Министерство образования и науки РФ Санкт-Петербургский Политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа искусственного интеллекта

ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ № 1

«Наивный Байесовский классификатор» по дисциплине «Машинное обучение»

Выполнила:	
студентка гр. 3540201/20301	Климова О. А
	подпись, дата
Проверил:	
д.т.н., проф.	Уткин Л. В.
	полпись, дата

Санкт-Петербург

Содержание

Постановка задачи 3
1 Исследование зависимости точности классификатора от размера выборки
1.1 «Крестики-нолики»
1.2 Классификация спама
1.3 Выводы
2 Генерация точек
3 Титаник
Приложение 1. Код примеров, используемых для исследования точности
классификаторов10
Приложение 2. Код, используемый для генерации точек и обучения
классификатора11
Приложение 3. Код, используемый для построения классификатора на осново
датасета «Титаник»12

Постановка задачи

В рамках данной работы необходимо:

- 1. Исследовать, как объем обучающей выборки и количество тестовых данных, влияет на точность классификации или на вероятность ошибочной классификации в примере крестики-нолики и примере о спаме e-mail сообщений.
- 2. Сгенерировать 100 точек с двумя признаками X1 и X2 в соответствии с нормальным распределением так, что первые 50 точек (class -1) имеют параметры: мат. ожидание X1 равно 10, мат. ожидание X2 равно 14, среднеквадратические отклонения для обеих переменных равны 4. Вторые 50 точек (class +1) имеют параметры: мат. ожидание X1 равно 20, мат. ожидание X2 равно 18, среднеквадратические отклонения для обеих переменных равны 3. Построить соответствующие диаграммы, иллюстрирующие данные. Построить байесовский классификатор и оценить качество классификации.
- 3. Разработать байесовский классификатор для данных Титаник (Titanic dataset) https://www.kaggle.com/c/titanic.

1 Исследование зависимости точности классификатора от размера выборки

1.1 «Крестики-нолики»

Рассмотрим выборку из 958 элементов, каждый из которых для определенного расположения в игре «Крестики-нолики» классифицирует его как выигрышное (positive) или проигрышное (negative) для х:

-	V1 [‡]	V2 [‡]	V3 [‡]	V4	V5 [‡]	V 6 [‡]	V7	V8 [‡]	V9	V10 [‡]
UZZ	U	U	U	X.	٨	A.	U	U	U	positive
623	b	b	b	x	x	x	b	o	o	positive
624	b	b	b	o	o	b	x	x	x	positive
625	b	b	b	О	b	o	x	x	x	positive
626	b	b	b	b	o	o	x	x	x	positive
627	x	x	o	x	x	o	o	b	o	negative
628	x	x	o	x	x	o	b	o	o	negative
629	x	x	o	x	x	b	0	0	o	negative

Отобразим зависимость точности классификатора от размера тестовой и обучающей выборки из датасета «Крестики-нолики».

Для оценки точности используем метрику ассигасу, где TP и TN - верно классифицируемые объекты:

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

При обучающей выборке 90%, а тренировочной 10%

```
A_predicted negative positive
negative 13 7
positive 18 58
> accuracy
[1] 0.7395833
```

При обучающей выборке 80%, а тренировочной 20%

```
A_predicted negative positive
negative 22 20
positive 40 110
> accuracy
[1] 0.6875
```

```
При обучающей выборке 70%, а тренировочной 30%
```

```
A_predicted negative positive
negative 34 38
positive 53 163
> accuracy
[1] 0.6840278
```

При обучающей выборке 60%, а тренировочной 40%

```
A_predicted negative positive
negative 50 43
positive 74 217
> accuracy
[1] 0.6953125
```

При обучающей выборке 50%, а тренировочной 50%

```
A_predicted negative positive
negative 66 51
positive 91 271
> accuracy
[1] 0.7035491
```

При обучающей выборке 40%, а тренировочной 60%

```
A_predicted negative positive
negative 80 63
positive 115 317
> accuracy
[1] 0.6904348
```

При обучающей выборке 30%, а тренировочной 70%

```
A_predicted negative positive
negative 96 73
positive 132 370
> accuracy
[1] 0.6944858
```

При обучающей выборке 20%, а тренировочной 80%

```
A_predicted negative positive
negative 119 104
positive 139 405
> accuracy
[1] 0.6831812
```

При обучающей выборке 10%, а тренировочной 90%

```
A_predicted negative positive
negative 133 104
positive 163 463
> accuracy
[1] 0.6906141
```

1.2 Классификация спама

Рассмотрим выборку из 4601 элемента, каждый из которых для набора признаков текстового сообщения классифицирует его как спам или не спам:

charExclamation [‡]	charDollar [‡]	charHash [‡]	capitalAve [‡]	capitalLong	capitalTotal [‡]	type
0.778	0.000	0.000	3.756	61	278	spam
0.372	0.180	0.048	5.114	101	1028	spam
0.276	0.184	0.010	9.821	485	2259	spam
0.137	0.000	0.000	3.537	40	191	spam
0.135	0.000	0.000	3.537	40	191	spam
0.000	0.000	0.000	3.000	15	54	spam
0.164	0.054	0.000	1.671	4	112	spam

Отобразим зависимость точности классификатора от размера тестовой и обучающей выборки из датасета «Спам».

