Notes on Lectures on Logarithmic Sobolev Inequalities

Yuanxing Cheng

August 24, 2022

1 Markov Semi-groups

1.1 Markov Semi-groups and Generators

Definition 1.1. A family $(P_t)_{t\geq 0}$ of linear operators on a Banach space $(\mathcal{B}, \|\cdot\|)$ is a *semi-group* iff it satisfies the following:

- $P_0 = I$, the identity on \mathcal{B}
- the map $t \to P_t$ is continuous in the sense that for all $f \in \mathcal{B}$, $t \to P_t f$ is a continuous map from \mathbb{R}^+ into \mathcal{B}
- $\forall f \in \mathcal{B} \text{ and } (t,s) \in (\mathbb{R}^+)^2$

$$P_{t+s}f = P_t P_s f$$

Under most cases, \mathcal{B} will be the set $\mathcal{C}(\Omega)$ of real-valued functions bounded continuous functions on a Polish space Ω equipped with the uniform norm. Other cases, we might need uniform boundedness.

Definition 1.2. A semi-group $(P_t)_{t\geq 0}$ is Markov iff

- for any $t \in \mathbb{R}^+$, $P_t \mathbb{1} = \mathbb{1}$
- for any $t \in \mathbb{R}^+$, P_t preserves positivity, i.e., for any $f \in \mathcal{B}, t \in \mathbb{R}^+, f \geq 0 \implies P_t f \geq 0$

Definition 1.3. P_t is *contractive* iff for any $f \in \mathcal{B}$,

$$||P_t f|| \le ||f|| \tag{1.1}$$

where $\|\cdot\|$ denotes the norm on \mathcal{B} .

Definition 1.4. The infinitesimal generator \mathcal{L} of a semi-group P_t is defined by

$$\mathcal{L}f := \lim_{t \to 0^+} \frac{(P_t - I)f}{t} \tag{1.2}$$

for any function f for which the limit makes sense. The domain $\mathcal{D}(\mathcal{L})$ of \mathcal{L} is the set of functions of $\mathcal{C}(\Omega)$ for which above limit exists.

Theorem 1.5 (Hille-Yoshida theorem for Markov semi-groups). A Linear operator \mathcal{L} is the infinitesimal generator of a Markov semi-group $(P_t, t \in \mathbb{R}^+)$ on \mathcal{B} iff

- 1. $\mathbb{1} \in \mathcal{D}(\mathcal{L})$ and $\mathcal{L}\mathbb{1} = 0$
- 2. $\mathcal{D}(\mathcal{L})$ is dense in \mathcal{B}
- 3. \mathcal{L} is closed: iff any sequence f_n of $\mathcal{D}(\mathcal{L})$ converging to f and such that $\mathcal{L}f_n$ converge, then $\lim_{n\to\infty} \mathcal{L}f_n = \mathcal{L}f$
- 4. for any $\lambda > 0$, $(\lambda I \mathcal{L})$ is invertible. And its inverse is bounded

$$\sup_{\|f\| \le 1} \| (\lambda I - \mathcal{L})^{-1} f \| \le 1/\lambda$$

and preserve positivity, i.e., for all $f \geq 0$, $(\lambda I - \mathcal{L})^{-1} f \geq 0$

1.2 Invariant Measures of a semi-group

Definition 1.6. Let $(P_t)_{t\geq 0}$ be a Markov semi-group. A probability measure μ on (Ω, Σ) is invariant with respect to the semi-group $(P_t)_{t\geq 0}$ iff for any $f\in \mathcal{C}(\Omega)$ and any $t\geq 0$

$$\mu\left(P_t f\right) = \mu(f) \tag{1.3}$$

The set of invariant measures for a semi-group $(P_t)_{t>0}$ will be denoted hereafter $\mathcal{J} = \mathcal{J}(P)$

This invariant probability is also characterized by

Proposition 1.7. μ on (Ω, Σ) is invariant with respect to the semi-group $(P_t)_{t>0}$ iff for any $f \in \mathcal{D}(\mathcal{L})$,

$$\mu(\mathcal{L}f) = 0 \tag{1.4}$$

Extension

Proposition 1.8. Let $\mu \in \mathcal{J}(P)$ with respect to a Markov semi-group $(P_t)_{t\geq 0}$ (i.e., μ is invariant to P_t). $(P_t)_{t\geq 0}$ can be extended to any $L^p(\mu)$ for $p\geq 1$.

Prove using Jensen's inequality and Hahn-Banach theorem.

Definition 1.9. A Markov semi-group $\{P_t, t \geq 0\}$ is $L^q(\mu)$ ergodic for $q \in (1, \infty)$ and $\mu \in \mathcal{J}(P_t)$ iff for any function $f \in L^q(\mu)$,

$$\lim_{t \to \infty} \int \left(P_t f - \mu f \right)^q \, \mathrm{d}\mu = 0$$

A Markov semi-group $\{P_t, t \geq 0\}$ is $L^q(\mu)$ is uniformly ergodic iff $\mathcal{J}(P_t)$ is reduced to a unique probability measure and

$$\lim_{t \to \infty} ||P_t f - \mu f||_{\infty} = 0$$

A stronger property than invariance

Definition 1.10. A probability measure μ on (Ω, Σ) is reversible for a Markov semi-group $\{P_t, t \geq 0\}$ iff for any $(f, g) \in \mathcal{B}$ and time $t \geq 0$,

$$\mu(gP_tf) = \mu(fP_tg) \tag{1.5}$$

Equivalently, we say that $(P_t)_{t>0}$ satisfies the detailed balance condition for the probability μ .

And the set of reversible measures of a Markov semi-group $\{P_t, t \geq 0\}$ will be denoted as $\mathcal{J}_0(P_t)$.

1.3 Markov Processes