Chapitre 10

DÉRIVATION

Capacités attendues

- Approcher une fonction au voisinage d'un point;
- Reconnaître que le nombre dérivée de la fonction en x_0 est le coefficient directeur de la tangente à cette courbe au point d'abscisse x_0 ;
- Reconnaitre les dérivées des fonctions de référence;
- Maitriser les techniques de calcul de la dérivée de fonctions;
- Déterminer une équation de la tangente à une courbe en un point et construire cette tangente;
- Déterminer la monotonie d'une fonction à partir de l'étude du signe de sa dérivée;
- Déterminer le signe d'une fonction à partir de son tableau de variation ou de sa courbe représentative;
- Résoudre des problèmes concernant des valeurs minimales et des valeurs maximales.
- Appliquer la dérivation dans le calcul de certaines limites.

1	O Dérivation • • • • • • • • • • • • • • • • • • •	2
	Nombre dérivé	3
	1 Définition	3
	2 Interprétation géométrique	3
	3 Approximation affine d'une fonction	4
Ш	Dérivabilité à droite; dérivabilité à gauche	5
	1 Définition	5
	2 Interprétation géométrique	6
Ш	Fonction dérivée	6
	1 Dérivabilité sur un intervalle	6
	2 Dérivées des fonctions usuelles	6
	3 Opérations sur les dérivées	9
	4 Composée	10
IV	Applications de la dérivation	11
	1 Calculs de limites	11
	2 Variations	11
		12
V	Dérivées successives	12
VI		13

Nombre dérivé

1 Définition

Définition Soit f une fonction définie sur un intervalle I. Le <u>taux de variation</u> $T_f(x_0, h)$ de f entre $x_0 \in I$ et $x_0 + h \in I$ est :

 $T_f(x_0, h) = \frac{f(x_0 + h) - f(x_0)}{h}.$

Si la limite, lorsque h tend vers 0, du taux de variation $T_f(x_0,h)$ existe, la fonction f est dite <u>dérivable</u> en x_0 . Cette limite est alors appelée le <u>nombre dérivé</u> $f'(x_0)$ de f en x_0 :

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Exemple Soit $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$.

Pour tout $x \in \mathbb{R}$ et $h \neq 0$, le taux de variation de f est :

 $T_f(x,h) = \frac{(x+h)^2 - x^2}{h} = \frac{2xh + h^2}{h} = 2x + h.$

La limite lorsque h tend vers 0 de $T_f(x,h)$ est f'(x) = 2x.

Application

Étudier la dérivabilité de la fonction f en a dans les cas suivants :

1
$$f(x) = 3x^2 + 2x - 1$$
; $a = \sqrt{2}$

3
$$f(x) = \sqrt{|x+3|}; \quad a = -3$$

2
$$f(x) = |x^2 - 2x|; a = 0$$

4
$$f(x) = x\sqrt{x}; \quad a = 0$$

Remarque: Les notations en physique

On notera fréquemment $\frac{df}{dx}(x_0)$ à la place de $f'(x_0)$.

2 Interprétation géométrique

Soit f une fonction définie sur I et dérivable en $x_0 \in I$. On note \mathcal{C} sa courbe représentative dans un repère orthonormé. On note M_0 le point de \mathcal{C} d'abscisse x_0 et M_h le point de \mathcal{C} d'abscisse $x_0 + h$. Le coefficient directeur de la sécante $S_h = (M_0 M_h)$ à la courbe \mathcal{C} est le taux de variation $T_f(x_0, h)$. Lorsque h tend vers 0, la position limite de M_h est celle du point M_0 et la position limite de la sécante S_h est la tangente T_{x_0} à \mathcal{C} au point d'abscisse x_0 . Le coefficient directeur de cette tangente est $f'(x_0)$, la limite des coefficients directeurs des sécantes.

