```
1 ATGGACTICA AACAATTIGA TITTITACAC CIGATCAGIG TITCCGGIIG
51 GGGGCATCTG GCTGAAAAGG CGTGGGCGTT CGGGCTGAAC CTTGCCGCCG
101 CGCTGCTTAT TTTCTTGGTC GGGAAATGGG CGGCGAAACG CATTGTCGCC
151 GTAATGAGGG CGGCGATGAC GCGCGCGCAG GTCGATGCCA CGCTGATTAG
    TTTTTTGTGT AATGTTGCCA ATATCGGCTT ATTGATTTTG GTGATTATTG
201
251 CCGCATTGGG ACGGTTGGGC GTTTCCACAA CATCCGTAAC CGCCTTAATC
301 GGCGGCGCG GTTTGGCGGT GGCGTTGTCC TTAAAAGACC AGCTGTCCAA
    TTTTGCCGCC GGCGCGCTGA TTATCCTGTT CCGCCCGTTC AAAGTCGGCG
351
401 ACTTTATCCG TGTCGGCGGT TTTGAAGGAT ATGTCCGGGA AATCAAAATG
    GTGCAGACTT CTTTGCGGAC GACCGACAAC GAAGAAGTCG TGCTGCCCAA
451
501 CAGCGTGGTG ATGGGCAACA GCATCGTCAA CCGTTCCAGC CTGCCGCTTT
    GCCGCGCCCA AGTGATAGTC GGCGTCGATT ACAACTGCGA TTTGAAAGTG
551
601
    GCGAAAGAG ČGGŤGTTGAA ÄĞČCGČCĞC ĞAÂCÄČČCCT TĞAĞCĞŤŤCA
651 AAACGAAGAG CGGCAGCCCG CCGCCTACAT CACCGCCTTG GGCGACAATG
    CCATCGAAAT CACATTATGG GCTTGGGCAA ACGAAGCAGA CCGCTGGACG
701
    CTGCAATGCG ACTTGAACGA ACAAGTGGTC GAAAACCTCC GCAAAGTCAA
751
801 TATCAACATC CCGTTCCCGC AACGCGACAT ACACATCATC AATTCTTAA
```

This corresponds to the amino acid sequence <SEQ ID 1768; ORF 008.ng>: g579-1.pep

- 1 MDFKQFDFLH LISVSGWGHL AEKAWAFGLN LAAALLIFLV GKWAAKRIVA 51 VMRAAMTRAQ VDATLISFLC NVANIGLLIL VIIAALGRLG VSTTSVTALI
- 101 GGAGLAVALS LKDQLSNFAA GALIILFRPF KVGDFIRVGG FEGYVREIKM
- 151 VOTSLRTTDN EEVVLPNSVV MGNSIVNRSS LPLCRAQVIV GVDYNCDLKV
- 201 AKEAVLKAAA EHPLSVQNEE RQPAAYITAL GDNAIEITLW AWANEADRWT
- 251 LQCDLNEQVV ENLRKVNINI PFPQRDIHII NS*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1769>: m579-1.seq

```
1 ATGGACTICA AACAATTIGA TITTITACAC CIGATCAGIG TITCCGGITG
    GGAGCATCTG GCTGAAAAGG CGTGGGCGTT CGGGCTGAAC CTTGCCGCCG
CGCTGCTTAT TTTTTTGGTC GGAAAATGGG CGGCGAAACG CATTGTCGCT
51
101
151 GTGATGAGGG CGGCGATGAC GCGCGCGCAG GTCGATGCCA CGCTGATTAG
201 TTTTTTGTGT AATGTTGCCA ATATCGGCTT ATTGATTTTG GTGATTATTG
251 CCGCATTGGG CAGATTGGGC GTTTCCACAA CATCCGTAAC CGCCTTAATC
301 GGCGGCGCG GTTTGGCGGT GGCGTTGTCC CTGAAAGACC AGCTGTCCAA
351
    TTTTGCCGCC GGCGCACTGA TTATCCTGTT CCGCCCGTTC AAAGTCGGCG
401 ATTTTATCCG CGTCGGCGGT TTTGAAGGAT ATGTCCGAGA GATTAAAATG
    GTGCAGACTT CTTTGCGGAC GACCGACAAC GAAGAAGTCG TGCTGCCCAA
451
501
    CAGCGTGGTG ATGGGCAACA GCATCGTCAA CCGTTCCACA CTGCCGCTGT
551 GCCGCGCCCA AGTGATAGTC GGCGTCGATT ACAACTGCGA TTTGAAAGTG
601
    GCGAAAGAGG CGGTGTTGAA AGCCGCCGTC GAACACCCCT TGAGCGTTCA
651 AAACGAAGAG CGGCAGGCTG CCGCCTACAT CACCGCCTTG GGCGACAATG
701
    CCATCGAAAT CACATTATGG GCTTGGGCAA ACGAAGCAGA CCGCTGGACG
     CTGCAATGCG ACTTGAACGA ACAAGTGGTC GAAAACCTCC GCAAAGTCAA
     TATCAACATC CCGTTCCCGC AACGCGACAT ACACATCATC AATTCTTAA
```

This corresponds to the amino acid sequence <SEQ ID 1770; ORF 579-1>: m579-1.pep

- 1 MDFKQFDFLH LISVSGWEHL AEKAWAFGLN LAAALLIFLV GKWAAKRIVA
- 51 VMRAAMTRAQ VDATLISFLC NVANIGLLIL VIIAALGRLG VSTTSVTALI
- 101 GGAGLAVALS LKDQLSNFAA GALIILFRPF KVGDFIRVGG FEGYVREIKM
- 151 VQTSLRTTDN EEVVLPNSVV MGNSIVNRST LPLCRAQVIV GVDYNCDLKV
 201 AKEAVLKAAV EHPLSVQNEE RQAAAYITAL GDNAIEITLW AWANEADRWT
- 251 LQCDLNEQVV ENLRKVNINI PFPQRDIHII NS*

m579-1/g579-1 98.6% identity in 282 aa overlap

	10	20	30	40	50	60
m579-1.pep	MDFKQFDFLHLIS	/SGWEHLAEK/	WAFGLNLAAA:	LLIFLVGKW <i>F</i>	AKRIVAVMRA	AMTRAQ
				111111111	1111111111	HILLE
g579-1	MDFKQFDFLHLIS	/SGWGHLAEK#	WAFGLNLAAA:	LLIFLVGKW <i>F</i>	AKRIVAVMRA	AMTRAQ
	10	20	30	40	50	60
	70	80	90	100	110	120
m579-1.pep	VDATLISFLCNVAN	NIGLLILVII <i>i</i>	ALGRLGVSTT	SVTALIGGAG	LAVALSLKDO	LSNFAA
					1111111111	111111
g579-1	VDATLISFLCNVAN	NIGLLILVII <i>a</i>	ALGRLGVSTT	SVTALIGGAG	LAVALSLKDO	LSNFAA
	70 ·	80	90	100	110	120
	130	140	150	160	170	180

m579-1.pep GALIILFRPFKVGDFIRVGGFEGYVREIKMVQTSLRTTDNEEVVLPNSVVMGNSIVNRST

g579-1						IVNRSS
	130	140	150	160	170	180
	190	200	210	220	230	240
m579-1.pep	LPLCRAQVIVGVDY	NCDLKVAKEA	VLKAAVEHPI	SVQNEERQAA	AYITALGDNA	IEITLW
			11111:111		111111111	
g579-1	LPLCRAQVIVGVDY	NCDLKVAKEA	VLKAAAEHPI	SVQNEERQPA	AYITALGDNA	IEITLW
	190	200	210	220	230	240
	250	260	270	280		
m579-1.pep	AWANEADRWTLQCD:	LNEQVVENLR	KVNINIPFPC	RDIHIINSX		
		ELLETT	1111111111		_	
g579-1	AWANEADRWTLQCD:	LNEQVVENLR	KVNINIPFPC	RDIHIINSX		
	250	260	270	280		

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1771>: a579-1.seq

```
ATGGACTICA AACAATTIGA TITTITACAC CIGATAAGIG CITCCGGCIG
  1
     GGAGCATCTG GCTGAAAAGG CGTGGGCGTT CGGGCTGAAC CTTGCCGCCG
 51
101 CGCTGCTTAT TTTTTTGGTC GGAAAATGGG CGGCGAAACG CATTGTCGCC
151
     GTGATGAGGG CGGCGATGAC GCGCGCGCAG GTCGATGCCA CGCTGATTAG
201 TTTTTTGTGT AATGTTGCCA ATATCGGCTT ATTGATTTTG GTGATTATTG
251 CCGCATTGGG CAGATTGGGC GTTTCCACAA CATCCGTAAC CGCCTTAATC
301 GGCGGCGCGG GTTTGGCGGT GGCGTTGTCC TTGAAAGACC AGCTGTCCAA
     GGCGGCGCG GTTTGGCGGT GGCGTTGTCC TTGAAAGACC AGCTGTCCAA
     TTTTGCCGCC GGCGCGCTGA TTATCCTGTT CCGCCCGTTC AAAGTCGGCG
401
     ATTTTATCCG CGTCGGCGGT TTTGAAGGAT ATGTCCGAGA GATTAAAATG
451 GTGCAGACTT CTTTGCGGAC GACCGACAAC GAAGAAGTCG TGCTGCCCAA
501 CAGCGTGGTG ATGGGCAACA GCATCGTCAA CCGTTCCACA CTGCCGCTGT
     GCCGCGCCCA AGTGATAGTC GGCGTCGATT ACAACTGCGA TTTGAAAGTG
601 GCGAAAGAGG CGGTGTTGAA AGCCGCCGTC GAACACCCCT TGAGCGTTCA
651 AAACGAAGAG CGGCAGGCCG CCGCCTACAT CACCGCCTTG GGCGACAATG
701 CCATCGAAAT CACATTATGG GCTTGGGCAA ACGAAGCAGA CCGCTGGACG
751 CTGCAATGCG ACTTGAACGA ACAAGTGGTC GAAAACCTCC GCAAAGTCAA
801 TATCAACATC CCGTTCCCGC AACGCGACAT ACACATCATC AATTCTTAA
```

This corresponds to the amino acid sequence <SEQ ID 1772; ORF 579-1.a>: a579-1.pep

- MDFKQFDFLH LISASGWEHL AEKAWAFGLN LAAALLIFLV GKWAAKRIVA 51 VMRAAMTRAQ VDATLISFLC NVANIGLLIL VIIAALGRLG VSTTSVTALI GGAGLAVALS LKDQLSNFAA GALIILFRPF KVGDFIRVGG FEGYVREIKM 101 151 VQTSLRTTDN EEVVLPNSVV MGNSIVNRST LPLCRAQVIV GVDINGSS 201 AKEAVLKAAV EHPLSVQNEE RQAAAYITAL GDNAIEITLW AWANEADRWT VQTSLRTTDN EEVVLPNSVV MGNSIVNRST LPLCRAQVIV GVDYNCDLKV
- 251 LQCDLNEQVV ENLRKVNINI PFPQRDIHII NS*

a579-1/m579-1 99.6% identity in 282 aa overlap

	10	20	30	40	50	60
a579-1.pep	MDFKQFDFLHLISAS	GWEHLAEKA	Wafglnlaaa	LLIFLVGKWA	AKRIVAVMRA	AMTRAQ
	_ 11411111111111			111111111	11111111111	11111
m579-1	MDFKQFDFLHLISVS					_
	10	20	30	40	50	60
	70	80	90	100	110	120
a579-1.pep	VDATLISFLCNVANI	GLLILVIIA	ALGRLGVSTT		_	LSNFAA
			111111111			11111
m579-1	VDATLISFLCNVANI				_	
	70	80	90	100	110	120
	130	140	150	160	170	180
a579-1. pe p	GALIILFRPFKVGDE	TRVGGFEGY	VREIKMVQTS	LRTTDNEEVV	LPNSVVMGNS	IVNRST
					111111111	11111
m579-1	GALIILFRPFKVGDE					
	130	140	150	160	170	180
		000				
- 530 1	190	200	210	220	230	240
a579-1.pep	LPLCRAQVIVGVDYN					IEITLW
570 1						
m579-1	LPLCRAQVIVGVDYN					
	190	200	210	220	230	240
	250	260	270	200		
2570_1 mam				280		
a579-1.pep	AWANEADRWTLQCDI	WEGAARNPK	VANTUTAF. BÖ	KDIHIINSX		

```
m579-1
            AWANEADRWTLQCDLNEQVVENLRKVNINIPFPQRDIHIINSX
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1773>:
g580.seq
         atggattcgc ccaaggtcgg gtgcgggtgg atggttttgc cgatgtctgc
     51
         cgcgtcgcag cccatttcga tggcaaggca gacttcgccg atcatgtcgc
         caccettegg acceacaate ceecegeega teateeggee egttteggea
     101
     151 togaaaatca gottggtaaa googttgtog caaccgttgg caatcgcacg
     201 accggaagcc gcccatggga agttggcttt ggtaattttg cggcctgatg
     251 ctttggcaga caattcggtt tcaccgaccc atgccacttc gggggaagtg
     301 tag
This corresponds to the amino acid sequence <SEQ ID 1774; ORF 580.ng>:
g580.pep..
      1
         MDSPKVGCGW MVLPMSAASQ PISMARQTSP IMSPPFGPTM PPPMMRPVSA
     51
         SKISLVKPLS QPLAIARPEA AHGKLALVIL RPDALADNSV SPTHATSGEV
    101
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1775>:
m580.seq.
      1 ATGGATTCGC CCAAGGTCGG GTGCGGGTGG ATGGTTTTGC CGATGTCTGC
     51
         CGCGTCGCAG CCCATTTCGA TGGCAAGGCA GACTTCGCCG ATCATATCGC
    101 CACCGTTCGG ACCGACAATG CCGCCGCCGA TGATGCGGCC GGTTTCGGCA
    151 TCAAAAATCA GCTTGGTAAA GCCGTTGTCG CAACCGTTGG CAATCGCACG
        GCCGGAAGCC GCCCACGGGA AGTTGGCTTT GGTGATTTTG CGGCCGGAGG
    201
    251 CTTTGGCGGA CAGTTCGGTT TCGCCCACCC ACGCCACTTC GGGGGAAGTG
This corresponds to the amino acid sequence <SEQ ID 1776; ORF 580>:
      1 MDSPKVGCGW MVLPMSAASQ PISMARQTSP IISPPFGPTM PPPMMRPVSA
     51
        SKISLVKPLS QPLAIARPEA AHGKLALVIL RPEALADSSV SPTHATSGEV
m580/g580
          97.0% identity in 100 aa overlap
                   10
                            20
                                     30
                                              40
           MDSPKVGCGWMVLPMSAASQPISMARQTSPIISPPFGPTMPPPMMRPVSASKISLVKPLS
m580.pep
            MDSPKVGCGWMVLPMSAASQPISMARQTSPIMSPPFGPTMPPPMMRPVSASKISLVKPLS
q580
                   10
                            20
                                     30
                                              40
                                                       50
                            80
                                     90
m580.pep
           QPLAIARPEAAHGKLALVILRPEALADSSVSPTHATSGEVX
            QPLAIARPEAAHGKLALVILRPDALADNSVSPTHATSGEVX
q580
                   70
                            80
                                     90
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1777>:
     a580.seq
            1
               ATGGATTCGC CCAAGGTCGG GTGCGGGTGG ATGGTTTTGC CGATGTCTGC
               CGCGTCGCAG CCCATTTCGA TGGCAAGGCA GACTTCGCCG ATCATGTCGC
           51
          101
               CACCGTTCGG ACCGACAATG CCGCCGCCGA TGATGCGGCC GGTTTCAGCA
               TCAAAAATCA GCTTGGTGAA ACCATTGTCG CAACCGTTGG CAATCGCACG
               GCCGGAAGCA GCCCATGGGA AGTTGGCTTT GGTGATTTTG CGGCCGGAGG
          251
               CTTTGGCAGA CAATTCGGTT TCGCCCACCC ATGCCACTTC AGGAGAAGTG
          301
               TAA
```

This corresponds to the amino acid sequence <SEQ ID 1778; ORF 580.a>:

a580.pep

1 MDSPKVGCGW MVLPMSAASQ PISMARQTSP IMSPPFGPTM PPPMMRPVSA

51 SKISLVKPLS OPLAIARPEA AHGKLALVIL RPEALADNSV SPTHATSGEV

101 98.0% identity in 100 aa overlap m580/a580 20 30 40 MDSPKVGCGWMVLPMSAASOPISMARQTSPIISPPFGPTMPPPMMRPVSASKISLVKPLS m580.pep MDSPKVGCGWMVLPMSAASQPISMARQTSPIMSPPFGPTMPPPMMRPVSASKISLVKPLS a580 70 80 90 100 **QPLAIARPEAAHGKLALVILRPEALADSSVSPTHATSGEVX** m580.pep a580 **QPLAIARPEAAHGKLALVILRPEALADNSVSPTHATSGEVX** 80 90 The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1779>: g581.seq. atgcacttcg cccagcttgt gggtcaaacc ggtatagaac aaaatacgtt ctgtcgtcgt ggttttaccc gcatcgatat gggcggaaat accgatgttg 51 101 cggtacaggc tgatcggggt cttacgagcc attttattag cctttcaaaa 151 ttagaaacgg aagtgagaga atgctttgtt ggcttcagcc atacggtgta 201 cttcttcacg ttttttcaac gcaccgccac ggccttcgga cgcatcaatc aactcgcctg ccaaacgcag atccatggat ttctcaccac gtttgcgggc 251 301 cgcgtcgcga acccaacgca ttgccaaagc cagacggcgt ga This corresponds to the amino acid sequence <SEQ ID 1780; ORF 581.ng>: g581.pep. MHFAOLVGQT GIEQNTFCRR GFTRIDMGGN TDVAVQADRG LTSHFISLSK 1 LETEVRECFV GFSHTVYFFT FFQRTATAFG RINQLACQTQ IHGFLTTFAG 51 RVANPTHCQS QTA* The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1781>: m581.seq. 1 ATGCACTTCG CCCAGCTTGT GGGTCAAACC GGTATAGAAC AAAATACGTT CTGTCGTCGT GGTTTTACCC GCGTCAATAT GGGCGGAAAT ACCGATGTTA 51 101 CGGTACAGGC TGATCGGGGT CTTACGAGCC ATTTTATTAG CCTTTCAAAA 151 TTAGAAACGG AAGTGAGAGA ATGCTTTGTT GGCTTCAGCC ATACGGTGTA CTTCTTCACG TTTTTTCAAC GCACCGCCAC GGCCTTCGGA CGCATCAATC 201 251 AATTCGCCTG CCAAACGCAG GTCCATGGAT TTCTCACCAC GTTTGCGGGC 301 CGCATCGCGA ACCCAGCGCA TTGCCAAAGC CAAACGGCGT GA 1 MHFAQLVGQT GIEQNTFCRR GFTRVNMGGN TDVTVQADRG LTSHFISLSK 51 LETEVRECFV GFSHTVYFFT FFQRTATAFG RINQFACQTQ VHGFLTTFAG 101 RIANPAHCQS QTA* m581 / g581 93.8% identity in 113 aa overlap

This corresponds to the amino acid sequence <SEQ ID 1782; ORF 581>: m581.pep.

70

20 30 40 10 50 $\verb|MHFAQLVGQTGIEQNTFCRRGFTRVNMGGNTDVTVQADRGLTSHFISLSKLETEVRECFV|$ m581.pep MHFAQLVGQTGIEQNTFCRRGFTRIDMGGNTDVAVQADRGLTSHFISLSKLETEVRECFV a581 10 20 30 40 50 90 70 80 100 110 GFSHTVYFFTFFQRTATAFGRINQFACQTQVHGFLTTFAGRIANPAHCQSQTAX m581.pep GFSHTVYFFTFFQRTATAFGRINQLACQTQIHGFLTTFAGRVANPTHCQSQTAX g581

80

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1783>:

90

100

```
a581.seq
             ATGCACTTCG CCCAGCTTGT GGGTCAAACC GGTATAGAAC AAAATACGTT
           1.
              CTGTCGTCGT GGTTTTACCC GCATCGATAT GGGCGGAAAT ACCGATGTTA
          51
              CGGTACAGGC TGATCGGGGT CTTACGAGCC ATTTTATTAG CCTTTCAAAA
         101
              TTAGAAACGG AAGTGAGAGA ATGCTTTGTT GGCTTCAGCC ATACGGTGTA
         151
             CTTCTTCACG TTTTTTCAAC GCACCGCCAC GGCCTTCGGA CGCATCAATC
             AATTCGCCTG CCAAACGCAG GTCCATGGAT TTCTCACCAC GTTTGCGGGC
             CGCATCGCGA ACCCAGCGCA TTGCCAAAGC CAAACGGCGT GA
This corresponds to the amino acid sequence <SEQ ID 1784; ORF 581.a>:
    a581.pep
           1
              MHFAQLVGOT GIEONTFCRR GFTRIDMGGN TDVTVOADRG LTSHFISLSK
          51
             LETEVRECFV GFSHTVYFFT FFQRTATAFG RINQFACQTQ VHGFLTTFAG
             RINPAHCOS OTA*
         101
                98.2% identity in 113 aa overlap
    m581/a581
                                                   40
                                                            50
                MHFAQLVGQTGIEQNTFCRRGFTRVNMGGNTDVTVQADRGLTSHFISLSKLETEVRECFV
    m581.pep
                a581
                MHFAQLVGQTGIEQNTFCRRGFTRIDMGGNTDVTVQADRGLTSHFISLSKLETEVRECFV
                                 20
                                          30
                                                   40
                                                            50
                        70
                                 80
                                          90
                                                  100
                GFSHTVYFFTFFQRTATAFGRINQFACQTQVHGFLTTFAGRIANPAHCQSQTAX
    m581.pep
                a581
                GFSHTVYFFTFFQRTATAFGRINQFACQTQVHGFLTTFAGRIANPAHCQSQTAX
                                 80
                                          90
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1785>: g582.seq..

```
atgcgctata ttcttttgac aggactgttg ccgacggcat ccgcttttgg
  1
  51
     agagaccgcg ctgcaatgcg ccgctttgac ggacaatgtt acgcgtttgg
 101
     151 gaagggcagg agtcgaaagc cgtactcaat ctgacggaaa ccgtccgcag
 201
     cagcttggat aagggcgagg cggtcattgt tgttgaaaaa ggcggggatg
 251
     cgcttcctgc cgacagtgcg ggcgaaaccg ccgatatcta tacgcctttg
 301
     agcctgatgt acgacttgga caaaaacgat ttgcgcgggc tgttgggcgt
 351
     acgcgaacac aatccgatgt accttatgcc gttttggtat aacaattcgc
     ccaactatgc cccgagttcg ccgacgcgcg gtacgactgt acaggaaaaa
 401
 451
     tteggacage agaaacgtge ggaaaccaaa ttgcaggttt egttcaaaag
 501
     caaaattgcc gaaaatttgt ttaaaacccg cgcggatctg tggttcggct
 551
     acacccaaag atccgattgg cagatttaca accaaggcag gaaatccgcg
 601
     ccgttccgca atacggatta caaacctgaa attttcctga cccagcctgt
     gaaggcggat ttgccgttcg gcggcaggct gcgtatgctc ggtgcgggtt
 651
 701
     ttgtccacca gtccaacgga cagagccgtc ccgaatcgcg ttcgtggaac
     aggatttatg ccatggcagg catggaatgg ggcaaattga cggtgattcc
 751
 801
     gcgcgtgtgg gtgcgtgcgt tcgatcagag cggcgataaa aacgacaatc
 851
     ccgatattgc cgactatatg gggtatggcg acgtgaaget gcagtaccgc
 901
     ctgaacgaca ggcagaatgt gtattccgta ttgcgctaca accccaaaac
951
     gggctacggc gcgattgaag ccgcctacac gtttccgatt aagggcaaac
     tcaaaggcgt ggtacgcgga ttccacggtt acggcgagag cctgatcgac
1051
     tacaaccaca agcagaacgg tatcggtatc gggttgatgt tcaacgactg
1101
     ggacggcatc tga
```

This corresponds to the amino acid sequence <SEQ ID 1786; ORF 582.ng>: g582.pep ...

```
1 MRYILLTGLL PTASAFGETA LQCAALTDNV TRLACYDRIF AAQLPSSAGQ
51 EGQESKAVLN LTETVRSSLD KGEAVIVVEK GGDALPADSA GETADIYTPL
101 SLMYDLDKND LRGLLGVREH NPMYLMPFWY NNSPNYAPSS PTRGTTVQEK
151 FGQQKRAETK LQVSFKSKIA ENLFKTADL WFGYTQRSDW QIYNQGRKSA
201 PFRNTDYKPE IFLTQPVKAD LPFGGRLRML GAGFVHQSNG QSRPESRSWN
251 RIYAMAGMEW GKLTVIPRVW VRAFDQSGDK NDNPDIADYM GYGDVKLQYR
301 LNDRQNVYSV LRYNPKTGYG AIEAAYTFPI KGKLKGVVRG FHGYGESLID
351 YNHKQNGIGI GLMFNDWDGI *
```

BNSDOCID: <WO___9957280A2_I_>

....


```
LNDRQNVYSVLRYNPKTGYGAIEAAYTFPIKGKLKGVVRGFHGYGESLIDYNHKQNGIGI
m582.pep
           LNDRONVYSVLRYNPKTGYGAIEAAYTFPIKGKLKGVVRGFHGYGESLIDYNHKONGIGI
a582
                 310
                         320
                                 330
                                          340
                                                  350
                 370
           GLMFNDLDGIX
m582.pep
           111111 1111
g582
           GLMFNDWDGIX
                370
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1789>:
     a582.seq
              ATGCGCTATA TTCTTTTGAC AGGACTGTTG CCGATGGCAT CCGCTTTTGG
              AGAGACCGCG CTGCAATGCG CCGCTTTGAC GGACAATGTT ACGCGTTTGG
          51
         101
              GAAGGGCAGG AGTCGAAAGC CGTACTCAAT CTGACGGAAA CCGTCCGCAG
         151
              CAGCCTGGAT AAGGGCGAGG CGGTCATTGT TGTTGAAAAA GGCGGGGATG
         201
              CGCTTCCTGC CGACAGTGCG GGCGAAACCG CCGACATCTA TACGCCTTTG
         251
         301
              AGCCTGATGT ACGACTTGGA CAAAAACGAT TTGCGCGGGC TGTTGGGCGT
              ACGCGAACAC AATCCGATGT ACCTTATGCC GCTCTGGTAC AACAATTCGC
         351
         401
              CCAACTATGC CCCGGGTTCG CCGACGCGCG GTACGACTGT ACAGGAAAAA
         451
              TTCGGACAGC AGAAACGTGC GGAAACCAAA TTGCAGGTTT CGTTCAAAAG
              CAAAATTGCC GAAGATTTGT TTAAAACCCG CGCGGATCTG TGGTTCGGCT
         501
         551
              ACACCCAAAG ATCCGATTGG CAGATTTACA ACCAAGGCAG GAAATCCGCG
         601
              CCGTTCCGCA ATACGGATTA CAAACCTGAA ATTTTCCTGA CCCAGCCTGT
         651
              GAAGGCGGAT TTGCCGTTCG GCGGCAGGCT GCGTATGCTC GGTGCGGGTT
         701
              TTGTCCACCA GTCCAACGGA CAGAGCCGTC CCGAATCGCG TTCGTGGAAC
         751
              AGGATTTACG CCATGGCAGG CATGGAATGG GGCAAATTGA CGGTGATTCC
              GCGCGTGTGG GTGCGTGCGT TCGATCAGAG CGGCGATAAA AACGACAATC
              CCGATATTGC CGACTATATG GGGTATGGCG ACGTGAAGCT GCAGTACCGC
         851
         901
              CTGAACGACA GGCAGAATGT GTATTCCGTA TTGCGCTACA ATCCCAAAAC
         951
              GGGCTACGGC GCGATTGAAG CCGCCTACAC GTTTCCGATT AAGGGCAAAC
        1001
              TCAAAGGCGT GGTACGCGGA TTCCACGGTT ACGGCGAGAG CCTGATCGAC
        1051
              TACAACCACA AGCAGAACGG TATCGGTATC GGGTTGATGT TCAACGACTT
        1101
              GGACGGCATC TGA
                                                                          14.
This corresponds to the amino acid sequence <SEQ ID 1790; ORF 582.a>:
     a582.pep
           1
              MRYILLTGLL PMASAFGETA LQCAALTDNV TRLACYDRIF AAQLPSSAGQ
          51
              EGQESKAVLN LTETVRSSLD KGEAVIVVEK GGDALPADSA GETADIYTPL
              SLMYDLDKND LRGLLGVREH NPMYLMPLWY NNSPNYAPGS PTRGTTVQEK
         101
         151
              FGQQKRAETK LQVSFKSKIA EDLFKTRADL WFGYTQRSDW QIYNQGRKSA
              PFRNTDYKPE IFLTQPVKAD LPFGGRLRML GAGFVHQSNG QSRPESRSWN
         201
         251
              RIYAMAGMEW GKLTVIPRVW VRAFDQSGDK NDNPDIADYM GYGDVKLOYR
         301
              LNDRQNVYSV LRYNPKTGYG AIEAAYTFPI KGKLKGVVRG FHGYGESLID
         351
              YNHKQNGIGI GLMFNDLDGI
    m582/a582
                 100.0% identity in 370 aa overlap
                        10
                                  20
                                           30
                 MRYILLTGLLPMASAFGETALQCAALTDNVTRLACYDRIFAAQLPSSAGQEGQESKAVLN
    m582.pep
                 a582
                 MRYILLTGLLPMASAFGETALQCAALTDNVTRLACYDRIFAAQLPSSAGQEGQESKAVLN
                        10
                                  20
                                           30
                                                     40
                                                              50
                                                                        60
                                  80
                                           90
                                                    100
    m582.pep
                 LTETVRSSLDKGEAVIVVEKGGDALPADSAGETADIYTPLSLMYDLDKNDLRGLLGVREH
```

LTETVRSSLDKGEAVIVVEKGGDALPADSAGETADIYTPLSLMYDLDKNDLRGLLGVREH

100

160

110

170

120

180

90

150

BNSDOCID: <WO___9957280A2_I_>

a582

70

130

80

140

m582.pep	NPMYLMPLWYNNSPN	YAPGSPTRGT	TVQEKFGQQKI			
a582	NPMYLMPLWYNNSPN	YAPGSPTRGT				
	130	140	150	160	170	180
m582.pep	190 WFGYTQRSDWQIYNQ	200	210	220	230	240
mooz.pep	M.G.1.0V2DMO11MO	SKASAPERNI. IIIIIIIII	DIKPETELTO			
a582	WFGYTQRSDWQIYNQ	GRKSAPFRNT		, , , , , , , , , , ,		III III
	190	200	210	220	230	240
			210	220	230	240
	250	260	270	280	290	300
m582.pep	QSRPESRSWNRIYAM	GMEWGKLTV:	IPRVWVRAFDO	SGDKNDNPDI	ADYMGYGDV	KLOYR
			[111111111	THILLIAM	11111
a582	QSRPESRSWNRIYAMA	AGMEWGKLTV	[PRVWVRAFDQ	SGDKNDNPDI	ADYMGYGDV	KLQYR
	250	260	270	280	290	300
5 00	310	320	330	340	350	360
m582.pep	LNDRQNVYSVLRYNPK	TGYGAIEAAY	TFPIKGKLKG	VVRGFHGYGE	SLIDYNHKQ	NGIGI
a582			111111111	111111111	11111111	11111
a302	LNDRQNVYSVLRYNPK 310	320				
	310	320	330	340	350	360
	370					
m582.pep	GLMFNDLDGIX					
a582	GLMFNDLDGIX					
	370					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1791>: g583.seq..

```
1 atgataattg accaaagcca aatatttacc catcttgcct tctgtgcctt
51 ttgcgggatt ggagccgtaa ctgccggcaa tcgactgcat aatcggatgt
101 ataatgccgc cgccgcgcg ggtattggaa ggggtaacgg gagccagcag
151 cagttcggaa agagcgagac tgtaaccgat gcccagcgtt tttcttccaa
201 aaaccggcgat aaaccaaatat ccgatacgca tccccagccc tgttttgagc
251 aaaccgcgcg aaatcataac tgcgatggca atcagccaaa tcaaccggatt
301 ggcgaacgca ctcaacgcat cgctcatcgc cgcgcccggt ttgtcggcgg
351 ttacgccggt tactgcgac aacccgacgg caataatcga cagcgcgcc
401 aacggcataa ccttgccgat aatggcggca atcaaccga caaacatagc
451 cagcaggtc caagcctgag gcttgaccc gtcggtacg ggcagtgcca
501 aaaccagggc gcacaatact gcggcaatgg cgaggggtat cggtttgaaa
551 cccaatttca tcatattgac ctccgtaaaa aagaccgtcc cgaaaaatcg
601 gaaaaataa
```

This corresponds to the amino acid sequence <SEQ ID 1792; ORF 583.ng>: g583.pep..

- 1 MIIDQSQIFT HLAFCAFCGI GAVTAGNRLH NRMYNAAAAR GIGRGNGSQQ
 51 QFGKSETVTD AQRFSSKNGD KQISDTHPQP CFEQTARNHN CDGNQPNQRI
 101 GERTQRIAHR RARFVGGYAG YCDQPDGNNR QRAQRHNLAD NGGNHTDKHS
 151 QQRPSLRLDP VGYGQCQNQG AQYCGNGEGY RFETQFHHID LRKKDRPEKS
- The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1793>: m583.seq..

1	ATGATAGTTG	ACCAAAGCCA	AATATTTACC	CATCTTGCCT	TCTGTGCCTT
51	TTGCGGGATT	GGAGCCGTAA	CTGCCGGCAA	TCGACTGCAT	AATCGGATGT
101	ATAATGCCGC	CGCCGCGCGC	GGTATTGGAA	GGGGTAACGG	GAGCCAGCAG
151	CAGTTCGGAA	AGAGCGAGAC	TGTAACCGAT	GCCCAGCGTT	TTTCTTCCAA
201		AAACAAATAT			
251	AAACCGCGCG	AAATCATAAC	TGCGATGGCA	ATCAGCCAAA	TCAACGGATT
301	GGCGAACGCA	CTCAACGCAT	CGCTCATCGC	CGCGCCCGGT	TTGTCGGCGG
351		TACTGCGACC			
401	AACGGCATGG	CCTTGCCGAT	AATGGCGGCA	ATCACACCGA	CAAACATGGC
451	CAGCAGCGTC	CAAGCCTGAG	GCTTGACCCC	GTCGGGTACG	GGCAGTGCCA
501		GCACAATACT			

```
CCCAATTTCA TCATATTGAC CTCCGTAAAA AAGACCGTCC CGAAAAATCG
     601
         GAAAAATAA
This corresponds to the amino acid sequence <SEQ ID 1794; ORF 583>:
m583.pep.
         MIVDOSOIFT HLAFCAFCGI GAVTAGNRLH NRMYNAAAAR GIGRGNGSOO
      1
     51
         QFGKSETVTD AQRFSSKNGD KQISDTHPQP CFEQTARNHN CDGNQPNQRI
    101
         GERTQRIAHR RARFVGGYAG YCDQPDGNNR QRAQRHGLAD NGGNHTDKHG
         QQRPSLRLDP VGYGQCQNQG AQYCGNGEGY RFETQFHHID LRKKDRPEKS
    151
m583 / g583
             98.5% identity in 202 aa overlap
                           20
                                    30
                                             40
                                                     50
m583.pep
           MIVDQSQIFTHLAFCAFCGIGAVTAGNRLHNRMYNAAAARGIGRGNGSQQOFGKSETVTD
           MIIDQSQIFTHLAFCAFCGIGAVTAGNRLHNRMYNAAAARGIGRGNGSQQQFGKSETVTD
g583
                           20
                                    30
                                             40
                                                     50
                  70
                           80
                                    90
                                            100
                                                    110
           AQRFSSKNGDKQISDTHPQPCFEQTARNHNCDGNQPNQRIGERTQRIAHRRARFVGGYAG
m583.pep
           AQRFSSKNGDKQISDTHPQPCFEQTARNHNCDGNQPNQRIGERTQRIAHRRARFVGGYAG
q583
                  70
                           80
                                    90
                                            100
                                                    110
                                   150
                                            160
                 130
                          140
                                                    170
m583.pep
           YCDQPDGNNRQRAQRHGLADNGGNHTDKHGQQRPSLRLDPVGYGQCQNQGAQYCGNGEGY
           YCDQPDGNNRQRAQRHNLADNGGNHTDKHSQQRPSLRLDPVGYGQCQNQGAQYCGNGEGY
g583
                 130
                          140
                                   150
                                            160
                                                    170
                 190
                          200
m583.pep
           RFETQFHHIDLRKKDRPEKSEKX
           q583
           RFETQFHHIDLRKKDRPEKSEKX
                 190
                          200
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1795>:
     a583.seg
            1
               ATGATAGTTG ACCAAAGCCA AATATTTACC CATCTTGCCT TCTGTGCCTT
               TTGCGGGATT GGAGCCGTAA CTGCCGGCAA TCGACTGCAT AATCGGATGT
           51
          101
               ATAATGCCGC CGCCGCGCG GGTATTGGAA GGGGTAACGG GAGCCAGCAG
               CAGTTCGGAA AGAGCGAGAC TGTAACCGAT GCCCAGCGTT TTTCTTCCAA
          151
          201
               AAACGGCGAT AAACAAATAT CCGATACGCA TCCCCAGCCC TGTTTTGAGC
               AAACCGCGCG AAATCATAAC TGCGATGGCA ATCAGCCAAA TCAACGGATT
          251
               GGCGAACGCA CTCAACGCAT CGCTCATCGC CGCACCCGGT TTGTCGGCGG
          301
               TTACGCCGGT TACTGCGACC AACCCGACGG CAATAATCGA CAGCGCACCC
          351
          401
              AACGGCATGG CCTTGCCGAT AATGGCGGCA ATCACACCGA TAAACATGGC
          451
               CAGCAGCGTC CAAGCCTGAG GCTTGACCCC GTCGGGTACG GGCAGTGCCA
          501
               AAACCAAGGC GCACAATACT GCGGCAATGG CGAGGGGTAT CGGTTTGAAA
          551
               CCCAATTTCA TCATATTGAC CTCCGTAAAA AAGACCGTCC CGAAAAATCG
              GAAAAATAA
          601
This corresponds to the amino acid sequence <SEQ ID 1796; ORF 583.a>:
     a583.pep
            1
               MIVDQSQIFT HLAFCAFCGI GAVTAGNRLH NRMYNAAAAR GIGRGNGSQO
           51
               QFGKSETVTD AQRFSSKNGD KQISDTHPQP CFEQTARNHN CDGNQPNQRI
               GERTQRIAHR RTRFVGGYAG YCDQPDGNNR QRTQRHGLAD NGGNHTDKHG
          101
               QQRPSLRLDP VGYGQCQNQG AQYCGNGEGY RFETQFHHID LRKKDRPEKS
          151
          201
              EK*
```

99.0% identity in 202 aa overlap

20

30

MIVDQSQIFTHLAFCAFCGIGAVTAGNRLHNRMYNAAAARGIGRGNGSQQQFGKSETVTD

40

50

m583/a583

m583.pep

a583	MIVDQSQIFTHLAFO	AFCGIGAVI	TAGNRLHNRMY	NAAAARGIGF	RGNGSQQQFG	KSETVTD
	10	20	30	40	50	60
	70	80	90	100	110	120
m583.pep	AQRFSSKNGDKQISD	THPQPCFEC	TARNHNCDGN	QPNQRIGER 1	QRIAHRRAR!	FVGGYAG
		11111111	111111111	111111111	1111111:1	
a583	AQRFSSKNGDKQISD	THPQPCFEC	TARNHNCDGN	QPNQRIGERT	QRIAHRRTR	TVGGYAG
	70	80	90	100	110	120
	120	1.40				
	130	140	150	160	170	180
m583.pep	YCDQPDGNNRQRAQR	HGLADNGGN	IHTDKHGQQRP:	SLRLDPVGYG	GQCQNQGAQY(GNGEGY
	11111111111111111	11111111		1111111111	11111111	
a583	YCDQPDGNNRQRTQR	HGLADNGGN	HTDKHGQQRP:	SLRLDPVGYG	QCQNQGAQY	CGNGEGY
	130	140	150	160	170	180
	190	200				
m583.pep	RFETOFHHIDLRKKD					
					-	
a583	RFETOFHHIDLRKKD	RPEKSEKX				
	190	200				

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1797>: g584.seq..

```
1 atgctgcgtt ctattttggc ggcttccctg ctggcggtat cttttccggc
 51 ggcggctgag gcattgaatt acaatattgt cgaattttcc gaatcggcgg
101
     gtatcgaggt ggctcaggat acaatgtccg cgcgtttcca ggtggcggcq
151 gaaggacggg acaaaaatgc cgtcaatgcc gagtttgtta aaaaattcaa
201 caatttcacc agaaaatcga aaaatggtag ctttaaaacc gaattggtat
251
     cgcgcagtgc gatgccgcgc tatcaatata ccaacggcag acgcattcaa
301 acaggctggg aggagcgtgc ggaatttaag gcggagggca gggattttga
351 tgctttaaac cgttttattg ctgatgttca gacggatgct tcgcttgaag
401 ataccgattt cagcgtgtcg cgcgaacgcc gaaacgaggt catcgatcag
451 gtcagcaagg atgccgtttt gcgtttcaag gcgcgtgccg aaaaactggc
501 gggcgttctg ggtgcgtccg gttataaaat cgtcaaattg aattttgggc
551
    aaatcggcag ccatattgcg ggcgatgggg ctgttcgggc aaaaatgctg
601 cgcgcgatgc cgatggcggc aagcgtcaat atgaagggta cggattcagc
651 cgcaccgggt gtggaggaaa tcagcatcag catcaatggg acggttcagt
701 tctaa
```

This corresponds to the amino acid sequence <SEQ ID 1798; ORF 584.ng>: g584.pep Length:..

```
1 MLRSILAASL LAVSFPAAAE ALNYNIVEFS ESAGIEVAQD TMSARFQVAA
51 EGRDKNAVNA EFVKKFNNFT RKSKNGSFKT ELVSRSAMPR YQYTNGRRIQ
101 TGWEERAEFK AEGRDFDALN RFIADVQTDA SLEDTDFSVS RERRNEVIDQ
151 VSKDAVLRFK ARAEKLAGVL GASGYKIVKL NFGQIGSHIA GDGAVRAKML
201 RAMPMAASVN MKGTDSAAPG VEEISISING TVQF*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1799>: m584.seq..

```
1 ATGTTGCGTC TTGTTTTGGC GGCTTCGCTG TCGGCGGTAT CTTTTCCGGC
 51 AGCGGCTGAA GCATTGAATT ACAATATTGT CGAATTTTCC GAATCGGCGG
101 GTGTCGAGGT GGCTCAGGAT ACAATGTCCG CACGTTTCCA AGTGACGGCG
151 GAAGGACGGG ACAAAAATGC CGTCAATGCT GAGTTTGTTA AAAAATTCAA
201 CAAGTTCATC AGAAAATCGA AAAATGGTAG CTTTAAAACC GAATTGGTAT
251 CGCGCAGTGC GATGCCGCGC TATCAATATA CCAACGGCAG ACGCATTCAA
301 ACAGGCTGGG AGGAGCGTGC GGAATTTAAG GTCGAAGGTA GAGATTTTGA
     TGAGTTAAAC CGTTTTATTG CCGATATTCA AGCAGATGCC GCGTTGGmAT
401 ATACGGATTT CCATGTGTCG CGCGAACGCC GCAACGAGGT CATCKATCAG
451 GTCAGCAAGG ATGCCGTTTT GCGTTTCAAG GCGCGTGCCG AAAAGTTGGC
     GGGCGTTTTG GGTGCGTCCG GTTATAAAAT CGTCAAATTG AATTTGGGAC
551 ACATCGGCAG CCATATCGCG GGAGGGGGAG CTGCTCAGGC AAAAATGCTT
601
     CGTGCCATGC CGATGGCGGC AAGCGTCAAT ATGGAGGGTG CGGATTCCGC
651
     CGCGCCTGGT GTGGAGGAAA TCAGCATCAG CGTCAATGGG ACGGTTCAGT
     TCTGA
```

This corresponds to the amino acid sequence <SEQ ID 1800; ORF 584>:

```
m584.pep..
      1 MLRLVLAASL SAVSFPAAAE ALNYNIVEFS ESAGVEVAQD TMSARFQVTA
     51 EGRDKNAVNA EFVKKFNKFI RKSKNGSFKT ELVSRSAMPR YQYTNGRRIQ
    101 TGWEERAEFK VEGRDFDELN RFIADIQADA ALXYTDFHVS RERRNEVIXO
    151 VSKDAVLRFK ARAEKLAGVL GASGYKIVKL NLGHIGSHIA GGGAAQAKML
    201 RAMPMAASVN MEGADSAAPG VEEISISVNG TVQF*
m584 / g584 89.7% identity in 234 aa overlap
                  10
                          20
                                   30
                                           40
                                                   50
m584.pep
           MLRLVLAASLSAVSFPAAAEALNYNIVEFSESAGVEVAQDTMSARFQVTAEGRDKNAVNA
           g584
           MLRSILAASLLAVSFPAAAEALNYNIVEFSESAGIEVAQDTMSARFQVAAEGRDKNAVNA
                          20
                                  30
                                           40
                  70
                          80
                                   90
                                          100
                                                  110
                                                           120
           EFVKKFNKFIRKSKNGSFKTELVSRSAMPRYQYTNGRRIQTGWEERAEFKVEGRDFDELN
m584.pep
           q584
           EFVKKFNNFTRKSKNGSFKTELVSRSAMPRYQYTNGRRIQTGWEERAEFKAEGRDFDALN
                 70
                          80
                                  90
                                          100
                                                  110
                 130
                         140
                                 150
                                          160
                                                  170
m584.pep
           RFIADIQADAALXYTDFHVSRERRNEVIXQVSKDAVLRFKARAEKLAGVLGASGYKIVKL
           RFIADVQTDASLEDTDFSVSRERRNEVIDQVSKDAVLRFKARAEKLAGVLGASGYKIVKL
a584
                         140
                                  150
                 190
                         200
                                 210
                                          220
           NLGHIGSHIAGGGAAQAKMLRAMPMAASVNMEGADSAAPGVEEISISVNGTVOFX
m584.pep
           NFGQIGSHIAGDGAVRAKMLRAMPMAASVNMKGTDSAAPGVEEISISINGTVQFX
9584
                 190
                         200
                                  210
                                          220
                                                  230
The following partial DNA sequence was identified in N. meningitidis <SEO ID 1801>:
     a584.seq
              ATGTTGCGTT CTATTTTGGC GGCTTCCCTG CTG.....
           1
          51
              .....ATTGT CGAATTTTCT GAATCGCCG
         101
              GTGTCGAGGC GGTTCAGGAT ACAATGTCCG CACGTTTCCA AGTGACGGCG
              GAAGGACGGG ACAAAAATGC CGTCAATGCC GAGTTTGTTA AAAAATTCAA
         151
         201
              CAATTTCACC AGAAAATCAA AAAATGGTAG CTTTAAAACC GAATTGGTAT
              CGCGCAGTGC GATGCCGCGC TATCAATATA CCAACGGCAG ACGCATTCAA
         251
              ACAGGTTGGG AGGAGCGTGC GGAATTTAAG GTCGAGGGTA GGAATTTTGA
         301
         351
              TGCGTTGAAC CGTTTTATTG CCGATGTTCA GGCAGATGCC GCGTTGGAAT
              ATACGGATTT CCATGTGTCG CGCGAACGCC GCAACGAGGT CATCGATCAG
         401
              GTCAGCAAGG ATGCCGTTTT GCGTTTCAAG GCGCGTGCCG AAAAGTTGGC
         451
         501
              GGGCGTTTTG GGTGCGTCCG GTTATAAAAT CGTCAAATTG AATTTGGGAC
              ACATCGGCAG CCATATCGCG GGAGGGGGAG CTGCTCAGGC AAAAATGCTT
         551
         601
              CGTGCCATGC CGATGCCGC AAGCGTCAAT ATGGAGGGTG CGGATTCCGC
         651
              CGCGCCTGGT GTGGAGGAAA TCAGCATCAG CGTCAATGGG ACGGTTCAGT
         701
              TCTGA
This corresponds to the amino acid sequence <SEQ ID 1802; ORF 584.a>:
    a584.pep
              MLRSILAASL L.....IVEFS ESAGVEAVQD TMSARFQVTA
              EGRDKNAVNA EFVKKFNNFT RKSKNGSFKT ELVSRSAMPR YQYTNGRRIQ
          51
              TGWEERAEFK VEGRNFDALN RFIADVQADA ALEYTDFHVS RERRNEVIDQ
         101
              VSKDAVLRFK ARAEKLAGVL GASGYKIVKL NLGHIGSHIA GGGAAQAKML
         151
              RAMPMAASVN MEGADSAAPG VEEISISVNG TVQF*
         201
    m584/a584
                 88.9% identity in 234 aa overlap
                                  20
                                            30
                                                     40
    m584.pep
                 MLRLVLAASLSAVSFPAAAEALNYNIVEFSESAGVEVAQDTMSARFQVTAEGRDKNAVNA
                 111:1111
                                         -----IVEFSESAGVEAVQDTMSARFQVTAEGRDKNAVNA
     a584
                 MLRSILAASLL----
                        10
                                               20
                                                         30
                                                                   40
```

BNSDOCID: <WO___9957280A2_I_>

: k

```
70
                                                                                                                           80
                                                                                                                                                                  90
                                                                                                                                                                                                     100
                                                    EFVKKFNKFIRKSKNGSFKTELVSRSAMPRYQYTNGRRIQTGWEERAEFKVEGRDFDELN
 m584.pep
                                                     a584
                                                    EFVKKFNNFTRKSKNGSFKTELVSRSAMPRYQYTNGRRIQTGWEERAEFKVEGRNFDALN
                                                                                                    60
                                                                                                                                          70
                                                                                                                                                                                80
                                                                                                                                                                                                                         90
                                                                                130
                                                                                                                       140
                                                                                                                                                             150
                                                                                                                                                                                                    160
                                                                                                                                                                                                                                            170
                                                                                                                                                                                                                                                                                   180
                                                    RFIADIQADAALXYTDFHVSRERRNEVIXQVSKDAVLRFKARAEKLAGVLGASGYKIVKL
m584.pep
                                                     1888: 1818 | 1 | 188 | 188 | 188 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 18
 a584
                                                   RFIADVQADAALEYTDFHVSRERRNEVIDQVSKDAVLRFKARAEKLAGVLGASGYKIVKL
                                                                                              120
                                                                                                                                     130
                                                                                                                                                                            140
                                                                                                                                                                                                                   150
                                                                                                                                                                                                                                                          160
                                                                              190
                                                                                                                      200
                                                                                                                                                            210
                                                                                                                                                                                                    220
                                                   NLGHIGSHIAGGGAAQAKMLRAMPMAASVNMEGADSAAPGVEEISISVNGTVQFX
m584.pep
                                                    a584
                                                   NLGHIGSHIAGGGAAQAKMLRAMPMAASVNMEGADSAAPGVEEISISVNGTVQFX
                                                                                                                                     190
                                                                                                                                                                            200
                                                                                                                                                                                                                   210
                                                                                                                                                                                                                                                          220
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1803>: g585.seq..

```
1 atgaaactgt tecaacgeat tttegecaca ttttgegegg ttategtetg
 51 cgcaatcttt gtggcgagtt tttctttttg gctggtgcag aacacccttg
101 ccgaaaacca attcaaccaa cgccgcacca tcgaaaccac attgatgggc
151 agcattattt ccgcattcaa gacacggggc gacaacggcg cgcgcgaaat
    cctgaccgaa tggaaaaaca gccccgtctc atccgccgtt tacgtcatac
251
    agggcgacga gaaaaaagac atcttaaacc gctatatcga caattacacc
301
    atagaacgcg cccggctgtt tgccgccaac aacccccatt ccaaccttgt
351 ccgcatcgaa tacgaccgtt tcggcgaaga atacctgttc ttcattaaag
401
    gctgggacaa ccaccaggca caacgcctgc ccagcccgct gtttatcccg
    ggcctgccgc ttgccccgat ttggcacgaa ttcatcatcc tctccttcat
451
501 catcattgtc ggactgctga tggcatatat ccttgccggc aacattgcca
    aacccatcag aatcttaggc aacggcatgg acagggtggc agaacgagaa
601 cttgaagacc gcgtttgcca acaggttcgc gaccgcgacg acgaattggc
    cgatgttgcc atgcaattcg acacaatggt ggaaaaactg gaataa
```

This corresponds to the amino acid sequence <SEQ ID 1804; ORF 585.ng>: g585.pep..

```
MKLFQRIFAT FCAVIVCAIF VASFSFWLVQ NTLAENQFNQ RRTIETTLMG
SIISAFKTRG DNGAREILTE WKNSPVSSAV YVIQGDEKKD ILNRYIDNYT
101 IERARLFAAN NPHSNLVRIE YDRFGEEYLF FIKGWDNHQA QRLPSPLFIP
151 GLPLAPIWHE FIILSFIIIV GLLMAYILAG NIAKPIRILG NGMDRVAERE
201 LEDRVCQQVR DRDDELADVA MQFDTMVEKL E*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1805>: m585.seq..

```
1 ATGAAACTGT TCCAACGCAT TTTCGCCACA TTTTGCGCGG TTATCGTCTG
  51
      TGCAATCTTT GTGGCGAGTT TTTCTTTCTG GCTGGTGCAG AACACCCTTG
      CCGAAAACCA GTTCAACCAA CGCCGCACCA TCGAAACCAC TTTGATGGGC
 101
 151 AGCATCATTT CCGCATTCCG GGCACGCGGG GACGCGGGTG CGCGCGAAAT
 201
      CCTGACGGAA TGGAAAGACA GCCCCGTCTC ATCGGGCGTG TACGTTATAC
      AGGGCGACGA GAAAAAGAT ATCCTGAACC GGTATATCGA CAGCTATACC
 251
 301 ATCGAACGCG CCCGGCTTTT CGCCGCCGGA CACCCGCATT CCAACCTCGT
      CCATATCGAA TACGACCGCT TCGGCGAAGA ATACCTGTTC TTCACCAAAG
 401 ACTGGGACAA ACTCCAAGCC CGCCGCCTGC CCAGCCCCCT GTTGATCCCC
     GGCCTGCCGC TCGCCCCGAT TTGGCACGAA CTCATCATAT TGTCCTTCAT
 451
 501 CATCATCGTC GGACTGCTGA TGGCATATAT CCTCGCCGGC AACATTGCCA
 551 AACCCATCAG AATCTTAGGC AACGGCATGG ACAGGGTGGC AAACGGAGAA
      CTTGAAACCC GTATCTCCCA ACAGGTCGAC GACCGCGACG ACGAATTGTC
 601
 651 CCATCTTGCC ATCCAATTCG ACAAAATGGT GGAAAAACTC GAAAAACTCG
     TTGCCAAAGA ACGCCACCTG CTCCATCACG TCTCCCATGA AATGCGTTCT
 701
     CCCCTTGCGC GCATGCAGGC AATTGTCGGA CTGATTCAGG CGCAGCCCCA
 751
 801 AAAACAGGAG CAATATCTCA AACGGCTGGA AGGCGAACTG ACCCGCATGG
     ATACGCTGGC CGGGGAACTG TTAACCCTGT CCCGTCTCGA AACTTCCAAT
 851
 901 ATGGCTTTGG AAAAAGAAAG CCTGAAACTC CTGCCCTTCC TGGGCAACCT
     GGTAGAAGAC AATCAAAGCA TTGCCCAGAA AAACGGACAA ACGGTTACCC
951
1001 TGTCTGCCGA CGGAAAAATC CCCGAAAACA CAACCATCCT TGCCAACGAA
```

-

```
1051 AGCTACCTGT ACCGCGCCTT CGACAACGTC ATCCGCAACG CCGTCAACTA
1101 CAGTCCCGAA GGCAGCACCA TCCTGATCAA CATCGGACAA GACCACAAAC
1151 ACTGGATAAT CGACGTTACC GACAACGGCC CCGGCGTGGA CGAAATGCAG
1201 CTCCCGCACA TCTTCACCGC TTTCTACCGT GCAGACTCCA GTGCCAACAA
1251 ACCGGAACA GGACTGGGGC TTGCATTGAC CCAACATATT ATTGAACAGC
1301 ACTGCGGCAA AATCATCGCC GAAAACATCA AACCGAACGG TCTGCGGATG
1351 CGCTTTATCC TGCCCAAGAA AAAAACCGGT TCCAAAACAG AAAAAAGTGC
1401 GAACTGA
```

This corresponds to the amino acid sequence <SEQ ID 1806; ORF 585>: m585.pep.

```
MKLFQRIFAT FCAVIVCAIF VASFSFWLVQ NTLAENQFNQ RRTIETTLMG
S1 SIISAFRARG DAGAREILTE WKDSPVSSGV YVIQGDEKKD ILNRYIDSYT
101 IERARLFAAG HPHSNLVHIE YDRFGEEYLF FTKDWDKLQA RRLPSPLLIP
151 GLPLAPIWHE LIILSFIIIV GLLMAYILAG NIAKPIRILG NGMDRVANGE
201 LETRISQQVD DRDDELSHLA IQFDKMVEKL EKLVAKERHL LHHVSHEMRS
251 PLARMQAIVG LIQAQPQKQE QYLKRLEGEL TRMDTLAGEL LTLSRLETSN
301 MALEKESLKL LPFLGNLVED NGSIAQKNGQ TVTLSADGKI PENTTILANE
351 SYLYRAFDNV IRNAVNYSPE GSTILINIGQ DHKHWIIDVT DNGPGVDEMQ
401 LPHIFTAFYR ADSSANKPGT GLGLALTQHI IEQHCGKIIA ENIKPNGLRM
451 RFILPKKKTG SKTEKSAN*
```

m585 / g585 88.3% identity in 231 aa overlap

```
20
                                30
                                        40
                                                50
                                                        60
          {\tt MKLFQRIFATFCAVIVCAIFVASFSFWLVQNTLAENQFNQRRTIETTLMGSIISAFRARG}
m585.pep
          MKLFQRIFATFCAVIVCAIFVASFSFWLVQNTLAENQFNQRRTIETTLMGSIISAFKTRG
g585
                10
                        20
                                30
                                                50
                70
                        80
                                90
                                       100
                                               110
          DAGAREILTEWKDSPVSSGVYVIQGDEKKDILNRYIDSYTIERARLFAAGHPHSNLVHIE
m585.pep
          g585
          DNGAREILTEWKNSPVSSAVYVIQGDEKKDILNRYIDNYTIERARLFAANNPHSNLVRIE
                                90
                                       100
                       140
               130
                               150
                                       160
          YDRFGEEYLFFTKDWDKLQARRLPSPLLIPGLPLAPIWHELIILSFIIIVGLLMAYILAG
m585.pep
          YDRFGEEYLFFIKGWDNHQAQRLPSPLFIPGLPLAPIWHEFIILSFIIIVGLLMAYILAG
g585
               130
                       140
                               150
                                       160
                                               170
                                                       180
               190
                       200
                               210
                                       220
                                               230
                                                       240
m585.pep
          NIAKPIRILGNGMDRVANGELETRISQQVDDRDDELSHLAIQFDKMVEKLEKLVAKERHL
          q585
          NIAKPIRILGNGMDRVAERELEDRVCQQVRDRDDELADVAMQFDTMVEKLEX
               190
                       200
                               210
                                       220
                                               230
                       260
                               270
                                       280
m585.pep
          LHHVSHEMRSPLARMQAIVGLIQAQPQKQEQYLKRLEGELTRMDTLAGELLTLSRLETSN
```

The following partial DNA sequence was identified in *N. meningitidis* <SEQ ID 1807>: a585.seq

oo.seq					
1	ATGAAACTGT	TCCAACGCAT	CTTCGCCACA	TTTTGCGCGG	TTATCGTCTG
51	TGCAATCTTT	GTGGCGAGTT	TTTCTTTCTG	GCTGGTGCAG	AACACCCTTG
101	CCGAAAACCA	GTTCAACCAA	CGCCGCACCA	TCGAAACCAC	TTTGATGGGC
151	AGCATCATTT	CCGCATTCCG	GGCACGCGGG	GACGCGGGTG	CGCGCGAAAT
201	CCTGACGGAA	TGGAAAGACA	GCCCCGTCTC	ATCGGGCGTG	TACGTTATAC
251	AGGGCGACGA	GAAAAAAGAT	ATCCTGCACC	GGTATATCGA	CAGCTACACC
301	ATCGAACGCG	CCCGGCTTTT	CGCCGCCGGA	CACCCGCATT	CCAACCTCGT
351	CCATATCGAA	TACGACCGCT	TCGGCGAAGA	ATACCTGTTC	TTCACCAAAG
401	ACTGGGACAA	ACTCCAAGCC	CGCCGCCTGC	CCAGCCCCCT	GTTGATCCCC
451	GGCCTGCCGC	TCGCCCCGAT	TTGGCACGAA	CTCATCATAT	TGTCCTTCAT
501	CATCATCGTC	GGACTGCTGA	TGGCGTACAT	CCTCGCCGGC	AACATTGCCA
551	AACCCATCAG	AATCTTAGGC	AACGGCATGG	ACAGGGTGGC	AAACGGAGAA
601	CTTGAAACCC	GTATCTCCCA	ACAGGTCGAC	GACCGCGACG	ACGAATTGTC

This corresponds to the amino acid sequence <SEQ ID 1808; ORF 585.a>: a585.pep

•	·PCP					
	1	MKLFQRIFAT	FCAVIVCAIF	VASFSFWLVQ	NTLAENQFNQ	RRTIETTLMG
	51	SIISAFRARG	DAGAREILTE	WKDSPVSSGV	YVIQGDEKKD	ILHRYIDSYT
	101	IERARLFAAG	HPHSNLVHIE	YDRFGEEYLF	FTKDWDKLQA	RRLPSPLLIP
	151	GLPLAPIWHE	LIILSFIIIV	GLLMAYILAG	NIAKPIRILG	NGMDRVANGE
	201	LETRISQQVD	DRDDELSHLA	IQFDKMVEKL	EKLVAKERHL	LHHVSHEMRS
	251	PLARMQAIVG	LIQAQPQKQE	QYLKRLEGEL	TRMDTLAGEL	LTLSRLETSN
	301	MALEKESLKL	LPFLGNLVED	NQSIAQKNGQ	TVTLSADGKI	PENTTILANE
	351	SYLYRAFDNV	IRNAVNYSPE	GSTILINIGQ	DHKHWIIDVT	DNGPGVDEMO
	401	LPHIFTAFYR	ADSSANKPGT	GLGLALTQHI	IEQHCGKIIA	ENIKPNGLRM
	451	RFILPKKKTG				

20

30

40

50

60

m585/a585 99.8% identity in 468 aa overlap

10

m585.pep	MKLFQRIFATFCA	/IVCAIFVASI	SFWLVQNTL	AENQFNQRRT:	TETTLMGSII	SAFRARG
a585		1	<u> </u>			
ases	MKLFQRIFATFCA	/IVCALEVASE	SFWLVQNTL	AENQFNQRRT:		
	10	20	30	40	50	60
	70	80	90	100	7.10	
m585.pep	DAGAREILTEWKDS				110	120
mooo.pcp		1111111111	GDEKKDILM	YIIDSIIIEKA	ARLFAAGHPH	SULVHIE
a585	DAGAREILTEWKDS	PVSSGVYVTC	CDEKKDILH	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	ווווווווו	
	70	80	90	100	110	120
			30	100	110	120
	130	140	150	160	170	180
m585.pep	YDRFGEEYLFFTKD	WDKLQARRLF	SPLLIPGLPI	LAPIWHELIII	SFIIIVGLL	MAYILAG
			111111111		111111111	
a585	YDRFGEEYLFFTKD		SPLLIPGLPI	LAPIWHELIII	SFIIIVGLL	MAYILAG
	130	140	150	160	170	180
F.O.F	190	200	210	220	230	240
m585.pep	NIAKPIRILGNGMD	RVANGELETR	.ISQQVDDRDI	DELSHLAIQFD	KMVEKLEKL	/AKERHL
a585			11111111			
	システス シンファン イエ ぐいへいかつ	DITANCET EEE	T.C.C.C.III.	. -		
a 303	NIAKPIRILGNGMD	RVANGELETR	.ISQQVDDRDD	ELSHLAIQFD	KMVEKLEKL	
2303	NIAKPIRILGNGMD 190	RVANGELETR 200	ISQQVDDRDD 210	ELSHLAIQFD 220	KMVEKLEKLY 230	VAKERHL 240
200	NIAKPIRILGNGMD 190	RVANGELETR 200	ISQQVDDRDI 210	ELSHLAIQFD 220	KMVEKLEKL 230	240
	NIAKPIRILGNGMD 190 250	PRVANGELETR 200 260	.ISQQVDDRDD 210 270	DELSHLAIQFE 220 280	KMVEKLEKL 230 290	240 300
m585.pep	NIAKPIRILGNGME 190 250 LHHVSHEMRSPLAR	PRVANGELETR 200 260 MQAIVGLIQA	.ISQQVDDRDD 210 270 .QPQKQEQYLK	DELSHLAIQFD 220 280 KRLEGELTRMD	KMVEKLEKLV 230 290 TLAGELLTLS	240 300 SRLETSN
	NIAKPIRILGNGME 190 250 LHHVSHEMRSPLAR	PRVANGELETR 200 260 MQAIVGLIQA	ISQQVDDRDD 210 270 QPQKQEQYLK	DELSHLAIQFD 220 280 RLEGELTRMD	KMVEKLEKLV 230 290 TLAGELLTLS	240 300 SRLETSN
m585.pep	NIAKPIRILGNGME 190 250 LHHVSHEMRSPLAR	PRVANGELETR 200 260 MQAIVGLIQA	ISQQVDDRDD 210 270 QPQKQEQYLK	DELSHLAIQFD 220 280 CRLEGELTRMD IKLEGELTRMD	KMVEKLEKLY 230 290 TLAGELLTLS TLAGELLTLS	300 SRLETSN SRLETSN SRLETSN
m585.pep	NIAKPIRILGNGME 190 250 LHHVSHEMRSPLAR LHHVSHEMRSPLAR	PRVANGELETR 200 260 MQAIVGLIQA MQAIVGLIQA	ISQQVDDRDE 210 270 QPQKQEQYLK QPQKQEQYLK	DELSHLAIQFD 220 280 RLEGELTRMD	KMVEKLEKLV 230 290 TLAGELLTLS	240 300 SRLETSN
m585.pep a585	NIAKPIRILGNGME 190 250 LHHVSHEMRSPLAR LHHVSHEMRSPLAR 250 310	PRVANGELETR 200 260 MQAIVGLIQA MQAIVGLIQA 260 320	ISQQVDDRDE 210 270 QPQKQEQYLK IIIIIIIII QPQKQEQYLK 270 330	DELSHLAIQFD 220 280 KRLEGELTRMD KRLEGELTRMD 280 340	KMVEKLEKLY 230 290 TLAGELLTLS 1 TLAGELLTLS 290 350	300 SRLETSN SILILI SRLETSN 300
m585.pep	NIAKPIRILGNGME 190 250 LHHVSHEMRSPLAR LHHVSHEMRSPLAR 250 310 MALEKESLKLLPFL	PRVANGELETR 200 260 MOAIVGLIQA MOAIVGLIQA 260 320 GNLVEDNOSI	ISQQVDDRDE 210 270 QPQKQEQYLK QPQKQEQYLK 270 330 AQKNGOTVTL	DELSHLAIQFD 220 280 CRLEGELTRMD CRLEGELTRMD 280 340 SADGKIPENT	MVEKLEKLY 230 290 TLAGELLTLS 1 TLAGELLTLS 290 350 TILANESYLY	300 SRLETSN SRLETSN 300 360
m585.pep a585 m585.pep	NIAKPIRILGNGME 190 250 LHHVSHEMRSPLAR LHHVSHEMRSPLAR 250 310 MALEKESLKLLPFL	PRVANGELETR 200 260 MOAIVGLIQA MQAIVGLIQA 260 320 GNLVEDNQSI	ISQQVDDRDE 210 270 QPQKQEQYLK QPQKQEQYLK 270 330 AQKNGQTVTL	DELSHLAIQFD 220 280 CRLEGELTRMD CRLEGELTRMD 280 340 SADGKIPENT	MVEKLEKLY 230 290 TLAGELLTLS 1111111111111111111111111111111111	240 300 SRLETSN SRLETSN 300 360 YRAFDNV
m585.pep a585	NIAKPIRILGNGME 190 250 LHHVSHEMRSPLAR LHHVSHEMRSPLAR 250 310	PRVANGELETR 200 260 MOAIVGLIQA MQAIVGLIQA 260 320 GNLVEDNQSI	ISQQVDDRDE 210 270 QPQKQEQYLK QPQKQEQYLK 270 330 AQKNGQTVTL	DELSHLAIQFD 220 280 CRLEGELTRMD CRLEGELTRMD 280 340 SADGKIPENT	MVEKLEKLY 230 290 TLAGELLTLS 1111111111111111111111111111111111	240 300 SRLETSN SRLETSN 300 360 YRAFDNV

	310	320	330	340	350	360
	370	380	390	400	410	420
m585.pep	IRNAVNYSPEGSTIL	INIGQDHKH	WIIDVTDNGP	GVDEMQLPH:	IFTAFYRADS:	SANKPGT
		111111111	1111111111		11111111	
a585	IRNAVNYSPEGSTIL	INIGQDHKH	WIIDVTDNGP	GVDEMQLPH:	FTAFYRADS:	SANKPGT
	370	380	390	400	410	420
	430	440	450	460	469	
m585.pep	GLGLALTQHIIEQHC	GKIIAENIK	PNGLRMRFIL	PKKKTGSKT	EKSANX	
		111111111	1111111111		11111	
a585	GLGLALTQHIIEQHC	GKIIAENIK	PNGLRMRFIL	PKKKTGSKT	EKSANX	
	430	440	450	460		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1809>: g586.seq..

This corresponds to the amino acid sequence <SEQ ID 1810; ORF 586.ng>: g586.pep..

```
1 MAAHLEEQQE LDNFKYFWKT TGKWLFALLI LAALGYLGYT VYQNRAASQN
51 QEAAAVLANI VEKAQNKAPQ SEINAELSKL QQSYPHSISA AQATLMAAAT
101 EFDAQRYDVA EGHLKWVLSN QKDSLIQALA AQRLGVVLLQ QKKYDAALAA
151 LDTPVEADFA PLLMETKGDV YAAQEKSQEA LKNYGQALEK MPQDSVGREL
201 LQMKLDSLK*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1811>: m586.seq

```
1 ATGGCAGCCC ATCTCGAAGA ACACAAGAG TTAGACAACT TTAAATATTT
51 TTGGAAAACC ACGGGCAAAT GGCTGTTTGC CTTGCTGATT TTGGCGGCAC
101 TCGGCTACTT GGGATACACG GTTTACCAAA ACCGTAAAGT TTCCCAAAAT
151 CAGGAAGCGG CGGCGGTGCT GGCAAACATC GTAGAAAAGG CGCAAAGCAA
201 AGCCCCGCAA AGCGAAATCA ATGCCGAATT GACCAAACTC CAACAAAGCT
251 ACCCGCATTC CATTTCCGCC GCCCAAGCCA CACTGATGGC GGCGGCAACC
301 GAATTTGACG CGCAGCGTTA CGATGTTCC GAAGGCCATT TGAAATGGGT
351 GTTGTCCAAC CAAAAAAAAA ACCGTTGATCC GCCTGCTGG GCGCAGCGTC
401 TGGGCGTTGT GTTGTTGCAA CAAAAAAAAT ACGATGCCGC GCTTGCCGCG
451 CTCCGATACGC CGGTTGAAGC GGACTTCCC CCCCTGCTGA TGGAAACCAA
501 AGGCGATGT TATGCCGCAC AGGGAAAAAA CCAAGAAGACC
551 ACGGACAGCC TTTAGAAAAA ATGCCTCAAG ATTCTGCGG TCGCGAATTG
601 GTTCAAATGA AACTTGATTC GCTGAAATAA
```

This corresponds to the amino acid sequence <SEQ ID 1812; ORF 586>: m586.pep

```
1 MAAHLEEQQE LDNFKYFWKT TGKWLFALLI LAALGYLGYT VYQNRKVSQN
51 QEAAAVLANI VEKAQSKAPQ SEINAELTKL QQSYPHSISA AQATLMAAAT
101 EFDAQRYDVA EGHLKWVLSN QKDSLIQALA AQRLGVVLLQ QKKYDAALAA
151 LDTPVEADFA PLLMETKGDV YAAQGKSQEA LKNYGQALEK MPQDSVGREL
201 VQMKLDSLK*
```

m586 / g586 97.1% identity in 209 aa overlap

```
10 20 30 40 50 60 m586.pep MAAHLEEQQELDNFKYFWKTTGKWLFALLILAALGYLGYTVYQNRKVSQNQEAAAVLANI
```


g586	MAAHLEEQQELDN	FKYFWKTTGKW	LFALLILAA	LGYLGYTVYON	RAASONOEA	AAVLANT
	10	20	30	40	50	60
	70	80	90	100	110	120
m586.pep	VEKAQSKAPQSEI	NAELTKLQQSY	PHSISAAQA'	PLMAAATEFDA	QRYDVAEGH:	LKWVLSN
		:	11111111	!	11111111	
g586	VEKAQNKAPQSEI	NAELSKLQQSY	PHSISAAQA:	PLMAAATEFDA	QRYDVAEGH	LKWVLSN
	70	80	90	100	110	120
	130	140	150	160	170	180
m586.pep	QKDSLIQALAAQRI	LGVVLLQQKKYI	DAALAALDTI	VEADFAPLLM	ETKGDVYAA	OGKSOEA
			11111111			11111
g586	QKDSLIQALAAQRI	LGVVLLQQKKYI	DAALAALDTI	VEADFAPLLM	ETKGDVYAAC	DEKSOEA
	130	140	150	160	170	180
	190	200	210			
m586.pep	LKNYGQALEKMPQI	SVGRELVOMKI	LDSLKX			
			11111			
g586	LKNYGQALEKMPQI	SVGRELLOMKI	DSLKX			
_	190	200	210			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1813>:

a586. s eq					`
1	ATGGCAGCCC	ATTTGGAAGA	ACAACAAGAG	TTGGACAACT	TTAAATATTT
51	TTGGAAAACC	ACGGGCAAAT	GGCTGTTTGC	CGTGCTGATT	TTGGCGGCAC
101	TCGGCTACTT	GGGATACACG	GTTTACCAAA	ACCGTGCGGC	TTCCCAAAAT
151	CAGGAAGCGG	CGGCGGTGCT	GGCAAACATC	GTGGAAAAGG	CGCAAAACAA
201	AGCCCCGCAA	AGCGAAATCA	ATGCCGAATT	GGCCAAGCTC	CAACAAAGCT
251	ACCCCCATTC	CATTTCCGCC	GCCCAAGCCA	CGCTGATGGC	GGCAGCAACC
301	GAATTTGACG	CGCAGCGTTA	CGATGTTGCC	GAAGGCCATT	TGAAATGGGT
351	ATTGTCCAAC	CAAAAAGACA	GCCTGATCCA	GGCGTTGGCG	GCGCAGCGTC
401	TGGGCGTTGT	GTTGTTGCAA	CAAAAAAAAT	ACGATGCCGC	GCTTGCCGCA
451	CTCGACACGC	CGGTTGAAGC	GGACTTCGCC	CCCCTGCTGA	TGGAAACCAA
501	AGGCGATGTC	TATGCCGCAC	AGGGAAAAAG	CCAGGAAGCC	TTAAAAAACT
551	ACGGACAGGC	TTTAGAAAAA	ATGCCTCAAG	ATTCTGTCGG	TCGCGAATTG
601	GTTCAAATGA	AACTTGATTC	GCTGAAATAA		

This corresponds to the amino acid sequence <SEO ID 1814; ORF 586 a>.

s corresponds to the annio acid sequence <5EQ ID 1814; ORF 586.a>:						
a586.pep	, , , , , , , , , , , , , , , , , , , ,					
1	MAAHLEEQQE LDNFKYFWKT TGKWLFAVLI LAALGYLGYT VYQNRAASQN					
51	QEAAAVLANI VEKAQNKAPQ SEINAELAKL QQSYPHSISA AQATLMAAAT					
101	EFDAQRYDVA EGHLKWVLSN QKDSLIQALA AQRLGVVLLQ QKKYDAALAA					
151	LDTPVEADFA PLLMETKGDV YAAQGKSQEA LKNYGQALEK MPQDSVGREL					
201	VOMKLDSLK*					
m586/a586	97.6% identity in 209 aa overlap					
	overlap					
	10 20 30 40 50 60					
m586.pep	MAAHLEEQQELDNFKYFWKTTGKWLFALLILAALGYLGYTVYQNRKVSQNQEAAAVLANI	}				
• •						
a586	MAAHLEEQQELDNFKYFWKTTGKWLFAVLILAALGYLGYTVYQNRAASQNQEAAAVLANI					
	10 20 20					
	10 20 30 40 50 60	r				
	70 80 90 100 110 120					
m586.pep	70 80 90 100 110 120 VEKAQSKAPQSEINAELTKLQQSYPHSISAAQATLMAAATEFDAQRYDVAEGHLKWVLSN					
	I	ĺ				
a586	VEKBONKA BOSETNAEL AND COCADANT COLOR TO THE STATE OF THE					
4500	VEKAQNKAPQSEINAELAKLQQSYPHSISAAQATLMAAATEFDAQRYDVAEGHLKWVLSN					
	70 80 90 100 110 120					
	130 140 150 160 170					
m586.pep						
mooo.pep	QKDSLIQALAAQRLGVVLLQQKKYDAALAALDTPVEADFAPLLMETKGDVYAAQGKSQEA	,				
a586						
200	QKDSLIQALAAQRLGVVLLOOKKYDAALAALDTPVFADEA DI I MEMKEDIWA DOGGOOD					

140

QKDSLIQALAAQRLGVVLLQQKKYDAALAALDTPVEADFAPLLMETKGDVYAAQGKSQEA

160

170

150

La la Granda de la Calenta

915

```
190
                        200
          LKNYGQALEKMPQDSVGRELVQMKLDSLKX
m586.pep
          a586
          LKNYGQALEKMPQDSVGRELVQMKLDSLKX
                190
                       200
                               210
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1815>: g587.seq..

```
atgaaacgta tctttttgcc cgccttgccc gccatcctgc ctttatccgc
  1
 51
    ttatgccgac ctgcccttga cgattgaaga cataatgacc gacaagggaa
101
    aatggaaact ggaaacttcc cttacctatc tgaatagcga aaacagccgc
    gccgcacttg ccgcaccggt ttacattcaa accggcgcaa cctcgtttat
201
    ccccattccg accgaaattc aagaaaacgg cagcaatacc qatatqctcq
251 ccggcacgct cggtttgcgc tacggactga ccggcaatac cgacatttac
    ggcagcggca gctatctgtg gcacgaagaa cgcaaactcg acggcaacgg
351 caaaacccgc aacaaacgga tgtccgacat atccgccggc atcagccaca
    ccttccttaa agacggcaaa aaccccgccc taatcagctt tcttgaaagc
    acggtttacg aaaaatcgcg caacaaagcc tcgttaatca aaaaaagggg
501 gctttgcccc ttttataact taaggataaa ttatgaatat taa
```

This corresponds to the amino acid sequence <SEQ ID 1816; ORF 587.ng>:

```
g587.pep.
         MKRIFLPALP AILPLSAYAD LPLTIEDIMT DKGKWKLETS LTYLNSENSR
         AALAAPVYIQ TGATSFIPIP TEIQENGSNT DMLAGTLGLR YGLTGNTDIY
         GSGSYLWHEE RKLDGNGKTR NKRMSDISAG ISHTFLKDGK NPALISFLES
    101
         TVYEKSRNKA SLIKKRGLCP FYNLRINYEY
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1817>:

```
m587.seq..
     1
        ATGAAGCGCA TCTTTTTGCC CGCCTTGCCC GCCATCCTGC CTTTATCCAC
        TTATGCCGAC CTGCCCTTGA CGATTGAAGA CATAATGACC GACAAGGGAA
     51
   101 AATGGAAACT GGAAACTTCC CTTACCTACC TGAACAGCGA AAACAACCGC
    151 GCCGAACTTG CCGCACCGGT TTACATTCAA ACCGGCGCAA CCTCGTTTAT
    201 CCCCATTCCG ACCGAAATCC AAGAAAACGG CAGCAATACC GATATGCTCG
        TCGGCACGCT CGGTTTGCGC TACGGACTGA CCGGGAATAC CGACATTTAC
    301
         GGCAGCGGCA GCTATCTGTG GCACGAAGAA CGCAAACTCG ACGGCAACAG
        CAAAACCCGC AACAAACGGA TGTCCGACGT ATCCCTCGGC ATCAGCCACA
    351
    401 CTTTCCTTAA AGACGACAAA AACCCCGCCC TAATCAGCTT TCTTGAAAGC
    451 ACGGTTTACG AAAAATCGCG CAACAAGCC TCGTCGGGAA AATCCTGGCT
    501 CATCGGCGCC ACCACCTACA AAGCCATAGA TCCGATTGTC CTTTCCCTCA
        CCGCCGCCTA CCGCATCAAC GGCAGCAAAA CCCTTTCAGA CGGCATCCGC
    551
    601 TACAAATCGG GCAACTACCT GCTGCTCAAC CCCAACATCT CATTTGCTGC
```

701 CCGACCGGAC GGACGGCAAA CGGGAATCCT CCAGAAACAC ATCCACCTAC 751 GCCCATTTCG GCGCAGGTTT CGGTTTCACC AAAACCACGG CTTTAAACGC ATCCGCACGT TTCAACGTTT CAGGGCAAAG CAGTTCCGAA CTGAAATTTG 851 GCGTACAGCA TACATTTTAA

651 CAACGACAGA ATCAGCCTGA CCGGAGGCAT CCAATGGCTG GGCAGGCAGC

This corresponds to the amino acid sequence <SEQ ID 1818; ORF 587>:

```
m587.pep..
         MKRIFLPALP AILPLSTYAD LPLTIEDIMT DKGKWKLETS LTYLNSENNR
      51 AELAAPVYIQ TGATSFIPIP TEIQENGSNT DMLVGTLGLR YGLTGNTDIY
     101 GSGSYLWHEE RKLDGNSKTR NKRMSDVSLG ISHTFLKDDK NPALISFLES
         TVYEKSRNKA SSGKSWLIGA TTYKAIDPIV LSLTAAYRIN GSKTLSDGIR
          YKSGNYLLLN PNISFAANDR ISLTGGIQWL GRQPDRTDGK RESSRNTSTY
     251
          AHFGAGFGFT KTTALNASAR FNVSGQSSSE LKFGVQHTF*
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

```
m587 / g587 95.0% identity in 161 aa overlap
                      10
                                20
                                                     40
                                                               50
                                                                          60
```


m587.pep g587	MKRIFLPALPAILPLSTYADLPLTIEDIMTDKGKWKLETSLTYLNSENNRAELAAPVYIQ
	10 20 30 40 50 60
m587.pep	70 80 90 100 110 120 TGATSFIPIPTEIQENGSNTDMLVGTLGLRYGLTGNTDIYGSGSYLWHEERKLDGNSKTR
g58 7	TGATSFIPIPTEIQENGSNTDMLAGTLGLRYGLTGNTDIYGSGSYLWHEERKLDGNGKTR 70 80 90 100 110 120
m587.pep	130 140 150 160 170 180 NKRMSDVSLGISHTFLKDDKNPALISFLESTVYEKSRNKASSGKSWLIGATTYKAIDPIV
g587	NKRMSDISAGISHTFLKDGKNPALISFLESTVYEKSRNKASLIKKRGLCPFYNLRINYEY 130 140 150 160 170 180
m587.pep	190 200 210 220 230 240 LSLTAAYRINGSKTLSDGIRYKSGNYLLLNPNISFAANDRISLTGGIQWLGRQPDRTDGK
g587	x
The following	partial DNA sequence was identified in N. meningitidis <seq 1819="" id="">:</seq>
a587.seq	
1	ATGAAGCGCA TCTTTTTGCC CGCCTTGCCC GCCATCCTGC CTTTATCCGC
51	TTATGCCGAC CTGCCCTTGA CGATTGAAGA CATAATGACC GACAAGGGCA
101 151	AATGGAAACT GGAAACTTCC CTTACCTACC TGAACAGCGA AAACAACCGC
201	GCCGAACTTG CCGCACCGGT TTACATCCAA ACCGGCGCAA CCTCGTTTAT CCCCATTCCG ACCGAAATCC AAGAAAACGG CAGCAATACC GATATGCTCG
251	TTGGCACGCT CGGTTTGCGC TACGGACTGA CCGGGAATACC GACATTTAC
301	GGCAGCGGCA GCTATCTGTG GCACGAAGAA CGCAAACTCG ACGGCAACGG
351	CAAAACCCGA AACAAACGGA TGTCCGACGT ATCCCTCGGC ATCAGCCACA
401	CCTTCCTTAA AGACGACAAA AACCCCGCCC TAATCAGCTT TCTTGAAAGC
451	ACGGTTTACG AAAAATCGCG CAACAAAGCC TCGTCGGGAA AATCCTGGCT
501	CATCGGCGCC ACCACCTACA AAGCCATCGA CCCCGTCGTC CTCTCATTGA
551	CCGCTGCCTA CCGTATCAAC GGCAGCAAAA CCCTTTCAAG CAACACCAAA
601	TACAAAGCAG GCAATTACTG GATGCTGAAT CCCAATATAT CCTTCGCCGC
651	CAACGACAGA ATCAGCCTCA CGGGCGGCAT CCAATGGCTG GGCAAGCAGC
701	CCGACCGTCT GGACGGCAAA AAAGAATCCG CAAGAAACAC ATCCACCTAT
751 801	GCCCATTTCG GCGCAGGTTT CGGTTTCACC AAAACCACGG CTTTAAACGC
851	ATCCGCACGT TTCAACGTTT CAGGGCAAAG CAGTTCCGAA CTGAAATTTG GCGTACAGCA TACGTTTTAA
This correspond	
a587.pep	s to the amino acid sequence <seq 1820;="" 587.a="" id="" orf="">:</seq>
î	MKRIFLPALP AILPLSAYAD LPLTIEDIMT DKGKWKLETS LTYLNSENNR
51	AELAAPVYIQ TGATSFIPIP TEIOENGSNT DMLVGTLGLR YGLTGNTDIY
101	GSGSYLWHEE RKLDGNGKTR NKRMSDVSLG ISHTFLKDDK NPALISFIES
151	TVYEKSRNKA SSGKSWLIGA TTYKAIDPVV LSLTAAYRIN GSKTLSSNTK
201 251	YKAGNYWMLN PNISFAANDR ISLTGGIQWL GKQPDRLDGK KESARNTSTY AHFGAGFGFT KTTALNASAR FNVSGQSSSE LKFGVQHTF*
m587/a587	95.2% identity in 289 aa overlap
	10 20 30 40 50 60
m587.pep	MKRIFLPALPAILPLSTYADLPLTIEDIMTDKGKWKLETSLTYLNSENNRAELAAPVYTO
- 507	1 1 1 1 1 1 1 1 1 1
a587	MKRIFLPALPAILPLSAYADLPLTIEDIMTDKGKWKLETSLTYLNSENNRAELAAPVYIQ 10 20 30 40 50 60
	70 80 90 100 110 120
m587.pep	TGATSFIPIPTEIQENGSNTDMLVGTLGLRYGLTGNTDIYGSGSYLWHEFRKLDGNSKTD
a587	
aJ0/	TGATSFIPIPTEIQENGSNTDMLVGTLGLRYGLTGNTDIYGSGSYLWHEERKLDGNGKTR 70 80 90 100 110 120
	70 80 90 100 110 120

et i er tide

m587.pep	130 NKRMSDVSLGISHTF NKRMSDVSLGISHTF	 LKDDKNPALI:	 SFLESTVYEKS		1111111	111111:1
	130	140	150	160	170	180
	190	200	210	220	230	240
m587.pep	LSLTAAYRINGSKTL:				GIQWLGRQ	PDRTDGK
		[::::]		11111111	111111:11	111 111
a587	LSLTAAYRINGSKTL		/WMLNPNISF#	ANDRISLTG	GIQWLGKQI	PDRLDGK
	190	200	210	220	230	240
	250	260	270	280	290	
m587.pep	RESSRNTSTYAHFGA	gegetkttali	NASARFNVSG	SSSELKFGV		
	-:11:11:11:11:11:11	[111111111	1111	
a587	KESARNTSTYAHFGA	FGFTKTTALN	NASARFNVSGQ	SSSELKFGV	OHTFX	
	250	260	270	280	290	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1821>:

```
g588.seq

1 atgcttaaac atctcgcatt cctactgccc gccatgatgt tcgccctccc
51 cgcccagacc gccgtcctaa gcccctatca ggaaaccggc tgcacctacg
101 aaggcgggat cggaaaagac gggcttcctt caggcaaagg catatggcgt
151 tgccgggatg ggcgggtta taccggttca ttcaaaaacg gcaaattcga
201 cgggcaaggc gtttataccg ttgccgccgg ccgcgaagta tttctcgagc
251 cgttcaattc cgacagtacc aaattccgca atatggcatt gtcgggcacg
301 ttcaaacaag gcttggcaca cggcaggttc gccgcctcgc aaaaccggcga
351 aaccctcttt tattatgaaa tgcgaacacg gcatgattaa
```

This corresponds to the amino acid sequence <SEQ ID 1822; ORF 588.ng>: g588.pep..

1 MLKHLAFLLP AMMFALPAQT AVLSPYQETG CTYEGGIGKD GLPSGKGIWR
51 CRDGRGYTGS FKNGKFDGQG VYTVAAGREV FLEPFNSDST KFRNMALSGT
101 FKQGLAHGRF AASQNGETLF YYEMRTRHD*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1823>:

```
m588.seq..

1 ATGCTTAAAC ATCTCGCATT CCTACTGCCC GCCATGATGT TCGCCCTCCC
51 CACTTCGGCC GCCGTCCTGA CTTCCTATCA AGAACCAGGC TGCACCTACG
101 ACGGCAATGT CGGCAAAGAC GGTAAACCCG CCGGCAAAGG CACATGGCGC
151 TGCCAAGACG GGCGCAACTA TACCGGTTCG TTTAAAAACG GCAAATTCGA
201 CGGGCAAGGC GTTTATACCG TTGCCGCCAA CCGCGAAATA TTTATCGAAC
251 CGTTCAATTC CGACAGTACC AAATTCCGCA ACATGGTACT CTCGGGCACG
301 TTCAAAAAAG GCTTGGCACA CGGCAGATTT ACCGTCTCGC AAAACGGCGA
351 AACCCTCTTC ATTATGAAAT GCGAAAACGG CATGATTAAA GAAGTGAAAC
```

This corresponds to the amino acid sequence <SEQ ID 1824; ORF 588>: m588.pep..

1 MLKHLAFLLP AMMFALPTSA AVLTSYQEPG CTYDGNVGKD GKPAGKGTWR
51 CQDGRNYTGS FKNGKFDGQG VYTVAANREI FIEPFNSDST KFRNMVLSGT
101 FKKGLAHGRF TVSQNGETLF IMKCENGMIK EVKLPKNK*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

```
m588 / g588 82.5% identity in 120 aa overlap
10 20 30 40 50 60
```

m588.pep g588	MLKHLAFLLPAMMFALPTSAAVLTSYQEPGCTYDGNVGKDGKPAGKGTWRCQDGRNYTGS
9000	10 20 30 40 50 60
m588.pep	70 80 90 100 110 120 FKNGKFDGQGVYTVAANREIFIEPFNSDSTKFRNMVLSGTFKKGLAHGRFTVSQNGETLE
g588	FKNGKFDGQGVYTVAAGREVFLEPFNSDSTKFRNMALSGTFKQGLAHGRFAASQNGETLF 70 80 90 100 110 120
m588.pep	130 139 IMKCENGMIKEVKLPKNKX
g588	YYEMRTRHDX 130
The following p	partial DNA sequence was identified in N. meningitidis <seq 1825="" id="">:</seq>
ī	ATGCTTAAAC ATCTCGCATT CCTACTGCCC GCCATGATGT TCGCCCTCCC
51	CGCCGCGTCC GCCGTTCTGA CTTCCTATCA AGAACCCGGC TGCACCTACG
101	AAGGCGATGT CGGCAAAGAC GGTAAACCCG CCGGCAAAGG CACATGGCGC
151	TGCCAAGACG GGCGCAACTA TACCGGTTCG TTTAAAAATG GCAAATTCGA
201	CGGACAAGGC GTTTATACCG TTGCCGCCAA CCGCGAAATA TTTATCGAAC
251 301	CGTTCAATTC CGACAGTACC AAATTCCGCA ACATGGTACT CTCGGGCACA
351	TTCAAAAAAG GCTTGGCACA CGGCAGATTT ACCGTCTCGC AAAACGGCGA
401	AACCCTCTTC ATTATGAAAT GCGAAAACGG CATGATTAAA GAAGTGAAGC TGCCCAAAAA CAAATAA
401	10000AAAAA CAAAIAA
This correspond	s to the amino acid sequence <seq 1826;="" 588.a="" id="" orf="">:</seq>
a588.pep	o to the diffino dota bodacine DEQ ID 1020, Old 300.a>.
1	MLKHLAFLLP AMMFALPAAS AVLTSYQEPG CTYEGDVGKD GKPAGKGTWR
51	CQDGRNYTGS FKNGKFDGQG VYTVAANREI FIEPFNSDST KFRNMVLSGT
101	FKKGLAHGRF TVSQNGETLF IMKCENGMIK EVKLPKNK*
m588/a588	
	10 20 30 40 50 60
m588.pep	10 20 30 40 50 60 MLKHLAFLLPAMMFALPTSAAVLTSYQEPGCTYDGNVGKDGKPAGKGTWRCQDGRNYTGS
a588	MLKHLAFLLPAMMFALPAASAVLTSYQEPGCTYEGDVGKDGKPAGKGTWRCQDGRNYTGS
	10 20 30 40 50 60
	70 80 90 100 110 120
m588.pep	FKNGKFDGQGVYTVAANREIFIEPFNSDSTKFRNMVLSGTFKKGLAHGRFTVSQNGETLF
- a588	
- a300	FKNGKFDGQGVYTVAANREIFIEPFNSDSTKFRNMVLSGTFKKGLAHGRFTVSQNGETLF 70 80 90 100 110 120
	70 80 90 100 110 120
	130 139
m588.pep	IMKCENGMIKEVKLPKNKX
•	11111111111111111
a588	IMKCENGMIKEVKLPKNKX
	130

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1827>: g589.seq..

	1	atgcaacaaa	aaatccgttt	ccaaatcgag	gcgatgacct	gtcaggcatg
5	1	tgcttcgcgc	attgaaaaag	tgttgaacaa	aaaagatttt	gtcgaatcgg
10	1	cgggagtgaa	ctttgccagt	gaggaagcgc	aggttacgtt	tgacggcagc
15	1	aaaacctcgg	ttgccgacat	tgccaaaatc	attgagaaaa	ccaattacaa
20	1	cgcgaaggaa	aaaacggaag	atacattocc	gcaacctgaa	acadascaca
25	1	atatoggotg	gcggttgtgg	cttttgctga	ccatcaatat	coccttcatt

\$ 350

```
atcggtatgg tagggatgat gctaaaaggg ctgaattgga cacggcacga
     ttggatgatt ccgcctgtat ggcagtttgt actggcaagc atagtgcaac
      tttggctggc aatcccgttt tacaaaagcg cgtgggcaag cattaaaggc
      gggctggcga atatggacgt actcgttacc atcggcacgg tgtcgattta
 451
 501
      cctgtattcc gtttatatgc tgtttttcag ttcgcatgcg gcgcacggta
     tggcgcatgt gtattttgaa gcgggcgtga tggtgatcgg ttttgtgtcg
 551
     ctgggtaagt ttttggaaca ccgcaccaaa aaatccagcc tgaacagctt
 651
     gggcttactg ctaaaactca cgccgaccca agtcaacgtg caacqcaacg
      gcgaatggaa acaactgccc atcgaccaag tgcaaatcgg cgaccttatc
      cgcaccaacc acggcgaacg catcgctgcc gacggcatta tcgaaagcgg
 751
 801
     cageggttgg geggaegaaa gecaeettae eggegaatee aateeegaag
     agaaaaaggc gggcggcaaa gtgttggcgg gcgcgctgat gaccgaaggc
 901
      agcgtggtgt accgcgccgc gcagctcggc agccaaaccc tgctcggcga
 951
     catgatgaac gcgctctctg aagcacaagg cagtaaagca ccgattgcgc
1001
      gcgtggccga taaagcggcg gcggtatttg tgccaactgt cgtgggcatc
1051
      gcgcttctga cttttatcgt tgcttggctg attaagggcg attggacggt
1101
     cgcactgatg cacgccgttg ccgttttggt gattgcctgc ccgtgcgcgc
1151
     tcggtctggc gacccctgcc gcgattatgg tcggcatggg caaagcggtg
1201
     aaacacggca tttggtttaa agacgcggcg gcaatggagg aagcagcca
1251
     cgtcgatgcc gtcgtattgg acaaaaccgg tacgctgacc gaaggcaggc
      cgcaggttgc cgccgtttat tacgttcccg acagcggctt tgacgaagac
1301
1351
      gctttgtacc gcatcgccgc cgccgtcgag caaaacgccg cccacccgct
     cqcccgcgcc atcgtctccg ccgcacaagc gcgcggtttg gagattcccg
     ctgcacaaaa tgcgcaaacc gttgtcggag caggcattac cgccgaagtg
1451
1501
     gaaggcgtgg gtttggtgaa atcaggcaaa gccgaatttg ccgaactgac
1551
     cttgccgaag ttttcagacg gcgtttggga aatcgccagt gcggttaccg
1601
     tatetgtaaa eggeaaaceg ateggegeat tegeactete egaegegttg
     aaagccgata ccgccgaagc cataggccgt ctgaaaaaac acaatatcga
1651
1701
     tgtctatatt atgagcggcg ataaccaaag tacggtcgaa tacgtcgcca
1751
     aacaactggg catcgcacac gccttcggta atatgagtcc gtgcgacaaa
1801
     gccgccgaag tgcagaaact caaagccgcc ggcaaaaccg tggcgatggt
1851
     cggcgacggc atcaacgacg cgcccgcgct tgccgccgcc aacgtcagct
1901
     tegecatgaa aggeggtgeg gaegttgeeg aacacacege eteegeeacg
     ctgatgcage atteggtcaa teagetegee gatgeeetge tgatategea
2001
     ggcaacgttg gaaaacatca agcaaaacct atttttcgcc ttcttctaca
2051 atatattggg cattccgctc gccgcgctcg gctttttaaa tcccgtcata
     gcaggcgcgg caatggcggc aagctcggtt tcggtattgg gcaatgccct
     gcgcctgaaa tgggtaaaaa tcgattga
```

This corresponds to the amino acid sequence <SEQ ID 1828; ORF 589.ng>:

g589.pep.

p.pep.	•				
1	MQQKIRFQIE	AMTCQACASR	IEKVLNKKDF	VESAGVNFAS	EEAQVTFDGS
51	KTSVADIAKI	IEKTGYGAKE	KTEDTLPQPE	AEHHIGWRLW	LLLTINIPFL
101	IGMVGMMLKG	LNWTRHDWMI	PPVWQFVLAS	IVQLWLAIPF	YKSAWASIKG
151	GLANMDVLVT	IGTVSIYLYS	VYMLFFSSHA	AHGMAHVYFE	AGVMVIGFVS
201	LGKFLEHRTK	KSSLNSLGLL	LKLTPTQVNV	QRNGEWKQLP	IDQVQIGDLI
251	RTNHGERIAA	DGIIESGSGW	ADESHLTGES	NPEEKKAGGK	VLAGALMTEG
301	SVVYRAAQLG	SQTLLGDMMN	ALSEAQGSKA	PIARVADKAA	AVFVPTVVGI
351	<u>ALLTFIVA</u> WL	IKGDWTV <u>ALM</u>	HAVAVLVIAC	PCALGLATPA	AIMVGMGKAV
401		AMEEAAHVDA		EGRPQVAAVY	YVPDSGFDED
451	ALYRIAAAVE	QNAAHPLARA	IVSAAQARGL	EIPAAQNAQT	VVGAGITAEV
501	EGVGLVKSGK	AEFAELTLPK	FSDGVWEIAS	AVTVSVNGKP	IGAFALSDAL
551	KADTAEAIGR	LKKHNIDVYI	MSGDNQSTVE	YVAKQLGIAH	AFGNMSPCDK
601			INDAPALAAA	NVSFAMKGGA	DVAEHTASAT
651	LMQHSVNQLA	DALLISQATL	ENIKQNLFFA	FFYNILGIPL	AALGFLNPVI
701	AGAAMAASSV	SVLGNALRLK	WVKID*		

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1829>: m589.seq..

1 ATGCAACAAA AAATCCGTTT CCAAATCGAA GGCATGACCT GCCAGGCCTG
51 CGCTTCGCGC ATTGAAAAAG TGTTGAACAA AAAAGATTTT GTCGAATCGG
101 CGGGGGTAAA CTTCGCCAGC GAAGAGGCGC AGGTAGTGTT TGACGACAGC
151 AAAACCTCAG TAGCCGACAT TGCCAAAATC ATTGAGAAAA CCGGTTACGG
201 CGCGAAGGAA AAAACGGAAG ATACATTGCC GCAACCCGAA GCAGAACACC
251 ATATCGGCTG GCGGCTGTGG CTGCTGTTCA CCATCAACGT CCCGTTCCTT

BNSDOCID: <WO___9957280A2_I_>

This corresponds to the amino acid sequence <SEQ ID 1830; ORF 589>: m589.pep..

```
MQQKIRFQIE GMTCQACASR IEKVLNKKDF VESAGVNFAS EEAQVVFDDS
     KTSVADIAKI IEKTGYGAKE KTEDTLPQPE AEHHIGWRLW LLFTINVPFL
 51
     IGMAGMMIGR HDWMIPPLWQ FALASVVQLW LAIPFYKSAW ASIKGGLANM
101
151 DVLVTIGTVS IYLYSVYMLF FSPHAAYGMA HVYFEVGVMV IGFVSLGKFL
    EHRTKKSSLN SLGLLLKLTP TQVNVQRNGE WKQLPIDQVQ IGDLIRANHG
     ERIAADGIIE SGSGWADESH LTGESNPEEK KAGGKVLAGA LMTEGSVVYR
251
301
    ATQLGSQTQL GDMMNALSEA QGSKAPIARV ADKAAAVFVP AVVGIALLTF
     IVTWLIKGDW TVALMHAVAV LVIACPCALG LATPAAIMVG MGKAVKHGIW
351
     FKDAAAMEEA AHVDAVVLDK TGTLTEGSPQ VAAVYCVPDS GFDEDALYRI
401
451 AAAVEQNAAH PLARAIVSAA QARGLDIPAA QNAQTVVGAG ITAEVEGVGL
    VKAGKAEFAE LALPKFLDGV WDIASIVAVS VDNKPIGAFA LADALKADTA
501
    EAIGRLKKHN IDVYIMSGDN QGTVEYVAKQ LGIAHAFGNM SPRDKAAEVQ
551
    KLKAAGKTVA MVGDGINDAP ALAAANVSFA MKGGADVAEH TASATLMOHS
    VNQLADALLV SQATLKNIKQ NLFFAFFYNI LGIPLAALGF LNPVIAGAAM
651
701
    AASSVSVLSN ALRLKRVKID *
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

```
m589 / g589 94.2% identity in 725 aa overlap

10 20 30 40 50 60

m589.pep MQQKIRFQIEGMTCQACASRIEKVLNKKDFVESAGVNFASEEAQVVFDDSKTSVADIAKI
```

g589	MQQKIRFQIEAMTCQACASRIEKVL 10 20	NKKDFVESAGVNFASEE 30 40	EAQVTFDGSKTSVADIAKI 50 60
m589.pep	70 80 IEKTGYGAKEKTEDTLPQPEAEHHI 	90 100 GWRLWLLFTINVPFLIG	
g589	IEKTGYGAKEKTEDTLPQPEAEHHI 70 80		
m589.pep	120 130 140 PPLWQFALASVVQLWLAIPFYKSAW.		160 170 TVSIYLYSVYMLFFSPHA
g589			TVSIYLYSVYMLFFSSHA 170 180
m589.pep	180 190 200 AYGMAHVYFEVGVMVIGFVSLGKFL		220 230
g589	: :		
	190 200 240 250 260	210 220 270	230 240 280 290
m589.pep	IDQVQIGDLIRANHGERIAADGIIES	SGSGWADESHLTGESNP 	EEKKAGGKVLAGALMTEG
g589	IDQVQIGDLIRTNHGERIAADGIIES 250 260	270 280	EEKKAGGKVLAGALMTEG 290 300
m589.pep	300 310 320 SVVYRATQLGSQTQLGDMMNALSEAC	GSKAPIARVADKAAAV	
g589	SVVYRAAQLGSQTLLGDMMNALSEAQ 310 320		:

BNSDOCID: <WO___9957280A2_J_>

	360	370	380	390	400	410
m589.pep	IKGDWTVALMH	AVAVLVIACP	CALGLATPA	IMVGMGKAVK	HGIWFKDAA	AMEEAAHVDA
500	11111111111		111111111		111111111	111111111
g589	IKGDWTVALMHA	AVAVLVIACP	CALGLATPAA			
	3 7.0	380	390	400	410	420
	420	430	440	450	460	470
m589.pep	VVLDKTGTLTE			LYRIAAAVEO	NAAHPI.ARAT	TVSDACADCT
	_		1111111111	111111111	1111111111	
g589	VVLDKTGTLTEG	RPQVAAVYY	VPDSGFDEDA	LYRIAAAVEQ	NAAHPLARAJ	VSAAQARGL
	430	440	450	460	470	480
	480	490	500	510		
m589.pep	DIPAAQNAQTVV			510 FFAFTAT DEF	520	530
	: [[[[[[]]]]]]			IIIII:	TDGAMDIW21	: ::
g589	EIPAAQNAQTVV	GAGITAEVE	SVGLVKSGKA	EFAELTLPKF.	SDGVWEIASA	VTVSVNGKP
	490	500	510	520	530	540
	F 40					
m589.pep		550	560	570	580	590
mooo.pep	IGAFALADALKA	DIALAIGKL		SGDNQGTVEY	√AKQLGIAHA	FGNMSPRDK
g589	IGAFALSDALKA	DTAEAIGRLE	KHNIDVYIM	SGDNOSTVEYS	JAKOLCTAHA	FCMMSDCDV
	550	560	570	580	590	600
m589.pep		610	620	630	640	650
moo9.pep	AAEVQKLKAAGK	TVAMVGDGIN	IDAPALAAAN	/SFAMKGGAD\	/AEHTASATL	MQHSVNQLA
g589	AAEVQKLKAAGK	TVAMVGDGTN	ון ון וווווו זאממממומסמחו			
5	610	620	630	640	650	MQHSVNQLA 660
				0.10	030	000
500		670	680	690	700	710
m589.pep	DALLVSQATLKN	IKONLFFAFF	YNILGIPLA	ALGFLNPVIAC	;aamaassvs	VLSNALRLK
g589	: :					11:11111
9000	DALLISQATLEN: 670	1 1A1 1110011	1N1LG1PLAA	ALGFLNPVIAG 700	AAMAASSVS 710	
		550	030	700	710	720
	720					
m589.pep	RVKIDX					
q589	 WVKIDX					
g303	MANTDY					
following partial DNA sequence was identified in N. meningitidis <seo 1831="" id="">:</seo>						

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1831>: a589.seq

```
ATGCAACAAA AAGTCCGTTT CCAAATCGAA GGCATGACCT GCCAGGCATG
      TGCTTCGCGC ATTGAAAAAG TGTTGAACAA AAAAGATTTT GTCGAATCGG
  51
 101 CGGGGGTAAA CTTCGCCAGC GAAGAGGCTC AGGTAGTGTT TGACGACAGC
151 AAAACCTCAG TAGCCGACAT TGCCAAAATC ATTGAGAAAA CCGGTTACGG
 201 CGCGAAGGAA AAAACGGAAG ATACATTGCC GCAACCCGAA GCAGAACACC
 251 ATATCGGCTG GAGGTTGTGG CTTTTGCTGG CCATCAATAT CCCGTTCCTT
 301 ATCGGTATGG TAGGGATGAT GCTAAAAGGG CTGAATTGGA CACGGCATGA
 351
      TTGGATGTTG TCGCCCTTGT TGCAGTTTGC ATTGGCGAGT GTGGTGCAGC
      TTTGGCTGGC GGTGCCATTT TACAAAAGCG CGTGGGCGAG CATTAAAGGC
 401
 451 GGGCTGGCGA ATATGGACGT ACTCGTTACC ATCGGCACGG TCTCGATTTA
 501 CCTGTATTCC GTCTATATGC TGTTTTTCAG CCCGCACGCG GCGTACGGTA
 551 TGGCGCATGT GTATTTTGAA GTAGGCATAA TGGTGATTGG TTTTGTGTCA
 601 CTGGGTAAAT TTTTGGAACA CCGCACCAAA AAATCCAGCC TGAACAGCTT
      GGGCTTGCTG CTCAAACTCA CGCCAACCCA AGTCAACGTG CAACGCGATG
 651
 701 GCGAATGGCG GCAGCTACCC ATCGACCAAG TGCAAATCGG CGACCTAATC
 751 CGCGCCAATC ACGGCGAACG CATTGCCGCC GACGGCATCA TAGAAAGCGG
 801 CAGCGGCTGG GCGGACGAAA GCCATCTTAC CGGCGAATCC AATCCCGAAG
 851 AGAAAAAGGC AGGCGGCAAA GTATTGGCGG GCGCGCTGAT GACTGAAGGC
 901
      AGCGTGGTGT ACCGCGCCGC GCAGCTCGGC AGCCAAACCC TGCTCGGCGA
      CATGATGAAC GCGCTCTCCG AAGCGCAAGG CAGTAAAGCA CCGATTGCGC
 951
1001 GTGTGGCGGA CAAGGCGGCG GCGGTATTCG TGCCTGCCGT TGTGGGCATC
1051 GCACTTTTGA CTTTTATCGC TACTTGGCTG ATTAAGGGCG ATTGGACGCT
1101 CGCATTGATG CACGCCGTCG CCGTTTTGGT GATTGCCTGC CCGTGTGCAC
```

1151	TOCCOMMISSION AND CONTROL OF CONTRACT PROPERTY OF CONTRACT
1151	TCGGTTTGGC AACCCCTGCT GCGATTATGG TCGGTATGGG CAAAGCGGTT
1201	
1251	
1301	
1351	
1401	
1451	CCGCACAAAA TGCCCAAACC ATTGTCGGCG CGGGCATTAC CGCCGAAGTA
1501	AAAGGCGCGG GTTTGGTAAA AGCAGGCAAA GCCGAATTTG CCGAACTGAC
1551	
1601	TATCTGTAAA CGGCAAACCT ATCGGCGCAT TCGCACTCGC CGACGCGTTG
1651	AAAGCCGATA CCGCCGAAGC CATAGGCCGT CTGAAAAAAC ACAATATCGA
1701	TETETHER AND COCCO DIRECTOR COMPANY AND COCCO
	TGTCTATATT ATGAGCGGCG ATAACCAAGG CACGGTCGAG TACGTCGCCA
1751	AACAACTGGG CATCGCACAC GCCTTCGGTA ATATGAGTCC GCGCGACAAA
1801	GCCGCCGAAG TGCAGAAACT CAAAGCCGCC GGCAAAACCG TGGCGATGGT
1851	CGGCGACGGC ATCAACGACG CGCCCGCGCT CGCCGCCGCC AACGTCAGCT
1901	TCGCCATGAA AGGCGGTGCA GACGTTGCCG AACACACCGC ATCCGCCACA
1951	CTGATGCAGC ATTCGGTCAA CCAGCTCGCC GATGCGCTAT CGGTATCGCG
2001	AGCGACGTTG AAAAACATCA AGCAAAACCT GTTTTTCGCC TTCTTCTACA
2051	ATATTTTGGG CATTCCGCTC GCCGCGCTCG GCTTTTTAAA CCCCGTCATC
2101	
2151	
2131	GCGCCTGAAA CGGGTAAAAA TCGATTGA
T1-1	4 d
inis correspond	s to the amino acid sequence <seq 1832;="" 589.a="" id="" orf="">:</seq>
a589.pep	
1	MQQKVRFQIE GMTCQACASR IEKVLNKKDF VESAGVNFAS EEAQVVFDDS
51	KTSVADIAKI IEKTGYGAKE KTEDTLPQPE AEHHIGWRLW LLLAINIPFL
101	IGMVGMMLKG LNWTRHDWML SPLLQFALAS VVQLWLAVPF YKSAWASIKG
151	CIAMBULT CONCINCTOR OF THE PROPERTY OF THE PRO
	GLANMDVLVT IGTVSIYLYS VYMLFFSPHA AYGMAHVYFE VGIMVIGFVS
201	LGKFLEHRTK KSSLNSLGLL LKLTPTQVNV QRDGEWRQLP IDQVQIGDLI
251	RANHGERIAA DGIIESGSGW ADESHLTGES NPEEKKAGGK VLAGALMTEG
301	SVVYRAAQLG SQTLLGDMMN ALSEAQGSKA PIARVADKAA AVFVPAVVGI
351	ALLTFIATWL IKGDWTLALM HAVAVLVIAC PCALGLATPA AIMVGMGKAV
401	KHGIWFKDAA AMEEAAHVDA VVLDKTGTLT EGKPQVAAVY CVPDSGFDED
451	ALYRIAAAVE QNAAHPLARA IVSAAQARGL EIPTAQNAQT IVGAGITAEV
501	KGAGLVKAGK AEFAELTLPK FSDGVWEIAS VVAVSVNGKP IGAFALADAL
551	KADTAEAIGR LKKHNIDVYI MSGDNQGTVE YVAKQLGIAH AFGNMSPRDK
	AADIALAIGA GEMANDUTI ESGUNQGIVE IVAKQLGIAH AFGNMSPRDK
601	AAEVQKLKAA GKTVAMVGDG INDAPALAAA NVSFAMKGGA DVAEHTASAT
651	LMQHSVNQLA DALSVSRATL KNIKQNLFFA FFYNILGIPL AALGFLNPVI
701	AGAAMAASSV SVLSNALRLK RVKID*
m589/a589	94.9% identity in 725 aa overlap
	·
	10 20 30 40 50 60
m589.pep	MQQKIRFQIEGMTCQACASRIEKVLNKKDFVESAGVNFASEEAQVVFDDSKTSVADIAKI
шоогор	
a589	MOOVIDE FOLE CHIEF CO. C. S. C. LEWIN MANDENING CO. C.
2309	MQQKVRFQIEGMTCQACASRIEKVLNKKDFVESAGVNFASEEAQVVFDDSKTSVADIAKI
	10 20 30 40 50 60
	70 80 90 100 1 110
m589.pep	IEKTGYGAKEKTEDTLPQPEAEHHIGWRLWLLFTINVPFLIGMAGMMIGRHDWMI
a589	IEKTGYGAKEKTEDTLPQPEAEHHIGWRLWLLLAINIPFLIGMVGMMLKGLNWTRHDWML
	70 80 90 100 110 120
	120
	120 130 140 150 160 170
m589.pep	PPLWQFALASVVQLWLAIPFYKSAWASIKGGLANMDVLVTIGTVSIYLYSVYMLFFSPHA
a589	
a369	SPLLQFALASVVQLWLAVPFYKSAWASIKGGLANMDVLVTIGTVSIYLYSVYMLFFSPHA
	130 140 150 160 170 180
	100
F. 0. 0	180 190 200 210 220 230
m589.pep	AYGMAHVYFEVGVMVIGFVSLGKFLEHRTKKSSLNSLGLLLKLTPTQVNVQRNGEWKQLP
a58 9	AYGMAHVYFEVGIMVIGFVSLGKFLEHRTKKSSLNSLGLLLKLTPTQVNVQRDGEWRQLP
	190 200 210 220
	200 210 220 230 240

m589.pep	240 250 260 270 280 290 IDQVQIGDLIRANHGERIAADGIIESGSGWADESHLTGESNPEEKKAGGKVLAGALMTEG
m589.pep	300 310 320 330 340 350 SVVYRATQLGSQTQLGDMMNALSEAQGSKAPIARVADKAAAVFVPAVVGIALLTFIVTWL
m589.pep	360 370 380 390 400 410 IKGDWTVALMHAVAVLVIACPCALGLATPAAIMVGMGKAVKHGIWFKDAAAMEEAAHVDA :
m589.pep	420 430 440 450 460 470 VVLDKTGTLTEGSPQVAAVYCVPDSGFDEDALYRIAAAVEQNAAHPLARAIVSAAQARGL
m589.pep	480 490 500 510 520 530 DIPAAQNAQTVVGAGITAEVEGVGLVKAGKAEFAELALPKFLDGVWDIASIVAVSVDNKP : : : : EIPTAQNAQTIVGAGITAEVKGAGLVKAGKAEFAELTLPKFSDGVWEIASVVAVSVNGKP 490 500 510 520 530 540
m589.pep	540 550 560 570 580 590 IGAFALADALKADTAEAIGRLKKHNIDVYIMSGDNQGTVEYVAKQLGIAHAFGNMSPRDK
m589.pep	600 610 620 630 640 650 AAEVQKLKAAGKTVAMVGDGINDAPALAAANVSFAMKGGADVAEHTASATLMQHSVNQLA
m589.pep	660 670 680 690 700 710 DALLVSQATLKNIKQNLFFAFFYNILGIPLAALGFLNPVIAGAAMAASSVSVLSNALRLK :
m589.pep a589	720 RVKIDX !!!!! RVKIDX

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1833>: g590.seq..

1	atgaaaaaac	ctttgatttc	agttgcggca	gtattqctcq	acattactt
51	gggtacacct	tattatttgg	gtgtcaaagc	agaagaaagt	Ctgacgcagc
101	agcaaaaaat	attgcagaaa	acgggctttt	tgaccgtcga	atcocaccac
151	tatgatcgag	gctggtttac	ctctacggaa	acqacqqtca	teceteteaa
201	acccgagttg	ctgcataatg	cgcagaaata	cctqccqqat	aacttgaaaa
251	tagtgttgga	acagccggtt	acgctggtaa	accatatcac	acacagacat
301	ttegeeggeg	gatteggeae	gcaggcgcac	attgaaaccg	acttcaaata
351	cgcgcctgaa	acggaaaaag	ttttggaacg	Cttttttaaa	aaacaacttc
401	cggtttccct	tgccaatacc	gtttatttca	acqqcaqcqq	taaaatooss
451	gtcagtgttc	ccgctttcga	ttatgaagaa	ctatcagaca	tcaggctgca

. 7

and the second of the second o

```
501 ctgggaaggc ctgacggggg aaacggttta tcaaaaaggt ttcaaaagct
      accgcaacag ctatgatgcg cccttgttca aaatcaagct ggcagacaaa
 601 ggcgatgccg cgtttgaaaa agcgcatttc gattcggaaa cttcagacgg
 651
      catcaatccg cttgctttgg gcagcagcaa tctgactttg gaaaaatttt
 701 cgctcgaatg gaaagagggt gtcgattaca acgtcaaatt gaacgaactg
 751
      gtcaacctcg ttaccgattt gcagatcggc gcgtttatca atcccaacgg
      cagcatogca cottocaaaa togaagtogg caagotggot ttttcaacca
 851 agaccgggga atcgggcgcg tttatcgaca gcgaagggcg gttccgtttc
 901
      gatacgttgg tgtacggcga tgaaaaatac ggcccgctgg acatccatat
 951 cgctgccgaa cacctcgatg cttctgcctt aaccgtattg aaacgcaagt
1001 ttgcacaaat ttctgccaaa aaaatgactg aggaacaaat ccgcaatgat
      ttgattgcgg cagtcaaagg cgatgcttcc ggattattta cccatgaccc
1101 ggtactaaat atcaaaattt tccgtttcac cctgcctcag ggaaaaattg
1151 atgtgggcgg aaaaatcatg tttaaaggca tgaagaagga agatttgaac
1201
      caattgggac tgatgttaaa gaaaaccgag gcaaacatca gaatgagtat
1251 tcctcaaaaa atgttggaag atttggcggt aagtcaggct ggaaatattt
1301 tcagtgtaaa tgccgaagat gaggcggaag ccagagcaag cattgccgat
1351 attaatgaaa cattgegeet gatggtggac agtaeggtee aaagtatgge
1401 aagggaaaaa tatettaett tagaeggtaa teagattgat aeggteattt
1451 cccttaaaaa caacgccctg aagttaaacg ggaaaacgct gcaaaatgaa
1501 cccgatcctg attttgacga gggagatatg gtttccggcc agccqcatta
1551
```

This corresponds to the amino acid sequence <SEQ ID 1834; ORF 590.ng>: g590.pep..

```
1 MKKPLISVAA VLLGVALGTP YYLGVKAEES LTQQQKILQK TGFLTVESHQ
51 YDRGWFTSTE TTVIRLKPEL LHNAQKYLPD NLKIVLEQPV TLVNHITHGP
101 FAGGFGTQAH IETEFKYAPE TEKVLERFFG KQVPVSLANT VYFNGSGKME
151 VSVPAFDYEE LSGİRLHWEG LTGETVYQKG FKSYRNSYDA PLFKIKLADK
201 GDAAFEKAHF DSETSDGİNP LALGSSNLTL EKFSLEWKEG VDYNVKLNEL
251 VNLVTDLQIG AFİNPNGSİA PSKIEVGKLA FSTKTGESGA FİDSEGRFRF
301 DTLVYGDEKY GPLDİHİAAE HLDASALTVL KRKFAQİSAK KMTEEQİRND
351 LIAAVKGDAS GLFTHDPVLN İKİFRFTLPQ GKİDVGGKİM FKGMKKEDLN
401 QLGLMLKKTE ANIRMSİPQK MLEDLAVSQA GNİFSVNAED EAEARASİAD
451 İNETLRIMVD STVQSMAREK YLTLDGNQİD TVİSLKNNAL KLNGKTLQNE
501 PDPDFDEGDM VSGOPH*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1835>: m590.seq (partial) ...

```
..TGGTTTACCT CTATGGAAAC GACGGTCATC CGTCTGAAAC CCGAGTTGCT
   1
  51
        GAATAATGCC CGAAAATACC TGCCGGATAA CCTGAAAACA GTGTTGGAAC
        AGCCGGTTAC GCTGGTTAAC CATATCACGC ACGGCCCTTT CGCCGGCGGA
 151
        TTCGGCACGC AGGCGTACAT TGAAACCGAG TTCAAATACG CGCCTGAAAC
 201
        GGAAAAAGTT CTGGAACGCT TTTTTGGAAA ACAAGTCCCG GCTTCCCTTG
        CCAATACCGT TTATTTTAAC GGCAGCGGTA AAATGGAAGT CAGTGTTCCC
 251
 301
        GCCTTCGATT ATGAAGAGCT GTCGGGCATC AG.CTGCACT GGGAAKGCCT
        GACGGGAGAA ACGGTTTATC AAAAAGGTTT CAAAAGCTAC CGGAACGGCT
 351
 401
        ATGATGCCCC CTTGTTTAAA ATCAAGCTGG CAGACAAAGG CGATGCCGCG
        TTTGAAAAAG TGCATTTCGA TTCGGAAACT TCAGACGGCA TCAATCCGCT
 451
 501
        TGCTTTGGGC AGCAGCAATC TGACCTTGGA AAAATTCTCC CTAGAATGGA
 551
        AAGAGGGTGT CGATTACAAC GTCAAGTTAA ACGAACTGGT CAATCTTGTT
        ACCGATTIGC AGATTGGCGC GTTTATCAAT CCCAACGGCA GCATCGCACC
 651
        TTCCAAAATC GAAGTCGGCA AACTGGCTTT TTCAACCAAG ACCGGGGAAT
        CAGGCGCGTT TATCAACAGT GAAGGGCAGT TCCGTTTCGA TACACTGGTG
 701
        TACGGCGATG AAAAATACGG CCCGCTGGAC ATCCATATCG CTGCCGAACA
 751
 801
        CCTCGATGCT TCTGCCTTAA CCGTATTGAA ACGCAAGTTT GCACAAATTT
        CCGCCAAAAA AATGACCGAG GAACAAATCC GCAATGATTT GATTGCCGCC
 851
 901
        GTCAAAGGAG AGGCTTCCGG ACTGTTCACC AACAATCCCG TATTGGACAT
 951
        TAAAACTTTC CGATTCACGC TGCCATCGGG AAAAATCGAT GTGGGCGGAA
        AAATCATGTT TAAAGACATG AAGAAGGAAG ATTTGAATCA ATTGGGTTTG
1001
1051
        ATGCTGAAGA AAACCGAAGC CGACATCAGA ATGAGTATTC CCCAAAAAAT
        GCTGGAAGAC TTGGCGGTCA GTCAAGCAGG CAATATTTTC AGCGTCAATG
1101
        CCGAAGATGA GGCGGAAGGC AGGGCAAGTC TTGACGACAT CAACGAGACC
1151
1201
       TTGCGCCTGA TGGTGGACAG TACGGTTCAG AGTATGGCAA GGGAAAAATA
       TCTGACTTTG AACGGCGACC AGATTGATAC TGCCATTTCT CTGAAAAACA
1251
1301
        ATCAGTTGAA ATTGAACGGT AAAACGTTGC AAAACGAACC GGAGCCGGAT
       TTTGATGAAG GCGGTATGGT TTCAGAGCCG CAGCAGTAA
1351
```

This corresponds to the amino acid sequence <SEQ ID 1836; ORF 590>:

BNSDOCID: <WO___9957280A2_I_>

120.2

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1837>:
```

```
a590.seq
          ATGAAAAAC CTTTGATTTC GGTTGCGGCA GCATTGCTCG GCGTTGCTTT
      51
         GGGCACGCCT TATTATTTGG GTGTCAAAGC CGAAGAAAGC TTGACGCAGC
     101
         AGCAAAAAAT ATTGCAGGAA GCGGGCTTCT TGACCGTCGA ATCGCACCAA
         TATGAGCGCG GCTGGTTTAC CTCTACGGAA ACGACGGTCA TCCGCTTGAA
         ACCCGAGTTG CTGCATAATG CGCAGAAATA CCTGCCGGAT AACCTGAAAA
     201
         CAGTGTTGGA ACAGCCGGTT ACGCTGGTAA ACCATATCAC GCACGGTCCT
         TTTGCCGGCG GATTCGGCAC GCAGGCGTAC ATTGAAACCG AGTTCAAATA
     301
         CGCGCCTGAA ACGGAAAAAG TTCTGGAACG CTTTTTTGGA AAACAAGTCC
     351
         CGGTTTCCCT TGCCAATACC GTTTATTTTA ACGGCAGCGG TAAAATGGAA
     451
         GTCAGTGTTC CCGCCTTCGA TTATGAAGAG CTGTCGGGCA TCAGGCTGCA
         CTGGGAAGGC CTGACGGGAG AAACGGTTTA TCAAAAAGGT TTCAAAAGCT
     501
         ACCGGAACGG CTATGATGCC CCCTTGTTTA AAATCAAGCT GGCAGACAAA
    551
         GGCGATGCCG CGTTTGAAAA AGTGCATTTC GATTCGGAAA CTTCAGACGG
    601
         CATCAACCCG CTTGCTTTGG GCAGCAGCAA TCTGACCTTG GAAAAATTTT
    651
         CCTTAGAATG GAAAGAGGGT GTCGATTACA ACGTCAAGTT AAACGAACTG
    701
    751
         GTCAATCTTG TTACCGATTT GCAGATTGGC GCGTTTATCA ATCCCAACGG
         CAGCATCGCA CCTTCCAAAA TCGAAGTCGG CAAGCTGGCT TTTTCAACCA
    801
         AGACCGGGGA ATCGGGCGC TTTATCGATA GCGAAGGGCA GTTCCGTTTT
    851
         GGCACGCTGG TTTACGGCGA TGAAAAATAC GGCCCTCTGG ACATCCATAT
    901
         CGCTGCCGAA CACCTCGATG CTTCTGCCTT AACCGTATTG AAACGCAAGT
    951
   1001
         TTGCACGAAT TTCTGCCAAA AAAATGACTG AAGAACAAAT CCGCAATGAT
         TTGATTGCGG CAGTCAAAGG CGAGGCTTCC GGATTATTTA CCCATAACCC
   1051
   1101
         AGTATTGGAC ATTAAAACTT TCCGATTCAC GCTGCCATCG GGAAAAATCG
   1151 ATGTGGGCGG AAAAATCATG TTTAAAGACA TGAAGAAGGA AGATTTGAAC
         CAATTGGGTT TGATGCTGAA GAAAACCGAA GCCGACATCA GAATGAGTAT
        TCCCCAAAAA ATGCTGGAAG ACTTGGCGGT CAGTCAAGCA GGCAATATTT
   1.251
         TCAGCGTCAA TGCCGAAGAT GAGGCGGAAG GCAGGGCAAG TCTTGACGAC
   1301
         ATCAACGAGA CCTTGCGCCT GATGGTGGAC AGTACGGTTC AGAGTATGGC
         AAGGGAAAAA TATCTGACTT TGAACGGCGA CCAGATTGAT ACTGCCATTT
   1401
         CTCTGAAAAA CAATCAGTTG AAATTGAACG GTAAAACGTT GCAAAACGAA
         CCGGAGCCGG ATTTTGATGA AGGCGGTATG GTTTCAGAGC CGCAGCAGTA
   1501
   1551
```

This corresponds to the amino acid sequence <SEQ ID 1838; ORF 590.a>:

```
a590.pep
          MKKPLISVAA ALLGVALGTP YYLGVKAEES LTQQQKILQE AGFLTVESHO
          YERGWFTSTE TTVIRLKPEL LHNAQKYLPD NLKTVLEQPV TLVNHITHGP
      51
         FAGGFGTQAY IETEFKYAPE TEKVLERFFG KQVPVSLANT VYFNGSGKME
     101
         VSVPAFDYEE LSGIRLHWEG LTGETVYQKG FKSYRNGYDA PLFKIKLADK
         GDAAFEKVHF DSETSDGINP LALGSSNLTL EKFSLEWKEG VDYNVKLNEL
     251
         VNLVTDLQIG AFINPNGSIA PSKIEVGKLA FSTKTGESGA FIDSEGOFRF
          GTLVYGDEKY GPLDIHIAAE HLDASALTVL KRKFARISAK KMTEEQIRND
     351
         LIAAVKGEAS GLFTHNPVLD IKTFRFTLPS GKIDVGGKIM FKDMKKEDLN
         QLGLMLKKTE ADIRMSIPQK MLEDLAVSQA GNIFSVNAED EAEGRASLDD
     401
         INETLRLMVD STVQSMAREK YLTLNGDQID TAISLKNNQL KLNGKTLQNE
     501
         PEPDFDEGGM VSEPQQ*
```

m590/a590 97.8% identity in 462 aa overlap

-500				10	20	30
m590.pep			1	WFTSMETTVI	RLKPELLNNAF	KYLPDNLKT
				1111 1111	[[[]]]	11111111
a590	VKAEESLTQQQ	KILQEAGFLT	VESHQYERG	WFTSTETTVI	RLKPELLHNAC	KYLPDNLKT
	30	40	50	60	70	80
	40	50	60	70	80	90
m590.pep	VLEQPVTLVNH	ITHGPFAGGF				OF MANAGERS.
		HILLIEFE	111111111			
a590	VLEQPVTLVNH	ITHGPFAGGF	GTQAYIETE	FKYAPETEKVI	ERFFGKOVPV	SLANTVYFN
	90	100	110	120	130	140
	100	110	120	130	140	150
m590.pep	GSGKMEVSVPA	FDYEELSGIX	LHWEXLTGE	TVYQKGFKSYF	RNGYDAPLFKI	KLADKGDAA

BNSDOCID: <WO___9957280A2_I_>

a590			HWEGLTGETV			 KLADKGDAA 200
m590.pep	160 FEKVHFDSETSD				F14444441	
a590	FEKVHFDSETSD 210 220	220	230	240	250	DLQIGAFIN 260
m590.pep	PNGSIAPSKIEV	230 GKLAFSTKTG	240 ESGAFINSEG	250 QFRFDTLVYO	260 EDEKYGPLDIH	270 IIAAEHLDA
a590	 PNGSIAPSKIEVO 270	GKLAFSTKTG 280	ESGAFIDSEG 290	QFRFGTLVY6	SDEKYGPLDIH 310	 IAAEHLDA 320
m590.pep	280 SALTVLKRKFAQ	290 ISAKKMTEEQ	300 IRNDLIAAVK	310 GEASGLFTNN	320 PVLDIKTFRF	330 TLPSGKID
a590	SALTVLKRKFAR			: GEASGLFTHN 360		IIIIIIII TLPSGKID 380
m590.pep	340 VGGKIMFKDMKKE	350 DLNQLGLML	360 KK TEADIRM S]	370 IPQKMLEDLA	380 VSQAGNIFSV	390 NAEDEAEG
a590	VGGKIMFKDMKKE	11111111			111111111	LITTLE
m590.pep	400 RASLDDINETLRI	410 MVDSTVQSMA	420 REKYLTLNGE	430 OQIDTAISLK	440 NNQLKLNGKT	450 LONEPEPD
a590	RASLDDINETLRL	111111111	1111111111		111111111	
m590.pep	460 FDEGGMVSEPQQX					
a590	FDEGGMVSEPQQX 510					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1839>: m590-1.seq

1	ATGAAAAAAC	CTTTGATTTC	GGTTGCGGCA	GCATTGCTCG	GCGTTGCTTT
51	GGGCACGCCT	TATTATTTGG		CGAAGAAAGC	
101	AGCAAAAAAT	ATTGCAGGAA		TGACCGTCGA	
151	TATGAGCGCG				
201	ACCCGAGTTG	CTGAATAATG		CCTGCCGGAT	
251	CAGTGTTGGA		ACGCTGGTTA	ACCATATCAC	AACCTGAAAA
301	TTCGCCGGCG	GATTCGGCAC	GCAGGCGTAC		GCACGGCCCT
351	CGCGCCTGAA			ATTGAAACCG	AGTTCAAATA
401			TTCTGGAACG	CTTTTTTGGA	
	CGGCTTCCCT	TGCCAATACC	GTTTATTTTA	ACGGCAGCGG	TAAAATGGAA
451	GTCAGTGTTC	CCGCCTTCGA		CTGTCGGGCA	TCAGGCTGCA
501	CTGGGAAGGC	CTGACGGGAG	AAACGGTTTA	TCAAAAAGGT	TTCAAAAGCT
551	ACCGGAACGG	CTATGATGCC	CCCTTGTTTA	AAATCAAGCT	GGCAGACAAA
601	GGCGATGCCG	CGTTTGAAAA	AGTGCATTTC	GATTCGGAAA	CTTCAGACGG
651	CATCAATCCG	CTTGCTTTGG	GCAGCAGCAA	TCTGACCTTG	GAAAAATTCT
701	CCCTAGAATG	GAAAGAGGGT	GTCGATTACA	ACGTCAAGTT	AAACGAACTG
751	GTCAATCTTG	TTACCGATTT	GCAGATTGGC	GCGTTTATCA	ATCCCAACGG
801	CAGCATCGCA	CCTTCCAAAA	TCGAAGTCGG	CAAACTGGCT	TTTTCAACCA
851	AGACCGGGGA	ATCAGGCGCG	TTTATCAACA	GTGAAGGGCA	GTTCCGTTTC
901	GATACACTGG	TGTACGGCGA	TGAAAAATAC	GGCCCGCTGG	
951	CGCTGCCGAA	CACCTCGATG	CTTCTGCCTT		ACATCCATAT
1001	TTGCACAAAT	TTCCGCCAAA		AACCGTATTG	AAACGCAAGT
1051	TTGATTGCCG		AAAATGACCG	AGGAACAAAT	CCGCAATGAT
1101		CCGTCAAAGG	AGAGGCTTCC	GGACTGTTCA	CCAACAATCC
		ATTAAAACTT	TCCGATTCAC	GCTGCCATCG	GGAAAAATCG
1151		AAAAATCATG	TTTAAAGACA	TGAAGAAGGA	AGATTTGAAT
1201	CAATTGGGTT	TGATGCTGAA	GAAAACCGAA	GCCGACATCA	GAATGAGTAT

```
1251
         TCCCCAAAAA ATGCTGGAAG ACTTGGCGGT CAGTCAAGCA GGCAATATTT
    1301
         TCAGCGTCAA TGCCGAAGAT GAGGCGGAAG GCAGGGCAAG TCTTGACGAC
         ATCAACGAGA CCTTGCGCCT GATGGTGGAC AGTACGGTTC AGAGTATGGC
    1351
    1401
         AAGGGAAAAA TATCTGACTT TGAACGGCGA CCAGATTGAT ACTGCCATTT
         CTCTGAAAAA CAATCAGTTG AAATTGAACG GTAAAACGTT GCAAAACGAA
    1451
    1501
         CCGGAGCCGG ATTTTGATGA AGGCGGTATG GTTTCAGAGC CGCAGCAGTA
    1551 A
This corresponds to the amino acid sequence <SEQ ID 1840; ORF 590-1>:
m590-1.pep
        MKKPLISVAA ALLGVALGTP YYLGVKAEES LTQQQKILQE TGFLTVESHQ
     51
         YERGWFTSME TTVIRLKPEL LNNARKYLPD NLKTVLEQPV TLVNHITHGP
         FAGGFGTQAY IETEFKYAPE TEKVLERFFG KQVPASLANT VYFNGSGKME
    101
         VSVPAFDYEE LSGIRLHWEG LTGETVYQKG FKSYRNGYDA PLFKIKLADK
    151
         GDAAFEKVHF DSETSDGINP LALGSSNLTL EKFSLEWKEG VDYNVKLNEL
    201
    251
         VNLVTDLQIG AFINPNGSIA PSKIEVGKLA FSTKTGESGA FINSEGQFRF
         DTLVYGDEKY GPLDIHIAAE HLDASALTVL KRKFAQISAK KMTEEQIRND
    351
         LIAAVKGEAS GLFTNNPVLD IKTFRFTLPS GKIDVGGKIM FKDMKKEDLN
         QLGLMLKKTE ADIRMSIPQK MLEDLAVSQA GNIFSVNAED EAEGRASLDD
    401
    451
         INETLRLMVD STVQSMAREK YLTLNGDQID TAISLKNNOL KLNGKTLONE
         PEPDFDEGGM VSEPQQ*
    501
m590-1/q590
             93.6% identity in 516 aa overlap
                           20
m590-1.pep
           MKKPLISVAAALLGVALGTPYYLGVKAEESLTQQQKILQETGFLTVESHQYERGWFTSME
           MKKPLISVAAVLLGVALGTPYYLGVKAEESLTQQQKILQKTGFLTVESHQYDRGWFTSTE
a590
                          20
                                   30
                                            40
                  70
                           80
                                   90
                                           100
                                                    110
                                                            120
           TTVIRLKPELLNNARKYLPDNLKTVLEQPVTLVNHITHGPFAGGFGTQAYIETEFKYAPE
m590-1.pep
           g590
           TTVIRLKPELLHNAQKYLPDNLKIVLEQPVTLVNHITHGPFAGGFGTQAHIETEFKYAPE
                 . 70
                                   90
                                           100
                                                    110
                                                            120
                 130
                          140
                                  150
                                           160
                                                    170
m590-1.pep
           TEKVLERFFGKQVPASLANTVYFNGSGKMEVSVPAFDYEELSGIRLHWEGLTGETVYOKG
           TEKVLERFFGKQVPVSLANTVYFNGSGKMEVSVPAFDYEELSGIRLHWEGLTGETVYQKG
g590
                 130
                          140
                                  150
                                           160
                                                   170
                 190
                          200
                                  210
                                           220
                                                   230
                                                            240
           FKSYRNGYDAPLFKIKLADKGDAAFEKVHFDSETSDGINPLALGSSNLTLEKFSLEWKEG
m590-1.pep
           q590
           FKSYRNSYDAPLFKIKLADKGDAAFEKAHFDSETSDGINPLALGSSNLTLEKFSLEWKEG
                 190
                          200
                                  210
                                           220
                                                   230
                 250
                          260
                                  270
                                           280
           VDYNVKLNELVNLVTDLQIGAFINPNGSIAPSKIEVGKLAFSTKTGESGAFINSEGQFRF
m590-1.pep
           a590
           VDYNVKLNELVNLVTDLQIGAFINPNGSIAPSKIEVGKLAFSTKTGESGAFIDSEGRFRF
                 250
                          260
                                  270
                                           280
                                                   290
                                                            300
                 310
                          320
                                  330
                                                   350
                                                            360
m590-1.pep
           DTLVYGDEKYGPLDIHIAAEHLDASALTVLKRKFAQISAKKMTEEQIRNDLIAAVKGEAS
           g590
           DTLVYGDEKYGPLDIHIAAEHLDASALTVLKRKFAQISAKKMTEEQIRNDLIAAVKGDAS
                 310
                          320
                                  330
                                           340
                                                   350
                         380
                                           400
           GLFTNNPVLDIKTFRFTLPSGKIDVGGKIMFKDMKKEDLNQLGLMLKKTEADIRMSIPQK
m590-1.pep
           GLFTHDPVLNIKIFRFTLPQGKIDVGGKIMFKGMKKEDLNQLGLMLKKTEANIRMSIPQK
a590
                 370
                          380
                                  390
                                           400
                                                   410
                                                            420
                 430
                          440
                                  450
                                           460
                                                   470
           MLEDLAVSQAGNIFSVNAEDEAEGRASLDDINETLRLMVDSTVQSMAREKYLTLNGDQID
m590-1.pep
           MLEDLAVSQAGNIFSVNAEDEAEARASIADINETLRLMVDSTVQSMAREKYLTLDGNQID
g590
                 430
                          440
                                  450
                                           460
                                                   470
                 490
                         500
                                  510
m590-1.pep
           TAISLKNNQLKLNGKTLQNEPEPDFDEGGMVS-EPQQX
```

BNSDOCID: <WO___9957280A2_I_>

1:111111 1111111111111111111 111 :1: TVISLKNNALKLNGKTLQNEPDPDFDEGDMVSGQPHX g590 98.3% identity in 516 aa overlap a590/m590-1 5.0 MKKPLISVAAALLGVALGTPYYLGVKAEESLTQQQKILQEAGFLTVESHQYERGWFTSTE a590.pep m590-1 MKKPLISVAAALLGVALGTPYYLGVKAEESLTQQQKILQETGFLTVESHQYERGWFTSME a590.pep ${\tt TTVIRLKPELLHNAQKYLPDNLKTVLEQPVTLVNHITHGPFAGGFGTQAYIETEFKYAPE}$ m590-1 TTVIRLKPELLNNARKYLPDNLKTVLEQPVTLVNHITHGPFAGGFGTQAYIETEFKYAPE a590.pep TEKVLERFFGKQVPVSLANTVYFNGSGKMEVSVPAFDYEELSGIRLHWEGLTGETVYQKG m590-1 TEKVLERFFGKQVPASLANTVYFNGSGKMEVSVPAFDYEELSGIRLHWEGLTGETVYQKG FKSYRNGYDAPLFKIKLADKGDAAFEKVHFDSETSDGINPLALGSSNLTLEKFSLEWKEG a590.pep m590-1 FKSYRNGYDAPLFKIKLADKGDAAFEKVHFDSETSDGINPLALGSSNLTLEKFSLEWKEG VDYNVKLNELVNLVTDLQIGAFINPNGSIAPSKIEVGKLAFSTKTGESGAFIDSEGQFRF a590.pep m590-1 VDYNVKLNELVNLVTDLQIGAFINPNGSIAPSKIEVGKLAFSTKTGESGAFINSEGQFRF a590.pep GTLVYGDEKYGPLDIHIAAEHLDASALTVLKRKFARISAKKMTEEQIRNDLIAAVKGEAS TREETER FREETER FREETER FREETER FREETER FREETER FREETER FREETER FREETER FREETER FREETER FREETER FREETER FREETE m590-1 DTLVYGDEKYGPLDIHIAAEHLDASALTVLKRKFAQISAKKMTEEQIRNDLIAAVKGEAS ${\tt GLFTHNPVLDIKTFRFTLPSGKIDVGGKIMFKDMKKEDLNQLGLMLKKTEADIRMSIPQK}$ a590.pep m590~1 GLFTNNPVLDIKTFRFTLPSGKIDVGGKIMFKDMKKEDLNQLGLMLKKTEADIRMSIPQK ${\tt MLEDLAVSQAGNIFSVNAEDEAEGRASLDDINETLRLMVDSTVQSMAREKYLTLNGDQID}$ a590.pep m590-1 MLEDLAVSQAGNIFSVNAEDEAEGRASLDDINETLRLMVDSTVQSMAREKYLTLNGDQID a590.pep TAISLKNNQLKLNGKTLQNEPEPDFDEGGMVSEPQQX m590-1 TAISLKNNQLKLNGKTLQNEPEPDFDEGGMVSEPQQX

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1841>:

1	TTGCAAACCC	TTCTAGCTTT	TATCTTCGCC	ATCCTGATTT	TGGTCAGCCT
51	GCACGAATTC	GGACACTACA	TCGTCGCCAG	GTTGTGCGGC	CTCAACCTTC
101	TGCGTTTTTC	CGTCGGCTTC	GGCAAACCGT	TTTTCACCCC	DICAMOGIIG
151	GACACCGAAT	GGTGCCTCGC	CCCGATTCCC	TTTCCCCCC	AAAGCGCGGC
201	GGTCGATACG	CGCGAAGGCG	AACEAECACA	ACCCCA PERE	ACGTCAAAAT
251	TTGACAAACA	ACACCCCCC	AAGIAICAGA	AGCCGATTTA	CCCTACGCTT
301	TTGACAAACA	TCCCD at an an	AAGCGCATCG	CCATCGTCGC	CGCCGGTCCG
351	CTGACCAACC	CARCEGGC	ggTTTTGCTG	TACGGACTGa	gctTttcctt
221	cggcgtaaCC	GAACTGCGGC	CCtatgtcgg	cacagtcgaA	cccgacaccq

```
401 ttgccgCCCG CACCGGCTTC caaagcggcg acaaAATACa atccgtcaac
      ggcgtTtccg tCCAAGACTG GAGCAGCGCG CAAACCGAAA TCGTcctcAA
     CCTCGAAGCC Ggcaaagtcg ccgtcggcgT TCAGACGGCA TCGGGCGCGC
      AAACCGTCCG CACCAtcgAT GCCGCAGGCA CGCCGGAAGC CGGTAAAATC
      GCAAAAACC AAGGCTACAT CGGACTGATG CCCTTTAAAA TCACAACCGT
      TGCCGGCGGC GTGGAAAAG GCAGCCCCGC CGAAAAAGCA GGCCTGAAAC
 651
     CGGGCGACAG GCTGACTGCC GCCGACGGCA AACCCATCGc ctcaTGGCAG
     GAATGggcaa acctgACccg cCAAAGCCCq qqcAAAAAA Tcaccctgac
 801
     ctacgAaCGC GCcggacaaa cccaTAccgc CGACATCCGC CccgATactg
     TCGAAcagec cgACCACACC CTGATCgggc gcgTCGGCCT CCGtccgcaG CCGGACAGGG CGTGGGACGC GCAAATCCGC CGCAGCTACC GTCCGTCTGT
901
     TGTCCGCGCA TTCGGCATGG GCTGGGAAAA AACCGTTTCC CACTCGTGGA
951
     CAACCCTCAA ATTTTTCGGC AAACTAATCA GCGGCAACGC CTCTGTCAGC
     CATATTTCCG GGCCGCTGAC CATTGCCGAC ATTGCCGGAC AGTCCGCCGA
1051
1101
     ACTCGGCTTG CAAAGTTATT TGGAATTTTT AGCGTTGGTC AGCATCAGCC
      TCGGCGTGCT GAACCTGCTG CCCGTCCCCG TTTTGGACGG CGGGCACCTC
     GTGTTTTATA CTGTCGAATG GATACGCGGC AAACCTTTGG GCGAACGTGT
1201
     CCAAAACATC GGTTTGCGCT TCGGGCTCGC CCTGATGATG CTGATGATGG
1301 CGGCCGCCTT CTTCAACGAC GTTACCCGGC TGATCGGTTA G
```

This corresponds to the amino acid sequence <SEQ ID 1842; ORF 591.ng>:

```
9591.pep..

1 LQTLLAFIFA ILILVSLHEF GHYIVARLCG VKVVRFSVGF GKPFFTRKRG
51 DTEWCLAPIP LGGYVKMVDT REGEVSEADL PYAFDKQHPA KRIAIVAAGP
101 LTNLALAVLL YGLSFSFGVT ELRPYVGTVE PDTVAARTGF QSGDKIQSVN
151 GVSVQDWSSA QTEIVLNLEA GKVAVGVQTA SGAQTVRTID AAGTPEAGKI
201 AKNQGYIGLM PFKITTVAGG VEKGSPAEKA GLKPGDRLTA ADGKPIASWQ
251 EWANLTRQSP GKKITLTYER AGQTHTADIR PDTVEQPDHT LIGRVGLRPQ
301 PDRAWDAQIR RSYRPSVVRA FGMGWEKTVS HSWTTLKFFG KLISGNASVS
351 HISGPLTIAD IAGQSAELGL QSYLEFLALV SISLGVLNLL PVPVLDGGHL
401 VFYTVEWIRG KPLGERVQNI GLRFGLALMM LMMAAAFFND VTRLIG*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1843>:

```
m591.seg
         TTGCACACCC TTCTAGCTTT TATCTTCGCC ATCCTGATTT TGGTCAGCCT
         GCACGAGTTC GGACACTACA TCGTTGCCAG ATTGTGCGGC GTCAAAGTCG
      51
         TACGCTTTTC CGTCGGCTTC GGCAAACCGT TTTTCACCCG AAAGCGCGGC
         GACACCGAAT GGTGCCTCGC CCCGATTCCG TTGGGCGGTT ACGTCAAAAT
         GGTCGATACG CGCGAAGGCG AAGTATCAGA AGCCGATTTA CCCTACGCTT
     201
         TTGACAAACA ACACCCCGCC AAGCGCATCG CCATCGTCGC CGCCGGCCCA
     301
         CTGACCAACC TCGCACTGGC GGTTTTGCTG TACGGACTGA GCTTTTCCTT
         CGGCGTAACC GAACTGCGCC CCTACGTCGG CACAGTCGAA CCCGACACCA
     351
     401
         TTGCCGCCCG CGCCGGCTTC CAAAGCGGCG ACAAAATACA ATCCGTCAAC
         GGCACACCCG TTGCAGATTG GGGCAGCGCG CAAACCGAAA TCGTCCTCAA
     451
         CCTCGAAGCC GGCAAAGTCG CCGTCGGCGT TCAGACGGCA TCGGGCGCGC
     551 AAACCGTCCG CACCATCGAT GCCGCAGGCA CGCCGGAAGC CGGTAAAATC
     601 GCAAAAAACC AAGGCTACAT CGGACTGATG CCCTTTAAAA TCACAACCGT
         TGCCGGCGGC GTGGAAAAG GCAGCCCCGC CGAAAAAGCA GGCCTGAAAC
         CGGGCGACAG GCTGACTGCC GCCGACGGCA AACCCATCGC CTCATGGCAA
     701
     751 GAATGGGCAA ACCTGACCCG CCAAAGCCCC GGCAAAAAAA TCACCCTGAA
         CTACGAACGC GCCGGACAAA CCCATACCGC CGACATCCGC CCCGATACTG
         TCGAACAGTC CGACCACACC CTGATCGGGC GCGTCGGCCT CCGTCCGCAG
     851
         CCGGACAGGG CGTGGGACGC GCAAATCCGC CGCAGCTACC GTCCGTCTGT
     951
         TGTCCGCGCA TTCGGCATGG GCTGGGAAAA AACCGTTTCC CACTCGTGGA
         CAACCCTCAA ATTTTTCGGC AAACTAATCA GCGGCAACGC CTCCGTCAGC
         CATATTTCCG GGCCGCTGAC CATTGCCGAC ATTGCCGGAC AGTCCGCCGA
         ACTCGGCTTG CAAAGTTATT TGGAATTTTT AGCACTGGTC AGCATCAGCC
         TCGGCGTGCT GAACCTACTG CCCGTCCCTG TTTTGGACGG CGGGCACCTC
    1151
         GTGTTTTATA CTGCCGAATG GATACGCGGC AAACCTTTGG GCGAACGCGT
    1201
         CCAAAACATC GGTTTGCGCT TCGGGCTCGC CCTCATGATG CTGATGATGG
    1251
         CGGTCGCCTT CTTCAACGAC GTTACCCGGC TGCTCGGTTA G
```

This corresponds to the amino acid sequence <SEQ ID 1844; ORF 591>: m591.pep..

BNSDOCID: <WO__9957280A2_J_>

1	LHTLLAFIFA	ILILVSLHEF	GHYIVARLCG	VKVVRFSVGF	GKPFFTRKRG
51	DTEWCLAPIP	LGGYVKMVDT	REGEVSEADL	PYAFDKOHPA	KRIAIVAAGP
101	LTNLALAVLL	YGLSFSFGVT	ELRPYVGTVE	PDTIAARAGF	OSGDKIOSVN
151	GTPVADWGSA	QTEIVLNLEA	GKVAVGVQTA	SGAOTVRTID	AAGTPEAGKT
201	AKNQGYIGLM	PFKITTVAGG	VEKGSPAEKA	GLKPGDRLTA	ADGKPIASWO
251	EWANLTRQSP	GKKITLNYER	AGQTHTADIR	PDTVEOSDHT	LIGRVGLRPO
301	PDRAWDAQIR	RSYRPSVVRA	FGMGWEKTVS	HSWTTLKFFG	KLISGNASVS
351	HISGPLTIAD	IAGQSAELGL	QSYLEFLALV	SISLGVLNLL	PVPVLDGGHI.
401	VFYTAEWIRG	KPLGERVQNI	GLRFGLALMM	LMMAVAFFND	VTRLLG*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m591 / g591 97.3% identity in 446 aa overlap

m591.pep	10	20	30	40	50	60
ms91.pep	LHTLLAFIFAILI	TASPHELCH!	IVARLCGVKV	VRFSVGFGKPF	FTRKRGDTE	WCLAPIP
g591	LQTLLAFIFAILI	LVSLHEFGHY	TVARI.CGVKV	THILLIH III	TTDVDCDmm	1
-	10	20	30	40	50	WCLAPIP 60
					00	00
	70	80	90	100	110	120
m591.pep	LGGYVKMVDTREG	EVSEADLPYA	FDKQHPAKRI	AIVAAGPLTNL	ALAVLLYGL:	SFSFGVT
~E 0.1			11111111	1111111111		
g591	LGGYVKMVDTREGE 70	EVSEADLPYA 80	FDKQHPAKRI			
	70	80	90	100	110	120
	130	140	150	160	1 70	100
m591.pep	ELRPYVGTVEPDTI		OKTOSVNGTP	₹₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	1/U	180
• •			! ! ! ! ! ! ! ! ! :	1 11:11111	F1 1 1 1 1 1 1 1 1 1 1	111111
g591	ELRPYVGTVEPDTV	/AARTGFQSGI	OKIQSVNGVS	VODWSSAOTEI	VINLEAGKVZ	TILLI ATOVOVA
	130	140	150	160	170	180
						100
	190	200	210	220	230	240
m591.pep	SGAQTVRTIDAAGT	PEAGKIAKNO	GYIGLMPFK:	ITTVAGGVEKG:	SPAEKAGLKE	GDRLTA
g591						111111
g231	SGAQTVRTIDAAGT 190	'PEAGKIAKNO	GYIGLMPFK:			GDRLTA
	190	200	210	220	230	240
	250	260	270	280	290	200
m591.pep	ADGKPIASWQEWAN		TLNYERAGO	ZOU PHTADTRPDTW	290 מסד זייינות ארס	300
_	11111111111111	1111111111	11:11111			LILLI
g591	ADGKPIASWQEWAN	LTRQSPGKKI	TLTYERAGO	THTADIRPDTVE	COPDHTLIGR	VGLRPO
	250	260	270	280	290	300
mE01 man	310	320	330	340	350	360
m591.pep	PDRAWDAQIRRSYR	PSVVRAFGMG	WEKTVSHSWI	TLKFFGKLISC	NASVSHISG	PLTIAD
q591			HEKMILOW CHA			
9032	310	320	330	TLKFFGKLISC 340		
	010	320	330	340	350	360
	370	380	390	400	410	420
m591.pep	IAGQSAELGLQSYL	EFLALVSISL	GVLNLLPVPV	LDGGHLVFYTA	EWIRCKDIC	PDVONT
	11111111111	1 1 1 1 1 1 1 1 1 1 1 1	11111111	1111111111	11111111	11111
g591	IAGQSAELGLQSYLI	EFLALVSISL	GVLNLLPVPV	LDGGHLVFYTV	EWIRGKPLG	ERVONT
	370	380	390	400	410	420
		. 0				
m591.pep	430	440				
most.beb	GLRFGLALMMLMMA	VAL'FNDVTRL	LGX			
g591		.	:			
3-24	430	440	LGX			
allowing norti			~			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1845>: a591.seq

grade the second

1	TTGCACACCC	TTCTAGCTTT	TATCTTCGCC	ATCCTGATTT	TGGTCAGCCT
51	GCACGAATTC	GGACACTACA	TCGTCGCCAG	ATTGTGCGGC	GTCAAGGTTG
101	TGCGTTTTTC	CGTCGGCTTC	GGCAAACCGT	TTTTCACCCG	AAAGCGCGGC
151	GACACCGAAT	GGTGCCTCGC	CCCGATTCCG	TTGGGCGGTT	ACGTCAAAAT
201	GGTCGACACG	CGCGAAGGCG	AAGTATCAGA	AGCCGATTTA	CCCTACGCTT
251	TTGACAAACA	ACACCCCGCC	AAGCGCATCG	CCATCGTCGC	CGCCGGCCCG
301	CTGACCAACC	TCGCACTGGC	GGTTTTGCTG	TACGGACTGA	GCTTTTCCTT
351	CGGCGTTACC	GAACTGCGCC	CCTATGTCGG	CACAGTCGAA	CCCGACACCA
401	TTGCCGCCCG	CGCCGGCTTC	CAAAGCGGCG	ACAAAATACA	ATCCGTCAAC
451	GGCACACCCG	TTGCAGATTG	GGGCAGCGCG	CAAACCGAAA	TCGTCCTCAA
501	CCTCGAAGCC	GGCAAAGTCG	CCGTCGGCGT	TCAGACGGCA	TCGGGCGCGC
551	AAACCGTCCG	CACCATCGAT	GCCGCAGGCA	CGCCGGAAGC	CGGTAAAATC
601	GCAAAAAACC	AAGGCTACAT	CGGACTGATG	CCCTTTAAAA	TCACAACCGT
651	TGCCGGCGGC	GTGGAAAAAG	GCAGCCCCGC	CGAAAAAGCA	GGCCTGAAAC
701	CGGGCGACAG	GCTGACTGCC	GCCGACGGCA	AACCCATCGC	CTCATGGCAA
751	GAATGGGCAA	ACCTGACCCG	CCAAAGCCCC	GGCAAAAAAA	TCACCCTGAC
801	CTACGAACGC	GCCGGACAAA	CCCATACCGC	CGACATCCGC	CCCGATACTG
851	TCGAACAGCC	CGACCACACC	CTGATCGGGC	GCGTCGGCCT	CCGTCCGCAG
901	CCGGACAGGG	CGTGGGACGC	GCAAATCCGC	CGCAGCTACC	GTCCGTCTGT
951	TGTCCGCGCA	TTCGGCATGG	GCTGGGAAAA	AACCGTTTCC	CACTCGTGGA
1001	CAACCCTCAA	ATTTTTCGGC	AAACTAATCA	GCGGCAACGC	CTCCGTCAGC
1051	CATATTTCCG	GTCCGCTGAC	CATTGCCGAT	ATTGCCGGAC	AGTCCGCCGA
1101	ACTCGGCTTG	CAAAGTTATT	TGGAATTTTT	GGCACTGGTC	AGCATCAGCC
1151	TCGGCGTGCT	GAACCTGCTG	CCCGTCCCCG	TTTTGGACGG	CGGCCACCTC
1201	GTGTTTTATA	CTGCCGAATG	GATACGCGGC	AAACCTTTGG	GCGAACGCGT
1251	CCAAAACATC	GGTTTGCGCT	TCGGGCTTGC	CCTCATGATG	CTGATGATGG
1301	CGGTCGCCTT	CTTCAACGAC	GTTACCCGGC	TGCTCGGTTA	G

This corresponds to the amino acid sequence <SEQ ID 1846; ORF 591.a>:

```
a591.pep

1 LHTLLAFIFA ILILVSLHEF GHYIVARLCG VKVVRFSVGF GKPFFTRKRG
51 DTEWCLAPIP LGGYVKMVDT REGEVSEADL PYAFDKQHPA KRIAIVAAGP
101 LTNLALAVLL YGLSFSFGVT ELRPYVGTVE PDTIAARAGF QSGDKIQSVN
151 GTPVADWGSA QTEIVLNLEA GKVAVGVQTA SGAQTVRTID AAGTPEAGKI
201 AKNQGYIGLM PFKITTVAGG VEKGSPAEKA GLKPGDRLTA ADGKPIASWQ
251 EWANLTRQSP GKKITLTYER AGQTHTADIR PDTVEQPDHT LIGRVGLRPQ
301 PDRAWDAQIR RSYRPSVVRA FGMGWEKTVS HSWTTLKFFG KLISGNASVS
351 HISGPLTIAD IAGQSAELGL QSYLEFLALV SISLGVLNLL PVPVLDGGHL
401 VFYTAEWIRG KPLGERVQNI GLRFGLALMM LMMAVAFFND VTRLLG*
```

m591/a591 99.6% identity in 446 aa overlap

	10	20	30	40	50	60
m591.pep	LHTLLAFIFAILIL	VSLHEFGHYI	VARLCGVKVV	RFSVGFGKPF	FTRKRGDTEW	CLAPIP
		11111111	111111111	1111111111	111111111	111111
a591	LHTLLAFIFAILIL	VSLHEFGHYI	VARLCGVKVV	RFSVGFGKPF	FTRKRGDTEW	CLAPIP
	10	20	30	40	50	60
	70	80	90	100	110	120
m591.pep	LGGYVKMVDTREGE	VSEADLPYAF	DKQHPAKRIA	IVAAGPLTNL	ALAVLLYGIS	FSFGVT
	111111111111	11111111111	111111111			111111
a591	LGGYVKMVDTREGE	VSEADLPYAF	DKOHPAKRIA	IVAAGPLTNI	ALAVLLYGLS	FSFGVT
	70	80	90	100	110	120
						120
	130	140	150	160	170	180
m591.pep	ELRPYVGTVEPDTI	aaragfosgd	KIQSVNGTPV	ADWGSAQTEI	VLNLEAGKVA	VGVOTA
		111111111	111111111	111111111	111111111	11111
a591	ELRPYVGTVEPDTI	AARAGFQSGD	KIQSVNGTPV	ADWGSAOTEI	VLNLEAGKVA	VGVOTA
	130	140	150	160	170	180
						100
	190	200	210	220	230	240
m591.pep	SGAQTVRTIDAAGT	PEAGKIAKNQ	GYIGLMPFKI	TTVAGGVEKG	SPAEKAGLKP	CDRITA
	11111111111111	111111111	1111111111		111111111	LILLI
a591	SGAQTVRTIDAAGT	PEAGKIAKNO	GYIGLMPFKI	TTVAGGVEKG	SPARKACIKO	אייוווון ב
	190	200	210	220	230	240
•		•			250	240

m591.pep	250 ADGKPIASWQEWAN ADGKPIASWQEWAN 250		111:11111			111111
m591.pep	310 PDRAWDAQIRRSYRI PDRAWDAQIRRSYRI 310			111111111		111111
m591.pep	370 IAGQSAELGLQSYLE IAGQSAELGLQSYLE 370	111111	[[]]]]	1111111111	11111111	HHILL
m591.pep a591	430 GLRFGLALMMLMMAV GLRFGLALMMLMMAV 430	11111111	111			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1847>: g592.seq..

```
atgattccgg acgtgttcgg tcagattttt tcgggcgcgt tcaaattcga
 51
     cgcggcagca ggcggcttac tcggcggtct gatttcgcaa acgatgatga
101 tgggcatcaa acgcggcctg tattccaacg aggcgggtat gggttccgcg
151 ccgaacgccg ccgccgccgc cgaagtgaaa caccctgttt cgcaaggtat
201 gattcaaatg ctgggcgtgt ttgtcgatac catcatcgtt tgttcttgca
251 ccgccttcat catcttgatt taccaacagc cttatggcga tttgagcggt
301 gcggcgctga cgcaggcggc gattgtcagc caagtggggc aatggggcgc
351 gggtttcctc gccgtcatcc tgtttatgtt tgccttttcc accgttatcg
401 gcaactatgc ctatgccgag tccaacgtcc aattcatcaa aagccattgg
451 ctgattaccg ccgttttccg tatgctggtt ttggcgtggg tctatttcgg
501 cgcggttgcc aatgtgcctt tggtctggga tatggcggat atggcgatgg
551 gcatcatggc gtggatcaac ctcgtcgcca tcctgctgct ctcgccattg
601 gcgtttatgc tgctgcgcga ttacaccgcc aagctgaaaa tgggcaaaga
651 ccccgagttc aaactttccg aacatccggg cctgaaacgc cgcatcaaat
701 ccgatgtttg gtaa
```

This corresponds to the amino acid sequence <SEQ ID 1848; ORF 592.ng>:

- 1 MIPDVFGQIF SGAFKFDAAA GGLLGGLISQ TMMMGIKRGL YSNEAGMGSA
 51 PNAAAAAEVK HPVSQGMIQM LGVFVDTIIV CSCTAFIILI YQQPYGDLSG
 101 AALTQAAIVS QVGQWGAGFL AVILFMFAFS TVIGNYAYAE SNVQFIKSHW
 151 LITAVFRMLV LAWVYFGAVA NVPLVWDMAD MAMGIMAWIN LVAILLLSPL
- 201 AFMLLRDYTA KLKMGKDPEF KLSEHPGLKR RIKSDVW*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1849>:

```
1 ATGATTCCGG ACGTGTTCGG TCAGATTTTT TCGGGGCGCGT TCAAATTCGA
51 CGCGGCAGCA GGCGGCTTAC TCGGCGGTCT GATTTCGCAA ACGATGATGA
101 TGGGCATCAA ACGCGGCCTG TATTCCAACG AGGCGGGTAT GGGTTCCGCG
151 CCGAACGCCG CCGCCGCC CGAAGTGAAA CACCCTGTTT CGCAAGGTAT
201 GATTCAAATG CTGGGCGTGT TTGTCGATAC CATCATCGTT TGTTCTTGCA
251 CCGCCTTCAT CATCTTGATT TACCAACAGC CTTACGGCGA TTTGAGCGGT
301 GCGGCGCTGA CGCAGGCGGC GATTGTCAGC CAAGTGGGGC AATGGGGCGC
351 GGGCTTCCTC GCCGTCATCC TGTTTATGTT TGCCTTTTCC ACCGTTATCG
401 GCAACTATGC CTATGCCGAG TCCAACGTCC AATTCAACACGC
501 CGCGGTTGCC AATGTGCCTT TGGTCTGGGA TATGGCGGAT ATGGCGATGG
501 CGCGGTTGCC GTGGATCAAC CTTGTCGCCA TCCTGCTGCT CTCGCCCTTG
```

```
601 GCGTTTATGC TGCTGCGCGA TTACACCGCC AAGCTGAAAA TGGGCAAAGA
    651 CCCCGAGTTC AAACTTTCCG AACATCCGGG CCTGAAACGC CGTATCAAAT
    701 CCGACGTTTG GTAA
This corresponds to the amino acid sequence <SEQ ID 1850; ORF 592>:
m592.pep
        MIPDVFGQIF SGAFKFDAAA GGLLGGLISQ TMMMGIKRGL YSNEAGMGSA
      1
     51
        PNAAAAAEVK HPVSQGMIQM LGVFVDTIIV CSCTAFIILI YQQPYGDLSG
        AALTQAAIVS QVGQWGAGFL AVILFMFAFS TVIGNYAYAE SNVOFIKSHW
    101
    151 LITAVFRMLV LAWVYFGAVA NVPLVWDMAD MAMGIMAWIN LVAILLLSPL
        AFMLLRDYTA KLKMGKDPEF KLSEHPGLKR RIKSDVW*
m592 / g592 100.0% identity in 237 aa overlap
                  10
                           20
                                   30
m592.pep
           MIPDVFGQIFSGAFKFDAAAGGLLGGLISQTMMMGIKRGLYSNEAGMGSAPNAAAAAEVK
           g592
           MIPDVFGQIFSGAFKFDAAAGGLLGGLISQTMMMGIKRGLYSNEAGMGSAPNAAAAAEVK
                          20
                  10
                                   30
                                            40
                                                    50
                           80
                                   90
                                           100
                                                   110
           HPVSQGMIQMLGVFVDTIIVCSCTAFIILIYQQPYGDLSGAALTQAAIVSQVGQWGAGFL
m592.pep
           a592
           HPVSQGMIQMLGVFVDTIIVCSCTAFIILIYQQPYGDLSGAALTQAAIVSQVGQWGAGFL
                  70
                          80
                                   90
                                           100
                                                   110
                 130
                         140
                                  150
                                           160
                                                   170
m592.pep
           AVILFMFAFSTVIGNYAYAESNVQFIKSHWLITAVFRMLVLAWVYFGAVANVPLVWDMAD
           AVILFMFAFSTVIGNYAYAESNVQFIKSHWLITAVFRMLVLAWVYFGAVANVPLVWDMAD
q592
                 130
                         140
                                  150
                                           160
                                                   170
```

190

m592.pep

g592

200

200

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1851>:

210

MAMGIMAWINLVAILLLSPLAFMLLRDYTAKLKMGKDPEFKLSEHPGLKRRIKSDVWX

MAMGIMAWINLVAILLLSPLAFMLLRDYTAKLKMGKDPEFKLSEHPGLKRRIKSDVWX

210

220

220

```
a592.seq
         ATGATTCCGG ACGTGTTCGG TCAGATTTTT TCGGGCGCGT TCAAATTCGA
      51
         CGCGGCAGCA GGCGGCTTAC TCGGCGGTCT GATTTCGCAA ACGATGATGA
         TGGGCATCAA ACGCGGCCTG TATTCCAACG AGGCGGGTAT GGGTTCCGCG
    101
         CCGAACGCCG CCGCCGCCGC CGAAGTGAAA CACCCTGTTT CGCAAGGTAT
         GATTCAAATG CTGGGCGTGT TTGTCGATAC CATCATCGTT TGTTCTTGCA
    201
    251
         CCGCCTTCAT CATCTTGATT TACCAACAGC CTTACGGCGA TTTGAGCGGT
         GCGGCGCTGA CGCAGGCGGC GATTGTCAGC CAAGTGGGGC AATGGGGGCGC
         GGGCTTCCTC GCCGTCATCC TGTTTATGTT TGCCTTTTCC ACCGTTATCG
    351
         GCAACTATGC CTATGCCGAG TCCAACGTCC AATTCATCAA AAGCCATTGG
    401
         CTGATTACCG CCGTTTTCCG TATGCTGGTT TTGGCGTGGG TCTATTTCGG
    451
    501
         CGCGGTTGCC AATGTGCCTT TGGTCTGGGA TATGGCGGAT ATGGCGATGG
         GCATTATGGC GTGGATCAAC CTTGTCGCCA TCCTGCTGCT CTCGCCCTTG
    551
         GCGTTTATGC TGCTGCGCGA TTACACCGCC AAGCTGAAAA TGGGCAAAGA
    601
         CCCCGAGTTC AAACTTTCCG AACATCCGGG CCTGAAACGC CGTATCAAAT
    651
    701
         CCGACGTTTG GTAA
```

This corresponds to the amino acid sequence <SEQ ID 1852; ORF 592.a>:

```
a592.pep

1 MIPDVFGQIF SGAFKFDAAA GGLLGGLISQ TMMMGIKRGL YSNEAGMGSA
51 PNAAAAAEVK HPVSQGMIQM LGVFVDTIIV CSCTAFIILI YQQPYGDLSG
101 AALTQAAIVS QVGQWGAGFL AVILFMFAFS TVIGNYAYAE SNVQFIKSHW
151 LITAVFRMLV LAWVYFGAVA NVPLVWDMAD MAMGIMAWIN LVAILLLSPL
201 AFMLLRDYTA KLKMGKDPEF KLSEHPGLKR RIKSDVW*
```

m592/a592 100.0% identity in 237 aa overlap

	10	20	30	40	50	60
m592.pep	MIPDVFGQIFSGAF	`KFDAAAGGLI	GGLISOTMMN	ACT KRGLYSNE	ZACMCSADNAI	\
		1111111111	111111111		MONGRADA	ANAME A V
a592		ווווווווון! זיסאאאלי	COLTON			
8332	MIPDVFGQIFSGAF	KE DAAAGGLI	GGTTSQTMW		:AGMGSAPNA <i>I</i>	AAAA EVK
	10	20	30	40	50	60
	70	80	90	100	110	120
m592.pep	HPVSQGMIQMLGVF	VDTTTVCSCT		ייייייייייייייייייייייייייייייייייייי	110	120
		1111111111	WETTHITIONE			
- 500	11111111111111111111111111111111111111		1111111111		111111111	11111
a592	HPVSQGMIQMLGVF	VDTIIVCSCT	AFIILIYQQF	YGDLSGAALT	QAAIVSQVGC	WGAGFL
	70	80	90	100	110	120
	130	140	150	160	170	1.00
m592.pep					170	180
mose . pep	AVILFMFAFSTVIG	MINIMESHVQ	LIVOUMTILY	VERMILVLAWV	YFGAVANVPL	VWDMAD
F. B. C.					111111111	11111
a592	AVILFMFAFSTVIG	NYAYAESNVQ	FIKSHWLITA	VFRMLVLAWV	YFGAVANVPL	VWDMAD
	130	140	150	160	170	180
					2.0	100
	190	200	210	220		
m592.pep	MAMGIMAWINI.VATI			220	230	
mosz.pep	MAMGIMAWINLVAI	LLLSPLAFML.	LRDYTAKLKM	GKDPEFKLSE	HPGLKRRIKS	DVWX
	411414111111			111111111	111111111	1111
a592	MAMGIMAWINLVAII	LLLSPLAFML	LRDYTAKLKM	GKDPEFKLSEI	HPGLKRRTKG	אנאט
	190	200	210	220	230	DAMY
				220	230	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1853>: g593.seq..

```
atgettgaac tgaacggact etgcaaatge tteggeggea aaacggtege
  1
 51
    cgacaacatc tgcctgactg tcgggcgcgg caaaatactc gccgtactgg
101
     ggcggtcggg ctgcggcaaa tccaccctgc tgaatatgat tgcgggcatc
     gtccggccgg acggcggcga aattcggctg aacggggaaa acattacctg
151
201 tatgccgccc gaaaaacgcc gtatctcgct gatgtttcaa gattacgcgc
251 tgtttcccca tatgagtgcg ctggaaaata cggcattcgg tttgaaaatg
301 caaaaaatgc cgaaagccga agccgaacgc ctcgccttgt cggcacttgc
351
    cgaagtcggg ctggaaaacg aggcgcaccg caagcctgaa aaactttccg
     gaggcgagaa gcaacggttg gcactggcgc gcgctttggt tgtccgccct
401
451 tccctgctgt tgctggatga atcgttttcc agtttggaca cgcatttgcg
501 cgaccggctg cgccgtatga ccgccgaacg catccgcaag ggcggcatcc
551 ctgccgtttt ggtaacgcat tcgcccgaag aggcctgcac ggcggcggac
601 gaaategeeg teatgeacga ggggaaaate etteaatgeg gtacgeegga
651
    aaccttgatt caaacgcctg ccggcgtgca ggtcgcccgt ctgatggggc
701 tgcccaatac cgacgatgac cgccatattc cgcaaaatgc cgtgtgcttg
751 gacaatcatg gaacggaatg ccgtctgctg tccctcgtcc gcctgcccga
801 ctcgctccgg ctttccgccg tccatcccga acacggcgag ctgaccttaa
851
    acctgactgt cggacaacat acggacggta tttccggaaa cggtacggtc
    cgcatccgcg tcgatgaagg gcgtatcgtc cgtttccgat ga
```

This corresponds to the amino acid sequence <SEQ ID 1854; ORF 593.ng>: g593.pep...

.pep.	•				
1	MLELNGLCKC	FGGKTVADNI	CLTVGRGKIL	AVLGRSGCGK	STLLNMTAGE
51	VRPDGGEIRL	NGENITCMPP	EKRRISLMFO	DYALFPHMSA	LENTAFGLKM
TOT	QKMPKAEAER	LALSALAEVG	LENEAHRKPE	KLSGGEKORI.	AT.ARAT.M/PP
151	SLLLLDESFS	SLDTHLRDRL	RRMTAERIRK	GGIPAVLVTH	SPEEACTAAD
201	EIAVMHEGKI	LQCGTPETLI	QTPAGVOVAR	LMGLPNTDDD	RHIPONAVCI
251	DNHGTECRLL	SLVRLPDSLR	LSAVHPEHGE	LTLNLTVGOH	TDGISGNGTV
301	RIRVDEGRIV	RFR*		-	

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1855>: m593.seq

1	ATGCTTGAAC	TGAACGGACT	CTGCAAACGC	TTCGGCAATA	AAACCCTCCC
51	CGACAACATC	TGCCTGACTG	TOGGGCGCGG	CAAAATACTC	CCCCCCCCCC
101	GGCGGTCGGG	CTGCGGAAAA	TCCACCCTGC	TCAATATAAT	WCCCGTTTTGG
151	GTCCGGCCGG	ACGGCGGGGA	AATATGGCTG	AACGCAGAAA	ACAMMA

. . .

201	TATGCCGCCC	GAAAAACGCC	GTATCTCGCT	GATGTTTCAA	GATTACGCGC
251	TGTTTCCCCA	TATGAGTGCG	CTGGAAAATG	CGGCATTCGG	TTTGAAAATG
301	CAAAAAATGC	CGAAAGCCGA	AGCCGAACGC	CTCGCCATGG	CGGCACTTGC
351	CGAAGTCGGA	CTGGAAAACG	AGGCGCACCG	CAAGCCTGAA	AAACTTTCCG
401	GAGGCGAGAA	GCAACGGCTG	GCGTTGGCGC	GCGCTTTGGT	TGTCCGCCCT
451	TCCCTGCTGC	TGTTGGACGA	ATCGTTTTCC	AGTTTGGACA	CGCATTTGCG
501	CGGCACGCTG	CGCCGTATGA	CTGCCGAACG	TATCCGAAAC	GGCGGCATCC
551	CTGCCGTTTT	GGTAACGCAT	TCGCCCGAAG	AAGCCTGTAC	GACGGCAGAC
601	GAAATCGCCG	TGATGCATAA	AGGGAGGATT	CTACAATACG	GTACGCCCGA
651	AACATTGGTC	AAAACACCAT	CCTGCGTGCA	GGTCGCCCGA	CTGATGGGTT
701	TGCCCAATAC	CGACGATAAC	CGCCATATTC	CGCAACATGC	GGTGCGTTTC
751	GACCAAGACG	GCATGGAGTG	CCGCGTATTA	TCCCGTACCT	GTTTGCCCGA
801	ATCGTTCAGC	CTGTCCGTCC	TCCATCCGGA	ACACGGCATC	CTGTGGCTGA
851	ACCTCGATAT	GCGGCACGCC	GGGGCGGTAT	CGGGCAAGGA	TACGGTACGC
901	ATCCATATCG	AAGAACGGGA	AATCGTCCGC	TTCCGCTGA	

This corresponds to the amino acid sequence <SEQ ID 1856; ORF 593>:

m593.pep					
1	MLELNGLCKR	FGNKTVADNI	CLTVGRGKIL	AVLGRSGCGK	STLLNIIAGI
51	VRPDGGEIWL	NGENITRMPP	EKRRISLMFQ	DYALFPHMSA	LENAAFGLKM
101	QKMPKAEAER	LAMAALAEVG	LENEAHRKPE	KLSGGEKQRL	ALARALVVRP
151	SLLLLDESFS	SLDTHLRGTL	RRMTAERIRN	GGIPAVLVTH	SPEEACTTAD
201	EIAVMHKGRI	LQYGTPETLV	KTPSCVQVAR	LMGLPNTDDN	RHIPOHAVRF
251	DQDGMECRVL	SRTCLPESFS	LSVLHPEHGI	LWLNLDMRHA	GAVSGKDTVR
301	THIEFRETUR				

301 IHIEEREIVE FR* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m593 / g593 83.4% identity in 313 aa overlap

m593.pep	10 MLELNGLCKRFGNE	20 TVADNICLTV	30 GRGKILAVL	40 GRSGCGKSTLL	50 NIIAGIVRPI	60 GGEIWL
g593						 GGEIRL
	10	20	30	40	50	60
	70	80	90	100	110	120
m593.pep	NGENITRMPPEKRE	RISLMFQDYAL	FPHMSALEN <i>I</i>	AAFGLKMQKMP	KAEAERLAMA	ALAEVG
500	111111111111111			: 1 1 1 1 1 1 1 1 1 1		11111
g593	NGENITCMPPEKRE	RISLMFQDYAL			KAEAERLALS	ALAEVG
	70	80	90	100	110	120
	100					
	130	140	150	160	170	180
m593.pep	LENEAHRKPEKLS	GEKORLALAR	ALVVRPSLLI	LLDESFSSLDT	HLRGTLRRMT	'AERIRN
5.0.2					111 1111	11111:
g593	LENEAHRKPEKLSO				HLRDRLRRMT	'AERIRK
	130	140	150	160	170	180
	100					
	190	200	210	220	230	240
m593.pep	GGIPAVLVTHSPEE		MHKGRILQYO	STPETLVKTPS	CVQVARLMGL	PNTDDN
			: :		-11(11)	11111:
g593	GGIPAVLVTHSPEE	ACTAADEIAVI	MHEGKILQCO		GVQVARLMGL	PNTDDD
	190	200	210	220	230	240

BNSDOCID: <WO__9957280A2_l_>

	·
m593.per	
g593	RHIPQNAVCLDNHGTECRLLSLVRLPDSLRLSAVHPEHGELTLNLTVGQHTDGISGNGTV 250 260 270 280 290 300
	300 310
m593.pep	= = = =
g593	RIRVDEGRIVRFRX 310
The following	
The following	partial DNA sequence was identified in N. meningitidis <seq 1857="" id="">:</seq>
a593.seq 1	
51	
101	
151	
201	THE THE PARTY OF T
251	
301	
351	
401	
451	
501	
551	
601	CTGCCGTTTT GGTAACGCAT TCGCCCGAAG AGGCCTGCAC GGCGGCAGAC
651	
701	
751	
801	
851	
901	ACCTCGATAT GCCGCACGCC GGTGAAATAT CGGGAAACGA TACGGTACGC ATCCATATCG AAGACAGGGA AATCGTCCGC TTCCGCTGA
301	ATCCATATOG AAGACAGGGA AATCGTCCGC TTCCGCTGA
This component	lead the surface of t
This correspond	Is to the amino acid sequence <seq 1858;="" 593.a="" id="" orf="">:</seq>
a593.pep	
1	MLELNGLCKR FGGKTVADDI CLTVGRGKIL AVLGRSGCGK STLLNMIAGI
51	VRPDGGEIWL NGENITRMPP EKRRISLMFO DYALFPHMSA IFNAAECIEM
101	QKMPKAEAES LAMAALAEVG LENEAHRKPX KLSGGEKORI, ALABATUKBB
151	SLLLLDESFS SLDTHLRDRL RRMTAERIRK GGTPAVIVTH SPEED CHARD
201	ELAVMHEGKI LQCGTPETLV OTPAGVOVAH LMGLPNTDDD RHIDOUNVER
251	DQDGMECRVL SRTCLPESFS LSVLHPEHGI LWLNLDMPHA GETSCNDTVD
301	IHIEDREIVR FR*
m593/a593	92.9% identity in 312 aa overlap
mE03 man	10 20 30 40 50 60
m593.pep	MLELNGLCKREGNKTVADNICLTVGRGKILAVIGRSGCGKSTLINITACTVRRRGGRTV
a593	
a393	347 ma 44 a a a a a a a a a a a a a a a a a
	MDEENGLCARFGGRIVADDICLTVGRGKILAVLGRSGCGKSTLLNMIAGIVRPDGGEIWL
	10 20 30
	10 20 30 40 50 60
m502 non	10 20 30 40 50 60 70 80 90 100 110 100
m593.pep	10 20 30 40 50 60 70 80 90 100 110 120 NGENITRMPPEKRRISLMFODYALFPHMSALENAAFGLKMOKMBKAFAFALAMAALAMAA
	10 20 30 40 50 60 70 80 90 100 110 120 NGENITRMPPEKRRISLMFQDYALFPHMSALENAAFGLKMQKMPKAEAERLAMAALAEVG
m593.pep a593	10 20 30 40 50 60
	10 20 30 40 50 60 70 80 90 100 110 120 NGENITRMPPEKRRISLMFODYALFPHMSALFNAAFGLKMOKMBKABARDI AMARIA
	10 20 30 40 50 60 10 120 10 120 10 10 120 10 1
a593	10 20 30 40 50 60 10 120 130 140 150 120 130 140 150 150 130 140 150
	10 20 30 40 50 60 10 120 10 120 10 120 10 1
a593 m593.pep	10 20 30 40 50 60 10 120 10 120 10 120 10 1
a593	10 20 30 40 50 60 120 130 140 150 160 120 130 140 150 160 120 130 140 150 160 160 170 180
a593 m593.pep	10 20 30 40 50 60 100 120 100 120 100 100 120 100 120 130 140 150 160 170 180 100
a593 m593.pep	10 20 30 40 50 60 10 120 10 120 10 120 10 1
a593 m593.pep a593	10 20 30 40 50 60 100 120 120 130 140 150 160 120 130 140 150 160 160 170 180
a593 m593.pep	10 20 30 40 50 60 100 120 120 130 140 150 160 120 130 140 150 160 120 130 140 150 160 170 180

a593	GGI PAVLVTHS PEEA	CTAADEIA	VMHEGKILQCO		GVQVAHLMGI	PNTDDD
	190	200	210	220	230	240
	250	260	270	280	290	300
m593.pep	RHIPQHAVRFDQDGM	ECRVLSRTO	CLPESFSLSVI	HPEHGILWLN	ILDMRHAGAVS	GKDTVR
		111111111				1:1111
a593	RHIPQHAVRFDQDGM	ECRVLSRTO	CLPESFSLSVI	HPEHGILWIN	LDMPHAGETS	CNDTVD
	250	260	270	280	290	300
	310					
m593.pep	IHIEEREIVRFRX					
	1111:1111:11					
a593	IHIEDREIVRFRX					
	310					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1859>: g594.seq..

```
atgggtgcag ataccgatgg cgacaaggat gttcggctta atcgaacggg
  1
 51
    totogttttt agcatactcc ggctgctgtt ccgcatcgga attgggatcg
101
    gtaagttcgc cgttcaggcc tttcaggtct ttaagctgct gatctgtacg
    gttgagcacc caaatcggtt tgccttgcca ctcggcggtc agcagctgac
151
201 ccgcttcgat tttactgaca tccacctcga cggcagcacc ggaggccttg
251 gctttttccg aagggaaaaa actggccaca aacggcgttg ccacacccaa
301 tgctgccact ccgcccgcgc cgcaggtcgc aagtgtcagg aaacggcggc
351
    ggccgttgtt gatttcttga ttatccatta ttcagtcgtc ctaatatttt
401
    gggaatgccg agccattaaa cattgcaatt ttacccagtt tgcagtgata
451 ctcaaagcat tatttaaaat aaggtaa
```

This corresponds to the amino acid sequence <SEQ ID 1860; ORF 594.ng>:

```
g594.pep
```

- MGADTDGDKD VRLNRTGLVF SILRLLFRIG IGIGKFAVQA FQVFKLLICT 1
- 51 VEHPNRFALP LGGQQLTRFD FTDIHLDGST GGLGFFRREK TGHKRRCHTQ
- 101 CCHSARAAGR KCQETAAAVV DFLIIHYSVV LIFWECRAIK HCNFTQFAVI 151 LKALFKIR*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1861>:

```
m594.seq
```

- ATGGGTGCAG ATACCGATGG CGACAAGGAT GTTCGGCTTA ATCGAACGGG 51 TCTCGTTTTT AGCATACTCC GGCTGCTGTT CCGCATCGGA ATTGGGATCG 101 GTAAGTTCGC CGTTCAGGCC TTTCAGGTCT TTAAGCTGCT GATCTGTACG
- 151 GTTGAGCACC CAAATCGGTT TGCCTTGCCA CTCGGCGGTC AGCAGCTGAC
- 201 CCGCTTCGAT TTTACTGACA TCCACCTCGA CGGCAGCACC GGCGGCCTTG 251
- GCTTTTTCCG AAGGGAAAAA ACTGGCCACA AACGGCGTTG CCACACCCAA 301
- TGCTGCCACT CCGCCCGCGC CGCAGGTCGC GAGTGTCAGG AAACGGCGGC 351 GGCCGTTGTT GATTTCTTGA TTATCCATTA TTCAGTCGTC CTAATATTTT
- 401 GGGAATACCG AGCCATTAAA CGTTGCAATT TTACCCAGTT TGCAGTGATA
- 451 CTCAAAGCAT TATTTAAAAT AAGGTAA

This corresponds to the amino acid sequence <SEQ ID 1862; ORF 594>:

m594.pep

- MGADTDGDKD VRLNRTGLVF SILRLLFRIG IGIGKFAVQA FQVFKLLICT 51 VEHPNRFALP LGGQQLTRFD FTDIHLDGST GGLGFFRREK TGHKRRCHTQ
- CCHSARAAGR ECQETAAAVV DFLIIHYSVV LIFWEYRAIK RCNFTQFAVI
- 151 LKALFKIR*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m594 / g594 98.1% identity in 158 aa overlap

	10 20 30 40 50 60
m594.pe	P MGADTDGDKDVRLNRTGLVFSILRLLFRIGIGIGKFAVOAFOVEKIIICTVEHDNDEALD
-504	
g594	MGADI DGDADVRENKIGLVFSILKLLFRIGIGIGKFAVQAFQVFKLLICTVEHPNRFALP
	10 20 30 40 50 60
	70 80 90 100 110 120
m594.pe	
g594	DGGQQLIRIDI DILLDGSTGGLGFFRREKTGHKRRCHTOCCHSARAAGRKCOETAAAM
	70 80 90 100 110 120
	120
m594.per	130 140 150 159 DFLIIHYSVVLIFWEYRAIKRCNFTQFAVILKALFKIRX
mos pop	
g594	DFLIIHYSVVLIFWECRAIKHCNFTQFAVILKALFKIRX
	130 140 150
TC1 C 11 :	
The following	partial DNA sequence was identified in N. meningitidis <seq 1863="" id="">:</seq>
ass4.Seq	
1	
51 101	
151	THE PROPERTY OF THE PROPERTY O
201	TOCCITECCA CICEGCEGTC ACCAMPAN
251	GCTTTTTCCG AAGGGAAAAA ACTGGCCACA AACGGCGTTG CCACACCCAA
301	TGUTGUCACT CUGCUCGCG CGCAGGTUGU GAGTUTAGU AAACCCCCC
351	GGCCGTTGTT GATTTCTTGA TTATCCATTA TTCAGTCGTC CTAATATTTTT
401	GGGAATACCG AGCCATTAAA CGTTGCAATT TTACCCAGTT TGCAGTGATA
. 451	CTCAAAGCAT TATTTAAAAT AAGGTAA
This correspond	do to the emine sold assurance of TD TD to see a man
Tims correspond	ds to the amino acid sequence <seq 1864;="" 594.a="" id="" orf="">:</seq>
a594.pep 1	
51	THE STERRIT STERREST TO TOTAL FOUR KILLING
101	CCHSARAAGR ECQETAAAVV DFLIIHYSVV LIFWEYRAIK RCNFTQFAVI
151	LKALFKIR*
m594/a594	100.0% identity in 158 aa overlap
m504 man	10 20 30 40 50 60
m594.pep	MGADTDGDKDVRLNRTGLVFSILRLLFRIGIGIGKFAVQAFQVFKLLICTVEHPNRFALP
a594	MGADTDGDKDVRINRTGLVESII BIJ EDIGTGGVANNO MGADTDGDKDVRINRTGLVESII BIJ EDIGTGGVANNO MGADTDGDKDVRINRTGLVESII BIJ EDIGTGGVANNO MGADTDGDKDVRINRTGLVESII BIJ EDIGTGGVANNO MGADTDGDKDVRINA MGADTDGDKTA MGADTDGDKDVRINA MGADTDGTGTGDKDT MGATTDGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTG
	MGADTDGDKDVRLNRTGLVFSILRLLFRIGIGIGKFAVQAFQVFKLLICTVEHPNRFALP 10 20 30 40 50 60
	10 20 30 40 50 60
	70 80 90 100 110 120
m594.pep	LGGQQLTRFDFTDIHLDGSTGGLGFFRREKTGHKBRCHTOCCHGARAACDEGODERA
a594	
-551	TO SO SO SO SO SO SO SO SO SO SO SO SO SO
	70 80 90 100 110 120
	130 140 150 159
m594.pep	DFLIIHYSVVLIFWEYRAIKRCNFTOFAVILKALFKTRY
a594	
a394	DFLIIHYSVVLIFWEYRAIKRCNFTQFAVILKALFKIRX

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1865>: g595.seq..

150

DFLIIHYSVVLIFWEYRAIKRCNFTQFAVILKALFKIRX

140

130

1 atgagaaaat tcaatttgac cgcattgtcc gtgatgcttg ccttgggttt 51 gaccgcgtgc cagccgccgg aggcggagaa agccgcgccg gccgcgtccg 101 gtgagaccca atccgccaac gaaggcggtt cggtcggtat cgccgtcaac


```
gacggttttg aaacctacga caagctgagc gaagccgacc gcaaagcatt
                 acaggeteet attaacgege ttgeegaaga eettgeecaa ettegeggea
                 tactcggctt gaaataa
 This corresponds to the amino acid sequence <SEQ ID 1866; ORF 595.ng>:
      g595.pep
                 MRKFNLTALS VMLALGLTAC QPPEAEKAAP AASGETQSAN EGGSVGIAVN
                 DNACEPMNLT VPSGQVVFNI KNNSGRKLEW EILKGVMVVD ERENIAPGLS
                DKMNRNLLPG EYEMTCGLLT NPRGKLVVAD SGFKDTANEA DLEKLPQPLA
            101
                DYKAYVQGEV KELAAKTKTF TEAVKAGDIE KAKSLFAATR VHYERIEPIA
           201 ELFSELDPVI DACEDDFKDG AKDAGFTGFH RIEHALWVEK DVSGVKETAA
           251 KLMTDVEALQ KEIDALAFPP GKVVGGASEL IEEAAGSKIS GEEDRYSHTD
           301
                LSDFQANADG SKKIVDLFRP LIEAKNKALL EKTDTNFKQV NEILAKYRTK
           351 DGFETYDKLS EADRKALQAP INALAEDLAQ LRGILGLK*
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1867>:
      m595.seg
                ATGAGAAAAT TCAATTTGAC CGCATTGTCC GTGATGCTTG CCTTAGGTTT
            51 GACCGCGTGC CAGCCGCCGG AGGCGGAGAA AGCTGCGCCG GCAGCGTCCG
                GTGAGGCGCA AACCGCCAAC GAGGGCGGTT CGGTCAGTAT CGCCGTCAAC
           101
                GACAATGCCT GCGAACCGAT GGAACTGACC GTGCCGAGCG GACAGGTTGT
           151
                GTTCAATATT AAAAACAACA GCGGCCGCAA GCTCGAATGG GAAATCCTGA
           251
                AAGGCGTGAT GGTGGTGGAC GAGCGCGAAA ACATCGCCCC CGGACTTTCC
                GATAAAATGA CCGTCACCCT GTTGCCGGGC GAATACGAAA TGACTTGCGG
           301
                TCTTTTGACC AATCCGCGCG GCAAGCTGGT GGTAACCGAC AGCGGCTTTA
               AAGACACCGC CAACGAAGCG GATTTGGAAA AACTGTCCCA ACCGCTCGCC
           401
           451
                GACTATAAAG CCTACGTTCA AGGCGAGGTT AAAGAGCTGG TGGCGAAAAC
                CAAAACTTTT ACCGAAGCCG TCAAAGCAGG CGACATTGAA AAGGCGAAAT
           501
           551
                CCCTGTTTGC CGACACCCGC GTCCATTACG AACGCATCGA ACCGATTGCC
                GAGCTTTTCA GCGAACTCGA CCCCGTCATC GATGCGCGTG AAGACGACTT
           651 CAAAGACGGC GCGAAAGATG CCGGATTTAC CGGCTTTCAC CGTATCGAAT
           701
                ACGCCCTTTG GGTGGAAAAA GACGTGTCCG GCGTGAAGGA AATTGCAGCG
                AAACTGATGA CCGATGTCGA AGCCCTGCAA AAAGAAATCG ACGCATTGGC
           751
                GTTTCCTCCG GGCAAGGTGG TCGGCGGCGC GTCCGAACTG ATTGAAGAAG
          801
               TGGCGGGCAG TAAAATCAGC GGCGAAGAAG ACCGGTACAG CCACACCGAT
                TTGAGCGACT TCCAAGCCAA TGTGGACGGA TCTAAAAAAA TCGTCGATTT
          901
          951
               GTTCCGTCCG CTGATCGAGG CCAAAAACAA AGCCTTGTTG GAAAAAACCG
         1001
               ATACCAACTT CAAACAGGTC AACGAAATTC TGGCGAAATA CCGGACTAAA
         1051 GACGGTTTTG AAACCTACGA CAAGCTGGGC GAAGCCGACC GCAAAGCGTT
         1101 ACAGGCCTCT ATTAACGCGC TTGCCGAAGA CCTTGCCCAA CTTCGCGGCA
         1151 TACTCGGCTT GAAATAA
This corresponds to the amino acid sequence <SEQ ID 1868; ORF 595>:
     m595.pep
               MRKFNLTALS VMLALGLTAC QPPEAEKAAP AASGEAQTAN EGGSVSIAVN
            1
               DNACEPMELT VPSGQVVFNI KNNSGRKLEW EILKGVMVVD ERENIAPGLS
           51
               DKMTVTLLPG EYEMTCGLLT NPRGKLVVTD SGFKDTANEA DLEKLSQPLA
          101
              DYKAYVQGEV KELVAKTKTF TEAVKAGDIE KAKSLFADTR VHYERIEPIA
          151
          201 ELFSELDPVI DAREDDFKDG AKDAGFTGFH RIEYALWVEK DVSGVKEIAA
          251 KLMTDVEALQ KEIDALAFPP GKVVGGASEL IEEVAGSKIS GEEDRYSHTD
          301
               LSDFQANVDG SKKIVDLFRP LIEAKNKALL EKTDTNFKQV NEILAKYRTK
               DGFETYDKLG EADRKALQAS INALAEDLAQ LRGILGLK*
          351
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m595 / g595	95.4% identity	in 388 aa	overlap			
	10	20	30	40	50	60
m595.pep	MRKFNLTALSVMLAI	GLTACQPPE	AEKAAPAAS(SEAQTANEGG:	SVSIAVNDNA	EPMELT
g595	MRKFNLTALSVMLAL	1111111	1111111	11:1:1111	11.1111111	111.41
_	10	20	30	40		
			50	40	50	60
	70	80	90	100	110	120

m595.pep	VPSGQVVFNIKNNS	GRKLEWEIL	KGVMVVDEREN	NIAPGLSDKM	TVTLLPGEYE	MTCGLLT
~E0E			<u> </u>		::!!!!!!	111111
g595	VPSGQVVFNIKNNS	GRKLEWEIL	KGVMVVDEREN	NIAPGLSDKM		
	70	80	90	100	110	120
	130	140	150	160	170	
m595.pep					170	180
moso.pcp	NPRGKLVVTDSGFK	DIANEADLE:	VPOČETADI KA	11 A OGE A KET!	AKTKTFTEA	VKAGDIE
q595		11111111 TOTO NES DE EL		:		111111
9373	NPRGKLVVADSGFK 130	140				
	130	140	150	160	170	180
	190	200	210	220	230	240
m595.pep	KAKSLFADTRVHYE			'DDEKDCYRDY	23U CEMCEUDITE:	240
		111111111				
g 59 5	KAKSLFAATRVHYE				Comcounty	:
3	190	200	210	220	230	
	230	200	210	220	230	240
	250	260	270	280	290	200
m595.pep	DVSGVKEIAAKLMT				ZYU ZYU	300
	111111 [1111]		LITITION	GGWSETIEEA	AGSKISGEE	DRYSHID
q595	DVSGVKETAAKLMT	DVEALOKETE			111111111	
5	250	260	270	280	290	
	200	200	270	200	290	300
	310	320	330	340	350	360
m595.pep	LSDFQANVDGSKKI	VDLFRPLIEA	KNKALLEKTO	TN FKOVNETI.	VKABAKUGER 220	ספט ספט
	1111111:11111			1111111111	IIIIIIIII	III DREG
g595	LSDFQANADGSKKI	VDLFRPLIEA	KNKALLEKTO	TNEKOVNETI	ΙΙΙΙΙΙΙΙΙ ΔΚΥΡΨΚης Ευ	ווווו: מזערעייים
_	310	320	330	340	350	360
				0.10	330	300
	370	380	389			
m595.pep	EADRKALQASINAL	AEDLAQLRGI	LGLKX			
	111111111111111111					
g595	EADRKALQAPINAL	AEDLAQLRGI	LGLKX			
	370	380				
following partia	al DNA sequence	was identi	ified in N »	neningitidie	<seo id<="" td=""><td>1860>-</td></seo>	1860>-
- FOF		ao Iaom	111 1 4 . //	.c.mgmas	Prof ID	1007/

The fo a595.sec

abyb.seq					
1	ATGAGAAAAT	TCAATTTGAC	CGCATTGTCC	GTGATGCTTG	CCTTAGGTTT
51	GACCGCGTGC	CAGCCGCCGG	AGGCGGAGAA	AGCTGCGCCG	GCAGCGTCCG
101	GTGAGGCGCA	AACCGCCAAC	GAGGGCGGTT	CGGTCAGTAT	CGCCGTCAAC
151	GACAATGCCT	GCGAACCGAT	GGAACTGACC	GTGCCGAGCG	GACAGGTTGT
201	GTTCAATATT	AAAAACAACA	GCGGCCGCAA	GCTCGAATGG	GAAATCCTGA
251	AAGGCGTGAT	GGTGGTGGAC	GAGCGCGAAA	ACATCGCCCC	CGGACTTTCC
301	GATAAAATGA	CCGTCACCCT	GTTGCCGGGC	GAATACGAAA	TGACTTGCGG
351	TCTTTTGACC	AATCCGCGCG	GCAAGCTGGT	GGTAACCGAC	AGCGGCTTTA
401	AAGACACCGC	CAACGAAGCG	GATTTGGAAA	AACTGTCCCA	ACCGCTCGCC
451	GACTATAAAG	CCTATGTTCA	AGGCGAAGTC	AAAGAGCTGG	TGGCGAAAAC
501	CAAAACCTTT	ACCGAAGCCG	TCAAAGCAGG	CGACATTGAA	AAGGCGAAAT
551	CCCTGTTTGC	CGACACCCGC	GTCCATTACG	AACGCATCGA	ACCGATTGCC
601	GAGCTTTTCA	GCGAACTCGA	CCCCGTCATC	GATGCGCGTG	AAGACGACTT
651	CAAAGACGGC	GCGAAAGATG	CCGGATTTAC	CGGCTTCCAC	CGTATCGAAT
701	ACGCCCTTTG	GGTGGAAAAA	GACGTGTCCG	GCGTGAAGGA	AATTGCAGCG
751	AAACTGATGA	CCGATGTCGA	AGCCCTGCAA	AAAGAAATCG	ACGCATTGGC
801	GTTTCCTCCG	GGCAAGGTGG	TCGGCGGCGC	GTCCGAACTG	ATTGAAGAAG
851	TGGCGGGCAG	TAAAATCAGC	GGCGAAGAAG	ACCGGTACAG	CCACACCGAT
901	TTGAGCGACT	TCCAAGCCAA	TGTGGACGGA	TCGAAAAAA	TCGTCGATTT
951	GTTCCGTCCG	TTGATCGAGA	CCAAAAACAA	AGCCTTGTTG	GAAAAAACCG
1001	ATACCAACTT	CAAACAGGTC	AACGAAATTC	TGGCGAAATA	CCGGACTAAA
1051	GACGGTTTTG	AAACCTACGA	CAAGCTGGGC	GAAGCCGACC	GCAAAGCGTT
1101	ACAGGCCTCT	ATTAACGCGC	TTGCCGAAGA	CCTTGCCCAA	CTTCGCGGCA
1151	TACTCGGCTT	GAAATAA			

This corresponds to the amino acid sequence <SEQ ID 1870; ORF 595.a>: a595.pep

1 MRKFNLTALS VMLALGLTAC QPPEAEKAAP AASGEAQTAN EGGSVSIAVN 51 DNACEPMELT VPSGQVVFNI KNNSGRKLEW EILKGVMVVD ERENIAPGLS

101 151 201 251 301 351 m595/a595	DKMTVTLLPG EYEM DYKAYVQGEV KELVA ELFSELDPVI DAREI KLMTDVEALQ KEIDA LSDFQANVDG SKKIV DGFETYDKLG EADRA	AKTKTF TEAV DDFKDG AKDA ALAFPP GKVV /DLFRP LIET KALQAS INAL	KAGDIE KAK GFTGFH RIE GGASEL IEE KNKALL EKT AEDLAQ LRG	KSLFADTR VH CYALWVEK DV CVAGSKIS GE DTNFKOV NE	YERIEPIA SGVKEIAA EDRYSHTD	
m595.pep	10 MRKFNLTALSVMI	20	30	40	50	60
moss.pcp	111111111111	HIGHTACOFF	EAERAAPAAS 	GEAQTANEGG:	SVSIAVNDNA	CEPMELT
a595	MRKFNLTALSVML	ALGLTACOPP:	EAEKAAPAAS	GEAQTANEGG:	SVSIAVNDNA	CEPMELT
	10	20	30	40	50	60
	70	8.0	90	100	110	
m595.pep	VPSGQVVFNIKNN			TUU NIAPGLSDKM	110 PVTLLPGEVE	120
		111111111				FEFFE
a595	VPSGQVVFNIKNN	SGRKLEWEIL	KGVMVVDEREI	NIAPGLSDKM	[VTLLPGEYE	MTCGLLT
	70	80	90	100	110	120
	130	140	150	160	170	180
m595.pep	NPRGKLVVTDSGF	KDTANEADLE	KLSQPLADYK	AYVQGEVKEL	/AKTKTFTEA	VKACDIE
a595				1 1 1 1 1 1 1 1 1 1		1111111
a393	NPRGKLVVTDSGF	140	KLSQPLADYKA 150	AYVQGEVKELV 160	AKTKTFTEA 170	
		210	130	100	170	180
505	190	200	210	220	230	240
m595.pep	KAKSLFADTRVHY	ERIEPIAELFS	SELDPVIDARE	DDFKDGAKDA	GFTGFHRIE	YALWVEK
a595	 KAKSLFADTRVHYI	IIIIIIIIIII ERTEPTAELES			CETCEUDIE	
	190	200	210	220	230	ALWVER 240
m595.pep	250 DVSGVKEIAAKLM	260	270	280	290	300
moso.pep		IIIIIIIIIIII	ALAFPPGKVV	'GGASELIEEV	AGSKISGEEL	DRYSHTD
a595	DVSGVKEIAAKLM	DVEALQKEID	ALAFPPGKVV	GGASELIEEV	AGSKISGEEL	RYSHTD
	250	260	270	280	290	300
	310	320	330	340	250	
m595.pep	LSDFQANVDGSKKI			34U TNFKOVNETI.	350	360
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1111111111	111111111	111111
a595	LSDFQANVDGSKKI	VDLFRPLIET	KNKALLEKTD	TNFKQVNEIL	AKYRTKDGFE	TYDKLG
	310	320	330	340	350	360
	370	380	389			
m595.pep	EADRKALQAS INAI	AEDLAQLRGI	LGLKX			
a595			11111			
asys	EADRKALQASINAL 370	AEDLAQLRGI: 380	LGLKX			
	570	300				

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1871>: g596.seq. (partial).

1	atgctgctct	tggacgagcc	gaccaaccac	ttggatgcgg	aatcootooa
51	atggctggag	caattcctcg	tgcgcttccc	cggcacagtg	atcacaataa
101	cgcacgaccg	ctacttcctc	gacaacqccq	ccgaatggat	tttggaactc
151	gaccgcggac	acggcattcc	gtggaaaggc	aattactcot	cttggctgga
201	gcagaaagaa	aaacgcttgg	aaaacqaqqc	gaaatccgaa	accacacaca
251	tgaaggcgat	gaagcaggaa	ttqqaatqqq	tacaccaaaa	taccaaaaa
301	cgccaagcca	agcccaaagc	acatttaaca	Cottttoaag	aaatgagge
351	ctacgaatac	caaaaacgca	acqaaactca	ggaaatcttt	atocototto
401	ccgagcgttt	gggtaacgaa	gtgattgaat	ttataaatat	accounting
	3 3-3	J J J J G G G	gegaeegaae	cegegaatge	ttccaaatcg

```
451
        ttcggcgata aagtgctgat tgacggtttg agcttcaaag tgccggcggg
 501
        cgcgattgtc ggcatcatcg gcccgaacgg cgcgggtaaa tcgacgctgt
        tcaaaatgat tgcgggcaaa gagcagcccg attcgggcga agtgaaaatc
 551
 601
        gggcaaaccg tgaaaatgag cttgattgac caaagccgcg aaggtttgca
        aaacgacaaa accgtgttcg acaacattgc cgaaggtcgc gatattttgc
 651
 701
        aggtcggaca gtttgaaatc cccgcccgcc aatatttggg acgcttcaac
 751
        tttaaaggca gcgaccaaag caaaatcgca aggcagcttt ccggcggcga
        acgcggccgt ctgcacttgg caaaaacctt gttgggcggc ggcaatgtgt
 801
        tgctgctgga cgaaccgtcc aacgatctcg acgtggaaac cctgcgcgcg
851
 901
       ttggaagacg cattgttgga atttgccggc agcgtgatgg tgatttcgca
       cgaccgctgg tttctcgacc gcatagccac gcatatcttg gcgtgtgaag
 951
1001
       gcgactccaa atgggtgttc ttcgacggca actatcaaga atacgaagcc
1051
       gacaagaaac gccgactcgg caaagaaggc gcgaaaccga aacgcatcaa
1101
       atacaaaccg gtaacgcgtt aa
```

This corresponds to the amino acid sequence <SEQ ID 1872; ORF 596.ng>:

```
g596.pep (partial).

1 ..MLLLDEPTNH LDAESVEWLE QFLVRFPGTV VAVTHDRYFL DNAAEWILEL
51 DRGHGIPWKG NYSSWLEQKE KRLENEAKSE AARVKAMKQE LEWVRQNAKG
101 RQAKPKARLA RFEEMSNYEY QKRNETQEIF IPVAERLGNE VIEFVNVSKS
151 FGDKVLIDGL SFKVPAGAIV GIIGPNGAGK STLFKMIAGK EQPDSGEVKI
201 GQTVKMSLID QSREGLQNDK TVFDNIAEGR DILQVGQFEI PARQYLGRFN
251 FKGSDQSKIA RQLSGGERGR LHLAKTLLGG GNVLLLDEPS NDLDVETLRA
301 LEDALLEFAG SVMVISHDRW FLDRIATHIL ACEGDSKWVF FDGNYQEYEA
351 DKKRRLGKEG AKPKRIKYKP VTR*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1873>: m596.seq..

```
1 ATGTCCCAAC AATACGTCTA TTCTATGCTG CGCGTGAGCA AGGTTGTGCC
  51
     GCCGCAGAAA ACCATCATTA AAGATATTTC CCTTTCTTTC TTCCCCGGCG
 101
      CGAAAATCGG CCTGCTCGGT TTGAACGGCG CGGGCAAGTC CACCGTGCTG
      CGGATTATGG CGGGCGTGGA TAAGGAATTT GAGGGCGAAG CCGTGCCGAT
     GGGCGGCATC AAAATCGGCT ACCTGCCGCA AGAGCCTGAG CTTGATCCGG
 201
 251 AAAAAACCGT GCGCGAGGAA GTGGAAAGCG GTTTGGGCGA AGTGGCTGCC
 301
      GCGCAGAAAC GTTTGGAAGA AGTGTATGCC GAGTACGCCA ATCCTGATGC
     GGATTTTGAC GCGTTGGCAG AAGAGCAGGG CCGCTTGGAA GCGATTATTG
      CGGCAGGTTC GTCCACGGGC GGCGGTGCGG AACACGAATT GGAAATCGCC
 401
      GCCGACGCGC TGCGCCTGCC GGAATGGGAT GCCAAAATCG ATAATTTGTC
 451
     CGGCGGTGAA AAACGCCGCG TTGCCTTGTG CAAACTCTTG TTGAGCAAGC
 501
      CCGATATGCT TTTGCTGGAC GAGCCGACCA ACCACTTGGA TGCGGAATCG
 551
     GTCGAGTGGC TGGAGCAATT TCTCGTGCGC TTCCCCGGCA CAGTCGTTGC
 601
 651
      GGTAACGCAC GACCGCTACT TCCTCGACAA CGCCGCCGAA TGGATTTTGG
     AACTCGACCG CGGCCATGGT ATTCCGTGGA AAGGCAATTA CTCGTCTTGG
 701
 751
     CTGGAGCAGA AAGAAAAACG CTTGGAAAAC GAGGCAAAAT CCGAAGCCGC
     GCGCGTGAAG GCGATGAAGC AGGAATTGGA ATGGGTGCGC CAAAATGCCA
 851 AAGGCCGCCA AGCCAAGTCC AAAGCGCGTT TGGCTCGTTT TGAAGAAATG
 901
     AGCAACTACG AATACCAAAA ACGCAATGAA ACGCAGGAAA TCTTTATTCC
     CGTTGCCGAG CGTTTGGGTA ACGAAGTGAT TGAATTTGTA AATGTTTCCA
1001 AATCGTTCGG CGATAAAGTG CTGATTGACG ATTTGAGCTT CAAAGTGCCT
1051 GCGGGCGCA TTGTCGGCAT CATCGGCCCG AACGGCGCGG GTAAATCTAC
     GCTGTTCAAA ATGATTTCGG GCAAAGAGCA GCCTGATTCC GGCGAGGTGA
1151
     AAATCGGACA AACCGTGAAA ATGAGCTTGA TTGACCAAAG CCGCGAAGGT
1201
     TTGCAAAACG ACAAAACCGT GTTCGACAAC ATTGCCGAAG GCCGCGACAT
      TTTGCAGGTT GGTCAGTTTG AAATTCCCGC CCGCCAATAT TTGGGGCGTT
     TCAACTTCAA AGGCAGCGAC CAAAGCAAAA TTGCAGGTCA ATTGTCTGGC
1301
     GGCGAACGCG GTCGTCTGCA CTTGGCAAAA ACCTTGTTGA GCGGCGGCAA
     TGTATTGCTG CTGGATGAAC CGTCTAACGA CCTTGACGTG GAAACCCTGC
1401
1451
     GCGCGTTGGA AGACGCATTG TTGGAATTTG CCGGCAGCGT GATGGTGATT
     TCGCACGACC GTTGGTTCCT CGACCGCATC GCCACGCATA TCTTGGCGTG
1501
1551
     TGAAGGCGAC TCTAAATGGG TGTTCTTCGA CGGCAACTAT CAGGAATACG
     AAGCCGACAA GAAACGCCGT TTGGGCGAAG AAGGCGCGAA ACCGAAACGC
1651 ATCAAATACA AACCGGTAAC GCGTTAA
```

This corresponds to the amino acid sequence <SEQ ID 1874; ORF 596>: m596.pep..

BNSDOCID: <WO___9957280A2_I_>

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m596 g596	98.4% identity in 373 aa overlap
m596.pep g596	160 170 180 190 200 210 LPEWDAKIDNLSGGEKRRVALCKLLLSKPDMLLLDEPTNHLDAESVEWLEQFLVRFPGTV
m596.pep g596	220 230 240 250 260 270 VAVTHDRYFLDNAAEWILELDRGHGIPWKGNYSSWLEQKEKRLENEAKSEAARVKAMKQE
m596.pep g596	280 290 300 310 320 330 LEWVRQNAKGRQAKSKARLARFEEMSNYEYQKRNETQEIFIPVAERLGNEVIEFVNVSKS
m596.pep g596	340 350 360 370 380 390 FGDKVLIDDLSFKVPAGAIVGIIGPNGAGKSTLFKMISGKEQPDSGEVKIGQTVKMSLID
m596.pep g596	400 410 420 430 440 450 QSREGLQNDKTVFDNIAEGRDILQVGQFEIPARQYLGRFNFKGSDQSKIAGQLSGGERGR

5 190 10 211 2


```
460
                   470
                           480
                                  490
                                          500
          LHLAKTLLSGGNVLLLDEPSNDLDVETLRALEDALLEFAGSVMVISHDRWFLDRIATHIL
m596,pep
          g596
          LHLAKTLLGGGNVLLLDEPSNDLDVETLRALEDALLEFAGSVMVISHDRWFLDRIATHIL
               280
                       290
                              300
                                      310
           520
                   530
                           540
                                  550
m596.pep
          ACEGDSKWVFFDGNYQEYEADKKRRLGEEGAKPKRIKYKPVTRX
          q596
          ACEGDSKWVFFDGNYQEYEADKKRRLGKEGAKPKRIKYKPVTRX
                       350
                              360
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1875>: a596.seq

```
ATGTCCCAAC AATACGTCTA TTCTATGCTG CGCGTGAGCA AGGTTGTGCC
  51
      GCCGCAGAAA ACCATCATTA AAGATATTTC CCTTTCTTTC TTCCCCGGCG
 101
      CGAAAATCGG TTTGCTCGGT TTGAACGGCG CGGGCAAGTC CACCGTGCTG
      CGGATTATGG CGGGCGTGGA TAAAGAATTT GAGGGCGAAG CCGTGCCGAT
 151
      GGGCGGTATT AAAATCGGCT ACCTGCCGCA AGAGCCTGAG CTTGATCCGG
 201
      AAAAAACCGT GCGTGAGGAA GTGGAAAGCG GTTTGGGCGA AGTGGCTGCC
 251
      GCGCAGAAAC GTTTGGAGGA AGTGTATGCC GAGTACGCCA ATCCCGATGC
 301
 351
      GGATTTTGAC GCGTTGGCGG AAGAGCAGGG GCGTTTGGAA GCGATTATTG
      CGGCGGGTTC GTCCACGGGC GGCGGTGCGG AACACGAATT GGAAATCGCT
 401
      GCCGACGCGC TGCGCCTGCC GGAATGGGAT GCCAAAATCG ATAATTTGTC
 451
      CGGCGGTGAA AAACGCCGCG TCGCTTTGTG CAAACTCTTG TTGAGCAAGC
 501
 551
      CCGATATGCT TTTGCTGGAC GAGCCGACCA ACCACTTGGA TGCGGAATCG
 601
      GTCGAGTGGC TGGAGCAATT TCTCGTGCGC TTCCCCGGTA CAGTCGTTGC
 651
      CGTAACACAC GACCGCTACT TCCTCGACAA CGCCGCCGAA TGGATTTTGG
      AACTCGACCG CGGGCACGGT ATTCCGTGGA AAGGAAATTA CTCGTCTTGG
 701
      TTGGAGCAGA AAGAAAAACG TTTGGAAAAC GAGGCGAAAT CCGAAGCCGC
 751
      GCGCGTGAAA GCGATGAAGC AGGAATTGGA ATGGGTGCGC CAAAATGCCA
 801
 851
      AAGGCCGTCA AGCCAAGTCC AAAGCGCGTT TGGCGCGTTT TGAAGAAATG
 901
      AGCAACTATG AATACCAAAA ACGCAATGAA ACGCAGGAAA TCTTCATTCC
 951
      CGTCGCCGAG CGTTTGGGTA ACGAAGTGAT TGAATTTGTG AATGTTTCCA
1001
     AATCGTTCGG CGACAAAGTG CTGATTGACG ATTTGAGCTT CAAAGTGCCT
      GCGGGCGCGA TTGTCGGCAT CATCGGTCCG AACGGCGCGG GTAAATCGAC
1051
      ACTGTTTAAA ATGATTGCGG GCAAAGAGCA GCCCGATTCC GGTGAAGTGA
1101
1151
      AAATCGGGCA AACCGTGAAA ATGAGCTTGA TTGACCAAAG CCGCGAAGGT
      TTGCAAAACG ACAAAACCGT GTTCGACAAC ATTGCCGAAG GTCGCGATAT
1201
      TTTACAGGTC GGGCAGTTTG AAATCCCCGC CCGCCAATAT TTGGGACGCT
1251
1301
     TCAATTTCAA AGGCAGCGAC CAAAGCAAAA TCACGGGGCA GCTTTCCGGC
      GGCGAACGCG GACGTTTGCA CTTGGCAAAA ACCTTGTTGG GCGGTGGCAA
1351
1401
     TGTGTTGCTG CTGGACGAAC CGTCCAACGA CCTCGACGTG GAAACCCTGC
1451
      GCGCGTTGGA AGACGCATTG CTGGAATTTG CCGGCAGCGT GATGGTGATT
      TCGCACGACC GCTGGTTCCT CGACCGTATT GCTACGCATA TCTTGGCTTG
1501
      CGAAGGCGAC TCCAAATGGG TGTTCTTTGA CGGCAACTAT CAGGAATACG
1551
1601 AAGCCGACAA GAAACGCCGA CTCGGCGAAG AAGGCACGAA ACCGAAACGC
1651 ATCAAATACA AACCGGTAAC GCGTTAA
```

This corresponds to the amino acid sequence <SEQ ID 1876; ORF 596.a>:

```
a596.pep
          MSQQYVYSML RVSKVVPPQK TIIKDISLSF FPGAKIGLLG LNGAGKSTVL
      51
         RIMAGVDKEF EGEAVPMGGI KIGYLPQEPE LDPEKTVREE VESGLGEVAA
          AQKRLEEVYA EYANPDADFD ALAEEQGRLE AIIAAGSSTG GGAEHELEIA
     101
     151
          ADALRLPEWD AKIDNLSGGE KRRVALCKLL LSKPDMLLLD EPTNHLDAES
     201
          VEWLEQFLVR FPGTVVAVTH DRYFLDNAAE WILELDRGHG IPWKGNYSSW
         LEQKEKRLEN EAKSEAARVK AMKQELEWVR QNAKGRQAKS KARLARFEEM
     251
         SNYEYQKRNE TQEIFIPVAE RLGNEVIEFV NVSKSFGDKV LIDDLSFKVP
     301
     351
         AGAIVGIIGP NGAGKSTLFK MIAGKEQPDS GEVKIGQTVK MSLIDQSREG
     401
         LQNDKTVFDN IAEGRDILQV GQFEIPARQY LGRFNFKGSD QSKITGQLSG
         GERGRLHLAK TLLGGGNVLL LDEPSNDLDV ETLRALEDAL LEFAGSVMVI
     451
         SHDRWFLDRI ATHILACEGD SKWVFFDGNY QEYEADKKRR LGEEGTKPKR
     501
     551 IKYKPVTR*
```

m596/a596 99.3% identity in 558 aa overlap

m596.pep a596	10 20 30 40 50 60 MSQQYVYSMLRVSKVVPPQKTIIKDISLSFFPGAKIGLLGLNGAGKSTVLRIMAGVDKEI !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	F E
m596.pep a596	70 80 90 100 110 120 EGEAVPMGGIKIGYLPQEPELDPEKTVREEVESGLGEVAAAQKRLEEVYAEYANPDADFI)
m596.pep	130 140 150 160 170 180 ALAEEQGRLEAIIAAGSSTGGGAEHELEIAADALRLPEWDAKIDNLSGGEKRRVALCKLI	
m596.pep	190 200 210 220 230 240 LSKPDMLLLDEPTNHLDAESVEWLEQFLVRFPGTVVAVTHDRYFLDNAAEWILELDRGHG	;
m596.pep	250 260 270 280 290 300 IPWKGNYSSWLEQKEKRLENEAKSEAARVKAMKQELEWVRQNAKGRQAKSKARLARFEEM	I
m596.pep	310 320 330 340 350 360 SNYEYQKRNETQEIFIPVAERLGNEVIEFVNVSKSFGDKVLIDDLSFKVPAGAIVGIIGP	
m596.pep	370 380 390 400 410 420 NGAGKSTLFKMISGKEQPDSGEVKIGQTVKMSLIDQSREGLQNDKTVFDNIAEGRDILQV	
m596.pep a596	430 440 450 460 470 480 GQFEIPARQYLGRFNFKGSDQSKIAGQLSGGERGRLHLAKTLLSGGNVLLLDEPSNDLDV	
m596.pep	490 500 510 520 530 540 ETLRALEDALLEFAGSVMVISHDRWFLDRIATHILACEGDSKWVFFDGNYQEYEADKKRR	
m596.pep	550 559 LGEEGAKPKRIKYKPVTRX : LGEEGTKPKRIKYKPVTRX 550	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1877> g597.seq

- 1 ATGCTGCTTC ATGTCAGCAA TTCCCTCAAA CAGCTTCAGG AAGAGCGTAT
 51 CCGCCAAGAA CGTATCCGCC AAGAGCGTAT CCGTCAGGCG CGCGGCAACC
 101 TTGCTTCCGT CAACCGCAAA CAGCGCGAGG CTTGGGACAA ATTCCAAAAA
- BNSDOCID: <WO___9957280A2_I_>

ź.,-

3 8 2

```
151 CTCAATACCG AGCTGAACCG TTTGAAAACG GAAGTCGCCG CTACGAAAGC
     GCAGATTTCC CGTTTCGTAT CGGGGAACTA TAAAAACAGC CGGCCGAATG
 251 CGGTTGCCCT GTTCCTGAAA AACGCCGAAC CGGGTCAGAA AAACCGCTTT
 301. TTGCGTTATA CGCGTTATGT AAACGCCTCC AATCGGGAAG TTGTCAAGGA
 351 TTTGGAAAAA CAGCAGAAGG CTTTGGCGGT ACAAGAGCAG AAAATCAACA
 401 ATGAGCTTGC CCGTTTGAAG AAAATTCAGG CAAACGTGCA ATCCCTGCTG
 451
     AAAAAACAGG GTGTAACCGA TGCGGCGGAA CAGACGGAAA GCCGCAGACA
     GAATGCCAAA ATCTCCAAAG ATGCCCGAAA ACTGCTGGAA CAGAAAGGGA
     ACGAGCAGCA GCTGAACAAG CTCTTGAGCA ATTTGgagaa aaAAAaagcc
 551
 601
     gaacaccgCA TTcaggAtgc ggAagcaaAA agaAAATTGG CTGAagcCaa
     actGgcggca gccgAAAAAG CCAGAAAAGA AGCGGCGCAG CAGAAGGCTG
     AAGCGCGACG TGCGGAAATG TCCAACCTGA CCGCCGAAGA CAGGAACATC
 751 CAAGCGCCTT CGGTTATGGG TATCGGCAGT GCCGACGGTT TCAGCCGCAT
801 GCAGGGACGT TTGAAAAAAC CGGTTGACGG TGTGCCGACC GGGCTTTTCG
851
     GGCAGAACCG GAGCGGCGGC GATGTTTGGA AAGGCGTGTT CTATTCCACT
 901 GCGCCTGCAA CGGTTGAAAG CATTGCGCcg gGAACggtaa GCTATGCGGA
951
     CGAGTTGGAC GGCTACGGCA AAGTGGTCGT GATCGATCAC GGCGAGAACT
1001
     ACATCAGCAT CTATGCCGGT TTGAGCGAAA TTTCCGCCGG CAAGGGTTAT
1051
     ACGGTCGCGG CAGGAAGCAA AATCGGCACG AGCGGGTCGC TGCCGGACGG
     GGAAGAGGGG CTTTACCTGC AAATACGTTA TCGAGGTCAG GTGTTGAACC
1101
1151 CTTCGGGCTG GATACGTTGA
```

This corresponds to the amino acid sequence <SEQ ID 1878; ORF 597 >: g597.pep

```
1 MLLHVSNSLK QLQEERIRQE RIRQERIRQA RGNLASVNRK QREAWDKFQK
51 LNTELNRLKT EVAATKAQIS RFVSGNYKNS RPNAVALFLK NAEPGQKNRF
101 LRYTRYVNAS NREVVKDLEK QQKALAVQEQ KINNELARLK KIQANVQSLL
151 KKQGVTDAAE QTESRRQNAK ISKDARKLLE QKGNEQQLNK LLSNLEKKKA
201 EHRIQDAEAK RKLAEAKLAA AEKARKEAAQ QKAEARRAEM SNLTAEDRNI
251 QAPSVMGIGS ADGFSRMQGR LKKPVDGVPT GLFGQNRSGG DVWKGVFYST
301 APATVESIAP GTVSYADELD GYGKVVVIDH GENYISIYAG LSEISAGKGY
351 TVAAGSKIGT SGSLPDGEEG LYLQIRYRGQ VLNPSGWIR*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1879>: m597.seq

```
ATGCTGCTTC ATGTCAGCAA TTCCCTCAAA CAGCTTCAGG AAGAGCGTAT
  51 CCGCCAAGAG CGTATCCGTC AGGCGCGCGG CAACCTTGCT TCCGTCAACC
      GCAAACAGCG CGAGGCTTGG GACAAGTTCC AAAAACTCAA TACCGAGCTG
 151 AACCGTTTGA AAACGGAAGT CGCCGCTACG AAAGCGCAGA TTTCCCGTTT
 201
      CGTATCGGGG AACTATAAAA ACAGCCAGCC GAATGCGGTT GCCCTGTTCC
 251
      TGAAAAACGC CGAACCGGGT CAGAAAAACC GCTTTTTGCG TTATACGCGT
      TATGTAAACG CCTCCAATCG GGAAGTTGTC AAGGATTTGG AAAAACAGCA
      GAAGGCTTTG GCGGTACAAG AGCAGAAAAT CAACAATGAG CTTGCCCGTT
 351
 401
     TGAAGAAAAT TCAGGCAAAC GTGCAATCTC TGCTGAAAAA ACAGGGTGTA
 451 ACCGATGCGG CGGAACAGAC GGAAAGCCGC AGACAGAATG CCAAAATCGC
 501
      CAAAGATGCC CGAAAACTGC TGGAACAGAA AGGGAACGAG CAGCAGCTGA
 551 ACAAGCTCTT GAGCAATTTG GAGAAGAAAA AGGCCGAACA CCGCATTCAG
 601
     GATGCGGAAG CAAAAAGAAA ATTGGCTGAA GCCAGACTGG CGGCAGCCGA
 651 AAAAGCCAGA AAAGAAGCGG CGCAGCAGAA GGCTGAAGCA CGACGTGCGG
 701 AAATGTCCAA CCTGACCGCC GAAGACAGGA ACATCCAAGC GCCTTCGGTT
 751 ATGGGTATCG GCAGTGCCGA CGGTTTCAGC CGCATGCAAG GACGTTTGAA
 801 AAAACCGGTT GACGGTGTGC CGACCGGACT TTTCGGGCAG AACCGGAGCG
 851
     GCGGCGATAT TTGGAAAGGC GTGTTCTATT CCACTGCACC GGCAACGGTT
     GAAAGCATTG CGCCGGGAAC GGTAAGCTAT GCGGACGAGT TGGACGGCTA
 901
 951
     CGGCAAAGTG GTCGTGGTCG ATCACGGCGA GAACTACATC AGCATCTATG
     CCGGTTTGAG CGAAATTTCC GTCGGCAAGG GTTATATGGT CGCGGCAGGA
1001
1051
     AGCAAAATCG GCTCGAGCGG GTCGCTGCCG GACGGGGAAG AGGGGCTTTA
1101
     CCTGCAAATA CGTTATCAAG GTCAGGTATT GAACCCTTCG AGCTGGATAC
1151 GTTGA
```

This corresponds to the amino acid sequence <SEQ ID 1880; ORF 597>: m597.pep

```
1 MLLHVSNSLK QLQEERIRQE RIRQARGNLA SVNRKQREAW DKFQKLNTEL
51 NRLKTEVAAT KAQISRFVSG NYKNSQPNAV ALFLKNAEPG QKNRFLRYTR
101 YVNASNREVV KDLEKQQKAL AVQEQKINNE LARLKKIQAN VQSLLKKQGV
151 TDAAEQTESR RQNAKIAKDA RKLLEQKGNE QQLNKLLSNL EKKKAEHRIQ
201 DAEAKRKLAE ARLAAAEKAR KEAAQQKAEA RRAEMSNLTA EDRNIQAPSV
251 MGIGSADGFS RMQGRLKKPV DGVPTGLFGQ NRSGGDIWKG VFYSTAPATV
301 ESIAPGTVSY ADELDGYGKV VVVDHGENYI SIYAGLSEIS VGKGYMVAAG
```

351 SKIGSSGSLP DGEEGLYLQI RYQGQVLNPS SWIR*

BNSDOCID: <WO___9957280A2_I_>

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 597 shows 96.1% identity over a 389 aa overlap with a predicted ORF (ORF 597) from N. gonorrhoeae:

m597/q597	06 18 identitu in 200
m59//g59/	96.1% identity in 389 aa overlap
g597.pep	10 20 30 40 50 60
gus/.pep	MLLHVSNSLKQLQEERIRQERIRQERIRQARGNLASVNRKQREAWDKFQKLNTELNRLKT
m597	MLLHVSNSLKQLQEERIRQERIRQARGNLASVNRKQREAWDKFQKLNTELNRLKT
	10 20 30 40 50
	70 80 90 100 110 120
g597.pep	EVAATKAQISRFVSGNYKNSRPNAVALFLKNAEPGOKNRFLRYTRYVNASNREVUKDLEK
m597	
	60 70 80 90 100 110
	130 140 150 160 170 180
g597.pep	QQKALAVQEQKINNELARLKKIQANVOSLLKKOGVTDAAEOTESRRONAKISKDARKIJE
m597	QQKALAVQEQKINNELARLKKIQANVQSLLKKQGVTDAAEQTESRRQNAKIAKDARKLLE 120 130 140 150 160 170
	110 130 160 170
g597.pep	190 200 210 220 230 240
gos/.pep	OKGNEQQLNKLLSNLEKKKAEHRIQDAEAKRKLAEAKLAAAEKARKEAAQQKAEARRAEM
m597	QKGNEQQLNKLLSNLEKKKAEHRIQDAEAKRKLAEARLAAAEKARKEAAQQKAEARRAEM
	180 190 200 210 220 230
	250 260 270 280 290 300
g597.pep	SNLTAEDRNIQAPSVMGIGSADGFSRMOGRLKKPVDGVPTGLFGONRSGGDVWKGVFYST
m597	
	240 250 260 270 280 290
	310 320 330 340 350 360
g597.pep	APATVESIAPGTVSYADELDGYGKVVVIDHGENYISIYAGLSEISAGKGYTVADGSKIGT
m597	
mos,	APATVESIAPGTVSYADELDGYGKVVVVDHGENYISIYAGLSEISVGRGYMVAAGSKIGS 300 310 320 330 340 350
g597.pep	370 380 390 SGSLPDGEEGLYLOIRYRGOVLNPSGWIRX
m597	SGSLPDGEEGLYLQIRYQGQVLNPSSWIRX
	360 370 380

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1881>

a597.seq					
1	ATGCTGCTTC	ATGTCAGCAA	TTCCCTCAAG	CAGCTTCAGG	AAGAGCGTAT
51	CCGCCAAGAA	CGTATCCGCC	AAGAGCGTAT	CCGTCAGGCG	CGCGGCAACC
101	TTGCTTCCGT	CAACCGCAAA		CTTGGGACAA	
151	CTCAATACCG	AGCTGAACCG	TTTGAAAACG	GAAGTCGCCG	CTACGAAAGC
201	GCAGATTTCC	CGTTTCGTAT	CGGGGAACTA	TAAAAACAGC	CAGCCGAATG
251	CGGTTGCCCT	GTTCCTGAAA	AACGCCGAAC	CGGGTCAGAA	AAACCGCTTT
301	TTGCGTTATA	CGCGTTATGT	AAACGCCTCC	AATCGGGAAG	TTGTCAAGGA
351	TTTGGAAAAA	CAGCAGAAGG	CTTTGGCGGT	ACAAGAGCAG	AAAATCAACA
401	ATGAGCTTGC	CCGTTTGAAG	AAAATTCAGG	CAAACGTGCA	ATCCCTGCTG
451	AAAAAACAGG	GTGTAACCGA	TGCGGCGGAA	CAGACGGAAA	GCCGCAGACA
501	GAATGCCAAA	ATCGCCAAAG	ATGCCCGAAA	ACTGCTGGAA	CAGAAAGGGA
551	ACGAGCAGCA	GCTGAACAAG	CTCTTGAGCA	ATTTGGAGAA	GAAAAAGGCC
601	GAACACCGCA	TTCAGGATGC	GGAAGCAAAA	AGAAAATTGG	CTGAAGCCAG
651	ACTGGCGGCA	GCCGAAAAAG	CCAGAAAAGA	AGCGGCGCAG	CAGAAGGCTG
701	AAGCACGACG	TGCGGAAATG	TCCAACCTGA	CCGCCGAAGA	CAGGAACATC
751	CAAGCGCCTT	CGGTTATGGG	TATCGGCAGT	GCCGACGGTT	TCAGCCGCAT .
801	GCAAGGACGT	TTGAAAAAAC	CGGTTGACGG	TGTGCCGACC	GGACTTTTCC
851	GGCAGAACCG	GAGCGGCGGC	GATGTTTGGA	AAGGCGTGTT	CTATTCCACT
901	GCACCGGCAA	CGGTTGAAAG	CATTGCGCCG	GGAACGGTAA	GCTATGCGGA

951	CGAGTTGGAC	GGCTACGGCA	AAGTGGTCGT	GGTCGATCAC	GGCGAGAACT
1001	ACATCAGCAT	CTATGCCGGT	TTGAGCGAAA	TTTCCGTCGG	CAAGGGTTAT
1051	ATGGTCGCGG	CAGGAAGCAA	AATCGGCTCG	AGCGGGTCGC	TGCCGGACGG
1101	GGAAGAGGGG	CTTTACCTGC	AAATACGTTA	TCAAGGTCAG	GTATTGAACC
1151	CTTCGAGCTG	GATACGTTGA			

This corresponds to the amino acid sequence <SEQ ID 1882; ORF 597.a>:

1 MLLHVSNSLK QLQEERIRQE RIRQERIRQA RGNLASVNRK QREAWDKFQK 51 LNTELNRLKT EVAATKAQIS RFVSGNYKNS QPNAVALFLK NAEPGQKNRF 101 LRYTRYVNAS NREVVKDLEK QQKALAVQEQ KINNELARLK KIQANVQSLL 151 KKQGVTDAAE QTESRRQNAK IAKDARKLLE QKGNEQQLNK LLSNLEKKKA 201 EHRIQDAEAK RKLAEARLAA AEKARKEAAQ QKAEARRAEM SNLTAEDRNI 251 QAPSVMGIGS ADGFSRMQGR LKKPVDGVPT GLFGQNRSGG DVWKGVFYST 301 APATVESIAP GTVSYADELD GYGKVVVVDH GENYISIYAG LSEISVGKGY 351 MVAAGSKIGS SGSLPDGEEG LYLQIRYQGQ VLNPSSWIR*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis

ORF 597 shows 98.5% identity over a 389 aa overlap with a predicted ORF (ORF 597) from N. meningitidis

N. meningiii	tais —
m597/a597	98.5% identity in 389 aa overlap
a597.pep	10 20 30 40 50 60 MLLHVSNSLKQLQEERIRQERIRQERIRQARGNLASVNRKQREAWDKFQKLNTELNRLKT
m597	MLLHVSNSLKQLQEERIRQERIRQARGNLASVNRKQREAWDKFQKLNTELNRLKT 10 20 30 40 50
a597.pep	70 80 90 100 110 120 EVAATKAQISRFVSGNYKNSQPNAVALFLKNAEPGQKNRFLRYTRYVNASNREVVKDLEK
m597	
a597.pep	130 140 150 160 170 180 QQKALAVQEQKINNELARLKKIQANVQSLLKKQGVTDAAEQTESRRQNAKIAKDARKLLE
m597	OCKALAVQEQKINNELARLKKIQANVQSLLKKQGVTDAAEQTESRRQNAKIAKDARKLLE 120 130 140 150 160 170
a597.pep	190 200 210 220 230 240 QKGNEQQLNKLLSNLEKKKAEHRIQDAEAKRKLAEARLAAAEKARKEAAQQKAEARRAEM
m597	
a597.pep	250 260 270 280 290 300 SNLTAEDRNIQAPSVMGIGSADGFSRMQGRLKKPVDGVPTGLFGQNRSGGDVWKGVFYST
m597	SNLTAEDRNIQAPSVMGIGSADGFSRMQGRLKKPVDGVPTGLFGQNRSGGDIWKGVFYST 240 250 260 270 280 290
a597.pep	310 320 330 340 350 360 APATVESIAPGTVSYADELDGYGKVVVVDHGENYISIYAGLSEISVGKGYMVAAGSKIGS
m597	APATVESIAPGTVSYADELDGYGKVVVVDHGENYISIYAGLSEISVGKGYMVAAGSKIGS 300 310 320 330 340 350
a597.pep	370 380 390 SGSLPDGEEGLYLQIRYQGQVLNPSSWIRX
m597	

BNSDOCID: <WO___9957280A2_I_>

.: 18**9** ___ 19

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1883>:
  g601.seq
           ATGTTCCCAA CCGGCAATTT GGTCGACGAA ATTGATGTGC CGAATATAGG
         1
        51 TCGTCTGAAA GCCACGCTCA TCAACGCGGG CATTCCGACC GTTTTCCTGA
       101 ACGCCGCCGA CTTGGGCTAC ACGGGCAAAG AGTTGCAGGA CGACATCAAC
       151 AACGATGCCG CCGCGCTGGA AAAATTTGAA ACCATCCGCG CATATGGCGC
       201 GCTGAAAATG GGTTTGATCA GCGACGTATC CGAAGCCGCC GCCCGCGCGC
       251 GCACGCCGAA ACCCGCCTTC GTCGCGCCCG CCGCCGATTA CACCGCCTCC
       301 AGCGGCAAAA CCGTAAACGC CGCCGACATC GATTTGCCGG TACGCGCCCT
       351 GAGCATGGGC AAACTGCACC ACGCTATGAT GGGCATCGCC TCGGTCGCCA
       401 TCGCCGCCGC CGTGCTCGGT ACGCTGGTCA ACCTTGCCGC AGGCGGCGGA
      451 ACGCGTAAAG AAGTGCGCTT CGGGCATCCG TCAGGTACGC TGCGTGTCGG
501 TGCTGCCGCC GAATGTCAGG ACGGACAATG GACGGCCGCC aaagcggtca
           tgaGCCGCAG CGCACgcgtg attatggaaa gttgGGTGCg cgttcccgat
      601 gattGTTTTT GA
 This corresponds to the amino acid sequence <SEQ ID 1884; ORF 601.ng>:
 g601.pep
           MFPTGNLVDE IDVPNIGRLK ATLINAGIPT VFLNAADLGY TGKELQDDIN
           NDAAALEKFE TIRAYGALKM GLISDVSEAA ARARTPKPAF VAPAADYTAS
          SGKTVNAADI DLPVRALSMG KLHHAMMGIA SVAIAAAVLG TLVNLAAGGG
      101
           TRKEVRFGHP SGTLRVGAAA ECQDGQWTAA KAVMSRSARV IMESWVRVPD
      151
      201 DCF*
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1885>:
 m601.seg
           ATGTTCCCAA CCGGCAATTT GGTCGATGAA ATTGATGTGC CGAATATAGG
        1
       51
           CCGTTTGAAA GCCACGCTCA TCAACGCGGG CATTCCGACC GTTTTCTTGA
      101 ATGCCGCCGA CTTGGGCTAC ACAGGCAAAG AGTTGCAAGA CGACATCAAC
      151 AACGATGCCG CGGCTTTGGA AAAATTCGAG AAAATCCGCG CTTACGGTGC
      201 GCTGAAAATG GGTCTGATCA GCGACGTATC CGAAGCTGCC GCTCGCGCGC
      251 ACACGCCGAA AGTCGCCTTC GTCGCGCCCG CCGCCGATTA CACCGCCTCC
      301 AGTGGCAAAA CCGTGAACGC CGCCGACATC GATTTGCTGG TACGCGCCCT
      351 GAGCATGGGC AAACTGCACC ACGCGATGAT GGGTACCGCC TCTGTTGCCA
      401 TTGCGACCGC CGCCGCCGTA CCCGGTACGC TGGTCAACCT TGCCGCAGGC
      451 GGCGGAACGC GTAAAGAAGT GCGCTTCGGG CATCCTTCCG GCACATTGCG
     501 CGTCGGTGCA GCCGCCGAAT GTCAGGACGG ACAATGGACG GCCACCAAAG
          CGGTCATGAG CCGTAGCGCA CGCGTGATGA TGGAAGGTTG GGTCAGGGTG
          CCTGAGGATT GTTTTTAA
This corresponds to the amino acid sequence <SEQ ID 1886; ORF 601>:
m601.pep
       1 MFPTGNLVDE IDVPNIGRLK ATLINAGIPT VFLNAADLGY TGKELQDDIN
       51 NDAAALEKFE KIRAYGALKM GLISDVSEAA ARAHTPKVAF VAPAADYTAS
          SGKTVNAADI DLLVRALSMG KLHHAMMGTA SVAIATAAAV PGTLVNLAAG
          GGTRKEVRFG HPSGTLRVGA AAECQDGQWT ATKAVMSRSA RVMMEGWVRV
     201
          PEDCF*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 601 shows 94.1% identity over a 205 aa overlap with a predicted ORF (ORF 601.ng)
from N. gonorrhoeae:
m601/g601
                               20
                                                    40
             {\tt MFPTGNLVDEIDVPNIGRLKATLINAGIPTVFLNAADLGYTGKELQDDINNDAAALEKFE}
m601.pep
             g601
             MFPTGNLVDEIDVPNIGRLKATLINAGIPTVFLNAADLGYTGKELQDDINNDAAALEKFE
                     10
                               20
                                         30
                                                   40
                                                             50
                     70
                               80
                                                  100
                                                            110
                                                                      120
            KIRAYGALKMGLISDVSEAAARAHTPKVAFVAPAADYTASSGKTVNAADIDLLVRALSMG
m601.pep
```

g601	г	 :IRAYGALKMGL: 70				 NAADIDLPVRAI	 LSMG 120
m601.pep		130 LHHAMMGTASV				170 LRVGAAAECQDO	180 GQWT
g601		 LHHAMMGIASV/ 130					 GOWT
		190	200				
m601.pep		TKAVMSRSARVI	MEGWVRVPED				
g601	A	AKAVMSRSARVI	MESWVRVPDD	· · ·			
	18	0 190	200	•			
		artial DNA s	equence wa	s identified i	n N. mening	itidis <seq i<="" td=""><td>D 1887>:</td></seq>	D 1887>:
a60	1.seq	ATGTTCCCAA	CCGGCAATTT	GGTCGATGAA	ATTGATGTGC	ССААТАТАСС	
	51	CCGTTTGAAA	GCCACGCTCA	TCAACGCGGG	CATTCCGACC	GTTTTCCTGA	
	101	ATGCCGCCGA	CTTGGGCTAC	ACGGGCAAAG	AGTTGCAAGA	CGACATCAAC	
	151 201	GCTGAAAATG	GGTCTGATCA	AAAATTCGAG	AAAATCCGCG CGAAGCTGCC	CTTACGGTGC	
	251	ACACGCCGAA	AGTCGCCTTC	GTCGCGCCCG	CCGCCGATTA	CACCGCCTCC	
	301	AGTGGCAAAA	CCGTGAATGC	CGCCGACATC	GATTTGCTGG	TACGCGCCCT	
	351 401	GAGCATGGGC	AAATTGCACC	ACGCGATGAT	GGGTACCGCC	TCTGTTGCCA	
	451	GGCGGAACGC	GTAAAGAAGT	GCGCTTCGGG	TGGTCAACCT CATCCTTCCG	TGCCGCAGGC	
	501	CGTCGGTGCA	GCCGCCGAAT	GTCAGGACGG	ACAATGGACG	GCCACCAAAG	
	551 601	CGGTTATGAG CCGGAAGATT	CCGCAGCGCA	CGCGTGATGA	TGGAAGGTTG	GGTCAGGGTG	
		s to the amin	o acid seque	nce <seq i<="" td=""><td>D 1888; ORI</td><td>F 601.a>:</td><td></td></seq>	D 1888; O RI	F 601.a>:	
	l.pep		_	-			
	l.pep l	MFPTGNLVDE	IDVPNIGRLK	ATLINAGIPT	VFLNAADLGY	TGKELODDIN	
	l.pep	MFPTGNLVDE NDAAALEKFE	IDVPNIGRLK KIRAYGALKM	ATLINAGIPT GLISDVSEAA	VFLNAADLGY ARAHTPKVAF	TGKELQDDIN VAPAADYTAS	
	1.pep 1 51 101 151	MFPTGNLVDE NDAAALEKFE SGKTVNAADI GGTRKEVRFG	IDVPNIGRLK KIRAYGALKM DLLVRALSMG	ATLINAGIPT GLISDVSEAA KLHHAMMGTA	VFLNAADLGY	TGKELQDDIN VAPAADYTAS PGTLVNLAAG	
	1.pep 1 51 101	MFPTGNLVDE NDAAALEKFE SGKTVNAADI	IDVPNIGRLK KIRAYGALKM DLLVRALSMG	ATLINAGIPT GLISDVSEAA KLHHAMMGTA	VFLNAADLGY ARAHTPKVAF SVAIATAAAV	TGKELQDDIN VAPAADYTAS PGTLVNLAAG	
	1.pep 1 51 101 151 201	MFPTGNLVDE NDAAALEKFE SGKTVNAADI GGTRKEVRFG	IDVPNIGRLK KIRAYGALKM DLLVRALSMG HPSGTLRVGA	ATLINAGIPT GLISDVSEAA KLHHAMMGTA AAECQDGQWT	VFLNAADLGY ARAHTPKVAF SVAIATAAAV	TGKELQDDIN VAPAADYTAS PGTLVNLAAG	
m601/a60	1.pep 1 51 101 151 201 11	MFPTGNLVDE NDAAALEKFE SGKTVNAADI GGTRKEVRFG PEDCF* 0.0% identity	IDVPNIGRLK KIRAYGALKM DLLVRALSMG HPSGTLRVGA / in 205 aa o	ATLINAGIPT GLISDVSEAA KLHHAMMGTA AAECQDGQWT	VFLNAADLGY ARAHTPKVAF SVAIATAAAV ATKAVMSRSA	TGKELQDDIN VAPAADYTAS PGTLVNLAAG RVMMEGWVRV	60
m601/a60	1.pep 1 51 101 151 201	MFPTGNLVDE NDAAALEKFE SGKTVNAADI GGTRKEVRFG PEDCF* 0.0% identity MFPTGNLV	IDVPNIGRLK KIRAYGALKM DLLVRALSMG HPSGTLRVGA / in 205 aa o	ATLINAGIPT GLISDVSEAA KLHHAMMGTA AAECQDGQWT Verlap 20 3 LKATLINAGIP	VFLNAADLGY ARAHTPKVAF SVAIATAAAV ATKAVMSRSA 0 40 TVFLNAADLGY	TGKELQDDIN VAPAADYTAS PGTLVNLAAG RVMMEGWVRV 50	AAALEKEE
m601/a60	1.pep 1 51 101 151 201 01 10	MFPTGNLVDE NDAAALEKFE SGKTVNAADI GGTRKEVRFG PEDCF* 0.0% identity MFPTGNLV	IDVPNIGRLK KIRAYGALKM DLLVRALSMG HPSGTLRVGA / in 205 aa o 10 //DEIDVPNIGRI	ATLINAGIPT GLISDVSEAA KLHHAMMGTA AAECQDGQWT Verlap 20 3 LKATLINAGIP	VFLNAADLGY ARAHTPKVAF SVAIATAAAV ATKAVMSRSA 0 40 TVFLNAADLGY	TGKELQDDIN VAPAADYTAS PGTLVNLAAG RVMMEGWVRV 50 IGKELQDDINNE	AAALEKFE
m601/a60	1.pep 1 51 101 151 201 01 10	MFPTGNLVDE NDAAALEKFE SGKTVNAADI GGTRKEVRFG PEDCF* 0.0% identity MFPTGNLV	IDVPNIGRLK KIRAYGALKM DLLVRALSMG HPSGTLRVGA / in 205 aa o 10 //DEIDVPNIGRI //DEIDVPNIGRI	ATLINAGIPT GLISDVSEAA KLHHAMMGTA AAECQDGQWT Verlap 20 3 LKATLINAGIP	VFLNAADLGY ARAHTPKVAF SVAIATAAAV ATKAVMSRSA 0 40 TVFLNAADLGY	TGKELQDDIN VAPAADYTAS PGTLVNLAAG RVMMEGWVRV 50	AAALEKFE
m601/a60	1.pep 1 51 101 151 201 01 10	MFPTGNLVDE NDAAALEKFE SGKTVNAADI GGTRKEVRFG PEDCF* 0.0% identity MFPTGNLV	IDVPNIGRLK KIRAYGALKM DLLVRALSMG HPSGTLRVGA / in 205 aa o 10 //DEIDVPNIGRI //DEIDVPNIGRI //DEIDVPNIGRI 10 //DEIDVPNIGRI	ATLINAGIPT GLISDVSEAA KLHHAMMGTA AAECQDGQWT Verlap 20 3 LKATLINAGIP LKATLINAGIP	VFLNAADLGY ARAHTPKVAF SVAIATAAAV ATKAVMSRSA 0 40 TVFLNAADLGY TVFLNAADLGY 0 40	TGKELQDDIN VAPAADYTAS PGTLVNLAAG RVMMEGWVRV 50 TGKELQDDINNE	DAAALEKFE DAAALEKFE 60
m601/a60 m603 a603	1.pep 1 51 101 151 201 01 10	MFPTGNLVDE NDAAALEKFE SGKTVNAADI GGTRKEVRFG PEDCF* 0.0% identity MFPTGNLV MFPTGNLV KIRAYGAL	IDVPNIGRLK KIRAYGALKM DLLVRALSMG HPSGTLRVGA / in 205 aa o 10 2 //DEIDVPNIGRI IDEIDVPNIGRI 10 2 //DEIDVPNIGRI 10 2 //DEIDVPNIGRI 10 2 //DEIDVPNIGRI	ATLINAGIPT GLISDVSEAA KLHHAMMGTA AAECQDGQWT Verlap 20 3 LKATLINAGIP LKATLINAGIP 20 3	VFLNAADLGY ARAHTPKVAF SVALATAAAV ATKAVMSRSA 0 40 TVFLNAADLGY TVFLNAADLGY 0 40 0 100 FVAPAADYTAS	TGKELQDDIN VAPAADYTAS PGTLVNLAAG RVMMEGWVRV 50 IGKELQDDINNE IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	DAAALEKFE DAAALEKFE 60 120
m601/a60 m603 a603	1.pep 1 51 101 151 201 01 10 1.pep	MFPTGNLVDE NDAAALEKFE SGKTVNAADI GGTRKEVRFG PEDCF* 0.0% identity MFPTGNLV MFPTGNLV KIRAYGAL	IDVPNIGRLK KIRAYGALKM DLLVRALSMG HPSGTLRVGA / in 205 aa o 10	ATLINAGIPT GLISDVSEAA KLHHAMMGTA AAECQDGQWT Verlap 20 3 LKATLINAGIP LKATLINAGIP 20 3	VFLNAADLGY ARAHTPKVAF SVAIATAAAV ATKAVMSRSA 0 40 TVFLNAADLGY TVFLNAADLGY 0 40 0 100 FVAPAADYTAS:	TGKELQDDIN VAPAADYTAS PGTLVNLAAG RVMMEGWVRV 50 IGKELQDDINNE 11111111111111111111111111111111111	DAAALEKFE DAAALEKFE 60 120 LVRALSMG
m601/a60 m603 a603	1.pep 1 51 101 151 201 01 10 1.pep	MFPTGNLVDE NDAAALEKFE SGKTVNAADI GGTRKEVRFG PEDCF* 0.0% identity MFPTGNLV MFPTGNLV KIRAYGAL	IDVPNIGRLK KIRAYGALKM DLLVRALSMG HPSGTLRVGA / in 205 aa o 10 2 //DEIDVPNIGRI IDEIDVPNIGRI 10 2 //DEIDVPNIGR	ATLINAGIPT GLISDVSEAA KLHHAMMGTA AAECQDGQWT Verlap 20 3 LKATLINAGIP LKATLINAGIP 20 3	VFLNAADLGY ARAHTPKVAF SVAIATAAAV ATKAVMSRSA 0 40 TVFLNAADLGY TVFLNAADLGY 0 40 0 100 FVAPAADYTAS:	TGKELQDDIN VAPAADYTAS PGTLVNLAAG RVMMEGWVRV 50 IGKELQDDINNE IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	DAAALEKFE DAAALEKFE 60 120 LVRALSMG
m601/a60 m603 a603	1.pep 1 51 101 151 201 01 10 1.pep	MFPTGNLVDE NDAAALEKFE SGKTVNAADI GGTRKEVRFG PEDCF* 0.0% identity MFPTGNLV MFPTGNLV KIRAYGAL KIRAYGAL	IDVPNIGRLK KIRAYGALKM DLLVRALSMG HPSGTLRVGA / in 205 aa o 10	ATLINAGIPT GLISDVSEAA KLHHAMMGTA AAECQDGQWT Verlap 20 3 LKATLINAGIP LKATLINAGIP 20 3 80 9 AAARAHTPKVA	VFLNAADLGY ARAHTPKVAF SVAIATAAAV ATKAVMSRSA 0 40 TVFLNAADLGY TVFLNAADLGY 0 40 0 100 FVAPAADYTAS:	TGKELQDDIN VAPAADYTAS PGTLVNLAAG RVMMEGWVRV 50 TGKELQDDINNE TGKELQDDINNE 50 110 SGKTVNAADIDL	DAAALEKFE DAAALEKFE 60 120 LVRALSMG LVRALSMG
m601/a60 m603 a603	1.pep 1 51 101 151 201 01 10 1.pep	MFPTGNLVDE NDAAALEKFE SGKTVNAADI GGTRKEVRFG PEDCF* 0.0% identity MFPTGNLV MFPTGNLV KIRAYGAL KIRAYGAL	IDVPNIGRLK KIRAYGALKM DLLVRALSMG HPSGTLRVGA / in 205 aa o 10 //DEIDVPNIGRI IDUPNIGRI IDUPNIGRI IO KMGLISDVSEX IIIIIIIII KMGLISDVSEX 70 8 30 14 CTASVAIATAAX	ATLINAGIPT GLISDVSEAA KLHHAMMGTA AAECQDGQWT VERIAP 20 3 LKATLINAGIP LKATLINAGIP 20 3 AAARAHTPKVA	VFLNAADLGY ARAHTPKVAF SVAIATAAAV ATKAVMSRSA 0 40 TVFLNAADLGY 1111111111 TVFLNAADLGY 0 40 0 100 FVAPAADYTAS: 111111111 FVAPAADYTAS: 0 100 0 160 GGGTRKEVRFGI	TGKELQDDIN VAPAADYTAS PGTLVNLAAG RVMMEGWVRV 50 FGKELQDDINNE 1110 SGKTVNAADIDL 11111111111111111111111111111111111	DAAALEKFE DAAALEKFE 60 120 LVRALSMG LVRALSMG 120 180
m601/a60 m603 a603 m603 m603	1.pep 1 51 101 151 201 01 10 1.pep	MFPTGNLVDE NDAAALEKFE SGKTVNAADI GGTRKEVRFG PEDCF* 0.0% identity MFPTGNLV KIRAYGAL KIRAYGAL KIRAYGAL	IDVPNIGRLK KIRAYGALKM DLLVRALSMG HPSGTLRVGA / in 205 aa o 10 //DEIDVPNIGRI IDUPNIGRI	ATLINAGIPT GLISDVSEAA KLHHAMMGTA AAECQDGQWT VERIAP 20 3 LKATLINAGIP LKATLINAGIP 20 3 AAARAHTPKVA HIHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	VFLNAADLGY ARAHTPKVAF SVAIATAAAV ATKAVMSRSA 0 40 TVFLNAADLGY 111111111111111111111111111111111111	TGKELQDDIN VAPAADYTAS PGTLVNLAAG RVMMEGWVRV 50 FGKELQDDINNE 1110 50 SGKTVNAADIDL 1111 SGKTVNAADIDL 110 170 HPSGTLRVGAAA	DAAALEKFE
m601/a60 m603 a603	1.pep 1 51 101 151 201 01 10 1.pep	MFPTGNLVDE NDAAALEKFE SGKTVNAADI GGTRKEVRFG PEDCF* 0.0% identity MFPTGNLV MFPTGNLV KIRAYGAL KIRAYGAL KIRAYGAL	IDVPNIGRLK KIRAYGALKM DLLVRALSMG HPSGTLRVGA / in 205 aa o 10 //DEIDVPNIGRI IDUPNIGRI	ATLINAGIPT GLISDVSEAA KLHHAMMGTA AAECQDGQWT VETIAP 20 3 LKATLINAGIP LKATLINAGIP 20 3 SO 9 AAARAHTPKVA SO 9 AAARAHTPKVA SO 9 AVARAHTPKVA	VFLNAADLGY ARAHTPKVAF SVAIATAAAV ATKAVMSRSA 0 40 TVFLNAADLGY 111111111111111111111111111111111111	TGKELQDDIN VAPAADYTAS PGTLVNLAAG RVMMEGWVRV 50 TGKELQDDINNE 1110 SGKTVNAADIDL 1110 170 HPSGTLRVGAAA	DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE
m601/a60 m603 a603 m603 m603	1.pep 1 51 101 151 201 01 10 1.pep	MFPTGNLVDE NDAAALEKFE SGKTVNAADI GGTRKEVRFG PEDCF* 0.0% identity MFPTGNLV KIRAYGAL KIRAYGAL KLHHAMMG	IDVPNIGRLK KIRAYGALKM DLLVRALSMG HPSGTLRVGA / in 205 aa o 10 //DEIDVPNIGRI IDUPNIGRI	ATLINAGIPT GLISDVSEAA KLHHAMMGTA AAECQDGQWT VERIAP 20 3 LKATLINAGIP LKATLINAGIP 20 3 AAARAHTPKVA 111111111111111111111111111111111111	VFLNAADLGY ARAHTPKVAF SVAIATAAAV ATKAVMSRSA 0 40 TVFLNAADLGY TVFLNAADLGY 0 40 0 100 FVAPAADYTAS: FVAPAADYTAS: 0 100 0 160 GGGTRKEVRFGI	TGKELQDDIN VAPAADYTAS PGTLVNLAAG RVMMEGWVRV 50 FGKELQDDINNE 1110 50 SGKTVNAADIDL 1111 SGKTVNAADIDL 110 170 HPSGTLRVGAAA	DAAALEKFE
m601/a60 m603 a603 m603 a603	1.pep	MFPTGNLVDE NDAAALEKFE SGKTVNAADI GGTRKEVRFG PEDCF* 0.0% identity MFPTGNLV KIRAYGAL LILLIAN KIRAYGAL KIRAYGAL KIRAYGAL KIRAYGAL 1 KLHHAMMG LILLIAN 1	IDVPNIGRLK KIRAYGALKM DLLVRALSMG HPSGTLRVGA / in 205 aa o 10 //DEIDVPNIGRI IDUPNIGRI	ATLINAGIPT GLISDVSEAA KLHHAMMGTA AAECQDGQWT VERIAP 20 3 LKATLINAGIP LKATLINAGIP 20 3 30 9 AAARAHTPKVA 30 9 AAARAHTPKVA 30 9 AVPGTLVNLAAA 1111111111111111111111111111111111	VFLNAADLGY ARAHTPKVAF SVAIATAAAV ATKAVMSRSA 0 40 TVFLNAADLGY 111111111111111111111111111111111111	TGKELQDDIN VAPAADYTAS PGTLVNLAAG RVMMEGWVRV 50 TGKELQDDINNE 1110 SGKTVNAADIDL 1110 170 HPSGTLRVGAAA	DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE
m601/a60 m603 a603 m603 a603	1.pep 1 51 101 151 201 01 10 1.pep	MFPTGNLVDE NDAAALEKFE SGKTVNAADI GGTRKEVRFG PEDCF* 0.0% identity MFPTGNLV KIRAYGAL KIRAYGAL KLHHAMMG KLHHAMMG ATKAVMSR	IDVPNIGRLK KIRAYGALKM DLLVRALSMG HPSGTLRVGA / in 205 aa o 10 //DEIDVPNIGRI IDUPNIGRI	ATLINAGIPT GLISDVSEAA KLHHAMMGTA AAECQDGQWT VERIAP 20 3 LKATLINAGIP LKATLINAGIP 20 3 30 9 AAARAHTPKVA 30 9 AAARAHTPKVA 30 9 AVPGTLVNLAAA 1111111111111111111111111111111111	VFLNAADLGY ARAHTPKVAF SVAIATAAAV ATKAVMSRSA 0 40 TVFLNAADLGY 111111111111111111111111111111111111	TGKELQDDIN VAPAADYTAS PGTLVNLAAG RVMMEGWVRV 50 TGKELQDDINNE 1110 SGKTVNAADIDL 1110 170 HPSGTLRVGAAA	DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE
m601/a60 m603 a603 m603 a603	1.pep	MFPTGNLVDE NDAAALEKFE SGKTVNAADI GGTRKEVRFG PEDCF* 0.0% identity MFPTGNLV MFPTGNLV KIRAYGAL KIRAYGAL LIIIIIII KLHHAMMG KLHHAMMG KLHHAMMG KLHHAMMG	IDVPNIGRLK KIRAYGALKM DLLVRALSMG HPSGTLRVGA / in 205 aa o 10 //DEIDVPNIGRI IDUPNIGRI	ATLINAGIPT GLISDVSEAA KLHHAMMGTA AAECQDGQWT Verlap 20 3 LKATLINAGIP LKATLINAGIP 20 3 30 9 AAARAHTPKVA 30 9 AAARAHTPKVA 30 9 AVPGTLVNLAAA 1111111111111111111111111111111111	VFLNAADLGY ARAHTPKVAF SVAIATAAAV ATKAVMSRSA 0 40 TVFLNAADLGY 1111111111 TVFLNAADLGY 0 40 0 100 FVAPAADYTAS: 111111111 FVAPAADYTAS: 0 100 0 160 GGGTRKEVRFGI	TGKELQDDIN VAPAADYTAS PGTLVNLAAG RVMMEGWVRV 50 TGKELQDDINNE 1110 SGKTVNAADIDL 1110 170 HPSGTLRVGAAA	DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE DAALEKFE

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1889>:
  g602 . seq
           ATGTTGCTCC ATCAATGCGA CAAAGCGCGA CATATGCGTC CCTTTCTGCT
        51 CGGCGGCAG ATAAACCGTC ATCGTCAGGC GAGCAACCGT GGATTGTGTT
      101 CCTTCGGCGG TTTTCAGGGT AATCGGGAAG CGCAGGTCTT TAATGCCGAC
      151 CTGATTGATC GGCAGGTTGC GCAAATCTCT GCTGGATTGC ACGTCTGCAA
      201 TGGCGTTCAT GCGTTGTTTG TCCTTAATAT TCAGATAATT ATTGAGATGT
           GTGTATTGTA TGGCAGGcag atgccgtctg aAAAAacgct gtcggCCGCC
      301 TGCCTGCAAA TgcgagattA TATCACTTGC TTTtggcgGC TGCATTGA
 This corresponds to the amino acid sequence <SEQ ID 1890; ORF 602.ng>:
 g602.pep
           MLLHQCDKAR HMRPFLLGGQ INRHRQASNR GLCSFGGFQG NREAQVFNAD
           LIDRQVAQIS AGLHVCNGVH ALFVLNIQII IEMCVLYGRQ MPSEKTLSAA
      101 CLOMRDYITC FWRLH*
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1891>:
 m602.seq
           ATGTTGCTCC ATCAATGCGA CAAAACGCGA CATATGCGTC CCCTTCTGCT
        1
       51
           CAGCAGGCAG GTAAACCGTC ATGGTCAGAC GGGCAATGGT GGACTGGATG
      101 CCTTCTGCAG TTTGCAGGGT AATCGGAAAG CGCAGGTCTT TGATACCGAC
      151 CTGATTGATC GGCAGATTGC GCAAATCTCG GCTGGATTGC ACGTCTGCAA
      201
          TAGTGTTCAT GAGTTGTTTT TCCTTAATAT TCATGTAATT GTTGAGATGT
      251 GTGCATGGTA TGGCGTTTCC GCCGGGGAAT ATACCGTCAA TCTGCAAATG
      301 CGAGATTATA TCACTCGCTT TTAGCAGCTG CATTGA
 This corresponds to the amino acid sequence <SEQ ID 1892; ORF 602>:
 m602.pep
          MLLHQCDKTR HMRPLLLSRQ VNRHGQTGNG GLDAFCSLQG NRKAQVFDTD
          LIDRQIAQIS AGLHVCNSVH ELFFLNIHVI VEMCAWYGVS AGEYTVNLOM
      51
     101 RDYITRF*OL H*
m602/g602 65.2% identity in 115 aa overlap
                              20
                                       30
m602.pep
             MLLHQCDKTRHMRPLLLSRQVNRHGQTGNGGLDAFCSLQGNRKAQVFDTDLIDRQIAQIS
             11111111:11111:11: 1:111 1::1 11 :1 ::1111:1111::1111:1111:1111
a602
             MLLHQCDKARHMRPFLLGGQINRHRQASNRGLCSFGGFQGNREAQVFNADLIDRQVAQIS
                              20
                                       30
                                                 40
                    70
                              80
                                       90
                                                    100
             AGLHVCNSVHELFFLNIHVIVEMCAWYGVSA-GEYTVN---LQMRDYITRFXQLHX
m602.pep
             q602
             AGLHVCNGVHALFVLNIQIIIEMCVLYGRQMPSEKTLSAACLQMRDYITCFWRLHX
                    70
                              80
                                       90
                                                100
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1893>:
      a602.seq
                ATGTTGCTCC ATCAATGCGA CAAAGCGCGA CATATGCGTA CCCTTCTGCT
                CGGCAGGCAG GTAAACCGTC ATGGTCAGAC GGGCAACTGT GGACTGGATG
            51
           101
                CCTTCTGCAG TTTGCAGGGT AATCGGAAAG CGCAGGTCTT TGATACCGAC
                CTGATTGATC GGCAGATTGC GCAAATCTCG GCTGGATTGC ACGTCTGCAA
           151
                TAGTGTTCAT GAGTTGTTTT TCCTTAATAT TCATGTAATT GTTGAGATGT
           201
                GTGCATGGTA TGGCGTTTCC ACCGGGGAAT ATACCGTCAA TCTGCAAATG
           301 CGAGATTATA TCACTCGCTT TTAGCAGCTG CATTGA
This corresponds to the amino acid sequence <SEQ ID 1894; ORF 602.a>:
     a602.pep
                MLLHQCDKAR HMRTLLLGRQ VNRHGQTGNC GLDAFCSLQG NRKAQVFDTD
               LIDRQIAQIS AGLHVCNSVH ELFFLNIHVI VEMCAWYGVS TGEYTVNLQM
           101 RDYITRF*QL H*
     m602/a602
                   95.5% identity in 111 aa overlap
```

```
10
                       20
                               30
                                      40
         MLLHQCDKTRHMRPLLLSRQVNRHGQTGNGGLDAFCSLQGNRKAQVFDTDLIDRQIAQIS
m602.pep
         MLLHQCDKARHMRTLLLGRQVNRHGQTGNCGLDAFCSLQGNRKAQVFDTDLIDRQIAQIS
a602
               10
                       20
                               30
                                      40
                                             50
                       80
                               90
                                     100
                                             110
         AGLHVCNSVHELFFLNIHVIVEMCAWYGVSAGEYTVNLQMRDYITRFXQLHX
m602.pep
         AGLHVCNSVHELFFLNIHVIVEMCAWYGVSTGEYTVNLQMRDYITRFXQLHX
a602
               70
                       80
                              90
```

The following partial DNA sequence was identified in *N.gonorrhoeae* <SEQ ID 1895>: g603.seq

```
ATGGATTCCC GCCTGCGTGG GAATGACGCT AGGAAATACG GCATACGCTT
      TGCCCAAAGA GGCCGTCTGA AACACACTCC GCCCAACGCC CATCCTTTTT
  51
      CAGACGGCCC CGCACCAAAA AAACAACCAC AAACTACAAG GAGAAACATC
 101
      ATGTCCGACC AACTCATTCT TGTCCTGAAC TGCGTCAGTT CATCGCTCAA
 201 AGGCGCCGTT ATCGACCGCA AAAGCGGCAG CGTCGTCCTA AGCTGCCTCG
 251 GGGAACGCCT GACTACGCCC GAAGCCGTCA TTACCTTCAA CAAAGACGGC
 301 AACAAACGCC AAGTTCCCCT GAGCGGCCGC AACTGCCACG CCGGCGCGGT
 351 GGGTATGCTG TTGAACGAAC TGGAAAAACA CGGACTGCAC GACCGCATCA
 401 AAGCCATCGG CCGCCGCATC GCCCACGGCG GCGAAAAATA TCACGAGTCC
 451 GTCCTCATCG ACCAAGACGT CCTTGACGAA CTGAAAGCCT GCATCCCGTT
 501 CGCCCCGCTG CACAACCCCG CCAACATCAG CGGCATCCTC GCCGCGCAGG
 551 AACACTTTCC CGGCCTGCCC AACGTCGGCG TGATGGACAC CTCGTTCCAC
 601 CAAACCATGC CGGAGCGGGC CTACACTTAT GCCGTGCCGC GCGAATTGCG
     CAAAAAATAC GCCTTCCGCC GCTACGGTTT CCACGGTACC GGTATGCGTT
     ACGTCGCCCC TGAAGCCGCA CGCATCTTGG GCAAACCTct ggaaGACATC
      CGCATGATTA TTGCCCACTT AGGCAACGGC GCATCTATTA CCGCCGTCAA
 801 AAACGGCAAA TCCGTCGATA CCGGTATGGG TTTCACGCCG ATCGAAGGTT
 851 TGGTAATGGG TACACGTTGC GGCGACACCG ATCCGGGCGT ATACAGCTAT
 901 CCGACTTTCC ACGCAGGGAT GGATGTTGCC CAAGTTGATG AAATGCTGAA
 951 CGAAAAATCA GGTTTCCCCG GTATTTCcgA actTCCCAAC GACTGCCGCA
1001 CCCTCGAAAT CGCCGCCGAC GAAGGCCGCG AAGGCGCGCG CCTCGCCCTC
1051 GAAGTCATGA CCTGCCGCCT CGCCAAATAC ATCGCTTCGA TGGCTGTGGC
1101 CTGCGGCAGT GTTGACGCAC TCGTGTTCAC CGGCGGTATC GGCGAAAACT
1151 CGCGTAATAT CCGTGCCAAA ACCGTTTCCT ATCTTGATTT CTTGGGTCTG
1201 CACATCGACA CCAAAGCCAA TATGGAAAAA CGCTACGGCA ATTCGGGCAT
     TATCAGCCCG ACCGATTCTT CTCCGGCTGT TTTGGTCGTC CCGACCAATG
     AAGAACTGAT GATTGCCTGC GACACTGCCG AACTTGCCGG CATCTTGTAG
```

This corresponds to the amino acid sequence <SEQ ID 1896; ORF 603.ng>: g603.pep

```
MDSRLRGNDA RKYGIRFAQR GRLKHTPPNA HPFSDGPAPK KQPQTTRRNI

MSDQLILVLN CVSSSLKGAV IDRKSGSVVL SCLGERLTTP EAVITFNKDG

NKRQVPLSGR NCHAGAVGML LNELEKHGLH DRIKAIGRRI AHGGEKYHES

VLIDQDVLDE LKACIPFAPL HNPANISGIL AAQEHFPGLP NVGVMDTSFH

QTMPERAYTY AVPRELRKKY AFRRYGFHGT GMRYVAPEAA RILGKPLEDI

RMIIAHLGNG ASITAVKNGK SVDTGMGFTP IEGLVMGTRC GDTDPGVYSY

RTFHAGMDVA QVDEMLNEKS GFPGISELPN DCRTLEIAAD EGREGARLAL

FVMTCRLAKY IASMAVACGS VDALVFTGGI GENSRNIRAK TVSYLDFLGL

HIDTKANMEK RYGNSGIISP TDSSPAVLVV PTNEELMIAC DTAELAGIL*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1897>: m603.seq

```
1 CTGTCCTCGC GTAGGCGGGG ACGGAATAAC GATAGAAAAT GCGGCATACG
51 CTTTGCCCAA AGAGGCCGTC TGAAACACCT TGCGCCTGAT GTCTGC.CTT
101 TTTCAGACGA CCCCACACTA AAAAAACAAC CACAAACTAC AAGGAGAAAC
151 ATCATGTCCG ACCAACTCAT CCTCGTTCTG AACTGCGGCA GTTCATCGCT
201 CAAAGGCGCC GTTATCGACC GAMAAAGCGG CAGCGTCGTC CTAAGCTGCC
251 TCGGCGAACG CCLGACCACG CCCGAAGCCG TCATTACGTT CAACAAAGAC
```

BNSDOCID: <WO___9957280A2_J_>

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N.gonorrhoeae

401 LHIDTKANME KRYGNSGIIS PTDSSPAVLV VPTNEELMIA CDTAELAGIL

ORF 603 shows 91.6% identity over a 450 aa overlap with a predicted ORF (ORF 603.ng) from N. gonorrhoeae:

m603.pep	::[]	11 1: 11	20 CGIRFAQRGRLI CGIRFAQRGRLI 20		11 1: 1111	 QTTRRNIMSI	111111
				30	40	50	
m603.pep	NGGGG	70	80	90	100	110	120
moos.pep	NCGSS	STRGWAIDE	XSGSVVLSCLO	SERLTTPEAV	TFNKDGNKR	OVPLSGRNCI	IAGAVGM
g603	NCVSS	!!!!!!!!! SLKGAVIDR	KSGSVVLSCLO		TTENEDONED		
_	60	70	80	90	100	QVPLSGRNCF 110	IAGAVGM
					100	110	
		130	140	150	160	170	180
m603.pep	LLNEL	EKHGLHDRI	KAIGHRIAHGO	EKYSESVLI:	DQAVMDELNA	CIPLAPLHNE	ANISGI
g603	LINETI			111 111	11 1:111:1	:	
9003	120	130	KAIGRRIAHGO			CIPFAPLHNE	ANISGI
	120	130	140	150	160	170	
m603.pep	LAAQEI	190 HFPGLPNVG	200 VMDTSFHQTMP	210 ERAYTYAVPI	220 RELRKKYAFRI	230 RYGFHGTSMR	240 YVAPEA
	11111		11111111111		11111111111	111111:11	

				,			
g603	LAAQE	HFPGLPNVG	VMDTSFHQTN	IPERAYTYAV P	RELRKKYAFR	RYGFHGTGMI	RYVAPEA
	180	190	200	210	220	230	
		250	260	270	280	290	200
m603.pep	APTIC			TAIKNGKSVD			300
moos.pep	HALLO	KPLEDIKMI	LEMBURGHAL			LVMGTRCGD.	LDPGVYS
	11111	1 1 1 1 1 1 1 1			1:		
g603			IAHLGNGASI	TAVKNGKSVD	TGMGFTPIEG	LVMGTRCGDT	rdpgvys
	240	250	260	270	280	290	
		310	320	330	340	350	360
m603.pep	YLTSH	AGMDVAOVD	EMLNKKSGLI	GISELSNDCR			עע זמעייוי
							II IIII
G603				11111111			
g603				GISELPNDCR			ITCRLAK
	300	310	320	330	340	350	
		370	380	390	400	410	420
m603.pep	YIASM	AVGCGGVDA	LVFTGGIGEN	SRNIRAKTVS	YLDFLGLHID	TKANMEKRYC	
		11:11:11	1111111111				
g603		11.31.11	TURTGGTGFN	SRNIRAKTVS			111111
5005	360	370	380				INSGIIS
	360	370	380	390	400	410	
		430	440	450			
m603.pep	PTDSS	PAVLVVPTN	EELMIACDTA	ELAGILX			
		11111111					
g603	PTDSS	PAVLVVPTNI	EELMIACDTA	ELAGILX			
-	420	430	440	450			
	-20	430	440	450			
7731 C 11							
I he tollow	ina nartia	I I I N I A COC	2222 222211	idontified in		- 12 1 2 - OT	A TT 10

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1899>:

```
a603.seq
          CTGTCCTCGC GTAGGCGGGG ACGGAATAAC GATAGAAAAT GCGGCATACG
      1
         CTTTGCCCAA AGAGGCCGTC TGAAACACAC TCCGCCCAAC GCCCATCCTT
     51
    101
         TTTCAGACGA CCCCACACC. AAAAAACAAC CACAAACTAC AAGGAGAAAC
    151
         ATCATGTCCG ACCAACTCAT TCTTGTTCTG AACTGCGGCA GTTCATCGCT
         CAAAGGTGCC GTTATCGACC GCAAAAGCGG CAGCGTCGTC CTAAGCTGCC
    201
         TCGGCGAACG CCTGACCACG CCCGAAGCCG TCATTACGTT CAGCAAAGAC
    251
         GGCAACAAAC GCCAAGTTCC CCTGAGCGGC CGGAACTGCC ACGCCGGCGC
         GGTGGGTATG CTGTTGAACG AACTGGAAAA ACACGAACTG CACGACCGCA
    351
    401
         TTCAAGCCGT CGGCCACCGC ATCGCCCACG GCGGCGAAAA ATACAGCGAG
         TCTGTTTTGA TCGACCAGGC CGTAATGGAC GAACTCAATG CCTGCATTCC
    451
         GCTTGCGCCG CTGCACAACC CCGCCAACAT CAGCGGCATC CTCGCCGCAC
    501
         AGGAACATTT CCCCGGTCTG CCCAATGTCG GCGTGATGGA TACTTCGTTC
    551
         CACCAAACCA TGCCGGAGCG TGCCTACACT TATGCCGTGC CGCGCGAGTT
    601
    651
         GCGTAAAAAA TACGCTTTCC GCCGCTACGG TTTCCACGGC ACCAGTATGC
         GTTACGTTGC CCCTGAAGCC GCATGCATCT TGGGCAAACC TCTGGAAGAC
    701
         ATCCGCATGA TTATTGCCCA CTTAGGCAAC GGCGCATCCA TTACCGCCAT
    751
         CAAAAACGGC AAATCCGTCG ATACCAGTAT GGGTTTCACG CCGATCGAAG
    801
         GTTTGGTAAT GGGTACGCGC TGCGGCGATA TCGACCCGGG CGTATACAGC
    851
    901
         TATCTGACTT CACACGCCGG TTTGGATGTT GCACAAGTTG ATGAAATGCT
    951
         GAATAAAAA TCAGGCTTGC TCGGTATTTC CGAACTCTCC AACGACTGCC
         GCACCCTCGA AATCGCCGCC GACGAAGGCC ACGAAGGCGC GCGCCTCGCC
   1001
   1051
         CTCGAAGTTA TGACCTACCG CCTCGCCAAA TACATCGCTT CGATGGCTGT
         GGGCTGCGGC GGCGTTGACG CACTCGTGTT CACCGGCGGT ATCGGCGAAA
         ACTCGCGTAA TATCCGTGCC AAAACCGTTT CCTATCTTGA TTTCTTGGGT
   1151
   1201
         CTGCACATCG ACACCAAAGC CAATATGGAA AAACGCTACG GCAATTCGGG
         TATTATCAGC CCGACCGATT CTTCTCCGGC TGTTTTGGTT GTCCCGACCA
   1251
         ATGAAGAACT GATGATTGCC TGCGACACTG CCGAACTTGT CGGCATCTTG
   1301
   1351
```

This corresponds to the amino acid sequence <SEQ ID 1900; ORF 603.a>:

POP					
1	LSSRRRGRNN	DRKCGIRFAQ	RGRLKHTPPN	AHPFSDDPTX	KKOPOTTRRN
51	IMSDQLILVL	NCGSSSLKGA	VIDRKSGSVV	LSCLGERLTT	PEAVITESKD
101	GNKRQVPLSG	RNCHAGAVGM	LLNELEKHEL	HDRIOAVGHR	TAHGGEKYSE
151	SVLIDQAVMD	ELNACIPLAP	LHNPANISGI	LAAOEHFPGI.	PNVGVMDTSE

BNSDOCID: <WO___9957280A2_I_>

					*						
25	01 YI 51 LE	RMIIAHLG LTSHAGLD EVMTYRLA	T YAVPREI N GASITAI V AQVDEMI K YIASMAV E KRYGNSG	KNG NKK GCG	KSVDT SGLLG GVDAL	SMGFT ISELS VFTGG	PIEGLVI NDCRTL	MGTR EIAA NTRA	CGDID DEGHE	PGVYS GARLA	
m603/a603	96.79	% identity			_						
m603.pe	p	LSSRRR	10 GRNNDRKCG		0 ORGRLI	30 KHLAPD) DVCX FSDI	40 PTLR	'KOPOT''	50 PDDNTM	60
a 603				$\mathbf{I} + \mathbf{I} + \mathbf{I}$	11111		: [11]	1 1 1	+11111	11111	1111111
2003		LOOKKK	RNNDRKCG 10	IRFA 2	ORGRLI 0	KHTPPN 30	AHPFSDI	OPTXK 40	KQPQTI	RRNIM 50	DQLILVL 60
			70	8	^	0.0					
m603.pe	p	NCGSSSI	KGAVIDRX	SGSV	VLSCLO	90 ERLTT	PEAVITE	100 NKDG	NKROVE	110 LSGRNO	120 CHAGAVGM
a603			 KGAVIDRK	! ! ! !	11111	11111	111111	: 111	11111	11111	
			70	8	0	90		100	NKKQVE	LSGRNO	CHAGAVGM 120
			130	14	0	150		160		170	100
m603.per	p	LLNELEK	HGLHDRIK	AIGH	RIAHGG	EKYSE:	SVLIDOA	VMDF.	LNACIP	T.ADT.HN	180 IPANISGI
a603		LLNELEK	: HELHDRIQ	I : I AVGHI	IIIIII RIAHGG	 EKYSE:	 SVLIDOA	 VMDE:	 МДСТР	ון	
			130	140)	150		160		170	180
			190	200		210		220		230	240
m603.pep	•	LAAQEHF	PGLPNVGVM	DTSE	HQTMP:	ERAYTY	YAVPREL:	RKKY	FRRYG	FHGTSM	א מות מנועם
a603		THAY OF DE	PGLPNVGVM	DTSE	HQTMP.	ERAYTY	YAVPREL	RKKY <i>I</i>	AFRRYG:	FHGTSM	IIIIIII RYVAPEA
		:	190	200)	210	;	220		230	240
m603.pep			250 EDIDMITA	260		270		280	2	290	300
- •		1 1111	LEDIRMIIA	1111		11111		1 1 1 I F	THEFT.	111111	111111
a603		ACT PCK P1	EDIRMIIA 250	HLGN 260	GASIT	AIKNGK	SVDTSMO	FTPI	EGLVM	STRCGD	IDPGVYS
				200		270	2	280	2	290	300
m603.pep)		B10 IDVAQVDEM	320 TNKK	SCIICI	330	DCDmi Di	340	3	350	360
• •		111111:			11111			1111	FILLI	11111	
a603		ILISHAGI	DVAQVDEM	LNKK 320	SGLLGI	SELSN 330	DCRTLEI	AADE	GHEGAF	RLALEVI 550	MTYRLAK
							-	940	3	550	360
m603.pep		YIASMAVO	70 CGGVDALV	380 FTGG.	IGENSE	390 NIRAK	TVSYLDE	.00 T.GT.H	ቸ በም ድ አክ	10	420
a603		11111111	111111	1111	11111	11111	111111	1111	11111	1 1 1 1 1	
4005		3	CGGVDALVI 70	380	IGENSR	NIRAK 390	TVSYLDF 4	LGLH 00		MEKRYO 10	NSGIIS 420
		4	30	440		450			•		4 2 0
m603.pep		PTDSSPAV	LVVPTNEEI	MIA	CDTAEL	AGILX					
a603	;	 PTDSSPAV	 LVVPTNEEI	HII	DTAEL	VGTLX					
		4	30	440		450					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1901>:

1	ATGCCCGAAG	CGCACTTCTT	TACGCGTTCC	GCCGCCTGCG	GCAAGGTTGA
51	CCAGCGTACC	GAGCACGGCG	GCGGCGATGG	CGACCGAGGC	CATCCCCATC
101	ATAGCGTGGT	GCAGTTTGCC	CATGCTCAGG	GCGCGTACCG	CCAAATCCATC
151	GTCGGCGGCG	${\tt TTTACGGTTT}$	TGCCGCTGGA	GGCGGTGTAA	TCCCCCCCCC
201	GCGCGACGAA	GGCGGGTTTC	GGCGTGCGCG	CGCGGGGGGG	CCCTTCCC

