

IVE 软件开发指南

版本 V1.0

© 2022 Crystal Vision Intelligence Inc.

This document contains information that is proprietary to Crystal Vision Intelligence Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

法律声明

本数据手册包含北京晶视智能科技有限公司(下称"晶视智能")的保密信息。未经授权,禁止使用或披露本数据手册中包含的信息。如您未经授权披露全部或部分保密信息,导致晶视智能遭受任何损失或损害,您应对因之产生的损失/损害承担责任。 本文件内信息如有更改,恕不另行通知。晶视智能不对使用或依赖本文件所含信息承担任何责任。

本数据手册和本文件所含的所有信息均按"原样"提供,无任何明示、暗示、法定或 其他形式的保证。晶视智能特别声明未做任何适销性、非侵权性和特定用途适用性的 默示保证,亦对本数据手册所使用、包含或提供的任何第三方的软件不提供任何保 证;用户同意仅向该第三方寻求与此相关的任何保证索赔。此外,晶视智能亦不对任 何其根据用户规格或符合特定标准或公开讨论而制作的可交付成果承担责任

目录

1	功能概述	12
	1.1	目的12
	1.2	定义及缩写12
2	设计概述	
	2.1	系统架构18
	2.2	注意事项18
3	API 参考	19
	3.1	Create Handle19
	3.2	Destroy Handle
	3.3	DMA20
	3.4	Filter
	3.5	Filter And CSC23
	3.6	CSC25
	3.7	Sobel27
	3.8	NormGrad29
	3.9	Canny Edge31
	3.10	Canny Hysteresis Edge32
	3.11	MagAndAng34

	3.12	Dilate36
	3.13	Erode37
	3.14	Thresh39
	3.15	And40
	3.16	Sub42
	3.17	Or44
	3.18	Map45
	3.19	OrdStatFilter47
	3.20	Integral48
	3.21	Histogram49
	3.22	Add51
	3.23	Xor52
	3.24	Match BgModel54
	3.25	Update BgModel56
	3.26	Gradient of Foreground58
	3.27	GMM60
5	3.28	GMM262
	3.29	Bernsen65
	3.30	NCC66

	3.31	LBP68	8
	3.32	SAD69	9
	3.33	BufFlush72	2
	3.34	BufRequest7	3
	3.35	CreateImage7	5
	3.36	CreateImage with Cache77	7
	3.37	ResetImage	8
	3.38	ReadImageArray79	9
	3.39	ReadMem80	0
	3.40	ReadMemArray8	1
	3.41	ReadData82	2
	3.42	ReadDataArray83	3
	3.43	ReadImage84	4
	3.44	ReadRawImage89	5
	3.45	WriteData80	6
	3.46	WriteMem8	7
5	3.47	WriteImage88	8
	3.48	WriteRawImage89	9
	3.49	Reset Register90	0

3.50	Dump Register	90
3.51	Split DiffFg of BgModel	91
3.52	Split ChgSta of BgModel	92
3.53	Query Tasks	93
3.54	Image2VideoFrameInfo	94
3.55	VideoFrameInfo2Image	95
3.56	FreeM	96
3.57	Freel	97
3.58	FreeD	98
3.59	Thresh_S16	99
3.60	Thresh_U16	100
3.61	Resize	101
3.62	16BitTo8Bit	102
3.63	RGB YUV Erode to Dilate	103
3.64	STCandiCorner	105
3.65	Background Subtraction	106
数据类型和数	女据结构	107
4.1	定义数据类型	111
4.2	定义结构类型	111

	IVE_IMAGE_TYPE_E_NUM	111
	IVE_IMAGE_S	114
	IVE_SRC_IMAGE_S	116
	IVE_DST_IMAGE_S	117
	IVE_DATA_S	117
	IVE_SRC_DATA_S	
	IVE_MEM_INFO_S	
	IVE_SRC_MEM_INFO_S	
	IVE_DST_MEM_INFO_S	122
	IVE_8BIT_U	123
	IVE_POINT_U16_\$	124
	IVE_POINT_\$16_\$	125
	IVE_DMA_MODE_E	126
	IVE_DMA_CTRL_S	
	IVE_FILTER_CTRL_S	129
	IVE_CSC_MODE_E	130
5	IVE_CSC_CTRL_S	132
	IVE_SOBEL_OUT_CTRL_E	133
	IVE_SOBEL_CTRL_S	134

IVE_MAG_AND_ANG_OUT_CTRL_E	135
IVE_MAG_AND_ANG_CTRL_S	136
IVE_DILATE_CTRL_S	137
IVE_ERODE_CTRL_S	138
IVE_THRESH_MODE_E	139
IVE_THRESH_CTRL_S	141
IVE_SUB_MODE_E	143
IVE_SUB_CTRL_S	144
IVE_INTEG_OUT_CTRL_E	145
IVE_INTEG_CTRL_S	146
IVE_THRESH_S16_MODE_E	147
IVE_THRESH_S16_CTRL_S	149
IVE_THRESH_U16_MODE_E	150
IVE_THRESH_U16_CTRL_S	151
IVE_16BIT_TO_8BIT_MODE_E	153
IVE_16BIT_TO_8BIT_CTRL_S	154
IVE_ORD_STAT_FILTER_MODE_E	155
IVE_ORD_STAT_FILTER_CTRL_S	156
IVE_MAP_MODE_E	157

	IVE_ADD_CTRL_S	159
	IVE_NCC_DST_MEM_S	160
	IVE_GMM_CTRL_S	161
	IVE_LBP_CMP_MODE_E	163
	IVE_LBP_CTRL_S	164
	IVE_NORM_GRAD_OUT_CTRL_E	
	IVE_NORM_GRAD_CTRL_S	167
	IVE_SAD_MODE_E	168
	IVE_SAD_OUT_CTRL_E	169
	IVE_SAD_CTRL_S	170
	IVE_HOG_CTRL_8	172
	IVE_16BIT_TO_8BIT_MODE_E	173
	IVE_16BIT_TO_8BIT_CTRL_S	175
	IVE_IVE_TYPE_E	176
	IVE_IVE_CTRL_S	177
	IVE_BLOCK_CTRL_S	178
5	技巧說明	179
	5.1 額外的緩衝區	179
6	错误码	179

7	调试信息	180
8	FAQ	183

版本记录

版本	日期	修订说明	修订人
1.0	2022/06/18	初版	Jeff

1 功能概述

1.1 目的

晶视智能 Intelligent Video Engine (IVE) 是一種使用硬件去加速电脑视觉算法的模块,用户利用 IVE 开发智能分析方案可以加速智能分析的运算,降低CPU 占用。当前 IVE 所提供的算子可以支撑开发影像或视频的智能分析方案。

1.2 **定义及缩写**

- 句柄 (handle)
 用户在调用算子创建任务时,系统会为每个任务分配一个 handle,用于标识不同的任务的执行状态。
- 返回结果标志 (bInstant)
 True 表示 Busy waiting mode, False 表示 Interrupt mode。
- 跨度 (stride) 与图像或二维数据的 width 度量—致的量,如圖 1-1 所示。
 - IVE_IMAGE_S 图像数据跨度,表示图像一行以"像素"计算的单元个数,"像素"位宽可以是 8bit, 16bit 等。
 - IVE DATA S 二维数据跨度,表示二维数据一行的字节数,即為圖 1-1 中 n=8 的情况。
 - **圖 1-1 跨度 (stride) 示意圖**

对齐

- 數據内存首地址對齊 當前 IVE 算子對其輸入輸出要求 16 對齊
- 跨度對齊 對於二維廣義圖像、二維單分量數據以及一維數組數據的跨度均必須滿足 16 像 素對齊。

• 輸入輸出數據類型

類型	圖像描述	内存地址	跨度
IVE_IMAGE_TYPE_U8C1	8bit 無號單通道圖像	僅用到 IVE_IMAGE_S 中	僅用到
	图 1-2	u64PhyAddr[0]、	u32Stride[0]
		u64VirAddr[0]	
IVE_IMAGE_TYPE_S8C1	8bit 有號單通道圖像	僅用到 IVE_IMAGE_S 中	僅用到
	图 1-2	u64PhyAddr[0]、	u32Stride[0]
		u64VirAddr[0]	
		内存地址用到	
		IVE_IMAGE_S 中的	跨度用到
	YCbCr420 Semi-	u64PhyAddr[0]、	u32Stride[0](亮
IVE_IMAGE_TYPE_YUV420SP	Planar	u64VirAddr[0](亮度 Y),	度跨度)、
	数据格式图像, 图	u64PhyAddr[1]、	u32Stride[1](色
		u64VirAddr[1](色度 U,	度 U, V 跨度)
		V)	
		内存地址用到	
		IVE_IMAGE_S 中的	跨度用到
	YCbCr422 Semi-	u64PhyAddr[0]、	u32Stride[0](亮
IVE_IMAGE_TYPE_YUV422SP	Planar	u64VirAddr[0](亮度 Y),	度跨度)、
	数据格式图像, 图	u64PhyAddr[1]、	u32Stride[1](色
		u64VirAddr[1](色度 U,	度 U, V 跨度)
		V)	
		内存地址用到	跨度用到
IVE IMAGE TYPE YUV420P	YCbCr420 Planar	IVE_IMAGE_S 中的	u32Stride[0](亮
	数据格式图像,图 1-3	u64PhyAddr[0]、	度跨度)、
		u64VirAddr[0](亮度 Y),	u32Stride[1](色

		u64PhyAddr[1]、	度 U 跨度)和
		u64VirAddr[1](色度 U) 和 u64PhyAddr[2]、 u64VirAddr[2](色度 V)	u32Stride[2](色 度 V 跨度)
IVE_IMAGE_TYPE_YUV422P	YCbCr422 Planar 数据格式图像, 图 1-4	内存地址用到 IVE_IMAGE_S 中的 u64PhyAddr[0]、 u64VirAddr[0](亮度 Y), u64PhyAddr[1]、 u64VirAddr[1](色度 U) 和 u64PhyAddr[2]、 u64VirAddr[2](色度 V)	跨度用到 u32Stride[0](亮 度跨度)、 u32Stride[1](色 度 U 跨度)和 u32Stride[2](色 度 V 跨度)
IVE_IMAGE_TYPE_U8C2_PACKAGE	8bit 无符号二通道且以 Package 格式存储的图 像,图	内存地址仅用到 IVE_IMAGE_S 中的 u64PhyAddr[0]、 u64VirAddr[0]	跨度仅用到 u32Stride[0]
IVE_IMAGE_TYPE_U8C2_PLANAR	8bit 无符号二通道且以 Planar 格式存储的图 像, 图	内存地址仅用到 IVE_IMAGE_S 中的 u64PhyAddr[0]、 u64VirAddr[0], u64PhyAddr[1]、 u64VirAddr[1]	跨度仅用到 u32Stride[0]、 u32Stride[1]
IVE_IMAGE_TYPE_S16C1	16bit 有符號單通道圖 像 图 1-2	僅用到 IVE_IMAGE_S 中 u64PhyAddr[0]、 u64VirAddr[0]	僅用到 u32Stride[0]
IVE_IMAGE_TYPE_U16C1	16bit 無符號單通道圖 像 图 1-2	僅用到 IVE_IMAGE_S 中 u64PhyAddr[0]、 u64VirAddr[0]	僅用到 u32Stride[0]
IVE_IMAGE_TYPE_U8C3_PACKAGE	8bit 无符号三通道且以 Package 格式存储的图 像,图 1-5	内存地址仅用到 IVE_IMAGE_S 中的 u64PhyAddr[0]、 u64VirAddr[0]	跨度仅用到 u32Stride[0]
IVE_IMAGE_TYPE_U8C3_PLANAR	8bit 无符号三通道且以 Planar 格式存储的图 像, 图 1-6	内存地址仅用到 IVE_IMAGE_S 中的 u64PhyAddr[0]、 u64VirAddr[0], u64PhyAddr[1]、 u64VirAddr[1], u64PhyAddr[2]、 u64VirAddr[2];	跨度仅用到 u32Stride[0]、 u32Stride[1]、 u32Stride[2]
IVE_IMAGE_TYPE_S32C1	32bit 有符號單通道圖 像 图 1-2	僅用到 IVE_IMAGE_S 中 u64PhyAddr[0]、 u64VirAddr[0]	僅用到 u32Stride[0]

IVE_IMAGE_TYPE_U32C1	32bit 無符號單通道圖 像 图 1-2	僅用到 IVE_IMAGE_S 中 u64PhyAddr[0]、 u64VirAddr[0]	僅用到 u32Stride[0]
IVE_IMAGE_TYPE_S64C1	64bit 有符號單通道圖 像 图 1-2	僅用到 IVE_IMAGE_S 中 u64PhyAddr[0]、 u64VirAddr[0]	僅用到 u32Stride[0]
IVE_IMAGE_TYPE_U64C1	64bit 無符號單通道圖 像 图 1-2	僅用到 IVE_IMAGE_S 中 u64PhyAddr[0]、 u64VirAddr[0]	僅用到 u32Stride[0]
IVE_IMAGE_TYPE_BF16C1	16bit brain floating point 單通道圖 图 1-2	僅用到 IVE_IMAGE_S 中 u64PhyAddr[0]、 u64VirAddr[0]	僅用到 u32Stride[0]
IVE_IMAGE_TYPE_FP32C1	32bit floating point 單通道圖 图 1-2	僅用到 IVE_IMAGE_S 中 u64PhyAddr[0]、 u64VirAddr[0]	僅用到 u32Stride[0]

圖 1-2 單通道圖像

圖 1-3 IVE_IMAGE_TYPE_YUV420P 类型的 IVE_IMAGE_S 图像

圖 1-4 IVE_IMAGE_TYPE_YUV422P 类型的 IVE_IMAGE_S 图像

图 1-5 IVE_IMAGE_TYPE_U8C3_PACKAGE 类型的 IVE_IMAGE_S 图像

图 1-6 IVE_IMAGE_TYPE_U8C3_PLANAR 类型的 IVE_IMAGE_SRC 图像

2 设计概述

2.1 系统架构

2.2 注意事项

3 API 参考

3.1 Create Handle

[描述]

創建 IVE 句柄。

[语法]

IVE_HANDLE CVI_IVE_CreateHandle();

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.2 **Destroy Handle**

[描述]

釋放 IVE 句柄。

[语法]

CVL 532 CVI_IVE_CreateHandle(IVE_HANDLE plveHandle);

参数名称	描述	输入/输出	
plveHandle	handle 指针。不能为空。	输入	

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

[返回值]

返回值	描述
0	成功
非0	失败

3.3 **DMA**

[描述]

创建直接内存访问任务,支持快速拷贝、间隔拷贝、内存填充:可实现数据从一块内存快速拷贝到另一块内存,或者从一块内存有规律的拷贝一些数据到另一块内存,或者对一块内存进行填充操作。

[语法]

CVI_S32 CVI_IVE_DMA(IVE_HANDLE plveHandle, IVE_DST_DATA_S

*pstSrc, IVE_DST_DATA_S *pstDst, IVE_DMA_CTRL_S *pstCtrl, CVI_BOOL
blnstant);

[参数]

参数名称	描述	输入/输出
plveHandle	handle 指针。不能为空。	输入
pstSrc	源数据指针。不能为空。	输入
pstDst	输出数据指针。Copy 模式下不能为空。	输出
pstCtrl	DMA 控制参数指针。不能为空。	輸入
blnstant	返回结果标志。True 為 busy waiting mode,	输入
	False 為 Interrupt mode。	

参数名称	支持类型	地址对齐	分辨率
pstSrc	IVE_DATA_S	1 byte	32x1~1920x1080
pstDst	IVE_DST_DATA_	1 byte	直接拷贝时同 pstSrc; 间隔拷
			贝时比 pstSrc 小

[返回值]

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.4 Filter

[描述]

创建 5x5 模板滤波任务,通过配置不同的模板系数,可以实现不同的滤波。

[语法]

CVI_S32 CVI_IVE_Filter(IVE_HANDLE plveHandle, IVE_SRC_IMAGE_S

*pstSrc, IVE_DST_IMAGE_S *pstDst, IVE_FILTER_CTRL_S *pstCtrl,

CVI_BOOL blnstant);

参数名称	描述	输入/输出
plveHandle	handle 指针。不能为空。	输入
pstSrc	源数据指针。不能为空。	输入
pstDst	输出数据指针。寬高同 pstSrc。	输出
pstCtrl	控制信息指针。不能为空。	输入
blnstant	及时返回结果标志。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U8C1、YUV420SP、YUV422SP	16 byte	64x64~1920x10
			24
pstDst	同 pstSrc	16 byte	同 pstSrc

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

[注意]

3.5 Filter And CSC

[描述]

创建 5x5 模板滤波及 YUV2RGB 色彩空間轉換任务,通过配置不同的模板系

数,可以实现不同的滤波。

[语法]

CVI_S32 CVI_IVE_FilterAndCSC(IVE_HANDLE plveHandle,

IVE_SRC_IMAGE_S *pstSrc, IVE_DST_IMAGE_S *pstDst,

IVE_FILTER_AND_CSC_CTRL_S *pstCtrl, CVI_BOOL blnstant);

[参数]

参数名称	描述	输入/输出
plveHandle	handle 指针。不能为空。	输入
pstSrc	源数据指针。不能为空。	输入
pstDst	输出数据指针。寬高同 pstSrc。	输出
pstCtrl	控制信息指针。不能为空。	输入
blnstant	及时返回结果标志。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	YUV420SP、YUV422SP	16 byte	64x64~1920x10
			24
pstDst	U8C3_PLANAR 或	16 byte	同 pstSrc
	U8C3_PACKAGE		

[返回值]

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

[注意]

3.6 **CSC**

[描述]

创建色彩空间转换任务。

[语法]

CVI_S32 CVI_IVE_CSC(IVE_HANDLE plveHandle, IVE_SRC_IMAGE_S

*pstSrc, IVE_DST_IMAGE_S *pstDst, IVE_FILTER_CTRL_S *pstCtrl,

CVL BOOL blnstant);

参数名称	描述	输入/输出
plveHandle	handle 指针。不能为空。	输入

pstSrc	源数据指针。不能为空。	输入
pstDst	输出数据指针。寬高同 pstSrc。	输出
pstCscCtrl	控制信息指针。不能为空。	输入
blnstant	及时返回结果标志。	输入

参数名称	支持图像类型	地址对	分辨率
		齐	0
pstSrc	YUV420SP、YUV422SP、	16	64x64~1920x10
pstsic	U8C3_PLANAR、	10	04804~1920810
	U8C3_PACKAGE	byte	24
pstDst	U8C3_PLANAR、	16	同 pstSrc
pstDst	U8C3_PACKAGE、YUV420SP、	10	lei baraic
	YUV422SP	byte	

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

•

[注意]

3.7 Sobel

[描述]

创建 5x5 模板 Sobel-like 梯度计算任务。

[语法]

CVI_S32 CVI_IVE_Sobel(IVE_HANDLE piveHandle, IVE_SRC_IMAGE_S

*pstSrc, IVE_DST_IMAGE_S *pstDstH, IVE_DST_IMAGE_S *pstDstV,

IVE_SOBEL_CTRL_S *pstCtrl, CVI_BOOL blnstant);

参数名称	描述	输入/输出
plveHandle	handle 指针。不能为空。	输入
pstSrc	源数据指针。不能为空。	输入
pstDstH	由模板直接滤波得到的梯度分量图像 H 指针。根 pstSobelCtrl→enOutCtrl,若需要输出则不能为空。	输出
	寬高同 pstSrc。	

pstDstV	由模板直接滤波得到的梯度分量图像 V 指针。根 pstSobelCtrl→enOutCtrl,若需要输出则不能为空。寬高 同 pstSrc。	输出
pstCtrl	控制信息指针。不能为空。	输入
bInstant	及时返回结果标志。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U8C1	16 byte	8x8~1920x1024
pstDstH	S16C1	16 byte	同 pstSrc
pstDstV	S16C1	16 byte	同 pstSrc

返回值	描述
0	成功
非0	失败

[需求

• 头文件: cvi_comm_ive.h cvi_ive.h

[注意]

3.8 **NormGrad**

[描述]

创建歸一化梯度计算任务。 所有梯度會歸一化到 S8 格式。

[语法]

CVI_S32 CVI_IVE_NormGrad(IVE_HANDLE plveHandle, IVE_SRC_IMAGE_S

*pstSrc, IVE_DST_IMAGE_S *pstDstH, IVE_DST_IMAGE_S *pstDstV,

IVE_DST_IMAGE_S *pstDstHV, IVE_NORM_GRAD_CTRL_S *pstCtrl

CVI_BOOL blnstant);

参数名称	描述	输入/输出
plveHandle	handle 指针。不能为空。	输入
pstSrc	源数据指针。不能为空。	输入
pstDstH	由模板直接滤波得到的梯度分量图像 H 指针。根 pstNormGradCtrl→enOutCtrl, 若需要输出则不能 为空。寬高同 pstSrc。	输出
pstDstV	由模板直接滤波得到的梯度分量图像 V 指针。根 pstNormGradCtrl→enOutCtrl,若需要输出则不能为空。	输出

pstDstHV	由模板直接滤波得到的梯度分量图像 HV 指针。根pstNormGradCtrl→enOutCtrl,若需要输出则不能为空。	输出
	寬高同 pstSrc。	
pstCtrl	控制信息指针。不能为空。	输入
blnstant	及时返回结果标志。	输入

参数名称	支持图像类型	地址对齐 分辨率	
pstSrc	U8C1	16 byte	
pstDstH	S8C1	16 byte	
pstDstV	S8C1	16 byte	
pstDstHV	S8C2_PACKAGE	16 byte	

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

[注意]

3.9 **Canny Edge**

[描述]

連結 Canny 影像結邊界。

[语法]

CVI_S32 CVI_IVE_CannyEdge(IVE_IMAGE_S *pstEdge, IVE_MEM_INFO_S

*pstStack);

参数名称	描述	输入/输出
pstEdge	輸入 Edge Flag 影像,輸出二值化邊界影像。	输入/輸出
pstStack	強邊界的座標	输入/输出

参数名称	支持图像类型	地址对齐	分辨率
pstEdge	U8C1	16 byte	
pstStack	-	16 byte	

返回值	描述	
0	成功	
非 0	失败	

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

[注意]

3.10 Canny Hysteresis Edge

[描述]

創建 Canny Edge 任務,計算灰階影像的 Gradient, Gradient Magnitude,

Hysteresis threshold 和 Non-Maximum Suppression。

[语法

CVI_S32 CVI_IVE_CannyHsysEdge(IVE_HANDLE plveHandle,

IVE_IMAGE_S *pstSrc, IVE_DST_IMAGE_S *pstEdge, IVE_MEM_INFO_S

*pstStack, IVE_CANNY_HYS_EDGE_CTRL_S *pstCtrl, CVI_BOOL blnstant);

参数名称	描述	输入/输出
plveHandle	handle 指针。不能为空。	输入
pstSrc	源数据指针。不能为空。	输入
pstEdge	Strong/Weak Edge Flag 影像。	輸出
pstStack	強邊界的座標	输出
pstCtrl	控制参数指针。不能为空。	输入
blnstant	及时返回结果标志。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U8C1	16 byte	
pstEdge	U8C1	16 byte	
pstStack	-	16 byte	

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

•

[注意]

3.11 **MagAndAng**

[描述]

创建 5x5 模板梯度幅值与幅角计算任务。

[语法]

S32 CVI_IVE_MagAndAng(IVE_HANDLE piveHandle,

IVE_SRC_IMAGE_S *pstSrc, IVE_DST_IMAGE_S *pstDstMag,

IVE_DST_IMAGE_S *pstDstAng, IVE_MAG_AND_ANG_CTRL_S *pstCtrl,

CVI_BOOL blnstant);

[参数]

参数名称	描述	输入/输出
plveHandle	handle 指针。不能为空。	输入
pstSrc	源数据指针。不能为空。	输入
pstDstMag	输出幅值图像指针。 不能为空。 高、宽同 pstSrc。	输出
pstDstAng	输出幅角图像指针。根据 pstMagAndAngCtrl →enOutCtrl,需要输出 则不能为空。 高、 宽同 pstSrc。	输出
pstCtrl	控制参数指针。不能为空。	输入
blnstant	及时返回结果标志。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U8C1	16 byte	64x64~1920x1024
pstDstMag	U16C1	16 byte	同 pstSrc
pstDstAng	U8C1	16 byte	同 pstSrc

[返回值]

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

•

3.12 Dilate

[描述]

创建二值图像 5x5 模板膨胀任务。

[语法]

CVI_S32 CVI_IVE_Dilate(IVE_HANDLE plveHandle, IVE_SRC_IMAGE_S

*pstSrc, IVE_DST_IMAGE_S *pstDst, IVE_DILATE_CTRL_S *pstCtrl,

CVI BOOL binstant);

[参数

参数名称	描述	输入/输出
plveHandle	handle 指针。不能为空。	输入
pstSrc	源数据指针。不能为空。	输入

pstDst	输出幅值图像指针。 不能为空。 高、宽同 pstSrc。	输出
pstCtrl	控制参数指针。不能为空。	输入
blnstant	及时返回结果标志。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U8C1	16 byte	64x64~1920x1024
pstDst	U16C1	16 byte	同 pstSrc

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.13 Erode

[描述]

创建二值图像 5x5 模板腐蚀任务。

[语法]

CVI_S32 CVI_IVE_Erode(IVE_HANDLE plveHandle, IVE_SRC_IMAGE_S

*pstSrc, IVE_DST_IMAGE_S *pstDst, IVE_ERODE_CTRL_S *pstErodeCtrl,

CVI_BOOL blnstant);

参数名称	描述	输入/输出
plveHandle	handle 指针。不能为空。	输入
pstSrc	源数据指针。不能为空。	输入
pstDst	输出幅值图像指针。 不能为空。 高、宽同 pstSrc。	输出
pstErodeCtrl	控制参数指针。不能为空。	输入
binstant	及时返回结果标志。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U8C1 的二值图	16 byte	64x64~1920x10
			24
pstDst	U8C1 的二值图	16 byte	同 pstSrc

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.14 Thresh

[描述]

创建灰度图像阈值化任务。

[语法]

CVI_S32 CVI_IVE_Thresh(IVE_HANDLE plveHandle, IVE_SRC_IMAGE_S

*pstSrc, IVE_DST_IMAGE_S *pstDst, IVE_MAG_AND_ANG_CTRL_S

*pstCtrl, CVI_BOOL blnstant);

[参数

参数名称	描述	输入/输出
plveHandle	handle 指针。不能为空。	输入

pstSrc	源数据指针。不能为空。	输入
pstDst	输出幅值图像指针。 不能为空。 高、宽同 pstSrc。	输出
pstCtrl	控制参数指针。不能为空。	输入
blnstant	及时返回结果标志。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U8C1	16 byte	64x64~1920x1024
pstDstMag	U16C1	16 byte	同 pstSrc
pstDstAng	U8C1	16 byte	同 pstSrc

返回值	描述
0	成功
非0	失败

[末霊]

头文件: cvi_comm_ive.h cvi_ive.h

3.15 **And**

[描述]

创建两二值图像相与任务。

[语法]

CVI_S32 CVI_IVE_And(IVE_HANDLE plveHandle, IVE_SRC_IMAGE_S

*pstSrc1, IVE_SRC_IMAGE_S *pstSrc2, IVE_DST_IMAGE_S *pstDst,

IVE_AND_CTRL_S *pstCtrl, CVI_BOOL bInstant);

参数名称	描述	输入/输出
plveHandle	handle 指针。不能为空。	输入
pstSrc1	源图像 1 指针。不能为空。	输入
pstSrc2	源图像 2 指针。不能为空。	输出
pstDst	输出图像指针。不能为空。高、宽同pstSrc1。	输出
pstCtrl	控制参数指针。不能为空。	输入
binstant	及时返回结果标志。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc1	U16C1 的二值图	1 byte	64x64~1920x1024
pstSrc2	U16C1	1 byte	同 pstSrc
pstDst	U8C1	1 byte	同 pstSrc

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.16 **Sub**

[描述]

创建两灰度图像相减任务。

[语法]

CVI_S32 CVI_IVE_Sub(IVE_HANDLE plveHandle, IVE_SRC_IMAGE_S

*pstSrc1, IVE_SRC_IMAGE_S *pstSrc2, IVE_DST_IMAGE_S *pstDst,

IVE SUB_CTRL_S *pstCtrl, CVI_BOOL blnstant);

参数名称	描述	输入/输
		出

plveHandle	handle 指针。不能为空。	输入
pstSrc1	源图像 1 指针。不能为空。	输入
pstSrc2	源图像 2 指针。不能为空。	输出
pstDst	输出图像指针。 不能为空。 高、宽同 pstSrc1。	输出
pstCtrl	控制参数指针。不能为空。	输入
blnstant	及时返回结果标志。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc1	U16C1 的二值图	1 byte	64x64~1920x1024
pstSrc2	U16C1	1 byte	同 pstSrc
pstDst	U8C1	1 byte	同 pstSrc

	返回值	描述
	0	成功
)	非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.17 **Or**

[描述]

创建两二值图像相或任务。

[语法]

CVI_S32 CVI_IVE_Or(IVE_HANDLE plveHandle, IVE_SRC_IMAGE)

*pstSrc1, IVE_SRC_IMAGE_S *pstSrc2, IVE_DST_IMAGE_S *pstDst,

IVE_OR_CTRL_S *pstCtrl, CVI_BOOL blnstant);

参数名称	描述	输入/输出
plveHandle	handle 指针。不能为空。	输入
pstSrc1	源图像 1 指针。不能为空。	输入
pstSrc2	源图像 2 指针。不能为空。	输出
pstDst	输出图像指针。 不能为空。 高、宽同 pstSrc1。	输出
pstCtrl	控制参数指针。不能为空。	输入
blnstant	及时返回结果标志。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc1	U16C1 的二值图	1 byte	64x64~1920x1024
pstSrc2	U16C1	1 byte	同 pstSrc
pstDst	U8C1	1 byte	同 pstSrc

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.18 **Map**

[描述]

將一個影像透過一個映射表格映射到另一個影像。

[语法]

CVI_S32 CVI_IVE_Map(IVE_HANDLE plveHandle, IVE_SRC_IMAGE_S

*pstSrc, IVE_SRC_MEM_INFO_S *pstMap, IVE_DST_IMAGE_S *pstDst,

IVE_MAP_CTRL_S *pstCtrl, CVI_BOOL blnstant);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
pstSrc	输入影像指针。不能为空。	输入
pstMap	输入映射表格指针。不能为空。	输入
pstDst	输出的影像指针。不能为空。高和宽同	输出
	pstSrc.	
pstCtrl	控制参数指针。不能为空。	输入
blnstant	參考值	输出

[返回值]。

返回值	描述
0	成功
≢ 0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

•

3.19 **OrdStatFilter**

[描述]

用 3x3 的核尋找圖片中的極大、極小值。

[语法]