Propriété

Soit f une fonction définie sur I et dérivable en $x_0 \in I$. On note C_f sa courbe représentative dans le plan muni d'un repère orthonormé $(O; \vec{\imath}, \vec{\jmath})$. La tangente à la courbe C au point d'abscisse x_0 est la droite T_{x_0} d'équation

$$y = f'(x_0)(x - x_0) + f(x_0).$$

En particulier, le coefficient directeur de cette tangente est le nombre $f'(x_0)$.

Application

Déterminer l'équation de la tangente à $\mathcal{P}: y = f(x)$ (où $f: x \mapsto x^2$) au point A(1,1).

Propriété

Si f non dérivable en x_0 mais $\lim_{x\to 0} \frac{f(x)-f(x_0)}{x-x_0} = \pm \infty$, C_f admet une (demi-)tangente verticale en x_0 .

Approximation affine d'une fonction

Soit f une fonction dérivable en a. Alors : $(\exists ! l \in \mathbb{R})$ $\lim_{h \to 0} \frac{f(h+a) - f(a)}{h} = l$

On pose : $u(h) = \frac{f(h+a) - f(a)}{h} - l$ Donc : f(h+a) = f(a) + lh + hu(h) et $\lim_{h \to 0} u(h) = 0$

Par suite, on peut négligé hu(h) lorsque h tend vers 0. Et on a l'approximation affine du nombre f(h+a) au voisinage de $0: f(h+a) \simeq f(a) + lh$.

Or h = x - a, alors: $f(x) \simeq f(a) + f'(a)(x - a)$

Définition

Soit *f* une fonction dérivable en *a*.

Si x est une approximation de a alors le nombre f(a) + (x - a)f'(a) est une approximation de f(x).

La fonction affine : $x \mapsto f(a) + (x-a)f'(a)$ s'appelle : **la fonction affine tangentielle de la fonction** f **en** a

Application

On considère les fonctions f et g définies par : $f(x) = x^2$ et $g(x) = \sqrt{x}$.

- **1** Étudier la dérivabilité de f et g en a = 1.
- **2** En déduire une approximation affine de f(1 + h) et et celle de g(1 + h) au voisinage de 0.
- **3** Donner une valeur approchée de $1,00578^2$ et celle de $\sqrt{1,00791}$

Application

Donner une valeur approchée de f(3,05) sachant que f(3) = 1 et f'(3) = 6.

- Dérivabilité à droite; dérivabilité à gauche
- 1 Définition

Définition

- Soit f une fonction définie sur un intervalle $[a; a + \alpha[$ tel que $\alpha > 0$ On dit que la fonction f est dérivable à droite en a s'il existe un réel l_1 tel que $\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = l_1$ le nombre l_1 s'appelle le nombre dérivé de f à droite en a il est noté $f'_d(a)$ et on $a: \lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = f'_d(a)$.
- Soit f une fonction définie sur un intervalle $]a-\alpha;a]$ tel que $\alpha>0$ On dit que la fonction f est dérivable à gauche en a s'il existe un réel l_2 tel que $\lim_{x\to a^+}\frac{f(x)-f(a)}{x-a}=l_2$ le nombre l_2 s'appelle le nombre dérivé de f à gauche en a il est noté $f_g'(a)$ et on $a:\lim_{x\to a^-}\frac{f(x)-f(a)}{x-a}=f_g'(a)$.

Propriété

Soient f une fonction définie sur un intervalle I et $a \in I$. f est dérivable en a si et seulement si elle est dérivable à droite en a, dérivable à gauche en a et $f_d'(a) = f_g'(a)$

Interprétation géométrique

Propriété

- Si la fonction f est dérivable à droite en a alors $\mathcal{C}_{\{}$ admet une **demi-tangente** (T_1) au point A(a, f(a)) définie par : $y = f'_d(a)(x a) + f(a)$ et $x \ge a$.
- Si la fonction f est dérivable à gauche en a alors $C_{\{}$ admet une **demi-tangente** (T_2) au point A(a, f(a)) définie par : $y = f_g'(a)(x a) + f(a)$ et $x \le a$.

