

Bibiliographie - ROB 3

Année 2023-2024

Nom du Robot: MILITECH

<u>Etudiants : Consalvi Nicolas - Youssef Miri</u>

Encadrants: Pascal Masson

Exemple de robot militaire MAARS utilisé par l'US Army

Sommaire:

I-Diagramme d'exigence du Robot

II- Mode de déplacements

A)Options possibles

B)Avantages et Inconvénients de chaque mode de déplacement et choix utilisé :

C)Choix du châssis

III-Capteurs

A)Détection d'obstacle

1)Capteur à ultrasons

2)Capteur Lidar

B)Détection de personne

C)Choix des Capteurs

IV-Moteurs Châssis+Capteurs

A) <u>Comparaison Moteur pas à pas et Servomoteur</u> pour le Lidar

B)Choix des moteur pour le châssis:

V-Mécanisme de rotation/élévation du canon

A)Rotation de la tourelle

B)Comparaison Moteur Hydraulique ou électrique pour la rotation de la tourelle (et donc du canon)

C)Élévation du Canon

D<u>)Matériel Proposé pour le Moteur CC et l'actionneur linéaire</u>

VI- Mécanisme de tir

A)Nerf-Gun

B)Canon électromagnétique (Canon Gauss)

VII-Batterie

A)Type de batteries et comparatif B)Choix de la batterie

VII-Conclusion

A) <u>Tableau Récapitulatif des Achats à réaliser (si pièce non possédée et coût de construction)</u>

B)Impressions 3D

C)Organisation du Travail

D)Liens Utiles

Introduction:

Dans le cadre du contexte d'une situation politique de plus en plus alarmante avec une tension croissante entre certaines puissances mondiales, notamment entre la Chine et les États-Unis , et avec le conflit actuel entre la Russie et l'Ukraine, sans oublier la déclaration récente de Guerre en Israël. En conséquence, améliorer les performances d'un pays dans le domaine du militaire devient alors une nécessité. Pouvoir réaliser des opérations militaires sans risquer la vie de certains hommes est alors primordial.

Au cœur de l'innovation technologique et de l'évolution constante des machines de guerre, le robot Militech semble être une solution envisageable pour l'avenir de la guerre moderne. Doté de quatre chenilles redoutables, lui permettant d'agir en tout-terrain, ce robot se veut être spécialement conçu pour répondre aux besoins stratégiques cruciaux sur le champ de bataille. Son objectif principal? Détecter et neutraliser des cibles par détection faciale avec une précision impressionnante grâce aux multiples capteurs dont il dispose et de son redoutable canon magnétique monté sur tourelle pour infliger des dommages conséquents à l'ennemi.

Cette bibliographie explorera en détail les aspects techniques du robot que nous allons concevoir.

I-Diagramme d'exigence

Ce diagramme d'exigence reflète les attendus que nous avons de notre robot dans différentes catégories telles que :

- -Sa mobilité
- -Son système de tir
- -Son système de détection d'individus et d'obstacles
- -Son autonomie
- -Sa capacité à communiquer avec les individus supervisant le robot à distance

II-Mode de déplacement:

Il existe plusieurs modes de déplacements envisageables pour notre robot : parmi celles-ci :

A- Options possibles:

- -Les roues
- -Les chenilles
- -Les Pattes

<u>B – Avantages et Inconvénients de chaque mode de déplacement et choix utilisé :</u>

Type de déplacement	Avantages	Inconvénients	
Chenilles	-Excellente stabilité sur terrains accidentés et inégaux -Faible pression au sol adaptés à des sols fragiles - Bonne traction sur les terrains meubles	-Généralement moins rapide que les autres options sur les surfaces lisses -Nécessite un entretien assez important	
Roues	-Rapidité sur Surfaces lisses et régulières -Grande manœuvrabilité et agilité -Moins d'entretien	-Moins stable sur terrains accidentés -Plus grande pression au sol -Moins adapté sur terrain plus difficile	

