Lista 12

Zadanie 1. Czy zbiór $\{e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}$ z działaniem składania permutacji jest podgrupą grupy S_4 ? Czy jeśli dodamy do tego zbioru wszystkie cykle trzyelementowe to czy otrzymamy podgrupą S_4 ?

Zadanie 2. Niech S_n będzie grupą permutacji n elementów. Pokaż, że:

- $\langle (i, i+1); (1, 2, 3, \dots, n) \rangle = S_n$ dla dowolnego $i = 1, \dots, n-1;$
- $\langle (1,2); (2,3,\ldots,n) \rangle = S_n$.

Zadanie 3 (* nie liczy się do podstawy). Dla macierzy $(a_{i,j})_{i,j=1,2,...,n}$ rozpatrzmy funkcje:

$$f((a_{i,j})_{i,j=1,2,...,n}) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{\sigma(i),i} ,$$

$$f'((a_{i,j})_{i,j=1,2,...,n}) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} .$$

Pokaż, że obie definiują wyznacznik.

Wskazówka: Możesz np. sprawdzić, że spełnia aksjomaty wyznacznika. Tylko zamiana kolumn jest nietry-wialna: rozpatrz, jak zmienia się znak konkretnego iloczynu po zamianie kolumn.

Zadanie 4. Dla podanych poniżej permutacji σ

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 7 & 4 & 1 & 2 & 9 & 8 & 3 & 5 & 10 & 6 \end{pmatrix} ,$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ 12 & 5 & 7 & 14 & 6 & 2 & 1 & 10 & 4 & 9 & 13 & 3 & 11 & 8 \end{pmatrix} ,$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ 7 & 3 & 10 & 1 & 13 & 14 & 9 & 6 & 4 & 12 & 5 & 2 & 11 & 8 \end{pmatrix} .$$

podaj permutację odwrotną σ^{-1} ; rozłóż σ oraz σ^{-1} na cykle. Podaj rząd σ oraz σ^{-1} . Określ ich parzystość.

Zadanie 5. • Wyznacz permutacje odwrotne do permutacji $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 5 & 2 \end{pmatrix}$ oraz $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 2 & 1 & 3 \end{pmatrix}$.

- Przedstaw permutację $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 3 & 7 & 8 & 10 & 11 & 2 & 6 & 5 & 4 & 9 & 1 & 12 \end{pmatrix}$ jako złożenie cykli rozłącznych.
- Przedstaw permutacje $\begin{pmatrix}1&2&3&4&5\\5&1&2&3&4\end{pmatrix}$ oraz $\begin{pmatrix}1&2&3&4&5&6\\6&3&2&5&4&1\end{pmatrix}$ jako złożenia transpozycji.
- Jakie są rzędy permutacji z powyższych podpunktów?

Zadanie 6. Niech grupa G działa na zbiorze C i $c \in C$. Pokaż, że stabilizator G_c tego elementu jest podgrupą G.

Zadanie 7. Wyznacz rzędy grup obrotów brył platońskich: czworościanu foremnego, sześcianu foremnego, ośmiościanu foremnego, dwudziestościanu foremnego.

$$Wskazówka: |O_c| \cdot |G_c| = |G|$$

Zadanie 8 (Grupa dihedralna). Rozpatrzmy grupę obrotów i odbić n-kąta foremnego (nazywamy ją grupą $dihedralną D_n$). Ile ma ona elementów? Pokaż, że nie ma innych przekształceń zachowujących ten wielokąt (tj. przekształceń z wierzchołków w wierzchołki, które zachowują sąsiedztwo wierzchołków).

$$|O_c| \cdot |O_c| \cdot |O_c| = |O_c|$$

Zadanie 9. W grupie S_{10} rozpatrzmy grupy generowane przez

$$1. \ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 5 & 8 & 3 & 9 & 4 & 10 & 6 & 2 & 1 & 7 \end{pmatrix}$$

$$2. \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 7 & 4 & 6 & 1 & 8 & 3 & 2 & 9 & 5 & 10 \end{pmatrix}$$

Dla każdego elementu ze zbioru $\{1, 2, ..., 10\}$ wyznacz jego orbitę oraz stabilizator dla naturalnego działania działania tych podgrup na zbiorze $\{1, 2, ..., 10\}$.

Zadanie 10. Rozpatrzmy kwadraty, w których malujemy wierzchołki na biało lub czerwono. Dwa kwadraty uznajemy za identyczne, jeśli można je przekształcić na siebie przez obrót. Ile jest rozróżnialnych kwadratów mających

- 0
- 1
- 2
- 3
- 4

wierzchołków białych? Jak zmieni się odpowiedź, jeśli dopuścimy też symetrie kwadratu?

Zadanie 11. Ile jest nierozróznialnych naszyjników mających 6 równo oddalonych korali tej samej wielkości, przy czym korale mogą być białe, czerwone lub zielone, a naszyjnik można obracać oraz "przełożyć na drugą stronę".