Control	School:	Campus:		
	Academic Year: Subject Name:	Subject Code:		
Centurion UNIVERSITY Shaping Lives Empowering Communities	Semester: Program: Branch:	Specialization:		
	Date:			
	Applied and Action Learning (Learning by Doing and Discovery)			

Name of the Experiement: ECDSA Workshop – Digital Signatures Demo

Objective/Aim:

To study and demonstrate the working of the Elliptic Curve Digital Signature Algorithm (ECDSA) by generating keys, signing a message, and verifying the signature.

Apparatus/Software Used:

- Computer with internet access
- Google colab

Theory/Concept:

ECDSA (Elliptic Curve Digital Signature Algorithm) is a cryptographic algorithm used for digital signatures.

• It provides authentication, data integrity, and non-repudiation.

Process:

- 1. **Key Generation** A private key is chosen randomly, and a public key is derived using elliptic curve multiplication.
- 2. **Signing** A hash of the message is generated and signed using the private key to produce a digital signature.
- 3. **Verification** The signature is verified using the sender's public key and the original message hash.

Advantages: Strong security with smaller key sizes compared to RSA, widely used in blockchain (e.g., Bitcoin, Ethereum).

Procedure:

- 1. Install the required cryptography library (pip install ecdsa).
- 2. Generate an elliptic curve key pair (private and public keys).
- 3. Take an input message (e.g., "Blockchain Lab Demo").
- 4. Hash the message using SHA-256.
- 5. Use the private key to sign the message hash \rightarrow digital signature.
- 6. Verify the signature using the public key and message hash.
- 7. Observe that:
 - If the message or signature is altered, verification fails.
 - If unchanged, verification passes.

```
Private Key: 6764c67e6a084fdf30beda2228b5f1a99c0084138f58e796d346f59a59532073
Public Key: a6f11173b8ee4046a134fc28b6ec6b9281d061d16f5f07567b24cf7951bf58ee5f461d6a4b269135d98e62b8942950

Message: Blockchain Lab Demo
Message Hash: e036e51357918c4ea0e79561181eca3d85633138dad9df6ca1e2c8ae5f64c30b

Digital Signature: 35dbb500894b80084f373793e9fc3c813ff28f744e904410be8b3cddf7219f5668c5ea0245f916b0bde1550

Verification Result: Valid 

# Tamper the message
fake_message = b"Blockchain Lab Tampered"
fake_hash = hashlib.sha256(fake_message).digest()

# Try to verify with fake message
try:
    public_key.verify(signature, fake_hash)
        print("Tampered Message Verification: Valid ")

except:
    print("Tampered Message Verification: Invalid X")
```

Observation Table:

Step	Input/Process	Output/Result
Key Generation	Random private key	Public key derived from EC multiplication
Message Input	"Blockchain Lab Demo"	Message ready for hashing
Hashing	SHA-256(Message)	64-character hash value
Signature Generation	Private Key + Hash	Digital Signature
Signature Verification	Public Key + Message + Signature	Valid (if original) / Invalid (if tampered)

ASSESSMENT

Rubrics	Full Mark	Marks Obtained	Remarks
Concept	10		
Planning and Execution/	10		
Practical Simulation/ Programming			
Result and Interpretation	10		
Record of Applied and Action Learning	10		
Viva	10		
Total	50		

Signature of the Student: