

=====

Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2009; month=1; day=7; hr=11; min=27; sec=33; ms=803;]

=====

Application No: 10553979 Version No: 2.0

Input Set:

Output Set:

Started: 2008-12-23 19:21:47.960
Finished: 2008-12-23 19:21:52.014
Elapsed: 0 hr(s) 0 min(s) 4 sec(s) 54 ms
Total Warnings: 142
Total Errors: 0
No. of SeqIDs Defined: 169
Actual SeqID Count: 169

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (1)
W 213	Artificial or Unknown found in <213> in SEQ ID (2)
W 213	Artificial or Unknown found in <213> in SEQ ID (3)
W 213	Artificial or Unknown found in <213> in SEQ ID (4)
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (7)
W 213	Artificial or Unknown found in <213> in SEQ ID (8)
W 213	Artificial or Unknown found in <213> in SEQ ID (9)
W 213	Artificial or Unknown found in <213> in SEQ ID (10)
W 213	Artificial or Unknown found in <213> in SEQ ID (11)
W 213	Artificial or Unknown found in <213> in SEQ ID (12)
W 213	Artificial or Unknown found in <213> in SEQ ID (13)
W 213	Artificial or Unknown found in <213> in SEQ ID (14)
W 213	Artificial or Unknown found in <213> in SEQ ID (15)
W 213	Artificial or Unknown found in <213> in SEQ ID (16)
W 213	Artificial or Unknown found in <213> in SEQ ID (17)
W 213	Artificial or Unknown found in <213> in SEQ ID (18)
W 213	Artificial or Unknown found in <213> in SEQ ID (19)
W 213	Artificial or Unknown found in <213> in SEQ ID (20)

Input Set:

Output Set:

Started: 2008-12-23 19:21:47.960
Finished: 2008-12-23 19:21:52.014
Elapsed: 0 hr(s) 0 min(s) 4 sec(s) 54 ms
Total Warnings: 142
Total Errors: 0
No. of SeqIDs Defined: 169
Actual SeqID Count: 169

Error code	Error Description
This error has occurred more than 20 times, will not be displayed	
W 402	Undefined organism found in <213> in SEQ ID (131)
W 402	Undefined organism found in <213> in SEQ ID (132)
W 402	Undefined organism found in <213> in SEQ ID (133)
W 402	Undefined organism found in <213> in SEQ ID (134)
W 402	Undefined organism found in <213> in SEQ ID (135)
W 402	Undefined organism found in <213> in SEQ ID (136)
W 402	Undefined organism found in <213> in SEQ ID (137)
W 402	Undefined organism found in <213> in SEQ ID (138)
W 402	Undefined organism found in <213> in SEQ ID (139)
W 402	Undefined organism found in <213> in SEQ ID (156)
W 402	Undefined organism found in <213> in SEQ ID (157)

SEQUENCE LISTING

<110> NAKASHIMA, NOBUTAKA
TAMURA, TOMOHIRO

<120> METHOD OF PRODUCING RECOMBINANT PROTEIN IN BACTERIUM
BELONGING TO GENUS RHODOCOCCUS

<130> 081356-0253

<140> 10553979
<141> 2005-10-20

<150> PCT/JP04/005585

<151> 2004-04-19

<150> JP 2003116280

<151> 2003-04-21

<160> 169

<170> PatentIn Ver. 3.3

<210> 1
<211> 25
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
primer shN1

<400> 1

cagagctcgt cagggtggcac ttttc 25

<210> 2
<211> 30
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
primer shN2

