- Lee Cohn

$$Z_e(s') = \ell$$
 modular tensor category in particular, ℓ is traided, has duals, is semisimple.

A
$$\beta$$
-shucture is null homotopy data of $M \longrightarrow BO \longrightarrow K(7,4)$

Modular tensor categories categorify commutative Trobenius algebras.

$$C$$
 braids \longrightarrow $K^{\circ}(e)$ is commutative

 $Tr: K^{\circ}(e) \longrightarrow \mathbb{C}$
 $V \longmapsto Tr(id_{V})$
 $C \xrightarrow{\omega \omega} V_{\otimes} V \xrightarrow{* \delta_{V} \otimes id} V^{**} V^{*} \xrightarrow{eV} \mathbb{C}$

$$\mathcal{K}^{\circ}(e)$$
 -Verlinde Ring $\mathcal{K}^{\circ}(t) \otimes \mathbb{C}$ — Verlinde Algebra

$$Z_e: \operatorname{Bord}_{\langle 3,2,1\rangle}^{\wp_1, p_1} \longrightarrow \operatorname{Cat}_{\mathfrak{C}} \longrightarrow Z_c: \operatorname{Bord}_{\langle 2,1,0\rangle} \longrightarrow \operatorname{Cat}_{\mathfrak{C}}$$

$$Z_{\ell}^{1}(M) := Z_{\ell}(S^{1}XM)$$

$$Z_e'(\text{pt}) = \mathcal{C}$$
 $Z_e'(\text{S'}) \stackrel{\sim}{=} \text{HH}_o(e)$

 $K^{\circ}(e)\underset{\mathbb{Z}}{\otimes}\mathbb{C}$ is the frobenius algebra controlling the (2,1)-dimensional reduction of \mathbb{Z}_{+} .

Ex of MTC:

• G finite group. MTC $Vect_G(G)$ obj . Vector spaces $\{V_G\}_{g\in G}$ with $V_g\cong V_{hgh^{-1}}$ + some equivoriance conditions

 $\textit{Monoidal Structure:} \quad \textit{Convolution} \ \left(\bigvee_{\otimes}^{c} \bigvee_{\chi} := \ \underset{\eta_{1}, \eta_{2} = \chi}{\oplus} \ \bigvee_{\eta_{1}} \otimes \bigvee_{\eta_{2}}$

Ko (G) the Grothendieck group of Verto (G), is a commutative Feobenius ring.

Twisted version:

 $\forall \in H^4(GG,\mathbb{Z}) \longrightarrow H^3_G(G;\mathbb{Z}) \cong H^2_G(G,UU) \cong H^2_G(G,\frac{1}{2})$

w stree Lng with isomorphisms Lyng-1, z ⊗ Ln, zy + ...

MTC: $\operatorname{Vect}_G^{\prec}(G)$ obj. Vector spaces $\{V_n\}_{n\in G}$ $L_{n,n} \otimes V_n \cong V_{n,n}$ similar monoidal steucture as above

 $K_{\mathsf{G}}^{\mathsf{T}}(\mathsf{G})$ commutative Frobenius algebra.

Loop Groups:

G-compact, simply connected, simple Lie Group ⇒ H⁴(BG; Z) ≧ Z

LG := Maps (51,6)

Universal central extension:

Def: Positive Energy Representation at level &, Vis

1) Rep. of LG with C* acting as scalars.
2) Action extends to LG × Rot (5') C'V inducing eigen decomposition

$$V = \bigoplus_{n \ge 0} V(n)$$
 $V(n) = \{u \in V \mid R_{\theta} u = e^{in\theta}u\}$

Rmk: V irreducible \Rightarrow determined by level α is its lowest energy eigenspace as a rep of G.

7£™:	Rep ¹ (LG)	in va imol	dular Jen	sor eaf	egory.	in pa	rticular	it is	Seinusin	ple.	
En:	G=Su(2), Troops of V(n)	d= k Re Su(2) and with dim	ep (SU(27) L (V(N))=n+1	= (l+,	t-1 JE2 poly	t++	2 +4 t				
	Ver _k (Si	J(2)) ⊗ (C Z	≅ Rep (s	u(27) / U	h (V2K+	= 0 2-n					
Dan	Freed: Heisenberg	group									