Categorical spectra as pointed (∞, \mathbb{Z}) -categories

David KERN

Kunliga Tekniska Högskolan

TexasTech and Wichita State University Topology and Geometry seminar 19th November 2024

Contents

- Motivation
- Categorical spectra
 - Definition and examples
 - Cells of categorical spectra
- Z-categories
 - Globular presentation
 - Comparisons and cells

Contents - Section 0: Motivation

- Motivation
- Categorical spectra
 - Definition and examples
 - Cells of categorical spectra
- Z-categories
 - Globular presentation
 - Comparisons and cells

k a ring (spectrum) categorifies to

 $\rightsquigarrow \ \mathfrak{Nob}(\Bbbk) = \mathfrak{Nob}_{\mathfrak{Sp}}(\Bbbk) \ \text{symmetric monoidal stable} \ (\infty,1)\text{-category}$

k a ring (spectrum) categorifies to

```
 \mathfrak{Mob}(\Bbbk) = \mathfrak{Mob}_{\mathfrak{Sp}}(\Bbbk) \text{ symmetric monoidal stable } (\infty,1)\text{-category}   \mathfrak{Mob}^2(\Bbbk) \coloneqq \mathfrak{Mob}_{\mathfrak{St}_1}(\mathfrak{Mob}(\Bbbk)) \text{ symm. mon. stable } (\infty,2)\text{-category}   \ldots   \mathfrak{Mob}^{n+1}(\Bbbk) \coloneqq \mathfrak{Mob}_{\mathfrak{St}_n}(\mathfrak{Mob}^n(\Bbbk)) \text{ symm. mon. stable } (\infty,n+1)\text{-category}   \ldots   \ldots
```

k a ring (spectrum) categorifies to

Stabilisation phenomenon [Stefanich]

```
\mathfrak{Mob}^{n-1}(\mathbb{k}) is the unit of \mathfrak{Nob}^n(\mathbb{k}), and \mathrm{End}_{\mathfrak{Mob}^n(\mathbb{k})}\big(\mathfrak{Nob}^{n-1}(\mathbb{k})\big) \simeq \mathfrak{Nob}^{n-1}(\mathbb{k}) (Convention: \mathfrak{Nob}^0(\mathbb{k}) \coloneqq \mathbb{k}, and \mathfrak{St}_0 = \mathfrak{Sp})
```

 \Bbbk a ring (spectrum) categorifies to

Stabilisation phenomenon [Stefanich]

$$\mathfrak{Nob}^{n-1}(\Bbbk)$$
 is the unit of $\mathfrak{Nob}^n(\Bbbk)$, and $\mathrm{End}_{\mathfrak{Nob}^n(\Bbbk)}\big(\mathfrak{Nob}^{n-1}(\Bbbk)\big) \simeq \mathfrak{Nob}^{n-1}(\Bbbk)$ (Convention: $\mathfrak{Nob}^0(\Bbbk) \coloneqq \Bbbk$, and $\mathfrak{St}_0 = \mathfrak{Sp}$)

What happens as $n \to \infty$?

First, what are higher categories again?

Definition

An $(\infty,0)$ -category is an ∞ -groupoid (aka space, anima, ...) An $(\infty,n+1)$ -category is an (∞,n) -Cat-enriched ∞ -category.

 \implies For any $C, D \in \mathfrak{C}$, an (∞, n) -category $\hom_{\mathfrak{C}}(C, D)$ of 1-cells and higher cells between them

First, what are higher categories again?

Definition

An $(\infty, 0)$ -category is an ∞ -groupoid (aka space, anima, ...) An $(\infty, n+1)$ -category is an (∞, n) - \mathbb{C} at-enriched ∞ -category.

 \implies For any $C,D\in\mathfrak{C}$, an (∞,n) -category $\hom_{\mathfrak{C}}(C,D)$ of 1-cells and higher cells between them

+ compositions, e.g. $C \xrightarrow{\psi} D \xrightarrow{\psi} E \mapsto C \xrightarrow{\psi} E$

First, what are higher categories again?

Definition

An $(\infty,0)$ -category is an ∞ -groupoid (aka space, anima, ...)

An $(\infty, n+1)$ -category is an (∞, n) -Cat-enriched ∞ -category.

- \implies For any $C, D \in \mathfrak{C}$, an (∞, n) -category $\hom_{\mathfrak{C}}(C, D)$ of 1-cells and higher cells between them
 - + compositions, e.g. $C \xrightarrow{\psi} D \bigoplus_{\psi} E \mapsto C \bigoplus_{\psi} E$

"Definition" (Interpreted properly)

An (∞, ω) -category is an (∞, ω) -Cat-enriched ∞ -category.

 \implies For any $C, D \in \mathfrak{C}$, an (∞, ω) -category $\mathsf{hom}_{\mathfrak{C}}(C, D)$

Infinitely iterated modules

- ightharpoonup The top-dimensional cells in iterated k-modules are points of k
- ► Codimension-1 cells are k-modules
- ▶ .
- ▶ 0-cells are $\mathfrak{Nob}^{n-1}(\mathbb{k})$ -modules

Infinitely iterated modules

- ightharpoonup The top-dimensional cells in iterated k-modules are points of k
- ► Codimension-1 cells are k-modules
- •
- ▶ 0-cells are $\mathfrak{Mob}^{n-1}(\mathbb{k})$ -modules

Upshot for $n = \omega$

- ▶ We know the "∞-dimensional" (or infinitely shifted) cells
- ▶ The 0-cells are " $\mathfrak{Nob}^{\infty}(\mathbb{k})$ ": unclear

Infinitely iterated modules

- ightharpoonup The top-dimensional cells in iterated k-modules are points of k
- ► Codimension-1 cells are k-modules
- ▶ .
- ▶ 0-cells are $\mathfrak{Mob}^{n-1}(\mathbb{k})$ -modules

Upshot for $n = \omega$

- ▶ We know the "∞-dimensional" (or infinitely shifted) cells
- ▶ The 0-cells are " $\mathfrak{Nob}^{\infty}(\mathbb{k})$ ": unclear

