NASA Contractor Report 166019

STIFFNESS REDUCTIONS DURING TENSILE FATIGUE TESTING OF GRAPHITE/EPOXY

ANGLE - PLY LAMINATES

(NASA-CR-166019) STIFFNESS RECUCTIONS
DURING TENSILE FATIGUE TESTING OF
GRAPHITE/EECXY ANGLE-PLY LAMINATES Final
Report (Wyoming Univ.) 182 p HC A05/MF A01
Unclas
CSCL 110 G3/24 02724

Edwin M. Odom....

Donald F. Adams

Composite Materials Research Group Mechanical Engineering Department University of Wyoming Larante, Wyoming 82071

Contract No. NASI-16557 November 1982

NASA

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23665

STIFFNESS REDUCTIONS DURING TENSILE FATIGUE TESTING OF GRAPHITE/EPOXY ANGLE-PLY LAMINATES

EDWIN M. ODOM DONALD F. ADAMS

NOVEMBER 1982

FINAL REPORT
NASA-LANGLEY RESEARCH CENTER
CONTRACT No. NAS 1-16557

COMPOSITE MATERIALS RESEARCH GROUP
DEPARTMENT OF MECHANICAL ENGINEERING
UNIVERSITY OF WYOMING
LARAMIE, WYOMING 82071

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

PREFACE

This final report summarizes a one-year research program, initiated in January 1981, sponsored by the National Aeronautics and Space Administration under Contract No. NASA1-16557. The NASA Program Monitor was Dr. T. Kevin O'Brien, Materials Division, Fatigue and Fracture Branch.

All work during this research program was performed by the Composite Materials Research Group within the Mechanical Engineering Department at the University of Wyoming. Co-principal Investigators were Mr. Edwin M. Odom, Staff Engineer, and Dr. Donald F. Adams, Professor. Mr. Mark Walker, Staff Computer Specialist, and Mr. Raja Mohan, Graduate Student Laboratory Assistant, also made significant contributions.

TABLE OF CONTENTS

Sect	:10n																												<u> </u>	180
1.	INTRO)DUC	TION	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
	1.1	Int Sum	rodu mary	cti •	Lon	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1 2
2.	TEST	PRO	CEDU	RES	3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
	2.1 2.2 2.3 2.4	Tes Dat	cime t Pro a Ac ulus	oce qui	edu Lei	ire Lti	.8 .01	1.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3 4
3.	TEST	RES	ULTS	•	•		•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	9
	3.1 3.2 3.3 3.4	Ten Sec	tic sile onda lure	Fa ry	ati Ef	Lgu Efe	ie ect	Re ts	281	11·	ts •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9 30
4.	CONC	LUSI	ons.	•	•	•	•	•	•	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	41
REF	ERENC	ES .		•	•	•	•	•	•	•	•	•	٠	•	•	•	٠	•	•	•	•	•	•	•	•	٠	•	•	٠	42
App	endix	A	Stat	ic	Te	ens	3 i .	le	. S	tr	es	8 4		St	ra	in	P	10	ts	•	٠.	•	•	•	•	•	•	•	٠	43
App	endix	В	Tabl Spec																									•	•	55
App	endix	_C_	Modu	1u	s l	Dec	:a:	y :	P1	ot	8.	٠	٠	٠	•	•	•	٠	•	•	•	•	•	•	•	•	٠	•	1	03

LIST OF TABLES

Table		Page
1.	Data Storage Progression	• 5
2.	Summary of Cyclic Loading Results for [±45]28 Laminates	. 10.
3.	Summary of Cyclic Loading Results for [+67.5]28 Laminates	• 11

LIST OF FIGURES

<u>Figure</u>		Pago
1.	Extensomator Arrangement Utilized to Measure Axial and Transverse Strains	3
2.	Peak Stress Versus Log Cycles to Failure	. 12
3.	Peak Stress Versus Linear Cycles to Failure	. 14
4.	Normalized Stiffness Versus Log Cycles for Specimen N45901	. 20
5.	Normalized Stiffness Versus Log Cycles for Specimen N45803 .	. 21
6.	Normalized Stiffness Versus Log Cycles for Specimen N45701 .	. 22
7.	Normalized Stiffness Versus Log Cycles for Specimen N45601 .	. 23
8.	Normalized Stiffness Versus Log Cycles for Specimen N45501 .	. 24
9.	Normalized Stiffness Versus Log Cycles for Specimen N67801 .	. 25
10.	Normalized Stiffness Versus Log Cycles for Specimen N67701 .	. 26
11.	Normalized Stiffness Versus Log Cycles for Specimen N67601 .	. 27
12.	Normalized Stiffness Versus Log Cycles for Specimen N67501 .	. 28
13.	Normalized Stiffness Versus Log Cycles for Specimen N67401 .	. 29
14.	Slope of Stress-Strain Curve for Specimen N45901 for Various Cycles During Fatigue Test	. 33
15.	Slope of Stress-Strain Curve for Specimen N45803 for Various Cycles During Fatigue Test	. 34
16.	Slope of Stress-Strain Curve for Specimen N45601 for Various Cycles During Fatigue Test	. 35
17.	Typical Failure of a [+45] _{2s} Laminate	. 36
18.	Typical Failure of a [±67.5] ₂₈ Laminate	. 36
19.	Ultrasonic C-Scans of Specimen N45602, a [±45] ₂₈ Laminate	• 38
20.	Edge Crack in Specimen N45602 of the $\left[\underline{+45}\right]_{28}$ Laminate	• 39
21.	Close-up of Smeared Region of the Crack of Figure 20	• 40
22.	Close-up of Distinct Crack in the Specimen of Figure 20	. 40

SECTION 1

INTRODUCTION AND SUMMARY

1.1 Introduction

The response of composite materials to fatigue loading has long been a topic of interest. Typically, composite materials will accumulate damage, which initially may be in the form of microcracks between the fibers of a lamina and/or between the laminae of the laminate.

During the growth of these microcracks, which eventually leads to materials failure, the response of the composite in terms of strength and stiffness is typically degraded. Of particular interest to the present program was the effect of fatigue-induced damage on composite stiffness. This effect was monitored by conducting a series of fatigue tests on [±45]_{2s} and [±67.5]_{2s} T300/5208 graphite/epoxy laminates. During the fatigue testing of these laminates, stiffness was continuously monitored, to specimen failure. The stiffness versus cycle data were then studied to determine if a correlation between loss of material stiffness and failure could be predicted.

The Composite Materials Research Group has been active in fatigue-related studies for some time. Some of the more significant studies include References [1-5]. As in some of the prior studies, the present investigation provided the special challenge of monitoring the composite stiffness as the fatigue test progressed. The challenge in monitoring the stiffness was in doing so such that the stiffness was measured with a high degree of accuracy without interrupting the latigue test. The concern here was that continuously stopping a fatigue test to

take stiffness measurements could affect the fatigue results due to time-dependent properties, or other unknown characteristics of composite materials. Therefore, the Composite Materials Research Group developed and utilized an advanced computer-aided testing facility, details of which will be presented in Section 2.

1.2 Summary

It was found that the [±45]₂₈ laminates did experience a stiffness reduction prior to failure. However, the onset of this stiffness reduction could not be correlated to load or cycle. The [±67.5]₂₈ laminate did not exhibit any measurable stiffness reduction prior to failure. The cyclic tension loading caused a slightly nonlinear reduction of strength with respect to the logarithmic number of cycles for the [±45]₂₈ laminates. Using the same correlation procedures for the [±67.5]₂₈ laminates resulted in an almost linear reduction—ofstrength with respect to the logarithmic number of cycles.

TEST PROCEDURES

2.1 Specimen Geometry

The T300/5208 graphite/epexy test specimens for this study were supplied by NASA-Langley. The flat specimens were 12 in long, 1.5 in wide and approximately 0.04 in thick, and are one of two 8-ply laminate orientations, i.e., $[\pm 45]_{28}$ or $[\pm 67.5]_{28}$. A total of 30 specimens of each of these laminate orientations were provided.

2.2 Test Procedures

All static and fatigue tests were performed in an Instron Model 1321 servohydraulic testing machine. During the static testing, strain was measured utilizing three extensometers (two axial and one transverse), as indicated in Figure 1. The two axial extensometers were mounted on opposite sides of the specimen during the static tests, to monitor any bending effects.

Figure 1. Extensometer Arrangement Utilized to Measure Axial and Transverse Strains

After studying the stress-strain plots and the stiffnesses calculated using each axial extensometer, it was determined that bending effects were nonexistent. Therefore, only one axial and one transverse extensometer were utilized during the fatigue testing. Stress versus strain plots of the static tests are included in Appendix A.

All static tests were conducted at a rate of 2 mm/min. Fatigue testing was conducted using a stress ratio of R = 0.1 and a cyclic rate of 10 Hz.

Prior to conducting a fatigue test, an initial static stiffness test was conducted to determine the procyclic stiffness of the specimen. This static test was terminated at the maximum axial tensile stress, o max, prescribed for the fatigue test. The resultant stiffness was then utilized to establish five percent increments of decreasing dynamic stiffness. Cyclic loading was interrupted after the dynamic stiffness of the specimens reached each of these increments and a static stiffness test was conducted to verify the stiffness decay.

2.3 Data Acquisition

All data acquisition for the static and fatigue testing was performed using a Hewlett Packard HP21MX-E minicomputer. For monitoring the fatigue testing, the data acquisition software combined a real time data acquisition and reduction routine and a logarithmic data storage routine. The data acquisition routine is capable of reading 8 channels of data for a fatigue test conducted at 10 cycles/sec at a sampling rate of 320 samples/sec/channel. Additionally, the data acquisition for each cycle of the test was synchronized to begin sampling at the beginning of the cycle, i.e., at omin. This allowed a very efficient data storage format for reduction purposes. After the stress and strain data were

nequired for a complete cycle, the dynamic stiffness was calculated using a linear regression curve—fit. A decision based upon this value was then made to continue or interrupt the load cycling. If the calculated dynamic stiffness indicated a 5 percent increment drop of stiffness, then the test was interrupted to allow a static stiffness test to be conducted, after which the fatigue test was continued.

Data were stored using a logarithmic procedure, as indicated in Table 1. Since stiffness reduction precedes specimen failure, it would

Table 1

Data Storage Progression

Cycle Range	Cycle Increment Between Data Storage
1 to 10	2
10 to 100	10
100 to 1000	100
1000 to 10,000	1000.
10,000 to 100,000	10,000
100,000 to 1,000,000	100,000
10,000 to 100,000	10,000

be quite possible for the specimen to start to indicate a reduction of stiffness and fail before a scheduled cycle when data were to be stored. To prevent the above condition, the dynamic modulus was checked 10 times between each data storage cycle. If the specimen had not failed at the designated storage cycle, these values were then deleted from storage and the value for the data storage cycle was stored. If the specimen failed before a designated data storage cycle, then the values were maintained in memory. This ensured that the maximum amount of data was collected for each specimen, while keeping data storage files to a reasonable size.

2.4 Modulus Calculations

The statement of work for this program requested that the dynamic accant modulus be calculated. However, during verification of thesoftware routines before fatigue testing was initiated, it was noticed that the secant modulus calculated varied by approximately five percent from cycle to cycle. Since the increment of modulus decay needed for test interruption was five percent, this was unacceptable. It was found that the variation was caused by two problems. First, the data acquisition approach utilized by the Composite Materials Research Group entails digitizing analog stress-strain data. This entails periodically sampling the analog signals, and then converting the sample to digital form. During this process, the absolute minimum and maximum stress and strain values may not be sampled on every cycle. For the sampling rate utilized, it was calculated that the greatest difference between the absolute maximum and minimum stress and strain values and the values actually sampled would be three percent. Additionally, the samples are subject to approximately one percent electrical noise. uncertainties essentially explain the variation of the secant modulus from cycle to cycle. One further point is that, while studying the reasons for the dynamic secant modulus cycle-to-cycle variations, it was noted that the [±45]2 laminates were nonlinearly elastic. Therefore, the magnitude of the dynamic secant modulus is load-dependent. In terms of relating modulus decay from specimen to specimen this behavior was considered to be unacceptable.

Thus, it was decided to utilize the tangent modulus method for calculating dynamic stiffnesses. This method is believed to have several advantages over the secant modulus method. First, a tangent

modulus is calculated utilizing more data points than just the two end points utilized to calculate the secant modulus. In general, the more data points utilized to characterize a material, the better will be the characterization. Second, by utilizing a linear regression fit, slight anomalies in material behavior or data scatter due to electrical noise can be averaged out. As can be seen in the data generated during the fatigue testing position of this program, which is presented in Appendices B and C, the cycle-to-cycle variation in modulus is very small.

Section 3

TEST RESULTS

3.1 Static Tonsile Results

Five specimens of each laminate orientation, i.e., $[\pm 45]_{28}$ and $[\pm 67.5]_{28}$, were statically tested to obtain ultimate strength values for use during fatigue testing. The results of these static tests are presented in Tables 2 and 3. The shear modulus G_{12} , Poisson's ratio v_{xy} , and ultimate shear stress at failure in the fiber coordinate system τ_{12} , were calculated using the following equations from Reference [6]:

$$G_{12} = \frac{E_{x}}{2(1+v_{xy})} \tag{1}$$

$$v_{xy} = -\frac{\varepsilon_y}{\varepsilon_x} \tag{2}$$

$$\tau_{12} = 0.5\sigma_{x} ([\pm 45]_{2s} \text{ laminates})$$
 (3)

$$\tau_{12} = 0.3535\sigma_{x} ([\pm 67.5]_{2s} \text{ laminates})$$
 (4)

3.2 Tensile Fatigue Results

During the tensile fatigue testing of the two laminates, the dynamic modulus of the specimen was continuously monitored and the cycles to failure were recorded. The stress versus number of cycles to failure of each of the two laminates is presented in Figure 2. The regression equation which best fits the fatigue data points for the [+45]₂₈ laminate is of the form:

$$\sigma_{\text{neak}} = 26.1 - 0.8 \ln N$$
 (5)

For the $\left[\pm67.5\right]_{28}$ laminate the equation takes the form:

$$\sigma_{\text{peak}} = 10.4 - 0.4 \ln N$$
 (6)

PRECEDING PAGE BLANK NOT FILMED

Table 2

Static Axial Tensile Test Results for $\left[\frac{+45}{28}\right]_{28}$ Laminates of T300/5208 Graphite/Epoxy

the System	(ksi)	12.6	12.6	12.2	12.4	12.4	12.4	0.2
Shear Stress in the Fiber Coordinate System	(MPa) '12	8 . 8	8·98	84.1	85.4	85.4	85.4	0.1
Poisson's Ratio	xy	0.73	0.75	0.75	0.75	0.80	92.0	0.03
Axial Stiffness Poi		18.9/17.9 2.75/2.60	18.9/18.6 2.75/2.70	18.1/17.9 2.63/2.61	19.3/19.3 2.80/2.80	18.9/18.6 2.75/2.70	18.9/18.4 2.74/2.68	0.4/0.6 0.06/0.08
Axial Strain	n x	0.0236	0.0214	0.0194	0.0240	0.0244	0.0226	0.0021
Ultimate Strength	o (ksi)	25.2	25.2	24.4	24.7	24.8	24.9	0.3
Ultimate	(MPa)	173.6	173.6	168.1	170.2	170.9	171.3	2.4
	Specimen	N45U01	N45U02	N45U03	N45U04	N451105	Average	S.D.

The first value reported was obtained from the 3.5 in gage length extensometer, while the second value was obtained from the 1.5 in gage length extensometer.

** Calculated using the 3.5 in gage length extensometer.

*** Calculated using Equation 3.

ORIGINAL PAGE 13 OF POOR QUALITY

Table 3

Graphite/Epoxy
f T300/5208
aminates o
128
5
$[\pm 67.5]_{2s}$ L
for [+67
t Results for
r Results for
e Test Results for

0.0067 11.4/11.6 1.65/1.69 0.16 24.8 3.6 0.0066 11.4/11.4 1.65/1.63 0.15 24.1 3.8 0.0074 11.9/11.2 1.73/1.63 0.17 26.2 3.8 0.0066 11.3/11.2 1.65/1.63 0.15 24.8 3.6 0.0067 11.0/11.1 1.60/1.61 0.16 25.5 3.7 0.0068 11.4/11.3 1.66/1.64 0.16 24.8 3.6 0.0068 0.34/0.21 0.05/0.03 0.01 0.69 0.69	ire (Axi Ultimate Strength To Tu (MPa) X (ksi)	Axial Strain To Failure e u x	Axial Stiffness E* (GPa) ** (Msi)	Poisson's Ratio	Shear Stress in the Fiber Coordinate System T12 (ksi)	ess in the dinate System *** T12 (ksi)
11.4/11.4 1.65/1.65 0.15 24.1 11.9/11.2 1.73/1.63 0.17 26.2 11.3/11.2 1.65/1.63 0.15 24.8 11.0/11.1 1.60/1.61 0.16 25.5 11.4/11.3 1.66/1.64 0.16 24.8 0.34/0.21 0.05/0.03 0.01 0.69		0	0.0067	11.4/11.6 1.65/1.69	0.16	24.8	3.6
11.9/11.2 1.73/1.63 0.17 26.2 11.3/11.2 1.65/1.63 0.15 24.8 11.0/11.1 1.60/1.61 0.16 25.5 11.4/11.3 1.66/1.64 0.16 24.8 0.34/0.21 0.05/0.03 0.01 0.69	0 6.6	Ö	9900.0	11.4/11.4 1.65/1.65	0.15	24.1	3.5
11.3/11.2 1.65/1.63 0.15 24.8 11.0/11.1 1.60/1.61 0.16 25.5 11.4/11.3 1.66/1.64 0.16 24.8 0.34/0.21 0.05/0.03 0.01 0.69	10.9 0.0	0	0.0074	11.9/11.2 1.73/1.63		26.2	3.8
11.0/11.1 1.60/1.61 0.16 25.5 11.4/11.3 1.66/1.64 0.16 24.8 0.34/0.21 0.05/0.03 0.01 0.69	10.2 0.0	0	9900.0	11.3/11.2 1.65/1.63		24.8	3.6
11.4/11.3 1.66/1.64 0.16 24.8 0.34/0.21 0.05/0.03 0.01 0.69	10.4 0.0	0.0	190	11.0/11.1 1.60/1.61	0.16	25.5	3.7
0.34/0.21 0.05/0.03 0.01 0.69	10.3 0.0	0	0.0068	11,4/11.3 1.66/1.64		24.8	3.6
	0.4 0.0	0.0	2003	0.34/0.21 0.05/0.03		69.0	0.1

The first value reported, was obtained from the 3.5 in gage length extensometer, while the second value was obtained from the 1.5 in gage length extensometer.

^{**} Calculated using the 3.5 in gage length extensometer.

^{***} Calculated using Equation 4.

PEAR TEMSILE STRESS (1991)

Peak Tensile Stress Versus Log Cycles to Failure

Figure 2.

Additionally, the peak stress versus the number of cycles to failure was plotted on a linear scale to determine if there is a load—sensitivity, i.e., a percent of ultimate strength where fatigue life transcends from very short to very long. This plot is shown in Figure 3. These plots indicate a transition between short and long fatigue life occurs at about 119 MPa (17.2 ksi), which correspond to 70 percent of the static ultimate strength for the [±45]_{2s} laminates. For the [±67.5]_{2s} laminates, the transition occurs at about 38 MPa (5.5 ksi), or approximately 55 percent of the static ultimate strength.

