Министерство образования Республики Беларусь

Учреждение образования

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет компьютерного проектирования Кафедра проектирования информационно-компьютерных систем

ВЫЧИСЛЕНИЕ КОЭФФИЦИЕНТОВ ЛИНЕЙНОЙ МНОЖЕСТВЕННОЙ РЕГРЕССИИ И ПРОВЕРКА ЗНАЧИМОСТИ В РЕЖИМЕ РЕГРЕССИЯ

Студент гр. 315401

Е.М. Косарева

Проверил

Г.А. Пискун

Цель работы

Используя режим Регрессия, вычислить вектор коэффициентов уравнения регрессии.

Теоретические сведения

Табличный процессор MS Excel содержит модуль **Анализ данных.** Этот модуль позволяет выполнить статистический анализ выборочных данных (построение гистограмм, вычисление числовых характеристик и т. д.). Режим работы **Регрессия** этого модуля осуществляет вычисление коэффициентов линейной множественной регрессии с k переменными, построение доверительных интервалов и проверку значимости уравнения регрессии.

- 1. Входной интервал Y вводится диапазон адресов ячеек, содержащих значения y_i (ячейки должны составлять один столбец).
- 2. *Входной интервал* X вводится диапазон адресов ячеек, содержащих значения независимых переменных. Значения каждой переменной представляются одним столбцом. Количество переменных не более 16.
- 3. *Метки* включается, если первая строка во входном диапазоне содержит заголовок. В этом случае автоматически будут созданы стандартные названия.
- 4. *Уровень надежности* при включении этого параметра задается надежность // при построении доверительных интервалов.
- 5. Константа-ноль при включении этого параметра коэффициент $b_0 = 0$.
- 6. Выходной интервал при включении активизируется поле, в которое необходимо ввести адрес левой верхней ячейки выходного диапазона, который содержит ячейки с результатами вычислений режима Регрессия.
- 7. Новый рабочий лист при включении этого параметра открывается новый лист, в который, начиная с ячейки **A1**, вставляются результаты работы режима **Регрессия**.
- 8. Новая рабочая книга при включении этого параметра открывается новая книга, на первом листе которой, начиная с ячейки **A1**, вставляются результаты работы режима **Регрессия**.
- 9. Oстатки при включении вычисляется столбец, содержащий невязки $y_i \hat{y}_i, i = 1, ..., n$.
- 10. Стандартизованные остатки при включении вычисляется столбец, содержащий стандартизованные остатки.
- 11. График остатков при включении выводятся точечные графики невязки $y_i \hat{y}_i$, i = 1, ..., n в зависимости от значений переменных x_j , j = 1, ..., k. Количество графиков равно числу k переменных x_j .
- 12. График подбора при включении выводятся точечные графики предсказанных по построенной регрессии значений \hat{y}_i от значений переменных x_j , j=1,...,k. Количество графиков равно числу k переменных x_j .

Реализация решения задачи

Регрессионная статистика представлена на рисунке 1:

Рисунок 1 – Регрессионная статистика

На рисунке 2 представлен дисперсионный анализ:

Рисунок 2 – Дисперсионный анализ

Коэффициенты представлены на рисунке 3:

4		Коэффициенты	Станд. ошибка	LCL	UCL	t-cmamucmuкa
	Константа	2,9732	2,0223	-1,8087	7,7552	1,4702
)	X1	0,0558	0,2027	-0,4235	0,5351	0,2752
7	X2	0,1249	0,1203	-0,1595	0,4092	1,0382
3	T (5%)	2,3646				
	LCL - Нижняя	граница 95% довер	ительного <mark>инт</mark> ерва.	ла		
)	UCL - Верхняя	граница 95% довер	ительного интерва	пла		

Рисунок 3 – Коэффициенты

Остатки представлены на рисунке 4:

34	Остатки										
35	Наблюдение	Y	Предсказанное Ү	Остаток	Стандартизованные	Стьюдентизированные	Удаленные t	Разбалансировка	Cook's D	DFIT	PRESS
36	1	4,0000	6,3176	-2,3176	-0,9474	-1,9601	-2,7019	0,7664	4,2014	-4,8937	-9,9207
37	2	2,0000	3,7808	-1,7808	-0,7280	-0,8304	-0,8097	0,2315	0,0693	-0,4444	-2,3173
88	3	5,0000	4,1394	0,8606	0,3518	0,3962	0,3710	0,2117	0,0141	0,1923	1,0918
39	4	6,0000	3,5709	2,4291	0,9930	1,1479	1,1795	0,2517	0,1477	0,6841	3,2462
10	5	2,0000	3,6825	-1,6825	-0,6878	-0,7605	-0,7351	0,1821	0,0429	-0,3469	-2,0571
1	6	2,0000	4,0571	-2,0571	-0,8409	-0,8978	-0,8837	0,1228	0,0376	-0,3307	-2,3451
12	7	6,0000	4,8089	1,1911	0,4869	0,7150	0,6876	0,5363	0,1971	0,7394	2,5686
13	8	8,0000	4,6388	3,3612	1,3740	1,5582	1,7850	0,2224	0,2315	0,9547	4,3227
14	9	2,0000	3,8631	-1,8631	-0,7616	-0,8235	-0,8023	0,1447	0,0382	-0,3300	-2,1783
15	10	7,0000	5,1409	1,8591	0,7600	0,9287	0,9182	0,3304	0,1418	0,6449	2,7762
16	Минимум	2,0000	3,5709	-2,3176	-0,9474	-1,9601	-2,7019	0,1228	0,0141	-4,8937	-9,9207
17	Максимум	8,0000	6,3176	3,3612	1,3740	1,5582	1,7850	0,7664	4,2014	0,9547	4,3227
18	Среднее	4,4000	4,4000	0,0000	0,0000	-0,0526	-0,0991	0,3000	0,5122	-0,3130	-0,4813
19											111

Рисунок 4 – Остатки

График остатков представлен на рисунке 5:

Рисунок 5 – График остатков

Выводы

В результате применения режима Регрессия был получен комплексный анализ данных.