

Graph Algorithms

9 December 2024

Prof. Dr. Sebastian Wild

Learning Outcomes

Unit 9: Graph Algorithms

- 1. Know basic terminology from graph theory, including types of graphs.
- 2. Know adjacency matrix and adjacency list representations and their performance characteristica.
- 3. Know graph-traversal based algorithm, including efficient implementations.
- **4.** Be able to proof correctness of graph-traversal-based algorithms.
- **5.** Know algorithms for maximum flows in networks.
- **6.** Be able to model new algorithmic problems as graph problems.

Outline

9 Graph Algorithms

- 9.1 Introduction & Definitions
- 9.2 Graph Representations
- 9.3 Graph Traversal
- 9.4 Advanced Graph-Traversal Algorithms
- 9.5 Network flows
- 9.6 The Ford-Fulkerson Method

9.1 Introduction & Definitions

Graphs in real life

- a graph is an abstraction of *entities* with their (pairwise) *relationships*
- ▶ abundant examples in real life (often called network there)
 - ▶ social networks: e.g. persons and their friendships, . . . Five/Six? degrees of separation
 - ▶ physical networks: cities and highways, roads networks, power grids etc., the Internet, . . .
 - ▶ content networks: world wide web, ontologies, ...
 - **...**

Many More examples, e. g., in Sedgewick & Wayne's videos:

https://www.coursera.org/learn/algorithms-part2

Flavors of Graphs

► Since graphs are used to model so many different entities and relations, they come in several variants

Property	Yes	No
edges are one-way	directed graph (digraph)	undirected graph
≤ 1 edge between u and v	<i>simple</i> graph	<i>multigraph</i> / with <i>parallel</i> edges
edges can lead from v to v	with <i>loops</i>	(loop-free)
edges have weights	(edge-) weighted graph	unweighted graph

any combination of the above can make sense . . .

- Synonyms:
 - vertex ("Knoten") = node = point = "Ecke"
 - edge ("Kante") = arc = line = relation = arrow = "Pfeil"
 - ▶ graph = network

Graph Theory

- default: unweighted, undirected, loop-free & simple graphs
- ► *Graph* G = (V, E) with
 - ▶ *V* a finite of *vertices*
 - ► $E \subseteq [V]^2$ a set of *edges*, which are 2-subsets of $V: [V]^2 = \{e : e \subseteq V \land |e| = 2\}$

Example

$$V = \{0,1,2,3,4,5\}$$

$$E = \{\{0,1\},\{1,2\},\{1,4\},\{1,3\},\{0,2\},\{2,4\},\{2,3\},\{3,4\},\{3,5\},\{4,5\}\}.$$

Graphical representation

(same graph)

Digraphs

- ▶ default digraph: unweighted, loop-free & simple
- ▶ *Digraph (directed graph)* G = (V, E) with
 - ► *V* a finite of *vertices*
 - ► $E \subseteq V^2 \setminus \{(v,v) : v \in V\}$ a set of (*directed*) *edges*, $V^2 = V \times V = \{(x,y) : x \in V \land y \in V\}$ 2-tuples / ordered pairs over V

Example

$$V = \{0,1,2,3,4,5\}$$

$$E = \{(0,2),(1,0),(1,4),(2,1),(2,4),$$

$$(3,1),(3,2),(4,3),(4,5),(5,3)\}$$

Graphical representation

Graph Terminology

Undirected Graphs

- \blacktriangleright *V*(*G*) set of vertices, *E*(*G*) set of edges
- ightharpoonup write uv (or vu) for edge $\{u,v\}$
- ightharpoonup edges *incident* at vertex v: E(v)
- ▶ u and v are adjacent iff $\{u, v\} \in E$,
- ► *neighborhood* $N(v) = \{w \in V : w \text{ adjacent to } v\}$
- ightharpoonup degree d(v) = |E(v)|

Directed Graphs (where different)

- **▶** *uv* for (*u*, *v*)
- $iff (u, v) \in E \lor (v, u) \in E$
- ▶ in-/out-neighbors $N_{in}(v)$, $N_{out}(v)$
- ▶ in-/out-degree $d_{in}(v)$, $d_{out}(v)$
- ▶ *walk* w of length n: sequence of vertices w[0..n] with $\forall i \in [0..n)$: $w[i]w[i+1] \in E$
- \triangleright path p is a (vertex-) simple walk: without duplicate vertices except possibly its endpoints
- *edge-simple* walk/path: no edge used twice
- *cycle* c is a closed path, i. e., c[0] = c[n]
- ► *G* is *connected* iff for all $u \neq v \in V$ there is a path from u to v
- ► *G* is *acyclic* iff \nexists cycle (of length $n \ge 1$) in *G*

strongly connected for digraphs (weakly connected = connected ignoring directions)

