Kernels in machine learning

October 2021 Thomas Corpetti

Main principles

• We have separable data, but not linearly separable data

Main principles

- We have separable data, but not linearly separable data
- Make a projection in another space

Main principles

- We have separable data, but not linearly separable data
- Make a projection in another space
- In this new space, data are linearly separable

Outline

- Introduction
- 2 What is a kernel?
 - Introduction
 - Positive definite kernels
 - SVM
- 3 Evaluation
 - Time series

- ullet Ex : find a linear separation of data X in dimension 1
 - \implies no solution

- We artificially add a dimension : $X' = (X, \sqrt{X^2})$
 - ⇒ linear solution

Separability of data

- We artificially add a dimension : $X' = (X, \sqrt{X^2})$
 - ⇒ linear solution

In general, the augmentation on the dimension enables to increase the separability.

Principle: the initial representation space is transformed:

$$X = [X_1, ..., X_P] \Longrightarrow \phi(X) = [\phi(X_1), ..., \phi(X_P)]$$

with
$$\phi: {\rm I\!R}^N o {\cal F}^M$$
 (in general $M >> N$).

• Instead of computing the transformation with ϕ on every elements of X,

$$K: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$$

Principle: the initial representation space is transformed:

$$X = [X_1, ..., X_P] \Longrightarrow \phi(X) = [\phi(X_1), ..., \phi(X_P)]$$

with $\phi: \mathbb{R}^N \to \mathcal{F}^M$ (in general M >> N).

Difficulty: large computational cost.

• Instead of computing the transformation with ϕ on every elements of X,

$$K: \mathbb{R}^N \times R^N \to \mathbb{R}$$

Principle : the initial representation space is transformed :

$$X = [X_1, ..., X_P] \Longrightarrow \phi(X) = [\phi(X_1), ..., \phi(X_P)]$$

with $\phi: \mathbb{R}^N \to \mathcal{F}^M$ (in general M >> N).

Difficulty: large computational cost.

Main idea

• Instead of computing the transformation with ϕ on every elements of X, we use a une similarity function :

$$K: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$$

- $\Longrightarrow K$ can be seen as a variance-covariance function in the new space (also named *feature space*)
- We try to manipulate only dot products or variance-covariance matrices

K is a kernel function

Principle : the initial representation space is transformed :

$$X = [X_1, ..., X_P] \Longrightarrow \phi(X) = [\phi(X_1), ..., \phi(X_P)]$$

with $\phi: \mathbb{R}^N \to \mathcal{F}^M$ (in general M >> N).

Difficulty: large computational cost.

Main idea

• Instead of computing the transformation with ϕ on every elements of X, we use a une similarity function :

$$K: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$$

- \Longrightarrow K can be seen as a variance-covariance function in the new space (also named *feature space*)
- We try to manipulate only dot products or variance-covariance matrices

Data in large dimension

Make a transformation in a higher dimensional spacen

Principle : the initial representation space is transformed :

$$X = [X_1, ..., X_P] \Longrightarrow \phi(X) = [\phi(X_1), ..., \phi(X_P)]$$

with $\phi: \mathbb{R}^N \to \mathcal{F}^M$ (in general M >> N).

Difficulty: large computational cost.

Main idea

• Instead of computing the transformation with ϕ on every elements of X, we use a une similarity function :

$$K: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$$

- \Longrightarrow K can be seen as a variance-covariance function in the new space (also named *feature space*)
- We try to manipulate only dot products or variance-covariance matrices

K is a kernel function

- A similarity matrix is a square real matrix, whatever the dimension of data X.
- If a technique involves only similarity matrices, the similarity can be replace by any other function (modularity).
- Whatever the dimension of the transformation ϕ , the kernel always gives a real function, with a similarity matrix of size $N \times N$.
- But kernels have to be chosen properly.

- A similarity matrix is a square real matrix, whatever the dimension of data X.
- If a technique involves only similarity matrices, the similarity can be replace by any other function (modularity).
- Whatever the dimension of the transformation ϕ , the kernel always gives
- But kernels have to be chosen properly.

