Höhere Mathematik II

G. Herzog, Ch. Schmoeger

Sommersemester 2017

Karlsruher Institut für Technologie

Inhaltsverzeichnis

15 Konvergenz im \mathbb{R}^n	2
16 Grenzwerte bei Funktionen, Stetigkeit	5
17 Analysis in $\mathbb C$	9
18 Differentialrechnung im \mathbb{R}^n (reellwertige Funktionen)	15
19 Differentialrechnung im \mathbb{R}^n (vektorwertige Funktionen)	31
20 Integration im \mathbb{R}^n	40
21 Spezielle Differentialgleichungen 1. Ordnung	55
22 Lineare Systeme mit konstanten Koeffizienten	65
23 Lineare Differentialgleichung n-ter Ordnung mit konstanten Koeffizienten	72
24 Die Fouriertransformation	79

Kapitel 15

Konvergenz im \mathbb{R}^n

Definition: Es sei $\left(a^{(k)}\right)$ eine Folge im \mathbb{R}^n , also $\left(a^{(k)}\right) = \left(a^{(1)}, a^{(2)}, a^{(3)}, \ldots\right)$ mit $a^{(k)} = \left(a_1^{(k)}, \ldots, a_n^{(k)}\right) \in \mathbb{R}^n$ $(k \in \mathbb{N})$.

- a) $(a^{(k)})$ heißt **beschränkt**: $\iff \exists c \geq 0 \ \forall k \in \mathbb{N} : ||a^{(k)}|| \leq c$.
- b) Der Begriff **Teilfolge** (TF) wird wie in HMI definiert.
- c) $x_0 \in \mathbb{R}^n$ heißt ein **Häufungswert** (HW) von $(a^{(k)})$: \iff

 $\forall \varepsilon > 0 : a^{(k)} \in U_{\varepsilon}(x_0) \text{ für unendlich viele } k \in \mathbb{N}.$

 $d) (a^{(k)}) heißt konvergent : \iff$

$$\exists a \in \mathbb{R}^n : \|a^{(k)} - a\| \longrightarrow 0 \quad (k \to \infty).$$

In diesem Fall heißt a der **Grenzwert** (GW) oder **Limes** von $(a^{(k)})$ und man schreibt

$$a = \lim_{k \to \infty} a^{(k)} \ oder \ a^{(k)} \longrightarrow a \ (k \to \infty) \ oder \ a^{(k)} \longrightarrow a.$$

Wie in HMI zeigt man: Der Grenzwert einer konvergenten Folge ist eindeutig bestimmt.

e) Ist $(a^{(k)})$ nicht konvergent, so heißt $(a^{(k)})$ divergent.

Beachte:

$$a^{(k)} \longrightarrow a \quad (k \to \infty)$$

$$\iff \forall \varepsilon > 0 \; \exists k_0 \in \mathbb{N} \; \forall k \ge k_0 : \left\| a^{(k)} - a \right\| < \varepsilon$$

$$\iff \forall \varepsilon > 0 : \; a^{(k)} \in U_{\varepsilon}(a) \; \text{für fast alle } k \in \mathbb{N}.$$

Beispiel: Es sei $a^{(k)} \coloneqq \left(\frac{1}{k}, 1 + \frac{1}{k}\right)$ $(k \in \mathbb{N})$ und $a \coloneqq (0, 1)$. Es gilt:

$$\left\|a^{(k)} - a\right\| = \left\|\left(\frac{1}{k}, \frac{1}{k}\right)\right\| = \left(\frac{2}{k^2}\right)^{\frac{1}{2}} = \frac{\sqrt{2}}{k} \longrightarrow 0 \quad (k \to \infty).$$

Also gilt: $a^{(k)} \longrightarrow (0,1) \ (k \to \infty)$.

Vereinbarung: Für Elemente des \mathbb{R}^2 schreiben wir meist (x, y) statt (x_1, x_2) und im \mathbb{R}^3 meist (x, y, z) statt (x_1, x_2, x_3) .

Satz 15.1: Es sei $(a^{(k)})$ eine Folge im \mathbb{R}^n , $a^{(k)} = (a_1^{(k)}, \dots, a_n^{(k)})$. Dann gilt:

- a) Ist $(a^{(k)})$ konvergent, so ist $(a^{(k)})$ beschränkt und jede Teilfolge von $(a^{(k)})$ konvergiert gegen $\lim_{k\to\infty} a^{(k)}$.
- b) Ist $a = (a_1, \ldots, a_n) \in \mathbb{R}^n$, so gilt:

$$a^{(k)} \longrightarrow a \ (k \to \infty) \iff \forall j \in \{1, \dots, n\} : \ a_j^{(k)} \longrightarrow a_j \ (k \to \infty).$$

- c) Ist $(b^{(k)})$ eine weitere Folge im \mathbb{R}^n , $a, b \in \mathbb{R}^n$, (β_k) eine Folge in \mathbb{R} , $\beta \in \mathbb{R}$ und gilt $a^{(k)} \longrightarrow a$, $b^{(k)} \longrightarrow b$ und $\beta_k \longrightarrow \beta$, so gilt:
 - $(i) \ a^{(k)} + b^{(k)} \longrightarrow a + b,$
 - (ii) $\beta_k a^{(k)} \longrightarrow \beta a$,
 - (iii) $a^{(k)} \cdot b^{(k)} \longrightarrow a \cdot b$,
 - $(iv) \|a^{(k)}\| \longrightarrow \|a\|.$
- d) Cauchykriterium:

$$\left(a^{(k)}\right) \text{ ist konvergent } \iff \forall \varepsilon > 0 \ \exists k_0 \in \mathbb{N} \ \forall k,l \geq k_0 : \left\|a^{(k)} - a^{(l)}\right\| < \varepsilon.$$

e) **Bolzano-Weierstraß**: Ist $(a^{(k)})$ beschränkt, so enthält $(a^{(k)})$ eine konvergente Teilfolge.

Beweis:

a) Wie in HMI.

b) Es sei $j \in \{1, ..., n\}$. Nach 14.1 h) gilt:

$$\forall k \in \mathbb{N} : \left| a_j^{(k)} - a_j \right| \le \left\| a^{(k)} - a \right\| \le \sum_{i=1}^n \left| a_i^{(k)} - a_i \right|.$$

Damit folgt die Behauptung.

- c) Folgt aus b).
- d) "⇒" Wie in HMI. "←" Übung (mit b) und 14.1 h)).
- e) Der Übersicht wegen sei n=2, also $a^{(k)}=(x_k,y_k)$ $(k\in\mathbb{N})$. Es gilt

$$|x_k| \le ||a^{(k)}||, |y_k| \le ||a^{(k)}|| \quad (k \in \mathbb{N}).$$

Also sind (x_k) und (y_k) beschränkte Folgen in \mathbb{R} . Nach 2.12 enthält (x_k) eine konvergente Teilfolge (x_{k_j}) . Die Folge (y_{k_j}) ist beschränkt. Nach 2.12 enthält (y_{k_j}) eine konvergente Teilfolge $(y_{k_{j_l}})$. Dann ist auch $(x_{k_{j_l}})$ konvergent.

Mit b) folgt: $(a^{(k_{j_l})})$ ist konvergent.

Definition: Es sei $A \subseteq \mathbb{R}^n$. Ein Punkt $x_0 \in \mathbb{R}^n$ heißt ein **Häufungspunkt** (HP) von $A : \iff Es$ existiert eine Folge $\left(a^{(k)}\right)$ in $A \setminus \{x_0\}$ mit $a^{(k)} \to x_0$ $(k \to \infty)$.

Beispiele:

- a) x_0 ist Häufungspunkt von $U_1(0) \iff x_0 \in \overline{U_1(0)}$.
- b) 0 ist Häufungspunkt von $U_1(0) \setminus \{0\}$.
- c) Endliche Mengen haben keine Häufungspunkte.

Satz 15.2: Es sei $A \subseteq \mathbb{R}^n$.

- a) Die folgenden Aussagen sind äquivalent:
 - (i) A ist abgeschlossen.
 - (ii) Für jede konvergente Folge $(a^{(k)})$ in A gilt: $\lim_{k\to\infty} a^{(k)} \in A$.
 - (iii) Jeder Häufungspunkt von A gehört zu A.
- b) A ist kompakt \iff Jede Folge in A enthält eine konvergente Teilfolge deren Grenzwert zu A gehört.

Ohne Beweis.

Kapitel 16

Grenzwerte bei Funktionen, Stetigkeit

In diesem Kapitel seien stets $n, m \in \mathbb{N}, \emptyset \neq D \subseteq \mathbb{R}^n$ und $f: D \to \mathbb{R}^m$ eine (vektorwertige) Funktion. Mit $x = (x_1, \dots, x_n) \in D$ hat f die Darstellung:

$$f(x) = f(x_1, \dots, x_n) = (f_1(x_1, \dots, x_n), f_2(x_1, \dots, x_n), \dots, f_m(x_1, \dots, x_n)),$$

mit
$$f_j : D \to \mathbb{R}$$
 $(j = 1, ..., m)$. Kurz: $f = (f_1, ..., f_m)$.

Beispiel: $n = 2, m = 3, D = \mathbb{R}^2, f(x, y) = (xy, x + y, xe^y)$. Also $f = (f_1, f_2, f_3)$ mit

$$f_1(x,y) = xy$$
, $f_2(x,y) = x + y$, $f_3(x,y) = xe^y$.

Veranschaulichung möglich im Fall m = 1 (reellwertige Funktionen), und

- a) n = 1 (bekannt),
- b) n = 2.

Definition: Es sei $x_0 \in \mathbb{R}^n$ ein Häufungspunkt von D und $y_0 \in \mathbb{R}^m$.

 $\lim_{x\to x_0} f(x) = y_0 : \iff \text{Für jede Folge } \left(x^{(k)}\right) \text{ in } D\setminus \{x_0\} \text{ mit } x^{(k)}\to x_0 \text{ } (k\to\infty) \text{ gilt: } f\left(x^{(k)}\right)\to y_0 \text{ } (k\to\infty).$

In diesem Fall schreiben wir auch: $f(x) \to y_0 \ (x \to x_0)$.

Beispiel: Es sei $f = (f_1, f_2, f_3)$ wie in obigem Beispiel. Es sei $((x_k, y_k))$ eine Folge in \mathbb{R}^2 mit $(x_k, y_k) \to (1, 1)$. Nach 15.1 gilt dann $x_k \to 1$, $y_k \to 1$, also

$$f_1(x_k, y_k) = x_k y_k \to 1, \ f_2(x_k, y_k) = x_k + y_k \to 2, \ f_3(x_k, y_k) = x_k e^{y_k} \to e.$$

Mit 15.1 folgt: $f(x_k, y_k) \to (1, 2, e)$. Also: $\lim_{(x,y)\to(1,1)} f(x,y) = (1, 2, e)$.

Beispiel 16.1: $m = 1, D = \mathbb{R}^2,$

$$f(x,y) := \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}.$$

Es gilt

$$\begin{pmatrix} \frac{1}{k}, 0 \end{pmatrix} \to (0, 0), \ f\left(\frac{1}{k}, 0\right) = 0 \to 0,$$

$$\begin{pmatrix} \frac{1}{k}, \frac{1}{k} \end{pmatrix} \to (0, 0), \ f\left(\frac{1}{k}, \frac{1}{k}\right) = \frac{1}{2} \to \frac{1}{2}.$$

Damit folgt: $\lim_{(x,y)\to(0,0)} f(x,y)$ existiert nicht.

Satz 16.2: Es sei x_0 ein Häufungspunkt von $D \subseteq \mathbb{R}^n$, $f, g: D \to \mathbb{R}^m$ und $h: D \to \mathbb{R}$ seien Funktionen. Es seien $y_0, z_0 \in \mathbb{R}^m$ und $\alpha \in \mathbb{R}$.

a) Ist
$$f = (f_1, \dots, f_m)$$
 und $y_0 = (y_1, \dots, y_m)$, so gilt:

$$f(x) \to y_0 \ (x \to x_0) \iff \forall j \in \{1, \dots, m\} : \ f_i(x) \to y_i \ (x \to x_0).$$

b) Es gilt:

$$\lim_{x \to x_0} f(x) = y_0 \iff \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D \setminus \{x_0\} : \|x - x_0\| < \delta \implies \|f(x) - y_0\| < \varepsilon.$$

- c) Es gelte $f(x) \to y_0$, $g(x) \to z_0$ und $h(x) \to \alpha$ $(x \to x_0)$. Dann gilt:
 - (i) $f(x) \otimes g(x) \rightarrow y_0 \otimes z_0 \ (x \rightarrow x_0)$, wobei $\otimes \in \{+, -, \cdot\}$ ("·" Skalarprodukt);
 - (ii) $h(x)f(x) \to \alpha y_0 \ (x \to x_0);$
 - (iii) $||f(x)|| \to ||y_0|| (x \to x_0);$
 - (iv) Ist $\alpha \neq 0$ und $h(x) \neq 0$ ($x \in D$), so gilt:

$$\frac{1}{h(x)} \to \frac{1}{\alpha} \quad (x \to x_0).$$

Beweis: a) folgt aus 15.1. Den Rest beweist man wie in HMI mit $\|\cdot\|$ statt $|\cdot|$.

Definition:

a) f heißt in $x_0 \in D$ **stetig**: \iff Für jede Folge $\left(x^{(k)}\right)$ in D mit $x^{(k)} \to x_0$ gilt: $f\left(x^{(k)}\right) \to f\left(x_0\right).$

b) f heißt auf D stetig: \iff f ist in jedem $x \in D$ stetig. In diesem Fall schreiben wir: $f \in C(D, \mathbb{R}^m)$.

Beispiel 16.3: f sei wie in 16.1. Es gilt:

$$\left(\frac{1}{k},\frac{1}{k}\right) \to (0,0), \quad f\left(\frac{1}{k},\frac{1}{k}\right) \longrightarrow \frac{1}{2} \neq 0 = f\left(0,0\right).$$

Also ist f in (0,0) nicht stetig. Aber: Ist $(x_0,y_0) \in \mathbb{R}^2 \setminus \{(0,0)\}$, so ist f in (x_0,y_0) stetig.

Satz 16.4: Es sei $x_0 \in D$ und $f, g: D \to \mathbb{R}^m$ und $h: D \to \mathbb{R}$ seien Funktionen.

a)
$$f = (f_1, ..., f_m)$$
 ist in x_0 stetig $\iff \forall j \in \{1, ..., m\} : f_j$ ist in x_0 stetig $\iff \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D : \|x - x_0\| < \delta \Rightarrow \|f(x) - f(x_0)\| < \varepsilon$.

b) Ist x_0 Häufungspunkt von D, so gilt:

$$f$$
 ist stetig in $x_0 \iff \lim_{x \to x_0} f(x) = f(x_0)$.

- c) f, g und h seien stetig in x_0 . Dann sind stetig in x_0 :
 - (i) $f \otimes g$, $wobei \otimes \in \{+, -, \cdot\};$
 - (ii) $hf, x \mapsto ||f(x)||;$
 - (iii) $\frac{1}{h}$ (falls $h(x) \neq 0$ ($x \in D$)).
- d) $C(D, \mathbb{R}^m)$ ist ein reeller Vektorraum.

Beweis: 15.1 bzw. wie in HMI.

Definition: f heißt auf D beschränkt : $\iff \exists M \ge 0 \ \forall x \in D : \|f(x)\| \le M$.

Wie in HMI zeigt man:

Satz 16.5:

a) Es sei $f: D \to \mathbb{R}^m$ in $x_0 \in D$ stetig, $E \subseteq \mathbb{R}^m$, $f(D) \subseteq E$ und es sei $g: E \to \mathbb{R}^p$ stetig in $f(x_0)$. Dann ist

$$g \circ f \colon D \longrightarrow \mathbb{R}^p$$

stetig in x_0 .

- b) Es sei D kompakt und $f \in C(D, \mathbb{R}^m)$. Dann gilt:
 - (i) f(D) ist kompakt, insbesondere ist f beschränkt.
 - (ii) Ist m = 1, so existieren $x_1, x_2 \in D$ mit

$$f(x_1) \le f(x) \le f(x_2) \quad (x \in D).$$

Satz 16.6: Es sei $f: \mathbb{R}^n \to \mathbb{R}^m$ linear. Dann gilt:

$$f \in C(\mathbb{R}^n, \mathbb{R}^m)$$
.

Beweis: Es existiert eine reelle $m \times n$ -Matrix A mit f(x) = Ax $(x \in \mathbb{R}^n)$. Es sei $x_0 \in \mathbb{R}^n$. Dann gilt:

$$||f(x) - f(x_0)|| = ||Ax - Ax_0|| = ||A(x - x_0)|| \stackrel{\S14}{\leq} ||A|| ||x - x_0||$$

Also:
$$f(x) \to f(x_0)$$
 $(x \to x_0)$.

Beispiel: $f: \mathbb{R}^2 \to \mathbb{R}$, f(x,y) = x + y ist stetig auf \mathbb{R}^2 .

Kapitel 17

Analysis in \mathbb{C}

 \mathbb{C} und \mathbb{R}^2 sind Vektorräume über \mathbb{R} der Dimension 2. Sie unterscheiden sich also nur durch die Bezeichnung ihrer Elemente:

$$z = x + iy \in \mathbb{C}, (x, y) \in \mathbb{R}^2 \quad (x, y \in \mathbb{R}).$$

Beachtet man noch

$$|z| = |x + iy| = (x^2 + y^2)^{\frac{1}{2}} = ||(x, y)||,$$

so sieht man: Alle aus der Addition, der Skalarmultiplikation und der Norm entwickelten Begriffe und Sätze der Kapitel 14-16 gelten in \mathbb{C} . Zum Beispiel:

Konvergenz von Folgen: Es sei (z_n) eine Folge in \mathbb{C} und $z_0 \in \mathbb{C}$. Dann gilt:

$$z_n \to z_0 \iff |z_n - z_0| \to 0 \iff \operatorname{Re}(z_n) \to \operatorname{Re}(z_0) \text{ und } \operatorname{Im}(z_n) \to \operatorname{Im}(z_0).$$

Zu den Sätzen in §15 kommt hinzu:

Satz 17.1: Es seien (z_n) und (w_n) Folgen in \mathbb{C} mit $z_n \to z_0$ und $w_n \to w_0$. Dann gilt:

- a) $z_n w_n \to z_0 w_0$.
- b) Ist $z_0 \neq 0$, so existiert ein $n_0 \in \mathbb{N}$ mit $z_n \neq 0$ $(n \geq n_0)$ und $\frac{1}{z_n} \longrightarrow \frac{1}{z_0}$.

Beweis: Wie in \mathbb{R} .

Beispiel: Sei $w \in \mathbb{C}$ und $z_n := w^n$ $(n \in \mathbb{N})$. Dann ist $|z_n| = |w|^n$ $(n \in \mathbb{N})$ und es gilt:

- a) Ist |w| < 1, so gilt: $z_n \longrightarrow 0$.
- b) Ist |w| > 1, so gilt (z_n) ist divergent.
- c) Im Falle |w| = 1 gilt:

w = 1: (z_n) ist konvergent.

 $w \neq 1$: (z_n) ist divergent.

Z.B.
$$w = i$$
: $z_1 = i$, $z_2 = -1$, $z_3 = -i$, $z_4 = 1$, $z_5 = i$, ...

Unendliche Reihen: Es sei (a_n) eine Folge in \mathbb{C} und $s_n := a_1 + \ldots + a_n \ (n \in \mathbb{N})$. Die Folge (s_n) heißt eine **unendliche Reihe** und wird mit $\sum_{n=1}^{\infty} a_n$ bezeichnet.

- a) $\sum_{n=1}^{\infty} a_n$ heißt konvergent (divergent) : \iff (s_n) ist konvergent (divergent).
- b) Im Konvergenzfall heißt $\sum_{n=1}^{\infty} a_n := \lim_{n \to \infty} s_n$ der **Reihenwert**.

Die Definitionen und Sätze aus HMI, §3 gelten wörtlich auch in \mathbb{C} , bis auf diejenigen Definitionen und Sätze in denen die Anordnung auf \mathbb{R} eine Rolle spielt (z.B.: Monotonie-kriterium, Leibnizkriterium).

Beispiele:

- a) Sei $z \in \mathbb{C}$. Die Reihe $\sum_{n=0}^{\infty} z^n$ heißt **geometrische Reihe**.
 - (i) Es sei |z| < 1. Dann ist $\sum_{n=0}^{\infty} |z|^n$ konvergent, also ist $\sum_{n=0}^{\infty} z^n$ absolut konvergent und somit konvergent. Wie in HMI gilt: $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$ (|z| < 1). Ist z.B. $z = \frac{i}{2}$, so ist $|z| = \frac{1}{2} < 1$. Also ist $\sum_{n=0}^{\infty} \left(\frac{i}{2}\right)^n$ konvergent und

$$\sum_{n=0}^{\infty} \left(\frac{i}{2}\right)^n = \frac{1}{1 - \frac{i}{2}} = \frac{2}{2 - i} = \frac{2(2 + i)}{(2 - i)(2 + i)} = \frac{4 + 2i}{5} = \frac{4}{5} + i\frac{2}{5}.$$

- (ii) Es sei $|z| \ge 1$. Dann gilt $|z|^n \not\to 0$, also $z^n \not\to 0$. Somit ist $\sum_{n=0}^{\infty} z^n$ divergent.
- b) Betrachte $\sum_{n=0}^{\infty} \frac{z^n}{n!}$. Es gilt:

$$\sum_{n=0}^{\infty} \frac{|z|^n}{n!} \text{ ist konvergent (und} = e^{|z|}).$$

Also konvergiert $\sum_{n=0}^{\infty} \frac{z^n}{n!}$ absolut in jedem $z \in \mathbb{C}$.

c) Wie in Beispiel b) zeigt man: Die Reihen

$$\sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!} \quad \text{und} \quad \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$

konvergieren absolut in jedem $z \in \mathbb{C}$.

Beispiel 17.2: Es sei $z=x+iy\in\mathbb{C}$ $(x,y\in\mathbb{R}).$ Erinnerung (HMI, §12):

$$e^z = e^x (\cos y + i \sin y)$$
.

Es gilt $|e^z| = e^x$. Also ist

$$|e^z| < 1 \iff x < 0 \iff \operatorname{Re}(z) < 0.$$

Somit gilt: Ist Re(z) < 0, so konvergiert

$$\sum_{n=0}^{\infty} e^{nz} = \sum_{n=0}^{\infty} \left(e^{z}\right)^{n}$$

absolut und

$$\sum_{n=0}^{\infty} e^{nz} = \frac{1}{1 - e^z}.$$

Potenzreihen: Es sei (a_n) eine Folge in \mathbb{C} und $z_0 \in \mathbb{C}$. Eine Reihe der Form

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n \quad (z \in \mathbb{C})$$

heißt eine **Potenzreihe** (PR). Es sei $\rho := \limsup_{n \to \infty} \sqrt[n]{|a_n|}$ (also $\rho = \infty$, falls $\left(\sqrt[n]{|a_n|}\right)$ unbeschränkt). Wie in HMI heißt dann

$$r := \begin{cases} 0, & \text{falls } \rho = \infty \\ \infty, & \text{falls } \rho = 0 \\ \frac{1}{\rho}, & \text{falls } 0 < \rho < \infty \end{cases}$$

der Konvergenzradius (KR) der Potenzreihe.

Wie im Beweis von 4.1 und 7.4 aus HMI zeigt man:

Satz 17.3: Es sei $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ eine Potenzreihe mit Konvergenzradius r. Dann gilt:

- a) Ist r = 0, so konvergiert die Potenzreihe nur für $z = z_0$.
- b) Ist $r = \infty$, so konvergiert die Potenzreihe in jedem $z \in \mathbb{C}$ absolut.

- c) Ist $0 < r < \infty$, so konvergiert die Potenzreihe absolut in jedem $z \in \mathbb{C}$ mit $|z z_0| < r$ und sie divergiert für jedes $z \in \mathbb{C}$ mit $|z z_0| > r$. Für $z \in \mathbb{C}$ mit $|z z_0| = r$ ist keine allgemeine Aussage möglich.
- d) Es sei r>0 und $D\coloneqq\{z\in\mathbb{C}:|z-z_0|< r\}$ ($D\coloneqq\mathbb{C}$ falls $r=\infty$). Für $z\in D$ sei

$$f(z) := \sum_{n=0}^{\infty} a_n (z - z_0)^n.$$

Dann ist f auf D stetig.

Beispiele:

- a) $\sum_{n=0}^{\infty} z^n$ hat den Konvergenzradius r=1.
- b) Die Potenzreihen

$$\sum_{n=0}^{\infty} \frac{z^n}{n!}, \quad \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}, \quad \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$

haben jeweils den Konvergenzradius $r = \infty$.

c) $\sum_{n=0}^{\infty} (-z^2)^n = \sum_{n=0}^{\infty} (-1)^n z^{2n} = 1 - z^2 + z^4 - z^6 + \dots$ hat den Konvergenzradius r = 1. Es gilt für |z| < 1: $\sum_{n=0}^{\infty} (-z^2)^n = \frac{1}{1 - (-z^2)} = \frac{1}{1 + z^2}$.

Erinnerung: Für z = x + iy $(x, y \in \mathbb{R})$ hatten wir definiert:

$$e^z := e^x \left(\cos y + i \sin y\right), \ \cos z := \frac{1}{2} \left(e^{iz} + e^{-iz}\right), \ \sin z := \frac{1}{2i} \left(e^{iz} - e^{-iz}\right).$$

Satz 17.4:

a) Für alle $z \in \mathbb{C}$ gilt:

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$
, $\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$, $\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$.

b) Die Funktionen e^z , $\cos z$, $\sin z$ sind auf \mathbb{C} stetig.

