Software para el analisis de algoritmos bioinspirados para la optimización de parámetros reales

Daniel Molina Cabrera dmolina@decsai.ugr.es

Esquema

- Condiciones Experimentales y Benchmark
- Integrando código de evaluación
- Integrando resultados en un Excel
- Usando web tacolab para las comparativas

Condiciones Experimentales

- Usaremos benchmark "CEC 2017 Special Session and Competition on Single Objective Bound Constrained Real-Parameter Numerical Optimization".
- 30 funciones, distinto nivel de complejidad.
- Distintos valores de dimensión: 10, 30, 50 (no 100).
- Criterio de parada: 10.000*dimension.
- Rango de todas las funciones: [-100, 100].
- Se ejecuta cada una X veces para calcular la media (usamos T=10, por reducir tiempos, el estándar son 50).
- Se mide el error con respecto al óptimo (fun*100): 100 para f1, 200 f2, ...
- Se calcula el error cada cierto % de evaluaciones: 1%, 2%, ..., 10%, 20%, ...

G. Wu, R. Mallipeddi, P. N. Suganthan, Problem definitions and evaluation criteria for the CEC 2017 competition and special session on constrained single objective real-parameter optimization, Tech. rep., Nanyang Technological University, Singapore (2016).

Visualmente algunos ejemplos

G. Wu, R. Mallipeddi, P. N. Suganthan, Problem definitions and evaluation criteria for the CEC 2017 competition and special session on constrained single objective real-parameter optimization, Tech. rep., Nanyang Technological University, Singapore (2016).

Integrando el código de evaluación

- Código actualizado en https://github.com/dmolina/cec2017real/.
- Disponible en C++, con wrapper para Python.
- Se puede compilar como librería, o dentro del proyecto.
- Ficheros:
 - cec17_test_func.c: fichero original del benchmark.
 - *cec17.c:* con las funciones del API simplificado.
 - input_data: debe estar en el directorio donde se ejecute el binario.
 - extract.py: script en Python para agrupar los resultados.

Integrando el código de evaluación

- cec17_init(nombre_algoritmo, funcid, dimension):
 - Se llama antes de cada ejecución.
 - nombre_algoritmo para identificar el algoritmo en los ficheros de salida.
 - funcid: identificador de la función (entre 1 y 30).
 - Dimensión: 10, 30, ó 50.
- cec17_fitness(double *sol)
 - Evalúa el vector solución.
 - El tamaño debe ser el adecuado.
 - Devuelve un double.

Integrando el código de evaluación

```
int seed = 42;
std::uniform real distribution<> dis(-100.0, 100.0);
for (int funcid = 1; funcid <= 30; funcid++) {</pre>
  vector<double> sol(dim);
  vector<double> bestsol(dim);
  double fitness;
  double best = -1;
  // Set the function to use in fitness
  cec17_init("random", funcid, dim);
  // If it is commented the output is print in console, instead of external files.
  std::mt19937 gen(seed); // Start seed
  int evals = 0;
  while (evals < 10000*dim) {
    // Generate random solution
    for (int i = 0; i < dim; i++) {
      sol[i] = dis(gen);
    // Evaluate the solution
    fitness = cec17_fitness(&sol[0]);
    // Increase count
    evals += 1;
    // Calculate the best one
    if (evals == 1 || fitness < best) {</pre>
      best = fitness;
      bestsol = sol;
```

Integrando resultados en un Excel

- Cada vez que se ejecuta la función cec17_fitness:
 - Incrementa contador de evaluaciones (reseteado con cec17 init).
 - Calcula el error.
 - Mantiene el óptimo.
 - Si debe de guardar los resultados:
 - Va al directorio results_<nombre_algoritmo> (debe existir).
 - Escribe fichero results_funcid_dimension.txt
- No es necesario escribir nada por pantalla.
- Evita más evaluaciones del tope.
- El script genera.py recibe el directorio results_nombre_algoritmo
 y escribe ahí un Excel con los resultados.

Tacolab es una web que permite comparar meta-heurísticas.
 https://tacolab.org/

Ofrece:

- Base de Datos de resultados de algoritmos.
- Leer datos de un Excel (formato generado por genera.py).
- Crea tablas comparativas de los datos del Excel y almacenados.
- Ranking de algoritmos.
- Test estadísticos.

TACO: Toolkit for Automatic Comparison of Optimizers Generic Benchmark My Results

Comparing with a standard benchmark

This page allows researcher to compare results of different algorithms for different standard benchmarks.

You can your algorithms/existing algorithms in the database and compare against existing into the database (your results will not be stored).

The process is simple:

- 1. Select the wanted benchmark.
- 2. Select the dimension (if there is more of one for the benchmark).
- 3. Select the algorithm to compare. You can select from the Database and/or add results from an Excel file.
- 4. Select the report.
- 5. Push the button Compare.

Select Benchmark

Select the benchmark used for comparison: CEC2017 ~

CEC'2017 Real-Parameter Optimization

Benchmark for the Real-Parameter Optimization competitions.

Select the dimension value:

TACO: Toolkit for Automatic Comparison of Optimizers Generic Benchmark My Results

Comparing with a standard benchmark

This page allows researcher to compare results of different algorithms for different standard benchmarks.

You can your algorithms/existing algorithms in the database and compare against existing into the database (your results will not be stored).

The process is simple:

- 1. Select the wanted benchmark.
- 2. Select the dimension (if there is more of one for the benchmark).
- 3. Select the algorithm to compare. You can select from the Database and/or add results from an Excel file.
- 4. Select the report.
- 5. Push the button Compare.

Select Benchmark

Select the benchmark used for comparison: CEC2017 ~

CEC'2017 Real-Parameter Optimization

Benchmark for the Real-Parameter Optimization competitions.

Select the dimension value:

This website has been done using our <u>own open-source application</u>

Features

About

Tables and Export options

Team

All results are freely available

Plots and Figures

Privacy

under Creative Common

CEC'2017 Real-Parameter Optimization

Benchmark for the Real-Parameter Optimization competitions.

Select the dimension value: 30 ~

Algorithms to compare

	_	_
//	_	r .

DYYPO

Marco para comparar con DE y con PSO

GSKA

☐ LSHADE SPACMA

■ FBowithCMAR

☐ MM OED

MOS

□ PPSO

☑ PSO

☐ RB-IPOP-CMA-ES

SSA

☐ TLBO-FL

nico

Evaluations: 100%

Functions	DE	PSO	mialgoritmo
F01	0.000e+00	5.255e+07	2.060e+09
F02	0.000e+00	1.000e+00	6.956e+07
F03	0.000e+00	1.989e+03	8.238e+03
F04	1.105e-04	4.684e+01	1.283e+02
F05	1.151e+02	3.212e+01	7.226e+01
F06	3.460e+01	1.001e+01	3.957e+01
F07	3.848e+01	4.275e+01	1.865e+02
F08	2.983e+01	2.203e+01	6.716e+01

Marca el mejor en cada función

Se puede guardar como Excel o Latex							
Best	21	8	1	Resumen			
F30	8.051e+04	6.352e+05	2.724e+06				
F29	2.375e+02	3.193e+02	4.304e+02				
F28	3.517e+02	4.698e+02	6.560e+02				
F27	3.897e+02	4.134e+02	4.469e+02				

¿Dudas?

