RESEARCH FOCUS ISSN: 2181-3833

YUQORI TEZLIKDAGI MAGISTRALLARNING QISQA TUTASHUVLARDAN HIMOYA QILISH.

Abduhalilov Nurmirza Saydullo o'g'li.

OOO"OSIYO MAXSUS TEXSANOAT" injineri

https://doi.org/10.5281/zenodo.7018150

Annotatsiya: Ushbu maqola "Yuqori tezlikdagi magistrallarning qisqa tutashuvlardan himoya qilish "haqida. Ushbu maqolada qisqa tutashuvni himoya qilish to'g'risida bo'lib Yuqori tezlikdagi magistrallarning qisqa tutashishlarga olib keluvchi sabablarni shartli ravishda quyidagi ikkita guruhga ajratish mumkin: 1) tasodifiy xarakterdagi sabablar; 2) ekspluatastion xarakterdagi sabablar. Birinchi guruh sabablarga atmosfera va kommutatsion oʻta kuchlanishlar sababli kontakt tarmogʻi izolyatorlari ishdan chiqishi(«перекрытые»), tabiiy ofatlar oqibatida kontakt tarmogʻining kuchlanish ostida boʻlgan qismini uning erlangan qismiga tegib ketishi, kontakt tarmogʻi oʻta kuchlanishlarni chegaralovchilarini ishdan chiqishi

Kalit so'zlar: Yuqori tezlikdagi magistrallar, ekspluatastion xarakterdagi sabablar, iste'molchi, O'zgaruvchan tok temir yo'l uchastkasi ta'minlanish sxemasi va himoyasi, Releli himoya funksional sxema.

ЗАЩИТА ОТ КОРОТКОГО ЗАМЫКАНИЯ ВЫСОКОСКОРОСТНОЙ СЕТИ.

Аннотация: Статья посвящена теме «Защита высокоскоростных сетей от короткого замыкания». В статье речь идет о защите от коротких замыканий. Причины коротких замыканий на высокоскоростных магистралях условно можно разделить на следующие две группы: 1) случайные причины; 2) эксплуататорские причины. К причинам первой группы относятся пробой изоляторов контактной сети вследствие атмосферных и коммутационных перенапряжений, контакт токоведущей части контактной сети с ее заземленной частью в результате стихийных бедствий, выход из строя ограничителя перенапряжения контактной сети:

Ключевые слова: Высокоскоростные автомобильные дороги, эксплуатационные причины, потребитель, схема электроснабжения и защиты участка переменного тока, функциональная схема релейной защиты.

SHORT-CIRCUIT PROTECTION OF HIGH-SPEED MAINS.

Abstract: This article is about "Short-circuit protection of high-speed mains". This article is about short-circuit protection. The causes of high-speed highways that lead to short-circuits can be conditionally divided into the following two groups: 1) random causes; 2) exploitative reasons. The causes of the first group are breakdown of contact network insulators due to atmospheric and switching overvoltages, contact of the live part of the contact network with its grounded part as a result of natural disasters, contact network overvoltages delimiter failure:

Key words: High-speed highways, operational reasons, consumer, AC railway section supply scheme and protection, Relay protection functional scheme.

KIRISH

Yuqori tezlikdagi magistrallarning qisqa tutashishlar sabablari va oqibatlari.

Yuqori tezlikdagi magistrallarning qisqa tutashishlarga olib keluvchi sabablarni shartli ravishda quyidagi ikkita guruhga ajratish mumkin: 1) tasodifiy xarakterdagi sabablar; 2) ekspluatastion xarakterdagi sabablar. Birinchi guruh sabablarga atmosfera va kommutatsion oʻta kuchlanishlar sababli kontakt tarmogʻi izolyatorlari ishdan chiqishi(«перекрытые»), tabiiy ofatlar oqibatida kontakt tarmogʻining kuchlanish ostida boʻlgan qismini uning erlangan qismiga tegib ketishi, kontakt tarmogʻi oʻta kuchlanishlarni chegaralovchilarini ishdan chiqishi. Ikkinchi guruh

RESEARCH FOCUS ISSN: 2181-3833

sabablar koʻpchilikni tashkil etadi: ifloslanish va mexanik shikastlanish natijasida kontakt tarmogʻi izolyatorlarining elektr mustahkamligini yoʻqotishi, kontakt osmasi va elektrovoz tok qabul qilgichining notoʻgʻri rostlanishi natijasida ularning notoʻgʻri oʻzaro ta'sirlashishi, kontakt tarmogʻiga texnik xizmat koʻrsatuvchi personalning xato harakati, kontakt tarmogʻiga kran va boshqa mexanizmlarning tegishi va hokazo.