CVI_S32 CVI_IVE_OrdStatFilter(IVE_HANDLE plveHandle,

IVE_SRC_IMAGE_S *pstSrc, IVE_DST_IMAGE_S *pstDst,

IVE_ORD_STAT_FILTER_CTRL_S *pstCtrl, CVI_BOOL blnstant);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle	输入
pstSrc	输入影像指针。不能为空。	输入
pstDst	输出的影像指针。不能为空。高和宽同	输出
	pstSrc.	
pstCtrl	控制参数指针。不能为空。	输入
binstant	參考值	输出

[返回值

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.20 Integral

[描述]

创建灰度图像的积分图计算任务。

[语法]

CVI_S32 CVI_IVE_Integ(IVE_HANDLE plveHandle, IVE_SRC_IMAGE_S

*pstSrc, IVE_DST_MEM_INFO_S *pstDst, IVE_INTEG_CTRL_S *pstIntegCtrl,

CVI_BOOL blnstant);

参数名称	描述	输入/输出
plveHandle	handle 指针。不能为空。	输入
pstSrc	源数据指针。不能为空。	输入
pstDst	输出幅值图像指针。 不能为空。 高、宽同 pstSrc。	输出
pstIntegCtrl	控制参数指针。不能为空。	输入

blnstant	及时返回结果标志。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U8C1	16 byte	64x64~1920x1024
pstDst	U32C1, U64C1	16 byte	同 pstSrc

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.21 Histogram

[描述]

创建灰度图像的直方图统计任务。

[语法]

CVI_S32 CVI_IVE_Hist(IVE_HANDLE plveHandle, IVE_SRC_IMAGE_S

*pstSrc, IVE_DST_MEM_INFO_S *pstDst, CVI_BOOL blnstant);

[参数]

参数名称	描述	输入/输
	76	出
plveHandle	handle 指针。不能为空。	输入
pstSrc	源数据指针。不能为空。	輸入
pstDst	输出幅值图像指针。 不能为空。 高、宽同 pstSrc。	输出
blnstant	及时返回结果标志。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U8C1	16 byte	64x64~1920x1024
pstDst	-	16 byte	-

[返回值]

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.22 **Add**

[描述]

创建两灰度图像的加权加计算任务

[语法]

CVI_S32 CVI_IVE_Add(IVE_HANDLE plveHandle, IVE_SRC_IMAGE_S

*pstSrc1, , IVE_SRC_IMAGE_S *pstSrc2, IVE_DST_IMAGE_S *pstDst,

IVE_ADD_CTRL_S *pstCtrl, CVI_BOOL bInstant);

参数名称	描述	输入/输出
plveHandle	handle 指针。不能为空。	输入
pstSrc1	源数据指针。不能为空。	输入
pstSrc2	源数据指针。不能为空。	输入

pstDst	输出幅值图像指针。 不能为空。 高、宽同 pstSrc。	输出
pstCtrl	控制参数指针。不能为空。	输入
blnstant	及时返回结果标志。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U8C1	16 byte	64x64~1920x1024
pstDst	-	16 byte	- (()

返回值	描述
0	成功
非0	失败

[需求]

头文件: cvi_comm_ive.h cvi_ive.h

3.23 **Xor**

[描述]

创建两二值图的异或计算任务

[语法]

CVI_S32 CVI_IVE_Xor(IVE_HANDLE plveHandle, IVE_SRC_IMAGE_S

*pstSrc1, IVE_SRC_IMAGE_S *pstSrc2, IVE_DST_IMAGE_S *pstDst,

CVI_BOOL blnstant);

参数名称	描述	输入/输出
plveHandle	handle 指针。不能为空。	输入
pstSrc1	源图像 1 指针。不能为空。	输入
pstSrc2	源图像 2 指针。不能为空。高宽同 pstSrc1	
pstDst	输出图像指针。不能为空。高、宽同pstSrc1。	输出
blnstant	及时返回结果标志。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc1	U8C1	1byte	64x64~1920x1024
pstSrc2	U8C1	1byte	同 pstSrc
pstDst	-	1byte	-同 pstSrc

返回值	描述
0	成功
非 0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.24 Match BgModel

[描述]

輸入當前影像和模型, 取得前景資料。

[语法]

CVI_S32 CVI_IVE_MatchBgModel(IVE_HANDLE plveHandle,

IVE_SRC_IMAGE_S *pstCurImg, IVE_DATA_S *pstBgModel, IVE_IMAGE_S

*pstFgFlag, IVE_DST_IMAGE_S *pstDiffFg, IVE_DST_MEM_INFO_S

*pstStatData, IVE_MATCH_BG_MODEL_CTRL_S *pstCtrl, CVI_BOOL

blnstant);

参数名称	描述	输入/输出
plveHandle	handle 指针。不能为空。	输入
pstCurlmg	當前影像。	输入
pstBgModel	模型	输入/輸出
pstFgFlag	前景狀態影像。	输入/輸出
pstDiffFg	前景影像。	輸出
pstStatData	前景狀態	輸出
pstCtrl	控制結構	輸入
blnstant	及时返回结果标志。	輸入

参数名称	支持图像类型	地址对齐	分辨率
pstCurImg	U8C1	1byte	
pstBgMod		1byte	
el			
pstFgFlag	U8C1	1byte	
pstDiffFg	S8C1	1byte	
pstStatDat	-	1byte	
a			

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.25 Update BgModel

[描述]

更新背景模型。

[语法]

CVI_S32 CVI_IVE_UpdateBgModel(IVE_HANDLE plveHandle, IVE_DATA_S

*pstBgModel, IVE_IMAGE_S *pstFgFlag, IVE_DST_IMAGE_S *pstBgImg,

IVE DST_IMAGE_S *pstChaSta, IVE_DST_MEM_INFO_S *pstStatData,

IVE MATCH_BG_MODEL_CTRL_S *pstCtrl, CVI_BOOL blnstant);

参数名称	描述	输入/输出
------	----	-------

plveHandle	handle 指针。不能为空。	输入
pstBgModel	模型	输入/輸出
pstFgFlag	前景狀態影像。	输入/輸出
pstBgImg	背景影像。	输出
pstChaSta	前景更新狀態影像。	輸出
pstStatData	背景狀態	輸出
pstCtrl	控制結構	輸入
blnstant	及时返回结果标志。	輸入

参数名称	支持图像类	地址对齐	分辨率
	型		
pstBgModel		1byte	
pstFgFlag	U8C1	1byte	
pstBgImg	U8C1	1byte	
pstChaSta	S8C1	1byte	
pstStatData	-	1byte	

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.26 Gradient of Foreground

[描述]

根據背景梯度影像和當前影像,計算前景圖梯度影像。

[语法]

CVI_S32 CVI_IVE_GradFg(IVE_HANDLE plveHandle, IVE_SRC_IMAGE_S

*pstBgDiffFg, IVE_SRC_IMAGE_S *pstCurGrad, IVE_SRC_IMAGE_S

*pstBgGrad, IVE_DST_IMAGE_S *pstGradFg, IVE_GRAD_FG_ CTRL_S

*pstCtrl, CVI_BOOL blnstant);

[参数

参数名称	描述	输入/输出
plveHandle	handle 指针。不能为空。	输入

pstBgDiffFg	前景影像	输入
pstCurGrad	當前梯度影像	输入
pstBgGrad	背景梯度影像	输入
pstGradFg	前景梯度影像	输出
pstCtrl	控制結構	輸入
blnstant	及时返回结果标志。	輸入

参数名称	支持图像类	地址对齐	分辨率
	型		
pstBgDiffFg	S8C1	1byte	
pstCurGrad	S8C2_PACK	1byte	
pstBgGrad	S8C2_PACK	1byte	
	AGE		
pstGradFg	S8C1	1byte	

返回值	描述
0	成功
非 0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

•

3.27 **GMM**

[描述]

建立 GMM 背景模型任務。

[语法]

CVI_S32 CVI_IVE_GMM(IVE_HANDLE plveHandle, IVE_SRC_IMAGE_S

*pstSrc, IVE_DST_IMAGE_S *pstFg, IVE_DST_IMAGE_S *pstBg,

IVE_MEM_INFO_S *pstModel, IVE_GMM _CTRL_S *pstCtrl, CVI_BOOL

blnstant);

参数名称 描述	输入/输出
------------	-------

plveHandle	handle 指针。不能为空。	输入
pstSrc	輸入影像。	输入
pstFg	前景影像。	輸出
pstBg	背景影像。	输出
pstModel	模型資料。	輸入/輸出
pstCtrl	控制結構	輸入
blnstant	及时返回结果标志。	輸入

参数名称	支持图像类型	地址对齐	分辨率
pstModel	-	1byte	
pstSrc	U8C1或	1byte	
	U8C3_PACKAGE		
pstFg	U8C1 二值化影像	1byte	
pstBg	U8C1 或	1byte	
\	U8C3_PACKAGE		

返回值	描述
0	成功
非 0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.28 **GMM2**

[描述]

建立 GMM 背景模型任務。

[语法]

CVI_S32 CVI_IVE_GMM2(IVE_HANDLE plveHandle, IVE_SRC_IMAGE_S

*pstSrc, IVE_SRC_IMAGE_S *pstFactor, IVE_DST_IMAGE_S *pstFg,

IVE_DST_IMAGE_S *pstBg, IVE_DST_IMAGE_S *pstMatchModelInfo,

IVE MEM_INFO_S *pstModel, IVE_GMM _CTRL_S *pstCtrl, CVI_BOOL

blnstant);

参数名称	描述	输入/输出
plveHandle	handle 指针。不能为空。	输入
pstSrc	輸入影像。	输入
pstFactor	模型更新係數	輸入
pstFg	前景影像。	輸出
pstBg	背景影像。	輸出
pstMatchModell	模型匹配係數	輸出
nfo	「民主と日」「示数	于时 山 山
pstModel	模型資料。	輸入/輸出
pstCtrl	控制結構	輸入
blnstant	及时返回结果标志。	輸入

参数名称	支持图像类型	地址对齐	分辨率
pstModel	-	1byte	
pstFactor	U16C1	1byte	
pstSrc	U8C1 或	1byte	
	U8C3_PACKA		
	GE		

			1
pstFg	U8C1 二值化	1byte	
	影像		
pstBg	U8C1 或	1byte	
	U8C3_PACKA		
	GE		
pstMatchModell	U8C1	1byte	
nfo			(0)

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.29 **Bernsen**

[描述]

建立 Bernsen 二值化算法任務。

[语法]

CVI_S32 CVI_IVE_Bernsen(IVE_HANDLE plveHandle, IVE_SRC_IMAGE_S

*pstSrc, IVE_DST_IMAGE_S *pstDst, IVE_BERNSEN_CTRL_S *pstCtrl,

CVI_BOOL bInstant);

参数名称	描述	输入/输出
plveHandle	handle 指针。不能为空。	输入
pstSrc	輸入影像。	输入
pstDst	結果影像。	輸出
pstCtrl	控制結構	輸入
blnstant	及时返回结果标志。	輸入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U8C1	1byte	

pstDst	U8C1 二值化影像	1byte	

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.30 **NCC**

[描述]

创建两相同分辨率灰度图像的归一化互相关系数计算任务

[语法]

CVI_\$32 CVI_IVE_NCC(IVE_HANDLE plveHandle, IVE_SRC_IMAGE_S

*pstSrc1, IVE_SRC_IMAGE_S *pstSrc2, IVE_DST_MEM_INFO_S *pstDst,

CVI_BOOL bInstant);

参数名称	描述	输入/输出
plveHandle	handle 指针。不能为空。	输入
pstSrc1	源 1 圖像指针。不能为空。	输入
pstSrc2	源 2 圖像指针。不能为空。	输入
pstDst	输出數據指针。 不能为空。内存至少需配置:sizeof (IVE_NCC_DST_MEM_S)。	输出
blnstant	及时返回结果标志。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc1	U8C1	1byte	64x64~1920x1024
pstSrc2	U8C1	1byte	同 pstSrc
pstDst	- (16 byte	-

饭回值

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.31 **LBP**

[描述]

创建 LBP 计算任务

[语法]

CVI_S32 CVI_IVE_LBP(IVE_HANDLE plveHandle, IVE_SRC_IMAGE_S

*pstSrc, IVE_DST_IMAGE_S * pstDst, IVE_LBP_CTRL_S *pstCtrl, CVI_BOOL

blnstant);

参数名称	描述	输入/输出
plveHandle	handle 指针。不能为空。	输入
pstSrc	源圖像指针。不能为空。	输入
pstDst	输出數據指针。 不能为空。内存至少需配置:sizeof (IVE_NCC_DST_MEM_S)。	输出
pstCtrl	控制参数指针。不能为空。	输入
blnstant	及时返回结果标志。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc1	U8C1	1byte	64x64~1920x1024
pstSrc2	U8C1	1byte	同 pstSrc
pstDst	-	16 byte	-

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.32 **SAD**

[描述]

计算两幅图像 SAD。

[语法]

CVI_S32 CVI_IVE_SAD(IVE_HANDLE plveHandle, IVE_SRC_IMAGE_S *pstSrc1,

IVE_SRC_IMAGE_S *pstSrc2, IVE_DST_IMAGE_S *pstSad,
IVE_DST_IMAGE_S

*pstThr, IVE_SAD_CTRL_S *pstCtrl, CVI_BOOL blnstant);

参数名称	描述	输入/输出
plveHandle	handle 指针。不能为空。	输入
pstSrc1	源 1 圖像指针。不能为空。	输入
pstSrc2	源 2 圖像指针。不能为空。高和寬同	输入
	pstSrc1	
pstSad	输出 SAD 圖像指针。 根据 pstSadCtrl→enOutCtrl, 若需要输出则	输出
	不能为空。	
	根据 pstSadCtrl→enMode, 对应 4x4、	
	8x8、16x16 分块 模式, 高、宽分别为	
pstThr	pstSrc1 的 1/4、1/8、1/16。 输出 SAD 阈值化图像指针。 根据 pstSadCtrl→enOutCtrl, 若需要输出则	输出
OX	不能为空。 根据 pstSadCtrl→enMode,对应 4x4、 8x8、16x16 分块 模式,高、宽分别为	
	pstSrc1 的 1/4、1/8、1/16。	
pst€trl	控制信息指针。 不能为空。	输入
blnstant	及时返回结果标志。	输入

	1	1	
参数名称	支持图像类型	地址对齐	分辨率
pstSrc1	U8C1	1byte	64x64~1920x1024
pstSrc2	U8C1	1byte	同 pstSrc1
pstSad	U8C1、U16C1	16byte	根据 pstSadCtrl→ enMode, 对应 4x4、 8x8、16x16 分块 模式, 高、宽分别为 pstSrc1 的 1/4、1/8、1/16。
pstThr	U8C1	16 byte	根据 pstSadCtrl→ enMode, 对应 4x4、 8x8、16x16 分块 模式, 高、宽分别为 pstSrc1 的 1/4、1/8、1/16。

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.33 **BufFlush**

[描述]

對於使用 CVI_IVE_CreateImage_Cached 建立的圖像,在 IVE 硬件存取影像的内容前,須使用此函式將 cache data 放到 RAM。

[语法]

CVI_S32 CVI_IVE_BufFlush(IVE_HANDLE piveHandle, IVE_IMAGES

*pstlmg);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
pstlmg	操作的影像内容。	输入

[返回值]

返回值	描述
0	成功
非0	失败

[東東]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.34 **BufRequest**

[描述]

對於使用 CVI_IVE_CreateImage_Cached 建立的圖像,在 CPU 存取 u64VirAddr 所指向的内容前,須使用此函式將 Ram 内容更新到 cache。

