James Ruse Agr. H.S.

Ques (a)	Find $\lim_{x \to 0} \frac{\tan 3x}{2x}$	Marks 2
(b)	Find the acute angle (to nearest minute) between the lines: $2x-3y-1=0$ and $y=\frac{3x}{5}-7$.	2
(c)	Divide the interval AB externally in the ratio 3:5 given the points $A(3,-2)$ and $B(-1,7)$.	2
(d)	Expand and simplify $(2x+3y)^4$	2
(e)	Find the probability of getting 6 heads when a coin is tossed 8 times.	2
(f)	Write 7.12 as the sum of an infinite series.	2
	Hence write 7.12 as a mixed fraction.	
_	the contract of the contract o	

Question 2.

The displacement x metres of a particle is given by:

 $x = 7 + 5\sin 3t + 6\cos 3t$ where t is the time in seconds.

- Show that the particle moves in SHM, stating the centre of motion and period T. (a)
- Find the maximum speed of the particle. (b)
- Write $5\sin 3t + 6\cos 3t$ in the form $R\cos(3t \alpha)$, where R > 0 and $0 < \alpha < 2\pi$. (c)
- Graph displacement x versus time t of the particle for $0 \le t \le 2\pi$. (d)
- Find the first time (to 2 decimal places) when the particle is 14 metres from the origin.

Question 3.

- Evaluate $\int_{0}^{4} \frac{2dx}{x^2 + 16}$
- (i) Factorise $x^3 + 2x^2 15x 36$
 - (ii) Hence solve $x^3 + 2x^2 15x 36 \ge 0$
- The velocity ν of a particle is given by: $v = 5 + e^{-x}$ where x is the displacement of the particle.

Find the displacement x as a function of time t if the particle is initially at the origin.

(d) Find the rate of change
$$\frac{dF}{dt}$$
 (to 3 significant figures) if $F = G \frac{m_1 m_2}{r^2}$
where $G = 6.67 \times 10^{-11}$, $m_1 = 5.97 \times 10^{24}$, $m_2 = 1000$, $r = 1.5 \times 10^5$ and $\frac{dr}{dt} = 750$.

Question 4.			
(a)	Find the area bounded by the lines $x = -1$, $x = -2$, the x-axis and the curve $y = \frac{1}{x}$.	2	
(b)	Find $\int \frac{4x + \sqrt{1 - x^2}}{1 - x^2} dx$	2	
(c)	Three engineers and nine councillors have a meeting around a circular table. If three councilors are between each engineer find number of possible seating arrangements.	2	
(d)	Find the greatest coefficient of $(2x + 7)^{13}$.	3	
(e)	The velocity ν of a body is given by : $\nu = x \tan^2 x$, where x is the displacement. Find in simplest terms the acceleration x of the body in terms of the displacement x .	3	
Ques	tion 5.	_	
(a)	Graph the curve $y = -2\cos^{-1}\left(\frac{x}{3}\right)$.	3	
(b)	Solve $\frac{4x-5}{2x+1} \le 3$	3	
(c)	There are 8 red, 9 green and 6 yellow cards in a pack of cards. Five cards are drawn. Find the probability of obtaining 2 red and 3 green cards if it is known that at least one card is green. Leave the answer in $\binom{n}{r}$ form.	2	
(d)	The point T lies on the inside of the acute angle XYZ . From T perpendiculars TV and TW are dropped to the angle arms YX and YZ respectively. From point Y , the perpendicular YN is dropped to the interval VW .		
	 (i) Draw a diagram showing all the information. (ii) Prove that ∠VYN = ∠TYW. 	1 3	
Ques	tion 6.		
(a)	Using the substitution $x = \frac{1}{y}$ and integration tables find $\int \frac{dx}{x\sqrt{1-x^2}}$.	4	

2

2

2

3

3

- Prove by Mathematical Induction: $1\times3\times5\times...\times(2n-1)=\frac{(2n)!}{2^n n!}$
- A man takes out a loan for \$260 000 to be paid in equal monthly payments over 25 years. If the interest on the loan is 8 %p.a. monthly reducible, find the monthly repayment R.