TADQIQOT MATERIALLARI VA METODOLOGIYASI

Katta qiymatli qisqa tutashish toklari ham, kichik qiymatli qisqa tutashish toklari ham xavfli. Katta qiymatli qisqa tutashish toklarida tortuvchi nimstansiya elektr qurilmalari katta elektrodinamik kuch ta'sirida boʻladi. Bu kuch ta'sirida transformator chulgʻamlari ularning oʻqi va radial yoʻnalishlar boʻylab siljishga olib keladi. Kichik qiymatli qisqa tutashish toklari kontakt simlaridan uzoq muddat davomida oʻtganda simlarni kuyishiga sababchi boʻladi.

Himoya qurilmalariga qoʻyiladigan tezkorlik, selektivlik va barqaror ishlash imkoniyati kabi asosiy talablarni oʻzgaruvchan tok tortish tarmoqlarida bajarilishi oʻziga xosligi bilan ajralib turadi. Bu oʻziga xoslik tortish elektr ta'minoti tizimining normal va avariya rejimlari, iste'molchi(elektrovoz)lar, tarmoqni ta'minlash sxemalari va qoʻllanilayotgan kommutatsion apparatlarning oʻziga xos xususiyatlari bilan izohlanadi.

Yuqori tezlikdagi magistrallarning qisqa tutashish toklaridan himoyalash tasnifi va himoyasiga qoʻyiladigan talablar.

Himoya qurilmalariga qoʻyiladigan tezkorlik, selektivlik va barqaror ishlash imkoniyati kabi asosiy talablarni oʻzgaruvchan tok tortish tarmoqlarida bajarilishi oʻziga xosligi bilan ajralib turadi. Bu oʻziga xoslik tortish elektr ta'minoti tizimining normal va avariya rejimlari, iste'molchi(elektrovoz)lar, tarmoqni ta'minlash sxemalari va qoʻllanilayotgan kommutatsion apparatlarning oʻziga xos xususiyatlari bilan izohlanadi.

Elektr energiyasi iste'molchilari boʻlgan elektr lokomotivlar tortish tarmogʻi boʻylab muntazam ravishda harakatda boʻladi. Kuchlanish manbaini ajratish va uni yana avtomatik qayta ulash lokomotiv kuch zanjirida kuchlanishning qoʻshimcha ortishi bilan kechadi. Bu holat tortuvchi motorlar kollektorida doiraviy shakldagi alangalanishga, poyezdning silkinishiga va hattoki undagi zanjirli asboblarning sinishiga sabab boʻlishi mumkin. Shuning uchun ham himoya qurilmalari ish sharoitini shunday tashkil etish lozimki, bunda ularning aybi bilan xato oʻchirishlar yuz bermasin.

Foydalanish jarayonida kontakt tarmogʻini ta'minlash sxemasi vaqtincha (ta'mirlash maqsadida uning bironta seksiyasi ajratilishi, seksiyalash postlarini taftish qilish maqsadida tizimdan ajratilishi, avariya natijasida ikki tomonlama ta'minlash sxemasi bir tomonlama taminlash sxemasiga oʻtkazilishi va hokazo sabablar natijasida) oʻzgartirilishi mumkin. Bunday oʻzgartirishlar paytida iloji boricha himoya zonasida "oʻlik zona", ya'ni q.t.da himoya ishga tushmay qoladigan zona boʻlmasligi lozim. Aksincha holatlarda esa himoya qayta sozlashni talab etadi.

Himoya yuqori kuchlanishli uzgichlarga ta'sir koʻrsatadi. Hozirgi kunda asosan moyli uzgichlar bilan birga vakuumli uzgichlar keng qoʻllanilmoqda. Himoya uchun asosiy masala — bu uzish vaqti. Moyli uzgichlarda bu vaqt $0.08-0.11~\mathrm{s}$ ni, vakuumli uzgichlarda esa $0.04-0.06~\mathrm{s}$ ni tashkil etadi.

Oʻzgaruvchan tok tortish tarmogʻidan foydalanishda himoyaga qoʻyiladigan asosiy talablar bajarilishining oʻziga xos xususiyatlarini koʻrib chiqamiz.

TADQIQOT NATIJALARI

Tezkorlik. Kontakt tarmogʻi simlari kuyishini oldini olish maqsadida q.t.da tarmoq tegishli seksiyasini manbadan ajratish vaqtini imkon qadar qisqartirish lozim. Kontakt simini kuyishi uni elektrovoz tok qabul qilgichi bilan oʻzaro ta'sir nuqtasi - oʻtli yoy hosil boʻlgan joyida yuz beradi. Kontakt simini kuyib yumshashi uni oʻta qizishi natijasida sodir boʻladi.

