PROJEKT PUMA

Dokumentacja projektu zaliczeniowego z przedmiotu PUMA

Politechnika Śląska

Wiktor Hosumbek Szymon Joszko

Spis treści

- 1. Dane
 - 1.1 Zbiór danych
 - 1.2 Opis zbioru danych
 - 1.3 Informacje o atrybutach
- 2. Opis projektu
 - 2.1 Cel projektu
 - 2.2 Metody
 - 2.3 Biblioteki
 - 2.4 Podział etykiety quality
- 3. Opis metod
 - 3.1 Metoda SVM
 - 3.2 Drzewo decyzyjne
 - 3.3 Naiwny Klasyfikator Bayesowski
 - 3.4 Regresja logistyczna
 - 3.5 Lasy losowe
- 4. Wyniki
- 5. Podsumowanie
- 6. Załączniki

1. Dane

1.1 Zbiór danych:

Zbiór danych użytych w projekcie pochodzi ze strony UCI dokładny link: https://archive.ics.uci.edu/ml/datasets/Wine+Quality

"P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis.

Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009."

1.2 Opis zbioru danych:

Zbiór ten dotyczy jakości portugalskiego wina "Vinho Verde" i jest podzielony na dwa podzbiory, jeden dla czerwonego wina a drugi dla białego. Dane wejściowe zawierają w sobie tylko dane psychochemiczne takie jak ph, zawartość alkoholu, A nie zawierają informacji na temat marki, ceny, typu winogron itd. jest to spowodowane ochroną prywatności wytwórni tych win. Dane są prawdziwe i nie posiadają brakujących argumentów. Daną wyjściową jest ocena w skali rosnącej (0-10) im wyższa, tym lepsza jakość wina. Dane te nie są zbalansowane co oznacza że istnieje w bazie znaczna większość win średnich niż win bardzo słabych czy wybitnie dobrych.

1.3 Informacje o atrybutach:

Baza danych posiada 4898 rekordów wina białego i 1599 rekordów wina czerwonego co daje łącznie 6497 rekordów

Dane wejściowe:

- 1 kwasowość stała
- 2 kwasowość lotna
- 3 kwas cytrynowy
- 4 cukier resztkowy
- 5 chlorki
- 6 wolny dwutlenek siarki
- 7 całkowity dwutlenek siarki
- 8 gęstość
- 9 pH
- 10 siarczany
- 11 alkohol

Dane wyjściowe:

12 - Jakość

2. Opis projektu

2.1 Cel projektu:

Jednym z celów projektu było stworzenie programu wykorzystującego różne metody uczenia maszynowego do klasyfikacji jakości "vihno verde" na podstawie danych psycho chemicznych, drugim celem było porównanie jakości klasyfikacji tych metod.

2.2 Metody:

Metoda	opis
svm_method (data):	metoda SVM (C-Support Vector Classification)
pjk_method (data):	metoda (Regresja logistyczna, las losowy)
dt_method (data):	metoda Decision Tree
gaussian_method (data):	metoda Gaussian Naive Bayes (GaussianNB)
split_data_complex (data):	metoda dzieląca dane na zbiór treningowy i testowy z zachowaniem oryginalnych etykiet
split_data(data):	metoda dzieląca dane na zbiór treningowy i testowy z podziałem etykiety label na 3 klasy
qualityclass(x):	metoda służąca do wyznaczenia klasy quality

2.3 Biblioteki:

sklearn - biblioteka zawierająca implementację wszystkiego co potrzebne do pracy z uczeniem maszynowym w Pythonie

Numpy -podstawowy zestaw narzędzi dla języka Python umożliwiający zaawansowane obliczenia matematyczne.

matplotlib - biblioteka do tworzenia wykresów dla języka programowania Python.

^{*} Kod programu znajduje się w pliku projektPUMA.py

2.4 Podział etykiety quality:

W zbiorze danych użytym w projekcie daną wyjściową jest ocena jakości wina w skali 0-10 (0 - bardzo słabe) (10 - bardzo dobre). Aby poprawić jakość klasyfikacji dane zostały poddane obróbce wstępnej w wyniku której została im przydzielona nowa klasa, odpowiednio:

- $0 6 \rightarrow \text{"low quality"}$
- 7 8 \rightarrow "medium quality"
- 9 10 \rightarrow "high quality"

Poprawiło to znacznie jakość klasyfikacji, jednocześnie nie zmieniając celu projektu, wina wciąż są oceniane jako dobre czy złe.

3. Opis metod

3.1 Metoda svm - Maszyna Wektorów wspierających (Support Vector Machine) ma na celu znalezienie takiej prostej(hiperpłaszczyzny separującej), która oddziela przykłady ze zbioru treningowego z maksymalnym marginesem.

