МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский Авиационный Институт» (Национальный Исследовательский Университет)

Институт: №8 «Информационные технологии и прикладная математика»

Кафедра: 806 «Вычислительная математика и программирование»

Курсовая работа по курсу «Вычислительные системы» І семестр Задание 3

«Вещественный тип. Приближенные вычисления. Табулирование функций»

Группа	М8О-109Б-22
Студент	Фомин И.Д.
Преподаватель	Сысоев М.А.
Оценка	
Дата	

Постановка задачи

Составить программу на Си, которая печатает таблицу значений элементарной функции, вычисленной двумя способами: по формуле Тейлора и с помощью встроенных функций языка программирования. В качестве аргументов таблицы взять точки разбиения отрезка [a, b] на п равных частей (n+1 точка включая концы отрезка), находящихся в рекомендованной области хорошей точности формулы Тейлора. Вычисления по формуле Тейлора проводить по экономной в сложностном смысле схеме с точностью $\varepsilon * 10^k$, где ε - машинное эпсилон аппаратно реализованного вещественного типа для данной ЭВМ, а k — экспериментально подбираемый коэффициент, обеспечивающий приемлемую сходимость. Число итераций должно ограничиваться сверху числом порядка 100. Программа должна сама определять машинное ε и обеспечивать корректные размеры генерируемой таблицы.

Вариант 9:

Ряд Тэйлора:

$$1+2\frac{x}{2}+...+\frac{n^2+1}{n!}(\frac{x}{2})^n$$

Функция:

$$(\frac{x^2}{4} + \frac{x}{2} + 1)e^{\frac{x}{2}}$$

Значения а и b: 0.1 и 0.6

Теоретическая часть

Формула Тейлора — формула разложения функции в бесконечную сумму степенных функций. Формула широко используется в приближённых вычислениях, так как позволяет приводить трансцендентных функций к более простым. Сама она является следствием теоремы Лагранжа о среднем значении дифференцируемой функции. В случае а=0 формула называется рядом Маклорена.

$$\sum_{n=0}^k rac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f^{(1)}(a) (x-a) + rac{f^{(2)}(a)}{2!} (x-a)^2 + \ldots + rac{f^{(k)}(a)}{k!} (x-a)^k$$

Машинное эпсилон — числовое значение, меньше которого невозможно задавать относительную точность для любого алгоритма, возвращающего вещественные числа. Абсолютное значение для машинного эпсилон зависит от разрядности сетки применяемой ЭВМ и от разрядности используемых при расчёте чисел. Формально это машинное эпсилон определяют как число, удовлетворяющее равенству $1 + \varepsilon = 1$. Фактически, два отличных от нуля числа являются равными с точки зрения машинной арифметики, если их модуль разности меньше или не превосходит машинное эпсилон.

В языке Си машинные эпсилон определено для следующих типов: float – $1.19 * 10^{-7}$, double – $2.20 * 10^{-16}$, long double – $1.08 * 10^{-19}$.

Описание алгоритма

Рассмотрим алгоритм решения. Сперва нужно найти машинное эпсилон, на котором будет основываться точность вычисления. Это можно сделать просто деля 1 на 2.

Для каждой N+1 строки нужно просуммировать і членов формулы Тейлора, пока $|A_1-A_2| > \varepsilon$. Для этого просто ищем каждый новый член из формулы Тэйлора и суммируем с результатом

Использованные в программе переменные

Название	Тип	Смысл переменной				
переменной	переменной					
n	int64_t	То самое число N, на которое нужно разбить отрезок				
k	int	То самое число K, используемое для вычисления точности.				
FLT_EPSILON	float	То самое машинное эпсилон.				
		1.192092896e-07F				
step	long double	Формально разница между предыдущим значением из отрезка и следующим, если отрезок разбит на правных частей.				
currentX	long double	Переменная, для которой будем производить вычисления				
getTaylorSeries (currentX, i)	double	То самое значение А1, вычисленное с помощью формулы Тейлора				
func(currentX)	double	То самое значение A2, вычисленное с помощью встроенных функций языка				
i	double	Счётчик члена формулы Тейлора + кол- во итераций				

Исходный код программы:

```
int64 t factorial(int64 t n) {
    int64 t res = 1;
printf("
printf("
printf("
       if (fabsl(func(currentX) - getTaylorSeries(currentX, i)) <</pre>
```

Входные данные

Единственная строка содержит одно целое число N (0≤N≤100) – число разбиений отрезка на равные части

Выходные данные

Программа должна вывести значение машинного эпсилон, а затем N+1 строку.

