Syntax Analyzer (Parser)

Input: list of tokens produced by scanner/LA

Output: tree(syntax) which shows structure of

program

Recap: Overview

temp1 := inttoreal(60)

temp2 := id3 * temp1

temp3 := id2 + temp2

id1 := temp3

Code optimization

temp1 := id3 * 60.0

id1 := id2 + temp1

Code generator()

MOVF ID3, R2

MULF #60.0, R2

MOVF ID3, R1

ADDF R2, R1

MOVF R1, ID1

Introduction

- Abstract representations of the input program:
- abstract-syntax tree + symbol table
- intermediate code
- object code
- Context free grammar (CFG) is used to specify the structure of legal programs

From text to abstract syntax

Goals of parsing

- Programming language has syntactic rules
 - Context-Free Grammars
- Decide whether program satisfies syntactic structure
 - Error detection
 - Error recovery
 - Simplification: rules on tokens
- Build Abstract Syntax Tree

Classes of Grammars (The Chomsky Hierarchy)

- Type-0: Phrase structured (unrestricted) grammars
 - generate recursively enumerable (unrestricted) languages
 - include all formal grammars
 - implemented with Turing machines
- Type-1 : Context-sensitive grammars
 - generate context-sensitive languages
 - implemented with linear-bounded automata
- Type-2 : Context-free grammars
 - generate context-free languages
 - single non-terminal on left
 - non-terminals & terminals on right
 - implemented with pushdown automata
- Type-3: Regular grammars
 - generate regular languages
 - no terminals or non-terminals here
 - implemented with finite state automata

Classes of Grammars (The Chomsky Hierarchy)

Type 0, Phrase Structure (same as basic grammar definition)

Type 1, Context Sensitive

- (1) $\alpha \rightarrow \beta$ where α is in (N U Σ)* N (N U Σ)*, β is in (N U Σ)+, and length(α) \leq length(β)
- (2) γ A δ -> γ β δ where A is in N, β is in (N U Σ)⁺, and γ and δ are in (N U Σ)*

Type 2, Context Free

A -> β where A is in N, β is in (N U Σ)*

Linear

A-> x or A -> x B y, where A and B are in N and x and y are in Σ^* Type 3, Regular Expressions

- (1) left linear A -> B a or A -> a, where A and B are in N and a is in Σ
- (2) right linear A -> a B or A -> a, where A and B are in N and a is in Σ

Type 3 grammer

A grammar is said to be type 3 grammar or regular grammar if all productions in grammar are of the form $A \rightarrow a$ then $A \rightarrow aB$ or equivalent of the form $A \rightarrow a$ or $A \rightarrow Ba$.

In other words in any production (set of rules) the left hand string is single nonterminal and the right hand string is either a terminal or a terminal followed by non-terminal.

Type 2 grammer

A grammar is said to be type 2 grammar or context free grammar if every production in grammar is of the form $A \to \alpha$.

In other words in any production left hand string is always a non-terminal and a right hand string is any string on T U N.

• Example : $A \rightarrow aBc$

Type 1 grammer

A grammar is said to type 1 grammar or context sensitive grammar if for every production $\alpha \rightarrow \beta$. The length of β is larger than or equal to the length of α .

for example:

- $A \rightarrow ab$
- A→aA
- aAb→aBCb

Type 0 grammer

A grammar with no restriction is referred to as type 0 grammar. They generate exactly all languages that can be recognized by a Turing machine. These languages are also known as the recursively enumerable languages.

Class 0 grammars are too general to describe the syntax of programming languages and natural languages.

The Chomsky Hierarchy and the Block Diagram of a Compiler

CFG vs. Regular Expressions

A regular grammar puts the following restrictions on the productions:

- The LHS can only be a single non terminal
- The RHS can be any number of terminals, with (at most) a single non terminal as its last symbol.

A CFG puts the following restrictions on the productions:

- The LHS can only be a single non terminal (just like the regular grammar)
- The RHS can be any combination of terminals and non terminals (this is the new part).

