CAP 3. COMPRESSÃO DE DADOS MULTIMÍDIA

Aula 6: Padrões de compressão multimídia - JPEG

INE5431 Sistemas Multimídia Prof. Roberto Willrich (INE/UFSC) roberto.willrich@ufsc.br

Compressão de Dados Multimídia

Conteúdo:

- Necessidade de compressão
- Princípios da compressão
- Classificação das técnicas de compressão
- Medição do desempenho de compressão
- Técnicas de compressão sem perdas
 - RLE, Huffman, LZW (GIF), Codificação Preditiva
- Técnicas de compressão de áudio, vídeo e imagens
- Padrões de compressão multimídia
 - JPEG, MPEG, MPEG-4, H.261, H.263

Padrões de Compressão Multimídia

Várias técnicas e produtos para compressão são disponíveis

• Utilização de padrões promove a compatibilidade entre diferentes equipamentos/aplicações (interoperabilidade)

Exemplos de padrões

- TIFF: padrão independente de fabricante para imagens
- PNG: padrão de imagens alternativo ao GIF
- ISO JPEG para compressão de imagens;
- ISO JBIG para compressão sem perda de imagens bi-níveis (1 bit/píxel) para transmissão fac-símile
- ITU-TS H.261 para videofonia e aplicações de teleconferências na taxa de bits múltiplos de 64 Kbps;
- ITU-TS H.263 para aplicações de videofonia na taxa abaixo de 64 Kbps;
- ISO MPEG para compressão de vídeo e áudio associado;

JPEG colaboração entre a ISO/IEC e a ITU-TS (1992)

- Uma das melhores tecnologia de compressão de imagem
- Implementado em software e hardware
- Codificação/decodificação JPEG tempo-real tem sido implementada para vídeo (Motion JPEG - MJPEG)

Possui versões diferentes:

- Versões para compressão sem perdas
- Versões para compressão com perdas

Codificação JPEG sem perda

- Reprodução é exata
- Necessária em aplicações que não toleram perdas (médicas e legais)
- Existem variações
 - JPEG sem perdas original, que se baseia no DPCM e o uso de codificação por entropia (de Huffman ou aritmética)
 - JPEG-LS utiliza a técnica de codificação de Golomb-Rice e RLE
 - JPEG 2000 utiliza técnica de compressão wavelets

JPEG com perdas (híbrida)

- Se baseia nas limitações da percepção humana e na codificação por entropia
- Compressão parametrizável
 - JPEG cobre grande faixa de qualidades de imagens e permite especificar o comportamento do codificador a partir de parâmetros
 - Quatro modos de operação:
 - Codificação sequencial (baseline)
 - Codificação progressiva
 - Codificação sem perda
 - Codificação hierárquica

Codificação Sequencial (baseline)

- Suportado por toda implementação JPEG
- Modo com perdas baseada em DCT (Transformada Discreta do Cosseno)
- Componentes de imagem são codificados em uma única varredura da esquerda para direita e de cima para baixo

Codificação progressiva

- Com perdas baseada em DCT expandido
 - Fornece avanços ao modo baseline
- Varreduras sucessivas
 - o imagem é compactada em um processo de múltiplas linhas de varredura
- Geralmente utilizada em arquivos que são transmitidos pela Internet
 - pois possibilita a visualização da imagem inteira, em menor resolução, enquanto o restante da imagem esta sendo enviada

108

Codificação hierárquica

- Oferece uma codificação progressiva que aumenta de resolução espacial entre estágios progressivos
- Versões podem ser acessadas sem a necessidade de primeiro descompactar a imagem na resolução completa
- Os elementos de imagem das resoluções já recebidas são utilizados na próxima resolução, diminuindo desta forma o tamanho do arquivo
- Taxa de compressão é mais baixa que ter uma resolução única

Operações a compressão JPEG (Sequencial)

Transformação do espaço de cores para YCrCb

- Componentes "RGB" da imagem são convertidos para componentes de luminância ("Y") e crominância ("Cr" e "Cb")
 - Y: Luminância é uma escala de representação numérica do cinza,
 - CrCb: Crominância são duas escalas numéricas, que juntas representam as cores.

$$\begin{bmatrix} Y \\ U \\ V \end{bmatrix} = \begin{bmatrix} 0.2990 & 0.5870 & 0.1140 \\ -0.1687 & -0.3313 & 0.5000 \\ 0.5000 & -0.4187 & -0.0813 \end{bmatrix} * \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

 YCbCr permite uma maior compressão sem um efeito significante na qualidade da imagem percebida.

