Vishay Semiconductors

Optocoupler, Phototransistor Output, High Temperature

DESCRIPTION

The TCET110. consists of a phototransistor optically coupled to a gallium arsenide infrared-emitting diode in a 4-lead plastic dual inline package.

AGENCY APPROVALS

- UL1577, file no. E52744, double protection
- cUL tested, file A52744
- BSI: EN 60065:2002, EN 60950:2000
- DIN EN 60747-5-5 (VDE 0884)
- FIMKO

FEATURES

- High common mode rejection
- · Low temperature coefficient of CTR
- CTR offered in 9 groups
- · Reinforced isolation provides circuit protection against electrical shock (safety class II)

- Isolation materials according to UL 94 V-O
- Pollution degree 2 (DIN/VDE 0110/resp. IEC 60664)
- Climatic classification 55/100/21 (IEC 60068 part 1)
- Rated impulse voltage (transient overvoltage) $V_{IOTM} = 6 kV_{peak}$
- Isolation test voltage (partial discharge test voltage) $V_{pd} = 1.6 \text{ kV}$
- Rated isolation voltage (RMS includes DC) $V_{IOWM} = 600 V_{BMS}$
- Rated recurring peak voltage (repetitive) $V_{IORM} = 848 V_{peak}$
- Creepage current resistance according to VDE 0303/ IEC 60112 comparative tracking index: CTI ≥ 175
- Compliant to RoHS directive 2002/95/EC and in accordance to WEEE 2002/96/EC

APPLICATIONS

Circuits for safe protective separation against electrical shock according to safety class II (reinforced isolation):

- for appl. class I IV at mains voltage ≤ 300 V
- for appl. class I III at mains voltage ≤ 600 V according to DIN EN 60747-5-5 (VDE 0884), suitable for:
 - Switch-mode power supplies
 - Line receiver
 - Computer peripheral interface
 - Microprocessor system interface

ORDER INFORMATION					
PART	REMARKS				
TCET1100	CTR 50 % to 600 %, DIP-4				
TCET1101	CTR 40 % to 80 %, DIP-4				
TCET1102	CTR 63 % to 125 %, DIP-4				
TCET1103	CTR 100 % to 200 %, DIP-4				
TCET1104	CTR 160 % to 320 %, DIP-4				
TCET1105	CTR 50 % to 150 %, DIP-4				
TCET1106	CTR 100 % to 300 %, DIP-4				
TCET1107	CTR 80 % to 160 %, DIP-4				
TCET1108	CTR 130 % to 260 %, DIP-4				
TCET1109	CTR 200 % to 400 %, DIP-4				
TCET1100G	CTR 50 % to 600 %, DIP-4, 400 mil				
TCET1101G	CTR 40 % to 80 %, DIP-4, 400 mil				
TCET1102G	CTR 63 % to 125 %, DIP-4, 400 mil				
TCET1103G	CTR 100 % to 200 %, DIP-4, 400 mil				
TCET1104G	CTR 160 % to 320 %, DIP-4, 400 mil				
TCET1105G	CTR 50 % to 150 %, DIP-4, 400 mil				
TCET1106G	CTR 100 % to 300 %, DIP-4, 400 mil				
TCET1107G	CTR 80 % to 160 %, DIP-4, 400 mil				
TCET1108G	CTR 130 % to 260 %, DIP-4, 400 mil				
TCET1109G	CTR 200 % to 400 %, DIP-4, 400 mil				

Note

G = lead form 10.16 mm; G is not marked on the body

ABSOLUTE MAXIMUM RATINGS (1)								
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT				
INPUT			·					
Reverse voltage		V_{R}	6	V				
Forward current		I _F	60	mA				
Forward surge current	t _p ≤ 10 μs	I _{FSM}	1.5	Α				
OUTPUT								
Collector emitter voltage		V_{CEO}	70	V				
Emitter collector voltage		V _{ECO}	7	V				
Collector current		I _C	50	mA				
Collector peak current	$t_p/T = 0.5, t_p \le 10 \text{ ms}$	I _{CM}	100	mA				
COUPLER	·							
Isolation test voltage (RMS)	t = 1 min	V _{ISO}	5000	V _{RMS}				
Operating ambient temperature range		T _{amb}	- 40 to + 100	°C				
Storage temperature range		T _{stg}	- 55 to + 125	°C				
Soldering temperature (2)	2 mm from case, ≤ 10 s	T _{sld}	260	°C				

- (1) T_{amb} = 25 °C, unless otherwise specified. Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.
- (2) Refer to wave profile for soldering conditions for through hole devices (DIP).