Beweis:

a) Ohne Beweis.

b) Folgt aus a) und 17.3 *d*).

Fourierreihen im Komplexen

Definition: Es seien $a, b \in \mathbb{R}$ mit a < b und $f : [a, b] \to \mathbb{C}$ eine Funktion mit

$$u := \operatorname{Re} f : [a, b] \to \mathbb{R}, \ v := \operatorname{Im} f : [a, b] \to \mathbb{R},$$

es ist also f(x) = u(x) + iv(x) $(x \in [a,b])$. Sind $u,v \in R([a,b],\mathbb{R})$ so schreiben wir $f \in R([a,b],\mathbb{C})$ und definieren

$$\int_{a}^{b} f(x)dx := \int_{a}^{b} u(x)dx + i \int_{a}^{b} v(x)dx.$$

Bemerkung: Sind $f, g \in R([a, b], \mathbb{C})$ und $\alpha, \beta \in \mathbb{C}$, so gilt:

- a) $\alpha f + \beta g \in R([a, b], \mathbb{C}), fg \in R([a, b], \mathbb{C})$ und
- b) $\int_a^b \alpha f + \beta g dx = \alpha \int_a^b f dx + \beta \int_a^b g dx$.

Definition: Sei $f \in R([-\pi, \pi], \mathbb{C})$. Dann heißen die Zahlen

$$c_n := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx}dx \quad (n \in \mathbb{Z})$$

die komplexen Fourierkoeffizienten (FK) von f und

$$\sum_{n=-\infty}^{\infty} c_n e^{inx}$$

heißt die zu f gehörende **komplexe Fourierreihe** (FR). Schreibweise: $f \sim \sum_{n=-\infty}^{\infty} c_n e^{inx}$.

Bemerkung: Obige Definition läßt auch den Fall $f(-\pi) \neq f(\pi)$ zu. Für die Definition von Fourierkoeffizienten unf Fourierreihen muß weder im reellen noch im komplexen Fall davon ausgegangen werden, daß f auf \mathbb{R} zu einer 2π -periodischen Funktion fortgesetzt werden kann.

Es sei $f \in R([-\pi, \pi], \mathbb{R})$ und a_n $(n \in \mathbb{N}_0)$, b_n $(n \in \mathbb{N})$ die zugehörigen Fourierkoeffizienten (wie in §13). Dann gilt:

$$c_{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \left(\cos(nx) - i\sin(nx)\right) dx = \frac{1}{2} \left(a_{n} - ib_{n}\right) \ (n \in \mathbb{N}),$$

$$c_{0} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{2} a_{0},$$

$$c_{-n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \left(\cos(nx) + i\sin(nx)\right) dx = \frac{1}{2} \left(a_{n} + ib_{n}\right) \ (n \in \mathbb{N}).$$

Also gilt für $n \in \mathbb{N}_0$:

$$\sum_{k=-n}^{n} c_k e^{ikx} = \frac{a_0}{2} + \sum_{k=1}^{n} \left(c_k e^{ikx} + c_{-k} e^{-ikx} \right).$$

Wegen

$$c_k e^{ikx} + c_{-k} e^{-ikx} = \cos(kx) (c_k + c_{-k}) + i \sin(kx) (c_k - c_{-k})$$
$$= a_k \cos(kx) + i(-ib_k) \sin(kx)$$
$$= a_k \cos(kx) + b_k \sin(kx)$$

folgt

(*)
$$\sum_{k=-n}^{n} c_k e^{ikx} = \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos(kx) + b_k \sin(kx)).$$

Im Rahmen von Fourierreihen definieren wir:

Definition: Es seien $c_n \in \mathbb{C}$ $(n \in \mathbb{Z})$ und $x \in \mathbb{R}$.

$$\sum_{n=-\infty}^{\infty} c_n e^{inx} \ konvergiert : \iff \lim_{n\to\infty} \sum_{k=-n}^{n} c_k e^{ikx} \ existiert \ (und \ ist \in \mathbb{C}).$$

Bemerkung: Ist $f \in R([-\pi, \pi], \mathbb{R})$ und $x \in \mathbb{R}$, so gilt also wegen (*):

Die komplexe FR von f konvergiert in $x \iff$ Die reelle FR von f konvergiert in x.

Kapitel 18

Differential rechnung im \mathbb{R}^n (reellwertige Funktionen)

Beispiele:

a) Für $(x,y) \in \mathbb{R}^2$ sei $f(x,y) = x^2y^2$. Fasst man (vorübergehend) y als Konstante auf, so kann man den Ausdruck x^2y^2 nach x differenzieren. Diese Ableitung wird mit $f_x(x,y)$ oder mit $\frac{\partial f}{\partial x}(x,y)$ bezeichnet. Also:

$$f_x(x,y) = \frac{\partial f}{\partial x}(x,y) = 2xy^2.$$

Zum Beispiel: $f_x(1,2) = 2 \cdot 1 \cdot 2^2 = 8$.

Entsprechend fasst man x als Konstante auf und differenziert nach y:

$$f_y(x,y) = \frac{\partial f}{\partial y}(x,y) = 2x^2y.$$

Zum Beispiel: $f_y(1,2) = 4$.

b) Für $(x, y, z) \in \mathbb{R}^3$ sei $f(x, y, z) = xz + e^{xyz}$. Fasst man y und z als Konstanten auf und differenziert man nach x, so erhält man:

$$f_x(x, y, z) = \frac{\partial f}{\partial x}(x, y, z) = z + yze^{xyz}.$$

Entsprechend:

$$f_y(x, y, z) = \frac{\partial f}{\partial y}(x, y, z) = xze^{xyz},$$

 $f_z(x, y, z) = \frac{\partial f}{\partial z}(x, y, z) = x + xye^{xyz}.$

Vereinbarung: In diesem Kapitel sei stets $\emptyset \neq D \subseteq \mathbb{R}^n$, D offen und $f: D \to \mathbb{R}$ eine Funktion.

Definition: Es sei $x_0 = (\xi_1, \dots, \xi_n) \in D$ und $i \in \{1, \dots, n\}$. Weiter bezeichne

$$e_i = (0, \dots, 0, 1, 0, \dots, 0)$$

den i-ten Einheitsvektor. Dann gilt

$$x_0 + te_i = (\xi_1, \dots, \xi_{i-1}, \xi_i + t, \xi_{i+1}, \dots, \xi_n).$$

f heißt in x_0 partiell differenzierbar (pdb) nach $x_i :\iff Es$ existiert der Grenzwert

$$f_{x_i}(x_0) := \frac{\partial f}{\partial x_i}(x_0) := \lim_{t \to 0} \frac{f(x_0 + te_i) - f(x_0)}{t} \in \mathbb{R}.$$

In diesem Fall heißt $f_{x_i}(x_0)$ die **partielle Ableitung von** f **in** x_0 **nach** x_i .

Beispiele:

a) $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{für } (x,y) \neq (0,0) \\ 0, & \text{für } (x,y) = (0,0) \end{cases}$. Wir betrachten $x_0 = (0,0)$. Es gilt $x_0 + te_1 = (t,0)$.

$$\frac{f(x_0 + te_1) - f(x_0)}{t} = \frac{f(t, 0) - f(0, 0)}{t} = 0 \to 0 \quad (t \to 0).$$

Somit ist f in (0,0) partiell differenzierbar nach x und $f_x(0,0) = 0$. Weiter gilt $x_0 + te_2 = (0,t)$.

$$\frac{f(x_0 + t_1 e_2) - f(x_0)}{t} = \frac{f(0, t) - f(0, 0)}{t} = 0 \longrightarrow 0 \quad (t \to 0).$$

Also ist f ist in (0,0) partiell differenzierbar nach y und $f_y(0,0) = 0$.

b) $f(x,y) = \sqrt{x^2 + y^2} = ||(x,y)||$. Für $(x,y) \neq (0,0)$ gilt:

$$f_x(x,y) = \frac{x}{\sqrt{x^2 + y^2}}, \quad f_y(x,y) = \frac{y}{\sqrt{x^2 + y^2}}.$$

Sei (x, y) = (0, 0):

$$\frac{f(t,0) - f(0,0)}{t} = \frac{\sqrt{t^2}}{t} = \frac{|t|}{t} = \begin{cases} 1, & t > 0 \\ -1, & t < 0 \end{cases}.$$

D.h. f ist in (0,0) nicht partiell differenzierbar nach x. Analog: f ist in (0,0) nicht partiell differenzierbar nach y.

Definition:

a) f heißt $in \ x_0 \in D$ partiell differenzierbar : \iff f ist in x_0 partiell differenzierbar nach allen Variablen x_1, \ldots, x_n . In diesem Fall heißt der Vektor

grad
$$f(x_0) := (f_{x_1}(x_0), \dots, f_{x_n}(x_0))$$

der Gradient von f in x_0 .

- b) f heißt auf D partiell $differenzierbar : \iff f$ ist in jedem $x \in D$ partiell differenzierbar.
- c) Es sei $i \in \{1, ..., n\}$. f_{x_i} ist auf D vorhanden : \iff f ist in jedem $x \in D$ partiell differenzierbar nach x_i . In diesem Fall heißt die Funktion

$$f_{x_i} \colon D \to \mathbb{R}$$

die partielle Ableitung von f nach x_i .

d) f heißt auf D $stetig partiell differenzierbar : \iff f$ ist auf D partiell differenzierbar und $f_{x_1}, \ldots, f_{x_n} \in C(D, \mathbb{R})$.

Beispiele:

a) Es sei f wie in obigem Beispiel a). f ist in (0,0) partiell differenzierbar und

grad
$$f(0,0) = (0,0)$$
.

b) $f(x,y) = \sqrt{x^2 + y^2}$. f ist auf $\mathbb{R}^2 \setminus \{(0,0)\}$ partiell differenzierbar und

$$\operatorname{grad} f(x,y) = \frac{(x,y)}{\|(x,y)\|} \quad ((x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}).$$

Definition: Es sei $i \in \{1, ..., n\}$ und f_{x_i} sei auf D vorhanden. Also haben wir die partielle Ableitung von f nach x_i :

$$f_{x_i} \colon D \to \mathbb{R}$$
.

Es sei $x_0 \in D$ und $j \in \{1, ..., n\}$. Ist f_{x_i} in x_0 partiell differenzierbar nach x_j , so heißt

$$f_{x_i x_j}(x_0) \coloneqq \frac{\partial^2 f}{\partial x_i \partial x_i}(x_0) \coloneqq (f_{x_i})_{x_j}(x_0).$$

partielle Ableitung 2. Ordnung von f in x_0 nach x_i und x_j . Entsprechend definiert man, falls vorhanden, Ableitungen höherer Ordnung. Schreibweisen: Z.B.

$$\frac{\partial^3 f}{\partial y \partial x^2} = f_{xxy}, \quad \frac{\partial^7 f}{\partial y^4 \partial x^3} = f_{xxxyyyy}, \quad \frac{\partial^5 f}{\partial z^2 \partial y \partial x^2} = f_{xxyzz}.$$

Beispiel: $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x, y, z) = xy^2 \sin z$. Es gilt:

$$f_x(x, y, z) = y^2 \sin z$$
, $f_{xy}(x, y, z) = 2y \sin z$, $f_{xyz}(x, y, z) = 2y \cos z$,

$$f_y(x, y, z) = 2xy \sin z, \quad f_{yx}(x, y, z) = 2y \sin z, \quad f_{yxz}(x, y, z) = 2y \cos z.$$

Definition: Es sei $m \in \mathbb{N}$. f heißt **auf** D m-mal stetig partiell differenzierbar : \iff Alle partiellen Ableitungen von f der Ordnung $\leq m$ sind auf D vorhanden und dort stetig.

Bezeichnung in diesem Fall: $f \in C^m(D, \mathbb{R})$.

Satz 18.1 (Satz von Schwarz): Es sei $m \in \mathbb{N}$ und $f \in C^m(D, \mathbb{R})$. Dann ist jede partielle Ableitung von f der Ordnung $\leq m$ unabhängig von der Reihenfolge der Differentiation.

Ohne Beweis.

Beispiel: Ist z.B. $f \in C^2(D, \mathbb{R})$, so gilt:

$$\forall x \in D \ \forall i, j \in \{1, \dots n\}: \ f_{x_i x_j}(x) = f_{x_j x_i}(x).$$

Motivation: Betrachte
$$f(x,y) \coloneqq \begin{cases} \frac{xy}{x^2+y^2}, & \text{für } (x,y) \neq (0,0) \\ 0, & \text{für } (x,y) = (0,0) \end{cases}$$
.

Bekannt: f ist in (0,0) partiell differenzierbar. Nach 16.3 ist aber f in (0,0) nicht stetig. Wir suchen einen Differenzierbarkeitsbegriff, der Stetigkeit nach sich zieht.

Erinnerung: Es sei $I \subseteq \mathbb{R}$ ein Intervall, $g: I \to \mathbb{R}$ eine Funktion und $x_0 \in I$. Aus HMI ist bekannt:

$$g$$
 ist in x_0 differenzierbar $\iff \exists a \in \mathbb{R} : \lim_{h \to 0} \frac{g(x_0 + h) - g(x_0)}{h} = a$

$$\iff \exists a \in \mathbb{R} : \lim_{h \to 0} \frac{g(x_0 + h) - g(x_0) - ah}{h} = 0$$

$$\iff \exists a \in \mathbb{R} : \lim_{h \to 0} \frac{g(x_0 + h) - g(x_0) - ah}{|h|} = 0.$$

Definition: f heißt in $x_0 \in D$ differenzierbar (db):

$$\exists a \in \mathbb{R}^n : \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - a \cdot h}{\|h\|} = 0$$

$$\iff \exists a \in \mathbb{R}^n : \lim_{x \to x_0} \frac{f(x) - f(x_0) - a \cdot (x - x_0)}{\|x - x_0\|} = 0,$$

 $wobei\ {\it ,,\cdot}\ ``\ das\ Skalarprodukt\ bezeichnet.$

Satz 18.2 (Satz und Definition): Es sei $x_0 \in D$.

- a) Ist f in x_0 differenzierbar, so ist f in x_0 stetig, and f ist in x_0 partiall differenzierbar.
- b) Ist f in x_0 differenzierbar, so ist der Vektor a in obiger Definition eindeutig bestimmt und es gilt $a = \operatorname{grad} f(x_0)$. In diesem Fall heißt der Vektor

$$f'(x_0) \coloneqq a = \operatorname{grad} f(x_0)$$

die Ableitung von f in x_0 .

c) f ist in x_0 differenzierbar $\iff f$ ist in x_0 partiell differenzierbar und

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - \operatorname{grad} f(x_0) \cdot h}{\|h\|} = 0.$$

Ohne Beweis.

Beispiele:

a)
$$f(x,y) = \begin{cases} \frac{xy}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Bekannt: f ist in (0,0) nicht stetig $\stackrel{18.2}{\Longrightarrow} f$ ist in (0,0) nicht differenzierbar.

b)
$$f(x,y) = \begin{cases} (x^2 + y^2) \log(x^2 + y^2), & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
$$\frac{f(t,0) - f(0,0)}{t} = \frac{t^2 \log t^2}{t} = 2t \log|t| \longrightarrow 0 \ (t \to 0),$$
$$\frac{f(0,t) - f(0,0)}{t} = 2t \log|t| \longrightarrow 0 \ (t \to 0).$$

f ist also partiell differenzierbar in (0,0) und grad f(0,0) = (0,0). Es sei $h = (h_1, h_2) \neq (0,0)$. Dann gilt:

$$\frac{f(h) - f(0,0) - \operatorname{grad} f(0,0) \cdot h}{\|h\|} = \frac{\|h\|^2 \log (\|h\|^2)}{\|h\|} = 2\|h\| \log (\|h\|) \longrightarrow 0 \ (h \to 0).$$

f ist also in (0,0) differenzierbar und f'(0,0) = (0,0).

c)
$$f(x,y) = \begin{cases} \frac{x \sin y}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

$$\frac{f(t,0) - f(0,0)}{t} = \frac{f(0,t) - f(0,0)}{t} = 0 \longrightarrow 0 \ (t \to 0).$$

f ist also partiell differenzierbar in (0,0) und grad f(0,0) = (0,0). Es sei $h = (h_1, h_2) \neq (0,0)$. Dann gilt:

$$Q(h) := \frac{f(h) - f(0,0) - \operatorname{grad} f(0,0) \cdot h}{\|h\|} = \frac{h_1 \sin h_2}{\|h\|^2} = \frac{h_1 \sin h_2}{h_1^2 + h_2^2}.$$

Für $h_1 = h_2$:

$$Q(h) = \frac{h_1 \sin h_1}{2h_1^2} = \frac{1}{2} \cdot \frac{\sin h_1}{h_1} \longrightarrow \frac{1}{2} \ (h_1 \to 0).$$

D.h. $Q(h) \not\to 0$ $(h \to 0)$. f ist also in (0,0) nicht differenzierbar.

Definition: f heißt auf D differenzierbar: \iff f ist in jedem $x \in D$ differenzierbar.

Satz 18.3 (ohne Beweis): Es sei f auf D partiell differenzierbar und f_{x_1}, \ldots, f_{x_n} seien in $x_0 \in D$ stetig. Dann ist f in x_0 differenzierbar. Insbesondere gilt: Ist $f \in C^1(D, \mathbb{R})$, so ist f auf D differenzierbar.

Definition: Es sei $I \subseteq \mathbb{R}$ ein Intervall und $g = (g_1, \dots, g_n) \colon I \to \mathbb{R}^n$ eine Funktion, also $g_j \colon I \to \mathbb{R}$ $(j = 1, \dots, n)$.

g heißt in $t_0 \in I$ differenzierbar: $\iff g_1, \ldots, g_n$ sind in $t_0 \in I$ differenzierbar. In diesem Fall setzen wir

$$g'(t_0) := (g'_1(t_0), \dots, g'_n(t_0)).$$

Entsprechend definiert man "auf I differenzierbar" und "auf I stetig differenzierbar".

Beispiele:

- a) n=2, $g(t)=(\cos t,\sin t)$. Dann ist $g'(t)=(-\sin t,\cos t)$.
- b) Für $a, b \in \mathbb{R}^n$ sei g(t) := a + t(b a) $(t \in \mathbb{R})$. Ist $a = (a_1, \dots, a_n)$, $b = (b_1, \dots, b_n)$, so ist

$$g_i(t) = a_i + t(b_i - a_i)$$
, also $g'_i(t) = b_i - a_i$ $(j = 1, ..., n)$.

Somit gilt: g'(t) = b - a.

Bezeichnung: Die Menge $S[a,b]:=g([0,1])=\{a+t(b-a):t\in[0,1]\}$ heißt die **Verbindungsstrecke** von a und b.

Satz 18.4 (Kettenregel (ohne Beweis)): Es sei $I \subseteq \mathbb{R}$ ein Intervall, $g = (g_1, \ldots, g_n) \colon I \to \mathbb{R}^n$ differenzierbar in $t_0 \in I$, $g(I) \subseteq D$ und f sei in $x_0 \coloneqq g(t_0)$ differenzierbar. Dann ist

$$f \circ g \colon I \to \mathbb{R}$$
 differenzierbar in t_0

und $(f \circ g)'(t_0) = f'(g(t_0)) \cdot g'(t_0)$, wobei "·" das Skalarprodukt bedeutet.

Beispiel: Betrachte $g: [0,1] \to \mathbb{R}^2$, $g(t) = (\cos t, \sin t)$ und $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^2y$. Wir können direkt nachrechnen: $(f \circ g)(t) = \cos^2 t \sin t$, also

$$(f \circ g)'(t) = 2\cos t (-\sin t)\sin t + \cos^2 t\cos t = -2\cos t\sin^2 t + \cos^3 t.$$

Anwendung von 18.4: Es gilt $f'(x, y) = (2xy, x^2)$, also

$$(f \circ g)'(t) = (2\cos t \sin t, \cos^2 t) \cdot (-\sin t, \cos t) = -2\cos t \sin^2 t + \cos^3 t.$$

Definition:

a) Es seien $x^{(0)}, \ldots, x^{(m)} \in \mathbb{R}^n$. Die Menge

$$S\left[x^{(0)}, \dots, x^{(m)}\right] := \bigcup_{j=1}^{m} S\left[x^{(j-1)}, x^{(j)}\right]$$

heißt Streckenzug durch $x^{(0)}, \ldots, x^{(m)}$.

b) Es sei $M \subseteq \mathbb{R}^n$. M heißt ein **Gebiet**: \iff M ist offen und zu je zwei Punkten $a, b \in M$ existieren $x^{(0)}, \ldots, x^{(m)} \in M$ mit:

$$a = x^{(0)}, b = x^{(m)} \text{ und } S\left[x^{(0)}, \dots, x^{(m)}\right] \subseteq M.$$

Satz 18.5 (Der Mittelwertsatz): Es sei $f: D \to \mathbb{R}$ auf D differenzierbar, es seien $a, b \in D$ und $S[a, b] \subseteq D$. Dann existiert ein $\xi \in S[a, b]$ mit

$$f(b) - f(a) = f'(\xi) \cdot (b - a).$$

Beweis: Für $t \in [0, 1]$ sei

$$g(t) := a + t(b - a), \quad \phi(t) := f(g(t)).$$

Nach 18.4 ist ϕ ist auf [0,1] differenzierbar und $\phi'(t) = f'(g(t)) \cdot g'(t) = f'(g(t)) \cdot (b-a)$. Nach dem MWS aus HMI existiert ein $t_0 \in (0,1)$ mit

$$f(b) - f(a) = f(g(1)) - f(g(0)) = \phi(1) - \phi(0) = \frac{\phi(1) - \phi(0)}{1 - 0} = \phi'(t_0).$$

Also ist
$$f(b) - f(a) = f'(\underbrace{g(t_0)}_{=:\xi}) \cdot (b - a)$$
.

Folgerung 18.6: Ist D ein Gebiet, $f: D \to \mathbb{R}$ differenzierbar auf D und gilt f'(x) = 0 $(x \in D)$, so ist f auf D konstant.

Definition:

a) Es sei $a \in \mathbb{R}^n$. Ist ||a|| = 1, so heißt a eine **Richtung** oder ein **Richtungsvektor**.

b) Es sei $x_0 \in D$ und $a \in \mathbb{R}^n$ eine Richtung. f heißt in x_0 in Richtung a differenzierbar: \iff Es existiert der Grenzwert

$$\frac{\partial f}{\partial a}(x_0) := \lim_{t \to 0} \frac{f(x_0 + ta) - f(x_0)}{t} \in \mathbb{R}.$$

In diesem Fall heißt $\frac{\partial f}{\partial a}(x_0)$ die **Richtungsableitung von** f in x_0 in **Richtung** a.

Bemerkung: Ist $a = e_i = i$ -ter Einheitsvektor, so ist (falls vorhanden)

$$\frac{\partial f}{\partial a}(x_0) = \frac{\partial f}{\partial x_i}(x_0) = f_{x_i}(x_0).$$

Beispiele:

a) Es sei

$$f(x,y) := \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}.$$

Betrachte $x_0 = (0,0)$. Ist $a = (a_1, a_2) \in \mathbb{R}^2$ eine Richtung, also $a_1^2 + a_2^2 = 1$, so gilt:

$$\frac{f(x_0+ta)-f(x_0)}{t} = \frac{1}{t} \cdot \frac{t^2a_1a_2}{t^2} = \frac{a_1a_2}{t}.$$

D.h. $\frac{\partial f}{\partial a}(0,0)$ existiert $\iff a_1 = 0$ oder $a_2 = 0$

$$\iff a \in \{(1,0), (-1,0), (0,1), (0,-1)\}.$$

In diesem Fall ist $\frac{\partial f}{\partial a}(0,0) = 0$.

b) Es sei

$$f(x,y) := \begin{cases} \frac{xy^2}{x^2 + y^4}, & \text{für } (x,y) \neq (0,0) \\ 0, & \text{für } (x,y) = (0,0) \end{cases}.$$

Betrachte $x_0 = (0,0)$. Ist $a = (a_1, a_2) \in \mathbb{R}^2$ eine Richtung, so gilt:

$$\frac{f(x_0 + ta) - f(x_0)}{t} = \frac{1}{t} \cdot \frac{t^3 a_1 a_2^2}{t^2 a_1^2 + t^4 a_2^4} = \frac{a_1 a_2^2}{a_1^2 + t^2 a_2^4} \xrightarrow[t \to 0]{} \begin{cases} 0, & a_1 = 0 \\ \frac{a_2^2}{a_1}, & a_1 \neq 0 \end{cases}.$$

D.h. $\frac{\partial f}{\partial a}(0,0)$ existiert für jede Richtung $a \in \mathbb{R}^2$.

Weiter sei x > 0. Es gilt

$$f(x, \sqrt{x}) = \frac{x^2}{2x^2} = \frac{1}{2} \to \frac{1}{2} \neq 0 = f(0, 0) \quad (x \to 0+).$$

Damit folgt: f ist in (0,0) nicht stetig.

