Stacking utilizado nos experimentos

Raphael Rodrigues Campos 26 abril, 2016

Stacking

Stacking também conhecido como "Stacked Generalization" é um método para combinar multiplos classificadores usando algoritmos de aprendizados heterogêneos $L_1, ..., L_N$ sobre um único conjunto de dados D, que consiste de exemplos $e_i = (x_i, y_i)$, onde x_i é o vetor de atributos e y_i sua classificação.

Stacking Framework

O staking framework utilizado é baseado no descrito em [1] David H. Wolpert, "Stacked Generalization", Neural Networks, 5, 241–259, 1992. Foi utilizado um stacking de dois níveis (o framework não se limita a apenas dois níveis, é possível fazer o stacking de quantos níveis julgar necessário), que pode ser dividido em duas fases. Na primeira fase, um conjunto de classificadores do nível base $C_1, C_2, ..., C_N$ é gerado, onde $C_i = L_i(D)$. Na segunda fase um classidicador do meta-nível aprende a combinar as saídas dos classificadores do nível base.

Para gerar o conjunto de treino para o aprendizado do classificador do meta-nível, pode-se aplicar o procedimento **leave-one-out** ou **cross validation**. Por questões óbvias de custo computacional, é utilizado nesse relatório cross validation, mais especificamente **5-fold cross validation**. Cada classificador do nível base aprende usando $D-F_k$ deixando o k-ésimo fold para teste: $\forall i=1,...,N: \forall k=1,...,5: C_i^k=L_i(D-F_k)$. Agora, os classificadores recém aprendidos são usados para gerar as predições para $\forall x_j \in F_k: \hat{y}_j^i = C_i^k(x_j)$. O conjunto de treino do meta-nível consiste de exemplos da seguinte forma $((\hat{y}_i^1,...,\hat{y}_i^N),y_i)$, onde os atributos são as predições do s classificadores do nível base e a classe é a classe correta sabida de antemão.

Exemplo

Esse procedimento pode parecer complicado, mas na verdade é simples. Como um exemplo, vamos gerar alguns dados sintéticos com a função "saída = soma do três componentes de entrada". Nosso conjunto de treino D consiste de 5 pares de entrada e saída $\{((0,0,0),0),((1,0,0),1),((1,2,0),3),((1,1,1),3),((1,-2,4),3)\}$, todas as entradas sem ruídos. Vamos rotular esses 5 pares de entrada e saída como F_1 até F_5 (Então por exemplo $D-F_2$ consiste dos quatros pares $\{((0,0,0),0),((1,2,0),3),((1,1,1),3),((1,-2,4),3)\}$). Nesse exemplo, temos dois classificadores do nível base C_1 e C_2 , e um único classificador do meta-nível Γ . O conjunto de treino do meta-nível D' é dado pelo cinco pares de entrada e saída $\{(C_1^k(F_k), C_2^k(F_k)),$ componente de saída de F_k): $\forall k \in \{1, ..., 5\}$ e $C_i^k = L_i(D-F_k)\}$ (Esse espaço do meta-nível possui duas dimensões de entrada e uma de saída). Ou seja, a instância do conjunto de treino do meta-nível correspondente a k=1 tem o componetne de saída 0 e entrada $(C_1^1((0,0,0)), C_2^1((0,0,0)))$. Agora nos é dado um exemplo de teste no formato do nível base (x_1,x_2,x_3) . Nós predizemos seu valor com $\Gamma((C_1((x_1,x_2,x_3)), (C_2((x_1,x_2,x_3))))$, onde C_1 e C_2 foram treinados com todo D, e Γ com D'. Em outras palavras, nós predizemos o valor da entrada de teste $q=(x_1,x_2,x_3)$ treinando Γ em D' e assim predizendo a entrada formada pelas predições do valor do exemplo de teste q, de ambos classificadores do nível base C_1 e C_2 , que por suas vezes foram treinados com todo D.

Stacking com distribuições de probabilidade

Usar probabilidade para gerar o conjunto de treino do meta-nível é mais vantajoso já que disponibiliza mais informação acerca das predições feitas pelos classificadores do nível base. Essa informações adicionais

permitem que não seja usado somente a predição, mas também o confiança de cada classificador do nível base.

