This key should allow you to understand why you choose the option you did (beyond just getting a question right or wrong). More instructions on how to use this key can be found here.

If you have a suggestion to make the keys better, please fill out the short survey here.

Note: This key is auto-generated and may contain issues and/or errors. The keys are reviewed after each exam to ensure grading is done accurately. If there are issues (like duplicate options), they are noted in the offline gradebook. The keys are a work-in-progress to give students as many resources to improve as possible.

1. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-4 - 9x \le \frac{-51x - 3}{8} < 3 - 7x$$

The solution is [-1.38, 5.40), which is option B.

A. $(-\infty,a]\cup(b,\infty), \text{ where } a\in[-3.75,-0.75] \text{ and } b\in[1.5,7.5]$

 $(-\infty, -1.38] \cup (5.40, \infty)$, which corresponds to displaying the and-inequality as an or-inequality.

B. [a, b), where $a \in [-3, -1.2]$ and $b \in [-2.25, 10.5]$

[-1.38, 5.40), which is the correct option.

C. (a, b], where $a \in [-2.25, -0.75]$ and $b \in [3, 11.25]$

(-1.38, 5.40], which corresponds to flipping the inequality.

D. $(-\infty, a) \cup [b, \infty)$, where $a \in [-5.25, -0.75]$ and $b \in [3, 8.25]$

 $(-\infty, -1.38) \cup [5.40, \infty)$, which corresponds to displaying the and-inequality as an or-inequality AND flipping the inequality.

E. None of the above.

General Comment: To solve, you will need to break up the compound inequality into two inequalities. Be sure to keep track of the inequality! It may be best to draw a number line and graph your solution.

2. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$\frac{6}{8} - \frac{5}{9}x \ge \frac{-3}{5}x + \frac{10}{7}$$

The solution is $[15.268, \infty)$, which is option D.

A. $[a, \infty)$, where $a \in [-16.5, -14.25]$

 $[-15.268, \infty)$, which corresponds to negating the endpoint of the solution.

B. $(-\infty, a]$, where $a \in [11.25, 15.75]$

 $(-\infty, 15.268]$, which corresponds to switching the direction of the interval. You likely did this if you did not flip the inequality when dividing by a negative!

C. $(-\infty, a]$, where $a \in [-17.25, -13.5]$

 $(-\infty, -15.268]$, which corresponds to switching the direction of the interval AND negating the endpoint. You likely did this if you did not flip the inequality when dividing by a negative as well as not moving values over to a side properly.

- D. $[a, \infty)$, where $a \in [14.25, 16.5]$
 - * $[15.268, \infty)$, which is the correct option.

E. None of the above.

You may have chosen this if you thought the inequality did not match the ends of the intervals.

General Comment: Remember that less/greater than or equal to includes the endpoint, while less/greater do not. Also, remember that you need to flip the inequality when you multiply or divide by a negative.

3. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-7x + 9 \le 5x + 7$$

The solution is $[0.167, \infty)$, which is option A.

- A. $[a, \infty)$, where $a \in [-0.09, 0.29]$
 - * $[0.167, \infty)$, which is the correct option.
- B. $(-\infty, a]$, where $a \in [-0.24, 0.06]$

 $(-\infty, -0.167]$, which corresponds to switching the direction of the interval AND negating the endpoint. You likely did this if you did not flip the inequality when dividing by a negative as well as not moving values over to a side properly.

- C. $[a, \infty)$, where $a \in [-0.18, 0.1]$
 - $[-0.167, \infty)$, which corresponds to negating the endpoint of the solution.
- D. $(-\infty, a]$, where $a \in [-0.15, 0.75]$

 $(-\infty, 0.167]$, which corresponds to switching the direction of the interval. You likely did this if you did not flip the inequality when dividing by a negative!

E. None of the above.

You may have chosen this if you thought the inequality did not match the ends of the intervals.

General Comment: Remember that less/greater than or equal to includes the endpoint, while less/greater do not. Also, remember that you need to flip the inequality when you multiply or divide by a negative.

4. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-5x - 9 \le 6x + 5$$

The solution is $[-1.273, \infty)$, which is option C.

- A. $[a, \infty)$, where $a \in [0.27, 3.27]$
 - $[1.273, \infty)$, which corresponds to negating the endpoint of the solution.
- B. $(-\infty, a]$, where $a \in [-2.4, -1.1]$

 $(-\infty, -1.273]$, which corresponds to switching the direction of the interval. You likely did this if you did not flip the inequality when dividing by a negative!

- C. $[a, \infty)$, where $a \in [-4.27, 0.73]$
 - * $[-1.273, \infty)$, which is the correct option.

- D. $(-\infty, a]$, where $a \in [-1.2, 1.8]$
 - $(-\infty, 1.273]$, which corresponds to switching the direction of the interval AND negating the endpoint. You likely did this if you did not flip the inequality when dividing by a negative as well as not moving values over to a side properly.
- E. None of the above.

You may have chosen this if you thought the inequality did not match the ends of the intervals.

General Comment: Remember that less/greater than or equal to includes the endpoint, while less/greater do not. Also, remember that you need to flip the inequality when you multiply or divide by a negative.

5. Using an interval or intervals, describe all the x-values within or including a distance of the given values.

Less than 6 units from the number 7.

The solution is (1, 13), which is option B.

A. $(-\infty, 1] \cup [13, \infty)$

This describes the values no less than 6 from 7

B. (1, 13)

This describes the values less than 6 from 7

C. [1, 13]

This describes the values no more than 6 from 7

D. $(-\infty, 1) \cup (13, \infty)$

This describes the values more than 6 from 7

E. None of the above

You likely thought the values in the interval were not correct.