The fatigue test load levels for the laminates was originally specified by NASA-Langley to be 60, 50, 40, 30 and 20 percent of the static ultimate strengths, with five fatigue specimens to be tested at each load level. However, the first specimen tested, a [±45]₂₈ laminate loaded to 50 percent of static ultimate, went to 10⁶ cycles without failure. Therefore, it was obvious that the load levels selected were too low. Thereafter, load levels for conducting the fatigue tests were selected by the NASA-Langley Contract Monitor in close coordination with the Principal Investigators. Additionally, at the Contract Monitor's request, certain specimens were cycled without taking dynamic data. Instead, the test was periodically stopped and a static test was performed to measure the stiffness.

Tables 4 and 5 are a summary of the results of the fatigue testing of the two laminates. As can be seen, the $[\pm 45]_{28}$ laminates exhibited a modulus decay that is load-dependent, i.e., the larger the peak stress the greater the modulus decay. For the $[\pm 67.5]_{28}$ laminates, the modulus decay is essentially nonexistent; on average the magnitude of the modulus decay for this laminate is close to the magnitude of experimental error.

Figure 3. Peak Stress Versus Linear Cycles to Failure

Summary of Cyclic Tensile Loading Results for [+45], Laminates of T300/5208 Graphite/Epoxy

			•	2s		•	•
		Initial Modulus	Modulus		Dynamic Modulus	Percent Reduction Dyn: ic Modulus at	eduction in odulus at
Specimen Number	Peak Stress MPa (ksi)	Static GPa (10 ⁶ msi)	Dynamic GPa (10 ⁶ msi)	Cycles to Failure	Prior to Failure GPa (10^6 msi)	Tailure Initia Static	Tailure Versus Initial Modulus tic Dynamic
N45901	154.3	17.5	17.0	1,000	14.0	20.1	17.8
	(22.4)	(2.54)	(2.47)		(2.03)		
N45902	154.3	18.6	17.5	066	16.7	10.0	4.3
	(22.4)	(2.70)	(2.54)		(2.43)		
N45903	154.3	17.5	*	1,420	16,3*	6.7*	40
	(22.4)	(2.54)			(2.37)		
N45904	154.3	17.3	*	1,080	15.3*	11.6*	*
	(22.4)	(2.51)		•	(2.22)		
N45905	154.3	18.6	16.9	995	13.9	30.7	23.7
	(22.4)	(2.70)	(2.45)		(1.87)		
N45801	137.1	16.2	*	069.9	15.9*	1.7*	*
	(19.9)	(2.35)		•	(2.31)		
N45802	137.1	17.4	*	8,890	15.5*	11.1*	41
	(19.9)	(2.53)		•	(2.25)		
N45803	137.1	18.4	17.3	4,910	15.6	15.7	10.0
	(19.9)	(3.68)	(2.51)		(2.26)		
N45804	137.1	17.6	*	10,710	15.7*	10.9*	*
	(19.9)	(3.56)	•		(2.28)		
N45805	137.1	17.5	*	10,510	15.6*	10.6*	*
	(19.9)	(2.54)			(2.27)		
N45701	119.9	18.5	18.0	39,380	17.3	<i>2.</i> 9	4.2
	(17.4)	(3.68)	(2.61)		(2.50)		
N45702	119.9	19.3	18.7	112,340	16.5	14.6	12.1
	(17.4)	(3.80)	(2.72)		(2.39)		

Table 4 (cont'd)

Summary of Cyclic Tensile Loading Results for $\left[+45 \right]_{2\mathrm{S}}$ Laminates of T300/5208 Graphite/Epoxy

11.9	5.6	5.6	2.9	5.4	14.6	2.6	**	2.6	3.0	O.E.	7.7	2.4
15.1	8.3	8.3	2.6	7.0	18.1	4.0	*	5.4	4.7	7. 9	0.6	0.0
16.2	17.5	(2.54) 17.6 (2.55)	18.4 (2.67)	18.3 (2.65)	15.6 (2.27)	18.4 (2.67)	*	18.1 (2.63)	13.1 (2.63)	18.1 (2.63)	17.4 (2.53)	19.3 (2.80)
52,030	63,550	56,170	614,758	1,010,460	511,960	468,080	416,260	566,250	1,017,000	850,000	597,830	1,000,790
18.5	18.5	(2.69) 18.6 (2.70)	18.9	19.3	18.3	18.9	**	18.6 (2.70)	18.6	18.6 (2.71)	18.9 (2.74)	19.8 (2.87)
19.2	19.1	(2.77) 19.2 (2.78)	18.9	19.6	19.1	19.2	19.2	19.2	19.0	19.4 (2.81)	19.2 (2.78)	19.3 (2.80)
119.9	119.9	(17.4) 119.9 (17.4)	102.7	102.7	102.7	102.7	102.7	102.7	$\frac{(2.02)}{102.7}$	102.7	102.7	85.4 (12.4)
N4703	N4704	N4705	N45601	N45602	N45603	N45604	N45605	N45606	N45607	N45608	N45609	N45501

^{*} No Dynamic Data Taken ** Data unavailable

Table 5

Summary of Cyclic Tensile Loading Results for $\left[\frac{+67.5}{2s}\right]_{2s}$ Laminates of T300/5208 Graphite/Epoxy

				í			
		Initial	ial Modulus		Dynamic Modulus	Percent Re Dynamic M	Percent Reduction in Dynamic Modulus at
	Peak Stress	Static	Dynamic		Prior to Failure	Failur	Failure Versus
Specimen Number	MPa (ksi)	$^{\texttt{GPa}}_{(10^{6}~\texttt{msi})}$	(10^6 msi)	Cycles to Failure	GFa (10 ⁶ msi)	Static	Dynamic
N6/801	26.5	10.7	10.9	270	10.7	9.0	1.9
N67802	56.5	10.5	10.7	610	10.5	0.7	0
	(8.2)	(1.53)	(1.55)) 	(1.52)	;	4
N67803	56.5	7.8	10.8	110	10.6	36.3	1.9
	(8.2)	(1.13)	(1.57)		(1.54)		
N67701	9.67	10.7	10.8	2,480	10.7	0.0	9.0
	(7.2)	(1.55)	(1.57)		(1,56)		
N67702	49.6	10.7	10.9	50	10.8	0.0	9.0
	(7.2)	(1.55)	(1.58)		(1.57)		
N67703	49.6	10.7	10.8	910	10.8	0.0	0.0
	(7.2)	(1.55)	(1.57)		(1,57)		
N67601	42.7	10.8	11.0	24,280	11.0	0.0	0.6
	(6.2)	(1.57)	(1.60)	•	(1.59)		}
N67602	42.7	10.7	11.0	090,89	11.0	0.0	9.0
	(6.2)	(1.55)	(1.60)		(1.59)		
N67603	42.7	10.5	10.7	58,880	10,5	0.0	1.9
N67604	42.7	10.1	10.4	37.430	10.2	0.0	0 0
	(6.2)	(1.47)	(1.51)	•	(1.48)	•	•
N67605	42.7	10.7	11.0	340*	10.8	0.0	1.3*
	(6.2)	(1.56)	(1.59)		(1.57)		
90929N	42.7	10.5	10.8	47,100	10.1	3.9	6.4
	(6.2)	(1.53)	(1.57)		(1.47)		
N67607	42.7	10.5	10.7	37,700	10.5	0.7	2.6
	(6.2)	(1.53)	(1,56)		(1.52)		
N67608	42.7	10.5	11,0	17,590	10.9	0.0	9.0
	(6.2)	(1.53)	(4.59)		(1.58)		

ORIGINAL PAGE IS OF POOR QUALITY

Table 5 (cont'd)

Epoxy	1.3	0.0	5.8	0.0	10.1	7.6	7.6	0.0	0.0	#	0.0	0.0
5208 Graphite/	0.0	0.0	3.9	0.0	8.3	4.6	5.8	0.0	0.0	*	0.0	0.0
lle Loading Results for $[\pm67.5]_{2s}$ Laminates of T300/5208 Graphite/Epoxy	10.6 (1.54)	10.7	10.1	10.9	(5,15) 9,9	10.1	(1.46) 10.1	(1.46) 11.0	(1.59) 1.0 (1.60)	* *	10.9	(1.59) (1.59)
ts for [+67.5] ₂₈	23,760	186,940	224,800	168,820	547,960	105,240	788,170	377,790	637,850	1,000,000+	1,014,000+	1,023,000+
ding Resul	10.7 (1.56)	10.7	10.7	10.9	11.0	(1.59) 10.9	(1.58) 10.9	(1.58) 11.0	(1.59) 11.0 (1.60)	* *	10.7	(1.56) 10.8 (1.57)
: Tensile Loz	10.5 (1.53)	10.6	10.5	10.6	10.7	(1.56) 10.5	(1.53) 10.7	(1.55)	(1.55) 11.0 (1.59)	* *	10.5	(1.52) 10.6 (1.54)
Summary of Cyclic Tensi	42.7 (6.2)	35.8	(5.2) 35.8	(5.2 <i>)</i> 35.8	(5.2) 35.8	(5.2) 35.8	(5.2) 35.8	(5.2) 35.8	(5.2) 35.8 (5.2)	28.2	(4.1) 28.2	(4.1) 28.2 (4.1)
	N67609	N67501	N67502	N67503	N67504	N67505	N67506	N67507	N67508	N67401	N67402	N67403

^{*}Specimen failed in grips

Examples of the normalized modulus decay versus number of cycles are presented in Figures 4 through 13. The (dynamic) longitudinal modulus has been normalized by dividing by the (presycling) initial static modulus.

Several attempts were made to correlate the modulus decay data for The first attempt at laminates, without success. the $[\pm 45]_{2a}$ correlating the data was to average the modulus decay at approximately coinciding cycles for the group of specimens run at each load level. This approach was not generally successful since the modulus decay was very small until just prior to specimen failure. Therefore, the average would remain constant until the first specimen at a given load level Then the average would dip until the first approached failure. specimen did fail, and then rise back up until the second specimen of the group approached. This approach was considered unacceptable. second approach to correlating the $\left[\pm45\right]_{2s}$ data was to study each normalized modulus versus number of cycles plot presented in Appendix C, to determine the cycle where modulus decay began, and then to compare this value with the number of cycles to failure. This approach was hampered by not being able to establish in all cases the cycle when modulus decay began. However, for the plots where it was possible, the percent of cycles to failure at which modulus decay began ranged from approximately zero percent for the specimens tested at a high peak stress, to approximately 60 percent for the specimens tested at the lower peak stresses. However, it must be added that the scatter of the data from this attempt was quite large, and not all specimens could be included. Consequently this approach was not considered acceptable.

Normalized Stiffness Versus Log Cycles for Specimen N45803. Figure 5.

Figure 6. Normalized Stiffness Versus Log Cycles for Specimen N45701.

Figure 9. Normalized Stiffness Versus Log Cycles for Specimen N45801.

Figure 10. Normalized Stiffness Versus Log Cycles for Specimen N67701.

Figure 11. Normalized Stiffness Versus Log Cycles for Specimen N67601.

Normalized Stiffness Versus Log Cycles for Specimen N67401. Figure 13.

3.3 Secondary Effects

The primary emphasis of this study was the monitoring of the modulus decay of two graphite/epoxy laminates, and to then correlate the modulus decay. However, as presented in the previous section, the $\begin{bmatrix}\pm 67.5\end{bmatrix}_{2s}$ laminates did not exhibit measurable modulus decay, and the $\begin{bmatrix}\pm 45\end{bmatrix}_{2s}$ laminates, while indicating modulus decay at the higher peak stress levels, could not be correlated.

However, during the course of testing and data reduction, several other phenomena were observed. For example, in comparing the initial static modulus to the initial dynamic modulus (see Table 4), it will be noted that in all cases except two, the static modulus was slightly higher than the dynamic modulus for the [±45]_{2s} laminates. However, the reverse of the above is true for the [±67.5]_{2s} laminates, as can be seen in Table 5. The difference in both cases are quite small, and might be attributed to experimental error except for the consistent trend indicated. It is reasonable to assume that the static values for each of the laminates are the "correct" values since they were obtained in a very controlled manner, as explained in Section 2. Therefore, it would be reasonable to assume that the laminate must have a physical characteristic that is dependent on dynamic loading.

As noted above, the initial static moduli of the [±45]₂₈ laminates were greater than the initial dynamic moduli measured during fatigue testing. Additionally, when testing was suspended during fatigue testing due to a 5 percent loss of dynamic modulus, it was noted that the subsequently measured static modulus was greater than the dynamic modulus calculated prior to test interruption. However, when fatigue testing was resumed, the first dynamic modulus measured was also greater

than the last dynamic modulus measured prior to test interruption. characteristic is indicated, for example, by Specimens N45901, N45701 and N45703 in Appendix B. This occurrence is actually much more pronounced than the data from these tests indicate, since the first dynamic modulus stored after test resumption was typically that measured a number of cycles after test resumption. In some cases it was noted that the dynamic modulus after test interruption nearly recovered to the initial dynamic modulus, but very quickly decayed back to the dynamic modulus measured prior to test interruption. This type of behavior is most clearly indicated by Specimen N45901, due to the test being stopped at a very low cycle number, where the number of cycles between a data storage cycle, as explained in Section 2.3, was small. It is presently believed that this apparent modulus recovery is due to a viscoelastic response of the matrix material of the laminate when subjected to a high shear loading. This response was not noted in the $[\pm 67.5]_{28}$ laminate. However, this laminate did not indicate any modulus decay, and therefore testing was not suspended to conduct static tests.

The previous phenomena, i.e., differences in static and dynamic moduli and modulus recovery, were initially believed to be experimental errors, due to the small magnitude involved. While trying to find the cause of these apparent discrepancies, by checking the test equipment and by studying the cyclic data, yet another phenomena was noted. During the study of the cyclic data for the $\begin{bmatrix} \pm 45 \end{bmatrix}_{28}$ laminate, it was noticed that the stress-strain hysterices loop was shifting from cycle to cycle. Further investigation revealed that the mean strain of specimens of the $\begin{bmatrix} \pm 45 \end{bmatrix}_{28}$ laminate was increasing as the fatigue test progressed. This phenomenon is lso attributed to a viscoelastic

response of the material. Figures 14, 15 and 16 indicate the slope of the lines that resulted from the linear regression fit of the stressstrain data taken at various cycles. As can be seen, these lines are moving to the right, and rotating in a clockwise manner. Additionally, the higher the peak stress during cyclic loading, the greater the shift. The rotation of lines in the figures is the modulus decay of the specimen, while the shift indicates the viscoelastic response. From these curves, which are typical of the $\left[\pm45\right]_{2s}$ laminates, it would seem that the viscoelastic response is dominating the results obtained during the fatigue testing. It is presently believed that the viscoelastic mechanism may provide an explanation for the lack of modulus decay of the [±45]28 laminates at low load levels. What may be occurring is that the stresses for the lower load levels are being relaxed, and therefore not propagating damage zones that would show up as modulus decay. Conversely, at the higher load levels, the stresses may be high enough to overcome the viscoelastic response of the material and propagate the damagé zones.

3.4 Failure Modes

Figures 17 and 18 indicate typical failures of the $[\pm 45]_{28}$ and $[\pm 67.5]_{28}$ laminates, respectively. The $[\pm 45]_{28}$ laminate indicates a failure mode dominated by delamination and matrix failure. The $[\pm 67.5]_{28}$ laminates indicate a failure mode highly dominated by matrix failure and fiber fracture.

When this program was initiated, it was expected that the test specimens would accumulate internal damage during cyclic loading, and that this damage would significantly reduce the stiffness of the test specimen. To determine the extent of this damage, the test specimens

Figure 14. Slopes of the Stress-Strain Curves for Specimen N45901 at Various Numbers of Cycles During the Fatigue Test.

Figure 15. Slopes of the Stress-Strain Curves for Specimen N45803 at Various Numbers of Cycles During the Fatigue Test.

Figure 16. Slopes of the Stress-Strain Curves for Specimen N45601 at Various Numbers of Cycles During the Fatigue Test.

Figure 17. Typical Failure of a [±45]₂₈ Laminate

Figure 18. Typical Failure of a [±67.5] s2 Laminate

were inspected using an ultrasonic G-seas before eyelic leading. After the leading of each specimen was terminated, the specimen was scanned again. By compacing the before and after scans of those specimens, accumulated damage, can be seen.

Figure 19 indicator as example of those scans for Specimen N45602, which did not tail after 10⁶ cycles. As can be seen, there are more white areas after fatigue cycling than before testing. These white areas indicate a material anomaly.

At the present time, C-sean techniques are not advanced enough to establish that these white areas are delaminations, or areas of matrix and Other fracture. The first impression might be that they are areas of delamination. However, a subsequent sectioning of selected specimens followed by examination in both an optical microscope and a scanning electron microscope failed to reveal significant numbers of failures of any type. Figure 20 is a low (100x) magnification SEM photograph of an edge of Specimen N45602, a $[\pm 45]_{28}$ laminate, indicating the only observed damage in the specimen. What appears to be a crack has propagated across the specimen thickness, from the upper left corner of the photograph to the lower right. (The dark spots are shadows during to flaring in the SEM caused by poorly conducting regions of the surface where electron charge build-up occurred.) It will be noted that particularly in the upper left center of the crack path, the "crack" appears to be more of a "smear". Figure 21 is a higher magnification (600x) close-up of this "smeared" region, which can be identified in Figure 20 as being just to the left of the bright region (the tip of which is at the right edge of Figure 21). This narrow band of material does not appear to be smeared, although it was not done in the cutting

a) Prior to fatigue testing

b) After 1,010,460 cycles

Figure 19. Ultrasonic C-Scans of Specimen N45602, a $[\pm 45]_{2s}$ Laminate

OF POOR QUALITY

Figure 20. Edge Crack in Specimen N45602 of the [±45] 2s Laminate.

process. It is possible that the matrix material, and perhaps parts of the fibers as well, have been pulverized by the cyclic fatigue action, conceivably in a shear mode. Obviously further study of this damage mode will be required.

For comparison, Figure 22 is an even higher magnification view (100X) of the same defect shown in Figure 20, in a region where a distinct crack is exhibited. A good fiber-matrix interface bond is evident, no bare fiber surfaces being exposed. Some suggestion of shear lacerations in the matrix can be seen. The lack of damage even one fiber diameter away from the crack will also be noted.

Figure 21. Close-up of Smeared Region of the Crack of Figure...20.

Figure 22. Close-up of a Distinct Crack in the Specimen of Figure 20.

CONCLUSIONS

During this study, two T300/5208 graphite/epoxy laminates were tested to determine modulus decay during cyclic loading. The results of the fatigue tests of the $\left[\pm 45\right]_{28}$ laminate indicate a cyclic peak stress-dependent modulus decay, i.e., the higher the peak stress, the greater the modulus decay. For the $\left[\pm 67.5\right]_{28}$ laminate tests, modulus decay was nonexistent.

During the cyclic testing, three secondary effects were noted. First, the two laminate orientations respond differently when subjected to dynamic loads. This was noted in observing the difference between static and dynamic stiffness measurement. Second, it was observed that there was a modulus recovery when the cyclic loading was interrupted. However, this modulus recovery very quickly decayed after cyclic loading Third, the $\left\lfloor \pm 45 \right\rfloor_{28}$ laminate exhibited a very strong was resumed. viscoelastic response when subjected to cyclic loading. All of these secondary responses were unexpected, and are not fully understood at the present time. Additionally, since these effects are secondary, they are Nevertheless, by having an unlikely to receive much attention. awareness of their existence when beginning any future fatigue testing program, their occurrence is less likely to obscure the interpretation of the results obtained.

