Тест Продолжите предложение (определение)

- <u>1.1</u> Современные операционные системы приобрели современный облик в период развития... (третьего поколения вычислительных машин, то есть с середины 60-х до 1980 года.)
- <u>1.2</u> Современная тенденция в разработке ОС состоит в перенесении значительной части системного кода... (на уровень пользователя и минимизации ядра.)
- <u>1.3</u> Идентификаторы потоков, так же как и идентификаторы процессов,... (кратны четырем, выбираются из того же пространства, что и идентификаторы процессов, и с ними не пересекаются.)
- <u>1.4</u> На сегодня общепринятым является взгляд на ОС как на систему, обеспечивающую... (параллельное (или псевдопараллельное) выполнение набора последовательных процессов или просто процессов.)
- <u>1.5</u> В компьютерах фон-неймановской архитектуры выполняемые программы... (вместе с обрабатываемыми ими данными должны находиться в оперативной памяти.)
- <u>1.6</u> В современных вычислительных системах типичной является ситуация, когда объем логической памяти... (существенно превышает объем оперативной. В этом случае логический адрес может быть связан с адресом во внешней памяти.)
- 1.7 Сегментно-страничная модель памяти, реализованная в ОС Windows, имеет свою специфику. Например, аппаратная поддержка сегментации, предлагаемая архитектурой Intel,... (используется в минимальной степени, а такие фрагменты адресного пространства процесса, как код, данные и др., описываются при помощи специальных структур данных и называются регионами (regions).)
- 1.8 Техника файлов, проецируемых в память, активно используется новейшими ОС. Она позволяет пользователю решать такие задачи, как... (работа с данными файла при помощи операций копирования и перемещения байтов в памяти или организация совместного доступа к областям памяти.)
- 1.9 Файловая система это часть операционной системы, назначение которой состоит в том,... (чтобы организовать эффективную работу с данными, хранящимися во внешней памяти, и обеспечить пользователю удобный интерфейс при работе с такими данными.)
- <u>1.10</u> Защищаемые объекты Windows включают:... (файлы, устройства, каналы, события, мьютексы, семафоры, разделы общей памяти, разделы реестра и ряд других.)

Выберите один правильный вариант ответа

2.1 В каком году появилась Windows NT?
1) 1985 г.
2) 1989 г.
3) 1993 г.
4) 1995 Γ.
<u>2.2</u> Какого типа архитектуры ядер ОС не существует?
1) Смешанное ядро
2) Гибридное ядро
3) Модульное ядро
4) Наноядро
2.3 Тип данных, обозначающий описатель объекта в Win-32 приложениях это:
1) CHAR
2) HANDLE
3) LPSTR
4) LPVOID
2.4 Событие, генерируемое внешним (по отношению к процессору) устройством,
называется:
1) Процесс
2) Системный вызов
3) Исключительная ситуация
4) Прерывание
2.5 Что из перечисленного не относится к заголовку объекта?
1) Имя объекта
2) Каталог объекта
3) Информация о защите
4) Права доступа
2.6 Что из перечисленного относится к телу объекта?
1) Список процессов с открытыми описателями объекта
2) Данные, специфичные для объекта
3) Имя объекта
4) Методы: open, close, delete, parse, security, query name

- 2.7 Что не относится к блоку управления процессом (ETHREAD)?
 - 1) Данные для синхронизации
 - 2) Данные для имперсонации
 - 3) Данные сообщений LPC
 - 4) Данные таймера
- 2.8 Какое из приведённых высказываний неверно?
- 1) FAT32 поддерживает размеры кластеров 512, 1024, 2048, 4096, 8192, 16КБ, 32КБ, 64КБ (128КБ, 256КБ для размера сектора > 512 Байт)
 - 2) Число кластеров в файловой системе FAT <= 65526
 - 3) Число кластеров в файловой системе FAT32 от 65526 до 4177918
- 4) Сжатие томов NTFS не поддерживается для размеров кластеров более 2048 Байт
- <u>2.9</u> Что из нижеперечисленного не является требованием, предъявляемым к системе защиты?
- 1) Каждый пользователь должен быть идентифицирован уникальным входным именем и паролем для входа в систему
- 2) ОС должна предоставлять объекты для повторного использования, в случае получения соответствующего запроса
- 3) Системный администратор должен иметь возможность учета всех событий, относящихся к безопасности
- 4) Система должна защищать себя от внешнего влияния или навязывания, такого, как модификация загруженной системы или системных файлов, хранимых на диске
- <u>2.10</u> Какая комбинация клавиш инициирует процедуру аутентификации пользователя в операционной системе Windows?
 - 1) Ctrl+Shift+Del
 - 2) Alt+Tab
 - 3) Ctrl+Alt+Del
 - 4) Shift+Del