В каждой строке должно быть значение x, для которого вычисляется функция, число A_1 — значение, вычисленное c помощью формулы Тейлора, A_2 — значение, вычисленное c помощью встроенных функций языка, i — количество итерация, требуемых для вычисления, и Δ — разница значений A_1 и A_2 по модулю. A_1 , A_2 и Δ должны быть выведены c точностью 16 знаков после запятой.

Протокол исполнения и тесты

Тест №1

Ввод:

2

Вывод:

```
N = 2

Machine epsilon is equal to: 2.22045e-16

Table for values of Taylor series and of base function

| x | sum | f(x) | number of iterations |
| 0.100 | 1.000000000000000 | 1.1064628289357654 | 0 |
| 0.350 | 1.3500000000000000 | 1.4361962199032741 | 1 |
| 0.600 | 1.57500000000000000 | 1.8763037425306446 | 2 |
```

Process finished with exit code 0

Tect No2

Ввод: 200

Вывод:

```
N = 200
Machine epsilon is equal to: 2.22045e-16
Table for values of Taylor series and of base function
                                  f(x)
                                             |number of iterations |
| 0.100 | 1.000000000000000 | 1.1064628289357654 |
| 0.103 | 1.1025000000000000 | 1.1092957226814248 | 1
| 0.105 | 1.1093906250000001 | 1.1121372655243895 | 2
0.108 | 1.1096494368489584 | 1.1149874787883696 | 3
| 0.110 | 1.1096559185416668 | 1.1178463838420398 | 4
| 0.113 | 1.1096560405542819 | 1.1207140020991240 | 5
| 0.115 | 1.1096560424115574 | 1.1235903550184816 | 6
| 0.118 | 1.1096560424355233 | 1.1264754641041927 |
| 0.120 | 1.1096560424357940 | 1.1293693509056446 |
| 0.122 | 1.1096560424357966 | 1.1322720370176180 |
```

Тест №3

Ввод:

100000

Вывод:

100000										
N = 100000										
Machine epsilon is equal to: 2.22045e-16										
Table for values of Taylor series and of base function										
1	х	I	sum	1	f(x)	numbe	r of ite	rations		
0	.100	Ī	1.000000000000000	1	1.1064628289357654	1	0	1		
0	.100	ı	1.1000049999999999	1	1.1064684861056084	1	1	1		
0	.100	ı	1.1062562500624999	1	1.1064741433099630	1	2	1		
0	.100	J	1.1064646771598965	1	1.1064798005488288	1	3	1		
0	.100	ı	1.1064691077859592	ı	1.1064854578222068	1	4	1		
0	.100	ı	1.1064691755789702	ı	1.1064911151300965	L	 5	1		
_ 0	.100	I	1.1064691763833681	ı	1.1064967724724986	ı	 6	1		
 0	.100	ı	1.1064691763911376	ı	 1.1065024298494124	1	 7	1		
I 0	.100	ı	1.1064691763912009	ı	1.1065080872608390		 8	 		
			1, 200 107 21 22 1		11.10000000					
	 _100		 1 1064691763912013		 1.1065137447067783		 9	1		
	. 100	'	1.100 1071700712010							

Вывод

В работе описано определение машинного эпсилон, приведены его значения для разных переменных языка Си, описана формула Тейлора и составлен алгоритм реализации вычисления значения функции с заданной точностью для заданного числа точек на отрезке. На основе алгоритма составлена программа на языке Си, проведено её тестирование на различных тестах, составлен протокол исполнения программы. В целом, работа понравилась. Приятно применять знания из других областей для решения какой-либо задачи по программированию.

Список литературы

- 1. Машинный ноль URL: https://ru.wikipedia.org/wiki/Машинный ноль
- 2. Ряд Тейлора URL: https://ru.wikipedia.org/wiki/Ряд Тейлора