Chapter 3 Section 2

Andrew Taylor

April 30 2022

Problem 1. Is
$$W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \text{ in } \mathbb{R}^2 \colon x \geq 0 \text{ and } y \geq 0 \right\}$$
 a subspace of \mathbb{R}^2 ?

Solution. W contains the zero vector and is closed under addition. But W is not closed under scalar multiplication. Therefore W is not a subspace of \mathbb{R}^2 .

Problem 2. Show that the only subspaces of \mathbb{R}^2 are \mathbb{R}^2 itself, the set $\{\vec{0}\}$, and any of the lines through the origin.

Solution. Let W be a subspace of \mathbb{R}^2 that is neither a line through the origin nor the set $\{\vec{0}\}$. Then we can choose two nonzero nonparallel vectors $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ from our subspace W. Let $\vec{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ be a vector in \mathbb{R}^2 . We will show that we can write \vec{u} as a linear combination of \vec{v} and \vec{w} .

If \vec{u} can be written as a linear combination of \vec{v} and \vec{w} , then there are solutions to the equation

$$x_1\vec{v} + x_2\vec{w} = \vec{u}$$

where x_1 and x_2 are real numbers. We can write this equation in matrix form

$$\begin{bmatrix} v_1 & w_1 \\ v_2 & w_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

This equation has solutions when $A = \begin{bmatrix} v_1 & w_1 \\ v_2 & w_2 \end{bmatrix}$ is invertible. We know that A is invertible when $\det A$ is nonzero.

The components v_1, v_2, w_1, w_2 can either be zero or nonzero. There is a small number of possible cases, since both vectors are not the zero vector, and since the two vectors are not parallel.

Case 1: $v_1 = 0, v_2 \neq 0, w_1 \neq 0, w_2 = 0$ Case 2: $v_1 \neq 0, v_2 = 0, w_1 = 0, w_2 \neq 0$

In both of these cases, the determinant of A is nonzero, and the matrix A is invertible.

Case 3: At least one of the vectors (\vec{v} and \vec{w}) has two nonzero components.

Let \vec{v} be the vector with two nonzero components.

There exist real numbers c_1 and c_2 such that $c_1v_1 = w_1$ and $c_2v_2 = w_2$. We know that $c_1 \neq c_2$ since the two vectors are not scalar multiples of each other. We can substitute these expressions when we calculate the determinant of A.

$$\det A = v_1 w_2 - v_2 w_1$$

$$= v_1 (c_2 v_2) - v_2 (c_1 v_1)$$

$$= c_2 v_1 v_2 - c_1 v_1 v_2$$

$$= v_1 v_2 (c_2 - c_1)$$

Since $v_1 \neq 0$, $v_2 \neq 0$ and $c_2 \neq c_1$, the determinant of A is nonzero. Thus the matrix A is invertible, and the equation

$$x_1\vec{v} + x_2\vec{w} = \vec{u}$$

has solutions for x_1 and x_2 .

Since W is closed under linear combinations, the vector \vec{u} is in the subspace W. This means that W contains every real number, so $W = \mathbb{R}^2$.

We can also express this using a linear transformation. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation

$$T(\vec{x}) = \begin{bmatrix} \vec{v} & \vec{w} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$= \begin{bmatrix} v_1 & w_1 \\ v_2 & w_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

We have shown that the matrix $\begin{bmatrix} v_1 & w_1 \\ v_2 & w_2 \end{bmatrix}$ is invertible.

This means that there is a unique solution \vec{x} for every vector \vec{u} in \mathbb{R}^2 .

This is equivalent to saying any vector \vec{u} in \mathbb{R}^2 can be written as a linear combination of \vec{v} and \vec{w} .

Problem 3. Consider the plane V in \mathbb{R}^3 given by the equation

$$x_1 + 2x_2 + 3x_3 = 0$$

- Find a matrix A such that $V = \ker A$
- Find a matrix B such that $V = \operatorname{im} B$

Solution. Let $A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$. We can write

$$V = \ker A$$
$$= \ker \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

We can find two nonparallel vectors \vec{v} and \vec{w} in V.

Let
$$\vec{v} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$
 and $\vec{w} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.

We can construct our matrix B from the column vectors \vec{v} and \vec{w} .

$$B = \begin{bmatrix} \vec{v} & \vec{w} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -2 \\ -1 & 1 \end{bmatrix}$$

Now we can say

$$V = \operatorname{im} B$$

$$= \operatorname{im} \begin{bmatrix} 1 & 1 \\ 1 & -2 \\ -1 & 1 \end{bmatrix}$$

Problem 4. Consider the matrix

$$A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 2 & 2 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

Find vectors in \mathbb{R}^3 that span the image of A. What is the smallest number of vectors needed to span the image of A?

Solution. The vectors

$$\vec{v_1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \vec{v_2} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \vec{v_3} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \vec{v_4} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$$

span the image of A.

The vector v_2 is redundant because $v_2 = 2v_1$. The vector v_4 is redundant because $v_1 + v_3 = v_4$. Thus only two vectors are needed to span the image of A, the vectors v_1 and v_3 .

$$\operatorname{im} A = \operatorname{span}(v_1, v_3)$$

We can verify this algebraically. We know that the image of A is spanned by the vectors $\vec{v_1}$, $\vec{v_2}$, $\vec{v_3}$, $\vec{v_4}$.