Выберите несколько правильных вариантов ответа

- <u>3.1</u> В 1950-1960 годах сформировалась концепция и были сформулированы основные идеи, определяющие функциональность ОС:
 - 1) Пакетный режим работы
 - 2) Разделение времени и многозадачность
 - 3) Разделение полномочий
 - 4) Масштаб реального времени
- 3.2 В Unicode каждый символ представляется:
 - 1) 16-битным кодом
 - 2) 4-байтовым кодом
 - 3) 8-битным кодом
 - 4) 2-байтовым кодом
- 3.3 Из приведённого списка выберите основные механизмы ОС:
 - 1) Системные вызовы
 - 2) Системные ошибки
 - 3) Прерывания
 - 4) Исключительные ситуации
- 3.4 При сохранении состояния текущего потока, сохраняются:
 - 1) Программный счетчик
 - 2) Регистр состояния ядра
 - 3) Содержимое регистров процессора
 - 4) Указатели на стек процессора и пользователя
- 3.5 В состав блока управления процессом (РСВ) обычно включают:
 - 1) Состояние, в котором находится процесс
 - 2) Информацию об устройствах ввода-вывода
 - 3) Учетные данные
 - 4) Содержимое регистров ядра
- <u>3.6</u> На какие составляющие распадается состояние "Готовности", если имеется очередь готовых к выполнению (running) потоков?
 - 1) Состояние "Готовности (Ready)"
 - 2) Состояние "Ожидания (Waiting)"
 - 3) Состояние "Простаивает (Standby)"
 - 4) Состояние "Готов. Отложен (Deferred Ready)"

- <u>3.7</u> Какую информацию, входящую в состав контекста потока, необходимо периодически сохранять и восстанавливать в случае возникновения различных событий?
- 1) Программный счетчик, регистр состояния и содержимое остальных регистров процессора
 - 2) Указатели на стек ядра и пользовательский стек
 - 3) Регистр состояния ядра
 - 4) Указатели на адресное пространство, в котором выполняется поток
- 3.8 Что есть у каждого потока, помимо состояния, идентификатора и двух стеков?
 - 1) Небольшая собственная память
 - 2) Фиксированная оперативная память
 - 3) Маркер доступа
 - 4) Контекст
- <u>3.9</u> Какие функции реализованы на основе Interlocked-функций, выполняются атомарным образом и работают очень быстро?
 - 1) InitializeCriticalSection
 - 2) EnterCriticalSection
 - 3) DeleteCriticalSection
 - 4) LeaveCriticalSection
- 3.10 Какие размеры кластеров поддерживает NTFS?
 - 1) 256 Б
 - 2) **512** Б
 - 3) **32 КБ**
 - **4) 64 КБ**

Расположите в правильном порядке

4.1 Расположите слои м	ногоуровн	евой ОС от	самого ни	жнего до са	мого верхнего.
1) Драйверы устройс	ств. Связи м	иежду поль	зователем і	и консолью	ı
2) Аппаратные средо	ства				
3) Интерфейс пользо	вателя				
4) Уровень планиров	зания задач	/процессов			
	2	4	1	3	
			<u> </u>		I
4.2 Расположите опера	щионные с	системы в	хронологи	ческом пор	эядке их появления, от
наиболее старых, до бо.	пее совреме	енных.			
1) UNIX					
2) Windows 95					
3) IBM OS/360					
4) Windows XP					
	3	1	2	4	
			I		I
4.3 Восстановите после	довательно	сть обрабо	тки прерыв	ваний в опе	рационной системе.
1) Передача управл	ения обра	ботчику п	рерываний	и выполн	ение им необходимые
действия в ответ на пре	рывание				
2) Возникновение пр	ерывания				
3) Возврат управлен	ия к прерва	нной задач	е и продол	жение её ві	ыполнения с того места
где была приостановлен	на				
4) Приём прерывани	ия централь	ным проце	ессором и п	іриостанові	ка выполнения текущей
задачи					
	2	4	1	3	
				l	I
4.4 Восстановите посл	іедовательн	ность проц	есса плани	ирования п	отока в операционной
системе.					
1) Переключение ког	нтекста				
2) Выбор активного	потока				
3) Определение прис	ритета				
4) Запуск выбранног	о потока				
	3	2	1	4	

