Formulas:

	Sample	Population	
Characteristic	Statistic	Parameter	
Mean	$ar{X} = rac{\sum X}{n}$	$\mu = \frac{\sum X}{N}$	
Variance	$s^2 = \frac{n \sum X^2 - (\sum X)^2}{n(n-1)}$	$\sigma^2 = rac{\sum (X-\mu)^2}{N}$	
Standard Deviation	$s = \sqrt{\frac{n \sum X^2 - (\sum X)^2}{n(n-1)}}$	$\sigma = \sqrt{rac{\sum (X-\mu)^2}{N}}$	
Coefficient of Variation (Cvar)	$CVar = \frac{s}{\bar{x}} \cdot 100$	$CVar = \frac{\sigma}{\mu} \cdot 100$	
Z-scores or Z-transform	$z = rac{x - ar{x}}{s}$	$z = \frac{x-\mu}{\sigma}$	
Z-scores or Z-transform by Central Limit Theorem		$z=rac{ar{X}-\mu}{\sigma/\sqrt{n}}$	

Characteristic	Formula
Weighted Mean	$\bar{X} = \frac{\sum wX}{\sum w}$
Interquartile range (IQR)	$IQR = Q_3 - Q_1$ $Q_1 - 1.5(IQR) \text{and } Q_3 + 1.5(IQR)$
Midrange	$MR = \frac{lowest.value + highest.value}{2} = \frac{L.v + H \cdot v}{2}$

Area Under the Normal Curve

-1s to +1s = 68.3% -2s to +2s = 95.4% -3s to +3s = 99.7%

Number of sample space N(S)	K^n $P(E) = \frac{n(E)}{n(S)} = \frac{\text{Number of desired outcomes}}{\text{Total number of possible outcomes}}$				
Classical probability					
Complementary events	1. $P(E) + P(\bar{E}) = 1$ 2. $P(\bar{E}) = 1 - P(E)$				
	3. $P(E) = 1 - P(\bar{E})$				
Empirical probability	$P(E) = \frac{f}{n} = \frac{\text{Frequency of desired class}}{\text{Sum of all frequencies}}$				
Addition rules of probability	1. $P(A \text{ or } B) = P(A) + P(B)$ 2. $P(A \text{ or } B) = P(A) + P(B) - P(A \cap B)$ 1. $P(A \text{ and } B) = P(A) \cdot P(B)$ 2. $P(A \text{ and } B) = P(A) \cdot P(B \mid A)$				
Multiplication rules of probability					
Conditional probability	1. $P(B \mid A) = \frac{P(A \cap B)}{P(A)}$ 2. $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$				
Probabilities for (At Least)	$P(E) = 1 - P(\bar{E})$				
m Hies Sequence of n events	$k_1 \cdot k_2 \cdot k_3 \cdots k_n$				
Shift + Factorial	$n! = n(n-1)(n-2)\cdots 3\cdot 2\cdot 1$				
with Permutation nor	$0! = 1$ $ \int_{n}^{\mathbf{big}_{SeV}} \frac{\mathbf{p}_{in}}{\mathbf{p}_{r}} = \frac{n!}{(n-r)!} $				
Shift + hCr Combination No order	$_{n}C_{r}=rac{n!}{(n-r)!r!}$				
	Classical probability Complementary events Empirical probability Addition rules of probability Multiplication rules of probability Conditional probability Probabilities for (At Least) Probabilities for (At Least) Shift + Factorial Shift + Permutation Shift + Nor Combination				

Mean or expectation of discrete probability distributions	$E(X) = \mu = \sum X.P(X)$
Variance of discrete probability distributions	$\sigma^2 = \sum \left[X^2 \cdot P(X) \right] - \mu^2$
Standard Deviation (SD) of discrete probability distributions	$\sigma = \sqrt{\sum [X^2 \cdot P(X)] - \mu^2}$
	$P(X) = \frac{n!}{(n-X)!X!} \cdot p^X \cdot q^{n-X}$
The probability of Binomial distribution	or
	$P(X) = {}_{n}C_{x} \cdot p^{X} \cdot q^{n-X}$
Mean of Binomial distribution	$\mu = np$
Variance of Binomial distribution	$\sigma^2 = npq$
Standard Deviation (SD) of Binomial distribution	$\sigma = \sqrt{npq}$

Table E	The Sta	ndard Norm	al Distributi	on						
Cumulative Standard Normal Distribution										
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

For z values less than -3.49, use 0.0001.

Table I	(conti	inued)								
Cumulative Standard Normal Distribution										
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

For z values greater than 3.49, use 0.9999.

