COMP20005 Workshop Week 7

Preparation:

- open grok, jEdit, and minGW (or Terminal if yours is a Mac)
- download this slide set (ws7.pdf) from github.com/anhvir/c205 if you like
- build data.txt (using grok or jEdit) that has around 15 numbers like:

```
1 3 4 6 4 3 6 10 3 5 4 3 1 6 4 3 1
```

```
1 Discussion 1: Arrays: concept, representation, usage
```

- Do it together: Ex 7.4
 - → Conventional ways to work with arrays
 - → Redirection: reading data from a file (instead of from the keyboard)
 - → Selection Sort (don't confuse with Insertion Sort)
- **Group Work:** Exercise 7.1 + Exercise 3.06 revisited

Discussion 2: An approach to exercise 7.5

→ Using struct and typedef

Assignment 1: Q&A

Lab:

- do your assignment 1 and test the submission, or
- do exercises 7.1, 7.7 7.10

Discussion 1: Arrays

Situation:

We need to manipulate a series of number like 1, 4, 10, 8, 7, 9 Mathematically speaking, we are working with the sequence

$$X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}$$

where

$$x_1 = 1$$

 $x_2 = 4$
...
 $x_6 = 9$

With i=3 we can say that x_i has the value of 10. We even can:

```
set S to 0
for i from 1 to 6
add x_i to S
```

Quite convenient!

Can we do a similar thing in C?

Arrays

Situation:

We need to manipulate a series of number like 1, 4, 10, 8, 7, 9 Mathematically speaking, we are working with the sequence

Can we do a similar thing in C?

YES. Here, we will declare x as an array of 6 int elements.

```
intx[6] = \{1, 4, 10, 8, 7, 9\};
```

then: x

```
the first element of x is referred to as x[0] the second element of x is referred to as x[1] the i-th element of x is referred to as x[i], with 0 . . 5 Note: we don't have x[6], the last element is x[6-1]
```

arrays: declaration & use

	statements	variables in memory (<i>after</i> LHS statements)
1	<pre>int i, A[5]; /* equivalent to declaring 6 variables, each is of data type int */</pre>	i A[0] A[1] A[2] A[3] A[4]
2	A[0] = 10; i= A[0] * 2;	20 10
3	i= 2; A[i]= 20;	2 10 20
4	<pre>for (i=0; i<5; i++) { A[i]= i*i; }</pre>	5 0 1 4 9 16
5	<pre>for (i=0; i<3; i++) { scanf ("%d", &A[i]); } /* supposing that input from keyboard is 10 20 30 */</pre>	3 10 20 30 9 16

arrays...

	statements	variables in memory (<i>after</i> LHS statements)					
1	<pre>int i, sum=0, A[5]= {0,1,2,3,4};</pre>	i		A[0]			A[4]
2	for (i=0; i<5; i++) sum += A[i];						

arrays...

	statements	variables in memory (<i>after</i> LHS statements)						
1	int i, sum=0,	i	sum	A[0]	A [1]	A[2]	A [3]	A[4]
	$A[5] = \{0,1,2,3,4\};$		0	0	1	2	3	4
2	for (i=0; i<5; i++) sum += A[i];	5	10	0	1	2	3	4
3	<pre>for (i=0; i<4; i++) { A[i+1]= A[i]; }</pre>	4	10					

arrays...

	statements	variables in memory (<i>after</i> LHS statements)						
1	int i, sum=0,	i	sum	A[0]	A [1]	A[2]	A [3]	A[4]
	$A[5] = \{0,1,2,3,4\};$		0	0	1	2	3	4
2	for (i=0; i<5; i++) sum += A[i];	5	10	0	1	2	3	4
3	<pre>for (i=0; i<4; i++) { A[i+1]= A[i]; }</pre>	0	10	0	0	0	0	0

Notes: No operation with whole arrays is allowed. With declaration:

int
$$A[3]=\{10,20,30\}$$
, $B[3]$;

we cannot write:

Arrays: using in C


```
#define SIZE 5
...
int X[SIZE]= {1, 2, 3};
int n= 3; // n <= SIZE</pre>
```

In computer memory, an array is stored as a block of contiguous cells, one cell for one array's element.

Essentially, an array is defined by 4 objects:

- X: the array's name, which is actually a pointer to the memory block
- int: the data type of each element of the array
- SIZE: an int constant representing the array's size
- n: a buddy int variable, representing the number of elements that are currently employed

Arrays as function arguments

With a function prototype, say:

```
int change array(int A[], int n);
```

we should note that:

- the formal parameter A[] is an array of int, but no size is specified in "int A[]",
- instead, there is another parameter, n, which specifies the current size of A[],
- the array formal parameter A[] is an array, is a pointer, so it can imply both input and output of function change array.
- With the call "change array(B, 10)":
 - the action in formal parameter A[] is actually happen to B[].
- With the above function and the declarations:

```
int B[10]= {1,2,4,2,3,3,1,1,9,8};
int n= 10;
```

What do the following calls mean:

```
1) change_array(B, 10);
```

- 2) change array(&B[0], 10);
- 3) change array(B, 8);

Do Together: Exercise 7.4

Write a program that reads as many as 1,000 integer values, and counts the frequency of each value in the input:

```
./program
Enter as many as 1000 values, ^D to end
1 3 4 6 4 3 6 10 3 5 4 3 1 6 4 3 1
17 values read into array
Value Freq
    1    3
    3    5
    4    4
    5    1
    6    3
    10   1
```

How?

