

DEPARTMENT OF PHYSICS AND NANOTECHNOLOGY SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

18PYB101J-Electromagnetic Theory, Quantum Mechanics, Waves and Optics

Module 3- Lecture-15

Hydrogen atom problem – radial, angular equation derivation and Hydrogen atom problem – solutions to radial and angular equations

The Schrödinger Equation to the Hydrogen Atom

The approximation of the potential energy of the electron-proton system is electrostatic:

$$V(r) = -\frac{e^2}{4\pi\varepsilon_0 r}$$

Rewrite the three-dimensional time-independent Schrödinger Equation.

$$-\frac{\hbar^2}{2m}\frac{1}{\psi(x,y,z)}\left[\frac{\partial^2\psi(x,y,z)}{\partial x^2} + \frac{\partial^2\psi(x,y,z)}{\partial y^2} + \frac{\partial^2\psi(x,y,z)}{\partial z^2}\right] = E - V(r)$$

For Hydrogen-like atoms (He⁺ or Li⁺⁺)

- Replace e^2 with Ze^2 (Z is the atomic number).
- Use appropriate reduced mass μ .

Application of the Schrödinger Equation

The potential (central force) V(r) depends on the distance r between the proton and electron.

Transform to spherical polar coordinates because of the radial symmetry.

Insert the Coulomb potential into the transformed Schrödinger equation.

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\psi}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\psi}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2\psi}{\partial\phi^2} + \frac{2\mu}{\hbar^2}(E-V)\psi = 0$$

Application of the Schrödinger Equation

- The wave function ψ is a function of r, θ , ϕ
 - Equation is separable.
 - Solution may be a product of three functions.

$$\psi(r,\theta,\phi) = R(r)f(\theta)g(\phi)$$
 Equation 7.3

• We can separate Equation 7.3 into three separate differential equations, each depending on one coordinate: r, θ , or ϕ .

7.2: Solution of the Schrödinger Equation for Hydrogen

• Substitute Eq (7.4) into Eq (7.3) and separate the resulting equation into three equations: R(r), $f(\theta)$, and $g(\phi)$.

Separation of Variables

The derivatives from Eq (7.4)

$$\frac{\partial \psi}{\partial r} = fg \frac{\partial R}{\partial r} \qquad \frac{\partial \psi}{\partial \theta} = Rg \frac{\partial f}{\partial \theta} \qquad \frac{\partial^2 \psi}{\partial \phi^2} = Rf \frac{\partial^2 g}{\partial \phi^2}$$

Substitute them into Eq (7.3)

$$\frac{fg}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial R}{\partial r}\right) + \frac{Rg}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial f}{\partial\theta}\right) + \frac{Rf}{r^2\sin^2\theta}\frac{\partial^2 g}{\partial\phi^2} + \frac{2\mu}{\hbar^2}(E-V)Rfg = 0$$

• Multiply both sides of Eq (7.6) by $r^2 \sin^2 \theta / Rfg$

$$-\frac{\sin^2\theta}{R}\frac{\partial}{\partial r}\left(r^2\frac{\partial R}{\partial r}\right) - \frac{2\mu}{\hbar^2}r^2\sin^2\theta(E-V) - \frac{\sin\theta}{f}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial f}{\partial\theta}\right) = \frac{1}{g}\frac{\partial^2g}{\partial\phi^2}$$

Solution of the Schrödinger Equation

- Only r and θ appear on the left side and only ϕ appears on the right side of Eq (7.7)
- The left side of the equation cannot change as ϕ changes.
- The right side cannot change with either r or θ .

■ Each side needs to be equal to a constant for the equation to be true. Set the constant $-m_s^2$ equal to the right side of Eq (7.7)

$$\frac{d^2g}{d\phi^2} = -m_\ell^2 g \quad ----- \quad \text{azimuthal equation}$$

It is convenient to choose a solution to be $e^{im_{\ell}\phi}$.

Solution of the Schrödinger Equation

- $e^{im_{\ell}\phi}$ sfies Eq (7.8) for any value of m_{ℓ} .
- The solution be single valued in order to have a valid solution for any ϕ , which is $g(\phi) = g(\phi + 2\pi)$ $g(\phi = 0) = g(\phi = 2\pi) \longrightarrow e^0 = e^{2\pi i m_\ell}$
- m_{ℓ} to be zero or an integer (positive or negative) for this to be true.
- If Eq (7.8) were positive, the solution would not be realized.
- Set the left side of Eq (7.7) equal to $-m_{_{I}}^2$ and rearrange it.

$$\frac{1}{R}\frac{\partial}{\partial r}\left(r^2\frac{\partial R}{\partial r}\right) + \frac{2\mu r^2}{\hbar^2}(E - V) = \frac{m_\ell^2}{\sin^2\theta} - \frac{1}{f\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial f}{\partial\theta}\right)$$

• Everything depends on r on the left side and θ on the right side of the equation.