Elektrovozda shikastlanishlar yuzaga kelganda q. t. toki tortish tarmogʻi va tok qabul qilgich orqali oʻtadi. Tok qabul qilgichni kontakt simiga bosilish (tiralish) kuchi uncha katta emas, shuning uchun ham simni tok qabul qilgichga tegib turgan joyida issiqlik ajralib chiqadi va sim qiziydi.

Agar MΦ-100 markali kontakt simi 200°C gacha qizisa, u holda uning mexanik mustahkamligi keskin pasayadi va buning natijasida sim uzilishi mumkin. Simning qizish harorati uning kontakt joyidan oʻtayotgan tok kattaligiga va shu tokning oʻtish vaqtiga bogʻliq boʻladi.

Q.t. paytida hosil boʻladigan ochiq elektr yoyi kontakt simiga yanada koʻproq salbiy ta'sir koʻrsatadi. Yoy simga kuchli issiqlik ta'sirini oʻtkazadi: sim yuzasi shikastlanadi, uning ayrim qismlari eriydi, sim kesim yuzasi va mustahkamligi kamayadi. Bunda kontakt simini uzilishi uning issiqlikdan choʻzilishi yoki qisqarishini kompensatsiyalovchi qurilmaning simni choʻzuvchi kuchi ta'sirida yuz beradi. Yoyning simni yaroqsiz holatga keltiruvchi ta'siri yoydagi tok kattaligi va uning oʻtish vaqtiga koʻpaytmasi bilan tavsiflanadi hamda amper-sekund(A·s)larda oʻlchanadi. Ushbu koʻpaytma qancha katta qiymatda boʻlsa, simni uzilish ehtimoli shuncha katta boʻladi.

Selektivlik (saralash qobiliyati). Q.t. yuz berganda shikastlangan joyga yaqin boʻlgan uzgichlar ishga tushishi lozim. Agar shikastlanish tugun sxemada ta'minlanayotgan koʻp yoʻlli uchastkaning A nimstansiyasi va SP seksiyalash posti orasidagi zonada, masalan K1 nuqtada sodir boʻlsa (9.4- rasm, a) unda selektivlik shartiga koʻra QA1 va QPA1 uzgichlar ishga tushishi lozim. Bunda K1 nuqtada yuz bergan q.t. hisobidan QPAn, QPB1, QPBn uzgichlardan ham q.t. toki oʻtsada, ular ishga tushmasligi (uzilmasligi) lozim. K2 yoki K3 nuqtalardagi qisqa tutashishlarda QB1 va QPB1 uzgichlar uzilishi, seksiyalash postining boshqa uzgichlari uzilmasligi lozim. K4 nuqtada (QAn uzgich yaqinida) shikastlanish sodir boʻlganda QAn va QPAn uzgichlar uzilishi, QA1 uzgich esa uzilmasligi kerak.

1-rasm. Oʻzgaruvchan tok temir yoʻl uchastkasi ta'minlanish sxemasi va himoyasining selektivligi

Qisqa tutashishni aniqlash uchun foydalaniladigan fizik belgiga koʻra himoyalash quyidagi turlari .

1) tokli himoya (tok kattaligiga sezgir boʻlgan (reaksiya qiladigan) himoya); 2) minimal kuchlanish boʻyicha himoya (kuchlanish kattaligiga sezgir boʻlgan himoya – potensial himoya); 3) tokning ortib borish tezligi ga sezgir boʻlgan himoya; 4) tok orttirmasi (sakrashi) ga sezgir boʻlgan himoya – impulsli himoya; 5) masofaviy himoya (oʻzgarmas tokda qarshilik kattaligiga, oʻzgaruvchan tokda esa kompleks qarshilik moduli va argumentiga sezgir boʻlgan himoya); 6) kuchlanish va tok orasidagi faza siljish burchagiga sezgir boʻlgan himoya; 7) tok shakli boʻyicha himoya (yuqori garmonikalarning foiz ulushiga sezgir boʻlgan himoya – 3- garmonika boʻyicha himoya). dt dI I □

1-, 2-, 4- va 5- bandlarda keltirilgan himoya turlari oʻzgarmas va oʻzgaruvchan tok temir yoʻl uchastkalarida qoʻllaniladi. Faqat 5- bandda keltirilgan himoya oʻzgarmas tokda qarshilik boʻyicha himoya deb nomlanadi. 3- banddagi himoya faqat oʻzgarmas tok temir yoʻl uchastkalarida, 6- va 7- bandlardagi himoya turlari faqat oʻzgaruvchan tok temir yoʻl uchastkalarida qoʻllaniladi.

