<матан, 4 сем>

Лектор: А. А. Лодкин Записал :ta_xus

2 июня 2017 г.

Оглавление

\$1 Системы множеств \$2 Борелевская сигма-алгебра \$3 Мера. \$4 Свойства мены \$5 Объём в В" Мера Лебега \$6 Измеримые функции \$7 Интеграл по мере \$8 Теорема Бению Леви \$9 Свойства интеграла от суммируемых функций \$10 Счётная адлитивность интеграла \$11 Абсолютная непрерывность интеграла \$12 Интеграл от непрерывной функции по мере Лебега \$13 Сравнение несобственного интеграла и интеграла Лебега \$14 Сравнение несобственного интеграла и интеграла Лебега \$15 Интеграл от дискретной мере и мере, задаваемой плотностью Мера Лебега-Стилтъесь. Интеграл по распределению \$17 Интеграл По дискретной мере и мере, задаваемой плотностью \$18 Мера Лебега-Стилтъесь. Интеграл по распределению \$17 Интеграл Эйлера-Пуассона \$18 Вероятностный сывси мемы \$19 Геометрический сымсат меры Лебега. Принцип Кавальери \$20 Сведение кратного интеграла к повторному \$21 Мера Лебега и аффинивые преобразования \$22 Мера образа при гладком отображении \$23 Глакая замена переменной в интеграла. \$24 Предельный переход под знаком интеграла. \$25 Теорема Лебега об ограниченной сходимости \$26 Равномерная сходимость несобственного параметрического интеграла. Признаки \$27 Несобственные интегралы с параметром и операции анализа над параметром (※) \$28 Г-функция Эйлера \$30 Объём п-мерного шара 2 Дифференциальная геометрия (※) \$1 Регулярная кривая и её естественная параметризация \$4 Формулы Френе \$5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма \$6 Вычисление длин и площадей на поверхности \$7 Вгорая квадратичная форма \$8 Нормальная кривизна в данном направлении. Главные кривизны \$9 Рауссова кривизна поверхности. Теорема Гаусса \$10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье (※) \$1 Гильбертово пространство. С₂ \$2 Ортоговальные системы. Рад Фурье в гильбертовом пространстве.	1	_	меры и интегралы по мере
\$ 1 Мера \$ 4 Свойства меты \$ 5 Объём в R³ Мера Лебега \$ 6 Измеримые функции \$ 7 Интеграл по мере \$ 8 Теорема Беппо Ле́ви \$ 9 Свойства интеграла от суммируемых функций \$ 10 Счётная аддитивность интеграла \$ 11 Абсолютная непрерывность интеграла \$ 12 Интеграл от непрерывность интеграла \$ 12 Интеграл от непрерывной функции по мере Лебега \$ 13 Сравнение подходов Римана и Лебега \$ 14 Сравнение подходов Римана и Лебега \$ 15 Интеграл по дискретной мере и мере, задаваемой плотпостью \$ 16 Мера Лебега-Стилтьеса. Интеграла по распределению \$ 17 Интеграл Эйлера-Пуассона \$ 18 Вероятностный смысл мемы \$ 19 Геометрический смысл меры Лебега. Принцип Кавальери \$ 20 Сведение кратного интеграла к повторному \$ 21 Мера Лебега и аффинные преобразования \$ 22 Мера образа при гладком отобразования \$ 23 Глакая замена переменной в интеграла \$ 24 Предельный переход под знаком интеграла \$ 25 Теорема Лебега отод знаком интеграла \$ 26 Равномерная сходимость несобственного параметрического интеграла. Признаки \$ 27 Несобственные интегралы с параметром и операции анализа над параметром (※) \$ 28 Г-функция Эйлера \$ 29 В-функция \$ 30 Объём п-мерного шара 2 Дифференциальная геометрия (※) \$ 1 Регулярная кривая и её естественная параметризация \$ 2 Кривизна кривой \$ 3 Кручение и нормаль \$ 4 Формулы Френе \$ 5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма \$ 8 Вначисление длин и площадей на поверхности \$ 6 Вычисление длин и площадей на поверхности. \$ 7 Рабова кривизны в данном направлении. Главные кривизны \$ 9 Гауссова кривизна в данном направлении. Главные кривизны \$ 9 Гауссова кривизна поверхности. Теорема Гаусса \$ 1 Гильбергово пространство. L2 8 Анализ Фурье (※) \$ 1 Гильбергово пространство. L2			
\$4 Свойства мешы \$5 Объём в R*. Мера Лебега \$6 Измеримые функции \$7 Интеграл по мере \$8 Теорема Вешо Лібви \$9 Свойства интеграла от суммируемых функций \$10 Счётная аддитивность интеграла \$11 Абсолотная непрерывность интеграла \$12 Интеграл от непрерывность интеграла \$13 Сравнение подходов Римана и Лебега \$14 Сравнение подходов Римана и Лебега \$15 Интеграл по дискретного интеграла и интеграла Лебега \$16 Мера Лебега-Стилтьеса. Интеграл по распределению \$17 Интеграл Эйлера-Пуассона \$18 Вероятностный смысл меыы \$19 Геометрический смысл мены Лебега. Принцин Кавальери \$20 Сведение кратного интеграла к повторному \$21 Мера Лебега и аффицикы спрасования \$22 Мера образа при гладком отображении \$23 Глакая замена переменной в интеграла \$24 Предельный переход под знаком интеграла \$25 Теорема Лебега об ограниченной сходимости \$26 Равномерная сходимость несобственного параметрического интеграла. Признаки \$27 Несобственные интегралы с параметром и операции анализа над параметром (※) \$28 Г-функция Эйдера \$29 В-функция \$30 Объём п-мерного шара \$4 Формулы Фрепе \$5 Регулярная кривая п сё естественная параметризация \$6 Вачисление длин и площадей на поверхности \$7 Вгорак квадратичная форма \$8 Нормальная кривизна в данном направлении. Главные кривизны \$9 Геосова кривизна в данном направлении. Главные кривизны \$9 Росова кривизна поверхности. Теорема Гаусса \$10 Гильбергово пространство. L₂ 8 Анализ Фурье (※) \$1 Гильбергово пространство. L₂			Борелевская сигма-алгебра
\$5 Объём в R**. Мера Лебега \$6 Измеримые функции \$7 Интеграл по мере \$8 Теорема Беппо Ле́ви \$9 Свойства интеграла от суммируемых функций \$10 Счётная аддитивность интеграла \$11 Абсолютная инпеграла от непрерывность интеграла \$12 Интеграл от непрерывность интеграла \$13 Интеграл от непрерывной функции по мере Лебега Сравнение подходов Римана и Лебега \$14 Сравнение песобственного интеграла и интеграла Лебега \$15 Интеграл по дискретной мере и мере, задаваемой плотностью \$16 Мера Лебега-Стилтьеса. Интеграл по распределению \$17 Интеграл Эйлера-Пуассова \$18 Вероятностный смысл мемы \$19 Геометрический смысл меры Лебега. Припции Кавальери \$20 Сведение кратного интеграла к повторному \$21 Мера Лебега и аффинные преобразования \$22 Мера образа при гладком отображении \$23 Глакая замена переменной в интеграла \$24 Предельный переход под знаком интеграла \$25 Теорема Лебега об ограниченной сходимости \$26 Равномерная сходимость несобственного параметрического интеграла. Признаки \$27 Несобственные интегралы с параметром и операции анализа над параметром ⟨≾⟩ \$28 Г-функция Эйлера \$29 В-функция \$30 Объём п-мерного шара 2 Дифференциальная геометрия ⟨Ӽ⟩ \$1 Регулярная кривая и её естественная параметризация \$2 Кривизна кривой \$3 Кручение и нормаль \$4 Формулы Фрепе \$5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма \$6 Вычисление длин и площадей на поверхности \$7 Вгорая квадратичная форма \$8 Нормальная кривизна в данном направлении. Главные кривизны \$9 Гауссова кривизна поверхности. Теорема Гаусса \$10 Геолезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье (Ӽ) \$1 Гильбертово пространство. £2		$\S 3$	Mepa
\$6 Измеримые функции \$7 Интеграл по мере \$8 Теорема Бешю Ле́ви \$9 Свойства интеграла от суммируемых функций \$10 Сче́твая аддитивность интеграла \$11 Абсолютная непрерывность интеграла \$12 Интеграл от непрерывност функции по мере Ле́бега \$13 Сравнение песдоственного интеграла и интеграла Ле́бега \$14 Сравнение несобственного интеграла и интеграла Ле́бега \$15 Интеграл по дискретной мере и мере, задаваемой плотностью \$16 Мера Ле́бега-Стилтьеса. Интеграл по распределению \$17 Интеграл Эйлера-Пуассона \$18 Вероятпостный смысл мемы \$19 Геометрический смысл мемы \$19 Геометрический смысл меры Ле́бега. Принцип Кавальери \$20 Сведение кратного интеграла к повторному \$21 Мера Ле́бега и аффинные преобразования \$22 Мера образа при гладком отображении \$23 Глакая замена переменной в интеграла \$24 Предельный переход под знаком интеграла \$25 Теорема Ле́бега об ограниченной сходимости \$26 Равномерная сходимость несобственного параметрического интеграла. Признаки \$27 Несобственные интегралы с параметром и операции анализа над параметром ⟨ℜ⟩ \$28 Г-функция Эйлера \$29 В-функция \$30 Объём л-мерного шара \$4 Формулы Френе \$5 Регулярная кривая и её естественная параметризация \$6 Кривана кривой \$6 Вычисление длин и площадей на поверхности \$7 Вгорая квадратичная форма \$8 Нормальная кривизи в данном направлении. Главные кривизны \$9 Гауссова кривизна поверхность. Теорема Гаусса \$10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье ⟨ℜ⟩ \$1 Гильбертово пространство. £2		$\S4$	Свойства меты
 § 7 Интеграл по мере § 8 Теорема Бешпо Ле́ви § 9 Съойства интеграла от суммируемых функций § 10 Счётная аддитивность интеграла § 11 Абсолютная непрерывность интеграла § 12 Интеграл от непрерывность интеграла § 13 Сравнение подходов Римана и Лебега § 14 Сравнение песобственного интеграла и интеграла Лебега § 15 Интеграл по дискретной мере и мере, задаваемой плотностью § 16 Мера Лебега-Стилтьеса. Интеграл по распределению § 17 Интеграл Эйлера-Пуассона § 18 Вероятностный смысл мемы § 19 Геометрический смысл меры Лебега. Принцип Кавальери § 20 Сведение кратного интеграла к повторному § 21 Мера Лебега и аффинные преобразования § 22 Мера образа при гладком отображении § 23 Глакая замена переменной в интеграла § 24 Предельный переход под знаком интеграла § 25 Теорема Лебега об ограниченной сходимости § 26 Равномерная сходимость несобственного параметрического интеграла. Признаки § 27 Несобственные интегралы с параметром и операции анализа над параметром (※) § 28 Г-функция Эйлера § 29 В-функция § 30 Объём п-мерного шара 2 Дифференциальная геометрия (※) § 1 Регулярная кривай и её естественная параметризация § 2 Кривизна кривой § 3 Кручение и нормаль форма § 6 Бычисление длин и площадей на поверхности § 7 Вгорая квадратичная форма § 8 Нормальная кривизна в данном направлении. Главные кривизны § 9 Гауссова кривизна в данном направлении. Главные кривизны § 9 Гауссова кривизна поверхности. Теорема Гаусса § 1 Реолейческая кривизна. Теорема Гаусса-Воние. 3 Анализ Фурье (※) § 1 Гильбертово пространство. £2 		§ 5	Объём в \mathbb{R}^n . Мера Лебега
\$8 Теорема Бешпо Леви \$9 Свойства интеграла от суммируемых функций \$10 Счетная аддигивность интеграла \$11 Абсолютная непрерывность интеграла \$12 Интеграл от непрерывной функции по мере Лебета \$13 Сравнение подходов Римава и Лебета \$14 Сравнение песобственного интеграла и интеграла Лебега \$15 Интеграл по дискретной мере и мере, задаваемой плотностью \$16 Мера Лебега-Стилтьеса. Интеграл по распределению \$17 Интеграл Эйлера-Пуассона \$18 Вероятностный смысл меры Лебега. Принцип Кавальери \$20 Сведение кратного интеграла к повторному \$21 Мера Лебега и аффинпые преобразования \$22 Мера образа при гладком отображении \$23 Глакая замена переменной в интеграла \$24 Предельный переход под знаком интеграла \$25 Георема Лебега об ограниченной сходимости \$26 Равномерная сходимость несобственного параметрического интеграла. Признаки \$27 Несобственные интегралы с параметром и операции анализа над параметром ⟨%⟩ \$28 Г-функция Эйлера \$29 В-функция \$30 Объём п-мерного шара \$2 Дифференциальная геометрия ⟨%⟩ \$1 Регулярная кривая и её естественная параметризация. \$2 Кривизна кривой \$3 Кручеше и пормаль \$4 Формулы Френе \$5 Регуларная поверхность. Касательная плоскость. Первая квадратичная форма \$6 Вычисление длии и площадей на поверхности \$7 Вгорая квадратичная форма \$8 Нормальная кривизна в данном направлении. Главные кривизны \$9 Гауссова кривизна поверхности Теорема Гаусса \$10 Геодезическая кривизна. Теорема Гаусса		§ 6	Измеримые функции
\$8 Теорема Бешпо Леви \$9 Свойства интеграла от суммируемых функций \$10 Счетная аддигивность интеграла \$11 Абсолютная непрерывность интеграла \$12 Интеграл от непрерывной функции по мере Лебета \$13 Сравнение подходов Римава и Лебета \$14 Сравнение песобственного интеграла и интеграла Лебега \$15 Интеграл по дискретной мере и мере, задаваемой плотностью \$16 Мера Лебега-Стилтьеса. Интеграл по распределению \$17 Интеграл Эйлера-Пуассона \$18 Вероятностный смысл меры Лебега. Принцип Кавальери \$20 Сведение кратного интеграла к повторному \$21 Мера Лебега и аффинпые преобразования \$22 Мера образа при гладком отображении \$23 Глакая замена переменной в интеграла \$24 Предельный переход под знаком интеграла \$25 Георема Лебега об ограниченной сходимости \$26 Равномерная сходимость несобственного параметрического интеграла. Признаки \$27 Несобственные интегралы с параметром и операции анализа над параметром ⟨%⟩ \$28 Г-функция Эйлера \$29 В-функция \$30 Объём п-мерного шара \$2 Дифференциальная геометрия ⟨%⟩ \$1 Регулярная кривая и её естественная параметризация. \$2 Кривизна кривой \$3 Кручеше и пормаль \$4 Формулы Френе \$5 Регуларная поверхность. Касательная плоскость. Первая квадратичная форма \$6 Вычисление длии и площадей на поверхности \$7 Вгорая квадратичная форма \$8 Нормальная кривизна в данном направлении. Главные кривизны \$9 Гауссова кривизна поверхности Теорема Гаусса \$10 Геодезическая кривизна. Теорема Гаусса		§ 7	Интеграл по мере
