Report No: CCISE160306602

FCC REPORT

Applicant: APRIX LATINOAMERICA S.A.

Address of Applicant: ADVANCED 099 BLDG SUITE 4 C CALLE BEATRIZ M DE

CABAL PANAMA

Equipment Under Test (EUT)

Product Name: TABLET PC

Aprix Tab64 Konnen A10, Aprix Tab64, Konnen A10, Tab64,

Model No.: A10,7ii, 8ii, 7.85ii, 9ii, 10ii, 13ii, X1, X2, X3, X4, X5, X6, X7, X8,

X785, X9, X10, X13

Trade mark: APRIX, KONNEN

FCC ID: 2AHJQ-2016

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 29 Feb., 2016

Date of Test: 02 Apr., 2016

Date of report issued: 02 Apr., 2016

Test Result: Pass *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	2 April., 2016	This report was amended on the report CCISE160300102 which were tested and issued by Shenzhen Zhongjian Nanfang Testing Co., Ltd. The differences between them as below: the battery from 6000mAh to 7000 mAh, and added a loudspeaker. Base on the differences description, the FCC Part 15B were re-tested.

Tested by:	YT Yang	Date:	2 April., 2016
	Test Engineer		
Reviewed by:	Carey Chen	Date:	2 April., 2016
	Projecť Engineer		

3 Contents

		F	⊃age
1	С	OVER PAGE	1
2	V	/ERSION	2
3	С	CONTENTS	3
4	Т	EST SUMMARY	4
5	G	SENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	6
	5.7		
6	Т	EST RESULTS AND MEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	8
	6.2	RADIATED EMISSION	
7	Т	EST SETUP PHOTO	17
8	F	EUT CONSTRUCTIONAL DETAILS	10
u		.UI UUNUINUU IIUNAL ULIAILU	10

4 Test Summary

Test Item	Section in CFR 47	Result
Conducted Emission	Part 15.107	Pass
Radiated Emission	Part 15.109	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	APRIX LATINOAMERICA S.A.
Address of Applicant:	ADVANCED 099 BLDG SUITE 4 C CALLE BEATRIZ M DE CABAL PANAMA
Manufacturer:	Todos industrial limited
Address of Manufacturer:	Room 3A03, Block B, huashenghui , Xi'xiang Town, Bao'an District shenzhen China

5.2 General Description of E.U.T.

Product Name:	TABLET PC
Model No.:	Aprix Tab64_Konnen A10, Aprix Tab64, Konnen A10, Tab64, A10,7ii, 8ii, 7.85ii, 9ii, 10ii, 13ii, X1, X2, X3, X4, X5, X6, X7, X8, X785, X9, X10, X13
Power supply:	Rechargeable Li-ion Battery DC3.7V-7000mAh
AC adapter :	Input:100-240V AC,50/60Hz 0.3A Output:5V DC MAX 2.0 A

5.3 Test Mode

Operating mode	Detail description
PC mode	Keep the EUT in Downloading mode(Worst case)
Charging+Recording mode	Keep the EUT in Charging+Recording mode
Charging+Playing mode	Keep the EUT in Charging+Playing mode
FM mode	Keep the EUT in FM receiver mode
GPS mode	Keep the EUT in GPS receiver mode

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

Report No: CCISE160306602

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
HP	Printer	CB495A	05257893	DoC
MERCURY	Wireless router	MW150R	12922104015	DoC

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.7 Test Instruments list

Radia	Radiated Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017				
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2016	03-28-2017				
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2016	03-28-2017				
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017				
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017				
6	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017				
7	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017				

Cond	Conducted Emission:									
Item Test Equipment Manufacturer Model No. Inventory Cal.Date C										
10111	root Equipment	manadatatat	model ito:	No.	(mm-dd-yy)	(mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2016	03-28-2017				
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2016	03-28-2017				
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017				

