Proprietà delle radici

La radice di un numero è l'operazione inversa all'elevamento a potenza, ovvero:

$$\sqrt[b]{a} = c$$
 $c^b = a$ $\sqrt[2]{9} = 3$ $3^2 = 9$

Dove a è il **radicando** e b è **l'indice** della radice.

	Teoria	Esempio
$\sqrt[b]{a \cdot c} = \sqrt[b]{a} \cdot \sqrt[b]{c}$	Il prodotto di due numeri sotto radice è uguale al prodotto della radice del primo numero per la radice del secondo numero	$\sqrt[2]{3 \cdot 2} = \sqrt[2]{3} \cdot \sqrt[2]{2}$
$\sqrt[b]{a:c} = \sqrt[b]{a}: \sqrt[b]{c}$	Il rapporto (divisione) di due numeri sotto radice è uguale alla divisione della radice del primo numero per la radice del secondo numero	$\sqrt[2]{3:2} = \sqrt[2]{3}:\sqrt[2]{2}$
$(\sqrt[b]{a})^{\mathbf{c}} = \sqrt[b]{a^c}$	Una radice elevata ad un esponente è uguale al radicando elevato all'esponente	$(\sqrt[2]{3})^4 = \sqrt[2]{3^4}$
$\sqrt[c]{\sqrt[b]{a}} = \sqrt[c.b]{a}$	La radice di una radice è uguale alla radice con esponente il prodotto dei due esponenti	$\sqrt[2]{\sqrt[3]{4}} = \sqrt[2.3]{4} = \sqrt[6]{4}$
$a \cdot \sqrt[b]{c} = \sqrt[b]{a^b \cdot c}$	Per portare all'interno di una radice un numero che moltiplica la radice stessa, il numero prende come esponente l'indice della radice	$2 \cdot \sqrt[3]{4} = \sqrt[3]{2^3 \cdot 4}$

Dopo che avremo affrontato i **numeri relativi** torneremo sulle proprietà delle radici

Applica le proprietà delle radici per trovare il valore delle seguenti radici, semplifica il più possibile il radicando:

Esempio:

$$(\sqrt[2]{3})^4 = \sqrt[2]{3^4} = \sqrt[2]{3^2 \cdot 3^2} = \sqrt[2]{3^2} \cdot \sqrt[2]{3^2} = 3 \cdot 3 = 9$$

$$\sqrt[2]{34 \cdot 1} =$$

$$\sqrt[3]{5 \cdot 3} =$$

$$\sqrt[2]{8 \cdot 2} =$$

$$\sqrt[2]{3 \cdot 12} =$$

$$\sqrt[2]{21 \cdot 2} =$$

$$\sqrt[2]{3} \cdot \sqrt[2]{2} =$$

$$\sqrt[2]{5} \cdot \sqrt[2]{5} =$$

$$\sqrt[6]{8} \cdot \sqrt[6]{2} =$$

$$\sqrt[2]{7} \cdot \sqrt[2]{5} =$$

$$\sqrt[4]{4} \cdot \sqrt[4]{6} =$$

$$\sqrt[2]{9} \cdot \sqrt[2]{4} =$$

$$\sqrt[2]{16:36} =$$

$$\sqrt[2]{25:2} =$$

$$\sqrt[2]{9:4} =$$

$$\sqrt[5]{15:6} =$$

$$\sqrt[3]{27:8} =$$

$$\sqrt[2]{3:2} =$$

$$(\sqrt[2]{3})^4 =$$

$$(\sqrt[2]{2})^3 =$$

$$(\sqrt[3]{3})^4 =$$

$$(\sqrt[4]{4})^2 =$$

$$(\sqrt[2]{4})^9 =$$

$$\sqrt[2]{\sqrt[3]{4}} =$$

$$\sqrt[3]{\sqrt[2]{36}} =$$

$$\sqrt[4.2]{64} =$$

$$\sqrt[2\cdot3]{4} =$$

$$2 \cdot \sqrt[3]{4} =$$

$$3 \cdot \sqrt[2]{5} =$$

$$4 \cdot \sqrt[8]{2} =$$

$$3 \cdot \sqrt[4]{2} =$$

$$\sqrt[3]{2^3 \cdot 4} =$$

$$\sqrt[2]{3^2 \cdot 5} =$$

$$\sqrt[4]{8^4 \cdot 16} =$$

$$\sqrt[2]{9 \cdot 25} =$$