\$ 9 Свойства интеграла от суммируемых функций \$ 10 Счётная аддитивность интеграла \$ 11 Абсологная непрерывность интеграла \$ 12 Интеграл от непрерывность интеграла \$ 12 Интеграл от непрерывной функции по мере Лебега \$ 13 Сравнение подходов Римана и Лебега \$ 14 Сравнение несобственного интеграла и интеграла Лебега \$ 15 Интеграл по дискретной мере и мере, задаваемой плотностью \$ 16 Мера Лебега-Стилтьсса. Интеграл по распределению \$ 17 Интеграл Эйлера-Пуассона \$ 18 Вероятностный смысл мемы \$ 19 Геометрический смысл меры Лебега. Принции Кавальери \$ 20 Сведение кратного интеграла к повторному \$ 21 Мера Лебега и аффинные преобразования \$ 22 Мера образа при гладком отображении \$ 23 Глакая замена переменной в интеграла \$ 24 Предельный переход под знаком интеграла \$ 25 Теорема Лебега об ограниченной сходимости \$ 26 Равиомерная сходимость песобственного параметрического интеграла. Признаки \$ 27 Несобственные интегралы с параметром и операции апализа над параметром (※) \$ 28 Г-функция Эйлера \$ 29 В-функция \$ 30 Объём л-мерного шара 2 Дифференциальная геометрия (※) \$ 1 Регулярная кривая и её естественная параметризация \$ 4 Формулы Френе \$ 5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма \$ 6 Вычисление длин и площадей на поверхности \$ 7 Вторая квадратичная форма \$ 8 Нормальная кривизна и данном направлении. Главные кривизны \$ 9 Гауссова кривизна поверхности. Теорема Гаусса \$ 10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье (※) \$ 1 Гильбертово пространство. £ 2		-	
\$10 Счётная аддигивность интеграла \$11 Абсолютная пепрерывность интеграла \$12 Интеграл от непрерывной функции по мере Лебега \$13 Сравнение подходов Римана и Лебега \$14 Сравнение подходов Римана и Лебега \$15 Интеграл по дискретной мере и мере, задаваемой плотностью \$16 Мера Лебега-Стилтьсса. Интеграл и интеграла Лебега \$17 Интеграл Эйлера-Пуассона \$18 Вероятностный смысл мемы \$19 Геометрический смысл меры Лебега. Принции Кавальери \$20 Сведение кратного интеграла к повторному \$21 Мера Лебега и аффинные преобразования \$22 Мера Образа при гладком отображении \$23 Глакая замена переменной в интеграла \$24 Предельный переход под знаком интеграла \$25 Гаорема Лебега об ограниченной сходимости \$26 Равномерная сходимость несобственного параметрического интеграла. Признаки \$27 Несобственные интегралы с параметром и операции анализа над параметром (Ж) \$28 Г-функция Эйлера \$29 В-функция \$30 Объём п-мерного шара 2 Дифференциальная геометрия (Ж) \$1 Регулярная кривой \$3 Кручение и нормаль \$4 Формулы Френе \$5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма \$6 Вычисление длин и площадей на поверхности \$7 Вторая квадратичная форма \$8 Нормальная кривизна в данном направлении. Главные кривизны \$9 Гауссова кривизна поверхности. Теорема Гаусса \$10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье (Ж) \$1 Гильбергово пространство. £2			
\$11 Абсолютная непрерывность интеграла \$12 Интеграл от непрерывной функции по мере Лебега \$13 Сравнение подходов Римана и Лебега \$14 Сравнение несобственного интеграла и интеграла Лебега \$15 Интеграл по дискретной мере и мере, задаваемой плотностью \$16 Мера Лебега-Стилтьеса. Интеграл по распределению \$17 Интеграл Эйлера-Пуассона \$18 Вероятностный смысл мемы \$19 Геометрический смысл меры Лебега. Принцип Кавальери \$20 Сведение кратного интеграла к повторному \$21 Мера Лебега и аффинные преобразования \$22 Мера образа при гладком отображении \$23 Глакая замена переменной в интеграла \$24 Предельный переход под знаком интеграла \$25 Теорема Лебега об ограниченной сходимости \$26 Равномерная сходимость несобственного параметрического интеграла. Признаки \$27 Несобственные интегралы с параметром и операции анализа над параметром (Ж) \$28 Г-функция Эйлера \$29 В-функция \$30 Объём п-мерного шара 2 Дифференциальная геометрия (Ж) \$1 Регулярная кривая и её естественная параметризация \$2 Кривизна кривой \$3 Кручение и нормаль \$4 Формулы Френе \$5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма \$6 Вычисление длин и площадей на поверхности \$7 Вторая квадратичная форма \$8 Нормальная кривизна в данном направлении. Главные кривизны \$9 Гауссова кривизна поверхности. Теорема Гаусса \$10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье (Ж) \$1 Гильбергово пространство. £2			
\$12 Интеграл от непрерывной функции по мере Лебега \$13 Сравнение подходов Римана и Лебега \$14 Сравнение несобственного интеграла и интеграла Лебега \$15 Интеграл по дискретной мере и мере, задаваемой плотностью \$16 Мера Лебега-Стилтьеса. Интеграл по распределению \$17 Интеграл Эйлера-Пуассона \$18 Вероятностный смысл меры Лебега. Принцип Кавальери \$19 Геометрический смысл меры Лебега. Принцип Кавальери \$20 Сведение кратного интеграла к повторному \$21 Мера Лебега и аффинные преобразования \$22 Мера образа при гладком отображении \$23 Глакая замена переменной в интеграле \$24 Предельный переход под знаком интеграла \$25 Теорема Лебега об ограниченной сходимости \$26 Равномерная сходимость несобственного параметрического интеграла. Признаки \$27 Несобственные интегралы с параметром и операции анализа над параметром ⟨★⟩ \$28 Г-функция Эйлера \$29 В-функция \$30 Объём п-мерного шара 2 Дифференциальная геометрия ⟨★⟩ \$1 Регулярная кривая и её естественная параметризация \$2 Кривизна кривой \$3 Кручение и нормаль \$4 Формулы Френе \$5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма \$6 Вычисление длин и площадей на поверхности \$7 Вторая квадратичная форма \$8 Нормальная кривизна в данном направлении. Главные кривизны \$9 Гауссова кривизна поверхности. Теорема Гаусса \$10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье ⟨★⟩ \$1 Гильбертово пространство. £2		-	
\$13 Сравнение подходов Римана и Лебега \$14 Сравнение несобственного интеграла и интеграла Лебега \$15 Интеграл по дискретной мере и мере, задаваемой плотностью \$16 Мера Лебега-Стилтьеса. Интеграл по распределению \$17 Интеграл Эйлера-Пуассона \$18 Вероятностный смысл мемы \$19 Геометрический смысл мемы \$20 Сведение кратного интеграла к повторному \$21 Мера Лебега и аффинные преобразования \$22 Мера образа при гладком отображении \$23 Глакая замена переменной в интеграла \$24 Предельный переход под знаком интеграла \$25 Теорема Лебега об ограниченной сходимости \$26 Равномерная сходимость несобственного параметрического интеграла. Признаки \$27 Несобственные интегралы с параметром и операции анализа над параметром ⟨ℜ⟩ \$28 Г-функция Эйлера \$30 Объём п-мерного шара 2 Дифференциальная геометрия ⟨ℜ⟩ \$1 Регулярная кривая и её естественная параметризация \$2 Кривизна кривой \$3 Кручение и пормаль \$4 Формулы Френе \$5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма \$6 Вычисление длин и площадей на поверхности \$7 Вторая квадратичная форма \$8 Нормальная кривизна в данном направлении. Главные кривизны \$9 Гауссова кривизна поверхности. Теорема Гаусса \$10 Геодезическая кривизна. Теорема Гаусса-Боине. 3 Анализ Фурье ⟨ℜ⟩ \$1 Гильбертово пространство. L₂		-	
\$14 Сравнение несобственного интеграла и интеграла Лебега \$15 Интеграл по дискретной мере и мере, задаваемой плотностью \$16 Мера Лебега-Стилтьеса. Интеграл по распределению \$17 Интеграл Эйлера-Пуассона \$18 Вероятностный смысл мемы \$19 Геометрический смысл мемы \$20 Сведение кратного интеграла к повторному \$21 Мера Лебега и аффинные преобразования \$22 Мера образа при гладком отображении \$23 Глакая замена переменной в интеграла \$24 Предельный переход под знаком интеграла \$25 Теорема Лебега об ограниченной сходимости \$26 Равномерная сходимость несобственного параметрического интеграла. Признаки \$27 Несобственные интегралы с параметром и операции анализа над параметром ⟨★⟩ \$28 Г-функция Эйлера \$29 В-функция \$30 Объём п-мерного шара 2 Дифференциальная геометрия ⟨★⟩ \$1 Регулярная кривая и её естественная параметризация \$2 Кривизна кривой \$3 Кручение и нормаль \$4 Формулы Френе \$5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма \$6 Вычисление длин и площадей на поверхности \$7 Вторая квадратичная форма \$8 Нормальная кривизна в данном направлении. Главные кривизны \$9 Гауссова кривизна поверхности. Теорема Гаусса \$10 Геодезическая кривизна. Теорема Гаусса-Боине. 3 Анализ Фурье ⟨★⟩ \$1 Гильбертово пространство. £2		•	
\$15 Интеграл по дискретной мере и мере, задаваемой плотностью \$16 Мера Лебега-Стилтьеса. Интеграл по распределению \$17 Интеграл Эйлера-Пуассона. \$18 Вероятностный смысл мемы \$19 Геометрический смысл меры Лебега. Принцип Кавальери \$20 Сведение кратного интеграла к повторному \$21 Мера Лебега и аффинные преобразования \$22 Мера образа при гладком отображении \$23 Глакая замена переменной в интеграле \$24 Предельный переход под знаком интеграла \$25 Теорема Лебега об ограниченной сходимости \$26 Равномерная сходимость несобственного параметрического интеграла. Признаки \$27 Несобственные интегралы с параметром и операции анализа над параметром ⟨ℜ⟩ \$28 Г-функция Эйлера \$29 В-функция \$30 Объём п-мерного шара 2 Дифференциальная геометрия ⟨ℜ⟩ \$3 Кручение и нормаль \$4 Формулы Френе \$5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма \$6 Вычисление длии и площадей на поверхности \$7 Вторая квадратичная форма \$8 Нормальная кривиза в данном направлении. Главные кривизны \$9 Гауссова кривизна поверхности. Теорема Гаусса \$10 Геодезическая кривизна. Теорема Гаусса-Боние. 3 Анализ Фурье ⟨ℜ⟩ \$1 Гильбертово пространство. L₂		•	
\$16 Мера Лебега-Стилтьеса. Интеграл по распределению \$17 Интеграл Эйлера-Пуассона \$18 Вероятностный смысл мемы \$19 Геометрический смысл меры Лебега. Принцип Кавальери \$20 Сведение кратного интеграла к повторному Мера Лебега и аффинные преобразования \$21 Мера Лебега и аффинные преобразования \$22 Мера образа при гладком отображении \$23 Глакая замена переменной в интеграла \$24 Предельный переход под знаком интеграла \$25 Теорема Лебега об ограниченной сходимости \$26 Равномерная сходимость несобственного параметрического интеграла. Признаки \$27 Несобственные интегралы с параметром и операции анализа над параметром (★) \$28 Г-функция Эйлера \$29 В-функция \$30 Объём п-мерного шара 2 Дифференциальная геометрия (★) \$1 Регулярная кривая и её естественная параметризация \$2 Кривизна кривой \$3 Кручение и нормаль \$4 Формулы Френе \$5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма \$6 Вычисление длин и площадей на поверхности \$7 Вторая квадратичная форма \$8 Нормальная кривизна в данном направлении. Главные кривизны \$9 Гауссова кривизна поверхности. Теорема Гаусса \$10 Геодезическая кривизна. Теорема Гаусса-Бопие. 3 Анализ Фурье (★) \$1 Гильбертово пространство. L₂		-	
\$17 Интеграл Эйлера-Пуассона. \$18 Вероятностный смысл мемы \$19 Геометрический смысл меры Лебега. Принцип Кавальери \$20 Сведение кратного интеграла к повторному \$21 Мера Лебега и аффинные преобразования \$22 Мера образа при гладком отображении \$23 Глакая замена переменной в интеграла \$24 Предельный переход под знаком интеграла \$25 Теорема Лебега об ограниченной сходимости \$26 Равномерная сходимость несобственного параметрического интеграла. Признаки \$27 Несобственные интегралы с параметром и операции анализа над параметром (★) \$28 Г-функция Эйлера \$29 В-функция \$30 Объём п-мерного шара 2 Дифференциальная геометрия (★) \$1 Регулярная кривая и её естественная параметризация \$2 Кривизна кривой \$3 Кручение и нормаль \$4 Формулы Френе \$5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма \$6 Вычисление длин и площадей на поверхности \$7 Вторая квадратичная форма \$8 Нормальная кривизна в данном направлении. Главные кривизны \$9 Гауссова кривизна поверхности. Теорема Гаусса \$10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье (★) §1 Гильбертово пространство. L₂		•	
\$18 Вероятностный смысл мемы \$19 Геометрический смысл меры Лебега. Принцип Кавальери \$20 Сведение кратного интеграла к повторному \$21 Мера Лебега и аффинные преобразования \$22 Мера образа при гладком отображении \$23 Глакая замена переменной в интеграле \$24 Предельный переход под знаком интеграла \$25 Теорема Лебега об ограниченной сходимости \$26 Равномерная сходимость несобственного параметрического интеграла. Признаки \$27 Несобственные интегралы с параметром и операции анализа над параметром ⟨★⟩ \$28 Г-функция Эйлера \$29 В-функция \$30 Объём п-мерного шара 2 Дифференциальная геометрия ⟨★⟩ \$1 Регулярная кривая и её естественная параметризация \$2 Кривизна кривой \$3 Кручение и нормаль \$4 Формулы Френе \$5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма \$6 Вычисление длин и площадей на поверхности \$7 Вторая квадратичная форма \$8 Нормальная кривизна в данном направлении. Главные кривизны \$9 Гауссова кривизна поверхности. Теорема Гаусса \$10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье ⟨★⟩ \$1 Гильбертово пространство. L₂		•	
