Julien Vanharen

Ph.D. in Computational Fluid Dynamics

PERSONAL DATA

PLACE AND DATE OF BIRTH: Soissons, France | July 31, 1989

CITIZENSHIP: French

PHONE: +33 (0)6 60 74 88 16
EMAIL: julien.vanharen@onera.fr
WEBSITE: https://jvanhare.github.io

ADDRESS: 36, rue Frédéric Chopin, 91210 Draveil France

Professional Experience

JUN 2020 | Research engineer

ONERA in Châtillon, France

CEDRE developer

CEDRE is a multi-physics platform working on general unstructured meshes intended to both advance research and process industrial applications in the fields of energetics and propulsion. High-order and high-fidelity numerical methods. High Performance Computing optimization.

MAY 2017

Postdoctoral fellow

MAY 2020

Inria Saclay - Île-de-France in Palaiseau, France

Time-accurate anisotropic mesh adaptation for fluid-structure interaction (FSI) simulations

Implementation and validation of the Finite Element method for the unsteady linear elasticity equations. Coupling with a code solving the Euler equations based on the Finite Volume method. Development of error estimates for fluid-structure interaction applied to unsteady anisotropic mesh adaptation. Project RAPID funded by Direction Générale de l'Armement (DGA).

EDUCATION

MAY 2014

Ph.D. in Computational Fluid Dynamics

APR 2017

AIRBUS & Université de Toulouse in Toulouse, France

High-order numerical methods for unsteady flows around complex geometries

Collaboration between AIRBUS and CERFACS. Several numerical methods and codes are investigated for industrial applications. The coupling with a nonconforming grid interface of high-order schemes for structured and unstructured zones in elsA. The Spectral Difference Method in JAGUAR. The Lattice Boltzmann Methods in ProLB.

JUL 2016

Argonne Training Program on Extreme-Scale Computing (ATPESC)

AUG 2016

Argonne National Laboratory (ANL) in Lemont, IL, USA

Intensive, two-week training on the key skills, approaches, and tools to design, implement, and execute computational science and engineering applications on current high-end computing systems and the leadership-class computing systems of the future

Computer architectures and predicted evolution. Numerical algorithms and mathematical software. Approaches to building community codes for HPC systems. Data analysis, visualization, I/O, and methodologies and tools for big data applications. Performance measurement and debugging tools.

SEP 2012 | M.Sc. Fluid Dynamics

JUN 2013 | ISAE-SUPAERO in Toulouse, France

SEP 2009 M.Sc. Aerospace and Aeronautical Engineering

IUN 2013 | ISAE-SUPAERO in Toulouse, France

TEACHING

JUN 2019 | Incompressible fluid mechanics [MF102]

ENSTA Paris in Palaiseau, France

MAY 2016

Fundamentals to understand and analyze high fidelity compressible Large Eddy Simulation (LES) CERFACS in Toulouse, France

LANGUAGES

ENGLISH Full working proficiency
FRENCH Native proficiency
GERMAN Good working knowledge

POLISH Basic communication skills

THESIS

[1] Julien Vanharen. **High-Order Numerical Methods For Unsteady Flows Around Complex Geometries**. PhD thesis. Université de Toulouse, 2017. [PDF].

IOURNAL PAPERS

- [2] Julien Vanharen, Adrien Loseille, Frédéric Alauzet, and Micheal Andrew Park. Nearfield anisotropic mesh adaptation for the third AIAA Sonic Boom Workshop. J. Aircr. (2022). [10.2514/1.C036502].
- [3] Julien Vanharen, Adrien Loseille, and Frédéric Alauzet. **Non-manifold anisotropic mesh adaptation: application to fluid-structure interaction**. *Eng. Comput.* (2021). [10.1007/s00366-021-01435-2].
- [4] Julien Vanharen, Guillaume Puigt, Xavier Vasseur, Jean-François Boussuge, and Pierre Sagaut. **Revisiting** the spectral analysis for high-order spectral discontinuous methods. *J. Comput. Phys.* 337 (2017), 379–402. [10.1016/j.jcp.2017.02.043].
- [5] Julien Vanharen, Guillaume Puigt, and Marc Montagnac. Theoretical and numerical analysis of nonconforming grid interface for unsteady flows. J. Comput. Phys. 285 (2015), 111–132. [10.1016/j.jcp.2015.01.013].

PEER-REVIEWED CONFERENCE PAPERS

- [6] Frédéric Alauzet, Francesco Clerici, Adrien Loseille, Matthieu Maunoury, Lucien Rochery, Cosimo Tarsia-Morisco, Lucille-Marie Tenkes, and Julien Vanharen. 4th AIAA CFD High Lift Prediction Workshop results using metric-based anisotropic mesh adaptation. AIAA Fluid Dynamics Conference. Chicago, IL, USA, 2022.
- [7] Frédéric Alauzet, Francesco Clerici, Adrien Loseille, Cosimo Tarsia-Morisco, and Julien Vanharen. Some progress on CFD high lift prediction using metric-based anisotropic mesh adaptation. AIAA Scitech Forum. San Diego, CA, USA, 2022. [10.2514/6.2022-0388].
- [8] Julien Vanharen, Adrien Loseille, Frédéric Alauzet, and Michael Andrew Park. **Nearfield anisotropic mesh adaptivity for the third AIAA sonic boom workshop**. *AIAA Scitech Forum*. Virtual Event, 2021. [10.2514/6.2021-0347].
- [9] Lucille-Marie Tenkes, Frédéric Alauzet, and Julien Vanharen. **Hybrid anisotropic mesh adaptation using metric-orthogonal approach**. *AIAA Scitech Forum*. Virtual Event, 2021. [10.2514/6.2021-1779].
- [10] Julien Vanharen, Rémi Feuillet, and Frédéric Alauzet. Mesh adaptation for fluid-structure interaction problems. AIAA Fluid Dynamics Conference. Atlanta, GA, USA, 2018. [10.2514/6.2018-3244].

Conferences and seminars

- [11] Julien Vanharen. Anisotropic mesh adaptation. Theory and applications. CEA-Cesta seminar. Le Barp, France, 2021.
- [12] Julien Vanharen, Rémi Feuillet, and Frédéric Alauzet. **Mesh adaptation for fluid-structure interaction problems**. 6th European Conference on Computational Mechanics (ECCM 6). 7th European Conference on Computational Fluid Dynamics (ECFD 7). Glasgow, UK, 2018.
- [13] Julien Vanharen, Guillaume Puigt, Xavier Vasseur, Jean-François Boussuge, and Pierre Sagaut. **Revisiting** the spectral analysis for high-order spectral discontinuous methods. TILDA Symposium & Workshop on Industrial LES & DNS. Toulouse, France, 2016.
- [14] Julien Vanharen, Guillaume Puigt, Xavier Vasseur, Jean-François Boussuge, and Pierre Sagaut. Comparing the resolution power of standard finite difference and spectral difference schemes. TILDA Symposium & Workshop on Industrial LES & DNS. Toulouse, France, 2016.
- [15] Julien Vanharen, Guillaume Puigt, and Marc Montagnac. **Two-dimensional spectral analysis of nonconforming grid interface. Emphasis on unsteady flows**. 50th 3AF International Conference on Applied Aerodynamics. Toulouse, France, 2015.