

Study Guide

Linear Programming 171 & 181

Academic Year 2024

"Research Young people must take it upon themselves to ensure that they receive the highest education possible so that they can represent us well in future as future leaders."

Nelson Mandela

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form by means of electronic, mechanical, photocopying, recording or otherwise, without the written consent of the publisher.

Academic Year 2024

Version 2.0 (April 2024)

TABLE OF CONTENTS

MODULE DESCRIPTION	Error! Bookmark not defined.
OUTCOMES	4
STUDENT SUPPORT	5
ASSESSMENT PLAN	6
ASSIGNMENTS/PROJECTS	6
TESTS	6
STUDENT RESOURCES	6
PRESCRIBED MATERIAL	6
RECOMMENDED READING	6
STUDENT MATERIAL	6
TECHNOLOGY (HARDWARE OR SOFTWARE) REQUIRED	6
LESSON PLAN OUTLINE	7
OUTCOME BREAKDOWN	7

MODULE DESCRIPTION		
Module Name	Linear Programming	
Module Code	LPR 181 & LPR 171	
Qualification	Bachelor of Computing (B. Compt)	
Module NQF Level	5	
Duration (weeks)	3	
Pre-requisites	MAT181	
MODULE DESCRIPTION		
Module Name	Linear Programming	
Module Code	LPR 171	
Qualification	Bachelor of Information Technology (BIT)	
Module NQF Level	5	
Duration (weeks)	3	
Pre-requisites	MAT171	

OUTCOMES

Purpose

Linear Programming is a scientific approach to decision-making that seeks to best design and operate systems under specific conditions requiring the allocation of scarce resources. It is an interdisciplinary mathematical science that focuses on the effective use of technology by organisations. In contrast, many other science and engineering disciplines focus on technology, considering its secondary uses.

Outcomes

Upon successful completion of this module, the student will be able to:

- Demonstrate an informed understanding of linear programming of one or more fields, disciplines or practices, and an informed understanding of the key terms, concepts, facts, general principles, rules and theories of that field, discipline, or practice.
- Show an awareness of how knowledge or a knowledge system develops and evolves within linear programming.
- Select and apply standard formulations, algorithms, or solutions within linear programming and plan and manage an implementation process within a well-defined, familiar, supported environment.
- Identify, evaluate, and solve defined, routine and new problems within a familiar context
 and apply solutions based on relevant evidence and procedures or other forms of
 explanation appropriate to linear programming, demonstrating an understanding of the
 consequences.
- Gather information from a range of sources, including oral, written, or symbolic texts, to select information appropriate to the task and to apply basic processes of analysis, synthesis and evaluation of that information.

 Operate in a range of familiar and new contexts, demonstrating an understanding of different kinds of systems, their constituent parts, and the relationships between these parts, and understand how actions in one area impact other areas within the same system.

STUDENT SUPPORT

Please contact your lecturer for subject-related support. The lecturers presenting this subject are:

- M. Chruku Chiruka.M@belgiumcampus.ac.za
- S. Makweche <u>makweche.s@belgiumcampus.ac.za</u>
- J. Blignaut- blignaut.j@belgiumcampus.ac.za
- S. Laubscher <u>Schoeman.s@belgiumcampus.ac.za</u>
- M. Combrinck <u>combrinck.m@belgiumcampus.ac.za</u>
- E. Rynners rynners.e@belgiumcampus.ac.za
- E. Cheteni <u>Cheteni.e@belgiumcampus.ac.za</u>

If the lecturers were unable to assist, you can also contact the cluster head for this subject:

• C. P. Tavagwisa – <u>tavagwisa.p@belgiumcampus.ac.za</u>

Further student support services are available via the counsellors:

- Lethlabile L. Selamolela selamolela.l@belgiumcampus.ac.za
- Mathapelo Leshilo leshilo.m@belgiumcampus.ac.za
- Alisha Blom Narine.a@belgiumcampus.ac.za

ASSESSMENT PLAN					
ASSIGNMENTS/PROJECTS					
Assignment 1 wei	ght:	10	Assignment 1	due date:	2024/05/05
Assignment 2 wei	ght:	10	Assignment 2 of	due date:	2024/05/12
Assignment 3 wei	ght:	10	Assignment 3 of	due date:	2024/05/19
TESTS					
Test 1 weight:	20		Test 1 date:	2024/05/06	5
Test 2 weight:	20		Test 2 date:	2024/05/13	3
Test 3 weight:	30		Test 3 date:	2024/05/20 17 th May	??????? Career day on

STUDENT RESOURCES

Which resources will be used during this module?

PRESCRIBED MATERIAL

Textbook 1

Prasad, D. (2015). Operation Research. Alpha Science Information Limited: India, Ghaziabad.

Location (Library / URL / PDF) Ebscohost

Operations Research: EBSCOhost

RECOMMENDED MATERIAL

Textbook 2

Winston, W. 2004. *Operations research applications and algorithms.* 4ed. Brooks Cole – Thomson Learning: Belmont, CA.

Location (Library / URL / PDF) Ebscohost
Operations Research: EBSCOhost

RECOMMENDED READING

Dantzig, G. B. (2002). Linear programming. *Operations Research*, 50(1): 42-47.

Wolsey, L. (2021). Integer Programming. 2ed. John Wiley & Sons: Hoboken, NJ.

