Лекция 07.09.22

Note 1

1afcb80707524feb886d294c984a52da

 $\{\{c2: Aбсолютное значение\}\}$ мультииндекса $\alpha \in \mathbb{Z}_+^n$ так же называют $\{\{c1: порядком \ \alpha.\}\}$

Note 2

18494d24db8b401ab85e8094eb88038

 $\{\{c\}\}$ Многочленом n переменных со значениями в \mathbb{R}^m $\}$ называется $\{\{c\}\}$ отображение $\}$ вида

$$x\mapsto \{\{ ext{cl::} \sum_{lpha\in\mathbb{Z}_+^n} c_lpha x^lpha, \}\}$$
 где $\{\{ ext{c2::} \mathbf{Bce}\ c_lpha\in\mathbb{R}^m.\}\}$

Note 3

3ac8ca4a2feb446b91d36973c81be6c9

Пусть $p:x\mapsto \sum c_{\alpha}x^{\alpha}$ — многочлен. Если ([c2:: $p\not\equiv 0$,]) то ([c3::степенью]) многочлена p называется ([c1::число

$$\max\{|\alpha|:c_{\alpha}\neq 0\}.$$

Note 4

b531da86b4704f8a98fa60c7e92fed4f

Пусть $p:x\mapsto \sum c_{\alpha}x^{\alpha}$ — многочлен. Если ((e2:: $p\equiv 0$,)) то ((e3:: степень)) многочлена p полагают равной ((e1:: $-\infty$.))

Note 5

a810b4eb7a9c412e956ede41dfa9bf20

Пусть $p:x\mapsto \sum c_{\alpha}x^{\alpha}$ — многочлен. ((c2: Степень)) многочлена p обозначается ((c1::

$$\deg p$$
.

Note 6

208b23c3a625454aa756b911bec91ab0

Пусть $p:x\mapsto \sum c_{\alpha}x^{\alpha}$ — многочлен. Многочлен p называется (селоднородным,)) если (селодня всех $c_{\alpha}\neq 0$

$$|\alpha| = \deg p.$$

}}

Пусть $f:E\subset\mathbb{R}^n o\mathbb{R}^m$, {{c4:-}} $a\in\mathrm{Int}\,E$,}} {{c5::}}\$ $s\in\mathbb{Z}_+$.}} {{c2::}}Многочлен p степени не выше s,}} для которого {{c1:-}}

$$p(a) = f(a)$$
 u $f(x) = p(x) + o(||x - a||^s), x \to a,$

 $\|$ называется $\| \mathbf{c}_{s} \|$ многочленом Тейлора f порядка s в точке a

Note 8

eb19d56da526470cb6e9080b543d4274

Пусть $f:E\subset\mathbb{R}^n o\mathbb{R}^m$, $a\in\mathrm{Int}\,E$, $s\in\mathbb{Z}_+$. (са:Многочлен Тейлора f порядка s в точке a) обозначается (са:

$$T_{a,s}f$$
.

Note 9

933573807d4c48759570240ceab80b99

Пусть $f:E\subset\mathbb{R}^n\to\mathbb{R}^m$, $a\in {\rm Int}\, E,s\in\mathbb{Z}_+$. Если $T_{a,s}f$ существует, то он (сл. единственный.)

Note 10

58c9f6950530458f9675a1dbdf0ada74

Пусть $f:E\subset\mathbb{R}^n\to\mathbb{R}^m$, $a\in\mathrm{Int}\,E$, $s\in\mathbb{Z}_+$. Если $T_{a,s}f$ существует, то он единственный. В чём ключевая идея доказательства?

Разность двух многочленов есть $o(\|x-a\|^s), x \to a.$

Note 11

279f256b32fa4f1597e48070542d1328

Пусть p — многочлен (селстепени не выше s,)) ((селе $a \in \mathbb{R}^n$.)) Тогда если

$$p(x) = o(||x - a||^s), \quad x \to a,$$

to {{c1:: $p\equiv 0.$ }}

Пусть p — многочлен степени не выше $s,a\in\mathbb{R}^n$. Тогда если $p(x)=o(\|x-a\|^s)$ при $x\to a$, то $p\equiv 0$. Каков первый шаг в доказательстве?

Рассмотреть два случая: a=0 и $a\neq 0$.

Note 13

lbbbdf10a7154a108f480966e50f47f4

Пусть p — многочлен степени не выше $s,a\in\mathbb{R}^n$. Тогда если $p(x)=o(\|x\|^s)$ при $x\to 0$, то $p\equiv 0$. В чём ключевая идея показательства?

