1.3 Uređeni izbori elemenata

Prilikom prebrojavanja elemenata nekog skupa, važno je razmotriti dva pitanja:

- (1) Da li je važno kako su izabrani elementi uređeni?
- (2) Da li se elementi biraju iz skupa ili iz multiskupa?

Odgovor na drugo pitanje nosi sa sobom informaciju o tome da li je dozvoljeno ponavljanje elemenata i, ako jeste, koliko puta koji element sme biti ponovljen. Razlikujemo četiri kategorije uređenih izbora:

- (1) uređenje m elemenata iz multiskupa koji ima n elemenata:
 - (1.1) *m*-permutacije multiskupa $(m \le n, M = [b_1, \dots, b_l]_{m,\dots,m})$
 - (1.2) permutacije multiskupa $(m=n, M=[b_1,\ldots,b_l]_{m_1,\ldots,m_l})$
- (2) uređenje m elemenata iz skupa od n elemenata
 - (2.1) m-permutacije skupa $(m \le n)$
 - (2.2) permutacije skupa (m = n)

19

Prethodne klase se preklapaju za neke vrednosti n,m i l. Tako možemo zaključiti da važe, na primer, sledeće relacije:

- $\bullet \ \overline{P}(l;1) = P(l;1);$
- $\overline{P}(1,\ldots,1) = P(n);$
- P(n; n) = P(n);
- $\overline{P}(1;m) = \overline{P}(m)$.

1.3.1 Broj *m*-permutacija elemenata multiskupa

Neka je dat skup $B = \{b_1, \dots, b_l\}$ sa $l \ge 1$ elemenata i neka je

$$M = [b_1, \dots, b_l]_{m,\dots,m}$$

multiskup u kojem se svaki element iz B pojavljuje tačno m puta. Broj elemenata u multiskupu M je $n=m\cdot l$. Ako izaberemo m-točlani podmultiskup od M i uredimo ga dobijamo jednu m-permutaciju multiskupa.

Definicija 12 m-permutacija elemenata multiskupa $M = [b_1, \ldots, b_l]_{m,\ldots,m}$ je bilo koja uređena m-torka elemenata iz M, tj. bilo koja uređena m-torka u kojoj je svaka komponenta element iz skupa B.

Broj m-permutacija multiskupa $M = [b_1, \dots, b_l]_{m,\dots,m}$ označavaćemo sa

$$\overline{P}(l;m)$$
.

Jasno je da je broj načina da se formiraju m-torke elemenata sa osobinom da je svaka komponenta element skupa B jednak broju elemenata u B^m .

Teorema 13 Broj m-permutacija elemenata multiskupa $M=[b_1,\ldots,b_l]_{m,\ldots,m}$ elemenata jednak je $l^m,$

$$\overline{P}(l;m) = l^m$$
.

Dokaz. Prema Definiciji 12, svaki element skupa $B\times\ldots\times B$ predstavlja jednu m-permutaciju multiskupa M. Broj takvih m-torki elemenata iz B je na osnovu principa proizvoda:

$$|B \times \ldots \times B| = |B|^m = l^m.$$

Teorema 14 Neka je $n \ge 1$ i neka je $B = \{b_1, \ldots, b_l\}$. Odrediti broj podskupova skupa B.

Dokaz. Posmatraćemo preslikavanje

$$\varphi_{(b_1,\ldots,b_l)}: \mathcal{P}(B) \to \{0,1\}^l,$$

koje je definisano na sledeći način:

$$\varphi_{(b_1,\ldots,b_l)}(X)=(c_1,\ldots,c_l), \text{ gde je } c_i=\left\{\begin{array}{ll} 1 & a_i\in X\\ 0 & a_i\not\in X \end{array}\right.$$

Preslikavanje $\varphi_{(b_1,\dots,b_l)}$ je bijekcija, tako da je broj podskupova skupa B jednak broju elemenata skupa $\{0,1\}^l$. Prema principu proizvoda taj broj jednak je 2^l . \square

1.3.2 Broj m-permutacija elemenata skupa

Neka je dat skup $B = \{b_1, \dots, b_n\}$ i neka je $1 \le m \le n$.

Definicija 15 m-permutacija elemenata skupa B je bilo koja m-torka elemenata skupa B u kojoj su svaka dva elementa međusobno različita.

Broj m-permutacija skupa od n elemenata označavaćemo sa

$$P(n; m)$$
.

Teorema 16 Broj m-permutacija skupa $B = \{b_1, \ldots, b_n\}$ jednak je

$$P(n; m) = n(n-1)...(n-m+1).$$

Dokaz. (indukcijom po m)

Baza m=1: Uređena torka sa jednom komponentom je sam taj element. Broj načina da izaberemo taj jedan element jednak je n (za svako $n \in \mathbb{N}$). Induktivna pretpostavka (T_m) : Tvrđenje važi za P(n';m), za svako $n' \geq m$. Induktivni korak $(T_m \Rightarrow T_{m+1})$: Dokazaćemo da tvrđenje važi za P(n;m+1), za svako $n \geq m+1$. Znači, treba pokazati da je broj uređenih torki dužine m+1

skupa B sa osobinom da je svaki par komponenti međusobno različit jednak

$$P(n; m+1) = n \cdot (n-1) \cdot \ldots \cdot (n-(m+1)+1)$$
$$= n \cdot (n-1) \cdot \ldots \cdot (n-m)$$

Svaka uređena torka sa datom osobinom pripada skupu $B_1 \cup \ldots \cup B_n$ gde je

$$B_1 = \{(b_1,c_2,\dots,c_{m+1}): (c_2,\dots,c_{m+1})$$
je m -permutacija skupa $B\setminus\{b_1\}\}$. . . = . . .

