集積回路設計 3. MOSトランジスタの動作

一色 剛

工学院情報通信系

isshiki@ict.e.titech.ac.jp

3. MOSトランジスタの動作

■ MOS半導体の基本素子

- 寄生抵抗、寄生容量
- 抵抗、MOS容量、pn接合容量
- MOSトランジスタの直流動作
 - ・ カットオフ領域、線形領域、飽和領域
- CMOSインバータの直流特性
 - 入出力特性
 - 論理閾値

電気回路の基礎知識

抵抗: V= I · R (オームの法則)

- **❖** 抵抗値:電流が流れる距離 Lに比例、断面積 Sに反比例
- 電荷量: *Q* = ∫ *I dt* → *I* = *dQ* / *dt*
 - ❖ 電流は電荷の変化率

- コンデンサ(容量): C = Q / V → Q = C V
 - **❖** 容量値 C:電極の面積 Sに比例、電極の距離 Dに反比例
 - ◆ 電極間の電界 E は一様、Q は E に比例
- 電位差(電圧): $V = -\int E \cdot dx \rightarrow E = -dV / dx$

訂正

MOS半導体の寄生素子

■寄生容量

- ・ ゲート容量、拡散層境界面のpn接合
- ・ 配線メタル層と他層との容量、同じメタル層同士の容量

■寄生抵抗

・ シート抵抗

MOS半導体の抵抗素子

$$R = \rho \cdot \frac{L}{S} = \rho \cdot \frac{L}{D \cdot W}$$

- ρ:抵抗率(材料に依存)
- L:長さ、S:断面積 = 深さ(D) × 幅(W)

$$R = 4 \rho_S$$

・ シート抵抗(面抵抗率):
$$\rho_S = \frac{\rho}{D}$$
 (Ω / square)

・ シート抵抗(面抵抗率):
$$\rho_S = \frac{\rho}{D}$$
 (Ω / square) $\rightarrow R = \rho_S \cdot \frac{L}{W}$ (配線寸法 L , W から抵抗値を計算)

0.35umプロセス	nウェル	n拡散層	p拡散層	ポリシリコン	メタル層
シート抵抗(Ω/口)	1000	3.5	2.5	10.0	0.06

https://www.clear.rice.edu/elec422/papers/2.2 SmithASICS process.pdf

MOS半導体の容量素子

$$C = \varepsilon \frac{S}{D} = \varepsilon_0 \varepsilon_r \frac{S}{D}$$

- ・ $arepsilon_0$:真空中の誘電率、 $arepsilon_r$:絶縁体の比誘電率
- S:電極面積、D:電極間の距離(プロセスに依存)

• 単位面積当りの容量:
$$C_0 = \frac{\varepsilon}{D} \rightarrow C = C_0 S$$

• MOS容量: $C_{OX} = \frac{\mathcal{E}_0 \mathcal{E}_{OX}}{T_{OX}}$

・ ϵ_{oX} :ゲート酸化膜の比誘電率

T_{ox}:ゲート酸化膜の厚さ

(トランジスタの面積: $S = L \cdot W$)

pn接合容量 (1)

 φ_B : pn接合電位(拡散電位)

❖ pn接合面における自由電子濃度勾配 により空乏層が形成され、空乏層が帯 電して生じる電位差

- ϕ_B は $\ln N_n N_p$ に比例する
- ❖ N_n , N_p :不純物濃度
- → pn接合容量が空乏層に形成される

 D_n, D_p : 空乏層の深さ \rightarrow 電極の深さ

- → 空乏層の深さはバイアス電圧Viによって変化する
- → つまり、pn接合容量値はバイアス電圧V;によって変化する

pn接合容量 (2)

 D_n, D_p : 空乏層の深さ

Q': 電荷密度(単位面積当り)

$$Q' = qD_pN_p = qD_nN_n$$
 空乏層は不純物濃度 $\rightarrow :: D_p = D_n \frac{N_n}{N_p}$ が低い領域に広がる

