Table of Useful Integrals, etc.

$$\int_{0}^{\infty} e^{-ax^{2}} dx = \frac{1}{2} \left(\frac{\pi}{a}\right)^{\frac{1}{2}} \qquad \int_{0}^{\infty} x e^{-ax^{2}} dx = \frac{1}{2a}$$

$$\int_{0}^{\infty} x^{2} e^{-ax^{2}} dx = \frac{1}{4a} \left(\frac{\pi}{a}\right)^{\frac{1}{2}} \qquad \int_{0}^{\infty} x^{3} e^{-ax^{2}} dx = \frac{1}{2a^{2}}$$

$$\int_{0}^{\infty} x^{2n} e^{-ax^{2}} dx = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^{n+1} a^{n}} \left(\frac{\pi}{a}\right)^{\frac{1}{2}} \qquad \int_{0}^{\infty} x^{2n+1} e^{-ax^{2}} dx = \frac{n!}{2a^{n+1}}$$

$$\int_{0}^{\infty} x^{n} e^{-ax} dx = \frac{n!}{a^{n+1}}$$

Integration by Parts:

$$\int_{a}^{b} U dV = \left[UV \right]_{a}^{b} - \int_{a}^{b} V dU \qquad U \text{ and } V \text{ are functions of } x. \text{ Integrate from } x = a \text{ to } x = b$$

$$\int \sin(ax)dx = -\frac{1}{a}\cos(ax)$$

$$\int \sin^2(ax)dx = \frac{x}{2} - \frac{\sin(2ax)}{4a}$$

$$\int \sin^3(ax)dx = -\frac{1}{a}\cos(ax) + \frac{1}{3a}\cos^3(ax)$$

$$\int \sin^4(ax)dx = \frac{3x}{8} - \frac{3\sin(2ax)}{16a} - \frac{\sin^3(ax)\cos(ax)}{4a}$$

$$\int \sin(ax)\sin(bx)dx = \frac{\sin[(a-b)x]}{2(a-b)} - \frac{\sin[(a+b)x]}{2(a+b)} \quad \text{where } a^2 \neq b^2$$

$$\int \cos(ax)\cos(bx)dx = \frac{\sin[(a-b)x]}{2(a-b)} + \frac{\sin[(a+b)x]}{2(a+b)}$$

$$\int \sin(ax)\cos(bx)dx = \frac{-\cos[(a-b)x]}{2(a-b)} - \frac{\cos[(a+b)x]}{2(a+b)}$$

$$\int x \sin^2(ax) dx = \frac{x^2}{4} - \frac{x \sin(2ax)}{4a} - \frac{\cos(2ax)}{8a^2}$$

$$\int x^{2} \sin^{2}(ax) dx = \frac{x^{3}}{6} - \left(\frac{x^{2}}{4a} - \frac{1}{8a^{3}}\right) \sin(2ax) - \frac{x \cos(2ax)}{4a^{2}}$$

$$\int x \sin(ax) \sin(bx) dx = \frac{\cos\left[\left(a-b\right)x\right]}{2\left(a-b\right)^2} - \frac{\cos\left[\left(a+b\right)x\right]}{2\left(a+b\right)^2} + \frac{x \sin\left[\left(a-b\right)x\right]}{2\left(a-b\right)^2} - \frac{x \sin\left[\left(a+b\right)x\right]}{2\left(a+b\right)^2}$$

$$\int x \sin(ax) dx = \frac{\sin(ax)}{a^2} - \frac{x \cos(ax)}{a}$$

$$\int x \cos(ax) dx = \frac{x \sin(ax)}{a} + \frac{\cos(ax)}{a^2}$$

$$\int \cos(ax) dx = \frac{\sin(ax)}{a}$$

$$\int \cos^2(ax)dx = \frac{x}{2} + \frac{\sin(2ax)}{4a}$$

$$\int x^{2} \cos^{2}(ax) dx = \frac{x^{3}}{6} + \left(\frac{x^{2}}{4a} - \frac{1}{8a^{3}}\right) \sin(2ax) + \frac{x \cos(2ax)}{4a^{2}}$$

$$\int \cos(bx)e^{-ax^2}dx = \frac{e^{ax}}{\left(a^2 + b^2\right)} \left[a\cos(bx) + b\sin(bx)\right]$$

Taylor Series:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_o)}{n!} (x - x_o)^n$$

Geometric Series:

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

Euler's Formula:

$$e^{i\phi} = \cos\phi + i\sin\phi$$

Quadratic Equation and other higher order polynomials:

$$ax^2 + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$ax^4 + bx^2 + c = 0$$

$$x = \pm \left(\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\right)$$

General Solution for a Second Order Homogeneous Differential Equation with Constant Coefficients:

