1. Star light

IMF of M82 is ~ 2.3 (Smith et al. 2001)

 $M=10^3 M sun$

Metallicity $Z = 2 *Z_sun$ (Amazing light, Raymmd, Y.C.)

I choose figure 5 based on the information above.

formula:

 $L_v = L_\lambda \lambda^2/c$

 $L sun \sim 10^{26} Watt$

Stellar emissions dominate from 0.1μm to 10 μm.

2. Dust emission

I choose SiC 21 with gain size 10^{-3} µm to fit data.

 $P_{dust} = 3* \pi * B * Q / a * V$

Plank function: $B(T) = 2 \text{ hv/ } e^{(hv/T \text{ kB})-1}$

Dust emission will be significantly important in range $10\sim2*10^2$ µm.

3. Synchrotron radiation

First of all, I roughly determine the power law slope p as 2.28 from the observation data.

$$P_{syn} \propto B sin\alpha * \Gamma(p/4 + 19/12) * \Gamma(p/4 - 1/12) * m_e * (-p/2 - 1/2) * q^{(5/2 + p/2)} * (c^{-p/2 - 3/2}) * (\lambda * B sin\alpha) * (p-1)/2 * (p/4 - 1/2) * (p/4$$

I used this equation to define the shape of synchrotron emission. And then I changed $Bsin\theta$ and C (two arbitrary constants) to make the emission as close to the curve of observation as possible.

Synchrotron emissions dominate starting from $2*10^3 \mu m$ lower energy band with wave length $\sim 10^5$.

4. Free-free emission

From a reference I got a temperature of dust $T_{dust} \sim 45 K$ (The Interstellar medium in Galaxy. Harley A Thronson).

temperature = 45K

$$P_{ff} = G * e^{-h v/k_B T}$$

G: arbitrary constant used to fit the data.

Free-free emission will become important between wavelength $3*10^2 \sim 2*10^3 \mu m$.

5. References

Smith, L. J., Gallagher, J. S., 2001, MNRAS, 326, 1027 The Interstellar medium in Galaxy, Harley A Thronson Amazing light, Raymmd, Y.C.