空乏層の電界の強さ: $\frac{dE(x)}{dx} = \frac{\rho}{\varepsilon}$

 $(x: n \rightarrow p$ 深さ方向、 $\rho = qN_n, -qN_p$)

$$V_C = -\int_{-D_n}^{D_p} E(x) dx = \frac{Q'}{2\varepsilon} \left(D_p + D_n \right)$$

pn接合容量 (3)

$$V_{C} = \frac{Q'}{2\varepsilon} \left(D_{p} + D_{n} \right) = \frac{Q'D_{n}}{2\varepsilon} \left(\frac{N_{n}}{N_{p}} + 1 \right)$$
$$= \frac{qD_{n}^{2}N_{n}}{2\varepsilon} \left(\frac{N_{n} + N_{p}}{N_{p}} \right)$$

$$\therefore D_n = \sqrt{\frac{2\varepsilon N_p V_C}{qN_n(N_p + N_n)}}$$

$$\therefore Q' = \sqrt{\frac{2q\varepsilon N_n N_p V_C}{N_p + N_n}} = \sqrt{\frac{2q\varepsilon N_n N_p}{N_p + N_n}} \sqrt{V_j + \varphi_B} \qquad (V_C = V_j + \varphi_B)$$

pn接合容量:
$$C_{dep} = \frac{dQ'}{dV_i} = \sqrt{\frac{q\varepsilon N_p N_n}{2(N_p + N_n)}} \frac{1}{\sqrt{V_i + \varphi_B}}$$

nMOSトランジスタの動作原理(復習)

- 基板電位: 0V(接地)
 3端子の対基板電圧は 0V以上
 (V_{GB}, V_{SB}, V_{DB} ≥ 0)
 (以下の説明は V_{SB} = 0 を想定)
- 絶縁状態 (V_{GB} ≤ V_{Tn})
 n型ソース・ドレイン端子間のp型基板により空乏層で隔離されているため、絶縁状態になる (V_{Tn}: nMOSスレッショルド電圧、V_{Tn} ≅ 0.2V_{DD})
- 導通状態 (V_{GB} > V_{Tn}) ゲート直下のp型基板に誘起された 電子によってn型チャネルが形成さ れ、ソース・ドレイン間は導通状態 になる

nMOSトランジスタの電荷密度

- � V_{Tn} : nMOSスレッショルド電圧 ($V_{Tn} = 0.2 V_{DD}$)
- ゲート直下のバルク(基板)表面の誘起電子の電荷密度:

$$Q(x) = -C_{OX}(V_{GB} - V_{Tn} - V(x))$$

*V(x):位置xにおけるバルク表面電位 $V(0) = V_{SB}, V(L) = V_{DB}$

 $(V_{GB} - V_{Tn} - V(x) < 0$ のときは電子は誘起されない $\rightarrow Q(x) = 0$

nMOSトランジスタの絶縁・導通条

■ $V_{DB} = V_{SB}$ のとき(ソース・ドレインが同電位)、バルク表面の電荷密度は一様($V(x) = V_{SB} = V_{DB}$):

$$Q(x) = -C_{OX} \left(V_{GB} - V_{Tn} - V_{SB} \right)$$

- ❖ $V_{GB} V_{Tn} \leq V_{SB}$: Q(x) = 0 → (絶縁状態)
- ❖ V_{GB} V_{Tn} > V_{SB} : Q(x) < 0 → チャネル形成(導通状態)

(ここでは、ドレイン・ソース間に電位差はないので、この状態では電流は流れない)

nMOSトランジスタのドレイン・ソース電流

- $V_{GB} V_{Tn} > V_{SB}$, $V_{DS} = V_{DB} V_{SB} > 0$ のとき、バルク表面電位 V(x) は x 方向に勾配(電界 E(x))が生じ、 $D \rightarrow S$ 方向に電流が流れる(誘起電子は $S \rightarrow D$ 方向に移動する)
- ❖ 電界強度: E(x) = dV(x)/dx

|μ_n : n型半導体の電子移動度

❖ ドレイン・ソース間電流 Ins: Insはxによらず一定

$$I_{DS} = -v \cdot W \cdot Q(x)$$
 $v \cdot W \cdot$ 電子の単位時間当りの移動面積
$$= \mu_n W C_{OX} \left(V_{GB} - V_{Tn} - V(x) \right) dV(x) / dx$$

$$I_{DS} dx = \mu_n W C_{OX} \left(V_{GB} - V_{Tn} - V(x) \right) dV(x)$$

nMOSトランジスタの線形領域動作

 $\blacksquare V_{GB} - V_{Tn} > V_{SB}$, $V_{GB} - V_{Tn} \ge V_{DB}$:

$$\int_{0}^{L} I_{DS} dx = \mu_{n} C_{OX} W \int_{V_{SB}}^{V_{DB}} (V_{GB} - V_{Tn} - V(x)) dV(x)$$