Application

Étudier la dérivabilité de la fonction f à droite et à gauche en a puis interpréter géométriquement les résultats. f(x) = x|x-2| et a=2

Propriété

Définition

- Si $\lim_{x\to a^+} \frac{f(x)-f(a)}{x-a} = \pm \infty$ alors f n'es pas dérivable à droite en a et $\mathcal{C}_{\{}$ admet une demi-tangente verticale au point A(a,f(a))
- Si $\lim_{x\to a^{-}} \frac{f(x)-f(a)}{x-a} = \pm \infty$ alors f n'es pas dérivable à gauche en a et $\mathcal{C}_{\{}$ admet une demi-tangente verticale au point A(a, f(a))
- Fonction dérivée
- Dérivabilité sur un intervalle

Quand f admet un nombre dérivé en tout point $x \in I$, on dit que f est dérivable sur I. On définit alors la fonction dérivée, notée $f': \begin{matrix} I & \to & \mathbb{R} \\ x & \mapsto & f'(x) \end{matrix}$.

- Dérivées des fonctions usuelles
- 1 Activité : Soient a un réel et n un entier naturel.

On considère les fonctions : $f_1: x \mapsto a$; $f_2: x \mapsto ax$; $f_3: x \mapsto x^n$; $f_4: x \mapsto \cos x$; $f_5: x \mapsto \sin x$; $f_6: x \mapsto \tan x$.

- Montrer que les fonctions f_1 ; f_2 ; f_3 ; f_4 ; f_5 sont dérivables sur $\mathbb R$ et que leurs fonctions dérivées sont définies par : $f_1': x \mapsto 0$; $f_2': x \mapsto a$; $f_3': x \mapsto nx^{n-1}$; $f_4': x \mapsto -\sin x$; $f_5': x \mapsto \cos x$.
- Montrer que la fonction f_6 est dérivable sur tout intervalle inclue dans $D_{f_6} = \mathbb{R} \left\{ \frac{\pi}{2} + k\pi/k \in \mathbb{Z} \right\}$. que leur fonction dérivée est définie par : $f_6' : x \mapsto 1 + \tan^2 x$

Soient *m* , *p* et *k* des nombres réels et *n* un entier naturel. Pour tout réel *x* on a :

	I		
f(x)	f'(x)	Domaine de validité	Condition
k	0	$ m I\!R$	$k \in \mathbb{R}$
X	1	\mathbb{R}	
mx + p	m	$ m I\!R$	$m, p \in \mathbb{R}$
$\frac{1}{x}$	$-\frac{1}{x^2}$	$\mathbb{R}-\{0\}$	
x^n	nx^{n-1}	$\mathbb{R}: (n \ge 0); \ \mathbb{R} - \{0\}: (n < 0)$	$n \in \mathbb{Z} - \{0\}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$]0,+∞[
cos(x)	$-\sin(x)$	${\mathbb R}$	
sin(x)	$\cos(x)$	${\mathbb R}$	
tan(x)	$1 + \tan^2(x)$	$\mathbb{R} - \left\{ \frac{\pi}{2} + k\pi/k \in \mathbb{Z} \right\}$	

Soit
$$f$$
 la fonction affine définie par : $f: x \longmapsto mx + p$.
On a : $\lim_{h \to 0} \frac{f(a+h) + f(a)}{h} = \lim_{h \to 0} \frac{m(a+h) + p - ma - p}{h} = \lim_{h \to 0} m = m$.

Donc pour tout a de \mathbb{R} cette limite existe et finie.

D'où f est dérivable sur \mathbb{R} et sa fonction dérivée est $f': x \mapsto m$.

Démonstration

On considère la fonction $f: x \mapsto \frac{1}{x}$.

Quel que soit $a \neq 0$, $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{\frac{1}{a+h} - \frac{1}{a}}{h} = \lim_{h \to 0} \frac{-1}{a(a+h)} = -\frac{1}{a^2}$. Donc pour tout $a \neq 0$ cette limite existe et finie.