En conclusion, le choix des chenilles semble plus adapté pour notre robot, étant donné qu'il se doit d'être tout-terrain et qu'une grande vitesse de pointe n'est pas forcément nécessaire. En fait les plate formes à chenilles offrent la possibilité de se déplacer sur des sols légers et de manœuvrer entre différents types d'obstacles. Les plates-formes à chenilles tout-terrain se déplacent facilement dans les zones enneigées, les terrains marécageux, les forêts et les zones montagneuses

C-Choix du Châssis

La principale différence entre un robot avec un châssis à 2 chenilles (ou chenillettes) et un autre avec 4 chenilles réside dans la configuration de leur système de mobilité. Voici quelques distinctions importantes :

Caractéristique	2 Chenilles	4 Chenilles (en paire)
Maniabilité	-Peut avoir des difficultés à effectuer des virages serrés -Possibilité de tourner sur place en variant la vitesse des chenilles de chaque côté	-Meilleure maniabilité, peut pivoter sur place plus facilement
Capacité de Charge	-Souvent capable de transporter des charges plus lourdes en raison de sa stabilité.	-Peut également transporter des charges importantes.
Stabilité	-Généralement stable en raison de la répartition du poids sur deux chenilles.	-Peut offrir une meilleure répartition du poids, améliorant la stabilité dans certaines situations.
Agilité	-Moins agile que les robots à 4 chenilles.	-Plus agile, ce qui peut être un avantage dans des environnements restreints.

Conclusion: Il est évident que nous allons partir sur un châssis à 4 chenilles en raison des contraintes de stabilité liées aux composants que nous allons placer en hauteur, sans oublier l'atout de la maniabilité accrue des 4 chenilles.

Modèle proposé:

HARLT Programmable Robot Kit De Contrôle À Distance 4Wd Shock Absorber Robot Réservoir Kit Châssis avec 4Pcs 12V DC Moteur en Alliage D'aluminium pour.

· ·

III- Capteurs:

Notre robot devra réaliser deux tâches bien séparées se servant de capteurs

- -La détection d'obstacles dans le but de pouvoir se mouvoir dans un terrain accidentés sans collisions
- -La détection de personnes (détection faciale (nez))

A- Détection d'obstacles

Nous allons utiliser plusieurs types de capteurs afin de rendre notre robot plus versatile, et plus précis dans le déplacement :

Caractéristique	Capteur ultrasons	Capteur Laser (Lidar)	
Fonctionnement	Les capteurs ultrasoniques émettent des ondes sonores à haute fréquence (ultrasons) et mesurent le temps qu'il faut pour que ces ondes rebondissent sur un obstacle et reviennent au capteur.	Les détecteurs d'obstacles peuvent utiliser différentes technologies, y compris les capteurs ultrasoniques, les lidars, les caméras, les radars, etc., pour détecter la présence d'obstacles.	
Portée	Ils ont une portée limitée, généralement de quelques centimètres à quelques mètres, en fonction du modèle.	La portée dépend du type de capteur utilisé. Les détecteurs d'obstacles peuvent être conçus pour des portées courtes, moyennes ou longues.	
Précision	Moins précis que les lidars, les capteurs ultrasoniques peuvent être affectés par des réflexions multiples et des conditions météorologiques.	Les lidars offrent une grande précision et une résolution élevée, ce qui les rend adaptés à la cartographie et à la navigation précise.	

Choix des capteurs :

a) Capteur à Ultrasons : HC-SR04 :

b) Capteur laser (Lidar): Modèle TF-Luna

Parameter	TF-Luna (New)		
Picture	***		
Status	Mass production		
Ranging	0.2-8m (Indoor) 0.2-3m (Outdoor)		
Accuracy	±6cm		
Frequency	100Hz (1~250Hz)		
FOV	2°		
Precision	CM		
Communication Interface	UART/I2C		
Peak Current	150mA		
Light Sensitivity	<70k Lux, Sunlight		
Weight	5g		
Input Voltage	5V		
Photobiological Safety	PASS		
Protection Grade	1		
Dimension	35*21.3*13.5mm		

B-Détection de personnes

La détection de personne est une étape essentielle dans le fonctionnement de notre robot, celle-ci s'effectuera à partir du logiciel OpenCV, largement utilisée dans le domaine de la vision par ordinateur, de l'apprentissage automatique et de la robotique pour effectuer une variété de tâches liées à l'analyse d'images et de vidéos codé en python et en C++.