- A similarity matrix is a square real matrix, whatever the dimension of data X.
- If a technique involves only similarity matrices, the similarity can be replace by any other function (modularity).
- Whatever the dimension of the transformation ϕ , the kernel always gives a real function, with a similarity matrix of size $N \times N$.
- But kernels have to be chosen properly.

- A similarity matrix is a square real matrix, whatever the dimension of data X.
- If a technique involves only similarity matrices, the similarity can be replace by any other function (modularity).
- Whatever the dimension of the transformation ϕ , the kernel always gives a real function, with a similarity matrix of size $N \times N$.
- But kernels have to be chosen properly.

Definition

A kernal K defined on \mathbb{R}^N is a positive-definite kernel if :

- $K \cdot \mathbb{R}^N \times \mathbb{R}^N \longrightarrow \mathbb{R}$
- $\forall (X,Y) \in (\mathbb{R}^N)^2, K(X,Y) = K(Y,X)$
- $\forall M \in \mathbb{N}, \forall (X_1, ..., X_M) \in \mathbb{R}^M, \forall (\alpha_1, ..., \alpha_M) \in \mathbb{R}^M,$ $\sum \sum \alpha_i \alpha_j K(X_i, X_j) \geqslant 0$ $i = 1 \ i = 1$

Definition

A kernal K defined on \mathbb{R}^N is a positive-definite kernel if :

• $K \cdot \mathbb{R}^N \times \mathbb{R}^N \longrightarrow \mathbb{R}$

i = 1 i = 1

- $\forall (X,Y) \in (\mathbb{R}^N)^2, K(X,Y) = K(Y,X)$
- $\forall M \in \mathbb{N}, \forall (X_1, ..., X_M) \in \mathbb{R}^M, \forall (\alpha_1, ..., \alpha_M) \in \mathbb{R}^M,$ $\sum \sum \alpha_i \alpha_j K(X_i, X_j) \geqslant 0$

This is equivalent to say that the similarity matrix is positive semi-definite.

Linear kernel :

$$\forall (X,Y) \in ({\rm I\!R}^N)^2, K(X,Y) = < X,Y> = X^TY$$

- We have symmetry : $\langle X, Y \rangle = \langle Y, X \rangle$
- We have positivity :

$$\sum_{i=1}^{M} \sum_{j=1}^{M} \alpha_{i} \alpha_{j} < X_{i}, X_{j} > = \| \sum_{i=1}^{M} \alpha_{i} X_{i} \|^{2} \geqslant 0$$

Linear kernel :

$$\forall (X,Y) \in ({\rm I\!R}^N)^2, K(X,Y) = < X,Y> = X^TY$$

- We have symmetry : $\langle X, Y \rangle = \langle Y, X \rangle$
- We have positivity :

$$\sum_{i=1}^{M} \sum_{j=1}^{M} \alpha_{i} \alpha_{j} < X_{i}, X_{j} > = \| \sum_{i=1}^{M} \alpha_{i} X_{i} \|^{2} \ge 0$$

• The projection function is the identity

• Polynomial in dimension 1 (if $X, Y \in \mathbb{R}$):

$$\forall (X,Y) \in \mathbb{R}, K(X,Y) = (1+XY)^2$$

• Polynomial in dimension 1 (if $X, Y \in \mathbb{R}$):

$$\forall (X,Y) \in \mathbb{R}, K(X,Y) = (1+XY)^2$$

The projection function is

$$\phi(x) = (1, x\sqrt{2}, x^2)$$

Positive definite kernels

Exemples

• Polynomial in dimension 1 (if $X,Y \in \mathbb{R}$) :

$$\forall (X,Y) \in \mathbb{R}, K(X,Y) = (1+XY)^2$$

• The projection function is

$$\phi(x) = (1, x\sqrt{2}, x^2)$$

• Polynomial in dimension d (si $X,Y \in \mathbb{R}$) :

$$\forall (X,Y) \in (\mathbb{R})^2, K(X,Y) = (1+XY)^d$$

The projection function is more tricky to write

Remarks

- If K is a p.s.d, then αK ($\forall \alpha > 0$) is p.s.d too
- If K_1 et K_2 are two p.s.d, then $K_1 + K_2$ is p.s.d too
- If K_1 et K_2 are two p.s.d, then K_1K_2 is p.s.d too