Разбить p на однородные компоненты и рассмотреть p(tx) как многочлен переменной t.

Note 14

f5bb46b7a1ed4834958c83c4ad14592b

Пусть p — многочлен степени не выше $s,\ a\in\mathbb{R}^n$. Тогда если $p(x)=o(\|x\|^s)$ при $x\to 0$, то $p\equiv 0$. Как представляется многочлен p(tx) в доказательстве?

$$p(tx) = \sum_{k} p_k(x) \cdot t^k,$$

где p_k — однородный многочлен степени k.

Note 15

8d6ee9673c3342a08abd86f26262f4d4

Пусть p — многочлен степени не выше $s,a\in\mathbb{R}^n$. Тогда если $p(x)=o(\|x\|^s)$ при $x\to 0$, то $p\equiv 0$. В доказательстве, что нужно показать про многочлен p(tx)?

$$p(tx) = o(|t|^s)$$
 при $x \to 0$.

Пусть p — многочлен степени не выше $s,a\in\mathbb{R}^n$. Тогда если $p(x)=o(\|x\|^s)$ при $x\to 0$, то $p\equiv 0$. В доказательстве мы получили, что $\sum_k p_k(x)\cdot t^k=o(|t|^s)$ при $t\to 0$. Что дальше?

Применить аналогичную теорему к координатным функциям.

Note 17

833c8cc496364d6fa95263abe312262d

Пусть p — многочлен степени не выше $s,a\in\mathbb{R}^n$. Тогда если $p(x)=o(\|x-a\|^s)$ при $x\to a$, то $p\equiv 0$. В чём ключевая идея доказательства (случай $a\neq 0$)?

$$p(a+h) = o(\|h\|^s)$$
 при $h \to 0$.

Note 18

6fd36ee18228464ca25e12817347ca1

Пусть $f:E\subset\mathbb{R}^n\to\mathbb{R}^m$, $a\in {\rm Int}\,E.$ $T_{a,0}f$ существует пра и только тогда, когдан (клая f непрерывна в точке a.)

Note 19

803bd99b5a65458a8e290e6262c9de9d

Пусть $f:E\subset\mathbb{R}^n\to\mathbb{R}^m$, $a\in {\rm Int}\,E.$ $T_{a,1}f$ существует прави только тогда, когда пределения проференцируем в точке a.

Note 20

2f87c61fe7f54f968db50ac94e832bae

Пусть $f:E\subset\mathbb{R}^n o\mathbb{R}^m$ (c3::s раз дифференцируемо в точке a.)) Тогда если (c2::f и все его частные производные порядка не выше s равны 0 в точке a.)) то (c1::

$$f(a+h) = o(\|h\|^s)$$
 при $h \to 0$.

Пусть $f:E\subset\mathbb{R}^n\to\mathbb{R}^m$ s раз дифференцируемо в точке a. Тогда если f и все его частные производные порядка не выше s равны 0 в точке a, то $f(a+h)=o(\|h\|^s)$ при $h\to 0$. Каков первый шаг в доказательстве?

Рассмотреть два случая: m=1 и m>1.

Note 22

5c30a0ff84484046b766901eef5af420

Пусть $f:E\subset\mathbb{R}^n\to\mathbb{R}^m$ s раз дифференцируемо в точке a. Тогда если f и все его частные производные порядка не выше s равны 0 в точке a, то $f(a+h)=o(\|h\|^s)$ при $h\to 0$. В чём ключевая идея доказательства (случай m>1)?

Следует из случая m=1 для координатных функций.

Note 23

82636304ac3c484eb96726ccdc702d46

Пусть $f:E\subset\mathbb{R}^n\to\mathbb{R}^m$ s раз дифференцируемо в точке a. Тогда если f и все его частные производные порядка не выше s равны 0 в точке a, то $f(a+h)=o(\|h\|^s)$ при $h\to 0$. В чём ключевая идея доказательства (случай m=1)?

Индукция по s начиная с s=1.

Note 24

e2a21df035814a499b4289ae94f9ce3b

Пусть $f:E\subset\mathbb{R}^n\to\mathbb{R}^m$ s раз дифференцируемо в точке a. Тогда если f и все его частные производные порядка не выше s равны 0 в точке a, то $f(a+h)=o(\|h\|^s)$ при $h\to 0$. В чём ключевая идея доказательства (случай m=1, база индукции)?