TCET1100, TCET1100G

Vishay Semiconductors Optocoupler, Phototransistor Output, High Temperature

THERMAL CHARACTERISTICS (1)				
PARAMETER	SYMBOL	VALUE	UNIT	
LED power dissipation	P _{diss}	100	mW	
Output power dissipation	P _{diss}	150	mW	
Maximum LED junction temperature	T _{jmax.}	125	°C	
Maximum output die junction temperature	T _{jmax.}	125	°C	
Thermal resistance, junction emitter to board	$\theta_{\sf EB}$	173	°C/W	
Thermal resistance, junction emitter to case	$\theta_{\sf EC}$	149	°C/W	
Thermal resistance, junction detector to board	θ_{DB}	111	°C/W	
Thermal resistance, junction detector to case	θ_{DC}	127	°C/W	
Thermal resistance, junction emitter to junction detector	$\theta_{\sf ED}$	173	°C/W	
Thermal resistance, board to ambient (2)	θ_{BA}	197	°C/W	
Thermal resistance, case to ambient (2)	$\theta_{\sf CA}$	4041	°C/W	

Note

⁽²⁾ For 2 layer FR4 board (4" x 3" x 0.062").

ELECTRICAL CHARACTERISTICS								
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
INPUT								
Forward voltage	I _F = 50 mA	V_{F}		1.25	1.6	V		
Junction capacitance	$V_R = 0$, $f = 1$ MHz	C_{j}		50		pF		
OUTPUT								
Collector emitter voltage	I _C = 1 mA	V_{CEO}	70			V		
Emitter collector voltage	I _E = 100 μA	V_{ECO}	7			V		
Collector emitter cut-off current	$V_{CE} = 20 \text{ V}, I_F = 0 \text{ A}, E = 0$	I _{CEO}		10	100	nA		
COUPLER								
Collector emitter saturation voltage	$I_F = 10 \text{ mA}, I_C = 1 \text{ mA}$	V _{CEsat}			0.3	V		
Cut-off frequency	$V_{CE} = 5 \text{ V}, I_{F} = 10 \text{ mA}, R_{L} = 100 \Omega$	f _c		110		kHz		
Coupling capacitance	f = 1 MHz	C_k		0.3		pF		

Note

T_{amb} = 25 °C, unless otherwise specified.

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

⁽¹⁾ The thermal model is represented in the thermal network below. Each resistance value given in this model can be used to calculate the temperatures at each node for a given operating condition. The thermal resistance from board to ambient will be dependent on the type of PCB, layout and thickness of copper traces. For a detailed explanation of the thermal model, please reference Vishay's "Thermal Characteristics of Optocouplers" application note.

CURRENT TRANSFER RATIO								
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT	
		TCET1101 TCET1101G	CTR	13	30		%	
	V _{CE} = 5 V, I _F = 1 mA	TCET1102 TCET1102G	CTR	22	45		%	
	VCE = 5 V, IF = 1 IIIA	TCET1103 TCET1103G	CTR	34	70		%	
		TCET1104 TCET1104G	CTR	56	90		%	
		TCET1100 TCET1100G	CTR	50		600	%	
	V _{CE} = 5 V, I _F = 5 mA	TCET1105 TCET1105G	CTR	50		150	%	
I _C /I _F		TCET1106 TCET1106G	CTR	100		300	%	
IC/IF		TCET1107 TCET1107G	CTR	80		160	%	
		TCET1108 TCET1108G	CTR	130		260	%	
		TCET1109 TCET1109G	CTR	200		400	%	
		TCET1101 TCET1101G	CTR	40		80	%	
	V - 5 V I - 10 mA	TCET1102 TCET1102G	CTR	63		125	%	
	V _{CE} = 5 V, I _F = 10 mA	TCET1103 TCET1103G	CTR	100		200	%	
		TCET1104 TCET1104G	CTR	160		320	%	

MAXIMUM SAFETY RATINGS							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
INPUT							
Forward current		I _F			130	mA	
OUTPUT							
Power dissipation		P _{diss}			265	mW	
COUPLER							
Rated impulse voltage		V _{IOTM}			6	kV	
Safety temperature		T _{si}			150	°C	

Note

According to DIN EN 60747-5-5 (see figure 2). This optocoupler is suitable for safe electrical isolation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.