```
251 ACGTCGCTGA TCAAACCCAT TTTCAGCGCG CCATATGCGC GGATGGTTTC
          AAATTTTTCC AGCGCGGCGG CATCGTTGTT GATGTCGTCC TGCAACTCTT
     301
          TGCCCGTGTA GCCCAAGTCG GCGGCGTTCA GGAAAACGGT CGGAATGCCC
          GCGTTGATGA GCGTGGCTTT CAGACGACCT ATATTCGGCA CATCAATTTC
          GTCGACCAAA TTGCCGGTTG GGAACATACT GCCTTcgcCG TCGGCTGGAT
     451
     501
          CTAA
 This corresponds to the amino acid sequence <SEQ ID 1902; ORF 604.ng>:
g604.pep
          MPEAHFFTRS AACGKVDQRT EHGGGDGDRG DAHHSVVQFA HAQGAYRQID
          VGGVYGFAAG GGVIGGGRDE GGFRRARAGG GFGYVADQTH FQRAICADGF
      51
          KFFQRGGIVV DVVLQLFARV AQVGGVQENG RNARVDERGF QTTYIRHINF
          VDQIAGWEHT AFAVGWI*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1903>:
m604.seq
         ATGCCCGAAG CGCACTTCTT TACGCGTTCC GCCGCCTGCG GCAAGGTTGA
       1
      51
         CCAGCGTACC GGGTACGGCG GCGGCGGTCG CAATGGCAAC AGAGGCGGTA
          CCCATCATCG CGTGGTGCAG TTTGCCCATG CTCAGGGCGC GTACCAGCAA
     101
         ATCGATGTCG GCGGCGTTCA CGGTTTTGCC ACTGGAGGCG GTGTAATCGG
          CGGCGGCGC GACGAAGGCG ACTTTCGGCG TGTGCGCGCG AGCGGCAGCT
     201
     251
         TCGGATACGT CGCTGATCAG ACCCATTTTC AGCGCACCGT AAGCGCGGAT
     301
         TTTCTCGAAT TTTTCCAAAG CCGCGGCATC GTTGTTGATG TCGTCTTGCA
     351 ACTCTTTGCC TGTGTAGCCC AAGTCGGCGG CATTCAAGAA AACGGTCGGA
     401 ATGCCCGCGT TGATGAGCGT GGCTTTCAAA CGGCCTATAT TCGGCACATC
     451 AATTTCATCG ACCAAATTGC CGGTTGGGAA CATACTGCCT TCGCCGTCGG
     501 CTGGATC
This corresponds to the amino acid sequence <SEQ ID 1904; ORF 604>:
m604.pep
          MPEAHFFTRS AACGKVDQRT GYGGGGRNGN RGGTHHRVVQ FAHAQGAYQQ
       1
      51 IDVGGVHGFA TGGGVIGGGR DEGDFRRVRA SGSFGYVADQ THFQRTVSAD
     101 FLEFFQSRGI VVDVVLQLFA CVAQVGGIQE NGRNARVDER GFQTAYIRHI
     151 NFIDQIAGWE HTAFAVGWI
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 604 shows 83.4% identity over a 169 aa overlap with a predicted ORF (ORF 604.ng)
from N. gonorrhoeae:
m604/g604
                              20
                                       3.0
                                                 40
            MPEAHFFTRSAACGKVDQRTGYGGGGRNGNRGGTHHRVVQFAHAQGAYQQIDVGGVHGFA
m604.pep
             MPEAHFFTRSAACGKVDQRTEHGGG--DGDRGDAHHSVVQFAHAQGAYRQIDVGGVYGFA
g604
                    10
                              20
                                         30
                                                   40
                                                            50
                    70
                              80
                                       90
                                                100
                                                         110
            {\tt TGGGVIGGGRDEGDFRRVRASGSFGYVADQTHFQRTVSADFLEFFQSRGIVVDVVLQLFA}
m604.pep
             {\tt AGGGVIGGGRDEGGFRARAGGGFGYVADQTHFQRAICADGFKFFQRGGIVVDVVLQLFA}
g604
                      70
                                80
                                                  100
                                                           110
                   130
                             140
                                      150
            CVAQVGGIQENGRNARVDERGFQTAYIRHINFIDQIAGWEHTAFAVGWI
m604.pep
              g604
            RVAQVGGVQENGRNARVDERGFQTTYIRHINFVDQIAGWEHTAFAVGWIX
                     130
                               140
                                        150 -
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1905>:
     a604.seq
              ATGCCCGAAG CGCACTTCTT TACGCGTTCC GCCGCCTGCG GCAAGGTTGA
              CCAGCGTACC GGGCACGGCG GCGGCGGTCG CAATGGCAAC AGAGGCGGTA
           51
              CCCATCATCG CGTGGTGCAA TTTGCCCATG CTCAGGGCGC GTACCAGCAA
          151 ATCGATGTCG GCGGCATTCA CGGTTTTGCC ACTGGAGGCG GTGTAATCGG
```

BNSDOCID: <WO___9957280A2_j_>

This corresponds to the amino acid sequence <SEQ ID 1906; ORF 604.a>:

```
a604.pep

1 MPEAHFFTRS AACGKVDQRT GHGGGGRNGN RGGTHHRVVQ FAHAQGAYQQ
51 IDVGGIHGFA TGGGVIGGGR DEGDFRRVRA GGSFGYVADQ THFQRTVSAD
101 FLEFFQSCGI VVDVVLQLFA RVAQVGGIQE NGRNARVDER GFQTAYIRHI
151 NFIDQIAGWE HTAFAVGWIK KFDLYFGCRE RYAVELKIAC FQNCAVLHRY
201 MGNNGFADVF LPDFDCADAV *
```

m604/a604 97.0% identity in 169 aa overlap

	10	20	30	40	50	60
m604.pep	MPEAHFFTRSAACO	SKVDQRTGYG	GGRNGNRGGT	THRVVQFAH	AQGAYQOIDV	GGVHGFA
		11:1111111:1				
a604	MPEAHFFTRSAACO	SKVDQRTGHG	GGRNGNRGGT	HHRVVOFAH	AOGAYOOIDV	GGIHGFA
	10	20	30	40	50	60
	7 0	80	90	100	110	120
m604.pep	TGGGVIGGGRDEGI	FRRVRASGS	GYVADQTHFQ	RTVSADFLE	FFQSRGIVVD	/VLOLFA
		111111:11		111111111	1111 11111	
a604	TGGGVIGGGRDEGI	FRRVRAGGS	GYVADQTHFQ	RTVSADFLE	FFQSCGIVVD	/VLOLFA
	70	80	90	100	110	120
	130	140	150	160	169	
m604.pep	CVAQVGGIQENGR	ARVDERGFQ1	'AYIRHINFIC	QIAGWEHTA	FAVGWI	
		THE HELL	11111111111			
a604	RVAQVGGIQENGRN	ARVDERGFQT	AYIRHINFID	QIAGWEHTA	FAVGWIKKFDI	LYFGCRE
	130	140	150	160	170	180
a604	RYAVELKIACFONO	AVLHRYMGNN	GFADVFLPDF	'DCADAVX		
	190	200	210	220		

The following partial DNA sequence was identified in *N.gonorrhoeae* <SEQ ID 1907>: g605.seq 1 ATGATGACCG AAATGCAACA ACGCGCCCAA CTGCACCGCC AAATTTGGAA

	MIGHIGACCG	AAATGCAACA	ACGCGCCCAA	CIGCACCGCC	AAATTTGGAA
51		GAAGTACGCG			
101		CACACTTTTC			
151		CCGGCGACAG			
201	CATCATCACG	CCCGAAATCA	AAGACGATgc	cgtcaaagtc	aaAGGCTATT
251	TCATCtacCc	cgGCCAGCTT	TTTTgcaata	ttgccgccga	agcCCATCAA
301		TCAACACCAA			
351	CTCCGCCTCC	GGCTAcccgT	CCGAACAAGG	CATCAAAGGC	TTGTTTGACG
401		CACCAGCAGC			
451		CCGCCGTCCT			
501		CACCGCATCG			
551		CGCcgcCAAC			
601		TCTCCAAGCT			
651	GAAAGTCAAC	AAAATCTACG	ACCCCGCCTG	CGGCTCGGGC	AGCCTGCTCT
701	TGCAGGCGAA	AAAACAGTTT	GACGAACACA	TCATCGAAGA	AGGCTTCTTC
751	GGGCAGGAAA	TCAACCACAC	CACCTACAAC	CTCGCCCGCA	TGAATATGTT
801	TCTGCACAAC	GTCAATTACA	ACAAATTCCA	CATCGAATTG	GGCGACACGC
851	TGACCAACCC	CAAACTCAAA	GACAGCAAAC	CCTTTGATGC	CGTCGTCTCC
901	AATCCGCCCT	ATTCCATCGA	CTGGATAGGC	AGCGACGACC	CCACCTtgaT

```
951 CAACGACGAC CGCTTTGCCC CCGCAGGCGT ACTCGCACCG AAATCCAAAG
          CCGATTTTGC CTTCATCCTG CACGCACTGA ACTACCTTTC CGGCAGAGGC
          CGCGCCGCTA TCGTCTCATT CCCCGGCATT TTCTATCGCG GCGGCGCAGA
          GCAGAAAATC CGCCAATATC TGGTGGAGGG CAACTATGTG GAAACCGTGA
          TTGCCCTTGC GCCCAATCTC TTTTACGGCA CCTGCATCGC CGTCAATATC
    1151
          CTGGTTTTGT CCAAACACAA AGACAATACC GACATCCAAT TCATCGACGC
    1201
    1251 AAGCGGCTTC TTTAAAAAAG AAACCAACAA CAACGTCTTA ACCGAAGAAC
    1301 ACATTGCCGA AATCGTCAAA CTCTTCGCCG ACAAAGCCGA TGTGCCGCAT
    1351 ATCGCCCAAA ACGCCGCCCA GCAAACCGTC AAAGACAACG GCTACAACCT
    1401 CGCCGTCAGC AGCTATGTCG AAGCCGAAGA CACCCGCGAG GTCATCGACA
    1451 TCAGACAGCT CAACGCCGAA ATCAGCGAAA CCgtcgCcaa AATCGAACGG
          CTGCGGCGTG AAATTGACGA AGTGATTGCA GAGATTGAAA CCTAG
This corresponds to the amino acid sequence <SEQ ID 1908; ORF 605.ng>:
g605.pep
          MMTEMQQRAQ LHRQIWKIAD EVRGAVDGWD FKQYVLGTLF YRFISENFTD
          YMQAGDSSID YAAMPDSIIT PEIKDDAVKV KGYFIYPGQL FCNIAAEAHQ
      51
     101 NEELNTKLKE IFTAIESSAS GYPSEQGIKG LFDDFDTTSS RLGSTVADKN
     151 KRLAAVLKGV AELDFGNFED HRIDLFGDAY EYLISNYAAN AGKSGGEFFT
     201 PQSVSKLIAR LAVHGQEKVN KIYDPACGSG SLLLQAKKQF DEHIIEEGFF
     251 GQEINHTTYN LARMNMFLHN VNYNKFHIEL GDTLTNPKLK DSKPFDAVVS
     301 NPPYSIDWIG SDDPTLINDD RFAPAGVLAP KSKADFAFIL HALNYLSGRG
         RAAIVSFPGI FYRGGAEQKI RQYLVEGNYV ETVIALAPNL FYGTCIAVNI
     351
          LVLSKHKDNT DIQFIDASGF FKKETNNNVL TEEHIAEIVK LFADKADVPH
     401
          IAQNAAQQTV KDNGYNLAVS SYVEAEDTRE VIDIRQLNAE ISETVAKIER
         LRREIDEVIA EIET*
The following partial DNA sequence was identified in N.meningitidis <SEQ ID 1909>:
m605.seg
       1
          ATGATGACCG AAATGCAACA ACGCGCCCAA CTGCACCGCC AAATTTGGAA
         AATTGCCGAC GAAGTACGCG GCGCGGTGGA TGGCTGGGAC TTTAAACAAT
      51
     101
          ACGTTCTCGG CACACTTTTC TACCGCTTTA TCAGCGAAAA CTTCACCGAC
          TATATGCAGG CAGGCGACAG CAGTATTGAT TACGCCGCTA TGCCGGACAG
          CATCATCACG CCCGAAATCA AAGACGATGC CGTCAAAGTT AAAGGCTATT
          TCATCTACCC CGGCCAGCTT TTTTGCAATA TTGCCGCCGA AGCCCATCAA
     251
     301 AACGAAGAGC TCAACACCAA GCTGAAAGAA ATTTTTACCG CGATTGAAAG
         CTCCGCCTCC GGCTATCCGT CCGAACAGGA CATCAAAGGC CTGTTTGACG
     351
     401 ACTTCGACAC CACCAGCAGC CGGCTCGGCA GCACTGTTGC CGACAAGAAC
     451 AAACGCCTTG CCGCCGTCCT CAAAGGCGTG GCGGAACTCG ATTTCGGCAA
          TTTTGAAAAC CACCACATCG ACCTTTTCGG CGATGCCTAC GAATACCTGA
     551 TTTCCAACTA CGCTGCCAAC GCAGGCAAAT CCGGCGGCGA ATTTTTCACC
     601 CCGCAAAGCG TATCCAAGCT GATTGCGCGG CTGGCGGTGC ACGGACAGGA
     651 GAAAGTCAAC AAAATCTACG ACCCAGCTTG CGGCTCGGGC AGTCTGCTCT
         TGCAGGCGAA AAAACAGTTT GACGAGCACA TCATCGAAGA AGGCTTCTTC
          GGGCAGGAAA TCAACCACAC CACCTACAAC CTCGCCCGCA TGAACATGTT
          CCTGCACAAC GTCAATTACA ACCAATTCCA CATCGAATTG GGCGACACAC
          TGACCAACCC AAAGCTCAAA GACAGCAAAC CCTTTGATGC CATCGTTTCC
     901
         AATCCGCCTT ATTCCATCAA CTGGATAGGC AGCGACGACC CCACCTTAAT
    951 CAACGACGAC CGCTTTGCCC CCGCAGGCGT ACTTGCCCCG AAATCCAAAG
    1001 CCGATTTTGC CTTCATCCTG CACGCACTGA ACTACCTTTC CGGCAGAGGC
    1051 CGCGCCGCCA TCGTCTCATT CCCCGGCATT TTCTATCGCG GCGGCGCAGA
    1101 ACAGAAAATC CGCCAATATC TGGTGGAGGG CAACTACGTG GAAACCGTGA
   1151 TTGCCCTTGC GCCCAATCTC TTTTACGGCA CCGGCATCGC CGTCAATATC
    1201 CTGGTTTTGT CCAAACACAA AGACAATACC GACATCCAAT TCATCGACGC
    1251 AAGCGGCTTC TTTAAAAAAG AAACCAACAA CAACGTCTTA ATCGAAGAAC
    1301 ACATTGCTGA AATCGTCAAA CTCTTCGCCG ATAAAGCCGA TGTGCCGCAT
    1351 ATCGCCCAAA ACGCTGCCCA GCAAACCGTC AAAGACAACG GCTACAACCT
         CGCCGTCAGC AGCTATGTCG AAGCCGAAGA CACACGCGAA ATTATCGACA
         TCAAACAGCT CAACGCCGAA ATCGGCGAAA CCGTCGCCAA AATCGAACGG
         CTGCGGCGTG AAATTGACGA AGTGATTGCA GAGATTGAAG CATGA
This corresponds to the amino acid sequence <SEQ ID 1910; ORF 605>:
m605.pep
      1
         MMTEMQQRAQ LHRQIWKIAD EVRGAVDGWD FKQYVLGTLF YRFISENFTD
         YMQAGDSSID YAAMPDSIIT PEIKDDAVKV KGYFIYPGQL FCNIAAEAHQ
```


Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N.gonorrhoeae

ORF 605 shows 97.9% identity over a 513 aa overlap with a predicted ORF (ORF 605.ng) from N. gonorrhoeae:
m605/g605

	10	20	30	40	50	60
m605.pep	MMTEMQQRAQLHRQ	OIWKIADEVRO	SAVDGWDFKQ	YVLGTLFYRF	ISENFTDYMO	AGDSSID
g605	MMTEMOORAGIUR				111111111	
9003	MMTEMQQRAQLHRQ 10	20 20	30 30	YVLGTLFYRF. 40	ISENFTDYMQ. 50	
			30	40	50	60
	70	80	90	100	110	120
m605.pep	YAAMPDSIITPEIK	DDAVKVKGYI	TIYPGQLFCNI	AAEAHQNEEI	LNTKLKEIFT	AIESSAS
g605						
9005	YAAMPDSIITPEIK 70	DDAVKVKGYF 80	90 90 PERMI	IAAEAHQNEEI 100	LNTKLKEIFT 110	
	, 0	00	30	100	110	120
	130	140	150	160	170	180
m605.pep	GYPSEODIKGLFDD	FDTTSSRLGS	TVADKNKRLA	AVLKGVAELI)FGNFENHHII	DLFGDAY
~60E						
g605	GYPSEQGIKGLFDD 130	TOTTSSRLGS	TVADKNKRLA 150	AVLKGVAELI 160		
	150	140	150	160	170	180
	190	200	210	220	230	240
m605.pep	EYLISNYAANAGKS	GGEFFTPQSV	SKLIARLAVH	GQEKVNKI YE	PACGSGSLLI	OAKKOF
~505						11111
g605	EYLISNYAANAGKS 190	GGEFFTPQSV 200				
	190	200	210	220	230	240
	250	260	270	280	290	300
m605.pep	DEHIIEEGFFGQEI	NHTTYNLARM	NMFLHNVNY N	QFHIELGDTL	TNPKLKDSKF	FDATUS
~£0E		!	111111111	: [] [] [] [] []	111111111	:
g605	DEHIIEEGFFGQEI	NHTTYNLARM 260	NMFLHNVNYN 270			
	250	260	270	280	290	300
	310	320	330	340	350	360
m605.pep	NPPYSINWIGSDDP	TLINDDRFAP.	agvlapkska	DFAFILHALN	YLSGRGRAAT	VSFPGT
~605	11111:11111				1111111111	
g605	NPPYSIDWIGSDDP:					
	. 310	320	330	340	350	360
	370	380	390	400	410	420
m605. pe p	FYRGGAEQKIRQYL	JEGNYVETVI	ALAPNLFYGT(GIAVNILVLS:	KHKDNTDIOF	IDASGE
						HILLE
g605	FYRGGAEQKIRQYL					IDASGF
	370	380	390	400	410	420
	430	440	450	460	470	400
m605.pep	FKKETNNNVLIEEHI	AEIVKLFAD	KADVPHIAONA	AAOOTVKDNG	YNLAVSSYVE	480 AEDTRE
						11111
g605	FKKETNNNVLTEEHI	AEIVKLFADI	CADVPHIAQNA	AAQQTVKDNG	YNLAVSSYVE	AEDTRE

```
430
                               440
                                         450
                                                  460
                                                            470
                                                                      480
                     490
                              500
                                        510
             IIDIKQLNAEIGETVAKIERLRREIDEVIAEIEAX
m605.pep
             g605
             VIDIRQLNAEISETVAKIERLRREIDEVIAEIETX
                     490
                              500
                                        510
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1911>:
      a605.seq
               ATGATGACCG AAATACAACA ACGCGCCCAA CTGCACCGCC AAATTTGGAA
               AATTGCCGAC GAAGTACGCG GCGCGGTGGA TGGCTGGGAC TTCAAACAAT
            51
               ACGTTCTCGG CACACTTTTC TACCGCTTTA TCAGCGAAAA CTTTACCGAC
          101
               TATATGCAGG CAGGCGACAG CAGTATTGAT TACGCCGCTA TGCCGGACAG
               CATCATCACG CCCGAAATCA AAGACGATGC CGTCAAAGTC AAAGGCTATT
          201
               TCATCTACCC CGGCCAGCTT TTTTGCAATA TTGCCGCCGA AGCCCATCAA
          251
               AACGAAGAGC TCAACACCAA GCTGAAAGAA ATTTTTACCG CGATTGAAAG
           301
          351
               CTCCGCCTCC GGCTATCCGT CCGAACAAGA CATTAAAGGC CTGTTTGACG
               ACTTCGACAC CACCAGCAGC CGGCTCGGCA GCACCGTTGC CGACAAGAAC
          401
               AAACGCCTTG CCGCCGTCCT AAAAGGCGTG GCGGAACTCG ATTTCGGCAG
          501
               TTTTGAAGAC CACCACATCG ACCTTTTCGG CGATGCCTAC GAATACCTGA
          551
               TTTCCAACTA CGCTGCCAAC GCAGGCAAAT CCGGCGGCGA ATTTTTCACC
               CCGCAAAGCG TATCCAAGCT GATTGCGCGG CTGGCGGTGC ACGGGCAGGA
          601
               GAAAGTAAAC AAAATCTACG ACCCAGCTTG CGGCTCGGGC AGCCTGCTCT
          651
               TGCAGGCGAA AAAACAGTTT GACGAGCACA TCATCGAAGA AGGCTTCTTC
          701
               GGGCAGGAAA TCAACCACAC CACCTACAAC CTCGCCCGCA TGAATATGTT
          751
               TCTGCACAAC GTCAATTACA ACAAATTCCA CATCGAATTG GGCGACACAC
          801
               TGACCAATCC CAAACTCAAA GACAGCAAAC CCTTTGATGC CGTCGTTTCC
          851
          901
               AATCCGCCCT ATTCCATCAA CTGGATAGGC AGCGGCGACC CCACCTTAAT
               CAACGACGAC CGCTTTGCCC CTGCAGGCGT ACTCGCCCCG AAATCCAAAG
          951
               CCGATTTTGC CTTCATTCTG CACGCACTGA ACTACCTTTC CGGCAGAGGC
         1001
         1051
               CGCGCCGCA TCGTCTCATT CCCCGGCATT TTCTATCGCG GCGCGCAGA
         1101
               GCAGAAAATC CGCCAATATC TGGTGGAGGG CAACTACGTG GAAACCGTCA
               TCGCCCTTGC GCCCAATCTC TTTTACGGCA CCGGCATCGC CGTCAATATA
         1151
               CTGGTTTTGT CCAAACACAA AGACAATACC GACATCCAAT TCATCGACGC
         1201
               AGGCGGCTTC TTTAAAAAAG AAACCAACAA CAACGTCTTA ACCGAAGAAC
         1301
               ACATTGCCGA AATCGTCAAA CTCTTCGCCG ATAAAGCCGA TGTGCCGCAT
         1351
               ATCGCCCAAA ACGCCGCCCA GCAAACCGTC AAAGACAACG GCTACAACCT
               CGCCGTCAGC AGCTATGTTG AACCCGAAGA CACCCGCGAA ATTATCGACA
         1401
               TCAAACAGCT TAACGCCGAA ATCAGCGAAA CCGTTGCCAA AATCGAACGG
         1451
         1501
               CTGCGGCGTG AAATTGACGA AGTGATTGCA GAGATTGAAG CATGA
This corresponds to the amino acid sequence <SEQ ID 1912; ORF 605.a>:
     a605.pep
               MMTEIQQRAQ LHRQIWKIAD EVRGAVDGWD FKQYVLGTLF YRFISENFTD
               YMQAGDSSID YAAMPDSIIT PEIKDDAVKV KGYFIYPGQL FCNIAAEAHQ
           51
          101
               NEELNTKLKE IFTAIESSAS GYPSEQDIKG LFDDFDTTSS RLGSTVADKN
               KRLAAVLKGV AELDFGSFED HHIDLFGDAY EYLISNYAAN AGKSGGEFFT
          151
               PQSVSKLIAR LAVHGQEKVN KIYDPACGSG SLLLQAKKQF DEHIIEEGFF
          201
               GOEINHTTYN LARMNMFLHN VNYNKFHIEL GDTLTNPKLK DSKPFDAVVS
               NPPYSINWIG SGDPTLINDD RFAPAGVLAP KSKADFAFIL HALNYLSGRG
          301
          351
               RAAIVSFPGI FYRGGAEQKI RQYLVEGNYV ETVIALAPNL FYGTGIAVNI
          401
               LVLSKHKDNT DIQFIDAGGF FKKETNNNVL TEEHIAEIVK LFADKADVPH
               IAQNAAQQTV KDNGYNLAVS SYVEPEDTRE IIDIKQLNAE ISETVAKIER
          451
          501
               LRREIDEVIA EIEA*
m605/a605 98.1% identity in 514 aa overlap
                                              30
                                                        40
                                                                  50
                  {\tt MMTEMQQRAQLHRQIWKIADEVRGAVDGWDFKQYVLGTLFYRFISENFTDYMQAGDSSID}
     m605.pep
                  a605
                  {\tt MMTEIQQRAQLHRQIWKIADEVRGAVDGWDFKQYVLGTLFYRFISENFTDYMQAGDSSID}
                                    20
                                              30
                                                        40
                                                                  50
                                                                            60
                          70
                                    80
                                              90
                                                      100
                                                                110
                                                                           120
                  YAAMPDSIITPEIKDDAVKVKGYFIYPGQLFCNIAAEAHQNEELNTKLKEIFTAIESSAS
     m605.pep
```

a605	YAAMPDSIITPEIK		TITLE COLUMN	111111111	111111111	
4003	70	80	90	100	LNTKLKEIFT 110	TAIESSAS 120
m605.pep	130 GYPSEQDIKGLFDD	140 FDTTSSRIG	150 STVADKNKDI A	160	170	180
1 1				111111111	111:11:11	TITLLE
a605	GYPSEQDIKGLFDD	FDTTSSRLG	STVADKNKRLA	AVLKGVAELI	DFGSFEDHHI	DLFGDAY
	130	140	150	160	170	180
m605.pep	190	200	210	220	230	240
moos.pep	EYLISNYAANAGKS	GGE		GQEKVNKIYI	DPACGSGSLL	LQAKKQF
a605	EYLISNYAANAGKS	GGEFFTPOSV	/SKLIARLAVH	GOEKVNKTYI	PACGSGST.T.	IONEROE
	190	200	210	220	230	240
	250	260	270	280	290	300
m605.pep	DEHIIEEGFFGQEI	NHTTYNLARM	INMFLHNVNYN	OFHIELGDTI	TNPKLKDSK	PEDATUS
a605				:	411111111	LILLACI
a 605	DEHIIEEGFFGQEIN 250	NHTTYNLARM 260	INMFLHNVNYNI 270			
	230	260	270	280	290	300
m605.pep	310	320	330	340	350	360
moos.pep	NPPYSINWIGSDDPT	LTINDDREAD	AGVLAPKSKAI	DFAFILHALN	YLSGRGRAA	IVSFPGI
a605	NPPYSINWIGSGDPI	LINDDRFAP	AGVLAPKSKAI	IIIIIIIIIIII DEAETT.HAT.N	 YI.SCPCP777	
	310	320	330	340	350	360
	370	380	390	400	410	420
m605.pep	FYRGGAEQKIRQYLV	EGNYVETVI.	ALAPNLFYGTO	SIAVNILVIS	KHKDNTDTOF	TDASCE
a605			11111111	TITLETTI	111111111	111.11
a003	FYRGGAEQKIRQYLV 370	EGNYVETVI 380	ALAPNLFYGTG 390			
	3,0	500	390	400	410	420
	430	440	450	460	470	480
m605.pep	FKKETNNNVLIEEHI	AEIVKLFADI	KADVPHIAQNA	AQQTVKDNG	YNLAVSSYVE	ממית ש א'
a605				7.00	11111111	11111
	430	440	450	AQQTVKDNG: 460	YNLAVSSYVE 470	
				100	4.70	480
m605.pep	490	500	510			
mooJ.pep	IIDIKQLNAEIGETV	AKIERLRREI	IDEVIAEIEAX			
a605	IIDIKQLNAEISETV	AKIERLRREI	DEVIAETEAX			
	490	500	510			

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 1913>:

```
ATGTCCAAAT TTATCGCCAA ACAATCGGTC GGTGCGGAAG TCATCGACAC

51 GCCGcgCACC GAAGAAGAAG CCTGGCTTCT GAACACTGTC GAAGCCCAAG

101 CGCGGCAATG GAATCTGAAA ACGCCAGAAG TCGCCATCTA CCACTCCCCC

151 GAACCCAATG CCTTTGCCAC GGGCGCATCG AGAAACAGCT CCCTGATCGC

201 CGTCAGCACC GGTLCCCC GCCGCACGAA GCGCGACGAA GTTACGCTG

201 CGTCAGCACC GGAAATGGCG CACGTCGGCA ACGGCGACAT GGTTACGCTG

301 ACGCTGATTC AAGGCGTGGT CAATACCTTT GTCGTGTTCC TGTCGCGCAT

351 TATTGCCAAC CTGATTGCCC GAAACAACGA CGGCAGCCAG TCCCAGGGAA

401 CTTATTTCCT AGTCAGCATG GTATTCCAAA TCCTGTTCGG CTTCCTTGCC

451 AGCCTGATTG TCATGTGGTT CAGCCGCCAA CGCGAATACC GCGCCGACGC

501 GGGCTTAAAGG CAACCCGGTC GATTTGCCC AAGAAATGAA CGCACTGCAAA

601 ATCGCCGGAG ATACGCGCGA CTCCCTGCTC AGCACCCACC CTTCGCTGGA

651 CAACCGAATC GCCCGCCTCA AATCGCTTTA A
```

This corresponds to the amino acid sequence <SEQ ID 1914; ORF606.ng>:

```
g606.pep
          MSKFIAKQSV GAEVIDTPRT EEEAWLLNTV EAQARQWNLK TPEVAIYHSP
          EPNAFATGAS RNSSLIAVST GLLDHMTRDE VEAVLAHEMA HVGNGDMVTL
      51
          TLIQGVVNTF VVFLSRIIAN LIARNNDGSQ SQGTYFLVSM VFQILFGFLA
     101
          SLIVMWFSRQ REYRADAGAA KLVGAPKMIS ALQRLKGNPV DLPEEMNAMG
     151
          IAGDTRDSLL STHPSLDNRI ARLKSL*
The following partial DNA sequence was identified in N.meningitidis <SEQ ID 1915>:
m606.seq
          ATGTCCAAAT TTATCGCCAA ACAATCGGTC GGCGCGGAAG TTATCGACAC
       1
      51
          GCCGCGCACC GAAGAAGAAG CCTGGCTTTT GAACACTGTC GAAGCCCAAG
         CGCGGCAATG GAACCTGAAA ACGCCCGAAG TCGCCATCTA CCACTCCCCC
     101
         GAACCCAATG CCTTTGCCAC GGGCGCATCG AGAAACAGCT CCCTGATCGC
     151
          CGTCAGCACC GGTTTGCTCG ACCATATGAC GCGTGACGAA GTGGAAGCCG
         TATTGGCGCA CGAAATGGCA CACGTCGGCA ACGGCGATAT GGTTACGCTG
     251
     301 ACGCTGATTC AAGGCGTGGT CAATACCTTT GTCGTGTTCC TGTCGCGCAT
     351 TATTGCCAAC CTGATTGCCC GAAACAACGA CGGCAGCCAG TCCCAGGGAA
     401 CTTATTTCCT GGTCAGCATG GTATTCCAAA TCCTGTTCGG CTTCCTTGCC
     451 AGCTTAATTG TCATGTGGTT CAGCCGACAA CGCGAATACC GCGCCGATGC
     501 GGGCGCGCA AAACTGGTCG GCGCGCCGAA AATGATTTCC GCCCTGCAAA
     551 GGCTCAAAGG CAACCCGGTC GATTTGCCCG AAGAAATGAA CGCAATGGGC
     601 ATCGCCGGAG ATACGCGCGA CTCCCTGCTC AGCACCCCACC CTTCGCTGGA
         CAACCGTATC GCCCGCCTCA AATCGCTTTA A
This corresponds to the amino acid sequence <SEQ ID 1916; ORF 606>:
m606.pep
         MSKFIAKQSV GAEVIDTPRT EEEAWLLNTV EAQARQWNLK TPEVAIYHSP
         EPNAFATGAS RNSSLIAVST GLLDHMTRDE VEAVLAHEMA HVGNGDMVTL
      51
         TLIQGVVNTF VVFLSRIIAN LIARNNDGSQ SQGTYFLVSM VFQILFGFLA
     101
         SLIVMWFSRQ REYRADAGAA KLVGAPKMIS ALQRLKGNPV DLPEEMNAMG
         IAGDTRDSLL STHPSLDNRI ARLKSL*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N.gonorrhoeae
ORF 606 shows 100.0% identity over a 225 aa overlap with a predicted ORF (ORF 606.ng)
from N. gonorrhoeae:
m606/g606
                             20
                                      30
                                                40
                                                         50
            MSKFIAKQSVGAEVIDTPRTEEEAWLLNTVEAQARQWNLKTPEVAIYHSPEPNAFATGAS
m606.pep
            g606
            MSKFIAKQSVGAEVIDTPRTEEEAWLLNTVEAQARQWNLKTPEVAIYHSPEPNAFATGAS
                    10
                             20
                                      30
                                                40
                                                         50
                                                                   60
                             80
                                      90
                                               100
                                                        110
            RNSSLIAVSTGLLDHMTRDEVEAVLAHEMAHVGNGDMVTLTLIQGVVNTFVVFLSRIIAN
m606.pep
            g606
            RNSSLIAVSTGLLDHMTRDEVEAVLAHEMAHVGNGDMVTLTLIQGVVNTFVVFLSRIIAN
                   70
                             80
                                      90
                                               100
                                                        110
                                                                  120
                   130
                            140
                                     150
                                               160
                                                        170
            LIARNNDGSQSQGTYFLVSMVFQILFGFLASLIVMWFSRQREYRADAGAAKLVGAPKMIS
m606.pep
            LIARNNDGSQSQGTYFLVSMVFQILFGFLASLIVMWFSRQREYRADAGAAKLVGAPKMIS
g606
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1917>:

ALQRLKGNPVDLPEEMNAMGIAGDTRDSLLSTHPSLDNRIARLKSLX

150

210

210

160

220

170

140

200

200

130

190

190

m606.pep

9606

1 ATGTCCAAAT TCATCGCCAA ACAATCGGTC GGCGCGGAAG TTATCGACAC 51 GCCGCGCACC GAAGAAGAAG CCTGGCTTTT GAACACTGTC GAAGCCCAAG 101 CGCGGCAATG GAACCTGAAA ACGCCCGAAG TCGCCATCTA CCACTCCCCC GAACCCAATG CCTTTGCCAC GGGCGCATCG AGAAACAGCT CCCTGATCGC 151 CGTCAGCACC GGTTTGCTCG ACCATATGAC GCGTGACGAA GTGGAAGCCG 201 TATTGGCGCA CGAAATGGCA CACGTCGGCA ACGGCGATAT GGTTACGCTG 251 301 ACGCTGATTC AAGGCGTGGT CAATACCTTT GTCGTGTTCC TGTCGCGCAT 351 TATTGCCAAC CTGATTGCCC GAAACAACGA CGGCAGCCAG TCCCAGGGAA 401 CTTATTTCCT GGTCAGCATG GTATTCCAAA TCCTGTTCGG CTTCCTTGCC AGCTTAATTG TCATGTGGTT CAGCCGACAA CGCGAATACC GCGCCGACGC 501 GGGCGCGCA AAACTGGTCG GCGCGCCGAA AATGATTTCC GCCCTGCAAA 551 GGCTTAAAGG CAACCCGGTC GATTTGCCCG AAGAAATGAA CGCAATGGGC 601 ATCGCCGGAG ATACGCGCGA CTCCCTGCTC AGCACCCACC CTTCGCTGGA 651 CAACCGAATC GCCCGCCTCA AATCGCTTTA A

This corresponds to the amino acid sequence <SEQ ID 1918; ORF 606.a>:

a606.pep

- 1 MSKFIAKQSV GAEVIDTPRT EEEAWLLNTV EAQARQWNLK TPEVAIYHSP
- EPNAFATGAS RNSSLIAVST GLLDHMTRDE VEAVLAHEMA HVGNGDMVTL 51 101
- TLIQGVVNTF VVFLSRIIAN LIARNNDGSQ SQGTYFLVSM VFQILFGFLA
- SLIVMWFSRQ REYRADAGAA KLVGAPKMIS ALQRLKGNPV DLPEEMNAMG
- 201 IAGDTRDSLL STHPSLDNRI ARLKSL*

m606/a606 100.0% identity in 226 aa overlap

	10	20	30	40	50	60
m606.pep	MSKFIAKQSVGAEV	IDTPRTEEE	AWLLNTVEAQA	RQWNLKTPE	/AIYHSPEPNA	FATGAS
		11111111	111111111	1111111111		111111
a 606	MSKFIAKQSVGAEV	IDTPRTEEE	AWLLNTVEAQA	ROWNLKTPE	AIYHSPEPNA	FATGAS
	10	20	30	40	50	60
	70	80	90	100	110	120
m606.pep	RNSSLIAVSTGLLD	HMTRDEVEA	/LAHEMAHVGN	GDMVTLTLIC	GVVNTFVVFL	SRIIAN
	111111111111	111111111		111111111	111111111	
a606	RNSSLIAVSTGLLD	HMTRDEVEAU	/LAHEMAHVGN	GDMVTLTLIC	GVVNTFVVFL	SRITAN
	70	80	90	100	110	120
	130	140	150	160	170	180
m606.pep	LIARNNDGSQSQGT	YFLVSMVFQI	LFGFLASLIV	MWFSRQREYR	ADAGAAKLVG	APKMIS
		1111111111		111111111	1111111111	11111
a606	LIARNNDGSQSQGT	YFLVSMVFQI	LFGFLASLIV	MWFSRQREYR	ADAGAAKLVG	APKMIS
	130	140	150	160	170	180
	190	200	210	220		
m606.pep	ALQRLKGNPVDLPE	EMNAMGIAGD	TRDSLLSTHP	SLDNRIARLK	SLX	
		1111111	11111111111	111111111	111	
a6 06	ALQRLKGNPVDLPE	EMNAMGIAGD	TRDSLLSTHP	SLDNRIARLK	SLX	
	190	200	210	220		

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 1919>: g607.seg

_					
1	ATGCTGCTCG	accTcgaCCG	CTTTTCCTtt	tccGTCTTCC	TGAAAGAAAT
51	CCGCCTGCTG	ACCGCCCTTG	CCCTGCCCAT	GCTGTTGGCG	CAGGTCGCGC
101	AGGTGGGCAT	CGGTTTCGTC	GATACCGTGA	TGGCGGGCGG	TGCGGGCAAG
151	GAAGATTTGG	CGGCGGTGGC	TTTGGGCAGC	AGCGCGTTTG	CCACGGTTTA
201	TATTACCTTT	ATGGGCATTA	TGGCGGCGCT	GAACCCGATG	ATTGCCCAGC
251	TTTACGGCGC	GGGTAAAACC	GgtgAAGCAG	GCGAAACGGG	GCGGCAGGGG
301	ATTTGGTTCG	GGCTGATTTT	GGGGATTTTC	GGCATGATTT	TGATGTGGGC
351	GGCGATTACG	CCGTTCCGCA	ACTGGCTGAC	TTTGAGCGAT	TATGTGGAAG
401	gcacAAtggc	gcagtatatg	CTGTTCACCA	GCTTGGCGAT	GCCGGCGGCA
451	ATGGTACACC	GCGCACTGCA	CGCCTACGCT	TCCAGCCTGA	ACCGCCCGCG
501	CCTGATTATG	TTGGTCAGCT	TTGCGGCGTT	TGTGTTGAAC	GTGCCGCTGA
551	ACTATATTTT	CGTTTACGGC	AAATTCGGTA	TGCCCGCTTT	GGGTGGCGCA

. 2 6 anj_ 20 i 2,5 €

```
601 GGTTGCGGCG TGGCGACAAT GGCGGTGTTT TGGTTCAGCG CGCTGGCATT
     GTGGATTTAT ATCGCCAAGG AAAAATTCTT CCGCCCGTTC GGACTGACAG
     CGAAATTCGg caaACCGGat tGGgcGGTGT TCAAACAGAT TtGGAAAATC
     gGcgcgCCCA TCGGGCTGTC TTATTTTTTG GAAgccaGcg cGTTTTCGTT
      TATCGTGTTT TTGATTGCGC CTttcggCGA GGATTATGTG GCGGCGCAGC
 851 AGGTCGGCAT CAGTTTGTCG GGGATTCTCT ATATGATTCC GCAAAGCGTC
 901 GGCTCGGCAG GGACGGTGCG CATCGGCTTT TCGCTTGGGC GGCGCGAATT
 951 TTCGCGGGCG CGTTATATTT CAGGAGTGTC GCTGGTGTCG GGCTGGGTGC
     TCGCCGTGAT TACCGTGCTT TCCTTGGTAT TATTCCGTTC GCCGCTGGCA
1051 AGCATGTACA ACGATGATCC GGCAGTTTTA AGCATCGCCT CCACCGTCCT
1101 GCTGTTCGCC GGCCTGTtcc aACCGGCAGA CTTCACCCAA TGTATCGCGT
1151 CCTATGCCCT GCGCGGCTAC AAAGTCACCA AGGTGCCGAT GTTCATCCAC
1201 GCCGCCGCCT TCTGGGGCTG CGGCCTGCTG CCGGGCTATC TGCTCGCCTA
1251 CCGTTTCGAT ATGGGCATTT ACGGCTTCTG GACGGCATTG ATTGCCTCGC
     TCACCATCGC AGCCGTCGCC TTGGTGTGGT GCTTGGAAAA ATACAGTATG
     GAGTTGGTCA AATCACACAA GGCCGTCTGA
```

This corresponds to the amino acid sequence <SEQ ID 1920; ORF 607.ng>: g607.pep

```
1 MLLDLDRFSF SVFLKEIRLL TALALPMLLA QVAQVGIGFV DTVMAGGAGK
51 EDLAAVALGS SAFATVYITF MGIMAALNPM IAQLYGAGKT GEAGETGRQG
101 IWFGLILGIF GMILMWAAIT PFRNWLTLSD YVEGTMAQYM LFTSLAMPAA
151 MVHRALHAYA SSLNRPRLIM LVSFAAFVLN VPLNYIFVYG KFGMPALGGA
201 GCGVATMAVF WFSALALWIY IAKEKFFRPF GLTAKFGKPD WAVFKQIWKI
251 GAPIGLSYFL EASAFSFIVF LIAPFGEDYV AAQQVGISLS GILYMIPQSV
301 GSAGTVRIGF SLGRREFSRA RYISGVSLVS GWVLAVITVL SLVLFRSPLA
```

351 SMYNDDPAVL SIASTVLLFA GLFQPADFTQ CIASYALRGY KVTKVPMFIH 401 AAAFWGCGLL PGYLLAYRFD MGIYGFWTAL IASLTIAAVA LVWCLEKYSM

451 ELVKSHKAV*

The following partial DNA sequence was identified in *N.meningitidis* <SEQ ID 1921>: m607.seq

```
ATGCTGCTCG ACCTCAACCG CTTTTCCTTT CCCGTCTTCC TGAAAGAAGT
      CCGCCTGCTG ACCACTCTTG CCCTGCCCAT GCTGTTGGCG CAGGTCGCGC
     AGGTGGGCAT CGGTTTTGTC GATACTGTGA TGGCGGGCGG TGCGGGCAAG
 101
     GAAGACTTGG CGGCGGTGGC TTTGGGCAGC AGCGCGTTTG CCACGGTTTA
 201 TATTACCTTT ATGGGCATTA TGGCGGCGCT GAACCCGATG ATTGCCCAGC
 251 TTTACGGCGC GGGTAAAACC GACGAAGTGG GCGAAACGGG GCGGCAGGGG
 301 ATTTGGTTCG GGCTGTTTTT GGGCGTGTTC GGCATGGTCT TGATGTGGGC
     GGCGATTACG CCGTTCCGCA ACTGGCTGAC CTTGAGCGAT TATGTGGAAG
 401 GCACGATGGC GCAGTATATG TTGTTCACCA GCTTGGCGAT GCCGGCGGCA
 451 ATGGTACACC GCGCGCTGCA CGCCTACACT TCCAGCCTGA ACCGCCCGCG
 501 CCTGATTATG TTGGTCAGCT TTGCGGCGTT TGTGTTGAAC GTGCCGCTGA
 551 ACTATATTT CGTTTACGGC AAATTCGGTA TGCCCGCTTT GGGCGCGCA
     GGCTGCGGAC TGGCGACGAT GGCGGTGTTT TGGTTCAGCG CGCTGGCATT
     GTGGATTTAT ATCGCCAAGG AAAATTTCTT CCGCCCATTC GGACTGACGG
     CGAAATTCGG CAAACCGGAT TGGGCGGTGT TCAAACAGAT TTGGAAAATC
     GGCGCACCCA TCGGGCTGTC TTATTTTTTG GAAGCCAGCG CGTTTTCGTT
     TATCGTGTTT TTGATTGCGC CTTTCGGCGA GGATTATGTG GCGGCGCAGC
 801
 851 AGGTCGGCAT CAGTTTGTCG GGGATTCTCT ATATGATTCC GCAAAGCGTC
    GGCTCGGCGG GGACGGTGCG CATCGGCTTT TCGCTTGGGC GGCGCGAATT
     TTCGCGGGCG CGTTATATTT CGGGCGTGTC ACTGGTGTTA GGATGGATGC
     TCGCCGTGAT TACCGTGCTT TCCTTGGTAT TATTCCGTTC GCCGCTGGTA
1051 AGTATGTACA ACAATGATCC GGCGGTTTTA AGCATCGCCG CCACCGTCTT
1101 ACTGTTCGCC GGCTTGTTCC AACCGGCAGA CTTCACCCAA TGTATCGCCT
1151 CCTACGCCTT GCGCGGCTAC AAAGTTACAA AGGTGCCGAT GTTCATCCAC
1201 GCCGCCGCCT TTTGGGGCTG CGGCCTGCTG CCGGGCTATC TGCTCGCCTA
     CCGTTTCAAT ATGGGCATTT ACGGCTTCTG GACGGCATTG ATTGCCTCGC
     TCACCATCGC CGCCATCGCC TTGGTGTGGT GCTTGGAATT GTGCAGTAGG
     GAGATGGTCA GATCGCATAA GGCCGTCTGA
```

This corresponds to the amino acid sequence <SEQ ID 1922; ORF 607>: m607.pep

1 MLLDLNRFSF PVFLKEVRLL TTLALPMLLA QVAQVGIGFV DTVMAGGAGK

51 EDLAAVALGS SAFATVYITF MGIMAALNPM IAQLYGAGKT DEVGETGRQG

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N.gonorrhoeae

ORF 607 shows 94.8% identity over a 459 aa overlap with a predicted ORF (ORF 607.ng) from N. gonorrhoeae:

m607/g607

m607.pep	10 MLLDLNRFSFPVF	20 LKEVRLLTTL	30 ALPMLLAQVA	40 QVGIGFVDTV	50 MAGGAGKEDL	60 AAVALGS
g607	: MLLDLDRFSFSVFI	: :			1111111111	111111
	10	20	30	40	50	60
m607.pep	70 SAFATVYITFMGIN	80 MAALNPMIAQ	90 LYGAGKTDEV	100 GETGRQGIWFO	110 GLFLGVFGMV	120 LMWAAIT
g607					11:11:11:	
	70	80	90	100	110	120
m607.pep	130 PFRNWLTLSDYVEG	140 TMAQYMLFT:	150 SLAMPAAMVHI	160 RALHAYTSSLN	170 NRPRLIMLVS	180 FAAFVLN
g607				11111:111		111111
	130	140	150	160	170	180
m607.pep	190 VPLNYIFVYGKFGM	200 PALGGAGCGI	210 LATMAVFWFS	220 ALALWIYIAKE	230 NFFRPFGLTA	240 AKFGKPD
g607	VPLNYIFVYGKFGM	1111:	:	F		
	190	200	210	220	230	240
m607.pep	250 WAVFKQIWKIGAPI	260 GLSYFLEASA	270 AFSFIVFLIAF	280 PFGEDYVAAQQ	290 VGISLSGILY	300 MIPOSV
g607] [] [] [] [] []			111111111	311111
	250	260	270	280	290	300
m607.pep	310 GSAGTVRIGFSLGRI	320 REFSRARYIS	330 GVSLVLGWML	340 AVITVLSLVL	350 FRSPLVSMYN	360 NDPAVI
g607			11111 11:1		111111111	. [] [] [
	310	320	330	340	350	360
m607.pep	370 SIAATVLLFAGLFQI	380 PADFTQCIAS	390 YALRGYKVTK	400 VPMFIHAAAFV	410 WGCGLLPGYL	420 LAYRFN
g607	:	 PADFTQCIAS			111111111	DITTE.
	370	380	390	400	410	420
m607.pep	430 MGIYGFWTALIASLT	440 'IAAIALVWC				
g607		IAAVALVWCI	: : LEKYSMELVKS	 SHKAVX		
	430	440	450	460		

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1923>:

```
a607.seq
          ATGCTGCTCG ACCTCAACCG CTTTTCCTTT TCCGTCTTCC TGAAAGAAGT
          CCGCCTGCTG ACCGCTCTTG CCCTGCCCAT GCTGTTGGCG CAGGTCGCGC
      51
         AGGTGGGCAT CGGTTTTGTC GATACCGTGA TGGCGGGCGG TGCGGGCAAG
     101
     151
         GAAGACTTGG CGGCGGTGGC TTTGGGCAGC AGCGCGTTTG CCACGGTTTA
          TATTACCTTT ATGGGCATTA TGGCGGCGCT GAACCCGATG ATTGCCCAGC
         TTTACGGCGC GGGTAAAACC GACGAAGTGG GCGAAACGGG ACGGCAGGGG
    251
         ATTTGGTTCG GGCTGTTTTT GGGCGTGTTC GGCATGGTCT TGATGTGGGC
    301
         GGCGATTACG CCGTTCCGCA ACTGGCTGAC CTTGAGCGAT TATGTGGAAG
     401
         GCACAATGGC GCAGTATATG CTGTTCACCA GCTTGGCGAT GCCGGCGGCA
    451
         ATGGTACACC GCGCACTGCA CGCCTACGCC TCCAGCCTGA ACCGCCCGCG
    501
         CCTGATTATG TTGGTCAGCT TTGCGGCGTT TGTGTTGAAC GTGCCGCTGA
    551
         ACTATATTT CGTTTACGGC AAATTCGGTA TGCCCGCTTT GGGCGGCGCA
         GGCTGCGGAC TGGCGACGAT GGCGGTGTTT TGGTTCAGCG CGCTGGCATT
    601
         GTGGATTTAT ATCGCCAAGG AAAATTTCTT CCGCCCATTC GGACTGACGG
    651
         CGAAATTCGG CAAACCGGAT TGGGCGGTGT TCAAACAGAT TTGGAAAATC
    701
         GGCGCACCCA TCGGGCTGTC TTATTTTTTG GAAGCCAGCG CGTTTTCGTT
    751
         TATCGTGTTT TTGATTGCGC CTTTCGGCGA GGATTATGTG GCGGCGCAGC
    801
         AGGTCGGCAT CAGTTTGTCG GGGATTCTCT ATATGATTCC GCAAAGCGTC
    851
         GGCTCGGCGG GGACGGTGCG CATCGGCTTT TCGCTTGGGC GGCGCGAATT
    901
    951 TTCGCGGGCG CGTTATATTT CGGGCGTGTC ACTGGTGTCA GGATGGATGC
   1001
         TCGCCGTGAT TACCGTGCTT TCCTTGGTAT TATTCCGTTC GCCGCTGGTA
         AGTATGTACA ACAATGATCC GGCGGTTTTA AGCATCGCCG CCACCGTCTT
   1051
   1101
         ACTGTTCGCC GGCTTGTTCC AACCGGCAGA CTTCACCCAA TGTATCGCCT
   1151 CCTACGCCTT GCGCGGCTAC AAAGTTACAA AGGTGCCGAT GTTCATCCAC
   1201 GCCGCCGCCT TTTGGGGCTG CGGTCTGCTG CCGGGCTACC TGCTCGCCTA
   1251 CCGTTTCGAT ATGGGCATTT ACGGCTTCTG GACGGCATTG ATTGCCTCGC
         TCACCATCGC CGCCATCGCC TTGGTGTGGT GCTTGGAATT GTGCAGTAGG
   1351
         GAGATGGTCA GATCGCATAA GGCTGTCTGA
```

This corresponds to the amino acid sequence <SEQ ID 1924; ORF 607.a>:

a607.pep MLLDLNRFSF SVFLKEVRLL TALALPMLLA QVAQVGIGFV DTVMAGGAGK EDLAAVALGS SAFATVYITF MGIMAALNPM IAQLYGAGKT DEVGETGRQG 51 IWFGLFLGVF GMVLMWAAIT PFRNWLTLSD YVEGTMAQYM LFTSLAMPAA MVHRALHAYA SSLNRPRLIM LVSFAAFVLN VPLNYIFVYG KFGMPALGGA GCGLATMAVF WFSALALWIY IAKENFFRPF GLTAKFGKPD WAVFKQIWKI 201 GAPIGLSYFL EASAFSFIVF LIAPFGEDYV AAQQVGISLS GILYMIPQSV 251 GSAGTVRIGF SLGRREFSRA RYISGVSLVS GWMLAVITVL SLVLFRSPLV 301 SMYNNDPAVL SIAATVLLFA GLFQPADFTQ CIASYALRGY KVTKVPMFIH AAAFWGCGLL PGYLLAYRFD MGIYGFWTAL IASLTIAAIA LVWCLELCSR 401 451 EMVRSHKAV*

m607/a607 98.9% identity in 459 aa overlap

	10	20	30	40	50	60
m607.pep	MLLDLNRFSFPVF1	LKEVRLLTTL1	ALPMLLAQVA	QVGIGFVDTVI	MAGGAGKEDLA	AVALGS
		1111111:1	шшійі			111111
a6 07	MLLDLNRFSFSVF	LKEVRLLTAL	ALPMLLAOVA	OVGTGEVDTVI	MAGGAGKEDIZ	AVATCS
	10	20	30	40	50	
			•	40	30	60
	70	80	90	100	110	100
m607.pep						120
moo'.pep	SAFATVYITFMGIN	THATMENTACT	I GAGKI DEVO	PETGROGIWE(JLFLGVFGMVI	TIAAWM
				[} }	111111
a6 07	SAFATVYITFMGIN	<i>I</i> AALNPMIAQI	YGAGKTDEVO	SETGROGIWFO	SLFLGVFGMVI	MWAATT
	70	80	90	100	110	120
						120
	130	140	150	160	170	180
m607.pep	PFRNWLTLSDYVE	TMAOYMLETS	ST.AMPAAMUHE			
F - F	111111111111				ALLETINDADE	AATVLN
- 607		1111111111				11111
a607	PFRNWLTLSDYVE	STMAQYMLFTS	SLAMPAAMVHF	RALHAYASSLI	NRPRLIMLVSF	'AAFVLN
	130	140	150	160	170	180
					- · ·	100
	190	200	210	220	230	240
				0	~50	240

BNSDOCID: <WO___9957280A2_i_>

🚗 🤗 ... ೨೪ - 🧓 ಕನೇಶತ

m607.pep	VPLNYIFVYGKFGMP	ALGGAGCGLA	TMAVFWFSALA	ALWIYIAKEN	FFRPFGLTAK	FGKPD
a607	VPLNYIFVYGKFGMP				111111111	11111
	190	200	210	220	230	240
m607	250	260	270	280	290	300
m607.pep	WAVFKQIWKIGAPIG	LSYFLEASAF:	SFIVFLIAPFO	SEDYVAAQQVO	:ISLSGILYM:	I PQSV
-607		<u> </u>		1111111111		
a607	WAVFKQIWKIGAPIG	LSYFLEASAF	SFIVFLIAPFO	EDYVAAQQVG	:ISLSGILYM:	PQSV
	250	260	270	280	290	300
	210					
-607	310	320	330	340	350	360
m607.pep	GSAGTVRIGFSLGRR	EFSRARYISG	/SLVLGWMLAV	'ITVLSLVLFR	SPLVSMYNNI	PAVL
a607				11111111	1111111111	1111
a607	GSAGTVRIGFSLGRR	EFSRARYISGV		ITVLSLVLFR	SPLVSMYNNI	PAVL
	310	320	330	340	350	360
	0.7.0					
607	370	380	390	400	410	420
m607.pep	SIAATVLLFAGLFQPA	ADFTQCIASYA	LRGYKVTKVP	MFIHAAAFWG	CGLLPGYLLA	YRFN
605		1111111	111111111		1111111111	111:
a607	SIAATVLLFAGLFQPA	ADFTQCIASYA	LRGYKVTKVP	MFIHAAAFWG	CGLLPGYLLA	YRFD
	370	380	390	400	410	420
607	430	440	450	460		
m607.pep	MGIYGFWTALIASLTI	AAIALVWCLE	LCSREMVRSH	KAVX		
607		111111111	111111111	1111		
a607	MGIYGFWTALIASLTI		LCSREMVRSHI	KAVX		
	430	440	450	460		

```
The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 1925>:
```

```
1 ATGTCCGCC TCCTCCCCAT CATCAACCGC CTGATTCTGC AAAGCCCGGA
51 CAGCCGCTCG GAACTTACCT CCTTTGCAGG CAAAACACTG ACCCTGAACA
101 TTGCCGGGCT GAAACTGGCG GGACGCATCA CAGAAGACGG TTTGCTCTCG
151 GCGGGAAACG GCTTTGCAGA CACCGAAATT ACCTTCCGCA ACAGCGCGAT
201 ACGGAAAATC CTCCAAGGCG GCGAACCCGG GGCTGGCGAC ATCAGGCTCG
251 AAGGCGACCT CATCCTCGGC ATCGCGGTAC TGTCCCTGCT CGGCAGCCTG
301 CGTTCCCGCG CATCGGACGA ATTGGCACGG ATTTTCGGCA CGCAGGCAGG
351 Catcggcagc CGTGCCACCG ACATCGGACA CGGCATCaaa CAAATCGGCA
401 GGAACATCGC CGAACAAATC GGCGGATTTT CCCGCGAACC CGAGTCcgCa
451 aacaccggca acgaagccct tgccgactgc ctCGACGAAA TAAGCAGACT
501 GCGCGACGGC GTGGAACGCC TCAACGAACG CCTCGAACGCC
551 ACATTTGGAT AGACTAA
```

This corresponds to the amino acid sequence <SEQ ID 1926; ORF 608.ng>: g608.pep

- 1 MSALLPIINR LILQSPDSRS ELTSFAGKTL TLNIAGLKLA GRITEDGLLS
- 51 AGNGFADTEI TFRNSAIRKI LQGGEPGAGD IRLEGDLILG IAVLSLLGSL 101 RSRASDELAR IFGTQAGIGS RATDIGHGIK QIGRNIAEQI GGFSREPESA
- 151 NTGNEALADC LDEISRLRDG VERLNERLDR LERDIWID*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1927>: m608.seq

1 ATGTCCGCCC TCCTCCCAT CATCAACCGC CTGATTCTGC AAAGCCCGGA
51 CAGCCGCTCG GAACTTGCCG CCTTTGCAGG CAAAACACTG ACCCTGAACA
101 TTGCCGGGCT GAAACTGGCG GGACGCATCA CGGAAGACGG TTTGCTCTCG
151 GCGGGAAACG GCTTTGCAGA CACCGAAATT ACCTTCCGCA ACAGCGCGGT
201 ACAGAAAATC CTCCAAGGAG GCGAACCCGG GGCGGCGAC ATCGGGCTCG
251 AAGGCGACCT CATCCTCGGC ATCGCGGTAC TGTCCCTGCT CGGCAGCCTG
301 CGTTCCCGCG CATCGGACGA ATTGGCACGG ATTTTCGGCA CGCAGGCAGA
351 CATCGGCAGC CGTGCCGCCG ACATCGGACA CGAATCGGCA
401 GGAACATCGC CGAACAAATC GGCGGATTTT CCCGCGAAAC CGAGTCCGCA
451 AACATCGGCA ACGAAGCCCT TGCCGACTGC CTCGACGAAA TAAGCAGACT

1.9

```
501 GCGCGACGGC GTGGAACGCC TCAACGAACG CCTCGACCGG CTCGAACGCG
     551
         ACATTTGGAT AGACTAA
This corresponds to the amino acid sequence <SEQ ID 1928; ORF 608>:
m608.pep
          MSALLPIINR LILQSPDSRS ELAAFAGKTL TLNIAGLKLA GRITEDGLLS
       1
          AGNGFADTEI TFRNSAVQKI LQGGEPGAGD IGLEGDLILG IAVLSLLGSL
      51
     101
          RSRASDELAR IFGTQADIGS RAADIGHGIK OIGRNIAEOI GGFSRESESA
     151 NIGNEALADC LDEISRLRDG VERLNERLDR LERDIWID*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N.gonorrhoeae
ORF 608 shows 95.2% identity over a 188 aa overlap with a predicted ORF (ORF 608.ng)
from N. gonorrhoeae:
m608/g608
                    10
                              20
                                        30
                                                                    60
                                                 40
                                                           50
            MSALLPIINRLILQSPDSRSELAAFAGKTLTLNIAGLKLAGRITEDGLLSAGNGFADTEI
m608.pep
             g608
            MSALLPIINRLILQSPDSRSELTSFAGKTLTLNIAGLKLAGRITEDGLLSAGNGFADTEI
                    10
                              20
                                        30
                                                 40
                    70
                              80
                                        90
                                                100
                                                         110
                                                                   120
            TFRNSAVQKILQGGEPGAGDIGLEGDLILGIAVLSLLGSLRSRASDELARIFGTQADIGS
m608.pep
             TFRNSAIRKILQGGEPGAGDIRLEGDLILGIAVLSLLGSLRSRASDELARIFGTQAGIGS
g608
                    70
                              80
                                       90
                                                100
                                                         110
                                                                   120
                   130
                             140
                                      150
                                                160
                                                         170
            {\tt RAADIGHGIKQIGRNIAEQIGGFSRESES} \textbf{ANIGNEALADCLDEISRLRDGVERLNERLDR}
m608.pep
             g608
            RATDIGHGIKQIGRNIAEQIGGFSREPESANTGNEALADCLDEISRLRDGVERLNERLDR
                   130
                             140
                                      150
                                                160
                                                         170
                                                                   180
                  189
m608.pep
            LERDIWIDX
            g608
            LERDIWIDX
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1929>:
     a608.seq
              ATGTCCGCCC TCCTCCCCAT CATCAACCGC CTGATTCTGC AAAGCCCGGA
           51
              CAGCCGCTCG GAACTTGCCG CCTTCGCAGG CAAAACACTG ACCCTGAACA
          101
              TTGCCGGGTT GAAACTGGCG GGACGCATCA CGGAAGACGG TTTGCTCTCG
          151
              GCGGGAAACG GCTTTGCAGA CACCGAAATC ACCTTCCGCA ACAGCGCGGT
          201
              ACAGAAAATC CTCCAAGGCG GCGAACCCGG GGCGGGCGAC ATCGGGCTCG
          251
              AAGGCGACCT CATCCTCGGC ATCGCGGTAC TGTCCCTGCT CGGCAGCCTG
              CGTTCCCGCG CATCGGACGA ATTGGCACGG ATTTTCGGCA CGCAGGCAGA
          351
              CATCGGCAGC CGTGCCGCCG ACATCGGACA CGGCATCAAA CAAATCGGCA
          401
              GGAACATCGC CGAACAAATC GGCAGATTTT CCCGCGAACC CGAGTCCGCA
              AACATCGGCA ACGAAGCCCT TGCCGACTGC CTCGACGAAA TAAGCAGACT
          451
              GCGCGACGGC GTGGAACGCC TCAACGAACG CCTCGACCGG CTCGAACGCG
          501
          551 ACATTTGGAT AGACTAA
This corresponds to the amino acid sequence <SEQ ID 1930; ORF 608.a>:
     a608.pep
              MSALLPIINR LILQSPDSRS ELAAFAGKTL TLNIAGLKLA GRITEDGLLS
              AGNGFADTEI TFRNSAVQKI LQGGEPGAGD IGLEGDLILG IAVLSLLGSL
         101
              RSRASDELAR IFGTQADIGS RAADIGHGIK QIGRNIAEQI GRFSREPESA
              NIGNEALADC LDEISRLRDG VERLNERLDR LERDIWID*
m608/a608 98.9% identity in 188 aa overlap
                         10
                                  20
                                            30
                                                     40
                                                               50
                                                                         60
```

WO 99/57280

m608.pep	MSALLPIINRLII	QSPDSRSELAA	FAGKTLTLN	IAGLKLAGRIT	EDGLLSAGNO	GFADTEI
a608	MSALLPIINRLII 10	QSPDSRSELAA 20	FAGKTLTLN 30	IAGLKLAGRIT	EDGLLSAGNO	
			30	40	30	60
	70	80	90	100	110	120
m608.pep	TFRNSAVQKILQG	GEPGAGDIGLE	GDLILGIAV	LSLLGSLRSRA	SDELARIFG	COADIGS
500						LIFITEL
a608	TFRNSAVQKILQG	GEPGAGDIGLE	GDLILGIAV:	LSLLGSLRSRA	SDELARIFGT	OADIGS
	70	80	90	100	110	120
	130	140	150	160	170	180
m608.pep	RAADIGHGIKQIG	RNIAEQIGGFSF	RESESANIG	NEALADCLDEI	SRLRDGVERL	NERLDR
600						111111
a608	RAADIGHGIKQIG	RNIAEQIGRFSF	REPESANIG	NEALADCLDEI	SRLRDGVERL	NERLDR
	130	140	150	160	170	180
	189					
m608.pep	LERDIWIDX					
	11111111					
a608	LERDIWIDX					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1931>:

```
ATGGTTGTGG ATAGACTCGA AATTCTCGCT CTCGACGACG AAACTCTTGA
51 TGCGTTTGTC GGCAATCAGC GAAGTAGCGA CATCGCGCAC CATATCTTCC
101 ACGAATTTCG GGTTTTCGTA GGCCTTTTCG GTAACGTATT TTTCATCGGG
151 GCGTTTGAGC AGCCCGTAGA GTTGGCAGCT CGCCTGCGTT TCCACATAAT
201 CGATAACTTC CTCGATACCG ACTTCGGCAT CGGAAGTCAG GCTGACGGTA
301 CGGGCAAAGC GAGGTTACGG GAATCATGAC CTTCATAATC CAGCATAG
351 CCCCGTCTTT CATTCACCC GTGAGGCTGA CATCATAATC CAGCAA
```

This corresponds to the amino acid sequence <SEQ ID 1932; ORF 609.ng>: g609.pep

1 MVVDRLEILA LDDETLDAFV GNQRSSDIAH HIFHEFRVFV GLFGNVFFIG 51 AFEQAVELAA RLRFHIIDNF LDTDFGIGSQ ADGNVRTLIM RAILGNFFGT

101 RAKRGYGNHD LHTVAVCPVF HFTREADIII Q*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1933>: m609.seq

```
ATGGTTGTGG ATAGACTCGA AATTCTCGCT CTCGACGACG AAACTCTTGA
51 TGCGTTTGTC GGCAATCAGC GAAGTAGCGA CATCGCGCAC CATATCTTCC
101 ACGAATTTCG GGTTTTCGTA GGCTTTTTCG GTAACGTATT TTTCATCGGG
151 GCGTTTGAGC AGGCCGTAGA GTTGGCAGCT CGCCTGCGCC TCCACATAAT
201 CGATGACTTC CTCGATACCG ACTTCGGCAT CGGCAGTCAG GCTGACGGTA
251 ACGTGCGAAC GCTGGTTGTG CGCCCGTAT TGGGAAAATTT CTTTGGAACA
301 CGGGCAAAGC GAGGTTACGG GAATCATGAC CTTCATAATC CAGTAA
```

This corresponds to the amino acid sequence <SEQ ID 1934; ORF 609>: m609.pep

1 MVVDRLEILA LDDETLDAFV GNORSSDIAH HIFHEFRVFV GFFGNVFFIG 51 AFEQAVELAA RLRLHIIDDF LDTDFGIGSQ ADGNVRTLVV RAVLGNFFGT

101 RAKRGYGNHD LHTVAVCPVF DFARETDIII Q*

m609/g609 93.1% identity in 131 aa overlap

m609.pep	10	20	30	40	50	60
meog.pep	MVVDRLEILALDDE	ETLDAFVGNOR	SSDIAHHIFH	EFRVFVGFFG	NVFFIGAFEC)AVELAA
g609	MVVDRLEILALDDE	TI.DA FVGNOR	ון	:		111111
_		TEPME TONGS	CODIMINITE	ELKALAGTER	NALLICALEC	AVELAA
	10	20	30	40	50	60
~600 ~~~	70	80	90	100	110	120
m609.pep	RLRLHIIDDFLDTD	FGIGSQADGN	VRTLVVRAVL	GNFFGTRAKR	GYGNHDLHTV	AUCDUE
	111:1111:1111	1111111111		111111111		AVCEVE
	111:1111:11111	111111111	111111111111111	1111111111	11111111111	11111

```
RLRFHIIDNFLDTDFGIGSQADGNVRTLIMRAILGNFFGTRAKRGYGNHDLHTVAVCPVF
g609
                            80
                                    90
                                            100
                                                     110
                  130
            DFARETDIIIQX
m609.pep
            1:11:11111
a609
            HFTREADIIIQX
                  130
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1935>:
            1
               ATGGTTGTGG ATAGACTCGA AATTCTCGCT CTCGACGACG AAACTCTTGA
               TGCGTTTGTC GGCAATCAGC GAAGTAGCGA CATCGCGCAC CATATCTTCC
           51
          101
               ACGAATTTCG GGTTTTCGTA GGCTTTTTCG GTAACGTATT TTTCATCGGG
               GCGTTTGAGC AGGCCGTAGA GTTGGCAGCT CGCCTGCGCC TCCACATAAT
          151
               CGATGACTTC CTCGATACCG ACTTCGGCAT CGGCAGTCAG GCTGACGGTA
          251 ACGTGCGAAC GCTGGTTGTG CGCGCCATAT TGGGAAATTT CTTTGGAACA
               CGGGCAAAGC GAGGTTACGG GAATCATGAC CTTCATACTG TGGCCGTATG
               CACCGTCTTT CATTTCGCCC GTGAGGCTGA CATCATAATC CAGTAA
This corresponds to the amino acid sequence <SEQ ID 1936; ORF 609.a>:
     a609.pep
               MVVDRLEILA LDDETLDAFV GNQRSSDIAH HIFHEFRVFV GFFGNVFFIG
           51
               AFEQAVELAA RLRLHIIDDF LDTDFGIGSO ADGNVRTLVV RAILGNFFGT
               RAKRGYGNHD LHTVAVCTVF HFAREADIII Q*
          101
     m609/a609
                  96.9% identity in 131 aa overlap
                                   20
                                             30
                                                       40
                                                                 50
     m609.pep
                  MVVDRLEILALDDETLDAFVGNQRSSDIAHHIFHEFRVFVGFFGNVFFIGAFEQAVELAA
                  MVVDRLEILALDDETLDAFVGNQRSSDIAHHIFHEFRVFVGFFGNVFFIGAFEQAVELAA
     a609
                          10
                                   20
                                             30
                                                       40
                                                                           60
                          70
                                   80
                                             90
                                                      100
                                                                110
                                                                          120
                  {\tt RLRLHIIDDFLDTDFGIGSQADGNVRTLVVRAVLGNFFGTRAKRGYGNHDLHTVAVCPVF}
     m609.pep
                  a 609
                  RLRLHIIDDFLDTDFGIGSQADGNVRTLVVRAILGNFFGTRAKRGYGNHDLHTVAVCTVF
                          70
                                             90
                                                      100
                                                                110
                         130
     m609.pep
                  DFARETDIIIQX
                   1111:11111
     a609
                  HFAREADIIIQX
                         130
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1937>:
g610.seq
        ATGATTGGAG GGCTTATGCA ATTTCCTTAC CGCAATGTTC CGGCTTCGCG
        TATGCGCCGT ATGCGCAGGG ATGATTTTTC ACGCCGCCTG ATGCGCGAGC
    101
        ATATGCTGAC CGCCGATGAT TTGATTTATC CGGTGTTCGT ATTGGAGGGG
        GCGGCGCGC AGGAGGATGT GCCTTCTATG CCGGGCGTGA AGCGTCAGAG
    151
    201
```

```
TTTGGACAGG CTGCTGTTTA CGGCGGAAGA GGCGGTGAAG CTCGGTATTC
251
    CGATGTTGGC ACTCTTTCCC GTGGTTACGG CAAACAAAAC CGGGCGTGCG
    CAGGAGGCGT ACAATCCCGA AGGACTCGTG CCGTCAACTG tccgagccTT
351
    GCGCGAGAGG TttcCcgaac tggggattat gacggatgtc gcgctcgAtc
401
     cttatacggt gcacGGTCAG GACGGACTGA CGGACgaaaa cggttaCGTG
451
     ATGAAtgATg aaaCCGTAGA AGTCTTGGTG AAACAGGCTT TATGTCATGC
    AGAGGCGGGC ACGCAGGTCG TTGCTCCTTC CGATATGATG GACGGGCGTA
551
    TCGGCGCCAT CCGCGAGGCT TTGGAGGATG CCGGACATAT CCATACGCGG
601
    ATTATGGCAT ATTCCGCCAA ATATGCTTCT GCATTCTACG GCCCTTTCCG
651
    TGATGCGGTA GGCAGTTCGG GCAATTTGGG AAAGGCAGAT AAAAAGACCT
    ATCAGATGGA TCCTGCAAAT ACCGATGAGG CGCTGCATGA AGTGGCGCTC
701
    GATATTCAGG AAGGTGCGGA TATGGTGATG GTGAAGCCCG GTTTGCCGTA
```

BNSDOCID: <WO___9957280A2 1 >

m610.pep

- MIGGLMQFPY RNVPASRMRR MRRDDFSRRL MREHTLTADD LIYPVFVLEG SAREEDVPSM PGVKROSLDR LLFTAEEAVK LGIPMLALFP VVTANKTERA
- QEAYNPEGLV PSTVRALRER FPELGIMTDV ALDPYTVHGQ DGLTDENGYV 101 151 MNDETVEVLV KQALCHAEAG AQVVAPSDMM DGRIGAIREA LEDAGHIHTR
- IMAYSAKYAS AFYGPFRDAV GSSGNLGKAD KKTYQMDPAN TDEALHEVAL
- DIQEGADMVM VKPGLPYLDV VRRVKDEFGV PTYAYQVSGE YAMLQAAIAN 251
- 301 GWLDGGKVVL ESLLAFKRAG ADGILTYYAI EAAKMLKR*

m610/g610 98.5% identity in 338 aa overlap

	10	20	30	40	50	60
m610.pep	MIGGLMQFPYRNV	/PASRMRRMRRI	DFSRRLMREI	HTLTADDLIY	PVFVLEGSAR	EEDVPSM
			111111111		11111111111	1111111
g610	MIGGLMQFPYRNV	PASRMRRMRR	DESTRUME	HMLTADDI.TY	PVFVI.FCAAD	FFDUDCM
	10	20	30	40	50	60 60
					30	60
	70	80	90	100	110	120
m610.pep	PGVKROSLDRLLF	TAEEAVKLGIP	MLAL FPVVTZ	NKTEDAODAY	MDECTUDEM	120
	11111111111111	1111111111			MEEGLVESI	
g610	PGVKROST.DRI.T.E	ייייייייייייייייייייייייייייייייייייי		NVMCD2002		
3	PGVKRQSLDRLLF 70	IMPERATOR	MLALFPVVIF			/RALRER
	70	80	90	100	110	120
- 610	130	140	150	160	170	180
m610.pep	FPELGIMTDVALD	PYTVHGQDGLT	DENGYVMNDE	TVEVLVKQAI	CHAEAGAOV	/APSDMM
	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1111111111	111111111	1111111111	11111111111	
g610	FPELGIMTDVALD	PYTVHGQDGLT	DENGYVMNDE	TVEVLVKOAI	CHAEAGTOV	77 D C DMM
	130	140	150	160	170	
				100	170	180
	190	200	210	220		
m610.pep				220	230	240
	DGRIGAIREALED	AGDIDIKIMAY:	SAKIASAFYG	PFRDAVGSSG	NLGKADKKTY	OMDPAN
		111111111	1111111		111111111	111111

g610	DGRIGAIREALEDA	GHIHTRIMAY	SAKYASAFY	GPFRDAVGSS	GNLGKADKKT	OMDPAN
	190	200	210	220	230	240
	250	260	270	280	290	300
m610.pep	TDEALHEVALDIQE	GADMVMVKPG	LPYLDVVRR	VKDEFGVPTYA	YOVSGEYAMI	LOAAIAN
				11111111111		
g610	TDEALHEVALDIQE					
	250	260	270	280	290	300
	310	320	330	339		
m610.pep	GWLDGGKVVLESLL	AFKRAGADGI	LTYYAIEAAI	KMLKRX		
	# # # # # # # # # # # # # # # # # # # #		FILLERIE	111111		
g610	GWLDGGKVVLESLL	AFKRAGADGI	LTYYAIEAA	KMLKRX		
_	310	320	330			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1941>:

```
a610.seq
         ATGATTGGAG GGCTTATGCA GTTTCCTTAC CGCAATGTTT CGGCTTCGCG
      1
     51 TATGCGCCGT ATGCGCAGGG ACGATTTTTC ACGCCGCCTG ATGCGCGAGC
    101 ATACGCTGAC TGCCGATGAT TTGATTTATC CGGTGTTCGT ATTGGAGGGG
    151 TCGGCGCGC AGGAGGATGT GCCTTCTATG CCGGGCGTGA AGCGTCAGAG
    201 TTTGGACAGG CTGCTGTTTA CGGCGGAAGA GGCGGTAAAG CTCGGTATTC
         CGATGTTGGC ACTGTTCCCC GTGGTTACGG CAAACAAAC CGAGCGTGCG
    251
    301 CAGGAGGCGT ACAATCCCGA AGGACTCGTG CCGTCAACTG TCCGCGCCTT
    351 GCGCGAGAGG TTTCCCGAAC TGGGCATTAT GACGGATGTC GCGCTCGATC
    401 CTTATACGGT GCACGGTCAG GACGGGCTGA CGGACGAAAA CGGTTATGTG
    451 ATGAACGATG AAACCGTAGA GGTTTTGGTC AAGCAGGCTT TGTGTCATGC
         AGAGGCAGGC GCACAGGTCG TTGCTCCTTC CGATATGATG GATGGGCGTA
    501
    551 TCGGTGCGAT TCGCGAGGCG TTGGAGGATG CCGGGCATAT CCATACGCGG
    601 ATTATGGCGT ATTCCGCCAA ATATGCTTCT GCATTTTACG GCCCTTTCCG
         TGATGCGGTA GGCAGTTCGG GCAATTTGGG CAAGGCAGAT AAAAAGACCT
    651
    701 ACCAGATGGA TCCGGCAAAT ACCGATGAGG CGTTGCACGA AGTGGCGTTG
    751
         GACATTCAGG AAGGTGCGGA TATGGTGATG GTCAAGCCCG GTTTGCCGTA
         TTTGGACGTT GTCCGCCGCG TGAAGGACGA GTTCGGCGTG CCGACTTATG
    801
    851 CCTATCAGGT TTCGGGAGAA TACGCGATGC TGCAGGCGGC GGTTGCCAAC
        GGCTGGCTGG ACGGCGGCAA AGTGGTTTTG GAAAGCCTGC TGGCATTCAA
    951
        ACGTGCGGGT GCGGATGGGA TTTTGACCTA TTACGCCATT GAGGCGGCAA
   1001 AGATGCTGAA GCGTTGA
```

This corresponds to the amino acid sequence <SEQ ID 1942; ORF 610.a>:

auzu.pep					
1	MIGGLMQFPY	RNVSASRMRR	MRRDDFSRRL	MREHTLTADD	LIYPVFVLEG
51	SAREEDVPSM	PGVKRQSLDR	LLFTAEEAVK	LGIPMLALFP	VVTANKTERA
101		PSTVRALRER			
151		KQALCHAEAG			
201		AFYGPFRDAV			
251	DIQEGADMVM	VKPGLPYLDV	VRRVKDEFGV	PTYAYQVSGE	YAMLQAAVAN
301	GWLDGGKVVL	ESLLAFKRAG	ADGILTYYAI	EAAKMLKR*	

m610/a610 99.4% identity in 338 aa overlap

	10	20	30	40	50	60
m610.pep	MIGGLMQFPYRNVE	ASRMRRMRRD	DFSRRLMREH	TLTADDLIYP		
	1111111111	1111111111	1111111111	1111111111		
a610	MIGGLMQFPYRNVS	ASRMRRMRRD	DFSRRLMREH	TLTADDLIYP	VFVLEGSAR	EEDVPSM
	10	20	30	40	50	60
	70	80	90	100	110	120
m610.pep	PGVKRQSLDRLLFT	'AEEAVKLGIP	MLALFPVVTA	NKTERAQEAY:	NPEGLVPST	/RALRER
		111111111	1111111111	111111111	111111111	
a610	PGVKRQSLDRLLFT	AEEAVKLGIP	MLALFPVVTA	NKTERAQEAY	NPEGLVPSTV	/RALRER
	70	80	90	100	110	120
	130	140	150	160	170	180

		•				
m610.pep	FPELGIMTDVALDP					JAPSDMM
a610	FDELCIMEDUAL DE					
a610	FPELGIMTDVALDP	YTVHGQDGL				/APSDMM
	130	140	150	160	170	180
	190	200	210	220	222	
m610.pep	DGRIGAIREALEDAG			220	230	240
ozo.pop	11 1 1 1 1 1 1 1 1 1	1				
a610					F	11111
a 010	DGRIGAIREALEDAG				GNLGKADKKTY	OMDPAN
	190	200	210	220	230	240
	250	260	070			
-C10			270	280	290	300
m610.pep	TDEALHEVALDIQEG	SADMVMVKPG	SLPYLDVVRRV	KDEFGVPTY <i>I</i>	YQVSGEYAML	QAAIAN
				1111111111	1111111111	111:11
a610	TDEALHEVALDIQEG	ADMVMVKPG	LPYLDVVRRV	KDEFGVPTYA	YOVSGEYAML	OAAVAN
	250	260	270	280	290	300
	24.0					
	310	320	330	339		
m610.pep	GWLDGGKVVLESLLA	.FKRAGADGI	LTYYAIEAAK	MLKRX		
		11111111	1111111111	11111		
a61 0	GWLDGGKVVLESLLA	FKRAGADGI	LTYYAIEAAK	MLKRX		
	310	320	330			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1943>: g611.seq

```
ATGCCGTCTG AAAACGGGAT GGGAAAACGG CAGCTTGCGG GCTGCCGTTT

51 GTTCGGGAAG TTAAGCCTTG TTTTCAGGCT GCTGCCCGGA CTCTGTCGAG

101 GCGGTGTCTG CCGGGGCAGG TGCTTCGGTT TTTTCCCGAG TCGGAGCGTG

151 CGGCGCGTTA TCTTCCGCCG CGTCCGCATT Ctcgcgcagg ttgtGGCtgt

201 tatcctTGGG CGGCTGggt tgtttgccg ccataaTTtc cagtacctgA

251 TcgcgGTCta tggtttcCCa ttCcatcagg gctttgcaca TCGTTTCCAT

301 cttgTCGCGG TTTTcatcga ggaTTTTGTA ggcaacCTGA TACTgctcgt

351 CCaaaAtccg Gcggatttcc gcgtcgAtgt cctgtggggt tTTCTCGGAA

401 ATGTTTTGCG AACGGgttac gctGCGCCC AAGAACACTT CGCCTTCGTT

451 TCCGCATAA ACCATCACGC CCATTTTGtc gCTCAAAGTCGTT TGA
```

This corresponds to the amino acid sequence <SEQ ID 1944; ORF 611.ng>: g611.pep

- 1 MPSENGMGKR QLAGCRLFGK LSLVFRLLPG LCRGGVCRGR CFGFFPSRSV
- 51 RRVIFRRVRI LAQVVAVILG RAGLFARHNF QYLIAVYGFP FHQGFAHRFH
- 101 LVAVFIEDFV GNLILLVONP ADFRVDVLLG FLGNVLRTGY AAPQEDFAFV
- 151 FRINHHAHFV AHAVARYHFA CHLGCAFKVV *

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1945>: m611.seq

1	ATGCCGTCTG	AAAACGGGAT	GGGAAAACGG	CAGCTTGCGG	GCTGCCGTTT
51	GTTCGGGAAG	TTAAGCCTTG	TTTTCAGGCT	GCTGCTCGGA	CTCTGTCGAA
101	GCGGTGTCTG	CCGGGGCAGG	TGCTTCGGTT	TCTTCCCGAG	TCGGAGCGTG
151	CGGCGCGTTA	TCTTCCGCCG	CGTCCGCATT	CTCGCGCAGG	TTGTGGCTGT
201			TGTTTGCCCG		
251	TCGCGGTCGA	TGGTTTCCCA	TTCCATCAGG	GCTTTGCACA	TCGTTTCCAT
301	CTTGTCGCGG	TTTTCATCGA	GGATTTTGTA	GGCAACCTGA	TATTGCTCGT
351	CCAAAATCCG	GCGGATTTCC	GCGTCGATGT	CCTGCTGGGT	TTTCTCGGAA
401	ATGTTTTGCG	AACGGGTTAC	GCTGCGTCCC	AAGAAGACTT	CGCCTTCGTT
451	TTCCGCATAA	ACCATCACGC	CCATTTTGTC	GCTCATGCCG	TAGCGCGTTA
501	CCATTTCGCG	CGCCATTTGG	GTTGCGCGTT	CAAAGTCGTT	TGA

This corresponds to the amino acid sequence <SEQ ID 1946; ORF 611>: m611.pep

- 1 MPSENGMGKR QLAGCRLFGK LSLVFRLLLG LCRSGVCRGR CFGFFPSRSV
- 51 RRVIFRRVRI LAQVVAVIFG RAGLFARHDF QYLIAVDGFP FHQGFAHRFH
- 101 LVAVFIEDFV GNLILLVQNP ADFRVDVLLG FLGNVLRTGY AASQEDFAFV
- 151 FRINHHAHFV AHAVARYHFA RHLGCAFKVV *

m611/g611 96.1% identity in 180 aa overlap

10 20 30 40 50 60

m611.pep g611	MPSENGMGKRQLAGO	RLFGKLSLVFR	: LLPGLCRGG\	CRGRCFGFF	1111111111	11111
	10	20	30	40	50	60
	70	80	90	100	110	120
m611.pep	LAQVVAVIFGRAGLE	ARHDFQYLIAV	DGFPFHQGFA	HRFHLVAVF:	EDFVGNLIL	LVONP
	11111111:11111		111111111	111111111		
g611	LAQVVAVILGRAGLE	`ARHNFQYLIAV	YGFPFHQGFA	HRFHLVAVE	EDFVGNLIL	LVONP
	70	80	90	100	110	120
	130	140	150	160	170	180
m611.pep	ADFRVDVLLGFLGNV	LRTGYAASQED	FAFVFRINHH	IAHFVAHAVAI	RYHFARHLGC	AFKVV
		1111111 111	111111111	1111111111		11111
g611	ADFRVDVLLGFLGNV		FAFVFRINHH	IAHFVAHAVAF	RYHFACHLGC	AFKVV
	130	140	150	160	170	180
mC11 man						
m611.pep	X					
611	1,					
g611	X					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1947>:

a611.seq					
1	ATGCCGTCTG	AAAACAGGAT	GGGAAAACGG	CAGCTTGCGG	GCTGCCGTTT
51	GTTCGGGAAG	TTAAGCCTTG	TTTTCAGGCT	GCTGCTCGGA	CTCTGTCGAA
101	GCGGTGTCTG	CCGGGGCAGG	TGCTTCGGTT	TCTTCCCGAG	TCGGAGCGTG
151	CGGCGCGTTA	TCTTCCGCCG	CGTCCGCATT	CTCGCGCAGG	TTGTGGCTGT
201	AATCTTTGGG	CGGGCTGGGT	TGTTTGCCCG	CCATGATTTC	CAGTACCTGA
251	TCGCGGTCGA	TGGTTTCCCA	TTCCATCAGG	GCTTTGCACA	TCGTTTCCAT
301	CTTGTCGCGG	TTTTCATCGA	GGATTTTGTA	GGCAACCTGA	TACTGCTCGT
351	CCAAAATCCG	GCGGATTTCC	GCATCGATGT	CCTGCTGGGT	TTTCTCGGAA
401	ATGTTTTGCG	AACGGGTTAC	GCTGCGTCCC	AAGAAGACTT	CGCCTTCGTT
451			CCATTTTGTC		
501	CCATTTCGCG	CGCCATTTGG	GTTGCGCGTT	CAAAGTCGTT	TGA

This corresponds to the amino acid sequence <SEQ ID 1948; ORF 611.a>:

a611.pep				
1	MPSENRMGKR QLAGCRLFGK	LSLVFRLLLG	LCRSGVCRGR	CFGFFPSRSV
51	RRVIFRRVRI LAQVVAVIFG	RAGLFARHDF	QYLIAVDGFP	FHOGFAHRFH
101	LVAVFIEDFV GNLILLVONP	ADFRIDVLLG	FLGNVLRTGY	AASOEDFAFV
151	FRINHHAHFV AHAVARYHFA	RHLGCAFKVV	*	_
m611/a611	98.9% identity in	180 aa over]	Lap	
	10	20 30	40	50
m611.pep	MPSENGMGKRQLAGCRLF	GKLSLVFRLLLC	SLCRSGVCRGRO	CFGFFPSRSVRF

		1:11:11:11	1111111111	1 1 1 1 1 1 1		
a611	MPSENRMGKRQLAG	CRLFGKLSLV	FRLLLGLCRS	GVCRGRCFGE	FPSRSVRRVI	FRRVRI
	10	20	30	40	50	60
	70	80	90	100	110	120
m611.pep	LAQVVAVIFGRAGL	FARHDFQYLI	AVDGFPFHQG	FAHRFHLVAV	FIEDFVGNLI	LLVONP
	1111111111111	111111111	1111111111	111111111	1111111111	111111
a611	LAQVVAVIFGRAGL	FARHDFQYLI	AVDGFPFHQG	FAHRFHLVAV	FIEDFVGNLI	LLVONP
	70	80	90	100	110	120
	120	1.40				
	130	140	150	160	170	180
m611.pep	ADFRVDVLLGFLGN	VLRTGYAASQ	EDFAFVFRIN	HHAHFVAHAV	ARYHFARHLO	CAFKVV
		11111111	11111111	1111111111	1111111111	11111
a611	ADFRIDVLLGFLGN	VLRTGYAASQ	EDFAFVFRIN	HHAHFVAHAV	ARYHFARHLO	CAFKVV
	130	140	150	160	170	180
	•					100

m611.pep X

a611

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1949>:

- ATGGgcttcg gcggcaatat tgcAAAAAAG CTGGCcggGg taGATGAAAT AGCCTttgac tttgacggcA TCGTCTTTGA TTTCGGGCGT GATGATGCTG 51 101 TCCGGCataG CGGCGTAATC AATGCTGCTG TCGCCGGCCT GCATATAGTC
- 151 GGTGAAGTTT TCGCTGATAA AGCGGTAGAA AAGTGTGCCG AGAACGTATT
- 201 GTTTAAAGTC CCAGCCATCC ACCGCGCCGC GTACTTCGTC GGCGATTTTC
- 251 CAAATTTGGC GGTGCAGTTG GGCGCGTTGT TGCATTTCGG TCATCATCGA 301 AATCCATATA TAAAGTTAAA CAAATCAAAA TCGCCTGATA TTTTCAGACG
- 351 ATTTTTTAC GGGCATTCAA ATTAA

This corresponds to the amino acid sequence <SEQ ID 1950; ORF 612.ng>: g612.pep

- MGFGGNIAKK LAGVDEIAFD FDGIVFDFGR DDAVRHSGVI NAAVAGLHIV
- 51 GEVFADKAVE KCAENVLFKV PAIHRAAYFV GDFPNLAVQL GALLHFGHHR
- 101 NPYIKLNKSK SPDIFRRFFY GHSN*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1951>:

- ATGGGCTTCG GCGGCAATAT TGCAAAAAAG CTGGCCGGGG TAGATGAAAT 1 51
 - AGCCTTTAAC TTTGACGGCA TCGTCTTTGA TTTCGGGCGT GATGATGCTG 101 TCCGGCATAG CGGCGTAATC AATACTGCTG TCGCCTGCCT GCATATAGTC
 - GGTGAAGTTT TCGCTGATAA AGCGGTAGAA AAGTGTGCCG AGAACGTATT 151
 - 201 GTTTAAAGTC CCAGCCATCC ACCGCGCCGC GTACTTCGTC GGCAATTTTC
 - 251 CAAATTTGGC GGTGCAGTTG GGCGCGTTGT TGCATTTCGG TCATCATCGA 301 AATCCATATA .AAAGTTAAA CAAATCAAAA TCGCCTGATA TTTTCAGACG
 - 351 ATTTTTTAC GGGCATTCAA ATTAA

This corresponds to the amino acid sequence <SEQ ID 1952; ORF 612>: m612.pep

- MGFGGNIAKK LAGVDEIAFN FDGIVFDFGR DDAVRHSGVI NTAVACLHIV
- 51 GEVFADKAVE KCAENVLFKV PAIHRAAYFV GNFPNLAVQL GALLHFGHHR
- 101 NPYXKLNKSK SPDIFRRFFY GHSN*

m612/g612 96.0% identity in 124 aa overlap

	10	20	30	40	50	60
m612.pep	MGFGGNIAKKLAG	SVDEIAFNFDG:	.VFDFGRDDA	/RHSGVINTAV	ACLHIVGEVE	ADKAVE
		111111:111	!	1111111111111	1.11111111	111111
g612	MGFGGNIAKKLAG	VDEIAFDFDG1	VFDFGRDDAV	/RHSGVINAAV	AGLHIVGEVF	ADKAVE
	10	20	30	40	50	60

	70	80	90	100	110	120
m612.pep	KCAENVLFKVPAIH	RAAYFVGNFF	NLAVQLGALL	HFGHHRNPY	XKLNKSKSPDI	FRRFFY
	-		11111111		1111111111	111111
g612	KCAENVLFKVPAIH	<i>C</i> AAYFVGDFP	NLAVQLGALL	HFGHHRNPY	IKLNKSKSPDI	FRRFFY
	70	80	90	100	110	120

00

m612.pep GHSNX 11111 g612 GHSNX

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1953>:

a612.seq ATGGGCTTCG GCGGCAATAT TGCAAAAAAG CTGGCCGGGG TAGATGAAAT 1 AGCCTTTGAC TTTGACGGCA TCGTCTTTGA TTTCGGGCGT GATGATGCTG TCCGGCATAG CGGCGTAATC AATACTGCTG TCGCCTGCCT GCATATAGTC 101 151 GGTAAAGTTT TCGCTGATAA AGCGGTAGAA AAGTGTGCCG AGAACGTATT 201 GTTTGAAGTC CCAGCCATCC ACCGCGCCGC GTACTTCGTC GGCAATTTTC 251 CAAATTTGGC GGTGCAGTTG GGCGCGTTGT TGTATTTCGG TCATCATCGA 301 AATCCATAT. AAAAGTTAAA CAAATCAAAA TCGCCTGATA TTTTCAGACG

351 ATTTTTT.AC GGGCATTCAA ATTAA

```
This corresponds to the amino acid sequence <SEQ ID 1954; ORF 612.a>: a612.pep
```

1 MGFGGNIAKK LAGVDEIAFD FDGIVFDFGR DDAVRHSGV<u>I</u> NTAVACLHIV 51 <u>GKVFA</u>DKAVE KCAENVLFEV PAIHRAAYFV GNFPNLAVQL GALLYFGHHR 101 NPYXKLNKSK SPDIFRRFFX GHSN*

m612/a612 96.0% identity in 124 aa overlap

10 20 30 40 50 60

10 20 30 40 50 60

10 20 30 40 50 60

10 20 30 40 50 60

10 20 30 40 50 60

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1955>:

g613.seq
1 ATGTCGCGTT CGAGCCTGTC GAGGCGTTCG T

ATGTCGCGTT CGAGCCTGTC GAGGCGTTCG TTGAGGCGTT CCACGCCGTC GCGCAGTCTG CTTATTTCGT CGaggcagtc ggcaagggct tcgttgccgg 51 101 tgtttGcgGA CTCGGGTTCG CGGGAAAATC CGCCGATTTG TTCGGCGATG 151 TTCCTGCCGA TTTgtttGAt GCCGTGTCCG ATGTCGGTGG CACGgctgcc gatgcCTGCC TGCGTGCCGA AAATCCGTGC CAATTcgtCC GATGCGCGGG 201 251 AACGCAGGCT GCCGAGCAGG GACAGTACCG CGATGCCGAG GATGAGGTCG 301 CCTTCGAGCC TGATGTCGCC AGCCCCGGGT TCGCCGCCTT GGAGGATTTT CCGTATCGCG CTGTTGCGGA AGGTAATTTC GGTGTCTGCA AAGCCGTTTC 351 CCGCCGAGAG CAAACCGTCT TCTGTGATGC GTCCCGCCAG TTTCAGCCCG 401 GCAATGTTCA GGGTCAGTGT TTTGCCTGCA AAGGAGGTAA GTTCCGAGCG 451 501 GCTGTCCGGG CTTTGCAGAA TCAGGCGGTT GATGATGGGG AGGAGGGCGG 551 ACATATTTC TGATTGGGGC GGAGAATGCC TGTTGTTGCT GTTGCCGCTT 601 ATTTTACAGG CTTAA

This corresponds to the amino acid sequence <SEQ ID 1956; ORF 613.ng>:

g613.pep

- 1 MSRSSLSRRS LRRSTPSRSL LISSRQSARA SLPVFADSGS RENPPICSAM
 51 FLPICLMPCP MSVARLPMPA CVPKIRANSS DARERRLPSR DSTAMPRMRS
 101 PSSLMSPAPG SPPWRIFRIA LLRKVISVSA KPFPAESKPS SVMRPASFSP
 151 AMFRVSVLPA KEVSSERLSG LCRIRRLMMG RRADIFSDWG GECLLLLLPL
 201 ILOA*
- The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1957>:

m613.seq ATGTCGCGTT CGAGCCGGTC GAGGCGTTCG TTGAGGCGTT CCACGCCGTC 51 GCGCAGTCTG CTTATTTCGT CGAGGCAGTC GGCAAGGGCT TCGTTGCCGA TGTTTGCGGA CTCGGATTCG CGGGAAAATC CGCCGATTTG TTCGGCGATG 101 TTCCTGCCGA TTTGTTTGAT GCCGTGTCCG ATGTCGGCGG CACGGCTGCC 201 GATGTCTGCC TGCGTGCCGA AAATCCGTGC CAATTCGTCC GATGCGCGGG AACGCAGGCT GCCGAGCAGG GACAGTACCG CGATGCCGAG GATGAGGTCG 251 CCTTCGAGCC CGATGTCGCC CGCCCCGGGT TCGCCTCCTT GGAGGATTTT 301 CTGTACCGCG CTGTTGCGGA AGGTAATTTC GGTGTCTGCA AAGCCGTTTC 351 CCGCCGAGAG CAAACCGTCT TCCGTGATGC GTCCCGCCAG TTTCAGCCCG GCAATGTTCA GGGTCAGTGT TTTGCCTGCA AAGGCGGCAA GTTCCGAGCG 451 501 GCTGTCCGGG CTTTGCAGAA TCAGGCGGTT GATGATGGGG AGGAGGGCGG ACATATTTTC TGATCGGGGC GGAGAATGCC TGTTGTTGCT GTTGCCGCTT 551

601 ATTTTACAGG CTTAA

This corresponds to the amino acid sequence <SEQ ID 1958; ORF 613>:

1 MSRSSRSRRS LRRSTPSRSL LISSRQSARA SLPMFADSDS RENPPICSAM
51 FLPICLMPCP MSAARLPMSA CVPKIRANSS DARERRLPSR DSTAMPRMRS
101 PSSPMSPAPG SPPWRIFCTA LLRKVISVSA KPFPAESKPS SVMRPASFSP
151 AMFRVSVLPA KAASSERLSG LCRIRRLMMG RRADIFSDRG GECLLLLLPL
201 ILQA*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m613/g613 94.6% identity in 204 aa overlap

m613.pep	10 MSRSSRSRRSLRRS	20 STPSRSLLIS:	30 SRQSARASLPM	40 IFADSDSRENI	50 PPICSAMFLP	60 CLMPCP
g613	MSRSSLSRRSLRRS	STPSRSLLISS 20	SRQSARASLPV 30	 FADSGSRENI 40		CLMPCP 60
m613.pep	70 MSAARLPMSACVPK !!:!!!!! !!!!! MSVARLPMPACVPK 70	111111111	111111111	11111111	1111111111	111 2

	m613.pep	LLRKVIS	130 1 VSAKPFPAESK VSAKPFPAESK	PSSVMRPASI	11111111	1111:111	111111111111	1111
	5				L50	160	170	180
	m613.pep g613	RRADIFS RRADIFS	DRGGECLLLL DWGGECLLLLL	 PLILQAX				
			190 2	00				
The fo	allowing n	artial DNA s	equence wa	s identified	in N mar	ingitidis –	SEO ID 10	۲n>.
	a613.seq	artial DIAA's	equence was	s identified	i iii iv. mer	unguiais \	SEQ ID 19.	397.
	1	ATGTCGCGTT	CGAGCCGGTC	GAGGCGTTC	G TTGAGGG	GTT CCACG	CCGTC	
	51	GCGCAGTCTG	CTTATTTCGT	CGAGGCAGT	C GGCAAGO	GCT TCGTT	GCCGA	
	101	TGTTTGCGGA	CTCGGGTTCG	CGGGAAAAT	C TGCCGAT	TTG TTCGG	CGATG	
	151	TTCCTGCCGA	TTTGTTTGAT	GCCGTGTCC	G ATGTCG	CGG CACGG	CTGCC	
	201	GATGTCTGCC	TGCGTGCCGA	AAATCCGTG	C CAATTCO	STCC GATGC	GCGGG	
	251	AACGCAGGCT	GCCGAGCAGG	GACAGTACC	G CGATGCC	GAG GATGA	GGTCG	
	301 351	CCTTCGAGCC	CGATGTCGCC	CGCCCCGGG	TCGCCGC	CTT GGAGG	ATTTT	
	401	CCCCCCACAC	CTGTTGCGGA CAAACCGTCT	AGGTGATTI	C GGTGTCT	GCA AAGCC	GTTTC	
	451	GCAATGTTCA	GGGTCAGTGT	TUCGIGATG	C AACCCCC	CAG TITCA	ACCCG	
	501	GCTGTCCGGG	CTTTGCAGAA	TCAGGCGGT	סטטטטטאא ט.	GGG AGGAG	BAGCG	
	551	ACATATTTTC	TGATCGGGGC	GGAGAATGC	C TGTTGTT	GCT GTTGA	CGCTT	
	601	ATTTTACAGG						
		s to the amin	o acid seque	nce <seq< td=""><td>ID 1960;</td><td>ORF 613.a</td><td>>:</td><td></td></seq<>	ID 1960;	ORF 613.a	>:	
á	a613.pep							
	1	MSRSSRSRRS	LRRSTPSRSL	LISSRQSAR	A SLPMFAD	SGS RENLP	CSAM	
	51	FLPICLMPCP	MSAARLPMSA	CVPKIRANS	S DARERRI	PSR DSTAM	PRMRS	
	101 151	PSSPMSPAPG	SPPWRIFCTA	LLRKVISVS	A KPFPAES	KPS SVMRPA	ASFNP	
	201	AMFRVSVLPA ILOA*	KAASSERLSG	LCRIRRLMM	G RRADIFS	DRG GECLLI	LLTL	
		~~~.						
I	n613/a613	98.0% id	dentity in 2	204 aa ove	rlap			
	m613.pep	MCDCCDCD			30		EΛ	
	mors.pep	MOROOKSK		77 T T C C D C C T		40	50	60
ā	a613	1 1 1 1 1 1 1 1	11111111111	SLLISSRQSA	RASLPMFAD	SDSRENPPIC	SAMFLPICLM	IPCP
					RASLPMFAD	SDSRENPPIO	SAMFLPICLM	IPCP
	1015	MSRSSRSR		 SLLISSRQSA	RASLPMFAD          RASLPMFAD	SDSRENPPIC	CSAMFLPICLM	IPCP     IPCP
	2013	MSRSSRSR		 SLLISSRQSA	RASLPMFAD	SDSRENPPIO	SAMFLPICLM	IPCP
		MSRSSRSR			RASLPMFAD           RASLPMFAD 30	SDSRENPPIC            SGSRENLPIC 40	CSAMFLPICLM              CSAMFLPICLM   50   110	IPCP III IPCP 60
n	n613.pep	MSRSSRSR MSAARLPM	RRSLRRSTPSRS 10 2 70 8 ISACVPKIRANS	 SLLISSRQSA 20 30 SSDARERRLP	RASLPMFAD           RASLPMFAD 30 90 SRDSTAMPR	SDSRENPPIC	CSAMFLPICLM                       CSAMFLPICLM   50  110   CAPGSPPWRIF	IPCP III IPCP 60
	n613.pep	MSRSSRSR MSAARLPM			RASLPMFAD                     RASLPMFAD 30 90 SRDSTAMPR	SDSRENPPIC	CSAMFLPICLM	IPCP IPCP 60 120 CTA
		MSRSSRSR MSAARLPM		  SLLISSRQSA  20  30  SSDARERRLP 	RASLPMFAD                     RASLPMFAD 30 90 SRDSTAMPR                   SRDSTAMPR	SDSRENPPIC	CSAMFLPICLM CSAMFLPICLM 50 110 PAPGSPPWRIF	IPCP III 60 120 CTA III CTA
	n613.pep	MSRSSRSR MSAARLPM		  SLLISSRQSA  20  30  SSDARERRLP 	RASLPMFAD                     RASLPMFAD 30  90 SRDSTAMPR                   SRDSTAMPR	SDSRENPPIC	CSAMFLPICLM	IPCP IPCP 60 120 CTA
	n613.pep	MSRSSRSR MSAARLPM        MSAARLPM			RASLPMFAD           RASLPMFAD 30  90 SRDSTAMPR           SRDSTAMPR 90	SDSRENPPIC	CSAMFLPICLM	IPCP III IPCP 60 120 CTA III CTA 120
ē	n613.pep	MSRSSRSR  MSAARLPM                   MSAARLPM  1  LLRKVISV	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		RASLPMFAD           RASLPMFAD 30  90 SRDSTAMPR           SRDSTAMPR 90  50 SPAMFRVSV	SDSRENPPIC	CSAMFLPICLM	IPCP III IPCP 60 120 CTA III CTA 120 180
n	n613.pep a613 n613.pep	MSRSSRSR  MSAARLPM                  MSAARLPM  I  LLRKVISV		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	RASLPMFAD           RASLPMFAD 30  90 SRDSTAMPR           SRDSTAMPR 90  50 SPAMFRVSV :	SDSRENPPIC	CSAMFLPICLM	IPCP
n	n613.pep a613	MSRSSRSR  MSAARLPM  I!!!!!  MSAARLPM  1  LLRKVISV  I!!!!!!		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	RASLPMFAD           RASLPMFAD 30  90 SRDSTAMPR           SRDSTAMPR 90  50 SPAMFRVSV :	SDSRENPPIC	CSAMFLPICLM	IPCP
n	n613.pep a613 n613.pep	MSRSSRSR  MSAARLPM  I!!!!!  MSAARLPM  1  LLRKVISV  I!!!!!!		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	RASLPMFAD                     RASLPMFAD 30  90 SRDSTAMPR                   SRDSTAMPR 90  50 SPAMFRVSV :	SDSRENPPIC	CSAMFLPICLM	IPCP
n	n613.pep a613 n613.pep	MSRSSRSR  MSAARLPM                  MSAARLPM  1  LLRKVISV                LLRKVISV 1		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	RASLPMFAD                     RASLPMFAD 30  90 SRDSTAMPR                   SRDSTAMPR 90  50 SPAMFRVSV :	SDSRENPPIC	CSAMFLPICLM	IPCP
n e	n613.pep a613 n613.pep	MSRSSRSR  MSAARLPM                  MSAARLPM  1  LLRKVISV                LLRKVISV 1		SLLISSRQSA  O  SSDARERRLP  IIIIIIIIII  SSDARERRLP  O  O  O  O  O  O  O  O  O  O  O  O  O	RASLPMFAD                     RASLPMFAD 30  90 SRDSTAMPR                   SRDSTAMPR 90  50 SPAMFRVSV :	SDSRENPPIC	CSAMFLPICLM	IPCP
n e	n613.pep a613 n613.pep	MSRSSRSR  MSAARLPM         MSAARLPM  1 LLRKVISV         LLRKVISV 1		SLLISSRQSA  O  SSDARERRLP  IIIIIIIIII SSDARERRLP  O  O  O  O  O  O  O  O  O  O  O  O  O	RASLPMFAD                     RASLPMFAD 30  90 SRDSTAMPR                   SRDSTAMPR 90  50 SPAMFRVSV :	SDSRENPPIC	CSAMFLPICLM	IPCP
n e	n613.pep a613 n613.pep	MSRSSRSR  MSAARLPM          MSAARLPM  1 LLRKVISV          LLRKVISV 1 1 RRADIFSD		SLLISSRQSA  30  SSDARERRLP  SSDARERRLP  SSDARERRLP  SSDARERRLP  10  PSSVMRPASF  11        PSSVMRPASF  10  10  10  PSSVMRPASF  10  10  PLILQAX  1	RASLPMFAD                     RASLPMFAD 30  90 SRDSTAMPR                   SRDSTAMPR 90  50 SPAMFRVSV :	SDSRENPPIC	CSAMFLPICLM	IPCP

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1961>:

BNSDOCID: <WO___9957280A2_I_>



```
TAAAACACTG CTCGACAAAA ACGTCCGCGT AAAAGTAACG CCGGAAGAAA
     AACCGAGCGC GCTGGCTGCC CTGTTTTACA GCCTGCTGCC CGTCCTGCTG
     CTGATTGGCG CATGGTTCTA CTTCATGCGT ATGCAGACGG GCGGCGGCGG
 301
 351
     AAAAGGCGGC GCATTCTCAT TCGGTAAAAG CCGCGCCCGC CTGCTGGACA
 401
     AAGATGCCAA CAAAGTGACC TTTGCCGATG TCGCCGGCTG CGACGAAGCC
 451 AAAGAAGAAG TACAGGAAAT CGTCGATTAC CTCAAAGCGC CGAACCGCTA
 501 TCAAAGCCTG GGCGGGCGCG TGCCGCGCGG CATCCTGCTG GCGGGCAGCC
     CGGGTACGGG TAAGACGCTT TTGGCGAAAG CGATTGCAGG CGAAGCCGGC
 551
     GTGCCGTTCT TCAGCATTTC AGGTTCCGAC TTTGTCGAAA TGTTCGTCGG
 601
     TGTCGGTGCG AGCCGCGTCC GCGATATGTT CGAGCAGGCG AAGAAAAACG
 651
     CCCCCTGCAT CATCTTTATC GACGAGATTG ACGCAGTCGG CCGCCAACGC
 701
     GGCGCAGGTT TGGGCGGCGG CAATGATGAG CGCGAGCAAA CATTAAACCA
 751
     ATTGTTGGTT GAAATGGACG GTTTTGAGAG CAATCAGACT GTAATTGTGA
 801
 851
     TTGCGGCAAC CAACCGCCCC GACGTACTCG ATCCTGCGCT GCAACGCCCC
     GGCCGTTTCG ACCGCCAAGT GGTTGTCCCC CTGCCGGACA TCCGAGGGCG
 901
 951
     CGAACAGATT TTGAACGTCC ATTCTAAAAA AGTGCCTTTG GACGAATCTG
     TGGATTTATT GTCCCTCGCG CGCGGCACGC CGGGTTTTTC CGGCGCGGAT
     TTGGCGAACT TGGTCAACGA AGCCGCCCTG TTTGCCGGCC GCCGCAATAA
1051
1101
     AGTCAAAGTC GATCAGAGCG ATTTGAAGAC GCCAAAGACA AAATCTATAT
     GGGTCCGGAA CGCCGCAGTA TGGTGA
```

This corresponds to the amino acid sequence <SEQ ID 1964; ORF 614>:

m614.pep					
1	MAAFNALDGK	KEDNGQIEYS	QFIQQVNNGE	VSGVNIEGSV	VSGYLIKGER
51	TDKSTFFTNA	PLDDNLIKTL	LDKNVRVKVT	PEEKPSALAA	LFYSLLPVLL
101	<u>LIG</u> AWFYFMR	MQTGGGGKGG	AFSFGKSRAR	LLDKDANKVT	FADVAGCDEA
151	KEEVQEIVDY	LKAPNRYQSL	GGRVPRGILL	AGSPGTGKTL	LAKAIAGEAG
201	VPFFSISGSD	FVEMFVGVGA	SRVRDMFEQA	KKNAPCIIFI	DEIDAVGRQR
251	GAGLGGGNDE	REQTLNQLLV	EMDGFESNQT	VIVIAATNRP	DVLDPALQRP
301	GRFDRQVVVP	LPDIRGREQI	LNVHSKKVPL	DESVDLLSLA	RGTPGFSGAD
351	LANLVNEAAL	FAGRRNKVKV	DQSDLKTPKT	KSIWVRNAAV	₩*

## Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m614/g614 98.0% identity in 391 aa overlap

m614.pep	10 MAAFNALDGKKED	20 NGQIEYSQFI 	30 QQVNNGEVSGV	40 /NIEGSVVSG\	50 LIKGERTDKS	60 STFFTNA
g614	MAAFNALDGKKED 10	NGQIEYSQFII 20	RQVNNGEVSGV 30	NIEGSVVSGY 40	LIKGERTDKS 50	STFFTNA 60
m614.pep	70 PLDDNLIKTLLDK	80 NVRVKVTPEEI 	90 XPSALAALFYS	100 SLLPVLLLIGA	110 AWFYFMRMQTO	120 GGGGKGG
g614	PLDDNLIQTLLNK	NVRVKVTPEEI 80	KPSALTALFYS 90	SLLPVLLLIGA 100	WFYFMRMQAG	GGGKGG 120
m614.pep	130 AFSFGKSRARLLD	140 KDANKVTFADV	150 /AGCDEAKEEV	160 /QEIVDYLKAF	170 PNRYQSLGGRV	180 PRGILL
g614		KDANKVTFADV 140	/AGCDEAKEEV 150	QEIVDYLKAF 160	PNRYQSLGGRV 170	PRGILL 180
m614.pep	190 AGSPGTGKTLLAKA	200 AIAGEAGVPFI	210 FSISGSDFVEM	220 IFVGVGASRVR	230 DMFEQAKKNA	240 APCIIFI
g614		11111111111111111111111111111111111111	FSISGSDFVEM 210	  FVGVGASRVR   220		PCIIFI 240
m614.pep	250 DEIDAVGRQRGAGI           DEIDAVGRQRGAGI 250			 FESNQTVIVI		PALORP
m614.pep	310 GRFDRQVVVPLPD	320	270 330	280 340	290 350	360
g614		[1] [1] [1] [1] [1]	111111111	1111111111	111111111111111111111111111111111111111	1111 1
m614.pep	370  FAGRRNKVKVDQSI               FAGRRNKVKVDQSI  370		11111111			

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1965>: a614.seq

ora.sed					
1	ATGGCTGCGT	TCAACGCTTT	AGACGGTAAA	AAAGAAGACA	ACGGGCAAAT
51	CGAATATTCT	CAGTTCATCC	AACAGGTCAA	CAACGGCGAA	GTATCCGGCG
101	TCAACATCGA	AGGATCCGTC	GTCAGCGGCT	ACCTGATTAA	GGGCGAGCGC
151	ACCGACAAAA	GCACCTTCTT	CACCAACGCG	CCTTTGGACG	ACAACCTGAT
201	TAAAACACTG	CTCGACAAAA	ACGTCCGTGT	AAAAGTAACG	CCGGAAGAAA
251			CTCTTTTTACA		



	310	320	330	340	350	360
	370	380	390			
m614.pep	FAGRRNKVKVDQSI	DLKTPKTKSI	WVRNAAVWX			
			11111111			
a614	FAGRRNKVKVDQSI	OLKTPKTKSI	WVRNAAVWX			
	370	380	390			

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1967>:

```
g615.seq
         ATGTGGAAAC GGCGGCGCG CGGTGtcggC AGCTTtgaag agcagcGaAT
         agatgCCGCC GGCAAACCAC AATGCGGAAa gcaggCtgaa gcGGTTgcgC
      51
         GGCagcTTca tGCCGCCTCC TcGTCCaGCC ACGtttGgca gattttggac
     101
         aggcgcAGga ATTTGCcgCc gcgtgcggCA agtatgtcgc gcCAttgtgc
    151
         cacttcttcg gcggacggTG cttcgtcgaT gctgCATTCG TACagcagga
    251 aatcgagggt ttcttcgatg acggGgatgg AttccgTTTG GataAgCTgc
         ttgagttcgt tcatgactGt TCgGATAcgg aaatcgggaa aatgccgtct
    301
         gAaagggctt CAGACGGCat tggATTATTT GCTGTGCAGG AAgcgcgttg
    401
         cctcttccca tttgcCGGAA AtgATGTCGg gtacggcctg cAGGGATttg
    451 gCGACGGcat cgtcgatttg ccgGcggtgc ttCcgcgctc ggtttGTTca
         agacgtagcc gaCGACGagg ttgcggtcGC CGGGGtggcC GATGCCGAGG
    551
         CGCAGGCGGt aatagtctgC CGTGCCGAGT TTTGCctgAA TGTCTTTCAA
         GCCGTTGTGT CcgcCGttgc cgcCGCCGAG TTTGAATTTG ATCCGTCCGC
    601
         AAGGGATGTC GAGTTCGTCG TGGACGACGA GGATTTCTTC GGGTTTGATT
    651
         TTGTAGAACT GTGCAAGCGC GGCAACCGCC TGTCCGGAAC GGTTCATGAA
    701
         CGTGGCCGGT TTGAGCAGCC AAACATCGCC GTCGGGCAGG GCGCGCGGG
    751
    801
         CAACTTCGCC GAAGAATTTT TTTTCTTCTT TAAACGAAGC CTTCCATTTC
    851
         CACGCCAGTT CGTCGAGGAA CCAAAAGCCC GCATTGTGGC GGGTCTGTTC
         GTATTCTTTG CCCGGGTTGC CCAAGCCGAC AACCATTTTG ATTGTGttcg
         acatgataTT TtccgtgTTT CTgTCGaatg cggtCtgaAG GCTTCAGacg
    951
         gcatggTtaT TCTTCTTgaT TTtgaACgcg tgtgcggCGC GCTTCTTTGG
   1051
         GGTCGATCAA CAGCGGGCGG TACACTTCGA TGCGGTCGCC GTCGCGCAGC
   1101 GGCGTGTCGT CTTTGA
```

### This corresponds to the amino acid sequence <SEQ ID 1968; ORF 615.ng>:

```
9615.pep

1 MWKRRRGVG SFEEQRIDAA GKPQCGKQAE AVARQLHAAS SSSHVWQILD
51 RRRNLPPRAA SMSRHCATSS ADGASSMLHS YSRKSRVSSM TGMDSVWISC
101 LSSFMTVRIR KSGKCRLKGL QTALDYLLCR KRVASSHLPE MMSGTACRDL
151 ATASSICRRC FRARFVQDVA DDEVAVAGVA DAEAQAVIVC RAEFCLNVFQ
201 AVVSAVAAAE FEFDPSARDV EFVVDDEDFF GFDFVELCKR GNRLSGTVHE
251 RGRFEQPNIA VGQGGAGNFA EEFFFFFKRS LPFPRQFVEE PKARIVAGLF
301 VFFARVAQAD NHFDCVRHDI FRVSVECGLK ASDGMVILLD FERVCGALLW
351 GRSTAGGTLR CGRRRAAACR L*
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1969>:

```
m615.seq Length: 1116
         ATGCGGAAAA GGCGGTGGCG CGGTTTCGGC AGCTTTGAAA AGCAGTGAGT
         AAATGCTGCC TGCAAACCAC AATGCCGAGA GCAGGATAAA GCGGTTGCGT
    101 GGCAGATTCA TGCTTGTTCC TCTTCAAGCC ATGTCTGGCA TAGTTTGGAT
    151 AGGCGCAGGA ATTTTCCGCC GCGTGCGGCC AGCATATCGC GCCAAACGGC
         AATTTCTTCG GCGGAGGGGG CATCGTCTAT GCTGCATTCG TAGAGCAGGA
    251 AATCGAGGT TTCTTCGATG ACGGGGATGG ATTCGGTTTG GATAAGCTGC
    301 TTGAGTTCGG TCATGACTGT TCGGATATGG AAATCGGGAA CATGCCGTCT
    351 GAAAGGGCTT CAGACGGCAT CGGGTCATTT GCTGTGCAGG AAGCGGGTTG
    401 CTTCTTCCCA TTTGCCGGCA AGGATGTCGG GTATGGCTTG CAGGGATTTG
     451
         GCGACGGCAT CGTCAATCTG TCGGCGGTGT .TCCGTACTG GGTTTGTTCA
         GGACATAGCC GACGACGAGG TTGCGGTCGC CCGGGTGGCC GATGCCGAGG
    501
    551 CGCAGGCGGT AATAGTCTGC CGTGCCGAGT TTTGCCTGAA TGTCTTTCAA
    601 GCCGTTGTGT CCGCCGTTGC CGCCGCCGAG TTTGAATTTG ATCCGTCCGC
    651 AGGGAATGTC GAGTTCGTCG TGGACGACGA GGATTTCTTC GGGTTTGATT
    701
         TTGTAGAACT GTGCAAGCGC GGCAACTGCC TGTCCGGAAC GGTTCATGAA
         CGTGGCAGGT TTGAGCAGCC AAACGTCGCC GTCGGGCAGG GCGCACGGG
```



WO 99/57280

801 851 901	CGACTTCGCC CACGCCAGTT GTATTCTTTG	CGTCGAGGAA	CCAAAAACCC	GCATTGTGGC	GTGTCTGTTC
1001	ACATGATATT GCATGGTTAT GGTCGATCAA	TCTTCTTGAT	TTTGAACGCG	TTTGCGGCGC	CCMACAMACC
1101	GGCGTGTCGT	CTTTTCA	INCACTICGA	TGCGGTCGCC	GTCGCGCAGC

### This corresponds to the amino acid sequence <SEQ ID 1970; ORF 615>:

.pep	Length: 372			•	
1	MRKRRWRGFG SF	EKQXVNAA	CKPQCREODK	AVAWOTHACS	SSSHVWHSID
51	RRRNFPPRAA SIS	SRQTAISS	AEGASSMLHS	XSRKSRVSSM	TEMPSUMTEC
101	LSSVMTVRIW KSC	GTCRLKGL	OTASGHLLCR	KRVASSHLPA	RMSCMACRDT
121	ATASSICRRC XR	rgfvQDIA	DDEVAVARVA	DAFACAVIVC	PAFECIANCEO
201	AVVSAVAAAE FEE	DPSAGNV	EFVVDDEDFF	GEDEVELCKE	CNCISCTURE
251	RGREEQPNVA VGC	QGGTGDFA	EEFFFFFKXS	LPFPROFVER	PETPTUACTE
301	VFFARVAQAD NHE	FDCVXHDI	FRVSVECCLK	ASDGMVTT.LD	FERUCGALIW
351	GRSTAGGTLR CGR	RRAAACR	L*		LDIVACGUDEM

# Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

### m615/g615 86.8% identity in 371 aa overlap

m615.pep	10	20	30	40	50	60
mors.pep	MRKRRWRGFGSFE	VOXVNAACKE	'QCREQDKAVA	VQIHACSSSS	HVWHSLDRRR	NFPPRAA
g615	:	::      	:  :	1:11	HI: 11111	1:1111
3.20	MWKRRRRGVGSFEE	20	QCGKQAEAVAR 30	ROLHAASSSS		
	10	20	30	40	50	60
	70	80	90	100	110	
m615.pep	SISRQTAISSAEGA		KSRVSSMTGMD	100	110	120
	1:11: [ 111:11	111111 11	111111111		11111 111	
<b>g61</b> 5	SMSRHCATSSADGA	SSMLHSYSR	KSRVSSMTGMD	SVWISCLSS	TITIT TIT	CDIVCI
	70	80	90	100	110	120
						120
615	130	140	150	160	170	180
m615.pep	QTASGHLLCRKRVA	SSHLPARMS	GMACRDLATAS	SICRRCXRT	GFVQDIADDEV	AVARVA
~C1E			1   1   1   1   1   1   1	11111 1.		111
g615	QTALDYLLCRKRVA	SSHLPEMMS	GTACRDLATAS:	SICRRCFRAI	REVODVADDEV	AVAGVA
	130	140	150	160	170	180
	190	200				
m615.pep		200	210	220	230	240
	DAEAQAVIVCRAEF	CLIVITOAVV	SAVAAAEFEFD	PSAGNVEFV	/DDEDFFGFDF	VELCKR
g615	DAEAOAVIVCRAFFO	```\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		!     <b>:  </b>		11111
-	DAEAQAVIVCRAEFO	200	210			
		200	210	220	230	240
	250	260	270	280	200	
m615.pep	GNCLSGTVHERGRF	OPNVAVGOG	GTGDFAEEFF	FFKYSI DED	290	300
			1:1:11111			
g615	GNRLSGTVHERGRFE	QPNIAVGQG	GAGNFAEEFFE	FFKRSLPFP	ים משמת החוווון ים משמת החוווון	
	250	260	270	280	290	300
					250	300
m 61 5	310	320	330	340	350	360
m615.pep	VFFARVAQADNHFDC	VXHDIFRVS	VECCLKASDGM	VILLDFERV	CGALLWGRST	COULD
g615			111 111111	11111111	111111111	
9013	VFFARVAQADNHFDC	VKHDIFKVS	VECGLKASDGM	VILLDFERV	CGALLWGRSTA	GTLR
	310	320	330	340	350	360
	370					-
m615.pep	CGRRRAAACRLX					
g615	CGRRRAAACRLX					
	370					

a615.pep



```
a615.seq
         ATGCGGAAAC GGCGGCGCG CGGTGTCGGC AGCTTTGAAG AGCAGCGAAT
         AGATGCCGCC GGCAAACCAC AATGCGGAAA GCAGGCTGAA GCGGTTGCGC
      51
     101
         GGCAGCTTCA TGCCGCCTCC TCGTCCAGCC ACGTTTGGCA GATTTTGGAC
     151
         AGGCGCAGGA ATTTGCCGCC GCGTGCGGCA AGTATGTCGC GCCATTGTGC
         CACTTCTTCG GCGGATGGTG CGTCGTCGAT GCTGCATTCG TACAGCAGGA
     201
     251
         AATCGAGGGT TTCTTCGATG ACGGGGATGG ATTCGGTTTG GATAAGCTGC
         TTGAGTTCGG TCATGACTGT TCGGATATGG AAATCGGGAA CATGCCGTCT
     301
         GAAAGGGCTT CAGACGGCAT CGGGTCATTT GCTGTGCAGG AAGCGGGTTG
     401
         CCTCTTCACA TTTGCCGGCA AGGATGTCGG GTATGGCTTG CAGGGATTTG
         GCGACGGCAT CGTCAATCTG TCGGCGGTG. TTCCGTACTG GGTTTGTTCA
     451
         GGACATAGCC GACGACGAGG TTGCGGTCGC CCGGGTGGCC GATGCCGAGG
     501
         CGCAGGCGGT AATAGTCTGC CGTGCCGAGT TTTGCCTGAA TGTCTTTCAA
    551
         GCCGTTGTGT CCACCGTTGC CGCCGCCGAG TTTGAATTTG ATCCGTCCGC
     601
         AGGGAATGTC GAGTTCGTCG TGGACGACGA GGATTTCTTC GGGTTTGATT
     651
         TTATAAAACT GCGCAAGGGC GGCAACTGCC TGTCCGGAAC GGTTCATGAA
    701
         CGTGGTCGGC TTGAGCAGCC AGACATCGCC GTCGGGCAGG GTAGCACGGG
    751
         CGACTTCGCC GAAGAATTTT TTTTCTTCTT TAAATGAAGC CTTCCATTTC
    801
         CACGCCAGTT CGTCGAGGAA CCAAAAACCC GCATTGTGGC GTGTCTGTTC
    851
         GTATTCTTTG CCCGGGTTGC CCAAGCCGAC AACCATTTTG ATTGTGTTTG
    901
    951
         ACATGATATT TTCCGTGTTT CTGCCGAATG CCGTCTGAAG GCTTCAGACG
   1001
         GCATGGTTAT TCTTCTTGAT TTTGAACGCG TTTGCGGCGC GCTTCTTTGG
         GGTCGATCAA CAGCGGGCGG TACACTTCGA TGCGGTCGCC GTCGCGCAGC
   1051
   1101
         GGCGTGTCGT CTTTGA
```

### This corresponds to the amino acid sequence <SEQ ID 1972; ORF 615.a>:

1	MRKRRRRGVG	SFEEQRIDAA	GKPQCGKQAE	AVARQLHAAS	SSSHVWQILD
51	RRRNLPPRAA	SMSRHCATSS	ADGASSMLHS	YSRKSRVSSM	TGMDSVWISC
101	LSSVMTVRIW	KSGTCRLKGL	QTASGHLLCR	KRVASSHLPA	RMSGMACRDL
151	ATASSICRRX	FRTGFVQDIA	<b>DDEVAVARVA</b>	DAEAQAVIVC	RAEFCLNVFQ
201	<u>AVV</u> STVAAAE				
251	RGRLEQPDIA	VGQGSTGDFA	EEFFFFFK*S	LPFPRQFVEE	PKTRIVACLF
301	VFFARVAQAD	NHFDCV*HDI	FRVSAECRLK	ASDGMVILLD	FERVCGALLW
351		CGRRRAAACR			
m61E/a61E	00 20 4		271		

m615/a615	00 36	: don+:+	:- 271		
m615/a615	90.3%	identity	in 3/1	aa	overlan

190

250

m615.pep	10 MRKRRWRGFGSFEKQX               MRKRRRRGVGSFEEQR 10	::        :	1:111:1:	11 1111111	: 111111:11	111
m615.pep	70 SISRQTAISSAEGASSI		90 /SSMTGMDSV	100 WISCLSSVMTV		120 KGL
<b>a61</b> 5	SMSRHCATSSADGASSI 70	MLHSYSRKSRV 80	SSMTGMDSVI 90	WISCLSSVMTV		
m615.pep	130 QTASGHLLCRKRVASSI                   QTASGHLLCRKRVASSI 130		1111111111		DIADDEVAVA 	H
m615.pep	190 DAEAQAVIVCRAEFCLI            DAEAQAVIVCRAEFCLI	[	11111111	220 AGNVEFVVDDE	230 DFFGFDFVEL	240 CKR

200

260

210

270

220

280

230

290

240

300

BNSDOCID: <WO___9957280A2_l_>



```
{\tt GNCLSGTVHERGRFEQPNVAVGQGGTGDFAEEFFFFKXSLPFPRQFVEEPKTRIVACLF}
m615.pep
           a 615
          GNCLSGTVHERGRLEQPDIAVGQGSTGDFAEEFFFFFKXSLPFPRQFVEEPKTRIVACLF
                250
                                270
                                        280
                310
                        320
                                330
                                        340
          VFFARVAQADNHFDCVXHDIFRVSVECCLKASDGMVILLDFERVCGALLWGRSTAGGTLR
m615.pep
          VFFARVAQADNHFDCVXHDIFRVSAECRLKASDGMVILLDFERVCGALLWGRSTAGGTLR
a615
                310
                        320
                                330
                                       340
                                               350
                370
m615.pep
          CGRRRAAACRLX
          111111111111
a615
          CGRRRAAACRLX
                370
```

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1973>:

```
atgtcgaaCA CAATCAAAAT GGTTGTCGGC TTGGGCAACC CGGGCAAAGA
       ATACGAACAG ACCCGCCACA ATGCGGGCTT TTGGTTCCTC GACGAACTGG
   51
       CGTGGAAATG GAAGGCTTCG TTTAAAGAAG AAAAAAAATT CTTCGGCGAA
 101
       GTTGCCCGCG CCGCCCTGCC CGACGGCGAT GTTTGGCTGC TCAAACCGGC
 151
       CACGTTCATG AACCGTTCCG GACAGGCGGT TGCCGCGCTT GCACAGTTCT
 251
       ACAAAATCAA ACCCGAAGAA ATCCTCGTCG TCCACGACGA ACTCGACATC
       CCTTGCGGAC GGATCAAATT CAAACTCGGC GGCGGCAACG GCGGACACAA
 301
       CGGCTTGAAA GACATTcagG CAAAACTCGG CACGGcagac tattaCCGCC
 351
      TGCGCCTCGG CATCGgccaC CCCGGCgacc gcaacctCGT CGtcggctac
 401
 451
      gtcttgAACa aaccgagcgc gGaagcaccg Ccggcaaatc gacgatgCCG
      TCGccaaATC CCTgcaggcc gtaccCGACA TcaTTTCCGg caaatgggaa
 501
      gaggcaacgc gcTTCCTGCA CAGCAAATAA TccaatGCCG TCTGaagccc
 551
      ttTcagacgg cattttcccg atttccgTAT CcGAaCagtc atgaacgaac
 601
      tcaagcAGcT tatCCAAAcg gaaTccatcC ccgtcatcga agaaaccctc gatttcctgc tGTACGAATG cagcAtcgac gaagCAccgt ccgccgaaga agtggcacaa TGgcgcgaca tactTGccgc acgcgGcgGC AAATtcCTgc
 651
 701
 751
      gcctgtccaa aatctgcCaa aCGTGGCtGG ACGAGGAGGC GGCatgAAgc
 801
      tGCCGegcAA CCgcttcaGc ctgetTTCCG CATTGTGGTT TGCCGGCGGC
 851
 901
      atctATtCgc tgctcttcaA AGCTGccgaC ACCGCGCCGC CGCCGTTTCC
      ACATTLEGAC AAAGCAGCAC ACCTTGCCCT GTTTTTCGCA CAAatCTTgt
 951
      TTCCCATCCC CTACCGCAGC
1001
      CTGATTGCGT TCGCCTTCTG TTTTGCCGTC GGCAGCGAAT GCGCGCAGGC
1051
      ATGGTTTACC GCAACGCGAA CCGGCAGTTT GGGCGATGTC CTTGCCGACC
      TGACGGGCGC AGCCCTTGCC CTCTTTGCCG CGCGTTCTGC CTGCCGcccg
1151
1201
      gactaa
```

## This corresponds to the amino acid sequence <SEQ ID 1974; ORF 616.ng>:

```
1 MSNTIKMVVG LGNPGKEYEQ TRHNAGFWFL DELAWKWKAS FKEEKKFFGE
51 VARAALPDGD VWLLKPATFM NRSGQAVAAL AQFYKIKPEE ILVVHDELDI
101 PCGRIKFKLG GGNGGHNGLK DIQAKLGTAD YYRLRLGIGH PGDRNLVVGY
151 VLNKPSAEAP PANRCRRQI PAGRTRHHFR QMGRGNALPA QQIIQCRLKP
152 SGTMARHTCR TRRQIPAPVQ NLPNVAGRGG GMKLPRNRFS LLSALWFAGG
153 LIAFAFCFAV GSECAQAWFT ATRTGSLGDV LADLTGAALA LFAARSACRP
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1975>:

```
ATGTCAAACA CAATCAAAAT GGTTGTCGGC TTGGGCAACC CGGGCAAAGA
    ATACGAACAG ACACGCCACA ATGCGGGTTT TTGGTTCCTC GACGAACTGG
    CGTGGAAATG GAAGGCTTCA TTTAAAGAAG AAAAAAAATT CTTCGGCGAA
101
    GTCGCCCGTG CCGCCCTGCC CGACGGCGAC GTTTGGCTGC TCAAACCTGC
    CACGTTCATG AACCGTTCCG GACAGGCAGT TGCCGCGCTT GCACAGTTCT
201
251
    ACAAAATCAA ACCCGAAGAA ATCCTCGTCG TCCACGACGA ACTCGACATT
    CCCTGCGGAC GGATCAAATT CAAACTCGGC GGCGGCAACG GCGGACACAA
351
     CGGCTTGAAA GACATTCAGG CAAAACTCGG CACGGCAGAC TATTACCGCC
    TGCGCCTCGG CATCGGCCAC CCGGGCGACC GCAACCTCGT CGTCGGCTAT
401
    GTCCTGAACA AACCCAGTAC GGAACA.CCG CCGACAGATT GACGATGCCG
451
    TCGCCAAATC CCTGCAAGCC ATACCCGACA TCCTTGCCGG CAAATGGGAA
501
```

No MANAGE OF THE STATE OF THE

989

```
GAAGCAACCC GCTTCCTGCA CAGCAAATGA CCCGATGCCG TCTGAAGCCC
     601
         TTTCAGACGG CATGTTCCCG ATTTCCATAT CCGAACAGTC ATGACCGAAC
         TCAAGCAGCT TATCCAAACC GAATCCATCC CCGTCATCGA AGAAACCCTC
     651
     701
         GATTTCCTGC TCTACGAATG CAGCATAGAC GATGCCCCCT CCGCCGAAGA
     751
         AATTGCCGTT TGGCGCGATA TGCTGGCCGC ACGCGGCGGA AAATTCCTGC
         GCCTATCCAA ACTATGCCAG ACATGGCTTG AAGAGGAACA AGCATGAATC
     801
         TGCCACGCAA CCGCTTTATC CTGCTCTCGG CATTGTGGTT TGCAGGCAGC
     851
         ATTTACTCAC TGCTTTTCAA AGCTGCCGAA ACCGCGCCAC CGCCTTTTCC
     901
     951
         GCATTTTGAC AAAGTGGCGC ACCTCGCCCT GTTTTTCGCA CAAATCTGGC
    1001
         TTCTGACCAA AGCATTCAGA ACCGACAACC GCCCCATCCC CTATCGCAGC
    1051
         CTGATGGTCT TTGCCCTCTG TTTCGCCCTC TTCAGCGAAT GCGCGCAGGC
         ATGGTTTACC GCAACGAGAA CCGGCAGTTT GGGCGATGTC CTTGCCGACC
    1101
    1151
         TGACGGCCGC AGCCCTTGCC CTCTTTACCG CGCGAGCTGC CTGCCGCCCG
    1201
         GACTAA
This corresponds to the amino acid sequence <SEQ ID 1976; ORF 616>:
m616.pep
         MSNTIKMVVG LGNPGKEYEQ TRHNAGFWFL DELAWKWKAS FKEEKKFFGE
      1
         VARAALPDGD VWLLKPATFM NRSGQAVAAL AQFYKIKPEE ILVVHDELDI
     51
    101
         PCGRIKFKLG GGNGGHNGLK DIQAKLGTAD YYRLRLGIGH PGDRNLVVGY
         VLNKPSTEXP PTDXRCRRQI PASHTRHPCR QMGRSNPLPA QQMTRCRLKP
         FQTACSRFPY PNSHDRTQAA YPNRIHPRHR RNPRFPALRM QHRRCPLRRR
    201
         NCRLARYAGR TRRKIPAPIQ TMPDMAXRGT SMNLPRNRFI LLSALWFAGS
    251
         IYSLLFKAAE TAPPPFPHFD KVAHLALFFA QIWLLTKAFR TDNRPIPYRS
    351
         LMVFALCFAL FSECAQAWFT ATRTGSLGDV LADLTGAALA LFTARAACRP
    401
m616/g616 86.0% identity in 401 aa overlap
                   10
                            20
                                     30
                                              40
                                                       50
m616.pep
           MSNTIKMVVGLGNPGKEYEQTRHNAGFWFLDELAWKWKASFKEEKKFFGEVARAALPDGD
            {\tt MSNTIKMVVGLGNPGKEYEQTRHNAGFWFLDELAWKWKASFKEEKKFFGEVARAALPDGD}
g616
                                     30
                                              40
                                                       50
                   70
                            80
                                     90
                                             100
                                                      110
                                                               120
           VWLLKPATFMNRSGQAVAALAQFYKIKPEEILVVHDELDIPCGRIKFKLGGGNGGHNGLK
m616.pep
            a616
            VWLLKPATFMNRSGQAVAALAQFYKIKPEEILVVHDELDIPCGRIKFKLGGGNGGHNGLK
                   70
                            80
                                     90
                                             100
                                                      110
                                    150
                                             160
                                                      170
           {\tt DIQAKLGTADYYRLRLGIGHPGDRNLVVGYVLNKPSTEXPPTDXRCRRQIPASHTRHPCR}
m616.pep
            q616
           DIQAKLGTADYYRLRLGIGHPGDRNLVVGYVLNKPSAEAPPANRRCRRQIPAGRTRHHFR
                           140
                                    150
                                             160
                                                      170
                  190
                           200
                                    210
                                             220
                                                      230
                                                               240
           QMGRSNPLPAQQMTRCRLKPFQTACSRFPYPNSHDRTQAAYPNRIHPRHRRNPRFPALRM
m616.pep
            QMGRGNALPAQQIIQCRLKPFQTAFSRFPYPNSHERTQAAYPNGIHPRHRRNPRFPAVRM
q616
                  190
                           200
                                    210
                                             220
                                                      230
                                             280
                                                      290
m616.pep
           QHRRCPLRRRNCRLARYAGRTRRKIPAPIQTMPDMAXRGTSMNLPRNRFILLSALWFAGS
                 \mathbf{1}\mathbf{1}\mathbf{1}\mathbf{1}
q616
           QHRRSTVRRRSGTMARHTCRTRRQIPAPVQNLPNVAGRGGGMKLPRNRFSLLSALWFAGG
                  250
                           260
                                    270
                                             280
                                                      290
                  310
                           320
                                    330
                                             340
                                                      350
                                                               360
           IYSLLFKAAETAPPPFPHFDKVAHLALFFAQIWLLTKAFRTDNRPIPYRSLMVFALCFAL
m616.pep
           q616
           IYSLLFKAADTAPPPFPHFDKAAHLALFFAQILFLAKAFKTGKLPIPYRSLIAFAFCFAV
                                    330
                                             340
                                                      350
                  370
                           380
                                    390
                                             400
m616.pep
           FSECAQAWFTATRTGSLGDVLADLTGAALALFTARAACRPDX
            g616
           GSECAQAWFTATRTGSLGDVLADLTGAALALFAARSACRPDX
                  370
                           380
                                    390
                                             400
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1977>:

BNSDOCID: <WO___9957280A2_I_>

#### 

	•
a616.seq	
1	ATGTCAAACA CAATCAAAAT GGTTGTCGGC TTGGGCAACC CGGGCAAAGA
51	ATACGAACAG ACACGCCACA ATGCGGGTTT TTGGTTCCTC GACGAACTGG
101	CGTGGAAATG GAAGGCTTCA TTTAAAGAAG AAAAAAAATT CTTCGGCGAA
151	
201	CACGTTCATG AACCGTTCCG GACAGGCAGT TGCCGCCCTT GCGCAGTTTT
251	ATAAAATCAA ACCCGAAGAA ATCCTCGTCG TCCACGACGA ACTCGACATT
301	CCCTGCGGAC GGATCAAATT CAAACTCGGC GGCGGCAACG GTGGACACAA
351	
401	TGCGCCTCGG CATCGGCCAC CCGGGCGACC GCAACCTCGT CGTCGGCTAT
451	CTCCTCARCA ARCOCCAC CCGGCGACC GCAACCTCGT CGTCGCTAT
501	
	TCGCCAAATC CCTGCAAGCC ATACCCGACA TCCTTGCCGG CAAATGTGAA
551	
601	TTTCAGACGG CATGTTCCCG ATTTCCATAT CCGAACAGTC ATGACCGAAC
651	TCAAGCAGCT TATCCAAACC GAATCCATCC CCGTCATCGA AGAAACCCTC
701	GATTTCCTGC TGTACGAATG CAGCATCGAC GACGCACCAT CCGCCGAAGA
751	AGTGGCACAA TGGCGCGACA TACTTGCCGC ACGCGGCGGC AAATTCCTGC
801	GCCTGTCCAA AATCTGCCAA ACGTGGCTGG ACGAGGAGGC GGCATGAAGC
851	TGCCGCGCAA CCGCTTCAGC CTGCTTTCCG CATTGTGGTT TGCCGGCGGC
901	ATCTATTCGC TGCTCTTCAA AGCTGCCGAC ACCGCGCCGC CGCCGTTTCC
951	GCATTTCGAC AAAGCAGCAC ACCTTGCCCT GTTTTTCGCA CAAATCTGGC
1001	TTTTGACCAA AGCATTCAAA ACCGGAAAAC TTCCCATCCC CTACCGCAGC
1051	CTGATGGTCT TTGCCCTCTG TTTCGCCCTC TTCAGCGAAT GCGCGCAGGC
1101	
1151	TGGCAGGTAC GGTTCTCGCA CTCTTTGCCG CCCGCCGC CGACCGCCCG
1201	GACTGA
This correspond	s to the amino acid sequence <seq 1978;="" 616.a="" id="" orf="">:  MSNTIKMVVG LGNPGKEYEQ TRHNAGFWFL DELAWKWKAS FKEEKKFFGE</seq>
51	VARATLPDGD VWLLKPTTFM NRSGQAVAAL AQFYKIKPEE ILVVHDELDI
101	PCGRIKFKLG GGNGGHNGLK DIQAKLGTAD YYRLRLGIGH PGDRNLVVGY
151	VLNKPSTEXP PTD*RCRRQI PASHTRHPCR QM*RGNPLPA QQMTRCRLKP
201	FQTACSRFPY PNSHDRTQAA YPNRIHPRHR RNPRFPAVRM QHRRRTIRRR
251	SGTMARHTCR TRRQIPAPVQ NLPNVAGRGG GMKLPRNRFS LLSALWFAGG
301	IYSLLFKAAD TAPPPFPHFD KAAHLALFFA QIWLLTKAFK TGKLPIPYRS
351	LMVFALCFAL FSECAQA*FT ATRTGSLGDV LADMAGTVLA LFAARAADRP
401	D*
m616/a616	90.0% identity in 401 aa overlap
	10 20 30 40 50 60
m616.pep	MSNTIKMVVGLGNPGKEYEQTRHNAGFWFLDELAWKWKASFKEEKKFFGEVARAALPDGD
moro.pep	HILLIAM VOLGET EGI AMAGE WE LDELAWKWASE KEEKKE FGEVAKAALPDGD
a616	MENTILMANGI CHECKEYEOTEHNA CHARLES AND AND AND AND AND AND AND AND AND AND
a010	MSNTIKMVVGLGNPGKEYEQTRHNAGFWFLDELAWKWKASFKEEKKFFGEVARATLPDGD
	10 20 30 40 50 60
	<b>70</b>
64.6	70 80 90 100 110 120
m616.pep	VWLLKPATFMNRSGQAVAALAQFYKIKPEEILVVHDELDIPCGRIKFKLGGGNGGHNGLK
a616	VWLLKPTTFMNRSGQAVAALAQFYKIKPEEILVVHDELDIPCGRIKFKLGGGNGGHNGLK
	70 80 90 100 110 120
	· ·
	130 140 150 160 170 180
m616.pep	DIQAKLGTADYYRLRLGIGHPGDRNLVVGYVLNKPSTEXPPTDXRCRROIPASHTRHPCR
a616	DIQAKLGTADYYRLRLGIGHPGDRNLVVGYVLNKPSTEXPPTDXRCRRQIPASHTRHPCR
	130 140 150 160 170 180

 ${\tt QMGRSNPLPAQQMTRCRLKPFQTACSRFPYPNSHDRTQAAYPNRIHPRHRRNPRFPALRM}$ 

 $\widetilde{W}$  is a market market  $\widetilde{W}$ QMXRGNPLPAQQMTRCRLKPFQTACSRFPYPNSHDRTQAAYPNRIHPRHRRNPRFPAVRM

m616.pep

a616

```
QHRRCPLRRNCRLARYAGRTRRKIPAPIQTMPDMAXRGTSMNLPRNRFILLSALWFAGS
m616.pep
              QHRRRTIRRRSGTMARHTCRTRRQIPAPVQNLPNVAGRGGGMKLPRNRFSLLSALWFAGG
a616
                       260
                               270
                                      280
                                              290
               310
                       320
                               330
                                      340
                                                      360
          {\tt IYSLLFKAAETAPPPFPHFDKVAHLALFFAQIWLLTKAFRTDNRPIPYRSLMVFALCFAL}
m616.pep
          IYSLLFKAADTAPPPFPHFDKAAHLALFFAQIWLLTKAFKTGKLPIPYRSLMVFALCFAL
a616
                       320
                              330
                                      340
                                              350
               370
                       380
                              390
                                      400
          FSECAQAWFTATRTGSLGDVLADLTGAALALFTARAACRPDX
m616.pep
          a616
          FSECAQAXFTATRTGSLGDVLADMAGTVLALFAARAADRPDX
               370
                       380
                              390
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1979>: g619.seq

```
ATGCCGTCTG AAAAAAATAT CGGTTTTATG GCAGGAAGCA GCCGTCCGTT
 51
     GCGGGTCGCC TTTGCGCTGT TGCTGGTTTC CTGCATCCTG TTTATGACGC
     TCAACGTCAA AGGAGATTGG GACTTTGTCT TGCACCTGCG CCTGACCAAG
101
     CTTGCCGCGC TGCTGATGGT CGCCTATGCG GTCGGCGTGT CCACTCAACT
151
     CTTCCAAACG CTGACCAACA ACCCGATTCT GACCCCTTCG ATTTTGGGTT
201
251
     TCGATTCGCT GTATGTGTTT TTGCAGACCT TGCTGgtGTT TACGTtcqGC
     GGCGTGGGCT ATACATCCCT GCCGTTGAACT GGCTATATCG GCTTTGAACT GGTTGTTATG ATGGGCGGCT CGCTGCTGCT GTTTTACACG CTCATCCGTC
301
351
     AGGGCGGGCG CGATTTGCCG CACATGATTT TAATCGGCGT GATTTTCGGG
401
     ATTTTGTTCC GCAGCCTTTC CTCGCTGCTT TCGCGCATGA TAGACCCCGA
451
     AGAATTTACC GCCGCGCAGG CGAATATGTT TGCCGGATTC AATACCGTCC
501
551
     GCAGCGAGCT TTTAGGCATA GGCGCGCTGG TCCTGCTCGT CAGCGCGGCG
     GTCGTTTGGC ACGAACGCTA CCGCTCGGAC GTACACCTTT TGGGGCGCGA
601
651
     CCAAGCCGTC AATTTGGGCA TCAGCTACAC GCGCAACACC TTATGGATAC
701
     TGCTTTGGAT TGCCGCATTG GTGGCGACGG CGACCGCCGT TGTCGGCCCG
751 GTGAGCTTTT TCGGGCTTCT CGCCGCCTCG CTTGCCAACC ACTTTTCCCC
     gtCCGTGCGC CATTCCGTCC GCCTGCcgat gacggtttGC gtcgGcggCATCCTCTTGgt cggCggacaA ACCGTATTCG AACACTTCTT GGGCATGAag
801
851
901
     gCggTATTAA GCGTGGTGGt cgAATTTGCG ggcggactcG TTTTCCTCTA
     TCTCGTTTTA AAACACAAAA AATGA
```

This corresponds to the amino acid sequence <SEQ ID 1980; ORF 619.a>: g619.pep

```
1 MPSEKNIGFM AGSSRPLRVA FALLLVSCIL FMTLNVKGDW DFVLHLRLTK
51 LAALLMVAYA VGVSTQLFQT LTNNPILTPS ILGFDSLYVF LQTLLVFTFG
101 GVGYTSLPLT GKFGFELVVM MGGSLLLFYT LIRQGGRDLP HMILIGVIFG
151 ILFRSLSSLL SRMIDPEFFT AAQANMFAGF NTVRSELLGI GALVLLVSAA
201 VVWHERYRSD VHLLGRDQAV NLGISYTRNT LWILLWIAAL VATATAVVGP
251 VSFFGLLAAS LANHFSPSVR HSVRLPMTVC VGGILLVGGQ TVFEHFLGMK
301 AVLSVVVEFA GGLVFLYLVL KHKK*
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1981>: m619.seq

```
ATGCCGTCTG AAAAAAATAT CGGTTTTATG GCAGGAAGCA GCCGCCCGTT
     GTGGGTCGCC TTTGCGCTGT TGCTGGTTTC CTGCGTCCTG TTTATGACGC
 51
101
     TCAACGTCAA AGGCGATTGG GATTTTGTTT TGCAACTGCG GCTGACCAAA
151
     CTTGCCGCGC TGCTGATGGT CGCCTATGCG GTCGGCGTGT CCACGCAACT
    CTTCCAAACG CTGACCAATA ATCCGATTCT GACCCCTTCA ATTTTGGGTT
201
251
     TCGATTCGCT GTATGTGTTT TTGCAGACCT TGCTGGTGTT TACGTTCGGC
     GGCGTGGGCT ATGCTTCCCT GCCGTTGACG GGCAAATTCG GCTTTGAACT
301
351
     GGTCGTCATG ATGGGCGGCT CGCTGCTGCT GTTCTACACG CTCATCAAAC
    AGGGCGGACG CGATTTGTCG CGCATGATTT TAATCGGCGT GATTTTCGGG
ATTTTGTTCC GCAGCCTGTC GTCGCTGCTT TCGCGCATGA TCGATCCCGA
401
451
501
    AGAATTTACC GCCGCGCAGG CGAATATGTT TGCCGGATTC AATACCGTCC
551
     ACAGCGAGCT TTTGGGCATA GGCGCGCTGA TTCTGCTCGT CAGCGCGGCG
601 GTCGTTTGGC GCGAACGCTA CCGCTTGGAC GTTTACCTTT TGGGGCGTGA
    CCAAGCCGTC AATTTGGGCA TCAGCTACAC GCGCAACACC TTATGGATAC
651
701
    TGCTTTGGAT TGCCGCATTG GTGGCGACGG CGACCGCCGT GGTCGGCCCC
751
    GTAAGCTTTT TCGGGCTTCT CGCCGCCTCG CTTGCCAACC ACTTTTCCCC
801
    GTCGGTCAAA CATTCCGTCC GCCTGCCGAT GACGGTTTGT ATCGGCGGCA
    TCCTCTTGGT CGGCGGACAG ACCGTGTTCG AACACCTGCT CGGTATGCAG
```

BNSDOCID: <WO___9957280A2_I_>

901 GCAGTGTTGA GCGTAGTAGT AGAATTTGCC GGCGGACTCG TTTTCCTCTA 951 TCTCGTTTTA AAACACAAAA AATGA

### This corresponds to the amino acid sequence <SEQ ID 1982; ORF 619>: m619.pep

- 1 MPSEKNIGFM AGSSRPLWVA FALLLVSCVL FMTLNVKGDW DFVLQLRLTK
- 51 LAALLMVAYA VGVSTQLFQT LTNNPILTPS ILGFDSLYVF LQTLLVFTFG
- 101 GVGYASLPLT GKFGFELVVM MGGSLLLFYT LIKQGGRDLS RMILIGVIFG 151 ILFRSLSSLL SRMIDPEEFT AAQANMFAGF NTVHSELLGI GALILLVSAA
- 201 VVWRERYRLD VYLLGRDQAV NLGISYTRNT LWILLWIAAL VATATAVVGP
- 251 VSFFGLLAAS LANHFSPSVK HSVRLPMTVC IGGILLVGGQ TVFEHLLGMQ
- 301 AVLSVVVEFA GGLVFLYLVL KHKK*

#### m619/g619 95.1% identity in 324 aa overlap

310

```
10
                        20
                                30
                                       40
                                               50
                                                       60
m619.pep
          MPSEKNIGFMAGSSRPLWVAFALLLVSCVLFMTLNVKGDWDFVLQLRLTKLAALLMVAYA
          g619
          MPSEKNIGFMAGSSRPLRVAFALLLVSCILFMTLNVKGDWDFVLHLRLTKLAALLMVAYA
                10
                        20
                                30
                                       40
                70
                                90
                                      100
          VGVSTQLFQTLTNNPILTPSILGFDSLYVFLQTLLVFTFGGVGYASLPLTGKFGFELVVM
m619.pep
          a619
          VGVSTQLFQTLTNNPILTPSILGFDSLYVFLQTLLVFTFGGVGYTSLPLTGKFGFELVVM
                70
                        80
                               90
                                      100
                                              110
               130
                       140
                               150
                                      160
                                              170
m619.pep
          MGGSLLLFYTLIKQGGRDLSRMILIGVIFGILFRSLSSLLSRMIDPEEFTAAQANMFAGF
          g619
          {	t MGGSLLLFYTLIRQGGRDLPHMILIGVIFGILFRSLSSLLSRMIDPEEFTAAQANMFAGF}
               130
                       140
                               150
                                      160
                                              170
               190
                       200
                                      220
                                              230
          NTVHSELLGIGALILLVSAAVVWRERYRLDVYLLGRDQAVNLGISYTRNTLWILLWIAAL
m619.pep
          g619
          NTVRSELLGIGALVLLVSAAVVWHERYRSDVHLLGRDQAVNLGISYTRNTLWILLWIAAL
               190
                       200
                               210
                                      220
               250
                       260
                               270
                                      280
                                              290
                                                     300
          VATATAVVGPVSFFGLLAASLANHFSPSVKHSVRLPMTVCIGGILLVGGQTVFEHLLGMQ
m619.pep
          a619
          VATATAVVGPVSFFGLLAASLANHFSPSVRHSVRLPMTVCVGGILLVGGQTVFEHFLGMK
               250
                       260
                              270
                                      280
                                              290
               310
                       320
m619.pep
          AVLSVVVEFAGGLVFLYLVLKHKKX
          g619
          AVLSVVVEFAGGLVFLYLVLKHKKX
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1983>:

a619.seq					-
1	ATGCCGTCTG	AAAAAAATAT	CGGTTTTATG	GCAGGAAGCA	GCCGTCCGTT
51	GTGGGTTGCC	TTTGCGCTGT	TGCTGGTTTC		TTTATGACGC
101	TCAACGTCAA	AGGCGATTGG	GATTTTGTTT	TGCACCTGCG	
151	CTTGCCGCGC	TGCTGATGGT	CGCCTATGCG	GTCGGCGTTT	CGACCCAGCT
201	TTTTCAAACG	CTGACCAACA	ATCCGATTCT	GACCCCTTCG	ATTTTGGGTT
251	TCGATTCGCT	GTATGTGTTT	TTGCAGACCT		TACGTTCGGC
301	GGCGTGGGCT	ATGCTTCCCT	GCCGTTGACG		GCTTTGAACT
351	GGTCGTTATG	ATGGGCGGCT	CGCTGCTGCT	GTTTTACACG	CTCATCAAAC
401	AGGGCGGGCG	CGATTTGCCG	CGTATGATTT		GATTTTCGGG
451	ATTTTGTTCC	GCAGCCTGTC	GTCGCTGCTT	TCGCGCATGA	TCGACCCCGA
501	AGAATTTACG	GCGGCGCAGG			AATACCGTCC
551	ACAGCGAGCT	TTTAGGCATA			
601	GTCGTTTGGC	GCGAACGCTA	CCGCTTGGAC		TGGGGCGCGA
651	CCAAGCCATA	AATTTGGGCA	TCAGCTACAC	GCGCAACACC	TTATGGATAC
701	TGCTTTGGAT	TGCCGCGCTG	GTGGCGACGG	CGACCGCCGT	TGTCGGCCCC

	·	
751	GTAAGCTTTT TCGGGCTTCT CGCCGCCTCG CTTGCCAACC ACTTTTCCCC	
801	GTCGGTCAAA CATTCCGTCC GCCTGCCGAT GACGGTTTGT GTCGGCGGCA	
851	TCCTCTTGGT CGGCGGACAG ACCGTATTCG AACACTTCTT GGGCATGAAG	
901	COCCENTED COCCECTOR CONTROL AACACTCTT GGGCATGAAG	
951	GCGGTATTAA GCGTGGTGGT CGAATTTGCG GGCGGACTCG TTTTCCTCTA	
951	TCTCGTTTTA AGACACAAAA AATGA	
This correspond	Is to the amino acid sequence <seq 1984;="" 619.a="" id="" orf="">:</seq>	
a619.pep		
1	MPSEKNIGFM AGSSRPLWVA FALLLVSCIL FMTLNVKGDW DFVLHLRLTK	
51	LAALLMVAYA VGVSTQLFQT LTNNPILTPS ILGFDSLYVF LQTLLVFTFG	
101	CHONEL DIE CANCELLAND ACCOUNTS TEGEDSLYVE LOTELVETTE	
	GVGYASLPLT GKFGFELVVM MGGSLLLFYT LIKQGGRDLP RMILIGVIFG	
151	ILFRSLSSLL SRMIDPEEFT AAQANMFAGF NTVHSELLGI GALILLVSAA	
201	VVWRERYRLD VHLLGRDQAI NLGISYTRNT LWILLWIAAL VATATAVVGP	
251	VSFFGLLAAS LANHFSPSVK HSVRLPMTVC VGGILLVGGQ TVFEHFLGMK	
301	AVLSVVVEFA GGLVFLYLVL RHKK*	
m619/a619	97.2% identity in 324 aa overlap	
	over energy and out an overlap	
	10 20 30 40 50	
m619.pep		60
mora.pep	MPSEKNIGFMAGSSRPLWVAFALLLVSCVLFMTLNVKGDWDFVLQLRLTKLAALLMVA	ľΑ
510		П
a619	MPSEKNIGFMAGSSRPLWVAFALLLVSCILFMTLNVKGDWDFVLHLRLTKLAALLMVA	ľΑ
	10 20 30 40 50	60
	70 80 90 100 110 1	20
m619.pep	VGVSTQLFQTLTNNPILTPSILGFDSLYVFLQTLLVFTFGGVGYASLPLTGKFGFELV	JM
		1 1
a619	VGVSTQLFQTLTNNPILTPSILGFDSLYVFLQTLLVFTFGGVGYASLPLTGKFGFELV	ZNA
	70 00 100 110	20
	130 140 150 160 170 18	
m610 man		30
m619.pep	MGGSLLLFYTLIKQGGRDLSRMILIGVIFGILFRSLSSLLSRMIDPEEFTAAQANMFAC	ŀΓ
		1
a619	MGGSLLLFYTLIKQGGRDLPRMILIGVIFGILFRSLSSLLSRMIDPEEFTAAQANMFAC	F
	130 140 150 160 170 18	30
	190 200 210 220 230 24	10
m619.pep	NTVHSELLGIGALILLVSAAVVWRERYRLDVYLLGRDQAVNLGISYTRNTLWILLWIA	1 T.
		لدد
a619	NTVHSELLGIGALILLVSAAVVWRERYRLDVHLLGRDQAINLGISYTRNTLWILLWIA	
	190 200 210 220 230 24	·U
	250 260 270 280 290 30	
m610 man		10
m619.pep	VATATAVVGPVSFFGLLAASLANHFSPSVKHSVRLPMTVCIGGILLVGGQTVFEHLLGM	QI
		:
<b>a61</b> 9	VATATAVVGPVSFFGLLAASLANHFSPSVKHSVRLPMTVCVGGILLVGGQTVFEHFLGM	ΙK
	250 260 270 280 290 30	0
	310 320	
m619.pep	AVLSVVVEFAGGLVFLYLVLKHKKX	
• •		
a619	AVLSVVVEFAGGLVFLYLVLRHKKX	
	310 320	
	J10 J20	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1985>: g620.seq

1	ATGAAGAAAA	CCCTGTTGGC	AATTGTTGCC	gtTTTCGCCT	TAAGTGCCTG
51	CCGGCaggcg	gaAGaggcac	cgccgCCTTT	ACCCCGGCAG	AtTAGCGacc
101	gttcggtcgg	aCACTAttgC	Agtatgaacc	tgaccgaaca	caacqqcccc
151	aaagcccaga	tttttttgaa	CGGCAAACCC	GATCAGCCCG	TTTGGTTCTC
201	CACCGTcaag	cagatgttcg	GCTATACCAA	GCTGCCCGAA	GAGCCCAAAG
251	GCATCCGCGT	GATTTACGTT	ACCGATATGG	GCAATGTTAC	CGATTGGACG
301	AATCCTAATG	CCGACACGGA	GTGGATAGAT	GCGAAAAAAG	CCTTTTACGT
351	CATCGACAGC	GGCTTTATCG	GCGGTATGGG	CGCGGAAGAC	GCGCTGCCGT
401	TCGGCAACAA	GGAGCAGGCT	GAAAAATTTG	CAAAGGATAA	AGGCGGCAAG
451			GCCCGATGCT		

```
This corresponds to the amino acid sequence <SEQ ID 1986; ORF 620.ng>:
g620.pep
         MKKTLLAIVA VFALSACRQA EEAPPPLPRQ ISDRSVGHYC SMNLTEHNGP
         KAQIFLNGKP DQPVWFSTVK QMFGYTKLPE EPKGIRVIYV TDMGNVTDWT
      51
     101 NPNADTEWID AKKAFYVIDS GFIGGMGAED ALPFGNKEQA EKFAKDKGGK
     151 VVGFDDMPDA YIFK*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1987>:
m620.seq
         ATGAAAAAA CCCTGTTGGC AATTGTTGCC GTTTCCGCCT TAAGTGCCTG
     51
         CCGGCAGGCG GAAGAGGGAC CGCCGCCTTT ACCCCGGCAG ATTAGCGACC
    101 GTTCGGTCGG ACACTATTGC AGTATGAACC TGACCGAACA CAACGGCCCC
    151
         AAAGCCCAGA TTTTCTTGAA CGGCAAACCC GATCAGCCCG TTTGGTTCTC
         CACCATCAAG CAGATGTTCG GCTATACCAA GCTGCCCGAA GAGCCTAAAG
    201
         GCATCCGCGT GATTTACGTT ACCGATATGG GCAATGTTAC CGATTGGACG
    251
    301
         AATCCCAATG CCGACACGGA GTGGATGGAT GCGAAAAAAG CCTTTTACGT
    351
         CATCGACAGC GGCTTTATCG GCGGTATGGG TGCGGAAGAC GCGCTGCCGT
         TCGGCAACAA AGAGCAGGCT GAGAAATTTG CAAAGGATAA AGGCGGTAAG
    401
         GTTGTCGGTT TCGACGATAT GCCTGATACC TATATTTTCA AATAA
```

## This corresponds to the amino acid sequence <SEQ ID 1988; ORF 620>: m620.pep

1 MKKTLLAIVA VSALSACRQA EEGPPPLPRQ ISDRSVGHYC SMNLTEHNGP
51 KAQIFLNGKP DQPVWFSTIK QMFGYTKLPE EPKGIRVIYV TDMGNVTDWT
101 NPNADTEWMD AKKAFYVIDS GFIGGMGAED ALPFGNKEQA EKFAKDKGGK
151 VVGFDDMPDT YIFK*

m620/g620 97.0% identity in 164 aa overlap

```
30
                                              50
m620.pep
          MKKTLLAIVAVSALSACRQAEEGPPPLPRQISDRSVGHYCSMNLTEHNGPKAQIFLNGKP
          g620
          MKKTLLAIVAVFALSACRQAEEAPPPLPRQISDRSVGHYCSMNLTEHNGPKAQIFLNGKP
                10
                       20
                               30
                                      40
                70
                       80
                                      100
                                             110
                                                     120
m620.pep
          DQPVWFSTIKQMFGYTKLPEEPKGIRVIYVTDMGNVTDWTNPNADTEWMDAKKAFYVIDS
          g620
          DQPVWFSTVKQMFGYTKLPEEPKGIRVIYVTDMGNVTDWTNPNADTEWIDAKKAFYVIDS
                70
                       80
                               90
                                      100
                                             110
                      140
                              150
          GFIGGMGAEDALPFGNKEQAEKFAKDKGGKVVGFDDMPDTYIFKX
m620.pep
          a620
          GFIGGMGAEDALPFGNKEQAEKFAKDKGGKVVGFDDMPDAYIFKX
               130
                      140
                              150
                                     160
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1989>:

```
1 ATGAAAAAA CCCTGTTGGC AATTGTTGCC GTTTCCGCCT TAAGTGCCTG
51 CCGGCAGCG GAAGAGGGAC CGCCGCCTTT ACCCCGGCAG ATTAGCGACC
101 GTTCGGTCGG ACACTATTGC AGTATGAACC TGACCGAACA CAACGGCCCC
151 AAAGCCCAGA TTTTCTTGAA CGGCAAACCC GATCAGCCG TTTGGTTCTC
201 CACCATCAAG CAGATGTTCG GCTATACCAA GCTGCCCGAA GAGCCTAAAG
251 GCATCCGCGT GATTTACGTT ACCGATATGG GCAATGTTAC CGATTGGACG
301 AATCCCAATG CCGACACGAA GTGGATGGAT GCGAAAAAAG CCTTTTACGT
351 CATCGACAGC GGCTTTATCG GCGGTATGGG TGCGGAAGAC GCGCTGCCGT
401 TCGGCAACAA AGAGCAGGCT GAGAAATTTG CAAAGGATAA AGGCGGTAAG
451 GTTGTCGGTT TCGACGATAT GCCTGATACC TATATTTTCA AATAA
```

## This corresponds to the amino acid sequence <SEQ ID 1990; ORF 620.a>:

1 MKKTLLAIVA VSALSACRQA EEGPPPLPRQ ISDRSVGHYC SMNLTEHNGP
51 KAQIFLNGKP DQPVWFSTIK QMFGYTKLPE EPKGIRVIYV TDMGNVTDWT
NPNADTEWMD AKKAFYVIDS GFIGGMGAED ALPFGNKEQA EKFAKDKGGK
VVGFDDMPDT YIFK*

```
m620/a620
          100.0% identity in 164 aa overlap
                        20
                               30
                                       40
          MKKTLLAIVAVSALSACRQAEEGPPPLPRQISDRSVGHYCSMNLTEHNGPKAQIFLNGKP
m620.pep
          MKKTLLAIVAVSALSACRQAEEGPPPLPRQISDRSVGHYCSMNLTEHNGPKAQIFLNGKP
a620
                10
                        20
                               30
                                               50
                70
                        80
                                90
                                      100
                                              110
                                                      120
          DQPVWFSTIKQMFGYTKLPEEPKGIRVIYVTDMGNVTDWTNPNADTEWMDAKKAFYVIDS
m620.pep
          DQPVWFSTIKQMFGYTKLPEEPKGIRVIYVTDMGNVTDWTNPNADTEWMDAKKAFYVIDS
a620
                       80
                               90
                                      100
               130
                       140
                              150
          GFIGGMGAEDALPFGNKEQAEKFAKDKGGKVVGFDDMPDTYIFKX
m620.pep
          a620
          GFIGGMGAEDALPFGNKEQAEKFAKDKGGKVVGFDDMPDTYIFKX
               130
                       140
                              150
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1991>: g622.seq

```
ATGCAactta ccgctgtcgg ACTCAATCAT CAAACCGCAC CTTTAAGCAT
  51
      ACGGGAAAag ctggCGTTTG CCGCCGCCGC CCTGCCAGAA gccgTccgCA
      ATCTTGCCCG AAGCAATGCG GCAACGGAGG CGGTAATCCT TTCTACCTGC
 101
      AACCGCACCG AGCTTTACTG CGTCGGCGAT TCGGAAgaaa TCATCCGATG
      GCTTGCCGAT TACCACAGTT TGCCGATTGA AGAAATCCGT CCGTATCTGT ACACGCTGGA TATGCAGGAA ACCGTGCGCC ACGCCTTCCG CGTTGCCTGC
 201
 251
301
      GGCTTGGATT CGATGGTTTT GGGCGAGCCG CAGATTTTGG GGCAGATTAA
 351
      AGATGCGGTG CGTGCGGCTC AAGAACAGGA AAGTATGGGG GCAAAACTCA
     ATGCCCTGTT CCAAAAAACC TTTTCCGTTG CTAAAGAAGT CCGTACCGAT
      ACCGCTGTCG GCGAAAATTC GGTTTCGATG GCTTCCGCGT CCGTCAAGTT
 451
      GGCGGAACAG ATTTTCCCG ACATCGGCGA TTTGAACGTA TTGTTTATCG
501
      GCGCAGGCGA AATGATTGAG CTGGTTGCCA CTTATTTTGC CGCCAAAAAT
551
      CCCCGGCTGA TGACGGTTGC CAACCGGACG CTGGCGCGTG CACAGGAGTT
 601
651
     GTGCGACAAG CTCGGTGTTA ACGCCGAACC GTGCCTGCTG TCCGATCTGC
701
      CTGCCATTCT GCACGATTAC GACGTGGTGG TTTCTTCAAC GGCGAGCCAG
751
     CTTCCGATAG TCGGCAAAGG CATGGTCGAA CGCGCATTGA AACAGCGTCA
801
      GAGTATGCCG TTGTTCATGC TTGACTTGGC CGTGCCGCGC GATATTGAAG
851
      CGGAAGTCGG CGATTTGAAC GATGCGTATC TTTATACGGT GGACGATATG
     GTCAACATCG TCCAAAGCGg caaggaggca aggcagaaag ccgccgcCgc
901
951
      cgccgaaacg ctggTGTCCG AAAAGGTTGC CGAATTTGTC AGGCAGCAGC
1001 AGGGCAGGCA GagcgttcCG CTGATTAAGG CCTTGCGGGA CGAGGGCGAG
     AAAGCGCGCA AGCAGGTGTT GGAAAATGCG ATGAAACAGC TTGCCAAAGG
     CGcaaCGCCG GAAGaggttt TGgaacggct gtccgtcCAA CTGACCAACA
AGCTGCTGCA TTCGCCAACT CAAACCTTGA ATAAGGCGGG GGAAGAAGAT
1101
1151
1201 AAAGatttGG TTCATGCCgt cGCGCAGATt tatcatttGG ACAAATAA
```

## This corresponds to the amino acid sequence <SEQ ID 1992; ORF 622.ng>: g622.pep

```
1 MQLTAVGLNH QTAPLSIREK LAFAAAALPE AVRNLARSNA ATEAVILSTC
51 NRTELYCVGD SEEIIRWLAD YHSLPIEEIR PYLYTLDMQE TVRHAFRVAC
101 GLDSMVLGEP QILGQIKDAV RAAQEQESMG AKLNALFQKT FSVAKEVRTD
151 TAVGENSVSM ASASVKLAEQ IFPDIGDLNV LFIGAGEMIE LVATYFAAKN
201 PRLMTVANRT LARAQELCDK LGVNAEPCLL SDLPAILHDY DVVVSSTASQ
251 LPIVGKGMVE RALKQRQSMP LFMLDLAVPR DIEAEVGDLN DAYLYTVDDM
301 VNIVQSGKEA RQKAAAAAET LVSEKVAEFV RQQQGRQSVP LIKALRDEGE
351 KARKQVLENA MKQLAKGATA EEVLERLSVQ LTNKLLHSPT QTLNKAGEED
401 KDLVHAVAQI YHLDK*
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1993>: m622.seq

```
1 ATGCAACTTA CCGCTGTCGG ACTCAATCAT CAAACCGCAC CTTTAAGCAT
51 ACGGGAAAAG CTGGCGTTTG CCGCCGCC CCTGCCTAAA GCCGTCCGCA
101 ATCTTGCCCG AAGCAATGCG GCAACGGAGG CGGTAATCCT TTCTACCTGC
151 AACCGCACCG AGCTTTACTG CGTCGGTGAT TCGGAAGAAA TCATCCGATG
201 GCTTGCCGAT TACCACAGTT TGCCGATTGA AGAAATCCGT CCGTATCTGT
251 ACGCGCTGGA TATGCAGGAG ACTGTGCGCC ATGCTTTCCG CGTCGCCTGC
```

301	GGGCTGGATT	CGATGGTGTT	GGGCGAGCCG	CAGATTTTAG	GACAGATTAA
351	GGATGCCGTT	AGGGTTGCTC	AAGAGCAGGA	AAGTATGGGT	AAGAAACTCA
401	ATGCCCTGTT	CCAAAAAACC	TTTTCCGTTG	CTAAAGAGGT	CCGTACCGAT
451	ACTGCCGTCG	GCGAAAACTC	GGTTTCCATG	GCTTCCGCTT	CCGTCAAATT
501	GGCGGAACAG	ATTTTTCCCG	ACATCGGCGA	TTTGAATGTC	TTGTTTATCG
551	GCGCAGGCGA	AATGATTGAG	CTGGTTGCCA	CTTATTTTGC	CGCCAAAAGT
601	CCCCGGCTGA	TGACGGTTGC	CAACCGGACG	CTGGCGCGTG	CACAGGAGTT
651	GTGCGACAAG	CTCGGTGTCA	ACGCCGAACC	GTGCCTGCTG	TCCGATCTGC
701	CTGCCATTCT	GCACGATTAC	GACGTAGTGG	TTTCTTCAAC	GGCAAGCCAG
751	TTGCCCATTG	TCGGCAAAGG	CATGGTGGAG	CGTGCATTGA	AACAAAGGCA
801	GAGTATGCCG	TTGTTCATGC	TTGATTTGGC	AGTGCCGCGT	GACATTGAAG
851	CGGAAGTCGG	CGATTTGAAT	GATGCCTATC	TTTATACGGT	GGACGATATG
901	GTCAATATCG	TCCAAAGCGG	CAAGGAGGCA	AGGCAGAAGG	CCGCCGCCGC
951	CGCCGAAACG	CTGGTGTCCG	AGAAAGTTGC	CGAATTTGTC	AGGCAGCAGC
1001	AGGGCAGGCA	GAGTGTCCCC	TTGATTAAGG	CGTTGCGGGA	CGAGGGCGAG
1051	AAAGCGCGCA	AACAGGTGTT	GGAAAATGCC	ATGAAACAGC	TTGCCAAAGG
101	CGCAACGGCA	GAAGAGGTTT	TGGAACGGCT	GTCCGTCCAA	CTGACCAACA
151	AGCTGCTGCA	TTCGCCGACC	CAAACCTTGA	ATAAGGCGGG	GGAAGAAGAT
201	AAAGATTTGG	TTCATGCCGT	CGCGCAGATT	TATCATTTGG	ACAAATAA

## This corresponds to the amino acid sequence <SEQ ID 1994; ORF 622>:

ger. beb					
1	MQLTAVGLNH	QTAPLSIREK	LAFAAAALPK	AVRNLARSNA	ATEAVILETC
51	NRTELYCVGD	SEEIIRWLAD	YHSLPIEEIR	PYLYALDMOE	TVRHAFRVAC
101	GLDSMVLGEP	QILGQIKDAV	RVAQEQESMG	KKLNALFORT	FSVAKEVRTD
151	TAVGENSVSM	ASASVKLAEQ	IFPDIGDLNV	LFIGAGEMIE	LVATYFAAKS
201	PRLMTVANRT	LARAQELCDK	LGVNAEPCLL	SDLPAILHDY	DVVVSSTASO
251		RALKQRQSMP			
301	VNIVQSGKEA	RQKAAAAAET	LVSEKVAEFV	RQQQGROSVP	LIKALRDEGE
351	KARKQVLENA	MKQLAKGATA	EEVLERLSVO	LTNKLLHSPT	OTLNKAGEED
401	KULWHAMAOT			_	

### m622/g622 98.8% identity in 415 aa overlap

	10	20	30	40	50	60
m622.pep	MQLTAVGLNHQTA	PLSIREKLAF	'AAAALPKAVRI	NLARSNAATE	AVILSTONET	FI.YCVCD
		11111111	11111111111		1111111111	1111111
g622	MQLTAVGLNHQTA	PLSIREKLAF.	AAAALPEAVRI	NLARSNAATE	AVILSTCNRT	ELYCVGD
	10	20	30	40	50	60
600	70	80	90	100	110	120
m622.pep	SEEIIRWLADYHSI	LPIEEIRPYL	YALDMQETVRI	HAFRVACGLD	SMVLGEPQIL	GQIKDAV
-620	1111111111111		1:111111		111111111	1111111
g622	SEEIIRWLADYHSI	LPIEEIRPYL'	YTLDMQETVRI		SMVLGEPQIL	GQIKDAV
	70	80	90	100	110	120
	120	440				
m622.pep	130	140	150	160	170	180
mozz.pep	RVAQEQESMGKKLN	VALFORTESVA	AKEVRTDTAVO	ENSVSMASA:	SVKLAEQIFP	DIGDLNV
g622	:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1111111111			111111
9022	RAAQEQESMGAKLN 130	MALFORTESVA	AKEVRTDTAVG			DIGDLNV
	130	140	150	160	170	180
	190	200	010			
m622.pep			210	220	230	240
mozz i pep	LFIGAGEMIELVAT	IFAAKSPREN	TTVANKTLAKA	OFFCDKFCA	NAEPCLLSDLI	PAILHDY
g622	I TETGO CEMTEL VAN	;;     ****************************	(		1111111111	
9022	LFIGAGEMIELVAT 190	200	TVANKTLAKA 210	GETCDKTGAN		
	190	200	210	220	230	240
	250	260	270	280	290	300
m622.pep	DVVVSSTASQLPIV			DI.AVPEDTER	EUCDI NDAVI	300
- +	11111111111111				1111111111	TIADDW
g622	DVVVSSTASQLPIV	GKGMVERALK	OROSMPLEMI	DI.AVPROTEZ	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	YOUNDA
	250	260	270	280	290	300
				200	230	300
	310	320	330	340	350	360
m622.pep	VNIVQSGKEARQKA	AAAAETLVSE	KVAEFVROOO	GROSVPLTKA	LEDECERADE	מעם דעום:
		1 [ ] 1 ] 1 [ [ ] 1	111111111	111111111	1111111111	111111
g622	VNIVQSGKEARQKA	AAAAETLVSE	KVAEFVROOO	GROSVPLIKA	T.RDEGEKADE	
	310	320	330	340	350	360
				• • • •	550	360
	370	380	390	400	410	
m622.pep	MKQLAKGATAEEVL	ERLSVQLTNK	LLHSPTQTLNI	KAGEEDKDI.V	A THY TOAVAH	KX
	111111111111	1 [ [ 1 1 5 1 1 1 1 1 1	1111111	111111111	11111111111	1.1
g622	MKQLAKGATAEEVLI	ERLSVQLTNK	LLHSPTQTLNI	KAGEEDKDLV	HAVAOI YHT.	KX
						• • • •

370 380 390 400 410

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1995>:
```

```
a622.seq
         ATGCAACTTA CCGCTGTCGG ACTCAATCAT CAAACCGCAC CTTTAAGCAT
         ACGGGAAAAG CTGGCGTTTG CCGCGGCCTG CCTGCCCGAA GCCGTCCGCA
      51
     101
         ATCTTGCCCG AAGCAATGCG GCAACGGAGG CGGTAATCCT TTCTACCTGC
     151
         AACCGTACCG AGCTTTACTG TGTAGGTGAT TCGGAAGAAA TCATCCGTTG
         GCTCGCAGAC TATCACAGCC TTCCCATAGA AGAAATCAGC CCCTACCTTT
    201
    251
         ATACTTTGGG GATGCAGGAG ACTGTGCGCC ATGCTTTCCG CGTCGCCTGC
         GGCTTGGATT CGATGGTGTT GGGCGAGCCG CAGATTTTAG GACAGATTAA
    351
         GGATGCGGTC AGGGTTGCTC AAGAGCAGGA AAGTATGGGT AAGAAACTCA
    401
         ATGCCCTGTT CCAAAAAACC TTTTCTGTTG CTAAAGAGGT CCGTACCGAT
         ACTGCCGTCG GCGAAAACTC GGTTTCCATG GCTTCCGCTT CCGTCAAGTT
    451
         GGCAGAGCAG ATTTTCCCCG ACATCGGCGA TTTGAATGTC TTGTTTATCG
    501
         GTGCGGGTGA GATGATTGAG CTGGTTGCCA CTTATTTTGC CGCCAAAAGT
    551
         CCCCGGCTGA TGACGGTTGC CAACCGGACG CTGGCGCGTG CACAGGAGTT
    601
    651
         GTGCGACAAG CTCGGTGTCA ACGCCGAACC GTGCCTGCTG TCCGATCTGC
    701
         CTGCCATTTT GCATGAGTAC GACGTGGTGG TTTCTTCAAC GGCAAGCCAG
         TTGCCCATTG TCGGCAAAGG TATGGTGGAG CGCGCATTGA AACAAAGGCA
    751
         GAGTATGCCG TTGTTTATGC TTGACTTGGC CGTGCCGCGA GACATTGAGG
    801
         CGGAAGTCGG AGATTTGAAC GATGCCTATC TTTATACGGT GGACGATATG
    851
    901
         GTCAATATCG TCCAAAGCGG CAAGGAGGCA AGGCAGAAGG CCGCCGCCGC
    951
         CGCCGAAACG CTGGTGTCCG AGAAGGTTGC CGAATTTGTC AGGCAGCAGC
         AGGGCAGGCA GAGTGTCCCG TTAATCAGGG CATTGAGGGA TGAGGGAGAG
   1001
         AAAGCGCGCA AACAGGTCTT GGAAAATGCG ATGAAACAGC TTGCCAAAGG
   1051
         CGCAACGCA GAAGAGGTTT TGGAAAGGCT GTCGATCCAA CTGACCAACA
   1101
         AGCTGCTGCA TTCGCCGACC CAAACCTTGA ATAAGGCGGG GGAAGAAGAT
   1201
         AAAGATTTGG TTCACGCCGT CGCGCAGATT TATCATTTGG ACAAATAA
```

## This corresponds to the amino acid sequence <SEQ ID 1996; ORF 622.a>: a622.pep

```
MOLTAVGLNH QTAPLSIREK LAFAAACLPE AVRNLARSNA ATEAVILSTC
         NRTELYCVGD SEEIIRWLAD YHSLPIEEIS PYLYTLGMQE TVRHAFRVAC
     51
         GLDSMVLGEP QILGQIKDAV RVAQEQESMG KKLNALFQKT FSVAKEVRTD
    101
         TAVGENSVSM ASASVKLAEQ IFPDIGDLNV LFIGAGEMIE LVATYFAAKS
    151
    201
         PRLMTVANRT LARAQELCDK LGVNAEPCLL SDLPAILHEY DVVVSSTASQ
        LPIVGKGMVE RALKQRQSMP LFMLDLAVPR DIEAEVGDLN DAYLYTVDDM
    251
         VNIVQSGKEA RQKAAAAAET LVSEKVAEFV RQQQGRQSVP LIRALRDEGE
    301
         KARKQVLENA MKQLAKGATA EEVLERLSIQ LTNKLLHSPT QTLNKAGEED
    351
    401
         KDLVHAVAQI YHLDK*
m622/a622
           98.1% identity in 415 aa overlap
                           20
                                    30
                                             40
                                                      50
           MQLTAVGLNHQTAPLSIREKLAFAAAALPKAVRNLARSNAATEAVILSTCNRTELYCVGD
m622.pep
           a622
           MQLTAVGLNHQTAPLSIREKLAFAAACLPEAVRNLARSNAATEAVILSTCNRTELYCVGD
                  10
                           20
                                    30
                                             40
                                                      50
                                                               60
                           80
                                    90
                                            100
                                                     110
m622.pep
           SEEIIRWLADYHSLPIEEIRPYLYALDMQETVRHAFRVACGLDSMVLGEPQILGQIKDAV
           SEEIIRWLADYHSLPIEEISPYLYTLGMQETVRHAFRVACGLDSMVLGEPQILGQIKDAV
a622
                  70
                           80
                                    90
                                            100
                                                     110
                 130
                          140
                                   150
                                            160
                                                     170
           {\tt RVAQEQESMGKKLNALFQKTFSVAKEVRTDTAVGENSVSMASASVKLAEQIFPDIGDLNV}
m622.pep
           a622
           {\tt RVAQEQESMGKKLNALFQKTFSVAKEVRTDTAVGENSVSMASASVKLAEQIFPDIGDLNV}
                 130
                          140
                                   150
                                            160
                                                     170
```

m622.pep a622	190 LFIGAGEMIELVAT !          LFIGAGEMIELVAT					11111111
m622.pep	250 DVVVSSTASQLPIVO	`# <b>!</b> !!!!!!!!!	1111111111		11111111	111111
m622.pep	310 VNIVQSGKEARQKAA !!!!!!!!!!!!!! VNIVQSGKEARQKAA 310	111111111	1111111111	111111111111111111111111111111111111111	111111111	111111
m622.pep	370 MKQLAKGATAEEVLE 	111:1111	1111111111	HILLIAM		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1997>: g624.seq

- ATGATCCGTT ATCTTTAAT TGCCTGCGGC GGCATCTCCC TGCTGTTGGG
- 51 GATAATCGGC ATTTTTTTGC CGCTGTTGCC GACCACGCCG TTCGTACTAC
- 101 TCTCCGCCGC CTGCTGGGCA AAGGCAtccc cgcgcTTTCa ccgCTGGCTG
- 151 CACcgGCacc gCTATTTCGG CCCGATGGTT CATAACTGGG AACAAAACGG
- CGCAGTGCCG CGCAAAGCCA AGATTTTCGC CATCAGCATG AtaaccgcAt
- 251 cctgcctcat gatctTTtgg CattTTCccc aacnctggtg ggtcGGGGGG
- 301 GTTTCATCGG TTTTTTGTTC CCTTGTcacC ATacggatgt gGcacAGacC 351 cgaatCTTGA

#### This corresponds to the amino acid sequence <SEQ ID 1998; ORF 624.ng>: g624.pep

- MIRYLLIACG GISLLLGIIG IFLPLLPTTP FVLLSAACWA KASPRFHRWL HRHRYFGPMV HNWEQNGAVP RKAKIFAISM ITASCLMIFW HFPQXWWVGA
- 101 VSSVFCSLVT IRMWHRPES*

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 1999>: m624.seq

- ATGATACGTT ATCTTTAAT TGCCTGCGGC TGCATTTCCC TACTGTTGGG 1 51 TATCATCGGC ATTTTTTGC CGCTGTTGCC GACCACGCCG TTCGTACTGC
- 101 TCTCCGCCGC CTGCTGGGCA AAGGCATCCC CGCGCTTTTA CCGCTGGCTG
- 151 CACCGGCACC GCTATTTCGG CCCGATGGTT CATAACTGGG AACAAAACGG 201 CGCAGTGCCG CGCAAAGCCA AAATATTCGC CATCAGTATG ATGACCGCAT
- 251 CCTGCCTGAT AATGTTTTGG CAGTTTCCCC AACGCTGGTG GGTCGGGGCG
- 301 GTTTCATCGG TTTTTTGTTC CCTTGTCGCC ATATGGATGT GGCGCAGGCC 351 CGAATCTTGA

#### This corresponds to the amino acid sequence <SEQ ID 2000; ORF 624>: m624.pep

- MIRYLLIACG CISLLLGIIG IFLPLLPTTP FVLLSAACWA KASPRFYRWL
- HRHRYFGPMV HNWEQNGAVP RKAKIFAISM MTASCLIMFW QFPQRWWVGA
- 101 VSSVFCSLVA IWMWRRPES*

#### m624/g624 91.6% identity in 119 aa overlap

m624.pep	10 MIRYLLIACGCI	20	30 71.1.PTTPFV1.1.	40	50	60
g624		11111111111111		111111111	11:11:11:11	111111
	10	20	30	40	FIRWLHRHR 50	YFGPMV 60

.... 81 _ ______

999

70 80 90 100 110 120 HNWEQNGAVPRKAKIFAISMMTASCLIMFWQFPQRWWVGAVSSVFCSLVAIWMWRRPESX m624.pep  $\verb+HNWEQNGAVPRKAKIFAISMITASCLMIFWHFPQXWWVGAVSSVFCSLVTIRMWHRPESX$ a62470 80 90 100 110

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2001>:

a624.seq

1 ATGATACGTT ATCTTTTAAT TGCCTGCGGC TGCATTTCCC TGCTGTTGGG
51 TATCATCGGC ATTTTTTTGC CGCTGTTGCC GACCACGCCG TTCGTACTGC
101 TCTCCGCCGC CTGCTGGGCA AAGGCATCCC CGCGCTTTCA CCGCTGGCTG
151 CACCGGCACC GCTATTTCGG TCCGATGGTT CATAACTGGG AACAAAACGG
201 CGCAGTGCCG CGCAAAGCCA AAATATTCGC CATCAGTATG ATGACCGCAT
251 CCTGCCTGAT AATGTTTTGG CAGTTTCCCC AACGCTGGTG GGTCGGGGCG
301 GTTTCATCGG TTTTTTGTTC CCTTGTCGCC ATATGGATGT GGCGCAGGCC
351 CGAATCTTGA

This corresponds to the amino acid sequence <SEQ ID 2002; ORF 624.a>:

a624.pep

gtAA.

HRHRYFGPMV HNWEQNGAVP RKAKIFAISM MTASCLIMFW QFPQRWWVGA

101 VSSVFCSLVA IWMWRRPES*

m624/a624 99.2% identity in 119 aa overlap

20 30 40 MIRYLLIACGCISLLLGIIGIFLPLLPTTPFVLLSAACWAKASPRFYRWLHRHRYFGPMV m624.pep a624 MIRYLLIACGCISLLLGIIGIFLPLLPTTPFVLLSAACWAKASPRFHRWLHRHRYFGPMV 10 20 30 40 50 70 80 90 100

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2003>:

1 ATGTTTGCAA CCAGGAAAAT GAAGAAGATG ACGATGTGCA CGCGGCGGGT
51 ACGGTTTTGG TTGGCTTTCA GCAGCGGACG AATCATCAGC ATTGCTGCGC
101 CGGTCGTTCC CATGATAGAG GCAAGTGCCG TACCGACGC AAGCAGGGCG
151 GTGTTGAGCT TGGGTGTGCC GTTCAAGTCG CCCCAAACCA AAATGCCGCC
201 TGAAATGGTG TACAGGGCAA GCAGCAGCAG GATGAAAGG ATGTATTCTT
251 CAACGAGTGC GTGTGCGACG GTATGGATAC CGGCGGACGC GCCAAAAACC
301 AAACTGAACG GGATGAGGAA GAGCAATGTC CAAAAGGCGG TAATTTTTGCC
351 GTAA

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2004>: g625.seq

atgtttgcaa CCAGGAAAAT GAAGAAGATG ACGATGTGCA CGCGGCGGGT
51 ACGGtcttgg Ttggctttca GCAGCGGACG AATCATCAGC AttgCCGCGC
101 CGGtcgttc CATGATAGAG GCAAGTGCCG TACCGACGGC AAGCAGGGCG
151 GTGTTGACT TGGGTGTGCC GTTCAAGTCC CCCCAAACCA AAATGCCGCC
201 TGAAATGGTG TACAGGGCAA GCAGCAGCAG GATGAAGGGG ATATATTCTT
251 CAACGAGTGC GTGTGCGACG GTATGGATAC CGGCGGACGC GCCAAAAACC
301 AAACTGAACG GGATGAGGAA GAGCAATGTC CAAAAGGCGG TGATTTTGCC

This corresponds to the amino acid sequence <SEQ ID 2005; ORF 625.ng>: g625.pep

1 MFATRKMKKM TMCTRRVRSW LAFSSGRIIS IAAPVVPMIE ASAVPTASRA

BNSDOCID: <WO___9957280A2_I_>



VLSLGVPFKS PQTKMPPEMV YRASSSRMKG IYSSTSACAT VWIPADAPKT

101 KLNGMRKSNV QKAVILP*

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2006>:

- ATGTTTGCAA CCAGGAAAAT GAAGAAGATG ACGATGTGCA CGCGGCGGGT ACGGTTTTGG TTGGCTTTCA GCAGCGGACG AATCATCAGC ATTGCTGCGC 1
- 51
- 101 CGGTCGTTCC CATGATAGAG GCAAGTGCCG TACCGACGGC AAGCAGGGCG
- 151 GTGTTGAGCT TGGGTGTGCC GTTCAAGTCG CCCCAAACCA AAATGCCGCC 201 TGAAATGGTG TACAGGGCAA GCAGCAGCAG GATGAAAGGG ATGTATTCTT
- 251 CAACGAGTGC GTGTGCGACG GTATGGATAC CGGCGGACGC GCCAAAAACC
  301 AAACTGAACG GGATGAGGAA GAGCAATGTC CAAAAGGCGG TAATTTTGCC
- 351 GTAA

## This corresponds to the amino acid sequence <SEQ ID 2007; ORF 625>:

- MFATRKMKKM TMCTRRVRFW LAFSSGRIIS IAAPVVPMIE ASAVPTASRA
- VLSLGVPFKS PQTKMPPEMV YRASSSRMKG MYSSTSACAT VWIPADAPKT 5.1
- 101 KLNGMRKSNV QKAVILP*

#### m625/g625 98.3% identity in 117 aa overlap

	10	20	30	40	50	60
m625.pep	MFATRKMKKMTMCT	RRVRFWLAFS	SGRIISIAA	PVVPMIEASAV	PTASRAVLSL	GVPFKS
g625		  RRVRSWLAFS	 SGRIISIAA			 GVPFKS
	10	20	30	40	50	60
	70	80	90	100	110	
m625.pep	PQTKMPPEMVYRAS	SSRMKGMYSS	TSACATVWII	PADAPKTKLNG	MRKSNVQKAV	ILPX

PQTKMPPEMVYRASSSRMKGIYSSTSACATVWIPADAPKTKLNGMRKSNVQKAVILPX **q**625 70 80 90 100

### This corresponds to the amino acid sequence <SEQ ID 2008; ORF 625.a>:

a625.pep MFATRKMKKM TMCTRRVRFW LAFSSGRIIS IAAPVVPMIE ASAVPTASRA

51 VLSLGVPFKS POTKMPPEMV YRASSSRMKG MYSSTSACAT VWIPADAPKT

101 KLNGMRKSNV QKAVILP*

m625/a625100.0% identity in 117 aa overlap

605	10	20	30	40	50	60
m625.pep	MFATRKMKKMTMCT	RRVRFWLAFS	SGRIISIAAPV	/VPMIEASAV	PTASRAVLSLO	GVPFKS
a625	MENTERCONNECTION		1111111111		111111111	11111
0023	MFATRKMKKMTMCT	RRVRFWLAFS	SGRIISIAAPV	/VPMIEASAV	PTASRAVLSL	GVPFKS
	10	20	30	40	50	60

90 100 m625.pep PQTKMPPEMVYRASSSRMKGMYSSTSACATVWIPADAPKTKLNGMRKSNVQKAVILPX a625 PQTKMPPEMVYRASSSRMKGMYSSTSACATVWIPADAPKTKLNGMRKSNVQKAVILPX 70 80 90 100

### The following partial DNA sequence was identified in N. gonorrhoeae <SEO ID 2009>:

P		equence was	o identified i	u IV. <i>YONOTTH</i>	coeae SEU I
g627.seq		-		8	226.
1	ATGTCCGGCC	TTTGGAAACC	CGAACACCCG	GGATTTGAAA	TCCTCGGCAG
51	CCGTTACGCC	CTGCAAAACC	TTGTCCGCGA	TGTCATCCTG	ATTACATTGA
101	CCGCCGTATC	TATGGCAATC	ACGCCCAAAC	AAGTCCGCGC	AGGCAACGAA
151	TTCAACTTTG	AACCCATCGC	CGAAGTGGGC	AAACTCTTCC	TCGGCATCTT
201	CATCACCATC	TTCCCCGTCC	TGAGCATTCT	GAAAGCAGGC	GAGGCAGGCG
251	CGCTGGGCGG	GGTGGTATCG	CTGGTTCACG	ATACGGCAGG	TCATCCGATT
301	AATACGATGT	ATTTCTGGAT	GAGCGGCATA	TTGTCGGCAT	тсттесьтьь
351 401	CGCGCCCACT	TATCTCGTGT	TTTTCAATAT	GGCGGGCGGC	GATGCCCAAG
401 451	CCTTAATGAC	GGGTCCCCTG	TTTCATTcgc	TGCTGGCGGT	TTCTAtgggT
431	CCGGTATTCA	TGGGCGCACT	GaccTACATc	gGCAAcgcac	cgaactTCAT

្រុង និសាស្រ្ទី២ និង និង

#### 1001

CGCTGGGCGG GGTGGTATCG CTGGTTCACG ATACGGCAGG TCATCCGATT

301 AATGTGATGT ATTTTTGGAT GAGCGGCATA TTGTCGGCAT TCTTGGATAA
351 CGCGCCCACT TATCTCGTTT TTTTCAATAT GGCGGGCGGC GATGCCCAAG
401 CCTTGATGAC GGGTACCCTG TTTCATTCGC TGCTGGCGGT TTCTATGGGT
451 TCGGTATTCA TGGGCGCACT GACCTACATC GGCAACGCAC CGAACTTCAT
501 GGTCAAGGCC ATTGCCGAAC AGCGCGCGT ACCGATGCCG ACTTTCTTCG
551 GCTATATGAT GTGGTCGGTC GCCTTCCTGA CACCCGTCTT CATCGTACAT

```
501 GGTcaaggcc aTTGCCGaaC agcgcgGCgt accgaTGCcg actTTCTTcc
               ggtaTAtgat gtggtcggtc gcCTTCCTGa caCCCGTCTT CAtcgTACAT
          601 ACCCTcgtCT TTTTcgTTtt cAAACTACTg taa
This corresponds to the amino acid sequence <SEQ ID 2010; ORF 627.ng>:
     g627.pep
               MSGLWKPEHP GFEILGSRYA LQNLVRDVIL ITLTAVSMAI TPKQVRAGNE
               FNFEPIAEVG KLFLGIFITI FPVLSILKAG EAGALGGVVS LVHDTAGHPI
               NTMYFWMSGI LSAFLDNAPT YLVFFNMAGG DAQALMTGPL FHSLLAVSMG
          101
               SVFMGALTYI GNAPNFMVKA IAEQRGVPMP TFFRYMMWSV AFLTPVFIVH
          201
               TLVFFVFKLL
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2011>:
     m627.seg
               ATGTCCGGCC TTTGGAAACC CGAACACCCG GGATTTGAAA TCCTCGGCAG
              CCGTTACGCC CTGCAAAACC TCGTCCGCGA TGTCATCCTG ATTGCATTGA
           51
          101 CCGCCGTATC TATGGCAATC ACGCCCAAAC AAGTCCGCGC AGGCAACGAA
          151 TTCAACTTTG AACCCATCGC CGAAGTGGGC AAACTCTTCC TCGGCATCTT
          201 CATCACCATC TTTCCCGTCC TGAGCATTCT GAAAGCAGGC GAGGCAGGCG
```

This corresponds to the amino acid sequence <SEQ ID 2012; ORF 627>:

601 ACCCTTATCT TTTTCGTTTT CAAACTGCTG TAA

m627.pep

1 MSGLWKPEHP GFEILGSRYA LQNLVRDVIL IALTAVSMAI TPKQVRAGNE
51 FNFEPIAEVG KLFLGIFITI FPVLSILKAG EAGALGGVVS LVHDTAGHPI
101 NVMYFWMSGI LSAFLDNAPT YLVFFNMAGG DAQALMTGTL FHSLLAVSMG
151 SVFMGALTYI GNAPNFMVKA IAEQRGVPMP TFFGYMMWSV AFLTPVFIVH
201 TLIFFVFKLL *

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m627/g627 97.6% identity in 210 aa overlap

BNSDOCID: <WO___9957280A2_|_>

### 1002

	70 80 90 100 110 120
m627.pep	KLFLGIFITIFPVLSILKAGEAGALGGVVSLVHDTAGHPINVMYFWMSGILSAFLDNAPT
g627	KLFLGIFITIFPVLSILKAGEAGALGGVVSLVHDTAGHPINTMYFWMSGILSAFLDNAP
	70 80 90 100 110 120
605	130 140 150 160 170 180
m627.pep	YLVFFNMAGGDAQALMTGTLFHSLLAVSMGSVFMGALTYIGNAPNFMVKAIAEQRGVPME
g627	YLVFFNMAGGDAQALMTGPLFHSLLAVSMGSVFMGALTYIGNAPNFMVKAIAEQRGVPMF
	130 140 150 160 170 180
	190 200 210
m627.pep	TFFGYMMWSVAFLTPVFIVHTLIFFVFKLLX 
g 627	TFFRYMMWSVAFLTPVFIVHTLVFFVFKLLX
	190 200 210
The following p	partial DNA sequence was identified in N. meningitidis <seq 2013="" id="">:</seq>
a627.seq	
1 51	ATGTCCGGCC TTTGGAAACC CGAACACCCG GGATTTGAAA TCCTCGGCAG
101	CCGTTACGCC CTGCAAAACC TCGTCCGCGA TGTCATCCTG ATTGCATTGA CCGCCGTATC TATGGCAATC ACGCCCAAAC AAGTCCGCGC AGGCAACGAA
151	TTCAACTTTG AACCCATCGC CGAAGTGGGC AAACTCTTCC TCGGCATCTT
201	CATCACCATC TTTCCCGTCC TGAGCATTCT GAAAGCAGGC GAGGCAGGCG
251	CGCTGGGCGG GGTGGTATCG CTGGTTCACG ATACGGCAGG TCATCCGATT
301	AATGTGATGT ATTTTTGGAT GAGCGGCATA TTGTCGGCAT TCTTGGATAA
351	CGCGCCCACT TATCTCGTTT TTTTCAATAT GGCGGGCGGC GATGCCCAAG
401 451	CCTTGATGAC GGGTTCCCTG TTTCATTCGC TGCTGGCGGT TTCTATGGGT
501	TCGGTATTCA TGGGCGCACT GACCTACATC GGCAACGCAC CGAACTTCAT
	GGTCAAGGCC ATTGCCGAAC AGCGCGCGT ACCGATGCCG ACTTTCTTCG GCTATATGAT GTGGTCGGTC GCCTTCCTGA CACCCGTCTT CATCGTACAT
601	ACCCTTATCT TTTTCGTTTT CAAACTGCTG TAA
This correspond	ds to the amino acid sequence <seq 2014;="" 627.a="" id="" orf="">:</seq>
TIME COLLEGE OUT	is to the animo acid sequence \SEQ 1D 2014; ORF 027.8>;
a627 non	,
a627.pep	
a627.pep 1	MSGLWKPEHP GFEILGSRYA LQNLVRDVIL IALTAVSMAI TPKOVRAGNE
a627.pep 1 51	MSGLWKPEHP GFEILGSRYA LQNLVRDVIL IALTAVSMAI TPKQVRAGNE FNFEPIAEVG KLFLGIFITI FPVLSILKAG EAGALGGVVS LVHDTAGHPI
a627.pep 1	MSGLWKPEHP GFEILGSRYA LQNLVRDVIL IALTAVSMAI TPKQVRAGNE FNFEPIAEVG KLFLGIFITI FPVLSILKAG EAGALGGVVS LVHDTAGHPI NVMYFWMSGI LSAFLDNAPT YLVFFNMAGG DAOALMTGSL FHSLLAVSMG
a627.pep 1 51 101	MSGLWKPEHP GFEILGSRYA LQNLVRDVIL IALTAVSMAI TPKQVRAGNE FNFEPIAEVG KLFLGIFITI FPVLSILKAG EAGALGGVVS LVHDTAGHPI
a627.pep 1 51 101 151	MSGLWKPEHP GFEILGSRYA LQNLVRDVIL IALTAVSMAI TPKQVRAGNE FNFEPIAEVG KLFLGIFITI FPVLSILKAG EAGALGGVVS LVHDTAGHPI NVMYFWMSGI LSAFLDNAPT YLVFFNMAGG DAQALMTGSL FHSLLAVSMG SVFMGALTYI GNAPNFMVKA IAEQRGVPMP TFFGYMMWSV AFLTPVFIVH TLIFFVFKLL *
a627.pep 1 51 101 151 201	MSGLWKPEHP GFEILGSRYA LQNLVRDVIL IALTAVSMAI TPKQVRAGNE FNFEPIAEVG KLFLGIFITI FPVLSILKAG EAGALGGVVS LVHDTAGHPI NVMYFWMSGI LSAFLDNAPT YLVFFNMAGG DAQALMTGSL FHSLLAVSMG SVFMGALTYI GNAPNFMVKA IAEQRGVPMP TFFGYMMWSV AFLTPVFIVH TLIFFVFKLL *  99.5% identity in 210 aa overlap
a627.pep 1 51 101 151 201 m627/a62	MSGLWKPEHP GFEILGSRYA LQNLVRDVIL IALTAVSMAI TPKQVRAGNE FNFEPIAEVG NVMYFWMSGI LSAFLDNAPT YLVFFNMAGG DAQALMTGSL FHSLLAVSMG SVFMGALTYI GNAPNFMVKA IAEQRGVPMP TFFGYMMWSV AFLTPVFIVH  TLIFFVFKLL *  99.5% identity in 210 aa overlap  10 20 30 40 50 60
a627.pep 1 51 101 151 201	MSGLWKPEHP GFEILGSRYA LQNLVRDVIL IALTAVSMAI TPKQVRAGNE FNFEPIAEVG KLFLGIFITI FPVLSILKAG EAGALGGVVS LVHDTAGHPI NVMYFWMSGI LSAFLDNAPT YLVFFNMAGG DAQALMTGSL FHSLLAVSMG SVFMGALTYI GNAPNFMVKA IAEQRGVPMP TFFGYMMWSV AFLTPVFIVH *  99.5% identity in 210 aa overlap  10 20 30 40 50 60 MSGLWKPEHPGFEILGSRYALQNLVRDVILIALTAVSMAITPKOVRAGNEFNFEPIAEVG
a627.pep 1 51 101 151 201 m627/a62	MSGLWKPEHP GFEILGSRYA LQNLVRDVIL IALTAVSMAI TPKQVRAGNE FNFEPIAEVG KLFLGIFITI FPVLSILKAG EAGALGGVVS LVHDTAGHPI NVMYFWMSGI LSAFLDNAPT YLVFFNMAGG DAQALMTGSL FHSLLAVSMG SVFMGALTYI GNAPNFMVKA IAEQRGVPMP TFFGYMMWSV AFLTPVFIVH *  99.5% identity in 210 aa overlap  10 20 30 40 50 60 MSGLWKPEHPGFEILGSRYALQNLVRDVILIALTAVSMAITPKQVRAGNEFNFEPIAEVG
a627.pep  51 101 151 201  m627/a627	MSGLWKPEHP GFEILGSRYA LQNLVRDVIL IALTAVSMAI TPKQVRAGNE FNFEPIAEVG KLFLGIFITI FPVLSILKAG EAGALGGVVS LVHDTAGHPI NVMYFWMSGI LSAFLDNAPT YLVFFNMAGG DAQALMTGSL FHSLLAVSMG SVFMGALTYI GNAPNFMVKA IAEQRGVPMP TFFGYMMWSV AFLTPVFIVH TLIFFVFKLL *  99.5% identity in 210 aa overlap  10 20 30 40 50 60 MSGLWKPEHPGFEILGSRYALQNLVRDVILIALTAVSMAITPKQVRAGNEFNFEPIAEVG
a627.pep  51 101 151 201  m627/a627	MSGLWKPEHP GFEILGSRYA LQNLVRDVIL IALTAVSMAI TPKQVRAGNE FNFEPIAEVG KLFLGIFITI FPVLSILKAG EAGALGGVVS LVHDTAGHPI NVMYFWMSGI LSAFLDNAPT YLVFFNMAGG DAQALMTGSL FHSLLAVSMG SVFMGALTYI GNAPNFMVKA IAEQRGVPMP TFFGYMMWSV AFLTPVFIVH *  99.5% identity in 210 aa overlap  10 20 30 40 50 60 MSGLWKPEHPGFEILGSRYALQNLVRDVILIALTAVSMAITPKQVRAGNEFNFEPIAEVG
a627.pep  1 51 101 151 201  m627/a627  m627.pep a627	MSGLWKPEHP GFEILGSRYA LQNLVRDVIL IALTAVSMAI TPKQVRAGNE FNFEPIAEVG KLFLGIFITI FPVLSILKAG EAGALGGVVS LVHDTAGHPI NVMYFWMSGI LSAFLDNAPT YLVFFNMAGG DAQALMTGSL FHSLLAVSMG SVFMGALTYI GNAPNFMVKA IAEQRGVPMP TFFGYMMWSV AFLTPVFIVH *  99.5% identity in 210 aa overlap  10 20 30 40 50 60 MSGLWKPEHPGFEILGSRYALQNLVRDVILIALTAVSMAITPKQVRAGNEFNFEPIAEVG
a627.pep  51 101 151 201  m627/a627	MSGLWKPEHP GFEILGSRYA LQNLVRDVIL IALTAVSMAI TPKQVRAGNE FNFEPIAEVG KLFLGIFITI FPVLSILKAG EAGALGGVVS LVHDTAGHPI NVMYFWMSGI LSAFLDNAPT YLVFFNMAGG DAQALMTGSL FHSLLAVSMG SVFMGALTYI GNAPNFMVKA IAEQRGVPMP TFFGYMMWSV AFLTPVFIVH *  99.5% identity in 210 aa overlap  10 20 30 40 50 60 MSGLWKPEHPGFEILGSRYALQNLVRDVILIALTAVSMAITPKQVRAGNEFNFEPIAEVG
a627.pep  1 51 101 151 201  m627/a627  m627.pep a627	MSGLWKPEHP GFEILGSRYA LQNLVRDVIL IALTAVSMAI TPKQVRAGNE FNFEPIAEVG KLFLGIFITI FPVLSILKAG EAGALGGVVS LVHDTAGHPI NVMYFWMSGI LSAFLDNAPT YLVFFNMAGG DAQALMTGSL FHSLLAVSMG SVFMGALTYI GNAPNFMVKA IAEQRGVPMP TFFGYMMWSV AFLTPVFIVH *  99.5% identity in 210 aa overlap  10 20 30 40 50 60 MSGLWKPEHPGFEILGSRYALQNLVRDVILIALTAVSMAITPKQVRAGNEFNFEPIAEVG
m627.pep  m627.pep  a627  m627.pep  a627	MSGLWKPEHP GFEILGSRYA LQNLVRDVIL IALTAVSMAI TPKQVRAGNE FNFEPIAEVG KLFLGIFITI FPVLSILKAG EAGALGGVVS LVHDTAGHPI NVMYFWMSGI LSAFLDNAPT YLVFFNMAGG DAQALMTGSL FHSLLAVSMG SVFMGALTYI GNAPNFMVKA IAEQRGVPMP TFFGYMMWSV AFLTPVFIVH *  99.5% identity in 210 aa overlap  10 20 30 40 50 60 MSGLWKPEHPGFEILGSRYALQNLVRDVILIALTAVSMAITPKQVRAGNEFNFEPIAEVG
m627.pep  m627.pep  a627  m627.pep  a627	MSGLWKPEHP GFEILGSRYA LQNLVRDVIL IALTAVSMAI TPKQVRAGNE FNFEPIAEVG KLFLGIFITI FPVLSILKAG EAGALGGVVS LVHDTAGHPI NVMYFWMSGI LSAFLDNAPT YLVFFNMAGG DAQALMTGSL FHSLLAVSMG SVFMGALTYI GNAPNFMVKA IAEQRGVPMP TFFGYMMWSV AFLTPVFIVH *  99.5% identity in 210 aa overlap  10 20 30 40 50 60 MSGLWKPEHPGFEILGSRYALQNLVRDVILIALTAVSMAITPKQVRAGNEFNFEPIAEVG
m627.pep  m627.pep  a627  m627.pep  a627	MSGLWKPEHP GFEILGSRYA LQNLVRDVIL IALTAVSMAI TPKQVRAGNE FNFEPIAEVG KLFLGIFITI FPVLSILKAG EAGALGGVVS LVHDTAGHPI NVMYFWMSGI LSAFLDNAPT YLVFFNMAGG DAQALMTGSL FHSLLAVSMG SVFMGALTYI GNAPNFMVKA IAEQRGVPMP TFFGYMMWSV AFLTPVFIVH *  99.5% identity in 210 aa overlap  10 20 30 40 50 60 MSGLWKPEHPGFEILGSRYALQNLVRDVILIALTAVSMAITPKQVRAGNEFNFEPIAEVG
a627.pep  1 51 101 151 201  m627/a62  m627.pep a627  m627.pep a627	MSGLWKPEHP GFEILGSRYA LQNLVRDVIL IALTAVSMAI TPKQVRAGNE FNFEPIAEVG KLFLGIFITI FPVLSILKAG EAGALGGVVS LVHDTAGHPI NVMYFWMSGI LSAFLDNAPT YLVFFNMAGG DAQALMTGSL FHSLLAVSMG SVFMGALTYI GNAPNFMVKA IAEQRGVPMP TFFGYMMWSV AFLTPVFIVH  99.5% identity in 210 aa overlap  10 20 30 40 50 60 MSGLWKPEHPGFEILGSRYALQNLVRDVILIALTAVSMAITPKQVRAGNEFNFEPIAEVG
m627.pep a627 m627.pep a627 m627.pep a627	MSGLWKPEHP FNFEPIAEVG FNFEPIAEVG FNFEPIAEVG FNFEPIAEVG FNFEPIAEVG NVMYFWMSGI LSAFLDNAPT YLVFFNMAGG DAQALMTGSL FHSLLAVSMG SVFMGALTYI GNAPNFMVKA IAEQRGVPMP TFFGYMMWSV AFLTPVFIVH         LVHDTAGHPI FNSLLAVSMG FNSLLAVSMG AFLTPVFIVH           SVFMGALTYI TLIFFVFKLL *         10 20 30 40 50 60           MSGLWKPEHPGFEILGSRYALQNLVRDVILIALTAVSMAITPKQVRAGNEFNFEPIAEVG SILIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
a627.pep  1 51 101 151 201  m627/a62  m627.pep a627  m627.pep a627	MSGLWKPEHP GFEILGSRYA LQNLVRDVIL IALTAVSMAI TPKQVRAGNE FNFEPIAEVG KLFLGIFITI FPVLSILKAG EAGALGGVVS LVHDTAGHPI NVMYFWMSGI LSAFLDNAPT YLVFFNMAGG DAQALMTGSL FHSLLAVSMG SVFMGALTYI GNAPNFMVKA IAEQRGVPMP TFFGYMMWSV AFLTPVFIVH *  99.5% identity in 210 aa overlap  10 20 30 40 50 60 MSGLWKPEHPGFEILGSRYALQNLVRDVILIALTAVSMAITPKQVRAGNEFNFEPIAEVG IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
a627.pep  1 51 101 151 201  m627/a62  m627.pep a627  m627.pep a627	MSGLWKPEHP GFEILGSRYA LONLURDVIL IALTAVSMAI TPKQVRAGNE KLFLGIFITI FPVLSILKAG EAGALGGVVS LVHDTAGHPI NVMYFWMSGI LSAFLDNAPT YLVFFNNAGG DAQALMTGSL FHSLLAVSMG SVFMGALTYI GNAPNFMVKA IAEQRGVPMP TFFGYMMWSV AFLTPVFIVH  10 20 30 40 50 60 MSGLWKPEHPGFEILGSRYALQNLVRDVILIALTAVSMAITPKQVRAGNEFNFEPIAEVG 10 20 30 40 50 60 MSGLWKPEHPGFEILGSRYALQNLVRDVILIALTAVSMAITPKQVRAGNEFNFEPIAEVG 10 20 30 40 50 60 60 MSGLWKPEHPGFEILGSRYALQNLVRDVILIALTAVSMAITPKQVRAGNEFNFEPIAEVG 10 20 30 40 50 60 60 MSGLWKPEHPGFEILGSRYALQNLVRDVILIALTAVSMAITPKQVRAGNEFNFEPIAEVG 10 20 30 40 50 60 60 10 110 120 KLFLGIFITIFPVLSILKAGEAGALGGVVSLVHDTAGHPINVMYFWMSGILSAFLDNAPT 111111111111111111111111111111111111
a627.pep  1 51 101 151 201  m627/a62  m627.pep a627  m627.pep a627	MSGLWKPEHP   GFEILGSRYA
m627.pep a627 m627.pep a627 m627.pep a627 m627.pep a627	MSGLWKPEHP GFEILGSRYA LONLURDVIL IALTAVSMAI TPKQVRAGNE KLFLGIFITI FPVLSILKAG EAGALGGVVS LVHDTAGHPI NVMYFWMSGI LSAFLDNAPT YLVFFNNAGG DAQALMTGSL FHSLLAVSMG SVFMGALTYI GNAPNFMVKA IAEQRGVPMP TFFGYMMWSV AFLTPVFIVH  10 20 30 40 50 60 MSGLWKPEHPGFEILGSRYALQNLVRDVILIALTAVSMAITPKQVRAGNEFNFEPIAEVG 10 20 30 40 50 60 MSGLWKPEHPGFEILGSRYALQNLVRDVILIALTAVSMAITPKQVRAGNEFNFEPIAEVG 10 20 30 40 50 60 60 MSGLWKPEHPGFEILGSRYALQNLVRDVILIALTAVSMAITPKQVRAGNEFNFEPIAEVG 10 20 30 40 50 60 60 MSGLWKPEHPGFEILGSRYALQNLVRDVILIALTAVSMAITPKQVRAGNEFNFEPIAEVG 10 20 30 40 50 60 60 10 110 120 KLFLGIFITIFPVLSILKAGEAGALGGVVSLVHDTAGHPINVMYFWMSGILSAFLDNAPT 111111111111111111111111111111111111

1003

a627 TFFGYMMWSVAFLTPVFIVHTLIFFVFKLLX 190 200 210

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2015>:

9628.seq

1 ATGTGCGTGC CACTCAAGCC GGCAGGATGC GGGCCGCCAA ATTCATGTGT
51 TTCGATATTG GCAGCATTTT CAGACGGCAC GTCTGCGCCT GCTGCTTTAC
101 ACACATGGAT TTTACGTTCG GTCAGGCGGC TCAATACCAA CAGGCCGCGT
151 TTGAAGTCTT CGGCGGCTTC TTTGATGATG ACCGTAGGGT CGGCAGCCAG
201 CGGATTGGTG TCCATCGCAT TGACGAAGAT GGCGAACGGC TCGGCATCTA
251 CGGCAGGGAT TTTGCTGAAC GGACGGGTGC GAAGCGCAGT CCATAAGCCT
301 GATTGAATCA GGTTGCGGCG CACTTTTTCG CTGCTCAATT TTGCCAGCGC
351 TTCAGGTacg TAG

This corresponds to the amino acid sequence <SEQ ID 2016; ORF 628.ng>:

g628.pep

- MCVPLKPAGC GPPNSCVSIL AAFSDGTSAP AALHTWILRS VRRLNTNRPR
- 51 LKSSAASLMM TVGSAASGLV SIALTKMANG SASTAGILLN GRVRSAVHKP
- 101 D*IRLRRTFS LLNFASASGT *

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2017>:

m628.seq

1 ATGTGCGTGC CACTCAAACC GGCAGGATGC GGGCCGCGA ATTCATGTGT
51 TTCGATGTTG GCAGCATTTT CAGACGGCAC GTCTGCGCCA GCTGCCTTAC
101 AAACATGGAT TTTGCGTTCG GTCAAACGGC TCAATACCAA CAGGCCGCGT
151 TTGAAATCCT CGGCGGCTTC TTTGATAATG ACCGTAGGGT CGGCAGCCAG
201 CGGATTGGTG TCCATCGCAT TGACGAAGAT GGCGAACGGC TCGGCATCGA
251 CGGCAGGAAT TTTGCTGAAC GGACGGGTGC GCAGCGCAGT CCACAAACCG
301 GATTGGATCA GGTTGCGGCG CACTTCTTCG CCGCTTAAGT TTGCCAGCGC
351 TTCAGGTGCG TAG

This corresponds to the amino acid sequence <SEQ ID 2018; ORF 628>:

m628.pep

- 1 MCVPLKPAGC GPPNSCVSML AAFSDGTSAP AALQTWILRS VKRLNTNRPR 51 LKSSAASLIM TVGSAASGLV SIALTKMANG SASTAGILLN GRVRSAVHKP
- 101 DWIRLRRTSS PLKFASASGA *

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m628/g628 93.3% identity in 119 aa overlap

m628.pep	10 MCVPLKPAGCGPPN           MCVPLKPAGCGPPN	1111:1111	111111111:	1111111:11	11111111	11111:1
	10	20	30	40	50	60
m628.pep	70 TVGSAASGLVSIAL            TVGSAASGLVSIAL 70	1111111111	111111111	1111111 11	1111 1 1:1	111111:
m628.pep	x					
g628	х					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2019>:

```
a628.seq
           1
             ATGTGCGTGC CACTCAAACC GGCCGGATGC GGGCCGCCGA ATTCATGTGT
             TTCGATGTTG GCAGCATTTT CAGACGGCAC GTCTGCGCCA GCTGCCTTAC
          51
             ACACATGGAT TTTACGCTCG GTCAAACGGC TCAATACCAG CAAACCTCGT
             CTGAAATCCT CGGCGGCTTC TTTGATCACA ACCACAGGGT CTGCCGCCAG
         151
         201 CGGATTGGTG TCCATCGCAT TGACGAAGAT GGCGAACGGC TCGGCATCGA
             CGGCAGGGAT TTTGCTGAAC GGACGGGTAC GCAGCGCAGT CCACAAACCG
         301
             GATTGGATCA GATTGCGGCG CACTTCTTCG CCGCTTAAGT TTGCCAACGC
         351
             TTCGGGCGCG TAG
This corresponds to the amino acid sequence <SEO ID 2020; ORF 628.a>:
    a628.pep
             MCVPLKPAGC GPPNSCVSML AAFSDGTSAP AALHTWILRS VKRLNTSKPR
             LKSSAASLIT TTGSAASGLV SIALTKMANG SASTAGILLN GRVRSAVHKP
          51
             DWIRLRRTSS PLKFANASGA *
                95.0% identity in 120 aa overlap
    m628/a628
                                 20
                                          30
                                                   40
                                                             50
                                                                      60
                {\tt MCVPLKPAGCGPPNSCVSMLAAFSDGTSAPAALQTWILRSVKRLNTNRPRLKSSAASLIM}
    m628.pep
                a628
                MCVPLKPAGCGPPNSCVSMLAAFSDGTSAPAALHTWILRSVKRLNTSKPRLKSSAASLIT
                       10
                                20
                                          30
                                                   40
                       70
                                80
                                          90
                                                  100
                                                           110
                                                                     120
                TVGSAASGLVSIALTKMANGSASTAGILLNGRVRSAVHKPDWIRLRRTSSPLKFASASGA
    m628.pep
                a628
                TTGSAASGLVSIALTKMANGSASTAGILLNGRVRSAVHKPDWIRLRRTSSPLKFANASGA
                                80
                                          90
                                                  100
                                                           110
    m628.pep
                х
    a628
                Х
```

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2021>:

```
g629.seq
      1
         ATGACTGCca aacCTTTTTC CCTCAACCTG GCcaaCCTCC TGCTGCCggc
     51
         ggtatTGTTT GCCGTCAGcc tGtcggTCGG cattgccgaT TTCCGCTGGT
    101
         CGGATGTGTT TTCGCTGTCC GACAGCCAGC AAGTGATGTT CATCAGCCGC
         CTGCCGCGCA CGTTTGcgaT TGTGTTGACG GGCgcgtcga tagcgGtggc
    201
         gGGGAtgatt atgcagATTC TGATGCGCAA CcgtTTTGTC GAGCCTtcta
         tggcgGGTGC GGGCCAAAGt gcgGCTTTGG GTttgcttct gAtgtccctg
         ctgctgcctg CcgcGccgct gccggtcaAA ATGTCGGtag Ccgccgttgc
    351
         CGCGCTGATC GGGATGTTGG tctTtatgct gctaatccgC Cgcctgccac
     401
         cgacggcgca gctgatgGTg ccgCTGGTGG Gg.ttATTTT CGGCGGCGTG
     451
         GttgaGGCGG TGGCGACGTT TGTCGCGTAT GAGTTTGAGA TGCTGCAAAT
    501
         GTTGGGCGTG TGGCAGCAGG GCGACTTTTC AAGCGTGCTG CTGGGGCGGT
     551 ACGAGCTGCT TTGGATTACG GGCGGTTTTGG CGGTGTTTGC CTACCTGATT
         GCCGACCGGC TGACGATTTT GGGGCTGGGC GAGACGGTGA GCGTGAATTT
     601
     651
         GGGTTTGAAC CGGACGGCGG TGTTGTGGTC GGGTTTGATT ATTGTGGCAC
         TGATTACATC GCTGGTCATT GTAACGGTCG GCAATATTCC GTTTATCGGG
         CTGGTCGTGC CGAATATCGT CAGCCGCCTG ATGGGCGACA GGCTGCGCCA
    751
    801 AAGCCTGCCT GCGGTCGCCC TCTTGGGCGC GTCTTTGGTT TTATTGTGCG
    851 ACATTATCGG ACGCATGATT GTGTTTCCGT TTGAAATTCC GGTCTCCACG
    901 GTTTTTGGTG TGTTGGGTAC GGCTTTGTTT TTGTGGCTTT TGTTGAGGAA
    951 ACCCGCCTAT GCCGTCTGA
```

## This corresponds to the amino acid sequence <SEQ ID 2022; ORF 629.ng>: g629.pep

1 MTAKPFSLNL ANLLLPAVLF AVSLSVGIAD FRWSDVFSLS DSQQVMFISR
51 LPRTFAIVLT GASIAVAGMI MQILMRNRFV EPSMAGAGQS AALGLLLMSL
101 LLPAAPLPVK MSVAAVAALI GMLVFMLLIR RLPPTAQLMV PLVGXIFGGV

1005

```
151 <u>VEAVATFVAY</u> EFEMLOMLGV WQQGDFSSVL LGRYELLWIT GGLAVFAYLI
201 <u>ADRLTILG</u>LG ETVSVNLGLN RTAVLWSGLI IVALITSLVI VTVGNIPFIG
251 LVVPNIVSRL MGDRLRQSLP <u>AVALLGASLV LLCDII</u>GRMI VFPFEIPVST
301 <u>VFGVLGTALF LWLLLRKPAY</u> AV*
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2023>:

```
m629.seq
          ATGACTGCCA AACCTTTTTC CCTCAACCTG ACCAACCTGC TGCTGCTGGC
       1
         GGTGTTGTTT GCCGTCAGCC TGTCGGTGGG CGTTGCCGAT TTCCGCTGGT
     101 CTGATGTGTT TTCACTGTCC GACAGCCAGC AGGTCATGTT CATCAGCCGC
     151 CTGCCGCGCA CGTTTGCGAT TGTGCTGACG GGCGCGTCGA TGGCGGTGGC
201 CGGCATGATT ATGCAGATTT TGATGCGCAA CCGTTTTGTC GAACCGTCGA
          CGGCATGATT ATGCAGATTT TGATGCGCAA CCGTTTTGTC GAACCGTCGA
     251 TGGTGGGCGC AAGCCAAAGC GCGGCTTTAG GTTTGCTGCT GATGACCCTG
     301 CTGCTGCCGG CCGCGCCGCT GCCGGCGAAA ATGTCGGTTG CCGCCGTTGC
     351 CGCGCTGATC GGGATGTTGG TCTTTATGCT GCTGATCCGC CGCCTGCCGC
     401 CGACCGCGCA ACTGATGGTG CCTTTGGTCG GGATTATTTT CGGCGGTGTG
451 ATTGAGGCGG TAGCCACCTT TATCGCGTAT GAAAACGAAA TGCTGCAAAT
     501 GCTCGGCGTG TGGCAGCAGG GCGATTTTTC GAGCGTGCTG CTGGGGCGGT
     551 ACGAGCTGCT TTGGATTACG GGCGGTTTTGG CGGTGTTTGC CTATCTGATT
     601 GCCGACCGGC TGACGATTTT GGGGCTGGGC GAAACGGTAA GCGTGAATTT
     651 GGGTTTGAAC CGGACGGCGG TGTTGTGGTC GGGTTTGATT ATTGTGGCTT
          TGATTACGTC GCTGGTTATC GTTACGGTCG GCAATATTCC GTTTATCGGG
     751 CTGGTCGTGC CGAACATCAT CAGCCGCCTG ATGGGCGACA GGTTGCGCCA
     801 AAGCCTGCCT GCGGTGGCCT TGCTGGGCGC ATCTTTGGTG TTGCTGTGCG
     851 ACATTATCGG ACGCGTGATT GTGTTTCCGT TTGAAATTCC GGTCTCTACG
     901 GTTTTTGGTG TATTGGGTAC GGCTTTGTTT TTGTGGCTTT TGTTGAGGAA
     951 ACCCGCCTAT GCCGTCTGA
```

### This corresponds to the amino acid sequence <SEQ ID 2024; ORF 629>:

```
m629.pep

1 MTAKPFSLNL TNLLLLAVLF AVSLSVGVAD FRWSDVFSLS DSQQVMFISR
51 LPRTFAIVLT GASMAVAGMI MQILMRNRFV EPSMVGASQS AALGLLLMTL
101 LLPAAPLPAK MSVAAVAALI GMLVFMLLIR RLPPTAQLMV PLVGIIFGGV
151 IEAVATFIAY ENEMLQMLGV WQQGDFSSVL LGRYELLWIT GGLAVFAYLI
201 ADRLTILGLG ETVSVNLGLN RTAVLWSGLI IVALITSLVI VTVGNIPFIG
251 LVVPNIISRL MGDRLRQSLP AVALLGASLV LLCDIIGRVI VFPFEIPVST
301 VFGVLGTALF LWLLLRKPAY AV*
```

## Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

#### m629/g629 95.7% identity in 322 aa overlap

	10	20	30	40	50	60
m629.pep	MTAKPFSLNLTNLLI	LAVLFAVSL	SVGVADFRWS	DVFSLSDSQQ	VMFISRLPRT	FAIVLT
	11111111:1:111	11111111	111:11111	1111111111	111111111	11111
g629	MTAKPFSLNLANLLI	.PAVLFAVSL	SVGIADFRWS	DVFSLSDSQQ	VMFISRLPRI	FAIVLT
	10	20	30	40	50	60
	70	80	90	100	110	120
m629.pep	GASMAVAGMIMQILM	IRNRFVEPSM	VGASQSAALG:	LLLMTLLLPA	APLPAKMSVA	AVAALI
						11111
g629	GASIAVAGMIMQILM	RNRFVEPSM	AGAGQSAALG:	LLLMSLLLPA	APLPVKMSVA	AVAALI
	70	80	90	100	110	120
	130	140	150	160	170	180
m629.pep	GMLVFMLLIRRLPPI	'AQLMVPLVG	IIFGGVIEAV	ATFIAYENEM	ILQMLGVWQQG	DFSSVL
					HIIIIIIII	11111
g629	GMLVFMLLIRRLPPT	AQLMVPLVG	XIFGGVVEAV	ATFVAYEFEM	ILOMLGVWOOG	DFSSVL
	130	140	150	160	170	180
	190	200	210	220	230	240
m629.pep	LGRYELLWITGGLAV	FAYLIADRL	TILGLGETVS	VNLGLNRTAV	'LWSGLIIVAI	LITSLVI
		1111111111	1111111111		111111111	111111

g629	LGRYELLWITGGLAVFAYLIADRLTILGLGETVSVNLGLNRTAVLWSGLIIVALITSLVI 190 200 210 220 230 240
m629.pep	250 260 270 280 290 300 VTVGNIPFIGLVVPNIISRLMGDRLRQSLPAVALLGASLVLLCDIIGRVIVFPFEIPVST
g629	VTVGNIPFIGLVVPNIVSRLMGDRLRQSLPAVALLGASLVLLCDIIGRMIVFPFEIPVST 250 260 270 280 290 300
<b>m629.pe</b> p	310 320 VFGVLGTALFLWLLLRKPAYAVX 
g629	VFGVLGTALFLWLLLRKPAYAVX 310 320
The following p	partial DNA sequence was identified in N. meningitidis <seq 2025="" id="">:</seq>
a629.seq	
1	ATGACTGCCA AACCTTTTTC CCTCAACCTG ACTAACCTCC TGCTGCTGGC
51	GGTGTTGTTT GCCGTCAGCC TGTCGGTGGG CGTTGCCGAT TTCCGCTGGT
101	CGGATGTGTT TTCGCTGTCG GACAGCCAGC AGGTTATGTT CATCAGCCGC
151	CTGCCGCGCA CGTTTGCGAT TGTGTTGACG GGCGCGTCGA TGGCGGTGGC
201	GGGGATGATT ATGCAGATTC TGATGCGTAA CCGTTTTGTC GAGCCTTCTA
251	TGGCGGGCGC GGGTCAGAGT GCGGCTTTGG GTTTGCTTCT GATGTCCCTG
301	CTGCTGCCTG CCGCCCGCT GCCGGTCAAA ATGTCGGTTG CCGCCGTTGC
351	CGCGTTAATC GGGATGTTGG TGTTTATGAT GCTTATCCGC CGCCTGCCGC
401	CGACGCCCA ACTGATGGTG CCTTTGGTCG GGATTATTTT CGGCGGCGTG
451	GTTGAGGCGG TGGCCACCTT TATTGCGTAT GAAAACGAAA TGCTGCAAAT
501	GCTGGGCGTG TGGCAACAGG GCGATTTTTC CGGCGTGTTG CTCGGACGGT
551 601	ATGAACTGTT GTGGGCAACG GGGATTTTGG CTTTGTTTGC CTATTTGATT
651	GCCGACCAGC TGACGATTTT GGGTTTGGGC GAAACGGTAA GCGTGAACTT
701	GGGGCTGAAC CGGACGGCGA TTCTGTGGTC GGGGCTGATT ATTGTGGCTT TGATTACGTC GCTGGTTATC GTTACGGTCG GCAATATTCC GTTTATCGGG
751	CTGGTCGTGC CGAACATCAT CAGCCGCCTG ATAGGCGACA GGCTGCGCCA
801	AAGCCTGCCT GCGGTGGCTT TGCTGGGTGC GTCTTTGGTT TTATTGTGCG
851	ACATTATCGG ACGAGTGATT GTGTTTCCGT TTGAAATTCC GGTATCGACC
901	GTCTTCGGCG TATTGGGTAC GGCGTTGTTT TTATGGCTTT TGTTAAGGAA
951	ACCTGCTCAT GCCGTCTGA
This correspond	s to the amino acid sequence <seq 2026;="" 629.a="" id="" orf="">:</seq>
a629.pep	11,111111 01 01 01 01 01 01
1	MTAKPFSLNL TNLLLLAVLF AVSLSVGVAD FRWSDVFSLS DSQQVMFISR
51	LPRTFAIVLT GASMAVAGMI MQILMRNRFV EPSMAGAGQS AALGLLLMSL
101	LLPAAPLPVK MSVAAVAALI GMLVFMMLIR RLPPTAQLMV PLVGIIFGGV
<b>15</b> 1	VEAVATFIAY ENEMLOMLGV WOOGDFSGVL LGRYELLWAT GILALFAYLI
201	ADOLTILGLG ETVSVNLGLN RTAILWSGLI IVALITSLVI VTVGNIPFIG
251	LVVPNIISRL IGDRLROSLP AVALLGASLV LLCDIIGRVI VFPFEIPVST
301	VFGVLGTALF LWLLLRKPAH AV*
m629/a629	95.7% identity in 322 aa overlap
	10 20 30 40 50 60
m629.pep	10 20 30 40 50 60 MTAKPFSLNLTNLLLLAVLFAVSLSVGVADFRWSDVFSLSDSQQVMFISRLPRTFAIVLT
mozs.pep	
a 629	MTAKPFSLNLTNLLLLAVLFAVSLSVGVADFRWSDVFSLSDSQQVMFISRLPRTFAIVLT
	10 20 30 40 50 60
	70 80 90 100 110 120
m629.pep	GASMAVAGMIMQILMRNRFVEPSMVGASQSAALGLLLMTLLLPAAPLPAKMSVAAVAALI
a629	GASMAVAGMIMQILMRNRFVEPSMAGAGQSAALGLLLMSLLLPAAPLPVKMSVAAVAALI
	70 80 90 100 110 120
	120
m629.pep	130 140 150 160 170 180
moza.pep	GMLVFMLLIRRLPPTAQLMVPLVGIIFGGVIEAVATFIAYENEMLQMLGVWQQGDFSSVL

```
{\tt GMLVFMMLIRRLPPTAQLMVPLVGIIFGGVVEAVATFIAYENEMLQMLGVWQQGDFSGVL}
a629
                        140
                                150
                                        160
                190
                        200
                                210
                                        220
                                                 230
                                                         240
m629.pep
          LGRYELLWITGGLAVFAYLIADRLTILGLGETVSVNLGLNRTAVLWSGLIIVALITSLVI
           a629
          LGRYELLWATGILALFAYLIADQLTILGLGETVSVNLGLNRTAILWSGLIIVALITSLVI
                190
                        200
                                210
                250
                        260
                                270
                                        280
                                                 290
                                                         300
          VTVGNIPFIGLVVPNIISRLMGDRLRQSLPAVALLGASLVLLCDIIGRVIVFPFEIPVST
m629.pep
          a629
          VTVGNIPFIGLVVPNIISRLIGDRLRQSLPAVALLGASLVLLCDIIGRVIVFPFEIPVST
                250
                        260
                                270
                                        280
                                                290
                310
                        320
m629.pep
          VFGVLGTALFLWLLLRKPAYAVX
           a629
          VFGVLGTALFLWLLLRKPAHAVX
                310
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2027>: g630.seq (partial)

```
aTgatGATTT TGGTGTGGCT ggctttgttt ccccccatgt tttacggcat
     gtacaacgtc GGCGCACAGG CATTCGGTGC CTTAACGCCC GAtttgctgc
101
     aacaaagcat cgcccacgac ggcaattacg ccctcgccaa cgctttgggc
     atcaatatgt cccccgaaGc gggcgtgtTg ggcaaaatgc tgttcgGCGC GATttacttc ctgccgattt acgcgaccgt aTTTATTGTG GGcggcttct
151
251
     ggGaagtCTT GTTCGCATCC gtACGCAAAC ACGAAATCAA CGAAGGTTTC
TTCGTTACTT CGATTCTGTT TGCCTTAATC GTTCCGCCCA CGCTGCCGCT
301
351
     GTGGCAGGCG GCTTTGGGTA TTTCTTTCGG CGTTGTGGTT GCGAAAGAAG
401
     TATTCGGCGG TACAGGTAAA AACTTCATGA ACCCTGCGCT GGCAGGCCGC
     GCCTTCCTGT TCTTCGCCTA CCCCGCCAAC TTGAGCGGCG ATGCGGTTTG
451
501
     GACGGCGGTT GACGGCTATT CCGGCGCAAC CGCGCTGGCG CAATGGGCGG
551
     CACACGGTGC AGACGGCCTG AAAAACGCCG TAACCGGTCA AACCATCACT
601
     TGGATGGACG CGTTTATCGG CAAACTGCCC GGCTCCATCG GCGAAGTCTC
     CACTTTGGCA CTCTTAATCG GCGGCGCGTT TATCGTGTTT GCCCGCATCG
701
    CTtcttgGCG CATTATTGCc ggCGTGATGA TCGGTatGat tGcgatgTCT
751
     tcgctgatta acttcatCGg ttctgacacc aaagctatgt ttgctatgca
     cttggtacat ggcacttggt GGAaagatGa ttAtcactca ctgtacatta
801
```

This corresponds to the amino acid sequence <SEQ ID 2028; ORF 630.ng>: g630.pep

```
1 MMILVWLALF PPMFYGMYNV GAQAFGALTP DLLQQSIAHD GNYALANALG
51 INMSPEAGVL GKMLFGAIYF LPIYATVFIV GGFWEVLFAS VRKHEINEGF
101 FVTSILFALI VPPTLPLWQA ALGISFGVVV AKEVFGGTGK NFMNPALAGR
151 AFLFFAYPAN LSGDAVWTAV DGYSGATALA QWAAHGADGL KNAVTGQTIT
101 WMDAFIGKLP GSIGEVSTLA LLIGGAFIVF ARIASWRIIA GVMIGMIAMS
102 SLINFIGSDT KAMFAMHLVH GTWWKDDYHS LYIK...
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2029>: m630.seq

```
ATGATGATTT TGGTGTGGCT GGCTTTGTTC CCTGCCATGT TCTACGGTAT
    GTACAACGTC GGCGCGCAGG CATTCGGTGC GTTAACGCCT GATTTGCTGC
51
101
    AACAAAACAT CGCCAACGAC TGGCATTACG CCTTTGCCAA CGCTTTGGGC
    ATCAATATGT CGTCTGAAGC GGGCGTGTCG GACAAAATGC TGTTTGGCGC
151
201 GATTTACTTC CTGCCGATTT ACGCGACTGT ATTTGTTGTG GGCGGTTTCT
251
    GGGAAGTTTT GTTCGCCACC GTGCGCAAAC ACGAAATCAA CGAAGGTTTC
301
    TTCGTTACTT CGATTCTGTT TGCCTTAATC GTTCCGCCCA CGCTGCCGCT
    GTGGCAGGCG GCTTTGGGTA TTTCTTTCGG CGTTGTGGTT GCGAAAGAAG
401
    TATTCGGCGG TACAGGTAAA AACTTCATGA ACCCTGCGCT GGCAGGCCGT
451
    GCTTTCCTGT TCTTCGCCTA CCCTGCCAAC TTGAGCGGCG ATGCGGTTTG
    GACGGCGGTT GACGGCTATT CCGGCGCAAC CGCACTGGCG CAATGGGCGG
501
    CACACGGTGC AGACGGCCTG AAAAACGCCG TAACCGGTCA AACCATCACT
551
    TGGATGGACG CGTTTATCGG CAAACTGCCC GGCTCCATTG GCGAAGTCTC
651
    CACTTTGGCA CTCTTAATCG GCGGCGCGTT TATCGTGTTT GCCCGCATCG
    CTTCTTGGCG CATTATTGCC GGCGTGATGA TCGGTATGAT TGCGATGTCT
701
751 TCGCTGTTCA ACTTCATCGG TTCGGACACC AACGCTATGT TTGCTATGCC
```



```
TTGGTACTGG CACTTGGTGG TCGGCGGCTT CGCCATCGGT ATGCTGTTTA
     801
         TGGCGACCGA CCCTGTTTCC GCTTCCTTTA CCAATGTCGG CAAATGGTGG
         TACGGCGCAC TGATCGGTGT GATGTGCGTA TTAATCCGCG TGGTCAATCC
         GGCTTACCCC GAAGGCATGA TGTTGGCGAT TCTGTTTGCC AACCTGTTTG
     951
         CCCCGATTTT CGACTATTTC GTCGCACAAG CGAACATCAA ACGCAGAAAG
    1001
         GCGCGCAGCA ATGGCTAA
This corresponds to the amino acid sequence <SEQ ID 2030; ORF 630>:
m630.pep
         MMILVWLALF PAMFYGMYNV GAQAFGALTP DLLQQNIAND WHYAFANALG
     51
         INMSSEAGVS DKMLFGAIYF LPIYATVFVV GGFWEVLFAT VRKHEINEGF
         FVTSILFALI VPPTLPLWQA ALGISFGVVV AKEVFGGTGK NFMNPALAGR
     101
         AFLFFAYPAN LSGDAVWTAV DGYSGATALA QWAAHGADGL KNAVTGQTIT
     151
         WMDAFIGKLP GSIGEVSTLA LLIGGAFIVF ARIASWRIIA GVMIGMIAMS
     201
         SLFNFIGSDT NAMFAMPWYW HLVVGGFAIG MLFMATDPVS ASFTNVGKWW
     251
         YGALIGVMCV LIRVVNPAYP EGMMLAILFA NLFAPIFDYF VAQANIKRRK
     301
m630/g630 93.5% identity in 275 aa overlap
                           20
                                    30
                                             40
                                                      50
           {\tt MMILVWLALFPAMFYGMYNVGAQAFGALTPDLLQQNIANDWHYAFANALGINMSSEAGVS}
m630.pep
            MMILVWLALFPPMFYGMYNVGAQAFGALTPDLLQQSIAHDGNYALANALGINMSPEAGVL
g630
                   10
                           20
                                    30
                                             40
                                                      50
                   70
                           80
                                    90
                                            100
m630.pep
           DKMLFGAIYFLPIYATVFVVGGFWEVLFATVRKHEINEGFFVTSILFALIVPPTLPLWQA
            g630
           GKMLFGAIYFLPIYATVFIVGGFWEVLFASVRKHEINEGFFVTSILFALIVPPTLPLWQA
                  70
                           80
                                    90
                                            100
                          140
                                   150
                                            160
                                                     170
                                                              180
           ALGISFGVVVAKEVFGGTGKNFMNPALAGRAFLFFAYPANLSGDAVWTAVDGYSGATALA
m630.pep
           g630
           ALGISFGVVVAKEVFGGTGKNFMNPALAGRAFLFFAYPANLSGDAVWTAVDGYSGATALA
                  130
                                   150
                                            160
                                                     170
                                                              180
                 190
                          200
                                   210
                                            220
           QWAAHGADGLKNAVTGQTITWMDAFIGKLPGSIGEVSTLALLIGGAFIVFARIASWRIIA
m630.pep
           QWAAHGADGLKNAVTGQTITWMDAFIGKLPGSIGEVSTLALLIGGAFIVFARIASWRIIA
g630
                 190
                          200
                                   210
                                            220
                                                     230
                 250
                          260
                                   270
                                            280
                                                     290
                                                              300
           GVMIGMIAMSSLFNFIGSDTNAMFAMPWYWHLVVGGFAIGMLFMATDPVSASFTNVGKWW
m630.pep
           +111
g630
           GVMIGMIAMSSLINFIGSDTKAMFAM----HLVHGTWWKDDYHSLYIK.
                 250
                          260
                                       270
                                               280
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2031>:

340

350

330

YGALIGVMCVLIRVVNPAYPEGMMLAILFANLFAPIFDYFVAQANIKRRKARSNGX

310

m630.pep

```
a630.seq
      1
          ATGATGATTT TGGTGTGGCT GGCTTTGTTC CCTGCCATGT TCTACGGTAT
          GTACAACGTC GGCGCACAGG CATTCGGTGC GTTAACGCCC GATTTGCTGC
     51
         AACAAAGCAT CGCCAACGAC TGGCATTACG CCCTTGCCAA CGCTTTGGGC
    101
         ATCAATATGT CGTCTGAAGC GGGCGTGTTG GGCAAAATGC TGTTCGGCGC
         GATTTACTTC CTGCCGATTT ACGCGACCGT ATTTATTGTC GGCGGTTTCT
    201
    251
         GGGAAGTTTT GTTCGCCACC GTGCGCAAAC ATGAAATCAA CGAAGGTTTC
         TTTGTTACCT CGATTCTGTT TGCCTTAATC GTTCCGCCCA CGCTGCCGCT
    351
         GTGGCAGGCA GCTTTGGGTA TTTCTTTCGG CGTTGTGGTT GCGAAAGAAG
         TATTCGGCGG TACAGGTAAA AACTTCATGA ACCCTGCGCT GGCAGGCCGT
    401
         GCCTTCCTGT TCTTCGCCTA CCCTGCCAAC TTGAGCGGCG ATGCGGTTTG
         GACGGCGGTT GACGGCTATT CCGGCGCAAC CGCGCTGGCG CAATGGGCGG
    501
    551
         CACACGGTGC AGACGGCCTG AAAAACGCCA TAACCGGTCA AACCATCACT
         TGGATGGATG CGTTTATCGG CAAACTGCCC GGCTCCATCG GCGAAGTCTC
    601
         CACTTTGGCA CTCTTAATCG GCGGCGCGTT TATCGTGTTT GCCCGCATCG
```

701	CTTCTTGGCG CATTATTG	CC GGCGTGATGA	A TCGGTATGAT	TGCCATGTCT	
751	TCGCTGTTCA ACTTCATC	GG TTCGGACAC	C AACGCTATGT	TTGCTATGCC	
801	TTGGTACTGG CATTTGGT	CG TCGGCGGCTT	CGCCATCGGT	ATGCTGTTTA	
851	TGGCGACCGA CCCCGTTTC	CC GCTTCCTTTA	CCAATGTCGG	CARATGGTGG	
901	TACGGCGCAC TGATCGGT	GT GATGTGCGTA	TTAATCCGCG	TGGTCAATCC	
951	GGCTTACCCC GAAGGCAT	SA TGTTGGCGAT	TCTGTTTGCC	AACCTGTTTG	
1001	CCCCGATTTT CGACTATT	C GTCGCACAAC	CGAACATCAA	ACCCAGAAAG	
1051	GCGCGCAGCA ATGGCTAA			ACCCAGAAAG	
This correspond	is to the amino acid seq	nence <seo 1<="" td=""><td>ID 2032- OBI</td><td>E 630 a&gt;.</td><td></td></seo>	ID 2032- OBI	E 630 a>.	
a630.pep	es to the allimo acid seq	uciice (SEQ)	D 2032, OK	1. 030.a/.	
	MATTER AT A BANGUAGA				
1	MMILVWLALF PAMFYGMYN	V GAQAFGALTI	DLLQQSIAND	WHYALANALG	
51	INMSSEAGVL GKMLFGAI	F LPIYATVFIV	GGFWEVLFAT	VRKHEINE <u>GF</u>	
101	FVTSILFALI VPPTLPLW(	QA ALGISFGVV\	AKEVFGGTGK	NFMNPALAGR	
151	AFLFFAYPAN LSGDAVWTA	AV DGYSGATALA	QWAAHGADGL	KNAITGQTIT	
201	WMDAFIGKLP GSIGEVS <u>TI</u>	LA LLIGGAFIVE	ARIASWRIIA	GVMIGMIAMS	
251	SLFNFIGSDT NAMFAMPWY	W HLVVGGFAIO	MLFMATDPVS	ASFTNVGKWW	
301	YGALIGVMCV LIRVVNPAY	P EGMMLAILFA	NLFAPIFDYF	VAQANIKRRK	
351	ARSNG*			<del></del>	
m630/a630	98.3% identity ir	a 355 aa over	lap		
			•		
	10		10 40	50	60
m630.pep	MMILVWLALFPAMFYGN	1YNVGAQAFGALT	PDLLOONIAND	WHYAFANALGINMSSE	CAGVS
	11111111111111111				
a630	MMILVWLALFPAMFYGN	YNVGAOAFGALT	PDLLOOSTAND	NHYALANALGTNMSSE	TVZ
	10		0 40	50	60
			.0 40	30	80
	70	80 9	0 100	110	120
m630.pep	DKMLFGAIYFLPIYATV			TTO COUNTIANTS	120
		1.11111111		VISIDEADIVEEIDE	TWON
a630	GKMLFGAIYFLPIYATV	FTVGGEWEVIEZ	TUDEUTTECE		.           T
	70		0 100	110	
	, •	00	100	110	120
	130	140 15	0 160	170	180
m630.pep	ALGISFGVVVAKEVFGG			. 6CDV111111111111111111111111111111111111	100
	1111111111111111		LIIIIIIIIIIIIII	JSGDAVWIAVDGISGA	TALA
a630	ALGISFGVVVAKEVFGG	יווווווווווווווו סמדמסות אמות אם חיי	ווווווווווווווווווווווווווווווווווווו		1111
4555	130	140 15			
	130	140 15	0 160	170	180
	190	200 21	0 000	000	
m630.pep			0 220	230	240
moso.pep	QWAAHGADGLKNAVTGQ	III WMDAFIGKL	PGSIGEVSTLAL	LIGGATIVFARIASW	RIIA
<b>a63</b> 0			111111111111		
4050	QWAAHGADGLKNAITGQ 190				
	190	200 21	0 220	230	240
	250	260 27	000		
m630.pep				290	300
озо.рер	GVMIGMIAMSSLFNFIG	SUINAMPAMPWY	WHLVVGGFAIGM	ILFMATDPVSASFTNV	GKWW
a630	CUMICAL MAGGI PARTA				1111
2030	GVMIGMIAMSSLFNFIG				
	250	260 27	0 280	290	300
	21.0	200 ===			
m620 ma-	310	320 33		350	
m630.pep	YGALIGVMCVLIRVVNP	AYPEGMMLAILF	ANLFAPIFDYFV	AQANIKRRKARSNGX	
2630					
a630	YGALIGVMCVLIRVVNP				
	310	320 33	0 340	350	
701 C 11 I					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2033>: g635.seq

- 1 ATGACCCGGC GACGGGTCGG CAAGCAAAAC CGTATTGCCA TCCACTCCGC 51 GCAATACCGA AAAATGGTCG TCTTTGCGGT ATTTCAGATA CACGATGACG
- 101 GGGATTTTCA ACTGCGCGAG CTGTTCGAAA GACAGGGCAT AGCCTTTCGC
- 151 CTCAAAACCC AAATCGGGCA TAATGCGCCG CATATCCTCA AACGACGCGC 201 GCATCTGTTC CTTACCCAGT TTTTCCAACA CTTCTTCTTC CGTCAGCTTT
- 251 TGCCCGTAAA AATTGTTCAA AAGCGTCGCC ACCGAAGCCG CCCCGCAGGA



```
301 AAAATCCAAA TCCTGCTTTA CAATATTGAA ATCCCGCCGC GCTTTCCAAC
          TCTGCAATTT GATTTTCCG TAAACAACAG GATTATCGTT AAACATCGGT
     351
     401 GCAGCATTCA AACGATAAGA CAAGGGTCTG TACCAGATTA G
 This corresponds to the amino acid sequence <SEQ ID 2034; ORF 635.ng>:
 g635.pep
          MTRRRVGKQN RIAIHSAQYR KMVVFAVFQI HDDGDFQLRE LFERQGIAFR
          LKTQIGHNAP HILKRRAHLF LTQFFQHFFF RQLLPVKIVQ KRRHRSRPAG
      51
     101 KIQILLYNIE IPPRFPTLQF DFSVNNRIIV KHRCSIQTIR QGSVPD*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2035>:
m635.seq
          ATGACCCAGC GACGGGTCGG CAAGCAAAAC CGTATTGCCG TCTATACCGC
     51 GCAATACCGA GAAATGATCA TCCTTGCGGT ATTTCAGATA CACGATGACG
101 GGGATTTGCA ACTGTGCAAG CTGCTCGAAA GACAGGGCAT AGCCTTTCGC
     151 TTCAAAACCC AAATCAGGCA TAATGCGCCG CATATCCTCA AACGACGCGG
     201
          GCATCTGCTC CTTATCCAGT TTTTTTAACA CGTCCTCTTC CGTCAGCTTT
     251 TGCCCGTAAA AATTGTTCAA AAGCGTCACC ACCGAAGCCG CCCCGCAGGA
         AAAATCCAAA TCCTGCTTTA CAATATTGAA ATCGCGCCTT TCTTTCCAAC
     301
         TCTGCACTTT GATTTTCCA TAAGCAACAG GATTATAGTG GATTAA
This corresponds to the amino acid sequence <SEQ ID 2036; ORF 635>:
         MTQRRVGKQN RIAVYTAQYR EMIILAVFQI HDDGDLQLCK LLERQGIAFR
         FKTQIRHNAP HILKRRGHLL LIQFF*HVLF RQLLPVKIVQ KRHHRSRPAG
      51
     101 KIQILLYNIE IAPFFPTLHF DFSISNRIIV D*
m635/g635 80.0% identity in 130 aa overlap
                    10
                             20
                                                40
                                                         50
m635.pep
            {\tt MTQRRVGKQNRIAVYTAQYREMIILAVFQIHDDGDLQLCKLLERQGIAFRFKTQIRHNAP}
            g635
            MTRRRVGKQNRIAIHSAQYRKMVVFAVFQIHDDGDFQLRELFERQGIAFRLKTQIGHNAP
                    10
                             20
                                      30
                             80
                                      90
                                               100
            HILKRRGHLLLIQFFXHVLFRQLLPVKIVQKRHHRSRPAGKIQILLYNIEIAPFFPTLHF
m635.pep
            HILKRRAHLFLTQFFQHFFFRQLLPVKIVQKRRHRSRPAGKIQILLYNIEIPPRFPTLQF
a 635
                             80
                                      90
                                               100
                                                        110
                   130
            DFSISNRIIVDX
m635.pep
            111::1111
g635
            DFSVNNRIIVKHRCSIQTIROGSVPDX
                   130
                            140
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2037>:
     a635.seq
                ATGACCCAGC GACGGGTCGG CAAGCAAAAC CGTATTGCCG TCTATACCGC
             1
                GCAATACCGA GAAATGATCA TCCTTGCGGT ATTTCAGATA CACGATGACG
            51
           101 GGGATTTGCA ACTGTGCAAG CTGCTCGAAA GACAGGGCAT AGCCTTTCGC
           151 CTCAAAACCC AAATCAGGCA TGATGCGCCG CATATCCTCA AACGACGCGC
           201 GCATCTGCTC CTTATCCAGC TTTTTCAACA CGTCCTCTTC CGTCAGCTTT
           251 TGCCCGTGAA AATTGTTCAA AAGCGTCGCC ACCGAAGCCG CCCCGCAGGA
               AAAATCCAAA TCCTGCTTTA CAATATTGAA ATCGCGCCTT TCTTTCCAAC
               TCTGCACTTT GATTTTCCA TAAGCAACAG GATTATAGTG GATTAA
This corresponds to the amino acid sequence <SEQ ID 2038; ORF 635.a>:
     a635.pep
               MTQRRVGKQN RIAVYTAQYR EMIILAVFQI HDDGDLQLCK LLERQGIAFR
             1
            51 LKTQIRHDAP HILKRRAHLL LIQLFQHVLF RQLLPVKIVQ KRRHRSRPAG
           101 KIQILLYNIE IAPFFPTLHF DFSISNRIIV D*
     m635/a635 95.4% identity in 131 aa overlap
                           10
                                      20
                                                30
                                                          40
                                                                     50
                                                                                60
```



```
MTQRRVGKQNRIAVYTAQYREMIILAVFQIHDDGDLQLCKLLERQGIAFRFKTQIRHNAP
m635.pep
          MTQRRVGKQNRIAVYTAQYREMIILAVFQIHDDGDLQLCKLLERQGIAFRLKTQIRHDAP
a 635
                10
                       20
                               30
                                      40
                70
                       80
                               90
                                      100
                                             110
         HILKRRGHLLLIQFFXHVLFRQLLPVKIVQKRHHRSRPAGKIQILLYNIEIAPFFPTLHF
m635.pep
          a 635
         HILKRRAHLLLIQLFQHVLFRQLLPVKIVQKRRHRSRPAGKIQILLYNIEIAPFFPTLHF
                       80
                               90
                                     100
                                             110
               130
m635.pep
         DFSISNRIIVDX
         a635
         DFSISNRIIVDX
               130
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2039>: g638.seq

```
ATGATTGGCG GACAGTTTAT CGTAGttgGc atTGTAGGCA AAAACGCACT
     TGCCCGCTTT GTTGATAATA ttgtcGTGAA TAtcGGAATA GTTGACATAG
     TTGAGCATGA TGCCCTAATC GCGGCTGCCG ACGGCGATAT TGTCGAACAC
101
    TTTGAGCCGT TCGGAAAACA TCAGCACATA GCCCATATTG TtgcCCACGG
201 AAATATTGCC GCTGacttcg ctgtcgTTGG TGTACATATA GTGGACGGCG
    AAACGCAGGT CGCTGAAGCG GTTGTTTTTA TAGGTGTTGT GCGTGCTGGT
301 ATTGGAAAAA ATGCCGTCCC GCCCTTTGGA AATGTCGTTG CCGACGACCT
351
    GCGCgccggg CgcgtTCCAA ACGGTAACGC CATTGCCGCG CTCATTCACG
401
    CGCAAGGTcg catcgCCGAC GATTTTATTC TCGCGCACCA TCGCATCGGC
   AGAACCATGA AGGTATACGC CGAACGAATT ATCAAAAATA TTGTTGTGTT
    CAACCAGGGC GCGCGGGGCG GCTTTTTCGA GATAAATACC GGCATCCATT
501
    GCTGGCAGGC TCATACCGGA ACGGGTAACG GTCAGGTTGC GGAGCGTTAC
551
    GTCCGGCGCG TGTACGGCTA TGGTACGCCC GCTCTTGTCC CCTTCGATGG
601
    TTGCGGAACG GTCGGCAGGC CCTTCAATCG TAATCGGTTT GTCGATATAA
    AGTTTGGTTT GATATACGCC GGAAGCCAGT TTGATCGTAT CGCCCGCCCG
751
    GGCGCGGGCA AAAATTTCGG CAAGGTTGTC TTGCGGGGAA ACGTGGACGA
    CGGCTGCCGA TGCCGTCTGA AAAATGCTGC CGGCGGCAAG TATCAGCACG
801
    GCCTTCAGCC ATATACGGAG CGCGGATGTG TGCATAGTGT CCCTCTGTTT
    CGTTCGGTAT GGCCGAACAA AATAAAGCAT CATTCAAATG TGCCTGTTTT
901
    TATAGCGAAA CCGCCTGAAA CGGTACGGCA AGCGGTTTGG CTATAA
```

This corresponds to the amino acid sequence <SEQ ID 2040; ORF 638.ng>: g638.pep

```
1 MIGGOFIVVG IVGKNALARF VDNIVVNIGI VDIVEHDALI AAADGDIVEH
51 FEPFGKHQHI AHIVAHGNIA ADFAVVGVHI VDGETQVAEA
101 IGKNAVPPFG NVVADDLRAG RVPNGNAIAA LIHAQGRIAD DFILAHHRIG
151 RTMKVYAERI IKNIVVFNQG ARGGFFEINT GIHCWQAHTG TGNGQVAERY
172 VRRVYGYGTP ALVPFDGCGT VGRPFNRNF VDIKFGLIYA GSQFDRIARP
173 GAGKNFGKVV LRGNVDDGCR CRLKNAAGGK YQHGLQPYTE RGCVHSVPLF
174 GAGKNFGKVV LRGNVDDGCR CRLKNAAGGK YQHGLQPYTE RGCVHSVPLF
175 RSVWPNKIKH HSNVPVFIAK PPETVRQAVW L*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2041>: m638.seq

```
ATGATTGGCG AAAAGTTTAT CGTAGTTGGC ATTATAGGCA AATACGCACT
     TGCCTGCCTT GTTGATAATG TTGTCGTGAA TATCGGAATA GTTGACATAG
101
     TTGAGCATAA TGCCCTGATC GCGGCTGCCG ACGGCGATAT TGTCGAATAC
     TTTGAGCCGC TCGGAAAACA TCAGCACATA GCCCATATTG TTGCCCACGG
201 AAATATTGCC GCTGATTTCG CTGTCGTTGG TGTACATATA GTGGACGGCG
     AAACGCAAAT CGCTGAAGCG GTTGTTTTTG TAGGTGTTGT GCGTGCTGGT
301 ATTGGAAAAA ATGCCGTCCC GCCCTTTGGA AATGTCGTTG CCGACGACCT
     GCGCACCGGG TGCGTTCCAA ACGGTAACGC CGTTGCCGCG CTCGTTCACG
351
401 CGCAAAGTCG CGTCGCCGAC GATTTTATTC TCGCGCACCA TCGCATCGGC
451 AGAACCATGC AGATATACGC CGACCGAATT ATCCAAAATA TTGTTGTGTT
501
     CAATCAGGGC GCGCGGGCA GTTTCTTCGA GATAAATACC GGCATCCATT
    GCGGGCAGGC TCATACCGGA ACGGGTAACG GTCAGGTTGC GGAGCGTTAC
551
    GTCCGGCGCG TGTACGGCTA TGGTACGCCC GCTCCTGTCG CCTTCGATGG
601
651
     TTGCGGAACG GTCGGCAGGC CCTTCAATCG TAATCGGTTT GTCAATGTGA
701
    AGTTTGGTTT TATATACGCC GGAAGCCAGT TTGAGCGTAT CGCCCGCCCG
751 GGCGCGGCA AATGCGGGAT ACCGATCAGC ATAATCGGTT CGTGA
```



```
This corresponds to the amino acid sequence <SEQ ID 2042; ORF 638>:
m638.pep
         MIGEKFIVVG IIGKYALACL VDN<u>VVVNIGI VDIVEHNALI</u> AAADGDIVEY
         FEPLGKHQHI AHIVAHGNIA ADFAVVGVHI VDGETQIAEA VVFVGVVRAG
     51
    101
         IGKNAVPPFG NVVADDLRTG CVPNGNAVAA LVHAQSRVAD DFILAHHRIG
         RTMQIYADRI IQNIVVFNQG ARGSFFEINT GIHCGOAHTG TGNGOVAERY
    151
         VRRVYGYGTP APVAFDGCGT VGRPFNRNRF VNVKFGFIYA GSQFERIARP
    201
         GAGKCGIPIS IIGS*
    251
m638/g638 88.2% identity in 254 aa overlap
                           20
                                    30
                                            40
                                                     50
           {\tt MIGEKFIVVGIIGKYALACLVDNVVVNIGIVDIVEHNALIAAADGDIVEYFEPLGKHQHI}
m638.pep
           g638
           MIGGQFIVVGIVGKNALARFVDNIVVNIGIVDIVEHDALIAAADGDIVEHFEPFGKHQHI
                  10
                           20
                                    30
                                            40
                                                     50
                           80
                                    90
                                                    110
                                                             120
m638.pep
           AHIVAHGNIAADFAVVGVHIVDGETQIAEAVVFVGVVRAGIGKNAVPPFGNVVADDLRTG
           a638
           AHIVAHGNIAADFAVVGVHIVDGETQVAEAVVFIGVVRAGIGKNAVPPFGNVVADDLRAG
                  70
                           80
                                    90
                                           100
                 130
                          140
                                   150
                                           160
                                                    170
                                                             180
m638.pep
           CVPNGNAVAALVHAQSRVADDFILAHHRIGRTMQIYADRIIQNIVVFNQGARGSFFEINT
            q638
           RVPNGNAIAALIHAQGRIADDFILAHHRIGRTMKVYAERIIKNIVVFNQGARGGFFEINT
                 130
                          140
                                   150
                                           160
                                                    170
                                                             180
                 190
                          200
                                   210
                                           220
                                                    230
m638.pep
           GIHCGQAHTGTGNGQVAERYVRRVYGYGTPAPVAFDGCGTVGRPFNRNRFVNVKFGFIYA
           GIHCWQAHTGTGNGQVAERYVRRVYGYGTPALVPFDGCGTVGRPFNRNRFVDIKFGLIYA
a638
                 190
                          200
                                   210
                                           220
                                                    230
                 250
                          260
m638.pep
           GSQFERIARPGAGKCGIPISIIGSX
           1111:11111111
           GSQFDRIARPGAGKNFGKVVLRGNVDDGCRCRLKNAAGGKYQHGLQPYTERGCVHSVPLF
a638
                 250
                          260
                                   270
                                           280
                                                    290
                                                             300
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2043>:

```
1
     ATGATTGGCG GACAGTTTAT CGTAGTTGGC ATTGTAGGCA AAAACGCACT
 51
    TGCCCGCTTT GTTGATAATG TTGTCGTGAA TATCGGAATA GTTGACATAG
101
    TTGAGCATGA TGCCTTGGTC GCGGCTGCCG ACGGCGATAT TGTCAAACAC
    TTTGAGCCGC TCGGAAAACA TCAGCACATA GCCCATATTG TTGCCCACGG
151
201
    AAATATTGCC GCTGATTTCG CTGTCGTTGG TGTACATATA GTGGACGGCG
251
    AAACGCAAAT CGCTGAAGCG GTTGTTTTTA TAGGTGTTGT GCGTGCTGGT
301
    ATTGGAAAAA ATGCCGTCCC GCCCTTTGGA AATATCGTTG CCGACGACCT
    GCGCGCCGGG CGCGTTCCAA ACGGTAACGC CATTGCCGCG CTCGTTCACG
351
    CGCAAAGTCG CGTCGCCGAC GATTTTATTC TCCCGCACCA TCGCATCGGC
401
451
    AGAACCATGC AGATAGACGC CGACCGAATT ATCCAAAATA TTATTGTGTT
    CAATCAGGGC GCGCGGGCA GTTTCTTCGA GATAAATACC GGCATCCATT
501
551
    GCGGGCAGGC TCATACCGGA ACGGGTAACG GTCAGGTTGC GGAGCGTTAC
    GTCCGGCGCG TGTACGCCTA TGGTACGCCC GCTCCTGTCT CCTTCGATGG
601
651
    TTGCAGAACG GTCGGCAGGC CCTTCAATCG TAATCGGTTT GTCGATGTGA
    AGTTTGGTTT GATATACGCC GGAAGCCAGT TTGAGCGTAT CGCCCGCCCG
701
    GGCGCGGGCA AATGCGGGAT ACCGATCAGC ATAATCGACT CATGGTGA
```

## This corresponds to the amino acid sequence <SEQ ID 2044; ORF 638.a>:

· beb					
1	MIGGQFIVVG	IVGKNALARF	VDNVVVNIGI	VDIVEHDALV	AAADGDIVKH
51	FEPLGKHQHI	AHIVAHGNIA	ADFAVVGVHI	VDGETQIAEA	VVFIGVVRAG
101	IGKNAVPPFG	NIVADDLRAG	RVPNGNAIAA	LVHAQSRVAD	DFILPHHRIG
151	RTMQIDADRI	IQNIIVFNQG	ARGSFFEINT	GIHCGQAHTG	TGNGQVAERY
201	VRRVYGYGTP	APVSFDGCRT	VGRPFNRNRF	VDVKFGLIYA	GSQFERIARP

```
251 GAGKCGIPIS IIDSW*
m638/a638
          91.3% identity in 264 aa overlap
                        20
                                30
                                        40
m638.pep
          MIGEKFIVVGIIGKYALACLVDNVVVNIGIVDIVEHNALIAAADGDIVEYFEPLGKHQHI
          a638
          MIGGQFIVVGIVGKNALARFVDNVVVNIGIVDIVEHDALVAAADGDIVKHFEPLGKHQHI
                                30
                                        40
                70
                        80
                                90
                                               110
                                       100
                                                       120
          AHIVAHGNIAADFAVVGVHIVDGETQIAEAVVFVGVVRAGIGKNAVPPFGNVVADDLRTG
m638.pep
          AHIVAHGNIAADFAVVGVHIVDGETQIAEAVVFIGVVRAGIGKNAVPPFGNIVADDLRAG
a638
                70
                        80
                                90
                                       100
               130
                       140
                               150
                                       160
                                               170
                                                       180
m638.pep
          CVPNGNAVAALVHAQSRVADDFILAHHRIGRTMQIYADRIIQNIVVFNQGARGSFFEINT
           a638
          RVPNGNAIAALVHAQSRVADDFILPHHRIGRTMQIDADRIIQNIIVFNQGARGSFFEINT
               130
                       140
                               150
                                       160
                                               170
               190
                       200
                               210
                                       220
                                               230
                                                       240
m638.pep
          GIHCGQAHTGTGNGQVAERYVRRVYGYGTPAPVAFDGCGTVGRPFNRNRFVNVKFGFIYA
          GIHCGQAHTGTGNGQVAERYVRRVYGYGTPAPVSFDGCRTVGRPFNRNRFVDVKFGLIYA
a638
               190
                       200
                               210
                                       220
                                               230
               250
                       260
m638.pep
          GSQFERIARPGAGKCGIPISIIGSX
          a638
          GSQFERIARPGAGKCGIPISIIDSWX
               250
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2045>: g639-1.seq

```
ATGAGCCTGC CAGCAATGGA TGCCGGTATT TATCTCGAAA AAGCCGCCCC
  1
 51
     GCGCGCCCTG GTTGAACACA ACAATATTTT TGATAATTCG TTCGGCGTAT
101
     ACCTTCATGG TTCTGCCGAT GCGATGGTGC GCGAGAATAA AATCGTCGGC
     GATGCGACCT TGCGCGTGAA TGAGCGCGGC AATGGCGTTA CCGTTTGGAA
151
201
     CGCGCCCGGC GCGCAGGTCG TCGGCAACGA CATTTCCAAA GGGCGGGACG
     GCATTTTTC CAATACCAGC ACGCACAACA CCTATAAAAA CAACCGCTTC
251
     AGCGACCTGC GTTTCGCCGT CCACTATATG TACACCAACG ACAGCGAAGT
301
     CAGCGGCAAT ATTTCCGTGG GCAACAATAT GGGCTATGTG CTGATGTTTT
401
     CCGAACGGCT CAAAGTGTTC GACAATATCG CCGTCGGCAG CCGCGATTAG
     GGCATCATGC TCAACTATGT CAACTATTCC GATATTCACG ACAATATTAT
451
     CAACAAAGCG GGCAAGTGCG TTTTTGCCTA CAATGCCAAC TACGATAAAC
501
     TGTCCGCCAA TCATTTTGAA AACTGCCAAA TCGGCATGCA CTTTACCGCC
GCCATCGAAG GCACGTCCCT GCACGACAAT TCCTTTATCA ACAACGGAAG
551
651
     CCAGGTCAAA TATGTCAGTA CGCGCTTTCT CGACTGGAGC GAGGGCGGAC
701
     ACGGCAACTA CTGGAGCGAC AACAGCCCGT TCGATTTGAA CGGCGACGGC
751
     TTCGGAGACA GCGCGTACCG TCCCGACGGC ATCATCGACC AAATCATCTG
     GCGCGCGCCC GTATCGCGCC TCTTGATGAA CAGTCCCGCA ATCAGCATCG
851
     TCAAATGGGC GCAGGCGCAG TTTCCCGCCG TTCTGCCCGG CGGCGTGGTG
901
     GACAGCAAAC CGCTGATGAA GCCTTATGCC CCCAAAATTC AAACCCGTTA
     TCAGGCGATG AAGGACGAGT TGCTCAAAGA AGCCGAAACG CGGCAGTCGG
951
     AACGGGGCAG GGCGGAAAAC GGTTCTTTGA ACTAG
```

This corresponds to the amino acid sequence <SEQ ID 2046; ORF 639-1.ng>: g639-1.pep

```
1 MSLPAMDAGI YLEKAAPRAL VEHNNIFDNS FGVYLHGSAD AMVRENKIVG
51 DATLRVNERG NGVTVWNAPG AQVVGNDISK GRDGIFSNTS THNTYKNNRF
101 SDLRFAVHYM YTNDSEVSGN ISVGNNMGYV LMFSERLKVF DNIAVGSRD*
151 GIMLNYVNYS DIHDNIINKA GKCVFAYNAN YDKLSANHFE NCQIGMHFTA
201 AIEGTSLHDN SFINNGSQVK YVSTRFLDWS EGGHGNYWSD NSPFDLNGDG
251 FGDSAYRPDG IIDQIIWRAP VSRLLMNSPA ISIVKWAQAQ FPAVLPGGVV
301 DSKPLMKPYA PKIQTRYQAM KDELLKEAET RQSERGRAEN GSLN*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2047>:

```
m639-1.seq
       1 ATGAGCCTGC CCGCAATGGA TGCCGGTATT TATCTCGAAG AAACTGCCCC
          GCGCGCCCTG ATTGAACACA ACAATATTTT GGATAATTCG GTCGGCGTAT
       51
          ATCTGCATGG TTCTGCCGAT GCGATGGTGC GCGAGAATAA AATCGTCGGC
      101
          GACGCGACTT TGCGCGTGAA CGAGCGCGGC AACGGCGTTA CCGTTTGGAA
      151
          CGCACCCGGT GCGCAGGTCG TCGGCAACGA CATTTCCAAA GGGCGGGACG
      201
          GCATTTTTTC CAATACCAGC ACGCACAACA CCTACAAAA CAACCGCTTC
     251
          AGCGATTTGC GTTTCGCCGT CCACTATATG TACACCAACG ACAGCGAAAT
      301
      351
          CAGCGGCAAT ATTTCCGTGG GCAACAATAT GGGCTATGTG CTGATGTTTT
          CCGAGCGGCT CAAAGTATTC GACAATATCG CCGTCGGCAG CCGCGATCAG
      401
          GGCATTATGC TCAACTATGT CAACTATTCC GATATTCACG ACAACATTAT
     451
          CAACAAGGCA GGCAAGTGCG TATTTGCCTA TAATGCCAAC TACGATAAAC
     501
          TTTTCGCCAA TCATTTTGAA AACTGTCAAA TCGGCATACA CTTTACCGCC
     551
     601
          GCCATCGAAG GCACGTCCTT GCATGACAAT TCCTTTATCA ACAACGAAAG
     651
          CCAGGTCAAA TACGTCAGCA CGCGCTTTCT CGATTGGAGC GAGGGCGGAC
     701
          ACGGCAACTA TTGGAGCGAC AACAGCGCGT TCGATTTGAA CGGCGACGGC
          TTCGGAGACA GCGCGTACCG CCCCAACGGC ATCATCGACC AAATCATCTG
     751
          GCGCGCGCCC GTATCGCGCC TTTTGATGAA CAGTCCCGCA ATCAGCATCG
     801
          TCAAATGGGC GCAGGCGCAG TTTCCCGCCG TTCTGCCTGG CGGCGTGGTG
     851
          GACAGCAAAC CGCTGATGAA GCCTTATGCC CCCAAAATTC AAACCCGTTA
     901
          TCAGGCGATG AAGGACGAGC TACTCAAAGA AGTCGAAACG CGGCAGTCGG
     951
    1001 AATGGGGCAG GGCGGAAAAC GGTTCTTTGA ACTAG
 This corresponds to the amino acid sequence <SEQ ID 2048; ORF 639-1>:
m639-1.pep
       1
         MSLPAMDAGI YLEETAPRAL IEHNNILDNS VGVYLHGSAD AMVRENKIVG
          DATLRVNERG NGVTVWNAPG AQVVGNDISK GRDGIFSNTS THNTYKNNRF
      51
         SDLRFAVHYM YTNDSEISGN ISVGNNMGYV LMFSERLKVF DNIAVGSRDQ
     101
     151
         GIMLNYVNYS DIHDNIINKA GKCVFAYNAN YDKLFANHFE NCQIGIHFTA
         AIEGTSLHDN SFINNESQVK YVSTRFLDWS EGGHGNYWSD NSAFDLNGDG
     201
         FGDSAYRPNG IIDQIIWRAP VSRLLMNSPA ISIVKWAQAQ FPAVLPGGVV
     251
         DSKPLMKPYA PKIQTRYQAM KDELLKEVET RQSEWGRAEN GSLN*
g639~1/m639-1
                95.9% identity in 344 aa overlap
                   10
                            20
                                      30
                                               40
                                                        50
                                                                 60
q639-1.pep
            MSLPAMDAGIYLEKAAPRALVEHNNIFDNSFGVYLHGSADAMVRENKIVGDATLRVNERG
            MSLPAMDAGIYLEETAPRALIEHNNILDNSVGVYLHGSADAMVRENKIVGDATLRVNERG
m639-1
                   10
                            20
                                     30
                                               40
                            80
                                              100
            NGVTVWNAPGAQVVGNDISKGRDGIFSNTSTHNTYKNNRFSDLRFAVHYMYTNDSEVSGN
g639-1.pep
            {}{}}}}}
m639-1
            {	t NGVTVWNAPGAQVVGNDISKGRDGIFSNTSTHNTYKNNRFSDLRFAVHYMYTNDSEISGN}
                            80
                                     90
                                             100
                                                       110
                  130
                           140
                                    150
                                             160
                                                       170
            ISVGNNMGYVLMFSERLKVFDNIAVGSRDXGIMLNYVNYSDIHDNIINKAGKCVFAYNAN
g639-1.pep
            m639-1
            ISVGNNMGYVLMFSERLKVFDNIAVGSRDQGIMLNYVNYSDIHDNIINKAGKCVFAYNAN
                  130
                           140
                                    150
                                             160
                                                       170
                           200
                                    210
                                             220
g639-1.pep
            YDKLSANHFENCQIGMHFTAAIEGTSLHDNSFINNGSQVKYVSTRFLDWSEGGHGNYWSD
            m639-1
            YDKLFANHFENCQIGIHFTAAIEGTSLHDNSFINNESQVKYVSTRFLDWSEGGHGNYWSD
                  190
                           200
                                    210
                                             220
                                                               240
                  250
                           260
                                    270
                                             280
                                                      290
                                                                300
            NSPFDLNGDGFGDSAYRPDGIIDQIIWRAPVSRLLMNSPAISIVKWAQAQFPAVLPGGVV
g639-1.pep
            m639-1
            NSAFDLNGDGFGDSAYRPNGIIDQIIWRAPVSRLLMNSPAISIVKWAQAQFPAVLPGGVV
                  250
                           260
                                             280
                                                      290
                  310
                           320
                                    330
            DSKPLMKPYAPKIQTRYQAMKDELLKEAETRQSERGRAENGSLNX
g639-1.pep
            m639-1
           DSKPLMKPYAPKIQTRYQAMKDELLKEVETRQSEWGRAENGSLNX
                  310
                           320
                                    330
                                             340
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2049>: a639-1.seq

```
1 ATGAGCCTGC CCGCAATGGA TGCCGGTATT TATCTCGAAG AAACTGCCCC
      GCGCGCCCTG ATTGAACACA ATAATATTTT GGATAATTCG GTCGGCGTCT
 101 ATCTGCATGG TTCTGCCGAT GCGATGGTGC GGGAGAATAA AATCGTCGGC
 151 GACGCGACTT TGCGCGTGAA CGAGCGCGGC AATGGCGTTA CCGTTTGGAA
201 CGCGCCCGGC GCGCAGGTCG TCGGCAACGA TATTTCCAAA GGGCGGGACG
 251 GCATTTTTC CAATACCAGC ACGCACAACA CCTATAAAAA CAACCGCTTC
     AGCGATTTGC GTTTCGCCGT CCACTATATG TACACCAACG ACAGCGAAAT
 351 CAGCGGCAAT ATTTCCGTGG GCAACAATAT GGGCTATGTG CTGATGTTTT
     CCGAGCGGCT CAAAGTGTTT GACAATATCG CCGTCGGCAG CCGCGACCAA
 401
     GGCATCATGC TCAACTATGT CAACTATTCC GATATTCACG ACAACATTAT
 451
 501
     CAACAAAGCG GGCAAGTGCG TTTTTGCCTA CAATGCCAAC TACGATAAAC
 551
      TGTCCGCCAA TCATTTTGAA AACTGCCAAA TCGGCATACA CTTTACCGCC
 601 GCCATCGAAG GCACGTCCCT GCACGACAAT TCCTTTATCA ACAACGAAAG
 651 CCAGGTCAAA TACGTCAGCA CGCGCTTTCT CGACTGGAGC GAGGGCGGAC
 701
     ACGGCAACTA TTGGAGCGAC AACAGCGCGT TCGATTTGAA CGGCGACGGC
 751
     TTCGGAGACA GCGCGTACCG TCCCAACGGC ATCATCGACC AAATCATCTG
     GCGCGCACCC GTATCGCGCC TCTTGATGAA CAGTCCCGCA ATCAGCATCG
 801
 851 TCAAATGGGC GCAGGCGCAA TTTCCCGCCG TTTTGCCTGG CGGCGTGGTG
 901 GACAGCAAAC CGCTGATGAA GCCTTATGCC CCCAAAATTC AAACCCGTTA
      TCAGGCGATG AAGGACGGGC TGCTCAAAAA AGTCGAAACG CGGCAGTTGG
1001 AATGGGGCAG GGCGGAAAAC GGTTCTTTGA ACTAG
```

### This corresponds to the amino acid sequence <SEQ ID 2050; ORF 639-1.a>: a639-1.pep

```
1 MSLPAMDAGI YLEETAPRAL IEHNNILDNS VGVYLHGSAD AMVRENKIVG
 51 DATLRVNERG NGVTVWNAPG AQVVGNDISK GRDGIFSNTS THNTYKNNRF
101 SDLRFAVHYM YTNDSEISGN ISVGNNMGYV LMFSERLKVF DNIAVGSRDO
151 GIMLNYVNYS DIHDNIINKA GKCVFAYNAN YDKLSANHFE NCQIGIHFTA
201 AIEGTSLHDN SFINNESQVK YVSTRFLDWS EGGHGNYWSD NSAFDLNGDG
251 FGDSAYRPNG IIDQIIWRAP VSRLLMNSPA ISIVKWAQAQ FPAVLPGGVV
```

301 DSKPLMKPYA PKIQTRYQAM KDGLLKKVET RQLEWGRAEN GSLN*

#### 98.8% identity in 344 aa overlap

a639-1.pep	10 MSLPAMDAGIYLEETA                 MSLPAMDAGIYLEETA 10	111111111	шини	нини		1111
a639-1.pep	70 NGVTVWNAPGAQVVGN              NGVTVWNAPGAQVVGN 70	11111111	[	1111111111	1111111111	1111
a639-1.pep m639-1	130 ISVGNNMGYVLMFSEF              ISVGNNMGYVLMFSEF 130	111111111	111111111111	1111111111		1111
a639-1.pep	190 YDKLSANHFENCQIGI HHHHHHHHHHH YDKLFANHFENCQIGI 190	THEFT				TEEL
a639-1.pep	250 NSAFDLNGDGFGDSAY               NSAFDLNGDGFGDSAY 250	111111111	11111111111			1111
a639-1.pep	310 DSKPLMKPYAPKIOTF             DSKPLMKPYAPKIOTF 310	111111 11	ний и			



```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2051>:
      g640.seg
                ATGATTCATA TAATATCAAT ATTAAAGAGT ATCGGTATAT CGGGGATAGC
                TATGTCCTGT TTTTCAATCC GGCGTATGTC TGCGTTTCGG GCGCGGATAA
            51
                CGGCGTTTTT TACCGCCTTT GTCTTTTTGA CGGcggcACT GCCCGCTTAT
           101
                GcggAgcgTc tgcctGATTT TCTGgcgAAA ATacAgcctT CGGAAATTTT
                TCCGGGTGCG GATCGTTACG GCAAGCCGGA aggcAAGCCT AtggtTGCCC
                GCgtttACAA AGgcgATGAG CAGCTCGGTT TGGTTTATAT CACGACCGAT
                GCGGTCAATA CGCGCGGTTA TTCGAGCAAA CCGATCGATA CGCTGATGGC
                TTTGGCAAAC GACGGCACGA TAGCCGGGGC GAAACTGGTC GATCATCACG
                AACCGATTAT GCTGATCGGT ATCCCGCAAT CGCGTGTCGA TAAGTTCATC
           401
                GACAAATATA TCGGTCTGAA TTTTATTAAA AATCCGCCGA CCCCGAGCGT
           501 GGCGCCGGGC GACATCATCA GCGGTGCGAC TGTTACACCA ATGCTGGTTA
551 ACGACAGCAT CCAGCGTTCG TACAAGGTCA TTGCCAACCA ATACCGTCTG
           601 GGTTCGGACA AGGCCCTTCA GACGGCATCC GCTTCCGATG TTCGGGAAGC
               CGCGCCTGCG TCAGAAACCC GTCCGCGCCG TATGGCAAAT CCCGACAAGC
               AGGATATTTT GTCTTGGGAC GAACTTTTGA AACAAAAGGC CGTCGGCCAT
                CTGCATATCA CGCTCGATCA AATCAACAAA CTGTTTGAGA AAGGCGGCAA
           801 GGCCGGCGTG GCCGATCACG CCGAACAGGG CGATCCTGAC GATACCTTTA
               TTGATTTGTA TGTTGCCTTG GTCAGCCAGC CTTCCATCGG TAAAAGCCTG
           901 CTGGGTGAGG ACGGCTGGGC GCATCTGCAA AAACGGCTGA AACCCGGGCA
               GCAGGCGGTT TTGGTTGCCG GAGAGGGCCG TTATTCTTGG AAAGGTTCGG
               GCTATGTGCG CGGCGGTATT TTCGACCGTA TCGAGATGAT TCAGGGGGGAG
          1001
          1051
               AACAGCTTCC GTTTTACCGA TGCCCAACAC GAACGCGTCG TCGAGCTGTC
               TGCCGCCGAT GCGCCGCGTT TTAAAGAAGT TTCTTGGTTT ACCATCCCTG
          1101
          1151 AAGGCGTAGC GTTTGACGGT GCGGAGCCGT GGCGGCTGTA A
This corresponds to the amino acid sequence <SEQ ID 2052; ORF 640.ng>:
     g640.pep
               MIHIISILKS IGISGIAMSC FSIRRMSAFR ARITAFFTAF VFLTAALPAY
            51
               AERLPDFLAK IQPSEIFPGA DRYGKPEGKP MVARVYKGDE QLGLVYITTD
               AVNTRGYSSK PIDTLMALAN DGTIAGAKLV DHHEPIMLIG IPQSRVDKFI
               DKYIGLNFIK NPPTPSVAPG DIISGATVTL MVVNDSIQRS YKVIANQYRL
               GSDKALQTAS ASDVREAAPA SETRPRRMAN PDKQDILSWD ELLKQKAVGH
               LHITLDQINK LFEKGGKAGV ADHAEQGDPD DTFIDLYVAL VSQPSIGKSL
          301 LGEDGWAHLQ KRLKPGQQAV LVAGEGRYSW KGSGYVRGGI FDRIEMIQGE
          351 NSFRFTDAQH ERVVELSAAD APRFKEVSWF TIPEGVAFDG AEPWRL*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2053>:
     m640.seq (partial)
               ATGATTCATA TAATATCAAT ATTAAAGAGT ATCGGTATAT CGGGGATAGT
               CATGTCCTGT TTTTCAATCA AACGTATGTC CGCGTTTCGG GCGCGGATAA
               CGGCGTTTTT TGCCGCCTTT GTCTTTTTGA CGGCGGCACT GCCCGCTTAT
               GCGGAGCGTC TGCCTGATTT TCTGGCGAAA ATACAGCCTT CGGAAATTTT
               TCCGGGTGCG GACCGTTACG GCAAGCCGGA AGGTAAGCCT ATGGTTGCCC
               GCGTTTACAA AGGCGATGAG CAGTTGGGCT TGGTCTATAT CACGACCGAT
               GCGGTCAATA CGCGCGGTTA TTCGAGCAAA CCGATTGATA CGCTGATGGT
          301
               GTTGGCAAAC GACGGCACGA TAGCCGGGGC GAAACTGGTC GACCATCACG
          351
              AACCGATTAT GCTGATCGGT ATCCCGCAT...
This corresponds to the amino acid sequence <SEQ ID 2054; ORF 640>:
     m640.pep
                 (partial)
               MIHIISILKS IGISGIVMSC FSIKRMSAFR ARITAFFAAF VFLTAALPAY
               AERLPDFLAK IQPSEIFPGA DRYGKPEGKP MVARVYKGDE QLGLVYITTD
              AVNTRGYSSK PIDTLMVLAN DGTIAGAKLV DHHEPIMLIG IPH...
m640/g640 96.5% identity in 143 aa overlap
                                              30
                                                         40
     m640.pep
                  MIHIISILKSIGISGIVMSCFSIKRMSAFRARITAFFAAFVFLTAALPAYAERLPDFLAK
                  a640
                  MIHIISILKSIGISGIAMSCFSIRRMSAFRARITAFFTAFVFLTAALPAYAERLPDFLAK
                                    20
                                              30
                                                                             60
                          70
                                    80
                                              90
                                                       100
                                                                  110
                                                                            120
```

للم وي و و المؤ