CFG is more expressive than RE

 Every language that can be described by regular expressions can also be described by a CFG

Example: languages that are CFG but not RE

- if-then-else statement, $\{a^nb^n | n \ge 1\}$

Non-CFG

- $L1=\{wcw \mid w \text{ is in } (a|b)^*\}$
- $L2=\{a^nb^mc^nd^m \mid n>=1 \text{ and } m>=1\}$

Context Free Grammars

- CFGs
 - Add recursion to regular expressions
 - Nested constructions
 - Notation

```
expression \rightarrow identifier \mid number \mid -expression \mid
\mid (expression) \mid
\mid expression \ operator \ expression
operator \rightarrow + \mid - \mid * \mid /
```

- Terminal symbols
- Non-terminal symbols
- Production rule (i.e. substitution rule)
 terminal symbol → terminal and non-terminal symbols

Derivations

- A derivation shows how to generate a syntactically valid string
 - Given a CFG
 - Example:
 - CFG

```
expression \rightarrow identifier
| number |
| - expression |
| (expression )
| expression operator expression operator <math>\rightarrow + | - | * | /
```

• Derivation of

```
slope * x + intercept
```

Derivation Example

Derivation of slope * x + intercept

```
expression \Rightarrow expression \ operator \ expression
\Rightarrow expression \ operator \ intercept
\Rightarrow expression \ operator \ expression \ + intercept
\Rightarrow expression \ operator \ x \ + intercept
\Rightarrow expression \ x \ + intercept
\Rightarrow expression \ x \ + intercept
\Rightarrow expression \ x \ + intercept
\Rightarrow slope \ x \ + intercept
```

• Identifiers were not derived for simplicity

Parse Trees

- A parse tree is any tree in which
 - The root is labeled with S
 - Each leaf is labeled with a token a or ε
 - Each interior node is labeled by a nonterminal
 - If an interior node is labeled A and has children labeled X1,...Xn, then A := X1...Xn is a production.

Parse Trees and Derivations

$$E := E + E \mid E * E \mid E - E \mid - E \mid (E) \mid id$$

Parse Trees

- A parse is graphical representation of a derivation
- Example

Ambiguous Grammars

- Alternative parse tree
 - same expression
 - same grammar

This grammar is ambiguous

Ambiguity

• A grammar that produces more than one parse tree for some sentence is said to be *ambiguous*.

Eliminating Ambiguity

- There is no deterministic way of finding out whether a grammar is ambiguous and how to fix it. In order to remove ambiguity, we follow some heuristics.
- There are three parts to this:
- 1. Add a non-terminal for each precedence level
- 2. Isolate the corresponding part of the grammar
- 3. Force the parser to recognize the high-precedence sub expressions first

$$\begin{split} E -> E + E \mid E - E \\ \mid E * E \mid E / E \\ \mid (E) \mid var \\ E -> E + T \mid E - T \mid T \\ T -> T * F \mid T \mid F \\ F -> (E) \mid id \end{split}$$

Eliminating Left-Recursion

• Direct left-recursion

$$A ::= A\alpha \mid \beta \qquad \qquad A ::= A\alpha 1 \mid ... \mid A\alpha m \mid \beta 1 \mid ... \mid \beta n$$

$$A ::= \beta A' \qquad \qquad A ::= \beta 1 A' \mid ... \mid \beta n A'$$

$$A' ::= \alpha A' \mid \epsilon \qquad \qquad A' ::= \alpha 1 A' \mid ... \mid \alpha n A' \mid \epsilon$$

Eliminating Indirect Left-Recursion

- Indirect left-recursion
- Algorithm

```
S ::= Aa \mid b A ::= Ac \mid Sd \mid \epsilon Arrange the nonterminals in some order A_1,...,A_n. for (i in 1..n) { for (j in 1..i-1) { replace each production of the form A_i ::= A_j \gamma by the productions A_i ::= \delta_1 \gamma \mid \delta_2 \gamma \mid ... \mid \delta_k \gamma where A_j ::= \delta_1 \mid \delta_2 \mid ... \mid \delta_k } eliminate the immediate left recursion among A_i productions }
```

Left Factoring

$$A::=\alpha\beta1\mid...\mid\alpha\beta n\mid\gamma$$

Types of Parsers

Top-Down Parsing

- Start from the start symbol and build the parse tree top-down
- Apply a production to a nonterminal. The right-hand of the production will be the children of the nonterminal
- Match terminal symbols with the input
- May require backtracking
- Some grammars are backtrack-free (predictive)

TDP

- The parse tree is created top to bottom.
- Top-down parser
 - Recursive-Descent Parsing
 - Backtracking is needed (If a choice of a production rule does not work, we backtrack to try other alternatives.)
 - It is a general parsing technique, but not widely used.
 - Not efficient
 - Predictive Parsing
 - no backtracking
 - efficient
 - needs a special form of grammars (LL(1) grammars).
 - Recursive Predictive Parsing is a special form of Recursive Descent parsing without backtracking.
 - Non-Recursive (Table Driven) Predictive Parser is also known as LL(1) parser.

