MAT02262 - Estatística Demográfica I

Características, eventos, proporções, taxas e probabilidades

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2023

Razões, proporções, taxas e índices

- Antes de entrar propriamente na aplicação conceito de taxa, convém refletir por um momento sobre o uso da palavra "taxa" e sua diferenca de outros termos parecidos como "proporção", "razão", "indice" e "probabilidade".
 - O que estes termos têm em comum é que geralmente são o resultado de uma divisão entre dois números.
- Entretanto, os demógrafos tendem a ser bastante cuidadosos com o uso apropriado de cada termo, dependendo daquilo que está no numerador e no denominador.

Razões, proporções, taxas e índices

Razão de Sexos

que foi introduzida nas aulas anteriores, é uma razão e não uma proporção porque o numerador não faz parte do denominador. Também seria possível (embora pouco usual) definir a proporção de homens ou de mulheres, dividindo o número de homens ou mulheres pela população total. Já que tanto os homens como as mulheres fazem parte da população total, estas efetivamente são proporções.

Razões, proporções, taxas e índices

grau de urbanização de uma população

o número de habitantes urbanos dividido pela população total (eventualmente vezes 100). Embora não seja o termo usual, esta quantidade pode ser legitimamente chamada a "proporção de urbanização". Também não seria incorreto chamá-la de "razão de urbanização" porque cada proporção é também uma razão. Mas é definitivamente incorreto chamá-la de "taxa de urbanização", como se faz frequentemente.

MAT02262 - Estatística Demográfica I

Razões, proporções, taxas e índices

Razões, proporções, taxas e índices

- As taxas e as probabilidades são quantidades dinâmicas que envolvem tanto variáveis de fluxo como de estoque.
 - Este não é o caso nem do grau de urbanização nem da percentagem de pessoas não alfabetizadas numa população, muitas vezes erroneamente chamada de "taxa de analfabetismo", ou da proporção de desemprego, que geralmente é chamada "taxa de desemprego", embora formalmente não seja uma taxa.

- Na demografia, para que uma quantidade seja chamada uma "taxa", ela precisa ter um numerador que quantifica um número de eventos e um denominador que descreve o número de pessoas que em alguma medida podem ser expostas a este evento.
- O uso da terminologia nem sempre é consistente, nem mesmo dentro da demografia.
 - Por exemplo, o número médio de filhos nascidos vivos que as mulheres têm ao longo das suas vidas na literatura norte-americana e brasileira geralmente é chamada a Taxa de Fecundidade Total.

- Ainda existe o termo "índice" que é o mais geral de todos.
 - Qualquer número que quantifica uma relação observada no mundo natural ou social pode ser considerado um "índice".
- Neste sentido não seria errado falar do "Índice de Sexos" (Razão de sexos, RSt), embora este não seja o termo habitual.

- As populações e as suas componentes **mudam ao longo do tempo**.
- Esta mudança pode ser tanto positiva como negativa (para mais e para menos) e em ambos os casos se usa o termo crescimento da população.
- Antes de falar sobre as diferentes componentes do crescimento, é importante ressaltar como se caracteriza o ritmo de crescimento de uma população mais em geral.

- ▶ O ponto de partida para qualquer medição do crescimento é a comparação do tamanho de uma população ou subpopulação em dois momentos do tempo, t e $t + \Delta t$.
- Para padronizar a taxa, de modo que não dependa diretamente de Δt, usam-se dois conceitos: o de taxa anual e taxa instantânea (ou contínua), com as seguintes definições:

Anual:
$$r = \left(\frac{P(t+\Delta t)}{P(t)}\right)^{1/\Delta t} - 1,$$
 Instantânea:
$$r = \frac{\ln\left(P(t+\Delta t)/P(t)\right)}{/}\Delta t.$$

A contraparte das fórmulas anteriorees no cálculo de $P(t + \Delta t)$ a partir de P(t), usando r, é a seguinte:

Anual:
$$P(t+\Delta t) = P(t) \times (1+r)^{\Delta t}$$
, Instantânea: $P(t+\Delta t) = P(t) \times e^{r\Delta t}$.

Os dois conceitos de *r* se relacionam da seguinte forma:

$$r_{inst.} = \ln(1 + r_{anual}).$$

- A razão porque existem estes dois conceitos distintos é que existem as duas fórmulas distintas para a projeção do crescimento que são identificadas às vezes como a fórmula geométrica (r_{anual}) e a fórmula exponencial (r_{inst.}), respectivamente.
 - Por esta razão, a taxa anual também é conhecida como taxa geométrica e a instantânea como taxa exponencial de crescimento.
- Por enquanto será usado só o conceito de crescimento anual.
- De qualquer modo, a diferença entre as duas variantes de r é pequena.
 - Por exemplo, se espera que a população da América Latina aumentará de 634 milhões em 2015 para 784 milhões em 2050. Se os valores de 634 e 784 são substituídos para P(t) e $P(t+\Delta t)$ nas fórmulas r, com $\Delta t = 35$, o resultado para a taxa anual é 0,006086 (0,6086%) e para a taxa instantânea 0,006067.

Exercício: calcule a taxa anual de crescimento dos países a seguir. Identifique os países com taxas de crescimento negativo.

Tabela 7.1: Populações de países selecionadas em 2000 e 2020 (em milhares), com as respectivas taxas anuais de crescimento do período (percentuais)

País	População 2000	População 2020	Taxa Anual de Crescimento
Alemanha	81.401	83.784	
Angola	16.395	32.866	
Argentina	36.871	45.196	
Bolívia	8.418	11.673	
Brasil	174.790	212.559	
Moçambique	17.712	31.255	
Portugal	10.297	10.197	
São Tomé & Príncipe	142	219	
Timor-Leste	884	1.318	

Fonte: Divisão de População das Nações Unidas, Revisão de 2019.

