CUDA Programming

Gianluigi Zavattaro Dip. di Informatica—Scienza e Ingegneria (DISI) Università di Bologna

gianluigi.zavattaro@unibo.it

Slides realized using material provided by Moreno Marzolla

Copyright © 2014, 2017–2020 Moreno Marzolla, Università di Bologna, Italy http://www.moreno.marzolla.name/teaching/APAI/

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

Acknowledgments

- Most of the content of this presentation is from Mark Harris (Nvidia Corporation), "CUDA C/C++ BASICS"
 - http://developer.download.nvidia.com/compute/developertrainingmaterials/presentations/cuda_language/Introduction_to_CUDA_C.pptx
- Salvatore Orlando (Univ. Ca' Foscari di Venezia)
- Tim Mattson (Intel Labs)
 - "Hands-on Intro to CUDA for OpenCL programmers"
- CUDA C programming guide
 - http://docs.nvidia.com/cuda/cuda-c-programming-guide/
- Steve Rennich
 - "CUDA C/C++ Streams and Concurrency"

Introduction

- Manycore GPUs (Graphics Processing Units) are available in almost all current hardware platforms
- Originally, these processors have been designed for graphics applications
 - Because of the high potential of data parallelism in graphics applications, the design of GPU architectures relied on specialized processor cores
- In addition to graphics processing, GPUs can also be employed for general non-graphics applications
 - If data parallelism is large enough to fully utilize the high number of compute cores in a GPU
- The trend to use GPUs for general numerical applications has inspired GPU manufacturers, such as NVIDIA, to develop the programming environment CUDA and OpenCL

Terminology

- Host
 - The CPU and its memory (host memory)
- Device
 - The GPU and its memory (device memory)

Basic concepts

- CUDA separate a program into
 - a CPU program (the host program), which includes all I/O operations or operation for user interaction, and
 - a GPU program (the device program), which contains all computations to be executed on the GPU.
- The simplest case of interaction between host program and device program is implemented by
 - a host program that first copies data into the global memory of the GPU
 - the same host program calls device functions to initiate the processing on the GPU

Simple Processing Flow

Simple Processing Flow

Simple Processing Flow

Terminology

- A GPU comprises several multithreaded SIMD processors
 - SIMD processor = Streaming
 Multiprocessors (SMs) composed of many Streaming Processors (SPs)
- Each SIMD processors has several functional units (cores) that can execute the same SIMD instruction on different data
- The actual number of SIMD processors depends on the GPU model
 - For example, the NVIDIA GTX480
 GPU has up to 15 SMs

http://docs.nvidia.com/cuda/parallel-thread-execution/

Terminology

- A THREAD is the minimal unit of work.
 - All the threads execute the same KERNEL function
 - Threads are grouped in WARPs of 32 for scheduling, i.e. WARPs are the minimal units of scheduling
- A BLOCK is an independent subpiece of work that can be executed in any order by a SM
 - A 3D array of threads
 - Max no. of threads in a block: 512 threads (up to Version 2) and 1024 threads (since Version 3).
- A GRID is a piece of work that can be executed by the GPU
 - A 2D array of BLOCKs (3D since CUDA Version 3)

Automatic scalability

- Do we need to take care of the device computing power (number of SM)?
 - No, because the block scheduler can re-arrange blocks accordingly
 - A Grid contains a set of independent blocks, which can be executed in any order

http://docs.nvidia.com/cuda/cuda-c-programming-guide/

Summary

ThreadIdx.{x,y,z}

blockIdx.{x,y}

Compute Capability ≥ 2.x

blockIdx.{x,y,z}

Compute Capability < 2.x

CUDA thread scheduling

- A CUDA warp is a group of 32 CUDA threads that execute simultaneously
 - The hardware is most efficiently utilized when all threads in a warp execute instructions from the same program address
 - If threads in a warp diverge, then some execution pipelines go unused
 - If threads in a warp access aligned, contiguous blocks of DRAM, the accesses are coalesced into a single highbandwidth access
- A CUDA warp represents the minimum granularity of efficient SIMD execution

Single Instruction Multiple Data

- Individual threads of a warp start together at the same program address
- Each thread has its own program counter and register state
 - Each thread is free to branch and execute independently
 - Provides the MIMD abstraction branch behavior
- Each branch will be executed serially
 - Threads not following the current branch will be disabled

Hands-on introduction to CUDA programming

Hello World!

