

Data Analysis & Visualisation

CSC3062

BEng (CS & SE), MEng (CS & SE), BIT & CIT

Dr Reza Rafiee

Semester 1 2019

Consensus clustering¹

Assume, we are given a dataset for the purpose of clustering analysis

- 1) Multiple runs of a clustering algorithm
 - a) Determine the number of clusters and assess the stability of the discovered clusters
 - b) In k-means clustering: with using random restart

2) Aggregating the cluster (label) results of different clustering algorithms

¹ Ensemble clustering

Summary: consensus approach

1) Multiple runs of a clustering algorithm

A comprehensive Ensemble approach for unsupervised clustering using NMF projection and k-means clustering

Main clustering approaches

- Partitioning algorithms: Make different partitions heuristically and then evaluate them by some criteria (k-means & PAM)
- Hierarchy algorithms: Create a hierarchical decomposition of data using some criteria
- Density-based algorithms: based on connectivity and density functions
- Model-based algorithms: A model is assumed for each cluster and the idea is to find the best fit of a model

Hierarchical clustering

A hierarchical clustering is a set of nested clusters

that are organized as a tree

Two types of algorithms

Agglomerative ("Bottom-up")

Start with the points as individual clusters. Then at each step, merge the closest pair of clusters.

Divisive ("Top-down")

Start with one, all-inclusive cluster. Then at each step, **split** a cluster until only singleton clusters of individual points remain.

Proximity between clusters

The definition of cluster proximity differentiates the various agglomerative hierarchical techniques.

MIN (single link)

MAX (complete link)

Group average proximity (group-based or average)

Ward's method (Prototype-based or centroid-based)

Proximity between clusters

The definition of cluster proximity differentiates the various agglomerative hierarchical techniques.

MIN (single link)

MAX (complete link)

Group average proximity (group-based or average)

Ward's method (Prototype-based or centroid-based)

Min (single link) proximity

Cluster proximity is defined as the shortest distance between two points, x and y, that are in different clusters, V_1 and V_2 :

$$d(V_1, V_2) = \min_{x \in V_1, y \in V_2} d(x - y)$$

Max (complete link) proximity

Cluster proximity is defined as the furthest distance between two points, x and y, that are in different clusters, V_1 and V_2 :

$$d(V_1, V_2) = \max_{x \in V_1, y \in V_2} d(x - y)$$

Group average proximity

Cluster proximity is defined as the average distance between two points, x and y, that are in different clusters, V_1 and V_2 :

$$d(V_{1}, V_{2}) = \sum_{x \in V_{1}, y \in V_{2}} d(x - y) / [n(V_{1}) \times n(V_{2})]$$

$$V_{1}$$

Basic Agglomerative Clustering

Compute the proximity matrix, if necessary. **repeat**

- Merge the closest two clusters.
- Update the proximity matrix to reflect the proximity between the new cluster and the original clusters.

until Only one cluster remains.

Example: clustering 6 data points

Set of 6 Two-Dimensional Points

Feature name

xy Coordinates of 6 Points

Point	x Coordinate	y Coordinate
p1	0.40	0.53
p2	0.22	0.38
р3	0.35	0.32
p4	0.26	0.19
p5	0.08	0.41
p6	0.45	0.30

Sample name

	P ₁	P ₂	P ₃	P ₄	P ₅	P ₆
X	0.40	0.22	0.35	0.26	0.08	0.45
у	0.53	0.38	0.32	0.19	0.41	0.30

Euclidean distance matrix

Euclidean Distance Matrix for 6 Points

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.24	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.15 0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Single link (min) clustering

Nested Cluster Diagram

Single Link Distance Matrix

	1	2	3	4	5	6
1	0	0.24	0.22	0.37	0.34	0.23
2		0	0.15	0.20	0.14	0.25
3			0	0.15	0.28	0.11
4				0	0.29	0.22
5					0	0.39
6						0

Single link (min) clustering

Which data points are merged at first glance?

	1	2	3	4	5	6
1	0	0.24	<u>0.22</u>	0.37	0.34	0.23
2		0	<u>0.15</u>	0.20	0.14	<u>0.25</u>
3			0	<u>0.15</u>	<u>0.28</u>	0.11
4				0	0.29	0.22
5					0	0.39
6						0

Data points 3 and 6 have the **smallest (minimum) single link proximity distance**. These data points are merged into one cluster and update the distances to this new cluster.

