DeepMind

Attention: the Analogue of Kernels in Deep Learning

Hyunjik Kim

Link for slides: <u>hyunjik11.github.io</u>

Some recent works @ intersection of Kernels & Deep Learning (DL)

Deep Gaussian Processes (GPs) (Damianou et al., 2013)

Deep Kernel Learning (Wilson et al., 2015)

Convolutional GPs (Van der Wilk et al., 2017)

Some recent works @ intersection of Kernels & Deep Learning (DL)

Deep Gaussian Processes (GPs) (Damianou et al., 2013)

Deep Kernel Learning (Wilson et al., 2015)

- Convolutional GPs (Van der Wilk et al., 2017)
- -> Ideas from DL incorporated into Kernel Methods

Ideas from Kernels incorporated in DL?

Ideas from Kernels incorporated in DL?

Ideas from Kernels incorporated in DL?

keys, values query -> query value $(k_i,v_i)_{i\in\mathcal{I}},q\mapsto v_q=\sum_i w_iv_i$ weight kernel $w_i=K(q,k_i)$ or $w_{1:N}=\operatorname{softmax}(K(q,k_{1:N}))$

What is Self-Attention?

• keys = values = queries = sequence of inputs $(x_i)_{i=1}^N$

$$q = x_i \mapsto \sum_{j=1}^N W_{ij} x_j$$

- ullet $W \in \mathbb{R}^{N imes N}$ is the attention weight matrix
 - Analogous to kernel Gram matrix
- Self-attention maps N inputs to N outputs
 - These layers are stacked to form deep architectures e.g. **Transformer** (Vaswani et al., 2018)

Attentive Neural Processes

Presented @ ICLR '19

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol Vinyals, Yee Whye Teh

Introduction to Neural Processes (NPs)

- We explore the use of NPs for regression.
- Given observed $(x_i, y_i)_{i \in C}$ pairs (**context**), NPs model the function f that maps arbitrary target input x_* to the **target** output y_* .
- Specifically, NPs learn a distribution over functions f (i.e. stochastic process) that can explain the context data well while also giving accurate predictions on arbitrary target inputs.

NPs

• Define: $p(m{y}_T|m{x}_T,m{x}_C,m{y}_C)\coloneqq\int p(m{y}_T|m{x}_T,m{r}_C,m{z})q(m{z}|m{s}_C)dm{z}$

• Learn by optimising: $\log p(y_T|x_T,x_C,y_C) \ge \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{s}_T)}[\log p(y_T|x_T,r_C,\boldsymbol{z})] - D_{\mathrm{KL}}(q(\boldsymbol{z}|\boldsymbol{s}_T)\|q(\boldsymbol{z}|\boldsymbol{s}_C))$ with randomly chosen $C \subset T$

Desirable Properties of NPs

Linear scaling: O(n+m) for n contexts
and m targets at train and prediction time

- Flexibility: defines a very wide family of distributions, where one can condition on an arbitrary number of contexts to predict an arbitrary number of targets.
- Order invariant in the context points (due to aggregation of r_i by taking mean)

Problems of NPs

- Signs of underfitting in NPs: inaccurate predictions at inputs of the context
- mean-aggregation step in encoder acts as a bottleneck
 - Same weight given to each context point, so difficult for decoder to learn which contexts are relevant for given target prediction.

Desirable properties of GPs

- Kernel tells you which context points x_i are relevant for a given target point x_*
 - $\circ \quad x_* pprox x_i \Rightarrow \mathbb{E}[y_*] pprox y_i$, $\mathbb{V}[y_*] pprox 0$
 - $\circ \quad x_*$ far from all $x_i \Rightarrow \mathbb{E}[y_*] \stackrel{\sim}{pprox}$ prior mean, $\mathbb{V}[y_*] pprox$ prior var
 - o i.e. no risk of underfitting.
- In the land of Deep Learning, we can use differentiable Attention that learns to attend to contexts relevant to given target

Attention

- Attention is used when we want to map query x_* and a set of key-value pairs $(x_i, y_i)_{i \in O}$ to output y_*
- It learns which (x_i, y_i) are relevant for the given x_* , which is ultimately what we want the NP to learn.
- To help NP learn this, we can bake into NP an attention mechanism, and this inductive bias may e.g. help avoid underfitting, enhance expressiveness of NPs, and help it learn faster.

Types of Attention

- Laplace: $(w_i)_{i \in C} = softmax[(-||x_i x_*||_1)_{i \in C}], \quad r_* = \sum_{i \in C} w_i r_i$
- **Dot product**: $(w_i)_{i \in C} = softmax[(\frac{f_{\theta}(x_i)^{\top}f_{\theta}(x_*)}{\sqrt{d}})_{i \in C}], \quad r_*^{\theta} = \sum_{i \in C} w_i r_i$ where $f_{\theta} = MLP_{\theta}, \quad d = dim(f_{\theta}(x))$
- Multihead: $r_* = Linear(Concat([r_*^{\theta_1}, \dots, r_*^{\theta_H}]))$

Attentive Neural Processes (ANPs)

• Computational complexity risen to O(n(n+m)) but still fast using mini-batch training.

1D Function regression on GP data

- At every training iteration, draw curve from a GP with random kernel hyperparameters (that change at every iteration).
- Then choose random points on this curve as context and targets, and optimise mini-batch loss

1D Function regression on GP data

- At every training iteration, draw curve from a GP with random kernel hyperparameters (that change at every iteration).
- Then choose random points on this curve as context and targets, and optimise mini-batch loss

- x_i : 2D pixel coordinate, y_i : pixel intensity (1d for greyscale, 3d for RGB)
- At each training iteration, draw a random image and choose random pixels to be context and target, and optimise mini-batch loss.

Arbitrary Pixel Inpainting

Bottom half prediction

Using same model as previous slide (with same parameter values):

Mapping between arbitrary resolutions

Using same ANP model as previous slide (with same parameter values):

Visualisation of Attention

context

- Visualisation of Multihead Attention:
- Target is pixel with cross, context is full image
- Each colour corresponds to the weights of one head of attention.
- Each head has different roles, and these roles are consistent across different images and different target points.

Varying predictions with varying Latents

Bottom half prediction

Super-resolution

Conclusion

Compared to NPs, ANPs:

- Greatly improve the accuracy of context reconstructions and target predictions.
- Allow faster training.
- Expand the range of functions that can be modelled.

with the help of attention (kernels)!

