

Trabalho Prático

Ana Paula Canuto da Silva, 24178

Integração de Sistemas de Informação

Prof. Luís Ferreira

Licenciatura em Engenharia em Sistemas Informáticos (regime pós-laboral)

Escola Superior de Tecnologia Instituto Politécnico do Cávado e do Ave

Data do documento: 19 de outubro de 2025

Índice

Ir	ıtrodı	ução	2	
Parte I – Projeto ETL com Pentaho e Power BI – TMDB API				
	1-	Ferramentas e Tecnologias Utilizadas	3	
	2-	Enquadramento do problema	3	
	3-	Estratégia Utilizada	4	
	3.	1 — Extração (Extract)	4	
	3.	2 - Transformação (Transform)	5	
	3.	3 - Carga (Load)	7	
	4 - Estrutura da Transformação ETL			
	4.	1 - Descrição do Fluxo Principal:	13	
	5 - J	ob de Controlo e Execução	13	
	6 - R	Resultados Obtidos	14	
	7 - 7	Análise dos Resultados	14	
	8 - C	Conclusão e Trabalhos Futuros	15	
	8.	1 - A solução construída demonstrou:	15	
	8.	2 - Problemas encontrados:	15	
	8.	3 - Trabalhos futuros propostos:	15	
	9 - R	Referências Bibliográficas	16	
	10 -	Anêndice	16	

Introdução

A integração de sistemas de informação é essencial para transformar dados dispersos em conhecimento útil, permitindo que organizações tomem decisões baseadas em informação fiável e atualizada.

Neste contexto, o presente trabalho, intitulado "Projeto ETL com Pentaho e Power BI – TMDB API", tem como objetivo desenvolver um processo completo de Extração, Transformação e Carga (ETL) aplicado a dados provenientes de uma API pública de filmes (The Movie Database – TMDB).

A solução proposta utiliza o **Pentaho Data Integration (PDI)** para automatizar o pipeline de dados, aplicando expressões regulares, limpeza e validação, e carregando os resultados numa base **SQLite.** Por fim, os dados tratados foram visualizados no **Power BI,** permitindo uma análise clara das métricas de popularidade dos filmes.

O projeto demonstra, assim, a aplicação prática dos conceitos de integração de dados e a utilização de ferramentas profissionais para construção de pipelines **ETL** completos.

Parte I – Projeto ETL com Pentaho e Power BI – TMDB API

1- Ferramentas e Tecnologias Utilizadas

Nesse projeto fiz uso dos softwares e linguagem abaixo:

- Pentaho Data Integration (PDI Kettle)
- SQLite
- Microsoft Power BI
- API REST (The Movie Database TMDB)
- JSON, CSV e Excel
- Expressões Regulares (Regex)
- Scripts JavaScript no PDI

2- Enquadramento do problema

Este projeto foi desenvolvido no âmbito da Unidade Curricular de Integração de Sistemas de Informação (ISI), com o objetivo de aplicar e demonstrar na prática os conceitos de ETL (Extract, Transform and Load) através de uma solução real de integração de dados.

O problema proposto consistiu na criação de um pipeline de dados automatizado capaz de:

- Extrair informações de filmes a partir de uma API pública (TMDB) em formato JSON;
- Realizar limpeza, normalização e validação dos dados, tratando valores nulos, formatos incorretos e inconsistências;
- Armazenar os resultados limpos e validados numa base de dados SQLite;
- Exportar os dados transformados para ficheiros CSV e Excel;
- Criar dashboards interativos no Power BI, permitindo uma análise visual das métricas de popularidade dos filmes.

O projeto visa simular um **processo real de integração de dados empresariais**, tal como ocorre em cenários de *business intelligence* e *data warehousing*, demonstrando a interoperabilidade entre sistemas distintos.

3- Estratégia Utilizada

A solução foi implementada com recurso ao Pentaho Data Integration (PDI), que orquestrou todo o fluxo ETL de forma modular.

O processo foi dividido em três fases principais: Extração, Transformação e Carga (Load).

3.1 – Extração (Extract)

A extração dos dados foi realizada a partir da API REST do The Movie Database (TMDB), utilizando o componente REST Client do Pentaho.

Cada chamada à API devolve um conjunto de filmes em formato JSON, contendo campos como title, release_date, original_language, overview, popularity, entre outros.

Os resultados foram guardados em múltiplos ficheiros JSON segmentados (movies_original.json_1, movies_original.json_2, ..., movies_original.json_19), permitindo melhor controlo sobre o volume e integridade dos dados.