Nessa abordagem, cada classificador do nível base prediz uma Distribuição de Probabilidade (DP) sobre todas as classes possíveis. Então, a predição do classificador do nível base C apliacado a um exemplo x é a DP: $p^C(x) = (p^C(c_1|x), ..., p^C(c_m|x))$, onde $\{c_1, ..., c_m\}$ é o conjunto de possíveis valores para as classes e $p^C(c_i|x)$) descreve a probabilidade do exemplo x ser da classe c_i estimado pelo classificador C. A classe c_j com maior probalidade será classe predita por C. Dessa forma, os atributos do meta-nível serão as probabilidade preditas para cada classe possível por cada classificador do nível base. O número total de atributos no conjunto de treino do meta-nível seria Nm, m atributos para cada classificador do nível base.

Os experimentos rodados até então utilizaram o stacking framework com DPs.

Stacking com DP, Entropia e probabilidade máxima

No artigo [2] Is combining classifiers better than selecting the best one, os autores propões uma extensão para esse framework com DP espandindo o número de meta-atributos. Esse novos meta-atributos seriam:

- A distribuição de probabilidade mutiplicada
o pela probabilidade máxima: $p_{C_j} = p^{C_j}(c_i|x) \times M_{C_j}(x) = p^{C_j}(c_i|x) \times max_{i=1}^m(p^{C_j}(c_i|x)), \ \forall i \in \{1,...,m\}$ e $\forall j \in \{1,...,N\}$.
- As entropias das distripuições de probabilidade: $E_{C_j}(x) = -\sum_{i=1}^m p^{C_j}(c_i|x) \cdot \log_2(p^{C_j}(c_i|x))$.

O número total de atributos do meta-nível é N(2m+1).

A idea é obter ainda mais informações em relação a predição feita pelos classificadores do nível base. Como Ting and Witten (1999) disseram: o uso de distribuição de probabilidades tem a vantagemde capturar não apenas as predições dos classificadores do nível base, mas também, suas certezas. Os atributos adicionais tentam capturar a certeza de forma mais explicita.

Entropia é uma medida de incerteza. Quanto maior a entropia da distribuição menor é a certeza sobre a predição. A probabilidade máxima de uma DP M_{C_j} também contém informação sobre certeza da predição: quanto maior M_{C_j} for mais certo daquela resposta o classificador do nível base está, e vice versa.

Esse é uma ideia para aplicarmos futuramente. Nesse momento continuarei utilizanto somente a DP.

SVM

Nessa seção, vamos dar uma visão geral sobre Support Vector Machine(SVM) utilizado nos experimentos.

Seja $x_i \in \mathbb{R}^d$ um vetor de caracteríticas. Nosso objetivo é projetar um classificador, por exemplo, que associa a cada vetor x_i um rótulo positivo ou negativo baseado no critério desejado.

O vetor x_i é classificador olhando o sinal do resultado do função $f(x_i, w) = w^T x_i$. O objetivo é aprender a estimar os paramêtros $w \in \mathbb{R}^d$ de tal forma que o sinal é positvo seo vetor x_i pertence a classe negativa e negativo caso contrário. De fato, na formulação padrão do SVM o objetivo é ter o o valor da função no mínimo 1 no primeiro caso, e no máximo -1* no segundo, impondo uma margem.

O paramêtr w é estimado ou aprendido ajustando o função a um conjunto de treino de n pares de exemplos $(x_i, y_i), i = 1, \ldots, n$, onde $y_i \in \{-1, 1\}$ são os rótulos dos correspondentes vetores de caracteríticas. A qualidade do ajuste é mensurada pela função de perda que, em SVMs padrões SVMs, é a **hinge loss**:

$$l_i(w, x_i) = \max(0, 1 - y_i w^T x_i)) \tag{1}$$

Note que a **hinge loss** é zero apenas se o valor de $w^T x_i$ é no mínimo 1 ou no máximo -1, dependendo do rótulo de y_i .

Somente ajustar ao treino é normalmente insuficiente. Para que a função seja capaz de generalizar para dados nunca visto, é preferível um **trade off** entre a acurácia do ajuste e complexidade do modelo. Dessa forma, é adionado um termo de regularição a formula, o regularizador na formulação padrão é mensurado pela normado vetor de pesos $|w|^2$. Tirando-se a média da perda de todo os exemplos de treino e adicionando-se a ela o regularizador ponderado pelo paramêtro λ produz uma função objetiva de perda regularizada:

$$E(w) = \lambda ||w||^2 + \frac{1}{n} \sum_{i=1}^n \max(0, 1 - y_i f(w, x))$$
 (2)

Note que a função objetiva é convexa, desse modo existe um único ótimo global.

A função $f(x_i, w)$ considerada até aqui é linear em sem viés. A subseção seguinte discute como um termo de viés pode ser adicionado ao SVM.