References

- 1. G.C. Grimes and D.F. Adams, "Investigation of Compression Fatigue Properties of Advanced Composites," Northrop Technical Report NOR 79-17, Naval Air Systems Command Contract NO0019-77-C-0519, October 1979.
- 2. D.E. Walrath and D.F. Adams, "Fatigue Behavior of Hercules 3501-6 Epoxy Resin," Report No. NADC-78139-60, Naval A' Development Center Contract No. N62269-78-C-0340, January 1980.
- 3. D.E. Walrath and D.F. Adams, "Through-the-Thickness Compression-Compression Fatigue of SMC-R50 Composites," Report UWME-DR-004-102-1, University of Wyoming, Department of Mechanical Engineering, February, 1980.
- 4. D.E. Walrath and D.F. Adams, "Static and Dynamic Shear Testing of SMC Composite Materials," Report UWME-DR-004-103-1, University of Wyoming, Department of Mechanical Engineering, May 1980.
- 5. G.C. Grimes, D.F. Adams and E.G. Dusablon, "The Effects of Discontinuities on Compression Fatigue Properties of Advanced Composites," Northrop Technical Report NOR 80-158, Naval Air Systems Command Contract NO0019-79-C-0276, October 1980.
- 6. B.W. Rosen, "A Simple Procedure for Experimental Determination of the Longitudinal Shear Modulus of Unidirectional Composites," J. of Composite Materials, Vol. 6, No. 4, October 1972, pp. 552-554.

Appendix A

Static Tensile Stress-Strain Plots

This appendix includes the stress-strain data for the 10 static tests performed. Each plot includes two stress-strain curves, which were obtained by utilizing two axial extensometers, one having a 3.5 in gage length and the other a 1.5 in gage length. There is a difference between the two curves; however, the difference is small. Importantly, there is no divergence at the beginning of the curves, which would indicate the presence of binding. Additionally, the calculated tangent moduli of these curves are very close, as indicated in Tables 2 and 3 also.

Appendix B

Tables of Static and Dynamic Moduli of Fatigue Test Specimens

This appendix includes the static and dynamic modulus values stored for each specimen during the fatigue testing.

PRECEDING PAGE BLANK NOT FILMED

TEST DATE	B/18/19B1 * CONTRACT NO. 40-0008 FROJECT NASA
TYPE-09 11021 TENSION TENSION	* SPECIMEN NAME - N45901
TEST DIRECTION IS UP MATERIAL: +-48 GR/EP.90% FATIG	ue
TEMPERATURE 23.00 DEG. C. HUM! CYCLING FREQ 10.00	
FUNCTION GEN RNG, MULT 10.09 BCAN NATE	100.00 * WIDTH (IN) 1.500
OPERATOR #1 MOHAN	HZ * THICKNESS (IN)044
OPERATOR #2	· 医血管性 医原生性 医皮肤性 医皮肤
CHAN. TYPE LOW HIG	
8 41013 10.01	
7 48 .005 10.00	
6 49 ,005 10.01	D 0.00000 .01970 .98430 LAT. EXT

SPECIMEN:	N45901 STATIC LONG. MODULUS*(E+06)	DYNAMIC LONG. NODULUS*(E+06)	G(12)*(E+06)
1		2.47	.72
	2.54		
8 5 7 9 19		2.39 2.37	.69
Š			. 69
		2.36	.68
		2.36	.68
19		2.39	. 67
29		2.31	.67
39		2.3∳	.67
49		2.30	.66
39		2.28	.68
69		2.27	.68
79		2.27	.65
89		2.27	. 65
99		2.25	.65
150		2.29	.66
200		2.26	.65
259		2.20	.63
313		2.30	,66
363		2.28	.64
420		2.20	.63
479		2.17	.62
534		2.13	.60
586	2-39	2. 10	.59
632		2.26	.64
637		2.27	.64
642		2.28	.64
647		2.28	.64
652			
		2.28	.64
637		2.24 -	.64
662		2.24	.63
760		2.17	.61
860		2.10	. 59
960	•	2.03	.57

N45902 -

TEST DATE	/24/1981 * CONTRACT NO. 43-6	1338 PROJECT NASA
TYPE-09 11321 TENSION TENSION	* RPECIMEN NAME: NO	5902
TEST DIRECTION IS UP NATURALLY +-45 GR-PP, 90% FATIGU	specimen shape ru	CTANGULAR
TEMPERATURE 23.00 DEC. C. ROMII CYCLING FREQ. 10.00 FUNCTION GEN RIG. RULT - 10.00 SCAN RATE - 200.00 OPPRATOR #1 BOHAN	ERTY * LENGTH (IN) 100.00 * NIDTH (IN)	1.800
· · · · · · · · · · · · · · · · · · ·	… "草花年老年在我们的老年就会的的是我们的是我们的的是我们的	**********
GHAN. TYPE 1 ON 11 G 8 41013 10.016 7 48 .005 10.006 6 49 .005 10.016	0.0000 2000.000 0.00 0.0000 .0000 0.00 0.0000 .0700 3.50	000 20KLU L. CELL 000 LONG, EXT.

SPECIMEN:	N46902 STATIC LONG. MODULUSKCE+063	DYNAMIC LONG. MODULUSE (E+06)	G(12)*(E+06)
	2.70	2.54	.72
1	2.00	2.47	.70
3 5 7 9	·	2.44	.69
2		2.42	.69
7		2.41	.68
		2.41	,68
18			.67
28		2.38	. 67
38		2.37	
48		2.35	.67
58		2.35	.66
683		2.34	.66
78		2.32	. 96
88		2.93	.66
98		2.31	. 63
149		2.36	.67
200		2.31	. 63
251		2.36	.67
277		2.36	. 67
202		2.35	.66
287		2.35	, 66
202		2.34	.66
297		2.84	. 66
802		2.88	.66
307		2.40	.68
		2.41	.68
607		2.48	.69
80 4 90 4	2.67	2.43	.69

SPUGLE *	8171 to LONG. BODULUS (E+06)	DYRAMIC LONG. MODULUS*(E+06)	G(12) *(E+06)
0	17.64		. 68
50	2 40		. 67
100	2.43		.66
210	2,39		. 63
3.10	2.39		. 63
600	2.36		,64
	2.38		. 03
क्षात्रक स्टब्स	5.38		. 65
1100	2.37		. 63

N45904

SPECIMEN:	N43904 STATIC LONG. MODULUS*(E+06)	DYNAMIC LONG. MODULUS*(E+06)	G(12)*(E+06)
0	2.51		.6B
50	2.40		.66
200	2.86		.63
430	2.37		.65
600	2.32		. 63
daa	2.27		.62
1030	2.22		.60

TEST DATE	8/27/1981 * CONTRACT NO. 43-8335 PROJECT MASA
TYPE-69 11321 TENSION TENSION TEST DIRECTION IS UP	* Specimen name 145905
MATERIAL: +-45 GR/EP,90% FATIGHTEMPERATURE 23.60 DEG. C. HUMIN CYCLING FREQ	ITY 23.0% *
FUNCTION GEN RNG. MULT 10.00 SCAN RATE320.00	100.00 * WIDTH (IN) 1.500
OPERATOR *1 OPERATOR *2	章 在
CHAN. TYPE LOW HIGH	
	6.00000 2000.0000 0.00000 20KLB L.CELL
8 41013 10.016 7 48 .003 10.006 6 49 .005 10.016	

SPECIMEN:	N459G5 ETATIC LONG.	DYNAMIC LONG.	G(12)*(E+06)
CICLE .	MODULUS*(E+06)	MODULUS (E+06)	0(12/4/2:00/
1	2.70	2.45	.69
Ř		2.37	.66
š		2.35	.66
7		2.34	.65
8 5 7 9		2.33	.65
19		2.32	.65
29		2.31	.64
39		2.30	.64
49		2.29	.64
59		2.29	.64
69		2.28	.64
79		2.27	.63
89		2.23	. 63
99		2.24	.62
199		2.24	.62
299		2.19	.61
399		2.16	.60
499		2.11	.58
600		2.10	.68
700		2.03	. 56
eco eco		1.99	.55
810		1.96	.54
820		1.97	.84
830		1.96	.84
840		1.95	.53
830		1.95	.84
8 60		1.94	.53
870		1.92	.53
880		1.91	.53
890		1.88	.52
900		1.87	.52

ORIGINAL PAGE IS OF POOR QUALITY

SPECIMEN: CYCLE #	N40801 STATIC LONG. MODULUS#(E+06)	DYNAMIČ LOKG. RODULUS*(E+06)	G(12)*(E+06)
30	2.33	***************************************	.64
100	2.26		.61
200	2.31		.63
500	2.31		. 63
1000	2.30		.63
1500	2.33		. 64
2500	2.29		.63
3300	2.00		.63
4500	2.33		.64
5500	2.32		.64
6500	. 2.31		.64

SPECIMEN:	N45802 STATIC LONG. MODULUS#(E+06)	DYNAMIC LONG. MODULUS#(E+06)	G(12) ¤(É+06)
O	2.53		.69
1000	2.37		.64
	2.29		.63
3000			.62
4000	2.27		.64
5000	2.30		
6000	2.24		.62
7020	9.98		. 62

N45803

TEST DATE	0/25/1981 * CONTRACT NO. 49-8335 PROJECT RASA
TYPE-09 11321 TENSION TENSION	* SPECIMEN NAME N48003
TEST DIRECTION 18 UP HATERIAL: +-45 GR/EP.80% FATIG	
TEMPERATURE 23.00 DEC. C. HUMII CYCLING FREO 10.00	
FUNCTION CEN INC. MULT 10400 SCAN RATE	
OPERATOR #1 OPERATOR #2	*
斯坦森冰川北京市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市	*****************************
CHAN. TYPE LOW HIGH	
7 48 .005 10.00	
6 49 .003 10.010	0 0.00000 .01970 .98430 LAT. EXT.

SPECIMEN: CYCLE .	N45803 STATIC LONG.	DYNAMIC LONG.	Q(12) *(E+06)
_	Modulus=(E+66)	Modulus#(E+06)	
1	2.68	2.51	. 72
3		2.46	.70
2		2.44	.69
7		2.43	. 69
3 5 7 9		2.43	.69
19		2.41	.68
29		2.45	.70
39		2.45	.70
49		2.39	.68
5 9		2.39	. 68
69		2.39	.68
79		2.39	.68
89		2.38	.67
99		2.38	. 67
198		2.36	. 67
298		2.41	.6B
398		2.38	. 67
498		2.36	.67
598		2.35	. 66
698		2.33	.66
798		2.32	.66
898		2.32	. 65
998		2.31	. 65
1996		2.27	.64
2993		2.26	. 63
3994		2.29	. 63
4094		2.29	.65
4194		2.29	•64•
4293		2.28	.64
4398		2.27	.64
4493		2.26	.64
4393		2.26	.64
4693		2.25	.63
4793		2.25	.63
4893		2.26	.64

SPECIFIEM:	N45804 STATIC LONG. HODULUS: (E+05)	DYNAMIC LONG. NODULUS*(1.+06)	G(12)×(E+06)
0	2.56	110201301(12.4(10)	.68
800	2.38		
2000	2.34		.64
4030	2.33		.63
6020	2.31		.63
7000	2.33		.63
7930	2.28		.63
200			.62

STEELER P	81111C LONG, more used +06)	nynamic long. Nobulus*(L+08)	G(12)*(E+06)
o	2.54		. 70
200	2.41		. 67
2500	2° . ito		. 66
40000	21.44		.63
445(74)	2.24		.64
41/14/14	2.437		Ba.
90.30	. 30		. 64
846,1,148	2.27		Eð.

TEST DATE	7/24/1981 🛊	CONTRACT NO.	43-8335	PROJECT NA	18A
TYPE-09 11321 TENSION TENSION TEST DIRECTION IS UP	· [SPECIMEN NAM	E 145701		
MATERIAL: +-45 GR-FP. 70%, FATIO		SPECIMEN SHA	PE RECTANG	ULAR	
CYCLING FREQ 10.00	HERTZ *	LEECTH (IN)-			
FUNCTION GEN RNG, MULT 10.00 SCAN RATE	100.00 #	THICKNESS (1)	h)	.044	
OPERATOR #1 MORAN OPERATOR #2					
*************************************					***
CHAN. TYPE LOW HIC	or cal-low	CAL-HIGH GA		DESCRIPTION	
8 41 0.000 9.90 7 48 .003 10.0	0.00000	2000.0000	0.00000	20KLB LCELL	- ما
7 48 .003 10.0	15 0.00000	.07000	3,50000	LONG. EXT.	
6 49 .010 10.0	15 0.00000	.01970		LAT. EXT.	

SPECIMEN: 1 CYČLE / _	STATIC LONG.	DYNAMIC BONG.	G(12) *(E+06)
	Modulus*(E+06)	modulus*(E+06)	
1	2.68-	2.61	.75
3		2.6 <u>1</u>	.75
5		2.59	.74
7		2.59	.74
9		2.59	.74
19		2.59	.74
29		2.59	.74
39		2.59	.74
49		2.58	.74
59		2.59	.74
69		2.57	.73
79		2.56	.73
89		2.87	.73
99		2.53	.72
199		2.53	.72
299		2.55	.72
400		2.54	.72
500		2.54	.72
600		2.53	.72
700		2.53	.72
801		2.83	.72
901		2.53	.72
1001		2.52	.72
2004		2.49	.71
8007		2.49	.71
		2.52	.72
4009			
8010		2.52 2.53	.72 .72
6012			
7014		2.58	.72
8015		2.53	.72
9017		2.53	.72
10018		2.52	.72
20034		2.33	.72
30050		2.52	.71
31031		2.52	.71
32033		2.52	.71
83034		2.52	.71
34036		2.81	.71
35037		2.51	.71
36039	2.53	2.48	.70
37061	=	2.53	.71
38062		2.49	.70
39064		2.50	.70

TEST DATE	E		7/2	17/1981 *	CONTRACT	No. 43-8335	PROJECT NASA
	11021 TEN		ROIS		SPECIMEN	NAME N43702	
MATERIAL	ECTION IS : +-45,6RV	EP.70%.F	ATICUE	*		SHAPE RECTANG	FULAR
CYCLING I	URC 23.00	1(). OO HEI	VTZ *	LENGTH ()	N)	. 000
SCAN RATE	GEN RNG.M	32(100,00 ×	THICKNESS	(11)	.043
OPERATOR				*			
********		****	******		***************************************		***********
CHAN.	TYPE	LOW	HICH			I GAGE LEN.	DESCRIPTION
8	41	0.000	9.995	0.00000	2000.0000	0.00000	20KLB L.CELL
7	48	.005 1	0.015	0.00000	.07000	3.50000	LONG. EXT.
6	49	.010 1	0.015	0.00000	.01976	.98430	LAT. EXT.

anna temm.	W.4.5500		
SPECIMEN:	STATIC LONG.	DYNAMIC LONG.	G(12)*(E+06)
G1000 -	MODULUS*(E+06)	MODULUS*(E+06)	
1	2.50	. 2.72	.79
3		2.69 2.72	.78 .78
5 7		2.68	.77
ģ		2.68	.77
19		2.70	.78
29		2.70	.78
39		2.70 2.70	.78 .78
49 59		2.69	.78
69		2.69	.78
79		2.68	.77
89		2.69	.78
99		2.68 2.67	.77 .77
199 299		2.67	.77
399		2.67	. 27
499		2.65	.76
599		2.66	.76
699		2.65.	.76
799		2.68	.76 .76
899 1000		2.65 2.65	.76
2030		2.64	.76
3002		2.65	.76
4003		2.63	.76
5003		2.68	.76
6094		2.66	.76 .77
7005		2.67 2.67	77
8006 9007		2.66	.76
10010		2.67	. 77
20028		2.68	.77
30048		2.67	.76
40036		2.67	.76 .76
50065 60081		2.67 2.68	.78
70100		2.64	.78
80125		2.64	.75
90133		2.63	.73
91135		2.63	.74
92136		2.62 2.61	.74 .74
9313 7 9413 8		2.62	.74
98139		2.61	.74
96139		2.61	.74
97140		2.61	.74
98141		2.61	.74 .73
99142 100143		2.60 2.60	.73
103143		2.89	.73
104146		2.59	.73
103147	2.62	2.58	. 73
106148		2.37	.72
107149		2.87 2.86	.72 .72
10813 4 109135		2.36	.72
110136		2.55	.71
111137		2.52	.76
112157	2.50	2.39	. 66

TEST DATE	7/27/1981 * CONT	ract no. 43-8355	PROJECT NASA
TYPE-09 11321 TENSION TENSION TEST DIRECTION IS UP	* SPEC	IPEN NAPE N45703	
MATERIAL: +-45,GR/EP,70%,FATIG TEMPERATURE 23.00 DEG. C. HUMI	UE * SPIC	imen shape rectang	- ULAR
CYCLING FREG 10.00 FUNCTION GEN RNC, MULT 10.00	MENTZ * LENG	TH (IN) 7	
SCAN RATE320.00 OPERATOR #1 MORAN		KKESS (IN)	
OPERATOR #2	*		. No constitution of the color
CHAN. TYPE LOW HIG	H CAL-LON CAL	-HIGH GAGE LEN.	DESCRIPTION
8 41 0.000 9.99 7 48 .005 10.01	0.00000 .	07000 8.50000	LONG. EXT.
6 49 .010 10.01	5 0,00000 .	01970 .98430	LAT. EXT.

