SET THEORY

Subset of Sets:

- \rightarrow If all the elements of a set S are also elements of a set T, then S is a subset of T.
- → For example, if S = {2, 4, 6} and T = {1, 2, 3, 4, 5, 6, 7}, then S is a subset of T.
- → This is specified by $S \subseteq T$ Or by $\{2, 4, 6\} \subseteq \{1, 2, 3, 4, 5, 6, 7\}$.
- → If S is not a subset of T, it is written as such: $S \not\subset T$.
- → For example,

$$\rightarrow$$
 {1, 2, 8} \subseteq {1, 2, 3, 4, 5, 6, 7}

- \rightarrow S ⊆ T (S is a subset of T) means that every element of S is also an element of T.
- \rightarrow $S \subset T \Leftrightarrow \forall x (x \in S \rightarrow x \in T)$
- $\rightarrow \emptyset \subseteq S$, $S \subseteq S$.
- \rightarrow $S \supset T$ (S is a superset of T) means $T \subseteq S$.
- → Note $S=T \Leftrightarrow S \subseteq T \land S \supseteq T$. means $(S \subseteq T)$, i.e. $\exists x(x \in S \land x \notin T)$