Idea: Put the "top cells" in dimension 0, and the rest in < 0 dimensions \Longrightarrow " $\mathfrak{Mob}^{\infty}(\Bbbk)$ " is pushed to dimension $-\infty$

Delooping \mathcal{E}_{∞} (commutative) monoids

The operad \mathcal{E}_1 is the associative ∞ -operad \mathcal{E}_n is the little n-disks operad:

$$\mathcal{E}_{n}$$
- $\mathcal{A}\mathfrak{lg} \simeq \mathcal{E}_{1}$ - $\mathcal{A}\mathfrak{lg}(\mathcal{E}_{n-1}$ - $\mathcal{A}\mathfrak{lg})$ [Dunn, Lurie]

Delooping hypothesis [Baez-Shulman, Gepner-Haugseng]

 \mathcal{E}_n -monoids are the same as n-uply degenerate (∞, n) -categories

Delooping \mathcal{E}_{∞} (commutative) monoids

The operad \mathcal{E}_1 is the associative ∞ -operad \mathcal{E}_n is the little n-disks operad:

$$\mathcal{E}_{n}$$
- $\mathcal{A}\mathfrak{lg} \simeq \mathcal{E}_{1}$ - $\mathcal{A}\mathfrak{lg}(\mathcal{E}_{n-1}$ - $\mathcal{A}\mathfrak{lg})$ [Dunn, Lurie]

Delooping hypothesis [Baez-Shulman, Gepner-Haugseng]

 \mathcal{E}_n -monoids are the same as n-uply degenerate (∞, n) -categories

Commutative ∞ -operad \mathcal{E}_{∞} :

$$\mathcal{E}_{\infty}$$
-Alg $\simeq \lim_{n} \mathcal{E}_{n}$ -Alg

 \mathcal{E}_{∞} -algebras are "infinitely degenerate" (∞, ω) -categories?

Delooping \mathcal{E}_{∞} (commutative) monoids

The operad \mathcal{E}_1 is the associative ∞ -operad \mathcal{E}_n is the little n-disks operad:

$$\mathcal{E}_{n}$$
- $\mathcal{A}\mathfrak{lg} \simeq \mathcal{E}_{1}$ - $\mathcal{A}\mathfrak{lg}(\mathcal{E}_{n-1}$ - $\mathcal{A}\mathfrak{lg})$ [Dunn, Lurie]

Delooping hypothesis [Baez-Shulman, Gepner-Haugseng]

 \mathcal{E}_n -monoids are the same as n-uply degenerate (∞, n) -categories

Commutative ∞ -operad \mathcal{E}_{∞} :

$$\mathcal{E}_{\infty}$$
-Alg $\simeq \lim_{n} \mathcal{E}_{n}$ -Alg

 \mathcal{E}_{∞} -algebras are "infinitely degenerate" (∞, ω) -categories?

▶ Have the degeneracies in infinitely many negative dimensions

Contents - Section 1: Categorical spectra

- Motivation
- Categorical spectra
 - Definition and examples
 - Cells of categorical spectra
- Z-categories
 - Globular presentation
 - Comparisons and cells

Contents - Section 1: Categorical spectra

- Motivation
- Categorical spectra
 - Definition and examples
 - Cells of categorical spectra

Suspension/loop space adjunction
$$\infty$$
-Grp \mathfrak{d}_* \perp ∞ -Grp \mathfrak{d}_*

$$\mathfrak{Sp} = \lim \bigl(\cdots \xrightarrow{\Omega} \infty \text{-Grpd}_* \xrightarrow{\Omega} \infty \text{-Grpd}_* \xrightarrow{\Omega} \infty \text{-Grpd}_* \bigr)$$

Suspension/loop space adjunction
$$\infty$$
-Grp \mathfrak{d}_* \perp ∞ -Grp \mathfrak{d}_*

Definition

$$\mathfrak{Sp} = \lim \bigl(\cdots \xrightarrow{\Omega} \infty \text{-Grpd}_* \xrightarrow{\Omega} \infty \text{-Grpd}_* \xrightarrow{\Omega} \infty \text{-Grpd}_* \bigr)$$

• Universal way to turn $\Sigma \dashv \Omega$ into an equivalence $\Sigma \colon \mathfrak{Sp} \simeq \mathfrak{Sp} \colon \Omega = \Sigma^{-1}$

Suspension/loop space adjunction
$$\infty$$
-Grp \mathfrak{d}_* \perp ∞ -Grp \mathfrak{d}_*

$$\mathfrak{Sp} = \lim \bigl(\cdots \xrightarrow{\Omega} \infty \text{-Grpd}_* \xrightarrow{\Omega} \infty \text{-Grpd}_* \xrightarrow{\Omega} \infty \text{-Grpd}_* \bigr)$$

- ▶ Universal way to turn $\Sigma \dashv \Omega$ into an equivalence Σ : $\mathfrak{Sp} \simeq \mathfrak{Sp}$: $\Omega = \Sigma^{-1}$
- ▶ Objects $((X_n, x_n) \in \infty$ -Grp $\mathfrak{d}_*)_{n \geqslant 0}$ with $X_n \xrightarrow{\cong} \Omega_{x_{n+1}} X_{n+1}$

Suspension/loop space adjunction
$$\infty$$
-Grp \mathfrak{d}_* \perp ∞ -Grp \mathfrak{d}_*

$$\mathfrak{Sp} = \lim \bigl(\cdots \xrightarrow{\Omega} \infty \text{-Grpd}_* \xrightarrow{\Omega} \infty \text{-Grpd}_* \xrightarrow{\Omega} \infty \text{-Grpd}_* \bigr)$$

- ▶ Universal way to turn $\Sigma \dashv \Omega$ into an equivalence Σ : $\mathfrak{Sp} \simeq \mathfrak{Sp}$: $\Omega = \Sigma^{-1}$
- ▶ Objects $((X_n, x_n) \in \infty$ -Grp $\mathfrak{d}_*)_{n \geqslant 0}$ with $X_n \xrightarrow{\cong} \Omega_{x_{n+1}} X_{n+1}$
- \blacktriangleright kth projection $\Omega^{\infty-k} \colon \mathfrak{Sp} \to \infty\text{-Grpb}_*$ such that $\Omega^{\infty-k} \circ \Omega \simeq \Omega^{\infty-k+1}$