Satz 18.7 (ohne Beweis): Ist f in $x_0 \in D$ differenzierbar und $a \in \mathbb{R}^n$ eine Richtung, so existiert $\frac{\partial f}{\partial a}(x_0)$ und

$$\frac{\partial f}{\partial a}(x_0) = a \cdot \operatorname{grad} f(x_0)$$

Bemerkung: Unter den Voraussetzungen von 18.7 gilt (nach der Cauchy-Schwarzschen Ungleichung):

$$\left| \frac{\partial f}{\partial a}(x_0) \right| = |a \cdot \operatorname{grad} f(x_0)| \le \|a\| \|\operatorname{grad} f(x_0)\| = \|\operatorname{grad} f(x_0)\|.$$

Ist grad $f(x_0) \neq 0$ und setzt man $a := \frac{\operatorname{grad} f(x_0)}{\|\operatorname{grad} f(x_0)\|}$, so gilt

$$\frac{\partial f}{\partial a}(x_0) = \|\operatorname{grad} f(x_0)\|.$$

D.h. die Richtungsableitung wird am größten in Richtung des Gradienten. Man sagt auch: Der Gradient zeigt in die Richtung des steilsten Anstiegs.

Beispiele:

a) Es sei f wie in obigem Beispiel b), $x_0 = (0,0)$ und $a := \frac{1}{\sqrt{2}}(1,1)$. Dann gilt:

$$\frac{\partial f}{\partial a}(0,0) = \frac{\frac{1}{2}}{\frac{1}{\sqrt{2}}} = \frac{1}{\sqrt{2}}, \quad \text{grad } f(0,0) = (0,0),$$

also

$$a \cdot \operatorname{grad} f(0,0) = 0 \neq \frac{\partial f}{\partial a}(0,0) = \frac{1}{\sqrt{2}}.$$

Beachte: f ist in (0,0) nicht stetig, also auch nicht differenzierbar.

b) Es sei
$$f(x,y) := \begin{cases} \frac{x|x|+y^4}{\sqrt{x^2+y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
.

Es sei $a = (a_1, a_2) \in \mathbb{R}^2$ eine Richtung. Es gilt:

$$\frac{f(ta) - f(0,0)}{t} = \frac{1}{t} \cdot \frac{t|t|a_1|a_1| + t^4a_2^4}{|t|} = \frac{t|t|a_1|a_1| + (t|t|)^2 a_2^4}{t|t|}$$
$$= a_1|a_1| + t|t|a_2^4 \longrightarrow a_1|a_1| \quad (t \to 0).$$

Also existiert $\frac{\partial f}{\partial a}(0,0)$ für jede Richtung a und $\frac{\partial f}{\partial a}(0,0)=a_1|a_1|$. Insbesondere:

$$\operatorname{grad} f(0,0) = (1,0).$$

Sei $a := \frac{1}{\sqrt{2}}(1,1)$. Dann:

$$\frac{1}{2} = \frac{\partial f}{\partial a}(0,0) \neq a \cdot \operatorname{grad} f(0,0) = \frac{1}{\sqrt{2}}.$$

Mit 18.7 folgt: f ist in (0,0) nicht differenzierbar. Andererseits gilt: f ist in (0,0) stetig. (Übung.)

Bezeichnung: Es sei A eine reelle $n \times n$ -Matrix und $x \in \mathbb{R}^n$:

$$(Ax) \cdot x \coloneqq (Ax^{\top}) \cdot x.$$

Definition: Es sei $f \in C^2(D, \mathbb{R})$ und $x_0 \in D$. Die Matrix

$$H_f(x_0) := \begin{pmatrix} f_{x_1x_1}(x_0) & f_{x_1x_2}(x_0) & \dots & f_{x_1x_n}(x_0) \\ \vdots & & & \vdots \\ f_{x_nx_1}(x_0) & f_{x_nx_2}(x_0) & \dots & f_{x_nx_n}(x_0) \end{pmatrix}$$

heißt **Hesse-Matrix von** f **in** x_0 . Nach 18.1 ist $H_f(x_0)$ symmetrisch.

Beispiel: Betrachte $f(x,y) = x^3y + xy$ $((x,y) \in \mathbb{R}^2)$. Es gilt:

$$f_x(x,y) = 3x^2y + y$$
, $f_y(x,y) = x^3 + x$,

$$f_{xx}(x,y) = 6xy$$
, $f_{xy}(x,y) = 3x^2 + 1$, $f_{yy}(x,y) = 0$.

Damit ist

$$H_f(x,y) = \begin{pmatrix} 6xy & 3x^2 + 1 \\ 3x^2 + 1 & 0 \end{pmatrix}.$$

Satz 18.8 (Satz von Taylor (ohne Beweis)): Es sei $f \in C^2(D, \mathbb{R})$, $x_0 \in D$, $h \in \mathbb{R}^n$ und $S[x_0, x_0 + h] \subseteq D$. Dann existiert ein $\xi \in S[x_0, x_0 + h]$ mit

$$f(x_0 + h) = f(x_0) + \operatorname{grad} f(x_0) \cdot h + \frac{1}{2} (H_f(\xi)h) \cdot h.$$

Definition: Es sei A eine reelle und symmetrische $n \times n$ -Matrix. A heißt

- a) positiv definit $(pd) : \iff \forall x \in \mathbb{R}^n \setminus \{0\} : (Ax) \cdot x > 0.$
- $b) \ \textit{negativ definit} \ (nd) : \iff \forall x \in \mathbb{R}^n \setminus \{0\} : (Ax) \cdot x < 0.$
- c) indefinit (id): $\iff \exists u, v \in \mathbb{R}^n : (Au) \cdot u > 0 \text{ und } (Av) \cdot v < 0.$

Beispiel: $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Es gilt:

$$\forall x = (x_1, x_2) \in \mathbb{R}^2 : (Ax) \cdot x = x_1^2 \ge 0,$$

$$\forall x = (0, t) : (Ax) \cdot x = 0.$$

Also ist A weder negativ definit, noch indefinit, noch positiv definit.

Satz 18.9 (ohne Beweis): Es sei A wie in obiger Definition. Dann gilt:

- a) (i) A ist positiv definit \iff alle Eigenwerte von A sind > 0.
 - (ii) A ist negativ definit \iff alle Eigenwerte von A sind < 0.
 - (iii) A ist indefinit \iff es gibt Eigenwerte λ, μ von A mit $\lambda > 0, \mu < 0$.
- b) Sei n = 2, $A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix}$.
 - (i) A ist positiv definit $\iff \alpha > 0$, $\det A > 0$.
 - (ii) A ist negativ definit $\iff \alpha < 0$, $\det A > 0$.
 - (iii) A ist indefinit \iff det A < 0.

Definition: Es sei $M \subseteq \mathbb{R}^n$ und $g: M \to \mathbb{R}$ eine Funktion. g hat in $x_0 \in M$ ein

a) lokales Maximum : $\iff \exists \delta > 0 \ \forall x \in U_{\delta}(x_0) \cap M : g(x) \leq g(x_0).$

- b) lokales Minimum : $\iff \exists \delta > 0 \ \forall x \in U_{\delta}(x_0) \cap M : g(x) \geq g(x_0).$
- c) globales Maximum : $\iff \forall x \in M : g(x) \leq g(x_0)$.
- d) globales Minimum : $\iff \forall x \in M : g(x) \ge g(x_0)$.

"Extremum" bedeutet "Maximum" oder "Minimum".

Satz 18.10:

- a) Ist f in $x_0 \in D$ partiell differenzierbar und hat f in x_0 ein lokales Extremum, so ist grad $f(x_0) = 0$.
- b) Ist $f \in C^2(D, \mathbb{R})$, $x_0 \in D$ und grad $f(x_0) = 0$, so gilt:
 - (i) Ist $H_f(x_0)$ positiv definit, so hat f in x_0 ein lokales Minimum.
 - (ii) Ist $H_f(x_0)$ negative definit, so hat f in x_0 ein lokales Maximum.
 - (iii) Ist $H_f(x_0)$ indefinit, so hat f in x_0 kein lokales Extremum.

Beweis:

a) Ist z.B. x_0 eine lokale Maximalstelle und $i \in \{1, \ldots, n\}$, so ist für ein $\delta > 0$:

$$\frac{f(x_0 + te_i) - f(x_0)}{t} \begin{cases} \leq 0, & t \in (0, \delta) \\ \geq 0, & t \in (-\delta, 0) \end{cases}$$

also $f_{x_i}(x_0) = 0$.

b) (Beweisskizze.) Ist z.B. $H_f(x_0)$ positiv definit, so ist $H_f(x)$ positiv definit in einer Umgebung $U_{\delta}(x_0) \subseteq D$ (wg. $f \in C^2(D, \mathbb{R})$). Nach 18.8 gilt für $||h|| < \delta$:

$$f(x_0 + h) = f(x_0) + \underbrace{\left(\operatorname{grad} f(x_0)\right)}_{=0} \cdot h + \underbrace{\frac{1}{2} \left(H_f(\xi) \cdot h\right) \cdot h}_{\geq 0}$$

für ein $\xi \in S[x_0, x_0 + h] \subseteq U_{\delta}(x_0)$. Also ist $f(x_0 + h) \ge f(x_0)$.

Beispiele:

a)
$$D = \mathbb{R}^2$$
, $f(x,y) = x^4 + y^4$. Somit: $f_x(x,y) = 4x^3$, $f_y(x,y) = 4y^3$. Es gilt:

$$\operatorname{grad} f(x, y) = (0, 0) \iff (x, y) = (0, 0).$$

Weiter gilt: $f_{xx}(x,y) = 12x^2$, $f_{xy}(x,y) = 0$, $f_{yy}(x,y) = 12y^2$; also ist

$$H_f(0,0) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

weder positiv definit, noch negativ definit, noch indefinit! Was nun? Es gilt:

$$f(x,y) \ge 0 = f(0,0) \quad ((x,y) \in \mathbb{R}^2).$$

Also hat f in (0,0) ein globales Minimum!

b)
$$D = \mathbb{R}^2$$
, $f(x,y) = x^2 - y^2$. Somit: $f_x(x,y) = 2x$, $f_y(x,y) = -2y$. Es gilt:

$$\operatorname{grad} f(x, y) = (0, 0) \iff (x, y) = (0, 0).$$

Weiter gilt: $f_{xx}(x,y) = 2$, $f_{xy}(x,y) = 0$, $f_{yy}(x,y) = -2$; also ist

$$H_f(0,0) = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$$

und det $H_f(0,0) = -4 < 0$. $H_f(0,0)$ ist also indefinit. Somit hat f in (0,0) kein lokales Extremum.

Andere Möglichkeit:

$$f(x,0) = x^2 > 0 = f(0,0) \quad (x \in \mathbb{R} \setminus \{0\}),$$

$$f(0,y) = -y^2 < 0 = f(0,0) \quad (y \in \mathbb{R} \setminus \{0\}).$$

c) $D = \mathbb{R}^2$, $f(x, y) = x^3 - 12xy + 8y^3$. Somit:

$$f_x(x,y) = 3x^2 - 12y, \ f_y(x,y) = -12x + 24y^2;$$

also ist

$$\operatorname{grad} f(x, y) = (0, 0) \iff x^2 = 4y \text{ und } 2y^2 = x$$

 $\Rightarrow 4y^4 = 4y \iff y^3 = 1 \lor y = 0 \iff y = 0 \lor y = 1.$

Ist
$$y = 0$$
, so ist $x = 0$; grad $f(0, 0) = (0, 0)$,
Ist $y = 1$, so ist $x = 2$; grad $f(2, 1) = (0, 0)$.

Extremwertverdächtige Stellen: (0,0), (2,1). Es gilt:

$$H_f(x,y) = \begin{pmatrix} 6x & -12 \\ -12 & 48y \end{pmatrix}.$$

(i)
$$H_f(0,0) = \begin{pmatrix} 0 & -12 \\ -12 & 0 \end{pmatrix}$$
; $\det H_f(0,0) < 0$.

f hat also in (0,0) kein lokales Extremum.

(ii)
$$H_f(2,1) = \begin{pmatrix} 12 & -12 \\ -12 & 48 \end{pmatrix}$$
; $12 > 0$, $\det H_f(2,1) = 12 \cdot 48 - 12 \cdot 12 > 0$.

f hat also in (2,1) ein lokales Minimum.

(2,1)ist keine globale Minimalstelle, denn z.B. $f(t,0)=t^3 \longrightarrow -\infty \ (t \rightarrow -\infty)$

d)
$$D = \mathbb{R}^2$$
, $f(x,y) = -8x^3 - 12x^2 + 3xy^2 + y^3 + 3y^2$. Übung:

$$\operatorname{grad} f(x,y) = (0,0) \iff (x,y) \in \{(1,-4), (-1,0), (0,0)\}.$$

f hat in (0,0) kein lokales Extremum und f hat in (1,-4) ein lokales Maximum.

Es ist
$$H_f(x,y) = \begin{pmatrix} -48x - 24 & 6y \\ 6y & 6x + 6y + 6 \end{pmatrix}$$
. Damit ist

$$H_f(-1,0) = \begin{pmatrix} 24 & 0 \\ 0 & 0 \end{pmatrix}$$

weder positiv definit, noch negativ definit noch indefinit! Was nun? Es gilt:

$$f(-1,t) = 8 - 12 - 3t^2 + t^3 + 3t^2 = t^3 - 4, \ f(-1,0) = -4.$$

$$\begin{array}{ll} \text{F\"{u}r } t>0: f(-1,t)>-4 &= f(-1,0) \\ \text{F\"{u}r } t<0: f(-1,t)<-4 &= f(-1,0) \end{array} \} \Rightarrow f \text{ hat in } (-1,0) \text{ kein lok. Extremum.}$$

Problem: Bestimme

$$\max\{x^2 + y^2 - x : x^2 + y^2 \le 1\}, \min\{x^2 + y^2 - x : x^2 + y^2 \le 1\}.$$

Es sei

$$D \coloneqq \left\{ (x,y) : x^2 + y^2 < 1 \right\} \Rightarrow \overline{D} = \left\{ (x,y) : x^2 + y^2 \le 1 \right\}.$$

Betrachte $f \colon \overline{D} \to \mathbb{R}$, $f(x,y) = x^2 + y^2 - x$. f ist stetig und \overline{D} ist kompakt. Nach 16.5 hat die Menge $f(\overline{D}) = \{x^2 + y^2 - x : x^2 + y^2 \le 1\}$ ein Minimum und ein Maximum.

Suche lokale Extremalstellen in D:

$$f_x(x,y) = 2x - 1 = 0$$
 $f_y(x,y) = 2y = 0$
 $\iff (x,y) = \left(\frac{1}{2},0\right).$

 $H_f(x,y) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$, $H_f\left(\frac{1}{2},0\right)$ ist positiv definit. Also ist $\left(\frac{1}{2},0\right)$ eine lokale Minimalstelle und $f\left(\frac{1}{2},0\right) = \frac{1}{4} - \frac{1}{2} = -\frac{1}{4}$. Es gibt keine weiteren lokalen Extremalstellen in D. Weiter gilt:

$$\max\left\{ x^2 + y^2 - x : x^2 + y^2 = 1 \right\} = \max\left\{ 1 - x : x^2 + y^2 = 1 \right\}.$$

Es gilt: $x^2 + y^2 = 1 \Rightarrow x^2 \le 1 \Rightarrow -1 \le x \le 1 \Rightarrow 1 - x \le 2$. Wegen f(-1,0) = 2 folgt:

$$\max \left\{ x^2 + y^2 - x : x^2 + y^2 \le 1 \right\} = 2.$$

Ebenso: $x^2 + y^2 = 1 \Rightarrow 1 - x \ge 0$. Wegen $f\left(\frac{1}{2}, 0\right) = -\frac{1}{4}$ folgt:

$$\min\left\{x^2 + y^2 - x : x^2 + y^2 \le 1\right\} = -\frac{1}{4}.$$

Kapitel 19

Differential rechnung im \mathbb{R}^n (vektorwertige Funktionen)

In diesem §en sei stets $\emptyset \neq D \subseteq \mathbb{R}^n$, D offen und $f = (f_1, \ldots, f_m) \colon D \to \mathbb{R}^m$ eine Funktion, also $f_j \colon D \to \mathbb{R}$ $(j = 1, \ldots, m)$.

Definition:

a) Es sei $x_0 \in D$. f heißt in x_0 partiell differenzierbar: \iff Alle f_j sind in x_0 partiell differenzierbar. In diesem Fall heißt

$$\frac{\partial f}{\partial x}(x_0) := \frac{\partial (f_1, \dots, f_m)}{\partial (x_1, \dots, x_n)}(x_0) := J_f(x_0) := \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x_0) & \dots & \frac{\partial f_1}{\partial x_n}(x_0) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(x_0) & \dots & \frac{\partial f_m}{\partial x_n}(x_0) \end{pmatrix}$$

die Jacobi- oder Funktionalmatrix von f in x_0 .

Beachte: In der Jacobimatrix stehen zeilenweise die Gradienten der Koordinatenfunktionen.

- b) Es sei $p \in \mathbb{N}$. $f \in C^p(D, \mathbb{R}^m) : \iff f_j \in C^p(D, \mathbb{R}) \ (j = 1, \dots, m)$.
- c) f heißt $in \ x_0 \in D$ differenzierbar : \iff Es existiert eine $m \times n$ -Matrix A mit:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - Ah}{\|h\|} = 0.$$

Satz 19.1 (Satz und Definition (ohne Beweis)): Es sei $x_0 \in D$.

- a) f ist in x_0 differenzierbar \iff Alle f_j sind in x_0 differenzierbar. In diesem Fall gilt:
 - (i) f ist in x_0 stetig,

- (ii) f ist in x_0 partiell differenzierbar,
- (iii) die Matrix A in obiger Definition c) ist eindeutig bestimmt: $A = J_f(x_0)$.
- b) Ist f in x_0 differenzierbar, so heißt $f'(x_0) := J_f(x_0)$ die **Ableitung von** f in x_0 . Aus 19.1 und 18.3 folgt:

Satz 19.2: Sind alle partiellen Ableitungen $\frac{\partial f_j}{\partial x_k}$ auf D vorhanden und in x_0 stetig, so ist f in x_0 differenzierbar. Ist $f \in C^1(D, \mathbb{R}^m)$, so ist f auf D differenzierbar.

Beispiele:

a)
$$D = \mathbb{R}^2$$
, $f(x,y) = \left(\underbrace{x+y}_{f_1(x,y)}, \underbrace{xy}_{f_2(x,y)}, \underbrace{x^2y}_{f_3(x,y)}\right)$. Es gilt $f \in C^1(\mathbb{R}^2, \mathbb{R}^3)$.
$$\frac{\partial f_1}{\partial x}(x,y) = 1, \ \frac{\partial f_1}{\partial y}(x,y) = 1, \ \frac{\partial f_2}{\partial x}(x,y) = y,$$

$$\frac{\partial f_2}{\partial y}(x,y) = x, \ \frac{\partial f_3}{\partial x}(x,y) = 2xy, \ \frac{\partial f_3}{\partial y}(x,y) = x^2.$$
Also: $f'(x,y) = J_f(x,y) = \begin{pmatrix} 1 & 1 \\ y & x \\ 2xy & x^2 \end{pmatrix}$.

b) Es sei A eine $m \times n$ -Matrix, $b \in \mathbb{R}^m$ und $f(x) := Ax + b \ (x \in \mathbb{R}^n)$. Es sei $x_0 \in \mathbb{R}^n$. Dann gilt:

$$f(x_0 + h) - f(x_0) - Ah = A(x_0 + h) + b - (Ax_0 + b) - Ah = 0.$$

Also ist f in x_0 differenzierbar und $f'(x_0) = A$. Somit gilt: f ist auf \mathbb{R}^n differenzierbar und $\forall x \in \mathbb{R}^n$: f'(x) = A.

Satz 19.3 (Die Kettenregel (ohne Beweis)): Es sei $f: D \to \mathbb{R}^m$ in $x_0 \in D$ differenzierbar, es sei $\widetilde{D} \subseteq \mathbb{R}^m$ offen, $f(D) \subseteq \widetilde{D}$ und $g: \widetilde{D} \to \mathbb{R}^p$ sei differenzierbar in $y_0 := f(x_0)$. Dann ist

$$\phi := g \circ f \colon D \to \mathbb{R}^p$$

in x_0 differenzierbar und

$$\phi'(x_0) = (g \circ f)'(x_0) = \underbrace{g'(f(x_0)) \cdot f'(x_0)}_{Matrizen produkt}.$$

Wichtigster Fall: p = 1, also $g(z) = g(z_1, \dots, z_m)$ reellwertig und $\phi \colon D \to \mathbb{R}$ mit

$$\phi(x) = \phi(x_1, \dots, x_n) = g(f(x)) = g(f_1(x), f_2(x), \dots, f_m(x)).$$

Mit 19.3 folgt:

$$\operatorname{grad} \phi(x) = \phi'(x) = g'(f(x)) \cdot f'(x) = \operatorname{grad} g(f(x)) \cdot J_f(x)$$

$$= (g_{z_1}(f(x)), g_{z_2}(f(x)), \dots, g_{z_m}(f(x))) \cdot \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x) & \dots & \frac{\partial f_1}{\partial x_n}(x) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(x) & \dots & \frac{\partial f_m}{\partial x_n}(x) \end{pmatrix}.$$

Also ist z.B.:

$$\phi_{x_1}(x) = g_{z_1}(f(x)) \frac{\partial f_1}{\partial x_1}(x) + g_{z_2}(f(x)) \frac{\partial f_2}{\partial x_1}(x) + \dots + g_{z_m}(f(x)) \frac{\partial f_m}{\partial x_1}(x).$$

Allgemein: $\forall j \in \{1, \dots, n\}$:

$$\phi_{x_j}(x) = g_{z_1}(f(x)) \frac{\partial f_1}{\partial x_j}(x) + g_{z_2}(f(x)) \frac{\partial f_2}{\partial x_j}(x) + \ldots + g_{z_m}(f(x)) \frac{\partial f_m}{\partial x_j}(x).$$

Beispiele:

a)
$$n = 2$$
, $m = 3$, $p = 1$: $\phi(x, y) = g(x^2y, xy, x\sin y)$, $(g(z) = g(z_1, z_2, z_3))$.

$$\phi_x(x, y) = g_{z_1}(x^2y, xy, x\sin y) \cdot 2xy + g_{z_2}(x^2y, xy, x\sin y) \cdot y + g_{z_3}(x^2y, xy, x\sin y) \cdot \sin y$$

$$\phi_y(x, y) = g_{z_1}(x^2y, xy, x\sin y) \cdot x^2 + g_{z_2}(x^2y, xy, x\sin y) \cdot x + g_{z_3}(x^2y, xy, x\sin y) \cdot x \cos y$$

b) Gegeben: $f \colon \mathbb{R}^2 \to \mathbb{R}$. Polarkoordinaten:

$$x = r \cos \varphi, \ y = r \sin \varphi.$$

Es sei $u(r,\varphi) := f(r\cos\varphi, r\sin\varphi)$. Dann gilt:

$$u_r(r,\varphi) = f_x(r\cos\varphi, r\sin\varphi)\cos\varphi + f_y(r\cos\varphi, r\sin\varphi)\sin\varphi,$$

$$u_{\varphi}(r,\varphi) = f_x(r\cos\varphi, r\sin\varphi) \left(-r\sin\varphi\right) + f_y(r\cos\varphi, r\sin\varphi)r\cos\varphi.$$

Implizit definierte Funktionen

Motivation:

a) Betrachte $f(x,y) = 2x^3 + y$. Es gilt $f(x,y) = 0 \iff y = -2x^3$. Setzt man $g(x) := -2x^3$, so gilt:

$$\forall x \in \mathbb{R}: f(x, g(x)) = 0.$$

Man sagt:

"Die Gleichung f(x,y)=0 kann nach y aufgelöst werden in der Form y=g(x)", oder

"durch die Gleichung f(x,y) = 0 wird eine Funktion g definiert mit f(x,g(x)) = 0".

b) Auch in Fällen, in denen keine "formelmäßige" (also explizite) Auflösung der Gleichung f(x,y) = 0 nach y möglich ist, kann manchmal die Existenz einer implizit definierten Funktion g gesichert werden, also die Existenz einer Funktion g mit f(x,g(x)) = 0.

Beispiel: $f(x,y) = y + xy^2 - e^{xy}$ $((x,y) \in \mathbb{R}^2)$. Unten werden wir sehen: Es gibt $\delta, \eta > 0$ und genau eine stetig differenzierbare Funktion $g: (-\delta, \delta) \to (1 - \eta, 1 + \eta)$ mit:

$$f(x, g(x)) = 0 \ (x \in (-\delta, \delta)) \ \text{und} \ g(0) = 1.$$

Frage: Was ist g'(0)?

Aus

$$0 = f(x, g(x)) \quad (x \in (-\delta, \delta))$$

folgt durch differenzieren nach x:

$$0 = f_x(x, g(x)) \cdot 1 + f_y(x, g(x)) \cdot g'(x) \implies_{x=0} 0 = f_x(0, 1) + f_y(0, 1)g'(0).$$

Es gilt:

$$f_x(x,y) = y^2 - ye^{xy} \implies f_x(0,1) = 0,$$

 $f_y(x,y) = 1 + 2xy - xe^{xy} \implies f_y(0,1) = 1.$

Also: q'(0) = 0.

19.4 Spezialfall (ohne Beweis): Es sei $n=2, f \in C^1(D,\mathbb{R}), (x_0,y_0) \in D, f(x_0,y_0) = 0$ und $f_y(x_0,y_0) \neq 0$. Dann existieren $\delta, \eta > 0$ und genau eine stetig differenzierbare Funktion $g: (x_0 - \delta, x_0 + \delta) \to (y_0 - \eta, y_0 + \eta)$ mit

$$g(x_0) = y_0$$
 und $\forall x \in (x_0 - \delta, x_0 + \delta) : f(x, g(x)) = 0.$

(Man sagt: "g wird durch die Gleichung f(x,y) = 0 implizit definiert".)

