Computación cuántica I

Tarea 01

Salvador E. Venegas-Andraca Héctor Mejía-Díaz

- 1. Sea el número complejo $z = 1 + i\sqrt{3}$.
 - (a) Escriba z en su forma polar $z = re^{i\theta}$.
 - (b) Calcule z^3 usando su forma exponencial.
 - (c) Represente gráficamente z en el plano complejo.
- 2. Sean los números complejos $z_1=2e^{i\frac{\pi}{4}}$ y $z_2=3e^{-i\frac{\pi}{6}}.$
 - (a) Escriba z_1 y z_2 en forma rectangular.
 - (b) Calcule $z_1 \cdot z_2$ en forma exponencial y luego conviértalo a forma rectangular.
 - (c) Verifique que el módulo del producto sea igual al producto de los módulos.
- 3. Sean los vectores $|\psi\rangle = \begin{pmatrix} 1 \\ i \end{pmatrix}$ y $|\phi\rangle = \begin{pmatrix} i \\ 1 \end{pmatrix}$, en la base canónica de \mathbb{C}^2 .
 - (a) Calcule $\langle \psi | \phi \rangle$.
 - (b) Verifique si los vectores están normalizados.
 - (c) ¿Son ortogonales? Justifique su respuesta.
- 4. Considere los vectores $|u\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ y $|v\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
 - (a) Calcule el producto externo $|u\rangle\langle v|$.
 - (b) Interprete el resultado como una matriz. ¿Qué efecto tendría este operador sobre un vector arbitrario $|\chi\rangle=\binom{a}{b}$?
- 5. Sea el operador $\hat{A} = |0\rangle \langle 1|$, donde

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad |\psi\rangle = \alpha |0\rangle + \beta |1\rangle.$$

- (a) Exprese $|\psi\rangle$ como un vector columna.
- (b) Calcule $\hat{A} | \psi \rangle$.
- (c) Interprete el resultado físicamente: ¿qué parte del estado $|\psi\rangle$ "sobrevive" después de aplicar \hat{A} ?