Aritmetično logična enota s carry-lookahead seštevalnikom

V VHDL programirajte arhitekturo n-bitne aritmetične logične enote (ALU) s carry–lookahead seštevalnikom (CLA) po podani entiteti:

Aritmetično logična enota opravlja funkcije po spodnji tabeli:

M (način)	F (operacija)	Izhod
0	0 0 0	S = X plus Y
0	0 0 1	S = X minus Y
0	0 1 0	S = X plus 1
0	0 1 1	S = X minus 1
0	100	S = X plus X
0	1 0 1	S = minus 1 (dvojiški komplement)
0	1 1 0	NI V UPORABI
0	1 1 1	NI V UPORABI
1	000	S = X and Y
1	0 0 1	S = X nand Y
1	0 1 0	S = X or Y
1	0 1 1	S = X nor Y
1	100	S = X xor Y
1	1 0 1	$S = X \times X \times Y$
1	1 1 0	S = X
1	1 1 1	S = Y

Entiteta z imenom alu cla ima definirane naslednje vhode/izhode:

- **M**: vhod tipa **std_logic**, ki določa način delovanja ALU:
 - '0' aritmetične operacije po zgornji tabeli
 - '1' **logične** operacije po zgornji tabeli
- F: 3-bitni vhod strukture tipa **std_logic_vector** predstavlja funkcijo, ki jo ALU opravlja po zgornji tabeli,
- **X, Y**: n-bitna vhoda strukture tipa **std_logic_vector** vhodna operanda ALU,
- **S**: n-bitni izhod strukture tipa **std_logic_vector** rezultat operacije ALU,
- Negative: izhod tipa std_logic, ki postane '1', ko je rezultat operacije S negativen,
- Cout: izhod tipa std_logic, ki predstavlja izhodni prenos operacije,
- Overflow: izhod tipa std_logic, ki predstavlja bit preliva (ang. overflow) pri aritmetični operaciji,
- Zero: izhod tipa std_logic, ki postane '1', ko je rezultat operacije S enak nič.
- Gout: izhod tipa std_logic, predstavlja izhodno vrednost funkcije tvorjenja (ang. generate) n-bitnega CLA v ALU.
- Pout: izhod tipa std_logic, predstavlja izhodno vrednost funkcije tvorjenja (ang. propagate) n-bitnega CLA v ALU.

Naloge:

1. V arhivu predloge naloge se nahaja datoteka cla_gp.vhd. V to datoteko kopirajte arhitekturo enote (cla_gp), ki je podana spodaj. Ime entitete je obvezno: cla gp.

2. Izdelajte datoteko testnih vrednosti (cla_gp_tb.vhd) in s simulacijo preverite pravilnost seštevanja za vhoda X in Y in vhodni prenos C_{in}.

3. V arhivu predloge naloge se nahaja datoteka cla_add_n_bit.vhd. V to datoteko kopirajte arhitekturo enote n-bitnega CLA iz nadaljevanja naloge 26 v Zbirki rešenih nalog pri predmetu NDV na domači strani predmeta. Ime entitete mora biti: cla add n bit.

Zanko FOR ... GENERATE predelajte tako, da teče indeks od 0 (ne 1 kot je v Zbirki) in realizira funkcije Gout, Pout, Cout za splošni n-bitni CLA. Za posplošitev na n-bitno strukturo v deklaraciji entitete uvedite parameter generic (n: natural :=8) kot je podano v entiteti n-bitnega CLA.

4. Izdelajte datoteko testnih vrednosti (cla_add_n_bit_tb.vhd) in s simulacijo preverite pravilnost delovanja za 8-bitni nepredznačeni števili X in Y.

