ΜΑΣ029 - Στοιγεία Γραμμικής Άλγεβρας Χειμερινό Εξάμηνο 2021-2022

Ασκήσεις 5ου Κεφαλαίου

1. Είναι το
$$\lambda=2$$
 ιδιοτιμή του $\left[\begin{array}{cc} 3 & 2 \\ 3 & 8 \end{array}\right]$; Γιατί;

2. Είναι το
$$\begin{bmatrix} 1 \\ 4 \end{bmatrix}$$
 ιδιοδιάνυσμα του $\begin{bmatrix} -3 & 1 \\ -3 & 8 \end{bmatrix}$; Αν ναι, βρείτε την ιδιοτιμή.

3. Είναι το
$$\lambda = 4$$
 ιδιοτιμή του
$$\begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 1 \\ -3 & 4 & 5 \end{bmatrix} ;$$
 Αν ναι, βρείτε ένα αντίστοιχο ιδιοδιάνυσμα.

4. Βρείτε μια βάση του ιδιοχώρου που αντιστοιχεί στην δεδομένη ιδιοτιμή.

i)
$$\begin{bmatrix} 5 & 0 \\ 2 & 1 \end{bmatrix}$$
, $\lambda = 1, 5$

ii)
$$\begin{bmatrix} 4 & -2 \\ -3 & 9 \end{bmatrix}$$
, $\lambda = 10$

iii)
$$\begin{bmatrix} 4 & 2 & 3 \\ -1 & 1 & -3 \\ 2 & 4 & 9 \end{bmatrix}, \qquad \lambda = 3$$

5. Να βρεθούν οι ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα.

$$\left[\begin{array}{rrr}
4 & 0 & 1 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]$$

6. Αν
$$\lambda$$
 είναι ιδιοτιμή ενός αντιστρέψιμου πίνακα A , δείξτε ότι το $\frac{1}{\lambda}$ είναι ιδιοτιμή του A^{-1} .

7. Δείξτε ότι λ είναι ιδιοτιμή του A αν και μόνο αν λ είναι ιδιοτιμή του A^T .

8. Βρείτε το χαρακτηριστικό πολυώνυμο.

$$i) \left[\begin{array}{cc} 2 & 7 \\ 7 & 2 \end{array} \right]$$

ii)
$$\begin{bmatrix} 3 & -2 \\ 1 & -1 \end{bmatrix}$$

ii)
$$\begin{bmatrix} 3 & -2 \\ 1 & -1 \end{bmatrix}$$
 iii) $\begin{bmatrix} 1 & 0 & -1 \\ 2 & 3 & -1 \\ 0 & 6 & 0 \end{bmatrix}$ iv) $\begin{bmatrix} 4 & 0 & 0 \\ 5 & 3 & 2 \\ -2 & 0 & 2 \end{bmatrix}$

iv)
$$\begin{bmatrix} 4 & 0 & 0 \\ 5 & 3 & 2 \\ -2 & 0 & 2 \end{bmatrix}$$

9. Βρείτε τις ιδιοτιμές και αναφέρετε τις πολλαπλότητες τους.

$$\begin{bmatrix}
3 & 0 & 0 & 0 & 0 \\
-5 & 1 & 0 & 0 & 0 \\
3 & 8 & 0 & 0 & 0 \\
0 & -7 & 2 & 1 & 0 \\
-4 & 1 & 9 & -2 & 3
\end{bmatrix}$$

1

10. Να βρεθούν οι ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα των παρακάτω πινάκων.

i)
$$\begin{bmatrix} 5 & 7 & -5 \\ 0 & 4 & -1 \\ 2 & 8 & -3 \end{bmatrix}$$

ii)
$$\begin{bmatrix} 2 & 0 & -2 \\ 0 & 4 & 0 \\ -2 & 0 & 5 \end{bmatrix}$$

11. Δίνεται ο πίνακας

$$A = \left[\begin{array}{rrr} 3 & -2 & -2 \\ 2 & -2 & -4 \\ -1 & 2 & 4 \end{array} \right].$$

