BBBandeirantes

Caderno de Questões

Bimestre	Disciplina		Turmas	Período	Data da prova	P 173005
3.0	Física-Mecânic	:a	1.a Série	М	18/09/2017	
Questões	Testes	Páginas	Professor(es)			
4	15	10	Dalton/Flávio/Zen			

Verifique cuidadosamente se sua prova atende aos dados acima e, em caso negativo, solicite, imediatamente, outro exemplar. Não serão aceitas reclamações posteriores.

Aluno(a)		Turma	N.o
Nota	Professor	Assinatura do	o Professor

Instruções:

- 1. Antes de resolver a prova, preencha com o seu nome, número e turma os espaços correspondentes do caderno de questões e da folha de respostas.
- 2. Nos testes, siga as instruções da folha de respostas.
- 3. As questões podem ser resolvidas a lápis, mas as respostas devem ser dadas a tinta, nos respectivos espacos.
- 4. As questões devem ser resolvidas com clareza, de forma **completa**, nos respectivos espaços, com caligrafia adequada.
- 5. As questões apenas com resposta, sem o devido desenvolvimento, não serão consideradas.
- 6. Não é permitido o porte de calculadoras, celulares ou outros eletrônicos de comunicação. Estes aparelhos, assim como os demais materiais escolares, devem ser colocados em frente da lousa, durante a prova.
- 7. Ao terminar a prova, entregue apenas as folhas de respostas. Guarde o caderno de questões e traga-o no primeiro dia de aula após as férias.
- 8. O gabarito desta prova será disponibilizado na internet.

Parte I: Testes (valor: 3,0)

01.

Uma partícula move-se do ponto P_1 ao P_4 em três deslocamentos vetoriais sucessivos \vec{a} , \vec{b} e \vec{d} . Então o vetor de deslocamento d é

a.
$$\vec{c} - (\vec{a} + \vec{b})$$

$$\vec{a} + \vec{b} + \vec{c}$$

c.
$$(\overrightarrow{a} + \overrightarrow{c}) - \overrightarrow{b}$$

d. $\overrightarrow{a} - \overrightarrow{b} + \overrightarrow{c}$

$$d. \vec{a} - \vec{b} + \vec{c}$$

$$\overrightarrow{e}$$
. \overrightarrow{c} $-\overrightarrow{a}$ $+\overrightarrow{b}$

02. Um bote de assalto deve atravessar um rio de largura igual a 800m, numa trajetória perpendicular à sua margem, num intervalo de tempo de 1 minuto e 40 segundos, com velocidade constante. Considerando o bote como uma partícula, desprezando a resistência do ar e sendo constante e igual a 6 m/s a velocidade da correnteza do rio em relação à sua margem, o módulo da velocidade do bote em relação à água do rio deverá ser de:

- a. 4 m/s
- b. 6 m/s
- c. 8 m/s
- d. 10 m/s
- e. 14 m/s
- 03. (FATEC-SP) Na figura, representa-se um bloco em movimento sobre uma trajetória curva, bem como o vetor velocidade $\mathbf{v_o}$ vetor aceleração \mathbf{a} e seus componenes intrínsecos, aceleração tangencial $\mathbf{a_t}$, e aceleração normal $\mathbf{a_n}$.

Analisando-se a figura, concluí-se que:

- a. o módulo da velocidade está aumentando.
- b. o módulo da velocidade está diminuindo.
- c. o movimento é uniforme.
- d. o movimento é necessariamente circular.
- e, o movimento é retilíneo.

Aluno(a)	Turma	N.o	P 173005
			р3

04. Um ônibus percorre em 30 minutos as ruas de um bairro, de A até B, como mostra a figura:

Considerando a distância entre duas ruas paralelas consecutivas igual a 100 m, analise as afirmações:

- I. A velocidade vetorial média nesse percurso tem módulo 1 km/h.
- II. O ônibus percorre 1500 m entre os pontos A e B.
- III. O módulo do vetor deslocamento é 500 m.
- IV. A velocidade vetorial média do ônibus entre A e B tem módulo 3 km/h.

Estão corretas:

- a. l e lll.
- b. I e IV.
- c. III e IV.
- d. l e II.
- e. Il e III.

05.

Num certo instante, estão representadas a aceleração e a velocidade vetoriais de uma partícula. Os módulos dessas grandezas estão também indicados na figura

Dados: sen $60^{\circ} = 0.87$

 $\cos 60^{\circ} = 0.50$

No instante considerado, o módulo da aceleração escalar, em m/s², e o raio de curvatura, em metros, são, respectivamente,

- a. 3,5 e 25
- b. 2,0 e 2,8
- c. 4,0 e 36
- d. 2,0 e 29
- e. 4,0 e 58

06. Um naturalista, na selva tropical, deseja capturar um macaco de uma espécie em extinção, dispondo de uma arma carregada com um dardo tranquilizante. No momento em que ambos estão a 45 m acima do solo, cada um em uma árvore, o naturalista dispara o dardo. O macaco, astuto, na tentativa de escapar do tiro se solta da árvore. Se a distância entre as árvores é de 60m, a velocidade mínima do dardo, para que o macaco seja atingido no instante em que chega ao solo, vale em m/s:

Adote $g = 10 \text{ m/s}^2$.