Zurück zu obigem Beispiel: Es ist f(0,1) = 0 und $f_y(0,1) = 1 \neq 0$. Also existiert ein $\delta, \eta > 0$ und genau eine stetig differenzierbare Funktion $g: (-\delta, \delta) \to (1 - \eta, 1 + \eta)$ mit g(0) = 1 und $\forall x \in (-\delta, \delta): f(x, g(x)) = 0$.

Noch ein Beispiel: $f(x,y) = e^{\sin(xy)} + x^2 - 2y - 1 \ ((x,y) \in \mathbb{R}^2).$

Behauptung: Es gibt $\delta, \eta > 0$ und genau eine stetig differenzierbare Funktion

$$g: (-\delta, \delta) \to (-\eta, \eta)$$

mit:

$$\forall x \in (-\delta, \delta): f(x, q(x)) = 0 \text{ und } q(0) = 0.$$

Beweis: Betrachte $(x_0, y_0) = (0, 0)$. Es gilt f(0, 0) = 0. Weiter ist

$$f_y(x,y) = e^{\sin(xy)}\cos(xy)x - 2 \implies f_y(0,0) = -2 \neq 0.$$

Die Behauptung folgt aus 19.4.

Berechne g'(0): Es gilt

$$0 = f(x, g(x)) \ (x \in (-\delta, \delta)).$$

Differenzieren nach x: $0 = f_x(x, g(x)) \cdot 1 + f_y(x, g(x)) \cdot g'(x)$

$$\stackrel{x=0}{\Longrightarrow} 0 = f_x(0,0) + f_y(0,0)g'(0) = f_x(0,0) - 2g'(0).$$

Weiter ist $f_x(x,y) = e^{\sin(xy)}\cos(xy) \cdot y + 2x$, also $f_x(0,0) = 0$. Somit gilt: g'(0) = 0.

Im Folgenden seien $n, p \in \mathbb{N}, \emptyset \neq D \subseteq \mathbb{R}^{n+p}, D$ offen und $f = (f_1, \dots, f_p) \in C^1(D, \mathbb{R}^p).$

Die Punkte in D schreiben wir in der Form (x, y), wobei $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ und $y = (y_1, \dots, y_p) \in \mathbb{R}^p$, also $(x, y) = (x_1, \dots, x_n, y_1, \dots, y_p)$. Wir setzen

$$\frac{\partial f}{\partial x} := \underbrace{\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_p}{\partial x_1} & \cdots & \frac{\partial f_p}{\partial x_n} \end{pmatrix}}_{p \times n\text{-Matrix}}, \qquad \frac{\partial f}{\partial y} := \underbrace{\begin{pmatrix} \frac{\partial f_1}{\partial y_1} & \cdots & \frac{\partial f_1}{\partial y_p} \\ \vdots & & \vdots \\ \frac{\partial f_p}{\partial y_1} & \cdots & \frac{\partial f_p}{\partial y_p} \end{pmatrix}}_{p \times p\text{-Matrix}}.$$

Dann ist $f'(x,y) = J_f(x,y) = \left(\frac{\partial f}{\partial x}(x,y), \frac{\partial f}{\partial y}(x,y)\right) (p \times (n+p)\text{-Matrix}).$

Satz 19.5 (Satz über implizit definierte Funktionen (ohne Beweis)):

Es sei $(x_0, y_0) \in D$, $f(x_0, y_0) = 0$ und $\det \frac{\partial f}{\partial y}(x_0, y_0) \neq 0$. Dann existieren $\delta, \eta > 0$ mit folgenden Eigenschaften:

- a) $U_{\delta}(x_0) \times U_{\eta}(y_0) \subseteq D$,
- b) $\forall x \in U_{\delta}(x_0) \; \exists_1 y =: g(x) \in U_{\eta}(y_0) : \; f(x,y) = 0,$
- c) $g \in C^1(U_\delta(x_0), \mathbb{R}^p),$
- d) $\forall x \in U_{\delta}(x_0)$: $\det \frac{\partial f}{\partial y}(x, g(x)) \neq 0$,
- e)

$$\forall x \in U_{\delta}(x_0): g'(x) = -\left(\frac{\partial f}{\partial y}(x, g(x))\right)^{-1} \cdot \left(\frac{\partial f}{\partial x}(x, g(x))\right).$$

Zusatz: Ist $f \in C^l(D, \mathbb{R}^p)$, $l \geq 2$, so ist $g \in C^l(U_\delta(x_0), \mathbb{R}^p)$.

Bemerkung: Für die in 19.5 definierte Funktion $g: U_{\delta}(x_0) \to U_{\eta}(y_0)$ gilt offensichtlich:

- a) $g(x_0) = y_0$,
- b) $\forall x \in U_{\delta}(x_0) : f(x, g(x)) = 0.$

Beispiele:

a) $D = \mathbb{R}^3 \ (n = 2, p = 1)$:

$$f(x, y, z) = x^4 + 2x\cos y + \sin z.$$

Behauptung: Es gibt $\delta, \eta > 0$ und genau eine Funktion $g: U_{\delta}((0,0)) \to U_{\eta}(0)$ mit:

$$g(0,0) = 0$$
 und $f(x, y, g(x, y)) = 0$ $((x, y) \in U_{\delta}((0,0))).$

Berechne q'(0,0).

Lösung: Betrachte $(x_0, y_0, z_0) = (0, 0, 0)$. Es gilt:

$$f(0,0,0) = 0 \checkmark$$
, $f_z(x,y,z) = \cos z$, $f_z(0,0,0) = 1 \neq 0 \checkmark$.

Die Behauptung folgt aus 19.5. Also

$$(*) f(x, y, g(x, y)) = 0 ((x, y) \in U_{\delta}((0, 0))).$$

Differenzieren von (*) nach x:

$$0 = f_x(x, y, g(x, y)) \cdot 1 + f_y(x, y, g(x, y)) \cdot 0 + f_z(x, y, g(x, y)) \cdot g_x(x, y)$$
$$\Rightarrow 0 = f_x(0, 0, 0) + f_z(0, 0, 0)g_x(0, 0).$$

Differenzieren von (*) nach y:

$$0 = f_x(x, y, g(x, y)) \cdot 0 + f_y(x, y, g(x, y)) \cdot 1 + f_z(x, y, g(x, y)) \cdot g_y(x, y)$$
$$\Rightarrow 0 = f_y(0, 0, 0) + f_z(0, 0, 0)g_y(0, 0).$$

Mit $f_z(0,0,0) = 1$ folgt

$$g_x(0,0) = -f_x(0,0,0), \ g_y(0,0) = -f_y(0,0,0).$$

Weiter ist

$$f_x(x, y, z) = 4x^3 + 2\cos y, \ f_y(x, y, z) = -2x\sin y,$$

also

$$f_x(0,0,0) = 2, \ f_y(0,0,0) = 0.$$

Somit ist $g'(0,0) = (g_x(0,0), g_y(0,0)) = (-2,0).$

b) Behauptung: Es gibt $\delta, \eta > 0$ und genau eine Funktion $g: U_{\delta}((0, e)) \to U_{\eta}(2)$ mit:

$$g(0,e) = 2 \text{ und } y^2 + xg(x,y) + (g(x,y))^2 - e^{g(x,y)} = 4 \ ((x,y) \in U_{\delta}((0,e))).$$

Berechne $g_x(0,e)$.

Lösung: Setze $f(x, y, z) := y^2 + xz + z^2 - e^z - 4$ und betrachte $(x_0, y_0, z_0) = (0, e, 2)$. Es gilt:

$$f(x_0, y_0, z_0) = e^2 + 0 + 4 - e^2 - 4 = 0 \checkmark,$$

$$f_z(x, y, z) = x + 2z - e^z, \quad f_z(0, e, 2) = 0 + 4 - e^2 \neq 0 \checkmark.$$

Die Behauptung folgt aus 19.5. Es gilt:

$$4 = y^2 + xg(x,y) + g(x,y)^2 - e^{g(x,y)} ((x,y) \in U_{\delta}((0,e))).$$

Differenzieren nach x:

$$0 = g(x,y) + xg_x(x,y) + 2g(x,y)g_x(x,y) - e^{g(x,y)}g_x(x,y)$$

$$\Rightarrow 0 = 2 + 4g_x(0,e) - e^2g_x(0,e) = 2 + (4 - e^2)g_x(0,e)$$

$$\Rightarrow g_x(0,e) = \frac{2}{e^2 - 4}.$$

Satz 19.6 (Der Umkehrsatz (ohne Beweis)):

Es sei $D \subseteq \mathbb{R}^n$ offen, $f \in C^1(D, \mathbb{R}^n)$ und $x_0 \in D$. Ist $\det f'(x_0) \neq 0$, so existiert ein $\delta > 0$ mit:

- a) $U_{\delta}(x_0) \subset D$ und $f(U_{\delta}(x_0))$ ist offen,
- b) f ist auf $U_{\delta}(x_0)$ injektiv,
- c) $f^{-1}: f(U_{\delta}(x_0)) \to U_{\delta}(x_0)$ ist in $C^1(f(U_{\delta}(x_0)), \mathbb{R}^n)$,

$$\det f'(x) \neq 0 \quad (x \in U_{\delta}(x_0))$$

und

$$(f^{-1})'(y) = (f'(f^{-1}(y)))^{-1} \quad (y \in f(U_{\delta}(x_0))).$$

Beispiele:

a) $D = \mathbb{R}^2$, $f(x, y) = (e^x \cos y, e^x \sin y)$,

$$f'(x,y) = \begin{pmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{pmatrix},$$

$$\det f'(x,y) = e^x \cos^2 y + e^x \sin^2 y = e^x \neq 0 \quad ((x,y) \in \mathbb{R}^2).$$

Es sei $(x_0, y_0) \in \mathbb{R}^2$. Nach 19.6 gilt: Es gibt ein $\delta > 0$ mit:

f ist auf $U_{\delta}((x_0, y_0))$ injektiv.

Aber: f ist auf \mathbb{R}^2 nicht injektiv:

$$f(x,y) = f(x, y + 2k\pi) \quad (k \in \mathbb{Z}).$$

Betrachte speziell $(x_0, y_0) \coloneqq \left(0, \frac{\pi}{2}\right)$. Es gilt $f\left(0, \frac{\pi}{2}\right) = (0, 1)$, also $f^{-1}(0, 1) = \left(0, \frac{\pi}{2}\right)$ und

$$(f^{-1})'(0,1) = (f'(0,\frac{\pi}{2}))^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

b) $D = \mathbb{R}^3$, f(x, y, z) = (yz, xz, xy),

$$f'(x,y,z) = \begin{pmatrix} 0 & z & y \\ z & 0 & x \\ y & x & 0 \end{pmatrix}.$$

Betrachte $(x_0, y_0, z_0) := (1, 1, 1)$. Es gilt:

$$\det f'(1,1,1) = \det \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = 2 \neq 0.$$

Nach 19.6 existiert ein $\delta > 0$ so, daß f auf $U_{\delta}((1,1,1))$ injektiv ist. Es ist

$$f(1,1,1) = (1,1,1),$$

also

$$(f^{-1})'(1,1,1) = (f'(1,1,1))^{-1} = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}.$$

Kapitel 20

Integration im \mathbb{R}^n

Alle Sätze i.d. §en geben wir ohne Beweis an!

Sind $[a_1, b_1], [a_2, b_2], \ldots, [a_n, b_n]$ kompakte Intervalle in \mathbb{R} (also $a_j \leq b_j$ $(j = 1, \ldots, n)$), so heißt

$$I := [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_n, b_n]$$

ein kompaktes Intervall im \mathbb{R}^n .

Die Zahl $|I| := (b_1 - a_1)(b_2 - a_2) \cdots (b_n - a_n)$ heißt **Inhalt** (oder **Volumen**) von I. Beachte:

$$|I| = 0 \iff \exists j \in \{1, \dots, n\} : a_j = b_j.$$

Zu jedem $j \in \{1, \dots, n\}$ sei eine Zerlegung Z_j von $[a_j, b_j]$ gegeben. Dann heißt

$$Z \coloneqq Z_1 \times Z_2 \times \ldots \times Z_n$$

eine **Zerlegung von** I.

Ein Teilintervall \widetilde{I} von I bezüglich Z hat die Form

$$T_1 \times T_2 \times \ldots \times T_n$$
,

wobei T_j jeweils ein Teilintervall bezüglich Z_j ist.

Es seien I_1, \ldots, I_m die Teilintervalle bzgl. Z. Dann gilt:

$$I = I_1 \cup I_2 \cup \ldots \cup I_m, \quad |I| = |I_1| + \ldots + |I_m|.$$

Definition: Es sei I wie oben, $f: I \to \mathbb{R}$ sei beschränkt und Z sei eine Zerlegung von I mit den Teilintervallen I_1, \ldots, I_m . Wir setzen:

$$m_i := \inf f(I_i), \ M_i := \sup f(I_i) \ (j = 1, \dots, m),$$

$$s_f(Z) \coloneqq \sum_{j=1}^m m_j |I_j|$$
 die Untersumme von f bzgl. Z ,

$$S_f(Z) := \sum_{j=1}^m M_j |I_j|$$
 die Obersumme von f bzgl. Z.

Satz 20.1: Es seien I und f wie oben und Z und \tilde{Z} seien Zerlegungen von I. Dann gilt:

a) Ist
$$Z \subseteq \widetilde{Z} \Rightarrow s_f(Z) \le s_f(\widetilde{Z}), S_f(Z) \ge S_f(\widetilde{Z}).$$

b)
$$\left(\inf f(I)\right)|I| \le s_f(Z) \le S_f(\tilde{Z}) \le \left(\sup f(I)\right)|I|.$$

Definition: Es seien I und f wie oben.

$$s_f \coloneqq \sup \{s_f(Z) \colon Z \text{ Zerlegung von } I\},$$

 $S_f \coloneqq \inf \{S_f(Z) \colon Z \text{ Zerlegung von } I\}.$

Mit 20.1 folgt: $s_f \leq S_f$. f heißt **integrierbar (ib) über** $I : \iff s_f = S_f$. In diesem Fall heißt

$$\int_{I} f dx := \int_{I} f(x) dx := s_f \ (= S_f)$$

das Integral von f über I und man schreibt $f \in R(I)$ oder $f \in R(I, \mathbb{R})$.

Satz 20.2: Es sei I ein kompaktes Intervall im \mathbb{R}^n , $f, g \in R(I)$ und es seien $\alpha, \beta \in \mathbb{R}$. Dann gilt:

a)
$$\alpha f + \beta g, \ fg, \ |f| \in R(I),$$

$$\int_{I} (\alpha f + \beta g) dx = \alpha \int_{I} f dx + \beta \int_{I} g dx, \quad \left| \int_{I} f(x) dx \right| \le \int_{I} |f(x)| dx.$$

- b) Ist $f \leq g$ auf I, so ist $\int_I f dx \leq \int_I g dx$.
- c) Gilt $|g(x)| \ge \alpha$ $(x \in I)$ für ein $\alpha > 0$, so ist $\frac{f}{g} \in R(I)$.

d) $C(I) \subseteq R(I)$.

Satz 20.3 (Satz von Fubini): Es seien $p, q \in \mathbb{N}$, n = p + q (also $\mathbb{R}^n = \mathbb{R}^p \times \mathbb{R}^q$). Es sei I_1 ein kompaktes Intervall im \mathbb{R}^p , I_2 sei ein kompaktes Intervall im \mathbb{R}^q , es sei $I := I_1 \times I_2 \subseteq \mathbb{R}^n$ und $f \in R(I)$. Punkte in I bezeichnen wir mit (x, y), wobei $x \in I_1$ und $y \in I_2$.

a) Für jedes feste $y \in I_2$ sei die Funktion $x \mapsto f(x,y)$ integrierbar über I_1 und es sei $g(y) := \int_{I_1} f(x,y) dx$. Dann gilt $g \in R(I_2)$ und

$$\int_{I} f(x,y)d(x,y) = \int_{I_{2}} g(y)dy = \int_{I_{2}} \left(\int_{I_{1}} f(x,y)dx \right) dy.$$

b) Für jedes feste $x \in I_1$ sei die Funktion $y \mapsto f(x,y)$ integrierbar über I_2 und es sei $g(x) := \int_{I_2} f(x,y) dy$. Dann gilt $g \in R(I_1)$ und

$$\int_{I} f(x,y)d(x,y) = \int_{I_{1}} g(x)dx = \int_{I_{1}} \left(\int_{I_{2}} f(x,y)dy \right) dx.$$

Folgerung 20.4: Es sei $I = [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_n, b_n]$ und $f \in C(I)$. Dann ist

$$\int_{I} f(x)dx = \int_{I} f(x_{1}, \dots, x_{n})d(x_{1}, \dots, x_{n})$$

$$= \int_{a_{1}}^{b_{1}} \left(\dots \int_{a_{n-1}}^{b_{n-1}} \left(\int_{a_{n}}^{b_{n}} f(x_{1}, \dots, x_{n}) dx_{n} \right) dx_{n-1} \dots \right) dx_{1}$$

wobei die Reihenfolge der Integrationen beliebig vertauscht werden darf.

Beispiele:

a) Betrachte $I = \left[0, \frac{\pi}{2}\right] \times \left[0, \frac{\pi}{2}\right]$.

$$\int_{I} \sin(x+y)d(x,y) = \int_{0}^{\frac{\pi}{2}} \left(\int_{0}^{\frac{\pi}{2}} \sin(x+y)dy \right) dx$$

$$= \int_{0}^{\frac{\pi}{2}} \left[-\cos(x+y) \right]_{y=0}^{y=\frac{\pi}{2}} dx$$

$$= \int_{0}^{\frac{\pi}{2}} \left(-\cos\left(x+\frac{\pi}{2}\right) + \cos(x) \right) dx$$

$$= \left[-\sin\left(x+\frac{\pi}{2}\right) + \sin x \right]_{0}^{\frac{\pi}{2}}$$

$$= -\sin(\pi) + \sin\left(\frac{\pi}{2}\right) - \left(-\sin\left(\frac{\pi}{2}\right) + \sin 0 \right) = 1 + 1 = 2.$$

b) Betrachte $I = [0, 2] \times [0, 1] \times [0, 1]$.

$$\int_{I} (x^{2}z + yxz) d(x, y, z) = \int_{0}^{1} \left(\int_{0}^{2} \left(\int_{0}^{1} (x^{2}z + yxz) dz \right) dx \right) dy$$

$$= \int_{0}^{1} \left(\int_{0}^{2} \left[\frac{1}{2}x^{2}z^{2} + \frac{1}{2}yxz^{2} \right]_{z=0}^{z=1} dx \right) dy$$

$$= \int_{0}^{1} \left(\int_{0}^{2} \left(\frac{1}{2}x^{2} + \frac{1}{2}yx \right) dx \right) dy$$

$$= \int_{0}^{2} \left(\int_{0}^{1} \left(\frac{1}{2}x^{2} + \frac{1}{2}yx \right) dy \right) dx$$

$$= \int_{0}^{2} \left[\frac{1}{2}x^{2}y + \frac{1}{4}y^{2}x \right]_{y=0}^{y=1} dx$$

$$= \int_{0}^{2} \left(\frac{1}{2}x^{2} + \frac{1}{4}x \right) dx$$

$$= \int_{0}^{2} \left(\frac{1}{2}x^{2} + \frac{1}{4}x \right) dx$$

$$= \frac{1}{6}x^{3} + \frac{1}{8}x^{2} \Big|_{0}^{2} = \frac{8}{6} + \frac{4}{8} = \frac{8}{6} + \frac{3}{6} = \frac{11}{6}.$$

c) Es sei $I = [a_1, b_1] \times [a_2, b_2] \subseteq \mathbb{R}^2$, $f \in C([a_1, b_1])$ und $g \in C([a_2, b_2])$.

$$\int_{I} f(x)g(y)d(x,y) = \int_{a_{1}}^{b_{1}} \left(\int_{a_{2}}^{b_{2}} f(x)g(y)dy \right) dx
= \int_{a_{1}}^{b_{1}} f(x) \left(\int_{a_{2}}^{b_{2}} g(y)dy \right) dx
= \left(\int_{a_{1}}^{b_{1}} f(x)dx \right) \left(\int_{a_{2}}^{b_{2}} g(y)dy \right).$$

Inhalt von Mengen.

Es sei $B \subseteq \mathbb{R}^n$ beschränkt. Wie kann man B einen Inhalt zuordnen? Die Funktion $c_B : \mathbb{R}^n \to \mathbb{R}$,

$$c_B(x) := \begin{cases} 1, & x \in B \\ 0, & x \notin B \end{cases}$$

heißt charakteristische Funktion von B.

Wähle ein kompaktes Intervall I mit $B \subseteq I$.

Es sei Z eine Zerlegung von I mit den Teilintervallen I_1,\ldots,I_m . Dann gilt

$$\inf c_B(I_j) = \begin{cases} 1, & \text{falls } I_j \subseteq B \\ 0, & \text{falls } I_j \not\subseteq B \end{cases}.$$

Damit folgt:

$$s_{c_B}(Z) = \sum_{j: I_j \subseteq B} |I_j|.$$

Weiter gilt:

$$\sup c_B(I_j) = \begin{cases} 1, & \text{falls } I_j \cap B \neq \emptyset \\ 0, & \text{falls } I_j \cap B = \emptyset \end{cases}.$$

Damit folgt:

$$S_{c_B}(Z) = \sum_{j: I_i \cap B \neq 0} |I_j|.$$

Wir setzen

 $\underline{v}(B) \coloneqq s_{c_B}$ innerer Inhalt von B,

 $\overline{v}(B) \coloneqq S_{c_B}$ äußerer Inhalt von B.

Die Menge B heißt **messbar** (mb) : $\iff c_B \in R(I)$. In diesem Fall ist

$$\underline{v}(B) = \overline{v}(B) = \int_{I} c_{B}(x) dx$$

und

$$|B| := \int_{I} c_B(x) dx$$

heißt der Inhalt von B.

Diese Definitionen sind unabhängig von der Wahl von I.

Beispiele:

- a) Betrachte $B = \emptyset$. Es sei I ein beliebiges kompaktes Intervall im \mathbb{R}^n . Dann gilt $c_B(x) = 0$ ($x \in I$). Also ist $s_{c_B}(Z) = S_{c_B}(Z) = 0$ für jede Zerlegung Z. Somit ist \emptyset messbar und $|\emptyset| = 0$.
- b) Es sei $B \subseteq \mathbb{R}^n$ ein kompaktes Intervall. Wähle I = B. Mit obigen Bezeichnungen ist

$$s_{c_B}(Z) = \underbrace{\sum_{j=1}^m |I_j|}_{=|I|} = S_{c_B}(Z)$$
 für jede Zerlegung Z .

Also ist B messbar und |B| = |I| (= frühere Definition des Inhalts von I).

c) Betrachte $B := [0,1] \cap \mathbb{Q}$ und I = [0,1]. Es gilt:

$$c_B(x) = \begin{cases} 1, & x \in [0, 1] \cap \mathbb{Q} \\ 0, & \text{sonst.} \end{cases}.$$

Aus HMI ist bekannt: $c_B \notin R(I)$. Also ist B nicht messbar.

Definition: Es sei $B \subseteq \mathbb{R}^n$ messbar und $f : B \to \mathbb{R}$ beschränkt. Setze

$$f_B(x) := \begin{cases} f(x), & x \in B \\ 0, & x \notin B \end{cases}.$$

Wähle ein kompaktes Intervall I mit $B \subseteq I$.

f heißt **über** B **integrierbar**: \iff $f_B \in R(I)$. In diesem Fall schreiben wir: $f \in R(B)$ und

$$\int_B f dx \coloneqq \int_B f(x) dx \coloneqq \int_I f_B(x) dx$$

heißt Integral von f über B.

Diese Definitionen sind unabhängig von der Wahl von I.

Bemerkung: Ist $B \subseteq \mathbb{R}^n$ messbar und speziell f = 1 auf B, so ist $f_B = c_B$ und somit

$$|B| = \int_B 1 dx.$$

Satz 20.5: Es seien $A, B \subseteq \mathbb{R}^n$ messbar und $\alpha, \beta \in \mathbb{R}$.

- a) Ist $f \in C(B, \mathbb{R})$ beschränkt, so ist $f \in R(B)$.
- b) Es seien $f, g \in R(B)$. Dann gilt:
 - (i) $\alpha f + \beta g$, fg, $|f| \in R(B)$; $\int_{B} (\alpha f + \beta g) dx = \alpha \int_{B} f dx + \beta \int_{B} g dx;$ $|\int_{B} f dx| \leq \int_{B} |f| dx.$
 - (ii) Ist $f \leq g$ auf B, so ist $\int_B f dx \leq \int_B g dx$.
 - (iii) Existiert ein $\gamma > 0$ mit $|g(x)| \ge \gamma$ $(x \in B)$, so ist $\frac{f}{g} \in R(B)$.