- Standard C that runs on the host
- The NVIDIA compiler (nvcc) can be used to compile programs, even with no device code

```
/* cuda-hello0.cu */
#include <stdio.h>
int main(void)
{
   printf("Hello World!\n");
   return 0;
}
```

```
$ nvcc hello_world.cu
$ ./a.out
Hello World!
```

```
__global__ void mykernel(void) { }
```

- CUDA/C keyword __global__ indicates a function that:
 - Runs on the device
 - Is called from host code
 - global functions must return void
- nvcc separates source code into host and device components
 - Device functions (e.g., mykernel()) are processed by the NVIDIA compiler
 - Host functions (e.g., main()) are processed by the standard host compiler (e.g., gcc)

```
mykernel<<<1,1>>>( );
```

- Triple angle brackets mark a call from host code to device code
 - Also called a "kernel launch"
 - We'll return to the parameters (1,1) in a moment
- That's all that is required to execute a function on the GPU!

```
__global__ void mykernel(void)
{
  int main(void) {
    mykernel<<<1,1>>>();
    printf("Hello World!\n");
    return 0;
}
```

```
$ nvcc cuda-hello1.cu
$ ./a.out
Hello World!
```

• mykernel() does nothing

Parallel Programming in CUDA/C

- But wait... GPU computing is about massive parallelism!
- We need a more interesting example...
- We'll start by adding two integers and build up to vector addition

Addition on the Device

A simple kernel to add two integers

```
__global__ void add(int *a, int *b, int *c)
{
    *c = *a + *b;
}
```

- As before __global__ is a CUDA C/C++ keyword meaning
 - add() will execute on the device
 - add() will be called from the host

Addition on the Device

Note the use of pointers for the variables

```
global void add(int *a, int *b, int *c)

{
    *c = *a + *b;
}
```

- add() runs on the device, so a, b and c must point to device memory
- We need to allocate memory on the GPU

Memory Management

- Host and device memory are separate entities
 - Device pointers point to GPU memory
 - May be passed to/from host code
 - May not be dereferenced in host code
 - Host pointers point to CPU memory
 - May be passed to/from device code
 - May not be dereferenced in device code

- cudaMalloc(), cudaFree(), cudaMemcpy()
- Similar to the C equivalents malloc(), free(), memcpy()

Addition on the Device: main()

```
/* cuda-vecadd0.cu */
int main(void) {
                         /* host copies of a, b, c */
   int a, b, c;
   int *d a, *d b, *d c;  /* device copies of a, b, c */
   const size t size = sizeof(int);
   /* Allocate space for device copies of a, b, c */
   cudaMalloc((void **)&d a, size);
   cudaMalloc((void **)&d b, size);
   cudaMalloc((void **)&d c, size);
   /* Setup input values */
   a = 2; b = 7;
   /* Copy inputs to device */
   cudaMemcpy(d a, &a, size, cudaMemcpyHostToDevice);
   cudaMemcpy(d b, &b, size, cudaMemcpyHostToDevice);
   /* Launch add() kernel on GPU */
   add <<<1,1>>> (d a, d b, d c);
   /* Copy result back to host */
   cudaMemcpy(&c, d c, size, cudaMemcpyDeviceToHost);
   /* Cleanup */
   cudaFree(d a); cudaFree(d b); cudaFree(d c);
   return 0;
```

Coordinating Host & Device

- Kernel launches are asynchronous
 - Control returns to the CPU immediately
- CPU needs to synchronize before consuming the results

cudaMemcpy()	Blocks the CPU until the copy is complete Copy begins when all preceding CUDA calls have completed
cudaMemcpyAsync()	Asynchronous, does not block the CPU
cudaDeviceSynchronize()	Blocks the CPU until all preceding CUDA calls have completed

Running in parallel

Moving to Parallel

- GPU computing is about massive parallelism
 - So how do we run code in parallel on the device?

```
add<<< N, 1 >>>();

add<<< N, 1 >>>();

# of blocks # of threads per block
```

 Instead of executing add() once, execute N times in parallel

Vector Addition on the Device

- With add() running in parallel we can do vector addition
- Terminology: each parallel invocation of add() is referred to as a block
 - The set of blocks is referred to as a grid
 - Each invocation can refer to its block index using blockIdx.x

```
global__ void add(int *a, int *b, int *c)
{
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

 By using blockIdx.x to index into the array, each block handles a different index

Vector Addition on the Device

On the device, each block can execute in parallel

