SEQUENTIAL NETWORKS

- CANONICAL FORM OF SEQUENTIAL NETWORKS
- LATCHES AND EDGE-TRIGGERED CELLS. D FLIP-FLOP
- TIMING CHARACTERISTICS
- ANALYSIS AND DESIGN OF CANONICAL NETWORKS
- SR, JK and T FLIP-FLOP
- ANALYSIS OF FLIP-FLOP NETWORKS
- DESIGN OF FLIP-FLOP NETWORKS. EXCITATION FUNCTIONS
- SPECIAL STATE ASSIGNMENTS: ONE-FLIP-FLOP-PER-STATE AND SHIFT-ING REGISTER

State-transition function
$$s(t+1) = G(s(t), x(t))$$

Output function $z(t) = H(s(t), x(t))$

 ${
m Figure~8.1:~a)}$ CANONICAL IMPLEMENTATION OF SEQUENTIAL NETWORK. b) IDEAL CLOCK SIGNAL AND ITS INTERPRETATION.

Figure 8.2: CANONICAL IMPLEMENTATIONS: a) MEALY MACHINE. b) MOORE MACHINE.

Figure 8.3: CANONICAL IMPLEMENTATION WITH BINARY VARIABLES.

EXAMPLE 8.1

Input:
$$\underline{x}(t) = (x_1, x_0), x_i \in \{0, 1\}$$

Output: $z(t) \in \{0, 1\}$

State: $y(t) = (y_3, y_2, y_1, y_0), y_i(t) \in \{0, 1\}$

Initial state: y(0) = (0, 0, 0, 0)

Function: The transition and output functions

$$Y_{3} = y_{2}x'_{1}x_{0}$$

$$Y_{2} = (y_{1} + y_{2})x'_{0} + y_{3}x_{1}$$

$$Y_{1} = (y_{0} + y_{3})x'_{1}x_{0} + (y_{0} + y_{1})x_{1}$$

$$Y_{0} = (y_{0} + y_{3})x'_{0}y_{1}x'_{1}x_{0} + y_{2}x_{1}$$

$$z = y_{3} + y_{2} + y_{1} + y_{0}$$

Figure 8.4: CANONICAL NETWORK FOR EXAMPLE 8.1.

- \bullet clock period T
- clock frequency f = 1/T
- (clock) pulse width t_w

Figure 8.5: PULSE WIDTH AND CLOCK PERIOD.

Figure 8.6: a) GATED-LATCH. b) TIMING BEHAVIOR.

$$Q(t+t_p) = D(t) \cdot E(t) + Q(t) \cdot E'(t)$$

ullet LEVEL-SENSITIVE: when E=1 then Q=D

Figure 8.7: a) IMPLEMENTATION OF GATED-LATCH WITH NOR GATES. b) TIMING DIAGRAM.

Figure 8.8: a) IMPLEMENTATION OF GATED-LATCH WITH TRANSMISSION GATES. b) TIMING DIAGRAM.

Figure 8.9: a) SEQUENTIAL NETWORK. b) CORRECT TIMING BEHAVIOR. c) INCORRECT TIMING BEHAVIOR.

Figure 8.10: EDGE-TRIGGERED CELL: a) LEADING-EDGE-TRIGGERED CELL. b) TRAILING-EDGE-TRIGGERED CELL. c) LEADING-EDGE-TRIGGERED CELL IN NETWORK OF Figure 8.9. d) TRAILING-EDGE-TRIGGERED CELL IN NETWORK OF Figure 8.9.

Figure 8.11: a) MASTER-SLAVE IMPLEMENTATION OF TRAILING-EDGE-TRIGGERED CELL. b) MASTER-SLAVE STATE CHANGE PROCESS.

Figure 8.12: D FLIP-FLOP AND ITS STATE DIAGRAM.

PS = Q(t)	D(t)				
	0	1			
0	0	1			
1	0	1			
	NS =	$\overline{=Q(t+1)}$			

$$Q(t+1) = D(t)$$

Figure 8.13: TIME BEHAVIOR OF CELL.

