Faster Neural Machine Translation Inference

Anonymous ACL submission

Abstract

012

014

017

019

Deep learning models are widely deployed for machine translation. In comparison on many other deep learning models, there are two characterisitics of machine translation which have not been adequately addressed by most software implementations, leading to slow inference speed. Firstly, as opposed to standard binary class models, machine translation models are used to discriminate between a large number of classes corresponding to the output vocabulary. Secondly, rather than a single label, the output from machine translation models is a sequence of class labels that makes up the words in the target sentence. The sentence lengths are unpredictable, leading to inefficiencies during batch processing. We provide solutions for these issues which together, increase batched inference speed by up to ??? on modern GPUs without affecting model quality. For applications where the use of maxibatching introduces unacceptable delays in response time, our work speed up inference speed by up to ???. Our

work is applicable to other language generation tasks and beyond.

1 Introduction

We will look at two areas that are critical to fast NMT inference where the models in NMT differ significantly from those in other applications. These areas have been overlooked by the general deep-learning community, we aim to improve their efficient for NMT-specific tasks.

Firstly, the number of classes in many deep-learning applications is small. However, the number of classes in NMT models is typically in the tens or hundreds of thousands, corresponding to the vocabulary size of the output language. For example, (Sennrich et al., 2016) experimented with target vocabulary sizes of 60,000 and 90,000 subword units. This makes the output layer of NMT models very computationally expensive. Figure 1 shows the breakdown of amount of time during translation our NMT system; nearly 70% of the time is involved in the output layer. We will look at optimizations which explicitly target the output layer.

Secondly, mini-batching is often used to increase the speed of deep-learning applications, including NMT systems. (??? graph of batch v. speed) shows using batching can increase

078

Figure 1: Time spent during translation (beam size 5)

speed by 17 times. However, mini-batching does not take into account the variable length of NMT inputs and outputs, creating computational issues and efficiency challenges. The computational issues are often solved by masking unwanted calculations. Translation speed can often be improved by employing maxbatching whereby the input set is pre-sorted by sentence length before mini-batching, creating mini-batches with similar length input sentences. However, the target sentence lengths will still differ even for similar length inputs but the standard mini-batchin algorithm must continue to process the batch until all target sentences have been completed. (??? batchsize size v. iterations) shows the number of sentences still being processed for each decoding iteration, for a specific batch. The number of sentences still to be processed decreases, reducing the effectiveness of mini-batching. We will propose an alternative to the mini-batching algorithm.

111

112

113

115

116

117

118

We based our model on the sequence-tosequence model of (Cho et al., 2014) for machine translation models, but unlike (Dewhin, 2017), we avoid solutions for the specific model. Therefore, our solution should be applicable to other models, architectures and task which have the similar characteristics. We envisage that our solutions would be of value to models used in text summarization, chatbot or image captioning. We also choose to focus on the use of GPU, rather than CPU as pursued in (Devlin, 2017).

2 Prior Work

Deep learning models have been successfully used on many machine learning task in recent years in areas as diverse as computer vision and natural language processing. This success have been followed by the rush to put these model into production. However, the computational resources required in order to run these models have ben chanllenging. One possible solution involves creating faster models that can approximate the original model (Kim and Rush, 2016). Another solution is tackling specific computationally intensive functions by approximating them (??? softmax).

132

137

143

147

Most current neural MT models follow an encoder-decoder architecture. The encoder calculates the word and sentence embeddings while the decoder generates the output sentence. The architecture within the encoder is still a subject of much research. (Kalchbrenner and Blunsom, 2013) used a convolution to encode the input and a recurrent neural network (RNN) for the decoder. RNNs was used for both encoding and decoding in (??? who used RNN 1st). (Sutskever et al., 2014) significantly improved translation quality by using LSTM was used in each RNN node. (Cho et al., 2014) used GRU that has the required properties of LSTM but is computationally cheaper. (Bahdanau et al., 2014) added attention model which

improved translation at a cost of slower speed.

There has been recent attempts to move away from the sequence-to-sequence models of RNN encoder-decoder. Some justify their architecture on faster inference as well as better translation results. (Vaswani et al., 2017) and (??? course-to-fine) has been proposed as a fast alternatives to RNN-based models as it is possible to process more of the units in parallel.

It has been noticed that half precision arithmetic can be used for deep learning model without significan loss of model quality (Micikevicius et al., 2017). Other solutions include specialized hardware, the most popular being graphical processing units (GPU) but other hardware such as custom processors TPU (Jouppi et al., 2017), FPGA (Lacey et al., 2016) have been used.

Many of these optimization are general purpose improvements for deep learning models, regardless of the task it is being used in. (Devlin, 2017) is a noticeable machine translation-specific optimization which describe the speed improvements that can be obtained by techniques such as the use of half-precision, model changes and pre-computation.