Figura 1 – Configuração do passo Generate Rows

Figura 2 – Configuração REST Client no Pentaho, responsável por iniciar o processo e obter dados da API.

Após a extração, os ficheiros JSON foram processados pelo passo **JSON Input**, que converteu a estrutura hierárquica dos dados em colunas tabulares, adequadas para transformação posterior.

Figura 3 – Conversão de dados JSON em tabela no passo JSON Input.

3.2 - Transformação (Transform)

A fase de transformação foi implementada através do passo **Modified JavaScript Value**, responsável por aplicar lógica de limpeza, manipulação e validação dos dados.

Entre as operações realizadas destacam-se:

- Normalização de datas (release_date), garantindo formato padrão YYYY-MM-DD;
- Substituição de valores nulos ou vazios por indicadores padrão;
- Validação de texto através de expressões regulares (Regex) para eliminar caracteres inválidos;
- Categorização da popularidade em faixas ("Baixa", "Média", "Alta");
- Criação de campos derivados (por exemplo, title_safe, release_date_safe).

Figura 4 – Script JavaScript aplicado às transformações, incluindo expressões regulares e limpeza de dados.

3.3 - Carga (Load)

Os dados limpos e validados foram gravados numa base de dados SQLite, através do passo **Table Output**, que criou e populou a tabela movies_clean.

Figura 6 – Configuração da ligação à base de dados SQLite .

Figura 7 – Configurando conexão com a base de dados criada..

Figura 8 – Configuração tabela de Output.

Figura 9 – Criação da tabela.

```
DCREATE TABLE IF NOT EXISTS movies_clean (

id INTEGER PRIMARY NEY,

title TEXT,

release_date TEXT,

vote_average REAL,

popularity REAL,

overview TEXT

;
```

Figura 10 – SQL para criação da tabela no SQLite.

Figura 11 – Configuração SQL para executar.

Figura 12 – Salvando dados originais em JSON.

R=0, W=1, U=0, E=0) Figura 13 – Get Fields.

A mesma informação foi exportada para ficheiros externos, com o objetivo de suportar análises posteriores no Power BI:

- Filmes_Validados.xlsx
- movies_transformation.csv
- movies excluidos.csv

O processo também incluiu **armazenamento de logs e tratamento de exceções**, garantindo rastreabilidade e consistência.

Figura 14 – File: Passos de exportação em formato Excel e CSV.

Figura 15 – Content: Passos de exportação em formato Excel e CSV.

Figura 16 – Fields: Passos de exportação em formato Excel e CSV.

Figura 17 – Escolha de qual tipo de dados quer enviar para salvar, TRUE (validados) ou FALSE(excluídos).

4- Estrutura da Transformação ETL

O diagrama global do fluxo desenvolvido no Pentaho está representado na **Figura18**, que ilustra a sequência lógica das operações.

Figura 18 – Estrutura geral da transformação ETL no Pentaho (Generate Rows \Rightarrow REST Client \Rightarrow JSON Input \Rightarrow JavaScript \Rightarrow Filter \Rightarrow Outputs).

4.1 - Descrição do Fluxo Principal:

- 1. Generate Rows: inicializa parâmetros de execução.
- 2. **REST Client:** consulta a API TMDB.
- 3. **JSON Input:** interpreta o JSON e converte-o em registos tabulares.
- 4. Modified JavaScript Value: aplica transformações e expressões regulares.
- 5. Filter Valid Movies: separa registos válidos e inválidos.
- 6. Table Output (SQLite): grava dados no repositório local.
- 7. **Excel e CSV Output:** exporta resultados processados.
- 8. **JSON Save Original:** guarda a versão bruta dos dados extraídos.

5- Job de Controlo e Execução

O processo foi orquestrado num **Job principal do Pentaho**, garantindo o controlo de execução e modularidade.

Funcionalidades incluídas:

- Execução sequencial de transformações (Extract, Transform, Load);
- Geração automática de logs de execução;
- Tratamento de exceções e reconexão automática em falhas de rede;

- Criação de datasets distintos para dados válidos e inválidos;
- Exportação simultânea para múltiplos formatos (Excel, CSV e SQLite).

6- Resultados Obtidos

Após a execução do processo ETL, foram gerados os seguintes resultados:

- Base de dados SQLite: movies.db, contendo a tabela movies_clean.
- Ficheiros exportados:
 - Filmes_Validados.xlsx
 - o movies_excluidos.csv
 - o movies_transformation.csv

Os dados foram posteriormente importados para o **Power BI**, onde foram criadas visualizações interativas.

