CS 6041 Theory of Computation

Reducibility

Kun Suo

Computer Science, Kennesaw State University

https://kevinsuo.github.io/

Reducibility

 If A reduces to B, we can use a solution to B to solve A

Example:

- Look for a place - > Get a map
- Go to a place --> Take a car
- If A is reduced to B:
 - If we can do B, then we can also do A
 - If we cannot do A, then we cannot do B

Counter-proposition

Revisit: The output of Turing Machine

Accept
 Reject
 Halt -> Decidable
 Recognizable

= Never Halt

Loop

Revisit: Decidability

• Decidable?

	DFA/NFA/RE	CFG	TM
Acceptance (A)	√	√	×
Emptiness (E)	√	√	
Equivalence (EQ)	√	×	

Revisit: Decidable problems for Turing Machine

- Acceptance problem for Turing Machine
 - Whether a Turing machine accepts a given input string

Revisit: Decidable problems for Turing Machine

Revisit: Decidable problems for Turing Machine

$$W=$$
 \longrightarrow M \longrightarrow

$$D(\langle M \rangle) = \begin{cases} & \text{accept,} & \text{if M does not accept } \langle M \rangle \\ & \text{reject,} & \text{if M accepts } \langle M \rangle \end{cases}$$

$$D(\langle D \rangle) = \begin{cases} & \text{accept,} & \text{if D does not accept } \langle D \rangle \\ & \text{reject,} & \text{if D accepts } \langle D \rangle \end{cases}$$

Revisit: Decidability

• Decidable?

	DFA/NFA/RE	CFG	TM
Acceptance (A)	√	√	×
Emptiness (E)	√	√	
Equivalence (EQ)	√	×	
Halt			?

1. Halting problem

TM halting problem:

 whether a Turing machine M halts (by accepting or rejecting) on a given input w

1. Halting problem

Language

HALT_{TM} = {(M, w) | M is a TM and M halts on input w}.
 vs.

 $A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and M accepts input w} \}.$

Theorem 5.1

HALT_{TM} is undecidable

Proof (prove by contradiction):

Suppose TM R decides HALT_{TM}

$$\langle M, w \rangle$$
 \longrightarrow \xrightarrow{TM} \xrightarrow{R} \xrightarrow{reject}

Then we create a TM S to decide A_{TM}

- $S = "On input \langle M, w \rangle$, M is a TM and w is a string:
 - 1. Run TM R on input $\langle M, w \rangle$.
 - 2. If R rejects, which means never halt. Then S rejects.
 - 3. If R accepts, which means R will halt (accept or reject) we simulate M on w until it halts.
 - 4. If M has accepted, accept; if M has rejected, reject."

It means A_{TM} is decidable. Contradiction!

Theorem 5.1

HALT_{TM} is undecidable

• If the HALT_{TM} is decidable, then we can get A_{TM} is also decidable. However, we already proved A_{TM} is undecidable.

A_{TM} is reduced to HALT_{TM}

Rethink A_{TM}

- Acceptance problem for Turing Machine
 - Whether a Turing machine accepts a given input string

The output of Turing Machine

- Accept
- Reject
- Loop

Halt

Never Halt

We do not know whether M accepts w or not is because TM could never halt


```
God(source code, string) {
                                                    If God thinks bug code halts,
    if source code halt:
                                                             return 1
        return 1;
    else
        return 0;
Bug(source code) {
    if (God (source code, source code)) {
        while(1){}
    } else {
                                                  If return 1, bug code never halts
        halt;
```

What will happen to Bug(Bug)?

CS 6041

HALT_{TM}

 The HALT_{TM} problem just proves that the Turing machine (or computers) is not omnipotent

HALT_{TM}

https://youtu.be/92WHN-pAFCs

2. Emptiness of Turing machine

• Decidable?

	DFA/NFA/RE	CFG	TM
Acceptance (A)	√	√	×
Emptiness (E)	√	√	?
Equivalence (EQ)	√	×	

2. Emptiness of Turing machine

- Emptiness of Turing machine
 - Whether or not a TM never accept any string w

- Language
 - $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$

Theorem 5.2

E_{TM} is undecidable

• $E_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$

• Proof:

We need create contradiction between

$$E_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$$

and

$$A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and M accepts w} \}$$

Input is M Nothing related to w

• Proof:

```
Suppose E_{TM} is decidable, then TM R decides E_{TM} R = "On input M, if M does accept anything, then L(M)=\emptyset, R accept; if M accept something, then L(M)\neq \emptyset, R reject; "
```


Proof

Create a TM M₁, that

Create a TM M₁ involving both M and w

- ▶ If input $\neq w$, M_1 reject (Only string M_1 can accept is w);
- If input is w, test w on M
 - ☐ If M accepts w, M₁ accepts
 - ☐ If M rejects w, M₁ rejects

Proof

```
Integrate the R and M<sub>1</sub>
```

```
R = "On input M_1,
```

if M does accept w, then $L(M)=\emptyset$, R accept;

if M accept w, then $L(M) \neq \emptyset$, R reject;

"

Based on R, we can create TM S to decide A_{TM}

```
S = "On input <M, w>
```

Run R on input M_1 ($M_1 = \langle M, w \rangle$)

If R accepts, S rejects; -

M rejects $w \Rightarrow R$ accepts $\Rightarrow S$ rejects

If R rejects, S accepts.

