Übungen zu Ortskurven

NT 2016

Eine Funktionsschar f_a wird beschrieben durch

$$f_a(x) = a \cdot x^3 - 3 \cdot x^2 + 3 \quad (x \in \mathbb{R}; a \in \mathbb{R}, a \neq 0).$$

Berechnen Sie eine Gleichung der Ortskurve, auf der alle Wendepunkte der Graphen der Funktionsschar f_a liegen.

ET 2012

Für jedes p $(p \in \mathbb{R})$ ist eine Funktion f_p mit $f_p(x) = x^2 - p \cdot x - 2$ $(x \in \mathbb{R})$ gegeben. Für jeden Wert für p besitzt der Graph von fp genau einen lokalen Extrempunkt. Alle diese Extrempunkte liegen auf dem Graphen einer Funktion g.

Ermitteln Sie eine Gleichung der Funktion g.

ET 2013

Für jeden Wert für t $(t \in \mathbb{R}, t > 0)$ ist die Funktion f_t mit $f_t(x) = \frac{1}{3} \cdot x^3 - t \cdot x^2$ $(x \in \mathbb{R})$ gegeben.

Alle lokalen Minimumpunkte der Graphen der Funktionen ft liegen auf dem Graphen einer Funktion h.

Ermitteln Sie eine Gleichung der Funktion h.

NT 2012

Für jeden Wert von k $(k \in R, k > 0)$ ist die Funktion f_k gegeben mit

$$f_k(x) = \frac{1}{3} \cdot x^3 - k^2 \cdot x + k^3 \quad (x \in R).$$

Die lokalen Minimumpunkte aller Funktionen f_k liegen auf dem Graphen einer Funktion g. Ermitteln Sie eine Gleichung der Funktion g.

NT 2014

Für jeden reellen Wert a ist eine Funktion f_a gegeben mit $f_a(x) = x^2 - 2 \cdot a \cdot x + 9$ $(x \in R)$. Bestimmen Sie eine Gleichung der Ortskurve der lokalen Minimumpunkte aller Graphen der Funktionen fa.

NT 2015

Für jeden Wert von k $(k \in R)$ ist die Funktion f_k gegeben mit $f_k(x) = -\frac{1}{2} \cdot x^2 + k \cdot x + k$ $(x \in R)$. Ermitteln Sie eine Gleichung der Ortskurve, die alle lokalen Extrempunkte des Graphen von fk enthält.