5. Oglejte si <u>dejansko realizacijo</u> izdelanega CLA seštevalnika - spodnje velja samo za razvojno okolje ISE10.1 - v ISE 14.7 boste videli samo vzporedno realizacijo: V panelu Sources zamenjajte simulacijo (Behavioral simulation) z implementacijo vezja (Implementation) in v panelu Processes razprite "Implement Design→Synthesize XST→View RTL schematic→Rerun All (desni klik)"). Opisano povezovanje komponente cla gp s povezovalnim stavkom rezultira v zaporedni izvedbi seštevalnika na spodnji sliki:

Dobljena realizacija očitno ni CLA izvedba seštevalnika, saj je orodje za sintezo ("optimize XST") vezje tvorilo z zaporedno vezavo enobitnih seštevalnikov. V izogib izločitvi vmesnih signalov G, P in C in posledični zaporedni realizaciji moramo enačbe teh signalov realizirati znotraj for ... GENERATE zanke brez povezovalnega (PORT MAP) stavka za mesta od (0...n-1), po enačbah iz prve naloge te vaje. Za to moramo izpisati enačbe funkcij G, P in C znotraj for ... GENERATE zanke za vsako mesto po tekočem indeksu (i). Pravilno povezana struktura CLA realizacije kaže <u>vzporedno</u> povezovanje komponent, kot je prikazano na spodnji sliki:

Če ste za sintezo uporabljali vezje FPGA (npr. Artix 7, xc7a100t, Speed grade: -3, ohišje: csg324) dobite spodnjo realizacijo. Vezja FPGA vsebujejo vpogledne tabele, zato XST nadomesti zgornja vrata z njimi (LUT2, LUT3, LUT5).

- 6. Ponovno preverite pravilnost delovanja za 8-bitni nepredznačeni števili X in Y s prej izdelano datoteko testnih vrednosti (cla add n bit tb.vhd).
- 7. V arhivu predloge naloge se nahaja datoteka alu_cla.vhd. V njej deklarirajte komponento (COMPONENT) prej izdelanega n-bitnega CLA seštevalnika (cla add n bit).
- 8. Povežite komponento (cla_add_n_bit) z entiteto aritmetične enote alu_cla z uporabo povezovalnega (port map) stavka. Pri povezovanju CLA s port map stavkom uporabite posplošeno povezovanje z nadrejeno komponento n=>n. To storite tako: Ul: cla add n bit generic map (n => n) port map (...);
- 9. Na Y vhod komponente n-bitnega CLA priključite vezje, ki izračuna kontrolirani eniški komplement vhodnega operanda Y aritmetične enote. To vezje sestavlja n XOR vrat kot je prikazano na sliki 1.
 V VHDL namesto polja XOR vrat zapišite isto strukturo z uporabo (when...else) stavka.

Slika 1: Realizacija odštevalnika s pomočjo n-bitnega seštevalnika.

10. Vhod **nAddSub** priključite na vhodni prenos n-bitnega CLA (cin) kot je prikazano na sliki 1.

11. Realizirajte bite stanja rezultata: Negative (N), Cout (C), Overflow (V), Zero (Z) z realizacijo, prikazano na spodnji sliki.

Slika 2: Realizacija N, C, V, Z bitov seštevalnika.

Pri realizaciji bita preliva - overflow (V) uporabite realizacijo enačbe:

$$\mathsf{OF}_{2'\mathsf{K}} = \overline{\mathsf{a}_{\mathsf{n}-1}} \cdot \overline{\mathsf{b}_{\mathsf{n}-1}} \cdot \mathsf{s}_{\mathsf{k}-1} + \mathsf{a}_{\mathsf{k}-1} \cdot \mathsf{b}_{\mathsf{k}-1} \cdot \overline{\mathsf{s}_{\mathsf{k}-1}} = \mathsf{c}_{\mathsf{k}} \oplus \mathsf{c}_{\mathsf{k}-1}$$