- c) (i) $A \cup B$, $A \cap B$ und $A \setminus B$ sind messbar.
 - (ii) Aus $A \subseteq B$ folgt $|A| \le |B|$.
 - (iii) $f \in R(A \cup B) \iff f \in R(A) \cap R(B)$. In diesem Fall:

$$\int_{A \cup B} f dx = \int_A f dx + \int_B f dx - \int_{A \cap B} f dx.$$

Insbesondere gilt:

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

(iv) Es seien $f, g \in R(B)$ und $g \leq f$ auf B. Weiter sei

$$M_{f,g} := \{(x,y) \in \mathbb{R}^{n+1} : x \in B, g(x) \le y \le f(x) \}.$$

Dann ist $M_{f,g}$ messbar (im \mathbb{R}^{n+1}) und

$$|M_{f,g}| = \int_{B} (f - g) dx.$$

Ist speziell g = 0 auf B, so ist

$$|M_{f,0}| = \int_B f dx.$$

Beispiele:

a) Betrachte $K:=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq r^2\}\ (r>0),\ B:=[-r,r]\subseteq\mathbb{R};\ B$ ist messbar. Für $x\in B$ sei

$$f(x) := \sqrt{r^2 - x}, \quad g(x) := -\sqrt{r^2 - x^2}.$$

Dann gilt: $f, g \in R(B)$ (klar) und $K = M_{f,g}$:

$$g(x) \le y \le f(x) \iff -\sqrt{r^2 - x^2} \le y \le \sqrt{r^2 - x^2}$$
$$\iff |y| \le \sqrt{r^2 - x^2} \iff y^2 \le r^2 - x^2.$$

Also ist K messbar und

$$|K| = \int_{B} (f - g) dx = \int_{-r}^{r} 2\sqrt{r^2 - x^2} dx \stackrel{HMI}{=} \pi r^2.$$

b) Betrachte

$$K := \{(x, y, z) \in \mathbb{R}^3 : 0 \le x \le 1, 0 \le y \le 1, z \le 1 - y^2, z \ge 0\},$$

und $B := [0,1]^2$; B ist messbar. Für $(x,y) \in B$ sei

$$f(x,y) \coloneqq 1 - y^2$$
.

Dann gilt: $K = M_{f,0}$ und $f, 0 \in R(B)$. Also ist K messbar und

$$|K| = \int_{B} f(x, y)d(x, y) = \int_{0}^{1} \left(\int_{0}^{1} \left(1 - y^{2} \right) dy \right) dx$$
$$= \int_{0}^{1} \left[y - \frac{1}{3} y^{3} \right]_{y=0}^{y=1} dx$$
$$= \int_{0}^{1} \left(1 - \frac{1}{3} \right) dx = \frac{2}{3}.$$

Satz 20.6 (Prinzip von Cavalieri): Es sei $B \subseteq \mathbb{R}^{n+1}$ messbar. Für Punkte im \mathbb{R}^{n+1} schreiben wir (x, z) mit $x \in \mathbb{R}^n$ und $z \in \mathbb{R}$. Es seien $a, b \in \mathbb{R}$ so, $da\beta$ $a \leq z \leq b$ $((x, z) \in B)$.

 $F\ddot{u}r\ z\in [a,b]\ sei$

$$Q(z) \coloneqq \{x \in \mathbb{R}^n \colon (x, z) \in B\}.$$

Weiter sei Q(z) messbar für jedes $z \in [a,b]$. Dann ist $z \mapsto |Q(z)|$ integrierbar über [a,b] und

$$|B| = \int_a^b |Q(z)| dz.$$

Beispiele:

a) $B := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le r^2\}, r > 0$ (Kugel um (0, 0, 0) mit Radius r). Wähle a = -r, b = r. Für $z \in [-r, r]$ ist

$$Q(z) \coloneqq \left\{ (x,y) \in \mathbb{R}^2 \colon x^2 + y^2 \le r^2 - z^2 \right\}$$

die Kreisscheibe um (0,0) mit Radius $\sqrt{r^2-z^2}$. Es gilt $|Q(z)|=\pi\,(r^2-z^2)$. Also ist

$$|B| = \int_{-r}^{r} \pi (r^2 - z^2) dz = \frac{4}{3} \pi r^3.$$

b) $B = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 4 - z, z \in [0, 4]\}$ (ein sogenannter Rotationsparaboloid). Wähle a = 0, b = 4. Für $z \in [0, 4]$ gilt:

$$Q(z) := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4 - z\}.$$

Es gilt
$$|Q(z)| = \pi (4 - z)$$
, also $|B| = \int_0^4 \pi (4 - z) dz = 8\pi$.

Obiges Beispiel b) ist ein Spezialfall sogenannter

Rotationskörper: Es sei $a < b, f \in R([a, b])$ und $f \ge 0$ auf [a, b].

Der Graph von f rotiere z.B. um die x-Achse:

$$B = \{(x, y, z) \in \mathbb{R}^3 : y^2 + z^2 \le f(x)^2 \}.$$

Für $x \in [a, b]$ ist dann $Q(x) = \{(y, z) \in \mathbb{R}^2 : y^2 + z^2 \le f(x)^2\}$. Also gilt: $|Q(x)| = \pi f(x)^2$ und somit: $|B| = \pi \int_a^b f(x)^2 dx$.

Beispiel: Betrachte $a=0,\,b=4,\,f(x)=\sqrt{4-x}.$ Dann gilt (vgl. Bsp. b))

$$|B| = \pi \int_0^4 (4 - x) dx = 8\pi.$$

Definition: Es seien $a, b \in \mathbb{R}$, a < b, $f, g \in C([a,b])$ und $f \leq g$ auf [a,b]. Dann heißt die Menge

$$B := \left\{ (x, y) \in \mathbb{R}^2 \colon x \in [a, b], \ f(x) \le y \le g(x) \right\}$$

ein Normalbereich bzgl. der x-Achse. Nach 20.5 c) ist B messbar.

Nun sei B wie in obiger Definition und $h \in C(B, \mathbb{R})$. Wir berechnen $\int_B h(x, y) d(x, y)$. Es sei

$$m \coloneqq \min f([a, b]), M \coloneqq \max g([a, b]), I \coloneqq [a, b] \times [m, M].$$

Dann gilt:

$$\begin{split} \int_B h(x,y)d(x,y) &= \int_I h_B(x,y)d(x,y) \\ &\stackrel{Fubini}{=} \int_a^b \left(\int_m^M h_B(x,y)dy \right) dx \\ &= \int_a^b \left(\int_{f(x)}^{g(x)} h(x,y)dy \right) dx. \end{split}$$

Definition: a, b, f und g seien wie in obiger Definition. Dann heißt die Menge

$$B := \left\{ (x, y) \in \mathbb{R}^2 \colon y \in [a, b], \ f(y) \le x \le g(y) \right\}$$

ein Normalbereich bzgl. der y-Achse.

Wie oben gilt für $h \in C(B, \mathbb{R})$:

$$\int_{B} h(x,y)d(x,y) = \int_{a}^{b} \left(\int_{f(y)}^{g(y)} h(x,y)dx \right) dy.$$

Beispiele:

a) $B = \{(x, y) \in \mathbb{R}^2 \colon x \in [0, 1], \sqrt{x} \le y \le 2 - x \}$

ist ein Normalbereich bzgl. der x-Achse. Somit gilt:

$$\int_{B} (x+y)d(x,y) = \int_{0}^{1} \left(\int_{\sqrt{x}}^{2-x} (x+y)dy \right) dx$$

$$= \int_{0}^{1} \left[xy + \frac{1}{2}y^{2} \right]_{\sqrt{x}}^{2-x} dx$$

$$= \int_{0}^{1} \left(x(2-x) + \frac{1}{2}(2-x)^{2} - x\sqrt{x} - \frac{1}{2}x \right) dx$$

$$= \dots = \frac{71}{60}.$$

b) $B = \{(x, y) \in \mathbb{R}^2 \colon y \in [0, 1], 0 \le x \le y^2 \}$

ist ein Normalbereich bzgl. der y-Achse $(f(y)=0,\,g(y)=y^2)$. Also gilt:

$$\int_{B} xyd(x,y) = \int_{0}^{1} \left(\int_{0}^{y^{2}} xydx \right) dy = \int_{0}^{1} \left[\frac{1}{2} x^{2} y \right]_{x=0}^{x=y^{2}} dy = \int_{0}^{1} \frac{1}{2} y^{5} dy = \frac{1}{12}.$$

B ist auch Normalbereich bzgl. der x-Achse $(f(x) = \sqrt{x}, g(x) = 1)$. Also gilt:

$$\int_{B} xyd(x,y) = \int_{0}^{1} \left(\int_{\sqrt{x}}^{1} xydy \right) dx = \int_{0}^{1} \left[\frac{1}{2} xy^{2} \right]_{y=\sqrt{x}}^{y=1} dx = \int_{0}^{1} \left(\frac{1}{2} x - \frac{1}{2} x^{2} \right) dx = \frac{1}{12}.$$

Nun sei $A \subseteq \mathbb{R}^2$ kompakt und messbar; $f, g \colon A \to \mathbb{R}$ seien stetig und es sei $f \leq g$ auf A. Wir setzen

$$B := \left\{ (x, y, z) \in \mathbb{R}^3 \colon (x, y) \in A, \ f(x, y) \le z \le g(x, y) \right\}.$$

Dann ist B messbar. Sei $h \in C(B, \mathbb{R})$. Dann gilt:

$$\int_{B} h(x,y,z)d(x,y,z) \stackrel{Fubini}{=} \int_{A} \left(\int_{f(x,y)}^{g(x,y)} h(x,y,z)dz \right) d(x,y)$$

Beispiel: Es seien f(x,y) = 0, g(x,y) = 1 - (x+y), und

$$A = \left\{ (x,y) \in \mathbb{R}^2 \colon x \geq 0, y \geq 0, x + y \leq 1 \right\},$$

also

$$B = \{(x, y, z) \in \mathbb{R}^3 : x, y, z \ge 0, x + y + z \le 1\}.$$

Betrachte h(x, y, z) = 2xyz. Es gilt:

$$\int_{B} 2xyzd(x,y,z) = \int_{A} \left(\int_{0}^{1-(x+y)} 2xyzdz \right) d(x,y)
= \int_{A} \left[xyz^{2} \right]_{z=0}^{z=1-(x+y)} d(x,y)
= \int_{A} xy (1-(x+y))^{2} d(x,y) = \int_{0}^{1} \left(\int_{0}^{1-x} xy (1-(x+y))^{2} dy \right) dx
= \dots = \frac{1}{360}.$$

Satz 20.7 (Die Substitutionsregel): Es sei $G \subseteq \mathbb{R}^n$ offen, $g \in C^1(G, \mathbb{R}^n)$ injektiv und

$$\det g'(z) \neq 0 \quad (z \in G).$$

Weiter sei $B \subseteq G$ kompakt und messbar, A := g(B) und $f \in C(A, \mathbb{R})$. Dann ist A kompakt und messbar und es gilt:

$$\int_{A} f(x)dx = \int_{B} f(g(z)) |\det g'(z)| dz.$$

20.8 Polarkoordinaten (n = 2):

$$x = r \cos \varphi, \ y = r \sin \varphi \ (r = \|(x, y)\| = (x^2 + y^2)^{\frac{1}{2}})$$

$$g(r,\varphi) := (r\cos\varphi, r\sin\varphi), \det g'(r,\varphi) = r.$$

Betrachte $0 \le \varphi_1 < \varphi_2 \le 2\pi$, $0 \le R_1 < R_2$ und

$$A := \{ (r\cos\varphi, r\sin\varphi) : \varphi \in [\varphi_1, \varphi_2], \ r \in [R_1, R_2] \}.$$

Mit $B := [R_1, R_2] \times [\varphi_1, \varphi_2]$ ist A = g(B). Ist nun $f \in C(A, \mathbb{R})$, so gilt:

$$\int_{A} f(x,y)d(x,y) = \int_{B} f(r\cos\varphi, r\sin\varphi) \cdot \underbrace{r}_{=|\det g'(r,\varphi)|} d(r,\varphi)$$
Fuhini $f^{\varphi_{2}} \int f^{R_{2}}$

$$\stackrel{Fubini}{=} \int_{\varphi_1}^{\varphi_2} \left(\int_{R_1}^{R_2} f(r\cos\varphi, r\sin\varphi) r dr \right) d\varphi.$$

Z.B. im Fall $\varphi_1 = 0$, $\varphi_2 = 2\pi$ ist g nicht injektiv auf B, also auch in keiner offenen Obermenge von B. Die Substitutionsregel ist in diesem Fall trotzdem anwendbar.

Beispiele:

a) $A = \{(x, y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 4\}$. Hier: $R_1 = 1$, $R_2 = 2$, $\varphi_1 = 0$, $\varphi_2 = 2\pi$, also $B = [1, 2] \times [0, 2\pi]$.

$$\begin{split} \int_A x \sqrt{x^2 + y^2} d(x, y) &= \int_B (r \cos \varphi) r r d(r, \varphi) \\ &= \int_0^{2\pi} \left(\int_1^2 r^3 \cos \varphi dr \right) d\varphi \\ &= \int_0^{2\pi} \left[\frac{1}{4} r^4 \cos \varphi \right]_{r=1}^{r=2} d\varphi \\ &= \int_0^{2\pi} \left(4 \cos \varphi - \frac{1}{4} \cos \varphi \right) d\varphi \\ &= \frac{15}{4} \int_0^{2\pi} \cos \varphi d\varphi = 0. \end{split}$$

b) Es sei R > 0 und

$$A_R := \{(x, y) \in \mathbb{R}^2 : x \ge 0, \ y \ge 0, \ x^2 + y^2 \le R^2 \}.$$

Hier: $R_1 = 0, R_2 = R, \varphi_1 = 0, \varphi_2 = \frac{\pi}{2}$, also $B = [0, R] \times \left[0, \frac{\pi}{2}\right]$. Es gilt:

$$\begin{split} \int_{A_R} e^{-(x^2+y^2)} d(x,y) &= \int_B e^{-r^2} r d(r,\varphi) \\ &= \int_0^{\frac{\pi}{2}} \left(\int_0^R e^{-r^2} r dr \right) d\varphi \\ &= \frac{\pi}{2} \left[-\frac{1}{2} e^{-r^2} \right]_0^R \\ &= \frac{\pi}{2} \left(-\frac{1}{2} e^{-R^2} + \frac{1}{2} \right) = \frac{\pi}{4} \left(1 - e^{-R^2} \right) =: \alpha(R). \end{split}$$

Weiter sei

$$Q_R := [0, R] \times [0, R], \quad \beta(R) := \int_{Q_R} e^{-(x^2 + y^2)} d(x, y).$$

Es ist $A_R \subseteq Q_R$ und $e^{-(x^2+y^2)} \ge 0$, also $\alpha(R) \le \beta(R)$. Weiter ist

$$\beta(R) = \int_0^R \left(\int_0^R e^{-x^2} e^{-y^2} dy \right) dx = \left(\int_0^R e^{-x^2} dx \right)^2.$$

Setze $\rho := \sqrt{2}R$. Dann gilt $Q_R \subseteq A_\rho$ und somit

$$\beta(R) \le \alpha(\rho) = \alpha\left(\sqrt{2}R\right).$$

Fazit:

$$\forall R > 0: \ \alpha(R) \le \beta(R) \le \alpha(\sqrt{2}R).$$

Damit folgt: $\frac{\pi}{4} = \lim_{R \to \infty} \beta(R)$. Also gilt:

$$\int_0^\infty e^{-x^2} dx \text{ ist konvergent und } \int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

20.9 Zylinderkoordinaten (n = 3):

$$x = r \cos \varphi$$

$$y = r \sin \varphi$$

$$z = z$$

$$g(r, \varphi, z) := (r \cos \varphi, r \sin \varphi, z), \det g'(r, \varphi, z) = r.$$

Es seien $A, B \subseteq \mathbb{R}^3$ wie in 20.7 und $f \in C(A, \mathbb{R})$. Dann gilt:

$$\int_A f(x,y,z)d(x,y,z) = \int_B f(r\cos\varphi,r\sin\varphi,z)\cdot r\ d(r,\varphi,z).$$

Beispiele:

a) Es seien R, h > 0 und

$$A := \{(x, y, z) \in \mathbb{R}^3 \colon x^2 + y^2 \le R^2, \ 0 \le z \le h\}.$$

Für $B:=[0,R]\times[0,2\pi]\times[0,h]$ ist g(B)=A. Also gilt:

$$|A| = \int_A 1 d(x, y, z) = \int_B r d(r, \varphi, z)$$
$$= \int_0^h \left(\int_0^{2\pi} \left(\int_0^R r dr \right) d\varphi \right) dz = 2\pi h \left[\frac{1}{2} r^2 \right]_0^R = \pi R^2 h.$$

b)
$$A = \left\{ (x, y, z) \in \mathbb{R}^3 \colon x^2 + y^2 \le 1, 0 \le y \le x, z \in [0, 1] \right\},$$

$$B = [0, 1] \times [0, \frac{\pi}{4}] \times [0, 1].$$

Es gilt:

$$\int_{A} (x^{2} + y^{2} + z) d(x, y, z) = \int_{B} (r^{2} + z) r d(r, \varphi, z)
= \int_{0}^{\frac{\pi}{4}} \left(\int_{0}^{1} \left(\int_{0}^{1} (r^{3} + zr) dr \right) dz \right) d\varphi
= \frac{\pi}{4} \int_{0}^{1} \left[\frac{1}{4} r^{4} + \frac{1}{2} z r^{2} \right]_{0}^{1} dz
= \frac{\pi}{4} \int_{0}^{1} \left(\frac{1}{4} + \frac{1}{2} z \right) dz = \frac{\pi}{8}.$$

c)
$$A := \left\{ (x, y, z) \in \mathbb{R}^3 : 0 \le z \le 1, x^2 + y^2 \le \sqrt{z} \right\}.$$

$$\int_A \left(4x^2z + 4y^2z \right) d(x, y, z) = \int_B 4r^2z r d(r, \varphi, z),$$

wobei

$$B := \left\{ (r, \varphi, z) \in \mathbb{R}^3 \colon 0 \le z \le 1, 0 \le r \le \sqrt[4]{z}, 0 \le \varphi \le 2\pi \right\}$$
$$= \left\{ (r, \varphi, z) \in \mathbb{R}^3 \colon (z, \varphi) \in [0, 1] \times [0, 2\pi], \underbrace{0}_{f(z, \varphi)} \le r \le \underbrace{\sqrt[4]{z}}_{g(z, \varphi)} \right\}.$$

Also:

$$\begin{split} \int_{A} \left(4x^{2}z + 4y^{2}z \right) d(x, y, z) &= \int_{0}^{1} \left(\int_{0}^{\sqrt[4]{z}} \left(\int_{0}^{2\pi} 4r^{3}z d\varphi \right) dr \right) dz \\ &= 2\pi \int_{0}^{1} \left[r^{4}z \right]_{r=0}^{r=\sqrt[4]{z}} dz \\ &= 2\pi \int_{0}^{1} z^{2} dz = \frac{2\pi}{3}. \end{split}$$

20.10 Kugelkoordinaten (n=3): Für $\varphi = [0, 2\pi], \vartheta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$:

$$\begin{split} r = \|(x,y,z)\| &= \sqrt{x^2 + y^2 + z^2}, \ x = r\cos\varphi\cos\vartheta, \ y = r\sin\varphi\cos\vartheta, \ z = r\sin\vartheta, \\ g(r,\varphi,\vartheta) &\coloneqq (r\cos\varphi\cos\vartheta, r\sin\varphi\cos\vartheta, r\sin\vartheta), \end{split}$$

$$|\det g'(r,\varphi,\vartheta)| = r^2 \cos \vartheta.$$

Sind $A, B \subseteq \mathbb{R}^3$ wie in 20.6 (also A = g(B)), so gilt für $f \in C(A, \mathbb{R})$:

$$\int_{A} f(x, y, z) d(x, y, z) = \int_{B} f(g(r, \varphi, \vartheta)) \cdot r^{2} \cos \vartheta \ d(r, \varphi, \vartheta).$$

Beispiel: Es sei

$$A = \{(x, y, z) \in \mathbb{R}^3 \colon x, y, z \ge 0, \ x^2 + y^2 + z^2 \le 1 \}.$$

Für
$$B = \underbrace{\left[0,1\right]}_r \times \underbrace{\left[0,\frac{\pi}{2}\right]}_{\varphi} \times \underbrace{\left[0,\frac{\pi}{2}\right]}_{\vartheta} \text{ ist } g(B) = A.$$

Also gilt:

$$\begin{split} \int_A x \sqrt{x^2 + y^2 + z^2} d(x, y, z) &= \int_B (r \cos \varphi \cos \vartheta) r r^2 \cos \vartheta d(r, \varphi, \vartheta) \\ &= \int_B r^4 \cos^2 \vartheta \cos \varphi d(r, \varphi, \vartheta) \\ &= \int_0^1 \left(\int_0^{\frac{\pi}{2}} \left(\int_0^{\frac{\pi}{2}} r^4 \cos^2 \vartheta \cos \varphi d\varphi \right) d\vartheta \right) dr \\ &= \int_0^1 \left(\int_0^{\frac{\pi}{2}} r^4 \cos^2 \vartheta d\vartheta \right) dr \\ &= \frac{1}{5} \int_0^{\frac{\pi}{2}} \cos^2 \vartheta d\vartheta = \frac{\pi}{20}. \end{split}$$

Kapitel 21

Spezielle Differentialgleichungen 1. Ordnung

Definition: Es sei $\emptyset \neq D \subseteq \mathbb{R}^3$ und $f: D \to \mathbb{R}$ eine Funktion. Die Gleichung

(*)
$$f(x, y(x), y'(x)) = 0$$

heißt eine **Differentialgleichung** (**Dgl.**) 1. **Ordnung**. Sind $x_0, y_0 \in \mathbb{R}$, so heißt

(A)
$$\begin{cases} f(x, y(x), y'(x)) = 0 \\ y(x_0) = y_0 \end{cases}$$

ein Anfangswertproblem (AWP).

Ist $I \subseteq \mathbb{R}$ ein Intervall und $y \colon I \to \mathbb{R}$ eine Funktion, so heißt y eine **Lösung von** (*) auf $I : \iff y$ ist auf I differenzierbar und

$$\forall x \in I : (x, y(x), y'(x)) \in D \text{ und } f(x, y(x), y'(x)) = 0.$$

Ist y eine Lösung von (*) auf I, ist $x_0 \in I$ und $y(x_0) = y_0$, so heißt y eine **Lösung des** Anfangswertproblems (A) auf I.

Beispiele:

a) $D = \mathbb{R}^3$, f(x, y, z) = xy - z. Also: $f(x, y(x), y'(x)) = 0 \iff y'(x) = xy(x)$. Dann ist

$$y(x) = e^{\frac{1}{2}x^2}$$

eine Lösung der Differentialgleichung y'(x) = xy(x) auf \mathbb{R} (nachrechnen).

b) $D = \mathbb{R}^3$, $f(x, y, z) := y^2 + 1 - z$. Also:

$$f(x, y(x), y'(x)) = 0 \iff y'(x) = 1 + y^2(x).$$

Dann ist $y(x) = \tan x$ eine Lösung der Differentialgleichung $y'(x) = 1 + y^2(x)$ auf $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Weiter ist $y(x) = \tan x$ eine Lösung des Anfangswertproblems

$$\begin{cases} y'(x) = 1 + y^2(x) \\ y(0) = 0 \end{cases}$$

auf $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Differentialgleichungen mit getrennten Veränderlichen:

Satz 21.1: Es seien $I_1, I_2 \subseteq \mathbb{R}$ Intervalle, es seien $f \in C(I_1, \mathbb{R})$ und $g \in C(I_2, \mathbb{R})$. Die Differentialgleichung

$$y'(x) = f(x)g(y(x)) \tag{1}$$

heißt eine Differentialgleichung mit getrennten Veränderlichen.

Gilt $g(y) \neq 0$ $(y \in I_2)$, so erhält man die Lösungen von (1), indem man die Gleichung

$$\int \frac{dy}{q(y)} = \int f(x)dx + c$$

nach y auflöst.

Beweis: Es seien $H: I_2 \to \mathbb{R}$ bzw. $F: I_1 \to \mathbb{R}$ Stammfunktionen von $\frac{1}{g}$ bzw. f. Die Funktion H ist streng monoton und hat eine stetig differenzierbare Umkehrfunktion H^{-1} . Setze $y(x) = H^{-1}(F(x))$ auf einem Intervall $I \subseteq \mathbb{R}$ für das diese Verkettung definiert ist. Dann gilt:

$$y'(x) = \frac{1}{H'(H^{-1}(F(x)))} f(x) = f(x)g(y(x)) \quad (x \in I).$$

Merkregel:

$$y' = f(x)g(y) \Rightarrow \frac{dy}{dx} = f(x)g(y) \Rightarrow \frac{dy}{g(y)} = f(x)dx \Rightarrow \int \frac{dy}{g(y)} = \int f(x)dx + c.$$

Beispiele: In den folgenden Beispielen bestimme man zunächst die allgemeine Lösung der Differentialgleichung und dann die Lösung des Anfangswertproblems.

$$AWP \begin{cases} y'(x) = 1 + y^2(x) \\ y(0) = 1 \end{cases}$$

$$\frac{dy}{dx} = 1 + y^2 \Longrightarrow \frac{dy}{1 + y^2} = dx \Longrightarrow \int \frac{1}{1 + y^2} dy = \int dx + c$$

$$\Longrightarrow \arctan(y) = x + c \Longrightarrow y = \tan(x + c).$$

Allgemeine Lösung:

$$y(x) = \tan(x+c).$$

Wir betrachten die Lösungen für $|x+c| < \frac{\pi}{2}$.

