REKONFIGURASI JARINGAN SAMBUNGAN RUMAH UNTUK MENGURANGI RUGI-RUGI DAYA DAN JATUH TEGANGAN DI PERUMAHAN NUANSA KORI JIMBARAN

I Gede Agus Handi Saputra¹, I Wayan Arta Wijaya², I Gst. Nrg. Janardana³ Jurusan Teknik Elektro, Fakultas Teknik, Universitas Udayana Denpasar – Bali Email: agus_handi@yahoo.com, artawijaya@ee.unud.ac.id, janardana@ee.unud.ac.id

ABSTRAK

Perumahan Nuansa Kori Jimbaran disuplai oleh salah satu trafo distribusi KA1441 melalui Penyulang Jimbaran. Trafo KA1441 berlokasi di Perumahan Nuansa Kori Jimbaran dengan kapasitas 250 KVA. Jumlah seluruh pelanggan yang disuplai oleh trafo iniadalah 118 unit pelanggan dengan beban daya 450 VAhingga 2200 VA. Berdasarkan hasil pengukuran di dapat nilai tegangan terendah yaitu 176Volt lebih rendah dari tegangan sumber satu phasa ke netral (220 V) yang terjadi pada saat beban puncak dengan*drop* tegangan melebihi 5%. Sehingga perlu dilakukan rekonfigurasi pada jaringan di Perumahan Nuansa Kori Jimbaran.Hasil analisis rekonfigurasi JTR (Jaringan Tegangan Rendah) dengan simulasi program ETAP *Powerstation* 7.5 yaitu di dapat nilai tegangan terendah sebesar 210 V atau *drop* tegangan '4,54% dari tegangan sumber 220 V dan rugi-rugi daya sebesar 5,6 kW. Nilai drop tegangan yang didapat setelah rekonfigurasi jaringansudah sesuai dengan standar (SPLN 72 Tahun 1987).

Kata Kunci: Perumahan Nuansa Kori Jimbaran, drop tegangan, rekonfigurasi JTR.

ABSTRACT

Nuansa Kori Jimbaran housing is supplied by one of the distribution transformer feeders of KA1441 through Jimbaran. KA1441 transformer is located at Nuansa Kori Jimbaran with a capacity of 250 KVA. The total number of customers supplied by this transformer is 118 units of customers with a load of 450 VA to 2200 VA. Based on the measurement results, it was obtained the value of the lowest voltage is 176 volts, lower than the source voltage of single phase to neutral (220 V) that occurs during peak loads with voltage drop exceeds to 5%. Therefore, it needs a reconfiguration of the network in the Nuansa Kori Jimbaran Housing. The results of the analysis of the reconfiguration of JTR (Low Voltage Network) with the simulation program of Powerstation ETAP 7.5, obtained value of the lowest voltage of 210 V or a voltage drop of '4.54% of the source voltage of 220 V and a power loss of 5.6 kW. The value of the voltage drop obtained after the reconfiguration of the network was in conformity with the standards (SPLN 72.1987).

Keywords: Kori Nuansa Jimbaran Resident, voltage drop, reconfiguration JTR.

1. PENDAHULUAN

Sambunga rumah (SR) adalah titik akhir dari pelayanan listrik kepada konsumen.

Jumlah tarikan SR yang tidak sesuai standar akan berpengaruh terhadap losses (susut daya) yang merupakan kerugian bagi

PLN sedangkan disisi pelanggan mengakibatkanpelanggan hanya dapatmenikmati listrik dengan tegangan kurang dari 220 Volt.

Kawasan Perumahan Nuansa Kori Jimbaran memiliki pelanggan sebanyak 1.292 pelanggan (Konsumen) yang keseluruhannya merupakan pelanggan rumah tangga dengan daya 450 VA hingga 2200VA disuplai olehjaringan distribusi penyulang Jimbaran yang terdiri dari 15 transformator distribusi.

Berdasarkan hasil survey tanggal 2 Maret 2016 saat melakukan analisis, salah satu tranformator yang bermasalahyaitu tranformator dengan nomor KA 1441, didapatkan jumlah titik sambungan mencapai 8 titik sambungan, melebihi standar PUIL 2010 yaitu maksimal jumlah titik sambungandari jaringan tegangan rendah (JTR) ke sambungan rumah (SR) adalah 5 sambungan.

Berdasarkan permasalahan tersebut perlu adanya analisis rekonfigurasi terhadap sambungan rumah yang tidak sesuai PUIL 2010 agar kualitas sambungan tetap aman [1].