Typical graph-processing problems

- ▶ Path: Is there a path between s and t?
 Shortest path: What is the shortest path (distance) between s and t?
- Cycle: Is there a cycle in the graph?
 Euler tour: Is there a cycle that uses each edge exactly once?
 Hamilton(ian) cycle: Is there a cycle that uses each vertex exactly once.
- Connectivity: Is there a way to connect all of the vertices?MST: What is the best way to connect all of the vertices?Biconnectivity: Is there a vertex whose removal disconnects the graph?
- ▶ **Planarity**: Can you draw the graph in the plane with no crossing edges?
- ► **Graph isomorphism**: Are two graphs the same up to renaming vertices?

can vary a lot, despite superficial similarity of problems

Challenge: Which of these problems
can be computed in (near) linear time?
in reasonable polynomial time?
are intractable?

Tools to work with graphs

- Convenient GUI to edit & draw graphs: yEd live yworks.com/yed-live
- graphviz cmdline utility to draw graphs
 - Simple text format for graphs: DOT

```
graph G {
    0 -- 2;    2 -- 4;
    1 -- 0;    2 -- 3;
    1 -- 4;    3 -- 4;
    1 -- 3;    3 -- 5;
    2 -- 1;    4 -- 5;
}
```


dot -Tpdf graph.dot -Kfdp > graph.pdf

- ▶ graphs are typically not built into programming languages, but libraries exist
 - e.g. part of Google Guava for Java
 - they usually allow arbitrary objects as vertices
 - aimed at ease of use

9.2 Graph Representations

Graphs in Computer Memory

- We defined graphs in set-theoretic terms... but computers can't directly deal with sets efficiently
- → need to choose a representation for graphs.
 - which is better depends on the required operations

Key Operations:

- isAdjacent(u, v)
 Test whether $uv \in E$
- adj (v)Adjacency list of v (iterate through (out-) neighbors of v)
- most others can be computed based on these

Conventions:

- (di)graph G = (V, E) (omitted if clear from context)
- in implementations assume V = [0..n) (if needed, use symbol table to map complex objects to V)

Adjacency Matrix Representation

- ▶ adjacency matrix $A \in \{0,1\}^{n \times n}$ of G: matrix with $A[u,v] = [uv \in E]$
 - works for both directed and undirected graphs (undirected $\rightsquigarrow A = A^T$ symmetric)
 - ightharpoonup can use a weight w(uv) or multiplicity in A[u,v] instead of 0/1
 - ightharpoonup can represent loops via A[v,v]

Example:

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

- isAdjacent in O(1) time
- $O(n^2)$ (bits of) space wasteful for sparse graphs
- \bigcirc adj (v) iteration takes O(n) (independent of d(v))

Adjacency List Representation

- ▶ Store a linked list of neighbors for each vertex *v*:
 - ► *adj*[0..*n*) bag of neighbors (as linked list)
 - undirected edge $\{u, v\} \rightsquigarrow v \text{ in } adj[u] \text{ and } u \text{ in } adj[v]$
 - weighted edge $uv \rightsquigarrow \text{store pair } (v, w(uv)) \text{ in } adj[u]$
 - multiple edges and loops can be represented

$$\Theta(n+m)$$
 (words of) space for any graph ($\ll \Theta(n^2)$ bits for moderate m)

→ de-facto standard for graph algorithms

Graph Types and Representations

- Note that adj matrix and lists for undirected graphs effectively are representation of directed graph with directed edges both ways
 - conceptually still important to distinguish!
- multigraphs, loops, edge weights all naturally supported in adj lists
 - good if we allow and use them
 - but requires explicit checks to enforce simple / loopfree / bidirectional!
- we focus on static graphs dynamically changing graphs much harder to handle

9.3 Graph Traversal

Generic Graph Traversal

- ▶ Plethora of graph algorithms can be expressed as a systematic exploration of a graph
 - depth-first search, breadth-first search

visiting all edges

- cycle finding
- topological sorting
- Hierholzer's algorithm for Euler cycles
- connected components
- strong components
- testing bipartiteness
- Dijkstra's algorithm
- ▶ Prim's algorithm
- Lex-BFS for perfect elimination orders of chordal graphs
- **...**
- → Formulate generic traversal algorithm
 - ▶ first in abstract terms to argue about correctness
 - then again for concrete instance with efficient data structures

Tricolor Graph Traversal

Tricolor Graph Search:

- maintain vertices in 3 (dynamic) sets
 - Gray: unseen vertices
 The traversal has not reached these vertices so far.

