Понятия полуразрешимого и разрешимого отношения по Тьюрингу. Пример алгоритмически неразрешимого отношения (с доказательством).

Упорядоченный набор из n слов в алфавите A называется n-местным набором над A. Множество всех n-местных наборов над A обозначим через $(A^*)^n$.

Любое подмножество R множества $(A^*)^n$ называется n-местным словарным отношением.

Любое, возможно, частичное отображение $f(A^*)^n$ \to A^* называется n-местной словарной функцией. Область определения функции f обозначается через Def(f).

Результатом работы программы T на входном псевдослове X называется псевдослово T(x), которое появляется на ленте в момент остановки программы; если программа работает бесконечно, то результат не определен.

Программу, которая в процессе работы над любым псевдословом X не сдвигает головку левее пробела, расположенного слева от **n**-го слова псевдослова X, будем назвать n-программой.

Словарное n-местное отношение R называется <u>полуразрешимым</u>, если существует n-программа T, которая останавливается в точности на всех псевдословах, имеющих вид $X \# u_n \# u_{n-1} \# ... \# u_1 \#$

где
$$(u_1,u_2,....u_n) \in R$$
.

Словарное n-местное отношение R называется **разрешимым**, если R и ¬R полуразрешимы (под ¬R здесь понимается множество (A^*) n \R).

Пример(из лекции).

Пусть T — Тьюринговая программа.

А-алфавит Тьюринговых программ.

 $T <-> code(T) \in A^*$

T- самоприменима, если она останавливается на своем коде , code(T)

 $M = \{code(T)/T - camonporpamma\}$

Т1*М –полуразрешима

 $T2*\neg M$ – не является полуразрешимым

Док-во

Пусть ¬М полуразрешима

Тогда \exists тьюринг.программа T^* , останавливающаяся в точности на словах $\neg M$

- 1) Предположим, что T^* самопреминима. Тогда T^* остановится на code (T^*) и code (T^*) \in М. Но T^* остановится на словах мн-ва \neg М. Следовательно, на своем code она должна работать бесконечно-долго. Получим противоречие.
- 2) T^* не самопреминима. . Тогда T^* будет работать бесконечно долго на своем code(T^*) и поэтому code (T^*) $\in \neg M$.

Поскольку ¬М мн-во тех слов, на которые ¬М должны остановится, значит code (T^*)∈М и T^* самоприменима по определению.

М- не является алгоритмом разрешеимым.