MECANIQUE : COMPLEMENTS DE MATHEMATIQUES - INCERTITUDES DEVOIR SURVEILLE : Durée = 2h

Date: 19 Décembre 2020

Exercice I

La mesure d'une grandeur physique G est obtenue à partir de trois longueurs a, b, et c liées à G par la relation :

$$G = \frac{sh\left(\frac{a}{b-c}\right)}{ch\left(\frac{a}{b+c}\right)}$$

On donne : $a = (2,45 \pm 0,02) \, m$, $b = (5,24 \pm 0,02) \, m$ et $c = (2,56 \pm 0,02) \, m$. Donner le résultat de la mesure de G .

Exercice II

1°)- Différentier les deux membres de la relation tg(x) = y liant deux réels x et y. En déduire que la dérivée de la fonction u(x) = Arctg(x) est :

$$u'(x) = \frac{1}{1+x^2}$$

On rappelle que la fonction Arctg est la fonction réciproque de la fonction tangente (tg) définie dans des conditions où la fonction tangente est une bijection.

2°)- On considère deux grandeurs physiques F et G dont la mesure se fait à partir de deux autres grandeurs a et b, liées à F et G par les relations :

$$F = Arctg\left(\frac{b}{a}\right)$$
 et $G = Log\left(\sqrt{a^2 + b^2}\right)$

Calculer les dérivées partielles de F et de G par rapport à a et b. Que peut-on en conclure ?

- 3°)- Comparer les dérivées d'ordre 2 : $\frac{\partial^2 F}{\partial a \partial b}$ et $\frac{\partial^2 F}{\partial b \partial a}$, $\frac{\partial^2 G}{\partial a \partial b}$ et $\frac{\partial^2 G}{\partial b \partial a}$.
- 4°)- Déterminer les erreurs absolues sur la mesure de F et G en fonction des erreurs absolues sur a et b.
- 5°)- Calculer les incertitudes absolues ΔF et ΔG en fonction de a, b, et Δa sachant que $\Delta a = \Delta b$. En déduire les incertitudes absolues des fonctions $P = \frac{F}{G}$ et $Q = (PG)^n$, n étant un nombre rationnel.

Exercice III

Dans l'espace physique rapporté à un repère cartésien Oxyz de base orthonormée directe (i, j, k), un point M est repéré par ses coordonnées (x, y, z). On désigne par r = OM la norme du vecteur position r.

- 1°)- Exprimer les gradients suivants en fonction du vecteur \mathbf{r} : $\mathbf{grad}(r^4)$, $\mathbf{grad}(1/r^4)$, $\mathbf{grad}(Logr)$.
 - 2°)- Calculer les champs suivants : $div(\mathbf{r}/r^3)$, $\mathbf{rot}(\mathbf{r}/r^3)$, et $div \mathbf{rot}(\mathbf{r}/r^4)$.