<400> 2

gttgtacaac tagtcgtgcc agctgcattt 30

<210> 3
<211> 26
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

primer sHN120

<400> 3

gctgtacacc cgagaagctc ccagcg

26

<210> 4

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
primer sHN121

<400> 4

cggagctt gaacgagagt tggccgttg

29

<210> 5

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
primer sHN122

<400> 5

tcagatctat cgtcatcgac tgcgatcacc ttgacgccc

39

<210> 6

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
primer sHN123

<400> 6

acggatcctc cgctgaaatc tcgccgtgcc t

31

<210> 7

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
primer sHN130

<400> 7

cttcatatgc ggagctcgac cgcgcggg

28

<210> 8
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer sHN131

<400> 8
atcgagtcgt tcaaggcggt cggc 24

<210> 9
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer NEB1233

<400> 9
agcggataac aatttcacac agg 23

<210> 10
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer sHN10

<400> 10
caccaggatg atcccgac 19

<210> 11
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer sHN11

<400> 11
gacagtgaca tcaccagc 18

<210> 12
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer NEB1224

<400> 12
cgccagggtt ttcccagtca cgac

24

<210> 13
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer sHN40

<400> 13
atgagctact ccgtgggaca ggtg

24

<210> 14
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer sHN41

<400> 14
tgcagatctt ccgttcgac gtgacggag

29

<210> 15
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer sHN42

<400> 15
cagtctagaa ttgatctcct cgaccg

26

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer sHN43

<400> 16
tgcaagctcc tatgtaaacg 20

<210> 17
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer sHN55

<400> 17
cgcctgctcc acggccggcc 19

<210> 18
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer sHN56

<400> 18
atggaggcac gcagcatg 18

<210> 19
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer sHN57

<400> 19
cgccccctcg gagtcggcg 19

<210> 20
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer sHN58

<400> 20
atggacgccc ccgaggac 18

<210> 21

<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer sHN147

<400> 21
cgtgtacata tcgaggcgaa ctccca 26

<210> 22
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer sHN39

<400> 22
atccatggcc gctcccttct ctgacgcccgt c 31

<210> 23
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer sHN36

<400> 23
accatggatc aggaatgcattt ag 22

<210> 24
<211> 59
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer sHN37

<400> 24
ttactagttt attaatgatg atgatgatga tgcaggtgtt tcaggatgaa atccgaaag 59

<210> 25
<211> 29
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
primer sHN6

<400> 25

cgtctagagt cccgctgagg cggcgtagc

29

<210> 26

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
primer sHN9

<400> 26

ctactagtcg acccacccggc acccgtag

29

<210> 27

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
primer sHN141

<400> 27

aatctagagt aacgggctac tccgttaac

30

<210> 28

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
primer sHN142

<400> 28

gggtcgacgg tcctctgtg gagtggttct

30

<210> 29

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
primer sHN145

<400> 29

gcactcgaga tgaaatctaa caatgcgctc atc

33

<210> 30
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer sHN152

<400> 30
agactagtcc tcaacgacag gagcacgatc 30

<210> 31
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer T7

<400> 31
gtaatacgac tcactatagg gc 22

<210> 32
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer sHN153

<400> 32
aatccacagg acgggtgtgg 20

<210> 33
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer sHN154

<400> 33
ctctacgccc gacgcatcg 19

<210> 34
<211> 22
<212> DNA

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer T3

<400> 34
gcaattaacc ctcactaaag gg

22

<210> 35
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer sHN155

<400> 35
acgacgctct cccttatgcg

20

<210> 36
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer sHN156

<400> 36
ccgatgccct tgagagcct

19

<210> 37
<211> 67
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer sHN110

<400> 37

aaccatggta tatctccttc ttaaagttaa acaaaattat ttcttagacgc cgtccacgct 60
gcctcct

67

<210> 38
<211> 77
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

primer NNco1

<400> 38
catgggccac catcaccatc accatatggg aattctacgt agcggccgct gatccaagct 60
tagatctcgaa ggatgaa 77

<210> 39
<211> 77
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer NNco2

<400> 39
ctagttcatc ctcgagatct aagcttggat ccgcggccgc tacgtagaat tcccatatgg 60
tgatggtgat ggtggcc 77

<210> 40
<211> 71
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer CNco1

<400> 40
catggaaatt ctacgtacgt gccgcggatc caagcttaga tctcgaggac atcaccatca 60
ccatcactga a 71

<210> 41
<211> 71
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer CNco2

<400> 41
ctagttcagt gatggtgatg gtgatgtcct cgagatctaa gcttggatcc gcggccgcta 60
cgtagaattc c 71

<210> 42
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer shN159

<400> 42
tccatatgcg ctcccttctc tgacgccgt 29

<210> 43
<211> 80
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer NNdel

<400> 43
tatgggccat caccatcacc atcacgccat gggattcta cgtagccgc gcggatccaa 60
gcttagatct cgaggatgaa 80

<210> 44
<211> 82
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer NNdel2

<400> 44
ctagttcatc ctcgagatct aagcttggat ccgcggccgc tacgtagaat tcccatggcg 60
tgatggatct ggtatggcc ca 82

<210> 45
<211> 71
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer CNdel1

<400> 45
tatggaaatt ctacgtacgc gccgcggatc caagcttaga tctcgaggac atcaccatca 60
ccatcactga a 71

<210> 46
<211> 73
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer CNdel2

<400> 46

ctagttcagt gatggtgatg gtgatgtcct cgagatctaa gcttggatcc gcggccgcta 60
cgtagaattc cca 73

