For a group to and one of its subgroups H we can putition to mo left cosets of H H This at least provides us with a simplified view of the set G. Can we put a group structure on this collection of coseks? Yes, provided H is a normal subsproup of G. 9H = Hg Aget When It is nowal in to then the collation of cosets, C/H, is a group (aH)(bH)=abH. Theorem
10-4 under the product with identity element eff = H

and mese elements
and these elements $(xH)^{-1} = x^{-1}H$
This group Colle in a simplified
version of tr.
A group that how no proper non-trival
A group that how no proper non-trival normal subgroups in called simple
eg. the prime order applic groups
- are all simple.
The fact The has no proper H5 non travial subgroups at all. H5 only subgroups are Top and 203
non travial supports at all.
In section 10.2. As proved the
alternating groups An for 17,5 ast
We wont examine the details of 10.2
In Service 10.2. allernating groups An for 17.5 are all simple. We want examine the details of 10.2. Q 2 1 Ex 10.4. $\Gamma^4 = e = 8^2$, $S\Gamma = \Gamma$ 5
D4={e,r,r2,r3,5,r5,r25,r356

We found the subgroups. $R_{1}=\{e, r, r^{2}, r^{3}\}$ $R_{2}=\{e, r^{2}\}$ $S_{1}=\{e, S\}, S_{2}=\{e, rS\}, S_{3}=\{e, rS\}, S_{4}=\{e, rS\}, S_{5}=\{e, rS\}, S_{5}$ Su= {e, 135} Then just two others. (A) < (2,5) = { e, (2,5, (25)) $B = \langle (^2, (5)) = \{ e, (^2, (5), (^35) \}.$ Then whith I there are normal in Dre. Well |R| = D4 = D4 = 8 Such Subgroups (8) half the street (6) are always normal for the two left wels will be R, DuR, and the two right cosets. be a group. So Py/R, will

 $gr^2q^{-1} = gg^{-1}r^2 = r^2 \in \mathbb{R}_2.$ fg=s then Ses = ses = ss = s² = e e R2. S (25 = 1-285 = 1-287=1-20) = (-2= CER2 Chegre toth just and similarly for g=15,125,135 we will still have. g (2g) = (2 e R2. So for all get 4 gRzg = Rz by theorem 10.3 Rz 13 normal in D4. So Dy/Rr will be a group.

with elamosts.

eRr = {e}, = {e}. (R2 = { [, [3]

5 Ru = 2 5, 133 (SR2= { (5, 1) Let's show the Cayley table. for D4/R2. 6 R2 rR2 sR2 CSR_{2} Rr Rr Rr sRr Rr Rr Rz rsRr. rs R7 SR_{2} sRr sRr sRr Rr r Rz \mathbb{Z}_{2}

 $rR_1 = rsR_2$ $rR_1 = rsR_2 = sR_2$

SRZ-RZ=SPZ = rSRZ = rSRZ = rSRZ.

N My

Mrich is symbolically ecurralent to. le a b e e a b c alaecb bbcea ccbae Du/2 = 2 e,a,b,c} 2562525C. and in fact Py/R = 1/2×1/2. Much in abelian as district i from the.
Boundically. The subgroups S, Sz, Sz, Sy are all non-nomal. Coverler $5, = <55 = {e, 5}$

Next book at QK, 13. Q3. $q_N = |0^2 + 1| = |0^2 - 1|$ Hint: Show an an 2 mm - 2. From this one can argue of that gcd (an ann)=1 $\frac{2q_n + 1 - 2q_n - 2q_n}{2q_n + 1 - q_n + 2}$ To put fuller, tory and do unore with the bort, examine the outstead of carefully

Q4.

Claim: $T = \left\{ \left(\begin{array}{c} a & b \\ o & c \end{array} \right) : \begin{array}{c} a,b,c \in \mathbb{R}. \\ ac \neq 0 \end{array} \right\}$ h a group under matrix multiplication Prove I= (10) ET/ Gran (ab), (de) eT. $\begin{pmatrix} a & b \\ o & c \end{pmatrix} \begin{pmatrix} d & e \\ o & f \end{pmatrix} = \begin{pmatrix} ad & ae+bf \\ o & cf \end{pmatrix}$ rste ad cf = ac df to rine acto
and df to and $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \frac{1}{ac} \begin{pmatrix} c & -b \\ 0 & a \end{pmatrix}$ $=\begin{pmatrix} \sqrt{a} & \frac{-b}{ac} \\ 0 & \frac{-b}{c} \end{pmatrix} \in \boxed{1.}$ So by Proposition 3.30 Tha Subgroup of GL(2,P).

a). $U = \{ \begin{pmatrix} 1 & \chi \\ 0 & 1 \end{pmatrix} \in T : \chi \in \mathbb{R} \}$ Win a subgroup thanks to Prop 3.30 and the following observations.

T = (0) EU. $\begin{pmatrix} 1 & \chi \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \chi + \chi \\ 0 & 1 \end{pmatrix} \in \mathcal{U}$ $\begin{pmatrix} 1 & 7 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\pi \\ 0 & 1 \end{pmatrix} \in \mathcal{U}$ $\left(\begin{array}{c} 1 & 1 \\ 0 & 1 \end{array}\right) \left(\begin{array}{c} 1 & 1 \\ 0 & 1 \end{array}\right) = \left(\begin{array}{c} 1 & 1 \\ 0 & 1 \end{array}\right)$ = $\begin{pmatrix} 1 & y+x \\ 0 & 1 \end{pmatrix}$ = $\begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix}$

So Un abelian as all its matrices commute with each other.

C). To prove U's normal in T. Couriler vonjugation of U by matrices from T. $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} 1 & 2l \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}^{-1}$ $= \begin{pmatrix} a & b & 1 & n \\ 0 & c & 0 & 1 \end{pmatrix} \begin{pmatrix} a & -b/ac \\ 0 & c & 0 \end{pmatrix}$ $= \begin{pmatrix} a & antb \\ 0 & c \end{pmatrix} \begin{pmatrix} a & -b/ac \\ 0 & b \end{pmatrix}$ -b tanto tution for all tet. Merefore

So by theorem 10.3 UB normal In T.

.

.