\$19 Геометрический смысл меры Лебега. Принцип Кавальери \$20 Сведение кратного интеграла к повторному \$21 Мера Лебега и аффинные преобразования \$22 Мера образа при гладком отображении \$23 Глакая замена переменной в интеграла \$24 Предельный переход под знаком интеграла \$25 Теорема Лебега об ограниченной сходимости \$26 Равномерная сходимость несобственного параметрического интеграла. Признаки \$27 Несобственные интегралы с параметром и операции анализа над параметром ⟨★⟩ \$28 Г-функция Эйлера \$29 В-функция \$30 Объём п-мерного шара 2 Дифференциальная геометрия ⟨★⟩ \$1 Регулярная кривая и её естественная параметризация \$2 Кривизна кривой \$3 Кручение и нормаль \$4 Формулы Френе \$5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма \$6 Вычисление длин и площадей на поверхности \$7 Вторая квадратичная форма \$8 Нормальная кривизна в данном направлении. Главные кривизны \$9 Гауссова кривизна поверхности. Теорема Гаусса \$10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье ⟨★⟩ \$1 Гильбертово пространство. L₂		•	
\$20 Сведение кратного интеграла к повторному \$21 Мера Лебега и аффинные преобразования \$22 Мера образа при гладком отображении \$23 Глакая замена переменной в интеграла \$24 Предельный переход под знаком интеграла \$25 Теорема Лебега об ограниченной сходимости \$26 Равномерная сходимость несобственного параметрического интеграла. Признаки \$27 Несобственные интегралы с параметром и операции анализа над параметром ⟨Х⟩ \$28 Г-функция Эйлера \$29 В-функция \$30 Объём п-мерного шара 2 Дифференциальная геометрия ⟨Х⟩ \$1 Регулярная кривая и её естественная параметризация \$2 Кривизна кривой \$3 Кручение и нормаль \$4 Формулы Френе \$5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма \$6 Вычисление длин и площадей на поверхности \$7 Вторая квадратичная форма \$8 Нормальная кривизна в данном направлении. Главные кривизны \$9 Гауссова кривизна поверхности. Теорема Гаусса \$10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье ⟨Х⟩ \$1 Гильбертово пространство. L₂		•	
\$21 Мера Лебега и аффинные преобразования \$22 Мера образа при гладком отображении \$23 Глакая замена переменной в интеграла \$24 Предельный переход под знаком интеграла \$25 Теорема Лебега об ограниченной сходимости \$26 Равномерная сходимость несобственного параметрического интеграла. Признаки \$27 Несобственные интегралы с параметром и операции анализа над параметром ⟨⟨⟨x⟩⟩ \$28 Г-функция Эйлера \$29 В-функция \$30 Объём п-мерного шара 2 Дифференциальная геометрия ⟨⟨x⟩⟩ \$1 Регулярная кривая и её естественная параметризация \$2 Кривизна кривой \$3 Кручение и нормаль \$4 Формулы Френе \$5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма \$6 Вычисление длин и площадей на поверхности \$7 Вторая квадратичная форма \$8 Нормальная кривизна в данном направлении. Главные кривизны \$9 Гауссова кривизна поверхности. Теорема Гаусса \$10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье ⟨⟨x⟩⟩ \$1 Гильбертово пространство. L₂			
\$22 Мера образа при гладком отображении \$23 Глакая замена переменной в интеграле \$24 Предельный переход под знаком интеграла \$25 Теорема Лебега об ограниченной сходимости \$26 Равномерная сходимость несобственного параметрического интеграла. Признаки \$27 Несобственные интегралы с параметром и операции анализа над параметром ⟨⟨𝒳⟩⟩ \$28 Г-функция Эйлера \$29 В-функция \$30 Объём п-мерного шара 2 Дифференциальная геометрия ⟨⟨ℂ⟩⟩ \$1 Регулярная кривая и её естественная параметризация \$2 Кривизна кривой \$3 Кручение и нормаль \$4 Формулы Френе \$5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма \$6 Вычисление длин и площадей на поверхности \$7 Вторая квадратичная форма \$8 Нормальная кривизна в данном направлении. Главные кривизны \$9 Гауссова кривизна поверхности. Теорема Гаусса \$10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье ⟨⟨ℂ⟩⟩ \$1 Гильбертово пространство. L₂		•	
\$23 Глакая замена переменной в интеграле \$24 Предельный переход под знаком интеграла \$25 Теорема Лебега об ограниченной сходимости \$26 Равномерная сходимость несобственного параметрического интеграла. Признаки \$27 Несобственные интегралы с параметром и операции анализа над параметром ⟨★⟩ \$28 Г-функция Эйлера \$29 В-функция \$30 Объём п-мерного шара 2 Дифференциальная геометрия ⟨★⟩ \$1 Регулярная кривая и её естественная параметризация \$2 Кривизна кривой \$3 Кручение и нормаль \$4 Формулы Френе \$5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма \$6 Вычисление длин и площадей на поверхности \$7 Вторая квадратичная форма \$8 Нормальная кривизна в данном направлении. Главные кривизны \$9 Гауссова кривизна поверхности. Теорема Гаусса \$10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье ⟨★⟩ \$1 Гильбертово пространство. L₂		•	
\$24 Предельный переход под знаком интеграла \$25 Теорема Лебега об ограниченной сходимости \$26 Равномерная сходимость несобственного параметрического интеграла. Признаки \$27 Несобственные интегралы с параметром и операции анализа над параметром ⟨★⟩ \$28 Г-функция Эйлера \$29 В-функция \$30 Объём п-мерного шара 2 Дифференциальная геометрия ⟨★⟩ \$1 Регулярная кривая и её естественная параметризация \$2 Кривизна кривой \$3 Кручение и нормаль \$4 Формулы Френе \$5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма \$6 Вычисление длин и площадей на поверхности \$7 Вторая квадратичная форма \$8 Нормальная кривизна в данном направлении. Главные кривизны \$9 Гауссова кривизна поверхности. Теорема Гаусса \$10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье ⟨★⟩ \$1 Гильбертово пространство. L₂		•	
\$25 Теорема Лебега об ограниченной сходимости \$26 Равномерная сходимость несобственного параметрического интеграла. Признаки \$27 Несобственные интегралы с параметром и операции анализа над параметром ⟨ℜ⟩ \$28 Г-функция Эйлера \$29 В-функция \$30 Объём п-мерного шара 2 Дифференциальная геометрия ⟨ℜ⟩ \$1 Регулярная кривая и её естественная параметризация \$2 Кривизна кривой \$3 Кручение и нормаль \$4 Формулы Френе \$5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма \$6 Вычисление длин и площадей на поверхности \$7 Вторая квадратичная форма \$8 Нормальная кривизна в данном направлении. Главные кривизны \$9 Гауссова кривизна поверхности. Теорема Гаусса \$10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье ⟨ℜ⟩ \$1 Гильбертово пространство. L₂		•	•
§ 26 Равномерная сходимость несобственного параметрического интеграла. Признаки § 27 Несобственные интегралы с параметром и операции анализа над параметром (※) § 28 Г-функция Эйлера § 29 В-функция § 30 Объём п-мерного шара 2 Дифференциальная геометрия ⟨※⟩ § 1 Регулярная кривая и её естественная параметризация § 2 Кривизна кривой § 3 Кручение и нормаль § 4 Формулы Френе § 5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма § 6 Вычисление длин и площадей на поверхности § 7 Вторая квадратичная форма § 8 Нормальная кривизна в данном направлении. Главные кривизны § 9 Гауссова кривизна поверхности. Теорема Гаусса § 10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье ⟨※⟩ § 1 Гильбертово пространство. L₂		•	
3наки §27 Несобственные интегралы с параметром и операции анализа над параметром ⟨ॐ⟩ . §28 Г-функция Эйлера . §29 В-функция . §30 Объём п-мерного шара . 2 Дифференциальная геометрия ⟨ॐ⟩ . §1 Регулярная кривая и её естественная параметризация . §2 Кривизна кривой . §3 Кручение и нормаль . §4 Формулы Френе . §5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма . §6 Вычисление длин и площадей на поверхности . §7 Вторая квадратичная форма . §8 Нормальная кривизна в данном направлении. Главные кривизны . §9 Гауссова кривизна поверхности. Теорема Гаусса . §10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье (※) §1 Гильбертово пространство. £2		•	
\$27 Несобственные интегралы с параметром и операции анализа над параметром ⟨★⟩ \$28 Г-функция Эйлера \$29 В-функция \$30 Объём п-мерного шара 2 Дифференциальная геометрия ⟨★⟩ \$1 Регулярная кривая и её естественная параметризация \$2 Кривизна кривой \$3 Кручение и нормаль \$4 Формулы Френе \$5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма \$6 Вычисление длин и площадей на поверхности \$7 Вторая квадратичная форма \$8 Нормальная кривизна в данном направлении. Главные кривизны \$9 Гауссова кривизна поверхности. Теорема Гаусса \$10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье ⟨★⟩ \$1 Гильбертово пространство. L₂		§ 26	
ром ⟨※⟩ § 28		0.05	
 § 28 Г-функция § 29 В-функция § 30 Объём п-мерного шара 2 Дифференциальная геометрия ⟨※⟩ § 1 Регулярная кривая и её естественная параметризация § 2 Кривизна кривой § 3 Кручение и нормаль § 4 Формулы Френе § 5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма § 6 Вычисление длин и площадей на поверхности § 7 Вторая квадратичная форма § 8 Нормальная кривизна в данном направлении. Главные кривизны § 9 Гауссова кривизна поверхности. Теорема Гаусса § 10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье ⟨※⟩ § 1 Гильбертово пространство. £ 2 		§ 27	
\$ 29 В-функция		0.00	
§ 30 Объём n-мерного шара 2 Дифференциальная геометрия ⟨☆⟩ § 1 Регулярная кривая и её естественная параметризация § 2 Кривизна кривой § 3 Кручение и нормаль § 4 Формулы Френе § 5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма § 6 Вычисление длин и площадей на поверхности § 7 Вторая квадратичная форма § 8 Нормальная кривизна в данном направлении. Главные кривизны § 9 Гауссова кривизна поверхности. Теорема Гаусса § 10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье ⟨☆⟩ § 1 Гильбертово пространство. L₂		-	
2 Дифференциальная геометрия ⟨☆⟩ §1 Регулярная кривая и её естественная параметризация §2 Кривизна кривой §3 Кручение и нормаль §4 Формулы Френе §5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма §6 Вычисление длин и площадей на поверхности §7 Вторая квадратичная форма §8 Нормальная кривизна в данном направлении. Главные кривизны §9 Гауссова кривизна поверхности. Теорема Гаусса §10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье ⟨☆⟩ §1 Гильбертово пространство. ∠₂		-	-
§1 Регулярная кривая и её естественная параметризация §2 Кривизна кривой §3 Кручение и нормаль §4 Формулы Френе §5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма §6 Вычисление длин и площадей на поверхности §7 Вторая квадратичная форма §8 Нормальная кривизна в данном направлении. Главные кривизны §9 Гауссова кривизна поверхности. Теорема Гаусса §10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье ⟨※⟩ §1 Гильбертово пространство. L₂		§ 30	Объём <i>п</i> -мерного шара
§1 Регулярная кривая и её естественная параметризация §2 Кривизна кривой §3 Кручение и нормаль §4 Формулы Френе §5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма §6 Вычисление длин и площадей на поверхности §7 Вторая квадратичная форма §8 Нормальная кривизна в данном направлении. Главные кривизны §9 Гауссова кривизна поверхности. Теорема Гаусса §10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье ⟨%⟩ §1 Гильбертово пространство. L₂	2	Лиффе	еренциальная геометрия 🖄
§ 2 Кривизна кривой § 3 Кручение и нормаль § 4 Формулы Френе § 5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма § 6 Вычисление длин и площадей на поверхности § 7 Вторая квадратичная форма § 8 Нормальная кривизна в данном направлении. Главные кривизны § 9 Гауссова кривизна поверхности. Теорема Гаусса § 10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье ⟨※⟩ § 1 Гильбертово пространство. L₂	_		
 § 3 Кручение и нормаль § 4 Формулы Френе § 5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма § 6 Вычисление длин и площадей на поверхности § 7 Вторая квадратичная форма § 8 Нормальная кривизна в данном направлении. Главные кривизны § 9 Гауссова кривизна поверхности. Теорема Гаусса § 10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье ⟨※⟩ § 1 Гильбертово пространство. L₂ 			
 § 4 Формулы Френе § 5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма § 6 Вычисление длин и площадей на поверхности § 7 Вторая квадратичная форма § 8 Нормальная кривизна в данном направлении. Главные кривизны § 9 Гауссова кривизна поверхности. Теорема Гаусса § 10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье ⟨※⟩ § 1 Гильбертово пространство. L₂ 			
 § 5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма. § 6 Вычисление длин и площадей на поверхности § 7 Вторая квадратичная форма § 8 Нормальная кривизна в данном направлении. Главные кривизны § 9 Гауссова кривизна поверхности. Теорема Гаусса § 10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье ⟨※⟩ § 1 Гильбертово пространство. ∠₂ 		-	10
форма			1 0 1
 § 6 Вычисление длин и площадей на поверхности § 7 Вторая квадратичная форма § 8 Нормальная кривизна в данном направлении. Главные кривизны § 9 Гауссова кривизна поверхности. Теорема Гаусса § 10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье ⟨※⟩ § 1 Гильбертово пространство. L₂ 		80	
 § 7 Вторая квадратичная форма § 8 Нормальная кривизна в данном направлении. Главные кривизны § 9 Гауссова кривизна поверхности. Теорема Гаусса § 10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье ⟨※⟩ § 1 Гильбертово пространство. L₂ 		8.6	
 § 8 Нормальная кривизна в данном направлении. Главные кривизны			
 § 9 Гауссова кривизна поверхности. Теорема Гаусса			
 § 10 Геодезическая кривизна. Теорема Гаусса-Бонне. 3 Анализ Фурье ⟨ॐ⟩ § 1 Гильбертово пространство. ∠₂			
3 Анализ Фурье $\langle \mathbf{x} \rangle$ 2 $\S 1$ Гильбертово пространство. \mathcal{L}_2			
$\S1$ Гильбертово пространство. \mathcal{L}_2		8 10	геодезическая кривизна. теорема гаусса-вонне.
$\S1$ Гильбертово пространство. \mathcal{L}_2	3	Анализ	я Ф урье ⟨ % ⟩
		§ 1	Гильбертово пространство. \mathcal{L}_2
		-	

