DATA2002

Data visualisation with ggplot

Garth Tarr

Palmer penguins data set

The penguins data set was collected and made available by Dr. Kristen Gorman and the Palmer Station, Antarctica LTER, a member of the Long Term Ecological Research Network (Horst, Hill, and Gorman, 2020).

It is available in the **palmerpenguins** package.

```
# install.packages("palmerpenguins")
library(palmerpenguins)
```

To find out more about the penguins data set use

```
help(penguins, package = "palmerpenguins")
# or more simply
?penguins
```


Taking a quick look at the data

```
library(dplyr)
dplyr::glimpse(penguins) # glimpse the structure of the penguins data frame
```

```
## Rows: 344
## Columns: 8
## $ species
               <fct> Adelie, Adelie, Adelie, Adelie, ...
## $ island
                     <fct> Torgersen, Torgersen, Torgersen,...
                     <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3...
## $ bill length mm
## $ bill_depth_mm <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6...
## $ flipper_length_mm <int> 181, 186, 195, NA, 193, 190, 181...
## $ body_mass_g
                       <int> 3750, 3800, 3250, NA, 3450, 3650...
## $ sex
                       <fct> male, female, female, NA, female...
## $ year
                       <int> 2007, 2007, 2007, 2007, 2007, 20...
```


Palmer penguins data set

rmarkdown::paged_table(penguins)

species	island	bill_length_mm	bill_depth_mm	flipper_length_mm \
<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>
Adelie	Torgersen	39.1	18.7	181
Adelie	Torgersen	39.5	17.4	186
Adelie	Torgersen	40.3	18.0	195
Adelie	Torgersen	NA	NA	NA
Adelie	Torgersen	36.7	19.3	193
Adelie	Torgersen	39.3	20.6	190
Adelie	Torgersen	38.9	17.8	181
Adelie	Torgersen	39.2	19.6	195
Adelie	Torgersen	34.1	18.1	193
Adelie	Torgersen	42.0	20.2	190
1-10 of 344 rows 1-5 of 8 columns			Previous 1	2 3 4 5 6 35 Next

Missing data?

```
# install.packages("visdat")
visdat::vis_miss(penguins)
```


For simplicity we'll remove any observations (rows) that have missing values.

```
penguins = penguins %>%
  tidyr::drop_na()
```


Palmer penguins breakdown

```
library(janitor)
 penguins %>%
  janitor::tabyl(species, sex) %>%
  janitor::adorn_totals(where = c("row", "col"))
     species female male Total
##
##
      Adelie
                    73
                           146
   Chinstrap 34 34
                          68
##
      Gentoo
                           119
                    61
##
       Total
                165
                     168
                           333
```

Let's try to visualise this.

Visualising the palmer penguins data

We'll use the **ggplot2** package extensively this semester (Wickham, 2016).

Three key components:

- input a data frame
- mapping aesthetics aes() where you specify what goes on the axes, how to colour variables, what the groups are, etc.
- geometries geom_****() that you add to build up the plot

Finished product:

```
ggplot(data = penguins) + aes(x = species, fill = sex) +
geom_bar(position = "fill") +
labs(x = "", y = "Proportion of penguins", fill = "Sex") +
scale_y_continuous(labels = scales::percent_format()) +
facet_grid(cols = vars(island), scales = "free_x", space = "free_x") +
theme_linedraw(base_size = 22)
```



```
library(ggplot2)
ggplot(data = penguins) + aes(x = species, fill = sex)
```


- The ggplot() function knows about the data frame penguins.
- It knows what to map to the aesthetics: species is going to go on the x-axis and that the fill colour is going to be specified by the sex variable.
- It doesn't yet know what kind of plot to put on this blank canvas.


```
ggplot(data = penguins) + aes(x = species, fill = sex) +
   geom_bar()
```


- We add (+) the bar chart geometry, geom_bar(), to our blank canvas.
- The bars represent counts in each species.
- The fill colour breaks each bar (species) down by sex.