```
m640.pep
                 IQPSEIFPGADRYGKPEGKPMVARVYKGDEQLGLVYITTDAVNTRGYSSKPIDTLMVLAN
                 a640
                 IQPSEIFPGADRYGKPEGKPMVARVYKGDEQLGLVYITTDAVNTRGYSSKPIDTLMALAN
                        70
                                  80
                                            90
                                                    100
                        130
                                 140
    m640.pep
                 DGTIAGAKLVDHHEPIMLIGIPH
                 q640
                 DGTIAGAKLVDHHEPIMLIGIPQSRVDKFIDKYIGLNFIKNPPTPSVAPGDIISGATVTL
                        130
                                 140
                                          150
                                                    160
                                                              170
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2055>:
     a640.seg
              (partial)
              ATGATTCATA TAATATCAAT ATTAAAGAGT ATCGGTATAT CGGGGATAGT
           1
          51
              CATGTCCTGT TTTTCAATCA AACGTATGTC CGCGTTTCGG GCGCGGATAA
         101
              CGGCGTTTTT TGCCGCCTTT GTCTTTTGA CGGCGCACT GCCCGCTTAT
         151
              GCGGAGCGTC TGCCTGATTT TCTGGCGAAA ATACAGCCTT CGGAAATTGT
         201
              TCCGGGTGCG GACCGTTACA GCAAGCCGGA AGGTAAGCCT ATGGTTGCCC
         251
              GCGTTTACAA AGGCGATGAG CAGTTGGGCT TGGTCTATAT CACGACCGAT
              GCGGTCAATA CGCGCGGTTA TTCGAGCAAA CCGATTGATA CGCTGATGGC
         301
         351
              GTTGGCTAAA GACGGTACGA TAGCCGGAGC GAAATTGGTT GATCACCATG
         401 AGTCGATTAT GCTGATCGGT ATCCCGCAT...
This corresponds to the amino acid sequence <SEQ ID 2056; ORF 640.a>:
              (partial) Length: 143
    a640.pep
              MIHIISILKS IGISGIVMSC FSIKRMSAFR ARITAFFAAF VFLTAALPAY
              AERLPDFLAK IQPSEIVPGA DRYSKPEGKP MVARVYKGDE QLGLVYITTD
          51
         101 AVNTRGYSSK PIDTLMALAK DGTIAGAKLV DHHESIMLIG IPH...
m640/a640 96.5% identity in 143 aa overlap
                        10
                                  20
                                           30
                                                     40
                                                               50
                                                                        60
    m640.pep
                 MIHIISILKSIGISGIVMSCFSIKRMSAFRARITAFFAAFVFLTAALPAYAERLPDFLAK
                 a640
                 MIHIISILKSIGISGIVMSCFSIKRMSAFRARITAFFAAFVFLTAALPAYAERLPDFLAK
                        10
                                  20
                                           30
                                                     40
                                                              50
                        70
                                           90
                                                    100
                                                              110
                                                                       120
    m640.pep
                 {\tt IQPSEIFPGADRYGKPEGKPMVARVYKGDEQLGLVYITTDAVNTRGYSSKPIDTLMVLAN}
                 a 640
                 IQPSEIVPGADRYSKPEGKPMVARVYKGDEQLGLVYITTDAVNTRGYSSKPIDTLMALAK
                        70
                                  80
                                           90
                                                    100
                       130
    m640.pep
                 DGTIAGAKLVDHHEPIMLIGIPH
                 11111111111111 | 11111111
    a640
                 DGTIAGAKLVDHHESIMLIGIPH
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2057>:
    q642.seq
              ATGCGGTATC CGCCGCAATC GGCGGTTTTG CAGAATGCCG CGCGTTGCCT
           7
          51
              TTTGCGCCGC CCGAAATCTG CCTGCCGCCG TATTTGCCCG CTATCCGCAA
         101
              TATCGGCAGT CCAATATATC TTTGCGGATG TCGTTCAGCA GGAAGGCTGT
              GGTGTCTTCG TGTTCCTCCT GTACGAAGAC AAAAAGTCGG GCGATGATTT
         151
         201
              TGCCGATGAA GACTTTTTGC AGGGCGCAGG CGTCGGTCAG GGTGTGTTCC
              TGCAGGAAGC TGCGGATGTC TTCGGGCAAA GCGTAGtCgc gGGCAACGGC
         251
              GGcaaagcgG ACatcggtTT Gcacggcgtc gagCAGGGtt tggtTTTTGT
         301
         351
              CCAACTTAAT GCCTGCTTCT TTTTCTTCGG CGGTGGCGCG GACGAACTGG
              TCGTAAATTT CGGCATAAAG CATATCGTTC GGGCCTTCAA AAATCGTGAA
         401
         457
              GGGGCGGATA TCGATGGCGA TATTGCCGGC TGGGTGTCCG CGTTCAAAAC
              CCTTCGCGCC CAAGAGTTTT TGCAACATTT GCGCGGCGgc gTAAGTGTAT
         501
         551
              TCCGTGGCGa ggGTTTTGAc gatgTTCGCC TCCATCAATT GATGGGCGAc
              ggGCGcgacg ggCGAAACGG AATGGCAGAC GTAGCGGTAA AGGATTTCGG
         601
              AAACCTGATG GCGGCGTTGG ATTTCGCGGC GTTCGTAATC GACGAATCTG
```



```
701 ATATCGTTGC GGACATATCG GTTCAGGTTG TCAAGGATGT ATTCCATAAT
      GCCGTGCGTC ATGCCGATCA GTTGCAGGCG GCTGCGGATA AAGATGTTTT
       GGAACGCGCG CAAACCGGCA GCGTCGCCCC GGGAGAGTTT CATCACGGCG
 801
      GTTGCAGGCA TTTCGGCATC GATGCGGTTG ACGGCGTAAC GGACGGCGCG
 851
      CAGGCCTTCG GATGCGAGGG TTTCGCAGCG GATGTATGTT TTGGGGACGA
 951
      GCAGCAGGTC GATGactttg gcgagtttgC Cgtttttgcg ctctttggcg
      gcaacgaggA GGAAGTCGCT TTGCGAATTG CCCTGCCAGT ATTTCGCGGC
1001
1051
      GttgACGTAA ATGGTTtgtt cgtcggtata ttcgtagcag gactgcaTTT
1101 CGCGTGCAAt cgCcgcgccg gaggtTtcgg gttcggtaAc gcccaaacgg
1151 cggctttcgc ctTTGAAAAT CATGTCCAAA CCTTGTGCGA CTTGCgcttc
      gccgccgaac tCTTGCAGAG GCTGCAACAC CAGCGCGCCT TCGATGCCGG
1251 TACGCAGCGT AACGGGCACG CCGTAATGCC CCGCAATCCT TAG
```

## This corresponds to the amino acid sequence <SEQ ID 2058; ORF 642.ng>:

```
1 MRYPPQSAVL QNAARCLLRR PKSACRRICP LSAISAVQYI FADVVQQEGC
51 GVFVFLLYED KKSGDDFADE DFLQGAGVGQ GVFLQEAADV FGQSVVAGNG
101 GKADIGLHGV EQGLVFVQLN ACFFFFGGGA DELVVNFGIK HIVRAFKNRE
151 GADIDGDIAG WVSAFKTLRA QEFLQHLRGG VSVFRGEGFD DVRLHQLMGD
201 GRDGRNGMAD VAVKDFGNLM AALDFAAFVI DESDIVADIS VQVVKDVFHN
251 AVRHADQLQA AADKDVLERA QTGSVAPGEF HHGGCRHFGI DAVDGVTDGA
301 QAFGCEGFAA DVCFGDEQQV DDFGEFAVFA LFGGNEEEVA LRIALPVFRG
351 VDVNGLFVGI FVAGLHFACN RRAGGFGFGN AQTAAFAFEN HVQTLCDLRF
401 AAELLQRLQH QRAFDAGTQR NGHAVMPRNP *
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2059>:

```
m642.seg (partial)
         GCCTGCCGCC GTATTTGCCC GCTACCCGCA ATATCGGCAG TCCAATATAT
         CTTTGCGGAT GTCGTTCAGC AGGAAGGCTG CGGTGTCTTC GTGTTTCGCC
         TGTACGAAGA CAAAGAGTCG GGCGATGATT TTGCCGATAA AGACTTTTTG
         CAGGGCGCAG GCATCGGTCA GGGTGTGTTC CTGCAGGAAG CTGCGGATGT
         CTTCAGGCAA AGTGTAGTCG CGGGCGACGG CGGCAAAGCG GGCATCGGTT
    251
         TGCAGGCGGT CGAGCAGGGT TTGGTTTTTG TCCAACTTCA TGCCTGCTTC
         TTTTTCTTCG GCGGTGGCGC GGACAAACTG GTCGTAAATT TCGGCATAAA
    301
         GCATATCGTT CGGGCCTTCA AAAATCGTGA AGGGGCGGAT GTCGATAGCG
    401 ATATTGCCGG CGGTGTGTCC GCGTTCAAAA CCCTTCGCAC CCAAGAGTTT
         TTGCAACATT TGCGCGGCGG CGTAAGTGTA TTCCGTGGCG AGGGTTTTGA
    451
         CGATGTTCGC CTCCATCAGC TGATGGGCGA CGGGGGCAAC AGGCGAAACG
        GAATGGCAGA CGTAGCGGTA AAGAATCTCG GAAACCTGAT GGCGGCGCCG
    551
        GATTTCGCGG CGTTCGTAAT CGACGAATTT GATGTCGTTG CGGACGTATC
    601
         GTTCCAGATT TTCAAGGATG TATTCCATAA TGCCGTGCGT CATGCCGATC
    651
         AGTTGCAGGC GGCTGCGGAT AAAGATGTTT TGGAACGCGC GCAAACCGGC
    701
         AGCGTCGCTC TGGGAGAGTT TCATCACGGC GGTTGCAGGC ATTTCGGCAT
    751
         CGATGCGGTT GACGGCGTAA CGGACGGCGC GCAAGCCTTC GGATGCGAGG
    801
        GTTTCGCAGC GGATGTATGT TTTGGGGACG AGCAGCAGGT CGATGACTTT
    851
        GGCGAGTTTG CCGTTTTTGC GCTCTTTGGC GGCAACGAGG AGGAAGTCGC
        TTTGCGAGTT GCCCTGCCAG TATTTCGCGG CGTTGACGTA AATGGTTTGT
    951
   1001
        CCGTCGATAT ATTCGTAGTA GGACTGCATT TCGCGTGCAA TCGCCGCGCC
         GGAGGTTTCG GGTTCGGTAA CACCCAAACC GCCGCCCTCG CCTTTGAAAA
         TCATCTCCAA ACCTTGCGCG ACTTGCGCTT CATCGCCGAA CTCTTGCAGT
   1101
         GGCTGCAACA CCAGCGCGCC TTCGATGCCG GTACGCAGCG TAACGGGCAC
   1201 GCCGTAATGC CCCGCAATCC G
```

## This corresponds to the amino acid sequence <SEQ ID 2060; ORF 642>:

```
m642.pep (partial)

1 ACRRICPLPA ISAVQYIFAD VVQQEGCGVF VFRLYEDKES GDDFADKDFL
51 QGAGIGQGVF LQEAADVFRQ SVVAGDGGKA GIGLQAVEQG LVFVQLHACF
101 FFFGGGADKL VVNFGIKHIV RAFKNREGAD VDSDIAGGVS AFKTLRTQEF
151 LQHLRGGVSV FRGEGFDDVR LHQLMGDGGN RRNGMADVAV KNLGNLMAAP
201 DFAAFVIDEF DVVADVSFQI FKDVFHNAVR HADQLQAAAD KDVLERAQTG
251 SVALGEFHHG GCRHFGIDAV DGVTDGAQAF GCEGFAADVC FGDEQQVDDF
301 GEFAVFALFG GNEEEVALRV ALPVFRGVDV NGLSVDIFVV GLHFACNRRA
351 GGFGFGNTQT AALAFENHLQ TLRDLRFIAE LLQWLQHQRA FDAGTQRNGH
```

## m642/g642 90.4% identity in 407 aa overlap

2	•	P				
m642.pep		ħ¢	10 CRRICPLPAIS	20	30	ED I VED
		11		JIIIIIIIII	VQQEGCGVFV	I IIII
g642	MRYPPQSAVLQNAAR	CLLRRPKSAC	RRICPLSAIS	AVQYIFADV	/QQEGCGVFV	FLLYED
	10	20	30	40	50	60
	40 50	60	7.0	0.0	0.0	
m642.pep	KESGDDFADKDFLQG		70	VACDCCKACT	90	TENTOT ::
Pop	1:	11:	1111111111	:	LILLI::II	\
g642	KKSGDDFADEDFLQG	AGVGQGVFLÇ	EAADVFGQSV	VAGNGGKADI	GLHGVEQGL	VFVQLN
	70	80	90	100	110	120
	100 110	120	130	140	150	
m642.pep	ACFFFFGGGADKLVVI				150 EKTLETOFFL	OPT.RCC
		1 ( 1 1 1 1 1 1 1 1 1	11111111:1	: 1111 1111	1111:1111	11111
g642	ACFFFFGGGADELVVI	NFGIKHIVRA	FKNREGADID	GDIAGWVSAF	KTLRAQEFL	QHLRGG
	130	140	150	160	170	180
	160 170	180	190	200	210	
m642.pep	VSVFRGEGFDDVRLH(	QLMGDGGNRR	NGMADVAVKN	LGNLMAAPDF	AAFVIDEFDY	/VADVS
e 10		HHHH:	111111111:	:	1111111 1:	:111:1
g642	VSVFRGEGFDDVRLH(	QLMGDGRDGR 200				
	190	200	210	220	230	240
	220 230	240	250	260	270	
m642.pep	FQIFKDVFHNAVRHAI	OQLQAAADKD	VLERAQTGSV	ALGEFHHGGC	RHFGIDAVDO	SVTDGA
g642	:			1 1111111		1111
9012	VQVVKDVFHNAVRHAI 250	260	270	APGEFHHGGC 280	RHFGIDAVDO 290	SVTDGA 300
		200	2.0	200	2.30	300
	280 290	300	310	320	330	
m642.pep	QAFGCEGFAADVCFGI	DEQQVDDFGE	FAVFALFGGNI	EEEVALRVAL	PVFRGVDVNC	SLSVDI
g642	QAFGCEGFAADVCFGE	FOOVDDEGE	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	:     PERVAIDTAI	PUEDCUDUNG	
•	310	320	330	340	350	360
m642 non	340 350	360	370	380	390	
m642.pep	FVVGLHFACNRRAGGE	GEGNTOTAA	LAFENHLOTLI	RDLRFIAELL	QWLQHQRAFI	DAGTOR
g642	FVAGLHFACNRRAGGE	GFGNAOTAA	FAFENHVOTLO	CDLRFAAELL	ORIOHORAFI	IIIII ROTOR
	370	380	390	400	410	420
	400					
m642.pep	NGHAVMPRNP					
· · <b>F</b> - <b>F</b>						
g642	NGHAVMPRNPX 430					

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2061>: a642.seq (partial)

2.seq	(partial)				
1	GCCTGCCGCC	GTATTTGCCC	GCTATCCGCA	ATATCGGCAG	TCCAATATGT
51				CGGTGTCTTC	GTGTTCCGCC
101	TGTACGAAGA	CAAAGAGTCG	GGCGATGATT	TTGCCGATAA	AGACTTTTTG
151		GCATCGGTCA			CTGCGGATGT
201	CTTCGGGCAA	AGTGTAGTCG	CGGGCGACGG	CGGCAAAGCG	GGCATCGGTT
251	TGCAGGCGGT	CGAGCAGGGT	TTGGTTTTTG	TCCAACTTCA	TGCCTGCTTC
301	TTTTTCTTCG	GCGGTGGCGC	GGACAAACTG	GTCGTAAATT	TCGGCATAAA
351	GCATATCGTT	CGGGCCTTCA	AAAATCGTGA	AGGGGCGGAT	GTCGATAGCG
401	ATATTGCCGG	CGGTGTGTCC	GCGTTCAAAA	CCCTTCGCGC	CCAAGAGTTT
451	TTGCAACATT	TGCGCGGCGG	CGTAAGTGTA	TTCCGTGGCG	AGGGTTTTGA
501	CGATGTTCGC	CTCCATCAGT	TGATGGGCGA	CGGGTGCAAC	GGGCGAAACG
551	GAATGGCAGA	CGTAGCGGTA	AAGAATCTCG	GAAACCTGAT	GGCGGCGCCG
601	GATTTCGCGG	CGTTCGTAAT	CGACGAATCT	GATGTCGTTG	CGGACGTATC
651	GTTCCAGGTT	TTCAAGGGTG	TATTCCATAA	TGCCGTGCGT	CATGCCGATC



701 751 801 851 901 951 1001 1051 1101 1151	AGTTGCAGGC GGCTGCGGAT AAAGATGTTT TGGAACGCGC GCAAACCGGC AGCGTCGCTC TGGGAGAGTT TCATCACGGC GGTTGCAGGC ATTTCGGCAT GACGGCGTAA CGGACGGCGC GCAAGCCTTC GGATGCGAGG GTTTCGCAGC GGATGTATGT TTTGGGGACG AGCACAGGT CGATGACTTT GGCGAGTTTGC GCCTTCTTGCC GCCAACGAGG AGGAAGTCGC TTTGCGAGTT GCCCTGCCAG TATTTCGCGG CGTTGACGTA AATGGTTTGT CCGTCGGTAT ATTCGTAGTA AGACTGCATT TCTCGGGCAA TCGCCGCGCC GGAGGTTTCG GGTTCGATA CGCCTAAACC GCCGCCCTCG CCTTTGAAAA CCCTGTCCAA ACCCTGTGCG ATTTGCGCTT CATCGCCGAA CTCTTGCAGT GGCTGCAACAC CCAGCGCCC TTCGATGCCG GTACCGACG TAACGGGCAC GCCGTAAACC GCCGTAATGC CCCGCAATCC G
This correspond	s to the amino acid sequence <seq 2062;="" 642.a="" id="" orf="">:</seq>
a642.pep 1 51 101 151 201 251 301 351 401	Length: 407  ACRRICPLSA ISAVQYVFAD VVQQEGCGVF VFRLYEDKES GDDFADKDFL QGAGIGQGVF LQEAADVFGQ SVVAGDGGKA GIGLQAVEQG LVFVQLHACF FFFGGGADKL VVNFGIKHIV RAFKNREGAD VDSDIAGGVS AFKTLRAQEF LQHLRGGVSV FRGEGFDDVR LHQLMGDGCN GRNGMADVAV KNLGNLMAAP DFAAFVIDES DVVADVSFQV FKGVFHNAVR HADQLQAAAD KDVLERAQTG SVALGEFHHG GCRHFGIDAV DGVTDGAQAF GCEGFAADVC FGDEQQVDDF GEFAVFALFG GNEEEVALRV ALPVFRGVDV NGLSVGIFVV RLHFSGNRRA
m642/a642 95.8	% identity in 407 aa overlap
	10 20 30 40 50 60
m642.pep	ACRRICPLPAISAVQYIFADVVQQEGCGVFVFRLYEDKESGDDFADKDFLQGAGIGQGVF
a642	ACRRICPLSAISAVQYVFADVVQQEGCGVFVFRLYEDKESGDDFADKDFLQGAGIGQGVF
	70 80 90 100 110 120
m642.pep	LQEAADVFRQSVVAGDGGKAGIGLQAVEQGLVFVQLHACFFFFGGGADKLVVNFGIKHIV
a642	LQEAADVFGQSVVAGDGGKAGIGLQAVEQGLVFVQLHACFFFFGGGADKLVVNFGIKHIV 70 80 90 100 110 120
m642.pep	130 140 150 160 170 180 RAFKNREGADVDSDIAGGVSAFKTLRTQEFLQHLRGGVSVFRGEGFDDVRLHQLMGDGGN
a642	RAFKNREGADVDSDIAGGVSAFKTLRAQEFLQHLRGGVSVFRGEGFDDVRLHQLMGDGCN
	130 140 150 160 170 180
m642.pep	190 200 210 220 230 240 RRNGMADVAVKNLGNLMAAPDFAAFVIDEFDVVADVSFQIFKDVFHNAVRHADQLQAAAD
a642	
	190 200 210 220 230 240
m642.pep	250 260 270 280 290 300 KDVLERAQTGSVALGEFHHGGCRHFGIDAVDGVTDGAQAFGCEGFAADVCFGDEQQVDDF
• •	
a 642	KDVLERAQTGSVALGEFHHGGCRHFGIDAVDGVTDGAQAFGCEGFAADVCFGDEQQVDDF 250 260 270 280 290 300
m642.pep	310 320 330 340 350 360 GEFAVFALFGGNEEEVALRVALPVFRGVDVNGLSVDIFVVGLHFACNRRAGGFGFGNTQT
m642.pep	370 380 390 400
mo42.pep	AALAFENHLQTLRDLRFIAELLQWLQHQRAFDAGTQRNGHAVMPRNP 
a 642	AALAFENHVQTLCDLRFIAELLQWLQHQRAFDAGTQRNGHAVMPRNP

380 390 400

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2063>: g643.seq

- ATGGTGTTGC CTTTGATGTT GTTGGCGACA ATCAGGTCGG CTACGCTGAC gttgtancGt TTGGcaATGt tGaaCAgggt gtcgccTTCT ACAACGCGGT 51 101 GGATGCTGGC ATGGagcGGG GAGGTTTCGG CTTCGCCGTC GGCAGCTTTG 151 GCTACGCGCG TTTCCAAACG TGCCCGGCGT TtgCCGTCGG CGGCAACGGT 201 ATGTTGCGGA GATGAGGAAA TGTTGTGTTC GGCAACTGTG TCAGGCGTGC
- 251 CGATGACGGC GGagaTGGTT TCTTCAGCCT GCCGGCGCag gTTGTTTCGG
- 301 GCAACAAGCT GCATGAGTTC GTCTGCCGCC TGCATGTCGT TTGGGGGGAt 351 GACCTGCGCg aGTGtTGCGG TTTGGGTTTC agacgGCATG GCAGTCTGTT
- 401 TTTcggTTTG a

This corresponds to the amino acid sequence <SEQ ID 2064; ORF 643>: g643.pep

- MVLPLMLLAT IRSATLTLXR LAMLNRVSPS TTRWMLAWSG EVSASPSAAL
- 51 ATRVSKRARR LPSAATVCCG DEEMLCSATV SGVPMTAEMV SSACRRRLFR
- 101 ATSCMSSSAA CMSFGGMTCA SVAVWVSDGM AVCFSV*

370

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2065>: m643.seq

- ATGGTGTTGC CTTTGATGTT GTTGGCGACA ATCAGGTCGG CTACACTGAC 1 GTTGTAGCGT TTGGCAATGT TGAACAGGGT GTCGCCTTCT ACAACGCGGT 51 101 GGATGCTGGC ATGGAGCGGG GAGATTTCGG CTTCGCCGTC GGCAGCTTTG 151 GCTACGCGCG TTTCCAAACG TACCCGGCGT TTGCCGTCGG CGGCAGCGGT 201 ATGTTGCGGA GATGCGGAAA TTTTGTGTTC GGCAACTGTG TCAGGCGTGC 251 CGATGACGCC GGAGATGGTT TCTTCAGCCT GTCGGCGCAG GTTGTTTCGG 301 GCAACAAGCT GCATGAGTTC GTCTGCCGCC TGCATGTCGT TTTGGGGGAT GATCTGCGCG AGTGTTGCGG TTTGGGTTTC AGACGGCATG GCGGTCTGTT 401 TTTCGGTTTG A
- This corresponds to the amino acid sequence <SEQ ID 2066; ORF 643>: m643.pep
  - 1 MVLPLMLLAT IRSATLTL*R LAMLNRVSPS TTRWMLAWSG EISASPSAAL
  - ATRVSKRTRR LPSAAAVCCG DAEILCSATV SGVPMTAEMV SSACRRRLFR 51
  - 101 ATSCMSSSAA CMSFWGMICA SVAVWVSDGM AVCFSV*

Computer analysis of the amino acid sequences gave the following results: Homology with a predicted ORF from N. meningitidis menA with menB ORF 643 shows 94.9% identity over a 136 aa overlap with a predicted ORF (ORF643.a) from N. gonorrhoeae: m643/g643

m643.pep	10 MVLPLMLLATIRSATLT	20 LXRLAML	30 NRVSPSTTRW	40 MLAWSGEISA	50 SPSAALATR	60 VSKRTRR
g643	MVLPLMLLATIRSATLT	LXRLAMI	NRVSPSTTRW	MLAWSGEVSA	SPSAALATR	VSKRARR
-	10	20	30	40	50	60
	70	80	90	100	110	120
m643.pep	LPSAAAVCCGDAEILCS	ATVSGVP	MTAEMVSSAC	RRRLFRATSC	MSSSAACMS	
		1111111	111111111	111111111	11111111	1 11 11
g643	LPSAATVCCGDEEMLCS	ATVSGVP	MTAEMVSSAC	RRRLFRATSC	MSSSAACMS	FGGMTCA
	70	80	90	100	110	120
	130					
m643.pep	SVAVWVSDGMAVCFSVX					
g643	SVAVWVSDGMAVCFSVX					
	130					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2067>:

```
a643.seq
              ATGGTGTTGC CTTTGATGTT GTTGGCGACA ATCAGGTCGG CTACACTGAC
          51
              GTTGTAGCGT TTGGCAATGT TGAACAGGGT GTCGCCTTCT ACAACGCGGT
         101
             GGATGCTGGC ATGGAGCGGG GAGATTTCGG CTTCGCCGTC GGCAGCTTTG
         151
             GCTACGCGCG TTTCCAAACG TACCCGGCGT TTGCCGTCGG CGGCAACGGT
         201
             ATGTTGCGGA GATGAGGAAA TGTTGTGTTC GGCAACTGTG TCAGGCGTGC
             CGATGACGGC AGAGATGGTT TCTTCAGCCT GTCGGCGCAG GTTGTTTCGG
         251
              GCAACAAGCT GCATGAGTTC GTCTGCCGCC TGCATGTCGT TTTGGGGGAC
              GATCTGCGCG AGTGTTGCGG TTTGGGTTTC AGACGGCATG GCGGTCTGTT
         351
              TTTCGGTTTG A
This corresponds to the amino acid sequence <SEQ ID 2068; ORF 643.a>:
    a643.pep
             MVLPLMLLAT IRSATLTL*R LAMLNRVSPS TTRWMLAWSG EISASPSAAL
          51
             ATRVSKRTRR LPSAATVCCG DEEMLCSATV SGVPMTAEMV SSACRRRLFR
         101
             ATSCMSSSAA CMSFWGTICA SVAVWVSDGM AVCFSV*
    m643/a643
                97.1% identity in 136 aa overlap
                                 20
                                                   40
    m643.pep
                MVLPLMLLATIRSATLTLXRLAMLNRVSPSTTRWMLAWSGEISASPSAALATRVSKRTRR
                a643
                MVLPLMLLATIRSATLTLXRLAMLNRVSPSTTRWMLAWSGEISASPSAALATRVSKRTRR
                       10
                                 20
                                          30
                                                   40
                       70
                                 80
                                          90
                                                   100
                                                            110
                LPSAAAVCCGDAEILCSATVSGVPMTAEMVSSACRRRLFRATSCMSSSAACMSFWGMICA
    m643.pep
                LPSAATVCCGDEEMLCSATVSGVPMTAEMVSSACRRRLFRATSCMSSSAACMSFWGTICA
    a643
                                 80
                                          90
                                                  100
                      130
                SVAVWVSDGMAVCFSVX
    m643.pep
                1111111111111111
    a643
                SVAVWVSDGMAVCFSVX
                      130
```

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2069>: g644.seq

```
ATGCCGTCTG AAAGGccgGC GGATTGTTGC CCGGTGCACT TTGTGGTAAA
  51
      GTTTAGAAAA TTAACTCTAA ACTGTGGCAG GCGGTTTGAC CGGCCGCCGA
 101
      TTAATGGGAA CCGACAGAGG AAGCCGATGA TACACACCGA ACCGAGCGCG
 151
      CAGCCGTCAA CCATGGACAC GGCTGCTTTT TTAAagcaca tcgaatCCGC
 201
      ATTCCCCCGC ATTTTTCAG ACGGCATCGA CCTGATGCGA TACCTGCCCG
      AAGACAAATG GCTTGCCTTG AAGCAGGCGG GTTTGCTGTT GCCCTTCCTC
 251
 301
      GACAAAAAC ACGGCGGGCG CAAGGGCAGT CAGTTTGAAA TCCAAGAAGT
      CCTAAGGATT GCGGGGCATT ACGGCGTGCC CGTTACGCTG CGTACCGGCA
 351
 401
      TCGAAGGCGC GCTGGTGTTG CAGCCTCTGC AAGagttcgg cggcgaagcG
      CAAGTCGCAC AAGGTTTGGA CATGATTTTC AAaggcgaaa gccgccgttt
 451
 501
      gggcgTtacc gaacccgaAa cctccggcgc gGcgaTTGCA CGCGAAAtgc
     agtoctgota cgaatataco gacgaacaAA CCATTTACGT caaCGCCGCG AAATACTGGC AGGGCAATTC GCAAAGCGAC TTCCTcctcg ttgccgccaa
 551
 601
 651
      agagegeaaa aacGGcaaac tegecaaagt CATCGACCTG CTGCTCGTCC
 701
      CCAAAACATA CATCCGCTGC GAAACCCTCG CATCCGAAGG CCTGCGCGCC
      GTCCGTTACG CCGTCAACCG CATCGATGCC GAAATGCCTG CAACCGCCGT
 751
 801
      GATGAAACTC TCCCGGGGCG ACGCTGCCGG TTTGCGCGCG TTCCAAAACA
 851
      TCTTTATCCG CAGCCGCCTG CAACTGATCG GCATGACGCA CGGCATTATG
 901
      GAATACATCC TTGACAACCT GAACCGATAT GTCCGCAACG ATATCAGATT
 951
      CGTCGATTAC GAACGCCGCG AAATCCAACG CCGCCATCAG GTTTCCGAAA
      TCCTTTACCG CTACGTCTGC CATTCCGTTT CGcccgtcgC GCccgTCGCC
1001
1051
      CATCAATTGA TGGAGGCGAA catcgTCAAA ACcctCGCCA CGGAATACAC
      TTACGCCGCC GCGCAAATGT TGCAAAAACT CTTGGGCGCG AAGGGTTTTG
1101
      AACGCGGACA CCCAGCCGGC AATATCGCCA TCGATATCCG CCCCTTCACG
1151
      ATTTTTGAAG GCCCGAACGA TATGCTTTAT GCCGAAATTT ACGACCAGTT
1201
1251
     CGTCCGCGCC ACCGCCGAAG AAAAAGAAGC AGGCATTAAG TTGGACAAAA
      accaaaCCCT Gctcgacgcc gtgCAAaccg atGTCcgctt tgCCGCCGTT
1301
      GCCcgcGacT ACGCTTTGCC CGAAGACATC CGCAGCTTCC TGCAGGAACA
1351
     CACCCTGACC GACGCCTGCG CCCTGCAAAA AGTCTTCATC GGCAAAATCA
```

الروال نے فی اللہ اللہ ا

يار : ار

```
1451 TCGCCCGACT TTTTGTCTTC GTACAGGAGG AACACGAAGA CACCACAGCC
    1501
         TTCCTGCTGA ACGACATCCG CAAAGATATA TTGGACTGCC GATATTGCGG
This corresponds to the amino acid sequence <SEQ ID 2070; ORF 644.ng>:
g644.pep
         MPSERPADCC PVHFVVKFRK LTLNCGRRFD RPPINGNRQR KPMIHTEPSA
      51
          QPSTMDTAAF LKHIESAFPR IFSDGIDLMR YLPEDKWLAL KOAGLLLPFL
          DKKHGGRKGS QFEIQEVLRI AGHYGVPVTL RTGIEGALVL QPLQEFGGEA
     101
         QVAQGLDMIF KGESRRLGVT EPETSGAAIA REMQSCYEYT DEQTIYVNAA
     151
         KYWQGNSQSD FLLVAAKERK NGKLAKVIDL LLVPKTYIRC ETLASEGLRA
     201
     251
          VRYAVNRIDA EMPATAVMKL SRGDAAGLRA FQNIFIRSRL QLIGMTHGIM
         EYILDNLNRY VRNDIRFVDY ERREIQRRHQ VSEILYRYVC HSVSPVAPVA
     301
         HQLMEANIVK TLATEYTYAA AQMLQKLLGA KGFERGHPAG NIAIDIRPFT
     351
     401
         IFEGPNDMLY AEIYDQFVRA TAEEKEAGIK LDKNQTLLDA VQTDVRFAAV
     451 ARDYALPEDI RSFLQEHTLT DACALQKVFI GKIIARLFVF VQEEHEDTTA
501 FLLNDIRKDI LDCRYCG*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2071>:
m644.seg
         ATGCCGTCTG AAAGGTCGGC GGATTGTTGC CCGGCGCACT TTGTGGTAAA
      51
         GTTTAGAAAA TCAACTCTAA ACTGTGGCAG GCGGTTTGAC CGGCCGCCGA
         TTAATGGGAA CCGACAGAGG AAGCCGATGA TACACACCGA ACCGAGCGCG
         CAGCCGTCAA CTATGGACAC GGCTGCTTTT TTAAAGCACA TCGAATCCGC
     151
     201 ATTCCGCCGC ATTTTTCAG ACGGTATCGA CCTGATGCGA TACCTGCCCG
     251
         AAGACAAATG GCTTGCCTTG AAGCAGGCGG GTTTGCTGTT GCCCTTCCTC
         GACAAAAAT ACGGCGGGCG CAAGGGCAGC CAGTTTGAAA TCCAAGAAGT
     301
         CCTGCGGATT GCGGGGCATT ACGGCGTGCC CGTTACGCTG CGTACCGGCA
     351
     401
         TCGAAGGCGC GCTGGTGTTG CAGCCACTGC AAGAGTTCGG CGATGAAGCG
         CAAGTCGCGC AAGGTTTGGA GATGATTTTC AAAGGCGAGG GCGGCGGTTT
     451
         GGGTGTTACC GAACCCGAAA CCTCCGGCGC GGCGATTGCA CGCGAAATGC
     501
         AGTCCTACTA CGAATATATC GACGGACAAA CCATTTACGT CAACGCCGCG
     551
         AAATACTGGC AGGGCAACTC GCAAAGCGAC TTCCTCCTCG TTGCCGCCAA
     601
     651
         AGAGCGCAAA AACGGCAAAC TCGCCAAAGT CATCGACCTG CTGCTCGTCC
     701
         CCAAAACATA CATCCGCTGC GAAACCCTCG CATCCGAAGG CTTGCGCGCC
         GTCCGTTACG CCGTCAACCG CATCGATGCC GAAATGCCTG CAACCGCCGT
     751
     801
         GATGAAACTC TCCCAGAGCG ACGCTGCCGG TTTGCGCGCG TTCCAAAACA
         TCTTTATCCG CAGCCGCCTG CAACTGATCG GCATGACGCA CGGCATTATG
     851
     901
         GAATACATCC TTGAAAATCT GGAACGATAC GTCCGCAACG ACATCAAATT
     951
         CGTCGATTAC GAACGCCGCG AAATCCGGCG CCGCCATCAG GTTTCCGAGA
         TTCTTTACCG CTACGTCTGC CATTCCGTTT CGCCTGTTGC CCCCGTCGCC
    1001
    1051
         CATCAGCTGA TGGAGGCGAA CATCGTCAAA ACCCTCGCCA CGGAATACAC
    1101
         TTACGCCGCC GCGCAAATGT TGCAAAAACT CTTGGGTGCG AAGGGTTTTG
                                                                                       · ...
    1151 AACGCGGACA CACCGCCGGC AATATCGCTA TCGACATCCG CCCCTTCACG
         ATTTTTGAAG GCCCGAACGA TATGCTTTAT GCCGAAATTT ACGACCAGTT
    1201
    1251
         TGTCCGCGCC ACCGCCGAAG AAAAAGAAGC AGGCATGAAG TTGGACAAAA
    1301 ACCAAACCCT GCTCGACCGC CTGCAAACCG ATGCCCGCTT TGCCGCCGTC
         GCCCGCGACT ACACTTTGCC TGAAGACATC CGCAGCTTCC TGCAGGAACA
         CACCCTGACC GATGCCTGCG CCCTGCAAAA AGTCTTTATC GGCAAAATCA
    1451
         TCGCCCGACT CTTTGTCTTC GTACAGGCGA AACACGAAGA CACCGCAGCC
    1501
         TTCCTGCTGA ACGACATCCG CAAAGATATA TTGGACTGCC GATATTGCGG
    1551
         GTAG
This corresponds to the amino acid sequence <SEQ ID 2072; ORF 644>:
m644.pep
         MPSERSADCC PAHFVVKFRK STLNCGRRFD RPPINGNRQR KPMIHTEPSA
     51
         QPSTMDTAAF LKHIESAFRR IFSDGIDLMR YLPEDKWLAL KQAGLLLPFL
         DKKYGGRKGS QFEIQEVLRI AGHYGVPVTL RTGIEGALVL QPLQEFGDEA
     101
         QVAQGLEMIF KGEGGGLGVT EPETSGAAIA REMQSYYEYI DGQTIYVNAA
     151
     201
         KYWQGNSQSD FLLVAAKERK NGKLAKVIDL LLVPKTYIRC ETLASEGLRA
     251
         VRYAVNRIDA EMPATAVMKL SQSDAAGLRA FQNIFIRSRL QLIGMTHGIM
         EYILENLERY VRNDIKFVDY ERREIRRRHQ VSEILYRYVC HSVSPVAPVA
     301
         HQLMEANIVK TLATEYTYAA AQMLQKLLGA KGFERGHTAG NIAIDIRPFT
     351
     401
         IFEGPNDMLY AEIYDQFVRA TAEEKEAGMK LDKNQTLLDR LQTDARFAAV
     451
         ARDYTLPEDI RSFLQEHTLT DACALQKVFI GKIIARLFVF VQAKHEDTAA
     501
         FLLNDIRKDI LDCRYCG*
m644/g644 94.6% identity in 517 aa overlap
                                        30
            {\tt MPSERSADCCPAHFVVKFRKSTLNCGRRFDRPPINGNRQRKPMIHTEPSAQPSTMDTAAF}
m644.pep
            a644
            {\tt MPSERPADCCPVHFVVKFRKLTLNCGRRFDRPPINGNRQRKPMIHTEPSAQPSTMDTAAF}
```



		10	20	30	40	50	60
m644.pep	LKHTES	70 AFRRIFSDGI	80	90 90	100	110 GRKGSQFEIQE	120
	11111	11 111111			1111111:11	1111111111	1111
g644	LKHIES	70	DLMRYLPEDR 80	WLALKQAGLI 90	LPFLDKKHGG 100	RKGSOFEIOE 110	120
m644.pep	ACHYCV	130 PVTLBTGIF	140	150	160	170 LGVTEPETS	180
	11111	1111111111		1 1111111	:111111:	11111111111	1111
g644	AGHYGV	PVTLRTGIEG 130	ALVLQPLQEF 140	GGEAQVAQGI 150	DMIFKGESRR 160	LGVTEPETSG 170	AAIA 180
		190	200	210	220	230	240
m644.pep	REMOSY	YEYIDGQTIY	VNAAKYWQGN	SOSDFLLVAA	KERKNGKLAK	VIDLLLVPKT	YIRC
g644							
		190	200	210	220	230	240
		250	260	270	280	290	300
m644.pep	LILLI	JLKAVRYAVN	RIDAEMPATA	VMKLSQSDAA	GLRAFQNIFI	RSRLQLIGMT	HGIM
g644	ETLASE	GLRAVRYAVN	RIDAEMPATA	VMKLSRGDAA	GLRAFQNIFI	RSRLQLIGMT	HGIM
		250	260	270	280	290	300
-644	EVII EN	310	320	330	340	350	360
m644.pep	IIILEN.	:     :  EKIVKNDIK		RRHQVSEILY	RYVCHSVSPV	APVAHQLMEA	NIVK
g644	EYILDN	LNRYVRNDIR	<b>FV</b> DY <b>E</b> RREIQ	RRHQVSEILY	RYVCHSVSPV	apvahqlmea	NIVK
		310	320	330	340	350	360
m644.pep	TT NOTE V	370	380	390	400	410	420
mo44.pep	111111			1 11111111	1113111111	DMLYAEIYDQ	1111
g644	TLATEY	ryaaaqmlqk 370	LLGAKGFERG.	HPAGNIAIDI	RPFTIFEGPN	DMLYAEIYDQ	FVRA
		370	380	390	400	410	420
m644.pep	<b>ጥ</b> ለድ <b>ድያ</b> ድን	430	440	450	460	470 HTLTDACALQ	480
mo44.pep	3141111		111:11:1	11111111:			1111
g644	TAEEKE	AGIKLDKNQT: 430	LLDAVQTDVR 440	FAAVARDYAL	PEDIRSFLQE:	HTLTDACALQ:	KVFI
		430	440	450	460	470	480
m644.pep	CKIIDDI	490	500 DTAAFIINDT:	510 RKDILDCRYC	~v		
g644				RKDILDCRYC			
		700	300	510			

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2073>: a644.seq

3644.se	đ				
	1 ATGCCGTCTG	AAAGGTCGGC	GGATTGTTGC	CCGGCGCACT	TTGTGGTAAA
5.	l GTTTAGAAAA	TCAACTCTAA	ACTGTGGCAG	GCGGTTTGAC	CGGCCGCCGA
10:	1 TTAATGGGAA	CCGACAGAGG	AAGCCGATGA	TACACACCGA	ACCGAGCGCG
15	1 CAGCCGTCAA	CTATGGACAC	GGCTGCTTTT	TTAAAGCACA	TCGAATCCGC
201	1 ATTCCGCCGC	ATTTTTGCAG	ACGGTATCGA	CCTGATGCGA	TACCTGCCCG
25:	AAGACAAATG	GCTTGCCTTG	AAGCAGGCGG	GTTTGCTGTT	GCCCTTCCTC
30:	i gacaaaaaat	ACGGCGGGCG	CAAGGGCAGC	CAGTTTGAAA	TTCAGGAAGT
353	l CTTGCGGATT	GCGGGGCATT	ACGGCGTGCC	CGTTANNNNN	NNNNNNNNN
40:	NNGAAGGCGC	GCTGGTGTTG	CAGCCACTGC	AAGAGTTCGG	CGATGAAGCG
45		AGGGTTTGGA	CATGGTTTTC	AAAGGCGAGG	GCGGCGGTTT
501	AGGCGTTACC	GAACCCGAAA	CCTCCGGCGC	GGCGATTGCC	CGAGAAATGC
551		CGAATATACC	GACGGACAAA	CCATTTACGT	CAACGCCGCG
60:		AGGGCAACTC	GCAAAGCGAC	TTCCTCCTCG	TTGCCGCCAA
65:		AACGGCAAAC	TCGCCAAAGT	CATCGACCTG	CTGCTCGTCC
70:		CATCCGCTGC	GAAACCCTCG	CATCCGAAGG	CTTGCGCGCC
751	- 01000111100	CCGTCAACCG	CATCGATGCC	GAAATGCCTG	CAACCGCCGT
801	GATGAAACTC	TCCCAGAGCG	ACGCTGCCGG	TTTGCGCGCG	TTCCAAAACA

851	TCTTTATCCG CAGCCGCCTG CAACTGATCG GCATGACGCA CGGCATTATG
901	GAATACACCC TTGAAAACCT GGAACGATAC GTCCGCAACG ACATCAGATT
951	CGTCGATTAC GAACGCCGCG AAATCCGGCG CCGCCATCAG GTTTCCGAGA
1001	TTCTTTACCG CTACGTCTGC CATTCCGTTT CGCCCGTTGC ACCCGTCGCC
1051 1101	CATCAACTGA TGGAGGCGAA CATCGTCAAA ACCCTCGCCA CGGAATACAC TTACGCCGCC GCGCAAATGT TGCAAAAACT CTTGGGCGCG AAGGGTTTTG
1151	AACGCGGACA CACCGCCGGC AATATCGCTA TCGACATCCG CCCCTTCACG
1201	ATTTTGAAG GCCCGAACGA TATGCTTTAT GCCGAAATTT ACGACCAGTT
1251	TGTCCGCGCC ACCGCCGAAG AAAAAGAAGC AGGCATGAAG TTGGACAAAA
1301	ACCAAACCCT GCTCGACCGC CTGCAAACCG ATGCCCGCTT TGCCGCCGTC
1351	GCCCGCGACT ACACTTTGCC CGAAGACATC CGCAGCTTCC TGCAGGAACA
1401	CACCCTGACC GATGCCTGCG CCCTGCAAAA AGTCTTTATC GGCAAAATCA
1451 1501	TCGCCCGACT CTTTGTCTTC GTACAGGCGG AACACGAAGA CACCGCAGCC TTCCTGCTGA ACGACATCCG CAAAGACATA TTGGACTGCC GATATTGCGG
1551	ATAG
1001	
This correspond	s to the amino acid sequence <seq 2074;="" 644.a="" id="" orf="">:</seq>
a644.pep	, , , , , , , , , , , , , , , , , , , ,
i	MPSERSADCC PAHFVVKFRK STLNCGRRFD RPPINGNRQR KPMIHTEPSA
51	QPSTMDTAAF LKHIESAFRR IFADGIDLMR YLPEDKWLAL KQAGLLLPFL
101	DKKYGGRKGS QFEIQEVLRI AGHYGVPVXX XXXXEGALVL QPLQEFGDEA
151	QIAQGLDMVF KGEGGGLGVT EPETSGAAIA REMQSYYEYT DGQTIYVNAA
201	KYWQGNSQSD FLLVAAKERK NGKLAKVIDL LLVPKTYIRC ETLASEGLRA
251 301	VRYAVNRIDA EMPATAVMKL SQSDAAGLRA FQNIFIRSRL QLIGMTHGIM EYTLENLERY VRNDIRFVDY ERREIRRRHQ VSEILYRYVC HSVSPVAPVA
351	HQLMEANIVK TLATEYTYAA AQMLQKLLGA KGFERGHTAG NIAIDIRPFT
401	IFEGPNDMLY AEIYDQFVRA TAEEKEAGMK LDKNQTLLDR LQTDARFAAV
451	ARDYTLPEDI RSFLQEHTLT DACALQKVFI GKIIARLFVF VQAEHEDTAA
501	FLLNDIRKDI LDCRYCG*
m644/a644	97.3% identity in 517 aa overlap
	10 20 30 40 50 60
m644.pep	MPSERSADCCPAHFVVKFRKSTLNCGRRFDRPPINGNRQRKPMIHTEPSAQPSTMDTAAF
a644	${\tt MPSERSADCCPAHFVVKFRKSTLNCGRRFDRPPINGNRQRKPMIHTEPSAQPSTMDTAAF}$
	10 20 30 40 50 60
	70 80 90 100 110 120
m644.pep	LKHIESAFRRIFSDGIDLMRYLPEDKWLALKQAGLLLPFLDKKYGGRKGSQFEIQEVLRI
• •	
a644	LKHIESAFRRIFADGIDLMRYLPEDKWLALKQAGLLLPFLDKKYGGRKGSQFEIQEVLRI
	70 80 90 100 110 120
	130 140 150 160 170 180
m644.pep	130 140 150 160 170 180 AGHYGVPVTLRTGIEGALVLQPLQEFGDEAQVAQGLEMIFKGEGGGLGVTEPETSGAAIA
a644	AGHYGVPVXXXXXEGALVLQPLQEFGDEAQIAQGLDMVFKGEGGGLGVTEPETSGAAIA
	130 140 150 160 170 180
	100
m644.pep	190 200 210 220 230 240
mo44.pep	REMQSYYEYIDGQTIYVNAAKYWQGNSQSDFLLVAAKERKNGKLAKVIDLLLVPKTYIRC
a644	REMQSYYEYTDGQTIYVNAAKYWQGNSQSDFLLVAAKERKNGKLAKVIDLLLVPKTYIRC
	190 200 210 220 230 240
	250 260 270 280 290 300
m644.pep	ETLASEGLRAVRYAVNRIDAEMPATAVMKLSQSDAAGLRAFQNIFIRSRLQLIGMTHGIM
a 644	
	250 260 270 280 290 300
	200 200 200
	310 320 330 340 350 360
m644.pep	EYILENLERYVRNDIKFVDYERREIRRRHQVSEILYRYVCHSVSPVAPVAHQLMEANIVK
2644	
a 644	EYTLENLERYVRNDIRFVDYERREIRRRHQVSEILYRYVCHSVSPVAPVAHQLMEANIVK

	310	320	330	340	350	360
	370	380	390	400	410	420
m644.pep	TLATEYTYAAAQML	QKLLGAKGFE	RGHTAGNIA	IDIRPFTIFE	PNDMLYAEI	YDQFVRA
	111111111111111	1111111111	11111111		11111111	111111
a644	TLATEYTYAAAQML	QKLLGAKGFE	RGHTAGNIA	DIRPFTIFE	PNDMLYAEI	YDQFVRA
	370	380	390	400	410	420
	430	440	450	460	470	480
m644.pep	TAEEKEAGMKLDKN	QTLLDRLQTD	ARFAAVARD	TLPEDIRSFI	QEHTLTDACA	ALQKVFI
	1111111111111	1111111111	111111111	1111111111	11111111	
a644	TAEEKEAGMKLDKN	QTLLDRLQTD	ARFAAVARD	TLPEDIRSFI	QEHTLTDACA	ALOKVFI
	430	440	450	460	470	480
	490	500	510			
m644.pep	GKIIARLFVFVOAK	HEDTAAFLLN	DIRKDILDCE	RYCGX		
		1444 (1444)	111111111			
a644	GKIIARLFVFVOAE	HEDTAAFLLN	DIRKDILDCE	RYCGX		
	490	500	510			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2075>: g645.seq

```
ATGATGATGG TGTTGGCGTT GGGGATGTCG ATGCCGGTTT CGATGATGGT
 51
    GGAACAGAGC AACACATTGA ATCTTTGCTG CAAAAAGTCG CGCATGACTT
    GTTCCAGCTC GCGCTCACGC AGTTGTCCGT GCGCCACGCC GATACGGGCT
101
    TCGGGCAGCA GGGTTTCCAG CCGCTCGCGC ATATTCTCAA TCGTATCTAC
151
201 TTCATTGTGC AGGAAAAata cCTGTCCTCC GCGTTTGAGT TCGCGCAACA
251 CGGCTTCGCG CACGCTGCCT TCGCTGAACG GTTTGACAAA GGTTTTCACG
301 GCGAGGCGC GGCTCGGTGC AGTGGTAATC AGCGAGAAGT CGCGCAGACC
351 TTCGAGCGCC ATGCTGAGGG TGCGCGGAAT CGGCGTGGCG GTCATGGTTA
401 GGATGTCGAC ATTGGCGCGC AGGCGTTTGA GCTGCTCTTT CTGTCGCACG
451 CCGAAGCGGT GTTCTTCATC GATAATCAAT AAACCTAAGT TTTTGAATTT
501 TATGTCGTCC TGCACCAATT TGTGCGTACC GATAACGATA TCGACAGTAC
    CGTCCGCCAT GCCTTCGAGC GTGGCTTTGG TGGCTTTGCT GTTGTTGAAA
601 CGCGAAAGGC TGGCGACTTT CACGGGGAAA TCGGCGAAAC GGTCGGCGAA
651 GTTTTGCGCG TGCTGCTCGA CCAGAAGCGT GGTCGGGGCG AGTACGGCGA
701 CCTGTTTGCC GCCCATCACC GCCACAAACG CGGCGCGAAG GGCGACTTCG
751 GTTTTGCCGA AACCGACATC GCCGCACACA AGTCGGTCCA TCGGCTTCGC
    CTGCGTCAAA TCTTTAATCA CGGcggcgat ggcggcggcC TGGTCTTCGG
851 TTTCCTCGTA G
```

This corresponds to the amino acid sequence <SEQ ID 2076; ORF 645.ng>: g645.pep

```
1 MMMVLALGMS MPVSMMVEQS NTLNLCCKKS RMTCSSSRSR SCPCATPIRA
51 SGSRVSSRSR IFSIVSTSLC RKNTCPPRLS SRNTASRTLP SLNGLTKVFT
101 ARRRLGAVVI SEKSRRPSSA MLRVRGIGVA VMVRMSTLAR RRLSCSFCRT
151 PKRCSSSIIN KPKFLNFMSS CTNLCVPITI STVPSAMPSS VALVALLLLK
201 RERLATFTGK SAKRSAKFCA CCSTRSVVGA STATCLPPIT ATNAARRATS
251 VLPKPTSPHT SRS<u>IGFACVK</u> SLITAAMAAA WSSVSS*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2077>: m645.seq

```
1
     ATGATGATGG TGTTGGCGTT GGGGATATCG ATACCGGTTT CGATGATGGT
 51
     GGAACAGAGC AACACGTTAA ATCGTTGCTG CAAAAAGTCG CGCATGACTT
101 GTTCCAGCTC GCGCTCGCGC AGTTGTCCGT GCGCCACGCC GATGCGGGCT
     TCGGGCAGCA GGGTTTCCAG CCGCTCGCGC ATATTTTCAA TCGTATCTAC
151
201 TTCATTGTGC AGGAAAAATA CCTGTCCTCC GCGTTTGAGT TCGCGCAACA
251 CGGCTTCGCG CACGCTGCCT TCGCTAAAGG GTTTGACAAA GGTTTTGACG
     GCGAGGCGC GGCTGGCCC GGTGGTAATC AGCGAGAAGT CGCGCAGTCC
351 TTCCAACGCC ATACTTAAAG TACGCGGAAT CGGCGTGGCG GTCATGGTAA
401 GGATATCAAC ATTGGCGCGC AGGCGTTTGA GCTGCTCTTT CTGACGCACG
451 CCGAAGCGGT GTTCTTCGTC GATAATCACT AAACCTAAGT TTTTGAATTT
501 GATGTCGTCC TGCACCAGTT TGTGCGTACC GATAACAATA TCGACCGTGC
551 CGTCTGCCAT GCCTTCCAGC GCGGCTTTGG TGGCTTTGCT GTTGTTGAAA
601 CGCGAAAGGC TGGCGACTTT CACGGGGAAA TCGGCGAAAC GGTCGGCGAA
651 GTTTTGCGCG TGCTGCTCGA CCAAAAGCGT GGTCGGAGCA AGTACGGCGA
701 CCTGTTTGCC GCCCATCACC GCCACAAACG CGGCGCGCAG GGCGACTTCG
751 GTTTTGCCGA AGCCGACATC GCCGCACACA AGGCGATCCA TCGGCTTCGC
801 TTGCGTCAAA TCTTTAATCA CGGCGGCGAT GGCGGCGGCC TGGTCTTCGG
```

```
851 TTTCCTCGTA G
```

```
This corresponds to the amino acid sequence <SEQ ID 2078; ORF 645>:
m645.pep
        MMMVLALGIS IPVSMMVEQS NTLNRCCKKS RMTCSSSRSR SCPCATPMRA
        SGSRVSSRSR IFSIVSTSLC RKNTCPPRLS SRNTASRTLP SLKGLTKVLT
     51
        ARRRLGAVVI SEKSRSPSNA ILKVRGIGVA VMVRISTLAR RRLSCSF*RT
    101
        PKRCSSSIIT KPKFLNLMSS CTSLCVPITI STVPSAMPSS AALVALLLLK
    151
        RERLATFICK SAKRSAKFCA CCSTKSVVGA STATCLPPIT ATNAARRATS
    201
        VLPKPTSPHT RRSIGFACVK SLITAAMAAA WSSVSS*
m645/g645 93.7% identity in 286 aa overlap
                                                    50
           MMMVLALGISIPVSMMVEQSNTLNRCCKKSRMTCSSSRSRSCPCATPMRASGSRVSSRSR
m645.pep
           MMMVLALGMSMPVSMMVEQSNTLNLCCKKSRMTCSSSRSRSCPCATPIRASGSRVSSRSR
g645
                  10
                                   90
                                          100
                                                   110
                  70
                          80
           IFSIVSTSLCRKNTCPPRLSSRNTASRTLPSLKGLTKVLTARRRLGAVVISEKSRSPSNA
m645.pep
           IFSIVSTSLCRKNTCPPRLSSRNTASRTLPSLNGLTKVFTARRRLGAVVISEKSRRPSSA
g645
                          80
                                   90
                                          100
                 130
                         140
                                  150
                                          160
                                                   170
                                                            180
           ILKVRGIGVAVMVRISTLARRRLSCSFXRTPKRCSSSIITKPKFLNLMSSCTSLCVPITI
m645.pep
           MLRVRGIGVAVMVRMSTLARRRLSCSFCRTPKRCSSSIINKPKFLNFMSSCTNLCVPITI
q645
                 130
                         140
                                  150
                                          160
                                                   170
                                                            180
                                          220
                         200
                                  210
                 190
           {\tt STVPSAMPSSAALVALLLLKRERLATFTGKSAKRSAKFCACCSTKSVVGASTATCLPPIT}
m645.pep
           {\tt STVPSAMPSSVALVALLLLKRERLATFTGKSAKRSAKFCACCSTRSVVGASTATCLPPIT}
q645
                                  210
                                          220
                 190
                         200
                         260
                                  270
                                           280
           ATNAARRATSVLPKPTSPHTRRSIGFACVKSLITAAMAAAWSSVSSX
m645.pep
```

260

250

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2079>:

270

```
a645.seq
       1
         ATGATGATGG TGTTGGCGTT GGGAATGTCG ATACCGGTTT CGATGATGGT
         GGAACAGAGC AACACGTTAA ATCGTTGCTG CAAAAAGTCG CGCATGACTT
      51
         GTTCCAGCTC GCGCTCGCGC AGTTGTCCGT GCGCCACGCC GATGCGGGCT
          TCGGGCAGCA GGGTTTCCAG CCGCTCACGC ATGTTTTCGA TGGTATCCAC
          TTCATTGTGC AGGAAAAATA CTTGCCCGCC GCGTTTGAGT TCGCGCAATA
         CGGCTTCGCG CACGCTGCCT TCGCTGAACG GTTTGACAAA GGTTTTGACG
         GCGAGGCGGC GGCTGGGCGC AGTGGTAATC AGCGAGAAGT CGCGCAGTCC
          TTCCAGCGCC ATACTTAAAG TACGCGGAAT CGGCGTAGCG GTCATGGTAA
     351
          GGATGTCGAC ATTGGCGCGC AGGCGTTTGA GCTGCTCTTT CTGACGCACG
         CCGAAGCGGT GTTCTTCGTC GATAATCACT AAACCTACGT TTTTGAATTT
     451
          TATGTCGTCC TGCACCAGTT TGTGCGTACC GATAACAATA TCGACCGTGC
     501
         CGTCCGCCAT GCCTTCCAGC GCGGCTTTGG TGGCTTTGCT GTTGTTGAAA
         CGCGAAAGGC TGGCGACTTT CACGGGGAAA TCGGCGAAGC GGTCGGCAAA
     601
         ATTTTGCGCG TGCTGCTCGA CCAGAAGCGT GGTCGGTGCG AGTACGGCAA
          CTTGTTTGCC ACCCATTACC GCCACAAACG CGGCGCGCAG GGCGACTTCG
         GTTTTGCCGA AACCGACATC GCCGCACACG AGGCGGTCCA TCGGCTTCGC
     751
         CTGCGTCAAA TCTTTAATCA CGGCGGCGAT GGCGGCTGCC TGGTCTTCGG
     851 TTTCTTCGTA G
```

This corresponds to the amino acid sequence <SEQ ID 2080; ORF 645.a>: a645.pep

MMMVLALGMS IPVSMMVEQS NTLNRCCKKS RMTCSSSRSR SCPCATPMRA

g645

51 101 151 201 251	SGSRVSSRSR MFSMVSTSLC RKNTCPPRLS ARRRLGAVVI SEKSRSPSSA ILKVRGIGVA PKRCSSSIIT KPTFLNFMSS CTSLCVPITI RERLATFTGK SAKRSAKFCA CCSTRSVVGA VLPKPTSPHT RRSIGFACVK SLITAAMAAA	VMVRMSTLAR RRLSCSF*RT STVPSAMPSS AALVALLLLK STATCLPPIT ATNAARRATS
m645/a645	96.9% identity in 286 aa overl	lap
m645.pep		GRMTCSSSRSRSCPCATPMRASGSRVSSRSR
m645.pep a645		SLKGLTKVLTARRRLGAVVISEKSRSPSNA   :
m645.pep		PKRCSSSIITKPKFLNLMSSCTSLCVPITI
m645.pep		220 230 240 SAKRSAKFCACCSTKSVVGASTATCLPPIT
m645.pep	250 260 270 ATNAARRATSVLPKPTSPHTRRSIGFACVK	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2081>: g647.seq

```
1 ATGCAAAGGC TCGCCGCAGA CGGCATCCAA ATCTTTTTTG TAGGTGTCGA
51 TGGGCAGTTT GCCTTGCGAA TAAACGGTTT GGTTAAAGAG CGTGCACGCT
101 CCGTATTCTT TGGCAAGGTT TGCCGATGCT TTGAGCAGGT AATACTGTAT
151 GGCTTCAAAG GTACGGTGGG TCAGACCGAG CGCGGAACCG TCGCTGTAGC
201 GGACACCGTT TTTCGCCAGA TAGTAGGCGT AGTTGATGAC ACCGATGCCG
251 AGCGAACGGC GGTCCATAGT AGAGGTACGC GCGGCTTCTA CCGGATATCC
301 CTGATAATCT AA
```

This corresponds to the amino acid sequence <SEQ ID 2082; ORF 647.ng>: g647.pep

- 1 MQRLAADGIQ IFFVGVDGQF ALRINGLVKE RARSVFFGKV CRCFEQVILY
- 51 GFKGTVGQTE RGTVAVADTV FRQIVGVVDD TDAERTAVHS RGTRGFYRIS
- 101 LII*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2083>: m647.seq

- 1 ATGCAAAGGC TCGCCGCAGA CGGCATCCAA ATCTTTTTTG TAAGTGTCGA
  51 TGGGCAGTTT GCCTTGCGAA TAAACGGTTT GGTTAAAGAC CGTGCACGCA
  101 CCGTATTCTT TGGCAAGGTT TGCCGATGCT TTGAGCAGGT AATACTGTAT
  151 GGCTTCAAAG GTACGGTGGG TCAGACCGAG CGCGGAACCG TCGCTGTAGC
  201 GGACACCGTT TTTCGCCAGA TAATAAGCAT AGTTAATCAC GCCGATGCCG
  251 AGCGAACGGC GGCCCATAGT AGAGGTACGC GCGGCTTCTA CCGGATATCC
- 301 CTGATAATCT AA

This corresponds to the amino acid sequence <SEQ ID 2084; ORF 647>: m647.pep

1 MQRLAADGIQ IFFVSVDGQF ALRINGLVKE RARTVFFGKV CRCFEQVILY

```
GFKGTVGOTE RGTVAVADTV FRQIISIVNH ADAERTAAHS RGTRGFYRIS
     51
    101
        LII*
m647/g647 91.3% identity in 103 aa overlap
                            20
                                     30
                                              40
           {\tt MQRLAADGIQIFFVSVDGQFALRINGLVKERARTVFFGKVCRCFEQVILYGFKGTVGQTE}
           MORLAADGIQIFFVGVDGQFALRINGLVKERARSVFFGKVCRCFEQVILYGFKGTVGQTE
a647
                            20
                                     30
                                              40
                   70
                            80
                                     90
                                             100
           RGTVAVADTVFRQIISIVNHADAERTAAHSRGTRGFYRISLIIX
m647.pep
            RGTVAVADTVFRQIVGVVDDTDAERTAVHSRGTRGFYRISLIIX
g647
                   70
                            80
                                     90
                                             100
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2085>:
     a647.seq
               GTGCAAAGGC TCGTTACACA CAGCGTCCAA GTCTTTTTTG TAGGTGTCGA
               TGGGCAGTTT GCCTTGCGAA TAAACGGTTT GGTTAAAGAG CGTGCACGCA
           51
          101
               CCGTATTCTT TGGCAAGGTT TGCCGATGCT TTGAGCAGGT AATACTGTAT
               GGCTTCAAAG GTACGGTGGG TCAGACCGAG CGCGGAGCCG TCGCTGTAGC
               GGACACCGTT TTTCGCCAAA TAATACGCAT AGTTGATCAC GCCGATACCG
          201
          251 AGCGAACGGC GGCCCATAGT GGAGGTACGC GCGGCTTCTA CCGGATATCC
              CTGATAATCT AA
          301
This corresponds to the amino acid sequence <SEQ ID 2086; ORF 647.a>:
               VQRLVTHSVQ VFFVGVDGQF ALRINGLVKE RARTVFFGKV CRCFEQVILY
               GFKGTVGQTE RGAVAVADTV FRQIIRIVDH ADTERTAAHS GGTRGFYRIS
           51
          101
                  87.4% identity in 103 aa overlap
     m647/a647
                                               30
                                                         40
                                     20
     m647.pep
                  MORLAADGIQIFFVSVDGQFALRINGLVKERARTVFFGKVCRCFEQVILYGFKGTVGQTE
                   VQRLVTHSVQVFFVGVDGQFALRINGLVKERARTVFFGKVCRCFEQVILYGFKGTVGQTE
     a647
                                                         40
                           70
                                     80
                                               90
                                                        100
                   RGTVAVADTVFRQIISIVNHADAERTAAHSRGTRGFYRISLIIX
     m647.pep
                   RGAVAVADTVFRQIIRIVDHADTERTAAHSGGTRGFYRISLIIX
      a 647
                           70
                                     80
                                               90
                                                        100
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2087>:
g648.seq
         ATGAACAGGC GCAACGCGCG GATCGAACGG GCTGTGCGTA TTGCAGTGAT
         CGACGTTTTG AATGTAGATG CGCCCGGTCC CGGCACGCTC CTGCATCAGC
     101
         GTGGAAAACA GGTCGGCAGC CGGAATGATA CGCTTGCGTA TGTTCGGGTC
         TTGCTCGTAT TTCGTATAGA GCCGCTCAAA TTCGTCTTGG TCGGCAAAAA
     151
     201
         ACGCTTCGTA CAACCCCGAA ACCTCGTTGG GCGAAAACAG CGTAATGTTG
         CCGCCCTTAA TCAGGCGGGT GTACAGCAGG CGGTTGATTT GCACGCCATA
     301
         ATCAAGCTGG CGGATACGGT TGTCTTCCAC GCCCCGGTTG TTTTTCAACA
         CCAGCAGGCT TTCGGCTTCA ATATGCCACA AGGGGTAGAA CAAGGTTGCC
GCGCCGCCGC GCACGCCACC TTGCGAACAA GATTTGACCG CCGCCTGAAA
     351
     401
         CATCTTAAAG AAGGGAATGC AGCCGGTATG CCGGGCTTCA CCGCCCCGGA
     501
         TTTCGCTGTC CAGCCCGCGG ATACGTCCGG CATTGATGCC GATGCCCGCG
         CGTTGGGAAA CGTATTTCAC AATCGCGCTG GTAGTGGCAT TGATGGAATC
     551
     601 CAAACTATCG TCGCATTCAA TCAGCACACA GCTTGA
```

This corresponds to the amino acid sequence <SEQ ID 2088; ORF 648.ng>: g648.pep

BNSDOCID: <WO__9957280A2_I_>

THE STATE OF THE



```
MNRRNARIER AVRIAVIDVL NVDAPGPGTL LHQRGKQVGS RNDTLAYVRV
       1
          LLVFRIEPLK FVLVGKKRFV QPRNLVGRKQ RNVAALNQAG VQQAVDLHAI
      51
          IKLADTVVFH APVVFQHQQA FGFNMPQGVE QGCRAAAHAT LRTRFDRRLK
          HLKEGNAAGM PGFTAPDFAV QPADTSGIDA DARALGNVFH NRAGSGIDGI
     151
          OTIVATNOHT A*
     201
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2089>:
m648.seq
          ATGAACAGGC GCGACGCGCG GATCGAACGG GCTGTGCGTA TTGCAGTGAT
       1
          CGACGTTTTG AATGTAGATG CGCCCGGTTC CGGCACGCTC CTGCATCAGC
      51
         GTGGAAAACA GGTCGGCAGC CGGAATGATG CGCTTGCGGA TATCAGGGTC
     101
         TTGCTCGTAT TTCGTATAGA GCCGCTCAAA TTCGTCTTGG TCGGCAAAAA
     151
         ACGCTTCGTA CAATCCCGGA ACCTCGTTGG GCGAAAACAG CGTAATGTTG
     201
     251
         CCGCCCTTAA TCAGGCGGGT GTACAGCAGG CGGTTGATTT GCACGCCGTA
         ATCAAGCTGA CGGATACGGT TGTCTTCCAC ACCGCGGTTG TTTTTCAACA
     301
     351
         CCAGCAGGCT TTCGGCTTCG ATATGCCACA AGGGGTAGAA CAAGGTTGCC
     401
         GCGCCGCCGC GCACGCCGCC TTGCGAACAG GATTTGACCG CCGCCTGAAA
         CATTTTAAAG AAGGGAATGC AGCCGGTATG CCGCGCTTCG CCGCCCCGGA
     451
         TTTCGCTGTC CAAACCGCGG ATACGTCCGG CATTGATGCC GATGCCCGCA
     501
         CGCTGGGAAA CGTATTTCAC AATCGCGCTG GTAGTGGCAT TGATGGAATC
     551
         CAAACTATCG TCGCATTCAA TCAGCACACA GCTTGA
This corresponds to the amino acid sequence <SEQ ID 2090; ORF 648>:
m648.pep
         MNRRDARIER AVRIAVIDVL NVDAPGSGTL LHQRGKQVGS RNDALADIRV
      1
      51
         LLVFRIEPLK FVLVGKKRFV QSRNLVGRKQ RNVAALNQAG VQQAVDLHAV
     101
         IKLTDTVVFH TAVVFQHQQA FGFDMPQGVE QGCRAAAHAA LRTGFDRRLK
         HFKEGNAAGM PRFAAPDFAV QTADTSGIDA DARTLGNVFH NRAGSGIDGI
     151
        OTIVAFNOHT A*
m648/g648 91.5% identity in 211 aa overlap
                   10
                            20
                                      30
                                               40
                                                        50
                                                                  60
m648.pep
            MNRRDARIERAVRIAVIDVLNVDAPGSGTLLHQRGKQVGSRNDALADIRVLLVFRIEPLK
            q648
            MNRRNARIERAVRIAVIDVLNVDAPGPGTLLHQRGKQVGSRNDTLAYVRVLLVFRIEPLK
                   10
                            20
                                     30
                                               40
                                                        50
                            80
                                              100
                                                       110
            FVLVGKKRFVQSRNLVGRKQRNVAALNQAGVQQAVDLHAVIKLTDTVVFHTAVVFQHQQA
m648.pep
            a648
            FVLVGKKRFVQPRNLVGRKQRNVAALNQAGVQQAVDLHAIIKLADTVVFHAPVVFQHQQA
                   70
                            80
                                     90
                                             100
                                                       110
                  130
                           140
                                     150
                                              160
                                                       170
            FGFDMPQGVEQGCRAAAHAALRTGFDRRLKHFKEGNAAGMPRFAAPDFAVQTADTSGIDA
m648.pep
            q648
            FGFNMPQGVEQGCRAAAHATLRTRFDRRLKHLKEGNAAGMPGFTAPDFAVQPADTSGIDA
                  130
                           140
                                    150
                                             160
                                                       170
                  190
                           200
m648.pep
            DARTLGNVFHNRAGSGIDGIQTIVAFNOHTAX
            g648
            DARALGNVFHNRAGSGIDGIQTIVAFNQHTAX
                  190
                           200
                                    210
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2091>:

```
a648.seq
         ATGAACAGGC GCAACGCGCG GATCGAACGG GCTGTGCGTA TTGCAGTGAT
      1
         CGACGTTTTG AATGTAGATG CGCCCGGTTC CGGCACGCTC CTGCATCAGC
         GTGGAAAACA GGTCGGCAGC CGGAATGATG CGCTTGCGGA TATCAGGGTC
     101
         TTGCTCGTAT TTCGTATAGA GCCGCTCAAA TTCGTCTTGG TCGGCAAAAA
     151
         ACGCTTCGTA CAATCCCGGA ACCTCGTTGG GCGAAAACAG CGTAATGTTG
     201
         CCGCCCTTAA TCAGGCGGGT GTACAGCAGG CGGTTGATTT GCACGCCGTA
    251
    301
         ATCAAGCTGA CGGATACGGT TGTCTTCCAC GCCCCGGTTG TTTTTCAACA
         CCAGCAGGCT TTCGGCTTCG ATATGCCACA AGGGGTAGAA CAAGGTTGCC
    351
         GCGCCGCCGC GCACGCCACC TTGCGAACAG GATTTGACTG CCGCCTGAAA
     401
         CATTTTAAAG AAGGGAATGC AGCCGGTATG CCGTGCTTCG CCGCCCCGGA
```

1031

```
501 TTTCGCTGTC CAGTCCGCGG ATACGTCCGG CATTGATGCC GATGCCCGCA
             CGCTGGGAAA CGTATTTCAC AATCGCGCTG GTAGTGGCGT TGATGGAATC
        551
             CAGGCTGTCG TCGCATTCGA TCAATACGCA GCTTGA
This corresponds to the amino acid sequence <SEQ ID 2092; ORF 648.a>:
    a648.pep
             MNRRNARIER AVRIAVIDVL NVDAPGSGTL LHQRGKQVGS RNDALADIRV
          1
         51
             LLVFRIEPLK FVLVGKKRFV QSRNLVGRKQ RNVAALNQAG VQQAVDLHAV
             IKLTDTVVFH APVVFQHQQA FGFDMPQGVE QGCRAAAHAT LRTGFDCRLK
         101
         151
            HFKEGNAAGM PCFAAPDFAV QSADTSGIDA DARTLGNVFH NRAGSGVDGI
             QAVVAFDQYA A*
                93.8% identity in 211 aa overlap
    m648/a648
                MNRRDARIERAVRIAVIDVLNVDAPGSGTLLHQRGKQVGSRNDALADIRVLLVFRIEPLK
    m648.pep
                MNRRNARIERAVRIAVIDVLNVDAPGSGTLLHQRGKQVGSRNDALADIRVLLVFRIEPLK
    a 648
                               20
                                        30
                                                 40
                                                100
                                                        110
                                                                 120
                      70
                FVLVGKKRFVQSRNLVGRKQRNVAALNQAGVQQAVDLHAVIKLTDTVVFHTAVVFQHQQA
    m648.pep
                a648
                FVLVGKKRFVQSRNLVGRKQRNVAALNQAGVQQAVDLHAVIKLTDTVVFHAPVVFQHQQA
                                        90
                                                100
                                                        110
                      70
                               80
                                                                 180
                      130
                              140
                                       150
                                                160
                                                        170
                FGFDMPQGVEQGCRAAAHAALRTGFDRRLKHFKEGNAAGMPRFAAPDFAVQTADTSGIDA
    m648.pep
                {\tt FGFDMPQGVEQGCRAAAHATLRTGFDCRLKHFKEGNAAGMPCFAAPDFAVQSADTSGIDA}
    a648
                                                        170
                                       150
                                                160
                      130
                              140
                      190
                              200
                DARTLGNVFHNRAGSGIDGIQTIVAFNQHTAX
    m648.pep
                a648
                DARTLGNVFHNRAGSGVDGIQAVVAFDQYAAX
                              200
                      190
                                       210
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2093>: g649.seg

```
ATGCTTGCCA TACTGTTGTC TGCAATACTG GGACTGGTAT CAACAACTGC
 1
    CGCTGCCGGT ACGTCAGAAC CCGCCCACCG ACATACCAAA CATATCAGCA
51
    AGGCAAACAA GCAGATGCTG CACCCCGAAT GCAGGAAATA TTTGGAACGC
101
    CGTGCCGCGT GGTACCGATC GCAAGGCAAC GTGCAGGAAT TGCGCGAAAA
151
    CAAAAAGGCG CGCAAAGCAT TCCGCACCCT GCCTTATGCG GAACAGAAAA
201
    TCCAATGCCG GGCGGCTTAT GAGGCTTTCG ATGATTTCGA CGGCGGCAGG
251
```

301 TTCCGCCGTT AA

This corresponds to the amino acid sequence <SEQ ID 2094; ORF 649.ng>: g649.pep

- MLAILLSAIL GLVSTTAAAG TSEPAHRHTK HISKANKOML HPECRKYLER RAAWYRSQGN VQELRENKKA RKAFRTLPYA EQKIQCRAAY EAFDDFDGGR 51
- 101 FRR*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2095>: m649.seq

ATGCTTGCCA TACTGTTGTC TGCAATATTG GGACTGGTAT CGACAACTGC CGCTGCCGGT ACGTCAGAAC CCGCCCACCG CGATACCAAA CATATCCGCA 1 51 AGGCAAACAA GCAGATGCTG CACCCCGAAT GCAGGAAATA TTTGGAACGC CGTGCCGCGT GGTACCGATC GCAAGGCAAC GTGCAGGAAT TGCGCGAAAA 151 CAAAAAGGCG CGCAAAGCAT TCCGCTCCCT GCCTTATGCG GAACAGAAAA 201 251 TCCAATGCCG GGCGGCTTAT GAGGCTTTCG ATGATTTCGA CGGCGGCAGT

This corresponds to the amino acid sequence <SEO ID 2096; ORF 649>: m649.pep

BNSDOCID: <WO__ 9957280A2 | >



```
MLAILLSAIL GLVSTTAAAG TSEPAHRDTK HIRKANKOML HPECRKYLER
      51
         RAAWYRSOGN VOELRENKKA RKAFRSLPYA EQKIQCRAAY EAFDDFDGGS
m649/g649 96.1% identity in 103 aa overlap
                   10
                            20
                                     30
                                             40
                                                      50
            \verb|MLAILLSAILGLVSTTAAAGTSEPAHRDTKHIRKANKQMLHPECRKYLERRAAWYRSQGN|
m649.pep
            MLAILLSAILGLVSTTAAAGTSEPAHRHTKHISKANKQMLHPECRKYLERRAAWYRSQGN
a649
                                    30
                                             40
                   70
                           80
                                     90
            VQELRENKKARKAFRSLPYAEQKIQCRAAYEAFDDFDGGSFRRX
m649.pep
            VQELRENKKARKAFRTLPYAEQKIQCRAAYEAFDDFDGGRFRRX
a649
                   70
                           80
                                    90
                                            100
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2097>:
     a649.seq
               ATGCTTGCCA TACTGTTGTC TGCAATATTG GGACTGGTAT CGACAACTGC
               CGCTGCCGGT ACGTCAGAAC CCGCCCACCG CGATACCAAA CATATCCGCA
           51
          101
               AGGCAAACAA GCAGATGCTG CACCCCGAAT GCAGGAAATA TTTGGAACGC
               CGTGCCGCGT GGTACCGATC GCAAGGCAAC GTGCAGGAAT TGCGCGAAAA
          151
               CAAAAAGGCG CGCAAAGCAT TCCGCTCCCT GCCTTATAAG GAACAGAAAA
          201
          251
               CCCAATGCCG GGCGGCTTAT GAGGCTTTCG ATGATTTCGA CGGCAGCAGG
               TTCCGCCGTT AA
This corresponds to the amino acid sequence <SEQ ID 2098; ORF 649.a>:
     a649.pep
               MLAILLSAIL GLVSTTAAAG TSEPAHRDTK HIRKANKQML HPECRKYLER
            1
           51
               RAAWYRSQGN VQELRENKKA RKAFRSLPYK EQKTQCRAAY EAFDDFDGSR
          101
     m649/a649
                  96.1% identity in 103 aa overlap
                          10
                                    20
                                              30
                                                        40
                                                                  50
                                                                            60
     m649.pep
                  MLAILLSAILGLVSTTAAAGTSEPAHRDTKHIRKANKQMLHPECRKYLERRAAWYRSQGN
                  {\tt MLAILLSAILGLVSTTAAAGTSEPAHRDTKHIRKANKQMLHPECRKYLERRAAWYRSQGN}
     a649
                          10
                                    20
                                                        40
                          70
                                    80
                                              90
     m649.pep
                  VQELRENKKARKAFRSLPYAEQKIQCRAAYEAFDDFDGGSFRRX
                  a 649
                  VQELRENKKARKAFRSLPYKEQKTQCRAAYEAFDDFDGSRFRRX
                                    80
                                              90
                                                       100
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2099>:
g650.seq
        ATGTCCAAAC TCAAAACCAT CGCCCTGACC GCATCAGGTC TGTCCGTTTG
      1
        TCCGGGTTTC CTATATGCCC AAAACACCTC ATCACACCAA GTCGGTTTAG
     51
    101
        CGATTATGCG GTTAAACTCT TCAATACTCG ACCTGCCACC GACAAAACAA
        TATTTCCAAT CCGGCAGCCT GTGGGACGAG CTGCGCCAAG GCTTCCGGAT
    151
    201
        GGGCGAAGTC AATCCCGAAC TGGTACGCCG CCACGAAAGC AAATTCATCG
        CAAGCCGCAG CTATTTCGAC AGGGTCGTCA ACCGGAGCCG ACCCTATATG
        TACCATATCG CCAACGAAGT CAAAAAACGC AATATGCCCG CCGAAGCCGC
    351
        CCTGCTTCCC TTCATCGAAA GCGCGTTCGT CACCAAAGCC AAATCACACG
    401
        TCGGCGCATC GGGCCTGTGG CAGTTCATGC CCGCTACCGG CAGGCATTAC
        GGCTTGGAAA AAACaccgGT TTACGacggc aggcacGacg TTtacgcaGc
    451
        taccgatgcc gcacTCAACT AtctGcAATA TCTCTAtggA CTGTTCGGCG
    551 ACTGGCCGCT CGCCTTTGCC GCCTACAACT GGGGTGAAGG CAACGTCGGA
```

CGCGCCGTCA ACCGCGCCCG CGACCAAGGG CTCGAACCGA CCTACGAAAA CCTGCGTATG CCCAACGAAA CGCGCAACTA TGTCCCCAAG CTGCTCGCCG

701 TGCGCAACAT TATTGCCACC CCCCAATCTT TCGGCATGAA TATCAGCGAC

601

```
1033
     751 ATAGACAACA AACCCTATTT TCAGGCAGTC GAACCGGGCC GTCCGCTCGA
         caacGAagcC ATCGCCCGGC TTGCCGGCAT CACGCAAAGC GAGCTGCTCG
     851 CCCTGAATCC TGCATTCAAC GTCCCCGCgt tcatCCCCAA AAAcaaacgc
     901 aaacTGCTGC TTCCTGTCGC GTCCGTCCAA ACCTTccaaa gcaACTACCT
     951
          CAACGCCGCA CCCGACAGCC TGTTTTCATG GGAAGTCTAT ACGCCTGCCG
          CCAAAACCAG CCTGTCCGAC ATCTCGACGG CAACCGGCAT GAGCATTGCC
    1051
          GACATCAAAC GCCTCAACAA CCTGAACGGC AACCTTGTCA ACGCAGGACG
         CAGCATCCTT GTCGCCAAGA ACGGCAAGAC CCTTCATACG GCATCGGAat
    1101
    1151
          ccGTCGTTTC CATCGACATC GACAATACGC CcgacacCTa ccgttccaaT
          ATGCcggcag gcaCGGTGAA CGTCAGCATt gccCgaatcc aacCCgccgc
    1251 cgcaCAGACA gcggacatta ccgtcgcacc tttgccgcaa gaaaccgtcc
          gtacgggaac ccgatccct tgtccgcaTt accgaacccg ccctTGCGAC
    1301
    1351 AGCCGCAGCg CaacctCAAA ccgAAAAACA GACTGCCATG CcgtctGA
This corresponds to the amino acid sequence <SEQ ID 2100; ORF 650.ng>:
g650.pep
          MSKLKTIALT ASGLSVCPGF LYAQNTSSHQ VGLAIMRLNS SILDLPPTKQ YFQSGSLWDE LRQGFRMGEV NPELVRRHES KFIASRSYFD RVVNRSRPYM
      51
     101
         YHIANEVKKR NMPAEAALLP FIESAFVTKA KSHVGASGLW QFMPATGRHY
          GLEKTPVYDG RHDVYAATDA ALNYLQYLYG LFGDWPLAFA AYNWGEGNVG
     151
     201 RAVNRARDQG LEPTYENLRM PNETRNYVPK LLAVRNIIAT POSFGMNISD
         IDNKPYFQAV EPGRPLDNEA IARLAGITQS ELLALNPAFN VPAFIPKNKR
     251
     301
         KLLLPVASVQ TFQSNYLNAA PDSLFSWEVY TPAAKTSLSD ISTATGMSIA
          DIKRLNNLNG NLVNAGRSIL VAKNGKTLHT ASESVVSIDI DNTPDTYRSN
          MPAGTVNVSI ARIQPAAAQT ADITVAPLPQ ETVRTGTRSP CPHYRTRPCD
     451 SRSATSNRKT DCHAV*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2101>:
m650.seq
          ATGTCCAAAC TCAAAACCAT CGCTCTGACC GCATCAGGTC TGTCCGTTTG
          TCCGGGTTTC CTATACGCCC AAAACACCTC ATCACACCAA ATCGGTTTGG
     101 CGATTATGCG CTTAAACTCT TCAATACTCG ACCTGCCCCC GACAAACAA
     151 TATTTCCAAT CCGGCAGCCT GTGGGGCGAG CTGCGCCAAG GCTTCCGGAT
     201 GGGCGAAGTC AATCCCGAAC TGGTACGCCG CCACGAAAGC AAATTCATCG
          CAAGCCACAG CTATTTCAAC AGGGTCATCA ACCGGAGTAG ACCCTATATG
     251
     301 TACCATATCG CCAACGAAGT CAAAAAACGC AATATGCCCG CCGAAGCCGC
     351 CCTGCTTCCC TTCATCGAAA GCGCGTTCGT CACCAAAGCC AAATCACACG
     401
          TCGGCGCATC AGGATTATGG CAGTTTATGC CCGCTACCGG CAGGCATTAC
     451 GGCCTGGAAA AAACACCGGT TTACGACGGC AGGCACGACG TTTACGCCGC
     501 CACCGATGCC GCACTCAACT ATCTGCAATA CCTCTATGGA CTGTTCGGCG
     551 ACTGGCCGCT TGCCTTTGCC GCCTACAACT GGGGTGAAGG CAACGTCGGA
```

551 ACTGGCCGCT TGCCTTTGCC GCCTACAACT GGGGTGAAGG CAACGTCGGA
601 CGCGCCATCA ACCGCGCCG CGCCCAAGGG CTCGAACCGA CCTACGAAAA
651 CCTGCGTATG CCCAACGAAA CGCGCAACTA TGTCCCCAAG CTGCTCGCCG
701 TGCGCAACAT TATTGCCACT CCCCAATCTT TCGGCATGAA TATCAGCGAC
751 ATAGACAACA AACCCTATTT TCAGGCAGTC GAACCGGATC GTCCGCTCGA
801 CAACGAAGCC ATCGCCCGGC TTGCCGGCAT CACGCAAAGC GAGCTGCTCG
851 CCCTAAACCC CGCATTCAAC GTCCCGCGT TTATCCCCAA AAGCAAAACGC
901 AAACTGCTGC TTCCTGTCGC GTCCGTACAA ACCTTCCAAA GCAACTACCT
951 CAACGCCGCA CCCGACAGCC TGTTTTCATG GGAAGTCTAT ACGCCTGCCG

1001 CCAAAACCAG CCTGTCCGAC ATCTCGACGG CAACCGGCAT GAGCATTGCC
1051 GACATCAAAC GCCTCAACAA CCTGAACGGC AACCTTGTCA ACGCAGGACG
1101 CAGCATCCTT GTCGCCAAGA ACGGCAAAAC CCTTCAGACG GCATCGGAAT
1151 CCGTCGTTTC CATCGACATC GACAATACGC CCGACACCTA CCGTTCCAAT

1201 ATGCCGCAG GCACGGTGAA CGTCGGCATT GCCGAATCC GACCGCGCGC
1251 CGCACAGACA GCGGACATTA CCGTCGCACC TTTGCCGCAG AAAACCGTCC
1301 GTACGG.AAC CCGATCCCCT TGTCCGTATT GCCGAACCTG CCCTTGCGAC

1351 GTACGG.AAC CCGATCCCCT TGTCCGTATT GCCGAACCTG CCCTTGCGA
1351 AGCCGCAGCG CAACCTCAAA CCGAAAAACA GACCGCCATG CCGTCTGA

## This corresponds to the amino acid sequence <SEQ ID 2102; ORF 650>:

m650.pep

1 MSKLKTIALT ASGLSVCPGF LYAQNTSSHQ IGLAIMRLNS SILDLPPTKQ
51 YFQSGSLWGE LRQGFRMGEV NPELVRRHES KFIASHSYFN RVINRSRPYM
101 YHIANEVKKR NMPAEAALLP FIESAFVTKA KSHVGASGLW QFMPATGRHY
151 GLEKTPVYDG RHDVYAATDA ALNYLQYLYG LFGDWPLAFA AYNWGEGNVG
201 RAINRARAQG LEPTYENLRM PNETRNYVPK LLAVRNIIAT PQSFGMNISD
251 IDNKPYFQAV EPDRPLDNEA IARLAGITQS ELLALNPAFN VPAFIPKSKR
301 KLLLPVASVQ TFQSNYLNAA PDSLFSWEVY TPAAKTSLSD ISTATGMSIA

301 KLLLPVASVQ TFQSNYLNAA PDSLFSWEVY TPAAKTSLSD ISTATGMSIA 351 DIKRLNNLNG NLVNAGRSIL VAKNGKTLQT ASESVVSIDI DNTPDTYRSN 401 MPAGTVNVGI ARIRPAAAQT ADITVAPLPQ KTVRTXTRSP CPYCRTCPCD

451 SRSATSNRKT DRHAV*

m650/g650 96.1% identity in 465 aa overlap

BNSDOCID: <WO___9957280A2_I_>



65.0	10	20	30	40	50	60
m650.pep	MSKLKTIALTASGLS	VCPGFLYAC	ONTSSHOIGL	AIMRLNSSIL	OLPPTKQYFQ	SGSLWGE
<b>q</b> 650	111111111111111					
gesu	MSKLKTIALTASGLS	VCPGFLYAC				
	10	20	30	40	50	60
	70	80	90	100	110	120
m650.pep	LROGFRMGEVNPELV	RRHESKFIA	ASHSYFNRVI	NRSRPYMYHI <i>I</i>	ANEVKKRNMP	AEAALLP
		111111111	1:111:11:1			111111
g650	LRQGFRMGEVNPELV	RRHESKFIA	SRSYFDRVVN	NRSRPYMYHIA	NEVKKRNMP	AEAALLP
	70	80	90	100	110	120
	130	140	150	160	170	• • • •
m650.pep	FIESAFVTKAKSHVG					180
ooo.pcp	11111111111111	TITITE THE	HIGHNIGLER	TPVIDGRHDV	TAATDAALN	ALGALAG
g650	FIESAFVTKAKSHVG.	A CCT MODEME	1111111111			
9000	130	ASGLWQFMP 140	150			
	130	140	130	160	170	180
	190	200	210	220	230	240
m650.pep	LFGDWPLAFAAYNWG	EGNVGRAIN	RARAOGLEPT	YENLRMPNET	'RNYVPKI.I.A	PNITAT
	111111111111111111111111111111111111111	1111111111	111 11111		111111111	
g650	LFGDWPLAFAAYNWG	EGNVGRAVN	RARDOGLEPT	YENLRMPNET	'RNYVPKT.T.AT	/DNITTAT
-	190	200	210	220	230	240
			220	220	230	240
	250	260	270	280	290	300
m650.pep	POSFGMNISDIDNKP	YFOAVEPDR	PLDNEATARL			TPKSKP
						111-11
g650	POSFGMNISDIDNKP	YFOAVEPGR	PLDNEAIARL	AGITOSELLA	I.NPAFNUPAF	TPKNKE
-	250	260	270	280	290	300
				200	230	300
	310	320	330	340	350	360
m650.pep	KLLLPVASVQTFQSNY	YLNAAPDSL	FSWEVYTPAA	KTSLSDISTA	TGMSIADIKE	LNNLNG
			111111111	1111111111	1111111111	111111
g650	KLLLPVASVQTFQSN	LNAAPDSL	FSWEVYTPAA	KTSLSDISTA	TGMSIADIKE	TNNTNG
	310	320	330	340	350	360
						•••
	370	380	390	400	410	420
m650.pep	NLVNAGRSILVAKNG	TLOTASES	VVSIDIDNTP	DTYRSNMPAG	TVNVGTARTR	PAAAOT
					1111:1111:	
g650	NLVNAGRSILVAKNG	TLHTASES	VVSIDIDNTP	DTYRSNMPAG	TVNVSTARTO	יוווווו
	370	380	390	400	410	420
				400	410	420
	430	440	450	460		
m650.pep	ADITVAPLPQKTVRTX				VΥ	
• •	111111111111111111111111111111111111111	111111:	li lilili		1.1	
g650	ADITVAPLPQETVRT	TRSPCPHY	RTRPCDSRSA	TSNRKTDCUA'	OX	
-	430	440	450	460	*45	
		- • •		300		

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2103>: a650.seq

, eq					
1	ATGTCCAAAC	TCAAAACCAT	CGCCCTGACC	GCGTCAGGTC	TGTCCGTTTG
51	TCCGGGTTTC	CTATACGCCC	AAAACACCTC	ATCACACCAA	ATCGGTTTGG
101	CGATTATGCG	CTTAAACTCT	TCAATACTCG	ACCTGCCACC	GACAAAACAA
151	TATTTCCAAT	CCGGCAGCCT	GTGGAGCGAG	CTGCGCCAAG	GCTTCCGGAT
201	GGGCGAAGTC	AATCCCGAAC	TGGTACGCCG	CCACGAAAGC	AAATTCATCG
251	CAAGCCACAG	CTATTTCAAC	AGGGTCATCA	ACCGGAGTAG	ACCCTATATG
301	TACCATATCG	CCAACGAAGT	CAAAAAACGC	AATATGCCCG	CCGAAGCCGC
351	CCTGCTTCCC	TTCATCGAAA	GCGCGTTCGT	CACCAAAGCC	AAATCACACG
401	TCGGCGCATC	GGGCCTGTGG	CAGTTCATGC	CCGCTACCGG	CAGGCATTAC
451	GGCCTGGAAA	AAACACCGGT	TTACGACGGC	AGGCACGACA	TTTACGCCGC
501	CACCGATGCC	GCACTCAACT	ATCTGCAATA	CCTCTATGGA	CTGTTCGGCG
551	ACTGGCCGCT	CGCCTTTGCC	GCCTACAACT	GGGGTGAAGG	CAACGTCGGA
601	CGCGCCATCA	ACCGCGCCCG	CGCCCAAGGG	CTCGAACCGA	CCTACGAAAA
651	CCTGCGTATG	CCCAACGAAA	CGCGCAACTA	TGTTCCCAAG	CTGCTCGCCG
701	TGCGCAACAT	CATTGCCGCC	CCCCAATCTT	TCGGCATGAA	
751	ATAGACAACA	AACCGTATTT	TCAGGCAGTC	GAACCGGACC	GTCCGCTCGA
801	CAACGAAGCC	ATCGCCCGGC	TTGCCGGCAT	CACGCAAAGC	
851	CCCTAAACCC	CGCATTCAAC	GTCCCCGCGT	TCATCCCCAA	

901	AAACTGCTGC	TTCCTGTCGC	GTCCGTACAA	ACCTTCCAAA	GCAACTACCT	
951	CAACGCCGCA	CCCGACAGCC	TGTTTTCATG	GGAAGTCTAT	ACGCCTGCCG	
1001		CTTGTCCGAC				
1051		GCCTCAACAA				
1101		GTCGCCAAGA				
1151		CATCGACATC				
1201		GCACGGTGAA				
1251		GCGGACATTA				
1301		CCGATCCCCT				
1351	AGCCGCAGCG	CAACCTCAAA	CCGAAAAACA	GACCGCCATG	CCGTCTGA	
This correspond	s to the amin	o acid seque	nce <seo ii<="" td=""><td>D 2104: ORE</td><td>7 650 a&gt;·</td><td></td></seo>	D 2104: ORE	7 650 a>·	
a650.pep	o to the thin	io dota boque	aree abbe n	<i>D</i> 2104, Old	050.4	
a050.pep	MSKI.KTTAI.T	ASGLSVCPGF	T.VAOMTESHO	TCLATMRING	STIDI. PPTKO	
51		LRQGFRMGEV	~ -		_	
101		NMPAEAALLP.				
151		RHDIYAATDA			-	
201		LEPTYENLRM				
251	IDNKPYFQAV	EPDRPLDNEA	IARLAGITQS	ELLALNPAFN	VPAFIPKSKR	
301		TFQSNYLNAA				
351	DIKRLNNLNG	NLVNAGRSIL	VAKNGKTLQT	ASESVVSIDI	DNTPNTYRSN	
401	MPAGTVNVGI	ARIRPAAAQT	ADITVAPLPQ	KTVRTXTRSP	CPYCRTCPCD	
451	SRSATSNRKT	DRHAV*				
m650/a650	00 19 1	dentity in	165 aa arran	] am		
111050/4650	99.16 10	dentity in	465 aa Over	Tap		
		10	20 30	0 40	50	60
m650.pep	MSKLKTI				SILDLPPTKQYF	
a 650					SILDLPPTKQYF	
			20 3		50	60
			80 9		110	120
m650.pep					YHIANEVKKRNM	
					1	
a650	LRQGFRM				HIANEVKKRNM	PAEAALLP 120
		70	80 9	0 100	110	120
	•	130 1	40 15	0 160	170	180~
m650.pep					RHDVYAATDAAL	
• •					111:1111111	
a650					RHDIYAATDAAL	
			40 15		170	180
			00 21		230	240
m650.pep			_		PNETRNYVPKLL	
- (50						
a650			vgrainrara <u>o</u> 00 21		PNETRNYVPKLL 230	240
		190 2	00 21	0 220	230	240
		250 2	60 27	0 280	290	300
m650.pep					ELLALNPAFNVP	AFIPKSKR
• •					11111111111	
a650	POSFGMN	ISDIDNKPYFQ	AVEPDRPLDNE	AIARLAGITQS:	ELLALNPAFNVP	AFIPKSKR
		250 2	60 27	0 280	290	300
650			20 33		350	360
m650.pep					ISTATGMSIADI	
-650					11111111111	
a650			AAPDSLESWEV 20 33		ISTATGMSIADI	
		510 5	20 33	5 340	350	360
		370 3	80 39	0 400	410	420
m650.pep					MPAGTVNVGIAR	
• •	111111	11111111111	11111111111	11111:1111	1111111111111	1111111
a650	NLVNAGR	SILVAKNGKTL	QTASESVVSID	IDNTPNTYRSN	MPAGTVNVGIAR	IRPAAAQT

### 1036

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2105>: g652.seq

```
ATGATCGAAT TGGACGGTAC TGAAAACAAA GGCAATTTGG GTGCGAATGC
      GACTTTGGCG GTCTCTATGG CGGTTGCACG CGCCGCTGCC GAAGACTCAG
  51
      GCCTGCCGCT TTACCGCTAC TTGGGGGGCG CAGGTCCGAT GTCCCTGCCC
 101
 151 GTACCGATGA TGAACGTCAT CAACGGCGGC GAACACGCCA ACAACAGCCT
      GAACATCCAA GAGTTTATGA TTATGCCCGT CGGCGCAAAA TCTTTCCGCG
 251 AAGCGTTGCG CTGCGGTGCG GAAATTTTCC ACGCCTTGAA AAAACTGTGC
 301 GACAGTAAAG GCTTCCCGAC CACAGTCGGC GACGAAGGCG GTTTCGCCCC
351 CAACCTGAAC AGCCACAAAG AAGCCCTGCA ACTGATGGTC GAAGCGGCCG
 401 AAGCCGCCGG CTACAAGGCG GGCGAAGACG TATTATTCGC ATTGGACTGC
      GCGTCCAGCG AGTTCTACAA AGACGGCAAA TACCACTTGG AAGCCGAAGG
 501 CCGCTCCTAC ACCAACGCGG AATTTGCCGA ATACTTGGAA GGCTTGGTTA
 551 ACGAATTCCC GATTATTTCC ATTGAAGACG GGATGGACGA AAACGACTGG
 601 GAAGGCTGGA AACTGCTGAC CGAAAAATTG GGCAAAAAAG TTCAATTGGT
 651 CGGCGACGAC TTGTTCGTAA CCAATCCGAA AATTCTTGCC GAAGGCATCG
701 AAAAAGGCGT AGCAAACGCA TTGCTGGTCA AAGTCAACCA AATCGGTACT
751 TTAAGCGAAA CCCTGAAAGC cgtcgatctg gCAAAATGCA accgctacGc
801 CAGCGTGATG AGCCACCGCT CCGGCGAAAC CGAAGACAGT ACCATTGCCG
851 ACTTGGCAGT CGCCACCAAC TGTATGCAGA TTAAAACCGG TTCTTTGAGC
 901 CGTTCCGACC GCATGGCGAA ATACAACCAa CtGCTGCGTA TCGAGGAAGA
      ATTGGCGGAA GCCCCCTACT ACCCCGGCAA AGCCGCATTC TACCAACTGG
 951
1001 GCAAATAA
```

This corresponds to the amino acid sequence <SEQ ID 2106; ORF 652.ng>: g652.pep

```
1 MIELDGTENK GNLGANATLA VSMAVARAAA EDSGLPLYRY LGGAGPMSLP
51 VPMMNVINGG EHANNSLNIQ EFMIMPVGAK SFREALRCGA EIFHALKKLC
101 DSKGFPTTVG DEGGFAPNLN SHKEALQLMV EAAEAAGYKA GEDVLFALDC
151 ASSEFYKDGK YHLEAEGRSY TNAEFAEYLE GLVNEFPIIS IEDGMDENDW
201 EGWKLLTEKL GKKVQLVGDD LFVTNPKILA EGIEKGVANA LLVKVNQIGT
251 LSETLKAVDL AKCNRYASVM SHRSGETEDS TIADLAVATN CMQIKTGSLS
301 RSDRMAKYNQ LLRIEEELAE AAYYPGKAAF YQLGK*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2107>: m652.seq

```
ATGATCGAAT TGGACGGTAC TGAAAACAAA GGCAATTTGG GTGCGAATGC
  51 GACTTTGGCG GTTTCTATGG CGGTTGCACG CGCCGCTGCC GAAGACTCAG
      GCCTGCCGCT TTACCGCTAC TTGGGCGGCG CAGGCCCGAT GTCCCTGCCC
GTACCGATGA TGAACGTCAT CAACGGCGGC GAACACGCCA ACAACAGCCT
 101
 151
 201 GAACATCCAA GAGTTTATGA TTATGCCCGT CGGCGCAAAA TCTTTCCGCG
 251 AAGCGTTGCG CTGCGGTGCG GAAATTTTCC ACGCCTTGAA AAAACTGTGC
 301 GACAGCAAAG GCTTCCCGAC CACAGTCGGC GACGAAGGCG GTTTCGCCCC
351 CAACCTGAAC AGCCACAAAG AAGCCCTGCA ACTGATGGTC GAGGCGACCG
401 AAGCCGCCGG CTACAAAGCG GGCGAAGACG TATTATTCGC ATTGGACTGC
 451 GCCTCCAGCG AGTTCTACAA AGACGGCAAA TACCACTTGG AAGCCGAAGG
 501 CCGCTCCTAC ACCAACGCGG AATTTGCCGA ATATCTGGAA GGCCTGGTCA
 551 ACGAGTTCCC CATCATCTCC ATCGAAGACG GCATGGATGA AAACGACTGG
 601 GAAGGCTGGA AACTGCTGAC CGAAAAACTG GGCGGTAGAG TTCAATTGGT
      TGGCGACGAC TTGTTCGTAA CCAATCCAAA AATCTTGGCC GAAGGCATCG
 651
 701 AAAAAGGCGT AGCAAACGCA TTGCTGGTCA AAGTCAATCA AATCGGTACT
 751
801
      TTGAGCGAGA CCCTGAAAGC CGTCGACTTA GCCAAACGCA ACCGCTACGC
      CAGCGTAATG AGCCACCGCT CCGGCGAAAC CGAAGACAGC ACCATTGCCG
 851
      ACTTGGCAGT CGCCACCAAC TGTATGCAGA TCAAAACCGG TTCTTTGAGC
 901
      CGTTCCGACC GCATGGCGAA ATACAACCAA CTGCTGCGTA TCGAGGAAGA
 951
      ATTGGCGGAA GCCGCCGACT ACCCCAGCAA AGCCGCATTC TACCAACTGG
1001 GCAAATAA
```

This corresponds to the amino acid sequence <SEQ ID 2108; ORF 652>: m652.pep

- 1 MIELDGTENK GNLGANATLA VSMAVARAAA EDSGLPLYRY LGGAGPMSLP
- 51 VPMMNVINGG EHANNSLNIQ EFMIMPVGAK SFREALRCGA EIFHALKKLC

```
DSKGFPTTVG DEGGFAPNLN SHKEALQLMV EATEAAGYKA GEDVLFALDC
    101
        ASSEFYKDGK YHLEAEGRSY TNAEFAEYLE GLVNEFPIIS IEDGMDENDW
    151
        EGWKLLTEKL GGRVQLVGDD LFVTNPKILA EGIEKGVANA LLVKVNQIGT
    201
        LSETLKAVDL AKRNRYASVM SHRSGETEDS TIADLAVATN CMQIKTGSLS
    251
       RSDRMAKYNQ LLRIEEELAE AADYPSKAAF YQLGK*
m652/g652 98.2% identity in 335 aa overlap
                 10
                         20
                                 30
                                         40
                                                  50
          {\tt MIELDGTENKGNLGANATLAVSMAVARAAAEDSGLPLYRYLGGAGPMSLPVPMMNVINGG}
m652.pep
          g652
          MIELDGTENKGNLGANATLAVSMAVARAAAEDSGLPLYRYLGGAGPMSLPVPMMNVINGG
                 10
                         20
                                 30
                                         40
                                                  50
                 70
                         80
                                 90
m652.pep
          EHANNSLNIQEFMIMPVGAKSFREALRCGAEIFHALKKLCDSKGFPTTVGDEGGFAPNLN
          g652
          {\tt EHANNSLNIQEFMIMPVGAKSFREALRCGAEIFHALKKLCDSKGFPTTVGDEGGFAPNLN}
                 70
                         80
                                 90
                                        100
                                                 110
                130
                        140
                                150
                                        160
                                                 170
          SHKEALQLMVEATEAAGYKAGEDVLFALDCASSEFYKDGKYHLEAEGRSYTNAEFAEYLE
m652.pep
          q652
          SHKEALQLMVEAAEAAGYKAGEDVLFALDCASSEFYKDGKYHLEAEGRSYTNAEFAEYLE
                130
                        140
                                         160
                190
                        200
                                210
                                        220
                                                 230
                                                         240
m652.pep
          GLVNEFPIISIEDGMDENDWEGWKLLTEKLGGRVQLVGDDLFVTNPKILAEGIEKGVANA
          GLVNEFPIISIEDGMDENDWEGWKLLTEKLGKKVQLVGDDLFVTNPKILAEGIEKGVANA
g652
                190
                        200
                                210
                                        220
                        260
                                270
                                        280
m652.pep
          LLVKVNQIGTLSETLKAVDLAKRNRYASVMSHRSGETEDSTIADLAVATNCMQIKTGSLS
          LLVKVNQIGTLSETLKAVDLAKCNRYASVMSHRSGETEDSTIADLAVATNCMQIKTGSLS
a652
                250
                        260
                                270
                                        280
                                                 290
                310
                        320
                                330
          RSDRMAKYNQLLRIEEELAEAADYPSKAAFYQLGKX
m652.pep
          g652
          RSDRMAKYNQLLRIEEELAEAAYYPGKAAFYQLGKX
                310
                        320
                                330
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2109>: a652.seq

```
ATGATCGAAT TGGACGGTAC TGAAAACAAA GGCAATTTGG GTGCGAATGC
51
     GACTTTGGCG GTTTCTATGG CGGTTGCACG CGCCGCTGCC GAAGACTCAG
101
    GCCTGCCGCT TTACCGCTAC TTGGGCGGCG CAGGCCCGAT GTCCCTGCCC
    GTACCGATGA TGAACGTCAT CAACGGCGGC GAACACGCCA ACAACAGCCT
151
201 GAACATCCAA GAGTTTATGA TTATGCCCGT CGGCGCAAAA TCTTTCCGCG
251 AAGCGTTGCG CTGCGGTGCG GAAATTTTCC ACGCCTTGAA AAAACTGTGC
    GACAGCAAAG GCTTCCCGAC CACAGTCGGC GACGAAGGCG GTTTCGCCCC
    CAACCTGAAC AGCCACAAAG AAGCCCTGCA ACTGATGGTC GAGGCGACCG
351
401
    AAGCCGCCGG CTACAAAGCG GGCGAAGACG TATTATTCGC ATTGGACTGC
451
    GCGTCCAGCG AGTTCTACAA AGACGGCAAA TACCACTTGG AAGCCGAAGG
    CCGCTCCTAC ACCAACGCGG AATTTGCCGA ATATCTGGAA GGCCTGGTCA
    ACGAGTTCCC CATCATCTCC ATCGAAGACG GGATGGATGA AAACGACTGG
GAAGGCTGGA AACTGCTGAC CGAAAAACTG GGCGGCAAAG TCCAACTCGT
551
601
651
    TGGCGACGAC CTCTTCGTTA CCAACCCGAA AATCCTTGCC GAAGGCATTG
    AAAAAGGCGT GGCAAACGCA CTATTGGTCA AAGTCAACCA AATCGGTACT
701
    TTGAGTGAAA CCCTGAAAGC CGTCGACTTA GCCAAACGCA ACCGCTACGC
    CAGCGTAATG AGCCACCGCT CCGGCGAAAC CGAAGACAGC ACCATTGCCG
801
    ACTTGGCAGT CGCCACCAAC TGTATGCAGA TCAAAACCGG TTCTTTGAGC
851
901
    CGTTCCGACC GCATGGCGAA ATACAACCAA CTGCTGCGTA TCGAGGAAGA
    ATTGGCGGAA GCCGCCGACT ACCCCAGCAA AGCCGCATTC TACCAACTGG
    GCAAATAA
```

This corresponds to the amino acid sequence <SEQ ID 2110; ORF 652.a>: a652.pep

- 1 MIELDGTENK GNLGANATLA VSMAVARAAA EDSGLPLYRY LGGAGPMSLP
- 51 VPMMNVINGG EHANNSLNIQ EFMIMPVGAK SFREALRCGA EIFHALKKLC
- 101 DSKGFPTTVG DEGGFAPNLN SHKEALQLMV EATEAAGYKA GEDVLFALDC



```
ASSEFYKDGK YHLEAEGRSY TNAEFAEYLE GLVNEFPIIS IEDGMDENDW
        EGWKLLTEKL GGKVQLVGDD LFVTNPKILA EGIEKGVANA LLVKVNQIGT
    201
        LSETLKAVDL AKRNRYASVM SHRSGETEDS TIADLAVATN CMQIKTGSLS
    251
        RSDRMAKYNQ LLRIEEELAE AADYPSKAAF YQLGK*
    301
m652/a652
           99.7% identity in 335 aa overlap
                         20
                                 30
                                         40
                                                 50
           MIELDGTENKGNLGANATLAVSMAVARAAAEDSGLPLYRYLGGAGPMSLPVPMMNVINGG
m652.pep
           a652
           MIELDGTENKGNLGANATLAVSMAVARAAAEDSGLPLYRYLGGAGPMSLPVPMMNVINGG
                 10
                         20
                                 30
                 70
                                 90
                                        100
                                                110
                                                         120
           EHANNSLNIQEFMIMPVGAKSFREALRCGAEIFHALKKLCDSKGFPTTVGDEGGFAPNLN
m652.pep
           a652
           EHANNSLNIQEFMIMPVGAKSFREALRCGAEIFHALKKLCDSKGFPTTVGDEGGFAPNLN
                 70
                         80
                                 90
                                        100
                                                110
                130
                        140
                                150
                                        160
m652.pep
          SHKEALQLMVEATEAAGYKAGEDVLFALDCASSEFYKDGKYHLEAEGRSYTNAEFAEYLE
           a652
           SHKEALQLMVEATEAAGYKAGEDVLFALDCASSEFYKDGKYHLEAEGRSYTNAEFAEYLE
                130
                        140
                                150
                                        160
                                                170
                190
                        200
                                210
                                        220
                                                230
                                                        240
          GLVNEFPIISIEDGMDENDWEGWKLLTEKLGGRVQLVGDDLFVTNPKILAEGIEKGVANA
m652.pep
          a652
          GLVNEFPIISIEDGMDENDWEGWKLLTEKLGGKVQLVGDDLFVTNPKILAEGIEKGVANA
                190
                        200
                                210
                                        220
                                                        240
                250
                        260
                                270
                                        280
                                                290
          LLVKVNQIGTLSETLKAVDLAKRNRYASVMSHRSGETEDSTIADLAVATNCMQIKTGSLS
m652.pep
          a652
          LLVKVNQIGTLSETLKAVDLAKRNRYASVMSHRSGETEDSTIADLAVATNCMQIKTGSLS
                250
                        260
                                270
                                                290
                                        280
                                                        300
                310
                        320
                                330
m652.pep
          RSDRMAKYNQLLRIEEELAEAADYPSKAAFYQLGKX
          a652
          RSDRMAKYNQLLRIEEELAEAADYPSKAAFYQLGKX
                310
                        320
                                330
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2111>: g652-1.seq

```
ATGAGCGCAA TCGTTGATAT TTTCGCCCGC GAAATTTTGG ACTCACGCGG
   1
  51
     CAACCCCACA GTCGAGTGTG ATGTATTGCT CGAATCCGGC GTAATGGGAC
 101
      GTGCGGCCGT ACCGAGCGGC GCATCCACCG GTCAGAAAGA AGCTTTGGAA
     CTTCGCGACG GCGACAAATC CCGCTATTCC GGCAAAGGCG TATTGAAGGC
 151
 201 CGTCGAACAC GTCAACAACC AAATCGCCCA AGCCCTCATC GGTATCGATG
 251
     CCAACGAGCA ATCTTATATC GACCAAATCA TGATCGAATT GGACGGTACT
     GAAAACAAAG GCAATTTGGG TGCGAATGCG ACTTTGGCGG TCTCTATGGC
 301
     GGTTGCACGC GCCGCTGCCG AAGACTCAGG CCTGCCGCTT TACCGCTACT
 351
 401
     TGGGGGGCGC AGGTCCGATG TCCCTGCCCG TACCGATGAT GAACGTCATC
     AACGGCGGCG AACACGCCAA CAACAGCCTG AACATCCAAG AGTTTATGAT
 451
 501
     AAATTTTCCA CGCCTTGAAA AAACTGTGCG ACAGTAAAGG CTTCCCGACC
 551
     ACAGTCGGCG ACGAAGGCGG TTTCGCCCCC AACCTGAACA GCCACAAAGA
     AGCCCTGCAA CTGATGGTCG AAGCGGCCGA AGCCGCCGGC TACAAGGCGG
 651
 701
     GCGAAGACGT ATTATTCGCA TTGGACTGCG CGTCCAGCGA GTTCTACAAA
 751
     GACGGCAAAT ACCACTTGGA AGCCGAAGGC CGCTCCTACA CCAACGCGGA
     ATTTGCCGAA TACTTGGAAG GCTTGGTTAA CGAATTCCCG ATTATTTCCA
 801
 851
     TTGAAGACGG GATGGACGAA AACGACTGGG AAGGCTGGAA ACTGCTGACC
 901
     GAAAAATTGG GCAAAAAAGT TCAATTGGTC GGCGACGACT TGTTCGTAAC
     CAATCCGAAA ATTCTTGCCG AAGGCATCGA AAAAGGCGTA GCAAACGCAT
 951
     TGCTGGTCAA AGTCAACCAA ATCGGTACTT TAAGCGAAAC CCTGAAAGCC
1001
     GTCGATCTGG CAAAATGCAA CCGCTACGCC AGCGTGATGA GCCACCGCTC
1051
1101
     CGGCGAAACC GAAGACAGTA CCATTGCCGA CTTGGCAGTC GCCACCAACT
     GTATGCAGAT TAAAACCGGT TCTTTGAGCC GTTCCGACCG CATGGCGAAA
1151
     TACAACCAAC TGCTGCGTAT CGAGGAAGAA TTGGCGGAAG CCGCCTACTA
1201
     CCCCGGCAAA GCCGCATTCT ACCAACTGGG CAAATAA
```

This corresponds to the amino acid sequence <SEQ ID 2112; ORF 652-1.ng>:

```
q652-1.pep
      1 MSAIVDIFAR EILDSRGNPT VECDVLLESG VMGRAAVPSG ASTGQKEALE
         LRDGDKSRYS GKGVLKAVEH VNNQIAQALI GIDANEQSYI DQIMIELDGT
     51
    101 ENKGNLGANA TLAVSMAVAR AAAEDSGLPL YRYLGGAGPM SLPVPMMNVI
         NGGEHANNSL NIQEFMIMPV GAKSFREALR CGAEIFHALK KLCDSKGFPT
    201 TVGDEGGFAP NLNSHKEALQ LMVEAAEAAG YKAGEDVLFA LDCASSEFYK
    251 DGKYHLEAEG RSYTNAEFAE YLEGLVNEFP IISIEDGMDE NDWEGWKLLT
         EKLGKKVQLV GDDLFVTNPK ILAEGIEKGV ANALLVKVNQ IGTLSETLKA
    301
         VDLAKCNRYA SVMSHRSGET EDSTIADLAV ATNOMQIKTG SLSRSDRMAK
    351
    401 YNQLLRIEEE LAEAAYYPGK AAFYQLGK*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2113>:
m652-1.seq
         ATGAGCGCAA TCGTTGATAT TTTCGCCCGC GAAATTTTGG ACTCACGCGG
      1
         CAACCCCACA GTCGAGTGTG ATGTATTGCT CGAATCCGGC GTAATGGGAC
     51
         GCGCAGCCGT ACCGAGCGGC GCGTCCACCG GTCAAAAAGA GGCTTTGGAA
    101
    151 CTTCGCGACG GCGACAAATC CCGTTATTCG GGCAAGGGCG TATTGAAGGC
    201 GGTCGAACAC GTCAACAACC AAATCGCCCA AGCCCTCATT GGTATCGATG
         CCAACGAGCA ATCTTATATC GACCAAATCA TGATCGAATT GGACGGTACT
    251
         GAAAACAAAG GCAATTTGGG TGCGAATGCG ACTTTGGCGG TTTCTATGGC
    301
         GGTTGCACGC GCCGCTGCCG AAGACTCAGG CCTGCCGCTT TACCGCTACT
         TGGGCGGCGC AGGCCCGATG TCCCTGCCCG TACCGATGAT GAACGTCATC
    401
         AACGGCGGCG AACACGCCAA CAACAGCCTG AACATCCAAG AGTTTATGAT
    451
         501
     551
         AAATTTTCCA CGCCTTGAAA AAACTGTGCG ACAGCAAAGG CTTCCCGACC
     601 ACAGTCGGCG ACGAAGGCGG TTTCGCCCCC AACCTGAACA GCCACAAAGA
         AGCCCTGCAA CTGATGGTCG AGGCGACCGA AGCCGCCGGC TACAAAGCGG
     651
         GCGAAGACGT ATTATTCGCA TTGGACTGCG CCTCCAGCGA GTTCTACAAA
     701
         GACGGCAAAT ACCACTTGGA AGCCGAAGGC CGCTCCTACA CCAACGCGGA
         ATTTGCCGAA TATCTGGAAG GCCTGGTCAA CGAGTTCCCC ATCATCTCCA
     801
         TCGAAGACGG CATGGATGAA AACGACTGGG AAGGCTGGAA ACTGCTGACC
     851
         GAAAAACTGG GCGGTAGAGT TCAATTGGTT GGCGACGACT TGTTCGTAAC
     901
         CAATCCAAAA ATCTTGGCCG AAGGCATCGA AAAAGGCGTA GCAAACGCAT
     951
         TGCTGGTCAA AGTCAATCAA ATCGGTACTT TGAGCGAGAC CCTGAAAGCC
         GTCGACTTAG CCAAACGCAA CCGCTACGCC AGCGTAATGA GCCACCGCTC
    1051
    1101 CGGCGAAACC GAAGACAGCA CCATTGCCGA CTTGGCAGTC GCCACCAACT
         GTATGCAGAT CAAAACCGGT TCTTTGAGCC GTTCCGACCG CATGGCGAAA
         TACAACCAAC TGCTGCGTAT CGAGGAAGAA TTGGCGGAAG CCGCCGACTA
    1251 CCCCAGCAAA GCCGCATTCT ACCAACTGGG CAAATAA
This corresponds to the amino acid sequence <SEQ ID 2114; ORF 652-1>:
m652-1.pep
                                                                                  *
         MSAIVDIFAR EILDSRGNPT VECDVLLESG VMGRAAVPSG ASTGQKEALE
         LRDGDKSRYS GKGVLKAVEH VNNQIAQALI GIDANEQSYI DQIMIELDGT
         ENKGNLGANA TLAVSMAVAR AAAEDSGLPL YRYLGGAGPM SLPVPMMNVI
     101
     151 NGGEHANNSL NIQEFMIMPV GAKSFREALR CGAEIFHALK KLCDSKGFPT
         TVGDEGGFAP NLNSHKEALQ LMVEATEAAG YKAGEDVLFA LDCASSEFYK
         DGKYHLEAEG RSYTNAEFAE YLEGLVNEFP IISIEDGMDE NDWEGWKLLT
     251
         EKLGGRVOLV GDDLFVTNPK ILAEGIEKGV ANALLVKVNQ IGTLSETLKA
         VDLAKRNRYA SVMSHRSGET EDSTIADLAV ATNOMQIKTG SLSRSDRMAK
     351
     401
         YNQLLRIEEE LAEAADYPSK AAFYQLGK*
m652-1/g652-1
                98.6% identity in 428 aa overlap
                                       30
                                                40
                             20
             MSAIVDIFAREILDSRGNPTVECDVLLESGVMGRAAVPSGASTGQKEALELRDGDKSRYS
m652-1
             a652 - 1
             MSAIVDIFAREILDSRGNPTVECDVLLESGVMGRAAVPSGASTGQKEALELRDGDKSRYS
                    10
                             20
                                      30
                                                40
             GKGVLKAVEHVNNQIAQALIGIDANEQSYIDQIMIELDGTENKGNLGANATLAVSMAVAR
m652 - 1
             g652-1
             GKGVLKAVEHVNNQIAQALIGIDANEQSYIDQIMIELDGTENKGNLGANATLAVSMAVAR
                                      150
                                               160
m652-1
             {\tt AAAEDSGLPLYRYLGGAGPMSLPVPMMNVINGGEHANNSLNIQEFMIMPVGAKSFREALR}
             AAAEDSGLPLYRYLGGAGPMSLPVPMMNVINGGEHANNSLNIQEFMIMPVGAKSFREALR
 q652-1
                                                         170
                            140
                   130
                                      150
                                               160
```



m652-1 g652-1	190 200 210 220 230 240 CGAEIFHALKKLCDSKGFPTTVGDEGGFAPNLNSHKEALQLMVEATEAAGYKAGEDVLFA	A A
m652-1 g652-1	250 260 270 280 290 300 LDCASSEFYKDGKYHLEAEGRSYTNAEFAEYLEGLVNEFPIISIEDGMDENDWEGWKLLT	 
m652-1 g652-1	310 320 330 340 350 360  EKLGGRVQLVGDDLFVTNPKILAEGIEKGVANALLVKVNQIGTLSETLKAVDLAKRNRYA     ::	4
m652-1 g652-1	370 380 390 400 410 420 SVMSHRSGETEDSTIADLAVATNCMQIKTGSLSRSDRMAKYNQLLRIEEELAEAADYPSK [	ζ
m652-1 g652-1	429 AAFYQLGKX          AAFYQLGKX	

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2115>: a652-1.seq

```
1 ATGAGCGCAA TCGTTGATAT TTTCGCCCGC GAAATTTTGG ACTCACGCGG
 51
     CAACCCCACA GTCGAGTGTG ATGTATTGCT CGAATCCGGC GTAATGGGAC
 101
     GCGCAGCCGT ACCGAGCGGC GCGTCCACCG GTCAAAAAGA GGCTTTGGAA
 151 CTTCGCGACG GCGACAAATC CCGTTATTCG GGCAAGGGCG TATTGAAGGC
 201 GGTCGAACAC GTCAACAACC AAATCGCCCA AGCCCTCATT GGTATCGATG
    CCAACGAGCA ATCTTATATC GACCAAATCA TGATCGAATT GGACGGTACT
 251
 301 GAAAACAAAG GCAATTTGGG TGCGAATGCG ACTTTGGCGG TTTCTATGGC
     GGTTGCACGC GCCGCTGCCG AAGACTCAGG CCTGCCGCTT TACCGCTACT
 351
     TGGGCGCGC AGGCCCGATG TCCCTGCCCG TACCGATGAT GAACGTCATC
 401
 451
     AACGGCGGCG AACACGCCAA CAACAGCCTG AACATCCAAG AGTTTATGAT
 501
     551 AAATTTTCCA CGCCTTGAAA AAACTGTGCG ACAGCAAAGG CTTCCCGACC
 601
     ACAGTCGGCG ACGAAGGCGG TTTCGCCCCC AACCTGAACA GCCACAAAGA
 651 AGCCCTGCAA CTGATGGTCG AGGCGACCGA AGCCGCCGGC TACAAAGCGG
 701 GCGAAGACGT ATTATTCGCA TTGGACTGCG CGTCCAGCGA GTTCTACAAA
 751
     GACGGCAAAT ACCACTTGGA AGCCGAAGGC CGCTCCTACA CCAACGCGGA
 801 ATTTGCCGAA TATCTGGAAG GCCTGGTCAA CGAGTTCCCC ATCATCTCCA
     TCGAAGACGG GATGGATGAA AACGACTGGG AAGGCTGGAA ACTGCTGACC
 851
     GAAAAACTGG GCGGCAAAGT CCAACTCGTT GGCGACGACC TCTTCGTTAC
 901
951
     CAACCCGAAA ATCCTTGCCG AAGGCATTGA AAAAGGCGTG GCAAACGCAC
1001
     TATTGGTCAA AGTCAACCAA ATCGGTACTT TGAGTGAAAC CCTGAAAGCC
1051 GTCGACTTAG CCAAACGCAA CCGCTACGCC AGCGTAATGA GCCACCGCTC
1101
     CGGCGAAACC GAAGACAGCA CCATTGCCGA CTTGGCAGTC GCCACCAACT
1151
     GTATGCAGAT CAAAACCGGT TCTTTGAGCC GTTCCGACCG CATGGCGAAA
     TACAACCAAC TGCTGCGTAT CGAGGAAGAA TTGGCGGAAG CCGCCGACTA
1201
     CCCCAGCAAA GCCGCATTCT ACCAACTGGG CAAATAA
```

## This corresponds to the amino acid sequence <SEQ ID 2116; ORF 652-1.a>: a652-1.pep

```
MSAIVDIFAR EILDSRGNPT VECDVLLESG VMGRAAVPSG ASTGQKEALE
LRDGDKSRYS GKGVLKAVEH VNNQIAQALI GIDANEQSYI DQIMIELDGT
LRDGDKSRYS GKGVLKAVEH VNNQIAQALI GIDANEQSYI DQIMIELDGT
LRDGGLANN TLAVSMAVAR AAAEDSGLPL YRYLGGAGPM SLPVPMMNVI
LST NGGEHANNSL NIQEFMIMPV GAKSFREALR CGAEIFHALK KLCDSKGFPT
LDGKYHLEAEG RSYTNAEFAE YLEGLVNEFP IISIEDGMDE NDWEGWKLLT
LBGLGKVQLV GDDLFVTNPK ILAEGIEKGV ANALLVKVNQ IGTLSETLKA
LDCASSEFYK
LBGLKVQLV GDDLFVTNPK ILAEGIEKGV ANALLVKVNQ IGTLSETLKA
LDCASSEFYK
AFYQLGK*
```

m652-1/a652-1 99.8% identity in 428 aa overlap

10 20 30 40 50 60

m652-1	MSAIVDIFAREILDSRGNPTVECDVLLESGVMGRAAVPSGASTGQKEALELRDGDKSRYS
a652-1	
m652-1	70 80 90 100 110 120 GKGVLKAVEHVNNOIAOALIGIDANEOSYIDOIMIELDGTENKGNLGANATLAVSMAVAR
m652-1	GRGVERAVEHVNNQIRQADIGIDANEQSIIDQIMIEDDGIENKGNEGANAIEAVSMAVAR
a652-1	GKGVLKAVEHVNNQIAQALIGIDANEQSYIDQIMIELDGTENKGNLGANATLAVSMAVAR
	70 80 90 100 110 120
	130 140 150 160 170 180
m652-1	AAAEDSGLPLYRYLGGAGPMSLPVPMMNVINGGEHANNSLNIQEFMIMPVGAKSFREALR
a652-1	AAAEDSGLPLYRYLGGAGPMSLPVPMMNVINGGEHANNSLNIQEFMIMPVGAKSFREALR
	130 140 150 160 170 180
	190 200 210 220 230 240
m652-1	${\tt CGAEIFHALKKLCDSKGFPTTVGDEGGFAPNLNSHKEALQLMVEATEAAGYKAGEDVLFA}$
a652-1	
2032 1	190 200 210 220 230 240
	250 260 270 280 290 300
m652-1	LDCASSEFYKDGKYHLEAEGRSYTNAEFAEYLEGLVNEFPIISIEDGMDENDWEGWKLLT
	#   D   D   D   D   D   D   D   D   D
a652-1	LDCASSEFYKDGKYHLEAEGRSYTNAEFAEYLEGLVNEFPIISIEDGMDENDWEGWKLLT 250 260 270 280 290 300
m652-1	310 320 330 340 350 360 EKLGGRVQLVGDDLFVTNPKILAEGIEKGVANALLVKVNQIGTLSETLKAVDLAKRNRYA
11032 1	
a652-1	EKLGGKVQLVGDDLFVTNPKILAEGIEKGVANALLVKVNQIGTLSETLKAVDLAKRNRYA 310 320 330 340 350 360
	310 320 330 340 350 360
	370 380 390 400 410 420
m652-1	SVMSHRSGETEDSTIADLAVATNCMQIKTGSLSRSDRMAKYNQLLRIEEELAEAADYPSK
a652-1	SVMSHRSGETEDSTIADLAVATNCMQIKTGSLSRSDRMAKYNQLLRIEEELAEAADYPSK
	370 380 390 400 410 420
	429
m652-1	AAFYQLGKX
a652-1	AAFYQLGKX
· - <del>-</del>	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2117>: g653.seq

ATGGCGGcgg aaccgatgcg gAtgccggag gtaAcgtaCG GTTTTTCCGG ATCGTTCGGG ATGGCGTTTT TGTtgacggT GATGTGCGCt ttgcccaAAG 101 CGGCTtcggc ggctttgcCg gtgaTTTCA TCGGTTGCAG GtcgacgaGG
151 AAaacgTGGC TTTCGGTGCG GCCGGAAacg atgcgCaaac cgCGTttaac
201 caactcttcc gcCATGACGG CAGCATTGAT TTTCACTTGT TTTGCGTATT 251 GTTTGAactC GGGTTGcaac gcttctTTAA acgctACGGC TttgGCGGCG 301 ATAACGTgca tcaACGGAcc gCCTTGCAGG CTTGGGAAGA TGGAAAGAGTT
351 CAGCGCTTTT TCGTGGGTAT TGTCACGGCA CAAAATCACA CCGCCGCGAG
401 GGCCGCGTAG GGTTTTGTGG GTGGTAGTGG ttACGaaGTC GCAGAatggc
451 ACGGGGttag gatattcgcc gccGGCAACC AgtccgGCAT Ag

This corresponds to the amino acid sequence <SEQ ID 2118; ORF 653.ng>:

- g653.pep 1
  - MAAEPMRMPE VTYGFSGSFG MAFLLTVMCA LPKAASAALP VIFIGCRSTR KTWLSVRPET MRKPRLTNSS AMTAALIFTC FAYCLNSGCN ASLNATALAA 51
  - 101 ITCINGPPCR LGKMEEFSAF SWVLSRHKIT PPRGPRRVLW VVVVTKSQNG
  - 151 TGLGYSPPAT SPA*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2119>: m653.seq

- 1 ATGGCAGCGG AGCCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG
- 51 ATCGTTCGGA ATGGCGTTTT TGTTGACGGT GATGTCCGCT TTGCCCAAAG
  101 CGGCTTCGGC GGCTTTGCCG GTAATTTTCA TCGGTTGCAG GTCAACGAGG



	·
151	AAAACGTGGC TTTCGGTGCG GCCGGAAACG ATGCGCAAAC CGCGTTTAAC
201	CAACTCTTCC GCCATGGCGG CTGCATTGAT TTTCACTTGT TTTTGCGTATT
251	GTTTGAACTC GGGTTGCAAT GCTTCTTTAA ACGCCACGGC TTTGGCGGCG
	ATAACGTGCA TCAGCGGACC GCCTTGCAGG CTTGGGAAGA TGGAAGAGTT
	CAACGCTTTT TCGTGGGTAT TGTCGCGGCA CAAAATTACG CCGCCGCGAG
	GACCGCGCAG GGTTTTGTGG GTGGTGGTGG TCACGAAGTC GCAGAACGGC
451	ACCGGGTTGG GATATTCGCC GCCGGCAACC AGACCGGCAT AG
This corr	responds to the amino acid sequence <seq 2120;="" 653="" id="" orf="">:</seq>
m653.pep	
1	MAAEPMRMPE VTKGFSGSFG MAFLLTVMCA LPKAASAALP VIFIGCRSTR
51	KTWLSVRPET MRKPRLTN <u>SS AMAAALIFTC FAYCL</u> NSGCN ASLNATALAA
	ITCISGPPCR LGKMEEFNAF SWVLSRHKIT PPRGPRRVLW VVVVTKSQNG
151	TGLGYSPPAT RPA*
m653/g653	96.9% identity in 163 aa overlap
	10 00 00 00 00
550	10 20 30 40 50 60
m653.pep	MAAEPMRMPEVTKGFSGSFGMAFLLTVMCALPKAASAALPVIFIGCRSTRKTWLSVRPET
C F 3	
g653	10 20 30 40 50 60
	10 20 30 40 30 00
	70 80 90 100 110 120
m653.pep	MRKPRLTNSSAMAAALIFTCFAYCLNSGCNASLNATALAAITCISGPPCRLGKMEEFNAF
moss.pcp	
g653	MRK PRLTNSSAMTAALI FTCFAYCLNSGCNASLNATALAAI TCI NGP PCRLGKMEE FSA F
9000	70 80 90 100 110 120
	130 140 150 160
m653.pep	SWVLSRHKITPPRGPRRVLWVVVTKSQNGTGLGYSPPATRPAX
g653	SWVLSRHKITPPRGPRRVLWVVVVTKSQNGTGLGYSPPATSPAX
	130 140 150 160
The follo	owing partial DNA sequence was identified in N. meningitidis <seq 2121="" id="">:</seq>
a653.seq	ATGGCGGCGG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG
<b>a653.seq</b> 1	•
<b>a653.seq</b> 1 51	ATGGCGGCGG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG
<b>a653.seq</b> 1 51	ATGGCGGCGG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGG ATGGCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CAGCTTCGGC GGCTTTGCCG GTAATTTTCA TCGGTTGCAG GTCAACGAGG
a653.seq 1 51 101 151	ATGGCGGCGG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGG ATGGCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CAGCTTCGGC GGCTTTGCCG GTAATTTTCA TCGGTTGCAG GTCAACGAGG
a653.seq 1 51 101 151 201	ATGGCGGCGG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGG ATGGCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CAGCTTCGGC GGCTTTGCCG GTAATTTTCA TCGGTTGCAG GTCAACGAGG AAAACGTGGC TTTCGGTGCG GCCGGAAACG ATGCGCAAAC CGCGTTTAAC
a653.seq 1 51 101 151 201 251	ATGGCGGCGG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGG ATGGCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CAGCTTCGGC GGCTTTGCCG GTAATTTTCA TCGGTTGCAG GTCAACGAGG AAAACGTGGC TTTCGGTGCG GCCGGAAACG ATGCGCAAAC CGCGTTTAAC CAACTCTTCC GCCATGGCGG CTGCATTGAT TTTCACTTGT TTTGCGTATT
a653.seq 1 51 101 151 201 251 301	ATGGCGGCGG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGG ATGGCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CAGCTTCGGC GGCTTTGCCG GTAATTTCA TCGGTTGCAG GTCAACGAGG AAAACGTGCC CTCGGTGCG GCCGGAAACG ATGCGCAAAC CGCGTTTAAC CAACTCTTCC GCCATGGCGG CTGCATTGAT TTTCACTTGT TTTGCGTATT GTTTGAACTC GGGTTGCAAT GCTTCTTTAA ACGCCACGC TTTGGCGGCG ATAACGTGCA TCAGCGGCC ACCTTCGAAGA TGGAAGAGTT CAACGCTTTT TCGTGGGTAT TGTCGCGGCA CAAAATTACC CCGCCGCAG
a653.seq 1 51 101 151 201 251 301 351 401	ATGGCGGCGG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGG ATGCCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CAGCTTCGGC GGCTTTGCCG GTAATTTCA TCGGTTGCAG GTCAACCAGG AAAACGTGGC TTTCGGTGCG GCCGAAACC ATGCGCAAAC CGCTTTAAC CAACTCTTCC GCCATGGCGG CTGCATTGAT TTTCACTTGT TTTTGCGTATT GTTTGAACTC GGGTTGCAAT GCTTCTTTAA ACGCCACGCC
a653.seq 1 51 101 151 201 251 301 351	ATGGCGGCGG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGG ATGCCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CAGCTTCGGC GGCTTTGCCG GTAATTTCA TCGGTTGCAG GTCAACGAGG AAAACGTGGC TTTCGGTGCG GCCGAAACC CCGCTTTAAC CAACTCTTCC GCCATGGCGG CTGCATTGAT TTTCACTTGT TTTGCGTATT GTTTGAACTC GGGTTGCAAT GCTTCTTAA ACGCCACGCC
a653.seq 1 51 101 151 201 251 301 351 401 451	ATGGCGGCGG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGG ATGGCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CAGCTTCGGC GGCTTTGCCG GTAATTTCA TCGGTTGCAG GTCAACGAGG AAAACGTGGC TTTCGGTGCG GCCGGAAACC ATGCGCAAAC CGCGTTTAAC CAACTCTTCC GCCATGGCGG CTGCATTGAT TTTCACTTGT TTTGGCGTATT GTTTGAACTC GGGTTGCAAT GCTTCTTTAA ACGCCCACGGC TTTGGCGGCG ATAACGTGCA TCAGCGGGCC ACCTTGCAGG CTTGGGAAGA TGGAAGAGTT CAACGCTTTT TCGTGGGTAT TGTCGCGGCA CAAAATTACG CCGCCGCAG GACCGCCAG GGTTTTGTGG GTGGTGGTGGTATC CCGCCGCAG ACGGGATTGG GATATTCGCC GCCGCAACC AGACCGGCAT AG
a653.seq 1 51 101 151 201 251 301 351 401 451	ATGGCGGCGG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGG ATGCCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CAGCTTCGGC GGCTTTGCCG GTAATTTCA TCGGTTGCAG GTCAACCAGG AAAACGTGGC TTTCGGTGCG GCCGAAACC ATGCGCAAAC CGCTTTAAC CAACTCTTCC GCCATGGCGG CTGCATTGAT TTTCACTTGT TTTTGCGTATT GTTTGAACTC GGGTTGCAAT GCTTCTTTAA ACGCCACGCC
a653.seq 1 51 101 151 201 251 301 351 401 451	ATGGCGGCGG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGG ATGGCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CAGCTTCGGC GGCTTTGCCG GTAATTTCA TCGGTTGCAG GTCAACGAGG AAAACGTGGC TTTCGGTGCG GCCGGAAACC ATGCGCAAAC CGCGTTTAAC CAACTCTTCC GCCATGGCGG CTGCATTGAT TTTCACTTGT TTTGGCGTATT GTTTGAACTC GGGTTGCAAT GCTTCTTTAA ACGCCCACGGC TTTGGCGGCG ATAACGTGCA TCAGCGGGCC ACCTTGCAGG CTTGGGAAGA TGGAAGAGTT CAACGCTTTT TCGTGGGTAT TGTCGCGGCA CAAAATTACG CCGCCGCAG GACCGCCAG GGTTTTGTGG GTGGTGGTGGTATC CCGCCGCAG ACGGGATTGG GATATTCGCC GCCGCAACC AGACCGGCAT AG
a653.seq  1 51 101 151 201 251 301 351 401 451  This corr a653.pep	ATGGCGGCGG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGG ATGGCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CAGCTTCGGC GCCTTTGCCG GTAATTTTCA TCGGTTGCAG GTCAACGAGG AAAACGTGGC TTTCGGTGCG GCCGGAAACG ATGCGCAAAC CGCGTTTAAC CAACTCTTCC GCCATGGCGG CTGCATTGAT TTTCACTTGT TTTGCGTATT GTTTGAACTC GGGTTGCAAT GCTTCTTTAA ACGCCACGGC TTTGGCGGCG ATAACGTGCA TCAGCGGGCC ACCTTGCAGG CTTGGGAAGA TGGAAGAGTT CAACGCTTTT TCGTGGGTAT TGTCGCGGCA CAAAATTACG CCGCCGCGAG GACCGCCAG GGTTTTTTGG GTGGTGGTG TAACGAAGTC GCAGAACGGC ACGGGATTGG GATATTCGCC GCCGGCAACC AGACCGGCAT AG  Tesponds to the amino acid sequence <seq 2122;="" 653.a="" id="" orf="">:  MAAEPMRMPE VTKGFSGSFG MAFLLTVMCA LPKAASAALP VIFIGCRSTR</seq>
a653.seq  1 51 101 151 201 251 301 351 401 451  This corr a653.pep 1 51	ATGGCGGCGG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGC ATGGCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CAGCTTCGGC GGCTTTTCCA GTCAATTTTCA TCGGTTGCAG GTCAACGAGG AAAACGTGGC CTTCGGTGCG GCCGAAACG ATGCGCAAAC CGCGTTTAAC CAACTCTTCC GCCATGGCGG CTGCATTGAT TTTCACTTGT TTTTGCGTATT GTTTGAACTC GGGTTGCAAT GCTTCTTTAA ACGCCACGGC TTTGGCGGCG ATAACGTGCA TCAGCGGGCC ACCTTGCAGG CTTGGGAAGA TGGAAGAGTT CAACGCTTTT TCGTGGGTAT TGTCGCGGCA CAAAATTACG CCGCCGCAG GACCGCCAG GGTTTTGTGG GTGGTGGTG TAACGAAGTC GCAGAACGGC ACGGGATTGG GATATTCGCC GCCGGCAACC AGACCGGCAT AG  Tesponds to the amino acid sequence <seq 2122;="" 653.a="" id="" orf="">:  MAAEPMRMPE VTKGFSGSFG MAFLLTVMCA LPKAASAALP VIFIGCRSTR KTWLSVRPET MRKPRLTNSS AMAAALIFTC FAYCLNSGCN ASLNATALAA</seq>
a653.seq  1 51 101 151 201 251 301 351 401 451  This corr a653.pep  1 51 101	ATGGCGGCGG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGG ATGGCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CAGCTTCGGC GGCTTTGCCG GTAATTTCA TCGGTTGCAG GTCAACGAGG AAAACGTGGC CTCGGTGCG GCCGGAAACG ATGCGCAAAC CGCGTTTAAC CAACTCTTCC GCCATGGCGG CTGCATTGAT TTTCACTTGT TTTTGCGTATT GTTTGAACTC GGGTTGCAAT GCTTCTTAA ACGCCACGGC TTTGGCGGCG ATAACGTGCA TCAGCGGCC ACCTTGCAGG CTTGGGAAGA TGGAAGAGTT CAACGCTTTT TCGTGGGTAT TGTCGCGGCA CAAAATTACG CCGCCGCAAC GACCGCTTTT TCGTGGGTAT TGTCGCGGCA CAAAATTACG CCGCCGCAGG ACGGGATTGG GATATTCGCC GCCGCAACC AGACCGGCA AG  TCSPONDS to the amino acid sequence SEQ ID 2122; ORF 653.a>:  MAAEPMRMPE VTKGFSGSFG MAFLLTVMCA LPKAASAALP VIFIGCRSTR KTWLSVRPET MKRPRLTNSS AMAAALIFTC FAYCLNSGCN ASLNATALAA ITCISGPPCR LGKMEEFNAF SWVLSRHKIT PPRGPRRVLW VVVVTKSQNG
a653.seq  1 51 101 151 201 251 301 351 401 451  This corr a653.pep 1 51	ATGGCGGCGG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGC ATGGCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CAGCTTCGGC GGCTTTTCCA GTCAATTTTCA TCGGTTGCAG GTCAACGAGG AAAACGTGGC CTTCGGTGCG GCCGAAACG ATGCGCAAAC CGCGTTTAAC CAACTCTTCC GCCATGGCGG CTGCATTGAT TTTCACTTGT TTTTGCGTATT GTTTGAACTC GGGTTGCAAT GCTTCTTTAA ACGCCACGGC TTTGGCGGCG ATAACGTGCA TCAGCGGGCC ACCTTGCAGG CTTGGGAAGA TGGAAGAGTT CAACGCTTTT TCGTGGGTAT TGTCGCGGCA CAAAATTACG CCGCCGCAG GACCGCCAG GGTTTTGTGG GTGGTGGTG TAACGAAGTC GCAGAACGGC ACGGGATTGG GATATTCGCC GCCGGCAACC AGACCGGCAT AG  Tesponds to the amino acid sequence <seq 2122;="" 653.a="" id="" orf="">:  MAAEPMRMPE VTKGFSGSFG MAFLLTVMCA LPKAASAALP VIFIGCRSTR KTWLSVRPET MRKPRLTNSS AMAAALIFTC FAYCLNSGCN ASLNATALAA</seq>
a653.seq  1 51 101 151 201 251 301 351 401 451  This corr a653.pep  1 51 101 151	ATGGCGGCGG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGG ATGGCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CAGCTTCGGC GGCTTTGCCG GTAATTTCA TCGGTTGCAG GTCAACCAGG AAAACGTGGC CTTCGGTGCG GCCGGAAACC ATGCGCAAAC CGCGTTTAAC CAACTCTTCC GCCATGGCGG CTGCATTGAT TTTCACTTGT TTTTGCGTATT GTTTGAACTC GGGTTGCAAT GCTTCTTTAA ACGCCACGGC TTTTGGCGGCG ATAACGTGCA TCAGCGGCC ACCTTGCAGG CTTGGGAAGA TGGAAGAGTT CAACGCTTTT TCGTGGGTAT TGTCGCGGCA CAAAATTACG CCGCCGCGAG GACCGCGCAG GGTTTTGTGG GTGGTGGTG TAACGAAGTC GCAGAACGGC ACGGGATTGG GATATTCGCC GCCGGCAACC AGACCGGCAT AG  Tesponds to the amino acid sequence <seq 2122;="" 653.a="" id="" orf="">:  MAAEPMRMPE VTKGFSGSFG MAFLLTVMCA LPKAASAALP VIFIGCRSTR KTWLSVRPET MRKPRITNSS AMAAALIFTC FAYCLNSGCN ASLNATALAA ITCISGPPCR LGKMEEFNAF SWVLSRHKIT PPRGPRRVLW VVVVTKSQNG TGLGYSPPAT RPA*</seq>
a653.seq  1 51 101 151 201 251 301 351 401 451  This corr a653.pep  1 51 101	ATGGCGGCGG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGG ATGGCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CAGCTTCGGC GGCTTTGCCG GTAATTTCA TCGGTTGCAG GTCAACCAGG AAAACGTGGC CTTCGGTGCG GCCGGAAACC ATGCGCAAAC CGCGTTTAAC CAACTCTTCC GCCATGGCGG CTGCATTGAT TTTCACTTGT TTTTGCGTATT GTTTGAACTC GGGTTGCAAT GCTTCTTTAA ACGCCACGGC TTTTGGCGGCG ATAACGTGCA TCAGCGGCC ACCTTGCAGG CTTGGGAAGA TGGAAGAGTT CAACGCTTTT TCGTGGGTAT TGTCGCGGCA CAAAATTACG CCGCCGCGAG GACCGCGCAG GGTTTTGTGG GTGGTGGTG TAACGAAGTC GCAGAACGGC ACGGGATTGG GATATTCGCC GCCGGCAACC AGACCGGCAT AG  Tesponds to the amino acid sequence <seq 2122;="" 653.a="" id="" orf="">:  MAAEPMRMPE VTKGFSGSFG MAFLLTVMCA LPKAASAALP VIFIGCRSTR KTWLSVRPET MRKPRITNSS AMAAALIFTC FAYCLNSGCN ASLNATALAA ITCISGPPCR LGKMEEFNAF SWVLSRHKIT PPRGPRRVLW VVVVTKSQNG TGLGYSPPAT RPA*</seq>
a653.seq  1 51 101 151 201 251 301 351 401 451  This corr a653.pep  1 51 101 151	ATGGCGGCGG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGG ATGGCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CAGCTTCGGC GCCTTTGCCG GTAATTTTCA TCGGTTGCAG GTCAACGAGG AAAACGTGGC TTTCGGTGCG GCCGGAAACG ATGCGCAAAC CAACTCTTCC GCCATGGCGG CTGCATTGAT TTTCACTTGT TTTTGCTTAT GTTTGAACTC GGGTTGCAAT GCTTCTTTAA ACGCCACGGC TTTGGCGGCG ATAACGTGCA TCAGCGGGCC ACCTTGCAGG CTTGGGAAGA TGGAAGAGTT CAACGCTTTT TCGTGGGTAT TGTCGCGGCA CAAAATTACG CCGCCGCAG GACCGCCAG GGTTTTGTGG GTGGTGGTGG TAACGAAGTC GCAGAACGGC ACGGGATTGG GATATTCGCC GCCGGCAACC AGACCGGCAT AG  Tesponds to the amino acid sequence <seq 2122;="" 653.a="" id="" orf="">:  MAAEPMRMPE VTKGFSGSFG MAFLLTVMCA LPKAASAALP VIFIGCRSTR KTWLSVRPET MRKPRLTNSS AMAAALIFTC FAYCLNSGCN ASLNATALAA ITCISGPPCR LGKMEEFNAF SWVLSRHKIT PPRGPRRVLW VVVVTKSONG TGLGYSPPAT RPA*  100.0% identity in 163 aa overlap</seq>
a653.seq  1 51 101 151 201 251 301 351 401 451  This corr a653.pep  1 51 101 151  m653/a653	ATGGCGGCGG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGC ATGGCGTTTT TGTTGACAGT GATGTCGCT TTGCCCAAAG CAGCTTCGGC GGCTTTGCCG GTAATTTCA TCGGTTGCAG GTCAACGAGG AAAACGTGGC TTTCGGTGCG GCCGGAACG ATGCGCAAAC CGCGTTTAAC CAACTCTTCC GCCATGGCGG CTGCATTGAT TTTCACTTGT TTTGCGTATT GTTTGAACTC GGGTTGCAAT GCTTCTTTAA ACGCCACGC TTTGGCGGCG ATAACGTGCA TCAGCGGGCC ACCTTGCAGG CTTGGGAAGA TGGAAGAGTT CAACGCTTTT TCGTGGGTAT TGTCGCGGCA CAAAATTACG CCGCCGCGAG GACCGCCAG GGTTTTGTGG GTGGTGGT TAACGAAGTC GCAGAACGGC ACGGGATTGG GATATTCGCC GCCGGCAACC AGACCGGCAT AG  Tesponds to the amino acid sequence <seq 2122;="" 653.a="" id="" orf="">:  MAAEPMRMPE VTKGFSGFG MAFLLTVMCA LPKAASAALP VIFIGCRSTR KTWLSVRPET MRKPRLTNSS AMAAALIFTC FAYCLNSGCN ASLNATALAA ITCISGPPCR LGKMEEFNAF SWVLSRHKIT PPRGPRRVLW VVVVTKSQNG TGLGYSPPAT RPA*  100.0% identity in 163 aa overlap  10 20 30 40 50 60</seq>
a653.seq  1 51 101 151 201 251 301 351 401 451  This corr a653.pep  1 51 101 151	ATGGCGGCGG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGG ATGGCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CAGCTTCGGC GGCTTTGCCG GTAATTTCA TCGGTTGCAG GTCAACGAGG AAAACGTGGC TTTCGGTGGG GCCGGAAACG ATGGCGAAAC CGCGTTTAAC CAACTCTTCC GCCATGGCG CTGCATTGAT TTTCACTTGT TTTGCGTATT GTTTGAACTC GGGTTGCAAT GCTTCTTAA ACGCCACGGC TTTGGCGGCG ATAACCTGCA TCAGCGGCC ACCTTGCAGG CTTGGGAAGA TGGAAGAGTT CAACGCTTTT TCGTGGGTAT TGTCGCGGCA CAAAATTACG CCGCCGCGAG GACCGCGCAG GGTTTTGTGG GTGGTGGT TAACGAAGTC GCAGAACGGC ACGGGATTGG GATATTCGCC GCCGCAACC AGACCGGCAT AG  TESPONDS to the amino acid sequence <seq 2122;="" 653.a="" id="" orf="">:  MAAEPMRMPE VTKGFSGSFG MAFLLTVMCA LPKAASAALP VIFIGCRSTR KTWLSVRPET MRKPRLTNSS AMAAALIFTC FAYCLNSGCN ASLNATALAA ITCISGPPCR LGKMEEFNAF SWVLSRHKIT PPRGPRRVLW VVVVVTKSQNG TGLGYSPPAT RPA*  10 20 30 40 50 60  MAAEPMRMPEVTKGFSGSFGMAFLLTVMCALPKAASAALPVIFIGCRSTRKTWLSVRPET</seq>
a653.seq  1 51 101 151 201 251 301 351 401 451  This corr a653.pep  1 51 101 151  m653/a653	ATGCCGCGC ACCCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGG ATGCCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAGG CAGCTTCGCC GGCTTTGCCG GCCGGAAACG ATCCGCTTGCAG GTCAACGAGG AAACCTGGC TTTCGGTGGG GCCGGAAACG ATCCGCAAC CGCGTTTAAC CAACTCTTCC GCCATGGCG CTGCATTGAT TTTCACTTGT TTTGCGTATT GTTTGAACTC GGGTTCCAAT GCTTCTTTAA ACGCCACGGC TTTGCCGGCG ATACCGTGCA TCAGCGGCC ACCTTGCAGG CTTGGGAAGA TGGAAGAGTT CCAACGCTTTT TCGTGGGTAT TGTCGCGGCA CAAAATTACG CCGCCGCGAG GACCGCGCAG GGTTTTGTGG GTGGTGGTG TAACGAAGTC GCAGAACGGC ACGGGATTGG GATATTCGCC GCCGGCAACC AGACCGGCAT AG  TCSPONDS to the amino acid sequence SEQ ID 2122; ORF 653.a>:  MAAEPMRMPE VTKGFSGSFG MAFLLTVMCA LPKAASAALP VIFIGCRSTR KTWLSVRPET MRKPRLTNSS AMAAALIFTC FAYCLNSGCN ASLNATALAA ITCISGPPCR LGKMEEFNAF SWVLSRHKIT PPRGPRRVLW VVVVTKSONG TGLGYSPPAT RPA*  10 20 30 40 50 60 MAAEPMRMPEVTKGFSGSFGMAFLLTVMCALPKAASAALPVIFIGCRSTRKTWLSVRPET 1011111111111111111111111111111111111
a653.seq  1 51 101 151 201 251 301 351 401 451  This corr a653.pep  1 51 101 151  m653/a653	ATGGCGGCGG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGG ATGGCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CAGCTTCGGC GGCTTTGCCG GTAATTTCA TCGGTTGCAG GTCAACGAGG AAAACGTGGC TTTCGGTGGG GCCGGAAACG ATGGCGAAAC CGCGTTTAAC CAACTCTTCC GCCATGGCG CTGCATTGAT TTTCACTTGT TTTGCGTATT GTTTGAACTC GGGTTGCAAT GCTTCTTAA ACGCCACGGC TTTGGCGGCG ATAACCTGCA TCAGCGGCC ACCTTGCAGG CTTGGGAAGA TGGAAGAGTT CAACGCTTTT TCGTGGGTAT TGTCGCGGCA CAAAATTACG CCGCCGCGAG GACCGCGCAG GGTTTTGTGG GTGGTGGT TAACGAAGTC GCAGAACGGC ACGGGATTGG GATATTCGCC GCCGCAACC AGACCGGCAT AG  TESPONDS to the amino acid sequence <seq 2122;="" 653.a="" id="" orf="">:  MAAEPMRMPE VTKGFSGSFG MAFLLTVMCA LPKAASAALP VIFIGCRSTR KTWLSVRPET MRKPRLTNSS AMAAALIFTC FAYCLNSGCN ASLNATALAA ITCISGPPCR LGKMEEFNAF SWVLSRHKIT PPRGPRRVLW VVVVVTKSQNG TGLGYSPPAT RPA*  10 20 30 40 50 60  MAAEPMRMPEVTKGFSGSFGMAFLLTVMCALPKAASAALPVIFIGCRSTRKTWLSVRPET</seq>
a653.seq  1 51 101 151 201 251 301 351 401 451  This corr a653.pep  1 51 101 151  m653/a653	ATGCCGCGG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGC ATGCCGTTTT TGTTGACAGT CAGCTTCGCC GCCTTTGCCC GTAATTTTCA TCGGTTGCAG GTCAACGAGG AAAACGTGGC TTTCCGGTGCG GCCGGAAACG ATGCGCAAAC CGCGTTTAAC CAACTCTTCC GCCATGGCGG CTGCATTGAT TTTCACTTGT TTTGCCTATT GTTTCAACTC GGCTTGCAAT GCTTCTTTAA ACGCCACGGC TTTGGCGGCG ATAACGTGCA TCAGCGGGCC ACCTTCCAGG CTTGGGAAGA TGGAAGATT CCAACGCTTTT TCGTGGGTAT TGTCGCGGCA CAAAATTACG CCGCCGCAGG GACCGCCAG GGTTTTGTGG GTGGTGGTG TAACGAAGTC GCAGAACGGC ACGGGATTGG GATATTCGCC GCCGGCAACC AGACCGGCAT AG  TCSPONDS to the amino acid sequence <seq 2122;="" 653.a="" id="" orf="">:  MAAEPMRMPE VTKGFSGSFG MAFLLTVMCA LPKAASAALP VIFIGCRSTR KTWLSVRPET MRKPRLTNSS AMAAALIFTC FAYCLNSGCN ASLNATALAA ITCISGPPCR LGKMEEFNAF SWVLSRHKIT PPRGPRRVLW VVVVTKSONG TGLGYSPPAT RPA*  10 20 30 40 50 60  MAAEPMRMPEVTKGFSGSFGMAFLLTVMCALPKAASAALPVIFIGCRSTRKTWLSVRPET  11 20 30 40 50 60  MAAEPMRMPEVTKGFSGSFGMAFLLTVMCALPKAASAALPVIFIGCRSTRKTWLSVRPET  11 11 11 11 11 11 11 11 11 11 11 11 11</seq>
a653.seq  1 51 101 151 201 251 301 351 401 451  This corr a653.pep  1 51 101 151  m653/a653	ATGCGGCGG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGG ATGCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CAGCTTCGGC GGCTTTGCCG GTAATTTCA TCGGTTGCAG GTCAACGAGG AAAACGTGGC TTTCGGTGCG GCCGGAAACG ATGCGCAAAC CGCGTTTAAC CAACTCTTCC GCCATGGCG CTCGATTGAT TTTCACTTGT TTTGCGTATT GTTTGAACTC GGGTTGCAAT GCTTCTTTAA ACGCCACGGC TTTGGCGGCG ATAACGTGCA TCACCGGGCC ACCTTGCAGG CTTGGGAAGA TGGAAGAGTT CAACGCTTTT TCGTGGGTAT TGTCGCGGCA CAAAATTACG CCGCCGCGAG GACCGCCGCAG GGTTTTGTGG GTGGTGGTG TAACGAAGTC GCACGACACGC ACGGGATTGG GATATTCGCC GCCGGCAACC AGACCGGCAT AG  TESPONDS to the amino acid sequence <seq 2122;="" 653.a="" id="" orf="">:  MAAEPMRMPE VTKGFSGSFG MAFLLTVMCA LPKAASAALP VIFIGCRSTR KTWLSVRPET MRKPRLTNSS AMAAALIFTC FAYCLNSGCN ASLNATALAA ITCISGPPCR LGKMEEFNAF SWVLSRHKIT PPRGPRRVLW VVVVTKSQNG TGLGYSPPAT RPA*  100.0% identity in 163 aa overlap  10 20 30 40 50 60  MAAEPMRMPEVTKGFSGSFGMAFLLTVMCALPKAASAALPVIFIGCRSTRKTWLSVRPET  </seq>
a653.seq  1 51 101 151 201 251 301 351 401 451  This corr a653.pep  1 51 101 151  m653/a653	ATGGCGCGG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGG ATGGCGTTTT TGTTGACAGT GATGTGCGT TTGCCCAAAG CAGCTTCGCC GGCTTTGCCG GTAATTTTCA TCGGTTGCAG GTCAACGAGG AAAACGTGGC TTTCGGTGCG GCCGGAAACG ATGCGCAAAC CGCGTTTAAC CAACTCTTCC GCCATGCGG CTGCATTGAT TTTCACTTGT TTTGGCTATT GTTTGAACTC GGGTTGCAAT GCTTCTTTAA ACGCCACGCC
a653.seq  1 51 101 151 201 251 301 351 401 451  This corr a653.pep 1 101 151  m653/a653  m653.pep a653	ATGGCGGCG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGG ATGGCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CACCTTCGGC GCCTTTGCCG GTAATTTCA TCGGTTGCAG GTCAACGAGG AAAACGTGCC TTTCGGTGCG GCCGGAAACG ATGCGCAAAC CGCGTTTAAC CAACTCTTCC GCCATGGCGG CTGCATTGAT TTTCACTTGT TTTTCGTATT GTTTGAACCT GGCTTGCAAT GCTTCTTTAA ACGCCACGCC
a653.seq  1 51 101 151 201 251 301 351 401 451  This corr a653.pep  1 51 101 151  m653/a653  m653.pep a653	ATGGCGGCGG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGC ATGGCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CAGCTTCGGC GGCTTTGCCG GTAATTTCA TCGGTTGCAG GTCAACGAGG AAAACGTGGC TTTCGGTGCG GCCGGAAACG ATGCGCAAAC CGCGTTTAAC CCAACTCTTCC GCCATGGCGG CTGCAATGAT TTTCACTTGT TTTGCGTATT GTTTGAACTC GGCTTGCAAT GCTTCTTAA ACGCCACGGC TTTGGCGACG ATAACGTGCA TCAGCGGGC ACCTTGCAG CTTGGGAAGA TGGAAGAGTT CAACGCTTTT TCGTGGGTAT TGTCCCGGCA CAAAATTACG CCCCCCGGAG GACCGCCGAG GGTTTTGTGG GTGGTGGTGG TAACCAAGTC GCAGAAACGGC ACGGGATTGG GATATTCGCC GCCGGCAACC AGACCGGCAT AG  TESPONDS to the amino acid sequence <seq 2122;="" 653.a="" id="" orf="">:  MAAEPMRMPE VTKGFSGSFG MAFLLTVMCA LPKAASAALP VIFIGCRSTR KTWLSVRPET MRKPRITNSS AMAAALIFTC FAYCLNSGCN ASLNATALAA ITCISGPPCR LGKMEEFNAF SWULSRHKIT PPRGPRRVLW VVVVTKSONG TGLGYSFPAT RPA*  100.0% identity in 163 aa overlap  10 20 30 40 50 60  MAAEPMRMPEVTKGFSGSFGMAFLLTVMCALPKAASAALPVIFIGCRSTRKTWLSVRPET 10 10 20 30 40 50 60  MAAEPMRMPEVTKGFSGSFGMAFLLTVMCALPKAASAALPVIFIGCRSTRKTWLSVRPET 10 20 30 40 50 60  70 80 90 100 110 120  MKKPRLTNSSAMAAALIFTCFAYCLNSGCNASLNATALAAITCISGPPCRLGKMEEFNAF 11111111111111111111111111111111111</seq>
a653.seq  1 51 101 151 201 251 301 351 401 451  This corr a653.pep 1 101 151  m653/a653  m653.pep a653	ATGGCGGCG AACCGATGCG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGG ATGGCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CACCTTCGGC GCCTTTGCCG GTAATTTCA TCGGTTGCAG GTCAACGAGG AAAACGTGCC TTTCGGTGCG GCCGGAAACG ATGCGCAAAC CGCGTTTAAC CAACTCTTCC GCCATGGCGG CTGCATTGAT TTTCACTTGT TTTTCGTATT GTTTGAACCT GGCTTGCAAT GCTTCTTTAA ACGCCACGCC
a653.seq  1 51 101 151 201 251 301 351 401 451  This corr a653.pep 1 101 151  m653/a653  m653.pep a653	ATGGGGGGG AACCGATGGG GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATGATTCGGG ATGGCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CAGCTTCGGC GGCTTGCCG GTAATTTCA TCGGTTGCAG GTCAACGAGG AAAACGTGGC TTTCGGTGGC GCCGGAAACG ATGCGCAAAC CGCGTTTAAC CAACTCTTCC GCCATGGCGG CTGCATTGAT TTTCACTTGT TTTTGCGTATT GTTTGAACTC GGGTTGCAAT GCTTCTATA ACGCCACGGC TTTTGGCGGCG ATAACGTGCA TCAGCGGGGC ACCTTGCAGG CTTGGGAAGA TGGAAGAGTT CAACGCTTTT TCGTGGGTAT TGTCGCGGCA CAAAATTACG CCGCCGCAG GACCGCCAG GGTTTTGTGG GTGGTGGTGG TAACGAAGCT GCAGAACGGC ACGGGATTGG GATATCGCC GCCGGCAACC AGACCGGCAT AG  TESPONDS to the amino acid sequence <seq 2122;="" 653.a="" id="" orf="">:  MAAEPMRMPE VTKGFSGSFG MAFLLTVMCA LPKAASAALP VIFIGCRSTR KTWLSVRPET MRKPRLTNSS AMAAALIFTC FAYCLNSGCN ASLNATALAA ITCISGPPCR LGKMEEFNAF SWVLSRHKIT PPRGPRRVLW VVVVTKSONG TGLGYSPPAT RPA*  100.0% identity in 163 aa overlap  10 20 30 40 50 60  MAAEPMRMPEVTKGFSGSFGMAFLLTVMCALPKAASAALPVIFIGCRSTRKTWLSVRPET IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</seq>
a653.seq  1 51 101 151 201 251 301 351 401 451  This corr a653.pep 1 51 101 151  m653/a653  m653.pep a653	ATGGCGCGC AACCGATGCC GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATGATTCGGG ATGGCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CAGCTTCGGC GGCTTTGCCG GTAATTTCA TCGGTTGCAG GTCAACGAGG AAAACCTGGC TTTCGGTGCG GCCGGAAACG ATGCCCAAAC CAACTCTTCC GCCATGCGG CTGCATTGAT TTTCACTTTT TTGCGTATT GTTTGAACTC GGGTTGCAAT GCTTCTTTAA ACGCCACGGC TTTGGCGGCG ATAACCTGCA TCAGCGGGCC ACCTTGCAGG CTTGGGAAGA TGGAAGAGTT CAACGCTTT TCCTGGGTAT TGTCGCGGGC ACAAATTACG CGCCGCGAG GACCGCGCAG GGTTTTGTGG GTGGTGGTG TAACGAAGTC GCAGAACGGC ACGGGATTGG GATATTCGCC GCCGGCAACC AGAACTATACG CGCCGCGAG GACCGCGCAG GGTTTTGTGG GTGGTGGTG TAACGAAGTC GCAGAACGGC ACGGGATTGG GATATTCGCC GCCGGCAACC AGACCGGCAT AG  TESPONDS to the amino acid sequence <seq 2122;="" 653.a="" id="" orf="">:  MAAEPMRMPE VTKGFSGSFG MAFLLTVMCA LPKAASAALP VIFIGCRSTR KWWLSVRPET MRRPRLINSS AMAAALITTC FAYCINSGCN ASINATALAA ITCISGPPCR LGKMEEFNAF SWVLSRHKIT PPRGPRRVLW VVVVTKSQNG TGLGYSPPAT RPA*  100.0% identity in 163 aa overlap  10 20 30 40 50 60  MAAEPMRMPEVTKGFSGSFGMAFLLTVMCALPKAASAALPVIFIGCRSTRKTWLSVRPET IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</seq>
a653.seq  1 51 101 151 201 251 301 351 401 451  This corr a653.pep 1 101 151  m653/a653  m653.pep a653	ATGGCGCGC AACCGATGCC GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATCATTCGGG ATGGCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CAGCTTCGGC GGCTTTGCCC GTAATTTTCA TCGGTTGCAG GTCAACGAGG AAAACGTGGC TTTCGGTGCG GCCGGAAACG ATGGCCAAAC CACCTTTCC GCCATGCGCG CTGCATTCAT TTTCACTTCT TTTGCGTATT CTTTGAACTC GGGTTGCAAT GCTTCTTTAA ACGCCACGGC TTTGGCGGCG ATAACGTGCA TCAGCGGCCC ACCTTGCAGG CTTGGAAGA TTGGAAGAGTT CAACGCTTTT TCGTGGGTAT TGTCGCGGCA CAAAATTACG CCGCCGCGAG GACCGCGCAG GGTTTTGTGG GTGGTGGTG TAACGAAGTC GCAGAACGGC ACGGGATTGG GATATTCGCC GCCGGCAACC AGACCGGCAT AG  CESPONDS to the amino acid sequence <seq 2122;="" 653.a="" id="" orf="">:  MAAEPMRMPE VTKGFSGSFG MAFILTYMCA LPKAASAALP VIFIGCRSTR KTWLSVRPET MRKPRLTNSS AMAAALIFTC FAYCLNSGCN ASLNATALAA ITCISGPPCR LGKMEEFNAF SWVLSRHKIT PPRGPRRVLW VVVVTKSQNG TGLGYSPPAT RPA*  100.0% identity in 163 aa overlap  10 20 30 40 50 60  MAAEPMRMPEVTKGFSGSFGMAFILTYMCALPKAASAALPVIFIGCRSTRKTWLSVRPET IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</seq>
a653.seq  1 51 101 151 201 251 301 351 401 451  This corr a653.pep 1 51 101 151  m653/a653  m653.pep a653	ATGGCGCGC AACCGATGCC GATGCCGGAG GTAACGAAGG GTTTTTCCGG ATGATTCGGG ATGGCGTTTT TGTTGACAGT GATGTGCGCT TTGCCCAAAG CAGCTTCGGC GGCTTTGCCG GTAATTTCA TCGGTTGCAG GTCAACGAGG AAAACCTGGC TTTCGGTGCG GCCGGAAACG ATGCCCAAAC CAACTCTTCC GCCATGCGG CTGCATTGAT TTTCACTTTT TTGCGTATT GTTTGAACTC GGGTTGCAAT GCTTCTTTAA ACGCCACGGC TTTGGCGGCG ATAACCTGCA TCAGCGGGCC ACCTTGCAGG CTTGGGAAGA TGGAAGAGTT CAACGCTTT TCCTGGGTAT TGTCGCGGGC ACAAATTACG CGCCGCGAG GACCGCGCAG GGTTTTGTGG GTGGTGGTG TAACGAAGTC GCAGAACGGC ACGGGATTGG GATATTCGCC GCCGGCAACC AGAACTATACG CGCCGCGAG GACCGCGCAG GGTTTTGTGG GTGGTGGTG TAACGAAGTC GCAGAACGGC ACGGGATTGG GATATTCGCC GCCGGCAACC AGACCGGCAT AG  TESPONDS to the amino acid sequence <seq 2122;="" 653.a="" id="" orf="">:  MAAEPMRMPE VTKGFSGSFG MAFLLTVMCA LPKAASAALP VIFIGCRSTR KWWLSVRPET MRRPRLINSS AMAAALITTC FAYCINSGCN ASINATALAA ITCISGPPCR LGKMEEFNAF SWVLSRHKIT PPRGPRRVLW VVVVTKSQNG TGLGYSPPAT RPA*  100.0% identity in 163 aa overlap  10 20 30 40 50 60  MAAEPMRMPEVTKGFSGSFGMAFLLTVMCALPKAASAALPVIFIGCRSTRKTWLSVRPET IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</seq>

130 140 150 160 The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2123>: g656.seq ATGCCGCGTT TCTCCGGTTC GATTTCTTCG ATGATTTCCA TCGCGCGGAC 51 TTTtggcGCG CCGGAGAGTG TGCcggcagg gAAGGTGGCG GCGAGGATGT CCATATTGGT AACGCCCTCT TTCAAACAGC CETCGACGTT GGAAACGATG TGCATCACAT GGGAGTATTT TTCAATCACC ATTTTGTCGG TGACTTTGAC 101 201 TTCGCCTGTT TTGCTGATGC GTCCGACATC GTTGCGCCCC AAATCGATAA 251 GCATAACGTG TTCGGCgatt TCTTTGGCGT CGCTTAACAA ATCTTGTTCG 301 TTGGCAAGGT CTTCGGCGGG GGTTTTGCCG CGCAGGCGCG TGCCGGCGAT 351 GGGGCGGACG ATGACGTCat CGCGTTCGCG GCGGACGAGG ATTTCGGGCG 401 AGGAACCGAC GATGTGGAAA TCGCCGAAAT CGTAG This corresponds to the amino acid sequence <SEQ ID 2124; ORF 656.ng>: g656.pep MPRFSGSISS MISIARTFGA PESVPAGKVA ARMSILVTPS FKQPSTLETM CITWEYFSIT ILSVTLTSPV LLMRPTSLRP KSISITCSAI SLASLNKSCS 51 LARSSAGVLP RRRVPAMGRT MTSSRSRRTR ISGEEPTMWK SPKS* The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2125>: m656.seq ATGCCGCGTT TGCTCGGTTC GACTTCTTCG ATGATTTCCA TGGCGCGGAC 51 TTTGGGTGCG CCGGAGAGTG TGCCGGCAGG GAAGGTAGCG GCGAGGATGT 101 CCATGTTGGT CATGCCGTCT TTCAGACGGC CTTCGACGTT GGAAACGATG TGCATTACAT GGGAGTATTT TTCAATCACC ATTTTGTCGG TAACTTTGAC 201 TTCGCCGGTT TTACTGATGC GGCCGACGTC GTTGCGTCCT AAGTCAATCA ACATGACGTG TTCGGCGATT TCTTTGGCAT CGCTTAACAA ATCTTGTTCG 251 TTGGCAAGGT CTTCGGCGGG GGTTTTGCCG CGCAGGCGCG TGCCGGCGAT GGGGCGGACG ATAACGTCGT TGCGTTCGCG TCGGACGAGG ATTTCGGGCG 351 401 AGGAGCCGAC GATGTGGAAA TCGCCGAAAT CGTAG This corresponds to the amino acid sequence <SEQ ID 2126; ORF 656>: m656.pep MPRLLGSTSS MISMARTLGA PESVPAGKVA ARMSMLVMPS FRRPSTLETM CITWEYFSIT ILSVTLTSPV LLMRPTSLRP KSINMTCSAI SLASLNKSCS 51 LARSSAGVLP RRRVPAMGRT ITSLRSRRTR ISGEEPTMWK SPKS* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae m656/g656 91.0% identity in 144 aa overlap 20 30 40 MPRLLGSTSSMISMARTLGAPESVPAGKVAARMSMLVMPSFRRPSTLETMCITWEYFSIT m656.pep g656 MPRFSGSISSMISIARTFGAPESVPAGKVAARMSILVTPSFKQPSTLETMCITWEYFSIT 10 20 30 40 70 80 90 100 ILSVTLTSPVLLMRPTSLRPKSINMTCSAISLASLNKSCSLARSSAGVLPRRRVPAMGRT m656.pep g656 ILSVTLTSPVLLMRPTSLRPKSISITCSAISLASLNKSCSLARSSAGVLPRRRVPAMGRT 70 80 90 100 130 140 m656.pep **ITSLRSRRTRISGEEPTMWKSPKSX** 

MTSSRSRRTRISGEEPTMWKSPKSX

130

q656

WO 99/57280

1044

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2127>:
```

```
ATGCCGCGTT TGCTCGGTTC GACTTCTTCG ATGATTTCCA TGGCGCGGAC

1 TTTGGGTGCG CCGGAAGAGTG TGCCGGCAG GAAGGTAGCG GCGAAGATGT

101 CCATGTTGGT CATGCCGTCT TTCAGACGGC CTTCGACGTT GGAAACGATG

151 TGCATTACAT GGGAGTATTT TTCAATCACC ATTTTGTCGG TAACTTTGAC

201 TTCGCCGGTT TTACTGATGC GGCCGACGTC GTTGCGTCCT AAGTCAATCA

251 ACATGACGTG TTCGGCGATT TCTTTGGCAT CGCTAACAA ATCTTGTTCG

301 TTGGCAAGGT CTTCGGCGGG GGTTTTGCCC CGCAGCGCG TGCCGGCAGT

351 GGGGCGGACG ATGACATCGT CGCGGTCGCG GCGGACGAGG ATTTCGGGCG

401 AGGAGCCGAC GATGTGGAAA TCGCCGAAAT CGTAG
```

### This corresponds to the amino acid sequence <SEQ ID 2128; ORF 656.a>:

1 MPRLLGSTSS MISMARTLGA PESVPAGKVA ARMSMLVMPS FRRPSTLETM
51 CITWEYFSIT ILSVTLTSPV LLMRPTSLRP KSINMTCSAI SLASLNKSCS
101 LARSSAGVLP RRRVPAMGRT MTSSRSRTR ISGEEPTMWK SPKS*

```
98.6% identity in 144 aa overlap
m656/a656
                                                50
                        20
                                30
                                        40
          MPRLLGSTSSMISMARTLGAPESVPAGKVAARMSMLVMPSFRRPSTLETMCITWEYFSIT
m656.pep
          MPRLLGSTSSMISMARTLGAPESVPAGKVAARMSMLVMPSFRRPSTLETMCITWEYFSIT
a656.
                        20
                                30
                                        40
                10
                        80
                                90
                                       100
                70
          ILSVTLTSPVLLMRPTSLRPKSINMTCSAISLASLNKSCSLARSSAGVLPRRRVPAMGRT
m656.pep
          ILSVTLTSPVLLMRPTSLRPKSINMTCSAISLASLNKSCSLARSSAGVLPRRRVPAMGRT
a656
                                       100
                                               110
                        80
                130
                       140
          ITSLRSRRTRISGEEPTMWKSPKSX
m656.pep
```

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2129>:

```
q657.seq
          ATGAACACAC CCCCCATCCT TCCTCCCGCC ATGCTCGGCA TCCTCGGCGG
          CGGACAATTA GGCAGAATGT TTGCCGTTGC CGCTAAAACC ATGGGCTACA
AAGTAACCGT TCTCGATCCC GACCCGAATG CGCCGGCGGC GGAATTTGCC
      51
     101
     151 GACCGCCATT TGTGCGCGCC GTTTGACGAC CGGGCCGCGT TGGACGAATT
     201 GGCAAAATGC GCGGCGGTta cgACCGAATT TGAAAacgtc aaTGCCGACG
     251 CGATGCGCTC TCTGGCAAAG CATACCAACG TTTCCCCCAG CGGCGACTGC
     301 GTGTCCATTG CACAAAACCG CATTCAGGAA AAAGCGTGGA TACGCAAAGC
         AGGCTTGCAA ACCGCGCCGT ATCAGGCGGT TTGCAAGGCC GAAGACATTA
     351
          CTGAAGCAAG CGCGCAATTT TTGCCCGGCA TCCTGAAAAC GGCTACGTTG
     401
     451 GGCTACGACG GCAAAGGTCA AATCCGCGTC AAAACGTTGG ACGAACTCAA
     501 AGCCGCGTTT GCCGAACACG GCGGCGTGGA TTGCGTTTTG GAAAAAATGG
     551 TGGACTTGCG CGGCGAGATT TCCGTGATCG TATGCCGTCT GAACGATGAA
     601 AACGTGCAAA CCTTCGACCC CGCCGAAAAC ATCCACGAAA ACGGCATCTT
          GGCTTattcC ATCGTCcccg CGCGGCTGAG TGCCGACGTG CAGCAACAGG
     701 CGCGGCAGAC GGCGCAACgc tTGGCGGACG AATTGGATTA TGTCGGCgta
     751 TTGGCGGTAG AAATGTTTGT TGTCGGCGAC ACACATGAAT TGCTCGTCAA
     801 TGAAACCGCC CCGCGCACGC ACAATTCCGG CCACCATACG ATAGATGCCT
     851 GCGCCGCAGA CCAGTTCCAA CAGCAGGTAC GCATTATGTG CAACCEGCCG
          cccGccgACA CCAAATTATT aTCCCCttgC TGTATGGCGA ATATTTTGGg
          CGACGTTTGG CAGGAAGATG GCGGCGAACC GGATTGGCTG CCGTTGCAAA
     951
          GCCGGCCGAA TGCACACCTG CACCTATACG GAAAAAAAAC CGCACAGAAA
    1001
          GGTCGGAAAA TGGGACACTT TaccgTTTTG ACCACCGATT CGGACaccgC
         ATTTCAAGAA GCAAAAAAAC TGCATCAGTC CCTATAA
```

This corresponds to the amino acid sequence <SEQ ID 2130; ORF 657.ng>:

g657.pep					
1	MNTPPILPPA	MLGILGGGQL	GRMFAVAAKT	MGYKVTVLDP	DPNAPAAEFA
51	DRHLCAPFDD	RAALDELAKC	AAVTTEFENV	NADAMRSLAK	HTNVSPSGDC
101	VSIAQNRIQE	KAWIRKAGLQ	TAPYQAVCKA	EDITEASAQF	LPGILKTATL
151	GYDGKGQIRV	KTLDELKAAF	AEHGGVDCVL	EKMVDLRGEI	SVIVCRLNDE
201	NVQTFDPAEN	IHENGILAYS	IVPARLSADV	QQQARQTAQR	LADELDYVGV



251	LAVEMFVVGD	THELLVNETA	PRTHNSGHHT	IDACAADQFQ	QOVRIMONLP
301	PADTKLLSPC	CMANILGDVW	QEDGGEPDWL	PLOSRPNAHL	HLYGKKTAOK
351	GRKMGHFTVL	TTDSDTAFOE	AKKLHOSL*		-

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2131>:

```
m657.seg
          ATGAAAAACA TATCTCTTTC TCCGCCCGCC ATGCTTGGCA TCCTCGGCGG
      1
         CGGACAATTA GGCAGAATGT TTACCGTTGC CGCCAAAACC ATGGGCTACA
     101 AAGTAACCGT TCTCGACCCC GATCCGGACG CGCCGGCAGC AGAATTTGCC
     151 GACCGCCATT TGTGCGCGCC GTTTAACGAC CAAGCTGCTT TGGACGAATT
          GGCAAAATGC GCGGCGGTGA CCACTGAATT TGAAAACGTC AATGCCGATG
     251 CGATGCGCTT TTTGGCAAAA CATACCAATG TTTCCCCTAG CGGCGATTGT
     301 GTGGCGATTG CACAAAACCG CATTCAGGAA AAGGCATGGA TACGCAAAGC
     351 GGGATTGCAA ACCGCGCCGT ATCAAGTGGT TTGTAAGGCT GAAGACATCA
     401 CTGAAGCAAG CGCGCAATTT TTGCCCGGCA TCCTGAAAAC GGCTACGTTG
    451 GGCTACGACG GCAAAGGTCA AATCCGCGTA AAAACATTGG ATGAACTCAA
501 AGCCGCGTTT GCCGAACACG GCGGCGTGGA TTGCGTTTTG GAAAAAATGG
     551
         TGGATTTGCG CAGTGAAATT TCCGTAATCG TATGCCGTTT GAACAATGAC
     601 AACGTGCAAA CTTTCGACCC TGCCGAAAAC ATCCACGAAA ACGGCATCTT
     651 GGCTTATTCC ATCGTCCCCG CGCGACTGAG TGCCGACGTG CAGCAACAGG
    701 CGCGGCAGAT GGCGCAACGC TTGGCGGACG AATTGGATTA TGTCGGCGTA
         TTGGCGGTAG AAATGTTTGT TGTCGGTGAC ACGCATGAAT TGGTCGTCAA
    801 CGAAATCGCC CCGCGCCCGC ACAATTCCGG ACACCATACG ATAGATGCCT
    851 GCGCAGCAGA CCAGTTCCAG CAGCAGGTAC GCATTATGTG CAACCTGCCG
    901 CCTGCCGATA CCAAATTACT GAGTTCTTGC TGTATGGCAA ATATTTTGGG
    951 CGACGTTTGG CAGGAAGACG GCGGCGAACC GGATTGGCTG CCCTTGCAAA
   1001
         GCCATCCGAA TGCACACCTG CACCTTTACG GCAAAAAAAC CGCGCACAAA
   1051
         GGGCGGAAAA TGGGACACTT TACCGTTTTA ACCACCGATT CGGACACCGC
   1101 ATTTCAAGAA GCAAAAAAAC TGCATCAGTC CCTATAA
```

#### This corresponds to the amino acid sequence <SEQ ID 2132; ORF 657>:

```
m657.pep

1 MKNISLSPPA MLGILGGGQL GRMFTVAAKT MGYKVTVLDP DPDAPAAEFA
51 DRHLCAPFND QAALDELAKC AAVTTEFENV NADAMRFLAK HTNVSPSGDC
101 VAIAQNRIQE KAWIRKAGLQ TAPYQVVCKA EDITEASAQF LPGILKTATL
151 GYDGKGQIRV KTLDELKAAF AEHGGVDCVL EKMVDLRSEI SVIVCRLNND
201 NVQTFDPAEN IHENGILAYS IVPARLSADV QQQARQMAQR LADELDYVGV
251 LAVEMFVVGD THELVVNEIA PRPHNSGHHT IDACAADQFQ QQVRIMCNLP
301 PADTKLLSSC CMANILGDVW QEDGGEPDWL PLQSHPNAHL HLYGKKTAHK
351 GRKMGHFTVL TTDSDTAFQE AKKLHOSL*
```

# Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m657/g657	93.9%	identity	in	378	aa	overlap
-----------	-------	----------	----	-----	----	---------

	10	20	30	40	50	60
m657.pep	MKNISLSPPAMLGI	LGGGQLGRMF	TVAAKTMGYK	VTVLDPDPDA	PAAEFADRHI	CAPEND
			:111111111			
g657	MNTPPILPPAMLGI				PAAFFANRHI	
	10	20	30	40	50	
			30	40	50	60
	70	80	0.0			
C C 7			90	100	110	120
m657.pep	QAALDELAKCAAVT	TEFENVNADA	MRFLAKHTNV	SPSGDCVAIA	QNRIQEKAW:	RKAGLQ
	:	1111111	11 111111	1111111:11		
g657	RAALDELAKCAAVT	TEFENVNADA	MRSLAKHTNV	SPSGDCVSIA	ONRIGERAWI	RKAGLO
	70	80	90	100	110	120
						120
	130	140	150	160	170	180
m657.pep	TAPYQVVCKAEDIT	EASAOFT.DCT				700
······································	11111.1111111	THUMONOTHEGE	TRIVINGING	VGOTKAKITD	ELKAAFAEH	GVDCVL
~657			111111111	11111111		
g657	TAPYQAVCKAEDIT	EASAQFLPGI	LKTATLGYDG	KGQIRVKTLD:	ELKAAFAEHO	GVDCVL
	130	140	150	160	170	180

#### 1047

	190 200 210 220 230 240	
m657.pep	EKMVDLRSEISVIVCRLNNDNVQTFDPAENIHENGILAYSIVPARLSADVQQQARQMAQR	
g657	EKMVDLRGEISVIVCRLNDENVQTFDPAENIHENGILAYSIVPARLSADVQQQARQTAQR	
	190 200 210 220 230 240	
	230 230	
	250 260 270 280 290 300	
m657.pep	LADELDYVGVLAVEMFVVGDTHELVVNEIAPRPHNSGHHTIDACAADQFQQQVRIMCNLP	
g657	LADELDYVGVLAVEMFVVGDTHELLVNETAPRTHNSGHHTIDACAADQFQQQVRIMCNLP	
-	250 260 270 280 290 300	
	200 200 300	
	310 320 330 340 350 360	
m657.pep	PADTKLLSSCCMANILGDVWQEDGGEPDWLPLQSHPNAHLHLYGKKTAHKGRKMGHFTVL	
q657	PADTKLLSPCCMANILGDVWQEDGGEPDWLPLQSRPNAHLHLYGKKTAQKGRKMGHFTVL	
•	310 320 330 340 350 360	
	525 536 540 550 560	
	370 379	
m657.pep	TTDSDTAFQEAKKLHQSLX	
1		
<b>q6</b> 57	TTDSDTAFQEAKKLHQSLX	
3	370	
The following n	partial DNA sequence was identified in N. meningitidis <seq 2133="" id="">:</seq>	
	attai DNA sequence was identified in N. meningitiais <seq 2133="" id="">:</seq>	
a657.seq		
1	ATGAAAACA TATCTCTTTC TCCGCCCGCC ATGCTCGGCA TTCTTGGCGG	-
51	CGGACAATTA GGCAGAATGT TTACTGTTGC TGCCAAAACC ATGGGCTACA	
101	AAGTAACCGT ACTCGATCCC AACCCGAATG CGCCGGCAGC GGAATTTGCC	
151	GACCGCCATT TGTGTGCGCC GTTTGACAAC CAAACCGCTT TGGAAGAATT	
201	GGCAAAATGT GCGGCTGTTA CGACCGAGTT CGAAAACGTC AATGCCGATG	
251	CGATGCGTTT TCTCGCCAAA CATACCAATG TTTCCCCCAG CGGCGACTGC	
301	GTTGCCATCG CGCAAAACCG CATTCAGGAA AAGGCATGGA TACGCAAAGC	
351	AGGCCTGCAA ACCGCGCCGT ATCAAGCAAT TTGCAAAGCC GAAGACATCA	
401	CTGAAGAAAG CATACAATTT CTGCCCGGCA TCCTGAAAAC CGCTACATTG	-
451	GGCTATGACG GCAAAGGCCA AATCCGCGTC AAAACGGTGG ATGAACTCAA	
501	AGCCGCGTTT GCCGAACACC GCGGCGTGGA TTGCGTTTTG GAAAAAATGG	
<b>5</b> 51	TGGACTTGCG CGGCGAAATT TCCGTTATCG TATGCCGTCT GAACAATGAC	_
601	AACGTGCAAA CTTTCGATCC TGCCGAAAAC ATTCACGAAA ACGGTATCCT	_
651	CGCCTACTCC ATCGTCCCAG CCCGACTGAG TGCCGACATT CAGCAACAGG	
701	CGCGACAAAT GGCGCAGCGT TTGGCCGATG AATTGAACTA CGTCGGCGTA	
751	TTGGCGGTAG AAATGTTTGT TGTCGGCGAC ACGCATGAAT TGGTCGTCAA	
801	CGAAATCGCG CCGCGTCCGC ACAATTCCGG CCACCATACC GTCGACGCCT	
851	GCGCGGCAGA CCAATTCCAG CAACAGGTCC GCCTGATGTG CAACCTGCCA	
901	CCTGCTGACA CCAAATTGCT GAGTTCTTGC TGTATGGCGA ATATTTTGGG	
951	CGACGTTTGG CAGGAAGACG GCGCGAAACC GGATTGGTTT CCCCTGCAAA	
1001	GCCGGCCGGA CGCGCACCTG CACCTTTACG GCAAAAAAAC CGCGCACAAA	
1051	GGGCGGAAAA TGGGACACTT TACCATTTTA AGCACCGATT CGGACACCGC	
1101	ATTTCAAGAA GCAAAAAAC TGCATCAGTC CCTATAA	
This correspond	s to the amino acid sequence <seq 2134;="" 657.a="" id="" orf="">:</seq>	
a657.pep	22 213 1, 614 63 7.4 .	
1	MKNISLSPPA MLGILGGGQL GRMFTVAAKT MGYKVTVLDP NPNAPAAEFA	
51	DENICADEDN OTALEFLAVO ANYTHERIAN MARKET NEURINALIA	
101	DRHLCAPFDN QTALEELAKC AAVTTEFENV NADAMRFLAK HTNVSPSGDC	
151	VAIAONRIQE KAWIRKAGLO TAPYQAICKA EDITEESIQF LPGILKTATL	
201	GYDGKGQIRV KTVDELKAAF AEHRGVDCVL EKMVDLRGEI SVIVCRLNND	
251	NVQTFDPAEN IHENGILAYS IVPARLSADI QQQARQMAQR LADELNYVGV	
301	LAVEMFVVGD THELVVNEIA PRPHNSGHHT VDACAADQFQ QQVRLMCNLP	
351	PADTKLLSSC CMANILGDVW QEDGGEPDWF PLQSRPDAHL HLYGKKTAHK	
331	GRKMGHFTIL STDSDTAFQE AKKLHQSL*	
m657/a657	94 29 identity i= 270	
m03//a05/	94.2% identity in 378 aa overlap	
	10 20 22	
m657.pep	10 20 30 40 50 60	
mos/.pep	MKNISLSPPAMLGILGGGQLGRMFTVAAKTMGYKVTVLDPDPDAPAAEFADRHLCAPFND	

a657	
m657.pep	70 80 90 100 110 120  QAALDELAKCAAVTTEFENVNADAMRFLAKHTNVSPSGDCVAIAQNRIQEKAWIRKAGLQ  : :  :
a657	QTALEELAKCAAVTTEFENVNADAMRFLAKHTNVSPSGDCVAIAQNRIQEKAWIRKAGLQ 70 80 90 100 110 120
m657.pep	130 140 150 160 170 180 TAPYQVVCKAEDITEASAQFLPGILKTATLGYDGKGQIRVKTLDELKAAFAEHGGVDCVL
a657	TAPYQAICKAEDITEESIQFLPGILKTATLGYDGKGQIRVKTVDELKAAFAEHRGVDCVL 130 140 150 160 170 180
m657.pep	190 200 210 220 230 240 EKMVDLRSEISVIVCRLNNDNVQTFDPAENIHENGILAYSIVPARLSADVQQQARQMAQR
a657	EKMVDLRGEISVIVCRLNNDNVQTFDPAENIHENGILAYSIVPARLSADIQQQARQMAQR 190 200 210 220 230 240
m657.pep	250 260 270 280 290 300 LADELDYVGVLAVEMFVVGDTHELVVNEIAPRPHNSGHHTIDACAADQFQQVRIMCNLP
a 657	LADELNYVGVLAVEMFVVGDTHELVVNEIAPRPHNSGHHTVDACAADQFQQQVRLMCNLP 250 260 270 280 290 300
m657.pep	310 320 330 340 350 360 PADTKLLSSCCMANILGDVWQEDGGEPDWLPLQSHPNAHLHLYGKKTAHKGRKMGHFTVL
a657	PADTKLLSSCCMANILGDVWQEDGGEPDWFPLQSRPDAHLHLYGKKTAHKGRKMGHFTIL 310 320 330 340 350 360
m657.pep	370 379 TTDSDTAFQEAKKLHQSLX :
a657	STDSDTAFQEAKKLHQSLX 370

# The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2135>: g658.seq

558.seq					
1	ATGGTGGCCG	GAATTGTGCG	TGCGCGGGGC	GGTTTCATTG	ACGAGCAATT
51	CATGTGTGTC	GCCGACAACA	AACATTTCTA	CCGCCAAtac	GCCGACATAA
101	TCCAATTCGT	CCGCCAagcG	TTGCGCCGTC	TGCCGCGCCT	GTTGCTGCAC
151	GTCGGCACTC	AGCCGCGcgg	gGACGATGga	atAAGCCAAG	ATGCCGTTTT
201	CGTGGATGTT	TTCGGCGGGG	TCGAAGGTTT	GCACGTTTTC	ATCGTTCAGA
251	CGGCATACGA	TCACGGAAAT	CTCGCCGCGC	AAGTCCACCA	TTTTTTCCAA
301	AACGCAATCC	ACGCCGCCGT	GTTCGGCAAA	CGCGGCTTTG	AGTTCGTCCA
351	ACGTTTTGAC	GCGGATTTGA	CCTTTGCCGT	CGTAGCCCAA	CGTAGCCGTT
401	TTCAGGATGC	CGGGCAAAAA	TTGCGCGCTT	GCTTCAGTAA	TGTCTTCGGC
451	CTTGCAAACC	GCCTGATACG	GCGCGGTTTG	CAAGCCTGCT	TTGCGTATCC
501	ACGCTTTTTC	CTGAATGCGG	TTTTGTGCAA	TGGACACGCA	GTCGCCGCTG
551	GGGGAAACGT	TGGTATGCTT	TGCCAGAGAG	CGCATCGCGT	CGGCAttgac
601	gtTTTCAAAT	TCGGTcgtaA	CCGCCGCGCA	TTTTGCCAAT	TCGTCCAACG
651	CGGCCCGGTC	GTCAAACGGC	GCGCACAAAT	GGCGGTCGGC	AAATTCCGCC
701	GCCGGCGCAT	TCGGGTCGGG	ATCGAGAACG	GTTACTTTGT	AGCCCATGGT
751	TTTAGCGGCA	ACGGCAAACA	TTctgcctAA		

### This corresponds to the amino acid sequence <SEQ ID 2136; ORF 658.ng>:

1 MVAGIVRARG GFIDEQFMCV ADNKHFYRQY ADIIQFVRQA LRRLPRLLLH 51 VGTQPRGDDG ISQDA<u>VFVDV FGGVEGLHVF IV</u>QTAYDHGN LAAQVHHFFQ

101	NAIHAAVFGK	RGFEFVQRFD	ADLTFAVVAQ	RSRFQDAGQK	LRACFSNVFG
151	LANRLIRRGL	QACFAYPRFF	LNAVLCNGHA	VAAGGNVGML	CQRAHRVGID
201	VFKFGRNRRA	FCQFVQRGPV	VKRRAQMAVG	KFRRRRIRVG	IENGYFVAHG
251	FSGNGKHSA*				

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2137>:

```
m658.seq
         ATGGTGTCCG GAATTGTGCG GGCGCGGGGC GATTTCGTTG ACGACCAATT
     51 CATGCGTGTC ACCGACAACA AACATTTCTA CCGCCAATAC GCCGACATAA
    101 TCCAATTCGT CCGCCAAGCG TTGCGCCATC TGCCGCGCCT GTTGCTGCAC
        GTCGGCACTC AGTCGCGCGG GGACGATGGA ATAAGCCAAG ATGCCGTTTT
    151
         CGTGGATGTT TTCGGCAGGG TCGAAAGTTT GCACGTTGTC ATTGTTCAAA
    251 CGGCATACGA TTACGGAAAT TTCACTGCGC AAATCCACCA TTTTTTCCAA
    301 AACGCAATCC ACGCCGCCGT GTTCGGCAAA CGCGGCTTTG AGTTCATCCA
    351 ATGTTTTAC GCGGATTTGA CCTTTGCCGT CGTAGCCCAA CGTAGCCGTT
    401 TTCAGGATGC CGGGCAAAAA TTGCGCGCTT GCTTCAGTGA TGTCTTCAGC
     451
         CTTACAAACC ACTTGATACG GCGCGGTTTG CAATCCCGCT TTGCGTATCC
    501 ATGCCTTTC CTGAATGCGG TTTTGTGCAA TCGCCACACA ATCGCCGCTA
    601 GTTTTCAAAT TCAGTGGTCA CCGCCGCGCA TTTTGCCAAT TCGTCCAAAG
    651 CAGCTTGGTC GTTAAACGGC GCGCACAAAT GGCGGTCGGC AAATTCTGCT
         GCCGGCGCT CCGGATCGGG GTCGAGAACG GTTACTTTGT AGCCCATGGT
    751
         TTTGGCGGCA ACGGTAAACA TTCTGCCTAA
```

#### This corresponds to the amino acid sequence <SEQ ID 2138; ORF 658>:

m658.pep					
1	MVSGIVRARG	DFVDDQFMRV	TDNKHFYRQY	ADIIQFVRQA	LRHLPRLLLH
51	VGTQSRGDDG	ISQDAVFVDV	FGRVESLHVV	<b>IVQTAYDYGN</b>	FTAQIHHFFQ
101	NAIHAAVFGK	RGFEFIQCFY	ADLTFAVVAQ	RSRFQDAGQK	LRACFSDVFS
151	LTNHLIRRGL	QSRFAYPCLF	LNAVLCNRHT	IAARGNIGMF	CQKAHRIGID
201	VFKFSGHRRA	FCQFVQSSLV	VKRRAQMAVG	KFCCRRVRIG	VENGYFVAHG
251	FGGNGKHSA*				

# Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

#### m658/g658 82.2% identity in 259 aa overlap

	10	20	30	40	50	60
m658.pep	MVSGIVRARGDFVDDQ	QFMRVT DNKH	FYRQYADIIC	FVRQALRHL	PRLLLHVGTQ	SRGDDG
			1111111111	1111111:1		1111
g658	MVAGIVRARGGFIDE			-		
	10	20	30	40	50	60
	70	80	90	100	110	120
m658.pep	ISQDAVFVDVFGRVES					
moso.pep	IIIIIIIIIIIIIIIIIIII	.	:  ::  :	-	HAVEGRAGIE	1.1
g658	ISQDAVFVDVFGGVE	T.HVFTVOTA			AAVFGKRGFE	TVORFD
9000	70	80	90	100	110	120
	130	140	150	160	170	180
m658.pep	ADLTFAVVAQRSRFQI	DAGQKLRACF	SDVFSLTNHI	LIRRGLQSRF	AYPCLFLNAV	LCNRHT
		[	1:11:1:1:1	HIIIII: E	111 : 11111	111 1:
g658	ADLTFAVVAQRSRFQI	DAGQKLRACE	SNVFGLANRI	LIRRGLQACE	ayprfflnav	LCNGHA
	130	140	150	160	170	180
	190	200	210	220	230	240
m658.pep	IAARGNIGMFCQKAHI		_		-	
	:     :  :  :			.,		11:1:1
g658	VAAGGNVGMLCQRAHI		-	_	-	
	190	200	210	220	230	240
	250	260				
m658.pep	VENGYFVAHGFGGNGI					
	APHOLE AMIGE GOING	MINUM				

q658 IENGYFVAHGFSGNGKHSAX 250 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2139>: a658.seq ATGGTGGCCG GAATTGTGCG GACGCGGCGC GATTTCGTTG ACGACCAATT CATGCGTGTC GCCGACAACA AACATTTCTA CCGCCAATAC GCCGACGTAG 51 TTCAATTCAT CGGCCAAACG CTGCGCCATT TGTCGCGCCT GTTGCTGAAT 101 GTCGGCACTC AGTCGGGCTG GGACGATGGA GTAGGCGAGG ATACCGTTTT 151 CGTGAATGTT TTCGGCAGGA TCGAAAGTTT GCACGTTGTC ATTGTTCAGA 201 CGGCATACGA TAACGGAAAT TTCGCCGCGC AAGTCCACCA TTTTTTCCAA 251 AACGCAATCC ACGCCGCGT GTTCGGCAAA CGCGGCTTTG AGTTCATCCA 301 CCGTTTTGAC GCGGATTTGG CCTTTGCCGT CATAGCCCAA TGTAGCGGTT 351 TTCAGGATGC CGGGCAGAAA TTGTATGCTT TCTTCAGTGA TGTCTTCGGC 401 TTTGCAAATT GCTTGATACG GCGCGGTTTG CAGGCCTGCT TTGCGTATCC 451 501 ATGCCTTTTC CTGAATGCGG TTTTGCGCGA TGGCAACGCA GTCGCCGCTG 551 GTTTTCGAAC TCGGTCGTAA CAGCCGCACA TTTTGCCAAT TCTTCCAAAG 601 CGGTTTGGTT GTCAAACGGC GCACACAAAT GGCGGTCGGC AAATTCCGCT 651 GCCGGCGCAT TCGGGTTGGG ATCGAGTACG GTTACTTTGT AGCCCATGGT 701 TTTGGCAGCA ACAGTAAACA TTCTGCCTAA 751 This corresponds to the amino acid sequence <SEQ ID 2140; ORF 658.a>: a658.pep MVAGIVRTRR DFVDDQFMRV ADNKHFYRQY ADVVQFIGQT LRHLSRLLLN VGTQSGWDDG VGEDTVFVNV FGRIESLHVV IVQTAYDNGN FAAQVHHFFQ 51 NAIHAAVFGK RGFEFIHRFD ADLAFAVIAQ CSGFQDAGQK LYAFFSDVFG 101 FANCLIRRGL QACFAYPCLF LNAVLRDGNA VAAGGNIGMF GEKTHRIGID 151 VFELGRNSRT FCQFFQSGLV VKRRTQMAVG KFRCRRIRVG IEYGYFVAHG 201 251 FGSNSKHSA* m658/a658 75.3% identity in 259 aa overlap 30 50 60  ${\tt MVSGIVRARGDFVDDQFMRVTDNKHFYRQYADIIQFVRQALRHLPRLLLHVGTQSRGDDG}$ m658.pep 111 MVAGIVRTRRDFVDDQFMRVADNKHFYRQYADVVQFIGQTLRHLSRLLLNVGTQSGWDDG a 658 10 20 30 40 50 60 70 80 90 100 110 ISQDAVFVDVFGRVESLHVVIVQTAYDYGNFTAQIHHFFQNAIHAAVFGKRGFEFIQCFY 120 m658.pep ះនិយាយបាយបាយបាយប្រជាជាប្រជាជាប្រជាជាប្រជាជាប្រជាជាប្រជាជាប្រជាជាប្រជាជាប្រជាជាប្រជាជាប្រជាជាប្រជាជាប្រជាជាប្រជ VGEDTVFVNVFGRIESLHVVIVQTAYDNGNFAAQVHHFFQNAIHAAVFGKRGFEFIHRFD a 658 80 90 100 130 140 150 160 ADLTFAVVAQRSRFQDAGQKLRACFSDVFSLTNHLIRRGLQSRFAYPCLFLNAVLCNRHT m658.pep 111:111:1Î | THUTT | 11111:::1 11111Î: 111111111 : :: ADLAFAVIAQCSGFQDAGQKLYAFFSDVFGFANCLIRRGLQACFAYPCLFLNAVLRDGNA a 658 130 140 150 160 170 180 190 200 210 220 230  ${\tt IAARGNIGMFCQKAHRIGIDVFKFSGHRRAFCQFVQSSLVVKRRAQMAVGKFCCRRVRIG}$ m658.pep VAAGGNIGMFGEKTHRIGIDVFELGRNSRTFCQFFQSGLVVKRRTQMAVGKFRCRRIRVG a658 190 200 210 220 230 250 260 VENGYFVAHGFGGNGKHSAX m658.pep a658 **IEYGYFVAHGFGSNSKHSAX** 250

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2141>:

```
g661.seg
         ATGCACATCG GCGGTTATTT TATCGACAAC CCCATCGCAC TTGCGCCGAT
      1
         GGCGGGCATT GCCGACAAAC CCTTCCGCCG CCTCTGTCGG GCGTTTGGCG
     51
    101 CAGGTTGGGC GGTGTGCGAA ATGCTGGCCA GCGATCCGAC GCTCAGGAAT
    151 ACCGGAAAAA CCCtgcaccg cagtgaTTTt gccgatgaag gCGGCATCGT
         TGCCGTGCAG ATTGCCGGCA GCGACCccga acaGATGGCG Gatgcggcgc
    251
         gttacAACGT CGGACTCGGG GCGCAGGTCA TCGACATcaa TATGGGCTGC
         cccgccaaGA AAGTGTGCAA CGTCCAAGCC GGTAGCGCgc tGATGCAGGA
    301
    351 CGAGccgctg gttgcCgcca tTTtggaggc ggtggtcAAG GCGGCGGgcg
         TACCCGTTAC cctCAAAACc cgtTtgggtt ggcacgacga cgatcaaaac
    401
         ctgcCcgccg tcgccaaaat cgccgaagat tgcggcattg ccgccCttgc
    451
         cgttccacgg gcgCGCgcgC ACGCAAATGT ACAAAGGCGA GGCgcGTTAC
         Gaactcatcg CCGAGACCAA AAGCCGTCTG AACATCCCGG cctGggtCAA
    551
        CGGCGACATC actTCgccgc AAAAAGCCGC CGccgTCCTC AAACAAACCG
    601
         CCGCCGACGG CATCATGATA GGGCGCGGCG CGCAAGGCAG GCCGTGGTTT
    701 TTCCGCGATT TGAAGCATTA TGCCGAACAC GGCGTTTTAC CGCCTGCCTT
    751 GAGTTTGGCA GAATGCAGAG CCGCCATTTT GAACCACATC CGCGCCATGC
         ACGCGTTTTA TGGTGAGACC GTCGGTGTGC GCATCGCACG CAAACACATA
         GGCTGGTACA TCGGCGAAAT GCCCGACGGC GAACAGGCGC GGCGTGA
    851
```

### This corresponds to the amino acid sequence <SEQ ID 2142; ORF 661.ng>:

```
9661.pep

1 MHIGGYFIDN PIALAPMAGI ADKPFRRLCR AFGAGWAVCE MLASDPTLRN
51 TGKTLHRSDF ADEGGIVAVQ IAGSDPEQMA DAARYNVGLG AQVIDINMGC
101 PAKKVCNVQA GSALMQDEPL VAAILEAVVK AAGVPVTLKT RLGWHDDDQN
151 LPAVAKIAED CGIAALAVPR ARAHANVQRR GALRTHRRDQ KPSEHPGLGQ
201 RRHHFAAKSR RRPQTNRRRR HHDRARRARQ AVVFPRFEAL CRTRRFTACL
251 EFGRMQSRHF EPHPRHARVL WXDRRCAHRT QTHRLVHRRN ARRTGAA*
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2143>: m661.seq

```
ATGCACATCG GCGGCTATTT TATCGACAAC CCCATCGCAC TTGCGCCGAT
  7
 51 GGCGGGCATT ACCGACAAAC CGTTCCGCCG ACTTTGCCGA GATTTTGGCG
101 CAGGTTGGGC GGTGTGCGAA ATGCTGACCA GCGACCCGAC GCTCAGAAAT
151 ACTAGAAAAA CCTTGCACCG CAGCGATTTT GCCGATGAAG GCGGCATTGT
201 TGCCGTGCAG ATTGCCGGAA GCGATCCGCA GCAGATGGCG GATGCCGCGC
     GTTACAACGT CAGCCTTGGG GCGCAGCTTA TCGACATCAA CATGGGCTGT
251
     CCCGCTAAAA AAGTCTGCAA TGTCCAAGCC GGTAGCGCGC TGATGCAGAA
301
351 CGAGCCGCTG GTTGCCGCCA TTTTGGAAGC CGTCGTCCGT GCGGCAGGCG
401 TACCCGTTAC CCTCAAAACC CGTTTGGGTT GGCACGACGA CCATCAAAAC
    CTGCCCGTCA TCGCCAAAAT CGCCGAAGAT TGCGGCATCG CCGCCCTTGC
451
     CGTCC.ACGG ACGCACGCGT ACGCAAATGT ACAAAGGCGA AGCGCGTTAC
501
    GAACTCATCG CCGAAACCAA ATGCCGTCTG AACATCCCGG TCTGGGTCAA
551
601 CGGCGACATT ACTTCGCCGC AAAAAGCCCA AGCCGTCCTC AAACAAACCG
651 CCGCCGACGG CATTATGATA GGGCGCGGCG CGCAAGGCAG GCCGTGGTTC
701 TTCCGCGATT TGAAACATTA TGCCGAACAC GGTGTTTTGC CGCCTGCCTT
751 GAGTTTGGCA GAATGCGCCG CCGCTATTTT GAACCACATC CGCGCCATAC
801 ACGCGTTTTA CGGCGACACC GCCGGTGTGC GCATCGCACG CAAACACATA
851 GGCTGGTACA TCGACGAAAT GCCCGACGGC GAACAGACAC GTCGTGA
```

### This corresponds to the amino acid sequence <SEQ ID 2144; ORF 661>:

```
m661.pep

1 MHIGGYFIDN PIALAPMAGI TDKPFRRLCR DFGAGWAVCE MLTSDPTLRN
51 TRKTLHRSDF ADEGGIVAVQ IAGSDPQQMA DAARYNVSLG AQLIDINMGC
101 PAKKVCNVQA GSALMQNEPL VAAILEAVVR AAGVPVTLKT RLGWHDDHON
151 LPVIAKIAED CGIAALAVXR THAYANVQRR SALRTHRRNQ MPSEHPGLGQ
201 RRHYFAAKSP SRPQTNRRRR HYDRARRARQ AVVLPRFETL CRTRCFAACL
251 EFGRMRRYF EPHPRHTRVL RRHRRCAHRT QTHRLVHRRN ARRTDTS*
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m661/g661 88.5% identity in 295 aa overlap



	10 20 30 40 50 60
m661.pe	MHIGGYFIDNPIALAPMAGITDKPFRRLCRDFGAGWAYCFMITSDPTI DYTDRTH UD CDE
g661	
3	MHIGGYFIDNPIALAPMAGIADKPFRRLCRAFGAGWAVCEMLASDPTLRNTGKTLHRSDF  10 20 30 40 50 60
	20 30 40 50 60
-661	70 80 90 100 110 120
m661.pe	P ADEGIVAVQIAGSDPOOMADAARYNVSI.GAOI IDINMCCDAKKUCUKOA GGALAMANTE
g661	
-	
	120
m661.pe	130 140 150 160 170 180
moor.pe	
g661	
	130 140 150 160 170 180
	100
m661.pe	190 200 210 220 230 240
	p SALRTHRRNOMPSEHPGLGORRHYFAAKSPSRPOTNRRRRHYDRARRAROAVVLPRFETL
g661	GALRTHRRDQKPSEHPGLGQRRHHFAAKSRRPQTNRRRRHHDRARRARQAVVFPRFEAL
	190 200 210 220 230 240
	250
m661.per	
• •	
g661	CRTRRFTACLEFGRMQSRHFEPHPRHARVLWXDRRCAHRTOTHRLVHRRNARBRTGAAY
	250 260 270 280 290
The following	nartial DNA sequence was identified in N
a661.sec	partial DNA sequence was identified in N. meningitidis <seq 2145="" id="">:</seq>
1	
51	GGCGGCATT ACCGACAAAC CGTTCCGCCG ACTTTCCCCA CATTTTCCCCA
101	· CAGGITGGGC GGTGTGCGAA ATGCTGACCA GCGACCCGAC GCTCACAAAT
151 201	ACIAGAAAA CCTTGCACCG CAGCGATTTT GCCGATGAAG CCCGGATTTT
251	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
301	CCCGCIAAAA AAGTCTGCAA TGTCCAAGCC GCTAGCGCCC TCATCCACAA
351	CGAGCCGCTG GTTGCCGCCA TTTTGGAGGC GGTGGTCAAA CCCCCCCCC
401 451	TACCOGITAC COTCAAAACC CGTTTGGGTT GGCACGACGA CCAMGAAAAC
501	TGCGGCATTG CCCGAAGAI IGCGCATTG
551	GACCIGATIG CCGAAACCAA ATGCCGTCTC XXCXTCCCCC TGTCCCC
601	CGGCGACATT ACCTCGCCGC AAAAAGCCCA AGCCGTCCTC AAACAAACCC
651	OCCOMORGO CATTAIGATA GGGCGCGCGCCGCCCACCACCACCACCACCACCACCACCA
701 751	TCCGCGATT TGAAACATTA CGCCGAACAC GGTGTTTTAC CGCCTCCCTT
801	CACCACIATITI GAACCACATO CCACCATA
851	GGCTGGTACA TCGACGAAAT GCCCGACGGC GAACACAC GTCGTGA
<b>.</b>	
This correspond	ds to the amino acid sequence <seq 2146;="" 661.a="" id="" orf="">:</seq>
a661.pep	
1 51	
101	THE TAXABLE TO BE COLUMN TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXABLE TO THE TAXA
151	TEVIALIADO COLAMANZER THANANVORR SCIEDENCENIO MECEUROS CO
201	REGILARESE SEPUTNERER HYDRARRARO TVVI PREFITI PRIPOGENACI
251	EFGRMYRHYF EPHPSHARVL RRHRRCAHRT QTHRLVHRRN ARRRTDTS*
m661/a661	
	94.6% identity in 298 aa overlap
	10 20 30 40 50 60
m661.pep	MHIGGYFIDNPIALAPMAGITDKPFRRICEDEGACHAYCEMI TODDES

16- n

a661	MHIGGYFIDNPIAL	APMAGITDKE	FRRLCRDFG	AGWAVCEMLTS	SDPTLRNTRK	TLHRSDE
	10	20	30	40	50	60
6.61	70	80	90	100	110	120
m661.pep	ADEGGIVAVQIAGS	DPQQMADAAR	YNVSLGAQLI	DINMGCPAKE	VCNVQAGSA	LMQNEPL
	111111111111111	11111111111	11111111	11111111111	111111111	LIBILIA
a661	ADEGGIVAVQIAGS	DPQQMADAAR	YNVSLGAQLI	DINMGCPAKK	VCNVQAGSA:	LMONEPL
	. 70	80	90	100	110	120
	130	140	150	160	170	180
m661.pep	VAAILEAVVRAAGV	PVTLKTRLGW	HDDHONLPVT	AKTAEDOGTA	יתנות סעעות זמ.	DOT
			11111111			
a661	VAAILEAVVKAAGV	PVTLKTRLGW	HDDHONI.PVT	AKTAFDCCTA	ואנות ממע אל אל	:
	130	140	150	160	170	
				100	170	180
	190	200	210	220	230	240
m661.pep	SALRTHRRNOMPSE	HPGLGORRHY	FAAKSPSRPO	TNEERBHYDE	Δοο λοολίπ <i>η</i>	240
	1:11	111111111	:		IIIIIIIII	DEREGIL
a661	SGLRPDCRNOMPSE	HPGLGORRHY	LAAKSPSRPO	GUARGECUL.	111111111111	111111
	190	200	210	220	230	
				220	230	240
	250	260	270	280	290	299
m661.pep	CRTRCFAACLEFGRM	ARRYFEPHP:	RHTRVLRRHR	RCAHRTOTHR	I.VHDDNADDT	4 7 7 TOTO TO TOTO
	11111:11111:	1:111111	1:111111		1111111111111111	ITDIOX
a661	RRTRCFTACLEFGRM	YRHYFEPHP:	SHARVLRRHRI	RCAHRTOTHE		TITITE V
	250	260	270	280	290	IDISK
			· -	200	2.30	

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2147>:

```
ATGTGTACCG AGATGAAATT TATATTTTTT GTACTGTATG TTTTGCAGTT
  1
     TCTGCCGTTT GCGCTGCTGC ACAAGATTGC CGGCCTGATC GGTTCGCTTG
 51
    CCTACCTTCT GGTCAAACCG CGCCGCCGTA TCGGCGAAAT CAATTTGGCA
101
151 AAATGTTTTC CCGAATGGGA CGAAGAAAAG CGTAAAACCG TGTTGAAACA
201 GCATTTCAAA CACATGGCAA AACTGATGCT CGAATACGGC TTATATTGGT
251
    ACGCGtctGC CAAATGCCTG AAATCGCTGG TGCGCTACCG CAATAAGCAT
     TATTTGGACG ACGCGCTGGC GGCGGGGGAA AAAGTCATCA TCCTGTACCC
301
351 GCACTTTACC GCGTTCGAGA TGGCGGTGTA CGCGCTTAAT CAGGATGTCC
401 CGCTGATCAG TATGTATTCC CACCAAAAAA ACAAGATATT GGACGAACAG
451 ATTTTGAAAg gccgcaACCG CTATCACAAC GTCTTCCTTA TCGGGCGCAC
501 CGAagggctg cgCGCCCtcg TCAAACAGTT CCGCAAAAGC AGTGCGCCGT
    TCCTGTATCT GCCCGATCAG GATTTCGGAC GCAACAATTC GGTTTTTGTG
601
    GATTTTTCG GCATtcagaC GGCAACGATT ACCGGCTTGA GCCGCATTGC
651 CGCGCTTGCA AATGCAAAAG TGATACCCGC CATTCCCGTC CGCGAGGCGG
701 ACAATACGGT TACATTGCAA TTCTATCCCG CTTGGAAATC CTTTCCGAGT
751 GAAGACGCGC AAGCCGACGC GCAACGTATG AACCGCTTTA TCGAAGAACG
    CGTGCGCGAA CACCCGGAAC AATATTTCTG GCTGCACAAG CGTTTCAAAA
851 CCCGTCCGGA AGGCAGCCCC GATTTTTACT GA
```

### This corresponds to the amino acid sequence <SEQ ID 2148; ORF 663.ng>:

1 MCTEMKFIFF VLYVLQFLPF ALLHKIAGLI GSLAYLLVKP RRRIGEINLA
51 KCFPEWDEEK RKTVLKQHFK HMAKLMLEYG LYWYASAKCL KSLVRYRNKH
101 YLDDALAAGE KVIILYPHFT AFEMAVYALN QDVPLISMYS HQKNKILDEQ
151 ILKGRNRYHN VFLIGRTEGL RALVKQFRKS SAPFLYLPDQ DFGRNNSVFV
201 DFFGIQTATI TGLSRIAALA NAKVIPAIPV READNTVTLQ FYPAWKSFPS
251 EDAQADAQRM NRFIEERVRE HPEQYFWLHK RFKTRPEGSP DFY*

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2149>:

1 ATGTGTATCG AGATGAAATT TATATTTTTT GTACTGTATG TTTTGCAGTT
51 TCTGCCGTTT GCGCTGCTGC ACAAGATTGC CGACCTGACG GGTTTGCTTG
101 CCTACCTTCT GGTCAAACCG CGCCGCCGTA TCGGCGAAAT CAATTTGGCA
151 AAATGTTTTT CCGAATGGAG TGAGGAAAAG CGTAAAACCG TGTTGAAACA



			•		
201	GCATTTCAAA	CACATGGCGA	AACTGATGTT	GGAATACGGT	TTATATTGGT
251	ACGCGCCTGC	CGGACGTTTG	AAATCGCTGG	TGCGCTACCG	CDDTDDCCDT
301	TATTTGGACG	ACGCGCTGGC	GGCGGGGGAA	AAAGTCATCA	TCCTCTATCC
351	GCACTTCACC	GCGTTCGAGA	TGGCGGTGTA		CAGGATATCC
401	CGCTGATCAG	TATGTATTCC	CATCAAAAA	ACAAGATATT	CCACCAACAC
451	ATTTTGAAAG	GCCGCAACCG	CTATCACAAC	GTCTTCCTTA	TCCCCCCCCC
501	CGAAGGGCTG	CGCGCCCTCG	TCAAACAGTT	CCGCAAAAGC	1 CGGGCGCAC
551	TTCTGTATCT	GCCCGATCAG	GATTTCGGAC	GCAACGATTC	AGCGCGCCGT
601	GATTTTTTCG	GTATTCAGAC	GGCAACGATT	ACCGGATTGA	GGTTTTTGTG
651	CGCGCTTGCA	AATGCAAAAG	TEATACCCCC	CATTCCCGTC	GCCGCATTGC
701	ACAATACGGT	TACATTCCAT	TORIACCOGC	CTTGGAAATC	CGCGAGGCAG
751	GAAGACGCGA	AAGCCGACGC	CCACCCCARG	CTTGGAAATC	CTTTCCGGGT
801	GGTGCGCGAA	CATCCCCAAC	AARARRET S	AACCGTTTTA	TCGAAGACAG
851	CCCGTCCGGA	ACCCACCCCC	AATATTTTG	GCTGCACAAG	CGTTTTAAAA
001	CCCGICCGGA	AGGCAGCCCC	GATTTTTACT	GA	

#### This corresponds to the amino acid sequence <SEQ ID 2150; ORF 663>: m663.pep

MCIEMKFIFF VLYVLQFLPF ALLHKIADLT GLLAYLLVKP RRRIGEINLA 51 KCFSEWSEEK RKTVLKQHFK HMAKLMLEYG LYWYAPAGRL KSLVRYRNKH 101 YLDDALAAGE KVIILYPHFT AFEMAVYALN QDIPLISMYS HQKNKILDEQ 151 ILKGRNRYHN VFLIGRTEGL RALVKOFRKS SAPFLYLPDO DFGRNDSVFV 201 DFFGIQTATI TGLSRIAALA NAKVIPAIPV READNTVTLH FYPAWKSFPG 251 EDAKADAQRM NRFIEDRVRE HPEQYFWLHK RFKTRPEGSP DFY*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

### m663/g663 94.9% identity in 293 aa overlap

m663.pep	10 MCIEMKFIFFVLYVI			111111111		1 . 1 1 1
m663.pep	RKTVLKOHFKHMAKL	#     1	.	1111111111		11111
3	RKTVLKQHFKHMAKL 70	80	90	YRNKHYLDDAI 100	LAAGEKVIIL 110	YPHFT 120
m663.pep	130 AFEMAVYALNQDIPL               AFEMAVYALNQDVPL 130					! QFRKS
m663.pep	190 SAPFLYLPDQDFGRNI            SAPFLYLPDQDFGRNI 190			220 AALANAKVIP	230 AIPVREADN	
m663.pep	250 FYPAWKSFPGEDAKAI         :    FYPAWKSFPSEDAQAI 250	111111:	111111111	11111111111	I I I I I I I I I	

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2151>: a663.seq

- ATGTGTATCG AGATGAAATT TATATTTTTT GTACTGTATG TTTTGCAGTT 1 51
- TCTGCCGTTT GCGCTGCTGC ACAAACTTGC TGATCTGACA GGCTTGCTCG
- 101 CCTACCTTTT GGTCAAACCC CGCCGCCGTA TCGGCGAAAT CAATTTGGCA

and the second

#### 1055

```
151 AAATGCTTTC CCGAGTGGGA CGGAAAAAAG CGTAAAACCG TGTTGAAACA
     GCATTTCAAA CATATGGCGA AACTGATGTT GGAATACGGT TTATATTGGT
     ACGCGCCCGC CGGGCGTTTG AAATCACTGG TGCGCTACCG CAACAACAT
251
     TATTTGGACG ACGCTCTGGC GGCAGGGGAA AAAGTCATCA TCCTGTATCC
301
     GCACTTCACC GCGTTCGAGA TGGCGGTGTA CGCGCTCAAT CAGGATGTTC
351
     CGCTGATCAG TATGTATTCC CACCAAAAAA ACAAGATATT GGACGAACAG
401
     ATTTTGAAAG GCCGCAACCG CTATCACAAC GTTTTCCTTA TCGGGCGCAC
451
     CGAAGGGCTG CGCGCCCTCG TCAAACAGTT CCGCAAAAGC AGCGCGCCGT
501
     TTCTGTATCT GCCCGATCAG GATTTCGGAC GCAACGATTC GGTTTTTGTC
551
     GATTTCTTCG GTATTCGGAC GGCAACGATT ACCGGCTTGA GCCGCATTGC
601
651 CGCGCTTGCA AATGCAAAAG TGATACCCGC CATCCCTGTC CGCGAGGCGG
701 ACAATACGGT TACATTGCAT TTCTACCCTG CTTGGGAATC CTTTCCGAGT
     GAAGATGCGC AGGCCGACGC GCAGCGCATG AACCGTTTTA TCGAGGAACG
751
     CGTGCGCGAA CATCCCGAGC AGTATTTTTG GCTGCACAAG CGTTTCAAAA
801
851 CCCGTCCGGA AGGCAGCCCC GATTTTTACT GA
```

### This corresponds to the amino acid sequence <SEQ ID 2152; ORF 663.a>: a663.pep

```
1 MCIEMKFIFF VLYVLOFLPF ALLHKLADLT GLLAYLLVKP RRRIGEINLA
```

- 51 KCFPEWDGKK RKTVLKQHFK HMAKLMLEYG LYWYAPAGRL KSLVRYRNKH
- 101 YLDDALAAGE KVIILYPHFT AFEMAVYALN QDVPLISMYS HQKNKILDEQ
- 151 ILKGRNRYHN VFLIGRTEGL RALVKQFRKS SAPFLYLPDQ DFGRNDSVFV
- 201 DFFGIRTATI TGLSRIAALA NAKVIPAIPV READNTVTLH FYPAWESFPS
- 251 EDAQADAQRM NRFIEERVRE HPEQYFWLHK RFKTRPEGSP DFY*

#### m663/a663 96.2% identity in 293 aa overlap

250

	10	20	30	40	50	60
m663.pep	MCIEMKFIFFVI	LYVLQFLPFA	LLHKIADLTGI	LLAYLLVKPR	RRIGEINLAI	CFSEWSEEK
- 660	11111111111					111 11: :1
a663	MCIEMKFIFFVI	YVLQFLPFA	LLHKLADLTGI	LLAYLLVKPR	RRIGEINLAI	CFPEWDGKK
	10	20	30	40	50	60

	70	80	90	100	110	120
m663.pep	RKTVLKQHFKHMAK:	LMLEYGLYWY	APAGRLKSLV:	RYRNKHYLD	DALAAGEKVII	LYPHET
			1111111111		11111111111	111111
a663	RKTVLKQHFKHMAK:	LMLEYGLYWY	APAGRLKSLV	RYRNKHYLD	DALAAGEKVIT	LYPHET
	70	80	90	100	110	120

	130	140	150	160	170	180
m663.pep	AFEMAVYALNODI	LISMYSHQK	NKILDEQILKO	GRNRYHNVFL	GRTEGLRAL	KOEBKE
	1111111111111111	11111111				ELLILI
a663	AFEMAVYALNODVE	LISMYSHQK	NKILDEQILKO	GRNRYHNVFL	GRTEGLRAL	KOFRKS
	130	140	150	160	170	180

	190	200	210	220	230	240
m663.pep	SAPFLYLPDODFG	RNDSVFVDFF	GIQTATITGLS	SRIAALANAK	/IPAIPVREAL	ONTVTLH
a663						
a003	SAPFLYLPDQDFG	KNDSAFADFÆ	GIRTATITGLS	RIAALANAK	/IPAIPVREAL	ONTVTLH
	190	200	210	220	230	240

260

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2153>:

280

290

270

g664.seq ATGATACATC CGCACCACTT CCGCGCCTTT TTCATAAACG GTCATGGTGT AGAAATTGTT CATCTCCTCA TAGCTGAcgg gGCGCACCGG ATGGGCGGTC 51 GGGCCTGCGT CTTCGGGGAA CTGGTTCTGG CGCAGCAGGC GGATGTTCTC 101 GATGCGGCGC ACGGCGCGGC CGGCGCGGTC GCCGGAAAAC TCTTGGTCGC GGAACACGGT CAGCCCTTCC TTCAGCGAAA GCTGGAACCA GTCGCGGCAG 201 GTTACGCGGT TGCCCGTCCA GTTGTGGAAA TATTCGTGTC CGACCACGGA 251 TTCAATGCCT TCGAAATCGG TATCGGTGGC GGTGCGGCTG TCGGCGAGGA 301 CGAACTTGGT GTTAAAAATG TTCAAACCCT TGTTTTCCAT CGCGCCCATA 351 TTGAAATCGC CTACGGCGAC GACCATGAaa atatccaagt cataTTCcaa 401

451 cCcgaagege gtttcgtcCc acttcatcgC gtTTTTCAA cgaTTCCACG 501 GCAAAGCCGA CCTTGGGTTT GTCCGCTTCG GTGGTGTAAA ACTCGATTTT



#### 551 GA

WO 99/57280

This corresponds to the amino acid sequence <SEQ ID 2154; ORF 664.ng>:

- 1 MIHPHHFRAF FINGHGVEIV HLLIADGAHR MGGRACVFGE LVLAQQADVL
- 51 DAAHGAAGAV AGKLLVAEHG QPFLQRKLEP VAAGYAVARP VVEIFVSDHG 101 FNAFEIGIGG GAAVGEDELG VKNVQTLVFH RAHIEIAYGD DHENIQVIFQ
- 151 PEARFVPLHR VFSTIPRQSR PWVCPLRWCK TRF*

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2155>:

### This corresponds to the amino acid sequence <SEQ ID 2156; ORF 664>:

m664.pep

1 VIHPHYFRAF FIR

- 1 VIHPHYFRAF FINGHGVEIV HLLIAGGAHR MGGRACVFGE LVLAQQADVF
  51 DAAHGAAGAV AGKFLVAEHG QPFLQRKLEP VAAGYAVARP VVEILVSDHG
- FDAFEIGIGG GAAVGKDELG VKDVQTLVFH RAHIEIAHGD DHENIQVVFQ
  151 TEARFVPFHR VFXTIPRQSR PWACPLRWCK TRF*

# Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

#### m664/g664 91.8% identity in 183 aa overlap

m664.pep	10 VIHPHYFRAFFING :    :        MIHPHHFRAFFING 10	111111	11 1111111	111111111	11111.1111	
m664.pep	70 AGKFLVAEHGQPFL    :            AGKLLVAEHGQPFL 70	1111111		. 1             .   .	111111111	
m664.pep g664	130 VKDVQTLVFHRAHII   :         VKNVQTLVFHRAHII 130	,,,,,,,,,		111111	11111111	
m664.pep g664	TRFX      TRFX					

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2157>:

- 1 GTGATACATC CGCACCACTT CCGCGCCTTT TTCATAAACG GTCATGGTGT
  51 AGAAATTGTT CATCTCCTCA TATCGGGCGG GGCGCACCGG ATGTGCGGTC
  101 GGACCTGCGT CTTCGGGGAA CTGGTGCTGC CGCAGCAGGC GGATGTTTTC
  - 151 GATACGGCGC ACGGCGCGGC TGGCGCGGTC GCCGGAAAAT TCTTGGTCGC

a664

TRFX

201	GGAACACGGT	CAACCCTTCC	TTCAGCGAAA	GCTGGAACCA	GTCGCGGCAG
251	GTCACGCGGT	TGCCCGTCCA	GTTGTGGAAA	TATTCGTGTC	CGACCACGGA
301	TTCGATGCCT	TCAAAATCGG	TATCGGTGGC	GGTACGGCTG	TCGGCAAGGA
351	CGAACTTGGT	GTTAAAGATG	TTCAAACCCT	TGTTTTCCAT	CGCACCCATA
401	TTGAAATCGC	CCACGGCGAC	GACCATGAAA	ATATCCAAGT	CGTATTCCAA
451	ACCGAAGCGC	GTTTCGTCCC	ACTTCATTGC	GTTTTT.CAG	CGATTCCACG
501	GCAAAGCCGA	CCTTGGGCTT	GTCCGCTTCG	GTGGTGTAAA	ACTCGATTTT
551	GA				

### This corresponds to the amino acid sequence <SEQ ID 2158; ORF 664.a>: a664.pep

```
1 VIHPHHFRAF FINGHGVEIV HLLISGGAHR MCGRTCVFGE LVLAQQADVF
```

51 DTAHGAAGAV AGKFLVAEHG QPFLQRKLEP VAAGHAVARP VVEIFVSDHG 101 FDAFKIGIGG GTAVGKDELG VKDVQTLVFH RTHIEIAHGD DHENIQVVFQ

151 TEARFVPLHC VFXAIPRQSR PWACPLRWCK TRF*

m664/a664 92.9% identity in 183 aa overlap

```
10
                       20
                                              50
          VIHPHYFRAFFINGHGVEIVHLLIAGGAHRMGGRACVFGELVLAQQADVFDAAHGAAGAV
m664.pep
          VIHPHHFRAFFINGHGVEIVHLLISGGAHRMCGRTCVFGELVLAQQADVFDTAHGAAGAV
a664
                       20
                               30
                                       40
                70
                       80
                               90
                                      100
                                              110
                                                     120
          AGKFLVAEHGQPFLQRKLEPVAAGYAVARPVVEILVSDHGFDAFEIGIGGGAAVGKDELG
m664.pep
          a664
         AGKFLVAEHGQPFLQRKLEPVAAGHAVARPVVEIFVSDHGFDAFKIGIGGGTAVGKDELG
                70
                               90
                                      100
                                             110
               130
                       140
                              150
                                      160
                                             170
m664.pep
          VKDVQTLVFHRAHIEIAHGDDHENIQVVFQTEARFVPFHRVFXTIPRQSRPWACPLRWCK
          VKDVQTLVFHRTHIEIAHGDDHENIQVVFQTEARFVPLHCVFXAIPRQSRPWACPLRWCK
a664
                              150
                                      160
                                             170
m664.pep
         TRFX
          1111
```

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2159>:

)	. seq					
	1	atgaagtgGg	acgaaacgcg	cttcgGgttg	GAAtatgact	tggatatttT
	51	CATGGTCGTC	GCCGTAGGCG	ATTTCAATAT		GAAAACAAGG
	101	GTTTGAACAT	TTTTAACACC	AAGTTCGTCC		CCGCACCGCC
	151	ACCGATACCG	ATTTCGAAGG	CATTGAATCC		ACGAATATTT
	201	CCACAACTGG	ACGGGCAACC	GCGTAACCTG		TTCCAGCTTT
	251	CGCTGAAGGA	AGGGCTGACC	GTGTTCCGCG	ACCAAGAGTT	TTCCGGCGAC
	301	CGCGCCGGCC	GCGCCGTGCG	CCGCATCGAG	AACATCCGCC	TGCTGCGCCA
	351	GAACCAGTTC	CCCGAAGACG	CAGGCCCGAC	CGCCCATCCG	GTGCGCccca
	401	TCAGCTATGA	GGAGATGAAC	AATTTCTACA	CCATGACCGT	TTATGAAAAA
	451	GGCGCGGAAG	TGGTGCGGAT	GTATCATACC	CTGCTCGGCG	AAGAGGGCTT
	501	CCAAAAAGGC	ATGAAGCTAT	ATTTCcaacq	CCACGACGGA	CAGGCAGTGA
	551	CCTGCGACGA	TTTCCGCGCG	GCGatggcgg	ATGCGAACGG	CATCAATCTC
	601	GACCAGTTCG	CCTTGTGGTA	CAGCCAGGCG	GGCACGCCCG	TTTTGGAAGC
	651	CGAAGGCCGT	CTGAAAAACA	ATGTTTTCGA		AAACAAACCG
	701		GCCCGATATG		AGCCGATGAT	
	751	AAAGTCGGGC	TTCTGAACCG	CAACGGCGAA	GCGGTGGCAT	TCGATTATCA
	801	GGGCAAACGC	GCAACCGAAG	CCGTGTTGCT	GATGACCGAA	
	851		CGAAGGTGTA		TCGTTCCCTC	GCTGCTGCGC
	901		CGCCAGTGTA		CCGTACAGCG	
	951	GCTGCTCCTG	CTCGCCCACG	ACAGCGACGC	TTTCACGTGC	





```
1001 CCCAAACGCT CTACCGTCGC GCCGTCGCCG CCAACCTTGC CGCGCTTTCA
1051 GACGGCATCG GGTTGCCGAA ACACGAAAAA CTGCTTGCCG CCGTCGAAAA
1101 AGTCATTTCA GACGACCTCT TGGACAACGC CTTCAAAGCC CTGCTTTTGG
1151 GCGTGCCGTC CGAAGCCGAa ctGTGGGACG GCACGGAAAA CATcgaCCCG
1201 CTGCGCTACC ATCAGGCGCG CGAAGCCTTG TTGGATACGC TTGCCGtcCG
     CttcctgcCG AAATGGCACG AATTGGaccg tcaggcggcg aagCAggaaa
1301 accaaagtTA CGAATACAGC CCCGAAACCG CCGACTGGCG CACGCTGCGC
1351 AACGTCTGCC GCGCCTtcgt cctGCGCGC GACCCCGCGC acatcgAAAC
1401 TGTTGCCGAA Aaatacggcg AAATGGCGCA AAACATGACC CACGAATGGG
1451 GCATCCTGTC CGCCGTCAAC GGCAACGAAA GCGATACGCG CAACTGCCTG
ATATTTCGCC CTTATCGGCT CAAGCCGCCG CAGCGACACC CTGCAACAGG
1601 TTCAAACCGC CTTGCAGCAT CCGAAATTCA GTCTCGAAAA CCCCAACAAA
1651 GCCCGTTCGC TCATCGGCAG CTTCAGCCGC AACGTCCCGC ATTTTCACGC
1701 ACAAGACGGC AGCGGCTACC GCTTCATCGC CGACAAAGTC ATCGAAATCG
1751 ACCGCTTCAA cCCGCAggtc gccGCCCGCC TGGTGCAGGC GTTCAACCTC
     TGCAACAAGC TCGAGCCGCA CCGCAAAAAC TTGGTGAAAC AAGAATTGCA
1851 GTGCATTCGG GCGCAGGAAG GATTGTCGAA AGacGTGGGC GAaatcgtCG
1901 GCAAGATTTT GGGTTGA
```

### This corresponds to the amino acid sequence <SEQ ID 2160; ORF 665.ng>:

```
g665.pep
         MKWDETRFGL EYDLDIFMVV AVGDFNMGAM ENKGLNIFNT KFVLADSRTA
         TDTDFEGIES VVGHEYFHNW TGNRVTCRDW FQLSLKEGLT VFRDQEFSGD
      51
    101
         RAGRAVRRIE NIRLLRONOF PEDAGPTAHP VRPVSYEEMN NFYTMTVYEK
         GAEVVRMYHT LLGEEGFQKG MKLYFQRHDG QAVTCDDFRA AMADANGINL
    201 DQFALWYSQA GTPVLEAEGR LKNNVFELTI KQTVPPTPDM ADKQPMMIPV
    251 KVGLLNRNGE AVAFDYQGKR ATEAVLLMTE AEQAFPLEGV TEAVVPSLLR
    301 GFSAPVYLNY PYSDDDLLLL LAHDSDAFTC WEAAQTLYRR AVAANLAALS
    351
         DGIGLPKHEK LLAAVEKVIS DDLLDNAFKA LLLGVPSEAE LWDGTENIDP
    401
451
         LRYHQAREAL LDTLAVRFLP KWHELDRQAA KQENQSYEYS PETADWRTLR
         NVCRAFVLRA DPAHIETVAE KYGEMAQNMT HEWGILSAVN GNESDTRNCL
    501 LAQFADKFSD DALVMDKYFA LIGSSRRSDT LQQVQTALQH PKFSLENPNK
    551 ARSLIGSFSR NVPHFHAQDG SGYRFIADKV IEIDRFNPQV AARLVQAFNL
    601 CNKLEPHRKN LVKQELQCIR AQEGLSKDVG EIVGKILG*
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2161>:

665.seq		-		0		ord,
1	ATGAAATGGG	ACGAAACGCG	CTTCGGTTTG	GAATACGACT	י שככאי	n y mmmm
51	CATGGTCGTC	GCCGTGGGCG	ATTTCAATAT	GGGCGCGATG		ACAAGG
101	GTTTGAACAT		AAGTTCGTCC			ACCGCC
151	ACCGATACCG	ATTTCGAAGG	CATCGAATCC	GTGGTCGGAC		STATTT
201	CCACAACTGG	ACGGGCAACC	GCGTAACCTG	CCGCGACTGG		AGCTTT
251	CGCTGAAGGA	AGGGCTGACC	GTGTTCCGCG	ACCAAGAATT		GCGAC
301	CGCGCCAGCC			AACATCCGCC		GCGCCA
351	GCACCAGTTC		CAGGCCCGAC	CGCCCATCCG	CTCCC	SCCCCG
401	CCAGCTATGA	GGAGATGAAC	AATTTCTACA	CCATGACCGT		AAAAA
451	GGCGCGGAAG	TAGTGCGGAT	GTATCACACC	CTGCTCGGCG	ANCAC	GGCTT
501	CCAGAAAGGC	ATGAAGCTCT	ATTTCCAACG	CCACGACGGA	CACCC	CCGTTA
551	CCTGCGACGA	TTTCCGCGCG	GCGATGGCGG	ACGCGAACGG	CATC	ATCTC
601	GACCAGTTCG	CCTTGTGGTA	CAGCCAGGCG	GGCACGCCCG	փարար	CAACC
651	GGAAGGTCGT	CTGAAAAACA	ATATTTTCGA	GTTGACCGTC	AAACZ	AACCG
701	TGCCGCCCAC	GCCCGATATG	ACGGATAAAC	AGCCGATGAT		CCGTC
751	AAGGTCGGGC	TGCTGAACCG	CAACGGCGAA	GCGGTGGCAT		TATCA
801	GGGCAAACGC	GCGACCGAAG	CCGTGTTGCT	GCTGACCGAA		ACAGA
851	CCTTCCTGCT	CGAAGGCGTA		TCGTTCCCTC		TGCGC
901		CGCCGGTGCA	TCTGAACTAT	CCGTACAGCG	ACGAC	
9.51	GCTGCTCCTG		ACAGCGACGC	CTTCACGCGC		AGCCG
1001	CCCAAACGCT	CTACCGCCGC	GCCGTCGCCG	CCAACCTTGC		TTTCA
. 1051	GACGGCGTTG	AGCTGCCGAA	ACACGAAAAA	CTGCTTGCCG		
1101		GACGACCTCT	TAGACAACGC	CTTCAAAGCC		
1151		CGAAGCCGAG	CTGTGGGACG	GCGCAGAAAA	CATCG	ACCCG
1201		ATCAGGCGCG	CGAAGCCTTG	TTGGATACGC	TTGCC	GTCCA
1251	CTTCCTGCCG	AAATGGCACG	AATTGAACCG	TCAGGCCCCC	77007	~~~~
1301	ACCAAAGCTA	CGAATACAGC	CCCGAAGCCG	CCGGCTGGCG	CACGC	TGCGC

1351	AACGTCTGCC	GCGCCTTTGT	CCTGCGCGCC	GACCCCGCGC	ACATCGAAAC
1401	CGTTGCCGAA	AAATACGGCG	AAATGGCGCA	AAACATGACC	CACGAATGGG
1451	GCATCCTGTC	CGCCGTCAAC	GGCAACGAAA	GCGATACGCG	CAACCGCCTG
1501	CTGGCGCAGT	TTGCCGACAA	GTTTTCAGAC	GACGCGCTGG	TGATGGACAA
1551	ATATTTTGCC	CTCGTCGGCT	CAAGCCGCCG	CAGCGACACC	CTGCAACAGG
1601	TTCGAACCGC	CTTGCAGCAT	CCGAAATTCA	GCCTCGAAAA	CCCCAACAAA
1651	GCCCGTTCGC	TCATCGGCAG	CTTCAGCCGC	AACGTCCCGC	ATTTCCACGC
1701	AGAAGACGGC	AGCGGCTACC	GCTTCATCGC	CGACAAAGTC	ATCGAAATCG
1751	ACCGCTTCAA	CCCGCAGGTC	GCCGCCCGCT	TAGTGCAGGC	GTTCAACCTC
1801	TGCAACAAGC	TCGAGCCGCA	CCGCAAAAAC	TTGGTGAAAC	AAGCATTGCA
1851	GCGCATTCGG	GCGCAGGAAG	GATTGTCGAA	AGACGTGGGC	GAAATCGTCG
1901	GCAAAATTTT	GGATTGA			

# This corresponds to the amino acid sequence <SEQ ID 2162; ORF 665>:

J.pep					
1	MKWDETRFGL	EYDLDIFMVV	AVGDFNMGAM	ENKGLNIFNT	KFVLADSRTA
51	TDTDFEGIES	VVGHEYFHNW	TGNRVTCRDW	FQLSLKEGLT	VFRDOEFSGD
101	RASRAVRRIE	NIRLLRQHQF	PEDAGPTAHP	VRPASYEEMN	NEYTMTVYEK
151	GAEVVRMYHT	LLGEEGFQKG	MKLYFORHDG	OAVTCDDFRA	AMADANGTHI.
201	DQFALWYSQA	GTPVLEAEGR	LKNNIFELTV	KOTVPPTPDM	TOKOPMMTPV
251	KVGLLNRNGE	AVAFDYQGKR	ATEAVLLLTE	AEOTFLLEGV	TEAVVPSLLD
301	GFSAPVHLNY	PYSDDDLLLL	LAHDSDAFTR	WEAAOTLYRR	AVAANI.ATT.S
351	DGVELPKHEK	LLAAVEKVIS	DDLLDNAFKA	LLLGVPSEAF	LWDGAENIDD
401	LRYHQAREAL	LDTLAVHFLP	KWHELNRQAA	KOENOSYEYS	PEAAGWRTLR
451	NVCRAFVLRA	DPAHIETVAE	KYGEMAONMT	HEWGILSAVN	GNESDTRNRI.
501	LAQFADKFSD	DALVMDKYFA	LVGSSRRSDT	LOOVRTALOH	PKESLENDNK
551	ARSLIGSFSR	NVPHFHAEDG	SGYRFIADKV	IEIDRFNPOV	AARLVOAFNI.
601	CNKLEPHRKN	LVKQALQRIR	AOEGLSKDVG	ETVGKTI.D*	

# Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

### m665/g665 96.1% identity in 637 aa overlap

m665.pep	10 MKWDETRFGLEYDL	20 DIFMVVAVGI	30 FNMGAMENKO	40	50	60
	111111111111				HILLIIII	DEEGIES
g665	MKWDETRFGLEYDL	DIFMVVAVGI	FNMGAMENKO	SLNIFNTKFVI	ויירדעדאפתב	TEFCTES
	10	20	30	40	50	60
						00
	70	80	90	100	110	120
m665.pep	VVGHEYFHNWTGNR	VTCRDWFQLS	SLKEGLTVFRD	QEFSGDRASE	AVRRIENIRI	LROHOF
+.C.C.E	1111111111111	:		111111111	111111111	1111-11
g665	VVGHEYFHNWTGNR	VTCRDWFQLS	LKEGLTVFRE	QEFSGDRAGE	RAVRRIENIRI	LRQNQF
	70	80	90	100	110	120
	130	1.40	4.50			
m665.pep		140	150	160	<b>17</b> 0	180
moos.pcp	PEDAGPTAHPVRPAS	HILLIIII III	MIVYEKGAEV	VRMYHTLLGE	EGFQKGMKL	FORHDG
g665	PEDAGPTAHPVRPVS	YEEMNNEVT			1111111	
3	130	140	150	VRMYHTLLGE 160		
		140	130	160	170	180
	190	200	210	220	230	240
m665.pep	QAVTCDDFRAAMADA	MGINLDOFA		LEAEGRIKNN	₹₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	24U Maamaa
			3 8 1 8 1 1 1 1 1 4 4	111111111	. [ ] [ ]	11111
g665	QAVTCDDFRAAMADA	NGINLDQFA	LWYSQAGTPV	LEAEGRLKNN	VEELTIKOTV	וווווו אמסידים סי
	190	200	210	220	230	240
						230
	250	260	270	280	290	300
m665.pep	TDKQPMMIPVKVGLI	NRNGEAVAF	'DYQGKRATEA	VLLLTEAEQT	FLLEGVTEAV	VPSLLR
~665		+	111111111	111.11111.	1 1111111	11111
g665	ADKQPMMIPVKVGLI	NRNGEAVAF	DYQGKRATEA	VLLMTEAEQA	FPLEGVTEAV	VPSLLR
	250	260	270	280	290	300

BNSDOCID: <WO___9957280A2_l_>

m665.pep g665	310 GFSAPVHLNYPYSDI       :       GFSAPVYLNYPYSDI 310	[			1111.1111.	111111
	370	380	390	400	410	420
m665.pep	LLAAVEKVISDDLLI	ONAFKALLL	GVPSEAELWDG.	AENIDPLRY	HOAREALLDT	ם ושועות.
-665				: 11111111		
g665	TEWWASTANTED	DNAFKALLL	GVPSEAELWDG	TENIDPLRY	IQAREALLDTI	LAVRFLP
	370	380	390	400	410	420
	430	440	450			
m665.pep			450	460	470	480
mooo.pcp	KWHELNRQAAKQENQ		AGWRTLKNVCR	AFVLRADPAF	HETVAEKYGE	EMAQNMT
<b>q66</b> 5	:	SYEYSPETI		יי ממות מת די די די די		
2	430	440	450	460	11ETVAEKYGE 470	
			430	460	4/0	480
	490	500	510	520	530	540
m665.pep	HEWGILSAVNGNESD	TRNRLLAQE	ADKFSDDALV	MDKYFATAGS	SERSDITT OOU	ווס ז מיחים
	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1111111111	1111111111	
g665	HEMGITSHANGNESD	TRNCLLAQE	ADKFSDDALVN	MDKYFALIGS	SRRSDTLOOV	OTALOH
	490	500	510	520	530	540
	550					
m665.pep	550	560	570	580	590	600
mees.pep	PKFSLENPNKARSLI	GSESRNVPH	FHAEDGSGYRE	FIADKVIEID	RFNPQVAARL	VQAFNL
g665					11111111	
9000	PKFSLENPNKARSLI 550	560	FHAQDGSGYRE	FIADKVIEID		
	550	360	570	580	590	600
	610	620	630	639		
m665.pep	CNKLEPHRKNLVKQA	LQRIRAOEG	LSKDVGEIVGK	צח.ד:		
	111111111111		1111111111	1.1		
g665	CNKLEPHRKNLVKQE:	LQCIRAQEG	LSKDVGEIVGK	ILGX		
	<b>61</b> 0	620	630			

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2163>:

```
ATGAAGTGGG ACGAAACGCG CTTCGGTTTG GAATACGACT TGGATATTTT
   1
  51 CATGGTCGTC GCCGTGGGCG ATTTCAATAT GGGTGCGATG GAAAACAAGG
      GTTTGAACAT CTTTAACACC AAGTTCGTCC TTGCCGACAG CCGTACCGCC
 151 ACCGATACCG ATTTTGAAGG CATCGAATCC GTGGTCGGAC ACGAATATTT
      CCACAACTGG ACGGGCAACC GCGTGACCTG CCGCGACTGG TTCCAGCTTT
      CGCTGAAGGA AGGGTTGACC GTGTTCCGCG ACCAAGAATT TTCCGGCGAC
 251
 301 CGCGCCAGCC GCGCCGTGCG CCGTATCGAA AACATCCGCC TGCTGCGCCA
      GCACCAGTTC CCCGAAGACG CAGGTCCGAC CGCACATCCG GTGCGCCCCG
 351
     CCCGATATGA GGAGATGAAC AATTTCTACA CCATGACCGT TTATGAAAAA
 401
      GGCGCGGAAG TGGTGCGGAT GTATCACACC TTGCTCGGCG AAGAGGGCTT
 451
      CCAAAAAGGT ATGAAGCTCT ATTTCCAACG CCACGACGGA CAGGCTGTTA
 501
      CCTGCGACGA TTTCCGCGCG GCGATGGTGG ACGCGAACGG CATCAACCTC
 551
     GACCAATTCG CCTTGTGGTA CAGCCAAGCA GGTACGCCGG TTTTAGATGC
 601
      TCAAGGGCGT CTGAAAAACA ATGTGTTCGA GTTAACCATC AAACAAACCG
      TGCCGCCCAC GCCCGATATG GCGGACAAAC AGCCGATGAT GATTCCCGTC
 701
      AAAATCGGGC TGCTGAACTG CAACGGCGAA GCGGTGGCAT TTGATTATCA
      GGGCAAACGC GCGACCGAAG CCGTGTTGCT GCTGACCGAA GCCGAACAGA
 801
 851 CCTTCCAGTT CGAAAGCGTA ACCGAAGCCG TCGTTCCCTC GCTGCTGCGC
     GGGTTCAGCG CGCCGGTGCA TCTGAACTAT CCGTACAGCG ACGACGACCT
     GCTGCTTCTG CTCGCCCATG ACAGCGACGC CTTCACGCGC TGGGAAGCCG
 951
      CACAAACGCT CTACCGCCGT GCCGTCGCCG CCAACCTTGC CGCGCTTTCA
1001
      GACGGCGTCG AGTTGCCGAA ACACGAAAAA CTGCTTGCCG CCGTCGAAAA
1051
1101 AGTCATTTCA GACGACCTCT TAGACAACGC TTTCAAAGCC CTGCTTTTGG
1151 GTGTGCCGTC TGAAGCCGAG CTGTGGGACG GCGCGGAAAA CATCGACCCG
1201 CTGCGCTACC ATCAGGCGCG CGAAGCCTTG TTGGATATAC TTGCCGTCCG
1251 CTTTCTGCCG AAATGGCACG AATTGAACCG TCAGGCGGCG AAGCAGGAAA
1301 ACCAAAGCTA CGAGTACAGC CCCGAAGCCG CCGGTTGGCG CACGCTGCGC
1351 AATGTCTGCC GCGCCTTCGT CCTGCGCGCC GATCCCGCGC ACATCGAAAC
```

			,			
140	1 CGTTGCCGAG	AAATACGCCG	AAATGGCGCA	AAACATGACC	CACGAATGGG	
145	1 GCATCCTGTC	CGCCGTCAAC	GGCAACGAAA	GCGATACGCG	CAACCGCCTC	
150	1 CTGGCGCAGI	' TTGCCGACAA	GTTTTCAGAC	GACGCGCTGG	TCATCCACAA	
155	1 ATATTTCGCC	: CTCGTCGGCT	CAAGCCGCCG	CAGCGACACC	CTGCAACAGG	
160	1 TTCAAACCGC	CTTGCAGCAT	CCGAAGTTCA	GCCTCGAAAA	TCCCAACAAA	
165	1 GCCCGCTCGC	TCATCGGCAG	CTTCAGCCGC	AACGTCCCGC	$\Delta$ TTTCC $\lambda$ CCC	
170	1 AGAAGACGGC	AGCGGCTACC	GCTTCATCGC	CGACAAAGTC	ATCGAAATCG	
175	1 ACCGCTTTAA	CCCGCAGGTC	GCCGCCCGCC	TGGTGCAGGC	GTTCAACCTC	
180	1 TGCAACAAGC	TCGAGCCGCA	CCGCAAAAAC	TTGGTGAAAC	AAGCATTGCA	
185	1 GCGCATTCGG	GCGCAGGAAG	GATTGTCGAA	AGACGTGGGC	GAAATCGTCG	
190	1 GCAAAATTTT	GGATTGA				
TD1 :	1	• •				
inis correspo	nds to the amin	io acid seque	nce <seq ii<="" td=""><td>D 2164; ORI</td><td>₹ 665.a&gt;:</td><td></td></seq>	D 2164; ORI	₹ 665.a>:	
a665.pe	<b>)</b>					
	l MKWDETRFGL	EYDLDIFMVV	AVGDFNMGAM	ENKGLNIFNT	KFVLADSRTA	
5	L TDTDFEGIES	VVGHEYFHNW	TGNRVTCRDW	FOLSLKEGIT	VERDOFFSCD	
10	L RASRAVRRIE	NIRLLROHOF	PEDAGPTAHP	VRPARYEEMN	NEVTMTUVEV	
15	L GAEVVRMYHT	LLGEEGFQKG	MKLYFORHDG	OAVTCDDFRA	AMUDANCTRI	
20	L DQFALWYSQA	GTPVLDAOGR	LKNNVFELTI	KOTUPPTPDM	A DKODMMT DV	
25	L KIGLLNCNGE	AVAFDYQGKR	ATEAVLLLTE	AEOTFOFESV	TEAUNIDELLD	
30:	L GFSAPVHLNY	PYSDDDLLLL	LAHDSDAFTR	WEAAOTI.YRR	Δυαδήτη το	
35:	DGVELPKHEK	LLAAVEKVIS	DDLLDNAFKA	LLLGVPSEAE	T.WDCAFNITOD	
40	LRYHQAREAL	LDILAVRFLP	KWHELNROAA	KOENOSYEYS	PEAACWDTID	
45:	. NVCRAFVLRA	DPAHIETVAE	KYAEMAONMT	HEWGILSAVN	CNECDEDNOT	
50:	. LAQFADKFSD	DALVMDKYFA	LVGSSRRSDT	HO, TATOVOOL	DEECT ENDNY	
55:	. ARSLIGSFSR	NVPHFHAEDG	SGYRFIADKV	IEIDRENPOV	AARLVQAFNL	
601	CNKLEPHRKN	LVKQALQRIR	AQEGLSKDVG	EIVGKILD*	_	
m665/a665	07 30 33		_			
m005/2005	97.3% lden	tity in 63	8 aa overl	ap		
665			:0 30	40	50	60
m665.pep		FGLEYDLDIFMV	VAVGDFNMGAM	ENKGLNIFNTK	TVI.ADSDTATEME	PPOTPO
	111111	FGLEYDLDIFMV	VAVGDFNMGAM	ENKGLNIFNTK	FVLADSRTATDTD	FEGIES
m665.peg a665	111111	FGLEYDLDIFMV             GLEYDLDIFMV	VAVGDFNMGAM	ENKGLNIFNTK            ENKGLNIFNTK	50 FVLADSRTATDTD             FVLADSRTATDTD	FEGIES
	111111	FGLEYDLDIFMV             GLEYDLDIFMV	VAVGDFNMGAM	ENKGLNIFNTK            ENKGLNIFNTK	FVLADSRTATDTD	FEGIES
	111111	FGLEYDLDIFMV 	VAVGDFNMGAM	ENKGLNIFNTK           ENKGLNIFNTK 40	FVLADSRTATDTE 	FEGIES         FEGIES
a665	 MKWDETRI	FGLEYDLDIFMV	VAVGDFNMGAM	ENKGLNIFNTK	FVLADSRTATDTD	OFEGIES OFEGIES 60
	 MKWDETRI VVGHEYFI	FGLEYDLDIFMV	VAVGDFNMGAM             VAVGDFNMGAM 0 30 0 90 WFOLSLKEGLT	ENKGLNIFNTK                       ENKGLNIFNTK 40  100 VFRDOEFSGDR	FVLADSRTATDTD	OFEGIES        OFEGIES         120
<b>a66</b> 5	 MKWDETRI VVGHEYFF	FGLEYDLDIFMV	VAVGDFNMGAM              VAVGDFNMGAM 0 30 0 90  WFQLSLKEGLT	ENKGLNIFNTK	FVLADSRTATDTD	OFEGIES        OFEGIES 60 120 LRQHQF
a665	 MKWDETRI VVGHEYFF	FGLEYDLDIFMV	VAVGDFNMGAM	ENKGLNIFNTK	FVLADSRTATDTE	PEGIES        PEGIES 60 120 LRQHQF
<b>a66</b> 5	 MKWDETRI VVGHEYFF	FGLEYDLDIFMV	VAVGDFNMGAM              VAVGDFNMGAM 0 30 0 90  WFQLSLKEGLT	ENKGLNIFNTK	FVLADSRTATDTD	OFEGIES        OFEGIES 60 120 LRQHQF
<b>a66</b> 5	 MKWDETRI VVGHEYFF         VVGHEYFF	FGLEYDLDIFMV	VAVGDFNMGAM	ENKGLNIFNTK	FVLADSRTATDTE	PFEGIES        PFEGIES
a665 m665.per a665	 MKWDETRI VVGHEYFF         VVGHEYFF	FGLEYDLDIFMV	VAVGDFNMGAM	ENKGLNIFNTK            ENKGLNIFNTK 40  100 VFRDQEFSGDR            VFRDQEFSGDR 100	FVLADSRTATDTE	PFEGIES         PFEGIES            CALRQHQF          LRQHQF   120
<b>a66</b> 5	VVGHEYFF VVGHEYFF VVGHEYFF VVGHEYFF	FGLEYDLDIFMV	VAVGDFNMGAM	ENKGLNIFNTK            ENKGLNIFNTK 40  100 VFRDQEFSGDR            VFRDQEFSGDR 100  160 GAEVVRMYHTI	FVLADSRTATDTE	PFEGIES        PFEGIES          PFEGIES
a665 m665.per a665	VVGHEYFE VVGHEYFE VVGHEYFE VVGHEYFE 1	FGLEYDLDIFMV	VAVGDFNMGAM	ENKGLNI FNTK	FVLADSRTATDTE	PFEGIES        PFEGIES          PFEGIES
a665 m665.per a665 m665.per	VVGHEYFF VVGHEYFF VVGHEYFF VVGHEYFF PEDAGPTF	FGLEYDLDIFMV	VAVGDFNMGAM	ENKGLNI FNTK	FVLADSRTATDTE	PFEGIES                 PFEGIES   60   120   LRQHQF                 LRQHQF   120   180   FQRHDG                 FQRHDG
a665 m665.per a665 m665.per	VVGHEYFF VVGHEYFF VVGHEYFF VVGHEYFF PEDAGPTF	FGLEYDLDIFMV	VAVGDFNMGAM	ENKGLNI FNTK	FVLADSRTATDTE	PFEGIES        PFEGIES          PFEGIES
a665 m665.per a665 m665.per a665	VVGHEYFF VVGHEYFF VVGHEYFF PEDAGPTF IIIIIII	FGLEYDLDIFMV	VAVGDFNMGAM	ENKGLNIFNTK           ENKGLNIFNTK 40  100 VFRDQEFSGDR            VFRDQEFSGDR 100  160 GAEVVRMYHTL           GAEVVRMYHTL	FVLADSRTATDTE	PFEGIES          PFEGIES 60          LRQHQF          LRQHQF         LRQHDG          FQRHDG
a665 m665.per a665 m665.per	VVGHEYFF VVGHEYFF VVGHEYFF  PEDAGPTF  IIIIIII PEDAGPTF  1 QAVTCDDE	FGLEYDLDIFMV	VAVGDFNMGAM	ENKGLNI FNTK                          ENKGLNI FNTK  40  100  VFRDQEFSGDR                       VFRDQEFSGDR 100  160  GAEVVRMYHTL 160  220  GTPVLEAEGRU	FVLADSRTATDTD	DFEGIES                 DFEGIES   60   120   LRQHQF                 LRQHQF   120   180   FQRHDG                 FQRHDG   180   240
a665.per a665.per a665.per a665.per	VVGHEYFF VVGHEYFF VVGHEYFF  PEDAGPTF PEDAGPTF  QAVTCDDE	FGLEYDLDIFMV	VAVGDFNMGAM	ENKGLNI FNTK                        ENKGLNI FNTK  40  100  VFRDQEFSGDR                     VFRDQEFSGDR 100  160  GAEVVRMYHTL 160  220  GTPVLEAEGRL	FVLADSRTATDTD	PFEGIES                 PFEGIES   60  120   LRQHQF               LRQHQF   120  180   FQRHDG               FQRHDG 180  240   PPTPDM
a665 m665.per a665 m665.per a665	VVGHEYFF VVGHEYFF VVGHEYFF VVGHEYFF  1 PEDAGPTF 1 PEDAGPTF 1 QAVTCDDE 1	FGLEYDLDIFMV	VAVGDFNMGAM	ENKGLNI FNTK                        ENKGLNI FNTK  40  100  VFRDQEFSGDR                     VFRDQEFSGDR 100  160  GAEVVRMYHTL 160  220  GTPVLEAEGRL	FVLADSRTATDTD	PFEGIES                 PFEGIES   60  120   LRQHQF               LRQHQF   120  180   FQRHDG               FQRHDG 180  240   PPTPDM
a665.per a665.per a665.per a665.per	VVGHEYFF VVGHEYFF VVGHEYFF VVGHEYFF  1 PEDAGPTF 1 PEDAGPTF 1 QAVTCDDE 1	FGLEYDLDIFMV	VAVGDFNMGAM	ENKGLNI FNTK                        ENKGLNI FNTK  40  100  VFRDQEFSGDR                     VFRDQEFSGDR 100  160  GAEVVRMYHTL 160  220  GTPVLEAEGRL	FVLADSRTATDTE	DFEGIES                 PFEGIES   60   120   LRQHQF               LRQHQF   120   180   FQRHDG                 FQRHDG   180   240   PPTPDM               PPTPDM
a665.per a665.per a665.per a665.per	VVGHEYFF VVGHEYFF VVGHEYFF  1 PEDAGPTA PEDAGPTA 1 QAVTCDDE         QAVTCDDE	FGLEYDLDIFMV	VAVGDFNMGAM	ENKGLNI FNTK	FVLADSRTATDTD	PFEGIES                 PFEGIES   60  120   LRQHQF               LRQHQF   120  180   FQRHDG               FQRHDG 180  240   PPTPDM
a665 m665.per a665 m665.per a665	VVGHEYFF  VVGHEYFF  VVGHEYFF  PEDAGPTA  IIIIIIII  PEDAGPTA  IIIIIIIII  QAVTCDDF  IIIIIIIII  QAVTCDDF  IIIIIIIII  QAVTCDDF	FGLEYDLDIFMV	VAVGDFNMGAM	ENKGLNI FNTK	FVLADSRTATDTE	DFEGIES                 PFEGIES   60   120   LRQHQF               LRQHQF   120   180   FQRHDG               FQRHDG   180   240   PPTPDM               PPTPDM   240
a665.per a665.per a665.per a665.per	VVGHEYFF VVGHEYFF VVGHEYFF VVGHEYFF  1 PEDAGPTA 1 PEDAGPTA 2 QAVTCDDE 1               QAVTCDDE 1             QAVTCDDE 1           QAVTCDDE 1             QAVTCDDE	FGLEYDLDIFMV	VAVGDFNMGAM	ENKGLNI FNTK	FVLADSRTATDTE	DFEGIES                 PFEGIES   60   120   LRQHQF               LRQHQF   120   180   FQRHDG                 FQRHDG   180   240   PPTPDM               PPTPDM   240   300
m665.per a665 m665.per a665 m665.per a665	VVGHEYFE VVGHEYFE VVGHEYFE VVGHEYFE  1 PEDAGPTE PEDAGPTE 1 QAVTCDDE 11111111 QAVTCDDE 11111111 QAVTCDDE 11111111 QAVTCDDE 11111111 2 TDKQPMMI	FGLEYDLDIFMV	VAVGDFNMGAM	ENKGLNIFNTK            ENKGLNIFNTK 40  100 VFRDQEFSGDR             VFRDQEFSGDR 100  160 GAEVVRMYHTL           GAEVVRMYHTL 160  220 GTPVLEAEGRLE      :    GTPVLDAQGRLE 220  280 ATEAVLLLTEA	FVLADSRTATDTE	DFEGIES                 PFEGIES   60   120   LRQHQF               LRQHQF   120   180   FQRHDG                 FQRHDG   180   240   PPTPDM               PPTPDM   240   300   VPSLLR
a665 m665.per a665 m665.per a665	VVGHEYFF  VVGHEYFF  VVGHEYFF  VVGHEYFF  1  PEDAGPTA  1  QAVTCDDE  1  1  QAVTCDDE  1  1  QAVTCDDE  1  1  1  QAVTCDDE  1  1  1  1  1  1  1  1  1  1  1  1  1	FGLEYDLDIFMV	VAVGDFNMGAM	ENKGLNI FNTK	FVLADSRTATDTE	DFEGIES                 PFEGIES   60   120   LRQHQF               LRQHQF   120   180   FQRHDG                 FQRHDG   180   240   PPTPDM               PPTPDM   240   300   VPSLLR
m665.per a665 m665.per a665 m665.per a665	VVGHEYFF  VVGHEYFF  VVGHEYFF  VVGHEYFF  1  PEDAGPTA  1  QAVTCDDE  1  1  QAVTCDDE  1  1  QAVTCDDE  1  1  1  QAVTCDDE  1  1  1  1  1  1  1  1  1  1  1  1  1	FGLEYDLDIFMV	VAVGDFNMGAM	ENKGLNIFNTK            ENKGLNIFNTK 40  100 VFRDQEFSGDR             VFRDQEFSGDR 100  160 GAEVVRMYHTL           GAEVVRMYHTL 160  220 GTPVLEAEGRLE      :    GTPVLDAQGRLE 220  280 ATEAVLLLTEA	FVLADSRTATDTE	DFEGIES                 PFEGIES   60   120   LRQHQF               LRQHQF   120   180   FQRHDG                 FQRHDG   180   240   PPTPDM               PPTPDM   240   300   VPSLLR
m665.per a665 m665.per a665 m665.per a665	VVGHEYFI  VVGHEYFI  VVGHEYFI  VVGHEYFI  PEDAGPTA  IIIIIIII  QAVTCDDE  IIIIIIIII  QAVTCDDE  IIIIIIIIIIIIII  QAVTCDDE  IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	FGLEYDLDIFMV	VAVGDFNMGAM	ENKGLNI FNTK	FVLADSRTATDTD	### PEGIES
a665 m665.per a665 m665.per a665 m665.per a665	VVGHEYFI  VVGHEYFI  VVGHEYFI  VVGHEYFI  VVGHEYFI  PEDAGPTI  PEDAGPTI  PEDAGPTI  QAVTCDDE          QAVTCDDE           QAVTCDDE           QAVTCDDE  2 TDKQPMMI :       ADKQPMMI	FGLEYDLDIFMV	VAVGDFNMGAM	ENKGLNI FNTK	FVLADSRTATDTE	### PFEGIES
m665.per a665 m665.per a665 m665.per a665	VVGHEYFI  VVGHEYFI  VVGHEYFI  VVGHEYFI  VVGHEYFI  PEDAGPTI  PEDAGPTI  PEDAGPTI  QAVTCDDE          QAVTCDDE           QAVTCDDE           ADKQPMMI        ADKQPMMI         2 3 GFSAPVHL	FGLEYDLDIFMV	VAVGDFNMGAM                        VAVGDFNMGAM  0 30  0 90 WFQLSLKEGLT                   WFQLSLKEGLT 0 90  0 150 NNFYTMTVYEK                     NNFYTMTVYEK 0 150  0 210 LDQFALWYSQAI                         LDQFALWYSQAI   LDQFALWYSQAI                         LDQFALWYSQAI                         LDQFALWYSQAI 0 210  0 270 EAVAFDYQGKRI 0 270 0 330 LLAHDSDAFTRU	ENKGLNI FNTK	IFVLADSRTATDTE	### PFTPDM
a665 m665.per a665 m665.per a665 m665.per a665	VVGHEYFF  VVGHEYFF  VVGHEYFF  VVGHEYFF  VVGHEYFF  I  PEDAGPTF  IIIIIIII  QAVTCDDF  IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	FGLEYDLDIFMV	VAVGDFNMGAM	ENKGLNI FNTK	IFVLADSRTATDTD	DFEGIES                 DFEGIES   60   120   120   LRQHQF               LRQHQF   120   180   FQRHDG   1           FQRHDG   180   240   PPTPDM   240   300   VPSLLR               VPSLLR   300   360   LPKHEK
a665 m665.per a665 m665.per a665 m665.per a665	VVGHEYFI  VVGHEYFI  VVGHEYFI  VVGHEYFI  VVGHEYFI  PEDAGPTI  PEDAGPTI  PEDAGPTI  QAVTCDDE          QAVTCDDE           QAVTCDDE           QAVTCDDE  3 GFSAPVHL         GFSAPVHL	FGLEYDLDIFMV	VAVGDFNMGAM	ENKGLNI FNTK	IFVLADSRTATDTE	DFEGIES                 DFEGIES   60   120   120   LRQHQF               LRQHQF   120   180   FQRHDG   1           FQRHDG   180   240   PPTPDM   240   300   VPSLLR               VPSLLR   300   360   LPKHEK

m665.pep	370 LLAAVEKVISDDLI           LLAAVEKVISDDLL 370	111111			11111111	111-111
m665.pep	430 KWHELNRQAAKQEN            KWHELNRQAAKQEN 430				111111111111111111111111111111111111111	1111111
m665.pep a665	490 HEWGILSAVNGNES            HEWGILSAVNGNES 490	!	111111111		1111111111	1 - 1 1 1 1 1
m665.pep	550 PKFSLENPNKARSL            PKFSLENPNKARSL					1111111
m665.pep	610 CNKLEPHRKNLVKQA            CNKLEPHRKNLVKQA 610		1111111111	11111		

# The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2165>: g665-1.seq 1 ATGAGCAAAA CCGTCCGTTA TCTGAAAGAT TACCAAACGC CTGCCTACCG

1	ATGAGCAAAA	. CCGTCCGTTA	TCTGAAAGAT	TACCAAACGC	CTGCCTACCG
51	CATTCTTGAA	ACCGAACTGC	ATTTCGACAT		
101	TGAAGTCGCG	TTTGACGGTC	GAGCCGCAGA		
151	TTGGACGGTT	CGGCAAAACT	CTTGTCCGTC	AAAATCAACG	
201	GGATTATGTG	TTGGAAGGCG	AGACGCTGAC	GATTGCAGAC	
251	AACGCTTCAC	CGTCGAAGTG	GAAACCGAAA	TCCTGCCGGC	
301	TCGCTGATGG	GGCTGTATGC	TTCCGGCGGC	AATCTGTTTA	CCCAGTGCGA
351	GCCGGAGGGC	TTCCGCAAAA	TCACGTTCTA	CATCGACCGT	CCGGATGTGA
401	TGTCCAAGTT	CACGACCACC		ACAAAAAACG	CTATCCCGTT
451	TTGCTTTCCA	ACGGCAACAA		GGCGAGTTTT	CAGACGGCCG
501	CCATTGGGTG	AAATGGGAAG	ACCCGTTTGC	CAAACCGAGT	TATCTGTTTG
551	CTTTGGTCGC	GGGCGATTTG	GCGGTAACGG	AAGACCGTTT	CACCACCATG
601	AGCGGCAGAA	ACGTCAAAAT	CGAGTTTTAC	ACCACCGAAG	CGGACAAACC
651	CAAGGTCGGC	TTTGCCGTGG	AATCGTTGAA	AAACGCGATG	AAGTGGGACG
701	AAACGCGCTT	CGGGTTGGAA		ATATTTTCAT	GGTCGTCGCC
751	GTAGGCGATT	TCAATATGGG	CGCGATGGAA	AACAAGGGTT	TGAACATTTT
801	TAACACCAAG	TTCGTCCTCG	CCGACAGCCG	CACCGCCACC	GATACCGATT
851	TCGAAGGCAT	TGAATCCGTG	GTCGGACACG	AATATTTCCA	CAACTGGACG
901	GGCAACCGCG	TAACCTGCCG	CGACTGGTTC	CAGCTTTCGC	TGAAGGAAGG
951	GCTGACCGTG	TTCCGCGACC	AAGAGTTTTC	CGGCGACCGC	GCCGGCCGCG
1001	CCGTGCGCCG	CATCGAGAAC	ATCCGCCTGC	TGCGCCAGAA	CCAGTTCCCC
1051	GAAGACGCAG	GCCCGACCGC	CCATCCGGTG	CGCCCCGTCA	GCTATGAGGA
1101	GATGAACAAT	TTCTACACCA	TGACCGTTTA	TGAAAAAGGC	GCGGAAGTGG
1151	TGCGGATGTA	TCATACCCTG	CTCGGCGAAG	AGGGCTTCCA	AAAAGGCATG
1201	AAGCTATATT	TCCAACGCCA	CGACGGACAG	GCAGTGACCT	GCGACGATTT
1251	CCGCGCGGCG	ATGGCGGATG	CGAACGGCAT	CAATCTCGAC	CAGTTCGCCT
1301	TGTGGTACAG	CCAGGCGGGC	ACGCCCGTTT	TGGAAGCCGA	AGGCCGTCTG
1351	AAAAACAATG	TTTTCGAGTT	AACCATTAAA	CAAACCGTGC	CGCCCACGCC
1401	CGATATGGCG	GACAAACAGC	CGATGATGAT	TCCCGTCAAA	GTCGGGCTTC
1451	TGAACCGCAA	CGGCGAAGCG	GTGGCATTCG	ATTATCAGGG	CAAACGCGCA
1501	ACCGAAGCCG	TGTTGCTGAT	GACCGAAGCC	GAACAGGCCT	TCCCGCTCGA
1551	AGGTGTAACC	GAAGCCGTCG	TTCCCTCGCT	GCTGCGCGGG	TTCAGCGCGC
1601 1651	CAGTGTATCT	GAACTATCCG	TACAGCGACG	ACGACCTGCT	GCTCCTGCTC
	GCCCACGACA	GCGACGCTTT	CACGTGCTGG	GAAGCCGCCC	AAACGCTCTA
1701	CCGTCGCGCC	GTCGCCGCCA	ACCTTGCCGC	GCTTTCAGAC	GGCATCGGGT



```
1751 TGCCGAAACA CGAAAAACTG CTTGCCGCCG TCGAAAAAGT CATTTCAGAC
      GACCTCTTGG ACAACGCCTT CAAAGCCCTG CTTTTGGGCG TGCCGTCCGA
1801
      AGCCGAACTG TGGGACGGCA CGGAAAACAT CGACCCGCTG CGCTACCATC
1851
1901 AGGCGCGCGA AGCCTTGTTG GATACGCTTG CCGTCCGCTT CCTGCCGAAA
     TGGCACGAAT TGGACCGTCA GGCGGCGAAG CAGGAAAACC AAAGTTACGA
ATACAGCCCC GAAACCGCCG ACTGGCGCAC GCTGCGCAAC GTCTGCCGCG
1951
2001
      CCTTCGTCCT GCGCGCCGAC CCCGCGCACA TCGAAACTGT TGCCGAAAAA
2051
      TACGGCGAAA TGGCGCAAAA CATGACCCAC GAATGGGGCA TCCTGTCCGC
2101
      CGTCAACGGC AACGAAAGCG ATACGCGCAA CTGCCTGCTG GCGCAGTTTG
2151
2201 CCGACAAGTT TTCAGACGAC GCGCTGGTGA TGGACAAATA TTTCGCCCTT
2251 ATCGGCTCAA GCCGCCGCAG CGACACCCTG CAACAGGTTC AAACCGCCTT
2301 GCAGCATCCG AAATTCAGTC TCGAAAACCC CAACAAAGCC CGTTCGCTCA
      TCGGCAGCTT CAGCCGCAAC GTCCCGCATT TTCACGCACA AGACGGCAGC
2351
2401 GGCTACCGCT TCATCGCCGA CAAAGTCATC GAAATCGACC GCTTCAACCC
      GCAGGTCGCC GCCCGCCTGG TGCAGGCGTT CAACCTCTGC AACAAGCTCG
2451
      AGCCGCACCG CAAAAACTTG GTGAAACAAG AATTGCAGTG CATTCGGGCG
      CAGGAAGGAT TGTCGAAAGA CGTGGGCGAA ATCGTCGGCA AGATTTTGGG
2551
```

### This corresponds to the amino acid sequence <SEQ ID 2166; ORF 665-1.ng>: g665-1.pep

```
1 MSKTVRYLKD YQTPAYRILE TELHFDIAEP QTVVKSRLTV EPQRAGEPLV
     LDGSAKLLSV KINGAAADYV LEGETLTIAD VPSERFTVEV ETEILPAENK
 51
     SLMGLYASGG NLFTQCEPEG FRKITFYIDR PDVMSKFTTT IVADKKRYPV
101
     LLSNGNKIDG GEFSDGRHWV KWEDPFAKPS YLFALVAGDL AVTEDRFTTM
     SGRNVKIEFY TTEADKPKVG FAVESLKNAM KWDETRFGLE YDLDIFMVVA
     VGDFNMGAME NKGLNIFNTK FVLADSRTAT DTDFEGIESV VGHEYFHNWT
251
     GNRVTCRDWF QLSLKEGLTV FRDQEFSGDR AGRAVRRIEN IRLLRQNQFP
301
     EDAGPTAHPV RPVSYEEMNN FYTMTVYEKG AEVVRMYHTL LGEEGFQKGM
     KLYFQRHDGQ AVTCDDFRAA MADANGINLD QFALWYSQAG TPVLEAEGRL
451
     KNNVFELTIK QTVPPTPDMA DKQPMMIPVK VGLLNRNGEA VAFDYQGKRA
     TEAVLLMTEA EQAFPLEGVT EAVVPSLLRG FSAPVYLNYP YSDDDLLLLL
501
     AHDSDAFTCW EAAQTLYRRA VAANLAALSD GIGLPKHEKL LAAVEKVISD
    DLLDNAFKAL LLGVPSEAEL WDGTENIDPL RYHQAREALL DTLAVRFLPK
WHELDRQAAK QENQSYEYSP ETADWRTLRN VCRAFVLRAD PAHIETVAEK
    YGEMAQNMTH EWGILSAVNG NESDTRNCLL AQFADKFSDD ALVMDKYFAL
701
     IGSSRRSDTL QQVQTALQHP KFSLENPNKA RSLIGSFSRN VPHFHAQDGS
751
    GYRFIADKVI EIDRFNPQVA ARLVQAFNLC NKLEPHRKNL VKQELQCIRA
851 QEGLSKDVGE IVGKILG*
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2167>: m665-1.seq

	-				
1	ATGAGCAAAA	CCGTGCATTA	TCTCAAAGAC	TATCAAACGC	CCGCCTACCA
51	TATTCTCAAA	ACCGATTTAC	ATTTTGATAT	TAATGAACCG	
101	TGAAGTCGCG	TTTGACGGTT	GAGCCGCAGA	GGGTAGGGGA	
151	TTGGACGGTT	CGGCGAAACT	CTTGTCCGTC	AAAATCAACG	GGGCGGCGGC
201	GGATTATGTG	TTGGAAGGAG	AGACGCTGAC	GATTGCGGGC	GTGCCGTCCG
251	AACGCTTCAC	CGTCGAAGTG	GAAACCGAAA	TCCTGCCGGC	GGAAAACAAA
301	TCGCTGATGG	GGCTGTATGC	TTCCGGCGGC	AATTTGTTTA	CCCAGTGCGA
351	GCCGGAGGGC	TTCCGCAAAA	TCACATTTTA	CATCGACCGT	CCGGATGTGA
401	TGTCCAAGTT	CACCACCACC	ATCGTCGCCG	ACAAAAAACG	CTATCCCGTT
451	TTGCTTTCCA	ACGGCAACAA	AATCGACGGC	GGCGAGTTTT	CAGACGGCCG
501	CCATTGGGTG	AAATGGGAAG	ACCCGTTTTC	CAAACCGAGC	TATCTGTTTG
551	CTTTGGTCGC	GGGCGATTTG	GCGGTAACGG	AAGACTATTT	CACCACCATG
601	AGCGGCAGAA	ACGTCAAAAT	CGAGTTTTAC	ACCACCGAAG	CGGACAAGCC
651	CAAGGTCGGC	TTTGCCGTGG	AATCGTTGAA	AAACGCGATG	AAATGGGACG
701	AAACGCGCTT	CGGTTTGGAA	TACGACTTGG	ATATTTTCAT	GGTCGTCGCC
751	GTGGGCGATT	TCAATATGGG	CGCGATGGAA	AACAAGGGTT	TGAACATCTT
801	TAACACCAAG	TTCGTCCTTG	CCGACAGCCG	CACCGCCACC	GATACCGATT
851	TCGAAGGCAT	CGAATCCGTG	GTCGGACACG	AGTATTTCCA	CAACTGGACG
901	GGCAACCGCG	TAACCTGCCG	CGACTGGTTC	CAGCTTTCGC	TGAAGGAAGG
951	GCTGACCGTG	TTCCGCGACC	AAGAATTTTC	CGGCGACCGC	GCCAGCCGCG
1001	CCGTGCGCCG	CATCGAAAAC	ATCCGCCTGC	TGCGCCAGCA	CCAGTTCCCC
1051	GAAGACGCAG	GCCCGACCGC	CCATCCGGTG	CGCCCCGCCA	GCTATGAGGA
1101	GATGAACAAT	TTCTACACCA	TGACCGTTTA	TGAAAAAGGC	GCGGAAGTAG
1151	TGCGGATGTA	TCACACCCTG	CTCGGCGAAG	AGGGCTTCCA	GAAAGGCATG
1201	AAGCTCTATT	TCCAACGCCA	CGACGGACAG	GCCGTTACCT	GCGACGATTT
1251	CCGCGCGGCG	ATGGCGGACG	CGAACGGCAT	CAATCTCGAC	CAGTTCGCCT
1301	TGTGGTACAG	CCAGGCGGGC	ACGCCCGTTT	TGGAAGCGGA	AGGTCGTCTG
1351	AAAAACAATA	TTTTCGAGTT	GACCGTCAAA	CAAACCGTGC	CGCCCACGCC
1401	CGATATGACG	GATAAACAGC	CGATGATGAT	TCCCGTCAAG	GTCGGGCTGC
1451	TGAACCGCAA	CGGCGAAGCG	GTGGCATTCG	ACTATCAGGG	CAAACGCGCG

BNSDOCID: <WO__9957280A2_l_>

وموا





```
1501 ACCGAAGCCG TGTTGCTGCT GACCGAAGCC GAACAGACCT TCCTGCTCGA
      AGGCGTAACC GAAGCCGTCG TTCCCTCGCT GCTGCGCGGG TTCAGCGCGC
      CGGTGCATCT GAACTATCCG TACAGCGACG ACGACCTGCT GCTCCTGCTC
1651
      GCCCATGACA GCGACGCCTT CACGCGCTGG GAAGCCGCCC AAACGCTCTA
1701 CCGCCGCGCC GTCGCCGCCA ACCTTGCCAC GCTTTCAGAC GGCGTTGAGC
      TGCCGAAACA CGAAAAACTG CTTGCCGCCG TCGAAAAAGT CATTTCAGAC
1751
1801 GACCTCTTAG ACAACGCCTT CAAAGCCCTG CTTTTGGGCG TGCCATCCGA
     AGCCGAGCTG TGGGACGGCG CAGAAAACAT CGACCCGCTG CGCTACCATC
1851
1901 AGGCGCGCGA AGCCTTGTTG GATACGCTTG CCGTCCACTT CCTGCCGAAA
1951 TGGCACGAAT TGAACCGTCA GGCGGCGAAG CAGGAAAACC AAAGCTACGA
      ATACAGCCCC GAAGCCGCCG GCTGGCGCAC GCTGCCGCAAC GTCTGCCGCG
2001
      CCTTTGTCCT GCGCGCCGAC CCCGCGCACA TCGAAACCGT TGCCGAAAAA
2051
      TACGGCGAAA TGGCGCAAAA CATGACCCAC GAATGGGGCA TCCTGTCCGC
2101
      CGTCAACGGC AACGAAAGCG ATACGCGCAA CCGCCTGCTG GCGCAGTTTG
2151
2201 CCGACAAGTT TTCAGACGAC GCGCTGGTGA TGGACAAATA TTTTGCCCTC
     GTCGGCTCAA GCCGCCGCAG CGACACCCTG CAACAGGTTC GAACCGCCTT
2251
2301 GCAGCATCCG AAATTCAGCC TCGAAAACCC CAACAAAGCC CGTTCGCTCA
2351 TCGGCAGCTT CAGCCGCAAC GTCCCGCATT TCCACGCAGA AGACGGCAGC
     GGCTACCGCT TCATCGCCGA CAAAGTCATC GAAATCGACC GCTTCAACCC
2401
2451 GCAGGTCGCC GCCCGCTTAG TGCAGGCGTT CAACCTCTGC AACAAGCTCG
     AGCCGCACCG CAAAAACTTG GTGAAACAAG CATTGCAGCG CATTCGGGCG
2501
     CAGGAAGGAT TGTCGAAAGA CGTGGGCGAA ATCGTCGGCA AAATTTTGGA
2551
2601 TTGA
```

This corresponds to the amino acid sequence <SEQ ID 2168; ORF 665-1>: m665-1.pep