$\S3$	Тригонометрические системы
$\S4$	Ядро Дирихле. Лемма Римана-Лебега
§ 5	Теорема Дини о поточечной сходимости
§ 6	Свойства коэффициентов Фурье
§ 7	Сходимость рядов Фурье
§ 8	Преобразование Фурье
§ 9	Решение уравнения теплопроводности

Глава 1: Теория меры и интегралы по мере

§ 1 Системы множеств

Определение 1. Пусть здесь (и дальше) X — произвольное множество. Тогда $\mathcal{P}(X) \equiv 2^X$ — множество всех подмножеств X.

Е.д. $X = \{1 ... n\} \Rightarrow \#\mathcal{P}(X) = 2^n$ (это количество элементов, если что)

Определение 2 (Алгебра). Пусть $\mathcal{A} \subset \mathcal{P}(X)$. Тогда \mathcal{A} — алгебра множеств, если

- 1. $\varnothing \in \mathcal{A}$
- $2. X \in \mathcal{A}$
- 3. $A, B \in \mathcal{A} \Rightarrow A \cap B, A \cup B, A \setminus B \in \mathcal{A}$

Замечание. Заметим, что в алгебре пересечение (или объединение) конечного числа её элементов лежит в алгебре. Это можно доказать простой индукцией. А вот для бесконечных объединений пользоваться индукцией уже нельзя, ведь $\infty \notin \mathbb{N}$.

Определение 3 (σ -алгбера). Пусть $\mathcal{A} \in \mathcal{P}(X)$. Тогда $\mathcal{A} - \sigma$ -алгебра, если

- 1. \mathcal{A} алгебра
- 2. $A_1, \ldots, A_n \in \mathcal{A} \Rightarrow \bigcup_{k=1}^{\infty} A_k \in \mathcal{A}, \bigcap_{k=1}^{\infty} A_k \in \mathcal{A}$

Определение 4. Пусть $\mathcal{E} \subset \mathcal{P}(X)$. Тогда

$$\sigma(\mathcal{E}) := \bigcap \{ \mathcal{A} \mid \mathcal{A} - \sigma$$
-алгебра, $\mathcal{A} \supset \mathcal{E} \}$

эта конструкция — сигма-алгебра, просто аксиомы проверить.

§ 2 Борелевская сигма-алгебра

Определение 1. Пусть \mathcal{O} — все открытые множества в \mathbb{R}^n . Тогда $\mathcal{B}_n = \sigma(\mathcal{O})$ — борелевская σ -алгебра в \mathbb{R}^n .

Определение 2 (Ячейка в \mathbb{R}^n). Обозначать её будем Δ^n , по размерности соответствующего пространства.

$$\Delta^{1} = \begin{cases} [a; b) \\ (-\infty; b) \\ [a; +\infty) \\ (-\infty; +\infty) \end{cases} \quad \forall n \ \Delta = \prod_{k=1}^{n} \Delta_{k}^{1}$$

Ещё введём алгебру $\mathcal{A} = \mathcal{C}ell_n = \{A \mid A = \bigcup\limits_{k=1}^p \Delta_k\}$

Лемма 1. Пусть $\mathcal{E}_1, \mathcal{E}_2 \subset \mathcal{P}(X), \ \sigma(\mathcal{E}_1) \supset \mathcal{E}_2$. Тогда $\sigma(\mathcal{E}_1) \supset \sigma(\mathcal{E}_2)$

Теорема 2. $\mathcal{B}_n = \sigma(\mathcal{Cell}_n)$.

Пример 1. Все множества нижё — борелевские.

- $\langle 1 \rangle \mathcal{O}$.
- $\langle 2 \rangle \ \mathcal{F} = \{ A \mid \overline{A} \in \mathcal{O} \}.$

$$\langle 3 \rangle \left(A = \bigcap_{\substack{k=1 \\ G_k \in \mathcal{O}}}^{\infty} G_k \right) \in G_{\delta}.$$

$$\langle 4 \rangle \left(B = \bigcup_{\substack{k=1 \\ F_k \in \mathcal{F}}}^{\infty} F_k \right) \in F_{\sigma}.$$

$$\langle 5 \rangle \left(C = \bigcup_{\substack{k=1\\A_k \in G_\delta}}^{\infty} A_k \right) \in G_{\delta\sigma}.$$

У всех этих множеств со сложными индексами δ — пересечение, σ — объединение, G — операция над открытыми в самом начале, F — над замкнутыми.

§3 Mepa

Определение 1. Пусть задано $X, \mathcal{A} \subset \mathcal{P}(X), A_k \in \mathcal{A}$. Тогда $\mu \colon \mathcal{A} \to [0; +\infty]$ — мера, если

1.
$$\mu(\varnothing) = 0$$

2.
$$\mu\left(\bigsqcup_{k=1}^{\infty}A_{k}\right)=\sum_{k=1}^{\infty}\mu(A_{k})$$
. Здесь никто не обещает, что будет именно σ -алгебра.

Множества $A \in \mathcal{A}$ в таком случае называются μ -измеримыми.

Пример 1.
$$a \in X$$
, $\mu(A) = \begin{cases} 1, & a \in A \\ 0, & a \notin A \end{cases}$ — δ -мера Дирака.

Пример 2. $a_k \in x, \, m_k \geqslant 0, \, \mu(a) := \sum_{k \colon a_k \in a} m_k$ — «молекулярная» мера.

Пример 3. $\mu(A) = \#A$ — считающая мера. ¹

§ 4 Свойства меты

Здесь всюду будем рассматривать тройку $(X, \mathcal{A} \subset \mathcal{P}(X), \mu)$

Утверждение 1 (Монотонность меры). Пусть $A, B \in \mathcal{A}, A \subset B$. Тогда $\mu(A) \leqslant \mu(B)$.

Утверждение 2. Пусть $A, B \in \mathcal{A}, A \subset B, \mu(B) < +\infty$. Тогда $\mu(B \setminus A) = \mu(B) - \mu(A)$.

Утверждение 3 (Усиленная монотонность). Пусть $A_{1..n}, B \in \mathcal{A}, A_{1..n} \subset B$ и дизъюнктны. Tогда $\sum_{k=1}^n \mu(A_k) \leqslant \mu B$

Утверждение 4 (Полуаддитивность меры). Пусть $B_{1..n}, A \in \mathcal{A}, A \subset \bigcup_{k=1}^n B_k$.

Тогда
$$\mu A \leqslant \sum_{k=1}^{n} \mu(B_k)$$
.

Сделать B_k дизъюнктными: $C_k = B_k \setminus \bigcup_{j < k} B_k$. Затем представить A как дизъюнктное объединение D_k : $D_k = C_k \cap A$. Так можно сделать, потому что

$$A = A \cap \bigcup_{k=1}^{n} B_k = A \cap \bigcup_{k=1}^{n} C_k = \bigcup_{k=1}^{n} A \cap C_k$$

Ну а тогда

$$\mu(A) = \sum_{k} \mu D_k \leqslant \sum_{k} \mu C_k \leqslant \sum_{k} \mu B_k$$

 1 она считает, не считывает $\stackrel{..}{\smile}$

Утверждение 5 (Непрерывность меры снизу). Пусть $A_1 \subset A_2 \subset \cdots$, $A_k \in \mathcal{A}$, $A = \bigcup_{k=1}^{\infty} A_k \in \mathcal{A}$. $A_k \in \mathcal{A}$ $A_k \in \mathcal{A}$ $A_k \in \mathcal{A}$. $A_k \in \mathcal{A}$ $A_k \in \mathcal$

Утверждение 6 (Непрерывность меры сверху). *Пусть* $A_1 \supset A_2 \supset \cdots$, $A_k \in \mathcal{A}$, $A = \bigcap_{k=1}^{\infty} A_k \in \mathcal{A}$, $\mu A_1 < +\infty$.

$$\mathcal{A},\ \mu A_1<+\infty.$$
Тогда $\mu A=\lim_{n
ightarrow\infty}\mu A_n$

<+Тут будет картинка про метод исчерпывания Евдокса+>

Определение 1. Пусть задана тройка $(X, \mathcal{A}_{\sigma}, \mu)$. Тогда μ — полная, если

$$\forall \in \mathcal{A} \colon \mu A = 0 \ \forall B \subset A, B \in \mathcal{A} \ :: \ \mu B = 0$$

Определение 2. Мера μ на $\mathcal A$ называется σ -конечной, если

$$\exists\, X_n\in\mathcal{A}, \mu X_n<+\infty\ ::\ \bigcup_{n=1}^\infty X_n=X$$

Определение 3. Пусть \mathcal{A}_1 , \mathcal{A}_2 — сигма-алгебры подмножеств X, $\mathcal{A}_1 \subset \mathcal{A}_2$, $\mu_1 \colon A_1 \to [0; +\infty]$, $\mu_2 \colon A_2 \to [0; +\infty]$. Тогда μ_2 называется продолжением μ_1 .

Теорема 7 (Лебега-Каратеодора). Пусть $\mu - c$ игма-конечная мера на \mathcal{A} . Тогда

- 1. Существуют её полные сигма-конечные продожения
- 2. Среди них есть наименьшее: $\overline{\mu}$. Её ещё называют стандартным продолжением.

<+идея доказательства+> Пока надо запомнить, что стандратное продолжение — сужение внешней «меры» на хорошо разбивающие множества.

$\S 5$ Объём в \mathbb{R}^n . Мера Лебега

Определение 1. Пусть $\Delta = \Delta_1 \times \cdots \times \Delta_n$, $\Delta_k = [a_k, b_k)$. Тогда

Для всего, что $\in Cell_n$, представим его в виде дизъюнктного объединения Δ_j . Тогда $vA := \sum_{i=1}^q v\Delta_i$.

3амечание. 3десь радикально всё равно, входят ли концы — у них мера ноль.

Теорема 1. $v-\kappa$ онечно-аддитивен, то есть

$$\forall\,A,A_{1..p}\in\operatorname{Cell},A=\bigsqcup_{k=1}^pA_k\ \Rightarrow vA=\sum_{k=1}^pvA_k$$

Теорема 2. v - cчётно-аддитивен, то есть

$$\forall A, A_{1..} \in \mathcal{C}ell, A = \bigsqcup_{k=1}^{\infty} A_k \Rightarrow vA = \sum_{k=1}^{\infty} vA_k$$

□ Здесь в конспекте лишь частный случай про ячейки.

Определение 2 (Мера Лебега). $X = \mathbb{R}^n$, $\mathcal{A} = \mathcal{C}ell_n$. Тогда $\lambda_n = \overline{v_n}$, $\mathcal{M} = \overline{\mathcal{A}}$ — мера Лебега и алгебра множеств, измеримых по Лебегу, соответственно.

 $^{^{1}}$ Опять-таки никто не сказал, что
 $\mathcal{A}-\sigma$ -алгебра.

Свойства меры Лебега

$$(1) \triangleright \lambda\{x\} = 0$$

$$(2) \triangleright \lambda(\{x_k\}_k) = 0$$

$$(3) \triangleright \mathcal{B} \subset \mathcal{M}$$

$$(4) \triangleright L \subset \mathbb{R}^m, m < n \Rightarrow \lambda_n L = 0$$

А это уже целая теормема.