Nous aurons besoin d'une caméra afin de pouvoir réaliser la détection de personnes.

Choix de la caméra:

C- Position des capteurs

On placera au moins un capteur ultrason par face avant et arrière du robot et un capteur ultrason par chenille vue de coté, c'est à dire deux par coté.

Le schéma suivant représente notre robot en vue de haut :

- -Les croix correspondent à l'emplacement des capteur
- -Les flèches correspondent à la direction d'action du capteur

On pourra ajouter par ailleurs des capteurs "détecteurs d'obstacles" à chaque chenille

Le capteur laser Luna devra être placé de façon à pouvoir effectuer un angle de rotation de 180 degrés sur la face avant. Pour cela nous devrons le monter sur un servomoteur qui effectuera en permanence une demi rotation.

Afin d'éviter tout arrachement du servomoteur permettant la rotation du capteur Luna, on procédera par impression 3D au schéma si dessous

IV-Moteurs pour le châssis+Lidar

Les moteurs font partie intégrante de notre projet, ils permettent de transformer une énergie créée à partir de la combustion d'un carburant en un mouvement mécanique perceptible. Ils seront présents :

- -Dans chacune des chenilles : 1 Moteur CC 12V 350 RPM par chenille (livrés avec le châssis)
- -A la base de notre lidar Luna dans le but de faire une rotation de 180 degrés.
- -Sous la tourelle de notre Arme à feu

Ainsi le choix du type de moteur est important pour la rotation de notre Lidar.

A) Comparaison Moteur pas à pas et Servomoteur pour le Lidar

Caractéristique	Moteur Pas à pas	Servomoteur
Utilisation	Les moteurs pas à pas sont très facile à configurer	Facile d'utilisation sur carte Arduino
Vitesse de rotation	Si besoin d'une vitesse plus rapide il faudra alors augmenter le dimensionnement de celui-ci.	Capable de tourner à grande vitesse tout en conservant le couple nominal.
Précision	Lorsque le couple diminue, le moteur peut alors « sauter » un pas, c'est-à-dire que le moteur ne suivra pas l'ordre du contrôleur de moteur. A vitesse lente, les moteurs pas à pas ont une précision grossière (à moins qu'ils soient construit en micro-step, c'est à dire avec un grand nombre de division angulaires)	-Ces moteurs sont équipés de codeurs ce qui les rend précis et fiables. Ils nécessitent des codeurs complexes. Si le codeur n'est pas configuré correctement, il peut nécessiter plus de maintenance.

Entretien	-Ce type de moteur est résistant et ne nécessite qu'une faible maintenance	-Les servomoteurs ont aussi quelques désavantages : ces moteurs peuvent être très cher Cela ajoute évidement un élément de complexité au système et		
	-Ces moteurs sont bruyants et peuvent souffrir de problèmes de résonances.	donc un coût supplémentaire. - Les servomoteurs peuvent aussi nécessiter l'adjonction d'un réducteur de vitesse pour utiliser des vitesses de rotation faibles ou pour augmenter le couple disponible		
Couple	-Ils proposent un très bon couple de maintien, et donc n'ont pas besoin de frein pour maintenir le système en position. Le couple est bon même à vitesse lentePour un moteur pas à pas, le couple diminue de manière importante lorsque la vitesse augmente.	- Ils peuvent supporter jusqu'à près de deux fois leur couple nominal pour une courte période de temps		

En conclusion pour l'utilisation souhaitée (Lidar peu lourd et rotation à 180°) un Servomoteur semble le choix adapté.

B)Choix des moteur pour le châssis:

Nombre de moteurs utilisés et choix du type de moteur pour le châssis+Lidar :

- -<u>Pour la rotation des chenilles</u> : Nous utiliserons 4 Moteurs CC 12V 350 RPM fournis avec le châssis
- -Pour la rotation du Lidar : Nous utiliserons un servomoteur (dont on dispose on salle de projet)

V-Mécanisme de rotation/élévation du canon

Le mécanisme de rotation et d'élévation du canon sera vital pour notre Robot. En effet, d'un point de vue technique il semble improbable de pouvoir toucher une cible à distance (10 mètres) sans pouvoir élever notre canon en raison de la trajectoire parabolique que va prendre la munition tirée.