Granice marginesu to hiperpłaszczyzny, które odpowiadają skrajnym przypadkiem ze zbioru treningowego. Oznacza to, że wszystkie przypadki z klasy +1 powinny spełniać warunek g(x) > 0 (bo są separowalne liniowo) oraz g(x) >= 1 (bo należą do klasy 1). Podobnie dla klasy -1. Przypadki, dla których zachodzi g(x) = 1 oraz g(x) = -1 to **wektory wspierające lub wektory nośne.**

Twardy margines - Wewnątrz twardego marginesu nie mogą się znaleźć przypadki z żadnej z tych klas!

Miękki margines - dopuszczamy pojawienie się błędów klasyfikacji.

Danie nie zawsze są liniowo separowalne, czasem trzeba je zmapować do innej przestrzeni stosując tzw **"kernel trick"**

Przykład zastosowania:

Parametry:

C - parametr regularyzacji służący do sterowania algorytmu im wyższa wartość tym mniejsza ilość błędów lecz mniejsza generalizacja

kernel - wybór jądra algorytmu np. "poly", "rbf".

gamma - współczynnik jądra dla rbf.

degree - Stopień wielomianowej funkcji jądra ("poly").

Metody znajdowania najlepszych parametrów:

GridSearchCV() - przeszukuje podane parametry jeden po drugim RandomizedSearchCV() - przeszukuje podane parametry losowo obie metody służą do znajdowania najlepszych parametrów pracy algorytmu.

Wzory:

$$\min_{w} \frac{\|w\|^2}{2} + C \sum_{i=1}^{m} \zeta_i,$$

gdzie:

$$y_i(w \cdot x_i + b) \ge 1 - \zeta_i$$

$$\zeta_i \geqslant 0$$
.

 ζ - zmienne osłabiające

Uwagi:

Do uczenia klasyfikowania do wszystkich klas użyliśmy parametrów:

```
parameters = {'kernel': ('linear', 'rbf'),
'C': [2 ** -2, 2 ** 2],
'gamma': [2 ** -2, 2 ** 2],
'degree': [1, 2, 3, 4]}
```

Do uczenia klasyfikowania do trzech klas użyliśmy parametrów:

Dodatkowo dla zbioru wina czerwonego użyliśmy poszerzonego zakresu C i gamma do [2**-4,2**4] ale nie przyniosło to lepszych wyników

W początkowej fazie projektu, doboru metod i parametrów, szukaliśmy najlepszych parametrów używając również metody poly. Zrezygnowaliśmy z tej metody ponieważ czas i możliwości obliczeniowe, którymi dysponowaliśmy były zbyt małe do wyszukiwania najlepszych parametrów uwzględniając również tą metodę, a wyniki jakie dawała były podobne do metody liniowej.

* Wszystkie wyniki dostępne w załącznikach opisanych na końcu dokumentacji

3.2 Drzewo decyzyjne:

Drzewo decyzyjne to nieparametryczna metoda uczenia maszynowego nadzorowanego stosowana do klasyfikacji i regresji. Jej celem stworzenie jest modelu przewidującego wartość docelową poprzez utworzenie reguł decyzyjnych na podstawie cech danej próbki.

Przykładowe drzewo:

opis:

- 1. Wiedza jest reprezentowana w postaci drzewa.
- 2. Węzły drzewa określają sposób podziału przestrzeni cech na obszary/klasy.
- 3. Liście drzewa określają klasę, do której należy klasyfikowany obiekt.
- 4. Proces klasyfikacji polega na przejściu od korzenia drzewa do liści.

3.3 Naiwny Klasyfikator Bayesowski:

Naiwny klasyfikator bayesowski - jest prostym probabilistycznym klasyfikatorem zakłada on wzajemną niezależność zmiennych niezależnych (naiwność). Nazywany też jako "model cech niezależnych". Model prawdopodobieństwa można wyprowadzić korzystając z twierdzenia Bayesa.

Twierdzenie bayesa:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)},$$

gdzie A i B są zdarzeniami oraz P(B) > 0, przy czym

 $P(A \mid B)$ oznacza prawdopodobieństwo warunkowe, tj. prawdopodobieństwo zajścia zdarzenia A, o ile zajdzie zdarzenie B.