Теорема 3 (Регулярность меры Лебега). Пусть $A \in \mathcal{M}, \ \varepsilon > 0$. Тогда

$$\exists G \in \mathcal{O}, F \in \mathcal{F} :: F \subset A \subset G \land \begin{cases} \lambda(G \setminus A) < \varepsilon \\ \lambda(A \setminus F) < \varepsilon \end{cases}$$

□ куча скучных оценок квадратиками.

<+Пример неизмеримого множества на окружности+>

§6 Измеримые функции

Определение 1. Пусть задана тройка $(X, \mathcal{A}_{\sigma}, \mu)$. Пусть ещё $f \colon X \to \mathbb{R}$. Тогда f называется измеримой относительно \mathcal{A} , если

$$\forall \Delta \subset \mathbb{R} :: f^{-1}(\Delta) \in \mathcal{A}$$

Теорема 1. Пусть f измеримо относительно \mathcal{A} . Тогда измеримы и следующие (Лебеговы) множества

1 типа
$$\{x \in X \mid f(x) < a\} \equiv X[f < a]$$

2 типа
$$\{x \in X \mid f(x) \leqslant a\} \equiv X[f \leqslant a]$$

3 типа
$$\{x \in X \mid f(x) > a\} \equiv X[f > a]$$

4 типа
$$\{x \in X \mid f(x) \geqslant a\} \equiv X[f \geqslant a]$$

 Πpu этом верно и обратное: если измеримы множества какого-то отдного типа, то f измерима.

Теорема 2. Пусть f_1, \ldots, f_n измеримы относительно \mathcal{A} и $g: \mathbb{R}^n \to R$ непрерывна. Тогда измерима и $\varphi(x) = g(f_1(x), \ldots, f_n(x))$.

3амечание. В частности, $f_1 + f_2$ измерима.

□ Следует из непрерывности меры. ■

Определение 2. Пусть $f: X \to \mathbb{R}$ — измерима. Тогда она называется простой, если принимает конечное множество значений.

Определение 3 (Индикатор множества).

$$E \subset X, \mathbb{1}_E := \begin{cases} 1, & x \in E \\ 0, & x \notin E \end{cases}$$

Он, как видно совсем простая функция.

Утверждение 4. $f-npocmas \Rightarrow f = \sum_{k=1}^{p} c_k \mathbb{1}_{E_k}$

Теорема 5. Пусть $f: X \to \mathbb{R}$, измерима, $f \geqslant 0$. Тогда

$$\exists (\varphi_n) : 0 \leqslant \varphi_1 \leqslant \varphi_2 \leqslant \cdots :: \varphi_n \nearrow f (nomougho)$$

§ 7 Интеграл по мере

Определение 1. Пусть задана тройка $(X, \mathcal{A}_{\sigma}, \mu), f$ — измерима.

[1] f — простая.

$$\int\limits_{Y} f \, \mathrm{d}\mu := \sum_{k=1}^{p} c_k \mu E_k$$

[2] $f \geqslant 0$.

$$\int\limits_X f \,\mathrm{d}\mu := \sup \left\{ \int\limits_X g \,\mathrm{d}\mu \, \middle| \, g\text{-простая}, 0 \leqslant g \leqslant f \right\}$$

[3] f общего вида.

$$\begin{split} f_+ &= \max\{f(x),0\}\\ f_- &= \max\{-f(x),0\}\\ \int\limits_X f \,\mathrm{d}\mu &= \int\limits_X f_+ \,\mathrm{d}\mu - \int\limits_X f_- \,\mathrm{d}\mu \end{split}$$

Здесь нужно, чтобы хотя бы один из интегралов в разности существовал.

Замечание 1.
$$\int\limits_A f \,\mathrm{d}\mu := \sum_{k=1}^p c_k \mu(E_k \cap A)$$

 $\it Замечание 2.$ Дальше измеримость и неотрицательность или суммируемость $\it f$ будет периодически называться «обычными» условиями.

Утверждение 1.
$$\int\limits_A f \, \mathrm{d}\mu = \int\limits_X f \cdot \mathbbm{1}_A \, \mathrm{d}\mu.$$

Свойства интеграла от неотрицательных функций Здесь всюду функции неотрицательны и измеримы, что не лишено отсутствия внезапности.

$$\mathbf{A}_1 \ 0 \leqslant f \leqslant g. \ \mathrm{Torдa} \ \int\limits_X f \, \mathrm{d}\mu \leqslant \int\limits_X g \, \mathrm{d}\mu.$$

$$\mathbf{A}_2 \ A\subset B\subset X,\, A,B\in \mathcal{A},\, f\geqslant 0,$$
измерима. Тогда $\int\limits_A f\,\mathrm{d}\mu\leqslant \int\limits_B f\,\mathrm{d}\mu$

 A_3 см теорему 1.8.1.

$$A_4 \int_X (f+g) d\mu = \int_X f dmu + \int_X g dmu$$

$$A_5 \int_X (\lambda g) \, \mathrm{d}\mu = \lambda \int_X f \, \mathrm{d}mu$$

§ 8 Теорема Беппо Ле́ви

Теорема 1. Пусть (f_n) — измеримы на X, $0 \leqslant f_1 \leqslant \cdots$, $f = \lim_n f_n$. Тогда

$$\int\limits_{X} f \, \mathrm{d}\mu = \lim_{n \to \infty} \int\limits_{X} f_n \, \mathrm{d}\mu$$

7

§ 9 Свойства интеграла от суммируемых функций

Определение 1. f — суммируемая (на X, μ), если $\int\limits_X f \, \mathrm{d} \mu < \infty$. Весь класс суммируемых (на X, μ) функций обозначается через $\mathcal{L}(X, \mu)$.

Здесь всюду функции $\in \mathcal{L}$

$$B_1 \ f \leqslant g \Rightarrow \int_X f d\mu \leqslant \int_X g d\mu.$$

$$B_2 \int_X (f \pm g) d\mu = \int_X f d\mu \pm \int_X g d\mu.$$

$$B_3 \int_{Y} \lambda f \, \mathrm{d}\mu = \lambda \int_{Y} f \, \mathrm{d}\mu.$$

$$B_4 |f| \leq g \Rightarrow \left| \int_X f d\mu \right| \leq \int_X g d\mu.$$

$$B_5 \left| \int_{Y} f \, \mathrm{d}\mu \right| \leqslant \int_{Y} |f| \, \mathrm{d}\mu.$$

$$B_6 \ f \in \mathcal{L} \Leftrightarrow |f| \in \mathcal{L}$$

$$B_7 |f| \leqslant M \leqslant +\infty \Rightarrow \left| \int_{Y} f d\mu \right| \leqslant M\mu X$$

§ 10 Счётная аддитивность интеграла

Теорема 1. Пусть задана тройка (X, \mathcal{A}, μ) , f — измерима и $f \geqslant 0 \lor f \in \mathcal{L}$. Пусть к тому же

$$A, A_{1..} \subset X, A = \bigcup_{n=1}^{\infty} A_n$$

Tог ∂a

$$\int\limits_A f \,\mathrm{d}\mu = \sum_{n=1}^\infty \int\limits_{A_n} f \,\mathrm{d}\mu$$

§ 11 Абсолютная непрерывность интеграла

Теорема 1. Пусть $f \in \mathcal{L}(X, \mathcal{A}, \mu)$. Тогда

$$\forall \, \varepsilon > 0 \,\, \exists \, \delta > 0 \,\, :: \,\, \forall \, A \in \mathcal{A}, A \subset X \colon \mu A < \delta \,\, :: \,\, \left| \int\limits_A f \, \mathrm{d} \mu \right| < \varepsilon$$

§ 12 Интеграл от непрерывной функции по мере Лебега

Теорема 1. Пусть $f \in C([a;b])$, λ — мера Лебега на X = [a;b]. Тогда

$$f \in \mathcal{L}, \int_{[a;b]} f \, \mathrm{d}\mu = \int_a^b f = F(b) - F(a),$$

rde F - nepвooбразная f.

§ 13 Сравнение подходов Римана и Лебега

Сначала вспомним определения того, о чём собираемся рассуждать.

Определение 1 (Интеграл Римана). Пусть $f \in C([a;b])$ $a < x_1 < \cdots < x_{n-1} < x_n = b, \ \xi_i \in [x_i;x_{i+1}]$. Тогда

- $\tau = \{x_1, \dots, x_{n-1}\}$ разбиение отрезка [a; b]
- $\xi = \{\xi_1, \dots, \xi_{n-1}\}$ оснащение разбиения au
- $\Delta x_i = x_{i+1} x_i$ длина i-го отрезка
- $r=r(au)=\max_i\{\Delta x_i\}$ ранг разбиения

•
$$\sigma = \sigma(\tau, \xi, f) := \sum_{i=0}^{n-1} f(\xi_i) \cdot \Delta x_i$$
 — сумма Римана

Сам интеграл определяется как-то так

$$\int_{a}^{b} f \, \mathrm{d}x = \lim_{r(\tau) \to 0} \sigma(\tau, \xi, f)$$

Определение 2 (Интеграл Лебега). см. 1.7.1. В качестве множества X понятное дело, отрезок [a;b].

Пример 1. Пусть X = [0;1]. Тогда $f(x) = \begin{cases} 0, & x \notin \mathbb{Q} \\ 1, & x \in \mathbb{Q} \end{cases}$ интегрируема по Лебегу, но не по Риману.

<+картиночка с обоими интегралами+>

§ 14 Сравнение несобственного интеграла и интеграла Лебега

Теорема 1. Пусть $f\geqslant 0 \lor f\in \mathcal{L}\big([a;b\big),\lambda)$. Тогда $\int\limits_{[a;b)}f\,\mathrm{d}\lambda=\int\limits_a^bf.$

□ ⟨�⟩ Свести к собственному, а дальше непрерывность меры. ■

§ 15 Интеграл по дискретной мере и мере, задаваемой плотностью

Теорема 1. Пусть $\mu = \sum_k m_k \delta_{a_k}$, $\{a_k\} \in X$ и $f \colon X \to \mathbb{R}$, $f \geqslant 0$ или $f \in \mathcal{L}(X,\mu)$. Тогда

$$\int_{X} f \, \mathrm{d}\mu = \sum_{k} f(a_{k}) \cdot \underbrace{m_{k}}_{\mu\{a_{k}\}}$$

□ 🛠 Счётная аддитивность интеграла поможет. 1.10.1

Пример 1. Пусть $\mu A = \# A$. Тогда

$$\sum_{m,n\in\mathbb{N}} = \int_{\mathbb{N}^2} f(m,n) \,\mathrm{d}\mu$$

Причем условия суммируемости 1 ряда такие же, как у интеграла Лебега:

$$\begin{cases} \forall m, n \in \mathbb{N} :: a_{m,n} \geqslant 0 \\ \sum_{m,n \in \mathbb{N}} |a_{m,n}| < \infty \end{cases}$$

Определение 1. Пусть задана пара 2 $(X, \mu), \rho \colon X \to \mathbb{R}$, измерима, $\rho \geqslant 0$. Тогда

 $^{^{1}}$ здесь объявим бесконечность приличным значением суммы ряда

 $^{^{2}}$ тройка, но все же поняли, что сигма-алгебра имелась в виду

- $\nu(E) := \int\limits_E \rho \,\mathrm{d}\mu$ мера, задаваемая плотностью ρ
- ρ плотность меры ν относительно меры μ .

Замечание. Она правда мера, интеграл счётно-аддитивен.

Теорема 2. Пусть выполнены «обычные» условия на f. Тогда $\int\limits_V f \,\mathrm{d} \nu = \int\limits_V f \rho \,\mathrm{d} \mu$.

§ 16 Мера Лебега-Стилтьеса. Интеграл по распределению

Определение 1. Пусть $I \subset \mathbb{R}$, $F: I \to \mathbb{R}$, $F \nearrow$, F(x) = F(x-0) (непрерывна слева). 1. Рассмотрим порождённую полуинтервалами $[a;b) \subset I$ σ -алгебру. Введём «объём» $\nu_F: \nu([a;b)) = F(b) - F(a)$.

Тогда мера Лебега-Стилтьеса μ_F — стандартное продолжение ν_F на некоторую σ -алгебру \mathcal{M}_F .

Замечание 1. Здесь надо доказывать *счётную* аддитивность, а то как продолжать ν , если она — не мера?

Свойства мемы Лебега-Стилтьеса

Утверждение 1. Пусть $\Delta = [a; b]$. Тогда $\mu \Delta = F(b+0) - F(a)$.

Утверждение 2. Пусть $\Delta = \{a\}$. Тогда $\mu \Delta = F(a+0) - F(a)$.

Утверждение 3. Пусть $\Delta = (a; b)$. Тогда $\mu \Delta = F(b) - F(a + 0)$

Лемма 4. Пусть
$$F\in C(I),\ \Delta\subset I.$$
 Тогда $\mu_F(\Delta)=\int\limits_{\Delta}F'(t)\,\mathrm{d}\lambda.$

Теорема 5. Пусть $F \nearrow$, кусочно-гладка на $I \subset \mathbb{R}$, а для f выполнены обычные условия $(X = \mathcal{B}, \ \mu = \mu_F)$. Промежутки гладкости F обозначим за (c_k, c_{k+1}) . Тогда

$$\int_{X} f \, \mathrm{d}\mu_{F} = \sum_{k} \int_{c_{k}}^{c_{k+1}} fF' \, \mathrm{d}\lambda + \sum_{k} f(c_{k}) \underbrace{\Delta_{c_{k}} F}_{c_{\kappa a \nu o \kappa} \ b \ c_{k}}$$

Определение 2 (Образ мемы). Пусть (X, \mathcal{A}, μ) — пространство с мемой, $f \colon X \to Y$. Превратим и Y в пространство с мемой.