M accepts $w \Rightarrow R$ rejects $\Rightarrow S$ accepts

"

Contradiction! A_{TM} is not decidable

Reject

Accept

 $L(M) \neq \emptyset$

3. Regular issue of TM

• Decidable?

	DFA	CFG	TM
Acceptance (A)	√	√	×
Emptiness (E)	√	√	×
Equivalence (EQ)	√	×	
Halt			×
Regular			?

3. Regular issue of TM

Regular issue of TM

 Whether a given Turing machine has an equivalent finite automaton or recognizes a regular language

Language

• REGULAR_{TM} = $\{\langle M \rangle | M \text{ is a TM}\}$

and

L(M) is a regular language}.

Theorem 5.3

- REGULAR_{TM} is undecidable.
 - REGULAR_{TM} = $\{\langle M \rangle | M \text{ is a TM and L(M) is a regular language}\}$.

• Proof:

We need create contradiction between

Input is M Nothing related to w

REGULAR_{TM} = $\{\langle M \rangle | M \text{ is a TM and L(M) is a regular language} \}$.

and

 $A_{TM} = \{\langle M, w \rangle | M \text{ is a TM and M accepts w} \}$

Input is M Nothing related to w

• Proof:

```
Suppose REGULAR<sub>TM</sub> is decidable, then TM R decides REGULAR<sub>TM</sub> R = "On input M, if L(M) is not a regular language, R rejects; if L(M) is a regular language, R accepts;
```


Proof

Create a TM M₂ involving both M and w

Create a TM M₂, for input w:

If w is in format of $0^n 1^n$ (not regular language), accept;

If w is not in that format, run w on M:

If M accepts w, M₂ accepts;

otherwise, rejects.

M Accept Reject

 M_2 $0^n 1^n$ Accept Reject

$$L(M_2) = \begin{cases} regular, & if \ M \ accept \ w \\ 0^n \ 1^n, & if \ M \ does \ not \ accept \ w \end{cases}$$

Proof

Integrate the R and M₂

$$R = "On input M_2,$$

$$L(M_2) = \begin{cases} regular, & if \ M \ accept \ w \\ 0^n \ 1^n, & if \ M \ does \ not \ accept \ w \end{cases}$$

if M does not accept w, then $L(M_2)$ is non-regular language $(0^n \ 1^n)$, R rejects; if M accepts w, then $L(M_2)$ is a regular language, R accepts;

Based on R, we can create TM S to decide A_{TM}

S = "On input < M, w>, convert < M, w> into M₂

Run R on input M₂

If R accepts, S accepts;

If R rejects, S rejects. ",

Contradiction!

M accepts $w \Rightarrow R$ accepts $\Rightarrow S$ accepts

M rejects $w \Rightarrow R$ rejects $\Rightarrow S$ rejects

4. Equivalence of TM

• Decidable?

	DFA	CFG	ТМ
Acceptance (A)	√	√	×
Emptiness (E)	√	√	×
Equivalence (EQ)	√	×	?
Halt			×
Regular			×

4. Equivalence of TM

Definition

Whether two TMs can recognize the same language

Language

• EQ_{TM} =
$$\{\langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs} \}$$

and
$$L(M_1) = L(M_2)\}$$

Theorem 5.4

- EQ_{TM} is undecidable.
 - EQ_{TM} = $\{\langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$

• Proof:

We need create contradiction between

$$EQ_{TM} = \{\langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$$

and

$$E_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$$

• Proof:

Suppose EQ_{TM} is decidable, TM R decide EQ_{TM}

R = "On input
$$<$$
M₁, M₂>,
if $L(M_1) = L(M_2)$, accept;
if $L(M_1) \neq L(M_2)$, reject."

Create another TM S for E_{TM}

$$L(M_a) = \emptyset$$

Execute R on input <M, M_a>, M_a is a TM rejects all inputs,

if R accepts, S accepts;

if R rejects, S rejects."

• Proof:

• Proof:

```
S = "On input <M>,
    Execute R on input <M, M_a>, M_a is a TM rejects all inputs, if L(M) = \emptyset, S accepts; if L(M) \neq \emptyset, S rejects."
```

Because R id decidable, then S is also decidable.

However, for E_{TM} is not decidable (based on theorem 5.2). Contradiction!

4. Equivalence of TM

• Decidable?

	DFA	CFG	ТМ
Acceptance (A)	√	√	×
Emptiness (E)	√	√	×
Equivalence (EQ)	√	×	×
Halt			×
Regular			×

Conclusion

- HALT_{TM} is undecidable
 - We do not know whether a TM will halt on a given input
- E_{TM} is undecidable
 - We do not know whether a TM never accept any strings
- REGULAR_{TM} is undecidable
 - We do not know whether a TM has an equivalent DFA/NFA/RE
- EQ_{TM} is undecidable
 - We do not know whether two VMs recognize the same language

Conclusion

Relationship of languages on reducibility