$$B_n = \{(b_n, c_2, \dots, c_{m+1}) : (c_2, \dots, c_{m+1}) \text{ je } m\text{-permutacija skupa } B \setminus \{b_n\}\}.$$

Prema induktivnoj pretpostavci, za svako $i \in \{1, \dots, n\}$, broj elemenata u B_i jednak je broju m-permutacija elemenata skupa $B \setminus \{b_i\}$, tj.

$$P(n-1;m) = (n-1) \cdot \dots \cdot ((n-1)-m+1) = (n-1) \cdot \dots \cdot (n-m) \quad (n-1 \ge m).$$

Prema principu sume, broj (m+1)-permutacija je

$$P(n; m+1) = |B_1 \cup \ldots \cup B_n| = |B_1| + \ldots + |B_n|$$

$$= \left(P(n-1; m)\right) + \ldots + \left(P(n-1; m)\right)$$

$$= n \cdot P(n-1; m)$$

$$= n \cdot (n-1) \cdot \ldots \cdot (n-m),$$

što je i trebalo dokazati. \Box

1.3.3 Broj permutacija elemenata skupa

Neka je $B = \{b_1, \dots, b_n\}$. U slučaju kada je m = n, za m-permutaciju skupa B se kaže da je permutacija. Broj permutacija skupa B označava se sa

$$P(n)$$
.

Teorema 1 Broj permutacija skupa B jednak je

$$P(n) = n(n-1) \cdot \ldots \cdot 2 \cdot 1.$$

Dokaz. Tvrđenje je specijalan slučaj Teoreme 16 za m=n. \square

1.3.4 Broj permutacija elemenata multiskupa

Neka je dat multiskup

$$M = [b_1, \dots, b_l]_{m_1, \dots, m_l} = \{\{\underbrace{b_1, \dots, b_1}_{m_1}, \dots, \underbrace{b_l, \dots, b_l}_{m_l}\}\}.$$

i neka je $n=m_1+\ldots+m_l$ broj elemenata datog multiskupa. Svaka uređena n-torka elemenata multiskupa M je permutacija tog multiskupa.

Definicija 17 Permutacija multiskupa M je proizvoljna n-torka u kojoj se b_1 pojavljuje m_1 puta, b_2 se pojavljuje m_2 puta, ..., b_l se pojavljuje m_l puta.

Broj permutacija multiskupa $M=[b_1,\dots,b_l]_{m_1,\dots,m_l}$ označavaćemo sa $\overline{P}(m_1,m_2,\dots,m_l).$

Teorema 18 Broj permutacija multiskupa M jednak je

$$P(m_1, m_2, \dots, m_l) = \frac{(m_1 + \dots + m_l)!}{m_1! \cdot \dots \cdot m_l!}$$

Dokaz. Ako bi svi elementi skupa M bili različiti, broj permutacija tog skupa bio bi jednak $(m_1 + \ldots + m_l)!$. Međutim, zbog ponavljanja određenih elemenata, imamo $m_1! \cdot \ldots \cdot m_l!$ istih permutacija. \square

1.4 Neuređeni izbori elemenata

Neuredeni izbori obuhvataju:

- $(1)\,$ kombinacije melemenata iz skupa, tj. m-točlane podskupove skupa;
- (2) kombinacije melemenata iz multiskupa, tj. m-točlane podmultiskupove multiskupa.

1.4.1 Broj *m*-kombinacija elemenata skupa

Neka je dat skup B sa n elemenata i neka je $n \ge m \ge 1$.

Definicija 19 m-kombinacija (ili kombinacija klase m bez ponavljanja) elemenata skupa B je bilo koji podskup od m elemenata skupa B.

Broj m-kombinacija elemenata skupa $B = \{b_1, \dots, b_n\}$ elemenata označavaćemo sa

$$C(n;m)$$
.

Ako skup svih m-točlanih podskupova skupa M označimo sa $\binom{B}{m}$, tada je

$$C(n;m) = \left| \binom{B}{m} \right|.$$

Teorema 20 Broj m-kombinacija elemenata skupa B jednak je

$$C(n;m) = \frac{n \cdot (n-1) \cdot \ldots \cdot (n-m+1)}{m!}.$$

Dokaz. Neka je $n = |B| \ge 1$. Ako izaberemo proizvoljan podskup od m elemenata skupa B, broj načina da uredimo taj podskup jednak je m!. Odatle je broj m-permutacija jednak broju m-kombinacija pomnoženih sa m!. Znači,

$$P(n;m) = m! \cdot C(n;m) \Leftrightarrow n \cdot (n-1) \cdot \ldots \cdot (n-m+1) = m! \cdot C(n;m)$$

$$\Leftrightarrow C(n;m) = \frac{n \cdot (n-1) \cdot \ldots \cdot (n-m+1)}{m!}.$$

1.4.2 Broj m-kombinacija elemenata multiskupa

Neka je dat multiskup

$$M = [b_1, \dots, b_l]_{m,\dots,m} = \{\{\underbrace{b_1, \dots, b_1}_{m}, \dots, \underbrace{b_l, \dots, b_l}_{m}\}\}.$$

Svaki m-točlani podmultiskup multiskupa M je m-kombinacija tog multiskupa.

Definicija 21 m-kombinacija elemenata multiskupa M (ili kombinacija klase m sa ponavljanjem elemenata skupa B) je m-točlani multiskup u kojem je svaki element iz B (i može se pojavljivati više puta).

Broj m-kombinacija multiskupa M označavaćemo sa

$$\overline{C}(l;m)$$
.