Solution of the Schrödinger Equation

Set each side of Eq (7.9) equal to constant \(\ell(\ell + 1)\).

$$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) + \frac{2\mu}{\hbar^2}\left[E - V - \frac{\hbar^2}{2\mu}\frac{\ell(\ell+1)}{r^2}\right]R = 0 \quad \text{----Radial equation}$$

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{df}{d\theta} \right) + \left[\ell(\ell+1) - \frac{m_{\ell}^2}{\sin^2\theta} \right] f = 0 \quad ---- \text{Angular equation}$$

 Schrödinger equation has been separated into three ordinary second-order differential equations [Eq (7.8), (7.10), and (7.11)], each containing only one variable.

Solution of the Radial Equation

- The radial equation is called the associated Laguerre equation and the solutions R that satisfy the appropriate boundary conditions are called associated Laguerre functions.
- Assume the ground state has $\ell = 0$ and this requires $m_{\ell} = 0$. Eq (7.10) becomes

$$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) + \frac{2\mu}{\hbar^2}(E - V)R = 0$$

• The derivative of $r^2 \frac{dR}{dr}$ yields two terms.

Write those terms and insert Eq (7.1)

$$\frac{d^2R}{dr^2} + \frac{2}{r}\frac{dR}{dr} + \frac{2\mu}{\hbar^2} \left(E + \frac{e^2}{4\pi\varepsilon_0 r}\right)R = 0$$

Solution of the Radial Equation Try a solution $R = Ae^{-r/a_0}$

A is a normalized constant.

 a_0 is a constant with the dimension of length.

Take derivatives of R and insert them into Eq (7.13).

$$\left(\frac{1}{a_0^2} + \frac{2\mu}{\hbar^2}E\right) + \left(\frac{2\mu e^2}{4\pi\epsilon_0\hbar^2} - \frac{2}{a_0}\right)\frac{1}{r} = 0$$

To satisfy Eq (7.14) for any r is for each of the two expressions in parentheses to be zero.

Set the second parentheses equal to zero and solve for a_0 .

$$a_0 = \frac{4\pi\varepsilon_0\hbar^2}{\mu e^2}$$

Set the first parentheses equal to zero and solve for *E*.

$$E = -\frac{\hbar^2}{2\mu a_0^2} = -E_0$$

Both equal to the Bohr result.

Quantum Numbers

- The appropriate boundary conditions to Eq (7.10) and (7.11) leads to the following restrictions on the quantum numbers ℓ and m_{r} :
 - $\ell = 0, 1, 2, 3, \dots$
 - $m_{\ell} = -\ell, -\ell + 1, \dots, -2, -1, 0, 1, 2, \ell, \ell 1, \ell$
 - □ $|m_{\ell}| \le \ell$ and $\ell < 0$.
- The predicted energy level is

$$E_n = -\frac{E_0}{n^2}$$

Hydrogen Atom Radial Wave Functions

First few radial wave functions R_{nl}

Table 7.1		Hydrogen Atom Radial Wave Functions
n	ℓ	$R_{n\ell}(r)$
1	0	$\frac{2}{(a_0)^{3/2}}e^{-r/a_0}$
2	0	$\left(2-\frac{r}{a_0}\right)\frac{e^{-r/2a_0}}{(2a_0)^{3/2}}$
2	1	$\frac{r}{a_0} \frac{e^{-r/2a_0}}{\sqrt{3}(2a_0)^{3/2}}$
3	0	$\frac{1}{(a_0)^{3/2}} \frac{2}{81\sqrt{3}} \left(27 - 18\frac{r}{a_0} + 2\frac{r^2}{a_0^2}\right) e^{-r/3a_0}$
3	1	$\frac{1}{(a_0)^{3/2}} \frac{4}{81\sqrt{6}} \left(6 - \frac{r}{a_0}\right) \frac{r}{a_0} e^{-r/3a_0}$
3	2	$\frac{1}{(a_0)^{3/2}} \frac{4}{81\sqrt{30}} \frac{r^2}{a_0^2} e^{-r/3a_0}$

© 2006 Brooks/Cole - Thomson

Subscripts on R specify the values of n and ℓ.

