MATH3301 Tutorial 11

- 1. Let $0 \neq f$ be an irreducible polynomial in K[t] where K is a field. Suppose E is a field extension of K (i.e. E is a field that contains the field K). Let $\alpha \in E$ such that $f_E(\alpha) = 0$ (here f is viewed as a polynomial in E[t]).
 - (a) If $0 \neq g \in K[t]$ and $g_E(\alpha) = 0$, show that $\deg g \ge \deg f$.
 - (b) Prove that the ideal generated by f in K[t], $\langle f \rangle$ is equal to $\{g \in K[t] : g_E(\alpha) = 0\}$.
- 2. (a) Let R be a nonzero commutative ring.
 - i. If $x^{2015} + x = 0$ for all $x \in R$, show that every nonzero prime ideal P of R is maximal.
 - ii. If R is an integral domain of 49 elements, must $R[t]/\langle t^2 + t + 1 \rangle$ be a field?
 - (b) Let F be a field with $|F| \in (2015, 2200)$. Suppose

$$\underbrace{1+\cdots+1}_{10}\neq 0 \text{ but } \underbrace{1+\cdots+1}_{r}=0$$

for some r < 20. What is the characteristic of F and the cardinality of F? Is $t^2 - 3$ an irreducible polynomial ring F[t]? Explain.

- 3.(a) Are $\mathbb{R}[t]/\langle t^2 + t + 1 \rangle$ and $\mathbb{F}_{13}[t]/\langle t^2 + t + 1 \rangle$ fields? Explain.
 - (b) Let \bar{t} be the image of t in the field $\mathbb{Z}_2[t]/\langle t^2 + t + 1 \rangle$. Evaluate the order of $\bar{t}^2 + 1$ in the field.
- 4. Consider the polynomial $f(t) = t^2 + 2t + 3$ in $\mathbb{Z}_5[t]$, and the quotient ring $F = \mathbb{Z}_5[t]/\langle f \rangle$.
 - (a) Show that F is a finite field and evaluate |F|. Let \bar{t} be the image of t under the natural projection. Evaluate the order of $4\bar{t} + 1$ in the group F^{\times} .
 - (b) Is it possible to construct a ring homomorphism from F to \mathbb{Z}_{25} ? Construct a ring homomorphism if yes, or explain if no.
- 5.(a) Let \bar{t} be the image of t in $F := \mathbb{Z}_5[t]/\langle f \rangle$. Show that $\bar{t}^3 = -1$. Find a generator of F^{\times} .
 - (b) Show that all quadratic polynomials in \mathbb{F}_{p^2} whose coefficients and constant lie in \mathbb{F}_p are reducible where p denotes any prime number.
- 6. Let R[t] be the polynomial ring over the nonzero commutative ring R. Show that R^{\times} is isomorphic to a cyclic group if (i) R^{\times} is the group of units in R and $|R^{\times}| = 24$, and (ii) $|\{\alpha \in R : f_R(\alpha) = 0\}| \le \deg f$ for every $0 \ne f \in R[t]$.