- a. 45
- b. 60
- c. 10
- d. 20
- e. 30
- 07. Duas mesas de 0,80 m de altura estão apoiadas sobre um piso horizontal, como mostra a figura a seguir. Duas pequenas esferas iniciam o seu movimento simultaneamente do topo da mesa: 1. a primeira, da mesa esquerda, é lançada com velocidade √ na direção horizontal, apontando para a outra esfera, com módulo igual a 4m/s; 2. a segunda, da mesa da direita, cai em queda livre.

Sabendo que elas se chocam no momento em que tocam o chão, a distância x horizontal , em metros, entre os pontos iniciais do movimento.

- a. 0,5
- b. 1,6
- c. 2,0
- d. 2,4
- e. 3,2
- 08. Uma esfera de aço de massa 200 g desliza sobre uma mesa plana com velocidade igual a 2 m/s. A mesa está a 1,8 m do solo. A que distância da mesa a esfera irá tocar o solo? Obs.: despreze o atrito.

Considere $g = 10 \text{ m/s}^2$

- a. 1,25 m
- b. 0,5 m
- c. 0,75 m
- d. 1,0 m
- e. 1,2 m

Aluno(a)	Turma	N.o	P 173005
			p 5

09. (UNESP) Uma pequena esfera é lançada horizontalmente do alto de um edifício com velocidade √o. A figura a seguir mostra a velocidade √o da esfera no ponto P da trajetória, t segundos após o lançamento, e a escala utilizada para representar esse vetor (as linhas verticais do quadriculado são paralelas à direção do vetor aceleração da gravidade g).

Considerando $g = 10 \text{m/s}^2$ e desprezando a resistência oferecida pelo ar, determine, a partir da figura, o instante t em que a esfera passa pelo ponto P.

- a. 1,5
- b. 2,0
- c. 2,5
- d. 3,0
- e. 3,5

10. Um móvel descreve um movimento circular de raio R=72m com a aceleração escalar $\alpha=6m/s^2$. Sabe-se que no instante t=0 a velocidade escalar da partícula é $v_0=12$ m/s. No instante t=2,0 s o módulo da aceleração vetorial, em m/s², é.

- a. 2,5
- b. 4,0
- c. 5,0
- d. 8,0
- e. 10,0

11. Uma partícula realiza um movimento circular uniforme, no sentido anti-horário, com velocidade escalar 10 m/s.

Ao passar do ponto P_1 para o ponto P_2 , decorre um intervalo de tempo de 4 s. É correto afirmar que o módulo da aceleração vetorial média entre as posições P_1 e P_2 é igual

- a. $2,5\sqrt{2}$ m/s²
- b. 5 m/s²
- c. 2,5 m/s²
- d. $5\sqrt{2}$ m/s²
- e. zero

- 12. Uma partícula descreve um movimento circular de raio R=2m com aceleração escalar $\alpha=1,5$ m/s 2 . Sabe-se que no instante $t_o=0$ a velocidade escalar da partícula é $v_o=0,5$ m/s. O módulo da aceleração vetorial no instante t=1,0 s, em m/s 2 , é
 - a. 1,0.
 - b. 1,5.
 - c. 2,5.
 - d. 4,0.
 - e. 5,0.
- 13. Uma partícula descreve um movimento circular uniforme de raio R=5,0m e velocidade escalar V=4m/s. O módulo da aceleração vetorial instantânea, em m/s^2 , é:
 - a. 0,5.
 - b. 1,6.
 - c. 2,6.
 - d. 3,2.
 - e. 5,6.
- 14. Um movimento retilíneo uniformemente variado tem aceleração escalar $\alpha=4$ m/s 2 . O módulo da aceleração centrípeta, em m/s 2 , é
 - a. nula.
 - b. 2,0.
 - c. 4,5.
 - d. 5,0.
 - e. 6,5.
- 15. (FATEC-SP) Na figura, representa-se um bloco em movimento sobre uma trajetória curva, bem como o vetor velocidade \vec{v} o vetor aceleração \vec{a} e seus componentes intrínsecos, aceleração tangencial \vec{a}_t e aceleração centripeta \vec{a}_{cp} .

Analisando-se a figura, conclui-se que o movimento é:

- a. MRU
- b. MRUV, acelerado
- c. MCUV, acelerado
- d. MRUV, retardado
- e. MCUV, retardado

Aluno(a)	Turma	N.o	P 173005
			p 7

Parte II: Questões Dissertativas (valor: 7,0)

01. (valor: 2,5) Um móvel de certa massa movimenta-se sobre um plano horizontal, realizando meia volta em uma circunferência de raio $R_1 = 5m$ e outra meia volta em uma circunferência de raio $R_2 = 10m$, indo de A até B em 15s. Considerando que o perímetro de uma circunferência é dado por $2\pi R$ onde $\pi = 3$.