3 Proposal

172

174

177

3.1 Softmax and Beam Search Fusion

The output layer of most deep learning models consist of the following steps

- 1. multiplication of the input with the weight matrix p=wx
- 2. addition of a bias term to the resulting scores p = p + b
- 3. applying the activation function, most commonly softmax $p_i = \exp(p_i)/\sum \exp(p_i)$
- 4. a search for the best output class, and probability if necessary $\operatorname{argmax}_i p_i$

In models with a small number of classes such as binary classification, the computational effort required is trivial and fast. However, this is not the case for large number of classes such as those found in NMT models.

We shall leave step 1 for future work and focus on the last three steps, the outline for which are shown in Figures 2 to 4.

```
Require: vector p, bias vector b
for all p_i in p do
p_i \leftarrow p_i + b_i
end for
```

Figure 2: Add Bias Term

213

215

216

217

219

229

```
Require: vector p
   {calculate max for softmax stability}
  max \leftarrow -\infty
  for all p_i in p do
     if p_i > max then
         max \leftarrow p_i
     end if
  end for
   {calculate denominator}
  sum \leftarrow 0
  for all p_i in p do
      sum \leftarrow sum + \exp(p_i - max)
  end for
   {calculate softmax}
  for all p_i in p do
     p_i \leftarrow \frac{\exp(p_i) - max}{\exp(p_i) - max}
  end for
  return p
```

Figure 3: Calculate softmax

As can be seen, the operations iterate over the matrix p five times - once to add the bias, three times to calculate the softmax, and once to search for the best class. We shall use a popular

```
Require: softmax vector p
max \leftarrow -\infty
for all p_i in p do
if p_i > max then
max \leftarrow p_i
best \leftarrow i
end if
end for
return max, best
```

Figure 4: Find best

method, kernel fusion (Guevara et al., 2009), to optimize the output layer.

Secondly, we make use of the fact that softmax and \exp are monotonic functions therefore we can move the search for the best class from Figure 4 to Figure 3 while max is being sought.

Thirdly, we are only interested in the best class. Since the best class is known, we can avoid calculating softmax for all classes. The outline of the our function is shown in Figure 5.

In fact, we are usually only interested in the best class during inference, not the probability. Therefore, we can skip the second iteration over p in Figure 5 and avoid computing the softmax altogether.

It has been shown (Koehn and Knowles, 2017) that using beam search to use the n-best number of classes, rather than just the best class, improves translation quality. This is a simple extension to the algorithm of Figure 5. Unlike the 1-best case, however, the softmax calculation cannot be skipped as the denominator differs for each input.

3.2 Top-up Batching

274

The standard mini-batching algorithm is outlined in Figure 6.

This algorithm encode the sentences for a batch, followed by decoding the batch. The de-

```
Require: vector p, bias vector b
  {add bias, calculate max \& argmax}
  max \leftarrow -\infty
  for all p_i in p do
     if p_i + b_i > max then
        max \leftarrow p_i + b_i
        best \leftarrow i
     end if
  end for
  {calculate denominator}
  sum \leftarrow 0
  for all p_i in p do
     if p_i > max then
        sum \leftarrow sum + \exp(p_i - max)
     end if
  end for
  return \frac{1}{sum}, best
```

Figure 5: Fused softmax and argmax

coding stop once all sentences in the batch are completed. This is a potential inefficiency as the number of remaining sentences may not be optimal.

We will focus on decoding as this is the more compute-intensive step, and issues with differing sentence sizes in encoding can partly be ameriorated by maxi-batching.

Our proposed top-up batching algorithm encode and decode asynchronously. The encoding step, Figure 7, is similar to the main loop of the standard algorithm but the results are added to a queue to be consumed by the decoding step later.

311

312

315

317

318

Rather than decoding the same batch until all sentences in the batch are completed, the decoding step processing the same batch continuously. New sentences are added to the batch as old sentences completes, Figure 8.

while more input do
Create batch
Encode
while batch is not empty do
Decode batch
for each sentence in batch do
if translation is complete then
Remove sentence from batch
end if
end for
end while
end while

Figure 6: Mini-batching

```
while more input do
Create encoding batch
Encode
Add to queue
end while
```

334

Figure 7: Encoding for top-up batching

4 Experimental Setup

We trained a sequence-to-sequence, encoder-decoder NMT system similar to that described in (Sennrich et al., 2016). This uses recurrent neural networks with gated recurrent units. The input and output vocabulary size were both set to 85,000 subwords using byte-pair encoding (BPE) to adjust the vocabulary to the desired size. The hidden layer dimensions was set to 512.

