# Data Driven Decision Making

**Predictive Analysis** 

# What is Predictive Analysis?









Predict the future by examining historical data, detecting patterns or relationships in these data, and then extrapolating these relationships forward in time.

# Application of Predictive Analysis

### Where Predictive Analytics Is Having the Biggest Impact

by Jacob LaRiviere, Preston McAfee, Justin Rao, Vijay K. Narayanan and Walter Sun

- Predicting demand
- Improved pricing
- Predictive maintenance
- Diagnosis and treatment of diseases
- Distributed electricity generation to localized electricity demand



# Predictive Analysis Models



#### **CORRELATION ANALYSIS**

A group of techniques to measure the relationship between two variables.

Identified as r or p

- It ranges from −1 to 1.
- Near 0 indicates little linear association.
- Near 1 indicates a direct/positive linear association.
- Near –1 indicates an inverse/negative linear association.



# Correlation Example

North American Copier Sales sells copiers to businesses of all sizes throughout the United States and Canada. The new national sales manager is preparing for an upcoming sales meeting and would like to impress upon the sales representatives the importance of making an extra sales call each day. She takes a random sample of 15 sales representatives and gathers information on the number of sales calls made last month and the number of copiers sold.

| Sales Representative | Sales Calls | Copiers Sold |
|----------------------|-------------|--------------|
| Brian Virost         | 96          | 41           |
| Carlos Ramirez       | 40          | 41           |
| Carol Saia           | 104         | 51           |
| Greg Fish            | 128         | 60           |
| Jeff Hall            | 164         | 61           |
| Mark Reynolds        | 76          | 29           |
| Meryl Rumsey         | 72          | 39           |
| Mike Kiel            | 80          | 50           |
| Ray Snarky           | 36          | 28           |
| Rich Niles           | 84          | 43           |
| Ron Broderick        | 180         | 70           |
| Sal Spina            | 132         | 56           |
| Soni Jones           | 120         | 45           |
| Susan Welch          | 44          | 31           |
| Tom Keller           | 84          | 30           |

## **Spurious Correlation**

- If there is a strong association, we might be tempted assume a change in one variable causes a change in another variable.
- Spurious correlation: Strong correlation between variables that are not logically related to each other.



Laureates per 10 Million Population.

# Regression Analysis

- It is another method to examine relationship between two variables.
- Provides more information than correlation.
- Allows estimating the value of the dependent variable (Y) for given a value of the independent variable (X).
- Regression Equation expresses the linear relationship between two variables.
- Use the data to position a line that best represents the relationship between X and Y.
- The "best fitting" line is obtained by the least squares principle.

# Best Fit Line (least square principle)











# Regression Equation

General form of the linear regression equation:

$$\hat{y} = a + bx$$

 $\hat{y}$  is the estimated value of y for a selected value of x.

- a is the constant or intercept.
- *b* is the slope of the fitted line.
- x is the value of the independent variable.

The values of *a* and *b* are given by:

$$b = r \left( \frac{S_y}{S_x} \right).$$

$$a = \overline{y} - b\overline{x}$$
.

### **Example**

Sales call vs copies sold

- What is the least squares equation?
- If a salesperson makes 100 calls, how many copiers do they expect to sale?