De même la rotation du canon est un atout non négligeable en terme de gain de vitesse pour notre robot, cette même rotation éviterait au robot de devoir tourner son chassis pour s'aligner sur sa cible. Par ailleurs, dans le cas d'une cible en mouvement le suivi de celle-ci à partir de la seule rotation du châssis s'avérerait très difficile à réaliser en raison des contraintes de terrain d'une part (inclinaison du terrain) et de la distance de la cible (max 10 mètre) ce qui nécessiterait une vitesse de rotation élevée à courte distance.

Plusieurs solutions techniques sont envisageables, mais la principale reste la tourelle :

A) Rotation de la tourelle:

La tourelle est le système qui permettra à notre robot de pouvoir pointer son canon sur une cible quelconque. Elle est principalement utilisée aujourd'hui dans la plupart des véhicules militaires (Chars/VTBs)

Rotation de l'armement : La tourelle permet de faire pivoter l'armement principal (généralement un canon) dans toutes les directions, ce qui permet au char de viser et de tirer sur des cibles à 360 degrés autour de lui sans avoir à bouger tout le véhicule. Cela donne au char une grande agilité sur le champ de bataille. La capacité de la tourelle à pivoter rapidement permet au char de réagir rapidement aux menaces émergentes, qu'il s'agisse de cibles ennemies mobiles ou de tirs provenant de différentes directions.

Le choix du moteur pour une tourelle de char dépend de plusieurs facteurs, notamment de la taille de la tourelle, du poids de l'armement qu'elle doit déplacer, de la mobilité souhaitée et des besoins en termes de puissance. Les moteurs les plus utilisés actuellement dans l'armée sont des moteurs électriques ou hydrauliques.

B) Comparaison Moteur Hydraulique ou électrique pour la rotation de la tourelle (et donc du canon):

Type de moteur	Hydraulique	Électrique
Avantages	-Contrôle précis : Les systèmes hydrauliques peuvent offrir un contrôle précis de la vitesse et du couple en utilisant des valves de régulation.	-Rendement énergétique : Les moteurs électriques sont généralement plus efficaces que les moteurs hydrauliques, ce qui signifie qu'ils gaspillent moins d'énergie sous forme de chaleur. -Moins d'entretien : Les moteurs électriques ont tendance à nécessiter moins d'entretien que les systèmes hydrauliques, car ils ont moins de pièces mobiles sujettes à l'usure

Inconvénients

- -Rendement énergétique : Les systèmes hydrauliques sont souvent moins efficaces que les systèmes électriques en terme de rendement
- -Bruyants : Les systèmes hydrauliques peuvent être bruyants en raison de la circulation de l'huile sous haute pression.
- -Entretien: Les systèmes hydrauliques nécessitent souvent plus d'entretien que les systèmes électriques en raison de l'usure des composants, des fuites potentielles d'huile.
- -Puissance limitée : Les moteurs électriques ont une puissance limitée par rapport aux moteurs hydrauliques, ce qui peut les rendre moins adaptés pour des charges lourde
- -Difficulté de contrôler le couple : Les moteurs électriques ont parfois du mal à fournir un couple élevé à basse vitesse, ce qui peut être un inconvénient dans certaines applications.

Pour des soucis de facilité, on choisira un moteur CC électrique pour la rotation de la tourelle étant donné que la masse de la tourelle à faire tourner reste acceptable.

En ce qui concerne l'élévation du canon, un problème majeur se pose alors sur la conception technique de la tourelle. D'une part la place nécessaire pour le système de tir (canon électromagnétique constitué de différents condensateurs et bobines). Et d'autre part, la masse du système de tir (masse estimée entre 2 et 3kg) qui rend l'utilisation d'un moteur potentiellement délicate avec le matériel dont nous disposons (risque d'arrachement élevé et donc risque de cassure en raison de la masse importante à soulever) ce qui nécessite d'opter pour une solution technique différente.

