Aerosol Type Constraints Required for Ocean Color Atmospheric Correction

Lead: *R. Kahn*

NASA/GSFC

With contributions from:

Z. Ahmad, B. Franz, S. Massie, A. Sayer

10 June 2014

Atmospheric Correction Requirements

[Based on: Section 3.2.13. PACE Aerosol Science Objectives – Atmospheric Correction]

- **SeaWiFS** Atmospheric Correction approach
 - -- Obtain AOD and Aerosol Type from *Red-NIR* bands
 - -- **Extrapolate** to Blue, UV (for next-generation instrument)
 - -- Correlate with surface reflectivity at (MOBY) surface Buoy

Will this be adequate for the next-generation Ocean Color objectives?

Ocean Color *parameter sensitivity* requirements >

Ocean **surface reflectivity** sensitivity requirements (λ) \rightarrow

TOA *reflectivity* sensitivity requirements (λ , AOD, type) \rightarrow

Aerosol *Type, AOD* sensitivity requirements

Impact of CDOM, Chlorophyll-a, and Absorbing & Non-absorbing Aerosols On *TOA Spectral Reflectance*

16,154 AERONET - SeaWiFS Coincidences

[49 AERONET Sites]

Site	Number	SeaWiFS -AERONET Climatological Mean (standard deviation) of AERONET AOD Coincidences								
Site	matches	380 nm	440 nm	500 nm	550 nm	675 nm	870 nm	Site Type	Region	Main Aerosol
Crozet Island	50	0.068 (0.043)	0.061 (0.041)	0.059 (0.042)	0.057 (0.040)	0.049 (0.037)	0.048 (0.034)	Island	S Indian Ocean	Maritime
Rottnest Island	219	0.080 (0.034)	0.063 (0.031)	0.062 (0.029)	0.059 (0.027)	0.051 (0.026)	0.044 (0.025)	Coastal Isl.	W Australia	Maritime
Reunion St. Denis	121	0.099 (0.045)	0.077 (0.034)	n/a (n/a)	0.064 (0.027)	0.053 (0.022)	0.046 (0.019)	Island	SW Indian Ocean	Maritime
Amsterdam Island	111	0.083 (0.040)	0.075 (0.038)	0.070 (0.037)	0.068 (0.036)	0.061 (0.037)	0.060 (0.037)	Island	S Indian Ocean	Maritime
San Nicolas	532	0.11 (0.067)	0.088 (0.056)	0.079 (0.048)	0.072 (0.043)	0.056 (0.035)	0.049 (0.030)	Coastal Isl.	S California	Maritime Pollution
Tahiti	344	0.098 (0.040)	0.083 (0.034)	0.079 (0.032)	0.074 (0.030)	0.061 (0.027)	0.054 (0.026)	Island	S Pacific	Maritime
Nauru	391	0.091 (0.041)	0.077 (0.036)	0.076 (0.035)	0.074 (0.035)	0.068 (0.034)	0.061 (0.034)	Island	SW Pacific	Maritime
Lanai	542	0.099 (0.055)	0.086 (0.048)	0.080 (0.042)	0.074 (0.038)	0.064 (0.033)	0.054 (0.028)	Island	Hawaii	Maritime
Trinidad Head	229	0.11 (0.076)	0.096 (0.067)	0.085 (0.059)	0.078 (0.054)	0.061 (0.046)	0.053 (0.039)	Coast	N California	Maritime
Coconut Island	230	0.10 (0.052)	0.090 (0.055)	0.085 (0.041)	0.082 (0.049)	0.073 (0.041)	0.061 (0.034)	Island	Hawaii	Maritime
Guam	82	0.10 (0.039)	0.092 (0.036)	0.093 (0.034)	0.088 (0.033)	0.074 (0.031)	0.068 (0.031)	Island	W Pacific	Maritime
Midway Island	342	0.11 (0.057)	0.097 (0.051)	0.093 (0.046)	0.089 (0.045)	0.078 (0.042)	0.071 (0.040)	Island	Central Pacific	Maritime
Azores	176	0.13 (0.067)	0.11 (0.060)	0.10 (0.054)	0.096 (0.051)	0.080 (0.047)	0.069 (0.044)	Island	E Atlantic	Maritime Dust
Gustav Dalen Tower		n/a (n/a)	0.14 (0.096)	0.11 (0.081)	0.098 (0.069)	0.069 (0.051)	0.056 (0.031)		N Baltic Sea	Maritime-Cont.
Tudor Hill	94	0.16 (0.076)	0.14 (0.063)	0.12 (0.055)	0.11 (0.050)	0.089 (0.042)	0.083 (0.038)		W N Atlantic	Maritime Dust
Ragged Point	131	0.12 (0.070)	0.11 (0.067)	0.11 (0.064)	0.11 (0.061)	0.091 (0.057)	0.088 (0.054)	Island	Barbados	Maritime Dust
Bermuda	340	0.17 (0.11)	0.14 (0.090)	0.13 (0.080)	0.11 (0.069)	0.091 (0.054)	0.075 (0.044)		W N Atlantic	Maritime Dust
Cape San Juan	154	0.13 (0.087)	0.12 (0.080)	0.12 (0.075)	0.11 (0.073)	0.10 (0.068)	0.010 (0.067)		Puerto Rico	Maritime Dust
Graciosa		0.16 (0.049)	0.15 (0.042)	0.13 (0.038)	0.12 (0.036)	0.11 (0.032)	0.091 (0.031)		E Atlantic (Azores)	Maritime Dust
La Parguera	672	0.16 (0.084)	0.14 (0.075)	0.13 (0.068)	0.12 (0.065)	0.10 (0.058)	0.086 (0.054)	Coast	Puerto Rico	Maritime Dust