# Simple Linear Regression Output

| 4  | A                  | В               | C                | D | Е                           | F                     | G              | Н       | 1       | J              |
|----|--------------------|-----------------|------------------|---|-----------------------------|-----------------------|----------------|---------|---------|----------------|
| 1  | Sales Representive | Sales calls (x) | Copiers Sold (y) |   | SUMMARY OUTPUT              |                       |                |         |         |                |
| 2  | Brian Virost       | 96              | 41               |   |                             |                       |                |         |         |                |
| 3  | Carlos Ramirez     | 40              | 41               |   | Regression Stati            | Regression Statistics |                |         |         |                |
| 4  | Carol Saia         | 104             | 51               |   | Multiple R                  | 0.865                 |                |         |         |                |
| 5  | Greg Fish          | 128             | 60               |   | R Square                    | 0.748                 |                |         |         |                |
| 6  | Jeff Hall          | 164             | 61               |   | Adjusted R Square           | 0.728                 |                |         |         |                |
| 7  | Mark Reynolds      | 76              | 29               |   | Standard Error              | 6.720                 |                |         |         |                |
| 8  | Meryl Rumsey       | 72              | 39               |   | Observations                | 15                    |                |         |         |                |
| 9  | Mike Kiel          | 80              | 50               |   |                             |                       |                |         |         |                |
| 10 | Ray Snarsky        | 36              | 28               |   | ANOVA                       |                       |                |         |         |                |
| 11 | Rich Niles         | 84              | 43               |   |                             | df                    | SS             | MS      | F       | Significance F |
| 12 | Ron Broderick      | 180             | 70               |   | Regression                  | 1                     | 1738.89        | 1738.89 | 38.5031 | 3.19277E-05    |
| 13 | Sal Spina          | 132             | 56               |   | Residual                    | 13                    | 587.11         | 45.1623 |         |                |
| 14 | Sani Jones         | 120             | 45               |   | Total                       | 14                    | 2326           |         |         |                |
| 15 | Susan Welch        | 44              | 31               |   |                             |                       |                |         |         |                |
| 16 | Tom Keller         | 84              | 30               |   | Coefficients Standard Error |                       | Standard Error | t Stat  | P-value |                |
| 17 |                    |                 |                  |   | Intercept                   | 19.9800               | 4.389675533    | 4.55159 | 0.00054 |                |
| 18 |                    |                 |                  |   | Sales calls (x)             | 0.2606                | 0.042001817    | 6.20509 | 3.2E-05 |                |

# Multiple Linear Regression

Salsberry Realty sells homes along the East Coast of the United States. One of the questions most frequently asked by prospective buyers is: If we purchase this home, how much can we expect to pay to heat it during the winter? The analyst team at Salsberry has been asked to develop some guidelines regarding heating costs for single-family homes. Three variables are thought to relate to the heating costs:

- the mean daily outside temperature,
- the number of inches of insulation in the attic (roof), and
- the age in years of the furnace.

To investigate, Salsberry's research department selected a random sample of 20 recently sold homes. It determined the cost to heat each home last January, as well as the January outside temperature in the region, the number of inches of insulation in the attic, and the age of the furnace.

| Home | Heating<br>Cost (\$) | Mean Outside<br>Temperature (°F) | Attic Insulation (inches) | Age of Furnace<br>(years) |  |
|------|----------------------|----------------------------------|---------------------------|---------------------------|--|
| 1    | \$250                | 35                               | 3                         | 6                         |  |
| 2    | 360                  | 29                               | 4                         | 10                        |  |
| 3    | 165                  | 36                               | 7                         | 3                         |  |
| 4    | 43                   | 60                               | 6                         | 9                         |  |
| 5    | 92                   | 65                               | 5                         | 6                         |  |
| 6    | 200                  | 30                               | 5                         | 5                         |  |
| 7    | 355                  | 10                               | 6                         | 7                         |  |
| 8    | 290                  | 7                                | 10                        | 10                        |  |
| 9    | 230                  | 21                               | 9                         | 11                        |  |
| 10   | 120                  | 55                               | 2                         | 5                         |  |
| 11   | 73                   | 54                               | 12                        | 4                         |  |
| 12   | 205                  | 48                               | 5                         | 1                         |  |
| 13   | 400                  | 20                               | 5                         | 15                        |  |
| 14   | 320                  | 39                               | 4                         | 7                         |  |
| 15   | 72                   | 60                               | 8                         | 6                         |  |
| 16   | 272                  | 20                               | 5                         | 8                         |  |
| 17   | 94                   | 58                               | 7                         | 3                         |  |
| 18   | 190                  | 40                               | 8                         | 11                        |  |
| 19   | 235                  | 27                               | 9                         | 8                         |  |
| 20   | 139                  | 30                               | 7                         | 5                         |  |

# Non-linear Regression

- Regression analysis and the correlation coefficient require the relationship to be linear.
- But what if data is not linear?
  - Rescale one or both of the variables so the new relationship is linear.
  - Common transformations include.
  - The base 10 log, log(y).
  - The square root.
  - The reciprocal.
  - Square one or both variables.

