Monday: A_{TM} is recognizable but undecidable

Acceptance problem
for Turing machines A_{TM} $\{\langle M, w \rangle \mid M \text{ is a Turing machine that accepts input string } w\}$ Language emptiness testing
for Turing machines E_{TM} $\{\langle M \rangle \mid M \text{ is a Turing machine and } L(M) = \emptyset\}$ Language equality testing
for Turing machines E_{TM} $\{\langle M \rangle \mid M \text{ is a Turing machine and } L(M) = \emptyset\}$

Example strings in A_{TM}

Example strings in E_{TM}

Example strings in EQ_{TM}

languages, the set of Turing-decidable languages is also countably infinite.

Since there are uncountably many languages (because $\mathcal{P}(\Sigma^*)$ is uncountable), there are uncountably many unrecognizable languages and there are uncountably many undecidable languages.
Thus, there's at least one undecidable language!
What's a specific example of a language that is unrecognizable or undecidable?
To prove that a language is undecidable, we need to prove that there is no Turing machine that decides it.
Key idea : proof by contradiction relying on self-referential disagreement.
Theorem : A_{TM} is not Turing-decidable.
Proof : Suppose towards a contradiction that there is a Turing machine that decides A_{TM} . We call this presumed machine M_{ATM} .
By assumption, for every Turing machine M and every string w
• If $w \in L(M)$, then the computation of M_{ATM} on $\langle M, w \rangle$
• If $w \notin L(M)$, then the computation of M_{ATM} on $\langle M, w \rangle$
Define a new Turing machine using the high-level description:
$D=$ " On input $\langle M \rangle$, where M is a Turing machine:
1. Run M_{ATM} on $\langle M, \langle M \rangle \rangle$.
2. If M_{ATM} accepts, reject; if M_{ATM} rejects, accept."
Is D a Turing machine?
Is D a decider?
What is the result of the computation of D on $\langle D \rangle$?

Wednesday: Computable functions and reduction

Mapping reduction

Motivation: Proving that A_{TM} is undecidable was hard. How can we leverage that work? Can we relate the decidability / undecidability of one problem to another?

If problem X is **no harder than** problem Y ... and if Y is easy,

If problem X is **no harder than** problem Y

 \dots and if X is hard,

 \dots then Y must be hard too.

 \dots then X must be easy too.

"Problem X is no harder than problem Y" means "Can answer questions about membership in X by converting them to questions about membership in Y".

Definition: A is **mapping reducible to** B means there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all strings x in Σ^* ,

 $x \in A$ if and only if $f(x) \in B$.

Notation: when A is mapping reducible to B, we write $A \leq_m B$.

Intuition: $A \leq_m B$ means A is no harder than B, i.e. that the level of difficulty of A is less than or equal the level of difficulty of B.

Computable functions

Definition: A function $f: \Sigma^* \to \Sigma^*$ is a **computable function** means there is some Turing machine such that, for each x, on input x the Turing machine halts with exactly f(x) followed by all blanks on the tape

Examples of computable functions:

The function that maps a string to a string which is one character longer and whose value, when interpreted as a fixed-width binary representation of a nonnegative integer is twice the value of the input string (when interpreted as a fixed-width binary representation of a non-negative integer)

$$f_1: \Sigma^* \to \Sigma^*$$
 $f_1(x) = x0$

To prove f_1 is computable function, we define a Turing machine computing it.

High-level description

"On input w

- 1. Append 0 to w.
- 2. Halt."

 $Implementation\hbox{-}level\ description$

"On input w

- 1. Sweep read-write head to the right until find first blank cell.
- 2. Write 0.
- 3. Halt."