P(B | A) oznacza prawdopodobieństwo zajścia zdarzenia B,o ile zajdzie zdarzenie A

Opis:

- 1. Twierdzenie Bayesa określa prawdopodobieństwa warunkowe dwóch zdarzeń warunkujących się wzajemnie.
- 2. Wyliczane prawdopodobieństwo to prawdopodobieństwo a posteriori.
- 3. Wnioskowanie bayesowskie polega na sekwencyjnym wykorzystaniu reguły Bayesa.
- 4. Wnioskowanie bayesowskie pozwala na aktualizację prawdopodobieństw, które mogą służyć do aktualizacji prawdopodobieństw zajścia zdarzeń z nimi współzależnych
- **3.4 Regresja logistyczna** metoda do szacowania prawdopodobieństwa przynależności przykładu do określonej klasy. Jest to klasyfikator binarny czyli jeśli prawdopodobieństwo przekracza 50% to próbka należy do klasy pozytywnej i w odwrotnym przypadku do negatywnej

Funkcja logistyczna:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

3.5 Lasy Iosowe - metoda zespołowego uczenia maszynowego, która polega na konstruowaniu wielu drzew decyzyjnych w czasie uczenia i generowaniu klasy, która jest dominantą Losowe lasy decyzyjne poprawiają tendencję drzew decyzyjnych do nadmiernego dopasowywania się do zestawu treningowego.

4. Wyniki

wyniki dokładności klasyfikacji dla 10 klas wina czerwonego

	Decision Tree	gaussianNB	SVM	Random Forest	Logistic Regression
zb. treningowy	1.0	0.546023235031 2779	0.59159964253 79804	0.683646	0.589812
zb. testowy	0.57708333333 33333	0.547916666666 6667	0.60416666666 66666	0.652083	0.620833

wyniki dokładności klasyfikacji dla 10 klas wina białego

	Decision Tree	gaussianNB	SVM	Random Forest	Logistic Regression
zb. treningowy	1.0	0.458284714119 01983	0.99679113185 53092	0.580222	0.542299
zb. testowy	0.57278911564 62585	0.448979591836 7347	0.58503401360 54422	0.527211	0.521769

• wyniki dokładności klasyfikacji dla 3 klas wina czerwonego

	Decision Tree	gaussianNB	SVM	Random Forest	Logistic Regression
zb. treningowy	1.0	1.0	1.0	0.999106	0.993744
zb. testowy	0.99583333333 33333	1.0	1.0	0.989583	0.991667

wyniki dokładności klasyfikacji dla 3 klas wina białego

	Decision Tree	gaussianNB	SVM	Random Forest	Logistic Regression
zb. treningowy	1.0	0.999708284714 119	1.0	0.989790	1.000000
zb. testowy	1.0	0.999319727891 1564	1.0	0.987075	1.000000

• Wyniki accuracy vs alpha dla wina czerwonego i 10 klas

• Wyniki accuracy vs alpha dla wina białego 10 klas

• Wyniki accuracy vs alpha dla wina czerwonego i 3 klas

Wyniki accuracy vs alpha dla wina białego i 3 klas

wygląd drzewa dla wina czerwonego i 3 klas

wygląd drzewa dla wina białego i 3 klas

wygląd drzewa dla wina czerwonego i 10 klas

* Diagramy drzew dostępne w formacie SVG w załącznikach opisanych na końcu dokumentacji

5. Podsumowanie

Do sklasyfikowania jakości wina na podstawie jego składu użyliśmy pięciu metod z różnymi parametrami. Ze względu na nie równomierne rozproszenie danych (większość danych klasyfikowała się do środkowego zakresu) żadna z metod nie osiągnęła pożądanego przez nas efektu. Do klasyfikacji na 10 różnych jakości najlepsza okazała się metoda lasu losowego - dla wina czerwonego i metoda svm dla wina białego. Nie przekroczyły one ale dokładności 70% dla zbioru testowego. Wobec tego postanowiliśmy klasyfikować wina do 3 grup. Niskiej jakości, średniej i wysokiej jakości. Dla tak złagodzonych kryteriów, każda z pięciu testowanych metod osiągnęła dokładność powyżej 98% dla zbioru testowego. Wszystkie metody dawały porównywalne rezultaty na bardzo zadowalającym poziomie.

6. Załączniki

Dla klasyfikacji 3-jakościowej: acc_vs_apl_pjk_red_3.png dt red 3.txt gauss_red_3.txt pjk_red_3.txt svm red bigger range 3.txt tree.svg acc_vs_apl_pjk_white_3.png dt white 3.txt gauss_white_3.txt pjk_white_3.txt svm white bigger range 3.txt tree white.svg Dla klasyfikacji 10-jakościowej: acc_vs_alp_pjk_red.png dt_white.txt grid_search_svm_progress.txt svm red.txt tree.svg acc_vs_alp_pjk_white.png gauss_red.txt pjk_red.txt svm_red_bigger_range.txt tree white.svg dt_red.txt gauss_white.txt pjk_white.txt svm_white.txt

^{*} Załączniki zawierają wyniki klasyfikacji oraz progres uczenia (dla svm), wykresy, oraz diagramy.

^{**} Załączniki znajdują się odpowiednio w folderach Wyniki i Wyniki_Complex dla klasyfikacji 3-jakosściowej i 10-jakościowej