Solution of the Angular and Azimuthal Equations

- The solutions for Eq (7.8) are $e^{im_\ell\phi}$ or $e^{-im_\ell\phi}$
- Solutions to the angular and azimuthal equations are linked because both have m_p .
- Group these solutions together into functions.

$$Y(\theta, \phi) = f(\theta)g(\phi)$$
 ---- spherical harmonics

Normalized Spherical Harmonics

Table 7.2	Normali	zed Spherical Harmonics $Y(\theta, \phi)$
e	m_ℓ	$Y_{\ell m_{\ell}}$
0	0	$\frac{1}{2\sqrt{\pi}}$
1	0	$\frac{1}{2}\sqrt{\frac{3}{\pi}}\cos\theta$
1	±1	$\mp \frac{1}{2} \sqrt{\frac{3}{2\pi}} \sin \theta \ e^{\pm i\phi}$
2	0	$\frac{1}{4}\sqrt{\frac{5}{\pi}}(3\cos^2\theta-1)$
2	±1	$\mp \frac{1}{2} \sqrt{\frac{15}{2\pi}} \sin \theta \cos \theta \ e^{\pm i\phi}$
2	±2	$\frac{1}{4}\sqrt{\frac{15}{2\pi}}\sin^2\theta\ e^{\pm 2i\phi}$
3	0	$\frac{1}{4}\sqrt{\frac{7}{\pi}}(5\cos^3\theta - 3\cos\theta)$
3	±1	$\mp \frac{1}{8} \sqrt{\frac{21}{\pi}} \sin \theta (5 \cos^2 \theta - 1) e^{\pm i\phi}$
3	±2	$\frac{1}{4}\sqrt{\frac{105}{2\pi}}\sin^2\theta\cos\theta\;e^{\pm2i\phi}$
3	±3	$= \frac{1}{8} \sqrt{\frac{35}{\pi}} \sin^3 \theta \ e^{\pm 3i\phi}$

© 2006 Brooks/Cole - Thomson

Solution of the Angular and Azimuthal Equations

The radial wave function R and the spherical harmonics Y determine the probability density for the various quantum states. The total wave function $\psi(r,\theta,\phi)$ bends on n, ℓ , and m_p . The wave function becomes

$$\psi_{n\ell m_{\ell}}(r,\theta,\phi) = R_{n\ell}(r)Y_{\ell m_{\ell}}(\theta,\phi)$$

7.3: Quantum Numbers

The three quantum numbers:

- n Principal quantum number
- l Orbital angular momentum quantum number
- m_{\ell} Magnetic quantum number

The boundary conditions:

- $n = 1, 2, 3, 4, \dots$ Integer
- $\ell = 0, 1, 2, 3, \dots, n-1$ Integer
- $m_{\ell} = -\ell, -\ell + 1, \dots, 0, 1, \dots, \ell 1, \ell$ Integer

The restrictions for quantum numbers:

- $_{\square}$ n > 0
- $|m_{\ell}| \leq \ell$

Principal Quantum Number n

It results from the solution of R(r) in Eq (7.4) because R(r) includes the potential energy V(r).

The result for this quantized energy is

$$E_n = \frac{-\mu}{2} \left(\frac{e^2}{4\pi\varepsilon_0 \hbar} \right)^2 \frac{1}{n^2} = -\frac{E_0}{n^2}$$

The negative means the energy E indicates that the electron and proton are bound together.

Orbital Angular Momentum Quantum Number &

- It is associated with the R(r) and $f(\theta)$ parts of the wave function.
- Classically, the orbital angular momentum $\vec{L} = \vec{r} \times \vec{p}$ $= mv_{\text{orbital}}r$.
- ℓ is related to L by $L = \sqrt{\ell(\ell+1)}\hbar$
- In an $\ell=0$ state, $L=\sqrt{0(1)}\hbar=0$

It disagrees with Bohr's semiclassical "planetary" model of electrons orbiting a nucleus $L = n\hbar$.

Orbital Angular Momentum Quantum Number &

- A certain energy level is degenerate with respect to \(\ell\) when the energy is independent of \(\ell\).
- Use letter names for the various \(\ext{Values} \).

 - \Box Letter = s p d f g h...
- Atomic states are referred to by their n and l.
- A state with n = 2 and $\ell = 1$ is called a 2p state.
- The boundary conditions require $n > \ell$.

Magnetic Quantum Number m_{ρ}

The angle ϕ is a measure of the rotation about the z axis.

The solution for $g(\phi)$ cifies that m_{ℓ} is an integer and related to the z component of L.

$$L_z = m_\ell \hbar$$

- The relationship of L, L_z , ℓ , and m_{ℓ} for $\ell = 2$.
- $L = \sqrt{\ell(\ell+1)}\hbar = \sqrt{6}\hbar$ because L_z is quantized.