[语法]

CVI_S32 CVI_IVE_BufRequest(IVE_HANDLE plveHandle, IVE_IMAGES

*pstlmg);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
pstlmg	操作的影像内容。	输入

[返回值]

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.1 CreateMemInfo

[描述]

創造一塊記憶體供 IVE_MEM_S 結構使用。

[语法]

CVI S32 CVI IVE CreateMemInfo(IVE HANDLE plveHandle,

IVE_MEM_INFO_S *pstMemInfo, CVI_U32 u32ByteSize);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
pstMemInfo	创建的记忆体结构。不能为空。	输入
u32ByteSize	记忆体结构的 byte 容量	输入

[返回值]

返回值	描述
0	成功
非0	失败

[東黒]

头文件: cvi_comm_ive.h cvi_ive.h

3.2 CreateDataInfo

[描述]

創造一塊記憶體供 IVE_DATA_S 結構使用。

[语法]

CVI_S32 CVI_IVE_CreateDataInfo(IVE_HANDLE pIveHandle, IVE_DATA_S

*pstDataInfo, CVI_U16 u16Width, CVI_U16 u16Height);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
pstDataInfo	创建的 IVE_DATA_S 结构。不能为空。	输入
u16Width	Data 的寬	输入
u16Height	Data 的高	输入

[返回值]

返回值	描述
0	成功
非0	失败

「末常」

头文件: cvi_comm_ive.h cvi_ive.h

3.35 Createlmage

[描述]

創造一塊影像記憶體供使用。 用此函數建立的影像會自動映射 u64PhyAddr 和 u64VirAddr 的内容。無需對 cache 進行 Flush 或 Invalidate。

[语法]

CVI_S32 CVI_IVE_CreateImage(IVE_HANDLE plveHandle, IVE_IMAGE_S

*pstlmg, IVE_IMAGE_TYPE_E enType, CVI_U16 u16Width, CVI_U16 u16Height);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
pstlmg	创建给影像用的记忆体结构。	输出
enType	创建的影像记忆体格式	输入
u16Width	影像的宽	输入
u16Height	影像的高	输入

[返回值]

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.36 Createlmage with Cache

[描述]

創造一塊影像記憶體供使用。 用此函數建立的影像需要使用 CVI_IVE_BufFlush 和 CVI_IVE_BufRequest 更新 u64PhyAddr 和 u64VirAddr 的内容。 ◆

[语法]

CVI_S32 CVI_IVE_CreateImage_Cached(IVE_HANDLE plveHandle,

IVE_IMAGE_S *pstlmg, IVE_IMAGE_TYPE_E enType, CVI_U32 u32Width,

CVI_U32 u32Height);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
pstlmg	创建给影像用的记忆体结构。	输出
епТуре	创建的影像记忆体格式	输入
u32Width	影像的宽	输入
u32Height	影像的高	输入

返回值	描述
0	成功

非 0	失败
-----	----

• 头文件: cvi_comm_ive.h cvi_ive.h

3.37 **ResetImage**

[描述]

將 Image 内容填入特定值。

[语法]

CVI_S32 CVI_IVE_ResetImage(IVE_HANDLE plveHandle, IVE_IMAGE_S

*pstlmg, CVI_U8 val);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
pstlmg	创建给影像用的记忆体结构。	输出
val	預填入影像的值	输入

返回值	描述
0	成功
非 0	失败

• 头文件: cvi_comm_ive.h cvi_ive.h

3.38 **ReadImageArray**

[描述]

從 buffer 讀入影像。

[语法]

CVI_S32 CVI_IVE_ReadImageArray (IVE_HANDLE plveHandle,

IVE_IMAGE_S *pstImage, char *pBuffer, IVE_IMAGE_TYPE_E enType,

CVI_U16 u16Width, CVI_U16 u16Height);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
pstlmage	创建给影像用的记忆体结构。	输出
pBuffer	Buffer	輸入
епТуре	创建的影像记忆体格式	输入
u16Width	影像的宽	输入
u16Height	影像的高	输入

返回值	描述
0	成功
非0	失败

• 头文件: cvi_comm_ive.h cvi_ive.h

3.39 **ReadMem**

[描述]

從檔案讀入到 IVE_DATA_S 結構。

[语法]

CVI_S32 CVI_IVE_ReadMem(IVE_HANDLE piveHandle, IVE_MEM_INFO_S

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
pstMem	IVE_MEM_INFO_S 结构。	输出
filename	檔案路徑	輸入
u32Size	Mem 大小	输入

^{*}pstMem, const char *filename, CVI_U32 uSize);

返回值	描述
0	成功
非0	失败

• 头文件: cvi_comm_ive.h cvi_ive.h

3.40 **ReadMemArray**

[描述]

從 buffer 讀入資料到 IVE_MEM_INFO_S 結構。

[语法]

CVI_S32 CVI_IVE_ReadMemArray (IVE_HANDLE plveHandle,

IVE_MEM_INFO_S *pstMem, char *pBuffer, CVI_U32 uSize);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
pstMem	IVE_MEM_INFO_S 结构。	输出
pBuffer	Buffer	輸入
u32Size	Buffer 大小	输入

返回值	描述
0	成功
非0	失败

• 头文件: cvi_comm_ive.h cvi_ive.h

3.41 ReadData

[描述]

從檔案讀入到 IVE_DATA_S 結構。

[语法]

CVI_S32 CVI_IVE_ReadData(IVE_HANDLE piveHandle, IVE_DATA_S

*pstData, const char *filename, CVI_U16 u16Width, CVI_U16 u16Height);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
pstData	IVE_DATA_S 结构。	输出
filename	檔案路徑	輸入
u16Width	Data 的寬	输入
u16Height	Data 的高	输入

[返回值]

返回值	描述
0	成功
非 0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.42 **ReadDataArray**

[描述]

從 buffer 讀入資料到 IVE_DATA_S 結構。

[语法]

CVI_S32 CVI_IVE_ReadDataArray (IVE_HANDLE plveHandle, IVE_DATA_S

*pstData, char *pBuffer, CVI_U16 u16Width, CVI_U16 u16Height);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
pstData	IVE_DATA_S 结构。	输出
pBuffer	Buffer	輸入
u16Width	Data 的寬	输入

u16Height	Data 的高	输入
-----------	---------	----

[返回值]

返回值	描述	*
0	成功	
非0	失败	

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.43 **ReadImage**

[描述]

從檔案位置讀取一张影像。

[语法]

IVE_IMAGE_S CVI_IVE_ReadImage(IVE_HANDLE plveHandle, const char

*filename, IVE IMAGE_TYPE_E enType);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
filename	影像档案名称	输入
enType	希望拿到的影像格式	

返回值	描述
0	成功
非0	失败

• 头文件: cvi_comm_ive.h cvi_ive.h

3.44 **ReadRawImage**

[描述]

從檔案位置讀取一张 Raw Image。

[语法]

IVE_IMAGE_S CVI_IVE_ReadRawImage(IVE_HANDLE plveHandle, const char *filename, IVE_IMAGE_TYPE_E enType, CVI_U16 u16Width, CVI_U16 u16Height);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
filename	影像档案名称	输入
enType	希望拿到的影像格式	输入
u16Width	影像寬。	输入

u16Height	影像高。	输入
いにロルコ		

[返回值]

返回值	描述
0	成功
≢ 0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.45 WriteData

[描述]

寫入 IVE_DATA_S 内容到檔案位置。

[语法]

CVI_S32 CVI_IVE_WriteData(IVE_HANDLE plveHandle, const char

*filename, IVE DATA_S *pstData);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
filename	储存的档案位置及档名	输入
pstData	要储存的内容	输出

返回值	描述
0	成功
非0	失败

• 头文件: cvi_comm_ive.h cvi_ive.h

3.46 WriteMem

[描述]

寫入 IVE_MEM_INFO_S 内容到檔案位置。

[语法]

CVI_S32 CVI_IVE_WriteData(IVE_HANDLE pIveHandle, const char

*filename, IVE_MEM_INFO_S *pstMem);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
filename	储存的档案位置及档名	输入
pstMem	要储存的内容	输出

返回值	描述
-----	----

0	成功
非0	失败

• 头文件: cvi_comm_ive.h cvi_ive.h

3.47 WriteImage

[描述]

寫入一张 PNG 影像到檔案位置。

[语法]

CVI_S32 CVI_IVE_WriteImage(IVE_HANDLE plveHandle, const char

*filename, IVE_IMAGE_S *pstlmg);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
filename	储存的档案位置及档名	输入
pstlmg	要储存的影像内容	输出

返回值	描述
0	成功
非 0	失败

• 头文件: cvi_comm_ive.h cvi_ive.h

3.48 WriteRawlmage

[描述]

寫入一张影像到檔案位置。

[语法]

CVI_S32 CVI_IVE_WriteImg(IVE_HANDLE plveHandle, const char

*filename, IVE_IMAGE_S *pstImg);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
filename	储存的档案位置及档名	输入
pstlmg	要储存的影像内容	输出

[返回值]

	返回值	描述
	0	成功
,	非 0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.49 **Reset Register**

[描述]

重置 IVE 的暫存器為默認值。

[语法]

CVI_S32 CVI_IVE_RESET(IVE_HANDLE plveHandle, int select);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
select	要重置的 IVE Module	输入

[返回值]

返回值		描述
0		成功
非0	10	失败

[需求]

头文件: cvi_comm_ive.h cvi_ive.h

3.50 Dump Register

[描述]

輸出 IVE 的暫存器值到 Log。

[语法]

CVI_S32 CVI_IVE_DUMP(IVE_HANDLE plveHandle);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入

[返回值]

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h '

3.51 Split DiffFg of BgModel

[描述]

從 BgModel 的結果取出 DiffFg, 並儲存成 YUV 影像。

[语法]

CVI_\$32 CVI_IVE_DiffFg_Split(IVE_HANDLE plveHandle,

VE_SRC_IMAGE_S *pstDiffFg, IVE_DST_IMAGE_S *pstBGDiffFg,

IVE_DST_IMAGE_S *pstFrmDiffFg);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
pstDiffFg		輸入
pstBGDiffFg		輸出
pstFrmDiffFg		輸出

[返回值]

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.52 Split ChgSta of BgModel

[描述]

從 BgModel 的結果取出 ChgSta, 並儲存成 YUV 影像。

[语法]

CVI_S32 CVI_IVE_DiffFg_Split(IVE_HANDLE pIveHandle,

IVE_SRC_IMAGE_S *pstChgSta, IVE_DST_IMAGE_S *pstChgStaImg,

IVE_DST_IMAGE_S *pstChgStaFg, IVE_DST_IMAGE_S *pstChStaLift);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
pstChgSta		輸入
pstChgStaImg		輸出
pstChgStaFg		輸出
pstChStaLift	0/5	輸出

[返回值]

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.53 Query Tasks

[描述]

查詢現有 Task 狀態。

[语法]

CVI_S32 CVI_IVE_QUERY(IVE_HANDLE plveHandle, CVI_BOOL *pbFinish,

CVI BOOL bBlock);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
pbFinish	回傳 task 是否結束	輸出
bBlock	True 表示 blocked task	輸出

[返回值]

返回值	描述
0	成功
非0	失败

[需求]

头文件: cvi_comm_ive.h cvi_ive.h

3.54 Image2VideoFrameInfo

[描述]

將 IVE 影像格式轉換成 Video Frame Info 格式。

[语法]

CVI_S32 CVI_IVE_Image2VideoFrameInfo(IVE_IMAGE_S *pstIISrc,

VIDEO_FRAME_INFO_S *pstVFIDst);

[参数]

参数名称	描述	输入/输出
pstllSrc	輸入的影像内容	输入
pstVFIDst	輸出的影像内容	输出

[返回值]

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.55 **VideoFrameInfo2Image**

[描述]

將 Video Frame Info 影像格式轉換成 IVE 格式。

[语法]

CVI_\$32 CVI_IVE_VideoFrameInfo2Image(VIDEO_FRAME_INFO_S

*pstVFISrc, IVE_IMAGE_S *pstIIDst);

[参数]

参数名称	描述	输入/输出
------	----	-------

pstllSrc	輸入的影像内容	输入
pstVFIDst	輸出的影像内容	输出

[返回值]

返回值	描述	•
0	成功	×
非0	失败	

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.56 **FreeM**

[描述]

释放一块 IVE_MEM_INFO_S 结构。

[语法]

CVI_S32 CVI_SYS_FreeM(WE_HANDLE plveHandle, IVE_MEM_INFO_S

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
pstMem	要释放的记忆体结构	输入

^{*}pstMem);

返回值	描述
0	成功
非 0	失败

• 头文件: cvi_comm_ive.h cvi_ive.h

3.57 **Freel**

[描述]

释放一張 IVE_IMAGE_S 结构。

[语法]

CVI_S32 CVI_SYS_Freel(IVE_HANDLE plveHandle, IVE_IMAGE_S *pstImg);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
pstlmg	输入影像。	输入

[返回值]

	返回值	描述
)	0	成功
	非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.58 **FreeD**

[描述]

释放 IVE_DATA_S 结构。

CVI_S32 CVI_SYS_FreeD(IVE_HANDLE plveHandle, IVE_DATA s*pstData);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
pstData	输入 Data。	输入

[返回值]

返回值	描述
0	成功
非0	失败

头文件: cvi_comm_ive.h cvi_ive.h

3.59 **Thresh_S16**

[描述]

創建 S16 數據到 8bit 數據的閥值化任務。

[语法]

CVI_S32 CVI_IVE_Thresh_S16(IVE_HANDLE plveHandle,

IVE_SRC_IMAGE_S *pstSrc, IVE_DST_IMAGE_S *pstDst,

IVE_THRESH_S16_CTRL_S *pstThrS16Ctrl, CVI_BOOL binstant);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
pstSrc	输入影像指针。不能为空。	输入
pstDst	输出的影像指针。不能为空。高和宽同 pstSrc。	输出
pstCtrl	門檻值參數結構指针,不能为空。	输入
binstant	參考值	输出

[仮回值]

返回值	描述
0	成功
非0	失败

• 头文件: cvi_comm_ive.h cvi_ive.h

3.60 **Thresh_U16**

[描述]

創建 U16 數據到 8bit 數據的閥值化任務。

[语法]

CVI_S32 CVI_IVE_Thresh_U16(IVE_HANDLE piveHandle

IVE_SRC_IMAGE_S *pstSrc, IVE_DST_IMAGE_S *pstDst,

IVE_THRESH_U16_CTRL_S *pstCtrl, CVI_BOOL blnstant);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
pstSrc	输入影像指针。不能为空。	输入
pstDst	输出的影像指针。不能为空。高和宽同	输出
	pstSrc.	
pstCtrl	門檻值參數結構指针,不能为空。	输入
blnstant	参考值	输出

返回值	描述
-----	----

0	成功
非 0	失败

• 头文件: cvi_comm_ive.h cvi_ive.h

•

3.61 Resize

[描述]

創建影像 Resize 任務,支持 Bilinear Interpolation 及 Area Interpolation 方法。

[语法]

CVI_S32 CVI_IVE_Resize(IVE_HANDLE plveHandle, IVE_SRC_IMAGE_S

astSrc[], IVE_DST_IMAGE_S astDst[], IVE_RESIZE_CTRL_S *pstCtrl,

CVI_BOOL blnstant);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
astSrc	输入影像陣列。不能为空。	输入
astDst	输出的影像陣列。不能为空。影像類型必須	输出
	和 astSrc 相同	
pstCtrl	門檻值參數結構指针,不能为空。	输入

bInstant 參考值	输出
--------------	----

参数名称	支持图像类型	地址对齐	分辨率
astSrc	U8C1 或	1byte	•
	U8C3_PLANAR		
astDst	U8C1 或	1byte	
	U8C3_PLANAR		. 20