Lösung des Anfangswertproblems:

$$1 = y(0) = \tan c, \ |c| < \pi/2 \implies c = \frac{\pi}{4}.$$

Es gilt:

$$\left| x + \frac{\pi}{4} \right| < \frac{\pi}{2} \iff x \in \left(-\frac{3}{4}\pi, \frac{\pi}{4} \right) =: I.$$

Die Lösung des Anfangswertproblems ist also:

$$y(x) = \tan\left(x + \frac{\pi}{4}\right) \quad (x \in I).$$

$$AWP \begin{cases} y'(x) = -\frac{x}{y(x)} \\ y(0) = 2 \end{cases}$$

$$\frac{dy}{dx} = -\frac{x}{y} \Rightarrow ydy = -xdx \Longrightarrow \int ydy = -\int xdx + \tilde{c}$$

$$\Longrightarrow \frac{1}{2}y^2 = -\frac{1}{2}x^2 + \tilde{c} \Longrightarrow \underbrace{y^2 = -x^2 + c}_{\Rightarrow c > 0}, \ c = 2\tilde{c} \Longrightarrow y = \pm \sqrt{c - x^2}.$$

Allgemeine Lösung:

$$y(x) = \pm \sqrt{c - x^2} \quad (x \in (-\sqrt{c}, \sqrt{c})).$$

Lösung des Anfangswertproblems:

$$2 = y(0) = \pm \sqrt{c} \implies 2 = \sqrt{c} \implies c = 4.$$

Die Lösung des Anfangswertproblems ist also:

$$y(x) = \sqrt{4 - x^2}$$
 $(x \in (-2, 2)).$

c)
$$AWP \begin{cases} y'(x) = e^{y(x)} \sin x \\ y(0) = 0 \end{cases}$$

$$\frac{dy}{dx} = e^y \sin x \Longrightarrow \frac{dy}{e^y} = \sin x dx \Longrightarrow \int \frac{dy}{e^y} = \int \sin x dx + c$$

$$\Longrightarrow -e^{-y} = -\cos x + c \Longrightarrow e^{-y} = \cos x - c \Longrightarrow -y = \log(\cos x - c).$$

Allgemeine Lösung:

$$y(x) = -\log(\cos x - c).$$

Lösung des Anfangswertproblems:

$$0 = y(0) = -\log(1 - c) \iff 1 - c = 1 \iff c = 0.$$

Die Lösung des Anfangswertproblems ist also:

$$y(x) = -\log(\cos x) \quad (x \in (-\frac{\pi}{2}, \frac{\pi}{2})).$$

d)
$$AWP \begin{cases} y'(x) = \frac{1}{xy(x)} \\ y(1) = -1 \end{cases}$$
$$\frac{dy}{dx} = \frac{1}{xy} \Longrightarrow ydy = \frac{1}{x}dx \Longrightarrow \int ydy = \int \frac{1}{x}dx + \tilde{c}$$
$$\Longrightarrow \frac{1}{2}y^2 = \log|x| + \tilde{c} \Longrightarrow y^2 = \log x^2 + c, \ c = 2\tilde{c}.$$

Allgemeine Lösung:

$$y(x) = \pm \sqrt{\log x^2 + c}.$$

Lösung des Anfangswertproblems:

$$-1 = y(1) = \pm \sqrt{c} \Rightarrow -1 = -\sqrt{c} \Rightarrow c = 1.$$

Bestimmung des Definitionsintervalls: Es gilt

$$\log x^2 + 1 > 0 \iff \log x^2 > -1 \iff x^2 > \frac{1}{e} \iff x > \frac{1}{\sqrt{e}} \lor x < -\frac{1}{\sqrt{e}}$$

Die Lösung des Anfangswertproblems ist also

$$y(x) = -\sqrt{\log x^2 + 1} \quad (x \in (\frac{1}{\sqrt{e}}, \infty)).$$

Lineare Differentialgleichungen:

Es sei $I \subseteq \mathbb{R}$ ein Intervall und $\alpha, s \colon I \to \mathbb{R}$ stetig. Die Differentialgleichung

$$y'(x) = \alpha(x)y(x) + s(x) \tag{2}$$

heißt eine lineare Differentialgleichung und s heißt Störfunktion. Die Differentialgleichung

$$y'(x) = \alpha(x)y(x) \tag{3}$$

heißt die zu (2) gehörige **homogene Gleichung**. Ist $s \neq 0$ (also nicht die Nullfunktion), so heißt die Gleichung (2) **inhomogen**.

Satz 21.2: Es sei β eine Stammfunktion von α auf I.

- a) Es sei $y: I \to \mathbb{R}$ eine Funktion. Dann gilt:
 - (i) y ist eine Lösung von (3) auf $I \iff \exists c \in \mathbb{R} : y(x) = ce^{\beta(x)}$.
 - (ii) Sei y_p eine spezielle Lösung von (2) auf I. Dann gilt: y ist eine Lösung von (2) auf $I \iff \exists c \in \mathbb{R} : y(x) = y_p(x) + ce^{\beta(x)}$.
- b) Variation der Konstanten: Der Ansatz

$$y_p(x) = c(x)e^{\beta(x)}$$

mit einer noch unbekannten Funktion c führt auf eine spezielle Lösung von (2) auf I (siehe Beweis).

c) Es sei $x_0 \in I$ und $y_0 \in \mathbb{R}$. Dann hat das Anfangswertproblem

$$\begin{cases} y'(x) = \alpha(x)y(x) + s(x) \\ y(x_0) = y_0 \end{cases}$$

auf I genau eine Lösung.

Beweis:

a) (i) Ist $c \in \mathbb{R}$ und $y(x) = ce^{\beta(x)}$, so gilt:

$$y'(x) = c\beta'(x)e^{\beta(x)} = \alpha(x)ce^{\beta(x)} = \alpha(x)y(x) \quad (x \in I).$$

Ist umgekehrt $y \colon I \to \mathbb{R}$ eine Lösung von (3), so gilt für

$$\phi(x) := e^{-\beta(x)}y(x) \quad (x \in I):$$

$$\phi'(x) = -\beta'(x)e^{-\beta(x)}y(x) + e^{-\beta(x)}y'(x)$$

= $-\alpha(x)e^{-\beta(x)}y(x) + e^{-\beta(x)}\alpha(x)y(x) = 0.$

Somit gilt:

$$\exists c \in \mathbb{R} \ \forall x \in I : \ \phi(x) = c.$$

Also gilt:

$$y(x) = ce^{\beta(x)} \quad (x \in I).$$

(ii) Ist $y(x) = y_p(x) + \underbrace{ce^{\beta(x)}}_{=:y_h(x)} (x \in I)$, so gilt:

$$y'(x) = y'_p(x) + y'_h(x)$$

= $\alpha(x)y_p(x) + s(x) + \alpha(x)y_h(x)$
= $\alpha(x)(y_p(x) + y_h(x)) + s(x) = \alpha(x)y(x) + s(x)$.

Ist umgekehrt y eine Lösung von (2) auf I, so gilt für $y_h(x) := y(x) - y_p(x)$:

$$y'_h(x) = y'(x) - y'_p(x)$$

= $(\alpha(x)y(x) + s(x)) - (\alpha(x)y_p(x) + s(x))$
= $\alpha(x) (y(x) - y_p(x)) = \alpha(x)y_h(x).$

Also ist y_h eine Lösung von (3) auf I, somit von der Form $y_h(x) = ce^{\beta(x)}$. Damit ist

$$y(x) = y_p(x) + y_h(x) = y_p(x) + ce^{\beta(x)}$$
.

b) Differenzieren des Ansatzes liefert:

$$y_p'(x) = c'(x)e^{\beta(x)} + c(x)\beta'(x)e^{\beta(x)} = (c'(x) + c(x)\alpha(x))e^{\beta(x)}.$$

Also gilt: y_p ist Lösung von (2) auf I

$$\iff (c'(x) + c(x)\alpha(x)) e^{\beta(x)} = \alpha(x)c(x)e^{\beta(x)} + s(x)$$

$$\iff c'(x)e^{\beta(x)} = s(x) \iff c'(x) = s(x)e^{-\beta(x)}.$$

Wähle eine Stammfunktion von c'. Hieraus ergibt sich y_p .

c) Die allgemeine Lösung von (2) ist $y(x) = y_p(x) + ce^{\beta(x)}$.

$$y_0 = y(x_0) = ce^{\beta(x_0)} + y_p(x_0) \iff c = (y_0 - y_p(x_0)) e^{-\beta(x_0)}.$$

Beispiele:

a) Betrachte

$$(*) \quad y'(x) = (\sin x)y(x) + \sin x.$$

Hier: $\alpha(x) = \sin x$, $s(x) = \sin x$, $I = \mathbb{R}$. Wähle $\beta(x) = -\cos x$.

- 1. Allgemeine Lösung der homogenen Gleichung: $y(x) = ce^{-\cos x}, c \in \mathbb{R}$.
- 2. Ansatz für eine spezielle Lösung von (*): $y_p(x) = c(x)e^{-\cos x}$.

$$y_p'(x) = c'(x)e^{-\cos x} + c(x)e^{-\cos x}\sin x$$

$$\stackrel{!}{=} y_p(x)\sin x + \sin x$$

$$= c(x)e^{-\cos x}\sin x + \sin x.$$

$$\Rightarrow c'(x)e^{-\cos x} = \sin x \Rightarrow c'(x) = \sin xe^{\cos x}.$$

Wähle $c(x) = -e^{\cos x}$. Damit ist $y_p(x) = -1$.

3. Allgemeine Lösung von (*):

$$y(x) = ce^{-\cos x} - 1, \ c \in \mathbb{R}.$$

b) Löse das Anfangswertproblem

$$\begin{cases} y'(x) = (\sin x) y(x) + \sin x \\ y(0) = 3 \end{cases}.$$

Allgemeine Lösung der Differentialgleichung:

$$y(x) = ce^{-\cos x} - 1, \ c \in \mathbb{R}.$$

Es gilt:

$$3 = y(0) = ce^{-1} - 1 \iff ce^{-1} = 4 \iff c = 4e.$$

Die Lösung des Anfangswertproblems ist somit

$$y(x) = 4e^{1-\cos x} - 1 \quad (x \in \mathbb{R}).$$

c) Betrachte

$$(*)$$
 $y'(x) = 2xy(x) + x.$

Hier: $\alpha(x) = 2x$, s(x) = x, $I = \mathbb{R}$. Wähle $\beta(x) = x^2$.

- 1. Allgemeine Lösung der homogenen Gleichung: $y(x)=ce^{x^2},\,c\in\mathbb{R}.$
- 2. Ansatz für eine spezielle Lösung von (*): $y_p(x) = c(x)e^{x^2}$.

$$y_p'(x) = c'(x)e^{x^2} + c(x)2xe^{x^2} \stackrel{!}{=} 2xy_p(x) + x = 2xc(x)e^{x^2} + x$$

$$\Rightarrow c'(x)e^{x^2} = x \Rightarrow c'(x) = xe^{-x^2}.$$

Wähle $c(x) = -\frac{1}{2}e^{-x^2}$. Damit ist $y_p(x) = -\frac{1}{2}$.

3. Allgemeine Lösung von (*):

$$y(x) = ce^{x^2} - \frac{1}{2}, \ c \in \mathbb{R}.$$

d) Betrachte

(*)
$$y'(x) = -\frac{1}{x}y(x) + x$$
.

Hier: $\alpha(x) = -\frac{1}{x}$, s(x) = x, $I = (0, \infty)$.

Bemerkung: Man kann alternativ auch das Intervall $(-\infty, 0)$ betrachten. Wähle $\beta(x) = -\log x$.

1. Allgemeine Lösung der homogenen Gleichung: $y(x) = ce^{-\log x} = \frac{c}{x}, \ c \in \mathbb{R}.$

2. Ansatz für eine spezielle Lösung von (*): $y_p(x) = \frac{c(x)}{x}$

$$y_p'(x) = c'(x)\frac{1}{x} - c(x)\frac{1}{x^2} \stackrel{!}{=} -\frac{1}{x}y_p(x) + x = -\frac{1}{x^2}c(x) + x$$
$$\Rightarrow c'(x)\frac{1}{x} = x \Rightarrow c'(x) = x^2.$$

Wähle $c(x) = \frac{1}{3}x^3$. Damit ist $y_p(x) = \frac{1}{3}x^2$.

3. Allgemeine Lösung von (*) auf $(0, \infty)$:

$$y(x) = \frac{c}{x} + \frac{1}{3}x^2, \ c \in \mathbb{R}.$$

e) Löse das Anfangswertproblem

$$\begin{cases} y'(x) = -\frac{1}{x}y(x) + x \\ y(1) = -1 \end{cases}.$$

Es gilt:

$$-1 = y(1) = \frac{c}{1} + \frac{1}{3} \iff c = -\frac{4}{3}$$

Die Lösung des Anfangswertproblems ist somit:

$$y(x) = -\frac{4}{3x} + \frac{1}{3}x^2 \quad (x \in (0, \infty)).$$

Bernoulli- und Riccati-Differentialgleichungen:

Es sei $I \subseteq \mathbb{R}$ ein Intervall, $g, h \in C(I, \mathbb{R})$ und $\alpha \in \mathbb{R}$. Die Differentialgleichung

$$(*) y'(x) + g(x)y(x) + h(x) (y(x))^{\alpha} = 0$$

heißt Bernoullische Differentialgleichung. Im Fall $\alpha = 0$ erhält man eine lineare Differentialgleichung (inhomogen, falls $h \neq 0$). Im Fall $\alpha = 1$ erhält man eine homogene lineare Differentialgleichung.

Nun sei $\alpha \in \mathbb{R} \setminus \{0,1\}$. Wir betrachten die Transformation $z(x) = (y(x))^{1-\alpha}$:

$$z'(x) = (1 - \alpha) (y(x))^{-\alpha} y'(x)$$

$$= (1 - \alpha) (y(x))^{-\alpha} (-g(x)y(x) - h(x) (y(x))^{\alpha})$$

$$= -(1 - \alpha)g(x) (y(x))^{1-\alpha} - (1 - \alpha)h(x)$$

$$= -(1 - \alpha)g(x)z(x) - (1 - \alpha)h(x).$$

Dies ist eine lineare Differentialgleichung für z. Sei z eine Lösung dieser Gleichung auf I. Setze $y(x) := z(x)^{\frac{1}{1-\alpha}}$ für x aus einem Intervall $I_1 \subseteq I$, für das $(z(x))^{\frac{1}{1-\alpha}}$ eine differenzierbare Funktion liefert. Dann ist y eine Lösung von (*) auf I_1 .

Beispiel: Betrachte auf $I = (-1, \infty)$:

$$y'(x) + \frac{y(x)}{1+x} + (1+x)y^{4}(x) = 0.$$

Für

$$z(x) := (y(x))^{1-4} = \frac{1}{y^3(x)}$$

ist

$$z'(x) = -\frac{3}{y^4(x)} \cdot y'(x) = \frac{3}{y^4(x)} \left(\frac{y(x)}{1+x} + (1+x)y^4(x) \right) = \frac{3}{1+x} z(x) + 3(1+x).$$

Eine Lösung dieser linearen Differentialgleichung auf I ist z.B.

$$z(x) = (1+x)^2(2x-1).$$

Damit ist

$$y(x) = (z(x))^{-\frac{1}{3}} = \frac{1}{\sqrt[3]{(1+x)^2(2x-1)}}$$

eine Lösung der Bernoulli-Differentialgleichung auf $\left(-1,\frac{1}{2}\right)$.

Nun seien $g, h, k \in C(I, \mathbb{R})$. Die Differentialgleichung

(**)
$$y'(x) + g(x)y(x) + h(x)y^{2}(x) = k(x)$$

heißt Riccatische Differentialgleichung. Sind y_1, y_2 Lösungen von (**) auf $I_1 \subseteq I$, so gilt für $u := y_1 - y_2$:

$$u'(x) = \left[-g(x)y_1(x) - h(x) (y_1(x))^2 + k(x) \right] - \left[-g(x)y_2(x) - h(x) (y_2(x))^2 + k(x) \right]$$

$$= -g(x)u(x) - h(x) \left((y_1(x))^2 - (y_2(x))^2 \right)$$

$$= -g(x)u(x) - h(x)u(x) (y_1(x) + y_2(x))$$

$$= -g(x)u(x) - h(x)u(x) (u(x) + 2y_2(x))$$

$$= -(g(x) + 2h(x)y_2(x)) u(x) - h(x)u^2(x).$$

Fazit: Ist eine Lösung y_2 von (**) bekannt (z.B. durch "erraten"), so liefern Lösungen $u \neq 0$ obiger Bernoulli Differentialgleichung für u weitere Lösungen von (**) der Form $y_2(x) + u(x)$.

Kapitel 22

Lineare Systeme mit konstanten Koeffizienten

In diesem §en sei $I \subseteq \mathbb{R}$ ein Intervall und $n \in \mathbb{N}$.

Erinnerung: $y = (y_1, \dots, y_n)$: $I \to \mathbb{R}^n$ ist auf I differenzierbar $\iff y_1, \dots, y_n$ sind auf I differenzierbar. In diesem Fall:

$$y'(x) = (y'_1(x), \dots, y'_n(x)) \quad (x \in I).$$

Definition: Es sei $f, F: I \to \mathbb{R}^n$ Funktionen mit F'(x) = f(x) $(x \in I)$. Dann heißt F eine **Stammfunktion** von f auf I und wir schreiben

$$F(x) = \int f(x)dx.$$

Im Folgenden sei $A=(a_{jk})$ eine reelle $n\times n$ -Matrix und $b_j\colon I\to\mathbb{R}$ stetig $(j=1,\ldots,n)$. Wir betrachten das sogenannte lineare Differentialgleichungssystem

$$y'_{1}(x) = a_{11}y_{1}(x) + a_{12}y_{2}(x) + \dots + a_{1n}y_{n}(x) + b_{1}(x)$$

$$y'_{2}(x) = a_{21}y_{1}(x) + a_{22}y_{2}(x) + \dots + a_{2n}y_{n}(x) + b_{2}(x)$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$y'_{1}(x) = a_{n1}y_{1}(x) + a_{n2}y_{2}(x) + \dots + a_{nn}y_{n}(x) + b_{n}(x)$$

Mit $y := (y_1, \dots, y_n)^T$ und $b := (b_1, \dots, b_n)^T$ schreibt sich dieses System in der Form:

$$y'(x) = Ay(x) + b(x) \tag{1}$$

Das System

$$y'(x) = Ay(x) \tag{2}$$

heißt das zu (1) gehörende **homogene System** ((1) heißt **inhomogen**, falls $b \neq 0$). Gesucht sind jetzt also vektorwertige Funktionen die (1) bzw. (2) erfüllen.

Satz 22.1 (ohne Beweis):

a) Die Lösungen von (2) sind auf ganz \mathbb{R} definiert. Es sei

$$V := \{y : \mathbb{R} \to \mathbb{R}^n : y \text{ ist eine L\"osung von } (2)\}.$$

Dann ist V ein reeller Vektorraum und dim V = n. Jede Basis von V heißt eine **Fundamentalsystem** (FS) von (2).

- b) Ist y_p eine spezielle Lösung von (1) auf I, so gilt: y ist eine Lösung von (1) auf $I \iff \exists y_h \in V : y(x) = y_p(x) + y_h(x) \ (x \in I)$.
- c) Ist $x_0 \in I$ und $y_0 \in \mathbb{R}^n$, so hat das Anfangswertproblem

$$\begin{cases} y'(x) = Ay(x) + b(x) \\ y(x_0) = y_0 \end{cases}$$

auf I genau eine Lösung.

Vorbemerkung:

Es sei $\lambda \in \mathbb{R}$ ein Eigenwert von A und $v \in \mathbb{R}^n \setminus \{0\}$ ein zugehörige Eigenvektor, also $Av = \lambda v$. Dann gilt mit $y(x) := e^{\lambda x}v$:

$$y'(x) = \lambda e^{\lambda x} v = e^{\lambda x} A v = A\left(e^{\lambda x} v\right) = A y(x) \quad (x \in \mathbb{R}).$$

Wir betrachten zunächst (2): Es sei $p(\lambda) := \det(A - \lambda I)$. Da A reell ist hat p reelle Koeffizienten. Daher gilt (Übung): Ist $\lambda_0 \in \mathbb{C}$ und $p(\lambda_0) = 0$, so ist auch $p(\overline{\lambda_0}) = 0$.

Beachte:

$$\forall \lambda_0 \in \mathbb{C} : \ker (A - \lambda_0 I) \subseteq \ker (A - \lambda_0 I)^2 \subseteq \ker (A - \lambda_0 I)^3 \subseteq \dots$$

Lösungsmethode für (2): (ohne Beweis)

1. Bestimme die verschiedenen Eigenwerte $\lambda_1, \ldots, \lambda_r$ von A $(r \leq n)$ und deren (algebraische) Vielfachheit k_1, \ldots, k_r , also

$$p(\lambda) = (-1)^n (\lambda - \lambda_1)^{k_1} \cdot \ldots \cdot (\lambda - \lambda_r)^{k_r}.$$

Ordne diese wie folgt an:

$$\lambda_1, \ldots, \lambda_m \in \mathbb{R}, \ \lambda_{m+1}, \ldots, \lambda_r \in \mathbb{C} \setminus \mathbb{R}$$

mit $\lambda_{m+1}=\mu_1,\ldots,\lambda_{m+s}=\mu_s$ und $\lambda_{m+s+1}=\overline{\mu_1},\ldots,\lambda_r=\overline{\mu_s}.$ Setze

$$M := \{\lambda_1, \dots, \lambda_m, \lambda_{m+1}, \dots, \lambda_{m+s}\};$$

 $\lambda_{m+s+1}, \dots, \lambda_r$ bleiben unberücksichtigt!

- 2. Für jedes $\lambda_j \in M$ bestimme man eine Basis von $V_j := \ker(A \lambda_j I)^{k_j}$ wie folgt: Bestimme eine Basis von $\ker(A \lambda_j I)$, ergänze diese zu einer Basis von $\ker(A \lambda_j I)^2, \ldots$
- 3. Es sei $\lambda_i \in M$ und v ein Basisvektor von V_i . Setze y(x) :=

$$e^{\lambda_j x} \left(v + \frac{x}{1!} \left(A - \lambda_j I \right) v + \frac{x^2}{2!} \left(A - \lambda_j I \right)^2 v + \ldots + \frac{x^{k_j - 1}}{(k_j - 1)!} \left(A - \lambda_j I \right)^{k_j - 1} v \right).$$

Fall 1: $\lambda_j \in \mathbb{R}$. Dann ist $y(x) \in \mathbb{R}^n$ $(x \in \mathbb{R})$ und y ist eine Lösung von (2) auf \mathbb{R} . Fall 2: $\lambda_j \in \mathbb{C} \setminus \mathbb{R}$. Dann ist $y(x) \in \mathbb{C}^n$ $(x \in \mathbb{R})$. Zerlege y(x) komponentenweise in Real- und Imaginärteil:

$$y(x) = \underbrace{y^{(1)}(x)}_{\in \mathbb{R}^n} + i \underbrace{y^{(2)}(x)}_{\in \mathbb{R}^n}.$$

Dann sind $y^{(1)}, y^{(2)}$ linear unabhängige Lösungen von (2) auf \mathbb{R} .

4. Führt man 3. für jedes $\lambda_j \in M$ und jeden Basisvektor von V_j durch, so erhält man ein Fundamentalsystem von (2).

Beispiele:

a) Betrachte

(*)
$$y'(x) = \underbrace{\begin{pmatrix} 1 & -4 \\ 1 & 1 \end{pmatrix}}_{-4} y(x).$$

Hier ist n=2 und

$$\det(A - \lambda I) = (1 - \lambda)^2 + 4 = (\lambda - (1 + 2i))(\lambda - (1 - 2i)),$$

also $\lambda_1 = 1 + 2i, k_1 = 1, \lambda_2 = \overline{\lambda_1}, k_2 = 1$. Setze $M := \{1 + 2i\}$. Es gilt:

$$\operatorname{kern}(A - \lambda_1 I) = \begin{bmatrix} 2i \\ 1 \end{bmatrix}.$$

Setze

$$y(x) := e^{(1+2i)x} \begin{pmatrix} 2i \\ 1 \end{pmatrix} = e^x \left(\cos(2x) + i\sin(2x)\right) \begin{pmatrix} 2i \\ 1 \end{pmatrix}$$
$$= e^x \begin{pmatrix} -2\sin(2x) \\ \cos(2x) \end{pmatrix} + i e^x \begin{pmatrix} 2\cos(2x) \\ \sin(2x) \end{pmatrix}.$$
$$= y^{(1)}(x) = y^{(2)}(x)$$

Fundamentalsystem für (*): $y^{(1)}, y^{(2)}$.

Allgemeine Lösung von (*): $y(x) = c_1 y^{(1)}(x) + c_2 y^{(2)}(x), c_1, c_2 \in \mathbb{R}$.

b) Betrachte

$$(*) y'(x) = \underbrace{\begin{pmatrix} 0 & 1 & -1 \\ -2 & 3 & -1 \\ -1 & 1 & 1 \end{pmatrix}}_{=A} y(x).$$

Hier ist n = 3 und

$$\det (A - \lambda I) = -(\lambda - 2) (\lambda - 1)^2,$$

also $\lambda_1 = 2$, $k_1 = 1$, $\lambda_2 = 1$, $k_2 = 2$, also $M = \{1, 2\}$.

 $\lambda_1 = 2$: Es gilt:

$$\ker(A - 2I) = \begin{bmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \end{bmatrix}.$$

$$y^{(1)}(x) := e^{2x} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
 ist eine Lösung von (*).