1 2.78 2.66 .75 8 2.66 .75 8 2.65 .78 7 2.65 .75 9 2.65 .75 19 2.64 .75 29 2.63 .75 39 2.63 .74 49 2.62 .74 59 2.63 .74 69 2.63 .74 69 2.63 .74 69 2.63 .74 89 2.62 .74 199 2.63 .74 199 2.62 .74 199 2.62 .74 199 2.62 .74 199 2.62 .74 199 2.62 .74 199 2.62 .74 199 2.60 .73 299 2.59 .73 399 2.59 .73 399 2.59 .72 499 2.58 .72 699 2.58 .72 699 2.58 .72 699 2.58 .72 699 2.58 .72 699 2.57 .72 699 2.50 .73 8000 2.57 .72 8000 2.57 .72 8000 2.57 .71 8002 2.58 .71 8003 2.56 .71 8004 2.57 .71 8009 2.58 .71 80009 2.58 .71 80009 2.58 .71 80013 2.56 .71 80010 2.57 .71 8002 2.58 .71 8003 2.56 .71 8004 2.57 .71 8009 2.58 .71 80013 2.56 .71 80010 2.57 .71 8002 2.58 .71 8003 2.56 .71 8004 2.57 .71 8009 2.58 .71 80011 2.56 .71 80012 2.57 .71 8002 2.58 .71 8003 2.56 .71 8004 2.57 .71 8009 2.58 .71 80010 2.57 .71 80020 2.58 .71 80011 2.54 .70 80020 2.58 .70 80020 2.58 .70 80020 2.58 .70 80020 2.58 .70 80020 2.58 .70 80020 2.58 .70 80020 2.58 .70 80020 2.59 .70 80020 2.50 .70 80020 2.50 .70 80020 2.50 .70 80020 2.50 .70 80020 2.50 .70 80020 2.50 .70 80020 2.50 .70 80020 2.50 .70 80020 2.50 .70 80020 2.50 .7	SPECIMEN:	N45703 STATIC LONG. MODULUS#(E+06)	DYNAMIC LONG.	G(12)*(E+06)
\$ 2.66	•		MODULUS*(E+06)	
19		2.78 —		
19	Ř			
19	,			
19	å		0.48	
29 3.63 .78 39 2.62 .74 49 2.62 .74 59 2.63 .74 69 2.63 .74 89 2.62 .74 99 2.62 .74 199 2.62 .74 199 2.60 .73 299 2.59 .72 499 2.58 .72 599 2.57 .72 699 2.52 .73 799 2.61 .73 899 2.60 .73 999 2.60 .73 2000 2.37 .72 4001 2.36 .71 5002 2.37 .71 6002 2.36 .71 7002 2.57 .71 8003 2.57 .71 9003 2.58 .71 10004 2.57 .71 20009 2.58 .71 30013 2.54 .70 44019 </td <td></td> <td></td> <td></td> <td></td>				
39 2.62 .74 49 2.62 .74 59 2.63 .74 69 2.63 .74 79 2.63 .74 89 2.62 .74 99 2.62 .74 199 2.62 .74 199 2.62 .74 199 2.59 .73 299 2.59 .72 499 2.58 .72 599 2.57 .72 699 2.62 .73 799 2.61 .73 899 2.60 .73 2000 2.57 .72 3000 2.57 .72 3000 2.57 .72 3000 2.57 .71 6002 2.57 .71 7002 2.57 .71 9003 2.57 .71 20009 2.58 .71 30013 2.56 .71 4004 2.57 .71 20009 <td>20</td> <td></td> <td></td> <td></td>	20			
49 2.62 ?4 59 2.63 .74 69 2.63 .74 79 2.63 .74 89 2.62 .74 199 2.62 .74 199 2.52 .72 299 2.59 .72 399 2.58 .72 499 2.58 .72 599 2.57 .72 699 2.61 .73 799 2.61 .73 899 2.60 .73 2000 2.57 .72 3000 2.57 .72 3000 2.57 .72 3000 2.57 .71 4001 2.56 .71 7002 2.57 .71 3003 2.56 .71 3004 2.57 .71 2009 2.58 .71 30013 2.56 .71 44019 2.57 .71 45020 2.53 .70 4502				
59 2.63 .74 69 2:63 .74 79 2.63 .74 89 2.62 .74 99 2.60 .73 299 2.59 .72 399 2.59 .72 499 2.58 .72 599 2.57 .72 699 2.61 .73 799 2.61 .73 999 2.60 .73 999 2.60 .73 2000 2.37 .72 3000 2.36 .71 4001 2.36 .71 5002 2.56 .71 7002 2.57 .71 8003 2.57 .71 9003 2.57 .71 1004 2.57 .71 2009 2.58 .71 30013 2.56 .71 4004 2.57 .71 2009 2.54 .70 44019 2.57 .54 .70				
69				
79 2.63 .74 89 2.62 .74 99 2.62 .74 199 2.60 .78 299 2.59 .73 399 2.59 .72 499 2.58 .72 599 2.57 .72 699 2.61 .73 799 2.61 .73 899 2.60 .73 2000 2.57 .72 4001 2.56 .71 5001 2.56 .71 6002 2.56 .71 7002 2.57 .71 8003 2.56 .71 9003 2.57 .71 1004 2.57 .71 20009 2.58 .71 30013 2.56 .71 44019 2.57 .71 45020 2.53 .70 45019 2.54 .70 4502				
89				
99				
199			2.02	
299 2.59 .73 399 2.59 .72 499 2.58 .72 599 2.62 .73 799 2.61 .73 899 2.60 .73 999 2.60 .73 2000 2.57 .72 3000 2.56 .71 4001 2.56 .71 5001 2.57 .71 6002 2.56 .71 7002 2.57 .71 8003 2.57 .71 9003 2.57 .71 1004 2.57 .71 2009 2.58 .71 30013 2.56 .71 4004 2.57 .71 4009 2.58 .71 30013 2.56 .71 4002 2.54 .70 44019 2.57 .53 .70 45020 2.54 .70				
399 2.59 .72 499 2.58 .72 599 2.57 .72 699 2.62 .73 799 2.60 .73 899 2.60 .73 999 2.60 .73 2000 2.57 .72 3000 2.56 .71 4001 2.56 .71 5001 2.57 .71 6002 2.57 .71 7002 2.57 .71 9003 2.56 .71 1004 2.57 .71 20009 2.58 .71 30013 2.56 .71 40017 2.54 .70 43019 2.57 .253 .70 44019 2.57 2.53 .70 45020 2.54 .70 46021 2.54 .70 46022 2.53 .70 40023 2.59 .70 51023 2.52 .70				
499 2.58 .72 599 2.57 .72 699 2.62 .73 799 2.60 .73 899 2.60 .73 999 2.60 .73 2000 2.57 .72 3000 2.56 .71 4001 2.56 .71 5001 2.57 .71 6002 2.56 .71 7002 2.57 .71 8003 2.57 .71 9003 2.57 .71 1004 2.57 .71 20009 2.58 .71 30013 2.56 .71 40017 2.54 .70 43019 2.54 .70 44019 2.57 .253 .79 45020 2.56 .71 46021 2.54 .70 44021 2.54 .70 44022 2.53 .70 51023 2.52 .70				
899 2.57 .72 699 2.62 .73 799 2.61 .73 899 2.60 .73 999 2.60 .73 999 2.60 .73 9000 2.57 .72 8000 2.36 .71 5001 2.57 .71 6002 2.56 .71 7002 2.57 .71 8003 2.56 .71 9003 2.57 .71 10004 2.57 .71 20009 2.58 .71 30013 2.56 .71 4001 2.54 .70 44019 2.57 .253 .70 44021 2.54 .70 44021 2.54 .70 44022 2.54 .70 49023 2.54 .70 51023 2.59 .70				
699				
799 2.61 .73 899 2.60 .73 999 2.60 .73 2000 2.57 .72 8000 2.36 .71 4001 2.36 .71 5001 2.57 .71 6002 2.56 .71 7002 2.57 .71 8003 2.57 .71 9003 2.57 .71 10004 2.57 .71 20009 2.58 .71 30013 2.56 .71 40017 2.54 .70 43019 2.54 .70 44019 2.57 2.53 .70 45020 2.56 .71 46021 2.54 .70 44022 2.54 .70 49023 2.53 .70 51023 2.52 .70				
899 2.60 .73 999 2.60 .73 2006 2.57 .72 3000 2.36 .71 4001 2.36 .71 5001 2.57 .71 6002 2.56 .71 7002 2.57 .71 8003 2.56 .71 9003 2.57 .71 10004 2.57 .71 20009 2.58 .71 30013 2.56 .71 40017 2.54 .70 43019 2.54 .70 44019 2.57 2.53 .70 44021 2.54 .70 46021 2.54 .70 49022 2.53 .70 51023 2.52 .70				
699 2.60 .73 2000 2.37 .72 3000 2.36 .71 4001 2.36 .71 5002 2.56 .71 7002 2.57 .71 8003 2.57 .71 9003 2.57 .71 1004 2.57 .71 20009 2.58 .71 30013 2.56 .71 40017 2.54 .70 43019 2.54 .70 44019 2.57 2.53 .70 40020 2.54 .70 44011 2.54 .70 44021 2.54 .70 40023 2.54 .70 49022 2.53 .70 51023 2.52 .70				
2000				
Solid Soli			2.00 2.89	
4001				
5401 2.57 .71 6602 2.56 .71 7002 2.56 .71 8003 2.57 .71 8003 2.57 .71 10004 2.57 .71 20009 2.58 .71 20009 2.58 .71 30013 2.56 .71 44017 2.54 .70 43019 2.57 2.53 .70 44019 2.57 2.53 .70 44019 2.57 2.53 .70 44022 2.56 .71 46022 2.54 .70 49022 2.53 .70 80023 2.49 .69 81023 2.49 .69				
6002 2 2.56 .71 7002 2 2.57 .71 80003 2.56 .71 9003 2.57 .71 10004 2.57 .71 20009 2.58 .71 30013 2.56 .71 40017 2.54 .70 43019 2.57 2.53 .70 44019 2.57 2.53 .70 44011 2.54 .70 44021 2.54 .70 44021 2.54 .70 44022 2.53 .70 49022 2.53 .70 80023 2.49 .69 51023 2.52 .70				
7002 2 2.57 .71 8003 2.56 .71 9003 2.56 .71 10004 2.57 .71 . 20009 2.58 .71 30013 2.56 .71 40017 2.54 .70 43019 2.57 2.53 .70 44019 2.57 2.53 .70 44021 2.54 .70 47021 2.54 .70 47021 2.54 .70 47021 2.54 .70 47021 2.54 .70 47021 2.54 .70 47021 2.54 .70 47021 2.54 .70 47021 2.54 .70 47021 2.54 .70 47021 2.54 .70 47021 2.54 .70 47021 2.54 .70 47021 2.54 .70 47022 2.53 .70 80023 2.49 .69 81023 2.52 .70				
8003 2.56 .71 9003 2.57 .71 10004 2.57 .71 20009 2.58 .71 30013 2.56 .71 40017 2.54 .70 43019 2.57 2.53 .70 44019 2.57 2.53 .70 45020 2.56 .71 46021 2.54 .70 46022 2.54 .70 49002 2.53 .70 500023 2.49 .69 51023 2.52 .70				.71
9003 2.57 .71 . 10004 2.57 .71 . 20009 2.58 .71 . 30013 2.56 .71 . 40017 2.54 .70 . 43019 2.57 2.53 .70 . 44019 2.57 2.53 .70 . 44011 2.54 .70 . 46021 2.54 .70 . 47021 2.54 .70 . 48022 2.54 .70 . 49022 2.53 .70 . 50023 2.49 .69 .51023				
10004 2.57 .71 20009 2.58 .71 30013 2.56 .71 40017 2.54 .70 43019 2.57 2.53 .70 44019 2.57 2.56 .71 46021 2.54 .70 47021 2.54 .70 48022 2.53 .70 49022 2.53 .70 51023 2.49 .69 51023 2.52 .70				
26009 2.58 .71 30013 2.56 .71 40017 2.54 .70 43019 2.57 2.53 .70 44019 2.57 2.53 .70 44019 2.56 .71 46021 2.54 .70 46022 2.54 .70 49022 2.53 .70 50023 2.49 .69 51023 2.52 .70			# · V (
30013 2.56 .71 40017 2.54 .70 43019 2.54 .70 44019 2.57 2.53 .70 45020 2.56 .71 46021 2.54 .70 46022 2.54 .70 49022 2.53 .70 50023 2.49 .69 51023 2.52 .70				
40017 2.54 .70 43019 2.54 .70 44019 2.57 2.53 .70 45020 2.56 .71 46021 2.54 .70 47021 2.54 .70 48022 2.53 .70 49022 2.53 .70 50023 2.49 .69 51023 2.52 .70				
43019 2.57 2.53 .70 44019 2.57 2.53 .70 43020 2.56 .71 46021 2.54 .70 47021 2.54 .70 48022 2.54 .70 49022 2.53 .70 50023 2.49 .69 51023 2.52 .70			9 RA	
44019 2.87 2.83 .70 45020 2.56 71 46021 2.54 .70 47021 2.54 .70 48022 2.53 .70 49022 2.53 .70 50023 2.49 .69 51023 2.52 .70				
43020 2.56 .71 46021 2.54 .70 47021 2.54 .70 48022 2.54 .70 49022 2.53 .70 50023 2.49 .69 51023 2.52 .70				
46021 2.54 .70 47021 2.54 .70 48022 2.54 .70 49022 2.53 .70 50023 2.49 .69 51023 2.52 .70		2.07		
47021 2.54 .70 48022 2.54 .70 49022 2.53 .70 50023 2.49 .69 51023 2.52 .70				
48022 2.54 .70 49022 2.53 .70 50023 2.49 .69 51023 2.52 .70				
49022 2.53 .70 80023 2.49 .69 81023 2.52 .70				
80023 2.49 .69 51023 2.52 .70				
51023 2.52 .79				
	82024		2.86	47

TENT BATE	7/20/1901	CONTRACT NO), 49-A3AA	риолгст нача
TYPE-OF LIGHT TENNIOR TENNIOR TENNIOR		BECTION NV	MB N48704	
MATERIALI . 445. GREPP. 709. PATIG		Specifical st	iape imetano	ULAR
CACLING PING. COMPRESSED 10.00 FUNCTION GLE MIG. PRINTERS 10.00	murs 🤛	LPRGTH CHO		, 000 . 000
SCAN HATT CONTRACTOR BERNING BROADS		THICKNESS C	(IN) and and	.044
#FF##10 6 		******	*****	****
CHARL TYPE LOV HIC	H GAL LOV	CAL: HIGH C 2000, 0000	0,00000	precentrator 20KLU L. GEL L
7 40 .000 9.99 7 40 .000 10.01 6 49 .010 10.01		.07000		Long, Ent. Lat. Ent.

SPECIMEN: CYCLE *	STATIC LOSG.	DYNAMIC LONG.	G(12)#(E+06)	_
	(66+4) (80.10d0M	100001.185(E+06)	***	
1	2.77 -		. 70	
1) 5 7 9		2.67	.77	
5		2.00	.77	
7		2.66	. <u>TT</u>	
9		2.06	.77	
19		5.6♦	. 76	
29		2.64	. <u>7</u> 6	
89		2.64	.76	
49		2.69	.70	
59		2.68	.76	
69		2.62	.73	
74		2.68	.70	
89		2.68	. 70	
94		2.62	.70	
149		2.61	. 73	
244		23.61	.78	
349		2.60	.75	
499		2.59	.74	
544		2.84	. 73	
644		2.59	.74	
709		2.68	. 76	
901		2.60	. 76	
1000		5.69	.70	
2000		2.59	.78	
8041		2.58	.74	
4002		2.58	.74	
8002		2.89	· <u>Ÿ</u>	
6003		2.59	· <u>7</u> 4	
2004		2.56	.74	
8008		2.89	.75	
90.16		5.60	.78	
10007		2.59	. 70	
20014		2.60	.73	
80020		2.61	.73	
40027		2.60	. 75	
80032		a. 59	. 75	
84035		2.59	.75	
នគលនិច		2.59	. 78	
56036		2.87	.75	
87036		2.50	. 78	
58087		2.57	.70	
89037		2.87	. 78	
невв		5.03	.75	
61039		2.86	. 73	
62039		2.86	.75	
63040		2.84	.75	

TEST DATE	7/20/1901	* CONTRACT NO. 40-000	8 PROJECT BASA
TYPE-09 (1081 TENRICATED IN U		NACCIMEN NAME NAST	05
MATERIAL: +-45, GR-FP TEMPERATURE, 20, 00 DE	,70n,Patigue	* Specimen Shape nect	'ANGULAR
GYCLING FIR.Q FURCTION GEN RING, MUL BCAN RATIONAL MORAN OPERATOR -1 MORAN OPERATOR -2	10.00 HERTZ 1 10.00 100.00 020.00 HZ	* LENGTH (IN) * WIDTH (IN) * THICKNESS (IN) * THICKNESS	~ 1.800 ~ .044
CHAN, TYPE	TON HIGH CALST.		DESCRIPTION
? 40	.000 9.998 0.0000 .003 10.018 0.0000 .010 10.015 0.0000		LONG. EXT.

SPECIMEN: CYCLE #	N48708 STATIC LONG. MODULUS*(E+06)	DYNAMIC LONG.	G(12)#(E+06)
1	TODOLOGIC BYOU	2.70	.78
	2.74	2.68	: ??
8 5 7 9		2.68	.77
š		2.67	
ؽ		2.67	.77 .77
10		2.68	.76
ช้ง		2.66	.76
39		2.68	.76
49		2.65	.76
89		2.64	.76
69		2.65	.76
79		2.64	.76
69		2.64	.76
99		2.64	.76
199		2.63	.78
299		2.68	.75
899		2.63	.75
499		2.62	.78
899		2.60	.74
699		2.61	.75
799		2.60	.74
ROO		2.61	.74
999		2.60	74
2000		2.60	.74
3001		2.61	.78
4003		2.61	.78
8003		2,61	.73
6004		2.61	.78
7004		2.61	.73
8008		2.00	.74
9006		2.61	.78
10006		2.61	.78
20028		2.62	.78
86038		2.61	.74
40089		2.89	.78
47042		2.59	.78
48048		2.89	.73
49048		2.86	.73
50044		2.58	.78
51044		2.88	.73
82048		2.88	.73
53045		2.55	.72
84046		2.57	.73
58046		2.57	.72
06446		2.55	.72

7 - 16 - 1981	* CONTRACT NO. +8 8885 PROJECT NAME
11111	* SPECIPEN NAME NAMES
That bill crime is an exercise	* SPECIMEN SHAPE RECTARGREAR
CYCLID 1010 000 001 1000 1000 100.00	ELFNOTH CIRCLES 7,000 8 KIDTH CIRCLES 1,000 5 THICKNESS CROSSES 1,004
24 11 11 11 1	
OPTINION OF HOMAN	· · · · · · · · · · · · · · · · · · ·
· (4)[] [[[]][[]] · [] · (2)] · (3)[[]	00 0000 0000 0.50000 1.0 0. FXT. 00 .07000 0.50000 1.AT. EXT. 00 .01970 98480 1.AT. EXT.

spreumni	Nebbol L	DYNAMIC LONG.	GG121%(E+06)	••
CYCLU .	STATIC LONG. MODULUSS(E+06)	100001.088 (1.400)	•	
	5.44	2.73	. 79 . 78	
1	2.74	2.78	. 78	
<i>11</i> 5		2.71	.78	
7		2.71	.78	
ò		2.71	.78	
19		2.7 2 2.72	.78	
90		2.71	. 77	
89		3.69	. 77	
; u		2,69	.77 .78	
30		2,72	.711	
69		2.71	.78	
76		9.71	.77 .77	
89		a. 6 <u>9</u>	, † ė	
44 199		3.67	.78	
59 9		2.72	77	
ล็วถึ		2.70	.70	
498		2.71	.74	
898		2,70	.77	
6911		2,70	.77	
7941		2.70	. 77	
848		2.72	.78	
9 141		2.70	.77	
1047		2.71	.78 .78	
5000		3.70	.78	
Seeg Jeeg		2.71	. 77	
1994		2.70	.78	
6993		2.70	av.	
2002		2,72	, 78	
1001		3.71	. 78	
9991	l .	2,73	.78	
100116		2.71	.78	
90071		2.72	.78 .79	
Haakt		2.70	.70	
4000		2.71	. 78	
6990) 6990)		2.71	. 70	
700		2,7 2 2,72	.78	
House		2.70	.70	
9993		5.71	70	
100817	6	ធ្វី (ទំនំ	.79	
24083		2.72	. 70 . 79	
1199111		2.74	. 70	
40070		2.78	.79	
80071		2.71	. 79	
60474 20471		2.71	.70	
11940		2.6H 2.6H	.70	
9140		2. oli	. 20	
9 40		5,69	, 70	
9956	1113	2.71	,79	
9440		11.68	.70	
0806		22, 6.4	.78 .78	
9040		2.69	.70	
5746		2.08	iri	
99.50 93.70		g 69	,7ii	
100.0		3.67	* * * * *	
1/10/10	** *			

TEST DATE	7/21/1981 #	CONTRACT NO	D. 49-899 5	PROJECT NASA
TYPE-09 11321 TENSION TENSION TEST DIRECTION IS UP	*	SPECIMEN N	AME: N40602	
MATERIAL +-45.CH/EP.608.FATIG			HAPE RECTANG	ULAR
CYCLING FRUO 10.00 FUNCTION GEN RING, MULT 10.00	III.TZ *	LENGTH (IN)) 7 1	
SCAN RATE			· · · · · · · · · · · · · · · · · · ·	
OFFICTOR #2 東京和古名文字及第12章東京東京東京東京東京東京東京東京東京東京東京東京東京東京東京東京東京東京東京	故 :你是这些我也是你是你你	**********	********	*****
CHAN, TYPE LOW HIG	H CAL-LOW	CAL-HIGH (GAGE LEN.	DESCRIPTION
H 41 doll 9.98		2000.0000		20KLB L.CELL
7 48 .010 10.01				LONG. EXT.
6 49 .010 10.01				LAT. EXT.
5 4A .010 10.01	a aaaaa	. 06000	1.86000	LONG. FYT.