1. KAJIAN PUSTAKA

2.1 Jaringan Tegangan Rendah

Jaringan Tegangan Rendah ialah jaringan tenaga listrik dengan tegangan rendah yang mencakup seluruh bagian jaringan tersebut beserta perlengkapannyadari sumber penyaluran tegangan rendah tidak termasuk SLTR. Sedangkan Sambungan tenaga listrik tegangan rendah (SLTR) ialah penghantar di bawah atau di atas tanah termasuk peralatannnya mulai dari titik penyambungan pada JTR sampai dengan alat pembatas dan pengukur. Jaringan tegangan rendah merupakan jaringan yang berhubungan langsung dengan konsumen tenaga listrik. Pada JTR sistem tegangan distribusi primer 20/11 kV diturunkan menjadi tegangan rendah 380/220V[2].

Sistem penyaluran daya listrik pada JTM maupun JTR dapat dibedakan menjadi dua, yaitu sebagai berikut :

 Saluran Udara Tegangan Rendah (SU-TR). Jenis penghantar yang dipakai ad-

- alah kabel telanjang (tanpa isolasi) seperti kabelAAAC, kabel ACSR.
- Saluran Kabel Udara Tegangan Rendah (SKUTR). Jenis penghantar yang dipakai adalah kabel berisolasi seperti kabel LVTC (Low Voltage Twisted Cable).

Spesifikasi umum sambungan rumah yaitu sebagai berikut :

- 1. Rugi Tegangan
- 2. Ukuran Penghantar Minimum
- 3. Jumlah Sambungan Seri

3. METODE PENELITIAN

Jenis data yang digunakan dalam penyusunan Tugas Akhirini adalah data primer yaitu data yang diperoleh dari pengecekan secara langsung di Perumahan Nuansa Kori Jimbaran dan pengukuran tegangan serta beberapa data sekunder yang diperoleh melalui sumber data kepustakaan (*library* research) seperti buku-buku yang berhubungan dengan topik penulisan, dari media internet dan gambar denah perumahan serta jaringan tegangan rendah di Perumahan Nuansa Kori Jimbaran.

Berikut tahapan proses analisis:

- Pengumpulan Data Jaringan Tegangan Rendah (JTR) di Perumahan Nuansa Kori Jimbaran.
- 2. Menghitung jumlah tarikan sambungan rumah (SR) deret.
- 3. Memodelkan Jaringan Tegangan Rendah untuk program ETAP.
- Mensimulasikan sistem kelistrikan dengan program ETAP (sebelum rekonfigurasi).
- 5. Melakukan konfigurasi JTR (pada program ETAP).
- Mensimulasikan sistem kelistrikan dengan program ETAP (setelah rekonfigurasi).
- 7. Setelah hasil simulasi sesuai standar dilanjutkan dengan menganalisis jatuh tegangan.
- 8. Analisajatuh tegangan (membandingkanhasil simulasi sebelum dan setelah regunfigurasi JTR).
- 9. Menarik kesimpulan

4. HASIL DAN PEMBAHASAN

4.1.Gambaran Umum Perumahan Nuansa Kori Jimbaran

Perumahan Nuansa Kori Jimbaran adalah salah satu perumahan yang terletak di daerah Jimbaran dengan wilayah seluas ± 92.000 m2. Jumlah seluruh pelanggan di Perumahan Nuansa Kori Jimbaran adalah 1292 unit pelanggan (Konsumen). Keseluruhannya merupakan pelanggan rumah dan industry rumah tangga dengan total beban daya 450 VA hingga 2200 VA yang dilayani oleh transformator dengan kapasitas 250 kVA. Sistem Kelistrikan Perumahan Nuansa Kori Jimbaran di suplai dari jaringan distribusi penyulang Jimbaran. Dari 15 transformator tersebut, salah satu tranformator yang bermasalah adalah transformator KA 1441. Transformator KA 1441 memiliki pelanggan sebanyak 118 pelanggan (konsumen) dengan memiliki panjang saluran mencapai 1.720 m. Beban yang dilayani oleh trafo KA 1441 terjadi jatuh tegangan paling rendah mencapai 29,7%.

4.2 Permodelan Sistem Kelistrikan Sebelum Rekonfigurasi

Pelanggan Perumahan Nuansa Kori Jimbaran memiliki karakteristik beban yang berbeda-beda. Beban-beban pada perumahan Nuansa Kori Jimbaran, yaitu beban perumahan, beban industri kecil dan fasilitas umum.

Kondisi JTRdaerah Perumahan Nuansa Kori Jimbaran sebelum rekonfigurasi adalah sebagai berikut :

1. Beban terpasang : 132.700 VA atau 132,7 kVA

Jumlah pelanggan: 118 pelanggan
 Konfigurasi jaringan: Sitem Radial

4. Panjang jaringan: 1,720 km5. Jenis penghantar: LVTC

Pada Tabel 1 dapat diketahui jenis dan panjang penghantaryang digunakan pada JTR Perumahan Nuansa Kori Jimbaran.

