Algebraic Topology 2 Monday, Manuary, 2018 02:01 PM

Review Singular homology, Mayer-Vietoris

Also reduced homology: Augment

$$C^* \times . \qquad C_{X} \rightarrow C_{X} \rightarrow \mathbb{Z} \rightarrow 0$$

$$C_{X} \rightarrow C_{X} \rightarrow \mathbb{Z} \rightarrow 0$$

$$C_{X} \rightarrow C_{X} \rightarrow \mathbb{Z} \rightarrow 0$$

$$\rightarrow \widetilde{H}_{\mathbf{x}}(\mathsf{pt}) = 0$$

$$\left(H_{\mathbf{x}}(\mathsf{pt}) = \mathbb{Z} \cdot \mathbb{1}[\mathsf{deg} = 0] \right)$$

Relative homology

For
$$A \subseteq X$$
 $O \rightarrow C_* A \rightarrow C_* X \rightarrow C_* (X,A)$
 $:= C_* \times / C_* A$

$$X \in C_n(X,A) \rightarrow \{X\} = X + C_nA$$
 where $X \in C_nX$

Etts of Hn (X, A): cycles where 2x e Cn, A

Immediately get les:

A
$$\overset{\iota}{\hookrightarrow}$$
 X

Note: i injective > ix injective!

So $H_n(X,A)$ are the obstructions to i.e. all being isomorphisms but $H_n(X,A) = 0 \Rightarrow H_n(A) \cong H_n(X)$! ($H_n(X,A) \neq H_n \times H_n A$)
only if all zero.

Ex. 1

Zacyde -> Iy? sh. 2(y+Cm, A)=Z+CmA -> Z-2yeCmA up to an "error"

Consider simplicially

Ex. 2 $H_2(\mathbb{R}, \mathbb{R}^2 - 0)$

Use Snake lemma iso

Depends only on space & pt, gives local info Reduced Relative Homology Makes H. pt=0, more uniform behavior $\widetilde{C}_{\star}(X,A) = C_{\star}(X,A), C_{\star}(X,A) = \underline{\mathbb{Z}} = 0$ Given BEAEX, Ses O -> C.A -, C.X -, CX -, O Small bigger "les of a triple" $H_n(A,B) \rightarrow H_n(X,B) \rightarrow H_n(X,A) \xrightarrow{\delta} H_{n_1}(A,B) \cdots$ Next up Excision! Math 187A Login X=CW complex Define Cn X = Hn (Xn, Xn,) Look @ LES = Hr (V Sa) ≅ ⊕ Z (number of n-cells) 2. From LES of triple $H_n(X^n,X^{n-1}) \xrightarrow{\varsigma} H_{n-1}(X^{n-1},X^{n-2})$ $[2] \rightarrow [\partial z]$ Then This homology is iso to singular homology $(X'X_{\omega})$ $\mu_{\omega_{i}}(\cancel{x},\cancel{x^{\sim}}) \rightarrow \mu_{i}(\cancel{x^{\sim}}) \hookrightarrow \mu_{i}(\cancel{x}) \longrightarrow \mu_{i}(\cancel{x},\cancel{x^{\sim}}) \rightarrow$ IF is >n, His (x)=His(x")=...His(x")=0

No homology! (In singular homology, through -x!)

Could be many maps from 1 -x!) IF i < n, H: X° = H: X° = (deps : FF:n dim) not a priori, but for CW complexes it works Use direct limit $\lim_{x \to \infty} H_i \times^n = L = ? H_i(x)$ Always have $H_i \times^n \rightarrow H_i \times^{n+1} \hookrightarrow H_i \times^{n+2}$ Use universal property L≅ the stable group Claim: O is an iso -> . Take [Z] & HiX, ZeC'X with 2=0 L= + HiX / id elt with image Standard/common CW complex: compact set O only fin many interess trick! Any singular i-chall is in a compact subset of X, Union of only Finitely many images - lives in a fin skeleton XN Does't work for So [2]eHi X" and is just included in X cohomology due to direct probables (compardness → Let[y]EL,(y]→0, some i chain so y is a boundary Fails)