SPECIMEN:	N45602		
CYCLE .	STATIC LONG.	DYNAMIC LONG.	G(12)*(E+06)
	MODULUS: (F+06)	MODULUSM(E+06)	
1	2.85 —	2.60	.81
3		2.80 ·	. <u>8</u> 1
5		2.79	.80
7		2.79	.80
9		2.78	.86
19		2.78	.80
29		2.78	.80
39 49		2:78 2:78	.80 .80
59		2.78	.80
69		2.78	.80
79		2.77	.79
89		2.77	.79
99		2.77	.79
199		2.77	.79
299		2.77	.79
349		2.77	.79
499		2.77	.79
599		2.76	.79
699		2.76	.79
799		2.77	.79
899		2.76	.79
999		2.76	.79
1999		2.77	.79
2999		2.76	.79
3998		2.77	.79
4998		2.78	.79
8998		2.78	.79
6098		2.77	.79
7998		2.77	.79
8998		2.77	.79
9998		2.77	.79
19998		2.79	.79
24997		2.78	.79
89997		2.78	.79
49996		2.78	.79 .79
89994		2.77 2.78	.79
69998 74992		2.76	.79
89990		2.76	.79
99991	-	2.76	.79
199974		2.78	.76
209062		2.74	.78
300061		2.78	.78
409934		2.74	.78
600034		2.74	.78
700102		2.74	.78
800184		2.73	.77
900277		2.69	.76
920297		2.68	.76
930397		2.69	.76
910016		2.68	.76
930323		2.67	.76
960334	2.61	2.65	.75
970333		2.67	.76
980343		2.66	.73
990348		2.66	. 78
10000352		2.63	.73
1010338	2.69	2.65	75

TYPE-09 11321 TENSION TENSION	Ħ٨
MATERIAL: +-45. CREEF. 668. PATIGUE	
CYCLING FREO 10.00 HERTZ	
SCAN RATE	
OPERATOR #1 MOHAN *	
- 本条形形的现在分词,我们可以在这种的,我们就是有关系的,我们就是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	**
CHAN. TYPE LOW HIGH CAL-LOW CAL-HIGH GAGE LEN. DESCRIPTION H 41 0.000 9.995 0.00000 2000.0000 0.00000 20KLB L.CELL	,
7 4B .005 10.015 0.00000 .07000 3.50000 LONG. EXT. 6 49 .010 10.015 0.00000 .01970 .98430 LAT. EXT.	

CDPC LINEN.	WARZAA		
SPECIMEN: CYCLE #		DYNAMIC LONG.	G(12)*(F+06)
	STATIC LONG. MODULUS*(E+06)	DYNAMIC LONG. MODULUS*(£+66)	
1	2.77	2.66	.40
3 8		2.66 2.65	.40 .40
ž		2.66 2.66	.40
ġ		2.65	.40
19		2.64	.40
29		2.65	.40
39 49		2.68	.40
59		2.64 2.64	.40 .40
69		2.63	.40
79		2.64	.40
89		2.64	.40
99		2.63	.40
199 299		2.63 2.63	.40 .40
399		2.63	.40
499		2.62	.40
599		2.63	.41
699		2.62	.40
799		2.62	. 40
899 999		2.62 2.62	.40 .40
1999		2.62	.40
2999		2.62	.40
4000		2.63	.40
5000		2.64	.40
6000		2.64	.40
7000 8031		2.64 2.64	. 40 . 40
9001		2.64	.40
10031		2.64	.40
20004		2.64	.40
30006		2.64	.40
40016		2.65	.77 .76
50020 60023		2.61 2.63	. 76
70027		2.65	. żż
80028		2.64	.76
90033		2.63	.76
100037		2.63	.76
200054 300101		2.64 2.65	.76 .77
400157		2.63	. ? ?
410164		2.63	.76
420170		2.62	.76
430177		2.62	. 76
440183		2.62	.76 .76
45019 0 460196		2.62 2.61	.76
470203		2.60	.76
480210		2.60	. 76
490217		2.58	. 76
800223		2.36	. 78
501224 802228		2.56 2.56	.75 .75
803228		2.86	.73
804226		2.86	. 75
503227		2.55	.78
806227		2.53	. 75
507228		2.34	.75
50822 9 50923 0		2.33 2.53	.78 .73
00740P		£.00	•••

N45603 CONTINUED

CYČLE "	STATIC LONG.	DYNAMIC LONG.	G(12) #(E+66)	
	ECONTRIBATE E+00)	nonulus (E+06) 2.50	.76	
609241	2.63	2.56	.76	
BU9248 -		2.00	.76	
D09243		2.57	.76	
809247		2.57	. 10	
809249		2.57	.10	
509239		2.57		ORIGINAL PAGE IS
\$09269		2.56	, 70	ODICINAL PRUE
509279		2.57	.74	ORIGINAL CHALLES
809289		2.57	. 20	AE BOOR OUALI
509299		2.56	.10	OF POOR QUALITY
809399		2.56	. 20	
509319		2.56	• 70	
509329		2.56	.76	
509339		2.55	.76 .76 .76 .76 .76 .76 .76 .76	
509439		2.55	.75	
509539		2.54	75	
509639		2.54	.78	
569739		2.53	.73	
509839		2.51	.74	
809939		2.50	.74	
810039		2.52	. 75 . 75	
810139		2.52	.75	
510240		2.52	.78 .74	
511040		2.50	• 74	
511140		2.50	.74	
311240		2.49	.74	
511340		2.49	.74	
511440		2.48	.74	
511540		2.47	.74	
511641		2.46	.74	
511741	2.46	2.43	.73	
511841	2.40	2.39	.73	
511941	2.45	2.27	. 69	

SPICINEN:	R45604 FTITTE LONG.	DYNAMIC LONG.	G(12) *(E+06)
C.CLD -	Maintrus (E+06)	HODULUS (E+06).	.86
1	2.78	2.74	.80
3		2.74	.80
š		2.72	
ž		2.72	•B0
7		2.72	.80
		2.71	.80
19		2.71	.80
29		2.72	.80
39		2.70	.79
49		2.70	.79
59			.79
63		2.70	. 79
63		2.70	.79
67		2.69	
		2.69	.79
69		2.69	. 79
71		-,,,	

N45604 CONTINUED

cratt.	SINIC LONG. ROBLES (1.06)	pytomic long. nopulus (6+06)	@+123.# +1+063	ORIGINAL PAGE IS
711	***************************************	2.78	.81	OF POOR QUALITY
74		2.78	.03	. The Court !!
70		₽.₹♦	. 80	
711		2.74	. 60	
ua		2.74	. 81 . 00 -	
40		2.72 2.73	, 80 - , 80	
100		2.73	. 410	
110 120		27.72	.80	
130		2.72	. 66	
140		n . 📆	.40	
100		2.72	. 80	
100		2. <u>T</u> 2	.80	
170		2.71	. 79	
270		2.71	.79	
320		2.76 2.70	.70	
470 570		2.69	70	
670		2.69	.79	
770		2,69	.79	
ara		21.09	.79	
970		2.08	.79	
1071		5.09	. 74	
2071		2.08	.79	
8072		2.08	.74	
4070		2.07 2.09	.78 .74	
4 7118 8700		2.68	.79	
7076		2.07	.78	
8077		2.08	. 74	
9074		2.04	.79	
10078		2.69	.79	
20002		2.70	,79	
300 30		2.69 3.70	.70 . 70	
40104		2.71	. 70	
30114		2.70	.70	
60127 70141		2 69	.70	
80168		3.70	. 70	
90171		2.70	.74	
10.01334		.>. 69	. 79	
2007,200		2.00	. 78	
au0324		2.67	. 78 . 78	
totions		2.67 2.60	. 78	
8703 74 887893		2.66	. 78	
therefore		2.67	. જેલ	
41,24,114		2.68	.70	
410400		2.67	. 78	
420419		2.63	.77	
4:10427		2.07	. 78	
440430		2.68 2.67	. TB . TB	
45004.25		2.07	.78	
4.44453		2.67	. 78	
400400		2.67	.76	
401457		2.68	. 78	
4024513		2.66	.77	
46.14.518		2.04	. 70	
400000		90.4	. 70	
465460		2.01	. 28	
400401		2.67	. 77 . 78	
401405		2.07		

N45606.

TEST DATE	9/ 8/1981 * CONTRACT NO. 43-8338 PROJECT MASA
TYPE-09 11821 TENSION TENSION TEST DIRECTION IS UP	*
HATERIAL: +-45.GIVEP.60%, FATIG TEMPERATUR: 23.00 DEG. C. HUMI	DITY 23.08 *
CYCLING FREQ 10.00 FUNCTION GEN RNG, MULT 10.00 SCAN RATE	100.00 × WIDTH (1N) 1.500
OPERATOR #1 SHIPPEN OPERATOR #2	*****
· · · · · · · · · · · · · · · · · · ·	· 李宏宗教会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会
CHAN. TYPE LOW HIG B +1013 10.01	H CAL-LOW CAL-HIGH GAGE LEN. DESCRIPTION
7 48 .005 10.00 6 49 .003 10.01	5 0.00000 .07000 3.80000 LONG. FET.

SPECIMEN:	N45606		
CYCLE .	STATIC LONG. NODULUS*(E+06)	DYNAMIC LONG. MODULUS*(E+06) · · ·	G(12)*(E+06)
1	2.78	2.70	-
3	2	2.68	.78
3 5 7 9		2.66	.78
ž		2.63	.77
à		2.65	.77
19			.77
29		2.64	.77
39		2.64	.77
49		2.63	.76
39		2.64	.77
69		2.64	.77
79		2.64	.77
89		2.63	.76
99		2.63	.76
3270		2.63	.76
4937		2.62	.76
493 <i>7</i> 6635		2.63	. 76
		2.65	.77
8272		2.68	.77
9940		2.63	.76
11607		2.63	.76
13275		2.64	.77
14942		2.65	.77
16610		2.66	.78
83290		2.65	.77
49970		2.68	.78
66049		2.65	.77
83328		2.67	.78
100006		2.65	.77
110683		2.68	.78
133363		2.67	.78
150041		2.67	. 78
100719		2.67	.78
803338		2.68	.78
400224		2.65	.78
416904		2.64	.78
400388		2.64	.78
450253		2.64	.78
456943		2.64	.78
438623		2.64	.77
500304		2.63	.78
516984		2.65	.78
533665		2.62	.77
550346		2.63	. 77

ORIGINAL PAGE 19 OF POOR QUALITY

TEST DATE	9/10/1981 *	CONTRACT NO. 43-8335	PROJECT NASA
TYPE-09 11321 TENSION TENSION TEST DIRECTION IS UP	•	SPECIMEN NAME N45607	•
HATTERIAL: +-45. CR/EP. 607. FATI TERRERATURE 23.00 DEC. C. fine	GUE *	CONCLEMENT CHANGE BOOMAN	CULAR
CYCLING FRIO	0 HERTZ * 0 100.00 *	LENGTH (IN)	1.500
OPERATOR #1 SHIPPEN OPERATOR #2 MORAN	V 112. ***	TRICKNESS (IN)	.044
在有行为来对共和共行政的对抗政治的企业和企业的企业的企业的企业的企业的企业的企业的企业的企业的企业的企业的企业的企业的企	~ ***********	***************	
CHAN. TYPE LOW HI B 41013 10.0 7 48 .003 10.0 6 49 .005 10.0	GH CAL-LOW 10 0.00000 03 0.00000	CAL-HIGH GAGE LER. 2000.0000 0.00000 .07000 3.50000	DESCRIPTION 20KLB L.CELL LONG. ENT. LAT. EXT.

SPECIMEN: CYCLE .	N45607 STATIC LONG.	Damassa	
	NODULUS#(E+06)	DYNAMIC LONG. MODULUS*(E+06)	G(12)*(E+96)
1	2.76	2.71	.78
3		2.68	.77
5		2.69	.77
7 9		2,68	.77
. 9		2.68	.77
19		2.67	.77
29		2.66	.77
39		2.66	. ??
49		2.66	.77
39		2.67	. ??
69		2.67	ंदेरं
79		2.66	.77
89		2.66	. ??
99		2.66	.77
3270		2.64	.76
4938		2.64	.76
6603		2.66	.77
8273		2.64	.76
9940		2.65	.76
11608		2.64	.76
13275		2.65	.76
14943		2.65	.76
16640		2.66	.76
332+1		2.67	.77
49972		2.66	.76
66633		2.66	.77
83333		2.68	.77
100013		2.66	.76
116693		2.66	.77
133372		2.67	.77
150031		2.67	
166731		2.66	.77 .76
833526		2.66	.77
500327		2.66	. 77
667143		2.68	. 77
833980		2.65	.76
86734B		2.66	
804031		2.66	.76
900713		2.64	. 76
917309		2.63	.76
934932		2.68	. 76
950765		2.63	. 76
967417		2.63	. 75
984130		2.64	.76
1000812			.76
1017000		2.63	. 75
	2.62	. 2.63	.76

TEST DATE TYPE-09 11321 TERSION TENSION TEST DIRECTION IS UP MATERIAL: +-43, GN/EP, 66#, PATIGI TEMPERATURE 23.00 DEG. C. BUNII CYCLING FRIG	NTY 23.07 * HERTZ * LENCTH (IN)10.000 100.00 * WIDTH (IN) 1.500
**************************************	CAL-LOW CAL-HICH CAGE LEN. DESCRIPTION 0.00000 2000.0000 0.00000 20KLB L.CELL 0.0000 .07000 3.50000 LONG. EXT.

•		
SPECIMEN: N45608 CYCLE - STATIC LONG. MODULUS*(E+06)	DYNAMIC LONG. MODULUS#(E+06)	G(12)*(E+06)
1 2.81	2.71	.78
	2.68	.77
₹	2.69	.77
ž	2.68	.77
3 5 7	2.68	-77
19	2.67	.77
29	2.66	.77
39	2.66	.77
49	2.66	.77
59	2.67	.77
69	2.67	. 77
79	2.66	.77
89	2.66	.77
99	2.66	.77
3270	2.64	.76
4938	2.64	.76
6605	2.66	.77
8273	2.64	.76
9940	2.65	.76
	2.64	.76
11608	2.65	.76
13275	2.65	.76
14943	2.66	.76
16610	2.67	.77
33291	2.66	.76
49972	2.66	.77
66653	2.68	.77
83333	2.66	.76
100013	2.66	. 77
116693	2.67	.77
133372	2.67	.77
150031	2.66	.76
166731	2.66	.77
333526	2.66	.77
500327	2.68	.77
667143	2.65	.76
833980	2.66	.76
867348	2.66	.76
€84031	2.64	.76
900715	2.63	.76
917399	2.65 2.65	.76
934092	2.63	.75
950765	2.63 2.63	.76
967447	2.63 2.64	.76
984130		.75
1000812	2.63	
1017080	2.63	.76

N45609 ORIGINAL PAGE IS OF POOR QUALITY

TEST DATE		CONTINCT	No. 43-8335	PROJECT MASA
TYPE-09 11321 TENSION TENSIO	# #	SPECIMEN	NAME N43609	•
TEST DIMECTION IS UP MATERIAL: +-43.GR/EP,603.FATI	GUE *		SHAPE RECTAR	IGULAR
TEMPERATURE 28.00 DEG. C. HUN CYCLING FRUO	O BURTZ *	LERGIN C	(N)	7.000
SCAR RATE320.0	o iiz *	THICKNES	s (1N)	.044
OPLICATION #1 MOHAR OPLICATION #2 ###################################		andinterant	**********	*********
CHAN. TYPE LOW III	CH CAL-LON	CAL-111G	I GAGI LEN.	DESCRIPTION 20KLB L CELL
8 41000 9.9 7 48 .010 10.0	13 0.00000	.0700	3.30000	LONG. EXT.
6 49 .010 10.0 3 48 .010 10.0				LONG. EXT.

SPECIMEN:	N45609		0. 101 m/ F1061
CYCLE #	STATIC LONG.	DYNAMIC LONG.	G(12)*(E+06)
	MODULUSA (E+06)	MODULUSALE + USA =	.80
1	2.70	2.73	.79
3		2.73	.79
5 7		2.71	.79
9		2.72	.79
19		2.71	.79
29		2.71	.79
39		2.71	.79
49		2.71	. 79
39		2.71	.79
69		2.71	. <u>7</u> 9
79		2.70	.78
સંગ		2.71	.79
99		2.70	.79
198		2.71	.79
298		2.70	.78 .78
309		2.70	.78
498		2.70	.78
398		2.71 2.71	.78
958		2.70	.78
798		2.69	.78
899 899		2.70	.78
1997		2.09	.78
2996		2.68	.77
3996		2.69	.78
4004		2.69	.78
5094		2.70	.78
6094		2.70	.78
7992		2.70	.78
11992		2.71	.78
4991		2.70	.78
10076		2.70	.78 .78
29960		2.71	.79
340047		2.78 2.71	.78
40031		2.72	.78
39915		2.71	.78
69900		2.69	.78
79883 89878		2.70	.78
99858		2.71	.78
100258		2.69	.78
200610		2.68	.77
200318		2.67	. 77
409438		2.66	.77
3,093 .5		2.00	.77
319440		2.65	.77
529435		2.68	. ? ?
539430		2.64	.77 .77
349426		21.64	.76
559422		2.68 2.62	.76
369418		2.62	.76
579414	2.58	2.54	: 76
889411	a. v n	2.50	.78
599412		6.0 17	• • •

TEST DATE	8/17/1981 #	CONTRACT I	io. 43-8335	PROJECT NASA
TYPE-00 11321 TENSION TENSION TEST MANUSCRIPT IS UP			IATE N43501	
.MATERIAL: +-45.CR-EPOXY.50% FA		-SPECIMEN S	HAPE RECTAN	tular
TEMPERATURE 23.00 DEC. C, HUMI CYCLING FIREO	HÉRTZ	LENGTH (IN	(1N)	1.500
***************	*********	化化化化物 经保存的 化	*********	建筑金铁市市市市市市市市市市市
CHAN, TYPE LOW HIG			GAGE LEN.	DESCRIPTION
8 41018 10.01		2000.0000	0.00000	20KLB L. CELL
7 48 .005 10.00		.07000	3.50000	LONG. EXT.
6 49 .005 10.01	0.00000	.01970	. 98430	LAT. EVE

SPECIMEN:	N45501 STATIC LONG.	DYNAMIC LONG.	ma ami wilm, aas	
4.000	MODULUS*(E+06)	MODULUS*(E+06)	G(12)*(E+06)	••
1	2.80	2.87	.83	
3 · 5		2.86	.83	
7		2.87 2.98	.83 .84	
ģ		2.84	.82	
19		2.83	.82	
29		2.84	.82	
89 49		2.86	.83	
39		2.85 2.84	.82 .82	
69		2.85	.83	
79		2.87	.83	
89 44		2.84	.82	
199		2.83 2.60	.82 .81	
298		2.80	.81	
398		2.79	.81	
498 598		2.80	. <u>8</u> 1	
698		2.80 2.79	.81 .80	
798		2.78	.80	
897		2.79	.80	
997 1996		2.76	.79	
2995		2.79 2.80	.80	
3993		2.80	.80 .80	
4992		2.81	.80	
5990 6989		2.79	.80	
7988		2.81 2.82	• 6 0	
8986		2.79	.80 .80	
9983		2.79	.80	
19971		2.81	.80	
29957 39943		2.81	.80	
49928		2.78 2.82	.80 .81	
59914		2.83	.81	
69900		2.81	.80	
79883 89869		2.81	.80	
99834		2.82 2.80	.80 .80	
199706		2.78	.79	
249537		2.61	.80	
899420 499238		2.81	. გბ	
599183		2.82 2.82	.61 .81	
694078		2.84	.81	
798980	2.73	2.82	.81	
898396 9 088 7 6		2.81	·81	
918856		2.82 2.81	.81 .80	
923833		2.82	.8.	
988843		2.62	.81	
948833 958824		2.80	. 80	
966015		2.80 2.81	.80 .01	
978895		2.62	.81	
988798		2.80	.80	
991792 9 92791		2.83	.61	
992791		2.79 2.02	.80	
994789		2.63	.81 .81	
993788		2.01	.80	
996787		2.61	. 80	
997786 9 9878 5		2.01	. 80	
999784		2.79 2.81	.80	
1000700	2.73	2.00	. 40	
				