Для оценки точности используем метрику ассигасу, где TP и TN - верно классифицируемые объекты:

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

При обучающей выборке 90%, а тренировочной 10%

```
nonspam spam
nonspam 147 7
spam 134 172
> accuracy2
[1] 0.6934783
```

При обучающей выборке 80%, а тренировочной 20%

```
nonspam spam
nonspam 303 21
spam 249 347
> accuracy2
[1] 0.7065217
```

При обучающей выборке 70%, а тренировочной 30%

```
nonspam spam
nonspam 440 25
spam 375 540
> accuracy2
[1] 0.7101449
```

При обучающей выборке 60%, а тренировочной 40%

```
nonspam spam
nonspam 661 44
spam 454 681
> accuracy2
[1] 0.7293478
```

При обучающей выборке 50%, а тренировочной 50%

```
nonspam spam
nonspam 798 39
spam 570 893
> accuracy2
[1] 0.7352174
```

При обучающей выборке 40%, а тренировочной 60%

```
nonspam spam
nonspam 1007 57
spam 692 1004
> accuracy2
[1] 0.7286232
```

При обучающей выборке 30%, а тренировочной 70%

```
nonspam spam
nonspam 1107 60
spam 853 1200
> accuracy2
[1] 0.7164596
```

При обучающей выборке 20%, а тренировочной 80%

```
nonspam spam
nonspam 1205 91
spam 1030 1354
> accuracy2
[1] 0.6953804
```

При обучающей выборке 10%, а тренировочной 90%

```
nonspam spam
nonspam 1258 81
spam 1246 1555
> accuracy2
[1] 0.6794686
```

1.3 Выводы

Можно сделать вывод, что для обоих датасетов «Крестики-нолики» и «Спам» увеличение числа примеров в обучающей выборке не приводит к улучшению качества работы Наивного Байесовского классификатора.

2 Генерация точек

Сгенерируем два кластера точек в соответствии с заданием. Результат будет иметь следующий вид:

Если для обучения использовать 80% точек (80 штук), а для теста 20% (20 штук), то на тестовой выборке классификатор выдает точность ассигасу = 0.95:

```
T_predicted -1 1

-1 0 1

1 0 19

> accuracy3

[1] 0.95
```

Если для обучения использовать 70% точек (70 штук), а для теста 30% (30 штук), то на тестовой выборке классификатор выдает точность ассигасу = 0.93:

```
T_predicted -1 1

-1 0 2

1 0 28

> accuracy3

[1] 0.9333333
```

Если для обучения использовать 60% точек (60 штук), а для теста 40% (40 штук), то на тестовой выборке классификатор выдает точность ассигасу = 0.75:

```
T_predicted -1 1

-1 0 10

1 0 30

> accuracy3

[1] 0.75
```

Можно видеть, что байесовский классификатор выдает точность на данном датасете выше, чем на предыдущих примерах.

3 Титаник

Для датасета «Титаник» была загружена обучающая выборка, включающая 891 элемент:

•	PassengerId [‡]	Survived [‡]	Pclass [‡]	Name	Sex [‡]	Age [‡]
1	1	0	3	Braund, Mr. Owen Harris	male	22.00
2	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38.00
3	3	1	3	Heikkinen, Miss. Laina	female	26.00
4	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.00
5	5	0	3	Allen, Mr. William Henry	male	35.00
6	6	0	3	Moran, Mr. James	male	NA
7	7	0	1	McCarthy, Mr. Timothy J	male	54.00
8	8	0	3	Palsson, Master. Gosta Leonard	male	2.00
9	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.00

А также тестовая выборка, включающая 418 элементов:

•	PassengerId [‡]	Pclass [‡]	Name ÷	Sex [‡]	Age [‡]	SibSp [‡]	Parch [‡]
1	892	3	Kelly, Mr. James	male	34.5	0	0
2	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0
3	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0
4	895	3	Wirz, Mr. Albert	male	27.0	0	0
5	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1
6	897	3	Svensson, Mr. Johan Cervin	male	14.0	0	0
7	898	3	Connolly, Miss. Kate	female	30.0	0	0
8	899	2	Caldwell, Mr. Albert Francis	male	26.0	1	1

Далее на основе обучающих данных был построен Байесовский классификатор, использующий такие признаки, как класс кают, имя, пол, возраст, число братьев-сестер/муж-жена на борту; число родителей/детей на борту; номер билета; стоимость билета; каюта.

