การทดลองที่ 4

เรื่อง แทนเจนต์แกลวานอมิเตอร์

วัตถุประสงค์

- 1. ศึกษาการทำงานของแทนเจนต์แกลวานอมิเตอร์
- 2. เพื่อหาค่าความเข้มของสนามแม่เหล็ก โลกตามแนวราบ โดยใช้แทนเจนต์แกลวานอมิเตอร์

ทฤษฎี

เมื่อให้กระแส i ใหลผ่านเส้นลวดซึ่งขดเป็นวงกลมรัสมี R กระแสนี้จะเหนี่ยวนำให้เกิดสนามแม่เหล็ก B ขึ้น ที่จุดศูนย์กลางของขดลวดมีค่าเท่ากับ

$$\left| \vec{B} \right| = \frac{\mu_0 i}{2R} \tag{1.1}$$

และมีทิสตามกฎมืองวา ตัวอย่างเช่นกระแส i ใหลในทิสทวนเข็มนาฬิกาเมื่อมองเข้ามาจากทิส +Y คัง รูปที่ $1.1~\vec{B}$ จะมีทิสตั้งฉากกับระนาบของขคลวดซึ่งวางตัวอยู่ในระนาบ XZ และพุ่งไปตามแกน +Y , μ_0 ใน สมการ(1.1) คือค่าเพอมือบิลีตีแม่เหล็กในสูญญากาส

รูปที่ 1.1 แสดงสนามแม่เหล็กเหนี่ยวนำ \overrightarrow{B} ที่เกิดขึ้น ณ จุดศูนย์กลางของขดลวดวงกลมรัศมี R

ในกรณีที่ขคลวคมี n รอบ ขนาคของสนามแม่เหล็กที่จุคศูนย์กลางมีค่าเป็น

$$\left| \vec{B} \right| = \frac{\mu_0 ni}{2R} \tag{1.2}$$

แทนเจนต์แกลวานอมิเตอร์เป็นเครื่องมือสำหรับใช้หาขนาดของสนามแม่เหล็กโลกซึ่งในตัวของ แทนเจนต์แกลวานอมิเตอร์ประกอบด้วยโครงอลูมิเนียมวงกลมมีลวดทองแดงพันอยู่จำนวน 50 รอบโดย ลวดทองแดงนี้ต่ออยู่กับปุ่ม 2 ปุ่มบนฐานของเครื่องมือ ที่ใจกลางของขดลวดมีเข็มทิศ ระนาบของเข็มทิศตั้งได้ ฉากกับระนาบของขดลวด ซึ่งหัวและท้ายของเข็มทิศจะใช้อ่านค่ามุมที่เบนไปเมื่อมีกระแสไหลในวงจรและหัว ของเข็มทิศจะชี้ทิศของความเข้มของสนามแม่เหล็กลัพธ์ \overline{B} '

รูปที่ 1.2 แทนเจนต์แกลวานอมิเตอร์

ถ้าจัดให้แทนเจนต์แกลวานอมิเตอร์อยู่ในลักษณะที่ระนาบของขดลวดขนานกับแนวสนามแม่เหล็กโลก ตามแนวราบ \overrightarrow{B}_H ซึ่งอยู่ในทิศ $-\mathbf{X}$ ดังรูปที่ 1.3 แล้วปล่อยกระแสให้ไหลผ่านขดลวดในทิศทวนเข็มนาฬิกาเมื่อ มองเข้ามาจากทิศ $+\mathbf{Y}$ สนามแม่เหล็กเหนี่ยวนำ \overrightarrow{B} ที่เกิดขึ้นที่จุดศูนย์กลางของระนาบของขดลวดจะมีทิศไปตาม แกน $+\mathbf{Y}$ เข็มทิศบนหน้าปัดแทนเจนต์แกลวานอมิเตอร์จะวางตัวอยู่ในแนวของความเข้มสนามแม่เหล็กลัพช์ \overrightarrow{B} ' ซึ่งมีค่า

$$\overrightarrow{B'} = \overrightarrow{B} + \overrightarrow{B_H} \tag{1.3}$$

$$\left| \overrightarrow{B} \right| = \left| \overrightarrow{B_H} \right| \tan \theta \tag{1.4}$$