6 Test results and Measurement Data

6.1 Conducted Emission

		•				
Tes	t Requirement:	FCC Part 15 B Section 15.10	07			
Tes	st Method:	ANSI C63.4:2014				
Tes	st Frequency Range:	150kHz to 30MHz				
Cla	ss / Severity:	Class B				
Red	ceiver setup:	RBW=9kHz, VBW=30kHz				
Lim	it:	F(0.41.1-)	Limit	(dBµV)		
		Frequency range (MHz)	Quasi-peak	Average		
		0.15-0.5	66 to 56*	56 to 46*		
		0.5-5	56	46		
		0.5-30	60	50		
_	st setup:	* Decreases with the logarith	im of the frequency.			
	st procedure	Reference Plan LISN 40cm 80c AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators	Filter — AC p			
	. prooduit	line impedance stabilization 500hm/50uH coupling impedance at LISN that provides a 500 termination. (Please refers photographs). 3. Both sides of A.C. line are interference. In order to fir positions of equipment an according to ANSI C63.4:2	on network(L.I.S.N.). To be dance for the measure also connected to the ohm/50uH coupling in a to the block diagrams are checked for maximum and the maximum emisis dall of the interface contents.	The provide a suring equipment. The main power through a pedance with 500hm of the test setup and a m conducted sion, the relative ables must be changed		
Tes	st environment:	Temp.: 23 °C Hun	nid.: 56% P	ress.: 101kPa		
Me	asurement Record:	1	· · · · · · · · · · · · · · · · · · ·	Jncertainty: ±3.28dB		
Tes	st Instruments:	Refer to section 5.7 for detai		· · · · · · · · · · · · · · · · · · ·		
Tes	st mode:	Refer to section 5.3 for detai	ls			
	st results:	Pass				
		l .				

Measurement data:

Line:

Trace: 9

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition

EUT : TABLTE PC

Model : AprixTab64_KonnenA10

: PC mode Test Mode

Power Rating: AC120/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: YT

Remark

Vellark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>d</u> B	₫B	dBu₹	dBu₹	<u>ab</u>	
1	0.162	20.55	0.26	10.77	31.58	55.34	-23.76	Average
2	0.327	32.09	0.26	10.73	43.08	59.53	-16.45	QP
3	0.346	24.52	0.26	10.73	35.51	49.05	-13.54	Average
4	0.442	43.25	0.26	10.74	54.25	57.02	-2.77	QP
1 2 3 4 5 6 7 8	0.442	34.40	0.26	10.74	45.40	47.02	-1.62	Average
6	0.502	36.70	0.27	10.76	47.73	56.00	-8.27	QP
7	0.705	28.16	0.28	10.77	39.21	46.00	-6.79	Average
8	0.880	27.08	0.28	10.83	38.19	46.00	-7.81	Average
9	1.027	36.45	0.29	10.87	47.61	56.00	-8.39	QP
10	1.928	26.70	0.32	10.96	37.98	46.00	-8.02	Average
11	2.273	36.59	0.33	10.95	47.87	56.00	-8.13	QP
12	3.224	33.71	0.36	10.91	44.98	56.00	-11.02	QP

Neutral:

Trace: 11

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : TABLTE PC

: AprixTab64_KonnenA10 Model

Test Mode : PC mode Power Rating : AC120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: YT

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u>	d <u>B</u>	dBu₹	dBu∀	<u>dB</u>	
1	0.266	20.87	0.16	10.75	31.78	51.25	-19.47	Average
2	0.274	31.47	0.16	10.74	42.37	60.98	-18.61	QP
3	0.327	21.24	0.16	10.73	32.13	49.53	-17.40	Average
1 2 3 4 5	0.442	44.15	0.16	10.74	55.05	57.02	-1.97	QP
5	0.442	33.56	0.16	10.74	44.46	47.02	-2.56	Average
	0.654	33.91	0.17	10.77	44.85	56.00	-11.15	QP
7 8 9	0.701	24.21	0.17	10.77	35.15	46.00	-10.85	Average
8	0.862	24.68	0.18	10.83	35.69	46.00	-10.31	Average
9	0.876	35.74	0.18	10.83	46.75	56.00	-9.25	QP
10	2.144	23.97	0.20	10.95	35.12	46.00	-10.88	Average
11	2.155	35.87	0.20	10.95	47.02	56.00	-8.98	QP
12	5.112	32.15	0.28	10.85	43.28	60.00	-16.72	QP

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

6.2 Radiated Emission

0.2 Radiated Ellission								
Test Requirement:	FCC Part 15 B Section 15.109							
Test Method:	ANSI C63.4:2014							
Test Frequency Range:	30MHz to 6000MHz							
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Receiver setup:	Frequency	Dete		RBW	VB\		Remark	
	30MHz-1GHz	Quasi-		120kHz 300kl			Quasi-peak Value	
	Above 1GHz	Pea RM		1MHz 1MHz	3MF 3MF		Peak Value	
Limit:	Frequenc			(dBuV/m @		12	Average Value Remark	
LIIIII.	30MHz-88M		Liiiie	40.0	20111)	(Quasi-peak Value	
	88MHz-216N			43.5			Quasi-peak Value	
	216MHz-960			46.0			Quasi-peak Value	
	960MHz-1G			54.0			Quasi-peak Value	
				54.0			Average Value	
	Above 1GI	ΗZ		74.0			Peak Value	
Test setup:	Below 1GHz Antenna Tower							
	Search Antenna RF Test Receiver Tum 0.8m 1m							
	Above 1GHz							
	SOCM SOCM	E EUT	G Test Recei	3m round Reference Plane	Horn Antenn e Pre- Amptifier	Contro	ntenna Tower	

