

The Relationship between Stochastic and Deterministic Models for Chemical Reactions

Thomas G. Kurtz

Citation: J. Chem. Phys. 57, 2976 (1972); doi: 10.1063/1.1678692

View online: http://dx.doi.org/10.1063/1.1678692

View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v57/i7

Published by the American Institute of Physics.

Additional information on J. Chem. Phys.

Journal Homepage: http://jcp.aip.org/

Journal Information: http://jcp.aip.org/about/about_the_journal Top downloads: http://jcp.aip.org/features/most_downloaded

Information for Authors: http://jcp.aip.org/authors

ADVERTISEMENT

²¹ A. E. Guggenheim and M. L. McGlashan, Proc. Roy. Soc. (London) A255, 456 (1960).

²² R. J. Munn, J. Chem. Phys. **40**, 1439 (1964). ²³ R. S. Mulliken, Rev. Mod. Phys. **3**, 89 (1931); **4**, 1 (1932). ²⁴ R. S. Mulliken, J. Chem. Phys. **52**, 5170 (1970). ²⁵ T. L. Gilbert and A. C. Wahl, J. Chem. Phys. **55**, 5247 (1971), see also Ref. 24.

²⁶ T. R. Connor and M. A. Biondi, Phys. Rev. 140, A778

(1965); L. L. Frommhold and M. A. Biondi, ibid. 185, 244

²⁷ P. Kebarle, R. M. Haynes, and S. K. Searles, J. Chem. Phys. **47**, 1684 (1967). M. S. B. Munson, J. L. Franklin, and F. H. Field, J. Phys. Chem. **67**, 1542 (1963).

²⁸ R. B. Bernstein, Discussions Faraday Soc. 40, 58 (1965). ²⁹ D. D. Konowalow, J. Chem. Phys. **50**, 12 (1969).

THE JOURNAL OF CHEMICAL PHYSICS

VOLUME 57, NUMBER 7

1 OCTOBER 1972

The Relationship between Stochastic and Deterministic Models for Chemical Reactions*

THOMAS G. KURTZ

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706 (Received 30 April 1971)

The Markov chain and ordinary differential equation models for chemical reaction systems are compared. It is shown that if the volume of the reaction system is taken into account in an appropriate way in the formulation of the Markov chain model, then the o.d.e. model is the infinite volume limit of the Markov chain model. A central limit theorem is also given for the deviation of the Markov chain model from the o.d.e. model.

I. INTRODUCTION

A number of authors have considered Markov chain models for chemical reactions (see McQuarrie¹ for a survey of work done in this area), and the question has been raised as to the relationship between these models and the classical deterministic ordinary differential equation models. Oppenheim, Shuler, and Weiss² have shown in certain special cases that the deterministic model is the infinite volume limit of the Markov chain models and conclude that the same must be the case for more complex systems of reactions. The present paper is a restatement of results obtained in Refs. 3-5 in terms of the chemical reaction models and proves that this conclusion is indeed correct.

II. FORMULATION OF THE MODEL

The only difference between our formulation of the Markov chain models and earlier formulations is that we take explicitly into account the volume of the reaction system. In particular, for a reaction involving two molecules we assume that the chance of a particular pair of molecules reacting during a short interval of time $[t, t+\Delta t]$ is inversely proportional to the volume V of the reaction system. Similarly, for a reaction involving l molecules we assume that the chance of l particular molecules reacting during a short interval of time is inversely proportional to V^{l-1} . The reason for this assumption can be seen by considering the probability of l balls placed at random in n boxes all ending up in the same box.

The chance of having some l molecules react in a short interval of time is then inversely proportional to V^{l-1} and proportional to the number of different ways of selecting the l molecules.

For the simple reaction $A+B\rightarrow C$ the chance of the reaction occurring in the time interval $[t, t+\Delta t]$ is approximately $\alpha(i_1i_2/V) \Delta t \equiv V\alpha(i_1/V)(i_2/V) \Delta t$, where i_1 is the number of molecules of A present, i_2 is the number of molecules of B, and α is some constant.

