SVM Forest Fire

Classify the Size_Categorie using SVM

month month of the year: 'jan' to 'dec'

day day of the week: 'mon' to 'sun'

FFMC FFMC index from the FWI system: 18.7 to 96.20

DMC DMC index from the FWI system: 1.1 to 291.3

DC DC index from the FWI system: 7.9 to 860.6

ISI ISI index from the FWI system: 0.0 to 56.10

temp temperature in Celsius degrees: 2.2 to 33.30

RH relative humidity in %: 15.0 to 100

wind wind speed in km/h: 0.40 to 9.40

rain outside rain in mm/m2: 0.0 to 6.4

Size_Categorie the burned area of the forest (Small, Large)

Importing the libraries

```
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer, TfidfV
from sklearn.preprocessing import StandardScaler

from sklearn import svm
from sklearn.svm import SVC
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report

from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn.model_selection import train_test_split, cross_val_sco
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

Importing the Dataset

In [2]: forest=pd.read_csv("/Users/chethantumkur/Desktop/Data Science/ASSSI
forest

Out[2]:

	month	day	FFMC	DMC	DC	ISI	temp	RH	wind	rain	 monthfeb	monthja
	0 mar	fri	86.2	26.2	94.3	5.1	8.2	51	6.7	0.0	 0	(
	1 oct	tue	90.6	35.4	669.1	6.7	18.0	33	0.9	0.0	 0	1
	2 oct	sat	90.6	43.7	686.9	6.7	14.6	33	1.3	0.0	 0	1
	3 mar	fri	91.7	33.3	77.5	9.0	8.3	97	4.0	0.2	 0	1
	4 mar	sun	89.3	51.3	102.2	9.6	11.4	99	1.8	0.0	 0	(
	··										 	••
51	2 aug	sun	81.6	56.7	665.6	1.9	27.8	32	2.7	0.0	 0	(
51	3 aug	sun	81.6	56.7	665.6	1.9	21.9	71	5.8	0.0	 0	1
51	4 aug	sun	81.6	56.7	665.6	1.9	21.2	70	6.7	0.0	 0	1
51	5 aug	sat	94.4	146.0	614.7	11.3	25.6	42	4.0	0.0	 0	1
51	6 nov	tue	79.5	3.0	106.7	1.1	11.8	31	4.5	0.0	 0	(

517 rows × 31 columns

In [3]: forest.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 517 entries, 0 to 516
Data columns (total 31 columns):

#	Column		-Null Count	Dtype
0	month	517	non-null	object
1	day	517	non-null	object
2 3	FFMC	517	non-null	float64
	DMC	517	non-null	float64
4	DC	517	non-null	float64
5	ISI	517	non-null	float64
6	temp	517	non-null	float64
7	RH	517	non-null	int64
8	wind	517	non-null	float64
9	rain	517		float64
10	area	517	non-null	float64
11	dayfri	517	non-null	int64
12	daymon	517	non-null	int64
13	daysat	517	non-null	int64
14	daysun	517	non-null	int64
15	daythu	517	non-null	int64
16	daytue	517	non-null	int64
17	daywed	517	non-null	int64
18	monthapr	517	non-null	int64
19	monthaug	517	non-null	int64
20	monthdec	517	non-null	int64
21	monthfeb	517	non-null	int64
22	monthjan	517		int64
23	monthjul	517	non-null	int64
24	monthjun	517	non-null	int64
25	monthmar	517	non-null	int64
26	monthmay	517	non-null	int64
27	monthnov	517	non-null	int64