Santa Cruz Tenerife	355	0.16 (0.092)	0.14 (0.086)	0.13 (0.082)	0.12 (0.079)	0.11 (0.074)	0.092 (0.070)		E Atlantic	Maritime Dust
Cabo Da Roca	350	0.17 (0.057)	0.15 (0.10)	0.11 (0.046)	0.12 (0.082)	0.091 (0.065)	0.075 (0.052)	Coast	Portugal	Continental
Gotland	261	0.18 (0.14)	0.15 (0.12)	0.13 (0.10)	0.12 (0.090)	0.086 (0.067)	0.068 (0.048)		Baltic	Maritime-Cont.
Ersa	76	n/a (n/a)	0.18 (0.080)	n/a (n/a)	0.13 (0.061)	0.10 (0.052)	0.076 (0.046)		Mediterranean	Maritime-Cont.
Key Biscayne	133	0.19 (0.12)	0.16 (0.099)	0.14 (0.084)	0.13 (0.073)	0.010 (0.057)	0.081 (0.046)	Coast	SE Florida	Maritime Pollution
Dry Tortugas		0.21 (0.12)	0.16 (0.10)	0.14 (0.086)	0.13 (0.075)	0.010 (0.059)	0.074 (0.046)		Caribbean	Maritime Dust
Lampedusa	382	n/a (n/a)	0.18 (0.11)	n/a (n/a)	0.14 (0.087)	0.12 (0.077)	0.093 (0.068)	Island	Mediterranean	Dust Pollution
IMC Oristano	459	n/a (n/a)	0.19 (0.10)	n/a (n/a)	0.15 (0.078)	0.11 (0.066)	0.085 (0.055)	Island	Mediterranean	Dust Pollution
Dahkla	186	0.18 (0.091)	0.17 (0.090)	0.16 (0.090)	0.15 (0.088)	0.13 (0.083)	0.11 (0.078)	Coast	W Sahara	Dust
Helgoland	205	0.24 (0.16)	0.20 (0.13)	0.17 (0.11)	0.15 (0.098)	0.12 (0.073)	0.088 (0.053)	Island	N Sea	Maritime
COVE	712	0.26 (0.22)	0.21 (0.18)	0.18 (0.15)	0.15 (0.13)	0.11 (0.097)	0.071 (0.064)	Coast	Chesapeake	Pollution
Sevastopol	351	0.27 (0.14)	0.22 (0.11)	0.19 (0.094)	0.16 (0.082)	0.12 (0.063)	0.084 (0.048)	Coast	Black Sea	Maritime Pollution
Ascension Island	522	0.22 (0.13)	0.19 (0.11)	0.17 (0.097)	0.16 (0.090)	0.14 (0.076)	0.12 (0.063)	Island	S Atlantic	Maritime Smoke
MVCO	170	n/a (n/a)	0.21 (0.20)	0.18 (0.17)	0.16 (0.16)	0.11 (0.13)	0.070 (0.086)	Coastal Isl	Martha's Vineyard	Maritime-Cont.
Forth Crete	731	0.26 (0.12)	0.22 (0.099)	0.19 (0.087)	0.17 (0.079)	0.13 (0.067)	0.10 (0.060)	Island	Mediterranean	Dust Pollution
rorar crete	731	0.20 (0.12)	0.22 (0.077)	0.17 (0.007)	0.17 (0.077)	0.13 (0.007)	0.10 (0.000)	isiana	Wediterraneari	Dust i oliution
Kaashidhoo	191	0.25 (0.13)	0.21 (0.11)	0.18 (0.096)	0.17 (0.085)	0.14 (0.070)	0.11 (0.054)	Island	Indean Ocean	Maritime Pollution
Messina	246	n/a (n/a)	0.22 (0.13)	n/a (n/a)	0.17 (0.10)	0.13 (0.088)	0.099 (0.076)	Coast	Sicily	Maritime Dust
Villefranche	546	n/a (n/a)	0.23 (0.15)	n/a (n/a)	0.17 (0.11)	0.12 (0.086)	0.087 (0.062)	Coast	S France	Maritime-Cont.
Capo Verde	579	0.19 (0.10)	0.20 (0.10)	0.17 (0.097)	0.18 (0.095)	0.17 (0.089)	0.15 (0.082)	Island	E Atlantic	Maritime Dust
Inhaca	83	0.30 (0.20)	0.24 (0.16)	0.20 (0.14)	0.18 (0.12)	0.15 (0.090)	0.097 (0.070)	Coastal Isl	Mozambique	Cont-Smoke
MALE	79	0.28 (0.15)	0.24 (0.13)	0.21 (0.11)	0.19 (0.096)	0.16 (0.073)	0.11 (0.055)	Island	N Indian Ocean	Maritime Pollution
Shirahama	567	0.30 (0.16)	0.25 (0.14)	0.21 (0.12)	0.19 (0.11)	0.14 (0.085)	0.11 (0.062)	Coast	E Japan	Maritime Pollution
Venise	1388	0.35 (0.21)	0.27 (0.18)	0.23 (0.15)	0.17 (0.11)	0.14 (0.096)	0.091 (0.062)	Coast	Italy	Maritime-Cont.
IMS METU-Erdemli	918	0.33 (0.21)	0.27 (0.16)	0.23 (0.13)	0.20 (0.12)	0.15 (0.090)	0.031 (0.002)	Coast	SW Turkey	Maritime-Cont.
Arica	604	0.34 (0.14)	0.27 (0.13)	0.26 (0.11)	0.23 (0.095)	0.18 (0.075)	0.14 (0.051)	Coast	Chile	Pollution
Filed	004	0.54 (0.14)	0.27 (0.12)	0.20 (0.11)	0.23 (0.073)	0.10 (0.073)	0.14 (0.031)	Coast	OTHIC	Tonation
MCO Hanimadhoo	120	0.35 (0.15)	0.30 (0.13)	0.27 (0.11)	0.24 (0.098)	0.19 (0.077)	0.14 (0.061)	Island	N Indian Ocean	Maritime Pollution
Dakar	392	0.27 (0.12)	0.27 (0.11)	0.24 (0.10)	0.24 (0.10)	0.22 (0.094)	0.19 (0.087)	Coast	Senegal	Dust
Hong Kong Hok Tsui	30	0.38 (0.14)	0.32 (0.13)	0.28 (0.11)	0.25 (0.094)	0.19 (0.073)	0.13 (0.047)	Coast	China	Pollution Dust
Gosan-SNU	126	0.40 (0.18)	0.33 (0.17)	0.29 (0.13)	0.26 (0.14)	0.20 (0.10)	0.16 (0.077)	Coastal Isl.	. S Korea	Pollution Dust