```
__global__ void add(int *a, int *b, int *c)
{
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```



```
/* cuda-vecadd1.cu */
#define N 1024
int main(void) {
   int *d a, *d b, *d c; /* device copies of a, b, c */
   const size t size = N * sizeof(int);
   /* Alloc space for device copies of a, b, c */
   cudaMalloc((void **)&d a, size);
   cudaMalloc((void **)&d b, size);
   cudaMalloc((void **)&d c, size);
   /* Alloc space for host copies of a,b,c and setup input values */
   a = (int *)malloc(size); vec init(a, N);
   b = (int *) malloc(size); vec init(b, N);
   c = (int *) malloc(size);
   /* Copy inputs to device */
   cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice);
   cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice);
   /* Launch add() kernel on GPU with N blocks */
   add <<< N,1>>> (d a, d b, d c);
   /* Copy result back to host */
   cudaMemcpy(c, d c, size, cudaMemcpyDeviceToHost);
   /* Cleanup */
   free(a); free(b); free(c);
   cudaFree(d a); cudaFree(d b); cudaFree(d c);
   return 0;
© NVIDIA corp.
```

Review

- Difference between host and device
 - Host ↔ CPU, device ↔ GPU
- Using __global__ to declare a function as device code
 - Executes on the device
 - Called from the host
- Passing parameters from host code to a device function
- Basic device memory management
 - cudaMalloc()
 - cudaMemcpy()
 - cudaFree()
- Launching parallel kernels
 - Launch N copies of add() with add<<<N,1>>>(...);
 - Use blockIdx.x to access block index

Introducing threads

CUDA Threads

- Terminology: a block can be split into parallel threads
- Let's change add() to use parallel threads instead of parallel blocks

```
__global__ void add(int *a, int *b, int *c)
{
    c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
}
```

- We use threadIdx.x instead of blockIdx.x
- Need to make one change in main()...

CUDA Threads

```
__global__ void add(int *a, int *b, int *c)
{
    c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
}
```



```
/* cuda-vecadd2.cu */
#define N 1024
int main(void) {
   int *d a, *d b, *d c; /* device copies of a, b, c */
   const size t size = N * sizeof(int);
   /* Alloc space for device copies of a, b, c */
   cudaMalloc((void **)&d a, size);
   cudaMalloc((void **)&d b, size);
   cudaMalloc((void **)&d c, size);
   /* Alloc space for host copies of a,b,c and setup input values */
   a = (int *)malloc(size); random ints(a, N);
   b = (int *) malloc(size); random ints(b, N);
   c = (int *) malloc(size);
   /* Copy inputs to device */
   cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice);
   cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice);
   /* Launch add() kernel on GPU with N threads */
  add<<<1,N>>>(d a, d b, d c);
   /* Copy result back to host */
   cudaMemcpy(c, d c, size, cudaMemcpyDeviceToHost);
   /* Cleanup */
   free(a); free(b); free(c);
   cudaFree(d a); cudaFree(d b); cudaFree(d c);
   return 0;
© NVIDIA corp.
```

Combining threads and blocks

Combining Blocks and Threads

- We have seen parallel vector addition using:
 - Many blocks with one thread each
 - One block with many threads
- Let's adapt vector addition to use both blocks and threads
 - Why? We'll come to that...
- First let's discuss data indexing...

Combining Blocks and Threads

 We must somehow assign to each thread a different array element to operate on

Indexing Arrays with Blocks and Threads

- No longer as simple as using blockIdx.x or threadIdx.x alone
- Consider indexing an array with one element per thread, 8 threads per block

 With M threads per block a unique index for each thread is given by:

```
int index = threadIdx.x + blockIdx.x * M;
```

Indexing arrays: Example

Which thread will operate on the red element?

Array elements

Vector Addition with Blocks and Threads

 Use the built-in variable blockDim.x to get the number of threads per block

```
int index = threadIdx.x + blockIdx.x * blockDim.x;
```

 Combined version of add() to use parallel threads and parallel blocks:

```
__global__ void add(int *a, int *b, int *c) {
   int index = threadIdx.x + blockIdx.x * blockDim.x;
   c[index] = a[index] + b[index];
}
```

What changes need to be made in main()?