Выразить f(a+h) через дифференциал, а его через производные.

Пусть $f:E\subset\mathbb{R}^n\to\mathbb{R}^m$ s раз дифференцируемо в точке a. Тогда если f и все его частные производные порядка не выше s равны 0 в точке a, то $f(a+h)=o(\|h\|^s)$ при $h\to 0$. В чём ключевая идея доказательства (случай m=1, индукционный переход)?

Индукционное предположение для первых частных производных и формула конечных приращений.

Note 26

440fc6e6c8f44ad2a31f2846aff7b4a

Пусть $f:E\subset\mathbb{R}^n o\mathbb{R}^m$ (c3::s раз дифференцируемо в точке a.:) Тогда

$$\max_{|\alpha| \leq s} T_{a,s} f(x) = \max_{|\alpha| \leq s} \frac{1}{\alpha!} \frac{\partial^{\alpha} f}{\partial x^{\alpha}} (a) (x-a)^{\alpha}.$$

«{{с4::Формула Тейлора-Пеано}}»

Note 27

aeb576d5fa547d7bda0b219d979ee26

Пусть $f:E\subset\mathbb{R}^n o \mathbb{R}^m$ s раз дифференцируемо в точке a. Тогда

$$T_{a,s}f(x) = \sum_{|\alpha| \le s} \frac{1}{\alpha!} \frac{\partial^{\alpha} f}{\partial x^{\alpha}} (a)(x-a)^{\alpha}.$$

В чём ключевая идея доказательства?

$$\frac{\partial^{\alpha}(f-p)}{\partial x^{\alpha}}(a)=0$$
 для $|\alpha|\leqslant s.$

Note 28

e0459301f4f34ae58524dc3c38939440

Пусть $f:E\subset\mathbb{R}^n o\mathbb{R}^m$ ((езеs раз дифференцируемо в точке a.); Тогда

$$\{\{c2::T_{a,s}f(x)\}\}=\{\{c1::\sum_{k=0}^{s}rac{d_{a}^{k}f(x-a)}{k!}.\}\}$$

(в терминах дифференциалов)

Пусть $p:\mathbb{R}^n o \mathbb{R}^m$ — посминогочлен степени не выше $s, n \in \mathbb{R}^n$. Тогда

$$R_{a,s}p(x) = \{\{c1::0.\}\}$$

Note 30

lbe29edc8e4d451e828ecd8e46049315

Пусть $a, b \in \mathbb{R}^n$.

$$\text{\{c2::}\widetilde{\Delta}_{a,b}\text{\}}\overset{\text{def}}{=}\text{\{\{c1::}\Delta_{a,b}\setminus\{a,b\}\,.\}\}$$

Note 31

e 167a0bd9f704b6c9c7939124e1af308

Пусть $f:E\subset\mathbb{R}^n o \{\{c4:\mathbb{R}\}\}$ ([c6::Дифференцируемо s+1 раз на E,]) $\{\{c5::a
eq x$ и $\Delta_{a,x}\subset E$.]) Тогда $\exists c\in\{\{c2:\widetilde{\Delta}_{a,x}\}\}$ для которой

$$\{(c^3 : R_{a,s}f(x))\} = \{(c^1 : \frac{d_c^{s+1}f(x-a)}{(s+1)!}.)\}$$

«{{с7::Формула Тейлора-Лагранжа}}»

Note 32

41ca37ac01bb45e0a61e5ef62d8970de

Пусть $f:E\subset\mathbb{R}^n\to\mathbb{R}$ дифференцируемо s+1 раз на E, $a\neq x$ и $\Delta_{a,x}\subset E.$ Тогда $\exists c\in\widetilde{\Delta}_{a,x}$ для которой

$$R_{a,s}f(x) = \frac{d_c^{s+1}f(x-a)}{(s+1)!}.$$

В чём ключевая идея доказательства?

Одномерная формула Тейлора-Лагранжа для функции

$$t \mapsto f(a+th).$$

Пусть $f:E\subset\mathbb{R}^n\to\mathbb{R}$ дифференцируемо s+1 раз на E, $a\neq x$ и $\Delta_{a,x}\subset E.$ Тогда

$$\max_{c \in \widetilde{\Delta}_{a,x}} \left| R_{a,s} f(x) \right| \ge \sup_{c \in \widetilde{\Delta}_{a,x}} \frac{\left| d_c^{s+1} f(x-a) \right|}{(s+1)!}. \ge 1$$