Санкт-Петербургский политехнический университет имени Петра Великого

Физико-механический институт Высшая школа прикладной математики и физики

Отчет по лабораторной работе №3 по дисциплине "Интервальный анализ"

Выполнил:

Студент: Байрамов Самир Группа: 5030102/00201

Принял:

к. ф.-м. н., доцент

Баженов Александр Николаевич

Содержание

1	Постановка задачи				
2	Теория 2.1 Внешнее множество решений				
3	Результаты	3			
4	Вывод	3			

1 Постановка задачи

Задана система нелинейных уравнений:

$$\begin{cases} x^2 + y^2 = 1\\ x = y^2 \end{cases}$$

Необходимо найти корни данной системы точеченых нелинейных уравнений, используя интервальный метод Кравчика.

2 Теория

2.1 Внешнее множество решений

Внешним множеством решений называется объединенное множество решений, образованное решениями всех точечных систем F(a,x) = b

$$\Xi_{\text{uni}}(\mathbf{F}, \mathbf{a}, \mathbf{b}) = \{ x \in \mathbb{R}^n \mid (\exists a \in \mathbf{a}) (\exists b \in \mathbf{b}) (F(a, x) = b) \}$$
 (1)

2.2 Метод Кравчика

Метод Кравчика предназначен для уточнения двухсторонних границ решений систем уравнений, в общем случае нелинейных, заданных на некотором брусе $X \subset \mathbb{IR}$, вида

$$F(x) = 0$$
, где $F(x) = \{F_1(x), ..., F_n(x)\}^T$, $x = (x_1, ...x_n)$ (2)

Также данный метод может быть использован для того, чтобы понять, что решений нет

Отображение $\mathcal{K}: \mathbb{ID} \times \mathbb{R} \to \mathbb{IR}^n$, задаваемое выражением

$$\mathcal{K}(\mathbf{X}, \overline{x}) := \overline{x} - \Lambda * F(\overline{x}) - (I - \Lambda * \mathbf{L} * (\mathbf{X} - \overline{x}))$$
(3)

называеся оператором Кравчика на \mathbb{ID} относительно точки \overline{x} .

Итерационная схема данного метода выглядит следующим образом

$$\mathbf{X}^{k+1} \leftarrow \mathbf{X}^k \cap \mathcal{K}(\mathbf{X}^k, \overline{x}^k), \quad k = 0, 1, 2..., \quad x^k \in \mathbf{X}^k$$
 (4)

Сходимость данного метода гарантирована при выполнении условия

$$\rho(|I - \Lambda * \mathbf{L}|) < 1$$
 — спектральный радиус меньше единицы (5)

Частным случаем данного метода является линейный метод Кравчика, итерационная схема которого выглядит следующим образом:

$$\mathbf{x}^{k+1} = (\Lambda * \mathbf{b} + (I - \Lambda * \mathbf{A}) * \mathbf{x}^k) \cap \mathbf{x}^k \tag{6}$$

 ${\bf A}$ в данном случае является интервальной матрицей коэффициентов соответсвующей ИСЛАУ, а ${\bf b}$ - вектором свободных членов.

В случае линейности системы и выполнения условия $\eta = ||I - \Lambda * \mathbf{A}||_{\infty} \le 1$ в качестве начального приближения можно взять брус

$$\mathbf{x}^{0} = ([-\theta, \theta], ..., [-\theta, \theta])^{T}, \quad \text{где } \theta = \frac{||\Lambda \mathbf{b}||_{\infty}}{1 - \eta}$$
 (7)

3 Результаты

Рис. 1: Метод Кравчика - пересечение параболы и окружности

Получим таблицу результатов для некоторых $\mathbf{X}_1, \mathbf{X}_2$

$N_{\overline{0}}$	\mathbf{X}_2	\mathbf{X}_1	ширина \mathbf{X}_1	ширина \mathbf{X}_2
1	[0, 1]	[0, 1]	1.0	1.0
2	[0,1]	[0.125, 1]	0.875	1.0
3	[0.111684, 1]	[0.406219, 1]	0.0.5937	0.8883
4	[0.266059, 0.973673]	[0.534126, 1]	0.4658	0.7076
5	[0.409351, 0.82672]	[0.64279, 0.92999]	0.2871	0.4173
6	[0.542195, 0.693873]	[0.735163, 0.83714]	0.1020	0.1517
7	[0.608239, 0.627829]	[0.779572, 0.79273]	0.0132	0.0196
8	[0.617871, 0.618197]	[0.786042, 0.786261]	0.000219	0.0003264
9	[0.618034, 0.618034]	[0.786151, 0.786151]	$6.08 * 10^{-8}$	$9.06*10^{-8}$

4 Вывод

- 1. Полученные результаты подтверждают эффективность и сходимость интервального метода Кравчика для решения системы нелинейных уравнений. На каждой итерации метода границы решений сужаются, итерации продолжаются до достижения требуемой точности.
- 2. Точное решение системы x=0.6180339, y=0.7861513 совпадает с результатами, полученными методом. Таким образом, метод успешно находит корни системы нелинейных уравнений.
- 3. На 9 итерации метод дошел до $2.52 \cdot e^{-18}~$ и $~2.46 \cdot e^{-17}$ соответсвенно

4. Заметим, что сходимость метода обеспечивается выполнением условия $\rho(|I-\Lambda*\mathbf{L}|)<1$ ($\rho=0.75$), что подчеркивает важность выбора подходящих параметров и начальных условий для успешной работы метода.