SAT Solving Sudoku

Aresh Pourkavoos

March 31, 2022

Sudoku is a puzzle game which consists of a 9×9 square grid, subdivided into 3×3 blocks and partially filled with the digits 1-9. The goal is to fill in the rest of the digits such that every row, column and block contains each digit exactly once. Sudoku is a well-studied problem, and there are many algorithms out there to solve it, from pencil-and-paper tricks used mostly by human players to trial-and-error methods used by computers, such as backtracking. However, I will focus on one particular approach: SAT solving.

SAT is short for "satisfiability," and a SAT solver is a program that checks whether a given statement is satisfiable. In this case, a statement is a logical proposition such as "P and Q", and a statement is satisfiable if there is some way to assign each variable (P and Q, in this case) to either true or false such that the entire statement is true. "P and Q," for example, is satisfiable: it has exactly one solution, where P and Q are both true. "P and not P," on the other hand, is not satisfiable, since for both possible values of P, the statement is false. A brute-force SAT solver would simply check every possible combination, of which there are 2^n , where n is the number of variables. However, there are much more optimized algorithms in use, making SAT solvers practical for huge formulas with thousands of variables or more.

However, it's not immediately obvious how Sudoku could be translated into a SAT problem: after all, each cell is filled with one of 9 possible digits, not one of 2 truth values. We can represent a choice of 9 by having 9 variables for each cell, one for each possible digit. But this creates another problem: out of the 512 possible assignments, only 9 are valid. We need to constrain these variables (in typical SAT solver fashion) to say that exactly one variable must be true. There are two parts to this problem: saying that at least one is true and saying that at most one is true. The former can be expressed as an or statment containing the given variables:

$$p_1 \vee p_2 \vee \ldots \vee p_n$$

The latter looks at all pairs of variables, saying that they can't both be true:

$$\neg (p_1 \land p_2) \land \ldots \land \neg (p_1 \land p_n) \land \neg (p_2 \land p_3) \land \ldots \land \neg (p_2 \land p_n) \land \ldots \land \neg (p_{n-1} \land p_n)$$

For n variables, there are $\binom{n}{2} = \frac{n(n-1)}{2}$ pairs. For a given Sudoku cell, where there are 9 variables, it takes $\binom{9}{2}$ of them to say that at most one variable may be true, and the or clause containing all 9 variables makes 37. Since there are 81 cells, it takes $37 \times 81 = 2997$ formulas just to say that every cell is filled with exactly one digit. To express the rest of the puzzle, similar constraints must be applied to other sets of 9 variables:

- Every row of cells contains every digit exactly once, i.e. for every row and digit, exactly 1 of the 9 variables that represent filling a cell within the given row with a given digit must be true.
- Every column contains every digit exactly once, i.e. for every column and digit, exactly 1 of the 9 variables that represent filling a cell within the given column with a given digit must be true.
- Every 3 × 3 block contains every digit exactly once, i.e. for every block and digit, exactly 1 of the 9 variables that represent filling a cell within the given block with a given digit must be true.

Each of these 3 items places constraints on 81 sets of 9 variables each, just like the requirement that every cell contains exactly one digit. Thus each one adds another 2997 formulas for a total of $2997 \times 4 = 11988$.

Strictly speaking, these variables and formulas are all that are necessary to define the constraints of a Sudoku puzzle formatted in the way described. But is it the only way, or even the best way? In SAT solving, a trick that is often used to speed up computation at the cost of increasing memory use is to introduce

auxiliary variables, which are defined to be equivalent to some expression of the original input. Among other things, their efficiency can come from reducing the number of formulas, as we will do with Sudoku.

At the moment, each set of 9 variables requires 37 formulas to say that exactly one of them must be true. We will lower that number to 24 by introducing 3 auxiliary variables to each set, each representing the fact that one of a set of 3 of the 9 is true. In other words, given p_1 through p_9 , we define

$$q_1 = p_1 \lor p_2 \lor p_3$$
$$q_2 = p_4 \lor p_5 \lor p_6$$
$$q_3 = p_7 \lor p_8 \lor p_9$$

i	Free vars	Aux vars	Formulas
1	3	0	3
2	9	3	24

At level i of the tree, there are $n = 3^i$ free variables, (n-3)/2 auxiliary variables (for a total of (3n-3)/2 variables), and (7n-15)/2 formulas.