FMI, Info, Anul I Semestrul I, 2016/2017 Logică matematică și computațională Laurențiu Leuștean, Alexandra Otiman, Andrei Sipoș

Seminar 2

(S2.1)

- (i) Demonstrați că orice intervale deschise (a, b), (c, d) ale lui \mathbb{R} sunt echipotente.
- (ii) Demonstrați că (0,1), (0,1], [0,1), [0,1] și \mathbb{R} sunt echipotente.

Demonstrație:

(i) Fie funcția

$$f:(a,b)\to(c,d), \quad f(x)=rac{d-c}{b-a}(x-a)+c \ \ {
m pentru\ orice}\ x\in(a,b).$$

Dacă a < x < b, avem că 0 < x - a < b - a şi $0 < \frac{d-c}{b-a}(x-a) < d-c$. Adăugând c, rezultă că funcția noastră este bine definită, i.e. valoarea dată de noi pentru f(x) se află într-adevăr în (c,d). Definim funcția

$$g:(c,d)\to(a,b),\quad g(x)=rac{b-a}{d-c}(x-c)+a \ \ {
m pentru\ orice}\ x\in(c,d).$$

Se observă ușor că f și g sunt inverse una celeilalte. Prin urmare, (a,b) și (c,d) sunt echipotente.

(ii) Ştim că tan : $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$ este bijectivă, iar din punctul anterior avem că $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ este echipotent cu (0,1).

O soluție directă este: se ia funcția $f:(0,1)\to\mathbb{R}$, definită, pentru orice $x\in(0,1)$, prin:

$$f(x) = \begin{cases} 2 - \frac{1}{x}, & \text{dacă } 0 < x < \frac{1}{2} \\ \frac{1}{1 - x} - 2, & \text{altminteri} \end{cases}$$

ce are inversa $f^{-1}: \mathbb{R} \to (0,1)$, definită, pentru orice $y \in \mathbb{R}$, prin:

$$f^{-1}(y) = \begin{cases} \frac{1}{2-y}, & \text{dacă } y < 0\\ 1 - \frac{1}{2+y}, & \text{altminteri.} \end{cases}$$

Prin urmare, (0,1) și \mathbb{R} sunt echipotente.

Se ia apoi funcția $h:(0,1]\to(0,1)$, definită, pentru orice $x\in(0,1]$, prin:

$$h(x) = \begin{cases} \frac{1}{n+1}, & \text{dacă există } n \in \mathbb{N}^* \text{ a.î. } x = \frac{1}{n} \\ x, & \text{altminteri.} \end{cases}$$

Inversa sa $h^{-1}:(0,1)\to(0,1]$ este definită, pentru orice $y\in(0,1)$, prin:

$$h^{-1}(y) = \begin{cases} \frac{1}{n-1}, & \text{dacă există } n \in \mathbb{N}^* \text{ a.î. } y = \frac{1}{n} \\ y, & \text{altminteri} \end{cases}$$

Prin urmare, (0,1] şi (0,1) sunt echipotente.

Considerăm apoi funcția $j:[0,1]\to(0,1)$, definită, pentru orice $x\in[0,1]$, prin:

$$j(x) = \begin{cases} \frac{1}{2}, & \text{dacă } x = 0\\ \frac{1}{n+2}, & \text{dacă există } n \in \mathbb{N}^* \text{ a.î. } x = \frac{1}{n}\\ x, & \text{altminteri.} \end{cases}$$

Inversa sa $j^{-1}:(0,1)\to[0,1]$ este definită, pentru orice $y\in(0,1)$, prin:

$$j^{-1}(y) = \begin{cases} \frac{1}{n-2}, & \text{dacă există } n \in \mathbb{N} \setminus \{0, 1, 2\} \text{ a.î. } y = \frac{1}{n} \\ 0, & \text{dacă } y = \frac{1}{2} \\ y, & \text{altminteri} \end{cases}$$

Prin urmare, (0,1) și [0,1] sunt echipotente.

În sfârşit, se observă uşor că funcția $F:(0,1] \to [0,1), F(x) = 1-x$ este bijectivă (inversa lui F fiind tot F). Prin urmare, (0,1] și [0,1) sunt echipotente.

(S2.2) Fie X o mulţime. Să se arate că nu există o funcţie surjectivă cu domeniul X şi codomeniul $\mathcal{P}(X)$.

Demonstrație: Presupunem că ar exista, și fie $f: X \to \mathcal{P}(X)$ surjectivă. Fie mulțimea

$$A = \{ x \in X \mid x \notin f(x) \} \in \mathcal{P}(X).$$

Dat fiind că f este surjectivă, există $y \in X$ cu f(y) = A. Dar atunci: $y \in A \Leftrightarrow y \notin f(y) = A \Leftrightarrow y \notin A$ ceea ce este o contradicție.

(S2.3) Arătați, pe rând, următoarele:

- (i) \mathbb{N}^* este numărabilă.
- (ii) \mathbb{Z} este numărabilă.
- (iii) $\mathbb{N} \times \mathbb{N}$ este numărabilă.