Determine:

- a. o módulo do deslocamento escalar;
- b. o módulo do vetor deslocamento;
- c. o módulo da velocidade escalar média;
- d. o módulo da velocidade vetorial média;
- e. se a velocidade no primeiro trecho for de módulo constante $V_1 = 15$ m/s, qual o valor das acelerações tangencial e centrípeta.

02. (valor: 1,5) A figura representa um rio, no qual as águas fluem com a velocidade de 1,5 km/h. No rio, estão fixadas três balizas, A, B e C. As balizas A e C estão alinhadas na direção da correnteza.

Dois nadadores, capazes de desenvolver velocidade constante de 2,5 km/h, iniciam, respectiva e simultaneamente, os percursos de A a B e de A a C, percorrendo-os em linha reta em ida e volta. Calcule, em horas:

- a. o tempo de ida e volta do nadador no trecho AC;
- b. o tempo de ida e volta do nadador no trecho AB;
- c. a diferença entre os intervalos de tempo necessários para os nadadores completarem os respectivos percursos.

Aluno(a)	Turma	N.o	P 173005
			p 9

03. (valor: 1,5) O puma é um animal que alcança velocidade de até 18 km/h e pode caçar desde roedores e coelhos até animais maiores como alces e veados. Considere um desses animais que deseja saltar sobre sua presa, neste caso um pequeno coelho, conforme a figura.

O puma chega ao ponto A com velocidade horizontal de 5 m/s e se lança para chegar à presa que permanece imóvel no ponto B Desconsiderando a resistência do ar e adotando $g = 10 \text{m/s}^2$.

Determine:

- a. O tempo no qual o puma vai tocar o solo;
- b. A distância com a qual o puma vai tocar o solo em relação ao coelho, indicando se será antes, depois ou sobre este;
- c. o módulo da velocidade vetorial com que o puma toca o solo.

- 04. (valor : 1,5) Uma bola é lançada do topo de uma torre de 85m de altura com uma velocidade horizontal de 5,0 m/s (ver figura). Determine :
 - a. o alcance horizontal A , em metros, entre a torre e o ponto onde a bola atinge o solo se não houvesse o barranco.
 - b. a distância horizontal D, em metros, entre a torre e o ponto onde a bola atinge o barranco (plano inclinado)

 $(dado: g = 10 \text{ m/s}^2)$

Quadro de Obs.: 1. Faç 2. Ras	estes (valor: 3,0	nas bolhas sem exced		Assinatura do	Professor	Nota
Parte I: T Quadro de Obs.: 1. Faç 2. Ras	estes (valor: 3,0 Respostas a marcas sólidas ura = Anulação.	nas bolhas sem exced			Professor	Nota
Quadro de Obs.: 1. Faç 2. Ras	Respostas a marcas sólidas ura = Anulação.	nas bolhas sem exced		tes.		
Obs.: 1. Faç 2. Ras 01 02 0 a. \(\) \(\)	a marcas sólidas ura = Anulação.			tes.		
2. Ras	ura = Anulação.			tes.		
a. \ \ \ \ \	3 04 05 06 07 08	3 09 10 11 12 13 14	45 46 47			
			000	18 19 20 21 2	22 23 24 25 26	27 28 29 3
b. () ()	00000	000000	000	00000	00000	0000
d. () () (00000	000000	000	0000	0000	$\frac{0000}{000}$
Danta II.	~					
	Questoes Disse	rtativas (valor: 7,0)				
(valor: 2,5)			1.			
a.			b.			
		Δs =			d =	
C.			d.			
		Vm =			 Vm	

e.

at =

acp =

a.

b.

C.

C.

 $\Delta t_{ACA} =$

 $\Delta t_{ABA} =$

 $\Delta t =$

03. (valor: 1,5)

a.

b.

tq =

() antes() sobre() depois

 $\Delta s =$

 $\vee =$

04. (valor: 1,5)

a. (valor: 0,5)

b. (valor: 1,0)

A =

D =

Parte I: Testes (valor: 3,0)

- 01. a
- 09. a
- 02. d
- 10. e
- 03. b
- 11. a
- 04. a
- 12. c
- 05. d
- 13. d
- 06. d
- 14. a
- 07. b
- 15. c
- 08. e

Parte II: Questões (valor: 7,0)

- 01.
 - a. $\Delta s = 45 \text{ m}$
 - b. $|\vec{d}| = 30 \text{ m}$
 - c. Vm = 3 m/s
- d. $|\vec{V}_{m}| = 2 \text{ m/s}$
- e. $a_t = 0$; $a_{cp} = 45 \text{ m/s}^2$
- 02.
- a. $\Delta t_{ACA} = 10 \text{ h}$
- b. $\Delta t_{ABA} = 8 \text{ h}$
- c. $\Delta t = 2 h$
- 03.
 - a. tq = 0.6 s
 - b. $\Delta s = 0.20$ m antes do coelho
 - c. $V = \sqrt{61} \text{ m/s}$
- 04.
- a. $A = 5\sqrt{17} \text{ m}$
- b. D = 15 m