TEST DATE	9/29/1981 * CONTRACT NO. 49-0335 PROJECT NASA
TYPE-09 11021 TENSION TENSION TEST DIRECTION IS UP	* specimen namé ng7801
MATERIAL: +-67.5.GNEP.803 PAT TEMPERATURE 28.00 DEG. C. HUMI	GUE * SPECIMEN SHAPE RECTARGULAR
CYCLING FREQ 10.00 FUNCTION GLN RNG, MULT 10.00	HERTZ = LENGTH (1N) 7.000 100.00 * WINTH (1N) 1.500
SCAN RATE320.00 OPERATOR #1	HEZ * THICKNESS (IN)044
OPERATOR #2 基本基本部代表示基本基本主意本本本本本本本本本本本本本本本本本本本本本	涂 在现实实现,中心就可以完全的现在分词,是是是一个人的人的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的
CHAN. TYPE LOW HIGH	CAL-LOW CAL-HIGH GAGE LEN. DESCRIPTION
7 48 .010 10.020 6 49 .010 10.041	

SPECIMEN:	W. 5004		
CYCLE .	N67801 STATIC LONG: MODULUS*(E+06)	DYNAMIC LONG. MODULUS*(E+06)	G(12)*(E+06)
1	1.56	1.58	.69
3		1.58	.69
3 5 7 9 19		1.57	
ž		1.37	.69
			. 69
10		1.57	. 69
19		1.57	. 69
29		1.57	.69
39		1.57	.68
49		1.57	,68
59		1.56	.68
69		1.57	.68
79		1.37	,68
89		1.57	.68
99		1.57	.68
179		1.36	.68
189		1.57	
200			.68
210		1.57	. 69
220		1.56	.68
		1.57	.68
230		1.56	.68
240		1.56	. 68
230		1.56	.68
260		1.86	.68
270		1.55	.68

ORIGINAL PAGE IS OF POOR QUALITY

TEST DATE	10/12/1981-#	CONTRACT	NO. 49-8385	PROJECT NAMA
TYPE-09 11321 TEMSION TENSION TEST DIRECTION IS UP	n I	8PEC IMEN	NAME NOTBOR	
MATERIAL: +-67.5,GRZEP,80% FA		SPECIMEN	BHAPE RECTANO	JULAR
CYCLING FREQ 10.0 FUNCTION GEN RNG. PULT 10.0	O MENTZ *		N) 7	
SCAN RATE			(11)	
OPERATOR *1 SHIPPEN OPERATOR *2	* *			
				* 東京大学院教育教育教育教育
				DESCRIPTION
8 42 .015 10.0 7 48 .010 10.0		1000.0000		IKLD L. CELL
6 49 .010 10.0				LONG. EXT.

Specimen: Cycle #	N67802 STATIC LONG. MODULUS*(E+06)	DYNAMIC LONG.	G(12)*(E+06)
1		Modulus*(E+06)	
	1.53	1.55	.67
2		1.84	.67
2		1.54	.67
3 5 7 9		1.54	.67
		1.54	.67
19		1.53	.67
29		1.54	.67
39		1.54	. 67
49		1.54	.67
59		1.54	.67
69		1.54	.67
79		1.54	.67
89		1.54	.67
99		1.84	.67
199		1.54	.67
299		1.53	.67
399		1.53	.67
500		1.83	.67
520		1.53	.67
530		1.53	.67
540		1.53	.66
530		1.53	.66
560		1.53	
570			.66 ·
580		1.53	.66
		1.53	.66
890		1.53	.66
600		1.53	.66
610	**	1.52	. 66

TEST DATE 10/12/1981	* CONTRACT NO. 40-0000 PROJECT NARA
	APECITEN NAME . NOTHER
MANUALAN AMON A. GIL EP. MON FATIOUT	# BPECIMEN BHAPE RECTARGULAR
Typerving 20,00 pro- 20,00 mery cycl. Ref Fig. 6,00 mery 100,00 scan have acceptance 10,00 mery cycles and have acceptance 10,00 mery cycles and have acceptance 100,00 mery c	# VIITH (IN)eermooner 1,800 FINGERER (III)eermo ,044
(1)[1] [1] [1] (1] (2) 中央 (2) 中央 (3) 中央 (4)	B 防線術術術等》 电直接的语词连接电话的形式 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基
GHAN, TYPE LOW HIGH GAL-17 H 42 .016 10.010 0.000 7 40 .010 10.018 0.000 6 49 .010 10.015 0.0000	00 1000,0000 0-0000 181.6 L. GELL 00 .07000 0.00000 LORG ENT.

SPECIMEN:	NGTHON BEATIC LONG. HODULUNG (E+08)	DYNAMIC LORG. HODULUS#CE+06)	G(12) #(E+06)
	1.18	1.67	. 67
	1.10	1.86	. 67
8 8 7 9 19 29		1.88	, 67
ž		1.83	, 67
ä		1.55	. 67
10		1.88	. 67
29		1.55	. 6 <u>7</u>
39		1.85	.07
49		1.85	. 67
39		1.00	. 67
69		1.86	. 67
79		1.88	.67
89 -		1.06	. 67 . 67
98		1.86	101
95		1.55	.67 .07
97		1.86	.67
99		r.88	.06
109		1.54	.00

TEHT DATE 9/29/1	9AI 🖆 CONTRACT NO. 40-000 PROJECT WARA
TYPE-09 11821 TENSION TENSION	# FPECIMEN NAME N67701
TEST DIRECTION IS UP MATERIALS +-67.5.GD/CP.703 FATIGUE	n spečinen buape rectangular
TEMPERATURE BOLOG DEG. C. HUMIDITY ROCYCLING FREE	M LENGTH (1N) 7.000
FUNCTION GEN RNG. NULT 10.00 100 8CAN RATK	# THICKNESS (IN)044
OPERATOR 1 OPERATOR 29	\$
· 自由有利用的工作。 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· 在在电池电影电影电影电影电影电影电影中的产生的产生的主要的主要的主要的主要的主要的主要的主要的主要的主要的主要的主要的主要的主要的
**************************************	L-LOW CAL-HIGH GAGE LEN. DESCRIPTION
	00000 1000.0000 0.00000 1KLB L. CELL. 00000 .07000 0.80000 LONG. EXT.
	00000 .01970 .90400 LAT. EXT.

SPECIMENT CYCLE #	STATIC LONG. DY	MANIC LONG.	C(12)*(E+06)	
	MODULUS*(E+06) · NO)DULUS#(E+06)	_	
1	1.55	1 . 57	. 68	
3		1.50	.68	
5		1.56	.68	
7		1.56	.08	
0 5 7 9 19		1.56	.63	
19		1.57	.68	
29		1.56	.68	
39		1.55	.68	
49		: · 58	, 67	
89		1.56	.68	
69		1.35	.60	
79		1.56	.68	
89		1.56	.68	
ÿġ		1.56	.68	
200		1.33	.68	
300		1.87	.69	
400		1.56	.68	
501		1.56	.60	
601		1.86	.68	
701		1.56	.68	
802		1.86	.68	
902		1 56	.68	
1003		1.56	.68	
1505		1.53	.68	
1606		1.55	.68	
1706		1.33	.68	
1806		1.55	.68	
1907		1.86	.68	
2007		1.56	.68	
2107		1.56	.6В	
2208	•	1.56	.68	
2308		1.55	.68	
2408	_	1.88	. AA	

NG7702 ORIGINAL PAGE IS OF POOR QUALITY

TEST DATE	10/	12/1981 *	CONTRACT N	n. 4d-naa s	PROJECT NANA
TYPE-09 11921 TEN		*	RPECIMEN N	AME. N67702	
TEST DIRECTION IS MATERIAL! * 67.5.6	N FF 70% PATIGO		SPECIMEN S	HAPE RECTAN	CULAR
TEMPLICATUM 28.00 CYCLING FINO	10.00 HE	nty. *)	
FUNCTION GEN 1016, N		,100.00 ×	WIDTH (180)	(111)	1.800
OPERATOR #1 SHIPP		*	1111444444	• • • • • • • • • • • • • • • • • • • •	
OPTRATOR AND SERVER	南伯德尔东南南部南部 安约安南市				
CHAN, TYPE	LON HIGH		CAL-HIOH		DESCRIPTION
6 42	.015 10.010		1000.0000		HAR L. CELL
7 4N	.010 10.013	0,00000			LORG. EXT.
6 49	.010 10.015	0.00000	.01970	. 48480	LAT. EXT.

SPECIMEN:	N67702 STATIC LONG.	DYNAMIC LONG.	G(12)*(E+06)
4 7 12 1,01	MODULUS*(E+06)	NODULUS#(E+06)	
1	1.55	1.58	.68
8		1.58	.68
Š		1.58	.68
7		1.58	.68
ġ		1.57	.68
19		1.58	.68
29		1.57	. 67
39		1.57	.68
43		1.58	.68
45		1.50	.68
47		1.56	.60
49		1.57	.68
31		.40	.23

TEST DATE	10/12/1901	CONTINCT NO. 4	9-0 33 5	PROJECT NASA
TYPE-00 FIRE TENSION TENSION TENSION TENSION TENSION IS UP		SPECIMEN NAME		
HATCHIAL +-67.6.GR/PP.70% F TEMPERATURE 23.00 DEG. G. R GYCLING FREO	midity 23.03 * 00 mary *	LENGTH (IN)	7	. 000
FUNCTION GEN UNG. HULT 10. SUAN HATLANDE - BRIPPEN		THICKNESS (III)		
OPI RATOR + 2 ##################################		CAL-HIGH GAG		############## DESCRIPTION
8 42 .018 10. 7 48 .010 10. 6 49	010 0.00000 018 0.00000	.07000 3.	80000 1	INIO L. CELL LONG. PNT.

SPUCIMENT CYCLE *	N67708 STATIC LORG, MODULUS*(E+06)	DYNAMIC LONG, MODULUSS (F+06)	G(12) *(E+06)	-
1	1-55	1.57	. 69	
1 8	••••	1.87	. 69	
5		1.56	. 69	
2 2		1.56	. 69	
Ġ		1.56	. 69	
10		1.87	. 69	
20		1.56	.64	
39		1.56	. 69	
äú		1.57	. 69	
89		1.50	, 69	
69		1.86	.69	
79		1.56	. 69	
ilo		1.50	. 60	
99		1.57	. 40	
199		7.56	.60	
200		1.56	. 69	
400		1.36	. 00	
600		1.56	٧٥.	
600		1.50	va.	
700		1.87	.00	
801		1.57	. 69	
8120		1.87	٠٨٠	
830		1.57	40.	
1141		1.86	vo.	
831		1.57	. 60	
Bo 1		1.56	. 64	
874		1.57	, e. o	
831		1.87	.00	
1191		1.56	.69	
901		1,87	. 64	
911		1.57	. 64	

ORIGINAL PAGE 13 OF POOR QUALITY

TYPE-09 11021 TERSION TERS TYPE-09 11021 TERSION TERS TYPE 01 11021 TERSION TERS TYPE 01 11021 15 UP MATCHIAL: + 67 GR-1P 607 FA TERPERATURE: 23.00 DEG. C. II CYPLING THEO. 10 FUNCTION GEN RNG, MULT 10 OPERATOR 61 SHIPPEN	#	WIDTH (IN)	01 ANGULAR - 7.000 - 1.305 044
等等等或算产品或者的AAA公司公司会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会	0.000	CAL-HIGH GAGE LEN. 1000.0000 0.00000 1 .07000 3.50000	LONG. EXT.

SPECIMENT CYCLE *	STATIC LONG.	DYNAMIC LONG. MODULUS#(E+06)	G(\$2).*(E+06)
	MODULUS&(E+06)	MODULUANCE TO COV	.69
t	1.57	1.60	.69
3 5 7 9		1.39	.69
2		1.59	. 69
7		1.58	.68
9		1.80	.68
19		1.89	. 69
29		1.39	.69
39		1.39	.69
49		1.59	.69
69		1.60	.69
69		1.60	. 69
79		1,60	.69
139		1.59	.69
99		1.89	.69
199		1.59	.69
299		1.59	.69
399		1.60	.70
800		1.60	.69
100		1.59	,69
700		1.60	. 69
800		1.59	,69
900		1.59	. 69
1000		1,60	.69
2002		1.59	.69
8004		1.60	.69
4006		1.89	.69
8007		1.89	, 69
6004		1.61	.70
7011		1.60	.69
8012		1.60	.69
9014		1.61	.70
10016		1.60	.69
18028		1.60	.70
16026		1.61	.70
17020		1.60	.69
18030		1.60	.70
19031		1.89	.69
20033		1.60	.70
21033		1.89	.69
22047		1.89	.69
23038		1.69	.69
24040		•	

TEST DATE	9/22/1901 * CONTRACT NO. 48-8385 PROJECT NASA
TYPE-09 LIGHT TERRIOR TENSION TEST DIRECTION IS SIP	* Specimen name N67602
MATERIALI +-67 GIVE" 601 FATIOU TEMPERATURE 28.00 DEG. C. HUMIN	* Specifien Shape Rectangular
GYGLING FREQ: 19.00 FUNCTION GEN RNC, MULT 10.00 SCAN RATE	IERTZ
第二次 本本の 本本の 本本の 本本の 本本の 本本の 本本の 本本の 本本の 本本	
GHAN. TYPE LOW HIGH 8 42013 10.008	CAL-LOW CAL-HIGH GAGE LEN. DESCRIPTION
8 42013 10.003 7 48 .010 10.020	0.00000 1000.0000 0.00000 1KLB L. CELL
6 49 .010 10.015	0.00000 .07000 3.50000 LONG. EXT. 0.00000 .01970 .98430 LAT. EXT.

SPECIMEN: CYCLE .	STATIC LONG.	DYNAMIC LONG.	G(12) *(E+06)
1	MODULUS=(E+06)	Modulus*(E+06)	
	1.55	1.60	.69-
3 5 7 9		1.58 ·	.69
2		1.59	.69
.		1.60	.69
19		1.59	.69
29		1.69	.69
39		1.59	. 69
40		1.59	.69
59		1.59	.69
69		1.89	.69
79		1.59	.69
áš		1.59	.69
99		1.59	.69
199		1.59	.69
299		1.89	.69
399		1.59	.69
500		1.60	.69
600		1.59	.69
700		1.60	. 69
800		1.59	. 69
900		1.58	. 69
1001		1.58	.69
2003		1.89	وي.
8003		1.59	.69
4007		1.59	.69
5009		1.59	.68
6011		1.89	.69
7013		1.58	.68
8015		1.59	.69
9017		1.5B	.69
10019		1.60	.69
20039		1.89	.69
3003B		1.59	.69
40078		1.59 1.59	.69
80099		1.59	-69
88118		1.59 1.58	.69
59117			.68
60119		1.57	٠68٠
61121		1.58 1.59	.68
62123	•	1.59	.69
63128		1.58 1.58	.68
64127		1.58	.68
65129			.6B
66131		1.59 1.58	.68
67133			.68
41.100		1.59	. 68

N67603 ORIGINAL PAGE IS OF POOR QUALITY

TEST DATE	9/22/1981 #	CONTRACT NO.	48-8835	PROJECT NASA
TYPE-09 11021 TENSION TENSIO TEST DIRECTION IS UP	r	SPECIMEN NAME	E0076N	
MATERIAL: +-67 GR/EP 60% FATI TEMPERATURE 28.00 DEG. C, HUM	ove, s	SPECIMEN SHAP	B ILLICTANGE	n.ar
CYCLING IN O 10.0 FUNCTION GEN RNG. MULT 10.0	o nertz 🔷 🔺	LENGTH (IN)		
SCAN INTE		THICKNESS (III		
OPERATOR >2			*******	1.法法书张尔尔尔法法张尔尔法
	gu cal-lóv	CAL-111GH GAG		PERCUIPTION
7 48 .010 10.0 6 49 .010 10.0	20 0.00000	.07000 8	.50000 1	ORG. EXT.

SPECIMEN:	NGT608 STATIC LONG. MODULUS*(E+06)	DYNAMIC LONG. HODULUS*(E+06)	G(12)*(E+06)
1		1.58	.66
3	1.52	1.34	.63
្ទ		1.34	
2			. 65
5 7 4		1.33	.66
		1.54	. 65
19		1.54	.65
29		1.84	.68
39		1.55	. 66
49		1.54	.65
59		1.54	.66
69		1.55	.66
79		1.55	, 66
48		1.54	. 68
99		1.55	. 66
199		1.55	,66
299		1.55	, 66
399		1.55	.66
800		1.83	.65
600		1.54	.65
700		1.83	.63
ย่อต		1.54	.68
900		1.84	.65
1001		1.54	. 63
2000		1.54	.66
8008		1.54	.66
4007		1.54	.66
5009		1.55	.60
6011		1.84	.66
7013		1.35	.66
8018		1.54	.66
9017		1.54	.66
10019		1.55	. 66
20040		1.54	.66
20000		1.34	.66
40081		1.54	.66
		1.54	.00
49100		1.04	
50102			.66
81104		1.54	.66
52106		1.54	.65
53408		1.83	. 63
24111		1.82	. 68
53113		1.53	.68
86115		1.54	, 66
37117		1.83	.65
20114		1.52	. 68

TEST DATE 9/20/1901	* CONTRACT.NO. 48-8888 PROJECT NASA
TYPE-09 11021 TENSION TENSION TEST DIRECTION IS UP	# ВРЕСІМЕН ПАЙЕ Й67604
MARCHIAL ALAT COZEP AGE FATIQUE	* Specifien Shape Rectangulah
SCAN RATE	# 1000 1000
中央市区和市场中央市场中央市场中央市场中央市场中央市场中央市场中央市场中央市场中央市场中央	ndennannannannannannannannannannannannanna
0 42010 10.005 0.00 7 48 .010 10.020 0.00 6 49 .010 10.015 0.00	000 1000.0000 0.00000 1kln L. CELL 000 .07000 3.50000 LONG. EXT. 000 .01970 .98430 LAT. EXT.