เมื่อแทนค่า $\left| \overrightarrow{B} \right|$ จากสมการ(1.2) ลงในสมการ (1.4) จะได้

รูปที่ 1.3 แสดงการวางตัวของเข็มทิศบนหน้าปัดแทนเจนต์แกลวานอมิเตอร์ในแนวสนามแม่เหล็ก $ar{B}'$

ถ้า heta เป็นมุมระหว่าง $ar{B}'$ และ $ar{B}$ จะได้

$$i = \frac{2|\overrightarrow{B_H}| R \tan \theta}{\mu_0 n} \tag{1.5}$$

หรือ
$$\left| \overrightarrow{B_H} \right| = \frac{\mu_0 ni}{2R \tan \theta} = \frac{\mu_0 n \ slope}{2R}$$
 (1.6)

ค่าทุกค่าทางขวามือของสมการ (1.6) สามารถวัดหรือหาค่าออกมาได้ ดังนั้นเราจึงสามารถหาค่า สนามแม่เหล็กโลกตามแนวราบ \overrightarrow{B}_H ได้ ถ้าหมุนระนาบของขดลวดให้ทำมุม ϕ กับแนวเมอริเดียนแม่เหล็กโลก สนามแม่เหล็ก \overrightarrow{B} ที่เกิดขึ้นที่จุดศูนย์กลางของระนาบของขดลวดจะทำมุม $90^\circ + \phi$ กับสนามแม่เหล็กโลก \overrightarrow{B}_H เข็มทิสบนหนาปัดแทนเจนต์แกลวานอมิเตอร์จะวางตัวอยู่ในแนวของสนามแม่เหล็กลัพธ์ \overrightarrow{B}' ซึ่งอยู่ระหว่าง \overrightarrow{B} กับ \overrightarrow{B}_H ถ้าสามารถปรับขนาดของกระแส i ที่ไหลผ่านขดลวดจนกระทั่งเข็มทิสบนหน้าปัดแทนเจนต์แกลวานอ มิเตอร์ (หรือแนวสนามแม่เหล็กลัพธ์ \overrightarrow{B}') ตั้งได้ฉากกับ \overrightarrow{B}_H ดังแสดงในรูปที่ 1.4

จากรูปที่ 1.4 จะได้

$$\left| \vec{B}_H \right| = \left| \vec{B} \right| \sin \phi \tag{1.7}$$

💠 คือ มุมระหว่างระนาบของขคลวดกับแนวเมอริเดียน

ร**ูปที่ 1.4** แสดงทิศทางของสนามแม่เหล็กลัพธ์ \overrightarrow{B} ' ที่ตั้งใด้ฉากกับ \overrightarrow{B}_H เมื่อระนาบของขคลวดทำมุม $oldsymbol{\varphi}$ กับ \overrightarrow{B}_H เมื่อแทนค่า $\left| \overrightarrow{B} \right|$ จากสมการ (1.2) ลงในสมการ (1.7) จะได้

$$\left| \vec{B}_H \right| = \left(\frac{\mu_0 n i}{2R} \right) \sin \phi \tag{1.8}$$

ในทำนองเดียวกันเราสามารถหาค่าทุกค่าที่อยู่ทางขวามือของสมการ (1.8) ได้ ดังนั้นเราก็สามารถหาค่า \overrightarrow{B}_H ได้

รูปที่ 1.5 แสดงวงจรการทดลองแทนเจนต์แกลวานอมิเตอร์

รูปที่ 1.6 แสดงรูปเครื่องมือการทดลองเรื่องแทนเจนต์แกลวานอมิเตอร์

อุปกรณ์

1.แทนเจนต์แกลวานอมิเตอร์	1	ตัว
2.ตัวต้านทานปรับค่าใค้ (rheostat)	1	ตัว
3.เครื่องกำเนิดใฟฟ้ากระแสตรง	1	เครื่อง
4.รีเวอร์ซิงคีย์ (reversing key)	1	ตัว
ร. สายไฟ	5	เส้น

