Computation with Absolutely No Space Overhead

Lane Hemaspaandra¹ Proshanto Mukherji¹ Till Tantau²

¹Department of Computer Science University of Rochester

²Fakultät für Elektrotechnik und Informatik Technical University of Berlin

Developments in Language Theory Conference, 2003

Models

The Power of Overhead-Free Computation
Palindromes
Linear Languages
Context-Free Languages with a Forbidden Subword
Languages Complete for Polynomial Space

Limitations of Overhead-Free Computation Linear Space is Strictly More Powerful

The Standard Model of Linear Space Our Model of Absolutely No Space Overhead

The Power of Overhead-Free Computation

Palindromes

Models

Linear Languages

Context-Free Languages with a Forbidden Subword Languages Complete for Polynomial Space

Limitations of Overhead-Free Computation Linear Space is Strictly More Powerful

The Standard Model of Linear Space Our Model of Absolutely No Space Overhead

The Power of Overhead-Free Computation

Palindromes

Models

Linear Languages

Context-Free Languages with a Forbidden Subword Languages Complete for Polynomial Space

Limitations of Overhead-Free Computation Linear Space is Strictly More Powerful

Hemaspaandra et al.

The Standard Model of Linear Space Our Model of Absolutely No Space Overhead

The Power of Overhead-Free Computation

Palindromes

Linear Languages

Context-Free Languages with a Forbidden Subword Languages Complete for Polynomial Space

Limitations of Overhead-Free Computation Linear Space is Strictly More Powerful

The Standard Model of Linear Space

Turing machine

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

Models

The Standard Model of Linear Space

tape

Characteristics

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

The Standard Model of Linear Space

tape \$ 0 1 0 0 1 0 0

Characteristics

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

Models

The Standard Model of Linear Space

The Standard Model of Linear Space

tape \$ 0 1 0 0 1 0 \$

Turing machine

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

The Standard Model of Linear Space

tape

Characteristics

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

Limitations of the Model

The Standard Model of Linear Space

tape \$ \$ 1 0 0 1 0 \$

Characteristics

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

tape \$ \$ 1 0 0 1 0 \$

Characteristics

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

Models

The Standard Model of Linear Space

tape \$ \$ 1 0 0 1 \$ \$

Characteristics

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

The Standard Model of Linear Space

tape \$ \$ \$ \$ \$ \$ \$ \$ \$

Characteristics

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

The Standard Model of Linear Space

The Standard Model of Linear Space

tape \$ \$ \$ \$ \$ \$ \$ \$ \$

Characteristics

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

Models

The Standard Model of Linear Space

Linear Space is a Powerful Model

Our Model of Absolutely No Space Overhead

Our Model of "Absolutely No Space Overhead"

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet equals input alphabet

Our Model of "Absolutely No Space Overhead"

tape

Turing machine

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet equals input alphabet

tape 1 0 1 0 0 1 0 0

Characteristics

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet equals input alphabet

0000

Our Model of "Absolutely No Space Overhead"

Power of the Model

tape Turing machine

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet equals input alphabet

tape 1 0 1 0 0 1 0 1 Turing machine

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet equals input alphabet

Our Model of "Absolutely No Space Overhead"

tape

Turing machine

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet equals input alphabet

Our Model of "Absolutely No Space Overhead"

Turing machine

Intuition

Tape is used like a RAM module.

Models

Definition of Overhead-Free Computations

Definition

A Turing machine is overhead-free if

- it has only a single tape,
- writes only on input cells,
- writes only symbols drawn from the input alphabet.

Overhead-Free Computation Complexity Classes

Definition

A language $L \subseteq \Sigma^*$ is in

DOF if L is accepted by a deterministic overhead-free machine with input alphabet Σ ,

DOF_{poly} if L is accepted by a deterministic overhead-free machine with input alphabet Σ in polynomial time

NOF is the nondeterministic version of DOF,

NOF_{poly} is the nondeterministic version of DOF_{poly}

Models

0000

Overhead-Free Computation Complexity Classes

Definition

A language $L \subseteq \Sigma^*$ is in

DOF if L is accepted by a deterministic overhead-free machine with input alphabet Σ ,

 $\mathsf{DOF}_{\mathsf{poly}}$ if L is accepted by a deterministic overhead-free machine with input alphabet Σ in polynomial time.