	_								
Test Procedure:	The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.								
		The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna							
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.								
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.								
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.								
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.								
Test environment:	Temp.:	25 °C	Humid.:	55%	Press.:	1 01kPa			
Measurement Record:					Uncertair	nty: ±4.88dB			
Test Instruments:	Refer to se	ection 5.7 for	details						
Test mode:	Refer to section 5.3 for details								
Test results:	Passed								

Measurement Data

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL Condition

EUT

: TABLET PC : AprixTAB64-KonnenA10 Model

Test mode : PC mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% 101KPa

Test Engineer: YT

REMARK

		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						
-	MHz	dBu₹	—dB/m	₫B	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>	
1	46.178	33.00	17.08	1.28	29.85	21.51	40.00	-18.49	QP
2	150.011								
1 2 3 4 5	250.301	51.83	11.88	2.81	28.54	37.98	46.00	-8.02	QP
4	601.427	47.25	18.50	3.94	28.93	40.76	46.00	-5.24	QP
5	651.942	48.42	18.82	3.87	28.77	42.34	46.00	-3.66	QP
6	750.108	46.29	20.40	4.36	28.48	42.57	46.00	-3.43	QP

Vertical:

Site Condition

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL

EUT TABLET PC

Model : AprixTAB64-KonnenA10
Test mode : PC mode
Power Rating : AC120V/60Hz

Environment: Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: YT REMARK :

	Read	Untenna	Cable	Preamp		Limit	Ottor	
Freq				Control of the second s				
MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
47.492	36.45	16.34	1.27	29.84	24.22	40.00	-15.78	QP
120.277	50.40	11.83	2.17	29.39	35.01	43.50	-8.49	QP
165.487	48.53	9.84	2.62	29.09	31.90	43.50	-11.60	QP
451.135	46.82	16.23	3.21	28.87	37.39	46.00	-8.61	QP
501.179	47.64	16.80	3.63	28.96	39.11	46.00	-6.89	QP
601.427	48.40	18.50	3.94	28.93	41.91	46.00	-4.09	QP
	Freq MHz 47.492 120.277 165.487 451.135 501.179	Read. Freq Level MHz dBuV 47.492 36.45 120.277 50.40 165.487 48.53 451.135 46.82 501.179 47.64	ReadAntenna Level Factor MHz dBuV dB/m 47.492 36.45 16.34 120.277 50.40 11.83 165.487 48.53 9.84 451.135 46.82 16.23 501.179 47.64 16.80	ReadAntenna Cable Freq Level Factor Loss MHz dBuV dB/m dB 47.492 36.45 16.34 1.27 120.277 50.40 11.83 2.17 165.487 48.53 9.84 2.62 451.135 46.82 16.23 3.21 501.179 47.64 16.80 3.63	ReadAntenna Cable Preamp Loss Factor MHz dBuV dB/m dB dB 47.492 36.45 16.34 1.27 29.84 120.277 50.40 11.83 2.17 29.39 165.487 48.53 9.84 2.62 29.09 451.135 46.82 16.23 3.21 28.87 501.179 47.64 16.80 3.63 28.96	ReadAntenna Cable Preamp Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 47.492 36.45 16.34 1.27 29.84 24.22 120.277 50.40 11.83 2.17 29.39 35.01 165.487 48.53 9.84 2.62 29.09 31.90 451.135 46.82 16.23 3.21 28.87 37.39 501.179 47.64 16.80 3.63 28.96 39.11	ReadAntenna Cable Preamp Limit	ReadAntenna Cable Preamp Limit Over Level Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 47.492 36.45 16.34 1.27 29.84 24.22 40.00 -15.78 120.277 50.40 11.83 2.17 29.39 35.01 43.50 -8.49 165.487 48.53 9.84 2.62 29.09 31.90 43.50 -11.60 451.135 46.82 16.23 3.21 28.87 37.39 46.00 -8.61 501.179 47.64 16.80 3.63 28.96 39.11 46.00 -6.89