Delays						Size
					factor	
t_{pLH}	t_{pHL}	t_{su}	t_h	t_w	[std.	[equiv.
[ns]	[ns]	[ns]	[ns]	[ns]	loads]	gates]
0.49 + 0.038L	0.54 + 0.019L	0.30	0.14	0.2	1	6

L: output load of the flip-flop

THIS FLIP-FLOP HAS ONLY THE UNCOMPLEMENTED OUTPUT

• NETWORK SET-UP TIME: $t_{su}^x(net) = d1^x + t_{su}(cell)$

Figure 8.14: TIMING FACTORS IN SEQUENTIAL NETWORKS: a) THE NETWORK. b) NETWORK SET-UP TIME.

• NETWORK HOLD TIME: $t_h(net) = t_h(cell)$

Figure 8.14: TIMING FACTORS IN SEQUENTIAL NETWORKS: a) THE NETWORK. c) NETWORK HOLD TIME.

• NETWORK PROPAGATION DELAY: $t_p(net) = t_p(cell) + d2$

Figure 8.14: TIMING FACTORS IN SEQUENTIAL NETWORKS: a) THE NETWORK. d) NETWORK PROPAGATION DELAY.

Figure 8.15: MAXIMUM CLOCK FREQUENCY: a) CLOCK PERIOD AND SIGNAL DELAYS. b) THE NETWORK.

- ullet t_{in} TIME BETWEEN TRIGGERING EDGE OF CLOCK AND STABILIZATION OF INPUT x
- ullet t_{out} TIME BETWEEN STABILIZATION OF OUTPUT z AND NEXT CLOCK TRIGGERING EDGE

Figure 8.15: MAXIMUM CLOCK FREQUENCY: b) THE NETWORK. c) MINIMUM CLOCK PERIOD.

MAXIMUM CLOCK FREQUENCY (cont.)

$$T_{\min} = 1/f_{\max}$$

$$T_{\min} = \max[(t_{in} + t_{su}^x(net)), (t_p(cell) + t_{su}^y(net)), (t_p(net) + t_{out})]$$

$$t_h(cell) \le t_p(cell)$$

$$T_{\min} = \max[(t_{in} + d1^x + t_{su}(cell)), (t_p(cell) + d1^y + t_{su}(cell)), (t_p(cell) + d2 + t_{out})]$$

DETERMINE THE MAXIMUM CLOCK FREQUENCY

$$d1^{x} = d1^{y} = 2.5ns$$

$$d2 = 3ns$$

$$t_{su} = 0.3ns$$

$$t_{p} = 1ns$$

$$t_{in} = 2ns$$

$$t_{out} = 3ns$$

THE MINIMUM CLOCK PERIOD

$$T_{\min} = \max[(2+2.5+0.3), (1+2.5+0.3), (1+3+3)] = 7[\text{ns}]$$

THE MAXIMUM FREQUENCY

$$f_{\rm max} = \frac{1}{7 \times 10^{-9}} \approx 140 ({\rm MHz})$$

 $\begin{tabular}{ll} Figure 8.16: a) NETWORK BEHAVIOR WITHOUT CLOCK SKEW. b) NETWORK BEHAVIOR WITH INADMISSIBLE CLOCK SKEW. \\ \end{tabular}$

- 1. ANALYZE COMBINATIONAL NETWORK

 DETERMINE THE TRANSITION AND OUTPUT FUNCTIONS
- 2. DETERMINE HIGH-LEVEL SPECIFICATION OF STATE DESCRIPTION OUTPUT FUNCTIONS.
- 3. IF DESIRED (OR REQUIRED), DETERMINE TIME BEHAVIOR

Figure 8.17: SEQUENTIAL NETWORK IN Example 8.4.

