CMPT 412 Slides for Mean Shift

Edited down from longer Powerpoint by Yaron Ukrainitz & Bernard Sarel that I retrieved from the Internet

Mean ShiftTheory and Applications

Yaron Ukrainitz & Bernard Sarel

Brian's Note: You have to run this Powerpoint file in "Slide Show" mode. If you don't then the slide transitions don't work and lots of things get covered up.

The full original set of slides is available from http://www.wisdom.weizmann.ac.il/~vision/courses/2004_2/files/mean_shift/mean_shift.pp

Agenda

Mean Shift Theory

- What is Mean Shift?
- Density Estimation Methods
- Deriving the Mean Shift
- Mean shift properties

Applications

- Clustering
- Discontinuity Preserving Smoothing
- Object Contour Detection
- Segmentation
- Object Tracking

Mean Shift Theory

What is Mean Shift?

A tool for:

Finding modes in a set of data samples, manifesting an underlying probability density function (PDF) in R^N

PDF in feature space

- Color space
- Scale space
- Actually any feature space you can conceive

• ...

DF Representation

Data

Non-parametric
Density **GRADIENT** Estimation
(Mean Shift)

PDF Analysis

Non-Parametric Density Estimation

<u>Assumption</u>: The data points are sampled from an underlying PDF

Assumed Underlying PDF

Real Data Samples

Non-Parametric Density Estimation

Assumed Underlying PDF

Real Data Samples

Non-Parametric Density Estimation

Assumed Underlying PDF

Real Data Samples

Computing The Mean Shift

$$\nabla P(\mathbf{x}) = \frac{c}{n} \sum_{i=1}^{n} \nabla k_i = \frac{c}{n} \left[\sum_{i=1}^{n} g_i \right] \left(\sum_{i=1}^{n} \mathbf{x}_i g_i \right)$$

Yet another Kernel density estimation!

Simple Mean Shift procedure:

• Compute mean shift vector

$$\mathbf{m}(\mathbf{x}) = \begin{bmatrix} \sum_{i=1}^{n} \mathbf{x}_{i} g \left(\frac{\|\mathbf{x} - \mathbf{x}_{i}\|^{2}}{h} \frac{\dot{\vdots}}{\dot{\vdots}} - \mathbf{x} \right) \\ \sum_{i=1}^{n} g \left(\frac{\|\mathbf{x} - \mathbf{x}_{i}\|^{2}}{h} \frac{\dot{\vdots}}{\dot{\vdots}} \right) \end{bmatrix}$$

•Translate the Kernel window by **m(x)**

Mean Shift Mode Detection

<u>Updated Mean Shift Procedure:</u>

- Find all modes using the Simple Mean Shift Procedure
- Prune modes by perturbing them (find saddle points and plateaus)
- Prune nearby take highest mode in the window

Mean Shift Properties

- Automatic convergence speed the mean shift vector size depends on the gradient itself.
- Near maxima, the steps are small and refined
- Convergence is guaranteed for infinitesimal steps only → infinitely convergent, (therefore set a lower bound)
- For Uniform Kernel (), convergence is achieved in a finite number of steps
- Normal Kernel (
) exhibits a smooth trajectory, but is slower than Uniform Kernel (
).

Adaptive Gradient Ascent

Real Modality Analysis

Tessellate the space with windows

Run the procedure in parallel

Real Modality Analysis

The blue data points were traversed by the windows towards the mode

Real Modality Analysis

An example

Window tracks signify the steepest ascent directions

Mean Shift Strengths & Weaknesses

Strengths:

- Application independent tool
- Suitable for real data analysis
- Does not assume any prior shape (e.g. elliptical) on data clusters
- Can handle arbitrary feature spaces
- Only ONE parameter to choose
- *h* (window size) has a physical meaning, unlike K-Means

<u>Weaknesses</u>:

- The window size (bandwidth selection) is not trivial
- Inappropriate window size can cause modes to be merged, or generate additional "shallow" modes → Use adaptive window size

Mean Shift Applications

<u>Cluster</u>: All data points in the *attraction basin* of a mode

<u>Attraction basin</u>: the region for which all trajectories lead to the same mode

Synthetic Examples

Simple Modal Structures

Complex Modal Structures

Clustering Real Example

L*u*v space representation

Real Example

Final clusters

Non-Rigid Object Tracking

General Framework: Target Representation

General Framework: Target Localization

Target Representation

Use Swain & Ballard's histogram backprojection

- Provides the PDF
- Do backprojection in the neighbourhood of the object location in previous frame
- Use mean shift to find where the mode (peak) is in the current frame

Maximizing the Similarity Function

End of CMPT 412 Notes

 Other details of improved tracking are contained in following slides.

