MTH231 LEL 19

Pascal's Identity
$$-\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

$$\downarrow_{k} = \frac{(n+1)!}{k! (n+1-k)!}$$

Binomial Theorem
$$(x+y)^2 = \sum_{k=0}^{\infty} {\binom{2}{k}} {\binom{x}{y}} {\binom{x}$$

Determining Coeffeents Ex's

-Geff
$$(x^4y^2) = \binom{6}{4} 2^4 (-3)^2$$

-Geff $(x^3y^3) = \binom{6}{3} 2^3(-3^3)$

Multisets = order no matter, repeats count - How Many Mulhsels are there of site k from alphabet of length n?

La nobjects

choose k-

choose k-

choose k-

k!
$$(n-1)!$$
 = $\binom{n+k-1}{k}$

multisets

Other Stoff

- HOW many ways to select K
objects from n distinct objs

order	Unordered (n+K-1) K	repeab not distinct
P(n,K)	(")=((nk)	

Distributing.

- distributing in items to K

cells

D	istinguish		
	objects	Industinguish	
	nk	$\left(\frac{n+\kappa-1}{n}\right)$	w/o exclusion
	P(n,K)	(k)	(1-obj/cell)