Suspension/loop space adjunction
$$\infty$$
-Grp \mathfrak{d}_* \perp ∞ -Grp \mathfrak{d}_*

$$\mathfrak{Sp} = \lim \bigl(\cdots \xrightarrow{\Omega} \infty \text{-Grpd}_* \xrightarrow{\Omega} \infty \text{-Grpd}_* \xrightarrow{\Omega} \infty \text{-Grpd}_* \bigr)$$

- ▶ Universal way to turn $\Sigma \dashv \Omega$ into an equivalence Σ : $\mathfrak{Sp} \simeq \mathfrak{Sp}$: $\Omega = \Sigma^{-1}$
- ▶ Objects $((X_n, x_n) \in \infty$ -Grp $\mathfrak{d}_*)_{n \geqslant 0}$ with $X_n \xrightarrow{\cong} \Omega_{x_{n+1}} X_{n+1}$
- $\begin{array}{l} \blacktriangleright \text{ kth projection } \Omega^{\infty-k} \colon \mathfrak{Sp} \to \infty\text{-Grpd}_* \text{ such that } \Omega^{\infty-k} \circ \Omega \simeq \Omega^{\infty-k+1} \\ \Longrightarrow \quad \text{For } n < 0, \ \Omega^{\infty-n} = \Omega^{\infty} \circ \Omega^{-n} \end{array}$

Suspension/loop space adjunction
$$\infty$$
-Grp \mathfrak{d}_* \perp ∞ -Grp \mathfrak{d}_*

$$\mathfrak{Sp} = \lim \bigl(\cdots \xrightarrow{\Omega} \infty \text{-Grpd}_* \xrightarrow{\Omega} \infty \text{-Grpd}_* \xrightarrow{\Omega} \infty \text{-Grpd}_* \bigr)$$

- ▶ Universal way to turn $\Sigma \dashv \Omega$ into an equivalence Σ : $\mathfrak{Sp} \simeq \mathfrak{Sp}$: $\Omega = \Sigma^{-1}$
- ▶ Objects $((X_n, x_n) \in \infty$ - $\mathfrak{Grpb}_*)_{n \geqslant 0}$ with $X_n \stackrel{\cong}{\to} \Omega_{x_{n+1}} X_{n+1}$
- \blacktriangleright kth projection $\Omega^{\infty-k}$: $\mathfrak{Sp} \to \infty$ - \mathfrak{Grpb}_* such that $\Omega^{\infty-k} \circ \Omega \simeq \Omega^{\infty-k+1}$

$$\implies$$
 For $n < 0$, $\Omega^{\infty - n} = \Omega^{\infty} \circ \Omega^{-n}$

$$\implies$$
 Left-adjoints $\Sigma^{\infty-k} = \Sigma^{-k} \circ \Sigma^{\infty} : \infty\text{-}\mathrm{Grpb}_* \to \mathrm{Sp}$

Categorical spectra

Adjunction
$$(\infty,\omega)$$
- \mathfrak{Cat}_* \perp (∞,ω) - \mathfrak{Cat}_* with $\Omega_X\mathfrak{X}=\mathsf{hom}_{\mathfrak{X}}(X,X)$

Definition [Stefanich]

$$\mathfrak{CatSp} = \lim \bigl(\cdots \xrightarrow{\Omega} (\infty, \omega) - \mathfrak{Cat}_* \xrightarrow{\Omega} (\infty, \omega) - \mathfrak{Cat}_* \xrightarrow{\Omega} (\infty, \omega) - \mathfrak{Cat}_* \bigr)$$

▶ Universal way to turn Σ ⊢ Ω into an equivalence Σ: \mathfrak{C} at $\mathfrak{Sp} \simeq \mathfrak{C}$ at \mathfrak{Sp} : $Ω = Σ^{-1}$

Categorical spectra

Adjunction
$$(\infty,\omega)$$
- \mathfrak{Cat}_* \perp (∞,ω) - \mathfrak{Cat}_* with $\Omega_X\mathfrak{X}=\mathsf{hom}_{\mathfrak{X}}(X,X)$

Definition [Stefanich]

$$\mathfrak{CatSp} = \lim \bigl(\cdots \xrightarrow{\Omega} (\infty, \omega) - \mathfrak{Cat}_* \xrightarrow{\Omega} (\infty, \omega) - \mathfrak{Cat}_* \xrightarrow{\Omega} (\infty, \omega) - \mathfrak{Cat}_* \bigr)$$

- ▶ Universal way to turn Σ ⊢ Ω into an equivalence Σ: \mathfrak{C} at \mathfrak{S} ρ $\simeq \mathfrak{C}$ at \mathfrak{S} ρ: $Ω = Σ^{-1}$
- ▶ Objects $((\mathfrak{X}_n, X_n) \in (\infty, \omega)$ - $\mathfrak{Cat}_*)_{n \geqslant 0}$ with $\mathfrak{X}_n \xrightarrow{\simeq} \Omega_{X_{n+1}} \mathfrak{X}_{n+1}$

Categorical spectra

Adjunction
$$(\infty,\omega)$$
- \mathfrak{Cat}_* \perp (∞,ω) - \mathfrak{Cat}_* with $\Omega_X\mathfrak{X}=\mathsf{hom}_{\mathfrak{X}}(X,X)$

Definition [Stefanich]

$$\mathfrak{CatSp} = \lim \bigl(\cdots \xrightarrow{\Omega} (\infty, \omega) - \mathfrak{Cat}_* \xrightarrow{\Omega} (\infty, \omega) - \mathfrak{Cat}_* \xrightarrow{\Omega} (\infty, \omega) - \mathfrak{Cat}_* \bigr)$$