12. Zgornja enačba zajema primera postavljanja V='1' pri seštevanju. Bit preliva realizirajte tudi za operacijo odštevanja, kot smo razložili na predavanjih. Pri odštevanju obstajata <u>drugačna</u> primera, v katerih se postavi V='1'. Dobljeno realizacijo bita preliva opišite kot VHDL logični izraz (and, or, not, xor, xnor). Pri realizaciji bita Z uporabite (when...else) stavek, pri čemer kodirajte primerjavo n-bitnega vektorja S z n bitnim vektorjem samih ničel. Vektor samih ničel realizirate kot n bitno VHDL konstanto (constant) tipa std_logic_vector, ki jo postavite na vrednost nič z operacijo (others =>'0'). Ta operator postavlja vse neničelne vrednosti v vektorju na '0'.

Bita N in Z se morata postaviti tudi v primeru operacije S=X in operacije S=Y, glede na stanje vhodov X in Y. V primeru logičnih operacij (and, nand, or, nor, xor, xnor) so biti stanja NCVZ brezpredmetni.

- 13. Izdelajte datoteko testnih vrednosti (alu_tb.vhd) in s simulacijo preverite pravilnost delovanja seštevanja in odštevanja za 8-bitni nepredznačeni števili X in Y.
- 14. Tvorite vmesni vektor alu_operation. z uporabo operatorja sestavljanja (a). Signal alu_operation naj bo sestavljen iz signala **m** na MSB mestu in vektorja **F**. Tako dobite 4-bitno operacijo iz tabele ALU na vrhu.
- 15. Izdelajte dva (with...select) stavka:
 - Prvi stavek določa kakšen bo izhod ALU (S) za določene primere vektorja **alu_operation**. Logične funkcije ALU iz zgornje tabele zapišete z enostavnimi VHDL operatorji, ki jih lahko uporabimo tudi nad vhodnima vektorjema X in Y. V primeru, da vrednost operacije ni definirana (others) naj bo izhod **S** enak 0.
 - Drugi stavek določa kakšen bo vmesni vhod ALU (Y_sig) za določene primere vektorja alu_operation. V primeru, da vrednost operacije ni definirana (others) naj bo izhod Y_sig enak Y.
- 16. Ena operacija ALU zahteva realizacijo prištevanja n-bitne konstante 1. Splošno, n bitno nepredznačeno konstanto 1 deklarirate tako: constant one : std_logic_vector(n-1 downto 0) := (0=>'1', others=>'0');

 Tako ustvarite splošno n-bitno konstanto z imenom "one", ki ima LSB mesto vektorja '1', vsa ostala mesta '0'.
- 17. Vhod nAddSub iz deklarirajte kot signal. Kode aritmetičnih operacij so izbrane tako, da je vrednost signala nAddSub enaka LSB mestu vektorja alu operation.
- 18. Izdelajte datoteko testnih vrednosti (alu_cla_tb.vhd) in s simulacijo preverite pravilnost delovanja <u>vseh</u> operacij iz tabele ALU za 8-bitni predznačeni števili X in Y.

Držite se poimenovanja v navodilih. Upoštevajte točno navedbo signalov v podanih entitetah, sicer naloge ne morem popraviti.

Upoštevajte opisano delovanje, ki ustreza opisanim logičnim vrednostim signala (glej opise signalov v entiteti in navodilih).

Pri poimenovanju signalov se držite pravila, da črka "n" pred imenom signala pomeni negativno logiko poimenovanega signala (primer: nCLR je signal, ki je aktiven '0').

Za n-bitne strukture teče indeks elementov tipa std_logic_vector od 0 (LSB mesto) do n-1 (MSB mesto).

Če naloga zahteva uporabo že izdelanih datotek, zaradi skladnosti uporabljajte podane predloge in ne lastnih.

Rezultati simulacij:

Tabela 1: Simulacija delovanja CLA.

