FEBS 12347 Volume 321, number 1, 93-97 © 1993 Federation of European Biochemical Societies 00145793/93/\$6.00

Cloning, expression and characterization of human kiningen domain 3

Ennes A. Auerswalda, Dieter Rösslera, Rainer Mentelea and Irmgard Assfalg-Machleidtb

*Abteilung für Klinische Chemie und Klinische Biochemte in der Chirurgischen Klinik und Poliklinik, Klinikum Innenstadt, Ludwig-Maximilians-Universität München, Germany and Institut für Physiologische Chemie, Physikalische Biochemie und Zellbiologie der Ludwig-Maximilians-Universität München, Germany

Received 3 March 1993

The internal domain 3 of the heavy chain of human kininogen, a cysteine proteinase inhibitor, was amplified by a polymerase chain reaction from the kininogen cDNA clone phKG36. The DNA fragment was expressed in Escherichia coli using the ompA expression vector pASK40 and the resulting protein was isolated from periplasm, purified by S-carboxymethylpapain affinity- and ion-exchange chromatography. The recombinant human kiningen domain 3 is 92% pure, reacts with anti-kiningen antibodies and is actively inhibitory. The expected amino acid sequence of ANSM-[G253-S377] kiningen was confirmed; the inhibitor has a molecular mass of 14,396 Da and an isoelectric point of 6.0 (pH). The determined K, values of the complexes with papain and cathepsin L are similar to those measured previously with proteolytically liberated kininogen domain 3, and those of single-domain cystatins, like chicken egg white cystatin. However, recombinant kininogen domain 3 is a weak inhibitor of cathepsin B ($K_i = 63 \text{ nM}$) as it has been found for native L-kiningen ($K_i = 340 \text{ nM}$).

Kininogen; Human; Cysteine proteinase inhibitor; Cystatin; Periplasmic expression; E. coli

1. INTRODUCTION

The kininogens are well studied multifunctional glycoproteins [1-3]. In human plasma two forms are present, H-kininogen (high molecular weight or HK) and L-kiningen (low molecular weight or LK). From both kiningen species kinins can be liberated by limited proteolysis by kallikreins [4]. Kininogens are known to be involved in the inflammatory process, including activation of the intrinsic clotting cascade. More recently it was shown that they may also regulate the activity of cysteine proteinases such as cathepsin B, H and L, as well as calpain I and II [5-9].

H-Kininogen and L-kininogen are single-chain plasma glycoproteins each composed of an N-terminal heavy chain, the kinin segment and a C-terminal light chain. The heavy chains and the kinin segments of both kiningens have identical amino acid sequences. This part of the kiningen structure can be subdivided into 4 domains, the cystatin-like domains, D1, D2 and D3, and the kinin segment, D4. The light chains of both kiningens differ remarkably; they can be subdivided into domain D5 (LK) and D5, D6 (HK), respectively [3,10-12].

Correspondence address: E.A. Auerswald, Abteilung für Klinische Chemie und Klinische Biochemie, Klinikum Innenstadt, Ludwig-Maximilians-Universität München, Nussbaumstr. 20, D-8000 München 2, Germany. Fax: (49) (89) 5160 4735.

Abbreviations: rKD3, recombinant human kininggen domain 3 (ANSM-[G253-S377] kininogen); PCR, polymerase chain reaction; IPTG, isopropyl-β-D-thiogalactoside.

In vitro different cleavage products of kiningens were liberated by limited proteolysis and analysed [12,13]. Salvesen et al. [12] showed that domains D2 and D3 are potent inhibitors of papain and cathepsin L, domain D2 is also an inhibitor of chicken calpain, whereas domain D1 is not actively inhibitory against any of the proteinases tested so far. Recent studies of Schmaier and co-workers with fragments produced by proteolytic cleavage in vitro indicate that domain D3 contains a cell binding region for platelets, and, in addition, another region which inhibits thrombin binding and thus activation of platelets [14].

Detailed structural and functional studies with single domains of the kininogens are limited by the quantity, purity and structural homogeneity of the available starting material. Hence, defined recombinant kininogen domains would offer an interesting alternative as compared to fragments liberated from natural kininogens, which are frequently truncated, or to synthetic peptide fragments of the domains. Furthermore, variants of recombinant domains can be used to analyze structurefunction relationships.

Here we report the design, cloning, expression, purification and biochemical characterization of a recombinant unglycosylated kininogen domain 3 (rKD3).

