Imaging Science Assignment H1 (Theoretical)

Kuang Yu Li, <u>st169971@stud.uni-stuttgart.de</u>, 3440829 Ya Jen Hsu, <u>st169013@stud.uni-stuttgart.de</u>, 3449448 Gabriella Ilena, <u>st169935@stud.uni-stuttgart.de</u>, 3440942

1. Discrete Convolution 4/6
Convolve it three times with itself

(1)
$$g_i = f_i$$

position i	-1	0	1
value $g_i = f_i$	0	1 2	1/2

$$w_i = f_i$$

position i	-1	0	1
value $w_i = f_i$	0	1 2	1/2

 $\operatorname{result}(g * w)_i = (f * f)_i$

position i	-1	0	1
value $(f * f)_i$	0	14	1 2

 $(2) \quad g_i = (f * f)_i$

position i	-1	0	1
value $g_i = f_i$	0	1 4	$\frac{1}{2}$

$$w_i = f$$

$w_i - J_i$					
position i	-1	0	1		
value $w_i = f_i$	0	1 2	1/2		

 $\operatorname{result}(g * w)_i = ((f * f) * f)_i$

position i	-1	0	1	
value $((f * f) * f)_i$	0	18	3 8	

(3)
$$g_i = ((f * f) * f)_i$$

٠,	$g_i = ((1 * J) * J)_i$				
	position i	-1	0	1	

2 Convolution can 1 move the bounds of the signal!

$value g_i = ((f * f) * f)_i$	0	1 8	3 8
-------------------------------	---	-----	-----

$$w_i = f_i$$

position i	-1	0	1
value $w_i = f_i$	0	1 2	1 2

result
$$(g * w)_i = (((f * f) * f) * f)_i$$

position i	-1	0	1	2	3	4
value $(((f * f) * f) * f)_i$	0	1/16	<u>1</u> 4	<u>6</u> 16	4	16

2. Properties of the Convolution 6

Proof of the properties possessed by a discrete convolution in 1-D:

a. Linearity

$$(\alpha \cdot f + \beta \cdot g) * w = \sum_{k=-\infty}^{\infty} (\alpha \cdot f_{i-k} + \beta \cdot g_{i-k}) \cdot w_k$$

$$= \sum_{k=-\infty}^{\infty} \alpha \cdot f_{i-k} \cdot w_k + \beta \cdot g_{i-k} \cdot w_k$$

$$= \alpha \sum_{k=-\infty}^{\infty} f_{i-k} \cdot w_k + \beta \sum_{k=-\infty}^{\infty} g_{i-k} \cdot w_k$$

$$= \alpha \cdot (f * w) + \beta \cdot (g * w)$$

b. Commutativity

$$f*w = \sum_{k=-\infty}^{\infty} f_{i-k} \cdot w_k$$

Let
$$k = i - n$$
,

$$k = \infty \rightarrow n = -\infty$$
 and $k = -\infty \rightarrow n = \infty$

then by substituting this into the above equation we can rewrite it as follows:

$$f * w = \sum_{n = -\infty}^{\infty} f_n \cdot w_{i-n}$$

$$\sum_{n = -\infty}^{\infty} w_{i-n} \cdot f_n = w * f$$
Hence, $f * w = w * f$

c. Identity

If f * e = f, then e must be the delta function δ . Convolving a signal with the delta function passes all the input signal without changes, thus making the delta function the identity for convolution.

In discrete case:

$$e_i = \begin{cases} 1 \ (i = 1) \\ 0 \ (else) \end{cases}$$

References:

https://www.analog.com/media/en/technical-documentation/dsp-book/dsp_book_Ch7.pdf http://www.songho.ca/dsp/convolution/convolution_commutative.html

3. Continuous Fourier Transform of a Discrete Filter $\frac{3}{6}$

Utilizing the translation property of the continuous Fourier Transform,

$$\begin{split} f(x-x_0,y-y_0) &\Leftrightarrow F(u,v)e^{-j2\pi(x_0u/M+y_0v/N)} \\ f\left(x-x_0,\ y-y_o\right) &\Leftrightarrow F[f](u,\ v)\ e^{-i2\pi\left(x_0u+y_0v\right)} \end{split}$$

We can then compute F[g](u, v) as:

$$\sqrt{\frac{1}{8}}F[f](u,v)\left(-e^{-i2\pi(u+v)} + e^{-i2\pi(-u+v)} - 2e^{-i2\pi(u)} + 2e^{-i2\pi(-u)} - e^{-i2\pi(u-v)} + e^{-i2\pi(-u-v)}\right)$$

$$f = \frac{1}{8}F[f](u,v)\left(-4e^{-i2\pi u} + 4e^{i2\pi u}\right)$$

$$= \frac{4}{8}\left(-e^{-i2\pi u} + e^{i2\pi u}\right)F[f](u,v)$$

$$= (i\sin(2\pi u))F[f](u,v)$$