## Regression with indicator variables

- Indicator variables, also known as dummy variables, are binary variables (0 or 1) used to represent categorical variables in regression models. They effectively encode qualitative information into a format that quantitative models can understand.
- How to use them in regression models:
  - Create indicator variables: For a categorical variable with m categories, you'll create m-1 indicator variables.
  - Choose a reference category: One category is chosen as the reference (or baseline) and is not represented by an indicator variable.
  - Include in the model: The indicator variables are included as independent variables in your regression equation, alongside any continuous variables.
  - Interpret coefficients: The coefficients of the indicator variables represent the difference in the dependent variable's expected value compared to the reference category

# Example of regression with indicators variable

- Suppose you are analyzing salary and want to include gender (male/female) as a factor. You would create one indicator variable, say "is\\_female" (1 if female, 0 if male).
- In your regression model: Salary =  $\beta_0$  +  $\beta_1$  \* is\_female + other\_variables
- $\beta_0$  represents the average salary for males (the reference category).
- $\beta_1$  represents the difference in average salary between females and males. If  $\beta_1$  is negative, females on average earn less than males.

# Time Series and Forecasting models

- Simple moving average
- Weighted moving average
- Simple exponential smoothing
- Exponential smoothing including trend
- Time Series Regression
- Causal Regression
- Trend with seasonality index

# Time series forecasting example

| WEEK | DEMAND | 3-Week | 9-Week | Week | DEMAND | 3-Week | 9-Week |
|------|--------|--------|--------|------|--------|--------|--------|
| 1    | 800    |        |        | 16   | 1,700  | 2,200  | 1,811  |
| 2    | 1,400  |        |        | 17   | 1,800  | 2,000  | 1,800  |
| 3    | 1,000  |        |        | 18   | 2,200  | 1,833  | 1,811  |
| 4    | 1,500  | 1,067  |        | 19   | 1,900  | 1,900  | 1,911  |
| 5    | 1,500  | 1,300  |        | 20   | 2,400  | 1,967  | 1,933  |
| 6    | 1,300  | 1,333  |        | 21   | 2,400  | 2,167  | 2,011  |
| 7    | 1,800  | 1,433  |        | 22   | 2,600  | 2,233  | 2,111  |
| 8    | 1,700  | 1,533  |        | 23   | 2,000  | 2,467  | 2,144  |
| 9    | 1,300  | 1,600  |        | 24   | 2,500  | 2,333  | 2,111  |
| 10   | 1,700  | 1,600  | 1,367  | 25   | 2,600  | 2,367  | 2,167  |
| 11   | 1,700  | 1,567  | 1,467  | 26   | 2,200  | 2,367  | 2,267  |
| 12   | 1,500  | 1,567  | 1,500  | 27   | 2,200  | 2,433  | 2,311  |
| 13   | 2,300  | 1,633  | 1,556  | 28   | 2,500  | 2,333  | 2,311  |
| 14   | 2,300  | 1,833  | 1,644  | 29   | 2,400  | 2,300  | 2,378  |
| 15   | 2,000  | 2,033  | 1,733  | 30   | 2,100  | 2,367  | 2,378  |





# Accuracy of data driven prediction

### Depends on:

- Variables used (relevance)
- Quantity of data (adequacy)
- Quality of Data (accuracy and recentness and relevance)



# Thank you