School of Computing and Information Systems The University of Melbourne COMP30027 Machine Learning (Semester 1, 2021)

Workshop: Week 7

- 1. What is **gradient descent**? Why is it important?
- 2. What is Linear Regression? In what circumstances is it desirable, and in what circumstances it is undesirable?
- 3. Recall that the update rule for Gradient Descent with respect to Mean Squared Error (MSE) is as follows:

$$\beta_k^{j+1} = \beta_k^j + \frac{2\alpha}{N} \sum_{i=1}^{N} x_{ik} (y_i - \hat{y}_i^j)$$

Build a Linear Regression model, using the following instances:

- 4. What is Logistic Regression? What is "logistic"? What are we "regressing"?
- 5. [OPTIONAL] What is the relation between "odds" and "probability"?
- 6. Build a logistic regression classifier, which uses the counts of selected words in the news articles to predict the class of the news article (fruit vs. computer). Assume the weights of the 4 features (and the bias β_0) is $\widehat{\beta} = [\beta_0, \beta_1, \beta_2, \beta_3, \beta_4] = [0.2, 0.3, -2.2, 3.3, -0.2]$.

ID	apple	ibm	lemon	sun		CLASS
TRAINING INSTANCES						
A	1	0	1	5		1 FRUIT
В	1	0	1	2		1 fruit
C	2	0	0	1		1 fruit
D	2	2	0	0	0	COMPUTER
E	1	2	1	7	0	COMPUTER
TEST INSTANCES						
\overline{T}	1	2	1	5	0	COMPUTER

- a) Explain the intuition behind the model parameters, and their meaning in relation to the features
- b) Predict the test label.
- 7. For the model created in question 6, compute a single gradient ascent update for parameter β_1 given the training instances given above. Recall that for each feature j, we compute its weight update as

$$\beta_j \leftarrow \beta_j + \alpha \frac{\partial \mathcal{L}(\beta)}{\partial \beta_i}$$

Summing over all training instances i. We will compute the update for β_j assuming the current parameters as specified above, and a learning rate $\alpha = 0.1$.

1