Équations différentielles stochastiques

Présenté par : M. HAMMAD

1.1 Équations différentielles stochastiques

Dans cette section, on considère des équations de la forme générale :

(1.1)
$$Y_{t} = Z + \int_{0}^{t} b(s, Y_{s}) ds + \int_{0}^{t} \sigma(s, Y_{s}) dB_{s}.$$

On appelle ces équations les "EDS : équations différentielles stochastiques ". Une solution de l'équation (1.1) porte le nom de "diffusion". nous allons étudier quelques propriétés des solutions de ces équations.

Remarque 1.1.1.

Formellement, on note (1.1) sous la forme :
$$\begin{cases} dY_t = b(t, Y_t)dt + \sigma(t, Y_t)dB_t \\ Y_0 = Z. \end{cases}$$

1.1.1 Théorème d'Itô

Nous avons maintenant tous les éléments en main pour définir la notion de solution de l'équation différentielle stochastique (1.1).

Définition 1.1.1.

On se place dans un espace de probabilité filtré $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$. On se donne, $b: \mathbb{R}^+ \times \mathbb{R} \to \mathbb{R}$, $\sigma: \mathbb{R}^+ \times \mathbb{R} \to \mathbb{R}$, Z une variable aléatoire \mathcal{F}_0 -mesurable et $(B_t)_{t\geq 0}$ un \mathcal{F}_t -mouvement Brownien. Trouver une solution à l'équation (1.1) revient à trouver un processus stochastique $(Y_t)_{t\geq 0}$, continu \mathcal{F}_t -adapté, vérifiant les propriétés :

1. Pour tout
$$t \geq 0$$
, les intégrales $\int_0^t b(s, Y_s) ds$ et $\int_0^t \sigma(s, Y_s) dB_s$ ont un sens :

$$\int_0^t |b(s, Y_s)| ds < +\infty \text{ et } \int_0^t |\sigma(s, Y_s)|^2 ds < +\infty \mathbb{P} p.s..$$

2. $(Y_t)_{t>0}$ vérifie (1.1) c'est-à-dire :

$$\forall t \geq 0 \, \mathbb{P} \, p.s. \, Y_t = Z + \int_0^t b(s, Y_s) ds + \int_0^t \sigma(s, Y_s) dB_s.$$

1.1. ÉQUATIONS DIFFÉRENTIELLES STOCHASTIQUES

Le théorème suivant donne des conditions suffisantes sur b et σ pour avoir un résultat d'existence et d'unicité pour (1.1).

Théorème 1.1.1.

Si b et σ sont des fonctions continues, telles qu'il existe $K < +\infty$ avec :

1.
$$|b(t,x) - b(t,y)| + |\sigma(t,x) - \sigma(t,y)| \le K|x-y|$$

2.
$$|b(t,x)| + |\sigma(t,x)| \le K(1+|x|)$$

3. **IE**
$$(Z^2) < +\infty$$

alors, pour tout $T \ge 0$, (1.1) admet une solution unique dans l'intervalle [0,T]. De plus cette solution $(Y_t)_{t\ge 0}$ vérifie :

$$\mathbf{IE}\left(\sup_{0\leq t\leq T}|Y_s|^2\right)<+\infty.$$

L'unicité signifie que si $(Y_t)_{t\geq 0}$ et $(X_t)_{t\geq 0}$ sont deux solutions de (1.1), alors :

$$\mathbb{P} \ p.s. \ 0 \le t \le T, \ Y_t = X_t.$$