Phase 6: Operationalize

In the final phase, the team communicates the benefits of the project more broadly and sets up a pilot project to deploy the work in a controlled way before broadening the work to a full enterprise or ecosystem of users. In Phase 4, the team scored the model in the analytics sandbox.

The first time that most analytics teams approach deploying the new analytical methods or models in a production environment. Rather than deploying these models immediately on a wide-scale basis, the risk can be managed more effectively and the team can learn by undertaking a small scope, pilot deployment before a wide-scale rollout. This approach enables the team to learn about the performance and related constraints of the model in a production environment on a small scale and make adjustments before a full deployment. During the pilot project, the team may need to consider executing the algorithm in the database rather than with in-memory tools such as R because the run time is significantly faster and more efficient than running in-memory, especially on larger datasets.

While scoping the effort involved in conducting a pilot project, consider running the model in a production environment for a discrete set of products or a single line of business, which tests the model in a live setting. This allows the team to learn from the deployment and make any needed adjustments before launching the model across the enterprise. Be aware that this phase can bring in a new set of team members—usually the engineers responsible for the production environment who have a new set of issues and concerns beyond those of the core project team. This technical group needs to ensure that running the model fits smoothly into the production environment and that the model can be integrated into related business processes. Part of the operationalizing phase includes creating a mechanism for performing ongoing monitoring of model accuracy and, if accuracy degrades, finding ways to retrain the model. If feasible, design alerts for when the model is operating "out-of-bounds." This includes situations when the inputs are beyond the range that the model was trained on, which may cause the outputs of the model to be inaccurate or invalid. If this begins to happen regularly, the model needs to be retrained on new data. Often, analytical projects yield new insights about a business, a problem, or an idea that people may have taken at face value or thought was impossible to explore. Four main deliverables can be created to meet the needs of most stakeholders.

This approach portrays the key outputs for each of the main stakeholders of an analytics project and what they usually expect at the conclusion of a project.

- Business User typically tries to determine the benefits and implications of the findings to the business.
- Project Sponsor typically asks questions related to the business impact of the project, the risks and return on investment (ROI), and the way the project can be evangelized within the organization (and beyond).
- Project Manager needs to determine if the project was completed on time and within budget and how well the goals were met.
- Business Intelligence Analyst needs to know if the reports and dashboards he manages will be impacted and need to change.

- Data Engineer and Database Administrator (DBA) typically need to share their code from the analytics project and create a technical document on how to implement it.
- Data Scientist needs to share the code and explain the model to her peers, managers, and other stakeholders. Although these seven roles represent many interests within a project, these interests usually overlap, and most of them can be met with four main deliverables.
- Presentation for project sponsors: This contains high-level takeaways for executive level stakeholders, with a few key messages to aid their decision-making process. Focus on clean, easy visuals for the presenter to explain and for the viewer to grasp.
- Presentation for analysts, which describes business process changes and reporting changes. Fellow data scientists will want the details and are comfortable with technical graphs
- Code for technical people.
- Technical specifications of implementing the code.

As a general rule, the more executive the audience, the more succinct the presentation needs to be. Most executive sponsors attend many briefings in the course of a day or a week. Ensure that the presentation gets to the point quickly and frames the results in terms of value to the sponsor's organization. For instance, if the team is working with a bank to analyze cases of credit card fraud, highlight the frequency of fraud, the number of cases in the past month or year, and the cost or revenue impact to the bank (or focus on the reverse—how much more revenue the bank could gain if it addresses the fraud problem). This demonstrates the business impact better than deep dives on the methodology. The presentation needs to include supporting information about analytical methodology and data sources, but generally only as supporting detail or to ensure the audience has confidence in the approach that was taken to analyze the data. When presenting to other audiences with more quantitative backgrounds, focus more time on the methodology and findings. In these instances, the team can be more expansive in describing the outcomes, methodology, and analytical experiment with a peer group. This audience will be more interested in the techniques, especially if the team developed a new way of processing or analyzing data that can be reused in the future or applied to similar problems. In addition, use imagery or data visualization when possible. Although it may take more time to develop imagery, people tend to remember mental pictures to demonstrate a point more than long lists of bullets [25].