Construct Parse Trees Top-Down

- Start with the tree of one node labeled with the start symbol and repeat the following steps until the fringe of the parse tree matches the input string
 - 1. At a node labeled A, select a production with A on its LHS and for each symbol on its RHS, construct the appropriate child
 - 2. When a terminal is added to the fringe that doesn't match the input string, backtrack
 - 3. Find the next node to be expanded
- Minimize the number of backtracks

Example

Left-recursive

E ::=
$$T | E + T | E - T$$

T ::= $F | T * F | T / F$
F ::= $id | number | (E)$

Right-recursive

Recursive-Descent Parsing (uses Backtracking)

- Backtracking is needed.
- It tries to find the left-most derivation.
- Grammar rule of a non-terminal "A" is viewed as a definition of a procedure that will recognize "A".

$$S \rightarrow cAd$$

 $A \rightarrow ab \mid a$

input: cad

fails, backtrack

Recursive Descent Parser- Example

• A separate recursive procedure is written for every non-terminals

```
Procedure S()
   if input = 'c'
   Advance();
                  //procedure that is written to advance the input pointer to next position
   A();
   if input = 'd'
   Advance();
   return true;
   else return false;
   else return false;
```

Cont.

```
Procedure A()
               // i-save saves the input pointer position before each alternate to facilitate backtracking
isave=in-ptr;
If input ='a'
    Advance();
    if input = 'b'
          Advance();
          return true;
In-ptr=isave
If input ='a'
    Advance();
    return true;
return false;
return false;
```

Cont.

- Problems??
- Left recursion ambiguity as how many times to call? Solution eliminate it
- Backtracking when more than one alternative in the rule. Solution left factoring
- Very difficult to identify the position of the errors

Predictive Parser

a grammar \Rightarrow a grammar suitable for predictive eliminate left parsing (a LL(1) grammar)

left recursion factor

• When re-writing a non-terminal in a derivation step, a predictive parser can **uniquely** choose a production rule by just looking the current symbol in the input string.

Predictive Parser (example)

```
stmt → if .....
while .....
begin .....
for .....
```

- When we are trying to write the non-terminal *stmt*, if the current token is if we have to choose first production rule.
- When we are trying to write the non-terminal *stmt*, we can uniquely choose the production rule by just looking the current token.
- We eliminate the left recursion in the grammar, and left factor it. But it may not be suitable for predictive parsing (not LL(1) grammar).

Recursive Predictive Parsing

• Each non-terminal corresponds to a procedure.

```
Ex: A → aBb (This is only the production rule for A)
proc A {

match the current token with a, and move to the next token;
call 'B';
match the current token with b, and move to the next token;
```

Recursive Predictive Parsing (cont.)

```
A \rightarrow aBb \mid bAB
proc A {
   case of the current token {
        'a': - match the current token with a, and move to the next token;
             - call 'B';
             - match the current token with b, and move to the next token;
        'b': - match the current token with b, and move to the next token;
             - call 'A';
             - call 'B';
```

Recursive Predictive Parsing (cont.)

• When to apply ε -productions.

$$A \rightarrow aA \mid bB \mid \epsilon$$

- If all other productions fail, we should apply an ε -production. For example, if the current token is not a or b, we may apply the ε -production.
- Most correct choice: We should apply an ε-production for a non-terminal A when the current token is in the follow set of A (which terminals can follow A in the sentential forms).