[返回值]

返回值	描述
0	成功
非0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

3.62 **16BitTo8Bit**

[描述]

創建 16bit 圖像數據到 8bit 圖像數據的線性化任務。

[语法]

CVI_S32 CVI_IVE_16BitTo8Bit (IVE_HANDLE plveHandle,

IVE_SRC_IMAGE_S *pstSrc, IVE_DST_IMAGE_S *pstDst,

IVE_16BIT_TO_8BIT_CTRL_S *pstCtrl, bool blnstant);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
pstSrc	输入影像指针。不能为空。	输入
pstDst	输出的影像指针。不能为空。高和宽同	输出
	pstSrc.	
pstCtrl	門檻值參數結構指针,不能为空。	输入
blnstant	參考值	输出

[返回值]

返回值	描述
0	成功
非0	失败

「需求

• 头文件: cvi_comm_ive.h cvi_ive.h

3.63 **RGB YUV Erode to Dilate**

[描述]

[语法]

CVI_S32 CVI_IVE_rgbPToYuvToErodeToDilate(IVE_HANDLE plveHandle,

IVE_SRC_IMAGE_S *pstSrc, IVE_DST_IMAGE_S *pstDst1,

IVE_DST_IMAGE_S *pstDst2, IVE_FILTER_CTRL_S *pstCtrl, CVI_BOOL

blnstant);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
pstSrc	输入影像指针。不能为空。	输入
pstDst1	输出的影像指针。不能为空。高和宽同	输出
	pstSrc.	
pstDst2	输出的影像指针。不能为空。高和宽同 pstSrc。	输出
pstCtrl	門檻值參數結構指针,不能为空。	输入
blnstant	参考值	输出

返回值	描述
0	成功

非0	失败
----	----

• 头文件: cvi_comm_ive.h cvi_ive.h

3.64 **STCandiCorner**

[描述]

計算候選角點。

[语法]

CVI_S32 CVI_IVE_STCandiCorner(IVE_HANDLE plveHandle,

IVE_SRC_IMAGE_S *pstSrc, IVE_DST_IMAGE_S *pstDst,

IVE_ST_CANDI_CORNER_CTRL_S *pstCtrl, CVI_BOOL blnstant);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
pstSrc	输入影像指针。不能为空。	输入
pstDst	输出的影像指针。不能为空。高和宽同	输出
	pstSrc.	
pstCtrl	門檻值參數結構指针,不能为空。	输入
blnstant	參考值	输出

返回值	描述
0	成功
非 0	失败

• 头文件: cvi_comm_ive.h cvi_ive.h

3.65 **Background Subtraction**

[描述]

創建背景相減法任務。

[语法]

CVI_S32 CVI_IVE_FrameDiffMotion(IVE_HANDLE plveHandle,

IVE_SRC_IMAGE_S *pstSrc1, IVE_SRC_IMAGE_S *pstSrc2,

IVE_DST_IMAGE_S *pstDst, IVE_FRAME_DIFF_MOTION_CTRL_S *pstCtrl,

CVI_BOOL blnstant);

[参数]

参数名称	描述	输入/输出
plveHandle	任務的 handle。	输入
pstSrc1	输入影像指针。不能为空。	输入
pstSrc2	输入影像指针。不能为空。	输入

pstDst	输出的影像指针。不能为空。高和宽同	输出
	pstSrc。	
pstCtrl	門檻值參數結構指针,不能为空。	输入
blnstant	参考值	输出

[返回值]

返回值	描述
0	成功
非 0	失败

[需求]

• 头文件: cvi_comm_ive.h cvi_ive.h

4 数据类型和数据结构

IVE 相關數據類型及數據結構定義描述如下:

- IVE_IMAGE_TYPE_E:定义二维广义图像支持的图像类型。
- IVE_IMAGE_S:定义二维广义图像信息。
- IVE_SRC_IMAGE_S:定义源图像。
- IVE_DST_IMAGE_S:定义输出图像。
- IVE_DATA_S:定义以 byte 为单位的二维图像信息。

- IVE_SRC_DATA_S:定义以 byte 为单位的二维源数据信息。
- IVE DST DATA S:定义 byte 为单位的二维输出数据信息。
- IVE_MEM_INFO_S:定义一维数据内存信息。
- IVE_SRC_MEM_INFO_S:定义一维源数据。
- IVE DST MEM INFO S:定义一维输出数据。
- IVE 8BIT U:定义 8bit 数据共用体。
- IVE DMA MODE E:定义 DMA 运算模式。
- IVE_DMA_CTRL_S:定义 DMA 控制信息。
- IVE FILTER CTRL S:定义模板滤波控制信息。
- IVE CSC MODE E:定义色彩空间转换模式。
- IVE_CSC_CTRL_S:定义色彩空间转换控制信息。
- IVE_SOBEL_OUT_CTRL_E:定义 sobel 输出控制信息。
- IVE SOBEL CTRL S:定义 sobel 边缘提取控制信息。
- IVE MAG_AND_ANG_OUT_CTRL_E:定义幅值与角度计算的输出格式。
- IVE_MAG_AND_ANG_CTRL_S:定义幅值和幅角计算的控制信息。
- IVE MAG DIST E:定义梯度幅值距離計算方式。
- IVE DILATE CTRL S:定义膨胀控制信息。
- IVE_ERODE_CTRL_S:定义腐蚀控制信息。
- IVE BLOCK CTRL S: 定义 IVE BLOCK 控制信息。

- IVE_SUB_MODE_E:定义两图像相减输出格式。
- IVE SUB CTRL S:定义两图像相减控制参数。
- IVE_INTEG_OUT_CTRL_E:定义积分图输出控制参数。
- IVE_INTEG_CTRL_S:定义积分图计算控制参数。
- IVE THRESH MODE E:定义图像二值化输出格式。
- IVE_THRESH_CTRL_S:定义图像二值化控制信息。
- IVE_THRESH_S16_MODE_E:定义 16bit 有符号图像的阈值化模式。
- IVE_THRESH_S16_CTRL_S:定义 16bit 有符号图像的阈值化控制参数。
- IVE THRESH_U16_MODE_E:定义 16bti 无符号图像的阈值化模式。
- IVE THRESH U16 CTRL S:定义 16bit 无符号图像的阈值化控制参数。
- IVE_16BIT_TO_8BIT_MODE_E:定义 16bit 图像到 8bit 图像的转化模式。
- IVE 16BIT T○ 8BIT TRL 5:定义 16bit 图像到 8bit 图像的转化控制参数。
- IVE ORD STAT FILTER MODE E:定义顺序统计量滤波模式。
- IVE ORD_STAT_FILTER_CTRL_S:定义顺序统计量滤波控制参数。
- IVE_EQUALIZE_HIST_CTRL_S:定义直方图均衡化控制参数。
- IVE_ADD_CTRL_S:定义两图像的加权加控制参数。
- IVE NCC DST MEM S:定义 NCC 的输出内存信息。
- IVE LBP CMP MODE E:定义 LBP 纹理计算控制参数。
- IVE LBP CTRL S:定义 LBP 纹理计算控制参数。

- IVE_NORM_GRAD_OUT_CTRL_E:定义归一化梯度信息计算任务输出控制枚举 类型。
- IVE_NORM_GRAD_CTRL_S:定义归一化梯度信息计算控制参数。
- IVE_SAD_MODE_E:定义 SAD 计算模式。
- IVE_SAD_OUT_CTRL_E:定义 SAD 输出控制模式。
- IVE_SAD_CTRL_S:定义 SAD 控制参数。
- IVE_RESIZE_MODE_E:定义 Resize 的模式。
- IVE_RESIZE_CTRL_S:定义 Resize 控制参数。
- IVE_HOG_CTRL_S:定义计算 HOG(Histogram of Oriented Gradient)特征控制 参数。

4.1 定义数据类型

[说明]

定义定点化的数据类型。

[定义]

與 middleware 共用, 詳見 cvi_type.h。

4.2 定义结构类型

IVE IMAGE TYPE E NUM

[说明]

定义二维广义图像支持的图像类型。

[定义]

typedef enum IVE_IMAGE_TYPE {

IVE_IMAGE TYPE_U8C1 = 0x0,

 $IVE_IMAGE_TYPE_S8C1 = 0x1,$

 $IVE_IMAGE_TYPE_YUV420SP = 0x2,$

 $IVE_IMAGE_TYPE_YUV422SP = 0x3,$

 $IVE_IMAGE_TYPE_YUV420P = 0x4,$

IVE IMAGE TYPE YUV422P = 0x5,

IVE_IMAGE_TYPE_S8C2_PACKAGE = 0x6,

 $IVE_IMAGE_TYPE_S8C2_PLANAR = 0x7,$

IVE_IMAGE_TYPE_S16C1 = 0x8,

IVE_IMAGE_TYPE_U16C1 = 0x9,

IVE_IMAGE_TYPE_U8C3_PACKAGE = 0xa,

IVE_IMAGE_TYPE_U8C3_PLANAR = 0xb,

IVE_IMAGE_TYPE_S32C1 = 0xc,

IVE_IMAGE_TYPE_U32C1 = 0xd,

IVE_IMAGE_TYPE_S64C1 = 0xe,

IVE_IMAGE_TYPE_BF16C1 = 0x10,

IVE_IMAGE_TYPE_BF16C1 = 0x11,

IVE_IMAGE_TYPE_BUTT
} IVE_IMAGE_TYPE_E;

成员名称	描述
IVE_IMAGE_TYPE_U8C1	每个像素用 1 个 8bit 无符号 数据表示的单通道图像。 请参
	见图 1-2。

	IVE_IMAGE_TYPE_S8C1	每个像素用 1 个 8bit 有符号 数据表示的单通道图像。 请参 见图 1-2。
	IVE_IMAGE_TYPE_YUV420SP	YUV420 Semiplanar 格式的图像。请参见图 1-3。
	IVE_IMAGE_TYPE_YUV422SP	YUV422 Semiplanar 格式的图像。请参见图 1-4。
	IVE_IMAGE_TYPE_ YUV420P	YUV420 Planar 格式的图像。 请参见图 1-5。
	IVE_IMAGE_TYPE_ YUV422P	YUV422 Planar 格式的图像。 请参见图 1-6。
	IVE_IMAGE_TYPE_S8C2_PACKAGE	每个像素用 2 个 8bit 有符号 数据表示,且以 package 格式 存储 2 通道图像。
	IVE_IMAGE_TYPE_ S8C2_PLANAR	请参见图 1-7。 每个像素用 2 个 8bit 有符号 数据表示, 且以 planar 格式存储 2 通道图像。请参见图 1- 8。
	IVE_IMAGE_TYPE_S16C1	每个像素用 1 个 16bit 有符号 数据表示单通道图像。 请参见 图 1-2。
	IVE_IMAGE_TYPE_U16C1	每个像素用 1 个 16bit 无符号 数据表示单通道图像。 请参见 图 1-2。
	IVE_IMAGE_TYPE_ U8C3_PACKAGE	每个像素用 3 个 8bit 无符号 数据表示且以 Package 格式存储 3 通道图像。
5	IVE_IMAGE_TYPE_ U8C3_PLANAR	请参见图 1-9。 每个像素用 3 个 8bit 无符号 数据表示 1 个像素的 3 通道 图像,且以 planar 格式存储。
	IVE_IMAGE_TYPE_S32C1	请参见图 1-10。 每个像素用 1 个 32bit 有符号 数据表示单通道图像。 请参见 图 1-2。

IVE IMAGE TYPE U32C1	每个像素用 1 个 32bit 无符号
172_1171/162_111 2_05261	数据表示单通道图像。 请参见
	图 1-2。
IVE IMAGE TYPE S64C1	每个像素用 1 个 64bit 有符号
IVE_IMAGE_TTFE_304CT	数据表示单通道图像。 请参见
	图 1-2。
IVE_IMAGE_TYPE_U64C1	每个像素用 1 个 64bit 无符号
	数据表示单通道图像。 请参见
	图 1-2。
IVE_IMAGE_TYPE_BF16C1	每个像素用 1 个 16bit 无符号
	数据表示单通道图像。
IVE_IMAGE_TYPE_UFP32C1	每个像素用 1 个 32bit 无符号
	数据表示单通道图像。

[注意事项]

无。

[相关数据类型及接口]

- o IVE IMAGE S
- o IVE_SRC_IMAGE_S
- VIVE_DST_IMAGE_S

IVE_IMAGE_S

[说明]

定义二维广义图像信息。

[定义]

typedef struct IVE_IMAGE


```
IVE_IMAGE_TYPE_E enType;

CVI_U64 u64phyAddr[3];

CVI_U64 u64VirAddr[3];

CVI_U32 u32Stride[3];

CVI_U32 u32Width;

CVI_U32 u32Height;

CVI_U32 u32Reserved;

IVE_IMAGE_S;
```

[成员]

{

成员名称	描述
enType	广义图像的图像类型。
U64phyAddr	广义图像的物理地址数组。
u64VirAddr	广义图像的虚拟地址数组。
u32Stride	广义图像的跨度。
u32Width	广义图像的宽度。
u32Height	广义图像的高度。

u32Reserved

保留位。

[注意事项]

无。

[相关数据类型及接口]

-IVE_IMAGE_TYPE_E

-IVE_SRC_IMAGE_S

-IVE_DST_IMAGE_S

IVE_SRC_IMAGE_S

[说明]

定义源图像。

[定义]

[成员]

无。

[注意事项]

无。

[相关数据类型及接口]

-IVE_IMAGE_S

-IVE_DST_IMAGE_S

IVE_DST_IMAGE_S

[说明]

定义输出图像。

[定义]

[成员]

无。

[注意事项]

无。

[相关数据类型及接口]

-IVE_IMAGE_S

-IVE_SRC_IMAGE_S

IVE DATA S

[说明]

定义以 byte 为单位的二维数据信息。

[定义]

typedef struct _IVE_DATA_S

{

IVE_IMAGE_TYPE_E enType;

CVI_U64 u64PhyAddr;

CVI_U64 u64VirAddr;

CVI_U32 u32Stride;

CVI_U32 u32Width;

CVI_U32 u32Height;

CVI_U32 u32Reserved;

} IVE_DATA_S;

_		
	成员名称	描述
	u64PhyAddr	广义图像的物理地址数组。
	u64VirAddr	广义图像的虚拟地址数组。
	u32Stride	广义图像的跨度。
	u32Width	广义图像的宽度。
	u32Height	广义图像的高度。

u32Reserved

保留位。

[注意事项]

无。

[相关数据类型及接口]

无。

IVE_SRC_DATA_S

[说明]

定义以 byte 为单位的二维源数据信息

[定义]

typede IVE_DATA_S IVE_SRC_DATA_S

[成员]

无。

[注意事项]

无。

[相关数据类型及接口]

IVE_IMAGE_S

IVE_DST_DATA_S

IVE_DST_DATA_S [说明] 定义 byte 为单位的二维输出数据信息。 [定义] typede IVE_DATA_S IVE_DST_DATA_S [成员] 无。 [注意事项] 无。 [相关数据类型及接[IVE_IMAGE_S IVE_SRC_IMAGE_S IVE MEM_INFO_S [说明] 定义一维数据内存信息。 [定义] typedef struct _IVE_MEM_INFO_S

CVI_U64 u64PhyAddr;

CVI_U64 u64VirAddr;

CVI_U32 u32Size;

} IVE_ MEM_INFO_S;

[成员]

