## Diffie-Hellman Key Exchange

Gianluca Dini
Dept. of Ingegneria dell'Informazione
University of Pisa
Email: gianluca.dini@.unipi.it

Version: 2024-04-04

1

#### **Preliminaries**

- Whitfield Diffie and Martin Hellman, <u>New directions</u> in cryptography, IEEE Transactions of Information Theory, 22(6), pp. 644-654, Nov. 1976
- Cryptosystem for key establishment
- One-way function
  - $-\ \mbox{f:}$  discrete exponentiation is computationally "easy"
  - f<sup>-1</sup>: discrete logarithm it is computationally "difficult"

April 24

Diffie-Hellman Key Exchange

\_

#### **Preliminaries**

- Mathematical foundation
  - Abstract algebra: groups, sub-groups, finite groups and cyclic groups
- We operate in the *multiplicative group*  $\mathbb{Z}_p^*$  with addition and multiplication modulo p, with p prime
  - $-\mathbb{Z}_p^*$  is the set of integers i belonging to [0, ..., p-1], s.t. gcd(i, p) = 1
  - $Ex. Z_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

April 24

Diffie-Hellman Key Exchange

3

3

#### Facts on modular arithmetic

- Multiplication is commutative
  - $-(a \times b) \equiv (b \times a) \mod n$
- · Exponentiation is commutative
  - $-(a^x)^y \equiv (a^y)^x \mod n$
- · Power of power is commutative

$$-(a^b)^c \equiv a^{bc} \equiv a^{cb} \equiv (a^c)^b \mod n$$

April 24

Diffie-Hellman Key Exchange

+

#### Facts on modular arithmetic

- Parameters
  - Let p be prime and  $g \in \mathbb{Z}_p^*$  be a *primitive element* (or *generator*), i.e., for each  $y \in \mathbb{Z}_p^*$  there is  $x \in \mathbb{Z}_p^*$  s.t.  $y \equiv g^x \mod p$
- Discrete Exponentiation
  - − Given  $x \in \mathbb{Z}_p^*$ , compute  $y \in \mathbb{Z}_p^*$  s.t.  $y = g^x \mod p$
- Discrete Logarithm Problem (DLP)
  - Given  $\mathsf{y} \in \mathbb{Z}_p^*$ , determine  $\mathsf{x} \in \mathbb{Z}_p^*$  s.t.  $\mathsf{y} = \mathsf{g}^\mathsf{x} \bmod \mathsf{p}$ 
    - Notation x = log<sub>g</sub> y mod p

April 24

Diffie-Hellman Key Exchange

5

5

#### Properties of discrete log

- $log_g(\beta \gamma) \equiv (log_g \beta + log_g \gamma) \mod p$
- $log_g(\beta)^s \equiv s (log_g\beta) \mod p$

April 24

Diffie-Hellman Key Exchange

6

#### The Diffie-Hellman Protocol



#### **SETUP**

- Let p be a large prime (600 digits, 2000 bits)
- Let 1 < g < p a generator
- Let p and g be publicly known
- THE DIFFIE-HELLMAN KEY EXCHANGE (DHKE)
  - Alice chooses a random secret number a (private key)
  - Bob chooses a random secret number b (public key)
  - M1: Alice → Bob: A,  $Y_A \equiv g^a \mod p$  (public key)
  - M2: Bob → Alice: B,  $Y_B \equiv g^b \mod p$  (public key)
  - Alice computes  $K_{AB} \equiv (Y_B)^a \equiv g^{ab} \mod p$
  - Bob computes  $K_{AB} \equiv (Y_A)^b \equiv g^{ab} \mod p$

April 24

Diffie-Hellman Key Exchange

7

7

#### DHKE with small numbers

Let p = 11, g = 7

Alice chooses a = 3 and computes  $Y_A \equiv g^a \equiv 7^3 \equiv 343 \equiv 2 \text{ mod } 11$ 

K<sub>AB</sub>? b

Bob chooses b = 6 and computes  $Y_B \equiv g^b \equiv 7^6 \equiv 117649 \equiv 4$  mod 11

 $A \rightarrow B: 2$ 

B →A: 4

Alice receives 4 and computes  $K_{AB} = (Y_B)^a \equiv 4^3 \equiv 9 \mod 11$ 

Bob receives 2 and computes  $K_{AB}$  =  $(Y_A)^b \equiv 2^6 \equiv 9 \text{ mod } 11$ 