STUDENT MATERIAL

Item	Location
Content on Moodle	The relevant Moodle course
PowerPoint slides	Distributed to students via Moodle
Exercises / Activities	Dispersed throughout the course on Moodle.

TECHNOLOGY (HARDWARE OR SOFTWARE) REQUIRED

Software/Hardware	Details e.g. version to be used (either minimum or required version)	
Microsoft Office, Excel		

LESSON PLAN OUTLINE		
Date	Specific outcomes (SO) to be covered / Class Activity / Assessment	
29-04-2024	SO1: Introduction to Linear Programming SO2: Maximisation Linear Programming Models	
30-04-2024	SO3: Graphical Solutions with minimisation Linear Programming Models	
01-05-2024	Public holiday	
02-05-2024	SO3: Graphical Solutions with minimisation Linear Programming Models	
03-05-2024	SO4: Microsoft Excel Solver	
05-05-2024	Assignment 1 due	
06-05-2024	Class Test 1	
07-05-2024	SO5: Diet Linear Programming Models SO6: Work Scheduling Linear Programming Models	
08-05-2024	SO6: Work Scheduling Linear Programming Models SO7: Primal Simplex Algorithm (intro to simplex algorithms)	
09-05-2024	SO7: Primal Simplex Algorithm (intro to simplex algorithms)	
10-05-2024	BC Graduation Ceremony	
12-05-2024	Assignment 2 due	
13-05-2024	Class Test 2	
14-05-2024	SO8: Two-Phase Simplex Algorithm	
15-05-2024	SO9: Degeneracy	
16-05-2024	SO10: Unrestricted Signs Week 3 exercises as homework (Mock test in Word format)	
20-05-2024?	Summative Test ??????????????	
17-05-2024	Career day	
19-05-2024	Assignment 3 due	

OUTCOME BREAKDOWN

Specific Outcome 1: Introduction to Linear Programming

- Define Operations research and how.
- Define a system.
- Define a mathematical model.
- Explain the process of building a model.
- Discuss a few problem examples that are addressed with operations research.

Specific Outcome 2: Maximisation Linear Programming Models

- Discuss what a formulated Linear Programming Model (LP model) consist of.
- Santa's workshop example with above elements.
- Explain the different linear programming assumptions with Santa's workshop.
- Explain how to test the feasible region and what are the different types of solutions.

Specific Outcome 3: Graphical Solutions with minimisation Linear Programming Models

- Graphing linear inequalities.
- Graphically plot all constraints.
- Determine feasible area.
- Determine the most optimal solution.
- Go through the formulation of Korean auto to show a basic minimisation LP model.
- Binding constraints.
- Convex sets.
- Extreme points (another way of finding optimal point).
- Special cases when solving graphically.

Specific Outcome 4: Microsoft Excel Solver

- How to add Solver on Excel.
- Solver with Santa's workshop (show what to do if it is a min. problem).
- Special cases when using Solver.

Specific Outcome 5: Diet Linear Programming Models

- Introduction to Diet problems.
- Freshman diet example.
- More realistic diets.

Specific Outcome 6: Work Scheduling Linear Programming Models

- Introduction to work scheduling problems.
- Example post office Version 1 (full time, no overtime employees).
- Other examples should first be given as exercises before explaining.
- Using Excel Solver and applying rounding to non-integer decision values to meet constraints at the most optimal objective value.
- Creating a fair schedule for the base employee (employee 1).
- Creating a fair schedule for any employee.
- Modelling issues.
- Real-world applications.

Specific Outcome 7: Primal Simplex Algorithm (intro to simplex algorithms)

- Introduction to algorithms.
- Simplex algorithms and different types tough throughout the different LPR courses.
- Primal simplex introduction & conditions (Santa's workshop).
- Canonical form Example with Santa's workshop.
- Primal simplex algorithm step by step (Excel can be used, but this is to understand the calculations. At least one row, pivot row and ratio test should be shown).
 - o Initial Tableau.
 - o Optimality check.
 - o Interpreting each table with Basic and non-basic variables.
 - Pivot operations.
 - Interpreting solution.
- Primal simplex algorithm using Excel.

- o Initial Tableau.
- Optimality check.
- o Interpreting each table with Basic and non-basic variables.
- o Pivot operations.
- Interpreting solution.
- Graphing the primal simplex algorithm.
- Special cases using primal simplex (unique, alternative and unbounded)

Specific Outcome 8: Two-Phase Simplex Algorithm

- Two-phase simplex introduction & conditions (Farmer brown).
- Canonical form Example with Farmer brown.
- Two-phase simplex algorithm using Excel.
 - o Initial Tableau.
 - o 1st phase
 - Optimality check.
 - o Interpreting each table with Basic and non-basic variables.
 - Pivot operations.
 - o 2nd phase
 - Optimality check.
 - o Interpreting each table with Basic and non-basic variables.
 - o Pivot operations.
 - o Interpreting solution.
- Graphing the two-phase simplex algorithm.
- Special cases using two-phase simplex (unique, alternative, infeasible and unbounded)

Specific Outcome 9: Degeneracy

- Introduction to degeneracy.
- Non-degenerate vs degenerate.
- Cycling.
- Efficiency of the Simplex Algorithm for Degenerate LPs

Specific Outcome 10: Unrestricted Signs

- Introduction to URS.
- Formulation.
- Solve graphically.
- Solve using Solver.
- Conditions and canonical form for simplex algorithms (example is primal simplex).
- Let them solve.
- Interpret solution.