In general consider a system of M reactants, R_1 , R_2, \dots, R_M , undergoing N reversible reactions

$$\sum_{m=1}^{M} c_{nm} R_m \leftrightarrows \sum_{m=1}^{M} d_{nm} R_m, \qquad n = 1, 2, \dots, N. \quad (2.1)$$

The Markov chain model for this system may be formulated either in terms of the number of molecules of each of the reactants present at time t, $X^{V}(t) =$ $[X_1^V(t)X_2^V(t)\cdots X_M^V(t)]$, or in terms of the number of times each of the reactions has occurred in the forward direction minus the number of times it has occurred in the reverse direction,

$$Y^{V}(t) = \lceil Y_1^{V}(t), Y_2^{V}(t) \cdots Y_N^{V}(t) \rceil.$$

Letting C denote the matrix $[(c_{nm})]$ and D the matrix $[(d_{nm})], X^{V}(t)$ and $Y^{V}(t)$ are related by

$$X^{V}(s) + \lceil Y^{V}(t+s) - Y^{V}(s) \rceil (D-C) = X^{V}(t+s).$$
 (2.2)

Let

$$c_n = \sum_{m=1}^M c_{nm}$$

and

$$d_n = \sum_{m=1}^M d_{nm}.$$

(Of course c_{nm} and d_{nm} are nonnegative integers.) The chance of the *n*th reaction occurring in the forward direction during the interval $[t, t+\Delta t]$ is approximately

$$\alpha_{n}(V^{c_{n-1}})^{-1} \left[\prod_{m=1}^{M} \binom{i_{m}}{c_{nm}} \right] \Delta t$$

$$= V \alpha_{n} \left[\prod_{m=1}^{M} (V^{c_{nm}})^{-1} \binom{i_{m}}{c_{nm}} \right] \Delta t \equiv V f_{n}^{V}(\mathbf{i}) \Delta t \quad (2.3)$$

and in the reverse direction

$$\beta_{n}(V^{d_{n}-1})^{-1} \left[\prod_{m=1}^{M} \binom{i_{m}}{d_{nm}} \right] \Delta t$$

$$= V \beta_{n} \left[\prod_{m=1}^{M} (V^{d_{nm}})^{-1} \binom{i_{m}}{d_{nm}} \right] \Delta t \equiv V g_{n}^{V}(\mathbf{i}) \Delta t, \quad (2.4)$$

where $\mathbf{i} = X^{V}(t)$.

For $\mathbf{x} = (x_1 x_2 \cdots x_M)$ define

$$f_n(\mathbf{x}) = \alpha_n \prod_{m=1}^M \frac{x_m^{c_{nm}}}{c_{nm}!}$$

and

$$g_n(\mathbf{x}) = \beta_n \prod_{m=1}^M \frac{x_m^{d_{nm}}}{d_{nm}},$$

and observe that

$$f_n^V(\mathbf{i}) = f_n(V^{-1}\mathbf{i}) + O(V^{-1})$$

and

$$g_n^V(\mathbf{i}) = g_n(V^{-1}\mathbf{i}) + O(V^{-1}).$$

If c_{nm} and d_{nm} are either 0 or 1 for all n and m, then equality holds without $O(V^{-1})$.

Finally, define

$$F^{V}(\mathbf{i}) = [F_1^{V}(\mathbf{i}), \cdots, F_m^{V}(\mathbf{i})],$$

where

$$F_m^{V}(\mathbf{i}) = \sum_{n=1}^{N} (d_{nm} - c_{nm}) [f_n^{V}(\mathbf{i}) - g_n^{V}(\mathbf{i})]$$

and

$$F(\mathbf{x}) = [F_1(\mathbf{x}) \cdots F_m(\mathbf{x})],$$

where

$$F_m(\mathbf{x}) = \sum_{n=1}^{N} (d_{nm} - c_{nm}) [f_n(\mathbf{x}) - g_n(\mathbf{x})].$$

It can be shown that

$$\frac{dE(V^{-1}X^{V}(t))}{dt} = E(F^{V}[X^{V}(t)])$$

$$= E(F[V^{-1}X^{V}(t)]) + O(V^{-1}). \quad (2.5)$$

(E() denotes the expectation of a random variable.) The system of differential equations $\dot{X} = F(X)$ is just

the classical, deterministic model for our reaction system. Let $X(t, \mathbf{x}_0)$ denote the solution of the initial value problem

$$\frac{\partial X(t, \mathbf{x}_0)}{\partial t} = F(X(t, \mathbf{x}_0)), \quad X(0, \mathbf{x}_0) = \mathbf{x}_0.$$

Ιf

$$\lim_{V\to\infty}V^{-1}X^V(0)=\mathbf{x}_0,$$

then the theorems of Refs. 3-5 allow us to conclude that

$$\lim_{V \to \infty} P\{\sup_{s \le t} | V^{-1}X^{V}(s) - X(s, x_0) | > \epsilon\} = 0 \quad (2.6)$$

for every t and $\epsilon > 0$.

We can obtain estimates on the probabilities in (2.6) in two different ways. The first is similar to the Chebychev Inequality of elementary probability and the second is similar to the Central Limit Theorem.