State transition
$$Y_0 = x'y_1' + xy_0'$$

$$Y_1 = xy_0'y_1' + x'y_0'y_1 + xy_0y_1 + x'y_0y_1'$$
 Output
$$z_0 = y_1'$$

$$z_1 = y_0$$

• STATE-TRANSITION AND OUTPUT FUNCTIONS:

\overline{PS}	Inp		
y_1y_0	x = 0	x = 1	
00	01	11	01
01	11	00	11
10	10	01	00
11	00	10	10
	Y_1Y_0		$z_1 z_0$
	N	S	Output

• CODES:

\overline{x}	\overline{x}	$z_1 z_0$	\overline{z}	$y_1 y_0$	s
0	\overline{a}	00	\overline{c}		S_0
1	b	01	d		S_1
		10	e	10	S_2
		11	f	11	S_3

HIGH-LEVEL SPECIFICATION:

Input: $x(t) \in \{a, b\}$

Output: $z(t) \in \{c, d, e, f\}$

State: $s(t) \in \{S_0, S_1, S_2, S_3\}$

Initial state: $s(0) = S_2$

Functions: The state-transition and output functions

\overline{PS}	x(t) = a	x(t) = b	
$\overline{S_0}$	S_1	S_3	d
S_1	S_3	S_0	f
S_2	S_2	S_1	c
S_3	S_0	S_2	e
	N	\overline{S}	z(t)

Figure 8.18: a) STATE DIAGRAM FOR SEQUENTIAL NETWORK.

Figure 8.18: b) A sequence of input-output pairs.

PROPAGATION DELAY x to z_0 :

INPUT LOAD FACTORS:	I_x	=	4
SET-UP TIME:	$t_{su}(net)$	=	$t_{pHL}(\text{NOT}) + t_{pHL}(\text{AND3})$
			$+t_{pHL}(\text{OR4}) + t_{su}$
		=	$(0.05 + 0.017 \times 3) + (0.18 + 0.018)$
			+(0.45+0.025)+0.3
		=	1.07 [ns]
HOLD TIME:	$t_h(net)$	=	0.14 [ns]
PROPAGATION DELAY:	$t_p(z_0)$	=	$t_{pLH}(ext{FF}) + t_{pHL}(ext{NOT})$
		=	$(0.49 + 0.038 \times 3)$
			$+(0.05 + 0.017 \times (L+3))$
		=	0.70 + 0.017L [ns]
			(load of NOT is $L + 3$, load of FF is 3)
SIZE:		=	$6 \times 2 + 2 + 3 + 2 \times 6 + 3 \times 1$
		=	32 equivalent gates.

- 1. TRANSFORM THE TRANSITION AND OUTPUT FUNCTIONS
- 2. SPECIFY A STATE REGISTER TO ENCODE THE REQUIRED NUMBER OF STATES
- 3. DESIGN THE REQUIRED COMBINATIONAL NETWORK

 $\begin{array}{ll} \text{Input:} & x(t) \in \{a,b,c\} \\ \text{Output:} & z(t) \in \{0,1\} \\ \text{State:} & s(t) \in \{A,B,C,D\} \end{array}$

Initial state: s(0) = A

Functions: The state-transition and output functions

\overline{PS}	Input					
	x = a	x = b	x = c			
\overline{A}	C,0	B, 1	B,0			
B	D, 0	B , ${\sf 0}$	A,1			
C	A,0	D, $f 1$	D , ${\sf 0}$			
D	B,0	A,0	D, 1			
		$\overline{NS, z}$				

• CODING:

In	Input code			Sta	ate o	code
x	x_1	x_0		s	y_1	y_0
\overline{a}	0	1		\overline{A}	0	0
b	1	0		B	1	0
c	1	1		C	0	1
				D	1	1

STATE-TRANSITION AND OUTPUT FUNCTIONS

\overline{PS}	x_1x_0					
$y_1 y_0$	01	10	11			
00	01,0	10,1	10,0			
10	11,0	10,0	00,1			
01	00,0	11,1	11,0			
11	10,0	00,0	11,1			
	Y_1Y_0, z					
	NS, Output					

V_{\circ} .		\mathcal{X}	0	<u>.</u>	
<i>Y</i> ₀ :	-	1	0	0	
	ı	0	1	1	y_0
y_1	-	0	1	0	90
g_1	-	1	0	0	
			\overline{x}	1	

$$Y_{1} = y'_{1}x_{1} + y_{1}x'_{1} + y'_{0}x'_{0} + y_{0}x_{1}x_{0}$$

$$Y_{0} = y'_{0}x'_{1} + y'_{1}y_{0}x_{1} + y_{0}x_{1}x_{0}$$

$$z = y'_{1}x'_{0} + y_{1}x_{1}x_{0}$$

Figure 8.19: SEQUENTIAL NETWORK IN Example 8.5.