Teorema 22 Broj m-kombinacija multiskupa $M = [b_1, \ldots, b_l]_{m,\ldots,m}$ jednak je

$$\overline{C}(l;m) = \frac{(m+l-1)!}{m!(l-1)!}.$$

Dokaz. Neka je

$$\begin{pmatrix} M \\ m \end{pmatrix} = \{M_1 : |M_1| = m \land M_1 \subseteq M\}
A = \{(a_1, \dots, a_{m+l-1}) \in \{0, 1\}^{m+l-1} : \{\{a_1, \dots, a_{m+l-1}\}\} = [0, 1]_{l-1, m}\}.$$

Znači, $\binom{M}{m}$ je skup svih m-točlanih podmultiskupova od M, a A je skup svih uređenih torki dužine m+l-1 koje imaju tačno m komponenti jednakih 1 i preostalih l-1 komponenti jednakih 0.

Definišimo preslikavanje

$$\varphi_{(b_1,\ldots,b_l)}: \binom{M}{m} \to A$$

na sledeći način

$$\varphi_{(b_1,\ldots,b_l)}(M_1) = (c_1,\ldots,c_{m+l-1}),$$

gde je $M_1 = [b_1, \ldots, b_l]_{m_1, \ldots, m_l}$ i za svako $i \in \{1, \ldots, l-1\}$

$$c_{(i-1)+(m_i+1)} = 0$$
 $c_{(i-1)+j} = 1, 0 < j \le m_i.$

Kako je $\varphi_{(b_1,\ldots,b_l)}$ bijektivno preslikavanje,

$$\overline{C}(l;m) = \left| \binom{M}{m} \right| = |A|.$$

Broj načina da od m+l-1mesta izaberemo m za 1 i preostalih l-1 za 0 jednak je

$$\overline{P}(m, l-1) = \frac{(m+l-1)!}{m!(l-1)!}.$$

25

1.4.3 Zadaci za vežbu

- 1. Neka je $M = [1, 2, 3, 4]_{3,3,3,3}$.
 - (a) Napisati sve 3-permutacije multiskupa M.
 - (b) Odrediti broj 3-permutacija multiskupa M.

 $Re \check{s}enje$.

(a) 3-permutacije multiskupa M su:

111	112	113	114	121	122	123	124
131	132	133	134	141	142	143	144
211	212	213	214	221	222	223	224
231	232	233	234	241	242	243	244
311	312	313	314	321	322	323	324
331	332	333	334	341	342	343	344
411	412	413	414	421	422	423	424
431	432	433	434	441	442	443	444

(b) Broj 3-permutacija multiskupa M jednak je

$$\overline{P}(4;3) = 4 \cdot 4 \cdot 4.$$

- 2. Neka je $A = \{1, 2, 3, 4\}$.
 - (a) Napisati sve 3-permutacije skupa A.
 - (b) Odrediti broj 3-permutacija skupa A.

Rešenje.

(a) 3-permutacije skupa A su:

123	124	132	134	142	143
213	214	231	234	241	243
312	314	321	324	341	342
412	413	421	423	431	432

(b) Broj 3-permutacija multiskupa M jednak je

$$\overline{P}(4;3) = 4 \cdot 3 \cdot 2 = 24.$$

- 3. **Neka je** $A = \{1, 2, 3, 4\}$.
 - (a) Napisati sve permutacije skupa ${\cal A}.$

(b) Odrediti broj permutacija skupa A.

Rešenje

(a) Permutacije skupa A su:

1234	1243	1324	1342	1423	1432
2134	2143	2314	2341	2413	2431
3124	3142	3214	3241	3412	3421
4123	4132	4213	4231	4312	4321

(b) Broj permutacija skupa A jednak je

$$P(4;3) = 4 \cdot 3 \cdot 2 \cdot 1 = 24.$$

- 4. Neka je $M = [1, 2, 3]_{2,2,1}$.
 - (a) Napisati sve permutacije multiskupa M.
 - (b) Odrediti broj permutacija multiskupa M.

 $Re \check{s}enje$

(a) Permutacije multiskupa $M=\{\{1,1,2,2,3\}\}$ su:

	11223	11232	11322	12123	12132	12213
	12231	12312	12321	13122	13212	13221
	21123	21132	21213	21231	21312	21321
ĺ	22113	22131	22311	23112	23121	23211
	31122	31212	31221	32112	32121	32211

(b) Broj permutacija multiskupa M jednak je

$$\overline{P}(2,2,1) = \frac{5!}{2!2!1!} = 30.$$

5. Četiri studenta planiraju odlazak u bioskop. Na repertoaru je 6 različitih filmova u isto vreme. Na koliko različitih načina studenti mogu pogledati filmove, ako ne moraju svi gledati isti film, tako da svako pogleda tačno jedan film?

Rešenje. Neka je skup filmova

$$F = \{\text{film1}, \text{film2}, \text{film3}, \text{film4}, \text{film5}, \text{film6}\}.$$

27

Svakom od 4 studenta možemo pridružiti jedan od 6 filmova. Broj načina da napravimo takve rasporede jednak je broju uređenih četvorki (4-permutacija) skupa od 6 elemenata. Svaka od 4 komponente odgovara izboru jednog određenog studenta:

 $(film(student1),film(student2),film(student3),film(student4)) \in F^4.$

Broj 4-permutacija skupa filmova jednak je

$$\overline{P}(6;4) = 6^4.$$

6. Na koliko različitih načina se može rasporediti 5 različitih knjiga na policu?

 $Re\check{s}enje$. Kako su knjige različite, one mogu biti predstavljenje kao elementi skupa, na primer $A=\{a,b,c,d,e\}$. Broj načina da se 5 različitih knjiga rasporedi na polici jednak je broju permutacija skupa A tj.

$$P(5) = 5! = 120.$$

7. Neka je

$$D = \{(a_1, a_2, a_2, a_4, a_5, a_6) : \{\{a_1, a_2, a_2, a_4, a_5, a_6\}\} = [0, 1]_{2,4}\}.$$

- (a) Napisati sve elemente skupa D.
- (b) Odrediti broj elemenata skupa D.

