Analysis and Differential Equations (5)

Problem1. Suppose f is a function from the reals to the reals satisfying 2f(x) = f(2x) for all x.

- (a) Prove that if f is differentiable at 0 then f is linear.
- (b) Give an example of such a function f that is continuous but not linear.

Problem2.(2012 Individual) Let $\mathbb{R}_n^+ = \{x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n | x_n > 0\}$. Show that the formula

$$u(x) = \frac{2x_n}{n\alpha_n} \int_{\partial \mathbb{R}^n_{\perp}} \frac{g(y)}{|x - y|^n} dy, x \in \mathbb{R}^n$$

is a solution of the problem

$$\Delta u = 0$$
 in \mathbb{R}_n^+ , $u = g$ on $\partial \mathbb{R}_+^n$;

where α_n is the volume of the unit n dimensional sphere.

Problem3.(2016 Individual) Suppose that F is continuous on [a,b], F'(x) exists for every $x \in (a,b)$, F'(x) is integrable. Prove that F is absolutely continuous and

$$F(b) - F(a) = \int_a^b F'(x)dx.$$

Problem4. Let $\{f_n\}$ be a sequence of injective holomorphic functions in a domain $\Omega \subset \mathbb{C}$. If f_n converges uniformly on every compact subset of Ω , to a non-constant function f as $n \to \infty$, prove that f is an injective holomorphic function on Ω .

Problem5.(2011 Individual) For s > 0, let $H^s(T)$ be the space of L^2 functions f on the circle $T = R/2\pi\mathbb{Z}$ whose Fourier coefficients $\hat{f}_n = \int_0^{2\pi} e^{-inx} f(x) dx$ satisfy $\sum (1+n^2)^s ||\hat{f}_n||^2 < \infty$; with norm $||f||_s^2 = \frac{1}{2\pi} \sum (1+n^2)^s ||\hat{f}_n||^2$.

- (a) Show that for $r > s \ge 0$, the inclusion map $i: H^r(T) \to H^s(T)$ is compact.
- (b) Show that if $s > \frac{1}{2}$, then $H^s(T)$ includes continuously into C(T), the space of continuous functions on T, and the inclusion map is compact.