Response Surface Methodology: Optimizing Second-Order Models

BIOE 498/598 PJ

Spring 2021

Second-order response surfaces: Maximum

Second-order response surfaces: Minimum

Second-order response surfaces: Saddle Point

Finding the response stationary point

The general second-order linear model is

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{j=1}^k \sum_{i=1}^{j-1} \beta_{ij} x_i x_j.$$

Finding the response stationary point

The general second-order linear model is

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i=1}^k \sum_{j=1}^{j-1} \beta_{ij} x_i x_j.$$

We can rewrite this using matrix notation:

$$y = b_0 + \mathbf{x}^\mathsf{T} \mathbf{b} + \mathbf{x}^\mathsf{T} \mathbf{B} \mathbf{x}.$$

$$b_0 = \beta_0, \quad \mathbf{b} = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_k \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} \beta_{11} & \beta_{12}/2 & \cdots & \beta_{1k}/2 \\ & \beta_{22} & \cdots & \beta_{2k}/2 \\ & & \ddots & \vdots \\ \text{sym} & & \beta kk \end{pmatrix}$$

Finding the response stationary point

The general second-order linear model is

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i=1}^k \sum_{j=1}^{j-1} \beta_{ij} x_i x_j.$$

We can rewrite this using matrix notation:

$$y = b_0 + \mathbf{x}^\mathsf{T} \mathbf{b} + \mathbf{x}^\mathsf{T} \mathbf{B} \mathbf{x}.$$

$$b_0 = \beta_0, \quad \mathbf{b} = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_k \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} \beta_{11} & \beta_{12}/2 & \cdots & \beta_{1k}/2 \\ & \beta_{22} & \cdots & \beta_{2k}/2 \\ & & \ddots & \vdots \\ \text{sym} & & \beta kk \end{pmatrix}$$

$$b_0 = 3$$
, $\mathbf{b} = \begin{pmatrix} -0.3 \\ 1 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 1.2 & -0.2 \\ -0.2 & 0 \end{pmatrix}$

 $y = 3 - 0.3x_1 + x_2 + 1.2x_1^2 - 0.4x_1x_2$

The argmin, argmax, or inflection point of a saddle is called the stationary point (x_s) .

The argmin, argmax, or inflection point of a saddle is called the stationary point (x_s) .

$$\frac{\partial y}{\partial \mathbf{x}} = \frac{\partial}{\partial \mathbf{x}} \left(b_0 + \mathbf{x}^\mathsf{T} \mathbf{b} + \mathbf{x}^\mathsf{T} \mathbf{B} \mathbf{x} \right)$$
$$= \mathbf{b} + 2\mathbf{B} \mathbf{x}$$

The argmin, argmax, or inflection point of a saddle is called the **stationary point** (\mathbf{x}_s) .

$$\frac{\partial y}{\partial \mathbf{x}} = \frac{\partial}{\partial \mathbf{x}} \left(b_0 + \mathbf{x}^\mathsf{T} \mathbf{b} + \mathbf{x}^\mathsf{T} \mathbf{B} \mathbf{x} \right)$$
$$= \mathbf{b} + 2\mathbf{B} \mathbf{x}$$

Solving for where the derivative equals zero:

$$\mathbf{b} + 2\mathbf{B}\mathbf{x}_s = \mathbf{0} \Rightarrow \mathbf{x}_s = -\frac{1}{2}\mathbf{B}^{-1}\mathbf{b}$$

What is the response at the stationary point?

$$y_s = b_0 + \mathbf{x}_s^{\mathsf{T}} \mathbf{b} + \mathbf{x}_s^{\mathsf{T}} \mathbf{B} \mathbf{x}_s$$
$$= b_0 + \mathbf{x}_s^{\mathsf{T}} \mathbf{b} + \left(-\frac{1}{2} \mathbf{b}^{\mathsf{T}} \mathbf{B}^{-1} \right) \mathbf{B} \mathbf{x}_s$$
$$= b_0 + \frac{1}{2} \mathbf{x}_s^{\mathsf{T}} \mathbf{b}$$

What is the response at the stationary point?

$$y_s = b_0 + \mathbf{x}_s^{\mathsf{T}} \mathbf{b} + \mathbf{x}_s^{\mathsf{T}} \mathbf{B} \mathbf{x}_s$$
$$= b_0 + \mathbf{x}_s^{\mathsf{T}} \mathbf{b} + \left(-\frac{1}{2} \mathbf{b}^{\mathsf{T}} \mathbf{B}^{-1} \right) \mathbf{B} \mathbf{x}_s$$
$$= b_0 + \frac{1}{2} \mathbf{x}_s^{\mathsf{T}} \mathbf{b}$$

The response at the stationary point only depends on the intercept and the main effects.

