Sommersemester 2015 Übungsblatt 7 1. Juni 2015

Theoretische Informatik

Abgabetermin: 8. Juni 2015, 13 Uhr in die THEO Briefkästen

Hausaufgabe 1 (5 Punkte)

Für alle $k \in \mathbb{N}$ definieren wir die Sprache $L_k = \{(ab^k)^m ; m \in \mathbb{N}\}.$ (Beispiel: $L_2 = \{(abb)^m ; m \in \mathbb{N}\}$)

- 1. Zeigen Sie für alle $k \in \mathbb{N}$ durch Angabe einer rechtslinearen Grammatik für L_k , dass L_k regulär ist.
- 2. Zeigen Sie, dass die Sprache $L = \bigcup_{k \in \mathbb{N}} L_k$ nicht kontextfrei ist. Hinweis: Sei n eine Pumping-Lemma-Zahl für L. Man betrachte $(ab^n)^3$.

Hausaufgabe 2 (5 Punkte)

Sei $\Sigma = \{0, 1\}$. Die zwei Operationen Spiegelung (w^R) und Negation (\overline{w}) seien für $w \in \Sigma^*$ wie folgt definiert:

$$w^{R} = \begin{cases} \epsilon, & \text{falls } w = \epsilon \\ u^{R}a, & \text{falls } w = au \text{ für } a \in \Sigma \text{ und } u \in \Sigma^{*} \end{cases}$$
$$\overline{w} = \begin{cases} \epsilon, & \text{falls } w = \epsilon \\ \hat{a}\overline{u}, & \text{falls } w = au \text{ für } a \in \Sigma \text{ und } u \in \Sigma^{*} \end{cases}$$

Dabei setzen wir $\hat{0}=1$ und $\hat{1}=0$. Wie man leicht (etwa per Induktion) zeigen kann, gelten für diese Operationen auch die Gleichungen $(ua)^R=au^R$ und $\overline{ua}=\overline{u}\hat{a}$ für alle $a\in\Sigma,\,u\in\Sigma^*$. Im Folgenden nehmen wir diese Identitäten als bewiesen an. Wir betrachten nun die Sprache $L=\{w\in\Sigma^*\,;\,w^R=\overline{w}\}$ und die Grammatik

$$G = (\{S\}, \Sigma, \{S \rightarrow 0S1 \mid 1S0 \mid \epsilon\}, S).$$

Zeigen Sie: L ist genau die von der Grammatik G beschriebene Sprache.

Hausaufgabe 3 (5 Punkte)

Wir betrachten die Grammatik $G = (V, \{a, b, c, d\}, P, S)$ mit den Produktionen

$$\begin{array}{lll} S \rightarrow AZ\,, & X \rightarrow b \mid XB\,, & B \rightarrow b\,, \\ Z \rightarrow SD \mid TD\,, & Y \rightarrow c \mid YC\,, & C \rightarrow c\,, \\ T \rightarrow XY\,, & A \rightarrow a\,, & D \rightarrow d\,. \end{array}$$

1. Zeigen Sie durch Anwendung des CYK-Verfahrens, dass a^2bc^2d nicht in der von G erzeugten Sprache enthalten ist, d. h. $a^2bc^2d \notin L(G)$.

- 2. Geben Sie eine Ableitung des Wortes a^2bcd^2 mit Produktionen der Grammatik G an.
- 3. Zeigen Sie, dass die Sprache $L=\{a^kb^mc^kd^m\,;\,k,m\in\mathbb{N}\setminus\{0\}\}\subseteq\{a,b,c,d\}^*$ nicht kontextfrei ist.
- 4. Zeigen Sie, dass die Sprache $L = \{a^m b^m c^k d^k ; k, m \in \mathbb{N} \setminus \{0\}\} \subseteq \{a, b, c, d\}^*$ kontextfrei ist. Ist L linear, d.h., kann sie von einer Grammatik mit linearen Produktionen erzeugt werden?

Hausaufgabe 4 (5 Punkte)

Seien $\Sigma \neq \emptyset$ und $V = \{A_1, A_2, \dots, A_n\}$ Zeichenmengen mit $n \geq 2$ und m eine Markie-rungsabbildung der Form $m(x) = \hat{x}$ bzw. $m(A) = \widehat{A}$ für alle $x \in \Sigma$ bzw. $A \in V$. Wir definieren $\widehat{\Sigma} = \{\hat{x} : x \in \Sigma\}$ und $\widehat{V} = \{\widehat{A}_1, \widehat{A}_2, \dots, \widehat{A}_n\}$. Wir setzen Mengendisjunktheit voraus, so dass $|\Sigma \cup \widehat{\Sigma} \cup V \cup \widehat{V}| = 2(n+|\Sigma|)$ gilt, und definieren $\Sigma' = \Sigma \cup \widehat{\Sigma}$ und $V' = V \cup \widehat{V}$.

