Hypotheses

Chapter 1: The evolutionary basis of commonness and rarity.

- Are occupancy within a geographic range (range porosity, holes within the range) phylogenetically heritable? (Extent of occupancy (sum of occupied areas) is heritable.)
 - Is the percent of occupancy heritable?
 - H₀: Percent occupancy is random with respect to phylogenetic distance.
 - H₁: More closely related species have more similar occupancy.
 - H₂: More distantly related species have more similar occupancy.
 - Birds, mammals, butterflies, FIA
 - Randomization test between phylogenetic distances and occupancy (Waldron 2007).

• What is the species longevity for common vs. rare species?

- Do common species have older divergence dates than rare species?
- H₀: Common species and rare species do not have significantly different divergence dates.
- H₁: Common species have older divergence dates than rare species.
- H₂: Rare species have older divergence dates than common species.
 - Anything with a good molecular clock phylogeny- mammals, birds, possibly reptiles, fish, amphibians, FIA
 - Randomization test between divergence date and commonness/rarity metric.

Chapter 2: Understanding commonness and rarity through life history traits.

- Can regional occupancy and abundance be explained by life history traits?
 - What amount of the variation in occupancy and abundance can be explained by life history traits?
 - H_0 : No relationship between life history traits and occupancy or abundance.
 - H₁: Life history traits explain variation in occupancy or abundance.
 - Birds, mammals, reptiles
 - Variance partitioning with life history traits, and phylogenetic distance

Chapter 3: Comparing natural patterns of commonness and rarity to anthropogenically influenced patterns

What do regional patterns of occupancy and abundance look like for invasive species?

- Invasive species will have higher abundances at a site and lower percent occupancy than native common species.
- Invasive species will have distributions that are positively correlated with human disturbance, native common species will have distributions that are negatively correlated or have no relationship to human disturbance.
- Invasive species will have more peaks of abundance than native common species.
 - Birds, maybe plants (FIA or something else)?

What do regional patterns of occupancy and abundance look like for rare species of conservation concern?

- Conservation rare species will have lower abundances overall and lower percent occupancy than native rare species.
- Conservation rare species will have distributions that are negatively correlated with human disturbance, native rare species will have distributions that are negatively correlated or have not relationship to human disturbance.
- Conservation rare species will have even abundance throughout the range, native rare species will have a peak or peaks of higher abundance.
 - Birds, maybe mammals, plants, reptiles, butterflies?