1.
$$\mathcal{A}' = \{ E \subset Y \mid f^{-1}(E) \in \mathcal{A} \}.$$

2.
$$\mu' \equiv \nu = \mu \circ f^{-1}$$
.

Теорема 6. Пусть для $g: Y \to \mathbb{R}$ выполнены обычные условия $(\mathcal{A} = \mathcal{A}', \ \mu = \nu)$. Тогда $\int\limits_{Y} g \, \mathrm{d}\nu = \int\limits_{X} (g \circ f) \, \mathrm{d}\mu.$

Определение 3 (Функция распределения). Пусть задано (X, μ) , $\mu X < +\infty$, $f \colon X \to \mathbb{R}$. Тогда $F(t) := \mu X[f < t]$. Как видно, она возрастает и непрерывна слева.

Теорема 7. Пусть задано $(X,\mu),\ \mu X<+\infty,$ выполнены обычные условия для f. Тогда $\int\limits_{X} f \,\mathrm{d}\mu = \int\limits_{-\infty}^{+\infty} t \,\mathrm{d}\mu_F.$

§ 17 Интеграл Эйлера-Пуассона

Утверждение 1.
$$\int\limits_{\mathbb{B}^2}e^{-(x^2+y^2)}\,\mathrm{d}\lambda_2=\pi$$

 $[\]overline{\ }^{1}$ А можно и без. Тогда $\nu([a;b)) = F(b-0) - F(a-0)$, см. ??

§ 18 Вероятностный смысл мемы

<+Табличка с соответствием+>

§ 19 Геометрический смысл меры Лебега. Принцип Кавальери

Определение 1. Пусть задано (X, μ) , P(x) — предикат. Говорят, что P(x) = 1 почти везде (п.в.), если $\mu\{x \mid P(x) = 0\} = 0$.

Определение 2. $f \sim g \Leftrightarrow f(x) = g(x)$ п.в. .

Лемма 1 (Беппо-Леви для рядов). *Пусть заданы* $(X, \mu), u_n : X \to \mathbb{R}, n \in \mathbb{N}, u_n$ измеримы, $u_n \geqslant 0$. Тогда

$$a) \int_{x} \sum_{n=1}^{\infty} u_n \, \mathrm{d}\mu = \sum_{n=1}^{\infty} \int_{x} u_n \, \mathrm{d}\mu.$$

b) Если эти числа конечны, то ряд $\sum_n u_n$ сх n.в.

Лемма 2 (Беппо-Леви «вверх ногами»). Пусть задано (X, μ) , (f_n) , измеримы, $f_1 \geqslant f_2 \geqslant \cdots \geqslant 0$. Пусть ещё $f_1 \in \mathcal{L}$. Тогда

$$\lim_{n \to \infty} \int_{Y} f_n \, \mathrm{d}\mu = \int_{Y} \lim_{n \to \infty} f_n \, \mathrm{d}\mu$$

<+3десь была ещё пара лемм, но они не особо используются дальше. Вроде+>

Определение 3. Пусть $E \subset \mathbb{R}^m \times \mathbb{R}^n \in \mathcal{M}_{m+n}$.

$$\triangleright E_x = \{ y \in \mathbb{R}^n \mid (x, y) \in E \} - \text{«срез»}$$

$$ightarrow \Pi_1(E) = \{x \in \mathbb{R}^m \mid E_x \neq \varnothing\}$$
 — «проекция»

<+картиночка для \mathbb{R}^2 +>

Теорема 3. Пусть $E \in \mathcal{M}_{m+n}, E_x \in \mathcal{M}_n$ n.s. $x, \varphi(x) = \lambda_n(E_x)$ измерима относительно \mathcal{M}_m .

Tог ∂a

$$\lambda_{m+n}(E) = \int_{\mathbb{R}^m} \lambda_n(E_x) \, \mathrm{d}\lambda_m$$

<+много букв+>

Определение 4 (График). $\Gamma^f = \{(x,t) \in \mathbb{R}^{n+1} \mid t = f(x)\}.$

Определение 5 (Подграфик). $\Gamma_{-}^{f} = \{(x,t) \in \mathbb{R}^{n+1} \mid 0 \le t \le f(x)\}.$

Определение 6 (Надграфик). $\Gamma_{+}^{f} = \{(x,t) \in \mathbb{R}^{n+1} \mid t \geqslant f(x)\}.$

Теорема 4 (Геометрический смысл интеграла). Пусть $f: \mathbb{R}^n \to \mathbb{R}$, измерима, $\geqslant 0$. Тогда

- 1. Γ^f_- измеримо.
- 2. $\lambda_{n+1}\Gamma_{-}^{f} = \int_{\mathbb{R}^{n}} f \, d\lambda_{n}$ измеримо.

§ 20 Сведение кратного интеграла к повторному

Будем в дальнейшем обозначать интегрирование по мере через dx (ну или dy), размерность определяется из размерности x. Еще обозначим d(x,y) через dxdy.

Теорема 1 (Тонелли). Пусть $f: \mathbb{R}^{m+n} \to \mathbb{R}$, измерима, $\geqslant 0$, $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$. Тогда

$$\iint_{\mathbb{R}^m \times \mathbb{R}^n} f(x, y) \, dx dy = \int_{\mathbb{R}^m} dx \int_{\mathbb{R}^n} f(x, y) \, dy$$

Теорема 2 (Фубини). Пусть $f: \mathbb{R}^{m+n} \to \mathbb{R}$, измерима, $\in \mathcal{L}(\mathbb{R}^{n+m}, \lambda_{m+n})$, $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$. Тогда

$$\iint_{\mathbb{R}^m \times \mathbb{R}^n} f(x, y) \, dx dy = \int_{\mathbb{R}^m} dx \int_{\mathbb{R}^n} f(x, y) \, dy$$

§ 21 Мера Лебега и аффинные преобразования

Главные герои этого параграфа:

- \bigcirc Сдвиг: $T: \mathbb{R}^n \to \mathbb{R}^n$, Tx = x + a, $a \in \mathbb{R}^n$.
- \bigcirc Поворот с растяжением: $L \colon \mathbb{R}^n \to \mathbb{R}^n$, L линейный император.

Утверждение 1. $E \in \mathcal{M} \Rightarrow T(E) \in \mathcal{M}$.

Утверждение 2. $E \in \mathcal{M} \Rightarrow L(E) \in \mathcal{M}$.

Утверждение 3. Пусть $L \colon \mathbb{R}^n \to \mathbb{R}$, линейно. Тогда

$$\exists C \geqslant 0 \forall E \in \mathcal{M} :: \lambda L(E) = C\lambda E$$

Теорема 4. C из прошлой теоремы равно $|\det[L]|$.

<+тут декомпозиция на ортогональный и диагональные операторы и 2 леммы+>

§ 22 Мера образа при гладком отображении

Обозначение. $J_F(x) \equiv \det F'(x)$

Теорема 1. Пусть $E \in \mathcal{M}$, $F: G \subset \mathbb{R}^n \to R^n$, гладкая биекция. Тогда $F(E) \in \mathcal{M}$ и $\lambda F(E) = \int\limits_{\mathbb{R}} |\det F'(x)| \mathrm{d}x$.

$$\square \langle \ddot{\sim} \rangle \langle \mathbf{x} \rangle \blacksquare$$

§ 23 Глакая замена переменной в интеграле

Теорема 1. Пусть $F: G \subset \mathbb{R}^n \to R^n$, гладкая биекция. Пусть к тому же $E \subset F(G) \in \mathcal{M}$, $f: E \to \mathbb{R}$ с обычными условиями.

Тогда

$$\int_{E} f(y) dy = \int_{F^{-1}(E)} f(F(x)) \cdot |J_F(x)| dx$$

Пример 1 (Полярные координаты). $\langle \mathbf{x} \rangle |J| = r$

Пример 2 (Сферические координаты). $\langle \mathfrak{R} \rangle |J| = r^2 \cos \psi$

§ 24 Предельный переход под знаком интеграла

Определение 1 (Всякие сходимости). Пусть $(f_n): X \to \mathbb{R}, f: X \to \mathbb{R}, \mu$ — мера на X.

$$\begin{array}{lll} f_n \to f & := & \forall \, x \in X \, :: \, f_n(x) \to f(x) \\ f_n \overset{X}{\to} f & := & \sup_X |f_n - f| \to 0 \\ f_n \to f \text{ п.в.} & := & \exists \, N \subset X \colon \mu(N) = 0 \, :: \, \forall \, x \in X \setminus N \, :: \, f_n(x) \to f(x). \\ f_n \overset{\mu}{\to} f & := & \forall \, \sigma > 0 \, :: \, \mu X[|f_n - f| \geqslant \sigma] \to 0 \end{array}$$

Замечание 1. $f \stackrel{X}{\rightrightarrows} f \Rightarrow f_n \to f \Rightarrow f_n \to f$ п.в. .

Замечание 2. Пусть $\mu X < \infty$, тогда $f_n \to f$ п.в. $\Rightarrow f_n \stackrel{\mu}{\to} f$.

Замечание 3 (Теорема Рисса). $f_n \stackrel{\mu}{\to} f$ п.в. $\Rightarrow \exists \, (n_k) \, :: \, f_{n_k} \to f$ п.в. .

Теорема 1.
$$f_n \stackrel{X}{\rightrightarrows} f, \mu X < \infty \Rightarrow \int\limits_X f_n \, \mathrm{d}\mu \to \int\limits_X f$$

Теорема 2. см теорему Беппо-Леви (1.8.1) или её вариацию 1.19.2.

Теорема 3 (Фату). Пусть заданы $(X, \mu), f_n \geqslant 0$, измеримы. Тогда

$$\int_{X} \underline{\lim} f_n \, \mathrm{d}\mu \leqslant \underline{\lim} \int_{X} f_n \, \mathrm{d}\mu$$

§ 25 Теорема Лебега об ограниченной сходимости

Теорема 1. Пусть снова заданы $(X, \mu), (f_n)$ измерима, $f_n \to f$ п.в. . К тому же

$$\exists \varphi \in \mathcal{L} :: \forall n :: |f_n| \leqslant |\varphi|$$

Tог ∂a

$$\lim_{n \to \infty} \int_{X} f_n \, \mathrm{d}\mu = \int_{X} f \, \mathrm{d}\mu$$

Обозначение. (\mathcal{L}) — условия теоремы Лебега об ограниченной сходимости.

Следствие 1. Пусть $f: T \times X \to \mathbb{R}, T \subset \mathbb{R}^k, f_t \xrightarrow[t \to t_0]{} f$ n.s., u

$$\exists V(t^0), \varphi \in \mathcal{L} :: \forall t \in \overset{\circ}{V} \cap T :: |f_t| \leqslant |\varphi|$$

Tог ∂a

$$\int\limits_{V} f_t \, \mathrm{d}\mu \xrightarrow[t \to t_0]{} \int\limits_{V} f \, \mathrm{d}\mu$$

Обозначение. (\mathcal{L}_{loc}) — условия локальной теормемы Лебега об ограниченной сходимости.

Следствие 2. Непрерывность интеграла по параметру при выполнении (\mathcal{L}_{loc}) и непрерывности f_t .

§* Интеграл по меме с параметром

Здесь часто придётся подчёркивать, что является параметром, а что — определяет функцию В таких случаях параметр будет записан, как индекс

Определение 1 (Собственный интеграл с параметром). Пусть $f: X \times T \to \mathbb{R}, f_t(x) \in \mathcal{L}([a,b],\mu) \ \forall t \in T$. Тогда,

$$I(t) = \int_{-b}^{b} f(x, t) \, \mathrm{d}x$$

Мы здесь определяем некоторую функцию от t, как видно $\mathcal{D}_I = T$.

По идее, надо здесь переформулировать все-все-все утверждения про последовательности функций. Надо бы узнать, что с этим делать. (:set aflame)У нас в конспекте этот кусок почему-то написан про несобственные интегралы, но всюду полагается (\mathcal{L}_{loc}). Так что по сути они — просто интегралы по меме.

Здесь тоже есть непрерывность, дифференциируемость и интегрирование по параметру, но все тривиально 1 следует из 1.25.1 и 1.20.2.

§ 26 Равномерная сходимость несобственного параметрического интеграла. Признаки

Определение 1 (Несобственный интеграл с параметром). Пусть $f: X \times T \to \mathbb{R}, f \in \mathcal{L}([a, B], \mu) \ \forall B < b$. Тогда,

$$I(t) = \int_{-b}^{b} f(x, t) dx := \lim_{B \to b - 0} \int_{-b}^{B} f(x, t) dx = \lim_{B \to b - 0} I^{B}(t)$$

Предполагается, что $\forall t \in T$ интеграл сходится поточечно. А вот суммируемость никто не обещал.

Определение 2. Говорят, что $I^B(t) \stackrel{T}{\rightrightarrows} I(t)$ (сходится равномерно относительно $t, t \in T$), если

$$\sup_{t \in T} \left| \int_{B}^{b} f(x, t) \right| \xrightarrow{B \to b} 0$$

Здесь дальше всюду предполагается поточечная сходимость интеграла $\forall t \in T$.

¹ ну.

 $^{^2}$ Никто же не любит ε - δ -определения?

