Memory-Based Collaborative Filtering

Weike Pan

College of Computer Science and Software Engineering Shenzhen University

Outline

- Introduction
- User-Based CF
- Item-Based CF
- 4 Hybrid CF
- Experiments
- Discussions
- Conclusion

Recommendation with Explicit Feedback

• We may represent users' explicit feedback in a *matrix* form:

- If we can estimate the missing values (denoted as "?") in the matrix, we can make recommendations for each user.
- It's a rating prediction problem.

Assumption and Idea

- "Wisdom of the crowd"
- Users with similar tastes in the past will have similar tastes in the future
 - User-based CF
- A user will like some similar items to those he liked before
 - Item-based CF

Some Questions

- Q1. How to calculate the similarity between two users or items?
 - A1. Similarity Measurement
- Q2. How to select some similar users or items?
 - A2. Neighborhood Selection
- Q3. How to predict the rating based on the information of similar users or items?
 - A3. Prediction Rule

Notations

- \mathcal{I}_u is a set of items rated by user u
- \mathcal{I}_w is a set of items rated by user w
- *U_i* is a set of users who rated item j

A1. Similarity Measurement

Pearson correlation coefficient (PCC) between user u and user w,

$$s_{wu} = \frac{\sum_{k \in \mathcal{I}_w \cap \mathcal{I}_u} (r_{uk} - \bar{r}_u) (r_{wk} - \bar{r}_w)}{\sqrt{\sum_{k \in \mathcal{I}_w \cap \mathcal{I}_u} (r_{uk} - \bar{r}_u)^2} \sqrt{\sum_{k \in \mathcal{I}_w \cap \mathcal{I}_u} (r_{wk} - \bar{r}_w)^2}}$$
(1)

Notes:

•
$$-1 \le s_{wu} \le 1$$

A2. Neighborhood Selection

- Similarity threshold
- Top-K most nearest neighbors
 - Step 1. Obtain the neighbors of user u where $s_{wu} \neq 0$, i.e., \mathcal{N}_u
 - In practice, we usually use a large \mathcal{N}_u as candidate users (instead of all the neighbors) due to the high space cost
 - Step 2. Obtain the users who rated item j, i.e., U_i
 - Step 3. Obtain a set of top-K nearest neighbors of user u from $\mathcal{U}_j \cap \mathcal{N}_u$ (when estimating the rating of \hat{r}_{uj}), i.e., $\mathcal{N}_u^j \subseteq \mathcal{U}_j \cap \mathcal{N}_u$ with $|\mathcal{N}_u^j| = K$

A3. Prediction Rule

Predicted rating of user u on item j,

$$\hat{r}_{uj} = \bar{r}_u + \frac{\sum_{w \in \mathcal{N}_u^j} s_{wu} (r_{wj} - \bar{r}_w)}{\sum_{w \in \mathcal{N}_u^j} s_{wu}}$$
(2)

Notes:

• sometimes, we will use the following prediction rule,

$$\hat{r}_{uj} = \bar{r}_u + \frac{\sum_{w \in \mathcal{N}_u^j} s_{wu} (r_{wj} - \bar{r}_w)}{\sum_{w \in \mathcal{N}_u^j} |s_{wu}|}$$

- the default value is \bar{r}_u if $\mathcal{N}_u^j = \emptyset$
- \mathcal{N}_u^j is dependent on both user u and item j

Bug!

- Step 1. Obtain the top-K nearest neighbors of user u, i.e., $\hat{\mathcal{N}}_u$ with $|\hat{\mathcal{N}}_u| = K$
- Step 2. Predict the rating of user *u* on item *j*,

$$\hat{r}_{uj} = \bar{r}_u + \frac{\sum_{w \in \mathcal{U}_j \cap \hat{\mathcal{N}}_u} s_{wu} (r_{wj} - \bar{r}_w)}{\sum_{w \in \mathcal{U}_j \cap \hat{\mathcal{N}}_u} s_{wu}}$$

Notes:

- We may have $|\mathcal{U}_i \cap \hat{\mathcal{N}}_u| < K$, and thus it is a bug
- Some references indeed use such a prediction rule (x)

Notations

- \mathcal{U}_k is a set of users who rated item k
- U_j is a set of users who rated item j
- \mathcal{I}_u is a set of items rated by user u

A1. Similarity Measurement

Adjusted Cosine similarity between item k and item j,

$$s_{kj} = \frac{\sum_{u \in \mathcal{U}_k \cap \mathcal{U}_j} (r_{uk} - \bar{r}_u)(r_{uj} - \bar{r}_u)}{\sqrt{\sum_{u \in \mathcal{U}_k \cap \mathcal{U}_j} (r_{uk} - \bar{r}_u)^2} \sqrt{\sum_{u \in \mathcal{U}_k \cap \mathcal{U}_j} (r_{uj} - \bar{r}_u)^2}}$$
(3)

Notes

- $-1 \le s_{kj} \le 1$
- Cosine similarity between item k and item j

$$s_{kj} = \frac{\sum_{u \in \mathcal{U}_k \cap \mathcal{U}_j} r_{uk} r_{uj}}{\sqrt{\sum_{u \in \mathcal{U}_k \cap \mathcal{U}_j} r_{uk}^2} \sqrt{\sum_{u \in \mathcal{U}_k \cap \mathcal{U}_j} r_{uj}^2}}$$