Since v is a Fin lin combon eventually becomes zero Farther down the charles

$$H(\coprod_{\alpha} (B_{\alpha}^{n}, 2B_{\alpha}^{n})) \xrightarrow{\Phi_{\alpha}} H(X^{n}, X^{n-1}) \xrightarrow{\text{what}} H(X^{n}, X^{n-1}) \xrightarrow{\text{what}} H(X^{n}, 2B_{\alpha}^{n}) \xrightarrow{\text{l2}} Gl_{\text{pa}} \xrightarrow{\text{l2}} H(X^{n}, X^{n-1}) \xrightarrow{\text{l2}} H(X^{n}, X^{n-1}) \xrightarrow{\text{l2}} H(X^{n}, 2B_{\alpha}^{n}) \xrightarrow{\text{l2}} H_{\text{l2}} (2B_{\alpha}^{n}) \xrightarrow{\text{l3}} H_{\text{l2}} (2B_{\alpha}^{n}) \xrightarrow{\text{l4}} H(S^{n}, 2B^{n}) \xrightarrow{\text{l4}} H_{\text{l2}} (S^{n-1}) \xrightarrow{\text{l4}} H_{\text{l2}} (S^{n-1}) \xrightarrow{\text{l4}} H_{\text{l2}} (S^{n-1}) \xrightarrow{\text{l4}} H_{\text{l4}} (S^{n-1}) \xrightarrow{\text{l4}} H_{\text{l4}}$$

Orientation is a choice of a generator

But how to calculate degree?

Look @ circles

1) Choose orientation

2) Count preimages

In Co setting Sard's thm.

Geometric Calculation of degree

where
$$3y \in S_0^0 \mid F^{-1}(y) = \{X_i\}_{i=1}^n$$
, $X_i \in U_i \subset S_0^1$

$$\deg f = \sum_{i=1}^{n} \deg_{X_i} f$$

$$\in \mathbb{Z}$$

$$\{ t = 1 \}$$

Local degree: gen of Hn(V, V- Sy))

$$H_{n}(S, S-1y)) \cong H_{n}(S, \mathbb{R}^{n})$$

$$\cong H_{n}(S)$$

$$H_{n}(S)$$

induces chok of gen in Hn(Sa, Sa-Ey)

$$H_n(U_i,U_i-\{x_i\})$$

Same for Ui.

	$ \exists Z_i = B_i \text{ wh:} \\ V_i = Z_i \text{ w}B_{i-1} $
	$ \frac{1}{2} \int dim Z_i = \dim B_i + \dim H_i $ $ \dim V_i = \dim B_{i+1} + \dim Z_i. $
	din V: = dim Bin + dim Z;.
	Howotopy invariant, since it involves Hi
	But easy to compute, just count cells!
9.0	n[Hi(X,Q)] = bi, botti number
	\rightarrow Euler characteristic = $\sum_{i} (-1)^{i} d_{i} M_{i}(X,Q) = X(X) \in \mathbb{Z}$
	Makes sense when finite dim Vi, and only finitely many terms
	CW complex: $\sum (-1)^i b_i = \sum (-1)^i \cdot ie_i3 $ (Finte)
	(Finto) number of i-cells
	- Homotopy invariant!
	(LEtined Using homology)
	$\chi(\chi \cup_{2} Y) = \chi(U) + \chi(Y) - \chi(Z)$
	Proof: Cant cells or Use Mayer-Victoris
	Statements about N or Z night I.A. to
	ones about Chain maps and/or alt, sums of V-dims!
	• \(\(\chi_x\)=\(\(\chi_x\)-\(\chi_x\)
	· Multiplicative For covers
	$E \longrightarrow \chi(E) = f \cdot \chi(B)$
	$ \begin{array}{ccc} E & \longrightarrow \chi(E)=J.\chi(B) \\ \downarrow J-fold & (count cells) \end{array} $
E×_	CP2: X=3 - 9 a fice action of Z2 on X when X(X) is odd!
Ex	Guss-Bonet
	$\sum_{s} \in E^{s}$
	$\int_{K} d(A_{00}) = 2_{T} \cdot \chi(\chi)$
	T Scalar curvature
	Similar: Aatiyah-Sigar Index than Tequivalence of "Euler char
	Grothendieck Rieman Rach J Style" colculations
	Lefonte Fixed point thm Finite ON complex, look at F: K -> K (geometric realization)
	Define $L(F) = \sum (H)^{n} T_{r}(L)$
	~ induces F": H*(X,Q) 5
	$Tr(f^{*}) \in Q$, basis invariant

Then LLF) +0 \Rightarrow F has a fixed point Proof: $O \rightarrow B_1 \rightarrow Z_1 \rightarrow H_1 \rightarrow O$

0 -> Z; -> C; -> B; -> O

Q-vector spaces, so these split f induces self maps Ci, Sfx

Ose simplicial appx/subdivide to homotop f to a simplicial map

F" commutes with 2, so eycles 5

Action of N on bottom my (Fx, F2, ...)