Recursive Predictive Parsing (Example)

```
A \rightarrow aBe \mid cBd \mid C
B \rightarrow bB \mid \varepsilon
C \rightarrow f
proc A {
    case of the current token {
        a: - match the current token with a,
             and move to the next token;
            - call B;
            - match the current token with e,
             and move to the next token;
       c: - match the current token with c,
             and move to the next token;
            - call B;
            - match the current token with d.
             and move to the next token;
        f: - call C
                   first set of C
```

```
proc C { match the current token with f,
           and move to the next token; }
proc B {
   case of the current token {
        b: - match the current token with b,
            and move to the next token;
           - call B
       e,d: do nothing
```

Non-Recursive Predictive Parsing - LL(1) Parser

- An LL parser is a top-down parser for a subset of the context-free grammars. It parses the input from Left to right, and constructs a Leftmost derivation of the sentence
- Non-Recursive predictive parsing is a table-driven parser.
- It is a top-down parser.
- It is also known as LL(1) Parser

An LL parser is called an LL(*k*) parser if it uses *k* tokens of lookahead when parsing a sentence

LL(1) Parser

input buffer

- our string to be parsed. We will assume that its end is marked with a special symbol \$.

output

 a production rule representing a step of the derivation sequence (left-most derivation) of the string in the input buffer.

stack

- contains the grammar symbols
- at the bottom of the stack, there is a special end marker symbol \$.
- initially the stack contains only the symbol \$ and the starting symbol \$.
 \$S ← initial stack
- when the stack is emptied (ie. only \$ left in the stack), the parsing is completed.

parsing table

- a two-dimensional array M[A,a]
- each row is a non-terminal symbol
- each column is a terminal symbol or the special symbol \$
- each entry holds a production rule.

LL(1) Parser – Parser Actions

```
set ip to point to the first symbol of w$;
repeat
      let X be the top stack symbol and a the symbol pointed to by ip;
      if X is a terminal or $ then
           if X = a then
                pop X from the stack and advance ip
           else error()
                                                          parsing table
               /* X is a nonterminal */
           if M[X, a] = X \rightarrow Y_1 Y_2 \cdots Y_k then begin
                pop X from the stack;
                push Y_k, Y_{k-1}, ..., Y_1 onto the stack, with Y_1 on top;
                output the production X \to Y_1 Y_2 \cdot \cdot \cdot Y_k
           end
           else error()
until X =  /* stack is empty */
```

LL(1) Parser – Parser Actions

- The symbol at the top of the stack (say X) and the current symbol in the input string (say a) determine the parser action.
- There are four possible parser actions.
- 1. If X and a are \$ → parser halts (successful completion)
- 2. If X and a are the same terminal symbol (different from \$)
 - → parser pops X from the stack, and moves the next symbol in the input buffer.
- 3. If X is a non-terminal
 - → parser looks at the parsing table entry M[X,a]. If M[X,a] holds a production rule $X \rightarrow Y_1 Y_2 ... Y_k$, it pops X from the stack and pushes $Y_k, Y_{k-1}, ..., Y_1$ into the stack. The parser also outputs the production rule $X \rightarrow Y_1 Y_2 ... Y_k$ to represent a step of the derivation.
- 4. none of the above \rightarrow error
 - all empty entries in the parsing table are errors.
 - If X is a terminal symbol different from a, this is also an error case.

 $S \rightarrow aBa$ $B \rightarrow bB \mid \epsilon$

	a	b	\$
S	$S \rightarrow aBa$		
В	$B \to \epsilon$	$B \rightarrow bB$	

LL(1) Parsing Table

<u>stack</u>	<u>input</u>	<u>output</u>
\$ <mark>S</mark>	<mark>a</mark> bba\$	$S \rightarrow aBa$
\$aB <mark>a</mark>	abba\$	
\$a <mark>B</mark>	bba\$	$B \rightarrow bB$
\$aB <mark>b</mark>	bba\$	
\$aB	ba\$	$B \rightarrow bB$
\$aB <mark>b</mark>	ba\$	
\$aB	a\$	$B \rightarrow \epsilon$
\$a	a\$	
\$	\$	accept, successful completion

LL(1) Parser – Example 1 (cont.)