D'où f est dérivable sur \mathbb{R}^* et sa fonction dérivée est $f': x \mapsto -\frac{1}{x^2}$.

Démonstration

On considère la fonction $f: x \longmapsto \sqrt{x}$.

Quel que soit
$$a > 0$$
, $\lim_{h \to 0} \frac{f(a+h) + f(a)}{h} = \lim_{h \to 0} \frac{\sqrt{a+h} - \sqrt{a}}{h} = \lim_{h \to 0} \frac{1}{\sqrt{a+h} + \sqrt{a}}$.

D'après les opérations sur les limites on a : $\lim_{h\to 0} \sqrt{a+h} + \sqrt{a} = 2\sqrt{a}$ donc $\lim_{h\to 0} \frac{f(a+h) + f(a)}{h} = \frac{1}{2\sqrt{a}}$.

Donc pour tout a > 0 cette limite existe et finie.

D'où f est dérivable sur]0;+ ∞ [et sa fonction dérivée est $f': x \mapsto \frac{1}{2\sqrt{x}}$.

Démonstration

On considère la fonction $f: x \mapsto \cos(x)$.

Quel que soit
$$a \in \mathbb{R}$$
, $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{\cos(a+h) - \cos(a)}{h} = \lim_{h \to 0} \frac{-2\sin\left(\frac{2a+h}{2}\right) \times \sin\left(\frac{h}{2}\right)}{h} = \sin\left(\frac{h}{2}\right)$

$$-\lim_{h\to 0} \sin\left(\frac{2a+h}{2}\right) \times \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} = -\sin(a). \text{ Donc pour tout } a \in \mathbb{R} \text{ cette limite existe et finie.}$$

D'où f est dérivable sur \mathbb{R} et sa fonction dérivée est $f': x \mapsto -\sin(x)$.

Démonstration

On considère la fonction $f: x \mapsto \sin(x)$.

Quel que soit
$$a \in \mathbb{R}$$
, $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{\sin(a+h) - \sin(a)}{h} = \lim_{h \to 0} \frac{2\cos\left(\frac{2a+h}{2}\right) \times \sin\left(\frac{h}{2}\right)}{h} = \lim_{h \to 0} \frac{\sin(a+h) - \sin(a)}{h} = \lim_{h \to 0} \frac{\sin(a+$

$$\lim_{h\to 0} \cos\left(\frac{2a+h}{2}\right) \times \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} = \cos(a). \text{ Donc pour tout } a \in \mathbb{R} \text{ cette limite existe et finie.}$$

D'où f est dérivable sur \mathbb{R} et sa fonction dérivée est $f': x \mapsto \cos(x)$.

Démonstration

On considère la fonction $f: x \mapsto \sin(x)$.

Quel que soit
$$a \in \mathbb{R} - \left\{\frac{\pi}{2} + k\pi/k \in \mathbb{Z}\right\}$$
, $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{\tan(a+h) - \tan(a)}{h} = \lim_{h \to 0} \frac{\tan(h)(1 + \tan(a+h) \cdot \tan(a))}{h} = \lim_{h \to 0} (1 + \tan(a+h) \cdot \tan(a)) \times \frac{\tan(h)}{h} = 1 + \tan^2(a)$. Donc pour tout $a \in \mathbb{R} - \left\{\frac{\pi}{2} + k\pi/k \in \mathbb{Z}\right\}$ cette limite existe et finie.

D'où f est dérivable sur $a \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi/k \in \mathbb{Z} \right\}$ et sa fonction dérivée est $f': x \longmapsto 1 + \tan^2(x)$.

Remarque

- 1 La fonction racine carrée (comme la fonction valeur absolue), bien que définie en zéro, n'est pas dérivable en zéro. Cet exemple prouve que l'ensemble de dérivabilité n'est pas nécessairement égal à l'ensemble de définition.
- 2 Bien que la fonction racine carrée ne soit pas dérivable en zéro, sa courbe admet malgré tout une tangente au point d'abscisse 0.

