Mo Tu We Th Fr Sa Su (#34216) Date / /
LEC22 Eigenvalues and Eigenvectors LEC22 Eigenvalues and Eigenvectors Let [A-NI] = 0 2/b
$TRACE = \Lambda_1 + \Lambda_2 + \cdots + \Lambda_n$
Ax parallel to $X = Ax = \lambda x $ (A can be regative or o)
if A is singular, then $N=0$ is an eigenvalue
<i>b</i>
(projection what one X's and a's) for mutaix) a projection matrices matrix?
=) Elgenvectors 50 Px//x
Any x in the plane: $Px = X$, $x = 1$
Buy x perpendicular to the plane: $Px = 0x$, $\Lambda = 0$
permutation mutrixi
$A = C^{\circ} \cdot 1$ $x = C \cdot 1$ $Ax = C \cdot 1$ $Ax = C \cdot 1$
$X = \begin{bmatrix} -1/2 \\ -1/2 \end{bmatrix} A_X = \begin{bmatrix} -1/2 \\ -1/2 \end{bmatrix} \begin{pmatrix} 1/2 \\ -1/2 \end{pmatrix}$
a neat fact; the sum of is = autant tann

(10 Tu 110 Th F1 Sa Sy	Memo No/
and the number of	Esgen values = n
how to she Bx =0	X => X mazero
Reunite (A-NI)x	c = 0
	be Fight (singular) whi (x co
=) det(A-NI) =	be nonta
Find 1 First	if I can she
Ex A=[3/3]	this quation it
1. Let (A-NI) = 3-2	must be singular
$= (3-\lambda)^2-1$	menns A is invortiable
$= 7^2 - 61 + 8 = (1 - 2)$	cit has null sycon nunser
7 N,=4, N,=2	
	$\lambda_{i} = 4$, $\lambda_{i} = 1$
[] -/	
A - 2I = f(i) + 7	$\gamma_{2}=2, \ \ \lambda_{3}=[-1]$
	$\gamma_2 = 2, \chi_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$
	10x A': [017
A = [3] = Atte	AAX A'+ ZT
D - L1 (2) - MD0	1 17 X6 high hours
フルーカナタ, ハマニハ	2+3, Ks don't change!

Mo Tu We Th Fr Sa Su	Memo No
=) if Ax = Ax, (A+3I	$1x = (\chi + 3)x$
Not so great Atis	S. AB
if Ax=nx, 13 has	eigenvalues di,
$\beta_{X_i} = \alpha_{X_i}$	
-CA+B)X =(X+X)X	
Example Q rotati	- 21
90° rotation Q =	ΓO-17
	LIOJ
trace: 0+0= 1,+12	
$det = 1 = N_i \cdot N_2$	
det(Q-NI) = -N	$\int = \chi^2 + 2 > 0$
11-2	=0
	$\lambda, = i, \lambda, = -i$
Q & few away f	rom symmetric
Suppose A=Lo31 de	2t(A-AI) = 3-1 0 5-05/

 $\begin{array}{c} = (3-\lambda)(3-\lambda) \\ \lambda_1 = 3 = \lambda_2 \end{array}$ $\begin{array}{c} \text{go to eigenvectors:} \quad (A-\lambda I) \times = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 0$