Outputs: $S \to aBa$ $B \to bB$ $B \to \epsilon$

Derivation(left-most): S⇒aBa⇒abBa⇒abba

parse tree

Input= id+id\$ $E \rightarrow TE'$ $E' \rightarrow +TE' \mid \epsilon$ $T \rightarrow FT'$ $T' \rightarrow *FT' \mid \epsilon$ $F \rightarrow (E) \mid id$

	id	+	*	()	\$
E	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		$E' \rightarrow +TE'$			$E' \rightarrow \varepsilon$	$E' \rightarrow \varepsilon$
T	$T \rightarrow FT$			$T \rightarrow FT'$		
T'		$T' \rightarrow \epsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$F \rightarrow id$			$F \rightarrow (E)$		

$$1.E \rightarrow TE'$$

$$2.E' \rightarrow +TE'$$

$$3.E' \rightarrow \varepsilon$$

$$4.T \rightarrow FT'$$

$$5.T' \rightarrow *FT'$$

$$6.T' \rightarrow \varepsilon$$

$$7.F \rightarrow (E)$$

$$8.F \rightarrow id$$

$$FIRST(F) = \{ (,id) \}$$

$$FIRST(T') = \{ *, \epsilon \}$$

$$FOLLOW(E) = \{ *,) \}$$

$$FOLLOW(E') = \{ *,) \}$$

$$FOLLOW(T) = \{ +,), \$ \}$$

$$FOLLOW(T') = \{ +,), \$ \}$$

$$FIRST(E') = \{ +, \epsilon \}$$

$$FOLLOW(F) = \{ +, *,), \$ \}$$

$$FIRST(E) = \{ (,id) \}$$

	id	+	*	()	\$
E	1			1		
E'						
T						
T'						
F						

<u>stack</u>	<u>input</u>	<u>output</u>
\$E\$	id+id\$	$E \rightarrow TE'$
\$E' T	id+id\$	$T \rightarrow FT'$
\$E' T' F	id+id\$	$F \rightarrow id$
\$ E' T'id	id+id\$	
\$ E' T '	+id\$	$T' \rightarrow \epsilon$
\$ E'	+id\$	$E' \rightarrow +TE'$
\$ E' T+	+id\$	
\$ E' T	id\$	$T \rightarrow FT'$
\$ E' T' F	id\$	$F \rightarrow id$
\$ E' T'id	id\$	
\$ E' T '	\$	$T' \rightarrow \epsilon$
\$ E'	\$	$E' \rightarrow \epsilon$
\$	\$	accept

Constructing LL(1) Parsing Tables

- 1. Eliminate left recursion in grammar G
- 2. Perform left factoring on the grammar G
- 3. Find FIRST and FOLLOW for each NT of grammar G
- 4. Construct the predictive parse table OR LL(1) parse table
- 5. Check if the given input string can be accepted by the parser

Compute FIRST

• If α is a terminal symbol 'a' then FIRST(α)={a}

For example, for grammar rule A -> a, $FIRST(a)=\{a\}$

• If α is a non-terminal symbol 'X' and X -> $a\alpha$,

then $FIRST(X)=FIRST(a\alpha)=\{a\}$

For example for grammar rule A->aBC, $FIRST(A) = FIRST(aBC) = \{a\}$

• If α is a non-terminal 'X' and X-> \mathcal{E} , then FIRST(X)= $\{\mathcal{E}\}$

For example for grammar rule A-> \mathcal{E} , FIRST(A)= $\{\mathcal{E}\}$

• If $X \to Y_1, Y_2, ... Y_n$ then add to FIRST($Y_1, Y_2, ... Y_n$) all the non- \mathcal{E} symbols of FIRST(Y_1). Also add the non- \mathcal{E} symbols of FIRST(Y_2) if \mathcal{E} is in FIRST(Y_1), the non- \mathcal{E} symbols of FIRST(Y_3) if \mathcal{E} is in both FIRST(Y_1) and in FIRST(Y_2), and so on. Finally add \mathcal{E} to FIRST($Y_1, Y_2, ... Y_n$) if, for all i, FIRST(Y_1) contains \mathcal{E} .

