Equations with Discontinuous Right Hand Side

L. Fridman

UNAM

Outline

- Preliminaries
 - Absolute Continuity

Outline

- Preliminaries
 - Absolute Continuity

Absolute Continuity

Definition

Let $\mathcal I$ be an interval in the real line $\mathbb R$. A function $f:\mathcal I\to\mathbb R$ is absolutely continuous on $\mathcal I$ if for every positive number ϵ , there is a positive number δ such that whenever a finite sequence of pairwise disjoint sub-intervals $(x_k;y_k)$ of $\mathcal I$ satisfies

$$\sum_{k} (y_k - x_k) < \delta$$

then

$$\sum_{k} |f(y_k) - f(x_k)| < \epsilon$$

The collection of all absolutely continuous functions on \mathcal{I} is denoted $AC(\mathcal{I})$.

Absolute continuity of functions

Equivalent Definitions

- f is absolutely continuous
- \circ f has a Lebesgue integrable derivative f' almost everywhere and

$$f(x) = f(a) + \int_{a}^{x} f'(t)dt; \quad \forall x \in [a; b]$$

 \odot there exists a Lebesgue integrable function g on [a; b] such that

$$f(x) = f(a) + \int_{a}^{x} g(t)dt; \quad \forall x \in [a; b]$$

If these equivalent conditions are satisfied then necessarily g=f' almost everywhere. Equivalence between (1) and (3) is known as the fundamental

Absolute continuity of functions

Properties

- **1** If $f, g \in AC(\mathcal{I})$, then $f \pm g$ is absolutely continuous.
- ② If \mathcal{I} is a bounded closed interval and $f, g \in AC(\mathcal{I})$, then fg is also absolutely continuous.
- ③ If \mathcal{I} is a bounded closed interval, $f \in AC(\mathcal{I})$ and $f \neq 0$ then $\frac{1}{f}$ is absolutely continuous.
- Every absolutely continuous function is uniformly continuous and, therefore, continuous. Every Lipschitz-continuous function is absolutely continuous.
- **⑤** If $f: \mathcal{I} \to \mathbb{R}$ is absolutely continuous, then it is of bounded variation on [a; b].

$$f(x) = x \sin \frac{1}{x}$$

 $\lim_{x\to 0} x\sin(\frac{1}{x}) = 0 \to f(x)$ is continuous!

$$f'(x) = x\sin\frac{1}{x} - \frac{\cos(\frac{1}{x})}{x}, \ x \neq 0$$

At zero it is not differentiable and the lateral derivatives do not exist!

$$f(x) = \sqrt{|x|} = 2 \int_0^x \frac{1}{\sqrt{|t|}} dt$$

At zero it is not differentiable and the lateral derivatives do not exist!

The function is still absolutely continuous