EE774 - Lab 5

For all the problems below, please adhere to the following:

- Put each C++ source file in a separate directory, such as prob1, prob2 etc.
- Add a Makefile in each directory to build the source code
- Try to accept the file input as a command line argument. Examples have been provided in class.
- Submit the assignment as a single zip or tar.gz file with all the subdirectories.
- 1. (10 points) Solve the questions below.
 - a. Write a C++ program using Armadillo that generates a 4×4 matrix whose entries are real and Gaussian distributed. Then, using its SVD, find the best rank 1, rank 2 and rank 3 approximations, along with the corresponding norm errors, and print these onto the screen. That is, inspect the matrices $\sigma_1 u_1 v_1^T$, $\sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T$ and $\sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \sigma_3 u_3 v_3^T$, where $\sigma_1 \geq \sigma_2 \geq \sigma_3 \geq \sigma_4$ are the singular values.
 - b. Check that each of these matrices added in computing the successive rank summations are rank 1 and orthogonal. In addition, evaluate $u_i v_i^T (u_j v_j^T)^T$ for $i \neq j$. What do you observe?
- 2. (20 points) In class, we used a Vandermonde matrix based approach to find the polynomial of best fit. We will now use the following approach to learn more about Vandermonde matrices. The included data.txt has n+1 points (x_i, y_i) with x_i mutually distinct. Construct a Vandermonde matrix (square) to use it for interpolating a polynomial of degree n that interpolates through the given points. The following are the steps that you can follow:
 - a. Read the columns of data.txt that has M entries. The first column has the x_i values and the second column has the corresponding y_i values.
 - b. Construct the Vandermonde matrix using x_i , viz. $[X_{ij}] = x_i^{j-1}$. What is the rank of this matrix? Also find the condition number.
 - c. We are now going to solve the equation using approximations of the matrix X. Let the SVD of X yield matrices U, Σ and V such that $X = U\Sigma V^T$, where these matrices have their usual meanings. Construct the matrix \hat{X} from X by setting all but the r largest entries in Σ 's diagonal as zero, where

r is the rank of X. What do you observe?

Note: use the solve function, since that solves linear equations even for the rank deficient cases.