Wir sagen, dass eine kontextfreie Grammatik $G' = (V', \Sigma', P', S')$ eine Wortendemarkierung generiert, falls S' eines der markierten Zeichen \widehat{A}_i , i = 1, ..., n ist und jede Produktion aus P' eine der folgenden Formen besitzt (mit $x \in \Sigma$):

$$A_i \rightarrow A_j A_k , \qquad A_i \rightarrow x ,$$

 $\hat{A}_i \rightarrow A_j \hat{A}_k , \qquad \hat{A}_i \rightarrow \hat{x} .$

1. Sei G' eine kontextfreie Grammatik, die eine Wortendemarkierung generiert. Man zeige mit struktureller Induktion für alle Wörter w der Sprache L(G') die folgende Eigenschaft

$$\widehat{P}(w)$$
: Es gibt ein $v \in \Sigma^*$ und ein $\widehat{x} \in \widehat{\Sigma}$, so dass $w = v\widehat{x}$ gilt.

Betrachten Sie dazu geeignete Eigenschaften P(w) bzw. $\widehat{P}(w)$ der aus Variablen $A \in V$ einerseits bzw. $\widehat{A} \in \widehat{V}$ andererseits ableitbaren Wörter $w \in \Sigma'^*$. Verwenden Sie die Bezeichnung $L(X) = \{w \in \Sigma'^* \; ; \; X \underset{G^*}{\rightarrow} w\}$ für $X \in V'$.

2. Seien L eine kontextfreie Sprache, so dass $\epsilon \notin L$, und $E = \{x \in \Sigma^* ; |x| = 1\}$. Zeigen Sie, dass der Rechtsquotient L/E kontextfrei ist. Zum Nachweis genügt eine informelle Konstruktionsbeschreibung einer kontextfreien Grammatik für L/E.

Hinweis: Die Vorbereitungsaufgaben bereiten die Tutoraufgaben vor und werden in der Zentralübung unterstützt. Tutoraufgaben werden in den Übungsgruppen bearbeitet. Hausaufgaben sollen selbstständig bearbeitet und zur Korrektur und Bewertung abgegeben werden.

Vorbereitung 1

Überführen Sie die folgende Grammatik in Greibach-Normalform:

$$G = (\{S, X\}, \{a, b\}, \{S \to XX, S \to a, X \to SS, X \to b\}, X).$$

Vorbereitung 2

Sei $K = (Q, \Sigma, \Delta, q_0, Z_0, F, \delta)$ ein Kellerautomat mit Startzustand $q_0 \in Q$, Startkellerzeichen $Z_0 \in \Delta$, Menge $F \subseteq Q$ von akzeptierenden Zuständen und der Übergangsfunktion δ . Eine Folge $(p_0, w_0, \gamma_0), (p_1, w_1, \gamma_1), \ldots, (p_k, w_k, \gamma_k)$ mit nicht leerem γ_0 heiße Berechnung der Konfiguration (p_0, w_0, γ_0) mit $k \in \mathbb{N}_0$ Schritten, falls gilt

$$(p_0, w_0, \gamma_0) \rightarrow (p_1, w_1, \gamma_1) \rightarrow \ldots \rightarrow (p_k, w_k, \gamma_k).$$

Falls für $c=(p,w,\gamma)$ keine Berechnung mit k>0 Schritten existiert, dann nennen wir c eine Endkonfiguration

Wir nehmen nun an, dass K ein <u>deterministischer Kellerautomat in Normalform</u> ist. Man zeige:

- 1. Für alle $w \in \Sigma^*$ gibt es genau eine Berechnung $(q_0, w, Z_0), (p_1, w_1, \gamma_1), \ldots, (p_k, \epsilon, \gamma_k)$, so dass $(p_k, \epsilon, \gamma_k)$ eine Endkonfiguration ist. Für diese Berechnung gilt $\gamma_i \neq \lambda$ mit leerem Wort $\lambda \in \Delta^*$.
- 2. Es gibt eindeutige Funktionen $\sigma: \Sigma^* \to \mathbb{N}_0, \ \eta: \Sigma^* \to Q \ \text{und} \ \kappa: \Sigma^* \to \Delta^+, \text{ so dass für alle } w \in \Sigma^* \text{ gilt}$

 $(\eta(w), \epsilon, \kappa(w))$ ist Endkonfiguration einer Berechnung von (q_0, w, Z_0) mit $\sigma(w)$ Schritten.