What is the response at the stationary point?

$$y_s = b_0 + \mathbf{x}_s^{\mathsf{T}} \mathbf{b} + \mathbf{x}_s^{\mathsf{T}} \mathbf{B} \mathbf{x}_s$$
$$= b_0 + \mathbf{x}_s^{\mathsf{T}} \mathbf{b} + \left(-\frac{1}{2} \mathbf{b}^{\mathsf{T}} \mathbf{B}^{-1} \right) \mathbf{B} \mathbf{x}_s$$
$$= b_0 + \frac{1}{2} \mathbf{x}_s^{\mathsf{T}} \mathbf{b}$$

The response at the stationary point only depends on the intercept and the main effects.

Imagine a downward facing parabola $y = 3 + 0.4x - (x - 3)^2$.

The argmax is $x_s = 3$ with response

$$y_s = 3 + 0.4(3) - (3 - 3)^2$$

= $3 + 1.2 - 0^2$.

Chemical Process Example (Myers 2016)

Observation	Α		В		
	Temperature (°C) ξ_1	Conc. (%) ξ_2	x_1	x_2	у
1	200	15	-1	-1	43
2	250	15	1	-1	78
3	200	25	-1	1	69
4	250	25	1	1	73
5	189.65	20	-1.414	0	48
6	260.35	20	1.414	0	76
7	225	12.93	0	-1.414	65
8	225	27.07	0	1.414	74
9	225	20	0	0	76
10	225	20	0	0	79
11	225	20	0	0	83
12	225	20	0	0	81

Chemical Process Example (Myers 2016)

Observation	Α		В		
	Temperature (°C) ξ_1	Conc. (%) ξ_2	x_1	x_2	у
1	200	15	-1	-1	43
2	250	15	1	-1	78
3	200	25	-1	1	69
4	250	25	1	1	73
5	189.65	20	-1.414	0	48
6	260.35	20	1.414	0	76
7	225	12.93	0	-1.414	65
8	225	27.07	0	1.414	74
9	225	20	0	0	76
10	225	20	0	0	79
11	225	20	0	0	83
12	225	20	0	0	81

$$y = 79.75 + 10.18x_1 + 4.22x_2 - 8.50x_1^2 - 5.25x_2^2 - 7.75x_1x_2$$

Chemical Process Example (Myers 2016)

$$y = 79.75 + 10.18x_1 + 4.22x_2 - 8.50x_1^2 - 5.25x_2^2 - 7.75x_1x_2$$

$$y = 79.75 + 10.18x_1 + 4.22x_2 - 8.50x_1^2 - 5.25x_2^2 - 7.75x_1x_2$$

$$y = 79.75 + 10.18x_1 + 4.22x_2 - 8.50x_1^2 - 5.25x_2^2 - 7.75x_1x_2$$

 $b_0 = 79.75, \quad \mathbf{b} = \begin{pmatrix} 10.12 \\ 4.22 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} -8.50 & -3.875 \\ -3.875 & -5.25 \end{pmatrix}$

$$y = 79.75 + 10.18x_1 + 4.22x_2 - 8.50x_1^2 - 5.25x_2^2 - 7.75x_1x_2$$

 $b_0 = 79.75, \quad \mathbf{b} = \begin{pmatrix} 10.12 \\ 4.22 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} -8.50 & -3.875 \\ -3.875 & -5.25 \end{pmatrix}$

$$\mathbf{x}_s = -\frac{1}{2}\mathbf{B}^{-1}\mathbf{b}$$

$$= -\frac{1}{2} \begin{pmatrix} -0.1773 & 0.1309 \\ 0.1309 & -0.2871 \end{pmatrix} \begin{pmatrix} 10.12 \\ 4.22 \end{pmatrix}$$