```
1 MSKTVHYLKD YQTPAYHILK TDLHFDINEP QTVVKSRLTV EPQRVGEPLV
51 LDGSAKLLSV KINGAAADYV LEGETLTIAG VPSERFTVEV ETEILPAENK
     SLMGLYASGG NLFTQCEPEG FRKITFYIDR PDVMSKFTTT IVADKKRYPV
     LLSNGNKIDG GEFSDGRHWV KWEDPFSKPS YLFALVAGDL AVTEDYFTTM
     SGRNVKIEFY TTEADKPKVG FAVESLKNAM KWDETRFGLE YDLDIFMVVA
201
     VGDFNMGAME NKGLNIFNTK FVLADSRTAT DTDFEGIESV VGHEYFHNWT
251
     GNRVTCRDWF QLSLKEGLTV FRDQEFSGDR ASRAVRRIEN IRLLRQHQFP
301
     EDAGPTAHPV RPASYEEMNN FYTMTVYEKG AEVVRMYHTL LGEEGFQKGM
401 KLYFQRHDGQ AVTCDDFRAA MADANGINLD QFALWYSQAG TPVLEAEGRL
     KNNIFELTVK QTVPPTPDMT DKQPMMIPVK VGLLNRNGEA VAFDYQGKRA
451
     TEAVLLLTEA EQTFLLEGVT EAVVPSLLRG FSAPVHLNYP YSDDDLLLLL
501
551 AHDSDAFTRW EAAQTLYRRA VAANLATLSD GVELPKHEKL LAAVEKVISD
     DLLDNAFKAL LLGVPSEAEL WDGAENIDPL RYHQAREALL DTLAVHFLPK
    WHELNRQAAK QENQSYEYSP EAAGWRTLRN VCRAFVLRAD PAHIETVAEK
651
    YGEMAQNMTH EWGILSAVNG NESDTRNRLL AQFADKFSDD ALVMDKYFAL
701
     VGSSRRSDTL QQVRTALQHP KFSLENPNKA RSLIGSFSRN VPHFHAEDGS
751
    GYRFIADKVI EIDRFNPQVA ARLVQAFNLC NKLEPHRKNL VKQALQRIRA
    QEGLSKDVGE IVGKILD*
```

#### m665-1/g665-1 96.1% identity in 866 aa overlap

	10	20	30	40	50	60
m665-1.pep	MSKTVHYLKDYQT	PAYHILKTDL	HFDINEPOTV	VKSRI.TUEDO	DUCEDIUS	
		111:1:1:1			1.1111111	
g665-1	MSKTVRYLKDYQT	PAYRILETEL	HEDTAEPOTV	JKSDI TUEDO	•	111111
	10	20	30	40		
			30	40	50	60
	70	80	90	100		
m665-1.pep			30 <b>500</b>	100	110	120
	KINGAAADYVLEG	PILLINGVESI	CRETVEVETE	LPAENKSLMO	<b>JLYASGGNLF</b>	TQCEPEG
g665-1			Шини	<b>:                </b>		HIIII
9003-1	KINGAAADYVLEGI	STLTIADVPSI	ERFTVEVETE	LPAENKSLMO	LYASGGNLF	TOCEPEG
	<b>7</b> 0	80	90	100	110	120
	130	140	150	160	170	180
m665-1.pep	FRKITFYIDRPDV	iskftttivai	KKRYPVLLSN	GNKIDGGEFS	COLUMNAME	DECKEO
			1 1 1 1 1 1 1 1 1 1			
g665-1	FRKITFYIDRPDVN	SKFTTTIVAL	KKRYPVLLSN	GNKIDGGFFS		
	130	140	150	160	170	
			200	100	170	180
	190	200	210	220		_
m665-1.pep	YLFALVAGDLAVTE		レエン	220	230	240
		i liliida	AVTELITIEN	DKPKVGFAVE	SLKNAMKWD	ETRFGLE
g665-1			111111111	1111111111	11111111	[[[]]]
3000 1	YLFALVAGDLAVTE	DRITIMSGRN	VKIEFYTTEA		SLKNAMKWDE	ETRFGLE
	190	200	210	220	230	240
	•••					_
665 1	250	260	270	280	290	300
m665-1.pep	YDLDIFMVVAVGDF	NMGAMENKGL	NIFNTKFVLA	DSRTATDTDF	EGTESVVCHE	
		4 1 1 1 1 1 1 1 1 1 1	1   1   1   1   1   1   1	111111111		
g665-1	YDLDIFMVVAVGDF	NMGAMENKGL	NIFNTKFVLA	DSRTATOTOF	FGTECTACAM	11111
					PGT FO A A GHF	YEHNWT

	25	0 26	0 27	0 28	0 290	300
m665-1.pep	31 GNRVTCRDW	FQLSLKEGLT	VFRDOEFSGD	RASRAURRIE	MIDIIDAUARA	EDDCDMA
	111111111			1   •	1111111	
g665~1	GNRVTCRDW:	t Oronvegel	VERDQEFSGD	RAGRAVRRIE	NIRLLRQNQFP	EDAGPTAHPV
	310	0 32	0 33	0 34	0 350	360
	370		0 39	0 40	0 410	420
m665-1.pep	RPASYEEMNI	NFYTMTVYEK	GAEVVRMYHT:	LLGEEGFQKG	MKIVEOPUDCO	TIMODODIA.
q665-1	11:11:11:			1111111111	MKLYFQRHDGQ MKLYFQRHDGQ	
3	370	380	39	0 40		AVTCDDFRAA 420
					910	420
m665-1.pep	430			0 46	0 470	480
			SIPVLEAEGR	LKNNIFELTV	KOTVPPTPDMT:	DKOPMMIPVK
g665-1	MADANGING	OL APM I 2 OV	TPVLEAEGRI	LKNNVFELTI	KQTVPPTPDMA:	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
	430	) 44(	450	9 460	470	480
	490	500	510			
m665-1.pep	VGLLNRNGEA	VAFDYOGKRA	TEAVLLLTE	AEOTELLECUS	TENUUDOT TOC	540
-665 1			111111111			
g665-1	VGLLNRNGEA	VANEDIOGENE	TEAVLLMTER	AEQAFPLEGV1	reavvpsllrgi	SAPVYLNYP
	450	300	510	520	530	540
	550			580	590	600
m665-1.pep	YSDDDLLLLL	AHDSDAFTRW	EAAOTLYRRA	VAANLATLS	GVELPKHEKLI	7 7 1 1 D 1 1 1 2 2 2 2
g665-1	YSDDDLLLLL	AHDSDAFTCW			:           GIGLPKHEKLI	11111111
	550	560	570	580		AAVEKVISD 600
	610	600				000
m665-1.pep			630 WDGAENIDDI	640	650 DTLAVHFLPKW	660
		111111111	111:11111	111111111	11111	111.111.11
g665-1	DEFENAL VAL	LLGVPSEAEL	WDGTENIDPL	RYHQAREALL	DTLAVRFLPKW	HELDROAAK
	610	620	630	640	650	660
	670	680	690	700	710	720
m665-1.pep	QENQSYEYSP:	EAAGWRTLRN	VCRAFVLRAD	PAHTETVARK	VCEMACNMENT	WCTT CALING
g665-1	1111111111	1:1   1   1   1	1111111	1111111111		
9000 2	670	680	690	700	YGEMAQNMTHE 710	WGILSAVNG 720
				. • • •	,10	720
m665-1.pep	730	740	750	760	770	780
	-			* 1	QQVRTALQHPK	
g665-1	MESDIKNCLL	AQFADKFSDD	ALVMDKYFAL	IGSSRRSDTL	QQVQTALQHPK	FSLENPNKA
	730	740	750	760	770	780
	790	800	810	820	222	
m665-1.pep	RSLIGSFSRNV	/PHFHAEDGS	SYRFIADKVI	EIDRFNPOVA	830 ARLVQAFNLCN	840
-CC5 1				111111111		
g665 <b>-</b> 1	RSLIGSFSRNV 790	PHFHAQDGS( 800	SYRPIADKVI	EIDRFNPQVA	ARLVQAFNLCN:	KLEPHRKNL
	, 90	800	810	820	830	840
	850	860				
m665-1.pep	VKQALQRIRAÇ	DEGLSKDVGE	VGKILDX			
g665-1	VKQELQCIRAÇ	DEGLSKDVGE:	IIIIII VGKILGX			
	850	860				

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2169>:

	3				
1	ATGAGCAAAA	CCGTGCATTA	TCTCAAAGAC	TATCAAACGC	CCGCCTACCA
51	TATTCTCAAA	ACCGATTTAC	ATTTTGATAT	TAACGAACCG	CAAACCATTC
101	TGAAGTCGCG	TTTGACGGTC	GAGCCGAAGA	GGGTGGGAGA	GCCGCTGCTC
151	TTGGACGGTT	CGGCGAAACT	CTTGTCCGTC	AAAATCAACG	GCGTGGCGGG
201	GGATTATGTG	TTGGAAGGCG	AGACGCTGAC	GATTGCGGAC	GTGCCGTCCG
251	AACGCTTCAC	CGTCGAAGTG	GAAACCGAAA	TCCTGCCGGC	GCDANACANA
301	TCGCTGATGG	GGCTGTATGC	GTCCGCCGGT	AACCTGTTTA	CCCACTCCCA
351	GCCGGAGGGC	TTCCGCAAAA	TCACGTTCTA	TATCGACCGT	CCCCAMCMCA
401	TGTCCAAGTT	CACGACCACC	ATCGTCGCGG	ACAAAAAACG	CTATCCCCTT
451	TTGCTCTCCA	ACGGCAACAA	AATCGACGGC	GGCGAGTATT	CACACCCCCI



501				C CAAACCGAG	TATCTGTTTG
551				G AAGACTATT	F CACCACCATG
601				CACCACCGAA	GCGGACAAGCC
651	CAAGGTCGGC			A AAACGCAAT	AAGTGGGACG
701	AAACGCGCTT				GGTCGTCGCC
751	GTGGGCGATT			A AACAAGGGTT	
801	TAACACCAAG	TTCGTCCTTC	CCGACAGCC	TACCGCCACC	
851	TTGAAGGCAT	CGAATCCGT			
901	GGCAACCGCG	TGACCTGCCG			
951	GTTGACCGTG	TTCCGCGACC			
1001	CCGTGCGCCG	TATCGAAAAC	ATCCGCCTGC	TGCGCCAGCA	
1051	GAAGACGCAG	GTCCGACCGC		CGCCCCGCCC	
1101	GATGAACAAT	TTCTACACCA	TGACCGTTTA		
1151	TGCGGATGTA	TCACACCTTG	CTCGGCGAAG		
1201	AAGCTCTATT	TCCAACGCCA	CGACGGACAG	GCTGTTACCT	
1251	CCGCGCGGCG	ATGGTGGACG	CGAACGGCAT		
1301	TGTGGTACAG	CCAAGCAGGT	ACGCCGGTTT		
1351	AAAAACAATG	TGTTCGAGTT	AACCATCAAA	CAAACCGTGC	CGCCCACGCC
1401	CGATATGGCG	GACAAACAGC	CGATGATGAT		
1451	TGAACTGCAA	CGGCGAAGCG	GTGGCATTTG		CAAACGCGCG
1501	ACCGAAGCCG	TGTTGCTGCT	GACCGAAGCC	GAACAGACCT	TCCAGTTCGA
1551	AAGCGTAACC	GAAGCCGTCG	TTCCCTCGCT	GCTGCGCGG	TTCAGCGCGC
1601	CGGTGCATCT	GAACTATCCG	TACAGCGACG	ACGACCTGCT	GCTTCTGCTC
1651	GCCCATGACA	GCGACGCCTT	CACGCGCTGG	GAAGCCGCAC	AAACGCTCTA
1701	CCGCCGTGCC	GTCGCCGCCA	ACCTTGCCGC	GCTTTCAGAC	GGCGTCGAGT
1751	TGCCGAAACA	CGAAAAACTG	CTTGCCGCCG	TCGAAAAAGT	CATTTCAGAC
1801	GACCTCTTAG	ACAACGCTTT	CAAAGCCCTG	CTTTTGGGTG	TGCCGTCTGA
1851	AGCCGAGCTG	TGGGACGGCG	CGGAAAACAT	CGACCCGCTG	CGCTACCATC
1901	AGGCGCGCGA	AGCCTTGTTG	GATATACTTG	CCGTCCGCTT	TCTGCCGAAA
1951	TGGCACGAAT	TGAACCGTCA	GGCGGCGAAG	CAGGAAAACC	AAAGCTACGA
2001	GTACAGCCCC	GAAGCCGCCG	GTTGGCGCAC	GCTGCGCAAT	GTCTGCCGCG
2051	CCTTCGTCCT	GCGCGCCGAT	CCCGCGCACA	TCGAAACCGT	TGCCGAGAAA
2101	TACGCCGAAA	TGGCGCAAAA	CATGACCCAC	GAATGGGGCA	TCCTGTCCGC
2151	CGTCAACGGC .	AACGAAAGCG	ATACGCGCAA	CCGCCTGCTG	GCGCAGTTTG
2201	CCGACAAGTT '	TTCAGACGAC	GCGCTGGTGA	TGGACAAATA	TTTCGCCCTC
2251	GTCGGCTCAA	GCCGCCGCAG	CGACACCCTG	CAACAGGTTC	AAACCGCCTT
2301	GCAGCATCCG 2	AAGTTCAGCC	TCGAAAATCC	CAACAAAGCC	CGCTCGCTCA
2351	TCGGCAGCTT (	CAGCCGCAAC	GTCCCGCATT		AGACGGCAGC
2401		TCATCGCCGA	CAAAGTCATC		GCTTTAACCC
2451		GCCCGCCTGG	TGCAGGCGTT		AACAAGCTCG
2501		CAAAAACTTG	GTGAAACAAG		CATTCGGGCG
2551		rgtcgaaaga		ATCGTCGGCA	AAATTTTGGA
2601	TTGA				

# This corresponds to the amino acid sequence <SEQ ID 2170; ORF 665-1.a>:

```
1 MSKTVHYLKD YQTPAYHILK TDLHFDINEP QTIVKSRLTV EPKRVGEPLV
51 LDGSAKLLSV KINGVAADYV LEGETLTIAD VPSERFTVEV ETEILPAENK
      SLMGLYASAG NLFTQCEPEG FRKITFYIDR PDVMSKFTTT IVADKKRYPV
101
     LLSNGNKIDG GEYSDGRHWV KWEDPFAKPS YLFALVAGDL AVTEDYFTTM
201 SGRNVKIEFY TTEADKPKVG FAVESLKNAM KWDETRFGLE YDLDIFMVVA
251 VGDFNMGAME NKGLNIFNTK FVLADSRTAT DTDFEGIESV VGHEYFHNWT
301 GNRVTCRDWF QLSLKEGLTV FRDQEFSGDR ASRAVRRIEN IRLLRQHQFP
      VGDFNMGAME NKGLNIFNTK FVLADSRTAT DTDFEGIESV VGHEYFHNWT
351 EDAGPTAHPV RPARYEEMNN FYTMTVYEKG AEVVRMYHTL LGEEGFOKGM
     KLYFORHDGO AVTCDDFRAA MVDANGINLD QFALWYSQAG TPVLDAQGRL
451 KNNVFELTIK QTVPPTPDMA DKQPMMIPVK IGLLNCNGEA VAFDYQGKRA
501
     TEAVLLLTEA EQTFQFESVT EAVVPSLLRG FSAPVHLNYP YSDDDLLLLL
551 AHDSDAFTRW EAAQTLYRRA VAANLAALSD GVELPKHEKL LAAVEKVISD
601 DLLDNAFKAL LLGVPSEAEL WDGAENIDPL RYHQAREALL DILAVRFLPK
     WHELNRQAAK QENQSYEYSP EAAGWRTLRN VCRAFVLRAD PAHIETVAEK
651
     YAEMAQNMTH EWGILSAVNG NESDTRNRLL AQFADKFSDD ALVMDKYFAL
701
     VGSSRRSDTL QQVQTALQHP KFSLENPNKA RSLIGSFSRN VPHFHAEDGS
751
     GYRFIADKVI EIDRFNPQVA ARLVQAFNLC NKLEPHRKNL VKQALQRIRA
801
851 QEGLSKDVGE IVGKILD*
```

#### a665-1/m665-1 97.2% identity in 867 aa overlap

2665 1	10	20	30	40	50	60
a665-1.pep	MSKTVHYLKDYQTP	AYHILKTDLH	IFDINEPOTI	VKSRLTVEPKE	VGEPLVLDGS	
m665-1	MSKTVHYLKDYQTP	IIIIIIIIII AYHILKTOLH			1111111111	111111
	10	20	30	40	20 SEPTATORS	AKLLSV 60
	70	80	90	100	110	120

a665-1.pep	KINGVAADYVLEGETLTIADVPSERFTVEVETEILPAENKSLMGLYASAGNLFTQCEPEG
m665-1	:
	70 80 90 100 110 120
	130 140 150 160 170 180
a665-1.pep	FRKITFYIDRPDVMSKFTTTIVADKKRYPVLLSNGNKIDGGEYSDGRHWVKWEDPFAKPS
m665-1	FRKITFYIDRPDVMSKFTTTIVADKKRYPVLLSNGNKIDGGEFSDGRHWVKWEDPFSKPS
	130 140 150 160 170 180
a665-1.pep	190 200 210 220 230 240
	YLFALVAGDLAVTEDYFTTMSGRNVKIEFYTTEADKPKVGFAVESLKNAMKWDETRFGLE
m665-1	YLFALVAGDLAVTEDYFTTMSGRNVKIEFYTTEADKPKVGFAVESLKNAMKWDETRFGLE
	250 250 240
a665-1.pep	YDLDIFMVVAVGDFNMGAMENKGLNIFNTKFVLADSRTATDTDFFGTFSVVCUPVEVNUM
m665-1	
	250 260 270 280 290 300
	310 320 330 340 350 360
a665~1.pep	GNRVTCRDWFQLSLKEGLTVFRDOEFSGDRASRAVRRIENIRI.ROHOFBEDAGETA HDV
m665-1	
	310 320 330 340 350 360
a665-1.pep	370 380 390 400 410 420
• •	RPARYEEMNNFYTMTVYEKGAEVVRMYHTLLGEEGFQKGMKLYFQRHDGQAVTCDDFRAA
m665-1	RPASYEEMNNFYTMTVYEKGAEVVRMYHTLLGEEGFQKGMKLYFQRHDGQAVTCDDFRAA
	420
a665-1.pep	430 440 450 460 470 480 MVDANGINLDQFALWYSQAGTPVLDAQGRLKNNVFELTIKQTVPPTPDMADKQPMMIPVK
m665-1	:
	430 440 450 460 470 480
	490 500 510 520 530 540
a665-1.pep	IGLLNCNGEAVAFDYQGKRATEAVLLLTEAEOTFOFESVTEAVVPSLLRGFSADVHINVD
m665-1	:
	490 500 510 520 530 540
a665-1.pep	550 560 570 580 590 600
	YSDDDLLLLLAHDSDAFTRWEAAQTLYRRAVAANLAALSDGVELPKHEKLLAAVEKVISD
m665-1	YSDDDLLLLLAHDSDAFTRWEAAQTLYRRAVAANLATLSDGVELPKHEKLLAAVEKVISD
	440
a665-1.pep	610 620 630 640 650 660 DLLDNAFKALLLGVPSEAELWDGAENIDPLRYHQAREALLDILAVRFLPKWHELNRQAAK
m665-1	
	610 620 630 640 650 660
	670 680 690 700 710 720
a665-1.pep	QENQSYEYSPEAAGWRTLRNVCRAFVLRADPAHIETVAFKYAFMAONMTHEWGILSAVAC
m665-1	
	670 680 690 700 710 720
a665-1.pep	730 740 750 760 770 780
• • •	NESDTRNRLLAQFADKFSDDALVMDKYFALVGSSRRSDTLQQVQTALQHPKFSLENPNKA
m665-1	NESDTANKLLAQFADKFSDDALVMDKYFALVGSSRRSDTLQQVRTALQHPKFSLENPNKA
	780
a665-1.pep	790 800 810 820 830 840 RSLIGSFSRNVPHFHAEDGSGYRFIADKVIEIDRFNPQVAARLVQAFNLCNKLEPHRKNL
m665-1	_
	RSLIGSFSRNVPHFHAEDGSGYRFIADKVIEIDRFNPQVAARLVQAFNLCNKLEPHRKNL



```
790
                            800
                                      810
                                              820
                                                        830
                                                                 840
                   850
                            860
 a665-1.pep
            VKQALQRIRAQEGLSKDVGEIVGKILDX
            11111111111111111111111111111111
m665-1
            VKQALQRIRAQEGLSKDVGEIVGKILDX
                   850
                            860
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2171>:
      g666.seq
                ATGCTTTGTA TGAATTATCA ATCAAACTCA GGCGAAGGAG TGCTTGTAGC
                TAAAACATAT TTATTGACTG CATTGATAAT GTCTATGGTA ATCTCCGGAT
            51
                GTCAAGTCAT CCATGCCAAT CAAGGTAAGG TTAATACTAA TTCTGCTGTC
           101
                ATCGCAGGTG CAGACGCTCA CACGCCTGAA CATGTAACGG GACTGACCGA
           151
               ACAAAAGCAG GTGATTGCAA GTGATTTTAT AGTAGCGTCA GCCAATCCAT
           201
               TAGCAACACA AGCTGGCTAT GATATCTTAA AGCAAGGCGG TAGCGCTGCA
           251
          301 GATGCGATGG TGGCGGTGCA GACGACACTA AGCTTGGTAG AGCCACAGTC
               GTCAGGCTTG GGCGGTGGTG CATTTGTGTT GTATTGGGAC AATACCGCCA
           351
               AAACATTGAC CACATTTGAT GGGCGTGAGA CGGCACCGAT GCGTGCGACG
           401
               CCAGAATTAT TTTTGGATAA AGATGGTTAA CCATTGAAAT TTATGGAAGC
          451
          501 GGTGGTCGCT CGGTAGGTAC GCCTGCTATC CCTAAACTGA
This corresponds to the amino acid sequence <SEQ ID 2172; ORF 666.ng>:
     g666.pep
               MLCMNYQSNS GEGVLVAKTY LLTALIMSMV ISGCQVIHAN QGKVNTNSAV
           51 IAGADAHTPE HVTGLTEQKQ VIASDFIVAS ANPLATQAGY DILKQGGSAA
               DAMVAVQTTL SLVEPQSSGL GGGAFVLYWD NTAKTLTTFD GRETAPMRAT
               PELFLDKDGX PLKFMEAVVA RXVRLLSLN*
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2173>:

.seq					_
1	ATGCCTTGTA	TGAATCATCA	ATCAAACTCA	GGCGAAGGAG	TGCTTGTGGC
51	TAAAACATAT	TTATTGACTG	CATTGATAAT	GTCTATGACA	ATCTTGTGGC
101	GTCAAGTCAT	CCATGCCAAT	CAAGGTAAGG	TTAATACTCA	TTCTCTGGAT
151	ATCACAGGTG	CAGACGCTCA	CACGCCTGAA	CATGCAACGG	CACTGCTGTC
201	ACAAAAGCAG	GTGATTGCAA	GTGATTTTAT	GGTAGCGTCA	CCCAAMCCA
251	TAGCAACACA	AGCTGGCTAT	GATATCTTAA	AGCAAGGCGG	GCCAATCCAT
301	GATGCGATGG	TGGCGGTGCA	GACGACACTA	AGCTTGGTAG	AGCGCTGCA
351	GTCAGGCTTG	GGCGGTGGTG	CATTTGTGTTT	GTATTGGGAT	AGCCACAGTC
401	AAACATTGAC	CACATTTGAT	GGGCGTGAGA	CGGCACCGAT	AATACCGCCA
451	CCGGAATTAT	TTTTGGATAA	AGATGGTCAA	CCATTGAAAT	GCGTGCGACG
501	GGTGGTCGTG	GTCCCTCCCT	GGGTACCCCT	GCTATCCCTA	TTATGGAAGC
		4.00010001	GGGIACGCCI	GCTATCCCTA	AACTGA

## This corresponds to the amino acid sequence <SEQ ID 2174; ORF 666>:

- F - F					
1	MPCMNHQSNS	GEGVLVAKTY	LLTALIMSMT	TSGCOVTHAN	OCEANIMITED ***
51	ITGADAHTPE	HATGLTEQKQ	VIASDEMVAS	ANPLATONCY	DILYOCOGA
101	DAMVAVQTTL	SLVEPQSSGL	GGGAFVI.YWD	MADKAI AACI	DILLOGGSAA
151	PELFLDKDGQ	PLKFMEAVVV	VARWVRLLST	N*	GRETAPMRAT
				• •	

# Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

### m666/g666 93.9% identity in 181 aa overlap

m666.pep	10 MPCMNHQSNSGEGVI         :               MLCMNYQSNSGEGVI 10					
m666.pep	70	80	90	100	110	120
	HATGLTEQKQVIASI	OFMVASANPL	ATQAGYDILK	QGGSAADAMV	AVQTTLSLVE	PQSSGL

. <del>. .</del>

### 1069

g666	:	Ĺ
	130 140 150 160 170 180	)
m666.pep		
g666	GGGAFVLYWDNTAKTLTTFDGRETAPMRATPELFLDKDGXPLKFMEAVV-ARXVRLLSI	
-	130 140 150 160 170	_
	• • • • • • • • • • • • • • • • • • • •	
m666.pep	NX	
g666	NX	
	180	
The following p	partial DNA sequence was identified in N. meningitidis <seq 2175="" id="">:</seq>	
acco.seq	ATGCCTTGTA TGAATCATCA ATCAAACTCA GGCGAAGGAG TGCTTGTGGC	
51	TAAAACATAT TTATTGACTG CATTGATAAT GTCTATGACA ATCTCTGGAT	
101	GTCAAGTCAT CCATGCCAAT CAAGGTAAGG TTAATACTCA TTCTCCTCTC	
151	ATCACAGGTG CAGACGCTCA CACGCCTGAA CATGCAACGG GACTGACCGA	
201 251	ACAAAAGCAG GTGATTGCAA GTGATTTTAT GGTAGCGTCA GCCAATCCAT	
301	TAGCAACACA AGCTGGCTAT GATATCTTAA AGCAAGGCGG TAGCGCTGCA GATGCGATGG TGGCGGTGCA GACGACACTA AGCTTGGTAG AGCCACAGTC	
351	GTCAGGCTTG GGCGGTGGTG CATTTGTGTT GTATTGGGAT AATACCGCCA	
401	AAACATTGAC CACATTTGAT GGGCGTGAGA CGGCACCGAT GCGTGCGACC	
451	CCGGAATTAT TTTTGGATAA AGATGGTCAA CCATTGAAAT TTATGGAACC	
501	GGTGGTCGTG GTCGCTCGGT GGGTACGCCT GCTATCCCTA AACTGA	
This correspond	Is to the amino acid sequence <seq 2176;="" 666.a="" id="" orf="">:</seq>	
a666.pep	MPCMNHOSNS CECUIVAVEY LIERITMONE TOCCO	
51	MPCMNHQSNS GEGVLVAKTY <u>LLTALIMSMT ISGCQVI</u> HAN QGKVNTHSAV ITGADAHTPE HATGLTEQKQ VIASDFMVAS ANPLATQAGY DILKQGGSAA	
101	DAMVAVQTTL SLVEPQSSGL GGGAFVLYWD NTAKTLTTFD GRETAPMRAT	
151	PELFLDKDGQ PLKFMEAVVV VARWVRLLSL N*	
-6661-666	100 00 3 3	
m666/a666	100.0% identity in 181 aa overlap	
	10 20 30 40 50 60	
m666.pep	MPCMNHQSNSGEGVLVAKTYLLTALIMSMTISGCQVIHANQGKVNTHSAVITGADAHTPE	
a666	MFCMNAQSNSGEGVLVARTYLLTALIMSMTISGCQVIHANQGKVNTHSAVITGADAHTPE	
	10 20 30 40 50 60	
	70 80 90 100 110 120	
m666.pep	HATGLTEQKQVIASDFMVASANPLATOAGYDILKOGGSAADAMVAVOTTISIVE POSSO	
- 666		
a666	HATGLIEQKQVIASDEMVASANPLATQAGYDILKQGGSAADAMVAVQTTLSLVEPQSSGL	
	70 80 90 100 110 120	
	130 140 150 160 170 180	
m666.pep	GGGAFVLYWDNTAKTLTTFDGRETAPMRATPELFIDKDGOPLKFMFAYXXXXAPWXDLLCT	
a666		
a000	130 140 150	
	130 140 150 160 170 180	
m666.pep	NX 	
a666	NX	

WO 99/57280



```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2177>:
       g667.seq
                 atgcggtttg tettetgttt gggcgGAGAG ATAGtttctg atccgtgtga
             51 tttccAtttg gtattcgtcc gcgtcgaatc tgccgctgAc CAGAcagaaa
            101 cgCAGataca tCaaatacgt attcacggca tcggtttcgc aatAAttgcg
            151 GAtttccttc agcgtgcccg cgtgGAacgc ttcccacact ttgctgccgt
            201 ccataCCCAg cttGCCCGGA AAGCCGCACA GTTTcgcCat atcgtccagC
251 GGCACATTcg ccctcggctG GTAAAGCGCA AGCAAATCCA TCAAATCCA
                 GGCACATTCG ccctcggctG GTAAAGCGCG AGCAAATCCA TCAAATCGCA
            301 GTGGCGTTGG TGATAACGGC TGATGTAGTT GTTCCActtg AAATCGCGGC
            351 tgtcgccgAA ATCGccgTCG CCCGTATCCC AATAGCGCGC GGCGTTGATG
            401 CCGTATATCA GGGAGCGGTA ATGCAGTACG GGCAGGTCGA AACCGCCGCC
            451 GTTCCAGCTG ACCAGTTGCG GCGTATGTTT TTCAACCAAT TCGAAAAACT
                TGGCAATCAC GACTTCTTCG CCATCGTCCA TCTCGCCGAT GGTGCCGACA
                 TGAACCTTGT CCTGCCCCCA GCGCATACAG CAGGAAACCG CCACAACCTG
            551
            601 ATGGAGGTGG TGCTGCATAA AATCGCCGCC GGTCTGTGCG CGGCGTTTCT
            651 GCTGCGCGAA CAGCACCACT TCGTCATCCG GCAGGGAAGA CGGCAAGTCA
            701 TACAACGTAC GGATACCCTG CACATCGGGT ACGGTTTCAA TATCGAAAGC
            751 CAAAATCGTA TTCATGGCAG tACCTTGCAT tcaAAAACAG ACtTGCGCCT
            801
                ATTgTgtcaT TAA
 This corresponds to the amino acid sequence <SEQ ID 2178; ORF 667.ng>:
      g667.pep
                MRFVFCLGGE IVSDPCDFHL VFVRVESAAD QTETQIHQIR IHGIGFAIIA
             1
                DFLQRARVER FPHFAAVHTQ LARKAAQFRH IVQRHIRPRL VKREQIHQIA
VALVITADVV VPLEIAAVAE IAVARIPIAR GVDAVYQGAV MQYGQVETAA
            51
                VPADQLRRMF FNQFEKLGNH DFFAIVHLAD GADMNLVLPP AHTAGNRHNL
                MEVVLHKIAA GLCAAFLLRE QHHFVIRQGR RQVIQRTDTL HIGYGFNIES
                QNRIHGSTLH SKTDLRLLCH *
           251
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2179>:
      m667.seq (PARTIAL)
                ATGCGGCTTT TCCCCGGCTT GTGCGGACAG GTAATTCCGC ATCCGTTTGA
             1
            51 TTTCCATTTC GTATTCGTCC GCATCCAGCC TGCCGCTGAC CAGACAGAAA
           101 CGCAGGTACA TCAGATAAGT GTTTGCCGCG TCGGTTTCGC AATAATTGCG
           151 GATTTCCTTC AGCCTGCCCG TATGGAATGC CTCCCAAACC TTGCTGCCGT
           201 CCATACCCAG CTTGCCCGGA AAACCGCACA GTTTCGCCAT ATCGTCCAGC
251 GGCACGTTTG CCCTCGGCTG GTAAAGCGCA ATCGTCCAGC
                GGCACGTTTG CCCTCGGCTG GTAAAGCGCG AGCAAATCCA TCAAATCGCA
           301 GTGGCGTTGG TGATAACGGC TGATGTAGTT GTTCCACTTG AAATCGCGGC
                TGTCGCCGAA ATCGCCGTCG CCCATATCCC AATAGCGCGC GGCGTTGATG
           401 CCGTATATCA GGGAGCGGTA ATGCAGTACG GGCAGATCGA AACCGCCGCC
           451 GTTCCAACTG ACCAGTTGCG GCGTATGTTT TTCAATCAAT TCGAAAAATT
                TAGCAATGAC CACTTCCTCG CCGTCATCCA TCTCGCCGAT GGTGCCGACA
                TGTACTTTAT CCTGCCCCCA ACGCATGCAG CACGAAATCG CCACAACCTG
           551
           ATGAAGATGA TGCTGCATAA AATCGCCGCC CGTCTGAGCA CGGCGTTTGT
           651
                GCTGGGCAAT CAGCACCACT TG...
This corresponds to the amino acid sequence <SEQ ID 2180; ORF 667>:
     m667.pep
                (partial)
               MRLFPGLCGQ VIPHPFDFHF VFVRIQPAAD QTETQVHQIS VCRVGFAIIA
            1
           51 DFLQPARMEC LPNLAAVHTQ LARKTAQFRH IVQRHVCPRL VKREQIHQIA
               VALVITADVV VPLEIAAVAE IAVAHIPIAR GVDAVYQGAV MQYGQIETAA
          151
               VPTDQLRRMF FNQFEKFSND HFLAVIHLAD GADMYFILPP THAARNRHNL
               MKMMLHKIAA RLSTAFVLGN QHHL...
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

g667	MRFVFCLGGEIVSDPCDFI	HLVFVRVESAADQ 20 30	TETQIHQIRIHGI 40	GFAIIADFLQ 50	RARVER 60
m667. <b>pe</b> p	70	30 90 RHIVQRHVCPRLV	100 KREQIHQIAVALV	110 ITADVVVPLE	120 IAAVAE
g667	FPHFAAVHTQLARKAAQFI	RHIVQRHIRPRLV	KREQIHQIAVALV 100	ITADVVVPLE:	IAAVAE 120
m667.pep	130 14 IAVAHIPIARGVDAVYQGA     :	AVMOYGOIETAAV	160 PTDQLRRMFFNQF	170 EKFSNDHFLA	
g667	IAVARIPIARGVDAVYQGA 130 14	AVMQYGQVETAAV:	PADQLRRMFFNQF 160	EKLGNHDFFA	::     IVHLAD 180
	190 20		220		
m667.pep	GADMYFILPPTHAARNRHN	NEMKMMEHKIAARI	LSTAFVLGNQHHL		
g667	GADMNLVLPPAHTAGNRHN 190 20	ILMEVVLHKIAAG]	LCAAFLLREQHHF 220	VIRQGRRQVIÇ 230	QRTDTL 240
g667	HIGYGFNIESQNRIHGSTI 250 26				
The following par	rtial DNA sequence was	identified in A	V. meningitidis	<seq 2<="" id="" td=""><td>181&gt;:</td></seq>	181>:
a667.seq	ATGCGGTTTG TCTTCTGTTT				
51 5	TTTCCATTTC GTATTCGTCT	GCGTCGAATC TO	CCCCTCAC CAC	CGCTTGA	
101 (	CGCAGATACA TCAGATAGGT	ATTTACCGCA TO	GGTTTCGC AATA	ንንምጥ <i>ል</i>	
151 (	SATTTCCTTC AGCCTGCCCG	CGTGGAACGC CT	CCCACACC TTGC	ግግርርርርጥ	
201 (	CCATACCCAG CTTGCCCGGA	AAACCGCACA GT	TTCGCCAT ATC	TCCAAC	
251 (	GGCACATTCG CCCTCGGCTG	GTAAAGCGCG AG	CAAATCCA TCAA	ATCGCA	
301 7	ATGACGTTGG TGGTAGCGGC	TGATGTAGTT GI	TCCACTTG AAAT	CGCGGC	
351 7	TGTCGCCGAA ATCGCCGTCG	CCCATATCCC AP	TAGCGCGC GGC	STTGATG	
401 (	CCGTGTAGCA GCGAACGGTA	ATGCAGAACC GG	CAGGTCGA AACC	CGCCGCC	
451 0 501 3	STTCCAACTG ACCAGTTGCG	GCGTATGTTT TI	CAATCAAC TCGA	TTAAAA	
551 1	FGGCGATAAC CACTTCCTCG	CCGTCATCCA TO	TCGCCGAT TGTA	ACCGACA	
601 A	FGGACTTTAT CCTGCCCCA	ACGCATGCAG CA	CGAAATCG CCAC	CAATCTG	
651	ATGAAGATGA TGCTGCATAA GCTGGGCAAA CAGCACCACT	TCATCCCCACC CC	TCTGAGCA CGGC	GTTTTT	-
701 7	TACAGCGTAC GGATACACTG	CACATCGTCGG GC	AGCGAGGA CGGC	CAAGTCA	
751	CAAAATCGTG GTCATGACAG	CACAICGGGI AC	GGTTTCAA TATC	GAAAGC	
801 F	ATTGTGTCAT TAA	CACCIIGIAI II	AAAA.CAG ACTT	GCGCCT	
This corresponds	to the amino acid sequer	nce <seq 2<="" id="" td=""><td>2182: ORF 667</td><td>'.a&gt;:</td><td></td></seq>	2182: ORF 667	'.a>:	
a667.pep					
1 M	MRFVFCLGGE IVSDPLDFHF	VFVCVESAAD QT	ETQIHOIG IYRI	GFAIIA	
51 0	OFLQPARVER LPHLAAVHTQ	LARKTAOFRH IV	ORHIRPRI, VKRF	ATOHTO:	
101 M	TLVVAADVV VPLEIAAVAE	IAVAHIPIAR GV	DAV*ORTV MONR	מידעו	
151 V	PTDQLRRMF FNQLEKFGDN	HFLAVIHLAD CT	DMDFILPP THAA	RNRHNL	
201 M 251 Q	NRGHDSTLY LKXDLRLLCH	QHHFIVGQRG RQ *	VIQRTDTL HIGY	GFNIES	
<b>m667/a667</b> 79	9.0% identity in 224	aa overlap			
_	10 21		40	50	60
m667.pep	MRLFPGLCGQVIPHPFDFH	fvfvriqpaadqt	ETOVHOISVCRVG	FAILADELOP	ARMEC
a667	:    :::  :    MRFVFCLGGEIVSDPLDFH  10 20	::       FVFVCVESAADQT	111:111	1111111111	11.1
					00
	70 80		100	110	120
m667.pep	70 80	HIVORHVCPRLVK	100 REOIHOIAVAT.VT	110	120

	70	80	90	100	110	120
m667.pep	130	140	150	160	170	180
moor.pcp	IAVAHIPIARGVDA	VIQGAVMQIG	QIETAAVPTE	QLRRMFFNQF	EKFSNDHFL <i>F</i>	WIHLAD
a667	IAVAHIPIARGVDA	VXQRTVMQNR	QVETAAVPTD	:  QLRRMFFNQL	:::     EKFGDNHFLA	  VIHLAD
	130	140	150	160	170	180
	190	200	210	220		
m667.pep	GADMYFILPPTHAAI	RNRHNLMKMM	LHKIAARLST	AFVLGNOHHL		
	:		1111: 1111	11:11:11:		
a667	CTDMDFILPPTHAA	RNRHNLMKMM:	LHKIPTRLST.	AFLLGKQHHF	IVGQRGROVI	ORTDTL
	190	200	210	220	230	240
a667	HIGYGFNIESQNRGH	BDSTLYLKXD	LRLLCHX			
	250	260	270			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2183>:

```
9669.seq

1 ATGCGCCGCA TCGTTAAAAA ACACCAGCCC GTAAACGCGC CACATATCGT
51 TTTGGAAATT CGGATAATGA AACTGCATCG CGCGTTTGTC TTCCTTGGGC
101 GGAAACGTCC CCATCATCAT GACCGCAGCC TTCGGCGCA ACACGGGATC
151 GAAGGGATGG GTTTCGATTT CAAGCAGATT TTCAGACACG TTCAATCCTC
201 CAACAGGCAA AGCGGCAGAC AGCCGGTTTG CACCAAACCG CCAAACACGG
251 CAAGCCTTCA AACAGCATTA TCACGCCCTG CCGTTTTCGG TTACAATGCC
301 GACATCAAAC GGATACTGTA A
```

This corresponds to the amino acid sequence <SEQ ID 2184; ORF 669.ng>:

g669.pep

1 MRRIVKKHQP VNAPHIVLEI RIMKLHRAFV FLGRKRPHHH DRSLRRQHGI 51 EGMGFDFKQI FRHVQSSNRQ SGRQPVCTKP PNTASLQTAL SRPAVFGYNA

101 DIKRIL*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2185>:

m669.seq

1 ATGCGCCGCA TCATTAAAAA ACACCAGCCC ATAAACGCGC CACATATCGT
51 TTTGGAAATT CGGATAATGA AACTGCATCG CGCGTTTGTC TTCCTTGGGC
101 GGAAACGTCC CCATCATCAT GACAGCAGCC TTCGGCGGCA ACACGGGATC
151 GAAGGATGG GTTTCGATTT CAAGCAGATT TTCAGACACG TTCAATCCTC
201 CAACAGGCAA AACGGCAGAC AGCCGGTTTG CACCAAACCG CCAAACACGG
251 CAAGCCTTCA AACAGCATTA TCACGCCCTG CCGTTTTCGG TTACAATGCC
301 GACATCAAAC GGATACTGTA A

This corresponds to the amino acid sequence <SEQ ID 2186; ORF 669>:

m669.pep

1 MRRIIKKHQP INAPHIVLEI RIMKLHRAFV FLGRKRPHHH DSSLRRQHGI 51 EGMGFDFKQI FRHVQSSNRQ NGRQPVCTKP PNTASLQTAL SRPAVFGYNA

101 DIKRIL*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m669/g669 96.2% identity in 106 aa overlap

444	10	20	30	40	50	60
m669.pep	MRRIIKKHOPINAP	HIVLEIRIMK	LHRAFVFLGF	RKRPHHHDSSL	RRQHGIEGMG	FDFFOT
g669	:    :    MRRIVKKHQPVNAP	 HIVLETRTMK			111111111	<u> </u>
_	10	20	30	40	RRQHGIEGMG 50	FDFKQI 60
	70	80	90	100		

```
FRHVQSSNRQNGRQPVCTKPPNTASLQTALSRPAVFGYNADIKRILX
     m669.pep
                  FRHVQSSNRQSGRQPVCTKPPNTASLQTALSRPAVFGYNADIKRILX
     g669
                         70
                                   80
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2187>:
     a669.seq
               ATGCGCCGCA TCATTAAAAA ACACCAGCCC GTAAACGCGC CACATATCGT
            1
               TTTGGAAATT CGGATAATGA AACTGCATCG CGCGTTTGTC TTCCTTGGGC
           51
               GGAAACGTCC CCATCATCAT GACCGCAGCC TTCGGCGGCA ACACGGAATC
          101
          151 GAAGGGATGG GTTTCGATTT CAAGCAGATT TTCAGACACG TTCAATCCTC
               CAACAGGCAA AACGGCAGAC AGCCGGTTTG CACCAAACCG CCAAACACGG
          201
          251 CAAGCCTTCA AACAGCATTA TCACGCCCTG CCGTTTTCGG TTACAATGCC
          301 GACATCAAAC GGATACTGTA A
This corresponds to the amino acid sequence <SEQ ID 2188; ORF 669.a>:
     a669.pep
               MRRIIKKHQP VNAPHIVLEI RIMKLHRAFV FLGRKRPHHH DRSLRRQHGI
               EGMGFDFKQI FRHVQSSNRQ NGRQPVCTKP PNTASLQTAL SRPAVFGYNA
           51
          101 DIKRIL*
              98.1% identity in 106 aa overlap
m669/a669
                                   20
                                                      40
                                                               50
                 MRRIIKKHQPINAPHIVLEIRIMKLHRAFVFLGRKRPHHHDSSLRRQHGIEGMGFDFKQI
     m669.pep
                  MRRIIKKHQPVNAPHIVLEIRIMKLHRAFVFLGRKRPHHHDRSLRRQHGIEGMGFDFKQI
     a669
                                            30
                                                      40
                                                                         60
                         70
                                   80
                                            90
                 FRHVQSSNRQNGRQPVCTKPPNTASLQTALSRPAVFGYNADIKRILX
     m669.pep
                  a669
                 {\tt FRHVQSSNRQNGRQPVCTKPPNTASLQTALSRPAVFGYNADIKRILX}
                         70
                                  80
                                            90
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2189>:
     g670.seq
              ATGACTTGTT GCAGGAACTG CTTGGCGCGT TCGTGTTTCG GGTTGGTGAA
              AAACGCTTCC GGCGTTTCGT CTTCAAGGAT TTGCCCTTTA TCGACGAAAA
          51
              TCACGCGGTC GGCAACTTCG CGGGCAAACC CCATTTCGTG GGTTACGCAC
          101
          151
              ATCATCGTCA TGCCGCTTTC CGCCAAGTCT TTCATCACTT TCAACACTTC
              GCCGACCATT TCGGGGTCGA GTGCGGAAGT CGGCTCGTCA AACAGCATCA
          201
              CGCGCGGCTC CATCGCCAGC CCGCGCGCAA TCGCCACGCG TTGCTGCTGG
          251
          301 CCGCCGGAAA GTTGGGAAGG GAAGGCGTCT TTTTTGTGTG CCAGTCCGAC
          351
              GCGTTCCAAA AGCTCCATTG CCTTTTCTC CGCCTGTTCC GCATTTTGCC
              CCTTAACCTT CATCGGTGCG AGGGTGATGT TGTCCAACAC GGTCAGGTGC
          451
              GGGTAG
This corresponds to the amino acid sequence <SEQ ID 2190; ORF 670.ng>:
     g670.pep
              MTCCRNCLAR SCFGLVKNAS GVSSSRICPL STKITRSATS RANPISWVTH
           1
          51 IIVMPLSAKS FITFNTSPTI SGSSAEVGSS NSITRGSIAS PRAIATRCCW
             PPESWEGKAS FLCASPTRSK SSIAFFSACS AFCPLTFIGA RVMLSNTVRC
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2191>:
    m670.seq
              ATGACCTGTT GCAGGAACTG CTTGGCGCGT TCGTGTTTCG GGTTGGTAAA
          51
              AAACGCTTCG GGCGTTTCGT CTTCGAGGAT TTGCCCTTTA TCGACGAAAA
              TCACGCGGTC GGCAACTTCG CGGGCAAACC CCATTTCGTG GGTTACGCAC
         101
              ATCATCGTCA TGCCGCTTTC TGCCAAGTCT TTCATCACTT TCAACACTTC
         151
         201 GCCGACCATT TCGGGGTCGA GTGCGGAGGT CGGTTCGTCA AACAACATTA
```

351 401	CGCGCGGTTC CCGCCGGAAA GCGTTCCAAA CCTTAACCTT GGGTAG	AGCTCCATTG	GAAGGCGTCT	TTTTTGTGTG	CCAGTCCGAC
------------	----------------------------------------------------------------	------------	------------	------------	------------

### This corresponds to the amino acid sequence <SEQ ID 2192; ORF 670>:

```
m670.pep

1 MTCCRNCLAR SCFGLVKNAS GVSSSRICPL STKITRSATS RANPISWVTH
51 IIVMPLSAKS FITFNTSPTI SGSSAEVGSS NNITRGSIAK PRAIATRCCW
101 PPESWEGKAS FLCASPTRSK SSIAFFSACS AFCPLTFIGA RVMFSNTVRC
151 G*
```

# Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

```
m670/g670 98.0% identity in 151 aa overlap
                  10
                          20
                                  30
                                                   50
           MTCCRNCLARSCFGLVKNASGVSSSRICPLSTKITRSATSRANPISWVTHIIVMPLSAKS
m670.pep
           MTCCRNCLARSCFGLVKNASGVSSSRICPLSTKITRSATSRANPISWVTHIIVMPLSAKS
a670
                 10
                          20
                                  30
                                          40
                                                   50
                 70
                                  90
                                         100
                                                  110
          FITFNTSPTISGSSAEVGSSNNITRGSIAKPRAIATRCCWPPESWEGKASFLCASPTRSK
m670.pep
           FITFNTSPTISGSSAEVGSSNSITRGSIASPRAIATRCCWPPESWEGKASFLCASPTRSK
g670
                          80
                                  90
                                         100
                                                  110
                130
                         140
m670.pep
          SSIAFFSACSAFCPLTFIGARVMFSNTVRCGX
          11111111111111111111111111111111111
g670
          SSIAFFSACSAFCPLTFIGARVMLSNTVRCGX
                130
                        140
                                 150
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2193>:

```
ATGACCTGTT GCAGGAACTG CTTGGCGCGT TCGTGTTTCG GGTTGGTAAA

101 TCACGCGGTC GGCATTTCGT CTTCGAGGAT TTGCCCTTTA TCGACGAAAA

101 TCACGCGGTC GGCAACTTCG CGGCCAAGTCT TTCATCACTT TCAACACTTC

201 GCCGACCATT TCGGGGTCGA GTGCGGAGGT CGGTTCGTCA AACAACATTA

251 CGCGCGGAAA GTTGGCAAAG CCGCTGCAA TCGCCACGCG TTGCTGCTGG

301 CCGCCGGAAA GTTGGGAAGG GAAGGCGTCT TTTTTGTGTG CCAGTCGAC

351 GCGTTCCAAA AGTTCCATCG CTTTTTTCTC TGCCTGTTCC GCATTTGAC

401 CTTTAACCTT CATCGGTGCG AGGGTAATGT TTTCCAACAC GGTCAGGTGC

451 GGGTAG
```

### This corresponds to the amino acid sequence <SEQ ID 2194; ORF 670.a>:

a670.pep		•		1> 1, 010	
21	MTCCRNCLAR IMVIPLSAKS PPESWEGKAS	FITFNTSPTI	SGSSAEVGSS	NNTTDCCTAV	DD A TAMP COTA
121	G^				

m670/a670 98.0% identity in 151 aa overlap

m670.pep	10 MTCCRNCLARSCFG	20 LVKNASGVSS	30	40	50	60
	111111111111		11111111	1   1   1   1   1   1		
a 670	111 COMMODARSCEG.	PAVMYZGAZZ	SRICPLSTKI	RSATSRANP	ISWVTHIMVI	PLSAKS
	10	20	30	40	50	60

	70	80	90	100	110	120
m670.pep	FITFNTSPTISGSS	DEVICERNME	POCCEARIONA	TAMP COMPAN		
o. o.pep	1111111111111111	MEAGOSIMIL	INGSIANPRAI	TATROCWPPE	SWEGKASFLC	asptrsk
a670	FITTENTEDTICOS	A PLUC C CANALT				
2070	FITFNTSPTISGSS	WEAG22NWT.	PRGSTAKPRAI	LATRCCWPPE	SWEGKASFLC	ASPTRSK
	70	80	90	100	110	
			20	100	110	120
	130	140	150			
670	0077777777					
m670.pep	SSIAFFSACSAFCP	LTFIGARVM	FSNTVRCGX			
	11111111111111	111111111				
650						
a670 .	SSIAFFSACSAFXP	LTFIGARVM	SNTVRCGX			
	130	140				
	130	140	150			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2195>:

```
9671.seq

1 ATGATCAGCA GGGTAACAAT CAAAACGCCT TTCAATGCAC CGAATACACC
51 GCCCAAAATG CGGTTGGCAA AGCCCAGACC GACCGCCGAA ACTGCGCCGG
101 TCAGCAGCGA ACGGAGCATT TTCTGGATCA GACAGGCAAT GACGAACAGG
151 GAAATGAATG ACAGAGCCAA TGCAAACAGG CGGGTTGGAACAGG
201 GGCGAGGTCG GCGAAGAGAG TTTGCAAACAGG CGGCGAACAGG
251 CCACCCATGC CACCATCGAA CCTGCTTCCG CAATCACGCC GCGCATCGTG
301 GAAATGACGA TGCAGGCGGC GATGACGGCG GATGCCGTG CACGCGCAAT
351 GGGGAGGCTA TTCATTCGTT ACCTTGCG TTTTTATAGT TGCTTGA
```

This corresponds to the amino acid sequence <SEQ ID 2196; ORF 671.ng>: g671.pep

1 MISRVTIKTP FNAPNTPPKM RLAKPRPTAE TAPVSSERSI FWIRQAMTNR 51 EMNDRANANR RGWNEAKARS AKGAAKSLAK KKETTHATIE PASAITPRIV 101 EMTMQAAMTA EARRSAMGRL FIRYLAGDAV HAQFVQIAFG IPCVFIVA*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2197>: m671.seq

```
1 ATGACCAGCA GGGTAACAAT CAAAACGCCT TTCAATGCAC CGAATACGCC
51 GCCCAAAATG CGGTTGGCAA AGCCCAAACC GACCGCCGAA ACTGCGCTTGG
101 TCAGCAGCGA ACGGAGCATT TTCTGGATCA GACAGGCAAT GACGAACAGG
151 GAAATGAACG ACAGAGCCAA TGCAAACAGG CGGGGTTGGA ACGAGGCAAA
201 GGCGAGGTCG GCGAAGGAGG CGGCAAAGAGG TTTGGCGAAA AAGAAGGAAA
251 CCACCCATGC CGCCATTGAG CCTGCCTCCG CAATCACGCC GCGCATCGCG
301 GATAGCACGA TGCAGGCGGC GATGACGGC GAGACGAGGA GGTCGCGCAAT
351 GGGGAGGCTA TTCATTCGTT ACCTGACCGC CGATACCGTG TACGCGCAAT
401 TTGTTCAAAT CGCGTTCGGC ATCCCTTGCG TTTTTATAGT TGCTTGA
```

This corresponds to the amino acid sequence <SEQ ID 2198; ORF 671>:

1 MTSRVTIKTP FNAPNTPPKM RLAKPKPTAE TALVSSERSI FWIRQAMTNR 51 EMNDRANANR RGWNEAKARS AKEAAKSLAK KKETTHAAIE PASAITPRIA 101 DSTMQAAMTA ETRRSAMGRL FIRYLTGDTV YAQFVQIAFG IPCVFIVA*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

```
m671/g671 91.9% identity in 148 aa overlap
```

m671.pep g671	10 MTSRVTIKTPFNAPN ! !!!!!!!!!!!! MISRVTIKTPFNAPN 10		1:11111	111311111		
m671.pep	70 RGWNEAKARSAKEAA	80 KSLAKKKET:	90 [HAATEPAS]	100 ATTPRIADSTA	110	120



WO 99/57280

1076

```
{\tt RGWNEAKARSAKGAAKSLAKKKETTHATIEPASAITPRIVEMTMQAAMTAEARRSAMGRL}
      g671
                          70
                                    80
                                             90
                                                      100
                                                               110
                         130
                                   140
                   FIRYLTGDTVYAQFVQIAFGIPCVFIVAX
      m671.pep
                   11111:11:1:1:1111111111111111111
                   FIRYLAGDAVHAQFVQIAFGIPCVFIVAX
      g671
                         130
                                   140
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2199>:
      a671.seq
               ATGACCAGCA GGGTAATAAT CAAAATGCCT TTCAATGCAC CGAATACGCC
             1
               GCCCAAAATG CGGTTGGCAA AGCCCAAACC GACCGCCGAA ACTGCCCCGG
            51
               TCAGCAGCGA GCGGAGTATT TTCTGGATCA GACAGGCAAT GACGAATAGG
           101
               GAAATGAACG ACAGAGCCAA TGCAAACAGG CGGGGTTGGA ACGATGCAAA
           151
               GGCGATGTCG GCGAAGGGTG CGGCAAAGAG TTTGGCGAAA AAAAAGGCAA
               CCACCCATGC CGCCATTGAG CCAGCCTCCG CAATCACGCC GCGCATCGCG
           251
               GATAGCACGA TGCAGGCGGC GATGATGGCG GAGACGAGGA GGTCGGCAAC
           301
               GGGGAGGTTA TTCATTCGTT ACCTGACCGG CGATACCGTG TACGCGCAAT
               TTGTTCAAAT CGCGTTCGGC ATCCCTTGCG TTTTTATAGT TGCTTGA
 This corresponds to the amino acid sequence <SEQ ID 2200; ORF 671.a>:
      a671.pep
               MTSRVIIKMP FNAPNTPPKM RLAKPKPTAE TAPVSSERSI FWIRQAMTNR
               EMNDRANANR RGWNDAKAMS AKGAAKSLAK KKATTHAAIE PASAITPRIA
            51
               DSTMQAAMMA ETRRSATGRL FIRYLTGDTV YAQFVQIAFG IPCVFIVA*
          101
m671/a671
              93.9% identity in 148 aa overlap
                                   20
                                             30
                                                      40
                  MTSRVTIKTPFNAPNTPPKMRLAKPKPTAETALVSSERSIFWIRQAMTNREMNDRANANR
     m671.pep
                  MTSRVIIKMPFNAPNTPPKMRLAKPKPTAETAPVSSERSIFWIRQAMTNREMNDRANANR
     a 671
                                   20
                                            30
                                                      40
                                                               50
                                                                         60
                         70
                                   80
                                            90
                                                     100
                                                              110
                  {\tt RGWNEAKARSAKEAAKSLAKKKETTHAAIEPASAITPRIADSTMQAAMTAETRRSAMGRL}
     m671.pep
                  RGWNDAKAMSAKGAAKSLAKKKATTHAAIEPASAITPRIADSTMQAAMMAETRRSATGRL
     a671
                         70
                                   80
                                            90
                                                     100
                                                              110
                        130
                                  140
                                          149
                  FIRYLTGDTVYAQFVQIAFGIPCVFIVAX
     m671.pep
                  11111111111111111111111111111111
     a671
                  FIRYLTGDTVYAQFVQIAFGIPCVFIVAX
                        130
                                  140
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2201>:
     g672.seq
              ATGAGGAAAA TCCGCACCAA AATCTGCGGC ATCACCACAC CGGAAGACGC
              ACTGTATGCC GCCCACGCCG GCGCAGACGC ATTGGGACTG GTTTTTTACC
           51
          101
              CCCAAAGCCC CCGCGCTATC GACATCATTA AAGCACAAAA AATCGCCGCC
              GCACTGCCGC CGTTTGTCAG CGTTGTCGCC CTTTTCGTCA ACGAAAGCGC
          151
              GCAAAACATC CGCCGCATCC TTGCCGAAGT GCCGATACAC ATCATCCAAT
          201
              TCCACGGCGA CGAAGACGAT GCATTCTGCC GGCAGTTCGA CCGCCCCTAT
          301 ATTAAAGCCA TTCGTGTTCA GACGGCATCA GACATCCGAA ACGCCGCCAC
              GCGCTTCCCC AACGCTCAGG CACTGCTGTT CGATGCCTAT CACCCTTCGG
          351
              AATACGGCGG CACCGGACAC CGCTTCGact GGacgctgtt ggcggAATAT
         401
         451
              TCGGGCAAGC CGTGGGTGCT TGCCGGCGGG CTGACCCCTG AAAACGTCGG
```

CGAAGCCGTC CGCATCACCG GAGCGGAAGC GGTCGACGTA TCCGGCGGCG TGGAAGCGTC TAAAGGCAAA AAAGACCCCG CCAAAGTCGC CGCCTTTATC

GCAACCGCCA ACCGCCTATC CCGTTAA

551 601 201 ATANRLSR*

. . .

This corresponds to the amino acid sequence <SEQ ID 2202; ORF 672.ng>: g672.pep

1 MRKIRTKICG ITTPEDALYA AHAGADALGL VFYPQSPRAI DIIKAQKIAA
51 ALPPFVSVVA LFVNESAQNI RRILAEVPIH IIQFHGDEDD AFCRQFDRPY
101 IKAIRVQTAS DIRNAATRFP NAQALLFDAY HPSEYGGTGH RFDWTLLAEY
151 SGKPWVLAGG LTPENVGEAV RITGAEAVDV SGGVEASKGK KDPAKVAAFI

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2203>:

m672.seq ATGAGGAAAA TCCGCACCAA AATCTGCGGC ATCACCACAC CGGAAGACGC 51 AGCTGCCGCC GCAGCGGCAG GTGCGGATGC CGTCGGGCTG GTCTTTTTCC 101 AAGGCAGCAG CCGGGCCGTC GATATTGCCC GCGCCAAAAA AATCACCGCC 151 GCACTGCCGC CGTTTGTCAG CGTTGTCGCC CTTTTCGTCA ACGAAAGCGC 201 GCAAAACATC CGCCGCATCC TTGCCGAAGT GCCGATACAC ATCATCCAAT 251 TCCACGGCGA CGAAGACGAC GCATTCTGCC GCCAGTTCCA CCGCCCCTAT 301 ATCAAAGCCA TTCGTGTTCA GACGGCATCA GACATCCGAA ACGCCGCCAC 351 GCGCTTCCCC GACGCTCAGG CACTGCTGTT CGATGCCTAC CATCCTTCGG AATACGGCGG CACCGGAAAC CGCTTCGACT GGACGCTGCT GGCGGAATAT TCGGGCAAAC CGTGGGTGCT TGCCGGCGGG CTGACCCCTG AAAACGTCGG 451 501 CGAAGCCGTC CGCATCACCG GAGCGGAATC GGTCGATGTA TCCGGCGGTG TGGAAGCGTC TAAAGGCAAA AAAGATGCCG CCAAAGTCGC CGCCTTTATC 601 GCAACCGCCA ACCGCCTATC CCGTTAA

This corresponds to the amino acid sequence <SEQ ID 2204; ORF 672>:

m672.pep

1 MRKIRTKICG ITTPEDAAAA AAAGADAVGL VFFQGSSRAV DIARAKKITA
51 ALPPFVSVVA LFVNESAQNI RRILAEVPIH IIQFHGDEDD AFCRQFHRPY
101 IKAIRVQTAS DIRNAATRFP DAQALLFDAY HPSEYGGTGN RFDWTLLAEY
151 SGKPWVLAGG LTPENVGEAV RITGAESVDV SGGVEASKGK KDAAKVAAFI
201 ATANRLSR*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m672/g672 91.3% identity in 208 aa overlap

m672.pep	10 MRKIRTKICGITTP:             MRKIRTKICGITTP: 10		:   :	1 11:11 :	1:11:1111	11111
m672.pep	70 LFVNESAQNIRRILI           LFVNESAQNIRRILI 70		111111111	100 QFHRPYIKAII	110 RVQTASDIRN	120 IAATRFP
m672.pep	130 DAQALLFDAYHPSEY :           NAQALLFDAYHPSEY 130		11111111		1111111111	11-111
m672.pep	190 SGGVEASKGKKDAAH             SGGVEASKGKKDPAH 190	11111111	11111			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2205>: a672.seq



1	ATGAGGAAAA TCCGCACCAA AATCTGCGGC ATCACCACAC CGGAAGACGC
51	ACTGTATGCC GCCCACGCCG GCGCAGACGC ATTGGGACTG CTTTTTTTTAGG
101	CCCAAAGCCC CCGCGCTGTC GACATCATTA AAGCACACAAAA AATCACCCC
151	GUACTGUUGU UGTTTGTCAG CGTTGTCGCC CTTTTTCCTCA ACCAAACGC
201	GUARARUATU UGUUGUATUU TTGCCGAAGT ACCGATACAC AMGAMGGAAM
251	TCCACGGCGA CGAAGACGAC GCATTCTGCC GCCAGTTCCA CCGCCCCTAT
301	ATCAAGGCCA TTCGTGTTCA GACGCATCA GACATCCGAA ACGCCGCCGA
351	CCGCTTCCCC GACGCTCAGG CACTGCTGTT CGATGCCTAC CATCCTTCGG
401	AATACGGCGG CACCGGACAC CGCTTCGACT GGACGCTGTT GGCGGAATAT
451	TCGGGCAAAC CGTGGGTGCT TGCCGGCGGG CTGACCCCTG AAAACGTCGA
501	CGAAGCCATC CGCATCACCG GAGCGGAAGC GGTCGATGTA TCCGGCGGCG
551	TGGAAGCGTC TAAAGGCAAA AAAGACCCAG CCAAAGTTGC CGCCTTTATC
601	GCAACCGCCA ACCGCCTATC CCGTTAA
This correspond	ds to the amino acid sequence <seq 2206;="" 672.a="" id="" orf="">:</seq>
a672.pep	5EQ ID 2200, OKT 0/2.a>:
1	
51	MRKIRTKICG ITTPEDALYA AHAGADALGL VFYPQSPRAV DIIKAQKITA ALPPFVSVVA LFVNESAQNI RRILAEVPIH IIQFHGDEDD AFCRQFHRPY
101	IKAIRVOTAS DIRNAADRFP DAQALLFDAY HPSEYGGTGH RFDWTLLAEY
151	SGKPWVLAGG LTPENVDEAI RITGAEAVDV SGGVEASKGK KDPAKVAAFI
	ATANRLSR*
m672/a672	01 09 identitu in 200
110/2/20/2	91.8% identity in 208 aa overlap
	10
m672.pep	10 20 30 40 50 60
mo/2.pep	MRKIRTKICGITTPEDAAAAAAAGADAVGLVFFQGSSRAVDIARAKKITAALPPFVSVVA
a672	
4072	110 110 110 110 110 110 110 110 110 110
	10 20 30 40 50 60
	70 80 90 100 110
m672.pep	
	LFVNESAQNIRRILAEVPIHIIQFHGDEDDAFCRQFHRPYIKAIRVQTASDIRNAATRFP
a672	I FYNESAONIRRI I AFYRINI OF HORDEN TO THE SAONIRRI I AFYRINI AFYRINI OF HORDEN TO THE SAONIRRI I AFYRINI OF HORDEN TO THE SAONIRRI I AFYRINI OF HORDEN TO THE SAONIRRI I AFYRINI OF HORDEN TO THE SAONIRRI I AFYRINI OF HORDEN TO THE SAONIRRI I AFYRINI OF HORDEN TO THE SAONIRRI I AFYRINI OF HORDEN TO THE SAONIRRI I AFYRINI OF HORDEN TO THE SAONIRRI I AFYRINI OF HORDEN TO THE SAONIRRI I AFYRINI OF HORDEN TO THE SAONIRRI I AFYRINI OF HORDEN TO THE SAONIRRI I AFYRINI OF HORDEN TO THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF THE SAONIR OF
20.5	70
	70 80 90 100 110 120
	130 140 150 160 170 180
m672.pep	
	DAQALLFDAYHPSEYGGTGNRFDWTLLAEYSGKPWVLAGGLTPENVGEAVRITGAESVDV
a672	DAOALLEDAYHPSEYCCTCHPEDWTLLAND CONTROL
20.0	130 140
	130 140 150 160 170 180
•	190 200 209
m672.pep	190 200 209 SGGVEASKGKKDAAKVAAFIATANRLSRX
a672	
a672	

# The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2207>:

g673.seq				8-11-11		DLQ.
1	ATGGATATTG	AAACCTTCCT	TGCAGGGGAA	CGCGCCGCCG	CCCCA	maccc
51	TTGCGGCTTC	GTGGCGATTG	TCGGTCGTCC	GAACGTGGGC	ANAMA	TACCG
101	TGATGAACCA	TCTCATCGGT	CAGAAAATCA	GTATTACCAG	CARATO	AACGC
151			AACGGGGATT	TATACCAC	CAAAA	AGGCG
201	GTTCGTGTTT	GTCGATACGC	CGGGCTTTCA	AACCCACCAC	ATACC	GCGCA
251	TCAACGACAG	GCTGAATCAA	AATGTTACCG	AACCGACCAC	CGCAA	CGCGC
301	GTGGTGGTTT	TCGTCGTGGA	GGCGATGCGC	AGGCGCTCGG	CGGTG	TGGAT
351	CGTGTTGAAA	CAACTGCCCA	AGCACACGCC	CTTACCGATG	CCGAC	CGCGT
401	AAATCGACAA	GGACAAGGCG	AGCACACGCC	GGTCATTTTA	GTGAT	CAACA
451	AAATCGACAA GCCCAAGTGC	GCGCCCA A TOTAL	AAAGACCGTT	ACGCGCTGGA	GGCGT'	TTGTT
501	GAAACACGGT			GCGGCGGAGG	CGGTC	AGTGC
551	TGCCCGAAAG		- 417.001.011	GGAGCTGCTC	AAGCC	GTATC
601	CCCCCTTTTT	TCCCCATC	TATCCCGAAG	ACATGGTTAC	GGACA:	AATCG
001	GCGCGTTTTT	TGGCGATGGA	AATCGTGCGT	GAAAAACTCT	TCCGC	TATTT

. 34

651	GGGCGAGGAG	CTGCCTTATG	CGATGAACGT	CGAAGTGGAG	САСТТТСААС
701	AGGGAGACGG	TTTGAACCGC	ATCTACatcg	CCGTTTTGGT	CGACAAAGAA
751	AGCCAAAAGG	CGATTTTGAT	CGGTAAAGGC	GGGGAGCGTT	TGAAAAAAAA
801	TTCCACCGAA	GCGCGGCTGG	ATATGGAAAA	ACTGTTTGAT	AACAAACTAT
851	TTTTGAAGGT	CTGGGTCAAA	GTCAAATCCG	GTTGGGCAGA	CGACATTCGC
901	TTCCTGCGCG	AGCTGGGTTT	GTAG		

### This corresponds to the amino acid sequence <SEQ ID 2208; ORF 673.ng>:

```
MDIETFLAGE RAAGGYRCGF VAIVGRPNVG KSTLMNHLIG QKISITSKKA
51 QTTRNRVTGI YTDDTAQFVF VDTPGFQTDH RNALNDRLNQ NVTEALGGVD
101 VVVFVVEAMR LTDADRVVLK QLPKHTPVIL VINKIDKDKA KDRYALEAFV
151 AQVRAEFEFA AAEAVSAKHG LRIANLLELL KPYLPESVPM YPEDMVTDKS
201 ARFLAMEIVR EKLFRYLGEE LPYAMNVEVE QFEEGDGLNR IYIAVLVDKE
251 SQKAILIGKG GERLKKISTE ARLDMEKLFD NKVFLKVWVK VKSGWADDIR
301 FLRELGL*
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2209>:

```
ATGGATATTG AAACCTTCCT TGCAGGGGAA CGCGCCGCCG GCGGATACCG
  1
 51
     TTGCGGCTTC GTAGCGATTG TCGGCCGTCC GAACGTGGGC AAATCAACGC
     TGATGAACCA TCTCATCGGT CAGAAAATCA GTATTACCAG CAAAAAGGCG
101
151 CAGACGACGC GCAACCGCGT AACGGGGATT TATACCGACG ATACCGCGCA
201 GTTCGTGTTT GTCGATACGC CCGGCTTTCA AACCGACCAC CGCAACGCGC
251 TCAACGACAG GCTGAATCAA AATGTTACCG AGGCGCTCGG CGGCGTGGAT
301 GTGGTGGTTT TCGTCGTGGA GGCGATGCGC TTTACCGATG CCGACCGCGT
351 CGTGTTGAAA CAACTGCCCA AGCACACGCC GGTCATTTTA GTGGTCAACA
401 AAATCGACAA GGACAAGGCG AAAGACCGTT ACGCGCTGGA GGCGTTTGTT
451 GCCCAAGTGC GCGCCGAATT TGAATTTGCG GCGGCGGAGG CGGTCAGCGC
501 GAAACACGGA TTGCGGATTG CCAACCTGTT GGAGCTGATT AAGCCGTATC
551 TGCCCGAAAG CGTGCCGATG TATCCCGAAG ATATGGTTAC GGACAAATCG
601 GCGCGTTTTT TGGCGATGGA AATCGTGCGT GAAAAATTGT TCCGCTATTT
    GGGCGAGGAA TTGCCTTATG CGATGAACGT CGAAGTGGAG CAGTTTGAAG
701 AGGAAGACGG TTTGAACCGC ATCTATATCG CCGTTTTGGT CGATAAGGAA
751 AGCCAAAAGG CAATTTTAAT CGGTAAAGGC GGAGAACGTT TGAAGAAAAT
801 TTCCACCGAA GCGCGGTTGG ATATGGAAAA ACTGTTTGAT ACCAAAGTAT
851 TTTTGAAGGT CTGGGTCAAA GTCAAATCCG GTTGGGCGGA CGACATCCGC
    TTCCTGCGCG AGCTGGGTTT GTAG
```

### This corresponds to the amino acid sequence <SEQ ID 2210; ORF 673>:

6/3.pep					
1	MDIETFLAGE	RAAGGYRCGF	VAIVGRPNVG	KSTLMNHLIG	OKISTTSKKA
51	QTTRNRVTGI	YTDDTAQFVF	VDTPGFOTDH	RNALNDRINO	NUTEALGOUD
101	VVVFVVEAMR	_FTDADRVVLK	QLPKHTPVIL	VVNKIDKDKA	KDRYALEAEV
151	AQVRAEFEFA	AAEAVSAKHG	LRIANLLELI	KPYLPESVPM	YPEDMUTDKS
201	ARFLAMEIVR	EKLFRYLGEE	LPYAMNVEVE	OFEEEDGLNR	TYTAVLVDKE
251	SQKAILIGKG	GERLKKISTE	ARLDMEKLFD	TKVFLKVWVK	VKSGWADDTR
301	FLRELGL*				

# Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

### m673/g673 98.4% identity in 307 aa overlap

m673.pep	10	20	30	40	50	60
me/3.pep	MDIETFLAGERAAG	GYRCGEVAIV	'GRPNVGKSTL	MNHLIGOKIS	ITSKKAOTTF	NRVTGT
g673		5   1   1   1   1   1   1		1111111111	1111111111	3 1 1 1 1 1
9073	MDIETFLAGERAAG	PIRCGEVALV	GRPNVGKSTL	MNHLIGQKIS	ITSKKAOTTF	NRVTGI
	10	20	30	40	50	60
<b>-673</b>	70	80	90	100	110	120
m673.pep	YTDDTAQFVFVDTP	<b>FOTDHRNAL</b>	NDRLNQNVTE	ALGGVDVVVF	VVEAMR FTD2	DRVVIK
	11111111111111		1111111111	111111111	111111:111	111111

	1000
g <b>67</b> 3	YTDDTAQFVFVDTPGFQTDHRNALNDRLNQNVTEALGGVDVVVFVVEAMRLTDADRVVLK 70 80 90 100 110 120
m673.pe	
g673	OLPKHTPVILVINKIDKDKAKDRYALEAFVAQVRAEFEFAAAEAVSAKHGLRIANLLELL 130 140 150 160 170 180
m673.pe	
<b>g67</b> 3	
m673.pe	
g673	
m673.pe	P FLRELGLX
g673	   FLRELGLX
The following a673.sec 3 51 101 151 201 251 301 351 401 451 501 551 601 751 801 851 901	ATGGATATTG AAACCTTCCT TGCAGGGGAA CGCGCCGCCG ACGGATACCG TTGCGGCTTC GTAGCGATTG TCGGCCGTCC GAACGTGGGC AAATCAACGC TGATGAATCA TCTCATCGGT CAGAAAATCA GTATTACCAG CAAAAAGGCG CAGACGACGC GCAACCGCGT AACGGGGATT TATACCGACG ATACCGCGCA ATTGTGTTT GTCGATACAC CCGGTTTTCA AACCGACCAC CGCAACGCGC TTAGATCAA AACGTTACCG AGCACTCGG CGGCGTGGAT CGTGTTGAAA CAACTGCCCA AGCACACGCC GGTCATTTTA GTGGTCAACA AAATCGATAA GGACAAGGCG AACGTCGC GGTCATTTTA GTGGTCAACA GCCCAGGTGC GCCCGAATT TGAATTTGCG GCGCGGAGG CGGTCAGCGC GAACACGGA TTGCGGATT TAACCGAGG CCGACGCGC CCAACCTGT GGGCCGAAACCGC GGGCGTATC TGCCCGAAAG CGTGCCGATT TACCCGAAG ATATGGTTAC GGACAAATCG GCGCGTTTTT TACCGATG CAAAAATTGT TCCGCTATTT GGGCCAGAAAAGG CGATTTTAAT CGATGAACAT CGAAAAATTGT TCCGCTATTT AGCGATGAC ATCTATATCG CGAAAAATTGT TCCGCTATTT TTGCACCGAA GCCCGAAAACG CGGCGAAAAATTGT TCCGCTATTT TTGAAAGG CCGCTTTGG ATATGGAAAA ACTGTTTGAT ACCAAAAGTAT TTTTGAAAGGT CTGGGTCAAA GTCAAATCG GTCAAAATCG TTACCACCGAA GCCCGTTTGAT ACCAAAAATTGT TCAAAAAAAT TTTTGAAAGGT CTGGGTCAAA GTCAAATCG GTCAAAATCG CGAAAAATTGT TCAAAAAAAT TTTTGAAAGGT CTGGGTCAAA GTCAAAATCG GTCAAAATCG CGAAAAAATTGT TCAAAAAAAT TTTTGAAAGGT CTGGGTCAAA GTCAAAATCG GTCAAAATCG CGAAAAATTGT ACCAAAAATTGT CACAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAATTGT CACAAAAATTGT CACAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAATTGT CACAAAAAATTGT CACAAAAAATTGT CACAAAAATTGT CACAAAAATTGT CACAAAAATTGT CACAAAAATTGT CACAAAAATTGT CACAAAAATTGT CACAAAAATTGT CACAAAAATTGT CACAAAAATTGT CACAAAAATTGT CACAAAATTGT CACAAAAATTGT CACAAA
This correspond	ds to the amino acid sequence <seq 2212;="" 673.a="" id="" orf="">:</seq>
1 51 <b>10</b> 1	AQVRAEFEFA AAEAVSAKHG LRIANLLELI KPYLPESVPM YPEDMVTDKS ARFLAMEIVR EKLFRYLGEE LPYAMNVEVE OFFEEDGLNB LYLAVI VONE
m673/a673	99.7% identity in 307 aa overlap
m673.pep	10 20 30 40 50 60 MDIETFLAGERAAGGYRCGFVAIVGRPNVGKSTLMNHLIGQKISITSKKAQTTRNRVTGI
<b>a</b> 673	

m673.pep	70 YTDDTAQFVFVDTP            YTDDTAQFVFVDTP 70	1111111111	111111111	111111111		1111111
m673.pep	130 QLPKHTPVILVVNK            QLPKHTPVILVVNK 130	11111111	111111111		111111111	1111111
m673.pep	190 KPYLPESVPMYPEDI           KPYLPESVPMYPEDI 190	111111		1111111111	THEFT	111111
m673.pep	250 IYIAVLVDKESQKA:              IYIAVLVDKESQKA: 250		111111111		111111111	iliiii -
m673.pep	FLRELGLX          FLRELGLX					

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2213>:

```
9674.seq

1 ATGAAAACAG CCCGCCGCG TTCCCGCGAG CTTGCCGTAC AAGCCGTTTA
51 CCAATCCTT ATCAACCGCA CCGCCGCCC CGAAATTGCT AAAAACATCC
101 GCGAAATGTC CGACTTTGCC AAAGCGGACG AAGAATTGTT CAACAAACTC
151 TTCTTCGGCA CACAAACCAA TGCAGCGGAC TACATCCAAA AAATCCGCC
201 GCTGCTCGAC AGGGACGAAA AAGACCTCAA CCCCATCGAA CGCGCCGTTT
251 TGCTGACCGC CTGCCACGAG CTTTCCGCTA TGCCCGAAAC GCCCTACCCC
301 GTCATTATCA ACGAAGCCAT CGAAGTTACC AAAACCTTCG GCGCCACGGA
351 CGGGCACAAA TTCGTCAACG GCATCCTCGA CAAACTCGCC GCCCAAATCC
401 GCCCAGACGA GCCCAAACGC CGTTGA
```

### This corresponds to the amino acid sequence <SEQ ID 2214; ORF 674.ng>:

g674.pep

1 MKTARRRSRE LAVQAVYQSL INRTAAPEIA KNIREMSDFA KADEELFNKL 51 FFGTQTNAAD YIQKIRPLLD RDEKDLNPIE RAVLLTACHE LSAMPETPYP

101 VIINEAIEVT KTFGGTDGHK FVNGILDKLA AQIRPDEPKR R*

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2215>: m674.seq

1 ATGAAAACAG CCCGCCGCCG TTCCCGCGAG CTTGCCGTAC AAGCCGTTTA
51 CCAATCCCTT ATCAACCGCA CCGCCGCCC CGAAATTGCT AAAAACATCC
101 GCGAAATGTC CGACTTTGCC AAGGCAGACG AAGAATTGTT CAACAAACTT
151 TTCTTCGGCA CGCAAACCAA TGCGGCAGAG TATATCCGAC AAATCCGCCC
201 GCTACTTGAC AGGGACGAAA AAGACCTCAA CCCCATCGAA CGCGCCGTTT
251 TGCTGACCGC CTGCCACGAG CTGTCCGCCA TGCCCGAAAC GCCCTACCCC
301 GTCATTATCA ACGAAGCCAT CGAAGTTACC AAAACCTTCG GCGGCACGGA
351 CGGGCACAAA TTCGTCAACG GCATCCTCGA CAAACTCGCC GCCCAAATCC
401 GCCCCGACGA GCCCAAACGC CGTTGA

## This corresponds to the amino acid sequence <SEQ ID 2216; ORF 674>: m674.pep

1 MKTARRRSRE LAVQAVYQSL INRTAAPEIA KNIREMSDFA KADEELFNKL



51 FFGTQTNAAE YIRQIRPLLD RDEKDLNPIE RAVLLTACHE LSAMPETPYP

101 VIINEAIEVT KTFGGTDGHK FVNGILDKLA AQIRPDEPKR R*

### Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m674/g674 97.9% identity in 141 aa overlap

m674.pep	10 MKTARRRSRELAVQ             MKTARRRSRELAVQ 10	<i>11111</i>	111111111	311111111	TITLIBET.	11111.
m674.pep	70 YIRQIRPLLDRDEK   ::          YIQKIRPLLDRDEK	111111	111111111	111111111	TILLIII III I	111111
m674.pep	130 FVNGILDKLAAQIRI             FVNGILDKLAAQIRI 130					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2217>: a674.seq

```
ATGAAAACAG CCCGCCGCG TTCCCGCGAG CTTGCCGTAC AAGCCGTTTA
  1
 51 CCAATCCCTT ATCAACCGCA CCGCCGCGC CGAGATTGCT AAAAACATCC
101 GCGAAATGCC CGACTTTGCC AAGGCAGACG AAGAATTGTT CAACAAACTT
151 TTCTTCGGCA CGCAAACCAA TGCGGCAGAG TACATCCGAC AAATCCGCCC
     GCGAAATGCC CGACTTTGCC AAGGCAGACG AAGAATTGTT CAACAAACTT
201 CCTGCTCGAC CGCGACGAAA AAGACCTCAA CCCCATCGAA CGCGCCGTCC
251 TGCTGACCGC CTGCCACGAG CTGTCCGCCA TGCCCGAAAC GCCCTACCCC
301 GTCATCATCA ACGAAGCCAT CGAAGTAACC AAAACCTTCG GCGGCACGGA
351 CGGGCACAAA TTCGTCAACG GCATCCTCGA CAAACTCGCC GCCCAAATCC
     GTCCCGACGA GCCCAAACGC CGTTGA
```

#### This corresponds to the amino acid sequence <SEQ ID 2218; ORF 674.a>: a674.pep

```
MKTARRRSRE LAVQAVYQSL INRTAAPEIA KNIREMPDFA KADEELFNKL
 51 FFGTQTNAAE YIRQIRPLLD RDEKDLNPIE RAVLLTACHE LSAMPETPYP
101 VIINEAIEVT KTFGGTDGHK FVNGILDKLA AQIRPDEPKR R*
```

80-

m674/a674 99.3% identity in 141 aa overlap

	10	20	30	4.0	50	60
m674.pep	MKTARRRSRELAVO	AVYOSLINRT	AAPETAKNTR	FMCDEAKADE	EIENVIERCE	00
a674	MKTARRRSRETAVO	THEFFILLE		11 111111	Шини	11111
	MKTARRRSRELAVO	UATOSPITAKI.	WALFINKNIK	EMPDFAKADE	ELFNKLFFGT	'OTNAAE
	10	20	30	40	50	60
	70	80	90	100		
mc74	, -			100	110	120
m674.pep	YIRQIRPLLDRDEK	DLNPIERAVL	LTACHELSAM	PETPYPUTIN	EATEUTETEC	CTDCUTZ
	111111111111	111111111	111111111	1111111111	DETENTION	GIDGHK
a674			1111111		11111111	1   1   1   1
a6/4	YIRQIRPLLDRDEK	DLNPIERAVL	LTACHELSAM	PETPYPVIIN	EATEVTKTEG	GTDGHK
	70	0.0	0.0			O I D GIII

90

100 110

130 140 m674.pep FVNGILDKLAAQIRPDEPKRRX 11111111111111111111111111 a674 **FVNGILDKLAAQIRPDEPKRRX** 130

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2219>: g675.seq

```
ATGAACACCA TCGCCCCaa cctcgacgC AAACACCTCC GCATCGCAT
CGTACAGGCA CGCTTCACCA ACGAAATCG CAGCCAAATG CTCAAAGTCT
OGCTGCCGCAC CCTCCAAGAA TTGGGCGTAG CAGACGAAA Catcaccgtc
TGAAATCCC ATCGCGTGA TGAACTTGC
CTCTTCCGAA AAATTTGACG CACTGATTGC CATCGGCGTC GTCATCGTG
CGCAAACCTA CCATTTCGAG CTGGTTGCCA ACGAATCCGG CGCAGGGATC
GGCCGCGTCG CACTCGACTA CAACATCCCG ATTGCCAACG CCGTCCTGAC
CACCGAAAAC GACGCCAGG CAATTGAACG GATTGGAGAA AAAGCCTCGG
ATGCCGCCAA AGTCGCCGTA GAATGCGCCA ACCTCGTCAA CCTTCTGCTC
ATGCCGCCAA AGTCGCCGTA GAATGCGCCA ACCTCGTCAA CCTTCTGCTC
ATGCCGCCAA AGTCGCCGTA GAATGCGCCA ACCTCGTCAA CCTTCTGCTC
```

This corresponds to the amino acid sequence <SEQ ID 2220; ORF 675.ng>:



g675.pep			•		
21	MNTIAPNLDG ATVPGALEIP	IALMNFASSE	KFDALIAIGV	VIRGETYHEE	LVANESCACE
101	GRVALDYNIP EEOFEDEE*	IANAVLTTEN	DAQAIERIGE	KASDAAKVAV	ECANLVNLLL

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2221>: m675.seq

ATGAACACCA TCGCCCCCAA CCTCGACGGC AAACACCTCC GCATCGGCAT CGTACAGGCA CGCTTCACCA ACGAAATCGG CAGCGAAATG CTCAAAGTCT 51 101 GCTGCCGCAC CCTCCAAGAA TTGGGCGTGG CAGACGAAAA CATTACCGTC 151 GCCACCGTAC CCGGCGCGCT TGAAATCCCC ATCGCGCTGA TGAACTTTGC 201 CTCTTCCGAA AAGTTTGACG CACTGATTGC CATCGGCGTC GTCATCCGTG 251 GCGAAACCTA CCATTTCGAG CTGGTTTCCA ACGAATCCGG AGCAGGCGTC 301 AGCCGCGTCG CACTCGACTA CAATATCCCG ATTGCCAATG CCGTCCTAAC
351 CACCGAAAAC GACGCGCAGG CAATCGAACG GATTGAAGAA AAAGCCTCGG 401 ATGCCGCCAA AGTCGCCGTC GAATGCGCCA ACCTCGTCAA CCTGCTGCTC

### This corresponds to the amino acid sequence <SEQ ID 2222; ORF 675>:

m675.pep

- MNTIAPNLDG KHLRIGIVQA RFTNEIGSEM LKVCCRTLQE LGVADENITY
- ATVPGALEIP IALMNFASSE KFDALIAIGV VIRGETYHFE LVSNESGAGV 51
- SRVALDYNIP IANAVLTTEN DAQAIERIEE KASDAAKVAV ECANLVNLLL

151 EEQFEDEE*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

### m675/g675 96.8% identity in 158 aa overlap

451 GAAGAACAGT TTGAAGACGA AGAATAA

	10	20	30	40	50	60
m675.pep	MNTIAPNLDGKHLR:	IGIVQARFT	NEIGSEMLKVO	CRTLOELGVA	DENITVATVE	GALETP
		111111		111111111	111111111	111111
g675	MNTIAPNLDGKHLR:	IGIVQARFT:	NEIGSQMLKVC	CRTLOELGVA	DENTTVATVE	GALETO
	10	20	30	40	50	60
	70	80	90	100	110	120
m675.pep	IALMNFASSEKFDAI	LIAIGVVIR	GETYHFELVSN	ESGAGVSRVA	TIDYNTPTANA	ህ፤ ጥጥፑለ፣ Vi
q675	_		1   1   1   1   1   2	11111	141111111	
90.0	IALMNFASSEKFDAI	80 TAIGVVIK	-ETYHFELVAN		LDYNIPIANA	VLTTEN
	70	80	90	100	110	120
	130	140	150	159	•	
m675.pep	DAQAIERIEEKASDA	AKVAVECA	VLVNLLLEEOF	EDEEX		
		111111		11111		
<b>g67</b> 5	DAQAIERIGEKASDA	AKVAVECAI	NLVNLLLEEQF	EDEEX		
	130	140	150			

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2223>: a675.seg

a0/5.seq					
1	ATGAACACCA	TCGCCCCCAA	CCTCGACGGC	AAACACCTCC	GCATCGGCAT
51	CGTACAGGCA	CGCTTCACCA	ACGAAATCGG	CAGCGAAATG	CTCAAACTCT
101	GCTGCCGCAC	CCTCCAAGAA	TTGGGCGTGG	CAGACGAAAA	CATTACCCTC
151	GCCACCGTAC	CCGGCGCGCT	TGAAATCCCC	ATCGCGCTGA	TCAACTTTCC
201	CTCTTCTGAA	AAATTTGACG	CACTGATTGC	CATCGGCGTC	GTTATCCGTC
251	GCGAAACCTA	CCATTTCGAG	CTGGTTTCCA	ACGAATCCGG	ACCACCCCTC
301	AGCCGCGTCG	CACTCGACTA	CAACATCCCG	ATTGCCAATG	CCCTCCTCAC
351	CACGGAAAAC	GACGCACAGG	CAATCGAACG	GATTGAAGAA	AAACCCTCCC
401	ATGCCGCCAA	AGTCGCCGTA	GAATGCGCCA	ACCTCGTCAA	CCTCCTCCTC
451	GAAGAACAGT	TTGAAGACGA	AGAATAA		5516616616

#### This corresponds to the amino acid sequence <SEQ ID 2224; ORF 675.a>: a675.pep

MNTIAPNLDG KHLRIGIVQA RFTNEIGSEM LKVCCRTLQE LGVADENITV 1 51 ATVPGALEIP IALMNFASSE KFDALIAIGV VIRGETYHFE LVSNESGAGV

• 1 X

101 151	SRVALDYNIP IANA	VLTTEN DAQAI	ERIEE KAS	DAAKVAV E	CANLVNLLL	
m675/a675	100.0% ident:	ity in 158 <i>e</i>	a overlap			
m675.pep	10 MNTIAPNLDGKHI           MNTIAPNLDGKHI 10		1::1::1::		1111111111	
m675.pep a675	70 IALMNFASSEKFI           IALMNFASSEKFI 70		90 ETYHFELVSN	100 VESGAGVSRV	110 /ALDYNIPIAN	120 IAVLTTEN
m675.pep a675	130 DAQAIERIEEKAS            DAQAIERIEEKAS 130	111111111111111111111111111111111111111	1111111111	159 FEDEEX	110	120

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2225>:

```
1 ATGCCGCAGA TTTTGGTGCG GATTTTCCTC ATTCGGTATT CCTTTATTtg
51 ggAAACGGTG CGCTTGTGCC GTTTCAGACG GCATTCCCGA TCAGTCGATT
101 TTGATGTATT CGACAGAAAG GATTTCAATT TCCTCACGGC CTTCCGGCGCT
151 GTTCAAAACC ACTTCGTCGC CTTCGCGCCC TTTAATCAGG CAACGCGCCA
201 ACGGCGAAAT CCAAGAAATT TTGTTTTGCG CGGTATCGAT TTCATCGACG
251 CCGACGATTT TGACGGTTTG CTCGCGCCCG TCGCCGCCA ACAGACCGAC
301 GGTCGCGCC AAAAATACTT GGTCGGTCGC TTCGCGCAAT TCGGGATCGA
351 CGACGACGGC AGCCTCCAAA CGTTTGGTCA GGAAACGGAT GCGGGGTCG
401 ATTTCGCGCA TACGGCGTTT GCCGTAAAGA TAGTCGCCGT TTTCGCTGCG
451 GTCGCCGTTG CCTGCCGCC AGTTGACGAT TTCGACGATT TCGGGGCGTT
501 CTTTATTGAC CAGTTGATAA AGCTCGTCTT TCAATGCCTG CCATCCGGCG
551 GGCGTAATGT AGTTTTTGGT TTCGGTACTC ATATTGTGTG CGGATGA
```

## This corresponds to the amino acid sequence <SEQ ID 2226; ORF 677.ng>: g677.pep

1 MPQILVRIFL IRYSFIWETV RLCRFRRHSR SVDFDVFDRK DFNFLTAFRR
51 VQNHFVAFAR FNQATRQRRN PRNFVLRGID FIDADDFDGL LAPVAAQQTD
101 GRAEKYLVGR FAQFGIDDDG SLQTFGQETD AAVDFAHTAF AVKIVAVFAA
151 VAVACRPVDD LDDFGAFFID QLIKLVFQCL PSGGRNVVFG FGTHIVCG*

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2227>:

```
1 ATGCCGCAGA TTTTGGTGCG GATTTTCCTC ATTCGGTATT CCTTTATTTG
51 GGAAACGGCG CGCTTTTGCC GTTTCAGACG GCATTCCCGA TCAGTCGATT
101 TTGATGTATT CGACAGAAAG GATTTCAATT TCCTCACGCC CTTCCGGCGT
151 GTTCAAAACC ACTTCGTCGC CTTCGCGCGC TTTAATCAGA CAACGAGCCA
201 GCGCGAAAT CCAAGAAATT TTGTTTTGCG CGGTATCGAT TTCATCGATG
251 CCGACGATTT TGACGGTTTG CTCGCGCCCG TCGTCGCGCA ACAGTCCGAC
301 CGTCGCGCCG AAAAACACTT GGTCGGTCGC TTCGCGCAAT TCGGGATCGA
351 CGACGACGGC AGCCTCCAAA CGTTTGGTCA GGAAACGGAT GCGGCGGTCG
401 ATTTCGCGCA TACGGCGTTT GCCGTAAAGA TAGTCGCCGT TTTCGCTGCG
451 GTCGCCGTTG CCTGCCGCC AGTTGACGAT TCGGGGCGTT
501 CTTTGTTGAC CAGTTGATAA AGCTCGTCTT TCAATGCCTG CCATCCGGCG
551 GGCGTAATGT AGTTTTTGGT TTCGGTACTC ATATTGTGTG CGGATGA
```

# This corresponds to the amino acid sequence <SEQ ID 2228; ORF 677>:

MPQILVRIFL IRYSFIWETA RFCRFRRHSR SVDFDVFDRK DFNFLTPFRR

120



51	VQNHFVAFAR	FNQTTSQRRN	PRNFVLRGID	FIDADDFDGT.	I.A.PVVAOOSD
101	RRAEKHLVGR	FAQFGIDDDG	SLQTFGOETD	AAVDFAHTAF	AVKTVAVEAA
151	VAVACRPVDD	LDDFGAFFVD	QLIKLVFQCL	PSGGRNVVFG	FGTHIVCG*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m677/g677 94.9% identity in 198 aa overlap

m677.pep	10 MPQILVRIFLIRYS             MPQILVRIFLIRYS 10	1111:1:11			II IIIII	111111
m677.pep	70 FNQTTSQRRNPRNF    :              FNQATRQRRNPRNF 70	1 [ [ ] [ ] [ ] [ ]	11111111	: 111:1 111	1:1111111	111111
m677.pep g677	130 SLQTFGQETDAAVD             SLQTFGQETDAAVD 130			1111111111	1111:1111	111111
m677.pep g677	190 PSGGRNVVFGFGTH           PSGGRNVVFGFGTH 190	11111				

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2229>: a677.seq

```
1
     ATGCCGCAGA TTTTGGTGCG GATTTTCCTC ATTCGGTATT CCTTTATTTG
     GGAAACGGCG CGTTTGTGCC GTTTCAGACG GCATTCCCGA TCAGTCGATT
 51
101
     TTGATGTATT CGACAGAAAG GATTTCAATT TCCTCACGCC CTTCCGGCGT
151 GTTTAAAACC ACTTCGTCGC CTTCACGCGC TTTAATCAGA CAACGAGCCA
201 GCGGCGAAAT CCAAGAAATT TTGTTTTGCG CGGTATCGAT TTCATCGATG
251 CCGACGATTT TGACGGTTTG CTCGCGCCCG TCGCCGCGCA ACAGACCGAC
301
    GGTCGCGCCG AAAAACACTT GGTCGGTCGC TTCGCGCAAT TCGGGATCAA
     CGACGACGGC GGCTTCCAAA CGCTTGGTCA GGAAACGGAT GCGGCGGTCG
351
401 ATTTCGCGCA TACGGCGTTT GCCGTAAAGG TAGTCGCCGT TTTCGCTGCG
451 GTCGCCGTTG CCTGCCGCCC AGTTGACGAT TTGGACGATT TCGGGGCGTT
501 CTTTATTAAC CAGTTGATAA AGCTCGTCTT TCAATGCCTG CCATCCGGCG
551 GGCGTAATGT AGTTTTTGGT TTCGGTACTC ATATTGTGTG CGGATGA
```

### This corresponds to the amino acid sequence <SEO ID 2230: ORE 677

70

s correspond	s to the anni	io acia seque	nce <seo ii<="" th=""><th>D 2230: ORI</th><th>₹ 677.a&gt;·</th><th></th></seo>	D 2230: ORI	₹ 677.a>·	
a677.pep		•		, 010	077.00.	
1	MPQILVRIFL	IRYSFIWETA	RLCRFRRHSR	SVDFDVFDRK	DFNFI.TPFRE	!
51	V*NHFVAFTR	FNQTTSQRRN	PRNFVLRGID	FIDADDFDGT.	LAPVAACOTE	1
101	GRAEKHLVGR	FAQFGINDDG	GFQTLGQETD	AAVDFAHTAF	AVKVVAVEAD	•
151	VAVACRPVDD	LDDFGAFFIN	QLIKLVFQCL	PSGGRNVVFG	FGTHIVCG*	•
m677/a677		dentity in 1				
			20 30		50	60
m677.pep	MPQILVRI	FLIRYSFIWET	ARFCRFRRHS	RSVDFDVFDRKI	FNFLTPFRRV	ONHEVAEND
	1111111	. 1		- 1	1111111111	111111
a677	MPQILVRI	FLIRYSFIWET	ARLCRFRRHSF	SVDFDVFDRKI	FNFLTPFRRV	XNHFVAFTR
		10 2	30	40	50	60

80

90

100

110

m677.pep	FNQTTSQRRNPRNF	VLRGIDFID	ADDFDGLLAPV	VAQOSDRRAE		
a677		LILILLII VIDCINDIN		:   :		111:111
40,,	FNQTTSQRRNPRNF	ATMGIDEID	ADDE DGTTWAR	AAQQTDGRAE	KHLVGRFAQ	FGINDDG
	70	80	90	100	110	120
•	130	140	150	160	170	180
m677 man	CT OFFICOERDA ATTO					100
m677.pep	SLQTFGQETDAAVD	CANTAPAVK.	TANAFAWAAA	CRPVDDLDDF	'GAFFVDQLI	KLVFQCL
	::11:111111111	1111111	: [	1111111111	1111	111111
a677	GFQTLGQETDAAVD	FAUTAFAUET	תנות לות לים לו לולו			111111
40,,	CI QI DOQDI DIMIVDI			CKPVDDLDDF	GAFFINQLI	KLVFQCL
	130	140	150	160	170	180
	190	199				
m677 man	Decembrate					
m677.pep	PSGGRNVVFGFGTH	LVCGX				
		1111				
a677	PSGGRNVVFGFGTH	TUCCY				
4077		LVCGA				
	190					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2231>:

```
1 ATGAATAGCC TCCCCATTGC CGACCTCCTC GCCTccgCCG TCATCGCCGC
51 CTGCATCGTC ATTTCCACGA TGCGCGGCGT GATTGCGGAA GCAGGTLCGA
101 TGGTGGCATG ggtgGTTTcc tTCTTTTttg ccAAACTCTT tGCCGCACcc
151 ttcgccgACC TCGCCTTTGc ctCGTTCCAA ccccgccTGT TTGCALtggc
201 tCTGTCATTC ATTTCCCTGT TCGTCATTGC CTGTCTGATC CAGAAAATGC
251 TCCGTTCGCT GCTGACCGGC GCAGTTTCGG CGGTCGGTCT GGGCTTTGCC
301 AACCGCATTT TGGGCGGTGT ATTCGGTGCA TTGAAAGGCG TTTTGATTGT
351 TACCCTGCTG ATCATGCTTG CTTCAAAAAC CGACCTGCCC GATACCGAAG
401 AATGGCAACA GTCCTATACC GTACCGTAT TCGTATCGCT TTCCGAAGCG
451 GTGTTAAACC atacggaCAA CGCacccgaa tCCCtcgacg acgactaa
```

This corresponds to the amino acid sequence <SEQ ID 2232; ORF 678.ng>:

g678.pep

- 1 MNSLPIADLL ASAVIAACIV ISTMRGVIAE AGSMVAWVVS FFFAKLFAAP 51 FADLAFASFQ PRLFALALSF ISLFVIACLI QKMLRSLLTG AVSAVGLGFA
- 101 NRILGGVFGA LKGVLIVTLL IMLASKTDLP DTEEWQQSYT VPFFVSLSEA
- 151 VLNHTDNAPE SLDDD*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2233>:

m678.seq

- ATGAATAGCC TCCCCATTGC CGACCTCCTC GTCTCCGCCG TCATCGCCGC

  51 CTGCATCGTG CTATCCGCGA TGCGCGGCGT GATTGCGGAG GCAGGCTCAA

  101 TGGCGGCATG GGTGGTTTCC TTCTTTTTCG CCAAACTCTT TGCCGCCTCC

  151 TTCGCCGACC TCGCCTTTGC CTCGTTCCAA CCCCGCCTGT TTGCATTGGC

  201 TCTGTCGTTC ATTTCCCTGT TCGTCATTGC CTGTCTGATC CAGAAAATGC

  251 TCCGTTCGCT GCTGACCAGC GCAGTTTCGG CGGTCGGTTT GGGCTTTGCC

  301 AACCGCATTT TGGGCGGCGT ATTCGGTGCA TTGAAAGGCG TTTTGATTGT

  351 TACCCTGCTG GTCATGCTTG CTTCAAAAAC CGACCTGCCC GATACCGAAG

  401 AATGGCGGCA ATCTTACACA CTGCCGTTT TCGTATCGCT TTCCGAAGCC

  451 GTGTTGAACC ATAGCGGCGG CACGGCGGAA ACTCCGGAAG ACGATTGA
- This corresponds to the amino acid sequence <SEQ ID 2234; ORF 678>:

m678.pep

- 1 MNSLPIADLL VSAVIAACIV LSAMRGVIAE AGSMAAWVVS FFFAKLFAAS 51 FADLAFASFQ PRLFALALSF ISLFVIACLI QKMLRSLLTS AVSAVGLGFA
- 101 NRILGGVFGA LKGVLIVTLL VMLASKTDLP DTEEWRQSYT LPFFVSLSEA
- 151 VLNHSGGTAE TPEDD*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m678/g678 89.7% identity in 165 aa overlap

The

This

#### 1088

	1000
	10 20 30 40 50 60
m678.pep	MNSLPIADLLVSAVIAACIVLSAMRGVIAEAGSMAAWVVSFFFAKLFAASFADLAFASFQ
670	
g678	MNSLFIADLLASAVIAACIVISTMRGVIAEAGSMVAWVVSFFFAKLFAAPFADLAFASFO
	10 20 30 40 50 60
	70 80 90 100 110 120
m678.pep	PRLFALALSFISLFVIACLIQKMLRSLLTSAVSAVGLGFANRILGGVEGALYCVI TVELL
g678	PRLFALALSFISLFVIACLIQKMLRSLLTGAVSAVGLGFANRILGGVFGALKGVLIVTLL
	70 80 90 100 110 120
	110 120
	130 140 150 160
m678.pep	VMLASKTDLPDTEEWRQSYTLPFFVSLSEAVLNHSGGTAETPEDDX
	:11111111111111111111111111111111111111
g678	IMLASKTDLPDTEEWQQSYTVPFFVSLSEAVLNHTDNAPESLDDDX
	130 140 150 160
	100
following p	partial DNA sequence was identified in N. meningitidis <seq 2235="" id="">:</seq>
a678.seg	2235>:
2070.3eq 1	ATGAATAACC TCCCCCTTCC COACAA
51	ATGANTANCE TECCEGTTGE CGACCTECTE GTETECGCCA TEATEGECGE
101	CTGCATCGTG CTATCCGCGA TGCGCGGCGT GATTGCGGAG GCTGGCTCAA
151	TGGCGGCATG GGTGGTTGCC TTTTTTTTCG CCAAACTCTT TGCCGCACCC
201	TTCGCCGACA TCGCCTTTGC ATCGTTCCAA CCCCGCCTGT TTGCATTGGC
251	TCTGTCGTTC ATTTCCCTAT TCGTCATTGC CTGTCTGATC CAGAAAATAC
	TCCGCTCGCT GCTGACCGGG GCAGTTTCGG CGGTCGGTTT GGGCTTTGCC
301	AACCGCATTT TGGGCGGCGT ATTCGGTGCA TTGAAAGGCA TTTTGATTAT
351	TACCOTGOTG GTCATGCTCG CTTCAAAAAC CGACCTGCCC GATACCCAAC
401	AATGGCGGCA ATCTTACACA CTGCCGTTTT TCGTATCGCT TTCCGAACCC
451	GTGTTGAACC ATAGCGGCGG CACGGCGGAA ACTCCGGAAG ACGATTGA
correspond	s to the amino acid sequence <seq 2236;="" 678.a="" id="" orf="">:</seq>
a678.pep	· · · · · · · · · · · · · · · · · · ·
1	MNNLPVADLL VSAIIAACIV LSAMRGVIAE AGSMAAWVVA FFFAKLFAAP
51	FADIAFASFQ PRIFALALSF ISLEVIACLI OKTIRSLITE AVEAUCICES
101	NRILGGVFGA LKGILIITLL VMLASKTDLP DTEEWRQSYT LPFFVSLSEA
151	VLNHSGGTAE TPEDD*
m678/a678	93.9% identity in 165 aa overlap
	overrap
	10 20 30 40 50 60
m678.pep	MNSLPIADLLVSAVIAACIVLSAMRGVIAEAGSMAAWVVSFFFAKLFAASFADLAFASFQ
	:     :
a678	MNNLPVADLLVSAIIAACIVLSAMRGVIAEAGSMAAWVVAFFFAKLFAAPFADIAFASFQ
	10 20 30 40 50 60
	70 80 90 100 110 120
m678.pep	PRLFALALSFISLFVIACLIOKMLRSLLTSAVSAVGLGFANRILGGVFGALKGVLIVTLL
•	
a678	PRIFALALSETSLEVIACIJONIJESLI MORANA I BOVE GALAGVLIVILL
	PRLFALALSFISLFVIACLIQKILRSLLTGAVSAVGLGFANRILGGVFGALKGILIITLL 70 80 90 100 110
	70 80 90 100 110 120
	130 140 150 160
m678.pep	
	VMLASKTDLPDTEEWRQSYTLPFFVSLSEAVLNHSGGTAETPEDDX
a678	VMI A SETDI POTEEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEMPO COMI POTEM
	VMLASKTDLPDTEEWRQSYTLPFFVSLSEAVLNHSGGTAETPEDDX 130 140 150
	130 140 150 160

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2237>:

1 ATGACGAAGG GCAGTTCGGC GATGTCCAGC CCACGCGCGG CGATATCGGT
51 GGCGACGAGG ACGCGCAGGC TGCCGTCTTT GAAGGCGTTG AGTGTTTCGA
101 GCCTGCTTTG TTGGGAACGG TCGCCGTGTA TCGCCTGTGC GGACAGGTTG

151	CGGCGCACCA	GTTCGCGCGT	TACGCGGTCG	1.CCCCCC	
	COOCCCACCA	0110000001	TACGCGGTCG	ACGCTTTGTT	TGGTtttgCA
201	AAAGACGATA	ACTTGGTTCA	TATGCAGATC	GACAATCAGC	CGTTCGAGCA
251	GGTTGCGCTT	TTGGAAGGTA	TCGACGGCGA	TGATGTatta	ttcGACGTTG
301	GCGTTGGTGG	TGTTTTGGGC	GGCAACCTCG	ACGGTTTCGG	GCGCGTTCAT
351	GAAGTCTTGC	GCCAGTTTGC	GTATCGGTGC	GGAGAAGGTG	GCGGAAAAGA
401	GCAGGGTTTG	GCGTTGGCGG	GGCAGCATCT	GCATGATTTT	GCGGATGTCG
451	TCGATAAACC	CCATATCCAA	CATGCGGTCT	GCTTCGTCCA	GAACGACGAT
501	TTCGGCTTTG	TTTAAACTGA	TGTTTTTCTG	TTTCACATCG	TOCACOACCO
551	GTCCGACGGT	GGCGACGACT	ATTTCGCAGC	CEECACCCAC	CTCCCCCCTT
601	mcmmcmccx	MCMMC 2 22 22	TITT TOOCHOC	DADDDADBO	GICGGCGGTT
	IGITIGICCA	TGTTGACACC	GCCGAAGAGG	ACGGTATGCC	GCAGCGGCAG
651	GTTTTTAATg	tag			

## This corresponds to the amino acid sequence <SEQ ID 2238; ORF 680.ng>: g680.pep

```
1 MTKGSSAMSS PRAAISVATR TRRLPSLKAL SVSSLLCWER SPCIACADRL
51 RRTSSRVTRS TLCLVLQKTI TWFICRSTIS RSSRLRFWKV STAMMCCSTL
101 ALVVFWAATS TVSGAFMKSC ASLRIGAEKV AEKSRVWRWR GSICMILRMS
151 SINPISNMRS ASSRTTISAL FKLMFFCFTW SSSRPTVATT ISQPARRSAV
201 CLSMLTPPKR TVCRSGRFLM *
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2239>:

```
m680.seq
       1
          ATGACGAAGG GCAGTTCGGC AATGTCCAGC CCGCGCGCG CGATGTCGGT
          GGCGACGAGG ACGCGCAGGT TGCCGTCTTT GAAGGCGTTG AGTGTTTCGA
         GCCGGCTTTG TTGGGAACGG TCGCCGTGTA TCGCCTGTGC GGACAGGTTG
     101
         CGGCGCACCA GTTCGCGCGT TACGCGGTCG ACGCTTTGTT TGGTTTTGCA
     201 GAACACGATG ACCTGGTTCA TATGCAAATC GACAATCAGC CGTTCGAGCA
     251
         GGTTGCGCTT CTGAATGGTA TCGACGGCGA TGATGTGCTG CTCGACGTTG
         GCGTTGGTGG TGTTTTGCGC GGCGACTTCG ACGGTTTCGG GCGCGTTCAT
     301
         GAAGTCTTGC GCCAGTTTGC GTATCGGGGC GGAGAAGGTG GCGGAAAAGA
     351
     401 GCAGGGTTTG GCGTTGGCGG GGCAGCATCT GCATGATTTT GCGGATGTCG
         TCGATAAAAC CCATATCCAG CATACGGTCG GCTTCGTCCA AAACGACGAT
     451
         TTCGACTTTG TTCAAATGGA TGTTTTTCTG TTTCACGTGG TCGAGCAGCC
     501
     551
         GTCCGACGGT GGCGACGACG ATTTCGCAGC CGGCACGCAG GTCGGCGGTC
         TGTTTGTCCA TATTCATACC GCCGAACAAG ACGGTGTGGC GCAGCGGCAG
     601
     651 GTTTTTGATG TAG
```

### This corresponds to the amino acid sequence <SEQ ID 2240; ORF 680>:

```
1 MTKGSSAMSS PRAAMSVATR TRRLPSLKAL SVSSRLCWER SPCIACADRL
51 RRTSSRVTRS TLCLVLQNTM TWFICKSTIS RSSRLRF*MV STAMMCCSTL
101 ALVVFCAATS TVSGAFMKSC ASLRIGAEKV AEKSRVWRWR GSICMILRMS
151 SIKPISSIRS ASSKTTISTL FKWMFFCFTW SSSRPTVATT ISQPARRSAV
201 CLSIFIPPNK TVWRSGRFLM *
```

# Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

```
m680/g680 90.9% identity in 220 aa overlap
                         20
                                 30
                                          40
          MTKGSSAMSSPRAAMSVATRTRRLPSLKALSVSSRLCWERSPCIACADRLRRTSSRVTRS
m680.pep
           a680
          MTKGSSAMSSPRAAISVATRTRRLPSLKALSVSSLLCWERSPCIACADRLRRTSSRVTRS
                 10
                                 30
                                         40
                                                  50
                                                          60
                 70
                         80
                                 90
                                         100
                                                 110
          TLCLVLQNTMTWFICKSTISRSSRLRFXMVSTAMMCCSTLALVVFCAATSTVSGAFMKSC
m680.pep
          TLCLVLQKTITWFICRSTISRSSRLRFWKVSTAMMCCSTLALVVFWAATSTVSGAFMKSC
g680
                 70
                         80
                                 90
                                        100
                                                 110
                                                         120
                        140
                                150
                                        160
                                                 170
                                                         180
m680.pep
          ASLRIGAEKVAEKSRVWRWRGSICMILRMSSIKPISSIRSASSKTTISTLFKWMFFCFTW
```

g680	
m680.pep	
g680	SSSRPTVATTISQPARRSAVCLSMLTPPKRTVCRSGRFLMX 190 200 210 220
The following p	partial DNA sequence was identified in N. meningitidis <seq 2241="" id="">:</seq>
1 51	ATGACGAAGG GCAGTTCGGC AATATCCAGC CCCCGCGCGG CGATATCGGT
101	GGCGACGAGG ACGCGCAGGT TGCCGTCTTT GAAGGCGTTG AGTGTTTCGA GCCGGCTTTG TTGGGAACGG TCGCCGTGTA TCGCCTGTGC GGACAGGTTG
151	CGGCGCACCA GTTCGCGCGT TACGCGGTCG ACGCTTTCTT TCCTTTTCT
201	GAACACGATG ACCTGGTTCA TATGCAAATC GACAATCAGC CCTTCCACCA
251	GGTTGCGCTT CTGAATGGTA TCGACGGCGA TGATGTGCTG CTCCACCTTC
301 351	GCGTTGGTGG TGTCTTGCGC GGCGACTTCG ACGGTTTCGC GCGCCTTCAT
401	GAAGTCTTGC GCCAGTTTGC GTATCGGGGC GGAGAAGGTG GCGGAAAAGA GCAGGGTTTG GCGTTGGCGG GGCAGCATCT GCATGATTTT GCGGATGTCG
451	TCGATAAAAC CCATATCCAG CATACGGTCG GCTTCGTCCA AAACGACGAT
501	TICGACTITG TICAAATGGA TGTTTTTCTG TTTCACGTGG TCGACGACGA
551	GTCCGACGGT GGCGACGACG ATTTCGCAGC CGGCACGCAG GTCCCCCCCC
601 651	TGTTTGTCCA TATTCATACC GCCGAACAAG ACGGTGTGGC GCAGCGGCAG GTTTTTGATG TAG
031	GITTIGATE TAG
This correspond	s to the amino acid sequence <seq 2242;="" 680.a="" id="" orf="">:</seq>
a680.pep	52Q 1D 2242, ORI 000.a>.
1	MTKGSSAISS PRAAISVATR TRRLPSLKAL SVSSRLCWER SPCIACADRL
51	RRTSSRVTRS TLCLVLQNTM TWFICKSTIS RSSRIRF*MV STAMMCCCTT
101 151	ALVVSCAATS TVSGAFMKSC ASLRIGAFKV AFKSRUWBWD CSTCMTIBMS
201	SIKPISSIRS ASSKTTISTL FKWMFFCFTW SSSRPTVATT ISQPARRSAV CLSIFIPPNK TVWRSGRFLM *
500 / 500	
m680/a680	98.6% identity in 220 aa overlap
	10 20 30 40 50 50
m680.pep	MTKGSSAMSSPRAAMSVATRTRRLPSLKALSVSSRLCWERSPCIACADRLRRTSSRVTRS
a680	MIRGSSAISSPRAAISVATRTRRLPSLKALSVSSRLCWERSPCIACADRLRRTSSRVTRS
	10 20 30 40 50 60
	70 80 90 100 110 120
m680.pep	TLCLVLQNTMTWFICKSTISRSSRLRFXMVSTAMMCCSTLALVVFCAATSTVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCATAVCA
- 600	
a680	THE BUILDING TO THE TOTAL TO THE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOT
	70 80 90 100 110 120
	130 140 150 160 170 180
m680.pep	ASLRIGAEKVAEKSRVWRWRGSICMILRMSSIKPISSIRSASSKTTISTIETURADO
a 680	
4000	130 130 130 130 130 130 130 130 130 130
	130 140 150 160 170 180
600	190 200 210 220
m680.pep	SSSRPTVATTISQPARRSAVCLSIFIPPNKTVWRSGRFLMY
a 680	SSSR PTVATTI SORARD SAVGI STITLD WARREN SAVGI STITLD WARREN
	SSSRPTVATTISQPARRSAVCLSIFIPPNKTVWRSGRFLMX 190 200 210 220
D1 C 11 '	200 210 220

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2243>: g681.seq

- 1 ATGACGACGC CGATGGCAAT CAGTGCGTCA AATTTTTCGG AAGAGGCAAA 51 GTTCATCAGC GCGATGGGGA TTTCAAGCGC GCCGGGTACG GTGGCGACGG



101	tgatgtTTTC	GTCTGCTACG	CCCAATTCTT	GGAGGGTGCG	GCAGCAGACT
151	TTGAGCATTT	GGCTGCCGAT	TTCGTTGGTG	AAGCGTGCCT	GTACGATGCC
201	GATGCGGAGG	TGTTTGCcgt	cgaggttgGG	GGCGATGGTG	TTCATTGGGT
251	GTCCTTTGGT	ATTCGGGGTT	TCGGAATGCC	GTCTGAAGGT	TTCAGTCTTG
301	CGGCTGCCAG	TCGGCAACGG	TTTGGAATGT	GCCGTCTTCG	GCAAGCTCCC
351	ACGCGCTGCC	TTCGGGTTGG	GAAAGCAGTG	CGGCGGTTTC	AGGGTTGGTT
401	TTGGTGATGT	CGGCGAGGCT	GACGATGCTG	AAGTTGTCGG	GGTCGTCGGT
451	GTATTCGTCG	GTTTCGTCGC	CGCTGAAGAA	ACGCCAGCCG	CTGTCGTTTT
501	CAAAAACGGG	GGCTTCGCGG	TAAAGGAAGC	CGACGGGCCG	GTTTTGTTTG
551	GCGACGGTGT	TGGTGGCGAT	GCAGCGGTCG	AGTGCCGAGG	AAAGTGCTTG
601	TGCAAATGCG	TTCATTGCGG	GAATACGTTG	GGGGGGGGA	AACTTGCGGA
651	TTTTACCACG	ATTCCCGCGT	TGTCGGCAGA	CGGCGGCGGT	TTGGTGGTAC
701	AATGTGCGCC	GTTTGCAGCC	TTAAGGTGTT	TCTGTATTTT	TGGAGTATGG
751		GGGCTGTTTT			

## This corresponds to the amino acid sequence <SEQ ID 2244; ORF 681>: g681.pep

```
1 MTTPMAISAS NFSEEAKFIS AMGISSAPGT VATVMFSSAT PNSWRVRQQT
51 LSIWLPISLV KRACTMPMRR CLPSRLGAMV FIGCPLVFGV SECRLKVSVL
101 RLPVGNGLEC AVFGKLPRAA FGLGKQCGF RVGFGDVGEA DDAEVVGVVG
151 VFVGFVAAEE TPAAVVFKNG GFAVKEADGP VLFGDGVGGD AAVECRGKCL
201 CKCVHCGNTL GGGKLADFTT IPALSADGGG LVVQCAPFAA LRCFCIFGVW
251 KRIRAVFCGR R*
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2245>: m681.seq

```
ATGACGACGC CGATGGCAAT CAGTGCGTCA AACTTTTCGG AAGAGGCAAA
  1
 51 GTTCATCAGC GCGATGGGGA TTTCAAGCGC GCCGGGTACG GTGGCGACGG
101 TAATGTTTTC GTCTGCCACG CCCAATTCTT GGAGGGTGCG GCAGCAGACT
151 TTGAGCATTT CGCTGCCGAT TTCGTTGGTG AAGCGTGCCT GTACGATGCC
201 GATGCGGAGG TGTTTGCCGT CGAGGTTGGG GGCGATGGTG TTCATTGGGT
251 GTCCTTTGGT ATTCGGAGTT TCGGAATGCC GTCTGAAGGT TTCAGTCTTG
301 CGGCTGCCAG TCGGCGACGG TTTGGAATGT GCCGTCTTCG GCAAGCTCCC
351 ATGCGCTGCC TTCGGGTTGG GAGAGCAGTG CGGCGGTTTC AGGGTTGGTT
401 TTGGCGATGT CGGCGAGGCT GACGATGCTG AAGTTGTCCG GATCGTCGGT
451 GTATTCGTCG GTCTCGTCGC CGCTGAAGAA ACGCCAGCCG CTGTCGTTTT
     CAAAAACGGG GGCTTCGCGG TAGAGGAAGC CGACGGGCCG GTTTTGTTTG
551 GCGACGTGT TGGTGGCGAT ACAGCGGTCG AGTGCCGAGG AAAGTGCTTG
601 TGCAAATGCG TTCATTACGG GAATACGTTG GGGG.AAAAC TTACGGATTT
651 TACCACGATT CGTGCGTTGT CGGCAGACGG CGGCGGTTTG GTGGTACAAT
701 GTGCGCCGTT TGCAGCCTTA AGGTGTTTCT GTATTTTTGG AGTATGGAAA
751 CGCATTCGGG CTGTTTTTTG CGGAAGACGG TAA
```

## This corresponds to the amino acid sequence <SEQ ID 2246; ORF 681>: m681.pep

```
1 MTTPMAISAS NFSEEAKFIS AMGISSAPGT VATVMFSSAT PNSWRVRQQT
51 LSISLPISLV KRACTMPMRR CLPSRLGAMV FIGCPLVFGV SECRLKVSVL
101 RLPVGDGLEC AVFGKLPCAA FGLGEQCGGF RVGFGDVGEA DDAEVVRIVG
151 VFVGLVAAEE TPAAVVFKNG GFAVEEADGP VLFGDGVGGD TAVECRGKCL
201 CKCVHYGNTL GXKLTDFTTI RALSADGGGL VVQCAPFAAL RCFCIFGVWK
251 RIRAVFCGRR *
```

Computer analysis of the amino acid sequences gave the following results:

Homology with a predicted ORF from N. meningitidis menA with menB

ORF 681 shows 94.6% identity over a 261 aa overlap with a predicted ORF (ORF681.a) from N. gonorrhoeae:

m681/g681

WO 99/57280 PCT/US99/09346



		70	80	90	100	110	120
m68:	l.pep	KRACTMPMRRCI	PSRLGAMVFI	CPLVFGVSEC	RLKVSVLRT.PV	SDGLECAVECKI	DCAA
		111111111111	,			1 • 1 ]   1   1   1   1   1	1 1 1
g68:	1 :	KRACTMPMRRCI	PSRLGAMVFIC	CPLVFGVSEC	RIKVSVI.RI.PV	ZNGLECAVECKI	ו ו! תעכום
		70	80	90	100	110	
				50	100	110	120
		130	140	150	1.60		
m681	L.pep			EUUD TUCUMU	160	170	180
MOO.	· pcp	FGLGEQCGGFRV	JI I I I I I I I I I I I I I I I I I I	CE A AKT A CALAC	LVAAEETPAA	/VFKNGGFAVEE	ADGP
g681		:			: [ ] [ ] [ ] [ ] [ ]		1111
900.		FGLGKQCGGFRV	GE GDVGEADDA	EVVGVVGVFVG		VFKNGGFAVKE	ADGP
		130	140	150	160	170	180
	_	190	200	210	220	230	239
m681	pep 1	/LFGDGVGGDTA	VECRGKCLCKC	VHYGNTLGX-K	LTDFTTIRALS	ADGGGLVVOCA	PFAA
			!	11 11 11 1	1:1111 111	1::1:::::::::::::::::::::::::::::::::::	1111
g681	. ,	/LFGDGVGGDAA	VECRGKCLCKC	VHCGNTLGGGK	LADETTIPALS	ADGGGT.VVOCA	PFAA
		190	200	210	220	230	240
					220	230	240
	240	250	260				
m681	.pep I	RCFCIFGVWKR					
		111111111					
g681		RCFCIFGVWKR					
9001		250					
		250	260				
The	following r	partial DNA s	equence wa	s identified i	n N menina	itidic <seo< td=""><td>m 2247~.</td></seo<>	m 2247~.
	a681.seg			- 14411111104 1	n iv. mening	muis \SEQ	LD 224/2;
	1	<b>አመ</b> ልአ <i>ሮር</i> አ <i>ሮርር</i>	CCAMCCCAAAM	02.00			
	51	CUMCAUCACC	CGATGGCAAT	CAGTGCGTCA	AATTTTTCAG	AAGAGGCAAA	
		GIICATCAGC	GCGATGGGGA	TTTCAAGCGC	GCCGGGTACG	GTGGCGACGG	
	101	TAATGTTTTC	GTCTGCCACG	CCCAATTCTT	GGAGGGTGCG	GCAGCAGACT	
	151	TTGAGCATTT	CGCTGCCGAT	TTCGTTGGTG	AAGCGTGCCT	GTACGATGCC	
	201	GATGCGGAGG	TGTTTGCCGT	CGAGGTTGGG	GGCGATGGTG	ጥጥር እጥጥር እርጥ	
	251	GTCCTTTGGT	ATTCGGAGGT	TTCGGAATGC	CGTCTGAAGG	CTC A CTC CTT	
	301	AGGTTGCCAG	TCGGCGACGG	TTTGGAATGT	GCCGTCTTCT	CCCNATTCCC	
	351	ACGCGCTGCC	TTCAGGTTGG	GAGAGCAGTG	CGGCGGTTTTC	AGGGTTGGTT	
	401	TTGGTGATAT	CGGCGAGGCT	GACGATGCTG	NACTOCOCT IIC	GGTCGTCGGT	
	451	GTATTCGTCG	GTCTCGTCGC	CCCTCAACAA	ACCCCACCCC	CTGTCGTTTT	
	501	CAAAAACGGG	GCCTTCCCCC	TACACCA ACC	ACGCCAGCCG	CTGTCGTTTT	
	551	CCACCCTCT	TCCTCCCCAT	TAGAGGAAGC	CGACGGGCTG	GTTTTGTTTG	
	601	TCCA A ATTCCC	TGGTGGCGAT	GCAGCGGTCG	AGTGCCGAGG	AAAGTGCTTG	
		TGCAAATGCG	TTCATTGCGG	GAATACGTT.	GGGGGAAAAC	TTGCGGATTT	
	651	TACCACGATT	CTTGCGTTGT	CGGCAGACGG	CGGCGGTTTG	GTGGTACAAT	
	701	GTGCGCCGTT	TGCAGCCTTA	AGGTGTTTCT	GTATTTTTGG	AGTATGGAAA	
	751	CGCATTCGGG	CTGTTTTTTG	CGGAAGACGG	TAA		
	_						
This	correspond	s to the amin	o acid seque	nce <seo ii<="" td=""><td>2248 ORI</td><td>7 681 a&gt;·</td><td></td></seo>	2248 ORI	7 681 a>·	
	a681.pep		4		<b>22</b> 10, 010	001.4	
	1	TTTPMATCAC	MESEEVALETS	AMCTOCADOM	112 Min (mage)		
	51	LSTSIDIO	NEOFEWEET?	AMGISSAPGT	VATVMESSAT	PNSWRVRQQT	
	101	LSISLPISLV	AUECOEDDAR	CLPSR <u>LGAMV</u>	FIECPLVFGG	<u>FG</u> MPSEGSVL	
	151	RLPVGDGLEC	AVECUEPRAA	FRLGEQCGGF	RVGFGDIGEA	DDAEVVRVVG	
		VFVGLVAAEE	TPAAVVFKNG	GFAVEEADGL	VLFGDGVGGD	AAVECRGKCL	
	201	CKCVHCGNTX	GGKLADFTTI	LALSADGGG <u>L</u>	VVQCAPFAAL	RCFCIFGVWK	
	251	RIRAVFCGRR	*				
	m681/a681	90.8% id	entity in 2	60 aa overl	.ap		
					•		
			10 2	90 30	40	50	60
	m681.pep	MTTPMAIS			ים בי זיח אים בא אמזיח אוזי	NSWRVRQQTLS	60
		:1111111			VALVELSSALE	HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ISLPISLV
	a681	TTTPMATS	ASNESEEAVET			1111111111	
			10 2	. <b>SAMGISSAPGI</b> .0 30	VATVMESSATE	NSWRVRQQTLS	ISLPISLV
			±0 Z	0 30	40	50	60
		•	70 8	0			
	m681.pep			0 90	100	110	120
	woor.beb	ARACIMPM	KKULPSKLGAM	VFIGCPLVFGV	SECRLKVSVLF	LPVGDGLECAV	FGKLPCAA
	- CO1	1111111			• 1111	11111111111	1
	a681	KKACTMPM	RRCLPSR <b>LGAM</b>	VFIECPLVFGG	FGMPSEGSVLR	LPVGDGLECAV	FCOFPRAA
			70 8	0 90	100	110	120
						= = 5	-20

m681.pep	130 FGLGEQCGGFRVGFO	:	111:11111	1111111111	HILLIAM	11111
a681	FRLGEQCGGFRVGF	GDIGEADDAE	CVVRVVGVFVG	LVAAEETPAA	VVFKNGGFAV	EEADGL
	130	140	150	160	170	180
	190	200	210	220	230	240
m681.pep	VLFGDGVGGDTAVE	CRGKCLCKCV	HYGNTLGXKL	TDFTTIRALS	ADGGGLVVOC	APFAAI.
		:	1 111 1 11	: 111111 111	1111111111	ELLIL
a681	VLFGDGVGGDAAVEC	CRGKCLCKCV	HCGNTXGGKL	ADFTTILALS.	ADGGGT.VVOC	יב בר בר בר ב
	190	200	210	220	230	240
	250	260				
m681.pep	RCFCIFGVWKRIRAV	FCGRRX				
		111111				
a681	RCFCIFGVWKRIRAV	FCGRRX				
	250	260				

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2249>: g682.seq

```
ATGCGCGATT TCGCCGTATG GGTGCCTTAC GGGGAACGGC GGAAAAATTG
GGACATAAGG TATTGCCTCC CGCACCTTAT TCGCCTGAGC CCAACCCGAT
TGAGAAAGTG TGGGCGAATA TTAAGCGGTA TCTGCGAACC GTTTTGTCTG
ATTACGCCCG ATTTGACGAT GCACTACTGT CCTATTTTGA TTTTAATTGA
CTATATTTGT GTGAATGATG AAATAAAAAT GCCGTCTGAA CCCGATTGGA
TTCAGACGGC ATTTTGTATG GCAGGATTTA TTCGCTTTCC AACTGACCGA
TTCAGACGGC ATTTTGTATG GCAGGATTTA TTCGCTTTCC CACGAACGGG
CCCATTCTGA CAAGGCAGTC AGGCGTTGTT CGGATTTCGC CACGAACGGG
TTTTCGGTAT CCCACGCGTA GCCTGCCAAA ATCGAAGAAA GCATACGGCT
```

This corresponds to the amino acid sequence <SEQ ID 2250; ORF 682>: g682.pep

- 1 MRDFAVWVPY GERRKNWDIR YCLPHLIRLS PTRLRKCGRI LSGICEPFCL
- 51 ITPDLTMHYC PILILIDYIC VNDEIKMPSE PDWIQTAFCM AGFIRFPTDR
- 101 PILTROSGVV RISPRTGFRY PTRSLPKSKK AYG*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2251>: m682.seq

```
ATGCGTGATT TCACCGTATG GGTGTCTTAC GGGAAATGGC GGAAAAATTG
51 GGACATAAGG TATTGCCTCT TGCACCTTAT TCACCTGAGC TCAACCCGAT
101 TGAGAAAGTG TGGGCGAATA TTAAGCGGTA TCTGCGAACC GTTTTGTCTG
151 ATTACGCCCG ATTTGACGAT GCACTACTGT CCTATTTTGA TTTTAATTGA
201 CTAT......GAAA TGGCAATGCC GTCTGAACCC GATTGGATTC
251 AGACGGCATT TTGTATGGCG TACGGATTTA TTCGGTTTCC AACTGACCGA
301 CCCATTCGGA CAAGGCAGTC AGGCGTTGTT CGGATTTCGC CACGAACGGG
351 TTTTCGGTAT CCCACGCGTA GCCTGCCAAA ATCGAAGAAA GCATACGGCT
```

This corresponds to the amino acid sequence <SEQ ID 2252; ORF 682>: m682.pep

- 1 MRDFTVWVSY GKWRKNWDIR YCLLHLIHLS STRLRKCGRI LSGICEPFCL 51 ITPDLTMHYC PILILIDY...EMAMPSEP DWIQTAFCMA YGFIRFPTDR
- 101 PIRTROSGVV RISPRTGFRY PTRSLPKSKK AYG*

Computer analysis of the amino acid sequences gave the following results: Homology with a predicted ORF from N. meningitidis menA with menB

ORF 682 shows 88.1% identity over a 134 aa overlap with a predicted ORF (ORF682.a) from N. gonorrhoeae:

m682/g682



m682.pep g682	10 20 30 40 50 60  MRDFTVWVSYGKWRKNWDIRYCLLHLIHLSSTRLRKCGRILSGICEPFCLITPDLTMHYC
m682.pep g682	70 80 90 100 110  PILILIDYEMAMPSEPDWIQTAFCMAYGFIRFPTDRPIRTRQSGVVRISPRTGFR
m682.pep g682	120 130 YPTRSLPKSKKAYGX              YPTRSLPKSKKAYGX 20 130
a68∠.sec	ATGCGCGATT TTACCGTATG GGTGTCTTAC GGGAAATGGC GGAAAATTG
5. 10: 15: 20: 25: 30: 35: 40:	GGACATAAGG TATTGCCTCT TGCACCTTAT TCACCTGAGC TCAACCCGAT TGAGAAAGTG TGGGCGAATA TTAAGCGGTA TCTGCGAACC GTTTTGTCTG ATTACGCCCG ATTTGACGAT GCACTACTGT CCTATTTTGA TTTTAATTGA ATATTATA TTCGGTTTCC AACTGACCGA CCCATTCTGA CAAGGCCGAC AGGCGTTGTT CGGATTTCGC CACGAACGGG TTTTCGGTAT CCCACGCGTA GCCTGCCAAA ATCGAAGAAA GCATACGGCT
	ids to the amino acid sequence <seq 2254;="" 682.a="" id="" orf="">:</seq>
1 51 101	ITPDLTMHYC PILILIEY
m682/a68	2 80.6% identity in 129 aa overlap
m682.pep	
a682	MRDFTVWVSYGKWRKNWDIRYCLLHLIHLSSTRLRKCGRILSGICEPFCLITPDLTMHYC 10 20 30 40 50 60
m682.pep	THE TENED THE STATE OF THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE TENED THE
a682	
m682.pep a682	130 LPKSKKAYGX          LPKSKKAYGX 110
The following	partial DNA sequence was identified in N. gonorrhoeae <seq 2255="" id=""></seq>
1 ATGAT 51 CCCTA 101 AAAAT 151 GACAT 201 TGTTAC 251 CTGCC 301 AGTTCC	TAAGG AAACCCTAAT GCGCCCAATC TTCCTATCTT TCGTTTTACT TTTTG ATAACCGCCT GCAGCACACC GGACAAGTCT GCCCGATGGG ATCGG CACAATCTCA AACGGCAATA TTCATACATA TATTAATAAA TGTGA GAAAAAACGG AAACCTTTTGC CAACACCCCC GCATACAAGA ATCCACTGCA ACCACTCCC CAACACCCCC GCATACAAGA ATCCACTGCA ACCACTACAAAAC ATCCACTGCA ACCACACACACACACACACACACACACACACACACA

401 CTGAAAAACA ATATGAAACC GTATGCGGGA AAAAACTCTG A

This corresponds to the amino acid sequence <SEQ ID 2256; ORF 683 >: g683.pep

- MIKETLMRPI FLSFVLLPIL ITACSTPDKS ARWENIGTIS NGNIHTYINK
- DSVRKNGNLM IFQDKKVVTN LKQERFANTP AYKTAIAEWE IHCNNKTYRL 51 101 SSLQLFDTKN TEISTQNYTA SSLRPMSILS GTLTEKQYET VCGKKL*

The following partial DNA sequence was identified in N. meningitidis <SEO ID 2257>: m683.seq.

- ATGATTAAGG AAACCCTAAT GCGCCCAATC TTCCTATCTT TCGTTTTATT 1 51 CCCTATTTTG ATAACCGCCT GCAGCACACC GGACAAGTCT GCCCGATGGG AAAATATCGG CACAATCTCA AACGGCAATA TTCATACATA TATCAATAAA 101 GACAGCGTGA GAAAAAACGG AAATCTGATG ATTTTCCAAG ATAAAAAAGT 151 201 TGTTACCAAT CTAAAACAAG AACGTTTTGC CAACACCCCC GCATACAAGA 251 CTGCCATTGC CGAGTGGGAA ATCCACTGCA ACAACAAAAC ATACCGCTTA 301 AGTTCGCTAC AGTTGTTTGA TACAAAAAAC ACGGAAATTT CCACACAAAA
- CTACACAGCC TCTTCCCTCC GCCCGATGAG CATCCTGTCC GGGACATTAA 351 401 CCGAAAAACA ATATGAAACC GTATGCGGAA AAAAACTCTG A

This corresponds to the amino acid sequence <SEQ ID 2258; ORF 683>: m683.pep.

- MIKETLMRPI FLSFVLFPIL ITACSTPDKS ARWENIGTIS NGNIHTYINK DSVRKNGNLM IFQDKKVVTN LKQERFANTP AYKTAIAEWE IHCNNKTYRL 1
- 51
- 101 SSLQLFDTKN TEISTQNYTA SSLRPMSILS GTLTEKQYET VCGKKL*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 683 shows 99.3% identity over a 146 aa overlap with a predicted ORF (ORF 683) from N. gonorrhoeae:

```
m683/g683
          99.3% identity in 146 aa overlap
                 10
                                 30
          MIKETLMRPIFLSFVLFPILITACSTPDKSARWENIGTISNGNIHTYINKDSVRKNGNLM
m683.pep
          MIKETLMRPIFLSFVLLPILITACSTPDKSARWENIGTISNGNIHTYINKDSVRKNGNLM
g683
                10
                        20
                                 30
                                         40
                70
                        80
                                        100
          IFQDKKVVTNLKQERFANTPAYKTAIAEWEIHCNNKTYRLSSLQLFDTKNTEISTQNYTA
m683.pep
          IFQDKKVVTNLKQERFANTPAYKTAIAEWEIHCNNKTYRLSSLQLFDTKNTEISTQNYTA
q683
                70
                        80
                                 90
                                        100
                                                110
                130
                        140
m683.pep
          SSLRPMSILSGTLTEKQYETVCGKKLX
          ******************
a683
          SSLRPMSILSGTLTEKQYETVCGKKLX
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2259>

```
a683.seq
         ATGATTAAGG AAACCCTAAT GCGCCCAATC TTCCTATCTT TCGTTTTATT
      1
         CCCTATTTTG ATAACCGCCT GCAGCACACC GGACAAGTCT GCCCGATGGG
     51
    101 AAAATATCGG CACAATCTCA AACGGCAATA TTCATACATA TATCAATAAA
         GACAGCGTGA GAAAAAACGG AAATCTGATG ATTTTCCNAG ATAAAAAAGT
         TGTTACCAAT CTAAAACAAG AACGTTTTGC CNACACCCCC GCATACAAGA
    251 CTGCCATTGC CGAGTGGGAA ATCCACTGCA ACAACAAAAC ATACCGCTTA
```

- 301 AGTTCGCTAC AATTGTTTGA TACAAAAAAC ACGGAAATTT CCACACAAAA
- 351 NTACACAGCC TCTTCCCTCC GCCCGATGAG CATCCTGTCC GGGACATTAA 401 CCGAAAAACA ATATGAAACC GTATGCGGAA AAAAACTCTG A

This corresponds to the amino acid sequence <SEQ ID 2260; ORF 683.a>: a683.pep

- MIKETLMRPI FLSFVLFPIL ITACSTPDKS ARWENIGTIS NGNIHTYINK
- DSVRKNGNLM IFXDKKVVTN LKQERFAXTP AYKTAIAEWE IHCNNKTYRL



SSLQLFDTKN TEISTQXYTA SSLRPMSILS GTLTEKQYET VCGKKL*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. meningitidis

ORF 683 shows 97.9% identity over a 146 aa overlap with a predicted ORF (ORF 683) from N. meningitidis:

```
m683/a683
            97.9% identity in 146 aa overlap
                            20
            MIKETLMRPIFLSFVLFPILITACSTPDKSARWENIGTISNGNIHTYINKDSVRKNGNLM
m683.pep
            MIKETLMRPIFLSFVLFPILITACSTPDKSARWENIGTISNGNIHTYINKDSVRKNGNLM
a 683
                            20
                                     30
                                              40
                   70
                            80
                                     90
                                             100
                                                      110
           IFQDKKVVTNLKQERFANTPAYKTAIAEWEIHCNNKTYRLSSLQLFDTKNTEISTQNYTA
m683.pep
            រីវិទីសេសពីវិសាសម្រាយអាយាយមានសេសពីវិសាសមា
           IFXDKKVVTNLKQERFAXTPAYKTAIAEWEIHCNNKTYRLSSLQLFDTKNTEISTQXYTA
a683
                            80
                                     90
                                             100
                                                     110
                  130
                           140
           SSLRPMSILSGTLTEKQYETVCGKKLX
m683.pep
            1111111111111111111111111111111
a683
           SSLRPMSILSGTLTEKQYETVCGKKLX
                  130
                          140
```

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2261> g684.seq

```
ATGCGCCTTT TCCCCATCGC CGCCGCCCTG ACGCTTGCCG CCTGCGGTAC
    TGTGCAAAGC ACACAATATT TCGTGTTGCC CGACAGCCGC TACATCCGTC
 51
101 CTGCAACGCA AGGCGGCGAA ACCGCCGTCG AAGTCCGTCT TGCCGAACCG
    CTCAAACGCG GCGGACTGGT CTATCAAACC GACCCCTACC GCATCAACAC
151
201 CGCACAAAAC CATGTTTGGG CAGACACCTT GGACGATATG CTCGAAGCGG
251
    CGTTGAGCAA TGCATTCAAC CGTTTGGACA GCACACGCAC CTTTGTTCCT
301 GCCTCACGCA GCGGCAGTAC CGACAAATGG ACGGTCTATA TCGACGCATT
    CCAAGGCAGC TACACGGGCA AAACCCTCAT CAGCGGCTAC GCCGTCCTAC
    CCGACGGTAC GAACAGACCC TTCCATATCG AAACCGAACA GCAGGGTGAC
401
    GGCTACGCCG CCATGACCGC CGCACTCGAA CAGGGACTGA AACAGGCGGC
501 GCAACAGATG GTCGAGTAA
```

#### This corresponds to the amino acid sequence <SEQ ID 2262; ORF 684 >: g684.pep

- MRLFPIAAAL TLAACGTVQS TQYFVLPDSR YIRPATQGGE TAVEVRLAEP LKRGGLVYQT DPYRINTAQN HVWADTLDDM LEAALSNAFN RLDSTRTFVP 51
- ASRSGSTDKW TVYIDAFQGS YTGKTLISGY AVLPDGTNRP FHIETEQQGD 101

151 GYAAMTAALE QGLKQAAQQM VE*

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2263>: m684.seq

1	ATGCGCCTTT	TCCCGATTGC	CGCCGCCCTG	TCGCTTGCCC	CCTGCGGTAC
51	TGTGCAAAGC	ACACAATATT	TCGTGTTGCC	CGACAGCCGC	TACAMCCCMC
101	CTGCAACGCA	AGGCGGCGAA	ACTGCCGTCG	AAGTCCGTCT	TCCCCAACCC
151	CTCAAACGCG	GCGGACTGGT	CTATCAAACC	GACCCCTACC	CCCMCARCAC
201	CGCACAAAAC	CACGTCTGGG	CAGACACCTT	GGACGATATC	CTCCDACCC
251	CGTTGAGCAA	TGCATTCAAC	CGTTTGGACA	GCACACGCAT	CTTTCTTCCTT
301	GCCTCACGCA	GCGGCAGTAC	CGAAAAATGG	ACCGTCTATA	TCCACCCAME
351	CCAAGGCAGC	TACACGGGCA	AAACCCTCAT	CAGCGGCTAC	CCCCTCCTT
401	CCGACGGTAC	GAACAGACCC	TTCCATATCG	AAACCCAACA	CCACCCCCA
451	GGCTACGCCG	CGATGACCGC	CGCACTCGAA	CAGGGACTGA	AACAGGCGGC
501	GCAACAGATG	GTCGAGTAA			

### This corresponds to the amino acid sequence <SEQ ID 2264; ORF 684>: m684.pep

- MRLFPIAAAL SLAACGTVQS TQYFVLPDSR YIRPATQGGE TAVEVRLAEP LKRGGLVYQT DPYRLNTAQN HVWADTLDDM LEAALSNAFN RLDSTRIFVP 51
- 101 ASRSGSTEKW TVYIDAFQGS YTGKTLISGY AVLPDGTNRP FHIETEQQGD

151 GYAAMTAALE QGLKQAAQQM VE*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 684 shows 97.7% identity over a 172 aa overlap with a predicted ORF (ORF 684) from N. gonorrhoeae:

```
m684/q684
          97.7% identity in 172 aa overlap
                                       40
          MRLFPIAAALSLAACGTVQSTQYFVLPDSRYIRPATQGGETAVEVRLAEPLKRGGLVYQT
m684.pep
          a684
          MRLFPIAAALTLAACGTVQSTQYFVLPDSRYIRPATQGGETAVEVRLAEPLKRGGLVYQT
                       20
                               30
                                       40
                70
                       80
                               90
                                      100
                                              110
          DPYRLNTAQNHVWADTLDDMLEAALSNAFNRLDSTRIFVPASRSGSTEKWTVYIDAFQGS
m684.pep
          g684
          DPYRINTAQNHVWADTLDDMLEAALSNAFNRLDSTRTFVPASRSGSTDKWTVYIDAFQGS
                70
                       80
                               90
                                      100
                                              110
               130
                      140
                              150
                                      160
          YTGKTLISGYAVLPDGTNRPFHIETEQQGDGYAAMTAALEQGLKQAAQQMVEX
m684.pep
          YTGKTLISGYAVLPDGTNRPFHIETEQQGDGYAAMTAALEQGLKQAAQQMVEX
q684
               130
                      140
                              150
                                      160
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2265> a684.seq

```
1 ATGCGCCTCT TCCCGATTGC CGCCGCCCTG ACGCTTGCCG CCTGCGGTAC
51 TGTGCAAAGC ACACAATATT TCGTGTTGCC CGACAGCCGC TACATCGTC
101 CTGCAACGCA AGGCGGCGAA ACTGCCGTCG AAGTCCGTCT TGCCGAACCG
151 CTCAAACGCG GCGGACTGGT CTATCAAACC GACCCCTACC GCCTCAACAC
201 CGCACAAAAC CACGTCTGGG CAGACACCTT GGACGATATG CTCGAAGCGG
251 CGTTGAGCAA TGCATTCAAC CGTTTGGACA GCACACGCAT CTTTGTTCCT
301 GCCTCACGCA GCGCAGTAC CGAAAAATGG ACGGTCTATA TCGACGCATT
351 CCAAGGCAGC TACACGGCA AAACCCTCAT CAGCGGCTAC GCCGTCCTAC
401 CCGACGGTAC GAACAGACCC TCCATATCG AAACCGAACA GCAGGGTGAC
451 GGCTACGCCG CCATGACCGC CCGCACTCGAA CAGGGACTGA AACAGGCCGC
501 GCAACAGATG GTCGAGTAA
```

This corresponds to the amino acid sequence <SEQ ID 2266; ORF 684.a>: a684.pep

- 1 MRLFPIAAAL TLAACGTVQS TQYFVLPDSR YIRPATQGGE TAVEVRLAEP 51 LKRGGLVYQT DPYRLNTAQN HVWADTLDDM LEAALSNAFN RLDSTRIFVP
- 101 ASRSGSTEKW TVYIDAFQGS YTGKTLISGY AVLPDGTNRP FHIETEQQGD
- 151 GYAAMTAALE QGLKQAAQQM VE*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis

ORF 684 shows 99.4% identity over a 172 aa overlap with a predicted ORF (ORF 684) from N. meningitidis

m684/a684	99.4% identity	y in 172 aa	a overlap			
	10	20	30	40	50	60
m684.pep	MRLFPIAAALSLA	ACGTVQSTQY	FVLPDSRYIR	PATOGGETAVI	EVRLARPLKRO	GT.VVOT
		HILLIAM				
a684	MRLFPIAAALTLA	ACGTVQSTQYI	VLPDSRYIR	PATOGGETAVI	EVRT.AEPT.KBC	CLVVOT
	10	20	30	40	50	60
	70	80	90	100	110	120
m684.pep	DPYRLNTAONHVW	ADTLDDMLEAR	LSNAFNRLDS	STRIFVPASRS	SGSTEKWTVYT	בסספ מת:
			:	[		111111
a684	DPYRLNTAQNHVW	ADTLDDMLEA	LSNAFNRLDS	TRIFVPASRS	GSTEKWTVVI	ווווווו
	70	80	90	100	110	120
	130	140	150	160	170	





The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2267>

```
TTGTTTTGCC GTATCGGGAA TTTTGCGTTT TGCGGCGTGG TTTCTGCAGG
      TTGTTTGCTT AATAATAAAC ATTCTTATTC GTATGCAAAG GAACCGCACA
   51
      CCGTGAAACC GCGTTTTTAT TGGGCAGCCT GCGGCCGCCC
 101
      TGTTCGCCCG AACCTGCCGC CGAAAAAACT GTATCCGCCG CATCCCAAGC
 151
      CGCATCCACA CCTGTCGCCA CGCTGACCGT GCCGACCGCG CGGGGCGATG
 201
 251 CCGTTGTGCC GAAGAATCCC GAACgcgtcg ccgtgtAcga CtggGCGGCG
 301 TEGGATACGC TGACCGAGCC GGGCGTGAAT GTGGGCGCAA CCACCGCGCC
 351 GGTGCGCGTG GACTATTTGC AGCCTGCATT TGACAAGGCG GCAACGGTGG
401 GGACGCTGTT TGAGCCCGAT TGCGAATCCC TGCACCGCCA CAATCCGCAG
      TTTGTCATTA CCGGCGGGCC GGGTGCGGAA GCGTATGAAC AGTTGGCGAA
 451
 501 AAACGCGACC ACCATAGATT TGACGGTGGA CAACGGCAAT ATCCGCACCA
 551 GCGGCGAGAA GCAGATGGAG ACCCTGTCGC GGATTTTCGG TAAGGAAGCG
 601 CGCGTGGCGG AATTGAATGC GCAGATTGAC GCGCTGTTCG CCCAAAAGCG
 651 CGAAGCCGCC AAAGGCAAAG GACGCGGGCT GGTGCTGTCG GTTACAGGCA
 701 ACAAGGTGTC CGCCTTCGGC ACGCAATCGC GGTTGGCAAG TTGGATACAC
 751 GGCGACATCG GCCTGCCGCC CGTGGACGAA TCTTTACGCA ACGAAGGGCA
 801 CGGGCAGCCC GTTTCCTTCG AATACATCAA AGAGAAAAAC CCCGGCTGGA
      TTTTCATCAT CGACCGCACC GCCGCCATCG GGCAGGAAGG GCCGGCTGCC
 851
901 GTGGAAGTGT TGGATAACGC GCTGGTATGC GGCACGAACG CTTGGAAGCG
951 CAAGCAAATC ATCGTCATGC CTGCCGCGAA CTACATTGTC GCGGGCGGCG
1001 CGCGGCAGTT GATACAGGCG GCGGAACAGT TGAAGGCGGC GTTTGAAAAG
1051 GCAGAACCCG TTGCGGCGCA GTAG
```

This corresponds to the amino acid sequence <SEQ ID 2268; ORF 685 >: g685.pep

```
1 LFCRIGNFAF CGVVSAGCLL NNKHSYSYAK EPHTVKPRFY WAACAVLPAA
51 CSPEPAAEKT VSAASQAAST PVATLTVPTA RGDAVVPKNP ERVAVYDWAA
101 LDTLTEPGVN VGATTAPVRV DYLQPAFDKA ATVGTLFEPD CESLHRHNPQ
151 FVITGGPGAE AYEQLAKNAT TIDLTVDNGN IRTSGEKQME TLSRIFGKEA
201 RVAELNAQID ALFAQKREAA KGKGRGLVLS VTGNKVSAFG TQSRLASWIH
251 GDIGLPPVDE SLRNEGHGQP VSFEYIKEKN PGWIFIIDRT AAIGQEGPAA
301 VEVLDNALVC GTNAWKRKQI IVMPAANYIV AGGARQLIQA AEQLKAAFEK
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2269>:

```
TTGTTTTGCC GTATCGGGAA TTTTGCGTTT TGCGGCGTGG TTTCTGCAGG
       TTGTTTGCTT AATAATAAAC ATTCTTATTC GTATGCAAAG GAACCGCACA
 101 CCGTGAAACC GCGTTTTTAT TGGGCAGCCT GCGCCGTCCT GCTGACCGCC
 151 TGTTCGCCCG AACCTGCCGC CGAAAAAACT GTATCCGCCG CATCCGCATC
201 TGCCGCCACG CTGACCGTGC CGACCGCGCG GGGCGATCCC CTTGTCGCATC
       TGCCGCCACG CTGACCGTGC CGACCGCGCG GGGCGATGCC GTTGTGCCGA
 251 AGAATCCCGA ACGCGTCGCC GTGTACGACT GGGCGGCGTT GGATACGCTG
 301 ACCGAATTGG GCGTGAATGT GGGCGCAACC ACCGCGCCGG TGCGCGTGGA
351 TTATTTGCAG CCTGCATTTG ACAAGGCGGC AACGGTGGGG ACGCTGTTCG
 401 AGCCCGATTA CGAAGCCCTG CACCGCTACA ATCCTCAGCT TGTCATTACC
 451 GGCGGGCCGG GCGCGGAAGC GTATGAACAG TTAGCGAAAA ACGCGACCAC
 501 CATAGATCTG ACGGTGGACA ACGGCAATAT CCGCACCAGC GGCGAAAAGC
 551 AGATGGAGAC CTTGGCGCGG ATTTTCGGCA AGGAAGCGCG CGCGGCGGAA
 601 TTGAAGGCGC AGATTGACGC GCTGTTCGCC CAAACGCGCG AAGCCGCCAA
651 AGGCAAAGGA CGCGGGCTGG TGCTGTCGGT TACGGGCAAC AAGGTGTCCG
 701 CCTTCGGCAC GCAGTCGCGG TTGGCAAGTT GGATACACGG CGACATCGGC
751 CTACCGCCTG TAGACGAATC TTTACGCAAC GAGGGGCACG GGCAGCCTGT
      TTCCTTCGAA TACATCAAAG AGAAAAACCC CGATTGGATT TTCATCATCG
 801
 851 ACCGTACCGC CGCCATCGGG CAGGAAGGGC CGGCGGCTGT CGAAGTATTG
 901 GATAACGCGC TGGTACGCGG CACGAACGCT TGGAAGCGCA AGCAAATCAT
       CGTCATGCCT GCCGCGAACT ACATTGTCGC GGGCGGCGCG CGGCAGTTGA
 951
       TTCAGGCGGC GGAGCAGTTG AAGGCGGCGT TTAAAAAGGC AGAACCCGTT
1001
1051 GCGGCGGGGA AAAAGTAG
```

This corresponds to the amino acid sequence <SEQ ID 2270; ORF 685>: m685.pep

1	LFCRIGNFAF	CGVVSAGCLL	NNKHSYSYAK	EPHTVKPRFY	WAACAVIITA
51	CSPEPAAEKT	VSAASASAAT	LTVPTARGDA	VVPKNPERVA	VYDWAAI.DTI.
101	TELGVNVGAT	TAPVRVDYLQ	PAFDKAATVG	TLFEPDYEAL	HRYNDOLUTT
151	GGPGAEAYEQ	LAKNATTIDL	TVDNGNIRTS	GEKQMETLAR	TECKEARAAE
201	LKAQIDALFA	QTREAAKGKG	RGLVLSVTGN	KVSAFGTQSR	LASWINGDIC
251	LPPVDESLRN	EGHGQPVSFE	YIKEKNPDWI	FIIDRTAAIG	OFCDANGEUT
301	DNALVRGTNA	WKRKOIIVMP	AANYIVAGGA	RQLIQAAEQL	ODGE WAY DOT
351	AAGKK*				MARINAEPV

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 685 shows 94.4% identity over a 356 aa overlap with a predicted ORF (ORF 685) from N. gonorrhoeae:

```
94.4% identity in 356 aa overlap
m685/g685
          LFCRIGNFAFCGVVSAGCLLNNKHSYSYAKEPHTVKPRFYWAACAVLLTACSPEPAAEKT
m685.pep
          LFCRIGNFAFCGVVSAGCLLNNKHSYSYAKEPHTVKPRFYWAACAVLPAACSPEPAAEKT
g685
                               30
                                       40
                   70
                          80
                                         100
          VSAASASA----ATLTVPTARGDAVVPKNPERVAVYDWAALDTLTELGVNVGATTAPVRV
m685.pep
                   VSAASQAASTPVATLTVPTARGDAVVPKNPERVAVYDWAALDTLTEPGVNVGATTAPVRV
g685
                       80
                               90
          120
                  130
                          140
                                 150
                                         160
          DYLQPAFDKAATVGTLFEPDYEALHRYNPQLVITGGPGAEAYEQLAKNATTIDLTVDNGN
m685.pep
          DYLQPAFDKAATVGTLFEPDCESLHRHNPQFVITGGPGAEAYEQLAKNATTIDLTVDNGN
a685
               130
                      140
                              150
                                      160
                                             170
                  190
                          200
                                 210
                                         220
          IRTSGEKQMETLARI FGKEARAAELKAQIDALFAQTREAAKGKGRGLVLSVTGNKVSAFG
m685.pep
          IRTSGEKQMETLSRIFGKEARVAELNAQIDALFAQKREAAKGKGRGLVLSVTGNKVSAFG
g685
                      200
                              210
                                      220
          240
                  250
                          260
                                 270
                                         280
                                                290
          TQSRLASWIHGDIGLPPVDESLRNEGHGQPVSFEYIKEKNPDWIFIIDRTAAIGQEGPAA
m685.pep
          g685
          TQSRLASWIHGDIGLPPVDESLRNEGHGQPVSFEYIKEKNPGWIFIIDRTAAIGQEGPAA
               250
                      260
                                      280
                                             290
                  310
                         320
                                 330
         VEVLDNALVRGTNAWKRKQIIVMPAANYIVAGGARQLIQAAEQLKAAFKKAEPVAAGKKX
m685.pep
          g685
         VEVLDNALVCGTNAWKRKQIIVMPAANYIVAGGARQLIQAAEQLKAAFEKAEPVAAQX
                      320
                              330
                                      340
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2271> a685.seq

_						
	1	TTGTTTTGCC	GTATCGGGAA	TTTTGCGTTT	TGCGGCGTGG	TTTCTGCAGG
	51	TTGTTTGCTT	AATAATAAAC	ATTCTTATTC	GTATGCAAAG	GAACCGCACA
	101	CCGTGAAACC	GCGTTTTTAT	TGGGCAGCCT	GCGCCGTCCT	GCTGACCGCC
	151	TGTTCGCCCG	AACCTGCCGC	CGAAAAAACT	GTATCCGCCG	CATCCGCATC
	201	TGCCGCCACA	CTGACCGTGC	CGACCGCGCG	GGGCGATGCC	GTTGTGCCGA
	251	AGAATCCCGA	ACGCGTCGCC	GTGTACGACT	GGGCGGCGTT	GGATACGCTG
	301	ACCGAATTGG	GTGTGAATGT	GGGCGCAACC	ACCGCGCCGG	TGCGCGTGGA
	351	TTATTTGCAG	CCTGCATTTG		AACGGTGGGG	
	401	AGCCCGATTA	CGAAGCCCTG		ATCCTCAGCT	TGTCATTACC
	451	GGCGGGCCGG	GCGCGGAAGC	GTATGAACAG	TTGGCGAAAA	
	501	CATAGATCTG	ACGGTGGACA	ACGGCAATAT	CCGCACCAGC	
	551	AGATGGAGAC	CTTGGCGCGG	ATTTTCGGCA	AGGAAGCGCG	
	601	TTGAAGGCGC	AGATTGACGC	GCTGTTCGCC	CAAACGCGCG	
	651	AGGCAAAGGA	CGCGGGCTGG	TGCTGTCGGT	TACGGGCAAC	
	701	CCTTCGGCAC	GCAGTCGCGG	TTGGCAAGTT	GGATACACGG	
	751	CTACCGCCTG	TAGACGAATC			CGACATCGGC
	801	TTCCTTCGAA	TACATCAAAG			GGCAGCCTGT
					CGALIGGATT	TTCATCATCG





901 951 1001	ACCGTACCGC GATAACGCGC CGTCATGCCT TTCAGGCGGC GCGGCGGGGA	TGGTACGCGG GCCGCGAACT GGAGCAGTTG	CACGAACGCT	TGGAAGCGCA	AGCAAATCAT
--------------------	--------------------------------------------------------------------	----------------------------------------	------------	------------	------------

This corresponds to the amino acid sequence <SEQ ID 2272; ORF 685.a>: a685.pep

1 LFCRIGNFAF CGVVSAGCLL NNKHSYSYAK EPHTVKPRFY WAACAVLLTA
51 CSPEPAAEKT VSAASASAAT LTVPTARGDA VVPKNPERVA VYDWAALDTL
101 TELGVNVGAT TAPVRVDYLQ PAFDKAATVG TLFEPDYEAL HRYNPQLVIT
151 GGPGAEAYEQ LAKNATTIDL TVDNGNIRTS GEKOMETLAR IFGKEARAAE
201 LKAQIDALFA QTREAAKGKG RGLVLSVTGN KVSAFGTQSR LASWIHGDIG
251 LPPVDESLRN EGHGQPVSFE YIKEKNPDWI FIIDRTAAIG QEGPAAVEVL
301 DNALVRGTNA WKRKQIIVMP AANYIVAGGS RQLIQAAEQL KEAFEKAEPV
351 AAGKE*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. meningitidis

ORF 685 shows 98.9% identity over a 355 aa overlap with a predicted ORF (ORF 685) from N. meningitidis:

m685/a685	98.9% identity	in 355 a	a overlap			
m685.pep	10 LFCRIGNFAFCGVV	20 SAGCLLNNK	30 HSYSYAKEPHT	40 VKPRFYWAAC	50 CAVLLTACSP	60 EPAAEKT
a685	LFCRIGNFAFCGVV	SAGCLLNNKI 20	HSYSYAKEPHT	VKPRFYWAAC	AVLLTACSP	 EPAAEKT
			30	40	50	60
m685.pep	70 VSAASASAATLTVP	80 FARGDAVVPI	90 KNPERVAVYDW	100 AALDTLTELG	110 VNVGATTAP	120
a685	VSAASASAATLTVP	1   2   4		1	11111111	
	70	80	90	100	110	120
m685.pep	130 PAFDKAATVGTLFEE	140 DYEALHRYN	150 POLVITGGPG	160 EAVEOLAKN	170	180
a685	PAFDKAATVGTLFEE		1111111111	11111111	TITLIBLE .	
	130	140	150	160	170	IGNIRTS 180
m685.pep	190 GEKQMETLARIFGKE	200	210	220	230	240
a685		1	3 1 1 1 1 1 1 1 1 1 1	11111111		
	GEKOMETLARIFGKE 190	200	210	220	LSVTGNKVSA 230	FGTQSR 240
m685.pep	250	260	270	280	290	300
a685	LASWIHGDIGLPPVD	1 1 1 1 1 1 1 1 1		11111111		
4005	LASWIHGDIGLPPVD 250	ESLRNEGHG 260	QPVSFEYIKEK 270	NPDWIFIIDI 280	RTAAIGQEGP 290	AAVEVL 300
	310	320	330	340	350	
m685.pep	DNALVRGTNAWKRKQ	111111111		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
a685	DNALVRGTNAWKRKQ 310	IIVMPAANY 320	IVAGGSROLIO 330	AAEOLKEAFE 340	EKAEPVAAGK 350	EX

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2273> g686.seq (partial)

1	AATTTCTCCT	GCCGCGCCGA	TGATGTTTTT	GACGATATCT	CCACTCCCCT
51	TGAAGGCTTC	ggcgGCATTG	CCCGATCTGT	CCACCTCCCC	CCMGIGCCGI
101	GTGGCGCGTT	TGAATCCGTC	GCCTACTCCT	TCCCTCTCT	GCTGTATCGG
151	ATTGTGGAAA	CGGTCGGCAA	CCCCMMCmcc	IGCGTCAGCA	TAGCGCCGGC
201	GGTTGAGGGG	CATATROTOCCA	CCCGTTGTCC	GGTGCTGCGG	TTGTCGGTCA
251	GGTTGAGGCG	CMMMCCCARC	GCAACGCCTT	TTATGTCGTA	GCTGTATATA
301	TCCCTCGCGC	CTTTGGGAGC	GGGATAGCCG	CCGCCCTGTG	GCCCGTCATA
	GCCGTCGGCG	GGATGGTGTT	CGTATCCGTC	CCAATGGATG	CGGTAAAGGC
351	TGAATCCGTC AF	ACGGGACTA CO	GGCTTCGT C	GAATCGGA AT	GTGA

The second second second second second second second second second second second second second second second se

This corresponds to the amino acid sequence <SEQ ID 2274; ORF 686 >: (partial) g686.pep

..NFSCRADDVF DDICSAVEGF GGIARSVQLG AVSGGAFESV AYSLRQHSAG IVETVGKPLS GAAVVGQVEA DILGNAFYVV AVYIPRAFGS GIAAALWPVI 51 AVGGMVFVSV PMDAVKAESV NGTTGFVRIG M* 101

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2275>: m686.seq.

```
ATGATGTTGA AAAAATTCGT ACTCGGCGGT ATTGCCGCAT TGGTTTTGGC
 51 GGCCTGCGGC GGTTCGGAAG GCGGCAGCGG AGCGNNNNNN NNNNNNAATT
101 TCTCCTGCAG CGCCGATGAT GTTTTTAACG ATATCTGCAG TGCCGTTGAA
151 GGCTTCGGCG GCATTGCCCG ATCTGTCCAG CTCGGGGCTG TATCGGGTGG
201 CGCGTTTGAA TCCGTCGCCT ACTCCTTGCG TCAGCATACT ACCGGCATTG
    TGGAAACGGT CGGCAAGCCG TTGTCCGGTG CTGCGGTTGT CGGTCAGGTT
251
301 GAGGCGGATA TTTTGGGCAA CGCCTTTTAT GTCGTAGCTG TATATATCCC
351 TCGCGCCTTT GGGAGCGGGA TAGCCGCCGC CCTGTGGCCC GTCATAGCCG
    TCGGCGGGAT GGTGTTCGTA TCCGTCCCAA TGGATGCGGT AAAGGCTAAA
401
451 TCCGTCAACG GGACTACCGG CTTCATCAGA ATCGGAATGT GA
```

This corresponds to the amino acid sequence <SEQ ID 2276; ORF 686>: m686.pep

- MMLKKFVLGG IAALVLAACG GSEGGSGAXX XXNFSCSADD VFNDICSAVE 51 GFGGIARSVQ LGAVSGGAFE SVAYSLRQHT TGIVETVGKP LSGAAVVGQV
- 101 EADILGNAFY VVAVYIPRAF GSGIAAALWP VIAVGGMVFV SVPMDAVKAK 151 SVNGTTGFIR IGM*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae ORF 686 shows 95.4% identity over a 131 aa overlap with a predicted ORF (ORF 686) from N. gonorrhoeae

g686/m686 95.4% identity in 131 aa overlap

```
10
                                                   20
g686.pep
                                    NFSCRADDVFDDICSAVEGFGGIARSVQLG
                                    1111 11111:111111111111111111111
           {\tt LKKFVLGGIAALVLAACGGSEGGSGAXXXXNFSCSADDVFNDICSAVEGFGGIARSVQLG}
m686
                10
                                 30
                                         40
                          50
                                  60
                                           70
                                                   80
           AVSGGAFESVAYSLRQHSAGIVETVGKPLSGAAVVGQVEADILGNAFYVVAVYIPRAFGS
a686.pep
           AVSGGAFESVAYSLRQHTTGIVETVGKPLSGAAVVGQVEADILGNAFYVVAVYIPRAFGS
m686
                70
                        80
                                90
                                                 110
                100
                         110
                                 120
          GIAAALWPVIAVGGMVFVSVPMDAVKAESVNGTTGFVRIGMX
g686.pep
           m686
          GIAAALWPVIAVGGMVFVSVPMDAVKAKSVNGTTGFIRIGMX
                       140
                                150
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2277> a686.seq

```
... AATTTCTCCT GCCGCGCCGA TGATGTTTTT GACGATATCT GCAGTGCCGT
      TGAAAGCTTC GGCGGCATTG CCCGATCTGT CCAGCTCGGG GCTGTATCGG
 51
      GTGGCGCGTT TGAATCCGTC GCCTACTCCT TGCGTCAGCA TACTACCGGT
101
      ATTGTGGAAA CGGTCGACAA GCCGTTGTCC GGTGCTGCGG TTGTCGGTCA
151
      GGTTGAGGCG GATATTTTGG GCAACGCCTT TTATGTCGTA GCTGTATATA
      TCCCTCGCGC CTTTGGGAGC GGGATAGCCG CCGCCCTGTG GCCCGTCATA
251
301
      GCCGTCGGCG GGATGGTGTT CGTATCCGTC CCAATGGATG CGGTAAAGGC
      TGAATCCGTC AACGGGACTA CCGGCTTCAT CAGAATCGGA ATGTGA
```

This corresponds to the amino acid sequence <SEQ ID 2278; ORF 686.a>: a686.pep (partial)

1	NFSCRADDVF	DDICSAVESF	GGIARSVOLG	AVSGGAFESV	AYSTROUTEC
51	IVETVDKPLS	GAAVVGQVEA	DILGNAFYVV	AVYIPRAFGS	CIAAALMOUT
101	AVGGMVFVSV	PMDAVKAESV	MCTTCETETC	M+	GINNALVI

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. meningitidis

ORF 686 shows 96.2% identity over a 131 aa overlap with a predicted ORF (ORF 686) from N meningitidis:

```
m686/a686
           96.2% identity in 131 aa overlap
                         20
                                 30
           {\tt LKKFVLGGIAALVLAACGGSEGGSGAXXXXNFSCSADDVFNDICSAVEGFGGIARSVQLG}
m686.pep
                                    1411 14411:1111411:111111111
a686
                                    NFSCRADDVFDDICSAVESFGGIARSVQLG
                                           10
                                                   20
                                 90
                                        100
                                                 110
           AVSGGAFESVAYSLRQHTTGIVETVGKPLSGAAVVGQVEADILGNAFYVVAVYIPRAFGS
m686.pep
           AVSGGAFESVAYSLRQHTTGIVETVDKPLSGAAVVGQVEADILGNAFYVVAVYIPRAFGS
a686
                  40
                                  60
                                           70
               130
                       140
                                150
m686.pep
           GIAAALWPVIAVGGMVFVSVPMDAVKAKSVNGTTGFIRIGMX
           GIAAALWPVIAVGGMVFVSVPMDAVKAESVNGTTGFIRIGMX
a686
                         110
                                 120
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2279> g687.seq

```
ATGAAATCCA GACACCTCGC CCTCGCCCTC GGCGTTGCCG CCCTGTTCGC
  1
 51
     CCTTGCCGCG TGCGACAGCA AAGTCCAAAC CAGCGTCCCC GCCGACAGCG
101
     CGCCTGCCGC TTCGGCAGCC GCCGCCCCGG CAGGACTGGT CGAAGGGCAA
     AACTACACCG TCCTTGCCAA CCCGATTCCC CAACAGCAGG CAGGCAAGGT
151
     TGAAGTGCTT GAGTTTTTCG GCTATTTTTG TCCGCACTGC GCCCGCCTcg
201
251 AACCTGTTTT GAGCAAACAC GCCAAGTCTT TTAAAGACGA TATGTACCTG
301 CGTACCGAAC ACGTCGTCTG GCAGAAAGAA ATGCTGCCGC TGGCACGCct
     CGCCGCCGCC GTCGATATGG CTGCCGCCGA AAGCAAAGAT GTGGCGAACA
351
401
    GCCATATTTT CGATGCGATG GTCAACCAAA AAATCAAGCT GCAAGAGCCG
451
    GAAGTCCTCA AAAAATGGCT GGGCGAACAA ACCGCCTTTG ACGGCAAAAA
    AGTCCTTGCC GCCTACGAAT CCCCCGAAAG TCAGGCGCGC GCCggCAAAA
501
    TGCAGGAGCT GACCGAAACC TTCCAAATCG ACGGTACGCC CACGGTTATC
551
601
    GTCGGCGGCA AATATAAAGT CGAATTTGCC GACTGGGAGT CCGGTATGAA
651
    CACCATCGAC CTTTTGGCGG ACAAAGTACG TGAAGAACAA AAAGCCGCGC
701 AGTAG
```

This corresponds to the amino acid sequence <2280 ID 724; ORF 687 >: g687.pep

```
1 MKSRHLALAL GVAALFALAA CDSKVQTSVP ADSAPAASAA AAPAGLVEGQ
51 NYTVLANPIP QQQAGKVEVL EFFGYFCPHC ARLEPVLSKH AKSFKDDMYL
101 RTEHVVWQKE MLPLARLAAA VDMAAAESKD VANSHIFDAM VNQKIKLQEP
151 EVLKKWLGEQ TAFDGKKVLA AYESPESQAR AGKMQELTET FQIDGTPTVI
201 VGGKYKVEFA DWESGMNTID LLADKVREEQ KAAQ*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2281>:

```
ATGAAATCCA GACACCTTGC CCTCGGCGTT GCCGCCTGT TCGCCCTTGC
51 CGCGTGCGAC AGCAAAGTCC AAACCAGCGT CCCCGCCGAC AGCGGCGCTG
101 CCGCTTCGGC AGCCGCCGC CCGGCAGGCC TGGTCGAAGC AAGTCGAAGT
151 ACCGTCCTT CCAACCCGAT TCCCCCAACAG CAGGCAGGCA AAGTCGAAGT
201 CCTTGAGTTT TCCGCTATT TCTGTCCGCA CTGCGCCCAC CTCGAACCTG
251 TTTTAAGCAA ACACGCCAAG TCTTTTAAAG ACGATATGTA CCTGCGTACC
301 GAACACGTCG TCTGGCAGAA AGAAATGCTG ACGTCGCCGC
351 CGCCGTCGAT ATGGCTGCCG CCGACAGCAA AGATGTGGCG AACAGCCATA
401 TTTTCGATGC GATGGTCAAC CAAAAAATCA AGCTGCAAAA TCCGGAAGTC
451 CTCAAAAAAT GGCTGGCGA ACAAACCGCC TTTGACGGCA AAAAAGTCCT
```

501	TGCCGCCTAC	GAGTCCCCCG	AAAGCCAGGC	GCGCGCCGAC	AAAATGCAGG
551	AGCTGACCGA	AACCTTCCAA	ATCGACGGTA	CGCCCACGGT	TATCGTCGGC
601	GGTAAATATA	AAGTTGAATT	TGCCGACTGG	GAGTCCGGTA	TGAACACCAT
651	CGACCTTTTG	GCGGACAAAG	TACGCGAAGA	ACAAAAAGCC	GCGCAGTAA

This corresponds to the amino acid sequence <SEQ ID 2282; ORF 687>: m687.pep

- 1 MKSRHLALGV AALFALAACD SKVQTSVPAD SAPAASAAAA PAGLVEGQNY
  51 TVLANPIPQQ QAGKVEVLEF FGYFCPHCAH LEPVLSKHAK SFKDDMYLRT
  101 EHVVWQKEML TLARLAAAVD MAAADSKDVA NSHIFDAMVN QKIKLQNPEV
  151 LKKWLGEQTA FDGKKVLAAY ESPESQARAD KMQELTETFQ IDGTPTVIVG
- 201 GKYKVEFADW ESGMNTIDLL ADKVREEQKA AQ*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 687shows 97.0% identity over a 234 aa overlap with a predicted ORF (ORF 687) from N. gonorrhoeae:

```
97.0% identity in 234 aa overlap
m687/g687
                         20
                                30
          MKSRHLAL--GVAALFALAACDSKVQTSVPADSAPAASAAAAPAGLVEGQNYTVLANPIP
m687.pep
          MKSRHLALALGVAALFALAACDSKVQTSVPADSAPAASAAAAPAGLVEGQNYTVLANPIP
q687
               10
                               30
                                      40
                 70
                         80
                                90
                                               110
          QQQAGKVEVLEFFGYFCPHCAHLEPVLSKHAKSFKDDMYLRTEHVVWQKEMLTLARLAAA
m687.pep
          g687
          QQQAGKVEVLEFFGYFCPHCARLEPVLSKHAKSFKDDMYLRTEHVVWQKEMLPLARLAAA
                       80
                               90
                                             110
         120
                130
                        140
                               150
                                       160
          VDMAAADSKDVANSHIFDAMVNQKIKLQNPEVLKKWLGEQTAFDGKKVLAAYESPESQAR
m687.pep
          g687
          VDMAAAESKDVANSHIFDAMVNQKIKLQEPEVLKKWLGEQTAFDGKKVLAAYESPESQAR
               130
                      140
                                      160
                                             170
                190
                        200
                               210
                                       220
         ADKMQELTETFQIDGTPTVIVGGKYKVEFADWESGMNTIDLLADKVREEQKAAQX
m687.pep
          AGKMQELTETFQIDGTPTVIVGGKYKVEFADWESGMNTIDLLADKVREEQKAAQX
a687
                      200
                              210
                                     220
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2283> a687.seq

```
ATGAAATCCA AACACCTCGC CCTCGGCGTT GCCGCCCTGT TCGCACTTGC
     CGCGTGCGAC AGCAAAGTCC AAACCAGCGT CCCCGCCGAC AGCGCGCCTG
 51
     CCGCTTCGGC AGCCGCCGCC CCGGCAGGGC TGGTCGAAGG GCAAAACTAT
101
151 ACTGTCCTTG CCAACCGGAT TCCCCAACAG CAGGCAGGCA AAGTCGAAGT
201
     CCTTGAGTTT TTCGGCTATT TCTGTCCGCA CTGCGCCCAC CTCGAACCTG
     TTTTAAGCAA ACACGCCAAG TCTTTTAAAG ACGATATGTA CCTGCGTACC
251
     GAACACGTCG TCTGGCAGAA AGAAATGCTG ACGCTCGCAC GCCTCGCCGC
301
     CGCCGTCGAT ATGGCTGCCG CCGACAGCAA AGATGTGGCG AACAGCCATA
TTTTCGATGC GATGGTCAAC CAAAAAATCA AGCTGCAAGA GCCGGAAGTC
351
401
     CTCAAAAAT GGCTGGGCGA ACAAACCGCC TTTGACGGCA AAAAAGTCCT
451
     TGCCGCTTAC GAATCTCCCG AAAGCCAGGC GCGCCCGAC AAAATGCAGG
501
551 AGCTGACCGA AACCTTCCAA ATCGACGGTA CGCCCACGGT TATCGTCGGC
601
     GGCAAATATA AAGTCGAATT TGCCGACTGG GAGTCCGGTA TGAACACCAT
    CGACCTTTTG GCGGACAAAG TACGCGAAGA ACAAAAAGCC GCGCACTAA
```

This corresponds to the amino acid sequence <SEQ ID 2284; ORF 687.a>: a687.pep

1 MKSKHLALGV AALFALAACD SKVQTSVPAD SAPAASAAA PAGLVEGQNY
51 TVLANPIPQQ QAGKVEVLEF FGYFCPHCAH LEPVLSKHAK SFKDDMYLRT
101 EHVVWQKEML TLARLAAAVD MAAADSKDVA NSHIFDAMVN QKIKLQEPEV
151 LKKWLGEQTA FDGKKVLAAY ESPESQARAD KMQELTETFQ IDGTPTVIVG
201 GKYKVEFADW ESGMNTIDLL ADKVREEQKA AH*

WO 99/57280

1104

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. meningitidis

ORF 687 shows 98.7% identity over a 232 aa overlap with a predicted ORF (ORF 687) from N meningitidis:

m687/a687	98.7% identity	n 232 a	a overlap			
m687.pep	10 MKSRHLALGVAALF	20	30	40	50	60
		ILLILI	213VEADSAPA	MSAAAAPAG	LVEGQNYTVL	ANPIPQQ
a687	MKSKHLALGVAALF			70777777	1111111111	
	10	20	30			
	10	20	30	40	50	60
	70	80	90	100	110	
m687.pep	QAGKVEVLEFFGYF			DMAT DELLA	110	120
			LILLILLI			
a687		, , , , , , , , , , ,		11111111		11111
4001	QAGKVEVLEFFGYF 70	80	TSVUAVSEKD			<b>LAAAV</b> D
	70	80	90	100	110	120
	130	140	150			
m687.pep			150	160	170	180
moo/.pep	MAAADSKDVANSHI	POMMANOKIK	LONPEVLKKW	LGEQTAFDGE	KKVLAAYESPE	SQARAD
a687				]	1111111111	111111
a68 /	MAAADSKDVANSHI	FDAMVNQKIK	LQEPEVLKKW.	LGEQTAFDGF	KVLAAYESPE	SOARAD
	130	140	150	160	170	180
	190	200	210	220	230	
m687.pep	KMQELTETFQIDGTI	PTVIVGGKYK	VEFADWESGM	NTIDLLADKV	REEOKAAOX	
			!!!!!!!!!!!	111111111	111111111	
a687	KMQELTETFQIDGT	TVIVGGKYK	VEFADWESGM	TIDLI ADKV	REEOKAAUY	
	190	200	210	220	230	

#### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2285> g688.seq

GTGCTACACT AGACATCCCG ATTTGCACAG AAAGGTTCTC CCGTGAACAA 51 AACCCTCATC CTCGCCCTTT CCGCCCTGTT CAGCCTGACC GCGTGCAGCG TCGAACGCGT CTCGCTGTTT CCCTCCTACA AACTCAAAAT CATCCAAGGC 101 151 AACGAACTCG AACCGCGCGC CGTTGCCGCC CTGCGCCCCG GCATGACCAA 201 AGACCAAGTC CTGCTCCTGC TCGGCAGCCC CATACTGCGC GACGCTTTCC 251 ATACCGACCG CTGGGACTAT ACCTTCAACA CCTCCCGCAA CGGCATCATC 301 AAAGAACGCA GCAACCTGAC CGTCTATTTT GAAAACGGCG TACTCGTCCG 351 CACCGAAGGC GACGCCCTCC AAAATGCCGC CGAAGCCCTC CGCGCGAAAC 401 AAAACGCAGA CAAACAATAA

This corresponds to the amino acid sequence <SEQ ID 2286; ORF 688 >: g688.pep

- VLH*TSRFAQ KGSPVNKTLI LALSALFSLT ACSVERVSLF PSYKLKIIQG NELEPRAVAA LRPGMTKDQV LLLLGSPILR DAFHTDRWDY TFNTSRNGII 51
- KERSNLTVYF ENGVLVRTEG DALQNAAEAL RAKQNADKQ*

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2287>: m688.seq

GTGTTACACT ACCCATCCCG ATTTGCACAG AAAGGCATTT CCGTGAACAA 51 AACCCTCATC CTCGCCCTTT CCGCCCTCCT CGGCCTTGCC GCGTGCAGTG CCGAACGCGT TTCACTGTTC CCCTCGTACA AACTCAAAAT CATACAGGGC 101 AACGAACTCG AACCGCGCGC CGTTGCCGCC CTCCGCCCCG GCATGACCAA
AGACCAAGTC CTGCTCCTGC TCGGCAGCCC CATACTGCGC GACGCATTCC
ATACCGACCG CTGGGACTAT ACCTTCAACA CCTCCCGCAA CGGCATCATC 301 AAAGAACGCA GCAATCTGAC CGTCTATTTT GAAAACGGCG TACTCGTCCG CACCGAAGGC GACGTCCTGC AAAACGCTGC CGAAGCCCTC AAAGACCGCC 351 401 AAAACACAGA CAAACCATAA

This corresponds to the amino acid sequence <SEQ ID 2288; ORF 688>: m688.pep

- VLHYPSRFAQ KGISVNKTLI LALSALLGLA ACSAERVSLF PSYKLKIIQG 1
- NELEPRAVAA LRPGMTKDQV LLLLGSPILR DAFHTDRWDY TFNTSRNGII
- 101 KERSNLTVYF ENGVLVRTEG DVLQNAAEAL KDRQNTDKP*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 688 shows 90.6% identity over a 138 aa overlap with a predicted ORF (ORF 688) from N. gonorrhoeae:

```
m688/g688
           90.6% identity in 138 aa overlap
                 10
                         20
          VLHYPSRFAQKGISVNKTLILALSALLGLAACSAERVSLFPSYKLKIIQGNELEPRAVAA
m688.pep
           VLHXTSRFAQKGSPVNKTLILALSALFSLTACSVERVSLFPSYKLKIIQGNELEPRAVAA
q688
                         20
                                          40
                 70
                         80
                                 90
                                         100
                                                 110
          \verb|LRPGMTKDQVLLLLGSPILRDAFHTDRWDYTFNTSRNGIIKERSNLTVYFENGVLVRTEG|\\
m688.pep
          LRPGMTKDQVLLLLGSPILRDAFHTDRWDYTFNTSRNGIIKERSNLTVYFENGVLVRTEG
g688
                 70
                         80
                                 90
                                         100
                130
m688.pep
          DVLQNAAEALKDRQNTDKPX
          1:11111111: :11:11
g688
          DALQNAAEALRAKQNADKQX
                130
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2289> a688.seq

- 1 GTGTTACACT ACCCATCCCG ATTTGCACAG AAAGGCATTT CCGTGAACAA
  51 AACCCTCATC CTCGCCCTTT CCGCCCTCT CGGCCTTGCC GCGTGCAGCG
  101 TCGAACGCGT TTCACTGTTC CCCTCGTACA AACTCAAAAT CATACAGGGC
  151 AACGAACTCG AACCTCGCGC CGTCGCCTCC CTCCGCCCCG GTATGACCAA
  201 AGACCAAGTC CTGCTCCTGC TCGGCAGCCC CATACTGCGC GACGCATTCC
  251 ATACCGACCG CTGGGACTAT ACCTTCAACA CCTCCCGCAA CGGCATCATC
  351 CACCGAAGGC AACGCCCTGC CGTCTATTTT GAAAACGGCG TGCTCGTCCG
  351 CACCGAAGGC CAAACAATAA
- This corresponds to the amino acid sequence <SEQ ID 2290; ORF 688.a>: a688.pep
  - 1 VLHYPSRFAQ KGISVNKTLI LALSALLGLA ACSVERVSLF PSYKLKIIQG
  - 51 NELEPRAVAS LRPGMTKDQV LLLLGSPILR DAFHTDRWDY TFNTSRNGII
  - 101 KDRSNLTVYF ENGVLVRTEG NALQNAAEAL RVKQNADKQ*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis

ORF 688 shows 93.5% identity over a 138 aa overlap with a predicted ORF (ORF 688) from N. meningitidis

m688/a688	93.5% identity	in 138 aa	a overlap			
	10	20	30	40	50	60
m688.pep	VLHYPSRFAOKGIS	VNKTLILAL:	SALLGLAACSAI	ERVSLFPSY	KLKIIOGNELE	PRAVAA
			11111111:			111111
a688	VLHYPSRFAQKGIS	VNKTLILALS	SALLGLAACSVI	ERVSLFPSY	KLKIIOGNELE	PRAVAS
	10	20	30	40	50	60
	70	80	90	100	110	120
m688.pep	LRPGMTKDQVLLLL	GSPILRDAF			TIO	120
-	1111111111111				DIATIAILEING/	LVKTEG
a688	LRPGMTKDQVLLLL	GSPILRDAFI				111111
	70	80	90	100		
		• •	70	100	110	120
	130	140				
m688.pep	DVLQNAAEALKDRQ	NTDKPX				
	::	1:11				
a688	NALQNAAEALRVKQN	NADKOX				
	130	140				

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2291> g689.seq (partial)

```
..TCTCCGCCCC TTCCTCCGAT GAGCGGAAAA CTGATGGCGG TTTTGATGGC
        GGTACTGGTC GCGCTGATGC CGTTTTCCAT CGATGCCTAC CTGCCCGCGA
  51
        TTCCCGAAAT GGCGCAGCCG CTGAACGCGG ATATCCACCG TATCGAATAG
 101
        AGTCTGAGTT TGTTTATGTT CGGCACGGCG TTCGGGCAAG TGGCCGGCGG
 151
        CGCGGTGTCC GACATCAAAG GGCGCAAACC CGTCGCCCTG ACCGGTTTGA
 201
        TTGTATATTG CCTTGCCGTT GCCGCCATCG TATTTGCTTC GAGTACCGAA
 251
 301
        CAGCTCCTTA ACCTGCGTGC GGTACAGGCG TTCGGCGCAG GCATGGCTGT
        AGTCATCGTc ggtgcgatgg tgcgcgatTA TTATTCCGGA CGCAAAGCCG
 351
        CGCAGATGTT TGCCCTTATC GGCATCATTC TGATGGTTGT GCCGCTGGCC
 401
        GCACCCATGG TCGGCGCATT GTTGCAGGGA TTGGGCCGGAT GGCGGGCGAT
 451
 501
        TTTCGTTTTC ttggcGgcgT ATTCGCCGGT GCTGCCCGGT TTGGTACAGT
       ATTTCCTGCC CAATCCCGCC GTCGGCGGCA AAATCGGCAG GGATGTGTTC
 551
        GGGCTGGTGG CGGGGCGGTT CAAGCGCGTA TTGAAAACCC GTGCCGCGAT
 601
       GGGTTALCTG TTTTTTCAGG CATTCAGCTT CGGTTCGATG TTCGCCTTTC
 651
       TGACCGAATC TTCCTTCGTG TACCGGCAGC TCTACCACGT TACGCCGCAC
 701
       CGGTACGCAT GGGTGTTTGC ACTCAACATC ATCACGATGA TGTTTTTCAG
 751
       CCGCGTTACC GCGTGGCGGC TTAAAACCGG CGCGCATCCG CAAAGCATCC
 801
       TGCTGCGGGG GATTGTCGTC CAATTTGCCG CCAACCCGTC CCAACTCGCC
 851
       901
 951
       GCTTTATGTC TTATTTCAAA GAAGAGGGCG GCAGCGCGAA CGCCGTGTCG
1001
       GGTGTATTCC GGTCCTTAAT CGGCGGGGC GTGGTCATGG CGGCAACCGT
1051
       GATGGCGGCA ACCATGACCG CGTCCGCCTC TTGCGGCATT GCGCTTTTGT
1101
       GGCTCTGCTC GCACAAGGCG TGGAAGGAAA ACGAAAAAAA GCGAATACTT
1151
```

# This corresponds to the amino acid sequence <SEQ ID 2292; ORF 689 >: g689.pep (partial)

```
1 ...SPPLPPMSGK LMAVLMAVLV ALMPFSIDAY LPAIPEMAQP LNADIHRIE*
51 SLSLFMFGTA FGQVAGGAVS DIKGRKPVAL TGLIVYCLAV AAIVFASSTE
101 QLLNLRAVQA FGAGMAVVIV GAMVRDYYSG RKAAQMFALI GIILMVVPLA
151 APMVGALLQG LGGWRAIFVF LAAYSPVLPG LVQYFLPNPA VGGKIGRDVF
201 GLVAGRFRRV LKTRAAMGYL FFQAFSFGSM FAFLTESSFV VRQLYHVTPH
251 RYAWVFALNI ITMMFFSRVT AWRLKTGAHP QSILLRGIVV QFAANPSQLA
301 AVLFFGLPPF WLPVACVMFS VGTQGLVGAD TQACFMSYFK EEGGSANAVS
351 GVFRSLIGAG VVMAATVMAA TMTASASCGI ALLWLCSHKA WKENEKKRIL
```

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2293>: m689.seq

1	TTGTTAATCC	ACTATATCGT	TCCGGTTCGT	~~~~~~~~	
51	GTTGCCGCCT			4444	
101	GTGTTTTCCG			***********	
151					
201	CCTTCTGCCC			AAACTGATGG	CGGTTTTGAT
	GGCGATGCTG			CATCGATGCC	TACCTGCCCG
251	CGATTCCCGA			CGGATGTTCA	CCGCATCGAA
301	CAGAGTTTGA		000001100	GCGTTCGGAC	AGGTGGTCGG
351	CGGTTCGGTG	TCCGACATCA	1-10-00-001111	ACCCGTCGCC	CTGACCGGTT
401	TGATTGTATA	TTGCCTTGCC		TCGTATTTGT	TTCGAGTGCC
451	GAACAGCTCC	TCAACCTGCG	CGTCGTGCAG	GCATTCGGTG	CGGGCATGAC
501	TGTGGTCATC	GTCGGCGCAA	TGGTGCGCGA	TTATTATTCC	GGACGCAAAG
551	CCGCCCAGAT	GTTTGCCCTT	ATCGGCATCA	TTTTGATGGT	TGTGCCGCTG
601	GTCGCACCCA	TGGTCGGCGC	ATTGTTGCAG	GGCTTGGGTG	GCTGGCAGGC
651	GATTTTTGTT	TTTCTGGCGG	CGTATTCGCT	GGTGCTGCTC	GGTTTGGTAC
701	AGTATTTCCT	GCCCAAGCCC	GCCGTCGGCG	GCAAAATCGG	ACGGGACGTG
751	TTCGGGCTGG	TGGCGGGGCG	GTTCAAGCGC	GTATTGAAAA	CCCGTGCTGC
801	GATGGGTTAT	CTGTTTTTTC	AGGCATTCAG	CTTCGGTTCG	ATGTTCGCCT
851	TTCTGACCGA	ATCTTCCTTC	GTGTACCAGC	AGCTCTACCG	TGTTACGCCT
901	CATCAATACG	CTTGGGCGTT	TGCACTCAAC	ATCATCACGA	TGATGTTTTT
951	CAACCGCGTT	ACCGCGTGGC	GGCTCAAAAC	CGGCGTGCAT	CCGCAAAGCA
1001	TCCTGCTGTG	GGGGATTGTC	GTCCAGTTTG	CCGCCAACCT	
1051	GCCGCCGTGC	TGTTTTTCGG	GTTGCCCCCG	TTTTGGCTGC	GTCCCAACTC
1101	CGTGATGTTT	TCCGTCGGTA	CGCAGGGCTT	GGTCGGTGCA	TGGTCGCGTG
1151	CGTGTTTTAT	GTCCTATTTC	AAAGAAGAGG	GCGGCAGCGC	AACACGCAGG
1201	TTGGGTGTAT	TCCAATCTTT	AATCGGCGCG	GGGGTGGGTA	AAACGCCGTA
1251	CTTCTTGCAC	GACGGTTCGG			TGGCGGCGAC
1301		CGGCATTGCG			ATGACCGCGT
			0110101000	TCTGCTCGCA	TCGTGCGTGG

#### 1351 AAAGAAAACG GGCAAAGCGA ATACCTTTAA

This corresponds to the amino acid sequence <SEQ ID 2294; ORF 689>: m689.pep

1	LLIHYIVPVR	PVLPGLLLPP	VCAGVLKFSV	SAYCVFRRRA	VCLRIGREFM
51		KLMAVLMAML		YLPAIPEMAQ	
101	QSLSLFMFGT	AFGQVVGGSV	SDIKGRKPVA	LTGLIVYCLA	VAAIVFVSSA
151	EQLLNLR <u>VVQ</u>	AFGAGMTVVI	VGAMVRDYYS		
201	VAPMVGALLQ	GLGGWQAIFV	FLAAYSLVLL		
251	FGLVAGRFKR	VLKTRAAMGY	LFFQAFSFGS	MFAFLTESSF	VYOOLYRVTP
301	HQYAWAFALN	IITMMFFNRV	TAWRLKTGVH		
351	AAVLFFGLPP	FWLLVACVMF	SVGTQGLVGA		
401	LGVFQSLIGA	GVGMAATFLH	DGSATVMAAT		
451	KENGQSEYL*				

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 689 shows 88.0% identity over a 408 aa overlap with a predicted ORF (ORF 689) from N. gonorrhoeae:

m689/a689	88.0% identity in 408 aa overlap
m689.pep	30 40 50 60 70 80 CAGVLKFSVSAYCVFRRRAVCLRIGREFMPSAHYPEMSEKLMAVLMAMLVTLMPFSIDAY
m689.pep	90 100 110 120 130 140 LPAIPEMAQSLNADVHRIEQSLSLFMFGTAFGQVVGGSVSDIKGRKPVALTGLIVYCLAV
m689.pep g689	150 160 170 180 190 200 AAIVFVSSAEQLLNLRVVQAFGAGMTVVIVGAMVRDYYSGRKAAQMFALIGIILMVVPLV      :  :       :
m689.pep	210 220 230 240 250 260  APMVGALLQGLGGWQAIFVFLAAYSLVLLGLVQYFLPKPAVGGKIGRDVFGLVAGRFKRV
m689.pep g689	270 280 290 300 310 320 LKTRAAMGYLFFQAFSFGSMFAFLTESSFVYQQLYRVTPHQYAWAFALNIITMMFFNRVT
m689.pep	330 340 350 360 370 380  AWRLKTGVHPQSILLWGIVVQFAANLSQLAAVLFFGLPPFWLLVACVMFSVGTQGLVGAN         :
m689.pep	390 400 410 420 430 440 TQACFMSYFKEEGGSANAVLGVFQSLIGAGVGMAATFLHDGSATVMAATMTASTSCGIAL
m689.pep	450 460 LWLCSHRAWKENGQSEYLX       :::  LWLCSHKAWKENEKKRIL 390 400

WO 99/57280

1108

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2295> a689.seq

```
TTGTTAATCC ACTATATCGT TCCGGTTCGT CCGGTTTTGC CGGGGCTTTT
      GTTGCCGCCT GTTTGTGCCG GTGTGTTAAA ATTTTCCGTT TCCGCGTATT
  51
      GTGTTTTCCG CCGCCGGGCG GTTTGTTTGC GAATCGGACG AGAATTTATG
 101
 151
      CCTTCTGCCC ATTATCCTGA AATGAGCGAA AAACTGATGG CGGTTTTGAT
 201 GGCGATGCTG GTTACGCTGA TGCCGTTTTC CATCGATGCC TACCTGCCCG
      CGATTCCCGA AATGGCGCAG TCGCTGAACG CGGATGTCCA CCGCATCGAA
 251
 301 CAGAGCCTGA GTTTGTTTAT GTTCGGCACG GCGTTCGGAC AGGTGGTCGG
 351
      CGGTTCGGTG TCCGACATCA AAGGGCGCAA ACCCGTCGCG CTGACCGGAC
      TGGCCGTCTA CTGCCTTGCC GTTGCCGCCA TCGTATTTGC TTCGAGTGCC
 401
      GAACAGCTCC TCAACCTGCG CGTCGTGCAG GCATTCGGTG CGGGCATGAC
 451
      TGTGGTCATC GTCGGCGCAA TGGTGCGCGA TTATTATTCC GGACGCAAAG
 501
 551
      CCGCCCAGAT GTTTGCCCTT ATCGGCATCA TTTTGATGGT TGTGCCGCTG
      GTCGCACCCA TGGTCGGCGC ATTGTTGCAG GGCTTGGGTG GCTGGCAGGC
 601
      GATTTTTGTT TTTCTGGCGG CGTATTCGCT GGTGCTGCTC GGTTTGGTAC
 651
      AGTATTTCCT GCCCAAGCCC GCCGTCGGCG GCAAAATCGG CAGGGATGTG
 701
 751
      TTCGGGCTGG TGGCTGGGCG GTTCAAACGC GTATTGAAAA CCCGTGCCGC
      GATGGGTTAT CTGTTTTTC AGGCATTCAG CTTCGGTTCG ATGTTCGCCT
 801
      TTCTGACCGA ATCTTCCTTC GTGTACCAGC AGCTCTACCA CGTTACGCCG
 851
 901
      CACCAGTACG CTTGGGCGTT TGCACTCAAC ATCATCACGA TGATGTTTTT
 951 CAACCGTATT ACCGCGTGGC GGCTCAAAAC CGGCGTGCAT CCGCAAAGCA
     TCCTGCTGTG GGGGATTGTC GTCCAGTTTG CCGCCAACCT GTCCCAACTC
1001
     GCCGCCGTGC TGTTTTTCGG GTTGCCCCCG TTTTGGCTGC TGGTCGCGTG
1051
1101 CGTGATGTTT TCCGTCGGTA CGCAGGGCTT GGTCGGTGCA AACACGCAGG
1151
     CGTGTTTTAT GTCCTATTTC AAAGAAGAGG GCGGCAGCGC AAACGCCGTA
1201 TTGGGTGTAT TCCAATCTTT AATCGGCGCG GGGGTGGGTA TGGCGGCGAC
1251 CTTCTTGCAC GACGGTTCGG CAACCGTGAT GGCGGCAACC ATGACCGCGT
     CTACCTCTTG CGGCATTGCG CTTTTGTGGC TCTGCTCGCA TCGTGCGTGG
1301
1351 AAAGAAAACG GGCAAAGCGA ATACCTTTAA
```

This corresponds to the amino acid sequence <SEQ ID 2296; ORF 689.a>:

```
LLIHYIVPVR PVLPGLLLPP VCAGVLKFSV SAYCVFRRRA VCLRIGREFM PSAHYPEMSE KLMAVLMAML VTLMPFSIDA YLPAIPEMAQ SLNADVHRIE
 51
      QSLSLFMFGT AFGQVVGGSV SDIKGRKPVA LTGLAVYCLA VAAIVFASSA
101
     EQLLNLRVVQ AFGAGMTVVI VGAMVRDYYS GRKAAQMFAL IGIILMVVPL
151
     VAPMVGALLQ GLGGWQAIFV FLAAYSLVLL GLVQYFLPKP AVGGKIGRDV
201
     FGLVAGRFKR VLKTRAAMGY LFFQAFSFGS MFAFLTESSF VYQQLYHVTP
251
     HQYAWAFALN IITMMFFNRI TAWRLKTGVH PQSILLWGIV VQFAANLSQL
351
     AAVLFFGLPP FWLLVACVMF SVGTQGLVGA NTQACFMSYF KEEGGSANAV
     LGVFQSLIGA GVGMAATFLH DGSATVMAAT MTASTSCGIA LLWLCSHRAW
401
451
     KENGQSEYL*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis

ORF 689 shows 99.1% identity over a 459 aa overlap with a predicted ORF (ORF 689) from N. meningitidis:

m009/a089	99.1% identity	/ in 459 aa	a overlap			
m689.pep	10 LLIHYIVPVRPVLF            LLIHYIVPVRPVLF 10		111111111	111111111		
m689.pep a689	70 KLMAVLMAMLVTLM            KLMAVLMAMLVTLM 70		111111111			
m689.pep	130 SDIKGRKPVALTGL             SDIKGRKPVALTGL 130 190	_	11:111111			VRDYYS 180
m689.pep	GRKAAQMFALIGIII		VGALLQGLGGW	220 QAIFVFLAA	230 YSLVLLGLVÇ	240 YFLPKP

m689/2680

Bullion to a grant of the production

#### 1109

```
GRKAAQMFALIGIILMVVPLVAPMVGALLQGLGGWQAIFVFLAAYSLVLLGLVQYFLPKP
a689
                        200
                                210
                                        220
                250
                        260
                                270
                                        280
                                                290
           {\tt AVGGKIGRDVFGLVAGRFKRVLKTRAAMGYLFFQAFSFGSMFAFLTESSFVYQQLYRVTP}
m689.pep
           AVGGKIGRDVFGLVAGRFKRVLKTRAAMGYLFFQAFSFGSMFAFLTESSFVYQQLYHVTP
a689
                250
                        260
                                270
                                        280
                                                290
                310
                        320
                                330
                                        340
          {\tt HQYAWAFALNIITMMFFNRVTAWRLKTGVHPQSILLWGIVVQFAANLSQLAAVLFFGLPP}
m689.pep
          វិសាសាសាសាសាខានា សាសាស៊ីកាសាសាអ៊ីសាសាវិសាសាសាសាស
a689
          HQYAWAFALNIITMMFFNRITAWRLKTGVHPQSILLWGIVVQFAANLSQLAAVLFFGLPP
                310
                        320
                                330
                                        340
                370
                        380
                                390
                                        400
                                                410
                                                        420
          FWLLVACVMFSVGTQGLVGANTQACFMSYFKEEGGSANAVLGVFQSLIGAGVGMAATFLH
m689.pep
          FWLLVACVMFSVGTQGLVGANTQACFMSYFKEEGGSANAVLGVFQSLIGAGVGMAATFLH
a689
                370
                        380
                                390
                                        400
                430
                        440
                                450
          DGSATVMAATMTASTSCGIALLWLCSHRAWKENGQSEYLX
m689.pep
          a 689
          DGSATVMAATMTASTSCGIALLWLCSHRAWKENGQSEYLX
                430
                        440
                                450
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2297> g690.seq (partial)

```
ATGAAAAACA AAACGTCATC ACTTCCCTTA TGGCTTGCCG CAATCATGCT
     GGCCGCGCGT TCCCCGAGCA AAGAAGATAA AACGAAAGAA AACGGCGCAT
 51
     CCGCCGCTTC GTCTTCCGCG TCATCGGCTT CTTCCCAAAC CGATTTGCAA
101
     CCGGCCGCAT CCGCCCCTGA TAACGTCAAG CAGGCAGAAA GCGCGCCACT
151
201
     GTGAAATTGC ACCGGCCTGC ACCCCGCCGC CGGCATTGGC GATCTCATAC
    AGCAAATCGC CGAACACATC GACTCGGACT GTCTGTTTGC CCTTTCCCAT
251
    AACGAACTGG AAACCCGTTT CGGCTTACCC GGCGGCGGCT ATGACAACAT
301
    ACAGCGGCEG CTGtttCCCG ACATCCGCCC TGAAGATCCC GACTACCATC
351
    AGAAAATCAT GCTGGCAATC GAAGACTTGC GTTACGGAAC GCGCACCATC
401
     AGCCGGCAGG CACAAGATGC CATAATGGAA CAGGAACGCC gcctccGaGa
451
    agcgacgctg atgctgacac agggcagtca AAAAAcccgc GgacaAggcg
501
    AGGAACCGAA ACGCGCACGT TATTTTGAAG TTTCGGCAAC ATCtgCCtaT
551
    TTgaaccggC ACAAcaacGG ACTTggcgGC AATTTCCAAT ACATCGGCCA
601
    ATTGCCCGGC TATCTGAAAA TGCACGGAGA AATGCTTGAA AACCAATCAC
651
    TCTTCCGGCT GTCCAACCGT GAACGCAATC CCGACAAACC GTTTTTAGAC
701
    ATCCATTTTG ACGAAAATGG CAAAATCACG CGTATTGTCG TTTACGAAAA
751
801
    AAATATCTAT...
```

This corresponds to the amino acid sequence <SEQ ID 2298; ORF 690 >: g690.pep (partial)

```
1 MKNKTSSLPL WLAAIMLAAR SPSKEDKTKE NGASAASSSA SSASSQTDLQ
51 PAASAPDNVK QAESAPL*NC TGLHPAAGIG DLIQQIAEHI DSDCLFALSH
101 NELETRFGLP GGGYDNIQRL LFPDIRPEDP DYHQKIMLAI EDLRYGTRTI
151 SRQAQDAIME QERRLREATL MLTQGSQKTR GQGEEPKRAR YFEVSATSAY
201 LNRHNNGLGG NFQYIGQLPG YLKMHGEMLE NQSLFRLSNR ERNPDKPFLD
251 IHFDENGKIT RIVVYEKNIY
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2299>:

```
1 ATGAAAAACA AAACCTCATC ACTTCTCTTA TGGCTTACCG CAATCATGCT
     GACCGCGTGT TCTCCGAGCA AAGACGATAA AACCAAAGAA GTCGGTGCAT
101
    CCGCTGCTTC GTCCTCCGCG TCATCAGCTC CTTCCCAAAC CGATTTGCAA
    CCGACCGCAT CCGCCCCTGA TAACGTCAAG CAGGCAGAAA GCGCGCCGCC
151
201
    GTCAAATTGC ACCAGCCTGC ACCCCGCCAC CGGCATTGAC GATCTCATGC
251 AGCAAATCGC CGAACACATT GACTCGGACT GTCTGTTTGC CCTTTCCCAT
301
    CACGAACTGG AAACCCGTTT CGGCTTACCC GACGGTGGCT ATGACAACAT
351 ACAGCGGCTG CTGTTTCCCG ACATCCGCCC TGAAGATCCC GACTACCATC
    AGAAAATCAT ACTGGCAATT GAAGACTTGC GTTACGGAAA GCGCACGATC
401
    AGCCGGCAGG CACAAAATGC CTTGATGGAA CAGGAACGCC GCCTCCGAGA
451
    AGCGACGCTG TTGCTGATAC AGGGCAGTCA AGAAACCCGC GGACAAGGCG
```



551	AGGAGCCGAA	ACGCACGCGT	TATTTTGAAG	TTTCGGCAAC	CCCTCCCTAT
601	TCGAGCCGGC	ACAACAACGG	ACTTGGCGGC	AATTTCCAAT	ACATCACCCA
651	ATTGCCCGGC	TATCTGAAAA	TACACGGAGA	AATGCTTGAA	AACCAARCAC
/OI	TCTTCCGGCT	GTCCAACCGT	GAACGCAATC	CCGACAAACC	CTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
751	ATCCATTTTG	ACGAAAATGG	CAAAATCACG	CGTATTGTCG	TTTACCANAN
801	AAACATCTAC	TTCAATCCAA	ACACGGGGGG	AATATAA	TITICUAAAA

This corresponds to the amino acid sequence <SEQ ID 2300; ORF 690>: m690.pep

```
1 MKNKTSLLL WLTAIMLTAC SPSKDDKTKE VGASAASSSA SSAPSQTDLQ
51 PTASAPDNVK QAESAPPSNC TSLHPATGID DLMQQIAEHI DSDCLFALSH
101 HELETRFGLP DGGYDNIQRL LFPDIRPEDP DYHQKIILAI EDLRYGKRTI
151 SRQAQNALME QERRLREATL LLIQGSQETR GQGEEPKRTR YFEVSATPAY
201 SSRHNNGLGG NFQYISQLPG YLKIHGEMLE NQSLFRLSNR ERNPDKPFLD
251 IHFDENGKIT RIVVYEKNIY FNPNTGRI*
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 690 shows 89.3% identity over a 408 aa overlap with a predicted ORF (ORF 690) from N. gonorrhoeae:

```
m690/q690
           89.3% identity in 408 aa overlap
                          20
                                   30
                                           40
           MKNKTSSLLLWLTAIMLTACSPSKDDKTKEVGASAASSSASSAPSQTDLQPTASAPDNVK
m690.pep
           g690
           MKNKTSSLPLWLAAIMLAARSPSKEDKTKENGASAASSSASSASSQTDLQPAASAPDNVK
                          20
                                   30
                  70
                          80
                                          100
           QAESAPPSNCTSLHPATGIDDLMQQIAEHIDSDCLFALSHHELETRFGLPDGGYDNIQRL
m690.pep
                 AREHIER RETERMINININEREN AREA AREA
           QAESAPLXNCTGLHPAAGIGDLIQQIAEHIDSDCLFALSHNELETRFGLPGGGYDNIQRL
g690
                  70
                          80
                                          100
                                                  110
                 130
                         140
                                 150
                                          160
           LFPDIRPEDPDYHQKIILAIEDLRYGKRTISRQAQNALMEQERRLREATLLLIQGSQETR
m690.pep
           LFPDIRPEDPDYHQKIMLAIEDLRYGTRTISRQAQDAIMEQERRLREATLMLTQGSQKTR
a690
                 130
                         140
                                 150
                                          160
                         200
                                 210
                                          220
                                                  230
           GQGEEPKRTRYFEVSATPAYSSRHNNGLGGNFQYISQLPGYLKIHGEMLENQSLFRLSNR
m690.pep
           GQGEEPKRARYFEVSATSAYLNRHNNGLGGNFQYIGQLPGYLKMHGEMLENQSLFRLSNR
a690
                190
                         200
                                 210
                                          220
                                                  230
                250
                         260
m690.pep
          ERNPDKPFLDIHFDENGKITRIVVYEKNIYFNPNTGRIX
           1111111111111111111111111111111111
g690
          ERNPDKPFLDIHFDENGKITRIVVYEKNIY
                250
                         260
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2301>

1	ATGAAAAACA	AAACCTCATC	ACTTCTCTTA	TGGCTTGCCG	CAATGATGCT
51	GACCGCGTGT	TCCCCGAGCA	AAGAAGATAA	AACGAAAGAA	AACCCCCAM
101	CCGCCGCCTC	GTCCACGGCA	TCCGCCGCTT	CGTCTTCCGC	GCCCCAAACC
151	GATTTGCAAC	CGGCCGCATC	CGCCCCTGAT	AACGTCAAGC	ACCCACAAAC
201	CGTGCCGCCG	TCAAATTGCA	CCGACCTGCA	CCCCGCCACC	GGCATTCACC
251	ATCTCATGCA	GCAAATCGCC	GAACACATTG	ACTOGGACTO	TCTCTTTCCC
301	CTTTCCCATC	ACGAACTGGA	AACCCGTTTC	GGCTTACCCC	GCCCCCCCTT
351	TGACAACATA	CAGCGGCTGC	TGTTTCCCGA	CATCCGCCCT	GANGATOCCC
401	ACTACCATCA	GAAAATCATA	CTGGCAATTG	AAGACTTGCG	TTACCCAAAC
451	CGCACGATCA	GCCGGCAGGC	ACAAGATGCC	TTGATGGAAC	DECARCCCC
501	CCTCCGAGAA	GCGACGCTGT	TGCTGATACA	GGGCAGTCAA	CANACCCCCC
551	GACAAGGCGA	GGAGCCGAAA	CGCACGCGTT	ATTTTGAAGT	TTCGGCAACC
601	CCTGCCTATT	CGAGCCGGCA	CAACAACGGA	CTTGGCGGCA	ATTOCCARON
651	CATCGGCCAA	TTGCCCGGCT	ATCTGAAAAT	ACACGGAGAA	ATCCTTCAAA
					COLIGNAM

- 701 ACCAATCACT CTTCCGGCTG TCCAACCGTG AACGCAATCC CGACAAACCG 751 TTTTTAGACA TCCATTTTGA CGAAAATGGC AAAATCACGC GTATTGTCGT 801 TTACGAAAAA AACATCTACT TCAATCCAAA CTTGGGGCGA AGATAA

This corresponds to the amino acid sequence <SEQ ID 2302; ORF 690.a>: a690.pep

- MKNKTSSLLL WLAAMMLTAC SPSKEDKTKE NGASAASSTA SAASSSAPQT DLQPAASAPD NVKQAESVPP SNCTDLHPAT GIDDLMQQIA EHIDSDCLFA 51
- LSHHELETRF GLPGGGYDNI QRLLFPDIRP EDPDYHQKII LAIEDLRYGK 101
- RTISRQAQDA LMEQERRLRE ATLLLIQGSQ ETRGQGEEPK RTRYFEVSAT 151
- PAYSSRHNNG LGGNFQYIGQ LPGYLKIHGE MLENQSLFRL SNRERNPDKP
- FLDIHFDENG KITRIVVYEK NIYFNPNLGR R*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis

ORF 690 shows 93.9% identity over a 280 aa overlap with a predicted ORF (ORF 690) from N. meningitidis:

```
m690/a690
          93.9% identity in 280 aa overlap
                10
                        20
          {\tt MKNKTSSLLLWLTAIMLTACSPSKDDKTKEVGASAASSSASSAPS---QTDLQPTASAPD}
m690.pep
          111111:1111
          MKNKTSSLLLWLAAMMLTACSPSKEDKTKENGASAASSTASAASSSAPQTDLQPAASAPD
a690
                        20
                                       40
                                               50
           60
                          80
                                  90
                                         100
          NVKQAESAPPSNCTSLHPATGIDDLMQQIAEHIDSDCLFALSHHELETRFGLPDGGYDNI
m690.pep
          NVKQAESVPPSNCTDLHPATGIDDLMQQIAEHIDSDCLFALSHHELETRFGLPGGGYDNI
a690
                                90
                                      100
                         140
                                 150
                                         160
                                                 170
          QRLLFPDIRPEDPDYHQKIILAIEDLRYGKRTISRQAQNALMEQERRLREATLLLIQGSQ
m690.pep
          QRLLFPDIRPEDPDYHQKIILAIEDLRYGKRTISRQAQDALMEQERRLREATLLLIQGSQ
a690
                       140
                               150
                                              170
          180
                  190
                         200
                                 210
                                         220
          ETRGQGEEPKRTRYFEVSATPAYSSRHNNGLGGNFQYISQLPGYLKIHGEMLENQSLFRL
m690.pep
          a690
          ETRGQGEEPKRTRYFEVSATPAYSSRHNNGLGGNFQYIGQLPGYLKIHGEMLENQSLFRL
               190
                               210
                                      220
                                              230
                 250
                         260
                                 270
          SNRERNPDKPFLDIHFDENGKITRIVVYEKNIYFNPNTGRIX
m690.pep
          SNRERNPDKPFLDIHFDENGKITRIVVYEKNIYFNPNLGRRX
a690
               250
                       260
                              270
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2303> g691.seq

GTGCCGCTGC CTGCTCCCTG CCGTTTTGCC AAACCTGCCG CCTCTTTTTT AAGTATGGCT TTGCTTTCCT GCCAGCTTTC CCACGCCGCC ACGGCTTATA 51 101 TCCCCCCGAA CGATTTCAA CCGAACTGCG ACATACGCCG GCTCGGGCTG 151 ACACAGGGTC AGCACAATGA GCTGCGTAAA ATCCGCGCCG CCTTCAAAAT 201 GGCGGGCGAC AGGGCGCGTT TGAAGGTTAT GCATTCCGAA CACAGCCGCC GCCGCTCTGT CGTCGAAATC ATTTCTTCGG ATGTTTTTAA TCGGAACGAG 251 GCGCGCGATT ATGTCGAAAG CCGCTACCAC TCCAGCATGG ATTTTGCGGT GGACGAATTG GAAATCCAAC ACCGCTTCTT CCATATTCTC ACACCGCAAC 351 401 AGCAGCAAAT GTGGCTTTCT TCCTGCCTCA AATAA

This corresponds to the amino acid sequence <SEQ ID 2304; ORF 691 >: g691.pep

- VPLPAPCRFA KPAASFLSMA LLSCQLSHAA TAYIPPNDFQ PNCDIRRLGL
- TOGOHNELRK IRAAFKMAGD RARLKVMHSE HSRRRSVVEI ISSDVFNRNE 51
- ARDYVESRYH SSMDFAVDEL EIQHRFFHIL TPQQQQMWLS SCLK* 101



The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2305>: m691.seq

```
GTGCCACTGC CTGCTCCCTG CCGTTTTGCC AAACCTGCCG CCTCTTTTT
     AAGTATGGCT TTGCTTTCCT GTCAGCTTTC CCACGCCGCC ACGGCTTATA
 51
    TCCCCCCGAA CGATTTTCAA CCGAACTGCG ACATACGCCG ACTCGGGCTG
101
    ACCCAAAGTC AGCACAATGA GCTGCGTAAA ATCCGCACCG CCTTCAAAAT
151
201 GGCGGGCGAC AGGGCGCGTT TGAAGGTTAT GCATTCCGAA CACAGCCGCC
251 GCCGGTCTGT CGTCGAAATC ATTTCCTCGG ATGTTTTTAA TCGGAACGAG
301 GCGCGCGATT ATGTCGAAAG CCGCTATTTG TCCGGTATGG ATTTTGCGGT
351 GGACGAATTG GAAATCCAAC ACCGGTTCTT CCATATCCTC ACACCGCAAC
401 AGCAGCAAAT GTGGCTTTCT TCCTGCCTCA AATAA
```

This corresponds to the amino acid sequence <SEQ ID 2306; ORF 691>: m691.pep

- VPLPAPCRFA KPAASFLSMA LLSCQLSHAA TAYIPPNDFQ PNCDIRRLGL
- TOSOHNELRK IRTAFKMAGD RARLKVMHSE HSRRRSVVEI ISSDVFNRNE ARDYVESRYL SGMDFAVDEL EIQHRFFHIL TPQQQQMWLS SCLK*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 691 shows 97.2% identity over a 144 aa overlap with a predicted ORF (ORF 691) from N. gonorrhoeae:

```
m691/g691
           97.2% identity in 144 aa overlap
                         20
                                  30
           VPLPAPCRFAKPAASFLSMALLSCQLSHAATAYIPPNDFQPNCDIRRLGLTQSQHNELRK
m691.pep
           VPLPAPCRFAKPAAS FLSMALLSCQLSHAATAYI PPNDFQPNCDIRRLGLTQGQHNELRK
g691
                         80
                                  90
                                         100
                                                 110
          IRTAFKMAGDRARLKVMHSEHSRRRSVVEIISSDVFNRNEARDYVESRYLSGMDFAVDEL
m691.pep
          IRAAFKMAGDRARLKVMHSEHSRRRSVVEIISSDVFNRNEARDYVESRYHSSMDFAVDEL
σ691
                 70
                         80
                                 90
                                         100
                                                 110
                130
                        140
m691.pep
          EIQHRFFHILTPQQQQMWLSSCLKX
          111111111111111111111111111111
          EIQHRFFHILTPQQQQMWLSSCLKX
a691
                130
                        140
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2307> a691.seq

```
GTGCCACTGC NTGCTCCCTG CCGTTTTGCC AAACCTGCCG CCTCTTTTT
 1
    AAGTATGGCT TTGCTTTCCT GCCAGCTTTC CCACGCCGCC ACGGCTTATA
 51
    TCCCCCTGAA CGATTTTCAA CCGAACTGCG ACATACGCCG GCTCGGACTG
101
151 ACACAGGGTC AGCACAATGA ACTGCGTAAA ATCCGCGCCG CCTTCAAAAT
201
    GGCGGGCGAC AGGGCGCGTT TGAAGGTTAT GCATTCCGAA CACAGCCGCC
    GTCGGTCTGT CGTCGAAATC ATTTCCTCGG ATGTTTTTAA TCGGAACGAG
251
    GCGCGCGATT ATGTCGAAAG CCGCTATTTG TCCGGTATGG ATTTTGCGGT
    GGACGAATTG GAAATCCAAC ACCGGTTCTT CCATATCCTC ACACCGCAAC
401 AGCAGCAAAT GTGGCTTTCT TCCTGCCTCA AATAA
```

This corresponds to the amino acid sequence <SEQ ID 2308; ORF 691.a>: a691.pep

- VPLXAPCRFA KPAASFLSMA LLSCQLSHAA TAYIPLNDFQ PNCDIRRLGL TQGQHNELRK IRAAFKMAGD RARLKVMHSE HSRRRSVVEI ISSDVFNRNE
- ARDYVESRYL SGMDFAVDEL EIQHRFFHIL TPQQQQMWLS SCLK*

Computer analysis of this amino acid sequence gave the following results:

#### Homology with a predicted ORF from N. meningitidis

ORF 691 shows 97.2% identity over a 144 aa overlap with a predicted ORF (ORF 691) from N. meningitidis:

```
97.2% identity in 144 aa overlap
m691/a691
                       20
                               30
                                       40
          VPLPAPCRFAKPAASFLSMALLSCQLSHAATAYIPPNDFQPNCDIRRLGLTQSQHNELRK
m691.pep
          VPLXAPCRFAKPAASFLSMALLSCQLSHAATAYIPLNDFQPNCDIRRLGLTQGQHNELRK
a691
                70
                       80
                               90
                                      100
                                             110
          IRTAFKMAGDRARLKVMHSEHSRRRSVVEIISSDVFNRNEARDYVESRYLSGMDFAVDEL
m691.pep
          a691
          IRAAFKMAGDRARLKVMHSEHSRRRSVVEIISSDVFNRNEARDYVESRYLSGMDFAVDEL
                70
                       80
                               90
          EIQHRFFHILTPQQQQMWLSSCLKX
m691.pep
          a 691
          EIQHRFFHILTPQQQQMWLSSCLKX
```

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2309> g692.seq

```
GTATCGCACA CACGCTGTCG CTGTTCGGAA TCGAtacGCC GGATTTGGCG
  51
      GAATGGCAGG GAATGGCGGA TTAAAGGACA AAAATGCCGT CTGAACACGG
      ATGCGGTTCA GACGGCATCA TTTTATACGA CTGCCTTATT TGGCTGCGCC
 101
      TTCATTCCAT GCGGCAGGGT ATTTGTAGCC CTCGAAGCGT TTGTGCGCGT
 151
      AGGCTTTGAA CGCGTCGGAG TTATAGGCCT CGGTTACGTC TTTAAGCCAT
 201
      TGGCTGTCTT TGTCGGCGGT TTTgacGGCA GACCAGTTGA CATAGGCAAA
 251
      GCTCGGCTCT TGGAACAGGG CTTCGGTCAG CTTCATGCCG CTGCTTATGG
 301
 351
      CGTAGTTGCC GTTGACGACG GCAAAATCCA CGTCGGCGCG GCTGCGCGGC
 401
      AGTTGTGCGG CTTCAAGCTC GACGATTTTG ATGTTTTTCA GGTTTTCCGC
      GATGTCGGCT TTGGATGCGG TCAGCGGATT GATGCCGTCT TTGAGTTTGA
 451
      TCCAACCCAG TTCGTTCAGC ATCACCAAGG CGCGTGCGAA GTTGGACGGG
 501
 551
      TCGTTGGGCG CGGATACGGT GCTGCCGTCT TTGACTTCTT CCAGCGATTT
      CAGTTTGCCC GGATACAGTC CCAAAGGCGC GGTCGGCACT TGGAAGGCTT
 601
     CGGTGATGTC CAGGTTGTGT TCTTTTTTGA AATCGTCAAG ATAGGGTTTG
TGTTGGAAGA CGTTGATGTC CAACTCGCCC TCCGCCAATG CCAGATTCGG
 651
 751
      GCGCACATAG TCggTAAATT cgaccaatTT gacgGTGTag cCTTTTTCT
 801 CCAGCTCGgc tTGGATTTGT TCTTTGACCA TATCGCCGaa gtcgcccacg
      gTCGTGCCGA agacgaTTTC TTTTTTCGCc GcgcCGTTAT CGGCAGAAGG
 851
 901 GGCGGCGgca gaggetgcGG GCGCGCTGTC TTTTtgaccG ccgCAGGCTG
 951 CGAGGATGAG CGCGAGtgcg gcggcggaaa ggGTTTTGAA GAAGGTTTTC
1001 atATTTTCTc ctga
```

### This corresponds to the amino acid sequence <SEQ ID 2310; ORF 692 >: g692.pep

```
1 VSHTRCRCSE SIRRIWRNGR EWRIKGOKCR LNTDAVQTAS FYTTALFGCA
51 FIPCGRVFVA LEAFVRVGFE RVGVIGLGYV FKPLAVFVGG FDGRPVDIGK
101 ARLLEQGFGQ LHAAAYGVVA VDDGKIHVGA AARQLCGFKL DDFDVFQVFR
151 DVGFGCGQRI DAVFEFDPTQ FVQHHQGACE VGRVVGRGYG AAVFDFFQRF
QFARIQSQRR GRHLEGFGDV QVVFFFELVK IGFVLEDVDV QLALRQCQIR
251 AHIVGKFDQF DGVAFFLQLG LDLFFDHIAE VAHGRAEDDF FFRRAVIGRR
301 GGGRGCGRAV FLTAAGCEDE RECGGKGFE EGFHIFS*
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2311>: m692.seq

```
1 GTGTTGCACA CGCTTTGTCG CTGTTCGGAA TCGATACGCC GGATTCGGCG
51 GAATGGCAGG GAATGGCGGA TTAAAGGACA AAAATGCCGT CTGAACACGG
101 ATACAGTTCA GACGGCATCA TTTTATACGA CTGCCTTATT TGGCTGCGCC
151 TTCATTCCAT GCGGCAGGGG ATTTGTAGCC CTCGAACGCT TTTGTGCGCGT
201 AGGCTTTGAA CGCGTCGGAG TTATAGGCCCT CGGTTACGTC TTTAAGCCAT
251 TGGCTGTCTT TGTCGGCGGGT TTTGACGGCA GACCAGTTGA CATAGGCAAA
301 GCTCGGTTCT TGGAACAGGG CTTCGGTCAG CTTCATGCC CTGCTTATGG
351 CGTAGTTGCC GTTGACGACG GCAAAATCCA CGTCGGCGCG GCTACGCGGC
```



401		CTTCAAGCTC		ATGTTTTTCA	GGTTCTCGGC
451	GATGTCCGCT	TTGGATGCGG	TCAACGGATT	GATGCCGTCT	
501	TCCAACCCAG	TTCGTCGAGC	ATCACCAAGA		GTTGGACGGG
551	TCGTTGGGCG	CGGATACGGT	GCTGCCGTCT	TTGACTTCTT	
601	CAGCTTGCCC	GGGTACAGTC	CCAAAGGCGC		TGGAAGACTT
651	CGGTGATGTC	CAGATTGTGT	TCTTTTTTGA		ATAGGGTTTG
701	TGTTGGAAGA	CGTTGATGTC	CAACTCGCCC	TCAGCCAATG	CCACATTCCC
751	GCGTACATAG	TCGGTAAACT	CGACCAGTTT		CCTTTTTTCT
801	CCAGCTCGGC	TTGGATTTGT	TCTTTGACCA	TATCGCCGAA	GTCCCCCACC
851	GTCGTGCCGA	AGACGATTTC		GCGCCGTTGT	
901	AGAAGCGGAT	GCGGCGGCG		TTGACCGCCG	
951	GGATGAGCGC			TTTTGAAGAA	
1001	TTTTCTCCTG	A		CILIGAA	GGITTICATA

This corresponds to the amino acid sequence <SEQ ID 2312; ORF 692>: m692.pep

- 1 VLHTLCRCSE SIRRIRRNGR EWRIKGQKCR LNTDTVQTAS FYTTALFGCA
  51 FIPCGRGFVA LEAFVRVGFE RVGVIGLGYV FKPLAVFVGG FDGRPVDIGK
  101 ARFLEQGFGQ LHAAAYGVVA VDDGKIHVGA ATRQLRGFKL DDFDVFQVLG
  151 DVRFGCGQRI DAVFEFDPTQ FVEHHQDAGE VGRVVGRGYG AAVFDFFQRF
  201 QLARVQSQRR GRHLEDFGDV QIVFFFEVVK IGFVLEDVDV QLALSQCQIR
  251 AYIVGKLDQF DGVAFFLQLG LDLFFDHIAE VADGRAEDDF FFRRAVVGGG
  301 RSGCGGRAVF LTAAGGEDER ECGGGKGFEE GFHIFS*
- Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 692 shows 91.1% identity over a 338 aa overlap with a predicted ORF (ORF 692) from N. gonorrhoeae:

m692/g692	91.1% identity	/ in 338 a	a overlap			
m692.pep	10 VLHTLCRCSESIRF	20 RIRRNGREWR	30 IKGQKCRLNTI	40 TVQTASFYT	50 TALFGCAFIP	60 CGRGFVA
g692	 VSHTRCRCSESIRF 10	1 11111	1 1 1 1 1 1 1 1 1 1 1 1	-1111111	1111111111	
m692.pep	70	80	90	100	110	100
g692	LEAFVRVGFERVGV	1 5 1 6 1 1 1 1 1 1		11111111		
	70 130	80	90	100	110	120
m692.pep	VDDGKIHVGAATRO	1 1 1 1 1 1 1 1 1	1111: 11 1			
g692	VDDGKIHVGAAARQ 130	LCGFKLDDFI 140	VFQVFRDVGF	GCGQRIDAVI	FEFDPTQFVQH 170	HQGACE 180
m692.pep	190 VGRVVGRGYGAAVF	200 DFFORFOLAR	210	220 EDEGDVOTUE	230	240
g692	VGRVVGRGYGAAVF	DFFQRFQFAR	:         :IQSQRRGRHL1			
	190 250	200 260	210 270	220 280	230	240
m692.pep	QLALSQCQIRAYIVO	GKLDQFDGVA	FFLQLGLDLF	PDHIAEVADG		
g692	QLALRQCQIRAHIVO 250	SKFDQFDGVA 260	FFLQLGLDLF1 270	FDHIAEVAHG 280	RAEDDFFFRR 290	AVIGRR 300
m692.pep	300 310 GGRSGCGGRAVFLTA	320 AGGEDEREC	330 GGGKGFEEGFH	IIFSX		
g692		 AGCEDERECO 320	GGGKGFEEGFH	IIII IIFSX		

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2313>

1 GTGTTGCACA CGCTTTGTCG CTGTTCGGAA TCGATACGCC GGATTCGGCG

				•	
51	GAATGGCAGG	GAATGGCGGA	TTAAAGGACA	AAAATGCCGT	CTGAACACGG
101	ATACGGTTCA	GACGGCATCA	TTTTATACGA	CTGCCTTATT	TGGCTGCGCC
151	TTCATTCCAT	GCGGCAGGGG	ATTTGTAGCC	CTCGAAGCGT	TTGTGCGCGT
201	AGGCTTTGAA	CGCGTCGGAG	TTATAGGCCT	CGGTTACGTC	TTTAAGCCAT
251	TGGCTGTCTT	TGTCGGCGGT	TTTGACGGCA	GACCAGTTGA	CATAGGCAAA
301	GCTCGGTTCT	TGGAACAGGG	CTTCGGTCAG	CTTCATGCCG	
351	CGTAGTTGCC	GTTGACGACG	GCAAAATCCA	CGTCGGCGCG	GCTACGCGGC
401	AGTTGCGCGG	CTTCAAGCTC	GACGATTTTG	ATGTTTTTCA	GGTTTTCGGC
451	AATGTCCGCT	TTGGATGCGG	TCAGCGGATT	GATGCCGTCT	TTGAGTTTGA
501	TCCAACCCAG	TTCGTCGAGC	ATCACCAAGA	CGCGGGCGAA	GTTGGACGGG
551	TCGTTGGGCG	CGGATACGGT	GCTGCCGTCT	TTGACTTCTT	CCAGCGATTT
601	CAGCTTGCCC	GGGTACAGTC	CCAAAGGCGC	GGTCGGCACT	TGGAAGACTT
651	CGGTGATGTC	CAGATTGTGT	TCTTTTTTGA	AGTCGTCAAG	ATAGGGTTTG
701	TGTTGGAAGA	CGTTGATGTC	CAACTCGCCC	TCAGCCAATG	CCAGATTCGG
751	GCGCACATAG	TCGGTAAACT	CGACCAGTTT	GACGGTGTAG	CCTTTTTTCT
801	CCAGCTCGGG	TTGGATTTGT	TCTTTGACCA	TATCGCCGAA	GTCGCCGACG
851	GTCGTGCCGA	AGACGATTTC	TTTTTTCGCC	GCGCCGTTGT	CGGCGGCGGC
901	AGAAGCGGAT	GCGGCGGGCG	CGCTATCTTT	TTGACCGCCG	CAGGCGGCGA
951	GGATGAGCGC	GAGTGCGGCG	GCGGAAAGGG	TTTTGAAGAA	GGTTTTCATA
1001	TTTTCTCCTG	A			

This corresponds to the amino acid sequence <SEQ ID 2314; ORF 692.a>: a692.pep

- 1 VLHTLCRCSE SIRRIRRNGR EWRIKGQKCR LNTDTVQTAS FYTTALFGCA
  51 FIPCGRGFVA LEAFVRVGFE RVGVIGLGYV FKPLAVFVGG FDGRPVDIGK
  101 ARFLEQGFQ LHAAAYGVVA VDDGKIHVGA ATRQLRGFKL DDFDVFQVFG
  151 NVRFGCGQNI DAVFEFDPTQ FVEHHQAGE VGRVVGRGYG AAVFDFFQRF
- 201 QLARVQSQRR GRHLEDFGDV QIVFFFEVVK IGFVLEDVDV QLALSQCQIR 251 AHIVGKLDQF DGVAFFLQLG LDLFFDHIAE VADGRAEDDF FFRRAVVGGG 301 RSGCGGRAIF LTAAGGEDER ECGGGKGFEE GFHIFS*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. meningitidis

ORF 692 shows 98.8% identity over a 336 aa overlap with a predicted ORF (ORF 692) from N. meningitidis:

m692/a692	98.8% identity in 336 aa overlap
m692.pep	10 20 30 40 50 60  VLHTLCRCSESIRRIRRNGREWRIKGQKCRLNTDTVQTASFYTTALFGCAFIPCGRGFVA
m692.pep a692	70 80 90 100 110 120  LEAFVRVGFERVGVIGLGYVFKPLAVFVGGFDGRPVDIGKARFLEQGFGQLHAAAYGVVA
m692.pep	130 140 150 160 170 180 VDDGKIHVGAATRQLRGFKLDDFDVFQVLGDVRFGCGQRIDAVFEFDPTQFVEHHQDAGE
m692.pep	190 200 210 220 230 240 VGRVVGRGYGAAVFDFFQRFQLARVQSQRRGRHLEDFGDVQIVFFFEVVKIGFVLEDVDV
m692.pep a692	250 260 270 280 290 300 QLALSQCQIRAYIVGKLDQFDGVAFFLQLGLDLFFDHIAEVADGRAEDDFFFRRAVVGGG
m692.pep	310 320 330 RSGCGGRAVFLTAAGGEDERECGGGKGFEEGFHIFSX





310 320 330

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2315>:

```
TCGGCATTTG TGTTGCCCAA ACATCCGATG CCTGCGTTAA CGCCTGCGTC
      AACGTTTGCA CAAATCGGGT TTGGTTTCGC CCTCGCGGCG CAGCTCCTTG
 101
      GGCAGGACGA ACACGATGCT TTCTTCCGCG CCCCCCCTT CGCGCACGGT
      TTCATGCCCC CATCCGCGTA TGGTTGCCAA TACTTCCCGC ACCAACACTT
 151
      CGGGCGCGGA CGCGCCTGCC GTTACGCCGA CTTTGCTTTT GCCTTCAAAC
      CACGTGCGTT GCaggTAGGA CGCGTTGTCC ACCATATACG CATCGATTCC
 251
      GCGCGATGCC GCCACTTCGC GCAGGCGGTT GCTGTTGGAC GAATTGGGCG
 301
      AACCGACCAC AATCACGATG TCGCACTGTT CCGCCAGCTC TTTGACGGCG
 351
      GTTTGCCGGT TGGTCGTCGC ATAGCAGATG TCTTCCTTGT GCGGATTGCG
 401
      GATATTGGGG AAACGCGCGT TCAGCGCGGC GATGATGTCT TTGGTTTCAT
 451
      CGACCGAGAG CGTGGTTTGG CTGACATAGG CGAGTTTGTC GGGGTTTCTG
 501
      ACTTCGAGTT TTGCCACATC TCCGACCGTT TCGACCAAAA GCATTTTGCC
 551
      CGGTGCAAGC TGCCCCATCG TGCCTTCGAC CTCGGCGTGC CCCTTATGCC
 601
      CGATCATGAT GATTTCACAG TCTTGGGCAT CCAGTCGGGC GACTTCCTTA
 651
     TGCACTTTCG TCACCAGCGG GCAAGTCGCA TCAAATACCC GGAAACCGCG
 701
     CTCCGCCGCT TCCTGCTGCA CCGCCTTCGA TACGCCGTGT GCCGAATAAA
 751
 801
     CCAGTGTCGC GCCCGGCGGC ACTTCCGCCA AGTCTTCGAT AAACACCGCG
     CCTTTTTCGC GCAGGTTGTC CACGACGAAT TTGTTGTGGA CGACTTCGTG
 851
 901
     GCGCACATAA ACCGGCGCGC CGAATTCTTC CAAAGCACGT TCGACAATAC
     TGATTGCCCG ATCCACACCG GCGCAGAAGC CGCGCGGATT GGCAAGGATG
951
1001 ATGGTTTTTC CGTTCATAAG TTTTGCATTC CGTGTTCAGA CGGCATTCAC
     GTTTTTTTGC TNNATCTTTG CGATGGACGA TATTGTCAAG CACCGCCAAC
1101 ACCGCACCGA CGCAGATAA
```

### This corresponds to the amino acid sequence <SEQ ID 2316; ORF 694 >:

```
9694.pep (partial)

1 SAFVLPKHPM PALTPASTFA QIGFGFALAA QLLGQDEHDA FFRAPPFAHG
51 FMPPSAYGCQ YFPHQHFGRG RACRYADFAF AFKPRALQVG RVVHHIRIDS
101 ARCRHFAQAV AVGRIGRTDH NHDVALFRQL FDGGLPVGRR IADVFLVRIA
151 DIGETRVQRG DDVFGFIDRE RGLADIGEFV GVSDFEFCHI SDRFDQKHFA
201 RCKLPHRAFD LGVPLMPDHD DFTVLGIQSG DFLMHFRHQR ASRIKYPETA
251 LRRFLLHRLR YAVCRINQCR ARRHFRQVFD KHRAFFAQVV HDEFVVDDFV
301 AHINRRAEFF QSTFDNTDCP IHTGAEAARI GKDDGFSVHK FCIPCSDGIH
351 VFLLXLCDGR YCQAPPTPHR RR*
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2317>: m694.seq

```
TTGGTTTCCG CATCCGGCAC ACGGCAAAAA TGCCGTCTGA AGCCTGTTCA
      GACGGCATTT GTGTTGCCCA AACATTCAAC GCCTGCGTCA ACGTTTGCAC
      AAATCGGGTT TGGTTTCGCC CTCGCGGCGC AACTCTTTGG GCAGGACGAA
      CACAATGCTT TCTTCCGCAC CCTCGCCTTC GCGTACGGTT TCGTGCCCCC
 201 ATCCGCGTAT GGTTGCCAGT ACTTCCCGCA CCAACACTTC GGGCGCGGAC
      GCGCCTGCCG TTACGCCGAC TTTGTTTTTG CCCTCAAACC ATGCGCGTTG
      CAGGTAGCCT GCATTATCCA CCATATACGC ATCGATTCCG CGCGATGCCG
 301
      CCACTTCGCG CAAGCGGTTG CTGTTGGACG AATTGGGCGA ACCGACCACA
 351
      ATCACGATGT CGCACTGTTC TGCCAACTCT TTGACGGCGG TTTGCCGGTT
 451 GGTCGTCGCA TAGCAGATAT CTTCCTTGTG CGGATTGCGG ATATTGGGGA
     AACGCGCGTT CAGCGCGGCG ATGATGTCTT TGGTTTCATC GACCGAGAGC
 501
      GTGGTTTGGC TGACATAGGC GAGTTTGTCG GGGTTTCTGA CTTCGAGTTT
 551
     TGCCACATCT CCGACCGTTT CGACCAAAAG CATTTTGCCC GGCGCAAGCT
 651
      GCCCCATCGT TCCTTCGACC TCGACGTGCC CCTTATGCCC GATCATGATG
 701 ATTTCACAGT CTTGGGCATC CAGTCGGGCG ACTTCCTTAT GCACTTTCGT
 751 CACCAGCGGG CAAGTCGCAT CAAACACGCG GAAACCGCGC TCCGCCGCTT
      CTTGCCGCAC CGCCTTCGAT ACGCCGTGTG CCGAATAAAC CAGTGTCGCG
 801
 851 CCCGGCGGCA CTTCCGCCAA GTCTTCAATA AACACCGCAC CTTTTTCACG
     CAGGTTGTCC ACGACGAATT TGTTGTGAAC GACTTCGTGG CGCACATAAA
 901
     TCGGCGCGCC GAACTCTTCC AAAGCACGTT CGACAATACT GATT GCCCGA
 951
     TCCACACCAG CGCAGAAGCC GCGCGGATTG GCAAGGATGA TGGTTTTCTC
1001
     GTTCATAAGC CCGGTATTTC GTTTTCAGAC GGCATCAATA TTTTTCTTCT
1051
     TGGGTTTTAC GGTGGACGAT GTTGTCCAAC ACCGCCAACA CCGCACCGAC
1151 GCAGATAA
```

# This corresponds to the amino acid sequence <SEQ ID 2318; ORF 694>: m694.pep

```
1 LVSASGTROK CRLKPVOTAF VLPKHSTPAS TFAQIGFGFA LAAQLFGODE
51 HNAFFRTLAF AYGFVPPSAY GCQYFPHQHF GRGRACRYAD FVFALKPCAL
101 QVACIIHHIR IDSARCRHFA QAVAVGRIGR TDHNHDVALF CQLFDGGLPV
```

Control of the control of the



Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 694 shows 86.8% identity over a 372 aa overlap with a predicted ORF (ORF 694) from N. gonorrhoeae:

```
m694/g694
           86.8% identity in 372 aa overlap
                 10
                          20
                                     30
                                             40
                                                     50
           LVSASGTRQKCRLKPVQTAFVLPKHS----TPASTFAQIGFGFALAAQLFGQDEHNAFFR
m694.pep
                         : 1111111
                                  g694
                         SAFVLPKHPMPALTPASTFAQIGFGFALAAQLLGQDEHDAFFR
                               10
                                       20
                                               30
                             80
                                     90
                                            100
                                                    110
           TLAFAYGFVPPSAYGCQYFPHQHFGRGRACRYADFVFALKPCALQVACIIHHIRIDSARC
m694.pep
             APPFAHGFMPPSAYGCQYFPHQHFGRGRACRYADFAFAFKPRALQVGRVVHHIRIDSARC
a694
                               70
                                       BO
           120
                    130
                            140
                                    150
                                            160
                                                    170
           {\tt RHFAQAVAVGRIGRTDHNHDVALFCQLFDGGLPVGRRIADIFLVRIADIGETRVQRGDDV}
m694.pep
           {\tt RHFAQAVAVGRIGRTDHNHDVALFRQLFDGGLPVGRRIADVFLVRIADIGETRVQRGDDV}
q694
              110
                      120
                              130
                                              150
                                                       160
                            200
                                    210
                                            220
           {\tt FGFIDRERGLADIGEFVGVSDFEFCHISDRFDQKHFARRKLPHRSFDLDVPLMPDHDDFT}
m694.pep
           FGFIDRERGLADIGEFVGVSDFEFCHISDRFDQKHFARCKLPHRAFDLGVPLMPDHDDFT
a694
              170
                              190
                                      200
                                              210
           240
                   250
                            260
                                    270
                                            280
                                                    290
           VLGIQSGDFLMHFRHQRASRIKHAETALRRFLPHRLRYAVCRINQCRARRHFRQVFNKHR
m694.pep
           VLGIQSGDFLMHFRHQRASRIKYPETALRRFLLHRLRYAVCRINQCRARRHFRQVFDKHR
g694
              230
                      240
                              250
                                      260
                                              270
                                                      280
           300
                   310
                            320
                                    330
                                            340
           TFFTQVVHDEFVVNDFVAHINRRAELFQSTFDNTDCPIHTSAEAARIGKDDGFLVHKPGI
m694.pep
           AFFAQVVHDEFVVDDFVAHINRRAEFFQSTFDNTDCPIHTGAEAARIGKDDGFSVHKFCI
q694
             290
                      300
                              310
                                      320
                                              330
                                                      340
                   370
                            380
          SFSDGINIFLLGFYGGRCCPTPPTPHRRRX
m694.pep
            1111::11
                   : 11 1 : 111111111
a694
          PCSDGIHVFLXXLCDGRYCQAPPTPHRRRX
                      360
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2319>: a694.seq

```
TTGGTTTCCG CATCCGGCAC ACGGCAAAAA TGCCGTCTGA AGCCTGTTCA
  1
     GACGGCATTT GTGTTGCCCA AACATTCAAC GCCTGCGTCA ACGTTTGCAC
 51
     AAATCGGGTT TGGTTTCGCC CTCGCGGCGC AACTCTTTGG GCAGGACGAA
CACAATGCTT TCTTCCGCAC CCTCGCCTTC GCGTACGGTT TCGTGCCCCC
101
151
     ATCCGCGTAT GGTTGCCAGT ACTTCCCGCA CCAACACTTC GGGCGCGGAC
201
     GCGCCTGCCG TTACGCCGAC TTTGTTTTTG CCCTCAAACC ATGCGCGTTG
251
     CAGGTAGCCT GCATTATCCA CCATATACGC ATCGATTCCG CGCGATGCCG
301
     CCACTTCGCG CAAGCGGTTG CTGTTGGACG AATTGGGCGA ACCGACCACA
ATCACGATGT CGCACTGTTC TGCCAACTCT TTGACGGCGG TTTGCCGGTT
351
401
     GGTCGTCGCA TAGCAGATAT CTTCCTTGTG CGGATTGCGG ATATTGGGGA
451
501
     AACGCGCGTT CAGCGCGGCG ATGATGTCTT TGGTTTCATC GACCGAGAGC
     GTGGTTTGGC TGACATAGGC GAGTTTGTCG GGGTTTCTGA CTTCGAGTTT
601
     TGCCACATCT CCGACCGTTT CGACCAAAAG CATTTTGCCC GGCGCAAGCT
     GCCCCATCGT TCCTTCGACC TCGACGTGCC CCTTATGCCC GATCATGATG
```



701	ATTTCACAGT	CTTGGGCATC	CAGTCGGGCG	ACTTCCTTAT	GCACTTTCGT
751	CACCAGCGGG	CAAGTCGCAT	CAAACACGCG	GAAACCGCGC	TCCGCCGCTT
801	CTTGCCGCAC	CGCCTTCGAT	ACGCCGTGTG	CCGAATAAAC	CAGTGTCGCG
851	CCCGGCGGCA	CTTCCGCCAA	GTCTTCAATA	AACACCGCAC	CTTTTTCACG
901	CAGGTTGTCC	ACGACGAATT	TGTTGTGAAC	GACTTCGTGG	CGCACATAAA
951	TCGGCGCGCC	GAACTCTTCC	AAAGCACGTT	CGACAATACT	GATTGCCCGA
1001	TCCACACCAG	CGCAGAAGCC	GCGCGGATTG	GCAAGGATGA	TGGTTTTCTC
1051	GTTCATAAGC	CCGGTATTTC	GTTTTCAGAC	GGCATCAATA	TTTTTCTTCT
1101	TGGGTTTTAC	GGTGGACGAT	GTTGTCCAAC	ACCGCCAACA	CCGCACCGAC
1151	CCACATAA				

This corresponds to the amino acid sequence <SEQ ID 2320; ORF 694.a>: a694.pep

1 LVSASGTROK CRLKPVQTAF VLPKHSTPAS TFAQIGFGFA LAAQLFGQDE
51 HNAFFRTLAF AYGFVPPSAY GCQYFPHOHF GRGRACRYAD FVFALKPCAL
101 QVACIIHHIR IDSARCRHFA QAVAVGRIGR TDHNHDVALF CQLFDGGLPV
151 GRRIADIFLV RIADIGETRV QRGDDVFGFI DRERGLADIG EFVGVSDFEF
201 CHISDRFDQK HFARRKLPHR SFDLDDVPLMP DHDDFTVLGI QSGDFLMHFR
251 HQRASRIKHA ETALRRFLPH RLRYAVCRIN QCRARRHFRQ VFNKHRTFFT
301 QVVHDEFVVN DFVAHINRRA ELFQSTFDNT DCPIHTSAEA ARIGKDDGFL
351 VHKPGISFSD GINIFLLGFY GGRCCPTPFT PHRRR*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis

ORF 604 shares 100% identified to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the contro

ORF 694 shows 100% identity over a 385 aa overlap with a predicted ORF (ORF 694) from N. meningitidis:

m694/a694	100.0% identity in 385 aa overlap	
m694.pep	LVSASGTRQKCRLKPVQTAFVLPKHSTPASTFAQIGFGFALAAQLFGQDEHNAFFRTLA	
m694.pep	70 80 90 100 110 12 AYGFVPPSAYGCQYFPHQHFGRGRACRYADFVFALKPCALQVACIIHHIRIDSARCRHF	A   A
m694.pep	130 140 150 160 170 18  QAVAVGRIGRTDHNHDVALFCQLFDGGLPVGRRIADIFLVRIADIGETRVQRGDDVFGF	I   I
m694.pep	190 200 210 220 230 240 DRERGLADIGEFVGVSDFEFCHISDRFDQKHFARRKLPHRSFDLDVPLMPDHDDFTVLG:	I I I
m694.pep	250 260 270 280 290 300 QSGDFLMHFRHQRASRIKHAETALRRFLPHRLRYAVCRINQCRARRHFRQVFNKHRTFFT	r
m694.pep	310 320 330 340 350 360 QVVHDEFVVNDFVAHINRRAELFQSTFDNTDCPIHTSAEAARIGKDDGFLVHKPGISFSI	
m694.pep	370 380 GINIFLLGFYGGRCCPTPPTPHRRX	

المناشية والمحارب والأوارية



```
TTGCCTCAAA CTCGTCCGGC AAGGCGGCAT CATCGCCATC GACAATATTT
     TGTTGAACGG AAGGGTGATG CGCGAAGCGG CTTTTGATGC GCCGCCCAGT
 51
     GTCAAAATTC TCAAAGATTT CAATCAAAAC CTGCCGAACG ATACGCGGAT
101
151
     TGTCCCCATC ACCCTGCCCG TCGGCGACGG TTTGACCCTG CTTCTGAAAA
    AATAATGAAG ACCAAATTAC CGCTTTTTAT CATTTGGCTG TCTGTGTCTG
201
     CCTCCTGTGC TTCCGTTTTA CCCGTTCCGG AGGGCAGCCG AACCGAAATG
    CCGACACAGG AAAATGCTTC AGACGGCATT CCCTATCCCG TTCCCACTCT
    GCAAGACCGT TTGGACTATC TGGAAGGCAA AATCGTCCGG CTGTCGAACG
351
401 AAGTGGAAAT GTTAAACGGG AAAGTCAAAG CATTGGAGCA TACGAAAATA
451 CACCCTTCCG GCAGGACATA CGTCCAAAAA CTCGACGACC GCAAATTGAA
501 AGAGCATTAC CTCAATACCG AAGGCGGCAG CGCATCCGCA CATACCGTCG
551 AAACCGCACA AAACCTCTAC AATCAGGCAC TCAAACACTA TCAAAACGGC
601 AGGTTTTCTG CCGCAGCCGC CTTGTTGAAG GGGGCGGACG GCGGAGACGG
    CGGCAGCATC GCGCAACGCA GTATGTACCT GTTGCTGCAA AGCAGGGCGC
651
701 GTATGGGGAA CTGTGAATCT GTCATCGAAA TCGGAGGGCG TTACGCCAAC
751 CGTTTCAAAG ACAGCCCAAC CGCGCCCGAA GTCATATTCA AAATCGGCGA
801 ATGCCAATAC AGGCTTCAGC AAAAAGACAT TGCAAGGGCG ACTTGGCGCA
    GCCTGATACA GACCTATCCC GGCAGCCCGG CGGCAAAACG CGCCGCCGCA
    GCCGTACGCA AACGATAG
```

## This corresponds to the amino acid sequence <SEQ ID 2322; ORF 695 >: g695.pep

```
1 LPQTRPARRH HRHRQYFVER KGDARSGF*C AAQCQNSQRF QSKPAERYAD
51 CPHHPARRR FDPASEKIMK TKLPLFIIWL SVSASCASVL PVPEGSRTEM
101 PTQENASDGI PYPVPTLQDR LDYLEGKIVR LSNEVEMLNG KVKALEHTKI
151 HPSGRTYVQK LDDRKLKEHY LNTEGGSASA HTVETAQNLY NQALKHYQNG
201 RFSAAAALLK GADGGDGGSI AQRSMYLLLQ SRARMGNCES VIEIGGRYAN
251 RFKDSPTAPE VIFKIGECQY RLQQKDIARA TWRSLIQTYP GSPAAKRAAA
```

301 AVRKR*

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2323>: m695.seq

```
TTGCCTCAAA CTCGTCCGTC AAGGCGGCAT CATCGCCATC GACAATATTT
 51
    TGCTGAACGG AAGGGTGATG CGCGAAGCGG CTTCCGATGC GCCGCCCAGC
    GTCGGCATCC TCAAAGATTT CAATCAAAAC CTGCCGAACG ACCCGCGCAT
101
    CGTCCCCATC ACCCTGCCCG TCGGCGACGG CTTGACCCTG CTTCTGAAAA
    AATAATGAAG ATCAAATTAC CGCTTTTTAT CATTTGGCTG TCTGTGTCCG
251
    CCTCCTGTGC TTCCGTTTCA CCCGTTCCGG CAGGCAGCCA AACCGAAATG
    TCGACACGGG AAAATGCTTC AGACGGCATT CCCTATCCCG TTCCGACCTT
301
    GCAAGACCGT TTGGACTATC TGGAAGGCAA AATCGTCCGG CTGTCGAACG
351
401 AAGTGGAAAC CTTAAACGGC AAAGTCAAAG CACTGGAACA CGCAAAAACA
    CATTCTTCCG GCAGGCCATA CGTCCAAAAA CTCGACGACC GCAAGTTGAA
451
501 AGAGCATTAC CTCAATACCG AAGGCGGCAG CGCATCCGCA CATACTGTCG
551 AAACCGCACA AAACCTCTAC AATCAGGCAC TCAAACACTA TAAAAGCGGC
601 AAGTTTTCTG CCGCTGCCTC CCTGTTGAAA GGCGCGGACG GAGGCGACGG
    CGGCAGCATC GCGCAACGCA GTATGTACCT GTTGCTGCAA AGCAGGGCGC
701 GTATGGGCAA CTGCGAATCC GTCATCGAAA TCGGAGGGCG TTACGCCAAC
751 CGTTTCAAAG ACAGCCCAAC CGCGCCTGAA GCCATGTTCA AAATCGGCGA
    ATGCCAATAC AGGCTTCAGC AAAAAGACAT TGCAAGGGCG ACTTGGCGCA
851 GCCTGATACA GACCTATCCC GGCAGCCCGG CGGCAAAACG CGCCGCCGCA
901 GCCGTGCGCA AACGATAG
```

## This corresponds to the amino acid sequence <SEQ ID 2324; ORF 695>: m695.pep

```
1 LPQTRPSRRH HRHRQYFAER KGDARSGFRC AAQRRHPQRF QSKPAERPAH
51 RPHHPARRR LDPASEKIMK IKLPLFIIWL SVSASCASVS PVPAGSQTEM
101 STRENASDGI PYPVPTLQDR LDYLEGKIVR LSNEVETLNG KVKALEHAKT
151 HSSGRAYVQK LDDRKLKEHY LNTEGGSASA HTVETAQNLY NQALKHYKSG
201 KFSAAASLLK GADGGDGGSI AQRSMYLLLQ SRARMGNCES VIEIGGRYAN
251 RFKDSPTAPE AMFKIGECQY RLQQKDIARA TWRSLIQTYP GSPAAKRAAA
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 694 shows 90.8% identity over a 305 aa overlap with a predicted ORF (ORF 695) from N. gonorrhoeae:

BNSDOCID: <WO___9957280A2_I_>



## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2325>: a695.seq

```
TTGCCTCAAG CTTGTCCGGC AAGGCGGCAT CATTGCCATC GACAATATTT
     TGTTGAACGG AAGGGTGATG CGCGAAGCGG CTTCCGATGC GCCGCCCAGC
 51
     GTCGGCATCC TCAAAGATTT TAATCAAAAC CTGCCGAACG ATACGCGGAT
101
     TGTCCCCATC ACCCTGCCCG TCGGCGACGG TTTGACCCTG CTTCTGAAAA
AATAATGAAG ACCAAATTAC CGCTTTTTAT CATTTGGCTG TCCGTATCCG
151
201
     CCGCCTGTTC TTCCCCTGTT TCCCGCAATA TTCAGGATAT GCGGCTCGAA
251
     CCGCAGGCAG AGGCAGGTAG TTCGGACGCT ATTCCCTATC CCGTTCCCAC
301
     TCTGCAAGAC CGTTTGGATT ATCTGGAAGG CACACTCGTC CGCCTGTCGA
351
401
     ACGAAGTGGA AACCTTAAAC GGCAAAGTCA AAGCACTGGA GCATGCGAAA
     ACACACCCTT CCAGCAGGGC ATACGTCCAA AAACTCGACG ACCGCAAGTT
451
     GAAAGAGCAT TACCTCAATA CCGAAGGCGG CAGCGCATCC GCACATACCG
501
     TCGAAACCGC ACAAAACCTC TACAATCAGG CACTCAAACA CTATAAAAGC
GGCAGGTTTT CTGCCGCTGC CTCCCTGTTG AAAGGCCGCG ACGGAGGCGA
551
601
651
     CGGCGGCAGC ATCGCGCAAC GCAGTATGTA CCTGTTGCTG CAAAGCAGGG
     CGCGTATGGG CAACTGCGAA TCCGTCATCG AAATCGGAGG GCGTTACGCC
701
     AACCGTTTCA AAGACAGCCC AACCGCGCCT GAAGCCATGT TCAAAATCGG
751
     CGAATGCCAA TACAGGCTTC AGCAAAAAGA CATTGCAAGG GCGACTTGGC
801
     GCAGCCTGAT ACAGACCTAT CCCGGCAGCC CGGCGGCAAA ACGCGCCGCC
851
     GCAGCCGTGC GCAAACGATA G
```

### This corresponds to the amino acid sequence <SEQ ID 2326; ORF 695.a>: a695.pep

1 LPQACPARRH HCHRQYFVER KGDARSGFRC AAQRRHPQRF *SKPAERYAD
51 CPHHPARRRR FDPASEKIMK TKLPLFIIWL SVSAACSSPV SRNIQDMRLE
101 PQAEAGSSDA IPYPVPTLQD RLDYLEGTLV RLSNEVETLN GKVKALEHAK
151 THPSSRAYVQ KLDDRKLKEH YLNTEGGSAS AHTVETAQNL YNQALKHYKS
201 GRFSAAASLL KGADGGDGGS IAQRSMYLLL QSRARMGNCE SVIEIGGRYA
251 NRFKDSPTAP EAMFKIGECQ YRLQQKDIAR ATWRSLIQTY PGSPAAKRAA
301 AAVRKR*

Computer analysis of this amino acid sequence gave the following results:

### Homology with a predicted ORF from N. meningitidis

ORF 695 shows 88.3% identity over a 308 aa overlap with a predicted ORF (ORF 695) from N. meningitidis:

m695/a695	88.3% identity in 308 aa overlap
m695.pep a695	10 20 30 40 50 60  LPQTRPSRRHHRHRQYFAERKGDARSGFRCAAQRRHPQRFQSKPAERPAHRPHHPARRRR     :  :        :
m695.pep	70 80 90 100 110  LDPASEKIMKIKLPLFIIWLSVSASCASVSPVPAGSQTEMSTRENASDGIPYPVPTL :
m695.pep	120 130 140 150 160 170 QDRLDYLEGKIVRLSNEVETLNGKVKALEHAKTHSSGRAYVQKLDDRKLKEHYLNTEGGS
m695.pep a695	180 190 200 210 220 230 ASAHTVETAQNLYNQALKHYKSGKFSAAASLLKGADGGDGGSIAQRSMYLLLQSRARMGN
m695.pep	240 250 260 270 280 290 CESVIEIGGRYANRFKDSPTAPEAMFKIGECQYRLQQKDIARATWRSLIQTYPGSPAAKR
m695.pep	300 AAAAVRKRX !!!!!!! AAAAVRKRX 300

The following partial DNA sequence was identified in N. gonorrhoeae g696.seq: not found

This corresponds to the amino acid sequence < ORF 696.ng>: g696.pep: not found

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2327>: m696.seq

```
1 TTGGGTTGCC GGCAGGCGGC ATCCCATCAT TTTTGCCAAG GCAACAAATT
51 ATTTGGCGGC ATCTTTCATT TTGTCTGCCG CTTCCTGAGT CGCGTCGGCA
101 GCTTTGTTCA AAGTATCTTT AGCTGCTTCA GTTACAGCTT CTTTGGCTTC
151 AGTTACAGCT TCCTCGGCAC TTGCCTTTGC ATCAGCCGCA GCATCTTTGA
201 CTTGGTCTTT CGCTTCTTCG ACGGCAGAAG CGGCAGACTC GGCGGCAGAA
251 GCCGCAGTGT CTTTAACATC GGACTCAACG GCTTGAACCG CTTCCTTAAC
301 CTCCTGTTTG GCTTCTTGCG AACAAGCTGC CAAGGCAGCC GCCATCATTG
351 CGGCAATCAA TAA
```

This corresponds to the amino acid sequence <SEQ ID 2328; ORF 696>: m696.pep

- 1 LGCRQAASHH FCQGNKLFGG IFHFVCRFLS RVGSFVQSIF SCFSYSFFGF 51 SYSFLGTCLC ISRSIFDLVF RFFDGRSGRL GGRSRSVFNI GLNGLNRFLN
  101 LLFGFLRTSC QGSRHHCGNQ *

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2329>: a696.seg

BNSDOCID: <WO___9957280A2_|_>



1	TTGGGTTGCC	GGCAGGCGGC	ATCCCATCAT	TTTTGCCAAG	GCAACAAATT
51	ATTTGGCGGC	ATCTTTCATT	TTGTCTGCCG	CTTCCTGAGT	CCCCTCCCCA
101	GCTTTGTTCA	AAGTATCTTT	AGCTGCTTCA	GTTACAGCTT	CTTTCCCTTC
151	AGTTACAGCT	TCCTCGGCAC	TTGCCTTTGC	ATCAGCCGCA	CCATCTTTCA
201	CTTGGTCTTT	CGCTTCTTCG	ACGGCAGAAG	CGGCAGACTC	GGCCCCACAA
251	GCCGCAGTGT	CTTTAACATC	GGACTCAACG	GCTTGAACCG	CTTCCTTAAC
301	CTCCTGTTTG	GCTTCTTGCG	AACAAGCTGC	CAAGGCAGCC	GCCATCATTG
351	CGGCAATCAA	TAA			CA11G

This corresponds to the amino acid sequence <SEQ ID 2330; ORF 696.a>: a696.pep

- LGCRQAASHH FCQGNKLFGG IFHFVCRFLS RVGSFVQSIF SCFSYSFFGF SYSFLGTCLC ISRSIFDLVF RFFDGRSGRL GGRSRSVFNI GLNGLNRFLN 51 LLFGFLRTSC QGSRHHCGNQ *
- Computer analysis of this amino acid sequence gave the following results:

### Homology with a predicted ORF from N meningitidis

WO 99/57280

ORF 696 shows 100.0% identity over a 120 aa overlap with a predicted ORF (ORF 696.a) from N. meningitidis:

```
m696/a696
           100.0% identity in 120 aa overlap
                                  30
                                          40
           {\tt LGCRQAASHHFCQGNKLFGGIFHFVCRFLSRVGSFVQSIFSCFSYSFFGFSYSFLGTCLC}
m696.pep
           a696
           {\tt LGCRQAASHHFCQGNKLFGGIFHFVCRFLSRVGSFVQSIFSCFSYSFFGFSYSFLGTCLC}
                          20
                                  30
                 70
                          80
                                  90
                                         100
                                                 110
                                                          120
           {\tt ISRSIFDLVFRFFDGRSGRLGGRSRSVFNIGLNGLNRFLNLLFGFLRTSCQGSRHHCGNQ}
m696.pep
           a696
           {\tt ISRSIFDLVFRFFDGRSGRLGGRSRSVFNIGLNGLNRFLNLLFGFLRTSCQGSRHHCGNQ}
                 70
                         80
                                         100
m696.pep
          х
a696
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2331>: g700.seq

```
ATGAGCAGCC TGATGACGTT GTTTTCGGTA TTGGTACCGA TGTTTGCCGG
     ATTTTTTATC CGTGTTCCCA AGCCTTACCT GCCCGCTTCG GACAAGGTGC
 51
     TGTCGGTTTT GGTGTATGCC GTGCTGCTGC TGATCGGCGT ATCGTTGTCG
101
     CGCGTGGAGG ATTTGGGTTC GCGGTTGGGC GATATGGCGT TGACGGTTCT
151
     GTGGCTGTTT GTTTGTACGG TAGGGGCGAA CCTGCTTGCC TTGGCAGTGT
201
     TGGGAAAGTT GTCCCCGTGG CGGATAGGGG GAAAAGGGAA GGGCGTTTCG
251
     GTCGGCGTGT CGGGCAGTGT GAGGCAGCTC GGATGCGTAC TGCTCGGTTT
301
     TGTGTCCGGC AAATTGATGT GCGATATTTG GATGCCGTCT GAAAACGCGG
351
     GTATGTACTG CCTGATGCTG CTGGTGTTCC TCATCGGCGT ACAGCTCAAA
401
451
     AGTAGCGGCG TATCGTTGCG GCAGGTTTTG CTTAACCGGC GGGGCATCCG
     GCTGTCGGTT TGGTTTATAT TGTCATCTCT TTCAGGCGGG CTGCTGTTTG
501
551
    CCGCATCGGC AGATGGTGTG TCGTGGACGA AAGGTTTGGC GATGGCTTCC
     GGCTTCGGTT GGTATTCCCT CTCGGGTTTG GTAATGACCG AGGCTTACGG
601
    GGCGGTATGG GGCAGCATCA TGCTGCTGAA CGATTTGGCA CGAGAGCTGT
651
701
    TTGCACTGGC ATTTATTCCG CTGCTGATGA AGCGTTTTCC GGATGCGGCG
    GTGGGGGTCG GCGCGCGAC CAGTATGGAT TTCACATTGC CCGTAATTCA
    GGGTGCGGGC GGTTTGGAAG TCGTGCCGGT AGCGGTCAGC TTCGGCGTGG
801
    TGGTCAATAT CGCCGCCCCG TTTCTGATGG TGGTGTTTTC CACGCTGGGC
851
901
     TGA
```

This corresponds to the amino acid sequence <SEQ ID 2332; ORF 700>: g700.pep

- MSSLMTLFSV LVPMFAGFFI RVPKPYLPAS DKVLSVLVYA VLLLIGVSLS RVEDLGSRLG DMALTVLWLF VCTVGANLLA LAVLGKLSPW RIGGKGKGVS VGVSGSVRQL GCVLLGFVSG KLMCDIWMPS ENAGMYCLML LVFLIGVQLK 51
- SSGVSLRQVL LNRRGIRLSV WFILSSLSGG LLFAASADGV SWTKGLAMAS

Section 1981 And American

201 GFGWYSLSGL VMTEAYGAVW GSIMLLNDLA RELFALAFIP LLMKRFPDAA 251 VGVGGATSMD FTLPVIQGAG GLEVVPVAVS FGVVVNIAAP FLMVVFSTLG

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2333>: m700.seq

ATGGACAGCC TGATGACGTT GCTTTCGGTA TTGATACCGA TGTTTGCCGG 51 ATTTTTTATC CGTGTGCCCA AGCCTTACCT GCCCGCTTTG GATAAGGTGC TATCGGTCTT GGTGTATGCT GTGCTGCTGC TGATCGGCGT CTCGTTGTCG 101 151 CGCGTGGAGG ATTTGGGTTC GCGGTTGGAC GATATGGCGT TGACGGTTCT 201 GTGGCTGTTT GTTTGTACGG TCGGGGCGAA CCTGCTTGCT TTGGCAGTGT 251 TGGGAAAGTT ATTCCCGTGG CGGATAAAGG GGAAAGGGAA GGGCGTTTCG 301 GTCGGCGTGT CGGGCAGTGT GGGGCAGCTC GGATGCGTGC TGCTCGGATT TGCATTCGGC AAACTGATGC GCGATATTTG GATGCCGTCT GAAAGCGCGG 351 401 GCATGTATTG TCTGATGCTG CTGGTGTTCC TCATCGGCGT ACAGCTCAAA 451 AGCAGCGGCG TATCGTTGCG GCAGGTTTTG GTCAACCGCA GGGGTATTCG 501 GTTGTCGGTC TGGTTTATGC TTTCATCTCT TTCGGGCGGG CTGCTGTTTG 551 CCGCATCGAC AGACGGTGTG TCGTGGACGA AAGGTTTGGC GATGGCTTCC 601 GGCTTCGGTT GGTATTCCCT CTCGGGTTTG GTCATGACCG AGGCTTACGG CGCGGTATGG GGCAGCATCA TGCTGCTGAA CGATTTGGCA CGAGAGCTGT 651 701 TTGCACTGGC ATTTATCCCG CTGCTGATGA AGCGTTTTCC AGATGCGGCG 751 GTGGGGGTTG GCGGTGCGAC CAGTATGGAT TTTACATTGC CCGTGATTCA GGGTGCGGGC GGTTTGGAAG TCGTGCCGGT AGCGGTCAGC TTCGGCGTGG 851 TGGTCAATAT CGCCGCCCCG TTTCTGATGG TGGTGTTTTC CGCTTTGGGT

This corresponds to the amino acid sequence <SEQ ID 2334; ORF 700>: m700.pep

1 MDSLMTLLSV LIPMFAGFFI RVPKPYLPAL DKVLSVLVYA VLLLIGVSLS
51 RVEDLGSRLD DMALTVLWLF VCTVGANLLA LAVLGKLFPW RIKGKGKGVS
101 VGVSGSVGQL GCVLLGFAFG KLMRDIWMPS ESAGMYCLML LVFLIGVOLK
151 SSGVSLRQVL VNRRGIRLSV WFMLSSLSGG LLFAASTDGV SWTKGLAMAS
201 GFGWYSLSGL VMTEAYGAVW GSIMLLNDLA RELFALAFIP LLMKRFPDAA
251 VGVGGATSMD FTLPVIQGAG GLEVVPVAVS FGVVVNIAAP FLMVVFSALG

301 *

Computer analysis of the amino acid sequences gave the following results:

Homology with a predicted ORF from N. gonorrhoeae with menB

ORF 700 shows 94.7% identity over a 300 aa overlap with a predicted ORF (ORF700.ng) from N. gonorrhoeae:

m700/g700

m700.pep	10 MDSLMTLLSVLIPMFA  :    :      MSSLMTLFSVLVPMFA 10	-111111111	111 111111		111111111	111
m700.pep	70 DMALTVLWLFVCTVGA		1 1111 111	1111111111	1 11111111	
m700.pep g700	130 KLMRDIWMPSESAGMY	1111111	11111111	1111.1111	111111.1111	
m700.pep	190 LLFAASTDGVSWTKGL       :        LLFAASADGVSWTKGL		111111111	11111111	[[[]]]	111

1124

			1124			
	100					
	190	200	210	220	230	240
	250	260	270	280	200	
m700.pep	LLMKRFPDAAVGV	GGATSMDFT	LPVIOGAGGLEN	MPUAUSECHN	290 Witaaprimuut	300
g700	LLMKRFPDAAVGV 250	GGAISMDET	LPVIQGAGGLEV	VPVAVSFGVV	/NIAAPFLMVVF	'STLG
	250	260	270	280	290	300
	X					
	\ X					
g / 00	^					
The fellowing						
The following	partial DNA s	equence wa	us identified i	n N. mening	ritidis <seo< td=""><td>ID 2335&gt;:</td></seo<>	ID 2335>:
a700.seq 1						
51	AIGGACAGCC	TGATGACGT	GCTTTCGGTA	TTGATACCG	TGTTTGCCGG	
101		GGTGTATCCT	AGCCTTACCT	GCCCGCTTTC	GATAAGGTGC CTCGTTGTCG	
151	CGCGIGGAGG	ATTTGGGTTC	: GCGGTTGGAC	GATATGCCCT	TO DO COOMMON	
201	91996111	GTTTGTACGG	TCGGGGCGAA	$-$ CC $\Phi$ CC $\Phi$ $\Phi$ CC $\Phi$	TITICCON CONCE	
251	I GOGWWWG I I	ATTUCCGTGC	CCCATAAAAC	ここれ れれ こここれ れ	CCCCCCCC	
301 351	9100010101	CGGGCAGTGT	' GGGGCAGCTC	GGATGCCTCC	MCCMCCCT mm	
401	TOCAL CCGGC	MAACIGATGC	GCGATATTTC	$-C\Delta \Psi CCCC\Psi C\Psi$	C 7 7 7 7 00000	
451	GTATGTATTG AGCAGCGGCG	TATCGTTGCG	CTGGTGCTCN	TCATCGGCGT	ACAGCTCAAA	
501	GIIGICGGIC	IGGTTTATGC	TTTCATCTCT	TTCAGGCCCC	CECCECEEE	
551	CCCCATCGGC /	7.00001010	TCGTGGGTGA	$\Delta \Delta CCTTTCCC$	CAMCCCMmac	
601	GGCIICGGII	•GIATTCCCT	CTCGGGTTTC	CTCATCACCC	A COORES OF	
651 701	CGCGGIAIGG	ageag laicg	CGCTTTTGAA	CCATTTCCCA	CCACACCMOM	
751	1000001000	<b>オエエエMTTCCG</b>	CTGCTGATGA	$\Delta$ CCC $\tau$ $\tau$ $\tau$ $\tau$ $\tau$ CC	CCAMCCCCC	
801	GTGGGGGTCG (GGGTGCGGCC (TCCTCAATTATT	GCGGCGCGAC	CAGTATGGAT	TTCACATTGC	CCGTGATTCG	
851	TGGTCAATAT	CGCCGCTCCG	TTTCTCATCC	AGCGGTCAGC	TTCGGCGTGG	
901	TGA			1991911110	CGCTTTGGGC	
Th:						
This correspond	is to the amino	acid seque	nce <seq ii<="" td=""><td>D 2336; ORI</td><td>700.a&gt;:</td><td></td></seq>	D 2336; ORI	700.a>:	
a/uu.pep						
1 51	MDSLMTLLSV I	IPMFAGFFI	RVPKPYLPAL	DKVLSVLVYA	VLLLIGVSLS	
101	RVEDLGSRLD DVGVSGSVGQL G	WALLA DATE	VCTVGANLLA	LAVLGKLFPW	RIKGKGKG <u>VS</u>	
151	SSGVSLRQVL V	NRRGIRLSV	WFMI.SSI.SCC	LIFAREADCH	LVLXIGVQLK	
201	GEGMIOTOGE A	MILAYGAVW	GSIALLNDT.A	RELEAT ACTO	TIMEDED	
251	VGVGGAISMD F	TLPVIRGAG	GLEAVPVAVS	FGVVVNIAAP	FLMVVFSALG	
301	*					
m700/a700	97.0% ide	ntity in 3	300 aa overl			
	27.00 140	nerty In 3	ou aa overi	ap		
		0 2	.0 30	40	50	<b>CO</b>
m700.pep	MDSLMTLLS	VLIPMFAGFF	IRVPKPYLPAL	DKVI.SVI.VAV	TITICUCTOR	60 EDLGSBLD
a700	1 1 1 1 1 1 1 1 1			1       1   1   1   1   1   1   1   1	1111111111	
a700	MUSLMTLLS	ATTEMENGER	TKALKLITLAT	DKVLSVLVYAV	LLLIGVSLSRVI	EDLGSRLD
	1	0 2	0 30	40	50	60
	7	0 в	0 90	100	110	
m700.pep	DMALTVLWL	FVCTVGANLL	ALAVI.CKI.FPW	PIKCKCKCKCKCK	110 GVSGSVGQLGCV	120
-700	11111111	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1			
a700		CACTAGMUPP	ALAY COVER DAI	RIKGKGKGVSV	GVSGSVGQLGC/	/LLGFASG
	71	9	0 90	100	110	120
	130	) 14	0 150			,
m700.pep	KLMRDIWMPS	SESAGMYCLM	LLVFLTGVOLK	160 SSGVSLBOVIN	170 NRRGIRLSVWFM	180
a700			DTATVICA OF VS	SGVSLRQVLVI		
	130	140	150	160	170	180

#### 1125

m700.pep	190 LLFAASTDGVSWTK       :    :  LLFAASADGVSWVK	11111111	1111111		111111111	111111
	190	200	210	220	230	240
m700.pep	250 LLMKRFPDAAVGVG             LLMKRFPDAAVGVG 250		11:11111:	1111111111	11111111	111111
m700.pep	х					
a700	X					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2337>: g701.seq

1	ATGTCTTGGC	ACATATTCCA	AGTTGCAGGG	ATACCGACCG	CTTCGATGGC
51	ACAATCTACG	CCGTCTTCGC	CGACGATGGC	GAAAACTTGT	TTGGAGACGT
101	CGCCGGAAGC	GGGGCTGATG	GTATGGGTCG	CGCCCAACTC	TTTCGCCGGT
151	TTCAAACGGT	TTTCGTCCAT	ATCGCACACG	ATAATGGCGG	CAGGGCTATA
201	CAGTTGGGCG	GTCAACAAGG	CGGACATACC	GACAGGGCCG	GCACCTGCGA
251	TGAATACGGT	ATCGCCGGGT	TTCACATCGC	CGTATTGCAC	GCCGATTTCG
301	TGGGCGGTCG	GTAAAGCGTC	GCTCAACAGC	AGGGCGATTT	CTTCGTTGAC
351	GTTGTCGTGC	GGCGGCACGA	GGCTGTTGTC	GGCATAA	

This corresponds to the amino acid sequence <SEQ ID 2338; ORF 701>: g701.pep

- 1 MSWHIFQVAG IPTASMAQST PSSPTMAKTC LETSPEAGLM VWVAPNSFAG 51 FKRFSSISHT IMAAGLYSWA VNKADIPTGP APAMNTVSPG FTSPYCTPIS
- 101 WAVGKASLNS RAISSLTLSC GGTRLLSA*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2339>: m701.seq

1	ATGTCTTGGC	ACATATTCCA	TGTAGCAGGG	ATACCGACGG	CTTCGATGGC
51	GCAATCCACG	CCGTCTTCGC	CGACGATGGC	AAAGACTTGT	TTGGATACTT
101	CGCCGGAAGC	AGGGTTAATG	GTATGGGTCG	CACCCAATTC	TTTCGCCAGT
151	TTCAAACGGT	TTTCGTCCAT	ATCGCAAACG	ATGATGGCGG	CGGGACTGTA
201	CAGTTGGGCG	GTCAACAGGG	CGGACATACC	GACAGGGCCT	GCCCCAGCGA
251	TGAATACGGT	GTCGCCGGGT	TTGACATCGC	CGTATTGCAC	GCCGATTTCG
301	TGGGCGGTCG	GCAAAGCGTC	GCTCAACAAC	AGGGCGATTT	CTTCGTTGAC
351	ATTATCGGGC	AGCGGAACGA	GGCTGTTGTC	GGCATAA	oonioac

This corresponds to the amino acid sequence <SEQ ID 2340; ORF 701>: m701.pep

- 1 MSWHIFHVAG IPTASMAQST PSSPTMAKTC LDTSPEAGLM VWVAPNSFAS 51 FKRFSSISQT MMAAGLYSWA VNRADIPTGP APAMNTVSPG LTSPYCTPIS
- 101 WAVGKASLNN RAISSLTLSG SGTRLLSA*

Computer analysis of the amino acid sequences gave the following results: Homology with a predicted ORF from N. gonorrhoeae with menB ORF 701 shows 92.2% identity over a 128 aa overlap with a predicted ORF (ORF701.ng) from N. gonorrhoeae:

m701/g701

	10	20	30	40	50	60
m701.pep	MSWHIFHVAGIPTA:	SMAQSTPSSP	TMAKTCLDTS	PEAGLMVWVA	PNSFASFKRF	マストマのか
	111111:111111	11111111	11111111111	1331111111	111111111	
g701	MSWHIFQVAGIPTA:	SMAQSTPSSP	TMAKTCLETS	PEAGLMVWVA	PNSFAGEKRES	

	10	20	30	40	50	60
	70	80	90	100	110	120
m701.pep	MMAAGLYSWAVN	RADIPTGPAP	AMNTVSPGLT	SPYCTPISWAVG	ZA ST MIND A TOOL	mr.co
g701	:             IMAAGLYSWAVN	KADIPTGPAP.	IIIIIIIIIII AMNTVSPGFT.			111
	70	80	90	100	110	120
	129					
m701.pep	SGTRLLSAX					
g701	:					
-						
The following	partial DNA s	sequence wa	as identified	1  in  N. mening	ritidis <sfo l<="" td=""><td>ID 23/15.</td></sfo>	ID 23/15.
a701.sec	ī	-			MAIS DEQ	12 23417.
1	ATCTCTTCC	አ ር አ ጥ አ ጥጥር ር ፡፡	7 7 CMMCC3 C4			
51	CCACTCCACC	CCCTCTTCC	A AGTTGCAG	GG ATACCGACGG	CTTCGATCGC	
	. GCAGICCACG	CCGTCTTCG	CGACGATA	GCAACTTGO	TTGCTTACAT	
101	. CGCCGGAAGC	AGGGTTAAT	∃ GTATGGGT1	IG CGCCCAACTC	THE COORDINATE	
151	TTCAAACGGT	TTTCGTCCAT	l ATCGCAAA	A ATGATGGCGG	CCCCCCCCC	
201	CAGITGGGCG	GTCGGCAAG	S CGGACATAC	C GACAGGAGCG	CCACCMCCCA	
251	TGAATACGGT	GTCGCCGGGT	TTGACATC	SC CGTATTGCAC	CCCCATTTCC	
301	TGTGCGGTCG	GCAAAGCGTC	CCTCAACAA	AC AGGGCGACTT	GCCGATTTCG	
351	GTTGTCGGGC	AGCGGCACCI	CCCTCTTCT	AGGGCGACTT	CTTCGTTGAC	
	0110100000	110000CACGE	GGCIGITGI	C GGCATAA		
This correspon	ds to the amin	o acid seau	ence <seo< td=""><td>ID 2342: OP</td><td>F 701 a&gt;.</td><td></td></seo<>	ID 2342: OP	F 701 a>.	
a701.pep		1	320	25-2, 010	1 /01.a.	
1		TDTNCTNOCT	DCCDETTS			
51	FKDESSISOT	MMADCINCUL	PSSPITAAT	C LLTSPEAGLM	<b>VWVAPNSFA</b> S	
101	CVACANCINA	DAMAGLISWA	VGKADIPTG	A APAMNTVSPG	LTSPYCTPIS	
101	CAVGKASLNN	RATSSLTLSG	SGTRLLSA*			
m701/a70	1 92 28 18	lentitu in	128 aa ove	,		
	2 32.20 10	encicy in	120 da OVe	riap		
			20	30 40	50	
m701.pep	MSWHIFHV	'AGIPTASMAO	STPSSPTMAK	TCLDTSPEAGLM	טכ יייים משטאמ מעניים:	60
	111111:1	1111111:11	1111111		vwvarnsrastk	Krssisqt
a701	MSWHIFOV	AGTPTASTAO	STDSSDTTNN	TCLLTSPEAGLM		
		10	20			RFSSISQT
				30 40	50	60
		70	80	90 100	110	

m701.pep	70 MMAAGLYSWAVNRA	80 DI <b>PTGPAPAM</b> I	90 NTVSPGLTSP	100 YCTPISWAW	110	120
<b>a</b> 701	::  MMAAGLYSWAVGKA 70		11111111	111111 11	11111111	

129 m701.pep SGTRLLSAX ||||||| a701 SGTRLLSAX

# The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2343>:

1	ATGCCGTGTt	ccaAAGCCAG	TTGGACTTCG	CCCGGAGtaa	cAACGCCGGG
51	AATCAGGGGA	ATGCCGCTGT	TGCGGCCGGC	TCTGGCGAGG	CATTCCTCCT
101	AACCCGGGCT	GATGGCGAAA	ACCGCGCCTG	CGTCTTCGAC	CCCTTTCACC
151	TGTTCGGGAT	TGGTTACCGT	ACCTGCGCCG	ATGATGGCGT	TECECATURE
201	TTTGGCAATC	AGGCGGATGG	CCTCGAGTCC	GACGGGGGTG	CCCAACCERAA
251	TTTCGAGGGT	GGGGATGCCG	CCTTCGACAA	GGGCGCGGGA	CAAATCCACC
301	GCGGTGCTTA	AGTCGTCAAt	CGCCATCACA	GGCACAACTG	CGCCGGCGGT
351	CAGGATTTCG	cggggggtca	gttga		

This corresponds to the amino acid sequence <SEQ ID 2344; ORF 702>: g702.pep

್ರವಾಗ್ ಈ ಸ್ಥಿಗೆ ಕರೆಸಿನ⊊ಅೀಡ

```
1 MPCSKASWTS PGVATPGIRG MPLLRPALAR DSCKPGLMAK TAPASSTALS
      51 CSGLVTVPAP MMALGISLAI RRMASSPTGV RKVISRVGMP PSTRARDKST
101 AVLKSSIAIT GTTAPAVRIS RGVS*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2345>:
m702.seq
           ATGCCGTGTT CCAAAGCCAG TTGGATTTCG CCCGGGGTGG CAACACCGGG
           AATCAGGGGG ATGCCGCTGT TGTGGCCGGC TTTGGCGAGG GATTCATGCA
       51
      101 GCCCCGGGCT GATGGCGAAA ACCGCGCCTG CGTCTTCGAC GGCTTTGAGC
151 TGTTCGGGAT TGGTTACCGT ACCTGCGCCG ACGATGGCGT TGGGCACTTC
201 TTTGGCAATC AGGCGGATGG CATCGAGGCC GACAGGGGTG CGCAGGGTGA
      251 TTTCGAGGGT AGGGATGCCG CCTTCGACAA GGGCGTGGGA CAAATCGATG
      301 GCGGTGCTTA AGTCGTCAAT CGCCATTACC GGCACAACTG CGCCGGCGGT
      351 CAAAATTTCG CGGGGGGTCA GTTTGGACAT TTCGGTTCTC CGGGTGGAAT
      401 GGGGTATTTT ATTAAGATGG GACAGGTTGT AG
This corresponds to the amino acid sequence <SEQ ID 2346; ORF 702>:
m702.pep
           MPCSKASWIS PGVATPGIRG MPLLWPALAR DSCSPGLMAK TAPASSTALS
       51
           CSGLVTVPAP TMALGTSLAI RRMASRPTGV RRVISRVGMP PSTRAWDKSM
     101 AVLKSSIAIT GTTAPAVKIS RGVSLDISVL RVEWGILLRW DRL*
ORF 702 shows 91.9% identity over a 124 aa overlap with a predicted ORF (ORF702.ng)
from N. gonorrhoeae:
m702/g702
                      10
                                20
                                           30
m702.pep
             MPCSKASWISPGVATPGIRGMPLLWPALARDSCSPGLMAKTAPASSTALSCSGLVTVPAP
              MPCSKASWTSPGVATPGIRGMPLLRPALARDSCKPGLMAKTAPASSTALSCSGLVTVPAP
g702
                      10
                                20
                                           30
                                                     40
                      70
                                80
                                           90
                                                    100
                                                               110
             TMALGTSLAIRRMASRPTGVRRVISRVGMPPSTRAWDKSMAVLKSSIAITGTTAPAVKIS
m702.pep
              g702
             MMALGISLAIRRMASSPTGVRKVISRVGMPPSTRARDKSTAVLKSSIAITGTTAPAVRIS
                      70
                                80
                                           90
                                                    100
                                                               110
                     130
             RGVSLDISVLRVEWGILLRWDRLX
m702.pep
q702
             RGVSX
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2347>:
     a702.seq
               ATGCCGTGTT CCAAAGCCAG TTGGATTTCG CCCGGGGTGG CAACACCGGG
            1
            51 AATCAGGGGG ATGCCGCTGT TGTGGCCGGC TTTGGCGAGG GATTCATGCA
          101 GCCCCGGGCT GATGGCGAAA ACCGCGCCTG CGTCTTCGAC GGCTTTGAGC
          151
               TGTTCGGGAT TGGTTACCGT ACCTGCGCCG ACGATGGCGT TGGGCACTTC
               TTTGGCAATC AGGCGGATGG CATCGAGGCC GACAGGGGTG CGCAGGGTGA
          201
          251
               TTTCGAGGGT AGGGATGCCG CCTTCGACAA GGGCGTGGGA CAAATCGATG
          301 GCGGTGCTTA AGTCGTCAAT CGCCATTACC GGCACAACTG CGCCGGCGGT
          351 CAAAATTTCG CGGGGGGTCA GTTTGGACAT TTCGGTTCTC CGGGTGGAAT
          401 GGGGTATTTT ATTAAGATGG GACAGGTTGT AG
This corresponds to the amino acid sequence <SEQ ID 2348; ORF 702.a>:
     a702.pep
            1 MPCSKASWIS PGVATPGIRG MPLLWPALAR DSCSPGLMAK TAPASSTALS
          51 CSGLVTVPAP TMALGTSLAI RRMASRPTGV RRVISRVGMP PSTRAWDKSM
101 AVLKSSIAIT GTTAPAVKIS RGVSLDISVL RVEWGILLRW DRL*
     m702/a702
                  100.0% identity in 143 aa overlap
                           10
                                     20
                                                30
                                                          40
                                                                     50
                                                                               60
```

m702.pep	MPCSKASWISPGVATPGI	RGMPLLWPALAR	DSCSPGLMAKTAP <i>I</i>	ASSTALSCSGL	VTVPAP
a702	MPCSKASWISPGVATPGI		111111111111		
700	70	80 90	100	110	120
m702.pep	TMALGTSLAIRRMASRPT	GVRRVISRVGMPI	PSTRAWDKSMAVLK	SSIAITGTTA	PAVKTS
a702	TMALGTSLAIRRMASRPT				11111
	130 1	40			
m702.pep	RGVSLDISVLRVEWGILL	RWDRLX			
a702	RGVSLDISVLRVEWGILL	 RWDRLX 40			

# The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2349>:

```
ATGAAAGCAA AAATCCTGAC TTCCGTTGCG CTGCTTGCCT GTTCCGGCAG
     CCTGTTTGCC CAAACGCTGG CAACCGTTAA CGGTCAGAAA ATCGACAGTT
 51
     CCGTCATCGA TGCGCAGGTT GCCGCATTCC GTGCGGAAAA CAGCCGTGCC
101
151 GAAGACACGC CGCAACTGCG CCAATCCCTG CTGGAAAACG AAGTGGTCAA
201 CACCGTGGTC GCACAGGAAG TGAAACGCCT GAAACTCGAC CGGTCGGCAG
251 AGTTTAAAGA TGCGCTTGCC AAATTGCGTG CCGAAGCGAA AAAGTCGGGC
301 GACGACAAGA AACCGTCCTT CAAAACCGTT TGGCAGGCGG TAAAATATGG
351
     CTTGAACGGC GAGGCATACG CACTGCATAT CGCCAAAACC CAACCGGTTT
     CCGAGCAGGA AGTAAAAGCC GTTTACGACA ATATCAGCGG TTTTTATAAA
401
451 GGCACGCAGG AAGTCCAGTT GGGCGAAATC CTGACCGACA AGGAAGAAAA
501 TGCGAAAAA GCGGTTGCCG ATTTGAAGGC GAAAAAAGGT TTTGATGCCG
551 TTTTGAAACA ATACTCGCTC AACGACCGCA CCAAACGGAC CGGCGCGCCG
601 GACGGATATG TGCCGCTGAA AGATTTGGAA CAGGGTGTTC CGCCGCTTTA
     TCAGGCAATT AAGGACTTGA AAAAAGGCGA ATTTACGGCA ACGCCGCTGA
701 TCAGGCAATT AAGGACTTGA AAAAAGGCGA ATTTACGGCA ACGCCGCTGA
701 AAAACGGCGA TTTCTACGGC GTTTATTATG TCAACGACAG CCGCGAGGTG
701 AAGGCAACGTCA CAGATTGCCG GCAACCTTCA
751 AAAGTGCCTT CTTTTGACGA AATGAAAGGA CAGATTGCCG GCAACCTTCA
801 GGCGGAACGG ATTGACCGTG CCGTctgTGc gcTGTTgggt aaggCAAACA
851 TCAAACCTGC AAAATAA
```

# This corresponds to the amino acid sequence <SEQ ID 2350; ORF 703>: g703.pep

```
1 MKAKILTSVA LLACSGSLFA OTLATVNGQK IDSSVIDAQV AAFRAENSRA
51 EDTPQLRQSL LENEVVNTVV AQEVKRLKLD RSAEFKDALA KLRAEAKKSG
101 DDKKPSFKTV WQAVKYGLNG EAYALHIAKT QPVSEQEVKA VYDNISGFYK
151 GTQEVQLGEI LTDKEENAKK AVADLKAKKG FDAVLKQYSL NDRTKRTGAP
201 DGYVPLKDLE QGVPPLYQAI KDLKKGEFTA TPLKNGDFYG VYYVNDSREV
251 KVPSFDEMKG QIAGNLQAER IDRAVCALLG KANIKPAK*
```

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2351>: m703.seq

1	<b>ΔΤΩΔΔΔΩΩΛ</b> Λ	A A A TO COTTO A CO	MMCCCCMmccc		
	AT GAMAGCAA	MAMICUIGAU	TTCCGTTGCA		
51		CAAACGCTGG	CAACCGTCAA	CGGTCAGAAA	ATCGACAGTT
101	CCGTCATCGA	TGCGCAGGTT	GCCGCATTCC		CAGCCGTGCC
151	GAAGACACGC	CGCAACTGCG			AAGTGGTCAA
201	TACCGTGGTC	GCACAGGAAG			
251					CGGTCGGCAG
		TGCGCTTGCC	AAATTGCGTG	CCGAAGCGAA	AAAGTCGGGC
301	GACGACAAGA	AACCGTCCTT	CAAAACCGTT	TGGCAGGCGG	TAAAATATCC
351	CTTGAACGGC	GAGGCATACG	CATTGCATAT	CGCCAAAACC	TIMENTALINE
401	CCGAGCAGGA	AGTAAAAGCC	GCATATCACA	AMAMONACC	CAACCGGTTT
451			CATATGACA	ATATCAGCGG	TTTTTACAAA
	GGTACGCAGG	· · ·	GGGCGAAATC	CTGACCGACA	AGGAAGAAA
501	TGCAAAAAA		ACTTGAAGGC	GAAAAAAGGT	TTCGATGCCG
551	TCTTGAAACA	ATATTCCCTC	AACGACCGTA	CCADACAGAC	CCCTCCCCC
601	GTCGGATATG	TGCCGCTGAA	ACATTTCCAA	CACCORCERC	CGGTGCGCCG
651			AGATTTGGAA	CAGGGTGTTC	CGCCGCTTTA
001	TCAGGCAATT	AAGGACTTGA	AAAAAGGCGA	ATTTACGGCA	ACGCCGCTGA

701	AAAACGGCGA	TTTCTACGGC	GTTTATTATG	TCAACGACAG	CCGCGAGGTA
751	AAAGTGCCTT	CTTTTGATGA	AATGAAAGGA	CAGATTGCGG	GCAACCTTCA
801	GGCGGAACGG	ATTGACCGTG	CCGTCGGTGC	ACTGTTGGGC	AAGGCAAACA
	TCAAACCTGC				

This corresponds to the amino acid sequence <SEQ ID 2352; ORF 703>: m703.pep

- 1 MKAKILTSVA LLACSGSLFA QTLATVNGQK IDSSVIDAQV AAFRAENSRA
  51 EDTPQLRQSL LENEVVNTVV AQEVKRLKLD RSAEFKNALA KLRAEAKKSG
  101 DDKKPSFKTV WQAVKYGLNG EAYALHIAKT QPVSEQEVKA AYDNISGFYK
  151 GTQEVQLGEI LTDKEENAKK AVADLKAKKG FDAVLKQYSL NDRTKQTGAP

  - 201 VGYVPLKDLE QGVPPLYQAI KDLKKGEFTA TPLKNGDFYG VYYVNDSREV
  - 251 KVPSFDEMKG QIAGNLQAER IDRAVGALLG KANIKPAK*

ORF 703 shows 98.3% identity over a 288 aa overlap with a predicted ORF (ORF703.ng) from *N. gonorrhoeae*: m703/g703

-703	10	20	30	40	50	60
m703.pep	MKAKILTSVALLA	CSGSLFAQTLA	TVNGQKIDSS	SVIDAQVAAFI	RAENSRAEDT	PQLRQSL
7.00						1111111
g <b>7</b> 03	MKAKILTSVALLA	CSGSLFAQTLA	TVNGQKIDSS	SVIDAQVAAFF	RAENSRAEDT	'PQLRQSL
	10	20	30	40	50	60
	70	80	90	100	<b>1</b> 10	120
m703.pep	LENEVVNTVVAQEV	KRLKLDRSAE	FKNALAKLRA	<b>Eakksgddki</b>	(PSFKTVWQA	VKYGLNG
			11:111111	1111111111	111111111	111111
g703	LENEVVNTVVAQEV	KRLKLDRSAE	FKDALAKLRA	EAKKSGDDK	PSFKTVWOA	VKYGLNG
	70	80	90	100	110	120
	130	140	150	160	170	180
m703.pep	EAYALHIAKTOPVS	SEQEVKAAYDN	ISGFYKGTOE	VOLGEILTDK	EENAKKAVA	DIKAKKG
		11111:11	1111111111	1111111111	111111111	
g703	EAYALHIAKTOPVS	EQEVKAVYDN	ISGFYKGTOE	VOLGEILTOR	EENAKKAVA	DIKAKKG
	130	140	150	160	170	180
				200	1,0	100
	190	200	210	220	230	240
m703.pep	FDAVLKQYSLNDRT	'KQTGAPVGYV	PLKDLEOGVP		KGFFTDTDT.	צאוכחבער
- •		1:1111 111		111111111		RNGDFIG
g703	FDAVLKQYSLNDRI	KRTGAPDGYV	PLKDLEOGVE	יווווווווווו שוחשדמ∩ס.סר		TO COPYC
•	190	200	210	220	230	
		200	210	220	230	240
	250	260	270	280	200	
m703.pep	VYYVNDSREVKVPS				289	
		LIJIIIIII	MPOWEKIDKA	VGALLGKAN 1	KPAKX	
q703	VVVVVVCDEVVVCDC	POPMECOTAC	IIIIIIIIIII	1 1 1 1 1 1 1 1 1	1111	
9.00	VYYVNDSREVKVPS 250				KPAKX	
	230	260	270	280		

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2353>:

a703.seq				_	•
1	ATGAAAGCAA	AAATCCTGAC	TTCCGTTGCA	CTGCTTGCCT	GTTCCGGCAG
51	CCTGTTTGCC	CAAACGCTGG	CAACCGTCAA	CGGTCAGAAA	ATCGACAGTT
101	CCGTCATTGA	TGCGCAGGTT	GCCGCATTCC	GTGCGGAAAA	CAGCCGTGCC
151	GAAGACACGC	CGCAACTGCG	CCAATCCCTG	CTGGAAAACG	AAGTGGTCAA
201	CACCGTGGTC	GCACAGGAAG	TGAAACGCCT	GAAACTCGAC	CGGTCGGCAG
251	AGTTTAAAAA .	TGCGCTTGCC	AAATTGCGTG	CCGAAGCGAA	AAAGTCGGGC
301	GACGACAAGA "	AACCGTCCTT	CAAAACCGTT	TGGCAGGCGG	TAAAATATGG
351	CTTGAACGGC	GAGGCATACG	CGCTGCATAT	CGCCAAAACC	CAACCGGTTT
401	CCGAGCAGGA	AGTAAAAGCC	GCATATGACA	ATATCAGCGG	ΤΤΤΤΤΑΟΔΔ
451	GGTACGCAGG	AAGTCCAGTT	GGGCGAAATC	CTGACCGACA	AGGAAGAAAA
501	TGCAAAAAA	GCGGTTGCCG	ACTTGAAGGC	GAAAAAAGGT	TTCGATGCCG
551	TCTTGAAACA	ATATTCCCTC	AACGACCGTA	CCAAACAGAC	CGGTGCGCCG
601	GTCGGATATG	TGCCGCTGAA	AGATTTGGAA	CAGGGTGTTC	CGCCGCTTTA
651	TCAGGCAATT 2	AAGGACTTGA	AAAAAGGCGA	ATTTACGGCA	ACGCCGCTGA

BNSDOCID: <WO___9957280A2_I_>

Fin Hostillin I Clears

WO 99/57280



701	AAAACGGCGA	TTTCTACGGC	GTTTATTATG	TCAACGACAG	CCCCCACCTA
121	AAAGTGCCTT	CTTTTGATGA	AATGAAAGGA	CAGATTGCGG	CCAACCTTCA
801	GGCGGAACGG	ATTGACCGTG	CCGTCGGTGC	ACTGTTGGGC	DOCARCCITCA
851	TCAAACCTGC	AAAATAA			AAGGCAAACA

### This corresponds to the amino acid sequence <SEQ ID 2354; ORF 703.a>:

```
a703.pep
        MKAKILTSVA LLACSGSLFA QTLATVNGQK IDSSVIDAQV AAFRAENSRA
      1
        EDTPQLRQSL LENEVVNTVV AQEVKRLKLD RSAEFKNALA KLRAEAKKSG
     51
        DDKKPSFKTV WQAVKYGLNG EAYALHIAKT QPVSEQEVKA AYDNISGFYK
    101
        GTQEVQLGEI LTDKEENAKK AVADLKAKKG FDAVLKQYSL NDRTKQTGAP
    151
        VGYVPLKDLE QGVPPLYQAI KDLKKGEFTA TPLKNGDFYG VYYVNDSREV
    201
        KVPSFDEMKG QIAGNLQAER IDRAVGALLG KANIKPAK*
    251
m703/a703
           100.0% identity in 288 aa overlap
                 10
                         20
                                 30
                                         40
           MKAKILTSVALLACSGSLFAQTLATVNGQKIDSSVIDAQVAAFRAENSRAEDTPQLRQSL
m703.pep
           MKAKILTSVALLACSGSLFAQTLATVNGQKIDSSVIDAQVAAFRAENSRAEDTPQLRQSL
a703
                 -10
                         20
                                 30
                                         40
                                                 50
                         80
                                 90
                                        100
                                                110
                                                        120
          LENEVVNTVVAQEVKRLKLDRSAEFKNALAKLRAEAKKSGDDKKPSFKTVWQAVKYGLNG
m703.pep
           a703
          {\tt LENEVVNTVVAQEVKRLKLDRSAEFKNALAKLRAEAKKSGDDKKPSFKTVWQAVKYGLNG}
                 70
                                 90
                                        100
                                                110
                                                        120
                        140
                                150
                                        160
                                                170
          EAYALHIAKTQPVSEQEVKAAYDNISGFYKGTQEVQLGEILTDKEENAKKAVADLKAKKG
m703.pep
          EAYALHIAKTQPVSEQEVKAAYDNISGFYKGTQEVQLGEILTDKEENAKKAVADLKAKKG
a703
                130
                        140
                                150
                                        160
                                                170
                                                       180
                190
                        200
                                210
                                        220
                                               230
          m703.pep
          FDAVLKQYSLNDRTKQTGAPVGYVPLKDLEQGVPPLYQAIKDLKKGEFTATPLKNGDFYG
a703
                190
                        200
                               210
                                       220
                                               230
                250
                        260
                               270
                                       280
m703.pep
          VYYVNDSREVKVPSFDEMKGQIAGNLQAERIDRAVGALLGKANIKPAKX
          VYYVNDSREVKVPSFDEMKGQIAGNLQAERIDRAVGALLGKANIKPAKX
a703
                250
                       260
```

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2355>: a704.seq

1	atgaaaaaa	CCTGTTTCCA	CTGCGGGCTG	GACGTTCCCG	AAAACCTGCA
51	TCTGACCGTC	CGTTACGAAA	ACGAAGACCG	CGAAACCTGC	TCCCCCCCTTT
101	GTCAGGCAGT	CGCACAAAGC	ATTATTGACG		CAGTTATTAC
151	AAACAACGCA	CCGCCGACGC	GCAAAAAACC		
201	CCTCGACCAA	ATCCGCCTGT	ACGACCTGCC	CCAACTCCAC	CCCAAGAAAT
251	TGGAAACCCA	CGGCGGCACG	CGCGAGGCGG		
301	ACCTGCGCCG	CCTGCGTCTG			CGGCGGCATC
351	CGGCATCGTC			CAGCAGCTTT	TGCGTACAGA
401	TCTGGGACGA	CCCCATCGACC	TCAATTACAG		TGCCGCGTCG
451			CGCCTTTCCG	ACATTCTGTT	GAAAATCAGG
	CAGATAGGCT	ACACCGCCGC	ACCCTATGAC	GCGCAAAAAA	TCGAAGCCGC
501	CAACCAAAAA	0.1.00022110	AATACATCGT	CCGCCTCGCC	GTTGCCGGGC
551	TGGGGATGAT	GCAGACGATG		TGCCGACCTA	CCTTTACGGC
601	GGCGACATCG	AACCCGATTT	CCTGCAAATC		GCGGCTTTTT
651	AATGGTGCTG	CCCGTCGTAT	TCTATTGCGC		TATCAAGGCG
701	CGCTGCGCGA	CTTGAAAAAC	CGCCGCGTCG	~~~	
751	GTCGCCATCA	TCATGACCTT	TATCGCCGGC		GCCGATTACC
				GITIACAGCC	TTGCGACAAA

Committee to the second



### This corresponds to the amino acid sequence <SEQ ID 2356; ORF 703>:

```
a704.pep
          MKKTCFHCGL DVPENLHLTV RYENEDRETC CAGCQAVAQS IIDAGLGSYY
      51
         KQRTADAQKT ELPPQEILDQ IRLYDLPEVQ SDFVETHGGT REAVLMLGGI
         TCAACVWLIE QQLLRTDGIV RIDLNYSTHR CRVVWDDGKI RLSDILLKIR
     101
     151 QIGYTAAPYD AQKIEAANQK ERKQYIVRLA VAGLGMMQTM MFALPTYLYG
     201 GDIEPDFLQI LHWGGFLMVL PVVFYCAVPF YQGALRDLKN RRVGMDTPIT
     251 VAIIMTFIAG VYSLATNAGQ GMYFESIAML LFFLLGGRFM EHIARRKAGD
301 AAERLVKLIP AFCHHMPDYP DTQETCEAAV VKLKAGDIVL VKPGETIPVD
    351 GTVLEGSSAV NESMLTGESL PVAKMPSEKV TAGTLNTQSP LIIRTDRTGG
     401 GTRLSHIVRL LDRALAOKPR TAELAEQYAS SFIFGELLLA VPVFIGWTLY
     451 ADAHTALWIT VALLVITCPC ALSLATPTAL AASTGTLARE GILIGGKQAI
     501 ETLAQTTDII FDKTGTLTQG KPAVRRISLL RGTDEAFVLA VAQALEQQSE
          HPLARAILNC RISDGSVPDI AIKQRLNRIG EGVGAQLTVN GETQVWALGR
     551
     601 ASYVAEISGK EPQTEGGGSA VYLGSQSGFQ AVFYLQDPLK DSAAEAVRQL
     651 AGKNLTLHIL SGDRETAVAE TARALGVAHY RAQAMPEDKL EYVKALQKEG
         KKVLMIGDGI NDAPVLAQAD VSAAAAGGTD IARDGADIVL LNEDLRTVAH
         LLDQARRTRH IIRQNLIWAG AYNIIAVPLA VLGYVQPWIA ALGMSFSSLA
     801 VLGNALRLHK RGKMQSEKMP SEQ*
```

#### m704/a704 99.8% identity in 823 aa overlap

	. 10'€	20	30	40	50	60
m704.pep	MKKTCFHCGLDVPE	HLHLTVRYEN	EDRETCCAGO	QAVAQSIIDA	GLGSYYKORT	אסמתמ
		:			1111111111	TELLE
a704	MKKTCFHCGLDVPE	NLHLTVRYEN	EDRETCCAGO	QAVAQSIIDA	GLGSYYKORT	ADAOKT
	10	20	. 30	40	50	60
	70	80	90	100	110	120
m704.pep	ELPPQEILDQIRLY	DLPEVQSDFV	ETHGGTREAU	LMLGGITCAA	CVWLIEQQLL	RTDGIV
a704	ELPPQEILDQIRLY!	[	41111111	THEFT	I I I I I I I I I I I I I I I I I I I	F1111

	•	70	80	90	100	110	120
		30	140	150	160	170	180
m704.pep	RIDLNYST	HRCRVVW	DDGKIRLSDI	LLKIRQIGYT	CAAPYDAQKIE	ANOVEDVOUT	TIDT 1
a704	RIDLNYST	RCRVVW	DDGKIRLSDI	LLKIROIGYT		AANQKERKQII            AANQKERKQYI	1111
	13	30	140	150	160	170	180
	19	90	200	210	220	222	
m704.pep	VAGLGMMQI	MMFALP	TYLYGGDIEP	DFLOILHWGG	FI.MVI.DVVEV	230 CAVPFYQGALR	240 DLKN
a704				1111111111	1111111111		
4,03	19	00	200	210 DFLQILHWGG	FLMVLPVVFY( 220	CAVPFYQGALR 230	
					220	230	240
m704.pep	25 RRVGMDTPI		260 FTAGVYSLA	270	280	290 GGRFMEHIARRI	300
	111111111			1   1   1   1   1   1   1	11111111111		
a704	RRVGMDTPI 25	IANTIMI	'FIAGVYSLA' 260	INAGQGMYFE	SIAMLLFFLLO	GGRFMEHIARRI	KAGD
	23	Ü	200	270	280	290	300
m704.pep	31		320	330	340	350	360
m/04.pep		IIIIIII	PDYPDTQET(	CEAAVVKLKA	GDIVLVKPGET	SIPVDGTVLEGS	SSAV
a704	WELLAVEL	PARCHAM	PDIPDIQETO	EAAVVKLKA	GDIVLVKPGET	IPVDGTVLEGS	SAV
	31	0	320	330	340	350	360
	37		380	390	400	410	420
m704.pep	NESMLTGES:	LPVAKMP	SEKVTAGTLN	TOSPLIERT	יים ז קיים המשחקת	TUDITODATAC	TE D.D.
a704	NESMLTGES:	IIIIIII LPVAKMP:				IVRLLDRALAÇ 	111
	370	0	380	390	400	1VRLLDRALAÇ 410	2KPR 420
	430	า	440	450	4.60		
m704.pep	TAELAEQYAS	SFIFGE	LLLAVPVFIG	WTLYADAHTZ	460 LWITVALLUT	470 TCPCALSLATP	480
a704			111111111	111111111	111111111		
a704	TAELAEQYAS	SFIFGE)	LLLAVPVFIG 440	WTLYADAHTA 450	LWITVALLVI	TCPCALSLATP	
				100	460	470	480
m704.pep	490		500 (Obtentaon	510	520	530 ISLLRGTDEAF	540
	1 1 1 1 1 1 1 1 1 1 1	111111		11111111			
a704	AASTGTLARE	パラナナナナ (さらり	KQAIETLAQT	TDIIFDKTGT	LTQGKPAVRR	ISLLRGTDEAF	VLA
	430	,	500	510	520	530	540
m704.pep	550		560	570	580	590	600
m/04.pep	VAQALEQOSE	HPLARAI	LNCRISDGS	VPDIAIKQRL	NRIGEGVGAQI	TVNGETQVWAI	LGR
a704	AMONTEGOSE	USTAKAT	LNCRISDGS	VPDIAIKORL	NRIGEGVGAQI	TVNGETQVWAI	[]] LGR
	550		560	570	580		600
	610		620	630	640	650	660
m704.pep	ASYVAEISGK	EPOTEGG	GSAVYLGSQ:	SGFQAVFYLT	DDI KDGA A EAT	TROT ACKNIT ME .	
a704				, , , , , , , , , ,			
	610		620	630	640		260 211
	670		680	690	700	210 -	
m704.pep	SGDRETAVAE	TARALGV	AHYRAOAMPE	EDKLEYVKAL	OKECKKUI MIC	DOTAINS DUT S	720 040
a704			1 1 1 1 1 1 1 1 1 1				
4,01	670	I ARALGV	антка <u>оам</u> р <u>ь</u> 680	OKLEYVKAL(		DGINDAPVLAC	2AD 720
	700					,10 ,	20
m704.pep	730 VSAAAAGGTD	IARDGAD	740 TVI.I.NEDI.DT	750	760	770 7 WAGAYNIIAVP	80
		!!!!!!!	1     1   1   1   1   1   1				
a704	VSAAAAGGTD: 730	TANDGAD.	IVLLNEDLRT 740	VAHLLDQARF	RTRHIIRQNLI	WAGAYNIIAVP	LA
	,50		,40	750			80
m704.pep	790	VI CMODE	800	810	820		
	VLGYVQPWIA		[	1111111111	111111		
a704	APGAAGBATA	ALGMSFSS	SLAVLGNALR	LHKRGKMQSE	KMPSEOX		
	790	8		810	820		

```
PCT/US99/09346
                                                1133
 The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2357>:
g705.seq
           GTGTTCAATA ATTTCCttgC CTCTCTGCCG TTTATGACGG AAACACGCGC
           TGATATGCTC ATCAGCGCGT TTTGGCCCAT GGTTAAAGCC GGCTTTACAG
       51
           TGTCTTtgcC TTTGGCGATC GCTTCTTTCG TTATCGGCAT GATTATTGCC
      101
           GTAGCCGTTG CTTTGGTAAG AATCATGCCT TCCGGCGGTA TTTTCCAAAA
      151
           ATGCTTGTTG AAGCTGGTGG AATTTTATAT TTCCGTCGTT CGCGGTACGC
           CGCTGTTGGT TCAGCTTGTG ATTGTGTTTT ACGGGCTGCC GTCCGTCGGC
           ATCTATATCA ATCCGATTCC CGCCGCCATC ATCGGCTTTT CGCTCAATGT
      301
           CGGCGCATAC GCTTCCGAAA CCATACGCGC GGCGATTTTG TCCGTGCCGA
      351
           AAGGGCAGTG GGAAGCAGGT TTCTCCATCG GTATGACCTA TATGCAGACG
      401
           TTCCGCCGCA TCGTCGCACC GCAGGCATTC CGCGTCGCCG TTCCGCCGTT
      451
           GAGCAACGAG TTTATCGGCT TGTTCAAAAA CACCTCGCTT GCCGCCGTGG
      501
           TAACGGTAAC GGAGCTTTTC CGTGTCGCAC AGGAAACGGC AAACCGCACT
     551
           TATGACTTTT TGCCTGTCTA TATCGAAGCT GCATTGGTTT ATTGGTGTTT
     601
      651 CTGTAAAGTG CTGTTTTTGA TTCAGGCGCG TTTGGAAAAA CGTTTCGACC
      701 GTTATGTCGC CAAATAA
This corresponds to the amino acid sequence <SEQ ID 2358; ORF 705>:
g705.pep
           VFNNFLASLP FMTETRADML ISAFWPMVKA GFTVSLPLAI ASFVIGMIIA
           VAVALVRIMP SGGIFQKCLL KLVEFYISVV RGTPLLVQLV IVFYGLPSVG
          IYINPIPAAI IGFSLNVGAY ASETIRAAIL SVPKGQWEAG FSIGMTYMQT
          FRRIVAPQAF RVAVPPLSNE FIGLFKNTSL AAVVTVTELF RVAQETANRT
     201
          YDFLPVYIEA ALVYWCFCKV LFLIQARLEK RFDRYVAK*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2359>:
m705.seq
          GTGTTCAATA ATTTCCTTGC TTCGCTGCCG TTTATGACGG AAACACGCGC
       1
      51 CGATATGATT GTCAGCGCGT TTTTGCCTAT GGTCAAAGCC GGCTTCGCGG
     101 TCTCTCTGCC TTTGGCGGCA GCTTCTTTCG TTATCGGTAT GATGATTGCG
     151 GTAGCCGTGG CTTTGGTGCG GATTATGCCC GCCGGCGGCA TCGTGCGGAA
     201 AATCCTGCTG AAATTGGTGG AATTTTATAT TTCCGTCATT CGCGGTACGC
     251 CGCTGTTGGT TCAGCTTGTG ATTGTGTTTT ACGGGCTGCC TTCCGTCGGC
     301 ATCTATATCG ACCCGATTCC TGCCGCCATC ATCGGCTTTT CGCTCAATGT
     351 CGGCGCATAC GCTTCCGAAA CCATACGCGC GGCAATTTTG TCCGTACCTA
     401 AAGGCCAATG GGAAGCAGGT TTCTCCATCG GCATGACCTA TATGCAGACG
         TTCCGCCGCA TTGTCGCGCC GCAGGCATTC CGCGTTGCCG TGCCGCCTTT
     451
     501 GAGCAACGAG TTTATCGGTT TGTTTAAAAA CACCTCGCTC GCGGCAGTCG
551 TGACGGTAAC GGAATTATTC CGCGTCGCGC AGGAAACGGC AAACCGCACT
     601
          TATGACTTTT TGCCCGTCTA TATCGAAGCC GCTTTGGTTT ACTGGTGTTT
          TTGTAAAGTG CTGTTCCTGA TTCAGGCGCG TTTGGAAAAA CGTTTCGACC
     651
     701 GCTACGTCGC CAAATAA
This corresponds to the amino acid sequence <SEQ ID 2360; ORF 705>:
          VFNNFLASLP FMTETRADMI VSAFLPMVKA GFAVSLPLAA ASFVIGMMIA
VAVALVRIMP AGGIVRKILL KLVEFYISVI RGTP<u>LLVQLV IVFYGLPSVG</u>
      51
          IYIDPIPAAI IGFSLNVGAY ASETIRAAIL SVPKGQWEAG FSIGMTYMQT
     101
          FRRIVAPQAF RVAVPPLSNE FIGLFKNTSL AAVVTVTELF RVAQETANRT
          YDFLPVYIEA ALVYWCFCKV LFLIQARLEK RFDRYVAK*
```

m705.pep

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 705 shows 95.0% identity over a 238 aa overlap with a predicted ORF (ORF 705) from N. gonorrhoeae:

```
m705/q705
         95.0% identity in 238 aa overlap
                      20
                             30
                                    40
         VFNNFLASLPFMTETRADMIVSAFLPMVKAGFAVSLPLAAASFVIGMMIAVAVALVRIMP
m705.pep
         VFNNFLASLPFMTETRADMLISAFWPMVKAGFTVSLPLAIASFVIGMIIAVAVALVRIMP
a705
                             30
                                    40
                      80
                             90
                                   100
                                          110
         AGGIVRKILLKLVEFYISVIRGTPLLVQLVIVFYGLPSVGIYIDPIPAAIIGFSLNVGAY
m705.pep
```



g705	SGGIFQKCLLKLV	FYISVVRGT	PLLVQLVIVE	(GLPSVGTYT)	NPTPAATTCE	CI MUCA V
	70	80	90	100	110	120
	130	140	150	160	170	180
m705.pep	ASETIRAAILSVPK	GQWEAGFSI	MTYMOTFRRI	VAPOAFRVAN	PPI.SNEETC	TOWNER
	ASSETTEDANTICUM	11111111111		1111111111	ILLIANDE IG	PEVMIP
g705	ASETTRAATESVER	GOWEAGFSIC	MTYMQTFRRI	VAPQAFRVAV	PPLSNEFIG	
	130	140	150	160	170	180
505	190	200	210	220	230	239
m705.pep	AAVVTVTELFRVAQ	ETANRTYDFI	PVYIEAALVY	WCFCKVLFLI	OARLEKREDI	SAMMA
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1       1     1   1   1   1		1111111111		11111
g705	AAVVTVTELFRVAQ	ETANRTYDET	PVVTEAATUV	WCECKUT ET *		11111
-	190	200	T ATTENVED AT	MCLCKATILTI		RYVAKX
	130	200	210	220	230	

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2361>: a705.seq

1	GTGTTCAATA	ATTTCCTTGC	TTCGCTGCCG	TTTATGACGG	AAACACGCGC
51	CGATATGATT	GTCAGCGCGT	TTTTGCCTAT		GGCTTCGCGG
101	TCTCTCTGCC	TTTGGCGGCA	GCTTCTTTCG		GATGATTGCG
151	GTAGCCGTGG	CTTTGGTGCG	GATTATGCCC		TCGTGCGGAA
201	AATCCTGCTG	AAATTGGTGG	AATTTTATAT	TTCCGTCATT	
251	CGCTGTTGGT	TCAGCTTGTG	ATTGTGTTTT		TTCCGTCGGC
301	ATCTATATCG	ACCCGATTCC	TGCCGCCATC	ATCGGCTTTT	CGCTCAATGT
351	CGGCGCATAT	GCTTCCGAAA	CCATACGCGC		TCCGTACCGA
401	AAGGCCAATG		TTCTCCATCG		TATGCAGACG
451	TTCCGCCGCA	TCGTCGCGCC	GCAGGCATTT		TGCCGCCTTT
501	GAGCAACGAG	TTTATCGGTT	TGTTTAAAAA		GCGGCAGTCG
551	TGACGGTAAC	GGAATTATTC	CGCGTCGCGC	AGGAAACGGC	AAACCGCACT
601	TATGACTTTT	TGCCCGTCTA	TATCGAAGCC	GCTTTGGTTT	
651	TTGTAAAGTG	CTGTTCCTGA	TTCAGGCGCG	TTTGGAAAAA	CGTTTCGACC
701	GCTACGTCGC	CAAATAA			JOILING COMCC

This corresponds to the amino acid sequence <SEQ ID 2362; ORF 705.a>: a705.pep

- 1 VFNNFLASLP FMTETRADMI VSAFLPMVKA GFAVSLPLAA ASFVIGMMIA
  51 VAVALVRIMP AGGIVRKILL KLVEFYISVI RGTPLLVQLV IVFYGLPSVG
  101 IYIDPIPAAI IGFSLNVGAY ASETIRAAIL SVPKGQWEAG FSIGMTYMQT
  151 FRRIVAPQAF RVAVPPLSNE FIGLFKNTSL AAVVTVELF RVAQETANRT

- 201 YDFLPVYIEA ALVYWCFCKV LFLIQARLEK RFDRYVAK*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N meningitidis

ORF 705 shows 100.0% identity over a 238 aa overlap with a predicted ORF (ORF 705) from N. meningitidis:

a705/m705	100.0% identity in 238 aa overlap	
a705.pep	10 20 30 40 50 VFNNFLASLPFMTETRADMIVSAFLPMVKAGFAVSLPLAAASFVIGMMIA	) 60 VAVAT.VBTMD
m705	VFNNFLASLPFMTETRADMIVSAFLPMVKAGFAVSLPLAAASFVIGMMIA  10 20 30 40 50	 VAVALVRIMP
a705.pep	70 80 90 100 110	
m705	AGGIVRKILLKLVEFYISVIRGTPLLVQLVIVFYGLPSVGIYIDPIPAAI	111111111
	70 80 90 100 110	120
a705.pep	ASETIRAAILSVPKGQWEAGFSIGMTYMQTFRRIVAPQAFRVAVPPLSNE	180 FIGLFKNTSL
m705	ASETIRAAILSVPKGQWEAGFSIGMTYMQTFRRIVAPQAFRVAVPPLSNE 130 140 150 160 170	FIGLFKNTSL 180
a705.pep	190 200 210 220 230 AAVVTVTELFRVAQETANRTYDFLPVYIEAALVYWCFCKVLFLIQARLEK	•
m705	AAVVTVTELFRVAQETANRTYDFLPVYIEAALVYWCFCKVLFLIQARLEKI	
	200 210 220 230	

3.

