Fluctuations d'un traceur dans la matière active

Étienne Fodor¹, Wylie Ahmed², Timo Betz², Matthias Bussonnier², Nir Gov³, Ming Guo⁴, Paolo Visco¹, David A. Weitz⁴, Frédéric van Wijland¹

- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot
- 2. Laboratoire Physico-Chimie Curie, Institut Curie
- Department of Chemical Physics, Weizmann Institute of Science
- 4. Department of Physics, Harvard University

Journées de Physique Statistique 2014

Techniques expérimentales

In vivo Traceurs dans des cellules vivantes,

In vitro Traceurs dans des gels d'actine reconstitués.

Techniques expérimentales

In vivo Traceurs dans des cellules vivantes,

In vitro Traceurs dans des gels d'actine reconstitués.

Techniques expérimentales

In vivo Traceurs dans des cellules vivantes,In vitro Traceurs dans des gels d'actine reconstitués.

Techniques expérimentales

In vivo Traceurs dans des cellules vivantes,In vitro Traceurs dans des gels d'actine reconstitués.

Est-il possible d'extraire de l'information sur l'activité des moteurs?

Modélisation de le dynamique des traceurs.

Modèle théorique

Dynamique des traceurs

$$\gamma \frac{\mathsf{d}\mathbf{r}}{\mathsf{d}t} = \sqrt{2T\gamma}\boldsymbol{\xi} - k(\mathbf{r} - \mathbf{r_0})$$

Modèle théorique

Dynamique des traceurs

$$\gamma \frac{\mathsf{d}\mathbf{r}}{\mathsf{d}t} = \sqrt{2T\gamma}\boldsymbol{\xi} - k(\mathbf{r} - \mathbf{r_0})$$

Mouvement actif du minimum local

Prédictions

Temps courts
Grands temps
Crossover

Confinement,
Diffusion libre,
Distribution plus
large que gaussien.

Prédictions

Temps courts Confinement,
Grands temps Diffusion libre,
Crossover Distribution plus large que gaussien.

Caractéristiques microscopiques

- Temps typiques d'activité,
- Puissance injectée par les moteurs,
- Amplitude des fluctuations actives.

Modèle théorique

Dynamique du minimum local

$$\frac{\mathsf{d}\mathbf{r_0}}{\mathsf{d}t} = \mathbf{v}_A$$

Burst actif stochastique

