance σ^2 . Montrer que

$$P\{Z \ge t\} \le e^{-t^2/(2\sigma^2)}.$$

- 8. Reprendre la question précédente avec une variable de Poisson de paramètre *v*.
- 9. Reprendre la question précédente avec une variable de Bernoulli de paramètre *p*.

Nous supposons dans la suite de l'énoncé que la distribution des récompenses vérifie

$$\ln \mathbb{E}\left[e^{\lambda(X-\mathbb{E}[X])}\right] \le \psi(\lambda) , \qquad (1)$$

$$\ln \mathbb{E}\left[e^{\lambda(\mathbb{E}[X]-X)}\right] \le \psi(\lambda) .$$
(2)

- **3.** Soient $\hat{\mu}_{i,s}$ les moyennes empiriques des récompenses associées au bras i lorsque le bras est tiré s fois.
 - Montrer que

$$\mathbb{P}(\mu_i - \hat{\mu}_{i,s} > \varepsilon) \le e^{-s\psi^*(\varepsilon)}$$

- Montrer que pour tout $\delta \in (0,1)$, avec une probabilité $1-\delta$, nous avons

$$\hat{\mu}_{i,s} + (\boldsymbol{\psi}^*)^{-1}(\frac{1}{s}\ln\frac{1}{\delta}) > \mu_i.$$

La stratégie (α, ψ) -UCB, où $\alpha > 0$ est un paramètre à ajuster, consiste à choisir, lors de l'épisode t,

$$I_t \in \operatorname{argmax}_{i=1,...,K}[\hat{\mu}_{i,T_i(t-1)} + (\psi^*)^{-1}(\frac{\alpha \ln t}{T_i(t-1)})]$$

4. 1. Montrer que l'évènement $\{I_t = i\} = A_{i,t} \cup B_{i,t} \cup C_{i,t}$, où

$$A_{i,t} := \left\{ \hat{\mu}_{i^*, T_{i^*}(t-1)} + (\psi^*)^{-1} \left(\frac{\alpha \ln t}{T_{i^*}(t-1)} \right) \le \mu^* \right\}$$

$$B_{i,t} := \left\{ \hat{\mu}_{i, T_i(t-1)} > \mu_i + (\psi^*)^{-1} \left(\frac{\alpha \ln t}{T_i(t-1)} \right) \right\}$$

$$C_{i,t} := \left\{ T_i(t-1) < \frac{\alpha \ln n}{\psi^*(\triangle_i/2)} \right\}$$

2. On pose

$$u = \lceil \frac{\alpha \ln n}{\psi^*(\triangle_i/2)} \rceil$$

Montrer que

$$\mathbb{E}[T_i(n)] \leq u + \sum_{t=u+1}^n \{ \mathbb{P}(A_{i,t}) + \mathbb{P}(B_{i,t}) \}.$$

3. Montrer que

$$\mathbb{P}(A_{i,t}) \leq \sum_{s=1}^{t} \frac{1}{t^{\alpha}} \sim \frac{1}{t^{\alpha-1}}.$$

- 4. Etablir une borne similaire pour $\mathbb{P}(B_{i,t})$.
- 5. Montrer que

$$\overline{R}_n \leq \sum_{i:\Delta_i>0} \left(\frac{\alpha \Delta_i}{\psi^*(\Delta_i/2)} \ln n + \frac{\alpha}{\alpha-2}\right).$$