Adicionando viés

É comum adicionar a funcão do SVM um termo de viés b, e considerar a nova função $f(x_i, w) = w^T x_i + b$. Na prática termo de viés pode ser crucial para ajustar os dados de treino de forma ótima, já que não há razão que o produto interno $w^T x_i$ devesse ser naturalmente centrado em zero. Alguns algoritmos de aprendizado do SVM podem estimar ambos w e b diretamente. Porém, outros algoritmos como **Stochastic Gradient Descente(SGC)** e **Stochastic Dual Coordinate Ascent (SDCA)** não podem (ambos usados pelo LIBLINEAR). Nesse caso, uma simples solução é adcionar um termo constante B > 0 ao dado, por exemplo, considere os vetores estendidos:

$$\bar{x_i} = \begin{bmatrix} x_i \\ B \end{bmatrix}, \ \bar{w} = \begin{bmatrix} w \\ w_b \end{bmatrix}.$$

De modo que função incorpore implicitamente o termo de viés $b = Bw_b$:

$$\bar{w}^T \bar{x_i} = w^T x_i + B w_b \tag{3}$$

A desvantagem dessa redução é que o termo w_b^2 torna parte do regularizador do SVM, que encole o viés b em direção a zero. Esse efeito pode ser aliviado tomando valor de B suficientemente grandes, por causa disso $||w||^2 >> w_b^2$ e o efeito de encolimento pode ser ignorado. Infelizmente, fazer B muito grande faz o problema numericamente desbalanciado, assim uma troca justa entre encolhimento e estabilidade é buscada. Tipicamente, isso é obtido normalizando o dado, para que tenha uma norma Euclidiana unitária e, então, escolhendo $B \in [1, 10]$.

Referências:

- http://www.vlfeat.org/api/svm-fundamentals.html
- https://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf

Esquema de ponderação TF-IDF

Um dos mais populares esquemas de ponderação de termos em recuperação de informação é baseado na combinação da frequência do termo (TF) e o fator IDF.

$$w_{i,j} = \begin{cases} tf \times idf &, f_{i,j} > 0\\ 0 &, f_{i,j} = 0 \end{cases}$$

$$\tag{4}$$

Há várias variações dos fatores TF e IDF, tais variações são mais adequadas que outras para certos algoritmo de classificação.

Variações de TF-IDF

A table mostra cinco variações do fator TF. O esquema binário atribui 1 ao TF se o termo ocorre no documento, e 0 caso contrátio. A frequência pura é o uso da contagem do número de vezes que o termo ocorre no documento. A normalização log diminui a impacto do crescimento do frequência $f_{i,j}$. A normalização 0.5 introduz dois efeitos: 1) ele normaliza o peso pela frequência máxima no documento and 2) normaliza o peso mantendo-o entre 0.5 e 1. A normalização K é simplesmente uma generalização da anterior.

Esquema	TF
binário	0,1
frequência pura	$f_{i,j}$
normalização log	$1 + \log f_{i,j}$
normalização 0.5	$0.5 + 0.5 \frac{f_{i,j}}{max_i f_{i,j}}$
normalização K	$k + (1 - K) \frac{f_{i,j}}{max_i f_{i,j}}$

Table 1: Variações do TF

A tabela mostra três variações do fator TF. O esquema unário fixa o valor do IDF como 1 (IDF é ignorado). A frequência inversa é a formulação padrão para IDF. A frequência inversa suave soma 1 ao denominador e numerador para evitar comportamento inesperado quando n_i atingir valores extremos.

Esquema	IDF
unária	1
frequência inversa	$\log \frac{N}{n_i}$
frequência inversa suave	$\log \frac{N+1}{n+1}$

Table 2: Variações do IDF

As combinações das variações de TF e IDF produzem vários esquemas TF-IDF. Nesse trabalho focaremos apenas no esquema $(1 + \log f_{i,j}) \times \log \frac{N+1}{n_i+1}$.

Normalização dos documentos

Há várias formas de normalizar documentos representados no espaço vetorial como **bag-of-words**. Seja w_j um vetor de pesos, criado a partir de algum dos esquemas de ponderação mencionado acima, que representa um documento d_j no espaço vetorial. Temos as seguintes formas normalizações utilizadas nesse trabalho:

Normalização	fórmula
None	w_j
Max	$\frac{w_j^-}{\max_i w_{i,j}}$
L1	$\frac{ \overset{\circ}{w_j} _1}{ w_j _1}$
L2	$\frac{\ \widetilde{w}_{j}^{j}\ _{1}}{\ w_{i}\ _{2}}$

Table 3: Normalizações

Efeitos dos esquemas de ponderação e normalizacao em classificação de texto

Nos experimentos subsequentes, é feito um estudo sobre os efeitos dessas normalizações e dos esquemas de ponderação quando aplicados a classificadores vetorias tais como Support Vector Machine (SVM) e K Nearest Neighbors (KNN).