Tabel 1. Data Penghantar JTRDaerah Perumahan Nuansa Kori Jimbaran

TIPE JTR	JENIS PENGHANTAR	PANJANG(m)
SKUTR	LVTC 3x35 + 1x50mm ²	720
SKUTR	LVTC 2x16mm ²	600
SKUTR	LVTC 2x10mm ²	400
	Total Panjang Jaringan	1.720

Pada Gambar 1 beberapa ujung line tiang JTR yang disambungkan ke pelanggan melebihi standar yang diijinkan oleh (SPLN No.74 tahun 1987).Pada salah satu ujung line tersebut, panjang kabel SR dari tiang JTR ke pelanggan serta dari pelanggan ke pelanggan melebihi 30 meter dengan 11 buah sambungan. Sedangkan menurut standar jumlah sambungan yang diperbolehkan hanya 5 buah sambungan.Total daya kontrak atau beban terpasang di Perumahan Nuansa Kori Jimbaran adalah sebanyak 2200VA atau 2.2 KVA.

Berdasarkan hasil *survey* dan analisis data diperoleh data tegangan pelanggan memliki panjang tarikan SR yang tidak sesuai standar.

Gambar 1. JTR Perumahan Nuansa Kori Jimbaran Sebelum Rekonfigurasi.

4.2.1 Data Pengukuran Tegangan dan Rata-Rata Pemakaian Beban Sebelum Rekonfigurasi

Pada Tabel 2 didapatkan nilai tegangan yang terukur pada beban puncak, yaitu pukul 19.00 tegangan terendah terjadi pada pelanggan NTLL11, yaitu sebesar 189V.

Tabel 2. Data tegangan beberapa pelanggan berdasarkan hasil pengukuran

No	No Pelanggan	Daya Kontrak (VA)	Tegangan pada pukul 19.00(Volt)	
1	NTJJ1	1300	216	
2	NTII4	2700	216	

3	NTHH5	3500	215
4	NTGG10	3100	211
5	NTGA37	4000	213
6	NTKK6	3600	214
7	NTLL11	14900	189
8	NTMM8	4000	213

4.2.2 AnalisaTegangan Sebelum Rekonfigurasi Berdasarkan Program ETAP

Pada Tabel 3 di bawah, dapat diketahui tegangan terendah pada saat kondisi beban puncak (jam 19.00 WITA) terjadi pada bus beban 52, yaitu besar tegangan 176V dari sumber 220V. Besarnya nilai *drop* tegangan dalam persentase menurut program ETAP yaitu senilai 80,30%. Terlihat bahwa besarnya *drop* tegangan JTR Perumahan Nuansa Kori Jimbaran adalah 19,70%.

Tabel 3.Hasil Analisa Tegangan Di Perumahan Nuansa Kori Jimbaran

No	Uraian	Туре	Tegangan pada pukul 19.00 (WITA) (Volt)
1	Bus 5	Load	213
2	Bus 16	Load	211
3	Bus 19	Load	211
4	Bus 34	Load	210
5	Bus 36	Load	214
6	Bus 42	Load	211
7	Bus 52	Load	176
8	Bus 58	Load	211

Adapun besarnya nilai drop tegangan (*Drop Teg*) yang dihitung berdasarkan persamaan berikut :

Drop tegangan dalam persentase (%)

$$= \frac{Teg.Sumber - Teg.Ujung}{Teg.Sumber} \times 100\%$$

$$= \frac{220 V - 176 V}{220 V} \times 100\%$$

$$= 20\%$$

Pada perhitungan diatas didapat nilai drop tegangan sebesar 20%. Dalam hal ini, *drop* tegangan pada Perumahan Nuansa Kori Jimbaran melebihi standar yang diijinkan, dan harus direkonfigurasi.

4.3 Konfigurasi JTR Perumahan Nuansa Kori Jimbaran

Dalam melakukan rekonfigurasi JTR, harus dilakukan analisa aliran daya untuk menentukan *drop* tegangan ke masing-masing beban dengan menggunakan program ETAP *power station* 7.5.

Proses analisa *drop* tegangan pada program ETAP dilakukan dengan sistem sebagai berikut:

- Pertama-tama adalah memasukkan data bus pada JTR dan beban, data kapasitas trafo, data impedansi kabel penghantar data nilai pembebanan pada masing-masing pelanggan.
- Data beban di lapangan adalah beban 1 phase. Analisa yang dilakukan oleh program ETAP, yaitu analisa aliran daya pada jaringan dan pada beban secara keseluruhan
- Analisa aliran daya tidak dialkukan per phase atau masing-masing phase karena dalam penelitian ini keterbatasan data pembebanan masing-masing phase pada masing-masing beban.
- 4. Analisa drop tegangan dilakukan pada beban puncak (pukul 19.00 malam) rata-rata sebanyak 90%.
- Rata-rata pemakaian beban pada pelanggan secara keseluruhan ditentukan dari pengitungan nilai pemakaian beban rata-rata.

