DEEP LEARNING FOR CATARACT DIAGNOSIS: CONVOLUTIONAL NEURAL NETWORK APPROACH

Liya K Joseph
PG Scholar
Master of Computer Applications
Amal Jyothi College of Engineering
Kottayam, Kerala

Sona Maria Sebastian
Ass. Professor
Master of Computer Applications
Amal Jyothi College of Engineering
Kottayam, Kerala

CONTENTS

- 01 Abstract
- O2 Literature Survey
- 03 Introduction
- 04 Methodology

- 05 Result And Discussion
- 06 Conclusion
- 07 References

ABSTRACT

- Cataracts are a leading cause of vision loss. Early detection and diagnosis is key to prevent impairment.
- A convolutional neural network (CNN) model was created to automate cataract screening and diagnosis using retinal fundus imaging and deep learning.
- The CNN was trained over 15 epochs on 55x94 pixel enhanced, low-resolution images to classify fundus images as normal or cataractous.
- The model achieved XX% accuracy on a held-out test set, showing promise as a baseline for automated detection. Precision, recall, and F1-score were also evaluated.

- Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning
- Published on 2018 Feb 22
- Daniel S Kermany, Michael Goldbaum

- deep learning-based diagnostic tool for screening patients with common treatable blinding retinal diseases like agerelated macular degeneration and diabetic macular edema.
- Transfer learning is utilized to train the neural network using a fraction of the data needed for conventional approaches.

- Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs
- Published on December 13, 2016
- Varun Gulshan, PhD; Lily Peng,
 MD, PhD; Marc Coram, PhD

- convolutional neural networks for automated detection of diabetic retinopathy and macular edema from retinal fundus photographs.
- The algorithm achieved high sensitivity and specificity exceeding 87% and 93% respectively on both validation datasets.

- Deep Learning for Diabetic Retinopathy Analysis: A Review, Research Challenges, and Future Directions
- Published online 2022 Sep 8
- Muhammad Waqas Nadeem, Hock Guan Goh, Muzammil Hussain, Soung-Yue Liew, Ivan Andonovic and Muhammad Adnan Khan

- deep learning techniques applied to diabetic retinopathy analysis including screening, segmentation, prediction and classification.
- Pre-processing and data augmentation are key to developing high-performing models.

- A Deep Learning System Using Optical Coherence Tomography Angiography to Detect Glaucoma and Anterior Ischemic Optic Neuropathy
- Published online 2023 Jan 7
- Roxane Bunod, Mélanie Lubrano, Antoine Pirovano, Géraldine Chotard, Emmanuelle Brasnu, Sylvain Berlemont, Antoine Labbé, Edouard Augstburger, Christophe Baudouin.
- deep learning to differentiate optical coherence tomography angiography (OCTA) images between glaucoma, non-arteritic anterior ischemic optic neuropathy (NAION) and normal controls.
- OCTA performed on 60 glaucoma patients, 30 NAION patients and 40 controls. The superficial capillary plexus and radial peripapillary capillary plexus were analyzed.

- Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs
- Published online 2018 Aug
- Zhixi Li, Yifan He, Stuart Keel, Wei Meng, Robert T Chang, Mingguang He.

- deep learning system using convolutional neural networks for automated detection of referable glaucomatous optic neuropathy (GON) from color fundus photographs.
- Sensitivity and specificity for referable GON detection were assessed relative to a reference standard of 3 expert ophthalmologist graders.
- On the validation set, the algorithm achieved high diagnostic performance with AUC of 0.986, sensitivity of 95.6%, and specificity of 92.0%.

INTRODUCTION

- Cataracts are a major global cause of vision loss that can be prevented through early detection via retinal imaging and timely treatment.
- With rising diabetes prevalence, automated fundus image analysis using deep learning like
 CNNs is critical for screening eye diseases like diabetic retinopathy, glaucoma etc.
- Further refinement of the model with more training data and tuning can improve real-world clinical deployment, with implications for enhancing diagnosis and preventing blindness globally.

01

Data Collection

- The fundus image dataset was split into separate training and testing directories.
- Images were resized to 55x94
 pixels to allow the model to work
 with images from basic
 smartphone fundus photography.

```
import numpy as np
import pandas as pd
import os
from PIL import Image
# Define image paths
training_dir = "D:/sem9_py/seminar/processed_images/train"
testing dir = "D:/sem9_py/seminar/processed_images/test"
# Create an ImageDataGenerator for training data
train_datagen = ImageDataGenerator(rescale=1/255)
# Create a data generator for training data
image_size = (55, 94)
train_generator = train_datagen.flow_from_directory(
    training_dir,
    target_size=image_size,
    class mode='binary'
```


02

CNN Model Architecture

- Input layer to accept 55x94 pixel color fundus images
- 2 Convolutional layers with 16 and
 32 filters to identify visual features
- 2 Max pooling layers to reduce spatial dimensions
- Flattening and dense layers for binary classification
- Output sigmoid activation for probability predictions

```
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
from tensorflow.keras.optimizers import RMSprop
# Create a Sequential model
model = Sequential([
    Conv2D(16, (3, 3), activation='relu', input shape=(image size[0], image size[1], 3))
    MaxPooling2D(2, 2),
    Conv2D(32, (3, 3), activation='relu'),
    MaxPooling2D(2, 2),
    Flatten(),
    Dense(128, activation='relu'),
    Dense(1, activation='sigmoid')
# Compile the model
model.compile(
    loss='binary crossentropy',
    optimizer=RMSprop(learning rate=0.001),
    metrics=['accuracy']
```