A2. Neighborhood Selection

- Similarity threshold
- Top-K most nearest neighbors
 - Step 1. Obtain the neighbors of item j where $s_{kj} \neq 0$, i.e., \mathcal{N}_j
 - In practice, we usually use a large N_i as candidate items (instead of all the neighbors) due to the high space cost
 - Step 2. Obtain the items rated by user u, i.e., \mathcal{I}_u
 - Step 3. Obtain a set of top-K nearest neighbors of item j from $\mathcal{I}_u \cap \mathcal{N}_j$ (when estimating the rating of \hat{r}_{uj}), i.e., $\mathcal{N}^u_j \subseteq \mathcal{I}_u \cap \mathcal{N}_j$ with $|\mathcal{N}^u_j| = K$
 - K is a parameter needs to be tuned, e.g., $K \in \{20, 30, 40, 50, 100\}$

A3. Prediction Rule

Predicted rating of user u on item j,

$$\hat{r}_{uj} = \frac{\sum_{k \in \mathcal{N}_j^u} s_{kj} r_{uk}}{\sum_{k \in \mathcal{N}_j^u} s_{kj}}$$
(4)

Notes:

- ullet the default value is $ar{r}_u$ if $\mathcal{N}_i^u=\emptyset$
- \mathcal{N}_{i}^{u} is dependent on both item j and user u

Bug!

- Step 1. Obtain the top-K nearest neighbors of item j, i.e., $\hat{\mathcal{N}}_j$ with $|\hat{\mathcal{N}}_i| = K$
- Step 2. Predict the rating of user *u* on item *j*,

$$\hat{r}_{uj} = \frac{\sum_{k \in \mathcal{I}_{u} \cap \hat{\mathcal{N}}_{j}} s_{kj} r_{uk}}{\sum_{k \in \mathcal{I}_{u} \cap \hat{\mathcal{N}}_{j}} s_{kj}}$$

Notes:

• We may have $|\mathcal{I}_u \cap \hat{\mathcal{N}}_j| < K$

Linear Combination of UCF and ICF

Predicted rating of user u on item j,

$$\hat{r}_{uj} = \lambda^{UCF} \hat{r}_{uj}^{UCF} + (1 - \lambda^{UCF}) \hat{r}_{uj}^{ICF}$$
(5)

where $0 \le \lambda^{UCF} \le 1$ is a tradeoff parameter.

Data Set

- We use the files u1.base and u1.test of MovieLens100K¹ as our training data and test data, respectively.
- user number: n = 943; item number: m = 1682.
- u1.base (training data): 80000 rating records, and the density (or sparsity) is 80000/943/1682 = 5.04%.
- u1.test (test data): 20000 rating records.

¹http://grouplens.org/datasets/

Evaluation Metrics

Mean Absolute Error (MAE)

$$extit{MAE} = \sum_{(u,i,r_{ui}) \in \mathcal{R}^{te}} |r_{ui} - \hat{r}_{ui}|/|\mathcal{R}^{te}|$$

Root Mean Square Error (RMSE)

$$\textit{RMSE} = \sqrt{\sum_{(u,i,r_{ui}) \in \mathcal{R}^{\mathsf{te}}} (r_{ui} - \hat{r}_{ui})^2 / |\mathcal{R}^{\mathsf{te}}|}$$

Performance: the smaller the better.

Implementation Details

- When we can not find K nearest neighbors, use as many neighbors as possible
- Post-processing for $\mathbb{G} = \{1, 2, 3, 4, 5\}$
 - if $\hat{r}_{ui} > 5$, set it as 5
 - if $\hat{r}_{ui} < 1$, set it as 1

Results

Table: Prediction performance of User-based CF, Item-base CF and Hybrid CF with K = 50, $\lambda^{UCF} = 0.5$ on MovieLens100K (u1.base, u1.test).

Method	RMSE	MAE
User-based CF	0.9554	0.7480
Item-based CF	0.9901	0.7801
Hybrid CF	0.9562	0.7538

Observation: Hybrid CF and user-based CF perform better than item-based CF on this data.

A1. Similarity Measurement

- When the number of co-rated items by user u and user w (i.e., $|\mathcal{I}_u \cap \mathcal{I}_w|$) is small, the similarity may be not reliable
- Similar ratings on popular items is less reliable than similar ratings on unpopular ones
- Item similarities are supposed to be more stable than user similarities
- There are many other similarity measurement and related techniques such as normalization

A2. Neighborhood Selection

 We may combine the strategies of similarity threshold and top-K nearest neighbors

A3. Prediction Rule

• Can we design a more sophisticated prediction rule?

In A Big Picture

- Collaborative filtering
 - Memory-based collaborative filtering
 - User-based collaborative filtering
 - Item-based collaborative filtering
 - Model-based collaborative filtering
- Content-based recommendation
- ...

Conclusion

- Basic assumptions and ideas of memory-based methods, including user-based CF and item-based CF
- Three basic questions of memory-based methods
 - Similarity measurement
 - Neighborhood selection
 - Prediction rule
- Hybrid CF

Homework

- Implement user-based CF, item-based CF and hybrid CF, and study their performance on u2.base, u2.test of MovieLens100K
 - Check the performance using different values of K and λ^{UCF}
- Reading: chapter 4 of Recommender Systems Handbook

