	//_ 3
	Module-2: Data Link Layer
*	Gyror Control
*	Types of errors:
_	Single bit error:
	In single bit error, only one bit of given data
	unit is changed from 1 to 0 or 0 to 1
eg:	10010
	Sent Received
	o changed to 1
-	Burst error:
	Two or more bits in the data unit have changed
	from 0 to 1 or 1 to 0.
	The bits need not be consecutive.
	The length of burst is taken from first corrupted bit to
	the last corrupted bit.
eg:	torst length = 6——
	0 1 0 0 1 1 0 sent
	corrupted bite
	0010011 Received
*	Redundancy:
-	The central concept in ever detection and correction is
	redundancy.
	To detect / Correct errors, we need to add few extra bits
542	
	These bits are added by sender and removed by receive
	*

	//			
*	Error detection vis correction.			
-	Correction of errors is			
_	Correction of errors is more difficult than identifying errors.			
	In error detection, we only see if an error has occurred or			
-	In error correction, we need to know the total no of bits			
-	The main have of and their location in measure message.			
- Two main types of error correction:				
	· Forward Error Correction: Receiver thes to guess messaage			
	· Retransmission: Using redundant bits.			
	Receiver detects an error and asks sender to resend			
	the message.			
*	Coding:			
-	Redundancy can also be achieved through various coding			
	schemes.			
-	The sender odds redundant bits to and creates a new			
	relationship between redundant bits and original data bits.			
	The receiver checks the relationship blw them to detect			
	extors.			
	Coding can also be divided into 2 parts:			
	· Block Coding:			
	· Block			
	Receiver			
	Sender E laite Data words			
	t bits pataword			
	Checker			
	Generator			
	n bits. codeword			
	code words Nbits. [Codewood]			
	In block coding, we divide our message into blocks, each			
	of E-bits also called as addition			

called codewords.

9

0

-

-

1 -

-

-

-

-

÷ Ė

-

b . ġ

- Hamming code/ Distance (Take XOR)
- Central concept for evror control is hamming distance.
- Hamming distance between 2 words (of same size)
- is the number of differences of corresponding bits. - Distance between two words ne, y can be given
- as d(x,y)
- Minimum hamming distance is smallest hamming distance between all possible pairs of set
- Hamming Code for Error deel detection dmin = s+1 (s = errors)
- Min. Hamming distance for Error correction dmin= 2t+1 Ct = errors)

For error correction, amin must be odd.

- Linear Block Code = Hamming Code
- Single Parity Check code
- a k-bit word is changed to a n-bit world, where n= Et1

- The extra bit added is called parity bib, is selected to make total no of 1's odd /even.
- Here the min. Hamming distance will be dmin=2 which means it is a single-bit-error detecting code; it cannot Correct any error.

[Make data word have even no-of 1's]

- Sender Sends dataword 1011. Codeword formed is 10111. We 9:
 - examine 5 cases:
- (1) No error occurs: received codeword is 10111 . Syndrome is 0. Dataword created is 1011
- 2) One single-bit error changes at: received code word is 10011

Syndromes is 1. No data word created.

	See Hamming (CT, 4) related sums.			
	//			
	One single-bit error changes to: received codeword is 10110.			
+	Syndromes is 1. No codeword formed.			
1)	An error changes 10 and second error changes a3: Received			
	codeword is 00110. Syndrome is 0. Produced dataword is			
	0011 . Panity checkers cannot count even number of errors.			
	The errors cancel each other out and give syndrome value o.			
5)	3 bits a3, a2, a1 are changed by errors: Received code			
	word is 01011. Syndrome is 1. No dataword formed.			
*	Cyclic Codes			
-	They are special linear block codes.			
-	If a codeword is shifted cyclically, result is another codeword.			
×	Cyclic Redundancy Check			
-	Subset of cyclic codes used for user detection.			
-	used in LANS, WANS.			
09:	Division in CRC encoder			
	Divisor: 1011 , Dividend: 1001			
	1010 — duotient			
	1011 1001000			
	1011			
	0 10 0			
	1000			
	1011			
	© 11 0			
	0000			
	Net			
	0110 - Remainder			
	codeword: 1001110			
	bividend + Remainder.			

//_

CRC division with polynomial. Dividend: $x^6 + x^3 \equiv 1001000$ Divisor: $\infty^3 + \infty + 1 = 1011$ 1010111 1011 1001000000 1011 00100 0 000 1000 1011 0110 0000 1100 1011 1110 1011 1010 1011 0001

Data word: Dividend + Remainder

= 1001000001

Standard Polynomials

CRC-8: 28+22+2+1 -> ATM Header

100000111

CRC- 10: 210 9+25 + 24+22+2 - ATM AAL

110001101101

CRC-16 - HDLC

CRC- 32 - LANS

Checksum

Internet checksum: Traditionally Internet has used a 16-bit Check sum

Sender's side:

Message divided into 16-bit words.

