LEFT/RIGHT INVERTIBLE MATRICES

MINSEON SHIN

(Last edited February 6, 2014 at 6:27pm.)

Definition 1. Let A be an $m \times n$ matrix. We say that A is left invertible if there exists an $n \times m$ matrix C such that $CA = I_n$. (We call C a left inverse of A.¹) We say that A is right invertible if there exists an $n \times m$ matrix D such that $AD = I_m$. (We call D a right inverse of A.²) We say that A is invertible if A is both left invertible and right invertible.

Notice that $CA = I_n$ doesn't imply that $AC = I_m$, since matrix multiplication is not commutative.

Suppose that A is invertible. By definition, it is both left invertible and right invertible. Thus there exist $n \times m$ matrices C and D such that $CA = I_n$ and $AD = I_m$. It turns out that in this case C = D:

$$C = CI_m = C(AD) = (CA)D = I_nD = D.$$

Example 2. The matrix $\begin{bmatrix} 1 & 0 \end{bmatrix}$ is right invertible but not left invertible. Indeed, $\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix}$ but $\begin{bmatrix} a_{1,1} \\ a_{2,1} \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} a_{1,1} & 0 \\ a_{2,1} & 0 \end{bmatrix}$, which can never be I_2 .

Example 3. The matrix $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is left invertible but not right invertible. Indeed, $\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix}$ but $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} a_{1,1} & a_{1,2} \end{bmatrix} = \begin{bmatrix} a_{1,1} & a_{1,2} \\ 0 & 0 \end{bmatrix}$, which can never be I_2 .

These examples illustrate a general phenomenon regarding nonsquare matrices.

Proposition 4. Let m, n be two positive integers.

- (1) Suppose m < n (more columns than rows).
 - (i) There are no left invertible $m \times n$ matrices.
 - (ii) An $m \times n$ matrix is right invertible if and only if its REF has pivots in every row.³
- (2) Suppose m > n (more rows than columns).
 - (i) There are no right invertible $m \times n$ matrices.
 - (ii) An $m \times n$ matrix is left invertible if and only if its REF has pivots in every column.⁴

 $Date\colon \text{Thu},\, \text{Feb } 6,\, 2013.$

¹Some matrices A have more than one left inverse, so I write "a" rather than "the". (Such matrices with more than one left inverse are necessarily nonsquare (why?).)

²Some matrices A have more than one right inverse, so I write "a" rather than "the". (Such matrices with more than one right inverse are necessarily nonsquare (why?).)

³Notice that this is the maximum number of pivots.

⁴Notice that this is the maximum number of pivots.

Outline of proof. (1,i) and (2,i): Assume that m > n and there exists an $m \times n$ matrix A and an $n \times m$ matrix B such that $AB = I_m$. Show that the linear transformation $\mathbb{R}^m \to \mathbb{R}^n$ defined by B is injective. But derive a contradiction from the fact that $D\mathbf{x} = 0$ has a nontrivial solution (since the REF of D is bound to have a nonpivot column, corresponding to a free variable).

(1,ii) and (2,ii): Assume that m < n and there exists an $m \times n$ matrix A and an $n \times m$ matrix B such that $AB = I_m$. Show that the columns of A span \mathbb{R}^m and the columns of B are linearly independent. This implies that the REF of A has pivots in every row and the REF of B has pivots in every column.

Conversely, if the REF of A has pivots in every row, then the columns of A span \mathbb{R}^m , so the equation $A\mathbf{x} = \mathbf{e}_i$ has a solution for all i = 1, ..., m. Let $\mathbf{b}_1, ..., \mathbf{b}_m$ be the solutions, i.e. $A\mathbf{b}_i = \mathbf{e}_i$. Let $B = [\mathbf{b}_1 \cdots \mathbf{b}_m]$. Then $AB = I_m$.

If the REF of B has pivots in every column, then the columns of B are linearly independent, so the rows of B^T are linearly independent, so the REF or B^T has pivots in every row, so by the above there exists some $n \times m$ matrix C such that $B^TC = I_m$. Then $C^TB = (B^TC)^T = I_m$.

For square matrices, we have the following proposition, which is immediate from the IMT:

Proposition 5. Suppose m = n and let A be an $n \times n$ matrix. Then the following conditions are equivalent:

- (i) A is left invertible.
- (ii) A is right invertible.