C) Élévation du canon

Après différentes recherches, une solution technique intéressante qui pourrait être utilisée s'avère être la suivante : l'utilisation d'un actionneur linéaire :

Les actionneurs linéaires sont des dispositifs mécaniques conçus pour produire un mouvement linéaire (dans une ligne droite) plutôt qu'un mouvement rotatif. Les actionneurs linéaires sont capables de fournir un mouvement linéaire précis et contrôlable. Cela les rend idéaux pour des applications où la précision est essentielle. Il existe plusieurs types d'actionneurs linéaires (hydrauliques/pneumatiques/mécaniques/électriques). Par soucis de facilité nous choisirons à nouveau un actionneur linéaire électrique.

On modélisera notre tourelle de la manière suivante: Le canon sera attaché à une liaison pivot en hauteur, elle-même fixée à un plateau tournant. Le plateau tournant sera monté sur un roulement à billes utile grâce à leur conception spécifique qui permet de réduire les frottements entre les surfaces en mouvement sans oublier le fait qu'ils sont capables de supporter des charges radiales (perpendiculaires à l'axe de rotation) et des charges axiales (parallèles à l'axe de rotation) importantes. Le plateau tournant sera actionné par un moteur CC permettant la rotation du canon. L'actionneur linéaire, monté sur le plateau tournant (et en rotation avec le canon) permettra l'élévation du canon.

(Voir schéma)

<u>D) Matériel Proposé pour le Moteur CC et l'actionneur linéaire:</u>

1) Choix du moteur pour la rotation de la tourelle :

Par Simulation sur l'outil de RoboShop, pour une masse de 3kg à faire tourner, et en supposant que le plateau tournant aura un diamètre compris entre 10 et 20 cm, on aura besoin des caractéristiques suivantes pour notre moteur: c'est à dire d'un moteur capable de fournir un couple de 1,65 N.m au maximum.

Toutefois, le moteur étant posé sur un roulement à billes et ne devant pas agir contre des forces de frottements trop importantes, on pourra choisir un moteur avec un peu moins de couple (1Nm)

2) Choix de l'actionneur linéaire

On propose l'actionneur linéaire suivant qui est un actionneur en tige et qui semble parfaitement correspondre à nos besoins en plus d'être électrique, celui-ci possède l'avantage d'être assez petit et d'avoir une élévation de 10cm (suffisant pour notre robot).

Dimensions du colis: 24,7 x 9,9 x 5,9 cm; 1 kilogrammes

Date de mise en ligne sur Amazon.fr: 26 mai 2019

Fabricant: DCHOUSE

ASIN: B07RYLYS4L

Référence constructeur: L11TGF1000N100-T-1

VI- Mécanisme de tir

Le mécanisme de tir est le système qui nous permettra de neutraliser notre cible à distance. Il existe plusieurs solutions techniques nous permettant de réaliser cette option :

En raison des contraintes liées à un certain danger d'utilisation nous ne devrons utiliser qu'un système capable de toucher sa cible à distance avec une puissance de feu modérée . Parmi celles-ci on relève deux options utilisables

A) Nerf-Gun (Premier Semestre si nous aurons le temps)

Les Nerf-guns tirent des projectiles en mousse, en gomme, ou en gel, des fléchettes ou des billes. La plupart des Nerf guns fonctionnent en utilisant de l'air comprimé pour propulser les fléchettes. En tirant ou en appuyant sur une poignée, on comprime l'air à l'intérieur du pistolet. L'air comprimé va ensuite propulser un piston qui va éjecter la fléchette à une vitesse raisonnable.