Addition with blocks and threads

```
#define N (2048*2048)
#define BLKDIM 1024

int main(void) {
    ...
    /* Launch add() kernel on GPU */
    add<<<N/BLKDIM, BLKDIM>>>(d_a, d_b, d_c);
    ...
}

Number of
    blocks

Number of threads
    per block
```

 However, the problem size might not be multiple of the block size...

Handling arbitrary vector sizes

Avoid accessing beyond the end of the array

```
__global__ void add(int *a, int *b, int *c, int n) {
   int index = threadIdx.x + blockIdx.x * blockDim.x;
   if (index < n) {
      c[index] = a[index] + b[index];
   }
}</pre>
```

Update kernel launch

```
add<<<(n + BLKDIM-1)/BLKDIM, BLKDIM>>>(d_a, d_b, d_c, N);
```

See cuda-vecadd3.cu

Review

- Launching parallel kernels
 - Launch ~N copies of add() with
 add<<<(N + BLKDIM-1)/BLKDIM, BLKDIM>>>(...);
 - Use blockIdx.x to access block index
 - Use threadIdx.x to access thread index within block
- Assign array elements to threads:

```
int index = threadIdx.x + blockIdx.x * blockDim.x;
```

Why Bother with Threads?

- Threads seem unnecessary
 - They add a level of complexity
 - What do we gain?
- Unlike parallel blocks, threads have mechanisms to:
 - Communicate
 - Synchronize
- To look closer, we need a new example...

Cooperating threads

1D Stencil

- Consider applying a stencil to a 1D array of elements
 - Each output element is the sum of input elements within a given radius
- If RADIUS is 3, then each output element is the sum of 7 input elements
 - The first and last RADIUS elements of the output array are not computed

Implementing Within a Block

- Each thread processes one output element
 - blockDim.x elements per block
- Input elements are read several times
 - With radius 3, each input element is read seven times
 - With radius R, each input element is read (2R+1) times

Sharing Data Between Threads

- Global memory accesses are likely to cause a bottleneck due to the limited memory bandwidth
- Within a block, threads can share data via shared memory
 - Extremely fast on-chip memory, user-managed
 - Think of it as a user-managed local cache
- Declare using <u>__shared</u>_, allocated per threadblock
- Data is not visible to threads in other blocks

CUDA memory model

- Cache data in shared memory
 - Read (blockDim.x + 2 × radius) input elements from global memory to shared memory
 - Compute blockDim.x output elements
 - Write blockDim.x output elements to global memory
 - Each block needs a halo of radius elements at each boundary

- Let us make a few simplifying assumptions
 - The array length is a multiple of the thread block size
 - The input (and output) array already includes an halo of 2*RADIUS elements
 - The halo is ignored for the output array

Idea

- Each thread block keeps a local cache of blockDim.x + 2*RADIUS elements
- Each thread copies one element from the global array to the local cache
- The first RADIUS threads also take care of of filling the halo


```
__shared__ int temp[BLKDIM + 2 * RADIUS];
const int gindex = threadIdx.x + blockIdx.x * blockDim.x + RADIUS;
const int lindex = threadIdx.x + RADIUS;
/* ... */
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {
    temp[lindex - RADIUS] = in[gindex - RADIUS];
    temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
}</pre>
```



```
__shared__ int temp[BLKDIM + 2 * RADIUS];
const int gindex = threadIdx.x + blockIdx.x * blockDim.x + RADIUS;
const int lindex = threadIdx.x + RADIUS;
/* ... */
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {
   temp[lindex - RADIUS] = in[gindex - RADIUS];
   temp[lindex + BLKDIM] = in[gindex + BLKDIM];
}</pre>
```



```
__shared__ int temp[BLKDIM + 2 * RADIUS];
const int gindex = threadIdx.x + blockIdx.x * blockDim.x + RADIUS;
const int lindex = threadIdx.x + RADIUS;
/* ... */
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {
    temp[lindex - RADIUS] = in[gindex - RADIUS];
    temp[lindex + BLKDIM] = in[gindex + BLKDIM];
}</pre>
```