NOF is the nondeterministic version of DOF,

NOF_{poly} is the nondeterministic version of DOF_{poly}

Overhead-Free Computation Complexity Classes

Definition

A language $L \subseteq \Sigma^*$ is in

DOF if L is accepted by a deterministic overhead-free machine with input alphabet Σ ,

 $\mathsf{DOF}_{\mathsf{poly}}$ if L is accepted by a deterministic overhead-free machine with input alphabet Σ in polynomial time.

NOF is the nondeterministic version of DOF,

NOF_{poly} is the nondeterministic version of DOF_{poly}

Models

0000

Overhead-Free Computation Complexity Classes

Definition

A language $L \subseteq \Sigma^*$ is in

DOF if L is accepted by a deterministic overhead-free machine with input alphabet Σ ,

 $\mathsf{DOF}_{\mathsf{poly}}$ if L is accepted by a deterministic overhead-free machine with input alphabet Σ in polynomial time.

NOF is the nondeterministic version of DOF,

NOF_{poly} is the nondeterministic version of DOF_{poly}.

ummary

Our Model of Absolutely No Space Overhead

Simple Relationships among Overhead-Free Computation Classes

Models

0000

The Standard Model of Linear Space Our Model of Absolutely No Space Overhead

The Power of Overhead-Free Computation

Palindromes

Linear Languages

Context-Free Languages with a Forbidden Subword Languages Complete for Polynomial Space

Limitations of Overhead-Free Computation Linear Space is Strictly More Powerful

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit

Place left end marker Place right end marker

Phase 2:

Compare bits next to end markers

Find left end marker Advance left end marker Find right end marker

Advance right end marker

Palindromes Can be Accepted in an Overhead-Free Way

tape 1 0 1 0 0 1 0 0 overhead-free machine

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Compare bits next to end markers
Find left end marker
Advance left end marker
Find right end marker
Advance right end marker

Palindromes Can be Accepted in an Overhead-Free Way

tape 1 0 1 0 0 1 0 0

overhead-free machine

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Compare bits next to end markers
Find left end marker
Advance left end marker
Find right end marker
Advance right end marker

Palindromes Can be Accepted in an Overhead-Free Way

tape 1 0 1 0 0 1 0 1

overhead-free machine

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Compare bits next to end markers

Find left end marker Advance left end marker Find right end marker Advance right end marker

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Compare bits next to end markers

Find left end marker

Advance left end marker

Find right end marker

Advance right end marker

Palindromes

Outline

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

tape 0 1 1 0 0 1 0 1

overhead-free machine

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

tape 0 1 1 0 0 1 1 0

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Compare bits next to end markers
Find left end marker
Advance left end marker
Find right end marker
Advance right end marker

overhead-free machine

Palindromes Can be Accepted in an Overhead-Free Way

tape 0 1 1 0 0 1 1 0 overhead-free machine

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

overhead-free machine

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

tape 0 0 1 0 0 1 1 0

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Compare bits next to end markers
Find left end marker
Advance left end marker
Find right end marker
Advance right end marker

overhead-free machine

Palindromes Can be Accepted in an Overhead-Free Way

tape 0 0 1 0 0 1 0 0

overhead-free machine

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

tape 0 0 1 0 0 1 0 0

overhead-free machine

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Compare bits next to end markers
Find left end marker

Advance left end marker Find right end marker Advance right end marker

Palindromes Can be Accepted in an Overhead-Free Way

tape 0 0 0 1 0 1 0 0

overhead-free machine

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

overhead-free machine

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

tape 0 0 1 1 0 0 0

overhead-free machine

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Relationships among Overhead-Free Computation Classes

Models

A Review of Linear Grammars

Definition

A grammar is linear if it is context-free and there is only one nonterminal per right-hand side.