$$I_{DS} = \frac{\mu_{n} C_{OX} W}{L} \left[(V_{GB} - V_{Tn}) V(x) - \frac{1}{2} V(x)^{2} \right]_{V_{SB}}^{V_{DB}}$$

$$= \frac{\mu_{n} C_{OX} W}{L} \left[(V_{GB} - V_{Tn}) (V_{DB} - V_{SB}) - \frac{1}{2} (V_{DB}^{2} - V_{SB}^{2}) \right]$$

$$= \frac{\mu_{n} C_{OX} W}{L} \left[(V_{GS} - V_{Tn}) V_{DS} - \frac{1}{2} V_{DS}^{2} \right] \quad V_{GS} = V_{GB} - V_{SB}$$

$$V_{DS} = V_{DB} - V_{SB}$$
14

nMOSトランジスタの飽和領域動作

- lacksquare V_{GB} V_{Tn} > V_{SR} , V_{GR} V_{Tn} < V_{DR} :
- \Leftrightarrow ドレイン付近の誘起電子密度が 0 になり、バルク表面電位 V(x) は V_{DR} まで上がらず V_{CR} - V_{Tn} で頭打ちとなる

$$I_{DS} = \frac{\mu_{n} C_{OX} W}{L} \Big[(V_{GB} - V_{Tn}) V(x) - \frac{1}{2} V(x)^{2} \Big]_{V_{SB}}^{V_{GB} - V_{Tn}} \Big[V(x) \frac{1}{4} \frac{1$$

$$= \frac{\mu_n C_{OX} W}{L} \left[\frac{\left(V_{GS} - V_{Tn} \right)^2}{2} \right]$$

 $=\frac{\mu_n C_{OX} W}{L} \left| \frac{\left(V_{GS} - V_{Tn}\right)^2}{2} \right|$ 補足:ここでは「チャネル長変調効果」を 考慮していない \rightarrow 実際には飽和領域 でも Insは Vnsとともに微小に増加する」。

nMOSトランジスタの直流特性

- * 動作範囲: $V_B = 0$, $V_{GB} \ge 0$, $V_{SB} \ge 0$, $V_{DB} \ge 0$, $V_{DB} \ge V_{SB}$
- * 利得係数: $\beta_n = \mu_n C_{OX} \frac{W}{L}$
- ◆ カットオフ領域 (V_{GS} V_{Tn} ≤ 0):

$$I_{DS} = 0$$

❖ 線形領域 (0 < V_{DS} ≤ V_{GS} - V_{Tn}):

$$I_{DS} = \beta_n \left[(V_{GS} - V_{Tn}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

❖ 飽和領域 (0 < V_{GS} - V_{Tn} < V_{DS}):

$$I_{DS} = \frac{\beta_n}{2} (V_{GS} - V_{Tn})^2$$

- ❖ 電位が高い方がドレイン
- ❖ 電位が低い方がソース

pMOSトランジスタの動作原理(復習)

- 基板電位:電源電圧(V_{DD})
 3端子の対基板電圧は 0V以下(V_{GB}, V_{SB}, V_{DB} ≤ 0)
 (以下の説明は V_{SB} = 0 を想定)
- 絶縁状態 $(V_{GB} \ge V_{Tp})$ $p型ソース・ドレイン端子間のn型基板により空乏層で隔離されているため、絶縁状態になる <math>(V_{Tp}: pMOSスレッショルド電圧、<math>V_{Tp} = -0.2V_{DD}$)
- 導通状態 (V_{GB} < V_{Tp}) ゲート直下のn型基板に誘起された ホールによってp型チャネルが形成 され、ソース・ドレイン間は導通状態 になる

pMOSトランジスタの直流動作

nMOSトランジスタと比べて動作条件の極性が全て逆

		ソース・ド レイン電位	スレッショルド 電圧	カットオフ 条件	飽和条件
nMOS	0	$V_{DB} \ge V_{SB}$	$V_{Tn} = 0.2 V_{DD}$	$V_{GS} \leq V_{Tn}$	$0 < V_{GS} - V_{Tn} < V_{DS}$
pMOS	V_{DD}	$V_{DB} \leq V_{SB}$	$V_{Tp} = -0.2 V_{DD}$	$V_{GS} \geq V_{Tp}$	$V_{DS} < V_{GS} - V_{Tp} < 0$