INSULATION RATED PARAMETERS							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Partial discharge test voltage - routine test	100 %, t _{test} = 1 s	V_{pd}	1.6			kV	
Partial discharge test voltage -	$t_{Tr} = 60 \text{ s}, t_{test} = 10 \text{ s},$ (see figure 2)	V _{IOTM}	6			kV	
lot test (sample test)		V_{pd}	1.3			kV	
	V _{IO} = 500 V	R _{IO}	10 ¹²			Ω	
Insulation resistance	V _{IO} = 500 V, T _{amb} = 100 °C	R _{IO}	10 ¹¹			Ω	
	V _{IO} = 500 V, T _{amb} = 150 °C (construction test only)	R _{IO}	10 ⁹			Ω	

Vishay Semiconductors Optocoupler, Phototransistor Output, High Temperature

Fig. 1 - Derating Diagram

Fig. 2 - Test Pulse Diagram for Sample Test According to DIN EN 60747-5-5/DIN EN 60747-; IEC 60747

SWITCHING CHARACTERISTICS							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Delay time	V_S = 5 V, I_C = 2 mA, R_L = 100 Ω , (see figure 3)	t _d		3		μs	
Rise time	V_S = 5 V, I_C = 2 mA, R_L = 100 Ω , (see figure 3)	t _r		3		μs	
Turn-on time	$V_S = 5 \text{ V}, I_C = 2 \text{ mA}, R_L = 100 \Omega,$ (see figure 3)	t _{on}		6		μs	
Storage time	$V_S = 5 \text{ V}, I_C = 2 \text{ mA}, R_L = 100 \Omega,$ (see figure 3)	t _s		0.3		μs	
Fall time	V_S = 5 V, I_C = 2 mA, R_L = 100 Ω , (see figure 3)	t _f		4.7		μs	
Turn-off time	$V_S = 5 \text{ V}, I_C = 2 \text{ mA}, R_L = 100 \Omega,$ (see figure 3)	t _{off}		5		μs	
Turn-on time	$V_S = 5 \text{ V}, I_F = 10 \text{ mA}, R_L = 1 \text{ k}\Omega,$ (see figure 4)	t _{on}		9		μs	
Turn-off time	$V_S = 5 \text{ V}, I_F = 10 \text{ mA}, R_L = 1 \text{ k}\Omega,$ (see figure 4)	t _{off}		10		μs	

Fig. 3 - Test Circuit, Non-Saturated Operation

Fig. 4 - Test Circuit, Saturated Operation

Fig. 5 - Switching Times

TYPICAL CHARACTERISTICS

T_{amb} = 25 °C, unless otherwise specified

Fig. 6 - Total Power Dissipation vs. Ambient Temperature

Fig. 7 - Forward Current vs. Forward Voltage

Fig. 8 - Relative Current Transfer Ratio vs.
Ambient Temperature

Fig. 9 - Collector Dark Current vs. Ambient Temperature

Vishay Semiconductors Optocoupler, Phototransistor Output, High Temperature

Fig. 10 - Collector Current vs. Forward Current

Fig. 11 - Collector Current vs. Collector Emitter Voltage

Fig. 12 - Collector Emitter Saturation Voltage vs. Collector Current

Fig. 13 - Current Transfer Ratio vs. Forward Current

Fig. 14 - Turn-on/off Time vs. Collector Current

Fig. 15 - Turn-on/off Time vs. Forward Current

PACKAGE DIMENSIONS in millimeters

TCET1100G type

PACKAGE MARKING

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com Revision: 18-Jul-08

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

TCET1101 TCET1105 TCET1107 TCET1103 TCET1104 TCET1100 TCET1102 TCET1108 TCET1106
TCET1100G TCET1101G TCET1102G TCET1103G TCET1104G TCET1105G TCET1106G TCET1107G
TCET1108G TCET1109G TCET1109