SPECIMEN: CYCLE #	N67604 STATIC LONG. MODULUS*(E+06)	DYNAMIC LÖRG. MODULUS*(E+06)	G(12)*(E+06) ·
1	1.47	1.51	.66
å	1.4.	1.52	.66
		i.83	. 66
ž		1.52	.66
5 7 9		1.52	.66
		1.31	.66
19		1.02	ičč
29		1.52	.66
39		1.51	.66
49			.66
59		1.52	.67
69		1.53	.66
79		1.53	
89		1.51	.66
99		1.53	.67
199		1.52	. 66
299		1.53	.66
400		1.52	.66
500		1.52	. 66
690		1.53	.66
700		1.53	.66
doi		1.52	. 66
901		1.53	.66
1001		1.53	.67
2003		1.83	.66
3006		1.53	.66
4008		1.52	.66
5010		1.53	.66
6013		1.53	. 66
7015		1.53	.66
8017		1.52	, 66
9020		1.53	.66
10022		1.32	.66
20046		1.53	.66
28064		1.52	.66
24067		1.52	.66
80009		1.53	.67
31071		1.51	.66
32074		1.52	.66
33076		1.81	. 66
84078		1.51	. 66
88081		1.51	, (48
25083		1.80	.65
37085		1.48	.64
21002		• • • •	

N67605 OF POOR QUALITY

TEST DATE	9/20/1981 #	CONTRACT NO. 49-8888	PROJECT NARA
TYPF-09 11021 TENSION TEL	iston 📱	SPECIMEN NAME NOTOO	3
TEST DIRECTION IS UP MATERIAL: +-67 CR/EP 600 1		BPECIMEN SHAPE RECTAI	CULAR
TEMPERATURE 20.00 DEG. C. CYCLING FM 0.	0.00 RERTZ n	LENGTH (IN)	
FUNCTION GUR RUG, MULT BCAN RATEBC		THICKNESS (IN)	1.503 .043
OPERATOR *1 SHIPPEN OPERATOR *2	**		
	医菲律宾斯埃茨氏试验 医克克斯氏病	医多种性原体性 医医内内性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种	**************************************
CHAN. TYPE LOW	HIGH CAL-LOW	CAL-HICH GAGE LEN.	DESCRIPTION
g 49018 :	10.005 0.00000	1000.0000 0.0000	IKLN L. CELL
	10.020 0.00000		LONG. EXT.
6 49 .010	10.015 0.00 00 0	. 61970 . 984 80	LAT. EXT.

SPECIMEN			
CYCLE .	STATIC LONG. MODULUS*(E:06)	DYNAMIC LONG. MODULUS*(E+06)	G(12) *(E+06)
1	1.56	1.89	. 69
8		1.58	.69
6		1.57	.69
7		1.58	.69
		1.58	.69
19		1.89	.70
29		1.58	.69
39		1.59	.69
49		1.58	.69
59		1.58	. 69
69.	•	1.59	.69
79		1.59	.69
89		1.59	.69
99		1.88	.69
199		1.58	.69.
249		1.58	.69
239		1.50	
269		1.59	.69
279			.69
289		1.59	.69
299		1.58	.69
		1.59	.69
309		1.58	, 69
319		1.58	.69
829		1.58	.69

TEST DATE	10412/1981 # CONTRACT	' No. 43-8335	PROJECT NAŠA
TYPE-09 11321 TENSION TENSION TEST DIRECTION IS UP	minatimi	NAME N67606	
HATERIALI +-67 GIVEP 609 FATIC TEMPERATURE 28.00 DEG. C. HUMI		SHAPE RECTARG	ULAR
GYCLING FREQ	HERTZ # LENGTH (IN) 7 N) 1 S (1N)	.000 .500 .044
OPENATOR #2	床 and and and and and and and and and and		
GHAN. TYPE LOW NIC 8 42 .045 10.01 7 40 .010 10.01 6 49 .010_10.01	B CAL-LOW CAL-HIC O 0.00000 1000.000 S 0.00000 .0700	H GACE LEN. 0 9.00000 0 8.50000	DESCRIPTION IKLB L. CELL LONG. EXT. LAT. EXT.

SPECIMEN: CYCLE *	N67606 STATIC LONG. MODULUS#(E+06)	Dykamic Lorg. Modulus*(E+06)	G(12) #(E+06)
1		1.87	
á	1.53		. 69
Ă		1.56 1.57	- 89.
ž			.69
		1.56	.69
14		1.57	.69
8 5 7 9 19 29		1.87	.69
20		1.57	.69
89 49		1.56	.69
59		1.57	.69
69		1.57	.69
79		1.57	.69
89		1.56	.69
99		1.56	.68
199		1.57	. 69
299		1.57	.69
		1.57	.68
39 9 500		1.87	.69
		1.37	.69
600		1.57	.69
700		1.57	.69
តិចថ្		1.57	.69
900		1.57	.69
1001		1.87	.69
5003		1.56	.68
ដល់បង		1.57	.69
4007		1.57	.69
5009		1.57	. 69
6041		1.58	.69
7013		1.87	.69
8014		1.57	.69
9016		1.87	.69
10018		1.57	.69
50038		1.57	.69
3003B		1.56	.69
38074		1.88	.68
89076		1.56	.68
40078		1.56	.68
41080		1.55	.68
42082		1.56	.68
48084	•	1.55	. 68
44086		1.55	.68
48008		1.84	.68
46090		1.83	.67
47092		1.47	.68

N67607 ORIGINAL PAGE IS OF POOR QUALITY

TEST DATE 10/10.	1981 * CONTRACT NO. 48-8888 PROJECT NARA
TYPE-09 11821 TENSION TENSION TEST DIRECTION IS UP	# SPECIMEN NAME NO7607
MATERIAL! +-67 GIVEP 60% PATIQUE TEMPENATURE 28.06 DEG. C. HUMIDITY	* SPECIMEN SHAPE RECTANGULAR
CYCLING FREQ:	* LERGTH (IN) 7.000 10.00 * VIDTH (IN) 1.500 * THICKNESS (IN)044
8 42 .015 10.010 0 7 48 .019 10.015 0	WARRECHMARKARRARRARRARRARRARRARRARRARRARRARRARRA

SPECIMEN: CYCLE #	NG7607 STATIC LONG. NODULUS*(E+06)	DYNAMIC LONG. MODULUS*(E+06)	G(12)*(E+66)
1	1.58	1.56	.69
š	1.50	1.56	
5 7 9		1.56	.69 .69
ž		1.56	
ģ		1.86	.69 .69
19		1.56	.69
29		1.56	.69
89		1.56	.69
49		1.56	.69
59		1.36	.69
69		1.86	.69
69 79		1.57	.69
89		1.56	.69
99		1.56	.69
199		1.56	.69
299		1.86	.69
899		1.57	.69
500		1.86	.69
600		1.56	.69
700		1.86	.69
800		i.57	.69
900		1.86	.69
1001		1.36	.69
2003		1.57	.69
8005		1.86	.69
4007		1.57	.69
8009		1.86	.69
6011		1.57	.69
7013		1.56	.69
8015		1.56	.69
9017		1.56	.69
10019		1.56	.69
20039		1.56	.69
28035		1.56	.69
29037		1.55	.69
80039		1.55	. 68
81061		1.55	. 69
82068		1.55	.69
83065		1.55	.68
34067		1.55	. 69
33069		1.55	.68.
86071		1.54	.68
37078		1.52	.68

ORIGINAL PAGE IS OF POOR QUALITY

TEST DATE	10/13/1901 #	CONTRACT	NO. 40-0000	PROJECT NAMA
TYPE-09 1182) TENSION TENSIO	or ji	OPECIMEN	NAME NG760A	i
TEST DIRECTION IS UP MATERIAL! +-67 GIVEP 609 PAT		SPECTIMEN.	BIIAPE BERTAN	GULAR .
TEMPERATURE 28.00 DEG. C. RUI CYCLING FREG 10.0	10 HENTZ *		N1	
FUNCTION CEN RNG. MULT 10.0 SCAN RATE			(111) ======	
OPERATOR #1 SHIPPER		1001400400	1	****
•••				******
			GAGE LEN.	DESCRIPTION INLO L. CELL
7 40 .010 10.0	118 0. 10000	.07000	9.50000	LONG. EXT.
6 49 .010 10.0	0.67000	. 0 1970	. 98430	·LAT. · -EXT.

SPECIMEN:	N67608		
CYCLE .	STATIC LONG.	DYNAMIC LONG.	G(12)*(E+06)
	Modulus*(E+06)	Nodulus=(E+06)	40
1 3	1.53	1.89	.69
2			.69
2		1.59	.68
5 7 9		1.58	.68
19		1.58	.60
		1.80	.68
29		1.59	.69
39		1.59	.69
49		1.59	.60
89		1.59	٠ 68
69		1.50	. ទុខ
79		1.80	٠68
89		1.58	.68
99		1.58	• 68
199		1.59	٠68
299		1.88	.68
400		1.59	.68
500		1.89	.68
600		1.59	. 68
200		1.59	Bò.
800		1.59	.68
900		1.58	89.
1001		1.59	,68
8003		1.89	.68
8063		1.59	٠68
4007		1.58	.68
5009		1.89	.68
6011		1.58	.68
7013		1.58	.68
8012		1.59	.68
9017		1.59	.68
9818		1.89	.68
9919		1.89	.68
10019		1.89	.68
11021		1.58	.68
12028		1.59	.68
13028		1 -88	.68
14027		1.09	•68
18029		1.59	.68
16031		1.80	.68
17033		1.58	.68

ORIGINAL PAGE 19 OF POOR QUALITY

TEST DATE 10/19/19	ni e contract no. 48-0988 Project NARA
TYPE-00 IIOSI TENSION TENSION TEST DINUCTION IS UP	M RPECIMEN NAME NOVEGO
HATERIALI +-67 CHATE 605 PATIQUE TEMPERATURE 25.00 DEC. C. HUMIDITY 0.0	M RPECIFEN HIMPE RECTANGULAR
CYCLINO FREQ. GRAPH 10.00 IERTZ FUNCTION GEN INC., MULTISS 10.00 100.0 SCAY RATE	# 1.ERGTH (1H)======= 7.006 PO # WIDTH (1H)======= 1.800 # THICKNERN (1P)====== .044
8 42 .010 10.010 0.00	######################################

SPECIMEN: CYCLE	STATIC LONG.	DYNAMIC LONG.	G(12) #(E+66)	_
	Hodulus*(F+06)	MODULUS#(E+06)		
1	1.59-	1.50	.67	
2		1.50	.67	
9		1.88	. 67	
3 5 7 9 19		1.56	.67	
.,		i., 56	.67	
14		1.56	.07	
29 39		1.56	.67	
39 49		1.56	.67	
89		1.86	.67	
69		1.56	.67	
79		1.56	.67	
89		1.56	.67	
99		1.85	.67	
199		1.56	.67	
299		1.86	.67	
899		1.56	.67	
899		1.56	.67	
600		1.56	.67	
700		1.86	. 67	
800		1.56	.67	
900		1.56	. 67	
1001		1.56	. 67	
2008		1.56	.67	
8008		1.06	. 67	
4007		1.56	.67	
8009		1.86	. 6 <u>7</u>	
6011		1.56	.67	
7018		1.86	.67	
8018		1.56	.67	
9017		1.86	• 6 %	
10019		1.56	.67	
14027		1.56	.67	
15029		1.56	.67	
16031		1.56	. 63	
17033		1.56	• 6 🖫	
18033		1.03	.67	
19087		1.55	.67	
20039		1.56	.67	
21041		1.86	.67	
22043		1.55	.66	
23043		1.54	. 66	
20070		1.54	.66	

TEST DATE	9/20/1901	CONTINCT NO.	4n-án a 5	PROJECT I	ARAI
TYPE TO LIGHT TENSION TENSION		Brecimen name	76759 l		
TERT DIRECTION IN UP	riau "	APECIMEN SHAT	C RECTANGE	ilañ	
TEMPERATURE 20,00 DIA: C. BORTE CYCLING FREG. ====================================	100.00 # 100.00 #	LENGTH (IN) WIDTH (IN) THICKNESS (IN)	, 0114 . 044	
OPERATOR #8 #8 провед при	0 0.00000 0 0.00000	1000.0000	1, 00000 1,00000 1,50000	DESCRIPTIO IKLB L. GE LONG. EXT. LAT. EXT.	L

Specimen: Cycle *	NG7881 STATIC LONG. MODULUS#(E+06)	DYNÁMIO LONG. MODULUSM(E+06)	G(12) *(E+06)
	1.04	1.85	.67
1	1.04	1.87	.68
ġ		1.57	.68
5 7		1.87	.60
ģ		1.57	.68
19		1.60	.69
żý		1.86	.68
89		1.50	.68
49		1.57 1.57	çø,
59		1.57	.6B
69		1.57	.68
74		1.57	.68
89		1.57 1.57	.68
ψģ		1.86	.67
199		1.87	iéb
299		1.57	.68
400		1.87	.68
800		1.87	.68
600		i.58	.68
700 Uni		1.88	. 68
901		1.57	•6₿
1001		1.68	.68
2003		1.57	· 68 ·
8003		1.58	.68
4007		1.87	.67
8009		1.57	. 67 . 67
6911		1.08	. 67
7013		1.57	.66
8016		1.56 1.56	.67
9018		1.87	.67
10020		1.88	. 67
20041		1.86	.66
80008		1.87	.67
40083		1.87	.67
80108		1.87	.67
60126 70147		1.87	. 67
80169		1.56	.66
90190		1.57	.66
98207		1.56	.66
99209		1.86	.66 .67
100211		1.08	.66
110230		1.86 1.86	.66
120234		1.56	.66
180278		1.57	. 67
140296		1.57	.67
180318		1.56	.67
160809		1.56	. 66
120001		1.86	.66
177476		1.86	66،
178878 1 7 98 8 1		1.86	, 66
180383		1.57	.67
181888		1.87	.67
182987		1.56	.66
103304		1.57	.68
184891		1.57	.67
103894		1.56	. 66 . 67
186390		1.56	.01

N67502.

ORIGINAL PAGE IS OF POOR QUALITY

TEST DATE 9/84/	1981 * CONTRACT NO. 48-8998 PROJECT NASA
TYPE=00 LIGHT TERRIOR TERRIOR TEST DEDUCTION IN UP MATERIAL: +=07DEG.GUZEY.BOG_FATIOD	# APECIMEN NAME: NATAOO # APECIMEN SMAPE RECTANGULAR
TEMPERATURE BROOK DEG. G. RUMINITY B CYCLING PREG. SERSESSES 10.00 IERTX	g. 0n *
CILAN. TYPE LOV HIGH C 42 -,019 10.000 0	IMMUNAMUMANAMANAMAMUMAMAMAMAMAMAMAMAMAMAM

SPECIMEN: GYCLE #	N67802 PTATIC LONG.	DYNAMIC LONG.	G(12) m(E+06)
	HODULU8*(E+00)	MODULUSM(E+00)	48
1	1.53	1.06	. 6 <u>0</u> . 67
Ö		1.59	.ou
5		1.05	49
7		1.55	. 67 . 67
.9		1.56	.68
19		1.34	67
29		1.56	.60
89		1.00	.67
49 89		1.56	ián
69		1.05	66
79		1.86	. 68
ėš		1.58	.67
őú		1.84	.67
199		1.86	. 84
199		1.88	.60
400		1.56	.68
800		1.88	,6B
600		1.55	.68
700		1.26	.ស្ន
800		1.55	.68 .68
901		1.56 1.56	.68
1001		1.00	,68
2003		1.58	.68
3005		1.56	.68
4007		1.86	.67
8009 6012		1.56	.68
7014	-,	1.57	.68
8016		1.86	.68
9018		1.86	.68
10020		1.86	.6B
20042		1.56	.68
30064		1.86	. ឲ ម្
40083		1.57	. ចំពី
80107		1.86	٠ <u>6</u> 8
60128		1.07	.68
70130		1.57	, 68 . 68
8017		1.57	,68
901		1.07	.68
100248		1.57	.68
120239		1.56	.68
180281		1.86	.68
100324		1.84	.68
160846		1.55	.67
170868		1.06	.68
180399		1.56	. 68
190411		1.55	.67
200433		1.86	. 67
210438		1.50	.60
218466		1.88	. 57
216469		1.04	, 67 , 67
217471		1.55	.67
210478		1.88 1.54	.67
219473		1.65	.67
220477		1.53	.66
221479		1.00	.67
222482 22348 4		1.51	.68
224486	1.47	1.47	.64
気気されいの	1+74	••••	

TEST DATE	9/25/1981 #	CONTRACT NO.	40-0005	PROJECT-NASA
TYPE-09 11081 TENSION TENSION		Brechen haid	2 N67508	
TEST DIRECTION IS UP HATERIAL! +-67DLG, GIVEP, BOS PA		Bregimen Bilai	è rectano	ULAR
TEMPERATURE 28.00 DEG. C. HUMII CYCLING FREQ 10.00	HUILTY #	LENGTH (IN)	7	.000
FUNCTION GEN RNG. MULT 10.00 SCAN RATE		WIDTH (IN)		. 600 . 044
OPERATOR #1 SUIPPEN OPERATOR #2 WALKER	*			
無無果果性的可能的可能的可能可能的可能的可能可能可能可能可能可能可能可能可能可能可能可能	电影游戏网络柳枫树树树树	斯森斯森拉拉斯拉拉斯森森 斯森	北京市北京市市市	集新的市场的企业企业
CHAN. TYPE LOW HIGH				DESCRIPTION
8 42010 10.90 7 40 .010 10.02				IKLB L. CELL
	o.00 <u>0</u> 00	.07000		LONG. EXT.
6 49 .010 10.011	3 0.00000	.01970		LAT. EXT.

SPECIMEN:	N67803		
CYCLE #	STATIC LONG. HODULUS#(E+06)	DYNAMIC LONG. MODULUS*(E+06)	G(12) #(E+06)
152770	1.54	1.58	.68
152772	1.04	1.57	.67
132774		1.57	.88
182776		1.58	.68
152778		1.87	.67
152788		1.57	.68
152798		1.87	.67
152898		1.87	.68
152818		1.87	.67
152828		1.87	.68
152888		1.57	.68
182848		1.88	.68
152858		1.87	.68
152868		1.57	.67
183968		1.67	.67
14.2068		1.57	.68
153169		1.57	.67
153269		1.57	.68
153369		1.87	.67
153469		1.57	.67
153571		1.58	.68
153670		1.57	.67
153770		1.57	.67
154772		i.56	.67
155774		1.57	.68
150776		1.57	.67
122254		1.57	.68
158781		1.57	.67
159783		1.56	.67
160785		1.57	.68
161788		1.57	.68
162489		1.57	.68
162889		1.57	.68
162690		1.57	.68
162790		1.57	.68
163792		1.56	.67
164794		1.56	.67
168796		1.56	.67
166799		1.87	.68
167831		1.88	.68
ROBBAI		1.8A	. AA .