Above 1GHz

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT

: TABLET PC : AprixTAB64-KonnenA10 Model

Test mode : PC mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% 101KPa Test Engineer: YT

REMARK

	Freq		intenna Cable Factor Loss						Remark
	MHz	—dBu∇	<u>d</u> B/π		<u>ab</u>	dBuV/m	dBuV/m	<u>ab</u>	
1	3085.402	44.96	26.02	8.00	40.61	38.37	74.00	-35.63	Peak
2 3 4	3085.402	34.21	26.02	8.00	40.61	27.62	54.00	-26.38	Average
3	3889.363	44.41	31.34						
4	3889.363	34.85	31.34	9.44	40.84	34.79	54.00	-19.21	Average
5	5361.911	42.88	35.30						
6	5361.911	32.70	35.30	11.21	40.19	39.02	54.00	-14.98	Average

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : TABLET PC Condition

EUT

: AprixTAB64-KonnenA10 Model

Test mode : PC mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: YT

REMARK

Freq						Limit Line	Over Limit	Remark	
MHz	dBu∜	<u>d</u> B/m		<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>		
3440.624	42.67	27.59	8.68	39.21	39.73	74.00	-34.27	Peak	
3440.624	32.67	27.59	8.68	39.21	29.73	54.00	-24.27	Average	
4261.849	39.33	33.51	9.95	40.89	41.90	74.00	-32.10	Peak	
4261.849	30.68	33.51	9.95	40.89	33.25	54.00	-20.75	Average	
4979.731	37.08	36.77	10.75	40.00	44.60	74.00	-29.40	Peak	
4979.731	30.50	36.77	10.75	40.00	38.02	54.00	-15.98	Average	
	MHz 3440.624 3440.624 4261.849 4261.849	Freq Level MHz dBuV 3440.624 42.67 3440.624 32.67 4261.849 39.33 4261.849 30.68 4979.731 37.08	Freq Level Factor MHz dBuV dB/m 3440.624 42.67 27.59 3440.624 32.67 27.59 4261.849 39.33 33.51 4261.849 30.68 33.51 4979.731 37.08 36.77	Freq Level Factor Loss MHz dBuV dB/m dB 3440.624 42.67 27.59 8.68 3440.624 32.67 27.59 8.68 4261.849 39.33 33.51 9.95 4261.849 30.68 33.51 9.95 4279.731 37.08 36.77 10.75	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 3440.624 42.67 27.59 8.68 39.21 3440.624 32.67 27.59 8.68 39.21 4261.849 39.33 33.51 9.95 40.89 4261.849 30.68 33.51 9.95 40.89 4979.731 37.08 36.77 10.75 40.00	MHz dBuV dB/m dB dB dBuV/m 3440.624 42.67 27.59 8.68 39.21 39.73 3440.624 32.67 27.59 8.68 39.21 29.73 4261.849 39.33 33.51 9.95 40.89 41.90 4261.849 30.68 33.51 9.95 40.89 33.25 4979.731 37.08 36.77 10.75 40.00 44.60	Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m 3440.624 42.67 27.59 8.68 39.21 39.73 74.00 3440.624 32.67 27.59 8.68 39.21 29.73 54.00 4261.849 39.33 33.51 9.95 40.89 41.90 74.00 4261.849 30.68 33.51 9.95 40.89 33.25 54.00 4279.731 37.08 36.77 10.75 40.00 44.60 74.00	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 3440.624 42.67 27.59 8.68 39.21 39.73 74.00 -34.27 3440.624 32.67 27.59 8.68 39.21 29.73 54.00 -24.27 4261.849 39.33 33.51 9.95 40.89 41.90 74.00 -32.10 4261.849 30.68 33.51 9.95 40.89 33.25 54.00 -20.75 4979.731 37.08 36.77 10.75 40.00 44.60 74.00 -29.40	Freq Level Factor Loss Factor Level Line Limit Remark MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 3440.624 42.67 27.59 8.68 39.21 39.73 74.00 -34.27 Peak 3440.624 32.67 27.59 8.68 39.21 29.73 54.00 -24.27 Average 4261.849 39.33 33.51 9.95 40.89 41.90 74.00 -32.10 Peak 4261.849 30.68 33.51 9.95 40.89 33.25 54.00 -20.75 Average 4979.731 37.08 36.77 10.75 40.00 44.60 74.00 -29.40 Peak