April 24

Diffie-Hellman Key Exchange

0

### **DHKE** computational aspects

- Large prime p can be computed as for RSA
- Exponentiation can be computed by square-andmultiply
  - The trick of using small exponents is non applicable here
- $\mathbb{Z}_p^*$  is cyclic
  - g is a generator, gi mod p defines a permutation

```
• p = 11, g = 2

-2^1 \equiv 2 \mod 11 2^5 \equiv 10 \mod 11 2^9 \equiv 6 \mod 11

-2^2 \equiv 4 \mod 11 2^6 \equiv 9 \mod 11 2^{10} \equiv 1 \mod 11

-2^3 \equiv 8 \mod 11 2^7 \equiv 7 \mod 11 repeat cyclically

-2^4 \equiv 5 \mod 11 2^8 \equiv 3 \mod 11
```

April 24

Diffie-Hellman Key Exchange

9

## Security of DHKE

- Intuition
  - Eavesdropper sees p, g,  $Y_A$  and  $Y_B$  and wants to compute  $K_{AB}$
- Diffie-Hellman Problem (DHP)
  - Given p, g,  $Y_A \equiv g^a \mod p$  and  $Y_B \equiv g^b \mod p$ , compute  $K_{AB} = g^{ab} \mod p$
- How hard is this problem?

April 24

Diffie-Hellman Key Exchange

10

#### Security of DHKE

- DHP  $\leq_p$  DLP
  - If DLP can be easily solved, then DHP can be easily solved
  - There is no proof of the converse, i.e., if DLP is difficult then DHP is difficult
  - At the moment, we don't see any way to compute  $K_{AB}$  from  $Y_A$  and  $Y_B$  without first obtaining either a or b

April 24

Diffie-Hellman Key Exchange

11

11

#### DLP - rule of thumb

- Let p be a prime on t bits (p < 2<sup>t</sup>)
- Exponentiation takes at most 2·log<sub>2</sub> p < 2t long integer multiplications (mod p)
  - Linear in the exponent size (t)
- Discrete logs require  $\sqrt{p} = 2^{t/2}$  multiplication
- Example n = 512
  - Exponentiation: #multiplications ≤ 1024
  - − Discrete log: #multiplications  $\approx 2^{256}$  = 10<sup>77</sup>
    - 10<sup>17</sup> seconds since Big Bang

April 24

Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange

#### **NOT-INTERACTIVITY**

April 24

Diffie-Hellman Key Exchange

13

13





15

Diffie-Hellman Key Exchange

THE MAN-IN-THE-MIDDLE ATTACK

April 24

Diffie-Hellman Key Exchange 16



17



#### Man-in-the-Middle Attack

- The attack is possible because
  - Y<sub>A</sub> and Y<sub>B</sub> are not authenticated
  - A and  $Y_A$ , as well as B and  $Y_B$ , are not indissolubly linked
    - · A: Alice's identifier
    - B: Bob's identifier
  - Two sides of the same coin

April 24

Diffie-Hellman Key Exchange

19

19

## MitM: possible solutions $[\rightarrow]$

- PROTOCOL USING DIGITAL SIGNATURES
- The protocol
  - Alice → Bob:  $Y_A$ ,  $\langle Y_A, B \rangle_A$
  - Bob → Alice:  $Y_B$ ,  $\langle Y_A, Y_B, A \rangle_B$
  - With  $\langle X \rangle_P$  digital signature on statement X by principal P
- Critical issue
  - Authenticiy of public keys

April 24

Diffie-Hellman Key Exchange

20

## MitM: possible solutions $[\rightarrow]$

- PROTOCOL USING PASSWORDS
- Let w be a secret shared password between Alice and Bob
- The protocol
  - − Alice  $\rightarrow$  Bob:  $Enc_w(Y_A)$
  - − Bob  $\rightarrow$  Alice: Enc<sub>w</sub>(Y<sub>B</sub>)

April 24

Diffie-Hellman Key Exchange

21

21

#### MitM: possible solutions

- PROTOCOL USING PASSWORDS
- Properties
  - The protocol is robust against password guessing attack
    - As Y is random (and unknown to the adversary), this value does give no information to the adversary
    - · An adversary cannot perfom an off-line password attack

April 24

Diffie-Hellman Key Exchange

\_\_\_

Diffie-Hellman Key Exchange

## THE GENERALIZED DLP AND RELATED ATTACKS

April 24

Diffie-Hellman Key Exchange

23

23

#### The Generalized DLP

- · DLP can be defined on any cyclic group
- GDLP (def)
  - Given a finite cyclic group G with group operation and cardinality n, i.e., |G| = n.
  - − We consider a *primitive element*  $\alpha \in G$  and another element  $\beta \in G$ . The discrete logarithm problem is finding the integer x, where  $1 \le x \le n$ , such that

$$\beta = \underbrace{\alpha \bullet \alpha \bullet \alpha \bullet \dots \bullet \alpha_{j}}_{\text{x times}} = \alpha^{x}$$