57

Stencil kernel (does not work!)

```
Wrong!
global void stencil 1d(int *in, int *out) {
  shared int temp[BLKDIM + 2 * RADIUS];
 int gindex = threadIdx.x + blockIdx.x * blockDim.x + RADIUS;
 int lindex = threadIdx.x + RADIUS;
 int result = 0, offset;
 /* Read input elements into shared memory */
 temp[lindex] = in[gindex];
 if (threadIdx.x < RADIUS) {</pre>
    temp[lindex - RADIUS] = in[gindex - RADIUS];
    temp[lindex + blockDim.x] = in[qindex + blockDim.x];
 /* Apply the stencil */
 for (offset = -RADIUS ; offset <= RADIUS ; offset++) {</pre>
    result += temp[lindex + offset];
 /* Store the result */
 out[qindex] = result;
```

The problem

- All threads are not necessarily fully synchronized
- Suppose that thread (blockDim.x 1) reads the halo before thread 0 has fetched it
 - Data race!

The solution: syncthreads()

- Synchronizes all threads within a block
 - Used to prevent RAW / WAR / WAW hazards
- All threads must reach the barrier
 - In conditional code, the condition must be uniform across the block

Stencil kernel that works

```
global void stencil 1d(int *in, int *out) {
 shared int temp[BLKDIM + 2 * RADIUS];
 int gindex = threadIdx.x + blockIdx.x * blockDim.x + RADIUS;
 int lindex = threadIdx.x + RADIUS;
 int result = 0, offset;
 /* Read input elements into shared memory */
 temp[lindex] = in[gindex];
 if (threadIdx.x < RADIUS) {</pre>
    temp[lindex - RADIUS] = in[gindex - RADIUS];
    temp[lindex + blockDim.x] = in[qindex + blockDim.x];
  syncthreads();
 /* Apply the stencil */
 for (offset = -RADIUS ; offset <= RADIUS ; offset++) {</pre>
    result += temp[lindex + offset];
 /* Store the result */
 out[gindex] = result;
                                        See cuda-stencil1d-shared.c
```

Review

- Use <u>shared</u> to declare a variable/array in shared memory
 - Data is shared between threads in a block
 - Not visible to threads in other blocks
- Use syncthreads() as a barrier
 - Use to prevent data hazards

Managing the device

Timing CUDA kernels

- You can use the timing routines provided in hpc.h
- However, since kernel invocations are asynchronous, you must call cudaDeviceSynchronize() to wait the kernel to complete execution

The __device__ qualifier

- The __device__ qualifier defines functions that
 - execute on the device
 - can be called from device code only
- __device___ functions are inlined, so they can return a value

```
__device__ float cuda_fmaxf(float a, float b)
{
    return (a>b ? a : b);
}

__global__ void my_kernel( float *v, int n )
{
    int i = threadIdx.x + blockIdx.x * blockDim.x;
    if (i<n) {
        v[i] = cuda_fmaxf(1.0, v[i]);
    }
}</pre>
```

The host qualifier

- (Optional) denotes a function that
 - is executed on the host
 - can be called from host code only
 - default behavior when neither __global__ nor __device__ are specified
- You can use both the <u>host</u> and <u>device</u>
 qualifiers for the same function
 - The compiler produces two versions of the function: one for the GPU and one for the CPU

```
__host__ _device__ float my_fmaxf(float a, float b)
{
   return (a>b ? a : b);
}
```

Recap function declaration

	Executed on:	Only callable from:
device float deviceFunc()	Device	Device
host float hostFunc()	Host	Host
global void kernelFunc()	Device	Host

Reporting Errors

- All CUDA API calls return an error code (cudaError_t)
 - Error in the API call itself, OR
 - Error in an earlier asynchronous operation (e.g., kernel)
 - cudaSuccess means no error
- Get the error code for the last error:

```
cudaError t cudaGetLastError(void)
```

Get a string to describe the error:

```
char *cudaGetErrorString(cudaError_t)
printf("%s\n", cudaGetErrorString(cudaGetLastError()));
```

Reporting Errors

- Some useful macros defined in hpc.h
 - cudaSafeCall (Exp) execute Exp and checks for return status
 - Exp can be any CUDA function returning an error code, e.g., cudaMalloc, cudaMemcpy, ...
 - cudaCheckError() checks error code from last CUDA operation
 - Usually, a kernel call
 - cudaCheckError() calls cudaDeviceSynchronize()

```
cudaSafeCall( cudaMemcpy(d_a, h_a, size, cudaMemcpyHostToDevice) );
my_kernel<<< 1, 1 >>>(d_a); cudaCheckError();
cudaSafeCall( cudaMemcpy(h_a, d_a, size, cudaMemcpyDeviceToHost) );
```