Figura 19 — Dashboard do Power BI com gráficos de barras e pizza baseados nos dados transformados.

7- Análise dos Resultados

Os gráficos produzidos no Power BI permitiram uma leitura clara sobre a **popularidade dos filmes** obtidos via API.

- O **Gráfico de Barras** "Soma de Popularidade por Filme" mostrou que *Nossa Culpa* lidera em popularidade, seguida por *Invocação do Mal* e *Furiosa 2*.
- O Gráfico de Pizza destacou a distribuição percentual da popularidade total, evidenciando a predominância de poucos títulos em relação ao total de filmes.
- A **tabela interativa** permitiu explorar detalhes de cada filme, como data de lançamento, idioma original e descrição.

Estas análises demonstram a eficácia do pipeline desenvolvido, que converteu dados brutos da API em **informação estruturada e visualmente útil** para apoio à decisão.

8- Conclusão e Trabalhos Futuros

Este trabalho permitiu aplicar de forma prática os conceitos de **Integração de Sistemas** de **Informação** e **processos ETL**, utilizando o **Pentaho Data Integration** como ferramenta central de orquestração.

8.1 - A solução construída demonstrou:

- A capacidade de integração de múltiplos formatos (JSON, CSV, Excel, SQL);
- O uso eficaz de expressões regulares para validação e normalização de dados;
- A implementação de uma arquitetura modular com logs e controlo de erros;
- A interligação entre camadas de dados, transformação e visualização.

8.2 - Problemas encontrados:

Apesar do eficiente tratamento nos dados, verificou-se que nem todos os filmes da API foram analisados, pois os dados importados, após o primeiro tratamento, foram subdivididos em vários **JSONs**, mas como o projeto salva os dados a cada passo, é possível em uma fase futura, unir todos eles, tendo uma maior quantidade de filmes e dados a serem analisados.

8.3 - Trabalhos futuros propostos:

- Integração de novas APIs (ex.: séries, atores, géneros);
- Agendamento automático de execução com Pentaho Scheduler;

- Envio automático de relatórios via e-mail;
- Integração com bases de dados em nuvem (BigQuery, Azure SQL, etc.);
- Aplicação de técnicas de data mining ou machine learning para previsão de tendências de popularidade.

9- Referências Bibliográficas

- Pentaho Data Integration Official Documentation, Hitachi Vantara.
- SQLite Official Documentation. Disponível em: https://www.sqlite.org/
- Microsoft Power BI Official Documentation. Disponível em: https://learn.microsoft.com/power-bi/
- JSON.org The JSON Data Interchange Standard. https://www.json.org/
- TMDB API Documentation *The Movie Database Developers*. https://developer.themoviedb.org/

Stack Overflow – Discussões sobre ETL, Pentaho e SQLite

10- Apêndice

Figura	Descrição
Figura 1	Configuração do passo Generate Rows
Figura 2	Configuração REST Client no Pentaho, responsável por iniciar o processo e obter dados da API.
Figura 3	Conversão de dados JSON em tabela no passo JSON Input.
Figura 4	Script JavaScript aplicado às transformações, incluindo expressões regulares e limpeza de dados.
Figura 5	Definindo parâmetros de validação para filmes "válidos".
Figura 6	Configuração da ligação à base de dados SQLite .
Figura 7	Configurando conexão com a base de dados criada.

Figura	Descrição
Figura 8	Configuração tabela de Output.
Figura 9	Criação da tabela.
Figura 10	SQL para criação da tabela no SQLite
Figura 11	Configuração SQL para executar.
Figura 12	Salvando dados originais em JSON
Figura 13	Get Fields.
Figura 14	File: Passos de exportação em formato Excel e CSV.
Figura 15	Figura 15 – Content: Passos de exportação em formato Excel e CSV.
Figura 16	Fields: Passos de exportação em formato Excel e CSV.
Figura 17	Escolha de qual tipo de dados quer enviar para salvar, TRUE (validados) ou FALSE(excluídos).
Figura 18	Figura 18 – Estrutura geral da transformação ETL no Pentaho (Generate Rows \rightarrow REST Client \rightarrow JSON Input \rightarrow JavaScript \rightarrow Filter \rightarrow Outputs).
Figura 19	Figura 19 — Dashboard do Power BI com gráficos de barras e pizza baseados nos dados transformados.