Let \vec{u} be a vector in \mathbb{R}^3 . Then

$$\vec{u} = c_1 \vec{v_1} + c_2 \vec{v_2} + c_3 \vec{v_3} + c_4 \vec{v_4}$$

for some real coefficients c_1, c_2, c_3, c_4 . Substituting we get

$$\vec{u} = c_1 \vec{v_1} + c_2 (2\vec{v_1}) + c_3 \vec{v_3} + c_4 (v_1 + v_3)$$
$$= (c_1 + c_4 + 2c_1)\vec{v_1} + (c_3 + c_4)\vec{v_3}$$

Thus \vec{u} is a linear combination of vectors $\vec{v_1}$ and $\vec{v_3}$. The vectors $\vec{v_1}$ and $\vec{v_3}$ form a basis for the image of A.

Problem 5. Are the following vectors in \mathbb{R}^7 linearly independent?

$$\vec{v_1} = \begin{bmatrix} 7\\0\\4\\0\\1\\9\\0 \end{bmatrix} \vec{v_2} = \begin{bmatrix} 6\\0\\7\\1\\4\\8\\0 \end{bmatrix} \vec{v_3} = \begin{bmatrix} 5\\0\\6\\2\\3\\1\\1\\7 \end{bmatrix} \vec{v_4} = \begin{bmatrix} 4\\5\\3\\3\\2\\2\\4 \end{bmatrix}$$

Solution. $\vec{v_2}$ cannot be a linear combination of $\vec{v_1}$, since $\vec{v_1}$ has a 0 in the fourth component and $\vec{v_2}$ has a 1 in the fourth component. $\vec{v_3}$ cannot be a linear combination of $\vec{v_1}$ and $\vec{v_2}$, since $\vec{v_1}$ and $\vec{v_2}$ have zeros in the last component, and $\vec{v_3}$ has a seven in the last component. $\vec{v_4}$ cannot be a linear combination of $\vec{v_1}$, $\vec{v_2}$, and $\vec{v_3}$, since $\vec{v_4}$ has a 5 in the second component and the other three vectors all have zero in the second component.

Thus the four vectors are linearly independent.

Problem 6. Are the following vectors in \mathbb{R}^7 linearly independent?

$$\vec{v_1} = \begin{bmatrix} 1\\2\\3 \end{bmatrix} \vec{v_2} = \begin{bmatrix} 4\\5\\6 \end{bmatrix} \vec{v_3} = \begin{bmatrix} 7\\8\\9 \end{bmatrix}$$

Solution. The vectors $\vec{v_1}, \vec{v_2}, \vec{v_3}$ are not linearly independent since $2\vec{v_2} - \vec{v_1} = \vec{v_3}$.

Problem 7. Suppose the column vectors of an $n \times m$ matrix A are linearly independent. Find the kernel of matrix A.

Solution. Let

$$A = \begin{bmatrix} \vec{v_1} & \vec{v_2} & \cdots & \vec{v_m} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$

We can find the kernel of A by solving the equation

$$x_1\vec{v_1} + x_2\vec{v_2} + \dots + x_m\vec{v_m} = 0$$

Since the vectors $\vec{v_1}, \vec{v_2}, \dots, \vec{v_m}$ are linearly independent, there is only the trivial relation, with $x_1 = x_2 = \dots = x_m = 0$, thus the kernel of A is $\{\vec{0}\}$.

Problem 8. If v_1, \ldots, v_m is a basis of a subspace V of \mathbb{R}^n , and if \vec{v} is a vector in V, how many solutions c_1, \ldots, c_m does the equation

$$\vec{v} = c_1 \vec{v_1} + \dots + c_m \vec{v_m}$$

have?

Solution. Let c_1, \ldots, c_m and d_1, \ldots, d_m be solutions to the equation. Then

$$\vec{v} = c_1 \vec{v_1} + \dots + c_m \vec{v_m}$$
$$\vec{v} = d_1 \vec{v_1} + \dots + d_m \vec{v_m}$$

Subtracting we get

$$0 = (c_1 - d_1)\vec{v_1} + \dots + (c_m - d_m)\vec{v_m}$$

Since the vectors v_1, \ldots, v_m are linearly independent, we can conclude that $c_1 = d_1$. Thus there is only one solution to the equation.

In the following three problems, which of the sets W are subspaces of \mathbb{R}^3 ?

Problem 9.

$$W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x + y + z = 1 \right\}$$

Solution.

$$W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x + y + z = 1 \right\}$$

is not a subspace because it does not contain the zero vector.

Problem 10.

$$W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x \le y \le z \right\}$$

Solution.

$$W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x \le y \le z \right\}$$

is not a subspace since it is not closed under scalar multiplication.

Problem 11.

$$W = \left\{ \begin{bmatrix} x + 2y + 3z \\ 4x + 5y + 6z \\ 7x + 8y + 9z \end{bmatrix} : x, y, z \text{ are arbitrary constants} \right\}$$

Solution. The first two column vectors are linearly independent, and the third is redundant. Thus W is the span of the first two column vectors, a plane passing through the origin. A plane that passes through the origin contains the zero vector, is closed under addition, and is closed under scalar multiplication. Thus W is a subspace of \mathbb{R}^3 .