LÝ THUYẾT TÍNH TOÁN

BÀI 13: Bài toán dừng

Phạm Xuân Cường Khoa Công nghệ thông tin cuongpx@tlu.edu.vn

Nội dung bài giảng

1. Bài toán dừng

2. Máy Turing vạn năng

3. Phương pháp chéo hóa

4. Ngôn ngữ đoán nhận được bởi Turing

Bài toán dừng

Bài toán dừng

- Một số bài toán có thể giải được bằng thuật toán, một số thì không thể
 - ightarrow Nghiên cứu giới hạn của máy tính

 $\mathsf{A}_{\mathit{TM}} = \{\; <\! \mathsf{M}, \mathsf{w}\!\!> \; | \; \mathsf{M} \; \mathsf{là} \; 1 \; \mathsf{máy} \; \mathsf{Turing} \; \mathsf{chấp} \; \mathsf{thuận} \; \mathsf{xâu} \; \mathsf{vào} \; \mathsf{w} \}$

Định lý 1

 A_{TM} là không quyết định được

Bài toán dừng

ullet Trước tiên, ta nhận xét là A_{TM} có thể đoán nhận được

Máy Turing U sau đoán nhận A_{TM} U = " Trên đầu vào <M, w> trong đó M là một TM và w là một xâu

- 1. Mô phỏng M trên xâu đầu vào w
- 2. Nếu M gặp một trạng thái chấp thuận \to U chấp thuận, ngược lại bác bỏ
- \rightarrow Nếu M lặp trên w thì U lặp trên <M, w>
- ightarrow A $_{TM}$ được gọi là bài toán dừng

Máy Turing vạn năng

Máy Turing vạn năng

• Ngôn ngữ vạn năng (**Universal Language**) U trên bộ chữ $\Sigma = \{0,1\}$ là

$$U = \{ \langle M, w \rangle \mid w \in L(M) \}$$

- U chứa tất cả các ngôn ngữ Turing đoán nhận được trên bộ chữ $\Sigma = \{0,1\}$
 - Giả sử A là một ngôn ngữ Turing đoán nhận được trên bộ chữ $\Sigma=\{0,1\}$, và M là máy Turing đoán nhận A

$$A = \{ w \in \{ 0, 1\}^* \mid \langle M, w \rangle \in U \}$$

- U là một ngôn ngữ Turing đoán nhận được

Phương pháp chéo hóa

Phương pháp chéo hóa

- Để chứng minh khả năng không quyết định của bài toán dừng
 → Sử dụng kỹ thuật kiểm tra chéo (Georg Cantor, 1873)
- Georg Cantor tập trung vào các bài toán về đo kích thước tập vô hạn
- Nếu có hai tập vô hạn, làm thế nào để biết hai tập có kích thước bằng nhau hay không?
- Georg Cantor đề xuất một giải pháp: Hai tập hữu hạn có cùng kích thước nếu có thể ghép cặp các phần tử thuôc tập này với các phần tử thuộc tập kia → Có thể so sánh mà không cần sắp xếp và đếm

Phương pháp chéo hóa

Từ ý tưởng trên ta có thể mở rộng với tập vô hạn

Định nghĩa 1

Giả sử có 2 tập A, B và một hàm fánh xạ A ightarrow B

- Quan hệ 1-1: $f(a) \neq f(b)$ nếu $a \neq b$
- Toàn ánh: \forall b \in B, \exists a \in A sao cho f(a) = b
- Tương đương: cả 2 quan hệ 1-1 và toàn ánh

Vô hạn đếm được và không đếm được

Georg Cantor: "Hai tập có cùng kích thước nếu và chỉ nếu tồn tại một quan hệ tương đương giữa chúng"

Định nghĩa 2

Tập A là **đếm được** nếu A là hữu hạn hoặc A có kích thước tương đương với N

Ví dụ:

- ullet Tập số tự nhiên lẻ $=\{1,\,3,\,5,\,\dots\} o V$ ô hạn đếm được
- ullet Tập phân số $=\{\;rac{m}{n}\;|\; \mathsf{m},\; \mathsf{n}\in \mathsf{N}\}
 ightarrow \mathsf{Vô}$ hạn đếm được
- ullet Tập số thực o Vô hạn không đếm được

Ví dụ vô hạn đếm được

- ullet Tập phân số $Q=\{rac{m}{n}\mid m,\,n\in N\}
 ightarrow Vô hạn đếm được$
- Tương đương: $\frac{1}{7}$ $\frac{4}{3}$ $\frac{22}{29}$ $\frac{1}{2}$ $\frac{17}{3}$ $\frac{4}{2}$...

1 2 3 4 5 6 ...

Chéo hóa

Ví dụ vô hạn không đếm được

Có các số thực sau:

```
\pi = 3.14159265...
\sqrt{2} = 1.41412135...
e = 2.718281828...
x = 5.67932043...
```

Định lý 1

Tập số thực R \rightarrow Vô hạn không đếm được

Chứng minh

Ý TƯỞNG: Chứng minh bằng phản chứng

- Giả sử tồn tại 1 quan hệ tương đương giữa R và N
- Chỉ ra rằng có 1 phần tử $X \in R$ mà không được ghép cặp với phần tử nào của N

Ví dụ vô hạn không đếm được

Định lý 2

Tập tất cả các chuỗi nhị phân vô hạn là vô hạn không đếm được

Chứng minh: Sử dụng phương pháp đường chéo

Ngôn ngữ không là Turing-recognizable

Định lý

Tập tất cả các máy Turing là vô hạn đếm được

Hệ quả

Tập tất cả ngôn ngữ Turing đoán nhận được là vô hạn đếm được

Định lý

Tập tất cả các ngôn ngữ là vô hạn không đếm được

Hệ quả

Tồn tại một số ngôn ngữ không là Turing-recognizable

Bài toán dừng là không quyết định được

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ là máy Turing đoán nhận w} \}$

Định lý

A_{TM} là không quyết định được

Chứng minh

- Giả sử A_{TM} là quyết định được
- ullet Gọi H là thuật toán (hay là máy Turing) quyết định A_{TM}

$$H(< M, w >) = \begin{cases} \mathsf{Chấp} \ \mathsf{thuận}, \, \mathsf{nếu} \ \mathsf{M} \ \mathsf{chấp} \ \mathsf{thuận} \ \mathsf{w} \\ \mathsf{Bác} \ \mathsf{bỏ}, \, \mathsf{nếu} \ \mathsf{M} \ \mathsf{bác} \ \mathsf{bỏ} \ \mathsf{w} \end{cases}$$

Xây dựng máy Turing D mà H đóng vai trò là thủ tục con

Bài toán dừng là không quyết định được

Chứng minh (tiếp)

• Thuật toán của máy Turing D như sau:

$$D(< M >) = \begin{cases} \text{Chấp thuận, nếu M bác bỏ} < M > \\ \text{Bác bỏ, nếu M chấp thuận} < M > \end{cases}$$

 \rightarrow Mâu thuẫn \rightarrow Không thể tồn tại D và H

Ngôn ngữ đoán nhận được bởi

Turing

Ngôn ngữ đoán nhận được bởi Turing

Thuật ngữ: **co-Turing-recognizable** là bù của một ngôn ngữ Turing-recognizable

Định lý

Một ngôn ngữ là quyết định được **khi và chỉ khi** nó vừa là Turing-recognizable và co-Turing-recognizable

Chứng minh

Nếu A là Turing-recognizable thì \overline{A} cũng là Turing-recognizable

Hệ quả

 $\overline{A_{TM}}$ không là Turing-recognizable