2. MATERIALS AND METHODS

2.1. Materials and general methods

Chemical reagents and materials for molecular biology, protein chemistry and biochemistry studies were purchased from Merck, Sigma, Boehringer, New England, Biolabs, Applied Biosystems, Bachem. Oligonucleotide primers were synthesized in the laboratory of Prof. H. Wolf, Max von Pettenkofer Institut, München; the cDNA clone phKG36 was kindly supplied by S. Nakanishi, Kyoto. The polymerase chain reactions (PCRs) were accomplished using equipment from Perkin-Elmer. The standard techniques of molecular cloning were performed as described elsewhere [15].

2.2. PCR and, molecular cloning

The EcoRI-linearized cDNA clone, pHKG36 [10], was used as a template for PCR with the primers al: GGGAATTCCA TGGGGAAGGA TTTTGTACAA CCACCTACC containing an EcoR1 and a NcoI site; and b1: GAGGATCCGT CGACTTACTA TGAGATCATT CCCAGTGGTT GACA containing a BamHI, a Sall site and two stop codons. The PCR was carried out according to a standard procedure [16]. The fragments were precipitated with ethanol, digested with EcoRI and Sall, purified on a low melting-point agarose gel (2% NuSieve, SeaKem) and isolated using the kit of Genclean (Genclean; Bio 101). About 60 fmol of the expression unit were ligated with 6 fmol of the appropriately prepared pASK40 DNA [17]. Competent E. coli JM 83 cells (ara, A(lac-proAB), rpsL, phi80, lacZdM15) were transformed. Transformants were selected after restriction analysis and DNA sequencing (Pharmacia, T7 sequencing kit) of plasmid DNA. Expression was analysed after SDS/PAGE of total E. coli proteins.

2.3. Expression, fermentation and isolation

The selected E. coli strain 1263 (harbouring the vector pDR13.1.1) was grown at 33°C in $2 \times YT$ media (200 μg ampicillin/ml), induced with 1 mM IPTG at OD₅₅₀ of approx. 0.8 for about 5-7 h either in shaker flasks or in a BioStat E fermenter with an ES-10 culture vessel (Braun-Diessel Biotech) at 20°C, 550 rpm, pH 7.4, aeration 5 standard Umin and foam control. Cells were harvested by centrifugation (Sorvall RC3B, 5000 rpm, 15 min at 8°C) and the recombinant protein was isolated from periplasma [18]. Cells were resuspended at 0°C for 4 min in 20% w/v sucrose, 0.2 M Tris-HCl, pH 8.0, 0,1 M EDTA, centrifuged at 6,000 × g and the supernatant was filtrated through a Filtron minisette omega $0.16 \, \mu \mathrm{m}$ membrane. The recombinant material of this periplasmic fraction was purified by S-carboxymethylpapain affinity chromatography [18] followed by ion-exchange chromatography on Fractogel EMD-TMAE 650S, Merck, loaded with 25 mM bisTris-HCl, pH 6.0 and eluted with a pH gradient from 6.0 to 4.8 [20] on a BioPilot system from Pharmacia.

2.4. Protein characterisation

The amount of protein was quantified by A_{280} determination using A_{280} 1% = 1 ng/nl and by the Bradford assay from Bio-Rad.

SDS-PAGE was performed on 10–20% polyacrylamide gels according to Laemmli [21] and gels were stained with Coomassie blue or silver. Polyclonal and monoclonal antibodies (anti-kininogen IgG, AS 165 and HKH 11, kindly provided by W. Müller-Esterl, Mainz) were used for immuno printing after Western blot analysis [22]. Purified proteins (2–3 nmol) and tryptic digests of them were resolved by HPLC on a reverse-phase column (100 RP-18, 5 μ m Licrochart, Merck) as described for AEF [S1 M M29I M89L] chicken cystatin [19]. Amino acid sequence analyis was done with a gas-phase sequencer 473 A (Applied Biosytems) following the instructions of the manufacturer.

2.5. Inhibiton assay and determination of kinetic constants

The papain inhibitory activity of the material was determined according to Barrett and Kirschke [23]. Kinetic constants for the interaction of rKD3 and human L-kininogen (Medor) with papain, actindin, human cathepsin B and human cathepsin L, were determined using materials and methods as described [19,24,25].