28	monthoct	517	non-null	int64
29	monthsep	517		int64
30	size_category	517		object
dtype	es: float64(8),	int	54(20), obje	ct(3)

memory usage: 125.3+ KB

In [4]: forest.describe()

\sim		_	ГΛ	т.
U	u⁻		14	

	FFMC	DMC	DC	ISI	temp	RH	wind
count	517.000000	517.000000	517.000000	517.000000	517.000000	517.000000	517.000000
mean	90.644681	110.872340	547.940039	9.021663	18.889168	44.288201	4.017602
std	5.520111	64.046482	248.066192	4.559477	5.806625	16.317469	1.791653
min	18.700000	1.100000	7.900000	0.000000	2.200000	15.000000	0.400000
25%	90.200000	68.600000	437.700000	6.500000	15.500000	33.000000	2.700000
50%	91.600000	108.300000	664.200000	8.400000	19.300000	42.000000	4.000000
75%	92.900000	142.400000	713.900000	10.800000	22.800000	53.000000	4.900000
max	96.200000	291.300000	860.600000	56.100000	33.300000	100.000000	9.400000

8 rows × 28 columns

In [5]: forest[forest.duplicated()].shape

Out[5]: (8, 31)

In [6]: forest[forest.duplicated()]

\sim				г.	_	
<i>1</i> 1		14	- 1	11	_	
.,	ш					Ι.

	month	day	FFMC	DMC	DC	ISI	temp	RH	wind	rain	 monthfeb	monthja
53	aug	wed	92.1	111.2	654.1	9.6	20.4	42	4.9	0.0	 0	
100	aug	sun	91.4	142.4	601.4	10.6	19.8	39	5.4	0.0	 0	
215	mar	sat	91.7	35.8	80.8	7.8	17.0	27	4.9	0.0	 0	
303	jun	fri	91.1	94.1	232.1	7.1	19.2	38	4.5	0.0	 0	
426	aug	thu	91.6	248.4	753.8	6.3	20.4	56	2.2	0.0	 0	
461	aug	sat	93.7	231.1	715.1	8.4	18.9	64	4.9	0.0	 0	
501	aug	tue	96.1	181.1	671.2	14.3	21.6	65	4.9	8.0	 0	
508	aug	fri	91.0	166.9	752.6	7.1	25.9	41	3.6	0.0	 0	

8 rows × 31 columns

In [7]: Forest = forest.drop_duplicates()

In [8]:	Fore	st												
Out[8]:		month	day	FFMC	DMC	DC	ISI	temp	RH	wind	rain		monthfeb	monthja
	0	mar	fri	86.2	26.2	94.3	5.1	8.2	51	6.7	0.0		0	(
	1	oct	tue	90.6	35.4	669.1	6.7	18.0	33	0.9	0.0		0	(
	2	oct	sat	90.6	43.7	686.9	6.7	14.6	33	1.3	0.0		0	(
	3	mar	fri	91.7	33.3	77.5	9.0	8.3	97	4.0	0.2		0	(
	4	mar	sun	89.3	51.3	102.2	9.6	11.4	99	1.8	0.0		0	(
	•••													•
	512	aug	sun	81.6	56.7	665.6	1.9	27.8	32	2.7	0.0		0	(
	513	aug	sun	81.6	56.7	665.6	1.9	21.9	71	5.8	0.0		0	(
	514	aug	sun	81.6	56.7		1.9	21.2	70	6.7	0.0		0	(
	515	aug	sat	94.4		614.7	11.3	25.6	42	4.0	0.0		0	(
	516	nov	tue	79.5	3.0	106.7	1.1	11.8	31	4.5	0.0		0	(
	509 r	ows × 3	1 col	umns										
[9]:	Fore	st['si	ize_d	catego	ry'].	value	_cou	nts()						
[9]:	smal larg Name		371 138 e_ca ⁻	tegory	, dty	pe: i	.nt64							
[10]:	pd.c	rossta	ab (Fo	rest['size	_cate	gory	'], F	ores	st['m	onth	'])		
[10]:		montl	h apı	r aug	dec f	eb jan	jul	jun m	ar r	nay n	ov o	ct	sep	
	size	_categor	у											
		large	e 2	2 43	8	6 0	9	3	11	1	0	4	51	
		sma	II 7	135	1	14 2	23	13	42	1	1 1	11	121	

scatter matrix to observe relationship between every colomn attribute.