Device management

- On a multi-GPU installation, you can select the device to use with the CUDA_VISIBLE_DEVICES environment variable
- CUDA_VISIBLE_DEVICES=0 ./cuda-stencil1d
 - select the first device
- CUDA VISIBLE DEVICES=1 ./cuda-stencil1d
 - select the second device

Limits on the lab machine

- Use the deviceQuery command
- The lab server has the following features

2.0
3005 MB
512
32
49152 B
65536 B
1024
(1024, 1024, 64)
(65535, 65535)

Higher Block Dimensions

Matrix-Matrix multiply

Multiply two n × n matrices p and q

```
void matmul( float *p, float* q, float *r, int n)
{    int i, j, k; float v;
    for (i=0; i<n; i++) {
        for (j=0; j<n; j++) {
            v = 0.0;
            for (k=0; k<n; k++) {
                v += p[i*n + k] * q[k*n + j];
            }
            r[i*n + j] = v;
        }
}</pre>
```


Matrix-Matrix multiply with thread blocks

- Decompose the result matrix r into square blocks
- Assign each block to a thread block
 - All threads of the thread block compute one element of the result matrix

Setting up the thread blocks

- The dim3 data type can be used to define a one-, two-, or three-dimensional "size" for a thread or grid block
 - $\dim 3 blk(3)$
 - defines a variable "dim" representing a 3x1x1 block
 - $-\dim 3$ blk(3, 4)
 - defines a variable "dim" representing a 3x4x1 block
 - $\dim 3 \ blk(3, 4, 7)$
 - defines a variable "dim" representing a 3x4x7 block

Launch 3 blocks, 16 threads per block (1D)

```
mykernel<<<3, 16>>>( );
```

The same

```
dim3 grid(3);
dim3 block(16);
mykernel<<<grid, block>>>();
```

• Launch (16 \times 4) blocks, (8 \times 8 \times 8) threads per block

```
dim3 grid(16, 4);  /* 2D */
dim3 block(8, 8, 8); /* 3D */
mykernel<<<grid, block>>>();
```

Kernel invocation

Setup and kernel invocation

```
/* cuda-matmul.cu */
#define BLKDIM 32

int main( void )
{
    ...
    dim3 block(BLKDIM, BLKDIM);
    dim3 grid((N+BLKDIM-1)/BLKDIM, (N+BLKDIM-1)/BLKDIM);
    ...
    /* Launch matmul() kernel on GPU */
    matmul<<<<gri>grid, block>>>(d_p, d_q, d_r, N);
    ...
}
```

The matmul kernel

 Each thread computes a single element r[i][j] of the result matrix r

```
const int i = blockIdx.y * blockDim.y + threadIdx.y;
const int j = blockIdx.x * blockDim.x + threadIdx.x;
```


The matmul kernel

The kernel function

```
global__ void matmul( float *p, float *q, float *r, int n )

const int i = blockIdx.y * blockDim.y + threadIdx.y;
const int j = blockIdx.x * blockDim.x + threadIdx.x;
int k;
float val = 0.0;
if ( i < n && j < n ) {
    for (k=0; k<n; k++) {
        val += p[i*n + k] * q[k*n + j];
    }
    r[i*n + j] = val;
}</pre>
```

Matrix-Matrix multiply

Multiply two n × n matrices p and q

```
void matmul( float *p, float* q, float *r, int n)
{    int i, j, k; float v;
    for (i=0; i<n; i++) {
        for (j=0; j<n; j++) {
            v = 0.0;
            for (k=0; k<n; k++) {
                v += p[i*n + k] * q[k*n + j];
            }
        r[i*n + j] = v;
        }
}</pre>
```


How many times are the elements of matrix *p* accessed?

How many times are the elements of matrix *q* accessed?

