

UNIDAD I: ESPACIOS VECTORIALES Y TRANSFORMACIONES LINEALES SESIÓN 04: COMBINACIÓN LINEAL – BASES Y DIMENSION

Complete las siguientes oraciones, según corresponda:			
		El vector (a,b) es combinación lineal de (m,n) y (p,q), si existen	
	b)	, tal que cumplen:	
	c)	escalares Para determinar si dos vectores son LD , se debe multiplicar a cada vector por un, luego sumarlos e igualarlo, serán LD si dichos	
	d)	escalares Un conjunto de vectores "x" es base de un espacio vectorial si "x" es y	
2.	Detern	nine la veracidad (V) o falsedad (F) de las siguientes proposiciones.	
	a) El v	vector (1,2) es combinación lineal de $K = \{(2,3), (-1,5)\}.$	
	b) Elv	vector (2,1) no es combinación lineal de $K = \{(-3,4), (6,-8)\}.$	
	c) Si l	os vectores (a,b) y (c,d) son LD, entonces dichos vectores son paralelos ()	
	d) Pa	ra determinar que dos vectores son LI, los escalares planteados en la combinación lineal	
	de	dichos vectores, deben tener como único conjunto solución los valores de cero ()	
3.	Determine si los siguientes conjuntos de vectores son linealmente independientes (LI) o linealmente dependientes (LD).		
	a) {(-	$-2,8),(-5,-2)$ } en \mathbb{R}^2	
	b) {(-	$-6,9),(2,-3)$ } en \mathbb{R}^2	
	c) {(2	$(2,6),(5,15)$ en \mathbb{R}^2	
		$(5-,9),(2,-3)$ en \mathbb{R}^2	

NIVEL II:

4. Dadas las siguientes matrices de $M_{2\times 2}$: $A=\begin{bmatrix}2&-2\\2&1\end{bmatrix}$, $B=\begin{bmatrix}-1&3\\-2&0\end{bmatrix}$, $C=\begin{bmatrix}1&-2\\12&13\end{bmatrix}$, determine si es o no un conjunto linealmente independiente.

5. In P₂, determine si los polinomios: $x - 2x^2 + 6$, $x^2 - 4 + x$, $-7 + 8x^2$ son linealmente dependientes o linealmente independientes.

- 6. Determine si el conjunto dado de vectores genera el espacio vectorial dado.
- b) En $\mathbb{R}^3 : \begin{bmatrix} -1 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 5 \end{bmatrix}$
 - c) En $M_{22}:\begin{bmatrix} -1 & 0 \\ -1 & 2 \end{bmatrix}$, $\begin{bmatrix} -1 & 2 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix}$, $\begin{bmatrix} -2 & 5 \\ 3 & 0 \end{bmatrix}$
 - d) En P_2 : x^2+2 , x^2-2 , x+12

7. Determine analíticamente si los siguientes vectores son o no una base en el espacio indicado. Justifique su respuesta.

- a) $B = \{(-2,2), (3,-1)\}; \mathbb{R}^2$ b) $B = \{x^2 + x 1; 2x^2 3x + 2; x^2 x + 1\}; P_2$ c) $B = \{\begin{bmatrix} -1 & 3 \\ -4 & 4 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}\}; M_{2X2}$

N	I۷	EL	Ш	Ŀ

8. En un concurso de matemática básica para ingeniería se plantea las siguientes matrices:

$$A = \left\{ \begin{bmatrix} -6 \\ 4 \\ -2 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \\ 0 \end{bmatrix} \right\}, B = \left\{ \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 7 \end{bmatrix} \right\} \text{ y se desea verificar si son LI o LD. Guísela}$$

afirma que A es LI y B es LD, pero Carmen indica que ambos son LI ¿Cuál de los dos tiene la razón?

9.	En una exposición sobre el tema de bases, uno de los estudiantes en su explicación, afirma que la			
	"H" es base de los polinomios de grado2, donde $H = \{2t^2 - t + 1, t^2 + 3t, 3t^2 + 2t - 1\}$. ¿Está			
	usted de acuerdo con su afirmación? Justifique su respuesta.			

10. Abel es un ingeniero agrónomo que va iniciar un trabajo en un terreno representado por el plano π : 3x-2y3z = 0. Si necesita previamente encontrar una base para el conjunto de vectores que se encuentra en el plano π . ¿Cuáles serán los vectores que forman la base encontrada por Abel?

Referencias Bibliográficas

N°	CÓDIGO	AUTOR	TITULO	AÑO	
	512.5 POOL	POOLE, DAVID	Algebra Lineal: una introducción		
1			moderna	Cengage Learning	
2	512.5 GROS 2012	GROSMAN, STANLEY I.	Algebra Lineal	2008, sexta edición.	