Figure 8.20: SR FLIP-FLOP AND ITS STATE DIAGRAM.

PS = Q(t)	S(t)R(t)					
	00	01	10	11		
0	0	0	1	_		
1	1	0	1	-		
	NS	S =	Q(t)	+1)		

$$Q(t+1) = Q(t)R'(t) + S(t)$$
 restriction: $R(t) \cdot S(t) = 0$

Figure 8.21: JK FLIP-FLOP AND ITS STATE DIAGRAM.

PS = Q(t)	J(t)K(t)			
	00	01	10	11
0	0	0	1	1
1	1	0	1	0
	NS	S =	Q(t)	+1)

$$Q(t+1) = Q(t)K'(t) + Q'(t)J(t)$$

Figure 8.22: T FLIP-FLOP AND ITS STATE DIAGRAM.

PS = Q(t)		T(t)
	0	1
0	0	1
1	1	0
	NS	= Q(t+1)

$$Q(t+1) = Q(t) \oplus T(t)$$

Figure 8.23: T FLIP-FLOP IMPLEMENTED WITH JK FLIP-FLOP.

- 1. OBTAIN THE TRANSITION FUNCTION OF THE NETWORK
 - (a) DETERMINE THE INPUTS TO THE FLIP-FLOPS
 - (b) USE THE TRANSITION FUNCTION OF THE FLIP-FLOPS TO DETER-MINE THE NEXT STATE
- 2. OBTAIN THE OUTPUT FUNCTION
- 3. DETERMINE A SUITABLE HIGH-LEVEL SPECIFICATION

FF		Delays				Input	Size
type						factor	
	t_{pLH}	t_{pHL}	t_{su}	t_h	t_w	[std.	[equiv.
	[ns]	[ns]	[ns]	[ns]	[ns]	loads]	gates]
D	0.49 + 0.038L	0.54 + 0.019L	0.30	0.14	0.20	1	6
JK	0.45 + 0.038L	0.47 + 0.022L	0.41	0.23	0.20	1	8

L: output load of the flip-flop

These flip-flops have only uncomplemented outputs

Figure 8.24: SEQUENTIAL NETWORK FOR Example 8.6.

$$T_A = x_1 Q_B \quad Q_A(t+1) = Q_A(t) \oplus x_1 Q_B(t)$$

 $T_B = x_0 Q_A \quad Q_B(t+1) = Q_B(t) \oplus x_0 Q_A(t)$
 $z(t) = x_1(t) Q'_B(t)$

• STATE-TRANSITION AND OUTPUT FUNCTIONS

\overline{PS}		Inp	out					
Q_AQ_B		x_1	x_0			x_1	x_0	
	00	01	10	11	00	01	10	11
00	00	00	00	00	0	0	1	1
01	01	01	11	11	0	0	0	0
10	10	11	10	11	0	0	1	1
11	11	10	01	00	0	0	0	0
	Q_AQ_B				Ź	z		
		N	S			Out	put	

• CODING:

$\overline{Q_A}$	Q_B		$\overline{x_1}$	x_0	\overline{x}
0	0	S_0	0	0	\overline{a}
0		S_1	0	1 0	b
1	0	S_2	1	0	c
1	1	S_3	1	1	d

HIGH-LEVEL DESCRIPTION:

Input: $x(t) \in \{a, b, c, d\}$

Output: $z(t) \in \{0, 1\}$ State: $s(t) \in \{S_0, S_1, S_2, S_3\}$

Initial state: $s(0) = S_0$

Functions: The state-transition and output functions

PS		x				S	\overline{r}	
	\overline{a}	b	c	d	\overline{a}	b	\overline{c}	\overline{d}
$\overline{S_0}$	S_0	S_0	S_0	S_0	0	0	1	1
S_1	S_1	S_1	S_3	S_3	0	0	0	0
S_2	S_2	S_3	S_2	S_3	0	0	1	1
S_0 S_1 S_2 S_3	S_3	S_2	S_1	S_0	0	0	0	0
		\overline{N}				Ź	Z	

