Athreya Lahiri Chapter 3 Solutions

Arthur Chen

October 17, 2025

Problem 3.1

Let $\phi:(a,b)\to\mathbb{R}$ be convex. Show the following.

We will constantly use the following convexity formula: if ϕ is convex and $a < x_1 < x_2 < x_3 < b$, then

$$\frac{\phi(x_2) - \phi(x_1)}{x_2 - x_1} \le \frac{\phi(x_3) - \phi(x_1)}{x_3 - x_1} \le \frac{\phi(x_3) - \phi(x_2)}{x_3 - x_2}$$

Part a

For each $x \in (a, b)$,

$$\phi'_{+}(x) = \lim_{y \downarrow x} \frac{\phi(y) - \phi(x)}{y - x}, \phi'_{-}(x) = \lim_{y \uparrow x} \frac{\phi(y) - \phi(x)}{y - x}$$

exist and are finite.

Consider ϕ'_+ first. Let z < x be arbitrary and let $\{y_n\}_{n=1} \ge x$ such that $y_n \to x$. Wlog, let y_n be decreasing. Then by convexity,

$$\frac{\phi(y_1) - \phi(x)}{y_1 - x} \ge \frac{\phi(y_2) - \phi(x)}{y_2 - x} \ge \dots$$

which is bounded below by $\frac{\phi(x)-\phi(z)}{x-z}$. Thus $\frac{\phi(y_n)-\phi(x)}{y_n-x}$ is a monotonically decreasing sequence bounded below, thus it has a limit. Since this sequence was arbitrary, the limit and thus ϕ'_+ exists. The same applies in reverse for $\phi'+$.

Problem 3.3

Prove the following.

Part a

Let $a_1
ldots a_k$ be real and $p_1
ldots p_k$ be positive numbers such that $\sum_{i=1}^k p_i = 1$. Then

$$\sum_{i=1}^{k} p_i \exp(a_i) \ge \exp\left(\sum_{i=1}^{k} p_i a_i\right)$$

Let P be the probability measure on \mathbb{R} that assigns probability p_i to point a_i and apply Jensen's inequality with $\phi(x) = e^x$.

Part b

Let $b_1
ldots b_k$ be nonnegative numbers and $p_1
ldots p_k$ be as in Part a. Then

$$\sum_{i=1}^k p_i b_i \ge \prod_{i=1}^k b_i^{p_i}$$

Furthermore, equality holds iff $b_1 = b_2 = \cdots = b_k$.

Let $a_i = \log b_i$ and apply Part a. For the iff, since the exponential function is strictly convex, inequality holds iff $f(\omega)$ is a constant, which in this context means that all the b_i s are equal.

Part c

For any $a, b \in \mathbb{R}$ and $1 \le p < \infty$,

$$|a+b|^p \le 2^{p-1}(|a|^p + |b|^p)$$

Let f(x) = x, $\phi(x) = |x|^p$, which is convex on the range of p, and let P be the probability measure with 1/2 probability on $\{a,b\}$. Thus by Jensen's inequality,

$$\phi\left(\int xdP\right) = \frac{1}{2^p}|a+b|^p \le \int |x|^p dP = \frac{1}{2}(|a|^p + |b|^p)$$

which implies the desired result.

Problem 3.12

Part b

Prove that for $p \in (0,1)$, $\int |f+g|^p d\mu \leq \int |f|^p d\mu + \int |g|^p d\mu$. Building off of equation 2.2, we have that

$$\left(\frac{|x|}{|x|+|y|}\right)^p + \left(\frac{|y|}{|x|+|y|}\right)^p \ge \frac{|x|}{|x|+|y|} + \frac{|y|}{|x|+|y|} = 1$$

implies

$$|x+y|^p < (|x|+|y|)^p < |x|^p + |y|^p$$

and integrating pointwise gives the result.

Problem 3.14

Show that $(L^{\infty}(\mu), d_{\infty})$ is a complete metric space.

Using the hint, let $\{f_n\}_{n\geq 1}$ be a Cauchy sequence in $L^{\infty}(\mu)$. For each $k\geq 1$, let f_{n_k} be a subsequence such that $||f_{n_{k+1}}-f_{n_k}||_{\infty}<2^{-k}$. By the definition of L^{∞} , for all $f\in L^{\infty}$, the set $\{\omega:|f(\omega)|>||f||_{\infty}\}$ has measure zero.

Let

$$A = \bigcap_{k=1}^{\infty} \{ \omega : |f_{n_{k+1}}(\omega) - f_{n_k}(\omega)| \le ||f_{n_{k+1}} - f_{n_k}||_{\infty} \}$$

 A^{C} has measure zero because it is the countable union of zero sets.

Thus, for $\omega \in A$ and for all $k \geq 1$, $|f_{n_{k+1}}(\omega) - f_{n_k}(\omega)| \leq ||f_{n_{k+1}} - f_{n_k}||_{\infty} < 2^{-k}$. Thus for $\omega \in A$, $\{f_{n_k}(\omega)\}_{k\geq 1}$ is a Cauchy sequence in \mathbb{R} , which converges to a point we denote $f(\omega)$. For $\omega \in A^C$, let $f(\omega) = 0$. Then $\lim_{k\to\infty} f_{n_k} = f$ a.e. (μ) , and the rest of the proof follows as in the proof of Theorem 3.2.2, which proves completeness for L^p , $p \in (0, \infty)$.

Problem 3.18

Let X be a nonnegative random variable.

Part a

Show that $EX \log X \ge (EX)(E \log X)$.

Log is concave, so by Jensen's inequality, $\log(EX) \geq E \log X$. Consider $\phi(x) = x \log x$. Its second derivative is 1/x, which is positive over the range of x, so $x \log x$ is convex. Thus by Jensen's inequality, $EX \log(EX) \leq E(X \log X)$. Putting it all together,

$$E(X \log X) \ge EX \log(EX) \ge (EX)(E \log X)$$

as desired.

Part b

Show that

$$\sqrt{1 + (EX)^2} \le E(\sqrt{1 + X^2}) \le 1 + EX$$

For the first inequality, consider $\phi(x) = \sqrt{1+x^2}$. Its second derivative is $(1+x^2)^{-3/2}$, which is positive, so $\phi(x)$ is convex and the first inequality follows by Jensen's inequality. The second inequality follows by the triangle inequality on $L^{1/2}$ with the functions $f=1,g=x^2$, which was proven directly in Problem 3.12.