Transformação do espaço de cores para YCrCb

Veja o tutorial em https://cgjennings.ca/articles/jpeg-compression/

Operações a compressão JPEG (Sequencial)

Subamostragem

- Onde é feita uma redução da resolução das matrizes YCbCr.
- Taxas de subamostram que são normalmente aplicados no JPEG
 - 4:4:4 (sem subamostragem)
 - 4:2:2 onde as matrizes de crominância são reduzidas na taxa de 2:1 horizontalmente (cada duas linhas é convertida em uma),
 - 4:2:0 mais comumente adotada, onde a uma redução do fator 2 nas direções horizontais e verticais.
- A matriz de luminância geralmente não é reduzida
 - pois o olho humano é mais sensível à luminância (tonalidade de cinza) do que à crominância (tonalidades das cores), o que permite maior taxa de perda de crominância sem que esta perda seja percebida
- No resto do processo de compressão, Y, Cb e Cr são processadas separadamente de maneira muito similar.

Padrão ISO/IEC MPEG-1 Vídeo

Subamostragens YCbCr

Operações a compressão JPEG

Decomposição das matrizes Y,Cb,Cr

Decompostas em blocos de 8x8 píxels

Operações a compressão JPEG (Sequencial)

Transformação discreta de co-seno (DCT) dos blocos

- Blocos 8x8 são transformado para o domínio da frequência espacial usando a transformada DCT
 - Similar a transformada de Fourier (representação de sinal com somatório de senos de diferentes frequências, fases e amplitudes)

No espaço bidimensional de uma imagem de 8x8 pixels, a transformada discreta de co-senos (FDCT: Forward Discrete Cosine Transform) é dada por:

$$F(u,v) = \frac{1}{4}C(u)C(v)\sum_{x=0}^{7} \sum_{y=0}^{7} f(x,y)\cos\left[\frac{(2x+1)u\pi}{16}\right]\cos\left[\frac{(2y+1)v\pi}{16}\right]$$

$$C(w) = \frac{1}{\sqrt{2}} para \ w = 0$$

$$C(w) = 1 \quad para \ w = 1, 2, ..., 7$$

E a transformada inversa (IDCT: Inverse Discrete Cosine Transform) por:

$$f(x,y) = \frac{1}{4} \sum_{u=0}^{7} \sum_{v=0}^{7} C(u)C(v)F(u,v) \cos\left[\frac{(2x+1)u\pi}{16}\right] \cos\left[\frac{(2y+1)v\pi}{16}\right]$$

Transformação discreta de co-seno (DCT) dos blocos

- Sinal discreto de 64 pontos (um para cada bloco) transformado é uma função de duas dimensões espaciais, x e y
 - estas componentes são chamadas de frequências espaciais ou coeficientes DCT

Transformação discreta de co-seno (DCT) dos blocos

- Mudanças abruptas que acontecem nos contornos de uma figura estão concentradas nas frequências mais altas.
 - uma imagem com poucos contornos concentra seus coeficientes nas frequências baixas.
- Coeficientes das frequências altas são menos importantes e perdas nesses coeficientes podem diminuir um pouco a nitidez da imagem, mas para muitas aplicações isto pode ser aceitável

Operações a compressão JPEG

Quantificação (escolha da qualidade)

- Alta frequência é desprezada de acordo com a taxa de compressão desejada:
 - Utilizando duas tabelas de quantização, que variam de acordo com a qualidade desejada

Quantificação (escolha da qualidade)

- Tabelas de quantização são divisores: Em cada bloco 8x8 terá seus coeficientes DCT divididos pelo número correspondente em sua tabela de quantização.
 - O resultado de cada divisão é arredondado para o número inteiro mais próximo e as partes fracionárias são jogadas fora
 - Na decodificação, o coeficiente DCT quantizado é multiplicado pelo número correspondente na tabela de quantização

	c.	•		\sim
$I \cap C$	71†¢	ıdr	τΔς	DCT
COC	: 116	וכו	いてつ	DCI

		~
A 21125	トナィマへ	\sim
e auai	11 I <i>7</i> a	Cau
c qua:		40 C
	e quar	e quantiza

Coeficientes DCT quantizado

55	50	45	20	12	2	2	1	1	2	3	3	3	6	6	12	55	25	15	20	6	0	0	0
55	48		•••					1	3							55	16			•••	•••	•••	•••
•••			•••						•••											•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••		•••	•••	•••						•••	•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••		•••	•••	•••						•••	•••	•••	•••	•••	•••	•••	•••
•••			•••					•••	•••	•••						•••	•••			•••	•••	•••	•••
•••			•••					•••	•••	•••						•••	•••			•••		•••	•••

Quantificação (escolha da qualidade)

- Alta frequência é desprezada de acordo com a taxa de compressão desejada:
 - maior é taxa de compressão, maior é o número de componentes de alta frequência desprezados

Alta qualidade preserva os coeficientes de alta e baixa frequência

Quantificação (escolha da qualidade)

- Alta frequência é desprezada de acordo com a taxa de compressão desejada:
 - maior é taxa de compressão, maior é o número de componentes de alta frequência desprezados

Média qualidade descarta coeficientes de mais alta frequência

Quantificação (escolha da qualidade)

- Quantificação prioriza a baixa frequência
 - os coeficientes gerados são quantizados de forma diferenciada, usando uma maior precisão para as frequências mais baixas.