)ues	tion 7.	Marks
a)	(i) Show that $T = A + Be^{-kt}$ is a solution of $\frac{dT}{dt} = -k(T - A)$.	2
	(ii) A barbeque plate is heated to $85^{\circ}C$ when the ambient temperature is $22^{\circ}C$. The plate cools to $70^{\circ}C$ in 16 minutes.	4
	Assuming Newton's Law of Cooling find the time for the plate to cool to $30^{\circ}C$.	
b)	A projectile is fired with initial speed V m/s from the origin O at an angle of α to the horizontal $(0 \le \alpha < 90^{\circ})$.	4
	The trajectory equation is given by: $y = x \tan \alpha - \frac{gx^2}{2V^2} (1 + \tan^2 \alpha)$.	
	The projectile reaches a maximum height, and on the downward motion the projectile hits the target 20 metres above ground level at an angle of 27° to the horizontal. Find the horizontal distance R that the target is from the Origin O (to nearest cm), if the angle of projection α is 45° and the acceleration due to gravity g is $10m/s^2$.	
c)	The sequences $\{1, 3, 5, \dots, p\}$ and $\{1, 3, 5, \dots, q\}$ contain the integer values of p and q respectively.	2
•	Find the value of $p+q$ if:	

End of Exam

,					
				•	
	T A COLOR				

Ext1. 2009. Juse Soln. $= / \chi \frac{3}{\lambda \chi /}$ M1 = 1 M2 - 3 6 () Tappo = / M, M2 $= \left| \frac{10-9}{15+6} \right|$ A(3,-2) x B(-1,7) $\beta \le \left(\frac{-3-15}{3-5}, \frac{21+10}{3-5}\right)$ (d) (2x+3y) = 16x + 96xy + 216xy + 216xy + 216xy + 216xy + 216xy ?) $P(6H) = {}^{6}C_{6} \cdot \left(\frac{1}{2}\right)^{8}$ 7.12 =7+012 + 4.0012+ -= 7 + 01/2 1- tag

 $=7\frac{4}{33}$

 $\measuredangle(a)$ x=7 + 5 smat +6 cm3 t V = 15 Cb3t -18 Must ic = -45 shat -54 cost = -9 [5, sin3t + 6 cm3, 2] = -9 [7+5 pm3t + 6 cm3t -7] n = -9 [n-7] " = " (n - B) where n2 = 9 (E) Centre motion r=7m. Penin T = 21 A Vmax = Vi52/182 (b) = 3 \ 61 m/s 5 smat + 6 cmat = 1 cm (3x-1) = Rus 3 t cood + RSin 3 t sind のとよる共 R70 sud70 R = J52462 Tank = 5 (8) n=7+ V6/ W (3t - Tam (5)) 7+ 561

14= 7+ JG1 cas (3x-Tu (5)

$$\int \frac{2 dx}{x^2 + 16} = 2.1 \left[\tan^4 \frac{x}{4} \right]_0^4$$

$$= \frac{1}{2} \left[\tan^4 (1 - 0) \right]$$

$$= \frac{7}{8}$$

$$\text{Let } P(x) = x + 2x^2 - 15x - 36$$

$$P(1) = -48$$

$$P(u) = n + 2u^{2} - 15u - 36$$

$$P(1) = -48$$

$$P(-1) = -40$$

$$P(2) = -50$$

$$P(-2) = -6$$

$$P(3) = -36$$

$$P(-3) = -27 + 18 + 45 - 36$$

(,
$$n+3$$
 is a factor of $P(n)$
(, $P(n) = (n+3)(n^2 - n - 12)$
= $(n+3)(n+3)(n-4)$

$$(e^{x^{3}+2n^{2}-15x-36}=(n+3)^{2}(x-4)$$

(ii)

$$3 (c) \qquad v = 5 + e^{ix}$$

$$\frac{dn}{dx} = 5 + e^{ix}$$

$$\frac{dt}{dn} = \frac{1}{5 + e^{ix}}$$

$$= \frac{e^{ix}}{5e^{ix} + 1}$$

$$1 : t = \frac{1}{5} ln (5e^{ix} + 1) + C$$

$$8 ld + to no = P c = -\frac{1}{5} ln (6e^{ix} + 1)$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 : t = \frac{1}{5} ln (\frac{5e^{ix} + 1}{6})$$

$$1 :$$

4 (3) Area =
$$\int_{-1}^{2} \frac{1}{x} dx$$

= $\int_{-1}^{1} \int_{-1}^{1} dx$

= $\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} dx$

= $\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} dx$

= $\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1}$

$$T_{ij} = \begin{pmatrix} 13 \\ 10 \end{pmatrix} 2 \qquad .70$$

$$= 2288 \times 7^{10}$$

$$= \kappa T 6 n^{2} \kappa \quad d \int_{0}^{1} \kappa T 6 n^{2} \kappa \int_{0}^{1} \kappa T 6 n^{2} \kappa \int_{0}^{1} \kappa \int_{0}^{$$

₹(q).