Adapun hasil dari rekonfigurasi JTR adalah sistem Radial dengan penambahan jaringan baru. Hasil rekonfigurasi JTR Perumahan Nuansa Kori Jimbaran ditunjukkan pada Gambar 2 berikut ini.

Gambar 2.JTR Perumahan Nuansa Kori Jimbaran Hasil Rekonfigurasi

4.4 RekonfigurasiDengan Penambahan Jaringan Baru

Rekonfigurasi JTR Perumahan Nuansa Kori Jimbaran pada tahap perancangan awal adalah dengan menambahan jaringan baru pada beberapa titik lokasi sambungan yang tidak sesuai

Data hasil analisa tegangan pelanggan setelah dialkukan rekonfigurasi ditampilkan pada Tabel 4. Setelah dilakukan rekonfigurasi, jaringan tegangan terendah terjadi pada bus beban 52 yang mengalami perubahan nilai tegangan menjadi 210V dari tegangan sumber 220V. Besar nilai *drop* tegangan dalam persentase menurut prog-

ram ETAP yaitu senilai 93.95%. Terlihat bahwa besarnya *drop* tegangan JTR Perumahan Nuansa Kori Jimbaran adalah 6.05%.

Tabel 4.Data Hasil Analisa Tegangan Pelanggan Setelah Rekonfigurasi

No	Uraian	Туре	Tegangan pada pukul (WITA) 19.00 (Volt)
1	Bus 5	Load	213
2	Bus 16	Load	211
3	Bus 19	Load	211
4	Bus 34	Load	210
5	Bus 36	Load	211
6	Bus 42	Load	211
7	Bus 52	Load	210
8	Bus 58	Load	211

Adapun besarnya nilai drop tegangan yang dihitung berdasarkan persamaan :

Drop tegangan dalam persentase (%)

$$= \frac{Teg.Sumber - Teg.Ujung}{Teg.Sumber} \times 100\%$$

$$= \frac{220 V - 210 V}{220 V} \times 100\%$$

$$= 4.54\%$$

Pada hasil perhitungan diatas nilai drop tegangan yang diperoleh yaitu sebesar 4,54 %. Hasil tersebut menunjukan bahwa *drop* tegangan yang dijinkan untuk JTR tipe radial tidak melebihi 5% Sehingga dalam hal ini, *drop* tegangan pada JTR Perumahan Nuansa Kori Jimbaran sudah memenuhi standar (SPLN No.74 tahun 1987).

4.5 Hasil Perbandingan *Drop Teg*angan

Pada Tabel 5 terlihat bahwa setelah direkonfigurasi*drop* tegangan berkurang dari (20%) menjadi (4,54%). Selain itu, susut daya juga menurun dari 7,1 kW menjadi 5,6 kW.

Tabel 5. Perbandingan Nilai *Drop*Tegangan

Nama	Kondisi	Loss (KW)	JTR (V)	Lokasi JTR	Drop teg.
Nuansa Kori	Sebelum rekonfi- gurasi	7,1	176	Bus 52 (NTLL 11	20%
Nuansa Kori	Setelah rekonfigu rasi	5,6	206	Bus 52 (NTLL 11)	4,54%

5. Simpulan

Berdasarkan hasil dan pembahasan setelah dilakukan rekonfigurasi JTR *drop* tegangan yang didapat berdasarkan perhitungan ETAP adalah sebesar 6,05% dan berdasarkan perhitungan menggunakan standar PLN adalah sebesar 4,54% dan rugirugi daya sebesar 5,6 kW. Nilai drop tegangan yang didapat setelah rekonfigurasi jaringan telah sesuai dengan standar SPLN No.72 Tahun 1987, yaitu drop tegangan yang diijinkan tidak melebihi 5%.

6. Daftar Pustaka

- [1]. Suartika, M., Wijaya, W. 2010. Rekonfiguras Jaringan Tegangan Rendah (JTR) Untuk Meperbaiki Drop Tegangan Di Daerah Banjar Tulangnyuh Klungkung: Jurnal Jurusan Teknik Elektro Universitas Udayana.
- [2]. Hardiyanto, E. 2008. Evaluasi Instalasi Jaringan Tegangan Rendah Untuk Menekan Rugi-rugi Daya dan Tegangan Jatuh. Tugas Akhir. Dept. Teknik Elektro Universitas Indonesia.
- [3]. SPLN 74, 1987. Jakarta : Standar Listrik Pedesaan. Departemen Pertambangan dan Energi Perusahaan Umum Listrik Negara.
- [4]. SPLN 72, 1987. Spesifikasi Desain Untuk Jaringan Tegangan Menengah (JTM) Dan Jaringan Tegangan Rendah (JTR).Jakarta: Departemen Pertambangan dan Energi Perusahaan Umum Listrik Negara.