Voir Vidéo pour plus de détail :

https://youtu.be/N8JpePwvuHw?feature=shared&t=67

Avantage de la solution :

- -Peu dangereux
- -Facile à implémenter (peu d'électronique embarquée)

Inconvénients:

- -Portée de tir très faible
- -Risque de déviation de la fléchette au cours du tir (les frottements et le vent auront un fort impact sur la trajectoire de la fléchette (puisqu'en mousse)) = Imprécision
- -Peu de munitions embarquées (il faudra penser à un système de stockage + Rechargement des munitions adapté)

B) Canon Gauss: (Second semestre)

Le canon magnétique ou canon de Gauss est un canon qui utilise l'effet d'attraction/répulsion magnétique. Il se révèle être très novateur, et commence à être développé à grande échelle dans les armées en raison de son efficacité. Nous allons utiliser le système de tir proposé ci-dessous, se basant sur un assemblage de Bobines, de condensateurs de 450V et 680 Microfarad et de différents composants tels que des résistances/thyristors/phototransistors/transistors afin de propulser des billes métalliques qui vont atteindre nos cibles. (Voir liste de matériel ci-dessous)

Schéma du circuit permettant la modélisation du canon Gauss.

vidéo utilisée pour le montage :

https://www.youtube.com/watch?v=id90kjYh-Qw

Avantage de la solution :

- -Précision importante:
- -Puissance modulable (La construction du canon se base sur une association en série d'un même circuit répété plusieurs fois et branché en série (constitué de bobines/condensateurs/ résistances/thyristors/phototransistors/transistors...) monté sur PCB, il suffit donc de rajouter ou de retirer des PCB pur moduler la puissance du canon.

Inconvénients:

- -Masse importante (estimée entre 2 et 3 kg)
- -Prend de la place
- -Plus dur à réaliser (nécessite soudage/ une électronique importante)
- -Coûteux en Énergie

Nous utiliserons donc le canon électromagnétique sur notre robot (également pour pouvoir apprendre de par le fait différentes notions en électronique et expérimenter le soudage à l'étain de composants sur PCB pour la première fois)

VII-Batterie

A) Types de batteries et comparatif

Il existe plusieurs types de batteries, parmi les plus communes on retrouve :

- <u>-Les batteries Li-Lion:</u> Les batteries Li-ion sont populaires en raison de leur densité énergétique élevée, de leur faible poids et de leur capacité de recharge. Elles conviennent à de nombreux types de robots, y compris les robots domestiques, les drones, les jouets robotiques, etc.
- <u>-Les batteries rechargeables au lithium-polymère (LiPo)</u>: Les batteries LiPo sont similaires aux batteries Li-ion en termes de performances, mais elles sont généralement plus minces et flexibles, ce qui les rend adaptées aux robots avec des formes spécifiques. Toutefois elles restent dangereuses de par leur risque important d'incendie/d'explosion.
- <u>-Les batteries au plomb-acide</u>: Les batteries au plomb-acide sont plus volumineuses et plus lourdes que les batteries Li-ion, mais elles sont moins chères et peuvent être adaptées à des robots plus gros, tels que des robots de service.

I HOICHU III OICHUI GC CC				
Types de batteries	Li-Ion	Li-Po	NiMH	Pb
Paramètres				
Rapport taille/poids/énergie	Le meilleur	Très bon	Bon	Le moins bon
Rapport prix/énergie	Le plus cher	Cher	Intéressant	Le moins cher
Courant de décharge max	Limité, variable	Important	Moyen, variable	Important
Stabilité de la tension	Stable	Stable	Moyen	Peu stable
Milieu confiné lors de la	OK	OK	OK	Dangereux
décharge/recharge				
Volume variable, dégagement	Chaleur	Volume variable et	Chaleur	Chaleur et gaz
de chaleur ou de gaz		chaleur		
Sensibilité aux variations de	Importante	Moyenne	Moyenne	Peu sensible
température				
Résistance à l'écrasement et	Explosion / incendie	Explosion / incendie	Risque d'incendie si	Risque d'incendie si
aux chocs	immédiats	immédiats	très excessif	très excessif
Résistance aux surcharges ou	Très mauvaise (mais	Mauvaise (mais à	Limitée	Bonne résistance
décharges trop profondes	couramment fourni	relativiser vu les		
	avec protection)	courants supportés)		
Circuit de protection	Indispensable	Fortement	Variable	Variable
nécessaire		recommandé		
Circuit de charge contrôlée	Indispensable	Indispensable	Fortement	Variable
nécessaire			recommandé	
Simplicité d'utilisation et	Complexe, circuits	Moyenne, mais des	Intéressant	Le plus simple et le
robustesse générale	de protection et	checkers		plus robuste
	charge requis, mais	(surveillance de la		
	simple au final car	tension avec alarme)		
	elles sont toujours	sont facilement		
	livrées avec ces	utilisables		
	circuits			

B) Choix de la batterie:

On utilisera alors une batterie Li-PO pour alimenter notre robot, en raison son rapport poids-taille, très intéressant. Les 5200mAh de la batterie suivante nous permettra d'assurer une bonne autonomie auprès de notre robot sans pour autant accaparer une trop grande place.