	500	5110	ilei	ites	ט פ	O I		Coeficientes DCT quantiza							auus	
51	49	30	21	18	8	3	1	51	19	5	1	O	0	0	O	
48	40	32	15	9	5	1	0	13	1 0	б	1	O	O	0	O	
39	36	24	13	9	6	3	0	4	6	3	1	0	0	0	O	
30	28	21	20	8	5	2	1	2	2	1	1	O	O	0	O	
23	19	18	13	7	0	3	1	1	1	0	0	O	0	0	O	
15	9	7	7	6	4	2	1	0	0	O	O	O	O	0	O	
9	4	3	4	3	1	1	0	0	0	0	0	O	O	0	0	
3	0	1	2	3	1	O	0	0	0	O	O	O	O	0	O	

Quantificação (escolha da qualidade)

- Alta frequência é desprezada de acordo com a taxa de compressão desejada:
 - maior é taxa de compressão, maior é o número de componentes de alta frequência desprezados

Baixa qualidade descarta muitos coeficientes DCTs, gerando o efeito bloco

Quantificação (escolha da qualidade)

- Alta frequência é desprezada de acordo com a taxa de compressão desejada:
 - maior é taxa de compressão, maior é o número de componentes de alta frequência desprezados

Baixa qualidade descarta muitos coeficientes DCTs, gerando o efeito bloco

Operações a compressão JPEG

Ordenação dos coeficientes DCT

- Coeficientes DCT são ordenados em uma sequência zig-zag
 - para obter uma sequência unidimensional de dados para ser usado na codificação por entropia

Ordenação dos coeficientes DCT

- Propósito do escaneamento zig-zag é ordenar os coeficientes em ordem decrescente de frequências espectral
 - coeficientes de alta frequências (no canto direito inferior) tem valores mais próximos a zero
 - isto leva a uma maior eficiência da codificação por entropia

1055	86	40	22	15	10	7	5
53	37	25	17	11	8	6	4
21	21	19	13	9	7	5	4
12	12	11	9	7	5	4	3
7	7	7	7	5	4	3	3
5	5	5	4	4	3	3	3
3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	2

coeficiente 0

coeficiente 63

Operações a compressão JPEG

Codificação por entropia

- Esta etapa fornece uma compressão adicional
- JPEG define dois métodos de codificação por entropia
 - Codificação de Huffman
 - única especificado no modo baseline
 - Codificação aritmética
 - normalmente 10% mais eficiente que a codificação de Huffman

Taxas de compressão obtidas

- Quanto maior for a taxa de compressão maior será o número de componentes de alta frequência desprezados
 - para obter taxas de compressão muito elevadas é descartado um número significativo de componentes de alta frequência
 - levando ao aparecimento do efeito de bloco (perda de definição nos contornos das imagens).

Valores médios

- Taxas de compressão de 10:1 a 20:1 Alta qualidade de imagem
- Taxas de compressão de 30:1 a 50:1 Média qualidade de imagem
- Taxas de compressão de 60:1 a 100:1 Fraca qualidade de imagem

Taxas de compressão obtidas e qualidades

- Alta qualidade
 - Taxa de 2.6:1

- Boa qualidade
 - Taxa de 15:1

Taxas de compressão obtidas e qualidades

- Qualidade média
 - Taxa de 23:1

- Baixa qualidade
 - Taxa de 46:1

Taxas de compressão obtidas e qualidades

- Mais baixa qualidade
 - Taxa de 144:1

Demonstração:

• https://cgjennings.ca/articles/jpeg-compression/

JPEG é para imagens fotográficas

- JPEG apresenta ótimas taxas de compressão para imagens fotográficas naturais multitonais
- Qualidade diminui consideravelmente quando aplicado a
 - o imagens gráficas com contornos e áreas bem definidas de cor, ou
 - imagens com texto, como é o caso dos logotipos

JPEG é para imagens fotográficas

 JPEG apresenta ótimas taxas de compressão para imagens fotográficas naturais multitonais

JPEG (50kB)

PNG (177KB)

JPEG é para imagens fotográficas

- Qualidade diminui consideravelmente quando aplicado a
 - o imagens gráficas com contornos e áreas bem definidas de cor, ou
 - imagens com texto, como é o caso dos logotipos

Para imagens gráficas e com texto

- JPEG introduz ruído nas zonas de imagem compostas por cores sólidas
 - pode distorcer o aspecto geral da imagem
- Imagem PNG compactam mais eficazmente que JPEG e apresenta uma melhor definição dos contornos do texto

Pontos Importantes

Algoritmo JPEG

 Saber descrever cada etapa do algoritmo de compressão JPEG