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2363>: g706.seq

```
ATGAACTCCT CGCAACGCAA ACGCCTTTCC GgccGCTGGC TCAACTCCTA
       CGAACGCTAC CGCCACCGCC GCCTCATACA TGCCGTGCGG CTCGGCGgaa
  51
       CCGCCTGTT CGCCACCGCA CTCGCCCGgc tACTCCACCT CCAacacggc
 101
       GAATGGATAG GGAtgaCCGT CTTCGTCGTC CTCGGCATGC TCCAGTTCCA
 151
      AGGCgcgatt tActccaacg cggtgGAacg taTGctcggt acggtcatcg ggctgGGCGC GGGTTTGGgc gTTTTATGGC TGAACCAGCA TTAtttccac
 201
      ggcaacCTcc tcttctacct gaccatcggc acggcaagcg cactggccgg
ctGGGCGGCG GTCGGCAAAA acggctacgt ccctatgctg GCGGGGctgA
 301
 351
      CGATGTGCAT GCtCatcggc gACAACGGCA GCGAATGGCT CGACAGCGGC
CTGATGCGCG CGATGAACGT CCTCATCGGC GCCGCCATCG CCATTGCCGC
 401
 451
       CGCCAAACTG CTGCCGCTGA AATCCACACT GATGTGGCGT TTCATGCTTG
       CCGACAACCT GGCCGACTGC AGCAAAATGA TTGCCGAAAT CAGCAACGGC
 551
      AGGCGTATGA CGCGCGAACG TTTGGAGCAG AATATGGTCA AAATGCGCCA
 601
      AATCAACGCA CGCATGGTCA AAAGCCGCAG CCACCTCGCC GCCACATCGG
 651
      GCGAAAGCCG CATCAGCCCC TCCATGATGG AAGCCATGCA GCACGCCCAC
CGCAAAATCG TCAACACCAC CGAGCTGCTC CTGACCACCG CCGCCAAGCT
 701
      GCAATCTCCC AAACTCAACG GCAGCGAAAT CCGGCTGCTC GACCGCCACT
 801
      TCACACTGCT CCAAACCGAC CTGCAACAAA CCGCCGCCCT CATCAACGGC
 851
 901 AGACACGCCC GCCGCATCCG CATCGACACC GCCATCAACC CCGAACTGGA
      AGCCCTCGCC GAACACCTCC ACTACCAATG GCAGGGCTTC CTCTGGCTCA
1001 GCACCAATAT GCGTCAGGAA ATTTCCGCCC TCGTCATCCT GCTGCAACGC
      ACCCGCCGCA AATGGCTGGA TGCCCACGAA CGCCAACACC TGCGCCAAAG
      CCTGCTTGAA ACACGGGAAC ACGGCTGA
```

#### This corresponds to the amino acid sequence <SEQ ID 2364; ORF 706.ng>: g706.pep

```
MNSSQRKRLS GRWLNSYERY RHRRLIHAVR LGGTVLFATA LARLLHLQHG
     EWIGMTVFVV LGMLQFQGAI YSNAVERMLG TVIGLGAGLG VLWLNQHYFH
GNLLFYLTIG TASALAGWAA VGKNGYVPML AGLTMCMLIG DNGSEWLDSG
 51
101
     LMRAMNVLIG AAIAIAAAKL LPLKSTLMWR FMLADNLADC SKMIAEISNG
151
     RRMTRERLEQ NMVKMRQINA RMVKSRSHLA ATSGESRISP SMMEAMQHAH
     RKIVNTTELL LTTAAKLOSP KLNGSEIRLL DRHFTLLOTD LQQTAALING
     RHARRIRIDT AINPELEALA EHLHYQWQGF LWLSTNMRQE ISALVILLQR
     TRRKWLDAHE ROHLROSLLE TREHG*
```

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2365>: m706.seq

```
ATGAACACCT CGCAACGCAA CCGCCTCGTC AGCCGCTGGC TCAACTCCTA CGAACGCTAC CGCTACCGC GCCTCATCCA CGCCGTCCGG CTCGGCGGGG
  51
 101
      CCGTCCTGTT CGCCACCGCC TCCGCCCGGC TGCTCCACCT CCAACACGGC
      GAGTGGATAG GGATGACCGT CTTCGTCGTC CTCGGCATGC TCCAGTTTCA
 151
      AGGGGCGATT TACTCCAAGG CGGTGGAACG TATGCTCGGC ACGGTCATCG
      GGCTGGGCGC GGGTTTGGGC GTTTTATGGC TGAACCAGCA TTATTTCCAC
 251
      GGCAACCTCC TCTTCTACCT CACCGTCGGC ACGGCAAGCG CACTGGCCGG
 301
      CTGGGCGGCG GTCGGCAAAA ACGGCTACGT CCCTATGCTG GCAGGGCTGA
 351
      CGATGTGTAT GCTCATCGGC GACAACGGCA GCGAATGGCT CGACAGCGGA
 401
      CTCATGCGCG CCATGAACGT CCTCATCGGC GCGGCCATCG CCATCGCCGC
      CGCCAAACTG CTGCCGCTGA AATCCACACT GATGTGGCGT TTCATGCTTG
 501
 551
      CCGACAACCT GGCCGACTGC AGCAAAATGA TTGCCGAAAT CAGCAACGGC
      AGGCGCATGA CCCGCGAACG CCTCGAGGAG AACATGCGCGA AAATGCGCCA
 601
      AATCAACGCA CGCATGGTCA AAAGCCGCAG CCATCTCGCC GCCACATCGG
      GCGAAAGCCG CATCAGCCCC GCCATGATGG AAGCCATGCA GCACGCCCAC
      CGTAAAATCG TCAACACCAC CGAGCTGCTC CTGACCACCG CCGCCAAGCT
 751
      GCAATCTCCC AAACTCAACG GCAGCGAAAT CCGGCTGCTT GACCGCCACT
 801
      TCACACTGCT CCAAACCGAC CTGCAACAAA CCGTCGCCCT TATCAACGGC
     AGACACGCCC GCCGCATCCG CATCGACACC GCCATCAACC CCGAACTGGA
951 AGCCCTCGCC GAACACCTCC ACTACCAATG GCAGGGCTTC CTCTGGCTCA
      GCACCAATAT GCGTCAGGAA ATTTCCGCCC TCGTCATCCT GCTGCAACGC
1001
      ACCCGCCGCA AATGGCTGGA TGCCCACGAA CGCCAACACC TGCGCCAAAG
1101 CCTGCTTGAA ACACGGGAAC ACGGCTGA
```

#### This corresponds to the amino acid sequence <SEQ ID 2366; ORF 706>: m706.pep

```
MNTSQRNRLV SRWLNSYERY RYRRLIHAVR LGGAVLFATA SARLLHLQHG
    EWIGMTVFVV LGMLQFQGAI YSKAVERMLG TVIGLGAGLG VLWLNQHYFH
 51
101
    GNLLFYLTVG TASALAGWAA VGKNGYVPML AGLTMCMLIG DNGSEWLDSG
    LMRAMNVLIG AAIAIAAAKL LPLKSTLMWR FMLADNLADC SKMIAEISNG
    RRMTRERLEE NMAKMRQINA RMVKSRSHLA ATSGESRISP AMMEAMQHAH
201
    RKIVNTTELL LTTAAKLQSP KLNGSEIRLL DRHFTLLQTD LQQTVALING
```

BNSDOCID: <WO___9957280A2_1 >

301 351	RHARRIRIDT AINPELE TRRKWLDAHE RQHLRQS	EALA EHLE SLLE TREE	YQWQGF LWLS	STNMRQE IS	SALVILLQR	
m706/g706	96.5% identity	in 375 a	a overlap			
m706.pep	10 MNTSQRNRLVSRWLN	20 ISYERYRYR	30 RLIHAVRLGGA	40 VLFATASAR	50 LLHLQHGEWI	60 <b>GMTVFV</b> V
g706	:   :   :     MNSSQRKRLSGRWLN 10	1111111	111111111	111111111		
m706.pep	70 LGMLQFQGAIYSKAV	80 ERMLGTVI	90 GLGAGLGVLWL	100 NQHYFHGNL:	110 LFYLTVGTASI	120
g706		1111111		1 1 1 1 1 1 1 1 1		 ALAGWAA
m706.pep	130 VGKNGYVPMLAGLTM	140	150	160	170	120 180
g706	VGKNGYVPMLAGLTM	CMLIGDNG	SEWLDSGLMRAI			
	190	200	210	160	170	180
m706.pep g706	FMLADNLADCSKMIAE		11111111111		SRSHLAATSG	ESRISP
	190 250	200 260	210	220	230	ESRISP 240
m706.pep	AMMEAMQHAHRKIVNT	TELLLTTA		111111111		
g706	SMMEAMQHAHRKIVNT 250	TELLLTTA 260	AKLQSPKLNGS 270	EIRLLDRHF 280	TLLOTDLOOT 290	AALING 300
m706.pep	310 RHARRIRIDTAINPEL	320 EALAEHLH	330 YQWQGFLWLST	340 NMRQEISAL	350 VILLORTRRKV	360 VLDAHE
g706		EALAEHLH 320	YQWQGFLWLST 330	NMRQEISAL 340		IIIIII LDAHE 360
m706.pep	370 RQHLRQSLLETREHGX					
g706						

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2367>:

1	ATGAACACCT		CCGCCTCGTC	AGCCGCTGGC	TCAACTCCTA
51	CGAACGCTAC	CGCTACCGCC	GCCTCATCCA	CGCCGTCCGG	
101	CCGTCCTGTT	CGCCACCGCC			*******
151	GAGTGGATAG	GGATGACCGT			201710110000
201	AGGGGCGATT	TACTCCAAGG			TCCAGTTTCA ACGGTCATCG
251	GGCTGGGCGC	GGGTTTGGGC			
301	GGCAACCTCC				
351	CTGGGCGGCG	GTCGGCAAAA	ACGGCTACGT		CACTGGCCGG
401	CGATGTGCAT	GCTCATCGGC	GACAACGGCA	CCCTATGCTG	GCGGGGCTGA
451	CTGATGCGCG	CGATGAACGT	CCTCATCGGC	GCGAATGGTT	CGACAGCGGC
501	CGCCAAACTG	CTGCCGCTGA	AATCCACACT	GCGGCCATCG	CCATCGCCGC
551	CCGACAACCT	GACCGACTGC	AGCAAAATGA	GATGTGGCGT	TTCATGCTTG
601	AGGCGCATGA	CCCGCGAACG		TTGCCGAAAT	CAGCAACGGC
651	AATCAACGCA	CGCATGGTCA	CCTCGAAGAG	AACATGGCGA	AAATGCGCCA
701	GCGAAAGCCG	CATCAGCCCC	AAAGCCGCAG	CCACCTCGCC	GCCACATCGG
751	CGTAAAATTG		GCCATGATGG	AAGCCATGCA	GCACGCCCAC
801		TCAACACCAC AAACTCAACG	CGAGCTGCTC	CTGACCACCG	CCGCCAAGCT
851	TCACACTGCT	_	GCAGCGAAAT	CCGGCTGCTT	GACCGCCACT
031	ICACACTGCT	CCAAACCGAC	CTGCAACAAA	CCGTCGCCCT	TATCAACGGC

901 951 1001 1051 1101	AGACACGCCC GCCGCATCCG CATCGACACC GCCATCAACC CCGAACTGGA AGCCCTCGCC GAACACCTCC ACTACCAATG GCAGGGCTTC CTCTGGCTCA GCACCAATAT GCGTCAGGAA ATTTCCGCCC TCGTCATCCT GCTGCAACGC ACCCGCCGCA AATGGCTGGA TGCCCACGAA CGCCAACACC TGCGCCAAAG CCTGCTTGAA ACACGGGAAC ACAGTTGA
This correspond	s to the amino acid sequence <seq 2368;="" 706.a="" id="" orf="">:</seq>
a706.pep	
1 51	MNTSQRNRLV SRWLNSYERY RYRRLIHAVR LGGAVLFATA SARLLHLQHG
101	EWIGMTVFVV LGMLQFQGAI YSKAVERMLG TVIGLGAGLG VLWLNQHYFH
151	GNLLFYLTVG TASALAGWAA VGKNGYVPML AGLTMCMLIG DNGSEWFDSG LMRAMNVLIG AAIAIAAAKL LPLKSTLMWR FMLADNLTDC SKMIAEISNG
201	RRMTRERLEE NMAKMRQINA RMVKSRSHLA ATSGESRISP AMMEAMQHAH
251	RKIVNTTELL LTTAAKLQSP KLNGSEIRLL DRHFTLLQTD LQQTVALING
301	RHARRIRIDT AINPELEALA EHLHYOWOGF LWLSTNMROE ISALVILLOR
351	TRRKWLDAHE ROHLROSLLE TREHS*
a706/m706 99	.5% identity in 374 aa overlap
	10 20 20
a706.pep	MNTSQRNRLVSRWLNSYERYRYRRLIHAVRLGGAVLFATASARLLHLQHGEWIGMTVFVV
m706	MNTSQRNRLVSRWLNSYERYRYRRLIHAVRLGGAVLFATASARLLHLOHGEWIGMTVFVV
	10 20 30 40 50 60
	70 80 90 100 110 100
a706.pep	70 80 90 100 110 120 LGMLQFQGAIYSKAVERMLGTVIGLGAGLGVLWLNQHYFHGNLLFYLTVGTASALAGWAA
a.vv.pop	
m706	LGMLQFQGAIYSKAVERMLGTVIGLGAGLGVLWLNQHYFHGNLLFYLTVGTASALAGWAA
	70 80 90 100 110 120
	100
a706.pep	130 140 150 160 170 180
a /ou.pep	VGKNGYVPMLAGLTMCMLIGDNGSEWFDSGLMRAMNVLIGAAIAIAAAKLLPLKSTLMWR
m706	
	130 140 150 160 170 180
	200
-706	190 200 210 220 230 240
a706.pep	FMLADNLTDCSKMIAEISNGRRMTRERLEENMAKMRQINARMVKSRSHLAATSGESRISP
m706	:  :
	100 200 010 000
	200 210 220 230 240
	250 260 270 280 290 300
a706.pep	AMMEAMQHAHRKIVNTTELLLTTAAKLOSPKLNGSEIRLLDRHFTLLOTDLOOTVALING
m706	
111700	AMMEAMQHAHRKIVNTTELLLTTAAKLQSPKLNGSEIRLLDRHFTLLQTDLQQTVALING 250 260 270 280 290 300
	250 260 270 280 290 300
	310 320 330 340 350 360
a706.pep	RHARRIRIDTAINPELEALAEHLHYOWOGFLWLSTNMROEISALVILLORTRRKWLDAHE
706	
m706	RHARRIRIDTAINPELEALAEHLHYQWQGFLWLSTNMRQEISALVILLQRTRRKWLDAHE
	310 320 330 340 350 360
	370
a706. <b>pe</b> p	RQHLRQSLLETREHSX
_	111111111111:
m706	RQHLRQSLLETREHGX
	370

g707.seq not found

g707.pep not found

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2369>:



1601

#### m707.seq ATGGAAATTA TTAACGATGC AGAACTTATC CGTTCCATGC AGCGTCAGCA 1 GCACATAGAT GCTGAATTGT TAACTGATGC AAATGTCCGT TTCGAGCAAC 101 CATTGGAGAA GAACAATTAT GTCCTGAGTG AAGATGAAAC ACCGTGTACT CGGGTAAATT ACATTAGTTT AGATGATAAG ACGGTGCGCA AATTTTCTTT 151 201 TCTTCCTTCT GTGCTCATGA AAGAAACAGC TTTTAAAACT GGGATGTGTT TAGGTTCCAA TAATTTGAGC AGGCTACAAA AAGCCGCGCA ACAGATACTG 251 ATCGTGCGTG GCTACCTCAC TTCCCAAGCT ATTATCCAAC CACAGAATAT GGATTCGGGA ATTCTGAAAT TACGGGTATC AGCAGGCGAA ATAGGGGATA 351 TCCGCTATGA AGAAAAACGG GATGGGAAGT CTGCCGAGGG CAGTATTAGT 401 GCATTCAATA ACAAATTTCC CTTATATAGG AACAAAATTC TCAATCTTCG 451 CGATGTAGAG CAGGGCTTGG AAAACCTGCG TCGTTTGCCG AGTGTTAAAA CAGATATTCA GATTATACCG TCCGAAGAAG AAGGCAAAAG CGATTTACAG 551 ATCAAATGGC AGCAGAATAA ACCCATACGG TTCAGTATCG GTATAGATGA 601 TGCGGGCGGC AAAACGACCG GCAAATATCA AGGAAATGTC GCTTTATCGT 651 TCGATAACCC TTTGGGCTTA AGCGATTTGT TTTATGTTTC ATATGGACGC 701 GGTTTGGCGC ACAAAACGGA CTTGACTGAT GCCACCGGTA CGGAAACTGA 751 801 AAGCGGATCC AGAAGTTACA GCGTGCATTA TTCGGTGCCC GTAAAAAAAT GGCTGTTTTC TTTTAATCAC AATGGACATC GTTACCACGA AGCAACCGAA 851 GGCTATTCCG TCAATTACGA TTACAACGGC AAACAATATC AGAGCAGCCT 901 GGCCGCCGAG CGCATGCTTT GGCGTAACAG ACTTCATAAA ACTTCAGTCG 951 1001 GAATGAAATT ATGGACACGC CAAACCTATA AATACATCGA CGATGCCGAA ATCGAAGTAC AACGCCGCCG CTCTGCAGGC TGGGAAGCCG AATTGCGCCA 1051 CCGTGCTTAC CTCAACCGTT GGCAGCTTGA CGGCAAGTTG TCTTACAAAC 1101 GCGGGACCGG CATGCGCCAA AGTATGCCTG CACCGGAAGA AAACGGCGGC 1151 1201 GATATTCTTC CAGGTACATC TCGTATGAAA ATCATTACTG CCAGTTTGGA 1251 CGCAGCCGCC CCATTTATTT TAGGCAAACA GCAGTTTTTC TACGCAACCG 1301 CCATTCAAGC TCAATGGAAC AAAACGCCGT TGGTTGCCCA AGATAAATTG TCAATCGGCA GCCGCTACAC CGTTCGCGGA TTTGATGGGG AGCAGAGTCT 1351 TTTCGGAGAG CGAGGTTTCT ACTGGCAGAA TACTTTAACT TGGTATTTTC 1401 ATCCGAACCA TCAGTTCTAT CTCGGTGCGG ACTATGGCCG CGTATCTGGC 1451 GAAAGTGCAC AATATGTATC GGGCAAGCAG CTGATGGGTG CAGTGGTCGG 1501 CTTCAGAGGA GGGCATAAAG TAGGCGGTAT GTTTGCTTAT GATCTGTTTG 1551 CCGGCAAGCC GCTTCATAAA CCCAAAGGCT TTCAGACGAC CAACACCGTT

#### This corresponds to the amino acid sequence <SEQ ID 2370; ORF 707>: m707.pep

1651 TACGGCTTCA ACTTGAATTA CAGTTTCTAA

```
MEIINDAELI RSMQRQQHID AELLTDANVR FEQPLEKNNY VLSEDETPCT
 51 RVNYISLDDK TVRKFSFLPS VLMKETAFKT GMCLGSNNLS RLQKAAQQIL
     IVRGYLTSQA IIQPQNMDSG ILKLRVSAGE IGDIRYEEKR DGKSAEGSIS
101
    AFNNKFPLYR NKILNLRDVE QGLENLRRLP SVKTDIQIIP SEEEGKSDLQ
151
201 IKWQQNKPIR FSIGIDDAGG KTTGKYQGNV ALSFDNPLGL SDLFYVSYGR
     GLAHKTDLTD ATGTETESGS RSYSVHYSVP VKKWLFSFNH NGHRYHEATE
251
     GYSVNYDYNG KQYQSSLAAE RMLWRNRLHK TSVGMKLWTR QTYKYIDDAE
301
     IEVQRRRSAG WEAELRHRAY LNRWQLDGKL SYKRGTGMRQ SMPAPEENGG
351
    DILPGTSRMK IITASLDAAA PFILGKQQFF YATAIQAQWN KTPLVAQDKL
401
    SIGSRYTVRG FDGEQSLFGE RGFYWQNTLT WYFHPNHQFY LGADYGRVSG
    ESAQYVSGKQ LMGAVVGFRG GHKVGGMFAY DLFAGKPLHK PKGFQTTNTV
501
551 YGFNLNYSF*
```

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2371>: a707.seq

1	NTGAAAGAAA	CAGCTTTTAA	AACTGGGATG	TGTTTAGGTT	ССААТААТТТ
51		CAAAAAGCCG		ACTGATTGTG	CGTGGCTACC
101	TCACTTCCCA	AGCTATTATC	CAACCACAGA		GGGAATTCTG
151	AAATTACGGG	TATCAGCAGG	CGAAATAGGN	GATATCCGCT	ATGAAGAAA
201	ACGGGATGNG	AAGTCTGCCG	AGGGCAGTAT	TAGTGCATTC	AATAACAAAN
251	TTCCCTTATA	TAGGAACAAA	ATTCTCAATC	TTCGCGATGT	AGAGCAGGGC
301	TTGGAAAACC	TGCGTCGTTT	GCCGAGTGTT	AAAACAGATA	TTCAGATTAT
351	ACCGTCCGAA	GAAGAAGGCA		ACAGATCAAA	
401	ATAAACCCAT	ACGGTTCAGT	ATCGGTATAG	ATGATGCGGG	TGGCAGCAGA
451	ACCGGCAAAT	ATCAAGGAAA	TGTCGCTTTA	TCGTNCGATA	
501	NTTAAGCGAT	TNGTTTTATG	TTTCATATGG		
551	CGGACTTGAC	TGNTGCCACC			GTGCACAAAA
601	TACAGCGTGC	ATTATTCGGT			ATCCAGAAGT
651	TCACAATGGA	CATCGTTACC	ACGAAGCAAC		TTTCTTTTAA
701					TCCGTCAATT
			ONSONGCH	GCCIGGCGC	CGAGCGCATG

751	CTTTGGNNNN NNAGNTTTCN TNAAACTTCA GTCNGAATGA AATTATGGAC
801	ACGCCAAACC TATAAATACA TCGACGATGC CGAAATCGAA GTGCAACGCC
851	GCCGCTCTGC AGGCTGGGAA GCCGAATTGC GCCACCGTGC TTACCTCNAC
901	CGTTGGCAGC TTGACGGCAA GTTGTCTTAC AAACGCGGGA CCGGCATGCG
951	CCAAAGTATG CCCGCACCTG AAGAAAACGG CGGCGGTACT ATTCCAGNCA
1001	NATCCCGTAT GAAAATCATA ACCGCCGGAT TGGATGCAGC GGCCCCGTNT
1051	ATGTTGGGCA AACAGCAGTT TTTCTACGCA ACCGCCATTC AAGCTCAATG
1101	CARCARANCE COMMISCORME CONTROL ACCECCATTC AAGCTCAATG
1151	GAACAAAACG CCTTTGGTTG CCCAAGACAA GTTGTCTATC GGCAGCCGCT
1201	ACACCGTTCG CGGATTTGAT GGGGAGCAGA GTCTTTTCGG AGAGCGAGGT
	TTCTACTGGC AGAATACTTT AACTTGGTAT TTTCATCCGA ACCATCAGTT
1251	CTATCTCGGT GCGGACTATG GCCGCGTATC TGGCGAAAGT GCACAATATG
1301	TATCGGGCAA GCAGCTGATG GGTGCAGTGG TCGGCTTCAG AGGAGGGCAT
1351	AAAGTAGGCG GTATGTTTGC TTATGATCTG TTTGCCGGCA AGCCGCTTCA
1401	Constitute Colling City Charling
1451	ATTACAGTTT CTAA
This correspond	ls to the amino acid sequence <seq 2372;="" 707.a="" id="" orf="">:</seq>
a707.pep	25/2, OR 707.as.
1	YEFTA FETCH CI CONNI CDI OVA ACCITATA DALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALLA CALL
51	XKETAFKTGM CLGSNNLSRL QKAAQQILIV RGYLTSQAII QPQNMDSGIL
	KLRVSAGEIG DIRYEEKRDX KSAEGSISAF NNKXPLYRNK ILNLRDVEQG
101	LENLRRLPSV KTDIQIIPSE EEGKSDLQIK WQQNKPIRFS IGIDDAGGKT
151	TGKYQGNVAL SXDNPLGLSD XFYVSYGRGL VHKTDLTXAT GTETESGSRS
201	YSVHYSVXVK KWLFSFNHNG HRYHEATEGY SVNYDYNGKO YOSSLAAFRM
251	LWXXXFXXTS VXMKLWTRQT YKYIDDAEIE VORRRSAGWE AELRHRAVLY
301	RWQLDGKLSY KRGTGMRQSM PAPEENGGGT IPXXSRMKII TAGLDAAAPY
351	MLGKQQFFYA TAIQAQWNKT PLVAQDKLSI GSRYTVRGFD GEOSLFGERG
401	FYWQNTLTWY FHPNHQFYLG ADYGRVSGES AQYVSGKQLM GAVVGFRGGH
451	KVGGMFAYDL FAGKPLHKPK GFQTTNTVYG FNLNYSF*
	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
a707/m707 95	5.3% identity in 486 aa overlap
w. 0,, m., 50	•
a707.pep	10 20 30 .
u.opcp	XKETAFKTGMCLGSNNLSRLQKAAQQILIVR
m707	
	XKETAFKTGMCLGSNNLSRLQKAAQQILIVR
	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR
m707	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100
	### EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  #################################
m707	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90  GYLTSQAIIQPQNMDSGILKLRVSAGEIGDIRYEEKRDXKSAEGSISAFNNKXPLYRNKI
m707	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90  GYLTSQAIIQPQNMDSGILKLRVSAGEIGDIRYEEKRDXKSAEGSISAFNNKXPLYRNKI
m707	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90  GYLTSQAIIQPQNMDSGILKLRVSAGEIGDIRYEEKRDXKSAEGSISAFNNKXPLYRNKI  GYLTSQAIIQPQNMDSGILKLRVSAGEIGDIRYEEKRDKSAEGSISAFNNKFPLYRNKI
m707	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90 GYLTSQAIIQPQNMDSGILKLRVSAGEIGDIRYEEKRDXKSAEGSISAFNNKXPLYRNKI
m707	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90  GYLTSQAIIQPQNMDSGILKLRVSAGEIGDIRYEEKRDXKSAEGSISAFNNKXPLYRNKI  HILLIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHI
m707 a707.pep m707	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90 0  GYLTSQAIIQPQNMDSGILKLRVSAGEIGDIRYEEKRDXKSAEGSISAFNNKXPLYRNKI
m707	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90 GYLTSQAIIQPQNMDSGILKLRVSAGEIGDIRYEEKRDXKSAEGSISAFNNKXPLYRNKI
m707 a707.pep m707 a707.pep	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90 GYLTSQAIIQPQNMDSGILKLRVSAGEIGDIRYEEKRDXKSAEGSISAFNNKXPLYRNKI
m707 a707.pep m707	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90 - GYLTSQAIIQPQNMDSGILKLRVSAGEIGDIRYEEKRDXKSAEGSISAFNNKXPLYRNKI
m707 a707.pep m707 a707.pep	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90 GYLTSQAIIQPQNMDSGILKLRVSAGEIGDIRYEEKRDXKSAEGSISAFNNKXPLYRNKI
m707 a707.pep m707 a707.pep	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90 100  40 50 60 70 80 90 100  GYLTSQAIIQPQNMDSGILKLRVSAGEIGDIRYEEKRDXKSAEGSISAFNNKXPLYRNKI
m707 a707.pep m707 a707.pep m707	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90 100  GYLTSQAIIQPQNMDSGILKLRVSAGEIGDIRYEEKRDXKSAEGSISAFNNKXPLYRNKI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
m707 a707.pep m707 a707.pep	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90 100  GYLTSQAIIQPQNMDSGILKLRVSAGEIGDIRYEEKRDXKSAEGSISAFNNKXPLYRNKI  GYLTSQAIIQPQNMDSGILKLRVSAGEIGDIRYEEKRDGKSAEGSISAFNNKFPLYRNKI 110 120 130 140 150 160  100 110 120 130 140 150  LNLRDVEQGLENLRRLPSVKTDIQIIPSEEEGKSDLQIKWQQNKPIRFSIGIDDAGGKTT
m707 a707.pep m707 a707.pep m707	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90 100  40 50 60 70 80 90 100  GYLTSQAIIQPQNMDSGILKLRVSAGEIGDIRYEEKRDXKSAEGSISAFNNKXPLYRNKI  IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
m707 a707.pep m707 a707.pep m707	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90 100  GYLTSQAIIQPQNMDSGILKLRVSAGEIGDIRYEEKRDXKSAEGSISAFNNKXPLYRNKI
m707 a707.pep m707 a707.pep m707	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90 100  40 50 60 70 80 90 100  GYLTSQAIIQPQNMDSGILKLRVSAGEIGDIRYEEKRDXKSAEGSISAFNNKXPLYRNKI  IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
m707 a707.pep m707 a707.pep m707	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90
m707 a707.pep m707 a707.pep m707	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90 100  GYLTSQAIIQPQNMDSGILKLRVSAGEIGDIRYEEKRDXKSAEGSISAFNNKXPLYRNKI
m707 a707.pep m707 a707.pep m707	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90 100  40 50 60 70 80 90 100  GYLTSQAIIQPQNMDSGILKLRVSAGEIGDIRYEEKRDXKSAEGSISAFNNKXPLYRNKI
m707  a707.pep  m707  a707.pep  m707  a707.pep  m707	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90 90  GYLTSQAIIQPQNMDSGILKLRVSAGEIGDIRYEEKRDXKSAEGSISAFNNKXPLYRNKI  IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
m707 a707.pep m707 a707.pep m707	
m707  a707.pep  m707  a707.pep  m707  a707.pep  m707	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90 90  GYLTSQAIIQPQNMDSGILKLRVSAGEIGDIRYEEKRDXKSAEGSISAFNNKXPLYRNKI  IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
m707  a707.pep  m707  a707.pep  m707  a707.pep  m707	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90 90  GYLTSQAIIQPQNMDSGILKLRVSAGEIGDIRYEEKRDKKSAEGSISAFNNKXPLYRNKI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
m707 a707.pep m707 a707.pep m707 a707.pep m707	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90 90  GYLTSQAIIQPQNMDSGILKLRVSAGEIGDIRYEEKRDKKSAEGSISAFNNKXPLYRNKI  IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
m707  a707.pep  m707  a707.pep  m707  a707.pep  m707	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90 90  GYLTSQAIIQPONMDSGILKLRVSAGEIGDIRYEEKRDXKSAEGSISAFNNKXPLYRNKI
m707  a707.pep  m707  a707.pep  m707  a707.pep  m707  a707.pep  m707  a707.pep	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90 90  GYLTSQAIIQPQNMDSGILKLRVSAGEIGDIRYEEKRDXKSAEGSISAFNNKXPLYRNKI 111111111111111111111111111111111111
m707 a707.pep m707 a707.pep m707 a707.pep m707	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90 90  GYLTSQAIIQPQNMDSGILKLRVSAGEIGDIRYEEKRDXKSAEGSISAFNNKXPLYRNKI 111111111111111111111111111111111111
m707  a707.pep  m707  a707.pep  m707  a707.pep  m707  a707.pep  m707  a707.pep	EDETPCTRVNYISLDDKTVRKFSFLPSVLMKETAFKTGMCLGSNNLSRLQKAAQQILIVR 50 60 70 80 90 100  40 50 60 70 80 90 90  GYLTSQAIIQPONMDSGILKLRVSAGEIGDIRYEEKRDXKSAEGSISAFNNKXPLYRNKI

a707.pep	340 PXXSRMKIITAG   :      : PGTSRMKIITAS:		1 1 1 1 1 1 1 1 1 1	1111111111	1111111111	11111111
	410	420	430	440	450	460
	400	410	420	430	440	450
a707.pep	EQSLFGERGFYW	ONTLTWYFHPI	NHQFYLGADY	GRVSGESAOY	VSGKOLMGAV	VGFRGGHK
m <b>7</b> 07	EQSLFGERGFYW	ONTLTWYFHPI		111111111	1111111111	
	470	480	490	500	510	520
	460	470	480			
a707.pep	VGGMFAYDLFAGI	(PLHKPKGFQ)	TNTVYGFNL	NYSFX		
m707	VGGMFAYDLFAGE	(PLHKPKGFQ1	TNTVYGFNLI	 NYSFX		
	530	540	550	560		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2373>:

```
1 ATGCCTTTA AGCCATCCAA ACGAATCTCT TTATTACTTG TTCTTGCCTT
51 GGGCGCGTGC AGCACTTCCT ACCGCCCCTC GCGGGCAGAA AAAGCCAATC
101 AGGTTTCCAA TATCAAAACC CAGTTGGCGA TGGAATATAT GCGCGGGTCAG
151 GACTACCGTC AGGCAACGGC AAGTATTGAA GATGCCTTGA AATCGAACCC
201 TAAAAACGAA CTTGCCTGGC TGGTCCGTGC CGAAATCTAT CAATACCTGA
251 AAGTTAACGA CAAGGCCCAG GAAAGTTTCC GGCAAGCCCT CTCCATCAAA
301 CCCGACAGTG CCGAAATCAA CAACAACTAC GGCTGGTTCC TGTGCGGCAG
351 GCTCAACCGC CCTGCCGAAT CTATGGCATA TTTCGACAAA GCCCTGGCCG
401 ACCCCACCTA CCCGACCCCT TATATTGCCA ACCTGAATAA AGGTATATGC
451 AGCGCAAAAC AGGGGCAATT CGGATTGGCG GAAGCCTATT TGAAAACGTTC
501 CCTCGCCGCC CAGCCGCAGT TCCCACCCGC ATTTAAAAAA CTGGCGCGCA
551 CCAAAATGCT GGCCGGCAG TTGGGCGATG CCGATTACTA CTTTAAAAAA
601 TACCAAAGCA AGGCCTCG GCAACGTCA GGCGGCATAC CTTTAAAAAA
601 TACCAAAGCA AGGCCCTCG GCAACGTCA GATGATTGC TGCTAGGCTG
651 GAAAATTGCC AAAGCCCTCG GCAACGTCA AACCGTCCTC
751 ACCGGTCAAT AA
```

# This corresponds to the amino acid sequence <SEQ ID 2374; ORF 708.ng>: g708.pep

```
1 MPFKPSKRIS LLLVLALGAC STSYRPSRAE KANQVSNIKT QLAMEYMRGQ
51 DYRQATASIE DALKSNPKNE LAWLVRAEIY QYLKVNDKAQ ESFRQALSIK
101 PDSAEINNNY GWFLCGRLNR PAESMAYFDK ALADPTYPTP YIANLNKGIC
151 SAKQGQFGLA EAYLKRSLAA QPQFFPAFKE LARTKMLAGQ LGDADYYFKK
152 YQSRVEVLQA DDLLLGWKIA KALGNVQAAY EYEAQLQANF PYSEELQTVL
153 TGO*
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2375>: m708.seq

```
ATGCCTTTTA AGCCATCCAA ACGAATCTCT TTATTACTCG TTCTTGCCTT
 1
    GGGCGCGTGC AGCACTTCCT ACCGCCCCTC GCGGGCAGAA AAAGCCAATC
 51
101 AGGTTTCCAA TATCAAAACC CAGTTGGCAA TGGAATATAT GCGCGGTCAG
151 GACTACCGTC AGGCGACGGC AAGTATTGAA GACGCCCTGA AATCGGACCC
     TAAAAACGAG CTTGCCTGGC TGGTCCGTGC CGAAATCTAT CAATACCTGA
201
251
     AAGTTAACGA CAAGGCGCAG GAAAGTTTCC GGCAAGCCCT CTCCATCAAA
301 CCCGACAGTG CCGAAATCAA CAACAACTAC GGTTGGTTCC TATGCGGCAG
351 GCTCAACCGC CCTGCCGAAT CTATGGCATA TTTCGACAAA GCTCTGGCCG
401 ACCCCACCTA CCCGACCCCT TATATTGCCA ACCTGAATAA AGGCATATGC
451
     AGCGCAAAAC AGGGGCAATT CGGATTGGCG GAAGCCTATT TGAAACGTTC
     CCTCGCCGCC CAGCCGCAGT TCCCACCCGC ATTTAAAGAA CTGGCGCGCA
501
551 CCAAAATGCT GGCCGGGCAG TTGGGCGATG CCGATTACTA CTTTAAAAAA
    TACCAAAGCA GGGTAGAAGT CCTTCAGGCC GATGATTTGC TGCTAGGCTG
651 GAAAATTGCC AAAGCCCTCG GCAACGCACA GGCGGCATAC GAATATGAAG
     CACAATTGCA GGCGAATTTC CCCTACTCGG AAGAATTGCA AACCGTCCTC
751 ACCGGTCAAT AA
```

This corresponds to the amino acid sequence <SEQ ID 2376; ORF 708>: m708.pep

43 - 7 - 20 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3

```
MPFKPSKRIS LLLVLALGAC STSYRPSRAE KANQVSNIKT QLAMEYMRGQ
        DYRQATASIE DALKSDPKNE LAWLVRAEIY QYLKVNDKAQ ESFRQALSIK
     51
        PDSAEINNNY GWFLCGRLNR PAESMAYFDK ALADPTYPTP YIANLNKGIC
    101
    151
        SAKQGQFGLA EAYLKRSLAA QPQFPPAFKE LARTKMLAGQ LGDADYYFKK
    201
        YQSRVEVLQA DDLLLGWKIA KALGNAQAAY EYEAQLQANF PYSEELQTVL
    251
m708/g708
           99.2% identity in 253 aa overlap
                  10
                          20
                                  30
                                           40
                                                   50
           {\tt MPFKPSKRISLLLVLALGACSTSYRPSRAEKANQVSNIKTQLAMEYMRGQDYRQATASIE}
m708.pep
           MPFKPSKRISLLLVLALGACSTSYRPSRAEKANQVSNIKTQLAMEYMRGQDYRQATASIE
g708
                                  30
                                           40
                                                   50
                          80
                                  90
                                          100
                                                  110
           {\tt DALKSDPKNELAWLVRAEIYQYLKVNDKAQESFRQALSIKPDSAEINNNYGWFLCGRLNR}
m708.pep
           q708
           DALKSNPKNELAWLVRAEIYQYLKVNDKAQESFRQALSIKPDSAEINNNYGWFLCGRLNR
                 70
                          80
                                  90
                                          100
                 130
                         140
                                 150
                                          160
                                                  170
                                                           180
           PAESMAYFDKALADPTYPTPYIANLNKGICSAKQGQFGLAEAYLKRSLAAQPQFPPAFKE
m708.pep
           PAESMAYFDKALADPTYPTPYIANLNKGICSAKQGQFGLAEAYLKRSLAAQPQFPPAFKE
a708
                130
                         140
                                 150
                                          160
                190
                         200
                                 210
                                          220
           LARTKMLAGQLGDADYYFKKYQSRVEVLQADDLLLGWKIAKALGNAQAAYEYEAQLQANF
m708.pep
           q708
           LARTKMLAGQLGDADYYFKKYQSRVEVLQADDLLLGWKIAKALGNVQAAYEYEAQLQANF
                190
                         200
                                 210
                                          220
                                                  230
                250
m708.pep
          PYSEELOTVLTGOX
           11111111111111
a708
           PYSEELQTVLTGQX
                250
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2377>:

```
a708.seg
          ATGCCTTTTA AGCCATCCAA ACGAATCTCT TTATTACTTG TCCTTGCCTT
       1
          GGGCGCGTGC AGCACTTCCT ACCGCCCCTC GCGGGCAGAA AAAGCCAATC
      51
          AGGTTTCCAA TATCAAAACC CAGTTGGCAA TGGAATATAT GCGCGGTCAG
     101
          GACTACCGTC AGGNGACGGC AAGTATTGAA GACGCCTTGA AATCAGACCC TAAAAAACGAG CTTGCCTGGC TGGTCCGTGC CGAAATCTAT CAATACCTGA
     151
     201
     251 AAGTTAACGA CAAGGCGCAG GAAAGTTTCC GGCAAGNCCT CTCCATCAAA
         CCCGACAGTG CCGAAATCAA CAACAACTAC NGCTGGTTCC TGTGCGGCAG
     301
          GCTCAACCGC CCTGCCGAAT CTATGGCATA TTTCGACAAA GCCCTGGCCG
     351
     401
          ACCCCACNTA CCCGANCCCT TATATTGCCA ACCTGAATAA AGGCATATGC
         AGCGCAAAAC AGGGGCAATT CGGATTGGCG GAAGCCTATT TGAAACGTTC
     451
         CCTCGCCGCC CAGCCGCAGT TCCCACCCGC ATTTAAAGAA CTGGCGCGCA
     501
         CCAAAATGCT GGCCGGGCAG TTGGGCGATG CCGATTACTA CTTTAAAAAA
     551
     601
         TACCAAAGCA GGGTAGAAGT CCTTCAGGCC GATGATTTGC TGCTAGGCTG
          GAAAATTGCC AAAGCCCTCG GCAACGCACA GGCGGCATAC GAATATGAAG
     651
          CACAATTGCA GGCGAATTTC CCCTACTCGG AAGAATTGCA AACCGTCCTC
     701
     751 ATCGGTCAAT AA
```

### This corresponds to the amino acid sequence <SEQ ID 2378; ORF 708.a>:

```
a708.pep

1 MPFKPSKRIS LLLVLALGAC STSYRPSRAE KANQVSNIKT QLAMEYMRGQ
51 DYRQXTASIE DALKSDPKNE LAWLVRAEIY QYLKVNDKAQ ESFRQXLSIK
101 PDSAEINNNY XWFLCGRLNR PAESMAYFDK ALADPTYPXP YIANLNKGIC
151 SAKQGQFGLA EAYLKRSLAA QPQFPPAFKE LARTKMLAGQ LGDADYYFKK
201 YQSRVEVLQA DDLLLGWKIA KALGNAQAAY EYEAQLQANF PYSEELQTVL
251 IGO*
```

a708/m708 98.0% identity in 253 aa overlap

a708.pep	10 MPFKPSKRISLLLVI            MPFKPSKRISLLLVI 10			111111111		1 11111
a708.pep m708	70 DALKSDPKNELAWLV             DALKSDPKNELAWLV 70	111111111	·	1 1111111		HILLIEL
a708.pep	130 PAESMAYFDKALADF            PAESMAYFDKALADP  130			1111111	1111111111	11111
a708.pep	190 LARTKMLAGQLGDAD             LARTKMLAGQLGDAD 190		1111111111		1111111111	11111
a708.pep m708	250 PYSEELQTVLIGQX             PYSEELQTVLTGQX 250					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2379>:

```
ATGTTTGCTT TCAAATCCTT ACTCGATATG CCGCGCGGTG AGGCACTTGC
       CGTCGTCGTC GCTCTGATTG CCGCAATGGG CTATACCATC ATTTCATTGG
      AGTGGCTGCC GCATATGTCC ATTATTGCCG CCATCGTCGT GCTGATTTTG
 101
       TACGGCTTGG CGCGCGGTTT GAAATACAAC GATATGCAGG CAGGGATGAT
 201 AGGCGCGTTG AATCAGGGTA TGGGCGCGGT TTACCTGTTT TTCTTCATCG
       GGCTGATGGT CAGCGCGCTG ATGATGAGCG GCGCGATTCC GACGCTGATG
      TATTACGGTT TCGGGCTGAT TTCCCCGACT TATTTTATT TTTCCGCCTTCGCGCTGTGT TCCGTCATCG GCGTGTCCAT CGGCAGCAGC CTGACCGCCT
 351
 401 GCGCCACTGT CGGCGTTGCC TTTATGGGGA TGGCGGCGGC GTTTCAGGCC
       GATATGGCGA TGACGgcggg cgcgattgTT tccggTGTGT TTTTCGGCGA
 451
       TAAAATGTCC CCGCTTTCCG ACACCACGGG CATTTCCGCG TCCATCGTCG
 551
       GTATCGACCT GTTTGAACAC ATCAAAAACA TGATGTACAC CACCATCCCT
       GCGTGGCTTA TCAGCGCGGC ACTGATGCTT TGGCTTCTTC CCAGCGTCGC
 601
 651 CGCGCAGGAT TTGAACAGCG TCGAATCCTT CCGCAGCCAG CTTGAAGCCA
      CGGGATTGGT GCACGGCTAT TCGCTGATTC CGTTTGCACT GTTGGTCGTT
 701
 751
       TTGGCATTGA TGCGGTCAA TGCCGTGGTC GCCATGCTCT TTACCGTCAT
 801 TGCCGCCGTT GCCGTAACGT ATCTGCACAG CACGCCCGAT CTGCGTCAGC
 851 TCGGCGCGTG GTTTTATGGC GGCTACAAAC TCGAAGGCGA AGCGTTTAAA
901 GACATTGCCA AACTGATTTC GCGCGGCGGC TTGGAGAGTA TGTTCTTTAC
951 GCAGACCATC GTTATCCTCG GTATGAGTTT GGGCGGGCTG CTGTTTGCGC
1001 TCGGTGTGAT TCCTTCCTTG CTGGAGGCCG TCCGTACCTT CTTGACGAAT
1051 GCCGGACGCG CGACGTTCAG CGTTGCCATG ACTTCGGTCG GGGTCAATTT
1101 CCTGATTGGA GAGCAATATT TGAGCATCCT GCTTTCGGGA GAAACGTTCA
      GCCGGACGCG CGACGTTCAG CGTTGCCATG ACTTCGGTCG GGGTCAATTT
1151 AACCCGTTTA CGACAAACTC GGCCTGCATT CGTGCAACCT GTCGCGGACT
1201
      CTGGAAGATG CGGGGACGGT GATTAACCCG CTCGTGCCGT GGAGCGTGTG
      CGGCGTATTT ATCAGCCACG CCCTTGGCGT ACCCGTTTGG GAATATCTGC
1251
      CTTATGCCTT TTTCTGCTAT TTGAGTTTGG CTTTAACCCT GTTATTCGGC
1301
      TGGACGGGC TGACTTTGAG CAAAAAATAA
```

This corresponds to the amino acid sequence <SEQ ID 2380; ORF 709.ng>: g709.pep

1	MFAFKSLLDM	PRGEALAVVV	ALIAAMGYTI	ISLEWLPHMS	TTAATUUT.TT.
51	YGLARGLKYN	DMQAGMIGAL	NOGMGAVYLF	FFIGLMVSAT.	MMSCATOTTM
101	YYGFGLISPT	YFYFSAFALC	SVIGVSIGSS	I.TACATUGUA	EMCMANAFON
151	DMAMTAGAIV	SGVFFGDKMS	PLSDTTGISA	SIVGIDLEEH	TENMMYTTE
201	AWLISAALML	WLLPSVAAOD	LNSVESFRSO	LEATELVHCY	CITDESTITU
251	LALMRVNAVV	AMLFTVIAAV	AVTYLHSTPD	LROLGAMEYC	CANTECEPER
301	DIAKLISRGG	LESMFFTOTT	VILGMSLGGL	LENICUTECT	GINLEGEAFK
			· I DOI IO DOOD	TITADGATEST	LEAVETFLIN

```
351 AGRATFSVAM TSVGVNFLIG EQYLSILLSG ETFKPVYDKL GLHSCNLSRT
401 LEDAGTVINP LVPWSVCGVF ISHALGVPVW EYLPYAFFCY LSLALTLLFG
```

451 WTGLTLSKK*

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2381>:
m709.seq
```

```
ATGTTCGCTT TCAAATCCTT ACTCGATATG CCGCGCGGTG AGGCACTTGC
       CGTCGTCGTC GCTCTGATTG CCGCGATGGG CTATACCATC ATTTCATTGG
      AGTGGTTGCC GCATATGTCC ATTATTGCCG CCATCGTCGT GCTGATTTTG
 101
      TACGGCTTGG CGCGCGGTTT GAAATACAAC GATATGCAGC AGGGCATGAT
 151
 201 AGGCGCGTTG AATCAGGGTA TGGGCGCGAT TTACCTGTTT TTCTTCATCG
251 GGCTGATGGT CAGCGCGCTG ATGATGAGCG GCGCGATTCC GACGCTGATG
 301 TATTACGGTT TCGGACTGAT TTCCCCGACT TATTTTTATT TTTCCTCCTT
351 CGCGCTGTGT TCCGTCATCG GCGTGTCCAT CGGCAGCAGC CTGACCACCT
 401 GCGCCACTGT CGGCGTTGCC TTTATGGGGA TGGCGGCGGC GTTTCAGGCC
      GATATGGCGA TGACGGCGGG CGCGATTGTT TCGGGCGCAT TTTTTGGCGA
 451
      CAAAATGTCC CCGCTTTCGG ATACGACGGG TATTTCCGCG TCCATCGTCG
 501
      GCATCGACTT GTTTGAGCAC ATCAAAAATA TGATGTACAC CACCATCCCC
 551
      GCGTGGCTCA TTAGTGCGGC ACTGATGCTT TGGCTTTTGC CGAATGTCGC
 601
      CGCGCAGGAT TTGAACAGCG TCGAATCCTT CCGCAGCCAG CTTGAAGCCA
 701
      CGGGATTGGT GCACGGCTAT TCGCTGATTC CGTTTGCGCT GTTGGTCATT
      TTGGCATTGA TGCGCATCAA CGCCGTCGTC GCCATGCTCT TTACCGTCAT
 751
      GGTTGCCGTT GCTGTAACGT ATCTGCACAG CACGCCCGAT CTGCGTCAGC
 801
      TCGGTGCGTG GTTTTACGGC GGCTACAAAC TCGAAGGCGA AGCGTTTAAA
GATGTTGTCA AACTGATTTC GCGCGGCGGT TTGGAAAGTA TGTTTTTCAC
 851
 901
 951 GCAAACCATC GTGATTCTCG GGATGAGTTT GGGCGGACTG TTGTTTGCGC
      TCGGTGTGAT TCCTTCCCTG TTGGAGGCCA TCCGTACCTT CTTGACGAAT
1001
      GCCGGACGCG CGACGTTCAG CGTTGCCATG ACTTCGGTCG GGGTTAATTT
1051
1101
      CCTGATCGGC GAGCAATATT TGAGTATTTT GTTGTCGGGT GAAACGTTCA
1151
      AACCCGTTTA CGATAAGCTC GGTCTGCATT CGCGCAATCT GTCGCGGACG
1201
      CTGGAAGATG CGGGGACGGT GATTAACCCG CTCGTACCGT GGAGCGTATG
      CGGCGTGTTC ATCAGCCACG CGCTGGGCGT GCCGGTTTGG GAATATCTGC
1251
      CGTATGCCTT TTTCTGCTAT TTGAGTTTGG CTTTGACCCT GTTATTCGGT
1301
1351 TGGACGGGC TGACTTTGAG CAAAAAATAA
```

#### This corresponds to the amino acid sequence <SEQ ID 2382; ORF 709>: m709.pap

```
MFAFKSLLDM PRGEALAVVV ALIAAMGYTI ISLEWLPHMS IIAAIVVLIL
     YGLARGLKYN DMQQGMIGAL NQGMGAIYLF FFIGLMVSAL MMSGAIPTLM
YYGFGLISPT YFYFSSFALC SVIGVSIGSS LTTCATVGVA FMGMAAAFQA
 51
101
151 DMAMTAGAIV SGAFFGDKMS PLSDTTGISA SIVGIDLFEH IKNMMYTTIP
      AWLISAALML WLLPNVAAQD LNSVESFRSQ LEATGLVHGY SLIPFALLVI
LALMRINAVV AMLFTVMVAV AVTYLHSTPD LRQLGAWFYG GYKLEGEAFK
201
      DVVKLISRGG LESMFFTQTI VILGMSLGGL LFALGVIPSL LEAIRTFLTN
301
351 AGRATFSVAM TSVGVNFLIG EQYLSILLSG ETFKPVYDKL GLHSRNLSRT
     LEDAGTVINP LVPWSVCGVF ISHALGVPVW EYLPYAFFCY LSLALTLLFG
401
451
     WTGLTLSKK*
```

#### m709/g709 96.9% identity in 459 aa overlap

			_1_			
	10	20	30	40	50	60
m709.pep	MFAFKSLLDMPRG	EALAVVVALIA	AMGYTIISLE	WLPHMSIIAA	IVVLILYGL	ARGLKYN
			1111111111	1111111111	HILLIIII	111111
g709	MFAFKSLLDMPRG	EALAVVVALIA	AMGYTIISLE	WLPHMSIIAA	IVVLILYGLA	RGLKYN
	10	20	30	40	50	60
						•
	70	80	90	100	110	120
m709.pep	DMQQGMIGALNQG	MGAIYLFFFIG	LMVSALMMSG		GLISPTVEVE	TECEPIC
- <del>-</del>		111:111111	111111111	111111111	1111111111	1:111
g709	DMQAGMIGALNQG	GAVYLEFFIC	TMVSATMMSC	ATPTIMVVCE		111111
•	70	80	90	100	110	
			30	100	110	120
	130	140	150	160	170	
m709.pep	SVIGVSIGSSLTTO				170	180
ш, оз.рер	1111111111111111				FGDKMSPLSI	
g709				<u> </u>		11111
g / 0 9	SVIGVSIGSSLTAG	ATVGVAFMGM				TTGISA
	130	140	150	160	170	180
	190	200	210	220	230	240
m709.pep	SIVGIDLFEHIKNN	<b>M</b> YTTI PAWLI	SAALMLWLLP	NVAAQDLNSV	ESFRSQLEAT	GLVHGY
	- 1 1 7 1 1 1 1 1 1 1 1 1 1 1	1111111111		: [] [] [] []	THE RELIEF	111111
g709	SIVGIDLFEHIKNN	MYTTI PAWLI	SAALMLWLLP	SVAAQDLNSV	ESFRSQLEAT	GLVHGY
	190	200	210	220	230	240

BNSDOCID: <WO___9957280A2_I_>

್ಷಣ್ಣ ಇಚ್ಛುಗಳ ಕನ್ನ



m709.pep g709	250 SLIPFALLVILALM            SLIPFALLVVLALM 250	1:11111	: :	1111111111		111111
m709.pep	310 DVVKLISRGGLESMI	320 FFTOTIVIL	330	340	350	360
, or . pop	1::			GVIPSLLEAL	RTFLTNAGRA	ATFSVAM
g709	DIAKLISRGGLESME	FTQTIVILO	MSLGGLLFAL	GVIPSLLEAV	RTFLTNAGR	TESVAM
	310	320	330	340	350	360
m709.pep	370 TSVGVNFLIGEQYLS	380 TLLSCETER	390	400	410	420
	11111111111111	111111111	IIIIIIIIII	NISKILEDA	GTVINPLVPW	SVCGVF
g709	TSVGVNFLIGEQYLS	ILLSGETFK	PVYDKLGLHS		GTVINPLVPW	SVCGVE
	370	380	390	400	410	420
	430	440	450	460		
m709.pep	ISHALGVPVWEYLPY	AFFCYLSLA	LTLLFGWTGL			
g709		 AFFCYLSLA	!             LTLLFGWTGL	   SKKX		
	430	440	450	460		

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2383>: a709.seq

```
ATGTTCGCTT TCNAATCCTT ACTCGATATG CCGCGCGGTG AGGCNCTTGC
   1
      CGTCGTCGTC GCTCTGATTG CCGCGATGGG CTATACCATC ATTTNNTTGG
  51
      AGTGGCTGCC GCATATGTCC ATTATTGCCG CCATCGTNGT GCTGATTTTG
 101
      TACGGCTTGG CGCGCGGTTT GAAATACAAC GATATGCAGC AGGGCATGAT
      AGGCGCGTTG AATCAGGGTA TGGGCGCGAT TTACCTNTTT TTCTTCATCG
 251
      GGCTGATGGT CAGCGCGCTG ATGATGAGCG GCGCGATTCC GACGCTGATG
      TATTACGGTT TCGGACTGAT TTCCCCGACT TATTTTATT TTTCCGCCTT
 301
      CGCGCTGTGT TCCGTCATCG GCGTGTCCAT CGGCAGCAGC CTGACCACCT
 351
      GCGCCACTGT CGGCGTTGCC TTNATGGGTA TNNNGNCGGC GTTTCNGGCC
 401
 451 NANATGGNGN NGNNGNNGGN CNNGATTGTN NNGGNCGCAT TNTTNGGCGN
 501
      CAAAATGTCN CCGCTTTCCG ATACGNCGGG CATNTCCGCG TCCATTGTCG
      GTATCGACCT GTTTGAACAC ATCAAAAATA TGATGTACAC NACCATTCCC
 601
     GCGTGGCTCA TCAGTGNNNC ACTGATGCTG TNGCTTCTTC CCAGCGTCGC
     CGCGCAGGAT TTGAACAGCG TCGAATCCTT CCGCAGCCAG CTTGAAGCCA
 651
      CGGGATTGGT GCACTGCTAT TCGCTGATTC CGTTTGCGCT GTTGGTCGTT
 701
     TTGGCATTGA TGCGGTCAA TGCCGTGGTC GCTATGCTCT TTACCGTCAT
 7.51
     TGCCGCCGTT GCCGTAACGT ATCTGCACAG CACGCCCGAT CTGCGTCAGC
 801
      TCGGCGCGTG GTTTTACGGC GGCTACAAAC TCGAAGGCGA AGCGTNTANA
 851
 901 GACATTGCCA AACTCATTTC TCGCGGCGGT TTGGAAAGTA TGTTTTTCAC
     GCAGACCATC GTGATTCTTG GGATGAGCCT TGGCGGGCTG CTGTTTGCAC
 951
     TGGGCGCGAT TCCTTCCCTG CTGGATGCCG TCCGCAGCTT TTTGACGAAT
1001
     GCCGGGCGTN CCACATTCAG CGTTGCCATG ACTTCGGTCG GGGTTAATTT
1051
     CCTGATCGGC GAGCAATATT TGAGTATTTT GTTGTCNGGT GAAACGTTCA
1101
1151 AACCTGTTTA CGATAAGCTC GGTCTGCATT CGCGCAATCT GTCGCGGACG
     CTGGAAGATG CGGGGACGGT CATCAACCCG CTCGTACCGT GGAGCGTATG
     CGGCGTGTTC ATCANCCACG CGCTGGGCGT GCCGGTTTGG GAATATCTGC
     CGTATGCCTT TTTCTGCTAT TTGAGTTTGG CTTTGACCCT GTTATTCGGT
     TGGACGGGC TGACTTTGAG CAAAAATAA
```

## This corresponds to the amino acid sequence <SEQ ID 2384; ORF 709.a>:

.pep	
1 MFAFXSLLDM PRGEALAVVV ALIAAMGYTI IXLEWLPHMS II	ΔΔΤΩΩΤ.ΤΤ
51 YGLARGLKYN DMQQGMIGAL NOGMGAIYIF FFIGLMYSAL MM	COTTOTIM
101 YIGHGLISPT YEYFSAFALC SVIGVSIGSS LTTCATVGVA VMC	ことととり にくり
131 XMXXXXXIV XXAXXGXKMS PLSDTXGXSA SIVGIDLEEH IKO	NIMMVIII D
201 AWLISXXLML XLLPSVAAOD LNSVESFRSO LEATGLVHCV et-	TDEATTER
231 LALMKVNAVV AMLETVIAAV AVTYLHSTPD LROLGAWEYG CYL	VIECEBUL
JOI DIAKLISKGG LESMFFTQTI VILGMSLGGI LFALGAIDSI IDA	ATTD CERT MAY
351 AGRXTFSVAM TSVGVNFLIG EQYLSILLSG ETFKPVYDKL GL	HSRNLSRT

401 LEDAGTVINP LVPWSVCGVF IXHALGVPVW EYLPYAFFCY LSLALTLLFG
451 WTGLTLSKK*

a709/m709	91.1% identity	in 459	aa overlap
		10	20

	10	20	30	40	50	60
a709.pep	MFAFXSLLDMPRGE	ALAVVVALI	AAMGYTIIXLE	EWLPHMSITA	ATVVI.TI.YCI.	ARCTEVN
		111111111	11111111		11111111111	111111
m709	MFAFKSLLDMPRGE	CALAVVVALI	AAMGYTIISLE	EWLPHMSIIA	AIVVLILYGL	ARGLKYN
	10	20	30	40	50	60
	70	0.0	•			
a709.pep	· <del>-</del>	80 100 TVI EBET	90	100	110	120
a ros.pep	DMQQGMIGALNQGM	GATILEFEK	GLMVSALMMSG	AIPTLMYYG	FGLISPTYFY	FSAFALC
m709	DMQQGMIGALNQGM	GAIYLFFFT	CT.MV.SAT.MMSC			:
	70	80	90	100	110	120
				100	110	120
	130	140	150	160	170	180
a709.pep	SVIGVSIGSSLTTC	ATVGVAXMG	XXXAFXAXMXX	XXXXIVXXX	XXGXKMSPLS	DTXGXSA
700				: 11 1	1 111111	11.1 11
m709	SVIGVSIGSSLTTC	ATVGVAFMG			FFGDKMSPLSI	DTTGISA
	130	140	150	160	170	180
	190	200	210	220		
a709.pep	SIVGIDLFEHIKNM		ZIU	220	230	240
	1111111111111		I III III		VESERSQLEA:	EGLVHCY
m709	SIVGIDLFEHIKNM	MYTTIPAWL	ISAALMLWLLP	PRICOGAVIO	/ESERSOLEA!	IIIII I
	190	200	210	220	230	240
						-10.
700	250	260	270	280	290	300
a709.pep	SLIPFALLVVLALM	RVNAVVAMLE	TVIAAVAVTY	LHSTPDLRQI	LGAWFYGGYKI	LEGEAXX
m709	:     SLIPFALLVILALM				<u>                                    </u>	
111703	250	260	270	LHSTPDLRQI 280		
	200	200	270	280	290	300
	310	320	330	340	350	360
a709.pep	DIAKLISRGGLESM	FFTQTIVILG	MSLGGLLFAL	GAIPSLLDAY	RSFLTNAGRY	TESVAM
	1::11111111111	1 [		1:11111:1:	1:111111	111111
m709	DVVKLISRGGLESM	FFTQTIVILG	MSLGGLLFAL	GVIPSLLEAI	RTFLTNAGRA	TFSVAM
	310	320	330	340	350	360 ू
	370	380	200	400		*
a709.pep	TSVGVNFLIGEQYL		390	400	410	420
			LITITION	KNT2KITEDA	GIATUBDABM	SVCGVF
m709	TSVGVNFLIGEQYL:	SILLSGETFK	(PVYDKLGLHS	RNLSRTLEDZ	TITITE TO THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT OF THE TENT	
	370	380	390	400	410	420
. 700	430	440	450	460		
a709.pep	IXHALGVPVWEYLP	YAFFCYLSLA	LTLLFGWTGL	TLSKKX		
m709		!	I II I I I I I I I I I I I I I I I I I	11111		
III / O 3	430	YAFFCYLSLA 440	LTLLFGWTGL' 450			
	430	440	430	460		

g710.seq not found

g710.pep not found

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2385>: m710.seq

.v.seq					
1	ATGGAAACCC	ACGAAAAAAT	CCGCCTGATG	CGCGAATTGA	ATAAATGGTC
51	CCAGGAGGAT	ATGGCGGAAA	AGCTGGCGAT	GTCGGCAGGC	GGGTATGCCA
101	AAATCGAACG	GGGCGAAACG	CAGTTAAATA	TCCCGCGTTT	GGAGCAGTTG
151	GCTCAGATTT	TCAAAATCGA	TATGTGGGAC	TTGCTCAAAT	CGGGCGGTGG
201	TGGGATGGTG	TTTCAGATTA	ATGAAGGTGA	TAGTGGTGGC	GATATTGCGT
251	TGTATGCGTC	GGGTGATGTT	TCGATGAAAA	TAGAATTTTT	AAAAATGGAG

301 351	TTGAAACACT GCTCCGCAAG	GCAAAGAAAT CTGACCGAAA	GTTGGAACAA CCGTTTAA	AAAGACAAAG	AAATCGAGCT	
This correspond	ls to the amino	acid seque	nce <seq ii<="" td=""><td>D 2386; ORI</td><td>F 710&gt;:</td><td></td></seq>	D 2386; ORI	F 710>:	
m710.pep						
1	METHEKIRLM I	RELNKWSQED	MAEKLAMSAG	GYAKIERGET	OLNI PRIFOL	
51	AQIEKIDMWD I	LLKSGGGGMV	FOINEGDSGG	DIALYASGDV	SMKIEFLKME	
101	LKHCKEMLEQ I	KDKEIELLRK	LTETV*			
The following p	artial DNA se	quence was	identified in	1 N. meninoi	tidis <seo id<="" td=""><td>2387&gt;</td></seo>	2387>
a710.seq		•			mans and m	2301~.
ī	ATGGAAACCC A	ACGAAAAAAT	СССССТСВТС	CCCCNAMMCA	3/113 3 3 moome	
51	CCAGGAGGAT A	ATGGCGGAAA	ACCTCCCCAT	CTCCCCACCC	ATAAATGGTC	
101	AAATCGAACG A	AGGCGAAACG	CACTUCAATA	WCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GGGTATGCCA	
151	GCGCAGATTT 7		TATCTCCCAC	TCCCGCGTTT	GGAGCAGTTG	
201	CGGGATGGTG T	TOLLEGITOR	ACCAMEMOCA	TIGCTCAAAT	CGGGCGGCGG	
251	CAATCTATAC	CCCCCACCAT	CCDECNICOED	TACCAACAGC	GGGGAATTTG	
301	CAATCTATAC C	CTCTABAL	A A TONGGTA	AAGCTGGATT	TGTTAAAATG	
351	GAATTAAAAC A	ACTGIAAAGA .	AATGTTGGAA	CACAAAGACA	AAGAAATCGA	
This correspond	s to the amino	acid sequer	ice <seo it<="" td=""><td>2388 ORE</td><td>710 2&gt;</td><td></td></seo>	2388 ORE	710 2>	
a710.pep		1	<b> </b>	2500, OIG	/10.a/.	
1	METHEKIRLM R	ELNKWSOED	MARKIAMOAC	CVAVIDDADE		
	AQIFKIDMWD L	T.K.SCCCCWA .	LOINDINDING	GIARLERGET	QLNIPRLEQL	
101	ELKHCKEMLE H	KDKETELLR 1	KI WEWAY*	GEFALYTAOD	ASGKAGFVKM	
a710/m710 85.	7% identity in	126 aa ove	rlap			
		0 20		40	50	60
a710.pep	METHEKIRL	MRELNKWSQEI	DMAEKLAMSAG	GYAKIERGETO	LNIPRLEQLAQIF	TET DATED
	1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1	1 {   1 {   1   1   1   1   1   1   1	1111111111111	11111
m710	METHEKIRL	MRELNKWSQEI	DMAEKLAMSAG	GYAKIERGETO	LNIPRLEQLAQIF	KIDMMD
	1	0 20	30	40	50	60
					•	30
	7			100	110	120
a710.pep	LLKSGGGGM	VLQINDVDTNS	GEFAIYTAOD	ASGKAGEVKME	KHCKEMI BUKDKI	PTPTTD
	1111111	1:111: 1::	1::1:1:: 1:	: 1   1 •     1		
m710	LLKSGGGGM	VFQINEGDSG-	GDIALYASGD	/SMKIEFLKMF	LKHCKEMLEQKDKI	 ETEITE
	7	0 8	30 90	100	110	TEPTK
				100	110	
a710.pep	KLTETVX					

والمنازية المجاري فالأرواط والمرازين

```
g711.seq not found
```

g711.pep not found

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2389>: m711.seq

```
ATGCCCGCGC CTGATTTGGG ATTTGCCTTA AGTCTGCCGC CAAAAAAGGC
     AATCGAGTGG CTGGAAAGTA AAAAGGTTAC GGCGGAGAGC TACCGCAATC
 101 TGACAGCCTC CGAAATTGCC AAAGTCTATA CGATTGCCCG CATGACCGAC
     TTGGATATGC TCAACGACAT CAAAACTTCG ATGGTTGAAT CGGCAAAAAG
      TGGACAGTCG TTTGACGATT GGCGAAAAGG TATCTTGAAT CTGCTCAGCA
 251 ACAAGGGCTG GCTGCATCCG AACGGGCATA ACGGTAAGGA TATCATCGAC
 301 CCAGCCACCG GCGAGGTATT CGGTTCGCCG CGGAGGTTGG AGACGATTTA
 351 CCGTACCAAT ATGCAAACTG CCTACAACGC CGGTCAATAT CAAGGATATA
 401 TGGCAAATAT TGATGCACGA CCTTATTGGA TGTATGACGC GGTAGGCGAC
 451 AGCCGCACCC GTCCGGCGCA TTCGGCAATA GACGGGCTGG TGTACCGCTA
      CGACGACCCG TTTTGGGCAA CGTTTTACCC GCCCAACGGC TACAACTGCC
 501
 551 GCTGCTCGGT CATCGCGCTG TCGGAGCGGG ATGTGGAACG CCAGGGGCGG
 601 ATTGTTGGGC AAAGCACGGC GGACAATCTG GTCGAGACCC ATAAAATCTA
 651 CAACAAAAA GGCGATACTT ATCTGACCCT TGCCTATAAA GCACCGGATG
 701
     GCAGTCTGTA CACGACCGAT CGAGGATTTG ATTACAACGC CGGACGAATG
      AACTACCGCC CCGATTTAGA CAAGTACGAC CGTGCGTTGG CGCATCAATT
 801 TGCCAAAGCG GAAATGGGTG GTGCGGATTT TAAAACCAGC TTTAAACAGC
 851 TTGAAAAAGA GTTTTATGAA GTCAAGCAAC GTTTGGATAT TGATGGCAAG
 901 CCCGATAAAG AGCAGAAAAT CAAAATCCGA AATGCGCTAT CAAGACAGCT
 951 TAAATTTGCT GCGGGTGTAT TGAGCAAGGA AACGCAAGAA TTGGCAGGTA
1001 TGACACGAGC GACGGTGTGG CTGTCTGATG ATACGTTGGT TAAACAGGTA
     GACAGCCGTG AGGGGCAGAA TTTCGATGAC TCCTACTATG CTTTTTTGCC
     GGATATGCTG CAAAACCCTG AACATGTCAT CCGCGACAAT CGTGAATTGA
1101
1151 TTTTCACAGC TCGCTATAAA GGCTCGGCAT TGTGGGCAGT TTTAAAATAT
1201 ATTAAGGAGG TGGATGAGAT TTATCTACAG TCGTACCGAA TCAGTAACGA
1251 CAAAGAGATT GCCAAATTTA TGGCGAAGAA GAAAGTATTG AAATAG
```

### This corresponds to the amino acid sequence <SEQ ID 2390; ORF 711>: m711.pep

```
1 MPAPDLGFAL SLPPKKAIEW LESKKVTAES YRNLTASEIA KVYTIARMTD
51 LDMLNDIKTS MVESAKSGQS FDDWRKGILN LLSNKGWLHP NGHNGKDIID
101 PATGEVFGSP RRLETIYRTN MQTAYNAGQY QGYMANIDAR PYWMYDAVGD
151 SRTRPAHSAI DGLVYRYDDP FWATFYPPNG YNCRCSVIAL SERDVERQGR
201 IVGQSTADNL VETHKIYNKK GDTYLTLAYK APDGSLYTTD RGFDYNAGRM
251 NYRPDLDKYD RALAHQFAKA EMGGADFKTS FKQLEKEFYE VKQRLDIDGK
301 PDKEQKIKIR NALSRQLKFA AGVLSKETQE LAGMTRATVW LSDDTLVKQV
351 DSREGQNFDD SYYAFLPDML QNPEHVIRDN RELIFTARYK GSALWAVLKY
401 IKEVDEIYLQ SYRISNDKEI AKFMAKKKVL K*
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2391>: a711.seq

```
ATGCCCGCGC CTGATTTGGG ATTTGCCTTA AGTCTGCCGC CAAAAAAGGC
    AATCGAGTGG CTGGAAAGTA AAAAGGTTAC GGCGGAGAGC TACCGCAATC
101
    TGACAGCCTC CGAAATTGCC AAAGTCTATA CGATTGCCCG CATGACCGAC
    TTGGATATGC TCAACGACAT CAAAACTTCG ATGGTTGAAT CGGCAAAAAG
    TGGACAGTCG TTTGACGATT GGCGAAAAGG TATCTTGAAT CTGCTCAGCA
251 ACAAGGGCTG GCTGCATCCG AACGGGCATA ACGGTAAGGA TATCATCGAC
    CCAGCCACCG GCGAGGTATT CGGTTCGCCG CGGAGGTTGG AGACGATTTA
    CCGTACCAAC ATGCAAACTG CCTACAACGC CGGTCAATAT CAAGGATATA
351
    TGGCAAATAT TGATGCACGA CCTTATTGGA TGTATGACGC GGTAGGCGAC
401
    AGCCGCACCC GTCCGGCGCA TTCGGCAATA GACGGGCTGG TGTACCGCTA
451
     CGACGACCCG TTTTGGGCAA CGTTTTACCC GCCCAACGGC TACAACTGCC
501
    GTTGCTCGGT CATCGCGCTG TCGGAGCGGG ATGTGGAACG CCAGGGGCGG
551
    ATTGTCGGGC AAAGCACGTC GGACAATCTT GTTGAGACCC ATAAAATCTA
    CAACAAAAA GGCGATACTT ATCTGACCCT TGCCTATAAA GCACCGGATG
651
701
    GCAGTCTGTA CACGACCGAT CGAGGATTTG ATTACAACGC CGGACGAATG
    AACTACCGCC CCGATTTAGA CAAGTACGAC CGTGCGTTGG CGCATCAATT
    TGCCAAAGCG GAAATGGGTG GTGCGGATTT TAAAACCAGC TTTAAACAGC
801
851 TTGAAAAAGA GTTTTATGAA GTCAAGCAAC GTTTGGATAT TGATGGCAAG
```

BNSDOCID: <WO___9957280A2_|_>



901						
701	CCCGATAAAG AG	CAGAAAAT C	AAAATCCGA	AATGCGCTAT	CAACACACCT	
951	TAAATTTGCT GCC	GGTGTAT T	GAGCAAGGA	AACCCAACAA	TTCCCACCTA	
1001	TGACACGAGC GAC	COTOTAL C	TCTCTCTCTC	AMUNACOCAMOAM	TIGGCAGGTA	
1051	CACACCCCTC AAC	CCCACAA	TOICIGALG	ATACGTTGGT	TAAACAGGTA	
	GACAGCCGTG AAG	GGCAGAA T	TTCGATGAC	TCCTACTATG	CTTTTTTGCC	
1101	GGATATGCTG CA	AACCCTG A	ACATGTCAT	CCGCGACAAT	CGTGAATTGA	
1151	TTTTCACAGC TCG	CTATAAA G	GCTCGGCAT	TGTGGGCAGT	TTTAAAATAT	
1201	ATTAAGGAGG TGG	ATGAGAT T	TATCTACAG	TCGTACCGAA	TCAGTAACGA	
1251	CAAAGAGATT GCC	AAATTTA T	GGCGAAGAA	GAAAGTATTG	AAATAG	
This correspond	s to the amino ac	rid seguenc	A < CEO II	1 2202. ODI	711.~	
	s to the allino ac	na soquenc	c /SEQ II	2392, OK	- /11.a>:	
a711.pep						
1	MPAPDLGFAL SLF	PKKAIEW L	ESKKVTAES	YRNLTASEIA	KVYTIARMTD	
51	LDMLNDIKTS MVE	SAKSGQS FI	DDWRKGILN	LLSNKGWLHP	NGHNGKDIID	
101	PATGEVFGSP RRL	ETIYRTN MO	TAYNAGOY	OGYMANIDAR	PYWMYDAVCD	
<b>1</b> 51	SRTRPAHSAI DGL	VYRYDDP FV	VATEYPPNG	YNCRCSVIAL	SEPTIMENOCE	
201	IVGQSTSDNL VET	HKIYNKK CI	איע מ זידי איער	Y DUCGI AMMU	DONDVEROOR	
251	NYRPDLDKYD RAL	VHUEVRY EX	ACCADEMENT	EROT EXELLID	RGFDYNAGRM	
301	DONEONIAL MAI	CDOINER BE	GGADEKTS	FKOLEKEFYE	VKQRLDIDGK	
	PDKEQKIKIR NAL	SKQLKIA AC	SVLSKETQE	LAGMTRATVW	LSDDTLVKQV	
351	DSREGONFDD SYY	AFLPDML QN	NPEHVIRDN	RELIFTARYK	GSALWAVLKY	
401	IKEVDEIYLQ SYR	ISNDKEI AF	KFMAKKKVL	K*		
a711/m711 99	.8% identity in 4	31 aa over	lan			
	10	20	-	4.0		
a711.pep			30	40	50	60
a/ii.pep	MPAPDLGEALS	LPPKKALEWI	ESKKVTAES	YRNLTASEIAF	(VYTIARMTDLD	MLNDIKTS
	11111111111	1111111111		*		
m711	MPAPDLGFALS	LPPKKAIEWI	ESKKVTAES	YRNLTASEIAF	VYTIARMTDLD	MLNDIKTS
	10	20	30	40	50	60
						•
	70	80	90	100	110	120
a711.pep	MVESAKSGQSF	DDWRKGILNI	LSNKGWI.HP	NGHNGKDIIDE	ATGEVECCEDED	TZU
			11111111			PEITIKIN
m711	MVESAKSGOSF	DWRKGTINI	TOMPOMEDIA	I I I I I I I I I I I I I I I I I I I	777777777777	
	70	80	90			
	70	80	90	100	110	120
	130	140	4.50			
. 7.1.1		140	150	160	170	180
a711.pep	MOTAYNAGOYO	SYMANIDARP	YWMYDAVGD	SRTRPAHSAID	GLVYRYDDPFW?	TFYPPNG
		:				TELLIA
m711						
	MQTAYNAGQYQ	3YMANIDARP	YWMYDAVGDS	SRTRPAHSAID	GLVYRYDDPFWZ	TFYPPNG
	MQTAYNAGQYQO 130	GYMANIDARP 140	YWMYDAVGDS 150	SRTRPAHSAID	GLVYRYDDPFW <i>F</i>	ATFYPPNG
	MQTAYNAGQYQ	SYMANIDARP	YWMYDAVGDS	SRTRPAHSAID 160	GLVYRYDDPFWA 170	ATFYPPNG 180
	MQTAYNAGQYQ	SYMANIDARP	YWMYDAVGDS 150	SRTRPAHSAID 160	GLVYRYDDPFW; 170	ATFYPPNG 180
	MQTAYNAGQYQO 130	GYMANIDARP 140 200	YWMYDAVGDS 150 210	SRTRPAHSAID 160 220	GLVYRYDDPFW; 170	ATFYPPNG 180
a711.pep	MQTAYNAGQYQO 130 190 YNCRCSVIALSI	GYMANIDARP 140 200 ERDVERQGRI	YWMYDAVGDS 150 210 VGQSTSDNLY	SRTRPAHSAID 160 220 VETHKIYNKKG	GLVYRYDDPFW; 170 230 DTYLTLAYKAP;	ATFYPPNG 180 240
a711.pep	MQTAYNAGQYQO 130 190 YNCRCSVIALSI	GYMANIDARP 140 200 ERDVERQGRI	YWMYDAVGDS 150 210 VGQSTSDNL\	SRTRPAHSAID 160 220 VETHKIYNKKG	GLVYRYDDPFWA 170 230 DTYLTLAYKAPI	ATFYPPNG 180 240 OGSLYTTD
	MQTAYNAGQYQO 130 190 YNCRCSVIALSI           YNCRCSVIALSI	200 ERDVERQGRI	YWMYDAVGDS 150 210 VGQSTSDNL\     :    VGQSTADNL\	SRTRPAHSAID 160 220 /ETHKIYNKKG 	GLVYRYDDPFWA 170 230 DTYLTLAYKAPE 	ATFYPPNG 180 240 OGSLYTTD
a711.pep	MQTAYNAGQYQO 130 190 YNCRCSVIALSI	GYMANIDARP 140 200 ERDVERQGRI	YWMYDAVGDS 150 210 VGQSTSDNL\	SRTRPAHSAID 160 220 VETHKIYNKKG	GLVYRYDDPFWA 170 230 DTYLTLAYKAPI	ATFYPPNG 180 240 OGSLYTTD
a711.pep	MQTAYNAGQYQO 130 190 YNCRCSVIALSI           YNCRCSVIALSI 190	200 ERDVERQGRI IIIIIII ERDVERQGRI 200	YWMYDAVGDS 150 210 VGQSTSDNLY      :    VGQSTADNLY 210	SRTRPAHSAID 160 220 /ETHKIYNKKG            ETHKIYNKKG 220	GLVYRYDDPFWA 170 230 DTYLTLAYKAPE 	ATFYPPNG 180 240 PGSLYTTD 
a711.pep m711	MQTAYNAGQYQO 130 190 YNCRCSVIALSI           YNCRCSVIALSI 190	200 ERDVERQGRI IIIIIIIERDVERQGRI 200 200 200	YWMYDAVGDS 150 210 VGQSTSDNLX     :    VGQSTADNLX 210	SRTRPAHSAID 160 220 /ETHKIYNKKG           /ETHKIYNKKG 220	GLVYRYDDPFWA 170 230 DTYLTLAYKAPI           DTYLTLAYKAPI 230	ATFYPPNG 180 240 OGSLYTTD !!!!!! OGSLYTTD 240
a711.pep	MQTAYNAGQYQO 130  190 YNCRCSVIALSI          YNCRCSVIALSI 190 250 RGFDYNAGRMN	200 ERDVERQGRI EIIIIIIIERDVERQGRI 200 260 ERPDLDKYDR	YWMYDAVGDS 150 210 VGQSTSDNLV     :    VGQSTADNLV 210 270 ALAHQFAKAE	SRTRPAHSAID 160 220 /ETHKIYNKKG          /ETHKIYNKKG 220 280	GLVYRYDDPFWA 170 230 DTYLTLAYKAPI          DTYLTLAYKAPI 230 290 KOLEKEFYEVKO	240 OGSLYTTD !!!!!! OGSLYTTD 240
a711.pep m711 a711.pep	MQTAYNAGQYQQ 130 190 YNCRCSVIALSI           YNCRCSVIALSI 190 250 RGFDYNAGRMNY	200 ERDVERQGRI IIIIIIIIIERDVERQGRI 200 260 ERPDLDKYDR	YWMYDAVGDS 150 210 VGQSTSDNLY      :    VGQSTADNLY 210 270 ALAHQFAKAE	ERTRPAHSAID 160 220 /ETHKIYNKKG          /ETHKIYNKKG 220 280 EMGGADFKTSF	GLVYRYDDPFWA 170  230  DTYLTLAYKAPI          DTYLTLAYKAPI 230  290  KQLEKEFYEVKÇ	ATFYPPNG 180 240 OGSLYTTD !!!!!! OGSLYTTD 240 300 ORLDIDGK
a711.pep m711	MQTAYNAGQYQQ 130 190 YNCRCSVIALSI           YNCRCSVIALSI 190 250 RGFDYNAGRMNY	200 ERDVERQGRI IIIIIIIIIERDVERQGRI 200 260 ERPDLDKYDR	YWMYDAVGDS 150 210 VGQSTSDNLY      :    VGQSTADNLY 210 270 ALAHQFAKAE	ERTRPAHSAID 160 220 /ETHKIYNKKG          /ETHKIYNKKG 220 280 EMGGADFKTSF	GLVYRYDDPFWA 170  230  DTYLTLAYKAPI          DTYLTLAYKAPI 230  290  KQLEKEFYEVKÇ	ATFYPPNG 180 240 OGSLYTTD !!!!!! OGSLYTTD 240 300 ORLDIDGK
a711.pep m711 a711.pep	MQTAYNAGQYQO 130  190 YNCRCSVIALSI          YNCRCSVIALSI 190 250 RGFDYNAGRMN	200 ERDVERQGRI IIIIIIIIIERDVERQGRI 200 260 ERPDLDKYDR	YWMYDAVGDS 150 210 VGQSTSDNLY      :    VGQSTADNLY 210 270 ALAHQFAKAE	SRTRPAHSAID 160  220 /ETHKIYNKKG           /ETHKIYNKKG 220  280  EMGGADFKTSF	GLVYRYDDPFWF 170 230 DTYLTLAYKAPD IIIIIIIIIIIII DTYLTLAYKAPD 230 290 KQLEKEFYEVKÇ	ATFYPPNG 180 240 DGSLYTTD         DGSLYTTD 240 300 PRLDIDGK
a711.pep m711 a711.pep	MQTAYNAGQYQQ 130 190 YNCRCSVIALSI           YNCRCSVIALSI 190 250 RGFDYNAGRMNY	200 ERDVERQGRI ERDVERQGRI ERDVERQGRI 200 260 (RPDLDKYDR	YWMYDAVGDS 150  210  VGQSTSDNLV      :    VGQSTADNLV 210  270  ALAHQFAKAE	ERTRPAHSAID 160 220 /ETHKIYNKKG          /ETHKIYNKKG 220 280 EMGGADFKTSF	GLVYRYDDPFWA 170  230  DTYLTLAYKAPI          DTYLTLAYKAPI 230  290  KQLEKEFYEVKÇ	ATFYPPNG 180 240 OGSLYTTD !!!!!! OGSLYTTD 240 300 ORLDIDGK
a711.pep m711 a711.pep	MQTAYNAGQYQO 130  190 YNCRCSVIALSE            YNCRCSVIALSE 190  250 RGFDYNAGRMNY             RGFDYNAGRMNY	200 ERDVERQGRI IIIIIIIIERDVERQGRI 200 260 RPDLDKYDR IIIIIIII	YWMYDAVGDS 150  210  VGQSTSDNLY           VGQSTADNLY 210  270  ALAHQFAKAE	SRTRPAHSAID 160  220 /ETHKIYNKKG           /ETHKIYNKKG 220  280  CMGGADFKTSF	GLVYRYDDPFWF 170  230  DTYLTLAYKAPI           DTYLTLAYKAPI 230  290  KQLEKEFYEVKC	ATFYPPNG 180 240 OGSLYTTD !!!!!! OGSLYTTD 240 300 ORLDIDGK !!!!!!
a711.pep m711 a711.pep m711	MQTAYNAGQYQO 130  190 YNCRCSVIALSI           YNCRCSVIALSI 190  250 RGFDYNAGRMNY            RGFDYNAGRMNY 250  310	200 ERDVERQGRI IIIIIIIIE ERDVERQGRI 200 260 ERPDLDKYDR IIIIIIII	YWMYDAVGDS 150  210 VGQSTSDNLY           VGQSTADNLY 210  270 ALAHQFAKAE           ALAHQFAKAE 270  330	ERTRPAHSAID 160  220 /ETHKIYNKKG          /ETHKIYNKKG 220  280  EMGGADFKTSF          EMGGADFKTSF 280  340	GLVYRYDDPFWA 170  230  DTYLTLAYKAPI           DTYLTLAYKAPI 230  290  KQLEKEFYEVKÇ             KQLEKEFYEVKÇ 290	240 0GSLYTTD         0GSLYTTD 240 300 0RLDIDGK         0RLDIDGK 300
a711.pep m711 a711.pep	MQTAYNAGQYQO 130  190 YNCRCSVIALSI           YNCRCSVIALSI 190  250 RGFDYNAGRMNY            RGFDYNAGRMNY 250  310 PDKEQKIKIRNE	200 ERDVERQGRI IIIIIIIIERDVERQGRI 200 260 ERPDLDKYDR IIIIIIIIIERDLDKYDR 260 320 ALSRQLKFAA	YWMYDAVGDS 150  210  VGQSTSDNLV      :    VGQSTADNLV 210  270  ALAHQFAKAE            ALAHQFAKAE 270  330  GVLSKETOEI	ERTRPAHSAID 160  220 VETHKIYNKKG          VETHKIYNKKG 220  280  EMGGADFKTSF          EMGGADFKTSF 280  340  AGMTRATVWI	GLVYRYDDPFWA 170  230  DTYLTLAYKAPI           DTYLTLAYKAPI 230  290  KQLEKEFYEVKQ 290  350  SDDTLVKOVDSR	240 240 240 240 240 240 240 240 300 240 240 300 240 240 300 360 360
a711.pep m711 a711.pep m711	MQTAYNAGQYQQ 130 190 YNCRCSVIALSI            YNCRCSVIALSI 190 250 RGFDYNAGRMNY            RGFDYNAGRMNY 250 310 PDKEQKIKIRNE	200 ERDVERQGRI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	YWMYDAVGDS 150  210 VGQSTSDNLV           VGQSTADNLV 210  270 ALAHQFAKAE            ALAHQFAKAE 270  330 GVLSKETQEI	SRTRPAHSAID 160  220 VETHKIYNKKG          VETHKIYNKKG 220  280  CMGGADFKTSF           CMGGADFKTSF 280  340  AGMTRATVWL	GLVYRYDDPFWF 170  230  DTYLTLAYKAPI           DTYLTLAYKAPI 230  290  KQLEKEFYEVKQ 1           KQLEKEFYEVKQ 290  350  SDDTLVKQVDSR	240 240 240 240 240 240 240 240 300 240 240 300 240 260 270 360 EGQNFDD
a711.pep m711 a711.pep m711	MQTAYNAGQYQO 130  190 YNCRCSVIALSI           YNCRCSVIALSI 190  250 RGFDYNAGRMNY            RGFDYNAGRMNY 250  310 PDKEQKIKIRNE	200 ERDVERQGRI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	YWMYDAVGDS 150  210 VGQSTSDNLV           VGQSTADNLV 210  270 ALAHQFAKAE            ALAHQFAKAE             SVLSKETQEI	SRTRPAHSAID 160  220 VETHKIYNKKG           VETHKIYNKKG 220  280  CMGGADFKTSF            CMGGADFKTSF 280  340  AGMTRATVWL	GLVYRYDDPFWF 170  230  DTYLTLAYKAPI           DTYLTLAYKAPI 230  290  KQLEKEFYEVKQ 1           KQLEKEFYEVKQ 290  350  SDDTLVKQVDSR	240 240 240 240 240 240 240 240 300 240 240 300 240 260 270 360 EGQNFDD
a711.pep m711 a711.pep m711	MQTAYNAGQYQQ 130 190 YNCRCSVIALSI            YNCRCSVIALSI 190 250 RGFDYNAGRMNY            RGFDYNAGRMNY 250 310 PDKEQKIKIRNE	200 ERDVERQGRI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	YWMYDAVGDS 150  210 VGQSTSDNLV           VGQSTADNLV 210  270 ALAHQFAKAE            ALAHQFAKAE 270  330 GVLSKETQEI	SRTRPAHSAID 160  220 VETHKIYNKKG          VETHKIYNKKG 220  280  CMGGADFKTSF           CMGGADFKTSF 280  340  AGMTRATVWL	GLVYRYDDPFWF 170  230  DTYLTLAYKAPI           DTYLTLAYKAPI 230  290  KQLEKEFYEVKQ 1           KQLEKEFYEVKQ 290  350  SDDTLVKQVDSR	240 240 240 240 240 240 240 240 300 240 240 300 240 260 270 360 EGQNFDD
a711.pep m711 a711.pep m711	MQTAYNAGQYQO 130  190 YNCRCSVIALSI            YNCRCSVIALSI 190  250 RGFDYNAGRMNY             RGFDYNAGRMNY 250  310 PDKEQKIKIRNE            PDKEQKIKIRNE 310	ZYMANIDARP 140  200  ERDVERQGRI           ERDVERQGRI 200  260  RPDLDKYDR           RPDLDKYDR 260  320  LSRQLKFAA( 320	YWMYDAVGDS 150  210 VGQSTSDNLV           VGQSTADNLV 210  270 ALAHQFAKAE            ALAHQFAKAE             SVLSKETQEI            GVLSKETQEI 330	SRTRPAHSAID 160  220 VETHKIYNKKG           VETHKIYNKKG 220  280  CMGGADFKTSF            CMGGADFKTSF 280  340  AGMTRATVWL	GLVYRYDDPFWA 170  230  DTYLTLAYKAPI           DTYLTLAYKAPI 230  290  KQLEKEFYEVKQ             KQLEKEFYEVKQ 290  350  SDDTLVKQVDSR	ATFYPPNG 180 240 OGSLYTTD IIIIII OGSLYTTD 240 300 ORLDIDGK IIIIIII ORLDIDGK 300 GRLDIDGK IIIIIIII ORLDIDGK IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
a711.pep m711 a711.pep m711 a711.pep m711	MQTAYNAGQYQQ 130 190 YNCRCSVIALSI           YNCRCSVIALSI 190 250 RGFDYNAGRMNY 250 310 PDKEQKIKIRNI            PDKEQKIKIRNI 310 370	200 ERDVERQGRI           ERDVERQGRI           ERDVERQGRI 200 260 (RPDLDKYDR           (RPDLDKYDR 260 320 LSRQLKFAAG           LSRQLKFAAG 320 380	YWMYDAVGDS 150  210  VGQSTSDNLV     :    VGQSTADNLV 210  270 ALAHQFAKAE            ALAHQFAKAE             SVLSKETQEI 330  390	SRTRPAHSAID 160  220 /ETHKIYNKKG           /ETHKIYNKKG 220  280  MGGADFKTSF           MGGADFKTSF 280  340  AGMTRATVWL           AGMTRATVWL	GLVYRYDDPFWF 170  230  DTYLTLAYKAPI           DTYLTLAYKAPI 230  290  KQLEKEFYEVKQ              KQLEKEFYEVKQ 290  350  SDDTLVKQVDSR              SDDTLVKQVDSR 350	ATFYPPNG 180 240 CGSLYTTD 111111 CGSLYTTD 240 300 CRLDIDGK 111111 CRLDIDGK 300 360 EGQNFDD 111111 EGQNFDD 360
a711.pep m711 a711.pep m711	MQTAYNAGQYQQ 130 190 YNCRCSVIALSI           YNCRCSVIALSI 190 250 RGFDYNAGRMNY 250 310 PDKEQKIKIRNA            PDKEQKIKIRNA 310 370 SYYAFLPDMLQN	200 ERDVERQGRI IIIIIIIII ERDVERQGRI 200 260 RPDLDKYDR 11111111 RPDLDKYDR 260 320 ALSRQLKFAAG 111111111 ALSRQLKFAAG 320 380	YWMYDAVGDS 150  210  VGQSTSDNLV     :     VGQSTADNLV 210  270  ALAHQFAKAE             ALAHQFAKAE             SVLSKETQEI            GVLSKETQEI 330  390 ELIFTARYKG	SRTRPAHSAID 160  220 /ETHKIYNKKG           /ETHKIYNKKG 220  280  MGGADFKTSF           MGGADFKTSF 280  340  AGMTRATVWL           AGMTRATVWL 340  400	GLVYRYDDPFWA 170  230  DTYLTLAYKAPI            DTYLTLAYKAPI 230  290  KQLEKEFYEVKQ              KQLEKEFYEVKQ 290  350  SDDTLVKQVDSR              SDDTLVKQVDSR 350  410	ATFYPPNG 180 240 OGSLYTTD !!!!!! OGSLYTTD 240 300 ORLDIDGK !!!!!! ORLDIDGK 300 GRLDIDGK 1!!!!! ORLDIDGK 300 360 EGQNFDD !!!!!! EGQNFDD 360 420
a711.pep m711 a711.pep m711 a711.pep m711	MQTAYNAGQYQQ 130 190 YNCRCSVIALSI           YNCRCSVIALSI 190 250 RGFDYNAGRMNY 250 310 PDKEQKIKIRNA             PDKEQKIKIRNA 310 370 SYYAFLPDMLQN	ZOO ERDVERQGRI ERDVERQGRI ERDVERQGRI ZOO  260 RPDLDKYDR 260 320 ALSRQLKFAAG 320 ALSRQLKFAAG 320 380 RPEHVIRDNRI	YWMYDAVGDS 150  210  VGQSTSDNLY           VGQSTADNLY 210  270  ALAHQFAKAE             ALAHQFAKAE             SVLSKETQEI            GVLSKETQEI 330  390 ELIFTARYKG	SRTRPAHSAID  220  VETHKIYNKKG            VETHKIYNKKG  220  280  CMGGADFKTSF            CMGGADFKTSF  280  340  AGMTRATVWL           AGMTRATVWL  340  400  SSALWAVLKYII	GLVYRYDDPFWA 170  230  DTYLTLAYKAPI            DTYLTLAYKAPI 230  290  KQLEKEFYEVKQ              KQLEKEFYEVKQ 290  350  SDDTLVKQVDSR              SDDTLVKQVDSR 350  410  KEVDEIYLQSYR	ATFYPPNG 180 240 OGSLYTTD !!!!!! OGSLYTTD 240 300 ORLDIDGK !!!!! ORLDIDGK 300 AGO EGQNFDD !!!!!! EGQNFDD 360 420 ISNDKEI
a711.pep m711 a711.pep m711 a711.pep m711	MQTAYNAGQYQQ 130 190 YNCRCSVIALSI           YNCRCSVIALSI 190 250 RGFDYNAGRMNY 250 310 PDKEQKIKIRNA             PDKEQKIKIRNA 310 370 SYYAFLPDMLQN 	ZOO ERDVERQGRI ERDVERQGRI ERDVERQGRI ZOO  260 RPDLDKYDR 260 320 ALSRQLKFAAG 320 ALSRQLKFAAG 320 380 RPEHVIRDNRI	YWMYDAVGDS 150  210  VGQSTSDNLY           VGQSTADNLY 210  270  ALAHQFAKAE             ALAHQFAKAE             SVLSKETQEI            GVLSKETQEI 330  390 ELIFTARYKG	SRTRPAHSAID  220  VETHKIYNKKG            VETHKIYNKKG  220  280  CMGGADFKTSF            CMGGADFKTSF  280  340  AGMTRATVWL           AGMTRATVWL  340  400  SSALWAVLKYII	GLVYRYDDPFWA 170  230  DTYLTLAYKAPI            DTYLTLAYKAPI 230  290  KQLEKEFYEVKQ              KQLEKEFYEVKQ 290  350  SDDTLVKQVDSR              SDDTLVKQVDSR 350  410  KEVDEIYLQSYR	ATFYPPNG 180 240 OGSLYTTD !!!!!! OGSLYTTD 240 300 ORLDIDGK !!!!! ORLDIDGK 300 AGO EGQNFDD !!!!!! EGQNFDD 360 420 ISNDKEI
a711.pep m711 a711.pep m711 a711.pep m711	MQTAYNAGQYQQ 130 190 YNCRCSVIALSI           YNCRCSVIALSI 190 250 RGFDYNAGRMNY 250 310 PDKEQKIKIRNA            PDKEQKIKIRNA 310 370 SYYAFLPDMLQN	ZOO ERDVERQGRI ERDVERQGRI ERDVERQGRI ZOO  260 RPDLDKYDR 260 320 ALSRQLKFAAG 320 ALSRQLKFAAG 320 380 RPEHVIRDNRI	YWMYDAVGDS 150  210  VGQSTSDNLY           VGQSTADNLY 210  270  ALAHQFAKAE             ALAHQFAKAE             SVLSKETQEI            GVLSKETQEI 330  390 ELIFTARYKG	SRTRPAHSAID  220  VETHKIYNKKG            VETHKIYNKKG  220  280  CMGGADFKTSF            CMGGADFKTSF  280  340  AGMTRATVWL           AGMTRATVWL  340  400  SSALWAVLKYII	GLVYRYDDPFWA 170  230  DTYLTLAYKAPI            DTYLTLAYKAPI 230  290  KQLEKEFYEVKQ              KQLEKEFYEVKQ 290  350  SDDTLVKQVDSR              SDDTLVKQVDSR 350  410  KEVDEIYLQSYR	ATFYPPNG 180 240 OGSLYTTD !!!!!! OGSLYTTD 240 300 ORLDIDGK !!!!! ORLDIDGK 300 AGO EGQNFDD !!!!!! EGQNFDD 360 420 ISNDKEI

a711.pep

AKFMAKKKVLKX |||||||||| AKFMAKKKVLKX

m711

430

2.1

BNSDOCID: <WO___9957280A2_l_>

ك بهدّ بازد ۱۹۰۰ بازد ۱۹۹۶ د در معدل در د



g712.seq not found yet

g712.pep not found yet

WO 99/57280

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2393>: m712.seq

```
ATGATGCCCC ATATTGATTT TGACACGATT CCGGGCAGCA TCCGCGTGCC
      CGGGCAGTAT ATTGAATTTA ACACCCGCAA TGCCGTACAA GGTTTGCCGC
      AAAATCCGCA AAAGGTATTG ATGGTTGCAC CCATGCTGAC CGCGGGCATA
 101
      CAGCCCGCCT TAGAGCCGGT GCAACTATTT AGCGATGCCG AGGCGGCCGA
 151
      TTTGTTCGGA CAAGGCTCGC TGGCGCATTT GATGGTGCGC CAAGCATTTG
 201
 251 CCAACAACCC TTATTTGGAT TTGACCGTTA TCGGTATTGC CGACCACAGC
 301 GCAGGCGTGC AGGCAACCGC AACCGTTACC CTTTCCGGCA CGGCCACCGC
 351 GCCGGGCGTG GTGGAAATCA CGATTGGCGG CAAGCAGGTA AGCACGGCCG
      TTAACACCGG CGAGACCGCC GCCACAGTGG CAGACCGTCT GAAAACCGCC
 401
 451 ATCACTGCCG CCGATGTAAC CGTTACCGCA TCCGGCAGCG GCGCAGCCGT
     TACGCTGACG GCCAAACACA AAGGCGAGAT CGGCAACGAG AGCGGCTTAA
 501
 551 CCGTGAGCAC CGGCAATACC GGCCTAACTT ATCAAGCCAA TGCCTTTACC
 601 GGCGGTGCCA AAAATGCGGA CATTGCCACG GCCTTGTCCA AAGTGGCGGG
 651 CAAGCATTAT CACATTATTT GCAGCCCGTT TAGCGATGAC GCCAACGCCA
      AAGCCTTGAG CAACCATATT ACCAACGTAT CCAACGCCAT CGAGCAGCGC
     GGCTGTATCG GCGTATTGGG TATGAGTGCG GCCTTGAGCA CGGCCACCAC
 751
     CGCTACCGGC GAAATCAACG ACGGCCGCAT GACCTGTGCT TGGTACAAAG
 801
      GTGCGGTAGA GCCAAACGGC ATCATCGCCG CAGGTTATGC GGCGGTGTTG
 851
     GCCTTTGAAG AAGACCCTGC CAAGCCGCTG AACACGCTGG AAATCAAAGG
 901
     GCTGGCCGTT ACACCTGATG CGCAATGGCC GCTGTTTGCA GAATGCAACA
 951
     ATGCGCTGTA CAACGGCTTG ACCCCGCTCA CAGTGGTCAA CAACCGCGTG
1001
     CAGATTATGC GTGCCGTATC CACCTATACC AAGTCGGCCA ACAACACCGA
1051
1101
     CGACCCGGCA CTACTCGACA TTACCACCAT CCGCACGCTG GATTATGTGC
     GCCGCAGCGT TAAAGAGCGC ATTGCCCTGC GTTTTCCGCG CGACAAATTG
1151
     AGCGACCGCC TGCTGCCCAA GGTTAAGAGC GAGATTTTGG ACGTGCTGAT
1201
1251
     TAAGCTCGAC CAAGCCGAAA TCATCGAAAA CGCCGAGGCC AACAAAGGCA
     AGCTGGTGGT GGCGCGTGCG CAAAACGACC CCAACCGTGT TAATGCCATT
1301
1351
     ATCCCCGCCG ATGTGGTCAA CGGCCTGCAC GTCTTTGCCG GGCGCATTGA
1401 TTTGATTTTG TAA
```

### This corresponds to the amino acid sequence <SEQ ID 2394; ORF 712>: m712.pep

```
1 MMPHIDFDTI PGSIRVPGQY IEFNTRNAVQ GLPQNPQKVL MVAPMLTAGI
51 QPALEPVQLF SDAEAADLFG QGSLAHLMVR QAFANNPYLD LTVIGIADHS
101 AGVQATATVT LSGTATAPGV VEITIGGKQV STAVNTGETA ATVADRLKTA
151 ITAADVTVTA SGSGAAVTLT AKHKGEIGNE SGLTVSTGNT GLTYQANAFT
201 GGAKNADIAT ALSKVAGKHY HIICSPFSDD ANAKALSNHI TNVSNAIEQR
251 GCIGVLGMSA ALSTATTATG EINDGRMTCA WYKGAVEPNG IIAAGYAAVL
301 AFEEDPAKPL NTLEIKGLAV TPDAQWPLFA ECNNALYNGL TPLTVVNNRV
351 QIMRAVSTYT KSANNTDDPA LLDITTIRTL DYVRRSVKER IALRFPRDKL
401 SDRLLPKVKS EILDVLIKLD QAEIIENAEA NKGKLVVARA QNDPNRVNAI
451 IPADVVNGLH VFAGRIDLIL *
```

a712.seq not found yet

a712.pep not found yet

大是铜铁。 脚门 化汽油车

```
g713.seq not found yet
```

g713.pep not found yet

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2395>: m713.seq

```
ATGCAAAATA ATTCATACGG CTATGCCGTG TCGGTGCGCG TGGGCGGTAA
      AGAGCACCGC CACTGGGAGC GCTACGACAT CGACAGCGAC TTTTTAATCC
  51
 101 CTGCCGACAG CTTCGATTTT GTCATCGGCA GGTTGGGACC GGAGGCGGCC
 151 ATACCCGATT TAAGCGGAGA GAGCTGCGAG GTAGTGATAG ACGGGCAAAT
 201 CGTGATGACG GGCATCATCG GCAGCCAGCG CCACGGCAAA AGCAAGGGCA
 251
     GCCGCGAGTT GAGCTTGAGC GGGCGTGATT TGGCCGGTTT TTTGGTGGAT
      TGCTCCGCGC CGCAGCTCAA TGTAAAGGGC ATGACGGTAT TGGATGCAGC
 351 CAAAAAGCTG GCCGCGCCGT GGCCGCAGAT TAAAGCGGTG GTGCTTAAGG
 401 CCGAAAACAA CCCCGCTTTG GGCAAAATCG ACATCGAGCC GGGCGAAACC
 451 GTATGGCAGG CATTAACCCA TATTGCCAAC TCGGTCGGGC TGCATCCGTG
 501 GCTGGAGCCG GACGGCACGT TGGTGGTGGG CGGTGCGGAT TACAGCAGCC
 551 CGCCGGTGGC GACATTGTGT TGGAGCCGCA CCGACAGCCG CTGCAATATC
     GAGCGCATGG ACATTGAGTG GGATACCGAC AACCGCTTTT CCGAGGTTAC
 651 TTTTTTGGCG CAATCGCACG GCCGCAGCGG CGACAGCGCC AAACACGATT
701 TAAAGTGGGT GTACAAAGAC CCGACGATGA CGCTGCACCG CCCTAAAACG
 751 GTGGTGGTGT CCGATGCCGA CAATTTGGCC GCATTGCAAA AGCAGGCTAA
 801 AAAGCAGCTG GCCGACTGGC GGCTGGAGGG ATTTACACTC ACGATAACCG
 851 TGGGCGGCCA TAAAACCCGC GACGGCGTAT TGTGGCAACC TGGCCTGCGT
      GTGCATGTGA TCGACGACGA GCACGGTATC GATGCGGTGT TTTTTCTGAT
 951 GGGGCGGCG TTTATGCTAT CCCGCATGGA TGGTACGCAA ACCGAGCTGC
1001 GGCTCAAAGA GGACGGTATT TGGACACCCG ACGCTTACCC CAAAAAGGCC
1051 GAGGCGGCGC GCAAGCGCAA AGGCAAACGC AAAGGCGTGA GCCATAAGGG
1101 CAAAAAAGGC GGCAAAAAAC AAGCAGAAAC GGCGGTGTTT GAATGA
```

### This corresponds to the amino acid sequence <SEQ ID 2396; ORF 713>: m713.pep

```
1 MQNNSYGYAV SVRVGGKEHR HWERYDIDSD FLIPADSFDF VIGRLGPEAA
51 IPDLSGESCE VVIDGQIVMT GIIGSQRHGK SKGSRELSLS GRDLAGFLVD
101 CSAPQLNVKG MTVLDAAKKL AAPWPQIKAV VLKAENNPAL GKIDIEPGET
151 VWQALTHIAN SVGLHPWLEP DGTLVVGGAD YSSPPVATLC WSRTDSRCNI
201 ERMDIEWDTD NRFSEVTFLA QSHGRSGDSA KHDLKWVYKD PTMTLHRPKT
251 VVVSDADNLA ALQKQAKKQL ADWRLEGFTL TITVGGHKTR DGVLWQPGLR
301 VHVIDDEHGI DAVFFLMGRR FMLSRMDGTQ TELRLKEDGI WTPDAYPKKA
351 EAARKRKGKR KGVSHKGKKG GKKQAETAVF E*
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2397>:

1	ATGCAAAATA	ATTCATACGG	CTATGCCGTG	TCGGTGCGCG	TGGGCGGTAA
51	AGAGCACCGC	CACTGGGAGC	GCTACGACAT	CGACAGCGAC	TTTTTAATCC
101	CTGCCGACAG	CTTCGATTTT	GTCATCGGCA	GGTTGGGGCC	GGAGGCGGCC
151	ATACCCGATT	TAAGCGGAGA	GAGCTGCGAG	GTAGTGATAG	ACGGGCAAAT
201	CGTGATGACG	GGCATCATCG	GCAGCCAGCG	CCACGGCAAA	AGCAAGGGCG
251	GCCGCGAGTT	GAGCTTGAGC	GGGCGTGATT	TGGCCGGTTT	TTTGGTGGAT
301	TGCTCCGCGC	CGCAGCTCAA	TGTAAAGGGC	ATGACGGTAT	TGGATGCAGC
351	CAAAAAGCTG	GCCGCGCCGT	GGCCGCAGAT	TAAAGCGGTG	GTGCTTAAGG
401	TCGAAAACAA	CCCCGCTTTG	GACAAAATCG	ACATCGAGCC	GGGCGAAACC
451	GTATGGCAGG	CATTAACCCA	TATTGCCAAC	TCGGTCGGGC	TGCATCCGTG
501	GCTGGAGCCG	GACGGCACGT	TGGTGGTGGG	CGGTGTGGAT	TACAGCAGCC
551	CGCCGGTGGC	GACATTGTGT	TGGAGCCGCA	CCGACAGCCG	CCGCAATATC
601	GAGCGCATGG	ACATTGAGTG	GGATACCGAC	AACCGCTTTT	CTGAGGTTAC
651	TTTTTTGGCG	CAATCGCACG	GCCGCAGCGG	CGACAGCGCC	AAACACGATT
701	TAAAGTGGGT	GTACAAAGAC	CCGACGATGA	CGCTGCACCG	CCCTAAAACG
751	GTGGTGGTGT	CCGATGCCGA	CAATTTGGCC	GCATTGCAAA	AGCAGGCTAA
801	AAAGCAGCTG	GCCGACTGGC	GGCTGGAGGG	ATTTACACTC	ACGATAACCG
851	TGGGCGGCCA	TAAAACCCGC	GACGGCGTAT	TGTGGCAACC	TGGCCAGCGT
901	GTGCATGTGA	TCGACGACGA	GCACGGTATC	GATGCGGTGT	TTTTTCTGAT
951	GGGGCGGCGG	TTTATGCTAT	CTCGCATGGA	TGGCACGCAA	
.001	GGCTCAAAGA	GGACGGTATT	TGGACACCCG	ACGCTTACCC	ACCGAGCTGC
.051	GAGGCGGCGC	GCAAGCGCAA	AGGCAAACGC	AAAGGCGTGA	CAAAAAGGCC
				MANGGCGTGA	GCCATAAGGG

BNSDOCID: <WO___9957280A2_l_>

1101 CAAAAAAGGC GGCAAAAAAC AAGCAGAAAC GGCGGTGTTT GAATGA

This correspond	is to the amino acid s	equence <	SEQ ID 23	98; ORF 7	13.a>:	
1 51 101 151 201 251 301 351	MQNNSYGYAV SVRVGGI IPDLSGESCE VVIDGQI CSAPQLNVKG MTVLDAF VWQALTHIAN SVGLHPW ERMDIEWDTD NRFSEVI VVVSDADNLA ALQKQAF VHVIDDEHGI DAVFFLM EAARKRKGKR KGVSHKO	IVMT GIIG AKKL AAPW VLEP DGTI FFLA QSHG KKQL ADWR MGRR FMLS GKKG GKKQ	SQRHGK SKGO PQIKAV VLKY NVGGVD YSSI RSGDSA KHDI LEGFTL TITY RMDGTQ TELE PAETAVF E*	GRELSLS GR VENNPAL DK PPVATLC WS: LKWVYKD PTI VGGHKTR DG:	DLAGFLVD IDIEPGET RTDSRRNI MTLHRPKT VLWOPGOR	
a713/m713 98	3.4% identity in 381 a	_				
a713.pep	MQNNSYGYAVSVRVG	20 GKEHRHWE	30 RYDIDSDFLIE	40 PADSFDFVIGI	50 RLGPEAAIPDI	60 LSGESCE
m713		GKEHRHWE	RYDIDSDFLIE	PADSFDFVIG		 LSGESCE
	10	20	30	40	50	60
a713.pep	70 VVIDGQIVMTGIIGS	80 QRHGKSKG	90 GRELSLSGRDI	100 AGFLVDCSAE	110 PQLNVKGMTVI	120 D <b>AAK</b> KL
m713	VVIDGQIVMTGIIGS		: !	111111111		11111
	70	80	90	100	110	120
a713.pep	130 AAPWPQIKAVVLKVE	140 NNPALDKI	150 DIEPGETVWOA	160	170	180
m713		1111111	1111111111	1111111111	111111111	1111.1
	130	140	150	160	170	180
a713.pep	190 YSSPPVATLCWSRTD	200	210	220	230	240
m713		11 [1]		1111111111	1111111111	I I I I I I I
111713	YSSPPVATLCWSRTD: 190	200	210	EVTFLAQSHG 220	RSGDSAKHDL 230	KWVYKD 240
. 710	250	260	270	280	290	300
a713.pep	PTMTLHRPKTVVVSD			111111111	1111111111	LIII )
m713	PTMTLHRPKTVVVSDA 250	ADNLAALQI 260	(QAKKQLADWR) 270	LEGFTLTITV 280	GGHKTRDGVL	WQPGLR 300
	310	320	330	340	350	360
a713.pep	VHVIDDEHGIDAVFFI	LMGRRFMLS	RMDGTQTELR	LKEDGIWTPD	AYPKKAFAADI	KDKCKD
m713	VHVIDDEHGIDAVFFI 310	LMGRRFMLS 320	RMDGTQTELRI 330	LKEDGIWTPD	AYPKKAEAARI 350	KRKGKR
	370	380		340	330	360
a713.pep	KGVSHKGKKGGKKQAF	CTAVFEX				
m713	KGVSHKGKKGGKKQAE	TAVFEX 380				
	3,0	200				

```
g714.seq not found yet g714.pep not found yet
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2399>: m714.seq

```
1 ATGAGCTATC AAGACATCTT GCGGGGCCTG TTGCCCCCCG TGTCGTATGC
51 CCGCAATGCC CCGCGTGTGC GGGCGCAGGC AGAAATAGAC GGCGCAGCGC
101 TGGATGCGGT GGCGGAATCG GCTCAAAGCG TTGCCGATGC CGTCGACCCG
151 CGCAGCGCCG GCCAAATGCT GGCCGATTGG GAGCGCGTAT TAGGTTTGGA
201 CGGTACGGC AAAAACCGCC AGCACCGTGT GTTGGCCGTC ATGGCCAAGC
251 TAAACGAAAC AGGCGGCTTG AGTATTCCTT ATTTTGTGCG TTTGGCCGAG
301 GCGGCGGGCT ATCAAATCCA AATCGACGAA CCGCAGCCGT TCCGCGCCGG
351 TGTAAACCGC GCCGGCGACC GTCTTGCGCC GCAGGAAATC ATGTGGGTGT
401 GGCACGTTAA CGTGCGCGG GGCAACAACC GCATTACCCG ATTCCGCGCC
451 GGTATCTCGG CGGCGGCGA CAGGCTGACC GATTACAGCG ATGCCGTGAT
501 CGAGAGCCTG TTCAACCGCC TCAAGCCCGC CCACACCGCT ATCCGATTTA
```

This corresponds to the amino acid sequence <SEQ ID 2400; ORF 714>: m714.pep

```
1 MSYQDILRGL LPPVSYARNA PRVRAQAEID GAALDAVAES AQSVADAVDP
51 RSAGQMLADW ERVLGLDGTG KNRQHRVLAV MAKLNETGGL SIPYFVRLAE
101 AAGYQIQIDE PQPFRAGVNR AGDRLAPQEI MWVWHVNVRG GNNRITRFRA
151 GISAAGDRLT DYSDAVIESL FNRLKPAHTA IRFTYR*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2401>:

```
1 ATGAGCTATC AAGACATCTT GCGGGGTCTG TTGCCCCCCG TGTCGTATGC
51 CCGCAATGCC CCGCGTGTGC GGGCGCAGGC AGAAATAGAC GGCGCAGCGC
101 TGGATGCGT GGCGGAATCG GCTCAAAGCG TTGCCGATGC CGTCGACCCG
151 AGCAGCGCC GCCAAATGCT GGCCGATTGG GAGCGCGTAT TAGGTTTGGA
201 CGGTACGGC AAAAACCGCC AGCGCCGTT GTTGGCCGTC ATGGCCAAGC
251 TAAACGAAAC AGGCGGCTTG AGTATTCCTT ATTTTGTGCG TTTGGCCGAG
301 GCGGCGGGCT ATCAAATCCA AATCGACGAA CCGCAGCCGT TCCGCCCGG
351 TGTAAACCGC GCCGGCGACC GTCTTGCGCC GCAGGAAATC ATGTGGGTGT
401 GGCACGTTAA CGTGCGCGG GGCAACAACC GCATTACCCG ATTCCGCGC
451 GGTATCTCGG CGGCGGCGAC CAGGCTGACC GATTACAGCG ATGCCGTGAT
501 CGAGAGCCTG TTCAACCGCC TCAAGCCCGC CCACACCGCT ATCCGATTTA
```

This corresponds to the amino acid sequence <SEQ ID 2402; ORF 714.a>: a714.pep

1 MSYQDILRGL LPPVSYARNA PRVRAQAEID GAALDAVAES AQSVADAVDP 51 SSAGQMLADW ERVLGLDGTG KNRQRRVLAV MAKLNETGGL SIPYFVRLAE 101 AAGYQIQIDE PQPFRAGVNR AGDRLAPQEI MWVWHVNVRG GNNRITRFRA 151 GISAAGDRLT DYSDAVIESL FNRLKPAHTA IRFTYR*

a714/m714 98.9% identity in 186 aa overlap

	10	20	30	40	50	60
a714. <b>pe</b> p	MSYQDILRGLLPPV	SYARNAPRVE	RAQAEIDGAAL	DAVAESAQSV	ADAVDPSSAG	MLADW
		1   1   1   1   1   1			111111 111	FIRETE
m714	MSYQDILRGLLPPV	Syarnaprve	RAQAEIDGAAL	DAVAESAQSV	ADAVDPRSAG	OMLADW
	10	20	30	40	50	60
	70	80	90	100	110	120
a714.pep	ERVLGLDGTGKNRQ	RRVLAVMAKI	NETGGLSIPY	FVRLAEAAGY	QIQIDEPOPE	RAGVNR
		:		111111111	1111111111	11111
m714	ERVLGLDGTGKNRQ	HRVLAVMAKI	NETGGLSIPY	FVRLAEAAGY	QIQIDEPQPF	RAGVNR
	70	80	90	100	110	120
<b>.</b>	130	140	150	160	170	180
a714.pep	AGDRLAPQEIMWVW	HVNVRGGNNR	ITRFRAGISA	AGDRLTDYSD	AVIESLFNRL	KPAHTA
	111111111111111	111111111	3411111111	111111111		11111

BNSDOCID: <WO___9957280A2_L>

m714	AGDRÍ.A POF TMMM	IUIINIIID CONNIE	TWD DD b G T G b			
	AGDRLAPQEIMWVV 130	140	150	AGDRLTDYSI 160	AVIESLFNRL 170	KP <b>AHT</b> A 180
a714.pep	)					
m714	IRFTYRX					
g715.seq	not found yet					
g715.pep	not found yet					
The following	partial DNA sequence	e was identi	fied in N m	eningitidis	<seo 2<="" id="" td=""><td>1403~:</td></seo>	1403~:
m/13.seq						,+05/,
1 51		TAGA CAATA	TCTTT GTCGT	CCTAA ACC	AAATCGA	
		ATCG AAAAC	CGCTA CCTGC	TGATG CGC	CGACTGT	
151	CCGAAACCAT GCACAC CCGAAATGGG TTGGGC	TAAA ATACC	GCTCA ATTTC	CGCTA CGC	AGGCCGT	
201	GGGTCGTCTG AAAGAC	AGTT TTTCC	ACACT CTCAC	GCCGC TTT	CGGATTC	
251	TTGTCGGTAC GAATAT	CGTC TATGC	CCCA TCCAC	ACAAC GAT	ACAGCCC	
301	GCGGGGCGCA ACCGCA	AAGT TCGGA	TTCCG CAACG	CCNAT TOCK	CACCO	
351	GACGGACGAC GACAAA	CAGG CTTTGA	ATGGA CGATG	TGCAG GAT	rangere	
401	CGGGTCTGAT ACCGTG	A		TOCHS GAT.	IAIIII	
This correspond	ds to the amino acid s	ennence <s< td=""><td>FO ID 2404</td><td>1. ODE 714</td><td>· .</td><td></td></s<>	FO ID 2404	1. ODE 714	· .	
m715.pep	as to the annie acid s	equence <b< td=""><td>EQ ID 2404</td><td>; OKF /13</td><td>·&gt;:</td><td></td></b<>	EQ ID 2404	; OKF /13	·>:	
1	MIDVKIDNIF VVLNQI	TRIC NOTENE	VIIM DDIGD	M) ###		
	PKWVGLKYRD GKPLSDS	GRI KDSEST	TEDM DUNITA	TMHTA VKLN	FRYAGR	
101	AGRNRKVRIP QREFLTI	TDD DKQALM	IDDVQ DYFSG	GINIV YAA] LIP*	.HNFGGM	
The following r	nowini DNIA no mana		~			
The following p	partial DNA sequence	was identif	ned in N. me	eningitidis	SEQ ID 24	405>:
<b>a715.seq</b>						
51		AGA CAATAT	CTTT GTCGT	CCTAA ACCA	AATCGA	
101		CCC CECANO	GCTA CCTGCT	IGATG CGCC	GACTGT	
151	TTOTAL COLICION	ANN NENCCO	CCAC ATTTC	CGCTA CGCA	GGCCGT	
201	GGGTCGTCTG AAAGACA	CTT TTTCCA	CACT CHONG	SCCGC TTTC	GGATTC	
251	TTGTCGGTAC GAATATC	GTC TATECT	CCCA TCCACE	ACAAC GATA	CAGCCC	
301	GCGGGGCGCA ACCGCAA	AGT TCGGAT	TCCG CAACGO	AMCII CGGC	GGTATG	
351	GACGGACGAC GACAAAC	AGG CTTTGA	TGGA CGATGI	CCAC CAUM	Ammmm	
451	CGGGTCTGAT ACCGTGA			COCHO GAII	AIIIII	
This correspond	s to the amino acid se	omence <c1< td=""><td>FO ID 240€</td><td>· ODE 71.5</td><td>- &lt;</td><td></td></c1<>	FO ID 240€	· ODE 71.5	- <	
a715.pep	- 10 the millio acid 50	Anounce /2]	2406 س کیل ا	, UKF /15.	.a>	
1	MIDVKIDNIF VVLNQIE	RIG NGTEND	VIIM DDICER	W///mp		
51	PKWLGLKYRD GKPLSDS	GRI KDSEST	I COM DENIMO	MHTA VKLN	FRYAGR	
101	AGRNRKVRIP QREFLTL	TDD DKQALM	DDVQ DYFSGI	INIV IAAL IP*	HNFGGM	
The following p	artial DNA sequence	was identifi	ied in N. gor	norrhoeae	<\$E0 ID 2/	107
g. = 0. Bed					OLQ ID 2.	+01/
1 ATGAAC	AAAA ATATTGCTGC CGCACT	CGCC GGTGCT	TTAT CCCTGTC	TCT		
31 GGCCGC	JGGC GCCGTTGCCG CCCACA	AACC GGCAAG	CAAC CCAACAC	COC		
151 TCGTGCC	AATC CGCCCAAGGC TCTTGC	AGGE TOOMS	AATC TGCCGAA	GGT		
ZUI TAAAGU	AGGC GAAGGCAAAT GCGGCG	AGGG CAAATG	CCCT CCARCMO	ma a		
ZJI AAAAAG	CCA CAAACACACC AAAGCA	שברכת בדרת	77CC C777MCM	GCC		
301 GAAGGC	NAAT GCGGCGAAGG CAAATG	CGGT TCTAAA	TAA	- <del>-</del>		
This corresponds	s to the amino acid se	guence <sf< td=""><td>O ID 2408.</td><td>ORE 714</td><td>na&gt;.</td><td></td></sf<>	O ID 2408.	ORE 714	na>.	
a.za.bab		*			ug⊅:	
1 MNKNIAZ 51 SCGASKS	ALA GALSISLAAG AVAAHK	PASN ATGVOKS	SAQG SCGASKS	AEG		
			ITETEM TEN MITTER CO.			

1 MNKNIAAALA GALSLSLAAG AVAAHKPASN ATGVQKSAQG SCGASKSAEG 51 SCGASKSAEG SCGAAASKAG EGKCGEGKCG ATVKKAHKHT KASKAKAKSA

101 EGKCGEGKCG SK*

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2409>:
m716.seq
```

ATGAACAAAA ACATTGCTGC CGCTCTCGCC GGTGCTTTAT CCCTGTCTTT GGCCGCCGGT GCAGTTGCTG CCAACAAACC GGCAAGCAAC GCAACAGGCG 51 TTCATAAATC CGCCCATGGC TCTTGCGGCG CGTCCAAATC TGCCGAAGGT 101 TCGTGCGGCG CGGCTGGTTC TAAAGCAGGC GAAGGCAAAT GCGGCGAGGG 151 201 CAAATGCGGT GCGACCGTAA AAAAAACCCA CAAACACAC AAAGCATCTA AAGCCAAGGC CAAATCTGCC GAAGGCAAAT GCGGCGAAGG CAAATGCGGT 251 301 TCTAAATAA

This corresponds to the amino acid sequence <SEQ ID 2410; ORF 716>: m716.pep

MNKNIAAALA GALSLSLAAG AVAANKPASN ATGVHKSAHG SCGASKSAEG SCGAAGSKAG EGKCGEGKCG ATVKKTHKHT KASKAKAKSA EGKCGEGKCG 51

m716/g716 86.6% identity in 112 aa overlap

20 30 40 50 MNKNIAAALAGALSLSLAAGAVAANKPASNATGVHKSAHGSCGASKSAEGSCGA----m716.pep MNKNIAAALAGALSLSLAAGAVAAHKPASNATGVQKSAQGSCGASKSAEGSCGASKSAEG q716 10 20 30 80 90 ---AGSKAGEGKCGEGKCGATVKKTHKHTKASKAKAKSAEGKCGEGKCGSKX m716.pep 1:1114144444444444 SCGAAASKAGEGKCGEGKCGATVKKAHKHTKASKAKAKSAEGKCGEGKCGSKX a716 70

80

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2411>:

90

100

a716.seq ATGAACAAAA ACATTGCTGC CGCACTCGCC GGTGCTTTAT CCCTGTCTTT GGCCGCCGGT GCAGTTGCTG CCAACAAACC GGCAAGCAAC GCAACAGGCG 51 TTCATAAATC CGCCCATGGC TCTTGCGGCG CGTCCAAATC TGCCGAAGGT 101 TCGTGCGGCG CGGCTGGTTC TAAAGCAGGC GAAGGCAAAT GCGGCGAGGG 151 201 CAAATGCGGT GCGACCGTAA AAAAAACCCA CAAACACCC AAAGCATCTA AAGCCAAGGC CAAATCTGCC GAAGGCAAAT GCGGCGAAGG CAAATGCGGT 251 301 TCTAAATAA

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2412.a>: a716.pep

> MNKNIAAALA GALSLSLAAG AVAANKPASN ATGVHKSAHG SCGASKSAEG SCGAAGSKAG EGKCGEGKCG ATVKKTHKHT KASKAKAKSA EGKCGEGKCG 51 101 SK*

a716/m716 100.0% identity in 102 aa overlap

20 30 MNKNIAAALAGALSLSLAAGAVAANKPASNATGVHKSAHGSCGASKSAEGSCGAAGSKAG a716.pep m716 MNKNIAAALAGALSLSLAAGAVAANKPASNATGVHKSAHGSCGASKSAEGSCGAAGSKAG 20 30 40 50 70 80 90 EGKCGEGKCGATVKKTHKHTKASKAKAKSAEGKCGEGKCGSKX a716.pep EGKCGEGKCGATVKKTHKHTKASKAKAKSAEGKCGEGKCGSKX m716 70 80 90

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2413>: g717.seq

ATGGACACAA AAGAAATCCT CGGCTACGCG GCAGGCTCGA TCGGCAGCGC

WO 99/57280



```
GGTTTTAGCC GTCATCATCC TGCCGCTGCT GTCGTGGTAT TTCcccgCCG
      ACGACATCGG GCGCATCGTG CTGATGCAGA CGGCGGCGGG ACTGACGGTG
 101
      TCGGTATTGT GCCTCGGGCT GGATCAGGCA TACGTCCGCG AATACTATGC
 151
      CGCCGCCGAC AAAGACACTT TGTTCAAAAC CCTGTTCCTG CCGCCGCTGC
      TGTTTTCCGC CGCGATAGCC GCCCTGCTGC TTTCCCGCCC GTCCCTGCCG
 251
      TCTGAAATCC TGTTTTCGCT CGACGATGCC GCCGCCGGCA TCGGGCTGGT
 301
      GCTGTTTGAA CTGAGCTTCC TGCCCATCCG CTTTCTCTTA CTGGTTTTGC
 351
      GTATGGAAGG GCGCCCCTT GCCTTTTCGT CCGCGCAACT CGTGCCCAAA
 401
     CTCGCCATTC TGCTGCTGTT GCCGCTGACG GTCGGGCTGC TGCACTTTCC
 451
      GGCGAACACC TCCGTCCTGA CCGCCGTTTA CGCGCTGGCA AACCTTGCCG
 501
     CCGCCGCCTT TTTGCTGTTT CAAAACCGAT GCCGTCTGAA GGCCGTCCGG
 551
     CGCGCGCGT TTTCGCCCGC CGTCCTGCAC CGGGGGCTGC GCTACGGCAT
     ACCGCTCGCA CTGAGCAGCC TTGCCTATTG GGGGCTGGCA TCCGCCGACC
 651
     GTTTGTTCCT GAAAAATAT GCGGGCCTGG AACAGCTCGG CGTTTATTCG
 701
     ATGGGTATTT CGTTCGGCGG GGCGGCATTA TTGCTCCAAA GCATCTTTTC
 751
     AACGGTCTGG ACACCGTATA TTTTCCGTGC AATCGAAGAA AACGCCACGC
 801
 851 CCGCCCGCCT CTCGGCAACG GCAGAATCCG CCGCCGCCCT GCTTGCCTCC
 901
     GCCCTCTGCC TGACCGGAAT TTTCTCGCCC CTCGCCTCCC TCCTGCTGCC
     GGAAAACTAC GCCGCCGTCC GGTTTACCGT CGTATCGTGT ATGCTGCCGC
 951
1001 CGCtGTTTTA CACGCTGACC GAAATCAGCG GCATCGGTTT GAACGTCGTC
1051
     CGCAAAACGC GTCCGATCGC GCTTGCCACC TTGGGCGCGC TGGCGGCAAA
     1101
1151 CGGTTGCCTG TGCCGCCTCA TTCTGGTTGT TTTTTGTTTT CAAGACAGAA
1201 AGCTCCTGCC GCCTGTGGCA GCCGCTCAAA CGCCTGCCGC TTTATATGCA
1251 CACATTGTTC TGCCTGGCCT CCTCGGCGGC CTACACCTGC TTCGGCACAC
TGCATCCTGC GCCACCGGAA AAATTTGCAC AAACTGTTTC ATTATTTGAA
1401 AAAACAAGGT TTCCCATTAT GA
```

### This corresponds to the amino acid sequence <SEQ ID 2414; ORF 717.ng>:

1 MDTKEILGYA AGSIGSAVLA VIILPLLSWY FPADDIGRIV LMQTAAGLTV
51 SVLCLGLDQA YVREYYAAAD KDTLFKTLFL PPLLFSAAIA ALLLSRPSLP
101 SEILFSLDDA AAGIGLVLFE LSFLPIRFLL LVLRMEGRAL AFSSAQLVPK
151 LAILLLPLT VGLLHFPANT SVLTAVYALA NLAAAAFLLF QNRCRLKAVR
201 RAPFSPAVLH RGLRYGIPLA LSSLAYWGLA SADRLFLKKY AGLEQLGVYS
251 MGISFGGAAL LLQSIFSTVW TPYIFRAIEE NATPARLSAT AESAAALLAS
301 ALCLTGIFSP LASLLPENY AVRFTVVSC MLPPLFYTLT EISGIGLNVV
351 RKTRPIALAT LGALAANLLL LGLAVPSGGT RGAAVACAAS FWLFFVFKTE
401 SSCRLWOPLK RLPLYMHTLF CLASSAAYTC FGTPANYPLF AGVWAAYLAG

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2415>:

ATGGACACAA AAGAAATCCT CGGCTACGCG GCAGGCTCGA TCGGCAGCGC 51 GGTTTTAGCC GTCATCATCC TGCCGCTGCT GTCGTGGTAT TTCCCCGCCG 101 ACGACATCGG GCGCATCGTG CTGATGCAGA CGGCGGCGGG GCTGACGGTG 151 TCGGTGTTGT GCCTCGGGCT GGATCAGGCA TACGTCCGCG AATACTATGC CACCGCCGAC AAAGACACCT TGTTCAAAAC CCTGTTCCTG CCGCCGCTGC TGTCTGCCGC CGCGATAGCC GCCCTGCTGC TTTCCCGCCC GTCCCTGCCG TCTGAAATCC TGTTTTCACT CGACGATGCC GCCGCCGGCA TCGGGCTGGT 301 351 GCTGTTTGAA CTGAGCTTCC TGCCCATCCG CTTTCTCTTA CTGGTTTTGC GTATGGAAGG ACGCGCCCTT GCCTTTTCGT CCGCGCAACT CGTGCCCAAG 401 CTCGCCATCC TGCTGCTGCT GCCGCTGACG GTCGGGCTGC TGCACTTTCC 501 AGCGAACACC GCCGTCCTGA CCGCCGTTTA CGCGCTGGCA AACCTTGCCG CCGCCGCCTT TTTGCTGTTT CAAAACCGAT GCCGTCTGAA GGCCGTCCGG 551 601 CACGCACCGT TTTCGCCCGC CGTCCTGCAC CGGGGGCTGC GCTACGGCAT ACCGATCGCA CTGAGCAGCA TCGCCTATTG GGGGCTGGCA TCCGCCGACC 651 GTTTGTTCCT GAAAAAATAT GCCGGCCTGG AACAGCTCGG CGTTTATTCG ATGGGTATTT CGTTCGGCGG GGCGGCATTA TTGTTCCAAA GCATCTTTTC 801 AACGGTCTGG ACACCGTATA TTTTCCGCGC AATCGAAGAA AACGCCCCGC CCGCCCGCCT CTCGGCAACG GCAGAATCCG CCGCCGCCCT GCTTGCCTCC GCCCTCTGCC TGACCGGCAT TTTCTCGCCC CTTGCCTCCC TCCTGCTGCC 851 901 GGAAAACTAC GCCGCCGTCC GGTTTATCGT CGTATCGTGT ATGCTGCCGC 1001 CGCTGTTTTG CACGCTGGCG GAAATCAGCG GCATCGGTTT GAACGTCGTC CGCAAAACGC GCCCGATCGC GCTCGCCACC TTGGGGGGCAAA 1051 1101 CCTGCTGCTG CTGGGGCTTG CCGTGCCGTC CGGCGGCGCGC 1151 CGGTTGCCTG TGCCGCCTCA TTCTGGCTGT TTTTTGCCTT CAAGACCGAA AGCTCCTGCC GCCTGTGGCA GCCGCTCAAA CGCCTGCCGC TTTATCTGCA 1201 CACATTGTTC TGCCTGACCT CCTCGGCGGC CTACACCTGC TTCGGCACGC 1251 CGGCAAACTA TCCCCTGTTT GCCGGCGTAT GGGCGGCATA TCTGGCAGGC 1301 1351 TGCATCCTGC GCCACCGGAA AGATTTGCAC AAACTGTTTC ATTATTTGAA 1401 AAAACAAGGT TTCCCATTAT GA

This corresponds to the amino acid sequence <SEQ ID 2416; ORF 717>: m717.pep MDTKEILGYA AGSIGSAVLA VIILPLLSWY FPADDIGRIV LMQTAAGLTV SVLCLGLDQA YVREYYATAD KDTLFKTLFL PPLLSAAAIA ALLLSRPSLP SEILFSLDDA AAGIGLVLFE LSFLPIRFLL LVLRMEGRAL AFSSAQLVPK LAILLLEPLT VGLLHFPANT AVLTAVYALA NLAAAAFLLF ONRCRLKAVR HAPFSPAVLH RGLRYGIPIA LSSIAYWGLA SADRLFLKKY AGLEQLGVYS MGISFGGAAL LFQSIFSTVW TPYIFRAIEE NAPPARLSAT AESAAALLAS ALCLTGIFSP LASLLIPENY AAVRFIVVSC MLPPLFCTLA EISGIGLNVV RKTRPIALAT LGALAANLLL LGLAVPSGGA RGAAVACAAS FWLFFAFKTE SSCRLWOPLK RLPLYLHTLF CLTSSAAYTC FGTPANYPLF AGVWAAYLAG CILRHRKDLH KLFHYLKKQG FPL* 96.4% identity in 473 aa overlap m717/g717 MDTKEILGYAAGSIGSAVLAVIILPLLSWYFPADDIGRIVLMQTAAGLTVSVLCLGLDQA m717.pep MDTKEILGYAAGSIGSAVLAVIILPLLSWYFPADDIGRIVLMQTAAGLTVSVLCLGLDQA g717 YVREYYATADKDTLFKTLFLPPLLSAAAIAALLLSRPSLPSEILFSLDDAAAGIGLVLFE m717.pep YVREYYAAADKDTLFKTLFLPPLLFSAAIAALLLSRPSLPSEILFSLDDAAAGIGLVLFE g717 LSFLPIRFLLLVLRMEGRALAFSSAQLVPKLAILLLLPLTVGLLHFPANTAVLTAVYALA m717.pep LSFLPIRFLLLVLRMEGRALAFSSAQLVPKLAILLLLPLTVGLLHFPANTSVLTAVYALA a717 NLAAAAFLLFQNRCRLKAVRHAPFSPAVLHRGLRYGIPIALSSIAYWGLASADRLFLKKY m717.pep NLAAAAFLLFQNRCRLKAVRRAPFSPAVLHRGLRYGI PLALSSLAYWGLASADRLFLKKY q717 AGLEQLGVYSMGISFGGAALLFQSIFSTVWTPYIFRAIEENAPPARLSATAESAAALLAS m717.pep g717 **AGLEQLGVYSMGISFGGAALLLQSIFSTVWTPYIFRAIEENATPARLSATAESAAALLAS** ALCLTGIFSPLASLLLPENYAAVRFIVVSCMLPPLFCTLAEISGIGLNVVRKTRPIALAT m717.pep ALCLTGIFSPLASLLLPENYAAVRFTVVSCMLPPLFYTLTEISGIGLNVVRKTRPIALAT a717  ${\tt LGALAANLLLLGLAVPSGGARGAAVACAASFWLFFAFKTESSCRLWQPLKRLPLYLHTLF}$ m717.pep g717 LGALAANLLLLGLAVPSGGTRGAAVACAASFWLFFVFKTESSCRLWQPLKRLPLYMHTLF CLTSSAAYTCFGTPANYPLFAGVWAAYLAGCILRHRKDLHKLFHYLKKQGFPLX m717.pep g717 CLASSAAYTCFGTPANYPLFAGVWAAYLAGCILRHRKNLHKLFHYLKKQGFPLX 

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2417>:

in the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th	
1 ATGGACACAA AAGAAATCCT CGGCTACGCG GCAGGCTCGA TCGG	ראככככ
51 GGTTTTAGCC GTCATCATCC TGCCGCTGCT GTCGTAGT TTCC	CTCCCC
101 ACGACATCGG ACGCATCGTG CTGATGCAGA CGGCGGCGGG GCTG	TCCCTC
151 TCGGTGTTGT GCCTCGGGCT GGATCAGGCA TACGTCCGCG AATTA	CONTROC
201 CGCCGCCGAC AAAGACACTT TGTTCAAAAC CCTGTTCCTG CCGC	CLAIGC

BNSDOCID: <WO___9957280A2_l_>

BASSION OF STREET, WILL

WO 99/57280



251	TGTCTGCCGC	CGCGATAGCC	GCCCTGCTGC	TTTCCCGCCC	ATCCCTGCCG
301	TCTGAAATCC	TGTTTTCGCT	CGACGATGCC		
351	GCTGTTTGAA	CTGAGCTTCC	TGCCCATCCG	CTTTCTCTTA	
401	GTATGGAAGG	ACGCGCCCTT	GCCTTTTCGT		CGTGTCCAAG
451	CTCGCCATCC	TGCTGCTGCT	GCCGCTGACG	GTCGGGCTGC	
501	GGCGAACACC	GCCGTCCTGA	CCGCCGTTTA	CGCGCTGGCA	
551	CCGCCGCCTT	TTTGCTGTTT	CAAAACCGAT	GCCGTCTGAA	
601	CGCGCACCGT	TTTCATCCGC	CGTCCTGCAT	CGCGGCCTGC	GCTACGGCAT
651	ACCGATCGCA	CTAAGCAGCA	TCGCCTATTG	GGGGCTGGCA	
701	GTTTGTTCCT	GAAAAAATAT	GCCGGCCTAG	AACAGCTCGG	CGTTTATTCG
751	ATGGGTATTT	CGTTCGGCGG	AGCGGCATTA	TTGTTCCAAA	GCATCTTTTC
801	AACGGTCTGG	ACACCGTATA	TTTTCCGCGC	AATCGAAGCA	AACGCCCCCC
851	CCGCCCGCCT	CTCGGCAACG	GCAGAATCCG	CCGCCGCCCT	GCTTGCCTCC
901	GCCCTCTGCC	TGACCGGCAT	TTTCTCGCCC	CTCGCCTCCC	TCCTGCTGCC
951	GGAAAACTAC	GCCGCCGTCC	GGTTTATCGT	CGTATCGTGT	ATGCTGCCTC
1001	CGCTGTTTTG	CACGCTGGTA	GAAATCAGCG	GCATCGGTTT	GAACGTCGTC
1051	CGAAAAACAC	GCCCGATCGC	GCTCGCCACC	TTGGGCGCGC	TGGCGGCAAA
1101	CCTGCTGCTG	CTGGGGCTTG	CCGTACCGTC	CGGCGGCGCG	CGCGGCGCGG
1151	CGGTTGCCTG	TGCCGCCTCA	TTTTGGCTGT	TTTTTGTTTT	CAAGACCGAA
1201	AGCTCCTGCC	GCCTGTGGCA	GCCGCTCAAA	CGCCTGCCGC	TTTATATGCA
1251	CACATTGTTC	TGCCTGGCCT	CCTCGGCGGC	CTACACCTGC	TTCGGCACTC
1301	CGGCAAACTA	CCCCCTGTTT	GCCGGCGTAT	GGGCGGTATA	TCTGGCAGGC
1351	TGCATCCTGC	GCCACCGGAA	AGATTTGCAC	AAACTGTTTC	ATTATTTGAA
1401	AAAACAAGGT	TTCCCATTAT	GA		

## This corresponds to the amino acid sequence <SEQ ID 2418; ORF 717.a>:

1 MDTKEILGYA AGSIGSAVLA VIILPLLSWY FPADDIGRIV LMQTAAGLTV
51 SVLCLGLDQA YVREYYAAAD KDTLFKTLFL PPLLSAAAIA ALLLSRPSLP
101 SEILFSLDDA AAGIGLVLFE LSFLPIRFLL LVLRMEGRAL AFSSAQLVSK
151 LAILLLEPLT VGLLHFPANT AVLTAVYALA NLAAAAFLLF QNRCRLKAVR
201 RAPFSSAVLH RGLRYGIPIA LSSIAYWGLA SADRLFLKKY AGLEQLGVYS
251 MGISFGGAAL LFQSIFSTVW TPYIFRAIEA NAPPARLSAT AESAAALLAS
301 ALCLTGIFSP LASLLPENY AAVRFIVVSC MLPPLFCTLV EISGIGLNVV
351 RKTRPIALAT LGALAANLLL LGLAVPSGGA RGAAVACAAS FWLFFVFKTE
401 SSCRLWQPLK RLPLYMHTLF CLASSAAYTC FGTPANYPLF AGVWAVYLAG

### a717/m717 97.9% identity in 473 aa overlap

	, o 100111111 11 11 11 11 11 11 11 11 11 11	aa o v ci iap				
	10	20	30	40	50	60
a717.pep	MDTKEILGYAAGSI	GSAVLAVII:	LPLLSWYFPAI	DDIGRIVLMO'	PAAGI.TVSVI	כז כז סס
	11111111111111	111111111	1111111111		LILLILLI	CTGTDQA
m717	MDTKEILGYAAGSI			:		
	10	20	PLDDDWILLWI	DIGKI A PWÖ.		CLGLDQA
	10	20	30	40	50	60
	<b>7</b> 0	80	90	100	110	120
a717.pep	YVREYYAAADKDTL	FKTLFLPPL	LSAAAIAALLI	LSRPSLPSETI	FSLDDAAAG	TCTVIES
		111111111			111111111	LULLI
m717	YVREYYATADKDTL	FKTLFLPPL	I SAAATAATIT	יון וווווווווו		
	70	80	90			
	, •	00	90	100	110	120
	120					
242	130	140	150	160	170	180
a717.pep	LSFLPIRFLLLVLR	MEGRALAFSS	BAQLVSKLAII	LLLPLTVGLI	HFPANTAVI	ת ז מ <i>עוז</i> מיז
	1			411111111	11111111	
m717	LSFLPIRFLLLVLR	MEGRALAFSS	AOLVOKLATI	TITOTOTOT		
	130	140	150	.nnntr. 1 6 0 1 1		
	130	7.40	130	160	170	180
	100	000				
- 717	190	200	210	220	230	240
a717.pep	NLAAAAFLLFQNRCI	RLKAVRRAPE	SSAVLHRGLR	YGIPIALSSI	AYWGLASADE	T.FT.KKY
		:	1	11111111111	1111111111	11111
m717	NLAAAAFLLFQNRC	RLKAVRHAPE	SPAVI.HRGI.P	VCTDTALCCT	AVECT DODE	11111
	190	200	210			
		200	210	220	230	240
	350	260				
.717	250	260	270	280	290	300
a717.pep	AGLEQLGVYSMGISI	rggaallfqs	IFSTVWTPYI	FRAIEANAPP	ARLSATAESA	ZATIZA
	•					CMITTER

BARTOLICA FOLLANDES

#### 1159

```
m717
         AGLEQLGVYSMGISFGGAALLFQSIFSTVWTPYIFRAIEENAPPARLSATAESAAALLAS
                     260
                             270
              310
                     320 -
                             330
                                    340
         ALCLTGIFSPLASLLLPENYAAVRFIVVSCMLPPLFCTLVEISGIGLNVVRKTRPIALAT
a717.pep
         ALCLTGIFSPLASLLLPENYAAVRFIVVSCMLPPLFCTLAEISGIGLNVVRKTRPIALAT
m717
                     320
                             330
                                    340
              370
                     380
                             390
                                    400
                                           410
                                                   420
         LGALAANLLLLGLAVPSGGARGAAVACAASFWLFFVFKTESSCRLWQPLKRLPLYMHTLF
a717.pep
         LGALAANLLLLGLAVPSGGARGAAVACAASFWLFFAFKTESSCRLWQPLKRLPLYLHTLF
m717
              370
                     380
                            390
                                    400
              430
                     440
                             450
                                    460
                                           470
         CLASSAAYTCFGTPANYPLFAGVWAVYLAGCILRHRKDLHKLFHYLKKQGFPLX
a717.pep
         m717
         CLTSSAAYTCFGTPANYPLFAGVWAAYLAGCILRHRKDLHKLFHYLKKQGFPLX
                            450
                                    460
```

g718.seq not found yet

g718.pep not found yet

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2419>: m718.seq

```
TCAGACGGCC TTTACGTACC CCGAAACTTT ATCCACCGCC CGCAAAGCTG
  1
     GTTCAAATGG GACAAAGACA ACGGGCTGCT GCTGCGTACC CGCGAAAATC
  51
     CGGAAGGCGA AGCGTTGTGG CCGCTGGGCT GGGTCGTTCA TACCCAAAAA
     TCGCGCAGCG TCCAGCAGGC GCGCAACGGG CTTTTCCGCA CGCTTTCCTG
 201 GCTGTATATG TTCAAACACT ACGCCGTCCA CGATTTTGCC GAGTTTTTGG
 251 AGCTGTACGG CATGCCCATC CGTATCGGCA AATACGGCGC GGGCGCAACC
 301 AAAGAGGAAA AAAACACCCT GCTTCGAGCG GTGGCGGAAA TCGGTCACAA
 351
     CGCGGCAGGC ATCATGCCAG AAGGTATGGA AATAGAGCTC CACAACGCGG
     CAAACGGTAC GACGGCAACC AGCAATCCGT TTTTGCAGAT GGCCGACTGG
 401
     TGCGAAAAAT CGGCGGCGCG GCTGATTTTG GGGCAAACGC TGACCAGCGG
 451
     TGCGGACGGA AAATCCAGCA CCAACGCGCT GGGCAATATC CACAACGAGG
     TACGCCGCGA TTTGCTGGTG TCGGACGCAA AACAGGTGGC GCAAACCATC
 601 ACAAGCCAAA TCATCGGACC GTTCCTGCAA ATCAACTATC CCCATGCCGA
     CCCAAACCGC GTGCCGAAAT TTGAATTTGA CACGCGCGAG CCGAAAGACA
 651
     TCGCGGTCTT TGCCGACGCT ATCCCGAAAC TGGTGGATGT CGGCGTACAA
701
751 ATCCCCGAAA GCTGGGTGCG CGACAAACTG GTCATTCCAG ATGTGCAGGA
801 GGGTGAGGCT GTGTTGGTGC GGCAGGTACC GGACAATCCG GTAAACAGAA
851 CTGCATTGGC GGCTTTATCC GCCCACACCG TACCATCTAA GGCTACGGGC
901
     AGGCATCAGG AAATATTGGA CGGCGCGTTG GATGACGCGC TGGTTGAGCC
     CGATTTCAAT TCTCAGCTCA ACCCGATGGT GCGTCAGGCG GTTGCCGCAC
     TTAATGCTTG CAACAGCTAC GAGGAGGCAG ATGCCGCACT GAATGCGCTT
1001
     TATCCGAATT TGGACAACGC GAAACTGCGT ACCTATATGC AGCAGGCCTT
     GTTTATCAGC GATATTTTGG GACAAGACCA TGCCCGCGCC TGA
```

### This corresponds to the amino acid sequence <SEQ ID 2420; ORF 718>:

·F-F					
1	SDGLYVPRNF	IHRPQSWFKW	DKDNGLLLRT	RENPEGEALW	PLGWVVHTOK
51	SRSVQQARNG	LFRTLSWLYM	FKHYAVHDFA	EFLELYGMPT	RICKYCACAT
101	KEEKNTLLRA	VAEIGHNAAG	IMPEGMEIEL	HNAANGTTAT	SNPFT.OMADW
151	CEKSAARLIL	GQTLTSGADG	KSSTNALGNI	HNEVRRDLLV	SDAKOVAOTT
201	TSQIIGPFLQ	INYPHADPNR	VPKFEFDTRE	PKDIAVFADA	TPKLVDVCVO
251	IPESWVRDKL	VIPDVQEGEA	VLVROVPDNP	VNRTALAALS	AHTUPSKATC
301	RHQEILDGAL	DDALVEPDFN	SQLNPMVROA	VAALNACNSY	FEADADINAL
351	YPNLDNAKLR	TYMQQALFIS	DILGODHARA	*	DENDARDINAL

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2421>:



```
a718.seq
         ATGGAGCCGA TAATGGCAAA AAAGAACAAT AAAACTAAAA TCCAAAAGCC
      1
      51
         CGAAGCTGCA TTGCAGACGG ACGTGGCTCA AATTACAGCG ACCGGTCGAG
         TTATCGCCGA GCATCCATCC AATTTTATTA CGCCGCAAAA GATGCGCGCC
    151 CTCTTCGAGG ACGCAGAAAG CGGTGACATC CGCGCCCAAC ACGAGCTTTT
         CGCGGACATT GAGGAGCGCG ACAGCGACAT CGCGGCAAAT ATGGGGACGC
    251
         GCAAACGCGC GCTGCTGACG CTCAACTGGC GCGTCGCCCC GCCGCGAAAT
    301 GCGACGCCCG AAGAAGAAAA GCTGTCCGAC CAAGCCTACG AAATGATGGA
         CAGCCTGCCT ACCCTCGAAG ACCTGATTAT GGATTTGATG GACGCGGTAG
    351
         GGCACGGATT TTCTGCGTTG GAGGTCGAGT GGGTATTTTC AGACGGCCTT
    401
         TACCTACCCC GAAACTTTAT CCACCGCCCG CAAAGCTGGT TCAAATGGGA
    451
         CAAAGACAAC GGGCTGCTGC TGCGTACCCG CGAAAATCCG GAAGGCGAAG
        CGTTGTGGCC GCTGGGCTGG GTCGTTCATA CCCAAAAATC GCGCAGCGTC
    551
        CAGCAGGCGC GCAACGGGCT TTTCCGCACG CTTTCCTGGC TGTATATGTT
    601
         CAAACACTAC GCCGTCCACG ATTTTGCCGA GTTTTTGGAG CTGTACGGCA
    651
         TGCCCATCCG TATCGGCAAA TACGGCGCGG GCGCAACCAA AGAGGAAAAA
    701
    751
         AACACCCTGC TTCGAGCGGT GGCGGAAATC GGTCACAACG CGGCAGGCAT
         CATGCCAGAA GGTATGGAAA TCGAGCTGCA CAACGCGGCA AACGGCATGA
    801
    851 CTTCCGCCGG CAATCCGTTT TTGCAGATGG CCGACTGGTG CGAAAAATCG
    901 GCGGCGCGC TGATTTTGGG GCAAACGCTA ACCAGCGGTG CGGACGGAAA
    951 ATCCAGCACC AACGCGCTGG GCAATATCCA CAACGAGATA CGCCGCGATT
   1001 TGCTGGTGTC GGACGCAAAA CAGGTGGCGC AAACCATCAC AAGCCAAATC
   1051
        ATCGGACCGT TCCTGCAAAT CAACTATCCC CATGCCGACC CAAACCGCGT
         GCCGAAATTT GAATTTGACA CGCGCGAGCC GAAAGACATC GCGGTCTTTG
   1101
   1151 CCGACGCTAT CCCGAAACTG GTGGATGTCG GCGTACAAAT CCCCGAAAGC
   1201 TGGGTGCGCG ACAAACTGGT CATTCCAGAT GTGCAGGAGG GTGAGGCTGT
   1251 GTTGGTGCGG CAGGTACCGG ACAATCCGGT AAACAGAACT GCATTGGCGG
   1301 CTTTATCCGC CCACACCGTA CCATCTAAGG CTACGGGCAG GCATCAGGAA
        ATATTGGACG GCGCGTTGGA TGACGCGCTG GTTGAGCCCG ATTTCAATTC
  1401 TCAGCTCAAC CCGATGGTGC GTCAGGCGGT TGCCGCACTT AATGCTTGCA
  1451 ACAGCTACGA GGAGGCAGAT GCCGCACTGA ATGCGCTTTA TCCGAATTTG
        GACAACGCGA AACTGCGTAC CTATATGCAG CAGGCCTTGT TTATCAGCGA
  1551 TATTTTGGGA CAAGACCATG CCCGCGCCTG A
```

### This corresponds to the amino acid sequence <SEQ ID 2422; ORF 718.a>: a718.pep

```
1 MEPIMAKKNN KTKIQKPEAA LQTDVAQITA TGRVIAEHPS NFITPQKMRA
51 LFEDAESGDI RAQHELFADI EERDSDIAAN MGTRKRALLT LNWRVAPPRN
101 ATPEEEKLSD QAYEMMDSLP TLEDLIMDLM DAVGHGFSAL EVEWVFSDGL
151 YLPRNFIHRP QSWFKWDKDN GLLLRTRENP EGEALWPLGW VVHTQKSRSV
201 QQARNGLFRT LSWLYMFKHY AVHDFAEFLE LYGMPIRIGK YGAGATKEEK
251 NTLLRAVAEI GHNAAGIMPE GMEIELHNAA NGMTSAGNPF LQMADWCEKS
301 AARLILGQTL TSGADGKSST NALGNIHNEI RRDLLVSDAK QVAQTITSQI
351 IGPFLQINYP HADPNRVPKF EFDTREPKDI AVFADAIPKL VDVGVQIPES
401 WVRDKLVIPD VQEGEAVLVR QVPDNPVNRT ALAALSAHTV PSKATGRHQE
451 ILDGALDDAL VEPDFNSQLN PMVRQAVAAL NACNSYEEAD AALNALYPNL
501 DNAKLRTYMQ QALFISDILG ODHARA*
```

### a718/m718 98.4% identity in 380 aa overlap

a718.pep	120 DSLPTLEDL	130 IMDLMDAVO	140 GHGFSALEVE	11111:	! ! ! ! ] [ ] [ ]	170 WFKWDKDNGL           WFKWDKDNGL 20	LILL
a718.pep	11111111	IIIIIIIII VPLGWVVHT	1111111	)		230 HDFAEFLELY(          HDFAEFLELY( 80	GMPI
a718.pep		111111	111111	11111111	11111111	290 MTSAGNPFLQN  :::       TATSNPFLQN	

	100	110	120	130	140	150
a718.pep	300 310		330	340	350	
a/10.pep	CEKSAARLILGQTL	TSGADGKSSTN	ALGNIHNEIR	RDLLVSDAKQ	VAQTITSQII	GPFLQ
m718	CEKSAARI.TI.COTI	TSCADCRECTA			]   ]	
M(710	CEKSAARLILGQTL 160	170	ALGNIHNEVR 180			
	100	170	180	190	200	210
	360 370	380	390	400	410	
a718.pep	INYPHADPNRVPKF	EFDTREPKDIA	VFADAIPKLV	DVGVOTPESW	URDKI.VI PDV	OFCED
		111111111	111111111			11111
m718	INYPHADPNRVPKF	EFDTREPKDIA	VFADAIPKLV	DVGVOIPESW	VRDKLVIPDV	OEGEA
	220	230	240	250	260	270
	420 430	440	450	460	470	
a718.pep	VLVRQVPDNPVNRT	ALAALSAHTVP	SKATGRHOEI	LDGALDDAT.VI	TPDFNSOLN¤	MIZDON
		1111111111				11111
m718	VLVRQVPDNPVNRT	ALAALSAHTVP	SKATGRHQEI	LDGALDDALVI	EPDFNSOLNP	MVROA
	280	290	300	310	320	330
	480 490	500	510	500		
a718.pep	VAALNACNSYEEAD		510 NAKI PEVMOO	520		
			ANTENT INCOM	771 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	JHARAX	
m718	VAALNACNSYEEAD	AALNALYPNID	NAKT.RTYMOOZ		יווון.	
	340	350	360	370	380	

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2423>: m718-1.seq

```
1 ATGGAGCCGA TAATGGCAAA AAAGAACAAT AAAACTAAAA TCCAAAAGCC
  5.1
      CGAAGCTGCA TTGCAGACGG ACGTGGCTCA AATTACGGCG ACCGGTCGGG
 101 TTATCGCCGA GCATCCGTCC AATTTTATTA CGCCGCAAAA GATGCGGGCC
 151 CTCTTCGAGG ACGCAGAAAG CGGCGACATC CGCGCCCAAC ACGAGCTTTT
 201 CGCGGACATT GAGGAGCGCG ACAGCGACAT CGCGGCAAAT ATGGGGACGC
 251 GCAAACGCGC GCTGCTGACG CTCAACTGGC GCGTCGCCCC GCCGCGAAAT
 301 GCGACGCCCG AAGAAGAAAA GCTGTCCGAC CAAGCCTACG AAATGATGGA
 351 CAGCCTGCCT ACCCTCGAAG ACCTGATTAT GGATTTGATG GACGCGGTAG
      GGCACGGATT TTCTGCGTTG GAGGTCGAGT GGGTATTTTC AGACGGCCTT
 401
     TACCTACCCC GAAACTTTAT CCACCGCCCG CAAAGCTGGT TCAAATGGGA
 451
 501 CAAAGACAAC GGGCTGCTGC TGCGTACCCG CGAAAATCCG GAAGGCGAAG
     CGTTGTGGCC GCTGGGCTGG GTCGTTCATA CCCAAAAATC GCGCAGCGTC
 551
 601 CAGCAGGCGC GCAACGGGCT TTTCCGCACG CTTTCCTGGC TGTATATGTT
 651 CAAACACTAC GCCGTCCACG ATTTTGCCGA GTTTTTGGAG CTGTACGGCA
 701 TGCCCATCCG TATCGGCAAA TACGGCGCGG GCGCAACCAA AGAGGAAAAA
 751 AACACCCTGC TTCGAGCGGT GGCGGAAATC GGTCACAACG CGGCAGGCAT
 801 CATGCCAGAA GGTATGGAAA TAGAGCTCCA CAACGCGGCA AACGGTACGA
851 CGGCAACCAG CAATCCGTTT TTGCAGATGG CCGACTGGTG CGAAAAATCG
     GCGGCGCGC TGATTTTGGG GCAAACGCTG ACCAGCGGTG CGGACGGAAA
 901
 951
     ATCCAGCACC AACGCGCTGG GCAATATCCA CAACGAGGTA CGCCGCGATT
1001 TGCTGGTGTC GGACGCAAAA CAGGTGGCGC AAACCATCAC AAGCCAAATC
     ATCGGACCGT TCCTGCAAAT CAACTATCCC CATGCCGACC CAAACCGCGT
1051
1101 GCCGAAATTT GAATTTGACA CGCGCGAGCC GAAAGACATC GCGGTCTTTG
     CCGACGCTAT CCCGAAACTG GTGGATGTCG GCGTACAAAT CCCCGAAAGC
1151
1201 TGGGTGCGCG ACAAACTGGT CATTCCAGAT GTGCAGGAGG GTGAGGCTGT
1251 GTTGGTGCGG CAGGTACCGG ACAATCCGGT AAACAGAACT GCATTGGCGG
1301 CTTTATCCGC CCACACCGTA CCATCTAAGG CTACGGGCAG GCATCAGGAA
1351 ATATTGGACG GCGCGTTGGA TGACGCGCTG GTTGAGCCCG ATTTCAATTC
1401 TCAGCTCAAC CCGATGGTGC GTCAGGCGGT TGCCGCACTT AATGCTTGCA
1451 ACAGCTACGA GGAGGCAGAT GCCGCACTGA ATGCGCTTTA TCCGAATTTG
     GACAACGCGA AACTGCGTAC CTATATGCAG CAGGCCTTGT TTATCAGCGA
1551 TATTTTGGGA CAAGACCATG CCCGCGCCTG A
```

This corresponds to the amino acid sequence <SEQ ID 2424; ORF 718-1>: m718-1.pep.

```
1 MEPIMAKKUN KTKIQKPEAA LQTDVAQITA TGRVIAEHPS NFITPQKMRA
51 LFEDAESGDI RAQHELFADI EERDSDIAAN MGTKKRALLT LNWRVAPPRN
101 ATPEEEKLSD QAYEMMDSLP TLEDLIMDLM DAVGHGFSAL EVEWVFSDGL
151 YLPRNFIHRP QSWFKWDKDN GLLLRTRENP EGEALWPLGW VVHTQKSRSV
201 QQARNGLFRT LSWLYMFKHY AVHDFAEFLE LYGMPIRIGK YGAGATKEEK
251 NTLLRAVAEI GHNAAGIMPE GMEIELHNAA NGTTATSNPF LQMADWCEKS
301 AARLILGQTL TSGADGKSST NALGNIHNEV RRDLLVSDAK QVAQTITSQI
```



- 351 IGPFLQINYP HADPNRVPKF EFDTREPKDI AVFADAIPKL VDVGVQIPES 401 WVRDKLVIPD VQEGEAVLVR QVPDNPVNRT ALAALSAHTV PSKATGRHOE
- ILDGALDDAL VEPDFNSQLN PMVRQAVAAL NACNSYEEAD AALNALYPNL
- 501 DNAKLRTYMO QALFISDILG ODHARA*

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2425>: a718.seq

```
ATGGAGCCGA TAATGGCAAA AAAGAACAAT AAAACTAAAA TCCAAAAGCC
      CGAAGCTGCA TTGCAGACGG ACGTGGCTCA AATTACAGCG ACCGGTCGAG
  51
      TTATCGCCGA GCATCCATCC AATTTTATTA CGCCGCAAAA GATGCGCGCC
 101
 151 CTCTTCGAGG ACGCAGAAAG CGGTGACATC CGCGCCCAAC ACGAGCTTTT
 201 CGCGGACATT GAGGAGCGCG ACAGCGACAT CGCGGCAAAT ATGGGGACGC
 251 GCAAACGCGC GCTGCTGACG CTCAACTGGC GCGTCGCCCC GCCGCGAAAT
 301 GCGACGCCCG AAGAAGAAAA GCTGTCCGAC CAAGCCTACG AAATGATGGA
      CAGCCTGCCT ACCCTCGAAG ACCTGATTAT GGATTTGATG GACGCGGTAG
 351
 401 GGCACGGATT TTCTGCGTTG GAGGTCGAGT GGGTATTTTC AGACGGCCTT
 451 TACCTACCCC GAAACTTTAT CCACCGCCCG CAAAGCTGGT TCAAATGGGA
      CAAAGACAAC GGGCTGCTGC TGCGTACCCG CGAAAATCCG GAAGGCGAAG
 501
 551 CGTTGTGGCC GCTGGGCTGG GTCGTTCATA CCCAAAAATC GCGCAGCGTC
 601 CAGCAGGCGC GCAACGGGCT TTTCCGCACG CTTTCCTGGC TGTATATGTT
      CAAACACTAC GCCGTCCACG ATTTTGCCGA GTTTTTGGAG CTGTACGGCA
 651
 701 TGCCCATCCG TATCGGCAAA TACGGCGCGG GCGCAACCAA AGAGGAAAAA
 751 AACACCCTGC TTCGAGCGGT GGCGGAAATC GGTCACAACG CGGCAGGCAT
 801 CATGCCAGAA GGTATGGAAA TCGAGCTGCA CAACGCGGCA AACGGCATGA
 851 CTTCCGCCGG CAATCCGTTT TTGCAGATGG CCGACTGGTG CGAAAAATCG
 901 GCGGCGCGC TGATTTTGGG GCAAACGCTA ACCAGCGGTG CGGACGGAAA
 951 ATCCAGCACC AACGCGCTGG GCAATATCCA CAACGAGATA CGCCGCGATT
1001
     TGCTGGTGTC GGACGCAAAA CAGGTGGCGC AAACCATCAC AAGCCAAATC
     ATCGGACCGT TCCTGCAAAT CAACTATCCC CATGCCGACC CAAACCGCGT
1051
     GCCGAAATTT GAATTTGACA CGCGCGAGCC GAAAGACATC GCGGTCTTTG
1101
1151
     CCGACGCTAT CCCGAAACTG GTGGATGTCG GCGTACAAAT CCCCGAAAGC
     TGGGTGCGCG ACAAACTGGT CATTCCAGAT GTGCAGGAGG GTGAGGCTGT
1201
     GTTGGTGCGG CAGGTACCGG ACAATCCGGT AAACAGAACT GCATTGGCGG
1251
     CTTTATCCGC CCACACCGTA CCATCTAAGG CTACGGGCAG GCATCAGGAA
1301
1351 ATATTGGACG GCGCGTTGGA TGACGCGCTG GTTGAGCCCG ATTTCAATTC
1401 TCAGCTCAAC CCGATGGTGC GTCAGGCGGT TGCCGCACTT AATGCTTGCA
     ACAGCTACGA GGAGGCAGAT GCCGCACTGA ATGCGCTTTA TCCGAATTTG
1451
     GACAACGCGA AACTGCGTAC CTATATGCAG CAGGCCTTGT TTATCAGCGA
1551 TATTTTGGGA CAAGACCATG CCCGCGCCTG A
```

#### This corresponds to the amino acid sequence <SEQ ID 2426; ORF 718-1.a>: a718.pep

```
MEPIMAKKNN KTKIQKPEAA LQTDVAQITA TGRVIAEHPS NFITPQKMRA
51 LFEDAESGDI RAQHELFADI EERDSDIAAN MGTKKRALLI LNWKVAFFON
101 ATPEEEKLSD QAYEMMOSLP TLEDLIMDLM DAVGHGFSAL EVEWVFSDGL
CILLETBENP EGEALWPLGW VVHTOKSRSV
151 YLPRNFIHRP QSWFKWDKDN GLLLRTRENP EGEALWPLGW VVHTQKSRSV
     QQARNGLFRT LSWLYMFKHY AVHDFAEFLE LYGMPIRIGK YGAGATKEEK
201
251 NTLLRAVAEI GHNAAGIMPE GMEIELHNAA NGMTSAGNPF LQMADWCEKS
301
     AARLILGQTL TSGADGKSST NALGNIHNEI RRDLLVSDAK QVAQTITSQI
     IGPFLQINYP HADPNRVPKF EFDTREPKDI AVFADAIPKL VDVGVQIPES
351
     WVRDKLVIPD VQEGEAVLVR QVPDNPVNRT ALAALSAHTV PSKATGRHQE
401
     ILDGALDDAL VEPDFNSQLN PMVRQAVAAL NACNSYEEAD AALNALYPNL
451
501 DNAKLRTYMQ QALFISDILG QDHARA*
```

#### a718/m718-1 99.0% identity in 526 aa overlap

	10	20	30	40	50	60
a718.pep	MEPIMAKKNNKTKI	QKPEAALQTI	VAQITATGR	VIAEHPSNFTT	POKMDATEE	NECCDT.
		11111111			TITLETTE	
m718-1	MEPIMAKKNNKTKI	QKPEAALQTI	OVAQITATGR'	VIAEHPSNFIT	POKMRALFER	DARSCOT
	10	20	30	40	50	60
	70	80	90	100	110	120
a718.pep	RAQHELFADIEERD	SDIAANMGTF	KRALLTLNW	RVAPPRNATPE	EFKISDONYE	MMDern
		11111111111	111111111	LILLILLI	LULUUDQAIE	THIDSLP
m718-1	RAQHELFADIEERD	SDIAANMGTE	KRAT.T.TT.NW		Dry ana	11111
	70	80				MMDSLP
	70	80	90	<b>10</b> 0	110	120
-	120	• • •				
7.0	130	140	150	160	170	180
a718. <b>pe</b> p	TLEDLIMDLMDAVG	HGFSALEVEW	VFSDGLYLPF	NFIHRPOSWF	KWDKDNGT.T.T.	DWDDMD
		1     1   1   1   1   1	11111111	111111111	III CIII CII	111111
m718-1	TLEDLIMDLMDAVG	HGFSALEVEW	VESDGT YLPR	METHODOGNE	Phi Print I	11111
	130	140	150	THE THE COME		RTRENP
	130	140	130	160	170	180

a718.pep m718-1	190 EGEALWPLGWVVHT(		! ! ! ! ! ! ! ! ! ! ! !	11111111		1111111
a718.pep	250 YGAGATKEEKNTLLI           YGAGATKEEKNTLLI 250		!         E	11111111	:::::::::::	1111111
a718.pep	310 AARLILGQTLTSGAI                 AARLILGQTLTSGAI 310			1111111111	111111111	FILLIE
a718.pep	370 HADPNRVPKFEFDTF				111111111	
a718.pep	430 QVPDNPVNRTALAAI             QVPDNPVNRTALAAI 430				177111111	111111
a718.pep	490 NACNSYEEADAALNA                  NACNSYEEADAALNA 490	11111111	1111111111	1111111111	111	

g719.seq not found yet

g719.pep not found yet

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2427>: m719.seq

1	ATGGCAAACG	GGAACATGAA	ACTGTCGTTG	GTGTTAACCG	CCCGAGATGA
51	CGGAGCGAGA	CGGCTACTGG	CTGATACTCA	ACGACAATTA	GATCGTACCG
101	CGAAATCGCG	GGCGCAACTT	GAACGGCAAA	GCCATACTTA	TGCGTTGACC
151	GGCATCCGCT	CAGAAAAACA	GATTCAACGC	GAAATCATGC	TGACACAGGC
201	TGCGTTTAAC	CGTTTGGCGC	GCAGCGGCAA	GGCATCACAA	AATGATTTGG
251	CACGGGCGGC	GGTCGCTACG	CGTAACCGAA	TTCGCGAGCT	GAACGCGGAA
301	CTGAAACAGG	GCACGGGATT	TGCGGACAAG	ATGGGAAAAA	TCGGAAGATT
351	CGGTGCAGCT	GCGGTGGCTG	GTGGCGCGGC	AGCGTATACG	GTGCTTAAGC
401	CTGCTATGGA	CAACAGAAAG	CAGCTTGATG	AGAACATCAA	CCGCGTGTCC
451	AGACAGGCAT	TTATTGAGGA	TAACAGTAAA	TCGGCAGCGT	GGATTGCAAC
501	TGAAGGTGCG	CAACAGATCA	AGGATTTGGC	ACTTGAACTT	GTCGAGAAAA
551	ATGGCGGGAC	CCACGATAAG	GCTTTGGATT	TAATCAGCGG	CATGATGACC
601	ACCGGTCTGA	ATTTTGCCCA	AACCAAGAAT	GAAGCGCAGG	CGGCATATGC
651	TTTTGCACTT	GCCTCAGAAG	GCAGTGGCGA	GGATACGGCA	AAACTGATTA
701	AAACCCTGAA	AGATGGCGGC	ATGAGCGGTA	AAGACCTGCA	ACTCGGGCTT
751	GAGCACGTCT	TGCAATCGGG	TTTAGACGGC	ACTTTCGAGG	TGCGGGATAT
801	GGTTCGGGAG	CTGCCGAGCC	TGCTCTCTGC	CGCGCAACAG	GCAGGGATGA
851	ATGGTGTCGG	CGGTTTGGAC	TACCTGCTCT	CACTCTTACA	ATCTGCGGCG
901	AATAAATCGG	GCAGTCCTGC	CGAAGCGGCG	ACTAATGTGC	AAAATCTTTT
951	GAGTAAAACT	CTGTCGCCTG	ACACGATAGG	TCGTCTGAAG	AAGATGGCAA
1001	ATCCGAATGA	CCCGAAGAAA	GGTGTCGATT	GGATAGGCTC	GGTTGTGCAA
1051	GGCAAGCAAA	ACGGCGAAAA	CGCAGTGCAG	GTGTTGTCCC	GTCTTGCCGA
1101	TGCCATGCTA	GTAAAGGATA	AGCAATACCA	AGATTATAAG	AAACGCGCGG
1151	CTGCAGGCGA	TAAGACGGCG	GCGGAGCAGG	CAAATATGCT	TAAGGGCGCG
1201	CTTTTGGCGC	AACTGCTGCC	TGATTTGCAG	GCAAAACAAG	GTTTGCTGGC
1251	TGCAACGGAT	ATGACGCAAA	TCCGTGAATA	TATGGCTTCG	TTGGCTGGCG



1301	TAACGTTGGA	TAACGGAAAA	ATTGCTAAGA	ACAACGAGGC	GCGAATGTTG
1351	TCGGCAGCGG	CGCAACAAGA	GCAACAGGAA		
1401	AAGTCTGACG	GGAACATTGG	TGGATATGGA		AAAAAGCTGG
1451	CAGCGGAATA	CCCTAATGCC	ACTCTAGCCC	TGCAAGCATT	GACGACGCC
1501	GCAACAGCGG	CGTCTGCCGC	AATGTTATTA	ACCGCCGGTG	GCGGTAAAGG
1551	TGCAGGCTTT	CTGAAAGATG	TAGGTAGTAA	AGCGTTGGGA	TGGGGTAAGG
1601	CTTCCGCAGG	CGGCGTGGCA	GCAGGTGCCA	CAGCGGCAGG	
1651	CTGTCATGGG	GAAAATCTGC	CGGTAGCGGG	CTCATGAATA	CGGTAAGTTG
1701	AGTTAAACGG	GCGGGTTTGT	TAGGTATGTT	GCTGTATTCC	
1751	GTGACGGCAC	ATTGCCAAAG	GGTTTGCGTG		GAGTCTTTGG AACTCCTGAA
1801	ATGATTAATC	GTCTGAAAAA	CAACGGTATC		
1851	GCGGGAACAG	GCGCGGGGTG	GTGTCCCTCA	GTATTTGGCT	CTGCGCCGAA
1901	CGCAGCCTAC	CGATAAGATG	TTGTCTCCGT		GCTCCGTCAG
1951	GCGTATCAGG	CAGCCATTCA	GCAGCAGACG		TCAGACGGCG
2001	GGCGCAGGAT	ACGGCTGCAG	TTACAACAGG		AGGCAGCATT
2051	CGATGGCGTC	GGCAAGTCAG		TTTGGCACAA	•
2101	GACGGACGTG	TTATCGCGAA	ACCATCAATA	CCAATGTGAG	CCTGAATATC
2151	CGGCCGTGGA		TGAGGTATCG	CGGTATCAAG	TGGCCATGTT
2171	CGGCCGIGGA	GCGGGTCAAT	AA		

## This corresponds to the amino acid sequence <SEQ ID 2428; ORF 719>: m719.pep

```
1 MANGNMKLSL VLTARDDGAR RLLADTQRQL DRTAKSRAQL ERQSHTYALT
51 GIRSEKQIQR EIMLTQAAFN RLARSGKASQ NDLARAAVAT RNRIRELNAE
101 LKQGTGFADK MGKIGRFGAA AVAGGAAAYT VLKPAMDNRK QLDENINRVS
151 RQAFIEDNSK SAAWIATEGA QQIKDLALEL VEKNGGTHDK ALDLISGMMT
201 TGLNFAQTKN EAQAAYAFAL ASEGSGEDTA KLIKTLKDGG MSGKDLQLGL
251 EHVLQSGLDG TFEVRDMVRE LPSLLSAAQQ AGMNGVGGLD YLLSLLQSAA
301 NKSGSPAEAA TNVQNLLSKT LSPDTIGRLK KMANPNDPKK GVDWIGSVVQ
351 GKQNGENAVQ VLSRLADAML VKDKQYQDYK KRAAAAGDKTA AEQANMLKGA
401 LLAQLLPDLQ AKQGLLAATD MTQIREYMAS LAGVTLDNGK IAKNNEARML
451 SAAAQQEQQE SLAMLRESLT GTLVDMETSF KKLAAEYPNA TLALQALTTA
501 ATAASAAMLL TAGGGKGAGF LKDVGSKALG WGKASAGGVA AGATAAGGKL
551 LSWGKSAGSG LMNNPALVKR AGLLGMLLYS ESLGDGTLPK GLRGTKTTPE
601 MINRLKNNGI RFEPAPKREQ ARGGVPQYLA APSAQPTDKM LSPLFSTQTA
651 AYQAAIQQCT AAYQAALAQD TAAVTTGLAQ VQSAMASASQ TINTNVSLNI
701 DGRVIANEVS RYQVAMFGRG AGQ*
```

a719.seq not found yet
a719.pep not found yet
g720.seq not found yet

g720.pep not found yet

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2429>: m720.seq

1	ATGAGCGGAT	GGCATACCTT	ATTGCAGGAC	GCATCTTACA	AGGGCGTCGG
51	CTTTGATATT	GAGGTGGTGG	ACGAGAGCAA	CGGCAAGGCA	
101	ATGCGCGGCC	GTTTGTGCAG	GGTATCGACC	TTGAAGACAT	GGGCATGACC
151	GGGCGGCAGG	TGCAGATTAA	TGCGGTGTTT	TGGGGCAAGG	GCTATGCAGG
201	CCGTCTGAAA	AAGCTGCTGG	ATGCGCTGGA	GCAGCCGGGC	GGCGGCGTGC
251	TGGTGCACCC	TGTTTGGGGG	CGGATGCACA	ACATGATTGC	
301	AGTTACCGAC	ATGAGGCCGA	TTATGTGGAT	TATGCGGGCA	GGCATCATGG
351	TTTCCGCGAG	GCGGCCGAAG	CGCAGGAAAT	CTTTGTTTTT	
401	TTTTGGTCGA		TTGATTGCTA		GAAAACGCCT
451	GCGGCTATCG	GCTTTGTTGA	TGCGGTGTTG	ATATCGACAC	CTACCGCGAG
501	AGCTTTATGG	GGCAGCGCGC	TGGGCATTTG	GCGGTGGATG	CGGGCGTATC
551	TTGGCGCGGT	GCGCCGTTTG		GAGTGCGGCA	TCGGGTACGT
601	CGGGGCGGAT	ACAGTGCAGC	TTTGATTTGG	ACAAAATTGC	CTTTCCCGAT
651	TGCGGATATA	TCGGTCATGG	GGCGTTTAAA	AACGGCTCGG	CCAAGCTGTT
701	TGGCCGATAA		TAGATACTGG	CATACGCCGT	GAGGCGGGTT
751	GACGGGGCTG	TGCCATGCAC	CATGCCGGTT	GGTCGCCGCG	ACAGCGGTTT
801	GCTGACCGGC	CGGCTGTTGC	CGACCGCGCC	GCCGCTATCC	CTGATAATTT
001	GCIGACCGGC	CGCTTTTCAG	ACGGCCTGCA	AAACCGCCTG	AACCGGTTAA

### 1165

851	CCGCCAAACA GGTGCAGCCG GTAGCGCAGG CGGTGCGCCT GTTATCCACG
901	TCATCGCTGT TGTCGGTGGC AACGGCATTA ATCGAGGCGC ATGGCCAACA
951	GATGACCGCG CCCGATTTGA TTGAGGTTAA CCGCGCCATG CGCCGCCGTA
1001	TGCAGGCCGA GATTGCCGCC TTGCGGGCGG TGCAGACGCC TGCTGCCGAC
1051	TCTGGTGGGC TGACGGCCAA CGCCGTGTAT ACCGAGGCTT ACCAAACCCC
1101	AGAATCCCTG CGCGCGGCGG CAGGCCGTCT GAATGCGTTG GTTGCGGCCC
1151	TCATCAACCA AAAGCCGCCG CTGATTGTGC GCCAAGCCCC AATCCACCCT
1201	ACGATACACC AAATCGCCCA CGAGTTTTAC GGCGATATAG CCCGCCCACC
1251	AGAGCTGGTG CGGCTCAATC CCCATATCCA CCACCCCGCG TTTATCAAGC
1301	GCGGCACTTT GGTCAACAGC TATGCAAAAT AA
ma :	
This correspond	ds to the amino acid sequence <seq 2430;="" 720="" id="" orf="">:</seq>
m720.pep	
1	
51	GRQVQINAVF WGKGYAGRLK KLLDALEOPG GGVLVHPVWG DMUMMTAAGW
101	SYRHEADYVD YAGIDITFRE AAEAOEIFVF ENAFLVELEA LIANIDTVDE
151	AAIGFVDAVL AVDAGVSALW GSALGIWSAA SGTFGAVRRI, FDIDKIAFED
201	RGGYSAAAFK NGSAKLFADI SVMVDTGIRR EAGLADNAMH HAGWSBBOBE
251	DGAAAVADRA AAIPDNLLTG RFSDGLONRI NRITAKOVOD VAOAVDII ST
301	SSLLSVATAL IEAHGEEMTA POLIEVNRAM RRRMOAFTAA IRANOTAAAF
351	SGGLTANAVY TEAYQTAESL RAAAGRLNAL VAAVINOKPP LIVROADIDC
401	TIHQIAHEFY GDIARAAELV RLNPHIHHPA FIKRGTLVNS YAK*
The following r	partial DNA sequence was identified in N. meningitidis <seq 2431="" id="">:</seq>
a720.seg	(partial)
1	GGCCTGCAAA ACCGCCTGAA CCGGTTAACC GCCAAACAGG TGCAGCCGGT
51	AGCGCAGGCG GTGCGCCTGT TATCCACGTC ATCGCTGTTG TCGGTGGCAA
101	CGGCATTAAT CGAGGCGCAT GGCGAAGAGA TGACCGCGCC CGATTTGATT
151	GAGGTTAACC GCGCCATGCG CCGCCGTATG CAGGCCGAGA TTGCCGCCTT
201	ACGGGCGTG CAGACGGCTG CTGCCGAGTC TGGTGGGCTG ACGGCCAACG
251	CCGTGTATAC CGAGGCTTAC CAAACGGCAG AATCCCTGCG CGCGGCGCA
301	GGCCGTCTGA ATGCGTTGGT TGCGGCGGTC ATCAACCAAA AGCCGCCGCT
351	GATTGTGCGC CAAGCCCCAA TCGACGGTAC GATACACCAA ATCGCCCACG
401	AGTTTTACGG CGATATAGCC CGCGCAGCAG AGCTGGTGCG GCTCAATCCC
451	CATATCCACC ACCCGCGTT TATCAAGCGC GGCACTTTGG TCAACAGCTA
501	TGCAAAATAA
This correspond	s to the amino acid sequence <seq 2432;="" 720.a="" id="" orf="">:</seq>
a720 nen	(partial)
	GLQNRLNRLT AKQVQPVAQA VRLLSTSSLL SVATALIEAH GEEMTAPDLI
51	EVNRAMRRM QAEIAALRAV QTAAAESGGL TANAVYTEAY QTAESLRAAA
101	GRLNALVAAV INQKPPLIVR QAPIDGTIHQ IAHEFYGDIA RAAELVRLNP
151	HIHHPAFIKR GTLVNSYAK*
m720 / 9720 1	00.0% identity in 169 aa overlap
m/20/4/20 1	050
m720.pep	250 260 270 280 290 300
m/20.pep	SPRQRFDGAAAVADRAAAIPDNLLTGRFSDGLQNRLNRLTAKQVQPVAQAVRLLSTSSLL
a720	
a/20	GLQNRLNRLTAKQVQPVAQAVRLLSTSSLL
	10 20 30
	310 320 330 340 350 360
m720.pep	
m/20.pep	SVATALIEAHGEEMTAPDLIEVNRAMRRRMQAEIAALRAVQTAAAESGGLTANAVYTEAY
a720	SVATALIFANCEEMTARRITERINA PROTECTION AND ANALYSIS OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE
4,20	SVATALIEAHGEEMTAPDLIEVNRAMRRRMQAEIAALRAVQTAAAESGGLTANAVYTEAY
	40 50 60 70 80 90
	370 380 390 400 410 420
m720.pep	
	QTAESLRAAAGRLNALVAAVINOKPPLIVRQAPIDGTIHQIAHEFYGDIARAAELVRLNP
a720	OTAESIRAAAGRINAIJAAVINOKARI TYROARIJAANATAA
	QTAESLRAAAGRLNALVAAVINQKPPLIVRQAPIDGTIHQIAHEFYGDIARAAELVRLNP
	100 120 130 140 150
	430 440
m720.pep	HIHHPAFIKRGTLVNSYAKX

a720

```
HIHHPAFIKRGTLVNSYAKX
160 170
```

g721.seq not found g721.pep not found

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2433>:

```
ATGTCCAAAA ATGCACAAAA AACCCTACTT GCCGTGTGCA GTTTCGAGGT
      GCAGCCAAAA GACGGGCGAA TCCAACTGCT GCCATATGGC GAATTTCGCG
  51
 101 CAGTAGACGG TCGTCCGACT GATGTCCCTG CGTGGTATCT GACCGAAGAA
      AACGGTCATG ATGTCGCGTT GTTGGCCAAC AGCTCGCGCA ATCAGTTGGT
 151
      TGTCGATTAT GAACACCAGA CGCTCTACAA AGAGAAAAAC GGACAACCTG
      CACCTGCCGC CGGTTGGATG CGTTGGCTGG AGTTCACGCC TAAAGGCATG
      TTTGCCGAAG TGGAGTGGAC GGACAAGGCG GCTGCGGCAA TTGCCGCAAA
 351 AGAGTATCGC TACATCTCTG CTGTGTTTTC CTATGACACA AAGGGATATG
      TAAGCAAAAT TTTTCACGCC GCGCTGACAA ATTTCCCCGC GTTGGACGGT
 401
      ATGGACGAGG TGCTGGCGGC AGCGTCGGCG CAAATTTTAA AACCGGAAAC
      GGAGCAAAAC CCTATGAAAG AGTTGTTACA GCAACTGTTC GACCTGCCTG
 551 ATGCGGGCGA AGAAGAACTG AAGGCGGCAT TGTCCGCGCT CGTGGAAGCC
601 AAGCCGAAAG ACGTGGCATT GTCTGCCGAC GTGTTCGCGC AGCTGGCGGA
 651 AAAAGACAGC CGCATCGCGG CATTGACGGC GCAAACCGCC AAGCCTGATT
      TGACTAAATA CGCGCCTATC TCAGTGGTTC AAGAGCTGCA AAGCAAAGTC
 751 GCCGCGCTGA CTGCCAAGCA GGAAGCAGAC AAAGGCAACG AATTGATTAC
     CGCCGCGCTG ACTTCAGGCA AATTGCTGCC TGCTCAGAAG GAGTGGGCAA
 801
     AAGGCGTATT GAAACAGCCG GGCGGCTTGG CATTTTTGAC CGGCTTTATT
 851
      GAAAACGCCC AGCCGGTCGC TGCACTGGCA GGCTCGCAAA CGGGCGGCAA
      AGCACCCGAC GAACGCGTCG CCGCACTGAC TGCGGAAGAG GCAGCCGCAG
 951
     CAAAAATGCT GGGCATGTCC GGCGAAGAAT TTGTAAAAAT CAAAGAAAGC
1051 GAAGGTAAGT AA
```

### This corresponds to the amino acid sequence <SEQ ID 2434; ORF 721>: m721.pep

```
1 MSKNAQKTLL AVCSFEVQPK DGRIOLLPYG EFRAVDGRPT DVPAWYLTEE
51 NGHDVALLAN SSRNQLVVDY EHQTLYKEKN GQPAPAAGWM RWLEFTPKGM
101 FAEVEWTDKA AAAIAAKEYR YISAVFSYDT KGYVSKIFHA ALTNFPALDG
151 MDEVLAAASA QILKPETEQN PMKELLQQLF DLPDAGEEEL KAALSALVEA
201 KPKDVALSAD VFAQLAEKDS RIAALTAQTA KPDLTKYAPI SVVQELQSKV
251 AALTAKQEAD KGNELITAAL TSGKLLPAQK EWAKGVLKQP GGLAFLTGFI
301 ENAQPVAALA GSQTGGKAPD ERVAALTAEE AAAAKMLGMS GEEFVKIKES
351 EGK*
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2435>:

```
ATGTCCAAAA ATGCACAAAA AACCCTACTT GCCGTGTGCA GTTTCGAGGT
  51 GCAGCCAAAA GACGGGCGAA TCCAACTGCT GCCATATGGC GAATTTCGCG
 101 CAGTAGACGG TCGTCCGACT GATGTCCCTG CGTGGTATCT GACCGAAGAA
 151 AACGGTCATG ATGTCGCGTT GTTGGCCAAC AGCTCGCGCA ATCAGTTGGT
      TGTCGATTAT GAACACTAGA CGCTCTACAA AGAGAAAAAC GGACAACCTG
      CACCTGCCGC CGGTTGGATG CGTTGGCTGG AGTTCACGCC TAAAGGCATG
      TTTGCCGAAG TGGAGTGGAC GGACAAGGCG GCTGCGGCAA TTGCCGCAAA
 301
 351 AGAGTATCGC TACATCTCTG CTGTGTTTTC CTATGACACA AAGGGATATG
     TAAGCAAAAT TTTTCACGCC GCGCTGACAA ATTTCCCCGC GTTGGACGGT
 401
     ATGGACGAGG TGCTGGCGGC AGCGTCGGCG CAAATTTTAA AACCGGAAAC
 451
     GGAGCAAAAC CCTATGAAAG AGTTGTTACA GCAACTGTTC GGTCTGCCTG
 551 ATGCGGGCGA AGAAGAACTG AAGGCGGCAT TGTCCGCGCT CGTGGAAGCC
 601 AAGCCGAAAG ACGTGGCATT GTCTGCCGAC GTGTTCGCGC AGCTGGCGGA
 651 AAAAGACAGC CGCATCGCGG CATTGACGGC GCAAACCGCC AAGCCTGATT
     TGACTAAATA CGCGCCTATC TCAGTGGTTC AAGAGCTGCA AAGCAAAGTC
 701
      GCCGCGCTGA CTGCCAAGCA GGAAGCAGAC AAAGGCAACG AATTGATTAC
 751
      CGCCGCGCTG ACTTCAGGCA AATTGCTGCC TGCTCAGAAG GAGTGGGCAG
 801
      AAGGCGTATT GAAACAGCCG GGCGGCTTGG CATTTTTGAC CGGCTTTATT
 851
 901 GAAAACGCCC AGCCGGTCGC TGCACTGGCA GGCTCGCAAA CGGGCGGTAA
 951 AGCACCCGAC GAACGCGTCG CCGCACTGAC TGCGGAAGAG GCAGCCGCAG
1001 CAAAAATGCT GGGCATGTCC GGCGAAGAAT TTGTAAAAAT CAAAGAAAGC
```

BNSDOCID: <WO___9957280A2_I_>

#### 1051 GAAGGTAAGT AA

a721.pep					
1	MSKNAQKTLL	AVCSFEVQPK	DGRIQLLPYG	EFRAVDGRPT	DVPAWYLTEE
51	NGHDVALLAN	SSRNQLVVDY	EH*TLYKEKN	GOPAPAAGWM	RWLEFTPKGM
101	FAEVEWTDKA	AAAIAAKEYR	YISAVFSYDT	KGYVSKIFHA	ALTNFPALDG
151	MDEVLAAASA	QILKPETEQN	PMKELLQQLF	GLPDAGEEEL	KAALSALVEA
201	KPKDVALSAD	VFAQLAEKDS	RIAALTAQTA	KPDLTKYAPI	SVVOELOSKV
251	AALTAKQEAD	KGNELITAAL	TSGKLLPAQK	EWAEGVLKOP	GGLAFLTGFI
301	ENAQPVAALA	GSQTGGKAPD	ERVAALTAEE	AAAAKMLGMS	GEEFVKIKES
351	EGK*				

### a721/m721 99.2% identity in 353 aa overlap

	o radiantly in 555 t	au o v criap				
	10	20	30	40	50	60
a721.pep	MSKNAQKTLLAVCS	FEVOPKDGR	TOLLPYGEERA	WDCB DTDWD	AMVI TERMOU.	
• •	11111111111111			I I I I I I I I I I I I I I I I I I I	MITIEEMGUI	DVALLAN
m721	MSKNAQKTLLAVCS	EENUBRUCD.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
1117.2.2	10	20	30			
	10	20	30	40	50	60
	70	80	0.0			
a721.pep			90	100	110	120
a/21.pep	SSRNQLVVDYEHXTI	LIKEKNGOPA	APAAGWMRWLE	FTPKGMFAE	/EWTDKAAAA:	IAAKEYR
701				111111111		11111
m721	SSRNQLVVDYEHQTI	LYKEKNGQPA	APAAGWMRWLE	FTPKGMFAEV	/EWTDKAAAA:	IAAKEYR
	70	80	90	100	110	120
	130	140	150	160	170	180
a721.pep	YISAVFSYDTKGYVS	SKIFHAALTN	<b>IFPALDGMDEV</b>	LAAASAOILK	(PETEONPMK)	ELLOOLE
				1111111111	1111111111	111111
m721	YISAVFSYDTKGYVS	KIFHAALTN	FPALDGMDEV	LAAASAOTIK	PETEONPME	ELLOOLE
	130	140	150	160	170	180
					170	100
,	190	200	210	220	230	240
a721.pep	GLPDAGEEELKAALS	SALVEAKPKE		LAFKDODTAA	230 1777 AMA KMA 1	240
• - •			IIIIIIIIII	THENDOKIAN	TIAGLAKEDI	TKIAPI
m721	DLPDAGEEELKAALS	ALWEDKOKL SVINE	11111111111111111111111111111111111111		1	11111
	190	200	210	TAEVDSKIVA		
	150	200	210	220	230	240
	250	260	270	222		
a721.pep			270	280	290	300
a/zi.pep	SVVQELQSKVAALTA	TUČENDEGNE	LITAALTSGK	LLPAQKEWAE	.GVLKQPGGLA	AFLTGFI
m721		71111111		11111111:	111111111	11111
m/21	SVVQELQSKVAALTA	AKQEADKGNE	LITAALTSGK		.GVLKQPGGLA	FLTGFI
•	250	260	270	280	290	300
	310	320	330	340	350	
a721.pep	ENAQPVAALAGSQT	GKAPDERVA	ALTAEEAAAA	KMLGMSGEEF	VKIKESEGKX	
	_	111111	111111111		111111111	
m721	ENAQPVAALAGSQTG	GKAPDERVA	ALTAEEAAAA	KMLGMSGEEF	VKIKESECKX	•
	310	320	330	340	350	=

g722.seq not found yet

g722.pep not found yet

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2437>: m722.seq

1	GTGTTTGAAA	CGCCGACATT	TGAGCAAATC	CGCGAGCGTA	TCCTGCGCGA
51	TACCAAAAGC	CTGTGGCCGG	ATGCCGATAT	CAGCCCCGAC	AGCGACCATT
101	ATGTGCACGC	CAGCCGTTTG	GCCAGCTGCG	CCGAAGGGCA	ATATGCCCAT
151	CAAAGCTGGA	TTGTGCGGCA	GATTTTCCCT	GATACCGCCG	ACCGCGAGTA
201	TTTGGAGCGG	CATGCCTCCA	TGCGCGGCTT	GAGCCGCCGC	AATCCTACCA
251	CGGCCAGCGG	CACGCTGACC	GTAAGCGGTA	TTGCGCAATC	CATCCTTTCA
301	GACGACCTGC	AAGTGCGTAT	CGGCCAGCGT	TTTTACCGCA	CTACCGCCCG
351	CGCCGTTATC	GGCAGCGGCG	GCACGGCGGA	AATACCGGCA	ATCGCCGACG

BNSDOCID: <WO___9957280A2_I_>



401	AGCCGGGCGC	GGCCGCCAAT	GTGGGCGACG	GCGAGGCGCA	ACTGATGGCC
451	GCCCCCGCCG	GTGTGGCCAC	CGAATGCCGC	CTTACCGTAC	AAGGCGGCAC
501	CGACCGAGAA	AGCGATGCCT	CACTGCTGGC	GCGTCTGTTG	GAAATCATCC
551	GCCGACCGCC	CGCAGGCGGC	AACCGTTACG	ACTATAAAA	CTGGGCGTTC
601	AGTGTTGACG	GCGTAACCAG	CGCATATGTT	TATCCGCTGC	GCCGCGGCTT
651	GGGTACGGTG	GATATTGCCA	TTACCTCCGC	CGACGGTGTG	TOGTOGGAAG
701	AAACTGTGCG	CCGCGTACAG	GCTTATATCG	ACGAGATGCG	CCCGGTAACG
751	GCAAAAAATG	CGCTGGTACT	CAAGCCAACC	GTAACGGCGG	TGCCTGTTAC
801	CGTGCAAGTC	AAGCTCGACG	GTATCGACTT	GGACGAGGCC	
851			TATTTCGACA	CCCTGATCCC	
901	CTGACTGTGT	OCCULTATION	GGCTGCTATC	AGCAATGTGG	ATGGTGTGAT
951	CGACCGCCGT	CTGACTGCGC	CGACGGCCAA	CCGTGCCGCC	GATACGGTTA
1001	ACCGCATCGA	GTGGTTTAAA	GCGGGCGCGA	TTAATGTAAC	GGAGATGCCG
1051	TCATGA				

### This corresponds to the amino acid sequence <SEQ ID 2438; ORF 722>: m722.pep

```
1 VFETPTFEQI RERILRDTKS LWPDADISPD SDHYVHASRL ASCAEGQYAH
51 QSWIVRQIFP DTADREYLER HASMRGLSRR NPTTASGTLT VSGIAQSMLS
101 DDLQVRIGQR FYRTTARAVI GSGGTAEIPA IADEPGAAAN VGDGEAQLMA
151 APAGVATECR LTVQGGTDRE SDASLLARLL EIIRRPPAGG NRYDYKNWAL
201 SVDGVTSAYV YPLRRGLGTV DIAITSADGV SSEETVRRVQ AYIDEMRPVT
251 AKNALVLKPT VTAVPVTVQV KLDGIDLDEA KRRIRTALKE YFDTLIPGDG
301 LTVSQIEAAI SNVDGVIDRR LTAPTANRAA DTVNRIEWFK AGAINVTEMP
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2439>: a722.seq

```
GTGTTTGAAA CGCCGACATT TGAGCAAATC CGCGAGCGTA TCCTGCGCGA
   1
      TACCAAAAGC CTGTGGCCGG ATGCCGATAT CAGCCCCGAC AGCGACCATT
  51
     ATGTGCACGC CAGCCGTTTG GCCAGCTGCG CCGAAGGGCA ATATGCGCAT
 101
 151 CAAAGCTGGA TTGTGCGGCA GATTTTCCCT GATACCGCCG ACCGCGAGTA
 201 TTTGGAGCGG CATGCCTCCA TGCGCGGCTT GCGCCGCCGC AATCCTACCA
 251 CGGCCAGCGG CACGCTGACC GTAAGCGGTA TTGCGCAATC CATGCTTTCA
     GACGGCCTGC AAGTGCGTAT CGGCCAGCGT TTTTACCGCA CTACCGCCCG
 351 CGCCGTTATC GGCAGCGGCG GCACGGCGGA AATACCGGCA ATCGCCGACG
 401 AGCCGGGCGC GGCCGCCAAT GTGCGCGACG GCGAGGCGCA ACTGATGGCC
 451 GCCCCCGCCG GTGTGTCCAC CGAATGCCGC CTTACCGTAC AAGGCGGCAC
 501 CGACCGAGAA AGCGATGCCT CACTGCTGGC GCGTCTGTTG GAAATCATCC
 551 GCCGACCGCC CGCAGGCGGC AACCGTTACG ACTATAAAAA CTGGGCGTTG
     AGTGTTGACG GCGTAACCAG CGCATATGTT TATCCGCTGC GCCGCGGCTT
 651 GGGTACGGTG GATATTGCCA TTACCTCCGC CGACGGTGTG CCATCGGAAG
 701 AAACTGTGCG CCGCGTACAG GCTTATATCG ACGAGATGCG CCCGGTAACG
 751 GCAAAAATG CGCTGGTACT CAAGCCAACC GTAACGGCGG TGCCTGTTAC
 801 CGTGCAAGTC AAGCTCGACG GCATCGACTT GGACGAGGCC AAGCGCCGCA
     TACGGACGGC CCTAAAAGAA TATTTCGACA CCCTGATCCC CGGCGACGGC
     CTGACTGTGT CGCAAATCGA GGCGGCTATC AGCAATGTGG ATGGTGTGAT
 901
 951 CGACCTCCGT CTGACTGCGC CGACGGCCAA CCGTGCCGCC GATACGGTTA
     ACCGCATCGA GTGGTTTAAA GCGGGCGCGA TTAATGTAAC GGAGATGCCG
1001
1051 TCATGA
```

### This corresponds to the amino acid sequence <SEQ ID 2440; ORF 722.a>:

```
1 VFETPTFEQI RERILRDTKS LWPDADISPD SDHYVHASRL ASCAEGQYAH
51 QSWIVRQIFP DTADREYLER HASMRGLRRR NPTTASGTLT VSGIAQSMLS
101 DGLQVRIGQR FYRTTARAVI GSGGTAEIPA IADEPGAAAN VRDGEAQLMA
151 APAGVSTECR LTVQGGTDRE SDASLLARLL EIIRRPPAGG NRYDYKNWAL
201 SVDGVTSAYV YPLRRGLGTV DIAITSADGV PSEETVRRVQ AYIDEMRPVT
251 AKNALVLKPT VTAVPVTVQV KLDGIDLDEA KRRIRTALKE YFDTLIPGDG
301 LTVSQIEAAI SNVDGVIDLR LTAPTANRAA DTVNRIEWFK AGAINVTEMP
```

g723.seq not found yet

g723.pep not found yet

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2441>: m723.seq
```

```
ATGCGACCCA AGCCCCGTTT CAGACGGTCT GTTATCGCTT GCTCAATATC
     AGTGATCACG CCCGAACACC TTATTTTTAC CGTTTACAAA CACAATACCG
 51
101
     TCTTCGCCCG CGGCCACTTC TTCGCCGCTA TCATCCACGC CCAGCTGCAC
     TTCGCCTTTG GCCATAGCAC GCAGCAGGTC GAGCACGTCG ATTTTGTAGC
201 GGTTGCGGAT TTCGTCGGTA ATCAACACGC CCTGAGCCGC CGTCAGACGG
251 TAGCGGGCAA TGTCGCAGCA AAGGCGCACC AAGATGGGCG GCAGATCCTC
301 AAAAGGTCGT CTGAACCGCC CCAGATACGC GTCGATTTCG GCAGTGGCGT
351 CCACCAGCGC GGTTTGTGCG ACCTCGCGGT CAATCAGCCC CTCGTTGTTG
401 CGGTCGGTGA GCTGCAAGAC TTCCAGCTCA CCGAAACGCG CAACCATATC
     CTCAACCGTC GCGTATGCCA TTACTCGACC GCCTTGCGTT GCAGCATAGG
501 CTCGGCGCAG ATTGCCTTCC ACACCGCTTC GCCGACTTCG GCGCGCTTCA
551 CTTCGCGCCA GCCGCCGTCA AACAGCAGGC CGCCGCGCCA AAATTCTTTG
601 CCGTCTGCGC CGGTACTGAC GAGCATCACA TCGCGGCTGT CCGCCAAAGC
651 GTCGGCGGCA CGTTGCGTAT GCTGCACTTT GAGTTCGGCA AGTTCGGCGG
701 ACAGTGCCTT TTTGTCGTCT TCGGCTTTTT CCAAGGCTGT GGTCAGCATT TCGACATCGT TTCGGGCGGC GGCAAGCTCT GCCTGCACGG CGTCCAATTC
801 GGCTTTGATG TCTTCAAACG ACGGGGCGGC GGTTTCGGCG GTTTCTGGTT
851 TGTTGTTGGT TTTTGCCATG ATGACTCCTT GTTTCAGACG GCGGCGGATT
901 CGCATTTGA
```

### This corresponds to the amino acid sequence <SEQ ID 2442; ORF 723>:

```
1 MRPKPRFRRS VIACSISVIT PEHLIFTVYK HNTVFARGHF FAAIIHAQLH
51 FAFGHSTQQV EHVDFVAVAD FVGNQHALSR RQTVAGNVAA KAHQDGRQIL
101 KRSSEPPQIR VDFGSGVHQR GLCDLAVNQP LVVAVGELQD FQLTETRNHI
151 LNRRVCHYST ALRCSIGSAQ IAFHTASPTS ARFTSRQPPS NSRPPRQNSL
201 PSAPVLTSIT SRLSAKASAA RCVCCTLSSA SSADSAFLSS SAFSKAVVSI
251 STSFRAAASS ACTASNSALM SSNDGAAVSA VSGLLLVFAM MTPCFRRRRI
```

a723.seq not found yet

301 RI*

a723.pep not found yet

g724.seg not found yet

g724.pep not found yet

```
ATGAGTTTGAGTAAATTGGCGAAAAAACGGCACAAACTGCTAAAAATATCGGCGAAACC
    TACTCAAACTCATTTAACCGCTTTTTTTGCCGTGTTTGACGATTTTTATAGCCGCTTTGG
     M S L S K L A K K T A Q T A K N I G E T
      CTGCGCGCGCCTTTCGGGGAAAAATCACGCTGGTGGTGTCGTCCGAGCCGATACAGCGC
    GACGCGCCGGAAAGCCCCTTTTTAGTGCGACCACCACAGCAGGCTCGGCTATGTCGCG
     LRAAFRGKITLVVSSEPIQR
а
     {\tt GTGCAGTTGAGCGGCTTGGCCGACGAAACCCTGCAAGACCTTGAACATTTGCAGGAATAC}
   121 ------ 180
     CACGTCAACTCGCCGAACCGGCTGCTTTGGGAACGTCTTGTGTAAACGTCCTTATG
     V Q L S G L A D E T L Q D L E H L Q E Y
     GGCTTTGCCAGCCATCCGCCCGACGGCAGCGAAGCGGTAGTGATACCGCTGGGCGGCAAT
   181 ------ 240
     CCGAAACGGTCGGTAGGCGGCCTGCCGTCGCCATCACTATGGCGACCCGCCGTTA
     G F A S H P P D G S E A V V I P L G G N
```

BNSDOCID: <WO___9957280A2_I_>

	ACTTCGCACGGTGTGATTGTGTGCAGCCAGCACGGCAGCTACCGCATCAAAAACCTTAAG
243	I+
	I GAAGCGTGCCACACTAACACACGTCGGTCGTGCCGTCGATGGCCGTAGTTTTTTTCCAATTTC
a	T S H G V I V C S Q H G S Y R I K N L K -
301	CCCGGCGAGACGGCGATTTTTAATCATGAGGGTGCAAAAATCGTGATTAAGCAAGGCAAA
	GGGCCGCTCTGCCGCTAAAAATTAGTACTCCCACGTTTTTTAGCACTTAATTCCTTTCCCTTTT
a	PGETAIFNHEGAKIVIKQGK-
361	ATCATTGAGGCCGATTGCGACGTGTACCGGGTTAACTGCAAACAATACGAGGTTAATGCG
	TAGTAACTCCGGCTAACGCTGCACATGGCCCAATTGACGTTTGTTATCCTCAATTTA
a	I I E A D C D V Y R V N C K Q Y E V N A -
421	GCCACGGATGCCAAATTTAACGCTCCGTTGGTGGAGACCAGTGCAGTGTTGACGGCGCAA
	CGGTGCCTACGGTTTAAATTGCGAGGCAACCACCTCTGGTCACCACAACTCCCCCCTTT
a	A T D A K F N A P L V E T S A V L T A Q -
481	GGCCAAATCAACGGCAACGGCGGCATGGCCGTCGAGGGCGGCGACGGAGCCACCTTTAGC
	CCGGTTAGTTGCCGTTGCCGCCGTACCGGCAGCTCCCGCCCCCCAAAmcc
3.	G Q I N G N G G M A V E G G D G A T F S -
541	GGCGATGTTAACCAAACGGGCGGCAGCTTTAACACCGACGGCGACGTGGTGGCCGGCAAT
	CCGCTACAATTGGTTTGCCCCGCCGTCGAAATTGTGGCTGCCCCCCCC
ì	G D V N Q T G G S F N T D G D V V A G N -
601	ATATCGTTGCGCCAGCACCCGCATACCGACAGCATCGGCGGCAAAACCTTACCGGCGGAA
	TATAGCAACGCGGTCGTGGGCGTATGGCTGTCGTAGCCGCCGTTTTTGCAATGGCCCCCCTTT
1	ISLRQHPHTDSIGGKTLPAE -
661	CCGGCATAG 669 GGCCGTATC P A * -
Inzymes t	that do cut: NONE that do not cut: BamHI BglII EcoRI HindIII KpnI NdeI NheI PstI I SphI XbaI XhoI

This corresponds to the amino acid sequence <SEQ ID 2444; ORF 724>:

### m724.pep

1 MSLSKLAKKT AQTAKNIGET LRAAFRGKIT LVVSSEPIQR VQLSGLADET 51 LQDLEHLQEY GFASHPPDGS EAVVIPLGGN TSHGVIVCSQ HGSYRIKNLK 101 PGETAIFNHE GAKIVIKQGK IIEADCDVYR VNCKQYEVNA ATDAKFNAPL
151 VETSAVLTAQ GQINGNGGMA VEGGDGATFS GDVNQTGGSF NTDGDVVAGN
201 ISLRQHPHTD SIGGKTLPAE PA*

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2445>: a724.seq

1	ATGAGTTTGA	GTAAATTGGC	GAAAAAAACG	GCACAAACTG	ריי אידי איז איז איז איז איז איז איז איז איז אי
51	CGGCGAAACC	CTGCGCGCGG	CCTTTCGGGG	AAAAATCACC	CTCCTCCTCT
101	CGTCCGAGCC	GATACAGCGC	GTGCAGTTCA	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CIGGIGGIGI
151	CTGCAAGACC	TTCAACATTT	CCACCAARA	GCGGCTTGGC	CGACGAAACC
201	CCACCCCACC	TTGAACATTT	GCAGGAATAC	GGCTTTGCCA	GCCATCCGCC
251	COACGGCAGC	GAAGCGGTAG	TGATACCGCT	GGGCGGCAAT	ACTTCGCACG
	GIGIGATIGI	GTGCAGCCAG	CACGGCAGCT	ACCGCATCAA	AAACCTTAAG
301	CCCGGCGAGA	CGGCGATTTT	TAATCATGAG	GGTGCAAAAA	TCGTGATTAA
351	GCAAGGCAAA	ATCATTGAGG	CCGATTGCGA	CGTGTACCGG	GTTAACTGCA
401	AACAATACGA	GGTTAATGCG	GCCACGGATG	CCNNNTTTNN	CGCTCCGTTG
451		GTGCAGTGTT		CCCCAATIIAA	CGCTCCGTTG
			CALGUECALA	GGCCAAATCA	ACGGCAACGG

BNSDOCID: <WO___9957280A2_I_>

501	CGGCATGGCC	GTCGAGGGCG	GCGACGGAGC	CACCTTTAGC	GGCGATGTTA
551	ACCAAACGGG	CGGCAGCTTT	AACACCGACG	GCGACGTGGT	GGCCGGCAAT
601	ATATCGTTGC	GCCAGCACCC	GCATACCGAC	AGCATCGGCG	GCAAAACCTT
	ACCCCCCAA				COLUMNICOII

651 ACCGGCGGAA CCGGCATAG

### This corresponds to the amino acid sequence <SEQ ID 2446; ORF 724.a>: a724.pep

- 1 MSLSKLAKKT AQTAKNIGET LRAAFRGKIT LVVSSEPIQR VQLSGLADET 51 LQDLEHLQEY GFASHPPDGS EAVVIPLGGN TSHGVIVCSQ HGSYRIKNLK
- 101 PGETAIFNHE GAKIVIKQGK IIEADCDVYR VNCKQYEVNA ATDAKFNAPL
- 151 VETSAVLTAQ GQINGNGGMA VEGGDGATFS GDVNQTGGSF NTDGDVVAGN
- 201 ISLROHPHTD SIGGKTLPAE PA*

#### a724/m724 100.0% identity in 222 aa overlap

	10	20	30	40	50	60
a724.pep	MSLSKLAKKTAQTA	KNIGETLRA	AFRGKITLVVS	SEPIORVOLS	GLADETLODI	EHLOEV
		HILLIAN				
m724	MSLSKLAKKTAQTA	KNIGETLRA	AFRGKTTLVVS	SSEPTORVOLS	ווווווווווו	FULCER
	10	20	30	40	50	
			50	40	30	60
	70	80	90	100	110	120
a72 <b>4.pe</b> p	GFASHPPDGSEAVV	IPLGGNTSHO	SVIVCSOHGSY	RIKNLKPGET	'ATFNHEGAKT	ALKUCK
	11111111111111111				111111111	
m724	GFASHPPDGSEAVV	IPLGGNTSH	VIVESOHESY	'RTKNI.KDGET	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	VIVOCV
	70	80	90	100	110	
			30	100	110	120
	130	140	150	160	170	100
a724.pep	IIEADCDVYRVNCK			100 '717 ma ocotsi	CNCCMATERO	180
			MENALLVEIS	AATIAQGQIN	GNGGMAVEGG	DGATES
m724	IIEADCDVYRVNCK	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				1   1   1
2	130	140	WENNERVETS			
	130	140	150	160	170	180
	190	200	010			
-704		200	210	220		
a724.pep	GDVNQTGGSFNTDG	DVVAGNISLE	ROHPHTDSIGG	KTLPAEPAX		
704			1111111111			
m724	GDVNQTGGSFNTDG		QHPHTDSIGG	KTLPAEPAX		
	190	200	210	220		

g725.seq not found yet

g725.pep not found yet

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2447>: m725.seq

•					
1	ATGGTGCGCA	CGGTTAAAAG	CTACAACGGC	GAGGCCGACG	ATTTGGCGGG
51	GCAAATCCAT	ACGCTGCCTG	CGGTTTGGGT	AACGTATGGC	GGCAGCAAAG
101	TTGAGCCTGC	CAGCACCGGC	GGCGTATGCG	GACGTTATCA	GGATACCGCC
151	GAATTTGTGG	TGATGGTGGC	GGCCCGCAAT	CTGCGCAACG	AGCAGGCGCA
201	GCGGCAAGGC	GGCATCGACA	GCCGCGAAAT	CGGCAGCAAC	GATTTAATCC
251	GCGCTGTTCG	CCGCCTGCTT	GACGGCCAGC	GGCTCGGTTT	TGCCGATAGC
301	CGCGGCTTGG	TGCCCAAAGC	GGTGCGCGCG	ATTGCCAATC	ATGTGCTGGT
351	GCAAAACGCC	GCAGTAAGCA	TATATGCGGT	TGAGTATGCC	ATCCGCTTTA
401	ACACCTGCGG	GTTGGAAAAT	GACCGCTACC	CCGAACGCAC	CGACAATCCC
451	GACGACCCCA	ACCATATCTT	TACCAAGTAT	CAGGGTACAT	TGAGCGAGCC
501	GTGGCCTGAT	TTCGAGGGGT	TGGACGGCAA	AATTTACGAC	CCGCAATCCG
551	CCGATGAAAT	ACCTGTAAAC	CTAACCCTTA	AGGATAAGCA	ATGA
					• • • • • • • • • • • • • • • • • • • •

## This corresponds to the amino acid sequence <SEQ ID 2448; ORF 725>: m725.pep

1 MVRTVKSYNG EADDLAGQIH TLPAVWVTYG GSKVEPASTG GVCGRYQDTA 51 EFVVMVAARN LRNEQAQRQG GIDSREIGSN DLIRAVRRLL DGQRLGFADS 101 RGLVPKAVRA IANHVLVQNA AVSIYAVEYA IRFNTCGLEN DRYPERTDNP 151 DDPNHIFTKY QGTLSEPWPD FEGLDGKIYD PQSADEIPVN LTLKDKQ*

: 2

```
a725.seq not found yet
      a725.pep not found yet
      g726.seq not found yet
      g726.pep not found yet
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2449>:
      m726.seq
                ATGACCATCT ATTTCAAAAA CGGCTTTTAC GACGACACAT TGGGCGGCAT
                CCCCGAAGGC GCGGTTGCCG TCCGCGCCGA AGAATACGCC GCCCTTTTGG
               CAGGACAGGC GCAGGCCGGC CAGATTCCGA CGGCCGCCCC
           101
               GTTTTAACCC CGCCGCGCCC GTCCGATTAC CACGAATGGG ACGGCAAAAA
               ATGGAAAATC AGCAAAGCCG CCGCCGCCGC CCGTTTCGCC AAACAAAAAA
           201
           251 CCGCCTTGGC ATTCCGCCTC GCGGAAAAGG CGGACGAACT CAAAAACAGC
           301 CTCTTGGCGG GCTATCCCCA AGTGGAAATC GACAGCTTTT ACAGGCAGGA
           351 AAAAGAAGCC CTCGCGCGGC AGGCGGACAA CAACGCCCCG ACCCCGATGC
           401 TGGCGCAAAT CGCCGCCGCA AGGGGCGTGG AATTGGACGT TTTGATTGAA
               AAAGTTATCG AAAAATCCGC CCGCCTGGCT GTTGCCGCCG GCGCGATTAT
           501 CGGAAAGCGT CAGCAGCTCG AAGACAAATT GAACACCATC GAAACCGCGC
           551 CCGGATTGGA CGCGCTGGAA AAGGAAATCG AAGAATGGAC GCTAAACATC
           601 GGCTGA
This corresponds to the amino acid sequence <SEQ ID 2450; ORF 726>:
     m726.pep
               MTIYFKNGFY DDTLGGIPEG AVAVRAEEYA ALLAGQAQGG QIAADSDGRP
               VLTPPRPSDY HEWDGKKWKI SKAAAAARFA KQKTALAFRL AEKADELKNS
           51
               LLAGYPQVEI DSFYRQEKEA LARQADNNAP TPMLAQIAAA RGVELDVLIE
               KVIEKSARLA VAAGAIIGKR QQLEDKLNTI ETAPGLDALE KEIEEWTLNI
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2451>:
     a726.seq
               ATGACCATCT ATTTCAAAAA CGGCTTTTAC GACGACACCT TGGGCAGCAT
               CCCCGAAGGC GCGGTTGCCG TCCGCGCCGA AGAATACGCC GCCCTTTTGG
           51
          101
              CAGGACAGGC GCAGGGCGGC CAGATTCCGA CGGCCGCCCC
              GTTTTAACCC CGCCGCGCCC GTCCGAATAC CACGAATGGG ACGGCAAGAA
          201 ATGGGAAATC GGCGAAGCCG CTGCCGCCGC CCGTTTCGCC GAACAAAAA
          251 CCGCCACGGC ATTCCGCCTC GCGGCAAAGG CGGACGAACT CAAAAACAGC
          301 CTCTTGGCGG GCTATCCCCA AGTGGAAATC GACAGCTTTT ACAGGCAGGA
              AAAAGAAGCC CTCGCGCGGC AGGCGGACAA CAACGCCCCG ACCCCGATGC
          351
               TGGCGCAAAT CGCCGCCGCA AGGGGCGTGG AATTGGACGT TTTGATTGAA
              AAAGTTGTCG AAAAATCCGC CCGCCTGGCC GTTGCCGCCG GCGCGATTAT
          501 CGGAAAGCGG CAGCAGCTCG AAGACAAATT GAACACCATC GAAACCGCGC
               CAGGATTGGA CGCGCTGGAA AAGGAAATCG AAGAATGGAC GCTAAACATC
          601
              GGCTGA
This corresponds to the amino acid sequence <SEQ ID 2452; ORF 726.a>:
     a726.pep
              MTIYFKNGFY DDTLGSIPEG AVAVRAEEYA ALLAGQAQGG QIAADSDGRP
            1
              VLTPPRPSEY HEWDGKKWEI GEAAAAARFA EQKTATAFRL AAKADELKNS
           51
              LLAGYPQVEI DSFYRQEKEA LARQADNNAP TPMLAQIAAA RGVELDVLIE
              KVVEKSARLA VAAGAIIGKR QQLEDKLNTI ETAPGLDALE KEIEEWTLNI
          151
          201
              G*
a726/m726 95.5% identity in 201 aa overlap
                                             30
                                                       40
                 {\tt MTIYFKNGFYDDTLGSIPEGAVAVRAEEYAALLAGQAQGGQIAADSDGRPVLTPPRPSEY}
     a726.pep
                  m726
                 MTIYFKNGFYDDTLGGIPEGAVAVRAEEYAALLAGQAQGGQIAADSDGRPVLTPPRPSDY
                                   20
                                             30
                                                       40
                                                                50
```

	·
	70 80 90 100 110 120
a726.pep	HEWDGKKWEIGEAAAAARFAEQKTATAFRLAAKADELKNSLLAGYPOVEIDSFYROEKEA
m726	HEWDGKKWKISKAAAARFAKQKTALAFRLAEKADELKNSLLAGYPQVEIDSFYRQEKEA
	70 80 90 100 110 120
	130 140 150 160 170 180
a726.pep	100 170 180
m726	LARQADNNAPTPMLAQIAAARGVELDVLIEKVIEKSARLAVAAGAIIGKRQQLEDKLNTI
	130 140 150 160 170 180
	190 200
a726.pep	ETAPGLDALEKE I EEWTLNIGX
m726	ETAPGLDALEKEIEEWTLNIGX
	190 200
g727.seq	not found yet
g727. <b>pe</b> p	not found yet
The following t	partial DNA sequence was identified in N. meningitidis <seq 2453="" id="">:</seq>
m727.seq	out that DIVI sequence was identified in N. meninginais <seq 2453="" id="">:</seq>
1	ATGAATCTCG TGAAACTGCT GGCGAATAAC TGGCAACCGA TTGCCATTAT
51	CGCGCTTGTC GGCACGGGCT TGGCTGTGTC GCACCATCAA GGCTACAAGT
101	CGGCATTTGC GAAGCAGCAG GCGGTCATCG ACAAGATGGA GCGCGACAAG
151	GCGCAAGCCC TGCTGTTGTC GGCTCAAAAC TATGCGCGCG AACTGGAACT
201 251	
301	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
351	TTTTCGGCTG TTTTCGCCCC AAATACCGCC TAATTTTACC CAAATACCCC
401	CTTAA
mi :	
	ls to the amino acid sequence <seq 2454;="" 727="" id="" orf="">:</seq>
m727.pep	MILLIAND MODIFICATION CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACT
1 51	MNLVKLLANN WQPIAIIALV GTGLAVSHHQ GYKSAFAKQQ AVIDKMERDK AQALLLSAQN YARELELARA EAKKYEVKAH AVGMALAKKQ AEVSRLKTER
101	DLCKIPFPPD SRNPNTGFRL FSPQIPPNFT QIPP*
The following p	partial DNA sequence was identified in N. meningitidis <seq 2455="" id="">:</seq>
a727.seq	
1	ATGAATCTCG TGAAACTGCT GGCGAATAAC TGGCAACCGA TTGCCATCAT
51 101	CGCGCTTGTC GGCACGGGTT TGGCGGTGTC GCACCATCAA GGCTACAAGT
151	CGGCTTTTGC GAAGCAGCAG GCGGTCATTG AGAAAATGAA GCGCGACAAG GCGCAAGCCC TGCTGTTGTC GGCTCAAAAC TACGCCCGCG AACTGGAACA
201	GGCGCGTGCG GAAGCTAAAA AATATGAAGT CAAGGCGCAC GCCGTCGCCA
251	TGGCTTTGGC GAAAAAACAG GCGGAAGTCA GCCGTCTGAA AACGGAAAAT
301	AAAAAGGAAA TCGAAAATGT CCTTACTCAA GACCGTAAAA ATGCAGGCGG
351 401	THE THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF T
401	CCCTCGGCTA CGGAAATTAA
This correspond	s to the amino acid sequence <seq 2456;="" 727.a="" id="" orf="">:</seq>
a727.pep	The same and and and and an an an an an an an an an an an an an
1	MNLVKLLANN WOPIAIIALV GTGLAVSHHQ GYKSAFAKQQ AVIEKMKRDK
51	AQALLLSAQN YARELEQARA EAKKYEVKAH AVGMALAKKO AEVSRIKTEN
101	KKEIENVLTQ DRKNAGGGCI DGFGHHGLQL YKRALGYGN*
a727/m727 83	20% identity in 110 as over-
a <i>ikii</i> Mi <i>ki</i> 03	3.2% identity in 119 aa overlap
a727.pep	10 20 30 40 50 60 MNLVKLLANNWQPIAIIALVGTGLAVSHHQGYKSAFAKQQAVIEKMKRDKAQALLLSAQN
<b>_</b> pop	
* - *	

PCT/US99/09346

#### 1174

WO 99/57280

```
{\tt MNLVKLLANNWQPIAIIALVGTGLAVSHHQGYKSAFAKQQAVIDKMERDKAQALLLSAQN}
m727
                           20
                                   30
                                            40
                  70
                           80
                                    90
                                           100
                                                     110
                                                             119
           YARELEQARAEAKKYEVKAHAVGMALAKKQAEVSRLKTENKKEIENV-LTQDRKNAGGGC
a727.pep
           YARELELARAEAKKYEVKAHAVGMALAKKQAEVSRLKTE--RDLCKIPFPPDSRNPNTGF
m727
                           80
                                   90
                                             100
         120
                  130
a727.pep
           IDGFGHHGLQLYKRALGYGNX
m727
           RLFSPQIPPNFTQIPPX
                  130
```

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2457>: g728.seq

```
ATGTTTAAAA AATTCAAACC GGTACTGTTG TCATTTTTTG CACTTGTATT
   1
  51
      TGCCTTTTGG CTGGGAACAG GTATTGCCTA TGAGATTAAT CCGCGTTGGT
 101 TTTTGAGCGA TACGGCAACT GAAGTACCTG AAAATCCGAA TGCTTTTGTG
 151 GCGAAACTTG CCCGCCTGTT CCGAAATGCC GACAGGGCGG TTGTCATCGT
 201 GAAGGAATCG ATGAGGACGG AGGAAAGCCT TGCCGGAGCT GTGGATGACG
 251 GTCCGTTGCA GTCGGAGAAG GATTATCTCG CGCTCGCTAT CCGGCTCAGT
 301
      CGTTTGAAAG AAAAGGCGAA ATGGTTTCAC GTAACGGAGC AGGAACATGG
      GGAAGAGGTT TGGCTGGATT ACTATATCGG CGAGGGCGGT TTGGTTGCGG
 351
 401
      TTTCGCTTTC GCAACGCTCG CCGGAAGCGT TTGTTAATGC CGAATATCTG
      TATCGGAACG ATCGTCCGTT TTCTGTAAAT GTGTACGGCG GAACGGCTCA
 451
      CGGGGAAAAT TATGAAACGA CAGGAGAATA TCGGGTTGTT TGGCAACCGG
     ACGGTTCGGT ATTTGATGCG GCGGGCGCG GGAAAATCGG GGAAGATGTT
 551
      TATGAGCATT GCCTCGGGTG TTATCAGATG GCCCAGGTAT ATTTGGCGAA
 601
     ATACCGGGAT GTCGCGAATG ACGAGCAGAA GGTTTGGGAC TTCCGCGAAG
 701 AGAGCAACCG GATTGCATCG GACTCGCGCG ATTATGTGTT TTATCAGAAT
 751 ATGCGGGAAT TGATGCCCCG GGGGATGAAG GCGAACAGTC TTGTGGTCGG
 801 CTATGATGCG GACGGTCTGC CGCAAAAAGT CTATTGGAGT TTCGACAATG
 851 GAAAAAACG CCAGAGTTTC GAATATTATT TGAAAAACGG AAATCTTTTT
     ATTGCACAAT CTTCGACGGT AGCATTGAAA GCGGATGGCG TAACGGCGGA
 951
     TATGCAGACC TATCATGCGC AACAGACGTG GTATTTGGAT GGCGGGCGGA
     TTATCCGCGA AGAGAAACAG GGAGACAGAC TGCCTGATTT TCCTTTGAAC
1051 TTGGAAGATT TGGAAAAAGA GGTGAGCCGT TATGCAGAGG CTGCGGCGAG
1101 ACGTTCGGGC GGCAGGCGCG GCCTTTCTCA CTGA
```

## This corresponds to the amino acid sequence <SEQ ID 2458; ORF 728>: g728.pep

```
1 MFKKFKPVLL SFFALVFAFW LGTGIAYEIN PRWFLSDTAT EVPENPNAFV
51 AKLARLFRNA DRAVVIVKES MRTEESLAGA VDDGPLQSEK DYLALAIRLS
101 RLKEKAKWFH VTEQEHGEEV WLDYYIGEGG LVAVSLSQRS PEAFVNAEYL
151 YRNDRPFSVN VYGGTAHGEN YETTGEYRVV WQPDGSVFDA AGRGKIGEDV
201 YEHCLGCYQM AQVYLAKYRD VANDEQKVWD FREESNRIAS DSRDYVFYQN
251 MRELMPRGMK ANSLVVGYDA DGLPQKVYWS FDNGKKRQSF EYYLKNGNLF
301 IAQSSTVALK ADGVTADMQT YHAQQTWYLD GGRIIREEKQ GDRLPDFPLN
351 LEDLEKEVSR YAEAAARRSG GRRGLSH*
```

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2459>: m728.seq

Т	ATGTTTAAAA	AATTCAAACC	GGTACTGTTG	TCATTTTTTG	CACTTGTATT
51	TGCCTTTTGG	CTGGGAACGG	GTATTGCCTA	TGAGATTAAT	CCCCCTTCCT
101	TTTTGAGCGA	TACGGCAACT	GAAGTACCTA	AAAATCCGAA	TECTTTTCTC
151	GCGAAACTTG	CCCGCCTGTT	CCGAAATGCC	GACAGGGGGG	TECTITICIC
201	GAAGGAATCG	ATAAGGACGG	AGGAAAATCT	TCCCCCAACE	COCCATCGT
251	GTCCGTTGCA	GTCGGAGAAG	GATTATOTO	CCCTCCCTTTT	GTGGATGACG
301	CGTTTGAAAG	AAAAGGCGAA	ATCCTTTTCTCG	CGCTCGCTAT	CCGGCTCAGT
351	GAAAGAGGTT	TGGCTGGATT	ACCAMAMOOG	GTAACGGAGC	AGGAACATGG
401	TTTCCCTTTC	CCAACCCTCC	ACCATATOGG	CGAGGGCGGT	TTGGTTGCGG
451	TATCGCIIC	GCAACGCTCG	CCGGAAGCAT	TTGTTAATGC	CGAATATCTG
3 J T	INICGGAACG	ATCGTCCGTT	TTCTGTAAAT	GTGTACGGCG	GAACGGTTCA

501	CGGGGAAAAT	TATGAAACGA	CAGGAGAATA	TCGGGTTGTT	TGGCAACCAG
551	ACGGTTCGGT	ATTTGATGCG	GCGGGGCGCG	GGAAAATCGG	GGAAGATGTT
601	TATGAGCATT	GCCTCGGGTG	TTATCAGATG	GCCCAGGTAT	ATTTGGCGAA
651	ATACCGGGAT	GTCGCGAATG	ACGAGCAGAA	GGTTTGGGAC	TTCCGCAAAG
701	AGAGCAACCG	AATTGCGTCG	GACTCGCGCA	ATTCTGTGTT	TTATCAGAAT
751	ATGCGGGAAT	TGATGCCCCG	AGGGATGAAG	GCGAACAGTC	TTGTGGTCGG
801	CTATGATGCG	GACGGTCTGC	CGCAAAAAGT	CTATTGGAGT	TTCGACAATG
851	GAAAAAAACG	CCAGAGTTTC	GAATATTATT	TGAAAAACGG	AAATCTTTTT
901	ATTGCACAAT	CTTCGACGGT	AGCATTGAAA	GCGGATGGCG	TAACGGCGGA
951	TATGCAGACC	TATCATGCGC	AACAGACGTG	GTATTTGGAT	GGCGGGCGGA
1001	TTGTCCGCGA	AGAGAAACAG	GGAGACAGAC	TGCCTGATTT	TCCTTTGAAC
1051	TTGGAAAATT	TGGAAAAAGA	GGTGCGCCGT	TATGCAGAGG	CTGCGGCGAG
1101			ACCTTTCTCA		

## This corresponds to the amino acid sequence <SEQ ID 2460; ORF 728>: m728.pep

1	MFKKFKPVLL	SFFALVFAFW	LGTGIAYEIN	PRWFLSDTAT	EVPKNPNAEV
51	AKLARLFRNA	DRAVVIVKES	IRTEENLAGT	VDDGPLQSEK	DYLALATRIS
101	RLKEKAKWFH	VTEQEHGKEV	WLDYHIGEGG	LVAVSLSQRS	PEAFVNAEVI.
151	YRNDRPFSVN	VYGGTVHGEN	YETTGEYRVV	WQPDGSVFDA	AGRGKTGEDV
201	YEHCLGCYQM	AQVYLAKYRD	VANDEQKVWD	FRKESNRIAS	DSRNSVEYON
251	MRELMPRGMK	ANSLVVGYDA	DGLPQKVYWS	FDNGKKROSF	EYYLKNGNI.F
301	IAQSSTVALK	ADGVTADMQT	YHAQQTWYLD	GGRIVREEKQ	GDRLPDFPLN
351	LENLEKEVRR	YAEAAARRSG	GRRDLSH*	-	

Computer analysis of the amino acid sequences gave the following results:

Homology with a predicted ORF from N. meningitidis menA with menB

ORF 728 shows 96.3% identity over a 377 aa overlap with a predicted ORF (ORF728.a) from N. gonorrhoeae:

m728 / g728

	10	20	30	40	50	60
m728.pep	MFKKFKPVLLSFF?	ALVFAFWLGTO	SIAYEINPRWI	FLSDTATEVP	NPNAFVAKL	ARLFRNA
		:	1111111111	[[[[[[]]]]]]]	THEFT	LIBILI
g728	MFKKFKPVLLSFF	ALVFAFWLGTO	SIAYEINPRWE	FLSDTATEVPE	NPNAFVAKL	ARLFRNA
	10	20	30	40	50	60
						•
	70	80	90	100	110	120
m728.pep	DRAVVIVKESIRTE	EENLAGTVDDG	PLQSEKDYLA	LAIRLSRLKE	KAKWEHVTE	OEHCKEV
	_ 1111111111111111	:       :			11111111	1111-11
g728	DRAVVIVKESMRTE	EESLAGAVDDG	PLOSEKDYLA	LAIRLSRLKE	KAKWFHVTE	OEHGEEV
	70	80	90	100	110	120
						120
	130	140	150	160	170	180
m728.pep	WLDYHIGEGGLVAV	SLSQRSPEAF	VNAEYLYRNE	RPFSVNVYGG	TVHGENYET	TGEVEVV
	1111:111111111	1111111111	1111111111	111111111	1:111111	ILLILLI
g728	WLDYYIGEGGLVAV	SLSQRSPEAF	VNAEYLYRNI	RPFSVNVYGG	TARGENYET	TGEVRUM
	130	140	150	160	170	180
					1,0	100
	190	200	210	220	230	240
m728.pep	WOPDGSVFDAAGRO	KIGEDVYEHC	LGCYOMAOVY	LAKYRDVAND	EOKVWDERKI	Z T C I C T C T C
	1111111111111111	3111111111		111111111	11111111	PILLIFI
g728	WQPDGSVFDAAGRG	KIGEDVYEHC	LGCYOMAOVY	רואבטתמאאא.זי		PENDING
	190	200	210	220	230	240
				220	230	240
	250	260	270	280	290	300
m728.pep	DSRNSVFYQNMREI	MPRGMKANSI		OKVVWSEDNC	E PO C C C C V V I	JUU
	111: 11111111	111111111	111111111	111111111	VVVÕSEE111	PUNCINTE
g728	DSRDYVFYONMREL	MPRGMKANST	WGYDDGI B		TITLE TO THE TENTE	
•	250	260	270	280		
			2,0	200	290	300
	310	320	330	340	350	2.5
m728.pep	IAOSSTVALKADGV		OTWVIDGCDT	UDEEROCDDI	350	360
· · · · · ·	1111111111111	1111111111	7111111111	AVEEVÕGDET	PUFFLNLENI	LEKEVRR
		111111111	1111111111	-111111111	11111 :	

BNSDOCID: <WO___9957280A2_I_>

المنطور والأفقارات

```
IAQSSTVALKADGVTADMQTYHAQQTWYLDGGRIIREEKQGDRLPDFPLNLEDLEKEVSR
g728
                            320
                                       330
                                              340
                                                          350
                    370
             YAEAAARRSGGRRDLSHX
m728.pep
             111111111111111
q728
             YAEAAARRSGGRRGLSHX
                    370
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2461>:
     a728.seq
               ATGTTTAAAA AATTCAAACC GGTACTGTTG TCATTTTTTG CACTTGTATT
            1
               TGCCTTTTGG CTGGGAACGG GTATTGCCTA TGAGATTAAT CCGCGTTGGT
           51
               TTTTGAGCGA TACGGCAACT GAAAATCCGA ATGCTTTTGT GGCGAAACTT
          101
              GCCCGCCTGT TCCGAAATGC CGACAGGGCG GTTGTCATCG TGAAGGAATC
              GATGAGGACG GAGGAAAGTC TTGCCGGAGC TGTGGATGAC GGTCCGTTGC
          201
              AGTCGGAGAA GGATTATCTT GCACTCGCTG TCCGGCTCAG TCGTTTGAAA
               GAAAAGGCGA AATGGTTTCA CGTAACGGAG CAGGAACATG GGGAAGAGGT
              TTGGCTGGAT TACTATATCG GCGAGGGCGG TTTGGTTGCG GTTTCGCTTT
          351
          401 CGCAACGCTC GCCGGAAGCG TTTGTTAATG CCGAATATCT GTATCGGAAC
              GATCGTCCGT TTTCTGTAAA TGTGTACGGC GGAACGGTTC ACGGGGAAAA
          451
              TTATGAAACG ACAGGAGAAT ATCGGGTTGT TTGGCAACCG GACGGTTCGG
          501
              TATTTGATGC GTCGGGGCGC GGGAAAATCG GGGAAGATGT TTATGAGCAT
          551
              TGCCTCGGGT GTTATCAGAT GGCCCAGGTA TATTTGGCGA AATATCGGGA
          601
         651 TGTCGCGAAT GATGAGCAGA AGGTTTGGGA CTTCCGCGAA GAGAGTAACC
          701 GGATTGCGTC GGACTCGCGC GATTCTGTGT TTTATCAGAA TATGCGGGAA
              TTGATGCCCC GAGGGATGAA GGCAAACAGT CTTGTGGTCG GCTATGATGC
          751
              GGACGGTCTG CCGCAGAAAG TCTATTGGAG TTTCGACAAT GGGAAAAAAC
         801
              GCCAGAGTTT CGAATATTAT TTGAAAAACG GAAATCTTTT TATTGCACAA
TCTTCGACGG TAGCATTGAA AGCGGATGGC GTAACGGCGG ATATGCAGAC
         901
         951 CTATCATGCG CAACAGACGT GGTATTTAGA TGGCGGGCGG ATTGTCCGCG
        1001 AAGAGAAACA GGGGGACAGA CTGCCTGATT TTCCTTTGAA CTTGGAAGAT
              TTGGAAAAAG AGGTGAGCCG TTATGCAGAG GCTGCGGCGA GACGTTCGGG
              CGGCAGGCGC GACCTTTCTC ACTGA
This corresponds to the amino acid sequence <SEQ ID 2462; ORF 728.a>:
    a728.pep
              MFKKFKPVLL SFFALVFAFW LGTGIAYEIN PRWFLSDTAT ENPNAFVAKL
              ARLFRNADRA VVIVKESMRT EESLAGAVDD GPLQSEKDYL ALAVRLSRLK
          51
         101 EKAKWFHVTE QEHGEEVWLD YYIGEGGLVA VSLSQRSPEA FVNAEYLYRN
         DRPFSVNVYG GTVHGENYET TGEYRVVWQP DGSVFDASGR GKIGEDVYEH
         201 CLGCYQMAQV YLAKYRDVAN DEQKVWDFRE ESNRIASDSR DSVFYQNMRE
              LMPRGMKANS LVVGYDADGL PQKVYWSFDN GKKRQSFEYY LKNGNLFIAQ
              SSTVALKADG VTADMQTYHA QQTWYLDGGR IVREEKQGDR LPDFPLNLED
         301
         351 LEKEVSRYAE AAARRSGGRR DLSH*
                   96.3% identity in 377 aa overlap
    a728 / m728
                        10
                                  20
                                            30
                                                     40
                 MFKKFKPVLLSFFALVFAFWLGTGIAYEINPRWFLSDTATE---NPNAFVAKLARLFRNA
    a728.pep
                 MFKKFKPVLLSFFALVFAFWLGTGIAYEINPRWFLSDTATEVPKNPNAFVAKLARLFRNA
    m728
                        10
                                  20
                                           30
                                                     40
                                                               50
                           70
                                     80
                                              90
                                                       100
    a728.pep
                 DRAVVIVKESMRTEESLAGAVDDGPLQSEKDYLALAVRLSRLKEKAKWFHVTEQEHGEEV
                 DRAVVIVKESIRTEENLAGTVDDGPLQSEKDYLALAIRLSRLKEKAKWFHVTEQEHGKEV
    m728
                        70
                                  80
                                           90
                                                    100
                                                              110
                                                                       120
                 120
                                    140
                                             150
                                                       160
                WLDYYIGEGGLVAVSLSQRSPEAFVNAEYLYRNDRPFSVNVYGGTVHGENYETTGEYRVV
    a728.pep
                m728
                WLDYHIGEGGLVAVSLSQRSPEAFVNAEYLYRNDRPFSVNVYGGTVHGENYETTGEYRVV
                       130
                                 140
                                          150
                                                    160
                                                             170
```

a728.pep	180 190 WQPDGSVFDASGRG		210 CYQMAQVYLA	220 KYRDVANDEÇ	230 KVWDFREESI	NRIAS
m728					:    KVWDFRKES1   230	  RIAS   240
	240 250	260	270	280	290	
a728.pep	DSRDSVFYQNMREL	MPRGMKANSLVV	'GYDADGLPOK	VYWSFDNGKK	RQSFEYYLK	<b>IGNLF</b>
m728	:          DSRNSVFYQNMREL					
11.720	250	260	270	280	290	300
	300 310	320	330	340	350	
a728. <b>pe</b> p	IAQSSTVALKADGV	TADMQTYHAQQT	WYLDGGRIVR	<b>EEKQGD</b> RLPD	FPLNLEDLE	EVSR
m728					11111:11	11 1
111/20	IAQSSTVALKADGV' 310	TADMOTTHAQQT 320	WYLDGGRIVR. 330	EEKQGDRLPD 340		
	510	320	330	340	350	360
	360 370					
a728.pep	YAEAAARRSGGRRD:	LSHX				
		1111				
m728	YAEAAARRSGGRRD	LSHX				
	370					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2463>: g729.seq

```
ATGAATACTA CATTGAAAAC TACCTTGACC TCTGTTGCAG CAGCCTTTGC
  51 ATTGTCTGCC TGCACCATGA TTCCTCAATA CGAGCAGCCC AAAGTCGAAG
     TTGCGGAAAC CTTCCAAAAC GACACATCGG TTTCTTCCAT CCGCGCGGTT
     GATTTGGGTT GGCATGACTA TTTTGCCGAC CCGCGCCTGC AAAAGCTGAT
201 CGACATCGCA CTCGAGCGCA ATACCAGTTT GCGTACAGCC GTATTGAACA
251 GCGAAATCTA CCGCAAACAA TACATGATCG AGCGCAACAA CCTCCTGCCC
301 ACGCTTGCCG CCAATGCGAA CGGCTCGCGC CAAGGCAGCT TGAGCGGCgg
351
     caaTGTCAGC AGCAGCTACA ATGTCGGACT GGGTGCGGca tCTTACGAAC
     TCGATCTGTT CgGGCGCGTG CGCagcaacA GcgaagcAGC ACTGcaggGC
 401
     tATTTTGCCA GCGTTGCCAA CcgcGATGCG GCACATTTGa ttCtGATTGC
 451
501 CACCGTTGCC AAAGCCTATT TCAAcgaGcG TTATGCCGAA AAAGcgatgT
551 CTTTGGCGCa gcGTGTCTTG AAAACGCGCG AGGAAACCTA CAAGCTGTCC
601 GAATTGCGGT ACAAGGCAGG CGTGATTTCC GCCGTCGCCC TGCGCCAGCA
     GGAAGCCTTG ATTGAATCTG CCAAAGCCGA TTATGCCCAT GCCGCGCGCa
 651
     gcCGCGAACA GGCGCGCAAT GCCTTGGCAA CCTTGATTAA ccGTCCGATA
701
751 CCCGAagaCC TGCCCGCCGG TTTGCCGTTG GACAagcAGT TTTTTGTTGA
801 AAAACTGCCT GCCGGTTTGA GTTCCGAAGT ATTGCTCGAC CGTCCCGACA
851 TCCGCGCCGC CGAACACGCG CTCAAACAGG CAAACGCCAA TATCGGTGCG
901 gcgCGCCCg ccTTTTTCCC GTCCATCCGC CTGACCGGAA GCGTCGGTAC
     GGGTTCTGTC GAATTGGGCG GGCTGTTCAA AAGCGGCACG GGCGTTTGGG
951
1001 CGTTCGCTCC GTCTATTACC CTGCCGATTT TTACTTGGGG AACGAACAAG
1051 GCGAACCTTG ATGTGGCAAA ACTGCGCCAA CAGGCACAAA TTGTTGCCTA
1101 TGAATCCGCC GTCCAATCCG CCTTTCAAGA CGTGGCAAAC GCATTGGCGG
1151 CGCGCGAGCA GCTGGATAAA GCCTATGACG CTTTAAGCAA ACAAAGCCGC
     GCCTCTAAAG AAGCGTTGCG CTTGGTCGGA CTGCGTTACA AACACGGCGT
     ATCCGGCGC CTCGATTTGC TCGATGCGGA ACGCATCAGC TATTCGGCGG
1301 AAGGTGCGGC TTTGTCGGCA CAACTGACCC GCGCCGAAAA CCTTGCCGAT
     TTGTACAAGG CGCTCgacGG CGGATTGAAA CGGGATACCC AAACCGGCAA
1401 ATAA
```

### This corresponds to the amino acid sequence <SEQ ID 2464; ORF 729>: g729.pep

1	MNTTLKTTLT	SVAAAFALSA	_CTMI PQYEQP	KVEVAETFON	DTSVSSIRAV
51	DLGWHDYFAD	PRLQKLIDIA	LERNTSLRTA	VLNSEIYRKO	YMIERNNIJP
101	TLAANANGSR	QGSLSGGNVS	SSYNVGLGAA	SYELDLFGRV	RSNSEAALOG
151	YFASVANRDA	AHLILIATVA	KAYFNERYAE	KAMSLAQRVL	KTREETYKLS



```
201 ELRYKAGVIS AVALRQQEAL IESAKADYAH AARSREQARN ALATLINRPI
251 PEDLPAGLPL DKQFFVEKLP AGLSSEVLLD RPDIRAAEHA LKQANANIGA
301 ARAAFFPSIR LTGSVGTGSV ELGGLFKSGT GVWAFAPSIT LPIFTWGTNK
351 ANLDVAKLRQ QAQIVAYESA VQSAFQDVAN ALAAREQLDK AYDALSKQSR
401 ASKEALRLVG LRYKHGVSGA LDLLDAERIS YSAEGAALSA QLTRAENLAD
451 LYKALDGGLK RDTQTGK*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2465>: m729.seq

```
ATGGATACTA CATTGAAAAC CACCTTGACT TCTGTTGCAG CAGCCTTTGC
   1
      ATTGTCTGCC TGCACCATGA TTCCCCAATA CGAGCAGCCC AAAGTCGAAG
  51
 101 TTGCCGAAAC GTTCAAAAAC GATACCGCCG ACAGCGGCAT CCGCGCCGTC
 151 GATTTAGGTT GGCATGACTA TTTTGCCGAC CCGCGCCTGC AAAAGCTGAT
 201 CGACATCGCA CTCGAGCGCA ATACCAGTTT GCGTACCGCC GTATTGAACA
 251 GCGAAATCTA CCGCAAACAA TACATGATTG AGCGCAACAA CCTCCTGCCC
      ACGCTTGCCG CCAATGCGAA CGACTCGCGC CAAGGCAGCT TGAGCGGCGG
      CAATGTAAGC AGCAGCTACA AAGTCGGACT GGGTGCGGCA TCTTACGAAC
 351
      TCGATCTGTT CGGGCGTGTA CGCAGCAGCA GCGAGGCGGC ACTGCAAGGC
 401
      TATTTCGCCA GCACCGCCAA CCGCGATGCG GCACATTTGA GCCTGATTGC
 451
     CACCGTTGCC AAAGCCTATT TCAACGAACG TTACGCCGAA GAAGCGATGT
 501
      CTTTGGCGCA ACGTGTTTTG AAAACGCGCG AGGAAACCTA CAAGCTGTCC
 551
      GAATTACGTT ACAAGGCAGG CGTGATTTCC GCCGTCGCCC TACGTCAGCA
 601
     GGAAGCCCTG ATCGAATCTG CCAAAGCCGA TTATGCCCAT GCCGCGCGCA
 651
 701 GCCGCGAACA GGCGCGCAAT GCCTTGGCAA CCTTGATTAA CCAACCGATA
 751 CCCGAAGACC TGCCTGCCGG TTTGCCGCTG GACAAGCAGT TTTTTGTTGA
 801
     AAAACTGCCG GCCGGTTTGA GTTCCGAAGT ATTGCTCGAC CGTCCCGATA
      TCCGTGCTGC CGAACACGCG CTCAAACAGG CAAACGCCAA TATCGGTGCG
      GCACGCGCCG CCTTTTTCCC ATCCATCCGC CTGACCGGAA CCGTCGGTAC
 901
 951 GGGTTCTGCC GAATTGGGTG GGTTGTTCAA AAGCGGCACG GGCGTTTGGT
1001 CGTTCGCGCC GTCTATTACC CTGCCGATTT TTACCTGGGG TACGAACAAG
1051 GCGAACCTTG ATGTAGCCAA GCTGCGCCAA CAGGTACAAA TCGTTGCCTA
1101 TGAATCCGCC GTCCAATCCG CATTTCAAGA CGTGGCAAAC GCATTGGCGG
1151 CGCGCGAGCA GCTGGATAAA GCCTATGACG CTTTAAGCAA ACAAAGCCGC
1201 GCCTCTAAAG AAGCGTTGCG CTTGGTCGGC CTGCGTTACA AGCACGGCGT
      CGCGCGAGCA GCTGGATAAA GCCTATGACG CTTTAAGCAA ACAAAGCCGC
1251 ATCCGGCGC CTCGACTTGC TCGATGCGGA ACGCAGCAGC TATGCGGCGG
1301 AGGGTGCGGC TTTGTCGGCA CAACTGACCC GCGCCGAAAA CCTTGCCGAT
1351 TTGTACAAGG CACTCGGCGG CGGATTGAAA CGGGATACCC AAACCGACAA
1401 ATAA
```

This corresponds to the amino acid sequence <SEQ ID 2466; ORF 729>: m729.pep

```
1 MDTTLKTTLT SVAAAFALSA CTMIPQYEQP KVEVAETFKN DTADSGIRAV
51 DLGWHDYFAD PRLQKLIDIA LERNTSLRTA VLNSEIYRKQ YMIERNNLLP
101 TLAANANDSR QGSLSGGNVS SSYKVGLGAA SYELDLFGRV RSSSEAALQG
151 YFASTANRDA AHLSLIATVA KAYFNERYAE EAMSLAQRVL KTREETYKLS
201 ELRYKAGVIS AVALRQQEAL IESAKADYAH AARSREQARN ALATLINQPI
251 PEDLPAGLPL DKQFFVEKLP AGLSSEVLLD RPDIRAAEHA LKQANANIGA
301 ARAAFFPSIR LTGTVGTGSA ELGGLFKSGT GVWSFAPSIT LPIFTWGTNK
351 ANLDVAKLRQ QVQIVAYESA VQSAFQDVAN ALAAREQLDK AYDALSKQSR
401 ASKEALRLVG LRYKHGVSGA LDLLDAERSS YAAEGAALSA QLTRAENLAD
```

Computer analysis of the amino acid sequences gave the following results:

Homology with a predicted ORF from N. meningitidis menA with menB

ORF 729 shows 95.7% identity over a 467 aa overlap with a predicted ORF (ORF729.a) from N. gonorrhoeae:

m729 / g729 95.7% identity in 467 aa overlap

	70	80	90	100	110	120
m729.pep	PRLOKLIDIALERN	TSLRTAVLN:	SEIYRKQYMIE	ERNNLLPTLAA	NANDSRQGS	TECCNIVE
700		1 [ [ ] [ ] [ ]	]	111111111	111 11111	1111111
g729	PKTÖVTIDIALEK	UL PPKLWA TW	SELYRKQYMIE	RNNLLPTLAA	NANGSRQGS:	LSGGNVS
	70	80	90	100	110	120
	130	140	150	1.50		
m729.pep	SSYKVGLGAASYEL			160	170	180
23. pop		LILLLILI	HIIIIIIIIIIIIII	TANKDAAHLS	LIATVAKAY	FNERYAE
g729	SSYNVGLGAASYEL	DLFGRVRSNS	SEAALOGYFAS	·!!!!!!!!		
	130	140	150	160	170	180
				100	170	100
	190	200	210	220	230	240
m729.pep	EAMSLAORVLKTRE	ETYKLSELRY	KAGVISAVAL	RQQEALIESA	KADYAHAAR	SDEONDA
		1111111111		111111111	1111111111	111111
g729	KAMSLAQRVLKTRE	ETYKLSELRY	'KAGVISAVAL	RQQEALIESA	KADYAHAAR	SREQARN
	190	200	210	220	230	240
	0.5.0					
m729.pep	250	260	270	280	290	300
m/29.pep	ALATLINOPIPEDL	PAGLPLDKQF	FVEKLPAGLS	SEVLLDRPDI	RAAEHALKQA	MANIGA
q729						
9723	ALATLINRPIPEDL 250	260	270			
	250	200	270	280	290	300
	310	320	330	340	350	360
m729.pep	ARAAFFPSIRLTGT	VGTGSAELGG	LFKSGTGVWS	FAPSTTI.DTE	コンU アほどかいて r	700 C
	111111111111:	:	111111111:	11111111		11111
g729	ARAAFFPSIRLTGS	VGTGSVELGG	LFKSGTGVWA	FAPSITLPIF	PWGTNKANLE	VAKT.RO
	310	320	330	340	350	360
700	370	380	390	400	410	420
m729.pep	QVQIVAYESAVQSA	FQDVANALAA	REQLDKAYDA:	LSKQSRASK <b>E</b> ?	ALRLVGLRYK	HGVSGA
-720	1:	!			/11411114	111111
g729	QAQIVAYESAVQSA	AATANAVQU	REQLDKAYDA			HGVSGA
	370	380	390	400	410	420
	430	440	450	460		
m729.pep	LDLLDAERSSYAAE			4 6 U T C C C T Y D D D O O	nntes.	
			TITITION TRA			
g729	LDLLDAERISYSAE	SAALSAOLTR	AENLADI.YKA:	LDGGLKRDTOT	II CKY	
-	430	440	450	460	.GRA	

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2467>: a729.seq

1	ATGGATACTA	CATTGAAAAC	CACCTTGACT	TCTGTTGCAG	CAGCCTTCGC
51	ATTATCCGCC	TGCACCATGA	TTCCCCAATA		AAAGTCGAAG
101	TTGCCGAAAC	GTTCAAAAAC	GATACCGCCG	ACAGCGGCAT	
151	GATTTGGGTT	GGCATGACTA	TTTTGCCGAC		AAAAGCTGAT
201	CGACATCGCA	CTCGAGCGCA	ATACCAGTTT		GTATTGAACA
251	GCGAAATCTA	CCGCAAACAA	TACATGATTG		CCTCCTGCCC
301	ACGCTTGCCG	CCAATGCGAA	CGACTCGCGC	CAAGGCAGCT	
351	CAATGTAAGC	AGCAGCTACA	AAGTCGGACT	GGGTGCGGCA	
401	TCGATCTGTT	CGGGCGTGTA	CGCAGCAGCA		ACTGCAAGGC
451	TATTTCGCCA	GCACCGCCAA	CCGCGATGCG		GCCTGATTGC
501	CACCGTTGCC	AAAGCCTATT	TCAACGAACG		GAAGCGATGT
551	CTTTGGCGCA	ACGTGTTTTG	AAAACGCGCG	AGGAAACCTA	
601	GAATTACGTT	ACAAGGCAGG	CGTGATTTCC	GCCGTCGCCC	
651	GGAAGCCCTA	ATCGAATCTG	CCAAAGCCGA	TTATGCCCAT	GCCGCGCGCA
701	GCCGCGAACA	GGCGCGCAAT	GCCTTGGCAA	CCCTGATTAA	
751	CCCGACGACC	TGCCCGCCGG	TTTGCCGTTG	GACAAGCAGT	TTTTTGTTGA
801	GAAGCTGCCG	GCCGGTTTGA	GTTCCGAAGT	ATTGCTCGAC	CGTCCCGATA
851	TCCGTGCTGC	CGAACACGCG	CTCAAACAGG	CAAACGCCAA	
901	GCACGCGCCG	CCTTTTTCCC	ATCCATCCGC		
951	GCATTCTGCC	GAATTGGGCG	GGCTGTTCAA		GGCGTTTGGT
1001	TGTTCGCACC	TTCCATTACC	CTGCCGATTT	TTACCTGGGG	

a729.pep 1 51 101 151 201 251 301 351 401	GCGAACCTCG ATGTAGCCAA GCTGCGCCAA CAGGCACAAA TCGTTGCCTA TGAAGCCGCC GTCCAATCCG CATTTCAAGA CGTGGCAAAC GCATTGACCG CGCGCGAGCA GTTGGATAAA GCCTATGACG CTTTAAGCAA ACACAGCCGC GCCTCTAAAG AAGCGTTGCG TTTGGTCGGT ACGCAGCAGC TATTCGGCGG AACGTGCGCC CTCGACTTGC TCGATGCGGA ACGCAGCAGC TATTCGGCGG AAGGTGCGGC TTTGTCGGCA CAACTGACCC GCGCCGAAAA CCTTGCCGAT TTGTACAAGG CACTCGGCGG CGGATTGAAA CGGCAGCACA ATAA  Is to the amino acid sequence <seq 2468;="" 729.a="" id="" orf="">:  MDTTLKTTLT SVAAAFALSA CTMIPQYEQP KVEVAETFKN DTADSGIRAV DLGWHDYFAD PRLQKLIDIA LERNTSLRTA VLNSEIYRKO YMIERNNLLP TLAANANDSR QGSLSGGNVS SSYKVGLGAA SYELDLFGRV RSSSEAALQG YFASTANRDA AHLSLIATVA KAYFNERYAE EAMSLAQRVL KTREETYKLS ELRYKAGVIS PDDLPAGLPL DKQFFVEKLP AGLSSEVLLD RPDIRAAEHA LKQANANIGA ARAAFFSIR ANLDVAKLRQ QAQIVAYEAA VQSAFQDVAN ALTAREQLDK AYDALSKQSR ASKEALRUG LRYKHGVSGA LDLLDAERSS YSAEGAALSA QLTRAENLAD</seq>
451	LIKALGGGLK RDTQTDK*
a729 / m7	29 98.1% identity in 467 aa overlap
a729.pep m729	10 20 30 40 50 60  MDTTLKTTLTSVAAAFALSACTMIPQYEQPKVEVAETFKNDTADSGIRAVDLGWHDYFAD
a729.pep m729	70 80 90 100 110 120 PRLQKLIDIALERNTSLRTAVLNSEIYRKQYMIERNNLLPTLAANANDSRQGSLSGGNVS
	70 80 90 100 110 120
a729.pep	SSYKVGLGAASYELDLFGRVRSSSEAALOGYFASTANRDAAHLSI TATVAYAYENEDVAE
m729	SSYKVGLGAASYELDLFGRVRSSSEAALQGYFASTANRDAAHLSLIATVAKAYFNERYAE 130 140 150 160 170 180
a729.pep	190 200 210 220 230 240 EAMSLAQRVLKTREETYKLSELRYKAGVISAVALRQQEALIESAKADYAHAARSREQARN
m729	EAMSLAQRVLKTREETYKLSELRYKAGVISAVALRQQEALIESAKADYAHAARSREQARN 190 200 210 220 230 240
a729.pep	250 260 270 280 290 300 ALATLINQPIPDDLPAGLPLDKQFFVEKLPAGLSSEVLLDRPDIRAAEHALKQANANIGA
m729	
a729.pep	310 320 330 340 350 360 ARAAFFPSIRLTGSVDTHSAELGGLFKSGTGVWLFAPSITLPIFTWGTNKANLDVAKLRQ
m729	
a729.pep	370 380 390 400 410 420 QAQIVAYEAAVQSAFQDVANALTAREQLDKAYDALSKQSRASKEALRLVGLRYKHGVSGA
m729	QVQIVAYESAVQSAFQDVANALAAREQLDKAYDALSKQSRASKEALRLVGLRYKHGVSGA 370 380 390 400 410 420



	430	440	450	460
a729. <b>pe</b> p	LDLLDAERSSYSAE	GAALSAQLTR	AENLADLYK	ALGGGLKRDTQTDKX
	111111111111	1111111111	HILLIAM	
m729	LDLLDAERSSYAAE	GAALSAQLTR	AENLADLYK	ALGGGLKRDTQTDKX
	430	440	450	460

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2469>:

```
g730.seq
          GTGAAACCGC TGCGCAGACT GACAAACCTC CTTGCCGCCT GCGCCGTAGC
          GGCGGTCGCA CTCATACAGC CCGCCCTCGC GGCGGACTTG GCGCAAGACC
      51
          CGTTCATTAC CGATAACACC CAACGGCAGC ACTACGAACC CGGCGGCAAA
          TACCACCTCT TCGGcgaCCC GCGCGGCAGC GTTTCCGACC GCACCGGCAA
         AATCAACGTC ATCCAAGACT ATACCCACCA GATGGGCAAC CTGCTCATCC AACAGGCGGC AATCCAAGGC AATCTTGGTT ACACCGTCCG CTTTTCCGGA
     301 CACGGACACG AAGAACACGC CCCCTTCGAC AACCACGCCG CCGACAGCGC
     351 AAGCGAAGAA AAAGGCAACG TTGACGACGG CTTTACCGTG TACCGGCTCA
     401 ACTGGGAAGG ACACGAACAT CATCCCGCCG ATGCCTACGA CGGCCCGAAG
          GGCGGCAATT ACCCCAAACC TACGGGCGCA CGAGACGAAT ACACCTATCA
         CGTCAACGGC ACAGCCCGCA GTATCAAACT CAATCCGACC GACACCCGCA
     501
     551 GCATCCGGCA ACGCATATTC GACAACTACA ACAACCTCGG CAGCAATTTC
         TCCGACCGCG CCGATGAAGC CAACAGAAAA ATGTTCGAGC ACAATGCCAA
     651 GCTCGACCGC TGGGGCAACA GCATGGAGTT TGTCAACGGC GTCGCCGCCG
         GCGCGCTCAA CCCCTTTATC AGCGCGGGCG AAGCCTTGGG CATAGGCGAC
     701
          ATACTGTACG GAACGCGCTA TGCCATAGAC AAAGCCGCGA TGCGCAACAT
         CGCCCCCTTA CCCGCCGAGG GCAAATTCGC CGCCATCGGC GGCTTGGGCA
     801
     851 GCGCGGCGG CTTTGAAAAA AATACGCGCG AAGCCGTTGA CCGGTGGATA
     901 CAGGAAAACC CCAATGCCGC CGAAACCGTC GAAGCCCTGG TCAACGTCCT
     951 GCCGTTTGCC AAAGTCAAAA ACCTGACAAA GGCGGCAAAA CCGGGGAAGG
   1001 CTGCGGTTAG TGGGGATTTT TCTAAATCCI ACACCTCCT
1051 AGCACCTTGG TCAAAACGGC AGACGGCTAC AAAGCCATTG CCCATATTCA
CCAAGGACGA GGCAAGCGGA GAAACGGGAT
    1151 ACAAACCCGT TACCGCCCGA TACGGCAATC CGTATCAAGA AACCGTTTAC
    1201 ATTGAAGTTT CAGACGGCAT CGGCAACAGC CAAACCCTGA TTTCCAACCG
    1251
         CATCCACCCG TTTTATTCGG ACGGCAAATG GATTAAGGCG GAAGATTTAA
          AAGCGGGAAG CCGGCTGTTA TCCGAAAGCG GCAAAACCCA AACCGTCCGC
   1351 AACATCGTTG TCAAACCAAA ACCGCTCAAA GCCTACAATC TGACCGTTGC
   1401 CGATTGGCAT ACCTACTTCG TCAAGGGTAA TCAGGCGGAA ACGGAAGGGG
         TTTGGGTTCA TAATGATTGT CCGCCTAAAC CAAAACCAAC CAATCATGCC
   1501 CAACAAAGAA AAGAAGAAGC TAAAAACGAT TCTCATCGAA GTGTGGGAGA
   1551
         TTCCAATCGT GTCGTTCGCG AAGGAAAGCA ATATTTAGAT TCCGACACAG
          GAAACCATGT TTATGTAAAA GGAGATAAAG TGGTTATTCT AACTCCTGAT
   1651 GGAAGACAGG TAACTCAATT TAAGAACTCG AAAGCCAATA CGTCAAAAAG
   1701 GGTAAAAAT GGGAAATGGA CACCAAAATA A
```

### This corresponds to the amino acid sequence <SEQ ID 2470; ORF 730.ng>:

```
g730.pep
         VKPLRRLTNL LAACAVAAVA LIQPALAADL AQDPFITDNT QRQHYEPGGK
         YHLFGDPRGS VSDRTGKINV IQDYTHQMGN LLIQQAAIQG NLGYTVRFSG
     51
         HGHEEHAPFD NHAADSASEE KGNVDDGFTV YRLNWEGHEH HPADAYDGPK
         GGNYPKPTGA RDEYTYHVNG TARSIKLNPT DTRSIRQRIF DNYNNLGSNF
         SDRADEANRK MFEHNAKLDR WGNSMEFVNG VAAGALNPFI SAGEALGIGD
    201
    251 ILYGTRYAID KAAMRNIAPL PAEGKFAAIG GLGSAAGFEK NTREAVDRWI
         QENPNAAETV EALVNVLPFA KVKNLTKAAK PGKAAVSGDF SKSYTCSFHG
         STLVKTADGY KAIAHIQAGD RVLSKDEASG ETGYKPVTAR YGNPYQETVY
         IEVSDGIGNS QTLISNRIHP FYSDGKWIKA EDLKAGSRLL SESGKTQTVR
    401
    451
         NIVVKPKPLK AYNLTVADWH TYFVKGNQAE TEGVWVHNDC PPKPKPTNHA
         QQRKEEAKND SHRSVGDSNR VVREGKQYLD SDTGNHVYVK GDKVVILTPD
    551 GRQVTQFKNS KANTSKRVKN GKWTPK*
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2471>: m730.seq

```
1 GTGAAACCGC TGCGCAGACT GACAAACCTC CTTGCCGCCT GCGCCGTAGC
51 GGCGGCCGCA CTCATACAGC CCGCCCTCGC GGCGGACTTG GCGCAAGACC
```

BNSDOCID: <WO___9957280A2_I_>

101	CGTTCATTAC	CGATAACGCC	CAACGGCAGC	ACTACGAACC	CGGCGGCAAA
151	TACCACCTCT	TCGGCGACCC	GCGCGGCAGC	GTTTCCGACC	GCACCGGCAA
201	AATCAACGTC	ATCCAAGACT	ATACCCACCA	GATGGGCAAC	CTGCTCATCC
251	AACAGGCAAA	CATCAACGGC	ACAATCGGCT	ACCACACCCG	CTTTTCCGGA
301	CACGGACACG	AAGAACACGC	CCCCTTCGAC	AACCACGCCG	CCGACAGCGC
351	GAGCGAAGAA	AAAGGCAACG	TTGACGAAGG	CTTTACCGTA	TACCGGCTCA
401	ACTGGGAAGG	ACACGAACAT	CATCCCGCCG	ATGCCTACGA	CGGCCCGAAG
451	GGCGGCAATT	ACCCCAAACC	TACGGGCGCA	CGAGACGAAT	ACACCTATCA
501	CGTCAACGGC	ACAGCCCGCA	GTATCAAACT	CAATCCGACC	GACACCCGCA
551	GCATCCGGCA	ACGCATATCC	GACAATTACA	GCAACCTCGG	CAGCAATTTC
601	TCCGACCGCG	CCGATGAAGC	CAACAGAAAA	ATGTTCGAGC	ACAATGCCAA
651	GCTCGACCGC	TGGGGCAACA	GCATGGAGTT	TATCAACGGC	GTCGCCGCCG
701	GCGCGCTCAA	CCCCTTTATC	AGCGCGGGCG	AAGCCTTGGG	CATAGGCGAC
751	ATACTGTACG	GAACGCGCTA	TGCCATAGAC	AAAGCCGCAA	TGCGCAACAT
801	CGCCCCCTTG	CCCGCCGAGG	GCAAATTCGC	CGTCATCGGC	GGCTTGGGCA
851	GCGTGGCGGG	CTTTGAAAAG	AATACGCGCG	AAGCCGTTGA	CCGGTGGATA
901	CAGGAAAATC	CCAATGCCGC	CGAAACCGTC	GAAGCCGTCT	TCAACGTTGC
951	CGCAGCAGCC	AAAGTCGCGA	AGTTGGCAAA	GGCGGCAAAA	CCAGGGAAGG
1001	CTGCGGTTAG	CGGGGATTTT	GCTGATTCTT	ATAAAAAGAA	ATTGGCTTTG
1051	TCTGATAGTG	CGAGACAGTT	ATATCAAAAT	GCAAAGTATA	GAGAAGCTCT
1101	AGATATACAT	TATGAAGATT	TAATTAGAAG	AAAAACTGAT	GGTTCATCAA
1151	AATTTATTAA	CGGCAGAGAA	ATTGACGCTG	TTACGAATGA	TGCTTTAATA
1201	CAAGCCAAAA	GAACAATTTC	AGCAATAGAT	AAACCTAAAA	ATTTCTTAAA
1251	TCAAAAAAAT	AGAAAGCAAA	TTAAAGCAAC	CATCGAAGCA	GCAAACCAAC
1301	AGGGAAAACG	TGCAGAATTT	TGGTTTAAAT	ACGGTGTTCA	TTCACAAGTT
L351	AAGTCATATA	TTGAATCAAA	AGGCGGCATT	GTTAAAACAG	GTTTAGGAGA
L401	TTAA				

### This corresponds to the amino acid sequence <SEQ ID 2472; ORF 730>:

m730.pep			-	•	
1	VKPLRRLTNL	LAACAVAAAA	LIQPALAADL	AODPFITDNA	OROHYEPGGK
51	YHLFGDPRGS	VSDRTGKINV	IQDYTHQMGN	LLIOOANING	TTGYHTRESG
101	HGHEEHAPFD	NHAADSASEE	KGNVDEGFTV	YRLNWEGHEH	HPADAYDGPK
151	GGNYPKPTGA	RDEYTYHVNG	TARSIKLNPT	DTRSTRORTS	DNYSNLGSNE
201	SDRADEANRK	MFEHNAKLDR	WGNSMEFING	VAAGALNPET	SACENICION
251	ILYGTRYAID	KAAMRNIAPL	PAEGKFAVIG	GLGSVAGFEK	NTDFAUDDWIT
301	QENPNAAETV	EAVFNVAAAA	KVAKLAKAAK	PGKAAVSGDE	DUCAKAKAYA
351	SDSARQLYQN	AKYREALDIH	YEDLIRRKTD	GSSKEINGRE	TDAVINKEAL
401	QAKRTISAID	KPKNFLNOKN	RKOIKATIEA	ANOOGKRAFF	MEKAGARGOA
451	KSYIESKGGI	VKTGLGD*		THIQQOIMMET	WEKIGVESQV

### g730 / m730 93.0% identity in 344 aa overlap

	10	20	30	40	E0	
g730.pep	VKPLRRLTNLLAAC		ים אינו אינו זמיט א דמ א א דאי	4 U	50	60
g.co.pop	I I I I I I I I I I I I I I I I I I I	AVAAVALIUE	ATANDLACD!	PETTONTOROH	YEPGGKYHLF	GDPRGS
m730					11111111111	
111/30	VKPLRRLTNLLAAC	AVAAAALIQP		PFITDNAQRQH	YEPGGKYHLF	GDPRGS
	10	20	30	40	50	<b>6</b> 0
	70	80	90	100	110	120
g730. <b>pe</b> p	VSDRTGKINVIQDY	THQMGNLLIQ	QAAIQGNLGY	TVRFSGHGHE	EHAPFONHAA	DSASEE
		11111111	11 1:1::11	: [ ] [ ] [ ] [ ]	111111111	111111
m730	VSDRTGKINVIQDY	THOMGNLLIO	OANINGTIGY	HTRESCHORE	EHAPFONHAA	Dever
	70	80	90	100	110	120
					110	120
	130	140	150	160	170	100
g730.pep	KGNVDDGFTVYRLN			100 100	1/0	180
J		HUSTILLIAN	AIDGENGGNI	PRPIGARDEY	TYHVNGTARS	IKLNPT
m730		)	11111111	111111111		
111750	KGNVDEGFTVYRLN	WEGHEHHPAD			TYHVNGTARS	IKLNPT
	130	140	150	160	170	180
	190	<b>20</b> 0	210	220	230	240
g730. <b>pe</b> p	DTRSIRORIFDNYN	NLGSNFSDRA	DEANRKMFEH	NAKLDRWGNS	METUNGVAAG	AT.NDET
	111111111111111	HIHIIII			111.111111	11111
m730	DTRSIRQRISDNYS	NLGSNFSDRA	DEANREMEEH	NAKTDDWCNG		1
	190	200	210	220		
		200	210	220	230	240

g730.pep	250 SAGEALGIGDILYG	260 TRYAIDKAAI	270 MRNIAPLPAEC			300 EAVDRWI
m730	SAGEALGIGDILYG	ΙΙΙΙΙΙΙΙΙΙ ΥΡγατηκαλί		:	:	11111
5 C	250	260	270	280	290	EAVDRW1
g730.pep	310 QENPNAAETVEALV				350 TCSFHGSTLV	360 VKTADGY
m730	QENPNAAETVEAVF	 NVAAAAKVAI 320		AVSGDFADSY		
	310	320	330	340	350	360
. 720	370	380	390	400	410	420
g730.pep	KAIAHIQAGDRVLS	KDEASGETG	KPVTARYGNE	PYQETVYIEVS	DGIGNSQTLI	SNRIHP
m730	AKYREALDIHYEDL 370	IRRKTDGSSI 380	KFINGREIDAV 390	TNDALIQAKR 400	TISAIDKPKN 410	NFLNQKN 420

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2473>: a730.seq

```
GTGAAACCGC TGCGAAGACT CATCAAGCTC CTTGCCGCCT GTGCCGTAGC
      GGCGGCCGCA CTCATACAGC CCGCCCTCGC GGCGGACTTG GCGCAAGACC
  51
      CGTTCATTAC CGATAACGCC CAACGGCAGC ACTACGAACC CGGAGGCAAA
 151 TACCACCTCT TCGGCGACCC GCGCGGCAGC GTCTCCGACC GCACCGGTCA
 201 AATCAACGTC ATCCAAGACT ATACCCACCG GATGGGCAAC CTGCTCATCC
     AGCAGGCAAA CATCAACGGC ACAATCGGCT ACCACACCCG CTTTTCCGGA
 251
 301 CACGGATACG AAGAACACGC CCCCTTCGAC AACCACGCCG CCGACAGCGC
 351 GAGCGAAGAA AAAGGCAACG TTGACGAAGG CTTTACCGTA TACCGGCTCA
 401 ACTGGGAAGG ACACGAACAT CATCCCGCCG ATGCCTACGA CGGCCCGAAG
 451 GGCGGCAATT ACCCCAAACC TACGGGTGCA CGCGACGAAT ACACCTATCA
 501 CGTCAACGGC ACAGCACGCA GCATCAAACT CAATCCGACC GACACCCGCA
     GCATCCGGCA ACGCATATCC GACAATTACA GCAACCTCGG CAGCAATTTC
 551
 601 TCCGACCGCG CCGATGAAGC CAACAGAAAA ATGTTCGAGC ACAATGCCAA
 651 GCTCGACCGC TGGGGCAACA GCATGGAGTT TATCAACGGC GTCGCCGCCG
 701 GCGCGCTCAA CCCCTTTATC AGCGCGGGCG AAGCCTTGGG CATAGGCGAC
 751 ATACTGTACG GAACGCGCTA TGCCATAGAC AAAGCCGCAA TGCGCAACAT
 801
     CGCCCCCTTG CCCGCCGAGG GCAAATTCGC CGTCATCGGC GGCTTGGGCA
      GCGTGGCGGG CTTTGAAAAA AATACGCGCG AAGCCGTTGA CCGGTGGATA
 851
 901 CAGGAAAACC CCAATGCCGC CGAAACCGTC GAAGCCCTGG TCAACGTCCT
 951 GCCGTTTGCC AAAGTCAAAA ACCTGACAAA GGCGGCAAAA CCGGGGAAGG
1001 CTGCGGTTAG CGGGGATTTT TCTGCTGCAT ACAATACAAG AACAACTAGA
1051 AAAGTTACTA CAGAAACAGA GGGGTTAAAT AGAATCAGAC AGAACCAGAA
1101 AAATAGTAAT ATACATGAGA AAAATTATGG AAGAGATAAT CCTAATCATA
1151 TTAATGTTTT ATCTGGAAAT TCTATACAAC ATATACTGTA TGGAGATGA
     TTAATGTTTT ATCTGGAAAT TCTATACAAC ATATACTGTA TGGAGATGAA
1201 GCAGGAGGTG GGCATCTTTT TCCTGGCAAA CCTGGTAAGA CAACATTCCC
1251 CCAACATTGG TCAGCCAGTA AAATAACTCA TGAAATTAGT GATATCGTTA
1301 CATCCCCAAA AACGCAATGG TATGCACAGA CTGGAACAGG CGGCAAATAT
1351 ATTGCTAAAG GAAGACCAGC TAGGTGGGTA TCATATGAAA CGAGAGATGG
     AATTCGTATC AGAACAGTTT ATGAACCTGC AACAGGAAAA GTGGTAACTG
     CATTCCCCGA TAGAACCTCT AATCCCAAAT ATAACCCTGT AAAATAA
```

### This corresponds to the amino acid sequence <SEQ ID 2474; ORF 730.a>:

,.pcp					
1	VKPLRRLIKL	LAACAVAAAA	LIQPALAADL	AODPFITDNA	OROHYEPGGK
51	YHLFGDPRGS	VSDRTGQINV	IQDYTHRMGN	LLIOOANING	TIGYHTRESC
101	HGYEEHAPFD	NHAADSASEE	KGNVDEGFTV	YRLNWEGHEH	HPADAYDGPK
151	GGNYPKPTGA	RDEYTYHVNG	TARSIKLNPT	DTRSIRORIS	DNYSNLGSNE
201	SDRADEANRK	MFEHNAKLDR	WGNSMEFING	VAAGALNPFT	SAGEALGIGD
251	ILYGTRYAID	KAAMRNIAPL	PAEGKFAVIG	GLGSVAGFEK	NTREAUDDWT
301	QENPNAAETV	EALVNVLPFA	KVKNLTKAAK	PGKAAVSGDE	SAAVNTOTWI
351	KVTTETEGLN	RIRQNQKNSN	IHEKNYGRDN	PNHINVLSGN	STOHTLYCOR
401	AGGGHLFPGK	PGKTTFPOHW	SASKITHETS	DIVISPKTOW	AYOLCACAN
451	IAKGRPARWV	SYETROGIRI	RTVYEPATGK	VVTAFPDRTS	NDKANDAK*

a730 / m730	88.6% identity in 376	aa overlap				
a730.pe	D VKPLRRLIKLLAAC	20 AVAAAALIQP	30 ALAADLAODI	40 PFITDNAOROI	50	60
m730	VKPLRRLTNLLAAC	1 1 1 1 1 1 1 1 1 1 1				11111
	10	20	30	40	50	FGDPRGS 60
a730.pe	70	80	90	100	110	120
	111111:11111		1     1   1   1   1   1   1	1111111111		
m730	VSDRTGKINVIQDY 70	HOMGNLLIQ( 80	QANINGTIGY 90	HTRFSGHGHE 100	EHAPFDNHAZ 110	ADSASEE 120
	130	140	150	160	170	
a730.pep		EGHEHHPADA	YDGPKGGNY	PKPTGARDEY	TYHUMCTADO	180 SIKLNPT
m730		LCHEHHPADA	AYDGPKGGNY	PKPTGARDEY		 
	130	140	150	160	170	180
a730.pep		200 LGSNFSDRAD	210 EANRKMFEH	220 NAKLDRWGNS	230 MEFINGVAAG	240
m730	DTRSIRQRISDNYSN	11111111		111111111	I I I I I I I I I I I I I I I I I I I	11111
	190	200	210	220	230	240
a730.pep	250	260	270	280	290	300
m730	1111111111111111	111111111	1111111		11111111111	11111
IN 750	SAGEALGIGDILYGT 250	RYAIDKAAMR 260	NIAPLPAEGI 270	KFAVIGGLGS' 280	VAGFEKNTRE 290	AVDRWI 300
	310	320	330	340	350	3.60
a730.pep	QENPNAAETVEALVN	VLPFAKVKNL'	TKAAKPGKA2 :	AVSGDFSAAY	NTRTTRKVTTI	ETEGLN
m730	QENPNAAETVEAVFN 310	VAAAAKVAKL 320	AKAAKPGKAZ 330	AVSGDFADSY-	KKKLAI	
	370	380			350	)
a730. <b>pe</b> p	RIRQNQKNSNIHEKN	YGRDNPNHIN	390 VLSGNSIQHI	400 LYGDEAGGGH	410 LFPGKPGKT	420 FFPQHW
m730	QLYQNAKYREALDIH					
	360 370	380	390	400		
The following r	partial DNA sequence	was identifi	ed in M o	onovyhooo	∠SEO ID (	2475
g731. <b>se</b> q						24/5>:
51	TTTGGACGGC GGCAAAAT	'CG CGTTGCG	GCT GGACG	GCAGG CCTC	CCCMCC	
151 151	TTGTTCGGAA CGTTGCCG	GA TCCGGCG	SAAC GCTAT	ACCGC CGAA	CACGGT	
201	CGGCTTTACC GATGCCTA	CG GCAATTC	GGT CGAAA	CTTCC TGCC	GCGCCC	
This correspond	ls to the amino acid sec	mence /CE	'() ID 2474	C. ODE 721	_	
g/31.pep					_	
1 51	DFRAFSCENG LSVRVRNL LFGNGTEWHQ KGGEAFFG	DG GKIALRL FT DAYGNSV	DGR RAVLS ETS CRAR*	SDVAA SGER	YTAEHG	
The following p	artial DNA sequence v	vas identifi	ed in N. me	eningitidis <	SEO ID 2	477>·
m731.seq 1	ATGAATATCA GGTTTTTC	GC GCTGACC	הדא ככפפיי	ኮሞጥርጥ ርጥጥጥ/	20000	•
51 101	CIGIGCCGIG CCGGAGGC	GT АТСАТСА	CGG CGGAC	CCCC CAMAC	70000	
131	AACGGTTTGT CTGTGCGC	GC ACGGACG. GT CCGCCAT	ATT TTCGG(	SCGTT TTCC	rgcgag	
201	GCGGCTGGAC GGCAGGCG	TG CCGTCCT	CTC TTCCG	ACGTT GCCG	CATCCG	

201 GCGGCTGGAC GGCAGGCGTG CCGTCCTCTC TTCCGACGTT GCCGCATCCG

ಎ. ಆಟ್ನ ಜನದ ಏಕ

### 1185

		251 301 351	CAC	AACGCTA CAGAAA GGTCGAA	GCGG	CGAAGC	CTTT	TTCGGC	TCGGAA	ACGC GATG	AACCGA CCTACG	GTGG GCAA	
			s to	the ami	no acid	d sequ	ence <	SEQ I	D 2478;	ORE	· 731>:		
1	m731.	51 101	NGL	RFFALTV SVRVRHI GGEAFFO	DSGK	/ALRLD	GRRA'	VLSSDV	HMPPVQI AASGER	NQAG YTAE	TDDFRA HGLFGN	FSCE ATEW	
g731/r	n731	95	.2%	identity	in 84	aa ov	erlap						
Ġ	g731.	pep							DFRAFS	10 CENGI	SVRVRN	20 LDGGKIA	30 LRLDGR
I	n731			LSLAACA 2	VPEAYI 0	DGGRG 30	HMPPV(	ONQAGT	DDFRAFS	illil CENGI 50	SVRVRH	:  :  LDSGKVA 0	IIIIII LRLDGR 70
					40		50	6		70	J		70
ç	₃ 731.	pep		RAVLSSD	VAASGE	RYTAE	HGLFG	GTEWH	OKGGEAFI	FGFTD	AYGNSV	80 ETSCRAR	x
n	n731			RAVLSSD	VAASGE 0	IIIII RYTAE 90	HGLFG	:     NATEWHO 100	 QKGGEAFI	FGFTD	  AYGNSV:  12	ETSCRAR	l x
The fo	llow	ing pa	artia	DNA s	seauen	ce was	s ident	ified i	n <i>N. men</i>	inait	idic <9	FO ID 3	2470~:
ā	a731.	seq											· <b>+</b> / <i>&gt;</i> /
		1 51	ATG.	AATATCA IGCCGTG	GGTTT	TTCGC GGCGT	GCTGA ATGAT	ACCGTA	CCGGTTT CGGACGA	TGT	CTTTGG	CGGC	
		101	CCG	<b>TTCAAA</b> A	CCAAG	CCGGC	ACGGC	CAGATT	TTCGGGG	TTA	TTCCTG	CCAC .	
		151 201	GCG	GGTTTGT GTTGGAC	CTGTG	CACGT	CCGCC	CTTTG	GACGGCG	GCA	GAATCG	CGTT	
		251	GCG.	<b>AA</b> CGCTA	TACCG	CCGAA	CACGO	TTTGT	TCGGAAA	CGG	AACCGA	STGG	
		301	CAT	CAGAAAG	GCGGC	GAAGC	CTTTT	TCGGC	TTTACCG	SATG	CCTACG	GCAA	
		351		GTCGAA									
			s to t	he amir	o acid	seque	nce <	SEQ II	D 2480;	ORF	731.a>	<b>:</b> :	
а	731.		MNIT	יייי איז איז איז	DVICI	7 7 C 7 17	DEASE	DCCD C					
		51	NGL:	SVHVRRL	DGGRI	ALRLD	GRRAV	LSSDV	HMPPVQN AASGERY	'TAE	TADERAI HGLEGNO	FSCE STEW	
		101	HQK	GEAFFG	FTDAY	GNSVE	TSCRA	R*			obi dik	311111	
a	731/	m731	!	94.4% i	dentit	y in :	126 aa	over	lap				
					10		20	30	)	40		50	60
a	731.	pep	ľ	MIRFFA	LTVPVL	SLAAC	AVPEAY	DDGGRO	SHMPPVQN	QAGT.	ADFRAFS	SCENGLSV	TUTTO
m	1731		ì	MIRFFA:	LTVPVL	SLAAC	AVPEAY	IIIIII DDGGR0	HMPPVQN	IIII OBGT	 	CENCI ST	:  :
					10	2	20	30		40	DDIKAIL	50	60
					70	5	30	90	n	100	-	1.3.0	100
a	731.	pep	I	OGGRIAL	RLDGRR	AVLSSI	OVAASG	ERYTAE	EHGLFGNG	100 TEWH	OKGGEA	l10 FGFTDAY	120 GNSVE
-	731			:   : :				11111		1111	111111		11111
10	1731			OGENALI	70	AVT221	OVAASG 30	ERYTAE 90	EHGLFGNA	TEWH( 100		FFGFTDAY L10	
										100	_	110	120
a	731.	pep	7	SCRARX									
m	731		3	SCRARX									
The fol	llowi	ng pa	ırtial	DNA s	equenc	ce was	identi	ified ir	n N. gond	orrho	0000 < Q	FO ID 3	0481~.
g732 . se	eq											-Q 11 2	701/.
1	1 <i>1</i> 51 (	ATGTC	GAAA	C CTGTT	AATTT	GAAAA	TCGCA	CTTTA	TACTT TO	GGGT	CAAT		
	01 7	ACGGg	cgGG	A TAACG	AagtC	CTGCC	GGTGC	GGGTT	TTGCC GO	CCGag	jaagg CGCC		
		-			-	_	- 3		300 42				





### This corresponds to the amino acid sequence <SEQ ID 2482; ORF 732>: g732.pep

```
1 MSKPVFKK<u>IA LYTLGAISGV AVSLAV</u>OGFA AEKDGRDNEV LPVQSIRTMA
51 EVYGQIKANY YHDKPDADLF EGAMKGMVAG LDPHSEYMDK KGYAEIKEST
101 SGEFGGLGME IGQEDGFVKV VSPIEDTPAE RAEVKSGDFI VKIDNVSTRG
151 MTVSEAVKKM RGKPGTKITL TLSRKNADKP IVVNLTRAII KVKSVRHHLI
201 EPDYGYIRVS QFQERTVESV NTAAKELVKE NKGKPLKGLV LDLRDDPGGL
251 LTGAVGVSAA FLPSEAVVVS TKGRDGKDGM VLKAVPEDYV YGMGGDPLAG
301 IPAELKTIPM TVLVNSGSAS ASEIVAGALQ DHKRAVIVGT QSFGKGSVQT
351 LIPLSNGSAV KLTTALYYTP NDRSIQAQGI VPDVEVKDKE RTFESREADL
401 VGHIGNPLGG EDVNSETLAV PLEKDADKPA AKEKGKKKKD EDLSSRRIPN
451 PAKDDQLRKA LDLVKSPEQW QKSLGLAAKK PVSNKDKKDK K*
```

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2483>: m732.seq

-					
1	ATGTCGAAAC		GAAAATCGCA	CTTTATACTT	TGGGTGCAAT
51	CAGCGGCGTG	GCCGTCAGTC	TGGCGGTGCA	GGGTTTTGCC	GCCGAGAAGG
101	ACAGGCGGGA	TAACGAAGTC	CTGCCGGTGC	AATCCATCCG	CACAATGGCG
151	GAGGTTTACG	GTCAAATCAA	GGCAAACTAC	TATCAGGACA	
201	CGATTTGTTT	GAAGGTGCGA	TGAAGGGTAT	GGTGGCCGGT	TTGGATCCGC
251	ATTCCGAATA	TATGGATAAA	AAAGGTTATG	CCGAGATAAA	
301	AGCGGCGAAT	TTGGCGGCTT	GGGGATGGAA		AAGACGGATT
351	TGTCAAAGTG	GTTTCGCCGA	TTGAGGACAC	GCCTGCGGAA	
401	TGAAAAGCGG	CGATTTCATT	GTGAAAATCG	ATAATGTTTC	GACACGCGGC
451	ATGACGGTCA	GCGAAGCGGT	GAAGAAAATG	CGGGGCAAGC	
501	GATTACTTTG	ACGCTGTCGC	GCAAAAATGC	CGACAAGCCG	ATAGTCGTCA
551	ACCTGACCCG	TGCCATTATT	AAAGTGAAAA	GCGTCCGCCA	
601	GAACCCGATT	ACGGCTATAT	CCGCGTGTCG	CAGTTCCAAG	
651	CGAAAGCGTC	AATACCGCCG	CAAAAGAGCT	GGTAAAGGAA	AGCGGACGGT
701	AACCGCTCAA	GGGGCTGGTG	TTGGATTTGC	GCGACGACCC	AATAAAGGAA
751	TTGACTGGCG	CGGTCGGCGT	GTCGGCGGCA		CGGCGGGCTT
801	CGTCGTCAGC	ACCAAGGGAC	GCGACGGCA	TTTCTGCCGT	CTGAAGCAGT
851	CCATTCCTGA	AGATTATGTG		AGACCGCATG	GTACTGAAAG
901	ATTCCTGCCG	AGTTGAAAAC	TACGGGATGG	GCGGCGATTC	GTTGGCGGGC
951	TTCGGCTTCC		CATACCGATG	ACGGTATTGG	TCAATTCCGG
1001	GCGCGGTCAT	GCGTCGGAGA	TTGTCGCAGG	TGCATTGCAG	GATCATAAAC
1051		CGTCGGTACG	CAGAGCTTCG	GCAAAGGTTC	GGTTCAGACT
LUJI	TTGATTCCTT	TGTCCAACGG	CAGCGCGGTC	AAGCTGACAA	CGGCACTGTA

1101	TTATACGCCG	AACGACCGTT	CTATTCAGGC	GCAGGGGATT	GTTCCCGATG
1151	TCGAAGTAAA	AGATAAGGAA	CGCATTTTTG	AAAGCCGCGA	GGCGGATTTG
1201	GTCGGACACA	TCGGCAATCC	CTTGGGCGGC	GAGGATGTGA	ACGGTGAAAC
1251	CCTTGCCGTG	CCGCTTGAAA	AAGATGCGGA	TAAGCCCGCT	GTAAAAGAAA
1301	AAGGTAAAAA	GAAAAAGGAC	GAGGATTTGT	CTTCAAGGCG	GATTCCCAAC
1351	CCTGCCAAAG	ACGACCAGTT	GCGGAAAGCT	TTGGATTTAG	TCAAGTCGCC
1401	CGAGCAGTGG	CAGAAGTCTT	TGGGGCTGGC	GGCGAAAAAG	CCGGTTTCAA
1451	ATAAAGATAA	GAAAGATAAA	AAAGATAAGA	AGTAG	

#### This corresponds to the amino acid sequence <SEQ ID 2484; ORF 732>: m732.pep

1	MSKPVFKK <u>IA</u>	LYTLGAISGV	AVSLAVQGFA	AEKDRRDNEV	LPVOSIRTMA
51	EVYGQIKANY	YQDKPDADLF	EGAMKGMVAG	LDPHSEYMDK	KGYAEIKEST
101	SGEFGGLGME	IGQEDGFVKV	VSPIEDTPAE	RAGVKSGDFI	VKIDNVSTRG
151	MTVSEAVKKM	RGKPGTKITL	TLSRKNADKP	IVVNLTRAII	KVKSVRHHLI
201	EPDYGYIRVS	QFQERTVESV	NTAAKELVKE	NKGKPLKGLV	LDLRDDPGGL
251	LTGAVGVSAA	FLPSEAVVVS	TKGRDGKDRM	VLKAIPEDYV	YGMGGDSLAG
301	IPAELKTIPM	TVLVNSGSAS	ASEIVAGALQ	DHKRAVIVGT	OSFGKGSVOT
351	LIPLSNGSAV	KLTTALYYTP	NDRSIQAQGI	VPDVEVKDKE	RIFESREADI.
401	VGHIGNPLGG	EDVNGETLAV	PLEKDADKPA	VKEKGKKKKD	EDLSSRRIPN
451	PAKDDQLRKA	LDLVKSPEOW	OKSLGLAAKK	PVSNKDKKDK	KUKK*

### Computer analysis of the amino acid sequences gave the following results: Homology with a predicted ORF from N. meningitidis menA with menB

ORF 732 shows 98.2% identity over a 491 aa overlap with a predicted ORF (ORF732.a) from N. gonorrhoeae:

m732/g732 98.2% identity in 491 aa overlap 10 20 30 60 MSKPVFKKIALYTLGAISGVAVSLAVQGFAAEKDRRDNEVLPVQSIRTMAEVYGQIKANY m732.pep MSKPVFKKIALYTLGAISGVAVSLAVQGFAAEKDGRDNEVLPVQSIRTMAEVYGQIKANY q732 20 30 40 80 90 100 110  ${\tt YQDKPDADLFEGAMKGMVAGLDPHSEYMDKKGYAEIKESTSGEFGGLGMEIGQEDGFVKV}$ m732.pep YHDKPDADLFEGAMKGMVAGLDPHSEYMDKKGYAEIKESTSGEFGGLGMEIGQEDGFVKV g732 70 80 100 110 120 130 140 150 160 170 VSPIEDTPAERAGVKSGDFIVKIDNVSTRGMTVSEAVKKMRGKPGTKITLTLSRKNADKP m732.pep VSPIEDTPAERAEVKSGDFIVKIDNVSTRGMTVSEAVKKMRGKPGTKITLTLSRKNADKP g732

	130	140	150	160	170	180
	190	200	210	220	230	240
m732.pep	IVVNLTRAIIKVKSV	RHHLIEPDY	GYIRVSQFQE	RTVESVNTA	KELVKENKGE	PLKGIN
		11111111			111111111	111111
g732	IVVNLTRAIIKVKSV	RHHLIEPDY	GYIRVSOFOE	RTVESVNTA	KELVKENKGE	PIRCIN
	190	200	210	220	230	240
	250	260	270	280	290	300
m732.pep	LDLRDDPGGLLTGAV	'GVSAAFLPS	EAVVVSTKGR	DGKDRMVLKA	IPEDYVYGMO	GDST.AG
		1111111			:	
g732	LDLRDDPGGLLTGAV	GVSAAFLPS	EAVVVSTKGR	DGKDGMVIKA	VPEDYVYCMO	CDPLAC
	250	260	270	280	290	300
	310	320	330	340	350	360
m732.pep	IPAELKTIPMTVLVN	SGSASASEI	VAGALQDHKR	AVIVGTQSFG	KGSVOTLIPI	SNGSAV
		1111111		1111111111	1111111111	111111
g732	IPAELKTIPMTVLVN	SGSASASEI	VAGALQDHKR	AVIVGTOSFG	KGSVOTLIPI	SNGSAV
	310	320	330	340	350	360





	370	380	390	400	410	420
m732.pep	KLTTALYYTPNDRSI(	QAQGIVPD	VEVKDKERIFE	SREADLVGHI	GNPLGGEDVN	JGETI.AV
	111111111111111		111111111111			:::::::
g732	KLTTALYYTPNDRSI(	AQGIVPD	VEVKDKERTFE	SREADLVGHI	GNPLGGEDVN	JSETT.AV
	370	380	390	400	410	420
	430	440	450	460	470	480
m732.pep	PLEKDADKPAVKEKG	KKKKDEDL	SSRRIPNPAKE	DQLRKALDLV	KSPEOWOKSI	GLAAKK
				111111111	111111111	111113
g732	PLEKDADKPAAKEKG	KKKKDEDL	SSRRIPNPAKD	DQLRKALDLV	KSPEQWQKSI	GLAAKK
	430	440	450	460	470	480
	490					
m732.pep	PVSNKDKKDKKDKKX					
	111111111					
g732	PVSNKDKKDKKX					
	490					

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2485>: a732.seq

```
ATGTCGAAAC CTGTTTTTAA GAAAATCGCA CTTTATACTT TGGGTGCAAT
      CAGCGGCGTG GCCGTCAGTC TGGCGGTGCA GGGTTTTGCC GCCGAGAAGG
  51
 101
      ACAGGCGGGA TAACGAAGTC CTGCCGGTGC AATCCATCCG CACAATGGCG
      GAGGTTTACG GTCAAATCAA GGCAAACTAC TATCAGGACA AACCCGATGC
      CGATTTGTTT GAAGGTGCGA TGAAGGGTAT GGTGGCCGGT TTGGATCCGC
 201
 251 ATTCCGAATA TATGGATAAA AAAGGTTATG CCGAGATAAA GGAGTCCACC
 301 AGCGGCGAAT TTGGCGGCTT GGGGATGGAA ATCGGGCAGG AAGACGGATT
      TGTCAAAGTG GTTTCGCCGA TTGAGGACAC GCCTGCGGAA CGGGCGGGGG
 351
 401
      TGAAAAGCGG CGATTTCATT GTGAAAATCG ATAATGTTTC GACACGCGGC
      ATGACGGTCA GCGAAGCGGT GAAGAAAATG CGGGGCAAGC CGGGTACGAA
 451
 501 GATTACTTTG ACGCTGTCGC GCAAAAATGC CGACAAGCCG ATAGTCGTCA
 551 ACCTGACCCG TGCCATTATT AAAGTGAAAA GCGTCCGCCA TCACCTGATC
     GAACCCGATT ACGGCTATAT CCGCGTGTCG CAGTTCCAAG AGCGGACGGT
 601
 651
     CGAAAGCGTC AATACCGCCG CAAAAGAGCT GGTAAAGGAA AATAAAGGAA
     AACCGCTCAA GGGGCTGGTG TTGGATTTGC GCGACGACCC CGGCGGGCTT
 751 TTGACTGGCG CGGTCGGCGT GTCGGCGGCA TTTCTGCCGT CTGAAGCAGT
 801 CGTCGTCAGC ACCAAGGGAC GCGACGGCAA AGACCGCATG GTACTGAAAG
 851 CCGTTCCTGA AGATTATGTG TACGGGATGG GCGGCGATTC GTTGGCGGGC
 901 ATTCCTGCCG AGTTGAAAAC CATACCGATG ACGGTATTGG TCAATTCCGG
     TTCGGCTTCC GCGTCGGAGA TTGTCGCAGG TGCATTGCAG GATCATAAAC
 951
     GCGCGGTCAT CGTCGGTACG CAGAGCTTCG GCAAAGGTTC GGTTCAGACT
1001
     TTGATTCCTT TGTCCAACGG CAGCGCGGTC AAGCTGACAA CGGCACTGTA
1051
1101
     TTATACGCCG AACGACCGTT CTATTCAGGC GCAGGGGATT GTTCCCGATG
1151 TCGAAGTAAA AGATAAGGAA CGCATTTTTG AAAGCCGCGA GGCGGATTTG
1201 GTCGGACACA TCGGCAATCC TTTGGGCGGC GAGGATGTGA ACAGTGAAAC
     CCTTGCCGTG CCGCTTGAAA AAGATGCGGA TAAGCCCGCT GTAAAAGAAA
1251
1301
     AAGGTAAAAA GAAAAAGGAC GAGGATTTGT CTTCAAGGCG GATTCCCAAC
     CCTGCCAAAG ACGACCAGTT GCGGAAAGCT TTGGATTTAG TCAAGTCGCC
1351
     CGAGCAGTGG CAGAAGTCTT TGGGGCTGGC GGCGAAAAAG CCGGTTTCAA
1451 ATAAAGATAA GAAAGATAAA AAAGATAAGA AGTAG
```

### This corresponds to the amino acid sequence <SEQ ID 2486; ORF 732.a>:

2.pep					
1	MSKPVFKK <u>IA</u>	LYTLGAISGV	AVSLAVQGFA	AEKDRRDNEV	LPVOSIRTMA
51	EVYGQIKANY	YQDKPDADLF	EGAMKGMVAG	LDPHSEYMDK	KGYAETKEST
101	SGEFGGLGME	IGQEDGFVKV	VSPIEDTPAE	RAGVKSGDFI	VKIDNVSTRG
151	MTVSEAVKKM	RGKPGTKITL	TLSRKNADKP	IVVNLTRAII	KVKSVRHHLT
201	EPDYGYIRVS	QFQERTVESV	NTAAKELVKE	NKGKPLKGLV	LDLRDDPGGI.
251	LTGAVGVSAA	FLPSEAVVVS	TKGRDGKDRM	VLKAVPEDYV	YGMGGDSLAG
301	IPAELKTIPM	TVLVNSGSAS	ASEIVAGALQ	DHKRAVIVGT	OSEGKGSVOT
351	LIPLSNGSAV	KLTTALYYTP	NDRSIQAQGI	VPDVEVKDKE	RIFESREADI
401	VGHIGNPLGG	EDVNSETLAV	PLEKDADKPA	VKEKGKKKKD	EDLSSRRIPN
451	PAKDDQLRKA	LDLVKSPEOW	OKSLGLAAKK	DACMKUKKUK	ADAN+

a732/m732	99.6% identity in 494 aa overlap
a732.pep	10 20 30 40 50 60  MSKPVFKKIALYTLGAISGVAVSLAVQGFAAEKDRRDNEVLPVQSIRTMAEVYGQIKANY
a732.pep m732	70 80 90 100 110 120 YQDKPDADLFEGAMKGMVAGLDPHSEYMDKKGYAEIKESTSGEFGGLGMEIGQEDGFVKV
a732.pep m732	130 140 150 160 170 180 VSPIEDTPAERAGVKSGDFIVKIDNVSTRGMTVSEAVKKMRGKPGTKITLTLSRKNADKP
a732.pep m732	190 200 210 220 230 240 IVVNLTRAIIKVKSVRHHLIEPDYGYIRVSQFQERTVESVNTAAKELVKENKGKPLKGLV
a732.pep	250 260 270 280 290 300  LDLRDDPGGLLTGAVGVSAAFLPSEAVVVSTKGRDGKDRMVLKAVPEDYVYGMGGDSLAG
a732.pep m732	310 320 330 340 350 360 IPAELKTIPMTVLVNSGSASASEIVAGALQDHKRAVIVGTQSFGKGSVQTLIPLSNGSAV
a732.pep	370 380 390 400 410 420 KLTTALYYTPNDRSIQAQGIVPDVEVKDKERIFESREADLVGHIGNPLGGEDVNSETLAV
a732.pep m732	430 440 450 460 470 480 PLEKDADKPAVKEKGKKKKDEDLSSRRIPNPAKDDQLRKALDLVKSPEQWQKSLGLAAKK
a732.pep m732	490 PVSNKDKKDKKX             PVSNKDKKDKKKX 490

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2487>: g733.seq

1	ATGATGAATC	CGAAAACCTT	GGGCCGTTTG	TCGCTGTGTG	CGGCGGTCTT
51	GGCTCTGACC	GCCTGCGCCG	GCGGCGGCA	TAAAAACCTG	TATTATTACC
101	GCGGTTATCC	CGATACCGTC	TATGAAGGTT	TGAAAAACGa	CARCACATACC
151	TTGGGCAAGC	AGACCGAAAA	GATGGAAAAA	TACTTTCCCC	ANCCCCCCAN
201	CAAAAAAATG	AATGCCGCCC	CGGGTGCGCA	CGCCCATTTG	CCACTCCTCC



- 251 TTTCCCGTTC GGGAGACAAA GAGGGCGCGT TCCGCCAATT TGAAGAAGAG 301 AAAAGGCTGT TTCCCGAATC GGGCGTATTT ATGGACTTCC TGATGAAAAC
- 351 CGGtaaAGGA GGCAAGCGAT GA

WO 99/57280

This corresponds to the amino acid sequence <SEQ ID 2488; ORF 733>: g733.pep

- 1 MMNPKTLGRL SLCAAVLALT ACAGGGHKNL YYYGGYPDTV YEGLKNDDTS 51 LGKQTEKMEK YFAEAANKKM NAAPGAHAHL GLLLSRSGDK EGAFRQFEEE
- 101 KRLFPESGVF MDFLMKTGKG GKR*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2489>: m733.seq

- 1 ATGATGAATC CGAAAACCTT GAGCCGTTTG TCGCTGTGTG CGGCGGTCTT
  51 GGCTCTGACC GCCTGCGGCG GCAACGGGCA AAAATCCCTG TATTATTACG
  101 GCGGCTATCC CGATACCGTC TATGAAGGTT TGAAAAACGA CGACACTTCG
  151 TTGGGCAAGC AGACCGAAAA GATGGAAAAA TACTTTGTGG AAGCCGGCAA
  201 CAAAAAAATG AATGCCGCCC CGGGTGCGCA CGCCCATCTG GGACTGCTGC
  251 TTTCCCGTTC GGGAGACAAA GAGGGCGCGT TCCGCCAGTT TGAAGAAGAG
  301 AAAAGGCTGT TTCCCGAATC GGGCGTATTT ATGGACTTCC TGATGAAAAC
  351 CGGTAAAGGA GGCAAGCGAT GA
- This corresponds to the amino acid sequence <SEQ ID 2490; ORF 733>: m733.pep
  - 1 MMNPKTLSRL SLCAAVLALT ACGGNGQKSL YYYGGYPDTV YEGLKNDDTS
  - 51 LGKOTEKMEK YFVEAGNKKM NAAPGAHAHL GLLLSRSGDK EGAFROFEEE
  - 101 KRLFPESGVF MDFLMKTGKG GKR*

Computer analysis of the amino acid sequences gave the following results:

Homology with a predicted ORF from N. meningitidis menA with menB

ORF 733 shows 94.3% identity over a 123 aa overlap with a predicted ORF (ORF733.a) from N. gonorrhoeae:

m733/g733

	10	20	30	40	50	60
m733.pep	MMNPKTLSRLSLC	CAAVLALTACGO	NGQKSLYYY	GYPDTVYEGI	KNDDTSLGKO	TEKMEK
	1111111:1111	111111111111111111111111111111111111111	:1:1:1111			
g733	MMNPKTLGRLSLC	AAVLALTACAG	GGHKNLYYY	GYPDTVYEGI	KNDDTSLGKO	TEKMEK
	10	20	30	40	50	60
	70	80	90	100	110	120
m733.pep	YFVEAGNKKMNAA	PGAHAHLGLLI	SRSGDKEGAE	ROFEEEKRLE		
	11:11:111111		11111111111		111111111	
g733	YFAEAANKKMNAA	PGAHAHLGLLI	SRSGDKEGAR	ROFEEEKRLE	PESGVEMOFT	MKTGKG
	70	80	90	100	110	120
m733.pep	GKRX					
g733	GKRX					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2491>:

```
a733.seq

1 ATGATGAATC CGAAAACCTT GAGCCGTTTG TCGCTGTGTG CGGCGGTCTT
51 GGCTCTGACC GCCTGCGGCG GCAACGGGCA AAAATCCCTG TATTATTACG
101 GCGGCTATCC CGATACCGTC TATGAAGGTT TGAAAAACGA CGACACTTCG
151 TTGGGCAAGC AGACCGAAAA GATGGAAAAA TACTTTGTGG AGGCCGCAA
201 CAAAAAAATG AATGCCGCCC CGGGTGCGCA CGCCCATCTG GGACTGCTGC
251 TTTCCCGTTC GGGAGACAAA GAGGGCGGCT TCCGCCAGTT TGAAGAAGAG
301 AAAAGGCTGT TTCCCGAATC GGGCGTATTT ATGGACTTCC TGATGAAAAC
351 CGGTAAAGGA GGCAAGCGAT GA
```

This corresponds to the amino acid sequence <SEQ ID 2492; ORF 733.a>: a733.pep

. C. ر به منتو سد

1 51 101	TO THE THE THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR
a733/m733	3 100.0% identity in 123 aa overlap
a733.pep	10 20 30 40 50 60 MMNPKTLSRLSLCAAVLALTACGGNGQKSLYYYGGYPDTVYEGLKNDDTSLGKQTEKMEK
m733	
a733. <b>p</b> ep	70 80 90 100 110 120 YFVEAGNKKMNAAPGAHAHLGLLLSRSGDKEGAFRQFEEEKRLFPESGVFMDFLMKTGKG
m733	YFVEAGNKKMNAAPGAHAHLGLLLSRSGDKEGAFRQFEEEKRLFPESGVFMDFLMKTGKG 70 80 90 100 110 120
a733.pep	GKRX 
m733	GKRX
The following p	partial DNA sequence was identified in N. gonorrhoeae <seq 2493="" id="">:</seq>
g/54.5eq 1	ATGATGAAAA AGATACTGGC AGTATCGGCA CTATGCCTGA TGACTGCGGC
51	GGCACAGGCT GCCGATACTT ACGGCTATCT CGCCGTTTGG CAGAATCCGC
101	AGGATGCAAA CGATGTTTTG CAGGTTAAAA CCACAAAAGA AGATTCGGCG
151	AAAAGCGAAG CGTTTGCCGA GTTGGAAGCC TTTTGCAAAG GTCAGGACAC
201	GCTTGCGGGC ATTGCCGAAG ACGAGCCGAC CGGATGCCGG TCGGTCGTGT
251	CGCTGAACAA TACCTGTGTC TCGCTGGCAT ACCCGAAAGC CTTGGGCGCG
301	ATGCGCGTTG AAAACGCCGT CGTGATTACT TCTCCGCGTT TTACGAGCGT
351 401	TCATCAGGTC GCACTCAACC AGTGCATAAA AAAATACGGC GCACAGGGAC AATGCGGCTT GGAAACAGTG TATTGCACGT CATCTTCTTA TTACGGCGGG
451	GCTGTTCGCT CCTTAATCCA ACACCTGAAA TAA
This correspond	s to the amino acid sequence <seq 2494;="" 734.ng="" id="" orf="">:</seq>
g734.pep	
i	MMKKILAVSA LCLMTAAAQA ADTYGYLAVW QNPQDANDVL QVKTTKEDSA
51	KSEAFAELEA FCKGQDTLAG IAEDEPTGCR SVVSLNNTCV SLAYPKALGA
101	MRVENAVVIT SPRFTSVHQV ALNQCIKKYG AQGQCGLETV YCTSSYYGG
151	AVRSLIQHLK *
The following p	artial DNA sequence was identified in N. meningitidis <seq 2495="" id="">:</seq>
1	TCGGGCATTG CTGAAGACGA GCCGACCGGA TGCCGGTCGG TCGTGTCGCT
51	GAACAATACC TGTGTCGCGC TGGCATACCC GAAAGCCTTG GGCGCGCTGC
101	GTGTCGACAA CGCCGTCGTG ATTACTTCTC CGCGTTTTAC GAGCGTTCAT
151	CAGGTCGCAC TCAACCAGTG CATCAAAAAA TACGGCGTAC AGGGACAATG
201 251	CGGCTTGGAA ACAGTGTATT GCACATCTTC TTCTTATTAC GGCGGAACTG TGCGCTCTTT GATTCAAAAT CTCAAATAA
This correspond	s to the amino acid sequence <seq 2496;="" 734="" id="" orf="">:</seq>
m734.pep	(partial)
1	SGIAEDEPTG CRSVVSLNNT CVALAYPKAL GALRVDNAVV ITSPRFTSVH
51	QVALNQCIKK YGVQGQCGLE TVYCTSSSYY GGTVRSLIQN LK*
m734/g734 92	.4% identity in 92 aa overlap
m734.pep	10 20 30 SGIAEDEPTGCRSVVSLNNTCVALAYPKAL
g734	:



			1192				
	<b>4</b> O	50	60	70	80	90	
m734.pep	GALRVDN	40 AVVITSPRFT:	50 SVHQVALNQ	60 CIKKY <b>G</b> VQGÇ	70 CGLETVYCTS	80 SSYYGGTVRS	90 SLIQN
g734	GAMRVEN?			:    CIKKYGAQGÇ 130		:     SSYYGGAVRS   150	LIQH
m734.pep	LKX 						
g734	LKX 160						
The following p	artial DNA s	equence wa	s identifie	d in N. me	ningitidis <	SEQ ID 24	97>:
a734.seq 1	ስጥር <b>ስጥር እ</b> አ አ አ	A C A T A C T C C C	CCMAMCCC			_	
51	ATGATGAAAA GGCACGGGCT	GCCGATACTI	CGTATCGC	CA CTATGO CT CGCCGT	TTGG CAGAN	GCGGC TCCGC	
101	AGAATGCAAA	CGATGTTTTC	CAGGTTA	AA CCACAA	AAGA AGATT	CGACG	
151 201		CGTTTGCCGA	GTTGGAAG	CT TTCTGC	AAAG GTCAG	GACAC	
251	CGCTGAACAA	TACCTGTGTC	GCGCTGGC	CAT ACCCGA	AAGC CTTGG	ecece	
301	ATGCGCGTTG	AAAACGCCGT	' TGTGATTA	CT TCTCCG	CGTT TTACG	ACCCT	
351 401		GCACTCAACC	AGTGCATC	CT CTTCTT	CGGC GCACA	GGAC	
451	ACTGTGCGCT	CTTTGATTCA	AAATCTCA	AA TAA	CTTA TTACGO	3GGGA	
This correspond					ORF 734.a	>:	
a734.pep	MARKET T 7 11 C 7						
1 51	MMKKILAVSA KSEAFAELEA	ECLMTAAARA FCKGODTLAG	ADTYGYLA	VW QNPQNA	NDVL QVKTTI	KEDST	
101	MRVENAVVIT	SPRFTSVYQV	ALNQCIKK	YG AQGQCG	LETV YCTSS	ALGA SYYGG	
151	TVRSLIQNLK	*					
a734/g734 95.			_	2.0			
a734.pep	MMKKILAV	SALCLMTAAA	20 RAADTYGYL •!!!!!!!	30 AVWQNPQNAI	40 NDVLQVKTTKE 	50 EDSTKSEAFAE	60 ELEA
g734	MMKKILAV	SALCIMTAAA	QAADTYGYL 20	AVWQNPQDAI 30	NDVLQVKTTKE 40	DSAKSEAFAE 50	60
a734.pep			80 CRSVVSLNN	90 TCVAI AVDE	100 ALGAMRVENAV	110	120
	1111111	111111	1111111	111:1111		1111111111	• 1.1
g734	FCKGQDTL	AGIAEDEPTG	CRSVVSLNN	TCVSLAYPK	ALGAMRVENAV	VITSPRFTSV	HQV
		70	80	90	100	110	120
a734.pep		30 1. YGAQGQCGLE	40 IVYCTSSSY	150 YGGTVRSLIC	160 NLKX		
g734	ALNQCIKK		  TVYCTSSSY	111:11111	:111		
	13	30 1	40	150	160		
	found yet found yet						
The following pa	ırtial DNA se	quence was	identified	l in N. men	ingitidis <s< td=""><td>EQ ID 249</td><td>9&gt;:</td></s<>	EQ ID 249	9>:
	TCTCG TGAAAC	TGCT GGCG	ል <b>ጥ</b> ልልድ ጥርር	ברא א כרכי א ייי	mcccamma =		
51 CGCGC	TTGTC GGCACG	GGCT TGGCT	GTGTC GCA	CCATCAA G	CCTACAACT		
101 CGGCA	TTTGC GAAGCA	GCAG GCGGT	CATCG ACA	AGATGGA G	CCCCACAAC		
151 GCGCA 201 GGCAC	AGCCC TGCTGT GCGCG GAAGCT	TGTC GGCTC AAAA AATAT	AAAAC TAT	GCGCGCG A	ACTGGAACT		
251 TGGCT	TTGGC GAAAAA	ACAG GCGGA	AGTCA GCC	GTCTGDD D	מרככם א א א יי		
301 AAAAA	GGAAA TCGAAA	ATGT CCTTA	CTCAA GAC	CGTAAAA A	TGCAAGCGG		

351 CGGTTGCATT GACGGCTTTG GCTCTCACGG CCTGCAGCTC TACAACCGCG
401 CCCTCGGCTA CGGAAATTAA

This corresponds to the amino acid sequence <SEQ ID 2500; ORF 735>: m735.pep

- 1 MNLVKLLANN WQPIAIIALV GTGLAVSHHQ GYKSAFAKQQ AVIDKMERDK
- 51 AQALLLSAQN YARELELARA EAKKYEVKAH AVGMALAKKO AEVSRLKTEN
- 101 KKEIENVLTQ DRKNASGGCI DGFGSHGLQL YNRALGYGN*

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2501>:

```
a735.seq

1 ATGAATCTCG TGAAACTGCT GGCGAATAAC TGGCAACCGA TTGCCATCAT
51 CGCGCTTGTC GGCACGGGTT TGGCGGTGTC GCACCATCAA GGCTACAAGT
101 CGGCTTTTGC GAAGCAGCAG GCGGTCATTG AGAAAATGAA GCGCGACAAG
151 GCGCAAGCCC TGCTGTTGTC GGCTCAAAAC TACGCCCGCG AACTGGAACA
201 GGCGCGTGCG GAAGCTAAAA AATATGAAGT CAAGGCGCAC GCCGTCGGCA
251 TGGCTTTGGC GAAAAAACAG GCGGAAGTCA GCCGTCTGAA AACGGAAAAT
301 AAAAAGGAAA TCGAAAATGT CCTTACTCAA GACCGTAAAA ATGCAGGCGG
351 CGGTTGTATT GACGGCTTTG GCCATCACGG CTTGCAGCTC TACAAGCGCG
401 CCCTCGGCTA CGGAAATTAA
```

## This corresponds to the amino acid sequence <SEQ ID 2502; ORF 735.a>: a735.pep

```
1 MNLVKLLANN WQPIAIIALV GTGLAVSHHQ GYKSAFAKQQ AVIEKMKRDK
51 AQALLLSAQN YARELEQARA EAKKYEVKAH AVGMALAKKQ AEVSRLKTEN
101 KKEIENVLTQ DRKNAGGGCI DGFGHHGLQL YKRALGYGN*
```

a735/m735 95.7% identity in 139 aa overlap

	10	20	30	40	50	60
a735.pep	MNLVKLLANNWQPI.	AIIALVGTGL	AVSHHQGYKS	AFAKQQAVIE	KMKRDKAOAI	LLSAON
		111111111	1111111111	111111111:	11:111111	
m735	MNLVKLLANNWQPI	AIIALVGTGL	AVSHHQGYKS	AFAKQQAVID	KMERDKAOAI	LLSAON
	10	20	30	40	50	60
	70	80	90	100	110	120
a735.pep	YARELEQARAEAKK	YEVKAHAVGM	ALAKKQAEVS	RLKTENKKEI	ENVLTQDRKN	JAGGGCI
		11111111		HILLIAM	1111111111	1:1111
m735	YARELELARAEAKK	YEVKAHAVGM	<b>ALAKKQAEVS</b>	RLKTENKKEI	ENVLTQDRKN	ASGGCI
	70	80	90	100	110	120

# The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2503>: g736.seq

1	ATGAATTTTA	TCCGTTCCGT	CGGGGCGAAA	ACCCTCGGCC	TTATTCAATC
51	CTTCGGCAGT	ATCACGCTGT	TTCTGCTGAA	CATTTTGGCG	AAATCCGGCA
101	CGGCTTTCGC	CCGTCCGCGC	CTGAGCGTGC	GCCAAGTGTA	TTTTGCCGGC
151	GTGCTGTCGG	TGCTGATTGT	TGCCGTTTCG	GGGCTGTTCG	TCGGTATGGT
201	TTTGGGTTTG	CAGGGCTATA	CGCAGTTGTC	GAAATTCAAA	TCCGCCGATA
251	TTTTGGGCTA	TATGGTCGCG	GCTTCTCTGT	TGCGCGAACT	GGGTCCCGTG
301	TTGGCGGCGA	TTCTGTTTGC	CAGCAGCGCG	GGCGGTGCGA	
351	AATCGGTTTG	ATGAAAACGA	CCGGACAGCT	CGAAGCGATG	
401		CGTCGCCCGC		CGCGTTTTTG	GGCGGGCGTG
451	TTTTCTATGC	CGCTTTTGGC	TTCGATTTTC	AACGTCGCGG	GCATTTTCGG
501	CGCGTATTTG	GTCGGCGTGA	GCTGGCTGGG	TTTGGACAGC	GGTATTTTCT
551	GGCCGCAGAT	GCAGAACAAC	ATTACGATAC	ATTACGATGT	AATCAACGGT

BNSDOCID: <WO___9957280A2_I_>

Lend of the Table of the

601	TTGATCAAAT	CCGCCGCGTT	CGGCGTGGCG	GTAACGCTGA	TTGCCGTGCA
	TTCACCCCT				

#### This corresponds to the amino acid sequence <SEQ ID 2504; ORF 736>: g736.pep

- MNFIRSVGAK TLGLIQSFGS ITLFLLNILA KSGTAFARPR LSVRQVYFAG 51 VLSVLIVAVS GLFVGMVLGL QGYTQLSKFK SADILGYMVA ASLLRELGPV 101 LAAILFASSA GGAMTSEIGL MKTTGQLEAM NVMAVNPVAR VVAPRFWAGV
  151 FSMPLLASIF NVAGIFGAYL VGVSWLGLDS GIFWPQMQNN ITIHYDVING
  201 LIKSAAFGVA VTLIAVHQGF HCIPTSEGIL RASTRTVVSS ALTILAVDFI
  251 LTAWMFTD*

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2505>: m736.seq

1	ATGAATTTTA	TCCGTTCCGT	CGGGGCGAAA	ACCCTCGGCC	TTATTCAATC
51	CTTCGGCAGT	ATCACGCTGT		CATTTTGGCG	
101	CGGCTTTCGC	CCGTCCGCGC	CTGAGCGTGC	GCCAAGTGTA	TTTTGCCGGC
151	GTGCTGTCGG	TGCTGATTGT	TGCCGTTTCG	GGGCTGTTCG	TCGGTATGGT
201	TTTGGGTTTG	CAGGGCTATA	CGCAGTTGTC	GAAATTCAAA	TCCGCCGATA
251	TTTTGGGCTA	TATGGTCGCG	GCTTCTCTGT	TGCGCGAACT	GGGTCCCGTG
301	TTGGCGGCGA	TTCTGTTTGC	CAGCAGCGCG	GGCGGTGCGA	TGACCAGCGA
351	AATCGGTTTG	ATGAAAACGA	CCGGACAGCT	CGAAGCGATG	AACGTGATGG
401	CGGTCAACCC	CGTCGCCCGC	GTGGTTGCCC	CGCGTTTTTG	GGCGGGCGTG
451	TTTTCTATGC	CGCTTTTGGC	TTCGATTTTC	AACGTCGCGG	GCATTTTCGG
501	CGCGTATTTG	GTCGGCGTGA	GCTGGCTGGG	TTTGGACAGC	GGTATTTTCT
551	GGCCGCAGAT	GCAGAACAAC	ATTACGATAC	ATTACGATGT	AATCAACGGT
601	TTGATCAAAT	CCGCCGCGTT	CGGCGTGGCG	GTAACGCTGA	TTGCCGTGCA
651	TCAGGGCTTC	CACTGCATCC	CGACTTCGGA	AGGCATTTTG	CGCGCCAGCA
701		GGTTTCGTCC			CGATTTTATA
751	TTGACCGCGT	GGATGTTTAC	AGATTGA		

#### This corresponds to the amino acid sequence <SEQ ID 2506; ORF 736>: m736.pep

- MNFIRSVGAK TLGLIQSLGS ITLFLLNILA KSGTAFVRPR LSVRQVYFAG VLSVLIVAVS GLFVGMVLGL QGYTQLSKFK SADILGYMVA ASLLRELGPV 51
- 101 LAAILFASSA GGAMTSEIGL MKTTEQLEAM NVMAVNPVAR VVAPRFWAGV
- 151 FSMPLLASIF NVAGIFGAYL VGVTWLGLDS GIFWSQMQNN ITIHYDVING
- 201 LIKSAAFGVA VTLIAVHQGF HCVPTSEGIL RASTRTVVSS ALTILAVDFI 251 LTAWMFTD*

### Computer analysis of the amino acid sequences gave the following results: Homology with a predicted ORF from N. meningitidis menA with menB ORF 736 shows 97.7% identity over a 258 aa overlap with a predicted ORF (ORF736.ng) from N. gonorrhoeae: m736/g736

	10	20	30	40	50	60
m736.pep	MNFIRSVGAKTLGL	IQSLGSITLF	LLNILAKSGT	'AFVRPRLSVF	QVYFAGVLSV	LIVAVS
		111:11111	114111111	11:111111	1111111111	111111
g736	MNFIRSVGAKTLGL	IQSFGSITLF	LLNILAKSGT	AFARPRLSVE	OVYFAGVLSV	T.TVAVS
	10	20	30	40	50	60
	70	80	90	100	110	120
m736.pep	GLFVGMVLGLQGYT	QLSKFKSADI:	LGYMVAASLL	RELGPVLAAI	LFASSAGGAM	TSETGI.
	111111111111111	111111111		11111111		111111
g736	GLFVGMVLGLQGYT	QLSKFKSADI:	LGYMVAASLL	RELGPVIAAT	T.FASSAGCAM	TOPTOT
	70	80	90	100	110	
		• • •	30	100	110	120
	130	140	150	160	170	180
m736.pep	MKTTEQLEAMNVMA	UNPVARVVAP		TTDCTENIUSC	TECANTITION	180
			I I I I I I I I I I I I	TLASIFIVAG	TEGATLVGVT	WLGLDS
g736	MIZEUCAT EDMANTE			111111111	111111111:	
9/30	MKTTGQLEAMNVMA	VNPVARVVAPI	REWAGVESMP	LLASIFNVAG	IFGAYLVGVS	WLGLDS

Committee of the control of the control of the second

- 1	- 1	4 1	-

	130	140	150	160	170	180
m736.pep	190 GIFWSQMQNNITIHY	200 DVINGLIKSA <i>I</i>	210 AFGVAVTLIAV	220 HOGFHCVPTS	230 EGILRASTRT	240 VVSS
	1111 111111111	11111111111		11111:11	1111111111	1111
g736	GIFWPQMQNNITIHY	DVINGLIKSA			F.G.T.T.RASTRT	1111 22VV
	190	200	210	220	230	240
	250	259				
m736.pep	ALTILAVDFILTAWM	FTDX				
• •		1111				
g736	ALTILAVDFILTAWM	FTDX				
•	250					
The following	partial DNA sequ	ience was id	lentified in	N. meningit	idis <seq< td=""><td>ID 25</td></seq<>	ID 25

#### 507>: a736.seq

.seq			•		
1	ATGAATTTTA	TCCGTTCCGT	CGGGGCGAAA	ACCCTCGGCC	TTATTCAATC
51	TCTCGGCAGT	ATCACGCTGT	TTCTGCTGAA	TATTCTGGCG	AAATCCGGTA
101	CGGCTTTCGT	CCGTCCGCGC	CTGAGCGTGC	GCCAAGTGTA	TTTTGCCGGC
151	GTGCTGTCGG	TGTTGATTGT	TGCCGTTTCA	GGGCTGTTTG	TCGGCATGGT
201	CTTGGGTTTG	CAGGGCTATA	CGCAGTTGTC	GAAATTCAAA	TCCGCCGATA
251	TTTTGGGCTA	TATGGTCGCG	GCTTCGCTGT	TGCGCGAACT	GGGTCCGGTG
301	TTGGCGGCGA	TTCTGTTTGC	CAGCAGCGCG	GGCGGTGCGA	TGACCAGCGA
351		ATGAAAACGA	CCGAACAGCT	CGAAGCGATG	AACGTGATGG
401	CGGTAAACCC	CGTCGCCCGA	GTGGTTGCGC	CGCGCTTTTG	GGCGGGCGTG
451	TTTTCCATGC	CGCTTTTGGC	TTCGATTTTC	AACGTGGCGG	GTATTTTCGG
501	CGCGTATTTG	GTCGGTGTAA	CCTGGCTGGG	CTTGGACAGC	GGTATTTTCT
551	GGTCGCAAAT	GCAGAACAAC	ATCACGATAC	ATTACGATGT	AATCAACGGT
601	CTGATCAAAT	CCGCCGCGTT	CGGCGTGGCG	GTAACGCTGA	TTGCCGTGCA
651	TCAGGGCTTC	CACTGCGTCC	CGACCTCGGA	AGGCATTTTG	CGCGCCAGCA
701	CGCGCACGGT	GGTTTCGTCC	GCCCTGACGA	TTTTGGCGGT	CGATTTTATA
751	TTGACCGCGT	GGATGTTTAC	AGATTGA		

#### This corresponds to the amino acid sequence <SEQ ID 2508; ORF 736.a>: a736.pep

1 MNFIRSVGAK TLGLIQSLGS ITLFLLNILA KSGTAFVRPR LSVRQVYFAG 51 VLSVLIVAVS GLFVGMVLGL QGYTQLSKFK SADILGYMVA ASLLRELGPV 101 LAAILFASSA GGAMTSEIGL MKTTEQLEAM NVMAVNPVAR VVAPRFWAGV
151 FSMPLLASIF NVAGIFGAYL VGVTWLGLDS GIFWSQMQNN ITIHYDVING
201 LIKSAAFGVA VTLIAVHQGF HCVPTSEGIL RASTRTVVSS ALTILAVDFI
251 LTAWMFTD*

a736/m736 100.0% identity in 258 aa overlap

a736.pep	10 MNFIRSVGAKTLGLIÇ 	11111111	 NILAKSGTAI	 VRPRLSVRQV	  YFAGVLSVLI	 VAVS
	10	20	30	40	50	60
706	70	80	90	100	110	120
a736.pep	GLFVGMVLGLQGYTQL	SKFKSADILG	YMVAASLLRE	LGPVLAAILF	ASSAGGAMTS	EIGL
-726			111111111	1111111111	111111111	
m736	GLFVGMVLGLQGYTQL	SKFKSADILG				EIGL
	70	80	90	100	110	120
	130	140	150	160	170	180
a736.pep	MKTTEQLEAMNVMAVN	IPVARVVAPRF	WAGVFSMPLI	ASIFNVAGIF	GAYLVGVTWL	GLDS
m736	MCTTTO TRANSPORT	1111111		41111111		
m/36	MKTTEQLEAMNVMAVN				GAYLVGVTWL(	GLDS
	130	140	150	160	170	180
	190	200	210	220	230	240
a736 <b>.pe</b> p	GIFWSQMQNNITIHYD	VINGLIKSAA	FGVAVTLIAV	HQGFHCVPTS	EGILRASTRT	VVSS



m736	GIFWSQMQNNITIHYDVINGLIKSAAFGVAVTLIAVHQGFHCVPTSEGILRASTRTVVSS						
	190	200	210	220	230	240	
	250	259	•				
a736.pep	ALTILAVDFILTA	WMFTDX					
	1111111111111	11111					
m736	ALTILAVDFILTA	WMFTDX					
	250						

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2509>: g737.seq

```
1 atgaACATCA AACACCTTCT CTTGACCGCC GCCGCAACCG CACTGTTGGG
51 CATTTCCGCC CCCGCACTCG CCCACCACGA CGGACACGGC GATGACGACC
101 ACGGACACGC CGCACACCAA CACGGCAAAC AAGACAAAAT CATCAGCCGC
151 GCCCAAGCCG AAAAAGCGGC TTGGGCGGCT GTCGGCGGCA AAATCACCGA
201 CATCGATCTC GAACACGACG ACGGCCGTCC GCACTATGAT GTCGAAATCG
251 TCAAAAAACGG ACAGGAATAC AAAGTCGTTG TCGATGCCCG TACCGGCCGC
301 GTGATTTCCT CCCGCCGCGA CGACTGA
```

This corresponds to the amino acid sequence <SEQ ID 2510; ORF 737>: g737.pep

- 1 MNIKHLLLTA AATALLGISA PALAHHDGHG DDDHGHAAHQ HGKQDKIISR 51 AQAEKAAWAR VGGKITDIDL EHDDGRPHYD VEIVKNGQEY KVVVDARTGR
- 101 VISSRRDD*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2511>: m737.seq..

```
1 ATGAACATCA AACACCTTCT CTTGACCTCC GCCGCAACCG CACTGCTGAG
51 CATTTCCGCC CCCGCGCTCG CCCACCACGA CGGACACGGC GATGACGACC
101 ACGGACACGC CGCACACCAA CACAACAAAC AAGACAAAAT CATCAGCCGC
151 GCCCAAGCCG AAAAAGCAGC GTTGGCGGGT GTCGGCGGCA AAATCACCGA
201 CATCGATCTC GAACACGACA ACGGCCGTCC GCACTATGAT GTCGAAATCG
251 TCAAAAAACGG ACAGGAATAC AAAGTCGTTG TCGATGCCCG TACCGGCCGC
301 GTGATTTCCT CCCGCCGCGA CGACTGA
```

This corresponds to the amino acid sequence <SEQ ID 2512; ORF 737>: m737.pep

- 1 MNIKHLLLTS AATALLSISA PALAHHDGHG DDDHGHAAHQ HNKQDKIISR 51 AQAEKAALAR VGGKITDIDL EHDNGRPHYD VEIVKNGQEY KVVVDARTGR
- 101 VISSRRDD*

Computer analysis of the amino acid sequences gave the following results:

Homology with a predicted ORF from N. meningitidis menA with menB

ORF 737 shows 95.4% identity over a 108 as overlap with a predicted ORF (ORF737.a) from N. gonorrhoeae:

m737/g737

	10	20	30	40	50	60
m737.pep	MNIKHLLLTSAATA	LLSISAPALA	HHDGHGDDDH	GHAAHQHNK(	DKIISRAQAE	KAALAR
			1111111111	1111111:1		111 11
g737	MNIKHLLLTAAATA	LLGISAPALA	HHDGHGDDDH	GHAAHQHGK	DKIISRAQAE	KAAWAR
	10	20	30	40	50	60
	70	80	90	100	109	
m737.pep	VGGKITDIDLEHDNO	GRPHYDVEIV	KNGQEYKVVV	DARTGRVISS	SRRDDX	
			111111111	1111111111	11111	
g737	VGGKITDIDLEHDDO	RPHYDVEIV	KNGQEYKVVV	DARTGRVISS	SRRDDX	
	70	80	90	100		

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2513>:

The Committee of the Earlies

```
a737.seq
             ATGAACTTCA AACGCCTTCT CTTGACCGCC GCCGCAACCG CACTGATGGG
           1
             CATTTCCGCC CCCGCACTCG CCCACCACGA CGGACACGGC GATGACGACC
          51
             ACGGACACGC CGCACACCAA CACAGCAAAC AAGACAAAAT CATCAGCCGC
         101
             GCCCAAGCCG AAAAAGCAGC GTTGGCGCGT GTCGGCGGCA AAATCACCGA
         151
             CATCGATCTC GAACACGACA ACGGCCGTCC GCACTATGAT GTCGAAATCG
         201
             TCAAAAACGG ACAGGAATAC AAAGTCGTTG TCGATGCCCG TACCGGCCGC
         301 GTGATTTCCT CCCGCCGCGA CGACTGA
This corresponds to the amino acid sequence <SEQ ID 2514; ORF 737.a>:
             MNFKRLLLTA AATALMGISA PALAHHDGHG DDDHGHAAHQ HSKQDKIISR
             AQAEKAALAR VGGKITDIDL EHDNGRPHYD VEIVKNGQEY KVVVDARTGR
          51
         101
             VISSRRDD*
                94.4% identity in 108 aa overlap
    a737/m737
                       10
                                 20
                                                   40
    a737.pep
                MNFKRLLLTAAATALMGISAPALAHHDGHGDDDHGHAAHQHSKQDKIISRAQAEKAALAR
                MNIKHLLLTSAATALLSISAPALAHHDGHGDDDHGHAAHQHNKQDKIISRAQAEKAALAR
    m737
                       10
                                - 20
                                          30
                                                   40
                       70
                                80
                                          90
                                                  100
                VGGKITDIDLEHDNGRPHYDVEIVKNGQEYKVVVDARTGRVISSRRDDX
    a737.pep
                m737
                VGGKITDIDLEHDNGRPHYDVEIVKNGQEYKVVVDARTGRVISSRRDDX
                                80
                                         90
                                                  100
```

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2515>: g738.seq

```
ATGTCCGCTG AAACGACCGT ATCCGGCGCG CGCCCCGCCG CCAAACTGCC
   1
      GATTTACATC CTGCCCTGCT TCCTTTGGAT AGGCATCATC CCCTTTACCT
      TCGCACTCAG GCTGAAACCG TCGCCCGACT TTTACCACGA TGCCGCCGCC
 101
      GCGGCCGGCC TGATTGTCCT GTTGTTCCTC ACGGCAGGAA AAAAGCTGTT
 151
      TGATGTCAAA ATCCCCGCCA TCAGCTTCCT CCTGTTTGCA ATGGCGGCAT
 201
 251 TTTGGTGGCT TCAGGCACGC CTGATGAACC TGATTTATCC CGGAATGAAC
301 GACATCGCCT CTTGGGTTTT CATCTTGCTC GCCGTCAGCG CGTGGGCCTG
 351 CAAGAGTTTG GTCGCACACT ACGGACAAGA ACGCAtcgtT ACCCTGTTTG
 401
      CCTGGTCGCT GCTTATCGGC TCCCTGCTTC AATCCTGCAT CGTcgtCATC
      CAGTTTGCCG GCTGGGAAAA CACCCCCCTG CTTCAAAACA TCATCGTTCA
 451
      CAGAGGGCAA GGCGTAATCG GACACATCGG GCAGCGCAAC AACCTCGGAC
 501
 551 ACTACCTCAT GTGGGGCATA CTCGCCTCCG CCTACCTCAA CGGACAACGA
 601 AAAATCCCCG CAGCCCTCGG CGCAATCTGC CTGATTATGC AGACCGCCGT
 651 TTTAGGTTTG GTCAATTCGC GCACCATCTT GACCTACATA GCCGCCATCG
 701
      CCCTCATCCT TCCCTTCTGG TATTTCCGTT CGGACAAATC CAACAGACGG
      ACGATGCTCG GCATAGCCGC AGCCGTATTC CTTACCGCGC TGTTCCAATT
     TTCCATGAAC GCCATTCTGG AAACCTTTAC AGGCATCCGC TACGAAACTG
 801
 851 CCGTCGAACG CGTCGCCAAC GGCGGTTTCA CAGACTTGCC GCGCCAAAGC
 901 GAATGGAATA AAGCCCTTGC CGCCTTCCAG TCCGCCCCGA TATTCGGGCA
      CGGCTGGAAC AGTTTTGCCC AACAAACCTT CCTGATCAAT GCCGAACAGC
      ACACCATACA CGACAACTTC CTCAGCACCT TGTTCACCCA TTCCCACAAC
1051 ATCATCCTCC AACTCCTTGC AGAAATGGGG ATCAGCGGCA CGCTTCTGGT
1101 TGCCGCAACC CTGCTGACGG GCATTGCCGG GCTGCTGAAA CGCTCCCTGA
1151 CCCCCGCATC ACTITICCTG CTGTGCGCGC TTGCCGTCAG TATGTGCCAC
1201 AGTATGCTCG AATATCCTTT GTGGTATGTC TATTTCCTCA TCCCCTTCGG
1251 ACTGATGCTC TTTCTGTCCC CCGCAGAGGC TTCAGACGGC ATCGCCTTCA
1301 AAAAAGCCGC CAATCTCGGC ATACTGACCG CCTCCGCCGC CAATCTCCCA
      AAAAAGCCGC CAATCTCGGC ATACTGACCG CCTCCGCCGC CATATTCGCA
1351 GGATTGCTGC ACTTGGACTG GACATACACC CGGCTGGTTA ACTCCTTTTC
1401 CCCCGCCGCT GACGACAGTG CCAAAACCCT CAACCGGAAA ATCAACGAAC
1451 TGCGCTATAT TTCCGCAAAC AGCCCGATGC TGTCCTTTTA TGCCGACTTC
1501 TCCCTCGTAA ACTTCGCCCT GCCGGAATAC CCCGAAACCC AGACTTGGGC
      GGAAGAAGCA ACCCTCAAAG CACTAAAATA CCGCCCCTAC TCCGCCACCT
```

BNSDOCID: <WO___9957280A2_J_>



```
1601 ACCGCATCGC CCTCTACTTG ATGCGGCAAG GCAAAGTTGC AGAAGCAAAA
1651 CAATGGATGC GGGCAACACA GTCCTATTAC CCCTACCTGA TGCCCCGATA
1701 CGCCGACGAA ATCCGCAAAC TGCCCGTATG GGCACCGCTG CTGCCCGAAC
1751 TGCTCAAAGA CTGCAAAGCC TTCGCCGCCG CTCCCGGCCA TCCGGAAACA
1801 AAACCCTGCA AATGA
```

## This corresponds to the amino acid sequence <SEQ ID 2516; ORF 738>: g738.pep

```
MSAETTVSGA RPAAKLPIYI LPCFLWIGII PFTFALRLKP SPDFYHDAAA
     AAGLIVLLFL TAGKKLFDVK IPAISFLLFA MAAFWWLQAR LMNLIYPGMN
 51
101 DIASWVFILL AVSAWACKSL VAHYGQERIV TLFAWSLLIG SLLQSCIVVI
     QFAGWENTPL LQNIIVHRGQ GVIGHIGQRN NLGHYLMWGI LASAYLNGQR
     KIPAALGAIC LIMQTAVLGL VNSRTILTYI AAIALILPFW YFRSDKSNRR
201
     TMLGIAAAVF LTALFQFSMN AILETFTGIR YETAVERVAN GGFTDLPRQS
251
     EWNKALAAFQ SAPIFGHGWN SFAQQTFLIN AEQHTIHDNF LSTLFTHSHN
301
     IILQLLAEMG ISGTLLVAAT LLTGIAGLLK RSLTPASLFL LCALAVSMCH
SMLEYPLWYV YFLIPFGLML FLSPAEASDG IAFKKAANLG ILTASAAIFA
351
401
     GLLHLDWTYT RLVNSFSPAA DDSAKTLNRK INELRYISAN SPMLSFYADF
     SLVNFALPEY PETQTWAEEA TLKALKYRPY SATYRIALYL MRQGKVAEAK
551
     QWMRATQSYY PYLMPRYADE IRKLPVWAPL LPELLKDCKA FAAAPGHPET
601
     KPCK*
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2517>: m738.seq

```
ATGCCCGCTG AAACGACCGT ATCCGGCGCG CACCCCGCCG CCAAACTGCC
   1
  51
      GATTTACATC CTGCCCTGCT TCCTTTGGAT AGGCATCGTC CCCTTTACCT
      TCGCGCTCAA ACTGAAACCG TCGCCCGACT TTTACCACGA TGCCGCCGCC
      GCAGCCGGCC TGATTGTCCT GTTGTTCCTC ACGGCAGGAA AAAAACTGTT
 201
      TGATGTCAAA ATCCCCGCCA TCAGCTTCCT TCTGTTTGCA ATGGCGGCGT
      TTTGGTATCT TCAGGCACGC CTGATGAACC TGATTTACCC CGGTATGAAC
 251
      GACATCGTCT CTTGGATTTT CATCTTGCTC GCCGTCAGCG CGTGGGCCTG
 301
      CCGGAGCTTG GTCGCACACT TCGGACAAGA ACGCATCGTG ACCCTGTTTG
 401 CCTGGTCGCT GCTTATCGGC TCCCTGCTTC AATCCTGCAT CGTCGTCATC
     CAGTTTGCCG GCTGGGAAGA CACCCCTCTG TTTCAAAACA TCATCGTTTA
 4.51
      CAGCGGGCAA GGCGTAATCG GACACATCGG GCAGCGCAAC AACCTCGGAC
 551 ACTACCTCAT GTGGGGCATA CTCGCCGCCG CCTACCTCAA CGGACAACGA
 601 AAAATCCCCG CCGCCCTCGG CGTAATCTGC CTGATTATGC AGACCGCCGT
      TTTAGGTTTG GTCAACTCGC GCACCATCTT GACCTACATA GCCGCCATCG
      CCCTCATCCT TCCCTTCTGG TATTTCCGTT CGGACAAATC CAACAGGCGG
 701
      ACGATGCTCG GCATAGCCGC AGCCGTATTC CTTACCGCGC TGTTCCAATT
 751
      TTCCATGAAC ACCATTCTGG AAACCTTTAC TGGCATCCGC TACGAAACTG
 801
      CCGTCGAACG CGTCGCCAAC GGCGGTTTCA CAGACTTGCC GCGCCAAATC
 851
      GAATGGAATA AAGCCCTTGC CGCCTTCCAG TCCGCCCCGA TATTCGGGCA
 951 CGGCTGGAAC AGTTTTGCCC AACAAACCTT CCTCATCAAT GCCGAACAGC
1001
     ACAACATATA CGACAACCTC CTCAGCAACT TGTTCACCCA TTCCCACAAC
      ATCGTCCTCC AACTCCTTGC AGAGATGGGA ATCAGCGGCA CGCTTCTGGT
1101
      TGCCGCAACC CTGCTGACGG GCATTGCCGG GCTGCTTAAA CGCCCCCTGA
1151 CCCCCGCATC GCTTTTCCTA ATCTGCACGC TTGCCGTCAG TATGTGCCAC
1201 AGTATGCTCG AATATCCTTT GTGGTATGTC TATTTCCTCA TCCCTTTCGG
1251 ACTGATGCTC TTCCTGTCCC CCGCAGAGGC TTCAGACGGC ATCGCCTTCA
     AAAAAGCCGC CAATCTCGGC ATACTGACCG CCTCCGCCGC CATATTCGCA
     GGATTGCTGC ACTTGGACTG GACATACACC CGGCTGGTTA ACGCCTTTTC
1351
1401 CCCCGCCACT GACGACAGTG CCAAAACCCT CAACCGGAAA ATCAACGAGT
1451 TGCGCTATAT TTCCGCAAAC AGTCCGATGC TGTCCTTTTA TGCCGACTTC
1501 TCCCTCGTAA ACTTCGCCCT GCCGGAATAC CCCGAAACCC AGACTTGGGC
1551 GGAAGAAGCA ACCCTCAAAT CACTAAAATA CCGCCCCCAC TCCGCCACCT
     ACCGCATCGC CCTCTACCTG ATGCGGCAAG GCAAAGTTGC AGAAGCAAAA
     CAATGGATGC GGGCGACACA GTCCTATTAC CCGTACCTGA TGCCCCGATA
1651
     CGCCGACGAA ATCCGCAAAC TGCCCGTATG GGCGCCGCTG CTACCCGAAC
1701
     TGCTCAAAGA CTGCAAAGCC TTCGCCGCCG CGCCCGGTCA TCCGGAAGCA
1751
1801 AAACCCTGCA AATGA
```

This corresponds to the amino acid sequence <SEQ ID 2518; ORF 738>: m738.pep

1 MPAETTVSGA HPAAKLPIYI LPCFLWIGIV PFTFALKLKP SPDFYHDAAA

51	AAGLIVLLFL	TAGKKLFDVK	<b>IPAISFLLFA</b>	MAAFWYLQAR	LMNLIYPGMN
101	DIVSWIFILL			TLFAWSLLIG	
151	QFAGWEDTPL	FQNIIVYSGQ	GVIGHIGQRN	NLGHYLMWGI	LAAAYLNGOR
201	KIPAALGVIC	LIMQTAVLGL		AAIALILPFW	YFRSDKSNRR
251	TMLGIAAAVF	LTALFQFSMN	TILETFTGIR	YETAVERVAN	GGFTDLPROI
301	EWNKALAAFQ	SAPIFGHGWN		AEQHNIYDNL	
351	IVLQLLAEMG	ISGTLLVAAT	LLTGIAGLLK		ICTLAVSMCH
401	SMLEYPLWYV	YFLIPFGLML	FLSPAEASDG	IAFKKAANLG	
451	GLLHLDWTYT	RLVNAFSPAT		INELRYISAN	SPMLSFYADF
501	SLVNFALPEY	PETQTWAEEA	TLKSLKYRPH	SATYRIALYL	
551	QWMRATQSYY	PYLMPRYADE	IRKLPVWAPL		FAAAPGHPEA
601	KPCK*				

Computer analysis of the amino acid sequences gave the following results:

Homology with a predicted ORF from N. meningitidis menA with menB

ORF 738 shows 95.0% identity over a 604 aa overlap with a predicted ORF (ORF738.a) from N. gonorrhoeae:

m738/g738

	10	20	30	40	50	60
m738.pep	MPAETTVSGAHPAA	KLPIYILPCF	LWIGIVPFT	FALKLKPSPDI	FYHDAAAAAG	TTVI.I.FI.
	1 111111:11	1111111111	11111:111			1111111
g738	MSAETTVSGARPAA	KLPIYILPCF	LWIGIIPFT	FALRLKPSPDI	FYHDAAAAAG	LIVLLFL
	10	20	30	40	50	60
	70	0.0	• •			
m738.pep	TAGKKLFDVKIPAI	80 SELLEAMA A E	90	100	110	120
m/30.pep		SELLEAMAAE !!!!!!!!!	WILQARLMNI	LITTEGMNDIVS	SWIFILLAVS	AWACRSL
q738	TAGKKLFDVKIPAI	SFLLFAMAAF	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	TTYPOMNETA	:        	1111:11
5	.70	80	90	100	110	120
				100	110	120
	130	140	150	160	170	180
m738.pep	VAHFGQERIVTLFA	WSLLIGSLLQ	SCIVVIQFAC	SWEDTPLFQNI	IVYSGQGVI	GHIGQRN
	- 1 1 <b>1 :</b> 1	111111111			11: 1111	FILLER
g738	VAHYGQERIVTLFA				IVHRGQGVI	GHIGQRN
	130	140	150	160	170	180
	190	200	210			
m738.pep			210	220	230	240
m/30.pep	NLGHYLMWGILAAA	TURGORKIFA	HTGATCTIMC	TAVLGLVNSF	CTILTYIAAI	ALILPFW
q738	NLGHYLMWGILASA	YINGORKTPA	ALGATOLTMO	ווווווווווו		
5.00	190	200	210	220	230	240
				220	230	240
	250	260	270	280	290	300
m738.pep	YFRSDKSNRRTMLG:	IAAAVFLTAL	FQFSMNTILE	TFTGIRYETA	VERVANGGE	TOLPROT
			111111:11	1111111111	11111111	11111
g <b>7</b> 38	YFRSDKSNRRTMLG:	IAAAVFLTAL			VERVANGGF	TDLPRQS
	250	260	270	280	290	300
	310	320	220	242		
m738.pep	EWNKALAAFQSAPII		330	340	350	360
m, so.pep		ililililii	OILTINWEÖN	INTIDNTTSNI	FTHSHNIVL	QLLAEMG
g738	EWNKALAAFQSAPII	FGHGWNSFAO	OTFI.TNAFOH	TTPITTITT	TOUCUMETT.	
<b>5</b>	310	320	330	340	350	360
				0.0	330	300
	370	380	390	400	410	420
m738.pep	ISGTLLVAATLLTG	IAGLLKRPLT	PASLFLICTL	AVSMCHSMLE	YPLWYVYFL	TPECTMI.
			11 1 1 1 1 1 : 1 : 1	1111111111	111111111	E E E E E E E
g738	ISGTLLVAATLLTG	IAGLLKRSLT	PASLFLLCAL	AVSMCHSMLE	YPLWYVYFL	IPFGLML
	370	380	390	400	410	420
	430	440	460			
m738.pep		440	450	460	470	480
w.ac.beb	FLSPAEASDGIAFKE	CARNIGILIA 	JAAIFAGLLH JAAIFAGLLH	LUWTYTRLVN	AFSPATDDS	AKTLNRK
			4 194 1 4 1 4 1 1 1		:	
q738	FLSPAEASDGIAFK	CAANTGTTA	SAATENCITU	יייייניתיתעיתינות די	0000000	

	430	440	450	460	470	480
m738.pep	490	500	510	520	530	540
m/30.pep	INELRYISANSPML	SFIADESLVN	FALPEYPETQ	TWAEEATLKS	LKYRPHSATY	RIALYL
-720				111111111:	11111:111	11111
·g738	INELRYISANSPML	SFYADFSLVN	FALPEYPETQ	TWAEEATLKA	LKYRPYSATY	RIALYL
	490	500	510	520	530	540
	550	560	<b>57</b> 0	580	590	600
m738.pep	MRQGKVAEAKQWMR	ATQSYYPYLM	PRYADEIRKI.	PVWAPI.T.PET.	T.KDCKAFAAA	DCHDEN
	- 111111111111111	HILLIII	111111111		LILLILLI	
q738	MRQGKVAEAKQWMR	ATOSYYPYLM	PRVANETOKI	HILLIIIIII DVWXDIID <del>D</del> T	[	:
9.00	550	560				
	550	360	570	580	590	600
m738.pep	крскх					
m, se. beb						
720			•			
g738	KPCKX					

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2519>: a738.seq

```
ATGCCCGCTG AAACGACCGT ATCCGGCGCG CACCCCGCCG CCAAACTGCC
      GATTTACATC CTGCCCTGCT TCCTTTGGAT AGGCATCGTC CCCTTTACCT
      TTGCGCTCAG GCTGCAACCG TCGCCCGACT TTTACCACGA TGCCGCCGCC
 101
      GCAGCCGGCC TGATTGTCCT GTTGTTCCTC ACGGCAGGAA AAAAGCTGTT
      TGATGTCAAA ATCCCACCTA TCAGCTTCCT TCTGTTTGCA ATGGCGGCGT
 201
      TTTGGTATCT TCAGGCACGC CTGATGAACC TGATTTACCC CGGTATGAAC
 251
      GACATCGTCT CTTGGATTTT CATCTTACTC GCCGTCAGCG CGTGGGCCTG
      CCGGAGCTTG GTCGCACACT ACGGACAAGA ACGCATCGTT ACCCTGTTTG
 351
 401
      CCTGGTCGCT GCTTATCGGC TCCCTGCTTC AATCCTGCAT CGTCGTCATC
      CAGTTTGCCG GCTGGGAAGA CACCCCTCTG TTTCAAAACA TCATTGTTTA
 451
      CAGCGGGCAA GGCGTAATCG GACACATCGG ACAGCGCAAC AACCTCGGAC
 501
 551
      ACTACCTCAT GTGGGGCATA CTCGCCGCCG CCTACCTCAA CGGACAACGA
      AAAATCCCGC CCGCCTTGGG TGCAATCTGC CTGATTATGC AGACCGCCGT
 601
      TTTAGGTTTG GTCAATTCGC GCACCATCTT GACCTACATA GCCGCCATCG
 651
      CCCTCATCCT TCCCTTCTGG TATTTCCGTT CGGACAAATC CAACAGGCGG
 701
      ACGATACTCG GCATAGCCGC AGCCGTATTC CTTACCGCGC TGTTCCAATT
 751
 801
      TTCCATGAAC ACCATTCTGG AAACCTTTAC CGGCATCCGC TACGAAACCG
      CCGTCGAACG CGTCGCCAAC GGCGGTTTCA CAGACCTGCC GCGCCAAATC
 851
 901
      GAATGGCGCA AAGCCCTCGC CGCCTTCCAG TCCGCCCCGA TATTCGGGCA
      CGGCTGGAAC AGTTTTGCCC AACAAACCTT CCTCATCAAT GCCGAACAGC
 951
      ACAACATACA CGACAACCTC CTCAGCAACT TGTTCACCCA TTCCCACAAC
      ATCGTTCTCC AACTCCTTGC AGAGATGGGG ATCAGCGGCA CGCTTCTGGT
1051
1101
      TGCCGCAACC CTGCTGACGG GCATTGCCGG GCTGCTGAAA CGCCCCCTGA
      CCCCCGCATC GCTTTTCCTG ATCTGCACAC TTGCCGTCAG TATGTGCCAC
1151
1201 AGTATGCTCG AATATCCTTT GTGGTATGTC TATTTCCTCA TCCCCTTCGG
1251 ACTGATGCTC TTTCTGTCCC CCGCAGAGGC TTCAGACGGC ATCGCCTTCA
1301 AAAAAGCCGC CAATCTCGGC ATACTAACCG CCTCCGCCGC CATATTCGCA
1351 GGATTGCTGC ACTTGGACTG GACATACACC CGGATGGTTA ACGCCTTTTC
1401
      CCCCGCCACT GACGACAGTG CCAAAACCCT CAACCGGAAA ATCAACGAGT
      TGCGCTATAT TTCCGCAAAC AGTCCGATGC TGTCCTTTTA TGCCGACTTC
1451
      TCCCTCGTAA ACTTCGCCCT GCCGGAATAC CCCGAAACCC AGACTTGGGC
1501
1551 GGAAGAAGCA ACCCTCAAAT CACTAAAATA CCGCCCCCAC TCCGCCACCT
1601 ACCGCATCGC CCTCTACCTG ATGCGGCAAG GCAAAGTTGC AGAAGCAAAA
1651
     CAATGGATGC GGGCGACACA GTCCTATTAC CCCTACCTGA TGCCCCGATA
      CGCCGACGAA ATCCGCAAAC TGCCCGTATG GGCGCCGCTG CTACCCGAAC
     TGCTCAAAGA CTGCAAAGCC TTCGCCGCCG CGCCCGGTCA TCCGGAAGCA
1751
1801 AAACCCTGCA AATGA
```

## This corresponds to the amino acid sequence <SEQ ID 2520; ORF 738.a>: a738.pep

1	MPAETTVSGA	HPAAKT.PTYT	T.PCTI WICTU	DESTRATOR	0.00.000.000.00
			TI CETMIGIA	FLILATERTOL	SPDFYHDAAA
51	AAGLIVLLFL	TAGKKLEDVK	TPDTCTTTA	MA A ETALL CAR	7 3 27 - 12 - 12
			TITIOFULE	THAT WILLOAR	TMNTTALEMN
101	DIVSWIFILL	AVSAWACRST.	VAHVCOPRTU	THE PASSOT T. TO	
		TIT DITHE TOTAL	ATMIT G OF KIA	THEWASTITE	SLLOSCIVVI
151	<b>OFAGWEDTPL</b>	FONTTUYSCO	CVICUICODN	NIT CITIZE NETTON	
	<u>F-11-011-11-11-11-11-11-11-11-11-11-11-11</u>	- 5 L T O O O	GATGUIGOKN	NLGHT1:MW(3)	I.AAAVI.NGOD

201 251 301 351 401 451 501 551 601	KIPPALGAIC LIMOTAVLGL VNSRTILTYI AAIALILPFW YFRSDKSNRR TILGIAAAVF LTALFQFSMN TILETFTGIR YETAVERVAN GGFTDLPRQI EWRKALAAFQ SAPIFGHGMN SFAQQTFLIN AEQHNIHDNL LSNLFTHSHN IVLQLLAEMG ISGTLLVAAT LLTGIAGLLK RPLTPASLFL ICTLAVSMCH SMLEYPLWYV YFLIPFGLML FLSPAEASDG IAFKKAANLG ILTASAAIFA GLLHLDWTYT RMVNAFSPAT DDSAKTLNRK INELRYISAN SPMLSFYADF SLVNFALPEY PETQTWAEEA TLKSLKYRPH SATYRIALYL MRQGKVAEAK QWMRATQSYY PYLMPRYADE IRKLPVWAPL LPELLKDCKA FAAAPGHPEA
a738/m738	98.3% identity in 604 aa overlap
a738.pep	10 20 30 40 50 60 MPAETTVSGAHPAAKLPIYILPCFLWIGIVPFTFALRLQPSPDFYHDAAAAAGLIVLLFI
m738	MPAETTVSGAHPAAKLPIYILPCFLWIGIVPFTFALKLKPSPDFYHDAAAAAGLIVLLFL 10 20 30 40 50 60
a738.pep	70 80 90 100 110 120 TAGKKLFDVKIPPISFLLFAMAAFWYLQARLMNLIYPGMNDIVSWIFILLAVSAWACRSL
m738	
a738.pep	130 140 150 160 170 180 VAHYGQERIVTLFAWSLLIGSLLQSCIVVIQFAGWEDTPLFQNIIVYSGQGVIGHIGQRN
m738	:
a738.pep	190 200 210 220 230 240 NLGHYLMWGILAAAYLNGQRKIPPALGAICLIMQTAVLGLVNSRTILTYIAAIALILPFW
m738	NLGHYLMWGILAAAYLNGQRKIPAALGVICLIMQTAVLGLVNSRTILTYIAAIALILPFW 190 200 210 220 230 240
a738.pep	250 260 270 280 290 300 YFRSDKSNRRTILGIAAAVFLTALFQFSMNTILETFTGIRYETAVERVANGGFTDLPRQI
m738	
a738.pep	310 320 330 340 350 360 EWRKALAAFQSAPIFGHGWNSFAQQTFLINAEQHNIHDNLLSNLFTHSHNIVLQLLAEMG
m738	
a738.pep	370 380 390 400 410 420 ISGTLLVAATLLTGIAGLLKRPLTPASLFLICTLAVSMCHSMLEYPLWYVYFLIPFGLML
m738	
a738.pep	430 440 450 460 470 480 FLSPAEASDGIAFKKAANLGILTASAAIFAGLLHLDWTYTRMVNAFSPATDDSAKTLNRK
m738	
a738.pep	490 500 510 520 530 540 INELRYISANSPMLSFYADFSLVNFALPEYPETQTWAEEATLKSLKYRPHSATYRIALYL
m738	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII



a738.pep	550	560	570	580	590	600
	MRQGKVAEAKQWMF	VATQSYYPYLM	IPRYADEIRKI	PVWAPLLPEI	LKDCKAFAA	APGHPEA
m738	MRQGKVAEAKQWMF	ATOSYYPYLM	PRYADEIRKI	PVWAPLLPEL	LKDCKAFAAA	APGHPEA
	550	560	570	580	590	600
a738.pep	KPCKX       KPCKX					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2521>: g739.seq

```
1 ATGGCAAAAA AACCGAACAA ACCCTTCAGG CTGACCCCCA AACTCCTGAT
51 ACGCGCCGTA TTGCTCATCT GTATCACCGC CATCGGCGCA TTGGCAGTAG
101 GCATCGTCAG CACATTCAAC CCGAACGGCG ACAAAACCCT CCAAACCGAA
151 CCGCAACACA CCGACAGCCC CCGCGAAACC GAATTCTGGC TGCCAAACGG
201 CGCCGTCGGA CAAGATGCCG CCCAACCCGA ACACCACCAC GCCGCCTCAT
251 CCGAACCCGC ACAGCCGGAC GGCACAGAAG AAAGCGGCAG CGGACTGCCG
301 TCCCCTGCCG CACCCAAGAA AAACCGGGTC AAACCGCGCC CTTCGGATGC
351 GGCCCGGGCA GCCGATTCGT TAACCGGCAC CGGAACACAA GCTGAAAACA
401 CACTCAAAGA AACCCCCGTA CTGCCCACAA ACGCCCCCCA TCCCGAACCC
451 CGAAAAGAAA CACCCCGAAAA ACAGGCGCAG CCCAAAGAAA CACCCAAAGA
501 AAAAGAAACG CCCCAAAGAAA ACCATACCAA ACCGGACACC CCGAAAAACA
551 CGCCGGCCAA ACCCCCATAAA GAGATTCTCG ACAACCTCTT TTGA
```

This corresponds to the amino acid sequence <SEQ ID 2522; ORF 739>: g739.pep

- 1 MAKKPNKPFR LTPKLLIRAV LLICITAIGA LAVGIVSTFN PNGDKTLQTE
- 51 PQHTDSPRET EFWLPNGAVG QDAAQPEHHH AASSEPAQPD GTEESGSGLP 101 SPAAPKKNRV KPRPSDAARA ADSLTGTGTQ AENTLKETPV LPTNAPHPEP
- 151 RKETPEKQAQ PKETPKEKET PKENHTKPDT PKNTPAKPHK EILDNLF*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2523>: m739.seq

```
1 ATGGCAAAAA AACCGAACAA ACCCTTCAGG CTGACCCCCA AACTCCTGAT
51 ACGCGCCGTA TTGCTCATCT GTATCGCCGC CATCGGCGCA TTGGCAATAG
101 GCATCGTCAG CACATTCAAC CCGAACGGCG ACAAAACCCT TCAAGCCGAA
151 CCGCAACACA CCGACAGCCC CCGCGAAACC GAATTCTGGC TGCCAAACGG
201 CGTAGTCGGA CAAGATGCCG CCCAACCCGA ACACCACCAC GCCGCTCAT
251 CCGAACCCGC ACAGCCGAC GGCACAGACG AAACCGGCAG CGGACTGCCG
301 TCCCCTGCCG CACCCAAGAA AAACCGGGTC AAACCGCAAC CTGCCGACAC
351 AGCTCAAACC GACAGACG CGGACGACG CGGAACACAA GCTGAAAACA
401 CACTCAAAGA AACCCCCGTA CTGCCCACAA ACGTCCCCG TCCCGAACCC
451 CGAAAAGAAA CACCCCGAAAA ACAGGCGCAG CCCAAAGAAA CGCCCAAAGAA
501 AAACCATACC AAACCGGACA CCCCGAAAAA CACGCCGCCC AAACCCCATA
```

This corresponds to the amino acid sequence <SEQ ID 2524; ORF 739>: m739.pep

- 1 MAKKPNKPFR LTPKLLIRAV LLICIAAIGA LAIGIVSTFN PNGDKTLQAE 51 PQHTDSPRET EFWLPNGVVG QDAAQPEHHH AASSEPAQPD GTDESGSGLP
- 101 SPAAPKKNRV KPQPADTAQT DRQPDDAGTQ AENTLKETPV LPTNVPRPEP
- 151 RKETPEKQAQ PKETPKENHT KPDTPKNTPP KPHKEILDKL F

Computer analysis of the amino acid sequences gave the following results:

Homology with a predicted ORF from N. meningitidis menA with menB

ORF 739 shows 86.3% identity over a 197 aa overlap with a predicted ORF (ORF739.a) from N. gonorrhoeae:

m739/g739

	•
	10 20 30 40 50 60
m739.pep	MAKKPNKPFRLTPKLLIRAVLLICIAAIGALAIGIVSTFNPNGDKTLQAEPQHTDSPRET
700	
g739	MAKKPNKPFRLTPKLLIRAVLLICITAIGALAVGIVSTFNPNGDKTLQTEPQHTDSPRET
	. 10 20 30 40 50 60
	70
-720	70 80 90 100 110 120
m739.pep	EFWLPNGVVGQDAAQPEHHHAASSEPAQPDGTDESGSGLPSPAAPKKNRVKPQPADTAQT
-720	[
g739	EFWLPNGAVGQDAAQPEHHHAASSEPAQPDGTEESGSGLPSPAAPKKNRVKPRPSDAARA
	70 80 90 100 110 120
	130 140 150 160 170
m739.pep	130 140 150 160 170 DRQPDDAGTQAENTLKETPVLPTNVPRPEPRKETPEKQAQPKETPKENHTKPDT
m.ss.pcp	• • • • • • • • • • • • • • • • • • • •
g739	ADSLTGTGTQAENTLKETPVLPTNAPHPEPRKETPEKQAQPKETPKEKETPKENHTKPDT
9.00	120 140 150 440
	130 140 150 160 170 180
	180 190
m739.pep	PKNTPPKPHKEILDKLF
	11111 11111111:11
g739	PKNTPAKPHKEILDNLFX
	190
The followin	g partial DNA sequence was identified in N. meningitidis <seq 2525="" id="">:</seq>
a739.se	eq
	1 ATGGCAAAAA AACCGAACAA ACCCTTCAGG CTGACCCCCA AACTCCTGAT
!	51 ACGCGCCGTA TTGCTCATCT GTATCACCGC CATCGGCGCA TTGGCAATAG
10	01 GCATCGTCAG CACATTCAAC CCGAACGGCG ACAAAACCCT CCAAACCGAA
15	51 CCGCAACACA CCGACAGCCC CCGCGAAACC GAATTCTGGC TGCCAAACGG
20	01 CGTAGTCGGA CAAGATGCCG CCCAACCCGA ACACCACCAC GCCTCCTCAT
25	51 CCGCACCCGC ACAGCCGGAC GGCACAGACG AAAGCGGCAG CGGACTGCCG
30	01 TCCCCTGCCG CACCCAAGAA AAACCGGGTC AAACCGCAAC CTGCCGACAC
35	51 AGCTCAAACC GACAGGCAGC CGGACGACGC CGGAGCACAA GCTGAAAACA
40	Ol CACTCAAAGA AACCCCCGTA CTGCCCACAA ACGTCCCCCG TCCCGAACCC
45	51 CGAAAAGAAA CACCCGAAAA ACAGGCACAG CCCAAAGAAA CACCCAAAGA
50	Ol AAAAGAAACG CCCAAAGAAA ACCATACCAA ACCGGACACC CCGAAAACA
55	51 CGCCGCCTAA ACCCCATAAA GAAATTCTCG ACAACCTCTT CTGA
This correspond	onds to the amino acid sequence <seq 2526;="" 739.a="" id="" orf="">:</seq>
a739.pe	ep
_	1 MAKKPNKPFR LTPKLLIRAV LLICITAIGA LAIGIVSTEN PNGDKTLOTE
	D1 PQHTDSPRET EFWLPNGVVG QDAAOPEHHH ASSSAPAOPD GTDESGSGLP
10	Ol SPAAPKKNRV KPQPADTAQT DROPDDAGAO AENTLKETPV LPTNVPRPED
15	RKETPEKQAQ PKETPKEKET PKENHTKPDT PKNTPPKPHK EILDNLF*
a739/m7	739 93.9% identity in 197 aa overlap
===	10 20 30 40 50 60
a739.pe	
m739	MAKKPNKPFRLTPKLLIRAVLLICIAAIGALAIGIVSTFNPNGDKTLQAEPQHTDSPRET
	10 20 30 40 50 60
	70
a739.pe	70 80 90 100 110 120
a/39.pe	
m739	FEWL PNGWGODA A OPENHA A SCHOOL OPPOSITE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STAT
m/J9	EFWLPNGVVGQDAAQPEHHAASSEPAQPDGTDESGSGLPSPAAPKKNRVKPQPADTAQT
	70 80 90 100 110 120
	130 140 150 160 170 180
a739.pe	
pc	
m739	DRQPDDAGTQAENTLKETPVLPTNVPRPEPRKETPEKQAQPKETPKENHTKPDT
	130 140 150 160 170

190 a739.pep PKNTPPKPHKEILDNLFX m739 PKNTPPKPHKEILDKLF 180 190 The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2527>: g740.seq ATGTCCCGAA ACCTGCTTGT CCGCTGGCTC GCCGTCTGCC TCATCCCCTT 51 GGCGACGCTT GCCGTTTTCG CCGCCAATCC GCCCGAAGAC AAACCCCAGC ATCTGATCAA CGGCATCATC CTTGCCTGCG AAGCGACGTT TTTGTTTAAA 101 151 ttcgtgctCT TTGAAACCAT CAAGCATCAT CTTAaacaag gGTTTGATTT 201 GAAACGtcaa ACCATGTTTC TGTTTATTCC GATTGTTTTG CTGGTTGTGT 251 ATTTGTTCCA CTATTTCGGC GCGTTTTag This corresponds to the amino acid sequence <SEQ ID 2528; ORF 740.ng>: MSRNLLVRWL AVCLIPLATL AVFAANPPED KPOHLINGII LACEATFLFK FVLFETIKHH LKQGFDLKRQ TMFLFIPIVL LVVYLFHYFG AF* 51 The following partial DNA sequence was identified in N. meningitidis <SEO ID 2529>: m740.seq ATGTCCCGAA ACCTGCTTGT CCGCTGGCTT GCCGTCTGCC TCATCCCGTT 1 51 GGCGACGCTT GCCGTTTTCG CCGCCAATCC GCCCGAAGAC AAACTCCAGC ATCTGATCAA CGGCATCATC CTTGCCTGCG AAGCGACGTT TTTGTTTAAA 101 TTCGTCCTTT TCGACACCAT CAAGCATCAT TTGAAACAAG AGTTTGATTT 151 GAAACGTCAA ACTATGTTGC TGTTTATTCC GATTATTTTG CTGATTGTGT 251 ATTTGTTCCA CTATTTTGGC GCGTTTTAG This corresponds to the amino acid sequence <SEQ ID 2530; ORF 740>; m740.pep MSRNLLVRWL AVCLIPLATL AVFAANPPED KLOHLINGII LACEATFLFK 51 FVLFDTIKHH LKQEFDLKRQ TMLLFIPIIL LIVYLFHYFG AF* m740/g740 93.5% identity in 92 aa overlap 10 20 30 40 50 m740.pep MSRNLLVRWLAVCLIPLATLAVFAANPPEDKLQHLINGIILACEATFLFKFVLFDTIKHH MSRNLLVRWLAVCLIPLATLAVFAANPPEDKPQHLINGIILACEATFLFKFVLFETIKHH a740 20 30 40 50 70 80 m740.pep LKQEFDLKRQTMLLFIPIILLIVYLFHYFGAFX 111 1111111:1111:11:11:11111111111 g740 LKQGFDLKRQTMFLFIPIVLLVVYLFHYFGAFX 70 80 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2531>: a740.seq ATGTCCCGAA ACCTGCTTGT CCGCTGGCTT GTCGTCTGCC TGATACCCTT 1 GGCGACGCTT GCCGTTTTCG CCGCCAATCC GCCCGAAGAC AAACCCCAGC 51 ATCTGATTAA CGGCATCATC CTTGCCTGCG AAGCGACGTT TTTGTTCAAA 101 151 TTCGTCCTTT TCGACACCAT CAAGCATCAT TTGAAACAAG AGTTTGATTT GAAACGTCAA ACTATGTTGC TGTTTATTCC GATTATTTTG CTGATTGTGT 201 251 ATTTGTTCCA CTATTTTGGC GCGTTTTAG This corresponds to the amino acid sequence <SEQ ID 2532; ORF 740.a>: a740.pep MSRNLLVRWL VVCLIPLATL AVFAANPPED KPQHLINGII LACEATFLFK FVLFDTIKHH LKQEFDLKRQ TMLLFIPIIL LIVYLFHYFG AF* 51 **a740/m740** 97.8% identity in 92 aa overlap 10 20 30 40 50 60

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2533>:

```
g741.seg
         GTGAACCGAA CTACCTTCTG CTGCCTTTCT TTGACCGCCG GCCCTGATTC
         TGACCGCCTG CAGCAGCGGA GGGGCGGAGG CGGTGGTGTC GCCGCCGACA
     51
         TCGGCACGGG GCTTGCCGAT GCATTAACCG CGCCGCTCGA CCATAAAGAC
    101
         AAAGGTTTGA AATCCCTAAC ATTGGAAGCC TCCATTCCCC AAAACGGAAC
    1.51
    201
         ACTGACCCTG TCGGCACAAG GTGCGGAAAA AACTTTCAAA GCCGGCGGCA
         AAGACAACAG CCTCAACACG GGCAAACTGA AGAACGACAA AATCAGCCGC
    251
         TTCGACTTCG TGCAAAAAAT CGAAGTGGAC GGACAAACCA TCACACTGGC
    301
        AAGCGGCGAA TTTCAAATAT ACAAACAGGA TCACTCCGCC gtcgtTgcCC
    351
         TacgGATTGA AAAAATCAAC AACCCCGACA AAATCGACAG CCTGATAAAC
    401
         CAACGCTCCT TCCTTGTCAG CGATTTGGGC GGAGAACATA CCGCCTTCAA
    451
         CCAACTGCCT GACGGCAAAG CCGAGTATCA CGGCAAAGCA TTCAGCTCCG
    501
         ACGATGCCGA CGGAAAACTG ACCTATACCA TAGATTTCGC CGCCAAACAG
    551
    601
         GGACACGGCA AAATCGAACA CCTGAAAACA CCCGAGCAGA ATGTTGAGCT
         TGCCTCCGCC GAACTCAAAG CAGATGAAAA ATCACACGCC GTCATTTTGG
         GCGACACGCG CTACGGCGGC GAAGAGAAAG GCACTTACCG CCTCGCCCTT
    701
         TTCGGCGACC GCGCCCAAGA AATCGCTGGC TCGGCAACCG TGAAGATAGG
    751
         GGAAAAGGTT CACGAAATCG GCATCGCCGA CAAACAGTAG
```

### This corresponds to the amino acid sequence <SEQ ID 2534; ORF 741.ng>:

```
g741.pep

1 VNRTTFCCLS LTAGPDSDRL QQRRGGGGV AADIGTGLAD ALTAPLDHKD
51 KGLKSLTLEA SIPQNGTLTL SAQGAEKTFK AGGKDNSLNT GKLKNDKISR
101 FDFVQKIEVD GQTITLASGE FQIYKQDHSA VVALRIEKIN NPDKIDSLIN
151 QRSFLVSDLG GEHTAFNQLP DGKAEYHGKA FSSDDADGKL TYTIDFAAKQ
201 GHGKIEHLKT PEQNVELASA ELKADEKSHA VILGDTRYGG EEKGTYRLAL
251 FGDRAQEIAG SATVKIGEKV HEIGIADKQ*
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2535>:

```
m741.seq
          GTGAATCGAA CTGCCTTCTG CTGCCTTTCT CTGACCACTG CCCTGATTCT
      51
         GACCGCCTGC AGCAGCGGAG GGGGTGGTGT CGCCGCCGAC ATCGGTGCGG
         GGCTTGCCGA TGCACTAACC GCACCGCTCG ACCATAAAGA CAAAGGTTTG
     101
         CAGTCTTTGA CGCTGGATCA GTCCGTCAGG AAAAACGAGA AACTGAAGCT
         GGCGGCACAA GGTGCGGAAA AAACTTATGG AAACGGTGAC AGCCTCAATA
     201
          CGGGCAAATT GAAGAACGAC AAGGTCAGCC GTTTCGACTT TATCCGCCAA
     251
         ATCGAAGTGG ACGGGCAGCT CATTACCTTG GAGAGTGGAG AGTTCCAAGT
     301
         ATACAAACAA AGCCATTCCG CCTTAACCGC CTTTCAGACC GAGCAAATAC
     351
     401 AAGATTCGGA GCATTCCGGG AAGATGGTTG CGAAACGCCA GTTCAGAATC
         GGCGACATAG CGGGCGAACA TACATCTTTT GACAAGCTTC CCGAAGGCGG
     451
     501
         CAGGGCGACA TATCGCGGGA CGGCGTTCGG TTCAGACGAT GCCGGCGGAA
         AACTGACCTA CACCATAGAT TTCGCCGCCA AGCAGGGAAA CGGCAAAATC
         GAACATTTGA AATCGCCAGA ACTCAATGTC GACCTGGCCG CCGCCGATAT
     601
         CAAGCCGGAT GGAAAACGCC ATGCCGTCAT CAGCGGTTCC GTCCTTTACA
     651
         ACCAAGCCGA GAAAGGCAGT TACTCCCTCG GTATCTTTGG CGGAAAAGCC
     751 CAGGAAGTTG CCGGCAGCGC GGAAGTGAAA ACCGTAAACG GCATACGCCA
         TATCGGCCTT GCCGCCAAGC AATAA
```

## This corresponds to the amino acid sequence <SEQ ID 2536; ORF 741>: m741.pep

```
1 VNRTAFCCLS LTTALILTAC SSGGGGVAAD IGAGLADALT APLDHKDKGL
51 QSLTLDQSVR KNEKLKLAAQ GAEKTYGNGD SLNTGKLKND KVSRFDFIRQ
101 IEVDGQLITL ESGEFQVYKQ SHSALTAFQT EQIQDSEHSG KMVAKRQFRI
```

BNSDOCID: <WO___9957280A2_I_>

, p. 8. raki ji dak biraktaka

```
151 GDIAGEHTSF DKLPEGGRAT YRGTAFGSDD AGGKLTYTID FAAKQGNGKI
              EHLKSPELNV DLAAADIKPD GKRHAVISGS VLYNQAEKGS YSLGIFGGKA
               QEVAGSAEVK TVNGIRHIGL AAKQ*
m741/g741 61.4% identity in 280 aa overlap
                         10
                                      20
                                                         40
                                                                  50
                  VNRTAFCCLSLTT---ALILTACSSGGGGVAADIGAGLADALTAPLDHKDKGLQSLTLDQ
     m741.pep
                  q741
                  VNRTTFCCLSLTAGPDSDRLQQRRGGGGGVAADIGTGLADALTAPLDHKDKGLKSLTLEA
                                   20
                                            30
                                                      40
                   60
                                         80
                                                  90
                                                           100
                                                                    110
                  SVRKNEKLKLAAQGAEKTY---GNGDSLNTGKLKNDKVSRFDFIRQIEVDGQLITLESGE
     m741.pep
                  1: :1 | 1:11111111: | 1: :111111111111::111111 | 111 | 111
                  SIPQNGTLTLSAQGAEKTFKAGGKDNSLNTGKLKNDKISRFDFVQKIEVDGQTITLASGE
     a741
                                   80
                                            90
                                                     100
                    120
                              130
                                       140
                                                 150
                                                          160
                                                                    170
                  FQVYKQSHSALTAFQTEQIQDSEHSGKMVAKRQFRIGDIAGEHTSFDKLPEGGRATYRGT
     m741.pep
                  {\tt FQIYKQDHSAVVALRIEKINNPDKIDSLINQRSFLVSDLGGEHTAFNQLPDG-KAEYHGK}
     g741
                                  140
                                           150
                                                              170
                    180
                              190
                                       200
                                                 210
                                                          220
                 AFGSDDAGGKLTYTIDFAAKQGNGKIEHLKSPELNVDLAAADIKPDGKRHAVISGSVLYN
     m741.pep
                  AFSSDDADGKLTYTIDFAAKQGHGKIEHLKTPEQNVELASAELKADEKSHAVILGDTRYG
     a741
                         190
                                  200
                                            210
                                                     220
                    240
                              250
                                       260
                                                 270
                 QAEKGSYSLGIFGGKAQEVAGSAEVKTVNGIRHIGLAAKQX
     m741.pep
                   GEEKGTYRLALFGDRAQEIAGSATVKIGEKVHEIGIADKQX
     q741
               240
                         250
                                  260
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2537>:
     a741.seq
              GTGAACCGAA CTGCCTTCTG CTGCCTTTCT TTGACCGCCG CCCTGATTCT
           1
              GACCGCCTGC AGCAGCGGAG GCGGCGGTGT CGCCGCCGAC ATCGGCGCGG
           51
              TGCTTGCCGA TGCACTAACC GCACCGCTCG ACCATAAAGA CAAAAGTTTG
          151 CAGTCTTTGA CGCTGGATCA GTCCGTCAGG AAAAACGAGA AACTGAAGCT
              GGCGGCACAA GGTGCGGAAA AAACTTATGG AAACGGCGAC AGCCTCAATA
          251 CGGGCAAATT GAAGAACGAC AAGGTCAGCC GCTTCGACTT TATCCGTCAA
301 ATCGAAGTGG ACGGGCAGCT CATTACCTTG GAGAGCGGAG AGTTCCAAGT
             GTACAAACAA AGCCATTCCG CCTTAACCGC CCTTCAGACC GAGCAAGTAC
          401 AAGATTCGGA GCATTCAGGG AAGATGGTTG CGAAACGCCA GTTCAGAATC
          451 GGCGATATAG CGGGTGAACA TACATCTTTT GACAAGCTTC CCGAAGGCGG
              CAGGGCGACA TATCGCGGGA CGGCATTCGG TTCAGACGAT GCCAGTGGAA
         551 AACTGACCTA CACCATAGAT TTCGCCGCCA AGCAGGGACA CGGCAAAATC
         601 GAACATTTGA AATCGCCAGA ACTCAATGTT GACCTGGCCG CCTCCGATAT
          651 CAAGCCGGAT AAAAAACGCC ATGCCGTCAT CAGCGGTTCC GTCCTTTACA
         701 ACCAAGCCGA GAAAGGCAGT TACTCTCTAG GCATCTTTGG CGGGCAAGCC
          751
              CAGGAAGTTG CCGGCAGCGC AGAAGTGGAA ACCGCAAACG GCATACGCCA
              TATCGGTCTT GCCGCCAAGC AGTAA
This corresponds to the amino acid sequence <SEQ ID 2538; ORF 741.a>:
    a741.pep
              VNRTAFCCLS LTAALILTAC SSGGGGVAAD IGAVLADALT APLDHKDKSL
              QSLTLDQSVR KNEKLKLAAQ GAEKTYGNGD SLNTGKLKND KVSRFDFIRQ
              IEVDGQLITL ESGEFQVYKQ SHSALTALQT EQVQDSEHSG KMVAKRQFRI
         151 GDIAGEHTSF DKLPEGGRAT YRGTAFGSDD ASGKLTYTID FAAKQGHGKI
         201 EHLKSPELNV DLAASDIKPD KKRHAVISGS VLYNQAEKGS YSLGIFGGQA
              QEVAGSAEVE TANGIRHIGL AAKQ*
```

a741/m741 95.6% identity in 274 aa overlap

a741.pep	10 VNRTAFCCLSLTAA	20 LILTACSSGO	30 GGVAADIGAV		50 OHKDKSLQSLT	
m741	VNRTAFCCLSLTTA	LILTACSSGO	GGVAADTGAG	11111111111 1.192 <b>4.1202.</b> 13	HKDKCI OGI.	
	10	20	30	40	50	60
	70	80	90	100	110	120
a741.pep	KNEKLKLAAQGAEK	TYGNGDSLNT	GKLKNDKVSR	REDEIROIEVE	GOLITLESGE	EFOVYKO
		11111111		11111111111	111111111	
m741	KNEKLKLAAQGAEK	TYGNGDSLNT	GKLKNDKVSR	RFDFIRQIEVE	GQLITLESGE	FQVYKO
	70	80	90	100	110	120
	4.0.0					
-741	130	140	150	160	170	180
a741.pep	SHSALTALQTEQVQ	DSEHSGKMVA	KRQFRIGDIA	GEHTSFDKLP	EGGRATYRGI	AFGSDD
m741	:  :  :		11111111			11111
111/41	SHSALTAFQTEQIQ	DSERSGRMVA				
	130	140	150	160	170	180
	190	200	210	200		
a741.pep				220	230	240
а латрер	ASGKLTYTIDFAAK			:      III		
m741	AGGKLTYTIDFAAK				711100011111	
	190	200	210	ADIRPDGARA 220	AVISGSVLYN 230	
		200	210	220	230	240
	250	260	270			
a741.pep	YSLGIFGGQAQEVA	GSAEVETANG		х		
m741	YSLGIFGGKAQEVA					
	250	260	270			

g742.seq not found yet

g742.pep not found yet

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2539>: m742.seq

2.seq					
1	ATGGTTTACG	GCATTGCCGA	AGCCGATGCG	GGCGACAGCA	GTGTGCTTAC
51	TTTGGGCGGC		AGAGTAGGGA		TTTTCGGGCA
101	TTATTTTGCC	CTGTGAAAAT	CAGAAAACTG	CCCCGTTCAG	TTCAACGCCT
151	GCCTGCAACC	GGCCTTTGCA	ACTGCCGCGC	AACACTTATT	TGGGGGAGGA
201	TTGGTCGCGG	TTAAGTGCCG	ACAAATACAA	CCTTTTCTCA	GGATTCAAAC
251	ATGTGTTTGA	CAACGGTTGG	CAGCTCAATG	CCGAAGTGTC	TTATACCAAG
301	AATGAATCCG	ATGCGAAGGT	GGGGCAGTTT	TTTCTGAAAA	ACGAATATGC
351	GGCGGGTTTG	TCGGGTGAGG	ATGCGGTAGG	CTTTTTGACT	GAAAAAAACG
401	AAGTCATCCC	GTTCGAGCCG	AAAGATAAGG	CATTGGAGAA	ACTGAAAGCA
451	TATCGTGATG	AAACCGCCAA	GGAATACCGG	GAGCGCAAAG	ACGATTTTGT
501	TAAAAACCGT	TTCGATAATA	CTGCTTTCGA	ACAGTATCGC	AGCCGCCGTG
551	CCGCAGAACG	CAAAGCCGGT	TTTGACAAGT	GTATGAGTGA	CCCTTTCGCG
601	CTGGACTTTA	TCTGTCAAGG	TTCTTGGGGG	GATCCGGGCG	TTGATGCCGA
651	CAAGGCGGAA	TTTGTCGATA	AAGCCCTTGC	GAAGGAGGC	ATCTTTAATA
701	ATGCGGCACA	ACGTTTTCCA	AACAGCCTGT	ATGACTCTTC	CTTTAATCGG
751	AAGGCTACCG	CCAACCGACG	ATACAGTTAT	ATGCCGTTGC	GGCATACCAA
801	AGACGACCGC	CAATGGGGAA	TTAAACTTGA	CCTGACCGGC	ACATATGGGC
851	TGTTCGGGCG	GGAGCATGAT	TTCTTTGTCG	GCTATGCCTA	CGGTGATGAA
901	AAGATACGTT	CGGAATATCT	AGAAATCTAC	GAACGCCGCT	ACAGAGTACG
951	TCCGAATACG	GGGGCAACGC	ACGGCGTGTA	TGCGGGAAGT	TGTCAGGAGG
1001	AGCCGGACGG	CGATTTGTCG	TCTCCTTTGG	TCAGGGGGCA	TAAAGAACCC
1051	GATTGGCAGG	CGTACGATGA	AAAAGGCAAC	CGTACCGTTT	ATGCCGAAGA
1101	ATGCAGGAAC	GCCAAGAAAA	TAAAAACCGA	GCCCAAGCTC	GATGCCGAAG
1151	GCAAGCAGGT	GTATTACTAT	GACGAATACA	GCGGCAGCCG	GACACCGGTA
1201	TATGTCGATG	TATATGAGCT	GGACGAAAAA	GGCAACAAGA	TTCAGGAGAC
1251	CAATCCCGAC	GGCACGCCTG	CCTTTACCGG	TTTTTCCGGT	ACGGTGCCGG
1301	TTTGGAAAAC	CGTCAAAGTG	GCAGACGACC	ATGTTCCTGC	GCTGTATAAC
1351	TACGCCAAAT	ACCTCAACAC	CAACAAAACC	CATTCGCTGA	CTGCCAGCAC
1401	GCGTTTCAAC	GTAACCGGCC	GACTGCACCT	TTTGGGCGGG	CTGCACTACA







### This corresponds to the amino acid sequence <SEQ ID 2540; ORF 742>:

MVYGIAEADA GDSSVLTLGG MYQKSREVPD FSGIILPCEN QKTAPFSSTP ACNRPLQLPR NTYLGEDWSR LSADKYNLFS GFKHVFDNGW QLNAEVSYTK 51 101 NESDAKVGQF FLKNEYAAGL SGEDAVGFLT EKNEVIPFEP KDKALEKLKA 151 YRDETAKEYR ERKDDFVKNR FDNTAFEQYR SRRAAERKAG FDKCMSDPFA LDFICQGSWG DPGVDADKAE FVDKALAKEG IFNNAAQRFP NSLYDSSFNR 251 KATANRRYSY MPLRHTKDDR QWGIKLDLTG TYGLFGREHD FFVGYAYGDE 301 KIRSEYLEIY ERRYRVRPNT GATHGVYAGS CQEEPDGDLS SPLVRGHKEP 351 DWQAYDEKGN RTVYAEECRN AKKIKTEPKL DAEGKQVYYY DEYSGSRTPV YVDVYELDEK GNKIQETNPD GTPAFTGFSG TVPVWKTVKV ADDHVPALYN 401 YAKYLNTNKT HSLTASTRFN VTGRLHLLGG LHYTRYETSQ TKDMPVRYGQ 451 PASDFQTASS IRADQDHYTA KMQGHKLTPY AGITYDLTPQ QSIYGSYTKI FKQQDNVDVS AKTVLPPLVG TNYEVGWKGA FLQGRLNASF ALFYLEQKNR 601 TVVDFGYVPG AGGKQGSFQT VAKPIGKVVS RGAEFELSGE LNEDWKVFAG 651 YTYNKSRYKN AAEVNAERLA KNSSADPYNF SNFTPVHIFR FGTSFHIPNT GLTVGGGVSA QSGTSSLYNI RQGGYGLIDG FVRYELGKHA KLSLIGTNLN GRTYFENNYN RTRGANNFYG EPRTVSMKLD WQF*

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2541>:

a742.seq ATGGTTTACG GCATTGCCGA AGCCGATGCG GGCGACAGCA GTGTGCTTAC 1 TTTGGGCGGC ATGTATCAGA AGAGTAGGGA GGTTCCTGAT TTTTCGGGCA TTATTTTGTC CTGTGAAAAT CAGAAAACTG CCCCGTTCAG TTCAACGCCT GCCTGCAACC GGCCTTTGCA ACTGCCGCGC AACACTTATT TGGGGGAGGA TTGGTCGCGG TTGAGTGCTG ACAAATACAA CCTTTTCTCA GGTTTCAAAC ATGTGTTTGA CAACGGTTGG CAGCTCAATG CCGAAGTGTC TTATACCAAG AATGAATCCG ATGCGAAGGT GGGGCAGTTT TTTCTGAAAA ACGAACATGC GGCGGGTTTG TCAGATGAGG ATGCGGTAGG CTTTTTGACC GAAAAAAACG 351 AAGTCATCCC GTTCGAGCCG AAAGATAAGG CATTGGAGAA ACTGAAAGCA 401 TATCGTGACG AAACCGCCAA GGAATACCGT GAGCGCAAAG ACGATTTTGT 451 TAAAAACCGT TTCGATAATA CTGCTTTCGA GCAGTACCGC AGCCGCCGTG 501 551 CCGCAGAACG CAAAGCCGGT TTTGACGAGT GTATGAGTGC CCCTTTTGCG CTGGACTTTA TCTGTCAAGG TTCTTGGGGG GATCCGGGTG TTGATGCCGA CAAGTCGGAA TTTGTCGATA AAGCCCTTGC GAAGGAAGGC ATCTTTAATA 651 701 ATGCGGCACA ACGTTTTCCA AACAGCCTGT ATGACTCTTC CTTTAATCGG AAGGCTACCG CCAACCGACG ATACAGTTAT ATGCCGTTGC GGCATACCAA 801 AGACGACCGC CAATGGGGAA TTAAACTTGA CCTGACCGGC ACATATGGGC 851 TGTTCGGGCG GGAGCATGAT TTCTTTGTCG GCTATGCCTA CGGCGATGAA AAGATACGTT CCGAATATCT GGAAATCTAC GAACGCCGCC ACAGAGTACG TCCGAATACA GGGGCAACGC ACGGCGTGTA TGCGGGAAGT TGTCAGGGGG 951 1001 AGCCGGACGG TGATTTGTCT TCTCCTTTGG TCAGGGGGCA TAAAGAACCC 1051 GATTGGCAGG CGTACGATGA AAAAGGCAAC CGTACCGTTT ATGCCGAAGA 1101 ATGCAGGAAT GCCAAGAAAA TAAAAACCGA GCCCAAGCTC GATGCCGAAG 1151 GCAAGCAGGT GTATTACTAT GACGAATACA GCGGCAGCCG GACGCCAGTA



			•		
1201	TATGTCGATG	TATATGAACT	GGATGAAAAA	GGCAATAAGA	TTCAGGAGAC
1251	CAATCCCGAC	GGCACGCCTG	CCTTTACCGG	TTTTTCCGGT	ACGGTGCCGG
1301	TTTGGAAAAC	CGTCAAAGTG	GCCGACGACC	ATGTTCCTGC	GCTGTATAAC
1351	TACGCCAAAT	ACCTCAACAC	CAACAAAACC	CATTCGCTGA	CTGCCGGCAC
1401	GCGTTTCAAC	GTAACCGGCC	GACTGCATCT	TTTGGGCGGG	CTGCACTACA
1451	CGCGCTATGA	AACCTCGCAA	ACCAAAGATA	TGCCTGTCCG	CTATGGGCAG
1501	CCGGCAAGCG	ATTTTCAGAC	GGCATCGAGC	ATTAAGGCGG	ATCAGGACCA
1551	TTATACGGCC	AAGATGCAAG	GTCATAAATT	GACGCCCTAT	GCAGGCATTA
1601	CCTATGATTT	GACACCGCAA	CAGAGTATTT	ACGGAAGTTA	TACCAAAATC
1651	TTCAAACAGC	AGGATAATGT	CGATGTCAGT	GCCAAAACCG	TTTTACCGCC
1701	TTTGGTCGGC	ACAAACTATG	AGGTAGGCTG	GAAAGGCGCG	TTCTTGCAAG
1751	GACGGCTGAA	TGCTTCGTTC	GCATTGTTTT	ACCTCGAACA	GAAAAACCGC
1801	ACGGTCGTCG	ATTTTGGCTA	TGTTCCCGGA	GCAGGCGGCA	AGCAGGGGTC
1851	GTTCCAAACC	GTTGCCAAAC	CGATAGGCAA	AGTGGTCAGC	AGGGGTGCGG
1901	AATTCGAGTT	GTCGGGTGAG	TTGAACGAAG	ATTGGAAAGT	CTTTGCGGGT
1951	TACACCTACA	ACAAGAGCCG	CTACAAAAAC	GCCGCCGAAG	TCAACGCCGA
2001	ACGCCTCGCC	AAAAACACAG	GCGCAGACCC	GTACAACTTC	AGCAATTTCA
2051	CACCCGTGCA	CATATTCCGT	TTCGGAACGA	GCTTCCATAT	ACCGAATACG
2101	GGGCTGACCG	TCGGCGGCGG	CGTGTCCGCA	CAAAGCGGCA	CAAGCAGTCT
2151	GTATAACATC	AGGCAGGGCG	GCTACGGGCT	GATAGACGGT	TTCGTCCGTT
2201	ACGAATTGGG	CAAACACGCT	AAATTGAGCC	TCATCGGTAC	GAACTTAAAC
2251	GGACGCACTT	ATTTTGAGAA	CAACTACAAC	CGTACGCGCG	GCGCAAACAA
2301	CTTCTATGGA	GAGCCGCGCA	CTGTCAGCAT	GAAACTGGAT	TGGCAGTTTT
2351	AA				

### This corresponds to the amino acid sequence <SEQ ID 2542; ORF 742.a>:

```
a742.pep
          MVYGIAEADA GDSSVLTLGG MYQKSREVPD FSGIILSCEN QKTAPFSSTP
         ACNRPLQLPR NTYLGEDWSR LSADKYNLFS GFKHVFDNGW QLNAEVSYTK
      51
    101 NESDAKVGQF FLKNEHAAGL SDEDAVGFLT EKNEVIPFEP KDKALEKLKA
     151 YRDETAKEYR ERKDDFVKNR FDNTAFEQYR SRRAAERKAG FDECMSAPFA
     201 LDFICQGSWG DPGVDADKSE FVDKALAKEG IFNNAAQRFP NSLYDSSFNR
    251 KATANRRYSY MPLRHTKDDR QWGIKLDLTG TYGLFGREHD FFVGYAYGDE
301 KIRSEYLEIY ERRHRVRPNT GATHGVYAGS CQGEPDGDLS SPLVRGHKEP
    351 DWQAYDEKGN RTVYAEECRN AKKIKTEPKL DAEGKQVYYY DEYSGSRTPV
     401 YVDVYELDEK GNKIQETNPD GTPAFTGFSG TVPVWKTVKV ADDHVPALYN
     451 YAKYLNTNKT HSLTAGTRFN VTGRLHLLGG LHYTRYETSQ TKDMPVRYGQ
    501 PASDFQTASS IKADQDHYTA KMQGHKLTPY AGITYDLTPQ QSIYGSYTKI
          FKQQDNVDVS AKTVLPPLVG TNYEVGWKGA FLQGRLNASF ALFYLEQKNR
     551
          TVVDFGYVPG AGGKQGSFQT VAKPIGKVVS RGAEFELSGE LNEDWKVFAG
     601
    651 YTYNKSRYKN AAEVNAERLA KNTGADPYNF SNFTPVHIFR FGTSFHIPNT
          GLTVGGGVSA QSGTSSLYNI RQGGYGLIDG FVRYELGKHA KLSLIGTNLN
    751 GRTYFENNYN RTRGANNFYG EPRTVSMKLD WQF*
```

#### a742/m742 98.5% identity in 783 aa overlap

	10	20	30	40	50	60
a742.pep	MVYGIAEADAGDSS	VLTLGGMYQI	KSREVPDFSG:	IILSCENOKTA	PESSTPACNI	RPT.OT.PR
	111111111111	111111111			11111111	
m742	MVYGIAEADAGDSS	VLTLGGMYO	KSREVPDESG	TTT.DCENOV®X	11::[[:]]	
	10	20	30			-
	10	20	30	40	50	60
	70	0.0				
- 7.40		80	90	100	110	120
a742.pep	NTYLGEDWSRLSAD	KYNLFSGFKI	HVFDNGWQLN	AEVSYTKNESD	AKVGOFFLKI	NEHAAGI.
		1111111		11111111111	111111111	11.1111
m742	NTYLGEDWSRLSAD	KYNLFSGFK	HVFDNGWOLN	AEVSVTKNESD	111111111	11.1111
	70	80	90			
	, 0	00	90	100	110	120
	120					
	130	140	150	160	170	180
a742.pep	SDEDAVGFLTEKNE	VIPFEPKDKA	ALEKLKAYRDI	TAKEYRERKD	DEVKNREDNT	PAFEOYR
	1 11111111111	1111111111	1111111111		111111111	
m742	SGEDAVGFLTEKNE	VIPFEPKOKA	I.EKI.KAYRDE	᠃᠃᠃᠃᠃᠃᠃		
	130	140	150			-
	150	140	150	160	170	180
	100					
	190	200	210	220	230	240
a742.pep	SRRAAERKAGFDECI	MSAPFALDFI	CQGSWGDPGV	DADKSEFVDK	ALAKEGIENN	DED
						A MINTER



m742	SRRAAERKAGI	:               FDKCMSDPFALDFIC	QGSWGDPGV	DADKAEFVI		  AAQRFP
	190	200	210	220	230	240
a742.pep	250	260	270	280	290	300
a/42.pep		CATANRRYSYMPLRH	TKDDRQWGI !!!!!!!!!	KLDLTGTY(	GLFGREHDFFVG	YAYGDE
m742	NSLYDSSFNRF	CATANRRYSYMPLRH	TKDDRQWGI	KLDLTGTY	SLFGREHDFFVG	YAYGDE
	250	260	<b>27</b> 0	280	290	300
a742.pep	310	320	330	340	350	360
araz.pep		RRHRVRPNTGATHG	111111	111111111	11111111111	111111
m742	KIRSEYLEIYE 310	RRYRVRPNTGATHG	VYAGSCQEE	PDGDLSSPI	VRGHKE PDWQA	YDEKGN
		320	330	340	350	360
a742.pep	370	380 KKIKTEPKLDAEGK(	390	400	410	420
				11111111	1111111111	11111
m742	RTVYAEECRNA 370	KKIKTEPKLDAEGKO 380	QVYYYDEYS 390	GSRTPVYVD 400	VYELDEKGNKI	QETNPD
			390	400	410	420
a742.pep	430 GTPAFTGFSGT	440 VPVWKTVKVADDHVI	450	460	470	480
1 1	1111111111	11111111111111111			11:1111111	1   1   1   1
m742	GTPAFTGFSGT 430	VPVWKTVKVADDHVI 440	PALYNYAKYI 450	LNTNKTHSL 460	TASTRFNVTGRI 470	LHLLGG
				400	470	480
a742.pep	490 LHYTRYETSOT	500 KDMPVRYGQPASDFQ	510 TASSTKADO	520 Эрнутакмо	530	540
7.40		1111111111111			11111111111	11111
m742	LHYTRYETSQT	KDMPVRYGQPASDFC 500	TASSIRADO 510	ODHYTAKMQ 520	GHKLTPYAGITY 530	OLTPQ 540
	550	5.60				
a742.pep	550 QSIYGSYTKIF	560 KQQDNVDVSAKTVLF	570 PLVGTNYEV	580 KWKGAFI.O	590 GRINASEALEVI	600
m742		1   1   1   1   1   1   1   1   1   1			111111111111	11111
111/42	550	KQQDNVDVSAKTVLF 560	PLVGTNYEV 570	GWKGAFLQ 580	GRLNASFALFYI 590	EQKNR 600
	610	620	620			
a742.pep	TVVDFGYVPGA	GGKQGSFQTVAKPIG	630 KVVSRGAEF	640 ELSGELNE	650 DWKVFAGYTYNK	660 SRYKN
m742			11111111	1111111	111111111111	11111
	610	620	630	640	DWKVFAGYTYNK 650	SRYKN 660
	670	680	690	700	710	700
a742.pep	AAEVNAERLAKI	NTGADPYNFSNFTPV	HIFRFGTSF	700 HIPNTGLT	710 VGGGVSAQSGTS	720 SLYNI
m742		::		THILL	111111111111	TITES "
	<b>67</b> 0	680	690	700	710	720
	730	740	750	760	770	780
a742.pep	RQGGYGLIDGF	RYELGKHAKLSLIG	TNLNGRTYF	ENNYNRTRO	SANNFYGEPRTV	SMKT.D
m742	RQGGYGLIDGF		 TNLNGRTYF			SWK1'D
	730	740	<b>7</b> 50	760	770	780
a742.pep	WQFX					
m742	WQFX					
a742/ p25184						
sp P25184 P		FERRIC-PSEUDOE	BACTIN	358	RECEPTOR	PRECURSOR
>gi 94923 pi	r:: S15169					

```
ferric-pseudobactin receptor precursor - Pseudomonas putida >gi|45723 (X56605)
     pseudobactin uptake protein [Pseudomonas putida]Length = 819
      Score = 152 \text{ bits } (381), \text{ Expect = } 6e-36
      Identities = 110/356 (30%), Positives = 170/356 (46%), Gaps = 55/356 (15%)
     Query: 436 KTVKVADDHV-PALYNYAKYLNTNKTHSLTAGTRFNVTGRLHLLGGLHYTRYETSQTKDM 494
                +T K DD + P + +Y +N+
                                              +RFN+T LHL+ G + Y
     Sbjct: 511 QTPKPGDDEIIPGI----QYNISNRQSGYFVASRFNLTDDLHLILGARASNYRFDYAL-- 564
     Query: 495 PVRYGQPASDFQTASSIKADQDHYTAKMQGHKLTPYAGITYDLTPQQSIYGSYTKIFKQQ 554
                 R G + ++
                                        ++ +TPYAGI YDLT +QS+Y SYT IFK Q
     Sbjct: 565 -WRIGNEPAPYKM-------VERGVVTPYAGIVYDLTNEQSVYASYTDIFKPQ 609
     Query: 555 DNVDVSAKTVLPPLVGTNYEVGWKGAFLQGRLNASFALFYLEQKNRTVVDFGYVPGAGGK 614
               +NVD++ K L P VG NYE+GWKG FL+GRLNA+ AL+ +++ N
     Sbjct: 610 NNVDITGKP-LDPEVGKNYELGWKGEFLEGRLNANIALYMVKRDNLAESTNEVVPDSGGL 668
     Query: 615 QGSFQTVAKPIGKVVSRGAEFELSGELNEDWKVFAGYTYNKSRYKNAAEVNAERLAKNTG 674
                 S
                    + + ++G + ELSGE+ W VF GY++ ++
     Sbict: 669 IAS-----RAVDGAETKGVDVELSGEVLPGWNVFTGYSHTRTE------D 707
     Query: 675 ADPYNFSNFTPVHIFRFGTSFHIPN--TGLTVGGGVSAQSGTS---SLYN--IRQGGYGL 727
                   + P+ FRF ++ +P LT+GGGV+ S ++ + YN + Q Y +
     Sbjct: 708 ADGKRLTPQLPMDTFRFWNTYRLPGEWEKLTLGGGVNWNSKSTLNFARYNSHVTQDDYFV 767
     Query: 728 IDGFVRYELGKHAKLSLIGTNLNGRTYFENNYNRTRGANNFYGEPRTVSMKLDWQF 783
                             +L N+ + Y Y G+ YG PR ++ L + F
                    RY + +
     Sbjct: 768 TSLMARYRINESLAATLNVNNIFDKKY----YAGMAGSYGHYGAPRNATVTLRYDF 819
     g743.seq not found yet
     g743.pep not found yet
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2543>:
     m743.seq
              ATGAATCAAA ATCATTTTTC ACTTAAAATT CTGACCGTTA TGCTGTTATC
           1
              GGCTTACGGT GGTTCTTTTG CAGACGGTGT TGTGCCTGTT TCAGACGGCA
```

```
101 ATACCGTCAG TCTGGATACG GTCAATGTAC GCGGCTCTCA TGCTTTGTTG
151 GGCAAGACCG AAAAGACCCG TTCTTATACG ATAGATCGGA TGTCCACCGC
    CACAGGTATG AGGATTGCGG GCAAGGATAC GCCGCAGTCG GTCAGCGTCA
    TCACGCGCAG CCGCCTTGAC GATAAGGCGG TGCATACGCT TGAAGAGGCA
    ATGAAAAACA CGACGGGTGT CAACGTTGTG CGCGATTCAG GCTTGCAGAC
301
    GCGGTTTTTG TCACGCGGTT TCTATATTGA TCAGATTGGT GAAGACGGTA
401 TGACCGTCAA TGTTGCAGGC CGTTCGGGAT ATACGGCGAA AATCGACGTG
451 TCTCCGAGTA CCGATTTGGC GGTTTATGAC CATATTGAAG TTGTACGGGG
    TGCAACGGGG TTGACCCAAT CCAATTCAGA GCCGGGAGGA ACCGTCAATT
501
551 TGATCCGTAA GTGA
```

#### This corresponds to the amino acid sequence <SEQ ID 2544; ORF 743>: m743.pep

- MNQNHFSLKI LTVMLLSAYG GSFADGVVPV SDGNTVSLDT VNVRGSHALL GKTEKTRSYT IDRMSTATGM RIAGKDTPQS VSVITRSRLD DKAVHTLEEA 101 MKNTTGVNVV RDSGLQTRFL SRGFYIDQIG EDGMTVNVAG RSGYTAKIDV 151 SPSTDLAVYD HIEVVRGATG LTQSNSEPGG TVNLIRK*
- The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2545>: a743.seq
  - ATGAATCAAA ATCATTTTTC ACTTAAAATT CTGACCGTTA TGCTGTTATC 1 51 GGCTTACGGT GGTTCTTTTG CAGACGGTGT TGTGCCTGTT TCAGACGGCA 101 ATACCGTCAG TTTGGATACG GTCAATGTAC GCGGCTCTCA TGCTCTGTCG 151 GGCAAGACCG AGAAGACCCG TTCTTATACG ATAGATCGGA TGTCCACCGC
    201 CACAGGTATG AGGATTGCGG GCAAGGATAC GCCGCAGTCG GTCAGCGTCA 251 TCACGCGCAG CCGCCTTGAC GATAAGGCGG TGCATACGCT TGAAGAGGCA 301 ATGAAAAACA CGACGGGTGT CAACGTTGTG CGCGATTCAG GCTTGCAGAC

351	GCGGTTTTTG	TCACGCGGTT	TCTATATTGA	TCAGATTGGT	GAAGACGGTA
401	TTACCGTCAA	TGTTGCAGGC	CGTTCGGGAT	ATACGGCGAA	AATCGACGTG
451	TCTCCGAGTA	CCGATTTGGC	GGTTTATGAC	CATATTGAAG	TTGTACGGGG
501	TGCAACGGGG	TTGACCCAAT	CCAATTCAGA	GCCGGGTGGA	ACCGTCAATT
551	TGATCCGTAA				

### This corresponds to the amino acid sequence <SEQ ID 2546; ORF 743.a>:

```
a743.pep

1 MNQNHFSLKI LTVMLLSAYG GSFADGVVPV SDGNTVSLDT VNVRGSHALS
51 GKTEKTRSYT IDRMSTATGM RIAGKDTPQS VSVITRSRLD DKAVHTLEEA
101 MKNTTGVNVV RDSGLQTRFL SRGFYIDQIG EDGITVNVAG RSGYTAKIDV
151 SPSTDLAVYD HIEVVRGATG LTQSNSEPGG TVNLIRKR
```

#### a743/m743 98.9% identity in 187 aa overlap

	10	20	30	40	50	60
a743.pep	MNQNHFSLKILTVM	ILLSAYGGSF	ADGVVPVSDGN	TVSLDTVNV	RGSHALSGKT	EKTRSYT
						111111
m743	MNQNHFSLKILTVM	ILLSAYGGSFA	ADGVVPVSDGN	ITVSLDTVNVF	RGSHALLGKTI	EKTRSYT
	10	20	30	40	50	60
	70	80	90	100	110	120
a743.pep	IDRMSTATGMRIAG	KDTPQSVSVI	ITRSRLDDKAV	HTLEEAMKNI	TGVNVVRDS	SLOTRFL
		111111		1111111111	1111111111	111111
m743	IDRMSTATGMRIAG	KDTPQSVSVI	TRSRLDDKAV	HTLEEAMKNT	TGVNVVRDS	LOTRFL
	70	80	90	100	110	120
	130	140	150	160	170	180
a743.pep	SRGFYIDQIGEDGI	TVNVAGRSGY	TAKIDVSPST	'DLAVYDHIEV	VRGATGLTQS	NSEPGG
		111111111		1111111111	1111111111	111111
m743	SRGFYIDQIGEDGM	TVNVAGRSGY	TAKI DVSPST	DLAVYDHIEV	VRGATGLTQS	NSEPGG
	130	140	150	160	170	180
-742	MINIT TRUE					
a743.pep	TVNLIRKR					

m743 TVNLIRKR
TVNLIRKX

g744.seq not found yet g744.pep not found yet

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2547>: m744.8eq

1	ATGAAACCGT	TAAAAACATT	AGAATTTGGA	TTTGTGGATG	CTGCAAACTA
51	CAGAAGAAGA	GAAAATAAAG	ATTTATTTAA	CCGAATATTT	GTAAAAGGAG
101	AATATTTGGA	TGAATTATGT	GAACCAAATA	TTTCGTTTTT	AATCGGAGAA
151	AAGGGAACTG	GAAAGACAGC	ATATGCTGTT	TATTTAACTA	ATAACTTCTA
201	TAAAAACATA	CATGCCACTA	CTAAGTTTGT	TCGTGAAACC	GATTATTCAA
251	AATTTATTCA	GCTAAAGAAA	GCAAGACACT	TAACTGTTTC	AGATTTTACA
301	AGTATTTGGA	AAGTCATTTT	ATATCTGTTG	ATATCAAATC	AAATCAAATG
351	TAAAGAAAAC	GGAATATTAT	CTTCAATATT	TAATAAATTT	AAAGCCTTAG
401	ATGAGGCTAT	AAATGAATAT	TATTATGGCG	CTTTTGATCC	GGAAATTGTA
451	CAAGCAATAA	CTTTAATAGA	AAATTCAAAA	GAAGCTGCGG	AAATGATTTT
501	TGGAAAATTT	GTTAAACTAG	GTGAAGAGGA	ATCCCAACAA	ATAACTTTTA
551	CAGAAAGTAA	ATTCCAAGCA	AATTTAGGTT	TTATTGAAAG	AAAATTTAAA
601	GATGCTTTAT	CTCAGTTAAA	GCTAAAAGAT	AATCATATTT	TGTTTATTGA
651	TGGGATAGAT	ATTAGACCAT	CACAGATTCC	ATTTGATGAA	TATCATGAGT
701	GTGTAAAAGG	TCTTGCTAAC	GCCATATGGA	TGTTAAATAA	TGATATCTTC
751	CCTTCCATTA	AAGATAGTAA	GGGAAGGATG	AGAGTTGTGT	TATTGATTAG
801	ACCTGATATC	TTTGATTCAT	TAGGTTTACA	AAATCAAAAT	ACCAAACTTC
851	AAGATAATTC	AGTATTTTA	GACTGGAGGA	CGGATTATAA	ATCTTATAGA
901	AGTTCAAAGA	TTTTTGGCGT	TTTTGATCAT	CTTTTGAGAA	CCCAGCAAGA
951	AAAACAAGAT	AGTTTAGAAA	AAGGCAACTC	ATGGGATTAT	TATTTTCCAT
1001	GGAATGCTCC	TAATTTACAT	GATGAGTATA	AAAATTTAAC	TTCATTTATT
1051	AGCTTCCTAA	GAAAATCGTA	TTATCGACCT	CGCGATATTC	TTCAGATGCT
1101	TACTTTGCTA	CAAAAAAATA	AGAAAAGTAA	GGAAGATTAT	GTCGTAGCAG
1151	AAGATTTTGA	TAATACTTCT	TTTCAAAGAG	AATACTCGAT	ATATTTACTT
1201	GGTGAAATCA	AAGATCATCT	TTTGTTTTAT	TATAGTCAAA	GTGATTATCA
1251	AAATTTCCTG	AAATTTTTTG	AAATTTTTAAA	CGGGAAAGAT	AGATTTAAAT



```
1301 ATAGTGATTT TTTAAAAGCA TTTGAACGTT TGAAAAAGCA CTTACAAACA
1351 ACATCAGTGG AAATACCTAA ATTTATGAGT ACTGCTAATG AGTTTTTGCA
1401 ATTTTTATTT GACTTGAATG TTATTGCTTA TTTAGATAAC CCAGAAGATG
1451 AAACGAAACC ATATATCCAT TGGTGCTTTA AAGATAGAAA TTATGCAAAT
1501 ATTCTCCTA AAATAAAAAC TGAAACTGAA TATTTAATAT TTTCAGGATT
1551 ATCAAAAGCC CTTGATGTTG GTACTCCATT TAAGAACAAA CAGTAA
```

### This corresponds to the amino acid sequence <SEQ ID 2548; ORF 744>: m744.pep

```
1 MKPLKTLEFG FVDAANYRRR ENKDLFNRIF VKGEYLDELC EPNISFLIGE
51 KGTGKTAYAV YLTNNFYKNI HATTKFVRET DYSKFIQLKK ARHLTVSDFT
101 SIWKVILYLL ISNQIKCKEN GILSSIFNKF KALDEAINEY YYGAFDPEIV
151 QAITLIENSK EAAEMIFGKF VKLGEEESQQ ITFTESKFQA NLGFIERKFK
201 DALSQLKLKD NHILFIDGID IRPSQIPFDE YHECVKGLAN AIWMLNNDIF
251 PSIKDSKGRM RVVLLIRPDI FDSLGLQNQN TKLQDNSVFL DWRTDYKSYR
301 SSKIFGVFDH LLRTQQEKQD SLEKGNSWDY YFPWNAPNLH DEYKNLTSFI
351 SFLRKSYYRP RDILQMLTLL QKNKKSKEDY VVAEDFDNTS FQREYSIYLL
401 GEIKDHLLFY YSQSDYQNFL KFFEFLNGKD RFKYSDFLKA FERLKKHLQT
451 TSVEIPKFMS TANEFLQFLF DLNVIAYLDN PEDETKPYIH WCFKDRNYAN
501 ISPKIKTETE YLIFSGLSKA LDVGTPFKNK Q*
```

```
g745.seq not found yet g745.pep not found yet
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2549>:

```
m745.seq

1 ATGTTTTGGC AACTGACCGT TGTTTCAGTA ACCGCCGTCA TTGCACTGGG
51 GACAATATTC ATCAATAAGA AAACTTCAAA GCAAAAGGCG ACATTAGATG
101 TTATTTTGAA TGATTACCAA GATGCACAAT TTGTAGAAGC CGACAATCAT
151 ATTTCGCCTT ATATTCGCGG CACGGCAGTT GACGACAACA ACGCGCGGAT
201 CGACCTGTAT GAAATTTATC AAAATAAGGG CGGACAATGG GAAAAAGAGA
251 GAGGCATTT ACTTACCGTA ATCAATCGGC ACGAGTTTTA TGCGTGCGCA
301 ATCAACTCGG GAGTATTGGA TGAGGATTTG TTTAAACGGC TGCATTGCAC
351 CAACTTCATA AAATTGTGGA ATGCAGTTTC GCCTCTTGTT ATGAAAATAC
401 GCGAAGAAGA ACGCAAAGCC CCTAAAGGCA TCTGATTTGT GA
```

### This corresponds to the amino acid sequence <SEQ ID 2550; ORF 745>:

```
m745.pep

1 MFWQLTVVSV TAVIALGTIF INKKTSKQKA TLDVILNDYQ DAQFVEADNH
51 ISPYIRGTAV DDNNARIDLY EIYQNKGGQW EKERGHLLTV INRHEFYACA
101 INSGVLDEDL FKRLHCTNFI KLWNAVSPLV MKIREEERKD TIFRELEILV
151 ALWKANPLKA SDL*

a745.seq not found yet

a745.pep not found yet
```

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2551>: g746.seq

```
ATGTCCGAAA ACAAACAAAA CGAAGTCCTG ACCGGTTACG AACAGCTGAA
 51 ACGGCGCAAC CGCCGCCGCC TCGTAACGGC AAGCTCCCTG GTTGCCGCCT
101
    CCTGCATCCT GCTGGCAGCC GCACTCAGTT CCGATCCTGC CGACAGCAAT
    CCCGCACCGC AGGCCGGCGA AACCGGCGCA ACGGAAAGCC AAACGGCAAA
151
    CACGGCACAA ACCCCTGCCT TGAAATCCGC CGCCGAAAAC GGGGAAACCG
201
251
    CCGCCGACAA ACCGCAGGAC TTGGCAGGCG AAGACAAGCC TTCTGCCGCC
    GACAGCGAAA TCAGCGAGCC TGAAAACGTA GGCGCGCCGC TGGTGCTGAT
301
    TAACGACCGG CTCGAAGACA GCAACATCAA AGGTTTGGAA GAATCCGAGA
351
401 AACTGCAACA GGCAGAAACC GCCAAAACCG AACCGAAGCA GGCAAAACAA
    CGCGCTGCCG AAAAAGTGTC GGCAACTGCC GACAGTACGG ATACGGTAGC
451
    GGTTGAAAAA CCGAAACGCA CTGCCGAACC CAAACCGCAA AAAGCGGAAC
501
551 GCACTGCCGA AGCCAAGCCC AAAGCCAAAG AAACCAAAAC CGCCGAAAAA
601 GTTGCCGACA AACCGAAAAC TGCTGCCGAA AAAACCAAAC CGGATACGGC
    AAAATCCGAC AGCGCGGTAA AAGAAGCGAA AAAAGCCGAC AAGGCTGAAG
651
701 GCAAAAAGAC AGCCGAAAAA GACCGTTCGG ACGGCAAAAA ACACGAAACG
```



```
751 GCGCAAAAAA CCGACAAAGC GGACAAAACC AAAACCGCCG AGAAGGAAAA
801 ATCCGGCAAG GCGGCAAAA AAGCCGCCAT TCAGGCAGGT TATGCCGAAA
851 AAGAACGCGC CTTGAGCCTC CAGCGCAAAA TGAAGGCGGC GGGTATCGAT
901 TCGACCATCA CCGAAATCAT GACCGACAAC GGCAAAGTTT ACCGCGTCAA
951 ATCAAGCAAC TATAAAAACG CAAGGGATGC CGAACGCGAT TTGAACAAAC
1001 TGCGCGTGCA CGGCATCGCC GGCCAGGTAA CGAATGAATA G
```

This corresponds to the amino acid sequence <SEQ ID 2552; ORF 746.ng>: g746.pep

```
1 MSENKQNEVL TGYEQLKRRN RRRLVTASSL VAASCILLAA ALSSDPADSN
51 PAPQAGETGA TESQTANTAQ TPALKSAAEN GETAADKPQD LAGEDKPSAA
101 DSEISEPENV GAPLVLINDR LEDSNIKGLE ESEKLQOAET AKTEPKQAKQ
151 RAAEKVSATA DSTDTVAVEK PKRTAEPKPQ KAERTAEAKP KAKETKTAEK
201 VADKPKTAAE KTKPDTAKSD SAVKEAKKAD KAEGKKTAEK DRSDGKKHET
251 AQKTDKADKT KTAEKEKSGK AGKKAAIQAG YAEKERALSL QRKMKAAGID
301 STITEIMTDN GKVYRVKSSN YKNARDAERD LNKLRVHGIA GQVTNE*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2553>: m746.seq

```
ATGTCCGAAA ACAAACAAAA CGAAGTCCTG AGCGGTTACG AACAACTCAA ACGGCGCAAC CGCCGCCGCC TCGTAACGGC AAGTTGCCTG GTTGCCGCCT
  1
 51
101
     CCTGCATCCT GCTGGCAGCC GCCCTCAGTT CCGGCCCTGC CGAACAGACT
     GCCGGCGAAA CAAGCGGCGT AGAAAACAAA GCGGCAGGTG CGGCACAAAC
151
     CCCTGCCTTG AAATCCGCCG CCGACAAACC GCAGGACTTG GCAGGCGAAG
201
     ACAAGCCTTC TGCCGCCGAC AGCGAAATCA GCGAGCCTGA AAACGTAGGC
251
     GCGCCGCTGG TGCTGATTAA CGAGCGCCTC GAAGACAGCA ACATCAAAGG
301
     TTTGGAAGCA TCCGAGAAAC TGCAACAGGC AGAAACCGCC AAAACCGCAC
351
     CGAAGCAGGC AAAACAACGC GCTGCCGAAA AAGTGCCGGC AACTGCCGAC
401
     AGTACGGATA CGGTAGCGGT TGAAAAACCG AAACGCACTG CCGAAACAAA
451
     ACCGCAAAAA GCGGAACGCA CTGCCAAAGC CAAGCCCAAA GCCAAAGAAA
501
     CCAAAACCGC CGAAAAAGTT GCCGACAAAC CGAAAACTGC CGCCGAAAAA
551
601 ACCAAACCGG ATACGGCAAA ATCCGACAGC GCGGTAAAAG AAGCGAAAAA
     AGCCGACAAG GCTGAAAGCA AAAAAACAGC CGAAAAAGAC CGTTCGGACG
651
     GCAAAAAACA CGAAACGGCA CAAAAAACCG ACAAAGCGGA CAAGACCAAA
701
     ACCGCCGAGA AGGAAAAATC CGGTAAAAAA GCCGCCATTC AGGCAGGTTA
751
     TGCCGAAAAA GAACGCGCCT TAAGCCTCCA GCGCAAAATG AAGGCGGCGG
GTATCGATTC GACCATCACC GAAATTATGA CCGACAACGG CAAAGTTTAC
851
901
     CGCGTCAAAT CAAGCAACTA TAAAAACGCA AGGGATGCCG AACGCGATTT
     GAACAAATTG CGCGTACACG GTATCGCCGG TCAGGTAACG AATGAATAG
```

### This corresponds to the amino acid sequence <SEQ ID 2554; ORF 746>: m746.pep

```
1 MSENKQNEVL SGYEQLKRRN RRRLVTASCL VAASCILLAA ALSSGPAEQT
51 AGETSGVENK AAGAAQTPAL KSAADKPQDL AGEDKPSAAD SEISEPENVG
101 APLVLINERL EDSNIKGLEA SEKLQQAETA KTAPKQAKQR AAEKVPATAD
151 STDTVAVEKP KRTAETKPQK AERTAKAKPK AKETKTAEKV ADKPKTAAEK
151 TKPDTAKSDS AVKEAKKADK AESKKTAEKD RSDGKKHETA QKTDKADKTK
151 TAEKEKSGKK AAIQAGYAEK ERALSLQRKM KAAGIDSTIT EIMTDNGKVY
151 RVKSSNYKNA RDAERDLNKL RVHGIAGQVT NE*
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 746 shows 89.9% identity over a 346 aa overlap with a predicted ORF (ORF 746) from N. gonorrhoeae:

```
m746/g746
          89.9% identity in 346 aa overlap
                                 30
                                         40
          MSENKQNEVLSGYEQLKRRNRRRLVTASCLVAASCILLAAALSSGPAEQT----AGETSG
m746.pep
          g746
          MSENKQNEVLTGYEQLKRRNRRRLVTASSLVAASCILLAAALSSDPADSNPAPQAGETGA
                                 30
                                         40
            60
                    70
                                          90
          VENKAAGAAQTPALKSAA-----DKPQDLAGEDKPSAADSEISEPENVGAPLVLINER
m746.pep
          :1:::1::11111111111
                              TESQTANTAQTPALKSAAENGETAADKPQDLAGEDKPSAADSEISEPENVGAPLVLINDR
g746
                         80
                                 90
                                        100
                                                110
```

```
120
                       130
                               140
                                      150
                                              160
         LEDSNIKGLEASEKLQQAETAKTAPKQAKQRAAEKVPATADSTDTVAVEKPKRTAETKPQ
m746.pep
          LEDSNIKGLEESEKLQQAETAKTEPKQAKQRAAEKVSATADSTDTVAVEKPKRTAEPKPQ
a746
                      140
                              150
                                     160
        170
               180
                       190
                               200
                                      210
                                              220
                                                     229
         KAERTAKAKPKAKETKTAEKVADKPKTAAEKTKPDTAKSDSAVKEAKKADKAESKKTAEK
m746.pep
         q746
         KAERTAEAKPKAKETKTAEKVADKPKTAAEKTKPDTAKSDSAVKEAKKADKAEGKKTAEK
               190
                      200
                                     220
                                             230
                       250
                                 260
                                        270
         DRSDGKKHETAQKTDKADKTKTAEKEKSGK---KAAIQAGYAEKERALSLQRKMKAAGID
m746.pep
         DRSDGKKHETAQKTDKADKTKTAEKEKSGKAGKKAAIQAGYAEKERALSLQRKMKAAGID
g746
              250
                      260
                              270
                                     280
          290
                  300
                         310
                               320
         STITEIMTDNGKVYRVKSSNYKNARDAERDLNKLRVHGIAGOVTNEX
m746.pep
         q746
         STITEIMTDNGKVYRVKSSNYKNARDAERDLNKLRVHGIAGQVTNEX
               310
                      320
                              330
                                     340
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2555>: a746.seq

```
ATGTCCGAAA ACAAACAAAA CGAAGTCCTG AGCGGTTACG AACAACTCAA
    ACGGCGCAAC CGCCGCCGC TCGTAACGGC AAGTTGCCTG GTTGCCGCCT
 51
    CCTGCATCCT GCTGGCAGCC GCCCTCAGTT CCGGCCCTGC CGAACAGACT
101
151 GCCGGCGAAA CAAGCGGCGT AGAAAACAAA GCGGCAGGTG CGGCACAAAC
201 CCCTGCCTTG AAATCCGCCG CCGACAAACC GCAGGACTTG GCAGGCGAAG
251 ACAAGCCTTC TGCCGCCGAC AGCGAAATCA GCGAGCCTGA AAACGTAGGC
    GCGCCGCTGG TGCTGATTAA CGACCGCCTC GAAGACAGCA ACATCAAAGG
301
    TTTGGAAGCA TCCGAGAAAC TGCAACAGGC AGAAACCGCC AAAACCGCAC
    CGAAGCAGGC AAAACAACGC GCTGCCGAAA AAGTGCCGGC AACTGCCGAC
401
451 AGTACGGATA CGGTAGCGGT TGAAAAACCG AAACGCACTG CCGAAACAAA
    ACCGCAAAAA GCGGAACGCA CTGCCAAAGC CAAGCCCAAA GCCAAAGAAA
501
    CCAAAACCGC CGAAAAAGTT GCCGACAAAC CGAAAACTGC CGCCGAAAAA
    ACCAAACCGG ATACGGCAAA ATCCGACAGC GCGGTAAAAG AAGCGAAAAA
    AGCCGACAAG GCTGAAAGCA AAAAAACAGC CGAAAAAGAC CGTTCGGACG
651
    GCAAAAAACA CGAAACGGCA CAAAAAACCG ACAAAGCGGA CAAGACCAAA
701
751
    ACCGCCGAGA AGGAAAAATC CGGTAAAAAA GCCGCCATTC AGGCAGGTTA
    TGCCGAAAAA GAACGCGCCT TAAGCCTCCA GCGCAAAATG AAGGCGGCGG
851 GTATCGATTC GACCATCACC GAAATTATGA CCGACAACGG CAAAGTTTAC
901 CGCGTCAAAT CAAGCAACTA TAAAAACGCA AGGGATGCCG AACGCGATTT
951 GAACAAATTG CGCGTACACG GTATCGCCGG TCAGGTAACG AATGAATAA
```

This corresponds to the amino acid sequence <SEQ ID 2556; ORF 746.a>: a746.pep

- 1 MSENKQNEVL SGYEQLKRRN RRRLVTASCL VAASCILLAA ALSSGPAEQT
  51 AGETSGVENK AAGAAQTPAL KSAADKPQDL AGEDKPSAAD SEISEPENVG
  - 101 APLVLINDRL EDSNIKGLEA SEKLQQAETA KTAPKQAKQR AAEKVPATAD
    151 STDTVAVEKP KRTAETKPOK AERTAKAKPK AKETKTAEKV ADKOKTAATY
  - 151 STDTVAVEKP KRTAETKPQK AERTAKAKPK AKETKTAEKV ADKPKTAAEK 201 TKPDTAKSDS AVKEAKKADK AESKKTAEKD RSDGKKHETA QKTDKADKTK
  - 251 TAEKEKSGKK AAIQAGYAEK ERALSLORKM KAAGIDSTIT EIMTDNGKVY
  - 301 RVKSSNYKNA RDAERDLNKL RVHGIAGOVT NE*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis

ORF 746 shows 99.7% identity over a 332 aa overlap with a predicted ORF (ORF 746) from N. meningitidis:

a746/m746; 99.7% identity in 332 aa overlap

BNSDOCID: <WO___9957280A2_I_>

AL 250 (Last 5) Thirth

a746.pep m746	70 AAGAAQTPALKSAAD !!!!!!!!!!!! AAGAAQTPALKSAAD 70		HILLIHI		11:111111	HILL
a746.pep	130 SEKLQQAETAKTAPKO	11111111		1		1111
a746.pep	190 AKETKTAEKVADKPKT            AKETKTAEKVADKPKT 190				THEFT	11111
a746.pep	250 QKTDKADKTKTAEKER !!!!!!!!!!!!!!!! QKTDKADKTKTAEKER 250			1111111111	1111111111	11111
a746.pep	310 RVKSSNYKNARDAERE                  RVKSSNYKNARDAERE 310	1111111111	1111111			

g747.seq not found yet

g747.pep not found yet

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2557>: m747.seq

- CTGACCCCTT GGGCGGATGC ATATGCAGAT TTGCGCGGCA AAACCAAAGT 1 GATGACGACC CAGATGGGTG CTTCCCGCGA TGTCAGCAAA AGCGCCAAAG 51 101 GTTGGAGTGT CGGTATCGGT CTGAATGTAG GCAAACAGTT GACCGACAGC 151 GTCGGTCTCG AGTTTGATCC ATACTACCGT CACAAAACAA TCTACAAACC
  201 CCGTGAGATT GTCTTGGACG GTGACAAAAC CAAAATGGGC CGCTCCAAAT
- 251 CCAACGAGTA CGGCTTCCGC GTAGCCGCAA CGTTCTATAG TCAATTAAAA
  301 TCAAAATAG

This corresponds to the amino acid sequence <SEQ ID 2558; ORF 747>:

- LTPWADAYAD LRGKTKVMTT QMGASRDVSK SAKGWSVGIG LNVGKQLTDS 51
- VGLEFDPYYR HKTIYKPREI VLDGDKTKMG RSKSNEYGFR VAATFYSQLK
- 101 SK*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2559>: a747.seq

- CTAACCCCTT GGGCGGATGC ATATGCAGAT TTGCGCGGCA AAACCAAAGT 51 GATGACGACC CAGATGTGTG CTTCCCGCGA TGTCAGCAAA AGCGCCAAAG
- 101 GTTGGAGTGT CGGTATCGGT CTGAATGTAG GCAAACAGTT GACCGACAGC
- 151 GTCGGTCTCG AGTTTGATCC ATACTACCGT CACAAAACAA TCTGCAAACC
- 201 CCGTGAGATT GTTTTGGACG GCGACAAAAC CAAAATGGGC CGCTCCAAAT 251 CCAACGAGTA CGGCTTCCGC GTAACCGCAA CGTTCTATAG TCAATTAAAA
- 301 TCAAAGTAG

This corresponds to the amino acid sequence <SEQ ID 2560; ORF 747.a>: a747.pep

- LTPWADAYAD LRGKTKVMTT QMCASRDVSK SAKGWSVGIG LNVGKQLTDS 51
- VGLEFDPYYR HKTICKPREI VLDGDKTKMG RSKSNEYGFR VTATFYSQLK 101

Computer analysis of this amino acid sequence gave the following results:

The second second second

### Homology with a predicted ORF from N. meningitidis

ORF 747 shows 97.1% identity over a 102 aa overlap with a predicted ORF (ORF 746) from N. meningitidis:

```
a747/m747
           97.1% identity in 102 aa overlap
                           20
                                    30
                                             40
           \verb|LTPWADAYADLRGKTKVMTTQMCASRDVSKSAKGWSVGIGLNVGKQLTDSVGLEFDPYYR|
a747.pep
           LTPWADAYADLRGKTKVMTTQMGASRDVSKSAKGWSVGIGLNVGKQLTDSVGLEFDPYYR
m747
                           20
                                    30
                                             40
                  70
                           80
                                    90
                                            100
a747.pep
           HKTICKPREIVLDGDKTKMGRSKSNEYGFRVTATFYSOLKSKX
           m747
           HKTIYKPREIVLDGDKTKMGRSKSNEYGFRVAATFYSQLKSKX
                  70
                           80
                                    90
gi|150271 (M80195) outer membrane protein [Neisseria meningitidis] Length = 272
Score = 59.3 bits (141), Expect = 6e-09
Identities = 29/99 (29%), Positives = 51/99 (51%), Gaps = 4/99 (4%)
         LTPWADAYADLRGKTKVMTTQMCASRDVSKSAKGWSVGIGLNVGKQLTDSVGLEFDPYYR 60
         + PW++ DL + K+ T
                               +D+++ GW G+G N+GK+L +S +E P+Y+
Sbjct: 174 INPWSEVKFDLNSRYKLNTGVTNLKKDINQKTNGWGFGLGANIGKKLGESASIEAGPFYK 233
Query: 61 HKTICKPREIVL---DGD-KTKMGRSKSNEYGFRVTATF 95
          +T + E + GD
                           + ++
                                   EYG RV
Sbjct: 234 QRTYKESGEFSVTTKSGDVSLTIPKTSIREYGLRVGIKF 272
```

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2561>: q748.seq

```
ATGAGTCAAA ACCAACCGC ACAACCGACC AAACGCAATC TGTTCAAAAC
      CGCCCTTGCC GTCGGCGCAA TCGGCGCAAT CGGAGGTTAT TTCGGCGGCA
  51
 101 AAAAACAGGG CGAAACCGCC GAACGCACCG CCGAAAGCCA ACACTCGCCC
      CAAGCCTATC CCTGCTACGG CGAACATCAG GCAGGTATCG TTACGCCGCG
 151
 201
      GCAGGCGTTT TCCATTATGT GCGCCTTCGA CGTAACCGCG CAAAGTGCCA
      AGCAGCTGGA AAACCTGTTC CGCACACTGA CCGCCCGCAT CGAGTTTCTC
      ACCCAAGGCG GAGAATACCA AGACGGCGAC GACAAACTCC CGTCAGCCGG
      CAGCGGCATT TTGGGTAAAG CCTTCAACCC CGACGGATTG ACCGTTACCG
 351
 401
      TGGGGGTGGG CAGCAGCCTG TTTGACGGCC GGTTCGGACT CAAAGACAAA
      AAAACGGTTC ATTTGCAGGA AATGCGCGAC TTCCCCAACG ATAAGCTGCA
 451
      AAAAAGCTGG TGCGACGGCG ATTTGAGCCT GCAAATCTGC GCCTTCACCC
 551 CCGAAACCTG CCAAACCGCC CTGCGCGACA TCATCAAACA CACCGCCCAA
601 ACCGCCGTCA TCCGCTGGAG TATCGACGGG TGGCAGCCTA AATCCGAACC
      CGGCGCGATG GCGGCGCGA ACCTGTTGGG CTTCCGAGAC GGCACGGGCA
 651
      ACCCCAAGGT TTCCGATCCC AAAACCGCCG ACGAGGTTTT ATGGACGGGC
 701
      GTGGCCGCCA ACAGCCTCGA CGAACCGGAG TGGGCGAAAA ACGGCAGCTA
 751
      TCAGGCAGTC CGCCTTATCC GCCGCTTTGT CGAGTTTTGG GACAGGACGC
 801
      CGCTTCAAGA GCAAACCGAC ATTTTCGGGC GGCGAAAATA CAGCGGGGCG
 851
 901 CCGATGGACG GCAAAAAAGA AGCCGACCAA CCGGATTTCG CCAAAGACCC
      CGAGGGTGAT ATCACGCCCA AAGACAGCCA TATGCGCCTG GCGAATCCGC
 951
1001
      GCGATCCCGA ATTCCTCAAA AAACACTGCC TCTTCCGCCG CGCCTACAGC
1051
      TATTCTCGCG GACCCGCCTC AAGCGGACAG CTTGATGTCG GGCTGGTGTT
1101
      CGTCTGCTAT CAGGCAAATC TTGCCGACGG TTTCATCTTC GTGCAAAACC
      TCCTCAACGG CGAACCGCTG GAAGAATACA TCAGCCCCTT CGGCGGCGGC
1151
1201 TATTTCTTCG TCTTGCCCGG CGTGGGAAAA GGCGGATTCT TGGGACAAGG
1251 GCTGCCGGC GTATAA
```

## This corresponds to the amino acid sequence <SEQ ID 2562; ORF 748.ng>: g748.pep

```
1 MSQNQPAQPT KRNLFKTALA VGAIGAIGGY FGGKKQGETA ERTAESQHSP
51 QAYPCYGEHQ AGIVTPRQAF SIMCAFDVTA QSAKQLENLF RTLTARIEFL
101 TQGGEYQDGD DKLPSAGSGI LGKAFNPDGL TVTVGVGSSL FDGRFGLKDK
151 KTVHLQEMRD FPNDKLQKSW CDGDLSLQIC AFTPETCQTA LRDIIKHTAQ
201 TAVIRWSIDG WQPKSEPGAM AARNLLGFRD GTGNPKVSDP KTADEVLWTG
251 VAANSLDEPE WAKNGSYQAV RLIRRFVEFW DRTPLQEQTD IFGRRKYSGA
301 PMDGKKEADQ PDFAKDPEGD ITPKDSHMRL ANPRDPEFLK KHCLFRRAYS
351 YSRGPASSGQ LDVGLVFVCY QANLADGFIF VQNLLNGEPL EEYISPFGGG
```



The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2563>:

```
ATGAGCAAAA AACAACCCGC ACAACCGACC AGGCGCACTC TTTTTAAAAC
      CGCGATCGCA GCCGGAGCAG TCGGCGCAAT CGGAGGTTAT CTCGGCGGCA
  51
 101 AAAAACAGGG CGAAACCGCC GAACGCACCG CCGAAAGCCA ACACTCGCCC
 151 CAAGCCTATC CCTGCTACGG CGAACATCAG GCAGGCATCG TTACGCCGCA
 201 GCAGGCGTTT TCGATTATGT GCGCCTTCGA CGTAACCGCG CAAAGTGCCA
 251 AGCAGCTGGA AAACCTGTTC CGCACGCTGA CCGCCCGCAT CGAGTTTCTC
 301 ACCCAAGGCG GCGAATACCA AGACGGCGAC GACAAACTTC CGCCAGCCGG
 351 CAGCGGCATT TTGGGCAAAG CCTTCAACCC CGACGGGTTG ACCGTTACCG
      TGGGGGTGGG CAGCAGCCTG TTTGACGGCC GGTTCGGACT CAAAGACAAA
 401
 451 AAACCGATTC ATTTGCAGGA AATGCGCGAC TTCTCCAACG ATAAGCTGCA
 501 AAAAAGCTGG TGCGACGGCG ATTTGAGCCT GCAAATCTGT GCCTTCACCC
     CCGAAACCTG CCAAGCCGCC CTGCGCGACA TCATCAAACA CACCGTCCAA
 551
 601 ACCGCCGTTA TCCGTTGGAG TATCGACGGG TGGCAGCCCA AATCCGAACC
 651 CGGCGCGATG GCGGCGCGCA ACCTGTTGGG CTTCAGGGAC GGCACGGGCA
 701 ACCCCAAAGT TTCCGATCCC AAAACTGCCG ACGAGGTTTT GTGGACGGGG
 751 GTGGCCGCCA ACAGCCTCGA CGAACCGGAG TGGGCGAAAA ACGGCAGCTA
     TCAGGCAGTC CGCCTTATCC GCCACTTTGT CGAGTTTTGG GACAGGACGC
 851
     CGCTTCAAGA GCAAACCGAC ATTTTCGGGC GGCGCAAATA CAGCGGTGCG
 901 CCGATGGACG GCAAAAAAGA AGCCGACCAA CCGGATTTTG CCAAAGACCC
     CGAGGGTGAT ATCACGCCCA AAGACAGCCA TATACGCCTG GCGAATCCGC
 951
1001
     GCGATCCCGA ATTCCTCAAA AAACACCGCC TCTTCCGCCG CGCCTACAGC
     TATTCGCGCG GACTCGCCTC AAGCGGACAG CTTGATGTCG GGCTGGTGTT
1051
     CGTCTGCTAT CAGGCAAACC TTGCCGACGG ATTCATCTTC GTGCAAAACC
1101
     TCCTCAACGG CGAACCGCTG GAAGAATACA TCAGCCCCTT CGGCGGCGGC
1151
     TATTTCTTCG TCTTGCCCGG CGTGGAAAAA GGCGGCTTTT TGGGGCAAGG
     GCTGCTGGGC GTATAA
```

#### This corresponds to the amino acid sequence <SEQ ID 2564; ORF 748>: m748.pep

```
MSKKQPAQPT RRTLFKTAIA AGAVGAIGGY LGGKKQGETA ERTAESQHSP
     QAYPCYGEHQ AGIVTPQQAF SIMCAFDVTA QSAKQLENLF RTLTARIEFL
 51
101
    TQGGEYQDGD DKLPPAGSGI LGKAFNPDGL TVTVGVGSSL FDGRFGLKDK
151 KPIHLQEMRD FSNDKLQKSW CDGDLSLQIC AFTPETCQAA LRDIIKHTVQ
    TAVIRWSIDG WOPKSEPGAM AARNLLGFRD GTGNPKVSDP KTADEVLWTG
    VAANSLDEPE WAKNGSYQAV RLIRHFVEFW DRTPLQEQTD IFGRRKYSGA
251
    PMDGKKEADQ PDFAKDPEGD ITPKDSHIRL ANPRDPEFLK KHRLFRRAYS
301
    YSRGLASSGO LDVGLVFVCY QANLADGFIF VQNLLNGEPL EEYISPFGGG
401 YFFVLPGVEK GGFLGQGLLG V*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 748 shows 95.0% identity over a 421 aa overlap with a predicted ORF (ORF 748) from N. gonorrhoeae

m748/g748	95.0% identity in 421	l aa overlap	
	10 20	30 40	50 60
m748.pep	MSKKQPAQPTRRTLFKTAIAA	AGAVGAIGGYLGGKKQGETA	ERTAESOHSPOAVPCVCEHO
	_   ;;	:	1111111111111111111111
g748	MSQNQPAQPTKRNLFKTALAV	GAIGAIGGYFGGKKOGETA	ERTAESOHSPOAYPCYCEHO
	10 20	30 40	50 60
	70 80	90 100	110 120
m748.pep	AGIVTPQQAFSIMCAFDVTAC	SAKQLENLFRTLTARIEFL	TOGGEYODGDDKLPPAGSGT
		1   1   1   1   1   1   1   1   1   1	111111111111111111111111111111111111111
g748	AGIVTPROAFSIMCAFDVTAC	SAKQLENLFRTLTARIEFL	TOGGEYODGDDKI PSAGSGT
	70 80	90 100	110 120
	130 140	150 160	170 180
m748.pep	LGKAFNPDGLTVTVGVGSSLF	DGRFGLKDKKPIHLQEMRD	FSNDKLOKSWCDGDI.ST.OTC
	- 1   1   1   1   1   1   1   1   1   1	1111111111 : 111111	1
g748	LGKAFNPDGLTVTVGVGSSLF	DGRFGLKDKKTVHLOEMRD	FPNDKI OKSWODEDT STOTC
	130 140	150 160	170 180
			2.0 180
	190 200	210 220	230 240
m748.pep	AFTPETCQAALRDIIKHTVQT	AVIRWSIDGWQPKSEPGAM	AARNLLGFRDGTGNPKVSDP

g748	:	TAQTAVIRW	SIDGWQPKSE	 PGAMAARNLI		  VSDP
	190	200	210	220	230	240
		260	270	280	290	300
m748.pep	KTADEVLWTGVAANSLD	EPEWAKNGS	YOAVRLIRHF	VEFWDRTPLO	EQTDIFGRRK	YSGA
g748		EPEWAKNGS	YQAVRLIRRF	VEFWDRTPLQ	EQTDIFGRRK	 YSGA
	250	260	270	280	290	300
		320	330	340	350	360
m748.pep	PMDGKKEADQPDFAKDP	EGDITPKDS:	HIRLANPRDP	EFLKKHRLFR	RAYSYSRGLA	SSGO
		11111111	1:111111	111111 111	111111111111111111111111111111111111111	1111
g748	PMDGKKEADQPDFAKDP	EGDITPKDS	HMRLANPRDP	EFLKKHCLFR	RAYSYSRGPA	SSGQ
	310	320	330	340	350	360
	370	380	390	400	410	420
m748.pep	LDVGLVFVCYQANLADG			FGGGYFFVI.P	GVEKGGELGO	420 GTTC
	111111111111111					
g748	LDVGLVFVCYQANLADG	FIFVQNLLN	GEPLEEYISP	FGGGYFFVLP	GVGKGGFLGO	GI.PG
	370	380	390	400	410	420
m748.pep	vx					
~7.40	11					
g748	vx					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2565>: a748.seq

```
ATGAGCAAAA ACCAACCCGC ACAACCGACC AGGCGCACTC TTTTTAAAAC
      CGCGATCGCA GCTGGAGCAG TCGGCGCAAT CGGAGGTTAT CTCGGCGGCA
  51
 101 AAAAACGGGG CGAAACCGCC GAACGCACCG CCGAAAGCCA ACACTCGCCC
 151 CAAGCCTATC CCTGCTACGG CGAACATCAG GCAGGCATCG TTACGCCGCA
 201 GCAGGCGTTT TCGATTATGT GCGCCTTCGA CGTAACCGCG CAAAGTGCCA
 251 AGCAGCTGGA AAACCTGTTC CGCACGCTGA CCGCCCGCAT CGAGTTTCTC
 301 ACCCAAGGCG GCGAATACCA AGACGGCGAC GACAAACTTC CGCCAGCCGG
     CAGCGGCATT TTGGGCAAAG CCTTCAACCC CGACGGGTTG ACCGTTACCG
 351
     TGGGGGTGGG CAGCAGCCTG TTTGACGGCC GGTTCGGACT CAAAGACAAA
 401
 451 AAACCGATTC ATTTGCAGGA AATGCGCGAC TTCTCCAACG ATAAGCTGCA
 501 AAAAAGCTGG TGCGACGGCG ATTTGAGCCT GCAAATCTGT GCCTTCACCC
     CCGAAACCTG CCAAGCCGCC CTGCGCGACA TCATCAAACA CACCGTCCAA
 551
 601 ACCGCCGTTA TCCGCTGGAG TATCGACGGG TGGCAGCCTA AATCCGAACC
 651
     CGGCGCGATG GCGGCGCGA ACCTGTTGGG CTTCCGCGAC GGCACGGGCA
     ACCCCAAAGT TTCCGACCCC AAAACTGCCG ACGAGGTTTT GTGGACGGGG
 701
     GTGGCCGCCA ACAGCCTCGA CGAACCGGAG TGGGCGAAAA ACGGCAGCTA
     TCAGGCAGTC CGCCTTATCC GCCACTTTGT TGAGTTTTGG GACAGGACGC
 801
     CGCTTCAAGA GCAAACCGAC ATTTTCGGGC GGCGCAAATA CAGCGGCGCG
 851
 901 CCGATGGACG GCAAAAAAGA AGCCGACCAA CCGGATTTTG CCAAAGACCC
     CGAGGGGAAT ACCACGCCCA AAGACAGCCA TATACGCCTG GCGAATCCGC
 951
1001 GCGATCCCGA GTTCCTTAAA AAACACCGCC TCTTCCGCCG CGCCTACAGC
     TATTCGCGCG GACTCGCCTC AAGCGGACAG CTTGATGTCG GGCTGGTGTT
1051
     CGTCTGCTAT CAGGCAAACC TTGCCGACGG ATTCATCTTC GTGCAAAACC
1101
     TCCTCAACGG CGAACCGCTG GAAGAATACA TCAGCCCCTT CGGCGGCGGC
1151
     TATTTCTTCG TCTTGCCCGG CGTGGAAAAA GGCGGCTTTT TGGGGCAAGG
1201
1251 GCTGCTGGGC GTATAA
```

This corresponds to the amino acid sequence <SEQ ID 2566; ORF 748.a>: a748.pep

```
1 MSKNQPAQPT RRTLFKTAIA AGAVGAIGGY LGGKKRGETA ERTAESQHSP
51 QAYPCYGEHQ AGIVTPQQAF SIMCAFDVTA QSAKQLENLF RTLTARIEFL
101 TQGGEYQDGD DKLPPAGSGI LGKAFNPDGL TVTVGVGSSL FDGRFGLKDK
151 KPIHLQEMRD FSNDKLQKSW CDGDLSLQIC AFTPETCQAA LRDIIKHTVQ
201 TAVIRWSIDG WQPKSEFGAM AARNLLGFRD GTGNPKVSDP KTADEVLWTG
251 VAANSLDEPE WAKNGSYQAV RLIRHFVEFW DRTPLQEQTD IFGRRKYSGA
301 PMDGKKEADQ PDFAKDPEGN TTPKDSHIRL ANPRDPEFLK KHRLFRRAYS
351 YSRGLASSGQ LDVGLVFVCY QANLADGFIF VQNLLNGEPL EEYISPFGGG
401 YFFVLPGVEK GGFLGQGLLG V*
```

Computer analysis of this amino acid sequence gave the following results:



Homology with a predicted ORF from N meningitidis
ORF 748 shows 99.0% identity over a 421 aa overlap with a predicted ORF (ORF 748) from N. meningitidis:

a748/m748	99.0% identity in 421	aa overlap	
a748. <b>p</b> ep	10 20 MSKNQPAQPTRRTLFKTAIAAG	30 40 AVGAIGGYLGGKKRGETAERTA	50 60 ESQHSPQAYPCYGEHQ
m748	:	111111111111111111	1111111111111111
a748.pep	70 80 AGIVTPQQAFSIMCAFDVTAQS                      AGIVTPQQAFSIMCAFDVTAQS		[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
	70 80	90 100 150 160	110 120
a748.pep	LGKAFNPDGLTVTVGVGSSLFD	GRFGLKDKKPIHLQEMRDFSND	
m748	LGKAFNPDGLTVTVGVGSSLFD 130 140	GRFGLKDKKPIHLQEMRDFSND 150 160	KLQKSWCDGDLSLQIC 170 180
a748.pep	190 200 AFTPETCQAALRDIIKHTVQTA'		
m748	AFTPETCQAALRDIIKHTVQTA 190 200	VIRWSIDGWQPKSEPGAMAARN 210 220	LLGFRDGTGNPKVSDP 230 240
a748.pep	250 260 KTADEVLWTGVAANSLDEPEWAI		
m748	KTADEVLWTGVAANSLDEPEWAN 250 260	KNGSYQAVRLIRHFVEFWDRTPI 270 280	QEQTDIFGRRKYSGA 290 300
a748.pep	310 320 PMDGKKEADQPDFAKDPEGNTTI                        PMDGKKEADQPDFAKDPEGDITI 310 320		11111111111
a748.pep	370 380 LDVGLVFVCYQANLADGF1FVQN	390 400 NLLNGEPLEEYISPFGGGYFFVI	410 420
m748	LDVGLVFVCYQANLADGF1FVQN 370 380	ILLNGEPLEEYISPFGGGYFFVI 390 400	PGVEKGGFLGQGLLG 410 420
a748.pep	vx II		
m748	vx		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2567>: g749.**se**q

1	ATGAGAAAAT	TCAATTTGAC	CGCATTGTCC	GTGATGCTTG	CCTTGGGTTT
51	GACCGCGTGC	CAGCCGCCGG	AGGCGGAGAA	AGCCGCGCCG	GCCGCGTCCG
101	GTGAGACCCA	ATCCGCCAAC	GAAGGCGGTT	CGGTCGGTAT	CGCCGTCAAC
151	GACAATGCCT	GCGAACCGAT	GAATCTGACC	GTGCCGAGCG	GACAGGTTGT
201	GTTCAATATT	AAAAACAACA	GCGGCCGCAA	GCTCGAATGG	GAAATCCTGA
251	AGGGCGTGAT	GGTGGTGGAC	GAACGCGAAA	ATATCGCCCC	GGGGCTTTCC
301	GACAAAATGA	CCGTAAccct	GCTGCCGGGC	GAATACGAAA	TGACCTGCGG
351	CCTTTTGACC	AATCCGCGCG	GCAAGCTGGT	GGTAGCCGAC	AGCGGCTTTA
401	AAGACACCGC	CAACGAAGCG	GATTTGGAAA	AACTGCCCCA	ACCGCTCGCC
451	GACTATAAAG	CCTACGTTCA	AGGCGAGGTT	AAAGAGCTGG	CGGCGAAAAC
501	CAAAACCTTT	ACCGAAGCCG	TCAAAGCAGG	CGACATTGAA	AAGGCGAAAT
551	CCCTGTTTGC	CGCCACCCGC	GTCCATTACG	AACGCATCGA	ACCGATTGCC
601	GAGCTTTTCA	GCGAACTCGA	CCCCGTCATC	GATGCGTGTG	AAGACGACTT
651	CAAAGACGGT	GCGAAAGATG	CCGGGTTTAC	CGGCTTCCAC	CGTATCGAAC
701	ACGCCCTTTG	GGTGGAAAAA	GACGTATCCG	GCGTGAAGGA	AACCGCGGCC
751	AAACTGATGA	CCGATGTCGA	AGCCCTGCAA	AAAGAAATCG	ACCCAPTCCC

Sente 300 ... . No ... 5 ... 6 ... 6



```
801 Gttcctccg Ggcaaagtgg Tcggcgcgc Gtccgaactg Attgaagaag
851 CGGCGGCAG TAAAATCAGC GGCGAAGAAG ACCGttaCAG CCACACCGAT
901 TTGAGCGACT TCCAAGCTAA TGCGGACGGA TCTAAAAAAA TCGTCGATTT
951 GTTCCGTCCG TTGATTGAGG CCAAAAACAA AGCCTTGTTG GAAAAAACCG
1001 ATACCAACTT CAAACAGGTC AACGAAATC TGGCGAAATA CCGCACCAAA
1051 GACGGTTTTG AAACCTACGA CAAGCTGAGC GAAGCCGACC GCAAAGCATT
1101 ACAGGCTCCT ATTACACGCGC TTGCCGAAGA CCTTGCCCAA CTTCGCGGCA
```

This corresponds to the amino acid sequence <SEQ ID 2568; ORF 749.ng>: g749.pep

```
1 MRKFNLTALS VMLALGLTAC QPPEAEKAAP AASGETQSAN EGGSVGIAVN
51 DNACEPMNLT VPSGQVVFNI KNNSGRKLEW EILKGVMVVD ERENIAPGLS
101 DKMTVTLLPG EYEMTCGLLT NPRGKLVVAD SGFKDTANEA DLEKLPQPLA
151 DYKAYVQGEV KELAAKTKTF TEAVKAGDIE KAKSLFAATR VHYERIEPIA
201 ELFSELDPVI DACEDDFKDG AKDAGFTGFH RIEHALWVEK DVSGVKETAA
251 KLMTDVEALQ KEIDALAFPP GKVVGGASEL IEEAAGSKIS GEEDRYSHTD
301 LSDFQANADG SKKIVDLFRP LIEAKNKALL EKTDTNFKQV NEILAKYRTK
351 DGFETYDKLS EADRKALQAP INALAEDLAQ LRGILGLK*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2569>: m749.seq

```
ATGAGAAAAT TCAATTTGAC CGCATTGTCC GTGATGCTTG CCTTAGGTTT GACCGCGTGC CAGCCGCCGG AGGCGGAGAA AGCTGCGCCG GCAGCGTCCG
  51
 101 GTGAGGCGCA AACCGCCAAC GAGGGCGGTT CGGTCAGTAT CGCCGTCAAC
      GACAATGCCT GCGAACCGAT GGAACTGACC GTGCCGAGCG GACAGGTTGT
 201 GTTCAATATT AAAAACAACA GCGGCCGCAA GCTCGAATGG GAAATCCTGA
 251 AAGGCGTGAT GGTGGTGGAC GAGCGCGAAA ACATCGCCCC CGGACTTTCC
 301 GATAAAATGA CCGTCACCCT GTTGCCGGGC GAATACGAAA TGACTTGCGG
 351 TCTTTTGACC AATCCGCGCG GCAAGCTGGT GGTAACCGAC AGCGGCTTTA
     AAGACACCGC CAACGAAGCG GATTTGGAAA AACTGTCCCA ACCGCTCGCC
 401
     GACTATAAAG CCTACGTTCA AGGCGAGGTT AAAGAGCTGG TGGCGAAAAC
 451
 501 CAAAACTTTT ACCGAAGCCG TCAAAGCAGG CGACATTGAA AAGGCGAAAT
      CCCTGTTTGC CGACACCCGC GTCCATTACG AACGCATCGA ACCGATTGCC
 551
 601 GAGCTTTTCA GCGAACTCGA CCCCGTCATC GATGCGCGTG AAGACGACTT
      CAAAGACGGC GCGAAAGATG CCGGATTTAC CGGCTTTCAC CGTATCGAAT
 651
 701 ACGCCCTTTG GGTGGAAAAA GACGTGTCCG GCGTGAAGGA AATTGCAGCG
 751
      AAACTGATGA CCGATGTCGA AGCCCTGCAA AAAGAAATCG ACGCATTGGC
      GTTTCCTCCG GGCAAGGTGG TCGGCGGCGC GTCCGAACTG ATTGAAGAAG
TGGCGGGCAG TAAAATCAGC GGCGAAGAAG ACCGGTACAG CCACACCGAT
 801
 851
 901
      TTGAGCGACT TCCAAGCCAA TGTGGACGGA TCTAAAAAAA TCGTCGATTT
951 GTTCCGTCCG CTGATCGAGG CCAAAAACAA AGCCTTGTTG GAAAAAACCG
1001 ATACCAACTT CAAACAGGTC AACGAAATTC TGGCGAAATA CCGGACTAAA
      GACGGTTTTG AAACCTACGA CAAGCTGGGC GAAGCCGACC GCAAAGCGTT
1051
1101
      ACAGGCCTCT ATTAACGCGC TTGCCGAAGA CCTTGCCCAA CTTCGCGGCA
1151 TACTCGGCTT GAAATAA
```

This corresponds to the amino acid sequence <SEQ ID 2570; ORF 749>: m749.pep

```
1 MRKFNLTALS VMLALGLTAC OPPEAEKAAP AASGEAQTAN EGGSVSIAVN
51 DNACEPMELT VPSGQVVFNI KNNSGRKLEW EILKGVMVVD ERENIAPGLS
101 DKMTVTLLPG EYEMTCGLLT NPRGKLVVTD SGFKDTANEA DLEKLSQPLA
151 DYKAYVQGEV KELVAKTKTF TEAVKAGDIE KAKSLFADTR VHYERIEPIA
201 ELFSELDPVI DAREDDFKDG AKDAGFTGFH RIEYALWVEK DVSGVKEIAA
251 KLMTDVEALQ KEIDALAFPP GKVVGGASEL IEEVAGSKIS GEEDRYSHTD
301 LSDFQANVDG SKKIVDLFRP LIEAKNKALL EKTDTNFKQV NEILAKYRTK
351 DGFETYDKLG EADRKALQAS INALAEDLAQ LRGILGLK*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 749 shows 96.1% identity over a 388 aa overlap with a predicted ORF (ORF 749) from N. gonorrhoeae



m749.pep	70 VPSGQVVFNIKNNS            VPSGQVVFNIKNNS	 GRKLEWEIL	 KGVMVVDEREN	  IAPGLSDKM	1111111111	HILLII
	70	80	90	100	110	120
m749.pep	130 NPRGKLVVTDSGFK					
g749			 KLPQPLADYKA 150	 YVQGEVKELI 160	:	VKAGDIE
	190	200	210	220	230	240
m749.pep	KAKSLFADTRVHYE		SELDPVIDARE	DDFKDGAKD?	AGFTGFHRIE:	YALWVEK
g749	KAKSLFAATRVHYEI			DDFKDGAKDA 220	AGFTGFHRIE	HALWVEK 240
	250	260	270	280	290	300
m749.pep	DVSGVKEIAAKLMTI	OVEALQKEII	ALAFPPGKVV	GGASELIEEV	AGSKISGEE	DRYSHTD
g749	DVSGVKETAAKLMTI 250	OVEALQKEID 260	ALAFPPGKVV	GGASELIEEZ 280	AGSKISGEEI	DRYSHTD 300
	310	320	330	340	350	360
m749.pep	LSDFQANVDGSKKIV	/DLFRPLIEA	KNKALLEKTD'		AKYRTKDGFE	TYDKLG
g <b>7</b> 49	LSDFQANADGSKKIV			TNFKQVNEII 340	AKYRTKDGFE	TYDKLS 360
	370	380	389	340	330	360
m749.pep	EADRKALQASINALA		LGLKX			
g749	EADRKALQAPINALA					

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2571>: a749.seq

```
ATGAGAAAAT TCAATTTGAC CGCATTGTCC GTGATGCTTG CCTTAGGTTT
      GACCGCGTGC CAGCCGCCGG AGGCGGAGAA AGCTGCGCCG GCAGCGTCCG
  51
      GTGAGGCGCA AACCGCCAAC GAGGGCGGTT CGGTCAGTAT CGCCGTCAAC
 101
 151 GACAATGCCT GCGAACCGAT GGAACTGACC GTGCCGAGCG GACAGGTTGT
 201 GTTCAATATT AAAAACAACA GCGGCCGCAA GCTCGAATGG GAAATCCTGA
251 AAGGCGTGAT GGTGGTGGAC GAGCGCGAAA ACATCGCCCC CGGACTTTCC
 301 GATAAAATGA CCGTCACCCT GTTGCCGGGC GAATACGAAA TGACTTGCGG
      TCTTTTGACC AATCCGCGCG GCAAGCTGGT GGTAACCGAC AGCGGCTTTA
 351
 401 AAGACACCGC CAACGAAGCG GATTTGGAAA AACTGTCCCA ACCGCTCGCC
 451
      GACTATAAAG CCTATGTTCA AGGCGAAGTC AAAGAGCTGG TGGCGAAAAC
501 CAAAACCTTT ACCGAAGCCG TCAAAGCAGG CGACATTGAA AAGGCGAAAT
551 CCCTGTTTGC CGACACCCGC GTCCATTACG AACGCATCGA ACCGATTGCC
      GAGCTTTTCA GCGAACTCGA CCCCGTCATC GATGCGCGTG AAGACGACTT
 601
 651
      CAAAGACGGC GCGAAAGATG CCGGATTTAC CGGCTTCCAC CGTATCGAAT
 701
      ACGCCCTTTG GGTGGAAAAA GACGTGTCCG GCGTGAAGGA AATTGCAGCG
      AAACTGATGA CCGATGTCGA AGCCCTGCAA AAAGAAATCG ACGCATTGGC
GTTTCCTCCG GGCAAGGTGG TCGGCGGCGC GTCCGAACTG ATTGAAGAAG
 751
 801
 851
      TGGCGGGCAG TAAAATCAGC GGCGAAGAAG ACCGGTACAG CCACACCGAT
 901
      TTGAGCGACT TCCAAGCCAA TGTGGACGGA TCGAAAAAAA TCGTCGATTT
      GTTCCGTCCG TTGATCGAGA CCAAAAACAA AGCCTTGTTG GAAAAAACCG
 951
1001
      ATACCAACTT CAAACAGGTC AACGAAATTC TGGCGAAATA CCGGACTAAA
1051
      GACGGTTTTG AAACCTACGA CAAGCTGGGC GAAGCCGACC GCAAAGCGTT
      ACAGGCCTCT ATTAACGCGC TTGCCGAAGA CCTTGCCCAA CTTCGCGGCA
1101
1151 TACTCGGCTT GAAATAA
```

## This corresponds to the amino acid sequence <SEQ ID 2572; ORF 749.a>: a749.pep

1	MRKFNLTALS	VMLALGLTAC	<b>QPPEAEKAAP</b>	AASGEAQTAN	EGGSVSIAVN
51	DNACEPMELT	VPSGQVVFNI	KNNSGRKLEW	EILKGVMVVD	ERENIAPGLS
101	DKMTVTLLPG	EYEMTCGLLT	NPRGKLVVTD	SGFKDTANEA	DLEKLSOPLA
151	DYKAYVQGEV	KELVAKTKTF	TEAVKAGDIE	KAKSLFADTR	VHYERIEPTA
201	ELFSELDPVI	DAREDDFKDG	AKDAGFTGFH	RIEYALWVEK	DVSGVKETAA
251	KLMTDVEALQ	KEIDALAFPP	GKVVGGASEL	IEEVAGSKIS	GEEDRYSHTD

301 LSDFQANVDG SKKIVDLFRP LIETKNKALL EKTDTNFKQV NEILAKYRTK 351 DGFETYDKLG EADRKALQAS INALAEDLAQ LRGILGLK*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N meningitidis

ORF 740 - 1 - - - 00 700 in the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of th

ORF 749 shows 99.7% identity over a 388 aa overlap with a predicted ORF (ORF 749) from N. meningitidis:

a749/m749	99.7% identity in 308 aa overlap
a749.pep	10 20 30 40 50 60 MRKFNLTALSVMLALGLTACQPPEAEKAAPAASGEAQTANEGGSVSIAVNDNACEPMELT
m749	
a749.pep	70 80 90 100 110 120 VPSGQVVFNIKNNSGRKLEWEILKGVMVVDERENIAPGLSDKMTVTLLPGEYEMTCGLLT
m749	
	70 80 90 100 110 120
a749.pep	NPRGKLVVTDSGFKDTANEADLEKLSQPLADYKAYVQGEVKELVAKTKTFTEAVKAGDIE
m749	NPRGKLVVTDSGFKDTANEADLEKLSQPLADYKAYVQGEVKELVAKTKTFTEAVKAGDIE 130 140 150 160 170 180
a749.pep	190 200 210 220 230 240 KAKSLFADTRVHYERIEPIAELFSELDPVIDAREDDFKDGAKDAGFTGFHRIEYALWVEK
m749	
a749.pep	250 260 270 280 290 300
m749	DVSGVKEIAAKLMTDVEALQKEIDALAFPPGKVVGGASELIEEVAGSKISGEEDRYSHTD
	250 260 270 280 290 300
a749.pep	LSDFQANVDGSKKIVDLFRPLIETKNKALLEKTDTNFKQVNEILAKYRTKDGFETYDKLG
m749	LSDFQANVDGSKKIVDLFRPLIEAKNKALLEKTDTNFKQVNEILAKYRTKDGFETYDKLG 310 320 330 340 350 360
a749.pep	370 380 389 EADRKALQASINALAEDLAQLRGILGLKX
m749	EADRKALQASINALAEDLAQLRGILGLKX 370 380

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2573>:

	1				
1	GTGAAACCGC	GTTTTTATTG	GGCAGcctGC	GCCGTCCTGC	CGGCCGCCTG
51	TTCGCCCGAA	CCTGCCGCCG	AAAAAACTGT	ATCCGCCGCA	TCCCAAGCCG
101	CATCCACACC	TGTCGCCACG	CTGACCGTGC	CGACCGCGCG	GGGCGATGCC
151	. GTTGTGCCGA	AGAATCCCGA	ACgcgtcgcc	gtgtAcgaCt	ggGCGGCGTt
201	. ggaTACGCTG	ACCGAGCCGG	GCGTGAATGT	GGGCGCAACC	ACCGCGCCGG
251	. TGCGCGTGGA	CTATTTGCAG	CCTGCATTTG	ACAAGGCGGC	AACGGTGGGG
301	ACGCTGTTTG	AGCCCGATTG	CGAATCCCTG	CACCGCCACA	ATCCGCAGTT
351	TGTCATTACC	GGCGGGCCGG	GTGCGGAAGC	GTATGAACAG	TTGGCGAAAA
401	ACGCGACCAC	CATAGATTTG	ACGGTGGACA	ACGGCAATAT	CCGCACCAGC
451	GGCGAGAAGC	AGATGGAGAC	CCTGTCGCGG	ATTTTCGGTA	AGGAAGCGCG
501	CGTGGCGGAA	TTGAATGCGC	AGATTGACGC	GCTGTTCGCC	CAAAAGCGCG
551	AAGCCGCCAA	AGGCAAAGGA	CGCGGGCTGG	TGCTGTCGGT	TACAGGCAAC
601	AAGGTGTCCG	CCTTCGGCAC	GCAATCGCGG	TTGGCAAGTT	GGATACACGG
651	CGACATCGGC	CTGCCGCCCG	TGGACGAATC	TTTACGCAAC	GAAGGGCACG
701	GGCAGCCCGT	TTCCTTCGAA	TACATCAAAG	AGAAAAACCC	CGGCTGGATT
751	TTCATCATCG	ACCGCACCGC	CGCCATCGGG	CAGGAAGGGC	CGGCTGCCGT



```
801 GGAAGTGTTG GATAACGCGC TGGTATGCGG CACGAACGCT TGGAAGCGCA
851 AGCAAATCAT CGTCATGCCT GCCGCGAACT ACATTGTCGC GGGCGGCGCG
901 CGGCAGTTGA TACAGGCGGC GGAACAGTTG AAGGCGGCGT TTGAAAAGGC
951 AGAACCCGTT GCGGCGCAGT AG
```

# This corresponds to the amino acid sequence <SEQ ID 2574; ORF 750.ng>: g750.pep

```
1 VKPRFYWAAC AVLPAACSPE PAAEKTVSAA SQAASTPVAT LTVPTARGDA
51 VVPKNPERVA VYDWAALDTL TEPGVNVGAT TAPVRVDYLQ PAFDKAATVG
101 TLFEPDCESL HRHNPQFVIT GGPGAEAYEQ LAKNATTIDL TVDNGNIRTS
151 GEKQMETLSR IFGKEARVAE LNAQIDALFA QKREAAKGKG RGLVLSVTGN
201 KVSAFGTQSR LASWIHGDIG LPPVDESLRN EGHGQPVSFE YIKEKNPGWI
251 FIIDRTAAIG QEGPAAVEVL DNALVCGTNA WKRKQIIVMP AANYIVAGGA
301 RQLIQAAEQL KAAFEKAEPV AAQ*
```

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2575>: m750.seq

```
GTGAAACCGC GTTTTTATTG GGCAGCCTGC GCCGTCCTGC TGACCGCCTG
 51 TTCGCCCGAA CCTGCCGCCG AAAAAACTGT ATCCGCCGCA TCCGCATCTG
101 CCGCCACGCT GACCGTGCCG ACCGCGCGGG GCGATGCCGT TGTGCCGAAG
151 AATCCCGAAC GCGTCGCCGT GTACGACTGG GCGGCGTTGG ATACGCTGAC
201 CGAATTGGGC GTGAATGTGG GCGCAACCAC CGCGCCGGTG CGCGTGGATT
251 ATTTGCAGCC TGCATTTGAC AAGGCGGCAA CGGTGGGGAC GCTGTTCGAG
301 CCCGATTACG AAGCCCTGCA CCGCTACAAT CCTCAGCTTG TCATTACCGG
351 CGGGCCGGGC GCGGAAGCGT ATGAACAGTT AGCGAAAAAC GCGACCACCA
401 TAGATCTGAC GGTGGACAAC GGCAATATCC GCACCAGCGG CGAAAAGCAG
451 ATGGAGACCT TGGCGCGGAT TTTCGGCAAG GAAGCGCGCG CGGCGGAATT
     TAGATCTGAC GGTGGACAAC GGCAATATCC GCACCAGCGG CGAAAAGCAG
501 GAAGGCGCAG ATTGACGCGC TGTTCGCCCA AACGCGCGAA GCCGCCAAAG
551 GCAAAGGACG CGGGCTGGTG CTGTCGGTTA CGGGCAACAA GGTGTCCGCC
601 TTCGGCACGC AGTCGCGGTT GGCAAGTTGG ATACACGGCG ACATCGGCCT
651 ACCGCCTGTA GACGAATCTT TACGCAACGA GGGGCACGGG CAGCCTGTTT
701 CCTTCGAATA CATCAAAGAG AAAAACCCCG ATTGGATTTT CATCATCGAC
751 CGTACCGCCG CCATCGGGCA GGAAGGGCCG GCGGCTGTCG AAGTATTGGA
     TAACGCGCTG GTACGCGGCA CGAACGCTTG GAAGCGCAAG CAAATCATCG
851 TCATGCCTGC CGCGAACTAC ATTGTCGCGG GCGGCGCGCG GCAGTTGATT
901
     CAGGCGGCGG AGCAGTTGAA GGCGGCGTTT AAAAAGGCAG AACCCGTTGC
951 GGCGGGGAAA AAGTAG
```

# This corresponds to the amino acid sequence <SEQ ID 2576; ORF 750>: m750.pep

```
1 VKPRFYWAAC AVLLTACSPE PAAEKTVSAA SASAATLTVP TARGDAVVPK
51 NPERVAVYDW AALDTLTELG VNVGATTAPV RVDYLQPAFD KAATVGTLFE
101 PDYEALHRYN PQLVITGGPG AEAYEQLAKN ATTIDLTVDN GNIRTSGEKQ
151 METLARIFGK EARAAELKAQ IDALFACTRE AAKGKGRGLV LSVTGNKVSA
201 FGTQSRLASW IHGDIGLPPV DESLRNEGHG QPVSFEYIKE KNPDWIFIID
251 RTAAIGQEGP AAVEVLDNAL VRGTNAWKRK QIIVMPAANY IVAGGARQLI
301 QAAEQLKAAF KKAEPVAAGK K*
```

Computer analysis of this amino acid sequence gave the following results:

#### Homology with a predicted ORF from N. gonorrhoeae

ORF 750 shows 93.8% identity over a 322 aa overlap with a predicted ORF (ORF 750) from N. gonorrhoeae

m750/g750	93.8% ide	ntity in	1 322 aa c	verlap			
	10		20	30	40	50	
m750.pep	VKPRFYWAA(	CAVLLTAC	SPEPAAEKT	VSAASASA	ATLTVPTA	RGDAVVPKNPE	RVA
					1111111	1111111111	111
g750						RGDAVVPKNPE	RVA
	10	)	20	30	40	50	60
	60	70	80	90	100	110	
m750.pep	VYDWAALDTI	LTELGVNV	GATTAPVRV	DYLOPAFDKA		YEALHRYNPQL	(7T ጥ
			11111111			1:111:111:	111
g750	VYDWAALDTI	LTEPGVNV	'GATTAPVRV	DYLQPAFDKA	ATVGTLFEPD	CESLHRHNPQF	VIT
	70	)	80	90	100		120
	120	130	140	150	160	170	
m750.pep	GGPGAEAYE	LAKNATT	IDLTVDNGN		TLARIFGKEA	RAAELKAQIDAI	r.Fa
			1111111111		11:1111111	1:111:1111	

--- 4 ---

g750	GGPGAEAYEQI	LAKNATTII	DLTVDNGNI		FLSRIFGKEA	RVAELNAQIC	DALFA
	130	14	10	150	160	170	180
	180	190	200	210	220	230	
m750.pep	QTREAAKGKG	RGLVLSVT	enkvsafgt	QSRLASWIH	SDIGLPPVDE	SLRNEGHGOP	VSFE
				111111111			1111
g750	QKREAAKGKGF	RGLVLSVT			GDIGLPPVDE:	SLRNEGHGQP	VSFE
	190	20	00	210	220	230	240
	240	250	260	270	280	290	
m750.pep	YIKEKNPDWIE	TIIDRTAAI	GQEGPAAV			TVMPAANYTV	/AGCA
	1111111 111	1111111	1111111			111111111	
g750	YIKEKNPGWIE	TIIDRTAAI	GQEGPAAV	EVLDNALVC	TNAWKRKOI	IVMPAANYIV	AGGA
	250	26	50	270	280	290	300
	300	310	320				
m750.pep	RQLIQAAEQLE	<b>AAFKKAE</b>	VAAGKKX				
	-	111:111	111				
g750	RQLIQAAEQLK	· · · · · · · · · · · · · · · · · · ·					
	310	32	20				

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2577>: a750.seg

```
GTGAAACCGC GTTTTTATTG GGCAGCCTGC GCCGTCCTGC TGACCGCCTG
 51 TTCGCCCGAA CCTGCCGCCG AAAAAACTGT ATCCGCCGCA TCCGCATCTG
101 CCGCCACACT GACCGTGCCG ACCGCGGGG GCGATGCCGT TGTGCCGAAG
151 AATCCCGAAC GCGTCGCCGT GTACGACTGG GCGGCGTTGG ATACGCTGAC
201 CGAATTGGGT GTGAATGTGG GCGCAACCAC CGCGCCGGTG CGCGTGGATT
251 ATTTGCAGCC TGCATTTGAC AAGGCGGCAA CGGTGGGGAC GCTGTTCGAG
301 CCCGATTACG AAGCCCTGCA CCGCTACAAT CCTCAGCTTG TCATTACCGG
351 CGGGCCGGGC GCGGAAGCGT ATGAACAGTT GGCGAAAAAC GCGACCACCA
401 TAGATCTGAC GGTGGACAAC GGCAATATCC GCACCAGCGG CGAAAAGCAG
451 ATGGAGACCT TGGCGCGGAT TTTCGGCAAG GAAGCGCGCG CGGCGGAATT
501 GAAGGCGCAG ATTGACGCGC TGTTCGCCCA AACGCGCGAA GCCGCCAAAG
551 GCAAAGGACG CGGGCTGGTG CTGTCGGTTA CGGGCAACAA GGTGTCCGCC
601 TTCGGCACGC AGTCGCGGTT GGCAAGTTGG ATACACGGCG ACATCGGCCT
651 ACCGCCTGTA GACGAATCTT TACGCAACGA GGGGCACGGG CAGCCTGTTT
701 CCTTCGAATA CATCAAAGAG AAAAACCCCG ATTGGATTTT CATCATCGAC
751 CGTACCGCCG CCATCGGGCA GGAAGGGCCG GCGGCTGTCG AAGTATTGGA
801 TAACGCGCTG GTACGCGGCA CGAACGCTTG GAAGCGCAAG CAAATCATCG
851 TCATGCCTGC CGCGAACTAC ATTGTCGCGG GCGGCTCGCG GCAGTTGATT
     TAACGCGCTG GTACGCGGCA CGAACGCTTG GAAGCGCAAG CAAATCATCG
901 CAGGCGGCGG AGCAGTTGAA GGAGGCGTTT GAAAAGGCAG AACCCGTTGC
     GGCGGGGAAA GAGTAG
```

This corresponds to the amino acid sequence <SEQ ID 2578; ORF 750.a>: a750.pep

```
VKPRFYWAAC AVLLTACSPE PAAEKTVSAA SASAATLTVP TARGDAVVPK
 1
 51
    NPERVAVYDW AALDTLTELG VNVGATTAPV RVDYLQPAFD KAATVGTLFE
101 PDYEALHRYN POLVITGGPG AEAYEQLAKN ATTIDLTVDN GNIRTSGEKQ
151 METLARIFGK EARAAELKAQ IDALFAQTRE AAKGKGRGLV LSVTGNKVSA
201
    FGTQSRLASW IHGDIGLPPV DESLRNEGHG QPVSFEYIKE KNPDWIFIID
    RTAAIGQEGP AAVEVLDNAL VRGTNAWKRK QIIVMPAANY IVAGGSRQLI
251
    QAAEQLKEAF EKAEPVAAGK E*
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. meningitidis

ORF 750 shows 98.8% identity over a 321 aa overlap with a predicted ORF (ORF 750) from N. meningitidis:

a750/m750	98.8% identity	in 321 aa	overlap			
	10	20	30	40	50	60
a750. <b>pe</b> p	VKPRFYWAACAVLL'	TACSPEPAAE	KTVSAASASA	ATLTVPTARG	DAVVPKNPER	WAVYDW
		111111111	111111111		11111111111	FEETT
m750	VKPRFYWAACAVLL'	<b>FACSPEPAAE</b>	KTVSAASASA	ATLTVPTARG	DAVVPKNPER	VAVYDW
	10	20	30	40	50	60
	70	80	90	100	110	120
a750. <b>pe</b> p	AALDTLTELGVNVG	ATTAPVRVDY	LQPAFDKAAT	/GTLFEPDYE	ALHRYNPOLV	ITGGPG
	111111111111111		11111111111		1111111111	11111
m750	AALDTLTELGVNVG	ATTAPVRVDY	LOPAFDKAATI	GTLFEPDYE	ALHRYNPOLV	ITGGPG

	70	80	90	100	110	120
a750.pep	130 AEAYEQLAKNATTI	140 DLTVDNGNI	150 RTSGEKQMETI	160 ARIFGKEAR	170 AAELKAQIDAI	180 LFAQTRE
m750			11111111111	111111111	ELLI FILLE	 LFAQTRE
750	190	200	210	220	230	180 240
a750.pep	AAKGKGRGLVLSVI	11111111				111111
m750	AAKGKGRGLVLSVI 190	GNKVSAFGT( 200	OSRLASWIHGD 210	IGLPPVDESI 220	RNEGHGOPVS 230	SFEYIKE 240
	250	260	270	280	290	300
a750.pep	KNPDWIFIIDRTAA			11111111111	111111111	1.111
m750	KNPDWIFIIDRTAA 250	IGQEGPAAVI 260	EVLDNALVRGT 270	NAWKRKQIIV 280	MPAANYIVAG	GARQLI 300
	310	320			250	300
a750.pep	QAAEQLKEAFEKAE				*	
m750	QAAEQLKAAFKKAE 310	. ,				

g751.seq not found yet

g751.pep not found yet

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2579>: m751.seq..

```
1 ATGGCTTGGA GTATGTTTGC CACAACCCAA GCCGATAGAG CGGTAAGGTC
      TGCAACTGCA CCTAAAGAAA TGTGGTTCCA TAAGAAGATA ATAGATGAAA
  51
 101 AAACAGGTAA AGTATCCTTT GATACCAGAC AAATTTGGTC ATTGAATGAT
 151 TTAAGCAAGG AAGAACTGGC AAGCATTCAA GACACAAATG GCAAAGTTAT
      TACTGTGTCT AATCCTGGTA TTTTCAATAA TCGAGAAGAT TCATTAAGCA
 251 ACGCAGCAAA ACAAAATCGT AATAGTACAA ACGGTAGTGG TGTTATTGCA
 301 GTCATGAATC CTCCAACAGG GAAATATAAA TCTGATTCTA ATAACAAAAT
 351 AAAAGATTTT TTATGGCTCG GTTCAAGTCT TGTTTCTGAA CTGATGTATG
 401
      TCGGTTACGA CCAATTAAAT AATAAAGTGT TCCAAGGCTA TTTACCCAAA
 451 ACCAATTCAG AAAAACTGAA TCAAGATATT TATCGAGAGG TTCAAAAAAT
 501 GGGTAACGGC TGGTCGGTTG ATACCAGTAA TCACAGTCGT GGGGGAATTA
 551 CAGCAAGCGT TTCCTTAAAA GATTGGGTAA ACAATCAAAA ACAAAATGGC
601 ATTGCCCCAA TCAGAAAAGC ACGTTTCTAT GGTACAGCCA CAAATGTGCA
 651 GAATGATTAC GCCGATGTTT TACAGAAAAA CGGCTATACC TATACGGGTG
     CAGACGGCAA AACTTATAAC AGCGGATCCT ACTCAATCGT GCATGATAAA
 701
751 GATTTTGTGG GGAACAAATG GATACCTTTC TTGCTAGGAA CCAATGACAC
801 CACACAAGGT ACATGTAAGG GGTTGTGCTA TTCGCATAGC AGTTATTTTG
851 CGGAGGTGCC AAAAGCAGGT ACAAAAGAAT TTGATGACTA TGTAAAAATA
901 TGGGGTGAAG TTGAATATGA CGCTCAAGGT AAGCCAATTA ACAAATCTAA
951 ACCCATACTG GTAGAACCAA ACAAAACAAA AGATAATGAA AAATATGAAA
1001 AAGAAGCTTT CTAA
```

This corresponds to the amino acid sequence <SEQ ID 2580; ORF 751>: m751.pep..

1 MAWSMFATTQ ADRAVRSATA PKEMWFHKKI IDEKTGKVSF DTRQIWSLND
51 LSKEELASIQ DTNGKVITVS NPGIFNNRED SLSNAAKQNR NSTNGSGVIA
101 VMNPPTGKYK SDSNNKIKDF LWLGSSLVSE LMYVGYDQLN NKVFQGYLPK
151 TNSEKLNQDI YREVQKMGNG WSVDTSNHSR GGITASVSLK DWVNNQKQNG
201 IAPIRKARFY GTATNVQNDY ADVLQKNGYT YTGADGKTYN SGSYSIVHDK
251 DFVGNKWIPF LLGTNDTTQG TCKGLCYSHS SYFAEVPKAG TKEFDDYVKI
301 WGEVEYDAQG KPINKSKPIL VEPNKTKDNE KYEKEAP*

a751.seq not found yet

a751.pep not found yet

```
g752.seq not found yet g752.pep not found yet
```

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2581>: m752.seq..

```
ATGAAAATTT CCAGACCTCC GGAATTTACC CTGTTGCAAC AGGAATATAT
  51 GCAGCATCTC ACTGAAAGAA TGACGCAAAT TGCCAAGCTG CTGAATTCTT
 101 CCGCAAACAA TCCTGATATA GACATTCCCG ATTTTCTTAC TGAAATCAAA
 151 GATTATTCAG AATTTTCCGT GACAGATGAA AATGGAACCT ACCTGCATTG
 201 GGACAAATTC CGCCGGATTC ACACGGAAGA TACGCGGATG AAATGGCGCG
      CCGTTAAGGA AAGCCGCAAA AAAATCCAAA AACCAATTGA TTTCCCGTTT
 301 GAACATCAGT TTTGGTTCTG CATTCCCGAC TCTTTGCAGG CACGGCTTCA
 351 TTTGATTGAC AAAAGCTGCG GCAGTTCTAT CGGCACGTCT AGCTTGGGTG
 401 GCTTCGGCAG AAGCGAGCAA AACAGATTCT TGCTCAAGTC TCTGATTATG
     GAAGAAGCGA TTACATCCGC CCAACTGGAA GGTGCGGCTA CCACGCGTAA
 451
     AGTGGCCAAG GATATGCTCA AATCGCAGCG TAAACCCAAA ACAAAAGACG
 551
     AAATCATGAT AGTGAACAAC TATCACTTGA TGAAAAAAGC GGTAGAATTG
 601 AAAAATACGC CGTTAAGTGT TGAAATGATT TTGGATTTGC ACCGCATTGC
 651 TACCAGTAAC GCTATTGAAA ACAAGGCCGA GCCCGGACAA TTCAGGCAGG
 701 ATGACGAAAT CTTTATCGCC GATATCAATG GTAACAGCCT GTATCAACCA
 751 CCGCCGCACG GACAGGTTCA TACGCTGATG GAAGAGGTGT GTGCGTTTGC
 801 CAATAATACC TATGACGGCG TGGAAAATCC GTTTATCCAT CCGGTTGTCC
     AAGCTATTAT CTTGCATTTC CTCATCGGCT ACATCCACCC ATTTGGTGAT
 851
 901 GGCAACGGGC GGACAGCGCG GGCTTTGTTC TATTGGTTTA TGCTCAAAAA
 951 CGGCTACTGG CTATTTGAAT ACATATCCAT CAGCCGTCTT CTGAAAAACG
1001
     CTCCTGCCCA ATACGCCAAA TCCTATTTGT ATGCGGAAAC TGACGATTTA
     GATTTAACCT ATTTCATCTA TTACCAATGC GATATTATCA AGCGGGCGGT
1051
      TGCCGATTTG GAGCACTACA TTTCCGACAA ACAAAAACAC CAACAGGAAT
1101
      TCAAAGCAGC GATTGCCCAA TATACTGAAA AGATAGGAAA GTTGAACCAA
1151
     CGGCAAATTG GTATCCTGCA AAAAGCAGTG GAAGAAAGCG GAAAAATCTT
1201
1251 TACTGCACAA GAAATTGCCA ACCAATACGG CATCTCCCTG AATACTGCCC
     GTAGCGATTT GAGTAAACTG GGAGAATATA GATTCCTAGT GCCGTTCAAA
1351
     TCAGGAAATG CTTTAGAGTA TGTTGCTCCT CAGGATTTAT TGGAAAGGTT
1401 AGAAAAAAA TAG
```

### This corresponds to the amino acid sequence <SEQ ID 2582; ORF 752>:

```
m752.pep

1 MKISRPPEFT LLQQEYMQHL TERMTQIAKL LNSSANNPDI DIPDFLTEIK
51 DYSEFSVTDE NGTYLHWDKF RRIHTEDTRM KWRAVKESRK KIQKPIDFPF
101 EHQFWFCIPD SLQARLHLID KSCGSSIGTS SLGGFGRSEQ NRFLLKSLIM
151 EEAITSAQLE GAATTRKVAK DMLKSQRKPK TKDEIMIVNN YHLMKKAVEL
201 KNTPLSVEMI LDLHRIATSN AIENKAEPGQ FRQDDEIFIA DINGNSLYQP
251 PPHGQVHTLM EEVCAFANNT YDGVENPFIH PVVQAIILHF LIGYIHPFGD
301 GNGRTARALF YWFMLKNGYW LFEYISISRL LKNAPAQYAK SYLYAETDDL
351 DLTYFIYYQC DIIKRAVADL EHYISDKQKH QQEFKAAIAQ YTEKIGKLNQ
401 RQIGILQKAV EESGKIFTAQ EIANQYGISL NTARSDLSKL GEYRFLVPFK
```

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2583>: m752-1.seq

```
1 ATGAAAATTT CCAGACCTCC GGAATTTACC CTGTTGCAAC AGGAATATAT
 51
    GCAGCATCTC ACTGAAAGAA TGACGCAAAT TGCCAAGCTG CTGAATTCTT
    CCGCAAACAA TCCTGATATA GACATTCCCG ATTTTCTTAC TGAAATCAAA
101
    GATTATTCAG AATTTTCCGT GACAGATGAA AATGGAACCT ACCTGCATTG
    GGACAAATTC CGCCGGATTC ACACGGAAGA TACGCGGATG AAATGGCGCG
    CCGTTAAGGA AAGCCGCAAA AAAATCCAAA AACCAATTGA TTTCCCGTTT
    GAACATCAGT TTTGGTTCTG CATTCCCGAC TCTTTGCAGG CACGGCTTCA
301
    TTTGATTGAC AAAAGCTGCG GCAGTTCTAT CGGCACGTCT AGCTTGGGTG
351
401 GCTTCGGCAG AAGCGAGCAA AACAGATTCT TGCTCAAGTC TCTGATTATG
    GAAGAAGCGA TTACATCCGC CCAACTGGAA GGTGCGGCTA CCACGCGTAA
451
501 AGTGGCCAAG GATATGCTCA AATCGCAGCG TAAACCCAAA ACAAAAGACG
551 AAATCATGAT AGTGAACAAC TATCACTTGA TGAAAAAAGC GGTAGAATTG
601 AAAAATACGC CGTTAAGTGT TGAAATGATT TTGGATTTGC ACCGCATTGC
```



```
651 TACCAGTAAC GCTATTGAAA ACAAGGCCGA GCCCGGACAA TTCAGGCAGG
 701 ATGACGAAAT CTTTATCGCC GATATCAATG GTAACAGCCT GTATCAACCA
      CCGCCGCACG GACAGGTTCA TACGCTGATG GAAGAGGTGT GTGCGTTTGC
 801 CAATAATACC TATGACGGCG TGGAAAATCC GTTTATCCAT CCGGTTGTCC
 851 AAGCTATTAT CTTGCATTTC CTCATCGGCT ACATCCACCC ATTTGGTGAT
     GGCAACGGGC GGACAGCGCG GGCTTTGTTC TATTGGTTTA TGCTCAAAAA
 901
 951 CGGCTACTGG CTATTTGAAT ACATATCCAT CAGCCGTCTT CTGAAAAACG
1001 CTCCTGCCCA ATACGCCAAA TCCTATTTGT ATGCGGAAAC TGACGATTTA
     GATTTAACCT ATTTCATCTA TTACCAATGC GATATTATCA AGCGGGCGGT
1051
     TGCCGATTTG GAGCACTACA TTTCCGACAA ACAAAAACAC CAACAGGAAT
1101
     TCAAAGCAGC GATTGCCCAA TATACTGAAA AGATAGGAAA GTTGAACCAA
1151
1201 CGGCAAATTG GTATCCTGCA AAAAGCAGTG GAAGAAGCG GAAAAATCTT
1251 TACTGCACAA GAAATTGCCA ACCAATACGG CATCTCCCTG AATACTGCCC
1301 GTAGCGATTT GAGTAAACTG GGAGAATATA GATTCCTAGT GCCGTTCAAA
1351 TCAGGAAATG CTTTAGAGTA TGTTGCTCCT CAGGATTTAT TGGAAAGGTT
1401 AGAAAAAAA TAG
```

# This corresponds to the amino acid sequence <SEQ ID 2584; ORF 752-1>: m752-1.pep

```
1 MKISRPPEFT LLQQEYMQHL TERMTQIAKL LNSSANNPDI DIPDFLTEIK
51 DYSEFSVTDE NGTYLHWDKF RRIHTEDTRM KWRAVKESRK KIQKPIDFPF
101 EHQFWFCIPD SLQARLHLID KSCGSSIGTS SLGGFGRSEQ NRFLLKSLIM
151 EEAITSAQLE GAATTRKVAK DMLKSQRKPK TKDEIMIVNN YHLMKKAVEL
201 KNTPLSVEMI LDLHRIATSN AIENKAEPGQ FRQDDEIFIA DINGNSLYQP
251 PPHGQVHTLM EEVCAFANNT YDGVENPFIH PVVQAIILHF LIGYIHPFGD
301 GNGRTARALF YWFMLKNGYW LFEYISISRL LKNAPAQYAK SYLYAETDDL
351 DLTYFIYYQC DIIKRAVADL EHYISDKQKH QQEFKAAIAQ YTEKIGKLNQ
401 RQIGILQKAV EESGKIFTAQ EIANQYGISL NTARSDLSKL GEYRFLVPFK
451 SGNALEYVAP QDLLERLEKK *
```

a752.seq not found yet

a752.pep not found yet

```
g753.seq not found yet g753.pep not found yet
```

a753.pep not found yet

g754.seq not found yet

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2585>: m753.seq

```
1 ATGCCCATCA CTCCACCCTT AAACATCATC TCTCCTAAAC TCTACCCCAA
51 TGAACAATGG AACGAAAGCG AAGCACTCGG TGCCATCACT TGGCTATGGT
101 ATCAGTCGCC TACGCATCGC CAAGTACCTA TTGTGGAGAT GATGACGTAT
151 ATATTGCCTG TGTTAAAAAA CGGGCAGTTC GCTTTGTTTT GCAAGGGTAC
201 CCAACCAATC GGTTATATCT CATGGGCTTA TTTTGATGAA GTGGCGCAGG
251 CGCATTATTT AGAATCTGAC CGCCATTTGC GTGACAACAG CGATTGGAAC
301 TGTGGCGACA ATATTTGGCT GATTCAATGG TTTGCGCCAT TGGGACACAG
351 TCATCAAATG CGCTCAGCTG TGCGCCAGTT ATTTCCTAGT ACGACAGTAC
401 GCGCCTTGTA TCATAAAGGG AGCGATAAGG GTTTGAGAAT TTTAACTTTT
```

### This corresponds to the amino acid sequence <SEQ ID 2586; ORF 753>:

```
m753.pep

1 MPITPPLNII SPKLYPNEQW NESEALGAIT WLWYQSPTHR QVPIVEMMTY
51 ILPVLKNGQF ALFCKGTQPI GYISWAYFDE VAQAHYLESD RHLRDNSDWN
101 CGDNIWLIQW FAPLGHSHQM RSAVRQLFPS TTVRALYHKG SDKGLRILTF
151 KT*

a753.seq not found yet
```

I The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the

```
g754.pep not found yet
```

g755.pep not found yet

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2587>:

```
m754.seq
         ATGATGAAGT CTATCCTCAC CGTATCCGGA AATCGTATGC GTAAACCCAG
         AATCACCTAT TTGGATGTTT GGGCAAACGA TGAAAGAATC GGTACTTTGG
     51
    101
         AAAAGGGGC CATGTATCGG TTCGCATACG ACAATCCCAA TTCTTCGTTG
         CTGGGCCTGC ATTATCAAGA CAGAAGCAAG GTATATATCA GCAACAATAT
         GCCGCATATC TTTGCACAGT ATTTTCCGGA AGGCTTTTTG GATGCACACA
    201
         TCACAAGCAA ATATGCTTTT CATGATGCGC CTTTTGAAGA CAATGAGATG
    301 CTGCGCTTGG CAATTCTGTG CAGAGAGACT TTGGGTCGGA TACATGTGCG
         CTGTAATGAC CCGCTTTTTA ATGAATGGAT TGACGGGTTG GAGATGAAAA
    351
         ATCCAAGAAT ATTGACTGAA CGGGATTTGC TGGGCATAAA TGCCCGACAG
    401
         GTTTTTCAGC AATATATGGC AGAAATCTTC CATCACGGCC GTTTCGTCAG
    451
    501
         TGTATCCGGG ATACAGCAGA AGATGTCCTT AGATGCCATC CGCAGAAATA
         CCAAGCAAAC TGCCTCATAT ATTGCCAAAG GTTTTGATGC ATCCGAATAT
    551
         CCTTGCTTGG CTGCCAATGA ATTTTTATGC ATGCAGACCA TCAAACAAGC
         CGGCATTGCC GTTGCACAGA CCAGCCTGTC GGAAGATTCA TCAGTCTTAT
    651
    701
         TGGTACGTCG GTTTGATGTC AGTGAACAGG GTTATTTTTT AGGGATGGAA
         GACTTTACCA GTCTGCGCCA GTATTCGGTA GAAGATAAAT ATAAAGGCAG
    751
    801
         TTATGCGGCT ATTGCACAGA TTATCCGACA GATATCCGGC AGACCAGATG
    851 AAGATTTAAT CCATTTCTTT AATCAGCTTG CTGCCAGTTG CATATTGAAA
    901 AACGGCGATG CACACCTCAA AAATTTTTCA GTACTCTATC ATGACGAATA
    951
         CGATGTTCGT CTTGCACCTG TCTATGATGT ATTGGATACA TCAATATACA
         GGGTTGGAAC ACAAGGAATT TTTGATGCTT ATGACGATAC GCTGGCATTA
   1001
         AACCTGACTA ACCACGGTAA GAAAACATAT CCTTCCAAGA ATACATTGTT
   1051
   1101
         GGATTTTGCT GAGAAATATT GCGATTTGGG AAGAGAAGAT GCATCCTTTA
         TGATAGATAC AATCGTTCAA GCTAAAGAAC AGGTTCTTGT TAAATACTCG
         GATGTATTGC GTGAGAATGA ATGGTTGGCG CAGAAGTGGC ATTTTATCCC
   1251 GGATGAAAAT GAAGAAGGTC TACCGTTTAC ATTCCGGTAG
```

#### This corresponds to the amino acid sequence <SEQ ID 2588; ORF 754>:

```
m754.pep
         MMKSILTVSG NRMRKPRITY LDVWANDERI GTLEKGAMYR FAYDNPNSSL
      1
         LGLHYQDRSK VYISNNMPHI FAQYFPEGFL DAHITSKYAF HDAPFEDNEM
     101 LRLAILCRET LGRIHVRCND PLFNEWIDGL EMKNPRILTE RDLLGINARQ
     151 VFQQYMAEIF HHGRFVSVSG IQQKMSLDAI RRNTKQTASY IAKGFDASEY
         PCLAANEFLC MQTIKQAGIA VAQTSLSEDS SVLLVRRFDV SEQGYFLGME
    201
    251
         DFTSLRQYSV EDKYKGSYAA IAQIIRQISG RPDEDLIHFF NQLAASCILK
         NGDAHLKNFS VLYHDEYDVR LAPVYDVLDT SIYRVGTQGI FDAYDDTLAL
    351
         NLTNHGKKTY PSKNTLLDFA EKYCDLGRED ASFMIDTIVQ AKEQVLVKYS
     401 DVLRENEWLA QKWHFIPDEN EEGLPFTFR*
a754.seq not found yet
a754.pep not found yet
g755.seq not found yet
```

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2589>: m755.seq..