<210> 47
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer shN160

<400> 47
aacatatgtatcttc ttaaaggtaa ac 32

<210> 48
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer shN343

<400> 48
aaactagttc agtgatggtg atggatgc tcgagagatc t 41

<210> 49
<211> 8166
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
vector pTip-NH1 sequence

<400> 49
gagctcgacc gcgcgggtcc cggacgggga agagcgggga gcttgccag agagcgacga 60
cttcccccttg cgttggatgat tgccggtcag ggcagccatc cgcacatcgat gcgttaggggt 120
tcacacccca ggaatcgctgt cactgaacac agcagccgggt aggacgacca tgactgagtt 180
ggacaccatc gcaaattccgt ccgtatcccgc ggtgcagcggg atcatcgatg tcaccaagcc 240
gtcacgatcc aacataaaga caacgttgcgat cgaggacgtc gagccccctca tgcacagcat 300
cgcggccggg gtggagttca tcgagggtcta cggcagcgtc agcagtcctt ttccatctga 360
gttgctggat ctgtgcgggc ggcagaacat accggtccgc ctcatcgact cctcgatcgat 420
caaccagtttgc ttcaagggggg agcggaaaggc caagacattc ggcacatcgccc gcgtccctcg 480
cccgccagg ttccggata tcgcgagccg gcgtggggac gtcgtcgatcc tcgacgggggt 540
gaagatcgatc gggaaacatcg ggcgtatagt acgcacgtcg ctgcgtcgatcg ggcgtcggtt 600
gatcatcctg gtggacagtg acatcaccag catcgccgac cggcgtctcc aaaggccag 660
cccgaggatccatc gtcttcctcc ttcccgatcgatcc tctctccggat cgcgtgggggg ccacatcgatcc 720
cattcggttgc agcggtatgc agctgtatgc gctcaaggcg gatggcgaca ttccgtgaa 780
ggaactcggttgc gacaatccgg atcggctggc cttgtgttc ggcagcgaaa aggggtggggcc 840
ttcccgatctg ttccggaggatccatc ctcggatccatcgatcc atcccgatcgatcc tgagccagac 900
cgagtcttc aacgttccg ttcccgatcgatcc aatcgccgtc cacgagatggat tcgacaggaa 960
tctcgccggcc aaccgataag cgcctctgtt cctcggttgc tcggatccatcgatcc gacatcgatcc 1020