Example

 $G_1: S \to 00S0 \mid 1.$ $G_2: S \to 0S10 \mid 0.$

Definition

A grammar is deterministic if "there is always only one rule that can be applied."

Example

Linear Languages

 G_1 is deterministic.

 G_2 is not deterministic.

Models

A Review of Linear Grammars

Definition

A grammar is deterministic if "there is always only one rule that can be applied."

Example

Linear Languages

 G_1 is deterministic.

 G_2 is not deterministic.

Linear Languages

Deterministic Linear Languages Can Be Accepted in an Overhead-Free Way

Theorem

Every deterministic linear language is in DOF_{poly}.

Metalinear Languages Can Be Accepted in an Overhead-Free Way

Definition

A language is metalinear if it is the concatenation of linear languages.

Example

TRIPLE-PALINDROME = $\{uvw \mid u, v, \text{ and } w \text{ are palindromes}\}$

Theorem

Every metalinear language is in NOF_{poly}.

Metalinear Languages Can Be Accepted in an Overhead-Free Way

Definition

A language is metalinear if it is the concatenation of linear languages.

Example

TRIPLE-PALINDROME = { $uvw \mid u, v, \text{ and } w \text{ are palindromes}$ }.

Theorem

Every metalinear language is in NOF_{poly}

Metalinear Languages Can Be Accepted in an Overhead-Free Way

Definition

A language is metalinear if it is the concatenation of linear languages.

Example

TRIPLE-PALINDROME = { $uvw \mid u, v, \text{ and } w \text{ are palindromes}$ }.

Theorem

Every metalinear language is in NOF_{poly}.

Linear Languages

Relationships among Overhead-Free Computation Classes

Linear Languages

Definition of Almost-Overhead-Free Computations

Definition

A Turing machine is almost-overhead-free if

•00

- it has only a single tape,
- writes only on input cells,
- writes only symbols drawn from the input alphabet plus one special symbol.

Definition of Almost-Overhead-Free Computations

Definition

A Turing machine is almost-overhead-free if

- it has only a single tape,
- writes only on input cells,
- writes only symbols drawn from the input alphabet plus one special symbol.

Definition of Almost-Overhead-Free Computations

Definition

Outline

A Turing machine is almost-overhead-free if

•00

- it has only a single tape,
- writes only on input cells,
- writes only symbols drawn from the input alphabet plus one special symbol.

Context-Free Languages with a Forbidden Subword

Context-Free Languages with a Forbidden Subword Can Be Accepted in an Overhead-Free Way

Power of the Model

000

Theorem

Outline

Let L be a context-free language with a forbidden word.

Then $L \in NOF_{poly}$.

Context-Free Languages with a Forbidden Subword Can Be Accepted in an Overhead-Free Way

Theorem

Let L be a context-free language with a forbidden word. Then $L \in NOF_{poly}$.

Proof.

Every context-free language can be accepted by a nondeterministic almost-overhead-free machine in polynomial time.

Relationships among Overhead-Free Computation Classes

000

Context-Free Languages with a Forbidden Subword

Languages Complete for Polynomial Space

Outline

Some PSPACE-complete Languages Can Be Accepted in an Overhead-Free Way

Theorem

DOF contains languages that are complete for PSPACE.

Power of the Model

▶ Proof details

Models

Outline

Relationships among Overhead-Free Computation Classes

00

0000

Languages Complete for Polynomial Space

The Model of Overhead-Free Computation

The Standard Model of Linear Space Our Model of Absolutely No Space Overhead

The Power of Overhead-Free Computation

Palindromes

Linear Languages

Context-Free Languages with a Forbidden Subword Languages Complete for Polynomial Space

Limitations of Overhead-Free Computation Linear Space is Strictly More Powerful

Some Context-Sensitive Languages Cannot be Accepted in an Overhead-Free Way

Theorem

 $DOF \subsetneq DLINSPACE$.