Opérations sur les dérivées

Soient u et v deux fonctions dérivables sur un intervalle I et k un réel. Alors,

Fonction f Fonction dérivée f'		Domaine de validité	
u + v	u' + v'	I	
uv	u'v + v'u	I	
ku	ku'	I	
$\frac{u}{v} \qquad \qquad \frac{u'v - v'u}{v^2}$		tout $x \in I$ tel que $v(x) \neq 0$	
$\frac{1}{v}$	$\frac{-v'}{v^2}$	tout $x \in I$ tel que $v(x) \neq 0$	

Démonstration

$$\frac{(u+v)(a+h)-(u+v)(a)}{h} = \frac{u(a+h)+v(a+h)-u(a)-v(a)}{h} = \frac{u(a+h)-u(a)}{h} + \frac{v(a+h)-v(a)}{h}.$$

Soient u et v deux fonctions dérivables sur \mathcal{D} . $\frac{(u+v)(a+h)-(u+v)(a)}{h}=\frac{u(a+h)+v(a+h)-u(a)-v(a)}{h}=\frac{u(a+h)-u(a)}{h}+\frac{v(a+h)-v(a)}{h}.$ Posons $t_1(h)=\frac{u(a+h)-u(a)}{h}$ et $t_2(h)=\frac{v(a+h)-v(a)}{h}$. Comme u et v sont dérivables sur \mathcal{D} alors en tout point a de \mathcal{D} , $\lim_{h\to 0} t_1(h)=u'(a)$ et $\lim_{h\to 0} t_2(h)=v'(a)$. Il en résulte par opérations sur les limites que $\lim_{h\to 0} \frac{(u+v)(a+h)-(u+v)(a)}{h}=u'(a)+v'(a)$. Ceci est vrai pour tout a de \mathcal{D} .

Alors u + v est une fonction dérivable sur \mathcal{D} et : (u + v)' = u' + v'

Démonstration

Soient
$$u$$
 et v deux fonctions dérivables sur \mathcal{D} .
On a : $\frac{(uv)(a+h)-(uv)(a)}{h}=\frac{u(a+h)v(a+h)-u(a)v(a)}{h}=\frac{u(a+h)-u(a)}{h}v(a+h)+\frac{v(a+h)-v(a)}{h}u(a)$.
Donc, avec les notations de la démonstration précédente,

$$\frac{(uv)(a+h) - (uv)(a)}{h} = t_1(h)v(a+h) + t_2(h)u(a).$$

 $\frac{(uv)(a+h)-(uv)(a)}{h}=t_1(h)v(a+h)+t_2(h)u(a).$ Il reste à étudier la limite de cette expression lorsque h tend vers zéro :

Comme
$$t_2(h) = \frac{v(a+h) - v(a)}{h}$$
 alors $v(a+h) = ht_2(h) + v(a)$.

Mais v est dérivable sur \mathcal{D} alors en tout point a de \mathcal{D} , $\lim_{h\to 0} v(a+h) = v(a)$ Il en résulte, puisque u est aussi dérivable sur \mathcal{D} , qu'en tout point a de \mathcal{D} , $\lim_{h\to 0} \frac{(uv)(a+h)-(uv)(a)}{h} = u'(a)v(a)+u(a)v'(a)$.

Ceci est vrai pour tout a de \mathcal{D} d'où uv est une fonction dérivable sur \mathcal{D} et : (uv)' = u'v + uv'

Démonstration

Soient a un point de \mathcal{D} et v dérivable sur \mathcal{D} tel que $v(a) \neq 0$.