วิธีทำการทดลอง

กำหนดให้

- จำนวนรอบของขคลวคมีค่าเท่ากับ 50 รอบ
- รัศมีของแทนเจนต์แกลวานอมิเตอร์มีค่าเท่ากับ 7 เซนติเมตร
- ค่า $\mu_{_0}$ มีค่าเท่ากับ 4π x $10^{\text{--}7}$ T.m/A

ตอนที่ 1 การหาค่าความเข้มสนามแม่เหล็กโลกตามแนวราบ \overrightarrow{B}_H โดยการคำนวณ

- 1.1 จัดแทนเจนต์แกลวานอมิเตอร์ให้แนวระนาบของขคลวดขนานกับแนวของสนามแม่เหล็กโลก(ทิศ เหนือ-ทิศใต้) ตามแนวแกนสีดำกลางของแทนเจนต์แกลวานอมิเตอร์(จุดสีแดงคือทิศเหนือ)
- 1.2 ปรับเข็มสีเงินบนหน้าปัดแทนเจนต์แกลวานอมิเตอร์ ให้อยู่ที่เลขศูนย์ โดยการหมุนหน้าปัดของ แทนเจนต์แกลวานอมิเตอร์
- 1.3 เปิดสวิทซ์แหล่งจ่ายไฟกระแสตรง โดยให้ค่ากระแสไฟฟ้ามีค่าเท่ากับ 0.05 แอมแปร์
- 1.4 อ่านค่ามุมที่เปลี่ยนไป โดยกำหนดให้ฝั่งใดฝั่งหนึ่งเป็น $heta_1$ และอีกฝั่งเป็น $heta_2$
- 1.5 สับสวิทซ์กล่องเพื่อเปลี่ยนทิศทางของกระแส อ่านค่ามุมที่เปลี่ยนไป โดยฝั่งที่เคยเป็น θ 1ให้ เปลี่ยนเป็น θ 3 และฝั่งที่เคยเป็น θ 2 ให้เป็น θ 4
- 1.6 ปรับค่ากระแสไฟฟ้าตามตารางการทดลอง แล้วทดลองตามข้อ 1.4 1.5
- 1.7 เขียนกราฟความสัมพันธ์ระหว่างกระแส i กับ $an heta_{\iota \alpha \hat{d} \sigma}$ โดยให้ i อยู่บนแกน y และ $an heta_{\iota \alpha \hat{d} \sigma}$ อยู่บน แกน x

- 1.8 หาค่าความชั้นของกราฟความสัมพันธ์ระหว่างกระแส i กับ $an \Theta_{ ext{in} \hat{ ext{d}} ext{u}}$
- 1.9 หาค่าความเข้มสนามแม่เหล็กโลกตามแนวราบ จากสมการ(1.6)

ตอนที่ 2 การหาค่าความเข้มสนามแม่เหล็กโลกตามแนวราบ \overrightarrow{B}_H โดยการเขียนแผนภาพเวกเตอร์

- 2.1 จัดแทนเจนต์แกลวานอมิเตอร์ให้แนวระนาบของขดลวดขนานกับแนวสนามแม่เหล็กโลก
- 2.2 ปรับเข็มสีเงินบนหน้าปัดแทนเจนต์แกลวานอมิเตอร์ให้อยู่ที่เลขสูนย์
- 2.3 ยกฐานของแทนเจนต์แกลวานอมิเตอร์แล้วหมุนเพื่อให้เข็มสีเงินบนหน้าปัดแทนเจนต์แกลวานอ มิเตอร์ชี้ไปตามมุมที่กำหนด
- 2.4 เปิดสวิทซ์แหล่งจ่ายไฟกระแสตรง แล้วปรับค่ากระแสไฟฟ้าที่ทำให้เข็มสีเงินบนหน้าปัดแทนเจนต์ แกลวานอมิเตอร์เบนจากมุม ที่กำหนดไปอีก 90 องศา
- 2.5 บันทึกค่ากระแสไฟฟ้า
- 2.6 คำนวณหาค่าสนามแม่เหล็กไฟฟ้าเหนี่ยวนำจากสมการ(1.2)
- 2.7 นำค่าสนามแม่เหล็กไฟฟ้าเหนี่ยวนำที่คำนวณได้มาเขียนแผนภาพเวกเตอร์ เพื่อหาค่าสนามแม่เหล็ก โลกตามแนวราบ