Figure 8.25: SEQUENTIAL NETWORK FOR Example 8.7

$$J_A = x'Q'_B + xQ_A$$
 $K_A = Q_B$
 $J_B = Q_A$ $K_B = x'Q'_A$
 $z = Q_A + Q'_B$

EXAMPLE 8.7 (cont.)

$$J_{A} = x'Q'_{B} + xQ_{A} K_{A} = Q_{B} J_{B} = Q_{A} K_{B} = x'Q'_{A}$$

$$z = Q_{A} + Q'_{B}$$

$$Q_{A}(t+1) = Q_{A}K'_{A} + Q'_{A}J_{A} = Q_{A}Q'_{B} + Q'_{A}(x'Q'_{B} + xQ_{A}) = Q'_{B}(Q_{A} + x')$$

$$Q_{B}(t+1) = Q_{B}K'_{B} + Q'_{B}J_{B} = Q_{B}(x+Q_{A}) + Q'_{B}Q_{A} = Q_{B}x + Q_{A}$$

• STATE-TRANSITION AND OUTPUT FUNCTIONS

PS	N	NS	
	x = 0	x = 1	\overline{z}
Q_AQ_B	Q_AQ_B	Q_AQ_B	
00	10	00	1
01	00	01	0
10	11	11	1
11	01	01	1

• STATE CODING

Q_A	Q_B	S
0	0	S_0
0	1	S_1
1	0	S_2
1	1	S_3

HIGH-LEVEL DESCRIPTION

Input: $x(t) \in \{0, 1\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{S_0, S_1, S_2, S_3\}$

Initial state: $s(0) = S_0$

Functions: The state-transition and output functions

PS	Input		
	x = 0	x = 1	
$\overline{S_0}$	S_2	S_0	1
S_1	S_0	S_1	0
S_2	S_3	S_3	1
S_3	S_1	S_1	1
	NS		z

 $\label{eq:Figure 8.26: STATE DIAGRAM IN Example 8.7.}$

OTHER CHARACTERISTICS (Example 8.6)

INPUT LOAD FACTOR: $I_x = 2$

SET-UP TIME: $t_{su}(net) = t_{pLH}(\text{NOT}) + t_{pLH}(\text{AND}) + t_{pLH}(\text{OR}) + t_{su}(FF)$ $= (0.02 + 0.038 \times 2) + (0.15 + 0.037) + (0.12 + 0.037) + 0.41$ = 0.86 [ns]

HOLD TIME: $t_h(net) = 0.23 \text{ [ns]}$

PROPAGATION DELAY: $t_p(net) = t_{pHL}(\text{FF}) + t_{pLH}(\text{NOT}) + t_{pLH}(\text{OR})$ $= (0.47 + 0.022 \times 2) + (0.02 + 0.038 \times 2)$ + (0.12 + 0.037L)= 0.73 + 0.037L [ns]

SIZE: $= 3 + 2 \times 5 + 8 \times 2$ = 29 equivalent gates

 $\bullet \quad \text{EXCITATION FUNCTION } E(Q(t),Q(t+1))$

from	to	inputs should be
Q(t) = 0	Q(t+1) = 0	S(t) = 0, $R(t) = dc$
Q(t) = 0	Q(t+1) = 1	S(t) = 1, $R(t) = 0$
Q(t) = 1	Q(t+1) = 0	S(t) = 0, R(t) = 1
Q(t) = 1	Q(t+1) = 1	S(t) = dc, $R(t) = 0$

EXCITATION FUNCTIONS

D flip-flop

\mathbf{SR}	flip-flop
	1 1

PS	Λ	\overline{S}
	0	1
0	0	1
1	0	1
	D	$\overline{r}(t)$

\overline{PS}	NS		
	0	1	
0	0-	10	
1	01	-0	
	S(t)R(t)		

$$D(t) = Q(t+1)$$

JK flip-flop

T flip-flop

PS	NS		
	0	1	
0	0-	1-	
1	-1	-0	
	J(t)K(t)		

$$T(t) = Q(t) \oplus Q(t+1)$$

- 1. OBTAIN A BINARY DESCRIPTION OF THE SYSTEM
- 2. SELECT THE TYPE OF FLIP-FLOP
- 3. DETERMINE THE INPUTS TO THE FLIP-FLOPS (use the excitation function)
- 4. DESIGN A COMBINATIONAL NETWORK

USE T FLIP-FLOPS

 $\begin{array}{ll} \text{Input:} & x(t) \in \{0,1\} \\ \text{Output:} & z(t) \in \{0,1,2,3,4\} \\ \text{State:} & s(t) \in \{S_0,S_1,S_2,S_3,S_4\} \end{array}$

Initial state: $s(0) = S_0$

Functions: Counts modulo-5, i.e., (0,1,2,3,4,0,1,2,3,4,0...),

Figure 8.27: STATE DIAGRAM FOR Example 8.8.