Donc $\lim v(a+h) = v(a)$.

$$\operatorname{Oonc}\lim_{h\to 0}v(a+h)=v(a)$$

Ainsi, les nombres v(a+h) et v(a) sont de plus en plus voisins lorsque h est de plus en plus voisin de zéro. Puisque $v(a) \neq 0$, les nombres v(a+h) sont aussi non nuls pour des valeurs de h très voisines de zéro. Ainsi le taux de variation de $\frac{1}{a}$ entre a+h et a est bien défini pour ces valeurs de h et:

$$t(h) = \frac{1}{h} \left[\frac{1}{v(a+h)} - \frac{1}{v(a)} \right] = -\frac{1}{v(a+h)v(a)} \left[\frac{v(a+h) - v(a)}{h} \right].$$

Comme v est dérivable sur \mathcal{D} , pour tout point a de \mathcal{D} , $\lim_{h\to 0} \frac{v(a+h)-v(a)}{h} = v'(a)$.

Il en résulte que $\lim_{h\to 0} t(h) = -\frac{1}{v(a)v(a)}v'(a) = -\frac{v'(a)}{(v(a))^2}$.

Et puisque ceci est vrai pour tout point a de \mathcal{D}

Alors $\frac{1}{v}$ est une fonction dérivable sur \mathcal{D} et : $\left(\frac{1}{v}\right)' = -\frac{v'}{v^2}$

Démonstration

Soient u et v deux fonctions dérivables sur \mathcal{D} .

Il suffit d'écrire $\frac{u}{v} = u \times \frac{1}{v}$ et d'appliquer les théorèmes de dérivation de l'inverse d'une fonction et d'un produit.

Composée

Théorèmes

Soit u une fonction dérivable sur un intervalle I et v une fonction dérivable sur u(I). Alors la fonction $v \circ u$ définie sur I par $v \circ u(x) = v(u(x))$ est dérivable sur I et, pour $x \in I : (v \circ u)'(x) = v'(u(x)) \times u'(x).$

Propriété

u une fonction dérivable sur I et $n \in \mathbb{Z}^*$. Alors, lorsque u^n définie :

$$(u^n)'(x) = nu'(x)u^{n-1}(x)$$

Propriété

Soit *u* une fonction dérivable sur *I*. Alors, pour *x* tel que u(x) > 0: $\left(\sqrt{u}\right)'(x) = \frac{u'(x)}{2\sqrt{u(x)}}$.

Application

10

Donner le domaine de définition, de dérivabilité, et le calcul de la dérivée de la fonction f dans les cas suivantes:

$$f(x) = \cos(3x + \pi)$$

$$\boxed{\mathbf{3}} f(x) = \sqrt{x^2 + x}$$

5
$$f(x) = \frac{3}{x}\sqrt{2x+1}$$

$$\boxed{\mathbf{4}} \ f(x) = \frac{2}{2x+3}$$

6
$$f(x) = \cos(2x) + \sin(x^2)$$

Applications de la dérivation

Calculs de limites

Méthode

Les limites de taux de variation que l'on a calculé permettent, en les réutilisant, de lever certaines formes indéterminées : lorsqu'on reconnaît le taux de variation d'une fonction f dérivable en x_0 , la limite en 0 de cet taux est $f'(x_0)$.

Application

Déterminer les limites suivantes en admettant la dérivabilité des fonctions sin et cos :

$$\lim_{x \to 0} \frac{\sin(x)}{x}$$

$$\lim_{x\to 0} \frac{\cos(x)-1}{x}$$

Variations

On peut obtenir le sens de variation d'une fonction f, dérivable sur un intervalle I:

- soit à partir d'une somme de fonctions de même sens de variation;
- soit à partir de composées de fonctions;
- soit en utilisant le théorème fondamental suivant (admis) :

Théorème Soit *f* une fonction dérivable sur un intervalle *I*.

- 1 f est constante sur I si et seulement si f' = 0 sur I.
- 2 f est croissante (resp. décroissante) sur I si et seulement si $f' \ge 0$ (resp. $f' \le 0$) sur I.
- **3** *f* est strictement croissante (resp. strictement décroissante) sur *I* si et seulement si f' > 0 (resp. f' < 0) sur I sauf en des points isolés où elle s'annule.