Tabela 1. Simulacija uciovanja CL/1.										
Cin	X	Υ	S	Gout	Pout	Cout	Komentar k primeru			
0	0	0	0	0	0	0	Seštevanje v obsegu 8 bitnih števil			
0	5	4	9	0	0	0	Seštevanje v obsegu 8 bitnih števil			
0	127	1	-128	0	0	0	Seštevanje s prelivom v pozitivno smer			
0	127	-128	-1	0	1	0	Seštevanje v obsegu 8 bitnih števil			
0	1	-128	-127	0	1	0	Seštevanje v obsegu 8 bitnih števi			
0	-128	-128	0	1	0	1	Seštevanje s prelivom v negativno smer			
0	127	127	-2	0	0	0	Seštevanje s prelivom v pozitivno smer			
0	-128	126	-2	0	1	0	Seštevanje v obsegu 8 bitnih števil			

Tabela 2: Simulacija delovanja ALU.

	Tabela 2: Simulacija delovanja ALU.											
M	F	Operacija	X	Υ	S	N	С	٧	Z	Gout	Pout	Opomba
0	0	S = X plus Y	0	0	0	0	0	0	1	0	0	test Z=1
1	1	S = X nand Y	0	0	-1	0	0	0	0	0	0	$0 \uparrow 0 = 1; N, Z, V, C, G, P^{1}$
1	0	S = X and Y	0	0	0	0	0	0	1	0	0	0 • 0 = 0; N, Z, V, C, G, P ¹
1	2	S = X or Y	0	0	0	0	0	0	1	0	0	0 + 0 = 0; N, Z, V, C, G, P ¹
1	3	S = X nor Y	-86	85	0	0	1	1	1	0	1	$0 \downarrow 0 = 0$; N, Z, V, C, G, P ¹
1	4	S = X xor Y	-86	85	-1	1	0	0	0	0	1	0 ⊕ 1 = 1; N, Z, V, C, G, P ¹
1	5	$S = X \times X \times Y$	-86	85	0	0	1	1	1	0	1	!(0 ⊕ 1) = 0; N, Z, V, C, G, P ¹
1	6	S = X	-86	85	-86	1	0	0	0	0	1	N, Z, V, C so veljavni
1	7	S = Y	-86	85	85	0	1	1	0	0	1	N, Z, V, C so veljavni
0	0	S = X plus Y	-81	87	6	0	1	0	0	0	1	C=1
0	0	S = X plus Y	-86	81	-5	1	0	0	0	0	1	N=1
0	1	S = X minus Y	-65	-48	-17	1	0	0	0	1	0	N=1
0	1	S = X minus Y	-127	-48	-79	1	0	0	0	1	0	N=1
0	2	S = X plus 1	-127	-48	-126	1	0	0	0	1	0	N=1
0	3	S = X minus 1	-127	-48	-128	1	1	0	0	1	0	N=1, C=1
0	4	S = X plus X	-127	-48	2	0	1	1	0	1	0	C=1, V=1
0	5	S = minus 1	-127	-48	-1	1	1	0	0	1	0	N=1
0	0	S = X plus Y	14	127	-115	1	0	1	0	0	0	V=1 test seštevanja
0	0	S = X plus Y	-14	-127	115	0	1	1	0	1	0	V=1 test seštevanja
0	1	S = X minus Y	14	-127	-115	1	0	1	0	0	0	V=1 test odštevanja
0	1	S = X minus Y	-14	127	115	0	1	1	0	1	0	V=1 test odštevanja
0	2	S = X plus 1	127	127	-128	1	0	1	0	0	0	V=1 test povečevanja
0	3	S = X minus 1	-128	127	127	0	1	1	0	1	0	V=1 test zmanjševanja
0	4	S = X plus X	127	127	-2	1	0	1	0	0	0	V=1 test podvojevanja
0	4	S = X plus X	-128	127	0	0	1	1	1	1	0	V=1 test podvojevanja
0	6	Ni v uporabi										N, Z, V, C, G, P ¹
0	7	Ni v uporabi										N, Z, V, C, G, P ¹

¹ niso bistveni.