3. RESULTS AND DISCUSSION

3.1. Design and cloning of rKD3

In order to produce a biosynthetically stable and

Fig. 1. SDS-PAGE and corresponding immunoblot analysis (monoclonal antibody HKH11 directed against domain3 of HK) of *E. coli* proteins and isolation products. Lanes: M, low molecular mass marker (indicated in kDa); A, lysate of 6 h induced *E. coli* $(2 \times 10^8 \text{ cells})$; B, periplasmic fraction of 6 h induced *E. coli* $(3 \mu g)$; C, cluate from CM-papain Sepharose 4B $(2 \mu g)$ with ANSM [G253-S377] kininogen domain 3 (upper band) and truncated forms (lower bands); D, main fractions after anion-exchange chromatography $(2 \mu g)$.

functionally active protein domain from a cDNA of a multifunctional protein the appropriate segment has to be carefully selected. For the construction of a cDNA expression unit of the human kininogen domain D3 we considered the results available on limited proteolysis of kininogens [12,13], sequence alignment of cystatins [26], the exon-intron junctions of kininogen genes [11], and our experience in synthesis and expression of recombinant cystatin variants. Using primers al and bl, together with the cDNA phKG36, a DNA fragment was produced by PCR. The material was purified and ligated into pASK 40, a periplasmatic *E. coli* expression vector. The expected DNA sequence coding for ANSM

Fig. 2. Elution profile of rKD3 from Fractogel EMD-TMAE anionexchange chromatography; dotted lines, pH gradient (main fractions from number 38 to 48).

KLGQSLDCNAEVYVVPWEK

Fig. 3. Amino acid sequence of ANSM [G253-S377] kininogen. The sequenced N-terminal part and the sequenced regions of tryptic peptides (T) are underlined. Numbering with asteriks (*) is according to
the amino acid sequence in pHKG36 cDNA clone.

[G253-S377] kininogen was confirmed. The resulting photocor was named pDR 13.1.1. and used for transformation of E. coli JM 83.

3.2. Expression and isolation

The host strain, E. coli 1263 (JM 83 × pDR13.1.1.) expressed 2-4 mg rKD3 per 1, which is equivalent to 1-2% of total E. coli protein as judged by SDS-PAGE ~ (Fig. 1). Using a standard procedure for isolation of periplasmic proteins [17], the actively inhibitory material was found mainly in the buffer solution containing sucrose/EDTA before osmotic-shock treatment. The material was enriched by a factor of approx. 10 after this step (Fig. 1); contamination by other proteins is very low.

Recombinant chicken egg white cystatin, a molecule

quite similar to rKD3, was expressed in a 2-fold higher yield [19] and could be obtained mainly in the supernamentant after the osmotic-shock treatment. The kininogen domain D2, which is very similar to rKD3, was also constructed and cloned in parallel, but could not be expressed using the approaches for rKD3 and other cystatins [20]. At present we do not know the reason for this different expression and secretion behaviour of quite similar and functionally related molecules in E. coli.

3.3. Purification and protein analysis

The periplasmatic material was bound to a carboxymethyl-papain affinity column, developed with a pH shift from 6.5 to 11, and the cluant neutralized. The material thus obtained was about 80% pure. The major protein band migrated at the expected position of 15 kDa and showed a specific papain inhibitory activity of 10-40%. It was contaminated with minor additional protein fractions which were identified by reverse-phase HPLC analysis and isoelectric focussing (2 major and 3-4 minor bands with isoelectric points between 5.2 and 6.0 (data not shown)). N-Terminal amino acid sequence analysis revealed four distinct sequences; the expected sequence rKD3 (about 80%) as well as three minor sequences CVGC (12%), MGK (4%) and FVQ (3%), which represent N-terminally truncated forms of rKD3.

Using Fractactiveogel TMAE anion-exchange chromatography we could separate some of the truncated proteins (Fig. 2). The main fraction (Fig. 2) migrated as a single band in SDS-PAGE (Fig. 1), eluted as a sharp peak after HPLC and showed a single isoelectric point of 6.0 (data not shown). However, by Nterminal sequencing we found, as well as the correct rKD3 sequence (91%), three minor N-terminally shortened forms which could not be separated by ion-exchange chromatography. The results of a typical purification of rKD3 from E. coli are given in Table I. After immuno printing and Western blotting minor heterogeneous rKD3 expression products could be detected in E. coli lysates (data not shown). This may be explained by an inaccurate endoproteolytic cleavage by the signal peptidase which, however, has not been described for

Table I

Results of a typical purification of ANSM[G253-S377] kiningen from E. coli

Purification step	Volume	Total protein	Active material	Specific activity	Yield (%)	
	(ml)	(mg)	(mg)	(%)		
E. coli cell lysate	1,000	300	n.d.	n.d.		
Periplasmic fraction	200	12	1.2	10 .	100	
Cm-papain Sepharose 4B	7	2	0.8	40	66	
Fractogel TMAE main fractions	5	0.7	0.3	42	25	

Total protein was estimated with the Bradford assay (bovine serum albumin as standard); active material was calculated from papain inhibitory assays; yield is given as percentage of isolated active material; n.d. = not determined.