Qisqa tutashish toklaridan himoyalash qurilmalariga quyidagi asosiy talablar qoʻyiladi:

1) qisqa tutashish sodir boʻlgan zanjir qismini oʻz vaqtida manbadan ishonchli ajratish; 2) qisqa tutashish sodir boʻlmaganda himoya qurilmasi soxta(adashtiruvchi) ishlab ketmasligi; 3) seleksiya(saralash) xususiyatining mavjudligi (himoyalash zonasidan tashqaridagi qisqa tutashishlarda himoya qurilmasining ishlab ketmasligi); 4) tezkorligi (qisqa tutashishni ajratish vaqti uning salbiy oqibatlarini oldini olishga ulgurishi).

MUHOKAMA

Yuqoridagi talablarga javob beradigan himoya qurilmasini tanlashda undan foydalanish xarajatlari nisbatan kam boʻlishiga ham e'tibor beriladi.

Qisqa tutashish va anormal rejimlarni aniqlaydigan hamda zarurat boʻlganda uzgich kontaktlarini ajratish mexanizmiga ta'sir koʻrsatadigan avtomatik qurilma releli himoya deb ataladi. Releli himoya bir yoki bir nechta oʻlchash organlari OʻO1, OʻO2, ..., mantiqiy qism MQ va chiqish organi ChO dan tashkil topadi (9.1- rasm). Har bir oʻlchash organi oʻlchash

2- rasm. Releli himoya funksional sxemasi

elementi (sxemasi) O'S1, O'S2,... va taqqoslash elementi (sxemasi) TS1, TS2,... ni o'z ichiga oladi.

XULOSA

Releli himoya AK kirishiga tok TT va kuchlanish TV transformatorlaridan bir yoki bir nechta himoyalanayotgan ob'ekt rejimlari toʻgʻrisida axborot tashuvchi signallar uzatiladi. Oʻlchash organlari oʻzlariga uzatilgan axborot (tok, kuchlanish, ularning nisbati, ular orasidagi faza burchagi va boshqa)larni tahlil qiladi va zarurat boʻlganda mantiqiy qism kirishiga beriladigan diskret signalni shakllantiradi. Oʻlchash organlarida tok, kuchlanish, qarshilik va boshqa turdagi relelar qoʻllanilishi mumkin.

Foydalanilgan adabiyotlar.

- 1. Bayanov I.N., Jumaboyev S.X., Joʻrayeva K.K. ToshTYMI, T. Tezyurar temir yoʻl magistrallarni elektrlashtirish: Oliy temir yoʻl oʻquv yuqtlari talabalari uchun oʻquv qoʻllanma.
- 2. Safarov A.M. Elektronika asoslari: oliy oʻquv yurtlari talabalari uchun oʻquv qoʻllanma. -Toshkent: "Adabiyot uchqunlari" nashriyoti, 2015. 376 b.
- 3. Safarov A.M., Gʻoyibov T.Sh., Sulliyev A.X. Elektr tarmoqlari tizimlari: oliy oʻquv yurtlari talabalari uchun oʻquv qoʻllanma. –Toshkent: Tafakkur boʻstoni, 2013. 244 b.
- 4. Amirov S.F., Yoqubov M.S., Jabborov N.Gʻ. Nazariy elektrotexnika: Oliy oʻquv yurtlari talabalari uchun darslik. Toshkent: "Oʻzbekiston" nashriyot matbaa ijodiy uyi, 2016 y. -482 b.

- 5. Amirov S.F., Yoqubov M.S., Jabborov N.G'., Sattarov X.A., Balgayev N.E. Elektrotexnikaning nazariy asoslaridan masalalar to'plami: oliy o'quv yurtlari talabalari uchun o'quv qo'llanma. Toshkent: "Adabiyot uchqunlari" nashriyoti, 2015 y. 420 b.
- 6. Аллаев К.Р. Энергетика мира и Узбекистана. Аналитический обзор. Ташкент: Издательство «Молия» Банковско-финансовой академии, 2007. 388 с.
- 7. Киселёв И.П. и др. Высокоскоростные железные дороги. Общий курс. Том 1. учебное пособие.— М.: УМЦ по образованию на ж.д. транспорте, 2014.-308 с.
- 8. Киселёв И.П. и др. Высокоскоростные железные дороги. Общий курс. Том 2. учебное пособие.— М.: УМЦ по образованию на ж.д. транспорте, 2014.-308 с.