ANALISI FUNZIONALE PROF. ALESSIO MARTINI A.A. 2023-2024

ESERCITAZIONE 8

1. Sia $n \in \mathbb{N}_+$. Sia $\mathbb{F} = \mathbb{R}$ oppure $\mathbb{F} = \mathbb{C}$. Per ogni $x \in \mathbb{F}^n$, definiamo $\varphi_y : \mathbb{F}^n \to \mathbb{F}$ ponendo

$$\varphi_y(x) = \sum_{k=1}^n x_k y_k \qquad x \in \mathbb{F}^n.$$

- (a) Dimostrare che $\varphi_y \in \mathcal{L}(\mathbb{F}^n, \mathbb{F})$ per ogni $y \in \mathbb{F}^n$. (b) Dimostrare che la mappa $\Psi : \mathbb{F}^n \to \mathcal{L}(\mathbb{F}^n, \mathbb{F})$ definita da

$$\Psi(y) = \varphi_y \qquad \forall y \in \mathbb{F}^r$$

è un isomorfismo di spazi vettoriali (cioè Ψ è lineare e biiettiva).

[Suggerimento: identificare $\mathcal{L}(\mathbb{F}^n, \mathbb{F})$ con uno spazio di matrici.]

Per $p \in [1,\infty]$, denotiamo con X_p lo spazio di Banach \mathbb{F}^n con la norma $\|\cdot\|_p$.

(c) Siano $p,q \in [1,\infty]$ esponenti coniugati. Dimostrare che la mappa $\Psi: X_q \to (X_p)'$ definita in (b) è un isomorfismo isometrico, dove $(X_p)'$ è il duale di X_p .

[Suggerimento: seguire la dimostrazione discussa a lezione per la caratterizzazione del duale di ℓ^p . Si noti tuttavia che qui $p = \infty$ è incluso!

- 2. Sia $f: \mathbb{R}^2 \to \mathbb{R}$ il funzionale lineare dato da $f(x) = x_1 + x_2$ per ogni $x = (x_1, x_2) \in \mathbb{R}^2$. Calcolare la norma di tale funzionale (come elemento del duale di \mathbb{R}^2) quando:
 - (a) \mathbb{R}^2 è dotato della norma $\|\cdot\|_p$ per $p \in [1, \infty]$; [Suggerimento: usare i risultati dell'esercizio 1.]
 - (b) \mathbb{R}^2 è dotato della norma $\|\cdot\|$ definita da $\|x\| = \sqrt{x_1^2 + 4x_2^2}$ per ogni $x \in \mathbb{R}^2$. [Suggerimento: Riesz–Fréchet.]
- 3. Sia $H = c_{00}$ pensato come spazio pre-hilbertiano con il prodotto scalare $\langle \cdot, \cdot \rangle$ indotto da ℓ^2 . Sia $\phi : H \to \mathbb{F}$ definito da

$$\phi(\underline{x}) = \sum_{k=0}^{\infty} \frac{x_k}{1+k} \quad \forall \underline{x} \in H.$$

- (a) Dimostrare che $\phi \in H'$.
- (b) Dimostrare che non esiste $y \in H$ tale che $\phi(\underline{x}) = \langle \underline{x}, y \rangle$ per ogni $\underline{x} \in H$.
- (c) Perché H e ϕ non costituiscono un controesempio al teorema di Riesz-Fréchet?
- (d) Determinare $\|\phi\|_{H'}$.
- 4. Sia $[a,b] \subseteq \mathbb{R}$ un intervallo chiuso e limitato. Per ogni $g \in C[a,b]$, definiamo $\psi_g : C[a,b] \to \mathbb{F}$ ponendo

$$\psi_g(f) = \int_a^b f(t) g(t) dt \qquad \forall f \in C[a, b]. \tag{\dagger}$$

Pensiamo C[a,b] come spazio di Banach con la norma della convergenza uniforme.

- (a) Dimostrare che $\psi_g \in (C[a,b])'$ per ogni $g \in C[a,b]$.
- (b) Dimostrare che

$$\|\psi_g\|_{(C[a,b])'} = \int_a^b |g(t)| dt \qquad \forall g \in C[a,b].$$

[Suggerimento: come nell'esercizio 7 dell'esercitazione 5, testare ψ_g sulle funzioni $g_{\epsilon}(t) = \overline{g(t)}/(|g(t)| + \epsilon)$ per ogni $\epsilon > 0$ e passare al limite per $\epsilon \to 0^+$.]