Nombre de batteries 1 Lithium-polymère - incluse(s)

Marque Zeee

Lithium-polymère Composition de la pile

Usages recommandés Car

pour le produit

Nombre d'unités 1 unité Tension 11,1 Volts Réutilisation Rechargeable Nom de modèle Zeee 3s 5200mAh

Poids des batteries 380 Grammes

Dimensions de l'article 13,9 x 4,7 x 3,7 centimètres

LxlxH

Nous prendrons des précautions en s'assurant de bien respecter les consignes de sécurité données par le constructeur.

Des Convertisseurs seront utilisés notamment pour alimenter nos différentes cartes : (12V-5V pour nos multiples cartes arduino servant à alimenter les capteurs ou notre potentielle future carte jetson nano)

VIII-Conclusion

A)Tableau Récapitulatif des Achats à réaliser (si pièce non possédée et coût de construction)

Pièce	Prix	Lien
1xChassis+4Moteurs 12V 350RPM NO CONTROL	169,00 €	https://www.amazon.fr/HARLT-Programmable-R%C3%A9servoir-Daluminium-Bricolage/dp/B082NMNFMJ?th=1
1xLidar TF-Luna	44,99 €	https://www.amazon.fr/Benewake-TF-Luna-D%C3%A9tecteur-D%C3%A9tection-V%C3%A9hicules/dp/B087QWT52L/ref=sr_1_2?keywords=tf+luna+lidar&qid=1697825840&sr=8-2
1x Actionneur en Tige	49,99 €	https://www.amazon.fr/DCHOUSE-Actionneurs-mouvement-%C3%A9lectronique-dautomatisation/dp/B07RYLYS4L/ref=sr 1 4? mk fr FR=%C3%85M%C3%85%C5%BD%C3%95%C3%91&crid=1FQEJS4GUHUF1&keywords=actionneur%2Blin%C3%A9aire&qid=1697877867&s=industrial&sprefix=actionneur%2Blin%C3%A9aire%2Cindustrial%2C79&sr=1-4&th=1
6 x Capteurs Ultrasons HC- SR04	9,59 €	https://www.amazon.fr/pi%C3%A8ces-HC-SR04- Ultrasonique-Capteur- Distance/dp/B0CFXX89D7/ref=sr_1_10?mk_fr_FR=%C3% 85M%C3%85%C5%BD
1x Servomoteur Lidar	4 pièces pour 11,99 €	https://www.amazon.fr/HUAZIZ-servomoteur-h%C3% A9licopt%C3% A8re-Voiture-contr%C3%B4le/dp/B09Z21J1JH/ref=sr_1_5?mk_fr_FR=%C3%85M%C3%85%C5%BD%C3%95%C3%91&crid=10GGXOM9KGC0O&keywords=servomoteur+arduino&qid=1697826044&sprefix=servomoteur+arduino%2Caps%2C79&sr=8-5
1x moteur CC Tourelle	12,00 €	https://french.alibaba.com/product-detail/80ZYT03A-702150411.html?spm=a2700.7724857.0.0.b3da6adbDWceA0
1x Canon Gauss	Total pour la liste du matériel pour un canon à 6 étages : 120€	Liste d'achat : https://electronoobs.com/eng_circuitos_tut74_parts1.php
1x moteur CC Tourelle	12,00 €	https://french.alibaba.com/product-detail/80ZYT03A-702150411.html?spm=a2700.7724857.0.0.b3da6adbDWceA0
1x Roulement à billes 50x80x16mm	22,99 €	https://www.amazon.fr/XiKe-roulements-6001ZZ-pr%C3%A9-lubrifi%C3%A9s-rentables/dp/B0B2K4K5F8/ref=sr_1_5?mk_fr_FR=%C3%85M%C3%85%C5%BD%C3%95%C3%91&crid=2922Z8VFTHSHE&keywords=roulement%2B%C3%A0%2Bbille%2B10cm&qid=1697827153&sprefix=roulement%2B%C3%A0%2Bbille%2B10%2Bcm%2Caps%2C73&sr=8-5&th=1
Caméra logitech C270	24,10 €	https://www.amazon.fr/Logitech-Webcam-Vid%C3%A9o-Microphone- Int%C3%A9gr%C3%A9/dp/B01BGBJ8Y0/ref=sr_1_1?mk_fr_FR=%C3%85M%C3%85%C5%BD%C3%95%C3%91&crid=21K3UJT4C7MSA&keywords=camera+c270&qid=1697827341&sprefix=camera+c270%2Caps%2C98&sr=8-1
Batterie Lipo 3S	38,00 €	https://www.amazon.fr/Zeee-Batterie-connecteur-Quadcopters-

