School of Mathematics, Thapar Institute of Engineering & Technology, Patiala

UMA007 : Numerical Analysis
Assignment 2
Roots of Non-linear Equations-A

- 1. Use the bisection method to find solutions accurate to within 10^{-3} for the following problems.
 - (a) $x 2^{-x} = 0$ for 0 < x < 1.
 - (b) $e^x x^2 + 3x 2 = 0$ for $0 \le x \le 1$.
 - (c) $x + 1 2\sin(\pi x) = 0$. for $0 \le x \le 0.5$ and $0.5 \le x \le 1$.
- 2. Find an approximation to $\sqrt[3]{25}$ correct to within 10^{-3} using the bisection algorithm.
- 3. Find a bound for the number of iterations needed to achieve an approximation by bisection method with an accuracy 10^{-2} to the solution of $x^3 x 1 = 0$ lying in the interval [1, 2]. Find an approximation to the root with this degree of accuracy.
- **4.** Sketch the graphs of y = x and $y = 2\sin x$. Use the bisection method to find an approximation to within 10^{-3} to the first positive value of x with $x = 2\sin x$.
- **5.** The function defined by $f(x) = \sin(\pi x)$ has zeros at every integer. Show that when -1 < a < 0 and 2 < b < 3, the bisection method converges to
 - (a) 0, if a + b < 2
 - (b) 2, if a + b > 2
 - (c) 1, if a + b = 2.
- 6. For each of the following equations, use the given interval or determine an interval [a, b] on which fixed-point iteration will converge. Estimate the number of iterations necessary to obtain approximations accurate to within 10^{-2} , and perform the calculations.
 - (a) $x = \frac{5}{x^2} + 2$.
 - (b) $2 + \sin x x = 0$ in interval [2, 3].
 - (c) $3x^2 e^x = 0$.
- 7. Use the fixed-point iteration method to find smallest and second smallest positive roots of the equation $\tan x = 4x$, correct to 4 decimal places.
- 8. Show that $g(x) = \pi + 0.5 \sin(x/2)$ has a unique fixed point on $[0, 2\pi]$. Use fixed-point iteration to find an approximation to the fixed point that is accurate to within 10^{-2} . Also estimate the number of iterations required to achieve 10^{-2} accuracy, and compare this theoretical estimate to the number actually needed.
- **9.** Find all the zeros of $f(x) = x^2 + 10\cos x$ by using the fixed-point iteration method for an appropriate iteration function g. Find the zeros accurate to within 10^{-2} .
- 10. The iterates $x_{n+1} = 2 (1+c)x_n + cx_n^3$ will converge to $\alpha = 1$ for some values of constant c (provided that x_0 is sufficiently close to α). Find the values of c for which convergence occurs? For what values of c, if any, convergence is quadratic.
- 11. Let A be a given positive constant and $g(x) = 2x Ax^2$.
 - (a) Show that if fixed-point iteration converges to a nonzero limit, then the limit is $\alpha = 1/A$, so the inverse of a number can be found using only multiplications and subtractions.
 - (b) Find an interval about 1/A for which fixed-point iteration converges, provided x_0 is in that interval.

12. Consider the root-finding problem f(x) = 0 with root α , with $f'(x) \neq 0$. Convert it to the fixed-point problem

$$x = x + cf(x) = g(x)$$

with c a nonzero constant. How should c be chosen to ensure rapid convergence of

$$x_{n+1} = x_n + cf(x_n)$$

to α (provided that x_0 is chosen sufficiently close to α)? Apply your way of choosing c to the root-finding problem $x^3 - 5 = 0$.

13. Show that if A is any positive number, then the sequence defined by

$$x_n = \frac{1}{2}x_{n-1} + \frac{A}{2x_{n-1}}, \text{ for } n \ge 1,$$

converges to \sqrt{A} whenever $x_0 > 0$. What happens if $x_0 < 0$?

14. A particle starts at rest on a smooth inclined plane whose angle θ is changing at a constant rate

$$\frac{d\theta}{dt} = \omega < 0.$$

At the end of t seconds, the position of the object is given by

$$x(t) = -\frac{g}{2\omega^2} \left(\frac{e^{\omega t} - e^{-\omega t}}{2} - \sin \omega t \right).$$

Suppose the particle has moved 1.7 ft in 1 s. Find, to within 10^{-5} , the rate ω at which θ changes. Assume that g = 32.17 ft/s².

15. An object falling vertically through the air is subjected to viscous resistance as well as to the force of gravity. Assume that an object with mass m is dropped from a height s_0 and that the height of the object after t seconds is

$$s(t) = s_0 - \frac{mg}{k}t + \frac{m^2g}{k^2}(1 - e^{-kt/m}),$$

where g = 32.17 ft/s² and k represents the coefficient of air resistance in lb-s/ft. Suppose $s_0 = 300$ ft, m = 0.25 lb, and k = 0.1 lb-s/ft. Find, to within 0.01 s, the time it takes this quarter-pounder to hit the ground.