April 24

Diffie-Hellman Key Exchange

24

### DLP for cryptography

- Multiplicative prime group  $\mathbb{Z}_p^*$ 
  - DHKE, ElGamal encryption, Digital Signature Algorithm (DSA)
- Cyclic group formed by Elliptic curves
- Galois field GF(2<sup>m</sup>)
  - Equivalent to  $\mathbb{Z}_p^*$
  - Attacks against DLP in GF(2<sup>m</sup>) are more powerful than DLP in  $\mathbb{Z}_p^*$  so we need "higher" bit lengths than  $\mathbb{Z}_p^*$
- Hyperelliptic curves or algebraic varieties

April 24

Diffie-Hellman Key Exchange

25

25

#### Algorithms for DLP

- Generic Algorithms work in any cyclic group:
  - Brute-force Search
  - Shank's Baby-Step Giant-Step Method
  - Pollard's Rho Method
  - Pohlig-Hellman Algorithm
- Nongeneric algorithms exploit inherent structure of certain groups
- FACT Difficulty of DLP is independent of the generator

April 24

Diffie-Hellman Key Exchange

26

## Algorithms for DLP

- GENERIC ALGORITHMS
- Brute-force Search
  - Running time: O(|G|)
- Shank's Baby-Step Giant-Step Method
  - Running time:  $O\left(\sqrt{|G|}\right)$
  - Storage:  $O\left(\sqrt{|G|}\right)$

%

April 24

Diffie-Hellman Key Exchange

27

27

## Algorithms for DLP

- GENERIC ALGORITHMS
- · Pollard's Rho Method
  - Based on the Birthday Paradox
  - Running time:  $O\left(\sqrt{|G|}\right)$
  - Storage: negligible

April 24

Diffie-Hellman Key Exchange

28

### Algorithms for DLP

- GENERIC ALGORITHMS
- Pohlig-Hellman Algorithm
  - Based on CRT, exploits factorization of  $|G| = \prod_{i=1}^{r} (p_i)^{e_i}$ 
    - Reduces DLP to DLP in (smaller) groups of order  $p_i^{e_i}$
    - In the EC, computing |G| is not easy
  - Running time:  $\mathcal{O}\left(\sum_{i=1}^r e_i \cdot \left(lg|G| + \sqrt{p_i}\right)\right)$ 
    - Efficient if each p<sub>i</sub> is «small» →
    - The smallest factor of |G| must be in the range 2160

April 24

Diffie-Hellman Key Exchange

20

29

### Algorithms for DLP

- NONGENERIC ALGORITHMS
  - Exploit inherent structure of certain groups
- The Index-Calculus Method
  - Very efficient algorithm to compute DLP in  $\mathbb{Z}_p^*$  and GF(2<sup>m</sup>)
  - Sub-exponential running time
    - In  $\mathbb{Z}_p^*$ , to achieve 80-bit security, the prime p must be at least 1024 bit long
    - It is even more efficient in GF(2<sup>m</sup>) → For this reason, DLP in GF(2<sup>m</sup>) are not used in practice

April 24

Diffie-Hellman Key Exchange

30

Diffie-Hellman Key Exchange

#### **DLP IN SUBGROUPS**

April 24

Diffie-Hellman Key Exchange

31

31

## Cyclic groups

- Theorem 8.2.2. For every prime p,  $(\mathbb{Z}_p^*, \times)$  is an abelian finite cyclic group
  - Finite: contains a finite number of elements
  - Group: closed, associative, identity element, inverse, commutative (abelian)
  - **Cyclic**: contain an element  $\alpha$  with *maximum order* ord( $\alpha$ ) =  $|\mathbb{Z}_p^*| = p-1$ , where *order* of  $a \in \mathbb{Z}_p^*$ , ord(a) = a, is the smallest positive integer a such that a
    - $\alpha$  is called *generator* or *primitive element*
  - The notion of finite cyclic group is generalizable to (G, ●)