PDF Representation

Target Model (centered at 0)

Target Candidate (centered at y)

$$\overset{\mathsf{r}}{q} = \{ q_u \}_{u=1..m} \qquad \sum_{u=1}^{m} q_u = 1$$

Similarity Function:

$$f(y) = f[q, p(y)]$$

$$\stackrel{\mathsf{r}}{p}(y) = \{ p_u(y) \}_{u=1..m} \qquad \sum_{u=1}^m p_u = 1$$

Finding the PDF of the target model

Target pixel locations

- k(x)
- A differentiable, isotropic, convex, monotonically decreasing kernel
 - Peripheral pixels are affected by occlusion and background interference
- b(x)

The color bin index (1..m) of pixel x

Probability of feature u in model

Probability of feature u in candidate

Similarity Function

Target model:
$$q = (q_1, K, q_m)$$

Target candidate:
$$p(y) = (p_1(y), K, p_m(y))$$

Similarity function:
$$f(y) = f[p(y), q] = ?$$

The Bhattacharyya Coefficient

$$\overset{\mathsf{r}}{q}' = \left(\sqrt{q_1}, \mathsf{K}, \sqrt{q_m}\right)$$

$$p'(y) = (\sqrt{p_1(y)}, K, \sqrt{p_m(y)})$$

$$f(y) = \cos \theta_y = \frac{p'(y)^T q'}{\|p'(y)\| \|q'\|} = \sum_{u=1}^m \sqrt{p_u(y) q_u}$$

Target Localization Algorithm

Approximating the Similarity Function

Model location: y_0

Candidate location: y

Linear approx. (around y_0)

$$f(y) \approx \frac{1}{2} \sum_{u=1}^{m} \sqrt{p_u(y_0) q_u} + \frac{1}{2} \sum_{u=1}^{m} p_u(y_0) q_u$$

$$\frac{C_h}{2} \sum_{i=1}^n w \left\| K \left(\left\| \frac{y - x_i}{h} \right\|^2 \right) \right\|$$

Density
estimate!
(as a function
of y)

Maximizing the Similarity Function

The mode of
$$\frac{C_h}{2} \sum_{i=1}^n w_i k \left(\left\| \frac{y - x_i}{h} \right\|^2 \frac{1}{2} \right) = \text{sought maximum}$$

Applying Mean-Shift

The mode of
$$\frac{C_h}{2} \sum_{i=1}^n w_i k \left(\left\| \frac{y - x_i}{h} \right\|^2 \right) = \text{sought maximum}$$

Original Mean-Shift:

$$y_{1} = \frac{\sum_{i=1}^{n} x_{i} g\left(\left\|\frac{y_{0} - x_{i}}{h}\right\|^{2} \frac{1}{\dot{z}}\right)}{\sum_{i=1}^{n} g\left(\left\|\frac{y_{0} - x_{i}}{h}\right\|^{2} \frac{1}{\dot{z}}\right)}$$

Extended Mean-Shift:

Find mode of
$$c\sum_{i=1}^{n} \overline{w_i} k \left(\left\| \frac{y - x_i}{h} \right\|^2 \frac{1}{2} \right)$$
 using

$$y_{1} = \frac{\sum_{i=1}^{n} x w_{i} g \left(\left\| \frac{y_{0} - x_{i}}{h} \right\|^{2} \frac{\dot{\vdots}}{\dot{\cdot}} \right)}{\sum_{i=1}^{n} w_{i} g \left(\left\| \frac{y_{0} - x_{i}}{h} \right\|^{2} \frac{\dot{\vdots}}{\dot{\cdot}} \right)}$$

About Kernels and Profiles

A special class of radially symmetric kernels:

$$K(x) = ck(\|x\|^2)$$
The profile of kernel K

Choosing the Kernel

A special class of radially symmetric kernels:

$$K(x) = ck(\|x\|^2)$$

Epanechnikov kernel:

$$g(x) = -k(x) = \begin{cases} 1 & \text{if } ||x|| \le 1 \\ 0 & \text{otherwise} \end{cases}$$

$$y_{1} = \frac{\sum_{i=1}^{n} x_{i} w_{i} g\left(\left\|\frac{y_{0} - x_{i}}{h}\right\|^{2} \frac{1}{\dot{\cdot}}}{\sum_{i=1}^{n} w_{i} g\left(\left\|\frac{y_{0} - x_{i}}{h}\right\|^{2} \frac{1}{\dot{\cdot}}}{\sum_{i=1}^{n} w_{i}}\right)}$$

$$y_{1} = \frac{\sum_{i=1}^{n} x_{i} w_{i}}{\sum_{i=1}^{n} w_{i}}$$

Adaptive Scale

Problem:

Solution:

Feature space: 16×16×16 quantized RGB

Target: manually selected on 1st frame

Average mean-shift iterations: 4

Partial occlusion

Distraction

Motion blur

Feature space: 128×128 quantized RG

The Scale Selection Problem

Motivation

Spatial localization for several scales

Simultaneous localization in space and scale

Previous method

This method

Mean-shift Blob Tracking through Scale Space, by R. Collins

Lindeberg's Theory

Selecting the best scale for describing image features

Lindeberg's Theory

The Laplacian operator for selecting blob-like features

Lindeberg's Theory

Multi-Scale Feature Selection Process

Approximating LOG using DOG

Why DOG?

Gaussian pyramids are created faster

Using Lindeberg's Theory

Tracking Through Scale Space Example

Applying Mean-Shift

Use interleaved spatial/scale mean-shift

Results

Fixed-scale

± 10% scale adaptation

Tracking through scale space

Thank You