ข้อควรระวัง

- 1. ไม่ควรให้แอมมิเตอร์และตัวต้านทานปรับค่าได้อยู่ใกล้แทนเจนต์แกลวานอมิเตอร์ ขณะจัดตำแหน่งของแทนเจนต์แกลวานอมิเตอร์ เพื่อให้ระนาบของขดลวดขนานกับ แนวเมอริเดียนแม่เหล็กโลก
 - 2. อย่าสับสวิทซ์ทิ้งไว้นาน ๆ

หนังสืออ้างอิง

- 1. M. Alonso and E.J. Finn, Physics, Addison Wesley, 1972, pp. 377-378
- 2. F. Bueche, <u>Introduction to Physics for Scientists and Engineers</u>, McGraw-Hill, New York, 1966 pp.

บันทึกผลการทดลองที่ 4 แทนเจนต์แกลวานอมิเตอร์

จำนวนรอบของขดลวด n = 50 (รอบ) รัศมีของขดลวด R = 0.07 (เมตร)

ตอนที่ 1 การหาค่าความเข้มสนามแม่เหล็กโลกตามแนวราบ \overrightarrow{B}_H โดยการคำนวณ

i (A)	$ heta_{\scriptscriptstyle 1}$ (องศา)	$ heta_{\scriptscriptstyle 2}$ (องศา)	$ heta_{\scriptscriptstyle 3}$ (องศา)	$ heta_{\!\scriptscriptstyle 4}$ (องศา)	$ heta_{\iota \hat{n} \hat{\hat{n}} \hat{v}}$ (องศา)	$ an heta_{\iota \mathfrak{n} \dot{ar{n}} \dot{ar{n}} \dot{ar{n}}}$
0.05	32.5	32.5	33.5	34.0	33.125	0.653
0.10	51.5	50, 9	56.0	56.5	53.625	1.358
0.15	58.0	57.5	67.5	68.0	62.750	1.942
0.20	64.0	63.0	73.5	74.0	68.625	2.555
0.25	67.5	67.0	77.5	78.5	72.625	3.196
0.30	70.0	71.0	81.5	82.0	76.125	4.048
0.35	72.0	71.0	84.0	84.5	77.875	4.655
0.40	73.5	72.5	85, 0	86.0	79.250	5.267

เขียนกราฟระหว่างกระแส i กับ tan $heta_{{}_{inal}}$ โดยให้ i อยู่บนแกน y และtan $heta_{{}_{inal}}$ อยู่บนแกน x

ความชั้นของเส้นกราฟ =(.........

ดังนั้น ความเข้มสนามแม่เหล็กโลกตามแนวราบ

ตอนที่ 2 การหาค่าความเข้มสนามแม่เหล็กโลกตามแนวราบ \overrightarrow{B}_H โดยการเขียนแผนภาพเวกเตอร์ เมื่อ $\theta = 45^{\circ}$

วิธีการคำนวณ

$$\widehat{B}: \frac{\mu_{\circ} ni}{2R}$$

$$\overline{B}_{H} = B \sin \theta$$

แผนภาพเวคเตอร์ของ \overrightarrow{B} , \overrightarrow{B}_H , \overrightarrow{B}'

อัตราส่วน

จากแผนภาพเวกเตอร์สนามแม่เหล็กโลกที่ได้จากการเขียนแผนภาพเวกเตอร์ $\overrightarrow{B}_H =$ (......)

สรุปและวิจารณ์ผลการทดลอง