Таблица интегралов

1	$\int du = u + C, \int 0 \cdot du = C,$	10	$\int \frac{du}{\sqrt{1 - u^2}} = \arcsin u + C = -\arccos u + C$
2	$\int u^{\alpha} du = \frac{u^{\alpha+1}}{\alpha+1} + C, \alpha \neq -1$	11	$\int \frac{du}{1+u^2} = arctgu + C = -arcctgu + C$
3	$\int \frac{du}{u} = \ln u + C, u \neq 0$	12	$\int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + C, a \neq 0$
4	$\int a^u du = \frac{a^u}{\ln a} + C, 0 < a \neq 1$	13	$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \arctan \frac{u}{a} + C, a \neq 0$
5	$\int e^u du = e^u + C$	14	$\int \frac{du}{u^2 - a^2} = \frac{1}{2a} \ln \left \frac{u - a}{u + a} \right + C, a \neq 0$
6	$\int \sin u du = -\cos u + C$	15	$\int \frac{du}{\sqrt{u^2 \pm a^2}} = \ln \left u + \sqrt{u^2 \pm a^2} \right + C, a \neq 0$
7	$\int \cos u du = \sin u + C$	16	$\int shudu = chu + C$
8	$\int \frac{du}{\cos^2 u} = tgu + C$	17	$\int chudu = shu + C$
9	$\int \frac{du}{\sin^2 u} = -ctgu + C$	18	$\int \frac{du}{ch^2 u} = thu + C, \qquad \int \frac{du}{sh^2 u} = -cthu + C,$

Методы интегрирования

№ п/п	Вид интеграла	Метод интегрирования	
1	$\int F[\varphi(x)]\varphi'(x)dx$	Подстановка $\varphi(x) = t$	
2	$\int f(x)\varphi'(x)dx$	Интегрирование по частям $\int f(x) \varphi'(x) \ dx = f(x) \varphi(x) - \int \varphi(x) f'(x) \ dx$ Метод интегрирования по частям применяется, например, к интегралам вида: $\int p(x) f(x) \ dx$, где $p(x)$ - многочлен, а $f(x)$ одна из следующих функций: $e^{\alpha x}; \cos \alpha x; \sin \alpha x; \ln x; \arctan x \ u \text{ т.п.},$ а также к интегралам от произведений показательной функции на	
		косинус или синус.	
3	$\int f(x)\varphi^{(n)}(x)\mathrm{d}x$	Сводится к интегрированию произведения $f(x)\varphi^{(n)}(x)$ с помощью формулы кратного интегрирования по частям: $\int f(x)\varphi^{(n)}(x)\ dx = f(x)\varphi^{(n-1)}(x) - f'(x)\varphi^{(n-2)}(x) + f''(x)\varphi^{(n-3)}(x) - \dots + (-1)^{n-1}f^{(n-1)}(x)\varphi(x) + (-1)^n\int f^{(n)}(x)\varphi(x)\ dx$	