General Comment: When thinking about this language, it helps to draw a number line and try points.

6. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-3 - 9x \le \frac{-34x + 9}{4} < 5 - 9x$$

The solution is None of the above., which is option E.

A. [a, b), where $a \in [6.75, 12]$ and $b \in [-6, -2.25]$

[10.50, -5.50), which is the correct interval but negatives of the actual endpoints.

B. $(-\infty, a] \cup (b, \infty)$, where $a \in [8.25, 15]$ and $b \in [-11.25, -4.5]$

 $(-\infty, 10.50] \cup (-5.50, \infty)$, which corresponds to displaying the and-inequality as an or-inequality and getting negatives of the actual endpoints.

C. $(-\infty, a) \cup [b, \infty)$, where $a \in [3.75, 15.75]$ and $b \in [-6, -2.25]$

 $(-\infty, 10.50) \cup [-5.50, \infty)$, which corresponds to displaying the and-inequality as an or-inequality AND flipping the inequality AND getting negatives of the actual endpoints.

- D. (a, b], where $a \in [9, 11.25]$ and $b \in [-6.75, -3]$ (10.50, -5.50], which corresponds to flipping the inequality and getting negatives of the actual endpoints.
- E. None of the above.
 - * This is correct as the answer should be [-10.50, 5.50).

General Comment: To solve, you will need to break up the compound inequality into two inequalities. Be sure to keep track of the inequality! It may be best to draw a number line and graph your solution.

7. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-5 + 8x > 9x$$
 or $9 + 8x < 11x$

The solution is $(-\infty, -5.0)$ or $(3.0, \infty)$, which is option D.

A. $(-\infty, a] \cup [b, \infty)$, where $a \in [-5.47, -4.35]$ and $b \in [1.5, 4.5]$

Corresponds to including the endpoints (when they should be excluded).

B. $(-\infty, a] \cup [b, \infty)$, where $a \in [-4.12, -2.77]$ and $b \in [4.5, 8.25]$

Corresponds to including the endpoints AND negating.

C. $(-\infty, a) \cup (b, \infty)$, where $a \in [-4.5, -2.25]$ and $b \in [4.5, 7.5]$

Corresponds to inverting the inequality and negating the solution.

- D. $(-\infty, a) \cup (b, \infty)$, where $a \in [-7.5, -3.75]$ and $b \in [0.75, 3.75]$
 - \ast Correct option.
- E. $(-\infty, \infty)$

Corresponds to the variable canceling, which does not happen in this instance.

General Comment: When multiplying or dividing by a negative, flip the sign.

8. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-6 + 8x > 9x$$
 or $7 + 3x < 5x$

The solution is $(-\infty, -6.0)$ or $(3.5, \infty)$, which is option B.

A. $(-\infty, a) \cup (b, \infty)$, where $a \in [-5.17, -0.45]$ and $b \in [5.25, 6.75]$

Corresponds to inverting the inequality and negating the solution.

- B. $(-\infty, a) \cup (b, \infty)$, where $a \in [-6.52, -4.27]$ and $b \in [1.5, 4.5]$
 - * Correct option.
- C. $(-\infty, a] \cup [b, \infty)$, where $a \in [-7.95, -5.55]$ and $b \in [2.25, 4.5]$

Corresponds to including the endpoints (when they should be excluded).

D. $(-\infty, a] \cup [b, \infty)$, where $a \in [-3.67, -0.3]$ and $b \in [4.5, 9]$

Corresponds to including the endpoints AND negating.

E. $(-\infty, \infty)$

Corresponds to the variable canceling, which does not happen in this instance.

General Comment: When multiplying or dividing by a negative, flip the sign.

9. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$\frac{-5}{9} - \frac{4}{8}x \le \frac{8}{7}x + \frac{8}{6}$$

The solution is $[-1.15, \infty)$, which is option B.

A. $[a, \infty)$, where $a \in [1.05, 1.95]$

 $[1.15, \infty)$, which corresponds to negating the endpoint of the solution.

B. $[a, \infty)$, where $a \in [-2.4, -0.97]$

* $[-1.15, \infty)$, which is the correct option.

C. $(-\infty, a]$, where $a \in [-2.62, -0.07]$

 $(-\infty, -1.15]$, which corresponds to switching the direction of the interval. You likely did this if you did not flip the inequality when dividing by a negative!

D. $(-\infty, a]$, where $a \in [-0.82, 1.27]$

 $(-\infty, 1.15]$, which corresponds to switching the direction of the interval AND negating the endpoint. You likely did this if you did not flip the inequality when dividing by a negative as well as not moving values over to a side properly.

E. None of the above.

You may have chosen this if you thought the inequality did not match the ends of the intervals.

General Comment: Remember that less/greater than or equal to includes the endpoint, while less/greater do not. Also, remember that you need to flip the inequality when you multiply or divide by a negative.

10. Using an interval or intervals, describe all the x-values within or including a distance of the given values.

Less than 8 units from the number -1.

The solution is (-9,7), which is option C.

A. $(-\infty, -9) \cup (7, \infty)$

This describes the values more than 8 from -1

B. $(-\infty, -9] \cup [7, \infty)$

This describes the values no less than 8 from -1

C. (-9,7)

This describes the values less than 8 from -1

D. [-9, 7]

This describes the values no more than 8 from -1

E. None of the above

You likely thought the values in the interval were not correct.

General Comment: When thinking about this language, it helps to draw a number line and try points.