Vorbereitung 3

Man beweise die folgende Aussage:

Für alle deterministischen kontextfreien Sprachen L gilt, dass es genau dann einen deterministischen Kellerautomaten gibt, der L mit leerem Keller akzeptiert, wenn L die Präfixbedingung erfüllt.

Tutoraufgabe 1

Kellerautomaten in ihrer einfachsten Form haben nur einen einzigen Zustand und akzeptieren mit leerem Keller. Man kann in diesem Fall auf Zustände sogar ganz verzichten. Sie haben auch keine sogenannten ϵ -Übergänge. Wir bezeichnen solche Kellerautomaten als einfache Kellerautomaten $E = (\Sigma, \Delta, Z_0, \delta)$, abgekürzt EKA. Entsprechend ist die Funktionalität von δ nun $\delta : \Sigma \times \Delta \to \mathcal{P}_f(\Delta^*)$, wobei $\mathcal{P}_f(\Delta^*)$ die Menge aller endlichen Teilmengen von Δ^* bedeutet.

1. Zeigen Sie durch Anwendung bzw. Modifikation von Sätzen der Vorlesung, dass es für jede kontextfreie Sprache L mit $\epsilon \not\in L$ einen einfachen Kellerautomaten $E = (\Sigma, \Delta, Z_0, \delta)$ gibt, der die Sprache L akzeptiert, d.h. L = L(E).

2. Ein EKA E ist deterministisch, falls $|\delta(a,Z)| \leq 1$ für alle $a \in \Sigma, Z \in \Delta$ gilt. Zeigen Sie, dass $L = \{a^nb^n ; n \in \mathbb{N}\}$ von einem deterministischen EKA erzeugt werden kann.

Tutoraufgabe 2

Sei $A = (Q, \Sigma, \Delta, q_0, Z_0, \delta, F)$ ein deterministischer Kellerautomat. Dann nennen wir einen Zustand $q \in Q$ spontan bzw. stabil, wenn $|\delta(q, a, X)| = 0$ für alle $a \in \Sigma, X \in \Delta$ gilt bzw. $|\delta(q, \epsilon, X)| = 0$ für alle $X \in \Delta$ gilt. Die Mengen der spontanen bzw. stabilen Zustände bezeichnen wir mit Q_{sp} bzw. Q_{st} . A nennen wir ϵ -separiert, falls $Q = Q_{sp} \cup Q_{st}$ gilt.

Nach Konstruktion in der Vorlesung gibt es zu A einen äquivalenten ϵ -separierten Kellerautomaten $K=(Q,\Sigma,\Delta,q_0,Z_0,\delta,F)$ in Normalform. Man beweise nun unter Berücksichtigung der Definitionen in VA 2 die folgenden Aussagen über Kellerautomaten K in Normalform.

- 1. Sei $\beta=(q_0,w,Z_0), (q_1,w_1,\gamma_1)$... $(q_{n-1},w_{n-1},\gamma_{n-1}), (\eta(w),\epsilon,\kappa(w))$ eine Berechnung von (q_0,w,Z_0) und j die kleinste Zahl, so dass die Teilsequenz $\beta_j=(q_j,w_j,\gamma_j)$... $(q_{n-1},w_{n-1},\gamma_{n-1}), (\eta(w),\epsilon,\kappa(w))$ von β nur spontane Zustände enthält mit Ausnahme von $\eta(w)$. Dann gilt:
 - w wird von K akzeptiert genau dann, wenn mindestens einer der in β enthaltenen Zustände q_i ein akzeptierender Zustand aus F ist.
- 2. Zu jedem ϵ -separierter Kellerautomaten in Normalform K gibt es einen äquivalenten Kellerautomaten $K' = (Q', \Sigma, \Delta', q'_0, Z'_0, \delta', F')$, der keine spontanen akzeptierenden Zustände besitzt, d.h., dass alle akzeptierenden Zustände stabil sind.
- 3. K' ist in dem folgenden Sinn komplementierbar: Der komplementierte Kellerautomat $\overline{K} = (Q', \Sigma, \Delta', q'_0, Z'_0, \delta', Q'_{st} \setminus F')$ akzeptiert das Komplement von L(K'):

$$L(\overline{K}) = \overline{L(K')} = \Sigma^* \setminus L(K')$$
.

Tutoraufgabe 3

Wir betrachten die Grammatik $G = (V, \Sigma, P, S)$ mit den Produktionen

$$\begin{array}{ccc} S & \rightarrow & E \; , \\ E & \rightarrow & E + T \mid T \; . \\ T & \rightarrow & a \mid (E) \; . \end{array}$$

Ist G eine LR(1) Grammatik? Begründen Sie Ihre Antwort.