Теорема 1 (Признак Больцано-Коши).

$$I^{B}(t) \stackrel{T}{\rightrightarrows} I(t) \Leftrightarrow \sup_{T} \left| \int_{B_{s}}^{B_{2}} f(x,t) \, \mathrm{d}x \right| \xrightarrow[B_{1},B_{2} \to b]{} 0$$

Теорема 2 (Признак Вейерштрасса). Пусть $\exists \varphi \in \mathcal{L}([a;b)) :: |f(x,t)| \leqslant \varphi(x) \ \forall t. \ Tordall I^B(t) \stackrel{T}{\Rightarrow} I(T).$

Теорема 3 (Признак Дирихле). Пусть $I(t) = \int\limits_a^{\to b} f(x,t) \cdot g(x,t) \, \mathrm{d}x \ u$

a)
$$f(x,t) \stackrel{T}{\Longrightarrow} 0, f(x,t) \searrow^x (x \to b - 0)$$

b)
$$G(x,t) = \int_{a}^{x} g(\xi,t) d\xi$$

$$\exists M \colon \forall x \in [a;b), t \in T \ :: \ |G(x,t)| \leqslant M$$

Тогда $I^B(t) \stackrel{T}{\rightrightarrows} I(T)$.

Теорема 4 (Признак Абеля). Пусть $I(t) = \int\limits_a^{\to} f(x,t) \cdot g(x,t) \,\mathrm{d}x \,\, u$

a)
$$\exists M : \forall t \in T :: f(x,t) \leq M, f(x,t) \searrow^x$$

$$b) \int_{a}^{B} g(x,t) dx \underset{B \to b}{\overset{T}{\rightrightarrows}} \int_{a}^{b} g(x,t) dx$$

Тогда $I^B(t) \stackrel{T}{\rightrightarrows} I(T)$.

§ 27 Несобственные интегралы с параметром и операции анализа над параметром $\langle x \rangle$

Теорема 1. Пусть $f(x,t) \to f(x,t_0)$ для $n.s.x \in [a;b)$ и $I^B(t) \stackrel{V(t^0)}{\rightrightarrows} I(t)$. 1 Тогда $I \xrightarrow[t \to t_0]{} I(t_0)$.

Теорема 2. Пусть для n.s. $x \exists f'_t(x,t)$, непрерывна на $[a;b) \times \underbrace{[c;d)}_T$. Допустим,

$$a) \ I(t) = \int\limits_a^{\to b} f(x,t) \, \mathrm{d}x \ cxo \partial umc \mathbf{a} \ \forall \, t \in T$$

$$b)\int\limits_{a}^{b}f_{t}'(x,t)\,\mathrm{d}x$$
 равномерно сходится относительно $t\in T$

Тогда
$$\exists I'(t_0) = \int\limits_a^{\to b} f'_t(x,t_0) \,\mathrm{d}x$$

Замечание. Здесь нужна сходимость I, чтобы хоть где-то были конечные значения I(t), нам их разность считать.

 $^{^{1}}$ Это не очень докажется без конечности меры $V(t_{0})$,а то интеграл может сходится, а функция не быть суммируемой

Теорема 3. Пусть для п.в. x $\exists f(x,t)$, непрерывна на $[a;b) \times \underbrace{[c;d)}_{x}$. Допустим, I(t) =

$$\int\limits_a^{\,\,\,\,\,\,\,} f(x,t)\,\mathrm{d}x$$
 равномерно сходится относительно $t\in T$ Тогда

$$\int_{c}^{d} I(t) dt = \int_{a}^{b} dx \int_{c}^{d} f(x, t) dt$$

§ 28 Г-функция Эйлера

Определение 1. $\Gamma(t) = \int_{0}^{\infty} x^{t-1} e^{-x} dx$

Свойства

 1° Определена для всех t>0.

$$2^{\circ} \Gamma(1) = 1$$

$$3^{\circ} \ \forall t\Gamma(t+1) = t\Gamma(t)$$

$$4^{\circ} \ n \in \mathbb{N} \ \Gamma(n+1) = n!$$

5° Г-выпукла

6°
$$\Gamma \sim \frac{1}{t}$$
 при $t \rightarrow 0$

7°
$$\Gamma(t+1) \sim \sqrt{2\pi} \sqrt{t} t^t e^{-t}$$
 при $t \to \infty$.

$$8^{\circ}$$
 $\Gamma(t) \cdot \Gamma(1-t) = \frac{\pi}{\sin \pi t}$. (формула отражения)

Гамма-функцию можно продолжить на отрицательную область, через формулу отражения. И на комплексную, там будет сходимость при ${\rm Im}\,z>0$.

§ 29 В-функция

Определение 1. $B(y,z) = \int_{0}^{1} x^{y-1} (1-x)^{z-1} dx$.

Свойства

1°
$$B(y, z) = B(z, y)$$
.

$$2^{\circ} \ B(y,z) = \frac{\Gamma(y)\Gamma(z)}{\Gamma(y+z)}.$$

$\S 30$ Объём n-мерного шара

Теорема 1. Пусть $B_n(R)=\{x\in\mathbb{R}^n\mid \|x\|\leqslant R\}$ – n-мерный шар. Тогда

$$\lambda_n B_n(R) = \frac{\pi^{n/2} R^n}{\frac{n}{2} \cdot \Gamma(\frac{n}{2})}$$

Глава 2: Дифференциальная геометрия (**)

§1 Регулярная кривая и её естественная параметризация

Определение 1 (Кривая, как отображение). Пусть задано гладкое отображение $t \in [a;b] \mapsto r(t) \in \mathbb{R}^3$, регулярное, то есть $rkr'(t) \equiv 1$. t — параметр, само отображение ещё можно называть параметризацией.

Определение 2 (Кривая, как класс отображений). Введём отношение эквивалентности отображений:

$$r(t) \sim \rho(\tau) \Leftrightarrow \exists \delta \colon [a;b] \leftrightarrow [\alpha,\beta] :: \rho(\delta(t)) = r(t)$$

А теперь будем их путать. (:set aflame)

Определение 3 (Естественная параметризация). Пусть $[a;b]=[t_0,t_1]$. Рассмотрим $\widetilde{s}(t)=\int\limits_{-t}^{t}|r'(t)|\,\mathrm{d}\tau$. Она, как видно, является пройденным путём и неубывает \Rightarrow годится на роль δ .

Так что можно рассматривать s как параметр, это собственно и есть естественная (натуральная) параметризация.

Утверждение 1. Пусть есть две разных параметризации: r(t) и r(s) одной кривой. Тогда

$$\dot{r} \equiv \frac{\partial r(s)}{\partial s} = \left(r'(t) \cdot (s'(t))^{-1}\right)(t) = \frac{r'}{|r'|}$$

Как видно, натуральная почему-то обозначается точкой.

§ 2 Кривизна кривой

Определение 1 (Касатальный вектор). $\tau := \dot{r}(s)$.

Определение 2 (Кривизна). $k_1 = |\dot{\tau}|$

Определение 3 (Радиус кривизны). $R = k_1^{-1}$

Утверждение 1. $\tau \perp \dot{\tau}$

Теорема 2. $k_1 = \frac{|r' \times r''|}{|r'|^3}$

§ 3 Кручение и нормаль

Определение 1 (Нормаль). Пусть $k_1 \neq 0$. Тогда $\nu := \frac{\dot{\tau}}{k_1}$.

Определение 2 (Бинормаль). $\beta = \tau \times \nu$.

3амечание. (τ, ν, β) — хороший кандидат для репера в какой-нибудь точке P.

Определение 3 (Соприкасающаяся плоскость). Пусть $k_1>0,\ P=r(s_0),\ T$ — плоскость, $T\ni P,\ N\perp T$ — нормаль к ней. Допустим, $r(s+\Delta s)\cdot N=h,\ h=o(\Delta s^2).$ Тогда T — соприкасающаяся плоскость.

Утверждение 1. $\tau, \nu \perp N; (r - r_0, \dot{r}_0, \ddot{r}_0) = 0 - e\ddot{e}$ уравнение

Определение 4 (Абсолютное кручение). $|k_2| := |\dot{\beta}|$

Теорема 2. $|k_2| = \left| \frac{(\dot{r}, \ddot{r}, \ddot{r})}{k_1^2} \right|$

Определение 5 (Кручение). $k_2:=rac{-(\dot{r},\ddot{r},\dddot{r})}{k_1^2}$

§ 4 Формулы Френе

Теорема 1.

$$\begin{pmatrix} \dot{\tau} \\ \dot{\nu} \\ \dot{\beta} \end{pmatrix} = \begin{pmatrix} 0 & k_1 & 0 \\ -k_1 & 0 & -k_2 \\ 0 & k_2 & 0 \end{pmatrix} \cdot \begin{pmatrix} \tau \\ \nu \\ \beta \end{pmatrix}$$
 (2.1)

Теорема 2. Пусть r(s) — гладкая кривая с заданными k_1 и k_2 , $k_1 > 0$. Тогда система (2.1) определит её с точностью до движения.

\S 5 Регулярная поверхность. Касательная плоскость. Первая квадратичная форма

Определение 1 (Поверзность (двумерная)). Пусть задано гладкое отображение

$$\varphi \colon (u,v) \in D \subset \mathbb{R}^2 \mapsto r = (x,y,z) \in \mathbb{R}^3$$

Добавим условие регулярности $\operatorname{rk} \varphi' \equiv 2$ и условимся путать отображение и класс оных.

Определение 2.

$$\begin{aligned} r_u &:= (x_u', y_u', z_u') \\ r_v &:= (x_v', y_v', z_v') \\ n &:= \frac{r_u \times r_v}{|r_u \times r_v|} = \frac{N}{|N|} \end{aligned}$$

Отметим, что условие регулярности не дает векторному произведению обращаться в 0.

Касательную плоскость можно было бы здесь определить через нормаль, но лучше пока ещё подумать. Может, абстракций добавить.

Определение 3 (Первая квадратичная форма).

$$I := |dr|^2 = r_u^2 du^2 + 2r_u r_v du dv + r_v^2 dv^2$$

= $E du^2 + 2F du dv + G dv^2$

§ 6 Вычисление длин и площадей на поверхности

Теорема 1. Пусть M- поверхность, $\gamma\colon t\to r\in M$. Тогда

$$\ell(\gamma) = \int_{t_0}^{t_1} \sqrt{I}. \ (\mathrm{d}s = I)$$

Теорема 2. Пусть $M-nоверхность, u,v\in D, I=E\,\mathrm{d} u^2+2F\,\mathrm{d} u\,\mathrm{d} v+G\,\mathrm{d} v^2.$ Тогда

$$S(M) = \iint_D \sqrt{EG - F^2} \, \mathrm{d}u \, \mathrm{d}v$$

 $\langle ? \rangle$ <+вкусный абстрактный кусок про меру на многообразии+>

Определение 1. Пусть M — подмногообразие \mathbb{R}^n . Тогда

$$\lambda_k := \int_D \sqrt{\det g(t)} \, dt, \quad g(t)_{ij} = \left(\frac{\partial x}{\partial t_i} \cdot \frac{\partial x}{\partial t_j}\right) (t)$$

 $\it Замечание 1.~$ Как видно, в $\mathbb{R}^2,\, g$ очень похож на матрицу 1
ой квадратичной формы

Определение 2. Пусть M_1 , M_2 — пара поверхностей. Допустим, $\exists F : M_1 \to M_2$, сохраняющее длины кривых. Тогда они называются изометричными.

Теорема 3. Пусть M_1 , M_2 — пара поверхностей. Допустим, что существуют их параметризации, при которых $I_1 = I_2$. Тогда они изометричны.

§ 7 Вторая квадратичная форма

Определение 1. Снова рассмотрим поверхность с какой-то параметризацией. Тогда $II := -\mathrm{d} r\,\mathrm{d} n = L\,\mathrm{d} u^2 + 2N\,\mathrm{d} u\,\mathrm{d} v + M\,\mathrm{d} v^2.$

Утверждение 1. II = $n \cdot d^2r$

Утверждение 2 (Типы точек на поверхности). Здесь названия связаны с типом соприкасающегося параболоида. Его можно добыть, рассматривая $\Delta r \cdot n$.

II > 0: Эллиптический

II < 0: Он же

 $II \leq 0$: Гиперболический

 $II \geqslant 0 \lor II \leqslant 0$: Параболический (вроде цилиндра)

II = 0: Точка уплощения

§ 8 Нормальная кривизна в данном направлении. Главные кривизны

Определение 1. Нормальное сечение поверхности — сечение плоскостью, содержащей нормаль к поверхности (в точке).

Лемма 1. Нормальное сечение — кривая.

Сначала рассмотрим несколько более общий случай

Теорема 2 (Менье). Пусть
$$\gamma - \kappa puвая \subset M$$
, $\gamma \ni P$. Тогда $k_0 = k_1 \cos(\underbrace{\nu \, \hat{,} n}) = \frac{\Pi}{1}$.

Замечание 1. Ещё можно сформулировать так: для всякой кривой на повехности, проходящей через точку в заданном направлении $k_0={
m const}$

а теперь сузим обратно.

Определение 2. Нормальная кривизна — кривизна нормального сечения.

Для нормального сечения $\cos \theta = \pm 1$.

Если немного переписать и ввести параметр $t = \mathrm{d}v/\mathrm{d}u$

$$k_1(t) = |k_0(t)| = \left| \frac{L + 2Nt + Mt^2}{E + 2Ft + Gt^2} \right|$$

Этот параметр t и задаёт «направление» нормального сечения. Так что $k_0(t)$ и есть та самая «кривизна в данном направлении».

Теперь найдем экстремумы $\frac{\Pi}{\Gamma}(t)$.

Тогда

Теорема 3. $\exists k_{\min}, k_{\max}, k_{\min} \cdot k_{\max} = \frac{LM - N^2}{EG - F^2}$.

Определение 3. k_{\min}, k_{\max} — главные кривызны.

§ 9 Гауссова кривизна поверхности. Теорема Гаусса

Определение 1 (Гауссова кривизна). $K = k_{\min} \cdot k_{\max}$.

Определение 2 (Гауссово отображение). Пусть M — поверхность, n — нормаль к ней в точке P, S — единичная сфера. Тогда $G: n \mapsto C \in S$ (C — точка на сфере).

