Heapsort

Facts about heapsort:

- $O(n \lg n)$ worst-case running time.
- Sorts in place: only $\Theta(1)$ extra memory needed.
- Thus heapsort combines the best of Merge sort and Quicksort.

The binary max-heap

Array representation:

1	2	3	4	5	6	7	8	9	10
16	14	10	8	7	9	3	2	4	1

Viewed as a binary tree:

The max-heap property

• For every node *i* (other than the root):

$$A[PARENT(i)] \ge A[i]$$

- In other words, the biggest element is stored at the root.
- Finding parents and children is easy:

Parent(i) =
$$\lfloor i/2 \rfloor$$

Left(i) = 2i
Right(i) = 2i + 1

Maintaining the heap property

```
MAX-HEAPIFY(A, i)
         l \leftarrow \text{Left}(i)
    2. r \leftarrow \text{Right}(i)
    3. if l \leq heap\text{-}size[A] and A[l] > A[i]
                then largest \leftarrow l
                else largest \leftarrow i
                                                                                        16
          if r \leq heap\text{-}size[A] and A[r] > A[largest]
                                                                                                 10
                then largest \leftarrow r
          \triangleright A[largest] = \max(A[i], A[l], A[r])
          if largest \neq i
   10.
                then exchange A[i] \leftrightarrow A[largest]
                                                                                        16)
   11.
                        Max-Heapify(A, largest)
```

Building a heap

Build-Max-Heap(A)

- 1. $heap\text{-}size[A] \leftarrow length[A]$
- 2. for $i \leftarrow \lfloor length[A]/2 \rfloor$ downto 1
- 3. do Max-Heapify(A, i)

Analysis of Build-Max-Heap

- The max-heap is built bottom-up, using MAX-HEAPIFY.
- At the beginning, all $A[(\lfloor n/2 \rfloor + 1) \dots n]$ are 1-element heaps.
- Every time around the **for**-loop, each node i+1, i+2, . . . , n is the root of a max-heap.
- The running time of Build-Max-Heap is linear!

$$\sum_{h=0}^{\lfloor \lg n \rfloor} \lceil \frac{n}{2^{h+1}} \rceil \ O(h) = O(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{n}{2^{h+1}}) = O(n \sum_{h=0}^{\infty} \frac{h}{2^h}) = O(n)$$

The heapsort algorithm

HEAPSORT(A)

- 1. Build-Max-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. $heap\text{-}size[A] \leftarrow heap\text{-}size[A] 1$
- 5. Max-Heapify(A, 1)
- ullet After line 1, the maximum element is stored in A[1].
- Exchange it with A[n], then "disconnect" A[n] from the heap.
- Restore the heap-property in A[1...(n-1)] with MAX-HEAPIFY.
- Now the second largest element is in A[1] again, etc.

Priority queues

- A priority queue maintains a set S of elements and supports the following operations:
 - INSERT(S, x) implements $S \leftarrow S \cup \{x\}$.
 - MAXIMUM(S) returns the largest element in S.
 - EXTRACT-MAX(S) returns & removes the largest element in S.
 - INCREASE-KEY(S, x, k) increases the value of x to k.
- A priority queue can store, e.g., tasks with different priorities.
- Heaps can be used to represent priority queues!

Priority queues — implementation

HEAP-MAXIMUM(A)

$$\triangleright O(1)$$

1. return A[1]

HEAP-EXTRACT-MAX(A)

$$\triangleright O(\lg n)$$

- 1. if heap-size[A] < 1
- 2. **then error** "heap underflow"
- 3. $max \leftarrow A[1]$
- 4. $A[1] \leftarrow A[heap\text{-}size[A]]$
- 5. $heap\text{-}size[A] \leftarrow heap\text{-}size[A] 1$
- 6. Max-Heapify(A, 1)
- 7. return max

Priority queues — implementation

```
HEAP-INCREASE-KEY(A, i, key) \triangleright O(\lg n)
      if key < A[i]
              then error "new key is smaller than current key"
  3. A[i] \leftarrow key
  4. while i > 1 and A[PARENT(i)] < A[i]
              do exchange A[i] \leftrightarrow A[PARENT(i)]
  5.
  6.
                  i \leftarrow \text{PARENT}(i)
MAX-HEAP-INSERT(A, key)
                                                \triangleright O(\lg n)
        heap\text{-}size[A] \leftarrow heap\text{-}size[A] + 1
  2. A[heap\text{-}size[A]] \leftarrow -\infty
  3. HEAP-INCREASE-KEY(A, heap\text{-}size[A], key)
```