Formal definition ($\{q0, qacc, qrej\}, \{0, 1\}, \{0, 1, \bot\}, \delta, q0, qacc, qrej$) where δ is specified by the state diagram:

The function that maps a string to the result of repeating the string twice.

$$f_2: \Sigma^* \to \Sigma^* \qquad f_2(x) = xx$$

The function that maps strings that are not the codes of Turing machines to the empty string and that maps strings that code Turing machines to the code of the related Turing machine that acts like the Turing machine coded by the input, except that if this Turing machine coded by the input tries to reject, the new machine will go into a loop.

$$f_3: \Sigma^* \to \Sigma^* \qquad f_3(x) = \begin{cases} \varepsilon & \text{if } x \text{ is not the code of a TM} \\ \langle (Q \cup \{q_{trap}\}, \Sigma, \Gamma, \delta', q_0, q_{acc}, q_{rej}) \rangle & \text{if } x = \langle (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej}) \rangle \end{cases}$$

where $q_{trap} \notin Q$ and

$$\delta'((q,x)) = \begin{cases} (r,y,d) & \text{if } q \in Q, \ x \in \Gamma, \ \delta((q,x)) = (r,y,d), \ \text{and} \ r \neq q_{rej} \\ (q_{trap}, \neg, R) & \text{otherwise} \end{cases}$$

he function that maps strings that are not the codes of CFGs to the empty string and that maps string at code CFGs to the code of a PDA that recognizes the language generated by the CFG.	gs
Other examples?	

Friday: The Halting problem

Recall definition: A is **mapping reducible to** B means there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all strings x in Σ^* ,

$$x \in A$$
 if and only if $f(x) \in B$.

Notation: when A is mapping reducible to B, we write $A \leq_m B$.

Intuition: $A \leq_m B$ means A is no harder than B, i.e. that the level of difficulty of A is less than or equal the level of difficulty of B.

Example: $A_{TM} \leq_m A_{TM}$

Example: $A_{DFA} \leq_m \{ww \mid w \in \{0, 1\}^*\}$

Theorem (Sipser 5.22): If $A \leq_m B$ and B is decidable, then A is decidable.

Theorem (Sipser 5.23): If $A \leq_m B$ and A is undecidable, then B is undecidable.

Halting problem

 $HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a Turing machine, } w \text{ is a string, and } M \text{ halts on } w\}$

Define $F: \Sigma^* \to \Sigma^*$ by

$$F(x) = \begin{cases} const_{out} & \text{if } x \neq \langle M, w \rangle \text{ for any Turing machine } M \text{ and string } w \text{ over the alphabet of } M \\ \langle M', w \rangle & \text{if } x = \langle M, w \rangle \text{ for some Turing machine } M \text{ and string } w \text{ over the alphabet of } M. \end{cases}$$

where $const_{out} = \langle V, \varepsilon \rangle$ and M' is a Turing machine that computes like M except, if the computation ever were to go to a reject state, M' loops instead.

To use this function to prove that $A_{TM} \leq_m HALT_{TM}$, we need two claims: Claim (1): F is computable Claim (2): for every $x, x \in A_{TM}$ iff $F(x) \in HALT_{TM}$.

Week 8 at a glance

Textbook reading: Section 4.1, 4.2, 5.3

For Monday: An undecidable language, Sipser pages 207-209.

For Wednesday: Definition 5.20 and figure 5.21 (page 236)

For Friday: Example 5.24 (page 236)

For Monday of Week 9: Example 5.26 (page 237)

Make sure you can:

- Classify the computational complexity of a set of strings by determining whether it is decidable or undecidable and recognizable or unrecognizable.
 - State, prove, and use theorems relating decidability, recognizability, and co-recognizability.
 - Prove that a language is decidable or recognizable by defining and analyzing a Turing machines with appropriate properties.
- Use diagonalization to prove that there are 'hard' languages relative to certain models of computation.
- Use mapping reduction to deduce the complexity of a language by comparing to the complexity of another.
 - Define computable functions, and use them to give mapping reductions between computational problems
 - Define and explain A_{TM} and $HALT_{TM}$
 - Build and analyze mapping reductions between computational problems

TODO:

Review guizzes based on class material each day.

Homework assignment 4 due this Thursday.

Test 2 next Friday.