pMOSトランジスタの直流特性

- * 動作範囲: $V_B = V_{DD}$, $V_{GB} \leq 0$, $V_{SB} \leq 0$, $V_{DB} \leq 0$, $V_{DB} \leq V_{SB}$
- * 利得係数: $\beta_p = \mu_p C_{OX} \frac{W}{L}$
- ❖ カットオフ領域 (V_{GS} V_{Tp} ≥ 0):

$$I_{DS} = 0$$

❖ 線形領域 $(V_{GS} - V_{Tp} \le V_{DS} < 0)$:

$$I_{DS} = -\beta_p \left[\left(V_{GS} - V_{Tp} \right) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

❖ 飽和領域 (V_{DS} < V_{GS} - V_{TD} < 0):</p>

$$I_{DS} = \frac{-\beta_p}{2} \left(V_{GS} - V_{Tp} \right)^2$$

- ❖ 電位が低い方がドレイン
- ❖ 電位が高い方がソース

nMOS直流特性

pMOS直流特性

- Arr 動作範囲: $V_B = 0$, $V_{GB} \ge 0$, $V_{SB} \ge 0$, $V_{DB} \ge 0$, $V_{DB} \ge V_{SB}$
- \Leftrightarrow スレッショルド電圧: $V_{Tn} = 0.2 V_{DD}$
- ❖ 利得係数: $\beta_n = \mu_n C_{OX} \frac{W}{L}$
- ❖ 線形領域 (0 < V_{DS} ≤ V_{GS} V_{Tn}):

$$I_{DS} = \beta_n \left[(V_{GS} - V_{Tn}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

❖ 飽和領域 (0 < V_{GS} - V_{Tn} < V_{DS}):

$$I_{DS} = \frac{\beta_n}{2} (V_{GS} - V_{Tn})^2$$

- **動作範囲**: $V_B = V_{DD}$, $V_{GB} \leq 0$, $V_{SB} \leq 0$, $V_{DB} \leq 0$, $V_{DB} \leq V_{SB}$
- \Leftrightarrow スレッショルド電圧: $V_{Tp} = -0.2 V_{DD}$
- * 利得係数: $\beta_p = \mu_p C_{OX} \frac{W}{L}$
- ❖ 線形領域 (V_{GS} V_{Tp} ≤ V_{DS} < 0):</p>

$$I_{DS} = -\beta_p \left[\left(V_{GS} - V_{Tp} \right) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

❖ 飽和領域 (V_{DS} < V_{GS} - V_{Tp} < 0):</p>

$$I_{DS} = \frac{-\beta_p}{2} \left(V_{GS} - V_{Tp} \right)^2$$

CMOSインバータの直流特性

❖ 論理動作:

V _{in}	nMOS	pMOS	V _{out}
0	OFF	ON	V_{DD}
V_{DD}	ON	OFF	0

❖ 端子電圧:

	V_B	V_{SB}	V_{GS}	V_{DS}
nMOS	0	0	V_{in}	V_{out}
pMOS	V_{DD}	0	$V_{in} - V_{DD}$	V_{out} – V_{DD}

 $\stackrel{\bullet}{\bullet}$ 直流電流: $I_{DSn} = -I_{DSp}$ (出力端子には電流が流れないとする)

$$I_{DSn} = \beta_n \left[\left(V_{in} - V_{Tn} \right) V_{out} - \frac{1}{2} V_{out}^2 \right]$$

$$I_{DSp} = -\beta_p \left[(V_{in} - V_{DD} - V_{Tp})(V_{out} - V_{DD}) - \frac{1}{2}(V_{out} - V_{DD})^2 \right] \qquad I_{DSp} = \frac{-\beta_p}{2} (V_{in} - V_{DD} - V_{Tp})^2$$

$$I_{DSn} = \frac{\beta_n}{2} (V_{in} - V_{Tn})^2$$

$$I_{DSp} = \frac{-\beta_p}{2} (V_{in} - V_{DD} - V_{Tp})^2$$

線形電流

飽和電流

CMOSインバータの入出力特性

	カットオフ	線形	飽和
nN406	$V_{in} \leq V_{Tn}$	$V_{in} > V_{Tn}$	$V_{in} > V_{Tn}$
nMOS		$V_{out} \leq V_{in} - V_{Tn}$	$V_{out} > V_{in} - V_{Tn}$
-N4OS	$V_{in} \leq V_{DD} + V_{Tp}$	$V_{in} < V_{DD} + V_{Tp}$	$V_{in} < V_{DD} + V_{Tp}$
pMOS		$V_{out} \ge V_{in} - V_{Tp}$	$V_{out} < V_{in} - V_{Tp}$