TEST DATE	9/20/190	1 # CONTRACT NO. 48-8885 PROJECT NASA
mone-od 11021 TENSION	TENSION	6 SPECIMEN-NAME RG7804
TEST DIMETION IS UP	POTAT PORTO	* SPECIMEN SHAPE RECTARGULAR
CYCLING FIRM. THE FUNCTION CER TRIC, HULT- BOAR BATE.	10.60 HERTZ	B LÉNGTH (IR)77.000 B LÉNGTH (IR)1.500 B THICKNEIN (IR)
OPERATOR #1		Anna Anna Anna Anna Anna Anna Anna Ann
CHAR, TYPE	013 10.005 9.00	-LOW CAL-HIGH GAGE LER. DESCRIPTION COORD 1000,0000 0.00000 1KLB L. CELL 10000 1CNG. EXT. 90:300 LAT. EXT

SPECIMEN:	NG7804 ETATIC LONG.	DYNAMIC LÖNG.	G(12) *(E+66)	
CYCLE "	EODULUTA (E+06)	MODULUGA (E+00)	.68	
1	1.86	1.59	.68	
1 3	• • • •	1.59	.68	
5		1.59	. 67	
7		1.89	.68	
9		1.56	.68	
19		1.80	.68	
29		1.57	. 67	
89		1.58	.68	
49		1.59	.68	
89 69		1.58	86. 86.	
79		1.59	.68	
89		1.89	.68	
99		1.59	.68	
199		1.58 1.59	.68	
830		1.58	.68	
400		1.59	.68	
800		1.60	.69	
601		1.59	.68	
	**	1.60	.69	
801 902		1.58	.68 .68	
1002		1.59	.00 88.	
2005		1.59	.68	
8009		1.59 1.58	.68	
<012		1.60	.68	
8018		1.60	.69	
6019		1.60	.69	
7022		1.60	.68	
8025		1.59	.68	
9029		1.38	.68	
10002 20068		1.60	.68 .69	
20000		1.60	.69	
40182		1.60	.68	
50165		1.59 1.89	.68	
60198		1.58	.68	
70231		1.60	. 69	
80200		1.61	.69	
90290		1.60	. 69	
98325		1.60	. 69	
99020 10033		1.89	.68 .68	
11036		1.59	.68	
12039		1.59	.68	
13043		1.89	.68	
14045		1.09	.68	
15049	A	1.59	.68	
16088		1.89	.60	
17056		1.60	.68	
17959		1.60	.69	
18039 1816d		1.59	.68 .6B	
18760		1.60	.68	
18361		1.58	,68	
18:61		1.59	.68	
18361		1.60 1.59	.68	
18963		1.60	.68	
1876	13	1.58	.68	
1886	27	1.00		

N67504 CONTINUED

SPECIMENT CYCLE *	NOTEGA STITIC LORG. NODELUSS(EFOG)	DYNAMIC LONG.	G(42)*(E+06)	
191630	underforater (E+00)	HODULUSINGE (64 06)		
194632		1.60	, 69	
191654		1.69	.68	
191656		1.60	,68	
194658		1.59	.68	
191668		1.59	.60	
191678		1.60	.67	
Doorvi		1.89	- 68	
19 1098		1.69	- 68	
19 1768		1.59	.68	
19 17 18		1.61	.68	
19 17 18 19 172B		1.59	.69 .68	
191738		1.59	♦ išš	management who exist bed
191748		1.59	.68	ORIGINAL PAGE 183
191818		1.59	.68	OF BOOK OURS DAY
191949		1.60	.68	OF POOR QUALITY
192049		1.89	.6Å	
1921 49 192230		1.60	.68	
192830		1.60	.69	
193450		1.60	.68	
192331		1.60	.68	
192681		1.59	.68	
193634		1.69 1.60	.68	
194650		1.69	.68 .88	
193661		1.59	.68	
19665 8		1.60	.68	
197668 -		1.59	.68	
198672		1.60	.69	
199678		1.59	.68	
200679		1.59	.úB	
2016 82 211 716		1.60	.68	
221749		1.59	.68	
201783		1.58 1.59	.68	
2:1816		1.59	.68 .68	
23 185 1		1.69	.68	
26 1888		1.59	.68	
271919		1.69	.68	•
201938		1.88	.68	•
291987		1.59	.68	
892828		1.58	.67	
4 1259 f 452536		1.08	.67	
462571		1.58	.68	
472606		1.89 1.89	.68	
482640		1.58	.60	
492676		1.59	.68 .68	
502711		1.89	88.	
512746		1.58	.67	
522781		1.58	.67	
502816		1.57	.67	
883888		1.55	.66	
889841 840838		1.54	.66	
541848		1.86	.67	
542832		1.54 1.54	.66	
548833		1.53	.66 .63	
844839		1.52	. 63	
845852		1.81	.65	
640856	1.48	1.48	. 64	
547870		1.43	.62	
		*		

TEST DATE	10/	13/1981 💌 🖰	ORTINGT NO	0. 48-6335	Projec t rasa	ra. Emeratu
TYPE-09 11821 TEST DIRECTION I	Ension Tension	# S	PECIMEN NA	ame ng7505		
MATERIAL +-67DE	G.CRTP, SOR FATIQ	U # 6	PECIMEN 8	LAPE RECTANG	ULAR	
CYCLING FREG	o bid. C. nunibit	NT7. * 1		?		
FUNCTION GEN REG SCAR RATE				110)		
OPERATOR *1 SRI	PPEA	* *				
非电影家家城市新市的内部证券	· 宋本本本宗自由本本本宗宗 (宋本本本宗宗	****	*********	****	电电流电流电池电流电流电流电流	ŀ
CHAN, TYPE	1.0W 111CH	Cal-lán	Cal-nigh (CAGE LEN.	DESCRIPTION	
8 42	.015 10.010	0.00000	000.0000	0.00000	IKLB L. CELL	
7 48	.010 10.013	6.00000	.07000	3.50000	LONG. EXT.	
6 49	.010 10.015	Ö. 00000	.01970	.98430	LAT. EXT.	

SPECIMEN: GYCLE	N67595 STATIC LONG. MODULÚS*(E+06)	DYNAMIC LONG. MODULUS*(E+06)	G(12)#(E+06)· · ·	 **********	
1	1.53	1.58	. 66		
3		1.37	. 66		
5 7 9		1.57	.66		
7		1.57	.66		
à		1.87	.66		
19		1.87	.66		
29		158	.66		
39		1.57	.66		
49		1.57	.66		
89		1.58	.66		
69		1.89	.66		
79		1.57	.66		
89		1.58	.66		
99		1.57	.66		
199		1.57	.66		
299		1.57	.66		
400		1.58	.66		
500		1.58	.66		
600		1.57	. 66		
700		1.01	.66		
800		1.57 1.58	.66		
901		1.57	. 66		
1001		1.57	. 66		
2003		1.57			
8003		1.57	.66 · · · ·		
4008		1.57	.66		
5010		1.57	.66		
6012		1.57	.66		
7014		1.57	.66		
8016		1.56	.66		
9019		1.57	.66		
10021		1.57	.66		
20048		1.57	.66		
30066		1.57	.66		
40088		1.56	.66		
80110		1.56	.66		
60132		1.57	.66		
70133		1.86	.66		
80177		1.56	.66		
90200		1.56	.68		
91202		1.85	.65		
92204		1.56	.65		
43296		1.55	.65		
44209		1.55	.65		
95211		1.85	.68		
96213		1.55	.64		
97218		1.54	.64		
90218		1.35	.64		
99220		1.54	.63		
100222		i.53	.63		
101224		1.84	.68		
102227		1.83	.63		
103229		1.52	.62		
104231		1.81	. 62		
103233		1.46	. 37		
*******		1.70			

TYST DATE	10/14/1981 #	CONTINCT NO. 49-0805	PROJECT KASA
TYPE-09 LIBRI TENSION TENTED TENTED TO THE TENTED TO THE TENTED TENTED TENTED TENTED TO THE TENTED TENTED TO THE TENTED TENTED TO THE TENTED TO THE TENTED TO THE TENTED TO THE TENTED TENTED TO THE TENTED TO THE TENTED TO THE TENTED TO THE TENTED TENTED TENTED TO THE TENTED T	m FATIQU ** INDIDITY 28.65 W	SPECIMEN NAME NOTSOG SPECIMEN SUAPE RECTAN LENGTH (IN)	IGULAR
CYCLING FIU.G	10.60 100.00 x 20.60 HZ	THICKNESS (IN)=	1.500
CHAN. TYPE LOW 8 42 .018 7 48 .010	HIGH CAL-LOW 10,010 0.00000	CAL-HIGH GAGE LEN. 1000.0000 0.00000 .07000 0.50000	DESCRIPTION 1KLB L. CELL LORG. EXT. LAT. EXT.

Specimen Gycle *	AG7506 STATIC LONG.	DYNAMIG LONG.	G(12)*(E+96)
G PGLES >	MODULUS*(E+06)	Modulus#(E+06)	
1890	1.55	1.58	. 69 .69
1392 1394		1.58 1.58	.69
1396		1.58	.69
1898		1.58	.69
1408		1.55	.69
1418 1428		1.58 1.58	.69
1489		1.58	.69
1449		1.88	.69
1489		1.59 1.58	. 69 . 69
146 9 147 9		1.54	.69
1489		1.58	.69
1588		1.56	.69
1688		1.58 1.58	.69 .69
1789 1839		1.58	.69
1989		1.58	.69
2089		1.58	.69
2189 2290		1.58 1.57	, 69 , 69
2290		1.58	.69
3392		1.58	.69
4395		1.58	.69
6397		1.59 1.58	.70 .69
6399 7401		1.38	.69
8454		1.58	.69
9406		1.58	.69
10408		1.58	.69 .69
11411 21484		1.58 1.50	.69
31437		1.58	.69
41480		1.59	.69
51503		1.88 1.88	. 69 . 69
61527 7155 0		1.00	.69
81573		1.58	.69
91397		1.58	.69
101620		1.50 1.58	. 69 . 69
201835 302090		1.58	.69
402326		1.58	.69
802366		1.57	.69
002639 70088a		1.57 1.57	.69 .69
098031		1.58	.69
703056		1.87	.69
718001		1.56 1.50	.68 .68
72310 6 733131		1.86	.68
743186		1.86	.68
753183		1.00	.68
703208		1.54 1.54	.68 .67
770233 770246		1.84	.68
779248		1.53	.67
780231		1.83	.67
781253		1.03 1.52	.67 .67
70223 6 700239		1.51	.66
781261		1.80	.66
785264		1.50	.66 48
786266		1.48 1.46	.63 .64
787269		1.70	107

TEST DATE TYPE-00 IIS21 TERSION TERSION TEST DIRECTION IS UP MATERIAL: +-4.7DEG, GR/EP, SOR FATIOU MATERIAL: 23.00 DEG, C. HUNDITY 28.00 CYCLING FIRM	
RGAN RATE	# # # # # # # # # # # # # # # # # # #

SPECIMENA NOTSOT	org. Dynamic Long. E+06) Modulus*(E+06)	G(12) *(E+06)
MODULUS*	E+001 Honorougerson	.69
1.8	1.59	.68
3 5	1.58	.68
ธิ	1.58	.68
T	1.58	.68
ğ	1.58	.68
19	1.58	,68
29	1.58	.68
39	1.58	.68
49	1.58	.68
SA)	1.58	.68
€ \	1.58	.68
79	1.59	.68
89	1.58	.68
99 ·	1.58	.68
199	1.59	.69
800	1.59	.68
400	1.58	.68
000	1.59	.68
600	1.58	.68
700	1.59	.69
801	1.58	.68
901	1.58	.68
1001	1.59	.69
2004	1.59	. 69
8007	1.60	.70
4009	1.59	. 69
5012	1.60	. 69
6014	1.59	. 69
7017	1.66	.69
8020	1.89	.69
9022	1.59	.69
10025	i.89	.69
20031	1.59	. 69
300 78	1.89	. 69
40104	1.60	.69
50139	1.59	.69
69136	1.60	.69
76183	1.60	. 69
9Q50 Q ;	1.60	.69
40532	1.89	.69
100261	1.89	.69
200528	1.89	.69
270714	1.59	, 69
280740	1.59	.69
290767	1.59	.69
300794	1.89	.69 .69
310820	1.59	.69
920047 9308 74	1.89	.69
44090 1	1.89	.69
330927	1.59	.69
350921 36093 4	1.59	.69
367973	1.59	.69
367773 868976	1.59	.69
369978	1.59	.69
870981	1.89	.69
37 1984	1.89	.69
372986	1.39	.68
32848A 24548A	1.89	, 69
374992	1.59	, 6 9
373998	1.59	.69
876997	1.89	, 07
A) [U 7 7 9		

TEST DATE	10/18/1984 *	CONTRACT NO	p. 43 -0335	PROJECT NASA
TYPE-00 [1621 TENSION TENSION TENSION TENSION IN THE MATERIAL! +-67DEG, GREEP, SOR F			ame n67808 . Nate rectang	
TEMPERATURE 28.00 DEG. C. HUM CYCLING FREE. 10.0 FUNCTION GEN RNG, MULT 10.0 SUAN RATE	IDITY 20.07 * 0 ENTZ	LENGTH (IN:) 7 1 (I)	.000
OPERATOR #2		F京学院由京庆庆庆安全	大水水水水水水水水水水	技术水水块水水水水水水水
CHAN. TYPE LOW HI 42 .015 10.0	CH CAL-LOW 10 0.00000	CAL-1116H (DESCRIPTION INLB L. CELL
7 48 .010 10.0 6 49 .010 19.0	18 0.00000	.07000	3.80000	LONG. EXT.

SPECIMEN:	N67508		
CYCLE .	STATIC LONG.	BYNAMIC LONG.	G(12) #(E+66)
1	MODULUS*(E+06) 1.59	Nodulus*(E+06) 1.60	.6B
8	1.07	1.59	.68
5		1.60	.68
7		1.59	.68
19		1.61 1.59	. 68 . 68
29		1.89	.6B
39		1.59	.68
49		1.60	.68
59 69		1.59 1.59	. 68 . 68
80		1.60	. 68
90		1.61	.68
100		1.60	89.
199 800		1.60 1.59	• <u>:</u> 8
400		1.60	.68 .68
501		1.60	.68
601		1.60	, 6월
701 802		1.59	.68
902		1.61 1.60	. 68 . 68
1002		1.61	.68
2006		1.58	.67
3010		1.59	.68
4014 5017		1.89 1.59	.68
6071		1.60	.68 .68 -
7025		1.60	.68
8029		1.60	.68
9032 10036		1.60	.68
20074		1.5 8 1.61	.68 .68
80112		i.6i	.68
40149		1.59	.68
50187 60228		1.60	.68
70268		1.59 1.59	.68 .68
80301		1.60	.68
90339		1.61	.69
100377		1.69	. ទង្គ
200764 301158		1.59 1.89	.68
491837		1.59	.68 .68
601938		1.59	.68
832079		1.59	.68
542119 552160		1.59 1.58	.68
562200		1.59	.68 .68
572241		1.59	.68
582281		1.59	.68
59232 <u>2</u> 602362		1.59 1.58	.68
612493		1.60	. 57 . 68
622443		1.39	.68
628468		1.59	.68
629 472 680 47 6		1.89	.68
631480		1.59 1.59	. 68 . 68
632484		1.59	.68
633488		1.60	∶68
684492		1.60	.68
688496 6868 9 0		1.60	.68
637804		1.60 1.60	. 68 . 68
		••••	• • • • • • • • • • • • • • • • • • • •

•			
TEST DATE	9/80/1901 # CONTRA	et 110411-8335	Project Nasa
TYPE-09 11821 TENSION TENSION	# specim	en name n67408	
TEST BIRECTION IS UP MATERIALI +-67.8.GR/EP.403 FAT TESPERATURE 28.00 DEG. C. BUNIL		en buape rectanci	ULAR ·
CYCLING FREQ 10,00	Hertz * Length	((N) 7.	
FUNCTION GEN RNG, MULT 10.00 BCAN RATE		ESS (1H)	.044
OPERATOR #1 MOHAN OPERATOR #2 White a state a			
			DESCRIPTION
			IKLB L. CELL
			LONG. EXT.
7 48 .010 10.02			
4 49 .010 10.01	8 0.00 000 . 01	1976 . GHARO 1	LAT. EXT.

SPECIMEN:	N67402		
CYCLE	STATIC LONG. MODULUS#(E+96)	Dynamic Long. Modulus*(£+06)	G(12)*(E+06)
1	1.52	1.56	.67
Š	•••-	1.56	.68
5		1.57	.68
7		1.56	.68
9		1.86	.68
19		1.56	.67
29		1.57	.68
89		1.56	∙68
49		1.56	.68 .68
59		1.56 1.56	.68
59 74		1.56	.68
89		1.36	.68
33		1.56	. 6B
199		1.56	.68
300		1.57	.68
400		1.56	.68
501	_	1.56	.68
601		1.56	٠68
701		1.56	.ĕ#
802		1.56	.68
902		1.57	.68
1003		1.86 1.86	.68 .68
200 6 301 0		1.57	.68
4014		1.56	.68
8018		1.58	.69
6022		1.57	.68
7028		1.56	.68
8029		1.57	80،
9033		1.56	.68
10037		1.58	,69
20075		1.58	. 69 . 68
30114		1.37 1.86	.68
40182 5019 0		1.36	.68
60229		1.56	.68
70267		1.56	.68
80308		1.67	.68
90344		1.57	∙6₿
100383		1.57	.68
200772		1.56	.68
301164		1.87 1.58	.68 .69
401537		1.57	:88
801988 60238 2		1.58	.69
702753		i.68	.66
803158		1.56	.68
903565		1.56	.68
913606		1.57	.68
928647		1.58	.69
983688		1.86	.6B .6B
943729		1.57 1.57	.68
9537 70 96381 2		1.58	.69
978838		1.58	.69
983894		1.58	.69
998986		1.87	.68
1003977		1.57	. 69
1004982		1.58	. 69
1005986		1.57	.68
1006990		1.57	.68
1007994		1.56	. 68 . 69
1008998		1.89 1.58	.69
1010002 1011007		1.00	.68
1012011		1.56	.68
1013015		1.57	. 68
1014019	1.64	1.58	. 68
	•		

TEST DATE 10/16/1981	# CONTRACT NO. 49-8000 PROJECT NASA
TYPE-09 IIDSI TENSION TENSION TEST DIRECTION 14 UP	6 SPECIMEN NAME 767409
MATERIAL +-67.5.GRZEP, 40% FATIGUE	# SPECIMEN SHAPE RECTANGULAR
FUNCTION GEN RUG, MULT 10.00 100.00	* LENGTH (IN) 7.000
· 技术市众市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市	
	N CAL-HIGH CACE LEN. DESCRIPTION 0 1000.0004 0.00000 1KLD L. CELL 0 .05300 0.50000 LONG. EXT.
6 49 .010 10.015 0.0000	

CYCLE .	R67403 STATIC LONG. MODULUS*(F+06)	DYNAMIC LONG. MODULUSM(E+06)	G(12)*(F+96)
1	1.54	1.57	. 67 . 67 . 67
3		1.58	.67
5		1.07	.67
7		1.5 <u>8</u> 1.57	.67 .67
9 19		1.88	.67
29		1.57	.67
39		1.58	.67
49		1.58	.68
89		1.58	.68
69		1.57	.67 .67
79 89		1.58 1.58	.67
99		1.57	. 67
199		1.58	.67
300		1.58	.68
400		1.58	.68
500		1.58	. 67 . 88
601 701		1.59	. 67
831		1.59	.68
90i		i.50	.67
1002		1.88	.68
2004		1.58	.67
8007		1.89	.68
4010		1.59	.68 .67
5013 601 6		1.57 1.56	.67
7019		1.59	.68
8022		1.59	.68
44194		1.58	.68
14027		1.59	.60
20086		1.58	.68
30084		1.58	.67 .68
40112 50141		1.59 1.59	.68
60169		1.89	.68
70198		1.60	. 68
80227		1.60	.68
90258		1.89	.68
10028 4 20056 9		1.69 1.58	. 68 . 67
800856		1.61	.69
401148		1.59	. ĕ ú
001438		1.59	.68
601726		1.58	. 68
702022		1.09	.68
002022 902026		1.59	.68 .68
902626 92268B		1.59 1.59	.68
982719		1.89	.68
942750		1.86	.68
982781		1.59	. 68
962812		1.88	.ев
972843		1. 59 1. 69	. 68 . 68
9828 74 992988		1.58	.67
1002936		1.89	.68
1012967		1.58	. 68
1018970		1.58	6.3
1014978		1.60	• '
1015976		1.59	.68
1016979 1017982		1.89	. 68 . 68
1018985		1.59	.68
1014988		1.57	.67
1020492		1.60	.68
1021998		1.60	.60
1022998	1.36	1.59	.68

Appendix C

Modulus Docay Plots

This appendix includes normalized plots of the dynamic modulus for both the $\begin{bmatrix} \pm 45 \end{bmatrix}_{28}$ and the $\begin{bmatrix} \pm 67.5 \end{bmatrix}_{28}$ laminates. Additionally, per the request of the NASA-Langley Program Monitor, normalized plots of G_{12} for the $\begin{bmatrix} \pm 45 \end{bmatrix}_{28}$ laminates are also included.

UNIGINAL PAGE 19 OF POOR QUALITY

in the second

ORIGINAL FACE IS

original page is of poor quality