Reducing the memory pressure

CUDA Progra

- To reduce the number of read operations to global memory, we use __shared__ memory to cache the data needed by each block to compute its portion of the result
- This requires (2 × BLKDIM × n)
 elements, which might exceed the
 amount of shared memory allowed by
 the device

Reducing the memory pressure

- The solution: divide the (BLKDIM \times n) stripes of p and q into square blocks of (BLKDIM \times BLKDIM) elements each
- Operate on two blocks (for p and q) at a time

$$R = P1\times Q1 + P2\times Q2 + P3\times Q3$$

- For each *m*:
 - Copy blocks from p and q into shared memory local_p and local_q

- Copy blocks from p and q into shared memory local_p and local_q in parallel
- compute the matrix product local_p × local_q in parallel

- Copy blocks from p and q into shared memory local_p and local_q in parallel
- compute the matrix product local_p × local_q in parallel
- m ← m + BLKDIM

- Copy blocks from p and q into shared memory local_p and local_q in parallel
- compute the matrix product local_p × local_q in parallel
- -m ← m + BLKDIM

- Copy blocks from p and q into shared memory local_p and local_q in parallel
- compute the matrix product local_p × local_q in parallel
- -m ← m + BLKDIM

- Copy blocks from p and q into shared memory local_p and local_q in parallel
- compute the matrix product local_p × local_q in parallel
- -m ← m + BLKDIM

- Copy blocks from p and q into shared memory local_p and local_q in parallel
- compute the matrix product local_p × local_q in parallel
- -m ← m + BLKDIM

- Copy blocks from p and q into shared memory local_p and local_q in parallel
- compute the matrix product local_p × local_q in parallel
- -m ← m + BLKDIM

The new matmul kernel

```
global void matmulb( float *p, float *q, float *r, int n )
   shared float local p[BLKDIM] [BLKDIM];
    shared float local q[BLKDIM] [BLKDIM];
  const int bx = blockIdx.x; const int by = blockIdx.y;
  const int tx = threadIdx.x; const int ty = threadIdx.y;
  const int i = by * BLKDIM + ty;
  const int \dot{j} = bx * BLKDIM + tx;
  float v = 0.0; int m, k;
  for (m = 0; m < n; m += BLKDIM) {
      local p[ty][tx] = p[i*n + (m + tx)];
      local q[ty][tx] = q[(m + ty)*n + j];
        syncthreads();
      for (k = 0; k < BLKDIM; k++) {
          v += local p[ty][k] * local q[k][tx];
       syncthreads();
  r[i*n + j] = v;
                                Wait for all threads in the block
                                to complete before starting the
                                  next iteration (overwriting
                                    local p and local q)
```

92

The new matmul kernel

- The setup and kernel invocation remain the same
- See cuda-matmul.cu

Reduction on the GPU

Problem statement

- Given a nonempty array of floats or ints, compute the sum of all elements of the array
- Basic idea
 - Decompose the problem across thread blocks
 - Each thread block computes a partial reduction
 - The CPU completes the reduction

Solution #0 (naive)

Thread 0 of each block computes the local sum

Solution #0 kernel

```
#define BLKDIM 512
#define N OF BLOCKS 1024
#define N ((N OF BLOCKS) * (BLKDIM))
 device int d sums[N OF BLOCKS];
                                             Shared memory is not
int h sums[N OF BLOCKS];
                                              useful here; it will be
                                               useful in the other
 global void sum( int *a, int n )
                                              versions of this kernel
     shared int temp[BLKDIM];
    int lindex = threadIdx.x;
    int bindex = blockIdx.x;
    int gindex = threadIdx.x + blockIdx.x * blockDim.x;
    temp[lindex] = a[gindex];
    syncthreads();
    if ( 0 == lindex ) {
        int i, my sum = 0;
        for (i=0; i < blockDim.x; i++) {</pre>
            my sum += temp[i];
        d sums[bindex] = my sum;
```

Solution #1 (better)

All threads within each block cooperate to compute the local sum

Solution #1 kernel

```
This kernel only works if

    BLKDIM is a power of two;

global void sum( int *a, int n )

    n is a multiple of BLKDIM

   shared int temp[BLKDIM];
  const int lindex = threadIdx.x;
  const int bindex = blockIdx.x;
  const int gindex = threadIdx.x + blockIdx.x * blockDim.x;
  int bsize = blockDim.x / 2;
  temp[lindex] = a[gindex];
   syncthreads();
  while ( bsize > 0 ) {
      if ( lindex < bsize ) {</pre>
          temp[lindex] += temp[lindex + bsize];
      bsize = bsize / 2:
       syncthreads();
  if ( 0 == lindex ) {
      d sums[bindex] = temp[0];
                                                  See cuda-reduction1.cu
```