- ▶ Universal way to turn Σ ⊢ Ω into an equivalence Σ: \mathfrak{C} at \mathfrak{S} ρ $\simeq \mathfrak{C}$ at \mathfrak{S} ρ: $Ω = Σ^{-1}$
- ▶ Objects $((\mathfrak{X}_n, X_n) \in (\infty, \omega)$ - $\mathfrak{Cat}_*)_{n \geqslant 0}$ with $\mathfrak{X}_n \xrightarrow{\simeq} \Omega_{X_{n+1}} \mathfrak{X}_{n+1}$
- \blacktriangleright kth projection $\Omega^{\infty-k}$: $\mathfrak{CatSp} \to (\infty, \omega)$ - \mathfrak{Cat}_* such that $\Omega^{\infty-k} \circ \Omega \simeq \Omega^{\infty-k+1}$
 - \implies For n < 0, $\Omega^{\infty n} = \Omega^{\infty} \circ \Omega^{-n}$
 - \implies Left-adjoints $\Sigma^{\infty-k} = \Sigma^{-k} \circ \Sigma^{\infty} : (\infty, \omega)$ - $\mathfrak{C}at_* \to \mathfrak{C}at\mathfrak{Sp}$

- ► The sequence $(\mathfrak{Mob}^n(\Bbbk))_{n\geqslant 0}$ with $\Omega_{\mathfrak{Mob}^n(\Bbbk)}\mathfrak{Mob}^{n+1}(\Bbbk) \simeq \mathfrak{Mob}^n(\Bbbk)$ defines a categorical spectrum $\mathfrak{mob}(\Bbbk)$
 - $ightharpoonup \Sigma \mathfrak{mod}(\Bbbk) \simeq \mathfrak{mod}(\mathfrak{Mod}(\Bbbk))$

- ▶ The sequence $(\mathfrak{Nob}^n(\Bbbk))_{n\geqslant 0}$ with $\Omega_{\mathfrak{Nob}^n(\Bbbk)}\mathfrak{Nob}^{n+1}(\Bbbk)\simeq \mathfrak{Nob}^n(\Bbbk)$ defines a categorical spectrum $\mathfrak{mob}(\Bbbk)$
 - $ightharpoonup \Sigma \mathfrak{mod}(\mathbb{k}) \simeq \mathfrak{mod}(\mathfrak{Mod}(\mathbb{k}))$
- $lackbox{}(\mathfrak{V},\otimes)$ an \mathcal{E}_{∞} -monoidal (∞,ω) -category The sequence of deloopings $(\mathfrak{B}^n\mathfrak{V})$ defines a categorical spectrum \mathfrak{BV}

- ▶ The sequence $(\mathfrak{Mob}^n(\Bbbk))_{n\geqslant 0}$ with $\Omega_{\mathfrak{Mob}^n(\Bbbk)}\mathfrak{Mob}^{n+1}(\Bbbk)\simeq \mathfrak{Mob}^n(\Bbbk)$ defines a categorical spectrum $\mathfrak{mob}(\Bbbk)$
 - $ightharpoonup \Sigma mod(\mathbb{k}) \simeq mod(\mathfrak{Mod}(\mathbb{k}))$
- $lackbox{}(\mathfrak{V},\otimes)$ an \mathcal{E}_{∞} -monoidal (∞,ω) -category The sequence of deloopings $(\mathfrak{B}^n\mathfrak{V})$ defines a categorical spectrum \mathfrak{BV}

Morita categorical spectrum

```
{\mathfrak V} symmetric monoidal (\infty,1)-category. \longrightarrow Morita (\infty,n+1)-category {\mathfrak M}{\mathfrak o}{\mathfrak r}_n({\mathfrak V}) with objects: {\mathcal E}_n-algebras in {\mathfrak V} 1-arrows: {\mathcal E}_{n-1}-algebras in {\mathcal E}_n-bimodules ... and so on...
```

- ▶ The sequence $(\mathfrak{Nob}^n(\Bbbk))_{n\geqslant 0}$ with $\Omega_{\mathfrak{Nob}^n(\Bbbk)}\mathfrak{Nob}^{n+1}(\Bbbk)\simeq \mathfrak{Nob}^n(\Bbbk)$ defines a categorical spectrum $\mathfrak{mob}(\Bbbk)$
 - $ightharpoonup \Sigma mod(\mathbb{k}) \simeq mod(\mathfrak{Mod}(\mathbb{k}))$
- $lackbox{}(\mathfrak{V},\otimes)$ an \mathcal{E}_{∞} -monoidal (∞,ω) -category The sequence of deloopings $(\mathfrak{B}^n\mathfrak{V})$ defines a categorical spectrum \mathfrak{BV}

Morita categorical spectrum

```
{\mathfrak V} symmetric monoidal (\infty,1)-category. \longrightarrow Morita (\infty,n+1)-category {\mathfrak M}{\mathfrak o}{\mathfrak r}_n({\mathfrak V}) with objects: {\mathcal E}_n-algebras in {\mathfrak V} 1-arrows: {\mathcal E}_{n-1}-algebras in {\mathcal E}_n-bimodules ... and so on...
```

Non-linear version: Iterated spans

Contents - Section 1: Categorical spectra

- Motivation
- Categorical spectra
 - Definition and examples
 - Cells of categorical spectra

Stable cells

Recollection: stable homotopy groups of spectra

$$X = (X_n)_n$$
 spectrum. $\pi_k^s(X) = \operatorname{colim}_n \pi_{n+k}(X_n)$

Stable cells

Recollection: stable homotopy groups of spectra

$$X = (X_n)_n$$
 spectrum. $\pi_k^s(X) = \operatorname{colim}_n \pi_{n+k}(X_n)$

 \mathbb{D}_n walking *n*-cell: one *n*-cell, and two *k*-cells for k < n

$$D_0 = *$$
 $D_1 = \cdot \rightarrow \cdot$ $D_2 = \cdot \bigcirc$

For \mathbb{C} any (∞, ω) -category, $hom(\mathbb{D}_k, \mathbb{C}) = \{k \text{-cells in } \mathbb{C}\}$