Invariant:

No edges from done to unseen vertices

- ► **Green: done vertices** (a. k. a. visited vertices)

 These vertices have been visited and all their edges have been explored already.
- ► Red: active vertices (a.k.a. frontier ("Rand") of traversal)
 All others, i.e., vertices that have been reached and some unexplored edges remain; initially some selected start vertices *S*.
- ▶ (implicitly) maintain status of each edge
 - ▶ not yet used
 - ▶ used edge

Generic Tricolor Graph Traversal – Code

```
procedure genericGraphTraversal(G, S)
       //(di)graph G = (V, E) and start vertices S \subseteq V
       C[0..n) := unseen // Color array, all cells initialized to unseen
       for s \in S do C[s] := active end for
       unusedEdges := E
       while \exists v : C[v] == active
            v := \text{nextActiveVertex}() // Freedom 1: Which frontier vertex?
            if \nexists vw ∈ unusedEdges // no more edges from v \leadsto done with v done
                C[v] := done
           else
10
                 w := \text{nextUnusedEdge}(v) // Freedom 2: Which of its edges?
11
                if C[w] == unseen
12
                     C[w] := active
                end if
                unusedEdges.remove(vw)
15
            end if
       end while
17
```


Invariant:

No edges from done to unseen vertices

► Implementations of nextActiveVertex() and nextUnusedEdge(v) depends on (and defines!) specific traversal-based graph algorithms

Generic Reachability

► Any choices nextActiveVertex() and nextUnusedEdge(v) suffice to find exactly the vertices reachable from *S* in *done*

► Invariant:

- **1.** No edges from *done* to *unseen* vertices
- **2.** For every *done* vertex v, there exists a path from $s \in S$ to v.

→ in final state:

- ▶ $v \in done \implies path from S \implies reachable from S$
- ▶ $v \in unseen \longrightarrow not reachable from done \supseteq S \longrightarrow not reachable from S$

Data Structures for Frontier

- ► We need efficient support for
 - ▶ test $\exists v : C[v] = active$, nextActiveVertex()
 - ► test $\exists vw \in unusedEdges$, nextUnusedEdge(v)
 - unusedEdges.remove(vw)
- ▶ Typical solution maintains **bag** *frontier* of *pairs* (v, i) where $v \in V$ and i is an **iterator** in adj[v]
 - unusedEdges represented implicitly: edge used iff previously returned by i
 don't need unusedEdges.remove(vw)
 - ► Implement $\exists v : C[v] = active \text{ via } frontier.isEmpty()$
 - ▶ Implement $\exists vw \in unusedEdges via i.hasNext() assuming <math>(v,i) \in frontier$
 - ► Implement nextUnusedEdge(v) via i.next() assuming (v, i) \in frontier
 - \rightarrow all operations apart from nextActiveVertex() in O(1) time
 - \rightsquigarrow *frontier* requires O(n) extra space

Breadth-First Search

▶ Maintain *frontier* in a **queue** (FIFO: first in, first out)

► Invariant:

- 1. No edges from done to unseen vertices /fewest edges
- **2.** All *done* vertices are reached via a **shortest path** from *S*
- **3.** *frontier* stores active vertices **sorted** by distance from *S*

- → in final state, we reach all reachable vertices via shortest paths
- ▶ To preserve that knowledge, we collect extra information during traversal
 - ightharpoonup parent[v] stores predecessor on path from S via which v was reached
 - ▶ *distFromS*[*v*] stores the length of this path

Breadth-First Search - Code

```
1 procedure bfs(G, S)
       //(di)graph G = (V, E) and start vertices S \subseteq V
       C[0..n) := unseen // New array initialized to all unseen
       frontier := new Queue;
       parent[0..n) := NOT VISITED; distFromS[0..n) := \infty
 5
       for s \in S
           parent[s] := NONE; distFromS[s] := 0
           C[s] := active; frontier.enqueue((s, G.adj[s].iterator()))
       end for
       while ¬frontier.isEmpty()
10
           (v,i) := frontier.peek()
11
           if \neg i.hasNext() // v has no unused edge
12
                C[v] := done; frontier.dequeue()
13
           else
14
                w := i.next() // Advance i in adj[v]
15
                if C[w] == unseen
16
                    parent[w] := v; distFromS[w] := distFromS[v] + 1
17
                    C[w] := active; frontier.enqueue((w, G.adi[w].iterator()))
18
                end if
19
           end if
20
       end while
21
```

- parent stores a shortest-path tree/forest
- can retrieve shortest path to v from some vertex s ∈ S
 (backwards) by following parent[v] iteratively
- ▶ running time $\Theta(n + m)$
- ▶ extra space $\Theta(n)$