Theorem

 $NOF \subseteq NLINSPACE$.

The proofs are based on old diagonalisations due to Feldman, Owings, and Seiferas.

Linear Space is Strictly More Powerful

Relationships among Overhead-Free Computation Classes

Linear Space is Strictly More Powerful

Candidates for Languages that Cannot be Accepted in an Overhead-Free Way

Conjecture

DOUBLE-PALINDROMES ∉ DOF.

Conjecture

 $\{ww \mid w \in \{0,1\}^*\} \notin NOF.$

Proving the first conjecture would show DOF \subseteq NOF.

Outline

Summary

- Overhead-free computation is a more faithful model of fixed-size memory.
- Overhead-free computation is less powerful than linear space.
- Many context-free languages can be accepted by overhead-free machines.
- We conjecture that all context-free languages are in NOF_{poly}.
- Our results can be seen as new results on the power of linear bounded automata with fixed alphabet size.

Outline

For Further Reading

A. Salomaa.

Formal Languages.

Academic Press, 1973.

- E. Dijkstra.

 Smoothsort, an alternative for sorting in situ.

 Science of Computer Programming, 1(3):223–233, 1982
- E. Feldman and J. Owings, Jr.
 A class of universal linear bounded automata
 Information Sciences, 6:187–190, 1973.

Limitations of the Model

Power of the Model

Outline

Further Reading

Summary

Models

Outline

For Further Reading

A. Salomaa.

Formal Languages.

Academic Press, 1973.

E. Dijkstra.

Smoothsort, an alternative for sorting in situ.

Science of Computer Programming, 1(3):223–233, 1982.

Limitations of the Model

Restarting automata.

Power of the Model

Outline

Summary

Models

Further Reading

Outline

For Further Reading

A. Salomaa.

Formal Languages.

Academic Press, 1973.

E. Dijkstra.

Smoothsort, an alternative for sorting in situ.

Science of Computer Programming, 1(3):223–233, 1982.

E. Feldman and J. Owings, Jr.

A class of universal linear bounded automata.

Information Sciences, 6:187–190, 1973.

Restarting automata

FCT Conference 1995, LNCS 985, pages 282–292. 1995.

Further Reading

Outline

For Further Reading

A. Salomaa.

Formal Languages.

Academic Press, 1973.

E. Dijkstra.

Smoothsort, an alternative for sorting in situ.

Science of Computer Programming, 1(3):223–233, 1982.

E. Feldman and J. Owings, Jr.

A class of universal linear bounded automata.

Information Sciences, 6:187–190, 1973.

Further Reading

P. Jančar, F. Mráz, M. Plátek, and J. Vogel.

Restarting automata.

FCT Conference 1995, LNCS 985, pages 282-292. 1995.

Appendix

Overhead Freeness and Completeness Improvements for Context-Free Languages Abbreviations

Overhead-Free Languages can be PSPACE-Complete

Theorem

DOF contains languages that are complete for PSPACE.

Proof.

- Let $A \in \mathsf{DLINSPACE}$ be PSPACE-complete. Such languages are known to exist.
- Let M be a linear space machine that accepts $A\subseteq\{0,1\}^*$ with tape alphabet Γ .
- Let $h: \Gamma \to \{0,1\}^*$ be an isometric, injective homomorphism.
- Then h(L) is in DOF and it is PSPACE-complete.

Improvements

Theorem

- $1. \ \, \mathsf{DCFL} \subseteq \mathsf{DOF}_{\mathsf{poly}}.$
- 2. CFL \subseteq NOF_{poly}.

Explanation of Different Abbreviations

DOF	Deterministic Overhead-Free.
NOF	Nondeterministic Overhead-Free.
DOF _{poly}	Deterministic Overhead-Free, polynomial time.
DOF _{poly}	Nondeterministic Overhead-Free, polynomial time.

Table: Explanation of what different abbreviations mean.