Rešenje.

(a) Skup D čine sve permutacije multiskupa

$$M = \{\{0, 0, 1, 1, 1, 1\}\},\$$

a to su

111100	111010	111001
110110	110101	110011
101110	101101	101011
100111	011110	011101
011011	010111	001111

(b) Broj permutacija multiskupa M jednak je

$$\overline{P}(2,4) = \frac{6!}{2!4!} = 15.$$

8. Koliko nizova dužine 7 se može napisati koristeći 5 nula i 2 jedinice?

Rešenje. Takvih nizova ima

$$\overline{P}(5,2) = \frac{7!}{5!2!} = \frac{7 \cdot 6}{2} = 21.$$

9. Koliko različitih reči dužine 15 se može napisati od slova reči ANAVOLIMILOVANA?

 $Re \check{s}enje.$ Posmatrani multiskup slova je $M=[A,V,I,L,M,N,O]_{4,2,2,2,1,2,2}.$ Broj reči dužine 15 nadM jednak je

$$P(4,2,2,2,2,2,1) = \frac{15!}{4!2!2!2!2!2!} = 1702701000.$$

- 10. Neka je $B = \{1, 2, 3\}.$
 - (a) Konstruisati jedno bijektivno preslikavanje

$$\varphi_{(1,2,3)}: P(B) \to \{0,1\}^3.$$

(b) Odrediti broj podskupova skupa B.

Rešenje

(a) Skup svih podskupova skupa \boldsymbol{B} je

$$P(B) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$$

Neka je funkcija $\varphi_{(1,2,3)}:P(B)\to\{0,1\}^3$ definisana sa:

$$\begin{array}{llll} \varphi_{(1,2,3)}(\emptyset) & = & (0,0,0) & \varphi_{(1,2,3)}(\{1\}) & = & (1,0,0) \\ \varphi_{(1,2,3)}(\{3\}) & = & (0,0,1) & \varphi_{(1,2,3)}(\{1,3\}) & = & (1,0,1) \\ \varphi_{(1,2,3)}(\{2\}) & = & (0,1,0) & \varphi_{(1,2,3)}(\{1,2\}) & = & (1,1,0) \\ \varphi_{(1,2,3)}(\{2,3\}) & = & (0,1,1) & \varphi_{(1,2,3)}(\{2,3\}) & = & (1,1,1) \end{array}$$

Direktno, proverom može se zaključiti da je preslikavanje $\varphi_{(1,2,3)}$ bijektivno.

(b) Na osnovu prethodne bijekcije, broj elemenata u P(B) jednak je broju elemenata u $\{0,1\}^3$, a to je

$$\overline{P}(2;3) = |\{0,1\}^3| = |\{0,1\}|^3 = 2^3 = 8.$$

11. Neka je $A = \{1, 2, 3, 4, 5, 6, 7\}.$

- (a) Napisati sve tročlane podskupove skupa A.
- (b) Koliko ima tročlanih podskupova skupa A?

Rešenje

(a) Skup svih tročlanih podskupova skupa A je

$$\begin{pmatrix} A \\ 3 \end{pmatrix} = \left\{ \begin{array}{lll} \{1,2,3\}, & \{1,2,4\}, & \{1,2,5\}, & \{1,2,6\}, & \{1,2,7\}, \\ \{1,3,4\}, & \{1,3,5\}, & \{1,3,6\}, & \{1,3,7\}, & \{1,4,5\}, \\ \{1,4,6\}, & \{1,4,7\}, & \{1,5,6\}, & \{1,5,7\}, & \{1,6,7\}, \\ \{2,3,4\}, & \{2,3,5\}, & \{2,3,6\}, & \{2,3,7\}, & \{2,4,5\}, \\ \{2,4,6\}, & \{2,4,7\}, & \{2,5,6\}, & \{2,5,7\}, & \{2,6,7\}, \\ \{3,4,5\}, & \{3,4,6\}, & \{3,4,7\}, & \{3,5,6\}, & \{3,5,7\}, \\ \{3,6,7\}, & \{4,5,6\}, & \{4,5,7\}, & \{4,6,7\}, & \{5,6,7\} \end{array} \right\}$$

(b) Broj tročlanih podskupova skupa A jednak je

$$C(7;3) = \left| {A \choose 3} \right| = {7 \choose 3} = \frac{7 \cdot 6 \cdot 5}{6} = 35.$$

12. Neka je $M=[1,2,3]_{4,4,4},\ C={M\choose 4}$ skup svih četvoročlanih podmultiskupova multiskupa M i

$$D = \left\{ (a_1, a_2, a_2, a_4, a_5, a_6) : \left\{ \{a_1, a_2, a_2, a_4, a_5, a_6\} \right\} = [0, 1]_{2,4} \right\}.$$