 $\lambda_2 = 1$: Es gilt:

$$\ker(A - I) = \begin{bmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \end{bmatrix} \subseteq \begin{bmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{bmatrix} = \ker(A - I)^2.$$

Weitere Lösungen von (*) sind also

$$y^{(2)}(x) := e^x \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 und

$$y^{(3)}(x) := e^x \left(\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + x(A - I) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right) = e^x \left(\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + x \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} \right) = e^x \begin{pmatrix} -x \\ -x \\ 1 \end{pmatrix}.$$

Fundamentalsystem von (*): $y^{(1)}, y^{(2)}, y^{(3)}$.

c) Es sei A wie in Beispiel b). Löse das Anfangswertproblem

$$\begin{cases} y'(x) = Ay(x) \\ y(0) = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \end{cases}.$$

Allgemeine Lösung von y'(x) = Ay(x):

$$y(x) = c_1 e^{2x} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + c_2 e^x \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + c_3 e^x \begin{pmatrix} -x \\ -x \\ 1 \end{pmatrix}, \quad c_1, c_2, c_3 \in \mathbb{R}.$$

$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = y(0) = c_1 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + c_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\iff \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \iff \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}.$$

Lösung des Anfangswertproblems:

$$y(x) = -e^{2x} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + e^x \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + 2e^x \begin{pmatrix} -x \\ -x \\ 1 \end{pmatrix}.$$

Wir betrachten nun das inhomogene System.

$$y'(x) = Ay(x) + b(x) \tag{1}$$

Es sei $y^{(1)}, y^{(2)}, \dots, y^{(n)}$ ein Fundamentalsystem der homogenen Gleichung y'(x) = Ay(x). Setze

$$Y(x) := \left(y^{(1)}(x), \dots, y^{(n)}(x)\right) \quad (x \in \mathbb{R}).$$

Für jedes $x \in \mathbb{R}$ ist Y(x) eine reelle $n \times n$ -Matrix mit j-ter Spalte $y^{(j)}(x)$. Sie heißt ebenfalls **Fundamentalsystem** oder auch **Fundamentalmatrix** (FM). Die Lösungen von (2) sind somit genau die Funktionen $y : \mathbb{R} \to \mathbb{R}^n$ der Form

$$y(x) = Y(x)c, \quad c \in \mathbb{R}^n.$$

Satz 22.2 (ohne Beweis): Für alle $x \in \mathbb{R}$ gilt: det $Y(x) \neq 0$

Für eine spezielle Lösung $y_p:I\to\mathbb{R}^n$ von (1) gehe wie folgt vor:

Ansatz:
$$y_p(x) = Y(x)c(x)$$

mit einer noch unbekannten Funktion $c: I \to \mathbb{R}^n$.

Dann gilt (ohne Beweis):

 y_p ist eine Lösung von (1) auf $I \iff c'(x) = (Y(x))^{-1}b(x) \ (x \in I)$.

Wähle eine Stammfunktion

$$c(x) = \int (Y(x))^{-1}b(x)dx$$

und erhalte damit y_p .

Beispiel: Betrachte

$$(*) y'(x) = \underbrace{\begin{pmatrix} 1 & -4 \\ 1 & 1 \end{pmatrix}}_{=:A} y(x) + \underbrace{\begin{pmatrix} 2e^x \\ 2e^x \end{pmatrix}}_{=:b(x)}.$$

1. Bekannt: Eine Fundamentalmatrix von y'(x) = Ay(x) ist

$$Y(x) = e^x \begin{pmatrix} -2\sin(2x) & 2\cos(2x) \\ \cos(2x) & \sin(2x) \end{pmatrix}.$$

2. Spezielle Lösung von (*): Es gilt:

$$(Y(x))^{-1} = \frac{e^{-x}}{2} \begin{pmatrix} -\sin(2x) & 2\cos(2x) \\ \cos(2x) & 2\sin(2x) \end{pmatrix},$$

also

$$(Y(x))^{-1}b(x) = \begin{pmatrix} 2\cos(2x) - \sin(2x) \\ \cos(2x) + 2\sin(2x) \end{pmatrix} = c'(x).$$

Wähle

$$c(x) = \begin{pmatrix} \sin(2x) + \cos(2x)/2 \\ \sin(2x)/2 - \cos(2x) \end{pmatrix}.$$

Damit ergibt sich:

$$y_p(x) = e^x \begin{pmatrix} -2\sin(2x) & 2\cos(2x) \\ \cos(2x) & \sin(2x) \end{pmatrix} \begin{pmatrix} \sin(2x) + \cos(2x)/2 \\ \sin(2x)/2 - \cos(2x) \end{pmatrix}$$
$$= e^x \begin{pmatrix} -2 \\ \frac{1}{2} \end{pmatrix}.$$

3. Allgemeine Lösung von (*):

$$y(x) = Y(x) \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + y_p(x), \ c_1, c_2 \in \mathbb{R}.$$

Kapitel 23

Lineare Differentialgleichung n-ter Ordnung mit konstanten Koeffizienten

In diesem §en sei $n \in \mathbb{N}$, $I \subseteq \mathbb{R}$ ein Intervall, $b: I \to \mathbb{R}$ stetig und $a_0, a_1, \dots, a_{n-1} \in \mathbb{R}$.

Ist $y: I \to \mathbb{R}$ n-mal differenzierbar auf I, so setze

$$Ly := y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_1y' + a_0y.$$

Die Differentialgleichung

$$(Ly)(x) = b(x) \tag{1}$$

heißt lineare Differentialgleichung n-ter Ordnung mit konstanten Koeffizienten. Die Gleichung

$$(Ly)(x) = 0 (2)$$

heißt die zu (1) gehörige homogene Gleichung ((1) heißt inhomogen, falls $b \neq 0$).

Satz 23.1 (ohne Beweis):

- a) Die Lösungen von (2) existieren auf \mathbb{R} .
- b) Es sei $V := \{y : \mathbb{R} \to \mathbb{R} : y \text{ ist eine L\"osung von } (2) \}$.

 Dann ist V ein reeller Vektorraum und dim V = n. Jede Basis von V heißt ein Fundamentalsystem von (2).
- c) Ist y_p eine spezielle Lösung von (1) auf I, so gilt:

$$y$$
 ist eine Lösung von (1) auf $I \iff \exists y_h \in V \ \forall x \in I : y(x) = y_p(x) + y_h(x)$.

d) Es sei $x_0 \in I$ und es seien $\eta_0, \ldots, \eta_{n-1} \in \mathbb{R}$. Dann hat das Anfangswertproblem

$$\begin{cases} (Ly)(x) = b(x) \\ y(x_0) = \eta_0, \ y'(x_0) = \eta_1, \dots, \ y^{(n-1)}(x_0) = \eta_{n-1} \end{cases}$$

auf I genau eine Lösung.

Lösungsmethode für (2): $y^{(n)}(x) + a_{n-1}y^{(n-1)}(x) + ... + a_1y'(x) + a_0y(x) = 0$. Das Polynom

$$p(\lambda) := \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0$$

heißt charakteristisches Polynom für (2).

Wie in §22 sei

$$p(\lambda) = (\lambda - \lambda_1)^{k_1} (\lambda - \lambda_2)^{k_2} \cdot \dots \cdot (\lambda - \lambda_r)^{k_r} \quad (\lambda_i \neq \lambda_j \text{ für } i \neq j).$$

1. Mit

 $\lambda_1,\ldots,\lambda_m\in\mathbb{R},\ \lambda_{m+1}=\mu_1,\ldots,\lambda_{m+s}=\mu_s\in\mathbb{C}\setminus\mathbb{R},\ \lambda_{m+s+1}=\overline{\mu_1},\ldots,\lambda_r=\overline{\mu_s}$ sei

$$M := \{\lambda_1, \dots, \lambda_m, \lambda_{m+1}, \dots, \lambda_{m+s}\}.$$

2. Es sei $\lambda_j \in M$.

Fall 1: $\lambda_j \in \mathbb{R}$. Dann sind

$$e^{\lambda_j x}, x e^{\lambda_j x}, \dots, x^{k_j - 1} e^{\lambda_j x}$$

 k_j linear unabhängige Lösungen von (2).

Fall 2: $\lambda_j = \alpha + i\beta \in \mathbb{C} \setminus \mathbb{R}$, also $\alpha, \beta \in \mathbb{R}$, $\beta \neq 0$. Dann sind $e^{\alpha x} \cos \beta x, \ x e^{\alpha x} \cos \beta x, \dots, \ x^{k_j - 1} e^{\alpha x} \cos \beta x, \\ e^{\alpha x} \sin \beta x, \ x e^{\alpha x} \sin \beta x, \dots, \ x^{k_j - 1} e^{\alpha x} \sin \beta x$

 $2k_j$ linear unabhängige Lösungen von (2).

3. Führt man 2. für jedes $\lambda_j \in M$ durch, so erhält man ein Fundamentalsystem von (2).

Beispiele:

a) Betrachte

(*)
$$y^{(5)}(x) + 4y^{(4)}(x) + 2y'''(x) - 4y''(x) + 8y'(x) + 16y(x) = 0.$$

$$p(\lambda) = \lambda^{5} + 4\lambda^{4} + 2\lambda^{3} - 4\lambda^{2} + 8\lambda + 16$$
$$= (\lambda + 2)^{3} (\lambda - (1+i)) (\lambda - (1-i))$$

Hier: $\lambda_1 = -2$, $k_1 = 3$, $\lambda_2 = 1 + i$, $k_2 = 1$ ($\lambda_3 = \overline{\lambda_2}$). Setze $M = \{-2, 1 + i\}$.

Fundamentalsystem von (*): e^{-2x} , xe^{-2x} , x^2e^{-2x} , $e^x\cos x$, $e^x\sin x$. Allgemeine Lösung von (*):

$$y(x) = c_1 e^{-2x} + c_2 x e^{-2x} + c_3 x^2 e^{-2x} + c_4 e^x \cos x + c_5 e^x \sin x$$

= $e^{-2x} \left(c_1 + c_2 x + c_3 x^2 \right) + e^x \left(c_4 \cos x + c_5 \sin x \right),$

mit $c_1, \ldots, c_5 \in \mathbb{R}$.

b) Betrachte

(*)
$$y''(x) + 3y'(x) + 2y(x) = 0.$$

$$p(\lambda) = \lambda^2 + 3\lambda + 2 = (\lambda + 1)(\lambda + 2).$$

Hier: $\lambda_1 = -1$, $k_1 = 1$, $\lambda_2 = -2$, $k_2 = 1$, also $M = \{-1, -2\}$.

Fundamentalsystem von (*): e^{-x} , e^{-2x} .

Allgemeine Lösung von (*):

$$y(x) = c_1 e^{-x} + c_2 e^{-2x}, \quad c_1, c_2 \in \mathbb{R}.$$

c) Löse das Anfangswertproblem

$$\begin{cases} y''(x) + 3y'(x) + 2y(x) = 0\\ y(0) = 1, y'(0) = 1 \end{cases}.$$

Allgemeine Lösung der Differentialgleichung: $y(x) = c_1 e^{-x} + c_2 e^{-2x}$.

$$1 = c_1 + c_2 = y(0) \Rightarrow c_2 = 1 - c_1$$

Es gilt: $y'(x) = -c_1 e^{-x} - 2c_2 e^{-2x}$.

$$1 = y'(0) = -c_1 - 2c_2 = -c_1 - 2(1 - c_1) = -c_1 - 2 + 2c_1 = c_1 - 2$$

Also: $c_1 = 3$ und $c_2 = -2$.

Die Lösung des Anfangswertproblems ist:

$$y(x) = 3e^{-x} - 2e^{-2x}.$$

d) Betrachte

$$(*) y'''(x) - 3y''(x) = 0.$$

Charakteristische Polynom:

$$p(\lambda) = \lambda^3 - 3\lambda^2 = \lambda^2 (\lambda - 3)$$
.

Hier: $\lambda_1 = 0$, $k_1 = 2$, $\lambda_2 = 3$, $k_2 = 1$.

Fundamental system von (*): e^{0x} , xe^{0x} , e^{3x} , also $1, x, e^{3x}$.

Allgemeine Lösung von (*):

$$y(x) = c_1 + c_2 x + c_3 e^{3x}, \quad c_1, c_2, c_3 \in \mathbb{R}.$$

Wir betrachten nun die inhomogenen Gleichung

$$(Ly)(x) = b(x) \tag{1}$$

für spezielle Funktionen $b: \mathbb{R} \to \mathbb{R}$. Es seien $\gamma, \delta \in \mathbb{R}$, $m \in \mathbb{N}_0$, q ein Polynom vom Grad m, und b habe die Gestalt

$$b(x) = q(x)e^{\gamma x}\cos(\delta x)$$
 oder $b(x) = q(x)e^{\gamma x}\sin(\delta x)$.

Sei p das charakteristische Polynom von

$$(Ly)(x) = 0 (2)$$

Fall 1: $p(\gamma + i\delta) \neq 0$. Wähle den Ansatz:

$$y_p(x) := (\hat{q}(x)\cos(\delta x) + \tilde{q}(x)\sin(\delta x))e^{\gamma x}.$$

Fall 2: $\gamma + i\delta$ ist eine ν -fache Nullstelle von p. Wähle den Ansatz:

$$y_n(x) := x^{\nu} \left(\hat{q}(x) \cos(\delta x) + \tilde{q}(x) \sin(\delta x) \right) e^{\gamma x}.$$

In beiden Fällen sind \hat{q} und \tilde{q} Polynome vom Grade m. In beiden Fällen führt obiger Ansatz zu einer speziellen Lösung y_p von (1).

Beispiele:

a) Betrachte

(*)
$$y'''(x) - y'(x) = x - 1.$$

1. Allgemeine Lösung von y'''(x) - y'(x) = 0:

$$p(\lambda) = \lambda^3 - \lambda = \lambda (\lambda^2 - 1) = \lambda(\lambda - 1)(\lambda + 1).$$

Fundamental system: 1, e^x , e^{-x} .

2. b(x)=x-1. Also: $\gamma=\delta=0,$ q(x)=x-1, m=1. Es gilt: $p(\gamma+i\delta)=p(0)=0,$ $\nu=1$. Ansatz:

$$y_p(x) = x(ax+b) = ax^2 + bx.$$

Es gilt $y_p'(x) = 2ax + b$; $y_p'''(x) = 0$. Also:

$$x - 1 \stackrel{!}{=} y_p'''(x) - y_p'(x) = -2ax - b \iff -2a = 1, b = 1$$

und somit $y_p(x) = -\frac{1}{2}x^2 + x$.

3. Allgemeine Lösung von (*):

$$y(x) = c_1 + c_2 e^x + c_3 e^{-x} - \frac{1}{2}x^2 + x, \quad c_1, c_2, c_3 \in \mathbb{R}.$$

b) Betrachte

(*)
$$y''(x) + 4y'(x) = \cos(2x)$$
.

1. Allgemeine Lösung von y''(x) + 4y'(x) = 0:

$$p(\lambda) = \lambda^2 + 4\lambda = \lambda(\lambda + 4).$$

Fundamental system: 1, e^{-4x} .

2. $b(x)=\cos(2x)$. Also: $\gamma=0,\ \delta=2,\ q(x)=1,\ m=0$. Es gilt $p(\gamma+i\delta)=p(2i)\neq 0$. Ansatz:

$$y_p(x) = a\cos(2x) + b\sin(2x).$$

Es gilt:

$$y_p'(x) = -2a\sin(2x) + 2b\cos(2x),$$

$$y_p''(x) = -4a\cos(2x) - 4b\sin(2x).$$

Einsetzen in die Differentialgleichung liefert:

$$\cos(2x) \stackrel{!}{=} y_p''(x) + 4y_p'(x) = (8b - 4a)\cos(2x) - (4b + 8a)\sin(2x)$$

$$\iff 8b - 4a = 1, \ 4b + 8a = 0 \iff a = -\frac{1}{20}, \ b = \frac{1}{10}.$$

Somit:

$$y_p(x) = \frac{1}{10}\sin(2x) - \frac{1}{20}\cos(2x).$$

Allgemeine Lösung von (*):

$$y(x) = c_1 + c_2 e^{-4x} + \frac{1}{20} (2\sin(2x) - \cos(2x)), \quad c_1, c_2 \in \mathbb{R}.$$

Der Zusammenhang zwischen §22 und §23: Es sei $y:I\to\mathbb{R}$ eine Lösung der Differentialgleichung (1), also

$$y^{(n)}(x) + a_{n-1}y^{(n-1)}(x) + \dots + a_1y'(x) + a_0y(x) = b(x) \quad (x \in I).$$

Für k = 1, ..., n sei $u_k : I \to \mathbb{R}$ definiert durch

$$u_1 = y, \ u_2 = y', \ u_3 = y'', \dots, u_n = y^{(n-1)}.$$

Dann gilt auf I:

$$u'_1 = u_2, \ u'_2 = u_3, \dots, u'_{n-1} = u_n,$$

und

$$u'_n = y^{(n)} = b - (a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y)$$
$$= b - (a_{n-1}u_n + \dots + a_1u_2 + a_0u_1)$$

D.h. die Funktion $u: I \to \mathbb{R}^n$, $u = (u_1, \dots u_n)^{\top}$ ist Lösung des linearen Differentialgleichungssystems u'(x) = Au(x) + c(x) mit

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \\ -a_0 & -a_1 & -a_2 & -a_3 & \dots & -a_{n-1} \end{pmatrix}$$

und

$$c(x) = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ b(x) \end{pmatrix}.$$

Ist umgekehrt $u: I \to \mathbb{R}^n$ eine Lösung dieses linearen Differentialgleichungssystems u'(x) = Au(x) + c(x), so ist die erste Koordinatenfunktion $y:=u_1: I \to \mathbb{R}$ von u eine Lösung der Differentialgleichung (1).

Kapitel 24

Die Fouriertransformation

Definition:

a) Eine Funktion $g: [a,b] \to \mathbb{R}$ heißt **auf** [a,b] **stückweise stetig** : $\iff \exists t_0, t_1, \dots, t_m \in [a,b]$:

$$a = t_0 < t_1 < \ldots < t_m = b, \quad g \in C((t_{i-1}, t_i)) \ (j = 1, \ldots, m)$$

und es existiert die folgenden einseitigen Grenzwerte:

$$g(a+), g(b-), g(t_j+), g(t_j-) \quad (j=1,\ldots,m-1).$$

b) Eine Funktion $g: [a,b] \to \mathbb{R}$ heißt **auf** [a,b] **stückweise glatt** : $\iff \exists t_0, t_1, \dots, t_m \in [a,b]$:

$$t_0 = a < t_1 < \ldots < t_m = b, \quad g \in C^1((t_{j-1}, t_j)) \ (j = 1, \ldots, m)$$

und es existieren die folgenden einseitigen Grenzwerte:

$$g(t_j+), g(t_j-), g'(t_j+), g'(t_j-) \quad (j=1,\ldots,m-1),$$

 $g(a+), g'(a+), g'(b-), g(b-).$

- c) Eine Funktion $g: \mathbb{R} \to \mathbb{R}$ heißt **auf** \mathbb{R} **stückweise stetig** bzw. **glatt** : \iff g ist auf jedem Intervall $[a,b] \subseteq \mathbb{R}$ stückweise stetig bzw. glatt.
- d) Es sei $g: \mathbb{R} \to \mathbb{R}$ stückweise glatt und $x_0 \in \mathbb{R}$. Dann existieren $g'(x_0+)$ und $g'(x_0-)$. Setze

(*)
$$g'(x_0) := \frac{1}{2} (g'(x_0+) + g'(x_0-)).$$

Beachte: Ist g in x_0 differenzierbar, so stimmt (*) mit der üblichen Ableitung überein.

Bemerkung: Ist $g: \mathbb{R} \to \mathbb{R}$ stückweise glatt, so ist $g': \mathbb{R} \to \mathbb{R}$ stückweise stetig.

Beispiel: Die Funktion g(x) = |x| $(x \in \mathbb{R})$ ist auf \mathbb{R} stückweise glatt. Es gilt g'(0+) = 1, g'(0-) = -1, also g'(0) = 0.

Definition: Es sei $I \subseteq \mathbb{R}$ ein Intervall, $f: I \to \mathbb{C}$ eine Funktion, $u(x) := \operatorname{Re} f(x)$ und $v(x) := \operatorname{Im} f(x)$ $(x \in I)$, also f = u + iv mit $u, v: I \to \mathbb{R}$.

a) f heißt auf I differenzierbar: \iff u und v sind auf I differenzierbar. In diesem Fall:

$$f'(x) := u'(x) + iv'(x) \quad (x \in I).$$

b) Ist I = [a, b] und gilt $u, v \in R([a, b])$, so setze

$$\int_a^b f(x)dx := \int_a^b u(x)dx + i \int_a^b v(x)dx.$$

In diesem Fall heißt f auf I integrierbar und wir schreiben: $f \in R([a,b],\mathbb{C})$.

c) Ist $I = \mathbb{R}$, so heißt f auf I stückweise stetig bzw. $glatt: \iff u, v \text{ sind auf } I$ stückweise stetig bzw. glatt.

Es sei I = [a, b] und $f \in R([a, b], \mathbb{C})$. Übung:

$$\left| \int_{a}^{b} f(t)dt \right| \le \int_{a}^{b} |f(t)| dt$$

Besitzen u und v auf [a, b] die Stammfunktionen U bzw. V, so setze F := U + iV. Dann gilt:

$$F' = U' + iV' = u + iv = f$$

auf [a, b] und $\int_a^b f(x)dx = F(b) - F(a)$.

Weitere Regeln wie Substitution, partielle Integration, etc. gelten wörtlich für Funktionen $f \in R([a,b],\mathbb{C})$.

Beispiel: Es sei $z_0 \in \mathbb{C}$, $z_0 \neq 0$ und $f(t) := e^{z_0 t}$. Setze $F(t) := \frac{1}{z_0} e^{z_0 t}$. Dann gilt: F' = f auf \mathbb{R} . Für a < b gilt nun:

$$\int_{a}^{b} e^{z_0 t} dt = F(b) - F(a) = \frac{1}{z_0} \left(e^{z_0 b} - e^{z_0 a} \right).$$

Definition: Es sei $f: \mathbb{R} \to \mathbb{C}$ eine Funktion und es gelte $f \in R([a,b],\mathbb{C})$ für jedes Intervall $[a,b] \subseteq \mathbb{R}$.

$$\int_{-\infty}^{\infty} f(t)dt \ hei\beta t \ (absolut) \ konvergent$$

$$:\iff \int_{-\infty}^{\infty} \operatorname{Re} f(t)dt \ und \ \int_{-\infty}^{\infty} \operatorname{Im} f(t)dt \ sind \ (absolut) \ konvergent.$$

Im Konvergenzfall:

$$\int_{-\infty}^{\infty} f(t)dt := \int_{-\infty}^{\infty} \operatorname{Re} f(t)dt + i \int_{-\infty}^{\infty} \operatorname{Im} f(t)dt.$$

Ist $\int_{-\infty}^{\infty} f(t)dt$ absolut konvergent, so heißt f absolut integrierbar (aib).

Satz 24.1 (ohne Beweis): Es seien $f, g: \mathbb{R} \to \mathbb{C}$ stückweise stetig. Dann gilt:

- a) f ist absolut integrierbar $\iff \int_{-\infty}^{\infty} |f(t)| dt$ ist konvergent.
- b) Ist $f: \mathbb{R} \to \mathbb{C}$ absolut integrierbar und $|g| \leq |f|$ auf \mathbb{R} , so ist g absolut integrierbar.

Satz 24.2 (ohne Beweis): Es sei $f: \mathbb{R} \to \mathbb{C}$ stückweise glatt, f und f' seien absolut integrierbar und f habe höchstens endlich viele Unstetigkeitsstellen. Dann ist f auf \mathbb{R} beschränkt und

$$\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 0.$$

Satz 24.3 (Satz und Definition): Es sei $f: \mathbb{R} \to \mathbb{C}$ stückweise stetig und absolut integrierbar. Für $s \in \mathbb{R}$ sei $g_s(t) := f(t)e^{-ist}$ $(t \in \mathbb{R})$. Dann gilt:

- a) g_s ist stückweise stetig.
- b) g_s ist absolut integrierbar.
- c) Ist $\hat{f}: \mathbb{R} \to \mathbb{C}$ definiert durch

$$\hat{f}(s) := \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t)e^{-ist}dt,$$

so gilt:

- (i) \hat{f} ist auf \mathbb{R} beschränkt,
- (ii) $\lim_{s\to\pm\infty} \hat{f}(s) = 0$ (Satz von Riemann-Lebesgue),

(iii) \hat{f} ist auf \mathbb{R} stetig.

Die Funktion $\hat{f}: \mathbb{R} \to \mathbb{C}$ heißt die **Fouriertransformierte von** f. Die Zuordnung $f \mapsto \hat{f}$ heißt **Fouriertransformation**.

Beweis:

a) Klar.

b) Es gilt $|g_s(t)| = |f(t)| \underbrace{\left|e^{-ist}\right|}_{=1} = |f(t)| \ (t \in \mathbb{R})$. Mit 24.1 folgt die Behauptung.

c) (i) Es gilt:

$$\forall s \in \mathbb{R} : \left| \hat{f}(s) \right| \le \frac{1}{2\pi} \int_{-\infty}^{\infty} |f(t)| \underbrace{\left| e^{-ist} \right|}_{=1} dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |f(t)| dt.$$

- (ii) Ohne Beweis.
- (iii) Ohne Beweis.