SVM

% latex table generated in R 3.2.4 by x table 1.8-0 package % Tue Apr 26 21:09:39 2016

V1	V2	20NG	4UNI	ACM	REUTERS90
L2	microF1	90.06 ± 0.43	$\textbf{83.48}\pm\textbf{1.08}$	$\textbf{75.4}\pm\textbf{0.66}$	68.19 ± 1.15
	macroF1	89.93 ± 0.43	$\textbf{73.39}\pm\textbf{2.17}$	$\textbf{63.84}\pm\textbf{0.55}$	31.95 ± 2.59
L/1 -	microF1	89.8 ± 0.4	78.23 ± 1.49	$\textbf{75.31}\pm\textbf{0.74}$	$\textbf{68.25}\pm\textbf{1.2}$
	macroF1	89.59 ± 0.43	67.47 ± 3.01	$\textbf{62.33}\pm\textbf{1.76}$	$\textbf{31.37}\pm\textbf{2.22}$
MAX	microF1	88.35 ± 0.37	81.36 ± 1.01	73.82 ± 0.78	$\textbf{67.6}\pm\textbf{1.1}$
MAA	macroF1	88.3 ± 0.38	68.01 ± 2.39	$\textbf{62.55}\pm\textbf{1.53}$	$\textbf{31.73}\pm\textbf{3.13}$
NONE	microF1	83.47 ± 0.46	80.55 ± 0.72	71.34 ± 1.01	66.6 ± 1.06
	macroF1	83.37 ± 0.42	$\textbf{71.04}\pm\textbf{2.06}$	61.08 ± 0.67	$\textbf{31.68}\pm\textbf{3.32}$

Table 4: Comparação entre as normalizações aplicada ao calssificador SVM

Como pode-se observar, a normalização tem um papel fundamental no desempenho do SVM. A normalização L2 teve o melhor desempenho em todos os conjuntos de dados testados.

KNN

% latex table generated in R 3.2.4 by x table 1.8-0 package % Tue Apr 26 21:09:47 2016

V1	V2	20NG	4UNI	ACM	REUTERS90
KNN-L2	microF1	87.39 ± 0.68	$\textbf{75.51}\pm\textbf{1.25}$	$\textbf{70.67}\pm\textbf{1.1}$	69.39 ± 1.46
	macroF1	$\textbf{87.1}\pm\textbf{0.66}$	$\textbf{60.15}\pm\textbf{1.26}$	$\textbf{55.39}\pm\textbf{0.96}$	$\textbf{34.23}\pm\textbf{2.75}$
KNN-NONE	microF1	87.45 ± 0.67	$\textbf{75.73}\pm\textbf{1.2}$	$\textbf{71.06}\pm\textbf{1.03}$	$\textbf{68.13}\pm\textbf{1.01}$
	macroF1	$\textbf{87.15}\pm\textbf{0.65}$	$\textbf{60.02}\pm\textbf{0.8}$	$\textbf{55.82}\pm\textbf{0.92}$	$\textbf{31.53}\pm\textbf{3.42}$
KNN-L1	microF1	$\textbf{87.46}\pm\textbf{0.69}$	$\textbf{75.74}\pm\textbf{0.86}$	$\textbf{71.02}\pm\textbf{1.08}$	67.8 ± 1.02
	macroF1	$\textbf{87.16}\pm\textbf{0.66}$	$\textbf{60.29}\pm\textbf{0.55}$	$\textbf{55.83}\pm\textbf{1.15}$	$\textbf{30.91}\pm\textbf{2.7}$
KNN-MAX	microF1	$\textbf{87.53}\pm\textbf{0.69}$	$\textbf{75.63}\pm\textbf{0.94}$	$\textbf{70.99}\pm\textbf{0.96}$	68.07 ± 1.07
	macroF1	$\textbf{87.22}\pm\textbf{0.66}$	$\textbf{60.34}\pm\textbf{1.36}$	$\textbf{55.85}\pm\textbf{0.97}$	29.93 ± 2.48

Table 5: Comparação entre as normalizações aplicada ao calssificador KNN