$$= \begin{pmatrix} 0.6264 \\ -0.0604 \end{pmatrix}$$

$$y = 79.75 + 10.18x_1 + 4.22x_2 - 8.50x_1^2 - 5.25x_2^2 - 7.75x_1x_2$$

$$b_0 = 79.75, \quad \mathbf{b} = \begin{pmatrix} 10.12 \\ 4.22 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} -8.50 & -3.875 \\ -3.875 & -5.25 \end{pmatrix}$$

$$\mathbf{x}_s = -\frac{1}{2}\mathbf{B}^{-1}\mathbf{b}$$

$$= -\frac{1}{2} \begin{pmatrix} -0.1773 & 0.1309 \\ 0.1309 & -0.2871 \end{pmatrix} \begin{pmatrix} 10.12 \\ 4.22 \end{pmatrix}$$

$$= \begin{pmatrix} 0.6264 \\ -0.0604 \end{pmatrix}$$

$$\label{eq:concentration} \begin{split} \text{Temperature} &= 225 + 25x_{1,s} = 225 + 25(0.6264) = 240^{\circ}\text{C} \\ \text{Concentration} &= 20 + 5x_{2,s} = 20 + 5(-0.0604) = 19.7\% \end{split}$$

Visual confirmation of stationary point

$$\label{eq:concentration} \begin{split} \text{Temperature} &= 240^{\circ}\text{C} \\ \text{Concentration} &= 19.7\% \end{split}$$

When does \mathbf{x}_s produce a maximum?

► The stationary point can be an argmax, argmin, or location of a stationary point.

When does \mathbf{x}_s produce a maximum?

- ► The stationary point can be an argmax, argmin, or location of a stationary point.
- ▶ The type of extremum is determined by the eigenvalues (λ_i) of the matrix \mathbf{B} .
 - ightharpoonup All $\lambda_i < 0 \rightarrow \text{maximum}$
 - ightharpoonup All $\lambda_i > 0 \rightarrow \text{minimum}$
 - Indeterminate signs → saddle point

When does \mathbf{x}_s produce a maximum?

- ► The stationary point can be an argmax, argmin, or location of a stationary point.
- ▶ The type of extremum is determined by the eigenvalues (λ_i) of the matrix \mathbf{B} .
 - ightharpoonup All $\lambda_i < 0 \rightarrow \mathsf{maximum}$
 - ightharpoonup All $\lambda_i > 0 \rightarrow \text{minimum}$
 - ► Indeterminate signs → saddle point
- ▶ In the previous example, $\lambda_1 = -11.0769$ and $\lambda_2 = -2.6731$, so \mathbf{x}_s is an argmax.

We can simplify analysis by shifting our coordinates to the stationary point and rotating the axes to align with the eigenvectors.

We can simplify analysis by shifting our coordinates to the stationary point and rotating the axes to align with the eigenvectors.

Let V be a matrix with columns equal to the eigenvectors of B, and let

$$\mathbf{z} = \mathbf{x} - \mathbf{x}_s$$

 $\mathbf{w} = \mathbf{V}^\mathsf{T} \mathbf{z}$

We can simplify analysis by shifting our coordinates to the stationary point and rotating the axes to align with the eigenvectors.

Let ${\bf V}$ be a matrix with columns equal to the eigenvectors of ${\bf B}$, and let

$$\mathbf{z} = \mathbf{x} - \mathbf{x}_s$$

 $\mathbf{w} = \mathbf{V}^\mathsf{T} \mathbf{z}$

The response anywhere can be defined in terms of the **canonical vector** ${\bf w}$ an a diagonal matrix of eigenvalues ${\bf \Lambda}$,

$$y = y_s + \mathbf{w}^\mathsf{T} \mathbf{\Lambda} \mathbf{w}$$

We can simplify analysis by shifting our coordinates to the stationary point and rotating the axes to align with the eigenvectors.

Let ${\bf V}$ be a matrix with columns equal to the eigenvectors of ${\bf B}$, and let

$$\mathbf{z} = \mathbf{x} - \mathbf{x}_s$$

 $\mathbf{w} = \mathbf{V}^\mathsf{T} \mathbf{z}$

The response anywhere can be defined in terms of the **canonical vector** ${\bf w}$ an a diagonal matrix of eigenvalues ${\bf \Lambda}$,

$$y = y_s + \mathbf{w}^\mathsf{T} \mathbf{\Lambda} \mathbf{w}$$

or, more simply,

$$y = y_s + \sum_{i=1}^k \lambda_i w_i^2$$