成员名称	描述
u64PhyAddr	一维数据物理地址。
u64VirAddr	一维数据虚拟地址。
u32Size	一维数据 byte 数目。

[注意事项

无。

[相关数据类型及接口]

IVE_SRC_MEM_INFO_S

IVE_DST_MEM_INFO_S

IVE_SRC_MEM_INFO_S

[说明]

定义一维源数据。

[定义]

typedef IVE_MEM_INFO_S IVE_SRC_MEM_INFO_S;

[成员]

无。

[注意事项]

无。

[相关数据类型及接口]

IVE_MEM_INFO_S

IVE_DST_MEM_INFO_S

IVE_DST_MEM_INFO_S

[说明]

定义一维源数据。

[义宝]

typedef IVE_MEM_INFO_S IVE_DST_MEM_INFO_S;

[成员]

无。

[注意事项]

无。

[相关数据类型及接口]


```
IVE_MEM_INFO_S
IVE_SRC_MEM_INFO_S
```

IVE_8BIT_U

[说明]

定义 8bit 数据联合体。

[定义]

typedef union _IVE_8BIT

{

CVI_S8 s8Val;

CVI_U8 u8Val;

} IVE_8BIT_U;

[成员]

成员名称	描述
s8Val	有符号 8bit 值。
u8Val	无符号 8bit 值。

[注意事项]

无。

[相关数据类型及接口]

无。

IVE_POINT_U16_S

[说明]

定义 unsigned 16bit 座標数据結構体。

[定义]

```
typedef struct _IVE_POINT_U16_S
```

{

CVI_U16 u16X;

CVI_U16 u16Y;

} IVE_POINT_U16_S;

[成员]

成员名称	描述
u16X	無號 16bit X 座標。
u16Y	無號 16bit Y 座標。

[注意事项]

无。

[相关数据类型及接口]

无。

IVE_POINT_S16_S

[说明]

定义 signed 16bit 座標数据結構体。

[定义]

typedef struct _IVE_POINT_S16_S

{

CVI_S16 s16X;

CVI_S16 s16Y;

} IVE_POINT_S16_S;

[成员]

成员名称	描述
s16X	有號 16bit X 座標。
s16Y	有號 16bit Y 座標。

[注意事项]

无。

[相关数据类型及接口]

无。

IVE_DMA_MODE_E

[说明]

定义 DMA 操作模式。

[定义]

typedef struct IVE_DMA_MODE

{

 $IVE_DMA_MODE_DIRECT_COPY = 0x0,$

IVE DMA_MODE_INTERVAL_COPY = 0x1,

 $IVE_DMA_MODE_SET_3BYTE = 0x2,$

 $IVE_DMA_MODE_SET_8BYTE = 0x3,$

IVE_DMA_MODE_BUTT

} IVE_DMA_MODE_E;

成员名称	描述
IVE_DMA_MODE_DIRECT_COPY	直接快速拷贝模式。
IVE_DMA_MODE_INTERVAL_COPY	间隔拷贝模式,请参见 CVI_IVE_DMA 【注
	意】说明。
IVE_DMA_MODE_SET_3BYTE	3byte 赋值模式,请参 见 CWL_IVE_DMA【注 意】说明。
IVE_DMA_MODE_SET_8BYTE	8byte 赋值模式,请参 见 CVI_ IVE_DMA【注
	意】说明。

[注意事项

无。

[相关数据类型及接口]

无

IVE_DMA_CTRL_S

[说明]

定义 DMA 控制信息。

[定义]

typedef struct IVE_DMA_CTRL

{

IVE_DMA_MODE_E enMode;

CVI_U64 u64Val;

CVI_U8 u8HorSegSize;

CVI_U8 u8ElemSize;

CVI_U8 u8VerSegRows;

}IVE_DMA_CTRL_S;

成员名称	描述
enMode	DMA 操作模式。
u64Val	仅赋值模式使用,用于对内存赋
dontal	值, 3byte 赋值模式用低
	3byte
	保存。
u8HorSegSize	仅间隔拷贝模式使用, 水平方向
uonoi segsize	将源图像一行分割的段大小。
	取值范围:{2, 3, 4, 8, 16}。
u8ElemSize	仅间隔拷贝模式使用,分割的每
uoeieiiisize	一段中前 u8ElemSizebyte 为
	有效的拷贝字段。
	取值范围:[1, u8HorSegSize-
	1]。

u8VerSegRows

仅间隔拷贝模式使用,将每 u8VerSegRows 行中第一行数 据分 割为 u8HorSegSize 大 小的段,拷贝每段中的前 u8ElemSize 大 小的字节

[注意事项]

无。

[相关数据类型及接口]

IVE_DMA_MODE_E

IVE FILTER CTRL S

[说明]

定义模板滤波控制信息。

[定义]

typedef struct IVE_FILTER_CTRL

CVI_S8 as8Mask[25];

CVI_U8 u8Norm;

} IVE_FILTER_CTRL_S;

成员名称	描述
enMode	5x5 模板系数,外围系数设为 0 可实现 3x3 模板滤波。
u8Norm	归一化参数。 取值范围:[0, 13]。

[注意事项]

通过配置不同的模板系数可以达到不同的滤波效果。

[相关数据类型及接口]

无。

IVE_CSC_MODE_E

[说明]

定义色彩空间转换模式。

[定义]

typedef enum IVE_CSC_MODE_E

IVE_CSC_MODE_VIDEO_BT601_YUV2RGB = 0x0,

 $IVE_CSC_MODE_VIDEO_BT709_YUV2RGB = 0x1,$

IVE_CSC_MODE_PIC_BT601_YUV2RGB = 0x2,

IVE_CSC_MODE_PIC_BT709_YUV2RGB = 0x3,

 $IVE_CSC_MODE_PIC_BT601_YUV2HSV = 0x4,$

 $IVE_CSC_MODE_PIC_BT709_YUV2HSV = 0x5,$

IVE_CSC_MODE_PIC_BT601_YUV2LAB = 0x6, IVE_CSC_MODE_PIC_BT709_YUV2LAB = 0x7,

IVE_CSC_MODE_VIDEO_BT601_RGB2YUV = 0x8,
IVE_CSC_MODE_VIDEO_BT709_RGB2YUV = 0x9,
IVE_CSC_MODE_PIC_BT601_RGB2YUV = 0xa,
IVE_CSC_MODE_PIC_BT709_RGB2YUV = 0xb,
IVE_CSC_MODE_BUTT
} IVE_CSC_MODE_E;
[成员]

成员名称	描述
IVE CSC MODE VIDEO BT601 YUV2RG	BT601 YUV2RGB
TVE_CSC_INIODE_VIDEO_BTOOT_TOVERG	Video 格式轉換
IVE CSC MODE VIDEO BT709 YUV2RGB	BT709 YUV2RGB
TVE C3C_IVIODE_VIDEO_B1709_10V2RGB	Video 格式轉換
IVE CSC MODE PIC BT601 YUV2RGB	BT601 YUV2RGB
TVL_C3C_IVIODL_FIC_BT00T_T0V2RGB	影像格式轉換
IVE CSC MODE PIC BT709 YUV2RGB	BT709 YUV2RGB
TVL_C3C_IVIODL_FIC_BT709_T0V2RGB	影像格式轉換
IVE CSC MODE PIC BT601 YUV2HSV	BT601 YUV2HSV
1VL_C3C_IVIODL_FIC_D1001_10V2113V	影像格式轉換
IVE CSC MODE PIC BT709 YUV2HSV	BT709 YUV2HSV
1VL_C3C_IVIODL_FIC_D1703_10V2113V	影像格式轉換

IVE CSC MODE PIC BT601 YUV2LAB	BT601 YUV2LAB
TVE_CSC_INIODE_FIC_DTOOT_TOVELAD	影像格式轉換
IVE CSC MODE PIC BT709 YUV2LAB	BT709 YUV2LAB
TVE_CSC_INIODE_FIC_BT705_TOVELAD	影像格式轉換
IVE_CSC_MODE_VIDEO_BT601_RGB2YUV	BT601 RGB2YUV
	Video 格式轉換
IVE CSC MODE VIDEO BT709 RGB2YUV	BT709 RGB2YUV
TVE_C3C_IVIODE_VIDEO_B1703_RGB210V	Video 格式轉換
IVE CSC MODE PIC BT601 RGB2YUV	BT601 RGB2YUV
TVE_C3C_INIODE_FIC_BT00T_RGB2T0V	影像格式轉換
IVE_CSC_MODE_PIC_BT709_RGB2YUV	BT709 RGB2YUV
IVE_C3C_INIODE_PIC_B1709_RGB210V	影像格式轉換

[注意事项]

[相关数据类型及接口]

IVE_CSC_CTRL_S

IVE_CSC_CTRL_S

[说明]

定义色彩空间转换控制信息。

[定义]

typedef struct cviIVE_CSC_CTRL_S

{

IVE_CSC_MODE_E. enMode;

}IVE_CSC_CTRL_S;

成员名称	描述
enMode	工作模式

[注意事项]

无。

[相关数据类型及接口]

IVE_CSC_MODE_E

IVE_SOBEL_OUT_CTRL_E

[说明]

定义 Sobel 输出控制信息。

[定义]

typedef enum IVE_SOBEL_OUT_CTRL

 $IVE_SOBEL_OUT_CTRL_BOTH = 0x0,$

 $IVE_SOBEL_OUT_CTRL_HOR = 0x1,$

 $IVE_SOBEL_OUT_CTRL_VER = 0x2,$

IVE_SOBEL_OUT_CTRL_BUTT

} IVE_SOBEL_OUT_CTRL_E;

[成员]

成员名称	描述
IVE_SOBEL_OUT_CTRL_BOTH	同时输出用模板和转置模板滤波的结果。
IVE_SOBEL_OUT_CTRL_HOR	仅输出用模板直接滤波的结 果。
IVE_SOBEL_OUT_CTRL_VER	仅输出用转置模板滤波的结 果。

[注意事项]

无。

[相关数据类型及接口]

IVE_SOBEL_CTRL_S

IVE_SOBEL_CTRL_S

说明]

定义 Sobel-like 梯度计算控制信息。

[定义]

typedef struct IVE_SOBEL_CTRL

{

IVE_SOBEL_OUT_CTRL_E enOutCtrl;

CVI_S8 as8Mask[25];

} IVE_SOBEL_CTRL_S;

[成员]

成员名称	描述
enOutCtrl	输出控制枚举参数。
U8MaskSize	Mask Size
as8Mask[25]	模板系数。

[注意事项]

无。

[相关数据类型及接口]

IVE_SOBEL_OUT_CTRL_E

IVE_MAG_AND_ANG_OUT_CTRL_E

[说明]

定义梯度幅值与角度计算的输出格式。

[定义]

typedef struct IVE_MAG_AND_ANG_OUT_CTRL


```
IVE_MAG_AND_ANG_OUT_CTRL_MAG = 0x0,
IVE_MAG_AND_ANG_OUT_CTRL_MAG_AND_ANG
= 0x1,
IVE_MAG_AND_ANG_OUT_CTRL_BUTT

IVE_MAG_AND_ANG_OUT_CTRL_E;

[成员]
```

成员名称	描述
IVE_MAG_AND_ANG_OUT_CTRL_MAG	僅輸出幅值
IVE_MAG_AND_ANG_OUT_CTRL_MAG_AND_ANG	同時輸出幅 值和角度值

IVE_MAG_AND_ANG_CTRL_S

[说明]

定义梯度幅值和幅角计算的控制信息。

[定义]

typedef struct IVE_MAG_AND_ANG_CTRL
{

IVE_MAG_AND_ANG_OUT_CTRL_E enOutCtrl;
CVI_U16 u16Thr;
CVI_S8 as8Mask[25];

} IVE_MAG_AND_ANG_OUT_CTRL_S;

[成员]

成员名称	描述
enOutCtrl	輸出格式
u16Thr	閥值
as8Mask	5x5 Filter

[注意事项

无。

[相关数据类型及接口]

IVE_MAG_AND_ANG_OUT_CTRL_E

IVE_DILATE_CTRL_S

[说明]

定义控制信息。

[定义]

```
typedef struct _IVE_DILATE_CTRL_S
{
        CVI_U8 au8Mask[25];
} IVE_DILATE_CTRL_S;
```

[成员]

成员名称	描述
au8Mask[25]	5x5 模板係數。取值範圍: 0或 255

[注意事项

无。

[相关数据类型及接口]

无。

IVE_ERODE_CTRL_S

[说明]

定义腐蚀控制信息。

[定义]

typedef IVE_DILATE _CTRL_S IVE_ERODE_CTRL_S;

[成员]

成员名称	描述	
au8Mask[25]	5x5 模板係數。	取值範圍: 0或 255

[注意事项]

无。

[相关数据类型及接口]

无。

IVE THRESH MODE E

[说明]

定义图像二值化输出格式。

(定义)

typedef enum IVE_THRESH_MODE

 $IVE_THRESH_MODE_BINARY = 0x0,$

IVE_THRESH_MODE_TRUNC = 0x1,
IVE_THRESH_MODE_TO_MINVAL = 0x2,
IVE_THRESH_MODE_MIN_MID_MAX = 0x3,
IVE_THRESH_MODE_ORI_MID_MAX = 0x4,
IVE_THRESH_MODE_MIN_MID_ORI = 0x5,
IVE_THRESH_MODE_MIN_ORI_MAX = 0x6,
IVE_THRESH_MODE_ORI_MID_ORI = 0x7.
} IVE_THRESH_MODE_E;

成员名称	描述
IVE_THRESH_MODE_BINARY	srcVal ≤ lowThr, dstVal = minVal;
	srcVal > lowThr, dstVal = maxVal。
IVE_THRESH_MODE_TRUNC	srcVal ≤ lowThr, dstVal = srcVal srcVal
	> lowThr, dstVal = maxVal
IVE_THRESH_MODE_TO_MINVAL	srcVal ≤ lowThr, dstVal = minVal srcVal
	> lowThr, dstVal = srcVal
IVE_THRESH_MODE_MIN_MID_MAX	srcVal ≤ lowThr, dstVal = minVal lowThr
,	< srcVal ≤ highThr,
	dstVal = midVal
	srcVal > highThr, dstVal = maxVal
IVE_THRESH_MODE_ORI_MID_MAX	srcVal ≤ lowThr, dstVal = srcVal lowThr
	< srcVal ≤ highThr
	dstVal = midVal
	srcVal > highThr, dstVal = maxVal

IVE_THRESH_MODE_MIN_MID_ORI	srcVal ≤ lowThr, dstVal = minVal lowThr
	< srcVal ≤ highThr
	dstVal = midVal
	srcVal > highThr, dstVal = srcVal
IVE_THRESH_MODE_MIN_ORI_MAX	srcVal ≤ lowThr, dstVal = minVal lowThr
	< srcVal ≤ highThr
	dstVal = srcVal
	srcVal > highThr, dstVal = maxVal
IVE_THRESH_MODE_ORI_MID_ORI	srcVal ≤ lowThr, dstVal = srcVal lowThr
	< srcVal ≤ highThr dstVal = midVal
	srcVal > highThr, dstVal = srcVal

[注意事项]

无。

[相关数据类型及接口]

IVE_THRESH_CTRL_S

IVE_THRESH_CTRL_S

[说明]

定义图像二值化控制信息。

[定义]

typedef struct IVE_THRESH_CTRL

{

CVI_U32 enMode;

CVI_U8 u8LowThr;

CVI_U8 u8HighThr;

CVI_U8 u8MinVal;

CVI_U8 u8MidVal;

CVI_U8 u8MaxVal;