- (a) Nabrojati sve elemente skupa C.
- (b) Odrediti broj svih bijektivnih preslikavanja C u D.
- (c) Definisati jedno bijektivno preslikavanje skupa C u skup D.
- (d) Koliko ima četvoročlanih podmultiskupova multiskupa M? Rešenje.
- (a) Skup svih četvoročlanih podmultiskupova multiskupa

$$M = \{\{1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3\}\}$$

je

$$C = \left\{ \begin{array}{ll} \{\{1,1,1,1\}\}, & \{\{1,1,1,2\}\}, & \{\{1,1,1,3\}\}, \\ \{\{1,1,2,2\}\}, & \{\{1,1,2,3\}\}, & \{\{1,1,3,3\}\}, \\ \{\{1,2,2,2\}\}, & \{\{1,2,2,3\}\}, & \{\{1,2,3,3\}\}, \\ \{\{1,3,3,3\}\}, & \{\{2,2,2,2\}\}, & \{\{2,2,2,3\}\}, \\ \{\{2,2,3,3\}\} & \{\{2,3,3,3\}\}, & \{\{3,3,3,3,3\}\} \end{array} \right\}.$$

(b) Kako za skupove C i D važi |C| = |D| = 15, broj bijektivnih preslikavanja C u D jednak je 15!.

(c) Jedno bijektivno preslikavanja $f:C\to D$ definisano je na sledeći način:

X	{{1,1,1,1}}	{{1,1,1,2}}	{{1,1,1,3}}
f(X)	111100	111010	111001
X	{{1,1,2,2}}	{{1,1,2,3}}	{{1,1,3,3}}
f(X)	110110	110101	110011
X	{{1,2,2,2}}	{{1,2,2,3}}	{{1,2,3,3}}
f(X)	101110	101101	101011
X	{{1,3,3,3}}	{{2,2,2,2}}	{{2,2,2,3}}
f(X)	100111	011110	011101
X	{{2,2,3,3}}	$\{\{2,3,3,3\}\}$	{{3,3,3,3}}
f(X)	011011	010111	001111

Može se primetiti da je multiskup $[1,2,3]_{m_1,m_2,m_3}$ preslikan na uređenu šestorku u kojoj su tačno dve komponente jednake 0. Pored toga, broj jedinica ispred prve 0 jednak je m_1 , broj jedinica između dve 0 jednak je m_2 i broj jedinica iza druge 0 je m_3 .

(d) Broj četvoročlanih podskupova skupa $M=[1,2,3]_{4,4,4}$ jednak je broju elemenata skupa D:

$$\overline{C}(4;3) = \left| \binom{M}{4} \right| = \frac{6!}{4!2!} = \frac{6 \cdot 5}{2} = 15.$$

13. Student može da izabere da pogleda jedan od tri filma, pročita jednu od četiri knjige, ili razgovara sa jednim od tri prijatelja. Ako bira samo jednu od ponuđenih aktivnosti, na koliko različitih načina student može da provede veče?

Rešenje. Student na 3 načina može da izabere film, na četiri načina da izabere knjigu koju će da čita i na tri načina sa kojim prijateljem će da razgovara. Tako on ima na raspolaganju

$$C(3;1) + C(4;1) + C(3;1) = 3 + 4 + 3 = 10$$

različitih načina da provede veče. \Box

14. Profesor je podelio 188 studenata u 4 jednake grupe od po 47 studenata. Svaka grupa bira po dva predstavnika da prezentuju rešenja zadataka. Na koliko načina može biti izabrano tih 8 predstavnika?

Rešenje. Neka su A_1,A_2,A_3,A_4 skupovi učenika iz 4 grupe. Svakom izboru od osam predstavnika odgovara jedna uređena četvorka dvočlanih podskupova:

$$(\{a_1,a_2\},\{b_1,b_2\},\{c_1,c_2\},\{d_1,d_2\}) \in \binom{A_1}{2} \times \binom{A_2}{2} \times \binom{A_3}{2} \times \binom{A_4}{2},$$

31

gde su $\{a_1,a_2\}$, $\{b_1,b_2\}$, $\{c_1,c_2\}$, $\{d_1,d_2\}$ izabrani predstavnici redom prve, druge, treće i četvrte grupe. Broj takvih uređenih četvorki jednak je

$$C(47;2) \cdot C(47;2) \cdot C(47;2) \cdot C(47;2) = \binom{47}{2} \binom{47}{2} \binom{47}{2} \binom{47}{2} \binom{47}{2}.$$

15. Koliko dijagonala ima mnogougao sa n stranica?

Rešenje. Neka je $A=\{a_1,\ldots,a_n\}$ skup temena mnogougla. Svaki par temena određuje jednu duž. Broj duži koje možemo dobiti spajanjem temena mnogougla jednak je broju dvočlanih podskupova skupa od n elemenata, tj.

$$C(n;2) = \binom{n}{2}.$$

Sve duži osim stranica tog mnogougla su dijagonale. Tako dobijamo da je broj dijagonala jednak

$$\binom{n}{2} - n = \frac{n(n-1)}{2} - n = \frac{n(n-3)}{2}.$$

Napomena: Drugi način da se interpretira prethodni rezultat jeste da se konstatuje da se svaka dijagonala može dobiti spajanjem nekog temena sa temenom koje mu nije susedno, a takvih je na raspolaganju (n-3). Tako ćemo izbrojati n(n-3) dijagonale, ali će pri tome svaka biti uračunata dva puta.

Г

16. Odrediti broj načina da se iz špila karata izabere 5 karata, tako da tačno tri karte imaju isti broj, dok su preostale dve karte proizvoljne.

Rešenje. U špilu ima 52 karte: 13 karata od po 4 boje. Neka je Cskup svih karata, a $A\subseteq \binom{C}{3}$ skup tročlanih podskupova karata koje imaju isti broj, a različite boje. Izbor od 5 karata sa datim osobinama možemo predstaviti kao par

$$(\{a_1, a_2, a_3\}, \{b_1, b_2\}),$$

gde je

$$\{a_1, a_2, a_3\} \in A$$
 $\{b_1, b_2\} \in \binom{(C \setminus \{a_1, a_2, a_3, a_4\})}{2}$

 $(a_4$ je karta koja ima isti broj kao a_1, a_2 i a_3 , ali različitu boju).

