Disciplina: Matemática Computacional

Aula 2: Princípios de contagem

Apresentação

Nesta aula, veremos um tema da Matemática de grande relevância para o futuro profissional da Tecnologia: princípios de contagem. Assim, você revisará, estudará e aplicará operações fundamentais em estudos de caso aplicados. Dentre outros assuntos, você terá a oportunidade de estudar temas como: Princípio das Casas de Pombo; Princípio multiplicativo; Princípio aditivo; e Técnicas de contagem (permutação, combinação e arranjo).

Tais operações são muito importantes, não só para sua vida profissional, mas também para o seu dia a dia, em situações que vão desde a quantidade disponível de combinações de roupas no armário até a probabilidade de identificação de senhas de acesso a sistemas corporativos. Assim, é necessário conhecer os fundamentos destas operações e saber aplicá-las de modo conveniente nas diversas situações do cotidiano.

Objetivos

- Identificar e reconhecer a utilidade dos princípios da contagem: princípio das casas de pombo, princípio multiplicativo e princípio aditivo;
- Identificar e aplicar técnicas de contagem (permutação, arranjo e combinação) na resolução de problemas.

Princípios de contagem

É interessante perceber que os princípios de contagem mais importantes são extremamente simples. Mesmo assim, é fundamental dedicar atenção à compreensão deles, para que se possa entender como se dá sua relação com os problemas de ordem prática, que é o nosso real objetivo.

Deste modo, vamos abordar cada um destes conceitos.

O primeiro princípio a ser abordado é o *Princípio das Casas de Pombo* (ou *princípio das gavetas*).

Conforme exposto em Brochi (2016), em sua forma mais simples, este princípio declara que:

Se tivermos n + 1 pombos para serem colocados em n casas, então, pelo menos uma casa, deverá conter, pelo menos, dois pombos.

Dica

Considere que temos 7 pombos e 6 casas para acomodá-los.

Caso você tente distribuir de modo uniforme os pombos nestas casas, certamente uma casa terá, pelo menos, dois pombos, ok?

Fácil, não é? Onde está, então, a importância deste princípio?

O mais difícil reside na aplicação deste princípio!

Em particular, recomendamos que você preste bastante atenção em situações-problema deste tipo, pois o desafio reside em identificar corretamente qual elemento representa a "quantidade de pombos" e qual elemento representa a "quantidade de casas".

Exemplo

Em um depósito, há 8 caixas que contêm certo tipo de componente eletrônico. Sabese que, em cada uma delas, há, no máximo 5 peças com defeito.

Prove que há, no mínimo, duas caixas com a mesma quantidade de peças defeituosas.

Como resolver esta questão?

Observe a resolução do Exemplo 1 < galeria/aula2/docs/exemplo_1.pdf>.

Princípio multiplicativo e o princípio aditivo

Além do Princípio das Casas de Pombo, há dois outros princípios bastante simples, mas de grande utilidade prática – o **princípio multiplicativo e o princípio aditivo**.

Vamos às definições?

Princípio multiplicativo

Se um evento A_i pode ocorrer de m_i maneiras diferentes, então o número de maneiras de ocorrer os eventos A_1 , A_2 , ..., A_n de forma sucessiva é dado por m_1 x m_2 x ... x m_n .

Princípio aditivo

Considere os conjuntos A_1 , A_2 , ..., A_n dois a dois disjuntos.

Se a quantidade de elementos de cada um deles é dada, respectivamente, por $m_1, m_2, ..., m_n$, então a quantidade de elementos da união $A_1 \cup A_2 \cup ... \cup A_n$ é igual a $m_1 + m_2 + ... + m_n$.

Exemplo

Vamos ver estes dois novos princípios com exemplos?

Em um formulário eletrônico, os alunos de uma universidade preenchem alguns campos com informações pessoais, tais como: sexo (masculino/feminino), estado civil (casado/solteiro/separado judicialmente/viúvo/outros) e modalidade do curso (graduação presencial/EAD/flex).

Um analista acadêmico deseja agrupar os usuários que forneceram respostas exatamente iguais para esses três campos.

Sendo assim, indique:

- a) Quantos grupos, no máximo, podem ser formados?
- b) Quantos usuários, no mínimo, devem preencher esse formulário para que haja pelo menos dois com respostas iguais?
 - Observe a resolução do Exemplo 2 Princípio Multiplicativo < galeria/aula2/docs/exemplo_2.pdf>;

Exemplo

Considere, agora, um sistema de senhas em que o usuário pode escolher uma sequência numérica qualquer de quatro ou cinco dígitos, de 0 a 9.

Quantas senhas diferentes podem ser geradas, neste caso?

Observe a resolução do <u>Exemplo 3 - Princípio Aditivo <galeria/aula2/docs/exemplo_3.pdf></u>.

Os princípios estudados até aqui servem de fundamento para algumas das principais técnicas de contagem: a permutação, a combinação e o arranjo.

Vamos apresentar alguns exemplos ilustrativos do emprego de cada uma delas, como forma de introduzir as respectivas definições.

Exemplo

Suponha que um campeonato de Matemática apresenta, em sua rodada final, três competidoras: Juliana, Alice e Esther. Considerando que não há a possibilidade de empate, de quantas formas diferentes elas poderão ocupar as três primeiras posições no concurso?

