Advanced Machine Learning Homework 4

March 2020

VC Dimension of Neural Networks

We take 0/1 classification problem for data with d dimensional features as an example.

A neural network with one hidden layer can be written as

$$o = \mathbf{w}_2^T \sigma(\mathbf{W}_1 \mathbf{v} + \mathbf{b}_1) + b_2, \tag{1}$$

where \mathbf{v} is the d dimensional input feature of the data, while $\mathbf{W}_1, \mathbf{w}_2, \mathbf{b}_1, b_2$ are the parameters of the neural network model. \mathbf{W}_1 is a $n \times d$ matrix, \mathbf{w}_2 is a n dimensional vector, and \mathbf{b}_1 is a n dimensional bias vector while b_2 is the bias.

When o > 0 we classify the datum as label 1, while when $o \le 0$ we classify it as label -1. This forms a neural network, or multi-layer-perceptron, with one hidden layer containing n neurons.

In this problem, we focus on the pre-training case with frozen parameters that \mathbf{W}_1 and \mathbf{b}_1 must be decided with all \mathbf{v} without labels $(l_1,...l_i)$, while \mathbf{w}_2 and \mathbf{b}_2 can be decided with labels of examples $(l_1,...l_i)$.

Problems

- 1. Given n, d, calculate the VC dimension of the neural network for the linear activation case, i.e. $\sigma(x) = x$. Prove your result.
- 2. Given n, d, calculate the VC dimension of the neural network for the ReLU activation case, i.e. $\sigma(x) = \max(0, x)$. Prove your result.

Hint

- 1: Recall the definition of VC dimension.
- 2: Consider n > d and $n \le d$.
- 3: For problem 2, Start from d = 1.

Answer

Lemma 1: VC Dimension for Linear Classifiers. For linear classifiers, which $o = \mathbf{w}^T \mathbf{v} + b$, where \mathbf{w}, \mathbf{v} has dimension d, the VC-dimension for such linear classifier is d+1.

Proof. There exists a set of d+1 points, $\{(1,0,0...0),(0,1,0,...0),...,(0,...,0,1),(0,0,...,0)\}$. For any labeling of these points $\mathbf{l}=(l_1,...,l_{d+1})$, we take $w_i=l_i-l_{n+1},1\leq i\leq d$ and $b=l_{n+1}$, we can shatter these d+1 points, so the VC-dimension is at least d+1.

For any d+2 points, we add an 1 on top of its representation, $\mathbf{v}' = (1, v_1, ... v_d)$ and $\mathbf{w}' = (b, w_1, ... w_d)$, so $o = \mathbf{w}' \mathbf{v}'$ after this add. Hence we get d+2 points with (d+1)-dimensional representation, which must be linear dependent, i.e. $\mathbf{v}'_i = \sum_{j \neq i} a_j \mathbf{v}'_j$, we label l_i to be -1 and $l_j = sgn(a_j)$, therefore $o_i = \sum a_j o_j$. If all js are labelled correctly, $o_i > 0$, and contradicts to $l_i = -1$, so the model cannot shatter any d+2 points.

Answer to Problem 1:

For the linear activation case,

$$o = \mathbf{w}_2^T (\mathbf{W}_1 \mathbf{v} + \mathbf{b}_1) + b_2 = \mathbf{w}_2^T \mathbf{W}_1 \mathbf{v} + (\mathbf{w}_2^T \mathbf{b}_1 + b_2)$$
 (2)

This means the power of a linear activation neural network shall not exceed a linear classifier. $VC \leq d+1$

Also, given that **v** is first transformed into a n dimensional vector before layer 2, it's VC dimension shall not exceed n + 1. $VC \le n + 1$.

In order to scatter min(n+1,d+1) points, this can be easily achieved as we simply set $\mathbf{W}_1 = (\mathbf{I},0)$ or $(\mathbf{I},0)^T$, depending on whether n > d or $n \leq d$, and also set $\mathbf{b}_1 = 0$. Then we get back to a linear classifier with dimension min(n,d).

So VC = min(n + 1, d + 1).

Answer to Problem 2:

We start from d = 1. We set n + 1 points to be (1), ..., (n), (0), and $\mathbf{W}_1 = ((1, 1, ..., 1)), \mathbf{b}_1 = (-1, -2, ..., -n + 1, 0)$. This yields $\mathbf{W}_1 \mathbf{v} + \mathbf{b}_1$ to be

(1,0,...,0),(1,1,...,0),...,(1,1,...,1),(0,0,...,0), we simply take $\mathbf{w}_2=(l_1-l_{n+1},l_2-l_1-l_{n+1},l_3-(l_1+l_2)-l_{n+1},...,l_n-\sum_{i< n}l_i)-l_{n+1}$ and $b_1=l_{n+1},$ this means we can scatter n+1 points, $VC\geq n+1$.

Also, we have $VC \leq n+1$ from lemma 1, so VC = n+1.