Denotiamo con D lo spazio vettoriale C[a,b] dotato della norma indotta da $L^1(a,b)$.

- (c) Dimostrare che la mappa $\Theta: D \to (C[a,b])'$ data da $\Theta g = \psi_g$ per ogni $g \in D$ è un'isometria lineare.
- (d) Dimostrare che $\Theta: D \to (C[a,b])'$ ha un'unica estensione a un'isometria lineare $\widetilde{\Theta}: L^1(a,b) \to (C[a,b])'$. [Suggerimento: esercitazione 6, esercizio 3.]
- (e) Dimostrare che, per ogni $g \in L^1(a,b)$, si ha $\Theta g = \psi_g$, dove ψ_g è dato da (†).
- (f) Dimostrare che, per ogni $g \in L^1(a,b)$, si ha $\psi_g \in (C[a,b])'$ e $\|\psi_g\|_{(C[a,b])'} = \|g\|_1$.

Per $p \in [a, b]$, sia $V_p : C[a, b] \to \mathbb{F}$ il funzionale di valutazione in p.

- (g) Dimostrare che $V_p \in (C[a,b])' \setminus \text{Im } \widetilde{\Theta}$ per ogni $p \in [a,b]$, e che dunque $\widetilde{\Theta} : L^1(a,b) \to (C[a,b])'$ non è suriettiva. [Questo esercizio mostra che $L^1(a,b)$ si immerge isometricamente nel duale di C[a,b].]
- 5. Supponiamo che $\mathbb{F} = \mathbb{C}$. Sia $\underline{w} = (i^k)_{k \in \mathbb{N}}$, dove $i \in \mathbb{C}$ è l'unità immaginaria.
 - (a) Dimostrare che $\underline{w} \in \ell^{\infty}$ e determinare $\|\underline{w}\|_{\infty}$.

Sia $A=D_{\underline{w}}\in\mathcal{B}(\ell^2)$ l'operatore di moltiplicazione per \underline{w} (vedi esercitaz. 5, esercizio 3).

- (b) Dimostrare che l'operatore A è coercivo in norma.
- (c) Sia $F_A: \ell^2 \times \ell^2 \to \mathbb{C}$ la forma sesquilineare associata ad A. Determinare se la forma F_A è coerciva.

- 6. Sia $y = (k/(k+1))_{k \in \mathbb{N}}$.
 - (a) Dimostrare che $\underline{y} \in \ell^{\infty}$ e calcolare $\|\underline{y}\|_{\infty}$.

Sia $\varphi_y \in (\ell^1)'$ il funzionale su ℓ^1 associato a \underline{y} , cioè $\varphi_y(\underline{x}) = \sum_{k=0}^{\infty} x_k y_k$ per ogni $\underline{x} \in \ell^1$.

- (b) Dimostrare che, per ogni $\underline{x} \in \ell^1$ con $\|\underline{x}\|_1 = 1$, si ha $|\varphi_y(\underline{x})| < 1$.
- (c) Dimostrare che $\|\varphi_y\|_{(\ell^1)'} = \sup\{|\varphi_y(\underline{x})| : \|\underline{x}\|_1 \le 1\}$ e che qui l'estremo superiore non è un massimo.

[Questo esempio mostra come il sup nella definizione della norma sullo spazio duale X' di uno spazio X in generale non possa sostituirsi con max. Questo è in contrasto con la espressione "duale" della norma su X in termini di X' ottenuta come conseguenza del teorema di Hahn-Banach, in cui invece si può usare max.]

- 7. Siano X, Y spazi normati.
 - (a) Sia $T \in \mathcal{L}(X,Y)$. Dimostrare che

$$||T||_{\text{op}} = \sup_{\substack{x \in X : ||x||_X \le 1 \\ \psi \in Y' : ||\psi||_{Y'} \le 1}} |\psi(Tx)|.$$

[Suggerimento: usare la caratterizzazione della norma $\|\cdot\|_Y$ data dal teorema di Hahn–Banach.] Supponiamo ora che Y sia uno spazio con prodotto scalare $\langle\cdot,\cdot\rangle_Y$.

(b) Sia $T \in \mathcal{L}(X,Y)$. Dimostrare che

$$\|T\|_{\mathrm{op}} = \sup_{\substack{x \in X : ||x||_X \leq 1 \\ y \in Y : ||y||_Y \leq 1}} |\langle Tx, y \rangle_Y|.$$

Supponiamo ora invece che $Y=\ell^p$ con $p\in[1,\infty]$. Sia $q\in[1,\infty]$ l'esponente coniugato a p.