Stable cells

Recollection: stable homotopy groups of spectra

$$X = (X_n)_n$$
 spectrum. $\pi_k^s(X) = \operatorname{colim}_n \pi_{n+k}(X_n)$

 \mathfrak{D}_n walking *n*-cell: one *n*-cell, and two *k*-cells for k < n

$$\mathfrak{D}_0=\ast$$

$$\mathcal{D}_0 = * \qquad \qquad \mathcal{D}_1 = \cdot \to \cdot$$

$$\mathcal{D}_2 = \cdot$$

$$D_3 = \cdot \bigcirc$$

For \mathbb{C} any (∞, ω) -category, $hom(\mathbb{D}_k, \mathbb{C}) = \{k \text{-cells in } \mathbb{C}\}$

Stable cells

$$\mathfrak{X}=(\mathfrak{X}_n)_n$$
 categorical spectrum.

$$\operatorname{cell}_k(\mathfrak{X}) = \operatorname*{colim}_{n\geqslant 0} \operatorname{hom}(\mathfrak{D}_{k+n},\mathfrak{X}_n)$$

 $ightharpoonup \operatorname{cell}_k(\Sigma \mathfrak{X}) \simeq \operatorname{cell}_{k-1}(\mathfrak{X})$

 $\forall n \in \mathbb{Z} \text{, composition maps } \operatorname{cell}_n(\mathfrak{X}) \underset{\operatorname{cell}_{n-1}(\mathfrak{X})}{\times} \operatorname{cell}_n(\mathfrak{X}) \to \operatorname{cell}_n(\mathfrak{X})$

 ${\sf Univalence/Rezk-completeness:} \ \ {\sf Invertible} \ \ {\it n-cells} \ \ {\sf are} \ \ {\sf the} \ \ {\sf image} \ \ {\sf of} \ \ {\sf cell}_{n-1}(\mathfrak{X}) \hookrightarrow {\sf cell}_n(\mathfrak{X})$

 $\forall n \in \mathbb{Z} \text{, composition maps } \operatorname{cell}_n(\mathfrak{X}) \underset{\operatorname{cell}_{n-1}(\mathfrak{X})}{\times} \operatorname{cell}_n(\mathfrak{X}) \to \operatorname{cell}_n(\mathfrak{X})$

Univalence/Rezk-completeness: Invertible *n*-cells are the image of $\operatorname{cell}_{n-1}(\mathfrak{X}) \hookrightarrow \operatorname{cell}_n(\mathfrak{X})$

Definition

A categorical spectrum is *n*-categorical if its *k*-cells are invertible $\forall k > n$

 $ightharpoonup (-\infty)$ -categorical categorical spectra recover spectra

$$\forall n \in \mathbb{Z} \text{, composition maps } \operatorname{cell}_n(\mathfrak{X}) \underset{\operatorname{cell}_{n-1}(\mathfrak{X})}{\times} \operatorname{cell}_n(\mathfrak{X}) \to \operatorname{cell}_n(\mathfrak{X})$$

Univalence/Rezk-completeness: Invertible *n*-cells are the image of $\operatorname{cell}_{n-1}(\mathfrak{X}) \hookrightarrow \operatorname{cell}_n(\mathfrak{X})$

Definition

A categorical spectrum is *n*-categorical if its *k*-cells are invertible $\forall k > n$

- $ightharpoonup (-\infty)$ -categorical categorical spectra recover spectra
- ▶ Ex.: the core $Mor(Mob(k))^{\sim}$ is the Brauer spectrum

$$\forall n \in \mathbb{Z} \text{, composition maps } \operatorname{cell}_n(\mathfrak{X}) \underset{\operatorname{cell}_{n-1}(\mathfrak{X})}{\times} \operatorname{cell}_n(\mathfrak{X}) \to \operatorname{cell}_n(\mathfrak{X})$$

Univalence/Rezk-completeness: Invertible *n*-cells are the image of $\operatorname{cell}_{n-1}(\mathfrak{X}) \hookrightarrow \operatorname{cell}_n(\mathfrak{X})$

Definition

A categorical spectrum is *n*-categorical if its *k*-cells are invertible $\forall k > n$

- $ightharpoonup (-\infty)$ -categorical categorical spectra recover spectra
- ▶ Ex.: the core $\mathfrak{Mor}(\mathfrak{Mod}(\mathbb{k}))^{\simeq}$ is the Brauer spectrum

Definition

A categorical spectrum $\mathfrak X$ is connective if $\operatorname{cell}_k(\mathfrak X) \simeq * \forall k < 0$

▶ $\Re: \mathcal{E}_{\infty}$ -Alg((\infty, \omega)-Cat) $\xrightarrow{\simeq}$ CatSp^{cn}

Contents - Section 2: \mathbb{Z} -categories

- Motivation
- Categorical spectra
 - Definition and examples
 - Cells of categorical spectra
- Z-categories
 - Globular presentation
 - Comparisons and cells

Contents - Section 2: **Z**-categories

- Motivation
- Categorical spectra
- Z-categories
 - Globular presentation
 - Comparisons and cells

 (∞, \mathbb{Z}) -categories

Adjunction
$$(\infty, \omega)$$
-Cat \perp (∞, ω) -Cat with:

$$\Xi\mathfrak{C} = \left(0 \xrightarrow{\mathsf{hom}(0,1) = \mathfrak{C}} 1\right) \qquad \text{and} \qquad \mathsf{H}\mathfrak{C} = \operatornamewithlimits{colim}_{C,D \in \mathsf{obj}(\mathfrak{C})} \mathsf{hom}_{\mathfrak{C}}(C,D)$$

Ex.:
$$\Xi D_n = D_{n+1}$$
 (so $D_n = \Xi^n *$)

 (∞, \mathbb{Z}) -categories

Adjunction
$$(\infty, \omega)$$
-Cat \perp (∞, ω) -Cat with:

$$\Xi\mathfrak{C} = \left(0 \xrightarrow{\mathsf{hom}(0,1) = \mathfrak{C}} 1\right) \qquad \text{and} \qquad \mathsf{H}\mathfrak{C} = \operatornamewithlimits{colim}_{C,D \in \mathsf{obj}(\mathfrak{C})} \mathsf{hom}_{\mathfrak{C}}(C,D)$$

Ex.:
$$\Xi D_n = D_{n+1}$$
 (so $D_n = \Xi^n *$)