```
ATGAGCCGTT ACCTGATTAC CTTTGATATG GATACCAACT GCCTGAAAGA
CAATTACCAC GGAAATAACT ATACCAATGC CTACTCCGAT ATTAAAACCA
CAATTACCAC GGAAATAACT ATACCAATGC CTACTCCGAT ATTAAAACCA
CTTTGGCTAG ACATGGATTT GAGAACATTC AGGCAGTGT TTATCTAGGC
CGTGAAGGCA TCAGTGAAGC ACACGGAACA ATAGCCATTC AGGAACTGAC
CGCTCGGTTT GATTGGTTTT ACTCCTGTAT TTCAAACATT AAGTTTTACC
CGCTCGAAACAGG CTTTCCTTCA ACGTGTTGAA CAACTTCGTA TATCCCTAAC
CGCCAAACAGG CTTTCCTTCA ACGTGTTGAA CAACTTCGTA TATCCCTAAC
AGAAGCTGGA TTGTCTGATG AGCAAATCAA TCAGGTTCTG GAAAAACAGA
AATTTGAATT GGAAAGTCCT AACCTGAAAT TAAATTAA
```



```
This corresponds to the amino acid sequence <SEQ ID 2590; ORF 755>:
      m755.pep.
              1 MSRYLITFDM DTNCLKDNYH GNNYTNAYSD IKTILARHGF ENIQGSVYLG
             51 REGISEAHGT IAIQELTARF DWFYSCISNI KFYRLESDLN AQFIADGVYQ
            101 AKQAFLQRVE QLRISLTEAG LSDEQINQVL EKQKFELESP NLKLN*
      a755.seq not found yet
      a755.pep not found yet
g756.seq
          not found yet
g756.pep
           not found yet
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2591>:
m756.seq
          ATGACCGCCA ACTTTGCACA GACGCTGGTC GAAATACAGG ACAGTCTGTA
      51
          CAGGGTTGTG TCAACCGTCC AATACGGGGA TGACAACCTC AAGCGGTTGA
          CAGCGGACAA ACGGAAGCAG TATGAGTTGA ACTTCAAGAT TTCCGAGGGT
     101
     151 TCTACGCGTG TAGAGTCCGA CTTTAAAGAG ACTTTGGTTC GGTTCGGTAG
201 AGATATGCTT CAAGATATGC CCCCTAAAAT CCGTTCGGCA ACGCTGGTAG
         CGTTGACGAC CCTGCTTGTC GGAGGGGCGT TGGGTTACGG TTATTTGGAA
     301
          TACCTGAAGC AGGTTGCTTC GGAAGGGTAT CAGACCGAGC GTCTGTATAA
          TGCCGTCGAC CGTCTTGCAG AATCCCAAGA ACGGATAACG TCCGCCATCC
     351
          TGAAGGGTGC TAGAGGTGCC GATTTCGTGC AAATCGGCAG ACGTTCCTAC
     401
          AGTAGGGAGG ATATATCGGA GGCAAATAGA CGTGCAGAGC GTGTCCCGTA
     451
          TGGCGCAGAG TTGGTTTCAG ACGGCAATTT TACCGCTGTT TTATCTGATA
          TAGGGGATTA A
This corresponds to the amino acid sequence <SEQ ID 2592; ORF 756>:
m756.pep
          MTANFAQTLV EIQDSLYRVV STVQYGDDNL KRLTADKRKQ YELNFKISEG
      51
          STRVESDFKE TLVRFGRDML QDMPPKIRSA TLVALTTLLV GGALGYGYLE
     101
          YLKQVASEGY QTERLYNAVD RLAESQERIT SAILKGARGA DFVQIGRRSY
     151 SREDISEANR RAERVPYGAE LVSDGNFTAV LSDIGD*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2593>:
                ATGACCGCCA ACTTTGCACA GACGCTGGTC GAAATACAGG ACAGTCTGTA
             1
            51
                NAGGGTTGTG TCAACCGTCC AATACGGGGA TGACAACCTC AAGCGGTTGA
                CAGCGGACAA ACGGAAGCAG TATGAGTTGA ACTTCAAGAT TTCCGAGGGT
           101
                TCTACGCGTG TAGAGTCCGA CTTTAAAGAG ACTTTGGTTC GGTTCGGTAG
           151
               AGATATGCTT CAAGATATGC CCCCTAAAAT CCGTTCGGCA ACGCTGGTAG
               CGTTGACGAC CCTGCTTGTC GGAGGGGCGT TGGGTTACGG TTATTTGGAA
           251
           301
                TACCTGAAGC AGGTTGCTTC GGAAGGGTAT CAGACCGAGC GTCTGTATAA
                TGCCGTCGAC CGTCTTGCAG AATCCCAAGA ACGGATAACG TCCGCCATCC
           351
           401
                TGAAGGGTGC TAGAGGTGCC GATTTCGTGC AAATCGGCAG ACGTTCCTAC
           451 AGTAGGGAGG ATATATCGGA GGCAAATAGA CGTGCAGAGC GTGTCCCGTA
           501 TGGCGCAGAG TTGGTTTCAG ACGGCAATTT TACCGCTGTT TTATCTGATA
           551 TAGGGGATTA A
This corresponds to the amino acid sequence <SEQ ID 2594; ORF 756.a>:
     a756.pep
             1
                MTANFAQTLV EIQDSLXRVV STVQYGDDNL KRLTADKRKQ YELNFKISEG
                STRVESDFKE TLVRFGRDML QDMPPKIRSA TLVALTTLLV GGALGYGYLE
            51
           301
                YLKQVASEGY QTERLYNAVD RLAESQERIT SAILKGARGA DFVQIGRRSY
                SREDISEANR RAERVPYGAE LVSDGNFTAV LSDIGD*
m756 / a756 99.5% identity in 186 aa overlap
                            10
                                      20
                                                 30
                                                           40
                                                                     50
                   MTANFAQTLVEIQDSLYRVVSTVQYGDDNLKRLTADKRKQYELNFKISEGSTRVESDFKE
     m756.pep
                   a756
                   MTANFAQTLVEIQDSLXRVVSTVQYGDDNLKRLTADKRKQYELNFKISEGSTRVESDFKE
                                      20
                                                30
                                                           40
                                                                                60
```

ู้แล่วง เขียงเฉลา การเราเหย

1231

```
70
                                     80
                                               90
                                                        100
                                                                  110
     m756.pep
                  TLVRFGRDMLQDMPPKIRSATLVALTTLLVGGALGYGYLEYLKQVASEGYQTERLYNAVD
                   {\tt TLVRFGRDMLQDMPPKIRSATLVALTTLLVGGALGYGYLEYLKQVASEGYQTERLYNAVD}
     a756
                          70
                                     80
                                                        100
                                                                  110
                          130
                                    140
                                              150
                                                        160
                                                                  170
                                                                            180
     m756.pep
                  RLAESQERITSAILKGARGADFVQIGRRSYSREDISEANRRAERVPYGAELVSDGNFTAV
                  RLAESQERITSAILKGARGADFVQIGRRSYSREDISEANRRAERVPYGAELVSDGNFTAV
     a756
                                   140
                                              150
                                                        160
     m756.pep
                  LSDIGDX
                  111111
     a756
                  LSDIGDX
g757.seq not found yet
g757.pep not fiund yet
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2595>:
m757.seq
         ATGAAAATAC TCGCTTTATT AATTGCCGCT ACCTGTGCTT TATCTGCGTG
     51
         TGGCAGCCAA TCTGAAGAAC AACCGGCATC TGCACAACCC CAAGAGCAGG
        CACAATCCGA ATTAAAAACC ATGCCGGTAA GCTATACCGA CTATCAATCA
        GCAGCCAATA AAGGGCTGAA TGACCAAAAA ACCGGTCTGA CCCTTCCTGA
    151
    201
        ACATGTTGTC CCTATCGACA ATGCGGAAGG AAAGAATCTG CTGCATGACT
    251
        TTTCAGACGG CCTCACAATC TTAACCGTTG ATACCGATAA AGCCGACAAA
    301
        ATTACTGCTG TCCGAGTAGT CTGGAATACA GATGCAATGC CTCAAAAAGC
        GGAAAAACTG TCCAAAGCTG CCGCAGCCTT GATTGCGGCA ACCGCTCCGG
    351
    401 AAGACCGCAC AATGCTGCGT GATACCGGCG ACCAAATCGA AATGGCGATT
    451
        GACAGCCATA ATGCGCAAAA AGAGCCAACC CGAGAATGGG CGCGTGGTGG
    501 GATTGCTTAT AAAGTCACTG TTACCAATTT ACCGAGCGTG GTTTTGACGG
    551 CAAAAGCTGA GTAA
This corresponds to the amino acid sequence <SEQ ID 2596; ORF 757>:
m757.pep
        (lipoprotein)
        MKILALLIAA TCALSACGSQ SEEQPASAQP QEQAQSELKT MPVSYTDYQS
        AANKGLNDOK TGLTLPEHVV PIDNAEGKNL LHDFSDGLTI LTVDTDKADK
        ITAVRVVWNT DAMPQKAEKL SKAAAALIAA TAPEDRTMLR DTGDQIEMAI
    151 DSHNAQKEPT REWARGGIAY KVTVTNLPSV VLTAKAE*
     a757.seq not found yet
     a757.pep not found yet
     g758.seq not found yet
     g758.pep not fiund yet
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2597>:
     m758.seg
               ATGAACAATC TGACCGTGTT TACCCGTTTC GATACCGATT TGGCGACGCT
            1
               TGCCGATGAA TTGCAATATG TGTGGGAACA CACCGCCGTT ACAGACCATC
           51
              AGGGCAAACT GGTGGAAATT CCCGTCTGCT ACGGCGGCGA ATACGGCCCG
          101
               GATTTGGCGG AAGTCGCTGC TTTCCATCAG ACGGTTATTT CCGAAATCGT
          151
               CCGCCGCCAT ACGGCGCAAA CTTATACCGT ATTTATGATG GGCTTCCAGC
          251
              CCGGTTTCCC TTATCTGGGC GGCTTGCCCG AAGCATTGCA CACGCCCCGC
          301
               CGTGCCGTGC CGAGAACGTC CGTTCCTGCC GGTTCGGTCG GTATCGGCGG
          351
               CAGTCAGACC GGTGTGTATC CGTTCGCTTC GCCCGGCGGC TGGCAGATTA
          401
               TCGGCAGAAC CGAATTACCC TTGTTCCGAG CCGATTTGAA TCCGCCGACC
          451
               CTGCTGGCGG CGGGTGACCA AGTCCGCTTT GTTGCAGAAA GGATTGAGCC
          501 ATGA
```

```
This corresponds to the amino acid sequence <SEQ ID 2598; ORF 758>: m758.pep
```

1 MNNLTVFTRF DTDLATLADE LQYVWEHTAV TDHQGKLVEI PVCYGGEYGP 51 DLAEVAAFHQ TVISEIVRRH TAQTYTVFMM GFQPGFPYLG GLPEALHTPR

101 RAVPRTSVPA GSVGIGGSQT GVYPFASPGG WQIIGRTELP LFRADLNPPT

151 LLAAGDQVRF VAERIEP*

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2599>:

a758.seq

1 ATGAACAATC TGACCGTGTT CACCCGTTTC GATACCGATT TGGCGACGCT
51 TGCCGATGAA TTGCAATATG TGTGGGAACA CACCGCCGTT ACAGACCATC
101 AGGGCAAACT GGTGGAAATT CCCGTCTGCT ACGGCGGCGA ATACGGCCCG
151 GATTTGGCGG AAGTCGCTGC TTTCCATCAG ACGGTTATTT CCGAAATCGT
201 CCGCCGCCAT ACGGCGCAAA CTTATACCGT ATTTATGATG GGCTTCCAGC
251 CTGGTTTCCC TTATCTGGGC GGCTTGCCCG AAGCATTGCA CACGCCCCGC
301 CGTGCCGTGC CGAGAACGTC CGTTCCTGCC GGTTCGGTCG GTATCGGCGG
351 CAGTCAGACC GGTGGTATC CGTTCGCTTC GCCCGGCGCC TGGCAGATTA
401 TCGGCAGAAC CGAATTACCC TTGTTCCGAG CCGATTTGAA TCCGCCGACC
451 CTGCTGGCGG CGGGTGACCA AGTCCGCTTT GTTGCAGAAA GGATTGAGCC
501 ATGA

This corresponds to the amino acid sequence <SEQ ID 2600; ORF 758.a>:

a758.pep..

- 1 MNNLTVFTRF DTDLATLADE LQYVWEHTAV TDHQGKLVEI PVCYGGEYGP
- 51 DLAEVAAFHQ TVISEIVRRH TAQTYTVFMM GFQPGFPYLG GLPEALHTPR
- 101 RAVPRTSVPA GSVGIGGSQT GVYPFASPGG WQIIGRTELP LFRADLNPPT
- 151 LLAAGDQVRF VAERIEP*

#### m758 / a758 100.0% identity in 167 aa overlap

	10	20	30	40	50	60
m758.pep	MNNLTVFTRFDTDL	ATLADELQY	VWEHTAVTDHO	GKLVEIPVCY	GGEYGPDLAE	
			[	11111111111	1111111111	
a758	MNNLTVFTRFDTDL	ATLADELQY	VWEHTAVTDHÇ	GKLVEIPVCY	GGEYGPDLAE	VAAFHQ
	10	20	30	40	50	60
	70	80	90	100	110	120
m758.pep	TVISEIVRRHTAQT	TVFMMGFQI	PGFPYLGGLPE	ALHTPRRAVE	RTSVPAGSVO	GIGGSOT
			[	1111111111	1111111111	111111
a758	TVISEIVRRHTAQTY		PGFPYLGGLPE	ALHTPRRAVE	RTSVPAGSVG	IGGSQT
	70	80	90	100	110	120
	130	140	150	160		
m758.pep	GVYPFASPGGWQIIG	RTELPLFRA	ADLNPPTLLAA	GDQVRFVAER	IEPX	
		11111111		1111111111	FIII	
a758	GVYPFASPGGWQIIG		ADLNPPTLLAA	.GDQVRFVAER	IEPX	
	130	140	150	160		

g759.seq not found yet

g759.pep not found yet

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2601>: m759.seq

1 ATGCGCTTCA CACACACCAC CCCATTTTGT TCCGTATTGT CCACCCTCGG
51 TCTTTTGCC GTTTCCCCTG CTTACTCATC CATTGTCCGC AACGATGTCG

101 ATTACCAATA TTTTCGCGAC TTTGCCGAAA ATAAAGGCGC GTTCACCGTA
151 GGTGCAAGCA ATATTTCCAT CCAAGACAAG CAAGGCAAAA TATTAGGCAG

201 GGTTCTCAAC GGCATCCCCA TGCCCGACTT CCGCGTCAGC AACCGCCAAA

251 CCGCCATCGC CACCCTGGTT CACCCCCAAT ACGTCAACAG TGTCAAACAC

301 AACGTCGGCT ACGGTTCCAT ACAATTCGGC AACGACACCC AAAATCCAGA
351 AGAACAAGCC TATACCTACC GCCTCGTATC ACGCAACCCG CACCCGGACT

401 ACGACTACCA CCTTCCCCGC CTCAACAAAC TGGTTACCGA AATCTCACCT







#### This corresponds to the amino acid sequence <SEQ ID 2602; ORF 759>:

WO 99/57280

```
m759.pep
         MRFTHTTPFC SVLSTLGLFA VSPAYSSIVR NDVDYQYFRD FAENKGAFTV
         GASNISIQDK QGKILGRVLN GIPMPDFRVS NRQTAIATLV HPQYVNSVKH
         NVGYGSIQFG NDTQNPEEQA YTYRLVSRNP HPDYDYHLPR LNKLVTEISP
     101
     151 TALSSVPLLG NGQPKANAYL DTDRFPYFVR LGSGTQQVRK ADGTRTRTAP
     201 AYQYLTGGTP LKVLGFQNHG LLVGGSLTDQ PLNTYAIAGD SGSPLFAFDK
     251 HENRWVLAGV LSTYAGFDNF FNKYIVTQPE FIRSTIRQYE TRLDVGLTTN
     301 ELIWRDNGNG NSTLQGLNER ITLPIANPSL APQNDSRHMP SEDAGKTLIL
         SSRFDNKTLM LADNINQGAG ALQFDSNFTV VGKNHTWQGA GVIVADGKRV
    401 FWQVSNPKGD RLSKLGAGTL IANGQGINQG DISIGEGTVV LAQKAASDGS
     451 KQAFNQVGIT SGRGTAVLAD SQQIKPENLY FGFRGGRLDL NGNNLAFTHI
         RHADGGAQIV NHNPDQAATL TLTGNPVLSP EHVEWVQWGN RPQGNAAVYE
    501
    551 YINPHRNRRT DYFILKPGGN PREFFPLNMK NSTSWQFIGN NRQQAAEQVA
         QAENARPDLI TFGGYLGENA QTGKAAPSYS KTNEAAIEKT RHIANAAVYG
         RPEYRYNGAL NLHYRPKRTD STLLLNGGMN LNGEVLIEGG NMIVSGRPVP
    651
    701 HAYDHQAKRE PVLENEWTDG SFKAARFTLR NHARLTAGRN TAHLDGDITA
         YDLSGIDLGF TQGKTPECYR SYHSGSTHCT PNAVLKAENY RALPATQVRG
    801 DITLNDRSEL RLGKAHLYGS IRAGKDTAVR MEADSNWTLS QSSHTGALTL
    851 DGAQITLNPD FANNTHNNRF NTLTVNGTLD GFGTFRFLTG IVRKQNAPPL
    901
         KLEGDSRGAF QIHVKNTGQE PQTTESLALV SLNPKHSHQA RFTLQNGYAD
        LGAYRYILRK NNNGYSLYNP LKEAELQIEA TRAEHERNQQ AYNQLQATDI
    951
   1001 SRQVQHDSDA TRQALQAWQN SQTELARIDS QVQYLSAQLK QTDPLTGILT
   1051 RAQNLCAAQG YSADICRQVA KAADTNDLTL FETELDTYIE RVEMAESELD
   1101 KARQGGDAQA VETARHAYLN ALNRLSRQIH SLKTGVAGIR MPNLAELISR
   1151
         SANTAVSEQA AYNTGRQQAG RRIDRHLTDP QQQNIWLETG TQQTDYHSGT
         HRPYQQTTNY AHIGIQTGIT DRLSVGTILT DERTNNRFDE GVSARNRSNG
   1201
   1251 AHLFVKGENG ALFAAADLGY SNSRTRFTDY DGAAVRHAW DAGINTGIKI
   1301 DTGINLRPYA GIRINRSNGN RYVLDGAEIN SPAQIQTTWH AGIRLDKTVE
        LGQAKLTPAF SSDYYHTRQN SGSALSVNDR TLLQQAAHGT LHTLQIDAGY
   1351
         KGWNAKLHAA YGKDSNTARH KQAGIKIGYN W*
```

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2603>:

```
g760.seg
         (partial)
         AACAACCGCA ACACCCGTTA CGCCGCATTG GGCAAACGCG TGATGGAAGG
      1
         CGTTGAGACC GAAATCAGCG GTGCGATTAC ACCGAAATGG CAAATCCATG
     51
         CAGGTTACAG CTATCTGCAC AGCCAAATCA AAACCGCCGC CAATCCACGC
         GACGACGGCA TCTTCCTGCT GGTGCCCAAA CACAGCGCAA ACCTGTGGAC
         GACTTACCAA GTTACGCCCG GGCTGACCGT CGGCGGCGGC GTGAACGCGA
    201
    251
         TGAGCGGCAT TACTTCATCT GCAGGGATGC ATGCAGGCGG TTATGCCACG
         TTCGATGCGA TGGCGGCATA CCGCTTCACG CCCAAGCTGA AGCTGCAAAT
         CAATGCCGAC AACATCTTCA ACCGCCATTA CTACGCCCGC GTCGGCGGCA
         CGAACACCTT TAACATTCCC GGTTCGGAGC GCAGCCTGAC GGCAAACCTG
    451
         CGTTACAGTT TTTAA
```

### This corresponds to the amino acid sequence <SEQ ID 2604; ORF 760.ng>:

```
g760.pep (partial)

1 NNRNTRYAAL GKRVMEGVET EISGAITPKW QIHAGYSYLH SQIKTAANPR
51 DDGIFLLVPK HSANLWTTYQ VTPGLTVGGG VNAMSGITSS AGMHAGGYAT
101 FDAMAAYRFT PKLKLQINAD NIFNRHYYAR VGGTNTFNIP GSERSLTANL
151 RYSF*
```



### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2605>:

m760.seg ATGGGACAGT TTATGTCAGT TTTCCGCATC AATATGACCG CCGCCACGGT 1 TTTGGCAGCA CTCTCGTCTT CGGTTTTTGC CGCACAAACG GAAGGTTTGG AAACCGTCCA TATTAAGGGT CAGCGTTCTT ACAACGCGAT TGCCACCGAG 151 AAAAACGGCG ATTACAGCTC GTTTGCCGCC ACCGTCGGTA CAAAAATCCC CGCTTCTTTG CGCGAAATTC CGCAATCCGT CAGCATCATT ACCAACCAGC 251 AGGTCAAAGA CCGCAATGTT GATACGTTTG ACCAGTTGGC ACGCAAAACG CCCGGCCTGC GCGTGTTGAG CAACGACGAC GGACGCTCTT CGGTTTACGC GCGCGGTTAC GAATACAGCG AATACAACAT CGACGGCCTG CCCGCGCAGA 351 TGCAGAGTAT CAACGGCACG CTGCCCAACC TGTTCGCCTT CGACCGCGTG GAAGTGATGC GCGGGCCGAG CGGACTGTTC GACAGCAGCG GCGAGATGGG 401 451 501 CGGCATCGTG AATCTGGTGC GCAAACGCCC GACCAAAGCG TTCCAAGGTC 551 ATGCGGCGGC AGGGTTCGGT ACGCACAAAC AATATAAAGC CGAGGCGGAC GTATCGGGCA GCCTCAATTC AGACGGCAGC GTGCGCGGCC GCGTGATGGC GCAGACCGTC GGCGCGTCTC CGCGTCCCGC CGAGAAAAAC AACCGGCGCG 651 701 AAACCTTCTA CGCGGCGGCG GATTGGGACA TCAACCCCGA TACGGTTTTG GGCGCGGCT ATCTTTACCA GCAACGCCGC CTCGCGCCGT ACAACGGCCT 801 GCCTGCCGAT GCCAATAACA AATTACCGTC CCTGCCGCAA CACGTATTTG 851 TCGGCGCGGA TTGGAACAAA TTTAAAATGC ACAGCCACGA CGTGTTCGCC GATTTGAAAC ATTACTTCGG CAACGGCGGC TACGGCAAAG TCGGTATGCG 901 CTATTCCGAT CGGAAAGCCG ATTCCAATTA TACGTTTGCG GGCAGCAAAC 951 TCAACAATAC CGGACAAGCC GACGTAGCGG GTTTGGGTAC GGACATTAAA 1001 CAAAAAGCCT TTGCGGTTGA CGCAAGTTAC AGCCGTCCGT TTGCCTTGGG CAACACCGCC AACGAATTTG TGATTGGTGC AGACTACAAC CGCTTGCGCA 1101 GTACTAATGA ACAAGGGCGT TCGACTTTGT CAAAAAGCGT CGCTTTAGAT 1151 GGTTTCCGCG CTTTGCCTTA TAACGGCATA CTTCAGAACG CCCGCGCCGG 1201 1251 AAACAAAGGT TTCAATCACT CCGTTACCGA AGAAAACCTC GACGAAACCG 1301 GTTTGTATGC CAAGACGGTG TTCCGTCCTC TGGAAGGTTT GTCGTTGATT 1351 GCAGGCGGAC GTGTAGGACA TCACAAAATC GAGTCGGGCG ACGGCAAAAC 1401 CCTGCATAAA GCTTCGAAAA CCAAATTTAC AAGCTACGCC GGCGCGGTTT ACGATATAGA CGGCAGCAAC AGCCTGTACG CTTCCGCCTC CCAACTCTAC 1451 1501 ACACCGCAAA CCAGCATCGG CACCGACGGC AAGCTGCTCA AACCGCGCGA 1551 AGGCAACCAG TTTGAAATCG GCTACAAAGG CAGCTACATG GACGACCGCC TCAATACCCG GGTTTCGTTC TACCGCATGA AGGATAAAAA CGCCGCCGCA CCGCTGGACT CAAACAACAA AAAAACCCGT TACGCCGCAT TGGGCAAACG 1701 CGTGATGGAA GGTGTTGAGA CCGAAATCAG CGGCGCGATG ACACCGAAAT GGCAAATCCA TGCAGGTTAC AGCTACCTGC ACAGCCAAAT CAAAACCGCC 1751 TCCAATTCGC GCGACGAAGG CATCTTCCTG CTGATGCCCA AACACAGCGC 1801 AAACCTGTGG ACGACTTACC AAGTTACGTC CGGGCTGACC ATCGGCGGCG GCGTGAACGC GATGAGCGGC ATTACTTCAT CTGCAGGGAT ACATGCAGGC 1901 GGTTATGCCA CGTTCGATGC GATGGCGGCA TACCGCTTCA CGCCCAAACT 1951 GAAGCTGCAA ATCAACGCCG ACAACATCTT CAACCGCCAT TACTACGCCC 2001 2051 GCGTCGGCAG CGAGAGCACC TTTAACATTC CCGGTTCGGA GCGCAGCCTG 2101 ACGGCAAACC TGCGTTACAG TTTTTAA

### This corresponds to the amino acid sequence <SEQ ID 2606; ORF 760>:

0.pep					
1	MGQFMSVFRI	NMTAATVLAA	LSSSVFAAQT	EGLETVHIKG	ORSYNAIATE
51	KNGDYSSFAA	TVGTKIPASL	REIPQSVSII	TNQQVKDRNV	DTFDOLARKT
101	PGLRVLSNDD	GRSSVYARGY	EYSEYNIDGL	PAQMQSINGT	LPNLFAFDRV
151	EVMRGPSGLF	DSSGEMGGIV	NLVRKRPTKA	FQGHAAAGFG	THKOYKAEAD
201	VSGSLNSDGS	VRGRVMAQTV	GASPRPAEKN	NRRETFYAAA	DWDINPDTVL
251	GAGYLYQQRR	LAPYNGLPAD	ANNKLPSLPQ	HVFVGADWNK	FKMHSHDVFA
301	DLKHYFGNGG	YGKVGMRYSD	RKADSNYTFA	GSKLNNTGOA	DVAGLGTDIK
351	QKAFAVDASY	SRPFALGNTA	NEFVIGADYN	RLRSTNEOGR	STLSKSVALD
401	GFRALPYNGI	LQNARAGNKG	FNHSVTEENL	DETGLYAKTV	FRPLEGLSLI
451	AGGRVGHHKI	ESGDGKTLHK	ASKTKFTSYA	GAVYDIDGSN	SLYASASOLY
501	TPQTSIGTDG	KLLKPREGNQ	FEIGYKGSYM	DDRLNTRVSF	YRMKDKNAAA
551	PLDSNNKKTR	YAALGKRVME	GVETEISGAM	TPKWOIHAGY	SYLHSOIKTA
601	SNSRDEGIFL	LMPKHSANLW	TTYQVTSGLT	IGGGVNAMSG	ITSSAGIHAG
651	GYATFDAMAA	YRFTPKLKLQ	INADNIFNRH	YYARVGSEST	FNIPGSERSL
701	TANLRYSF*				





#### m760 / g760 91.6% identity in 154 aa overlap

```
530
                       540
                                550
                                        560
           \tt YKGSYMDDRLNTRVSFYRMKDKNAAAPLDSNNKKTRYAALGKRVMEGVETEISGAMTPKW
m760.pep
                                      11::111111:111111111111111111111111
g760
                                     NNRNTRYAALGKRVMEGVETEISGAITPKW
                                            10
                                                     20
              590
                       600
                                610
                                        620
                                                 630
                                                          640
           QIHAGYSYLHSQIKTASNSRDEGIFLLMPKHSANLWTTYQVTSGLTIGGGVNAMSGITSS
m760.pep
           q760
           QIHAGYSYLHSQIKTAANPRDDGIFLLVPKHSANLWTTYQVTPGLTVGGGVNAMSGITSS
                           50
                                   60
                                            70
                                                     80
              650
                       660
                               670
                                        680
                                                 690
m760.pep
           AGIHAGGYATFDAMAAYRFTPKLKLQINADNIFNRHYYARVGSESTFNIPGSERSLTANL
           g760
           AGMHAGGYATFDAMAAYRFTPKLKLQINADNIFNRHYYARVGGTNTFNIPGSERSLTANL
                          110
                                   120
                                           130
             709
m760.pep
           RYSFX
           ++++
q760
           RYSFX
g761.seq not found yet
g761.pep not found yet
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2607>: m761.seq

```
ATGAAAATAT CATTTCATTT AGCTTTATTA CCCACGCTGA TTATTGCTTC
      CTTCCCTGTT GCTGCCGCCG ATACGCAGGA CAATGGTGAA CATTACACCG
      CCACTCTGCC CACCGTTTCC GTGGTCGGAC AGTCCGACAC CAGCGTACTC
 101
 151 AAAGGCTACA TCAACTACGA CGAAGCCGCC GTTACCCGCA ACGGACAGCT
      CATCAAAGAA ACGCCGCAAA CCATCGATAC GCTCAATATC CAGAAAAACA
 251
     AAAATTACGG TACGAACGAT TTGAGTTCCA TCCTCGAAGG CAATGCCGGC
      ATCGACGCTG CCTACGATAT GCGCGGTGAA AGCATTTTCC TGCGCGGTTT
      TCAAGCCGAC GCATCCGATA TTTACCGCGA CGGCGTGCGC GAAAGCGGAC
 351
 401 AAGTGCGCCG CAGTACTGCC AACATCGAGC GCGTGGAAAT CCTGAAAGGC
      CCGTCTTCCG TGCTTTACGG CCGCACCAAC GGCGGCGGCG TCATCAACAT
 451
 501
     GGTCAGCAAA TACGCCAACT TCAAACAAAG CCGCAACATC GGAGCGGTTT
 551
      ACGGCTCATG GGCAAACCGC AGCCTGAATA TGGACATTAA CGAAGTGCTG
 601
      AACAAAAACG TCGCCATCCG TCTCACCGGC GAAGTCGGGC GCGCCAATTC
     GTTCCGCAGC GGCATAGACA GCAAAAATGT CATGGTTTCG CCCAGCATTA
 651
     CCGTCAAACT CGACAACGGC TTGAAGTGGA CGGGGCAATA CACCTACGAC
 751
     AATGTGGAGC GCACGCCCGA CCGCAGTCCG ACCAAGTCCG TGTACGACCG
     CTTCGGACTG CCTTACCGCA TGGGGTTCGC CCACCGGAAC GATTTTGTCA
 801
     AAGACAAGCT GCAAGTTTGG CGTTCCGACC TTGAATACGC CTTCAACGAC AAATGGCGTG CCCAATGGCA GCTCGCCCAC CGCACGGCGG CGCAGGATTT
 851
 901
     TGATCATTC TATGCAGGCA GCGAAAATGG CAACTTAATC AAACGTAACT
 951
1001
     ACGCCTGGCA GCAGACCGAC AACAAAACCC TGTCGTCCAA CTTAACGCTC
1051
     AACGGCGACT ACACCATCGG CCGTTTTGAA AACCACCTGA CCGTAGGCAT
1101
      GGATTACAGC CGCGAACACC GCAACCCGAC ATTGGGTTTC. AGCAGCGCCT
1151
      TTTCCGCCTC CATCAACCCC TACGACCGCG CAAGCTGGCC GGCTTCGGGC
     AGATTGCAGC CTATTCTGAC CCAAAACCGC CACAAAGCCG ACTCCTACGG
1201
     CATCTTTGTG CAAAACATCT TCTCCGCCAC GCCCGATTTG AAATTCGTCC
1251
1301
     TCGGCGGCCG TTACGACAAA TACACCTTTA ATTCCGAAAA CAAACTCACC
     GGCAGCAGCC GCCAATACAG CGGACACTCG TTCAGCCCCA ACATCGGCGC
1351
      AGTGTGGAAC ATCAATCCCG TCCACACACT TTACGCCTCG TATAACAAAG
1401
      GCTTCGCGCC TTATGGCGGA CGCGGCGGCT ATTTGAGCAT CGATACGTTG
1451
      TCTTCCGCCG TGTTCAACGC CGACCCCGAG TACACCCGCC AATACGAAAC
1501
      CGGCGTGAAA AGCAGTTGGC TGGACGACCG CCTCAGCACT ACGTTGTCTG
1551
1601
     CCTACCAAAT CGAACGCTTC AATATCCGCT ACCGCCCCGA TCCAAAAAAC
     AACCCTTATA TTTATGCGGT TAGCGGCAAA CACCGTTCGC GCGGCGTGGA
```

0 03 1



1701	ATTGTCCGCC	ATCGGGCAAA	TCATCCCCAA	AAAACTCTAT	CTGCGCGGTT
1751	CGTTGGGCGT	GATGCAGGCG	AAAGTCGTTG	AAGACAAAGA	AAATCCCGAC
1801	CGAGTGGGCA	TCCATTTGAA	TAATACCAGC	AACGTTACCG	GCAACCTGTT
1851	TTTCCGTTAT	ACCCCGACCG	AAAACCTCTA	CGGCGAAATC	GGCGTAACCG
1901	GTACAGGCAA	ACGCTACGGT	TACAACTCAA	GAAATAAAGA	AGTGACTACG
1951	CTTCCAGGCT	TTGCCCGAGT	TGATGCCATG	CTTGGCTGGA	ACCATAAAAA
2001	TGTTAACGTT	ACCTTTGCCG	CAGCCAATCT	GCTCAATCAA	AAATATTGGC
2051	GTTCGGACTC	TATGCCGGGT	AATCCGCGCG	GCTATACTGC	CCGGGTAAAT
2101	TACCGTTTCT				

#### This corresponds to the amino acid sequence <SEQ ID 2608; ORF 761>:

```
m761.pep
          MKISFHLALL PTLIIASFPV AAADTQDNGE HYTATLPTVS VVGQSDTSVL
         KGYINYDEAA VTRNGQLIKE TPQTIDTLNI QKNKNYGTND LSSILEGNAG
         IDAAYDMRGE SIFLRGFQAD ASDIYRDGVR ESGQVRRSTA NIERVEILKG
     151 PSSVLYGRTN GGGVINMVSK YANFKQSRNI GAVYGSWANR SLNMDINEVL
         NKNVAIRLTG EVGRANSFRS GIDSKNVMVS PSITVKLDNG LKWTGQYTYD
         NVERTPDRSP TKSVYDRFGL PYRMGFAHRN DFVKDKLQVW RSDLEYAFND
         KWRAQWQLAH RTAAQDFDHF YAGSENGNLI KRNYAWQQTD NKTLSSNLTL
         NGDYTIGRFE NHLTVGMDYS REHRNPTLGF SSAFSASINP YDRASWPASG
     401 RLQPILTQNR HKADSYGIFV QNIFSATPDL KFVLGGRYDK YTFNSENKLT
     451 GSSRQYSGHS FSPNIGAVWN INPVHTLYAS YNKGFAPYGG RGGYLSIDTL
         SSAVFNADPE YTRQYETGVK SSWLDDRLST TLSAYQIERF NIRYRPDPKN
     551 NPYIYAVSGK HRSRGVELSA IGQIIPKKLY LRGSLGVMQA KVVEDKENPD
     601 RVGIHLNNTS NVTGNLFFRY TPTENLYGEI GVTGTGKRYG YNSRNKEVTT
     651 LPGFARVDAM LGWNHKNVNV TFAAANLLNQ KYWRSDSMPG NPRGYTARVN
         YRF*
```

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2609>:

```
a761.seq
         ATGAAAATAT CATTTCATTT AGCTTTATTA CCCACGCTGA TTATTGCTTC
      1
         CTTCCCTGTT GCTGCCGCCG ATACGCAGGA CAATGGTGAA CATTACACCG
         CCACTCTGCC CACCGTTTCC GTGGTCGGAC AGTCCGACAC CAGCGTACTC
    101
    151 AAAGGCTACA TCAACTACGA CGAAGCCGCC GTTACCCGCA ACGGACAGCT
         CATCAAAGAA ACGCCGCAAA CCATCGATAC GCTCAATATC CAGAAAAACA
    251 AAAATTACGG CACGAACGAT TTGAGTTCCA TCCTCGAAGG CAATGCCGGC
        ATCGACGCCG CCTACGATAT GCGCGGCGAA AGCATTTTCC TGCGCGGCTT
         TCAAGCCGAC GCATCTGATA TTTACCGCGA CGGCGTACGC GAAAGCGGGC
    351
    401 AGGTGCGCCG TAGCACCGCC AACATCGAGC GCGTGGAAAT CCTGAAAGGT
        CCGTCCTCCG TGCTTTATGG GCGTACCAAC GGCGGCGGTG TCATCAACAT
        GGTCAGCAAA TACGCCAACT TCAAACAAAG CCGTAATATC GGTACGGTTT
    501
    551 ATGGTTCGTG GGCAAACCGC AGCCTGAATA TGGACATCAA CGAAGTGCTG
         AACAAAAACG TCGCCATCCG TCTCACCGGC GAAGTCGGGC GCGCCAATTC
    651 GTTCCGCAGC GGCATAGACA GCAAAAATGT CATGGTTTCG CCCAGCATTA
    701 CCGTCAAACT CGACAACGGC TTGAAGTGGA CGGGGCAATA CACCTACGAC
    751 AATGTGGAGC GCACGCCCGA CCGCAGTCCG ACCAAGTCCG TGTACGACCG
    801
        CTTCGGACTG CCTTACCGCA TGGGGTTCGC CCACCGGAAC GATTTTGTCA
         AAGACAAGCT GCAAGTTTGG CGTTCCGACC TTGAATACGC CTTCAACGAC
    851
    901 AAATGGCGTG CCCAATGGCA GCTCGCCCAC CGCACGGCGG CGCAGGATTT
    951 TGATCATTTC TATGCAGGCA GCGAAAATGG CAACTTAATC AAACGTAACT
   1001 ACGCCTGGCA GCAGACCGAC AACAAAACCC TGTCGTCCAA CTTAACGCTC
         AACGGCGACT ACACCATCGG CCGTTTTGAA AACCACCTGA CCGTAGGCAT
   1051
   1101
         GGATTACAGC CGCGAACACC GCAACCCGAC ATTGGGTTTC AGCAGCGCCT
         TTTCCGCCTC CATCAACCCC TACGACCGCG CAAGCTGGCC GGCTTCGGGC
   1151
        AGATTGCAGC CTATTCTGAC CCAAAACCGC CACAAAGCCG ACTCCTACGG
   1201
        CATCTTTGTG CAAAACATCT TCTCCGCCAC GCCCGATTTG AAATTCGTCC
         TCGGCGGCCG TTACGACAAA TACACCTTTA ATTCCGAAAA CAAACTCACC
   1301
   1351
        GGCAGCAGCC GCCAATACAG CGGACACTCG TTCAGCCCCA ACATCGGCGC
         AGTGTGGAAC ATCAATCCCG TCCACACACT TTACGCCTCG TATAACAAAG
         GCTTCGCGCC TTATGGCGGA CGCGGCGGCT ATTTGAGCAT CGATACGTTG
   1451
        TCTTCCGCCG TGTTCAACGC CGACCCCGAG TACACCCGCC AATACGAAAC
   1501
         CGGCGTGAAA AGCAGTTGGC TGGACGACCG CCTCAGCACT ACGTTGTCTG
   1551
   1601 CCTACCAAAT CGAACGCTTC AATATCCGCT ACCGCCCCGA TCCAAAAAAC
   1651
         AACCCTTATA TTTATGCGGT TAGCGGCAAA CACCGTTCGC GCGGCGTGGA
   1701
        ATTGTCCGCC ATCGGGCAAA TCATCCCCAA AAAACTCTAT CTGCGCGGTT
```

1751	CGTTGGGCGT	GATGCAGGCG	AAAGTCGTTG	AAGACAAAGA	AAATCCCGAC	
1801			TAACACCAGC			
1851		and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	AAAACCTCTA			
1901			TACGACTCAA			
1951			TGATGCCATG			
2001			CAGCCAATCT			
2051	GTTCGGACTC	TATGCCGGGT	AATCCGCGCG	GCTATACTGC	CCGGGTAAAT	
2101	TACCGTTTCT					
This correspond	ic to the amin	o ocid canna	nce <seo ii<="" td=""><td>0 2610: OD</td><td>F 761 000</td><td></td></seo>	0 2610: OD	F 761 000	
-	is to the alling	io acid seque	ince -srQ ii	2010, OK	1 /01.a/.	
a761.pep						
1	MKISFHLALL	PTLIIASFPV	AAADTQDNGE	HYTATLPTVS	VVGQSDTSVL	
51	KGYINYDEAA	VTRNGQLIKE	TPQTIDTLNI	QKNKNYGTND	LSSILEGNAG	
101	IDAAYDMRGE	SIFLRGFQAD	ASDIYRDGVR	ESGOVRRSTA	NIERVEILKG	
151			YANFKQSRNI			
201			GIDSKNVMVS			
251			PYRMGFAHRN			
•						
301			YAGSENGNLI			
351			${\tt REHRNPTLGF}$			
401			QNIFSATPDL			
451	GSSRQYSGHS	FSPNIGAVWN	INPVHTLYAS	YNKGFAPYGG	RGGYLSIDTL	
501			SSWLDDRLST			
551		-	IGQIIPKKLY	<del>-</del>		
601			TPTENLYGEI	_		
651		TOWNHVINANA	TFAAANLFNQ	KIWRSDSMPG	NPRGITARVN	
701	YRF*		•			
m761 / a761 99.	.6% identity i	n 703 aa ove	erlap			
	•		20 30	40	50	60
-761	METORIT		PVAAADTQDNGE			
m761.pep						
a761	MKISFHLA	ALLPTLIIASFI	PVAAADTQDNGE	CHYTATLPTVS	/VGQSDTSVLK(	SYINYDEAA
		10 2	20 30	40	50	60
		70 8	30 90	100	110	120
m761.pep	VTRNGOLI	KETPOTIDTLN	IQKNKNYGTNI			
			1111111111			
a761			IQKNKNYGTNI			
a / 01	VIRROQUI		30 90			120
		,,	90	100	110	120
		.30 14			170	180
m761.pep	ASDIYRDO	SVRESGQVRRS1	'ANIERVEILKO	SPSSVLYGRTNO	GGVINMVSKY <i>F</i>	NFKQSRNI
	[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [				]	
a761	ASDIYRDO	VRESGQVRRSI	ANIERVEILKO	PSSVLYGRTNO	GGVINMVSKY	NFKQSRNI
	1	.30 14	0 150	160	<b>17</b> 0	180
	1	.90 20	0 210	220	230	240
m761.pep			LNKNVAIRLTO			
m/O1.pep			11111111111			
-761						
a761			LNKNVAIRLTO			
	]	.90 20	00 210	220	230	240
	2	250 26	50 270	280	290	300
m761.pep	LKWTGQYI	YDNVERTPDRS	PTKSVYDRFGI	PYRMGFAHRNI	FVKDKLQVWRS	DLEYAFND
			11111111111			
a761					FVKDKLOVWRS	
4.01	T.KWTGOYT					
		250 26			290	300
	2	250 26	50 270	280	290	300
5 61	3	26 310 32	50 270 330	280	290 350	300 360
m761.pep	2 KWRAQWQI	10 26 AHRTAAQDFDH	0 270 FYAGSENGNLI	280 340 KRNYAWQQTDN	290 350 IKTLSSNLTLNG	300 360 SDYTIGRFE
	2 KWRAQWQI 	10 26 AHRTAAQDFDH	0 270 0 330 FYAGSENGNLI	280 340 KRNYAWQQTDN	290 350 	300 360 SDYTIGRFE
m761.pep a761	2 KWRAQWQI 	10 26 AHRTAAQDFDH	0 270 FYAGSENGNLI	280 340 KRNYAWQQTDN	290 350 	300 360 SDYTIGRFE
	2 KWRAQWQI         KWRAQWQI	10 26 AHRTAAQDFDH	0 270 FYAGSENGNLI             FYAGSENGNLI	280 340 KRNYAWQQTDN	290 350 	300 360 SDYTIGRFE
	2 KWRAQWQI         KWRAQWQI	26 310 32 AHRTAAQDFDH           AHRTAAQDFDH	0 270 FYAGSENGNLI             FYAGSENGNLI	280 340 KRNYAWQQTDN 	290 350 IKTLSSNLTLNG             KTLSSNLTLNG	300 360 GDYTIGRFE         GDYTIGRFE
	2 KWRAQWQI           KWRAQWQI	26 310 32 AHRTAAQDFDH           AHRTAAQDFDH	0 270 FYAGSENGNLI FYAGSENGNLI FYAGSENGNLI FYAGSENGNLI 0 330	280 340 KRNYAWQQTDN            KRNYAWQQTDN 340	290 350 IKTLSSNLTLNG             KTLSSNLTLNG	300 360 GDYTIGRFE         GDYTIGRFE

Lance that I will be to the second



m761.pep	NHLTVGMDYSREHRN	PTLGESSAES	ASTNPYDRASI	MPASCRIADTI	TONDUVADO:	VCT DT
,			111111111	11111111111	TIONERED	IGIFV
a761	NHLTVGMDYSREHRN	PTI.GESSAES	, , , , , , , , , , , , , , , , , , ,		(	11111
	370	380	390	400		
	370	360	390	400	410	420
	430	440	450	4.60	450	
m761.pep				460	470	480
m/or.pep	QNIFSATPDLKFVLG	PUT DUITENSI	INKLIGSSKŲ:	SGHSFSPNIC	AVWNINPVH	LLYAS
a761	ONTESTADDI KENI C			1	. 1 1 1 1 1 1 1 1 1	
a/01	QNIFSATPDLKFVLGO	440	ENKLIGSSRO			
	430	440	450	460	470	480
	490	500	F 1 0			
m761.pep			510	520	530	540
m/or.pep	YNKGFAPYGGRGGYLS	SIDTLSSAVF	NADPEYTROYE	ETGVKSSWLDD	RLSTTLSAY	DIERF
a761			1111111111	-1111111111		
a/61	YNKGFAPYGGRGGYLS	SIDTLSSAVFN	IADPEYTROYE		RLSTTLSAY	)IERF
	490	500	510	520	530	540
m.c.	550	560	570	580	<b>59</b> 0	600
m761.pep	NIRYRPDPKNNPYIYA	AVSGKHRSRGV	ELSAIGQIIF	KKLYLRGSLG	VMQAKVVEDR	ENPD
				111111111	1111111111	1111
a761	NIRYRPDPKNNPYIYA	VSGKHRSRGV	ELSAIGQIIF	KKLYLRGSLG	VMQAKVVEDK	ENPD
	550	560	570	580	590	600
	610	620	630	640	650	660
m761.pep	RVGIHLNNTSNVTGNI	FFRYTPTENL	YGEIGVTGTG	KRYGYNSRNK	EVTTLPGFAR	VDAM
	_	-	1111111111	11111:111	1111111111	1111
a761	RVGIHLNNTSNVTGNL	FFRYTPTENL	YGEIGVTGTG	KRYGYDSRNK	EVTTLPGFAR	MAGV
	610	620	630	640	650	660
				. • •		000
	670	680	690	700		
m761.pep	LGWNHKNVNVTFAAAN	LLNOKYWRSD	SMPGNPRGYT			
- · ·	1111111111111111					
a761	LGWNHKNVNVTFAAAN	LFNOKYWRSD	SMPGNPRGYT	ARVNYRFY		
	670	680	690	700		
				, 50		
g762.seq Not	vet found					
-	_					
g762.pep Not	yet found	-				

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2611>: m762.seq

```
ATGAAGTGGT TATTAAATAT GATAATGAGA CCTATTAAAT TTAGTATGGT
 51 AAATACGTTA TTATTTATTG TTATATGTAG TTCATTTTTT GATCTGCTCG
101
     TTCAATTATG TACAATTTTA TTTCATAGCC AAAAAATATA CTTTATTACA
     TTATTTTAT TATTTATTT TAATTTTGTT ACAAAATCTA TCTATATGGC
201 AATTATTTAT CCTATTTTAT ATTTTTTAC GATAAAAAA TATTATCCTT
251 ACTCTAGGAA AGTGATAATT CTATTATCAT TAGCATTATC TATATATTTT
301 AGTTTTATGG ACTTTTACTT TTTTTCCATA TATTCAGATA ACCTTAGCTA
351 TGAAACGGAG CCTTTACATT TATACATCCC TATTATTATT AATT
401 CACTTTTAGT TTCTAATTTT ATTTTATCTT TTATCAACAA GTAA
     TGAAACGGAG CCTTTACATT TATACATCCC TATTATTATT AATTTTTTCT
```

#### This corresponds to the amino acid sequence <SEQ ID 2612; ORF 762>: m762.pep

- MKWLLNMIMR PIKFSMVNTL LFIVICSSFF DLLVQLCTIL FHSQKIYFIT 1 51 LFLLFIFNFV TKSIYMAIIY PILYFFTIKK YYPYSRKVII LLSLALSIYF 101 SFMDFYFFSI YSDNLSYETE PLHLYIPIII NFFSLLVSNF ILSFINK*
- The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2613>: a762.seq
  - ATGAAGTGGT TATTAAATAT GATAATGAGA CCTATTAAAT TTAGTATGGT 1 51 AAATACGTTA TTATTTATTG TTATATGTAG TTCATTTTTT GATCTGCTCG 101 TTCAATTATG TACAATTTTA TTTCATAGCC AAAAAATATA CTTTATTACA 151 TTATTTTAT TATTTATTTT TAATTTTGTT ACAAAATCTA TCTATATGGC 201 AATTATTTAT CCTATTTTAT ATTTTTTAC GATAAAAAA TATTATCCTT 251 ACTCTAGGAA AGTGATAATT CTATTATCAT TAGCATTATC TATATATTTT



301	AGTTTTATGG	ACTTTTACTT	TTTTTCCATA	TATTCAGATA	ACCTTAGCTA
351	TGAAACGGAG	CCTTTACATT	TATACATCCC	TATTATTATT	AATTTTTTCT
401	CACTTTTAGT	TTCTAATTT	ATTTTATCTT	ΤΤΑΤΟΔΑΟΔΑ	CTAA

This corresponds to the amino acid sequence <SEQ ID 2614; ORF 762.a>: a762.pep

1 MKWLLNMIMR PIKFSMVNTL LFIVICSSFF DLLVQLCTIL FHSQKIYFIT
51 LFLLFIFNFV TKSIYMAIIY PILYFFTIKK YYPYSRKVII LLSLALSIYF
101 SFMDFYFFSI YSDNLSYETE PLHLYIPIII NFFSLLVSNF ILSFINK*

#### m762 / a762 100.0% identity in 147 aa overlap

```
10
                               30
                                       40
          MKWLLNMIMRPIKFSMVNTLLFIVICSSFFDLLVQLCTILFHSQKIYFITLFLLFIFNFV
m762.pep
          a762
          MKWLLNMIMRPIKFSMVNTLLFIVICSSFFDLLVQLCTILFHSQKIYFITLFLLFIFNFV
                10
                       20
                               30
                                      40
                                              50
                70
                       80
                               90
                                      100
                                              110
                                                     120
          TKSIYMAIIYPILYFFTIKKYYPYSRKVIILLSLALSIYFSFMDFYFFSIYSDNLSYETE
m762.pep
          a762
          TKSIYMAIIYPILYFFTIKKYYPYSRKVIILLSLALSIYFSFMDFYFFSIYSDNLSYETE
                70
                       80
                               90
                                      100
               130
                      140
m762.pep
          PLHLYIPIIINFFSLLVSNFILSFINKX
          a762
          PLHLYIPIIINFFSLLVSNFILSFINKX
               130
```

g763.seq not yet found

g763.pep not yet found

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2615>: m763.seq

```
ATGACATTGC TCAATCTAAT GATAATGCAA GATTACGGTA TTTCCGTTTG
   1
  51
      CCTGACACTG ACGCCCTATT TGCAACATGA ACTATTTTCG GCTATGAAAT
 101
      CCTATTTTC CAAATATATC CTACCCGTTT CACTTTTTAC CTTGCCACTA
      TCCCTTTCCC CATCCGTTTC GGCTTTTACG CTGCCTGAAG CATGGCGGGC
 151
      GGCGCAGCAA CATTCGGCTG ATTTTCAAGC GTCCCATTAC CAGCGTGATG
 251 CAGTGCGCG ACGGCAACAA CAAGCCAAGG CCGCATTCCT TCCCCATGTA
      TCCGCCAATG CCAGCTACCA GCGCCAGCCG CCATCGATTT CTTCCACCCG
 301
 351
      CGAAACACAG GGATGGAGCG TGCAGGTGGG ACAAACCTTA TTTGACGCTG
      CCAAATTTGC ACAATACCGC CAAAGCAGGT TCGATACGCA GGCTGCAGAA
 401
     CAGCGTTTCG ATGCGGCACG CGAAGAATTG CTGTTGAAAG TTGCCGAAAG
 451
 501 TTATTTCAAC GTTTTACTCA GCCGAGACAC CGTTGCCGCC CATGCGGCGG
 551 AAAAAGAGGC TTATGCCCAG CAGGTAAGGC AGGCGCAGGC TTTATTCAAT
     AAAGGTGCTG CCACCGCGCT GGATATTCAC GAAGCCAAAG CCGGTTACGA
 601
      CAATGCCCTG GCCCAAGAAA TCGCCGTATT GGCTGAGAAA CAAACCTATG
 651
 701 AAAACCAGTT GAACGACTAC ACCGACCTGG ATAGCAAACA AATCGAGGCC
 751 ATAGATACCG CCAACCTGTT GGCACGCTAT CTGCCCAAGC TGGAACGTTA
 801
     CAGTCTGGAT GAATGGCAGC GCATTGCCTT ATCCAACAAT CATGAATACC
     GGATGCAGCA GCTTGCCCTG CAAAGCAGCG GACAGGCGCT TCGGGCAGCA
 851
 901
      CAGAACAGCC GCTATCCCAC CGTTTCTGCC CATGTCGGCT ATCAGAATAA
 951 CCTCTACACT TCATCTGCGC AGAATAATGA CTACCACTAT CGGGGCAAAG
1001
     GGATGAGCGT CGGCGTACAG TTGAATTTGC CGCTTTATAC CGGCGGAGAA
     TTGTCGGGCA AAATCCATGA AGCCGAAGCG CAATACGGGG CCGCCGAAGC
1051
1101
     ACAGCTGACC GCAACCGAGC GGCACATCAA ACTCGCCGTA CGCCAGGCTT
     ATACCGAAAG CGGTGCGGCG CGTTACCAAA TCATGGCGCA AGAACGGGTT
1151
     TTGGAAAGCA GCCGTTTGAA ACTGAAATCG ACCGAAACCG GCCAACAATA
1201
1251
     CGGCATCCGC AACCGGCTGG AAGTAATACG GGCGCGGCAG GAAGTCGCCC
     AAGCAGAACA GAAACTGGCT CAAGCACGGT ATAAATTCAT GCTGGCTTAT
1301
1351
     TTGCGCTTGG TGAAAGAGAG CGGGTTAGGG TTGGAAACGG TATTTGCGGA
1401
     ATAA
```



```
This corresponds to the amino acid sequence <SEQ ID 2616; ORF 763>: m763.pep
```

```
1 MTLLNLMIMO DYGISVCLTL TPYLQHELFS AMKSYFSKYI LPVSLFTLPL
51 SLSPSVSAFT LPEAWRAAQQ HSADFQASHY QRDAVRARQQ QAKAAFLPHV
101 SANASYQRQP PSISSTRETQ GWSVQVGQTL FDAAKFAQYR QSRFDTQAAE
151 QRFDAAREEL LLKVAESYFN VLLSRDTVAA HAAEKEAYAQ QVRQAQALFN
201 KGAATALDIH EAKAGYDNAL AQEIAVLAEK QTYENQLNDY TDLDSKQIEA
251 IDTANLLARY LPKLERYSLD EWQRIALSNN HEYRMQQLAL QSSGQALRAA
301 QNSRYPTVSA HVGYQNNLYT SSAQNNDYHY RGKGMSVGVQ LNLPLYTGGE
351 LSGKIHEAEA QYGAAEAQLT ATERHIKLAV RQAYTESGAA RYQIMAQERV
401 LESSRLKLKS TETGQQYGIR NRLEVIRARQ EVAQAEQKLA QARYKFMLAY
```

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2617>: a763.seq

```
ATGACATTGC TCAATCTAAT GATAATGCAA GATTACGGTA TTTCCGTTTG
   1
  51
      CCTGACACTG ACGCCCTATT TGCAACATGA ACTATTTTCG GCTATGAAAT
 101
     CCTATTTTTC CAAATATATC CTACCCGTTT CACTTTTTAC CTTGCCACTA
 151 TCCCTTTCCC CATCCGTTTC GGCTTTTACG CTGCCTGAAG CATGGCGGGC
      GGCGCAGCAA CATTCGGCTG ATTTTCAAGC GTCCCATTAC CAGCGTGATG
     CAGTGCGCGC ACGGCAACAA CAAGCCAAGG CCGCATTCCT TCCCCATGTA
 251
 301
      TCCGCCAATG CCAGCTACCA GCGCCAGCCG CCATCGATTT CTTCCACCCG
      CGAAACACAG GGATGGAGCG TGCAGGTGGG ACAAACCTTA TTTGACGCTG
 351
      CCAAATTTGC ACAATACCGC CAAAGCAGGT TCGATACGCA GGCTGCAGAA
 401
 451
     CAGCGTTTCG ATGCGGCACG CGAAGAATTG CTGTTGAAAG TTGCCGAAAG
     TTATTTCAAC GTTTTACTCA GCCGAGACAC CGTTGCCGCC CATGCGGCGG
 501
 551 AAAAAGAGGC TTATGCCCAG CAGGTAAGGC AGGCGCAGGC TTTATTCAAT
     AAAGGTGCTG CCACCGCGCT GGATATTCAC GAAGCCAAAG CCGGTTACGA
 601
     CAATGCCCTG GCCCAAGAAA TCGCCGTATT GGCTGAGAAA CAAACCTATG
 651
 701 AAAACCAGTT GAACGACTAC ACCGGCCTGG ACAGCAAACA AATCGAGGCC
 751 ATAGATACCG CCAACCTGTT GGCACGCTAT CTGCCCAAGC TGGAACGTTA
 801 CAGTCTGGAT GAATGGCAGC GCATTGCCTT ATCCAACAAT CATGAATACC
 851 GGATGCAGCA GCTTGCCCTG CAAAGCAGCG GACAGGCGCT TCGGGCAGCA
 901
     CAGAACAGCC GCTATCCCAC CGTTTCTGCC CATGTCGGCT ATCAGAATAA
     CCTCTACACT TCATCTGCGC AGAATAATGA CTACCACTAT CGGGGCAAAG
 951
     GGATGAGCGT CGGCGTACAG TTGAATTTGC CGCTTTATAC CGGCGGAGAA
1001
     TTGTCGGGCA AAATCCATGA AGCCGAAGCG CAATACGGGG CTGCCGAAGC
1051
1101
     ACAGCTGACC GCAACCGAGC GGCACATCAA ACTCGCCGTA CGCCAGGCTT
1151
     ATACCGAAAG CGGTGCGGCG CGTTACCAAA TCATGGCGCA AGAACGGGTT
     TTGGAAAGCA GCCGTTTGAA ACTGAAATCG ACCGAAACCG GCCAACAATA
1201
1251
     CGGCATCCGC AACCGGCTGG AAGTAATACG GGCGCGGCAG GAAGTCGCCC
     AAGCAGAACA GAAACTGGCT CAAGCACGGT ATAAATTCAT GCTGGCTTAT
1351
     TTGCGCTTGG TGAAAGAGAG CGGGTTAGGG TTGGAAACGG TATTTGCGGA
1401
     ATAA
```

## This corresponds to the amino acid sequence <SEQ ID 2618; ORF 763.a>:

1	MTLLNLMIMQ	DYGISVCLTL	TPYLQHELFS	AMKSYFSKYI	LPVSLFTLPL
51	SLSPSVSAFT	LPEAWRAAQQ	HSADFQASHY	QRDAVRAROO	OAKAAFLPHV
101	SANASYQRQP	PSISSTRETQ	GWSVQVGQTL	FDAAKFAOYR	OSRFDTOAAE
151	QRFDAAREEL	LLKVAESYFN	VLLSRDTVAA	HAAEKEAYAQ	OVROAOALFN
201	KGAATALDIH	EAKAGYDNAL	AQEIAVLAEK	QTYENQLNDY	TGLDSKOIEA
251	IDTANLLARY	LPKLERYSLD	EWQRIALSNN	HEYRMOQLAL	OSSGOALRAA
301	QNSRYPTVSA	HVGYQNNLYT	SSAQNNDYHY	RGKGMSVGVQ	LNLPLYTGGE
351	LSGKIHEAEA	QYGAAEAQLT	ATERHIKLAV	ROAYTESGAA	RYOIMAOERV
401	LESSRLKLKS	TETGQQYGIR	NRLEVIRARO	EVAQAEQKLA	OARYKEMLAY
451	LRLVKESGLG	LETVFAE*	-	<u>-</u>	

#### m763 / a763 99.8% identity in 467 aa overlap

	10	20	30	40	50	60
m763.pep	MTLLNLMIMQDYGI	SVCLTLTPYL	QHELFSAMKS	YFSKYILPVS	LFTLPLSLSP	SVSAFT
200		11111111			111111111	11111
a763	MTLLNLMIMQDYGI	SVCLTLTPYL	QHELFSAMKS:	YFSKYILPVS	LFTLPLSLSP	SVSAFT
	10	20	30	40	50	60

BNSDOCID: <WO___9957280A2_I_>

 $x \in \mathcal{T}_{n} = \mathcal{T}_{n}$ 

m763.pep	70 LPEAWRAAQQHSAD	80 FQASHYQRDA	90 AVRARQQQAKA	100 AFLPHVSAN	110 ASYQRQPPSI	120 SSTRETQ
a763		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		AFI PHYSAN		
4.00	70	80	90	100	110	120
m763.pep	130 GWSVQVGQTLFDAAI	140	150	160	170	180
m. oc.pep		!			AESTENVLES	IIIIIII
a763	GWSVQVGQTLFDAA	KFAQYRQSRI	DTQAAEQRFD	AAREELLLK	AESYFNVLLS	SRDTVAA
	130	140	150	160	170	180
	190	200	210	220	230	240
m763.pep	HAAEKEAYAQQVRQA	AQALFNKGAA	TALDIHEAKA	GYDNALAQEI	AVLAEKQTYE	ENQLNDY
a763		MAT FNKCAZ	וווווווווו מאמשטדת.זמתי	CYDNATAORT		IIIIIII
4.00	190	200	210	220	230	240
					200	240
m.cn	250	260	27,0	280	290	300
m763.pep	TDLDSKQIEAIDTAN	ILLARYLPKI	ERYSLDEWQR	IALSNNHEYR	MOQLALOSSO	QALRAA
a763	 TGLDSKQIEAIDTAN	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	TALSMNHEVD		[
	250	260	270	280	290 290	300
					230	300
	310	320	330	340	350	360
m763.pep	QNSRYPTVSAHVGYQ	NNLYTSSAQ	NNDYHYRGKG	MSVGVQLNLP	LYTGGELSGK	IHEAEA
a763		IIIIIIIII OARRTYJINN	NNDYHYRGKG	HIIIIIIIII		ריי ליי ליי
	310	320	330	340	350	360
m763.pep	370	380	390	400	410	420
m/63.pep	QYGAAEAQLTATERH	IKLAVRQAY	TESGAARYQII	MAQERVLESS	RLKLKSTETG	QQYGIR
a763	QYGAAEAQLTATERH	IKLAVROAY	TESGAARYOTI	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		OOVGIR
	370	380	390	400	410	420
m763.pep	430	440	450	460		
m/03.pep	NRLEVIRARQEVAQA	EQKLAQARY.	KEMLAYLRLVI	KESGLGLETV.	FAEX	
a763	NRLEVIRARQEVAQA					
	430	440	450	460		



# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2619>: m764.seq

```
ATGTTTTTCT CCGCCCTGAA ATCCTTTCTT TCTCGATACA TTACTGTATG
      GCGCAATGTT TGGGCGGTGC GCGACCAGTT GAAACCGCCC AAACGCACGG
  51
      CGGAAGAACA GGCGTTTTTG CCCGCGCATT TGGAACTGAC CGATACGCCG
 101
 151 GTCTCTGCCG CTCCGAAATG GGCGGCGCGT TTTATTATGG CGTTTGCGCT
 201 TTTGGCTTTG TTGTGGTCCT GGTTCGGCAA AATCGATATT GTGGCGGCGG
      CTTCGGGCAA AACGGTGTCG GGCGGGCGCA GCAAAACCAT CCAGCCGCTG
 251
 301
      GAAACGGCGG TGGTTAAGGC GGTACATGTG CGCGACGGGC AGCATGTGAA
 351 ACAGGGAGAA ACGCTGGCGG AACTGGAGGC TGTGGGAACA GACAGCGATG
 401 TGGTGCAGTC GGAGCAGGCT TTGCAGGCTG CCCAATTGTC CAAACTGCGT
 451 TATGAAGCGG TATTGGCGGC ATTGGAAAGC CGTACCGTGC CGCATATCGA
     TATGGCGCAA GCACGGTCTT TAGGTCTCTC CGATGCCGAT GTGCAATCGG
      CGCAGGTGTT GGCGCAGCAC CAGTATCAGG CATGGGCGGC GCAGGATGCG
 551
 601 CAATTGCAGT CGGCTTTGCG CGGCCATCAG GCGGAATTGC AGTCGGCCAA
     GGCGCAGGAG CAGAAGCTGG TTTCGGTGGG GGCGATCGAG CAGCAGAAAA
 701 CAGCAGACTA CCGCCGTTTG CGGGCCGACA ATTTTATTTC GGAACATGCG
 751
     TTTTTGGAGC AGCAGAGCAA ATCGGTCAGC AATTGGAACG ATTTGGAAAG
     TACGCGCGGT CAGATGAGGC AGATTCAGGC GGCCATTGCA CAGGCGGAGC
 801
 851 AGAATCGGGT GCTGAATACG CAGAACCTGA AACGCGATAC GCTGGATGCG
 901 CTGCGCCAGG CAAACGAACA GATTGACCAA TACCGCGGCC AAACGGATAA
 951 GGCAAAGCAG CGGCAGCAGC TGATGACAAT ACAGTCGCCT GCGGACGGCA
1001 CGGTGCAGGA ATTGGCTACC TATACGGTGG GCGGTGTGGT GCAGGCTGCC
1051
     CAAAAAATGA TGGTGATTGC GCCCGATGAC GACAAAATGG ACGTGGAAGT
     TTTGGTATTG AACAAAGACA TCGGTTTTGT GGAACAGGGA CAGGATGCGG
1101
     TGGTGAAGAT TGAGAGCTTT CCCTATACGC GCTACGGTTA TCTGACGGGC
1151
1201 AAGGTGAAAA GTGTCAGCCA TGATGCGGTA AGCCACGAAC AGTTGGGCTT
     GGTTTATACG GCGGTGGTGT CGCTGGACAA ACATACCTTG AATATTGACG
1301
     GCAAAGCAGT GAATCTGACG GCGGGCATGA ATGTCACGGC GGAGATTAAA
     ACGGGTAAAC GGCGGGTGCT GGATTATCTG TTAAGCCCGC TGCAAACCAA
1351
1401 ATTGGACGAA AGCTTTAGGG AGCGATAG
```

# This corresponds to the amino acid sequence <SEQ ID 2620; ORF 764>: m764.pep

```
1 MFFSALKSFL SRYITVWRNV WAVRDQLKPP KRTAEEQAFL PAHLELTDTP
51 VSAAPKWAAR FIMAFALLAL LWSWFGKIDI VAAASGKTVS GGRSKTIQPL
101 ETAVVKAVHV RDGQHVKQGE TLAELEAVGT DSDVVQSEQA LQAAQLSKLR
151 YEAVLAALES RTVPHIDMAQ ARSLGLSDAD VQSAQVLAQH QYQAWAAQDA
201 QLQSALRGHQ AELQSAKAQE QKLVSVGAIE QQKTADYRRL RADNFISEHA
251 FLEQQSKSVS NWNDLESTRG QMRQIQAAIA QAEQNRVLNT QNLKRDTLDA
301 LRQANEQIDQ YRGQTDKAKQ RQQLMTIQSP ADGTVQELAT YTVGGVVQAA
351 QKMMVIAPDD DKMDVEVLVL NKDIGFVEQG QDAVVKIESF PYTRYGYLTG
401 KVKSVSHDAV SHEQLGLVYT AVVSLDKHTL NIDGKAVNLT AGMNVTAEIK
451 TGKRRVLDYL LSPLQTKLDE SFRER*
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2621>:

٠.	seq	(partial)				
	1	ATGTTTTTCT	CCGCCCTGAA	ATCCTTTCTT	TCCCGCTACA	TTACCGTATG
	51	GCGCAATGTT	TGGGCGGTGC	GCGACCAGTT		AAACGCACGG
	101	CGGAAGAACA	GGCGTTTTTG	CCCGCGCATT	TGGAACTGAC	CGATACGCCG
	151	GTCTCTGCCG	CTCCGAAATG	GGCGGCGCGT	TTTATTATGG	CGTTTGCGCT
	201		TTGTGGTCCT		AATCGATATT	GTGGCGGCGG
	251		AACGGTGTCG		GCAAAACCAT	CCAGCCGCTG
	301		TGGTTAAGGC		CGCGACGGGC	AGCATGTGAA
	351	ACAGGGAGAA	ACGCTGGCGG	AACTGGAGGC	TGTGGGAACA	GACAGCGATG
	401		GGAGCAGGCT	TTGCAGGCTG	CCCAATTGTC	CAAACTGCGT
	451	TATGAAGCGG		ATTGGAAAGC	CGTACCGTGC	CGCATATCGA
	501	TATGGCGCAA	GCACGGTCTT	TAGGTCTCTC	CGATGCCGAT	GTGCAATCGG
	551	CGCAGGTGTT	GGCGCAGCAC	CAGTATCAGG	CATGGGCGGC	GCAGGATGCG
	601	CAATTGCAGT	CGGCTTTGCG	CGGCCATCAG	GCGGAATTGC	AGTCGGCCAA
	651	GGCGCAGGAG	CAGAAGCTGG	TTTCGGTGGG	GGCGATCGAG	CAGCAGAAAA



			•		
701	CAGCAGACTA	CCGCCGTTTG	CGGGCCGACA	ATTTTATTTC	GGAACATGCG
751	TTTTTGGAGC	AGCAGAGCAA	ATCGGTCAGC	AATTGGAACG	ATTTGGAAAG
801					CAGGCGGAGC
851					GCTGGATGCG
901			GATTGACCAA		
951			TGATGACAAT		
1001	CGGTGCAGGA	ATTGGCCACC	TATACGGTGG	GCGGTGTGGT	GCAGGCTGCC
1051			GCCCGATGAC		
1101			TCGGTTTTGT		
1151	TGGTGAAGAT	TGAGAGTTTT	CCCTATACGC	GCTACGGTTA	TCTGACGGGC
1201			TGATGCGGTA		
1251	GGTTTATACG	GCGGTGGTGT	CGCTGGACAA	ACATACCTTG	AATATTGACG
1301	GCAAA				

# This corresponds to the amino acid sequence <SEQ ID 2622; ORF 764.a>: a764.pep (partial)

.pep	(partial)				
1	MFFSALKSFL	SRYITVWRNV	WAVRDQLEPP	KRTAEEQAFL	PAHLELTDTP
51	VSAAPKWAAR	FIMAFALLAL	LWSWFGKIDI	VAAASGKTVS	GGRSKTIQPL
101	ETVVVKAVHV	RDGQHVKQGE	TLAELEAVGT	DSDVVQSEQA	LQAAQLSKLR
151					QYQAWAAQDA
201	QLQSALRGHQ	AELQSAKAQE	QKLVSVGAIE	QQKTADYRRL	RADNFISEHA
251	FLEQQSKSVS	NWNDLESTRG	QMRQIQAAIA	QAEQNRVLNT	QNLKRDTLDA
301	LRQANEQIDQ	YRGQTDKAKQ	RQQLMTIQSP	ADGTVQELAT	YTVGGVVOAA
351	QKMMVVAPDD	DKMDVEVLVL	NKDIGFVEQG	QDAVVKIESF	PYTRYGYLTG
401	KVKSVSHDAV				

### m764 / a764 99.3% identity in 435 aa overlap

	10	20	30	40	50	60
m764.pep	MFFSALKSFLSRYI'	TVWRNVWAVR	DQLKPPKRTA	EEQAFLPAHI	ELTDTPVSA	APKWAAR
			111:11111		11111111	
a764	MFFSALKSFLSRYI'	rvwrnvwavr			ELTDTPVSA	APKWAAR
	10	20	30	40	50	60
	70	80	0.0			
m764.pep	FIMAFALLALLWSWI		90	100	110	120
m/04.pep		GRIDIVAAA	3GK1V3GGK3	KTIQPLETAV	VKAVHVRDGG	2HVKQGE
a764	FIMAFALLALLWSWI	CKIDIVAAA	SCKTASCCES	THILLITE		
	70	80	90	100	110	120
	-		30	100	110	120
	130	140	150	160	170	180
m764.pep	TLAELEAVGTDSDV	QSEQALQAA	QLSKLRYEAV	LAALESRTVP	HIDMAQARSI	LGLSDAD
		111111111	[1][[][[][][][][][][][][][][][][][][][]		111111111	
a764	TLAELEAVGTDSDV				HIDMAQARSI	GLSDAD
	130	140	150	160	170	180
	190	200	210	220	000	
m764.pep	VQSAQVLAQHQYQAW				230	240
o 11 pcp	111111111111111111111111111111111111111		HIKGUÕMETÕ	SAVAÕEÕVTA	SVGATEQQKI	ADYRRL
a764	VQSAQVLAQHQYQAW	AAODAOLOS	ALRGHOAELO	SAKAOEOKIN	SVCATEOORT	ון     זמסעמאי
	190	200	210	220	230	240
					200	240
	250	260	270	280	290	300
m764.pep	RADNFISEHAFLEQQ	SKSVSNWND	LESTRGQMRQ	IQAAIAQAEQ	NRVLNTQNLK	RDTLDA
564	_			111111111	1111111111	111111
a764	RADNFISEHAFLEQQ	SKSVSNWNDI	LESTRGQMRQ:	IQAAIAQAEQ		
	250	260	270	280	290	300
	310	320	330	340	350	260
m764.pep	LRQANEQIDQYRGQT				33U 33U 5 601113	360
			IIIIIIIIII	vormannive.	GVVQAAQKIMM 111111111	IVIAPDD
a764	LRQANEQIDQYRGQT	DKAKOROOLI	TIOSPADGT'	VOELATYTVG:	CVVODDOKMM	חחפגעע
	310	320	330	340	350	360
						300
<b></b>	370	380	390	400	410	420
m764.pep	DKMDVEVLVLNKDIG	FVEQGQDAVV	KIESFPYTR	YGYLTGKVKS	VSHDAVSHEQ	LGLVYT

```
a764
                    DKMDVEVLVLNKDIGFVEQGQDAVVKIESFPYTRYGYLTGKVKSVSHDAVSHEOLGLVYT
                                       380
                                                  390
                                                            400
                            430
                                       440
                                                  450
                                                            460
                    AVVSLDKHTLNIDGKAVNLTAGMNVTAEIKTGKRRVLDYLLSPLQTKLDESFRERX
      m764.pep
                    a764
                    AVVSLDKHTLNIDGK
g765.seq not yet found
g765.pep not yet found
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2623>:
m765.seq
          ATGTTAAGAT GCCGTCCGAA ATCCGTTTTG GATTCAGACG GCATTTTTTT
      51
          GAAATTTAAT TTTTTAAGGA GTAAACCTAA ATATGAAATT TCCTTCCTTC
     101
         CTTCCTTTAA ACGGATACTC TGCCTGTCGG CAGTAATCTC GGTATTGGGG
          GCTTGTGCGG TCGTTGCTGA TGTTTACGGT CATGATTCCG CCACAATGAA
     201 CGCTGCGGCT GCCAAAGATT ATATGAAAAC GGTTGAGTTA AACAAGTCTG
     251
          CCGGCAATGT CGATACCACA TCCAGAACAG CCCGCAGGGT GCAGGCAGTA
          TTTCGACGTA TGCTGCCTTA TGCCGATGCG GCAAATAATA CCAGCCATAA
     301
          GTTTGACTGG AAAATGACGG TTTTCAAAAA CGATGAGCTG AACGCGTGGG
     351
         CAATGCCCGG TGGAAAAATG GCGTTTTATA CGGGGATAGT CGACAAACTC
     451 AAGCTGACCG ATGACGAAAT TGCCGCCATT ATGGGGCATG AAATGACGCA
         CGCCCTGCAT GAACACGGTA AAAATAAGGT CGGGCAGCAA ATCTTGACCA
     501
     551 ATACGGCGGC GCAGATAGGC ACGCAGATTA TATTAGACAA AAAACCGGAT
     601 ACTAATCCGG AATTGGTCGG ATTGGGTATG GATATTTTGG GGACGTACGG
         TCTTACCTTG CCTTATAGCC GCAGCTTGGA AGAAGAAGCC GATGAGGGGG
     651
     701 GAATGATGTT GATGGCGCAG GCAGGCTATC ATCCGGCGGC CGCTGTCAGG
     751
         GTTTGGGAAA AAATGAATCA GGAAAACGAC CAAAACGGCT TTATTTATGC
     801
         TATTACCTCT ACTCATCCGA CAAACAATGC CCGTATAGAA AATCTAAAAC
         GGTTGTTGCC GACCGTTATG CCGGTTTATG AGCAAAGTGT CAGAAATAAG
     851
     901 GGGCGCGTTA ATAAAAAACG TCGGCGTTAA
This corresponds to the amino acid sequence <SEQ ID 2624; ORF 765>:
m765.pep
         MLRCRPKSVL DSDGIFLKFN FLRSKPKYEI SFLPSFKRIL CLSAVISVLG
      51
         ACAVVADVYG HDSATMNAAA AKDYMKTVEL NKSAGNVDTT SRTARRVQAV
     101
         FRRMLPYADA ANNTSHKFDW KMTVFKNDEL NAWAMPGGKM AFYTGIVDKL
     151 KLTDDEIAAI MGHEMTHALH EHGKNKVGQQ ILTNTAAQIG TQIILDKKPD
         TNPELVGLGM DILGTYGLTL PYSRSLEEEA DEGGMMLMAQ AGYHPAAAVR
     251 VWEKMNQEND QNGFIYAITS THPTNNARIE NLKRLLPTVM PVYEQSVRNK
     301 GRVNKKRRR*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2625>:
a765.seq
         ATGTTAAGAT GCCGTCCGAA ATCCGTTTTG GATTCAGACG GCATTTTTT
      51
         GAAATTTAAT TTTTTAAGGA GTAAACCTAA ATATGAAATT TCCTTCCTTC
    101 CTTCCTTTAA ACGGATACTC TGCCTGTCGG CAGTAATCTC GGTATTGGGG
         GCTTGTACGG TCGTTGCTGA TGTTTACGGT CAGGATTCCG CCACAATGAA
    151
    201
         TGCTGCGGCT GCCGAAGATT ATATGAAAAC GGTTGAGTTG AACAAGTCTG
     251 CCGGCAATGT CGATACTACA TCCAAAACAG CCCGTAGGGT GCAGGCAGTA
     301
         TTTCGACGTA TGTTGCCTTA TGCCGATGCG GCAAATAATA CCGGCCATAA
    351
         GTTTGACTGG AAAATGACGG TTTTCAAAAA CGATGAGCTG AACGCGTGGG
     401
         CAATGCCCGG CGGGAAAATG GCGTTTTATA CGGGGATAGT CGATAAACTT
         AAGCTGACCG ATGGCGAAAT TGCCGCCATT ATGGGGCATG AAATGACGCA
     451
         TGCCCTGCAT GAACACGGTA AAAATAAGGT CGGGCAGAAA ATCTTGACTA
     501
    551
         ATATGGCGGC GCAGATAGGC ACGCAGATTA TATTAGACAA AAAACCGGAC
    601 ACTAATCCGG AATTGGTCGG ATTGGGTATG GATATTTTGG GGATGTACGG
         CATTACCTTG CCTTATAGCC GCAGCTTGGA AGAAGAAGCC GATGAGGGGG
     651
         GAATGATGTT GATGGCGCAG GCAGGCTATC ATCCGGCAGC CGCTGTCAGG
     701
         GTTTGGGAAA AAATGAATCA GGAAAACGAC CAAAACGGCT TTATTTATGC
     751
    801
         TATTACCTCT ACTCATCCGA CAAACAATGC CCGTATAGAA AATCTAAAAC
    851
         GGTTGTTGCC GACCGTTATG CCGGTTTATG AGCACAGTGT TAGAAATAAG
    901 GGGCGCGTTA ATAAAAACCG TCGGCGTTAA
This corresponds to the amino acid sequence <SEQ ID 2626; ORF 765.a>:
a765.pep
```

MLRCRPKSVL DSDGIFLKFN FLRSKPKYEI SFLPSFKRIL CLSAVISVLG

BNSDOCID: <WO___9957280A2_I_>

Line and the same of the same



51	ACTVVADVYG	QDSATMNAAA	AEDYMKTVEL	NKSAGNVDTT	SKTARRVOAV
101	FRRMLPYADA	ANNTGHKFDW	KMTVFKNDEL	NAWAMPGGKM	AFYTGIVDKL
151	KLTDGEIAAI	MGHEMTHALH	EHGKNKVGQK	ILTNMAAQIG	TQIILDKKPD
201	TNPELVGLGM	DILGMYGITL	PYSRSLEEEA	DEGGMMLMAQ	AGYHPAAAVR
251	<b>VWEKMNQEND</b>	QNGFIYAITS	THPTNNARIE	NLKRLLPTVM	PVYEHSVRNK
301	GRVNKNRRR*				

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from *N meningitidis* 

ORF 765 shows 96.18% identity over a 309 aa overlap with a predicted ORF (ORF 765) from N. meningitidis:

m765 / a765 96.1% identity in 309 aa overlap

```
40
          MLRCRPKSVLDSDGIFLKFNFLRSKPKYEISFLPSFKRILCLSAVISVLGACAVVADVYG
m765.pep
          a765
          MLRCRPKSVLDSDGIFLKFNFLRSKPKYEISFLPSFKRILCLSAVISVLGACTVVADVYG
                                30
                                       40
                                               50
                                                       60
                70
                        80
                                90
                                       100
                                              110
m765.pep
          HDSATMNAAAAKDYMKTVELNKSAGNVDTTSRTARRVQAVFRRMLPYADAANNTSHKFDW
          a765
          QDSATMNAAAAEDYMKTVELNKSAGNVDTTSKTARRVQAVFRRMLPYADAANNTGHKFDW
                        80
                                90
                                       100
                                              110
                130
                       140
                               150
                                       160
                                              170
                                                      180
          KMTVFKNDELNAWAMPGGKMAFYTGIVDKLKLTDDEIAAIMGHEMTHALHEHGKNKVGQQ
m765.pep
          a765
          KMTVFKNDELNAWAMPGGKMAFYTGIVDKLKLTDGEIAAIMGHEMTHALHEHGKNKVGQK
               130
                       140
                               150
                                      160
                                              170
                                                      180
                       200
                               210
                                      220
                                              230
m765.pep
          ILTNTAAQIGTQIILDKKPDTNPELVGLGMDILGTYGLTLPYSRSLEEEADEGGMMLMAO
          a765
          ILTNMAAQIGTQIILDKKPDTNPELVGLGMDILGMYGITLPYSRSLEEEADEGGMMLMAO
               190
                       200
                               210
                                              230
                                      220
               250
                       260
                               270
                                      280
                                              290
m765.pep
          AGYHPAAAVRVWEKMNQENDQNGFIYAITSTHPTNNARIENLKRLLPTVMPVYEQSVRNK
          AGYHPAAAVRVWEKMNQENDQNGFIYAITSTHPTNNARIENLKRLLPTVMPVYEHSVRNK
a765
               250
                       260
                               270
                                      280
                                              290
          GRVNKKRRRX
m765.pep
          11111:111
a765
          GRVNKNRRRX
               310
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2627>: 9767.seq

```
ATGAAGTTTA AACATCTGTT GCCGCTGCTG CTGTCGGCAG TGTTGTCCGC
51
    GCAGGCATAT GCCCTGACGG AAGGGGAAGA CTATCTTGTG TTGGATAAAC
101
    CCATTCCTCA AGAACAGCCG GGAAAAATTG AGGTTTTGGA ATTTTTCGGC
    TATTTTTGCG TACATTGCCA TCATTTCGAT CCTTTGTTAT TGAAACTGGG
151
201
    CAAGGCATTG CCGTCTGATA CTTATCTGCG GACGGAGCAC GTGGTCTGGC
251
    GGCCTGAAAT GCTCGGTCTG GCAAGAATGG CTGCTGCGGT CAAGCTGTCG
301
    GGTTTGAAAT ATCAGGCAAA CTCTGCTGTG TTTAAAGCAG TTTACGAACA
    AAAAATCCGT TTGGAAAACA GGGCTGTTGC CGGGAAATGG GCTTTATCTC
401
    AAAAAGGTTT TGACGGCAAA AAACTGATGC GCGCCTATGA TTCCCCCGAA
451
    GCTGCCGCCG TCGCATTAAA AATGCAGAAA CTGACGGAAC AATACGGTAT
    TGACAGCACG CCGACCGTTA TTGTCGGCGG AAAATACCGC GTTATCTTCA
501
    ATAATGGCTT TGATGGCGGC GTTCATACGA TTAAAGAATT GGTTGCCAAA
    GTCAGGGAAG AACGCAAGCG TCAGACCCCT GCTGTACAGA AATAG
```

This corresponds to the amino acid sequence <SEQ ID 2628; ORF 767.ng>: g767.pep

1 MKFKHLLPLL LSAVLSAQAY ALTEGEDYLV LDKPIPQEQP GKIEVLEFFG 51 YFCVHCHHFD PLLLKLGKAL PSDTYLRTEH VVWRPEMLGL ARMAAAVKLS

----

ع ير الراب الربائلة بين عالما ما العماري

- 101 GLKYQANSAV FKAVYEQKIR LENRAVAGKW ALSQKGFDGK KLMRAYDSPE
- 151 AAAVALKMQK LTEQYGIDST PTVIVGGKYR VIFNNGFDGG VHTIKELVAK
- 201 VREERKROTP AVOK*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2629>: m767.seq

```
ATGAAGCTCA AACATCTGTT GCCGCTGCTG CTGTCGGCAG TGTTGTCCGC
    GCAGGCATAT GCCCTGACGG AAGGGGAAGA CTATCTTGTG TTGGATAAAC
101
    CCATTCCTCA AGAACAGTCG GGTAAAATTG AGGTTTTGGA ATTTTTCGGC
151
    TATTTCTGCG TACATTGCCA TCATTTCGAT CCTTTGTTAT TGAAACTGGG
201
    CAAGGCATTG CCGTCTGATG CCTATTTGAG GACGGAGCAC GTGGTCTGGC
    AGCCTGAAAT GCTCGGTTTG GCTAGGATGG CGGCTGCCGT CAATTTGTCG
    GGTTTGAAAT ATCAGGCAAA CCCTGCTGTG TTTAAAGCAG TTTACGAACA
301
351
    AAAAATCCGC TTGGAAAACA GGTCGGTTGC CGGAAAATGG GCTTTGTCTC
    AAAAAGGCTT TGACGGCAAA AAACTGATGC GCGCCTATGA TTCCCCCGAA
401
    GCTGCCGCCG CCGCATTAAA AATGCAGAAA CTGACGGAAC AATACCGCAT
    CGACAGCACG CCGACCGTTA TTGTCGGCGG AAAATACCGC GTTATCTTCA
501
    ATAACGGCTT TGACGGCGGC GTTCATACGA TTAAAGAATT GGTTGCCAAA
551
```

This corresponds to the amino acid sequence <SEQ ID 2630; ORF 767>: m767.pep

1 MKLKHLLPLL LSAVLSAQAY ALTEGEDYLV LDKPIPQEQS GKIEVLEFFG
51 YFCVHCHHFD PLLLKLGKAL PSDAYLRTEH VVWODEMICI ARMAANNIS

601 GTCAGGGAAG AACGCAAGCG TCAGACCCCT GCTGTACAGA AATAG

- 51 YFCVHCHHFD PLLLKLGKAL PSDAYLRTEH VVWQPEMLGL ARMAAAVNLS 101 GLKYQANPAV FKAVYEQKIR LENRSVAGKW ALSQKGFDGK KLMRAYDSPE
- 151 AAAAALKMQK LTEQYRIDST PTVIVGGKYR VIFNNGFDGG VHTIKELVAK
- 201 VREERKROTP AVOK*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 767 shows 95.8% identity over a 214 aa overlap with a predicted ORF (ORF 767) from N. gonorrhoeae

```
m767/g767
           95.8% identity in 214 ad overlap
                        20
                                30
                                       40
          {\tt MKFKHLLPLLLSAVLSAQAYALTEGEDYLVLDKPIPQEQPGKIEVLEFFGYFCVHCHHFD}
a767.pep
          m767
          MKLKHLLPLLLSAVLSAQAYALTEGEDYLVLDKPIPQEQSGKIEVLEFFGYFCVHCHHFD
                10
                        20
                                30
                                       40
                        80
                                90
                                      100
                                              110
g767.pep
          PLLLKLGKALPSDTYLRTEHVVWRPEMLGLARMAAAVKLSGLKYQANSAVFKAVYEQKIR
          m767
          PLLLKLGKALPSDAYLRTEHVVWQPEMLGLARMAAAVNLSGLKYQANPAVFKAVYEQKIR
                70
                        80
                                90
                       140
                               150
                                      160
                                              170
          {\tt LENRAVAGKWALSQKGFDGKKLMRAYDSPEAAAVALKMQKLTEQYGIDSTPTVIVGGKYR}
g767.pep
          m767
          LENRSVAGKWALSQKGFDGKKLMRAYDSPEAAAAALKMQKLTEQYRIDSTPTVIVGGKYR
               130
                               150
                                      160
                                              170
               190
                       200
          VIFNNGFDGGVHTIKELVAKVREERKRQTPAVQKX
g767.pep
          m767
          VIFNNGFDGGVHTIKELVAKVREERKRQTPAVQKX
               190
                       200
                               210
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2631>: a767.seq

ATGAAGCTCA AACATCTGTT GCCGCTGCTG CTGTCGGCAG TGTTGTCCGC
GCAGGCATAT GCCCTGACGG AAGGGGAAGA CTATCTTGTG TTGGATAAAC
CCATTCCTCA AAAACAGTCG GGCAAAATTG AGGTTTTGGA ATTTTTCGGC
TATTTCTGCG TACATTGCCA TCATTTCGAT CCTTTGTAT TGAAATTGGG
CTAGGCATAT CCGTCTGATG CCTATTTAAG GACGGAGCAC GTGGTCTGGC
AGCCTGAAAT GCTCGGTCTG GCAAGAATGG CTGCTGCGGT CAAGCTGTCA
GGTTTGAAAT ATCAGGCAAA CCCTGCCGTG TTTAAAGCAG TTTACGAACA
AAAAATCCGC TTGGAAAACA GGTCGGTTGC CGAAAAATGG GCTTTGTCTC
AAAAAAGGCTT TGACGGCAAA AAACTGATGC GCGCCTACGA CTCTCCTGCG



- 451 GCAGCGGCTG CTGCATCAAA AATGCAGCAA TTGACGGAAC AGTACCGCAT 501 CGACAGTACG CCGACCGTTG TCGTCGGCGG AAAATACCGC GTTATCTTCA 551 ATAATGGCTT TGACGGCGGT GTTCATACGA TTAAAGAATT GGTTGCCAAA
- 601 GTCAGGGAAG AACGCAAGCG TCAGACCCCT GCTGTACAGA AATAG

This corresponds to the amino acid sequence <SEQ ID 2632; ORF 767.a>: a767.pep

- MKLKHLLPLL LSAVLSAQAY ALTEGEDYLV LDKPIPQKQS GKIEVLEFFG
- 51 YFCVHCHHFD PLLLKLGKAL PSDAYLRTEH VVWQPEMLGL ARMAAAVKLS
- 101 GLKYQANPAV FKAVYEQKIR LENRSVAEKW ALSQKGFDGK KLMRAYDSPA
- 151 AAAAASKMQQ LTEQYRIDST PTVVVGGKYR VIFNNGFDGG VHTIKELVAK
- 201 VREERKROTP AVOK*

Computer analysis of this amino acid sequence gave the following results:

#### Homology with a predicted ORF from N. meningitidis

ORF 767 shows 96.7% identity over a 214 aa overlap with a predicted ORF (ORF 767) from N. meningitidis:

m767/a767	96.7% identity	in 214 a	a overlap			
	10	20	30	40	50	60
a767.pep	MKLKHLLPLLLSAVI					
3.67						
m767	MKLKHLLPLLLSAVI					HCHHFD
	10	20	30	40	50	60
	70	80	90	100	110	
-7 <i>6</i> 7 man				100	110	120
a767. <b>pe</b> p	PLLLKLGKALPSDAY	TKIEHVVW				
5.65		1111111				
m767	PLLLKLGKALPSDAY					YEQKIR
	70	80	90	100	110	120
	120	140				
7.77	130	140	150	160	170	180
a767. <b>p</b> ep	LENRSVAEKWALSQK				QYRIDSTPTVV	VGGKYR
					111111111:	11111
m767	LENRSVAGKWALSOK			ALKMQKLTEC	YRIDSTPTVI	VGGKYR
	130	140	150	160	170	180
	190	200	210			
a767. <b>p</b> ep	VIFNNGFDGGVHTIK					
	- F	11111111	1111111111			
m767	VIFNNGFDGGVHTIK	ELVAKVREE	RKRQTPAVQK	ζ		
	190	200	210			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2633>: g768.seq

- ATGAATATCA AACAATTGAT TACCGCCGCA CTCATTGCCT CAGCCGCCTT 5.1 TGCCACGCAG GCAGCCCCGC AAAAACCCGT ATCCGCCGCC CAAACCGCGC 101 AACATTCAGC CGTTTGGATC GATGTCCGTT CCGAACAGGA ATTTAGCGAA
- GGTCATTTGC ACAACGCGGT CAACATCCCC GTCGACCAAA TCGTCCGCCG 151 201 CATATACGAA GCCGCGCCCG ACAAAGACAC GCCGGTCAAC CTCTACTGCC
- 251
- GCAGCGGACG GCGTGCCGAA GCCGCCCTTC AAGAGCTGAA AAAAGCAGGT
- 301 TATACAAATG TTGCCAATCA CGGCGGTTAT GAAGACCTGC TCAAAAAAGG
- 351 GATGAAATGA

This corresponds to the amino acid sequence <SEQ ID 2634; ORF 768.ng>: g768.pep

- MNIKQLITAA LIASAAFATQ AAPQKPVSAA QTAQHSAVWI DVRSEQEFSE
- 51 GHLHNAVNIP VDQIVRRIYE AAPDKDTPVN LYCRSGRRAE AALQELKKAG
- YTNVANHGGY EDLLKKGMK*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2635>: m768.seq

- 1 ATGAATATCA AACACCTGAT TACCGCCGCA CTCATTGCCT CAGCCGCCTT
- 51 TGCCGCGCAG GCAGCCCCGC AAAAACCCGT ATCCGCCGCC CAAACCGCGC
- 101 AACATCCGGC CGTTTGGATC GATGTCCGTT CCGAACAGGA ATTTAGCGAA
- 151 GGGCATTTGC ACAACGCGGT CAACATCCCC GTCGACCAAA TCGTCCGCCG 201 CATACACGAA GCCGCGCCCG ACAAAGACAC GCCGGTCAAC CTCTACTGCC

and the reserved and the second

#### 1249

- 251 GCAGCGGACG GCGTGCCGAA GCCGCCCTTC AAGAGCTGAA AAAAGCAGGT
- TATACAAATG TTGCCAATCA CGGCGGTTAT GAAGACCTGC TCAAAAAAGG 301
- 351 GATGAAATGA

This corresponds to the amino acid sequence <SEQ ID 2636; ORF 768>: m768.pep

- MNIKHLITAA LIASAAFAAQ AAPQKPVSAA QTAQHPAVWI DVRSEQEFSE
- GHLHNAVNIP VDQIVRRIHE AAPDKDTPVN LYCRSGRRAE AALQELKKAG 51
- 101 YTNVANHGGY EDLLKKGMK*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 768 shows 96.6% identity over a 119 aa overlap with a predicted ORF (ORF 768) from N. gonorrhoeae

m768/g768	96.6% identity	in 119 aa	overlap			
	10	20	30	40	50	60
g768.pep	MNIKQLITAALIAS	AAFATQAAPQ	KPVSAAQTAQ	HSAVWIDVRS	EQEFSEGHLE	NAVNIP
		1111:1111	111111111	1 11111111	1111111111	131111
m768	MNIKHLITAALIAS					
	10	20	30	40	50	60
	70	80	90	100	110	120
g768.pep	VDQIVRRIYEAAPDI					
				11111111	1111111111	111111
m768	VDQIVRRIHEAAPD	KDTPVNLYCR:	SGRRAEAALQ	ELKKAGYTNV	ANHGGYEDLI	KKGMKX
	70	80	90	100	110	120

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2637>: a768.seg

- 1 ATGAATATCA AACACCTGAT TACCGCCGCA CTCATTGCCT CAGCCGCCTT
  51 TGCCGCGCAG GCAGCCCCGC AAAAACCCGT ATCCGCCGCC CAAACCGCGC
- 101 AACATTCAGC CGTTTGGATC GATGTCCGCA GCGAACAGGA ATTTAGCGAA
- 151 GGTCATTTGC ACAACGCGGT CAACATCCCC GTCGACCAAA TCGTCCGCCG 201 CATACACGAA GCCGCGCCCG ACAAAGACAC GCCGGTCAAC CTCTACTGCC
- 251 GCAGCGGACG GCGTGCCGAA GCCGCCCTTC AAGAACTGAA AAAAGCAGGC TATACGAATG TTGCCAATCA CGGCGGTTAT GAAGACCTGC TCAAAAAAGG 301
- 351 GATGAAATGA

This corresponds to the amino acid sequence <SEQ ID 2638; ORF 768.a>: a768.pep

- 1 MNIKHLITAA LIASAAFAAQ AAPQKPVSAA QTAQHSAVWI DVRSEQEFSE
- GHLHNAVNIP VDQIVRRIHE AAPDKDTPVN LYCRSGRRAE AALQELKKAG 51
- YTNVANHGGY EDLLKKGMK*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N meningitidis

ORF 768 shows 99.2% identity over a 119 aa overlap with a predicted ORF (ORF 768) from N. meningitidis:

m768/a768	99.2% identity	in 119 aa	overlap			
	10	20	30	40	50	60
a768.pep	MNIKHLITAALIAS	AAFAAQAAPQ	KPVSAAQTAÇ	HSAVWIDVRS	EQEFSEGHL	HNAVNIP
	11111111111111		111111111	1 11111111	1111111111	111111
m768	MNIKHLITAALIAS	AAFAAQAAPQ	KPVSAAQTAC	HPAVWIDVRS	EQEFSEGHL	HNAVNIP
	10	20	30	40	50	60
	70	80	90	100	110	120
a768.pep	VDQIVRRIHEAAPD!	KDTPVNLYCR	SGRRAEAALC	ELKKAGYTNV	ANHGGYEDL	LKKGMKX
			1111111111	1111111111	111111111	111111
m768	VDQIVRRIHEAAPDI	KDTPVNLYCR	SGRRAEAALO	ELKKAGYTNV	ANHGGYEDLI	KKGMKX
	70	80	90	100	110	120



```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2639>: g769.seq
```

```
TTGATAATGG TTATTTTTA TTTTTATTTT TGTGGGAAGA CATTTATGCC
      TGCACGAAAC AGATGGATGC TGCTGCCTTT ATTGGCAAGC GCGGCATACG
  51
 101
      CCGAAgaAAC ACCgtgCGAA CCGGATTTGA GAAGCCGTCC CGAGTTCAGG
      CTTCATGAAG CGGAGGTCAA ACCGATCGAC AGGGAGAAGG TACCGGGGCA
      GGTGCGGGAA AAAGGAAAAG TTTTGCAGGT TGACGGCGAA ACCCTGCTGA
      AAAATCCCGA ATTGTTGTCG CGTGCCATGT ATTCCGCAGT GGTCTCAAAC
 251
 301
      AATATTGCCG GTATCCGCGT GATTTTGCCG ATTTACCTAC AACAGGCGCG
      GCAGGATAAG ATGTTGGCAC TTTATGCACA AGGGATTTTG GCGCAGGCAG
 351
      AGGGCAGGGT GAAGGAGGCG GTTTCCCATT ACCGGGAATT GATTGCCGCC
 401
      CAACCCGACG CGCCCGCCGT CCGTATGCGT TTGGCGGCGG CATTGTTTGA
 451
 501
      AGACAGGCAG AACGAGGCGG CGGCAGACCA GTTCGACCGC CTGAAAACAG
      AAGATCTGCC GCCGCAGCTT ATGGAGCAGG TCGAGCTGTA CCGCAAGGCA
 551
      TTGCGCGAAC GCGATGCGTG GAAGGTAAAC GGCGGTTTCA GCGTTACCCG
 601
      CGAACACAAT ATCAACCAAG CCCCGAAACA GCAGCAGTAC GGCAATTGGA
 651
 701
      CTTTCCCGAA ACAGGTGGAC GGCACGGCAG TCAATTACCG GTTCGGCGCG
      GAGAAAAAT GGTCGCTGAA AAACGGCTGG TACACGACGG CGGGCGGCGA
 751
      CGTGTCCGGC AGGGTTTATC CGGGGAATAA GAAATTCAAC GATATGACGG
 801
      CAGGTGTTTC CGGCGGCATC GGTTTTGCCG ACCGGCGTAA AGATGTCGGG
     CTGGCAGTGT TCCACGAACG CCGCACCTAC GGCAACGACG CTTATTCTTA
 951
     CGCCAACGGC GCACGCCTTT ATTTCAACCG TTGGCAAACC CCGAGATGGC
1001
     AAACGCTGTC TTCGGCGGAG TGGGGGCGTT TGAAGAATAC GCGCCGGGCG
     CGTTCCGACA ATACCCATTT GCAAATTTCC AATTCGCTGG TGTTTTACCG
     GAATGCGCGC CAATATTGGA CGGGCGGTTT GGATTTTTAC CGCGAGCGCA
     ACCCCGCCGA CCGTGGCGAC AATTTCAACC GTTACGGCCT GCGCTTTGCC
1151
1201
     TGGGGGCAGG AATGGGGCGG CAGCGGCCTG TCTTCGCTGT TCCGCCTCGG
      CGTGGCGAAA CGGCATTATG AAAAACCCGG CTTCTTCAGC AGTTTTAAAG
     GGGAAAGGCG CAGGGATAAA GAATCGGACA CATCCTTGAG CCTTTGGCAC
1351
     CGGGCATTGC ATTTCAAAGG CATCACGCCG CGCCTGACGC TGTCGCACCG
1401
     CGAAACGTGG AGCAACGATG TGTTTAACGA ATACGAGAAA AACAGGGCGT
     TTGTCGAGTT TAACAAAACG TTCTGA
```

## This corresponds to the amino acid sequence <SEQ ID 2640; ORF 769.ng>: g769.pep

```
1 LIMVIFYFYF CGKTFMPARN RWMLLPLLAS AAYAEETPCE PDLRSRPEFR
51 LHEAEVKPID REKVPGQVRE KGKVLQVDGE TLLKNPELLS RAMYSAVVSN
101 NIAGIRVILP IYLQQARQDK MLALYAQGIL AQAEGRVKEA VSHYRELIAA
151 QPDAPAVRM LAAALFEDRQ NEAAADQFDR LKTEDLPPQL MEQVELYRKA
201 LRERDAWKVN GGFSVTREHN INQAPKQQQY GNWTFPKQVD GTAVNYRFGA
251 EKKWSLKNGW YTTAGGDVSG RVYPGNKKFN DMTAGVSGGI GFADRRKDVG
301 LAVFHERRTY GNDAYSYANG ARLYFNRWQT PRWQTLSSAE WGRLKNTRRA
351 RSDNTHLQIS NSLVFYRNAR QYWTGGLDFY RERNPADRGD NFNRYGLRFA
401 WGQEWGGSGL SSLFRLGVAK RHYEKPGFFS SFKGERRRDK ESDTSLSLWH
451 RALHFKGITP RLTLSHRETW SNDVFNEYEK NRAFVEFNKT F*
```

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2641>: m769.seq

```
TTGATAATGG TTATTTTTA TTTTTGTGGG AAGACATTTA TGCCTGCACG
  51
      AAACAGATGG ATGCTGCTGC TGCCTTTATT GGCAAGCGCG GCATATGCCG
 101 AAGAAACACC GCGCGAACCG GATTTGAGAA GCCGTCCCGA GTTCAGGCTT
 151 CATGAAGCGG AGGTCAAACC GATCGACAGG GAGAAGGTGC CGGGGCAGGT
      GCGGGAAAAA GGAAAAGTTT TGCAGATTGA CGGCGAAACC CTGCTGAAAA
      ATCCCGAATT GTTGTCCCGC GCGATGTATT CCGCAGTGGT CTCAAACAAT
 251
 301
      ATTGCCGGTA TCCGCGTTAT TTTGCCGATT TACCTACAAC AGGCGCAGCA
      GGATAAGATG TTGGCACTTT ATGCACAAGG GATTTTGGCG CAGGCAGACG
 351
 401
      GTAGGGTGAA GGAGGCGATT TCCCATTACC GGGAATTGAT TGCCGCCCAA
      CCCGACGCGC CCGCCGTCCG TATGCGTTTG GCGGCAGCAT TGTTTGAAAA
 451
 501
      CAGGCAGAAC GAGGCGGCGG CAGACCAGTT CGACCGCCTG AAGGCGGAAA
      ACCTGCCGCC GCAGCTGATG GAGCAGGTCG AGCTGTACCG CAAGGCATTG
 551
      CGCGAACGCG ATGCGTGGAA GGTAAATGGC GGCTTCAGCG TCACCCGCGA
 601
      ACACAATATC AACCAAGCCC CGAAACGGCA GCAGTACGGC AAATGGACTT
 651
 701
      TCCCGAAACA GGTGGACGGC ACGGCGGTCA ATTACCGGCT CGGCGCGGAG
      AAAAAATGGT CGCTGAAAAA CGGCTGGTAC ACGACGGCGG GCGGCGACGT
 751
      GTCCGGCAGG GTTTATCCGG GGAATAAGAA ATTCAACGAT ATGACGGCAG
 801
      GCGTTTCCGG CGGCATCGGT TTTGCCGACC GGCGCAAAGA TGCCGGGCTG
 851
      GCAGTGTTCC ACGAACGCCG CACCTACGGC AACGACGCTT ATTCTTACAC
 901
951
      CAACGGCGCA CGCCTTTATT TCAACCGTTG GCAAACCCCG AAATGGCAAA
      CGTTGTCTTC GGCGGAGTGG GGGCGTTTGA AGAATACGCG CCGGGCGCGT
1001
      TCCGACAATA CCCATTTGCA AATTTCCAAT TCGCTGGTGT TTTACCGGAA
1051
      TGCGCGCCAA TATTGGATGG GCGGTTTGGA TTTTTACCGC GAGCGCAACC CCGCCGACCG GGGCGACAAT TTCAACCGTT ACGGCCTGCG CTTTGCCTGG
1101
1151
1201 GGGCAGGAAT GGGGCGGCAG CGGCCTGTCT TCGCTGTTGC GCCTCGGCGC
```

1251	GGCGAAACGG	CATTATGAAA	AACCCGGCTT	TTTCAGCGGT	TTTAAAGGGG
	AAAGGCGCAG				
	GCATTGCATT				
1401	AACGCGGAGT	AACGATGTGT	TCAACGAATA	CGAGAAAAAT	CGGGCGTTTG
	TCGAGTTTAA				

This corresponds to the amino acid sequence <SEQ ID 2642; ORF 769>: m769.pep

LIMVIFYFCG KTFMPARNRW MLLLPLLASA AYAEETPREP DLRSRPEFRL 51 HEAEVKPIDR EKVPGQVREK GKVLQIDGET LLKNPELLSR AMYSAVVSNN 101 IAGIRVILPI YLQQAQQDKM LALYAQGILA QADGRVKEAI SHYRELIAAQ 151 PDAPAVRMRL AAALFENRON EAAADQFDRL KAENLPPQLM EQVELYRKAL 201 RERDAWKVNG GFSVTREHNI NQAPKRQQYG KWTFPKQVDG TAVNYRLGAE 251 KKWSLKNGWY TTAGGDVSGR VYPGNKKFND MTAGVSGGIG FADRRKDAGL 301 AVFHERRTYG NDAYSYTNGA RLYFNRWQTP KWQTLSSAEW GRLKNTRRAR 351 SDNTHLQISN SLVFYRNARQ YWMGGLDFYR ERNPADRGDN FNRYGLRFAW

ALHFKGITPR LTLSHRETRS NDVFNEYEKN RAFVEFNKTF *

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

GQEWGGSGLS SLLRLGAAKR HYEKPGFFSG FKGERRRDKE LNTSLSLWHR

ORF 769 shows 95.1% identity over a 492 aa overlap with a predicted ORF (ORF 769) from N. gonorrhoeae

m769/g769	95.1% identity	/ in 492 aa	overlap			
-760	10	20	30	40	50	59
g769. <b>pe</b> p	LIMVIFYFYFCGKT	:FMPARNRWMLL:	-PLLASAAYA	EETPCEPDLE	SRPEFRLHE	AEVKPI
m769	LIMVIFYFCGKT	FMPARNRWMLL	IIIIIIII LPLLASAAYA	IIII IIIII EETPREPDLR	 SRPEFRLHE	VEAK DI
	10	20	30	40	50	ABVKEI
	60 70	80	90	100	110	119
g769.pep	DREKVPGQVREKGK	VLQVDGETLLKI	NPELLSRAMY:	SAVVSNNIAG	IRVILPIYL	OOAROD
m769					111111111	111:11
111703	DREKVPGQVREKGK 60 70	80	PELLSRAMY: 90	SAVVSNNIAG 100	IRVILPIYL 110	QQAQQD
	.,•	•	50	100	110	
7.50	120 130	140	150	160	170	179
g769.pep	KMLALYAQGILAQA	EGRVKEAVSHY	RELIAAQPDAI	PAVRMRLAAA	LFEDRONEA	AADQFD
m769	KMLALYAQGILAQA	DGRVKEAISHYF.	RELTAAOPDAI		I.FENDONEA	1
	120 130	140	150	160	170	MADQED
	100 100					
g769.pep	180 190 RLKTEDLPPQLMEQ	200	210	220	230	239
g.os.pcp	1 1:1:1 1 1 1		IIIIIIIIIIII	/IREANINQA	PROQUIGNW:	ITPROV
m769	RLKAENLPPQLMEQ	VELYRKALRERI	)AWKVNGGFS	TREHNINQA	PKRQQYGKW	rfpkov
	180 190	200	210	220	230	
	240 250	260	270	280	290	299
g769.pep	DGTAVNYRFGAEKK	WSLKNGWYTTAG	GDVSGRVYPO	NKKFNDMTA	GVSGGIGFA	DRRKDV
m769		11111111111	111111111	1111111		11111:
111709	DGTAVNYRLGAEKK 240 250	WSLKNGWYTTAG 260	GDVSGRVYPG 270	NKKFNDMTA 280	GVSGGIGFAI 290	DRRKDA
		200	2.0	200	290	
-7.60	300 310	320	330	340	350	359
g769.pep	GLAVFHERRTYGND	AYSYANGARLYF	NRWQTPRWQT	LSSAEWGRL:	KNTRRARSDI	THLQI
m769	GLAVFHERRTYGND	AYSYTNGARLYF	IIIIIIIIIII NRWOTPKWOT	TITTETT	KNTBBBBBBN 	ווווו
	300 310	320	330	340	350	41UDÕI
	360 370	380	390	400	410	419
g769.pep	SNSLVFYRNARQYW	TGGLDFYRERNP	ADRGDNFNRY	GLRFAWGOE	WGGSGLSSLE	RLGVA
		11111111111	11111111111	111111111	1111111111	111.1
m769	SNSLVFYRNARQYW	MGGLDFYRERNP				LRLGAA
	300 370	380	390	400	410	
	420 430	440	450	460	470	479
g769.pep	KRHYEKPGFFSSFK	GERRRDKESDTS	LSLWHRALHF	KGITPRLTL	SHRETWSNOV	FNEYE
	11:1111111111		11111111	F11111111	11111 1111	11111



```
\tt KRHYEKPGFFSGFKGERRRDKELNTSLSLWHRALHFKGITPRLTLSHRETRSNDVFNEYE
 m769
                                 440
                                           450
                                                     460
            480
                       490
 g769.pep
              KNRAFVEFNKTFX
               11111111111111
 m769
              KNRAFVEFNKTFX
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2643>:
 a769.seq
           TTGATAATGG TTATTTTTTA TTTTTGTGGG AAGACATTTA TGCCTGCACG
       51
           AAACAGATGG ATGCTGCTGC TGCCTTTATT GGCAAGCGCG GCATATGCCG
      101
           AAGAAACACC GCGCGAACCG GATTTGAGAA GCCGTCCCGA GTTCAGGCTT
           CATGAAGCGG AGGTCAAACC AATCGACAGG GAGAAGGTAC CGGGGCAGGT
      151
           GCGGGAAAAA GGAAAAGTTT TGCAGATTGA CGGCGAAACC CTGCTGAAAA
      251
           ATCCCGAATT GCTGTCCCGC GCGATGTATT CCGCAGTGGT CTCAAACAAT
      301
           ATTGCCGGTA TCCGCGTTAT TTTGCCGATT TACCTACAAC AGGCGCAGCA
           GGATAAGATG TTGGCACTTT ATGCACAAGG GATTTTGGCG CAGGCAGACG
      351
      401
           GTAGGGTGAA GGAGGCGATT TCCCATTACC GGGAATTGAT TGTCGCCCAA
           CCCGACGCGC CCGCCGTCCG TATGCGTTTG GCGGCGGCAT TGTTTGAAAA
      451
      501
           CAGGCAGAAC GAGGCGGCGG CAGACCAGTT CGACCGCCTG AAGGCGGAAA
           ACCTGCCGCC GCAGCTGATG GAGCAGGTCG AGCTGTACCG CAAGGCATTG
      551
           CGCGAACGCG ATGCGTGGAA GGTAAATGGC GGCTTCAGCG TTACCCGCGA
      601
      651
           ACACAATATC AACCAAGCCC CGAAACGGCA GCAGTACGGC AAATGGACTT
      701
          TCCCGAAACA GGTGGACGGC ACGGCGGTCA ATTACCGGCT CGGCGCGGAG
      751
          AAAAAATGGT CGCTGAAAAA CGGCTGGTAC ACGACGGCGG GCGGCGACGT
          GTCCGGCAGG GTTTATCCGG GGAATAAGAA ATTCAACGAT ATGACGGCAG
      801
          GCGTTTCCGG CGGCATCGGT TTTGCCGACC GGCGCAAAGA TGCCGGGCTG
      851
          GCAGTGTTCC ACGAACGCCG CACCTACGGC AACGACGCTT ATTCTTACAC
      901
      951
          CAACGGCGCA CGCCTTTATT TCAACCGTTG GCAAACCCCG AAATGGCAAA
     1001
          CGTTGTCTTC GGCGGAGTGG GGGCGTTTGA AGAATACGCG CCGGGCGCGT
          TCCGACAATA CCCATTTGCA AATTTCCAAT TCGCTGGTGT TTTACCGGAA
     1051
     1101
          TGCGCGCCAA TATTGGATGG GCGGTTTGGA TTTTTACCGC GAGCGCAACC
          CCGCCGACCG GGGCGACAAT TTCAACCGTT ACGGCCTGCG CTTTGCCTGG
    1151
          GGGCAGGAAT GGGGCGGCAG CGGCCTGTCT TCGCTGTTGC GCCTCGGCGC
    1201
    1251 GGCGAAACGG CATTATGAAA AACCCGGCTT TTTCAGCGGT TTTAAAGGGG
    1301
          AAAGGCGCAG GGATAAAGAA TTGAACACAT CCTTGAGCCT TTGGCACCGG
    1351
          GCATTGCATT TCAAAGGCAT CACGCCGCGC CTGACGTTGT CGCACCGCGA
          AACGCGGAGT AACGATGTGT TCAACGAATA CGAGAAAAAT CGGGCGTTTG
    1401
    1451
          TCGAGTTTAA TAAAACGTTC TGA
This corresponds to the amino acid sequence <SEQ ID 2644; ORF 769.a>:
a769.pep
          LIMVIFYFCG KTFMPARNRW MLLLPLLASA AYAEETPREP DLRSRPEFRL
      51
          HEAEVKPIDR EKVPGOVREK GKVLQIDGET LLKNPELLSR AMYSAVVSNN
          IAGIRVILPI YLQQAQQDKM LALYAQGILA QADGRVKEAI SHYRELIVAQ
     101
          PDAPAVRMRL AAALFENRQN EAAADQFDRL KAENLPPQLM EQVELYRKAL
          RERDAWKVNG GFSVTREHNI NQAPKRQQYG KWTFPKQVDG TAVNYRLGAE
          KKWSLKNGWY TTAGGDVSGR VYPGNKKFND MTAGVSGGIG FADRRKDAGL
     251
          AVFHERRTYG NDAYSYTNGA RLYFNRWQTP KWQTLSSAEW GRLKNTRRAR
     301
     351 SDNTHLQISN SLVFYRNARQ YWMGGLDFYR ERNPADRGDN FNRYGLRFAW
     401
          GQEWGGSGLS SLLRLGAAKR HYEKPGFFSG FKGERRRDKE LNTSLSLWHR
          ALHFKGITPR LTLSHRETRS NDVFNEYEKN RAFVEFNKTF
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. meningitidis
ORF 769 shows 99.8% identity over a 490 aa overlap with a predicted ORF (ORF 769) from
N. meningitidis:
m769/a769
             99.8% identity in 490 aa overlap
                                                  40
a769.pep
            LIMVIFYFCGKTFMPARNRWMLLLPLLASAAYAEETPREPDLRSRPEFRLHEAEVKPIDR
             m769
            LIMVIFYFCGKTFMPARNRWMLLLPLLASAAYAEETPREPDLRSRPEFRLHEAEVKPIDR
                    10
                              20
                                                  40
                                                           50
                              80
                                        90
                                                 100
```

EKVPGQVREKGKVLQIDGETLLKNPELLSRAMYSAVVSNNIAGIRVILPIYLQQAQQDKM

a769.pep

m769	
a769.pep	130 140 150 160 170 180 LALYAQGILAQADGRVKEAISHYRELIVAQPDAPAVRMRLAAALFENRQNEAAADQFDRL
a769.pep m769	190 200 210 220 230 240 KAENLPPQLMEQVELYRKALRERDAWKVNGGFSVTREHNINQAPKRQQYGKWTFPKQVDG
a769.pep m769	250 260 270 280 290 300 TAVNYRLGAEKKWSLKNGWYTTAGGDVSGRVYPGNKKFNDMTAGVSGGIGFADRRKDAGL                                  TAVNYRLGAEKKWSLKNGWYTTAGGDVSGRVYPGNKKFNDMTAGVSGGIGFADRRKDAGL 250 260 270 280 290 300
a769.pep	310 320 330 340 350 360 AVFHERRTYGNDAYSYTNGARLYFNRWQTPKWQTLSSAEWGRLKNTRRARSDNTHLQISN
a769.pep m769	370 380 390 400 410 420 SLVFYRNARQYWMGGLDFYRERNPADRGDNFNRYGLRFAWGQEWGGSGLSSLLRLGAAKR
a769.pep m769	430 440 450 460 470 480 HYEKPGFFSGFKGERRDKELNTSLSLWHRALHFKGITPRLTLSHRETRSNDVFNEYEKN HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HILLIGH HI
a769.pep m769	490 RAFVEFNKTFX           RAFVEFNKTFX 490

# The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2645>: g770.seq

```
1 ATGAACAGAC TGCTACTGCT GTCTGCCGC GTCCTGCCGA CTGCCTGCGG
51 CAGCGGCGAA ACCGATAAAA TCGGACGGC AAGTACCGTT TTCAACATGT
101 TGGGCAAAAA CGACCGTATC GAAGTGGAAG GATTCGACGA TCCCGACGTT
151 CAAGGGGTTG CCTGTTATAT TTCGTATGCA AAAAAAAGGCG GCTTGAAGGA
201 AATGGTCAAT TTGGAAGAGG ACCGGTCCGA CGCATCGGTT TCGTGCGTTC
251 AGACGGCATC TTCGATTTCT TTTGACGAAA CCGCCGTGCG CAAACCGAAA
301 GAAGTTTTCA AGCGCGGTAC GGGCTTCGCG TTCAAGAGCC GGCAGATTGT
351 CCGTTATTAC GACCCCAAAC GCAAAGCCTT CGCCTTATTG GTTTACAGCG
401 ATAAAATCGT CCAAGGATCG CCGAAAAATT CCTTAAGCGC GGTTTCCTGT
451 TTCGGCAGCG GCATACCGCA AACCGACGG GTGCAAGCCG ATACTTCCGG
501 CAAACTGCTT GCCGGCGCCT GCATTATTTC CAACCCGATA AAAAATCCCC
```

# This corresponds to the amino acid sequence <SEQ ID 2646; ORF 770.ng>: g770.pep

- 1 MNRLLLLSAA VLPTACGSGE TDKIGRASTV FNMLGKNDRI EVEGFDDPDV 51 QGVACYISYA KKGGLKEMVN LEEDASDASV SCVQTASSIS FDETAVRKPK
- 101 EVFKRGTGFA FKSRQIVRYY DPKRKAFAYL VYSDKIVQGS PKNSLSAVSC
- 151 FGSGIPQTDG VQADTSGKLL AGACIISNPI KNPDKR*

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2647>:

- 1 ATGAACAGAC TGCTACTGCT GTCTGCCGCC GTCCTGCTGA CTGCCTGCGG
- 51 CAGCGGCGAA ACCGATAAAA TCGGACGGGC AAGTACCGTT TTCAACATAC



101	TGGGCAAAAA	CGACCGTATC	GAAGTGGAAG	GATTCGACGA	TCCCGACGTT
151	CAAGGGGTTG	CCTGTTATAT	TTCGTATGCA	AAAAAAGGCG	GCTTGAAGGA
201	AATGGTCAAT	TTGGAAGAGG	ACGCGTCCGA	CGCATCGGTT	TCGTGCGTTC
251	AGACGGCATC	TTCGATTTCT	TTTGACGAAA	CCGCCGTGCG	CAAACCGAAA
301	GAAGTTTTCA	AACACGGTGC	GAGCTTCGCG	TTCAAGAGCC	GGCAGATTGT
351	CCGTTATTAC	GACCCCAAAC	GCAAAACCTT	CGCCTATTTG	GTGTACAGCG
401	ATAAAATCAT	CCAAGGCTCG	CCGAAAAATT	CCTTAAGCGC	GGTTTCCTGT
451	TTCGGCGGCG	GCATACCGCA	AACCGATGGG	GTGCAAGCCG	ATACTTCCGG
501	CAACCTGCTT	GCCGGCGCCT	GCATGATTTC	CAACCCGATA	GAAAATCTCG
551	ACAAACGCTG	A			

## This corresponds to the amino acid sequence <SEQ ID 2648; ORF 770>: m770.pep

- 1 MNRLLLLSAA VLLTACGSGE TDKIGRASTV FNILGKNDRI EVEGFDDPDV 51 QGVACYISYA KKGGLKEMVN LEEDASDASV SCVQTASSIS FDETAVRKPK
- 101 EVFKHGASFA FKSRQIVRYY DPKRKTFAYL VYSDKIIQGS PKNSLSAVSC

151 FGGGIPQTDG VQADTSGNLL AGACMISNPI ENLDKR*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 770 shows 93.5% identity over a 186 aa overlap with a predicted ORF (ORF 770) from N. gonorrhoeae

m770/g770	93.5% identity	in 186 aa	overlap			
g770.pep	10 MNRLLLLSAAVLPTA(		1111111111111111		1141111111	111111
m770	MNRLLLLSAAVLLTAG	CGSGETDKI 20	GRASTVFNILO 30	KNDRIEVEG:	FDDPDVQGVA 50	CYISYA 60
g770.pep	70 KKGGLKEMVNLEEDAS		90 FASSISFDET#			
m770	KKGGLKEMVNLEEDAS					
g770.pep m770	130 DPKRKAFAYLVYSDKI      :        DPKRKTFAYLVYSDKI 130	140 :VQGSPKNSI :	150 SAVSCFGSGI	160 POTDGVQAD	170 ISGKLLAGAC	180 IISNPI
g770.pep m770	KNPDKRX :           ENLDKRX					

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2649>: a770.seq

```
ATGAACAGAC TGCTACTGCT GTCTGCCGC GTCCTGCTGA CTGCCTGCGG
51 CAGCGGCGAA ACCGATAAAA TCGGACGGGC AAGTACCGTT TTCAACATAC
101 TGGGCAAAAA CGACCGTATC GAAGTGGAAG GATTCGACGA TCCCGACGTT
151 CAAGGGGTTG CCTGTTATAT TTCGTATGCA AAAAAAGGCG GCTTGAAGGA
201 AATGGTCAAT TTGGAAGAGG ACGCGTCCGA CGCATCGGTT TCGTGCGTTC
251 AGACGGCATC TTCGATTTCT TTTGACGAAA CCGCCGTGCG CAAACCGAAA
301 GAAGTTTTCA AACACGGTGC GAGCTTCGCG TTCAAGAGCC GGCAGATTGT
351 CCGTTATTAC GACCCCAAAC GCAAAACCTT CGCCTATTTG GTGTACAGCG
401 ATAAAATCAT CCAAGGCTCG CCGAAAAATT CCTTAAGCGC GGTTTCCTGT
451 TTCGGCGGCG GCATACCGCA AACCGATGG GTGCAAGCCG ATACTTCCGG
501 CAACCTGCTT GCCGGCGCCT GCATGATTTC CAACCCGATA GAAAATCCCC
```

# This corresponds to the amino acid sequence <SEQ ID 2650; ORF 770.a>: a770.pep

- 1 MNRLLLLSAA VLLTACGSGE TDKIGRASTV FNILGKNDRI EVEGFDDPDV
- 51 QGVACYISYA KKGGLKEMVN LEEDASDASV SCVQTASSIS FDETAVRKPK
- 101 EVFKHGASFA FKSRQIVRYY DPKRKTFAYL VYSDKIIQGS PKNSLSAVSC

and the second second

#### 151 FGGGIPQTDG VQADTSGNLL AGACMISNPI ENPDKR*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. meningitidis

ORF 770 shows 99.5% identity over a 186 aa overlap with a predicted ORF (ORF 770) from N. meningitidis:

```
99.5% identity in 186 aa overlap
m770/a770
                10
                        20
                                        40
          MNRLLLLSAAVLLTACGSGETDKIGRASTVFNILGKNDRIEVEGFDDPDVQGVACYISYA
a770.pep
          m770
          MNRLLLLSAAVLLTACGSGETDKIGRASTVFNILGKNDRIEVEGFDDPDVQGVACYISYA
                10
                        20
                                30
                                                50
                        80
                                90
                                       100
                                               110
          KKGGLKEMVNLEEDASDASVSCVQTASSISFDETAVRKPKEVFKHGASFAFKSRQIVRYY
a770.pep
          m770
          KKGGLKEMVNLEEDASDASVSCVQTASSISFDETAVRKPKEVFKHGASFAFKSRQIVRYY
                                90
                                       100
                                               110
               130
                       140
                               150
                                       160
                                               170
                                                       180
          DPKRKTFAYLVYSDKIIQGSPKNSLSAVSCFGGGIPQTDGVQADTSGNLLAGACMISNPI
a770.pep
          m770
          DPKRKTFAYLVYSDKIIQGSPKNSLSAVSCFGGGIPQTDGVQADTSGNLLAGACMISNPI
               130
                       140
                               150
                                       160
a770.pep
          ENPDKRX
          11 1111
m770
          ENLDKRX
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2651>: 9771.889

```
ATGGATTTAT TATCGGTTTT CCACAAATAC CGTCTGAAAT ATGCGGTGGC
  51
      GGTGCTGACG ATGCTGCTTT TGGCGGCAGT CGGGCTGCAC GCTTCCGTAT
 101
      ATCGCACCTT CACGCCCGAA AACATCCGCA GCCGCCTCCA ACAAAGCATT
      GCCCATACCC ACCGGAAAAT CTCGTTTGAT GCGGATATAC GGCGCAGGCT
 151
      TCTGCCCCGC CCGACCGTCA TCCTGAAAAA CCTGACCATT ACCGAACCCG
 251
      ACGGCGGCCG GGTCGCCGTT TCCGTCAAAG AAACCAAAAT CGGATTGAGC
 301
      TGGAAAAACC TGTGGTCGGA TCGGATACAG GTTGAAAAAT GGGTGGTTTC
      GGGTGCGGAT CTTGCCCTGA CGCGCGACAG AAACGGCGCT TGGAACATCC
 351
 401
      AAGACCTGTT CGACGGCGCG AAACACTCCG CCTCAGTCAA CCGCATTATC
      GTCGAAAACA GCACCGTCCG CCTCAATTTC CTGCAGCAAC AGCTTATCCT
 451
 501
      GAAGGAAATC AGCCTCAACC TGCAATCCCC CGATTCGTCG GGGCAGCAGT
     TTGAAAGTTC GGGCATACTG GTTTGGAGAA AGCTGTCCGT CCCGTGGAAA
 551
      AGCAGGGGGC TGTTCCTTTC AGACGGCATC GGCACGCCCG AAATCTCACC
 601
      GTTCCATTTT GAAGCTTCCA CTTCGCTGGA CGGACACGGC ATCACCATTT
 651
 701
      CCACCACCGG CAGCCCTTCT GTCCGCTTCA ACGCCGGCGG AGCGGATGCC
 751
      GCCGGCCTCG GCCTGCGTGC AGACACTTCC TTCCGCAACC TCCACCTGAC
 801
      CGCGCAAATC CCCGCACTGG CACTCAAAAA CAACAGCATC AAAACCGGCA
 851
      CGGTCAACGG CACGTTTACC GCCGGCGGCG AATATGCCCG ATGGGACGGT
      TCGTTCAAAC TCGACAAAGC CAACCTGCAC TCCGGCATCG CCAACATCGG
 901
 951
      CAACGCCGAA ATCTCCGGCA GCTTCAAAAC ACCGCGCCTT CAAACCAATT
1001
      TCTCCCTCGG CTCGCCGTTG GTTTGGAGTC GGGACAACGG GCTGGACGCC
1051
      CCGCGCCTGC ACATATCGAC CCTTCAGGAT ACCGTCGACC GCCTGCCGCA
      ACCCCGTTTC ATCAGCCGGC TCGACGGTTC GCTGTCCATA CCGAATCTGC
1101
1151
      AAAATTGGAA TGCCGAATTA AACGGCACAT TCGACCGCCA ACCCGTTGCC
      GCAAAATTCA AATATACGCG GGAAGGCGCA CCGCACCTGG AAGCCGCCGC
1201
1251
      CGCGCTGCAA AAATTAAACC
                            TCGCCCCCTA TCTTGACGAA TTTCGGCAAC
      AAAACGGCAA AATATTCCCC GACATCCTCG GCAGGCTGTC CGGCAACGTC
1301
1351
      GAGGCACACC TCAAAATCGG CAGCATCCAA CTCCCCGGCT TGCAACTGGA
1407
      CGATATGGAA ACCTACCTCC ACGCCGACAA AGACCATATC GCGCTCAGCC
      GTTTCAAGTC AGGGCTTTAC GGCGGCCATA CCGAAGGCGG CATCAGCATC
1451
      GCCAACACCC GTCCCGCCAC TTACCGCCTG CAACAGAATG CAAGCAACAT
1501
1551
     CCAAATCCAA CCGCTGCTGC AAGACCTGTT CGGCTTCCAC AGCTTCAGCG
1601
     GCAACGGCGA TGCGGTCATC GACCTGACCG CAAGCGGCGA AAACCGCAAA
     CAGCTTATCC GCTCGCTGCA AGGCAGCCTG TCGCTGAATA TTTCCAACGG
1651
     CGCGTGGCAC GGCATCGATA TGGACAGCAT TTTAAAAAAC GGCCTTTCCG
1701
```

```
1751 GGAAAATCTC GGGCAGCACA CCCTTCTACC GATTCACGCT CAACAGCGAA
1801 ATTTCAGACG GCATCAGCCG CCACATCGAT ACCGAACTCT TCTCCGACAG
1851 CCTCTATGTT ACCAGCAACG GCTATACCAA TCTGGATACG CAGGAATTGT
1901 CTGAAGATGT CCTTATCCGC AACGCCGTCC ATCCGAAAAA CAAACCGATT
1951 CCCCTGAAAA TCACCGGTAC GGTGGACAAG CCGTCCATTA CCGTCGATTA
2001 CGGCAGGCTG ACCGGCGCA TCAATTCGCG CAAACAGAAAA CAGAAAATCC
2051 TCGAAGACAC CCTGCTGGAA CAATGGCAGT GGCTCAAACC TAAAGAACCG
```

## This corresponds to the amino acid sequence <SEQ ID 2652; ORF 771.ng>: g771.pep

```
MDLLSVFHKY RLKYAVAVLT MLLLAAVGLH ASVYRTFTPE NIRSRLQQSI
      AHTHRKISFD ADIRRRLLPR PTVILKNLTI TEPDGGRVAV SVKETKIGLS
     WKNLWSDRIQ VEKWVVSGAD LALTRDRNGA WNIQDLFDGA KHSASVNRII
101
151
     VENSTVRLNF LQQQLILKEI SLNLQSPDSS GQQFESSGIL VWRKLSVPWK
     SRGLFLSDGI GTPEISPFHF EASTSLDGHG ITISTTGSPS VRFNAGGADA
251 AGLGLRADTS FRNLHLTAQI PALALKNNSI KTGTVNGTFT AGGEYARWDG
301 SFKLDKANLH SGIANIGNAE ISGSFKTPRL QTNFSLGSPL VWSRDNGLDA
351 PRLHISTLQD TVDRLPQPRF ISRLDGSLSI PNLQNWNAEL NGTFDRQPVA
401 AKFKYTREGA PHLEAAAALQ KLNLAPYLDE FRQQNGKIFP DILGRLSGNV
451
     EAHLKIGSIQ LPGLQLDDME TYLHADKDHI ALSRFKSGLY GGHTEGGISI
501 ANTRPATYRL QQNASNIQIQ PLLQDLFGFH SFSGNGDAVI DLTASGENRK
551 QLIRSLQGSL SLNISNGAWH GIDMDSILKN GLSGKISGST PFYRFTLNSE
601 ISDGISRHID TELFSDSLYV TSNGYTNLDT QELSEDVLIR NAVHPKNKPI
651 PLKITGTVDK PSITVDYGRL TGGINSRKEK QKILEDTLLE QWQWLKPKEP
701
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2653>:

/ı.seq					
1	ATGGATTTAT	TATCGGTTTT	CCACAAATAC	CGTCTGAAAT	ATGCGGTGGC
51	CGTGCTGACG	ATACTGCTTT	TGGCGGCAGT	CGGGCTGCAC	GCTTCCGTAT
101	ATCGCACCTT	CACGCCTGAA	AACATCCGCA	GCCGCCTACA	ACAAAGCATT
151	GCACACACAC	ACCGGAAAAT	CTCGTTTGAT	GCGGACATTC	AGCGCAGGCT
201	CCTGCCCCGG	CCGACCGTCA	TCCTGAAAAA	CCTGACCATT	ACCGAACCCG
251	GCGGCGACCA	GACTGCCGTT	TCCGTCCAAG	AAACCAAAAT	CGGATTGAGC
301	TGGAAAAACC	TGTGGTCGGA	TCAGATACAG	ATTGAAAAAT	GGGTGGTTTC
351	GAGTGCGGAA	CTTGCCCTGA	CGCGCGACGG	GAAAGGTGTT	TGGAACATCC
401	AAGACCTGAT	CGACAGCCAA	AAACGCCAAG	CCTCAGTCAA	CCGCATTATC
451	GTCGAAAACA	GCACCGTCCG	CCTCAATTTC	CTGCAGGAAC	AGCTTATCCT
501	GAAGGAAATC	AACCTCAACC	TGCAATCCCC	CGATTCGTCG	GGGCAGCCGT
551	TTGAAAGTTC	GGGCATACTG	GTTTGGGGAA	AGCTGTCCGT	CCCGTGGAAA
601	AGCAGGGGGC	TGTTCCTTTC	AAACGGCATC	GGCCCGCCCG	AAATCTCACC
651	GTTCCATTTT	GAAGCTTCCA	CTTCGCTGGA	CGGACACGGC	ATTACCATTT
701	CCACCACCGG	CAGCCCTTCT	GTCCGCTTCA	ACGCCGGCGG	AGCGGATGCC
751	GCCGGCCTCG	GCCTGCGTGC	AGACACTTCC	TTCCGCAACC	TCCACCTGAC
801	CGCCCAAATC	CCCGCGCTGG	CACTCAGGAA	CAACAGCATT	AAAATTGAAA
851	CCGTCAACGG	CGCATTTACC	GCCGGCGGCG	AATATGCCCG	ATGGGACGGT
901	TCGTTCAAAC	TCGACAAAGC	CAACCTGCAC	TCCGGCATCG	CCAACATCGG
951	CAACGCCGAA	ATCTCCGGCA	GCTTCAAAAC	ACCGCGCCAC	CAGACCAACT
1001	TCTCCCTCAA	TTCGCCGCTC	GTATGGACGG	AAAACAAAGG	GCTGGACGCG
1051	CCGCGCCTGT	ATGTATCGAC	CCTTCAGGAT	ACCGTCAACC	GCCTGCCGCA
1101	ACCCCGTTTC	ATCAGCCGGC	TCGACGGTTC	GCTGTCCGTA	CCGAATCTGC
1151	AAAATTGGAA	TGCCGAATTA	AACGGCACAT	TCGACCGCCA	AACCGTTGCC
1201	GCGAAATTCA	GATACACACA	TGAAGACGCA	CCGCATCTGG	AAGCCGCCGT
1251	CGCACTGCAA		TGACCCCCTA	TCTTGACGAC	GTGCGGCAAC
1301	AAAACGGCAA		GACACCCTCG	CCAAGCTGTC	CGGCGACATC
1351	GAGGCGCACC	TGAAAATCGG	AAAAGTCCAA	CTTCCCGGCC	TGCAACTGGA
1401	CGATATGGAA	ACCTACCTCC	ACGCCGACAA	AGGCCATATC	GCGCTCAGCC
1451	GTTTCAAGTC	AGGGCTTTAC	GGCGGCCATA	CCGAAGGCGG	CATCAGCATC
1501 1551	GCCAACACCC	GTCCCGCCAC	TTACCGCCTG	CAACAGAATG	CAAGCAACAT
	CCAAATCCAA	CCGCTGCTGC	AAGACCTGTT	CGGCTTCCAC	AGCTTCAGCG
1601 1651	GCAACGGCGA	CGCGGTCATC	GACCTGACCG	CGGGCGGCGA	AACCCGAAAA
	GAGCTTATCC	GCTCGCTTCA	GGGCAGCCTG	TCGCTAAATA	TTTCCAACGG
1701 1751	TGCATGGCAC	GGTATCGACA	TGGACAATAT	CCTGAAAAAC	GGCATTTCGG
1801	GCAAAACTGC	CGACAATGCC	GCACCCAGCA	CACCCTTCCA	CCGATTCACG
1851		AAATTTCAGA	CGGCATCAGC	CGCCACATCG	ATACCGAACT
1901	CTTCTCCGAC	AGCCTCTATG	TTACCAGCAA	CGGCTATACC	AATCTGGATA
1951	CGCAGGAATT	GTCTGAAGAT	GTCCTTATCC	GCAACGCCGT	CCATCCGAAA
2001	AACAAACCGA	TTCCCCTGAA	AATCACCGGC	ACGGTGGACA	AACCGTCCAT
2001	TACCGTCGAT	TACGGCAGGC	TGACCGGCGG	CATCAATTCG	CGCAAAGAGA
2101	AACAGAAAAT	CCTCGAAGAC	ACCCTGCTGG	AACAATGGCA	GTGGCTCAAA
2101	CCTAAAGAAC	CGTA			

This corresponds to the amino acid sequence <SEQ ID 2654; ORF 771>: m771.pep

MDLLSVFHKY RLKYAVAVLT ILLLAAVGLH ASVYRTFTPE NIRSRLQQSI 51 AHTHRKISFD ADIQRRLLPR PTVILKNLTI TEPGGDQTAV SVQETKIGLS WKNLWSDQIQ IEKWVVSSAE LALTRDGKGV WNIQDLIDSQ KRQASVNRII VENSTVRLNF LQEQLILKEI NLNLQSPDSS GQPFESSGIL VWGKLSVPWK 151 SRGLFLSNGI GPPEISPFHF EASTSLDGHG ITISTTGSPS VRFNAGGADA 201 251 AGLGLRADTS FRNLHLTAQI PALALRNNSI KIETVNGAFT AGGEYARWDG 301 SFKLDKANLH SGIANIGNAE ISGSFKTPRH QTNFSLNSPL VWTENKGLDA 351 PRLYVSTLQD TVNRLPQPRF ISRLDGSLSV PNLQNWNAEL NGTFDRQTVA 401 451 AKFRYTHEDA PHLEAAVALQ KLNLTPYLDD VRQQNGKIFP DTLAKLSGDI EAHLKIGKVQ LPGLQLDDME TYLHADKGHI ALSRFKSGLY GGHTEGGISI 501 ANTRPATYRL QQNASNIQIQ PLLQDLFGFH SFSGNGDAVI DLTAGGETRK ELIRSLQGSL SLNISNGAWH GIDMDNILKN GISGKTADNA APSTPFHRFT 601 LNSEISDGIS RHIDTELFSD SLYVTSNGYT NLDTQELSED VLIRNAVHPK NKPIPLKITG TVDKPSITVD YGRLTGGINS RKEKQKILED TLLEQWQWLK 651 701 PKEP*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 771 shows 90.3% identity over a 704 aa overlap with a predicted ORF (ORF 771) from N. gonorrhoeae

m771/g771	90.3% identity in 704 aa overlap
g771.pep	10 20 30 40 50 60 MDLLSVFHKYRLKYAVAVLTMLLLAAVGLHASVYRTFTPENIRSRLQQSIAHTHRKISFD
m771	
	10 20 30 40 50 60
	70 80 90 100 110 120
g771.pep	ADIRRRLLPRPTVILKNLTITEPDGGRVAVSVKETKIGLSWKNLWSDRIQVEKWVVSGAD
m771	ADIQRRLLPRPTVILKNLTITEPGGDQTAVSVQETKIGLSWKNLWSDQIQIEKWVVSSAE 70 80 90 100 110 120
	120
g771.pep	130 140 150 160 170 180 LALTRDRNGAWNIQDLFDGAKHSASVNRIIVENSTVRLNFLQQQLILKEISLNLQSPDSS
	- 111111 : 1:11111:::::::::::::::::::::
m771	LALTRDGKGVWNIQDLIDSQKRQASVNRIIVENSTVRLNFLQEQLILKEINLNLQSPDSS
	130 140 150 160 170 180
g771.pep	190 200 210 220 230 240
g//I.pep	GQQFESSGILVWRKLSVPWKSRGLFLSDGIGTPEISPFHFEASTSLDGHGITISTTGSPS
m771	GQPFESSGILVWGKLSVPWKSRGLFLSNGIGPPEISPFHFEASTSLDGHGITISTTGSPS
	190 200 210 220 230 240
2771 non	250 260 270 280 290 300
g771.pep	VRFNAGGADAAGLGLRADTSFRNLHLTAQIPALALKNNSIKTGTVNGTFTAGGEYARWDG
m771	VRFNAGGADAAGLGLRADTSFRNLHLTAQIPALALRNNSIKIETVNGAFTAGGEYARWDG
	250 260 270 280 290 300
~771	310 320 330 340 350 360
g771.pep	SFKLDKANLHSGIANIGNAEISGSFKTPRLQTNFSLGSPLVWSRDNGLDAPRLHISTLQD
m771	SFKLDKANLHSGIANIGNAEISGSFKTPRHQTNFSLNSPLVWTENKGLDAPRLYVSTLQD
	310 320 330 340 350 360
-221	370 380 390 400 410 420
g771.pep	TVDRLPQPRFISRLDGSLSIPNLQNWNAELNGTFDRQPVAAKFKYTREGAPHLEAAAALQ
m771	TVNRLPQPRFISRLDGSLSVPNLQNWNAELNGTFDRQTVAAKFRYTHEDAPHLEAAVALQ
	370 380 390 400 410 420
-771	430 440 450 460 470 480
g771.pep	KLNLAPYLDEFROONGKIFPDILGRLSGNVEAHLKIGSIQLPGLQLDDMETYLHADKDHI
m771	KLNLTPYLDDVRQQNGKIFPDTLAKLSGDIEAHLKIGKVQLPGLQLDDMETYLHADKGHI

	430	440	450	460	470	480
g771.pep	490 ALSRFKSGLYGGHTE			ППППП	шшш	HIIII
111772	490	500	510	520	530	540
	550	560	570	580	590	
g771.pep	DLTASGENRKQLIRS		GAWHGIDMDS			PFYRFT
m771	DLTAGGETRKELIRS 550	SLQGSLSLNISM 560	IGAWHGIDMDN 570	VILKNGISGKT 580	TADNAAPST 590	PFHRFT 600
	600 610	620	630	640	650	
g771.pep	LNSEISDGISRHIDT	TELFSDSLYVTS	NGYTNLDTQE	ELSEDVLIRNA 	VHPKNKPI	PLKITG
m771	LNSEISDGISRHIDT 610	FELFSDSLYVTS 620	SNGYTNLDTQE 630	CLSEDVLIRNA 640	VHPKNKPI 650	PLKITG 660
	660 670	680	690	700		
g771.pep	TVDKPSITVDYGRLT	GGINSRKEKQI	ILEDTLLEQW	OWLKPKEPX		
m771	TVDKPSITVDYGRLT	GGINSRKEKQF 680		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2655>: a771.seq

```
ATGGATTTAT TATCGGTCTT CCACAAATAC CGTCTGAAAT ATGCGGTAGC
      CGTGCTGACG ATACTGCTTT TGGCGGCAAT CGGGCTGCAC GCTTCCGTAT
  51
      ATCGCATCTT CACACCTGAA AACATCCGAA GCCGCCTCCA ACAAAGCATT
 101
 151
      GCCCATACGC ACCGGAAAAT CTCGTTTGAT GCGGATATAC AGCGCAGGCT
      TCTGCCCGG CCGACCGTCA TCCTGAAAAA CCTGACCATT ACCGAACCCG
      GCGGCGACCG GACTGCCGTT TCCGTCCAAG AAACCAAAAT CGGATTGAGC
 251
      TGGAAAACC TGTGGTCGGA TCAGATACAG ATTGAAAAAT GGGTGGTTTC
 301
      GAGTGCGGAA CTTGCCCTGA CGCGCGACGG GAAAGGTGTT TGGAACATCC
 351
 401
      AAGACCTGAT CGACAGCCAA AAACGCCAAG CCTCAGTCAA CCGCATTATC
 451
      GTCGAAAACA GCACCGTCCG CCTCAATTTC CTGCAGGAAC AGCTTATCCT
      GAAGGAAATC AACCTCAACC TGCAATCCCC CGATTCGTCG GGGCAGCCGT
 501
 551
      TTGAAAGTTC GGGCATACTG GTTTGGGGAA AGCTGTCCGT CCCGTGGAAA
 601
      AGCAGGGGC TGTTCCTTTC AGACGGCATC GGCACGCCCA AAATCTCACC
 651
      GTTCCATTTT GAAGCTTCCA CTTCGCTGGA CGGACACGGC ATTACCATTT
      CCACCACCGG CAGCCCTTCT GTCCGCTTCA ACGCCGGCGG AGCGGATGCC
 701
      GCCGGCCTCG GCCTGCGTGC AGACACTTCC TTCCGCAACC TCCACCTGAC
 751
 801
      CGCCCAAATC CCTACGCTGG CACTCAGGAA CAACAGCATT AAAATTGAAA
 851
      CCGTCAACGG CGCATTTACC GCCGGCGGCG AATATGCCCA ATGGGACGGT
 901
      TCGTTCAAAC TCGACAAAGC CAACCTGCAC TCCGGCATCG CCAACATCGG
      CAACGCCGAA ATCTCCGGCA GCTTCAAAAC ACCGCGCCAC CAGACCAACT
 951
      TCTCCCTCAA TTCGCCGCTC GTATGGACGG AAAACAAAGG GCTGGACGCG
1001
1051
      CCGCGCCTGT ATGTATCGAC CCTTCAGGAT ACCGTCAACC GCCTGCCGCA
      ACCCCGTTTC ATCAGCCGGC TCGACGGTTC GCTGTCCGTA CCGAATCTGC
1101
1151
      AAAATTGGAA TGCCGAATTA AACGGCACAT TCGACCGCCA AACCGTTGCC
1201
      GCGAAATTCA GATACACACA TGAAGACGCA CCGCATCTGG AAGCCGCCGT
1251
      CGCACTGCAA AAATTGAACC TGACCCCCTA TCTTGACGAC GTGCGGCAAC
1301
      AAAACGGCAA AATATTTCCC GACACCCTCG CCAAGCTGTC CGGCGACATC
1351
      GAGGCGCACC TGAAAATCGG AAAAGTCCAA CTTCCCGGCC TGCAACTGGA
1401
      CGATATGGAA ACCTACCTCC ACGCCGACAA AGGCCATATC GCGCTCAGCC
1451
      GTTTCAAGTC AGGGCTTTAC GGCGGCCATA CCGAAGGCGG CATCAGCATC
1501
      GCCAACACCC GTCCCGCCAC TTACCGCCTG CAACAGAATG CAAGCAACAT
      CCAAATCCAA CCGCTGCTGC AAGACCTGTT CGGCTTCCAC AGCTTCAGCG
1551
      GCAACGGCGA CGCGGTCATC GACCTGACCG CGGGCGGCGA AACCCGAAAA
1601
      GAGCTTATCC GCTCGCTTCA GGGCAGCCTG TCGCTAAATA TTTCCAACGG
1651
1701
      TGCATGGCAC GGTATCGACA TGGACAATAT CCTGAAAAAC GGCATTTCGG
1751
      GCAAAACTGC CGACAATGCC GCACCCAGCA CACCCTTCCA CCGATTCACG
1801
      CTCAACAGCG AAATTTCAGA CGGCATCAGC CGCCACATCG ATACCGAACT
1851
      CTTCTCCGAC AGCCTCTATG TTACCAGCAA CGGCTATACC AATCTGGATA
1901
      CGCAGGAATT GTCTGAAGAT GTCCTTATCC GCAACGCCGT CCATCCGAAA
1951
      AACAAACCGA TTCCCCTGAA AATCACCGGT ACGGTGGACA AACCGTCCAT
      TACCGTCGAT TACGGCAGGC TGACCGGCGG CATCAATTCG CGCAAAGAGA
2001
      AACAGAAAAT CCTCGAAGAC ACCCTGCTGG AACAATGGCA GTGGCTCAAA
2051
      CCTAAAGAAC CGTAA
```

This corresponds to the amino acid sequence <SEO ID 2656; ORF 771.a>:

a771.per	>				
1	MDLLSVFHKY	RLKYAVAVLT	ILLLAAIGLH	ASVYRIFTPE	NIRSRLQQSI
51	AHTHRKISFD	ADIQRRLLPR	PTVILKNLTI	TEPGGDRTAV	SVQETKIGLS
101	. WKNLWSDQIQ	IEKWVVSSAE	LALTRDGKGV	WNIQDLIDSQ	KRQASVNRII
151	VENSTVRLNF	LQEQLILKEI	NLNLQSPDSS	GQPFESSGIL	VWGKLSVPWK
201	SRGLFLSDGI	GTPKISPFHF	EASTSLDGHG	ITISTTGSPS	VRFNAGGADA
251	AGLGLRADTS	FRNLHLTAQI	PTLALRNNSI	KIETVNGAFT	AGGEYAQWDG
301	SFKLDKANLH	SGIANIGNAE	ISGSFKTPRH	QTNFSLNSPL	VWTENKGLDA
351		TVNRLPQPRF		PNLQNWNAEL	NGTFDRQTVA
401	AKFRYTHEDA	PHLEAAVALQ	KLNLTPYLDD	VRQQNGKIFP	DTLAKLSGDI
451	EAHLKIGKVQ	LPGLQLDDME	TYLHADKGHI	ALSRFKSGLY	GGHTEGGISI
501	ANTRPATYRL	QQNASNIQIQ	PLLQDLFGFH	SFSGNGDAVI	DLTAGGETRK
551	ELIRSLQGSL	SLNISNGAWH	GIDMDNILKN	GISGKTADNA	APSTPFHRFT
601	LNSEISDGIS	RHIDTELFSD	SLYVTSNGYT	NLDTQELSED	VLIRNAVHPK
651	NKPIPLKITG	TVDKPSITVD	YGRLTGGINS	RKEKQKILED	TLLEQWQWLK
701	PKEP*				

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis

ORF 771 shows 98.9% identity over a 704 aa overlap with a predicted ORF (ORF 771) from N. meningitidis

m771/a771	98.9% identity in 704 aa overlap
a771.pep	10 20 30 40 50 60 MDLLSVFHKYRLKYAVAVLTILLLAAIGLHASVYRIFTPENIRSRLQQSIAHTHRKISFI
m771	
	10 20 30 40 50 60 70 80 90 100 110 120
a771.pep	ADIQRRLLPRPTVILKNLTITEPGGDRTAVSVQETKIGLSWKNLWSDQIQIEKWVVSSAF
m771	ADIQRRLLPRPTVILKNLTITEPGGDQTAVSVQETKIGLSWKNLWSDQIQIEKWVVSSAE 70 80 90 100 110 120
.771	130 140 150 160 170 180
a771.pep	LALTROGKGVWNIQDLIDSQKRQASVNRIIVENSTVRLNFLQEQLILKEINLNLQSPDSS
m771	LALTROGKGVWNIQDLIDSQKRQASVNRIIVENSTVRLNFLQEQLILKEINLNLQSPDSS 130 140 150 160 170 180
a771.pep	190 200 210 220 230 240
• •	GQPFESSGILVWGKLSVPWKSRGLFLSDGIGTPKISPFHFEASTSLDGHGITISTTGSPS
m771	GQPFESSGILVWGKLSVPWKSRGLFLSNGIGPPEISPFHFEASTSLDGHGITISTTGSPS 190 200 210 220 230 240
a771.pep	250 260 270 280 290 300 VRFNAGGADAAGLGLRADTSFRNLHLTAQIPTLALRNNSIKIETVNGAFTAGGEYAQWDG
m771	
	250 260 270 280 290 300
a771.pep	310 320 330 340 350 360 SFKLDKANLHSGIANIGNAEISGSFKTPRHQTNFSLNSPLVWTENKGLDAPRLYVSTLQD
m771	
	310 320 330 340 350 360
a771.pep	370 380 390 400 410 420 TVNRLPQPRFISRLDGSLSVPNLQNWNAELNGTFDRQTVAAKFRYTHEDAPHLEAAVALO
m771	
	370 380 390 400 410 420
a771.pep	430 440 450 460 470 480 KLNLTPYLDDVRQONGKIFPDTLAKLSGDIEAHLKIGKVQLPGLQLDDMETYLHADKGHI
m771	
	KLNLTPYLDDVRQQNGKIFPDTLAKLSGDIEAHLKIGKVQLPGLQLDDMETYLHADKGHI 430 440 450 460 470 480



a771.pep	490 ALSRFKSGLYGGHTEG                ALSRFKSGLYGGHTEG 490	[		1111111111	1111111111	1111
a771.pep	550 DLTAGGETRKELIRSI 	111111111	THITITIE	HILLIAM	HILLIIII	1111
a771.pep	610 LNSEISDGISRHIDTE	11111111111	1111111111	1111111111	11111111111	HHI
a771.pep	670 TVDKPSITVDYGRLTG             TVDKPSITVDYGRLTG 670	111111111	ниний			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2657>: g772.seq

```
GTGTTCGGCA CGGTCTTGCG GACTGATGCC GACTGCCTGC AAATCATCGT
     CGTCGGCAAG TTCTTTCAGG TTGTTGCGTA TGGTTTTGCG GCGTTGGCGG
 51
101
    AAGGCGAGTT TCACCAGTTT GGCGAAATGA TCGAAATCGT CCGCCTTGCC
     GATACGGTGT TTCACCGGAA TCATGCGCAC CACTGCGGAA TCGATTTTCG
201 GCGCGGGATC GAACGATTCG GGCGGCACGT CAATCAGCAG CTCCATATCG
251
    AAAAAATATT GCAGCATCAC ACCCAAGCGA CCGTAGTCGT TGCTTTTCGG
301
    CGCGGCAACC ATGCGCTCGA CCACTTCTTT TTGCAACATA AAGTGCATAT
    CGGCGACATC GTCCGCCACC TCCGCCAGTT TGAACAAAAG CGGCGTGGAG
351
    ATGTTATACG GCAGGTTGCC GACGATTTTC TTTTTGCCTG AGATGCCGTT
    GAAATCAAAC TGCAACACGT CGCCTTCGTG AATCACCAGT TTATCCGCAA
451
501
    ACGGCAGCGT TTTCAGACGG CATACGATGT CGCGGTCGAT TTCGACAACG
    TGCAGGCGGT TCAGCTTTTT CGCCAAAGGT TCGGTAATTG CCGCCAAACC
551
    CGGGCCGATT TCAATCACGA CATCATCCGC CTGCGGGCGC ACGGCGTTGA
601
    CAATATCGCC GATAATCCGC GTGTCCTGCA AAAAATTCTG CCCGAAACGC
701
    TTGCGGGCTT TGTGTTCTTT CATCGTGTTT CCTCTTCGGT TGAAACCCCG
751 CCCTTTAGGG CGGCAGGATC AGACTCTGTT TGGGCGGGGC GTAACCCCTT
    CCAAATCAGG ACGACACATA GGGCGGTGCT TTATGTGTCG TCCTGTGTGT
851 TGGAACATAA ATGTGTTTAC AGTATCCGTT TGATGTCGGC ATTGTAA
```

This corresponds to the amino acid sequence <SEQ ID 2658; ORF 772.ng>: g772.pep

```
1 VFGTVLRTDA DCLQIIVVGK FFQVVAYGFA ALAEGEFHQF GEMIEIVRLA
51 DTVFHRNHAH HCGIDFRRGI ERFGRHVNQQ LHIEKILQHH TQATVVVAFR
101 RGNHALDHFF LQHKVHIGDI VRHLRQFEQK RRGDVIRQVA DDFLFA*DAV
151 EIKLQHVAFV NHQFIRKRQR FQTAYDVAVD FDNVQAVQLF RQRFGNCRQT
201 RADFNHDIIR LRAHGVDNIA DNPRVLQKIL PETLAGFVFF HRVSSSVETP
251 PFRAAGSDSV WAGRNPFQIR TTHRAVLYVS SCVLEHKCVY SIRLMSAL*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2659>: m772.seq

```
ATGTTCGGCG CGGTCTTGCG GATTGATGCC GACTGCCTGC AAATCATCGT
    CGCCTGCAAG CTCTTTCAGA TTGTTGCGTA TGGTTTTGCG GCGTTGGTGG
    AAGGCGAGTT TCACGAGTTT GGCAAAATGC TCGAAATCGT CCGCCTTGCC
    GATGCGGTGT TTCACCGGAA TCATACGGAC GACGGCGGAA TCCACTTTCG
151
201
    GCGCAGGGTC GAACGATTCG GGCGGTACGT CAATCAGCAT TTCCATATCG
    AAAAAATATT GCAGCATCAC GCCCAAGCGG CCGTAGTCGT TGCTTTTCGG
251
    CGCGGCAACC ATACGCTCGA CCACTTCTTT TTGCAGCATA AAGTGCATAT
301
    CGACGACATC GTCCGCCACC TCCGCCAGCT TGAACAAAAG CGGTGTGGAA
351
401
    ATGTTGTACG GGAGGTTGCC GACGATTTTC TTTTTGCCTG CGATGCCGTT
    GAAATCAAAC TGCAATACAT CGCCTTCGTG AATCACCAGT TTATCCGCAA
451
501 ACGGCAGCGT TTTCAGACGG CATACGATGT CGCGGTCGAT TTCGACAACG
    TGCAGGCGGT TCAGCTTTTT CGCCAAAGGT TCGGTAATCG CCGCCAAACC
551
601 CGGGCCGATT TCAATCACGA CATCATCCGC CTGCGGGCGC ACGGCGTTGA
651 CAATATCGCT GATAATCCGC GTGTCCTGCA AAAAATTCTG CCCGAAACGC
```

```
701 TTGCGGGCTT TGTGTTCTTT CATCGTGTTT CCTTTTCGGT TGAAACCCCG
751 CCCTTTAGGG CGGTAGAATC AGACTCTATT TGGGAGGGGC GTAACTCTTT
801 CCAAATCAGG ATGGCACATA GGGCGGTGCT TTATGTGTCG TCCTGTGTGT
851 TGAAACATAA ATGTGTTTAC AGTATCCGTT TGATGTCGGC ATTGTAA
```

This corresponds to the amino acid sequence <SEQ ID 2660; ORF 772>: m772.pep

- 1 MFGAVLRIDA DCLQIIVACK LFQIVAYGFA ALVEGEFHEF GKMLEIVRLA
- 51 DAVFHRNHTD DGGIHFRRRV ERFGRYVNQH FHIEKILQHH AQAAVVVAFR
- 101 RGNHTLDHFF LQHKVHIDDI VRHLRQLEQK RCGNVVREVA DDFLFACDAV
- 151 EIKLQYIAFV NHOFIRKRQR FQTAYDVAVD FDNVQAVQLF RQRFGNRRQT 201 RADFNHDIIR LRAHGVDNIA DNPRVLQKIL PETLAGFVFF HRVSFSVETP
- 251 PFRAVESDSI WEGRNSFQIR MAHRAVLYVS SCVLKHKCVY SIRLMSAL*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 772 shows 85.2% identity over a 298 aa overlap with a predicted ORF (ORF 772) from N. gonorrhoeae

```
m772/q772
          85.2% identity in 298 aa overlap
          VFGTVLRTDADCLQIIVVGKFFQVVAYGFAALAEGEFHQFGEMIEIVRLADTVFHRNHAH
g772.pep
           m772
          MFGAVLRIDADCLQIIVACKLFQIVAYGFAALVEGEFHEFGKMLEIVRLADAVFHRNHTD
                 10
                         20
                                  30
                 70
                          80
                                  90
                                         100
                                                 110
          {\tt HCGIDFRRGIERFGRHVNQQLHIEKILQHHTQATVVVAFRRGNHALDHFFLQHKVHIGDI}
q772.pep
            m772
          DGGIHFRRRVERFGRYVNQHFHIEKILQHHAQAAVVVAFRRGNHTLDHFFLQHKVHIDDI
                         80
                                  90
                                         100
                                                 110
                130
                         140
                                 150
                                                 170
g772.pep
          VRHLRQFEQKRRGDVIRQVADDFLFAXDAVEIKLQHVAFVNHQFIRKRQRFQTAYDVAVD
          m772
          VRHLRQLEQKRCGNVVREVADDFLFACDAVEIKLQYIAFVNHQFIRKRQRFQTAYDVAVD
                130
                         140
                                 150
                190
                        200
                                 210
                                         220
                                                 230
                                                          240
g772.pep
          {\tt FDNVQAVQLFRQRFGNCRQTRADFNHDIIRLRAHGVDNIADNPRVLQKILPETLAGFVFF}
          FDNVQAVQLFRQRFGNRRQTRADFNHDIIRLRAHGVDNIADNPRVLQKILPETLAGFVFF
m772
                        200
                                 210
                                         220
                                                 230
                250
                        260
                                 270
                                         280
                                                 290
g772.pep
          HRVSSSVETPPFRAAGSDSVWAGRNPFQIRTTHRAVLYVSSCVLEHKCVYSIRLMSALX
          1810 411891189: 111:8 185 1413 :81448884118:14189841119414
          HRVSFSVETPPFRAVESDSIWEGRNSFQIRMAHRAVLYVSSCVLKHKCVYSIRLMSALX
m772
                250
                        260
                                 270
                                         280
                                                 290
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2661>: a772.seq

1	ATGTTCGGCG	CGGTCTTGCG	GATTGATGCC	GACTGCCTGC	AAATCATCGT
51	CGCCTGCAAG	CTCTTTCAGA	TTGTTGCGTA	TGGTTTTGCG	GCGTTGGTGG
101	AAGGCGAGTT	TCACGAGTTT	GGCGAAATGC	TCGAAATCGT	CCGCCTTGCC
151	GATACGGTGT	TTCACCGGAA	TCATGCGGAC	GACGGCCGAA	TCCACTTTCG
201	GCGCGGGGTC	GAACGATTCG	GGCGGCACGT	CAATCAGCAT	TTCCATATCG
251	AAGAAATATT	GCAGCATCAC	GCCCAAGCGG	CCGTAGTCGT	TGCTTTTCGG
301	CGCGGCAACC	ATACGATCGA	CCACTTCTTT	TTGCAGCATA	AAGTGCATAT
351	CGACGACATC	GTCCGCCACC	TCCGCCAGCT	TGAACAAAAG	CGGCGTGGAA
401	ATGTTGTAGG	GCAGGTTGCC	GACGATTTTC	TTTTTGCCTG	CGATGCCGTT
451	GAAATCAAAC	TGCAATACAT	CGCCTTCGTG	AATCACCAGT	TTATCCGCAA
501	ACGGCAGCGT	TTTCAGACGG	CATACGATGT	CGCGGTCGAT	TTCGACAACG
551	TGCAGGCGGT	TCAGCTTTTT	CGCCAAAGGT	TCGGTAATCG	CCGCCAAACC
601	CGGACCGATT	TCAATCACGA	CATCATCCGC	CTGCGGGCGC	ACGGCGTTGA
651	CAATATCGCT	GATAATCCGC	GTGTCCTGCA	AAAAATTCTG	CCCGAAACGC
701	TTGCGGGCTT	TGTGTTCTTT	CATCGTGTTT	CCTTTTCGGT	TGAAACCCCG
751	CCCTTTAGGG	CGGTAGAATC	AGACTCTATT	TGGGAGGGC	GTAACTCCTT
801	CCAAATCAGG	ACGGCACATA	GGGCGGTGCT	TTATGTGTCG	TCCTGTGTGT
851	TGAAACATAA	ATGTGTTTAC	AGTATCCGTT	TGATGTCGGC	ATTGTAA

This corresponds to the amino acid sequence <SEQ ID 2662; ORF 772.a>: a772.pep

- 1 MFGAVLRIDA DCLQIIVACK LFQIVAYGFA ALVEGEFHEF GEMLEIVRLA
- 51 DTVFHRNHAD DGRIHFRRGV ERFGRHVNQH FHIEEILQHH AQAAVVVAFR
- 101 RGNHTIDHFF LQHKVHIDDI VRHLRQLEQK RRGNVVGQVA DDFLFACDAV
- 151 EIKLQYIAFV NHQFIRKRQR FQTAYDVAVD FDNVQAVQLF RQRFGNRRQT 201 RTDFNHDIIR LRAHGVDNIA DNPRVLQKIL PETLAGFVFF HRVSFSVETP
- 251 PFRAVESDSI WEGRNSFQIR TAHRAVLYVS SCVLKHKCVY SIRLMSAL*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis

ORF 772 shows 95.6% identity over a 298 aa overlap with a predicted ORF (ORF 772) from N. meningitidis

```
m772/a772
          95.6% identity in 298 aa overlap
                10
                        20
                                30
                                       40
a772.pep
          MFGAVLRIDADCLQIIVACKLFQIVAYGFAALVEGEFHEFGEMLEIVRLADTVFHRNHAD
          m772
          MFGAVLRIDADCLQIIVACKLFQIVAYGFAALVEGEFHEFGKMLEIVRLADAVFHRNHTD
                10
                        20
                                30
                                       40
                        80
                               90
                                      100
                                              110
          DGRIHFRRGVERFGRHVNQHFHIEEILQHHAQAAVVVAFRRGNHTIDHFFLQHKVHIDDI
a772.pep
          DGGIHFRRRVERFGRYVNQHFHIEKILQHHAQAAVVVAFRRGNHTLDHFFLQHKVHIDDI
m772
                        80
                               90
                                      100
                                              110
               130
                       140
                               150
                                      160
          VRHLRQLEQKRRGNVVGQVADDFLFACDAVEIKLQYIAFVNHQFIRKRQRFQTAYDVAVD
a772.pep
          VRHLRQLEQKRCGNVVREVADDFLFACDAVEIKLQYIAFVNHQFIRKRQRFQTAYDVAVD
m772
               130
                       140
                               150
                                      160
                                              170
               190
                       200
                               210
                                      220
                                              230
          FDNVQAVQLFRQRFGNRRQTRTDFNHDIIRLRAHGVDNIADNPRVLQKILPETLAGFVFF
a772.pep
          m772
          FDNVQAVQLFRQRFGNRRQTRADFNHDIIRLRAHGVDNIADNPRVLQKILPETLAGFVFF
               190
                       200
                               210
                                      220
                                              230
                                                      240
               250
                       260
                               270
                                      280
                                              290
a772.pep
          HRVSFSVETPPFRAVESDSIWEGRNSFQIRTAHRAVLYVSSCVLKHKCVYSIRLMSALX
          m772
          HRVSFSVETPPFRAVESDSIWEGRNSFQIRMAHRAVLYVSSCVLKHKCVYSIRLMSALX
               250
                       260
                              270
                                      280
```

g773.seq not found yet

g773.pep not found yet

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2663>: m773.seq

1	ATGGGATTGG	GTGCAACGAC	TTTTGTCGGT	TCGGGTGCTA	TAGGCGGAGG
51	TCTGTGCAGT	ACCGGGATTG	GCTGTGCGGC	CGGTGGACTT	ATTGCAACGG
101	CAGGTATGAC	CGGTGGTTAT	ACACAGGCCT	CAGAAGGAAG	CCGGCAATTG
151	TTTGGCACTT	ACCAGTCCGA	TTTTGGTAAA	AAAGTTGTCC	TATCTTTGGG
201	TACACCAATA	GAATACGAAT	CGCCGTTAGT	ATCTGATGCG	AAAAATCTAG
251	CCGTATGGGG	ATTGGAAACG	CTGATTACGC	GCAAATTGGG	AAACTTGGCA
301	ACGGGTGTGA	AAACTTCCTT	GACTCCGAAA	ACTGCTGACG	TACAGCGAAA
351	TATCCTGTCC	CAATCCGAAG	TCGGTATCAA	GTGGGGCAAG	GGGATTGAAG
401	GACAGGGAAT	GCCTTGGGAG	GATTATGTCG	GTAAGGGCTT	GTCTGCCAAT
451	GCAAGGTTAC	CTAAAAATTT	TAAAACATTT	GATTATTTTG	ATCGTGGTAC
501	AGGCACGGCA	ATCAGTGCCA	AAACTCTGGA	TACGCAAACT	ACGGCACGCC
551	TGTCCAAACC	CGAACAGCTT	TACAGTACCA	TGAAAGGGTA	CATCGATAAG
601	ACGGCAAATT	TCAAAAGTTA	TGAATTATCA	GAAGTACCGT	TAAGGGCAGA
651	CATGATCAAA	CAGCGCGAAA	TCCATCTGGC	CATACCCGCA	CAAACTAATA
701	AGGAGCAAAG	ATTGCAGTTG	CAACGTGTGG	TAGAGTATGG	CAAAAGTCAA
751	AACATTACAG	TCAAAATTAC	GGAGATCGAA	TAA	

```
This corresponds to the amino acid sequence <SEQ ID 2664; ORF 773>:
m773.pep
           MGLGATTFVG SGAIGGGLCS TGIGCAAGGL IATAGMTGGY TQASEGSROL
       51
           FGTYQSDFGK KVVLSLGTPI EYESPLVSDA KNLAVWGLET LITRKLGNLA
      101 TGVKTSLTPK TADVQRNILS QSEVGIKWGK GIEGQGMPWE DYVGKGLSAN
          ARLPKNFKTF DYFDRGTGTA ISAKTLDTQT TARLSKPEQL YSTMKGYIDK
     151
201
          TANFKSYELS EVPLRADMIK QREIHLAIPA QTNKEQRLQL QRVVEYGKSQ
      251 NITVKITEIE *
a773.seg not found yet
a773.pep not found yet
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2665>:
g774.seq
          ATGAAGACCA AATTACCGCT TTTTATCATT TGGCTGTCTG TGTCTGCCTC
          CTGTGCTTCC GTTTTACCCG TTCCGGAGGG CAGCCGAACC GAAATGCCGA
      51
     101
          CACAGGAAAA TGCTTCAGAC GGCATTCCCT ATCCCGTTCC CACTCTGCAA
     151
          GACCGTTTGG ACTATCTGGA AGGCAAAATC GTCCGGCTGT CGAACGAAGT
     201
          GGAAATGTTA AACGGGAAAG TCAAAGCATT GGAGCATACG AAAATACACC
     251 CTTCCGGCAG GACATACGTC CAAAAACTCG ACGACCGCAA ATTGAAAGAG
     301
          CATTACCTCA ATACCGAAGG CGGCAGCGCA TCCGCACATA CCGTCGAAAC
          CGCACAAAAC CTCTACAATC AGGCACTCAA ACACTATCAA AACGGCAGGT
     351
     401
          TTTCTGCCGC AGCCGCCTTG TTGAAGGGGG CGGACGGCGG AGACGCCGGC
     451
          AGCATCGCGC AACGCAGTAT GTACCTGTTG CTGCAAAGCA GGGCGCGTAT
     501 GGGGAACTGT GAATCTGTCA TCGAAATCGG AGGGCGTTAC GCCAACCGTT
     551
          TCAAAGACAG CCCAACCGCG CCCGAAGTCA TATTCAAAAT CGGCGAATGC
          CAATACAGGC TTCAGCAAAA AGACATTGCA AGGGCGACTT GGCGCAGCCT
     601
          GATACAGACC TATCCCGGCA GCCCGGCGGC AAAACGCGCC GCCGCAGCCG
     651
     701 TACGCAAACG ATAG
This corresponds to the amino acid sequence <SEQ ID 2666; ORF 774.ng>:
g774.pep
          MKTKLPLFII WLSVSASCAS VLPVPEGSRT EMPTOENASD GIPYPVPTLO
          DRLDYLEGKI VRLSNEVEML NGKVKALEHT KIHPSGRTYV QKLDDRKLKE
      51
     101 HYLNTEGGSA SAHTVETAON LYNOALKHYO NGRFSAAAAL LKGADGGDGG
     151
          SIAQRSMYLL LQSRARMGNC ESVIEIGGRY ANRFKDSPTA PEVIFKIGEC
          QYRLQQKDIA RATWRSLIQT YPGSPAAKRA AAAVRKR*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2667>:
m774.seq
          ATGAAGATCA AATTACCGCT TTTTATCATT TGGCTGTCTG TGTCCGCCTC
      51
          CTGTGCTTCC GTTTCACCCG TTCCGGCAGG CAGCCAAACC GAAATGTCGA
         CACGGGAAAA TGCTTCAGAC GGCATTCCCT ATCCCGTTCC GACCTTGCAA
     101
          GACCGTTTGG ACTATCTGGA AGGCAAAATC GTCCGGCTGT CGAACGAAGT
     151
     201 GGAAACCTTA AACGGCAAAG TCAAAGCACT GGAACACGCA AAAACACATT
     251
          CTTCCGGCAG GGCATACGTC CAAAAACTCG ACGACCGCAA GTTGAAAGAG
     301 CATTACCTCA ATACCGAAGG CGGCAGCGCA TCCGCACATA CTGTCGAAAC
          CGCACAAAAC CTCTACAATC AGGCACTCAA ACACTATAAA AGCGGCAAGT
     351
          TTTCTGCCGC TGCCTCCCTG TTGAAAGGCG CGGACGGAGG CGACGGCGGC
     451 AGCATCGCGC AACGCAGTAT GTACCTGTTG CTGCAAAGCA GGGCGCGTAT
          GGGCAACTGC GAATCCGTCA TCGAAATCGG AGGGCGTTAC GCCAACCGTT
     501
          TCAAAGACAG CCCAACCGCG CCTGAAGCCA TGTTCAAAAT CGGCGAATGC
     551
     601
          CAATACAGGC TTCAGCAAAA AGACATTGCA AGGGCGACTT GGCGCAGCCT
          GATACAGACC TATCCCGGCA GCCCGGCGGC AAAACGCGCC GCCGCAGCCG
          TGCGCAAACG ATAG
This corresponds to the amino acid sequence <SEQ ID 2668; ORF 774>:
m774.pep
          MKIKLPLFII WLSVSASCAS VSPVPAGSQT EMSTRENASD GIPYPVPTLQ
          DRLDYLEGKI VRLSNEVETL NGKVKALEHA KTHSSGRAYV QKLDDRKLKE
      51
     101
          HYLNTEGGSA SAHTVETAQN LYNQALKHYK SGKFSAAASL LKGADGGDGG
          SIAQRSMYLL LQSRARMGNC ESVIEIGGRY ANRFKDSPTA PEAMFKIGEC
         QYRLQQKDIA RATWRSLIQT YPGSPAAKRA AAAVRKR*
```

Computer analysis of this amino acid sequence gave the following results:

### Homology with a predicted ORF from N. gonorrhoeae

ORF 774 shows 92.8% identity over a 237 aa overlap with a predicted ORF (ORF 774) from N. gonorrhoeae

```
m774/g774
          92.8% identity in 237 aa overlap
                        20
                                30
                                       40
                                               50
                                                       60
          MKTKLPLFIIWLSVSASCASVLPVPEGSRTEMPTQENASDGIPYPVPTLQDRLDYLEGKI
q774.pep
          m774
          MKIKLPLFIIWLSVSASCASVSPVPAGSQTEMSTRENASDGIPYPVPTLQDRLDYLEGKI
                        20
                               30
                                       40
                        80
                                              110
g774.pep
          VRLSNEVEMLNGKVKALEHTKI HPSGRTYVQKLDDRKLKEHYLNTEGGSASAHTVETAON
          VRLSNEVETLNGKVKALEHAKTHSSGRAYVQKLDDRKLKEHYLNTEGGSASAHTVETAQN
m774
                70
                        80
                               90
                                      100
               130
                       140
                               150
                                      160
                                              170
          LYNQALKHYQNGRFSAAAALLKGADGGDGGSIAQRSMYLLLQSRARMGNCESVIEIGGRY
g774.pep
          m774
          LYNQALKHYKSGKFSAAASLLKGADGGDGGSIAQRSMYLLLQSRARMGNCESVIEIGGRY
                       140
                                      160
               190
                       200
                              210
                                      220
                                              230
g774.pep
          ANRFKDSPTAPEVIFKIGECQYRLQQKDIARATWRSLIQTYPGSPAAKRAAAAVRKRX
          ANRFKDSPTAPEAMFKIGECQYRLQQKDIARATWRSLIQTYPGSPAAKRAAAAVRKRX
m774
                       200
               190
                               210
                                      220
                                              230
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2669>: a774.seq

```
ATGAAGACCA AATTACCGCT TTTTATCATT TGGCTGTCCG TATCCGCCGC
     CTGTTCTTCC CCTGTTTCCC GCAATATTCA GGATATGCGG CTCGAACCGC
 51
101
     AGGCAGAGGC AGGTAGTTCG GACGCTATTC CCTATCCCGT TCCCACTCTG
151
    CAAGACCGTT TGGATTATCT GGAAGGCACA CTCGTCCGCC TGTCGAACGA
201 AGTGGAAACC TTAAACGGCA AAGTCAAAGC ACTGGAGCAT GCGAAAACAC
    ACCCTTCCAG CAGGGCATAC GTCCAAAAAC TCGACGACCG CAAGTTGAAA
251
    GAGCATTACC TCAATACCGA AGGCGGCAGC GCATCCGCAC ATACCGTCGA
301
351
    AACCGCACAA AACCTCTACA ATCAGGCACT CAAACACTAT AAAAGCGGCA
    GGTTTTCTGC CGCTGCCTCC CTGTTGAAAG GCGCGGACGG AGGCGACGGC
401
451
    GGCAGCATCG CGCAACGCAG TATGTACCTG TTGCTGCAAA GCAGGGCGCG
    TATGGGCAAC TGCGAATCCG TCATCGAAAT CGGAGGGCGT TACGCCAACC
501
    GTTTCAAAGA CAGCCCAACC GCGCCTGAAG CCATGTTCAA AATCGGCGAA
551
601
    TGCCAATACA GGCTTCAGCA AAAAGACATT GCAAGGGCGA CTTGGCGCAG
    CCTGATACAG ACCTATCCCG GCAGCCCGGC GGCAAAACGC GCCGCCGCAG
651
701 CCGTGCGCAA ACGATAG
```

This corresponds to the amino acid sequence <SEQ ID 2670; ORF 774.a>: a774.pep

- MKTKLPLFII WLSVSAACSS PVSRNIQDMR LEPQAEAGSS DAIPYPVPTL
- 51 QDRLDYLEGT LVRLSNEVET LNGKVKALEH AKTHPSSRAY VOKLDDRKLK
- 101 EHYLNTEGGS ASAHTVETAQ NLYNQALKHY KSGRFSAAAS LLKGADGGDG
- GSIAQRSMYL LLQSRARMGN CESVIEIGGR YANRFKDSPT APEAMFKIGE
- CQYRLQQKDI ARATWRSLIQ TYPGSPAAKR AAAAVRKR*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis

ORF 774 shows 89.5% identity over a 238 aa overlap with a predicted ORF (ORF 774) from N. meningitidis

```
89.5% identity in 238 aa overlap
                         20
                                 30
                                         40
          {\tt MKTKLPLFIIWLSVSAACSSPVSRNIQDMRLEPQAEAGSSDAIPYPVPTLQDRLDYLEGT}
a774.pep
                                 MKIKLPLFIIWLSVSASCAS-VSPVPAGSQTEMSTRENASDGIPYPVPTLQDRLDYLEGK
m774
                         20
                                  30
                                          40
```

m774/a774



```
70
                               80
                                         90
                                                  100
                                                            110
a774.pep
             LVRLSNEVETLNGKVKALEHAKTHPSSRAYVQKLDDRKLKEHYLNTEGGSASAHTVETAO
             IVRLSNEVETLNGKVKALEHAKTHSSGRAYVQKLDDRKLKEHYLNTEGGSASAHTVETAQ
m774
                                80
                                          90
                                                   100
                    130
                                        150
                                                  160
                                                            170
             NLYNQALKHYKSGRFSAAASLLKGADGGDGGSIAQRSMYLLLQSRARMGNCESVIEIGGR
a774.pep
             m774
             NLYNQALKHYKSGKFSAAASLLKGADGGDGGSIAQRSMYLLLQSRARMGNCESVIEIGGR
           120
                     130
                               140
                                         150
                                                   160
                    190
                              200
                                        210
                                                  220
             YANRFKDSPTAPEAMFKIGECQYRLQQKDIARATWRSLIQTYPGSPAAKRAAAAVRKRX
a774.pep
             YANRFKDSPTAPEAMFKIGECQYRLQQKDIARATWRSLIQTYPGSPAAKRAAAAVRKRX
m774
           180
                               200
                                         210
                                                   220
g790.seq not found yet
g790.pep not found yet
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2671>:
m790.seq
          ATGGCAAGAA GGTCAAAAAC ATTTGAAGAA GCTGCTGCTG AGGTTGAGGA
          ACGTTTCGGT CATCGTGGCA TTAAGTTGGT CGAGTTTGAG GGTACAGCCA
      51
          AGCCGTGTGT AATCAACTGC CCTAAACATG GAAACCAAAC CTGTTCGAGG
     101
     151
         TACTCCAATA TGTTCATAGG AAGTAGCTGG GGTTGCCCCT CTTGTGGTAA
          TGAGCAAGCT GCAAAAGCCG GTATAGCGAC CCTTAGGAAG AATCACATAG
     201
     251
         CGTTAGAAAT GCTGAAACAG GCTGTAACAG GTATGACCAA GCAAGAGCGC
         ATCACGACGC AAGCCTACAA TGAGATGACC AAATCCGTGG CAGGTTCAAA
CAGCATAGTC CTTAACGATG TCCAAGGCGA TACGACCATC AACAACCATC
     301
     351
     401
         ATACGCATAC GCACAACCAC AGCGATGCCG ATGGCAAAGC ACTGTCGATG
          AGGCTCACAC CCCGTCCTTT GTTGTCAGAC CGTCAGGCGG CGGCTTTCGC
     451
         CCGTACAGGC AAACTCACGG GCAGTTTCGA CCTGTTTGCT TCGGTGgTCG
     501
         CCCCCTCGCA GTACACGTTT GCCGTTGCCA TGCCCGACAC GTCCATGTCG
     551
     601
         CCGGTTATCG AAAAGGGAGA CTTGCTGGTG GTCGAGCCGC GTATGTGCCC
     651
         TGCGGACGAA GACATCGCGC TGATTGAACT GTCCGACAAG CGGCTGGTCG
         TCGCGCACCT TGTTATCGAT ATTGCGGGCA GGATGCTGAT TTATCAGACG
GGCAGGCCGT CTGAAGCCTT TGACCTGCCC GAAGGCAGCA CGATTTTAGG
     701
     751
     801
         TGTGGTGCTG GAGTCAAAAA ACGGTTTATG TCCGCCGCAC AGGCAAGAAG
         GCGTGTTGAT TCGGATTACC GCCCCTGATG TGTGGACGGT TGGTATGATT
     851
         TCCGCTTCCA AAACGTCGTG TACGCGCCCG ACCGCAGCCC GGAAATCAGC
     951
         CGTATGCTTT CTTCGATTTT GGCAGGCTAC GCGTGGGATA CCGAAAACCC
         GTTCGTGGCG AAATCCGAAC AACGCCTGA
This corresponds to the amino acid sequence <SEQ ID 2672; ORF 790>:
m790.pep
         MARRSKTFEE AAAEVEERFG HRGIKLVEFE GTAKPCVINC PKHGNOTCSR
     51
         YSNMFIGSSW GCPSCGNEQA AKAGIATLRK NHIALEMLKQ AVTGMTKQER
     101
         ITTQAYNEMT KSVAGSNSIV LNDVQGDTTI NNHHTHTHNH SDADGKALSM
         RLTPRPLLSD RQAAAFARTG KLTGSFDLFA SVVAPSQYTF AVAMPDTSMS
     151
         PVIEKGDLLV VEPRMCPADE DIALIELSDK RLVVAHLVID IAGRMLIYOT
         GRPSEAFDLP EGSTILGVVL ESKNGLCPPH RQEGVLIRIT APDVWTVGMI
     251
     301 SASKTSCTRP TAARKSAVCF LREWQATRGI PKTRSWRNPN NA*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2673>:
a790.seq
         ATGGCAAGAA GGTCAAAAAC ATTTGAAGAA GCTGCTGCTG AGGTTGAGGA
         ACGTTTCGGT CATCGTGGCA TTAAGTTGGT CGAGTTTGAG GGTACAGCCA
     51
     101
         AGCCGTGTGT AATCAACTGC CCTAAACATG GAAACCAAAC CTGTTCGAGG
     151
         TACTCCAATA TGTTCATAGG AAGTAGCTGG GGTTGCCCCT CTTGTGGTAA
         TGAGCAAGCT GCAAAAGCCG GTATAGCGAC CCTTAGGAAG AATCACATAG
     201
         CGTTAGAAAT GCTGAAACAG GCTGTAACAG GTATGACCAA GCAAGAGCGC
    251
    301
         ATCACGACGC AAGCCTACAA TGAGATGACC AAATCCGTGG CAGGTTCAAA
     351
         CAGCATAATC CTTAACGATG TCCAAGGCGA TACGACCATC AACAACCATC
         ATACGCATAC GCACAACCAC AGCGATGCCG ACGGCAAAGC ACTGTCGATG
    401
         AGGCTCACAC CCCGTCCTTT GTTGTCAGAC CGTCAGGCGG CGGCTTTCGC
     451
    501
         CCGTACAGGC AAACTCACGG GCAGTTTCGA CCTGTTTGCT TCGGTGGTCG
         CCCCTTCACA ATATACGTTT GCCGTTGCCA TGCCCGACAC GTCCATGTCG
    551
         CCGGTTATCG AAAAGGGGGA TTTGCTGGTG GTCGAGCCGC GTATGCGCCC
    601
         TGCGGACGAA GACATCGTAC TGATTGAACT GTCCGACAAG CGGCTGGTCG
TCGCGCACCT TGTTATCGAT ATTGCGGGCA GGATGCTGAT TTATCAGACG
```

WO 99/57280



751	GGCAGGCCGT	CTGAAGCCCT	CGACCTGCCC	GAAGGCAGCG	TGATTTTAGG
801	TGTGGTGCTG	GAGTCAAAAA	ACGGTTTATG	TCCGCCGCAC	AGGCAAGAAG
851	GCGTGTTGAT	TCGGATTACC	GCCCCTGATG	TGTGGACGGT	TGGTACGATT
901	TCCGCTTCCA	AAACGTCGTG	TACGCGCCCG	ACCGCAGCCC	GGAAATCAGC
951	CGTATGCTTT	CTTCGATTTT	GGCAGGCTAC	GCGTGGGATA	CCGAAAACCC
1001	GTTCGTGGCG	AAATCCGAAC	AACGCCTGT		

This corresponds to the amino acid sequence <SEQ ID 2674; ORF 790.a>:

- 1 MARRSKTFEE AAAEVEERFG HRGIKLVEFE GTAKPCVINC PKHGNQTCSR
- 51 YSNMFIGSSW GCPSCGNEQA AKAGIATLRK NHIALEMLKQ AVTGMTKQER 101 ITTQAYNEMT KSVAGSNSII LNDVQGDTTI NNHHTHTHNH SDADGKALSM
- 151 RLTPRPLLSD RQAAAFARTG KLTGSFDLFA SVVAPSQYTF AVAMPDTSMS
- 201 PVIEKGDLLV VEPRMRPADE DIVLIELSDK RLVVAHLVID IAGRMLIYOT
- 251 GRPSEALDLP EGSVILGVVL ESKNGLCPPH RQEGVLIRIT APDVWTVGTI
- 301 SASKTSCTRP TAARKSAVCF LRFWQATRGI PKTRSWRNPN NAC

Computer analysis of this amino acid sequence gave the following results:

### Homology with a predicted ORF from N. meningitidis

ORF 790 shows 98.2% identity over a 342 aa overlap with a predicted ORF (ORF 790) from N. meningitidis

```
a790/m790
          98.2% identity in 342 aa overlap
                 10
                        20
                                30
                                                50
a790.pep
          MARRSKTFEEAAAEVEERFGHRGIKLVEFEGTAKPCVINCPKHGNQTCSRYSNMFIGSSW
          m790
          MARRSKTFEEAAAEVEERFGHRGIKLVEFEGTAKPCVINCPKHGNQTCSRYSNMFIGSSW
                 10
                        20
                                30
                                        40
                                90
                                       100
                                               110
          GCPSCGNEQAAKAGIATLRKNHIALEMLKQAVTGMTKQERITTQAYNEMTKSVAGSNSII
a790.pep
          m790
          GCPSCGNEQAAKAGIATLRKNHIALEMLKQAVTGMTKQERITTQAYNEMTKSVAGSNSIV
                 70
                        80
                                90
                                       100
                                               110
                                                       120
                130
                       140
                               150
                                       160
a790.pep
          LNDVQGDTTINNHHTHTHNHSDADGKALSMRLTPRPLLSDRQAAAFARTGKLTGSFDLFA
          \verb"LNDVQGDTTINNHTHTHNHSDADGKALSMRLTPRPLLSDRQAAAFARTGKLTGSFDLFA"
m790
                130
                       140
                               150
                                       160
                                               170
                190
                       200
                               210
                                       220
                                               230
                                                      240
          SVVAPSQYTFAVAMPDTSMSPVIEKGDLLVVEPRMRPADEDIVLIELSDKRLVVAHLVID
a790.pep
          m790
          SVVAPSQYTFAVAMPDTSMSPVIEKGDLLVVEPRMCPADEDIALIELSDKRLVVAHLVID
               190
                       200
                               210
                                       220
                                               230
                       260
                               270
                                       280
                                              290
a790.pep
          IAGRMLIYQTGRPSEALDLPEGSVILGVVLESKNGLCPPHRQEGVLIRITAPDVWTVGTI
          IAGRMLIYQTGRPSEAFDLPEGSTILGVVLESKNGLCPPHRQEGVLIRITAPDVWTVGMI
m790
               250
                       260
                               270
                                       280
                                              290
               310
                       320
                               330
a790.pep
          SASKTSCTRPTAARKSAVCFLRFWQATRGIPKTRSWRNPNNAC
          m790
          SASKTSCTRPTAARKSAVCFLRFWQATRGIPKTRSWRNPNNAX
               310
                       320
                               330
                                       340
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2675>: 9791.seq

1					CTACTTGTTT
51	TGGTTTGTTT	TTTGGTTTTT	GTGTATTTGG	AGTGGGTCTG	GTTGCCATTG
101		AACGTATCCG			
151	TACCAGCCTA	AAATGCCGTT	GACTATTTAT	TCGGCGGATG	GAGAAGTCAT
201	CGGTATGTAT	GGGGAGCAGC	GGCGCGAATT	TACAAAAATC	GGCGATTTCC
251	CCGAGGTGTT	GCGGAATGCG	GTTATTGCCG	CCGAGGATAA	ACGCTTTTAC
301	CGGCATTGGG	GGGTGGATGT	TTGGGGTGTT	GCCCGCGCTG	CCGTCGGCAA
351	TGTCGTGTCC	GGCAGCGTGC	AGTCGGGTGC	GAGTACGATT	ACACAGCAGG

, and the property of the second



```
401 TGGCGAAAAA TTTTTATTTG AGCAGTGAAA AAACGTTCAC ACGCAAATTC
      AATGAGGTGT TGCTTGCCTA TAAAATCGAG CAGTCTTTAA GCAAAGACAA
      AATCCTTGAG TTGTATTTCA ATCAGATTTA CCTCGGTCAG CGCGCCTATG
      GTTTTGCATC TGCCGCGCAA ATCTATTTCA ATAAGAATGT CCGAGATTTG
 551
      ACTTTGGCGG AAGCCGCCAT GCTTGCGGGA CTGCCCAAGG CTCCGTCTGC
 601
      CTATAATCCG ATTGTTAATC CGGAGCGTGC CAAGTTGCGC CAGAAGTATA
 651
 701
      TTTTGAACAA TATGCTCGAG GAGAAGATGA TTACCGTGCA ACAGCGCGAT
      CAGGCATTGA ATGAGGAACT GCATTATGAG CGGTTTGTTC GGAAAATCGA
TCAGAGTGCT TTATATGTGG CGGAAATGGT GCGTCGGGAA CTGTATGAGA
 751
 801
 851
      AATATGGTGA AGATGCCTAT ACGCAGGGTT TTAAGGTTTA TACCACGGTC
      CGCACCGATC ATCAGAAGGC GGCAACCGAG GCATTGCGCA AGGCTCTACG
 901
      GAATTTCGAT CGCGGCAGCA GCTACCGCGG TGCGGAAAAC TATATCGATT
1001
      TGAGTAAGAG TGAAGATGTC GAGGAGACTG TCAGCCAGTA TCTGTCGGGA
1051
      CTCTATACCG TCGATAAAAT GGTTCCCGCC GTTGTGTTGG ATGTTACTAA
1101
      AAAGAAAAAT GTCGTCATAC AGCTGCCCGG CGGCAGGCGG GTTGCGCTTG
1151
      ACAGGCGCC CTTGGGTTTT GCGGCCCGAG CGGTCGATAA TGAGAAAATG
      GGGGAGGACC GTATCCGCAG GGGCGCGGTC ATCCGTGTCA AAAACAACGG
1201
1251
      CGGGCGTTGG GCGGTGGTTC AAGAGCCGTT GCTGCAGGGG GCTTTGGTTT
      CGCTGGATGC AAAAACCGGA GCTGTGCGCG CGCTGGTCGG CGGTTATGAT
1301
      TTTCACAGCA AAACATTCAA TCGTGCCGTT CAGGCAATGC GGCAGCCGGG
1401
      TTCGACCTTT AAGCCGTTTG TCTATTCGGC GGCATTATCT AAGGGGATGA
1451
      CCGCGTCCAC AGTGGTTAAC GATGCGCCGA TTTCCCTGCC GGGGAAAGGG
1501
      CCGAACGGTT CGGTTTGGAC ACCTAAAAAT TCAGACGGCA GATATTCCGG
1551
      CTACATTACT TTGAGACAGG CTCTGACGGC TTCCAAGAAT ATGGTTTCCA
      TCCGTATTTT GATGTCTATC GGTGTCGGTT ACGCGCAACA GTATATCCGG
1651 CGTTTCGGCT TCAGGCCGTC CGAGCTGCCG GCAAGCCTGT CTATGGCTTT
1701 AGGTACGGC GAGACGACGC CGTTGAAAGT GGCGGAGGCA TATAGTGTAT
      CGTTTCGGCT TCAGGCCGTC CGAGCTGCCG GCAAGCCTGT CTATGGCTTT
1751
      TTGCGAACGG CGGATATAGG GTTTCTTCGC ACGTGATCGA TAAGATTTAT
      GACAGAGACG GCAGGTTGCG CGCCCAAATG CAACCTTTGG TGGCAGGGCA
      AAATGCGCCT CAGGCAATCG ATCCGCGCAA TGCCTATATT ATGTATAAGA
1851
1901
      TTATGCAGGA TGTGGTCCGT GTCGGTACGG CAAGGGGGGC AGCTGCGTTG
      GGAAGAACGG ATATTGCCGG TAAAACGGGT ACGACCAACG ACAATAAAGA
1951
      TGCGTGGTTT GTCGGTTTTA ACCCTGATGT GGTTACTGCC GTATATATCG
2051
      GCTTCGACAA ACCTAAGAGT ATGGGGCGTG CCGGCTACGG CGGTACGATT
      GCGGTGCCGG TTTGGGTGGA CTATATGCGT TTTGCGTTGA AAGGAAAGCA
2101
2151
      GGGCAAAGGG ATGAAAATGC CTGAAGGTGT GGTCAGCAGC AATGGCGAAT
      ACTATATGAA GGAACGTATG GTAACCGATC CGGGCTTGAT GCTGGACAAC
2201
      AGCGGTATTG CGCCGCAACC TTCCCGACGG GCAAAAGAAG ATGATGAAGC
2251
2301
      GGCAGTAGAA AACGAACAGC AGGGAAGGTC TGACGAAACG CGTCAGGACG
      TACAGGAAAC GCCGGTGCTT CCGAGCAATA CGGATTCCAA ACAGCAGCAG
2351
2401
      TTGGATTCCC TGTTTTAA
```

# This corresponds to the amino acid sequence <SEQ ID 2676; ORF 791.ng>: g791.pep

```
MVNYYSAMIK KILTTCFGLF FGFCVFGVGL VAIAILVTYP KLPSLDSLQH
  1
 51
     YQPKMPLTIY SADGEVIGMY GEQRREFTKI GDFPEVLRNA VIAAEDKRFY
     RHWGVDVWGV ARAAVGNVVS GSVQSGASTI TQQVAKNFYL SSEKTFTRKF
     NEVLLAYKIE QSLSKDKILE LYFNQIYLGQ RAYGFASAAQ IYFNKNVRDL
201
     TLAEAAMLAG LPKAPSAYNP IVNPERAKLR QKYILNNMLE EKMITVOORD
     QALNEELHYE RFVRKIDQSA LYVAEMVRRE LYEKYGEDAY TQGFKVYTTV
251
301
     RTDHQKAATE ALRKALRNFD RGSSYRGAEN YIDLSKSEDV EETVSQYLSG
351
     LYTVDKMVPA VVLDVTKKKN VVIQLPGGRR VALDRRALGF AARAVDNEKM
     GEDRIRRGAV IRVKNNGGRW AVVQEPLLQG ALVSLDAKTG AVRALVGGYD
401
451
     FHSKTFNRAV QAMRQPGSTF KPFVYSAALS KGMTASTVVN DAPISLPGKG
     PNGSVWTPKN SDGRYSGYIT LRQALTASKN MVSIRILMSI GVGYAQQYIR
501
     RFGFRPSELP ASLSMALGTG ETTPLKVAEA YSVFANGGYR VSSHVIDKIY
551
     DRDGRLRAQM QPLVAGQNAP QAIDPRNAYI MYKIMQDVVR VGTARGAAAL
GRTDIAGKTG TTNDNKDAWF VGFNPDVVTA VYIGFDKPKS MGRAGYGGTI
651
701
     AVPVWVDYMR FALKGKQGKG MKMPEGVVSS NGEYYMKERM VTDPGLMLDN
     SGIAPQPSRR AKEDDEAAVE NEQQGRSDET RQDVQETPVL PSNTDSKQQQ
751
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2677>: m791.seq

1	ATGGTAAATT	ATTATTCAGC	TATGATTAAA	AAGATTTTAA	CGACTTGTTT
51	TGGTTTGGTT	TTTGGGTTTT	GTGTATTTGG	AGTGGGTTTG	GTTGCCATTG
101	CTATTTTGGT	AACGTATCCG	AAACTGCCGT	CTTTGGATTC	TTTGCAGCAT
151	TACCAGCCTA	AAATGCCGTT	GACTATTTAT	TCGGCGGATG	GGGAAGTCAT
201	CGGTATGTAT	GGGGAGCAGC	GGCGCGAATT	TACAAAAATC	GGCGATTTCC
251	CAGAGGTGTT	GCGGAATGCG	GTTATCGCCG	CCGAGGATAA	ACGCTTTTAC
301	CGGCATTGGG	GGGTGGATGT	TTGGGGTGTT	GCCCGCGCTG	CCGTCGGCAA
351	TGTCGTGTCC	GGCAGCGTGC	AGTCGGGTGC	GAGTACGATT	ACGCAGCAGG
401	TGGCGAAAAA	TTTTTATTTG	AGCAGTGAAA	AAACGTTCAC	ACGCAAATTC

WO 99/57280



```
451 AATGAGGTGT TGCTTGCCTA TAAAATCGAG CAGTCTTTAA GCAAAGACAA
      AATCCTCGAG TTGTATTTCA ATCAGATTTA CCTCGGTCAG CGCGCCTATG
 551
      GTTTTGCATC TGCCGCGCAA ATCTATTTCA ATAAGAATGT CCGAGATTTG
     ACTTTGGCGG AAGCCGCCAT GCTTGCGGGA CTGCCCAAGG CTCCGTCTGC
 601
 651
      CTATAATCCG ATTGTTAATC CAGAACGTGC CAAGTTGCGC CAGAAGTATA
 701
      TTTTGAACAA TATGCTCGAG GAGAAGATGA TTACCGTGCA ACAGCGCGAT
      CAGGCGTTGA ATGAGGAACT GCATTACGAG CGGTTTGTTC GGAAAATCGA
 751
 801
      TCAGAGTGCG TTATATGTGG CGGAAATGGT GCGTCAGGAA CTGTATGAGA
 851
      AATACGGTGA AGATGCCTAT ACGCAGGGTT TTAAGGTTTA TACCACGGTC
 901
      CGCGCCGATC ATCAGAAGGT GGCAACCGAG GCATTGCGCA AGGCTCTACG
      GAATTTCGAT CGCGGCAGCA GCTACCGCGG TGCGGAAAAC TATATCGATT
 951
      TGAGTAAGAG TGAAGATGTC GAGGAGACTG TCAGCCAGTA TCTGTCGGGA
1001
1051
      CTCTATACCG TCGATAAAAT GGTTCCCGCC GTTGTGTTGG ATGTGACTAA
      AAAGAAAAAT GTCGTCATAC AGCTGCCCGG CGGCAGGCGG GTTACGCTTG
1101
      ACAGGCGCC CTTGGGTTTT GCGGCCCGCG CGGTCAATAA TGAAAAAATG
1151
      GGGGAGGACC GTATCCGCAG GGGCGCGGTC ATCCGTGTCA AAAACAACGG
1201
1251
      CGGGCGTTGG GCGGTGGTTC AAGAGCCGTT GCTGCAGGGG GCTTTGGGTT
1301
      CGCTGGATGC AAAAACCGGA GCTGTGCGCG CGCTGGTCGG CGGTTATGAT
1351
      TTTCACAGCA AAACATTCAA TCGTGCCGTT CAGGCAATGC GGCAGCCGGG
1401
      TTCGACCTTT AAGCCGTTTG TCTATTCGGC GGCATTATCT AAGGGGATGA
1451
      CCGCGTCCAC AGTGGTTAAC GATGCGCCGA TTTCCCTGCC GGGGAAAGGG
1501
      CCGAACGGTT CGGTTTGGAC ACCTAAAAAT TCAGACGGCA GATATTCCGG
      CTACATTACT TTGAGACAGG CTCTGACGGC TTCCAAGAAT ATGGTTTCCA
1551
      TCCGTATTTT GATGTCTATC GGTGTCGGTT ACGCGCAACA GTATATCCGG
1601
     CGTTTCGGCT TCAGGTCGTC CGAGCTGCCG GCAAGCCTGT CTATGGCTTT
1651
1701
     AGGTACGGC GAGACAACGC CGTTGAAAGT GGCGGAGGCA TATAGCGTAT
1751
      TTGCGAACGG CGGATATAGG GTTTCTTCGC ACGTAATCGA TAAGATTTAT
      GACAGAGACG GCAGGTTGCG CGCCCAAATG CAACCTTTGG TGGCTGGGCA
1801
     AAATGCGCCT CAGGCAATCG ATCCGCGCAA TGCCTATATT ATGTATAAGA
1851
1901
     TTATGCAGGA TGTGGTCCGT GTTGGTACGG CAAGGGGGGC AGCTGCGTTG
1951
      GGAAGAACGG ATATTGCCGG TAAAACGGGT ACGACCAATG ACAATAAGGA
     TGCGTGGTTT GTCGGTTTTA ACCCTGATGT GGTTACTGCC GTATATATCG
2001
     GCTTCGACAA ACCTAAGAGT ATGGGGCGTG TCGGCTACGG CGGTACGATT
2051
2101
     GCGGTGCCGG TTTGGGTGGA CTATATGCGT TTTGCGTTGA AAGGAAAGCA
2151
     GGGCAAGGGG ATGAAAATGC CTGAAGGTGT GGTCAGCAGC AATGGCGAAT
     ACTATATGAA GGAACGTATG GTAACCGATC CGGGCTTGAC GCTGGACAAC
2201
     AGCGGTATTG CGCCGCAACC TTCCCGACGG GCAAAAGAAG ATGACGGGGG
2251
     CGCGGCAGAA GGCGGACGGC AGGCGGCGGA TGACGAAGTC CGCCAAGATA
2301
     TGCAGGAAAC GCCGGTGCTT CCGAGTAATA CTGGTTCCAA ACAGCAGCAG
2351
2401
     TTGGATTCTC TGTTTTAA
```

# This corresponds to the amino acid sequence <SEQ ID 2678; ORF 791>: m791.pep

```
MVNYYSAMIK KILTTCFGLV FGFCVFGVGL VAIAILVTYP KLPSLDSLQH
     YQPKMPLTIY SADGEVIGMY GEQRREFTKI GDFPEVLRNA VIAAEDKRFY
 51
     RHWGVDVWGV ARAAVGNVVS GSVQSGASTI TQQVAKNFYL SSEKTFTRKF
101
151
     NEVLLAYKIE QSLSKDKILE LYFNQIYLGQ RAYGFASAAQ IYFNKNVRDL
     TLAEAAMLAG LPKAPSAYNP IVNPERAKLR QKYILNNMLE EKMITVQQRD
201
251
     QALNEELHYE RFVRKIDQSA LYVAEMVRQE LYEKYGEDAY TQGFKVYTTV
301
     RADHQKVATE ALRKALRNFD RGSSYRGAEN YIDLSKSEDV EETVSQYLSG
    LYTVDKMVPA VVLDVTKKKN VVIQLPGGRR VTLDRRALGF AARAVNNEKM
351
     GEDRIRRGAV IRVKNNGGRW AVVQEPLLQG ALGSLDAKTG AVRALVGGYD
401
     FHSKTFNRAV QAMRQPGSTF KPFVYSAALS KGMTASTVVN DAPISLPGKG
451
501
     PNGSVWTPKN SDGRYSGYIT LRQALTASKN MVSIRILMSI GVGYAOOYIR
551
     RFGFRSSELP ASLSMALGTG ETTPLKVAEA YSVFANGGYR VSSHVIDKIY
     DRDGRLRAQM QPLVAGQNAP QAIDPRNAYI MYKIMQDVVR VGTARGAAAL
601
     GRTDIAGKTG TTNDNKDAWF VGFNPDVVTA VYIGFDKPKS MGRVGYGGTI
651
701
     AVPVWVDYMR FALKGKQGKG MKMPEGVVSS NGEYYMKERM VTDPGLTLDN
751
     SGIAPQPSRR AKEDDGGAAE GGRQAADDEV RQDMQETPVL PSNTGSKOOO
801
    LDSLF*
```

g791/m791 97.3% identity in 805 aa overlap

	10	20	30	40	50	60	
g791. <b>pe</b> p	MVNYYSAMIKKILT	<b>CFGLFFGFC</b>	VFGVGLVA11	AILVTYPKLPS	SLDSLOHYOPE	MPLTIY	
	11111111111111	F1111 1111	1111111111			111111	
m791	MVNYYSAMIKKILT'	<b>CFGLVFGFC</b>	VFGVGLVAI <i>I</i>	AILVTYPKLPS	SLDSLQHYQPK	MPLTIY	
	10	20	30	40	50	60	
	70	80	90	100	110	120	
g791.pep	SADGEVIGMYGEQR	REFTKIGDFP	<b>EVLRNAVIA</b>	EDKRFYRHWO	SVDVWGVARAA	VCNVVS	
				111111111		1 151 1 1 1	
m791	SADGEVIGMYGEOR	REFTKIGDEP	EVLRNAVIA <i>I</i>	EDKRFYRHWO	SVDVWGVARAA	VGNVVS	
	70	80	90	100	110	120	

					•	
g791.pep	130 GSVQSGASTITQQ 	140 VAKNFYLSSEK	150 FFTRKFNEVLL	160 AYKIEQSLSK	170 DKILELYFNQ	180 IYLGQ
m791	GSVQSGASTITQC 130	OVAKNFYLSSEK 140	FTRKFNEVLL 150	AYKIEQSLSK 160	DKILELYFNO 170	IYLGQ 180
g791.pep	190 RAYGFASAAQIYE	200 NKNVRDLTLAEA	210 AMLAGLPKAPS	220 SAYNPIVNPE	230 RAKLRQKYIL	240 NNMLE
m791	RAYGFASAAQIYF 190	NKNVRDLTLAEA 200	AMLAGLPKAPS 210	SAYNPIVNPE 220	RAKLROKYIL 230	NNMLE 240
g791.pep	250 EKMITVQQRDQAL	260 NEELHYERFVRK	270 XIDQSALYVAEN	280 Wrrelyeky	290 GEDAYTQGFK	300 VYTTV
m791	!             EKMITVQQRDQAL 250	NEELHYERFVRK 260	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	:           VRQELYEKY0   280	 GEDAYTQGFK 290	 VYTTV 300
g791.pep	310 RTDHQKAATEALR	320 KALRNFDRGSSY	330 RGAENYIDLSK	340 (SEDVEETVS)	350 QYLSGLYTVD	360 KMVPA
m791	:    :      RADHQKVATEALR 310					11    KMVPA 360
g791.pep	370 VVLDVTKKKNVVI	380 QLPGGRRVALDR	390 RALGFAARAVD	400 NEKMGEDRIF	410 RRGAVIRVKNI	420 NGGRW
m791		:    QLPGGRRVTLDR 380	: RALGFAARAVN 390			 NGGRW 420
ġ791. <b>pe</b> p	430 AVVQEPLLQGALV	440 SLDAKTGAVRAL	450 VGGYDFHSKTF	460 NRAVQAMRQP	470 GSTFKPFVYS	480 SAALS
m791						IIIII SAALS 480
g791. <b>pe</b> p	490 KGMTASTVVNDAP:	500 ISLPGKGPNGSV	510 WTPKNSDGRYS	520 GYITLRQALT	530 ASKNMVSIRJ	540 LMSI
m791	KGMTASTVVNDAP			 GYITLRQALT 520	ASKNMVSIRI	LMSI 540
g791. <b>pe</b> p	550 GVGYAQQYIRRFGI	560 FRPSELPASLSM	570 ALGTGETTPLK	580 VAEAYSVFAN	590 GGYRVSSHVI	600
m791		FRSSELPASLSM 560				HIII DKIY
g791.pep	610 DRDGRLRAQMQPLV	620 AGQNAPQAIDPI	630 RNAYIMYKIMO	640 DVVRVGTARG	650 AAALGRIDIA	660 GKTG
m791	DRDGRLRAQMQPLV			1111111111	1111111111	1111
g791.pep	670 TTNDNKDAWFVGFN	680 PDVVTAVYIGFI	690	700	710	720
m791		11111111111	[[[]]]		11111111111	LILL
g791.pep	730 MKMPEGVVSSNGEY	740 YMKERMVTDPGI	750	760	770	780
m791	HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	111111111111		1111111	:1:1: .1.	
g791.pep	790 RQDVQETPVLPSNT	800		- <del>-</del>		, 60
m791	:	-11111111111				

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2679>:



WO 99/57280



1270

```
a791.seq
         ATGGTAAATT ATTATTCAGC TATGATTAAA AAGATTTTAA CGACTTGTTT
         TGGTTTGGTT TTTGGGTTTT GTGTATTTGG AGTGGGTTTG GTTGCCATTG
         CTATTTTGGT AACGTATCCG AAACTGCCGT CTTTGGATTC TTTGCAGCAT
     101
     151
         TACCAGCCTA AAATGCCGTT GACTATTTAT TCGGCGGATG GGGAAGTCAT
    201
         CGGTATGTAT GGGGAGCAGC GGCGCGAATT TACAAAAATC GGCGATTTCC
    251
         CAGAGGTGTT GCGGAATGCG GTTATCGCCG CCGAGGATAA ACGCTTTTAC
     301
         CGGCATTGGG GGGTGGATGT TTGGGGTGTT GCCCGCGCTG CCGTCGGCAA
         TGTCGTGTCC GGCAGCGTGC AGTCGGGTGC GAGTACGATT ACGCAGCAGG
    351
     401
         TGGCGAAAAA TTTTTATTTG AGCAGTGAAA AAACGTTCAC ACGCAAATTC
     451
         AATGAGGTGT TGCTTGCCTA TAAAATCGAG CAGTCTTTAA GCAAAGACAA
         AATCCTCGAG TTGTATTTCA ATCAGATTTA CCTCGGTCAG CGCGCCTATG
    501
    551
         GTTTTGCATC TGCCGCGCAA ATCTATTTCA ATAAGAATGT CCGAGATTTG
    601
         ACTTTGGCGG AAGCCGCCAT GCTTGCGGGA CTGCCCAAGG CTCCGTCTGC
         CTATAATCCG ATTGTTAATC CAGAACGTGC CAAGTTGCGC CAGAAGTATA
    651
    701
         TTTTGAACAA TATGCTCGAG GAGAAGATGA TTACCGTGCA ACAGCGCGAT
         CAGGCGTTGA ATGAGGAACT GCATTACGAG CGGTTTGTTC GGAAAATCGA
    751
         TCAGAGTGCT TTATATGTGG CGGAAATGGT GCGTCAGGAA CTGTATGAGA
    801
    851
         AATACGGTGA AGATGCCTAT ACGCAGGGTT TTAAGGTTTA TACCACGGTC
         CGCGCCGATC ATCAGAAGGT GGCAACCGAG GCATTGCGCA AGGCTCTACG
         GAATTTCGAT CGCGGCAGCA GCTACCGCGG TGCGGAAAAC TATATCGATT
    951
         TGAGTAAGAG TGAAGATGTC GAGGAGACTG TCAGCCAGTA TCTGTCGGGA
   1001
   1051
         CTCTATACCG TCGATAAAAT GGTTCCCGCC GTTGTGTTGG ATGTGACTAA
    1101
         AAAGAAAAT GTCGTCATAC AGCTGCCCGG CGGCAGGCGG GTTACGCTTG
         ACAGGCGCGC CTTGGGTTTT GCGGCCCGCG CGGTCAATAA TGAAAAAATG
   1151
   1201
         GGGGAGGACC GTATCCGCAG GGGCGCGGTC ATCCGTGTCA AAAACAACGG
   1251
         CGGGCGTTGG GCGGTGGTTC AAGAGCCGTT GCTGCAGGGG GCTTTGGTTT
   1301
         CGCTGGATGC AAAAACCGGA GCTGTGCGCG CGCTGGTCGG CGGTTATGAT
   1351
         TTTCACAGCA AAACATTCAA TCGTGCCGTT CAGGCAATGC GGCAGCCGGG
         TTCGACCTTT AAGCCGTTTG TCTATTCGGC GGCATTATCT AAGGGGATGA
   1401
         CCGCGTCCAC AGTGGTTAAC GATGCGCCGA TTTCCCTGCC GGGGAAAGGG
   1451
   1501
         CCGAACGGTT CGGTTTGGAC ACCTAAAAAT TCAGACGGCA GATATTCCGG
         CTACATTACT TTGAGACAGG CTCTGACGGC TTCCAAGAAT ATGGTTTCCA
   1551
   1601
         TCCGTATTTT GATGTCTATC GGTGTCGGTT ACGCGCAACA GTATATCCGG
         CGTTTCGGCT TCAGGTCGTC CGAGCTGCCG GCAAGCCTGT CTATGGCTTT
   1651
   1701
         AGGTACGGGC GAGACAACGC CGTTGAAAGT GGCGGAGGCA TATAGCGTAT
         TTGCGAACGG CGGATATAGG GTTTCTTCGC ACGTAATCGA TAAGATTTAT
   1751
   1801
         GACAGAGACG GCAGGTTGCG CGCCCAAATG CAACCTTTGG TGGCCGGGCA
         AAATGCGCCT CAGGCAATCG ATCCGCGCAA TGCCTATATT ATGTATAAGA
   1851
   1901
         TTATGCAGGA TGTGGTCCGT GTTGGTACGG CAAGGGGGGC AGCTGCGTTG
   1951
         GGAAGAACGG ATATTGCCGG TAAAACGGGT ACGACCAATG ACAATAAGGA
   2001
         TGCGTGGTTT GTCGGTTTTA ACCCTGATGT GGTTACTGCC GTATATATCG
         GCTTCGACAA ACCTAAGAGT ATGGGGCGTG TCGGCTACGG CGGTACGATT
   2051
   2101
         GCGGTGCCGG TTTGGGTGGA CTATATGCGT TTTGCGTTGA AAGGAAAGCA
   2151
         GGGCAAGGGG ATGAAAATGC CTGAAGGTGT GGTCAGCAGC AATGGCGAAT
   2201
         ACTATATGAA GGAACGTATG GTAACCGATC CGGGCTTGAC GCTGGACAAC
         AGCGGTATTG CGCCGCAACC TTCCCGACGG GCAAAAGAAG ATGACGGGGG
   2251
         CGCGGCAGAA GGCGGACGGC AGGCGGCGGA TGACGAAGTC CGCCAAGATA
   2301
   2351
         TGCAGGAAAC GCCGGTGCTT CCGAGTAATA CTGGTTCCAA ACAGCAGCAG
         TTGGATTCTC TGTTTTAA
```

## This corresponds to the amino acid sequence <SEQ ID 2680; ORF 791.a>: a791.pep

1	MVNYYSAMIK	KILTTCFGLV	FGFCVFGVGL	VAIAILVTYP	KLPSLDSLQH
51	YOPKMPLTIY	SADGEVIGMY	GEQRREFTKI	GDFPEVLRNA	VIAAEDKRFY
101	RHWGVDVWGV	ARAAVGNVVS	GSVQSGASTI	TQQVAKNFYL	SSEKTFTRKF
151	NEVLLAYKIE	QSLSKDKILE	LYFNQIYLGQ	RAYGFASAAQ	IYFNKNVRDL
201	TLAEAAMLAG	LPKAPSAYNP	IVNPERAKLR	QKYILNNMLE	EKMITVQQRD
251	QALNEELHYE	RFVRKIDQSA	LYVAEMVRQE	LYEKYGEDAY	TQGFKVYTTV
301	RADHQKVATE	ALRKALRNFD	RGSSYRGAEN	YIDLSKSEDV	EETVSQYLSG
351	LYTVDKMVPA	VVLDVTKKKN	VVIQLPGGRR	VTLDRRALGF	AARAVNNEKM
401	GEDRIRRGAV	IRVKNNGGRW	AVVQEPLLQG	ALVSLDAKTG	AVRALVGGYD
451	FHSKTFNRAV	QAMRQPGSTF	KPFVYSAALS	KGMTASTVVN	DAPISLPGKG
501	PNGSVWTPKN	SDGRYSGYIT	LROALTASKN	MVSIRILMSI	GVGYAQQYIR
551	RFGFRSSELP	ASLSMALGTG	ETTPLKVAEA	YSVFANGGYR	VSSHVIDKIY
601	DRDGRLRAQM	QPLVAGQNAP	QAIDPRNAYI	MYKIMQDVVR	VGTARGAAAL
651	GRTDIAGKTG	TTNDNKDAWF	VGFNPDVVTA	VYIGFDKPKS	MGRVGYGGTI
701	AVPVWVDYMR	FALKGKQGKG	MKMPEGVVSS	NGEYYMKERM	VTDPGLTLDN
751	SGIAPQPSRR	AKEDDGGAAE	GGRQAADDEV	RQDMQETPVL	PSNTGSKQQQ
801	LDSLF*				

a791/m791 99.9% identity in 805 aa overlap

10 20 30 40 50 60

a791.pep	MVNYYSAMIKKILTTC	FGLVFGFCVF	GVGLVAIAIL	VTYPKLPSLI	SLQHYQPKMF	LTIY
m791						
a791.pep	70 SADGEVIGMYGEQRRE	80	90	100	110	120
a/sr.pep	11111111111111111	111111111	111111111		1111111111	1111
m791	SADGEVIGMYGEQRREE 70	TKIGDFPEV 80	LRNAVIAAED 90	KRFYRHWGVD 100	VWGVARAAVG 110	NVVS 120
a791.pep	130 GSVQSGASTITQQVAKN	140	150	160	170	180
		1111111	111111111		1111111111	1111
m791	GSVQSGASTITQQVAKN 130	FYLSSEKTF 140	TRKFNEVLLA	YKIEQSLSKD 160	KILELYFNQI 170	YLGQ 180
a791.pep	190 RAYGFASAAQIYFNKNV	200 RDLTLAEAA	210	220 <b>Y</b> NDTVNDER	230	240
			111111111		1111111111	1111
m791	RAYGFASAAQIYFNKNV 190	RDLTLAEAAI 200	MLAGLPKAPS 210	AYNPIVNPER 220	AKLRQKYILN 230	NMLE 240
a791.pep	250 EKMITVQQRDQALNEEL	260 HYERFVRKII	270 DOSALYVAEM	280 ZROELYEKYG	290 EDAYTOGEKV	300 <b>YTT</b> V
- •		111111111			1111111111	1111
m791	EKMITVQQRDQALNEEL 250	260	DQSALYVAEM 270	/RQELYEKYG 280	EDAYTQGFKV 290	300
a791.pep	310 RADHQKVATEALRKALR	320	330	340	350	360
		111111111		11111111	111111111	1111
m791	RADHQKVATEALRKALR 310	NFDRGSSYRO 320	330	SEDVEETVSQ 340	YLSGLYTVDKI 350	360
a791.pep	370 VVLDVTKKKNVVIQLPG	380 GRRVTI.DRRI	390	400	410	420 CDW
		1111111111	1111111111	THEFT	3111111111	1111
m791	VVLDVTKKKNVVIQLPG 370	GRRVTLDRRA 380	390	EKMGEDRIR 400	RGAVIRVKNNO 410	GGRW 420
a791.pep	430 AVVQEPLLQGALVSLDA	440 KTGAVRAT.VO	450 GYDFHSKTFN	460	470	480
		1111111111		111111111	1   1   1   1   1   1   1	1111
m791	AVVQEPLLQGALGSLDA 430	KTGAVRALVO 440	GYDFHSKTFN 450	IRAVQAMRQP 460	GSTFKPFVYS 470	480
a791.pep	490 KGMTASTVVNDAPISLP	500 GKGPNGSVW1	510 PKNSDGRYSO	520 YITLROALT	530	540
m791		1111111111		1111111111		1111
m/91	KGMTASTVVNDAPISLP 490	GKGPNGSVW1 500	510	520	ASKNMVSIRII 530	SMSI 540
a791.pep	550 GVGYAQQYIRRFGFRSS	560 Elpasismai	570 GTGETTPLKY	580 AEAYSVEAN	590	600
		1111111111	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11111111	[[[]]]	1111
m791	GVGYAQQYIRRFGFRSS	ELPASLSMAI 560	GTGETTPLKV 570	AEAYSVFANG 580	GGYRVSSHVII 590	600
a791.pep	610 DRDGRLRAQMQPLVAGQ	620 NAPOAIDPRN	630 NAYIMYKIMOD	640 OVVRVGTARG	650	660 KTG
m791	-	1111111111		111111111		111
m/91	DRDGRLRAQMQPLVAGQ 610	620	630	640	AAALGRTDIAC 650	660
a791.pep	670 TTNDNKDAWFVGFNPDV	680 VTAVYIGFDR	690 CPKSMGRVGYO	700 GTIAVPVWVI	710 DYMRFALKGKO	720 OGKG
m791		1111111111		111111111		1.1.1
an / 31	TTNDNKDAWFVGFNPDV	VTAVYIGFDK 680	690	GTIAVPVWVI 700	OYMRFALKGKO 710	720
a791.pep		740 EDM/#DDC1/		760	770	780
	MKMPEGVVSSNGEYYMK			1111111111		111
m791	MKMPEGVVSSNGEYYMK	ERMVTDPGLT	LDNSGIAPQP	SRRAKEDDG	AAEGGRQAAI	DEV



```
730
                               740
                                        750
                                                  760
                                                            770
                                                                      780
                     790
                               800
a791.pep
              RODMOETPVLPSNTGSKQQQLDSLFX
              m791
              RQDMQETPVLPSNTGSKQQQLDSLFX
                     790
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2681>:
g792.seq
           ATGTTCCGCA TCGTCAAATG GCTGATTGCC CTGCCCGTCG GCATCTTTAT
      51
          CTTTTCAAT GCCTATGTGT ACGGCAACAT CATCACCTAC CGCGCCGTCG
      101
          CGCCCCATCG GACTGCCTTT ATGTCGATGC GGATGAAGCA GTTTGAACAA
          GAAGGTCGCG ATGTCGCACT GGATTACCGC TGGGTGCCCT ACAACCGCAT
      151
     201
          TTCCACCAAC CTGAAAAAAG CCCTGATTGC TTCCGAAGAT GTCCGTTTTG
      251
          CCggacacgg gggcttcGat GGGGACGGCa tTCAAAACGC CATCAGGCGC
          AACCGGAACA GCGGCGAAGT GAAGGCGGGC GGATCGACCA TCAGCCAGCA
          GCTTGCCAAA AACCTCTTCC TCAACGAAAG CCGCAACTAT CTGCGCAAAG
GGGAAGAGGC GGCCATTACG GCAATGATGG AAGCTGTTAC CGACAAAAAC
     351
      401
          AGGATTTTCG AACTGTATTT AAACTCAATC GAATGGCACT ACGGCGTTTT
      451
          CGGCGCGGAA GCTGCGTCCC GGtatTttTA TAAAAAACCG GCcgcaGACC
     501
          TGACCAAACA GCAggcggcG aaactgacgg tactcgtccc cgccccgttt
     551
     601
          tactactctg accatccaaa aagcaaacgg ctgcgcaaca aaaccaatat
     651
          cgtgctcaga cgcatgggtt cggcaaatta ccccaaagcg aaacggactg
          attgttccag atatggaaat gccgcctgaa ctggggttcg aacggcatat
          gttttctggg acttataa
This corresponds to the amino acid sequence <SEQ ID 2682; ORF 792.ng>:
g792.pep
          MFRIVKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKQFEQ
      51
          EGRDVALDYR WVPYNRISTN LKKALIASED VRFAGHGGFD GDGIQNAIRR
          NRNSGEVKAG GSTISQQLAK NLFLNESRNY LRKGEEAAIT AMMEAVTDKN
     101
     151
          RIFELYLNSI EWHYGVFGAE AASRYFYKKP AADLTKQQAA KLTVLVPAPF
     201
          YYSDHPKSKR LRNKTNIVLR RMGSANYPKA KRTDCSRYGN AA*TGVRTAY
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2683>:
m792.seq
          ATGTTCCGCA TCATCAAATG GCTGATTGCC CTGCCCGTCG GCATCTTTAT
      51
          CTTTTCAAT GCCTATGTGT ACGGCAACAT CATTACCTAC CGCGCCGTCG
     101
          CGCCCCATCG GACTGCCTTT ATGTCGATGC GGATGAAGCA GTTTGAACAG
     151
          GAAGGTCGCG ATGTCGCACT GGATTACCGC TGGATGCCCT ACAAACGCAT
     201
          TTCCACCAAC CTGAAAAAAG CCCTGATTGC TTCCGAAGAT GCCCGTTTCG
     251
          CCGGGCACGG CGGCTTCGAT TGGGGCGGCA TTCAAAACGC CATCAGGCGC
          AACCGGAACA GCGGCAAAGT GAAGGCGGGC GGCTCGACCA TCAGCCAGCA
     301
     351
          GCTTGCCAAA AACCTGTTTT TAAACGAAAG CCGCAGCTAT ATCCGCAAAG
          GCGAAGAAGC GGCGATTACC GCGATGATGG AAGCCGTTAC CGACAAAGAC
     401
     451
          AGGATTTTTG AACTGTATTT AAACTCAATC GAATGGCACT ACGGCGTTTT
     501
          CGGCGCGAA GCCGCGTCCC GGTATTTTTA TCAAATACCC GCCGCCAAGC
     551
          TGACCAAACA GCAGGCGGCA AAACTGACGG CGCGCGTCCC CGCCCCGCTC
          TACTACGCCG ACCATCCGAA AAGCAAACGG CTCCGCAACA AAACCAATAT
     601
     651
         CGTGCTCAAA CGCATGGGTT CGGCAGAGTT GCCTGAAAGC GACACGGACT
This corresponds to the amino acid sequence <SEQ ID 2684; ORF 792>:
m792.pep
          MFRIIKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKOFEO
      51
          EGRDVALDYR WMPYKRISTN LKKALIASED ARFAGHGGFD WGGIQNAIRR
     101
          NRNSGKVKAG GSTISQQLAK NLFLNESRSY IRKGEEAAIT AMMEAVTDKD
          RIFELYLNSI EWHYGVFGAE AASRYFYQIP AAKLTKQQAA KLTARVPAPL
     151
          YYADHPKSKR LRNKTNIVLK RMGSAELPES DTD*
g792 / m792 90.4% identity in 230 aa overlap
                               20
                                         30
                                                   40
q792.pep
             MFRIVKWLIALPVGIFIFFNAYVYGNIITYRAVAPHRTAFMSMRMKQFEQEGRDVALDYR
             m792
             MFRIIKWLIALPVGIFIFFNAYVYGNIITYRAVAPHRTAFMSMRMKQFEQEGRDVALDYR
                     10
                               20
                                        30
                                                   40
                                                 100
                                                           110
                                                                     120
            WVPYNRISTNLKKALIASEDVRFAGHGGFDGDGIQNAIRRNRNSGEVKAGGSTISQQLAK
g792.pep
```



	·	
	1:71:1141111111111111111111111111111111	
m792	WMPYKRISTNLKKALIASEDARFAGHGGFDWGGIQNAIRRNRNSGKVKAGGSTISQQLAK	
	70 80 90 100 110 120	
	130 140 150 160 170 180	
g792.pep	NLFLNESRNYLRKGEEAAITAMMEAVTDKNRIFELYLNSIEWHYGVFGAEAASRYFYKKP	
m792	NLFLNESRSYIRKGEEAAITAMMEAVTDKDRIFELYLNSIEWHYGVFGAEAASRYFYQIP	
	130 140 150 160 170 180	
	190 200 210 220 230 240	
g792.pep	AADLTKQQAAKLTVLVPAPFYYSDHPKSKRLRNKTNIVLRRMGSANYPKAKRTDCSRYGN	
	!! !!!!!!!!:	
m792	AAKLTKQQAAKLTARVPAPLYYADHPKSKRLRNKTNIVLKRMGSAELPESDTDX	
	190 200 210 220 230	
	250	
g792.pep	AAXTGVRTAYVFWDLX	
	·	
The follo	wing partial DNA sequence was identified in N. meningitidis <seq 2685="" id="">:</seq>	
a792.seq		
1	ATGTTCCGCA TCATCAAATG GCTGATTGCC CTGCCCGTCG GCATCTTTAT	
51	CTTTTTCAAT GCCTATGTGT ACGGCAACAT CATTACCTAC CGCGCCGTCG	
101	CGCCCCATCG GACTGCCTTT ATGTCGATGC GGATGAAGCA GTTTGAACAG GAAGGTCGCG ATGTCGCACT GGATTACCGC TGGATGCCCT ACAAACGCAT	
201	TTCCACCAAC CTGAAAAAAG CCCTGATTGC TTCCGAAGAT GCCCGTTTCG	
	CCGGGCACGG CGGCTTCGAT TGGGGCGGCA TTCAAAACGC CATCAGGCGC	
301	AACCGGAACA GCGGCAAAGT GAAGGCGGGC GGCTCGACCA TCAGCCAGCA	
351	GCTTGCCAAA AACCTGTTTT TAAACGAAAG CCGCAGCTAT ATCCGCAAAG	
401 451	GCGAAGAAGC GGCGATTACC GCGATGATGG AAGCCGTTAC CGACAAAGAC	
501	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	
551	TGACCAAACA GCAGGCGGCA AAACTGACGG CGCGCGTCCC CGCCCCGCTC	-
601	TACTACGCCG ACCATCCGAA AAGCAAACGG CTCCGCAACA AAACCAATAT	
	CCMCCMCACA CCCAMCCCMM CCCCACACACACACACAC	
651	CGTGCTCAGA CGCATGGGTT CGGCAGAGTT GCCTGAAAGC GACACGGACT	
651 701	GA CGCATGGGTT CGGCAGAGTT GCCTGAAAGC GACACGGACT	
701	GA	
701 This corre		
701 This correa792.pep	esponds to the amino acid sequence <seq 2686;="" 792.a="" id="" orf="">:</seq>	
701 This correates pep 1	esponds to the amino acid sequence <seq 2686;="" 792.a="" id="" orf="">:  MFRIIKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKOFEO</seq>	•
701 This correates pep 1	esponds to the amino acid sequence <seq 2686;="" 792.a="" id="" orf="">:  MFRIIKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKQFEQ EGRDVALDYR WMPYKRISTN LKKALIASED ARFAGHGGFD WGGIONATRR</seq>	
701 This corre a792.pep  1 51 101 151	esponds to the amino acid sequence <seq 2686;="" 792.a="" id="" orf="">:  MFRIIKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKQFEQ EGRDVALDYR WMPYKRISTN LKKALIASED ARFAGHGGFD WGGIQNAIRR NRNSGKVKAG GSTISQOLAK NLFLNESRSY IRKGEEAAIT AMMEAVTDKD RIFELYLNSI EWHYGVFGAE AASRYFYQIP AAKLTKQQAA KLTARVPAPL</seq>	,
701 This correates a 1 51 101	esponds to the amino acid sequence <seq 2686;="" 792.a="" id="" orf="">:  MFRIIKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKQFEQ EGRDVALDYR WMPYKRISTN LKKALIASED ARFAGHGGFD WGGIONATRR</seq>	
701 This correaries 1 51 101 151 201	esponds to the amino acid sequence <seq 2686;="" 792.a="" id="" orf="">:  MFRIIKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKQFEQ EGRDVALDYR WMPYKRISTN LKKALIASED ARFAGHGGFD WGGIQNAIRR NRNSGKVKAG GSTISQQLAK NLFLNESRSY IRKGEEAAIT AMMEAVTDKD RIFELYLNSI EWHYGVFGAE AASRYFYQIP AAKLTKQQAA KLTARVPAPL YYADHPKSKR LRNKTNIVLR RMGSAELPES DTD*</seq>	
701 This corre a792.pep  1 51 101 151	esponds to the amino acid sequence <seq 2686;="" 792.a="" id="" orf="">:  MFRIIKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKQFEQ EGRDVALDYR WMPYKRISTN LKKALIASED ARFAGHGGFD WGGIQNAIRR NRNSGKVKAG GSTISQQLAK NLFLNESRSY IRKGEEAAIT AMMEAVTDKD RIFELYLNSI EWHYGVFGAE AASRYFYQIP AAKLTKQQAA KLTARVPAPL YYADHPKSKR LRNKTNIVLR RMGSAELPES DTD*</seq>	
701 This correaries a 792.pep  1 51 101 151 201 m792/a792	esponds to the amino acid sequence <seq 2686;="" 792.a="" id="" orf="">:  MFRIIKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKQFEQ EGRDVALDYR WMPYKRISTN LKKALIASED ARFAGHGGFD WGGIQNAIRR NRNSGKVKAG GSTISQOLAK NLFLNESRSY IRKGEEAAIT AMMEAVTDKD RIFELYLNSI EWHYGVFGAE AASRYFYQIP AAKLTKQQAA KLTARVPAPL YYADHPKSKR LRNKTNIVLR RMGSAELPES DTD*  99.6% identity in 233 aa overlap  10 20 30 40 50 60</seq>	
701 This correaries 1 51 101 151 201	esponds to the amino acid sequence <seq 2686;="" 792.a="" id="" orf="">:  MFRIIKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKQFEQ EGRDVALDYR WMPYKRISTN LKKALIASED ARFAGHGGFD WGGIQNAIRR NRNSGKVKAG GSTISQQLAK NLFLNESRSY IRKGEEAAIT AMMEAVTDKD RIFELYLNSI EWHYGVFGAE AASRYFYQIP AAKLTKQQAA KLTARVPAPL YYADHPKSKR LRNKTNIVLR RMGSAELPES DTD*  99.6% identity in 233 aa overlap  10 20 30 40 50 60 MFRIIKWLIALPVGIFIFFNAYVYGNIITYRAVAPHRTAFMSMRMKOFEOEGRDVALDYR</seq>	
701 This correaries a 792.pep  1 51 101 151 201 m792/a792  a792.pep	esponds to the amino acid sequence <seq 2686;="" 792.a="" id="" orf="">:  MFRIIKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKQFEQ EGRDVALDYR WMPYKRISTN LKKALIASED ARFAGHGGFD WGGIQNATRR NRNSGKVKAG GSTISQQLAK NLFLNESRSY IRKGEEAAIT AMMEAVTDKD RIFELYLNSI EWHYGVFGAE AASRYFYQIP AAKLTKQQAA KLTARVPAPL YYADHPKSKR LRNKTNIVLR RMGSAELPES DTD*  99.6% identity in 233 aa overlap  10 20 30 40 50 60 MFRIIKWLIALPVGIFIFFNAYVYGNIITYRAVAPHRTAFMSMRMKQFEQEGRDVALDYR</seq>	
701 This correaries a 792.pep  1 51 101 151 201 m792/a792	esponds to the amino acid sequence <seq 2686;="" 792.a="" id="" orf="">:  MFRIIKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKQFEQ EGRDVALDYR WMPYKRISTN LKKALIASED ARFAGHGGFD WGGIQNAIRR NRNSGKVKAG GSTISQQLAK NLFLNESRSY IRKGEEAAIT AMMEAVTDKD RIFELYLNSI EWHYGVFGAE AASRYFYQIP AAKLTKQQAA KLTARVPAPL YYADHPKSKR LRNKTNIVLR RMGSAELPES DTD*  99.6% identity in 233 aa overlap  10 20 30 40 50 60 MFRIIKWLIALPVGIFIFFNAYVYGNIITYRAVAPHRTAFMSMRMKQFEQEGRDVALDYR                                      </seq>	
701 This correaries a 792.pep  1 51 101 151 201 m792/a792  a792.pep	esponds to the amino acid sequence <seq 2686;="" 792.a="" id="" orf="">:  MFRIIKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKQFEQ EGRDVALDYR WMPYKRISTN LKKALIASED ARFAGHGGFD WGGIQNATRR NRNSGKVKAG GSTISQQLAK NLFLNESRSY IRKGEEAAIT AMMEAVTDKD RIFELYLNSI EWHYGVFGAE AASRYFYQIP AAKLTKQQAA KLTARVPAPL YYADHPKSKR LRNKTNIVLR RMGSAELPES DTD*  99.6% identity in 233 aa overlap  10 20 30 40 50 60 MFRIIKWLIALPVGIFIFFNAYVYGNIITYRAVAPHRTAFMSMRMKQFEQEGRDVALDYR</seq>	
701 This correaries a 792.pep  1 51 101 151 201  m792/a792  a792.pep m792	esponds to the amino acid sequence <seq 2686;="" 792.a="" id="" orf="">:  MFRIIKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKQFEQ EGRDVALDYR WMPYKRISTN LKKALIASED ARFAGHGGFD WGGIQNAIRR NRNSGKVKAG GSTISQOLAK NLFLNESRSY IRKGEEAAIT AMMEAVTDKD RIFELYLNSI EWHYGVFGAE AASRYFYQIP AAKLTKQQAA KLTARVPAPL YYADHPKSKR LRNKTNIVLR RMGSAELPES DTD*  99.6% identity in 233 aa overlap  10 20 30 40 50 60  MFRIIKWLIALPVGIFIFFNAYVYGNIITYRAVAPHRTAFMSMRMKQFEQEGRDVALDYR  </seq>	
701 This correaries a 792.pep  1 51 101 151 201 m792/a792  a792.pep	esponds to the amino acid sequence <seq 2686;="" 792.a="" id="" orf="">:  MFRIIKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKQFEQ EGRDVALDYR WMPYKRISTN LKKALIASED ARFAGHGGFD WGGIQNAIRR NRNSGKVKAG GSTISQQLAK NLFLNESRSY IRKGEAAIT AMMEAVTDKD RIFELYLNSI EWHYGVFGAE AASRYFYQIP AAKLTKQQAA KLTARVPAPL YYADHPKSKR LRNKTNIVLR RMGSAELPES DTD*  99.6% identity in 233 aa overlap  10 20 30 40 50 60  MFRIIKWLIALPVGIFIFFNAYVYGNIITYRAVAPHRTAFMSMRMKQFEQEGRDVALDYR                                     </seq>	
701 This correaries a 792.pep 1 51 101 151 201 m792/a792 a792.pep m792 a792.pep	esponds to the amino acid sequence <seq 2686;="" 792.a="" id="" orf="">:  MFRIIKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKQFEQ EGRDVALDYR WMPYKRISTN LKKALIASED ARFAGHGGFD WGGIQNATRR NRNSGKVKAG GSTISQQLAK NLFLNESRSY IRKGEEAAIT AMMEAVTDKD RIFELYLNSI EWHYGVFGAE AASRYFYQIP AAKLTKQQAA KLTARVPAPL YYADHPKSKR LRNKTNIVLR RMGSAELPES DTD*  99.6% identity in 233 aa overlap  10 20 30 40 50 60  MFRIIKWLIALPVGIFIFFNAYVYGNIITYRAVAPHRTAFMSMRMKQFEQEGRDVALDYR                                     </seq>	
701 This correaries a 792.pep  1 51 101 151 201  m792/a792  a792.pep m792	esponds to the amino acid sequence <seq 2686;="" 792.a="" id="" orf="">:  MFRIIKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKQFEQ EGRDVALDYR WMPYKRISTN LKKALIASED ARFAGHGGFD WGGIQNAIRR NRNSGKVKAG GSTISQQLAK NLFLNESRSY IRKGEEAAIT AMMEAVTDKD RIFELYLNSI EWHYGVFGAE AASRYFYQIP AAKLTKQQAA KLTARVPAPL YYADHPKSKR LRNKTNIVLR RMGSAELPES DTD*  99.6% identity in 233 aa overlap  10 20 30 40 50 60  MFRIIKWLIALPVGIFIFFNAYVYGNIITYRAVAPHRTAFMSMRMKQFEQEGRDVALDYR                                     </seq>	
701 This correaries a 792.pep 1 51 101 151 201 m792/a792 a792.pep m792 a792.pep	esponds to the amino acid sequence <seq 2686;="" 792.a="" id="" orf="">:  MFRIIKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKQFEQ EGRDVALDYR WMPYKRISTN LKKALIASED ARFAGHGGFD WGGIQNATRR NRNSGKVKAG GSTISQQLAK NLFLNESRSY IRKGEEAAIT AMMEAVTDKD RIFELYLNSI EWHYGVFGAE AASRYFYQIP AAKLTKQQAA KLTARVPAPL YYADHPKSKR LRNKTNIVLR RMGSAELPES DTD*  99.6% identity in 233 aa overlap  10 20 30 40 50 60  MFRIIKWLIALPVGIFIFFNAYVYGNIITYRAVAPHRTAFMSMRMKQFEQEGRDVALDYR                                     </seq>	
701 This correaries correaries correaries correaries correaries correaries correaries correaries corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding cor	esponds to the amino acid sequence <seq 2686;="" 792.a="" id="" orf="">:  MFRIIKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKQFEQ EGRDVALDYR WMPYKRTSTN LKKALIASED ARFAGHGGFD WGGIQNAIRR NRNSGKVKAG GSTISQQLAK NLFLNESRSY IRKGEEAAIT AMMEAVTDKD RIFELYLNSI EWHYGVFGAE AASRYFYQIP AAKLTKQQAA KLTARVPAPL YYADHPKSKR LRNKTNIVLR RMGSAELPES DTD*  99.6% identity in 233 aa overlap  10 20 30 40 50 60  MFRIIKWLIALPVGIFIFFNAYVYGNIITYRAVAPHRTAFMSMRMKQFEQEGRDVALDYR  </seq>	
701 This correaries a 792.pep 1 51 101 151 201 m792/a792 a792.pep m792 a792.pep	esponds to the amino acid sequence <seq 2686;="" 792.a="" id="" orf="">:  MFRIIKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKQFEQ EGRDVALDYR WMPYKRISTN LKKALIASED ARFAGHGGFD WGGIQNATRR NRNSGKVKAG GSTISQQLAK NLFLNESRSY IRKGEEAAIT AMMEAVTDKD RIFELYLNSI EWHYGVFGAE AASRYFYQIP AAKLTKQQAA KLTARVPAPL YYADHPKSKR LRNKTNIVLR RMGSAELPES DTD*  99.6% identity in 233 aa overlap  10 20 30 40 50 60  MFRIIKWLIALPVGIFIFFNAYVYGNIITYRAVAPHRTAFMSMRMKQFEQEGRDVALDYR  </seq>	
701 This correates a 792.pep 1 51 101 151 201 m792/a792 a792.pep m792 a792.pep m792 a792.pep	esponds to the amino acid sequence <seq 2686;="" 792.a="" id="" orf="">:  MFRIIKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKQFEQ EGRDVALDYR WMPYKRISTN LKKALIASED ARFAGHGGFD WGGIQNAIRR NRNSGKVKAG GSTISQOLAK NLFLNESRSY IRKGEEAAIT AMMEAVTDKD RIFELYLNSI EWHGVFGAE AASRYFYQIP AAKLTKQQAA KLTARVPAPL YYADHPKSKR LRNKTNIVLR RMGSAELPES DTD*  99.6% identity in 233 aa overlap  10 20 30 40 50 60  MFRIIKWLIALPVGIFIFFNAYVYGNIITYRAVAPHRTAFMSMRMKQFEQEGRDVALDYR                                     </seq>	
701 This correaries correaries correaries correaries correaries correaries correaries correaries corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding corresponding cor	esponds to the amino acid sequence <seq 2686;="" 792.a="" id="" orf="">:  MFRIIKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKQFEQ EGRDVALDYR WMPYKRISTN LKKALIASED ARFAGHGGFD WGGIQNAIRR NRNSGKVKAG GSTISQQLAK NLFLNESSSY IRKGEEAAIT AMMEAVTDKD RIFELYLNSI EWHYGVFGAE AASRYFYQIP AAKLTKQQAA KLTARVPAPL YYADHPKSKR LRNKTNIVLR RMGSAELPES DTD*  99.6% identity in 233 aa overlap  10 20 30 40 50 60  MFRIIKWLIALPVGIFIFFNAYVYGNIITYRAVAPHRTAFMSMRMKQFEQEGRDVALDYR IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</seq>	
701 This correates a 792.pep 1 51 101 151 201 m792/a792 a792.pep m792 a792.pep m792 a792.pep	esponds to the amino acid sequence <seq 2686;="" 792.a="" id="" orf="">:  MFRIIKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKQFEQ EGRDVALDYR WMPYKRISTN LKKALIASED ARFAGHGGFD WGGIQNAIRR NRNSGKVKAG GSTISQOLAK NLFLNESRSY IRKGEEAAIT AMMEAVTDKD RIFELYLNSI EWHGVFGAE AASRYFYQIP AAKLTKQQAA KLTARVPAPL YYADHPKSKR LRNKTNIVLR RMGSAELPES DTD*  99.6% identity in 233 aa overlap  10 20 30 40 50 60  MFRIIKWLIALPVGIFIFFNAYVYGNIITYRAVAPHRTAFMSMRMKQFEQEGRDVALDYR                                     </seq>	
701 This correation are are are are are are are are are are	esponds to the amino acid sequence <seq 2686;="" 792.a="" id="" orf="">:  MFRIIKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKQFEQ EGRDVALDYR WMPYKRISTN LKKALIASED ARFACHGGFD WGGIONAIRR NRNSGKVKAG GSTISQOLAK NLFLNESRSY IRKGEEAAIT AMMEAVTDKD RIFELYLNSI EWHYGVFGAE AASRYFYQIP AAKLTKQQAA KLTARVPAPL YYADHPKSKR LRNKTNIVLR RMGSAELPES DTD*  99.6% identity in 233 aa overlap  10 20 30 40 50 60  MFRIIKWLIALPVGIFIFFNAYVYGNIITYRAVAPHRTAFMSMRMKQFEQEGRDVALDYR  </seq>	
701 This correates a 792.pep 1 51 101 151 201 m792/a792 a792.pep m792 a792.pep m792 a792.pep	esponds to the amino acid sequence <seq 2686;="" 792.a="" id="" orf="">:  MFRIIKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKQFEQ EGRDVALDYR WMFYKRISTN LKKALIASED ARFACHGGFD WGGIQNAIRR NRNSGKVKAG GSTISQOLAK NIFINESRSY IRKGEBAAIT AMMEAVTDKD RIFELYLNSI EWHYGVFGAE AASRYFYQIP AAKLTKQQAA KLTARVPAPL YYADDHKSKR LRNKTNIVLR RMGSAELPES DTD*  99.6% identity in 233 aa overlap  10 20 30 40 50 60  MFRIIKWLIALPVGIFIFFNAYVYGNIITYRAVAPHRTAFMSMRMKQFEQEGRDVALDYR                                     </seq>	
701 This correates a 792.pep 1 51 101 151 201 m792/a792 a792.pep m792 a792.pep m792 a792.pep m792 a792.pep	esponds to the amino acid sequence <seq 2686;="" 792.a="" id="" orf="">:  MFRIIKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKQFEQ EGRDVALDYR WMPYKRISTN LKKALIASED ARFAGHGGFD WGGIQNAIRR NRNSGKVKAG GSTISQQLAK NLFLNESRSY IRKGEEAAIT AMMEAVTDKD RIFELYINSI EWHYGVFGAE AASRYFYQIP AAKLTKQQAA KLTARVPAPL YYADHPKSKR LRNKTNIVLR RMGSAELPES DTD*  99.6% identity in 233 aa overlap  10 20 30 40 50 60  MFRIIKWLIALPVGIFIFFNAYVYGNIITYRAVAPHRTAFMSMRMKQFEQEGRDVALDYR HIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHI</seq>	
701 This correation are are are are are are are are are are	esponds to the amino acid sequence <seq 2686;="" 792.a="" id="" orf="">:  MFRIIKWLIA LPVGIFIFFN AYVYGNIITY RAVAPHRTAF MSMRMKQFEQ EGRDVALDYR WMFYKRISTN LKKALIASED ARFACHGGFD WGGIQNAIRR NRNSGKVKAG GSTISQOLAK NIFINESRSY IRKGEBAAIT AMMEAVTDKD RIFELYLNSI EWHYGVFGAE AASRYFYQIP AAKLTKQQAA KLTARVPAPL YYADDHKSKR LRNKTNIVLR RMGSAELPES DTD*  99.6% identity in 233 aa overlap  10 20 30 40 50 60  MFRIIKWLIALPVGIFIFFNAYVYGNIITYRAVAPHRTAFMSMRMKQFEQEGRDVALDYR                                     </seq>	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2687>:



```
1 ATGTTGATTA AAAGCGAATA TAAGCCCCGG ATGCTGCCCA AAGAAGAGCA
  51
      GGTCAAAAAG CCGATGACCA GTAACGGACG GATTAGCTTC GTCCTGATGG
 101
      CAATGGCGGT CTTGTTTGCC TGTCTGATTG CCCGCGGGCT GTATCTGCAG
      ACGGTAACGT ATAACTTTTT GAAAGAACAG GGCGACAACC GGATTGTGCG
 151
 201
      GACTCAAGCA TTGCCGGCTA CACGCGGTAC GGTTTCGGAC CGGAACGGTG
 251
      CGGTTTTGGC GTTGAGCGCG CCGACGGAGT CCCTGTTTGC CGTGCCTAAA
      GATATGAAGG AAATGCCGTC TGCCGCCCAA TTGGAACGCC TGTCCGAGCT
 301
      TGTCGATGTG CCGGTCGATG TTTTGAGGAA CAAACTCGAA CAGAAAGGCA
 351
      AGTCGTTTAT TTGGATCAAG CGGCAGCTCG ATCCCAAGGT TGCCGAAGAG
 401
 451
      GTCAAAGCCT TGGGTTTGGA AAACTTTGTA TTTGAAAAAG AATTAAAACG
 501
      CCATTACCCG ATGGGCAACC TGTTTGCACA CGTCATCGGA TTTACCGATA
      TTGACGGCAA AGGTCAGGAA GGTTTGGAAC TTTCGCTTGA AGACAGCCTG
 551
 601
      TATGGCGAAG ACGGCGCGGA AGTTGTTTTG CGGGACCGGC AGGGCAATAT
 651
      TGTGGACAGC TTGGACTCCC CGCGCAATAA AGCACCGCAA AACGGCAAAG
 701
      ACATCATCCT TTCCCTCGAT CAGAGGATTC AGACCTTGGC CTATGAAGAG
 751
      TTGAACAAGG CGGTCGAATA CCATCAGGCA AAAGCCGGAA CGGTGGTGGT
      TTTGGATGCC CGCACGGGG AAATCCTCGC CTTGGCCAAT ACGCCCGCCT
 801
 851
      ACGATCCCAA CAGACCCGGC CGGGCAGACA GCGAACAGCG GCGCAACCGT
 901
      GCCGTAACCG ATATGATCGA ACCTGGTTCG GCAATCAAAC CGTTCGTGAT
      TGCGAAGGCA TTGGATGCGG GCAAAACCGA TTTGAACGAA CGGCTGAATA
 951
1001
      CGCAGCCTTA TAAAATCGGA CCGTCTCCCG TGCGCGATGA TACCCATGTT
1051
      TACCCCTCTT TGGATGTGCG CGGCATTATG CAGAAATCGT CCAACGTCGG
1101
      CACAAGCAAA CTGTCTGCGC GTTTCGGCGC CGAAGAAATG TATGACTTCT
      ATCATGAATT GGGCATCGGT GTGCGTATGC ACTCGGGCTT TCCGGGGGAA
1151
     ACTGCAGGTT TGTTGAGAAA TTGGCGCAGG TGGCGGCCCA TCGAACAGGC
1201
1251
     GACGATGTCT TTCGGTTACG GTCTGCAATT GAGCCTGCTG CAATTGGCGC
     GCGCCTATAC CGCACTGACG CACGACGGCG TTTTGCTGCC GCTCAGCTTT
1301
     GAGAAGCAGG CGGTTGCGCC GCAAGGCAAA CGCATATTCA AAGAATCGAC
     CGCGCGCGAG GTACGCAATC TGATGGTTTC CGTAACCGAG CCGGGCGGCA
1401
     CCGGTACGGC GGGTGCGGTG GACGGTTTCG ATGTCGGCGC TAAAACCGGC
1451
1501 ACGGCGCGA AGTTCGTCAA CGGGCGTTAT GCCGACAACA AACACGTCGC
      TACCTTTATC GGTTTTGCCC CCGCCAAAAA CCCCCGTGTG ATTGTGGCGG
1551
1601
     TAACCATCGA CGAACCGACT GCCCACGGCT ATTACGGCGG CGTAGTGGCA
     GGGCCGCCCT TCAAAAAAAT TATGGGCGGC AGCCTGAACA TCTTGGGCAT
1651
     TTCCCCGACC AAGCCACTGA CCGCCGCAGC CGTCAAAACA CCGTCTTAA
```

## This corresponds to the amino acid sequence <SEQ ID 2688; ORF 793.ng>: 9793.pep

```
MLIKSEYKPR MLPKEEQVKK PMTSNGRISF VLMAMAVLFA CLIARGLYLQ
 51
     TVTYNFLKEQ GDNRIVRTQA LPATRGTVSD RNGAVLALSA PTESLFAVPK
101
     DMKEMPSAAQ LERLSELVDV PVDVLRNKLE QKGKSFIWIK RQLDPKVAEE
151
     VKALGLENFV FEKELKRHYP MGNLFAHVIG FTDIDGKGQE GLELSLEDSL
     YGEDGAEVVL RDRQGNIVDS LDSPRNKAPQ NGKDIILSLD QRIQTLAYEE
201
     LNKAVEYHQA KAGTVVVLDA RTGEILALAN TPAYDPNRPG RADSEQRRNR
251
301
     AVTDMIEPGS AIKPFVIAKA LDAGKTDLNE RLNTOPYKIG PSPVRDDTHV
351
    YPSLDVRGIM QKSSNVGTSK LSARFGAEEM YDFYHELGIG VRMHSGFPGE
     TAGLLRNWRR WRPIEQATMS FGYGLQLSLL QLARAYTALT HDGVLLPLSF
401
    EKQAVAPQGK RIFKESTARE VRNLMVSVTE PGGTGTAGAV DGFDVGAKTG
451
501
     TARKFVNGRY ADNKHVATFI GFAPAKNPRV IVAVTIDEPT AHGYYGGVVA
     GPPFKKIMGG SLNILGISPT KPLTAAAVKT PS*
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2689>: m793.seq

	1	ATGTTGATTA	AGAGCGAATA	TAAGCCTCGG	ATGCTGCCCA	AAGAAGAGCA
ξ	51	GGTCAAAAAG	CCGATGACCA	GTAACGGACG	GATCAGCTTC	GTCCTGATGG
10	)1	CAATAGCGGT	CTTGTTTGCC	GGTCTGATTG	CTCGCGGACT	GTATCTGCAG
15	51	ACGGTAACGT	ATAACTTTTT	GAAAGAACAG	GGCGACAACC	GGATTGTGCG
20	1	GACTCAAACA	TTGCCGGCTA	CACGCGGTAC	GGTTTCGGAC	CGGAACGGTG
25	1	CGGTTTTGGC	GTTGAGTGCG	CCGACGGAGT	CCCTGTTTGC	CGTGCCTAAA
30	1	GAGATGAAGG	AAATGCCGTC	TGCCGCACAA	TTGGAACGCC	TGTCCGAGCT
35	51	TGTCGATGTG	CCGGTTGATG	TTTTGAGGAA	CAAGCTCGAA	CAGAAAGGCA
40	1	AGTCGTTTAT	CTGGATTAAG	CGGCAGCTCG	ATCCCAAGGT	TGCCGAAGAG
45	1	GTCAAAGCCT	TGGGTTTGGA	AAACTTTGTA	TTTGAAAAAG	AATTAAAACG
50	1	CCATTACCCG	ATGGGCAACC	TGTTTGCACA	CGTCATCGGA	TTTACCGATA
55	1	TTGACGGCAA	AGGTCAGGAA	GGTTTGGAAC	TTTCGCTTGA	AGACAGCCTG
60	_	CATGGCGAAG	ACGGCGCGGA	AGTCGTTTTG	CGGGACCGGC	AGGGCAATAT
65	1	TGTGGACAGC	TTGGACTCCC	CGCGCAATAA	AGCCCCGAAA	AACGGCAAAG
70	_	ACATCATCCT	TTCCCTCGAT	CAGAGGATTC	AGACCTTGGC	CTATGAAGAG
75	_	TTGAACAAGG	CGGTCGAATA	CCATCAGGCA	AAAGCCGGAA	CGGTGGTGGT
80	_			AAATCCTCGC		
85	1	ACGATCCCAA	CAGGCCCGGC	CGGGCAGACA	GCGAACAGCG	GCGCAACCGT
90	-			ACCCGGTTCG		
95	1	TGCGAAGGCA	TTGGATGCGG	GCAAAACCGA	TTTGAACGAA	CGGCTGAATA

BNSDOCID: <WO___9957280A2_I_>

	1 .			~~~	
1701	CCCGACCAAG	CCACTGACCG	CCGCAGCCGT	CAAAACACCG	TCTTAA
1651	CCGCCCTTCA			CTGAACATCT	TGGGCATTTC
1601	CCATTGACGA	ACCGACTGCC	CACGGTTATT	ACGGCGGCGT	AGTGGCAGGG
1551	CTTTATCGGT	TTTGCCCCCG	CCAAAAATCC	CCGTGTGATT	GTGGCGGTAA
1501	GCGCGCAAGT	TCGTCAACGG	GCGTTATGCC	GACAACAAAC	ACATCGCTAC
1451	GTACGGCGGG	TGCGGTGGAC	GGTTTCGATG	TCGGCGCGAA	<b>AACCGGCACG</b>
1401	GCGCGAGGTA	CGCAATCTGA	TGGTTTCCGT	AACCGAGCCG	GGCGGCACCG
1351	AAACAGGCGG	TTGCGCCGCA	AGGCAAACGC	ATATTCAAAG	AATCGACCGC
1301	CCTATACCGC	ACTGACGCAC	GACGGCGTTT	TACTGCCGGT	CAGCTTTGAA
1251	GATGTCTTTC	GGTTACGGCC	TGCAATTGAG	CCTGCTGCAA	TTGGCGCGCG
1201	GCAGGTTTGT	TGAGAAATTG	GCGCAGGTGG	CGGCCTATCG	AACAGGCGAC
1151	ATGAGTTGGG	CATCGGTGTG	CGTATGCACT	CGGGCTTTCC	GGGCGAAACT
1101	AAGCAAACTG	TCTGCGCGTT	TCGGTGCCGA	AGAAATGTAT	GACTTCTATC
1051	CCCTCTTTGG	ATGTGCGCGG	CATCATGCAG	AAATCGTCCA	ACGTCGGCAC
1001	CGCAGCCTTA	TAAAATCGGA	CCGTCTCCCG	TGCGCGATAC	CCATGTTTAC

### This corresponds to the amino acid sequence <SEQ ID 2690; ORF 793>: m793.pep

JJ.PGP					
1	MLIKSEYKPR	MLPKEEQVKK	PMTSNGRISF	VLMAIAVLFA	GLIARGLYLO
51	TVTYNFLKEQ	GDNRIVRTQT	LPATRGTVSD	RNGAVLALSA	PTESLFAVPK
101	EMKEMPSAAQ	LERLSELVDV	PVDVLRNKLE	QKGKSFIWIK	RQLDPKVAEE
151	VKALGLENFV	FEKELKRHYP	MGNLFAHVIG	FTDIDGKGQE	GLELSLEDSI
201	HGEDGAEVVL	RDRQGNIVDS	LDSPRNKAPK	NGKDIILSLD	QRIQTLAYEE
251	LNKAVEYHQA	KAGTVVVLDA	RTGEILALAN	TPAYDPNRPG	RADSEQRRNR
301	AVTDMIEPGS	AIKPFVIAKA	LDAGKTDLNE	RLNTQPYKIG	PSPVRDTHVY
351	PSLDVRGIMQ	KSSNVGTSKL	SARFGAEEMY	DFYHELGIGV	RMHSGFPGET
401	AGLLRNWRRW	RPIEQATMSF	GYGLQLSLLQ	LARAYTALTH	DGVLLPVSFE
451			RNLMVSVTEP		
501	ARKFVNGRYA	DNKHIATFIG	FAPAKNPRVI	VAVTIDEPTA	HGYYGGVVAG
551	PPFKKIMGGS	LNILGISPTK	PLTAAAVKTP	S*	

### g793/m793 98.5% identity in 582 aa overlap

g793.pep		10 20	) 30 PMTSNGRISFY	40	50	60
g.ss.pcp	HILLIII				LIARGLILQT	
m793			PMTSNGRISE		LIARGLYLOT	VTYNFLKEO
	1	10 20		40	50	60
~702		70 80		100	110.	120
g793.pep	GDNRIVRT	QALPATRGTVSL	RNGAVLALSA	PTESLFAVPKE	MKEMPSAAQL	ERLSELVDV
m793	CDNRTVRTC	-				
	ODMAT VICTO	70 80		100	MKEMPSAAQL.	LKLSELVDV 120
				100	110	120
	13			160	170	180
g793.pep	PVDVLRNKI	LEQKGKSFIWIK	RQLDPKVAEEV	/KALGLENFVF	EKELKRHYPM	GNLFAHVIG
707	111111111		шинин		111111111	11111111
m793	PVDVLRNKI 13	LEQKGKSFIWIK	RQLDPKVAEEV			
	13	30 140	150	160	170	180
	19	0 200	210	220	230	240
g793.pep			YGEDGAEVVLF			24U מ.נפ.דדתקב
	111111111	1111111111	: 1111111111	1111111111	111111111111	11111111
m793	FTDIDGKGQ	EGLELSLEDSL	HGEDGAEVVLF	RDRQGNIVDSL	DSPRNKAPKNO	GKDIILSLD
	19	0 200	210	220	230	240
	0.5					
g793.pep	25 OBTOTI AVE		270 KAGTVVVLDAR	280	290	300
g/33.pep	URIQIDATE	TITITION TO A		CIGELLALANT	PAYDPNRPGRI	ADSEQRRNR
m793	QRIOTLAYE	ELNKAVEYHOA	KAGTVVVLDAR	TGETLALANT	PAYDPNRPCR	
	25	0 260	270	280	290	300
						500
	31		330	340	350	360
g793.pep	AVTDMIEPG	SAIKPFVIAKA	LDAGKTDLNER	LNTQPYKIGP	SPVRDDTHVYI	PSLDVRGIM
m793	111111111		1111111111	1111111111		111111
11175	31	0 320	LDAGKTDLNER 330	LNTQPYKIGP 340		PSLDVRGIM
	31	0 320	330	340	350	
	37		390	400	410	420
g793.pep	QKSSNVGTS	KLSARFGAEEM	YDFYHELGIGV	RMHSGFPGET	AGLLRNWRRWE	RPTEOATMS
	1111111		1111111111	1111111111	11311111111	
m793	QKSSNVGTS	KLSARFGAEEM	YDFYHELGIGV	RMHSGFPGET.	agllrnwrrwf	RPIEQATMS
	360 3	70 38	0 390	400	410	



```
430
                        440
                               450
                                       460
          FGYGLQLSLLQLARAYTALTHDGVLLPLSFEKQAVAPQGKRIFKESTAREVRNLMVSVTE
g793.pep
          m793
          FGYGLQLSLLQLARAYTALTHDGVLLPVSFEKQAVAPQGKRIFKESTAREVRNLMVSVTE
         420
                430
                        440
                                450
                490
                       500
                               510
                                       520
                                               530
g793.pep
          PGGTGTAGAVDGFDVGAKTGTARKFVNGRYADNKHVATFIGFAPAKNPRVIVAVTIDEPT
          PGGTGTAGAVDGFDVGAKTGTARKFVNGRYADNKHIATFIGFAPAKNPRVIVAVTIDEPT
m793
                        500
                                510
                                        520
                                               530
               550
                       560
                               570
g793.pep
          AHGYYGGVVAGPPFKKIMGGSLNILGISPTKPLTAAAVKTPSX
          *****************
m793
          AHGYYGGVVAGPPFKKIMGGSLNILGISPTKPLTAAAVKTPSX
                550
                        560
                                570
```

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2691>: a793.seq

```
ATGTTGATTA AGAGCGAATA TAAGCCTCGG ATGCTGCCCA AAGAAGAGCA
  51
      GGTCAAAAAG CCGATGACCA GTAACGGACG GATCAGCTTC GTCCTGATGG
      CAATAGCGGT CTTGTTTGCC GGTCTGATTG CTCGCGGACT GTATCTGCAG
 101
      ACGGTAACGT ATAACTTTTT GAAAGAACAG GGCGACAACC GGATTGTGCG
 151
 201
      GACTCAAACA TTGCCGGCTA CACGCGGTAC GGTTTCGGAC CGGAACGGTG
      CGGTTTTGGC GTTGAGTGCG CCGACGGAGT CCCTGTTTGC CGTGCCTAAA
 251
 301
      GAGATGAAGG AAATGCCGTC TGCCGCACAA TTGGAACGCC TGTCCGAGCT
 351
      TGTCGATGTG CCGGTTGATG TTTTGAGGAA CAAGCTCGAA CAGAAAGGCA
      AGTCGTTTAT CTGGATTAAG CGGCAGCTCG ATCCCAAGGT TGCCGAAGAG
 401
      GTCAAAGCCT TGGGTTTGGA AAACTTTGTA TTTGAAAAAG AATTAAAACG
 451
 501
      CCATTACCCG ATGGGCAACC TGTTTGCACA CGTCATCGGA TTTACCGATA
 551
      TTGACGGCAA AGGTCAGGAA GGTTTGGAAC TTTCGCTTGA AGACAGCCTG
 601
      CATGGCGAAG ACGGCGCGA AGTCGTTTTG CGGGACCGGC AGGGCAATAT
      TGTGGACAGC TTGGACTCCC CGCGCAATAA AGCCCCGAAA AACGGCAAAG
 651
 701
      ACATCATCCT TTCCCTCGAT CAGAGGATTC AGACCTTGGC CTATGAAGAG
 751
      TTGAACAAGG CGGTCGAATA CCATCAGGCA AAAGCCGGAA CGGTGGTGGT
      TTTGGATGCC CGCACGGGG AAATCCTCGC CTTGGCCAAT ACGCCCGCCT
 801
 851
      ACGATCCCAA CAGGCCCGGC CGGGCAGACA GCGAACAGCG GCGCAACCGT
 901
      GCCGTAACCG ATATGATCGA ACCCGGTTCG GCAATCAAAC CGTTTGTGAT
 951
      TGCGAAGGCA TTGGATGCGG GCAAAACCGA TTTGAACGAA CGGCTGAATA
1001
      CGCAGCCTTA TAAAATCGGA CCGTCTCCCG TGCGCGATAC CCATGTTTAC
      CCCTCTTTGG ATGTGCGCGG CATCATGCAG AAATCGTCCA ACGTCGGCAC
1051
1101
      AAGCAAACTG TCTGCGCGTT TCGGTGCCGA AGAAATGTAT GACTTCTATC
1151
      ATGAGTTGGG CATCGGTGTG CGTATGCACT CGGGCTTTCC GGGCGAAACT
1201
      GCAGGTTTGT TGAGAAATTG GCGCAGGTGG CGGCCTATCG AACAGGCGAC
     GATGTCTTTC GGTTACGGCC TGCAATTGAG CCTGCTGCAA TTGGCGCGCG CCTATACCGC ACTGACGCAC GACGGCGTTT TACTGCCGGT CAGCTTTGAA
1251
1301
1351 AAACAGGCGG TTGCGCCGCA AGGCAAACGC ATATTCAAAG AATCGACCGC
1401
      GCGCGAGGTA CGCAATCTGA TGGTTTCCGT AACCGAGCCG GGCGGCACCG
1451 GTACGGCGGG TGCGGTGGAC GGTTTCGATG TCGGCGCGAA AACCGGCACG
1501
     GCGCGCAAGT TCGTCAACGG GCGTTATGCC GACAACAAAC ACATCGCTAC
1551
     CTTTATCGGT TTTGCCCCCG CCAAAAATCC CCGTGTGATT GTGGCGGTAA
     CCATTGACGA ACCGACTGCC CACGGTTATT ACGGCGGCGT AGTGGCAGGG
1601
      CCGCCCTTCA AAAAATTAT GGGCGGCAGC CTGAACATCT TGGGCATTTC
1651
1701 CCCGACCAAG CCACTGACCG CCGCAGCCGT CAAAACACCG TCTTAA
```

## This corresponds to the amino acid sequence <SEQ ID 2692; ORF 793.a>: a793.pep

```
MLIKSEYKPR MLPKEEQVKK PMTSNGRISF VLMAIAVLFA GLIARGLYLO
     TVTYNFLKEQ GDNRIVRTQT LPATRGTVSD RNGAVLALSA PTESLFAVPK
 51
     EMKEMPSAAQ LERLSELVDV PVDVLRNKLE QKGKSFIWIK RQLDPKVAEE
151
    VKALGLENFV FEKELKRHYP MGNLFAHVIG FTDIDGKGQE GLELSLEDSL
201
    HGEDGAEVVL RDRQGNIVDS LDSPRNKAPK NGKDIILSLD QRIQTLAYEE
251
    LNKAVEYHQA KAGTVVVLDA RTGEILALAN TPAYDPNRPG RADSEQRRNR
    AVTDMIEPGS AIKPFVIAKA LDAGKTDLNE RLNTQPYKIG PSPVRDTHVY
351
    PSLDVRGIMQ KSSNVGTSKL SARFGAEEMY DFYHELGIGV RMHSGFPGET
    AGLLRNWRRW RPIEQATMSF GYGLQLSLLQ LARAYTALTH DGVLLPVSFE
401
451
    KQAVAPQGKR IFKESTAREV RNLMVSVTEP GGTGTAGAVD GFDVGAKTGT
    ARKFVNGRYA DNKHIATFIG FAPAKNPRVI VAVTIDEPTA HGYYGGVVAG
551 PPFKKIMGGS LNILGISPTK PLTAAAVKTP S*
```

a793/m793 100.0% identity in 581 aa overlap

a793.pep m793	10 MLIKSEYKPRMLPKE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!				11111111	111111
a793.pep m793	70 GDNRIVRTQTLPATF            GDNRIVRTQTLPATR 70	1111111111	111111111			111111
a793.pep m793	130 PVDVLRNKLEQKGKS !!!!!!!!!!!!!!!! PVDVLRNKLEQKGKS 130	1111111111		311111111		111111
a793.pep m793	190 FTDIDGKGQEGLELS                FTDIDGKGQEGLELS 190	11111111111	111111111	1111111111	11111111	111111
a793.pep m793	250 QRIQTLAYEELNKAV             QRIQTLAYEELNKAV 250		1111111111	11111111111		111111
a793.pep	310 AVTDMIEPGSAIKPF !!!!!!!!!!!! AVTDMIEPGSAIKPF 310	111111111	111111111	11111111111	111111111	111111
a793.pep m793	370 KSSNVGTSKLSARFG			11111111111	111111111	111111
a793.pep m793	430 GYGLQLSLLQLARAY [			11111111	111111111	111111
a793.pep	490 GGTGTAGAVDGFDVGA                  GGTGTAGAVDGFDVGA 490			111111111	111111111	11111
a793.pep m793	550 HGYYGGVVAGPPFKKI                HGYYGGVVAGPPFKKI 550			111111		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2693>: g794.seq

1	gtgcgtttca	ATCATTTCAT	AATGGTAACG	ATTATTATAT	ATGTGATTTC
51	CCCTGCAAAC	AAGCCGGTCC	GCCGCCCCGG	CGTTCCCACT	TATCCGGCTT
101	TGCCTTATAA	TTGCTTTTTT	TATGTAACAG	ATTCACCTAT	GAATTTCCCC
151	AAAACAGCGG	CCTCCCTGCT	GCTGCTTCTC	GCCTCCCTCG	CCGCACACGC
201	GCTCGATACC	GGCCGCATTC	CGCAAAACGA	AATCGCTGTA	TATGTCCAAG
251	AGCTTGACAG	CGGAAAAGTC	ATCATTGACC	ACCGTGCCGG	CATACCCGTC
301	AATCCCGCGT	CCACGATGAA	GCTCGTTACC	GCGTTTGCCG	CCTTCAAAAC
351	CTTCGGCAGC	AATTACCGCT	GGGCGACCGA	GTTTAAAAGC	AACGGTACGG
401	TAAACGACGG	CACGCTTGAC	GGAAACCTGT	ATTGGGCGGG	CAGCGGCGAC
451	CCCGTTTTCA	ATCAGGAAAA	CCTGCTTGCC	GTCCAACGCC	AGTTGCGCGA
501	CAAAGGCATC	CGCAATATCA	CGGGGCGCCT	GATGCTCGAC	CACAGCCTGT
					0

501 DGWLDAKLMC KERRA*



```
551 GGGGCGAAGT CGGCAGTCCC GACCATTTTG AAGCCGACAG CGGTTCGCCG
      TTTATGACGC CCCCAAATCC GACTATGCTG TCTGCCGGTA TGGTTATGGT
      GCGCGCCGAA CGCAATGCCG CCGGCAGTAC CGACATCCTC ACCGATCCGC
 701 CTTTGCCGCA TATTTTTGCC CAAAACAACT TGAAAATTAC CGCCTCCCAA
      GCTGCCTGCC CTTCGGTCAA AAAACTGATG CGCGCATCTT TTTCGGGCAA
 751
      TACGCTGAAA TTGCGCGGCA ATATTCCCGA AAGCTGTTTG GGCAAGCCTG
 801
      TCGGTGTCCG GATGTTCGCG CTTGACGAAC TGATCCGCCA AAGTTTTACC
 851
      AACCGCTGGC TGCTCGGCGG CGGACGGATT TCAGACGGCA TCGGCATAGC
 901
      CGACACACCG GAAGGCGCGC AGACGCTTGC CGTTGCACAC TCCAAACCGA
 951
1001
      TGAAGGAAAT TTTGACGGAC ATGAACAAGC GTTCGGACAA TCTGATTGCG
      CGTTCCGTCT TCCTCAAACT CGGCGGCGAC GGCAAACTGC CCGCCGTTTC
1051
      CGAACAGGCG GCGTCTGCCG TCCGGCGAGA ACTTGCCGTA TCGGGCATCG
1101
1151
     ATGTTGCGGA TTTGGTTTTG GAAAACGGTT CGGGTCTGTC CAGAAAAGAA
1201
     AGGGTAACGG CGAGAATGAT GGCGCAAATG TTGGAAACGG CTTATTTCAG
      CCCGTTTGCA CAAGATTTCA TCGACACGCT GCCCATCGCC GGCACAGACG
1251
     GGACTTTACG CAACCGCTTC AAACAAAGCG GCGGGCTGTT GCGCTTAAAA
1301
     ACCGGCACGC TCAACAATGT CCGCGCCCTT GCAGGTTATT GGCTGGGCGA
1351
1401
     CAAACCGATG GCGGTGGTCG TCATCATCAA CAGCGGCCGC GCCGTTTCCC
1451
     TGCTGCCCGA CTTGGACAAC TTCGTTGCCA AAAACATCAT CTCCGGCGGC
1501 GACGGCTGGC TGGATGCGAA ACTGATGTGC AAAGAACGCC GCGCCTGA
```

### This corresponds to the amino acid sequence <SEQ ID 2694; ORF 794.ng>: g794.pep

```
VRFNHFIMVT IIIYVISPAN KPVRRPGVPT YPALPYNCFF YVTDSPMNFP
 51
     KTAASLLLLL ASLAAHALDT GRIPQNEIAV YVQELDSGKV IIDHRAGIPV
     NPASTMKLVT AFAAFKTFGS NYRWATEFKS NGTVNDGTLD GNLYWAGSGD
101
     PVFNQENLLA VQRQLRDKGI RNITGRLMLD HSLWGEVGSP DHFEADSGSP
151
     FMTPPNPTML SAGMVMVRAE RNAAGSTDIL TDPPLPHIFA QNNLKITASQ
201
251
     AACPSVKKLM RASFSGNTLK LRGNIPESCL GKPVGVRMFA LDELIROSFT
    NRWLLGGGRI SDGIGIADTP EGAQTLAVAH SKPMKEILTD MNKRSDNLIA
    RSVFLKLGGD GKLPAVSEQA ASAVRRELAV SGIDVADLVL ENGSGLSRKE
351
401 RVTARMMAQM LETAYFSPFA QDFIDTLPIA GTDGTLRNRF KQSGGLLRLK
451 TGTLNNVRAL AGYWLGDKPM AVVVIINSGR AVSLLPDLDN FVAKNIISGG
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2695>: m794.seq

```
GTGCGTCTCA ATCATTTCAT AATGATAGCG ATTATTATAT ATGTGATTTC
  51
      CCCTGCAAAC AAGCCGGCCC GCCGCCACAG CGTTCCCACT TATCCGGCTT
 101
      TGCCTTATAA TTGCTTTTT TATGTAACAG ATTTACCTAT GAATTTCCCC
 151
      AAAACAGCGG CCTCCCTGCT GCTGCTTCTC GCCTCCCTCG CCGCACACGC
      GCTCGATACC GGCCGCATTC CGCAAAACGA AATCGCCGTA TATGTCCAAG
 201
 251
      AGCTTGACAG CGGAAAAGTC ATCATTGACC ACCGCTCGGA TGTCCCCGTC
 301
      AACCCCGCCT CCACAATGAA ACTCGTTACC GCGTTTGCCG CCTTCAAAAC
      CTTCGGCAGC AATTACCGCT GGGCGACCGA GTTTAAAAGC AACGGTACGG
 351
 401
      TAAACGACGG CACGCTTGAC GGAAACCTAT ATTGGGCGGG CAGCGGCGAC
 451
      CCCGTTTTCA ATCAGGAAAA CCTGCTTGAT GCTCAAAAAC AGTTGCGCGA
 501
     ACAAGGCATA CTCAATATCA CGGGACACCT GATGCTCGAC CACAGCCTGT
      GGGGCGAAGT CGGCAGCCCC GACGATTTCG AAGCCGACAG CGGTTCGCCG
 551
      TTTATGACGC CCCCCAATCC AACTATGCTG TCTGCCGGTA TGGTTATGGT
 601
 651
      GCGCGCCGAA CGCAATGCCG CCGGCAGTAC CGACATCCTC ACCGATCCGC
 701
      CTTTGCCGCA TATTTTCGCC CAAAACAACT TGAAAATTAC CGCCTCCCAA
      GCTGCCTGCC CTTCGATCAA AAAACTGATG CGTGCATCTT TTTCGGACAA
 751
      TACGCTGAAA TTGCGCGGCA ATATTCCCGA GAGCTGTTTG GGCAAGCCTG
 801
      TCGGTGTCCG GATGTTCGCG CTTGACGAAC TGATCCGGCA AAGTTTTACC
 901
      AACCACTGGC TGCTCGGCGG CGGACGGATT TCAGACGGTA TCGGCATAGC
      CGACACGCCG GAAGGCGCGC AGACACTTGC CGTTGCACAC GCCAAACCGA
 951
      TGAAAGAAAT TTTGACGGAC ATGAACAAGC GTTCGGACAA TCTAATTGCG
1001
      CGTTCCGTCT TCCTCAAACT CGGCGGCGAC GGCAAACTGC CCGCCGTTTC
1101
      CGAACAGGCG GCGTCTGCCG TCCGGCGCGA ACTTGCCGTA TCGGGCATCG
1151
      ATGTTGCGGA TTTGGTTTTG GAAAACGGTT CGGGCCTGTC CAGAAAAGAA
      AGGGTAACGG CGAGAATGAT GGCGCAAATG TTGGAAACGG CTTATTTCAG
1201
      CCCGTTTGCA CAAGATTTCA TCGACACGCT ACCCATCGCC GGCACAGACG
1251
      GAACTTTACG CAACCGCTTC AAACAAAGCG GCGGGCTGTT GCGCTTAAAA
1351 ACCGGCACGC TCAACAATGT CCGCGCCCTT GCAGGTTATT GGCTGGGCGA
      CAAACCGATG GCGGTGGTCG TCATCATCAA CAGCGGCCGC GCCGTTTCCC
1451 TGCTGCCAGA CTTGGACAAC TTCGTTGCCA ACAACATCAT CTCCGGCGGC
1501 GATGGCTGGC TGGATGCGAA ACTGATGTGC AAAGAACGCC GAGCCTGA
```

### This corresponds to the amino acid sequence <SEQ ID 2696; ORF 794>: m794.pep

VRLNHFIMIA IIIYVISPAN KPARRHSVPT YPALPYNCFF YVTDLPMNFP

51 KTAASLLLLL ASLAAHALDT GRIPQNEIAV YVQELDSGKV IIDHRSDVPV

BNSDOCID: <WO___9957280A2_I_>

A MARIO TO THE REPORT

101 151 201 251 301 351 401 451 501	NPASTMKLVT PVFNQENLLD FMTPPNPTML AACPSIKKLM NHWLLGGGRI RSVFLKLGGD RVTARMMAQM TGTLNNVRAL DGWLDAKLMC	AQKQLREQ SAGMVMVR RASFSDNT SDGIGIAD GKLPAVSE LETAYFSP AGYWLGDK	GI LNITGHL AE RNAAGST LK LRGNIPE TP EGAQTLA QA ASAVRRE FA QDFIDTL	MLD HSLWGE DIL TDPPLE SCL GKPVGV VAH AKPMKE LAV SGIDVA PIA GTDGTL	VGSP DDFEA HIFA QNNLK RMFA LDELI ILTD MNKRS DLVL ENGSG RNRF KQSGG	ADSGSP KITASQ RQSFT SDNLIA SLSRKE GLLRLK	
g794/m794	95.5% i	dentity i	n 515 aa o	verlap			
g794.pep	11:111	1::111111	111111:11	: [ ] [ ] [ ] [ ] [ ]	40 NCFFYVTDSP	1111111111	1111
m794	VRLNHFII	MIAIIIYVI: 10	SPANKPARRH 20	SVPTYPALPY 30	NCFFYVTDLP 40	MNFPKTAASL 50	LLLL 60
g794.pep	ASLAAHA	70 LDTGRIPQNI	80 EIAVYVQELD	90 SGKVIIDHRA	100 GIPVNPASTM	110 KLVTAFAAFK	120 TFGS
m794	ASLAAHAI	LDTGRIPQNI 70	80 EIAVYVQELD	SGKVIIDHRS 90	:         DVPVNPASTM 100	 KLVTAFAAFK 110	 TFGS 120
g794.pep	NYRWATE	130 FKSNGTVNDO	140 STLDGNLYWA	150 GSGDPVFNQE	160 NLLAVQRQLR	170 DKGIRNITGR	180
m794	 NYRWATE			111111111	: :    NLLDAQKQLR: 160	:: 11 1111:	1111
g794.pep	HSLWGEVO	190 GSPDHFEADS	200 GSPFMTPPN	210 PTMLSAGMVM	220 VRAERNAAGS'	230 TDILTDPPLP	240 HIFA
m794	HSLWGEV	SPDDFEADS	GSPFMTPPN: 200	PTMLSAGMVM 210	VRAERNAAGS 220	TDILTDPPLP	HIFA 240
g794.pep	QNNLKITA	250 ASQAACPSVK	260 KLMRASFSGI	270 NTLKLRGNIP	280 ESCLGKPVGVI	290 RMFALDELIR	300 QSFT
m794	QNNLKITA		 KLMRASFSDI 260		 ESCLGKPVGVI 280		 QSFT 300
g794.pep	NRWLLGGG	310 RISDGIGIA	320 DTPEGAQTL	330 AVAHSKPMKE:	340 LTDMNKRSDI	350 NLIARSVFLK	360 LGGD
m794	:       NHWLLGGG	1111111	11111111			111111111	HILL
g794.pep	GKLPAVSE	70 QAASAVRRE	380 LAVSGIDVAI	390 DLVLENGSGLS	400 RKERVTARM	410 MAOMLETAYF	420 SPFA
m794	 GKLPAVSE	 QAASAVRRE				111111111	1111
g794.pep	QDFIDTLP	IAGTDGTLR	440 NRFKQSGGLI	450 RLKTGTLNN	460 /RALAGYWLGI	470 OKPMAVVVIII	480 NSGR
m794	QDFIDTLP	  IAGTDGTLR	11111111111	3113111111		1111111111	1111
g794.pep m794	AVSLLPDL	DNFVAKNII	500 SGGDGWLDAK           SGGDGWLDAK	111111111			
			500	510			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2697>: a794.seq

1 GTGCGTCTCA ATCATTTCAT AATGATAGCG ATTATTATAT ATGTGATTTC
51 CCCTGCAAAC AAGCCGGCCC GCCGCCACAG CGTTCCCACT TATCCGGCTT
101 TGCCTTATAA TTGCTTTTT TATGTAACAG ATTTACCTAT GAATTTCCCC
151 AAAACAGCGG CCTCCCTGCT GCTGCTTCTC GCCTCCCTCG CCGCACACGC
201 GCTCGATACA GGTCGCATTC CGCAAAACGA AATCGCCGTA TATGTCCAAG
251 AGCTTGACAG CGGAAAAGTC ATCATTGACC ACCGCTCGGA TGTCCCCGTC



```
301 AACCCCGCCT CCACAATGAA ACTCGTTACC GCGTTTGCCG CCTTCAAAAC
 351
      CTTCGGCAGC AATTACCGCT GGGCGACCGA GTTTAAAAGC AACGGTACGG
      TAAACGACGG CACGCTTGAC GGAAACCTGT ATTGGGCGGG CAGCGGCGAC
      CCCGTTTTCA ATCAGGAAAA CCTGCTTGCC GTCCAACGCC AGTTGCGCGA
 501
      ACAAGGCATA CGCAATATCA CGGGACACCT GATGCTCGAC CACAGCCTGT
      GGGGCGAAGT CGGCAGCCCC GACGATTTCG AAGCCGACAG CGGTTCGCCG
 551
      TTTATGACGC CCCCCAATCC AACTATGCTG TCTGCCGGTA TGGTTATGGT
 601
      GCGCGCCGAA CGCAATGCCG CCGACAGTAC CGACATCCTC ACCGATCCGC
 651
 701 CTTTGCCGCA TATTTTCGCC CAAAACAACT TGAAAATTAC CGCCTCCCAA
      GCTGCCTGCC CTTCGATCAA AAAACTGATG CGTGCATCTT TTTCGGACAA
 751
      TACGCTGAAA TTGCGCGGCA ATATTCCCGA GAGCTGTTTG GGCAAGCCTG
 801
      TCGGTGTCCG GATGTTCGCG CTTGACGAAC TGATCCGGCA AAGTTTTACC
 851
 901
      AACCACTGGC TGCTCGGCGG CGGACGGATT TCAGACGGCA TCGGCATATC
 951
      CGACACGCCG GAAGGCGCGC AGACGCTTGC CGTTGCACAC TCAAAGCCGA
      TGAAGGAAAT TTTGACGGAC ATGAACAAGC GTTCGGACAA TCTAATTGCG
1001
      CGTTCCGTCT TCCTCAAACT CGGCGGCGAC GGCAAACTGC CCGCCGTTTC
1051
      CGAACAGGCA GCGTCTGCCG TCCGGCGTGA ACTTGCCGTG TCGGGCATCG
1101
1151 ATGTTGCGGA TTTGGTTTTG GAAAACGGTT CAGGTCTGTC CAGAAAAGAA
     AGGGTAACGG CGAGAATGAT GGCGCAAATG TTGGAAACGG CTTATTTCAG
CCCGTTTGCA CAAGATTTCA TCGATACGCT GCCCATCGCC GGCACAGACG
1201
1251
      GGACTTTACG CAACCGCTTC AAACAAAGCG GCGGGCTGTT GCGCTTAAAA
1301
1351 ACCGGCACGC TCAACAATGT CCGCGCCCTT GCAGGTTATT GGCTGGGCGA
1401
     CAAACCGATG GCGGTGGTCG TCATCATCAA CAGCGGCCGC GCCGTTTCCC
1451
      TGCTGCCCGA CTTGGACAAC TTCGTTGCCA ACAACATCAT CTCCGGCGGC
     GATGGCTGGC TGGATGCGAA ACTGATGTGC AAAGAACGCC GAGCCTGA
```

# This corresponds to the amino acid sequence <SEQ ID 2698; ORF 794.a>: a794.pep

```
VRLNHFIMIA IIIYVISPAN KPARRHSVPT YPALPYNCFF YVTDLPMNFP
 51
     KTAASLLLLL ASLAAHALDT GRIPONEIAV YVQELDSGKV IIDHRSDVPV
     NPASTMKLVT AFAAFKTFGS NYRWATEFKS NGTVNDGTLD GNLYWAGSGD
101
151
     PVFNQENLLA VQRQLREQGI RNITGHLMLD HSLWGEVGSP DDFEADSGSP
     FMTPPNPTML SAGMVMVRAE RNAADSTDIL TDPPLPHIFA QNNLKITASO
201
251
     AACPSIKKLM RASFSDNTLK LRGNIPESCL GKPVGVRMFA LDELIRQSFT
    NHWLLGGGRI SDGIGISDTP EGAQTLAVAH SKPMKEILTD MNKRSDNLIA
351
     RSVFLKLGGD GKLPAVSEQA ASAVRRELAV SGIDVADLVL ENGSGLSRKE
401
    RVTARMMAQM LETAYFSPFA QDFIDTLPIA GTDGTLRNRF KQSGGLLRLK
    TGTLNNVRAL AGYWLGDKPM AVVVIINSGR AVSLLPDLDN FVANNIISGG
451
501
    DGWLDAKLMC KERRA*
```

### a794/m794 98.6% identity in 515 aa overlap

a794.pep m794	10 VRLNHFIMIAIIIYV             VRLNHFIMIAIIIYV 10		30 RRHSVPTYPAL           RRHSVPTYPAL 30	1111111111	11111111	111111
a794.pep m794	70 ASLAAHALDTGRIPQ              ASLAAHALDTGRIPQ 70	1111111		111111111	DEFECT	111111
a794.pep	130 NYRWATEFKSNGTVN                NYRWATEFKSNGTVN 130	1111111:	111111111	11111 :1:1	111111 111	11111
a794.pep m794	190 HSLWGEVGSPDDFEA             HSLWGEVGSPDDFEA 190		111111111		411111111	LETTI
a794.pep	250 QNNLKITASQAACPS:                 QNNLKITASQAACPS: 250	1111111	1111111111		LIBERTALE	LILLER
a794.pep	310 NHWLLGGGRISDGIG	320 SDTPEGAQ	330 TLAVAHSKPM	340 KEILTDMNKR	350 SDNLIARSVF	360 LKLGGD

```
m794
                                                NHWLLGGGRISDGIGIADTPEGAQTLAVAHAKPMKEILTDMNKRSDNLIARSVFLKLGGD
                                                                        310
                                                                                                           320
                                                                                                                                              330
                                                                                                                                                                                 340
                                                                                                                                                                                                                    350
                                                                        370
                                                                                                           380
                                                                                                                                              390
                                                                                                                                                                                  400
                                                                                                                                                                                                                                                         420
                                               GKLPAVSEQAASAVRRELAVSGIDVADLVLENGSGLSRKERVTARMMAQMLETAYFSPFA
  a794.pep
                                               {\text{$\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\fr
                                               GKLPAVSEQAASAVRRELAVSGIDVADLVLENGSGLSRKERVTARMMAQMLETAYFSPFA
 m794
                                                                                                                                             390
                                                                                                                                                                                 400
                                                                       430
                                                                                                           440
                                                                                                                                              450
                                                                                                                                                                                 460
                                                                                                                                                                                                                    470
 a794.pep
                                               QDFIDTLPIAGTDGTLRNRFKQSGGLLRLKTGTLNNVRALAGYWLGDKPMAVVVIINSGR
                                               QDFIDTLPIAGTDGTLRNRFKQSGGLLRLKTGTLNNVRALAGYWLGDKPMAVVVIINSGR
 m794
                                                                       430
                                                                                                          440
                                                                                                                                             450
                                                                                                                                                                                 460
                                                                                                                                                                                                                    470
                                                                       490
                                                                                                          500
                                                                                                                                             510
                                              AVSLLPDLDNFVANNIISGGDGWLDAKLMCKERRAX
 a794.pep
                                              m794
                                              AVSLLPDLDNFVANNIISGGDGWLDAKLMCKERRAX
                                                                       490
                                                                                                         500
                                                                                                                                             510
```

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2699>:
```

```
ATGCCGTCTG AAATGCCGTC TGAAACGTGG CAGGCGGAGG TTCGGACGGC
     ATTGGGTTTA TTTCAACGGG CGGATGCCGA CCGCATCGCG TACTTTATCC
  51
     AACAATTCGC GCGCTTCTTT GCGCGCTTTT TGCGCGCCtg cctGCAAAAT
 101
     CTCTTCGATT TGCGAAGGAT TAGAGGTCAA TGCGTTGTAG CGTTCGCGCA
 151
     GTTCTGCCAA TTCGGCGTTG ATTTTCGCCG CCGAAAGTTT TTTCGCCTCG
      CCCCAAGCCA AGCCGTCGGC AAGCATTTGC GTAAATTCCG CCGTTTCAGA
 301 CGGCGTGGAG AAGGCTTTAT AGATTTCAAA CAAAGGGCTT TCGTCGGGCT
     GTTTCGGCTC GCCCGGCTCT TTCATGTTGG TAATGATTTT GTTGACCGAT
 351
     TTTTGGGTTT TTTTGTCGTT TTCCCAAAGC GGAATGGTAT TGCCGTAGGA
 401
 451
      TTTGGACATT TTGCGTCCGT CCAAACCGAC CAAGAGTTCG ACGTTTTCGT
      CGATTTTCAC TTCGGGCagg GTGaagagtt cTTGGAaacc gtgggtgaag
 501
      cggccggcAa tgtcgcgcgc cATTTcgacg tgttgGATTT GGTCGCGCCC
      GACGGGGACT TCGTTGGCGT TGAACATCAA AATGTCGGCA GTCATCAGAA
 601
     TCGGATAACT GAACAACCC ATTTCCACAC CGAAATCGGG GTCTTCCTGC
 651
     CCGTTTTCCG CATTGCCTTG AACGGCGGCT TTGTAGGCGT GGGCGCGGTT
 701
     CATCAAACCC TTGGCGGTGA TGCAGGTCAG AATCCAGTTC AACTCCATCA
 751
     CTTCGGGAAT GTCGCTTTGG CGGTAGAAGG TGGTGCGCTC GGGGTCGAGT
 801
 851
     CCGCAGGCAA GCCAAGTGGC GGCAACGGCt tgGGTGGATT GGTGAATCAT
     CTCCTGCTCG TGGCATTTGA TGATGCCGTG GTAATCGGCG AGGAAGAGGA
     AGGATTCGGT ATCGGGGTTT TGCGCCGCGC GGACGGCGGG GCGGATGGCG
 951
1001 CCGACGTAGT TGCCCAGATG CGGGGTGCCG GTGGTGGTTA CGCCGGTCAG
     AACTCGTTTT TTGCTCATAA AAATGTCCTT ACGGCAGCAA TGCCGTCTGA
1051
1101
     AAGGGAAAa. gatgcgCCGA TTATACCCGA TTTGCCACAT ACATCCAGCC
1151
     GacaACagaC TTTTCCATAT TAA
```

# This corresponds to the amino acid sequence <SEQ ID 2700; ORF 900.ng:

- 1 MPSEMPSETW QAEVRTALGL FQRADADRIA YFIQQFARFF ARFLRACLQN
  51 LFDLRRIRGQ CVVAFAQFCQ FGVDFRRKF FRLAPSQAVG KHLRKFRRFR
  101 RRGEGFIDFK QRAFVGLFRL ARLFHVGNDF VDRFLGFFVV FPKRNGIAVG
  151 FGHFASVQTD QEFDVFVDFH FGQGEEFLET VGEAAGNVAR HFDVLDLVAP
  201 DGDFVGVEHQ NVGSHQNRIT EQTHFHTEIG VFLPVFRIGL NGGFVGVGAV
  251 HQTLGGDAGQ NPVQLHHFGN VALAVEGGAL GVESAGKPSG GNGLGGLVNH
  301 LLLVAFDDAV VIGEEEEGFG IGVLRRADGG ADGADVVAQM RGAGGGYAGQ
  351 NSFFAHKNVL TAAMPSEREK DAPIIPDLPH TSSRQQTFPY *
- The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2701>:
  - 1 ATGCCGTCTG AAACGCGGCA GGCGGAGGTT CGGACGGCAT CGGGTTCATT
    51 TCAACGGGCG GATGCCGACC GCATCGG.TA CTTTGTCCAA TAATTCGCGT
  - 101 GCTTCTTTAC GCGCTTTCGC CGCGCCTGCC TGCAAAATCT CTTCGATTTG





This corresponds to the amino acid sequence <SEQ ID 2702; ORF 900>:

```
1 MPSETRQAEV RTASGSFQRA DADRIXYFVQ *FACFFTRFR RACLQNLFDL
51 RRVGGQLVVA FARFGEFGVD FRRQKFFGFT PRQAVGKHFR KFHRFRRRGE
101 GFVDFKQWAF VGLFRLARLF HIGDDFVDRF LGFFVVFPKR NGVAVGFGHF
151 ASVQTDQEFD VFIDFHFGQG EEFPEAVVEA AGDVARHFDV LDLVAPDGHF
201 VGVEHQNIGS HQNRITEQTH FHTEIRVFLP VFCICLHGGF VGMGAVHQTL
251 GSDAGQNPVQ FHHFGSVALA VEGGALGVES AGKPSGGNGL GGLVNHLRLV
301 AFDDTVVIGE EEEGFGIEVL RRADGGADGA DVVAQMRDAG GGYAGQNSFF
351 AHKNVLAASM PSEREKDVPI IPDLPPTSSR QQTFFY*
```

Computer analysis of this amino acid sequence gave the following results:

### Homology with a predicted ORF from N. gonorrhoeae

ORF 900 shows 87.0% identity over a 386 aa overlap with a predicted ORF (ORF 900.ng) from N. gonorrhoeae:

m900.pep	10 MPSETRQAEVR             MPSEMPSETWQAEVR 10		[	:		1 . 11
m900.pep	60 70 LVVAFARFGEFGVDF	80 RRQKFFGFTPR(	90 QAVGKHFRKF1 		110 VDFKQWAFV(	GLFRL
g900	CVVAFAQFCQFGVDF1 70		QAVGKHLRKFI 90	RRFRRRGEGF	'IDFKQRAFV	GLFRL 120
m900.pep	120 130 ARLFHIGDDFVDRFLO	140 GFFVVFPKRNGV	150 AVGFGHFAS			EFPEA
g900	ARLFHVGNDFVDRFLO	SFFVVFPKRNGI 140	:AVGFGHFAST		:          VDFHFGQGEI 170	: EFLET 180
m900.pep	180 190 VVEAAGDVARHFDVLI	200 DLVAPDGHFVGV	210 EHONIGSHON	220	230	
g900	:         VGEAAGNVARHFDVLD 190	 LVAPDGDFVGV			111 11111	1 1

		50 260	270	280	290
m900.pep	HGGFVGMGAVHC	TLGSDAGONPVOF	HHFGSVALAVEC	GALGVESAGK	PSGGNGLGGLVNH
g900	:           :		:        HHFGNVALAVEG	 GALGVESAGK	PSGGNGLGGLVNH
	250	260	270		290 300
	300 3	10 320	330	340	350
m900.pep	LRLVAFDDTVVI	GEEEEGFGIEVLR	RADGGADGADVV	'AQMRDAGGGY	AGQNSFFAHKNVL
-000				1111 11111	1111111111
g900	LLLVAFDDAVV1	GEEEEGFGIGVLRI	RADGGADGADVV	AQMRGAGGGY.	AGQNSFFAHKNVL
	310	320	330	340	350 360
	360 3	70 380			
m900.pep	AASMPSEREKDV	PIIPDLPPTSSRQ	TFPYX		
	: :     :		11111		
g900	TAAMPSEREKDA	PIIPDLPHTSSRO	TFPYX		
	370	380	390		

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2703>: a900.seq (partial)

```
GAGGTTCGGA CGGCATTGGG TTTATTTCAA CGGGCGGATA CCGACCGCAT
   1
      CACGTACTTT GCCCAATAAT TCGCGTGCTT CTTTACGCGC TTTTTGCGCG
  51
 101
     CCTGCCTGCA AAATCTCTTC GATTTGCGAA GGGTCGGCGG TCAGCTCGTT
      GTAGCGTTCG CGCGGTTCGG CGAGTTCGGC GTTGATTTTC GCCGCCAAAA
     GTTTTTTTGC CTCGCCCCAA GCCAAGCCGT CGGCAAGCAT TTTCGTAAAT
 201
 251 TCTGCCGTTT CAGACGGCGT GGAGAAAGCT TTGTAGATTT CAAACAGAGG
 301 GCTTTCGTCG GGCTTCTTCG GCTCGCCCGG CTCTTTCATA TTGGTGATGA
 351 TTTTGTTGAC CGATTTTTGG GTTTTTTTGT CGTTTTCCCA AAGCGGAATG
 401
     GTGTTGCCGT AGGATTTGGA CATTTTGCGT CCGTCCAAAC CAACCAAGAG
     TTCGACGTTT TCGTCGATTT TCACTTCGGG CAGTGTGAAG AGTTCCCGGA
 451
 501 AGCGGTGGTT GAAGCGGCCG GCAATATCGC GTGCCATTTC AACGTGTTGG
 551 ATTTGGTCGC GACCGACTGG AACTTCATGG GCATTGAACA TGAGAATGTC
 601 GGCAGTCATG AGGATAGGGT AGCTGTACAA ACCCATTTCC ACGCCGAAAT
 651 CGGGGTCTTC CTGCCCGTTT TCCGCATTTG CCTGCACGGC GGCTTTGTAG
 701
     GCGTGGGCGC GGTTCATCAA ACCCTTGGCG GTGATGCAGG TCAGAATCCA
 751 GTTCAATTCC ATCACTTCGG GAATGTCGCT TTGACGGTAG AAGGTGGTGC
801 GCTCGGGGTC GAGTCCGCAG GCAAGCCAAG TGGCGGCAAC GGCTTGGGTG
851 GATTGGTGAA TCATCTCCGG CTCGTGGCAT TTGATGATAC CGTGGTAATC
 901 GGCGAGGAAG AGGAAGGATT CGGTATCAGG GTTTTGCGCC GCGCGGACGG
951 CGGGGCGGAT AGCACCGACG TAGTTGCCCA GATGCGGGAT GCCGGTGGTG
     GTTACGCCGG TCAGAACTCG TTTTTTGCTC ATAAAAATGT CCTTGCGGCA
1001
1051 TCAATGCCGT CTGAAAGGGA AAAAGATGCG CCGATTATAC CCGATTTGCC
1101 ACCTACATCC AGCCGACAAC AGACTTTTCC ATATTAA
```

### This corresponds to the amino acid sequence <SEQ ID 2704; ORF 900.a>:

xyoo.pep	(Partial)				
1	EVRTALGLFQ	RADTDRITYF	AQ*FACFFTR	FLRACLONLF	DIRRYGGOLV
51	VAFARFGEFG	VDFRRQKFFC	LAPSOAVGKH	FRKFCRFRRR	GESEVDEROR
101	AFVGLLRLAR	LFHIGDDFVD	RFLGFFVVFP	KRNGVAVGEG	HEASVOTNOE
151	FDVFVDFHFG	QCEEFPEAVV	EAAGNIACHF	NVLDI.VATDW	NEMCTEHENU
201	GSHEDRVAVQ	THFHAEIGVF	LPVFRICLHG	GEVGVGAVHO	TIGGDAGOND
251	VQFHHFGNVA	LTVEGGALGV	ESAGKPSGGN	GLGGLVNHLR	LVAFDDTVVT
301	GEEEEGFGIR	VLRRADGGAD	STDVVAOMRD	AGGGYAGONS	FFAHKNVI.AA
351	SMPSEREKDA	PIIPDLPPTS	SRQQTFPY*		+ 21 11 11 (1 1 11 11 11

### m900/a900 88.4% identity in 378 aa overlap

	10	20	30	40	50	60
m900.pep	MPSETRQAEVRTAS	GSFQRADAD	RIXYFVQXFAC	FFTRFRRAC:	LONLFDLRRV	COLVA
- 000	1111	1 •           :	11:11:1111	11111 111	11111111	LILLIA
a900	EVRTAL	SLFQRADTD	RITYFAQXFAC	FFTRFLRAC:	LONLFDLRRV	GGQLVVA
		10	20	30	40	50
	70	0.0				
	70	80	90	100	110	120

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

#### 1284

m900.pep	FARFGEFGVDFRI	RQKFFGFTPF	ROAVGKHFRKF	HRFRRRGEGE	ひょうしゅうしゅう きょう	T EDI ABI E
		1111				4
a900	FARFGEFGVDFRI	ROKFFCLAPS	OAVGKHFRKF	CREBBBCESE		1:11111
	<b>6</b> 0	70	80	90	100	
	•			30	100	110
	130	140	150	160	170	180
m900.pep	HIGDDFVDRFLGF	FVVFPKRNG	VAVGFGHFAS	VOTDOFFDUE	TDELLECOCES	
				111-11111		
a900	TITODDI VDILI LIGI	FVVFPKRNG	VAVGFGHFAS	VOTNOEFDVF	VDFHFGOCER	
	120	130	140	150	160	170
					100	170
	190	200	210	220	230	240
m900.pep	AGDVARHFDVLDL	VAPDGHFVG	VEHQNIGSHQ	NRITEOTHFH	TETPUEL DUE	CTCLHGGE
			2     ! ! •       .			
a900	AGNIACHENVLDL	VATDWNFMG	IEHENVGSHE	DRVAVOTHEH.	AETGVFT.PVF	RICIHGGE
	180	190	200	210	220	230
		•				230
000	250	260	270	280	290	300
m900.pep	VGMGAVHQTLGSD	AGQNPVQFH	HFGSVALAVE	GGALGVESAG	KPSGGNGLGG	* * * * * * * * * * * * * * * * * * * *
-000		1111111	1	, , , , , , , , , , ,		
a900	AGAGWANGI TIGGD	<b>AGÖMEAĞEH</b> I	HEGNVALTVE	GGALGVESAG	KPSGGNGLGGI	VNHLRLV
	240	250	260	270	280	290
	21.0	•••				
m900.pep	310	320	330	340	350	360
mado.pep	AFDDTVVIGEEEE	GEGIEVLRR	ADGGADGADVV	/AQMRDAGGGY	(AGQNSFFAHR	CNVLAASM
a900	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
4300	AFDDTVVIGEEEE	PE CIKATKK	ADGGADSTDVV	/AQMRDAGGGY	(AGQNSFFAHK	NVLAASM
	300	310	320	330	340	350
	370	300				
m900.pep	PSEREKDVPIIPDI	380				
pcp	* OUNDADA E * 1 P   1	PEET.22KOOJ	TPYX			
a900	111111:11111	[	1111			
a900		[	1111			

g901.seq not found yet g901.pep not found yet

# The following partial DNA sequence was identified in N.meningitidis <SEQ ID 2705>:

```
ATGCCCGATT TTTCGATGTC CAATTTGGCC GTTGCCTTTT CCATCACATT
  1
 51 GGCTGCCGGT TTGTTTACCG TATTAKGYAG TGGCTTGGTG ATGTTTTCCA
101 AAACGCCCAA TCCGCGTGTG TTGTCGTTTG GTTTGGCGTT TGCCGGCGGT
151 GCGATGGTAT ATGTTTCCCT GACGGAGATT TTCAGTAAGT CCAGCGAGGC
201 GTTCGCTGAA ATTTATGATA AAGACCACGC GTTTGCGGCG GCGACCATGG
251 CATTTTGGC CGGGATGGGC GGCATTGCGC TGATTGACCG TCTGGTGCCG
301 AACCCGCATG AAACTTTAGA CGCGCAAGAC CCGTCGTTTC AAGAAAGCAA
351 ACGCCGCCAT ATCGCGCGAG TCGGCATGAT GGCGGCGTTT GCGATTACTG
    CGCACAATTT CCCCGAAGGC TTGGCGACGT TTTTTGCCAC ATTGGAAAAT
451 CCAGCAGTCG GGATGCCTTT GGCCTTGGCG ATTGCCATCC ATAATATTCC
501 GGAGGGCATT TCCATCGCCG CGCCGGTTTA TTTTGCCACC CGCAGCCGTA
551 AGAAAACGGT GTGGGCGTGT CTGCTATCCG GCTTGGCCGA GCCGTTGGGG
601 GCGGCTTTGG GCTATTTGGT TTTGCAGCCG TTTTTGTCGC CTGCCGTGTT
651 TGGTTCGGTA TTCGGCGTGA TAGCCGGTGT GATGGTGTTT TTGGCGTTGG
701 ACGAGCTGnt GCCGGCTGCC AAACGCTATT CAGACGGCCA TGAAACCGTT
751 TACGGCCTGA CAACGGGTAT GGCGGTGATT GCCGTCAGCC TGGTATTGTT
801 CCATTTTTAA
```

This corresponds to the amino acid sequence <SEQ ID 2706; ORF 901>:

- 1 MPDFSMSNLA VAFSITLAAG LFTVLXSGLV MFSKTPNPRV LSFGLAFAGG
- 51 AMVYVSLTEI FSKSSEAFAE IYDKDHAFAA ATMAFLAGMG GIALIDRLVP



- 101 NPHETLDAQD PSFQESKRRH IARVGMMAAF AITAHNFPEG LATFFATLEN 151 PAVGMPLALA IAIHNIPEGI SIAAPVYFAT RSRKKTVWAC LLSGLAEPLG
- 201 AALGYLVLQP FLSPAVFGSV FGVIAGVMVF LALDELXPAA KRYSDGHETV
- 251 YGLTTGMAVI AVSLVLFHF*

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2707>: a901.seq

ATGCCCGATT TTTCGATGTC CAATTTGGCC GTTGCCTTTT CCATTACGTT GGCTGCCGGT TTGTTTACCG TATTAGGCAG CGGCTTGGTG ATGTTTTCCA 51 AAACGCCCAA TCCGCGCGTG TTGTCGTTTG GTTTGGCATT TGCCGGCGGT 101 GCGATGGTGT ATGTTTCCCT GACGGAGATT TTCAGTAAGT CCAGCGAGGC 151 201 GTTCGCTGAA ATTTATGATA AAGACCACGC GTTTGCGGCG GCGACCATGG 251 CATTTTGGC AGGGATGGGC GGCATTGCGC TGATTGACCG TCTGGTGCCG 301 AACCCGCATG AAACTTTAGA CGCGCAAGAC CCGTCGTTTC AAGAAAGCAA 351 ACGCCGCCAT ATCGCGCGAG TCGGCATGAT GGCGGCGTTT GCGATTACTG 401 CGCACAATTT CCCCGAAGGC TTGGCGACGT TTTTTGCCAC ATTGGAAAAT 451 CCAGCAGTCG GGATGCCTTT GGCCTTGGCG ATTGCCATCC ATAATATTCC 501 GGAGGGCATT TCCATCGCCG CGCCGGTTTA TTTTGCCACC CGCAGCCGTA AGAAAACGGT GTGGGCGTGT CTGCTATCCG GCTTGGCCGA GCCGTTGGGG GCGGCTTTGG GCTATTTGGT TTTGCAGCCG TTTTTGTCGC CTGCCGTGTT 601 651 TGGTTCGGTA TTCGGCGTGA TAGCCGGTGT GATGGTGTTT TTGGCGTTGG ACGAGCTGCT GCCGGCTGCC AAACGCTATT CAGACGGCCA TGAAACCGTT TACGGCCTGA CAATGGGCAT GGCGGTGATT GCCGTCAGCC TGGTATTGTT 751 801 CCATTTTTAA

### This corresponds to the amino acid sequence <SEQ ID 2708; ORF 901.a>: a901.pep

- MPDFSMSNLA VAFSITLAAG LFTVLGSGLV MFSKTPNPRV LSFGLAFAGG AMVYVSLTEI FSKSSEAFAE IYDKDHAFAA ATMAFLAGMG GIALIDRLVP 51
- NPHETLDAQD PSFQESKRRH IARVGMMAAF AITAHNFPEG LATFFATLEN 101
- PAVGMPLALA IAIHNIPEGI SIAAPVYFAT RSRKKTVWAC LLSGLAEPLG
- AALGYLVLQP FLSPAVFGSV FGVIAGVMVF LALDELLPAA KRYSDGHETV 201
- YGLTMGMAVI AVSLVLFHF* 251

#### m901/a901 98.9% identity in 269 aa overlap

	10	20	30	40	50	60
m901.pep	MPDFSMSNLAVAFS	ITLAAGLFT	VLXSGLVMFS1	KTPNPRVLSFG	LAFAGGAMV	VSLTEI
		1111111			1111111111	111111
a901	MPDFSMSNLAVAFS	ITLAAGLFT\	/LGSGLVMFS1	KTPNPRVLSFO	LAFAGGAMV	VSLTEI
	10	20	30	40	50	60
	70	80	90	100	110	120
m901.pep	FSKSSEAFAEIYDK	DHAFAAATM	AFLAGMGGIA	LIDRLVPNPHE	TLDAQDPSFC	DESKRRH
		]   [ ]		<b>i</b>	1111111111	111111
a901	FSKSSEAFAEIYDK	DHAFAAA <b>TM</b>	AFLAGMGGIA	LIDRLVPNPHE	TLDAQDPSFC	ESKRRH
	70	80	90	100	110	120
	130	140	150	160	170	180
m901.pep	IARVGMMAAFAITA	HNFPEGLATI	FATLENPAVO	GMPLALAIAIH	NIPEGISIAA	PVYFAT
				[[]]	1111111111	111111
a901	IARVGMMAAFAITA	HNFPEGLATI	FATLENPAVO	<b>GMPLALAIAI</b> H	NIPEGISIAA	PVYFAT
	130	140	150	160	170	180
.001	190	200	210	220	230	240
m901.pep	RSRKKTVWACLLSG	LAEPLGAALC	SYLVLQPFLSE	PAVFGSVFGVI	AGVMVFLALD	ELXPAA
- 0.01					111111111	[] []
a901	RSRKKTVWACLLSG	LAEPLGAALG	YLVLQPFLSE	PAVFGSVFGVI	AGVMVFLALD	ELLPAA
	190	200	210	220	230	240
	0.5.0					
0.01	250	260	270			
m901.pep	KRYSDGHETVYGLT	rgmaviavsi	VLFHFX			
001		111111111				

KRYSDGHETVYGLTMGMAVIAVSLVLFHFX

260

250

a901

. 200 B

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2709>:
           ATGCCGTCCG AACCCGAACG GCGGCATGGC AATACTGCCC TACCCTTCCC
        1
           GATAGCCGCA CGCCCAACGG TCGGTTTTTC CGGCAAGCCT TTCAAGATAA
       51
      101 CCGGCAAGTG TGTCGTATTG CGCCGCCGCA TTGTCCAAGC GGTTGATTTC
      151 ACGCCGCGC TGTTCGCCGT CGGGCATTTC GCCGATGTAC CAGCCTATGT
      201 GTTTGCGTGC GATGCGCACA CCGACGGTCT CACCATAAAA CGCGTGCATG
      251 GCGCGGATGT GGTTCAAAAT GGCGGCTCTG CATTCTGCCA AACTCAAGGC
      301 AGGCGGTAAA ACGCCGTGTT CGGCATAATG CTTCAAATCG CGGAAAAACC
      351 ACGGCCTGCC TTGCGCGCCG CGCCCTATCA TGATGCCGTC GGCGGCGGTT
      401 TGTTTGAGGA cggCGGCGGC TTTTTgcggc GAagtGATGT CGCCGTTGac
      451 cCaggCCGGG ATGTTCAGAc ggCTTTTGGT CTCGGcgatg agttCGTAAC
      501 gcGCCTCGCC TTTGTACATT TGCGTGcgcG CGcgcccgtg aacggcaaGg
      551 gcggcaatgc cgcaatcttc ggcgattttg gcgacggcgG gcaggttttg
      601 atcgtcgtcg tgccaaccca AacggGTTTT GaggGTAACG GGTAcgcCCG
          CCGCCTTgac caccgcctcc aAAatggcGg caaccagcgg CTCGTCCTGC
          ATCagcGCGC TACCGGCTTG GACGTTGCAC ACTTTCttgg cgggGCAGCC
           CATALLEATG TCGATGACCT GCGCCCCGAG TCCGACGTTg taacgcgccg
      801 CATCCGCCAT CtgttcggGG TCGCTGCCGG CAATCTGCAC GGCAACGATG
      851 CCGccttcat cggcaAAAtc actgcggtgc aGGGTTTTTC CGGTATTCCT
      901 GAGCGTCGGA TCGCTGGCCA GCATTTCGCA CACCGCCCAA CCTGCGCCAA
     951 ACGCCCGACA GAGGCGGCGG AAGGGTTTGT CGGCAATGCC CGCCATCGGC
     1001 GCAAGTGCGA TGGGGTTGTC GATAAAATAA CCGCCGATGT GCATAATGGG
     1051 CCCGCGTTTC AAAAAAGTGC GCCATTGTAC ATTTTTTAA
This corresponds to the amino acid sequence <SEQ ID 2710; ORF 902.ng>:
g902.pep
          MPSEPERRHG NTALPFPIAA RPTVGFSGKP FKITGKCVVL RRRIVQAVDF
       51 TPRLFAVGHF ADVPAYVFAC DAHTDGLTIK RVHGADVVQN GGSAFCQTQG
     101 RR*NAVFGIM LQIAEKPRPA LRAAPYHDAV GGGLFEDGGG FLRRSDVAVD
     151 PGRDVQTAFG LGDEFVTRLA FVHLRARAPV NGKGGNAAIF GDFGDGGQVL
     201 IVVVPTQTGF EGNGYARRLD HRLQNGGNQR LVLHQRATGL DVAHFLGGAA
     251 HIDVDDLRPE SDVVTRRIRH LFGVAAGNLH GNDAAFIGKI TAVQGFSGIP
     301 ERRIAGOHFA HRPTCAKRPT EAAEGFVGNA RHRRKCDGVV DKITADVHNG
     351 PAFQKSAPLY IF*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2711>:
m902.seq
          TTGCACTTTC AAAGGATAAT CAAGTGTTCA GAAGGCATTT GGGCGGTAGG
         CGCACGCCCA ACTGTCGGTT TTTTCGGCAA GTCTTTCAAG ATAACCTGCA
     101 AGCATGTCGT ATTGCGCCGC CGCACTGTCC AAGCGGTTGA TTTCACGACG
     151 TGTCTGTTCG CCGTcGGGCA TTTCGTCGAT GTACCAGCCT ATGTGTTTGC
     201 GTGCGATGCG CACACCGGCG GTGTCGCCGT AAAACGCGTG TATGGCGCGG
     251 ATGTGGTTCA AAATAGCGGC GGCGCATTCT GCCAAACTCA AGGCAGGCGG
     301 CAAAACACCG TGTTCGGCAT AATGTTTCAA ATCGCGGAAG AACCACGGCC
     351
          TGCCTTGCGC GCCGCGCCT ATCATAATGC CGTCGGCGGC GGTTTGTTTG
          AGGACGGCTT GGGCTTTTTG CGGCGAAGTA ATGTCGCCGT TGACCCAGAC
          CGGGATGTTC AGACGCCATT TGGTTTCGGC GATGAGTTCG TAACGCGCTT
         CGCCTTTGTA CATTTGCGTA CGCGTGCGTC CGTGGACGGC AAGGGCGGCG
     501
     551 ATGCCGCAAT CTTCGGCGAT TTTGGCGATG ACGGGCAGGT TTTGATGGTC
     601 GTCGTGCCAA CCCAAACGGG TTTTGAGGGT AACGGGTACG CCTGCCGCAC
         GGACGACGGC TTCCAAAATG GCGGCAACCA GCGGCTCGTT CTGCATCAGC
     701 GCGCTACCGG CTTGGACATT GCAGACTTTT TTAGCGGGAC AGCCCATGTT
     751 GATGTCGATA AGCTGCGCCC CAAGGCTGAC GTTGTAACGC GCGGCATCCG
     801 CCATCTGCTG CGGATCGCTT CCGGCAATCT GCACGGCAAC AATGCCGCCT
     851 TCATCGGCAA AATCGCTGCG GTGCAAGGTT TTTCTAGTAT TTCTGAGCGT
         CGGGTCGCTG GTCAGCATTT CGCACACCTGC CCAACCTGCG CCAAAATCTC
     901
     951 GGCAAAGTCG GCGGAACGGT TTGTCGGTAA TGCCCGCCAT CGGcGCAAGT
         GCGATGGGGT TGTCGATAAA ATAGCCGCCG ATGTGCATAA TGGATCCGCG
         TTTCAAAAAA GTACGCCATT GTACATTTTT TAA
This corresponds to the amino acid sequence <SEQ ID 2712; ORF 902>:
```

BNSDOCID: <WO___9957280A2_l_>

m902.pep					
1	LHFQRIIKCS	EGIWAVGARP	TVGFFGKSFK	ITCKHVVLRR	RTVOAVDETT
51	CLFAVGHFVD	VPAYVFACDA	HTGGVAVKRV	YGADVVONSG	GARCOTOGRA
101	QNTVFGIMFQ	IAEEPRPALR	AAPYHNAVGG	GLFEDGLGFI.	RRSNVAVDDD
151	RDVQTAFGFG	DEFVTRFAFV	HLRTRASVDG	KGGDAAI FGD	FGDDGOVI.MV
201	VVPTQTGFEG	NGYACRTDDG	FONGGNORLV	LHORATGLDT	ADEESCTABL
251	DVDKLRPKAD	VVTRGIRHLL	RIASGNLHGN	NAAFIGKIAA	VOGESSISED
301	RVAGQHFAHR	PTCAKISAKS	AERFVGNARH	RRKCDGVVDK	TAADVHMGGA
351	FQKSTPLYIF	*			TT WEST TIMES IN

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 902 shows 80.9% identity over a 345 aa overlap with a predicted ORF (ORF 902.ng) from *N. gonorrhoeae*: m902/g902

			•				
		10	20	30	40	50	
m902.pep	LHFC	RIIKCSEG	IWAVGARPTVG	FFGKSFKIT	CKHVVLRRRT	VQAVDFTTCL	FAVGHF
- 000			::[	1 11 1111			111111
g902	MPSEPE	RRHGNTAL	PFPIAARPTVG	FSGKPFKIT	GKCVVLRRRI'	VQAVDFTPRL	FAVGHF
		10	20	30	40	50	60
m000 mom	60	70	80	90	100	110	
m902.pep	VDVPAY	VFACDAHT	GVAVKRVYGA	DVVQNSGGA.	FCQTQGRRQN'	<b>TVFGIMFQIA</b>	EEPRPA
g902		1111111	1::::::::::::::::::::::::::::::::::::::	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1		1 1 1 1 1
g902	ADVPAI	VIACDALLI	GLIIKKANGA	DV VQNGGSA.	FCQTQGRRXN	WFGIMLQIA!	EKPRPA
		70	80	90	100	110	120
	120	120	7.40				
m902.pep		130	140	150	160	170	
mooz.pep	IRAAPI	I. IIIIIIII	EDGLGFLRRS	NVAVDPDRD	VQTAFGFGDE	VTRFAFVHLE	RTRASV
g902		:		: [ ] [ ] [ ]	[	.       :	:
9902	DRAAPI	nDAVGGGLE 130	EDGGGFLRRS	DVAVDPGRD	VQTAFGLGDE	VTRLAFVHLF	RARAPV
		130	140	150	160	170	180
	180	190	200				
m902.pep				210	220	230	
	:         :	HILLIII	DGQVLMVVVP	CIGFEGNGS	CACRIDDGFON	GGNORLVLHC	RATGL
g902							
3,00	NONGGIA	190	GGQVLIVVVP:	CTGFEGNG			RATGL
		130	200	210	220	230	240
	240	250	260	250			
m902.pep			KLRPKADVVTI	270	280	290	
	1:11:	:   :     :		GIRHLLKIA	ASGNLHGNNAA	FIGKIAAVQG	FSSIS
g902	DVAHFL	GGAAHTDVD	DLRPESDVVTF		:           :	11111:111	11:1
_		250	260	270	AGNLHGNDAA 280		
			200	270	280	290	300
	300	310	320	330	340	250	
m902.pep	ERRVAGO		AKISAKSAERI	VGNIDDU VGNDUDU	240 CDCVIII	350	
	111:11		:::	1111111111		DVHNGSAFQK	STPLY
g902			AKRPTEAAEGE	VGNARHRRK VGNARHRRK			1:
		310	320	330	340	DVHNGPAFQK 350	
					340	350	360
	360						
m902.pep	IFX						
_	111						
g902	IFX						