For example for rules: $X \rightarrow Yb$ and $Y \rightarrow a \mid \mathcal{E}$ FIRST(X)=FIRST(Yb)=FIRST(Y)={a, b}

FIRST Example

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid id$$

FIRST(F) = { (,id}
FIRST(T') = {*,
$$\epsilon$$
}
FIRST(T) = { (,id}
FIRST(E') = {+, ϵ }
FIRST(E) = { (,id}

FIRST(TE') = { (,id}
FIRST(+TE') = {+}
FIRST(
$$\varepsilon$$
) = { ε }
FIRST(ε) = { (,id}
FIRST(*FT') = {*}
FIRST(ε) = { ε }
FIRST(ε) = { ε }
FIRST((E)) = {(}
FIRST(id) = {id}

Compute FOLLOW (for non-terminals)

FOLLOW of a non-terminal A is a set of terminals that follow or occur to the right of A

- If S is the start symbol \rightarrow \$ is in FOLLOW(S)
- if $A \rightarrow \alpha B\beta$ is a production rule
 - \rightarrow everything in FIRST(β) is FOLLOW(B) except ϵ
- If $(A \rightarrow \alpha B \text{ is a production rule})$ or $(A \rightarrow \alpha B \beta \text{ is a production rule and } \epsilon \text{ is in FIRST}(\beta))$
 - → everything in FOLLOW(A) is in FOLLOW(B).

We apply these rules until nothing more can be added to any follow set.

FOLLOW Example

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid id$$

Constructing LL(1) Parsing Table -- Algorithm

- for each production rule $A \rightarrow \alpha$ of a grammar G
 - for each terminal a in FIRST(α)
 - \rightarrow add $A \rightarrow \alpha$ to M[A,a]
 - If ε in FIRST(α)
 - \rightarrow for each terminal a in FOLLOW(A) add A $\rightarrow \alpha$ to M[A,a]
 - If ε in FIRST(α) and \$ in FOLLOW(A)
 - \rightarrow add A $\rightarrow \alpha$ to M[A,\$]
- All other undefined entries of the parsing table are error entries.

Constructing LL(1) Parsing Table -- Example

 $E \to TE' \qquad FIRST(TE') = \{(,id\} \qquad \Rightarrow E \to TE' \text{ into M[E,(] and M[E,id]}$ $E' \to +TE' \qquad FIRST(+TE') = \{+\} \qquad \Rightarrow E' \to +TE' \text{ into M[E',+]}$ $E' \to \epsilon \qquad \qquad FIRST(\epsilon) = \{\epsilon\} \qquad \Rightarrow \text{ none}$ but since ϵ in FIRST(ϵ) and FOLLOW(E') = $\{\$,,\}$ \Rightarrow E' $\to \epsilon$ into M[E',\$] and M[E',\$] $T \to FT' \qquad FIRST(FT') = \{(,id\} \qquad \Rightarrow T \to FT' \text{ into M[T,(] and M[T,id]} \}$

 $T' \rightarrow *FT'$ FIRST(*FT')={*} $\rightarrow T' \rightarrow *FT'$ into M[T',*]

 $T' \to \varepsilon$ FIRST(ε)={ ε } none but since ε in FIRST(ε)

and FOLLOW(T')= $\{\$,\}$ + $\}$ \rightarrow T' \rightarrow ϵ into M[T',\$], M[T',)] and

M[T',+]

 $F \rightarrow (E)$ FIRST((E))={(} \rightarrow F \rightarrow (E) into M[F,(]

 $F \rightarrow id$ FIRST(id)={id} $\rightarrow F \rightarrow id$ into M[F,id]

LL(1) Grammars

• A grammar whose parsing table has no multiply-defined entries is said to be LL(1) grammar.

one input symbol used as a look-head symbol to determine parser action

LL(1) left most derivation input scanned from left to right

• The parsing table of a grammar may contain more than one production rule. In this case, we say that it is not a LL(1) grammar.

A Grammar which is not LL(1)

$$S \rightarrow i C t S E \mid a$$

 $E \rightarrow e S \mid \epsilon$
 $C \rightarrow b$

FIRST(iCtSE) =
$$\{i\}$$

FIRST(a) = $\{a\}$
FIRST(eS) = $\{e\}$
FIRST(ϵ) = $\{\epsilon\}$
FIRST(b) = $\{b\}$

$FOLLOW(S) = \{ \$,e \}$
$FOLLOW(E) = \{ \$,e \}$
$FOLLOW(C) = \{ t \}$

	a	b	e	i	t	\$
S	$S \rightarrow a$			$S \rightarrow iCtSE$		
E			$E \to e S$ $E \to \varepsilon_{\uparrow}$			$E \rightarrow \epsilon$
			$E \rightarrow \epsilon_{\uparrow}$			
C		$C \rightarrow b$				

two production rules for M[E,e]

Problem **\rightarrow** ambiguity

A Grammar which is not LL(1) (cont.)

