Previous session

- Climate affects life: biomes and climate variation
- Lifecycle:
 - Oviposition
 - Aquatic development and survival: Egg, larvae, and pupae
- Adult survival & host-seeking
- Climate & disease ecology: parasite lifecycle

Today's session

- Overview malaria transmission vector+host
- Aspects of transmission for climate modification
 - From ecology to model entomology
- Class exercise

Review of malaria transmission

Human population

Human population

Susceptible

Not infected -

Time zero

Avenues for climate interaction

Entomological study Example 1: The Gonotrophy-temperature relationship

Adult female Resting/egg Search for oviposition site acquires blood meal development Oviposition Gonotrophic cycle

- Rear Anopheles eggs to adults 1.
- House adults at key constant 2. temperature values
- Allow bloodmeal, resting, & egg laying
- Measure time to next 4. bloodmeal after ovipositing
- Fit temperature to duration of bloodmeal cycle

Literature

Example 1: The Gonotrophy-temperature relationship Entomological study

1. Rear *Anopheles* eggs to adults

- 2. House adults at key constant temperature values
- Allow bloodmeal, resting, & egg laying
- 4. Measure time to next bloodmeal after ovipositing
- 5. Fit temperature to duration of bloodmeal cycle

Literature

- 1. Review primary literature
- 2. Obtain fittings of temperature
- Compare results to similar studies

Example 1: The Gonotrophy-temperature relationship Entomological study

1. Rear *Anopheles* eggs to adults

- 2. House adults at key constant temperature values
- 3. Allow bloodmeal, resting, & egg laying
- 4. Measure time to next bloodmeal after ovipositing
- 5. Fit temperature to duration of bloodmeal cycle

Literature

- 1. Review primary literature
- 2. Obtain fittings of temperature
- 3. Validate with independent mosquito data
- Pooled results over multiple datasets provide more robust estimates of relationships

Temperature-regulated gonotrophy

1.

Example 1: The Gonotrophy-temperature relationship Entomological study

,

Rear Anopheles eggs to adults

- 2. House adults at key constant temperature values
- 3. Allow bloodmeal, resting, & egg laying
- 4. Measure time to next bloodmeal after ovipositing
- 5. Fit temperature to duration of bloodmeal cycle

Literature

- 1. Review primary literature
- 2. Obtain fittings of temperature to gonotrophy
- 3. Compare results to similar studies
- Pooled results provide more robust estimates of relationships

Temperature-regulated gonotrophy

Example 1: The Gonotrophy-temperature relationship

$$GP = \frac{1}{(0.017 * T) - 0.165}$$

Example 2: The sporogony-temperature relationship

Temperature-regulated sporogony

$$EIP = 0.000112T(T - 15.384)\sqrt{(35 - T)}$$

Example 2: The sporogony-temperature relationship

So far

 Several aspects of vector and parasite ecology for for climate modification

- From entomology to generalized relationship
 - Primary studies: address questions specific to researchers needs. First data collection, more accurate
 - Literature review: crucial to compare results to similar studies.
 Advantageous for pooling multiple studies and yields more robust estimates of climate relationships

Short break

Example 3: group work and presentation

Example 3

RESEARCH Open Access

How malaria models relate temperature to malaria transmission

Torleif Markussen Lunde^{1,2,4*}, Mohamed Nabie Bayoh³ and Bernt Lindtjørn²

Abstract

Background: It is well known that temperature has a major influence on the transmission of malaria parasites to their hosts. However, mathematical models do not always agree about the way in which temperature affects malaria transmission

Methods: In this study, we compared six temperature dependent mortality models for the malaria vector *Anopheles gambiae* sensu stricto. The evaluation is based on a comparison between the models, and observations from semi-field and laboratory settings.

Results: Our results show how different mortality calculations can influence the predicted dynamics of malaria transmission.

Conclusions: With global warming a reality, the projected changes in malaria transmission will depend on which mortality model is used to make such predictions.

Keywords: Anopheles gambiae sensu stricto, Climate, Temperature, Mathematical model

Literature review assignment

- 1. Students have been assigned the above paper
- You will work in groups to explore how temperaturemortality relationships impact transmission at the population level

Example 3

- Group work & presentation: Adult mosquito survivorship
 - Each group has been randomly assigned one equation formulating the relationship between temperature and adult mosquito survival probability.
 - 2. Using the daily mean temperature data provided for Rwanda,
 - a) Generate the survival probability of adult mosquitoes based on your assigned formulation.
 - b) Plot the temperature-regulated survival probability over time (x axis =time; yaxis=probability)
 - c) Describe the nature of adult mosquito survivorship in Rwanda through the year
 - 3. Convert the survival probability to mortality rates
 - 4. Complete the provided SEI model for malaria in the mosquito population, by adding mortality to the system.
 - 5. Run the model using the temperature-regulated mortality rates, together with other provided parameters and state conditions. Note: download the R files containing the model, parameters and initial state values.
 - 6. Plot the simulated number of infectious mosquitoes over time
 - 7. Each group will present the results from their work to the class in a 5 minute presentation. In your presentation be sure to include:
 - 1. The reason the authors to conducted this research
 - 2. The mortality model you used. How did the original authors calibrate the temperature mortality model?
 - 3. Result on the temperature-regulated daily mortality rates over time for Rwanda
 - 4. Your completed SEI model system
 - 5. Result from your model simulation

Simple malaria transmission in mosquito population

Simple malaria transmission in mosquito population

Simple malaria transmission in mosquito population

Class presentation and discussion

 Present the results from your group's work to the class in a 5 minute presentation

Class vote on models & discussion

Short break

Class presentation and discussion

- Present the results from your group's work (steps 1–6) to the class in a 5-minute presentation
- Class vote on models & discussion
 - Based on the SEI model outcomes, class votes on which temperature-longevity relationship you would you pick for adult *Anopheles*. And why? How would you improve the estimate for the fitting?

Next session: March 28th

- Example 4: Climate and Mosquito population model
- Group work

Reading assignment for March 28th

White et al. Parasites & Vectors 2011, **4**:153 http://www.parasitesandvectors.com/content/4/1/153

RESEARCH Open Access

Modelling the impact of vector control interventions on *Anopheles gambiae* population dynamics

Michael T White*, Jamie T Griffin, Thomas S Churcher, Neil M Ferguson, María-Gloria Basáñez and Azra C Ghani