Application

Montrer que pour $x \in \mathbb{R}^+$, $\sin(x) \le x$, en considérant connue la dérivée de sin.

Extremum local

Le résultat suivant donne une condition nécessaire pour que f ait un extremum local en x_0 :

Théorème

Soit f une fonction dérivable sur un intervalle I.

Si f admet un extremum local en $x_0 \in I$ tel que x_0 ne soit pas une des extrémité de I alors $f'(x_0) = 0$.

Le résultat suivant donne une condition suffisante pour que f ait un extremum local en x_0 :

Soit f une fonction dérivable sur un intervalle I et x_0 un point intérieur à I. Si f' s'annule en x_0 en changeant de signe alors f a un extremum local en x_0 .

Application

1 $f: x \mapsto x^3$ admet-elle un extremum en 0?

2 $f: x \mapsto \frac{ax^2 + x - 1}{2x - 3}$. Comment choisir *a* pour que *f* admette un maximum en x = 1?

 $|\mathbf{3}|$ Étudier la monotonie et les extremums, s'ils existent, de la fonction f dans les cas suivants :

a.
$$f(x) = x^2 + 2x - 1$$

c.
$$f(x) = (2x - 3)\sqrt{x}$$

e.
$$f(x) = x + \sqrt{x^2 - 1}$$

b.
$$f(x) = \frac{x^2 - 3x + 2}{x^2 + 2x + 1}$$
 d. $f(x) = \frac{\sqrt{x}}{x - 1}$

d.
$$f(x) = \frac{\sqrt{x}}{x-1}$$

f.
$$f(x) = \sqrt{x^3 - 3x + 2}$$

Dérivées successives

Soit f une fonction dérivable sur un intervalle I. Si f' est aussi dérivable sur I, on dit que *f* est deux fois dérivable sur *I* et on note :

$$(f')' = f'' = f^{(2)}.$$

Si pour tout $n \in \mathbb{N}^*$, $f^{(n)}$ est dérivable sur I, alors f infiniment dérivable sur I et on a : $(f^{(n)})' = f^{(n+1)}.$

Application

Trouver l'expression de la dérivée $n^{\hat{i}\hat{e}me}$ des fonctions suivantes, en fonction de n (on admettra que ces fonctions sont infiniment dérivables) :

$$\boxed{\mathbf{1}} \quad f: x \mapsto x^n, \text{ où } n \in \mathbb{N}^*.$$

$$\boxed{\mathbf{2}} \ f: x \mapsto \cos(x)$$

VI

Équation différentielle : " $y'' + \omega^2 y = 0$

Définition

Soit w un nombre réel. l'égalité $y'' + w^2y = 0$ s'appelle une équation différentielle dont l'inconnue est la fonction y et y'' est la dérivée seconde de y.

Remarque

L'écriture : $y'' + w^2y = 0$ veut dire : $(\forall x \in \mathbb{R}), \ y''(x) + w^2y(x) = 0$

Propriété

Soit w un nombre réel non nul. Les solutions de l'équation différentielle : $y'' + w^2y = 0$ sont les fonctions définies dans \mathbb{R} par : $f(x) = a\cos(wx) + b\sin(wx)$ tel que : $(a,b) \in \mathbb{R}$. La fonction f s'appelle **la solution générale** de l'équation différentielle .

Propriété

Soient x_0 , y_0 et z_0 des nombres réels .

l'équation différentielle : $y'' + w^2y = 0$ admet une et unique solution f vérifiant les deux conditions : $f(x_0) = y_0$ et $f'(x_0) = z_0$.

Application

On considère l'équation différentielle (E): y'' + y = 0.

- \blacksquare Déterminer la solution générale de l'équation (E).
- **2** Déterminer la solution particulière F vérifiant : $F(\frac{\pi}{4}) = \frac{3\sqrt{2}}{2}$ et $F'(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$