Затем на тестовой выборке было проведено тестирование и получена $\mbox{точность accuracy} = 0.75 :$

Приложение 1. Код примеров, используемых для исследования точности классификаторов

```
##КРЕСТИКИ-НОЛИКИ
#install.packages("e1071")
library(e1071)
# импортируем данные в R
A_raw<-read.table("C:/Users/Unicorn/Desktop/МашинноеОбучение/Лабы/Tic_tac_toe.txt",
sep = ",", stringsAsFactors = TRUE)
# число строк в базе
n < -dim(A raw)[1]
# Устанавливаем базу генерации случайных чисел и рандомизируем выборку
set.seed(12345)
A rand <- A raw[order(runif(n)), ]
# разделим данные на обучающие и тестирующие (80% для обучения)
nt <- as.integer(n*0.8)
A_train <- A_rand[1:nt, ]
A_{\text{test}} < -A_{\text{rand}}[(nt+1):n,]
# Используем Наивный Байесовский классификатор из пакета e1071
A classifier <- naiveBayes(V10 \sim ., data = A train)
# Теперь оценим полученную модель:
A predicted <- predict(A classifier, A test)
# Используем table для сравнения прогнозируемых значений с тем, что есть
tab1 = table(A predicted, A test$V10)
# Вычислим точность
accuracy = (tab1[1,1] + tab1[2,2]) / (tab1[1,1] + tab1[2,2] + tab1[1,2] + tab1[2,1])
# Выводим таблицу с числом классифицированных элементов и точность
tab1
accuracy
##СПАМ
library(kernlab)
library(e1071)
data(spam)
## Случайным образом выбираем 10% сообщений для тестирования,
idx <- sample(1:dim(spam)[1], 4601*0.9);
spamtrain <- spam[-idx, ];</pre>
spamtest <- spam[idx, ];</pre>
## Обучаем и оцениваем классификатор
model <- naiveBayes(type ~ ., data = spamtrain);
tab2 = table(predict(model, spamtest), spamtest$type)
accuracy2 = (tab2[1,1] + tab2[2,2]) / (tab2[1,1] + tab2[2,2] + tab2[1,2] + tab2[2,1])
# Выводим таблицу с числом классифицированных элементов и точность
tab2
accuracy2
```

Приложение 2. Код, используемый для генерации точек и обучения классификатора

```
##ГЕНЕРАЦИЯ ТОЧЕК
library(e1071)
n1 <- rnorm(50, 10, 4)
n2 < rnorm(50, 20, 3)
n3 < -rnorm(50, 14, 4)
n4 <- rnorm(50, 18, 3)
X1 <- c(n1,n2)
X2 <- c(n3,n4)
C < -rep(c("-1", "1"), each = 50)
T_rand <- data.frame(X1, X2, C, stringsAsFactors = TRUE)
plot(X1, X2, col = rep(1:2, each = 50), pch = 19)
# Разделим данные на обучающие и тестирующие
n = 100
#70% обучающая
nt <- as.integer(n*0.7)
T_train <- T_rand[1:nt, ]
T_{\text{test}} \leftarrow T_{\text{rand}}[(nt+1):n,]
##Обучение
T_{classifier} < -naiveBayes(C \sim .., data = T_{train})
# Оценка полученной модели:
T_predicted <- predict(T_classifier, T_test)</pre>
# Сравним прогнозируемые значения с тем, что есть
tab3 = table(T_predicted, T_test$C)
accuracy3 = (tab3[1,1] + tab3[2,2]) / (tab3[1,1] + tab3[2,2] + tab3[1,2] + tab3[2,1])
# Выводим таблицу с числом классифицированных элементов и точность
tab3
accuracy3
```

Приложение 3. Код, используемый для построения классификатора на основе датасета «Титаник»

```
##ТИТАНИК
library(e1071)
#Загрузка обучающей выборки
Titanic_train <- read.csv("Titanic_train.csv", header = TRUE, sep = ",", dec = ".",
               stringsAsFactors = FALSE)
#Загрузка тестовой выборки
Titanic_test <- read.csv("Titanic_test.csv", header = TRUE, sep = ",", dec = ".",
              stringsAsFactors = FALSE)
#Обучение
Titanic_classifier <- naiveBayes(Survived ~ ., data = Titanic_train)
# Оценка полученной модели:
Titanic_predicted <- predict(Titanic_classifier, Titanic_test)</pre>
# Сравним полученные результаты с тестовыми
Gen_sub = read.csv("gender_submission.csv", header = TRUE, sep = ",", dec = ".",
           stringsAsFactors = FALSE)
tab4 = table(Titanic_predicted, Gen_sub$Survived)
accuracy4 = (tab4[1,1] + tab4[2,2]) / (tab4[1,1] + tab4[2,2] + tab4[1,2] + tab4[2,1])
# Выводим таблицу с числом классифицированных элементов и точность
tab4
accuracy4
```