Ako je ${\cal B}$ skup boja, skup ${\cal A}$ možemo bijektivno preslikati na skup parova oblika

$$(\text{broj}, \{\text{boja1}, \, \text{boja2}, \, \text{boja3}\}) \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14\} \times \binom{B}{3},$$

odakle je

$$|A| = \left| \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14\} \times {B \choose 3} \right|$$

$$= \left| \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14\} \right| \cdot \left| {B \choose 3} \right|$$

$$= 13 \cdot {4 \choose 3} = 13 \cdot 4 = 52.$$

Tako dobijamo da je broj načina da izaberemo 5 karata u kojima su tačno 3 jednake

$$\left| A \times \begin{pmatrix} C \setminus \{a_1, a_2, a_3, a_4\} \\ 2 \end{pmatrix} \right| = 52 \cdot \binom{48}{2} = 52 \cdot \frac{48 \cdot 47}{2} = 58656.$$

 $Manje\ formalno:$ to znači da imamo 13 načina da izaberemo broj za tri karte i za svaki izabrani broj broj imamo 4 načina da izabremo tri boje. Kada smo izabrali tri jednake karte, od preostalih 49 karata sklonimo kartu koja ima isti broj kao tri jednake karte, i od preostalih 48 karata biramo dodatne 2. \Box

17. Odrediti broj 8-članih podmutliskupova multiskupa

$$M = [a, b, c, d, e]_{8,8,8,8,8}.$$

Rešenje. Broj 8-članih podmutliskupova multiskupa Mjednak je broju elemenata skupa

$$\{(a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8) : \{\{a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8\}\} = [0, 1]_{4.8}.$$

Znači,

$$\overline{C}(5;8) = \left| \binom{M}{8} \right| = \overline{P}(4,8) = \binom{12}{4} = \frac{12 \cdot 11 \cdot 10 \cdot 9}{4 \cdot 3 \cdot 2} = 495.$$

18. Neka su $n \geq 0$ i $m \geq 1$ prirodni brojevi. Koliko rešenja ima jednačina

$$x_1 + x_2 + \ldots + x_m = n$$

ako je
$$x_1, \ldots, x_m \in \mathbb{N}_0$$
?

Rešenje. Posmatraćemo skup svih reči dužine n+m-1 nad azbukom $\{0,1\}$ koje sadrže m-1 nula i n jedinica:

$$A = \{(a_1, \dots, a_{n+m-1}) : \{\{a_1, \dots, a_{n+m-1}\}\} = [0, 1]_{m-1}\}.$$

Jedno bijektivno preslikavanje skupa Srešenja posmatrane jednačine u A definisano je na sledeći način:

$$f(x_1,\ldots,x_m) = \underbrace{11\ldots 1}_{x_1} 0\ldots 0\underbrace{11\ldots 1}_{x_m}, \quad (x_1,\ldots,x_m) \in S$$

Na osnovu principa bijekcija, broj rešenja jednačine jednak je |A|:

$$\overline{P}(n, m-1) = \frac{(n+m-1)!}{n!(m-1)!}.$$

19. Data je jednačina

$$x_1 + x_2 + x_3 = 4$$

- (a) Odrediti skup svih rešenja jednačine za $(x_1, x_2, x_3) \in \mathbb{N}_0^3$.
- (b) Napisati jedno bijektivno preslikavanje skupa S na skup

$$A = \{(a_1, a_2, a_3, a_4, a_5, a_6) : \{\{a_1, a_2, a_3, a_4, a_5, a_6\}\} = [0, 1]_{2,4}\}.$$

(c) Odrediti broj rešenja jednačine za $(x_1, x_2, x_3) \in \mathbb{N}_0^3$.

Rešenje.

(a) Kako su x_1, x_2 i x_3 nenegativni celi brojevi i njihov zbir je 4, možemo zaključiti da je

$$0 \le x_1, x_2, x_3 \le 4$$
.

Direktnom proverom, dobijamo da je skup ${\cal S}$ oblika

$$S = \left\{ \begin{array}{llll} (0,0,4), & (0,1,3), & (0,2,2), & (0,3,1), & (0,4,0), \\ (1,0,3), & (1,1,2), & (1,2,1), & (1,3,0), & (2,0,2), \\ (2,1,1), & (2,2,0), & (3,0,1), & (3,1,0), & (4,0,0) \end{array} \right\}.$$

(b) Jedno bijektivno preslikavanje $f:S\to A$ definisano je sa

(x_1, x_2, x_3)	(0,0,4)	(0, 1, 3)	(0, 2, 2)	(0, 3, 1)	(0, 4, 0)
$f(x_1,x_2,x_2)$	001111	010111	011011	011101	011110
(x_1, x_2, x_3)	(1,0,3)	(1, 1, 2)	(1, 2, 1)	(1, 3, 0)	(2,0,2)
$f(x_1, x_2, x_3)$	100111	101011	101101	101110	110011
(x_1, x_2, x_3)	(2,1,1)	(2, 2, 0)	(3, 0, 1)	(3, 1, 0)	(4, 0, 0)
$f(x_1, x_2, x_3)$	110101	110110	111001	111010	111100

Za dato preslikavanje, ako je $(x_1, x_2, x_3) \in S$, onda je u $f(x_1, x_2, x_3)$ broj 1 pre prve 0 jednak x_1 , broj 1 između dve 0 je x_2 i broj 1 iza druge 0 je x_3 .