Definition

$$(\infty,\mathbb{Z})\text{-}\mathfrak{Cat}=\text{lim}\big(\cdots\xrightarrow{H}(\infty,\omega)\text{-}\mathfrak{Cat}\xrightarrow{H}(\infty,\omega)\text{-}\mathfrak{Cat}\big)$$

 (∞, \mathbb{Z}) -categories

Adjunction
$$(\infty, \omega)$$
-Cat \perp (∞, ω) -Cat with:

$$\Xi \mathfrak{C} = \left(0 \xrightarrow{\mathsf{hom}(0,1) = \mathfrak{C}} 1\right) \qquad \text{and} \qquad \mathsf{H}\mathfrak{C} = \operatornamewithlimits{colim}_{C,D \in \mathsf{obj}(\mathfrak{C})} \mathsf{hom}_{\mathfrak{C}}(C,D)$$

Ex.:
$$\Xi D_n = D_{n+1}$$
 (so $D_n = \Xi^n *$)

Definition

$$(\infty, \mathbb{Z})$$
- $\mathfrak{Cat} = \lim \left(\cdots \xrightarrow{\mathsf{H}} (\infty, \omega) - \mathfrak{Cat} \xrightarrow{\mathsf{H}} (\infty, \omega) - \mathfrak{Cat} \right)$

Theorem [K.]

Equivalence of ∞ -categories $\mathfrak{CatSp} \simeq (\infty, \mathbb{Z})$ - \mathfrak{Cat}_*

Joyal's cell category Θ : category of ω -categories free on pasting diagrams

E.g.
$$\cdot \stackrel{\checkmark}{\overset{\checkmark}{\overset{\checkmark}{\bigvee}}} \cdot \stackrel{\checkmark}{\overset{\checkmark}{\bigvee}} \cdot \in \Theta_2$$

Joyal's cell category Θ : category of ω -categories free on pasting diagrams

E.g.
$$\cdot \xrightarrow{\psi} \cdot \quad \psi \cdot \in \Theta_2$$

Lemma [Ara]

Any $T \in \Theta$ is a gluing of globes: $T \simeq \mathbb{D}_{n_1} \coprod_{\mathbb{D}_{m_1}} \cdots \coprod_{\mathbb{D}_{m_{p-1}}} \mathbb{D}_{n_p}$,

for $n_1, \ldots, n_p, m_1, \ldots, m_{p-1} \in \mathbb{N}$ with $m_i < n_i, n_{i+1}$

Joyal's cell category Θ : category of ω -categories free on pasting diagrams

E.g.
$$\overset{v}{\overset{v}{\longleftrightarrow}} \cdot \overset{\cdot}{\overset{\cdot}{\longleftrightarrow}} \cdot \in \Theta_2$$

Lemma [Ara]

Any $T \in \Theta$ is a gluing of globes: $T \simeq \mathcal{D}_{n_1} \coprod_{\mathcal{D}_{m_1}} \cdots \coprod_{\mathcal{D}_{m_{p-1}}} \mathcal{D}_{n_p}$,

for $n_1, \ldots, n_p, m_1, \ldots, m_{p-1} \in \mathbb{N}$ with $m_i < n_i, n_{i+1}$

Proposition [Berger]

 (∞,ω) -Cat \subseteq Fun $(\Theta^{op},\infty$ -Grp $\mathfrak{d})$ full subcat

Joyal's cell category Θ : category of ω -categories free on pasting diagrams

E.g.
$$\overset{\psi}{\longleftrightarrow} \overset{\cdot}{\longleftrightarrow} \cdot \in \Theta_2$$

Lemma [Ara]

Any $T \in \Theta$ is a gluing of globes: $T \simeq \mathfrak{D}_{n_1} \coprod_{\mathfrak{D}_{m_1}} \cdots \coprod_{\mathfrak{D}_{m_{p-1}}} \mathfrak{D}_{n_p}$,

for $n_1, \ldots, n_p, m_1, \ldots, m_{p-1} \in \mathbb{N}$ with $m_i < n_i, n_{i+1}$

Proposition [Berger]

 (∞,ω) -Cat \subseteq Fun $(\Theta^{op},\infty$ -Grpd) full subcat on $\mathfrak{X}\colon \Theta^{op}\to\infty$ -Grpd such that

$$\mathfrak{X}(T) \xrightarrow{\cong} \mathfrak{X}(\mathfrak{D}_1) \underset{\mathfrak{X}(\mathfrak{D}_{m_1})}{\times} \cdots \underset{\mathfrak{X}(\mathfrak{D}_{m_{p-1}})}{\times} \mathfrak{X}(\mathfrak{D}_p) \qquad \text{(plus Rezk-completeness)}$$

The stable cells category

 \triangleright Ξ restricts to an endofunctor of Θ (but H doesn't)

Definition [Lessard]

$$\Theta_{\mathbb{Z}} \coloneqq \text{colim} \big(\Theta \xrightarrow{\Xi} \Theta \xrightarrow{\Xi} \Theta \xrightarrow{\Xi} \cdots \big)$$

The stable cells category

ightharpoonup Ξ restricts to an endofunctor of Θ (but H doesn't)

Definition [Lessard]

$$\Theta_{\mathbb{Z}} \coloneqq \operatorname{colim}(\Theta \xrightarrow{\Xi} \Theta \xrightarrow{\Xi} \Theta \xrightarrow{\Xi} \cdots)$$

▶ $\mathbb{G} \subset \Theta$ subcat on globes and ω -graphs morphisms: $\mathbb{D}_0 \xrightarrow[i_0^+]{i_0^+} \cdots \xrightarrow[i_{n-1}^+]{i_{n-1}^+} \mathbb{D}_n \xrightarrow[i_n^+]{i_n^+} \cdots$

The stable cells category

ightharpoonup Ξ restricts to an endofunctor of Θ (but H doesn't)

Definition [Lessard]

$$\Theta_{\mathbb{Z}} \coloneqq \operatorname{colim}(\Theta \xrightarrow{\Xi} \Theta \xrightarrow{\Xi} \Theta \xrightarrow{\Xi} \cdots)$$