Can restrict to direct sum pleces

C; = Z; @Bi-1

For | c = For | 2; + For | Bi-1 } Reproportation - theoretic Statement (changes, or X is char(id))

If F has no fixed point, three is a minimum topolation distance $\exists \varepsilon$ at $d(x, f(x)) > \varepsilon$

So charge Simplicial appx (ϵ so f Fixes no simplex Thun in Martix rap of amp has zeros an diagonal — Tr $f_{x}=0$

Can use this kind of idea to find fixed points of interesting (4id) maps

Look at Tower

Ho Z

Hy Z

He Z

Look at homology w/coefficients

(Genuic chain complexes in Hom Alz)

Given any doction group A, can define

 $C^{Sing}(X : A) = \left\{ \sum_{Fin} \alpha_i \sigma_i^* \mid \alpha_i \in A \right\} , \text{ Finite } A\text{-linear combinations}$

Define 2 using A-linear extensions

$$2\left(\sum_{i} a_{i}, \sigma_{i}^{n}\right) = 1 = \sum_{i} \sum_{j} a_{i} \sigma_{i}^{n-1}$$

$$T_{old} \quad 2\left(\sigma_{i}^{n}\right) = \sum_{j} \sigma_{i}^{n-1}$$

Can define $H_x(X,A)$ right and letter much Can look at $(Can)_{\mathbb{Z}}$, ${}_{\mathbb{Z}}(A_{\mathbb{Z}})'$, \mathbb{Z} -modules $\longrightarrow Ca_{\mathbb{Z}}\otimes_{\mathbb{Z}}A$

Can convert right R-module to right Z-modules (Review Bimobile - M with an Rachin-Sadin)

Taking homology doesn't commute with $\infty!$

$$H_{*}(S^{\circ}:A) = (\stackrel{\circ}{A}, 0, ..., \stackrel{\circ}{A}, 0 \rightarrow)$$

$$H_{*}(1*3:A) = (A, 0 \rightarrow)$$

$$\stackrel{\circ}{H}_{*}(X:A) \Rightarrow C_{1}(X:A) \rightarrow C_{0}(X:A) \rightarrow \emptyset$$

$$\stackrel{(\varepsilon}{\in} A \rightarrow 0$$

$$\varepsilon: \sum_{G_{1}G_{1} \mapsto \sum_{G_{2}}}$$

Recall degree, F. Z D , but Aut(A) can be way more

PF: Define do: Z -> A

X a space, make a chair complex

$$0 \rightarrow C^*(X_1A) \rightarrow C(X) \rightarrow C^*(A) \rightarrow S$$

$$\cdots \longrightarrow \operatorname{H}^{\star}(\times,A) \longrightarrow \operatorname{H}^{\star}(A) \to \operatorname{H}^{\star}(\times) \xrightarrow{S} \operatorname{H}^{\star \star_{1}}(\times,A) \longrightarrow \cdots$$

Excision

$$H^*S = (\mathbb{Z}, 0, 0, \dots, \mathbb{Z}, 0, \dots)$$

· Redoce d

$$\begin{array}{cccc}
C^{1} & \stackrel{\varepsilon}{\leftarrow} & \stackrel{c}{c} & \rightarrow & \stackrel{c}{c} \\
\end{array}$$

Ex

S({)=0 mans

-> & const on pts

in a path compenent

Hox: Spanned by path cools

H°X: spanned by Z-ulus fas

$$S(\xi)(\sigma:\Delta^z\to X) = \xi(alt sum of faces of \sigma)$$

Firs that varish on bob of triangles

Then Z = { 1-cogcles} = { additive firs on poths}

≈ winding number

Rnk: H.(X) = Ham(TI(X), Z), "Winding # fins"

Ex

H*(RP^,Z)

$$C^{\text{oll}}(\mathbb{RP}^{1}) \qquad \bigcirc \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \cdots \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow 0$$

 $\longrightarrow H_* = \begin{cases} \mathbb{Z}^2, & \text{odd divs} \\ \mathbb{Z}, & \text{on} \\ \text{o, else} \end{cases}$

$$C_{\text{Con}}(RP') \quad \bigcirc -\mathbb{Z} \stackrel{\circ}{\leftarrow} \mathbb{Z} \stackrel{\circ}{\leftarrow} \dots \stackrel{\circ}{\leftarrow} \mathbb{Z} \stackrel{\circ}{\leftarrow} \mathbb{Z} \leftarrow 0$$

 \rightarrow H = $\{ Z^2 \text{ even dim} \text{ subps evayedd} \}$ $\{ Z, O, n \}$ $\{ O, e \} \text{ se}$

 $H'(X) \neq Hom(H_i(X), \mathbb{Z})$ in general! Notice that this doesn't work in the even as above

Hom(O,Z) = Z2)

We found that . O I doesn't commute with Hom (., I),

needs error terms - similar rosult here?