34

(c) Koristeći bijektivno preslikavanje (b), broj rešenja jednačine je

$$|S| = |A| = \overline{P}(4, 3 - 1) = \binom{6}{2} = \frac{6 \cdot 5}{2} = 15.$$

20. Odrediti broj celobrojnih rešenja jednačine

$$x_1 + x_2 + x_3 + x_4 + x_5 = 30, x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0$$

tako da važi

- (a) $x_1 > 1, x_2 > 1, x_3 > 1, x_4 > 1, x_5 > 1$;
- **(b)** $x_1 \leq 4$;
- (c) $x_1 < 8; x_2 > 8$.

 $Re \check{s}enje$

(a) Uvedimo smenu:

$$y_1 = x_1 - 2, y_2 = x_2 - 2, y_3 = x_3 - 2, y_4 = x_4 - 2, y_5 = x_5 - 2.$$

Kada je $x_1 > 1, x_2 > 1, x_3 > 1, x_4 > 1, x_5 > 1$, za nove promenljive važi

$$y_1 \ge 0, y_2 \ge 0, y_3 \ge 0, y_4 \ge 0, y_5 \ge 0.$$

Nakon uvođenja smene, jednačina postaje

$$(y_1+2)+(y_2+2)+(y_3+2)+(y_4+2)+(y_5+2)=30$$

odnosno

$$y_1 + y_2 + y_3 + y_4 + y_5 = 20.$$

Dobijena jedančina ima

$$\overline{P}(20,5-1) = {20+5-1 \choose 5-1} = {24 \choose 4}$$

rešenja, a svako njeno rešenje na jedinstven način određuje rešenje polazne jednačine.

(b) Ako je $x_1 \leq 5$, to znači da $x_1 \in \{0,1,2,3,4\}$. Odredićemo posebno broj rešenja jedančine

$$x_2 + x_3 + x_4 + x_5 = 30 - x_1, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0,$$

za svako $x_1 \in \{0, 1, 2, 3, 4\}.$

(i) Za $x_1 = 0$ jednačina je

$$x_2 + x_3 + x_4 + x_5 = 30$$
, $x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0$.

Njeno rešenje je

$$\overline{P}(30, 4-1) = \binom{33}{3}.$$

(ii) Za $x_1 = 1$ jednačina je

$$x_2 + x_3 + x_4 + x_5 = 29, \quad x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0.$$

Njeno rešenje je

$$\overline{P}(29, 4-1) = \binom{32}{3}.$$

(iii) Za $x_1 = 2$ jednačina je

$$x_2 + x_3 + x_4 + x_5 = 28$$
, $x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0$.

Njeno rešenje je

$$\overline{P}(28, 4-1) = \binom{31}{3}.$$

(iv) Za $x_1 = 3$ jednačina je

$$x_2 + x_3 + x_4 + x_5 = 27$$
, $x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0$.

Njeno rešenje je

$$\overline{P}(27, 4-1) = \binom{30}{3}.$$

(v) Za $x_1 = 4$ jednačina je

$$x_2 + x_3 + x_4 + x_5 = 26$$
, $x_2 \ge 0$, $x_3 \ge 0$, $x_4 \ge 0$, $x_5 \ge 0$.

Njeno rešenje je

$$\overline{P}(26, 4-1) = \binom{29}{3}.$$

Znači, konačan broj rešenja polazne jednačine je

$$\binom{33}{3} + \binom{32}{3} + \binom{31}{3} + \binom{30}{3} + \binom{29}{3}.$$

(c) Ako prvo uvedemo smenu $y_2=x_2-9\geq 0$, onda je broj rešenja zadate jednačine jednak broju rešenja jednačine

$$x_1 + y_2 + x_3 + x_4 + x_5 = 21$$
, $x_1 \le 7, y_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0$.

Broj rešenje prethodne jednačine možemo dobiti ako od broja svih rešenja jednačine

$$x_1 + y_2 + x_3 + x_4 + x_5 = 21$$
, $x_1 \ge 0, y_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0$

oduzmemo broj rešenja jednačine

$$x_1 + y_2 + x_3 + x_4 + x_5 = 21$$
, $x_1 \ge 8$, $y_2 \ge 0$, $x_3 \ge 0$, $x_4 \ge 0$, $x_5 \ge 0$.

Za poslednju jednačunu možemo uvesti smenu $y_1=x_1-8\geq 0,$ čime se ona svodi na

$$y_1 + y_2 + x_3 + x_4 + x_5 = 13, \ y_1 \ge 0, y_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0.$$

Tako je broj rešenja zadate jednačine jednak

$$\binom{25}{4} - \binom{17}{4}$$
.

21. Odrediti broj rešenja nejednačine

$$x_1 + x_2 + x_3 \le 10$$

ako je $x_1, x_2, x_3 \in \mathbb{N}_0$.