- ▶ $\mathbb{G} \subset \Theta$ subcat on globes and ω -graphs morphisms: $\mathbb{D}_0 \xrightarrow[i_n]{i_0^+} \cdots \xrightarrow[i_{n-1}]{i_{n-1}^+} \mathbb{D}_n \xrightarrow[i_n]{i_n^+} \cdots$
- ► Stable globe category G_{st}: shape

$$\cdots \xrightarrow{i^+_{-m-1}} \mathcal{D}_{-m} \xrightarrow{i^+_{-m}} \cdots \xrightarrow{i^+_{-2}} \mathcal{D}_{-1} \xrightarrow{i^+_{-1}} \mathcal{D}_0 \xrightarrow{i^+_0} \mathcal{D}_1 \xrightarrow{i^+_0} \mathcal{D}_1 \xrightarrow{i^+_1} \cdots \xrightarrow{i^+_{n-1}} \mathcal{D}_n \xrightarrow{i^+_n} \cdots$$

Lemma [Lessard]

$$\mathbb{G}_{\mathbb{Z}} \coloneqq \text{colim} \big(\mathbb{G} \xrightarrow{\Xi} \mathbb{G} \xrightarrow{\Xi} \mathbb{G} \xrightarrow{\Xi} \cdots \big) \simeq \mathbb{G}_{\text{st}}$$

Globular presentation for (∞, \mathbb{Z}) -categories

Lemma [Lessard]

Any $T\in\Theta_{\mathbb{Z}}$ is a gluing of stable globes: $T\simeq \mathbb{D}_{n_1}\coprod_{\mathbb{D}_{m_1}}\cdots\coprod_{\mathbb{D}_{m_{p-1}}}\mathbb{D}_{n_p}$,

for $n_1, \ldots, n_p, m_1, \ldots, m_{p-1} \in \mathbb{Z}$ with $m_i < n_i, n_{i+1}$

Globular presentation for (∞, \mathbb{Z}) -categories

Lemma [Lessard]

Any $T \in \Theta_{\mathbb{Z}}$ is a gluing of stable globes: $T \simeq \mathbb{D}_{n_1} \coprod_{\mathbb{D}_{m_1}} \cdots \coprod_{\mathbb{D}_{m_{p-1}}} \mathbb{D}_{n_p}$, for $n_1, \ldots, n_p, m_1, \ldots, m_{p-1} \in \mathbb{Z}$ with $m_i < n_i, n_{i+1}$

Proposition [Lessard, K.]

$$(\infty,\mathbb{Z})\text{-Cat}\subseteq\operatorname{Fun}\big(\Theta^{\operatorname{op}}_{\mathbb{Z}},\infty\text{-Grpd}\big) \text{ full subcat on } \mathfrak{X}\colon\Theta^{\operatorname{op}}_{\mathbb{Z}}\to\infty\text{-Grpd} \text{ such that }$$

$$\mathfrak{X}(\mathcal{T}) \xrightarrow{\cong} \mathfrak{X}(\mathfrak{D}_1) \underset{\mathfrak{X}(\mathfrak{D}_{m_1})}{\times} \cdots \underset{\mathfrak{X}(\mathfrak{D}_{m_{p-1}})}{\times} \mathfrak{X}(\mathfrak{D}_p) \qquad \text{(plus Rezk-completeness)}$$

Globular presentation for (∞, \mathbb{Z}) -categories

Lemma [Lessard]

Any $T \in \Theta_{\mathbb{Z}}$ is a gluing of stable globes: $T \simeq \mathcal{D}_{n_1} \coprod_{\mathcal{D}_{m_1}} \cdots \coprod_{\mathcal{D}_{m_{p-1}}} \mathcal{D}_{n_p}$, for $n_1, \ldots, n_p, m_1, \ldots, m_{p-1} \in \mathbb{Z}$ with $m_i < n_i, n_{i+1}$

Proposition [Lessard, K.]

 (∞,\mathbb{Z}) -Cat $\subseteq \operatorname{Fun}(\Theta^{\operatorname{op}}_{\mathbb{Z}},\infty$ -Grp $\emptyset)$ full subcat on $\mathfrak{X}\colon\Theta^{\operatorname{op}}_{\mathbb{Z}} o\infty$ -Grp \emptyset such that

$$\mathfrak{X}(\mathcal{T}) \xrightarrow{\cong} \mathfrak{X}(\mathfrak{D}_1) \underset{\mathfrak{X}(\mathfrak{D}_{m_1})}{\times} \cdots \underset{\mathfrak{X}(\mathfrak{D}_{m_{p-1}})}{\times} \mathfrak{X}(\mathfrak{D}_p) \qquad \text{(plus Rezk-completeness)}$$

 \implies hom $(\mathfrak{D}_n,\mathfrak{C})$ *n*-cells of \mathfrak{C} $\forall n \in \mathbb{Z}$, plus composition operations

Remark: Segal condition comes from an "automatic" Segal condition determined by $\Theta_{\mathbb{Z}}$

Contents - Section 2: \mathbb{Z} -categories

- Motivation
- Categorical spectra
- Z-categories
 - Globular presentation
 - Comparisons and cells

Monoidal comparison

$$\text{Define } \mathcal{E}_n \mathfrak{CatSp} \coloneqq \lim \left(\cdots \xrightarrow{\Omega} \mathcal{E}_n - \mathfrak{Alg}((\infty, \omega) - \mathfrak{Cat}) \xrightarrow{\Omega} \mathcal{E}_n - \mathfrak{Alg}((\infty, \omega) - \mathfrak{Cat}) \right)$$

Theorem

For any $0 \leqslant n \leqslant \infty$, equivalence $\mathcal{E}_n \mathfrak{CatSp} \simeq \mathcal{E}_n - \mathfrak{Alg}((\infty, \mathbb{Z}) - \mathfrak{Cat})$

Proof.