<u>4.5</u>	Восстановите п	оследовате	льность	алгоритма	межпроц	ессорного	обмена	В
опеј	рационной системе.							
1) Передача данных							
2	2) Инициация отпра	вки данных						
3	3) Обработка получе	енных данн	ых					
4) Установление свя	ЗИ						
		4	2	1	3]		
						J		
<u>4.6</u>	Установите в ка	акой после	едовательн	ости выпо	лняет пре	сдставленны	ые действ	вия
мен	еджер памяти в опе	рационной	системе.					
1) Управление табли	ицей страни	Щ					
2	2) Выделение памят	И						
3	3) Фрагментация и к	сомпактаци	Я					
4) Освобождение па	МЯТИ						
		2	1	4	3			
						J		
<u>4.7</u>	Расположите предс	тавленные	куски ком	анды для м	юнтирован	ия логичес	кого диск	ав
пра	вильной последоват	тельности (синтаксиче	ски верной)).			
1) [<диск>:]							
2	2) <имя тома>							
3	3) mountvol							
4	.) <путь>							
		3	1	4	2			
						J		
<u>4.8</u>	Расположите части	файловой с	истемы О	C Windows 1	в порядке с	т логическ	ого диска,	до
реж	има пользователя.							
1) Диспетчер ввода-	вывода						
2	2) Драйвер диска							
3	3) Драйвер NTFS							
4) Приложение							
		2	3	1	4]		
						J		
<u>4.9</u>	Установите, в како	й последов	ательности	и сервис фаі	йла журнал	na (log file	service, LI	FS)
ocyı	цествляет записи.							
1) Диспетчер кэша з	аписывает	на диск из	менения в ф	айловой си	стеме		

- 2) Запись в файле журнала сбрасывается на диск
- 3) В кэшируемый файл журнала заносится запись о предполагаемой транзакции
- 4) Делается транзакция, то есть модифицируется файловая система

	3	4	2	1
--	---	---	---	---

- <u>4.10</u> Укажите последовательность этапов процедуры аутентификации пользователя в операционной системе Windows.
 - 1) Извлечение из реестра профиля пользователя
 - 2) Взаимодействие с библиотекой GINA
 - 3) Вызов программы WinLogon
 - 4) Аутентификация пользователя с помощью модуля Lsass

3	2	4	1

Установите соответствие

- <u>5.1</u> Сопоставьте группу Win32 API и её предназначение:
 - 1) Common Control Library
 - 2) Network Services
 - 3) Windows Shell
 - 4) Windows System Information
 - а) информация о конфигурации системы Windows
 - б) библиотека общих элементов управления для разработки оконных интерфейсов
 - в) сетевые сервисы
 - г) функции для работы с оболочкой

1	2	3	4
б	В	Γ	a

- 5.2 Соотнесите значение уровня запроса прерывания в х86 системах с его номером:
 - 1) Отказ электропитания
 - 2) Системные часы
 - 3) Межпроцессорный сигнал
 - 4) Контроль производительности ядра
 - a) 27
 - б) 28
 - в) 29
 - г) 30

1	2	3	4
Γ	б	В	a

- <u>5.3</u> Соотнесите название объекта ядра ОС с его определением.
 - 1) Процесс
 - 2) Поток
 - 3) Семафор
 - 4) Мьютекс
 - а) Программа или команда, выполняемая на компьютере
- б) Примитив синхронизации, обеспечивающий взаимное исключение исполнения критических участков кода

- в) Примитив синхронизации работы процессов и потоков, в основе которого лежит счётчик, над которым можно производить две атомарные операции
- г) Наименьшая единица обработки, исполнение которой может быть назначено ядром операционной системы