Nested Cluster Diagram

Single Link Distance Matrix

Nested Cluster Diagram

Single Link Distance Matrix

Nested Cluster Diagram

Single Link Distance Matrix

Nested Cluster Diagram

Single Link Distance Matrix

Nested Cluster Diagram

Single Link Distance Matrix

Nested Cluster Diagram

The proximity matrix was **Updated**

Which data points are merged next?

Single Link Distance Matrix

	1	2	4	5	3,6	
1	0	<u>0.24</u>	0.37	0.34	0.22	
2		0	<u>0.20</u>	0.14	0.15	
4			0	0.29	0.15	
5				0	0.28	
3,6					0	

Data points 2 and 5 have the smallest single link proximity distance. These data points are merged into one cluster and update the distances to this new cluster.

Nested Cluster Diagram

Single Link Distance Matrix

· · · · · · · · · · · · · · · · · · ·	1	4	2,5	3,6
1	0	0.37	0.24	<u>0.22</u>
4		0	<u>0.20</u>	<u>0.15</u>
2,5			0	0.15
3,6				0

Iterate ...

Nested Cluster Diagram

Single Link Distance Matrix

	1	4	2,5,3,6
1	0	0.37	<u>0.22</u>
4		0	0.15
2,5,3,6			0

Iterate ...

Nested Cluster Diagram

Single Link Distance Matrix

Iterate until there would be only one all-inclusive cluster.

Hierarchical Tree Diagram

Tree-like diagram which is called a dendrogram

n=12 samples with 4 subgroups

•	CSC3062_108_2 [‡]	CSC3062_109_4 [‡]	CSC3062_110_4 [‡]	CSC3062_112_2 [‡]	CSC3062_783_3 [‡]	CSC3062_145_3 [‡]
Metagene_1	1.145277e-01	1.916895e-50	2.654951e-40	7.633172e-02	3.608274e-32	7.042284e-28
Metagene_2	1.338042e-02	5.529235e-01	5.625382e-01	4.172066e-27	5.022959e-02	1.881889e-05
Metagene_3	5.842943e-19	5.115138e-43	1.629874e-28	2.634450e-34	6.117725e-01	6.623634e-01
Metagene_4	9.603256e-01	2.808713e-27	4.787113e-29	9.671474e-01	1.660626e-34	5.350906e-39

•	CSC3062_649_1 [‡]	CSC3062_115_1 [‡]	CSC3062_670_2 [‡]	CSC3062_50080_1 [‡]	CSC3062_436_1 [‡]	CSC3062_674_2 [‡]
Metagene_1	7.176776e-01	9.121094e-01	2.142412e-28	8.314318e-01	6.650897e-01	1.424858e-17
Metagene_2	0.000000e+00	1.312099e-40	2.695954e-17	1.158338e-18	8.997966e-02	3.280249e-12
Metagene_3	1.759033e-70	3.300750e-21	3.208493e-17	1.691378e-40	3.382756e-17	2.059872e-02
Metagene_4	6.929525e-63	3.516017e-59	9.679785e-01	4.684605e-20	1.916895e-23	1.000000e+00

Running hclust() on H matrix (n=12)

Running hclust() on H matrix (n=12)

```
dist_mat <- dist(t(Small_dataset_cluster_analysis), method = 'euclidean')
Hclust_model_avg <- hclust(dist_mat,method = "average")
plot(Hclust_model_avg)</pre>
```

Cluster Dendrogram

dist_mat hclust (*, "average")

Running hclust() on H matrix (n=12)

```
dist_mat <- dist(t(Small_dataset_cluster_analysis), method = 'euclidean')
Hclust_model_avg <- hclust(dist_mat,method = "average")
plot(Hclust_model_avg)</pre>
```

Cluster Dendrogram

dist_mat hclust (*, "average")

Running hclust() on n=103 samples

Ward's Hierarchical Clustering

RNA_seq Training Cohort, Log2ReadCount, n=103

Running hclust() on n=81 samples

Ward's Hierarchical Clustering

Heatmap of raw data (n=81, 19 genes)

Hieratical clustering

Question?

Is this clustering useful for estimating the number of clusters?

Any Questions?