```
In [12]: sns.countplot(x='size_category',data= Forest)
   plt.xlabel('Size_Category')
   plt.ylabel('count')
   plt.show()
   Forest['size_category'].value_counts()
```


Out[12]: small 371 large 138

Name: size_category, dtype: int64

In [13]: sns.scatterplot(Forest['temp'],Forest['RH'],hue=Forest['size_catego

In [14]: x= Forest.iloc[:,2:30]
y = Forest['size_category']

In [15]: x

\cap		Ηl	۲1	5	1
v	u	u	L	LJ	

	FFMC	DMC	DC	ISI	temp	RH	wind	rain	area	dayfri	 monthdec	monthf
0	86.2	26.2	94.3	5.1	8.2	51	6.7	0.0	0.00	1	 0	
1	90.6	35.4	669.1	6.7	18.0	33	0.9	0.0	0.00	0	 0	
2	90.6	43.7	686.9	6.7	14.6	33	1.3	0.0	0.00	0	 0	
3	91.7	33.3	77.5	9.0	8.3	97	4.0	0.2	0.00	1	 0	
4	89.3	51.3	102.2	9.6	11.4	99	1.8	0.0	0.00	0	 0	
	•••										 	
512	81.6	56.7	665.6	1.9	27.8	32	2.7	0.0	6.44	0	 0	
513	81.6	56.7	665.6	1.9	21.9	71	5.8	0.0	54.29	0	 0	
514	81.6	56.7	665.6	1.9	21.2	70	6.7	0.0	11.16	0	 0	
515	94.4	146.0	614.7	11.3	25.6	42	4.0	0.0	0.00	0	 0	
516	79.5	3.0	106.7	1.1	11.8	31	4.5	0.0	0.00	0	 0	

509 rows × 28 columns

Normalising the data as there is scale difference Splitting the dataset into training and test samples

In [19]: X_train

Out[19]:

	FFMC	DMC	DC	ISI	temp	RH	wind	rain	area
144	0.990968	0.340455	0.592706	0.235294	0.694534	0.200000	0.555556	0.0	0.000706
474	0.958710	0.353894	0.362144	0.192513	0.778135	0.235294	0.255556	0.0	0.009241
135	0.965161	0.476568	0.687581	0.361854	0.495177	0.435294	0.600000	0.0	0.000000
284	0.858065	0.013094	0.009265	0.112299	0.170418	0.364706	0.844444	0.0	0.022221
364	0.944516	0.381116	0.894101	0.115865	0.607717	0.235294	0.255556	0.0	0.005179
512	0.811613	0.191592	0.771315	0.033868	0.823151	0.200000	0.255556	0.0	0.005904
167	0.997419	0.434183	0.659787	0.294118	0.681672	0.211765	0.455556	0.0	0.002301
7	0.939355	0.497243	0.703999	0.190731	0.186495	0.835294	0.200000	0.0	0.000000
222	0.889032	0.176085	0.112466	0.089127	0.282958	0.364706	0.600000	0.0	0.033781
330	0.948387	0.348725	0.872053	0.149733	0.707395	0.141176	0.300000	0.0	0.006032

356 rows × 28 columns

In [20]: X_test

Out[20]:

	FFMC	DMC	DC	ISI	temp	RH	wind	rain	area
475	0.967742	0.415575	0.401431	0.320856	0.659164	0.294118	1.000000	0.0	0.002924
357	0.952258	0.416609	0.916852	0.181818	0.440514	0.470588	0.355556	0.0	0.000000
325	0.948387	0.348725	0.872053	0.149733	0.707395	0.141176	0.300000	0.0	0.000000
470	0.932903	0.046520	0.020758	0.219251	0.495177	0.141176	0.600000	0.0	0.000000
249	0.960000	0.538249	0.772605	0.240642	0.627010	0.294118	0.000000	0.0	0.002264
175	0.922581	0.330117	0.722763	0.158645	0.581994	0.282353	0.500000	0.0	0.004153
489	0.985806	0.483115	0.701184	0.315508	0.591640	0.505882	0.100000	0.0	0.000000
345	0.939355	0.444521	0.937258	0.133690	0.469453	0.329412	0.300000	0.0	0.005345
443	0.929032	0.274983	0.422657	0.299465	0.405145	0.741176	0.844444	0.0	0.000000
375	0.935484	0.321158	0.863727	0.149733	0.424437	0.494118	0.500000	0.0	0.036073

153 rows × 28 columns