(ii) LYVT + LYWT = 20°+20°
=180°

L-YVTW is a cyclic gradeslateral
(apposite angles are supplementary)-1

In DYTW and DYVN

LYTW = LYVN (Angles at the circumfenewe) - 1

LYWT = LYNV (Both nghtoughs)

LYWT = LYNV (Equiangular)

LYWN = LYWN (Equiangular)

LYYN = LYWN (corresponding angles of similar trangles are loval)

 $\frac{dx}{x\sqrt{1-x^2}} = \int_{y^2}^{-1} \frac{dy}{\sqrt{1-\frac{1}{y^2}}}$ $= \int \frac{1}{y^2} \cdot \frac{y}{\sqrt{y^2-1}} dy$ = $\int \frac{dy}{\sqrt{y^2-1}}$ = - hu (y+ \(\sqrt{y}^2-1 \) = -h(1 + (1 -1) = ln (x / 1+ VI-N2) + C. 5(b) Step 1. n=1 LHS=/ χ 45 = $\frac{(2n)'_1}{2^n n'}$ in LUSTRUS True Nº1 Lep & Assume statement is true n=k $1 \times 3 \times 5 \times \dots \times 24 - 1 = \frac{(2k)!}{3!k!}$ to pore statement is type neks, 1×3×5 -- × (2ki)(2ki) = [2(kxi)]! New $1\times3\times$ $\times(2h-1)(2h+1)=(2h)!$ (By assumption) = (2k)! (chas) (2kx2) 2 kl 2 k+2 = (2k+2)/ 2h.k! 2.(ks) = [2 (kx)]! 2 hx1. (hx1)! in It statement have ned it is also have neks i Sun statement is true no! it dos true n= 121=2, MERIIEZ and is on to all pasitive integer 4.

6(c) monthly interest = 1200 = 150 R = Repayment Amount every bush lost Month = 260000×(1+150) - R Amount owny end had month - (260000 (14 too) - R) (14 too) - R $= 260000 \cdot {\binom{15}{150}}^2 - R \left[1 + \frac{151}{150}\right].$ Amount away end sad Marth $- \left[260000 \left(\frac{151}{150}\right)^2 - R \left[1 + \frac{151}{150}\right]\right] \frac{151}{150}$ $=260000\left(\frac{151}{150}\right)^3-R\left(1+\frac{151}{150}+\left(\frac{151}{150}\right)^2\right)$ lust 300 months $0 = 260000 \left(\frac{151}{150}\right)^{300} - R \left(1 + \left(\frac{151}{150}\right)^2 + \left(\frac{151}{150}\right)^2 + \left(\frac{151}{150}\right)^2\right)$ $A\left(\frac{\left(\frac{151}{150}\right)^{300}}{150}\right) = 260000 \left(\frac{151}{150}\right)^{300}$ 150 -1 R = 260000, $\frac{1}{150}$. $\left(\frac{151}{150}\right)^{300}$ $\left(\frac{151}{150}\right)^{300}$ Repayment = \$ 2006.72 per month.

Whi.
$$T = A + Be$$
 $\frac{dT}{dt} = -kBe^{-kt}$
 $\frac{dT}{dt} = -kBe^{-kt}$

$$20 = R - \frac{10R^{2}}{V^{2}} - 0$$

$$-(1)$$

$$Nan \quad dy = Tan L - \frac{gK}{V^{2}} (1+Tai L)$$

$$-Tan 27^{0} = 1 - \frac{10R}{V^{2}} \cdot 2$$

$$\frac{R}{V^{2}} = \frac{1+Tan 27^{0}}{20} - (2) - (1)$$

$$R = \frac{20}{1-\frac{1}{2} - \frac{1}{2}Tan 27^{0}}$$

$$= \frac{40}{1-Tan 27^{0}}$$

$$Range \quad R = 81.55 \text{ m.}$$

$$(1+3+5+p) + (1+3+5+q) = 1+3+5+3$$

$$Nan \quad 2n-1=p$$

$$Number terms \quad n = \frac{py}{1-2} \cdot (\frac{p+1}{2}) \cdot (\frac{p+$$