Massive Data Algorithmics

Lecture 5: External Search Trees

B-tree Construction

- In internal memory we can sort N elements in $O(N \log N)$ time using a balanced search tree:
 - Insert all elements one-by-one (construct tree)
 - Output in sorted order using in-order traversal
- Same algorithm using B-tree use $O(N \log_B N)$ I/Os
 - A factor of $O(B \frac{\log M/B}{\log B})$ non-optimal
- As discussed we could build B-tree bottom-up in $O(N/B \log_{M/B} N/B)$ I/Os
 - But what about persistent B-tree?
 - In general we would like to have dynamic data structure to use in algorithms $O(N/B\log_{M/B}N/B) \Rightarrow O(1/B\log_{M/B}N/B)$ I/O operations

- Main idea: Logically group nodes together and add buffers
 - Insertions done in a lazy way elements inserted in buffers
 - When a buffer runs full elements are pushed one level down
 - Buffer-emptying in O(M/B) I/Os
 - ⇒ every block touched constant number of times on each level
 - \Rightarrow inserting N elements (N/B blocks) costs $O(N/B \log_{M/B} N/B)$ I/Os

Definition:

- B-tree with branching parameter M/B and leaf parameter B
- Size M buffer in each internal node

Updates:

- Add time-stamp to insert/delete element
- Collect B elements in memory before inserting in root buffer
- Perform buffer-emptying when buffer runs full

- Internal node buffer-empty:
 - Load first *M* (unsorted) elements into memory and sort them
 - Merge elements in memory with rest of (already sorted) elements
 - Scan through sorted list while
 - * Removing matching insert/deletes
 - * Distribute elements to child buffers
 - Recursively empty full child buffers
- Emptying buffer of size X takes O(X/B + M/B) = O(X/B) I/Os

- Note:
 - Buffer can be larger than M during recursive buffer-emptying
 - * Buffer can be larger than M during recursive buffer-emptying \Rightarrow at most M elements in buffer unsorted
 - Rebalancing needed when leaf-node buffer emptied
 - * Leaf-node buffer-emptying only performed after all full internal node buffers are emptied

- Buffer-empty of leaf node with K elements in leaves
 - Sort buffer as previously
 - Merge buffer elements with elements in leaves
 - Remove matching insert/deletes obtaining K' elements
 - If K' < K then
 - * Add K-K' dummy elements and insert in dummy leaves
 - Otherwise
 - * Place K elements in leaves
 - * Repeatedly insert block of elements in leaves and rebalance
- Delete dummy leaves and rebalance when all full buffers emptied

• Invariant:

Buffers of nodes on path from root to emptied leaf-node are empty

- Insert rebalancing (splits) performed as in normal B-tree
- Delete rebalancing: v' buffer emptied before fuse of v
 - Necessary buffer emptyings performed before next dummy-block delete
 - Invariant maintained

Analysis:

- Not counting rebalancing, a buffer-emptying of node with $X \ge M$ elements (full) takes O(X/B) I/Os
 - \Rightarrow total full node emptying cost $O(N/B\log_{M/B}N/B)$ I/Os
- Delete rebalancing buffer-emptying (non-full) takes O(M/B) I/Os \Rightarrow cost of one split/fuse O(M/B) I/Os
- During N updates
 - * O(N/B) leaf split/fuse
 - * $I(\frac{N/B}{M/B}\log_{M/B}N/B)$ internal node split/fuse \Rightarrow Total cost of N operations: $O(N/B\log_{M/B}N/B)$ I/Os

- Emptying all buffers after N insertions:
 - Perform buffer-emptying on all nodes in BFS-order \Rightarrow resulting full-buffer emptyings cost $O(N/B\log_{M/B}N/B)$ I/Os empty $O(\frac{N/B}{M/B})$ non-full buffers using O(M/B) I/Os \Rightarrow O(N/B) I/Os

• N elements can be sorted using buffer tree in $O(N/B\log_{M/B}N/B)$ I/Os

Buffered Priority Queue

- Basic buffer tree can be used in external priority queue
- To delete minimal element:
 - $O(1/B\log_{M/B}N/B)$ I/O updates amortized
 - All buffers emptied in $O(N/B\log_{M/B}N/B)$ I/Os

• $O(M/B\log_{M/B}N/B)$ I/Os every O(M) delete $\Rightarrow O(1/B\log_{M/B}N/B)$ amortized

Other External Priority Queues

- Buffer technique can be used on other priority queue structures
 - Heap
 - Tournament tree
- Priority queue supporting update often used in graph algorithms
 - $O(1/B\log_2 N/B)$ on tournament tree
 - Major open problem to do it in $O(1/B\log_{M/B}N/B)$ I/Os
- Worst case efficient priority queue has also been developed
 - B operations require $O(\log_{M/B} N/B)$ I/Os

Summary/Conclusion: Buffer-tree

- Batching of operations on B-tree using M-sized buffers
 - $O(1/B\log_{M/B}N/B)$ I/O updates amortized
 - All buffers emptied in $O(N/B\log_{M/B}N/B)$ I/Os
- Using buffer technique persistent B-tree built in $O(N/B\log_{M/B}N/B)$ I/Os
- Priority Queue with $O(1/B\log_{M/R}N/B)$ I/Os amortized update