MLDS 401/IEMS 404-1 (Fall 2023): Lab 6 Solution – 11/07/2023

7.1 (2×2 contingency table):

(a) The logistic regression models for x = 0 and x = 1 are

$$\ln\left(\frac{p_0}{1-p_0}\right)=eta_0\quad ext{and}\quad \ln\left(\frac{p_1}{1-p_1}\right)=eta_0+eta_1.$$

$$\beta_1 = \ln\left(\frac{p_1}{1-p_1}\right) - \ln\left(\frac{p_0}{1-p_0}\right) = \ln\left\{[p_1/(1-p_1)]/[p_0/(1-p_0)]\right\}.$$

The MLEs $\widehat{\beta}_0$ and $\widehat{\beta}_1$ are found by substituting the MLEs $\widehat{p}_0 = s_0/n_0$ and $\widehat{p}_1 = s_1/n_1$ in the above equations and solving for $\widehat{\beta}_0$ and $\widehat{\beta}_1$. Hence

$$\widehat{\beta}_1 = \ln \widehat{\psi} = \ln \{ [\widehat{p}_1/(1-\widehat{p}_1)]/[\widehat{p}_0/(1-\widehat{p}_0)] \}.$$

(b) The information matrix equals

$$\mathcal{I} = egin{bmatrix} n_0 p_0 q_0 + n_1 p_1 q_1 & n_1 p_1 q_1 \ n_1 p_1 q_1 & n_1 p_1 q_1 \end{bmatrix},$$

$$\mathcal{I} = \begin{bmatrix} n_0 p_0 q_0 + n_1 p_1 q_1 & n_1 p_1 q_1 \\ n_1 p_1 q_1 & n_1 p_1 q_1 \end{bmatrix},$$
 where $q_i = 1 - p_i \ (i = 0, 1)$. The inverse of this matrix equals
$$\mathcal{I}^{-1} = \frac{1}{n_0 p_0 q_0 n_1 p_1 q_1} \begin{bmatrix} n_1 p_1 q_1 & -n_1 p_1 q_1 \\ -n_1 p_1 q_1 & n_0 p_0 q_0 + n_1 p_1 q_1 \end{bmatrix}.$$

Hence

$$\operatorname{Var}(\ln \widehat{\psi}) = \frac{n_0 p_0 q_0 + n_1 p_1 q_1}{n_0 p_0 q_0 \widehat{n}_1 p_1 q_1} = \frac{1}{n_0 p_0 q_0} + \frac{1}{n_1 p_1 q_1}.$$

The sample estimate of $\operatorname{Var}(\ln \widehat{\psi})$ is obtained by substituting the sample estimates \hat{p}_i and $\hat{q}_i = 1 - \hat{p}_i$ (i = 0, 1) giving the desired result.

7.2 (Nonconvergence of MLEs in logistic regression):

(a) Since $\beta_0 = 0$, denote β_1 simply by β . Then the likelihood function for the given data is

$$L = \prod_{x=-5}^{-1} \left(\frac{1}{1 + e^{\beta x}} \right) \prod_{x=1}^{5} \left(\frac{e^{\beta x}}{1 + e^{\beta x}} \right)$$

$$= \prod_{x=1}^{5} \left(\frac{1}{1 + e^{-\beta x}} \right) \prod_{x=1}^{5} \left(\frac{e^{\beta x}}{1 + e^{\beta x}} \right)$$

$$= \prod_{x=1}^{5} \left(\frac{e^{\beta x}}{1 + e^{\beta x}} \right) \prod_{x=1}^{5} \left(\frac{e^{\beta x}}{1 + e^{\beta x}} \right)$$

$$= \left[\prod_{x=1}^{5} \left(\frac{e^{\beta x}}{1 + e^{\beta x}} \right) \right]^{2}.$$

So the log-likelihood function equals

$$\ln L = 2\sum_{x=1}^{5} \left[\beta x - \ln(1 + e^{\beta x}) \right].$$

Note that $\ln(1+e^{\beta x})\to \beta x$ and hence $\ln L\to 0$ or $L\to 1$ (the maximum value of L) as $\beta\to\infty$. So the maximum of L is not achieved for any finite β and so the MLE of β doesn't exist. See the graph below.

(b) If we add two observations (x=0,y=0) and (x=0,y=1) then each of these two observations adds a multiplying factor 1/2 to L and

hence

$$\ln L = 2\sum_{x=1}^5 \left[eta x - \ln(1+e^{eta x}) - \ln 2
ight].$$

As $\beta \to \infty$, $\beta x - \ln(1 + e^{\beta x}) \to 0$ as shown above and hence $\ln L \to -10 \ln 2 = -6.931$, so the MLE of β doesn't exist. See the graph below.

7.8 (Radiation therapy) Twenty four cancer patients were treated with radiation therapy for different number of days (x) and the presence (y = 0) or absence (y = 1) of tumor was observed.

D ()	D ()	D ()	D ()
Days (x)	Response (y)	Days (x)	Response (y)
21	1	51	1
24	1	55	1
25	1	25	0
26	1	29	0
28	1	43	0
31	1	44	0
33	1	46	0
34	1	46	0
35	1	51	0
37	1	55	0
43	1	56	0
49	1	58	0

Source: Tanner (1996), p. 28.

- a) Fit a binary logistic regression model to the data.
- b) Calculate a 95% confidence interval for the odds of absence of tumor vs. presence of tumor if the number of days of therapy is increased by 5 days.
- c) Calculate the estimated success probabilities \hat{p}_i for the 24 patients in the sample. Find the optimum threshold p^* that maximizes the correct classification rate (CCR). Calculate sensitivity, specificity and the F_1 -score for this p^* .