April 24

Diffie-Hellman Key Exchange

32

## Cyclic groups – order

```
• Example: consider \mathbb{Z}_{11}^* and a = 3
      - a^1 = 3
      -a^2 = a \cdot a = 3 \cdot 3 = 9
                                                                                           Length of the
      -a^3 = a^2 \cdot a = 9 \cdot 3 = 27 \equiv 5 \mod 11
                                                                                           sequence = 5
      -a^4 = a^3 \cdot a = 5 \cdot 3 = 15 \equiv 4 \mod 11
      -a^5 = a^4 \cdot a = 4 \cdot 3 = 12 \equiv 1 \mod 11  ord(3) = 5
      - a^6 = a^5 \cdot a \equiv 1 \cdot a \equiv 3 \mod 11
      - a^7 = a^5 \cdot a^2 \equiv 1 \cdot a^2 \equiv 9 \mod 11
      - a^8 = a^5 \cdot a^3 \equiv 1 \cdot a^3 \equiv 5 \mod 11
      - a^9 = a^5 \cdot a^4 \equiv 1 \cdot a^4 \equiv 4 \mod 11
      - a^{10} = a^5 \cdot a^5 \equiv 1 \cdot 1 \equiv 1 \mod 11 ← periodic
      - a^{11} = a^{10} \cdot a \equiv 1 \cdot a \equiv 3 \mod 11
      - 3<sup>i</sup> generates the periodic sequence {3, 9, 5, 4, 1}
                                           Diffie-Hellman Key Exchange
```

33

#### Cyclic groups - primitive element

- Example
- Consider  $\mathbb{Z}_{11}^*$  and a = 2

```
- a = 2 	 a<sup>6</sup> ≡ 9 \mod 11
- a<sup>2</sup> ≡ 4 	 a<sup>7</sup> ≡ 7 \mod 11
- a<sup>3</sup> ≡ 8 	 a<sup>8</sup> ≡ 3 \mod 11
- a<sup>4</sup> ≡ 5 \mod 11 	 a<sup>9</sup> ≡ 6 \mod 11
- a<sup>5</sup> ≡ 10 \mod 11 	 a<sup>10</sup> ≡ 1 \mod 11 \blacktriangleleft ord(2) = 10
```

- ord(2) =  $10 = |\mathbb{Z}_{11}^*| \rightarrow a = 2$  is a primitive element
- The sequence contains all elements of  $\mathbb{Z}_{11}^*$

April 24 Diffie-Hellman Key Exchange 34

## Cyclic groups – permutation

Powers of a primitive element define a *permutation* of the elements of  $\mathbb{Z}_p^*$ 

| i              | 1 | 2 | 3 | 4 | 5  | 6 | 7 | 8 | 9 | 10 |
|----------------|---|---|---|---|----|---|---|---|---|----|
| 2 <sup>i</sup> | 2 | 4 | 8 | 5 | 10 | 9 | 7 | 3 | 6 | 1  |

April 24

Diffie-Hellman Key Exchange

35

#### Cyclic groups – order and generators

ord(6) = 10

- Order of elements of  $\mathbb{Z}_{11}^*$ 
  - ord(1) = 1
  - $\text{ ord(2)} = 10 \qquad \text{ ord(7)} = 10$
  - ord(3) = 5 ord(8) = 10
  - ord(4) = 5 ord(9) = 5
  - ord(5) = 5 ord(10) = 2
- Any order is a divisor of  $|Z_{11}^*| = 10 \rightarrow \{1, 2, 5, 10\}$
- #(primitive elements) is  $\Phi(10) = \Phi(|\mathbb{Z}_{11}^*|) = 4$
- Set of primitive elements = {2, 6, 7, 8}

April 24

Diffie-Hellman Key Exchange

### Cyclic groups

- Theorem 8.2.3
  - Let G be a finite group. Then for every a ∈ G it holds that:
  - $-1. a^{|G|} = 1$  (Generalization of Fermat's Little Theorem)
  - $-2. \operatorname{ord}(a) \operatorname{divides} |G|$
- Theorem 8.2.4
  - Let G be a finite cyclic group. Then it holds that
    - 1. The number of primitive elements of G is  $\Phi(|G|)$ .
    - 2. If |G| is prime, then all elements  $a \neq 1 \in G$  are primitive.