V _{in} の範囲	nMOS	pMOS
$0 \leq V_{in} \leq V_{Tn}$	OFF	線形
$V_{Tn} < V_{in} < V_{INV}$	飽和	線形
$V_{in} = V_{INV}$	飽和	飽和
$V_{INV} < V_{in} < V_{DD} + V_{Tp}$	線形	飽和
$V_{DD} + V_{Tp} \leq V_{in} \leq V_{DD}$	線形	OFF

V_{INV}: 論理閾値電圧

CMOSインバータの論理閾値電圧

- * $0 \le V_{in} \le V_{Tn}$: nMOS(カットオフ)、pMOS(線形) $\diamondsuit I_{DSn} = -I_{DSp} = 0 \rightarrow (\text{pMOS線形電流式より}) V_{out} = V_{DD}$
- * $V_{DD} + V_{Tp} \leq V_{in} \leq V_{DD}$: nMOS(線形)、pMOS(カットオフ) $\diamondsuit I_{DSn} = -I_{DSp} = 0 \rightarrow \text{(nMOS線形電流式より)} V_{out} = 0$
- ❖ *V_{in}* = *V_{INV}*: nMOS(飽和)、pMOS(飽和)

$$\frac{\beta_{n}}{2} (V_{in} - V_{Tn})^{2} = \frac{\beta_{p}}{2} (V_{in} - V_{DD} - V_{Tp})^{2}$$

$$V_{DD} + V_{Tp} + \sqrt{\frac{\beta_{n}}{\beta_{p}}} V_{Tn}$$

$$V_{in} = \frac{1 + \sqrt{\frac{\beta_{n}}{\beta_{p}}} V_{Tn}}{1 + \sqrt{\frac{\beta_{n}}{\beta_{p}}} V_{Tn}} = V_{INV}$$

CMOSインバータの論理閾値電圧

❖ nMOS(飽和)、pMOS(線形)

$$\frac{\beta_n}{2} (V_{in} - V_{Tn})^2 = \beta_p \left[(V_{in} - V_{DD} - V_{Tp}) (V_{out} - V_{DD}) - \frac{1}{2} (V_{out} - V_{DD})^2 \right]$$

$$V_{out} = V_{in} - V_{Tp} + \sqrt{(V_{DD} + V_{Tp} - V_{in})^2 - \frac{\beta_n}{\beta_p} (V_{in} - V_{Tn})^2}$$

$$\frac{dV_{out}}{dV_{in}} = 1 + \frac{V_{in} - V_{DD} - V_{Tp} - \frac{\beta_n}{\beta_p} (V_{in} - V_{Tn})}{\sqrt{(V_{in} - V_{DD} - V_{Tp})^2 - \frac{\beta_n}{\beta_p} (V_{in} - V_{Tn})^2}}$$

$$V_{in} = V_{INV}$$
: $dV_{out} / dV_{in} = \infty$

$$V_{out}$$
 V_{DD}
 V_{TNV}
 V_{DD}
 V_{INV}
 V_{DD}

$$\therefore \frac{\beta_n}{2} (V_{in} - V_{Tn})^2 = \frac{\beta_p}{2} (V_{in} - V_{DD} - V_{Tp})^2$$
24

まとめ

- MOS半導体の基本素子
 - 寄生抵抗、寄生容量
 - 抵抗、MOS容量、pn接合容量
- MOSトランジスタの直流動作
 - ・ カットオフ領域、線形領域、飽和領域
- CMOSインバータの直流特性
 - 入出力特性
 - 論理閾値

【課題3】

- 1. nMOSトランジスタの飽和領域の電流式が I_{DS} = $1/2 \cdot \beta_n (V_{GS} V_{Tn})^2$ で与えられるとき、利得係数 β_n はnMOSトランジスタのレイアウト寸法にどのように依存するか。
- 2. nMOSトランジスタとpMOSトランジスタについて、カットオフ領域、線形領域、飽和領域の動作範囲を V_{GS} , V_{DS} , V_{Tn} , V_{Tp} を用いて示せ。

提出〆切:5/14(木)17時

(ただし〆切後も受け付けます)