Demonstrație:

(i) Definim

$$f: \mathbb{N} \to \mathbb{N}^*, \quad f(n) = n+1.$$

Se demonstrează imediat că f este bijecție, inversa sa fiind

$$f^{-1}: \mathbb{N}^* \to \mathbb{N}, \quad f^{-1}(n) = n - 1.$$

(ii) Enumerăm elementele lui \mathbb{Z} astfel:

$$0, -1, 1, -2, 2, -3, 3, \dots$$

Funcția $f:\mathbb{N}\to\mathbb{Z}$ corespunzătoare acestei enumer
ări este următoarea:

$$f(n) = \begin{cases} \frac{n}{2} & \text{dacă } n \text{ e par} \\ -\frac{n+1}{2} & \text{dacă } n \text{ e impar.} \end{cases}$$

E clar că f e bijectivă și că $h: \mathbb{Z} \to \mathbb{N}$ definită prin:

$$h(s) = \begin{cases} 2s & \text{dacă } s \ge 0\\ -2s - 1 & \text{dacă } s < 0 \end{cases}$$

este inversa lui f.

(iii) Ordonăm elementele lui $\mathbb{N} \times \mathbb{N}$ după suma coordonatelor și în cadrul elementelor cu aceeași sumă după prima componentă în ordine crescătoare:

linia 0
$$(0,0)$$
,
linia 1 $(0,1), (1,0)$,
linia 2 $(0,2), (1,1), (2,0)$,
linia 3 $(0,3), (1,2), (2,1), (3,0)$,
 \vdots
linia k $(0,k), (1,k-1), \dots, (k-1,1), (k,0)$,
 \vdots

Prin urmare, pentru fiecare $k \in \mathbb{N}$, pe linia k sunt k+1 perechi $(i,k-i), i=0,\ldots,k$. Definim $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ astfel: $f(0,0)=0, \ f(0,1)=1, \ f(1,0)=2,\ldots$ În general, f(i,j) se definește ca fiind numărul perechilor situate înaintea lui (i,j). Deoarece (i,j) este al (i+1)-lea element pe linia i+j, rezultă că înaintea sa sunt $1+2+3+\ldots+(i+j)+i=\frac{(i+j)(i+j+1)}{2}+i$ elemente. Așadar, bijecția va fi funcția

$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \quad f(i,j) = \frac{(i+j)(i+j+1)}{2} + i.$$

Această funcție se numește și funcția numărare diagonală a lui Cantor (în engleză, Cantor pairing function).

(S2.4) Arătați, pe rând, următoarele:

- (i) Produsul cartezian a două mulțimi numărabile este numărabil.
- (ii) Produsul cartezian al unui număr finit (≥ 2) de mulțimi numărabile este numărabil.

Demonstrație:

(i) Fie A_1 și A_2 două mulțimi numărabile. Prin urmare, le putem enumera:

$$A_1 = \{a_{1,0}, a_{1,1}, \dots, a_{1,n}, \dots, \}, A_2 = \{a_{2,0}, a_{2,1}, \dots, a_{2,n}, \dots, \}.$$

Definim

$$f: \mathbb{N} \times \mathbb{N} \to A_1 \times A_2, \quad f(m, n) = (a_{1,m}, a_{2,n}).$$

Se demonstrează uşor că f este bijecție.

(ii) Demonstrăm prin inducție după n că pentru orice $n \in \mathbb{N}, n \geq 2$ și pentru orice mulțimi numărabile $A_1, \ldots, A_n, A_1 \times A_2 \ldots A_n$ este numărabilă.

$$n=2$$
: Aplicăm (i).

 $n \Rightarrow n+1$. Fie A_1, \ldots, A_{n+1} mulţimi numărabile şi $B = \prod_{i=1}^n A_i$. Atunci B este numărabilă, conform ipotezei de inducţie, deci, conform (i), $B \times A_{n+1}$ este numărabilă. Se observă imediat că funcţia

$$f: \prod_{i=1}^{n+1} A_i \to B \times A_{n+1}, \quad f((a_1, a_2, \dots, a_n, a_{n+1})) = ((a_1, a_2, \dots, a_n), a_{n+1})$$

este bijecție. Prin urmare, $\prod_{i=1}^{n+1} A_i$ este numărabilă.

Definiția 1. O familie de mulțimi $(A_i)_{i\in I}$ se numește disjunctă dacă pentru orice $i, j \in I$ cu $i \neq j$ avem $A_i \cap A_j = \emptyset$.

(S2.5) Fie $(A_i)_{i\in I}$ o familie de mulţimi. Pentru orice $i\in I$ notăm $A_i':=\{i\}\times A_i$. Să se arate că $A_i'\sim A_i$ pentru orice $i\in I$ şi că $(A_i')_{i\in I}$ este o familie disjunctă de mulţimi. **Demonstraţie:** Este evident că, pentru orice $i\in I$, funcţia

$$f_i: A_i \to A_i', \quad f_i(a) = (i, a)$$

este bijecție.

Presupunem prin reducere la absurd că $(A_i')_{i\in I}$ nu este o familie disjunctă de mulțimi. Atunci există $j,k\in I$ cu $j\neq k$ a.î. $A_j'\cap A_k'\neq\emptyset$, deci există $x\in A_j'\cap A_k'$. Deoarece $x\in A_j'$, există $a\in A_j$ cu x=(j,a). Similar, deoarece $x\in A_k'$, există $b\in A_k$ cu x=(k,b). Rezultă că (j,a)=(k,b), deci k=j, ceea ce contrazice presupunerea.