Ejercicio 5 - Control Automático Control Fuzzy

Karen Y. Marín Luis F. Riveros Juan J. Charfuelan Michael Hernandez

Los procesos de cloración en la salida de las PTAP se han analizado exhaustivamente en términos de control.

El interés radica en *lograr un proceso* totalmente automatizado, en el que los humanos solo intervengan como supervisores, y en el que la calidad del efluente cumpla con la normativa establecida, optimizando los costos operativos.

Universo de discurso

Variables de entrada del controlador

Cloro residual

Cr = [0ppm a 3ppm]

Error

 $E = [-2.2ppm \ a \ 0.8ppm]$

Variables de salida del controlador

Voltaje V = [0V a 10V]

Setpoint

Cloro residual

Cr = 0.8ppm

Variable: Error

Nombre de la etiqueta	Rango de la variable (ppm)	Función de pertenencia	
Aceptable (AC)	[-2.2, 0.1]	$[1,\frac{0.1-x}{0.1},0]$ trapmf	
Bajo (B)	(0, 0.2)	$[0, \frac{x}{0.1}, \frac{0.2-x}{0.1}, 0]$ trimf	
Medio (ME)	[0.1, 0.55]	$[0, \frac{x-0.1}{0.1}, 1, \frac{0.55-x}{0.05}, 0]$ trapmf	
Alto (A)	(0.5, 0.75)	$[0, \frac{x-0.5}{0.05}, 1, \frac{0.75-x}{0.05}, 0]$ trapmf	
Muy alto (MA)	[0.7, 0.8]	$[0, \frac{x-0.7}{0.05}, 1]$ trapmf	

Variable: Error

Variable: Voltaje (V)

Nombre de la etiqueta	Rango de la variable (V)	Función de pertenencia
Dosificación Nula (DN)	[0, 2)	$[1, \frac{2-x}{0.5}, 0]$ trapmf
Dosificación Baja (DB)	[1.5- 4)	$[0, \frac{x-1.5}{0.5}, 1, \frac{4-x}{0.5}, 0]$ trapmf
Dosificación Media (DME)	[3.5 - 6)	$[0, \frac{x-3.5}{0.5}, 1, \frac{6-x}{0.5}, 0]$ trapmf
Dosificación Alta (DA)	[5.5 - 8)	$[0, \frac{x-5}{0.5}, 1, \frac{8-x}{0.5}, 0]$ trapmf
Dosificación Muy Alta (DMA)	[7.5 - 10)	[0, x-7.5/8-7.5, 1] trapmf

Variable: Voltaje

Reglas de control

Error	AC	В	ME	A	MA
Voltaje	DN	DB	DME	DA	DMA

Etiquetas Error

Aceptable (AC)
Bajo (B)
Medio (ME)
Alto (A)
Muy Alto (MA)

Etiquetas Voltaje

Dosificación Nula (**DN**)
Dosificación Baja (**DB**)
Dosificación Media (**DME**)
Dosificación Alta (**DA**)
Dosificación Muy Alta (**DMA**)

Simulación control Fuzzy (Membership Function Editor)

Simulación control Fuzzy (Td=0 y con perturbación)

Simulación control Fuzzy (Td = 0 y con perturbación)

Simulación control Fuzzy (Td = 5min y sin perturbación)

Simulación control Fuzzy (Td = 5min y sin perturbación)

Simulación control PID (Td = 0 y con perturbación)

Simulación control PID (Td = 0 y con perturbación)

Simulación control PID (Td = 5min y sin perturbación)

Simulación control PID (Td = 5min y sin perturbación)

Comparación

Control Fuzzy

 Tiempo de establecimiento Obtenido: 620s

• Error de estado estable Obtenido: 0,1%

 Máximo pico Obtenido: 17,9%

 Esfuerzo de control Máximo obtenido: 9V Estable obtenido: 5V

Control PID

• Tiempo de establecimiento

Estimado:850s Obtenido: 950s

Error de estado estable

Estimado: 0% Obtenido: 0%

• Máximo pico

Estimado: 2% Obtenido: 2.3%

Esfuerzo de control

Máximo obtenido: 3.69V Estable obtenido: 2.66V

Comparación

Parámetros	Control Fuzzy	Control PID	
Tiempo de establecimiento		×	
Máximo pico	*		
Esfuerzo de control (estado estable)			
Esfuerzo de control (máximo)	*		
Error de estado estable			

Conclusiones

- El tiempo de retardo en la medición de cloro hace que, en el diseño de un control Fuzzy, puedan cambiar significativamente los resultados.
- Si se pudiese medir la cantidad de amoniaco ocasional, se podrían modificar los rangos de las etiquetas lingüísticas de tal manera que el controlador amortigüe más rápido los efectos de la perturbación.
- Como se pudo observar en la tabla de comparación, el control PID es mejor en 4 de los 5 parámetros elegidos. Sin embargo, dependiendo de la aplicación podría ser más útil el Fuzzy, por ejemplo para aplicaciones que necesiten una rápida estabilización y se pueda sacrificar el esfuerzo de control.

¡ Muchas gracias por su atención!