- i) Δείξτε ότι οι ιδιοτιμές του A είναι οι $\lambda_1=1$ με $\pi(\lambda_1)=1$ και $\lambda_2=2$ με $\pi(\lambda_2)=2$.
- ii) Να βρεθούν οι $\gamma(\lambda_1) = \dim E_{\lambda_1}$ και $\gamma(\lambda_2) = \dim E_{\lambda_2}$.
- iii) Να βρεθούν τα ιδιοδιανύσματα που αντιστοιχούν στις ιδιοτιμές λ_1 και λ_2 και να οριστούν οι ιδιοχώροι E_{λ_1} και E_{λ_2} .
- **12.** Έστω ότι ο πίνακας A γράφεται στην μορφή $A = PDP^{-1}$, όπου $P = \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix}$, και $D = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$. Υπολογίστε τον A^4 .
- 13. Διαγωνοποιήστε τους πίνακες, αν είναι δυνατόν.

$$i) \begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix},$$

ii)
$$\begin{bmatrix} 3 & -1 \\ 1 & 5 \end{bmatrix}$$

iii)
$$\begin{bmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{bmatrix}$$

iv)
$$\begin{bmatrix} 2 & 2 & -1 \\ 1 & 3 & -1 \\ -1 & -2 & 2 \end{bmatrix}$$
 v)
$$\begin{bmatrix} 4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5 \end{bmatrix}$$

$$\mathbf{v}) \begin{bmatrix} 4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5 \end{bmatrix}$$

- **14.** Έστω ότι ο A είναι 5×5 με δύο ιδιοτιμές. Ο ένας ιδιοχώρος έχει διάσταση 3 και ο άλλος 2. Είναι ο Aδιαγωνοποιήσιμος;
- **15.** Έστω ότι ο A είναι 3×3 με δύο ιδιοτιμές. Κάθε ιδιοχώρος έχει διάσταση 1. Είναι ο A διαγωνοποιήσιμος;
- **16.** Έστω ότι ο A είναι 4×4 με τρεις ιδιοτιμές. Ο ένας ιδιοχώρος έχει διάσταση 1 και ένας άλλος έχει διάσταση 2. Είναι δυνατόν ο Α να μην είναι διαγωνοποιήσιμος;
- 17. Προσδιορίστε τις ιδιοτιμές και μία βάση για κάθε ιδιοχώρο των παρακάτω πινάκων.

$$i) \begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix}$$

ii)
$$\begin{bmatrix} 1 & 5 \\ -2 & 3 \end{bmatrix}$$

18. Ο γραμμικός μετασχηματισμός $\mathbf{x}\mapsto A\mathbf{x}$ μπορεί να περιγραφεί ως η σύνθεση περιστροφής διανύσματος κατά μία γωνία ϕ και μεταβολής μήκους r (επιμήκυνση ή συρρίκνωση). Προσδιορίστε την γωνία περιστροφής ϕ και τον συντελεστή κλίμακας r.

2

$$i) \left[\begin{array}{cc} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{array} \right]$$

ii)
$$\begin{bmatrix} -\sqrt{3}/2 & 1/2 \\ -1/2 & -\sqrt{3}/2 \end{bmatrix}$$
 iii) $\begin{bmatrix} 0.1 & 0.1 \\ -0.1 & 0.1 \end{bmatrix}$

iii)
$$\begin{bmatrix} 0.1 & 0.1 \\ -0.1 & 0.1 \end{bmatrix}$$

- **19.** Βρείτε τον αντιστρέψιμο πίνακα P και τον πίνακα C της μορφής $\left[egin{array}{cc} a & -b \\ b & a \end{array} \right]$ έτσι ώστε ο δεδομένος πίνακας A να γράφεται στην μορφή $A=PCP^{-1}.$
- $i) A = \begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix}$

ii) $A = \begin{bmatrix} 1 & 5 \\ -2 & 3 \end{bmatrix}$

Αυτή η εργασία χορηγείται με άδεια Creative Commons Αναφορά δημιουργού-Μη εμπορική-Παρόμοια διανομή 4.0 International License.