}IVE_THRESH_CTRL_S;

[成员]

成员名称	描述
enMode	阈值化运算模式。
u8LowThr	低阈值。 取值范围: [0,255]。
u8HighThr	高阈值。
J	取值范围: [0,255]。
u8MinVal	最小值。
dominion.	取值范围: [0,255]。
u8MidVal	中值。
domada	取值范围: [0,255]。
u8MaxVal	最大值。
dolling to	取值范围: [0,255]。

[注意事项]

无。

[相关数据类型及接口]

IVE_THRESH_MODE_E

IVE_SUB_MODE_E

[说明]

定义两图像相减输出格式。

[定义]

Typedef enum _IVE_SUB_MODE_E

{

 $IVE_SUB_MODE_ABS = 0x0,$

 $IVE_SUB_MODE_SHIFT = 0x1,$

IVE_SUB_MODE_BUTT

} IVE_SUB_MODE_E

[成员]

成员名称	描述
IVE_SUB_MODE_ABS	相減取絕對值。
IVE_SUB_MODE_SHIFT	将结果右移一位输出,保留符号位。

[注意事项]

无。

[相关数据类型及接口]

IVE_SUB_CTRL_S

IVE_SUB_CTRL_S

[说明]

定义两图像相减控制参数。

[定义]

Typedef struct IVE_SUB_CTRL

{

IVE_SUB_MODE_E_enMode

} IVE_SUB_CTRL_S;

[成员]

成员名称	描述
enMode	两图像相减模式

[注意事项]

无。

[相关数据类型及接口]

IVE_SUB_MODE_E

IVE_INTEG_OUT_CTRL_E

[说明]

定义积分图输出控制参数。

[定义]

Typedef enum _IVE_INTEG_OUT_CTRL_E

{

IVE_INTEG_OUT_CTRL_COMBINE = 0x0,

 $IVE_INTEG_OUT_CTRL_SUM = 0x1,$

 $IVE_INTEG_OUT_CTRL_SQSUM = 0x2,$

IVE INTEG OUT_CTRL_BUTT

VIVE_INTEG_OUT_CTRL_E;

成员]

成员名称	描述
IVE_INTEG_OUT_CTRL_COMBINE	和、平方和积分图组合输出,

IVE_INTEG_OUT_CTRL_SUM	仅和积分图输出。
IVE_INTEG_OUT_CTRL_SQSUM	仅平方和积分图输出。

无。

[相关数据类型及接口]

IVE_INTEG_CTRL_S

IVE_INTEG_CTRL_S

[说明]

定义积分图计算控制参数。

[定义]

Typedef struct _IVE_INTEG_CTRL_S

{

IVE_INTEG_MODE_E enOutCtrl;

} IVE_INTEG_CTRL_S;

[成员]

成员名称	描述
enOutCtrl	积分图输出控制参数

无。

[相关数据类型及接口]

IVE_INTEG_OUT_CTRL_E

IVE THRESH S16 MODE E

[说明]

定义 16bit 有符號圖像的閥值化模式。

[定义]

typedef enum IVE_THRESH_S16_MODE_E

{

IVE_THRESH_S16_MODE_S16_TO_S8_MIN_MID_MAX = 0x0,

IVE_THRESH_S16_MODE_S16_TO_S8_MIN_ORI_MAX = 0x1,

 $IVE_THRESH_S16_MODE_S16_TO_U8_MIN_MID_MAX = 0x2,$

 $IVE_THRESH_S16_MODE_S16_TO_U8_MIN_ORI_MAX = 0x3,$

IVE_INTEG_MODE_E enOutCtrl;

} IVE_THRESH_S16_MODE_E;

[成员]

	T
成员名称	描述
IVE_THRESH_S16_MODE_S16_TO_S8_MIN_MID_MAX	srcVal ≤ lowThr,
	dstVal = minVal;
	lowThr < srcVal ≤highThr,
	dstVal = midVal;
	srcVal > highThr,
	dstVal = maxVal;
IVE_THRESH_S16_MODE_S16_TO_S8_MIN_ORI_MAX	srcVal ≤ lowThr,
	dstVal = minVal;
	lowThr < srcVal ≤highThr,
	dstVal = srcVal;
	srcVal > highThr,
	dstVal = maxVal;
IVE_THRESH_S16_MODE_S16_TO_U8_MIN_MID_MAX	srcVal ≤ lowThr,
	dstVal = minVal;
	lowThr < srcVal ≤highThr,
	dstVal = midVal;
	srcVal > highThr,
	dstVal = maxVal;
IVE_THRESH_S16_MODE_S16_TO_U8_MIN_ORI_MAX	srcVal ≤ lowThr,
	dstVal = minVal;
	lowThr < srcVal ≤highThr,
	dstVal = srcVal;
	srcVal > highThr,
	dstVal = maxVal;

[注意事项]

无。

[相关数据类型及接口]

IVE_THRESH_S16_CTRL_S

IVE_THRESH_S16_CTRL_S

[说明]

定义 16bit 有符號圖像的閥值化控制參數。

[定义]

```
typedef struct IVE_THRESH_S16_ CTRL
{
```

IVE_THRESH_S16_MODE_E enMode;

CVI_S16 s16LowThr;

CVI_S16 s16HightThr;

IVE_8BIT_U un8MinVal;

IVE_8BIT_U un8MidVal

IVE_8BIT_U un8MaxVal;

NVE_THRESH_S16_ CTRL_S;

[成员]

成員名稱	描述
enMode	阈值化运算模式。
s16LowThr	低阈值。

s16HightThr	高阈值。
un8MinVal	最小值。
un8MidVal	中间值。
un8MaxVal	最大值。

无。

[相关数据类型及接口]

IVE_THRESH_S16_MODE_E

IVE_THRESH_U16_MODE_E

[说明]

定义 16bit 無符號圖像的閥值化控制參數。

[定义]

typedef struct IVE_THRESH_U16_ MODE_E

IVE_THRESH_U16_MODE_U16_TO_U8_MIN_MID_MAX=0x0,
IVE_THRESH_U16_MODE_U16_TO_U8_MIN_ORI_MAX=0x1,
IVE_THRESH_U16_MODE_BUTT

} IVE_THRESH_U16_MODE_E;

[成员]

成員名稱	描述
IVE_THRESH_U16_MODE_U16_TO_U8_MIN_MID_MAX	srcVal ≤ lowThr,
	dstVal = minVal;
	lowThr < srcVal ≤highThr,
	dstVal = midVal;
	srcVal > highThr,
	dstVal = maxVal;
IVE_THRESH_U16_MODE_U16_TO_U8_MIN_ORI_MAX	srcVal ≤ lowThr,
	dstVal = minVal;
	lowThr < srcVal ≤highThr,
	dstVal = srcVal;
	srcVal > highThr,
	dstVal = maxVal;

[注意事项]

无。

[相关数据类型及接口]

WE_THRESH_U16_CTRL_S

IVE_THRESH_U16_CTRL_S

[说明]

定义 16bit 無符號圖像的閥值化控制參數。

[定义]

typedef struct IVE_THRESH_U16_ CTRL_S


```
IVE_THRESH_U16_MODE_E enMode;

CVI_U16 u16LowThr;

CVI_U16 u16HightThr;

IVE_8BIT_U u8MinVal;

IVE_8BIT_U u8MidVal;

IVE_8BIT_U u8MaxVal;
```

} cviIVE_THRESH_U16_ CTRL

[成员]

{

成員名稱	描述
enMode	阈值化运算模式。
u16LowThr	低阈值。
u16HightThr	高阈值。
u8MinVal	最小值。
u8MidVal	中间值。
u8MaxVal	最大值。

无。

[相关数据类型及接口]

IVE_THRESH_S16_MODE_E

IVE 16BIT TO 8BIT MODE E

[说明]

定义 16bit 圖像數據到 8bit 圖像數據的轉化模式

[定义]

{

typedef enum cviIVE_16BIT_TO_8BIT_MODE_E

IVE_16BIT_TO_8BIT_MODE_S16_TO_S8=0x0,

IVE_16BIT_TO_8BIT_MODE_S16_TO_U8_ABS=0x1,

IVE_16BIT_TO_8BIT_MODE_S16_TO_U8_BIAS=0x2,

IVE_16BIT_TO_8BIT_MODE_S16_TO_U8=0x3,

IVE_16BIT_TO_8BIT_MODE_BUTT

} IVE_16BIT_TO_8BIT_MODE_E;

[成员]

成員名稱	描述
IVE_16BIT_TO_8BIT_MODE_S16_TO_S8	S16 数据到 S8 数据的线性换。

IVE_16BIT_TO_8BIT_MODE_S16_TO_S8	S16 数据线性变换到 S8 数据后
	取绝对值得到 S8 数据。
IVE_16BIT_TO_8BIT_MODE_S16_TO_S8	S16 数据线性变换到 S8 数据且
	平移后截断到 U8 数据。
IVE_16BIT_TO_8BIT_MODE_S16_TO_S8	U16 数据线性变换到 U8 数据。

无。

[相关数据类型及接口]

IVE_16BIT_TO_8BIT_CTRL_S

IVE_16BIT_TO_8BIT_CTRL_S

[说明]

定义 16bit 圖像數據到 8bit 圖像數據的轉化控制參數

[定义]

typedef struct cviIVE_16BIT_TO_8BIT_CTRL_S

IVE_16BIT_TO_8BIT_MODE_E enMode;

CVI_U16 u16Denominator;

CVI_U8 u8Numerator;

CVI_S8 s8Bias;

} IVE_16BIT_TO_8BIT_CTRL_S;

[成员]

成員名稱	描述
enMode	16bit 数据到 8bit 数据的转换模式。
u16Denominator	线性变换中的分母。
	取值范围: [max{1,u8Numerator}, 65535]
u8Numerator	线性变换中的分子。
	取值范围: [0,255]。
s8Bias	线性变换中的平移项。
	取值范围: [-128,127]。

[注意事项]

无。

[相关数据类型及接口]

IVE_16BIT_TO_8BIT_MODE_E

IVE_ORD_STAT_FILTER_MODE_E

[说明]

定义順序統計量濾波模式

[定义]


```
typedef enum IVE_ORD_STAT_FILTER_MODE

{

IVE_ORD_STAT_FILTER_MODE_MEDIAN = 0x0,

IVE_ORD_STAT_FILTER_MODE_MIN = 0x1,

IVE_ORD_STAT_FILTER_MODE_MAX = 0x2,

IVE_ORD_STAT_FILTER_MODE_BUTT

} IVE_ORD_STAT_FILTER_MODE_E;
```

[成员]

成員名稱		描述
IVE_ORD_STAT_FILTER_MODE_N	IEDIAN	中值濾波
IVE_ORD_STAT_FILTER_MODE_N	ИIN	最小值滤波,等价于灰度图的腐蚀。
IVE_ORD_STAT_FILTER_MODE_M	ЛАХ	最大值滤波,等价于灰度图的膨胀。

[注意事项]

无。

[相关数据类型及接口]

ORD_STAT_FILTER_CTRL_S

IVE_ORD_STAT_FILTER_CTRL_S

[说明]


```
定义順序統計量濾波控制參數
```

[定义]

```
typedef struct cviIVE_ORD_STAT_FILTER_CTRL_S
{
     IVE_ ORD_STAT_FILTER _MODE_E enMode;
} IVE_ ORD_STAT_FILTER _CTRL_S;
```

[成员]

成員名稱	描述
enMode	顺序统计量滤波模式

[注意事项]

无。

[相关数据类型及接口]

WE_ORD_STAT_FILTER _MODE_E

IVE_MAP_MODE_E

[说明]

MAP 模式。

[定义]

typedef enum _IVE_MAP_CODE_E


```
IVE_MAP_MODE_U8 = 0x0;
IVE_MAP_MODE_S16 = 0x1;
IVE_MAP_MODE_U16 = 0x2;
} IVE_MAP_CODE_E;
```

[成员]

{

成員名稱	描述
IVE_MAP_MODE_U8	U8C1 到 U8C1Mapping
IVE_MAP_MODE_\$16	U8C1 到 U16C1Mapping
IVE_MAP_MODE_U16	U8C1 到 S16C1Mapping

[注意事项]

无。

[相关数据类型及接口]

无。

IVE_ADD_CTRL_S

[说明]

定义倆圖像的加權加控制參數。

[定义]

```
typedef struct IVE_ADD_CTRL_S
{

CVI_U0Q16 u0q16X;

CVI_U0Q16 u0q16Y;
} IVE_ADD_CTRL_S;

[成员]
```

成員名稱	描述	
u0q16X	加權加	"xA+yB" 中的權重" x"
u0q16X	加權加	"xA+yB" 中的權重" y"

[注意事项]

无

[相关数据类型及接口]

无。

IVE_NCC_DST_MEM_S

[说明]

定义 NCC 的输出内存信息。

[定义]

typedef struct cviIVE_NCC_DST_MEM_S

{

CVI_U64 u64Numerator;

CVI_U64 u64QuadSum1;

CVI_U64 u64QuadSum2

CVI_U8 u8Reserved[8];

} IVE_NCC_DST_MEM_S;

[成员]

成員名稱	描述
u64Numerator	NCC 计算公式的分子 $\sum_{i=1}^{w} \sum_{j=1}^{h} (I_{src1}(i,j) * I_{src2}(i,j))$
u64QuadSum1	NCC 计算公式的分母根号内部分: $\sum_{i=1}^{w} \sum_{j=1}^{h} (I_{src1}^{2}(i,j)).$

u64QuadSum2	NCC 计算公式的分母根号内部分: $\sum_{i=1}^{w} \sum_{j=1}^{h} (I_{src2}^{2}(i,j))$
u8Reserved	保留字段。

計算公式參考 CVI_IVE_NCC 中的 [注意]。

[相关数据类型及接口]

無。

IVE_GMM_CTRL_S

[说明]

定义 GMM 控制參數。

[定义]

typedef struct _IVE_GMM_CTRL_S {

CVI_U22Q10 u22q10NoiseVar;

CVI_U22Q10 u22q10MaxVar;

CVI_U22Q10 u22q10MinVar;

CVI_U0Q16 u0q16LearnRate;

CVI_U0Q16 u0q16BgRatio;

CVI_U8Q8 u8q8VarThr;

CVI_U0Q16 u0q16InitWeight;

CVI_U8 u8ModelNum;

} IVE_GMM_CTRL_S;

[成员]

成員名稱	描述
u22q10NoiseVar	初始雜訊變異數
	數值範圍: [0x1, 0xFFFFFF]
u22q10MaxVar	模型最大變異數
	數值範圍: [0x1, 0xFFFFFF]
u22q10MinVar	模型最小變異數
	數值範圍: [1, u22q10MaxVar]
u0q16LearnRate	學習率
	數值範圍: [1, 65535]
u0q16BgRatio	背景比率閥值
	數值範圍: [1, 65535]
u8q8VarThr	變異數閥值

	數值範圍: [1, 65535]	
u0q16InitWeight	初始權重	
	數值範圍: [1, 65535]	
u8ModelNum	幾個 Gaussian 模型	
	數值範圍: {3, 5}	

无。

[相关数据类型及接口]

无。

IVE_LBP_CMP_MODE_E

[说明]

定義 LBP 計算的比較模式。

[定义]

typedef enum cvilVE_LBP_CMP_MODE_E

{

 $IVE_LBP_CMP_MODE_NORMAL = 0x0,$

 $IVE_LBP_CMP_MODE_ABS = 0x1,$

IVE_LBP_CMP_MODE_BUTT


```
} IVE_LBP_CMP_MODE_E;
[成员]
```

成員名稱	描述
IVE_LBP_CMP_MODE_NORMAL	LBP 簡單比較模式
IVE_LBP_CMP_MODE_ABS	LBP絕對值比較模式

計算公式參考 CVI_IVE LBP 中的 [注意]。

[相关数据类型及接口]

IVE_LBP_CTRL_S.

