9/15/16 Mars 271 Mork Hill Demo Know 11 $P(A \mid CO) = \frac{1}{13}$ $P(A) = \frac{4}{57} = \frac{1}{13}$ P(A/D) Since this dools change... did the informan" of O more in the prob cale? P(IBM Stock 7) Vaits in Brenos Are) = AIBM Stock 7) Oct: A, B are indepute across P(A/B) = P(A) =) (A 0) = P()(16) (And +. Rule)

P(010) = P(0)

let
$$A_1, A_2, ...$$
 be independence on $A_1 = A_2 = A_1 = A_2 = A_2 = A_2 = A_1 = A_2 = A$

$$\begin{aligned}
&= 1 - \left(\frac{35}{36}\right)^{24} = .4914139 \\
&= 1 - P(6)^{2} \\
&= 1 - \left(\frac{1}{6}\right)^{3} \\
&= \frac{75}{36}
\end{aligned}$$

If $P(B|A) \neq P(B)$ or $P(A|b) \neq P(A)$ or $P(A|b) \neq P(A) P(B)$ =) A, B are not indeplus (departers) P(Q64 /nx) ARGA IME / Stonston P(Q64 INR) Pla64 love / no truffice) P(ly come Isnoke) Rly com indepelara? ewas al monterio prob. $P(0|B) \stackrel{?}{=} P(A) \left| O = P(U|T) \neq P(A) \stackrel{!}{=} \stackrel{!}{=} 1$ Consider de Oppelor Coin (H) (H) Anysa Con Rayula Con P(HH) = 1 之 T ____ T P(TT) ===

Dresses Pageles doesn't ren Pagelar

 $P(R_1) = P(G) = P(B_1) = \frac{1}{3}$

$$P(R_2) = \frac{1}{2}$$
, $P(G_2) = \frac{1}{3}$, $P(B_2) = \frac{1}{6}$

R, Re depolero?

 $P(R, R_z) \stackrel{?}{=} P(R, R_z) \Rightarrow \frac{1}{6} = \frac{1}{3}$

1 = 1 . 1 = 1 Herae!! Wer about R, & Gz

$$P(R_1 G_2) = P(R_1) P(G_2)$$

$$0 = \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3}$$

No... R., 62 dependens!

It's just R, & R2 ... informand inclement

Ply gave ... H/T flip thrown H/T J m, T/H ym will P H/H $TT \rightarrow +iC$. Ply agin <math>P:=P(T mr)=P MY M

Restrict of the Hrs

1000 con skip

1000!

1000!

1000!

1000!

1000!

1000!

1000!

1000!

1000!

1000!

1000!

1000!

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

Birthay Praden Plas leass p. of you show the some body = P(de pair sen bob) +P(2 pairs Sm bob) +P(3 pairs Sm bob) Pars she boy = | - P (AL) = | - P (no de slass same body) Assure boup early had = ? 0.005877 =) P(A)=1- × 29,4%

Ans Problem
n people wilk into a room and pro ster hors on the trible. The hors me shen randonly gran ont so common p:= (con people grown)
(i) = ((at leurs or person geos hor) = P (1 p gers ha) + P2 p geos ha) + + An prople
h=7
A B C
$\begin{cases} \frac{1}{2} & A & \xrightarrow{\uparrow} & A \\ \frac{1}{2} & G & \xrightarrow{\downarrow} & C \end{cases}$ $\begin{cases} P : 2\frac{1}{2} \cdot 1 = \frac{1}{3} \\ G : A : A : A : A : A : A : A : A : A :$
1 A - B
1- p= P (≥1 peron gess ster ha) les A: even in which its peron geor
OR or mer ger her? = P(U Ai) i=1 S P(A) - R(Ai)
$= \underbrace{\sum_{i=1}^{2} P(A_i) - \sum_{i\neq j} P(A_i \cap A_j) + \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - + \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_j \cap A_p) - \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_p) - \dots }_{i\neq j} - \underbrace{\sum_{i\neq j} P(A_i \cap A_p) - \dots }_{i\neq j} - \underbrace$
$P(A_1) = \frac{1}{n-1} \frac{n-1}{n-2} = \frac{(-1)!}{n!} = \frac{1}{n}$ $P(A_1) = \frac{n-1}{n!} \frac{n-1}{n!} = \frac{1}{n}$

 $\Rightarrow \mathcal{E} P(A_i) = 1$

$$P(A, \Lambda A_2) = \frac{1 \cdot 1 \cdot 1 \cdot 2 \cdot 4 \cdot 3}{4!} = \frac{(4-2)!}{4!}$$

$$P(A, \Lambda A_3) = \frac{1 \cdot 4 \cdot 2 \cdot 1 \cdot 4 \cdot 3}{4!} = \frac{(4-2)!}{4!}$$

Hon nay?

$$= \sum_{i \neq j} P(A_i()A_j) = {\binom{5}{2}} {\binom{6-2}{1}!} = \frac{5!}{2!(6-2)!} \frac{5-25!}{5!} = \frac{1}{2!}$$

Hommy?

$$= \sum_{\substack{i+j+k}} P(A_i \cap A_j \cap A_n) = \binom{h}{3} \frac{(i-3)!}{h!} = \frac{h!}{(n-3)!3!} \frac{(i-3)!}{h!} = \frac{1}{3!}$$

Desom
$$f(x) = \sum_{i=0}^{\infty} f^{(i)}(x) (x-c)^{i} \quad \forall c \in \mathbb{R} \quad \text{Toylor Server}$$

Stop 9+ 2 terms

$$f(x) = \sum_{i=0}^{\infty} \frac{f(i)(0)}{i!} x^{i}$$

$$e^{x} = e^{0} + \frac{e^{0}}{1!} \times \frac{e^{0}}{2!} \times \frac{1}{2!} + \frac{x^{2}}{2!} + \dots$$

$$\Rightarrow |-e^{-1}| = |-\frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \dots - \frac{1}{4!}$$

$$\Rightarrow 1-p=1-e^{-1} \Rightarrow p=e^{-1} \approx 0.368 \approx \frac{1}{3}$$