For inference, we used and extend Amun (Junczys-Dowmunt et al., 2016), the fastest open-source inference engine we are aware of for the model used in this paper. We uused a mini-batch of 128 sentences and maxi-batch of 1280 sentences, unless otherwise stated.

The hardware used in all experiments was

create decoding batch b from queue

while b is not empty do

Decode bReplace completed sentences with new sentence from queue

end while

Figure 8: Decoding for top-up batching

	Subset of training data	OpenSubtitles
# sentences	800k	200k
# subwords	5.8m	5.9m
Avg subwords/sent	7.3	29.7

Table 1: Corpora

an Nvidia GTX 1060 GPU on a host containing 8 Intel hypercores running at 2.8Ghz, 16GB RAM and SSD hard drive.

376

Our training data consisted of the German-English parallel sentences from the Europarl corpus (Koehn, 2005). To test inference speed, we used two test sets with differing characteristics:

- a subset of the training data, which contains mostly long sentences, and is, of course, in the same domain as the training data
- 2. a subset of the German-English data from the Open-Subtitles corpus, consisting of mostly short, out-of-domain sentences.

Table 1 gives further details of the test sets.

5 Results

6 Conclusion

References

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. *CoRR*, abs/1409.0473.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. (2014). Learning phrase representations using rnn encoder–decoder for statistical machine translation. In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 1724–1734. Association for Computational Linguistics.

400

407

410

411

412

414

415

416

417

418

419

427

429

430

431

433

436

437

- Devlin, J. (2017). Sharp models on dull hardware: Fast and accurate neural machine translation decoding on the CPU. In *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017*, pages 2820–2825.
- Guevara, M., Gregg, C., Hazelwood, K. M., and Skadron, K. (2009). Enabling task parallelism in the cuda scheduler.
- Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers, A., Boyle, R., Cantin, P., Chao, C., Clark, C., Coriell, J., Daley, M., Dau, M., Dean, J., Gelb, B., Ghaemmaghami, T. V., Gottipati, R., Gulland, W., Hagmann, R., Ho, R. C., Hogberg, D., Hu, J., Hundt, R., Hurt, D., Ibarz, J., Jaffey, A., Jaworski, A., Kaplan, A., Khaitan, H., Koch, A., Kumar, N., Lacy, S., Laudon, J., Law, J., Le, D., Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean, G., Maggiore, A., Mahony, M., Miller, K., Nagarajan, R., Narayanaswami, R., Ni, R., Nix, K., Norrie, T., Omernick, M., Penukonda, N., Phelps, A., Ross, J., Salek, A., Samadiani, E., Severn, C., Sizikov, G., Snelham, M., Souter, J., Steinberg, D., Swing, A., Tan, M., Thorson, G., Tian, B., Toma, H., Tuttle, E., Vasudevan, V., Walter, R., Wang, W., Wilcox, E., and Yoon, D. H. (2017). In-datacenter performance analysis of a tensor processing unit. CoRR, abs/1704.04760.
- Junczys-Dowmunt, M., Dwojak, T., and Hoang, H. (2016). Is neural machine translation ready for deployment? a case study on 30 translation directions. In *Proceedings of the 9th International Workshop on Spoken Language Translation (IWSLT)*, Seattle, WA.
- Kalchbrenner, N. and Blunsom, P. (2013). Recur-

rent continuous translation models. Seattle. Association for Computational Linguistics.

441

443

444

449

450

451

453

454

455

456

457

458

459

462

466

467

470

471

472

473

474

475

476

477

478

479

- Kim, Y. and Rush, A. M. (2016). Sequence-level knowledge distillation. In *Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016*, pages 1317–1327.
- Koehn, P. (2005). Europarl: A parallel corpus for statistical machine translation. In *Proceedings of* the Tenth Machine Translation Summit (MT Summit X), Phuket, Thailand.
- Koehn, P. and Knowles, R. (2017). Six challenges for neural machine translation. In *Proceedings* of the First Workshop on Neural Machine Translation, pages 28–39, Vancouver. Association for Computational Linguistics.
- Lacey, G., Taylor, G. W., and Areibi, S. (2016). Deep learning on fpgas: Past, present, and future. *CoRR*, abs/1602.04283.
- Micikevicius, P., Narang, S., Alben, J., Diamos, G. F., Elsen, E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O., Venkatesh, G., and Wu, H. (2017). Mixed precision training. *CoRR*, abs/1710.03740.
- Sennrich, R., Haddow, B., and Birch, A. (2016). Neural Machine Translation of Rare Words with Subword Units. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 1715–1725, Berlin, Germany. Association for Computational Linguistics.
- Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural networks. In *Proceedings of the 27th International Conference on Neural Information Processing Systems Volume 2*, NIPS'14, pages 3104–3112, Cambridge, MA, USA. MIT Press.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. *CoRR*, abs/1706.03762.