III. AN INEQUALITY

Let

$$\Gamma(\mathbf{x}) = \sum_{n=1}^{N} \left[\sum_{m=1}^{M} (d_{nm} - c_{nm})^{2} \right] \left[f_{n}(\mathbf{x}) + g_{n}(\mathbf{x}) \right],$$

and

$$K_{\epsilon} = \{ \mathbf{x} : \inf_{s \leq t} | \mathbf{x} - X(s, \mathbf{x}_0) | \leq \epsilon \};$$

i.e., K_{ϵ} is the set of points within a distance ϵ of the trajectory $X(s, x_0)$, $s \le t$. Define

$$\Gamma = \sup_{\mathbf{x} \in K_{\epsilon}} \Gamma(\mathbf{x}),$$

$$M = \sup_{\mathbf{x}_{1}, \mathbf{x}_{2} \in K_{\epsilon}} [|F(\mathbf{x}_{1}) - F(\mathbf{x}_{2})|/|\mathbf{x}_{1} - \mathbf{x}_{2}|],$$

and

$$\eta = \sup_{(1/V) i \in K_{\mathbf{f}}} |F(V^{-1}\mathbf{i}) - F^{V}(\mathbf{i})|.$$

Lemma (1.2) and the inequalities in Sec. 2 of Ref. 5 imply

$$P\{\sup_{s < t} \mid V^{-1}X^{V}(s) - X(s, \mathbf{x}_0) \mid \geq \epsilon\} \leq t\Gamma/(V\delta^2) \quad (3.1)$$

provided $\delta \equiv \epsilon e^{-Mt} - |V^{-1}X^{V}(0) - \mathbf{x}_0| - t\eta > 0$.

It is reasonable to assume that $Y^{V}(0) = 0$. Under this assumption define $\hat{F}^{V}(\mathbf{j}) = [\hat{F}_{1}^{V}(\mathbf{j}) \cdots \hat{F}_{N}^{V}(\mathbf{j})]$, where

$$\hat{F}_{n}^{V}(\mathbf{j}) = f_{n}^{V} [X^{V}(0) + \mathbf{j}(D - C)]
- g_{n}^{V} [X^{V}(0) + \mathbf{j}(D - C)],$$

$$\hat{F}(\mathbf{y}) = \lceil \hat{F}_{1}(\mathbf{y}) \cdots \hat{F}_{N}(\mathbf{y}) \rceil$$

where

$$\widehat{F}_n(\mathbf{y}) = f_n[\mathbf{x}_0 + \mathbf{y}(D - C)] - g_n[\mathbf{x}_0 + \mathbf{y}(D - C)],$$

and

$$\hat{\Gamma}(\mathbf{y}) = \sum_{n=1}^{N} \left\{ f_n [\mathbf{x}_0 + \mathbf{y}(D-C)] + g_n [\mathbf{x}_0 + \mathbf{y}(D-C)] \right\}.$$

Let Y(t) denote the solution of

$$\partial Y(t)/\partial t = \widehat{F}[Y(t)],$$

 $Y(0) = 0.$

Then with $\hat{\Gamma}$, \hat{M} and $\hat{\eta}$ defined in a manner similar to Γ , M, and η we have

$$P\{\sup_{s < t} | V^{-1}Y^{V}(s) - Y(s) | \ge \epsilon\} \le t \hat{\Gamma}/(V\delta^{2}) \quad (3.2)$$

provided $\delta \equiv \epsilon \exp(-\hat{M}t) - t\hat{\eta} > 0$.

Note: If $|\mathbf{x}_0 - V^{-1}X^V(0)| = O(V^{-1})$ then $\hat{\eta} = O(V^{-1})$.

IV. A CENTRAL LIMIT THEOREM

Let

$$\gamma_{ij}(\mathbf{x}) = \sum_{n=1}^{N} (d_{ni} - c_{ni}) (d_{nj} - c_{nj}) [f_n(\mathbf{x}) + g_n(\mathbf{x})].$$

Theorem (3.5) of Ref. 5 implies the following: If

$$\lim_{V\to\infty} V^{1/2} [V^{-1}X^V(0) - \mathbf{x}_0] = 0$$

then

$$\lim_{n \to \infty} P\{V^{1/2}[V^{-1}X^{V}(t) - X(t, \mathbf{x}_0)]\}$$

$$\in (a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_M, b_M)$$

$$= P\{W(t) \in (a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_M, b_M) \}$$

where W(t) has a multivariate normal distribution with a characteristic function $\psi(t, \theta) \equiv E(\exp\{i\theta \cdot W(t)\})$ satisfying

$$(\partial/\partial t)\psi(t,\,\mathbf{\theta}) = -\frac{1}{2} \sum_{j,k} \theta_j \theta_k \gamma_{jk} [X(t,\,\mathbf{x}_0)] \psi(t,\,\mathbf{\theta})$$

$$+ \sum_{j,k} \theta_j \partial_k F_j [X(t,\,\mathbf{x}_0)] (\partial/\partial \theta_k) \psi(t,\,\mathbf{\theta}). \quad (4.1)$$

