From point cloud to pathfinding

By: Olivier Rodenberg

Supervisors:

Prof.dr. Sisi Zlatanova

ir. Edward Verbree

Research question

What is the relation between the computational effort and path length of <u>A* pathfinding</u> in an <u>octree</u> representation of an indoor <u>point cloud</u>?

- What point cloud processing operations are important for the generation of the octree and what is their effect?
- What octree properties influence the computational effort and path length and what is their effect?
- What components in the A* algorithm influence the computational effort and path length and what is their effect?

Research

What steps need to be taken to create a data set from a point

point cloud

pathfinding

Point cloud

(large) collection of points having an x, y and z coordinate and

optional colour value.

Point cloud for navigation

Problems:

- A point cloud on its own is unstructured
- No idea which places are free space
 - How is the empty space connected
 - How to avoid collisions

An octree is a three dimensional extension of a region quadtree data structure. It consist out of a cubical volume and is recursively subdivided into eight congruent disjoint cubes (called octants) until blocks of a uniform colour are obtained, or a predetermined level of decomposition is reached (Samet, 1988).

point cloud

Non empty space

Goal of creating the octree:

- Structured dataset
- Identify the empty space
- Can derive the connectivity between the empty space
- A large empty area can be represented by a single node high in the octree reducing the amount of octants
 - Reducing the storage space
- Minimal use of geomatrical operations

Locational code

The route in the octree from the root node to a leaf node.

Collision free path

A collision free path occurs when a node in the octree is chosen which is closer than half the object size away from a black node.

Calculate for each white node the minimal distance to a border with an black node

Distance transform

Calculate for each white node the minimal distance to a border with an black node

Distance transform

So closest black node needs to be a direct equal sized neighbours.

8 equal sized neighbours need to be checked in an quadtree (26 in octree).

Connectivity between nodes

Node sharing a common: face, edge, vertex

Neighbour finding

Finding neighbours using the location code

2	32	33
	30	31
0	1	

Neighbours of node 30:

Neighbour finding

Neighbours during octree construction from top to down Store neighbour connection in both nodes Only equal sized or larger sized neighbours need to be stored

Neighbour finding

- Store explicit or derive
- filtering operation
 - Node with no neighbours is probably noise.

Next

- Testing the effects of the components
- Research the possibility to separate the interior and exterior empty space