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2713>: a902.seq

- 1 TTGCACTTTC AAAGGATAAT CAAGTGTTCA GAAGGCATTT GGGCGGTAGG
- 51 CGCACGCCCA ACTGTCGGTT TTTTCGGCAA GTCTTTCAAG ATAACCTGCA

101	AACATGTCGT	ATTGCGCCGC	CGCACTGTCC	AAGCGGTTGA	TTTCACGACG
151	TGTCTGTTCG	CCGTCGGGCA	TTTCGTCGAT	GTACCAGCCT	
201	GTGCGATGCG	CACACCGGCG	GTGTCGCCGT	AAAACGCGTG	CATGGCTCGG
251	ATGTGGTTCA	AAATAGTGGC	GGTACATTCT	GCCAAACTCA	
301	TAAAACACCG	TGTTCGGCGT	AATGTTTCAA	ATCGCGGAAG	AACCACGGTC
351	TGCCTTGCGC	GCCGCGCCCT	ATCATAATGC	CGTCTGCGGC	GGTTTGTTTG
401	AGGACGGCTT	GGGCTTTTTG	CGGCGAGGTA	ATGTCGCCGT	TGACCCAGAC
451	CGGGATGTTC	AGACGGCATT	TGGTTTCGGC	AATCAGGTCG	TAAGCCGCTT
501	CGCCTTTGTA	CATTTGCGTG	CGCGTGCGTC	CGTGGACGGC	AAGGGCGGCA
551	ATGCCGCAAT	CTTCGGCGAT	TTTGGCGATG	ACGGGCAGGT	TTTGATGGTC
601	GTCGTGCCAA	CCCAAACGGG	TTTTGAGGGT	AACGGGTACG	CCCGCCGCTT
651	TGACCACCGC	CTCCAAAATG	GCGGCAACCA	GCGGCTCGTT	CTGCATCAGC
701	GCGCTACCGG	CTTGGACATT	GCAGACTTTT	TTAGCGGGAC	AGCCCATGTT
- 751	GATGTCGATA	AGCTGCGCCC	CAAGGCTGAC	GTTGTAACGC	GCGGCATCCG
801	CCATCTGCTG	CGGATCGCTT	CCGGCAATCT	GCACGGCAAC	AATGCCGCCT
851	TCATCGGCAA	AATCGCTGCG	GTGCAAGGTT	TTTCTAGTAT	TTCTGAGCGT
901	CGGGTCGCTG	GTCAGCATTT	CGCACACCGC	CCAACCTGCG	CCAAAATCTC
951	GGCAAAGTCG	GCGGAACGGT	TTGTCGGTAA	TGCCCGCCAT	CGGCGCAAGT
1001	GCGATGGGGT	TGTCGATAAA	ATAGCCGCCG	ATGTGCATAA	TGGATCCGCG
1051	TTTCAAAAAA	GTACGCCATT	GTACATTTTT	TAA	

# This corresponds to the amino acid sequence <SEQ ID 2714; ORF 902.a>:

1 LHFQRIIKCS EGIWAVGARP TVGFFGKSFK ITCKHVVLRR RTVQAVDFTT
51 CLFAVGHFVD VPAYVFACDA HTGGVAVKRV HGSDVVQNSG GTFCQTQGRR
101 *NTVFGVMFQ IAEEPRSALR AAPYHNAVCG GLFEDGLGFL RRGNVAVDPD
151 RDVQTAFGFG NQVVSRFAFV HLRARASVDG KGGNAAIFGD FGDDGQVLMV
201 VVPTQTGFEG NGYARRFDHR LQNGGNQRLV LHQRATGLDI ADFFSGTAHV
251 DVDKLRPKAD VVTRGIRHLL RIASGNLHGN NAAFIGKIAA VQGFSSISER
301 RVAGQHFAHR PTCAKISAKS AERFVGNARH RRKCDGVVDK IAADVHNGSA
351 FQKSTPLYIF *

### m902/a902 94.7% identity in 360 aa overlap

	10	20	30	40	50	60
m902.pep	LHFQRIIKCSEGIW	AVGARPTVG	FFGKSFKITCK	KHVVLRRRTVC	DAVDFTTCLFA	VCHEVD
		111111			1111111111	
a902	LHFQRIIKCSEGIW	AVGARPTVG	FFGKSFKITCK	CHVVLRRRTVC	AVDFTTCLFA	VGHEVD
	10	20	30	40	50	60
						•
	70	80	90	100	110	120
m902.pep	VPAYVFACDAHTGG	VAVKRVYGAI	OVVQNSGGAFC	QTQGRRQNTV	FGIMFOIAEE	PRPALR
				111111 111	11-111111	11 ) ( )
a902	VPAYVFACDAHTGG	VAVKRVHGSI	OVVQNSGGTFC	QTQGRRXNTV	FGVMFOIAEE	PRSALR
	70	80	90	100	110	120
	130	140	150	160	170	180
m902.pep	AAPYHNAVGGGLFE	DGLGFLRRSN	IVAVDPDRDVQ	TAFGFGDEFV	TRFAFVHLRT	RASVDG
	111111111111			111111111		11111
a902	AAPYHNAVCGGLFE	DGLGFLRRGN	IVAVDPDRDVQ	TAFGFGNQVV	SRFAFVHLRA	RASVDG
port of	130	140	150	160	170	180
000	190	200	210	220	230	240
m902.pep	KGGDAAIFGDFGDD	GQVLMVVVPI	`QTGFEGNGYA	CRTDDGFQNG	GNQRLVLHOR	ATGLDI
	1	/   /		1 1 :111	111111111	11111
a902	KGGNAAIFGDFGDDC	GOVLMVVVPT	'QTGFEGNGYA	RRFDHRLQNG	GNQRLVLHQR	ATGLDI
	190	200	210	220	230	240
	250					
	250	260	270	280	290	300
m902.pep	ADFFSGTAHVDVDKI	LRPKADVVTR	GIRHLLRIAS	GNLHGNNAAF:	IGKIAAVQGF	SSISER
a902			11111111	111111111	111111111	
a902	ADFFSGTAHVDVDKI	JRPKADVV <b>T</b> R	GIRHLLRIAS	GNLHGNNAAF:	IGKIAAVQGF	SSISER
	250	260	270	280	290	. 300
	210					
m902.pep	310	320	330	340	350	360
mauz.pep	RVAGQHFAHRPTCAK	LISAKSAERF	VGNARHRRKCI	DGVVDKIAAD	vhngsafoks'	<b>TPLYIF</b>

```
a902 RVAGQHFAHRPTCAKISAKSAERFVGNARHRRKCDGVVDKIAADVHNGSAFQKSTPLYIF
310 320 330 340 350 360

m902.pep X
I
a902 X
```

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2715>:
```

```
ATGGCAACAC AGGTAGGCGG TGCAAattcG gatgaggCAA GCCCCTGCTT
   1
      TCCTATTTCT GAGGTGGAaT TGGTGGGTGA aGaaacggct aAATTCCGgt
  51
      tTGCGCTcaa ccaTGCCTTG tgccAAACAC ATTTTGtttc cGgcaagtgt
 101
 151 CTGCATGCGG GCGACALTAA TCAAALCATG TCCTTAGCAC AAAATGCTTT
 201 GATCGGCAGG GGATATACCA CGACCCGTAT CTTGGCTGCG CCACAGGATT
      TGAATAGTGG caaGCTTCAA TTAACCCtga tgccggGCTA TCtgcgctcC
 251
      ATACGAATCG atcggtccaa cgatgatcaa ACCCATgcAG GACGTATTGC
 301
 351 AGCATTCCAA AACAAATTTC CCACCCGCTC GAACGATCTG TTGAATCTGC
      GTGATTTGGA ACAAGGACTG GAAAATCTCA AATGTCTCCC GACTGCGGAA
 401
      GCCGATCTCC AAATCgttcc cgtaGAGAGA GAACcAAACC AAAGTGATGT
      CGTGGTGCAA TGGCGGTAAC GTCTGCTGCC CTACTGTGTG AGTGTGGGGA
 501
      TGGATAATTC GGGTAGTGAG GCGACAGGAA AATACCAAGG AAATATCACT
 551
 601
      TTCTCTGCCG ACAATCCTTT TggactgAGT GATATGTTCT ATGTAAATTA
 651
      TGGACGTTCA ATTGGCGGTA CGCCCGATGA GGAAAATTTT GACGGCCATC
 701 GCAAAGAAGG CGGATCAAAC AATTACGCCG TACATTATTC AGCCCCTTTC
 751 GGTAAATGGA CATGGGCATT CAATCACAAT GGCTACCGTT ACCATCAGGC
 801 GGTTTCCGGA TTATCGGAAG TCTATGACTA TAATGGAAAA AGTTACAACA
 851 CTGATTTCGG CTTCAACCGC CTGTTGTATC GTGATGCCAA ACGCAAAACC
 901 TATCTCAGTG TAAAACTGTG GACGAGGGAA ACAAAAAGTT ACATTGATGA
 951 TGCCGAACTG ACTGTACAAC GGCGTAAAAC CACAGGTTGG TTGGCAGAAC
1001 TTTCCCACAA AGGATATATC GGTCGCAGTA CGGCAGATTT TAAGTTGAAA
1051 TATAAACACG GCACCGGCAT GAAAGATGCT CTGCGCGCGC CTGAAGAAGC
1101 CTTTGGCGAA GGCACGTCAC GTATGAAAAT TTGGACGGCA TCGGCTGATG
     TAAATACTCC TTTTCAAATC GGTAAACAGC TATTTGCCTA TGACACATCC
     GTTCATGCAC AATGGAACAA AACCCCGCTA ACATCGCAAG ACAAACTGGC
     TATCGGCGGA CACCACACCG TACGTGGCTT CGACGGTGAA ATGAGTTTGC
     CTGCCGAGCG GGGATGGTAT TGGCGCAACG ATTTGAGCTG GCAATTTAAA
1351 CCAGGCCATC AGCTTTATCT TGGGGCTGAT GTAGGACATG TTTCAGGACA
1401 ATCCGCCAAA TGGTTATCGG GCCAAACTCT AGCCGGCACA GCAATTGGGA
1451 TACGCGGGCA GATAAAGCTT GGCGGCAACC TGCATTACGA TATATTTACC
1501 GGCCGTGCAT TGAAAAAGCC cgaatatttt cAGACGAAGA Aatgggtaac
1551 ggggtTTCAG gtgggttatt cgTTTTGA
```

This corresponds to the amino acid sequence <SEQ ID 2716; ORF 903.ng>:

```
1 MATQVGGANS DEASPCFPIS EVELVGEETA KFRFALNHAL CQTHFVSGKC
51 LHAGDINQIM SLAQNALIGR GYTTTRILAA PQDLNSGKLQ LTLMPGYLRS
101 IRIDRSNDDQ THAGRIAAFQ NKFPTRSNDL LNLRDLEQGL ENLKCLPTAE
151 ADLQIVPVER EPNQSDVVVQ WRXRLLPYCV SVGMDNSGSE ATGKYQGNIT
201 FSADNPFGLS DMFYVNYGRS IGGTPDEENF DGHRKEGGSN NYAVHYSAPF
251 GKWTWAFNHN GYRYHQAVSG LSEVYDYNGK SYNTDFGFNR LLYRDAKRKT
301 YLSVKLWTRE TKSYIDDAEL TVQRRKTTGW LAELSHKGYI GRSTADFKLK
351 YKHGTGMKDA LRAPEEAFGE GTSRMKIWTA SADVNTPFQI GKQLFAYDTS
401 VHAQWNKTPL TSQDKLAIGG HHTVRGFDGE MSLPAERGWY WRNDLSWQFK
451 PGHQLYLGAD VGHVSGQSAK WLSGQTLAGT AIGIRGQIKL GGNLHYDIFT
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2717>:

```
1 ATGCAGCGTC AGCAGCACAT AGATGCTGAA TTGTTAACTG ATGCAAATGT
51 CCGTTTCGAG CAACCATTGG AGAAGAACAA TTATGTCCTG AGTGAAGATG
101 AAACACCGTG TACTCGGGTA AATTACATTA GTTTAGATGA TAAGACGGTG
```

```
151 CGCAAATTTT CTTTTCTTCC TTCTGTGCTC ATGAAAGAAA CAGCTTTTAA
           201 AACTGGGATG TGTTTAGGTT CCAATAATTT GAGCAGGCTA CAAAAAGCCG
               CGCAACAGAT ACTGATCGTG CGTGGCTACC TCACTTCCCA AGCTATTATC
               CAACCACAGA ATATGGATTC GGGAATTCTG AAATTACGGG TATCAGCAGG
               CGAAATAGGG GATATCCGCT ATGAAGAAAA ACGGGATGGG AAGTCTGCCG
           401 AGGGCAGTAT TAGTGCATTC AATAACAAAT TTCCCTTATA TAGGAACAAA
           451 ATTCTCAATC TTCGCGATGT AGAGCAGGGC TTGGAAAACC TGCGTCGTTT
               GCCGAGTGTT AAAACAGATA TTCAGATTAT ACCGTCCGAA GAAGAAGGCA
          501
          551 AAAGCGATTT ACAGATCAAA TGGCAGCAGA ATAAACCCAT ACGGTTCAGT
          601
               ATCGGTATAG ATGATGCGGG CGGCAAAACG ACCGGCAAAT ATCAAGGAAA
               TGTCGCTTTA TCGTTCGATA ACCCTTTGGG CTTAAGCGAT TTGTTLTATG
          651
               TTTCATATGG ACGCGGTTTG GCGCACAAAA CGGACTTGAC TGATGCCACC
          701
               GGTACGGAAA CTGAAAGCGG ATCCAGAAGT TACAGCGTGC ATTATTCGGT
          751
               GCCCGTAAAA AAATGGCTGT TTTCTTTTAA TCACAATGGA CATCGTTACC
          801
               ACGAAGCAAC CGAAGGCTAT TCCGTCAATT ACGATTACAA CGGCAAACAA
          851
               TATCAGAGCA GCCTGGCCGC CGAGCGCATG CTTTGGCGTA ACAGACTTCA
          901
               TAAAACTTCA GTCGGAATGA AATTATGGAC ACGCCAAACC TATAAATACA
          951
         1001 TCGACGATGC CGAAATCGAA GTACAACGCC GCCGCTCTGC AGGCTGGGAA
         1051 GCCGAATTGC GCCACCGTGC TTACCTCAAC CGTTGGCAGC TTGACGGCAA
         1101 GTTGTCTTAC AAACGCGGGA CCGGCATGCG CCAAAGTATG CCTGCACCGG
         1151 AAGAAAACGG CGGCGATATT CTTCCAGGTA CATCTCGTAT GAAAATCATT
         1201 ACTGCCAGTT TGGACGCAGC CGCCCCATTT AYTTTAGGCA AACAGCAGTT
         1251 TTTCTACGCA ACCGCCATTC AAGCTCAATG GAACAAAACG CCGTTGGTTG
         1301 CCCAAGATAA ATTGTCAATC GGCAGCCGCT ACACCGTTCG CGGATTTGAT
         1351 GGGGAGCAGA GTCTTTTCGG AGAGCGAGGT TTCTACTGGC AGAATACTTT
              AACTTGGTAT TTTCATCCGA ACCATCAGTT CTATCTCGGT GCGGACTATG
               GCCGCGTATC TGGCGAAAGT GCACAATATG TATCGGGCAA GCAGCTGATG
               GGTGCAGTGG TCGGCTTCAG AGGAGGGCAT AAAGTAGGCG GTATGTTTGC
               TTATGATCTG TTTGCCGGCA AGCCGCTTCA TAAACCCAAA GGCTTTCAGA
               CGACCAACAC CGTTTACGGC TTCAACTTGA ATTACAGTTT CTAA
This corresponds to the amino acid sequence <SEQ ID 2718; ORF 903>:
     m903.pep
            1 MQRQQHIDAE LLTDANVRFE QPLEKNNYVL SEDETPCTRV NYISLDDKTV
           51 RKFSFLPSVL MKETAFKTGM CLGSNNLSRL QKAAQQILIV RGYLTSQAII
          101 QPQNMDSGIL KLRVSAGEIG DIRYEEKRDG KSAEGSISAF NNKFPLYRNK
              ILNLRDVEQG LENLRRLPSV KTDIQIIPSE EEGKSDLQIK WQQNKPIRFS
               IGIDDAGGKT TGKYQGNVAL SFDNPLGLSD LFYVSYGRGL AHKTDLTDAT
               GTETESGSRS YSVHYSVPVK KWLFSFNHNG HRYHEATEGY SVNYDYNGKQ
              YQSSLAAERM LWRNRLHKTS VGMKLWTRQT YKYIDDAEIE VQRRRSAGWE
          351 AELRHRAYLN RWQLDGKLSY KRGTGMRQSM PAPEENGGDI LPGTSRMKII
              TASLDAAAPF XLGKQQFFYA TAIQAQWNKT PLVAQDKLSI GSRYTVRGFD
              GEQSLFGERG FYWQNTLTWY FHPNHQFYLG ADYGRVSGES AQYVSGKQLM
         501 GAVVGFRGGH KVGGMFAYDL FAGKPLHKPK GFQTTNTVYG FNLNYSF*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 903 shows 48.9% identity over a 519 aa overlap with a predicted ORF (ORF 903.ng) from N. gonorrhoeae: m903/g903

```
10
                           20
                                   30
                                            40
                                                     50
                                                             60
           {\tt MQRQQHIDAELLTDANVRFEQPLEKNNYVLSEDETPCTRVNYISLDDKTVRKFSFLPSVL}
m903.pep
                                     g903
                             MATQVGGANSDEASPCFPISEVELVGEETAKFRFALNHA
                                    10
                                             20
                                                      30
                  70
                           80
                                   90
                                           100
                                                    110
           {\tt MKETAFKTGMCLGSNNLSRLQKAAQQILIVRGYLTSQAIIQPQNMDSGILKLRVSAGEIG}
m903.pep
           g903
           \verb|LCQTHFVSGKCLHAGDINQIMSLAQNALIGRGYTTTRILAAPQDLNSGKLQLTLMPGYLR|
          40
                   50
                           60
                                    70
                                            80
```

m903.pep	DIRYEE	130 KRDGKSAEG	140 SSISAFNNKFI	150 PLYRNKILNLE	160 RDVEQGLENLR	170 RLPSVKTDI	180 QIIPSE
g903	:   ::	:   ::	1:11:11	:	:             : DLEQGLENLK	11	11.11
m903.pep	EE-GKS	190 DLOIKWOON	200 IK-PIRESIGI	210	220 YQGNVALSFD	230	
g903	:  ::	: :: :	: :	: :   : : :	:::    YQGNITFSAD	:    :  NPFGLSDMF:	11.111
m903 non	240	250	260	270	200	210 290	
m903.pep	::: SIGGTPI	:   : DEENFDGHR	:   : :  KEGGSNNYAV		FSFNHNGHRYI ::     :   WAFNHNGYRYI	1.1.	FILLE
	300	310	240 320	250 330	260 340	270 350	
m903.pep g903		:: : : :	: :   :::	11111:1:1	IDDAEIEVQRI      :      IDDAELTVQRI	RRSAGWEAEL	1 1
	360	290 370	300	310	320	330	15ARG1
m903.pep	::	GKLSYKRG	TGMRQSMPAP	EENGGDILPG'	400 TSRMKIITASI 	1	11 1
3703	340	350	360	370	TSRMKIWTASA 380	ADVNTPFQIG 390	KQLFA
m903.pep	:::		:    :  ::	: [ ] [ ] [ ] [ ] : [	460 SLFGERGFYWQ    :   :  :	1 1.1 1.1	. 1 1 . 1
g903	YDTSVHA 400	QWNKTPLTS 410	SQDKLAIGGH 420	HTVRGFDGEMS 430	ELPAERGWYWR 440	NDLSWOFKP 450	GHQLY
m903.pep	480 LGADYGR       :	490 VSGESAQY\    :  :::	500 /SGKQLMGAV :  :  ::	510 VGFRGGHKVGO	520 EMFAYDLFAGK :   : : :	530 PLHKPKGFQ	TTNTV
g903	LGADVGH 460	VSGQSAKWI 470	SGOTLAGTA: 480	IGIRGQIKLGO 490	NLHYDIFTGR 500	ALKKPEYFQ	TKKWV
m903.pep	540 YGFNLNY   :::						
g903	TGFQVGY 520						

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2719>: a903.seq

•					
1	ATGCAGCGTC	AGCAGCACAT	AGATGCTGAA	TTGTTAACTG	ATGCAAATGT
51	CCGTTTCGAG	CAACCATTGG	AGAAGAACAA	TTATGTCCTG	AGTGAAGATG
101	AAACACCGTG	TACTCGGGTA	AATTACATTA	GTTTAGATGA	TAAGACGGCG
151	CGCAAATTTT	CTTTTCTTCC	TTCTGTGCTC	ATGAAAGAAA	CACCTTTTAA
201	AACTGGGATG	TGTTTAGGTT	CCAATAATTT	GAGCAGGCTA	CAAAAAGCCC
251	CGCAACAGAT	ACTGATTGTG	CGTGGCTACC	TCACTTCCCA	AGCTATTATC
301	CAACCACAGA	ATATGGATTC	GGGAATTCTG	AAATTACGGG	TATCACCACC
351	CGAAATAGGG	GATATCCGCT	ATGAAGAAAA	ACGGGATGGG	AACTOTOCCO
401	AGGGCAGTAT	TAGTGCATTC	AATAACAAAT	TTCCCTTATA	TACCAACAAA
451	ATTCTCAATC	TTCGCGATGT	AGAGCAGGGC	TTGGAAAACC	TCCCTCCTTT
501	GCCGAGTGTT	AAAACAGATA	TTCAGATTAT	ACCGTCCGAA	GAAGAAGGCA
551	AAAGCGATTT	ACAGATCAAA	TGGCAGCAGA	ATA A A COORT	Page 2

The District Assets



# This corresponds to the amino acid sequence <SEQ ID 2720; ORF 903.a>: a903.pep

1	MQRQQHIDAE	LLTDANVRFE	QPLEKNNYVL	SEDETPCTRV	NYISLDDKTA
51	RKFSFLPSVL	MKETAFKTGM	CLGSNNLSRL	OKAAOOILIV	RGYLTSOATT
101	QPQNMDSGIL	KLRVSAGEIG	DIRYEEKRDG	KSAEGSISAF	NNKFPLYRNK
151	ILNLRDVEQG	LENLRRLPSV	KTDIQIIPSE	EEGKSDLOIK	WOONKPIRES
201	IGIDDAGGKT	TGKYQGNVAL	SFDNPLGLSD	LFYVSYGRGI.	VHKTDI.TDAT
251	GTETESGSRS	YSVHYSVPVK	KWLFSFNHNG	HRYHEATEGY	SVNYDYNGKO
301	YQSSLAAERM	LWRNRFHKTS	VGMKLWTRQT	YKYIDDAEIE	VORRESAGNE
351	AELRHRAYLN	RWQLDGKLSY	KRGTGMRQSM	PAPEENGGGT	TPGTSRMKTT
401	TAGLDAAAPF	MLGKQQFFYA	TAIQAQWNKT	PLVAODKLSI	GSRYTVXGED
451	GEQSLFGERG	FYWQNTLTWY	FHPNHQFYLG	ADYGRVSGES	AOYVSGKOLM
501	GAVVGFRGGH	KVGGMFAYDL	FAGKPLHKPK	GFQTTNTVYG	FNLNYSF*

### m903/a903 98.4% identity in 547 aa overlap

	10	20	30	40	50	60
m903.pep	MQRQQHIDAELLTDA	NVRFEQPLE	KNNYVLSEDE	TPCTRVNYIS	LDDKTVRKF	FLPSVL
- 000		11111111	1111111111	1111111111	11111:111	
a903	MQRQQHIDAELLTDA	NVRFEQPLE		TPCTRVNYIS	LDDKTARKES	FLPSVL
	10	20	30	40	50	60
	70	80	•			
m903.pep			90	100	110	120
myos.pep	MKETAFKTGMCLGSN	NUSRLQKAA	QILIVRGYL	TSQAIIQPQN	MDSGILKLRY	/SAGEIG
- 000				111111111	1111111111	
a903	MKETAFKTGMCLGSN	NLSRLQKAA(	QQILIVRGYL	TSQAIIQPQN	MDSGILKLRY	SAGEIG
	70	80	90	100	110	120
	130	140	150	160	170	180
m903.pep	DIRYEEKRDGKSAEG	SISAFNNKF	PLYRNKILNL	RDVEQGLENL	RRLPSVKTDI	OIIPSE
		11111111				111111
a903	DIRYEEKRDGKSAEG	SISAFNNKFI	PLYRNKILNL	RDVEOGLENL	RRLPSVKTDT	OTTPSE
	130	140	150	160	170	180
						200
	190	200	210	220	230	240
m903.pep	EEGKSDLQIKWQQNK	PIRFSIGID	AGGKTTGKY	OGNVALSFON	PT.GT.SDT.EVU	CVCDCT
		1111111111		111111111	111111111	111111
<b>a</b> 903	EEGKSDLQIKWQQNK	PIRFSIGIDI	AGGKTTGKY	OGNVALSEDN	PT.GT.SDT.EVV	EVCDCT
	190	200	210	220	230	240
				220	230	240
	250	260	270	280	290	300
m903.pep	AHKTDLTDATGTETE	SGSRSYSVHY	SVPVKKWLF	SENHNGHRVH	Z JU Ta TECVCINIV	DANCKO
	:				PUTEGISANI	DINGKO
a903	VHKTDLTDATGTETE:	SGSRSYSVHY	SVPVKKWLE	SENHUCHDVII	!	[   ]   ]
				or minigurial	PAIFGARANA	DYNGKQ

BNSDOCID: <WO___9957280A2_I_>

	250	260	270	280	290	300
m903.pep	310 YQSSLAAERMLWRN	320 RLHKTSVGM	330 KLWTRQTYKY:	340 IDDAEIEVORI	350 RRSAGWEAET	360 RHRAYI.N
a903		1:111111				1111111
m903.pep	370 RWQLDGKLSYKRGT	380 GMROSMPAPE	390	400 SDMKT1770	410	420
a903			:     ENGGGTIPGT		111111 11	1111111
	430	380 440	390 450	400 460	410 470	420 480
m903.pep	TAIQAQWNKTPLVA	1       1   1   1   1   1   1	11 111111	LFGERGFYWC	NTLTWYFHP	NHQFYLG
a903	TAIQAQWNKTPLVA 430	QDKLSIGSRY 440	TVXGFDGEQS 450	LFGERGFYWC 460	NTLTWYFHP1 470	NHQFYLG 480
m903.pep	490 ADYGRVSGESAQYV	500 SGKQLMGAVV	510 GFRGGHKVGG	520 MFAYDLFAGK	530 PLHKPKGFO	540 TTNTVYG
a903	ADYGRVSGESAQYV	111111	111111111		F11111111	
m903.pep	FNLNYSFX				330	340
a903						

# The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2721>:

```
ATGATGCAGC ACAATCGTTT CTTCGCGGTC GGGGCCGGTG GAGACGATGG
     CGACCGGCGC GCCGCAGACT TCTTCAATCC GTTTCAAATA TGCTTTGGCA
  51
 101 TTGGCAGGCA ATGCGTCGTA GCTTTTCACG CCGACAGTCG ATTCGCGCCA
 151 GCCGGGCATG GTTTCGTAAA TCGGTTTGCA GGTTTCCACC GCATCCGAAC
 201 CGCAAGGCAG GATGTCGGTT TTGCCGCCGC CTGGCAATTC GTAGCCGACG
      CAGATATTGA TGGTTTCAAC GCCGTCCATT ACATCGAGTT TGGTAATGCA
      CATACCGGAA ATGCCGTTGA TTTGGATGGA GCGTTTCAGG GCGGCGGCAT
      CAAACCAGCC GCAGCGGCGC GCGCGGCCGG TTACCGAACC GAATTCGTGT
     CCGCGCTCCG CCAAACCTGC GCCTACTTCG TCGAACAATT CGGTCGGGAA
 401
 451 CGGGCCCGAA CCGACGCGCG TGGTATAGGC TTTGACGATG CCCAAAACAT
 501 AATCCAGCAT TTGAGGACCT ACGCCCGCGC CTGCCGAAGC CGCGCCGGCG
 551 AGACAGTTGG ACGAGGTAAC GAAGGGGTAA GTGCCGTAGT CGATGTCCAA
 601 CAACGCACCT TGCGCGCCTT CAAACAGCAG TTTTTCGCCG TTTTTGTTTT
 651 TTTCGTTCAA CACGCgggaC acgtcgGCAA TCATCGGCGC AATGCGCGGC
 701 GCGACTTTTT CGATAACCGC CATCACGTCT TCCGCTTTAA CCGGTCCGGC
 751 GTTATGCAGG TATTGGAGTT GGACGTTGTA ATAGGCAAGG ACGGCATCCA
 801 GTTTTTCACG CAGTTTTTCA GGATGCAGCA AATCGGCGGC GCGAATGGCG
 851 CGGCGTGCCA CTTTGTCTTC GTAGGCAGGG CCGATGCCGC GGCCGGTCGT
 901 GCCGATTTTG CCTTTGCCGC GCGATGCTTC GCGGGCTTGG TCGAGCGCGA
     TGTGGTAAGG CAGGATCAGC GGGCAGGTCG GCGCGATTTT CAGACGGCCT
     TCGACGTTTT TCACGCCTGC CGCGTTCAAC TCGTCGATTT CGCCCAACAG
1001
1051 GGCTTCGGGg gaaacgAcaa cGCCCGAACC gatGAAGCAA TCCAATCCTT
1101 CGTGCAGGAT ACCGCTCGGA ATCAGGCGCA AAATGGTTTT TTTGCCGCCG
1151 ACGACCAAGG TATGGCCCGC ATTGTGGCCG CCTTGGAAGC GCACgacGct
     GCCGGCTTCT TCCGCCAGCC AGTCAACGAT TTTACCTTTA CCCTCGTCGC
1201
     CCCACTGTGC GCCGATTACT ACAACATTTT TAGCCATAGC CATATAACCT
1301 ATCGatatTA A
```

This corresponds to the amino acid sequence <SEQ ID 2722; ORF 904.ng>: g904.pep

. 1 MMQHNRFFAV GAGGDDGDRR AADFFNPFQI CFGIGRQCVV AFHADSRFAP

The second second



```
51 AGHGFVNRFA GFHRIRTARQ DVGFAAAWQF VADADIDGFN AVHYIEFGNA
            101 HTGNAVDLDG AFQGGGIKPA AAARAAGYRT EFVSALRQTC AYFVEQFGRE
                RARTDARGIG FDDAQNIIQH LRTYARACRS RAGETVGRGN EGVSAVVDVQ
           151
                QRTLRAFKQQ FFAVFVFFVQ HAGHVGNHRR NARRDFFDNR HHVFRFNRSG
           201
           251 VMQVLELDVV IGKDGIQFFT QFFRMQQIGG ANGAACHFVF VGRADAAAGR
           301 ADFAFAARCF AGLVERDVVR QDQRAGRRDF QTAFDVFHAC RVQLVDFAQQ
           351 GFGGNDNART DEAIQSFVQD TARNQAQNGF FAADDQGMAR IVAALEAHDA
                AGFFRQPVND FTFTLVAPLC ADYYNIFSHS HITYRY*
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2723>:
      m904.seg
                ATGATGCAGC ACAATCGTTT CTTCTCGGTC GGGGCCGGTG GAGACGATGG
                CGACCGGCGC GCCGCAGACT TCTTCAATCC GTTTCAAATA TGCTTTGGCG
            51
                TTTTCGGGCA ATGCGCCGTA GTCCTTCACG CCGAAAGTGG ATTCGCGCCA
           101
                GCCGGGCATG GTTTCGTAAA TCGGCTTGCA GGTTTCCACC GCATCGGAAC
           151
                CGCAAGGCAG GATGTCGGTT TTGCCGCCGT CGGGCAATTC ATAGCCGACG
           201
                CAGATATTGA TGGTTTCAAC GCCGTCCATT ACATCGAGTT TAGTAATACA
           251
                CATACCGGAA ATGCCGTTGA TTTGGATGGA GCGTTTCAGG GCGGCGGCAT
           301
                CAAACCAGCC GCAGCGGCGT GCGCGTCCGG TTACCGAACC GAATTCGTGT
           351
                CCGCGTTCTG CCAAACCTAC GCCTACTTCG TCGAACAATT CGGTCGGGAA
           401
                CGGGCCCGAA CCGACGCGCG TGGTATAGGC TTTGACGATG CCCAAAACAT
           451
           501 AATCCAGCAT TTGAGGACCT ACGCCCGCGC CTGCCGAAGC TGCGCCCGCC
           551 AGACAGTTGG ACGAGGTAAC GAAGGGATAA GTGCCGTAGT CGATGTCCAA
           601 CAACGCACCT TGCGCGCCTT CAAACAGCAG TTTTTCGCCG TTTTTGTTTT
                TCTCGTTCAA CACGCGGGAC ACGTCGGTAA TCATCGGCGC AATGCGCGGC
           651
           701 GCGACTTTTT CGATAACCGC CATCACGTCT TCCGCTTTAA CCGGCTCGGC
           751 ATTGTGCAGA TGTTGCAGTT GGACATTGTA ATAGGCAAGG ACGGCATCCA
           801 GTTTTTCACG CAGTTTYTCA GGATGCAGCA AATCGGCGGC GCGAATGGCG
           851 CGGCGTGCCA CTTTGTCTTC GTAGGCAGGG CCGATGCCGC GGCCGGTCGT
           901 GCCGATTTTG CCTTTGCCGC GCG.ATCTTC GCGGGCTTGG TCGAGCGCGA
           951 TGTGGTAAGG CAGGATCAGC GGGCAGGTCG GCGCGATTTT CAGACGGCCT
               TCGACGTTTT TCACGCCTGC CGCGTTCAAC TCGTCGATTT CGCCCAACAG
               GGCTTCGGGG GAGACGACAA CGCCCGAACC GATGAAGCAG TCCAAACTTT
                CATGCAGGAT GCCGCTCGGA ATCAGGCGCA AAATGGTTTT TTTGCCGCCG
               ACAACCAAGG TATGGCCCGC ATTGTGGCCG CCTTGGAAGC GCACCACGCC
               GCCGGCTTCT TCCGCCAGCC AGTCAACGAT TTTACCTTTA CCCTCGTCGC
          1201
               CCCACTGTGC GCCGATTAST ACAACATTTT TAGCCATAGC CATATAACCT
         1251
         1301 ATCGATATTA A
This corresponds to the amino acid sequence <SEQ ID 2724; ORF 904>:
     m904.pep
               MMQHNRFFSV GAGGDDGDRR AADFFNPFQI CFGVFGQCAV VLHAESGFAP
               AGHGFVNRLA GFHRIGTARQ DVGFAAVGQF IADADIDGFN AVHYIEFSNT
               HTGNAVDLDG AFQGGGIKPA AAACASGYRT EFVSAFCQTY AYFVEQFGRE
          151 RARTDARGIG FDDAQNIIQH LRTYARACRS CARQTVGRGN EGISAVVDVQ
               QRTLRAFKQQ FFAVFVFLVQ HAGHVGNHRR NARRDFFDNR HHVFRFNRLG
          251 IVQMLQLDIV IGKDGIQFFT QFXRMQQIGG ANGAACHFVF VGRADAAAGR
          301 ADFAFAAXIF AGLVERDVVR QDQRAGRRDF QTAFDVFHAC RVQLVDFAQQ
          351 GFGGDDNART DEAVQTFMQD AARNQAQNGF FAADNQGMAR IVAALEAHHA
               AGFFRQPVND FTFTLVAPLC ADXYNIFSHS HITYRY*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 904 shows 90.4% identity over a 436 aa overlap with a predicted ORF (ORF 904.ng)
from N. gonorrhoeae:
     m904/g904
                          10
                                    20
                                              3.0
                                                        40
                  {\tt MMQHNRFFSVGAGGDDGDRRAADFFNPFQICFGVFGQCAVVLHAESGFAPAGHGFVNRLA}
     m904.pep
                  {\tt MMQHNRFFAVGAGGDDGDRRAADFFNPFQICFGIGRQCVVAFHADSRFAPAGHGFVNRFA}
     g904
                          10
                                    20
                                              30
                                                       40
                                                                 50
                          70
                                    80
                                              90
                                                      100
                                                                110
                                                                          120
```

m904.pep	GFHRIGTARODVGF	AAVGOFIAD	ADIDGFNAVH	YIEFSNTHTG!	NAVDLDGAFQ	GGGIKPA
g904		:   :	] [ ] [ ] [ ] ] ] ] [ ]	:   :		111111
5	GFHRIRTARQDVGF	80	90	100	NAVDLDGAFQ 1 <b>1</b> 0	GGGIKPA 120
	130	140	150	1.60		
m904.pep	AAACASGYRTEFVS	AFCQTYAYF	VEQFGRERARI	160 DARGIGFDD	170 AONIIOHLRT	180 YARACRS
~004		1:	1111111			111111
g904	AAARAAGYRTEFVSI 130	ALRQTCAYF 140	VEQFGRERART 150	DARGIGFDD: 160		
		110	130	100	170	180
	190	200	210	220	230	240
m904.pep	CARQTVGRGNEGISA	AVVDVQQRTI	LRAFKQQFFAV	FVFLVQHAGE		
g904	:       :   RAGETVGRGNEGVS	VVDVQQRTI		 FVFFVOHAGE	 WGNHPPNADI	
	190	200	210	220	230	240
	250	260	270			
m904.pep	HHVFRFNRLGIVQMI	QLDIVIGK	270 OGIOFFTOFXR	280 MOOIGGANGA	290 ACHEVEVGD	300
		:     :		11111	111111.	
g904	HHVFRFNRSGVMQVI 250	ELDVVIGKI 260	OGIQFFTQFFR	MQQIGGANGA	ACHFVFVGR <i>i</i>	DAAAGR
	230	260	270	280	290	300
	310	320	330	340	350	360
m904.pep	ADFAFAARIFAGLVE	RDVVRQDQF	RAGRRDFOTAF	DVFHACRVOL	VDFAQQGFG	DDNART
g904	ADFAFAARCFAGLVE	RDVVRODOR	LAGREDFOTAF	DVEHACRYOL	VDEN OCCERC	:
	310	320	330	340	350	360
	370	380	200			
m904.pep	DEAVOTFMODAARNO		390 NOGMARIVAA	400 Leahhaacee	410	420
			:			11111
g904	DEAIQSFVQDTARNQ 370	AQNGFFAAD	DOGMARIVAA	LEAHDAAGFF:	RQPVNDFTFT	LVAPLC
	370	380	390	400	410	420
	430					
m904.pep	ADXYNIFSHSHITYR	YX ! I				
g904	ADYYNIFSHSHITYR	YX				
	430					

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2725>: a904.seq

1		ACAATCGTTT		GGGGCCGGTG	GAGACGATGG
51		ACCGCAGACT	TCTTCAATCC	GTTTCAAATA	TGCTTTGGCA
101	TTGGCAGGTA	ATGCGTCGTA	GCTTTTCACG	CCGAAAGTGG	ATTCGCTCCA
151	ACCGGGCATG	GTTTCGTAAA	TCGGCTTGCA	GGCTTCTACC	GCATCAGAGC
201	CGCAAGGCAG	GATGTCGGTT	TTGCCGCCGT	CGGGCAATTC	GTAGCCGACG
251	CAGATATTGA	TGGTTTCAAC	GCCGTCCATT	ACATCGAGTT	TGGTAATACA
301	CATACCGGAA	ATGCCGTTGA	TTTGGATGGA	GCGTTTCAGG	GCGGCGGCAT
351	CAAACCAGCC	GCAGCGGCGT	GCGCGTCCGG	TTACCGAACC	GAATTCGTGT
401	CCGCGTTCTG	CCAAACCTGC	TCCGACTTCG	TCGAACAATT	CGGTCGGGAA
451	CGGGCCCGAA	CCGACGCGCG	TGGTATAGGC	TTTGACGATG	CCCAAAACAT
501	AATCCAGCAT	TTGAGGGCCT	ACGCCCGCGC		CGCGCCGGCG
551	AGGCAGTTGG	ACGAAGTAAC	GAAGGGGTAA		CGATGTCCAA
601	CAACGCACCT	TGCGCGCCTT		TTTTTCGCCG	TTTTTGTTTT
651	TTTCGTTCAA	CACGCGGGAC	ACGTCGGTAA		AATGCGCGGC
701	GCGACTTTTT	CGATAACCGC	CATCACGTCT		
751	ATTGTGCAGA	TGTTGCAGTT	GGACGTTGTA		
801	GTTTTTCACG	CAGTTTTTCA	GGATGCAGCA		ACGGCATCCA
851	CGGCGTGCCA	CTTTGTCTTC	GTAGGCAGGG		GCGAATGGCG
901	GCCGATTTTG	CCTTTGCCGC	GCGATGCTTC		
			COGFIGCITO	1 CGGGCTTGG	TUGAGCGCGA

WO 99/57280



## This corresponds to the amino acid sequence <SEQ ID 2726; ORF 904.a>:

• -					
1	MMQHNRFFAV	GAGGDDGDRR	TADFFNPFOI	CFGIGR*CVV	AFHAESGFAP
51	TGHGFVNRLA	GFYRIRAARQ	DVGFAAVGOF	VADADIDGEN	AVHYTERONT
101	HTGNAVDLDG	AFQGGGIKPA	AAACASGYRT	EFVSAFCOTC	SDEVENERRE
151	RARTDARGIG	FDDAQNIIQH	LRAYARACRS	RAGEAVGRSN	FGVSAVVDVO
201	QRTLRAFKQQ	FFAVFVFFVQ	HAGHVGNHRR	NARRDFFDNR	HHVEDENDIC
251	IVQMLQLDVV	ISKDGIQFFT	OFFRMOOIGG	ANGAACHEVE	VGRADAAAGR
301	ADFAFAARCF	SGLVERDVIR	ODORAGRADE	OTAFDVFHAC	RVOLVDEAGO
351	GFGGDDNART	DEAVQTFMQD	AARNOAONGF	FAADNOGMTR	TWANTENDENCE
401	SGFFRQPVND	FTFTLVAPLC	ADYYNTESHS	HTTYRY*	TANDEMUNA
				**** * ****	

### m904/a904 91.3% identity in 436 aa overlap

	10	20	30	40	50	60
m904.pep	MMQHNRFFSVGAGG	DDGDRRAADI	FINPFQICFGV	FGQCAVVLHA	ESGFAPAGH	GEVNRLA
- 004	11111111111	1   1   1   1 :   1		1 . 1	11111111	
a904	MMQHNRFFAVGAGG	DDGDRRTADE	FNPFQICFGI	GRXCVVAFHA	ESGFAPTGHO	SFVNRLA
	10	20	30	40	50	60
	7.0					
m904.pep	70	80	90	100	110	120
mso4.pep	GFHRIGTARQDVGF	AAVGQFIADA	DIDGFNAVHY	IEFSNTHTGN	AVDLDGAFQG	GGIKPA
a904	11:11 : [ ] [ ] [ ] [	[ ]	1   1   1   1   1   1   1   1	111-11111	3 1 1 1 1 1 1 1 1 1	1381114
a 904	GFYRIRAARQDVGF7	AAVGQEVADA	DIDGFNAVHY:	IEFGNTHTGN	AVDLDGAFQG	GGIKPA
	70	80	90	100	110	120
	130	140	150			
m904.pep			150	160	170	180
moo4.beb	AAACASGYRTEFVS!	AFCOTIATEV	EQFGRERARTI	DARGIGFDDA	QNIIQHLRTY	ARACRS
a904		TGOTGOT			1111111111	11111
a 304	AAACASGYRTEFVSA 130	RECOTOSDEV	EQFGRERARTI	DARGIGFDDA	QNIIQHLRAY	ARACRS
	130	140	150	160	170	180
	190	200	010			
m904.pep			210	220	230	240
moo4.pcp	CARQTVGRGNEGISA	CAADAÕÕKIT	RAFKQQFFAVE	VFLVQHAGH	VGNHRRNARR	DFFDNR
a904	::   :  :     PACEAUCRENECUE		1			111111
ujoa	RAGEAVGRSNEGVSA 190	200	RAFKQQFFAVE	VFFVQHAGH		DFFDNR
	190	200	210	220	230	240
	250	260	070			
m904.pep			270	280	290	300
moo4.pcp	HHVFRFNRLGIVQML	CHDIAICKD	GIOFFIGEXRM	IQQIGGANGA <i>I</i>	ACHFVFVGRA	DAAAGR
a904	HHVEREHRIGIVONI	111:11:11				
4501	HHVFRFHRLGIVQML 250	260	GIOLLIOLLKW	IQQIGGANGA	ACHFVFVGRA	
	230	260	270	280	290	300
	310	320	330	240		
m904.pep	ADFAFAAXIFAGLVE	BUMBUUUD:	33U מת מתחשת ממחת	340	350	360
		TILL TILL	HGKKDEQIAED	VFHACRVQLV	/DFAQQGFGG	DDNART
a904	ADFAFAARCESCLVE			1111111111	.	
	ADFAFAARCFSGLVE 310	320	330	VEHACRVQLV		
	310	520	330	340	350	360
	370	380	390	400	410	
m904.pep	DEAVQTFMQDAARNQ		JOEMAD TUANT	400 77411776	410	420
• •		11111111	· Activity AWI	EMMMAGE'E'R	OF VNDFTFT]	LVAPLC
a904	DEAVOTFMQDAARNO.	AONGFFAADN	I I I I I I I I I I I I I I I I I I I	11111:111		
	370	380	390	EARHASGFFR 400		
			370	400	410	420

```
1297
     m904.pep
                   ADXYNIFSHSHITYRYX
                  11 11111111 111
      a904
                   ADYYNIFSHSHITXRYX
                          430
g906.seq
          not found yet
g906.pep
           not found yet
The following partial DNA sequence was identified in N.meningitidis <SEQ ID 2727>:
m906.seq
       1
          ATGAAATATA TCGTATCAAT CTCTCTGGCT ATGGGATTGG CTGCCTGTTC
      51 GTTTGGGGA TTTAAACCAA ATCCGTGGGA CGCCGCGTCA TTTTGGGAAT
     101 TGAAAAATTA CGCCAATCCC TATCCGGGAT CAGCCTCGGC GGCACTTGAC
     151 CAATATCCAT CGAAAGCAAG ACGAAGGCAA CTGAAAGACA TGCAAGAGTG
     201 CGGCTATGAC CCAATAGACG GCGGAAAGTC TGAAGCAGAT GCCTGCCTGA
     251 GGAAAAAGG CTGGTGTCGT AAGGGTTTCG ACCCTTATCC CGAAAACAAA
     301 AAATACGAAT GGCCTCGAGA AGAAGGAAAA ACAAAATGA
This corresponds to the amino acid sequence <SEQ ID 2728; ORF 906>:
m906.pep
          MKYIVSISLA MGLAACSFGG FKPNPWDAAS FWELKNYANP YPGSASAALD
      51 QYPSKARRRQ LKDMQECGYD PIDGGKSEAD ACLRKKGWCR KGFDPYPENK
     101 KYEWPREEGK TK*
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2729>:
     g907.seq (partial)
            1 ATGAAAAAAC CGACCGATAC CCTACCCGTC AATCTgcaAC GCCGCCGCCT
           51 GCTGTGTGCC GCCGGCGCG TGTTGATCAG CCCGCTGGCG CACGCCGGCG
          101 CGCAACGTGA AGAAACGCLL GCCGACGATG TGGCTTCCGT GATGAGGAGT
              TCTGTCGGCA GCGTCAATCC GCCGAGGCTG GTGTTCGACA ATCCGAAAGA
              GGGCGAACGT TGGTTGTCCG CGATGTCGGC ACGTTTGGCA AGATTCGTCC
          251 CCGACGAGGG GGAGCGGCGC AGGCTGCTGG TCAATATCCA ATACGAAAGC
          301 AGCCGGGCCG GTTTGGATAC GCAGATTGTG TTGGGGCTGa ttgaagtgga
          351 aagcgggtac cgagctcgaa tcatatca..
This corresponds to the amino acid sequence <SEQ ID 2730; ORF 907.ng>:
     g907.pep (partial)
              MKKPTDTLPV NLQRRRLLCA AGALLISPLA HAGAQREETL ADDVASVMRS
              SVGSVNPPRL VFDNPKEGER WLSAMSARLA RFVPDEGERR RLLVNIQYES
              SRAGLDTQIV LGLIEVESGY RARIIS...
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2731>:
     m907.seq
              ATGAGAAAAC CGACCGATAC CCTACCCGTT AATCTGCAAC GCCGCCGCCT
           1
           51 GTTGTGTGCC GCCGGTGCGT TGTTGCTCAG TCCTCTGGCG CACGCCGGCG
              CGCAACGTGA GGAAACGCTT GCCGACGATG TGGCTTCCGT GATGAGGAGT
         101
              TCTGTCGGCA GCGTCAATCC GCCGAGGCTG GTGTTTGACA ATCCGAAAGA
              GGGCGAGCGT TGGTTGTCTG CCATGTCGGC ACGTTTGGCA AGGTTCGTCC
              CCGAGGAGGA GGAGCGGCGC AGGCTGCTGG TCAATATCCA GTACGAAAGC
         251
         301 AGCCGGGCCG GTTTGGATAC GCAGATTGTG TTGGGGCTGA TTGAGGTGGA
         351 AAGCGCGTTC CGCCAGTATG CAATCAGCGG TGTCGGCGCG CGCGGCCTGA
         401 TGCAGGTTAT GCCGTTKTGG AAAAACTACA TCGGCAAACC GGCGCACAAC
         451 CTGTTCGACA TCCGCACCAA CCTGCGTTAC GGCTGTACCA TCCTGCGCCA
         501 TTACCGGAAT CTTGAAAAAG GCAACATCGT CCGCGCGCTT GCCCGCTTTA
         551 ACGGCAGCTT GGGCAGCAAT AAATATCCGA ACGCCGTTTT GGGCGCGTGG
         601 CGCAACCGCT GGCAGTGGCG TTGA
```

This corresponds to the amino acid sequence <SEQ ID 2732; ORF 907>: m907.pep

- 1 MRKPTDTLPV NLQRRRLLCA AGALLLSPLA HAGAQREETL ADDVASVMRS
- 51 SVGSVNPPRL VFDNPKEGER WLSAMSARLA RFVPEEEERR RLLVNIQYES
- 101 SRAGLDTQIV LGLIEVESAF RQYAISGVGA RGLMQVMPXW KNYIGKPAHN

St. 21 7/3

#### 1298

151 LFDIRTNLRY GCTILRHYRN LEKGNIVRAL ARFNGSLGSN KYPNAVLGAW 201 RNRWOWR* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae ORF 907 shows 92.9% identity over a 126 aa overlap with a predicted ORF (ORF 907.ng) from N. gonorrhoeae: q907/m907 10 20 30 40 50 60  ${ t MKKPTDTLPVNLQRRRLLCAAGALLISPLAHAGAQREETLADDVASVMRSSVGSVNPPRL}$ g907.pep MRKPTDTLPVNLQRRRLLCAAGALLLSPLAHAGAQREETLADDVASVMRSSVGSVNPPRL m907 10 30 40 70 80 90 100 120 VFDNPKEGERWLSAMSARLARFVPDEGERRRLLVN1QYESSRAGLDTQIVLGL1EVESGY g907.pep 18414164444444646464 VFDNPKEGERWLSAMSARLARFVPEEEERRRLLVNIQYESSRAGLDTQIVLGLIEVESAF m907 70 80 90 100 110 120 g907.pep RARIIS RQYAISGVGARGLMQVMPXWKNYIGKPAHNLFDIRTNLRYGCTILRHYRNLEKGNIVRAL m907 130 140 150 170 180 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2733>: a907.seg ATGAAAAAAC CGACCGATAC CCTACCCGTC AATCTGCAAC GCCGCCGCCT 51 ATTGTGTGCT GCCGGCGCG TGTTGCTCAG CCCGCTGGCA CAAGCCGGCG CGCAACGTGA AGAAACGCTT GCCGACGATG TGGCTTCCGT GATGAGGAGC 101 TCTGTCGGCA GCATAAATCC GCCGAGGCTG GTGTTCGACA ATCCGAAAGA 151 201 GGGCGAGCGT TGGCTGTCCG CGATGTCTGC TCGGTTGGCA AGGTTCGTCC CCGATGAGGA GGAGCGGCGC AGGCTGCTGG TCAATATCCA GTACGAAAGC 251 301 AGCCGGGCCG GTTTGGATAC GCAGATTGTG TTGGGGCTGA TTGAGGTGGA AAGCGCGTTC CGCCAGTATG CAATCAGCGG TGTCGGCGCG CGCGGCCTGA 351 TGCAGGTTAT GCCGTTTTGG AAAAACTACA TCGGCAAACC GGCGCACAAC 401 CTGTTCGACA TCCGCACCAA CCTGCGTTAC GGCTGTACCA TCCTGCGCCA 451 501 TTACCGGAAT CTTGAAAAAG GCAACATCGT CCGCGCACTC GCCCGTTTTA 551 ACGGTAGCCT CGGCAGCAAT AAATATCCGA ACGCCGTTTT GGGCGCGTGG 601 CGCAACCGCT GGCAGTGGCG TTGA This corresponds to the amino acid sequence <SEQ ID 2734; ORF 907.a>: a907.pep MKKPTDTLPV NLQRRRLLCA AGALLLSPLA QAGAQREETL ADDVASVMRS 1 SVGSINPPRL VFDNPKEGER WLSAMSARLA RFVPDEEERR RLLVNIQYES 51 SRAGLDTQIV LGLIEVESAF RQYAISGVGA RGLMQVMPFW KNYIGKPAHN LFDIRTNLRY GCTILRHYRN LEKGNIVRAL ARFNGSLGSN KYPNAVLGAW 201 RNRWQWR* 97.6% identity in 207 aa overlap m907/a907 10 20 30 40  ${\tt MRKPTDTLPVNLQRRRLLCAAGALLLSPLAHAGAQREETLADDVASVMRSSVGSVNPPRL}$ m907.pep MKKPTDTLPVNLQRRRLLCAAGALLLSPLAQAGAQREETLADDVASVMRSSVGSINPPRL a907 10 20 30 40 50 70 80 90 100 VFDNPKEGERWLSAMSARLARFVPEEEERRRLLVNIQYESSRAGLDTQIVLGLIEVESAF m907.pep VFDNPKEGERWLSAMSARLARFVPDEEERRRLLVNIQYESSRAGLDTQIVLGLIEVESAF a907



	70	80	90	100	110	120
	130	140	150	160	170	180
m907.pep		QVMPXWKNYI	GKPAHNLFDT	RTNI.RYGCTT	LDHVDNI DV	יאר מונדואר.
a907	RQYAISGVGARGLM		1   1   1   1   1   1   1	111111111	1111111111	
,	130	140	150	RINLRYGCTI. 160	LRHYRNLEKO 170	INIVRAL 180
	100	000			2,0	100
m907.pep	190 ARFNGSLGSNKYPN.	200 Avi.cawdnibw	OMBY			
	1111111111111		1111		•	
a907	ARFNGSLGSNKYPN.	AVLGAWRNRW	QWRX			
	190	200				
The following r	partial DNA sequence	was identi	fied in N a	onorrhoeae	<seo id<="" td=""><td>2725</td></seo>	2725
g908.seq					•	2/33>:
1	ATGAG.AAAA GCCGTC	TAAG CCGGT	ATAAA CAAA	ATAAAC TCAT	TTGGGCT	
51	ATTTGTCGCA GGTGTA	ACTG CAAGA	ACAGC GGCAC	SAGTTG GTAC	מרעערט	
101 151	ATAAAAATAC CGCAGCC	CTAT GATTT	CATC GTTT	ACGATG ACTO	SATTTAT	
201	CAAAACGGTC CGCATTT AAGTTATTTT GGCGGAC	TAGA AATGT	TTGAT GGCG	AAGTAG AAGO	CAGATGA	
251	GTAAAGTCGC CGTATTC	GGT CTTTT	BOCAA ACGCC	GTCGC GGTG	SCTGCCG	
301	GTTACAGTAC CGAATAC	CTCA AACCG	TACT TTATT	TOGIAA GGTT	CCCTCA	
351	acaagtgaaa cctgaca	agta ttqttt	atac ggatt	ottat Corp	CCTATC	
401	ATGTATTAGA Tgtgago	gaa tttag	catT TTage	ttcac tass	acttoo	
451	ttttcgtaTC AATCACA	GCA CACATT	TTTGC CGAAC	GACAA AACC	ATATTA	
501	A la ta tha amaine e ei le		70 T			
g908.pep	ls to the amino acid so	equence <s< td=""><td>EQ ID 273</td><td>6; ORF 908</td><td>.ng&gt;:</td><td></td></s<>	EQ ID 273	6; ORF 908	.ng>:	
g900.pep	MAKEDI'EBAK UNKI ICI	ENTA CRIMANA				
51	MXKSRLSRYK QNKLIGI QNGPHLEMFD GEVEADE	SVE GGORKO	AAEL VGINK	NTAAY DFHR	LR*LIY	
101	VTVPNTQTAT LFPIIRE	OVK PDSIVY	TDCY RSYDU	NAVEG LLKK	NGKVYT	
151	FSYQSQHTFC RTTKPY*					
The following p	artial DNA sequence	was identif	fied in N. m	eningitidis -	<seo 2<="" id="" td=""><td>737&gt;.</td></seo>	737>.
m908.seq						.1312.
1	ATGAGAAAAA GTCGTCT	AAG CCAGTA	TAAA CAAAm	TAAAC TCAT	TGAACT	
51	GTTTGTCACA GGTGTAA	CTG CAAGAA	CGGC AGCAG	AGTTA GTAG	GCGTTA	
101 151	ATAAAAATAC CGCAGCC	TAT TATTTT	CATC GTTTA	CGATT ACTT	ATTTAT	
201	CAAAACAGTC CGCATTT AAGTTATTTT GGCGGAC	GGA AATGTT	TGAT GGCGA	AGTAG AAGC	AGATGA	
251	GTAAAGTCGC CGTATTC	GGT CTTTTG	PAGC GAAAT	GTCGC GGTG	CTGCCG	
301	GTTACAGTAC CGAATAC	TCA AACCGC	TACT TTATT	TCCTA TTAT	СССТСА	
351	ACAAGTGAAA CCTGACA	GCA TTTTTT	ATAC GGATT	GTTAT CGTA	CCTATG	
401	ATGTATTAGA TGTGCGC	GAA TTTAGC	CATT TTAGC	TTCGC TGAA	ΔΟΨΨΟΩ	
451 501	TTTTCGTATC AATCACA	GCA CACATT	TTGC CGAAC	GACAA AACC	ATATTA	
		.aaC1	EO ID agae	000000		
m908.pep	s to the amino acid se	quence <5	EQ ID 2/38	s; ORF 908	>:	
1	MRKSRLSQYK QXKLIEL	FVT GVTART	AAFI. VOUNK	NTARV VEID		
51	QNSPHLEMFD GEVEADE	SYF GGQRKG	KRGR GAAGK	VAVEG LLKRI	MCKN/VT	
101	VTVPNTQTAT LFPIIRE	QVK PDSIFY	TDCY RSYDV	LDVRE FSHF	SFAETS	
151	FSYQSQHTFC RTTKPY*	*				
Computer analys	sis of this amino acid	sequence g	ave the foll	owing resul	lts:	
Homology with	a predicted ORF fron	1 N. gonorr	hoeae			
ORF 908 shows	93.4% identity over a	a 166 aa ov	erlap with a	predicted (	ORF (ORF	908 ng)
Irom IV. gonorra	oeae:				(SIG	- 00.11 <u>5</u> )
g908/m908						
g908.pep	10	20	30	40	50	60
3-10.60	MXKSRLSRYKQNKLI(	SHE VAGVTAR	IAAELVGINKI	NTAAYDFHRLF	RXLIYQNGPH	LEMFD

m908	:       MRKSRLSQYKQXKL 10	:     IELFVTGVT   20			: LRLLIYQNS: 50	 PHLEMFD 60
200 202	70	80	90	100	110	120
g908.pep	GEVEADESYFGGQR	KGKRGRGAAC	KVAVFGLLKF	NGKVYTVTVP	NTQTATLFP	IREOVK
101						
m908	GEVEADESYFGGQRI	KGKRGRGAAC	KVAVFGLLKE	NGKVYTVTVP	NTOTATLED	TPFOVE
	70	80	90	100	110	120
	130	140	150	160		
g908.pep	PDSIVYTDCYRSYD	/LDVSEFSHF	SFAETSFSYC	SOHTFCRTTK	PYX	
		111 1111	111111111		111	
m908	PDSIFYTDCYRSYDV	LDVREFSHF	SFAETSFSYO	SOUTECETTY	III DVV	
	130	140	150	160	LIV	

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2739>: a908.seq

1	ATGAGAAAAA	GTCGTCTAAG	CCAGTATAAA	СААААТАААС	<b>ጥር እ</b> ጥጥር አርርም
51	ATTTGTCGCA	GGTGTAACTG	CAAGAACGGC	AGCAGAGTTA	GTACCCCTTA
101	ATAAAAATAC	CGCAGCCTAT	TATTTTCATC	GTTTACGATT	שוע מווימים על מווימים ע
151	CAAAACAGTC	CGCATTTGGA	AATGTTTGAT	GGCGAAGTAG	AAGCAGATCA
201	AAGTTATTTT	GGCGGACAAC	GCAAAGGCAA	ACGCGGTCGC	GGTGCTCCCC
251	GTAAAGTCGC	CGTATTCGGT	CTTTTGAAGC	GAAATGGTAA	CCTTTATACC
301	GTTACAGTAC	CGAATACTCA	AACCGCTACT	TTATTTCCTA	TTATCCCTCA
351	ACAAGTGAAA	CCTGACAGCA	TTGTTTATAC	GGATTGTTAT	CCTACCTATC
401	ATGTATTAGA	TGTGCGCGAA	TTTAGCCATT	TTAGCTTCGC	TCANACTTCC
451	TTTTCGTATC	AATCACAGCA	CACATTTTGC	CGAACGACAA	AACCATATTA
501	A		_		-LIOUIIMIIM

### This corresponds to the amino acid sequence <SEQ ID 2740; ORF 908.a>: a908.pep

- 1 MRKSRLSQYK QNKLIELFVA GVTARTAAEL VGVNKNTAAY YFHRLRLLIY 51 QNSPHLEMFD GEVEADESYF GGQRKGKRGR GAAGKVAVFG LLKRNGKVYT 101 VTVPNTQTAT LFPIIREQVK PDSIVYTDCY RSYDVLDVRE FSHFSFAETS
- 151 FSYQSQHTFC RTTKPY*

### m908/a908 98.2% identity in 166 aa overlap

	,	<b></b>				
- 000	10	20	30	40	50	60
m908.pep	MRKSRLSQYKQXKI	IELFVTGVT	ARTAAELVGVN	IKNTAAYYEUD	T.DTT TVONET	THE PARTS
	111111111111	1111111111	1111111111	*************	(TVTTTTON2)	HLEMFD
a908	MDICODI CONTROLITA				-	
a 900	MRKSRLSQYKQNKL	TELFVAGVT	ARTAAELVGVN	IKNTAAYYFHF	RLRLLIYONSE	HIEMED
	10	20	30	40		
			30	40	50	60
	50					
	70	80	90	100	110	120
m908.pep	GEVEADESYFGGOR	KGKRGRGAAG	KVAVEGLIKD	MCETIVETIES	1+0	120
-	11111111111	111111111	TOTAL CHIME	MGKVIIVIVE	MIQIAILFPI	IREQVK
- 000		11111111111	11111111	11111111	#	11111
<b>a90</b> 8	GEVEADESYFGGQR	KGKRGRGAAG	KVAVFGLLKR	NGKVYTVTVP	איים דיים דיים דיים	TDEOUR
	70	80	90	100		
	_	••	20	100	110	120
	130	140	150	160		
m908.pep	PDSIFYTDCYRSYD	VI.DVREFSHE	CEDETCECTO	COUMECNES		
- <b>-</b>		11111111111	OTHEISESIQ	SOUTHCKLLK	PYX	
. 200		1111111111	111111111	11111111	111	
a908	PDSIVYTDCYRSYD	VLDVREFSHF	SFAETSFSYO	SOHTECRTTK	PYY	
	130	140	150		T 1V	
	100	140	100	160		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2741>: g909.seq (partial)

- 1 atgcgtaaaa ccgtacttat cCTgaccatc tccgccgccc ttttgtcggg 51 ctgcacatgG gaaacttatc aagacggcag cggcaaaacc gccgtccgtg
- 101 caaaatgttc caceggcacg ccgctgtgtt ggcaagacgg gcgcggctcg

```
151 aaaaaggtgg actgcgacga gtacggtggc gaacgccggg ccgtgttgcg
     201 caaccaaaag cgggggaagc ccgcgacgag gagagccgca acgctgggga
     251 aaccgagttt ccgggcgagg gacgggggg ggcgggtgaa cagggcagaa
     301 acggggagg ggaagcgatc ggcgagg..
This corresponds to the amino acid sequence <SEQ ID 2742; ORF 909.ng>:
g909.pep (partial)
       1 MRKTVLILTI SAALLSGCTW ETYQDGSGKT AVRAKCSTGT PLCWQDGRGS
      51 KKVDCDEYGG ERRAVLRNOK RGKPATRRAA TLGKPSFRAR DGGGRVNRAE
     101 TGEGKRSAR..
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2743>:
m909.seg
       1 ATGCGTAAAA CCTTCCTCTT CCTGACCGCT GCCGCCGCCC TTTTGTCGGG
      51 CTGCGCGTGG GAAACTTATC AAGACGGCAA CGGCAAGACC GCCGTCCGTC
     101 AAAAATATCC CGCCGGCACG CCCGTTTATT ACCAAGACGG CAGCTACTCG
     151 AAAAATATGA ACTACAACCA ATACCGTCCC GAACGCCATG CCGTGTTACC
     201 CAATCAAACC GGCAACAACG CCGACGAAGA GCATCGCCAA CACTGGCAAA
     251 AACCAAAGTT TCAAAACCGA TAA
This corresponds to the amino acid sequence <SEQ ID 2744; ORF 909>:
m909.pep
          MRKTFLFLTA AAALLSGCAW ETYQDGNGKT AVRQKYPAGT PVYYQDGSYS
      51 KNMNYNQYRP ERHAVLPNQT GNNADEEHRQ HWQKPKFQNR *
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 909 shows 53.3% identity over a 90 aa overlap with a predicted ORF (ORF 909.ng)
from N. gonorrhoeae:
m909/g909
                                        30
                                                            50
                                                                      60
             MRKTFLFLTAAAALLSGCAWETYQDGNGKTAVRQKYPAGTPVYYQDGSYSKNMNYNQYRP
m909.pep
             1111 1:11 : 1111111: 1111111: 111111 | :||| :||| :|||
             MRKTVLILTISAALLSGCTWETYQDGSGKTAVRAKCSTGTPLCWQDGRGSKKVDCDEYGG
g909
                    10
                                        30
                                                  40
                                                            50
                    70
                              80
             ERHAVLPNOTGNNADEEHROHWOKPKFONRX
m909.pep
             ||:|:|
            {\tt ERRAVLRNQKRGKPATRRAATLGKPSFRARDGGGRVNRAETGEGKRSAR}
g909
                    70
                              80
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2745>:
     a909.seq
              ATGCGTAAAA CCTTCCTTAT CCTGATGACT GCCGCCGCCC TTTTGTCGGG
            1
           51 CTGCGCGTGG GAAACTTATC AAGACGGCAA CGGCAAGACC GCCGTCCGTC
          101 AAAAATATCC CGCCGGCACG CCCGTTTATT ACCAAGACGG CAGCTACTCG
          151 AAAAATATGA ACTACAACCA ATACCGTCCC GAACGCCATG CCGTGTTACC
              CAACCAAACC GGCAACAACG CCGACGAAGA GCATCGCCAA CACTGGCAAA
          201
          251 AGCCCAAATT TCAAAACCGA TAA
This corresponds to the amino acid sequence <SEQ ID 2746; ORF 909.a>:
     a909.pep
              MRKTFLILMT AAALLSGCAW ETYQDGNGKT AVRQKYPAGT PVYYQDGSYS
              KNMNYNQYRP ERHAVLPNQT GNNADEEHRQ HWQKPKFQNR *
m909/a909
           96.7% identity in 90 aa overlap
                                             30
                                                       40
                 MRKTFLFLTAAAALLSGCAWETYQDGNGKTAVRQKYPAGTPVYYQDGSYSKNMNYNQYRP
     m909.pep
                 a909
                 \mathtt{MRKTFLILMTAAALLSGCAWETYQDGNGKTAVRQKYPAGTPVYYQDGSYSKNMNYNQYRP}
                         10
                                   20
                                             30
                                                       40
```

m909.pep

1302

80

70

```
ERHAVLPNQTGNNADEEHRQHWQKPKFQNRX
                                      1111111111111111111111111111111111111
            a909
                                     ERHAVLPNQTGNNADEEHRQHWQKPKFQNRX
                                                                        80
  The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2747>:
            g910.seq
                         1
                              ATGAAAAAC TGTTATTGGC CGCCGTTGTT TCCCTAAATG CCGCAACCGC
                              ATTTGCCGGC GACTCTGCCG AGCGTCAGAT TTACGGCGAT CCCCATTTTG
                       51
                     101 AACAAAACCG CACAAAAGCC GTGAAAATGT TGGAACAGCG CGGTTATCAG
                     151 GTTTACGATG TCGATGCCGA CGACTACTGG GGCAAACCTG TTTTGGAAGT
                     201 GGAAGCCTAT AAAGACGGCC GCGAATACGA CATCGTGTTG TCTTACCCCG
                     251 ACCTGAAAAT CATCAAAGAG CAGCTCGATC GCTGA
  This corresponds to the amino acid sequence <SEQ ID 2748; ORF 910.ng>:
            g910.pep
                              MKKLLLAAVV SLNAATAFAG DSAERQIYGD PHFEQNRTKA VKMLEQRGYQ
                              VYDVDADDYW GKPVLEVEAY KDGREYDIVL SYPDLKIIKE QLDR*
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2749>:
           m910.seq
                        1 ATGAAAAAC TGTTATTGGC TGCCGTTGTT TCTCTGAGTG CCGCTGCCGC
                      51 ATTTGCCGGC GACTCTGCCG AGCGTCAGAT TTACGGCGAT CCCCATTTTG
                    101 AACAAAACCG CACAAAAGCT GTGAAAATGT TGGAGCAGCG CGGTTATCAG
                            GTTTACGATG TCGATGCCGA CGACCATTGG GGTAAGCCTG TGCTGGAAGT
                            GGAAGCCTAT AAAGACGGCC GCGAATACGA CATCGTGTTG TCTTACCCCG
                    251 ACCTGAAAAT CATCAAAGAG CAGCTCGATC GCTGA
 This corresponds to the amino acid sequence <SEQ ID 2750; ORF 910>:
           m910.pep
                              MKKLLLAAVV SLSAAAAFAG DSAERQIYGD PHFEQNRTKA VKMLEQRGYQ
                              VYDVDADDHW GKPVLEVEAY KDGREYDIVL SYPDLKIIKE QLDR*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 910 shows 96.8% identity over a 94 aa overlap with a predicted ORF (ORF 910.ng)
from N. gonorrhoeae:
          g910/m910
                                                                      20
                                                                                         30
                                   {\tt MKKLLLAAVVSLNAATAFAGDSAERQIYGDPHFEQNRTKAVKMLEQRGYQVYDVDADDYW}
          g910.pep
                                   1 * [ * [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [
                                   MKKLLLAAVVSLSAAAAFAGDSAERQIYGDPHFEQNRTKAVKMLEQRGYQVYDVDADDHW
          m910
                                                  10
                                                                      20
                                                                                        30
                                                                                                            40
                                                                                                                               50
                                                  70
                                                                      80
                                   GKPVLEVEAYKDGREYDIVLSYPDLKIIKEQLDRX
          g910.pep
                                   m910
                                   GKPVLEVEAYKDGREYDIVLSYPDLKIIKEQLDRX
                                                                      80
                                                                                        90
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2751>:
          a910.seg
                            ATGAAAAAC TGTTATTGGT CGCCGTTGTT TCCTTGAGTG CCGCAACCGC
                      1
                           ATTTGCCGGC GACTCTGCCG AGCGTCAGAT TTACGGCGAT CCCTATTTTG
                     51
                            AACAAAACCG CACAAAAGCC GTGAAAATGT TGGAACAGCG CGGTTATCAG
                   101
                   151 GTTCACGATG TCGATGCCGA CGACCATTGG GGCAAACCTG TTTTGGAAGT
```

This corresponds to the amino acid sequence <SEQ ID 2752; ORF 910.a>: a910.pep

251 ACCTGAAAAT CATCAAAGAG CAGCTCGATC GCTGA

201 GGAAGCCTAT AAAGACGGCC GCGAATACGA CATTGTGTTG TCTTACCCCG

BNSDOCID: <WO___9957280A2_l_>

المنظولية والمالية والمالية



MKKLLLVAVV SLSAATAFAG DSAERQIYGD PYFEQNRTKA VKMLEQRGYQ VHDVDADDHW GKPVLEVEAY KDGREYDIVL SYPDLKIIKE QLDR* m910/a910 95.7% identity in 94 aa overlap 10 30 40 MKKLLLAAVVSLSAAAAFAGDSAERQIYGDPHFEQNRTKAVKMLEQRGYQVYDVDADDHW m910.pep MKKLLLVAVVSLSAATAFAGDSAERQIYGDPYFEQNRTKAVKMLEQRGYQVHDVDADDHW a910 20 40 50 70 80 GKPVLEVEAYKDGREYDIVLSYPDLKIIKEQLDRX m910.pep a910 GKPVLEVEAYKDGREYDIVLSYPDLKIIKEQLDRX 70 80 The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2753>: g911.seq ATGAAAAAGA ACATATTGGA ATTTTGGGTC GGACTGTTCG TCTTGATCGG 1 51 CGCGGCGGCG GTTGCCTTTC TCGCTTTCCG CGTGGCGGCG GGCGCGGCGT 101 TCGGCGGTTC GGACAAAACT TACGCCGTTT ATGCCGATTT CGGCGACATC 151 GGCGGTTTGA AGGTCAATGC CCCCGTCAAA TCCGCAGGCG TATTGGTCGG 201 GCGCGTCGGC GCTATCGGGC TTGACCCGAA ATCCTATCAG GCGAGGGTGC 251 GCCTTGATTT GGACGGCAAG TATCAGTTCA GCAGTGACGT TTCCGCGCAA 301 ATCCTGACTT CGGGACTTTT GGGCGAACAG TACATCGGGC TGCAGCAGGG 351 CGGCGATACG GAAAACCTTG CTGCCGGCGA CACCATCTCC GTAACCAGTT 401 CTGCAATGGT TCTGGAAAAC CTGATCGGTA AATTCATGAC CAGCTTCGCC GAGAAAAACG CTGAGGGCGG CAATGCGGAA AAAGCCGcag aAtaa This corresponds to the amino acid sequence <SEQ ID 2754; ORF 911.ng>: g911.pep MKKNILEFWV GLFVLIGAAA VAFLAFRVAG GAAFGGSDKT YAVYADFGDI 1 51 GGLKVNAPVK SAGVLVGRVG AIGLDPKSYQ ARVRLDLDGK YQFSSDVSAQ 101 ILTSGLLGEQ YIGLQQGGDT ENLAAGDTIS VTSSAMVLEN LIGKFMTSFA 151 EKNAEGGNAE KAAE* The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2755>: m911.seq ATGAAGAAGA ACATATTGGA ATTTTGGGTC GGACTGTTCG TCCTGATTGG 51 CGCGGCGGCG GTTGCCTTTC TCGCTTTCCG CGTGGCCGGC GGTGCGGCGT 101 TCGGCGGTTC GGACAAAACT TACGCCGTTT ATGCCGATTT CGGCGACATC 151 GGCGGTTTGA AGGTCAATGC CCCCGTCAAA TCCGCAGGCG TATTGGTCGG 201 GCGCGTCGGC GCTATCGGAC TTGACCCGAA ATCCTATCAG GCGAGGGTGC 251 GCCTCGATTT GGACGGCAAG TATCAGTTCA GCAGCGACGT TTCCGCGCAA 301 ATCCTGACTT CGGGACTTTT GGGCGAGCAG TACATCGGGC TGCAGCAGGG CGGCGACACG GAAAACCTTG CTGCCGGCGA CACCATCTCC GTAACCAGTT CTGCAATGGT TCTGGAAAAC CTTATCGGCA AATTCATGAC GAGTTTTGCC GAGAAAAATG CCGACGGCGG CAATGCGGAA AAAGCCGCCG AATAA 451 This corresponds to the amino acid sequence <SEQ ID 2756; ORF 911>: m911.pep MKKNILEFWV GLFVLIGAAA VAFLAFRVAG GAAFGGSDKT YAVYADFGDI GGLKVNAPVK SAGVLVGRVG AIGLDPKSYQ ARVRLDLDGK YQFSSDVSAQ ILTSGLLGEQ YIGLQQGGDT ENLAAGDTIS VTSSAMVLEN LIGKFMTSFA EKNADGGNAE KAAE* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae ORF 911 shows 99.4% identity over a 164 aa overlap with a predicted ORF (ORF 911.ng) from N. gonorrhoeae: g911/m911

10

20

30

40

50

		200.			
g911.pep	MKKNILEFWVGLFVLIC             MKKNILEFWVGLFVLIC 10		[	 YAVYADFGDIG	
g911.pep	70 SAGVLVGRVGAIGLDPK             SAGVLVGRVGAIGLDPK 70	(SYQARVRLDLD)            SYQARVRLDLD		ILTSGLLGEQY	
g911.pep	130 ENLAAGDTISVTSSAMV	140 15 LENLIGKFMTSF		KAAEX	
m911	ENLAAGDTISVTSSAMV 130	LENLIGKFMTSF		 KAAEX	
The following p	artial DNA sequence w	as identified i	n <i>N. meningi</i>	tidis <seq i<="" th=""><th>D 2757&gt;:</th></seq>	D 2757>:
1 51 101 151 201 251 301 351 401 451	ATCCTGACTT CGGGACTTT	C TCGCTTTCCG T TACGCCGTTT C CCCCGTCAAA C TTGACCCGAA G TATCAGTTCA T GGGCGAGCAG G CTGCCGGCGA C CTTATCGGCA	CGTGGCCGGC ATGCCGATTT TCCGCAGGCG ATCCTATCAG GCAGCGACGT TACATCGGGC CACCATCTCC AATTCATGAC	GGTGCGGCGT CGGCGACATC TATTGGTCGG GCGAGGGTGC TTCCGCGCAA TGCAGCAGGG GTAACCAGTT GAGTTTTGCC	

### This corresponds to the amino acid sequence <SEQ ID 2758; ORF 911.a>: a911.pep

- 1 MKKNILEFWV GLFVLIGAAA VAFLAFRVAG GAAFGGSDKT YAVYADFGDI 51 GGLKVNAPVK SAGVLVGRVG AIGLDPKSYQ ARVRLDLDGK YQFSSDVSAQ 101 ILTSGLLGEQ YIGLQQGGDT ENLAAGDTIS VTSSAMVLEN LIGKFMTSFA 151 EKNADGGNAE KAAE*

### m911/a911 100.0% identity in 164 aa overlap

	10	20	30	40	50	60
m911.pep	MKKNILEFWVGLFV	LIGAAAVAF	LAFRVAGGAAF	GGSDKTYAVY	ADFGDIGGLK	VNAPVK
			111111111	1111111111	1111111111	11111
a911	MKKNILEFWVGLFV	LIGAAAVAF	LAFRVAGGAAF	GGSDKTYAVY	ADFGDIGGLK	VNAPVK
	10	20	30	40	50	60
•	70	80	90	100	110	120
m911.pep	SAGVLVGRVGAIGL	DPKSYQARV:	RLDLDGKYQFS	SDVSAQILTS	GLLGEOYIGL	OOGGDT
			111111111	1111111111		11111
a911	SAGVLVGRVGAIGL	DPKSYQARV:	RLDLDGKYQFS	SDVSAQILTS	GLLGEQYIGL	QQGGDT
	70	80	90	100	110	120
	130	140	150	160		
m911.pep	ENLAAGDTISVTSS	AMVLENLIG	KFMTSFAEKNA	DGGNAEKAAE	x	
	11111111111		1111111111	111111111111	1	
a911	ENLAAGDTISVTSS	AMVLENLIG	KFMTSFAEKNA	DGGNAEKAAE	X	
	130	140	150	160		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2759>: g912.seq

- 1 gtgAAAAaat cctcctTcat cagcGCATTG GGCATCGgtA TTTTGAGCAT 51 CGGCATGGCA TTTGCCTCCC CGGCCGACGC AGTGGGACAA ATCCGCCAAA
- 101 ACGCCACACA GGTTTTGACC ATCCTCAAAA GCGGCGACGC GGCTTCTGCA

```
151 CGCCCAAAAG CCGAAGCCTA TGCGGTTCCC TATTTCGATT TCCAACGTAT
          201 GACCGCATTG GCGGTCGGCA ACCCTTGGCG TACCGCGTCC GACGCGCAAA
          251 AACAAGCGTT GGCCAAAGAA TTTCAAACCC TGCTGATCCG CACCTATTCC
          301 GGCACGATGC TGAAATTCAA AAACGCGACC GTCAACGTCA AAGACAATCC
          351 CATCGTCAAT AAGGGCGGCA AGGAAATCGT CGTCCGTGCC GAAGTCGGCA
              TCCCCGGTCA GAAGCCCGTC AATATGGACT TTACCACCTA CCAAAGCGGC
              GGCAAATACC GTACCTACAA CGTCGCCATC GAAGGCACGA GCCTGGTTAC
              CGTGTACCGC AACCAATTCG GCGAAATCAT CAAAGCCAAA GGCATCGACG
               GGCTGATTGC CGAGTTGAAA GCCAAAAACG GCGGCAAATA A
          551
This corresponds to the amino acid sequence <SEQ ID 2760; ORF 912.ng>:
     g912.pep
               VKKSSFISAL GIGILSIGMA FASPADAVGQ IRQNATQVLT ILKSGDAASA
            1
              RPKAEAYAVP YFDFQRMTAL AVGNPWRTAS DAQKQALAKE FQTLLIRTYS
           51
              GTMLKFKNAT VNVKDNPIVN KGGKEIVVRA EVGIPGQKPV NMDFTTYQSG
              GKYRTYNVAI EGTSLVTVYR NQFGEIIKAK GIDGLIAELK AKNGGK*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2761>:
     m912.seq
              ATGAAAAAT CCTCCCTCAT CAGCGCATTG GGCATCGGTA TTTTGAGCAT
           51 CGGCATGGCA TTTGCCGCCC CTGCCGACGC GGTAAGCCAA ATCCGTCAAA
          101 ACGCCACTCA AGTATTGAGC ATCTTAAAAA ACGGCGATGC CAACACCGCT
          151 CGCCAAAAAG CCGAAGCCTA TGCGATTCCC TATTTCGATT TCCAACGTAT
          201
              GACCGCATTG GCGGTCGGCA ACCCTTGGCG CACCGCGTCC GACGCGCAAA
              AACAAGCGTT GGCCAAAGAA TTTCAAACCC TGCTGATCCG CACCTATTCC
          251
              GGCACGATGC TGAAATTAAA AAACGCCAAC GTCAACGTCA AAGACAATCC
              CATCGTCAAT AAAGGCGGCA AAGAAATCAT CGTCCGCGCC GAAGTCGGCG
          351
              TACCCGGGCA AAAACCCGTC AACATGGACT TCACCACCTA CCAAAGCGGC
          401
          451 GGTAAATACC GTACCTACAA CGTCGCCATC GAAGGCGCGA GCCTGGTTAC
              CGTGTACCGC AACCAATTCG GCGAAATTAT CAAAGCGAAA GGCGTGGACG
          501
          551 GACTGATTGC CGAGTTGAAA GCCAAAAACG GCGGCAAATA A
This corresponds to the amino acid sequence <SEQ ID 2762; ORF 912>:
     m912.pep
              MKKSSLISAL GIGILSIGMA FAAPADAVSQ IRQNATQVLS ILKNGDANTA
              RQKAEAYAIP YFDFQRMTAL AVGNPWRTAS DAQKQALAKE FQTLLIRTYS
          51
         101 GTMLKLKNAN VNVKDNPIVN KGGKEIIVRA EVGVPGQKPV NMDFTTYQSG
         151 GKYRTYNVAI EGASLVTVYR NQFGEIIKAK GVDGLIAELK AKNGGK*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 912 shows 91.8% identity over a 196 aa overlap with a predicted ORF (ORF 912.ng)
from N. gonorrhoeae:
    q912/m912
                                  20
                                           30
                                                     40
                                                              50
                 VKKSSFISALGIGILSIGMAFASPADAVGQIRQNATQVLTILKSGDAASARPKAEAYAVP
    g912.pep
                 MKKSSLISALGIGILSIGMAFAAPADAVSQIRQNATQVLSILKNGDANTARQKAEAYAIP
    m912
                        10
                                  20
                                           30
                                                     40
                                                              50
                                                                        60
                        70
                                  80
                                                    100
                                                             110
                                                                       120
                 YFDFQRMTALAVGNPWRTASDAQKQALAKEFQTLLIRTYSGTMLKFKNATVNVKDNPIVN
    9912.pep
                 m912
                 YFDFQRMTALAVGNPWRTASDAQKQALAKEFQTLLIRTYSGTMLKLKNANVNVKDNPIVN
                        70
                                  80
                                           90
                                                    100
                                                             110
                                                                       120
                       130
                                 140
                                          150
                                                    160
                                                             170
                KGGKEIVVRAEVGIPGQKPVNMDFTTYQSGGKYRTYNVAIEGTSLVTVYRNQFGEIIKAK
    g912.pep
                 KGGKEIIVRAEVGVPGQKPVNMDFTTYQSGGKYRTYNVAIEGASLVTVYRNQFGEIIKAK
    m912
                                 140
```

160

170

190 g912.pep GIDGLIAELKAKNGGKX m912



The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2763>:

```
ATGAAAAAT CCTCCTTCAT CAGCGCATTG GGCATCGGTA TTTTGAGCAT
    CGGCATGGCA TTTGCCGCCC CTGCCGACGC GGTAAACCAA ATCCGTCAAA
 51
    ACGCCACTCA AGTATTGAGC ATCTTAAAAA GCGGTGATGC CAACACCGCC
101
151 CGCCAAAAAG CCGAAGCCTA TGCGATTCCC TATTTCGATT TCCAACGTAT
    GACCGCATTG GCGGTCGGCA ACCCTTGGCG CACCGCGTCC GACGCGCAAA
201
     AACAAGCGTT GGCCAAAGAA TTTCAAACCC TGCTGATCCG CACCTATTCC
251
301 GGCACGATGC TGAAATTAAA AAACGCCAAC GTCAACGTCA AAGACAATCC
351 CATCGTCAAT AAAGGCGGCA AAGAAATCAT CGTCCGCGCC GAAGTCGGCG
    TACCCGGGCA AAAACCCGTC AACATGGACT TCACCACCTA CCAAAGCGGC
451 GGTAAATACC GTACCTACAA CGTCGCCATC GAAGGCGCGA GCCTGGTTAC
501
551
    CGTGTACCGC AACCAATTCG GCGAAATTAT CAAAGCGAAA GGCGTGGACG
    GACTGATTGC CGAGTTGAAG GCTAAAAACG GCAGCAAGTA A
```

### This corresponds to the amino acid sequence <SEQ ID 2764; ORF 912.a>:

```
a912.pep

1 MKKSSFISAL GIGILSIGMA FAAPADAVNQ IRQNATQVLS ILKSGDANTA
51 RQKAEAYAIP YFDFQRMTAL AVGNPWRTAS DAQKQALAKE FQTLLIRTYS
101 GTMLKLKNAN VNVKDNPIVN KGGKEIIVRA EVGVPGQKPV NMDFTTYQSG
151 GKYRTYNVAI EGASLVTVYR NQFGEIIKAK GVDGLIAELK AKNGSK*
```

### m912/a912 98.0% identity in 196 aa overlap

190

	10	20	30	40	50	60
m912.pep	MKKSSLISALGIGII	SIGMAFAA	PADAVSQIRON	ATOVLSILK	IGDANTAROKA	FAVATO
	11111:111111111	11111111	11111:1111			THILL
a912	MKKSSFISALGIGIL	SIGMAFAA	PADAVNOTRON	1		111111
	10	20	30			
		20	30	40	50	60
	70	0.0	• •			
-012		80	90	100	110	120
m912.pep	YFDFQRMTALAVGNP	WRTASDAQI	KQALAKEFQTL	LIRTYSGTMI	KLKNANVNVK	DNPIVN
		111111	, , , , , , , , , , , , ,	1111111111	1111111111	4.4.1.1.1.1
a912	YFDFQRMTALAVGNP	WRTASDAQI	KQALAKEFOTL	LIRTYSGTMI	KIKNANVNVK	ותודנות
	70	80	90	100	110	120
				100	110	120
	130	140	150	160	170	
m912.pep	KGGKETTVRAEVGVP		エンひ	100	170	180
	KGGKEIIVRAEVGVP	GOVE A MAID			LVTVYRNQFG	EIIKAK
a912				111111111	111111111	11111
a 912	KGGKEIIVRAEVGVP	GOKPVNMDI	TTYQSGGKYR'	<b>TYNVAIEGAS</b>	LVTVYRNQFG	EIIKAK
	130	140	150	160	170	180
	190					
m912.pep	GVDGLIAELKAKNGG:	KX				
		1.1				
a912	GVDGLIAELKAKNGS					

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2765>:

```
atgaaaaaa CCGCCTACGC CATCCTCCTG CTGATCGGGT TCGCTTCCGC
51 CCCTGCATTT GCAGAAACCC GCCCCGCCGA CCCTTATGAA GGCTACAACC
101 GCGCCGTTC CAAATTCAAC GACCAAGCCG ACCGCTACAT TTTCGCCCCT
151 GCCGCGCGC GCTACCGCAA AGTTACGCCG AAACCCGTCC GCGCCGGCGT
201 GTCCAATTTT TTTAACAACC TGCGCGACGT GGTCAGTTTC GGCAGCAATA
251 TCTTGCGTTT GGACACCAAA CGCGAAGCG AAGACCCCGT CCGCGCGGGG
301 atCAATACCA CCTTCGGTTT GGGCGGGCTC ATTGATATTG CCGGCGGGGG
351 CGGCGGAAAaa CAGCTttgGG CGACACGCCC
401 GCtgGAAAaa CAGCATTAT TTCGTGttgC CCGtcttagg CCCGtccacc
```



```
451 gtccgcgacg cgctcggcac gggcattacc tCTGTTTATC CGCccaagaa
           501 tategitte catacecety eeggacgety GGgcacgaet gCCGCTGCCG
          551 CCGTcagtac gcgcgaaggc ctcctcgatt tgaccgacag TCtggacgaa
           601 gccgccatCG ACAAATACAG CTACACGCGc gacctctata tgAAAGTCCG
          651 CGcacgGCag AccgGTGCAA CACCTGCCGA AGgtacggaa gataacatcg
               acatcgacat cgACGAATTG GTCGAAAGTG CCGAAACCGG CGCGGCAGAG
          751 CCCGCCGTTC ACGAAGATTC CGTATCCGAA ACACAGGCAG AAGCAGCAGG
               GGAAGCCGAA ACGCAACCTG GAACACAACC CTAA
 This corresponds to the amino acid sequence <SEQ ID 2766; ORF 913.ng>:
      g913.pep
               MKKTAYAILL LIGFASAPAF AETRPADPYE GYNRAVSKFN DQADRYIFAP
               AARGYRKVTP KPVRAGVSNF FNNLRDVVSF GSNILRLDIK RASEDLVRVG
           51
              INTTFGLGGL IDIAGAGGVP DNKNTLGDTF ASWGWKNSNY FVLPVLGPST
          101
          151 VRDALGTGIT SVYPPKNIVF HTPAGRWGTT AAAAVSTREG LLDLTDSLDE
          201 AAIDKYSYTR DLYMKVRARQ TGATPAEGTE DNIDIDIDEL VESAETGAAE
               PAVHEDSVSE TQAEAAGEAE TQPGTQP*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2767>:
     m913.seq
               ATGAAAAAA CCGCCTATGC CTTCCTCCTG CTGATCGGGT TCGCTTCCGC
               CCCTGCATTT GCCGAAACCC GCCCGCCGA CCCTTATGAA GGCTACAACC
           51
              GCGCCGTTTT CAAATTCAAC GACCAAGCCG ACCGCTACAT TTTCGCCCCT
          101
          151 GCCGCGCGC GCTACCGCAA AGTTGCGCCG AAACCCGTCC GCGCCGGCGT
               GTCCAATTTT TTTAACAACC TGTGCGACGT GGTCAGCTTC GGCAGCAATA
          201
               TCTTGCGCTT GGACATCAAA CGCGCAAGCG AAGACCTTGT CCGCGTCGGC
          251
              ATCAACACCA CTTTCGGTTT GGGCGGGCTT ATCGACATCG CCGGCGCGGG
          301
               CGGCATTCCC GACAATAAAA ACACCTTGGG CGACACGTTT GCCTCGTGGG
          351
          401 GATGGAAAAA CAGCAATTAT TTCGTGTTGC CCGTCTTAGG GCCGTCCACC
          451 GTCCGCGACG CGCTCGGCAC GGGTATTACC TCCGTTTATT CGCCCAAGAA
              TATCGTCTTC CGCACCCCTG TCGGACGCTG GGGCACGACT GCCGTATCCG
          501
          551 CCGTCAGTAC GCGCGAAGGC CTGCTCGATT TGACCGACAG TCTGGACGAA
          601 GCCGCCATCG ACAAATACAG CTACACGCGC GACCTCTATA TGAAAGTCCG
          651 TGCGCGGCAG ACCGGTGCAA CACCTGCCGA AGGTACGGAA GATAACATCG
          701 ACATCGACGA ATTGGTCGAA AGTGCCGAAA CCGGCGCGGC GGAAACTGCC
          751 GTTCAAGAAG ATTCCGTATC CGAAACACAG GCAGAAGCAG CAGGGGAAGC
               CGAAACGCAA CCTGGAACAC AACCTTAA
This corresponds to the amino acid sequence <SEQ ID 2768; ORF 913>:
     m913.pep
              MKKTAYAFLL LIGFASAPAF AETRPADPYE GYNRAVFKFN DQADRYIFAP
           1
          51 AARGYRKVAP KPVRAGVSNF FNNLCDVVSF GSNILRLDIK RASEDLVRVG
         101 INTTFGLGGL IDIAGAGGIP DNKNTLGDTF ASWGWKNSNY FVLPVLGPST
         151 VRDALGTGIT SVYSPKNIVF RTPVGRWGTT AVSAVSTREG LLDLTDSLDE
         201 AAIDKYSYTR DLYMKVRARQ TGATPAEGTE DNIDIDELVE SAETGAAETA
          251 VQEDSVSETQ AEAAGEAETQ PGTQP*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 913 shows 94.9% identity over a 277 aa overlap with a predicted ORF (ORF 913.ng)
from N. gonorrhoeae:
    g913/m913
                                  20
                                                      40
                 {\tt MKKTAYAILLLIGFASAPAFAETRPADPYEGYNRAVSKFNDQADRYIFAPAARGYRKVTP}
    g913.pep
                 MKKTAYAFLLLIGFASAPAFAETRPADPYEGYNRAVFKFNDQADRYIFAPAARGYRKVAP
    m913
                         10
                                            30
                                                               5.0
                                                                         60
                                  80
                                            90
                                                     100
                 KPVRAGVSNFFNNLRDVVSFGSNILRLDIKRASEDLVRVGINTTFGLGGLIDIAGAGGVP
    g913.pep
                 KPVRAGVSNFFNNLCDVVSFGSNILRLDIKRASEDLVRVGINTTFGLGGLIDIAGAGGIP
    m913
```

90

100



g913.pep	13		150	160	170	180
gara.beb	DINKNILGDI	PASWGWKNSNY)	FVLPVLGPSTVF	RDALGTGITSVY	PPKNIVFHTP	AGRWGTT
-012		11111111111	1			:
m913	DNKNTLGDT	FASWGWKNSNYI	FVLPVLGPSTVF	RDALGTGITSVY	SPKNIVFRTP	VGRWGTT
	13	0 140	150	160	170	180
	19	0 200	210			
g913.pep			210	220	230	240
goro.pep	AMAMVSIRE	GUUULUSUDEA	MIDKYSYTRDI	YMKVRARQTGA	TPAEGTEDNII	DIDIDEL
	1::1				1111111111	11.
m913	AVSAVSTRE	GLLDLTDSLDEA	AIDKYSYTRDL	YMKVRARQTGA	TPAEGTEDNII	DI DEI
	19	0 200	210	220	230	
	250	260	270			
g913.pep	VESAETGAAI	EPAVHEDSVSET		שמייטייט		
				IIIIII		
m913	VESAETGAAI	ETAVQEDSVSET		11111		
		250 26	_	<del></del>		
	240	26	0 270			
C- 11	41-1 TOO TA					
totiowing par	tial DNA seq	uence was id	entified in N	. meninoitidi	CI OFZ>2	2760>.

#### The fo as identified in IV. meningitidis <SEQ ID 2769>:

```
a913.seq
      1 ATGAAAAAA CCGCCTATGC CTTCCTCCTG CTGATCGGGT TCGCTTCCGC
     51 CCCTGCATTT GCCGAAACCC GCCCGCCGA CCCTTATGAA GGCTACAACC
    101 GCGCCGTTTT CAAATTCAAC GACCAAGCCG ACCGCTACAT TTTCGCCCCT
    151 GCCGCGCGC GCTACCGCAA AGTTGCGCCG AAACCCGTCC GCGCCGGCGT
         GTCCAATTTT TTTAACAACC TGTGCGACGT GGTCAGCTTC GGCAGCAATA
    201
    251 TCTTGCGCTT AGACATCAAA CGCGCAAGCG AAGACCTTGT CCGCGTCGGT
    301 ATCAACACCA CTTTCGGTTT GGGCGGGCTT ATCGACATCG CCGGCGCGGG
    351 CGGCATTCCC GACAATAAAA ACACCTTGGG CGACACGTTT GCTTCGTGGG
    401 GATGGAAAAA CAGCAATTAT TTCGTGTTGC CCGTCTTAGG GCCGTCCACC
    451
501
         GTCCGCGACG CGCTCGGCAC GGGTATTACC TCCGTTTATT CGCCCAAGAA
         TATCGTCTTC CGCACCCCTG TCGGACGCTG GGGCACGACT GCCGTATCCG
    551 CCGTCAGTAC GCGCGAAGGC CTGCTCGATT TGACCGACAG TCTGGACGAA
    601 GCCGCCATCG ACAAATACAG CTACACGCGC GACCTCTATA TGAAAGTCCG
    651 TGCGCGGCAG ACCGGTGCAA CACCTGCCGA AGGTACGGAA GATAACATCG
    701 ACATCGACGA ATTGGTCGAA AGTGCCGAAA CCGGCGCGGC GGAAACTGCC
         GTTCAAGAAG ATTCCGTATC CGAAACACAG GCAGAAGCAG CAGGGGAAGC
    801 CGAAACGCAA CCTGGAACAC AACCTGGAAC ACAACCTTAA
```

### This corresponds to the amino acid sequence <SEQ ID 2770; ORF 913.a>: a913.pep

```
1 MKKTAYAFLL LIGFASAPAF AETRPADPYE GYNRAVFKFN DQADRYIFAP
51 AARGYRKVAP KPVRAGVSNF FNNLCDVVSF GSNILRLDIK RASEDLVRVG
101 INTTFGLGGL IDIAGAGGIP DNKNTLGDTF ASWGWKNSNY FVLPVLGPST
151 VRDALGTGIT SVYSPKNIVF RTPVGRWGTT AVSAVSTREG LLDLTDSLDE
     AAIDKYSYTR DLYMKVRARQ TGATPAEGTE DNIDIDELVE SAETGAAETA
251 VQEDSVSETQ AEAAGEAETQ PGTQPGTQP*
```

### m913/a913 100.0% identity in 275 aa overlap

0.4.0	10	20	30	40	50	60
m913.pep	MKKTAYAFLLLIGF	ASAPAFAETR	PADPYEGYNF	RAVEKENDOAD	RYTFAPAADC	מתנועסעי
		3 ( 1 1   1   1   1	111111111		3111111111	
a913	MKKTAYAFLLLIGF.	ASAPAFAETR	PADPYEGYNE	AVEKENDOAD	, , , , , , , , , , , , , , , , , , ,	111111
	10	20	30	40		
			30	40	50	60
	70	80	90	100		
m913.pep	KPVRAGVSNEENNI		<i>5</i> 0	100	110	120
<b>-</b>	KPVRAGVSNFFNNL	2D442EG2MT	LRLDIKRASE	DLVRVGINTT	FGLGGLIDIA	GAGGIP
a913	VDUD A CUCAL ELEMANT			11111111	111111111	11111
4715	KPVRAGVSNFFNNL	DVVSFGSNI	LRLDIKRASE	DLVRVGINTT	FGLGGLIDIA	GAGGIP
	70	, 80	90	100	110	120
	130	140	150	160	170	180
m913.pep	DNKNTLGDTFASWGV	KNSNYFVLP	/LGPSTVRDA	LGTGTTSVVS	DKNITTIED MATE	100
		111111111		1111111111	EVNTALKIBA	GRWGTT
a913	DNKNTLGDTFASWGV	IKNSNY FVI.DO	יייייייייייייייייייייייייייייייייייייי		11111111	1111
		· · · · · · · · · · · · · · · · · · ·	LIGISIVEDA	rererasvas)	PKNIVFRTPV	GRWGTT

BNSDOCID: <WO___9957280A2_I_>

* * 27 1.2.00E

	130	140	150	160	170	180
m913.pep	190 AVSAVSTREGLLDL             AVSAVSTREGLLDL	111111				IDELVE
m913.pep	250 SAETGAAETAVQED:              SAETGAAETAVQED: 250	260 SVSETQAEAZ	270 AGEAETQPGTQ	PX I	230	240

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2771>:
```

```
ATGAAAAAAT GTATTTTGGG CATTTTGACC GCGTGTGCCG CCATGCCTGC
ATTTGCCGAC AGAATCAGCG ATTTGGAAGC ACGTCTGGCG CAGTTGGAAC
ACCGTGTCGC CGTATTGGAA AGCGGCGGCA ATACCGTCAA AATCGACCTT
TTCGGTTCAA ATTCCACCAT GTATGTATGC AGCGTTACGC CTTTTCAGAA
CGCGTTACGC CAGAAAGTGC
GACGLLLGAG GCAACCGCGAA ACTTCGGCAA TGTTTTGCGG AGATGAGGCA
ATCCGATGCA GAAAATTCGA TTGATGTATC GGTTGGACG ATAAAGAAAC
CTTGGCTTCC GTCTCTGTTT TTCTCTCTCC GATTTTCCAT
CGATCGGGTT TCAGACGGCA TTGGAGTGTC AGTCGTTTC TGCCGATTCG
AGATCGGGTT TCAGACGGCA TTGGAGTGTC AGTCGTGTTC TGCCGATTCG
CGCGTAAAGAAATACA GTCCTGCCAC GCCGTGCAGT TTCTCACGTG
CGTCTTTCAA TCCCGATTTG ATGTTTTTGG GCAGGTCGAT TTGGCTGGTG
CGCCGGTAA TGACGGCTTT CGCGCGAGG TCAGGAACAT
CGCCGGTTAG CGTCCTGCCAC GCCGTGCAGG TCAGGAACAT
CGCCGGTTAG CGTCCTGCCAC TTCGTCGCG TCAGGAACAT
CGCCGGTTAGA CGTCTTCCGCG CGCATATAG
```

# This corresponds to the amino acid sequence <SEQ ID 2772; ORF 914.ng>: g914.pep

- 1 MKKCILGILT ACAAMPAFAD RISDLEARLA QLEHRVAVLE SGGNTVKIDL
- 51 FGSNSTMYVC SVTPFQKTFE ASDRNEGVAR QKVRQACNRE TSAMFCGDEA
- 101 IRCRKFD*CI GWTDKETDTE LGFRLCFSLP DFPCIGFQTA LECQSCSADS
- 151 *ASTIFCTRG CRTTSSPVKV WKYSPATPCS FSRASFNPDL MFLGRSIWLV
- 201 SPVMTAFAPK PMRVRNIFIC SGVVFCASSR MMYAPLSVLP RI*

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2773>: m914.seq

```
1 ATGAAAAAAT GTATTTTGGG CATTTTGACC GCGTGTGCCG CCATGCCTGC
51 ATTTGCCGAC AGAATCGGCG ATTTGGAAGC ACGTCTGGCG CAGTTGGAAC
101 ACCGTGTCGC CGTATTGGAA AGCGGCGGCA ATACCGTCAA AATCGACCTT
151 TTCGGTTCAA ATTCCACCAT GTATGTATGC AGCGTTACGC CTTTTCAGAA
201 GACGTTTGAG GCAAGCGATC GGAATGAAGG CGTGGCGCG CAGAAAGTGC
251 GTCAGGCGTG CAACCGCGAA ACTTCGGCAA TGTTTTGCGA AGATGAGGCA
301 ATCCGATGCA GAAAATTCGA TTGATGTATC GGTTGGACGG ATAAAGAAAC
351 GGATACGGAT ACGGAGCTTG GCTTCCGTAT CTGTTTTTCT CTGCCTGATT
401 TTCCATGCAT CGGGTTTCAG ACGGCATTGG AATGTCAGTC GTGTTCTGCC
451 GATTCGTAGG CTTCGACGAT TTTTTGCACC AAAGGATGCC GGACAACGTC
501 TTCGCCGGTA AAGGTGTGA AATACAGCCC TTCCACGTTG TGCAGTTTCT
551 CACGCGCATC TTTTAATCCC GATTTGATGT TTTTGGGCAG GTCGATTTGG
601 CTGGTGTCGC CGGTAATGAC GCCTTGCGCGCA TGCCGGTCAG
651 GAACATTTC ATTTGTTCGG GCGTGGTGT TTGCGCTTCG TCGAGGATGA
701 TGTATGCGC GTTGAGCGTC CTGCCGCGCA TATAG
```

# This corresponds to the amino acid sequence <SEQ ID 2774; ORF 914>: m914.pep

- 1 MKKCILGILT ACAAMPAFAD RIGDLEARLA QLEHRVAVLE SGGNTVKIDL
- 51 FGSNSTMYVC SVTPFQKTFE ASDRNEGVAR QKVRQACNRE TSAMFCEDEA
- 101 IRCRKFDXCI GWTDKETDTD TELGFRICFS LPDFPCIGFQ TALECQSCSA



151 DSXASTIFCT KGCRTTSSPV KVWKYSPSTL CSFSRASFNP DLMFLGRSIW

201 LVSPVMTAFA PKPMRVRNIF ICSGVVFCAS SRMMYAPLSV LPRI*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 914 shows 96.7% identity over a 244 aa overlap with a predicted ORF (ORF 914.ng) from N. gonorrhoeae:
g914/m914

```
10
                        20
                                        40
                                               50
                                                       60
g914.pep
          MKKCILGILTACAAMPAFADRISDLEARLAQLEHRVAVLESGGNTVKIDLFGSNSTMYVC
          MKKCILGILTACAAMPAFADRIGDLEARLAQLEHRVAVLESGGNTVKIDLFGSNSTMYVC
m914
                10
                        20
                                30
                        80
                                90
                                       100
                                              110
          SVTPFQKTFEASDRNEGVARQKVRQACNRETSAMFCGDEAIRCRKFDXCIGWTDKETDT-
g914.pep
          m914
          SVTPFQKTFEASDRNEGVARQKVRQACNRETSAMFCEDEAIRCRKFDXCIGWTDKETDTD
                70
                        80
                               90
                                      100
                                              110
                                                      120
                         140
                                150
                                        160
                                                170
          -ELGFRLCFSLPDFPCIGFQTALECQSCSADSXASTIFCTRGCRTTSSPVKVWKYSPATP
g914.pep
           TELGFRICFSLPDFPCIGFQTALECQSCSADSXASTIFCTKGCRTTSSPVKVWKYSPSTL
m914
               130
                       140
                                      160
                                              170
                                                      180
                 190
                        200
                                210
                                                230
          CSFSRASFNPDLMFLGRSIWLVSPVMTAFAPKPMRVRNIFICSGVVFCASSRMMYAPLSV
g914.pep
          CSFSRASFNPDLMFLGRSIWLVSPVMTAFAPKPMRVRNIFICSGVVFCASSRMMYAPLSV
m914
               190
                       200
                              210
                                      220
                                              230
         240
g914.pep
          LPRIX
          m914
          LPRIX
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2775>:
a914.seq

```
ATGAAAAAT GTATTTTGGG CATTTTGACC GCGTGTGCCG CCATGCCTGC
  1
    ATTTGCCGAC AGAATCGGCG ATTTGGAAGC ACGTCTGGCG CAGTTGGAAC
    ACCGTGTCGC CGTATTGGAA AGCGGCAGCA ATACCGTCAA AATCGACCTT
    TTCGGTTCAA ATTCCACCAT GTATGTATGC AGCGTTACGC CTTTTCAGAA
    GACGTTTGAG GCAAGCGATC GGAATGAAGG CGTGGCGCGG CAGAAAGTGC
251 GTCAGGCGTG CAACCGCGAA ACTTCGGCAA TGTTTTGCGA AGATGAGGCA
301 ATCCGATGCA GAAAATTCGA TTGATGTATC GGTTGGACGG ATAAAGAAAC
351 GGATACGGAG CTTGGCTTCC GTATCTGTTT TTCTCTGCCC GATTTTCCAT
    GCATCGGGTT TCAGACGGCA TTGGAATGTC AGTCGTGTTC TGCCGATTCG
401
    TAGGCTTCGA CGATTTTTTG CACCAAAGGA TGCCGGACAA CGTCTTCGCC
501 GGTAAAGGTG TGGAAATACA GCCCTTCCAC GCCGTGCAGT TTCTCACGCG
551 CATCTTTTAA TCCCGATTTG ATGTTTTTGG GCAGGTCGAT TTGGCTGGTG
    TCGCCGGTAA TGACGGCTTT CGCGCCGAAG CCGATGCGGG TCAGGAACAT
651 TTTCATTTGT TCGGGCGTGG TGTTTTGCGC TTCGTCGAGG ATGATGTATG
701 CGCCGTTGAG CGTCCTGCCG CGCATATAG
```

This corresponds to the amino acid sequence <SEQ ID 2776; ORF 914.a>: a914.pep

```
1 MKKCILGILT ACAAMPAFAD RIGDLEARLA QLEHRVAVLE SGSNTVKIDL
51 FGSNSTMYVC SVTPFQKTFE ASDRNEGVAR QKVRQACNRE TSAMFCEDEA
101 IRCRKFD*CI GWTDKETDTE LGFRICFSLP DFPCIGFQTA LECQSCSADS
151 *ASTIFCTKG CRTTSSPVKV WKYSPSTPCS FSRASFNPDL MFLGRSIWLV
201 SPVMTAFAPK PMRVRNIFIC SGVVFCASSR MMYAPLSVLP RI*
```

m914/a914 98.4% identity in 244 aa overlap 10 20 30 40 50 MKKCILGILTACAAMPAFADRIGDLEARLAQLEHRVAVLESGGNTVKIDLFGSNSTMYVC m914.pep MKKCILGILTACAAMPAFADRIGDLEARLAQLEHRVAVLESGSNTVKIDLFGSNSTMYVC a914 20 30 40 70 80 90 SVTPFQKTFEASDRNEGVARQKVRQACNRETSAMFCEDEAIRCRKFDXCIGWTDKETDTD m914.pep SVTPFQKTFEASDRNEGVARQKVRQACNRETSAMFCEDEAIRCRKFDXCIGWTDKETD-a914 70 80 90 100 130 140 150 160 170 TELGFRICFSLPDFPCIGFQTALECQSCSADSXASTIFCTKGCRTTSSPVKVWKYSPSTL m914.pep  ${\tt TELGFRICFSLPDFPCIGFQTALECQSCSADSXASTIFCTKGCRTTSSPVKVWKYSPSTP}$ a914 120 130 140 150 160 190 200 210 220 230 CSFSRASFNPDLMFLGRSIWLVSPVMTAFAPKPMRVRNIFICSGVVFCASSRMMYAPLSV m914.pep CSFSRASFNPDLMFLGRSIWLVSPVMTAFAPKPMRVRNIFICSGVVFCASSRMMYAPLSV a914 180 190 200 210 220 m914.pep LPRIX  $\Pi\Pi\Pi$ a914 LPRIX 240 The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2777>: g915.seq ATGAAGAAAA CCCTGTTGGc AATTGTTGCC GtTTTCGCCT TAAGTGCCTG 1 51 CCGGCaggcg gaAGaggcac cgccgCCTTT ACCCCGGCAG AtTAGCGacc gttcggtcgg aCACTAttgC Agtatgaacc tgaccgaaca caacggcccc 101 151 aaagcccaga tttttttgaa cGGCAAACCC GATCAGCCCG TTTGGTTCTC CACCGTcaag cagatgttcg GCTATACCAA GCTGCCCGAA GAGCCCAAAG 201 GCATCCGCGT GATTTACGTT ACCGATATGG GCAATGTTAC CGATTGGACG AATCCTAATG CCGACACGGA GTGGATAGAT GCGAAAAAAG CCTTTTACGT 301 351 CATCGACAGC GGCTTTATCG GCGGTATGGG CGCGGAAGAC GCGCTGCCGT TCGGCAACAA GGAGCAGGCT GAAAAATTTG CAAAGGATAA AGGCGGCAAG GTCGTCGGTT TTGACGATAT GCCCGATGCT TACATTTTCA AGTAA This corresponds to the amino acid sequence <SEQ ID 2778; ORF 915.ng>: g915.pep 1 MKKTLLAIVA VFALSACRQA EEAPPPLPRQ ISDRSVGHYC SMNLTEHNGP KAQIFLNGKP DQPVWFSTVK QMFGYTKLPE EPKGIRVIYV TDMGNVTDWT NPNADTEWID AKKAFYVIDS GFIGGMGAED ALPFGNKEQA EKFAKDKGGK 101 VVGFDDMPDA YIFK* The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2779>: m915.seq ATGAAAAAA CCCTGTTGGC AATTGTTGCC GTTTCCGCCT TAAGTGC.tG 1 CCGGCAGGCG GAAGAGGAC CGCCGCCTTT ACCCCGGCAG ATTAGCGACC 51 GTTCGGTCGG ACACTATTGC AGTATGAACC TGACCGAACA CAACGGCCCC 101 AAAGCCCAGA TTTTCTTGAA CGGCAAACCC GATCAGCCCG TETGGTTCTC 201 CACCATCAAG CAGATGTTCG GCTATACCAA GCTGCCCGAA GAGCCTAAAG 251 GCATCCGCGT GATTTACGTT ACCGATATGG GCAATGTTAC CGATTGGACG

AATCCCAATG CCGACACGGA GTGGATGGAT GCGAAAAAAG CCTTTTACGT

CATCGACAGC GGCTTTATCG GCGGTATGGG TGCGGAAGAC GCGCTGCCGT TCGGCAACAA AGAGCAGGCT GAGAAATTTG CAAAGGATAA AGGCGGTAAG

451 GTTGTCGGTT TCGACGATAT GCCTGATACC TATATTTTCA AATAA

This corresponds to the amino acid sequence <SEQ ID 2780; ORF 915>:

m915.pep

1 MKKTLLAIVA VSALSXCROA EEGPPPLPRO ISDRSVGHYC SMNLTEHNGP
51 KAQIFLNGKP DOPVWFSTIK OMFGYTKLPE EPKGIRVIYV TDMGNVTDWT
101 NPNADTEWMD AKKAFYVIDS GFIGGMGAED ALPFGNKEQA EKFAKDKGGK
151 VVGFDDMPDT YIFK*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 915 shows 97.0% identity over a 164 aa overlap with a predicted ORF (ORF 915.ng)

from N. gonorrhoeae:

m915/g915

10 20 30 40 50 60

MKKTLLAIVAVSALSACROAEEGPPPLPROISDRSWGWACGANU THUNGDOW OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTAL OF PROSPECTIVE COMMENTA

	10	20	30	40	50	60
m915.pep	MKKTLLAIVAVSAL	SACRQAEEGI	PPPLPROISDE	RSVGHYCSMNL	TEHNGPKAOT	FLNCKD
		11111111:			11111111111	LILLI
<b>q91</b> 5	MKKTLLAIVAVFAL				TEINIGE VAC	11111
_	10	20				FLNGKP
	10	20	30	40	50	60
						•
	70	80	90	100	110	120
m915.pep	DQPVWFSTIKQMFG	YTKLPEEPKO	IRVIYVTDMO	מוסמישמיטאי	משים א בשות היים וליים. היים א המשום היים וליים היים היים היים היים היים היים היים	EVILLO
	1111111111111				JIII JIII	TIVIDS
g915	DOPVWESTVKOMEC					
30	DQPVWFSTVKQMFG	TIMPEEPRO		NVTDWTNPNA	DTEWIDAKKAI	FYVIDS
	70	80	90	100	110	120
	130	140	150	160	•	
m915.pep	GFIGGMGAEDALPF(	SNKEOAEKFA	KDKGGKVAGE		v	
	1111111111111			JUNEOTITE.	Λ. 1	
<b>9915</b>	GETGGMCAEDALDE			11111:1111	l	
9713	GFIGGMGAEDALPFO			DDMPDAYIFK	X	
	130	140	150	160		

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2781>:

```
ATGAAAAAA CCCTGTTGGC AATTGTTGCC GTTTCCGCCT TAAGTGCCTG
51 CCGGCAGGCG GAAGAGGGAC CGCCGCCTTT ACCCCGGCAG ATTAGCGACC
101 GTTCGGTCGG ACACTATTGC AGTATGAACC TGACCGAACA CAACGGCCCC
151 AAAGCCCAGA TTTTCTTGAA CGGCAAACCC GATCAGCCCG TTTGGTTCTC
201 CACCATCAAG CAGATGTTCG GCTATACCAA GCTGCCCGAA GAGCCTAAAG
251 GCATCCGCGT GATTTACGTT ACCGATATGG GCAATGTTAC CGATTGGACG
301 AATCCCAATG CCGACACGGA GTGGATGGAT GCGAAAAAAG CCTTTTACGT
351 CATCGACAGC GGCTTTATCG GCGGTATGGG TGCGGAAGAC GCGCTGCCGT
401 TCGGCAACAA AGAGCAGGCT GAGAAATTTG CAAAGGATAA AGGCGGTAAG
451 GTTGTCGGTT TCGACGATAT GCCTGATACC TATATTTTCA AATAA
```

### This corresponds to the amino acid sequence <SEQ ID 2782; ORF 915.a>:

a915.pep

1 MKKTLLAIVA VSALSACRQA EEGPPPLPRQ ISDRSVGHYC SMNLTEHNGP
51 KAQIFLNGKP DQPVWFSTIK QMFGYTKLPE EPKGIRVIYV TDMGNVTDWT
101 NPNADTEWMD AKKAFYVIDS GFIGGMGAED ALPFGNKEQA EKFAKDKGGK
151 VVGFDDMPDT YIFK*

### m915/a915 99.4% identity in 164 aa overlap

	10	20	30	40	50	60
m915.pep	MKKTLLAIVAVSAL	SXCRQAEEG	PPPLPRQISDF	RSVGHYCSMNI	TEHNGPKAOI	FLNGKP
a915		1 11111	1111111111	1111111111	1111111111	11111
<b>a91</b> 3	MKKTLLAIVAVSAL:	SACRQAEEG	PPPLPRQISDR	RSVGHYCSMNI	TEHNGPKAOI	FLNGKP
	10	20	30	40	50	60
0.1 5	70	80	90	100	110	120
m915.pep	DOPVWFSTIKOMFG	YTKLPEEPKO	GIRVIYVTDMG	NVTDWTNPNA	DTEWMDAKKA	FYVIDS
a915	DQPVWFSTIKQMFG			1111111	1111111111	

70 80 90 100 110 120 140 150 160 GFIGGMGAEDALPFGNKEQAEKFAKDKGGKVVGFDDMPDTYIFKX m915.pep GFIGGMGAEDALPFGNKEQAEKFAKDKGGKVVGFDDMPDTYIFKX a915 130 140 150

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2783>:
```

```
1 ATGGTCAAac atctgccacT cgcCGTCctg actgctTtgc tgcttgcagc
  51 gtgcGGCGGT Tcggacaaac cgcctgccga Aaaaccggca ccggcgGaAA
 101 accaaAacgt atTgaAAATT TataACTGGT CGGAATACGT CGATCCGGAA
 151 ACCGTTGCCG ATTTTGAAAA GAAAAACGGC ATCAAGGTTA CTTATGATGT
 201 GTACGACAGT GATGAAACGC TGGAAAGCAA GGTGCTGACC GGAAAATCCG
 251 GTTACGACAT TGTCGCGCCG TCCAATGCGT TTGTGGGCAG GCAGATTAAG
 301 GCAGGTGCGT ATCAGAAAAT CGATAAGTCG ATGATTCCCA ATTATAAACA
 351 TCTCAACCCT GAAATGATGA GGCTGATGGA CGGGGTCGAT CCCGACCACG
 401 AATACGCCGT GCCGTTTTAT TGGGGGACAA ATACCTTCGC CATCAATACC
     GAACGCGTGA AAAAGGCTTT GGGTACGGAC AAGCTGCCGG ACAACCAGTG
 501 GGATTTGGTG TTCAACCCCG AATACACGTT CAAACTCAAA CAATGCGGCA
 551 TCAGCTATTT GGACAGCGCG GCGGAAATTT ATCCCATGGT GTTGAACTAT
 601 TTGGGCAAAA ACCCGAACAG CAGCAATACG GAAGACATCA GGGAGGCAAC
 651 CGCCCTGCTC AAGAAAAACC GCCCCAATAT CAAACGCTTT ACTTCGTCCG
 701 GCTTTATCGA TGATTTGGCG CGCGGCGATA CCTGCGTAAC AATCGGTTTC
 751 GGCGGAGATT TGAACATCGC CAAACGCCGT GCCGAAGAAG CGGGCGGCAA
 801 GGAAAAAATC CGCGTGATGA TGCCGAAAGA GGGCGTGGGG ATTTGGGTGG
 851 ATTCTTTCGT GATTCCGAAA GATGCGAAAA ACGTCGCCAA CGCGCACAAA
 901 TACATCAACG ACTTCCTCGA TCCGGAAGTG TCGGCGAAAA ACGGCAATTT
951 CGTTACCTAC GCGCCTTCGA GCAAGCCGGC GCGCGATTTG ATGGAGGACG
1001 AATTTAAAAA CGACAATACG ATTTTCCCGA GCGGGGAAGA TTTGAAAAAC
     AGCTTTATCA TGGTGCCTAT CCGGCCGGCG GCATTGAAGT TTATGGTGCG
     CCAGTGGCAG GATGTGAAGG CGGGGAAATA A
```

# This corresponds to the amino acid sequence <SEQ ID 2784; ORF 917.ng>: g917.pep

```
1 MVKHLPLAVL TALLLAACGG SDKPPAEKPA PAENQNVLKI YNWSEYVDPE
51 TVADFEKKNG IKVTYDVYDS DETLESKVLT GKSGYDIVAP SNAFVGRQIK
101 AGAYQKIDKS MIPNYKHLNP EMMRLMDGVD PDHEYAVPFY WGTNTFAINT
151 ERVKKALGTD KLPDNQWDLV FNPEYTFKLK QCGISYLDSA AEIYPMVLNY
201 LGKNPNSSNT EDIREATALL KKNRPNIKRF TSSGFIDDLA RGDTCVTIGF
251 GGDLNIAKRR AEEAGGKEKI RVMMPKEGVG IWVDSFVIPK DAKNVANAHK
301 YINDFLDPEV SAKNGNFVTY APSSKPARDL MEDEFKNDNT IFPSGEDLKN
351 SFIMVPIRPA ALKFMVRQWQ DVKAGK*
```

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2785>: m917.seq

1	ATGACCAAAC	ATCTGCCCCT	GGCCGTCCTG	ACTGCTTTGC	TGCTTGCAGC
51	GTGCGGCGGT	TCGGACAAAC	CGCCTGCCGA	AAAACCGGCA	CCGGCGGAAA
101	ACCAAAACGT	ATTGAAAATT	TACAACTGGT	CGGAATATGT	CGATCCGGAA
151	ACCGTTGCCG	ATTTTGAAAA	GAAAAACGGC	ATCAAGGTTA	СТТАТСАТСТ
201	GTACGACAGC	GATGAAACGC	TGGAAAGCAA	GGTGCTGACA	GGCAAGTCCC
251	GTTACGACAT	TGTCGCGCCG	TCCAATGCGT	TTGTGGGCAG	GCAGATTAAC
301	GCAGGTGCGT	ATCAGAAAAT	CGATAAGTCG	CTGATTCCCA	ATTATAAAA
351	CCTCAACCCC	GAAATGATGA	GGCTGATGGA	CGGGGTCGAT	CCCCCCCCA
401	AATACGCCGT	GCCGTTTTAT	TGGGGGACAA	ATACCTTCCC	CCCGGCCACG
451	GAACGCGTGA	AAAAGGCTTT	GGGTACGGAC	AACCTCCCC	CATCAATACC
501	GGATTTGGTG	TTCGACCCCG	AATACACGTC	CAAACTGCCGG	ACAACCAGTG
551	TCAGCTATTT	GGACAGCGCG	GCGGAAATCT	CAAACTCAAG	CAATGCGGCA
601	TTCCCTAAAA	ACCCCA ACAC	GCGGAAATCT	ATCCTATGGT	GTTGAACTAT
651	CCCCCTACTC	ACCCGAACAG	CAGCAATACG	GAAGACATCA	GGGAGGCAAC
701	CCCCCIACIC	MAGAAAAACC	GCCCCAATAT	CAAACGCTTT	ACTTCGTCCG
,01	GCITIATCGA	TGATTTGGCG	CGCGGCGATA	CCTGCGTAAC	AATCGGTTTC



751	GGCGGCGATT	TGAACATCGC	CAAACGCCGT	GCCGAAGAAG	CGGGCGGCAA
801	GGAAAAAATC	CGCGTGATGA	TGCCCAAAGA	GGGCGTGGGG	ATTTGGGTGG
851	ATTCTTTCGT	GATTCCGAAA	GATGCGAAAA	ACGTCGCCAA	CGCGCACAAA
901	TACATCAACG	ACTTCCTCGA	CCCGGAAGTG	TCGGCGAAAA	ACGGCAATTT
951	CGTTACTTAC	GCGCCTTCGA	GCAAGCCTGC	GCGTGACCTC	
1001	AATTTAAAAA	CGACAATACG	ATTTTCCCAA	CCGACGACGA	ATGGAAGACG
1051	AGCTTTATCA	TGGTGCCTAT	CCAGCCGCCC	CCGAGGAGGA	TTTGAAAAAC
1101	CCAGTGGCAG	GATGTGAAGG	CCCCCANATA	GCATTGAAGT	TTATGGTGCG
This corre	on and a to the		COGGGAAAIA	A	
			CAMILLANA /		
TIMB COITC	sponds to the	annino acid	sequence <2	DEU ID 2786	): ORF 917>·
m917.pep	sponds to the	annio acid	sequence <2	EQ ID 2786	; ORF 917>:
m917.pep	MTKHLPLAVL	TALLLAACGG			
mgi/.pep				PAENQNVLKI	YNWSEYVDPE
m91/.pep	MTKHLPLAVL	TALLLAACGG	SDKPPAEKPA DETLESKVLT	PAENQNVLKI GKSGYDIVAP	YNWSEYVDPE SNAFVGRQIK
m917.pep 1 51	MTKHLPLAVL TVADFEKKNG	TALLLAACGG IKVTYDVYDS	SDKPPAEKPA DETLESKVLT EMMRLMDGVD	PAENQNVLKI GKSGYDIVAP PGHEYAVPFY	YNWSEYVDPE SNAFVGRQIK WGTNTFAINT
1 51 101	MTKHLPLAVL TVADFEKKNG AGAYQKIDKS	TALLLAACGG IKVTYDVYDS LIPNYKHLNP	SDKPPAEKPA DETLESKVLT EMMRLMDGVD FDPEYTSKLK	PAENQNVLKI GKSGYDIVAP PGHEYAVPFY QCGISYLDSA	YNWSEYVDPE SNAFVGRQIK WGTNTFAINT AEIYPMVLNY
1 51 101 151	MTKHLPLAVL TVADFEKKNG AGAYQKIDKS ERVKKALGTD	TALLLAACGG IKVTYDVYDS LIPNYKHLNP KLPDNQWDLV EDIREATALL	SDKPPAEKPA DETLESKVLT EMMRLMDGVD FDPEYTSKLK KKNRPNIKRF	PAENQNVLKI GKSGYDIVAP PGHEYAVPFY QCGISYLDSA TSSGFIDDLA	YNWSEYVDPE SNAFVGRQIK WGTNTFAINT AEIYPMVLNY RGDTCVTIGF
1 51 101 151 201	MTKHLPLAVL TVADFEKKNG AGAYOKIDKS ERVKKALGTD LGKNPNSSNT GGDLNIAKRR	TALLLAACGG IKVTYDVYDS LIPNYKHLNP KLPDNQWDLV EDIREATALL AEEAGGKEKI	SDKPPAEKPA DETLESKVLT EMMRLMDGVD FDPEYTSKLK KKNRPNIKRF RVMMPKEGVG	PAENQNVLKI GKSGYDIVAP PGHEYAVPFY QCGISYLDSA TSSGFIDDLA IWVDSFVIPK	YNWSEYVDPE SNAFVGRQIK WGTNTFAINT AEIYPMVLNY RGDTCVTIGF DAKNVANAHK
m917.pep 1 51 101 151 201 251	MTKHLPLAVL TVADFEKKNG AGAYOKIDKS ERVKKALGTD LGKNPNSSNT GGDLNIAKRR YINDFLDPEV	TALLLAACGG IKVTYDVYDS LIPNYKHLNP KLPDNQWDLV EDIREATALL AEEAGGKEKI	SDKPPAEKPA DETLESKVLT EMMRLMDGVD FDPEYTSKLK KKNRPNIKRF RVMMPKEGVG APSSKPAREL	PAENQNVLKI GKSGYDIVAP PGHEYAVPFY QCGISYLDSA TSSGFIDDLA IWVDSFVIPK	YNWSEYVDPE SNAFVGRQIK WGTNTFAINT AEIYPMVLNY RGDTCVTIGF DAKNVANAHK

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 917 shows 97.6% identity over a 376 aa overlap with a predicted ORF (ORF 917.ng) from N. gonorrhoeae: m917/g917

	10	20	30	40	50	60
m917.pep	MTKHLPLAVLTALI	LAACGGSDK	PPAEKPAPAE	NONVLKIYNW	SEYVDPETVA	DEEXMAC
		1111111		1   1   1   1   1   1   1   1		1111111
g917	MVKHLPLAVLTALL	LAACGGSDK	PPAEKPAPAEI	NONVLKIYNWS	SEYVDDETVA	DEEKVAC
	10	20	30	40	50	60
						80
	70	80	90	100	110	120
m917.pep	IKVTYDVYDSDETL	ESKVLTGKS	GYDIVAPSNA	FVGRQIKAGAY	OKIDKSLIP	NVKHIND
		11111111			11111.11	LIBERT
g917	IKVTYDVYDSDETL	ESKVLTGKS	GYDIVAPSNA	VGROIKAGAY	OKIDKSMTP	VYKHI.ND
	70	80	90	100	110	120
						120
	130	140	150	160	170	180
m917.pep	EMMRLMDGVDPGHE	YAVPFYWGTN	NTFAINTERVE	KALGTDKLPD	NOMDIALEDER	Y.IYPTVE
		1   1   1   1   1   1   1		1111111	111111.1:	
g917	EMMRLMDGVDPDHE	YAVPFYWGTN	TFAINTERVE	KALGTDKLPD	NOMDIATENDI	III     VTEKIV
	130	140	150	160	170	180
						100
	190	200	210	220	230	240
m917.pep	OCGISYLDSAAEIY	PMVLNYLGKN	PNSSNTEDIR	EATALLKKNR	PNIKRFTSSC	FTDDT.A
232		11111111	1111111			111111
g917	QCGISYLDSAAEIYI	PMVLNYLGKN	PNSSNTEDIR	EATALLKKNR	PNIKRFTSSC	FTDDT.A
	190	200	210	220	230	240
					•	240
	250	260	270	280	290	300
m917.pep	RGDTCVTIGFGGDL	<b>IIAKRRAEEA</b>	GGKEKIRVMM	PKEGVGIWVD	SFVIPKDAKN	VANAHK
					111111111	11111
g917	RGDTCVTIGFGGDLN	IIAKRRAEEA	GGKEKIRVMM	PKEGVGIWVD	SFVIPKDAKN	VANDHK
	250	260	270	280	290	300
						300
	310	320	330	340	350	360
m917.pep	YINDFLDPEVSAKNO	NFVTYAPSS	KPARELMEDE:	FKNDNTIFPTE	EEDLKNSFIM	VDTODA
	- 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11111111	1111:1111	[	11111111	111 11
g917	YINDFLDPEVSAKNG	NFVTYAPSS	KPARDLMEDE:	FKNDNTIFPSC	EDLKNSFIM	TIITIDA VDTDDA
	310	320	330	340	350	360
						300

3.70

```
m917.pep
             ALKFMVRQWQDVKAGKX
             111111111111111111
g917
             ALKFMVROWODVKAGKX
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2787>:
     a917.seq
               ATGACCAAAC ATCTGCCCCT GGCCGTCCTG ACTGCTTTGC TGCTTGCAGC
            1
               GTGCGGCGGT TCGGACAAAC CGCCTGCCGA AAAACCGGCG CCGGCGGAAA
           51
               ACCGAAACGT ATTGAAAATT TACAACTGGT CGGAATACGT CGATCCGGAA
          101
              ACCGTTGCCG ATTTTGAAAA GAAAAACGGC ATCAAGGTTA CTTATGATGT
          151
               GTACGACAGC GATGAAACGC TGGAAAGCAA GGTGCTGACC GGAAAATCTG
          201
               GTTACGACAT TGTCGCGCCG TCCAATGCGT TTGTGGGCAG GCAGATTAAG
          251
              GCAGGTGCGT ATCAGAAAAT CGATAAGTCG CTGATTCCCA ATTATAAACA
          301
              CCTCAACCCC GAAATGATGA GGCTGATGGA CGGGGTCGAT CCCGGCCACG
          351
          401 AATACGCCGT GCCGTTTTAT TGGGGGGACAA ATACCTTCGC CATCAATACC
          451
               GAACGCGTGA AAAAGGCTTT GGGTACGGAC AAGCTGCCGG ACAACCAGTG
              GGATTTGGTG TTCGACCCCG AATACACGTC CAAACTCAAG CAATGCGGCA
          501
               TCAGCTATTT GGACAGCGCG GCGGAAATCT ATCCTATGGT GTTGAACTAT
          551
              TTGGGTAAAA ACCCGAACAG CAGCAATACG GAAGACATCA GGGAGGCAAC
          601
              CGCCCTACTC AAGAAAAACC GCCCCAATAT CAAACGCTTT ACTTCGTCCG
          651
              GCTTTATCGA TGATTTGGCG CGCGGCGATA CCTGCGTAAC AATCGGTTTC
          701
              GGCGGCGATT TGAACATCGC CAAACGCCGT GCCGAAGAAG CGGGCGGCAA
          751
              GGAAAAAATC CGCGTGATGA TGCCCAAAGA GGGCGTGGGG ATTTGGGTGG
          801
              ATTCTTTCGT GATTCCGAAA GATGCGAAAA ACGTCGCCAA CGCGCACAAA
          851
              TACATCAACG ACTTCCTCGA CCCGGAAGTG TCGGCGAAAA ACGGCAATTT
              CGTTACTTAC GCGCCTTCGA GCAAGCCTGC GCGTGAGCTG ATGGAAGACG
          951
              AATTTAAAAA CGACAATACG ATTTTCCCAA CCGAGGAGGA TTTGAAAAAC
         1001
              AGCTTTATCA TGGTGCCTAT CCAGCCGGCG GCATTGAAGT TTATGGTGCG
              CCAGTGGCAG GATGTGAAGG CGGGGAAATA A
         1101
This corresponds to the amino acid sequence <SEQ ID 2788; ORF 917.a>:
     a917.pep
              MTKHLPLAVL TALLLAACGG SDKPPAEKPA PAENRNVLKI YNWSEYVDPE
           1
              TVADFEKKNG IKVTYDVYDS DETLESKVLT GKSGYDIVAP SNAFVGRQIK
          51
              AGAYQKIDKS LIPNYKHLNP EMMRLMDGVD PGHEYAVPFY WGTNTFAINT
         101
              ERVKKALGTD KLPDNQWDLV FDPEYTSKLK QCGISYLDSA AEIYPMVLNY
         151
              LGKNPNSSNT EDIREATALL KKNRPNIKRF TSSGFIDDLA RGDTCVTIGF
         201
              GGDLNIAKRR AEEAGGKEKI RVMMPKEGVG IWVDSFVIPK DAKNVANAHK
         251
         301
              YINDFLDPEV SAKNGNFVTY APSSKPAREL MEDEFKNDNT IFPTEEDLKN
         351 SFIMVPIQPA ALKFMVRQWQ DVKAGK*
    m917/a917
                 99.7% identity in 376 aa overlap
                                            30
                                                     40
                 MTKHLPLAVLTALLLAACGGSDKPPAEKPAPAENQNVLKIYNWSEYVDPETVADFEKKNG
    m917.pep
                 a917
                 MTKHLPLAVLTALLLAACGGSDKPPAEKPAPAENRNVLKIYNWSEYVDPETVADFEKKNG
                        10
                                  20
                                                     40
                                                               50
                        70
                                  80
                                            90
                                                    100
                 {\tt IKVTYDVYDSDETLESKVLTGKSGYDIVAPSNAFVGRQIKAGAYQKIDKSLIPNYKHLNP}
    m917.pep
                 IKVTYDVYDSDETLESKVLTGKSGYDIVAPSNAFVGRQIKAGAYQKIDKSLIPNYKHLNP
    a917
                        70
                                  80
                                            90
                                                    100
                                                             110
                       130
                                 140
                                           150
                                                    160
                 EMMRLMDGVDPGHEYAVPFYWGTNTFAINTERVKKALGTDKLPDNQWDLVFDPEYTSKLK
    m917.pep
                 EMMRLMDGVDPGHEYAVPFYWGTNTFAINTERVKKALGTDKLPDNQWDLVFDPEYTSKLK
    a917
                       130
                                 140
                                           150
                                                    160
                                                             170
                                                                       180
                       190
                                 200
                                          210
                                                    220
                QCGISYLDSAAEIYPMVLNYLGKNPNSSNTEDIREATALLKKNRPNIKRFTSSGFIDDLA
```

m917.pep

a917	QCGISYLDSAAEIYPM	VLNYLGKNPN	SSNTEDIREA	TALLKKNRPN	IKRFTSSGFI	A.IDD
	190	200	210	220	230	240
01.7	250	260	270	280	290	300
m917.pep	RGDTCVTIGFGGDLNI.	akrraeeagg	KEKIRVMMPK	<b>E</b> GVGIWVDSF	VIPKDAKNVA	NAHK
		111111111	1111111111			1111
a917	RGDTCVTIGFGGDLNI.	AKRRAEEAGG	KEKIRVMMPK	EGVGIWVDSF	VTPKDAKNVAI	JAHK
	250	260	270	280	290	300
	310	320	330	340	350	360
m917.pep	YINDFLDPEVSAKNGN	EVTYAPSSKP	ARELMEDEEK		DI KNICETMUDI	700
• •				IIIIIIIIIII	DRENGE IMAE	
a917	YINDFLDPEVSAKNGN		//////////////////////////////////////		·	
451,	210	LAITUEDDUE				IQPA
	310	320	330	340	350	360
	370					
m917.pep	ALKFMVRQWQDVKAGK	Κ '				
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1				
a917	ALKFMVRQWQDVKAGK					
	370	•				
	570					

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 2789>: g919.seq

```
ATGAAAAAAC ACCTGCTCCG CTCCGCCCTG TACGGCatCG CCGCCgccAT
  51 CctcgCCGCC TGCCAAAgca gGAGCATCCA AACCTTTCCG CAACCCGACA
 101 CATCCGTCAT CAACGGCCCG GACCGGCCGC CCGGCATCCC CGACCCCGCC
 151 GGAACGACGG TTGCCGGCGG CGGGGCCGTC TATACCGTTG TGCCGCACCT
      GTCCATGCCC CACTGGGCGG CGCaggATTT TGCCAAAAGC CTGCAATCCT
      TCCGCCTCGG CTGCGCCAAT TTGAAAAACC GCCAAGGCTG GCAGGATGTG
 301
      TGCGCCCAAG CCTTTCAAAC CCCCGTGCAT TCCTTTCAGG CAAAGCGgTT
      TTTTGAACGC TATTTCACGC cgtGGCaggt tgcaggcaAC GGAAGcCTTG
 351
 401
      Caggtacggt TACCGGCTAT TACGAACCGG TGCTGAAGGG CGACGGCAGG
 451 CGGACGGAAC GGGCCCGCTT CCCGATTTAC GGTATTCCCG ACGATTTTAT
 501 CTCCGTCCCG CTGCCTGCCG GTTTGCGGGG CGGAAAAAAC CTTGTCCGCA
 551 TCAGGCAGAC GGGGAAAAAC AGCGGCACGA TCGACAATGC CGGCGGCACG
 601 CATACCGCCG ACCTCTCCCG ATTCCCCATC ACCGCGCGCA CAACGGCART
 651 CARAGGCAGG TTTGAAGGAA GCCGCTTCCT CCCTTACCAC ACGCGCAACC
 701 AAAtcaacGG CGGCgcgcTT GACGGCAAag cccCCATCCT CggttacgcC
 751 GAAGACCCCG tcgaacttTT TTTCATGCAC AtccaaggCT CGGGCCGCCT
 801 GAAAACCCcg tccggcaaat acatCCGCAt cggaTacgcc gacAAAAACG
 851 AACAtccgTa tgtttccatc ggACGctaTA TGGCGGACAA AGGCTACCTC
 901
     AAGCtcgggc agACCTCGAT GCAGGgcatc aaagcCTATA TGCGGCAAAA
 951
     TCCGCAACGC CTCGCCGAAG TTTTGGGTCA AAACCCCAGC TATATCTTTT
     TCCGCGAGCT TGCCGGAAGC GGCAATGAGG GCCCCGTCGG CGCACTGGGC
1001
1051 ACGCCACTGA TGGGGGAATA CGCCGGCGCA ATCGACCGGC ACTACATTAC
1101 CTTGGGCGCG CCCTTATTTG TCGCCACCGC CCATCCGGTT ACCCGCAAAG
1151 CCCTCAACCG CCTGATTATG GCGCAGGATA CAGGCAGCGC GATCAAAGGC
1201 GCGGTGCGCG TGGATTATTT TTGGGGTTAC GGCGACGAAG CCGGCGAACT
1251 TGCCGGCAAA CAGAAAACCA CGGGATACGT CTGCCCAACG
1301 GCATGAAGCC CGAATACCGC CCGTGA
```

This corresponds to the amino acid sequence <SEQ ID 2790; ORF 919.ng>: g919.pep

```
1 MKKHLLRSAL YGIAAAILAA CQSRSIQTFP QPDTSVINGP DRPAGIPDPA
51 GTTVAGGGAV YTVVPHLSMP HWAAQDFAKS LQSFRLGCAN LKNRQGWQDV
101 CAQAFQTPVH SFQAKRFFER YFTPWQVAGN GSLAGTVTGY YEPVLKGDGR
151 RTERARFPIY GIPDDFISVP LPAGLRGGKN LVRIRQTGKN SGTIDNAGGT
201 HTADLSRFPI TARTTAIKGR FEGSRFLPYH TRNQINGGAL DGKAPILGYA
251 EDPVELFFMH IQGSGRLKTP SGKYIRIGYA DKNEHPYVSI GRYMADKGYL
301 KLGQTSMQGI KAYMRQNPQR LAEVLGQNPS YIFFRELAGS GNEGPVGALG
351 TPLMGEYAGA IDRHYITLGA PLFVATAHPV TRKALNRLIM AQDTGSAIKG
401 AVRVDYFWGY GDEAGELAGK QKTTGYVWQL LPNGMKPEYR P*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2791>:

1	ATGAAAAAAT	ACCTATTCCG	CGCCGCCCTG	TACGGCATCG	CCGCCGCCAT
51	CCTCGCCGCC	TGCCAAAGCA	AGAGCATCCA	AACCTTTCCG	CAACCCGACA
101	CATCCGTCAT	CAACGGCCCG	GACCGGCCGG	TCGGCATCCC	CGACCCCGCC
151	GGAACGACGG	TCGGCGGCGG	CGGGGCCGTC	TATACCGTTG	TACCGCACCT
201	GTCCCTGCCC	CACTGGGCGG	CGCAGGATTT	CGCCAAAAGC	CTGCAATCCT
251	TCCGCCTCGG	CTGCGCCAAT	TTGAAAAACC	GCCAAGGCTG	GCAGGATGTG
301	TGCGCCCAAG	CCTTTCAAAC	CCCCGTCCAT	TCCTTTCAGG	CAAAACAGTT
351	TTTTGAACGC	TATTTCACGC	CGTGGCAGGT	TGCAGGCAAC	GGAAGCCTTG
401	CCGGTACGGT	TACCGGCTAT	TACGAACCGG	TGCTGAAGGG	CGACGACAGG
451	CGGACGGCAC	AAGCCCGCTT	CCCGATTTAC	GGTATTCCCG	ACGATTTTAT
501	CTCCGTCCCC	CTGCCTGCCG	GTTTGCGGAG	CGGAAAAGCC	CTTGTCCGCA
551	TCAGGCAGAC	GGGAAAAAAC	AGCGGCACAA	TCGACAATAC	CGGCGGCACA
601	CATACCGCCG	ACCTCTCCcG	ATTCCCCATC	ACCGCGCGCA	CAACAGCAAT
651	CAAAGGCAGG	TTTGAAGGAA	GCCGCTTCCT	CCCCTACCAC	ACGCGCAACC
701	AAATCAACGG	CGGCGCGCTT	GACGGCAAAG	CCCCGATACT	CGGTTACGCC
751	GAAGACCCTG	TCGAACTTTT	TTTTATGCAC	ATCCAAGGCT	CGGGCCGTCT
801	GAAAACCCCG	TCCGGCAAAT	ACATCCGCAT	CGGCTATGCC	GACAAAAACG
851	AACATCCYTA	CGTTTCCATC	GGACGCTATA	TGGCGGATAA	GGGCTACCTC
901	AAACTCGGAC	AAACCTCCAT	GCAGGGCATT	AAGTCTTATA	TGCGGCAAAA
951	TCCGCAACGC	CTCGCCGAAG	TTTTGGGTCA	AAACCCCAGC	TATATCTTTT
1001	TCCGCGAGCT	TGCCGGAAGC	AGCAATGACG	GCCCTGTCGG	CGCACTGGGC
1051	ACGCCGCTGA	TGGGGGAATA	TGCCGGCGCA	GTCGACCGGC	ACTACATTAC
1101	CTTGGGTGCG	CCCTTATTTG	TCGCCACCGC	CCATCCGGTT	ACCCGCAAAG
1151	CCCTCAACCG	CCTGATTATG	GCGCAGGATA	CCGGCAGCGC	GATTAAAGGC
1201	GCGGTGCGCG	TGGATTATTT	TTGGGGATAC	GGCGACGAAG	CCGGCGAACT
1251	TGCCGGCAAA	CAGAAAACCA	CGGGATATGT	CTGGCAGCTC	CTACCCAACG
GTATGAAGC	C CGAATACCGc	CCGTAA		·	

This corresponds to the amino acid sequence <SEQ ID 2792; ORF 919>: m919.pep

```
MKKYLFRAAL YGIAAAILAA CQSKSIQTFP QPDTSVINGP DRPVGIPDPA
51 GTTVGGGGAV YTVVPHLSLP HWAAQDFAKS LQSFRLGCAN LKNRQGWQDV
101 CAQAFQTPVH SFQAKQFFER YFTPWQVAGN GSLAGTVTGY YEPVLKGDDR
151 RTAQARFPIY GIPDDFISVP LPAGLRSGKA LVRIRQTGKN SGTIDNTGGT
201 HTADLSRFPI TARTTAIKGR FEGSRFLPYH TRNQINGGAL DGKAPILGYA
251 EDPVELFFMH IQGSGRLKTP SGKYIRIGYA DKNEHPYVSI GRYMADKGYL
301 KLGQTSMQGI KSYMRQNPQR LAEVLGQNPS YIFFRELAGS SNDGPVGALG
351 TPLMGEYAGA VDRHYITLGA PLFVATAHPV TRKALNRLIM AQDTGSAIKG
401 AVRVDYFWGY GDEAGELAGK QKTTGYVWQL LPNGMKPEYR P*
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from *N.gonorrhoeae*ORF 919 shows 95.9 % identity over a 441 aa overlap with a predicted ORF (ORF 919.ng) from *N. gonorrhoeae*: m919/g919

	10	20	30	40	50	60
m919.pep	MKKYLFRAALYGIA	AAILAACOSK	SIOTFPOPDI	SVTNGDDDDV	ייייים גפתפדטז	TOCOCONT
					111111111	1.1111
g919	MKKHLLRSALYGIA	AAILAACQSR	SIQTFPOPDI	SVINGPORPA	GIPDPAGTT	/AGGGAV
	10	20	30	40	50	60
	70	80	90	100	110	120
m919.pep	YTVVPHLSLPHWAA	QD <b>Fa</b> kslosf	RLGCANLKNR	QGWQDVCAOA	FOTPVHSFO	200000
g919	1	1   1   1   1   1   1	1       1   1   1   1		1111111111	1.1111
9717	II V V PRII SMPRWAA	ODLWK2TÖZL	RLGCANLKNR	QGWQDVCAQA	FOTPVHSFQ	KRFFER
	70	80	90	100	110	120



## The following partial DNA sequence was identified in N.meningitidis <SEQ ID 2793>:

1	ATGAAAAAAT	ACCTATTCCG	CGCCGCCCTG	TGCGGCATCG	CCGCCGCCAT
51	CCTCGCCGCC	TGCCAAAGCA	AGAGCATCCA	AACCTTTCCG	CAACCCGACA
101	CATCCGTCAT	CAACGGCCCG	GACCGGCCGG	TCGGCATCCC	CGACCCCGCC
151	GGAACGACGG	TCGGCGGCGG	CGGGGCCGTT	TATACCGTTG	TGCCGCACCT
201	GTCCCTGCCC	CACTGGGCGG	CGCAGGATTT	CGCCAAAAGC	CTGCAATCCT
251	TCCGCCTCGG	CTGCGCCAAT	TTGAAAAACC	GCCAAGGCTG	GCAGGATGTG
301	TGCGCCCAAG	CCTTTCAAAC	CCCCGTCCAT	TCCGTTCAGG	CAAAACAGTT
351	TTTTGAACGC	TATTTCACGC	CGTGGCAGGT	TGCAGGCAAC	GGAAGCCTTG
401	CCGGTACGGT	TACCGGCTAT	TACGAGCCGG	TGCTGAAGGG	CGACGACAGG
451	CGGACGGCAC	AAGCCCGCTT	CCCGATTTAC	GGTATTCCCG	ACGATTTTAT
501	CTCCGTCCCC	CTGCCTGCCG	GTTTGCGGAG	CGGAAAAGCC	CTTGTCCGCA
551	TCAGGCAGAC	GGGAAAAAAC	AGCGGCACAA	TCGACAATAC	CGGCGGCACA
601	CATACCGCCG	ACCTCTCCCA	ATTCCCCATC	ACTGCGCGCA	CAACGGCAAT
651	CAAAGGCAGG	TTTGAAGGAA	GCCGCTTCCT	CCCCTACCAC	ACGCGCAACC
701	AAATCAACGG	CGGCGCGCTT	GACGGCAAAG	CCCCGATACT	CGGTTACGCC
751	GAAGACCCCG	TCGAACTTTT	TTTTATGCAC	ATCCAAGGCT	CGGGCCGTCT
801	GAAAACCCCG	TCCGGCAAAT	ACATCCGCAT	CGGCTATGCC	GACAAAAACG
851	AACATCCCTA	CGTTTCCATC	GGACGCTATA	TGGCGGACAA	AGGCTACCTC
901	AAGCTCGGGC	AGACCTCGAT	GCAGGGCATC	AAAGCCTATA	TGCAGCAAAA
951	CCCGCAACGC	CTCGCCGAAG	TTTTGGGGCA	AAACCCCAGC	TATATCTTTT
1001	TCCGAGAGCT	TACCGGAAGC	AGCAATGACG	GCCCTGTCGG	CGCACTGGGC
1051	ACGCCGCTGA	TGGGCGAGTA	CGCCGGCGCA	GTCGACCGGC	ACTACATTAC
1101	CTTGGGCGCG	CCCTTATTTG	TCGCCACCGC	CCATCCGGTT	ACCCGCAAAG

1151 1201 1251 1301	CCCTCAACCG CCTGATTATG GCGCAGGATA CCGGCAGCGC GATTAAAGGC GCGGTGCGCG TGGATTATTT TTGGGGATAC GGCGACGAAG CCGGCGAACT TGCCGGCAAA CAGAAAACCA CGGGATATGT CTGGCAGCTT CTGCCCAACG GTATGAAGCC CGAATACCGC CCGTAA
This correspond a919.pep	s to the amino acid sequence <seq 2794;="" 919.a="" id="" orf="">:</seq>
1 51 101 151 201 251 301 351 401	MKKYLFRAAL CGIAAAILAA CQSKSIQTFP QPDTSVINGP DRPVGIPDPA GTTVGGGGAV YTVVPHLSLP HWAAQDFAKS LQSFRLGCAN LKNRQGWQDV CAQAFQTPVH SVQAKQFFER YFTPWQVAGN GSLAGTVTGY YEPVLKGDDR RTAQARFPIY GIPDDFISVP LPAGLRSGKA LVRIRQTGKN SGTIDNTGGT HTADLSQFPI TARTTAIKGR FEGSRFLPYH TRNQINGGAL DGKAPILGYA EDPVELFFMH IQGSGRLKTP SGKYIRIGYA DKNEHPYVSI GRYMADKGYL KLGQTSMQGI KAYMQQNPQR LAEVLGQNPS YIFFRELTGS SNDGPVGALG TPLMGEYAGA VDRHYITLGA PLFVATAHPV TRKALNRLIM AQDTGSAIKG AVRVDYFWGY GDEAGELAGK QKTTGYVWQL LPNGMKPEYR P*
m919/a919	98.6% identity in 441 aa overlap 10 20 30 40 50 60
m919.pep a919	MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
m919.pep	70 80 90 100 110 120 YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
<b>a</b> 919	
m919.pep	130 140 150 160 170 180 YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
a919	YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA 130 140 150 160 170 180
m919.pep a919	190 200 210 220 230 240 LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
	250 260 270 280 290 300
m919.pep	DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
<b>a</b> 919	DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL 250 260 270 280 290 300
m919.pep	310 320 330 340 350 360
a919	KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA
<b>a</b> 313	KLGQTSMQGIKAYMQQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA 310 320 330 340 350 360
m919.pep	370 380 390 400 410 420 VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
a919	VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
m919.pep	430 440 QKTTGYVWQLLPNGMKPEYRPX 
a919	QKTTGYVWQLLPNGMKPEYRPX 430 440

#### Expression of ORF 919

The primer described in Example 1 for ORF 919 was used to locate and clone ORF 919. This sequence was purified and expressed in *E. coli* as provided in Figure 1 #. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 919 is provided in Figure 5 #. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, *J. Immunol* 143:3007; Roberts et al. 1996, *AIDS Res Human Retroviruses* 12:593; Quakyi et al. 1992, *Scand J Immunol Suppl* 11:9). The nucleic acid sequence of ORF 919 is provided in Exhibit C #.

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2795>:
      g920.seq
                (partial)
                 ..ccgatgcagc tggttaccga aaaAGGTAAG GAAAACATGA TTCAACGCGG
             1
                  CACATACAAC TACCAATACC GCAGCAACCG TCCCGTCAAA GACGGCAGCT
            51
                  ACCTCGTTAC CGCCGAATAT CAGCCTACTT TCCGGTCAAA AAACAAAGCA
           101
                  GGCTGGAAAC AGGCTGGCAT CAAAGAAATG CCTGACGCAA GCTATTGCGA
           151
                  ACAAACCCGT ATGTTCGGTA AAAACATTGT CAACGTGGGA CACGAAAGCG
           201
                  CGGACACCGC CATCATCACC AAACCGGTCG GACAAAACTT GGAAATCGTC
           251
                  CCGCTGGACA ATCccgccga caTTCACgtg ggctaacgCt tcaaaGTccg
           301
                  cgttCtgttc cgtGGCgaac cgCTGcccaa tgccACCgtt accgCtacAT
           351
                  TTGacggctt cGAcaccagc gaccgcagca aaacgcacaa Aaccgaagcc
           401
           451
                  caagcctTCT ccgacaccac cgacggcgaa ggcgaagtgg acatcatCCC
                  CTTGCgccaa GGCTTttgga aAgcGAGTGT CGAATAcaaa gccgAtttcc
           501
                  CCGATcaaAG CCTGTGccga AAACAggcgA ACTACaCaac TTtaaccttc
           551
           601
                  caaatcgccc attctCacca tTAa
This corresponds to the amino acid sequence <SEQ ID 2796; ORF 920.ng>:
     g920.pep
                (partial)
                ..PMQLVTEKGK ENMIQRGTYN YQYRSNRPVK DGSYLVTAEY QPTFRSKNKA
            1
                  GWKQAGIKEM PDASYCEQTR MFGKNIVNVG HESADTAIIT KPVGQNLEIV
            51
          101
                  PLDNPADIHV GXRFKVRVLF RGEPLPNATV TATFDGFDTS DRSKTHKTEA
          151
                  QAFSDTTDGE GEVDIIPLRQ GFWKASVEYK ADFPDQSLCR KQANYTTLTF
          201
                  OIAHSHH*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2797>:
     m920.seq
               ATGAAGAAAA CATTGACACT GCTCTCCGTT TCCGCCCTAT TTGCCACATC
               CGCCCACGCC CACCGMGTCT GGGTCGAAAC CGCCCACACG CACGGCGGCG
           51
          101
               AATACCTTAA AGCCGACTTG GGCTACGGCG AATTTCCCGA ACTCGAACCC
               ATCGCCAAAG ACCGCCTGCA CATCTTCAGC AAACCGATGC AGCTGGTTAC
               CGAAAAAGGC AAGGAAAACA TGATTCAACG CGGCACATAC AACTACCAGT
              ACCGAAGCAA CCGTCCCGTT AAGGACGGCA GTTACCTCGT CATCGCCGAA
          251
              TATCAGCCTA CTTTCTGGTC AAAAWACAAA GCAGGCTGGA AACAGGCGGG
          301
          351 CATCAAAGAA ATGCCTGACG CAAGCTATTG CGAACAAACC CGAATGTTCG
          401 GCAAAAACAT CGTCAACGTC GGACACGAAA GCGCGGACAC CGCCATCATC
          451 ACCAArCCGG TCGGACAAAA CTTGGAAATC GTCCCGCTGG ACAATCCCGC
          501 CAACATTCAC GTAGGCGAAC GCTTCAAAGT CCGCGTTCTG TTCCGTGGCG
          551 AACCGCTGCC CAATGCCACC GTTACCGCCA CCTTTGACGG CTTCGACACC
          601 AGCGACCGCA GCAAAACGCA CAAwmCCGAA GCACAGGCTT TCTCCGACAG
          651 CACAGACGAC AAAGGCGAAG TGGACATCAT CMCCTTGCGC CAAGGCTTCT
          701 GGAAAGCCAA TGTCGAACAC AAAACCGACT TCCCCGATCA AAGCGTGTGC
          751 CAAAAACAGG CGAACTACTC GACTTTAACC TTCCAAATCG GTCATTCGCA
          801
               CCATTAA
This corresponds to the amino acid sequence <SEQ ID 2798; ORF 920>:
```

1 MKKTLTLLSV SALFATSAHA HRVWVETAHT HGGEYLKADL GYGEFPELEP 51 IAKDRLHIFS KPMQLVTEKG KENMIQRGTY NYQYRSNRPV KDGSYLVIAE 101 YQPTFWSKXK AGWKQAGIKE MPDASYCEQT RMFGKNIVNV GHESADTAII 151 TKPVGQNLEI VPLDNPANIH VGERFKVRVL FRGEPLPNAT VTATFDGFDT

m920.pep

201 SDRSKTHXXE AQAFSDSTDD KGEVDIIXLR QGFWKANVEH KTDFPDQSVC

251 QKQANYSTLT FQIGHSHH*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 920 shows 91.3% identity over a 207 aa overlap with a predicted ORF (ORF 920.ng) from N. gonorrhoeae:

g920/m920

				10	20	30
g920.pep			PMQ:	LVTEKGKENM	IQRGTYNYQY	RSNRPVK
			111			111111
m920	GGEYLKADLGYGEF	PELEPIAKI	DRLHIFSKPMQ:	LVTEKGKENM	IQRGTYNYQY	RSNRPVK
	40	50	60	70	80	90
	40	50	60	70	80	90
g920.pep	DGSYLVTAEYQPTF	rsknkagwi	KQAGI KEMPDA:	SYCEQTRMFG	KNIVNVGHES	ADTAIIT
						111111
m920	DGSYLVIAEYQPTF	WSKXKAGWI	KQAGIKEMPDA:	SYCEQTRMFG	KNIVNVGHES	ADTAIIT
	100	110	120	130	140	150
	100	110	120	130	140	150
g920. <b>pe</b> p	KPVGQNLEIVPLDNI	PADIHVGX	RFKVRVLFRGE	PLPNATVTAT	FDGFDTSDRS	KTHKTEA
		:				111:11
m920	KPVGQNLEIVPLDNI	PANIHVGER	RFKVRVLFRGE	PLPNATVTAT	FDGFDTSDRS	KTHXXEA
	160	170	180	190	200	210
	160	170	180	190	200	
g920. <b>pe</b> p	QAFSDTTDGEGEVD	IPLRQGFW	Kasveykadfi	PDQSLCRKQA	NYTTLTFQIA	нѕннх
			:  :  :		11:11111:	
m920	QAFSDSTDDKGEVD1	IXLRQGFW	KANVEHKTDFI	PDQSVCQKQA	NYSTLTFQIG	нзних
	220	230	240	250	260	

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2799>:

```
a920.seq
         TGAAAGAAAA CATTGACACT GCTCGCCGTT TCCGCCCTAT TTGCCGCATC
      1
         CGCCCACGCC CACCGCGTCT GGGTCGAAAC CGCCCACACG CACGGCGGCG
     51
    101 AATACCTTAA AGCCGACTTG GGCTACGGCG AATTTCCCGA ACTCGAACCC
    151 ATCGCCAAAG ACCGCCTGCA CATCTTCAGC AAACCGATGC AGCTGGTTAC
    201 CGAAAAAGGC AAGGAAAACA TGATTCAACG CGGCACATAC AACTACCAGT
    251 ACCGAAGCAA CCGTCCCGTT AAGGACGGCA GTTACCTCGT CATCGCCGAA
    301 TATCAGCCTA CTTTCTGGTC AAAAAACAAA GCAGGCTGGA AACAGGCGGG
    351
         CATCAAACAA ATGCCTGACG CAAGCTATTG CGAACAAACC CGAATGTTCG
    401 GCAAAAACAT CGTCAACGTC GGACACGAAA GCGCGGACAC CGCCATCATC
    451 ACCAAACCGG TCGGACAAAA CTTGGAAATC GTCCCGCTGG ACAATCCCGC
    501 CAACATTCAC GTAGGCGAAC GCTTCAAAGT CCGCGTTCTG TTCCGTGGCG
    551 AACCGCTGCC CAATGCCACC GTTACCGCCA CCTTTGACGG CTTCGACACC
         AGCGACCGCA GCAAAACGCA CAAAACCGAA GCACAGGCTT TCTCCGACAG
    601
         CACAGACGAC AAAGGCGAAG TGGACATCAT CCCCTTGCGC CAAGGCTTCT
    651
         GGAAAGCCAA TGTCGAACAC AAAGCCGACT TCCCCGATCA AAGCGTGTGC
    701
         CAAAAACAGG CGAACTACTC GACTTTAACC TTCCAAATCG GCCATTCGCA
    751
    801
         CCATTAA
```

## This corresponds to the amino acid sequence <SEQ ID 2800; ORF 920.a>:

1	*KKTLTLLAV	SALFAASAHA	HRVWVETAHT	HGGEYLKADI.	GYGEFPELEP
51	IAKDRLHIFS	KPMQLVTEKG	KENMIORGTY	NYOYRSNRPV	KDGSYLVIAE
101	YQPTFWSKNK	AGWKQAGIKQ	MPDASYCEOT	RMFGKNTVNV	CHESADTATE
151	TKPVGQNLEI	VPLDNPANIH	VGERFKVRVI.	FRGEPLPNAT	OUTDONDINT
201	SDRSKTHKTE	AQAFSDSTDD	KGEVDTTPTR	OCEMKANNER	VINIEDGEDI
251	QKQANYSTLT	FOIGHSHH*		SOT WITHING TH	TOWNE ENGRAC

m920/a920 97.0% identity in 267 aa overlap

5 %%

#### 1322

m920.pep	10 MKKTLTLLSVSALF:        :      XKKTLTLLAVSALF: 10	1:111111	1111111111		11111111	111111
m920.pep	70 KPMQLVTEKGKENM           KPMQLVTEKGKENM 70	11111			1111 11111	11111.
m920.pep	130 MPDASYCEQTRMFGI             MPDASYCEQTRMFGI 130	[		111111111	1111111111	11111
m920.pep	190 FRGEPLPNATVTATE                FRGEPLPNATVTATE 190		1111: 1111		111 111111	111111
m920.pep	250 KTDFPDQSVCQKQAN  :           KADFPDQSVCQKQAN 250	THEFT	11111			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2801>: g920-1.seq

```
1 ATGAAGAAAA CATTGACACT GCTCGCcgtt TcCGCACTAT TTGCCACATC
 51 CGCaCACCCC CACCGCGTCT GGGTCGAAAC CGCCCACACG CACGGCGGCG
101 AATACCTTAA AGCCGACTTG GGCTACGGCG AATTCCCCGA ACTCGAACCC
151 ATCGCCAAAG ACCGCTGCA CATCTTCAGC AAACCGATGC AGCTGGTTAC
201 CGAAAAAGGT AAGGAAAACA TGATTCAACG CGGCACATAC AACTACCAAT
251 ACCGCAGCAA CCGTCCCGTC AAAGACGGCA GCTACCTCGT TACCGCCGAA
     TATCAGCCTA CTTTCCGGTC AAAAAACAAA GCAGGCTGGA AACAGGCTGG
351 CATCAAAGAA ATGCCTGACG CAAGCTATTG CGAACAAACC CGTATGTTCG
401 GTAAAAACAT TGTCAACGTG GGACACGAAA GCGCGGACAC CGCCATCATC
     ACCAAACCGG TCGGACAAAA CTTGGAAATC GTCCCGCTGG ACAATCCCGC
451
501 CAACATTCAC GTAGGCGAAC GCTTCAAAGT CCGCGTTCTG TTCCGTGGCG
551 AACCGCTGCC CAATGCCACC GTTACCGCTA CATTTGACGG CTTCGACACC
601 AGCGACCGCA GCAAAACGCA CAAAACCGAA GCCCAAGCCT TCTCCGACAC
651 CACCGACGC AAAGGCGAAG TGGACATCAT CCCCTTGCGC CAAGGCTTTT
     GGAAAGCGAG TGTCGAATAC AAAGCCGATT TCCCCGATCA AAGCCTGTGC
751 CAAAAACAGG CGAACTACAC AACTTTAACC TTCCAAATCG GCCATTCTCA
801 CCATTAA
```

This corresponds to the amino acid sequence <SEQ ID 2802; ORF 920-1.ng>: g920-1.pep

```
1 MKKTLTLLAV SALFATSAHP HRVWVETAHT HGGEYLKADL GYGEFPELEP
51 IAKDRLHIFS KPMQLVTEKG KENMIQRGTY NYQYRSNRPV KDGSYLVTAE
101 YQPTFRSKNK AGWKQAGIKE MPDASYCEQT RMFGKNIVNV GHESADTAII
151 TKPVGQNLEI VPLDNPANIH VGERFKVRVL FRGEPLPNAT VTATFDGFDT
201 SDRSKTHKTE AQAFSDTTDG KGEVDIIPLR QGFWKASVEY KADFPDQSLC
251 QKQANYTTLT FQIGHSHH*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2803>: m920-1.seq

1	ATGAAGAAAA	CATTGACACT	GCTCGCCGTT	TCCGCCCTAT	TTGCCACATC
51	CGCCCACGCC	CACCGCGTCT	GGGTCGAAAC	CGCCCACACG	CACGGCGGCG
101	AATACCTTAA	AGCCGACTTG	GGCTACGGCG	AATTTCCCGA	ACTOGAACCO
151	ATCGCCAAAG	ACCGCCTGCA	CATCTTCAGC	AAACCGATGC	AGCTGGTTAC
201	CGAAAAAGGC	AAGGAAAACA	TGATTCAACG	CGGCACATAC	AACTACCAGT
251	ACCGAAGCAA	CCGTCCCGTT	AAGGACGGCA	GTTACCTCGT	CATCGCCGAA

```
301
     TATCAGCCTA CTTTCTGGTC AAAAAACAAA GCAGGCTGGA AACAGGCGGG
     CATCAAAGAA ATGCCTGACG CAAGCTATTG CGAACAAACC CGAATGTTCG
351
     GCAAAAACAT CGTCAACGTC GGACACGAAA GCGCGGACAC CGCCATCATC
401
     ACCAAACCGG TCGGACAAAA CTTGGAAATC GTCCCGCTGG ACAATCCCGC
451
     CAACATTCAC GTAGGCGAAC GCTTCAAAGT CCGCGTTCTG TTCCGTGGCG
501
     AACCGCTGCC CAATGCCACC GTTACCGCCA CCTTTGACGG CTTCGACACC
551
     AGCGACCGCA GCAAAACGCA CAAAACCGAA GCACAGGCTT TCTCCGACAG
601
     CACAGACGAC AAAGGCGAAG TGGACATCAT CCCCTTGCGC CAAGGCTTCT
GGAAAGCCAA TGTCGAACAC AAAACCGACT TCCCCGATCA AAGCGTGTGC
651
701
     CAAAAACAGG CGAACTACTC GACTTTAACC TTCCAAATCG GTCATTCGCA
751
801 CCATTAA
```

## This corresponds to the amino acid sequence <SEQ ID 2804; ORF 920-1>: m920-1.pep

```
1 MKKTLTLLAV SALFATSAHA HRVWVETAHT HGGEYLKADL GYGEFPELEP
51 IAKDRLHIFS KPMQLVTEKG KENMIQRGTY NYQYRSNRPV KDGSYLVIAE
101 YQPTFWSKNK AGWKQAGIKE MPDASYCEQT RMFGKNIVNV GHESADTAII
151 TKPVGQNLEI VPLDNPANIH VGERFKVRVL FRGEPLPNAT VTATFDGFDT
201 SDRSKTHKTE AQAFSDSTDD KGEVDIIPLR QGFWKANVEH KTDFPDQSVC
251 QKQANYSTLT FQIGHSHH*
```

#### m920-1/g920-1 96.3% identity in 268 aa overlap

```
20
                                30
                                        40
          MKKTLTLLAVSALFATSAHAHRVWVETAHTHGGEYLKADLGYGEFPELEPIAKDRLHIFS
m920-1.pep
          g920-1
          MKKTLTLLAVSALFATSAHPHRVWVETAHTHGGEYLKADLGYGEFPELEPIAKDRLHIFS
                10
                        20
                                30
                                        40
                        80
                                90
                                       100
                                              110
          KPMQLVTEKGKENMIQRGTYNYQYRSNRPVKDGSYLVIAEYQPTFWSKNKAGWKQAGIKE
m920-1.pep
          KPMQLVTEKGKENMIQRGTYNYQYRSNRPVKDGSYLVTAEYQPTFRSKNKAGWKQAGIKE
g920-1
                        80
                               90
                                      100
                                              110
               130
                       140
                               150
                                      160
                                              170
                                                      180
          MPDASYCEQTRMFGKNIVNVGHESADTAIITKPVGQNLEIVPLDNPANIHVGERFKVRVL
m920-1.pep
          g920-1
          MPDASYCEQTRMFGKNIVNVGHESADTAIITKPVGQNLEIVPLDNPANIHVGERFKVRVL
               130
                       140
                               150
                                      160
                                              170
                                                      180
                       200
                               210
          {\tt FRGEPLPNATVTATFDGFDTSDRSKTHKTEAQAFSDSTDDKGEVDIIPLRQGFWKANVEH}
m920-1.pep
          {\tt FRGEPLPNATVTATFDGFDTSDRSKTHKTEAQAFSDTTDGKGEVDIIPLRQGFWKASVEY}
g920-1
               190
                       200
                              210
                                      220
                                              230
               250
                       260
m920-1.pep
          KTDFPDQSVCQKQANYSTLTFQIGHSHHX
          g920-1
          KADFPDQSLCQKQANYTTLTFQIGHSHHX
```

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2805>: a920.seq

1		CATTGACACT	GCTCGCCGTT	TCCGCCCTAT	TTGCCGCATC
51	CGCCCACGCC	CACCGCGTCT	GGGTCGAAAC	CGCCCACACG	CACGGGGGGGC
101	AATACCTTAA	AGCCGACTTG	GGCTACGGCG	AATTTCCCGA	ACTCCAACCC
151	ATCGCCAAAG	ACCGCCTGCA	CATCTTCAGC	AAACCGATGC	ACTCGAACCC
201	CGAAAAAGGC	AAGGAAAACA	TGATTCAACG	CGGCACATAC	ACCIGGITAC
251	ACCGAAGCAA	CCGTCCCGTT	AAGGACGGCA	GTTACCTCGT	
301		CTTTCTGGTC			
351		ATGCCTGACG			
401		CGTCAACGTC		CGAACAAACC	
451		TCGGACAAAA		TOTOTOMONO	
501		GTAGGCGAAC		GTCCCGCTGG	
551		CAATGCCACC			
601	AGCGACCGCA	GCAAAACGCA	GTTACCGCCA		
651				GCACAGGCTT	
701	CACAGACGAC	AAAGGCGAAG	TGGACATCAT	CCCCTTGCGC	CAAGGCTTCT
751	CAAAAAGCCAA	TGTCGAACAC	AAAGCCGACT	TCCCCGATCA	AAGCGTGTGC
801	CCATTAA	CGAACTACTC	GACTTTAACC	TTCCAAATCG	GCCATTCGCA

लिए के पुरुष के जिल्लामुख

```
This corresponds to the amino acid sequence <SEQ ID 2806; ORF 920-1.a>:
 a920.pep
          *KKTLTLLAV SALFAASAHA HRVWVETAHT HGGEYLKADL GYGEFPELEP
      51
          IAKDRLHIFS KPMQLVTEKG KENMIQRGTY NYQYRSNRPV KDGSYLVIAE
          YQPTFWSKNK AGWKQAGIKQ MPDASYCEQT RMFGKNIVNV GHESADTAII
     101
          TKPVGQNLEI VPLDNPANIH VGERFKVRVL FRGEPLPNAT VTATFDGFDT
     151
          SDRSKTHKTE AQAFSDSTDD KGEVDIIPLR QGFWKANVEH KADFPDQSVC
     201
     251
         QKQANYSTLT FQIGHSHH*
              98.9% identity in 267 aa overlap
 m920-1/a920
                            20
            MKKTLTLLAVSALFATSAHAHRVWVETAHTHGGEYLKADLGYGEFPELEPIAKDRLHIFS
 m920-1.pep
             XKKTLTLLAVSALFAASAHAHRVWVETAHTHGGEYLKADLGYGEFPELEPIAKDRLHIFS
 a920
                   10
                            20
                                    30
                                             40
                                                      50
                   70
                            80
                                     90
                                                     110
            {\tt KPMQLVTEKGKENMIQRGTYNYQYRSNRPVKDGSYLVIAEYQPTFWSKNKAGWKQAGIKE}
 m920-1.pep
            a920
            KPMQLVTEKGKENMIQRGTYNYQYRSNRPVKDGSYLVIAEYQPTFWSKNKAGWKQAGIKQ
                            80
                                    90
                                            100
                                                     110
                  130
                           140
                                    150
                                            160
                                                     170
            MPDASYCEQTRMFGKNIVNVGHESADTAIITKPVGQNLEIVPLDNPANIHVGERFKVRVL
m920-1.pep
            a920
            MPDASYCEQTRMFGKNIVNVGHESADTAIITKPVGQNLEIVPLDNPANIHVGERFKVRVL
                  130
                           140
                                   150
                                            160
                                                     170
                           200
                                   210
                                            220
                                                     230
                                                              240
m920-1.pep
            FRGEPLPNATVTATFDGFDTSDRSKTHKTEAQAFSDSTDDKGEVDIIPLRQGFWKANVEH
            FRGEPLPNATVTATFDGFDTSDRSKTHKTEAQAFSDSTDDKGEVDIIPLRQGFWKANVEH
a920
                  190
                           200
                                   210
                                            220
                                                     230
                  250
m920-1.pep
            KTDFPDQSVCQKQANYSTLTFQIGHSHHX
            1:11:11:11:11:11:11
a920
            KADFPDQSVCQKQANYSTLTFQIGHSHHX
                  250
                          260
The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 2807>:
g921.seq
          ATGAAAAAT ACCTTATCCC TCTTTCCATT GCGGCAGTCC TTTCCGggtG
       1
      51
          Ccagtctatt tatGtgccca cattgacggA aatccccgTg aatcccatca
     101
          ataCCgtcaa aacggaagCA CCTGCAAAAG GTTTTCGCCT CGCCCCTTCG
          CATTGGGCGG ATGTTGCCAA AATCAGCGAT GAAGCGACGC GCTTGGGCTA
     151
          TCAGGTGGGT ATCGGTAAAA TGACCAAGGT TCAGGCGGCG CAATATCTGA
     201
         ACAACTTCAG AAAACGCCTG GTCGGACGCA ATGCCGTCGA TGACAGTATG
     251
          TATGAAATCT ACCTGCGTTC GGCGGTAGAC AGCCAGCGCG GCGAAATCAA
     301
          TACGGAACAG TCCAAGCTGT ATATCGAGAA TGCCTTGCGC GGCTGGCAGC
     351
          AGCGTtggAA AAATATGGAT GCCAAACCCG ATAATCCCGC ATTTACCAAC
          TTTTTGATGG AAGTGATGAA GATGCAGCCC TTGAAATGA
This corresponds to the amino acid sequence <SEQ ID 2808; ORF 921.ng>:
g921.pep
         MKKYLIPLSI AAVLSGCQSI YVPTLTEIPV NPINTVKTEA PAKGFRLAPS
      1
         HWADVAKISD EATRLGYQVG IGKMTKVQAA QYLNNFRKRL VGRNAVDDSM
      51
         YEIYLRSAVD SQRGEINTEQ SKLYIENALR GWQQRWKNMD AKPDNPAFTN
     101
         FLMEVMKMOP LK*
The following partial DNA sequence was identified in N.meningitidis <SEQ ID 2809>:
m921.seg
         ATGAAAAAAT ACCTTATCCC TCTTTCCATT GCGGCAGTTC TTTCCGGCTG
      1
     51 CCAGTCTATT TATGTGCCCA CATTGACGGA AATCCCCGTG AATCCTATCA
     101 ATACCGTCAA AACGGAAGCA CCTGCAAAAG GTTTCCGCCT TGCCTCTTCG
         CATTGGACGG ATGTTGCCAA AATCAGCGAT GAAGCGACGC GCTTGGGCTA
    151
```

201 TCAGGTGGGT ATCGGTAAAA TGACCAAGGT TCAGGCGGCG CAATATCTGA

```
251 ACAACTTCAG AAAACGCCTG GTCGGACGCA ATGCCGTCGA TGACAGTATG
          TATGAAATCT ACCTGCGTTC GGCGATAGAC AGCCAGCGGG GCGCAATCAA
      301
     351 TACGGAACAG TCCAAGCTGT ATATCCAGAA TGCCTTGCGC GGCTGGCAGC
      401 AGCGTTGGAA AAATATGGAT GTCAAACCCA ACAACCCCGC ATTTACCAAC
      451 TTTTTGATGG AAGTGATGAA GATGCAGCCC TTGAAATGA
 This corresponds to the amino acid sequence <SEQ ID 2810; ORF 921>:
 m921.pep
          MKKYLIPLSI AAVLSGCQSI YVPTLTEIPV NPINTVKTEA PAKGFRLASS
       1
      51 HWTDVAKISD EATRLGYQVG IGKMTKVQAA QYLNNFRKRL VGRNAVDDSM
     101 YEIYLRSAID SQRGAINTEQ SKLYIQNALR GWQQRWKNMD VKPNNPAFTN
     151 FLMEVMKMQP LK*
 Computer analysis of this amino acid sequence gave the following results:
 Homology with a predicted ORF from N.gonorrhoeae
ORF 921 shows 95.7% identity over a 162 aa overlap with a predicted ORF (ORF 921.ng)
from N. gonorrhoeae:
m921/g921
                                       30
                                                         50
            MKKYLIPLSIAAVLSGCQSIYVPTLTEIPVNPINTVKTEAPAKGFRLASSHWTDVAKISD
m921.pep
            q921
            {	t MKKYLIPLSIAAVLSGCQSIYVPTLTEIPVNPINTVKTEAPAKGFRLAPSHWADVAKISD}
                    10
                             20
                                       30
                                                40
                                                         50
                    70
                             80
                                      90
                                               100
                                                        110
            EATRLGYQVGIGKMTKVQAAQYLNNFRKRLVGRNAVDDSMYEIYLRSAIDSQRGAINTEQ
m921.pep
            EATRLGYQVGIGKMTKVQAAQYLNNFRKRLVGRNAVDDSMYEIYLRSAVDSQRGEINTEQ
9921
                    70
                             80
                                      90
                                               100
                   130
                            140
                                     150
                                               160
            SKLYIQNALRGWQQRWKNMDVKPNNPAFTNFLMEVMKMQPLKX
m921.pep
            q921
            SKLYIENALRGWQQRWKNMDAKPDNPAFTNFLMEVMKMQPLKX
                   130
                            140
                                     150
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2811>:
     a921.seg
              ATGAAAAAT ACCTTATCCC TCTTTCCATT GTGGCAGTTC TTTCCGGCTG
             CCAGTCTATT TATGTGCCCA CATTGACGGA AATCCCCGTG AATCCTATCA
          51
              ATACCGTCAA AACGGAAGCA CCTGCAAAAG GTTTCCGCCT TGCCTCTTCG
          101
              CATTGGACGG ATGTTGCCAA AATCAGCGAT GAAGCGACGC GCTTGGGCTA
          151
         201
              TCAGGTGGGT ATCGGTAAAA TGACCAAGGT TCAGGCGGCG CAATATCTGA
         251 ACAACTTCAG AAAACGCCTG GTCGGACGCA ATGCCGTCGA TGACAGTATG
              TATGAAATCT ACCTGCGTTC GGCGATAGAC AGCCAGCGGG GCGCAATCAA
         301
         351
              TACGGAACAG TCCAAGCTGT ATATCCAGAA TGCCTTGCGC GGCTGGCAGC
          401
              AGCGTTGGAA AAATATGGAT GTCAAACCCA ACAACCCCGC ATTTACCAAC
         451
              TTTTTGATGG AAGTGATGAA GATGCAGCCC TTGAAATGA
This corresponds to the amino acid sequence <SEQ ID 2812; ORF 921.a>:
     a921.pep
              MKKYLIPLSI VAVLSGCQSI YVPTLTEIPV NPINTVKTEA PAKGFRLASS
              HWTDVAKISD EATRLGYQVG IGKMTKVQAA QYLNNFRKRL VGRNAVDDSM
          51
              YEIYLRSAID SQRGAINTEQ SKLYIQNALR GWQQRWKNMD VKPNNPAFTN
              FLMEVMKMQP LK*
         151
m921/a921 99.4% identity in 162 aa overlap
                                           30
                                                    40
                                                             50
                MKKYLIPLSIAAVLSGCQSIYVPTLTEIPVNPINTVKTEAPAKGFRLASSHWTDVAKISD
    m921.pep
                 a921
                MKKYLIPLSIVAVLSGCQSIYVPTLTEIPVNPINTVKTEAPAKGFRLASSHWTDVAKISD
                        10
                                 20
                                           30
                                                    40
                                                             50
```



```
80
                              90
                                     100
m921.pep
         EATRLGYQVGIGKMTKVQAAQYLNNFRKRLVGRNAVDDSMYEIYLRSAIDSQRGAINTEQ
         EATRLGYQVGIGKMTKVQAAQYLNNFRKRLVGRNAVDDSMYEIYLRSAIDSQRGAINTEQ
a921
                       80
                              90
                                     100
               130
                      140
                             150
         SKLYIQNALRGWQQRWKNMDVKPNNPAFTNFLMEVMKMQPLKX
m921.pep
         a921
         SKLYIQNALRGWQQRWKNMDVKPNNPAFTNFLMEVMKMQPLKX
                      140
                             150
                                     160
```

```
The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 2813>: g922.seq
```

```
ATGGAAAAGA GAAAAATACT GCCGCTGGCA ATTTGTTTGG CGGCTTTGTC
   1
  51 TGCCTGTACG GCGATGGAGG CCCGCACACC CCGGGCAAAT GAAGCCCAAG
     CCCCCCGCGC GGATGAAATG AAAAAAGAAA GCCGCCCCGC GTTTGACGCG
 151 GCAGCCGTAC CGGTATCCGA CAGCGGGTTT GCCGCCAATG CAAATGTCCG
 201 CCGTTTTGTG GACGATGAAG TCGGGAAAGG GGATTTTTCC CAGGCGGAAT
 251 GGCAGGATTT TTTTGACAAA GCGGCTTACA AGGCGGACAT CGTCAAGATt
 301 ATGCACCGAC CCTCCACATC GCGtCCGTGG TATGtgttcc gCacggGAAa
 351 ttcGGgcagg gcgaaAtttc ACggcgCGCG Caggttttat GcggaaAacc
     gcgcggttat cgatgatgtg gcgCAAAAat acggcgtGCC TGCCGAGCTT
 451 ATCGTGGCGA TTATCGGGAT TGAAACGAAT TACGGCAAAA ATACGGGCAG
     TTTCCGTGTG GCGGACGCAT TGGCGACTTT AGGCTTTGAT TATCCCCGCC
 501
     GCGCCGGGTT TTTCCAAAAA GAATTGGTCG AGCTTTTAAA GCTGGCAAAA
     GAAGAAGGCG GTGATGTTTT CGCCTTTAAG GGCagcTATG CGGGTGCAAT
     GGGTATGCCG CAATTTATGC CTTCGAGCTA CCGGAAATGG GCGGTGGATT
 701 ATGAcgggga cggacatCGG GATATAtggg GCAACGTcgg tgatgtcgcg
     gcatcggTTG CCAATTAtat gaagCAGCAC GGTTGGCGCA CgggcggtAA
 751
801 AATGTTGGTG TCGGCGAcgt tggcgccggg tgcggATGTT CAggcAATCA
851 TTGGCGAAAA AACCGCCCTG ACGCGGACGG TGGCGGATTT GAAGGCGTAC
901 ggcatcatcc ccggggaaaC GCTCGCAGAT GATGAAAAGg cgGTTTTGTT
951 CAAACTGGAA ACCGCACCCG GCGTGTTTGA ATATTATTTG GGCTTGAACA
1001 ATTTTTATAC GGTATGGCAG TACAACCACA GCCGGATGTA TGTAACGgcg
1051 gtcaggGACA TTGCCAATTC GCTCGGCGGC CCGGGATTGT Aa
```

## This corresponds to the amino acid sequence <SEQ ID 2814; ORF 922.ng>: g922.pep

```
1 MEKRKILPLA ICLAALSACT AMEARTPRAN EAQAPRADEM KKESRPAFDA
51 AAVPVSDSGF AANANVRRFV DDEVGKGDFS QAEWQDFFDK AAYKADIVKI
101 MHRPSTSRPW YVFRTGNSGR AKFHGARRFY AENRAVIDDV AQKYGVPAEL
151 IVAIIGIETN YGKNTGSFRV ADALATLGFD YPRRAGFFQK ELVELLKLAK
201 EEGGDVFAFK GSYAGAMGMP QFMPSSYRKW AVDYDGDGHR DIWGNVGDVA
251 ASVANYMKQH GWRTGGKMLV SATLAPGADV QAIIGEKTAL TRTVADLKAY
```

- 251 ASVANYMKQH GWRTGGKMLV SATLAPGADV QAIIGEKTAL TRTVADLKAY 301 GIIPGETLAD DEKAVLFKLE TAPGVFEYYL GLNNFYTVWQ YNHSRMYVTA
- 351 VRDIANSLGG PGL*

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2815>: m922.seq

```
ATGAAAAGA GAAAATACT GCCGCTGGCA ATTTGTTTGG CGGCTTTGTC

TGCCTGTACG GCGATGGAGG CACGCCCACC CCGGGCAAAT GAAGCCCAAG

CCCCCCGCGC GGTTGAAATG AAAAAAGAAA GCCGCCCCGC GTTTGACGCG

GCAGCCGTAT TTGACGCGGC AGCCGTACCG GTATCCGACA GCGGGTTTGC

CGCCAATGCA AATGTCCGCC GTTTTGTGGA CGATGAAGTC GGGAAAGGGG

ATTTTTCCCG GGCGGAATGG CAGGATTTTT TTGACAAAGC GGCTTACAAG

GCGGACATCG TCAAGATTAT GCACCGCCCC TCCACATCGC GTCCGTGGTA

TGTGTTCCGC ACGGGAAATT CGGGCAAGGC GAAATTTCGC GGCGCGCCC

GGTTTATGC GGAAAACCGC GCGCTTATCG ATGATGTGGC GCAAAAATAC

GGCGTGCCTG CCGAACTTAT CGTGGCGGTT ATCGGGATTG AAACGAATTA

GGCGCAAAAAT ACGGGCAGTT TCCGTGTGGC GGACGCATTG GCGACCTTAG

GCTTTGATTA CCCCCGCCCC GCCGGGTTTT TCCAAAAAGA ATTGGTCGAG
```

BNSDOCID: <WO___9957280A2_|_>



Computer analysis of this amino acid sequence gave the following results:

201 LLKLAKEEGG DVFAFKGSYA GAMGMPQFMP SSYRKWAVDY DGDGHRDIWG 251 NVGDVAASVA NYMKQHGWRT GGKMLVSATL APGADVQAII GEKTALTRTV 301 ADLKAYGIIP GEELADDEKA VLFKLETAPG VFEYYLGLNN FYTVWQYNHS

Homology with a predicted ORF from N.gonorrhoeae

351 RMYVTAVRDI ANSLGGPGL*

ORF 922 shows 95.9% identity over a 369 aa overlap with a predicted ORF (ORF 922.ng) from N. gonorrhoeae:

m922.pep g922	10 MKKRKILPLAICLA  :          :  MEKRKILPLAICLA 10	! ! [ ] [ ] [ ] [ ] [ ]	1 1111111	111 11111	111111	60 FDAAAVP     AVP
m022	70	80	90	100	110	120
m922.pep	VSDSGFAANANVRR	RFVDDEVGKGD	FSRAEWQDFF:   :	DKAAYKADIV.	KIMHRPSTS	RPWYVFR
g922	VSDSGFAANANVRR	RFVDDEVGKGD			 KIMHRPSTS1	PWYVFP
	60	70	80			110
	130	140	150	160	170	180
m922.pep	TGNSGKAKFRGARR	FYAENRALID	DVAQKYGVPA	ELIVAVIGIE:	[NYGKNTGS]	FRVADAL
g922	TGNSGRAKFHGARR		11111111	1111111		111111
J	120 1	.30 1	40 1			FRVADAL 170
	190	200	22.0			
m922.pep	ATLGFDYPRRAGFF		210 AKEEGGDVFAI	220 FKGSYAGAMGI	230	240
~022	- 11:11:11:1:1			]		111111
g922	ATLGFDYPRRAGFF	OKELVELLKL	AKEEGGDVFAI 00 21			
	<b>_</b>	2.	2.	10 22	20 2	230
m922.pep	250	260	270	280	290	300
шэггрср	DGDGHRDIWGNVGD		DHGWRTGGKMI	LVSATLAPGAI	VQAIIGEKT	ALTRTV
g922	DGDGHRDIWGNVGD	VAASVANYMK	HGWRTGGKMI	VSATLAPGAI		 'ALTRTV
	240 2	50 26	50 27	70 28		90
	310	320	330	. 340	350	360
m922.pep	ADLKAYGIIPGEEL	ADDEKAVLFKI	ETAPGVFEYY	LGLNNFYTVW	QYNHSRMYV	TAVRDI
g922	ADLKAYGIIPGETL		 ETAPGVFEYY	 LGLNNFYTVW	  QYNHSRMYV	 TAVRDI

1328

300 310 320 330 340 350

370

m922.pep ANSLGGPGLX
|||||||||
g922 ANSLGGPGLX

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2817>:

a922.seg ATGAAAAACA GAAAAATACT GCCGCTGGCA ATTTGTTTGG CGGCTTTGTC TGCCTGTACG GCGATGGAGG CACGCCCGCC CCGGGCAAAT GAAGCCCAAG 51 CCCCCCGCGC GGATGAAATG AAAAAAGAAA GCCGCCCCGC GTTTGACGCG 101 151 GCAGCCGTAT TTGACGCGGC AGCCGTACCG GTATCCGACA GCGGGTTTGC CGCCAATGCA AATGTCCGCC GTTTTGTGGA CGATGAAGTC GGGAAAGGGG 251 ATTTTTCCCG GGCGGAATGG CAGGATTTTT TTGACAAAGC GGCTTACAAG 301 GCGGACATCG TCAAGATTAT GCACCGCCCC TCCACATCGC GTCCGTGGTA TGTGTTCCGC ACGGGAAATT CGGGCAAGGC GAAATTTCGC GGCGCGCCC 351 GGTTTTATGC GGAAAACCGC GCGCTTATCG ATGATGTGGC GCAAAAATAC 401 451 GGCGTGCCTG CCGAACTTAT CGTGGCGGTT ATCGGGATTG AAACGAATTA CGGCAAAAAT ACGGGCAGTT TCCGTGTGGC GGACGCATTG GCGACCTTAG GCTTTGATTA CCCCCGCCGC GCCGGGTTTT TCCAAAAAGA ATTGGTCGAG 551 CTTTTAAAGC TGGCAAAAGA AGAAGGCGGC GATGTTTTCG CCTTTAAAGG 601 CAGCTATGCG GGCGCAATGG GGATGCCGCA ATTTATGCCT TCGAGCTACC GGAAATGGGC GGTGGATTAT GACGGGGACG GACATCGGGA CATATGGGGC 701 751 AATGTTGGCG ATGTCGCGGC ATCGATTGCC AATTATATGA AGCAGCACGG TTGGCGCACG GGCGGGAAAA TACTGGTGTC TGCAACATTG GCGCCGGGTG 801 CGGATGTTCA GGCAATCATT GGCGAAAAAA CCGCCCTGAC GCGGACGGTG 851 901 GCGGATTTGA AGGCGTACGG CATCATCCCC GGCGAAGAGC TTGCCGATGA TGAAAAGGCG GTTTTGTTCA AACTGGAAAC CGCACCCGGC GTGTTTGAAT 951 ATTATTTGGG CTTGAACAAT TTTTATACGG TATGGCAGTA CAATCACAGT 1001 1051 CGGATGTATG TAACGGCGGT CAGGGACATT GCCAATTCGC TTGGCGGCCC 1101 GGGATTGTAA

## This corresponds to the amino acid sequence <SEQ ID 2818; ORF 922.a>:

1 MKNRKILPLA ICLAALSACT AMEARPPRAN EAQAPRADEM KKESRPAFDA
51 AAVFDAAAVP VSDSGFAANA NVRRFVDDEV GKGDFSRAEW QDFFDKAAYK
101 ADIVKIMHRP STSRPWYVFR TGNSGKAKFR GARRFYAENR ALIDDVAQKY
151 GVPAELIVAV IGIETNYGKN TGSFRVADAL ATLGFDYPRR AGFFQKELVE
201 LLKLAKEEGG DVFAFKGSYA GAMGMPQFMP SSYRKWAVDY DGDGHRDIWG
251 NVGDVAASIA NYMKQHGWRT GGKILVSATL APGADVQAII GEKTALTRTV
301 ADLKAYGIIP GEELADDEKA VLFKLETAPG VFEYYLGLNN FYTVWQYNHS
351 RMYVTAVRDI ANSLGGPGL*

### m922/a922 98.9% identity in 369 aa overlap

	10	20	30	40	50	60
m922.pep	MKKRKILPLAICL	AALSACTAME.	arppraneaqa	APRAVEMKKE	SRPAFDAAAV	FDAAAVP
		f	11111111		1111111111	
a922	MKNRKILPLAICL	AALSACTAME	ARPPRANEAO	APRADEMKKE	CDDX EDX 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	:
	10	20	30	40		
		LV	30	40	50	60
•	70	80				
m022 man	· ·		90	100	110	120
m922.pep	VSDSGFAANANVRI	REVDDEVGKG	DFSRAEWQDFI	FDKAAYKADI	VKIMHRPSTSI	RPWYVFR
		11111111	<b>           </b>		111111111	111111
a922	VSDSGFAANANVRI	RFVDDEVGKG	DFSRAEWODFE	DKAAYKADT	VKTMHRPSTSI	DWVVED
	70	80	90	100	110	
			-	100	110	120
	130	140	150	1.00		
m922.pep				160	170	180
	TGNSGKAKFRGARI	TE TAENKALII	DDVAQKYGVPA	ELIVAVIGI:	ETNYGKNTGSI	RVADAL
- 000	7	1111111111	1111111111		111111111	
a922	TGNSGKAKFRGARI	RFYAENRALII	DDVAQKYGVPA	ELIVAVIGI	ETNYGKNTGS	RVADAT.
	130	140	150	160	170	180
				_ 30	170	100
	190	200	210	220	000	
			210	220	230	240

m922.pep	ATLGFDYPRRAGFFQ	KELVELLKL	AKEEGGDVF	AFKGSYAGAMO	MPOFMPSSYI	RKWAVDY
a922		1 1 1 1 1 1 1 1	;		111111111	
m922.pep	250 DGDGHRDIWGNVGDV            DGDGHRDIWGNVGDV 250	111:1111	F		11111111111	111111
m922.pep	310 ADLKAYGIIPGEELAI               ADLKAYGIIPGEELAI 310	, , , , , , , , , , , , , , , , , , ,		1111111111	111111111	360 TAVRDI
m922.pep	370 ANSLGGPGLX          ANSLGGPGLX 370					

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2819>:
     q923.seq
```

```
ATGAAGCGGC AGGCTTTCTT CAAACCGATG GCGTGTGCGG CATTTCTGTC
 51 CGCCGTTTCG CTGCGCCTCC CCGTATTGGG CGCGTGTTAC GCAATATTGT
101 CCCTCTATGC GTTTGCACTT TACGGCATCG ACAAACGGCG TGCCGTGCGG
151 GGAAAACGCC GCATTCCCGA ACACCGCCTG CTCCTGCCTG CCTTGTTCGG
201 CGGTTGGACG GGCGCATACT TGGGTAGTAG GATGTTCAGG CATAAAACGG
251 CGAAAAAGCG TTTTGTTGTG CTGTTCCGTC TGACTGTTTC GGGCAATGTC
301 CTGGCGACCT GCATCCTGAT TGATTATTTC GTTCCGCCCG AACTTTTTGT
351 AAAACTCGGG CAACATCTCT GA
```

This corresponds to the amino acid sequence <SEQ ID 2820; ORF 923.ng>: g923.pep

- MKRQAFFKPM ACAAFLSAVS LRLPVLGACY AILSLYAFAL YGIDKRRAVR
- 51 GKRRIPEHRL LLPALFGGWT GAYLGSRMFR HKTAKKRFVV LFRLTVSGNV
- 101 LATCILIDYF VPPELFVKLG QHL*

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2821>: m923.seq

- ATGAAGCGGC AGGCTTTCTT CAAACTGATG GCGTGTGCGG CATTTCTGTC 51 TGCCGTTTCG CTGCGCCTCC CCGTATTGGG CGCGTGTTAC GCAATATTGT 101 CCCTCTATGC GTTTGCACTT TACGGCATCG ACAAACGGTG CGCCATACGG 151 GGGCAACGCC GCATTCCCGA ACACCGCCTG CTGCTGCCTG CATTGCTCGG 201 CGGCTGGGTG GGCGCGTATT TCGGCAGCAT GACATTCAAA CATAAGACAG 251 CGAAAAAGCG TTTTGTTGTG CTGTTCCGTC TGACTGTTTC AGGTAATGTC 301 TTGGCGACCC TCATCCTGAT TTATAGTGGA TTAAATTTAA ACCAGTACGG 351 CGTTGCCTCG CCTTGCCGTA CTATTTGTAC TGTCTGCGGC TTCGTCGCCT 401 TGTCCTGATT TTTGTTAATC CACTATAT.T ATTTTGTCCC GCCTGAATTT 451 TTCGTAAAAC TCGGGCAGAA TACCTGA
- This corresponds to the amino acid sequence <SEQ ID 2822; ORF 923>: m923.pep
  - MKRQAFFKLM ACAAFLSAVS LRLPVLGACY AILSLYAFAL YGIDKRCAIR
  - 51 GQRRIPEHRL LLPALLGGWV GAYFGSMTFK HKTAKKRFVV LFRLTVSGNV
  - 101 LATLILIYSG LNLNQYGVAS PCRTICTVCG FVALS*FLLI HYXYFVPPEF
  - 151 FVKLGQNT*

Computer analysis of this amino acid sequence gave the following results:

### Homology with a predicted ORF from N. gonorrhoeae

ORF 923 shows 68.8% identity over a 157 aa overlap with a predicted ORF (ORF 923.ng) from N. gonorrhoeae:

g923/m923

	10	20	30	40	50	60
g923.pep	MKRQAFFKPMACAAF:	LSAVSLRL	PVLGACYAILS	LYAFALYGI	DKRRAVRGKRE	TPEHPI.
			HHHHHH		111 1.11.11	
m923	MKRQAFFKLMACAAF	LSAVSLRL	PVIGACVATIS			11111
	10	20				
	10	20	30	40	50	60
	70	80	90	100		
g923.pep	LLPALFGGWTGAYLG	SRMFRHKTA	AKKRFVVLFRL	TVSGNVLATO	CILID	
		:		111111111	111	
m923	LLPALLGGWVGAYFGS		KKREVNI.EDI.	+	III	
	70	80				
	, 0	80	90	100	110	120
		11	12	0		
g923.pep		· Y	FVPPELFVKL	GOHLX		
		1		11:		
m923	PCRTICTVCGFVALSX	FT.T.THVTV	יוווין יוווין זענים פוססנעניין			
	130			GŌN I V		
	130	140	150			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2823>: a923.seq

```
ATGAAGCGGC AGGCTTTCTT CAAACTGATG GCGTGTGCGG CATTTCTGTC
      TGCCGTTTCG CTGCGCCTCC CCGTATTGGG CGCGTGTTAC GCAATATTGT
 51
      CCCTCTATGC GTTTGCACTT TACGGCATCG ACAAACGGCG TGCCGTGCGG
101
151 GGAAAACGCC GCATTCCCGA ACACCGCCTG CTGCTGCCTG CCTTGTTCGG
201 CGGTTGGGCG GGCGCATACT TGGGCAGCAG GATATTCAGG CATAAAACGG
251 CGAAAAAGCG TTTTGTTGTG CTGTTCCGTC TGACTGTTTC GGGCAATGTC
301 CTGGCGACCC TCATCCTGAT TTATAGTGGA TTAAATTTAA ACCAGTACGG
351 CGTTGCCTCG CCTTA.GCTC AAAGAGAACG ATTCTCTAAG GTGCTGAAGC
401 ACCAAGTGAA TCGGTTCCGT ACTATTTGTA CTGTCTGCGG CTTCGTCGCC
451 TTGTCCTGAT TTTTGTTAAT CCACTAT.AT TATTTTGTCC CGCCTGAATT
501 TTTCGTAAAA CTCGGGCAGA ATACCTGA
```

### This corresponds to the amino acid sequence <SEQ ID 2824; ORF 923.a>:

a923.pep

- MKRQAFFKLM ACAAFLSAVS LRLPVLGACY AILSLYAFAL YGIDKRRAVR GKRRIPEHRL LLPALFGGWA GAYLGSRIFR HKTAKKRFVV LFRLTVSGNV 51
- 101 LATLILIYSG LNLNQYGVAS PXAQRERFSK VLKHQVNRFR TICTVCGFVA
- 151 <u>LS*FL</u>LIHYX YFVPPEFFVK LGQNT*

#### m923/a923 84.6% identity in 175 aa overlap

	10	20	30	40	50	60
m923.pep	MKRQAFFKLMACAAI	FLSAVSLRLE	VLGACYAILS	LYAFALYGI	DKRCATRGOR	DIDENDI
	1111111111111111	[		111111111	111 1 1 1 1 1	1111111
a923	MKRQAFFKLMACAA	FLSAVSLRLE	VLGACYAILS	LYAFALYGI	DKRRAVRGKR	RTPEHRI.
	10	20	30	40	50	60
	70	80	90	100	110	120
m923.pep	LLPALLGGWVGAYFO	SMTFKHKTA	KKRFVVLFRL	TVSGNVLAT	LILIYSGLNI	NOYGVAS
	11111:111:11:1	1:111		11111111	1111111111	1111111
a923	LLPALFGGWAGAYLG	SRIFRHKTA	KKRFVVLFRL	TVSGNVLAT	LILIYSGLNI	NOYGVAS
	70	80	90	100	110	120
				140	150	159
m923.pep	PC	RTICT	VCGFVALSXF	LLIHYXYFV	PPEFFVKLGO	NTX
	i	11111		111111111	1111111111	111
a923	PXAQRERFSKVLKHQ	VNRFRTICT	VCGFVALSXF	LLIHYXYFV	PPEFFVKLGO	NTX
	130	140	150	160	170	

150

160

170

1.0

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2825>: g925.seq ATGAAACAAA TGCTTTTGGC cgtcggcgtg ggcGCGGTGT TGGCGGGCTG 51 CGGCAaggat gcCGGCGGtt acgagggtTA TTGGCGCGAA AAGTCGGACA 101 AAAAagaggG CGTGATTGCC GTCAAAAAAA AAGGCAATTA CTTCCTTAAT 151 AAAATCAACG TGTTTACAGG CAAGGAGGAG TCTTTGCTTT TGTCTGAAAA 201 AGACGGCGCG CTTTCGATAA ACACGGGGAT AGGGGAAATC CCGATCAAAC 251 TTTCCGACGA CGGGAAAGAG CTGTATGTCG AACGCAGGCG GTATGTGAAA 301 ACCGATGCGG CGATGAAGGA CAAAATCATC GCCCACCAGA AAAAGTGCGG 351 ACAAACGGCA CAGGCATACC TCGACGCGCG AAATGCGTTG CCGTCAAACC 401 AAACGTATCA GCAGCGTCAG GCGGCGATCG AGCAATTGAA ACGGCGGTTT 451 GAAGCCGAGT TTGACGAATT GGAAAAAGAA ATCAAATGCA ACGGCAAACC 501 GACATTGTTG TTTTAG This corresponds to the amino acid sequence <SEQ ID 2826; ORF 925.ng>: g925.pep MKQMLLAVGV GAVLAGCGKD AGGYEGYWRE KSDKKEGVIA VKKKGNYFLN 1 51 KINVFTGKEE SLLLSEKDGA LSINTGIGEI PIKLSDDGKE LYVERRRYVK 101 TDAAMKDKII AHQKKCGQTA QAYLDARNAL PSNQTYQQRQ AAIEQLKRRF 151 EAEFDELEKE IKCNGKPTLL F* The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2827>: m925.seq (partial) 1 ATGAAACAAA TGCTTTTAGC CGTCGGCGTG GTGGCGGTGT TGGCGGGCTG 51 CGGCAAGGAT GCCGGCGGTT ACGAGGGTTA TTGGCGCGAA AAGTCGGACA 101 AAAAAGAGGG TATGATTGCC GTCAAAAAAG AAAAAGGCAA TTACTTCCTT This corresponds to the amino acid sequence <SEQ ID 2828; ORF 925>: m925.pep (partial) MKQMLLAVGV VAVLAGCGKD AGGYEGYWRE KSDKKEGMIA VKKEKGNYFL.. Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae ORF 925 shows 94.0% identity over a 50 aa overlap with a predicted ORF (ORF 925.ng) from N. gonorrhoeae: m925/g925 1.0 20  ${\tt MKQMLLAVGVVAVLAGCGKDAGGYEGYWREKSDKKEGMIAVKKEKGNYFL}$ m925.pep MKQMLLAVGVGAVLAGCGKDAGGYEGYWREKSDKKEGVIAVKK-KGNYFLNKINVFTGKE g925 10 30 40 g925 ESLLLSEKDGALSINTGIGEIPIKLSDDGKELYVERRRYVKTDAAMKDKIIAHQKKCGQT 80 90 The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2829>: g925-1.seq 1 ATGAAACAAA TGCTTTTGGC CGTCGGCGTG GCGGCGGTGT TGGCGGGCTG 51 CGGCAAGGAT GCCGGCGGTT ACGAGGGTTA TTGGCGCGAA AAGTCGGACA 101 AAAAAGAGGG CGTGATTGCC GTCAAAAAAA AAGGCAATTA CTTCCTTAAT 151 AAAATCAACG TGTTTACAGG CAAGGAGGAG TCTTTGCTTT TGTCTGAAAA 201 AGACGGCGCG CTTTCGATAA ACACGGGGAT AGGGGAAATC CCGATCAAAC 251 TTTCCGACGA CGGGAAAGAG CTGTATGTCG AACGCAGGCG GTATGTGAAA 301 ACCGATGCGG CGATGAAGGA CAAAATCATC GCCCACCAGA AAAAGTGCGG 351 ACAAACGGCA CAGGCATACC TCGACGCGCG AAATGCGTTG CCGTCAAACC 401 AAACGTATCA GCAGCGTCAG GCGGCGATCG AGCAATTGAA ACGGCGGTTT GAAGCCGAGT TTGACGAATT GGAAAAAGAA ATCAAATGCA ACGGCAAACC 501 GACATTGTTG TTTTAG This corresponds to the amino acid sequence <SEQ ID 2830; ORF 925-1.ng>:

BNSDOCID: <WO___9957280A2 | >

g925-1.pep



```
MKQMLLAVGV AAVLAGCGKD AGGYEGYWRE KSDKKEGVIA VKKKGNYFLN
        1
           KINVFTGKEE SLLLSEKDGA LSINTGIGEI PIKLSDDGKE LYVERRRYVK
       51
           TDAAMKDKII AHQKKCGQTA QAYLDARNAL PSNQTYQQRQ AAIEQLKRRF
      101
      151 EAEFDELEKE IKCNGKPTLL F*
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2831>:
 m925-1.seq
        1 ATGAAACAAA TGCTTTTAGC CGTCGGCGTG GTGGCGGTGT TGGCGGGCTG
       51
           CGGCAAGGAT GCCGGCGGTT ACGAGGGTTA TTGGCGCGAA AAGTCGGACA
           AAAAAGAGGG TATGATTGCC GTCAAAAAAG AAAAAGGCAA TTACTTCCTT
      101
      151 AATAAAATCC ACGTGGTTAC AGGCAAGGAA GAGTCCTTGC TTTTGTCTGA
      201 AAAAGACGGC GCGCTTTCGA TAAACACAGG GATAGGGGAA ATCCCGATCA
251 AACTTTCCGA CGACGGGAAA GAGCTGTATG TCGAACGTAG GCAGTATGTC
      301 AAAACCGATG CGGCGATGAA GGACAAAATC ATCGCCCATC AGAAAAAGTG
      351 CGGACAAACA GCACAGGCAT ACCGCGACGC GCGAAATGCG TTGCCGTCAA
401 ACCAGACGTA TCAGCAGCAT CTGGCGGCGA TCGAGCAATT GAAACGGCGG
      451 TTTGAAGCCG AGTTTGACGA ATTGGAAAAA GAAATCAAAT GCAACGGCAG
501 AAGCCCGGCA TTGTTGCTTT AG
 This corresponds to the amino acid sequence <SEQ ID 2832; ORF 925-1>:
m925-1.pep.
          MKOMLLAVGV VAVLAGCGKD AGGYEGYWRE KSDKKEGMIA VKKEKGNYFL
          NKIHVVTGKE ESLLLSEKDG ALSINTGIGE IPIKLSDDGK ELYVERRQYV
       51
          KTDAAMKDKI IAHQKKCGQT AQAYRDARNA LPSNQTYQQH LAAIEQLKRR
      151 FEAEFDELEK EIKCNGRSPA LLL*
m925/q925
              92.5% identity in 173 aa overlap
                               20
                                                             50
             {\tt MKQMLLAVGVVAVLAGCGKDAGGYEGYWREKSDKKEGMIAVKKEKGNYFLNKIHVVTGKE}
m925-1.pep
              q925~1
              MKQMLLAVGVAAVLAGCGKDAGGYEGYWREKSDKKEGVIAVKK-KGNYFLNKINVFTGKE
                     10
                               20
                                         30
                     70
                                         90
                                                  100
                                                                      120
             ESLLLSEKDGALSINTGIGEIPIKLSDDGKELYVERRQYVKTDAAMKDKIIAHQKKCGQT
m925-1.pep
             g925-1
             ESLLLSEKDGALSINTGIGEIPIKLSDDGKELYVERRRYVKTDAAMKDKIIAHQKKCGQT
                                          90
                                                   100
                                                             110
                    130
                              140
                                        150
                                                  160
m925-1.pep
             AQAYRDARNALPSNQTYQQHLAAIEQLKRRFEAEFDELEKEIKCNGRSPALLLX
             AQAYLDARNALPSNQTYQQRQAAIEQLKRRFEAEFDELEKEIKCNGK-PTLLFX
g925-1
           120
                     130
                               140
                                         150
                                                   160
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2833>:
a925-1.seq
       1 AATAAAATCA ACGTGTTTAC AGGTAAGGAA GAATCTATGC TTTTGTCTGA
         AAAAGACGGC GCGCTTTCGA TAAACACGGG GATAGGGGAA ATCCCGATCA
      51
     101 AACTTTCCGA CGACGGGAAA GAGCTGTATG TCGAACGCAG GCAGTATGTC
     151 AAAACCGATG CGGCGATGAA GGACAAAATC ATCGCCCATC AGAAAAAGTG
     201 CGGACAAACG GCACAGGCAT ATCTCGACGC GCGAAATGCG TTGCCGTCAA
         ACCAGACGTA TCAGCAGCAT CAGGCGGCGA TCGAGCAGTT GAAACGGCGG
     301 TTTGAAGCCG AGTTTGACGA ATTGGAAAAA GAAATCAAAT GCAACGGCAA
     351 ACCGACATTG TTGTTTTAG
This corresponds to the amino acid sequence <SEQ ID 2834; ORF 925-1.a>:
a925-1.pep
       1 NKINVFTGKE ESMLLSEKDG ALSINTGIGE IPIKLSDDGK ELYVERRQYV
         KTDAAMKDKI IAHQKKCGQT AQAYLDARNA LPSNQTYQQH QAAIEQLKRR
      51
     101 FEAEFDELEK EIKCNGKPTL LF*
a925-1/m925-1
                92.7% identity in 123 aa overlap
                                                  10
                                                            20
a925-1.pep
                                          NKINVFTGKEESMLLSEKDGALSINTGIGE
                                          111:1-111111:1111111111111111111
            AGGYEGYWREKSDKKEGMIAVKKEKGNYFLNKIHVVTGKEESLLLSEKDGALSINTGIGE
m925-1
                     30
                              40
                                                  60
                                                            70
                     40
                              50
                                        60
                                                  70
```

5 .12 .15 .2.5

```
IPIKLSDDGKELYVERRQYVKTDAAMKDKIIAHQKKCGQTAQAYLDARNALPSNQTYQQH
 a925-1.pep
             m925-1
             I PIKLSDDGKELYVERRQYVKTDAAMKDKI I AHQKKCGQTAQAYRDARNALPSNQTYOOH
                    90
                             100
                                      110
                                               120
                                                        130
                   100
                             110
                                       120
             QAAIEQLKRRFEAEFDELEKEIKCNGK-PTLLFX
 a925-1.pep
              m925-1
             LAAIEQLKRRFEAEFDELEKEIKCNGRSPALLLX
                   150
                            160
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2835>:
g926.seq (partial)
       1 ATGAAACACA CCGTATCCGC ATCGGTCATC CTGCTTTTGA CCGCTTGCGC
      51 GCAATTACCT CAAAATAACG AAAACCTGTG GCAGCCGTCC GAACACATCA
          GCAGTTTTGC AGCGGAAGGG CGGTTGGCAG TCAAAGCGGA AGGGAAAGGT
     101
     151 TCGTATGCAA ATTTCGATTG GACATACCAA CCGCCCGTGG AAACCATCAA
     201 TATCAACACC CCTTTGGGCA GTACGCTCGG ACAGTTGTGT CAAGACAGGG
     251 ACGGCGCATT GGCAGTGGAC GGCAAAGGAA ATGTCTATCA GGCAGAGGGT
     301 ACGGaagact tGAGCAGGCA GCTGGTCGGT TTCAAACTGC CAATCCAATA
     351 TCTGCATATC TGGGCGGAAG GCAGGCGTGT GGCGGGCGCG CCTtaccGCA
     401 TCCGTTCAGA CGGCATATTG GAACAATACG GttggACAAT cgggCagaac
     451 tgcCGACAGT GGGGGGCaag tccgaacgtt gcaactGAa...
This corresponds to the amino acid sequence <SEQ ID 2836; ORF 926.ng>:
g926.pep (partial)
       1 MKHTVSASVI LLLTACAQLP QNNENLWQPS EHISSFAAEG RLAVKAEGKG
      51
         SYANFDWTYQ PPVETININT PLGSTLGQLC QDRDGALAVD GKGNVYQAEG
     101 TEDLSRQLVG FKLPIQYLHI WAEGRRVAGA PYRIRSDGIL EQYGWTIGQN
151 CRQWGASPNV ATE...
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2837>:
m926.seq
         ATGAAACACA CCGTATCCGC ATCGGTCATC CTGCTTTTGA CCGCTTGCGC
         GCAATTACCT CAAAATAACG AAAACCTGTG GCAGCCGTCC GAACACATCA
      51
     101 GCAGTTTTGC AGCAGAAGGG CGGTTGGCAG TGAAAGCGGA AGGGAAAGGT
     151 TCGTATGCAA ATTTCGATTG GACATACCAA CCGCCCGTGG AAACCATCAA
     201 TATCAATACC CCTTTGGGCA GTACGCTCGG GCAGTTGTGT CAAGACAGGG
         ACGGCGCATT GGCAGTGGAC GGCAAAGGAA ATGTCTATCA GGCGGAAAGT
     251
     301 GCGGAAGAAT TGAGCAGGCA GCTGGTCGGT TTCAAACTGC CAATCCAATA
     351 TCTGCATATC TGGGCAGATG GCAGGCGTGT GGCGGGCGCG CCTTACCGCA
         TCCTGCCGGA CGGCATATTG GAACAATACG GTTGGACTGT CGGCAGAACC
     401
         GCCGACAGTG GGGGGCAAGT CCGAACGTTG CAACTGAATA ACGGAAATTT
     451
         GAACATCAGG CTGGTTTTCA CCGAAATCGG TATGCCGTCT GAAACCGAAA
     551 CCCCGGAACG CTGTGCGGCG CGCACGAGAT AA
This corresponds to the amino acid sequence <SEQ ID 2838; ORF 926>:
m926.pep
         MKHTVSASVI LLLTACAQLP QNNENLWQPS EHISSFAAEG RLAVKAEGKG
      3
         SYANFDWTYQ PPVETININT PLGSTLGQLC QDRDGALAVD GKGNVYQAES
      51
     101 AEELSRQLVG FKLPIQYLHI WADGRRVAGA PYRILPDGIL EQYGWTVGRT
         ADSGGQVRTL QLNNGNLNIR LVFTEIGMPS ETETPERCAA RTR*
926/m926
           91.6% identity in 155 aa overlap
                             20
                                      30
                                                40
                                                         50
            MKHTVSASVILLLTACAQLPQNNENLWQPSEHISSFAAEGRLAVKAEGKGSYANFDWTYQ
g926.pep
            m926
            MKHTVSASVILLLTACAQLPQNNENLWQPSEHISSFAAEGRLAVKAEGKGSYANFDWTYQ
                   10
                           . 20
                                      30
                                               40
                                                        50
                             80
                                      90
                                              100
            PPVETININTPLGSTLGQLCQDRDGALAVDGKGNVYQAEGTEDLSRQLVGFKLPIQYLHI
g926.pep
            PPVETININTPLGSTLGQLCQDRDGALAVDGKGNVYQAESAEELSRQLVGFKLPIQYLHI
m926
                             80
                                      90
                                              100
                                                       110
                  130
                            140
                                     150
                                              160
            WAEGRRVAGAPYRIRSDGILEQYGWTIGQNCRQWGASPNVATE
g926.pep
```

```
WADGRRVAGAPYRILPDGILEQYGWTVGRTADSGGQVRTLQLNNGNLNIRLVFTEIGMPS
m926
                 130
                         140
                                 150
                                         160
     a926.seq
              ATGAAACACA CTGTATCCGC ATCGGTCATC CTGCTTTTGA CCGCTTGCGC
           1
           51
              GCAATTACCT CAAAATAACG AAAACCTGTG GCAGCCGTCC GAACACACCC
              GCAGTTTCAC GGCGGAAGGG CGGTTGGCAG TGAAAGCGGA AGGGAAAGGT
          101
          151
              TCGTATGCAA ATTTCGATTG GACATACCAA CCGCCCGTGG AAACCATCAA
              TATCAACACC CCTTTGGGCA GTACGCTCGG GCAGTTGTGT CAAGACAGGG
          201
              ACGGCGCATT GGCAGTGGAC GGCAAAGGAA ATGTCTATCA GGCGGAAAGT
         251
              GCGGAAGAAT TGAGCAGGCA GCTGGTCGGT TTCAAACTGC CAATCCAATA
         301
              TCTGCATATC TGGGCAGATG GCAGGCCTGT GGCGGGCGCG CCTTACCGCA
         351
         401
              TCCTGCCGGA CGGCATATTG GAACAATACG GTTGGACTGT CGGCAGAACC
             GCCGACAGTG GGGGGCAAGT CCGAACGTTG CAACTGAATA ACGGAAATTT
          451
              GAACATCAGG CTGGTTTTCA CCGAGATTGG TATGCCGTCT GAAACCGAAA
         501
         551
              CCCAAGAACA ATGCGCGGCA CGCATACAGT AA
     a926.pep
              MKHTVSASVI LLLTACAQLP QNNENLWQPS EHTRSFTAEG RLAVKAEGKG
          51
              SYANFDWTYQ PPVETININT PLGSTLGQLC QDRDGALAVD GKGNVYQAES
              AEELSRQLVG FKLPIQYLHI WADGRPVAGA PYRILPDGIL EQYGWTVGRT
         101
             ADSGGQVRTL QLNNGNLNIR LVFTEIGMPS ETETQEQCAA RIQ*
           96.9% identity in 191 aa overlap
m926/a926
                                          30
                                                   40
                MKHTVSASVILLLTACAQLPQNNENLWQPSEHISSFAAEGRLAVKAEGKGSYANFDWTYQ
    m926.pep
                 {\tt MKHTVSASVILLLTACAQLPQNNENLWQPSEHTRSFTAEGRLAVKAEGKGSYANFDWTYQ}
    a 926
                       10
                                 20
                                          30
                                                   40
                                                            50
                        70
                                 80
                                          90
                                                  100
                                                           110
                                                                     120
                {\tt PPVETININTPLGSTLGQLCQDRDGALAVDGKGNVYQAESAEELSRQLVGFKLPIQYLHI}
    m926.pep
                a 926
                PPVETININTPLGSTLGQLCQDRDGALAVDGKGNVYQAESAEELSRQLVGFKLPIQYLHI
                       70
                                 80
                                          90
                                                  100
                                                           110
                       130
                                140
                                         150
                                                  160
                                                           170
    m926.pep
                WADGRRVAGAPYRILPDGILEQYGWTVGRTADSGGQVRTLQLNNGNLNIRLVFTEIGMPS
                WADGRPVAGAPYRILPDGILEQYGWTVGRTADSGGQVRTLQLNNGNLNIRLVFTEIGMPS
    a926
                      130
                                140
                                         150
                                                  160
                                                           170
                                                                    180
                     190
    m926.pep
                ETETPERCAARTRX
                1111 1:111
    a926
                ETETQEQCAARIQX
                      190
```

# The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 2839>: g927.seq

```
CCAGCACTAT GGTTTTCCTT GTCCGAAAAA ACAACCCcaa ACAGAtccgC
     401
          GATTGGAACG ACCTTGCCAA AGACGGCGTT AACATCGTCA TCGCCAAGAC
          CTCGGGCAAC GGACGCTACG CCTTCCTCGG CGCATACGGT TACGGTCTGA
     551 AAGCCAACAA CGGcaaCGAG CAGGAAGCCC AAAAACTCGT CGCATCCATC
     601 CTCAAAAACA CACCCGTTTT TGAAAACGGC GGACGCGC.C CGCCGCCACC
     651 ACCTTCACAC AACGCAACAT CGGCGACGTA CTCATCACTT TTGAAAACga
     701
          agCcaactac gtCAGCAAAA AACTGA
This corresponds to the amino acid sequence <SEQ ID 2840; ORF 927.ng>:
g927.pep
          MKTYAQALYT AALLTACSPA ADSNHPSGQN APANTESDGK NITLLNASYD
       1
         VTRYFYKEYD HLFVGTYQSE HPGTSVSIQQ SHGGFSKQAL SVANGLQADV
      51
         VTMNQSSDID LLEKXGLVEK GWQQALPDHA APYTSTMVFL VRKNNPKQIR
     101
         DWNDLAKDGV NIVIAKTSGN GRYAFLGAYG YGLKANNGNE QEAQKLVASI
         LKNTPVFENG GRXPPPPPSH NATSATYSSL LKTKPTTSAK N*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2841>:
m927.seq
         ATGAAAACCT ACGCACCGGC ACTCTATACC GCAGCCCTGC TCACCGCCTG
       1
         CAGCCCCGCA GCCGATTCAA ACCATCCGTC CGGACAAAAT GCCCCGGCCA
      51
     101 ATACCGAATC CGACGGAAAA AACATTACCC TGCTCAACGC CTCATACGAT
     151 GTGGCACGGG ATTTTTACAA AGAATACAAC CCCTTATTTA TCAAAACATA
     201 CCAATCCGAA CACCCCGGCA CATCCGTCAG CATCCAACAG TCCCACGGCG
     251 GCTCCAGCAA ACAGGCATTA TCCGTAGCCA ACGGCCTTCA AGCCGATGTC
     301 GTAACCATGA ACCAATCCTC CGACATCGAC CTGCTCGAAA AAAAAGGACT
     351 GGTAGAAAAA GGCTGGCAAC AAGCCCTCCC CGACCACGCC GCGCCCTACA
     401 CCAGCACTAT GGTTTTCCTT GTCCGAAAAA ACAACCCCAA ACAGATCCGC
         GATTGGAACG ACCTTGCCAA AGACGGCGTT AACATCGTCA TCGCCAATCC
     501 CAAAACCTCG GGCAACGGAC GCTACGCCTT CCTCGGCGCA TACGGTTACG
     551 GTCTGAAAAC CACCAACGGC AACGAACAGG AAGCCCAAAA ACTCGTCGCA
     601 TCCATCCTCA AAAACACCCC CGTTTTTGAA AACGGCGGAC GCkCgCCACC
     651 ACCACCTTCA CACAACGCAA CATCGGCGAC GTACTCATCA CTTTTGAAAA
         CGAAGCCAAC TACGTCAGCT AAAAACtGA
This corresponds to the amino acid sequence <SEQ ID 2842; ORF 927>:
m927.pep
         MKTYAPALYT AALLTACSPA ADSNHPSGON APANTESDGK NITLLNASYD
      1
         VARDFYKEYN PLFIKTYQSE HPGTSVSIQQ SHGGSSKQAL SVANGLQADV
      51
     101 VTMNQSSDID LLEKKGLVEK GWQQALPDHA APYTSTMVFL VRKNNPKQIR
     151 DWNDLAKDGV NIVIANPKTS GNGRYAFLGA YGYGLKTTNG NEQEAQKLVA
        SILKNTPVFE NGGRXPPPPS HNATSATYSS LLKTKPTTSA KN*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N.gonorrhoeae
ORF 927 shows 94.2% identity over a 243 aa overlap with a predicted ORF (ORF 927.ng)
from N. gonorrhoeae:
g927/m927
                    10
                                       30
                                                 40
                                                          50
                                                                    60
            MKTYAQALYTAALLTACSPAADSNHPSGQNAPANTESDGKNITLLNASYDVTRYFYKEYD
g927.pep
            m927
            MKTYAPALYTAALLTACSPAADSNHPSGQNAPANTESDGKNITLLNASYDVARDFYKEYN
                    10
                             20
                                       30
                                                40
                                                          50
                                                                    60
                             80
                                       90
                                                100
            HLFVGTYQSEHPGTSVSIQQSHGGFSKQALSVANGLQADVVTMNQSSDIDLLEKXGLVEK
g927.pep
             {\tt PLFIKTYQSEHPGTSVSIQQSHGGSSKQALSVANGLQADVVTMNQSSDIDLLEKKGLVEK}
m927
                    70
                             80
                                       90
                                               100
                                                         110
                            140
                                      150
                                               160
                                                           170
            GWQQALPDHAAPYTSTMVFLVRKNNPKQIRDWNDLAKDGVNIVIA--KTSGNGRYAFLGA
g927.pep
            m927
            GWQQALPDHAAPYTSTMVFLVRKNNPKQIRDWNDLAKDGVNIVIANPKTSGNGRYAFLGA
```

160

170

130

g927.pep	180 190 YGYGLKANNGNE       ::     YGYGLKTTNGNE					1111
g927.pep	240 AKNX					
322PCP	1111					
m927	AKNX					
•	240					
The followin	g partial DNA s	sequence wa	s identified i	n N. mening	itidis <seo i<="" td=""><td>D 2843&gt;</td></seo>	D 2843>
a927.s	eq					2015.
1	1 ATGAAAACCT 51 CAGCCCCGCA	ACGCACCGGC	ACTCTATACC	GCAGCCCTGC	TCAGCGCCTG GCCCCGGCCA	
	O1 ATACCGAATC	CGACGGAAAA	ACCATCCGTC	TGCTCAACGC	GCCCCGGCCA CTCATACGAT	
	51 GTGGCACGGG	ATTTTTACAA	AGAATACAAC	CCCTTATTTA	TCAAAACATA	
	01 CCAATCCGAA 51 GCTCCAGCAA	CACCCCGGCA	CATCCGTCAG	CATCCAACAG	TCCCACGGCG	
	OI GUTCCAGCAA OI GTAACCATGA	ACAGGCATTA	TCCGTAGCCA CGACATCGAC	ACGGCCTTCA	AGCCGATGTC AAAAAGGACT	
	51 GGTAGAAAA	GGCTGGCAAC	AAGCCCTCCC	CGACCACGCC	GCGCCCTACA	
	01 CCAGCACTAT	GGTTTTCCTT	GTCCGAAAAA	ACAACCCCAA	ACAGATOCGO	
	51 GATTGGAACG 01 CAAAACCTCG	ACCTTGCCAA	AGACGGCGTT	AACATCGTCA	TCGCCAATCC	
	51 GTCTGAAAAC	CACCAACGGC	AACGAACAGG	AAGCCCAAAA	TACGGTTACG ACTCGTCGCA	
60	)1 TCCATCCTCA	AAAACACCCC	CGTTTTTGAA	AACGGCGGAC	GCGCGCCACC	
	ACCACCTTCA	CACAACGCAA	CATCGGCGAC	GTACTCATCA	CTTTTGAAAA	
7(	)1 CGAAGCCAAC	TACGTCAGCA	AAAAACTGA			
This correspond	onds to the amin	o acid seque	ence <seq i<="" td=""><td>D 2844; OR</td><td>F 927.a&gt;:</td><td></td></seq>	D 2844; OR	F 927.a>:	
a 92 / . pe	1 MKTYAPALYT	AALLSACSPA	ADSNHPSGON	APANTESTICK	MITTIIMACVO	
5	1 VARDFYKEYN	PLFIKTYQSE	HPGTSVSIQ0	SHGGSSKOAL	SVANGLOADV	
10	1 VTMNQSSDID	LLEKKGLVEK	GWQQALPDHA	APYTSTMVFL	VRKNNPKOTR	
15 20		NIVIANPKTS	GNGRYAFLGA HNATSATYSS	YGYGLKTTNG	NEQEAQKLVA	
2.0	T DIBIUTIVED	NGGIVALLIL	MNAISALISS	LLKTKPTTSA	KN*	
m927/a927	99.2% identity	in 242 aa ov	erlap			
			20 3	0 40	50	60
m927.pe	p MKTYAPAL	YTAALLTACS	PAADSNHPSGQI	NAPANTESDGKI	NITLLNASYDVA	RDFYKEYN
a927	MKTYAPAI	YTAALLSACS!	! ! ! ! ! ! ! ! ! ! !   PAADSNHPSGO!			HIIIII
		10	20 3			60
		70		_		
m927.pe	D PLFTKTYC		90	100	110 TMNQSSDIDLL	120
			S C S H G S S K Q A I	PSANGTÕADA.	/TMNQSSDIDLL	EKKGLVEK
a927	PLFIKTYQ	SEHPGTSVSI	QOSHGGSSKQA	LSVANGLQADV	TMNQSSDIDLL:	EKKGLVEK
		70	30 90	100	110	120
	1	30 14	10 150	160	170	100
m927.pe	p GWQQALPD	HAAPYTSTMV	LVRKNNPKQII	RDWNDLAKDGVN	IIVIANPKTSGN	180 GRYAFIGA
- 007	1 [ ] 1 ] 1				11111111111	
a927	GWQQALPD 1	HAAPYTSTMVI 30 14	FLVRKNNPKQII		VIVIANPKTSGN	
	+	20 14	10 150	160	170	180
		90 20		220	230	240
m927.pe	p YGYGLKTT	NGNEQEAQKLV	ASILKNTPVF	NGGRXPPPPSI	INATSATYSSLLI	אירישעאידא
a927	YGYGLKTT	TITITITI NGNEOEAOKIN		NGCRAPPPE		
	1	90 20	00 210	220	230	240

m927.pep KNX

```
The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 2845>:
```

```
ATGAAATTGG GTTTCAAACC GATACCCCTC GCCATTGCCG CAGTATTGTG
   1
  51 CGCCCTGGTT TTGGCACTGC CCGTACCCGa CGGGGTCAAG CCTCAGGCTT
 101 GGACGCTGCT GGCTATGTTT GTCGGTGTGA TTGCCGCCAT TATCGGCAAG
 151 GTTATGCCGT TGGGCGCGCT GTCGATTATT GCCGTCGGGT TGGTCGCAGT
 201 AACCGGCGTA ACCGCCGACA AACCGGGCGC GGCGATGAGC GATGCGTTGA
 251 GTGCGTTCGC CAATCCGTTG ATTTGGCTGA TTGCCATCGC AGTTATGATT
 301 TCGCGCGGTT TGCTCAAAAC AGGGCTGGGG ATGCGTATCG GATATTTGTT
 351 TATCGCCGTT TTTGGAAGAA AAACGCtggG CATCGGTTAC AGTCTCGCTC
 401 TTTCCGAACT GCTGCTGGCT CCCGTTACCC CTTCCAATAC CGCGCGCGGC
 451 GGCGGCATTA TACATCcgaT TATGCagtcg attgCcggCA GttacggctC
 501 caatCCCGCA AAAGGCACag aaggcaagat gggtaAATAT TtggcTTtgg
 551 tcaattaTCA TTCcaaTCCC atttcgtcgg ctAtggctat taCTGcaact
 601 gCCCCcaaCC CTTTAATcgt caacttgatt gccGaaaaTt taggcagtag
 651 tttccgtCTT TCttgggggg cgTGGGcgtg ggcaaTGGCT Gttcccggcg
 701 ttatcgcctt TTtcgTTATG CCTTTGATTT TATATTTTTT GTATCCGCCT
751 GAAATTAAAG AAACGCCCAA TGCTGttcAA TTTGCCAAAG ACCGTCTGAG
 801 CGAGATGGGT AAAATGtcgg CAGACGAAAT CATTATGGCG GTCATTTTCG
 851 GTATCTTGCT GCTGTTGTGG GCAGATGTTC CCGCCCTTAT TACCGGCAAT
 901 CACGCTTTTA GTATCAacgc caccGCCACC GCATTTATCG GATTAAGCCT
 951 GCTTTTGCTT TCCGGTGTAT TGACTTGGGA CGATGTTTTG AAAGAAAAA
1001 GCGCGTGGGA TACGATTATT TGGTTTGGCG CATTGATTAT GATGGCCGCA
1051 TTTTTaAATA AActcggact gattaaatGG TTCTCCGGAG TGTTGGCGGA
1101 AagtgteggC GGTTTGGGCG TTAGCGGCAC GGCTGCGGGC GTAATCCTCG
1151 TGCTTGCtta TATGTATGCG CATTATATGT TTGCCAGTAC TACTGCACAT
1201 ATTACCGCTA TGTTCGGCGC ATTTCTCGCT GCTGCCGTTT CACTGAATGC
1251 CCCGGCGATG CCGACTGCGC TGATGATGGC GGCCGCATCC AACATTATGA
1301 TGACCCTCAC TCATTATGCG ACCGGTACTT CACCTGTGAT TTTCGGCTCG
1351 GGCTACACCA CAATGGGAGA ATGGTGGAAG GCGGGTTTTA TCATGAGCGT
1401 AGTCAATTTT CTGATTTTTT CCGTTATCGG CAGCATTTGG TGGAAAGTTC
     TGGGATATTG GTAA
```

This corresponds to the amino acid sequence <SEQ ID 2846; ORF 929.ng>: g929.pep

```
1 MKLGFKPIPL AIAAVLCALV LALPVPDGVK PQAWTLLAMF VGVIAAIIGK
51 VMPLGALSII AVGLVAVTGV TADKPGAAMS DALSAFANPL IWLIAIAVMI
101 SRGLLKTGLG MRIGYLFIAV FGRKTLGIGY SLALSELLLA PVTPSNTARG
151 GGIIHPIMQS IAGSYGSNPA KGTEGKMGKY LALVNYHSNP ISSAMAITAT
201 APNPLIVNLI AENLGSSFRL SWGAWAWAMA VPGVIAFFVM PLILYFLYPP
251 EIKETPNAVQ FAKDRLSEMG KMSADEIIMA VIFGILLLW ADVPALITGN
301 HAFSINATAT AFIGLSLLLL SGVLTWDDVL KEKSAWDTII WFGALIMMAA
351 FLNKLGLIKW FSGVLAESVG GLGVSGTAAG VILVLAYMYA HYMFASTTAH
401 ITAMFGAFLA AAVSLNAPAM PTALMMAAAS NIMMTLTHYA TGTSPVIFGS
451 GYTTMGEWWK AGFIMSVVNF LIFSVIGSIW WKVLGYW*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2847>: m929.seq

```
ATGAAATTGG GTTTCAAACC GATACCCTC GCCATTGCCG CAGTATTGTG
51 CGCCCTGGTT TTGGCACTGC CCGTACCCGA CGGGGTCAAG CCTCAGGCTT
101 GGACGCTGCT GGCCATGTTT GTCGGTGTGA TTGCCGCCAT TATCGGCAAG
151 GCCATGCCGT TGGGCGCGCT GTCGATTATT GCCGTCGGGT TGGTCGCAGT
201 AACCGGCGTA ACCGCCGACA AACCGGGCGC GGCGATGAGC GATGCGTTGA
251 GTGCGTTCGC CAATCCGTTG ATTTGGCTGA TTGCCATCGC AGTTATGATT
301 TCGCGCGGTT TGCTCAAAAC AGGGCTGGG ATGCGTATCG GATATTTGTT
351 TATCGCCGTT TTTGGAAGAA AAACGCTGGG CATCGGTTAC AGTCTCGCTC
401 TTTCCGAACT GCTGCTGCT CCCGTTACCC CTTCCAATAC CGCGCGCGGC
```

عاملك صاريات بالبري



This corresponds to the amino acid sequence <SEQ ID 2848; ORF 929>: m929.pep

- 1MKLGFKPIPLAIAAVLCALVLALPVPDGVKPQAWTLLAMFVGVIAAIIGK51AMPLGALSIIAVGLVAVTGVTADKPGAAMSDALSAFANPLIWLIAIAVMI101SRGLLKTGLGMRIGYLFIAVFGRKTLGIGYSLALSELLLAPVTPSNTARG151GGIIHPIMQSIAGSYGSNPAKGTEGKMGKYLALVNYHSNPISSAMFITAT201APNPLIVNLIAENLGSSFRLSWGAWAWAMAVPGVIAFFVMPLILYXLYPP251EIKETPNAVQFAKDRLREMGKMSADEIIMAVIFGILLLWADVPALITGN301HAFSINATATAFIGLSLLLLSGVLTWDDVLKEKSAWDTIIWFGALIMMAA351FLNKLGLIKWFSGVLAESVGGLGVSGTAAGVILVLAYMYAHYMFASTTAH401ITAMFGAFFAAAVSLNAPAMPTALMMAAASNIMMTLTHYATGTSPVIFGS
- 451 GYTTMGEWWK AGFIMSVVNF LIFFVIGSIW WKVLGYW*
  Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N.gonorrhoeae

ORF 929 shows 98.8% identity over a 487 aa overlap with a predicted ORF (ORF 929.ng) from N. gonorrhoeae:

g929.pep	10 MKLGFKPIPLAIAA 	20 VLCALVLALF	30 VPDGVKPQAW	40  TLLAMFVGV  	50 AAIIGKVMP1	60 LGALSII
m929	MKLGFKPIPLAIAA	VLCALVLALE	VPDGVKPQAW	TLLAMFVGV	AAIIGKAMPI	LGALSII
	10	20	30	40	50	60
	70	80	90	100	110	120
g929. <b>pe</b> p	AVGLVAVTGVTADK	PGAAMSDALS	AFANPLIWLI	AIAVMISRGI	LKTGLGMRIC	GYLFIAV
		11111111	111111111			
m929	AVGLVAVTGVTADK	PGAAMSDALS	<b>AFANPLIWLI</b>	AIAVMISRGI	LKTGLGMRIC	SYLFIAV
	70	80	90	100	110	120
	130	140	150	160	170	180
g929. <b>pe</b> p	FGRKTLGIGYSLAL	SELLLAPVTP	SNTARGGGII	<b>HPIMQSIAGS</b>	YGSNPAKGTE	EGKMGKY
				1111111111	1111111111	
m929	FGRKTLGIGYSLAL	SELLLAPVTP	SNTARGGGII	HPIMQSIAGS	YGSNPAKGTE	GKMGKY
	130	140	150	160	170	180
	190	200	210	220	230	240
g929.pep	LALVNYHSNPISSA	MAITATAPNP	LIVNLIAENL	GSSFRLSWGA	WAWAMAVPGV	/IAFFVM
					111111111	
m929	LALVNYHSNPISSA	MFITATAPNP	LIVNLIAENL	GSSFRLSWGA	WAWAMAVPGV	IAFFVM



	190	200	210	220	230	240
-020	250	260	270	280	290	300
g929. <b>pe</b> p	PLILYFLYPPEIKE	PNAVQFAKI	DRLSEMGKMS	ADEIIMAVIF	GILLLLWADV	PALITGN
		[			1111111	
m929	PLILYXLYPPEIKET		DRLREMGKMS	ADEIIMAVIF	GILLLLWADV	PALITGN
	250	260	270	280	290	300
	310	320	330	340	350	360
g929.pep	HAFSINATATAFIGI	SLLLLSGVL	TWDDVLKEKS	SAWDTIIWFG	ALIMMAAFLN	KLGLIKW
m929	HAFSINATATAFIGI	LSLLLLSGVL	TWDDVLKEKS	SAWDTIIWFG	ALTMMAAFIN	KT.GT.TKW
	310	320	330	340	350	360
					550	300
	370	380	390	400	410	420
g929.pep	FSGVLAESVGGLGVS	GTAAGVILV	LAYMYAHYMI			MEGETALIS
		11111111				IIIIIII
m929	FSGVLAESVGGLGVS	GTAAGVIIV	Ί.ΑΥΜΥΔΗΥΜΙ	ינוווווווון!! אמיידיטמייים בס		71 11 1 1 1 1
	370	380	390	400	410	
	- / -	200	350	400	410	420
	430	440	450	460	450	
g929.pep	PTALMMAAASNIMMT				470	480
gras. pop		111111111	1111111111	MGEWWKAGFI	MSVVNFLIFS	
m <b>92</b> 9	DTALMMAAACKTMMT	ן ; ן ן ן ן ן ן ן ן ן ן סימיסימיגעעייי זי	DUTEGRAVES			
111929	PTALMMAAASNIMMT 430					
	430	440	450	460	470	480
g929.pep	WKVLGYWX					

g929.pep WKVLGYWX ||||||| m929 WKVLGYWX

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2849>: a929.seq

```
ATGAAATTGG GTTTCAAACC GATACCCCTC GCCATTGCCG CAGTATTGTG
      CGCCTTGGTT TTGGCACTGC CCGTACCCGA CGGGGTCAAG CCTCAGGCTT
  51
 101 GGACGCTGCT GGCCATGTTT ATCGGTGTGA TTGCCGCCAT TATCGGCAAG
 151 GCCATGCCGT TGGGTGCGCT GTCGATTATT GCCGTCGGGT TGGTCGCAGT
 201 AACCGGCGTA ACCGCCGACA AACCGGGTGC GGCGATGAGC GATGCGTTGA
 251 GTGCGTTCGC CAATCCGTTG ATTTGGCTGA TTGCCATCGC AGTTATGATT
      TCGCGCGGTT TGCTCAAAAC AGGGCTGGGG ATGCGTATCG GATATTTGTT TATCGCCGTT TTTGGAAGAA AAACGCTGGG CATCGGTTAC AGTCTCGCTC
 301
 351
 401 TTTCCGAACT GCTGCTGGCT CCCGTTACCC CTTCCAATAC CGCGCGCGGC
 451 GGCGGCATTA TACATCCGAT TATGCAGTCG ATTGCCGGCA GTTACGGCTC
     CAATCCCGCA AAAGGCACAG AAGGCAAGAT GGGTAAATAT TTGGCTTTGG
 501
 551
      TCAACTATCA TTCCAATCCC ATTTCGTCGG CTATGTTTAT TACTGCAACT
      GCCCCCAACC CTTTAATCGT CAACTTGATT GCCGAAAATT TAGGCAGTAG
 601
 651 TTTCCGTCTT TCTTGGGGGG CGTGGGCGTG GGCAATGGCT GTTCCCGGCG
 701 TTATCGCCTT TTTCGTTATG CCTTTGATTT TATATTTTTT GTATCCGCCT
 751 GAAATTAAAG AAACGCCCAA TGCCGTTCAA TTTGCCAAAG ACCGTCTGAG
 801 GGAGATGGGT AAAATGTCGG CAGACGAAAT CATTATGGCG GTCATTTTCG
851 GTATCTTGTT GCTGTTGTGG GCAGATGTTC CCGCCCTTAT TACCGGCAAT
 901 CACGCTTTTA GTATCAACGC CACCGCCACC GCATTTATCG GATTAAGCCT
 951 GCTTTTGCTT TCCGGTGTAT TGACTTGGGA CGATGTTTTG AAAGAAAAAA
1001 GCGCGTGGGA TACGATTATT TGGTTTGGCG CATTGATTAT GATGGCCGCA
1051 TTTTTAAATA AACTCGGACT GATTAAATGG TTCTCCGGAG TGTTGGCGGA
     AAGTGTCGGC GGTTTGGGCG TTAGCGGCAC GGCTGCGGGC GTAATCCTCG
1101
      TGCTTGCTTA TATGTATGCG CATTATATGT TTGCCAGTAC TACTGCACAT
1201 ATTACCGCTA TGTTCGGCGC ATTTTTCGCT GCTGCCGTTT CACTGAATGC
1251 CCCGGCGATG CCGACCGCGC TGATGATGGC GGCCGCATCT AACATTATGA
1301 TGACCCTCAC TCATTATGCG ACCGGTACTT CGCCTGTGAT TTTCGGTTCG
1351 GGCTACACCA CAATGGGAGA ATGGTGGAAG GCGGGTTTTA TCATGAGCGT
      AGTCAATTTT CTGATTTTTT TCGTTATCGG CAGCATTTGG TGGAAAGTTC
1451 TGGGGTATTG GTAA
```



This corresponds to the amino acid sequence <SEQ ID 2850; ORF 929.a>: a929.pep

, pep					
1	MKLGFKPIPL	AIAAVLCALV	LALPVPDGVK	POAWTLLAMF	IGVIAAIIGK
51	AMPLGALSII	AVGLVAVTGV	TADKPGAAMS	DALSAFANPL	IWLIAIAVMI
101				SLALSELLLA	
151				LALVNYHSNP	
201				VPGVIAFFVM	
251				VIFGILLLLW	
301				KEKSAWDTII	
351	<u>FLNKL</u> GLIKW	FSGVLAES <u>VG</u>	GLGVSGTAAG	VILVLAYMYA	HYMFASTTAH
401				NIMMTLTHYA	TGTSPVIFGS
451	GYTTMGEWWK	AGFIMSVVNF	LIFFVIGSIW	WKVLGYW*	

# m929/a929 99.6% identity in 487 aa overlap

	10 20 30	
m929.pep	MKLGFKPIPLAIAAVLCALVLALPVPDGVK	RPQAWTLLAMFVGVIAAIIGKAMPLGALSII
a929	MKLGFKPIPLAIAAVLCALVLALPVPDGVK	<pre>(PQAWTLLAMFIGVIAAIIGKAMPLGALSII</pre>
	10 20 30	
	70 80 90	) 100 110 120
m929.pep	AVGLVAVTGVTADKPGAAMSDALSAFANPL	JIWLIAIAVMISRGLLKTGLGMRIGYLFIAV
a929		11111111111111111111111111111111
a929	70 80 90	IWLIAIAVMISRGLLKTGLGMRIGYLFIAV
		120
m929.pep	130 140 150	160 170 180 GGIIHPIMQSIAGSYGSNPAKGTEGKMGKY
mozo.pep		
a929	FGRKTLGIGYSLALSELLLAPVTPSNTARG	GGIIHPIMQSIAGSYGSNPAKGTEGKMGKY
	130 140 150	160 170 180
	190 200 210	
m929.pep	LALVNYHSNPISSAMFITATAPNPLIVNLI	AENLGSSFRLSWGAWAWAMAVPGVIAFFVM
a929	LALVNYHSNPISSAMFITATAPNPLIVNLI	
	190 200 210	
	250 260 270	280 290 300
m929.pep	PLILYXLYPPEIKETPNAVQFAKDRLREMG	KMSADEIIMAVIFGILLLWADVPALITGN
a929		111111111111111111111111111111
a929	250 260 270	KMSADEIIMAVIFGILLLLWADVPALITGN 280 290 300
		200 200
m929.pep	310 320 330 HAFSINATATAFIGLSLLLLSGVLTWDDVL	
m323.pcp		1111111111111111111111111111111
a929	HAFSINATATAFIGLSLLLLSGVLTWDDVL	KEKSAWDTIIWFGALIMMAAFLNKLGLIKW
	310 320 330	340 350 360
	370 380 390	
m929.pep	FSGVLAESVGGLGVSGTAAGVILVLAYMYA	HYMFASTTAHITAMFGAFFAAAVSLNAPAM
a929		
	370 380 390	
	430 440 450	460 470 480
m929.pep	PTALMMAAASNIMMTLTHYATGTSPVIFGS	GYTTMGEWWKAGFIMSVVNFLIFFVIGSIW
a929		# T # # # T T T T T T T T T T T T T T T
d747	PTALMMAAASNIMMTLTHYATGTSPVIFGS 430 440 450	
	100	470 480

m929.pep WKVLGYWX

```
a929
```

WKVLGYWX

g930.seq not found yet g930.pep not found yet

### The following partial DNA sequence was identified in N.meningitidis <SEQ ID 2851>: m930.seg

- ATGAAACTTC CTTTATCCTA TTTGCCTAAT ATTCGCTTTT TGTCTTGGTG 51 CTGCTTATTG GCAGGTATCA TTGCTCCTGC TACTTTGTTG GCCTCCCCA
  101 ACCCTGCCGA AATCCGTATG CAGCAAGATA TTCAGCAACG CCAACGCGAA 151 GAGCAGTTGC GCCAAACCAT GCAGCCTGAA AGCGATGTGC GTTTGCATCA 201 AAAAAACACG GGGGAAACGG TTAATCAGTT GATGGGCGAT GACAGCAGCC 251 AACCGTGTTT TGCCATTAAC GAALGGGTGT TGGAAGGCGA ACACCATGCT 301 CGGTTTCAGT TTGCCCTAAA ACGTGCCTTG CGCGAAACGG GTTTTCAGGC
- 351 TGGCAAGTGT CTGCATGCGG GCAACATTAA TCAAATCATG TCCTTAGCAC 401 AAAATGCTTT GATCGGCAGG GGATATACCA CGACCCGTAT CTTGGCTGCG
- 451 CCACAGGATT TGAATAGTGG AAGCTTCAAT TAA

#### This corresponds to the amino acid sequence <SEQ ID 2852; ORF 930>: m930.pep

- MKLPLSYLPN IRFLSWCCLL AGIIAPATLL ASPNPAEIRM QQDIQQRQRE 1
- 51 EQLRQTMQPE SDVRLHQKNT GETVNQLMGD DSSQPCFAIN EWVLEGEHHA
- 101 RFQFALKRAL RETGFQAGKC LHAGNINQIM SLAQNALIGR GYTTTRILAA
- 151 PODLNSGSFN *

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 2853>: g930-1.seq (partial)

```
1 GGCAAGTGTC TGCATGCGGG CGACATTAAT CAAATCATGT CCTTAGCACA
  51 AAATGCTTTG ATCGGCAGGG GATATACCAC GACCCGTATC TTGGCTGCGC
101 CACAGGATTT GAATAGTGGC AAGCTTCAAT TAACCCTGAT GCCGGGCTAT
 151 CTGCGCTCCA TACGAATCGA TCGGTCCAAC GATGATCAAA CCCATGCAGG
201 ACGTATTGCA GCATTCCAAA ACAAATTTCC CACCCGCTCG AACGATCTGT
251 TGAATCTGCG TGATTTGGAA CAAGGACTGG AAAATCTCAA ATGTCTCCCG
 401 GTGTGGGGAT GGATAATTCG GGTAGTGAGG CGACAGGAAA ATACCAAGGA
  451 AATATCACTT TCTCTGCCGA CAATCCTTTT GGACTGAGTG ATATGTTCTA
  501 TGTAAATTAT GGACGTTCAA TTGGCGGTAC GCCCGATGAG GAAAATTTTG
 551 ACGGCCATCG CAAAGAAGGC GGATCAAACA ATTACGCCGT ACATTATTCA
601 GCCCCTTTCG GTAAATGGAC ATGGGCATTC AATCACAATG GCTACCGTTA
651 CCATCAGGCG GTTTCCGGAT TATCGGAAGT CTATGACTAT AATGGAAAAA
 701 GTTACAACAC TGATTTCGGC TTCAACCGCC TGTTGTATCG TGATGCCAAA
751 CGCAAAACCT ATCTCAGTGT AAAACTGTGG ACGAGGGAAA CAAAAAGTTA
 801 CATTGATGAT GCCGAACTGA CTGTACAACG GCGTAAAACC ACAGGTTGGT
851 TGGCAGAACT TTCCCACAAA GGATATATCG GTCGCAGTAC GGCAGATTTT
 901 AAGTTGAAAT ATAAACACGG CACCGGCATG AAAGATGCTC TGCGCGCGCCC
 951 TGAAGAAGCC TTTGGCGAAG GCACGTCACG TATGAAAATT TGGACGGCAT
1001 CGGCTGATGT AAATACTCCT TTTCAAATCG GTAAACAGCT ATTTGCCTAT
1051 GACACATCCG TTCATGCACA ATGGAACAAA ACCCCGCTAA CATCGCAAGA
1101 CAAACTGGCT ATCGGCGGAC ACCACACCGT ACGTGGCTTC GACGGTGAAA
1151 TGAGTTTGCC TGCCGAGCGG GGATGGTATT GGCGCAACGA TTTGAGCTGG
1201 CAATTTAAAC CAGGCCATCA GCTTTATCTT GGGGCTGATG TAGGACATGT 1251 TTCAGGACAA TCCGCCAAAT GGTTATCGGG CCAAACTCTA GCCGGCACAG
1301 CAATTGGGAT ACGCGGGCAG ATAAAGCTTG GCGGCAACCT GCATTACGAT
1351 ATATTTACCG GCCGTGCATT GAAAAAGCCC GAATATTTTC AGACGAAGAA
1401 ATGGGTAACG GGGTTTCAGG TGGGTTATTC GTTTTGA
```

### This corresponds to the amino acid sequence <SEQ ID 2854; ORF 930-1.ng>: g930-1.pep (partial)

1 GKCLHAGDIN QIMSLAQNAL IGRGYTTTRI LAAPQDLNSG KLQLTLMPGY 51 LRSIRIDRSN DDQTHAGRIA AFQNKFPTRS NDLLNLRDLE QGLENLKCLP 101 TAEADLQIVP VEREPNQSDV VVQWR*RLLP YCVSVGMDNS GSEATGKYOG 151 NITFSADNPF GLSDMFYVNY GRSIGGTPDE ENFDGHRKEG GSNNYAVHYS 201 APFGKWTWAF NHNGYRYHQA VSGLSEVYDY NGKSYNTDFG FNRLLYRDAK 251 RKTYLSVKLW TRETKSYIDD AELTVQRKKT TGWLAELDHA GITAKU.
301 KLKYKHGTGM KDALRAPEEA FGEGTSRMKI WTASADVNTP FQIGKQLFAY
351 DTSVHAQWNK TPLTSQDKLA IGGHTVRGF DGEMSLPAER GWYWRDLSW
TPLTSQDKLA IGGHTVRGF DGEMSLPAER GWYWRDLSW
CADUGHUSGO SAKWLSGOTL AGTAIGIRGQ IKLGGNLHYD

given in the state of





#### 451 IFTGRALKKP EYFQTKKWVT GFQVGYSF*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2855>: m930-1.seq

1342

```
ATGAAACTIC CTTTATCCTA TTTGCCTAAT ATTCGCTTTT TGTCTTGGTG
   1
   51
       CTGCTTATTG GCAGGTATCA TTGCTCCTGC TACTTTGTTG GCCTCCCCCA
       ACCCTGCCGA AATCCGTATG CAGCAAGATA TTCAGCAACG CCAACGCGAA
 101
       GAGCAGTTGC GCCAAACCAT GCAGCCTGAA AGCGATGTGC GTTTGCATCA
 151
      AAAAAACACG GGGGAAACGG TTAATCAGTT GATGGGCGAT GACAGCAGCC
      AACCGTGTTT TGCCATTAAC GAAGTGGTGT TGGAAGGCGA ACACCATGCT
CGGTTTCAGT TTGCCCTAAA ACGTGCCTTG CGCGAAACGG GTTTTCAGGC
 251
 301
       TGGCAAGTGT CTGCATGCGG GCAACATTAA TCAAATCATG TCCTTAGCAC
      AAAATGCTTT GATCGGCAGG GGATATACCA CGACCCGTAT CTTGGCTGCG
 401
       CCACAGGATT TGAATAGTGG CAAGCTTCAA TTAACCCTGA TACCGAGCTA
 451
 501
      TCTGCGCTCC ATACGAATCG ATCGGTCTAA CGATGATCAA ACCCATGCAG
       GACGTATTGC AGCATTCCAG AACAAATTTC CCACCCGCTC GAACGATCTG
 551
      TTGAATCTGC GTGATTTGGA ACAAGGACTG GAAAATCTCA AACGTCTCCC
      GACTGCGGAA GCCGATCTCC AAATCGTTCC CGTAGAGGGA GAACCAAACC
 651
      AAAGTGATGT CGTGGTGCAA TGGCGGCAAC GTCTGCTGCC CTACCGTGTG
 701
      AGTGTGGGGA TGGATAATTC GGGTAGTGAG GCGACAGGAA AATACCAAGG
 751
      AAATATCACT TTCTCTGCCG ACAATCCTTT GGGACTGAGT GATATGTTCT
 801
      ATGTAAATTA TGGACGTTCG ATTGGCGGTA CGCCCGATGA GGAAAGTTTT
 851
 901
      GACGGCCATC GCAAAGAAGG CGGATCAAAC AATTACGCCG TACATTATTC
      AGCCCCTTTC GGTAAATGGA CATGGGCATT CAATCACAAT GGCTACCGTT
 951
1001 ACCATCAGGC AGTTTCCGGA TTATCGGAAG TCTATGACTA TAATGGAAAA
      AGTTACAATA CTGATTTCGG CTTCAACCGC CTGTTGTATC GTGATGCCAA
1051
      ACGCAAAACC TATCTCGGTG TAAAACTGTG GATGAGGGAA ACAAAAAGTT
1101
      ACATTGATGA TGCCGAACTG ACTGTACAAC GGCGTAAAAC TGCGGGTTGG
      TTGGCAGAAC TTTCCCACAA AGAATATATC GGTCGCAGTA CGGCAGATTT TAAGTTGAAA TATAAACGCG GCACCGGCAT GAAAGATGCT CTGCGCGCGC
1201
1251
      CTGAAGAAGC CTTTGGCGAA GGCACGTCAC GTATGAAAAT TTGGACGGCA
1301
      TCGGCTGATG TAAATACTCC TTTTCAAATC GGTAAACAGC TATTTGCCTA
      TGACACATCC GTTCATGCAC AATGGAACAA AACCCCGCTA ACATCGCAAG
1401
      ACAAACTGGC TATCGGCGGA CACCACACCG TACGTGGCTT CGACGGTGAA
1451
      ATGAGTTTGT CTGCCGAGCG GGGATGGTAT TGGCGCAACG ATTTGAGCTG
GCAATTTAAA CCAGGCCATC AGCTTTATCT TGGGGCTGAT GTAGGACATG
1501
      TTTCAGGACA ATCCGCCAAA TGGTTATCGG GCCAAACTCT AGTCGGCACA
1601
      GCAATTGGGA TACGCGGGCA GATAAAGCTT GGCGGCAACC TGCATTACGA
1651
      TATATTTACC GGCCGCGCAT TGAAAAAGCC CGAATTTTTC CAATCAAGGA
1701
     AATGGGCAAG CGGTTTTCAG GTAGGCTATA CGTTTTAA
```

# This corresponds to the amino acid sequence <SEQ ID 2856; ORF 930-1>: m930-1.pep

```
MKLPLSYLPN IRFLSWCCLL AGIIAPATLL ASPNPAEIRM QQDIQQRQRE
     EQLROTMOPE SDVRLHOKNT GETVNOLMGD DSSQPCFAIN EVVLEGEHHA
 51
101 RFQFALKRAL RETGFQAGKC LHAGNINQIM SLAQNALIGR GYTTTRILAA
     PQDLNSGKLQ LTLIPSYLRS IRIDRSNDDQ THAGRIAAFQ NKFPTRSNDL
201 LNLRDLEQGL ENLKRLPTAE ADLQIVPVEG EPNQSDVVVQ WRQRLLPYRV
     SVGMDNSGSE ATGKYQGNIT FSADNPLGLS DMFYVNYGRS IGGTPDEESF
251
     DGHRKEGGSN NYAVHYSAPF GKWTWAFNHN GYRYHQAVSG LSEVYDYNGK
301
     SYNTDFGFNR LLYRDAKRKT YLGVKLWMRE TKSYIDDAEL TVQRRKTAGW
     LAELSHKEYI GRSTADFKLK YKRGTGMKDA LRAPEEAFGE GTSRMKIWTA
401
     SADVNTPFQI GKQLFAYDTS VHAQWNKTPL TSQDKLAIGG HHTVRGFDGE
MSLSAERGWY WRNDLSWQFK PGHQLYLGAD VGHVSGQSAK WLSGQTLVGT
451
501
    AIGIRGQIKL GGNLHYDIFT GRALKKPEFF QSRKWASGFQ VGYTF*
```

### m930-1/g930-1 95.4% identity in 478 aa overlap

```
90
                        110
                                120 -
         AINEVVLEGEHHARFQFALKRALRETGFQAGKCLHAGNINQIMSLAQNALIGRGYTTTRI
m930-1.pep
                                g930-1.pep
                                GKCLHAGDINQIMSLAQNALIGRGYTTTRI
                                     10
         150
                 160
                        170
                                180
                                       190
         {\tt LAAPQDLNSGKLQLTLIPSYLRSIRIDRSNDDQTHAGRIAAFQNKFPTRSNDLLNLRDLE}
m930-1.pep
         g930-1.pep
         LAAPQDLNSGKLQLTLMPGYLRSIRIDRSNDDQTHAGRIAAFQNKFPTRSNDLLNLRDLE
               40
                      50
                                     70
                                             80
                        230
                                240
         QGLENLKRLPTAEADLQIVPVEGEPNQSDVVVQWRQRLLPYRVSVGMDNSGSEATGKYQG
m930-1.pep
```

BNSDOCID: <WO___9957280A2_I_>

g930-1.pep	QGLENLKCLPTAEAL	LQIVPVERE	PNQSDVVVQWR	XRLLPYCVSV	/GMDNSGSEAT	rgkyng
	100	110	120	130	140	150
	270 280	290	300	310	300	
m930-1.pep	NITFSADNPLGLSDM		GTPDEESFDG	HRKEGGSNNY	320 AVHYSADECE	(WTW) F
	_	111111111	11111:11	111111111	1111111111	
g930-1.pep	NITESADNPEGLSDM	IFYVNYGRSIG	GTPDEENFDG	HRKEGGSNNY	AVHYSAPFGE	WTWAF
	160	170	180	190	200	210
	330 340	350	360	370	200	
m930-1.pep	NHNGYRYHQAVSGLS	EVYDYNGKSY	NTDFGFNRLL	YRDAKRKTYL	380 GVKI.WMRETK	CVIDD
- A		111111111	11111111		:1111 1111	11111
g930-1.pep	NHNGYRYHQAVSGLS	EVYDYNGKSY	'NTDFGFNRLL'	YRDAKRKTYL	SVKLWTRETK	SYIDD
	220	230	240	250	260	270
	390 400	410	420	430	440	
m930-1.pep	AELTVQRRKTAGWLA	ELSHKEYIGR	STADFKLKYK	RGTGMKDALR	APPENECECT	SRMKT
			111111111	: 1   1   1   1   1   1	LIBERTALIA	11111
g930-1.pep	AELTVQRRKTTGWLA 280	ELSHKGYIGR 290	STADFKLKYKI	HGTGMKDALR	APEEAFGEGT	SRMKI
	200	290	300	310	320	330
	450 460	470	480	490	500	
m930-1.pep	WTASADVNTPFQIGK	QLFAYDTSVH	AQWNKTPLTSQ	DELTATECHH	TVPCEDCEME	LSAER
g930-1.pep		111111111	11111111111		£111111111	1 111
gsso-1.pep	WTASADVNTPFQIGK	OLFAYDTSVH. 350	AQWNKTPLTSÇ 360	DKLAIGGHH'		
	310	330	360	370	380	390
	510 520	530	540	550	560	
m930-1.pep	GWYWRNDLSWQFKPG	HQLYLGADVG	HVSGQSAKWLS	GQTLVGTAI	STREOTKICC	NLHYD
g930-1.pep		1111111	! !	1111:111		11121
g930-1.pep	GWYWRNDLSWQFKPGI 400	HQLYLGADVG 410	HVSGQSAKWLS 420	GQTLAGTAI( 430		
		410	420	430	440	450
	570 580	590				
m930-1.pep	IFTGRALKKPEFFQSI					
g930-1.pep						
3.00 1.pcp	460	470	1917			

a930-1.seq not yet found a930-1.pep not yet found

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 2857>:

```
1 ATGAAACCCA AATTCAAAAC CGTTTTAACC GCGCTGCTTT TGGCGGTTTC
51 CCTGCCGTCT ATGGCGGCAA CCCGCGTCCT GATGGAAACC GATATGGGCA
101 ATATCCGTTT GGTTTTGGAC GAATCCAAAG CCTCCAAAAC CGTTGCCAAT
151 TTCGTGCGCT ATGCCCGAAA AGGCTTTTAC GACAACCGA TTTTCCACCG
201 CGTCALCGGC GGCTTCGTCA TCCAAGGCGA CGGATTGACC GAGGACTTGG
251 TGCAAAAGGC AACCGATAAG GCCGTTGCCA ACGAATCCGG CAACGGCTTG
301 AAAAACACCG TCGGCACCAT CGCAATGGCG CGGACGGCAG CCCCCGATTC
351 CGCCGCCGC CAATTCTTTA TCAATCTGGC GGACAACGGT TCGCTCGACT
401 ACAAAAACGG ACAATACGGC TACACCGTTT TCGGCAGGGT AGAAAGCGGA
451 ATGGACACCG TTTCCAAAAT CGCCCGCGTC AAAACCGCCA CGCGCGCTT
501 TTATCAAAAC GTACCCGTAC AGCCCGTCAA AATCCGTCGC GTTGTTGTCG
551 GGCAGTAACA CGCAGACAGA CGTTCAGACG GCGTCGCCCG TTTCCCAAAAA
```

This corresponds to the amino acid sequence <SEQ ID 2858; ORF 931.ng>: g931.pep

- 1 MKPKFKTVLT ALLLAVSLPS MAATRVLMET DMGNIRLVLD ESKASKTVAN
- 51 FVRYARKGFY DNTIFHRVIG GFVIQGDGLT EDLVQKATDK AVANESGNGL
- 101 KNTVGTIAMA RTAAPDSAAA QFFINLADNG SLDYKNGQYG YTVFGRVESG
- 151 MDTVSKIARV KTATRGFYQN VPVQPVKIRR VVVGQ*

WO 99/57280

1344

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2859>:

```
ATGAAACCCA AATTCAAAAC CGTTTTAACC GCGCTGCTTT TGGCGGTTTC
     CCTGCCGTCT ATGGCGGCAA CCCATGTTTT GATGGAAACC GATATGGGCA
 51
    ATATCCGTTT GGTTTTGGAC GAATCCAAAG CCCCCAAAAC CGTTGCTAAT
101
    TTCGTGCGCT ATGCCCGAAA AGGCTTTTAC GACGACACCG TTTTTCACCG
151
    CGTTATCGAC GGTTTTGTTA TCCAGGGCGG TGGATTGACC GAGGACTTGG
201
    CACAAAAGGC AAGCGATAAG GCCGTTGCCA ACGAATCCGG CAACGGCTTG
251
301 AAAAACACCG CCGGCACCAT CGCCATGGCG CGGACGACAG CCCCCGATTC
    CGCCACCAGC CAATTCTTTA TCAATCTGGC GGACCA.kCT TCGCTCGACT
    ACAAAAACGG ACAATACGGC TATACCGTTT TCGGCAGGGT CGAAAGCGGC
401
451 ATGAACACCG TTTCCAAAAT CGCCCGCGTC AAAACCGCCA CGCGCGGCTT
    TTATCAAAAC GTACCCGTAC AGCCCGTCAA AATCCGTCGC GTTGTTGTCG
    GGCAGTAA
```

This corresponds to the amino acid sequence <SEQ ID 2860; ORF 931>: m931.pep.

- 1 MKPKFKTVLT ALLLAVSLPS MAATHVLMET DMGNIRLVLD ESKAPKTVAN
- 51 FVRYARKGFY DDTVFHRVID GFVIQGGGLT EDLAQKASDK AVANESGNGL
- 101 KNTAGTIAMA RTTAPDSATS QFFINLADXX SLDYKNGQYG YTVFGRVESG
- 151 MNTVSKIARV KTATRGFYQN VPVQPVKIRR VVVGQ*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N.gonorrhoeae

ORF 931 shows 91.9% identity over a 185 aa overlap with a predicted ORF (ORF 931.ng) from N. gonorrhoeae:

```
10
                         20
                                30
                                        40
                                                50
          MKPKFKTVLTALLLAVSLPSMAATRVLMETDMGNIRLVLDESKASKTVANFVRYARKGFY
g931.pep
          m931
          MKPKFKTVLTALLLAVSLPSMAATHVLMETDMGN1RLVLDESKAPKTVANFVRYARKGFY
                10
                        20
                                30
                                        40
                                                50
                70
                        80
                                90
                                       100
                                               110
          DNTIFHRVIGGFVIQGDGLTEDLVQKATDKAVANESGNGLKNTVGTIAMARTAAPDSAAA
g931.pep
          DDTVFHRVIDGFVIQGGGLTEDLAQKASDKAVANESGNGLKNTAGTIAMARTTAPDSATS
m931
                70
                      . 80
                                90
                                       100
                                               110
                                                       120
                130
                       140
                               150
                                       160
                                               170
                                                       180
          QFFINLADNGSLDYKNGQYGYTVFGRVESGMDTVSKIARVKTATRGFYQNVPVQPVKIRR
q931.pep
          m931
          QFFINLADXXSLDYKNGQYGYTVFGRVESGMNTVSKIARVKTATRGFYQNVPVQPVKIRR
                130
                       140
                               150
                                       160
                                               170
                                                       180
g931.pep
          VVVGQX
          1111
m931
          VVVGQX
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2861>:

```
a931.seq
         ATGAAACCCA AATTCAAAAC CGTTTTAACC GCGCTGCTTT TGGCGGTTTC
      1
         CCTGCCGTCT ATGGCGGCAA CCCATGTTTT GATGGAAACC GATATGGGCA
     51
         ATATCCGTTT GGTTTTGGAC GAATCCAAAG CACCCAAAAC CGTTGCCAAT
    101
    151
         TTCGTGCGCT ATGCCCGAAA AGGCTTTTAC GACAATACGA TTTTTCACCG
         CGTCATCGGC GGCTTCGTTA TCCAAGGCGG CGGATTGACC GAGGACTTGG
         CACAAAAGGC AAGCGATAAG GCCGTTGCCA ACGAATCCGG CAACGGCTTG
    251
    301 AAAAACACTG TCGGCACCAT CGCCATGGCG CGGACGGCCG ATCCGGATTC
         CGCCACCAGC CAATTCTTTA TCAATCTGGT GGACAATGAT TCGCTCAACT
    351
    401 ACAAAAACGG ACAATACGGC TATACCGTTT TCGGCAGGGT CGAAAGCGGC
```

	501 11	GAACACCG CATCAAAAC GCAGTAA	TTTCCAAAA1 GTACCCGTAC	CGCCCG AGCCCG	CGTC AAA ICAA AAT	ACCGCCA CCGTCGC	CGCGCGGCTT GTTGTTGTCG	
This corres	sponds to	the amin	o acid sequ	ence <si< td=""><td>EQ ID 28</td><td>62; ORF</td><td>931.a&gt;:</td><td></td></si<>	EQ ID 28	62; ORF	931.a>:	
a531.	1 <u>MK</u> 51 FV 101 KN	TVGTIAMA	ALLLAVSLPS DNTIFHRVIG RTADPDSATS KTATRGFYQN	GFVIQGO OFFINIA	GLT EDL	AQKASDK	701400714717	
m931/a931	94.6%	6 identity	in 185 aa o	-				
m931. a931	pep	1111111		1 1 1 1 1 1 1 1	11111		50 SKAPKTVANFV 	
a931		******	TI VIDINA 2 L	PSMAATHV 20	LMETDMG1 30	NIRLVLDES 40	5 <b>KA</b> PKT <b>VANF</b> V 50	RYARKGFY 60
m931.	pep	DDTVFHRV	IDGFVIOGGG	80 LTEDLAQK	90 ASDKAVAN	100 VESGNGLKN	110 TAGTIAMART	120 TAPDSATS
a931			- COL VI QGGG.	LTEDLAQK 80	ASDKAVAN 90	JESGNGLKN 100	TAGTIAMART   :                  TVGTIAMART!   110	:        ADPDSATS 120
m931.	pep	QFFINLAD	XXSLDYKNGQ		1 1 1 1 1 1 1 1		170 ATRGFYQNVP\ 	
a931		QFFINLVD	иропитиисб.	GYTVFGR 10	VESGMNTV 150	SKIARVKT 160	ATRGFYQNVPV	OPVKIRR 180
m931. ₁	pep	VVVGQX						
a931		VVVGQX						
The followin	not foun ng <b>part</b> ia	d yet I DNA se					is <seq id<="" td=""><td>2863&gt;:</td></seq>	2863>:
51 G	TTTGGGG	GA TTTAAA	CAAT CTCTC	TGGGA CG	CCGCGTCz	יייים ההתהניים	ית או	
101 T	GAAAAA1"	IA CGCCAA	TCCC TATCC CAAG ACGAA	GGGAT CA	GCCTCGG	י ככרארייי	CAC	
201 C 251 G	GGCTATG. GAAAAAA	AC CCAATA GG CTGGTG	GACG GCGGA TCGT AAGGG	AAGTC TG TTTCG AC	AAGCAGAT	CCCTCCC	ma.	
This corresp	AATACGA	AT GGCCTC	GAGA AGAAG	GAAAA AC	ADDATGA			
maaz.pep			SFGG FKPNP					
101 K	YEWPREE(	RQ LKDMQE SK TK*	CGYD PIDGG	KSEAD AC	LRKKGWCR	KGFDPYP	ENK	
Computer and Homology w	vith a pre	edicted OF	RF from $N$ a	onorrho	ono			
ORF 932 shortom N. gond	ows	% identity	over a	aa overl	ap with a	predicte	d ORF (ORI	F 932.ng)

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 2865>:

1 ATGAAAAAA TCATCGCCTC CGCGCTTATC GCAACATTCG CACTCACCGC

```
51 CTGCCAAGAC GACACGCAGG CGCGGCTCGA ACGGCAGCAG AAACAGATTG
      101 AAGCCCTGCA ACAGCAGCTC GCACAGCAGG CAGACGATAC GGTTTACCAA
      151 CTGACTCCCG AAGCAGTCAA AGACACCATT CCTGCCCAGG CGCAGGCAAA
     201 CGGCAACAAC GGTCAGCCCG TTACCGGCAA .AGACGGGCA GCAGTATATT
     251 TACGACCAAT CGACAGGAAG CTGGCTGCTG CAAAGCCTGA TTGGCGCGGC
     301 GGCAGGCGCG TTTATCGGCA ACGCGCTGGC AAACAAATTC ACACGGGCGG
     351
          GCAACCAAGA CAGCCCCGTC GCCCGTCGCG CGCGTGCTGC CTACCATCAG
     401
          TCCGCACGCC CCAATGCGCG CACCAGCAGG GATTTGAACA CGCGCAGCCT
          CCGTGCAAAA CAACAGGCGG CGCAGGCGCA GCGTTACCGC CCGACAACGC
     501 GCCCGCCCGT CAAttaccgc catcgcgcta tgcGCGGTTT CGgcagAagg
     551 cggtaaaCCC GGCGCGTCAA TGCCGTCTGA AGGGCTTTCA GACGGCATTT
     601 TTGTATTTGT TAGGGGCATT GTTATGTTGC CGTTTGATTT TCAGACGGCA
          TTTTGTTTCC AAGCGTTTGA TGTCGGGATG GCAATTCTGA
This corresponds to the amino acid sequence <SEQ ID 2866; ORF 934.ng>:
g934.pep
          MKKIIASALI ATFALTACQD DTQARLERQQ KQIEALQQQL AQQADDTVYO
       1
          LTPEAVKDTI PAQAQANGNN GQPVTGKRRA AVYLRPIDRK LAAAKPDWRG
      51
          GRRVYRQRAG KQIHTGGQPR QPRRPSRACC LPSVRTPQCA HQQGFEHAQP
          PCKTTGGAGA ALPPDNAPAR QLPPSRYARF RQKAVNPARQ CRLKGFQTAF
          LYLLGALLCC RLIFRRHFVS KRLMSGWQF*
The following partial DNA sequence was identified in N.meningitidis <SEQ ID 2867>:
m934.seq (partial)
          ..CGGCTCGAAC AGCAGCAGAA ACAGATTGAA GCCCTGCAAC AGCAGCTCGC
       7
            ACAGCAGGCA GACGATACGG TTTACCAACT GACTCCCGAA GCAGTCAAAG
      51
            ACACCATTCC TGCCGAAGCA CAGGCAAACG GCAACAACGG GCAACCCGTT
     101
            ACCGGTAA.A GACGGCAGC AGTATATTTA CGACCAATCG ACAGGAAGCT
     151
            GGCTGCTGCA AAGCCTGGTC GGCGCGCGG CAGGCGCGTT TATCGGCAAC
     201
            GCGCTGGCAA ACAAATTCAC ACGGGCAGGC AACCAAGACA GTCCCGTCGC
     251
            CCGGCGCGCG CGTGCAGCCT ACCATCAGTC CGCACGCCCC AATGCGCGCA
     301
     351
            yCAGCAGGGA TTTGAACACG CGCAGCCTCC GTGCAAAACA ACAGGCGGCG
            CAKGCGCAGC GTTACCGCCC GACAACGCGC CCGsCCGsCA ATTACCGCCG
     401
            CCCCGCTATG CGCGGTTTCG GCAGGAGGCG GTAAACCCGG CGCGCCAATG
     451
            CCGTCTGAAG AGCTTTCAGA CGGCATTTnT GCATTTGTTA GGGACATTGT
     501
            TATGTTGCCG TTTGATTTTC AGACGGCATT TTGTTTCCAA GCGTTTGATG
     551
     601
            TCGGGATGGC AATTCTGA
This corresponds to the amino acid sequence <SEQ ID 2868; ORF 934>:
m934.pep (partial)
          ..RLEQQQKQIE ALQQQLAQQA DDTVYQLTPE AVKDTIPAEA QANGNNGQPV
       1
      51
            TGXRRAAVYL RPIDRKLAAA KPGRRGGRRV YRQRAGKQIH TGRQPRQSRR
     101
            PARACSLPSV RTPQCAHQQG FEHAQPPCKT TGGAXAALPP DNAPXROLPP
            PRYARFRQEA VNPARQCRLK SFQTAFXHLL GTLLCCRLIF RRHFVSKRLM
     151
     201
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N.gonorrhoeae
ORF 934 shows 91.7% identity over a 205 aa overlap with a predicted ORF (ORF 934.ng)
from N. gonorrhoeae:
m934/g934
                                                      20
m934.pep
                                    RLEQQQKQIEALQQQLAQQADDTVYQLTPEAVKDTI
                                    {\tt MKKIIASALIATFALTACQDDTQARLERQQKQIEALQQQLAQQADDTVYQLTPEAVKDTI}
g934
                    10
                              20
                                        30
                                                  40
                                                            50
                                            70
                                                      80
            {\tt PAEAQANGNNGQPVTGXRRAAVYLRPIDRKLAAAKPGRRGGRRVYRQRAGKQIHTGRQPR}
m934.pep
             PAQAQANGNNGQPVTGKRRAAVYLRPIDRKLAAAKPDWRGGRRVYRQRAGKQIHTGGQPR
g934
                    70
                              80
                                        90
                                                 100
                                                           110
                                                                    120
```

110

120

130

140

150

m934.pep	QSRRPARACSLPSVRTPQCAHQQGFEHAQPPCKTTGGAXAALPPDNAPXRQLPPPRYARF
g934	:
3,01	130 140 150 260
	150 150 160 170 180
	160 170 180 190 200
m934.pep	RQEAVNPARQCRLKSFQTAFXHLLGTLLCCRLIFRRHFVSKRLMSGWQFX
0934	:
9934	RQKAVNPARQCRLKGFQTAFLYLLGALLCCRLIFRRHFVSKRLMSGWQFX 190 200 210 220 230
	190 200 210 220 230
The following	partial DNA sequence was identified in N. meningitidis <seq 2869="" id="">:</seq>
a934.seq	Provide a resident was resident in 14. meningulars \SEQ ID 2809>.
1	ATGAAAAAA TCATCGCCTC CGCGCTTATC GCAACATTCC CACTCGCCGC
51	CTGCCAAGAC GACGCGCAGG CGCGGCTCGA ACAGCAGCAG AAACAGATTG
101	AAGCCCTGCA ACAGCAGCTC GCACAGCAGG CAGACGATAC GGTTTACCAA
151	
201 251	
301	
351	THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PERSON AND THE PE
401	TCCGCACATC CCAATGCGCG CACCAGCAGG GATTTGAACA CGCGCAGCCT
451	CCGTGCAAAA CAACAGGCGG CGCAGGCGCA GCGTTACCGC CCGACAACGC
501	GCCCGCCGC CAATTACCGC CGCCCGCCA TGCGCGGTTT CGGCAGAAGG
551	CGGTAAATCC GGCGTGCCAA TGCCGTCTGA AGGGCTTTCA GACGGCATTT
601	TTGTATTTGT TAGGGACATT GTTATGTTGC CGTTTGATTT TTAGACGGCA
651	TTTTGTTTCC AAGAGTTTGA TGTCGGGATG GCAATTCTGA
This	data da anti-
inis correspon	ds to the amino acid sequence <seq 2870;="" 934.a="" id="" orf="">:</seq>
a934.pep	
1	
51 101	
151	TOTAL PROPERTY RELIGION DISTRIBUCA NOOGE ENAOP
201	LYLLGTLLCC RLIFRRHFVS KSLMSGWQF*
m934/a934 94	4.1% identity in 205 aa overlap
	10 20 30
m934.pep	RLEQQQKQIEALQQQLAQQADDTVYQLTPEAVKDTI
a934	MKKIIASALIATFALAACQDDAQARLEQQQKQIEALQQQLAQQADDTVYQLTPEAVKDTI
	10 20 30 40 50 60
	40 50 60 70 80 90
m934.pep	40 50 60 70 80 90  PAEAQANGNNGQPVTGXRRAAVYLRPIDRKLAAAKPGRRGGRRVYRQRAGKQIHTGRQPR
T	
a934	PAEAQANGNNGQPVTXXRRAAVYLRPIDRKLAAAKPGRRGGRRVYRQRAGKQIHTGRQPR
	70 80 90 100 110 120
024	100 110 120 130 140 150
m934.pep	QSRRPARACSLPSVRTPQCAHQQGFEHAQPPCKTTGGAXAALPPDNAPXRQLPPPRYARF
a934	OSPRANACH PRINTEGORIO CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL
a)J4	QSRRPARACRLPSVRTSQCAHQQGFEHAQPPCKTTGGAGAALPPDNAPARQLPPPRHARF 130 140 150 160 170 180
	130 140 150 160 170 180
	160 170 180 190 200
m934.pep	RQEAVNPARQCRLKSFQTAFXHLLGTLLCCRLIFRRHFVSKRLMSGWOFY
_*_	{ :
a934	RQKAVNPACQCRLKGFQTAFLYLLGTLLCCRLIFRRHFVSKSLMSGWQFX
	190 200 210 220 230

g935.seq not found yet

CO1	*****	CCDDWDDDCC	CCCCCCCCTC	mammed acces	22222222
601	AATAGAAATG	CCAATAATGC			AAAACGGAGG
651	CCGGCAGATA	TGCAGTGTCA	GCCGGGCGGA	GCGGGCGCA	GGCTTGAATT
701	ATGAAATCGA	GGCGGAAAAA	CTGACGGCGT	TGGCAGATAA	TCATTATTTG
751	TTGTTCCGTT	CCAATATCGG	CGGCACGAGC	TATTATTTCA	GTAAAAAATC
801	AGCTTATGAC	GACGGGTTCG	GCAGAGCGTA	TTTGGGTTGG	CAGTATAAAA
851	ATGCACGGCA	GACGGCGGG	ATTTTGCCGT	TTTATCAGGT	GCAGTTGTCG
901	GGCAGCGACG	GCTTTGATGC	GAAAACAAAA	CGGGTAAACA	ACCGCCGCCT
951	GCCGCCGTAT	ATGCTGGCGC	ACGGAGTCGG	CGTGCAGTTG	TCCCATACTT
1001	ACCGCCCAAA	CCCGGGATGG	CAATTTTCGG	TCGCGCTGGA	ACATTACCGC
1051	CAACGCTACC	GCGAACAGGA	TAGGGCGGAA	TACAATAACG	GTCGGCAGGA
1101	CGGGTTTTAT	GTTTCGTCGG	CAAAACGTTT	GGGCGAATCG	GCAACTGTGT
1151	TCGGCGGCTG	GCAGTTTGTG	CGGTTTGTGC	CGAAACGCGA	AACGGTGGGC
1201	GGCGCGGTCA	ATAATGCCGC	CTACCGGCGC	AACGGTGTTT	ATGCCGGCTG
1251	GGCGCAGGAG	TGGCGGCAGT	TGGGCGGTTT	GAACAGTCGG	GTTTCCGCGT
1301	CTTATGCCCG	CCGCAACTAT	AAGGGCGTTG	CGGCTTTCTC	GACAGAGGCG
1351	CAACGCAACC	GCGAATGGAA	TGTCTCGCTG	GCTTTGAGCC	ACGACAAGTT
1401	GTCGTACAAA	GGTATCGTGC	CCGCGTTGAA	TTATCGTTTC	GGCAGGACGG
1451	AAAGTAATGT	GCCGTATGCG	AAACGCCGCA	ACAGCGAGGT	GTTTGTGTCG
1501	GCGGATTGGC	GGTTTTGA			

# This corresponds to the amino acid sequence <SEQ ID 2874; ORF 935.a>:

a935.pep					
1	MLYFRYGFLV	VWCAAGVSAA	YGADAPAILD	DKALĻQVQRS	VSDKWAESDW
51	KVDNDAPRVV	DGDFLLAHPK	MLEHSLRDVL	NGNQADLIAS	LADLYAKLPD
101	YDAVLYGRAR	ALLAKLAGRP	AEAVARYREL	HGENAADERI	LLDLAAAEFD
151	DFRLKSAERH	FAEAEKLDLP	APVLENVGRF	RKKAEGLTGW	RFSGGISPAV
201	NRNANNAAPQ	YCRQNGGRQI	CSVSRAERAA	GLNYEIEAEK	LTALADNHYL
251	LFRSNIGGTS	YYFSKKSAYD	DGFGRAYLGW	QYKNARQTAG	ILPFYQVQLS
301	GSDGFDAKTK	RVNNRRLPPY	MLAHGVGVQL	SHTYRPNPGW	QFSVALEHYR
351	QRYREQDRAE	YNNGRQDGFY	VSSAKRLGES	ATVFGGWQFV	RFVPKRETVG
401	GAVNNAAYRR	NGVYAGWAQE	WRQLGGLNSR	VSASYARRNY	KGVAAFSTEA
451	QRNREWNVSL	ALSHDKLSYK	GIVPALNYRF	GRTESNVPYA	KRRNSEVFVS
501	ADWRF*				

# m935/a935 98.8% identity in 505 aa overlap

.,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10	20	30	40	50	60
m935.pep	MLYFRYGFLVVWCAA					
a935	MLYFRYGFLVVWCAA					
	10	20	30	4 O	50	60
0.0	70	80	90	100	110	120
m935.pep	DGDFLLAHPKMLEHS	_				LAGRP
						1111
a935	DGDFLLAHPKMLEHS	_				
	70	80	90	100	110	120
	130	140	150	160	170	180
m935. <b>pe</b> p	AEAVARYRELHGENA				CLDLPAPVLE	NVGRF
		, , , , , , , , , , ,		<i>.</i>		
a935	AEAVARYRELHGENA					
	130	140	150	160	170	180
	190	200	210	220	230	240
m935.pep	RKKTEGLTGWRFSGG	ISPAVNRNAN	NAAPQYCRQNO	GGRQICSVSRA	ERAAGLNYE	IEAEK
	:					
a935	RKKAEGLTGWRFSGG				ERAAGLNYE	IEAEK
	190	200	210	220	230	240
	250	260	270	280	290	300
m935.pep	LTPLADNHYLLFRSN	IGGTSYYFSK	KSAYDDGFGRA	YLGWQYKNAF	ROTAGILPFY	QVQLS
a935	LTALADNHYLLFRSN	IGGTSYYFSK	KSAYDDGFGRA	YLGWQYKNAF	QTAGILPFY	QVQLS
	250	260	270	280	290	300