 $[\mathbf{z} \in (a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_M, b_M)$ means $a_m < z_m <$ b_m , $m=1, 2, \dots, M$. Letting

$$h_{ij}(\mathbf{x}) = \partial_i F_j(\mathbf{x}) \equiv \partial F_j(\mathbf{x}) / \partial x_i$$

 $G(\mathbf{x})$ be the matrix $((\gamma_{ij}(\mathbf{x})))$, $H(\mathbf{x})$ the matrix $((h_{ij}(\mathbf{x})))$ and $H^*(\mathbf{x})$ its adjoint, (4.1) implies W(t)has mean zero and covariance matrix given by

$$\int_{0}^{t} \exp\left(\int_{s}^{t} H^{*}[X(u, \mathbf{x}_{0})]du\right) G[X(s, \mathbf{x}_{0})]$$

$$\times \exp\left(\int_{s}^{t} H[X(u, \mathbf{x}_{0})]du\right) ds. \quad (4.2)$$

The corresponding quantities for Y^V are

$$\begin{aligned} \hat{\gamma}_{ij}(\mathbf{y}) &= 0 & i \neq j \\ &= f_i [\mathbf{x}_0 + \mathbf{y}(D - C)] + g_i [\mathbf{x}_0 + \mathbf{y}(D - C)] & \text{for } i = j \end{aligned}$$

and

$$h_{ij}(\mathbf{y}) = (\partial/\partial y_i)\widehat{F}_j(\mathbf{y}).$$

If $|V^{-1}X^V(0) - \mathbf{x}_0| = O(V^{-1})$ then

 $\lim P\{V^{1/2} \lceil V^{-1}Y^{V}(t) - Y(t) \rceil \in (a_1, b_1) \times \cdots \times (a_N, b_N)\}$

$$= P\{Z(t) \in (a_1, b_1) \times \cdots \times (a_N, b_N)\}\$$

where Z(t) is multivariate normal with mean zero and covariance matrix given by

$$\int_{0}^{t} \exp\left(\int_{s}^{t} \widehat{H}^{*}[Y(u)]du\right) \widehat{G}[Y(s)]$$

$$\times \exp\left(\int_{s}^{t} \widehat{H}[Y(u)]du\right) ds. \quad (4.3)$$

V. EXAMPLE

Consider a single reaction $A+B \Longrightarrow C$. The Y^V model is clearly the appropriate model to consider. We then

$$f(\mathbf{x}) = \alpha x_1 x_2$$

$$g(\mathbf{x}) = \beta x_3,$$

$$\hat{F}(y) = \alpha (x_1^0 - y) (x_2^0 - y) - \beta (x_3^0 + y),$$

$$\hat{\Gamma}(y) = \hat{G}(y) = \alpha (x_1^0 - y) (x_2^0 - y) + \beta (x_3^0 + y),$$

and

$$\widehat{H}(y) = 2\alpha y - \beta - \alpha(x_1^0 + x_2^0).$$

Suppose $\alpha x_1^0 x_2^0 - \beta x_3^0 = 0$, that is $\mathbf{x}_0 = (x_1^0, x_2^0, x_3^0)$ is the equilibrium value. Then $Y(t) \equiv 0$ and the variance of the normal random variable Z(t) is

$$\int_{0}^{t} \exp\{-(t-s)[\beta+\alpha(x_{1}^{0}+x_{2}^{0})]\} (\alpha x_{1}^{0}x_{2}^{0}+\beta x_{3}^{0})$$

$$\times \exp\{-(t-s)[\beta+\alpha(x_{1}^{0}+x_{2}^{0})]\} ds$$

$$= \frac{\alpha x_{1}^{0}x_{2}^{0}}{\beta+\alpha(x_{1}^{0}+x_{2}^{0})} (1-\exp\{-2t[\beta+\alpha(x_{1}^{0}+x_{2}^{0})]\}).$$

* Research supported in part by the NIH at the University of

Wisconsin, Madison, Wisconsin.

D. A. McQuarrie, J. Appl. Prob. 4, 413 (1967).

L. Oppenheim, K. E. Schuler, and G. H. Weiss, J. Chem. Phys. 50, 460 (1969).

T. G. Kurtz, "Convergence of Operator Semigroups with Applications to Markov Processes," dissertation, Stanford University, 1967.

⁴T. G. Kurtz, J. Appl. Prob. 7, 49 (1970).

⁵T. G. Kurtz, "Limit Theorems for Sequences of Jump Markov Processes Approximating Ordinary Differential Equations," J. Appl. Prob. (to be published).