If:
$$y'' + py' + qy = 0$$

Assume a solution for y:

$$y = e^{sx}$$
 $y' = se^{sx}$ $y'' = s^2 e^{sx}$

$$\therefore s^2 e^{sx} + ps e^{sx} + q e^{sx} = 0$$

and
$$s^2 + ps + q = 0$$

Hence
$$y = c_1 e^{s_1 x} + c_2 e^{s_2 x}$$

Conversions from spherical polar coordinates into Cartesian coordinates:

$$x = r \sin \theta \cos \phi$$

$$y = r \sin \theta \sin \phi$$

$$x = r \cos \theta$$

$$dv = r^2 \sin\theta dr d\theta d\phi$$

$$0 < r < \infty$$

$$0 < \theta < \pi$$

$$0<\phi<2\pi$$

Commutator Identities:

$$\begin{bmatrix} \hat{A}, \hat{B} \end{bmatrix} = -\begin{bmatrix} \hat{B}, \hat{A} \end{bmatrix}$$

$$\begin{bmatrix} \hat{A}, \hat{A}^n \end{bmatrix} = 0 \quad n = 1, 2, 3, \cdots$$

$$\begin{bmatrix} k\hat{A}, \hat{B} \end{bmatrix} = \begin{bmatrix} \hat{A}, k\hat{B} \end{bmatrix} = k \begin{bmatrix} \hat{A}, \hat{B} \end{bmatrix}$$

$$\begin{bmatrix} \hat{A} + \hat{B}, \hat{C} \end{bmatrix} = \begin{bmatrix} \hat{A}, \hat{C} \end{bmatrix} + \begin{bmatrix} \hat{B}, \hat{C} \end{bmatrix}$$

$$\begin{bmatrix} \hat{A}, \hat{B}\hat{C} \end{bmatrix} = \begin{bmatrix} \hat{A}, \hat{B} \end{bmatrix}\hat{C} + \hat{B}\begin{bmatrix} \hat{A}, \hat{C} \end{bmatrix}$$

$$\begin{bmatrix} \hat{A}\hat{B}, \hat{C} \end{bmatrix} = \begin{bmatrix} \hat{A}, \hat{C} \end{bmatrix}\hat{B} + \hat{A}\begin{bmatrix} \hat{B}, \hat{C} \end{bmatrix}$$

Creation and Annihilation Operators

$$\begin{split} & l_{\pm} \left| l, m_{l}, s, m_{s} \right\rangle = \left(l \left(l+1 \right) - m_{l} \left(m_{l} \pm 1 \right) \right)^{\frac{1}{2}} \hbar \left| l, m_{l\pm 1}, s, m_{s} \right\rangle \\ & s_{\pm} \left| l, m_{l}, s, m_{s} \right\rangle = \left(s \left(s+1 \right) - m_{s} \left(m_{s} \pm 1 \right) \right)^{\frac{1}{2}} \hbar \left| l, m_{l}, s, m_{s\pm 1} \right\rangle \\ & j_{\pm} \left| j, m_{j} \right\rangle = \left(j \left(j+1 \right) - m_{j} \left(m_{j} \pm 1 \right) \right)^{\frac{1}{2}} \hbar \left| j, m_{j\pm 1} \right\rangle \end{split}$$

Atomic Units:

Quantity	Atomic unit in cgs or other units	Values of some atomic properties in atomic units (a.u.)
Mass	$m_{\rm e} = 9.109534 \times 10^{-28} {\rm g}$	Mass of electron = 1 a.u.
Length	$a_0 = 4\pi \varepsilon_0 \hbar^2 / m_e e^2$ = 0.52917706 × 10 ⁻¹⁰ m (= 1 bohr)	Most probable distance of 1s electron from nucleus of H atom = 1 a.u.
Time	$\tau_0 = a_0 \hbar / e^2$ = 2.4189 × 10 ⁻¹⁷ sec	Time for 1s electron in H atom to travel one bohr = 1 a.u.
Charge	$e = 4.803242 \times 10^{-10} \text{ esu}$ = $1.6021892 \times 10^{-19} \text{ coulomb}$	Charge of electron $= -1$ a.u.
Energy	$e^2/4\pi\epsilon_0 a_0 = 4.359814 \times 10^{-18} \text{ J}$ (= 27.21161 eV \equiv 1 hartree)	Total energy of 1s electron in H atom = $-1/2$ a.u.
Angular momentum	$h = h/2\pi$ = 1.0545887 × 10 ⁻³⁴ J sec	Angular momentum for particle in ring = $0, 1, 2, \dots a.u.$
Electric field strength	$e/a_0^2 = 5.1423 \times 10^9 \text{ V/cm}$	Electric field strength at distance of 1 bohr from proton = 1 a.u.

