FIT1043 Introduction to Data Science Module 5 Data Analysis Process Case Studies

Lecture 10 – Part II

Background: Different Data Types

- Spatial data (also known as geospatial data):
 - is information about a physical object that can be represented by numerical values in a geographic coordinate system.
- Temporal data:
 - is data that varies over time.
- Spatio-Temporal data:
 - is the integration of space and time.

Image planet.botany.uwc.ac.za

Data Analysis Case Studies Diagnosis of Pneumonia

Diagnosing pneumonia is difficult

- Pneumonia is the single biggest killer of children.
- It kills 1.5 million children under 5 per year, mostly in developing countries.
- The key to change this lies in early diagnosis.

IoT based solution: StethoCloud

Respiratory Data is collected from six different locations

- Classification
 - Have <u>labels</u> for some points

Classification

- Have <u>labels</u> for some points
- Want a "rule" that will accurately assign labels to new points

Classification

- Have <u>labels</u> for some points
- Want a "rule" that will accurately assign labels to new points

Classification

- Have <u>labels</u> for some points
- Want a "rule" that will accurately assign labels to new points

Clustering

No labels

Classification

- Have <u>labels</u> for some points
- Want a "rule" that will accurately assign labels to new points

Clustering

- No labels
- Group points into clusters based on how "near" they are to one another
- Identify <u>structure</u> in data

Data Analysis Case Studies Car-Racing Driver Distraction Detection

Image emotiv.com

Why is it important?

- Monitoring driver attention has a direct effect on decreasing injury/fatality rates, and improving his performance.
- In car racing environments reaction times are short, and distraction leads to a reduction in driver's performance during a race.

Brain Computer Interface (BCI) Approach

+ Gyroscope

Experimental Setup

Simulation

- Talking to passenger
- Mobile call, Recording call
- Solving simple mental arithmetic challenges placed on the road, assessed by the driving through the chosen answer from a range of alternatives on screen

EEG data analysis

- Classification
 - Random forest has best results
 - 73.5% detection accuracy with EEG
 - 81% detection accuracy with EEG + Gyroscope

Image cdn-ak.f.st-hatena.com

Data Analysis Case Studies Disaster Management

Image abc.net.au 25

Why bushfires?

- Bushfires have shaped the Australian landscape for many years. With urban expansion and changing weather patterns the thread to homes and families is increasing.
- Australia experiences bushfires as the most damaging disasters.
- Examples:
 - Ash Wednesday bushfires 1983
 - Black Saturday 2009
- Ability to <u>predict</u> the risk of bushfires is crucial in helping emergency services in their decision-making processes, to mitigate and reduce the impact of such events.

Dynamic bushfire risk prediction

Anomaly Detection

 Anomaly: data points that are inconsistent to the normal data points

 Anomaly detection: the process of finding anomalous patterns in data sets

 In this application, anomalies are relevant to the episodes of time with high bushfire risk

Case study- 2013 Blue Mountains Fire, NSW

- Why Blue Mountains?
 - 11 days of intense bushfires
 - 2 fatalities
 - 248 houses destroyed
 - 183.4M AUD in insurance claims

- Data Available
 - ~ 45 thousands houses
 - historical weather measurement

Case study- 2013 Blue Mountains Fire, NSW

Fire Fighting Appliance Pre-Deployment

 Optimise locations of available fire fighting resources subject to forecast risk and roadside stopping locations with time dependent availability.

Evacuation Planner

Spatio-Temporal fire expansion

Unit Schedule: Next Week

Module	Week	Content
1	1 2	Overview and look at projects (Job) roles, and the impact
2	3	Data business models / application areas
3	4 5	Characterising data and "big" data Data sources and case studies
4	6 7	Resources and standards Resources case studies
5	8 9 10	Data analysis theory Regression and decision trees Data analysis process
6	11 12	Issues in data management GUEST SPEAKER & EXAM INFO.