Quantile Regression with Univariate Non-Response

Valentina Zangirolami, Marco Zanotti, Muhammad Amir Saeed

University of Milano-Bicocca

Contents

- 1. Introduction
- 2. Data simulation
- 3. Model formulation
- 4. Bootstrap estimators
- 5. Conclusions

1. Introduction

1. Introduction

Main objectives:

1. Introduction

- evaluate the impact of several strategies for missing values
- compare standard and bootstrap estimators when employing imputation methods

2. Data simulation

In this simulation, we assumed:

- ▶ p=2 covariates (X,Z) with $X=(x_1,\ldots,x_n)\sim U(3,8)$ and $Z=(z_1,\ldots,z_n)\sim U(-1,5)$
- \blacktriangleright gaussian errors $\epsilon \sim N(0,1)$, such that

$$y_i^{(j)} = 3x_i - 0.5z_i^{(j)} + \epsilon_i \quad \forall i = 1, \dots, 500$$

3. Model formulation

We considered the following model

$$Y_i = \beta_0 + \beta_1 x_i + \beta_2 z_i + \epsilon_i$$

The coefficients $\beta=(\beta_0,\beta_1,\beta_2)$ can be estimated by minimizing

$$\sum_{i=1}^n \rho_\tau(Y-(\beta_0+\beta_1x_i+\beta_2z_i))$$

where
$$\tau \in (0,1)$$
 and $\rho_{\tau}(u) = (\tau - I(u < 0))u$.

The estimated model corresponds to

$$\hat{Q}_{\tau}(Y|x,z;\hat{\beta}) = \hat{\beta}_{0,\tau} + \hat{\beta}_{1,\tau}x + \hat{\beta}_{2,\tau}z$$

- complete-case analysis
- random imputation
- mean imputation
- median imputation

We estimated the quantile regression model considering the quantiles of order 0.25, 0.5 and 0.75.

	Variable Z: $\tau = 0.25$			Variable Z: $\tau = 0.5$			Variable Z: $\tau = 0.75$		
Method	0%	10%	40%	0 %	10%	40%	0%	10%	40%
no-missing	-0.481			-0.429			-0.486		
	(0.036)			(0.037)			(0.04)		
deletion		-0.477	-0.476		-0.426	-0.451		-0.489	-0.455
		(0.037)	(0.043)		(0.038)	(0.053)		(0.042)	(0.059)
$_{\rm sample}$		-0.42	-0.343		-0.398	-0.289		-0.445	-0.21
		(0.038)	(0.046)		(0.039)	(0.047)		(0.043)	(0.05)
mean		-0.458	-0.449		-0.429	-0.452		-0.479	-0.476
		(0.038)	(0.045)		(0.039)	(0.051)		(0.042)	(0.058)
median		-0.458	-0.449		-0.429	-0.451		-0.475	-0.463
		(0.038)	(0.046)		(0.039)	(0.051)		(0.042)	(0.057)

Table 1. Estimates of regression coefficients related to Z and their standard errors (within the brackets) for each percentage of missing values and non-response method

	Variable X: $\tau = 0.25$			Variable X: $\tau = 0.5$			Variable X: $\tau = 0.75$		
Method	0%	10%	40%	0%	10%	40%	0%	10%	40%
no-missing	3.012			3.02			2.938		
	(0.045)			(0.044)			(0.046)		
deletion		3.015	3.029		3.019	3.023		2.93	2.918
		(0.037)	(0.06)		(0.046)	(0.063)		(0.048)	(0.064)
$_{\rm sample}$		2.976	2.907		3.01	3.014		2.959	3.047
		(0.048)	(0.055)		(0.045)	(0.052)		(0.047)	(0.054)
mean		2.995	2.927		3.016	3.022		2.942	3.028
		(0.046)	(0.054)		(0.045)	(0.048)		(0.047)	(0.05)
median		2.995	2.929		3.016	3.027		2.946	3.012
		(0.046)	(0.054)		(0.045)	(0.048)		(0.047)	(0.049)

Table 2. Estimates of regression coefficients related to X and their standard errors (within the brackets) for each percentage of missing values and non-response method

4. Bootstrap Estimators

Let D = (y, x, z) be the incomplete dataset.

