

Laboratorio 10: Ejercicios de Fragmentación Horizontal y Vertical

Prof. Heider Sanchez

ACLs: Ana María Accilio, Sebastián Loza

P1 (4 pts): Fragmentación de la Tabla Estudiante

Dada la siguiente tabla Estudiante con llave MATRICULA y los datos:

MATRICULA	NOMBRE	DIR	GRUPO	PROMEDIO	EDAD	SEXO
0001	Lucía Fernández	Las palmas 34	A	8.5	15	F
0002	Manuel Rodríguez	Blvd. Lopez Mateos	C	9	20	M
0003	Sofía López	Águila 34	A	7	25	F
0004	Javier Martínez	Rueda 23	В	10	16	M
0005	Valentina Sánchez	Carlos Carrillo 567	C	8	17	F
0006	Diego Gómez	20 de nov. 123	C	10	23	M
0007	Camila Ramírez	Av. Américas No. 65	A	6	20	F
0008	Daniel Torres	Azueta No. 23	C	8	21	M
0009	Gabriela Morales	Abasolo No. 44	В	9	26	F
0010	Alejandro Castillo	Arco Sur No. 426	A	7	18	M
0011	Natalia Vargas	Hidalgo No. 65	C	10	22	F

1. Fragmentación por Términos Mínimos

Dado que el 35% de consultas se realiza sobre el campos EDAD y el 60% de las consultas sobre el campo GRUPO , utilice la técnica de términos mínimos para determinar los fragmentos finales en ambos atributos. Considere los predicados para edad EDAD < 18 y EDAD > 22 .

Fragmentos finales:

```
F1 = \sigma EDAD < 18 \land GRUPO = A (Estudiante)
```

$$F2 = \sigma EDAD \ge 18 \land EDAD \le 22 \land GRUPO = B (Estudiante)$$

$$F3 = \sigma EDAD > 22 \land GRUPO = C (Estudiante)$$

$$F4 = \sigma EDAD < 18 \land GRUPO = A (Estudiante)$$

$$F5 = \sigma EDAD \ge 18 \land EDAD \le 22 \land GRUPO = B (Estudiante)$$

$$F6 = \sigma EDAD > 22 \land GRUPO = C (Estudiante)$$

$$F7 = \sigma EDAD < 18 \land GRUPO = A (Estudiante)$$

$$F8 = \sigma EDAD \ge 18 \land EDAD \le 22 \land GRUPO = B (Estudiante)$$

$$F9 = \sigma EDAD > 22 \land GRUPO = C (Estudiante)$$

l	l ,	
F1	l 1	
	l ·	

F2	2
F3	1
F4	1
F5	0
F6	1
F7	1
F8	3
F9	1

2. Distribución de Fragmentos

Asumiendo que se dispone de tres servidores de bases de datos, indique cómo se distribuirían los fragmentos:

• Servidor 1: F1, F2, F3

• Servidor 2: F4, F5, F6

• Servidor 3: F7, F8, F9

3. Fragmentación Vertical

Se sabe que:

- El área de Control Escolar consulta los campos: NOMBRE , DIR , GRUPO
- \bullet El área de Estadística consulta los campos: PROMEDIO , EDAD , SEXO

a. Realizar la fragmentación vertical usando notación formal.

```
R1(MATRICULA, NOMBRE, DIR, GRUPO)
R2(MATRICULA, PROMEDIO, EDAD, SEXO)
```

b. Crear una consulta SQL para unir los fragmentos y verificar que se cumple la propiedad de Join sin Pérdida.

```
select *
from R1 natural join R2
order by matricula;
```

P2 (8 pts): Fragmentación Horizontal Derivada

Dado el siguiente esquema de base de datos:

1. Fragmentación Horizontal

• Fragmentar la tabla Almacén por el atributo CodPostal con el vector de partición: [3500, 70000].

A1 =
$$\sigma CodPostal < 3500 (Almacén)$$

$$A2 = \sigma CodPostal >= 3500 \land CodPostal < 70000 (Almacén)$$

$$A3 = \sigma CodPostal >= 70000 (Almacén)$$

• Fragmentar la tabla Libro por el atributo Precio con el vector de partición: [30, 60, 120].

A1 =
$$\sigma$$
 Precio < 30 (Libro)

$$A2 = \sigma Precio >= 30 \land Precio < 60 (Libro)$$

A3 =
$$\sigma$$
 Precio >= 60 \wedge Precio < 120 (Libro)

A4 =
$$\sigma$$
 Precio >= 120 (*Libro*)

2. Fragmentación Derivada

• Realizar la fragmentación horizontal derivada de la tabla Existencias respecto a la fragmentación de Almacén.

E1 =

E2

E3

• Indicar cómo sería la creación de esta fragmentación derivada en código SQL.

3. Asignación de Fragmentos

Dado que se dispone de tres servidores, distribuya los fragmentos según criterio:

Asignación:

Servidor Libro Almacén Existencias

Servidor 1		
Servidor 2		
Servidor 3		

4. Subconsultas Distribuidas

En base a la asignación anterior ¿Qué subconsultas se generan al ejecutar la siguiente consulta en cada servidor?

```
SELECT Codigo, TotalExistencias
FROM Libro
WHERE Precio > 20 AND Precio < 45;</pre>
```

P3 (8 pts): Fragmentación Vertical

Se tienen las consultas Q1, Q2, Q3 y Q4 que trabajan sobre la tabla:

T(C, C1, C2, C3, C4) -- donde C es la clave primaria

Las operaciones que realiza cada consulta son:

- Q1: SELECT C1 FROM T WHERE C4 = 90;
- Q2: SELECT C4 FROM T;
- Q3: UPDATE T SET C3 = 20 WHERE C2 = 50;
- Q4: UPDATE T SET C1 = 10 WHERE C3 = 20;

Además, se proporciona las frecuencias de acceso de las consultas a los atributos de la siguiente forma:

acc1(Q1)=1	acc2(Q1)=0	acc3(Q1)=2	acc4(Q1)=0
acc1(Q2)=0	acc2(Q2)=4	acc3(Q2)=3	acc4(Q2)=0
acc1(Q3)=0	acc2(Q3)=0	acc3(Q3)=4	acc4(Q3)=0
acc1(Q4)=3	acc2(Q4)=0	acc3(Q4)=0	acc4(Q4)=0

Tareas:

1. Construya la matriz de usos.

	C1	C2	C3	C4
Q1	1	0	1	0
Q2	0	1	1	0
Q3	0	0	1	0
Q4	1	0	0	0

2. Construya la matriz de afinidad.

	C1	C2	C3	C4
C1	6	14	17	
C2				
С3				
C4				

- 3. Agrupe la matriz de afinidad.
- 4. Determine la fragmentación vertical resultante.
- 5. Plasme esta técnica en un programa en Python

Entregable: Documento en formato PDF con todos los resultados solicitados.