№ п/п	Вид интеграла	Метод интегрирования
4	$\int e^{\alpha x} p_n(x) dx$, где $p_n(x)$ - многочлен степени n	Применяя формулу кратного интегрирования по частям (см.п.3), получим: $\int e^{\alpha x} p_n(x) = e^{\alpha x} \left[\frac{p_n(x)}{\alpha} - \frac{p'_n(x)}{\alpha^2} + \frac{p''_n(x)}{\alpha^3} + (-1)^n \frac{p^{(n)}_n(x)}{\alpha^{n+1}} \right] + c$
5	$\int \frac{Mx + N}{x^2 + px + q} dx$ $p^2 - 4q < 0$	В знаменателе выделить полный квадрат. Подстановка $x + \frac{p}{2} = t$
6	$I_n = \int \frac{dx}{\left(x^2 + a^2\right)^n}$	Применение рекуррентной формулы $I_n = \frac{t}{2a^2(n-1)(t^2+a^2)^{n-1}} + \frac{2n-3}{2a^2(n-1)}I_{n-1}$
7	$\int \frac{P(x)}{Q(x)} dx, \text{ где } \frac{P(x)}{Q(x)} - \text{пра-}$ вильная рациональная дробь, $Q(x) = (x - x_1)^l (x - x_2)^m \dots$ $\dots (x^2 + px + q)^k \dots$	Подынтегральную дробь представляют в виде суммы простейших дробей $\frac{P(x)}{Q(x)} = \frac{A_1}{(x-x_1)} + \frac{A_2}{(x-x_1)^2} + \dots + \frac{A_l}{(x-x_1)^l} + \\ + \frac{B_1}{(x-x_2)} + \frac{B_2}{(x-x_2)^2} + \dots + \frac{B_m}{(x-x_2)^m} + \dots + \\ + \frac{M_1x+N_1}{x^2+px+q} + \frac{M_2x+N_2}{(x^2+px+q)^2} + \dots + \frac{M_kx+N_k}{(x^2+px+q)^k} + \dots$
8	$\int R(x, x^{m/n},, x^{r/s}) dx$, где R - рациональная функция своих аргументов	Приводится к интегралу от рациональной дроби подстановкой $x=t^k$, где k - общий знаменатель дробей $\frac{m}{n},\dots,\frac{r}{s}$
9	$\int R \left[x, \left(\frac{ax+b}{cx+d} \right)^{1/n} \right] dx$, где R - рациональная функция своих аргументов.	Сводится к интегралу от рациональной дроби подстановкой $\frac{ax+b}{cx+d}=t^n$
10	$\int \frac{Mx + N}{\sqrt{ax^2 + bx + c}} . dx$	Подстановкой $x+\frac{b}{2a}=t$ интеграл приводится к сумме двух интегралов: $\int \frac{Mx+N}{\sqrt{ax^2+bx+c}}dx = M_1 \int \frac{tdt}{\sqrt{at^2+m}} + N_1 \int \frac{dt}{\sqrt{at^2+m}}.$ Первый интеграл сводится к интегралу от степенной функции, а второй интеграл — табличный.
11	$\int R(x, \sqrt{ax^2 + bx + c}).dx,$ где R - рациональная функция от x и $\sqrt{ax^2 + bx + c}$	Приводится к интегралу от рациональной дроби подстановками Эйлера: $\sqrt{ax^2 + bx + c} = t \pm x\sqrt{a} \qquad (a > 0),$ $\sqrt{ax^2 + bx + c} = tx \pm x\sqrt{c} \qquad (a > 0),$ $\sqrt{ax^2 + bx + c} = t(x - x_1) \qquad (b^2 - 4ac \ge 0),$ где x_1 - корень трехчлена $ax^2 + bx + c$. Для вычисления указанного интеграла применяются также тригонометрические подстановки при $a < 0, b^2 - 4ac > 0$:

№ п/п	Вид интеграла	Метод интегрирования	
12	$\int \frac{P_n(x)}{\sqrt{ax^2+bx+c}} dx$, где $P_n(x)$	$x + \frac{b}{2a} = \begin{cases} \frac{\sqrt{b^2 - 4ac}}{2a} \sin t & x + \frac{b}{2a} = \begin{cases} \frac{\sqrt{b^2 - 4ac}}{2a} \sec t \\ \frac{\sqrt{b^2 - 4ac}}{2a} \csc t \end{cases} $ $x + \frac{b}{2a} = \begin{cases} \frac{\sqrt{b^2 - 4ac}}{2a} \cot t \\ \frac{\sqrt{b^2 - 4ac}}{2a} \cot t \end{cases}$ Записываем равенство	
13	$\sqrt{ax^2 + bx + c}$ - многочлен степени n	$\int \frac{P_n(x)dx}{\sqrt{ax^2+bx+c}} = Q_{n-1}(x)\sqrt{ax^2+bx+c} + k\int \frac{dx}{\sqrt{ax^2+bx+c}},$ где $Q_{n-1}(x)$ - многочлен степени $n-1$. Дифференцируя обе части этого равенства и умножая на $\sqrt{ax^2+bx+c}$, получим тождество $P_n(x) = Q'_{n-1}(x)(ax^2+bx+c) + \frac{1}{2}Q_{n-1}(x)(2ax+b) + k$, которое дает систему $n+1$ линейных уравнений для определения коэффициентов многочлена $Q_{n-1}(x)$ и множителя k . Интеграл же $\int \frac{dx}{\sqrt{ax^2+bx+c}}$ берется методом, указанным в п. $10 \ (M=0;N=1)$.	
	$\int \frac{dx}{(x-x_1)^m \sqrt{ax^2 + bx + c}}$	Этот интеграл приводится подстановкой $x - x_1 = \frac{1}{t}$ к интегралу, рассмотренному выше.	
14	$\int x^m (a + bx^n)^p dx$, где m, n, p - рациональные числа (интеграл от биномиального дифференциала).	рассмотренному выше. Интеграл от биномиального дифференциала выражается через элементарные функции только при выполнении одного из следующих условий: 1) если р - целое число, 2) если $\frac{m+1}{n}$ - целое число, 3) если $\frac{m+1}{n}$ + p - целое число, 1-й случай а) если р - целое положительное число, то нужно раскрыть скобки $(a+bx^n)^p$ по биному Ньютона и вычислить интегралы от степеней; б) если р - целое отрицательное число, то подстановка $x=t^k$, где k - общий знаменатель дробей m и n , приводит k интегралу от рациональной дроби: 2-й случай если $\frac{m+1}{n}$ - целое число, то применяется подстановка $a+bx^n=t^k$ где k - знаменатель дроби p 3-й случай	

№ п/п	Вид интеграла	Метод интегрирования
		если $\frac{m+1}{n} + p$ - целое число, то применяется подстановка $a + bx^n = x^n t^k$ где k - знаменатель дроби р
15	$\int R(\sin x, \cos x) dx$	Универсальная подстановка $tg \frac{x}{2} = t$. Если $R(-\sin x, \cos x) = -R(\sin x, \cos x)$, то подстановка $\cos x = t$. Если $R(\sin x, -\cos x) = -R(\sin x, \cos x)$, то подстановка $\sin x = t$. Если $R(-\sin x, -\cos x) = R(\sin x, \cos x)$, то подстановка $tgx = t$.
16	$\int R(shx, chx)dx$	Применяется подстановка $th \frac{x}{2} = t$. При этом $shx = \frac{2t}{1-t^2}; chx = \frac{1+t^2}{1-t^2}; dx = \frac{2dt}{1-t^2}.$
17	$\int \sin ax \sin bx dx$ $\int \sin ax \cos bx dx$ $\int \cos ax \cos bx dx$	Необходимо преобразовать произведение тригонометрических функций в сумму или разность, пользуясь одной из следующих формул: $\sin ax \sin bx = \frac{1}{2} \left[\cos(a-b)x - \cos(a+b)x \right]$ $\cos ax \cos bx = \frac{1}{2} \left[\cos(a-b)x + \cos(a+b)x \right]$ $\sin ax \cos bx = \frac{1}{2} \left[\sin(a-b)x + \sin(a+b)x \right]$
18	$\int \sin^m ax \cos^n bx dx, \text{ где}$ m и n - целое число	Если m - нечетное положительное, то подстановка $\cos x = t$. Если n - нечетное положительное, то подстановка $\sin x = t$. Если $m+n$ -четное отрицательное, то подстановка $tgx = t$. Если m и ,, -четное неотрицательное, то применяют формулы: $\sin^2 x = \frac{1-\cos 2x}{2}; \cos^2 x = \frac{1+\cos 2x}{2}.$
19	$\int \sin^p ax \cos^q bx dx$ $(0 < x < \frac{\pi}{2}), p \text{ и } q \text{ - рацио-}$ нальные числа.	Подстановкой $\sin x = t$ приводится к интегралу от биноминального дифференциала $\int \sin^p ax \cos^q bx \ dx = \int t^p (1-t^2)^{\frac{q-1}{2}} \ dt \ (\text{см. п. 14}).$
20	$\int R(e^{ax}) \ dx$	Подстановкой $e^{ax} = t$ преобразуется в интеграл от рациональной функции.