IVE_LBP_CTRL_S

[说明]

定义 LBP 紋理計算控制參數。

[定义]

Typedef struct cviIVE_LBP_CTRL_S

{

IVE_LBP_CMP_MODE_E enMode;

IVE_8BIT_U un8BitThr;

}IVE_LBP_CTRL_S;

[成员]

成員名稱	描述
enMode	LBP 比較模式
un8BitThr	LBP 比較閥值。
	IVE_LBP_CMP_MODE_NORMAL 下的取值範圍: [-
	128,127]
	IVE_LBP_CMP_MODE_ABS 下的取值範圍: [0,255]

[注意事项]

計算公式參考 CVI_IVE_LBP 中的 [注意]。

[相关数据类型及接口]

IVE_LBP_CMP_MODE_E

IVE_8BIT_U

IVE_NORM_GRAD_OUT_CTRL_E

[说明]

定义归一化梯度信息计算任务输出控制枚举类型。

[定义]

```
typedef enum cvilVE_NORM_GRAD_OUT_CTRL_E
{
```

```
IVE_NORM_GRAD_OUT_CTRL_HOR_AND_VER = 0x0,
```

IVE_NORM_GRAD_OUT_CTRL_HOR = 0x1

IVE_NORM_GRAD_OUT_CTRL_VER = 0x2,

IVE_NORM_GRAD_OUT_CTRL_COMBINE = 0x3,

IVE_NORM_GRAD_OUT_CTRL_BUTT

} IVE_ NORM_GRAD_CTRL_E;

[成员]

成員名稱	描述
IVE_NORM_GRAD_OUT_CTRL_HOR_AND_VER	同时输出梯度信息的 H、V 分量图
IVE_NORM_GRAD_OUT_CTRL_HOR	仅输出梯度信息的 H 分量图。
IVE_NORM_GRAD_OUT_CTRL_VER	仅输出梯度信息的 V 分量图。
IVE_NORM_GRAD_OUT_CTRL_COMBINE	输出梯度信息以 package 存储

[注意事项]

无。

[相关数据类型及接口]

IVE_NORM_GRAD_OUT_CTRL_S

IVE_NORM_GRAD_CTRL_S

[说明]

定义歸一化梯度信息計算控制參數

[定义]

typedef struct IVE_NORM_GRAD_CTRL {

IVE_NORM_GRAD_OUT_CTRL_E enOutCtrl;

IVE_MAG_DIST_E enDistCtrl;

IVE_ITC_TYPE_E enlTCType;

CVI_U8 u8MaskSize;

} IVE_NORM_GRAD_CTRL_S;

成员

成員名稱	描述
enOutCtrl	輸出格式
enDistCtrl	計算距離方式

enITCType	是否做歸一化
u8MaskSize	遮罩大小

无。

[相关数据类型及接口]

IVE_ITC_CTRL_S

IVE_NORM_GRAD_OUT_CTRL_E

IVE_SAD_MODE_E

[说明]

定义 SAD 计算模式。

[定义]

typedef enum cviIVE_SAD_MODE_E

 $IVE_SAD_MODE_MB_4x4 = 0x0,$

 $IVE_SAD_MODE_MB_8x8 = 0x1,$

 $IVE_SAD_MODE_MB_16x16 = 0x2,$

IVE_NORM_GRAD_OUT_CTRL_BUTT

} IVE_ SAD_MODE_E;

[成员]

成員名稱	描述
IVE_SAD_MODE_MB_4x4	按 4x4 像素块计算 SAD。
IVE_SAD_MODE_MB_4x4	按 8x8 像素块计算 SAD。
IVE_SAD_MODE_MB_4x4	按 16x16 像素块计算 SAD。

[注意事项]

无。

[相关数据类型及接口]

IVE_SAD_CTRL_S

IVE_SAD_OUT_CTRL_E

[说明]

定义 SAD 计算模式。

[定义]

typedef enum cviIVE_SAD_OUT_CTRL_E

IVE_SAD_OUT_CTRL_16BIT_BOTH = 0x0,
IVE_SAD_OUT_CTRL_8BIT_BOTH = 0x1,

{

 $IVE_SAD_OUT_CTRL_16BIT_SAD = 0x2,$

 $IVE_SAD_OUT_CTRL_8BIT_SAD = 0x3,$

 $IVE_SAD_OUT_CTRL_THRESH = 0x4,$

IVE_SAD_OUT_CTRL_BUTT

} IVE_ SAD_OUT_CTRL_E;

[成员]

成員名稱	描述
IVE_SAD_OUT_CTRL_16BIT_BOTH	16 bit SAD 图和阈值化图输出模式。
IVE_SAD_OUT_CTRL_8BIT_BOTH	8 bit SAD 图和阈值化图输出模式。
IVE_SAD_OUT_CTRL_16BIT_SAD	16 bit SAD 图输出模式。
IVE_SAD_OUT_CTRL_8BIT_SAD	8 bit SAD 图输出模式。
IVE_SAD_OUT_CTRL_THRESH	阈值化图输出模式。

[注意事项]

无。

[相关数据类型及接口]

IVE_SAD_CTRL_S

IVE_SAD_CTRL_S

[说明]

定义 SAD 控制參數

[定义]


```
typedef struct cviIVE_SAD_CTRL_S

{

    IVE_SAD_MODE_E enMode;

    IVE_SAD_OUT_CTRL_E enOutCtrl;

    CVI_U16 u16Thr;

    CVI_U8 u8MinVal;

    CVI_U8 u8MaxVal;

} IVE_SAD_CTRL_S;

[成员]
```

成員名稱	描述
enMode	SAD 计算模式。
enOutCtrl	SAD 输出控制模式。
u16Thr	对计算的 SAD 图进行阈值化的阈值。
	取值范围依赖 enMode:
	1、 IVE_SAD_OUT_CTRL_8BIT_BOTH,
	取值[0, 255]
	2、IVE_SAD_OUT_CTRL_16BIT_BOTH
	和 IVE_SAD_OUT_CTRL_THRESH,

	取值[0, 65535]
u8MinVal	阈值化不超过 u16Thr 时的取值。
u8MaxVal	阈值化超过 u16Thr 时的取值

无。

[相关数据类型及接口]

IVE_SAD_MODE_E

IVE_SAD_OUT_CTRL_E

IVE_HOG_CTRL_S

[说明]

定义计算 HOG(Histogram of Oriented Gradient)特征控制参数。

定义

typedef struct IVE_HOG_CTRL {

CVI_U8 u8BinSize;

CVI_U32 u32CellSize;

CVI_U16 u16BlkSizeInCell;

CVI_U16 u16BlkStepX;
CVI_U16 u16BlkStepY;
} IVE_HOG_CTRL_S;

[成员]

成員名稱	描述
u8BinSize	每個 Cell 的 histogram bin 個數
u32CellSize	Cell 大小
u16BlkSizeInCell	一個 Cell 包含的 Block size
u16BlkStepX	Stride x
u16BlkStepY	Stride y

注意事项

无。

[相关数据类型及接口]

无。

IVE_16BIT_TO_8BIT_MODE_E

[说明]

定义 16BIT 图像数据到 8bit 图像数据的转化模式。

[定义]

```
{

IVE_16BIT_TO_8BIT_MODE_S16_TO_S8 = 0x0,

IVE_16BIT_TO_8BIT_MODE_S16_TO_U8_ABS = 0x1,

IVE_16BIT_TO_8BIT_MODE_S16_TO_U8_BIAS = 0x2

IVE_16BIT_TO_8BIT_MODE_U16_TO_U8 = 0x3,
```

typedef struct cviIVE_16BIT_TO_8BIT_CTRL_S

IVE_16BIT_TO_8BIT_MODE_BUT]
}IVE_16BIT_TO_8BIT_MODE_E;
[成员]

成员名称	描述
IVE_16BIT_TO_8BIT_MODE_S16_TO_S8	S16 数据到 S8 数据的线性变换。
IVE_16BIT_TO_8BIT_MODE_S16_TO_U8_ABS	S16 数据线性变换到 S8 数据后取
	绝对值得到 S8 数据。
IVE_16BIT_TO_8BIT_MODE_S16_TO_U8_BIAS	S16 数据线性变换到 S8 数据且平
	移后截断到 U8 数据。
IVE_16BIT_TO_8BIT_MODE_S16_TO_U8	S16 数据到 U8 数据的线性变换。

[注意事项]

无。

[相关数据类型及接口]

- IVE_16BIT_TO_8BIT_ CTRL_S

IVE_16BIT_TO_8BIT_CTRL_S

[说明]

定义 16BIT 图像数据到 8bit 图像数据的转化控制参数。

[定义]

```
typedef struct cviIVE_16BIT_TO_8BIT_CTRL_9
```

```
IVE_16BIT_TO_8BIT_MODE_E enMode;
```

CVI_U16 u16Denominator;

CVI_U8 u8Numerator;

CVI_S8 s8Bias;

}IVE_16BIT_TO_8BIT_CTRL_S;

成员]

成员名称	描述
enMode	16bit 数据到 8bit 数据的转换模式。
u16Denominator	线性变换中的分母。
u8Numerator	线性变换中的分子。
s8Bias	线性变换中的平移项。

无。

[相关数据类型及接口]

- IVE_16BIT_TO_8BIT_MODE_E

IVE_IVE_TYPE_E

[说明]

歸一化參數。

[定义]

typedef enum IVE_ITC_TYPE {

 $IVE_ITC_SATURATE = 0x0$

IVE_ITC_NORMALIZE = 0x1,

} IVE_ITC_TYPE_E;

[成员]

成员名称	描述
IVE_ITC_SATURATE	飽和。
IVE_ITC_NORMALIZE	歸一化。

[注意事项]

无。

[相关数据类型及接口]

- IVE_ITC_CTRL_S
- IVE_NORM_GRAD_CTRL_S

IVE_IVE_CTRL_S

[说明]

圖像格式轉換參數。

[定义]

typedef struct IVE_ITC_CRTL {

IVE_ITC_TYPE_E enType;

} IVE_ITC_CRTL_S;

[成员]

成员名称	描述
enType	歸一化參數。

[注意事项]

无。

[相关数据类型及接口]

- IVE_ITC_TYPE_E

IVE_BLOCK_CTRL_S

[说明]

IVE_BLOCK 控制參數。

[定义]

typedef struct IVE_BLOCK_CTRL {

CVI_FLOAT f32BinSize;

CVI_U32 u32CellSize;

} IVE_BLOCK_CTRL_S;

[成员]

成员名称	描述
f32Scale	取完 Cell 平均後在除以 Scale value。
u32CellSize	Cell 大小

[注意事项]

无。

[相关数据类型及接口]

IVE_ITC_TYPE_E

5 技巧說明

5.1 額外的緩衝區

目前僅支援 UINT8/INT8/BF16 的運算,任何超過 UINT8 值域的功能是使用 BF16 實現,速度上會較慢一些,且需要額外的緩衝空間當作暫存區。

6 错误码

- 6.1 错误码的定义
- 6.2 错误码可能发生时机

7 调试信息

7.1 概述

调适信息采用 Linux 下的 proc 文件系统,可反映 IVE 的运行顺序、算法耗时、输入输出的影像结构内容,提供问题定位与分析时使用。

【文件目录】

/proc/ive/hw_profiling

【信息查看方法】

在控制台上可以使用 echo 命令选择欲查询的讯息,cat 命令查看 所选的信息。

7.2 时间信息

【调适信息】

~ # echo 1 > /proc/ive/hw_profiling

Run IVE Application ...

example: 1. The resulation 1920x1080.

2. The order is Sub -> Xor.

~ # cat /proc/ive/hw_profiling

[IVE] ive time profiling

op name | start(s)| ioctl(us)| tile0(us)l tile1(us)l tile2(us)l tile3(us)l tile4(us)l tile5(us)l tileSum(us) Sub 3951 76061 17441 17431 17491 17431 482I 01 7461 Xor 4081 7459 76031 1744 17431 17431 17471 4821 0

【参数说明】

参数	描述	
op name	演算法	
start(s)	纪录最后一次使用的时间	
ioctl(us)	Driver 运行时间,包含软体与硬体的耗时	
tile0~5(us)	大图被切割后,各小图所使用硬体的耗时纪录	•
tileSum(us)	总硬体耗时纪录	61

7.3 输出入图片讯息

【调适信息】

~ # echo 6 > /proc/ive/hw_profiling

Run IVE Application ...

example: 1. The resulation 1920x1080.

2. Run Xor.

~ # cat /proc/ive/hw_profiling; dmesg | tail -n 50

[2903.518723] Image pstSrc1

[2903.518729] Type: 0x0

[2903.518733] Width: 1920

[2903.518736] Height: 1080

[2903.518740] Phy 0 Addr: 0x83c80000

[2903.518743] Stride 0: 1920

[2903.518745] Image pstSrc2

[2903.518748] Type: 0x0

[2903.518750] Width: 1920

[2903.518752] Height: 1080

[2903.518756] Phy 0 Addr: 0x83e7b000

[2903.518759] Stride 0: 1920

[2903.518761] Image pstDst

[2903.518764] Type: 0x0

[2903.518766] Width: 1920

[2903.518768] Height: 1080

[2903.518772] Phy 0 Addr: 0x84076000

[2903.518775] Stride 0: 1920

【参数说明】

参数	描述	
Image pstSrc / pstDst	输入/输出的图片	
Type	图片格式:	
	类型	定义
	IVE_IMAGE_TYPE_U8C1	0x0
	IVE_IMAGE_TYPE_S8C1	0x1
	IVE_IMAGE_TYPE_YUV420SP	0x2
	IVE_IMAGE_TYPE_YUV422SP	0x3
	IVE_IMAGE_TYPE_YUV420P	0x4
	IVE_IMAGE_TYPE_YUV422P	0x5
	IVE_IMAGE_TYPE_S8C2_PACKAGE	0x6
	IVE_IMAGE_TYPE_S8C2_PLANAR	0x7
	IVE_IMAGE_TYPE_S16C1	0x8
	IVE_IMAGE_TYPE_U16C1	0x9
	IVE_IMAGE_TYPE_U8C3_PACKAGE	0xa
	IVE_IMAGE_TYPE_U8C3_PLANAR	0xb
	IVE_IMAGE_TYPE_S32C1	0xc
	IVE_IMAGE_TYPE_U32C1	0xd
	IVE IMAGE_TYPE_S64C1	0xe
	IVE_IMAGE_TYPE_U64C1	Oxf
	IVE_IMAGE_TYPE_BF16C1	0x10
	IVE_IMAGE_TYPE_FP32C1	0x11
Width	图片宽度	
Height	图片高度	
Phy 0 Addr	各通道在实体记忆体上的起始位置	
Stride 0	各通道的 Stride 长度	

8 FAQ

8.1 Cache 内存的使用

内存使用 cache 时机,由算法软件对这内存的使用方式来判断。由于 IVE 是直接读取 DDR 内存数据,此时使用的内存若带有 cache,则必须一直刷 cache 来保证数据的一致性。所以若无频繁 CPU 超做,那么建议内存不带 cache;反之,建议这片内存带 cache。

8.2 blnstant 参数的设定

IVE 各算法函式最后一个参数的介绍,设定 True 为使用 Busy waiting 方式等待中断回应;设定 False 则会将程序移出 CPU,等到中断讯号通知,才运行 IVE 中断程式。

