RECEIVED

SEP 2 0 2003

TECH CENTER 1600/2200

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:

MICHAEL FISENHUT et al.

Application No. 09/781,080 Confirmation No. 9550

Filed: February 14, 2001

For OLIGONUCLEOTIDE

CONJUGATES

Group Art Unit: 1635

Examiner: James SCHULTZ

Atty. Docket No.

2502498-991110

(formerly 41443)

Customer No.

35928

35928

PATENT TRADEMARK OFFICE

(ondured)

DECLARATION UNDER 37 C.F.R. §1.132

Commissioner for Patents P.Q. Box 1450

Alexandria, Virginia 22313 1450

ATTN: Mall Stop AF

Sil

I, the undersigned co-inventor, do hereby state:

1. I am a co-inventor of claims 1 13 and 15-18 of the patent application

referenced hereinabove and of the subject matter described and claimed therein.

Cimy LaryADC/14003452.1 2502498-991110

DECLARATION UNDER 37 C.F.R. §1.132 Applicant: Michael EISENHUŤ et al. Application No. 09/781,980

2. We demonstrated that delivery of an oligonucleotide (antisense) conjugated to a sometostatin analog would improve the specific delivery of artisense moloculos to a scicotod target (i.e., targets that over-express surnatostatin receptors). Further, we were able to show that, through binding experiments using rat cortex membranes, that such conjugates blind to sometostatin receptors (SSTRs) with high affinity similar to that for unconjugated ochrootide, a somatostatin analog, as confirmed by the ICm values.

Moreover, we were able to demonstrate that delivery/uptake of conjugated antisense uligoriucleotide is significantly (statistically) greater than that of a nonconjugated alignnucleotide in tumors expressing SSTRs.

A comparison between IC50 values for conjugates as described in the aphilication versus those described for Nagy et al. is provided below. Further, a bar graph demonstrating tissue uptake of the conjugate showing unexpected accumulation of said conjugate in a tumor expressing SSTR (i.e., approximately 10 fold), which would not be expected from the data of Lu et al., is provided.

Materials and Methods

Binding essays:

DEGLARATION UNDER 37 C.F.R. §1.132 Applicant Michael EISENHUT et al. Application No. 09/781,980

For accurately determining the competitive displacement reaction, the concentration of the conjugates was determined by means of the millimolar absorption coefficient. In this regard, it was assumed that the ε_m is the ODN ε_m and the peptide ϵ_m : $\epsilon_m = \Sigma ((nA \times 15.4 + nC \times 7.3 + nG \times 11.7 + nT \times 8.8) \times 0.9) +$ nTip x 5.0 + nTyr x 1.4 + nPhe x 0.2) using this equation the following ϵ_m values were determined: 5 = 180.5; 6 = 212.7 and 7 - 180.5. For the binding assays, raticontex membranes were resuspended at a protoin concentration of 500 µg/ml in/incubation buffer (10 nM HEPES, pH 7.6, with 5% BSA Fraction V, MgCl₂ (10 mM) and bacitracin (20 µg/ml)). 100 µg of protein were used per assay. The cell membranes (200 µl) were mixed with 30 µl of incubation buffer with increasing concentrations of the competitor (conjugates 5-7) (10⁻⁵ to 10⁻¹⁰ mol/l). About 20,000 cpm 1251-Tyr2 octrectide (about 20 pm) in 70 µl incubation buffer were added. After 1 h at room temperature, the incubation was terminated by rapid filtration over "GF/B" glass tiber tilter (Whatman, Springfield Mill, USA) which had been moistened with 1% BSA-containing buffer. The filters were washed with icecold butter (10 mM Tris, 150 mM NaCl) and the bound radioactivity was determined by a gamma counter. The non-specific binding was determined to be about 10 - 20% of the total binding by measuring binding in the presence of expess non-labelled actreoxide (104 mol/). The specific binding was defined as

¹ Spo Figure 3 of the above referenced application for sequence information.

DECLARATION UNDER 37 C.F.R. §1.132 Applicant: Michael EISENHUT et al. Application No. 09/781,980

total binding minus non-specific binding. The results are shown as values of the specific binding determined from three experiments.

Tumor Analysis:

A cell suspension of the CA209848 tumor in a nutrient mixture was supportaneously administered into the nape of the neck of male Lewis rats. After apput 10 days, the tumors had grown to a volume of about 5 ml. The 126 Habeled compound was injected into the tail vain of the animals (groups of three animals). After 1 h, the animals were sacrificed and the activity concentration of the dissected organs was determined in a gamma counter.

Results

Binding data.

TABLE 1: Comparison of binding affinities between conjugate and free cairler (i.e., the somatostatin analog, octreotide).

Conjugate of Eisenhut et al.	IC ₅₀	Conjugates of Nagy et al. ³	IC ₅₀
octreotide	1.98	RC-121 (Control)	0.31
(Control) octreotate- conjugate 5	1.83 ± 0.17 nM	AN-162	2.96

FTyr-AGCGTGC:GCCATCCC-D-Pite-cyclo-[Cys-Ptie-u-Trp-Lys-Thr-Cys]-Thr-OH
Nagy et al., "Synthesis and Biological Evaluation of Cytotoxic Analogs of Somatostatin Containing Departible or its Intensely Potent Derivative, 2-pyrolinodoxolublein." Proc. Natl. Acad. Sci. USA (1988) 95:1794-1799, Table 1, at page 1795. RC-121 a D-Phe-cyclo-[Cya-Tyr-D-Trp-Lys-Val-Cys]-Trir NH₂; RC-160 "D-Phe-cyclo-[Cya-Tyr-D-Trp-Lys-Val-Cys]-Trir NH₂; RN-162 -DOX-14-O-git-RC-121; AN-163 = DOX-14-O-git-RC-121; AN-163 = DOX-14-O-git-RC-160; AN-258 = 2 pyrroling-DOX-14-0-git-RC-160.

octreotate- conjugate 5	2.52 ± 0.43 nM	AN-238	23.8
octreotate- conjugate 7	1,88 ± 0.47 nM	RC-160 (Control)	1.74
	-	AN-163	7.88
		AN-258	80.1

The data from Table 1 shows that the general trend for the conjugates of Nagy et al. is reduced binding affinity, while the conjugates of the present application show no significant difference in binding affinity compared to the somatostatin analog alone.

Below is a bar graph showing data for tumor bearing Lewis rat, given in percent of the injected dose per gram of tissue (%ID g-1) ± standard deviation 1 h after intravenous injection (average values from three or six animals, compounds were labeled with 1251).

Chry Cary\DC\140034>2.1 7502498-991110

DECLARATION UNDER 37 C.F.R. §1.132 Applicant Michael EISENHUT et al. Application No. 09/781,980

The bar graph demonstrates that conjugation of the peptide molety causes a strongly increased accumulation of the PNA oligomer in the tumor tissue (statistical significance in student's t-Test: p = 0.021).

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that the statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under §1001 of Title 18 of the United States Codo, and that such willful false statements may jeopardize the validity of the instant application or any patent issuing therefrom.

Further, Declarant sayeth not.

Sept. 22,2003

~ C +