 $Re \check{s}enje$. Treba primetiti da data nejednakost važi ako i samo ako postoji nenegativan ceo broj x_4 sa osobinom da je

$$x_1 + x_2 + x_3 + x_4 = 10, \ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0.$$

Broj rešenja posmatrane jednačine je

$$\binom{10+4-1}{4-1} = \binom{13}{3} = 286,$$

a toliko ima i rešenja polazne jednačine. Ako dva rešenja imaju različite četvrte komponente, onda su različite i uređene trojke formirane od prve tri komponente tih rešenja. \Box

22. Odrediti broj celobrojnih rešenja jednačine

$$x_1 + x_2 + x_3 + x_4 = 20$$

ako važe uslovi

$$0 \le x_1 \le 6, 0 \le x_2 \le 7, 0 \le x_3 \le 8, 0 \le x_4 \le 6.$$

 $Re \breve{s}enje.$ Ako sa S_1,S_2,S_3 i S_4 označimo skupove rešenja sledećih jednačina:

$$\begin{array}{lll} x_1+x_2+x_3+x_4=20 & x_1\geq 7, x_2\geq 0, x_3\geq 0, x_4\geq 0 \\ x_1+x_2+x_3+x_4=20 & x_1\geq 0, x_2\geq 8, x_3\geq 0, x_4\geq 0 \\ x_1+x_2+x_3+x_4=20 & x_1\geq 0, x_2\geq 0, x_3\geq 9, x_4\geq 0 \\ x_1+x_2+x_3+x_4=20 & x_1\geq 0, x_2\geq 0, x_3\geq 0, x_4\geq 7 \end{array}$$

37

onda je broj rešenja u kojima je $x_1 \ge 7, x_2 \ge 8, x_3 \ge 9$ ili $x_4 \ge 7$ jednak

$$\begin{split} |S_1 \cup S_2 \cup S_3 \cup S_4| = & |S_1| + |S_2| + |S_3| + |S_4| - |S_1 \cap S_2| - |S_1 \cap S_3| \\ & - |S_1 \cap S_4| - |S_2 \cap S_3| - |S_2 \cap S_4| - |S_3 \cap S_4| \\ & + |S_1 \cap S_2 \cap S_3| + |S_1 \cap S_3 \cap S_4| + |S_2 \cap S_3 \cap S_4| \\ & - |S_1 \cap S_2 \cap S_3 \cap S_4|. \end{split}$$

Uvođenjem (svih ili samo nekih od) smena

$$y_1 = x_1 - 7, y_2 = x_2 - 8, y_3 = x_3 - 9, y_4 = x_4 - 7,$$

dobijamo

$$|S_1 \cup S_2 \cup S_3 \cup S_4| = {16 \choose 3} + {15 \choose 3} + {14 \choose 3} + {16 \choose 3} - {8 \choose 3} - {7 \choose 3} - {9 \choose 3} - {6 \choose 3} - {6 \choose 3} - {6 \choose 3} - {7 \choose 3}$$

Ako od svih nenegativnih celobrojnih rešenja polazne jednačine, kojih ima $\binom{23}{3},$ oduzmemo dobijenu vrednost, dobićemo traženi broj rešenja. \Box

23. (a) Odrediti skup A svih uređenih trojki $(i,j,k) \in \mathbb{N}$ sa osobinom

$$i < j < k < 3$$
.

(b) Napisati jedno bijektivno preslikavanje skupa A na skup

$$B = \{(a_1, a_2, a_3, a_4, a_5) : \{\{a_1, a_2, a_3, a_4, a_5\}\} = [0, 1]_{2,3}\}.$$

(c) Odrediti broj elemenata skupa $\vert A\vert.$

 $Re \check{s}enje$

(a) Skup A svih monotono neopadajućih uređenih trojki je

$$A = \left\{ \begin{array}{llll} (1,1,1), & (1,1,2), & (1,1,3), & (1,2,2), & (1,2,3), \\ (1,3,3), & (2,2,2), & (2,2,3), & (2,3,3), & (3,3,3) \end{array} \right\}$$

(b) Jedno bijektivno preslikavanje $f:A\to B$ definisano je sa

(i, j, k)	(1, 1, 1)	(1, 1, 2)	(1, 1, 3)	(1, 2, 2)	(1, 2, 3)
f(i,j,k)	11100	11010	11001	10110	10101
(i, j, k)	(1,3,3),	(2, 2, 2)	(2, 2, 3)	(2, 3, 3)	(3, 3, 3)
f(i,j,k)	10011	01110	01101	01011	00111

(c) Na osnovu bijektivnog preslikavanja pod(b),broj elemenata skupaAje

$$|A| = |B| = \overline{P}(2,3) = {5 \choose 2} = \frac{5 \cdot 4}{2} = 10.$$

38

24. Odrediti broj uređenih torki $(a_1, a_2, \dots, a_m) \in \mathbb{N}$ sa osobinom

$$a_1 \le a_2 \le \dots a_m \le n$$
.

 $\it Re \it senje$. Svakoj uređenoj $\it m$ -torki sa datom osobinom odgovara jedan $\it m$ -točlani podmultiskup multiskupa

$$M = [1, 2, \dots, n]_{m,\dots,m}.$$

Svaki takav podmulitskup može da se uredi tačno na jedan način u neopadajućem redosledu. Kako skup svih m-točlanih podmultiskupova multiskupa M možemo bijektivno preslikati na skup

$$B = \{(b_1, \dots, b_{n+m-1}) : \{\{b_1, \dots, b_{n+m-1}\}\} = [0, 1]_{n-1, m},$$

broj elemenata skupa A svih uređenih m-torki sa datom osobinom je

$$|A| = |B| = \binom{m+n-1}{m}.$$

25. Odrediti s na kraju izvršavanja koda napisanog u programskom jeziku Java:

 $Re \check{s}enje$.

Treba primetiti da sespoveća za jedan za svako $(i,j,k)\in\mathbb{N}$ sa osobinom

$$i \leq j \leq k \leq 4.$$

To znači da će na kraju izvršavanja datog koda sbiti jednako broju elemenata skupa

39

$$A = \{(i, j, k) \in \mathbb{N} : i \le j \le k \le 4\},$$

a taj broj je

$$|A| = \overline{P}(3,3) = \binom{6}{3} = 20$$