Exercise 7.4

Write a program that reads as many as 1,000 integer values, and counts the frequency of each value in the input:

So we need to:

- 1. Input value for an array
- 2. Sort an array in increasing order
- 3. Count and print out frequencies

We will do together steps 1 and 2, and will demonstrate how to read data from a file (instead of from the keyboard).

Please use jEdit and do together with Anh (e.g. you should at least follow Anh's speed in your own jEdit window). If your jEdit/gcc are not ready, you can employ grok, but it will be inconvenient.

Important note: First, build data file data.txt that contains around 15-20 small integers. For example:

1 3 4 6 4 3 6 10 3 5 4 3 1 6 4 3 1

Group Work: Exercises 7.1 and 3.06 revisited

Then, group work with:

- Exercise 7.1 and 3.06 from grok W7
- If have time, do an exercise from W7X (we will discuss 7.4 soon)

PLEASE: use jEdit and gcc if possible.

NOTES:

For 7.1: (Write function int all_zero(int A[], int n) that returns 1 or 0) You can save your time by simplifying the main function to

For 3.06: Start with copy the solution of 3.06 (from grok W3), then change it with the use of array,

Suppose that a set of "student number, mark" pairs are provided, one pair of numbers per line, with the lines in no particular order. Write a program that reads this data and outputs the same data, but ordered by student number. For example:

823678 66

765876 94

864876 48

785671 68

854565 89

On this input your program should output:

Enter as many as 1000 "studnum mark" pairs, ^D to end

5 pairs read into arrays

studnum mark

765876 94

785671 68

823678 66

854565 89

864876 48

Use typedef to define a new data type. For example:

```
typedef int integer;
integer fact(integer n) {
    ...
}
```

Use typedef to define a new data type.
Use struct to define a multi-component data type. For example:

```
typedef struct{
   int stud id;
   double mark;
} student t;
/* return the average mark of n students,
   the pairs (student_id, mark) are stored in array A[] */
double average mark(student t A[], int n) {
```

Discussion 2: examples of using typedef and struct

```
#include <stdio.h>
typedef struct{
   int stud id;
   double mark;
} student t;
int main(...) {
   student t s1= {211111, 99.5), s2;
   student t A[10];
   int i;
   s2 = s1;
   s2.stud id= 1000001;
   printf("id= %d mark=%f\n", s1.stud id, s1.mark);
   for (i=0; i<10; i++) {
      scanf("%d %d", &(A[i].stud id), &A[i].mark);
```

Suppose that a set of "student number, mark" pairs are provided, one pair of numbers per line, with the lines in no particular order. Write a program that reads this data and outputs the same data, but ordered by student number. For example:

823678 66 765876 94

We can start with, for example:

```
typedef struct{
   int stud_id;
   double mark;
} mark_t;

#define SIZE 30000
int main(...) {
   mark_t unimelb[SIZE];
   int n= 0;
   ...
```

And write functions to:

- input data to an array of mark_t
- sort an array of mark_t
- ouput data of an array of mark_t

Remember to a) create a data file, and b) use redirection for inputting data.

testing

LAB: do Assignment 1 OR exercises in W7 / W7X

Notes:

- grok is great for in-class practice, but
- use grok for the assignments might bring some unexpected headache!
- Use jEdit and gcc for assignments and serious programming projects!

Assignment 1: A reasonable way to start with minGW/Terminal

	command/action	explanation
1	cd ~	set your home directory as your current directory
2	mkdir ASS1	make a new directory, and of assignment files will be placed in that directory
3	cd ASS1	change current directory to ASS1
4	ls	list the content of the current directory, it should be empty
5	navigate to the assignmen1 FAQ page and download file ass1-skel.c (2 nd link of point 1), and all the files listed in point 7. You should download the files to the ASS1 directory.	
6	ls	now you should see the downloaded files
7	mv ass1-skel.c ass1.c	rename the skeleton file to your assignment
8	using jEdit to do your assignment	
9	gcc -Wall -o ass1 ass1.c	compile the program
10	./ass1 <wagons0.tsv>out0.txt</wagons0.tsv>	run program with redirection
11	diff wagon0-out-mac.txt out0.txt	check if your output is the same as the expected

Assignments: advices

- Be active in the subject's Discussion Forum!
- Visit LMS→Assignment 1 frequently!
- Read the specifications carefully.
- Read the marking rubric carefully and try to maximize your marks!
- Read the sample solution to 2015 (in LMS.Assignment1, point 6), focusing on main(). You can learn something from there.
- Check your program carefully, at least with all supplied data files. Make sure that your outputs are the same as the expected outputs.
- Make as many submissions as you want, only the last one (before deadline) counts:

Remember to wait after clicking "Submit" and Read the verify report to make sure that your program works well

START EARLY, START RIGHT NOW! SUBMIT EARLY, SUBMIT EVERY DAY!