工科数学分析期末试题(A卷)

班级	学号	姓名
----	----	----

(本试卷共6页, 九个大题)

题号	_	11	111	四	五.	六	七	八	九	总分	
得分											
签名											

- 一. 填空题 (每小题 4 分, 共 28 分)
- 2. 已知圆的方程 $\begin{cases} x^2 + y^2 + z^2 = 10z \\ x + 2y + 2z = 19 \end{cases}$,则圆心坐标为_____,圆的半径为r =_____。
- 3. 设 f(x,y) 具有一阶连续偏导数, $f(x_0,y_0) = 0$,又在 (x_0,y_0) 处 $\frac{dy}{dx} = \frac{1}{2}$,且 $f'_y = \sqrt{5}$,则 $f'_x = \underline{\hspace{1cm}}$,曲线 f(x,y) = 0 在 (x_0,y_0) 处指向 x 增大方向的单位法向量 $\vec{n} = \underline{\hspace{1cm}}$ 。
- 4. $\frac{1}{x+3}$ 与 $\ln(x+3)$ 关于 x-1 泰勒级数展开式分别为: $\frac{1}{x+3} = \frac{1}{x+3} = \frac{1}{$

- 7. 设 $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ 是 $f(x) = \begin{cases} x+1 & 0 \le x \le \pi \\ x-1 & -\pi < x < 0 \end{cases}$ 在 $[-\pi, \pi]$ 上的傅里叶级数展开式,此级数的和函数为S(x),则 $a_2 = \underline{\qquad}$, $b_3 = \underline{\qquad}$, $S(\pi) = \underline{\qquad}$, $S(\frac{5\pi}{2}) = \underline{\qquad}$ 。

- 二. (9 分) 设 L: $y = \ln x$ ($\sqrt{3} \le x \le \sqrt{15}$) 的线密度为常数 μ , 求 L 关于 y 轴的转动惯量。
- 三. (9 分) 设区域 $V: |x| + |y| + |z| \le 1$, 计算积分 $I = \iiint_V (x^2 + 2y^2 + 3z^2 + x^2y^2 \sin z^3) dV$ 。
- 四. (9 分) 求函数 $z = x^2 + 2y^2 y + 5$ 在区域 $D: x^2 + y^2 \le 1$ 上的最大值和最小值。
- 五. (9 分) 已知当x > 0, y > 0时, $\frac{3y x}{(x + y)^{\lambda}} dx + \frac{y 3x}{(x + y)^{\lambda}} dy$ 是二元函数u(x, y) 的全微分, 求 λ 的值,并求 u(x, y) 的函数表达式。
- 六. (9 分) 求幂级数 $\sum_{n=1}^{\infty} \frac{1}{n} (\frac{x+2}{3})^{n+1}$ 的收敛域及和函数。
- 七. (9 分)曲面 $z = 4 x^2 y^2$ 将球体 $x^2 + y^2 + z^2 \le 4z$ 分成两部分,求这两部分体积之比。
- 八. (9 分) 设 $I = \iint_S (x^3 \cos \alpha + y^3 \cos \beta + z^3 \cos \gamma) dS$,其中 $S : z = -\sqrt{x^2 + y^2}$ ($-1 \le z \le 0$),

且 $\cos \gamma > 0$ 。(1)将 I 化成第二类曲面积分; (2)利用高斯公式计算 I 的值。

九 . (9 分) 设函数 f(x)满足条件 $a \le f(x) \le b$,且对 $\forall x, y \in [a,b]$,有 $|f(x) - f(y)| \le k|x - y|$,其中 k 是常数,且 0 < k < 1。取 $x_0 \in [a,b]$,令 $u_1 = f(x_0)$,

$$u_{n+1} = f(u_n)$$
, $n = 1, 2, \cdots$ 。证明: (1)级数 $\sum_{n=1}^{\infty} (u_{n+1} - u_n)$ 绝对收敛; (2) $\lim_{n \to \infty} u_n$ 存在。