Depth-First Search

► Maintain *frontier* in a **stack** (LIFO: last in, first out)

```
procedure dfs(G, s)
           //(di)graph G = (V, E) and start vertex s \in V
           C[0..n) := unseen; frontier := new Stack;
           parent[0..n) := NOT VISITED;
           parent[s] := NONE;
5
           C[s] := active; frontier.push((s, G.adj[s].iterator()))
           while ¬frontier.isEmpty()
               (v,i) := frontier.top()
               if \neg i.hasNext() // v has no unused edge
                    C[v] := done; frontier.pop(); postorderVisit(v)
10
               else
11
                    w := i.next() // Advance i in adj[v]
12
                    visitEdge(vw)
13
                   if C[w] == unseen
14
                        parent[w] := v;
15
                        preorderVisit(w)
16
                        C[w] := active; frontier.push((w, G.adj[w].iterator()))
17
                    end if
18
               end if
           end while
20
```

- parent stores a DFS tree
- pre-/postorderVisit hooks to implement further operations
 - preorder: visit v when made active
 - postorder: visit v when marked done
 - visitEdge: do something for every edge
- ▶ running time $\Theta(n + m)$
- ightharpoonup extra space $\Theta(n)$

Connected Components

- ► In an undirected graph, find all *connected components*.
 - ▶ **Given:** simple undirected G = (V, E)
 - ▶ **Goal:** assign component ids CC[0..n), s.t. CC[v] = CC[u] iff \exists path from v to u

► In preorderVisit(*v*):

```
CC[v] := id
```

```
1 procedure dfs(G, s)
       // Do not reinitialize C[0..n) to unseen but reuse global C
       frontier := new Stack;
       parent[s] := NONE;
       C[s] := active; frontier.push((s, G.adi[s].iterator()))
       while ¬frontier.isEmpty()
           (v,i) := frontier.top()
           if ¬i.hasNext() // v has no unused edge
               C[v] := done; frontier.pop(); postorderVisit(v)
           else
               w := i.next() // Advance i in adj[v]
               visitEdge(vw)
               if C[w] == unseen
13
                   parent[w] := v;
                   preorderVisit(w)
15
                   C[w] := active;
                   frontier.push((w, G.adj[w].iterator()))
               end if
           end if
       end while
20
```

DFS Postorder & Topological Sort

- ► Example application of generic DFS: topological sort
 - ► R[0..n) is topological order of G if $\forall (u, v) \in E : R[u] < R[v]$
- **▶** Topological Sorting
 - ▶ **Given:** simple digraph G = (V, E)
 - ► **Goal:** topological order of vertices *R*[0..*n*) or NOT_POSSIBLE (if *G* contains a directed cycle)
- ▶ **DFS Postorder**: The DFS postorder from $s \in V$ is a numbering P[0..n) of V such that P[v] = r iff exactly r vertices reached state *done* before v in dfs(s).

Lemma 9.1

directed acyclic graph

Let *G* be a simple, connected DAG and R[0..n) a *reverse DFS postorder* of *G*, i. e., R[v] = n - 1 - P[v] for a DFS postorder P[0..n). Then *R* is a topological order of *G*.

Invariant:

1. If $v \in done$ and $(v, w) \in E$ then $w \in done$ and R[v] < R[w].

9.4 Advanced Graph-Traversal Algorithms

DFS Postorder Implementation

```
procedure dfs(G, s)
       //(di)graph G = (V, E) and start vertex s \in V
       C[0..n) := unseen; frontier := new Stack;
       parent[0..n) := NOT VISITED;
       parent[s] := NONE;
       C[s] := active; frontier.push((s, G.adj[s].iterator()))
       while ¬frontier.isEmpty()
           (v,i) := frontier.top()
           if ¬i.hasNext() // v has no unused edge
               C[v] := done; frontier.pop(); postorderVisit(v)
           else
11
               w := i.next() // Advance i in adj[v]
12
               visitEdge(vw)
               if C[w] == unseen
                   parent[w] := v;
                   preorderVisit(w)
                   C[w] := active; frontier.push((w, G.adj[w].iterator()))
               end if
           end if
       end while
20
```

- In postorderVisit(v): P[v] := r; r := r + 1
- In visitEdge(vw):
 If $w \in frontier$, found cycle
 - ➤ To check that efficiently, store which vertices are in stack (easy modification)

Dijkstra's Algorithm & Prim's Algorithm

- ▶ On edge-weighted, we can use the tricolor traversal with a *priority queue* for *frontier*
- ▶ Dijkstra's Algorithm for shortest paths from *s* in digraphs with weakly positive edge weights
 - ightharpoonup priority of vertex v = length of shortest path known so far from s to v
- ▶ Prim's Algorithm for finding a minimum spanning tree
 - priority of vertex v = weight of cheapest edge connecting v to current tree
- → Detailed discussion in Unit 11

Euler Cycles

Strong Components

Kosaraju-Sharir's Algorithm

9.5 Network flows

Networks and Flows

Reductions

9.6 The Ford-Fulkerson Method

Residual Networks

Augmenting Paths