^{**}Sites having specific events with mid-visible AOD > 0.35 identified in the current dataset

16,154 AERONET - SeaWiFS Coincidences [49 AERONET Sites]

AOD_440:

[Calculated using **SeaWiFS** Algorithm] – [**AERONET**-Measured]

Seven AOD bins of equal AOD width (except the largest AOD bin) "Error" bars represent 1 standard deviation

Chlorophyll absorbs incoming radiation

- Absorbing aerosols decrease the TOA reflectance, and if uncorrected, will produce an underestimate of surface reflectance, and chlorophyll concentration could be overestimated
- Scattering aerosols increase the TOA reflectance, and if uncorrected, will produce an overestimate of surface reflectance, and chlorophyll concentration could be underestimated

Uncorrected **absorbing aerosols** can produce negative surface reflectance, a clearly unphysical result

Single-Scattering Albedos and Absorption ANGs

Dust Smoke Pollution

49 AERONET Sites; 16,154 SeaWiFS Coincidences

See also: Li et al. 2003; Schollaert et al. 2003; Ransibranmanakul & Stump, 2006; Ahmad et al. 2010

SeaWiFS-Retrieved Chlorophyll-a Concentrations

Global Distribution of MISR Most Frequently Retrieved Mixture Group

January 2007

July 2007

1-10 11-20 21-30 31-40 41-50 51-62 63-70 71-74

Mixture Group

Spherical, non-absorbing

Non-spherical

Spherical, absorbing

Kahn & Gaitley, in preparation

Atmospheric Correction Requirements

Ocean Color *parameter sensitivity* requirements \rightarrow Ocean *surface reflectivity* sensitivity requirements $(\lambda) \rightarrow$ TOA *reflectivity* sensitivity requirements $(\lambda, AOD, type) \rightarrow$ Aerosol *Type, AOD* sensitivity requirements

Going to the uv increases the sensitivity to atmospheric signal

Will the standard procedure be adequate for the next-generation Ocean Color objectives?