# Results

NOTE: this is the SOLUTION to Quiz 2.

The correct answers are indicated for each question, with explanations as needed.

Dr. Manikas

# Your Answers:

1 4/4 points

The Testing Department has reported that our corporate server system has an FIT of 1000. What is the MTTF (hours) for this system?



1,000,000

# **Feedback**

#### **General Feedback**

Recall that FIT is rate of failures per billion (10<sup>9</sup>) hours, and is the reciprocal of MTTF.

Thus, MTTF =  $10^9/\text{FIT} = 10^9/1000 = 10^6 = 1 \text{ million hours}$ 

4/4 points

We have a server system with a MTTF of 1 million hours. After failure, if it takes 5 days to get the system running again, what is the availability of the system? Please show your answer to 6 significant digits after the decimal point.



0.999880

# **Feedback**

It takes 5 days = 5 (24 hours/day) = 120 hours to get the system running again = MTTR

$$egin{aligned} Availability &= rac{MTTF}{MTTF+MTTR} \ &= rac{10^6}{10^6+120} = 0.999880 \; (rounded) \end{aligned}$$

3

4/4 points

We have a program that is 60% "parallelizable": 60% of the program can be run in parallel, while 40% must be run sequentially. This program is currently run on a uniprocessor machine. What is the speedup if we run this program on a machine with 4 processors (cores)?



1.818

### **Feedback**

#### **General Feedback**

Amdahl's Law, applied to this instance:

Speedup = 
$$\frac{1}{(1-F)+\frac{F}{N}}$$

F = fraction parallelizable = 60% or 0.6, N = amount of improvement = # cores = 4

Speedup=
$$\frac{1}{(1-F)+\frac{F}{S}}$$
  
=  $\frac{1}{(1-0.6)+\frac{0.6}{4}}$   
=  $\frac{1}{0.4+0.15} = \frac{1}{0.55} \approx 1.82$ 

4

4/4 points

Your design team has designed a processor with code name of "Bronco". This processor has a clock cycle time of 2 ns. When the processor is run on a SPEC benchmark with  $10^9$  instructions, the resultant execution time is 4 seconds. What is the average CPI for this processor?



2

# **Feedback**

Execution time = (instruction count)(CPI)(clock cycle time)

- We are given Instruction count (IC) =  $10^9$
- We are given clock cycle time =  $2 \text{ ns} = 2 \times 10^{-9} \text{ sec}$
- Execution time is 4 sec

Thus,

$$egin{aligned} CPI &= rac{Execution \ Time}{(IC)(clock \ cycle \ time)} \ &= rac{4}{(10^9)(2 imes10^{-9})} = 2 \end{aligned}$$

4/4 points

Your design team has developed a new processor with code name of "Maverick". This processor has a clock rate of 2 GHz, and the average cycles per instruction is 2. The processor is tested on a SPEC benchmark program that has  $10^9$  instructions. What is the **execution time** for this program on this processor?



# **Feedback**

#### **General Feedback**

Recall that execution time = (instruction count)(CPI)(clock cycle time)

Also, clock rate = 1/(clock cycle time)

- We are given clock rate =  $2 \text{ GHz} = 2 \times 10^9 \text{ Hz} = 2 \times 10^9 \text{ cycles/sec}$
- CPI (cycles/instruction) = 2
- Instruction count (IC) =  $10^9$

$$execution \ time = rac{(IC)(CPI)}{clock \ rate} \ = rac{(10^9)(2)}{2 \ x \ 10^9} = 1 \ \sec$$

6

4/4 points

Your design team has developed a new processor with code name of "Mustang". This processor has an average cycles per instruction of 2. When run on a SPEC benchmark program that has  $2 \times 10^9$  instructions, the total processor execution time is 1 second. What is the **clock rate** for this processor?



## **Feedback**

#### **General Feedback**

Recall that CPU time = (instruction count)(CPI)(clock cycle time) = (instruction count) (CPI)/(clock rate)

We are given the following:

- CPU time = total processor execution time = 1 second
- CPI = average cycles per instruction = 2
- Instruction count for SPEC benchmark program =  $2 \times 10^9$  instructions

We need to determine the clock rate. Using algebra, we revise the above equation as:

$$clock \ rate = rac{(instruction \ count)(CPI)}{CPU \ time} = rac{(2 imes 10^9 \ instructions)(rac{2 \ cycles}{instruction})}{1 \ sec}$$

$$clock \; rate = 4 \times 10^9 \, rac{cycles}{sec} = 4 \; GHz$$