You will almost always need to tidy up the axis labels. This can be done with the labs() function.

```
ggplot(data = penguins) + aes(x = species, fill = sex) +
  geom_bar() +
  labs(x = "", y = "Number of penguins", fill = "Sex")
```


If you want to flip the axes around, you can use coord_flip().

```
ggplot(data = penguins) + aes(x = species, fill = sex) +
  geom_bar() +
  labs(x = "", y = "Number of penguins", fill = "Sex") +
  coord_flip()
```


Increase the font size and change the theme.

```
ggplot(data = penguins) + aes(x = species, fill = sex) +
geom_bar() +
labs(x = "", y = "Number of penguins", fill = "Sex") +
coord_flip() +
theme_linedraw(base_size = 22)
```


Make the bars represent proportions within each species.

```
ggplot(data = penguins) + aes(x = species, fill = sex) +
   geom_bar(position = "fill") +
   labs(x = "", y = "Proportion of penguins", fill = "Sex") +
   coord_flip() +
   theme_linedraw(base_size = 22)
```


What if we want percents on the x-axis?

```
ggplot(data = penguins) + aes(x = species, fill = sex) +
  geom_bar(position = "fill") +
  labs(x = "", y = "Proportion of penguins", fill = "Sex") +
  scale_y_continuous(labels = scales::percent_format()) +
  coord_flip() +
  theme_linedraw(base_size = 22)
```


Is it the same across all islands?

```
ggplot(data = penguins) + aes(x = species, fill = sex) +
geom_bar(position = "fill") +
labs(x = "", y = "Proportion of penguins", fill = "Sex") +
scale_y_continuous(labels = scales::percent_format()) +
coord_flip() +
facet_grid(rows = vars(island)) +
theme_linedraw(base_size = 22)
```



```
ggplot(data = penguins) + aes(x = species, fill = sex) +
  geom_bar(position = "fill") +
  labs(x = "", y = "Proportion of penguins", fill = "Sex") +
  scale_y_continuous(labels = scales::percent_format()) +
  facet_grid(cols = vars(island)) +
  theme_linedraw(base_size = 22)
```



```
ggplot(data = penguins) + aes(x = species, fill = sex) +
  geom_bar(position = "fill") +
  labs(x = "", y = "Proportion of penguins", fill = "Sex") +
  scale_y_continuous(labels = scales::percent_format()) +
  facet_grid(cols = vars(island), scales = "free_x", space = "free_x") +
  theme_linedraw(base_size = 22)
```


R packages and functions

- readr::read_csv() for reading in csv files
- dplyr::glimpse() or str() for inspecting the structure of objects
- visdat::vis_miss() to check visually for missing data
- tidyr::drop_na() to remove any observations with missingness
- janitor::tabyl() to produce a cross-tabulation
- ggplot2::ggplot() and associated functions from the ggplot2 package aes(), geom_bar(), labs(), coord_flip(), facet_grid() and theme_linedraw()

Over the semester we'll explore various **ggplot2** features. You can find out more about it here: http://ggplot2.tidyverse.org

References

Firke, S. (2021). *janitor: Simple Tools for Examining and Cleaning Dirty Data*. R package version 2.1.0. URL: https://CRAN.R-project.org/package=janitor.

Horst, A. M., A. P. Hill, and K. B. Gorman (2020). *palmerpenguins: Palmer Archipelago (Antarctica) penguin data*. R package version 0.1.0. URL: https://allisonhorst.github.io/palmerpenguins/.

Tierney, N. (2017). "visdat: Visualising Whole Data Frames". In: *JOSS* 2.16, p. 355. DOI: 10.21105/joss.00355. URL: http://dx.doi.org/10.21105/joss.00355.

Wickham, H. (2016). *ggplot2: Elegant Graphics for Data Analysis*. New York, NY: Springer-Verlag. ISBN: 978-3-319-24277-4. URL: http://ggplot2.tidyverse.org/.

Wickham, H., M. Averick, J. Bryan, et al. (2019). "Welcome to the tidyverse". In: *Journal of Open Source Software* 4.43, p. 1686. DOI: 10.21105/joss.01686.

Wickham, H., R. François, L. Henry, et al. (2018). *dplyr: A Grammar of Data Manipulation*. R package version 0.7.5. URL: https://CRAN.R-project.org/package=dplyr.