Digital Integrated Circuit Lecture 13 Delay

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

GIST Lecture

Review of Previous Lecture

Lecture 12

- Elmore delay
 - When V_2 is the output voltage, $\tau = 3RC$.
 - When V_1 is the output voltage, $\tau = 2RC$.

Lecture 12

- Rising propagation delay
 - In the worst case, $\tau = (15 + 5h)RC$.

Lecture 12

- Homework#4
 - -Solid (Solution)
 - Dash (Approx.)
 - $-\text{Red}(V_2)$
 - -Blue (V_1)
 - Blue dot (Wrong!)

4.3 RC Delay Model

4.3. RC delay model (11)

- Delay components
 - Parastic delay: Time for a gate to drive its own internal diffusion capacitance
 - Effort delay: It depends on the ratio of external load capacitance to input capacitance.
 - -The normalized delay, $d = \frac{t_{pd}}{3RC}$, can be written as

d = parastic delay + effort delay

4.3. RC delay model (12)

- Layout dependence of capacitance
 - A good layout minimizes the diffusion area.

4.4 Linear Delay Model

4.4. Linear delay model (1)

- Delay in a logic gate
 - Normalized delay

$$d = \frac{t_{pd}}{3RC}$$

– Delay has two components:

$$d = f + p = gh + p$$

- Effort delay:

$$f = gh$$

(g is the logical effort.)

4.4. Linear delay model (2)

- Delay in a logic gate
 - Fanout (or electrical effort)

$$h = \frac{C_{out}}{C_{in}}$$

(Ratio of output to input capacitance)

- Parasitic delay, p, represents
 delay of gate driving no load.
- -p is set by internal parasitic capacitance.

4.4. Linear delay model (3)

- Computing logical effort
 - Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter delevering the same output current.

$$C_{in} = 4$$
$$g = 4/3$$

$$C_{in} = 5$$

 $g = 5/3$

4.4. Linear delay model (4)

Logical effort of common gates

Gate type	Number of inputs					
	1	2	3	4	n	
Inverter	1					
NAND		4/3	5/3	6/3	(n+2)/3	
NOR		5/3	7/3	9/3	(2n+1)/3	
Tristate / mux	2	2	2	2	2	
XOR, XNOR		4, 4	6, 12, 6	8, 16, 16, 8		

4.4. Linear delay model (5)

Parasitic delay of common gates

Gate type	Number of inputs					
	1	2	3	4	n	
Inverter	1					
NAND		2	3	4	n	
NOR		2	3	4	n	
Tristate / mux	2	4	6	8	2n	
XOR, XNOR		4	6	8		

4.4. Linear delay model (6)

• Example 4.10

- -Logical effort: g = 1
- Electrical effort: h = 4
- Parasitic delay: p = 1
- -Stage delay: d = 5
- When $\tau = 3RC = 3$ ps, the total delay is 15 ps.

4.4. Linear delay model (7)

• Example 4.11

- -A ring oscillator with an odd number (N) of inverters
- -Logical effort: g = 1
- Electrical effort: h = 1
- Parasitic delay: p = 1
- -Stage delay: d = 2
- -Frequency: $f_{osc} = \frac{1}{2Nd} = \frac{1}{4Nd}$

4.5 Logical Effort of Paths

4.5. Logical effort of paths (1)

- Multistage logic networks
 - Logical effort is independent of size.
 - Electrical effort depends on sizes.

Fig. 4.29

- What is the total propagation delay?

$$D = \frac{x}{10} + 1 + \frac{5y}{3x} + 2 + \frac{4z}{3y} + 2 + \frac{20}{z} + 1$$

4.5. Logical effort of paths (2)

- Minumum propagation delay?
 - Parasitic delay is given as 6.

$$D = 6 + \frac{x}{10} + \frac{5y}{3x} + \frac{4z}{3y} + \frac{20}{z}$$

- Minimize the effort delay.
- Recall the inequality of arithmetic and geometric means

$$f_1 + f_2 + \dots + f_N \ge N \sqrt[N]{f_1 f_2 \dots f_N}$$

The equality holds if and only if $f_1 = f_2 = \cdots = f_N$.

4.5. Logical effort of paths (3)

- Product of effort delays is a constant.
 - In our example,

$$D = 6 + \frac{x}{10} + \frac{5y}{3x} + \frac{4z}{3y} + \frac{20}{z} \ge 6 + 4\sqrt[4]{\frac{40}{9}}$$

- -The equality holds when $\frac{x}{10} = \frac{5}{3} \frac{y}{x} = \frac{4}{3} \frac{z}{y} = \frac{20}{z} = \sqrt[4]{\frac{40}{9}} \approx 1.45$.
- Minimum possible delay of an N-state path

$$D = N \sqrt[N]{F} + P$$

- -F: Path effort
- -P: Path parasitic delay

4.5. Logical effort of paths (4)

• Exampe 4.14

Determine the number of stages.

$$-N = 1: D = 1 + 64$$

$$-N = 2$$
: $D = 2 + 2\sqrt{64}$

$$-N = 3: D = 3 + 3\sqrt[3]{64}$$

Thank you!