Table II

Inhibition constants (K_i) and rate constants (k_{on} and k_{off}) for the inhibition of cysteine proteinases by recombinant human kiningen domain 3

Inhibitor	Cathepsin L			Papain			Actinidin	Cathepsin B
	$k_{on} (M^{-1} \cdot s^{-1})$	k _{off} (s ⁻¹)	K _{ic} (nM)	$k_{oa} (M^{-1} \cdot s^{-1})$	k _{off} (s ⁻¹)	K _k (nM)	K _i (nM)	K _i (nM)
ANSM-rKD3 L-Kininogen cew cystatin	10.5×10^{7} 3.0×10^{7} 11.0×10^{7}	1.0×10^{-4} 1.1×10^{-4} 3.5×10^{-5}	0.0010 0.0035 0.0003	3.0×10^{7} 2.0×10^{7} 1.4×10^{7}	5.4×10^{-5} 6.4×10^{-5} 2.0×10^{-5}	0.0018 0.0032 0.0014	6 23 18	63.4 340 2.9

The corresponding data obtained with L-kininogen (determined in the same set of experiments) and natural chicken egg white cystatin (cew cystatin, from [24] are included for comparison. K_i of the complexes with cathepsin L and papain were calculated from the rate constants as $K_i = k_{off}/k_{oni}$. K_i for the interaction with actidinin and cathepsin B were determined in equilibrium inhibition experiments.

ompA up to now but has been shown for pho A expression systems or by other proteolytic enzymes present in the periplasm [27].

To confirm the primary structure of recombinant ANSM [G253-S377] kininogen, 13 out of 17 theoretically expected tryptic peptides were isolated and identified by partial sequencing. The first 36 amino acid residues of the intact protein were also shown by sequence analysis to be identical with the expected sequence. The internal peptides T8, T10, T11, and the C-terminal T13 peptide, were sequenced completely (Fig. 3). As expected, the recombinant *E. coli* protein is not glycosylated.

3.4. Characterization of inhibitory activity

Inhibitory activity measured by the papain inhibition assay was detected during all steps of the isolation procedure. The purified material contained about 40% actively inhibitory material if referred to protein concentration (Table I).

The complex dissociation constants (K_i) given in Table II show that rKD3 is a tight-binding inhibitor of papain and cathepsin L but a weak inhibitor of actinidin and cathepsin B. The inhibitory profile of rKD3 resembles that of chicken egg white cystatin with the exception of the 20-fold lower inhibition of cathepsin B by the kininggen domain. The inhibitory effect of rKD3 on papain and cathepsin L is comparable to that of proteolytic fragments of natural L-kininogen comprising domain 3 which have been described earlier [12,13]. Previously reported [13] higher K_i values (8-10 pM for the papain-domain 3 complex) may be explained by the fact that equilibrium had not been achieved in those experiments. The weak inhibition of cathepsin B $(K_i = 340)$ nM) is a characteristic feature of L-kininogen [28]. Until now no quantitative data had been available on the inhibition of cathepsin B by individual kininogen domains. Our results with rKD3 indicate that domain 3 itself has a low affinity for cathepsin B $(K_i = 63 \text{ nM})$. The K_i of 340 nM for the inhibition of cathepsin B by native L-kininogen (based on the actively inhibitory concentration obtained by titration with papain) suggests that the affinity of domain 2 for cathepsin B could be even lower than that of domain 3 and might be negligible in the presence of domain 3 under equilibrium conditions. However, as the binding stoichiometry of cathepsin B to human L-kininogen is not precisely known, the observed low affinity of complete L-kininogen for cathepsin B may also be due to mutual steric hindrance of two enzyme molecules on binding to the two adjacent domain.

Acknowledgements: We thank S. Nakanishi for the cDNA clone phKG36; A. Skerra for the vector pASK 40; S. Modrow for oligonucleotide synthesis; V. Turk and W. Müller-Esterl for polyclonal and monoclonal antibodies as well as for stimulating discussions; F. Lottspeich for patronage of the amino acid sequencing; H. Fritz and W. Machleidt for critical reading of the manuscript and for their helpful suggestions. This work was supported by the Bundesministerium für Forschung und Technologie, BEO 21-0319208A.

