I. LÓGICA MATEMÁTICA.

COMPETENCIA: REPRESENTA ESTRUCTURAS COMPUTACIONALES, UTILIZANDO LA LÓGICA MATEMÁTICA CON ARGUMENTOS CONGRUENTES Y LÓGICOS.

CONTENIDO

- 1. Circuitos de Conmutación.
- 2. Algebra de Boole.
- 3. Mapas de Karnaugh.
- 4. Circuitos combinatorios

ÁLGEBRA DE BOOLE

- En esta sección se considerarán sistemas generales que tienen propiedades similares a los circuitos combinatorios.
- Veremos que sistemas aparentemente distintos obedecen estas mismas leyes.
- Tales sistemas se denominan álgebras booleanas o de Boole.

DEFINICIÓN

- **Definición**. Un álgebra booleana B consiste en un conjunto S que contiene 2 elementos distintos, el 0 y el 1, operadores binarios + y . en S, y un operador unario ' en S, los cuales cumplen las siguientes propiedades:
 - Leyes asociativas

$$(x+y)+z=x+(y+z)$$

 $(x\cdot y)\cdot z=x\cdot (y\cdot z)$ Para todo $x,y,z\in S$.

LEYES BOOLEANAS

Leyes conmutativas

$$x + y = y + x$$
$$x \cdot y = y \cdot x$$

Para todo $x, y \in S$.

Leyes distributivas

$$x. (y+z) = (x.y) + (x.z)$$
$$x + (y \cdot z) = (x+y) \cdot (x+z)$$

Para todo $x, y \in S$.

Leyes de identidad

$$x + 0 = x$$

$$x \cdot 1 = x$$

Para todo $x \in S$.

LEYES BOOLEANAS

Leyes de complementación

$$x + x' = 1$$

$$x \cdot x' = 0$$

Para todo
$$x \in S$$
.

Si B es un álgebra booleana, se escribirá

$$B = (S, +, \cdot, ', 0, 1)$$

OBSERVACIONES

- 0 y I son simplemente nombres simbólicos, y en general, no tienen que ver con los números 0 y I.
- Este mismo comentario se aplica a + y . que denotan operadores binarios y no tienen que ver con la adición y la multiplicación, habitualmente conocidas

EJEMPLO

• Sea
$$S = \{1, 2, 4, 8\}.$$
 $x + y = mcm(x, y)$ $x \cdot y = mcd(x, y)$

■ Demuestre que $(S,+,\cdot,',1,8)$ no es un álgebra booleana

SOLUCIÓN

• Si $(5,+,\cdot,\cdot,1,8)$ es un álgebra booleana, entonces Se debe de cumplir: x+x'=1

En términos del álgebra del problema: $mcm(x, \frac{8}{x}) = 8$

- En este caso debe tenerse para x = 1,2,4,8.
- Sin embargo para x=4,
- mcm(4,8/4) = mcm(4,2) = 4 \neq 8.
- Por lo tanto este sistema no es un álgebra booleana.

EJERCICIO

- Sea $S = \{1,2,3,6\}$ Defina
- x + y = mcm(x, y)
- $x \cdot y = mcd(x,y)$
- x' = 6 / x
- Demuestre que (S, +, ;', 1,6) es un álgebra booleana.

TEOREMA

- En un álgebra booleana, el elemento x' de la definición es único. Específicamente si x+y=1 y xy=0, entonces y=x'
- Demostración.

У	= y1	Definición (d)
	=y(x+x')	Definición (e)
	= yx + yx'	Definición (c)
	= xy + yx'	Definición (b)
	=0+yx'	Dado
	= xx' + yx'	Definición (e)
	= x'x + x'y	Definición (b)
	=x'(x+y)	Definición (c)
	= x'1	Dado
	= x'	Definición (d)

- Definición. Al elemento x', en un algebra booleana se le llama complemento de x.
- **Teorema**. Sea B=(S,+,.,',0,1) un álgebra booleana.
- Las siguientes propiedades se cumplen:
 - a) Ley de idempotencia: x+x=x Para todo $x\in S$. x = x

Leyes de acotación b)

$$x + 1 = 1$$

$$x0 = 0$$

 $x \in S$. Para todo

Leyes de absorción c)

$$x + xy = x$$

$$x + xy = x$$
 $x(x + y) = x$

Para todo $x, y \in S$.

Ley de involución d)

$$(x')' = x$$

 $x \in S$. Para todo

Leyes para el 0 y 1

$$0' = 1$$
 $1' = 0$

Leyes de Morgan f)

$$(x+y)' = x'y$$

$$(xy)' = x' + y'$$

(x+y)'=x'y' (xy)'=x'+y' Para todo $x,y\in S$.