For each repetition $b = 1, \dots, 200$,

- \blacktriangleright we built a bootstrap sample D^* from D
- \blacktriangleright each value of D^*_{miss} was replaced by a single value following the chosen imputation method

Bootstrap estimates:

regression coefficients

$$\hat{\beta}_{\tau}^* = \frac{1}{B} \sum_{b=1}^{B} \hat{\beta}_{\tau;b}^*$$

standard errors

$$se^*(\hat{\beta}_{\tau}^*) = \sqrt{\frac{1}{B-1} \sum_{b=1}^{B} (\hat{\beta}_{\tau;b}^* - \hat{\beta}_{\tau}^*) (\hat{\beta}_{\tau;b}^* - \hat{\beta}_{\tau}^*)^T}$$

We finally compute the coverage for β_{τ} as

$$p(\hat{\beta}_{\tau}^* - z_{\alpha/2} s e^*(\hat{\beta}_{\tau}^*) < \beta_{\tau} < \hat{\beta}_{\tau}^* + z_{\alpha/2} s e^*(\hat{\beta}_{\tau}^*))$$

	Variable Z	$: \tau = 0.25$	Variable !	Z: $\tau = 0.5$	Variable Z: $\tau = 0.75$		
Method	10%	40%	10%	40%	10%	40%	
sample	-0.428	-0.308	-0.408	-0.308	-0.45	-0.264	
	(0.041 - 0.955)	(0.042 - 0.965)	(0.036 - 0.945)	(0.038 - 0.945)	(0.042 - 0.955)	(0.057 - 0.96)	
mean	-0.457	-0.453	-0.433	-0.457	-0.482	-0.48	
	(0.04 - 0.965)	(0.04 - 0.94)	(0.038 - 0.95)	(0.047 - 0.96)	(0.043 - 0.96)	(0.065 - 0.975)	
median	-0.459	-0.45	-0.434	-0.455	-0.483	-0.473	
	(0.039 - 0.96)	(0.037 - 0.95)	(0.038 - 0.955)	(0.046 - 0.955)	(0.044 - 0.96)	(0.064 - 0.975)	

Table 3. Bootstrap estimates of regression coefficients (standard errors - coverage) related to Z for each percentage of missing values and imputation method

	Variable X: $\tau = 0.25$		Variable Y	$\tau = 0.5$	Variable X: $\tau = 0.75$		
Method	10%	40%	10%	40%	10%	40%	
sample	2.974	2.916	3.009	3.029	2.959	3.03	
	(0.048 - 0.98)	(0.05 - 0.95)	(0.033 - 0.95)	(0.04 - 0.955)	(0.049 - 0.95)	(0.05 - 0.955)	
mean	2.979	2.933	3.011	3.027	2.963	3.014	
	(0.05 - 0.97)	(0.047 - 0.94)	(0.032 - 0.935)	(0.033-0.96)	(0.045 - 0.945)	(0.052 - 0.96)	
median	2.98	2.93	3.011	3.03	2.961	3.021	
	(0.049 - 0.975)	(0.05 - 0.95)	(0.031 - 0.94)	(0.033 - 0.94)	(0.044 0.945)	$(0.049 \hbox{-} 0.945)$	

Table 4. Bootstrap estimates of regression coefficients (standard errors - coverage) related to X for each percentage of missing values and imputation method

5. Conclusions

We investigated the impact of univariate non-response in quantile regression and we concluded that:

- ▶ the listwise deletion method yields estimates closely to those obtained with the complete dataset
- ▶ the other imputation methods provide less accurate estimates
- the sample imputation method exhibits really different estimates
- the analysis of bootstrap estimators indicates that some standard errors increased due to the additional variability introduced by the imputation method.

Bibliografy

Nicolini G., Marasini D., Montanari G.E., Pratesi M., Ranalli M.G., and Rocco E.: Metodi inferenziali in presenza di mancate risposte parziali. In: Metodi di stima in presenza di errori non campionari (2013). UNITEXT. Springer, Milano.

Little J.A., and Rubin D.: Statistical Analysis With Missing Data. 2nd Edition. Wiley Series in Probability and Statistics Book (2002)

Koenker, R.: Quantile Regression. Econometric Society Monographs. Cambridge University Press (2005)

Thank you!