```
In [21]: y_train
Out[21]: 144
                 small
         474
                 large
         135
                 small
         284
                 large
         364
                 small
         512
                 large
         167
                 small
                 small
         7
         222
                 large
         330
                 large
         Name: size_category, Length: 356, dtype: object
In [22]: y_test
Out[22]: 475
                 small
         357
                 small
         325
                 small
         470
                 small
         249
                 small
                 . . .
         175
                 small
         489
                 small
                 small
         345
         443
                 small
         375
                 large
         Name: size_category, Length: 153, dtype: object
In [23]: X_train.shape, y_train.shape, X_test.shape, y_test.shape
Out[23]: ((356, 28), (356,), (153, 28), (153,))
         GRID SEARCH
In [24]: #Grid search
         clf = SVC()
         param_grid = [{'kernel':['rbf'],'gamma':[50,5,10,0.5],'C':[15,14,13]
         gsv = GridSearchCV(clf,param_grid,cv=10)
         gsv.fit(X_train,y_train)
Out[24]: GridSearchCV(cv=10, estimator=SVC(),
                       param_grid=[{'C': [15, 14, 13, 12, 11, 10, 0.1, 0.001
         ],
                                     'gamma': [50, 5, 10, 0.5], 'kernel': ['r
         bf']}])
```

```
In [25]: gsv.best_params_ , gsv.best_score_
Out[25]: ({'C': 0.1, 'gamma': 50, 'kernel': 'rbf'}, 0.7162698412698413)
In [26]: clf = SVC(C= 15, gamma = 50)
         clf.fit(X_train , y_train)
         y_pred = clf.predict(X_test)
         acc = accuracy_score(y_test, y_pred) * 100
         print("Accuracy =", acc)
         confusion_matrix(y_test, y_pred)
         Accuracy = 74.50980392156863
Out[26]: array([[ 5, 32],
                [ 7, 109]])
In [27]: from sklearn.metrics import classification_report
         print(classification_report(y_test, y_pred))
                       precision
                                     recall f1-score
                                                        support
                                       0.14
                                                 0.20
                large
                            0.42
                                                             37
                            0.77
                small
                                       0.94
                                                 0.85
                                                            116
                                                 0.75
             accuracy
                                                            153
                            0.59
                                       0.54
                                                 0.53
                                                            153
            macro avq
                            0.69
                                       0.75
                                                 0.69
                                                            153
         weighted avg
```

KERNAL For Accuracy

KERNAL= LINEAR

```
In [28]: model_linear = SVC(kernel = "linear")
model_linear.fit(X_train,y_train)

Out[28]: SVC(kernel='linear')

In [29]: pred_test_linear = model_linear.predict(X_test)

In [35]: np.mean(pred_test_linear==y_test)

Out[35]: 0.7647058823529411
```

```
26/10/21, 4:25 PM
In [36]: | acc = accuracy_score(y_test, pred_test_linear) * 100
         print("Accuracy =", acc)
         confusion_matrix(y_test, pred_test_linear)
         Accuracy = 76.47058823529412
Out[36]: array([[
                    2, 35],
                    1, 115]])
         KERNAL= POLYNOMIAL
In [37]: model poly = SVC(kernel = "poly")
         model_poly.fit(X_train,y_train)
Out[37]: SVC(kernel='poly')
In [38]: | pred_test_poly = model_poly.predict(X_test)
In [39]: | np.mean(pred_test_poly==y_test)
Out[39]: 0.7581699346405228
         KERNAL= Radial Basis Function
In [40]: model rbf = SVC(kernel = "rbf")
         model rbf.fit(X train,y train)
```

```
Out [40]: SVC()
In [41]: pred_test_rbf = model_rbf.predict(X_test)
In [42]: np.mean(pred_test_rbf==y_test) #Accuracy = 75.81%
Out [42]: 0.7581699346405228
```

KERNAL= Sigmoid

```
In [43]: #'sigmoid'
         model_sig = SVC(kernel = "sigmoid")
         model_sig.fit(X_train,y_train)
Out[43]: SVC(kernel='sigmoid')
In [44]: pred_test_sig = model_rbf.predict(X_test)
```

In [45]:	<pre>np.mean(pred_test_sig==y_test)</pre>
Out[45]:	0.7581699346405228
	Conclusion:
	Kernal Linear is more Accurate.
Tn []•	