DEMOSTRACIÓN

a)

\mathcal{X}	=x+0	Definición (d)
	= x + (xx')	Definición (e)
	= (x+x)(x+x')	Definición (c)
	= (x+x)1	Definición (e)
	= x + x	Definición (d)

DEMOSTRACIÓN

■ B) Primera parte..

x+1	= (x+1)1	Definición (d)
	= (x+1)(x+x')	Definición (e)
	=x+1x'	Definición (c)
	=x+x'1	Definición (b)
	=x+x'	Definición (d)
	= 1	Definición (e)

■ B) Segunda parte

x0	= x0 + 0	Definición (d)
	= x0 + xx'	Definición (e)
	= x(0+x')	Definición (c)
	= x(x'+0)	Definición (b)
	=xx'	Definición (d)
	=0	Definición (e)

EJERCICIO

Probar los incisos c al f del teorema anterior.

DEFINICIÓN

- **Definición**. El dual de un enunciado que involucra expresiones booleanas se obtiene reemplazando 0 por 1, 1 por 0, + por . y
- . por +
- Ejemplo.
 - El dual de (x + y)' = x'y'
 - $E_{S}(xy)' = x' + y'$.

SIMPLIFICACIÓN DE EXPRESIONES BOOLEANAS

- Un circuito se construye para cumplir una tarea específica.
- Ejemplo: Supóngase que se quiere construir un circuito combinatorio para determinar la función O excluyente de x_1 y x_2 . Esto equivale a tener la tabla lógica :

Una tabla lógica con un único dato de salida es una función. El dominio es el conjunto de datos de entrada y el contradominio (o ámbito) es el conjunto de datos de salida. Para la función O excluyente de la tabla anterior el dominio es el conjunto:

$$\{(1,1),(1,0),(0,1),(0,0)\}$$

Y el contradominio es el conjunto

$$Z_2 = \{0,1\}$$

- Las funciones que se pueden representar como expresiones booleanas o de Boole se denominan funciones booleanas.
- **Definición**. Sea $X(x_1, x_2,...x_n)$ una expresión booleana. Una función f de la forma $f(x_1,...,x_n) = X(x_1,...,x_n)$

Recibe el nombre de función booleana.

EJEMPLO

- La función $f: Z_2^3 \longrightarrow Z_2$ definida por $f(x_1, x_2, x_3) = x_1 \land (\overline{x_2} \lor x_3)$
- Es una función boleana.
- Los datos de entrada y los de salida se dan en la siguiente tabla:

x_1	x_2	x_3	$f(x_1, x_2, x_3)$
- 1	1	0	0
- 1	0	1	1
- 1	0	0	1
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	_

DEFINICIÓN

Definición. Un mintérmino en los símbolos $x_1, ..., x_n$

- lacksquare Es una expresión de la forma $\hspace{0.1cm} {\mathcal Y}_1 \wedge \ldots \wedge {\mathcal Y}_n$
- En la cual cada \mathcal{Y}_i es \mathcal{X}_i o bien $\overline{\mathcal{X}_i}$

TEOREMA

- **Teorema.** Si , $f: \mathbb{Z}_2^n \to \mathbb{Z}_2$ entonces f es una función booleana. Si f no es idénticamente nula, sean $A_1, ..., A_k$ los elementos A_i de \mathbb{Z}_2^n para los cuales
- Para cada $f(A_i) = 1$, tómese $A_i = (a_1, ..., a_n)$
- En donde $m_i = y_1 \wedge ... \wedge y_n$

Entonces

$$y_i = \begin{cases} x_i & \text{si } a_i = 1 \\ -x_i & \text{si } a_i = 0 \end{cases}$$

$$f(x_1, x_2, ..., x_n) = m_1 \lor m_2 \lor ... \lor m_k$$

- **Definición**. La representación de una función booleana $f: \mathbb{Z}_2^n \to \mathbb{Z}_2$ se llama forma normal disyuntiva de la función f.
- Ejercicio. Encontrar la forma normal disyuntiva de la función O excluyente.

- El teorema visto anteriormente tiene un dual. En este caso, la función f esta expresada como $f(x_1, x_2, x_3) = M_1 \wedge M_2 \wedge ... \wedge M_k$.
- En donde cada M_i es de la forma: $\mathcal{Y}_1 \vee \cdots \vee \mathcal{Y}_n$
- Donde \mathcal{Y}_i es bien \mathcal{X}_i o bien x_i .
- Un término como $y_1 \lor ... \lor y_n$ es conocido como maxtérmino y la representación f anterior se denomina forma normal conjuntiva.

Para determinar un circuito combinatorio más simple y equivalente se pueden simplificar la expresión booleana que la representa. Las ecuaciones

$$Ea \vee E\overline{a} = E$$

$$E = E \vee Ea,$$

 En donde E representa una expresión booleana arbitraria, sirven para simplificar expresiones booleanas.

EJERCICIO

Utilizando técnicas algebraicas minimizar el circuito que tiene como salida la siguiente tabla lógica

x_1	x_2	x_3	$f(x_1,x_2,x_3)$
I	I	I	ı
I	I	0	ı
I	0	I	0
1	0	0	ı
0	I	I	0
0	I	0	0
0	0	ı	0
0	0	0	0

¿Cuál es la expresión que representa la función f?