Теорема 1. Пусть U — окрестность $P \subset M$, M — поверхность, \mathcal{N} — поле нормалей на U. Допустим, что $V = G(\mathcal{N})$, она вроде как окрестность $G(n_P)$.

$$|K| = \lim_{U \to P} \frac{\iint_{V} |n_{u} \times n_{v}|}{\iint_{U} |r_{u} \times r_{v}|}$$

§ 10 Геодезическая кривизна. Теорема Гаусса-Бонне.

Определение 1 (Геодезическая кривизна). Пусть M — поверхность, T — касательная к ней в точке P. Допустим, $\gamma \subset M$ проходит через P. Рассмотрим проекцию γ на T. Тогда $\varkappa := k_{\gamma}$ — и есть геодезическая кривизна.

Определение 2. Если для кривой $\varkappa(s) \equiv 0$, то она называется геодезической.

Теорема 1 (Гаусса-Бонне). Пусть M- гладкая поверхность, P_1,\ldots,P_n- вершины криволинейного многоугольника, $P_i,P_{i+1}=\gamma,\ \alpha_i-$ углы при вершинах. Тогда

$$\sum_{i} \alpha_{i} + \sum_{i} \int_{\gamma_{i}} \kappa \, \mathrm{d}s = 2\pi - \iint_{P} K \, \mathrm{d}s$$

Глава 3: Анализ Фурье ⟨Ӽ⟩

§ 1 Гильбертово пространство. \mathcal{L}_2

Определение 1. Пусть H — линейное пространство над полем $\mathbb C$. Введём на нём (эрмитово) скалярное произведение, связанную с ним норму и метрику. Допустим, оно полно по введённой метрике. Тогда H — гильбертово пространство.

Замечание 1. Если полноты нет, то пространство называется предгильбертовым.

Утверждение 1. Скалярное произведение — непрерывно.

Пример 1. Пусть (X,μ) — пространство с мерой. Рассмотрим пространство \widetilde{L}

$$\widetilde{L}:=\left\{f \;\middle|\; f\colon X o\mathbb{C},\;$$
измерима, $\int\limits_X|f|^2\,\mathrm{d}\mu<\infty
ight\}$

Скалярное произведение зададим так:

$$\langle f, g \rangle = \int_{X} f \cdot \overline{g} \, \mathrm{d}\mu$$

Введем теперь отношение эквивалентности $f \sim g := f = g$ п.в. . Тогда $\mathcal{L}_2 = \widetilde{L}/_{\sim}$.

Теорема 2. \mathcal{L}_2 полно по мере, введённой выше.

§ 2 Ортогональные системы. Ряд Фурье в гильбертовом пространстве.

Определение 1. $\delta_{ij} \begin{cases} 1, & i=j \\ 0, & i \neq j \end{cases}$

Определение 2. Пусть H — гильбертово. Рассмотрим $f_1, \ldots, f_n \in H$. Допустим, $\langle f_i, f_j \rangle = \delta_{ij}$. Тогда (f_i) — ортогональная система.

Теорема 1 (Пифагора $\langle \ddot{\sim} \rangle$). Пусть (f_i) — ортогональная система. Допустим, $f = \sum_k f_k$. Тогда

$$||f||^2 = \sum_k ||f_k||^2$$

Определение 3. Пусть (e_i) — ортогональная система, $f \in H$. Тогда

$$c_n = \left\langle f, \frac{e_n}{\|e_n\|} \right
angle$$
 — коэффициенты Фурье f $f = \sum_k c_k e_k$ — ряд Фурье f

Теорема 2 (Неравенсто Бессля). Пусть $f \in H$, (e_i) — ортогональная система. Тогда

$$\sum_{n} |c_n|^2 ||e_n||^2 \leqslant ||f||^2$$

Определение 4. Пусть (e_i) — ортогональная система. Допустим

$$\forall f \in \mathcal{L}_2 :: f \sim \sum_{n} c_n e_n$$

Тогда (e_i) — полная система.

Утверждение 3. Разложение в ряд Фурье по полной ортогональной системе — единственно.

§ 3 Тригонометрические системы

Определение 1. $\mathcal{L}_2^{2\pi} = \mathcal{L}_2((0; 2\pi), \mu) \cap \{2\pi$ -периодичные функции $\}$.

Утверждение 1. $1, \cos x, \sin x, \cos 2x, \dots$ — ортогональная система

Утверждение 2. $1, e^x, e^{2x}, \ldots - o$ ртогональная система

Теорема 3. Тригонометрические системы выше — полны.

□ ⟨?⟩Вообще, тут большой кусок теории. ■

Определение 2. Будем понимать

$$\sum_{-\infty}^{\infty} a_n := V. p. \sum_{-\infty}^{\infty} a_n = \lim_{N \to +\infty} \sum_{-N}^{N} a_n$$

Утверждение 4. Коэффициенты разложения по синусам и косинусам:

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx \, dx \ (n \ge 1)$$

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx \, dx \ (n \ge 1)$$

$$a_0 = \frac{1}{2\pi} \int_0^{2\pi} f(x) \, dx$$

$$\widetilde{a_0} = \frac{1}{\pi} \int_0^{2\pi} f(x) \, dx = 2a_0$$

$$f(x) \sim a_0 + \sum_{k=1}^{\infty} a_k \cos nx + \sum_{k=1}^{\infty} b_k \sin nx$$

Утверждение 5. Коэффициенты разложения по экспонентам:

$$c_n = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx$$
$$f(x) \sim \sum_{k=-\infty}^{\infty} c_n e^{inx}$$

§ 4 Ядро Дирихле. Лемма Римана-Лебега

Определение 1 (Ядро Дирихле).
$$\mathcal{D}_n(x) := \sum_{n=0}^n e^{ikx}$$

Лемма 1 (Свойства ядра Дирихле).

1.
$$\mathcal{D}_n(-x) = \mathcal{D}(x)$$

2.
$$\mathcal{D}_n(x) = \frac{\sin(n+1/2)x}{\sin\frac{x}{2}}$$

3. всякие следствия отсюда

Определение 2 (Ядро Фейера).
$$\mathcal{F}_n(x) := \frac{1}{n} \sum_{k=0}^{n-1} \mathcal{D}_k(x)$$

Лемма 2 (Свойства ядра Фейера).

1.
$$\mathcal{F}_n(-x) = \mathcal{F}(x)$$

2.
$$\mathcal{F}_n(x) = \frac{1}{n} \cdot \frac{\sin^2\left(\frac{nx}{2}\right)}{\sin^2\frac{x}{2}}$$

3. всякие следствия отсюда

Лемма 3 (Римана-Лебега). Пусть $f \in \mathcal{L}(\mathbb{R})$. Тогда

$$\int_{-\infty}^{+\infty} f(x) \sin nx \, x \xrightarrow[n \to \infty]{} 0$$

$$\int_{-\infty}^{+\infty} f(x) \cos nx \, x \xrightarrow[n \to \infty]{} 0$$

$$\int_{-\infty}^{+\infty} f(x) e^{-inx} \, x \xrightarrow[n \to \infty]{} 0$$

§ 5 Теорема Дини о поточечной сходимости

Теорема 1 (Дини). Пусть $f \in \mathcal{L}_2^{2\pi}$, $x \in \mathbb{R}$. Допустим, f удовлетворяет условию Дини:

$$\exists L \in \mathbb{C}, \delta > 0 :: u \in \mathcal{L}\big((0; \delta)\big), u(t) = \frac{f(x+t) + f(x-t) - 2L}{t}$$

Tог ∂a

$$S_n(x) = \sum_{k=-n}^{n} c_n e^{ikx} \xrightarrow[n \to \infty]{} L$$

Утверждение 2. Частные случаи условия Дини:

- 1. \exists конечные $f(x \pm 0)$, $f'(x \pm 0)$. При этом $L = \frac{1}{2}(f(x+0) + f(x-0))$.
- 2. f непрерывна в x, \exists конечные $f'(x\pm 0)$. При этом L=f(x).
- 3. f дифференцируема в x. При этом L = f(x).

§ 6 Свойства коэффициентов Фурье

Обозначение. $\widehat{f}(n) := c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, e^{-inx} \, \mathrm{d}x$

Утверждение 1. $f \in \mathcal{L}_2^{2\pi} \Rightarrow \widehat{f}(n) \xrightarrow[n \to \infty]{} 0$

Утверждение 2. Пусть $\exists f' \in \mathcal{L}_2^{2\pi}$. Тогда

- $\widehat{f}'(n) = in\widehat{f}(n)$
- $\widehat{f}(n) = o\left(\frac{1}{n}\right), n \to \infty$

Утверждение 3. Пусть $\exists f^{(p)} \in \mathcal{L}_2^{2\pi}$. Тогда

- $\widehat{f^{(p)}}(n) = (in)^p \cdot \widehat{f'}(n)$
- $\widehat{f}(n) = o\left(\frac{1}{n^p}\right), n \to \infty$

Утверждение 4. Пусть $c_n = O\left(\frac{1}{n^{p+2}}\right)$. Тогда $\exists \, \varphi \in C^p_{2\pi} \, :: \, \varphi \sim f$.

22

§7 Сходимость рядов Фурье..

1°
$$f \in \mathcal{L}_1^{2\pi} \Rightarrow \forall \Delta \subset [-\pi, \pi] :: \int_{\Delta} f(x) \, \mathrm{d}x = \sum_{-\infty}^{\infty} \widehat{f}(n) \int_{\Delta} e^{inx} \, \mathrm{d}x.$$

 $2^{\circ} f \in \mathcal{L}_{1}^{2\pi} \Rightarrow c_{n}$ определены.

$$3^{\circ} f \in \mathcal{L}_2^{2\pi} \Rightarrow ||S_n - f|| \to 0.$$

$$4^{\circ} \ f \in C^{(p)} \Rightarrow c_n$$
 быстро убывают.

$$5^{\circ}$$
 c_n быстро убывают $\Rightarrow f \in C^{(p)}$.

6° теорема Дини 3.5.1

 7° теорема Фейера 3.7.1

Теорема 1 (Фейера). Пусть $f \in C^{2\pi}$. Тогда $\sigma_n \stackrel{\mathbb{R}}{\Longrightarrow} f$, где $\sigma_n = \frac{1}{n} \sum_{k=0}^{n-1} S_k$. (сходимость по Чезаро).

§ 8 Преобразование Фурье

Определение 1. Пусть $f \in \mathcal{L}_1(\mathbb{R})$. Тогда

$$\widehat{f}(s) := \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(x)e^{-isx} dx$$

1.
$$|\widehat{f}(s)| \leq \frac{1}{2\pi} ||f||_1$$
.

2.
$$\hat{f}(s) \in C^0$$
.

3.
$$\left(g(x) = x^n f(x) \in \mathcal{L}_1\right) \Rightarrow \widehat{f}(s) \in C^{(n)}$$
.

4.
$$\widehat{f}(s) \xrightarrow[s \to \infty]{} 0$$
.

5.
$$\left(f \in C^{(p)}, f^{(p)} \in \mathcal{L}_1\right) \Rightarrow \widehat{f}(s) = o\left(\frac{1}{|s|^p}\right)$$
.

6.
$$f \in \mathcal{L}_1, a \in \mathbb{R}, g(x) = f(x - a) \Rightarrow \widehat{g}(s) = e^{-isa} \widehat{f}(s)$$

7.
$$f,g \in \mathcal{L}_1$$
. Тогда

$$\widehat{f * g}(s) = 2\pi \left(\widehat{f}(s) \cdot \widehat{g}(s)\right)$$

8. Интегральная формула Фурье 3.8.1

Теорема 1 (формула восстановления Дини). Пусть $f \in \mathcal{L}_1(\mathbb{R})$, $x \in \mathbb{R}$, $L \in \mathbb{C}^{-1}$. Допустим f удовлетворяет условию Дини в точке x c константой L. Тогда

$$\check{\hat{f}}(x) = L$$

Для непрерывных функций

$$f(x) = V. p. \int_{-\infty}^{+\infty} \widehat{f}(s) e^{isx} dx$$

 $^{^1}$ Тут по идее все можно в $\mathbb C$

§ 9 Решение уравнения теплопроводности

Само уравнение теплопроводности выглядит так:

$$\frac{\partial u}{\partial t} = a^2 \cdot \frac{\partial^2 u}{\partial x^2}$$

Но к нему ещё есть пара начальных условий:

$$u(x,0) = f(x)$$

$$f \in \mathcal{L} \qquad f \in C_x^2$$

 $\langle \mathbf{X} \rangle$: <+решить что-ли..+> В итоге получится что-то вроде

$$u(x,t) = \frac{1}{2a\sqrt{\pi t}} \cdot \int_{-\infty}^{+\infty} \exp\left(-\frac{(x-y)^2}{4a^2t}\right) \cdot f(y) \,dy$$

Глава А: Обозначения

Обозначения с лекции

a:=b — определение a. $\bigsqcup_k A_k$ — объединение дизъюнктных множеств.

 $\mathcal A$ Алгебра множеств

Нестандартные обозначения

- $\langle \mathbf{x} \rangle$ ещё правится. Впрочем, относится почти ко всему.
- $\square \cdots \blacksquare$ начало и конец доказательства теоремы
- lacktriangledown начало и конец доказательства более мелкого утверждения
- ⟨≈⟩ кривоватая формулировка

<:set aflame</p>
— набирающему зело не нравится билет

<+что-то+> — тут будет что-то, но попозже

- $a \dots b [a;b] \cap \mathbb{Z}$
- $\equiv -$ штуки эквивалентны. Часто используется в этом смысле в определениях, когда вводится два разных обозначения одного и того же объекта.
- :: В кванторах, «верно, что»
- \mathcal{A}_{σ} Сигма-алгебра множеств