The value of checksum word is initially set to zero.

The words including chectsum are added using one's compliment.

The sum is complemented and becomes checksum.

Check sum is sent in with data.

Receiver's Side:

Message and checksum are received.

Message is divided into 16-bit words.

All words are added using one's Complement addition.

Sum is complemented and becomes checksum

If value of checksum is a, message accepted; else rejected

Data Link Layer

Data link & layer is divided into two sub-layers:

- Logical Lint Control CLLC Sublayer) → flow and error control
- · Media Access Control CMAC Sublayer) → multiple access resolution

Responsible for moving data packets from one interface to

controls frame Synchronisation, error checking and flow control.

Framing:

Datalink layer needs to pack bits into framing so that they

can be distinguished from one another.

another within the shared Channel.

- (1) Fix Sized Framing: Size itself acts as a delimiter
- (2) Variable Sized Framing: Need to define end of one frame and start of next
 - Character (Byte) oriented Farming
 - Bit oriented Farming.

*	Character Oriented Framing.				
-	In Character (Byte) oriented Framing, the data to				
be carried is 8-bit.					
-	- Header and Trailer are also multiples of 8 bit. - To separate one from the next, flag is added to the Start and end of frame.				
-					
	Flag Header				
	Flag Header Trailer Flag				
	pata from upper layer.				
*					
*	Byte Stuffing and unstuffing				
	Byte stuffing means adding one extra byte before the flag				
	or escape characters.				
54 0	Pata From Upper layer Flag Gsc				
	Sept Frame				
	Flag Header Esc Flag Esc Esc				
	les les livailer Flag				
	Flag Header Esc Flag Esc Esc Trailer Flag				
	unstuffed				
	Flag Esc				
-					
*	Bit Oriented Framing:				
- A special & bit pattern flag ommo is used as delimite					
	to define beginning and end of frame				
Flag					
	Plag				
	0111110 Header 0111010 11010 Trailer 01111110				
	Variable Data				
	Data from upper layers.				

	//		
1	Bit Stuffing and unstuffing		
-	to a bit stuffing if a zero and an consecution		
CAT EATTO			
-	- The extra bit is too stuffed but it is later removed by receiver.		
	Data From Upper layer		
	0001111111001111101000		
	Frame sent Stuffed		
	Flag Header 000111110110011111001000 Trailer Flag		
	Frame Received [Extra Bit]		
	Flag Header 000111110110011111001000 Trailer Flag		
	, unstuffed		
	000111111001111101000		
	· · · · · · · · · · · · · · · · · · ·		
	Data to upper layer.		
	Flow Control		
*	One of the major responsibilities of the data link layer is the		
	flow and error control. Collectively these functions are called as		
	Flow control refers to a set of procedures that restrict the		
-	LA HAR SPORE		
	Flow of data must not overwhelm the receiving end.		
-	Flow of data must not overwhelm the speed at which it can process incoming Receiving data has limited speed at which it can process incoming a		
-	Receiving data has limited storage for storing incoming data. data and limited storage for storing incoming data.		
	data and limited tiongs		
*	Protocols		
	Noiseless Channels: where there are no corrupted		
	we have		
	Stop - Wait Protocol.		
	· SPOP		

(1) Simplest Protocol			
- Cannot be used in real life - No flow and error control			
Receiver will never be overwhelmed without incoming frames.			
- Receiver can handle frames in negligible time.			
- No-of events at sender site = No-of events at receiver site.			
Sender Receiver			
H			
Request - Frame			
Arrival			
Request Frame			
Arrival			
i Time ' Time			
tept in Store until their use. To prevent the receiver's side to get overwhelmed, the receiver should notify the sender to slow down. (ACF) The sender sends in one frame, waits to receive confirmal sends next frame.			
From the receiver and then sends next frame.			
sender			
A			
Request Frame Arrival			
Ack			
Arrival			
Request Frame			
Request			
Arrival			
Arrival			
Time			
Amival Time			

//
(1) Simplest Protocol
- cannot be used in real life - No flow and error control
Receiver will never be overwhelmed without incoming
frames.
Receiver can handle frames in negligible time.
No of events at sender site = No of events at receiver site.
Sender Receiver
A B
Request Frame
Request Frame
Arrival
V Time Y Time
(2) 8t00 - 1102
(2) Stop-wait Protocol
tept in store word to
the dividi wheir use.
To prevent the receiver's side to get overwhelmed, the
receiver should notify the sender to slow down (ACE)
the sender sends in one frame, waits to receive configuration
from the receiver and then sends next frame.
Sender Receiver
A B
Request Frame
Arrival
Ack
Arrival
Request -> Frame -> Arrival
ACK
Arrival