		H%C3%A9licopt%C3%A8re/dp/B0813GPBTF/ref=sr_1_9?ke ywords=lipo+3s&qid=1697876603&sr=8-9
TOTAL	470,00 €	

B) Impressions 3D

En raison de sa polyvalence, nous réaliserons chacune de nos impressions dans le cadre de notre projet en PETG

	Difficu Ité d'impr ession	Tarif (au kg)	Résista nce mécani que	Thermo résista nce	Résist ance à l'eau	Difficu Ité de post traite ment	Usage	Remarque
								Existe chargées en bois, métal ou en de nombreuses
PLA	Facile	15-30€	Faible	Faible	Faible	Moyen	Pièce esthétiques	couleurs
ABS	Moyen	30€	Bonne	Bonne	Bonne	Facile		
PETG	Facile	30€	Bonne	Bonne	Bonne	Moyen	Toute pièce mécanique, prototypage	
FLEX	Moyen	50-100€	Bonne	Bonne	Bonne	Elevée	Pièces souples	
ASA	Moyen	30-40€	Excellente	Excellent e	Faible	Facile	Usage en extérieur (résistance UV) ou pièce à haute résistance thermique	
PVB	Moyen	50€	Bonne	Faible	Faible	Facile	Objets translucides, décoration	
PC	Moyen	50-80€	Excellente	Excellent e	Excellen te	Facile	Pièces extrêmement solides	Existe chargé en carbone
PA	Elevée	60-120€	Excellente	Faible	Faible	Elevée	Pièces subissant de fortes contraintes mécaniques	Existe chargé en carbone
PEEK	Très élevée	800€	Excellente	Excellent e	Excellen te	NA	Pièces mécaniques pour la NASA	Résistance aux produits chimiques

C) Organisation du Travail

Planning du Projet

Référence

- [1]:Moteur pas à pas ou Servomoteur https://www.motionsquare.fr/servomoteur-ou-moteur-pas-a -pas/
- [2]:Capteur ultrason ou laser :https://www.electronique-mixte.fr/wp-content/uploads/2018/10/Capteur-ultrasonique.pdf
- [3]:Choix de batterie + précautions : https://www.ensta-bretagne.fr/lebars/robots_batteries.pdf
- [4]:Canon Gauss: https://www.youtube.com/watch?v=id90kjYh-Qw
- [5]: Actionneur Linéaire: https://www.firgelliauto.com/en-fr/pages/what-is-a-linear-actuator
- [6]:Moteur électrique vs Hydraulique :https://control.com/technical-articles/fluid-or-electric-power-understanding-hydraulic-and-pneumatic-motors/
- [7]: Technologie Lidar: https://www.generationrobots.com/blog/fr/qu-est-ce-que-la-technologie-lidar/
- [8]: Détection de personnes avec OpenCV: https://datacorner.fr/reco-faciale-opencv/
- [9]: Fonctionnement d'un Nerf-Gun: https://youtu.be/N8JpePwvuHw?feature=shared&t=67