Both (∞, \mathbb{Z}) -categories and \mathcal{E}_n -algebras are given as Segal objects

Monoidal comparison

 $\text{Define } \mathcal{E}_n \mathfrak{CatSp} \coloneqq \lim \bigl(\cdots \xrightarrow{\Omega} \mathcal{E}_n - \mathfrak{Alg}((\infty, \omega) - \mathfrak{Cat}) \xrightarrow{\Omega} \mathcal{E}_n - \mathfrak{Alg}((\infty, \omega) - \mathfrak{Cat}) \bigr)$

Theorem

For any $0 \leqslant n \leqslant \infty$, equivalence $\mathcal{E}_n \mathfrak{CatSp} \simeq \mathcal{E}_n - \mathfrak{Alg}((\infty, \mathbb{Z}) - \mathfrak{Cat})$

Proof.

Both (∞, \mathbb{Z}) -categories and \mathcal{E}_n -algebras are given as Segal objects

Proposition [Stefanich]

For any n, \mathcal{E}_n $\mathfrak{CatSp} \simeq \mathfrak{CatSp}$

 \implies A pointing (\mathcal{E}_0 -structure) on an (∞, \mathbb{Z}) -category is enough to infinitely deloop it to an \mathcal{E}_∞ -monoidal (∞, \mathbb{Z}) -category

Proof of Stefanich's monoidal equivalence

Cells and stable cells

Proposition

 $\mathfrak X$ a categorical spectrum, $\kappa(\mathfrak X)$ the corresponding pointed $(\infty,\mathbb Z)$ -category. For any $n\in\mathbb Z$, equivalence

$$\operatorname{cell}_n(\mathfrak{X}) \simeq \operatorname{hom}(\mathfrak{D}_n, \kappa \mathfrak{X})$$

Proof.

 $\mathsf{hom}(\mathfrak{D}_{k+i},(\kappa\mathfrak{X})_i)\simeq \mathsf{hom}(\Xi^i\mathfrak{D}_k,\mathsf{H}^{\infty-i}\mathfrak{C})\simeq \mathsf{hom}(\mathfrak{D}_k,\mathsf{H}^{\infty}\mathfrak{C})$

Cells and stable cells

Proposition

 $\mathfrak X$ a categorical spectrum, $\kappa(\mathfrak X)$ the corresponding pointed $(\infty,\mathbb Z)$ -category. For any $n\in\mathbb Z$, equivalence

$$\operatorname{cell}_n(\mathfrak{X}) \simeq \operatorname{hom}(\mathfrak{D}_n, \kappa \mathfrak{X})$$

Proof.

$$\mathsf{hom}(\mathfrak{D}_{k+i}, (\kappa \mathfrak{X})_i) \simeq \mathsf{hom}(\Xi^i \mathfrak{D}_k, \mathsf{H}^{\infty - i} \mathfrak{C}) \simeq \mathsf{hom}(\mathfrak{D}_k, \mathsf{H}^{\infty} \mathfrak{C})$$

 \implies Diagram $\mathsf{hom}(\mathfrak{D}_k, (\kappa \mathfrak{X})_0) \to \mathsf{hom}(\mathfrak{D}_{k+1}, (\kappa \mathfrak{X})_1) \to \cdots$ is constant.

Cells and stable cells

Proposition

 $\mathfrak X$ a categorical spectrum, $\kappa(\mathfrak X)$ the corresponding pointed $(\infty,\mathbb Z)$ -category.

For any $n \in \mathbb{Z}$, equivalence

$$\operatorname{cell}_n(\mathfrak{X}) \simeq \operatorname{hom}(\mathfrak{D}_n, \kappa \mathfrak{X})$$

Proof.

$$\mathsf{hom}(\mathfrak{D}_{k+i}, (\kappa \mathfrak{X})_i) \simeq \mathsf{hom}(\Xi^i \mathfrak{D}_k, \mathsf{H}^{\infty-i} \mathfrak{C}) \simeq \mathsf{hom}(\mathfrak{D}_k, \mathsf{H}^{\infty} \mathfrak{C})$$

 \implies Diagram $\mathsf{hom}(\mathfrak{D}_k, (\kappa \mathfrak{X})_0) \to \mathsf{hom}(\mathfrak{D}_{k+1}, (\kappa \mathfrak{X})_1) \to \cdots$ is constant.

Corollary [Lessard]

Equivalence $\mathfrak{Sp} \simeq (\infty, \mathbb{Z})$ - \mathfrak{Cat}^{grpd}_*

Proof.

Restrict the equivalence $\mathfrak{C}at\mathfrak{Sp}\simeq(\infty,\mathbb{Z})$ - $\mathfrak{C}at_*$ to objects with all cells invertible

Backup

Univalence for (∞, n) -categories

Theorem [Ayala—Francis]

For finite n, functors $\Theta_n^{\text{op}} \to \infty$ -Grpt with the Segal conditions are equivalent to flagged (∞, n) -categories:

$$\mathfrak{C}_0 \to \mathfrak{C}_1 \to \cdots \to \mathfrak{C}_{n-1} \to \mathfrak{C}_n = \mathfrak{C}$$

Univalence: \mathbb{C}_i is the (∞, i) -core of \mathbb{C} for all i < n

Equivalent characterisation [Rezk]

 $\operatorname{\mathfrak{Eq}}$ the walking equivalence. A Segal sheaf $\operatorname{\mathfrak{X}}$ is univalent iff

$$\mathsf{hom}(\Xi^k *, \mathfrak{X}) \xrightarrow{\cong} \mathsf{hom}(\Xi^k \mathfrak{eq}, \mathfrak{X}) \text{ for all } k < n$$

For $n = \omega$: call a Segal Θ -presheaf a flagged (∞, ω) -category

Univalence for (∞, \mathbb{Z}) -categories

A Segal $\Theta_{\mathbb{Z}}$ -presheaf corresponds to a sequence $(\mathfrak{C}_n)_{n\geqslant 0}$ of flagged (∞,ω) -categories with $H\mathfrak{C}_{n+1}\simeq \mathfrak{C}_n$

Lemma [K.]

For $\mathscr C$ a Segal $\Theta_{\mathbb Z}$ -presheaf, the following are equivalent:

- ightharpoonup Each \mathbb{C}_i is univalent
- $ightharpoonup \mathscr{C}$ is local for $\Xi^k \mathfrak{eq} \to \Xi^k *$ for each $k \in \mathbb{Z}$