Time

Time

~		
-		Mais:
-		Noisy Channel
•		. Although soft stop and wait protocol shows us the idea of ho
•		
		non-existent. Noisy channels have error control and flow control.
		(I) Sh-
		(1) Stop and wait Automatic Repeat Request (2) Go-back-N Allemanic Repeat Request
		THEORY HE DA
		(3) Selective Repeat Automatic Repeat Request.
((1)	Stop and wait ARQ
	-	Error Con Wait ARQ
		ef sent frame and retransmitting is done by teeping copy
		expires.
	-	We use so
	6	we use sequence numbers to number frames. Numbers are
		neck eg:
	-	Acciency: Enefficient if channel is thick and long.
		Bandwidth-delay Product = Bandwidth x Roundtrip delay
	+	Link utilization = Band No. of bits sent by system
	-	Bandwidte date
_	Pipe	No pipe living.
	Pipel	ining improves efficiency
	we	need to wait for a frame to reach and get acknowledged
	befo	re the next frame is sent
		Wei/Ju
2)	Go-	Back-N ARQ
-	one	can send several frames before receiving acknowledgement.
-	Syste	em teeps copy of frames till the acknowledgement does
		arrive
_		
-	sequ	vence numbers are in range of 0 to 2m-1.

- Sliding Window: Defines range of sequence numbers.

For a sender window, it can slide one or more Slots at a time.

For a receiver's window, it can slide only one slotata time, when correct frame arrives.

see eg:

(3) Selective Repeat ARQ

Inefficient for a noisy link.

Size of send window and receive window are same => 2^{m-1}

Frame has higher probability of damage, means resending frames. This uses up bandwidth and slows down transmission.

when there is only one frame, the damaged frame is resent making the receiver process complex.

see eg:

*

۲

Multiple Access

The Media Access control sublayer of dataline layer is responsible for multiple access resolution.

Multiple access protocol has 3 protocols: Random Access,
Concr. Controlled Access and Channelization Protocols

Random Access Protocols:

At each instance, a station has data to send uses a procedure defined by a protocol to make a decision whether to send or not:

tack station has right to medium without being controlled

It may lead to access conflict and damaging of frames

Also called contention based access.

/	1	
/_	_/	

- (1) ALOHA NETWORK
- When a station sends data, another station may also do the same. The data from two stations may collide and become garbled.
 - · Pure ALOHA :
 - The idea is that a station sends in a frame whenever it has a frame to send.
 - that frames might collide from different stations.
 - Even if there is one collision, both frames will get destroyed
 - Resend the frames that are destroyed
 - If there is a timeout, resend the frame:
 - random amount of time before it resends the frame.
 - Randomness avoids more collisions.
 - Back off Time (Tb) = Distance blw stations

 Speed of signal
 - Aloha throughpout follows Poisson Dishibution:

 Throughput for Pure Aloha & SNG (S) = Gx e^{-2G}

 G = average number of frames requested

 Maximum Throughput = (Smax) = 8.14 at G=1/2
 - . Slotted ALOHA:
 - Slotted ALOHA was invented to improve efficiency of Pure
 ALOHA.
 - Here, Stations can send frames only at their beginning of time slot.
 - Throughput (S) = Gx e^{-G}

 Max throughpout = answer 0.368 at G=1

1	1	
/	/	
	/	

9 9/9 9

-

-

-

-

-

-

-

CSMA- Carrier Sense Multiple Access

Reduces Collision but cannot avoid it completely.

Requires each station check state of medium before

Possibility of collision still exists because of propogation time delay when station sends a frame, it still takes time for the first bit to reach station and sense it.

CSMA/CD: Carrier Sense Multiple Access with Collision Detection

Station monitors channel when sending a frame-to see if it

transmission was successful.

- Need a restriction on frame size, but must be able to detect
 Augments algorithm to handle collision. Collision.
- Before sending last bit, must detect a collision because once entire frame is sent, station does not keep copy of frame.
- Frame Transmission Ter = 2* TP

 TP= propogation Time.

- Used in a network where collision cannot be detected.

- Collision can be avoided using three strategies:
 - · Interframe space
 - · Contention window
 - · acknowledgement

Controlled Access *

Stations consult one another to find which station has right to send.

- A Three common methods:
 - · Reservation:
- Station needs to make a reservation before sending data.
- Time is divided in intervals
- If N stations, N reservation mini- slots.
 - · Polling Method
- Polling works when one station is decided to be primary Station and other stations are secondary stations.
- It wis upto primary station to determine which station can use the channel.
 - · Token Passing
- stations are in a logical ring
- for each station there is a predecessor and successor.
- Predecessor passes right to access to station to the current station.
- special packet called token circulates throughout.

Channeli sation

*

similar to multiplexing.

Three schemes:

Allows multiple users to utilise same band width.

- (1) Frequency Division Multiple Access. : Data link layer access method
- (2) Time division multiple Access
- (3) Code Division multiple Access.
- each channel separated by code.
- Each station has a unique chip sequence

eq: [t1+1 t1 t1] : Orthogonal vectors

silent is always [0 0 0 0]