- Para ajudar a visualizar as implicações de uma determinada taxa de crescimento a mais longo prazo às vezes se calcula o chamado tempo de duplicação, ou seja, o tempo necessário para que uma população que cresce com certa taxa alcance o dobro do seu tamanho inicial.
- Como existem efeitos de acumulação (crescimento sobre crescimento), o tempo que uma população que cresce a 2% por ano leva para duplicar não é 50 anos, mas só 35, e uma população que cresce a 4% por ano duplica em apenas 17,7 anos. As respectivas fórmulas são as seguintes:

Tempo de Duplicação =
$$\frac{\log(2)}{\log(1 + r_{anual})} \approx \frac{\ln(2)}{r_{inst.}} = 0,6931/r_{inst.}$$

Exercício: com base no resultado do exercício anterior, calcule o tempo de duplicação para o Brasil. A fórmula básica da contabilidade demográfica e o conceito de coorte

A fórmula básica da contabilidade demográfica e o conceito de coorte

- As populações podem ser descritas em termos de variáveis de estoque como de fluxo, mas estes dois aspectos não são independentes.
- As mudanças que ocorrem tanto no tamanho como na composição da população ao longo do tempo devem ser consistentes com os processos de mudança aos quais a população está exposta, descritos pelas variáveis de fluxo.

- Existem várias fórmulas de consistência que descrevem as relações que precisam ser satisfeitas.
- A mais conhecida e mais simples, que se aplica ao conjunto da população, é a Fórmula Básica da Contabilidade Demográfica, também conhecida por vários outros nomes como:
 - Equação de Equilíbrio/Balanço Demográfico/Populacional;
 - Equação Compensadora;
 - Equação de Concordância;
 - "Growth Balance Equation", em inglês

Fórmula Básica da Contabilidade Demográfica

Afirma que a diferença entre o tamanho total de uma população em dois momentos diferentes deve ser igual ao número de nascimentos ocorridos durante o período intermediário, menos o número de óbitos, mais o número de imigrantes e menos o número de emigrantes.

Em termos mais formais:

$$P(t+n) = P(t) + N(t,t+n) - D(t,t+n) + I(t,t+n) - E(t,t+n),$$

em que P(t) e P(t+n) são as populações existentes nos momentos t e t+n, e N(t,t+n), D(t,t+n), I(t,t+n) e E(t,t+n) se referem, respectivamente, aos **nascimentos**, **óbitos**, **imigração** e **emigração** ocorridos entre t e t+n.

Qualquer divergência desta fórmula pode indicar uma de duas coisas:

- Uma ou mais quantidades que constam da fórmula podem ter sido medidas incorretamente; ou
- As unidades territoriais correspondentes às populações em t e t + n podem não ser as mesmas, por exemplo porque se trata de um município ou uma província cujos limites foram modificados durante o período.

- Populações que não têm migração (I(t, t+n) E(t, t+n) = 0) são conhecidas como **populações fechadas**.
 - A componente de crescimento da população que não envolve migração (ou seja, nascimentos menos óbitos) é chamada vegetativo (em inglês, "natural growth").
 - A terminologia "crescimento natural" às vezes é usada em português também, mas o termo "vegetativo" merece preferência.

Um método para estimação da migração

A Fórmula Básica da Contabilidade Demográfica é usada frequentemente para estimar E(t,t+n) ou I(t,t+n)-E(t,t+n) em circunstâncias em que todas as componentes da equação são conhecidas, com a exceção da migração.

Oconceito de coorte

- Mas não é só a evolução da população que precisa cumprir com certos requisitos de consistência.
 - O mesmo acontece também com várias subpopulações.
- Por exemplo, o número de mulheres solteiras de 20-24 anos em 2010 foi diferente do número de solteiras de 25-29 anos em 2015,
 - mas estes dois números têm algo em comum: a grande maioria das mulheres que fizeram parte do segundo grupo também já fazia parte do primeiro 5 anos antes.
- São as mulheres nascidas entre 1985 e 1989 cujo número de solteiras vai diminuindo no tempo na medida em que elas: (1) se casam; (2) ou se unem; (3) e algumas morrem ou migram.
- Estas mulheres compõem uma geração ou, em linguagem propriamente demográfica, uma coorte.

A fórmula básica da contabilidade demográfica e o conceito de coorte

Oconceito de coorte

Uma coorte

é um grupo de pessoas que passaram por um mesmo evento demográfico durante o mesmo período.

Oconceito de coorte

- ▶ Neste caso, o evento é o nascimento e o período 1985-1989.
- Uma coorte de nascimentos é o mesmo daquilo que comumente se chama uma geração.
- Mas a palavra "coorte" pode ser usada também para descrever, por exemplo:
 - o conjunto de pessoas que se graduaram da escola secundária em 2008:
 - o conjunto de mulheres que tiveram o seu primeiro filho entre 2010 e 2014.

A fórmula básica da contabilidade demográfica e o conceito de coorte

Próxima aula

▶ O Diagrama de Lexis.

Para casa

- Pequeno Trabalho 02: será postado no Moodle.
- ► Ler o capítulo 7 do livro "Métodos Demográficos Uma Visão Desde os Países de Língua Portuguesa"¹.

¹FOZ, Grupo de. *Métodos Demográficos Uma Visão Desde os Países de Língua Portuguesa*. São Paulo: Blucher, 2021. https://www.blucher.com.br/metodos-demográficos-uma-visao-desde-os-paises-de-lingua-portuguesa_9786555500837

A fórmula básica da contabilidade demográfica e o conceito de coorte

Por hoje é só!

Bons estudos!