Memory Access Optimization Techniques for GPUs

CUDA memory model

Memory access patterns

- Each memory access moves 32 or 128 consecutive bytes
 - So, if a thread just needs a single float (4B), this results in 32B or 128B being moved
- The GPU can pack together (coalesce) memory accesses when consecutive threads access consecutive memory addresses
 - Examples follow

- Warp requests 32 aligned, consecutive 4-byte words
- Addresses fall within 1 cache-line
 - Warp needs 128 bytes
 - 128 bytes move across the bus on a miss
 - Bus utilization: 100%
 - Transactions: 1

- Warp requests 32 aligned, permuted 4-byte words
- Addresses fall within 1 cache-line
 - Warp needs 128 bytes
 - 128 bytes move across the bus on a miss
 - Bus utilization: 100%
 - Transactions: 1

- Warp requests 32 misaligned, consecutive 4-byte words
- Addresses fall within 2 cache-lines
 - Warp needs 128 bytes
 - 256 bytes move across the bus on misses
 - Bus utilization: 50%
 - Transactions: 2

- All threads in a warp request the same 4-byte word
- Addresses fall within a single cache-line
 - Warp needs 4 bytes
 - 128 bytes move across the bus on a miss
 - Bus utilization: 3.125%

- Warp requests 32 scattered 4-byte words
- Addresses fall within N cache-lines
 - Warp needs 128 bytes
 - $N \times 128$ bytes move across the bus on a miss
 - Bus utilization: 128 / ($N \times 128$)

See cuda-image-rotation.cu

See cuda-image-rotation.cu

Device memory

Shared memory

See cuda-image-rotation.cu

Device memory

Shared memory

Device memory

Device memory

Device memory

Device memory

T

T

T

T

O

Performance Evaluation

- We conventional concept of speedup can not be used
 - The program has little or no control over the number of CUDA cores used
 - The hardware multiplexes CUDA threads to CUDA cores
- We need different metrics, e.g.
 - Throughput: number of processed data items/seconds as a function of the input size
 - Speedup vs CPU implementation

Source: https://moderngpu.github.io/scan.html

CUDA Streams

- CUDA Streams are work queues to express concurrency between different tasks, e.g.
 - host to device memory copies
 - device to host memory copies
 - kernel execution
- To overlap different tasks just launch them in different streams
 - All tasks launched into the same stream are executed in order
 - Tasks launched into different streams might execute concurrently (depending on available resources)

Concurrency Example

Default Stream (stream #0)

- Stream used when no stream is specified
- Completely synchronous w.r.t. host and device
 - As if cudaDeviceSynchronize() inserted before and after every CUDA operation
- Exceptions asynchronous w.r.t. host
 - Kernel launches in the default stream
 - cudaMemcpy*Async
 - cudaMemset*Async
 - cudaMemcpy within the same device
 - H2D cudaMemcpy of 64kB or less

Requirements for concurrency

- CUDA operations must be in different, non-0, streams
- cudaMemcpyAsync with host from 'pinned' memory
 - Page-locked memory
 - Allocated using cudaMallocHost() or cudaHostAlloc()
- Sufficient resources must be available
 - cudaMemcpyAsyncs in different directions
 - Device resources (SMEM, registers, blocks, etc.)

```
cudaStream t stream1, stream2, stream3, stream4;
cudaStreamCreate ( &stream1) ;
                                          Allocate host
cudaMalloc ( &dev1, size );
                                         pinned memory
cudaMallocHost ( &host1, size );
cudaMemcpyAsync (dev1, host1, size, H2D, stream1);
kernel2 <<< grid, block, 0, stream2 >>> ( ..., dev2, ... ) ;
kernel3 <<< grid, block, 0, stream3 >>> ( ..., dev3, ... );
cudaMemcpyAsync (host4, dev4, size, D2H, stream4);
some CPU method ();
cudaStreamDestroy( &stream1 );
                                                 Potentially
                                                 overlapped
```

Synchronization

- Synchronize everything
 - cudaDeviceSynchronize()
 - Blocks host until all issued CUDA calls are complete
- Synchronize w.r.t. a specific stream
 - cudaStreamSynchronize(streamid)
 - Blocks host until all CUDA calls in streamid are complete