

Figure 1/21

Construction of intracellular signalling chimera:

PCR myristoylated CD3ζ

Figure 2/21

plasmid #MFnZ

Figure 3A/21

10754712 . 111501

Figure 3B/21

homology CYCC Xhol | 5'-CGACACTCGAGGTGACGGACAAGGTC-3' 6568: homology Sall 5'-CGACAGTCGACCCAATCAGGGACCTC-3' 6569: **EPITOPE** Xhol **BsiWl** 5'-TCGAGTAT CCGTACGACGTACCAGACTACGCAG-3' YPYDVPDYA 7850: Sall 5'-TCGACTGCGTAGTCTGGTACGTCGTACGGATAC-3' 7851: EPITOPE: 5SEP, 3XEP Sall 5'-TCGACTAT CCGTACGACGTACCAGACTACGCAC-3' N 8922: Xhol 5'-TCGAGTGCGTAGTCTGGTACGTACGGATAG-3' ļ. 8923: LĮ, Myristoylation from c-src 5SMXZ Sacll 5'-CGACACCGCGGCCACCATGGGGAGTAGCAAGAGCAAGCCT KOZAK M G S S K S K P 8908: ζ-homology ع Xhol ر AAGGACCCCAGCCAGCGCCTCGAGAGAGTGCAGAGACTG-3' ERS R L **SXTZ** $\omega_{3\zeta}$ homology Xhol 5'-CGACACTCGAGGAGCTCTGTGACGATG-3' 8912: f. C D D Ε

Figure 4B/21

. . .

Figure 4C/21

Figure 5/21

Inhibitory activity of dimeric FK506 and CSA

Figure 6A/21

Cut Xhol/Sall; CIP; + FKBP12 X 3

٠,

::::

Alkaline Phosphatase Activity (% P + 1 induction)

Activity of FK1012A on the chimeric FKBPX3/CD3 zeta receptor

[FK1012A] (nanograms/ml)

Figure 7/21

Figure 8/21

Figure 9A (#1)/21

30n

No.

Figure 9B (#1)/21

Figure 10/21

Scheme 2: Synthesis of Dimers

Lit refs: D.K. Donald et.al. Tetrahedron Letters p1375, 1991, P.Kocovsky, Tetrahedron Letters p5521, 1992

Figure 11A/21

Figure 11B (#1)/21

An additional modified FK520 (FK1040) that interferes with FKBP12 yet should bind the FKBP12 mutant: F36A or F99A or Y26A, or combinations thereof is

Figure 11B (#2)/21

Scheme 3 Heterodimerization

Figure 12/21

Scheme 3: Synthesis of heterodimers

In this example, a heterodimer of a cyclosporine analog and FK520A-NHCO-R were heterodimerized. However, the scheme can easily incorporate other FK506/520 derivatives to form hetero or homodimers

Immun- Dimeric ophilin ligand (fusion (HED/ protein) HOD)

1:1 Complex:
Modified effector domain
prevents binding to calcineurin

2:1 Complex: Ligand-induced protein dimerization

Figure 14/21

Figure 15/21

B FK506 Monomer with a C10 Bump

Figure 16 (#1)/21

C FK506 Monomer with a C9 Bump

D HED Reagent Synthesis

R1 = OH, R2 = H (then HF)

R₁ = H, R₂ = OH CH₂N₂ R₁ = H, R₂ = OMe (then HF)

Figure 16 (#2)/21

Figure 17/21

Figure 18A/21

Figure 18B/21

1.0中

0.8

0.2十

0.4

0.6

% of SEAP activity

Figure 19/21

0.6 0.8 Relative Activity of AP1 Promoter Driven Secreted Alkaline Phosphatase [PMA] = 50ng/mL

Figure 20A/21

Relative Protein Expression	+	1	1	1	1	+	.	+	 +	† † †	+ + +	
LD50 Jurkat Cells	15 nM	¥ Z	۷ Z	Y Y	۲	500 nM	300 nM	200 nM	Y Z	Wn 084	>30 uM	
LD5					<u> </u>	-			<u>a</u>]	-		
	g]			g]	Cypc	_		g]	Fas	.	g]	.21
	FKBP		g	Cypc	Cypc	_	a]	Fas	Cypc	g]	Cypc	Figure 20B/21
	FKBP	g d	Cypc	Cypc	Cypc	<u>a</u>	Fas	СурС	Cypc	Cypc	Cypc	- Fig
	FKBP	ОурС	CypC	Cypc	Cypc	Fas	Cypc	Cypc	Cypc	Cypc	Cypc	_
	Fas	Fas	Fās	Fas	Fas	Cypc	Cypc	Cypc	CypC	Cypc	Cypc	
	Ĭ Ĭ	Myr	Myr	Myr	Myr	الْحَدْ ا	Myr	Myr	Myr	My	My	-
4	MFF3E	8 M	MFC2E	MFC3E	MF. CAR	Н	1 H	N H H H	. д Э . д Э . ш	F 60	М В 45	<u>:</u>

Figure 21/21