Physical Constants:

Values of Some Physical Constants

Constant	Symbol	Value
Atomic mass constant	$m_{_{11}}$	$1.660\ 5402 \times 10^{-27}\ \text{kg}$
Avogadro constant	$N_{ m A}^{ m u}$	$6.022\ 1367 \times 10^{23}\ \text{mol}^{-1}$
Bohr magneton	$\mu_{\rm p} = e\hbar/2m_{\rm p}$	$9.274\ 0154 \times 10^{-24}\ \mathrm{J\cdot T^{-1}}$
Bohr radius	$a_0^{\rm B} = 4\pi \varepsilon_0 \hbar^2 / m_{\rm e} e^2$	$5.291\ 772\ 49 \times 10^{-11}\ \mathrm{m}$
Boltzmann constant	$k_{\mathrm{B}}^{\mathrm{o}}$	$1.380 658 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}$
	ь	0.695 038 cm ⁻¹
Electron rest mass	$m_{\mathrm{e}}^{}$	$9.109\ 3897 \times 10^{-31}\ kg$
Gravitational constant	G	$6.672 59 \times 10^{-11} \text{ m}^3 \cdot \text{kg}^{-1} \cdot \text{s}^{-2}$
Molar gas constant	R	$8.314\ 510\ J\cdot K^{-1}\cdot mol^{-1}$
•		$0.083\ 1451\ dm^3 \cdot bar \cdot K^{-1} \cdot mol^{-1}$
		$0.082~0578~dm^3 \cdot atm \cdot K^{-1} \cdot mol^{-1}$
Molar volume, ideal gas		
(one bar, 0°C)		22.711 08 L · mol ⁻¹
(one atm, 0° C)		22.414 09 L · mol ⁻¹
Nuclear magneton	$\mu_{_{ m N}}=e\hbar/2m_{_{ m p}}$	$5.050\ 7866 \times 10^{-27}\ \text{J} \cdot \text{T}^{-1}$
Permittivity of vacuum	$arepsilon_0$	$8.854\ 187\ 816 \times 10^{-12}\ \text{C}^2 \cdot \text{J}^{-1} \cdot \text{m}^{-1}$
	$4\pi \varepsilon_0$	1.112 650 056 \times 10 ⁻¹⁰ C ² · J ⁻¹ · m ⁻
Planck constant	h	$6.626\ 0755 \times 10^{-34}\ \text{J} \cdot \text{s}$
	\hbar	$1.054\ 572\ 66 \times 10^{-34}\ \text{J} \cdot \text{s}$
Proton charge	e	$1.602\ 177\ 33 \times 10^{-19}\ \text{C}$
Proton magnetogyric ratio	$\gamma_{ m p}$	$2.675\ 221\ 28 \times 10^{8}\ s^{-1} \cdot T^{-1}$
Proton rest mass	$m_{_{\mathrm{D}}}$	$1.672 6231 \times 10^{-27} \text{ kg}$
Rydberg constant (Bohr)	$R_{\infty}^{r} = m_{\rm e}e^4/8\varepsilon_0^2h^2$	$2.179 8736 \times 10^{-18} \text{ J}$
, ,	ω ε. σ	109 737.31534 cm ⁻¹
Rydberg constant (exptl)	$R_{\rm H}$	109 677.581 cm ⁻¹
Speed of light in vacuum	c	299 792 458 m \cdot s ⁻¹ (defined)
Stefan-Boltzmann constant	$\sigma = 2\pi^5 k_{\rm B}^4 / 15h^3 c^2$	$5.670 \ 51 \times 10^{-8} \ J \cdot m^{-2} \cdot K^{-4} \cdot s^{-1}$

Operators:

TABLE 4.1Classical-mechanical observables and their corresponding quantum-mechanical operators.

Observable		Operator	
Name	Symbol	Symbol	Operation
Position	X	\hat{X}	Multiply by x
	\mathbf{r}	Ŕ	Multiply by r
Momentum	p_x	\hat{P}_x	$-i\hbar \frac{\partial}{\partial x}$
	p	Ŷ	$-i\hbar\left(\mathbf{i}\frac{\partial}{\partial x}+\mathbf{j}\frac{\partial}{\partial y}+\mathbf{k}\frac{\partial}{\partial z}\right)$
Kinetic energy	K_{x}	\hat{K}_x	$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}$
	K	\hat{K}	$-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)$
			$=-\frac{\hbar^2}{2m}\nabla^2$
Potential energy	V(x)	$\hat{V}(\hat{x})$	Multiply by $V(x)$
	V(x, y, z)	$\hat{V}(\hat{x},\hat{y},\hat{z})$	Multiply by $V(x, y, z)$
Total energy	E	\hat{H}	$-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)$
			+ V(x, y, z)
			$= -\frac{\hbar^2}{2m} \nabla^2 + V(x, y, z)$
Angular momentum	$L_x = yp_z - zp_y$	\hat{L}_x	$-i\hbar\left(y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y}\right)$
3	$L_y = zp_x - xp_z$	$\hat{L}_{_{y}}$	$-i\hbar\left(z\frac{\partial}{\partial x} - x\frac{\partial}{\partial z}\right)$
	$L_z = xp_y - yp_x$	\hat{L}_z	$-i\hbar\left(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}\right)$