Fammech

소프트웨어융합학과 2018111395 박서영

소프트웨어융합학과 2018111575 김가을

CONTENTS

Contents 01

주제의 목표 및 주요 내용

Contents 02

관련 연구

Contents 03

전체 진도 계획 및 현재 진도 사항

Contents 04

향후 진행 계획

Contents 01 주제의 목표 및 주요 내용

농산물 가격 예측 AI 모델 개발 및 이를 활용한 소비 품목 제안 어플리케이션

주요 내용은 크게 세 가지로 나눌 수 있습니다.

데이터 수집 및 전처리 선형회귀와 추천알고리즘을 이용해 AI모델 개발 Tensorflow mobile
or lite(android)
안드로이드
앱 개발

Contents 02 관련 연구

• 유의성 검정을 합니다. 통계에서 변수가 유의하다는 의미입니다.

대표적인 빅데이터 처리 문제인 '집 값 예측 모델'을 통해 현재 프로젝트와 연결한다.

Contents 03 전체 진도 계획 및 현재 진도 사항

전체 진도 계획

01 EDA

04 AUC 처리

Grouping, Clustering

05 랜덤 포레스트(앙상블)

03 선형회귀

Contents 03 전체 진도 계획 및 현재 진도 사항

0	df.f	illna(df.mear	n())				
₽		거래일자	양파(전체) 반입량	만생양파 반입량	저장양파 반입량	조생양파 반입량	기타 반입량
	0	2015-01-01	13916582	3786154	4935804	401340	10696722
	1	2015-02-01	11005449	3175228	5064789	0	9499536
	2	2015-03-01	13611617	3660763	5389042	2324	12055334
	3	2015-04-01	22077825	2638003	4038779	6362671	14524703
	4	2015-05-01	26358838	2842755	2746511	11667414	14394715

	67	2020-08-01	13006304	5187926	8030901	895903	11205384
	68	2020-09-01	14683073	5187342	10586685	910505	11712069
	69	2020-10-01	13567706	3826548	5546410	989646	11722141
	70	2020-11-01	14104641	4433809	7665432	939633	13126886
	71	2020-12-01	12713812	3282039	9478399	807799	11410239
	72 r	ows × 6 colun	nns				
220]	df.h	nead()					
		거래일자	양파(전체) 반입량	만생양파 반입량	저장양파 반입량	조생양파 반입량	기타 반입량
	0	2015-01-01	13916582	3786154	4935804	401340	10696722
	1	2015-02-01	11005449	3175228	5064789	0	9499536
	2	2015-03-01	13611617	3660763	5389042	2324	12055334
	3	2015-04-01	22077825	2638003	4038779	6362671	14524703
	4	2015-05-01	26358838	2842755	2746511	11667414	14394715

양파에 경우 x축은 날짜, y 데이터는 양파 품목별 데이터를 각 막대 그래프에 넣어 visualization을 실행

Contents 03 전체 진도 계획 및 현재 진도 사항

거래일자	0
봄배추 10.0 kg 상자 /특	44
봄배추 10.0 kg 상자 /상	36
봄배추 10.0 kg 상자 /중	98
봄배추 10.0 kg 상자 /하	105
봄배추 반입량	1
여름배추 10.0 kg 상자 /특	69
여름배추 10.0 kg 상자 /상	8
여름배추 10.0 kg 상자 /중	116
여름배추 10.0 kg 상자 /하	120
여름배추 반입량	1
김장(가을)배추 10.0 kg 상자 /특	. 80
김장(가을)배추 10.0 kg 상자 /상	
김장(가을)배추 10.0 kg 상자 /중	
김장(가을)배추 10.0 kg 상자 /하	
김장(가을)배추 반입량	6
월동배추 10.0 kg 상자 /특	11
월동배추 10.0 kg 상자 /상	20
월동배추 10.0 kg 상자 /중	82
월동배추 10.0 kg 상자 /하	90
월동배추 반입량	1

[특,상,중,하] 배추 별로 NaN값의 수를 확인했더니 [중, 하] 이 두 품목이 압도적으로 NaN값의 수가 많아서 크게 처리할 필요가 없는 이상치라 판단하여 제거함

Contents 03 전체 진도 계획 및 현재 진도 사항


```
[ [15] # Spirt dataset into training & test
       X = df['날짜']
       y = df['양파(전체) 반입량']
       X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)
[16] X_train.shape, y_train.shape
       ((57,), (57,))
[17] X_test.shape, y_test.shape
       ((15,), (15,))
🕨 🔼 from sklearn import linear_model
       # fit regression model in training set
       Ir = linear_model.LinearRegression()
       model = lr.fit(X_train, y_train)
       # predict in test set
       pred_test = Ir.predict(X_test)
                                               Traceback (most recent call last)
       <ipython-input-19-9bad770332ba> in <module>()
            3 # fit regression model in training set
            4 Ir = linear_model.LinearRegression()
       ----> 5 model = Ir.fit(X_train, y_train)
            7 # predict in test set
```

선형 회귀 모델 사용을 위해 데이터 대입 시, shape으로 인한 오류 생김 해당 사항 개선 진행 중

Contents 04 향후 진행 계획

적은 데이터로 효율적인 학습을 위해 K-fold를 사용하여 활용 가능한 데이터셋을 늘려 학습시키기로 함. 11월 초까지 AUC 처리까지 마무리한 후 최적 알고리즘을 찾아낼 예정

召从台上门