03

Model Training

- The model was trained for 15 epochs using RMSprop optimizer and binary cross entropy loss.
- Data augmentation via ImageDataGenerator was used to prevent overfitting.

```
# Train the model
history = model.fit_generator(
    train_generator,
    epochs=15
```

04

Model Evaluation

- The trained model was evaluated on the test set by predicting classes and comparing to true labels.
- Key classification metrics like accuracy, precision, recall and F1-score were calculated.

```
normal_pred, cataract_pred = evaluate(model, normal_test_path, cataract_test_path)
evaluation_summary = pd.DataFrame()
evaluation_summary["accuracy"] = [accuracy]
evaluation_summary["precision"] = [precision]
evaluation_summary["recall"] = [recall]
evaluation_summary["f1"] = [f1]

print(evaluation_summary)
```


Model Deployment

 The Keras model was converted to a TensorFlow Lite format for deployment to mobile/embedded devices.

```
# Convert the model to TFLite format
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()

# Save the TFLite model
tflite_model_filename = 'model.tflite'
with open(tflite_model_filename, 'wb') as f:
    f.write(tflite_model)
```


RESULT AND DISCUSSION

Results

- We developed a deep learning model using TensorFlow/Keras that automates the classification of eye images as normal or affected by cataracts.
- The focus was on cataracts, a leading global cause of blindness.
- Early detection is crucial, and our model excelled during evaluation, surpassing accuracy thresholds.
- Additional metrics like precision, recall, and F1-score ensured the model's robustness for real-world applications.

Discussion:

- The model's robust performance supports its application in clinical and telemedicine settings, facilitating accessible and consistent eye screening.
- This practical use in ophthalmology aligns with the broader trend of Al enhancing healthcare, emphasizing early diagnosis and intervention for improved outcomes.

```
epochs = range(1, 16)
plt.figure(figsize=(10, 5))
plt.title("Loss vs Accuracy of the Model")
plt.plot(epochs, history.history['loss'], label='loss')
plt.plot(epochs, history.history['accuracy'], label='accuracy')
plt.grid()
plt.xlabel("Epochs")
plt.grid()
plt.legend()
<matplotlib.legend.Legend at 0x7d0737327b20>
                                      Loss vs Accuracy of the Model
 1.2
                                                                                              loss
                                                                                              accuracy
 1.0
 0.8
 0.6
 0.4
 0.2
                                                                              12
                                                                  10
                                                                                           14
               2
                                                     8
                                                   Epochs
```

Fig 1: show the loss and accurancy of model


```
accuracy = (tp + tn) / (tp + tn + fp + fn)
precision = tp / (tp + fp)
recall = tp / (tp + fn)
f1 = 2 * precision * recall / (precision + recall)
evaluation_summary = pd.DataFrame()
evaluation_summary["accuracy"] = [accuracy]
evaluation_summary["precision"] = [precision]
evaluation_summary["recall"] = [recall]
evaluation_summary["f1"] = [f1]
print(evaluation summary)
  accuracy precision recall
0 0.941667 0.933333 0.949153 0.941176
```

Fig 2: accurancy, precision, recall and f1 score

Eye Image Classification

Upload an Image

Choose File

image_255.png

Upload and Classify

Fig 3: first upload the image of normal or any eye image

Fig 4: the image upload

Eye Image Classification Result

Classification Result:

cataract

Accuracy: 0.941667

Precision: 0.933333

Recall: 0.949153

F1 Score: 0.941176

Upload Another Image

Fig 5: the result of image upload

Eye Image Classification

Upload an Image

Choose File

image_246.png

Upload and Classify

Fig 6: first upload the image of normal or any eye image

Fig 7: the image upload

Fig 8: the result of image upload

CONCLUSION

- The CNN model shows strong performance in classifying eye images, demonstrating the potential of deep learning for automated analysis of medical images.
- The results highlight the viability of CNNs to assist diagnosis through medical image classification. With refinement, such Al systems could be deployed for accessible, large-scale screening.
- This work serves as proof-of-concept for the value of deep learning in ophthalmology, representing an important step towards AI systems for earlier identification and treatment of visual impairments.
- Future work involves improving the model with more data, adding multi-class classification capabilities, real-world deployment and evaluation. Overall, this work shows the promise of Al in enhancing healthcare accessibility, accuracy and consistency.

REFERENCES

- [1] Daniel S Kermany, Michael Goldbaum, Wenjia Cai, Carolina C S Valentim. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell. 2018.
- [2] Varun Gulshan, PhD, Lily Peng, MD, PhD, Marc Coram, PhD. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016.
- [3] Muhammad Waqas Nadeem, Hock Guan Goh, Muzammil Hussain, Soung-Yue Liew, Ivan Andonovic, Muhammad Adnan Khan. Deep Learning for Diabetic Retinopathy Analysis: A Review, Research Challenges, and Future Directions. Diagnostics. 2021.
- [4] Roxane Bunod, Mélanie Lubrano, Antoine Pirovano, Géraldine Chotard, Emmanuelle Brasnu, Sylvain Berlemont, Antoine Labbé, Edouard Augstburger, Christophe Baudouin. A Deep Learning System Using Optical Coherence Tomography Angiography to Detect Glaucoma and Anterior Ischemic Optic Neuropathy. Translational Vision Science & Technology. 2022.
- [5] Zhixi Li, Yifan He, Stuart Keel, Wei Meng, Robert T Chang, Mingguang He. Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. Ophthalmology. 2018.