Beispiele:

a) Betrachte

$$f(t) := \begin{cases} e^{-t}, & t \ge 0 \\ 0, & t < 0 \end{cases}.$$

Klar: f ist auf $\mathbb R$ stückweise stetig. Sei $\beta>0.$ Es gilt:

$$\int_0^\beta f(t)dt = \int_0^\beta e^{-t}dt = e^{-t}\Big|_0^\beta = -e^{-\beta} + 1 \longrightarrow 1 \quad (\beta \to \infty).$$

Damit ist $\int_0^\infty f(t)dt$ konvergent, somit auch $\int_{-\infty}^\infty f(t)dt = \int_0^\infty f(t)dt$. Wegen $f \ge 0$ auf \mathbb{R} ist f absolut integrierbar. Also existiert die Fouriertransformierte

$$\hat{f}(s) = \frac{1}{2\pi} \int_0^\infty e^{-t} e^{-ist} dt = \frac{1}{2\pi} \int_0^\infty e^{-(1+is)t} dt.$$

Sei $\beta > 0$:

$$\int_0^\beta e^{-(1+is)t} dt = -\frac{1}{1+is} e^{-(1+is)t} \Big|_0^\beta$$
$$= -\frac{1}{1+is} \left(e^{-(1+is)\beta} - 1 \right)$$
$$= \frac{1}{1+is} \left(1 - e^{-\beta} e^{-is\beta} \right).$$

Es gilt:

$$\left|e^{-\beta}e^{-is\beta}\right| = e^{-\beta}\underbrace{\left|e^{-is\beta}\right|}_{=1} = e^{-\beta} \longrightarrow 0 \quad (\beta \to \infty).$$

Also ist

$$\int_0^\infty e^{-(1+is)t} dt = \frac{1}{1+is}$$

und somit

$$\hat{f}(s) = \frac{1}{2\pi} \frac{1}{1+is} \quad (s \in \mathbb{R}).$$

b) Betrachte

$$f(t) = e^{-|t|} = \begin{cases} e^{-t} & t \ge 0 \\ e^t, & t < 0 \end{cases}$$

Es ist $\int_{-\infty}^{\infty} f(t)dt = 2 \int_{0}^{\infty} e^{-t}dt$. Klar: f ist auf \mathbb{R} stetig (insbesondere stückweise stetig), absolut integrierbar (vgl. Bsp. a)), und

$$\int_0^\infty e^{-t}e^{-ist}dt = \frac{1}{1+is}.$$

Analog zeigt man:

$$\int_{-\infty}^{0} e^t e^{-ist} dt = \frac{1}{1 - is}.$$

Also:

$$\begin{split} \hat{f}(s) &= \frac{1}{2\pi} \left(\int_{-\infty}^{0} e^{t} e^{-ist} dt + \int_{0}^{\infty} e^{-t} e^{-ist} dt \right) \\ &= \frac{1}{2\pi} \left(\frac{1}{1 - is} + \frac{1}{1 + is} \right) \\ &= \frac{1}{2\pi} \left(\frac{1 + is + 1 - is}{1 + s^{2}} \right) \\ &= \frac{1}{\pi} \frac{1}{1 + s^{2}}. \end{split}$$

c) Betrachte

$$f(t) := \begin{cases} 1, & |t| \le 1 \\ 0, & |t| > 1 \end{cases}.$$

Klar: f ist auf $\mathbb R$ stückweise stetig und absolut integrierbar. Also existiert die Fouriertransformierte

 $\hat{f}(s) = \frac{1}{2\pi} \int_{-1}^{1} e^{-ist} dt.$

Es gilt:

(i)
$$s = 0$$
: $\hat{f}(s) = \frac{1}{2\pi} \int_{-1}^{1} 1 dt = \frac{1}{\pi}$.

(ii)
$$s \neq 0$$
: $\hat{f}(s) = \frac{1}{2\pi} \left[-\frac{1}{is} e^{-ist} \right]_{-1}^{1}$

$$= \frac{1}{2\pi} \left(-\frac{1}{is} \left(e^{-is} - e^{is} \right) \right) = \frac{1}{s} \frac{1}{\pi} \underbrace{\frac{1}{2i} \left(e^{is} - e^{-is} \right)}_{=\sin(s)} = \frac{1}{\pi} \frac{\sin(s)}{s}.$$

Frage: Kann man f aus \hat{f} rekonstruieren?

Der Cauchysche Hauptwert

Das Integral $\int_{-\infty}^{\infty} f(x)dx$ war definiert als

$$\lim_{\beta \to -\infty} \int_{\beta}^{0} f(x)dx + \lim_{\alpha \to \infty} \int_{0}^{\alpha} f(x)dx$$

und nicht als $\lim_{\alpha\to\infty} \int_{-\alpha}^{\alpha} f(x) dx$.

Beispiel: $\int_{-\alpha}^{\alpha} x dx = 0$ ($\alpha > 0$), aber $\int_{-\infty}^{\infty} x dx$ ist divergent.

Definition: Es sei $f: \mathbb{R} \to \mathbb{C}$ eine Funktion mit $f \in R([a,b],\mathbb{C})$ für jedes Intervall $[a,b] \subseteq \mathbb{R}$. Existiert der Grenzwert

$$\lim_{\alpha \to \infty} \int_{-\alpha}^{\alpha} f(x) dx,$$

so heißt diese Zahl Cauchyscher Hauptwert (CH) und man schreibt

$$CH$$
- $\int_{-\infty}^{\infty} f(x)dx := \lim_{\alpha \to \infty} \int_{-\alpha}^{\alpha} f(x)dx.$

Übung: Ist $\int_{-\infty}^{\infty} f(x)dx$ konvergent, so existiert CH- $\int_{-\infty}^{\infty} f(x)dx$ und

$$\int_{-\infty}^{\infty} f(x)dx = CH - \int_{-\infty}^{\infty} f(x)dx.$$

Beispiel: $\int_{-\infty}^{\infty} x dx$ ist divergent, CH- $\int_{-\infty}^{\infty} x dx = 0$.

Satz 24.4 (ohne Beweis): Es sei $f: \mathbb{R} \to \mathbb{C}$ stückweise glatt und absolut integrierbar. Dann gilt:

$$\forall t \in \mathbb{R}: CH - \int_{-\infty}^{\infty} \hat{f}(s)e^{ist}ds = \frac{1}{2}\left(f(t+) + f(t-)\right).$$

Ist zusätzlich f stetig auf \mathbb{R} , so gilt:

$$\forall t \in \mathbb{R} : f(t) = CH - \int_{-\infty}^{\infty} \hat{f}(s)e^{ist}ds.$$

Beispiel: Behauptung: $\int_0^\infty \frac{\sin x}{x} dx$ ist konvergent und $= \frac{\pi}{2}$.

Beweis: Betrachte

$$f(t) := \begin{cases} 1, & |t| \le 1 \\ 0, & |t| > 1 \end{cases}$$

Bekannt:

$$\hat{f}(s) = \frac{1}{\pi} \begin{cases} 1, & s = 0\\ \frac{\sin s}{s} & s \neq 0 \end{cases}.$$

Nach 24.4 gilt:

(*)
$$CH - \int_{-\infty}^{\infty} \hat{f}(s)e^{is}ds = \frac{1}{2}(f(1+) + f(1-)) = \frac{1}{2}.$$

Für $s \neq 0$ gilt:

$$\hat{f}(s)e^{is} = \frac{1}{\pi} \frac{\sin s}{s} (\cos s + i \sin s)$$
$$= \frac{1}{\pi} \left(\frac{\sin s \cos s}{s} + i \frac{(\sin s)^2}{s} \right).$$

Es sei $\alpha > 0$. Es gilt:

a)
$$s \mapsto \frac{(\sin s)^2}{s}$$
 ist ungerade $\Rightarrow \int_{-\alpha}^{\alpha} \frac{(\sin s)^2}{s} ds = 0$.

b) $s \mapsto \frac{\sin s \cos s}{s}$ ist gerade

$$\Rightarrow \int_{-\alpha}^{\alpha} \frac{\sin s \cos s}{s} ds = 2 \int_{0}^{\alpha} \underbrace{\frac{\sin s \cos s}{s}}_{=\frac{1}{2} \frac{\sin(2s)}{s}} ds = \int_{0}^{\alpha} \frac{\sin(2s)}{s} ds.$$

Substituiert man t = 2s (dt = 2ds), so folgt:

$$\int_0^\alpha \frac{\sin(2s)}{s} ds = 2 \int_0^{2\alpha} \frac{\sin t}{t} \frac{1}{2} dt = \int_0^{2\alpha} \frac{\sin t}{t} dt.$$

Somit gilt:

$$\frac{1}{2} \stackrel{(*)}{=} \lim_{\alpha \to \infty} \int_{-\alpha}^{\alpha} \hat{f}(s)e^{is}ds = \frac{1}{\pi} \lim_{\alpha \to \infty} \int_{0}^{2\alpha} \frac{\sin t}{t}dt = \frac{1}{\pi} \int_{0}^{\infty} \frac{\sin t}{t}dt.$$

Es sei $V := \{f : \mathbb{R} \to \mathbb{C} : f \text{ ist stückweise stetig und absolut integrierbar} \}$. Bekannt: Für jedes $f \in V$ existiert die Fouriertransformierte

$$\hat{f}(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t)e^{-ist}dt \quad (s \in \mathbb{R}).$$

Satz 24.5: *Es gilt:*

a) V ist ein komplexer Vektorraum und es gilt für $f, g \in V$ und $\alpha, \beta \in \mathbb{C}$:

$$\widehat{\alpha f + \beta g} = \alpha \hat{f} + \beta \hat{g}.$$

b) Sei $f \in V$, $h \in \mathbb{R}$ und $f_h : \mathbb{R} \to \mathbb{C}$ sei definiert durch

$$f_h(t) := f(t+h).$$

Dann ist $f_h \in V$ und $\widehat{f_h}(s) = e^{ish} \widehat{f}(s)$ $(s \in \mathbb{R})$.

Beweis: a) Klar.

b) Es ist

$$\widehat{f_h}(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t+h)e^{-ist}dt.$$

Es sei c > 0. Mit der Substitution $\tau := t + h \ (d\tau = dt)$ folgt:

$$\int_{0}^{c} f(t+h)e^{-ist}dt = \int_{h}^{h+c} f(\tau)e^{-is(\tau-h)}d\tau$$
$$= e^{ish} \int_{h}^{h+c} f(\tau)e^{-is\tau}d\tau$$
$$\xrightarrow[c \to \infty]{} e^{ish} \int_{h}^{\infty} f(\tau)e^{-is\tau}d\tau$$

Also:

$$\int_0^\infty f_h(t)e^{-ist}dt = e^{ish} \int_h^\infty f(\tau)e^{-is\tau}d\tau.$$

Analog zeigt man:

$$\int_{-\infty}^{0} f_h(t)e^{-ist}dt = e^{ish} \int_{-\infty}^{h} f(\tau)e^{-is\tau}d\tau.$$

Summation dieser Gleichungen liefert die Behauptung.

Definition: Es seiesn $f_1, f_2 : \mathbb{R} \to \mathbb{C}$ Funktionen so, daß

$$\int_{-\infty}^{\infty} f_1(t-x) f_2(x) dx$$

für jedes $t \in \mathbb{R}$ konvergent ist. Dann heißt die Funktion $f_1 * f_2 : \mathbb{R} \to \mathbb{C}$,

$$(f_1 * f_2)(t) := \frac{1}{2\pi} \int_{-\infty}^{\infty} f_1(t-x) f_2(x) dx$$

die **Faltung** von f_1 und f_2 .

Beispiel: Betrachte

$$f_1(t) = \begin{cases} e^{-t}, & t \ge 0 \\ 0, & t < 0 \end{cases}, \qquad f_2(t) = \begin{cases} 1, & |t| \le 1 \\ 0, & |t| > 1 \end{cases}.$$

Für $t \in \mathbb{R}$ sei $g(t) := 2\pi \left(f_1 * f_2 \right)(t)$. Es gilt:

$$g(t) = \int_{-\infty}^{\infty} f_1(t-x)f_2(x)dx = \int_{-1}^{1} f_1(t-x)f_2(x)dt = \int_{-1}^{1} f_1(t-x)dx.$$

Fall 1: t < -1. Für $x \in [-1, 1]$ gilt: $t - x < 0 \Rightarrow f_1(t - x) = 0 \Rightarrow g(t) = 0$. Fall 2: $t \ge 1$. Für $x \in [-1, 1]$ gilt: $t - x \ge 0 \Rightarrow f_1(t - x) = e^{-(t - x)} = e^x e^{-t}$

$$\Rightarrow g(t) = \int_{-1}^{1} e^{x} e^{-t} dx = e^{-t} \left(e - \frac{1}{e} \right).$$

Fall 3: $-1 \le t < 1$. Nachrechnen: $g(t) = 1 - e^{-t-1}$.

Also gilt:

$$(f_1 * f_2)(t) = \frac{1}{2\pi} \begin{cases} 0, & t < -1 \\ 1 - e^{-t-1}, & -1 \le t < 1 \\ e^{-t} \left(e - \frac{1}{e} \right), & t \ge 1 \end{cases}$$

Satz 24.6 (ohne Beweis): Es seien $f_1, f_2 : \mathbb{R} \to \mathbb{C}$ stetig und absolut integrierbar und f_1 sei beschränkt. Dann gilt:

- a) $\forall t \in \mathbb{R} : \int_{-\infty}^{\infty} f_1(t-x) f_2(x) dx$ konvergiert absolut.
- b) $f_1 * f_2$ ist stetig und absolut integrierbar (also $f_1 * f_2 \in V$) und

$$(\widehat{f_1 * f_2})(s) = \widehat{f_1}(s)\widehat{f_2}(s) \quad (s \in \mathbb{R}).$$

c)
$$|(f_1 * f_2)(t)| \le \frac{1}{2\pi} \sup_{x \in \mathbb{R}} |f_1(x)| \int_{-\infty}^{\infty} |f_2(x)| \, dx \quad (t \in \mathbb{R}).$$

Satz 24.7: Es sei $f: \mathbb{R} \to \mathbb{C}$ stückweise glatt, stetig und absolut integrierbar. Weiter sei f' absolut integrierbar. Dann gilt:

$$f' \in V \quad und \quad \hat{f}'(s) = is\hat{f}(s) \quad (s \in \mathbb{R}).$$

Beweis: Klar: $f' \in V$.

a) Fall 1: s = 0: Es gilt:

$$\widehat{f}'(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f'(t)dt.$$

Für $\beta > 0$ ist

$$\int_{0}^{\beta} f'(t)dt = f(\beta) - f(0) \xrightarrow{24.2} -f(0) \quad (\beta \to 0).$$

Somit gilt:

$$\int_0^\infty f'(t)dt = -f(0).$$

Analog zeigt man

$$\int_{-\infty}^{0} f'(t)dt = f(0).$$

Also ist $\hat{f}'(0) = 0 = i0\hat{f}(0)$.

b) Fall 2: $s \neq 0$: Es gilt:

$$\widehat{f}'(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f'(t)e^{-ist}dt.$$

Für $\beta > 0$ ist

$$\int_{0}^{\beta} \underbrace{f(t)}_{u} \underbrace{e^{-ist}}_{v'} dt = -\frac{1}{is} e^{-ist} f(t) \Big|_{0}^{\beta} - \int_{0}^{\beta} f'(t) \left(-\frac{1}{is} e^{-ist} \right) dt$$
$$= -\frac{1}{is} e^{-is\beta} f(\beta) + \frac{1}{is} f(0) + \frac{1}{is} \int_{0}^{\beta} f'(t) e^{-ist} dt.$$

Nach 24.2 gilt $f(\beta) \to 0 \ (\beta \to \infty)$, und es gilt $\left| e^{is\beta} \right| = 1$. Somit gilt:

$$\int_0^{\infty} f(t)e^{-ist}dt = \frac{1}{is}f(0) + \frac{1}{is}\int_0^{\infty} f'(t)e^{-ist}dt.$$

Analog zeigt man:

$$\int_{-\infty}^{0} f(t)e^{-ist}dt = -\frac{1}{is}f(0) + \frac{1}{is}\int_{-\infty}^{0} f'(t)e^{-ist}dt.$$

Summation dieser beiden Gleichungen liefert

$$\int_{-\infty}^{\infty} f(t)e^{-ist}dt = \frac{1}{is} \int_{-\infty}^{\infty} f'(t)e^{-ist}dt.$$

Hieraus folgt die Behauptung.

Definition: Es sei $f: \mathbb{R} \to \mathbb{C}$ stetig und absolut integrierbar. Wenn die Fouriertransformierte $\hat{f}: \mathbb{R} \to \mathbb{C}$ außerhalb eines beschränkten Intervalls 0 ist, so heißt f bandbeschränkt (technisch: Die Frequenzdichte des Signals verschwindet außerhalb eines beschränkten Intervalls).

In diesem Fall ist es möglich f aus den Werten auf einem hinreichend feinen Raster $\{kT: k \in \mathbb{Z}\}, T > 0$ zu reproduzieren.

Satz 24.8 (Abtasttheorem von Shannon (ohne Beweis)): Es sei $f: \mathbb{R} \to \mathbb{C}$ stetig und absolut integrierbar, und

$$\exists b > 0: \ \hat{f}(s) = 0 \ (s \in \mathbb{R} \setminus (-b, b)).$$

Dann gilt für jedes $T < \frac{\pi}{b}$:

$$f(t) = \sum_{k=-\infty}^{\infty} f(kT) \operatorname{sinc}\left(\frac{\pi}{T}(t - kT)\right) \quad (t \in \mathbb{R}),$$

$$wobei \operatorname{sinc}(x) := \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases} (Sinus cardinalis).$$

Die Fouriertransformation im Raum der schnell fallenden Funktionen

Ist $f \in V$, so ist \hat{f} stetig und $\lim_{s \to \pm \infty} \hat{f}(s) = 0$, aber im allgemeinen ist \hat{f} nicht mehr absolut integrierbar (deswegen CH in Umkehrformel). Im Raum der sogenannten schnell fallenden Funktionen herrscht diesbezüglich Symmetrie:

Definition: Eine Funktion $f \in C^{\infty}(\mathbb{R}, \mathbb{C})$ heißt **schnell fallend**: $\iff \forall n, m \in \mathbb{N}_0$: $t \mapsto t^m f^{(n)}(t)$ ist beschränkt auf \mathbb{R} .

$$S := \{ f : \mathbb{R} \to \mathbb{C} : f \text{ ist schnell fallend} \}$$

heißt Schwartz-Raum.

Beispiel: $f(t) = p(t)e^{-\alpha t^2}$ ist für jedes $\alpha > 0$ und jedes Polynom p eine schnell fallende Funktion.

Satz 24.9: Es seien $f, g \in S$ und p sei ein Polynom. Dann gilt:

- a) f ist absolut integrierbar.
- b) $\forall \alpha, \beta \in \mathbb{C} : \alpha f + \beta g \in S$ (S ist also ein Vektorraum).
- c) $fq \in S$.

- $d) \hat{f} \in S$.
- e) $f^{(n)} \in S \ (n \in \mathbb{N}), \ und \ \widehat{f^{(n)}}(s) = (is)^n \widehat{f}(s) \ (s \in \mathbb{R}, n \in \mathbb{N}).$
- $f) pf \in S.$
- g) $f_h \in S \ (h \in \mathbb{R}) \ und \ \widehat{f_h}(s) = e^{ish} \widehat{f}(s) \ (s \in \mathbb{R}).$
- h) $f * g \in S$ und $\widehat{f * g} = \widehat{f} \cdot \widehat{g}$.
- i) Für $h(t) := e^{-t^2/2}$ $(t \in \mathbb{R})$ gilt: $h \in S$ und $\hat{h} = \frac{1}{\sqrt{2\pi}}h$ auf \mathbb{R} .

Beweis: a) Die Funktion $t \mapsto (1 + t^2) f(t)$ ist beschränkt. Damit folgt:

$$|f(t)| \le \frac{M}{1+t^2} \quad (t \in \mathbb{R})$$

für ein $M\geq 0$. Da $\int_{-\infty}^{\infty}\frac{M}{1+t^2}dt$ konvergiert, folgt die Behauptung mit Satz 24.1. b) - i) ohne Beweis

Satz 24.10: Die Fouriertransformation $f \mapsto \hat{f}$ ist ein Isomorphismus von S nach S (also linear und bijektiv).

Beweis: Sei $\mathcal{F}: S \to S$ definiert durch $\mathcal{F}f = \hat{f}$. Klar: \mathcal{F} ist linear. Betrachte $\mathcal{G}: S \to S$ definiert durch

$$(\mathcal{G}g)(t) = \int_{-\infty}^{\infty} g(s)e^{ist}ds$$

(beachte: g ist in S, also absolut integrierbar). Nach Satz 24.4 gilt: $\mathcal{G}(\mathcal{F}f) = f$ $(f \in S)$. Umgekehrt gilt für $g \in S$:

$$(\mathcal{G}g)(-t) = \int_{-\infty}^{\infty} g(s)e^{-ist}ds = 2\pi \hat{g}(t) \quad (t \in \mathbb{R}),$$

also

$$\mathcal{F}(\mathcal{G}g)(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi \hat{g}(-t)e^{-its}dt$$
$$= \int_{-\infty}^{\infty} \hat{g}(-t)e^{-its}dt$$
$$= \int_{-\infty}^{\infty} \hat{g}(t)e^{its}dt = g(s) \quad (s \in \mathbb{R}).$$

Also gilt $\mathcal{G} = \mathcal{F}^{-1}$.

Anwendung: Es sei $f \in S$. Behauptung: Es gibt genau eine Funktion $u \in S$ mit

$$2u(t+1) + u(t) = f(t) \quad (t \in \mathbb{R}).$$

Beweis: Mit $u_1(t) := u(t+1)$ gilt nach 24.8 und 24.9:

$$2u_1 + u = f \iff \widehat{2u_1 + u} = \hat{f} \iff 2e^{is}\hat{u}(s) + \hat{u}(s) = \hat{f}(s) \ (s \in \mathbb{R})$$

$$\hat{u}(s) = \frac{\hat{f}(s)}{2e^{is} + 1} \ (s \in \mathbb{R}) \iff u(t) = \int_{-\infty}^{\infty} \frac{\hat{f}(s)e^{ist}}{2e^{is} + 1} ds \ (t \in \mathbb{R}).$$

Beachte dabei: Wegen $|2e^{is}+1| \ge 1$ $(s \in \mathbb{R})$ ist mit \hat{f} auch $s \mapsto \frac{\hat{f}(s)}{2e^{is}+1}$ eine schnell fallende Funktion (Übung).

Stichwortverzeichnis

C, 6	differenzierbar, 19–21, 31, 80
$C^p, 31$	in Richtung, 22
Ableitung, 19, 31 absolut integrierbar, 81	partiell, 16, 17
	stetig partiell, 18
	vektorwertige Funktionen, 31
Abtasttheorem von Shannon, 90	divergent, 10
Anfangswertproblem, 55	
Lösung, 55	Faltung, 87
bandbeschränkt, 89	Folge
Bernoullische Differentialgleichung, 63	beschränkte, 2
Beschränktheit, 7	divergente, 2
Bolzano-Weierstraß, 3	konvergente, 2
Dolzano Weleistrass, 6	Teil-, 2
Cauchykriterium, 3	Fourierkoeffizienten, 13
Cauchysche Hauptwert, 84	Fouriertransformation, 81
Cauchyscher Hauptwert, 84	Fundamentalmatrix, 70
charakteristisches Polynom, 73	Fundamental system, 66, 72
Johnit 26	Funktionalmatrix, 31
definit, 26	geometrische Reihe, 10
negativ, 26	Gradient, 17
positiv, 26	Grenzwert, 2
Differentialgleichung, 55	Grenzwert, 2
1. Ordnung, 55	Häufungspunkt, 4
getrennte Variablen, 56	Häufungswert, 2
homogen, 72	Hesse-Matrix, 25
homogene, 58	homogen, 58, 65, 72
inhomogen, 72	
inhomogene, 58	indefinit, 26
Lösung, 55	Inhalt, 44
lineare, 58, 72	äußerer, 44
n-ter Ordnung, 72	innerer, 44

inhomogen, 58, 65, 72	Richtungsableitung, 22
Integral, 41, 45	Richtungsvektor, 22
integrierbar, 41, 45	Rotationskörper, 47, 48
Jacobimatrix, 31	schnell fallend, 90
Kattanraral 21	Schwartz-Raum, 90
Kettenregel, 21 kompaktes Intervall, 40	Sinuscardinalis, 90
•	Störfunktion, 58
konvergent, 10, 81	stückweise, 79, 80
absolut, 81	glatt, 79, 80
Konvergenzradius, 11	stetig, 79, 80
Limes, 2	Stetigkeit, 6
lineare Differentialgleichungssystem, 65	Streckenzug, 22
homogen, 65	Substitutionsregel, 50
inhomogen, 65	Teilintervall, 40
Maximum	Untersumme, 40
lokales, 26	Omersumme, 40
messbar, 44	Verbindungsstrecke, 21
Minimum	7. 1. 40.
lokales, 26	Zerlegung, 40
N 11 1 10	Zylinderkoordinaten, 52
Normalbereich, 48	
Normalbereich bzgl. der y -Achse, 48	
Obersumme, 40	
Partielle Ableitung, 16	
2. Ordnung, 17	
höherer Ordnung, 17	
Polarkoordinaten, 50	
Potenzreihe, 11	
Reihenwert, 10	
Riccatische Differentialgleichung, 63	
Richtung, 22	