\overline{z}	z_2	z_1	z_0
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0

PS	Input		Input	
$Q_2Q_1Q_0$	x = 0	x = 1	x = 0	x = 1
000	000	001	000	001
001	001	010	000	011
010	010	011	000	001
011	011	100	000	111
100	100	000	000	100
	NS		T_2T	T_1T_0

DON'T CARES: 5, 6, AND 7

sm - STATE MAP

$$T_{2}: \frac{x}{0 \ 0 \ 0 \ 0}$$

$$Q_{2} \frac{0 \ 0 \ 1 \ 0}{0 \ 1 \ - \ - \ -}$$

$$Q_{0}$$

$$T_0: \frac{x}{0 \ 1 \ 1 \ 0} Q_1$$

$$Q_2 \overline{0 \ 0 \ - - - } Q_0$$

$$T_2 = xQ_2 + xQ_1Q_0$$

$$T_1 = xQ_0$$

$$T_0 = xQ_2'$$

 $\label{eq:Figure 8.28: SEQUENTIAL NETWORK IN Example 8.8.}$

EXAMPLE 8.9: DESIGN

Input: $\underline{x}(t) = (x_1, x_0), \ x_i \in \{0, 1\}$

Output: $z(t) \in \{0, 1\}$ State: $s(t) \in \{a, b, c, d\}$

Initial state: s(0) = a

Functions: The transition and output functions

\overline{PS}	x_1x_0			
	01	10	11	
\overline{a}	<i>b</i> ,0	c,1	<i>c</i> ,0	
b	a,0	d, 1	d, 0	
c	d,0	c,0	a,1	
d	<i>c</i> ,0	a,0	d, 1	
	NS, z			

EXAMPLE 8.9 (CONT.)

State	Q_1Q_0
\overline{a}	00
b	01
c	10
d	11

\overline{PS}	x_1x_0		
Q_1Q_0	01	10	11
00	01	10	10
01	00	11	11
10	11	10	00
11	10	00	11
	NS		

Q(t)	Q(t+1)	S	\overline{R}
0	0	0	_
0	1	1	0
1	0	0	1
1	1	_	0

$$S_{1} = x_{1}Q'_{1}$$

$$R_{1} = x'_{0}Q_{1}Q_{0} + x_{1}x_{0}Q_{1}Q'_{0}$$

$$S_{0} = x'_{1}Q'_{0}$$

$$R_{0} = x'_{1}Q_{0} + x'_{0}Q_{1}$$

THE OUTPUT EXPRESSION IS

$$z = x_0'Q_1' + x_1x_0Q_1$$

Figure 8.29: SEQUENTIAL NETWORK IN Example 8.9.

ONE FLIP-FLOP PER STATE

Figure 8.30: ONE FLIP-FLOP PER STATE APPROACH: a) STATE DIAGRAM. b) IMPLEMENTATION (Outputs omitted).

Figure 8.31: PRIMITIVES FOR THE "ONE-FLIP-FLOP-PER-STATE" APPROACH.

Figure 8.32: A ONE-FLIP-FLOP-PER-STATE IMPLEMENTATION OF A CONTROLLER FOR VENDING MACHINE: a) STATE DIAGRAM. b) IMPLEMENTATION.

Input: $x(t) \in \{0, 1\}$ Output: $z(t) \in \{0, 1\}$

Function: $z(t) = \begin{cases} 1 & \text{if } x(t-3,t) = 1101 \\ 0 & \text{otherwise} \end{cases}$

Figure 8.33: IMPLEMENTATION OF PATTERN RECOGNIZER IN EXAMPLE 8.10.