REFERENCES

- [1] Jacobsen, S. (1966) Nature 210, 98-99.
- [2] Kato, H., Nagasawa, S. and Iwanaga, S. (1981) Methods Enzymol. 80, 172-198.
- [3] Müller-Esterl, W., Iwanaga, S. and Nakanishi, S. (1986) Trends Biochem. Sci. 11, 336-339.
- [4] Ryan, G.B. and Majno, G. (1977) Am. J. Pathol. 68, 185-276.
- [5] Matheson, R.T., Miler, D.R., Lacombe, M.J., Han, Y.N., Iwanaga, S., Kato, H. and Wuepper, K.D. (1976) J. Clin. Invest. 58, 1395-1406.
- [6] Ohkubo, I., Kurachi, K., Takasawa, T., Shiokawa, H. and Sasaki, M. (1984) Biochemistry 23, 5691-5697.
- [7] Sueyoshi, T., Enjyoji, K., Shimada, T., Kato, H., Iwanaga, S., Bando, Y., Kominami, E. and Katunuma, N. (1985) FEBS Lett. 182, 193-195.
- [8] Müller-Esterl, W., Fritz, H., Machleidt, W., Ritonja, A., Brzin, J., Kotnik, M., Turk, V., Kellermann, J. and Lottspeich, F. (1985) FEBS Lett. 182, 310-314.
- [9] Higashiyama, S., Ohkubo, I., Ishiguro, H., Kunimatsu, M., Sawaki, K. and Sasaki, M. (1986) Biochemistry 25, 1669-1675.
- [10] Takagaki, Y., Kitamura, N. and Nakanishi, S. (1985) J. Biol. Chem. 260, 8601–8609.
- [11] Kitamura, N., Kitagawa, H., Fukushima, D., Takagaki, Y., Miyata, T. and Nakanishi, S. (1985) J. Biol. Chem. 260, 8610-8617.
- [12] Salvesen, G., Parkes, C., Abrahamson, M., Grubb, A. and Barret, A. (1986) Biochem. J. 234, 429-434.

- [13] Vogel, R., Assfalg-Machleidt, I., Esterl, A., Machleidt, W. and Müller-Esterl, W. (1988) J. Biol. Chem. 263, 12661-12668.
- [14] Jiang, Y., Müller-Esterl, W. and Schmaier, A.H. (1992) J. Biol. Chem. 267, 3712-3717
- [15] Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, vol. 1, 2nd edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- [16] Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.H., Higuchi, R., orn, R.T., Mullis, K.B. and Ehrlich, H.A. (1988) Science 239, 487-491.
- [17] Skerra, A., Pfitzinger, I. and Plückthun, A. (1991) Bio/Tecnology 9, 273-278.
- [18] Dalböge, H., Bech-Jensen, E., Tottrup, H., Grubb, A., Abrahamson, M., Olafsson, I. and Carlsen, S. (1989) Gene 79, 325-332.
- [19] Auerswald, E.A., Genenger, G., Mentele, R., Lenzen, S., Assfalg-Machleidt, I., Mitschang, L., Oschkinat, H. and Fritz, H. (1991) Eur. J. Biochem. 200, 132-138.
- [20] Rössler, D. (1993) Ph.D. Thesis, Technical University.
- [21] Laemmli, U.K. (1970) Nature 227, 680-685.

- [22] Kyhse-Andersen, J. (1984) J. Biochem. Biophys. Methods 10, 203-209.
- [23] Barrett, A., J. and Kirschke, H. (1981) Methods Enzymol. 80, 535-561.
- [24] Auerswald, E. A., Genenger, G., Assfalg-Machleidt, J., Machleidt, W., Engh, R.A. and Fritz, H. (1992) Eur. J. Biochem. 209, 837-845.
- [25] Machleidt, W., Assfalg-Machleidt, I. and Auserswald, E. A. (1993) in: Innovations on Proteases and Their Inhibitors (F.X. Avilés, ed.) Walter de Gruyter, in press.
- [26] Turk, V. and Bode, W. (1991) FEBS Lett. 285, 213-219.
- [27] Strauss, M., Stollwerk, J., Lenarcic, B., Turk, V., Jany, K.D. and Gassen, H.G. (1988) Biol. Chem. Hoppe-Seyler 369, 1019-1030.
- [28] Assfalg-Machleidt, I., Billing, A., Fröhlich, D., Nast-Kolb, D., Joka, Th., Jochum, M. and Machleidt, W. (1992) in: Recent Progress on Kinins, Agents and Actions Suppl. vol 38/I (H. Fritz, W. Müller-Esterl, M. Jochum, A. Roscher, K. Luppertz, eds.) pp. 312-321, Birkhäuser Verlag, Bäsel.