1	2	3	4
a	Γ	В	б

- <u>5.4</u> Сопоставьте временные промежутки и операционные системы, соответствующие этим временным промежуткам.
 - 1) 1960 1975
 - 2) 1980 1990
 - 3) 1991 2000
 - 4) 2000 2010
 - a) macOS, Windows XP, Windows Vista
 - б) OS X, MS-DOS, IBM OS/2
 - B) IBM OS/360, UNIX, CP/M
 - r) Windows 3.1, Windows NT, Windows 95

1	2	3	4
В	б	Γ	a

- <u>5.5</u> Сопоставьте наиболее распространённые способы межпроцессорного обмена с их особенностями.
 - 1) Message Passing
 - 2) Shared Memory
 - 3) Semaphores
 - 4) Sockets
 - а) Два или более процесса имеют доступ к общей области памяти
 - б) Процессы обмениваются данными путем отправки и получения сообщений
- в) предоставляют средства для обмена данными между процессами, работающими на разных узлах в сети
- г) Представляют собой счетчики, используемые для синхронизации и взаимной блокировки процессов

1	2	3	4
б	a	Γ	В

5.6 Структура процесса, участвующего во взаимодействии имеет вид:

```
while (some condition)
{
  entry section
  critical section
  exit section
  remainder section
}
```

Соотнесите каждую секцию с тем, что она делает.

- 1) Entry Section
- 2) Critical Section
- 3) Exit Section
- 4) Remainder Section
- а) содержит код, который выполняется после выхода из критической секции
- б) выполняется после завершения работы в критической секции
- в) выполняется перед входом в критическую секцию
- г) содержит код, который требует эксклюзивного доступа к общим данным или ресурсам

1	2	3	4
В	Γ	б	a

- 5.7 Соотнесите вид памяти с её кратким описанием.
 - 1) Оперативная память (Random Access Memory)
 - 2) Постоянная память (Read-Only Memory)
 - 3) Виртуальная память (Virtual Memory)
 - 4) Кэш-память (Cache Memory)
- а) Представляет собой маленькую, но очень быструю память, которая находится между процессором и оперативной памятью
- б) Является основной формой памяти в компьютере и используется для временного хранения данных и программ, которые активно используются процессором
- в) Это расширение оперативной памяти компьютера с использованием некоторой части жесткого диска
- г) Используется для хранения постоянной информации и инструкций, которые не изменяются во время работы компьютера

1	2	3	4
б	Γ	В	a

<u>5.8</u> Представлена структура OVERLAPPED:

```
typedef struct _OVERLAPPED {
ULONG_PTR Internal;
ULONG_PTR InternalHigh;
DWORD Offset;
DWORD OffsetHigh;
HANDLE hEvent;
} OVERLAPPED;
```

Соотнесите указанные параметры и их предназначения.

- 1) Internal
- 2) Internal High
- 3) Offset
- 4) OffsetHigh
- а) используется для хранения кода возможной ошибки
- б) используется для хранения младших разрядов текущей позиции файла
- в) используется для хранения числа переданных байт
- г) используется для хранения старших разрядов текущей позиции файла

1	2	3	4
a	В	б	Γ

- 5.9 Соотнесите компоненты системы защиты ОС Windows с их предназначениями.
 - 1) Процедура регистрации (Logon Processes)
 - 2) Подсистема локальной авторизации (Local Security Authority, LSA)
 - 3) Менеджер учета (Security Account Manager, SAM)
 - 4) Диспетчер доступа (Security Reference Monitor, SRM)
 - а) Проверяет, что пользователь имеет разрешение на доступ в систему
 - б) Обрабатывает запросы пользователей на вход в систему
- в) Проверяет, имеет ли пользователь право на доступ к объекту и на выполнение тех действий, которые он пытается совершить
 - г) Управляет базой данных учета пользователей

1	2	3	4
б	a	Γ	В

- <u>5.10</u> Сопоставьте программные и отображаемые имена привилегий учетной записи группы с административными правами в ОС Windows 2000.
 - 1) SeChangeNotifyPrivilege
 - 2) SeSecurityPrivilege
 - 3) SeUndockPrivilege
 - 4) SeTakeOwnershipPrivilege
 - а) Управление аудитом и журналом безопасности
 - б) Извлечение компьютера из стыковочного узла
 - в) Овладение файлами или иными объектами
 - г) Обход перекрестной проверки

1	2	3	4
Γ	a	б	В