cgtcgtatg gatcacctca cacggcagcg atcaccactg acatatcgag gtcaacggtc 1080
gtggccccc cgggcactcc tcgaaggcgc ggccgacgcc cttaacggac cccgttctca cgcttttaggc ttgaccggg 1140
tagagtaacg ggctactccg ttaacggac cccgttctca cgcttttaggc ttgaccggg 1200
agcctgcatg gggcattccg ccgtgaaccc ggtgaaatgc cccggcacc cgggcttcc 1260
agcaaagatc acctggcgcc gatgagaag gcgtacagaa ccactccaca ggaggaccgt 1320
cgagatgaaa tctaacaatg cgctcatcgt catcctcgcc accgtcacc tggatgctgt 1380
aggcataggc ttggatatgc cggtactgcc gggccttgc cggatatacg tccattccga 1440
cagcatcgcc agtcaactatg gcgtgctgt agcgctatacg cgttgatgc aatttctatg 1500
cgcacccgtt ctggagcac tgccgaccg cttggccgc cgcccagtcc tgctcgctc 1560
gctacttggc gccactatcg actacgcgt catggcgacc acacccgtcc tggattct 1620
ctacgccccgga cgcatcgatgg ccggcatcac cggcgccaca ggtgcgggtt ctggcgccct 1680
tatcgccgac atcaccgatg gggaaatcg ggctcgccac ttggggctca tgagcgctt 1740
tttcggcgatg ggtatggatgg caggccccgt gggggggggg ctgttggcgcc ccatctcctt 1800
gcatgcacca ttccattgcgg cggcggtgtt caacggcctc aacctactac tgggctgtt 1860
cctaattgcag gagtcgcata agggagagcg tcgtccgatg cccttggagag ccttcaaccc 1920
agtcagctcc ttccgggtgg cggggggcat gactatcgcc gccgcactta tgactgtt 1980
ctttatcatg caactcgtag gacaggtggc ggcagcgctc tgggtcattt tcggcgagga 2040
ccgcttcgcg tggagcgca cgatgtatgg cctgtcgctt gcggatttcg gaatctgc 2100
cgccctcgct caagccttcg tcactggatcc cgccaccaaa ctggccggcc agaagcaggc 2160
cattatcgcc ggcatggcgcc cggacgcgtc gggctacgtc ttgtggcgcc tcgcacgcgc 2220
aggctggatg gcctcccca ttatgattct tctcgcttcc gcggcatcg ggtggccgc 2280
gttgcaggcc atgtgttcca ggcaggataga tgacgaccat cagggacagc ttcaaggatc 2340
gctcgccgtt cttaccagcc taacttcgtat cattggaccg ctgatcgta cggcgattta 2400
tgccgcctcg gcgagcacat ggaacgggtt ggcattggatt gttagggccgc ccctataacct 2460
tgtctgcctc ccccggttgc gtccgggtgc atggagccgg gccacctcgaa cctgaatgg 2520
agccggcgcc acctcgctaa cggattcacc actccaagaa ttggagccaa tcaattttt 2580
cgggagaactg tgaatgcgcgca aaccaaccct tggcagaaca tatccatcg gtcggccatc 2640
tccagcagcc gcaacggcgcc catctcgccg acgttgggt cctggccacg ggtgcgcatt 2700
atcggtctcc tggatgttag gactagaatt gatctctcg accgccaatt gggcatctga 2760
gaatcatctg cggttctcg acgcaacgtt cttgcacatg tgcaactctt agtgttgta 2820
atcacacccc accgggggggtt gggattgcag tcaccgattt ggtgggtgcg cccaggaaga 2880
tcacgtttac ataggagctt gcaatgagct actccgtggg acaggtggcc ggcttcgcgc 2940
gagtgacggt ggcacgcgtg caccactacg acgacatcg cctgctcgta cggagcgagc 3000
gcagccacgc gggccacccgg cgctacagcg acgcccaccc cggccggctg cagcagatcc 3060
tgttctaccg ggagctgggc ttcccgctcg acgaggatcg cggccctgcgc gacgaccgg 3120
ccgcggaccc ggcgcgcgcac ctgcggccgc agcacagact gctgtccgccc cggatcggg 3180
aactgcagaa gatggccggc gccgtggagc aggcgatggc ggcacgcgc atggaatca 3240
acctcacccc ggaggagaag ttccggatgtt tcgggactt cggccgcac cagtacgagg 3300
aggaggtccg ggaacgcgtgg gggacacccg acgcctaccg ccagtccaa gagaagaccg 3360
cctcgatcac caaggaggac tggcagcgca tccaggacga ggcacgcgc ctcacccggc 3420
gcttcgtcgcc cctgtatggac ggggtggagc cggccgactc cgagggggccg atggacgcgc 3480
ccgaggacca cggcgaggcc atcgcccgca accactacg ctgcgggtac gagatgcaca 3540
cctgcctggg cgagatgtac gtgtccgacg aacgtttcac gcgaaacatc gacgcccgc 3600
agccgggcct cggccgcctac atgcgcgacg cgatctcgcc caacgcgcgc cggcacaccc 3660
cctgagccgtt ggtgtggcc cgggtctcc gcccggctc accccacggc tcactccgg 3720
gccacacca cggccgtccc gtacgcgcac acctcggtgc ccacgtccgc cggccctccgc 3780
acgtcgaaac ggaagatccc cgggtaccga gtcgtcagg tggcactttt cggggaaatg 3840
tgccggaaac ccctattttgt ttatccctt aaatacatc aaataatgtat cgcgtcatga 3900
gacaataacc ctgataaaatg cttaataat attaaaaaaag gaagagatgt agtattcaac 3960
attccgtgt cggcccttatt cccttttttggcatttttgc cttctctgtt tttgtctacc 4020
cagaaacgc ggtgaaagta aaagatcgta aagatcgatggtgcacga gtgggttaca 4080
tcgaacttggc tctcaacacgc ggtgaaatcc ttgagatgtt tcggccggaa gaacgtttc 4140
caatgatgatg cactttaaa gttctgtat gtggcgccgtt attatccgtt attgacgcgc 4200
ggcaagagca actcggtcgcc cgcataactt attctcagaa tgacttgggtt gagtactc 4260
cagtcacaga aaagcatctt acggatggca tgacagtaag agaattatgc agtgcgtcc 4320
taaccatgatg tgataaacact gcccgcactt tacttctgac aacgatcgga ggaccgaagg 4380
agctaaccgc ttttttgcac aacatggggg atcatgttaac tgcgccttgc cgttggaaac 4440

cggagctgaa tga