- What do we have to do if the resulting parsing table contains multiply defined entries?
 - If we didn't eliminate left recursion, eliminate the left recursion in the grammar.
 - If the grammar is not left factored, we have to left factor the grammar.
 - If its (new grammar's) parsing table still contains multiply defined entries, that grammar is ambiguous or it is inherently not a LL(1) grammar.
- A left recursive grammar cannot be a LL(1) grammar.
 - $-A \rightarrow A\alpha \mid \beta$
 - \rightarrow any terminal that appears in FIRST(β) also appears FIRST($A\alpha$) because $A\alpha \Rightarrow \beta\alpha$.
 - \rightarrow If β is ϵ , any terminal that appears in FIRST(α) also appears in FIRST($A\alpha$) and FOLLOW(A).
- A grammar is not left factored, it cannot be a LL(1) grammar
 - $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$
 - \rightarrow any terminal that appears in FIRST($\alpha\beta_1$) also appears in FIRST($\alpha\beta_2$).
- An ambiguous grammar cannot be a LL(1) grammar.

Properties of LL(1) Grammars

A grammar G is LL(1) if and only if the following conditions hold for two distinctive production rules $A \rightarrow \alpha$ and $A \rightarrow \beta$

left factored

- 1. Both α and β cannot derive strings starting with same terminals.
- 2. At most one of α and β can derive to ϵ .
- 3. If β can derive to ϵ , then α cannot derive to any string starting with a terminal in FOLLOW(A).

Example

• Construct predictive parse table for the following grammar. Also show parser actions for the input string - (a,a)

$$S->a \mid \uparrow \mid (T)$$

 $T->T,S \mid S$

- Eliminate left recursion
- left factor
- First
- Follow
- Construct parsing table check multiple entries
- Show Actions

Cont.

• Eliminate left recursion

- Its not needed to left factor
- FIRST

```
FIRST(S)=\{a, \uparrow, (\}\}
FIRST(T)=FIRST(ST')=FIRST(S)=\{a, \uparrow, (\}\}
FIRST(T')=\{,, \xi\}
```

FOLLOW

• Is following grammar LL(1)? Also trace input string - ibtaea

• Is following grammar LL(1)? Also trace input string – int*int

$$E \rightarrow T + E \mid T$$
 $T \rightarrow int \mid int * T \mid (E)$

 $E \rightarrow T X$

```
\begin{array}{lll} X \to + E \mid \epsilon \\ T \to (E) \mid \text{int } Y \\ Y \to * T \mid \epsilon \end{array} \\ & \text{First}(T) = \{\text{int}, (\} \\ & \text{First}(E) = \{\text{int}, (\} \\ & \text{First}(X) = \{+, \epsilon\} \\ & \text{First}(Y) = \{*, \epsilon\} \end{array} \\ & \begin{array}{lll} & \text{Follow}(+) = \{\text{ int}, (\} \\ & \text{Follow}(() = \{\text{ int}, (\} \\ & \text{Follow}(X) = \{\$, )\} \\ & \text{Follow}(T) = \{+, \}, \$ \} \end{array} \\ & \text{Follow}(T) = \{+, \}, \$ \} \end{array}
```

Motivation Behind First & Follow

First:

Is used to help find the appropriate production to follow given the top-of-the-stack non-terminal and the current input symbol.

Example: If $A \rightarrow \alpha$, and a is in First(α), then when a=input, replace A with α (in the stack).

(a is one of first symbols of α , so when A is on the stack and a is input, POP A and PUSH α .

Follow:

Is used when First has a conflict, to resolve choices, or when First gives no suggestion. When $\alpha \to \in$ or $\alpha \stackrel{*}{\Rightarrow} \in$, then what follows A dictates the next choice to be made.

Example: If $A \to \alpha$, and b is in Follow(A), then when $\alpha \stackrel{*}{\Rightarrow} \in \underline{\text{and}}$ b is an input character, then we expand A with α , which will eventually expand to \in , of which b follows!

 $(\alpha \stackrel{*}{\Rightarrow} \in : i.e., First(\alpha) contains \in .)$