April 24

Diffie-Hellman Key Exchange

37

37

#### Subgroups

- Theorem 8.2.5 Cyclic Subgroup Theorem
  - Let G be a cyclic group. Then every element a ∈ G with ord(a) = s is the primitive element of a cyclic subgroup with s elements.
  - Example
    - $\mathbb{Z}_{11}^*$ , a = 3, s = ord(3) = 5, H = {1,3,4,5,9}
    - H is a finite, cyclic subgroup of order 5

April 24

Diffie-Hellman Key Exchange

#### Subgroups

- Theorem 8.2.6 (Lagrange's theorem)
  - Let H be a subgroup of G. Then |H| divides |G|.
- Example:  $\mathbb{Z}_{11}^*$ 
  - $| \mathbb{Z}_{11}^* | = 10$  whose divisors are 1, 2, 5 (and 10)
  - Subgroup elements primitive element
  - $H_1 \qquad \{1\} \qquad \alpha = 1$
  - $H_2$  {1, 10}  $\alpha = 10$
  - $H_5$  {1, 3, 4, 5, 9}  $\alpha$ = 3, 4, 5, 9

April 24 Diffie-Hellman Key Exchange

39

### Subgroups

- Theorem 8.2.7
  - Let G be a finite cyclic group of order n and let  $\alpha$  be a generator of G. Then for every integer k that divides n there exists exactly one cyclic subgroup H of G of order k. This subgroup is generated by  $\alpha^{n/k}$ . H consists exactly of the elements  $\alpha \in G$  which satisfy the condition  $\alpha^k = 1$ . There are no other subgroups.
- Example.
  - Given  $\mathbb{Z}_{11}^*$ , generator  $\alpha$  = 8 and k = 2, then  $\beta$  =  $8^{10/2}$  = 10 mod 11 is a generator for H of order k = 2

April 24

Diffie-Hellman Key Exchange

40

## Relevance of subgroups to DLP $[\rightarrow]$

- Pohlig-Hellman Algorithm
  - Exploit factorization of  $|G| = p_1^{e1} \cdot p_2^{e2} \cdot ... \cdot p_e^{e\ell}$
  - Run time depends on the size of prime factors
    - The smallest prime factor must be in the range 2160
  - Then  $| \mathbb{Z}_p^* | = p 1$  is even → 2 (small) is one of the divisors! → It is advisable to work in a large prime subgroup H
    - If |H| is prime, ∀a∈H, a is a generator (Theorem 8.2.4)

April 24

Diffie-Hellman Key Exchange

/11

41

## Relevance of subgroups to DLP $[\rightarrow]$

- SAFE PRIMES
- Definition: given a prime p = 2·q+1, where q is a prime then p is a safe prime and q is a Sophie Germain prime
- It follows that  $\mathbb{Z}_p^*$  has a subgroup  $H_q$  of (large) prime order q

April 24

Diffie-Hellman Key Exchange

## Relevance of subgroups to DLP $[\Psi]$

- SMALL SUBGROUP CONFINEMENT ATTACK
  - A (small) subgroup confinement attack on a cryptographic method that operates in a large finite group is where an attacker attempts to compromise the method by forcing a key to be confined to an unexpectedly small subgroup of the desired group.

April 24

Diffie-Hellman Key Exchange

43

44

43

## Small Subgroup Confinement Attack against DHKE

• Consider prime p,  $\mathbb{Z}_p^*$ , and generator  $\alpha$ 



# Small Subgroup Confinement Attack against DHKE

- Recall THEOREM 8.2.7
- The attack
  - Consider k that divides  $n = |\mathbb{Z}_p^*| = p-1$
  - $A' \equiv A^{n/k} \equiv (\alpha^a)^{n/k} \equiv (\alpha^{n/k})^a \mod p$
  - $B' \equiv B^{n/k} \equiv (\alpha^b)^{n/k} \equiv (\alpha^{n/k})^b \mod p$
  - Session key K =  $\beta^{ab}$  mod p, with  $\beta = \alpha^{n/k}$
  - β =  $\alpha^{n/k}$  is a generator of subgroup H of order k →
  - DHKE gets confined in H<sub>k</sub> and brute force becomes easier
  - It is advisable to work in a large prime subgroup H

April 24

Diffie-Hellman Key Exchange

45

45

#### A practical variant

- In the DHKEP, the key is defined as  $K = H(g^{a \cdot b})$  where H is a cryptographic hash function.
  - A practical choice is SHA-256
- Motivation: g<sup>ab</sup> may not have enough entropy
  - If DHKEP is run in a subgroup Γ of  $\mathbb{Z}_p^*$ , then elements of Γ are represented on  $\lceil \log_2(p+1) \rceil$  bits while ord(Γ)  $\ll p$ .
  - The use of H is a practical way to remove such a redundancy provided that  $\operatorname{ord}(\Gamma) \gg 2^k$

April 24

Diffie-Hellman Key Exchange

46