(c) Sia $T \in \mathcal{L}(X, \ell^p)$. Dimostrare che

$$||T||_{\text{op}} = \sup_{\substack{x \in X : ||x||_X \le 1 \\ y \in \ell^q : ||y||_q \le 1}} \left| \sum_{k=0}^{\infty} (Tx)_k y_k \right|,$$

dove $(Tx)_k$ denota il termine k-esimo della successione $Tx \in \ell^p$ per ogni $k \in \mathbb{N}$.

Supponiamo più in generale che $Y = L^p(M, \mu)$ con $p \in [1, \infty]$, dove (M, \mathcal{M}, μ) è uno spazio di misura σ -finito. Sia $q \in [1, \infty]$ l'esponente coniugato a p.

(d) Sia $T \in \mathcal{L}(X, L^p(M, \mu))$. Dimostrare che

$$||T||_{\text{op}} = \sup_{\substack{x \in X : ||x||_X \le 1 \\ g \in L^q(M,\mu) : ||g||_q \le 1}} \left| \int_M (Tx)(t) \, g(t) \, d\mu(t) \right|.$$

8. Siano X, Y, Z spazi normati, e siano X', Y', Z' i rispettivi duali. Dato un operatore $A \in \mathcal{B}(X, Y)$, definiamo l'operatore trasposto $A^t: Y' \to X'$ ponendo

$$A^t \psi = \psi \circ A \qquad \forall \psi \in Y'.$$

- (a) Dimostrare che $A^t \in \mathcal{B}(Y',X')$ per ogni $A \in \mathcal{B}(X,Y)$.
- (b) Dimostrare che $||A^t||_{\text{op}} = ||A||_{\text{op}}$ per ogni $A \in \mathcal{B}(X, Y)$.

[Suggerimento: usare la caratterizzazione di $||A||_{op}$ data dall'esercizio 7.(a).]

- (c) Dimostrare che la mappa $A \mapsto A^t$ è un'isometria lineare da $\mathcal{B}(X,Y)$ a $\mathcal{B}(Y',X')$.
- (d) Dimostrare che, nel caso X = Y, si ha $(id_X)^t = id_{X'}$.
- (e) Dimostrare che $(BA)^t = A^t B^t$ per ogni $A \in \mathcal{B}(X,Y)$ e $B \in \mathcal{B}(Y,Z)$.
- (f) Dimostrare che, se $A \in \mathcal{B}(X,Y)$ è un isomorfismo, allora anche $A^t \in \mathcal{B}(Y',X')$ è un isomorfismo, e $(A^t)^{-1} = (A^{-1})^t$.
- (g) Dimostrare che, se $A: X \to Y$ è un isomorfismo isometrico, allora $A^t: Y' \to X'$ è un isomorfismo isometrico.
- 9. Sia

$$c = \left\{ \underline{x} \in \mathbb{F}^{\mathbb{N}} : \text{esiste in } \mathbb{F} \text{ il limite } \lim_{k \to \infty} x_k \right\}$$

l'insieme delle successioni convergenti a valori in \mathbb{F} .

(a) Dimostrare che c è un sottospazio vettoriale proprio di ℓ^{∞} .

Dotiamo c della norma indotta da ℓ^{∞} . Sia $L:c\to \mathbb{F}$ definito da

$$L\underline{x} = \lim_{k \to \infty} x_k \qquad \forall \underline{x} \in c.$$

- (b) Dimostrare che L è un funzionale lineare continuo su c.
- (c) Determinare la norma $||L||_{c'}$ di L nel duale di c.
- (d) Dimostrare che c è chiuso in ℓ^{∞} .
- (e) Dimostrare che L si estende a un funzionale $\tilde{L} \in (\ell^{\infty})'$.
- (f) Dimostrare che $\tilde{L}|_{c_0} = 0$, ma $\tilde{L} \neq 0$.
- (g) Dimostrare che non esiste $y \in \ell^1$ tale che

$$\tilde{L}\underline{x} = \sum_{k=0}^{\infty} x_k y_k \qquad \forall \underline{x} \in \ell^{\infty}.$$

[Questo esempio mostra "direttamente" che l'immersione isometrica di ℓ^1 nel duale di ℓ^∞ discussa a lezione non è suriettiva. Inoltre dà un'idea della natura "non costruttiva" del risultato alla base dell'esistenza dell'estensione nel punto (e), cioè di un'estensione (lineare e continua) del "funzionale limite" L allo spazio di tutte le successioni limitate.]