• Observe a resolução do Exemplo 4 < galeria/aula 2/docs/exemplo_4.pdf>.

De maneira geral, se tivéssemos n competidoras, o raciocínio seria o mesmo, de sorte que a quantidade de formas diferentes seria dada por n. (n-1). (n-2). 2. 1 – expressão esta conhecida como **n fatorial** (representada por n!).

Este tipo de contagem é denominada de **permutação** e representada por P_n .

Logo, a definição de permutação descreve que:

A permutação de n elementos é dada por $P_n = 1 \times 2 \times 3 \times ... \times n = n!$

Exemplo

No exemplo anterior, os 3 elementos (Juliana, Alice e Esther) são diferentes. No entanto, há casos de permutação em que existem elementos iguais. Veja:

Apresente a quantidade de anagramas da palavra "AULA":

• Observe a resolução do Exemplo 5 < galeria/aula2/docs/exemplo_5.pdf>.

O caso do Exemplo 5 ilustra o conceito de permutação com repetição, definido a seguir:

A permutação de n elementos com $n_1,\,n_2,\,...,\,n_k$ repetições de elementos é dada por

$$P_n^{n_1,\,n_2,\,...\,n_{\mathrm{k}}}=rac{\mathrm{n!}}{n_1!\,n_2!\,...\,n_{\mathrm{k}}!}$$

Exemplo

Agora, vamos ver outro tipo bastante comum de problemas associados à contagem: determinar a quantidade de sequências diferentes que podemos escolher p elementos de um conjunto de tamanho n, em que p < n.

Vamos começar?

Um concurso de programação de computadores promovido pela universidade possui 6 equipes participantes. De quantas formas diferentes podem ser ocupadas as 3 primeiras posições do concurso?

Observe a resolução do <u>Exemplo 6 < galeria/aula2/docs/exemplo_6.pdf></u>.

Estas dicas ilustram a **definição de arranjo**, apresentada a seguir:

Um arranjo de n elementos tomados p a p, indicada por $A_{n,p}$, é dada por

$$\mathbf{A}_{n,p} = \frac{\mathbf{n}!}{(n-p)!}$$

O detalhe importante de um arranjo é perceber que a ordem de escolha dos elementos tomados faz toda a diferença no resultado final. No entanto, existem situações em que a ordem dos elementos não é relevante.

Exemplo

Um sorteio de 3 computadores promovido pela universidade possui 6 turmas participantes (numeradas de 1 a 6), sendo que cada turma sorteada recebe um computador. De quantas formas diferentes pode sair o resultado do sorteio?

• Observe a resolução do Exemplo 7 < galeria/aula2/docs/exemplo_7.pdf>.

Neste caso, vemos um exemplo da técnica de **combinação**, definida a seguir:

Uma combinação de n elementos tomados p a p, indicada por $C_{n,p}$, é dada por

$$C_{n,p} = \frac{n!}{p!(n-p)!}$$

Atividade

- 1. O antigo sistema de emplacamento de veículos no Brasil considerava uma sequência de 2 letras seguida de outra de 4 algarismos numéricos. Sem considerar nenhum tipo de restrição quanto à sequência formada, quantas placas diferentes podiam ser obtidas nesse sistema?
 - a) 6.760.000
 - b) 3.276.000
 - c) 3.407.000
 - d) 6.500.000
 - e) Nenhuma das alternativas anteriores

2. Um professor de matemática comprou dois livros para premiar dois alunos de uma classe de 30 alunos. Como são dois livros diferentes, de quantos modos distintos pode ocorrer a premiação?
a) 870
b) 435
c) 1.740
d) 900
e) 600
3. Um professor de matemática comprou dois livros para premiar dois alunos de uma classe de 30 alunos.
Como são dois exemplares de um mesmo livro, de quantos modos distintos pode ocorrer a premiação?
a) 870
b) 435
c) 1.740
d) 900
e) 600
 4. Um sistema computacional possui 4 unidades de entrada/saída e 3 processadores. Qualquer uma das unidades de entrada/saída pode ser conectada a qualquer um dos processadores. De quantas formas diferentes podem ser feitas tais conexões? a) 5 b) 4 c) 6 d) 12 e) 16
5. Em uma escola, há 5 professores de Física e 4 de Matemática. Uma comissão de quatro membros deve ser formada com esses professores e a única condição imposta é que, pelo menos, um dos membros seja professor de Matemática.
esses professores e a unica condição imposta e que, pelo menos, um dos membros seja professor de Maternatica.
a) 3024
b) 3019
c) 126
d) 121
e) Nenhuma das alternativas anteriores
Referências
BROCHI, A. L. C. Matemática aplicada à Computação . Rio de Janeiro: SESES, 2016.

Próxima aula

- Relações;Pares ordenados;
- Relações binárias, propriedades e fechos;
- Ordens parciais;
- Relações de equivalência.

Explore mais

Assista aos seguintes vídeos:

- Princípio Fundamental da Contagem Parte I < https://www.youtube.com/watch?v=XyQ3020VdIE>;
- Princípio Fundamental da Contagem Parte II https://www.youtube.com/watch?v=zDINYWeKN9E;
- Princípio da casa dos pombos https://www.youtube.com/watch?v=UsrhjzxVaaY.