• Polynomial in dimension d (si $X,Y \in \mathbb{R}$) :

$$\forall (X,Y) \in (\mathbb{R})^2, K(X,Y) = (1+XY)^d$$

The projection function is more tricky to write

Remarks

- If K is a p.s.d, then αK ($\forall \alpha > 0$) is p.s.d too
- If K_1 et K_2 are two p.s.d, then $K_1 + K_2$ is p.s.d too
- If K_1 et K_2 are two p.s.d, then K_1K_2 is p.s.d too

Translation invariant kernels

Invariance by translation

- Kernels such as $K(X_i, X_i) = Q(X_i X_i)$

$$K(X_i, X_j) = \exp\left(-\gamma \|X_i - X_j\|^2\right)$$

- Many theoretical works on kernel methods. Most common: Gaussian
- Kernel trick : change dot products by kernels

Invariance by translation

- Kernels such as $K(X_i, X_j) = Q(X_i X_j)$
- Classical example : Gaussian kernel :

$$K(X_i, X_j) = \exp\left(-\gamma \|X_i - X_j\|^2\right)$$

What is the feature space ϕ associated?

- Many theoretical works on kernel methods. Most common: Gaussian since it projects data in an infinite dimensional space (best separability)
- Kernel trick : change dot products by kernels

Invariance by translation

- Kernels such as $K(X_i, X_j) = Q(X_i X_j)$
- Classical example : Gaussian kernel :

$$K(X_i, X_j) = \exp\left(-\gamma \|X_i - X_j\|^2\right)$$

What is the feature space ϕ associated?

- Many theoretical works on kernel methods. Most common: Gaussian since it projects data in an infinite dimensional space (best separability)
- Kernel trick : change dot products by kernels

Invariance by translation

- Kernels such as $K(X_i, X_j) = Q(X_i X_j)$
- Classical example : Gaussian kernel :

$$K(X_i, X_j) = \exp\left(-\gamma \|X_i - X_j\|^2\right)$$

What is the feature space ϕ associated?

- Many theoretical works on kernel methods. Most common: Gaussian since it projects data in an infinite dimensional space (best separability)
- Kernel trick : change dot products by kernels

Many Machine Learning applications use kernels

- Kernel ACP
- Perceptron
- Support Vector Machines
- Kernel Regression
- ...

Many Machine Learning applications use kernels

- Kernel ACP
- Perceptron
- Support Vector Machines
- Kernel Regression
- •

Enables to easily deal with non linear data

Links between distance and kernels

From a distance function, one can write it with kernels, and conversely

$$d(\phi(X), \phi(Y))^{2} = \|\phi(X) - \phi(Y)\|^{2}$$

= $\phi(X).\phi(X) - 2\phi(X).\phi(Y) + \phi(Y).\phi(Y)$
= $K(X, X) - 2K(X, Y) + K(Y, Y)$

Example: distance function for Gaussian kernel?

$$K(X,Y) = \exp\left(-\gamma \|X - Y\|^2\right)$$

Links between distance and kernels

From a distance function, one can write it with kernels, and conversely

$$d(\phi(X), \phi(Y))^{2} = \|\phi(X) - \phi(Y)\|^{2}$$

= $\phi(X).\phi(X) - 2\phi(X).\phi(Y) + \phi(Y).\phi(Y)$
= $K(X, X) - 2K(X, Y) + K(Y, Y)$

Example: distance function for Gaussian kernel?

$$K(X,Y) = \exp\left(-\gamma ||X - Y||^2\right)$$

Outline

- Introduction
- 2 What is a kernel?
 - Introduction
 - Positive definite kernels
 - SVM

- 3 Evaluation
 - Time series

Main equation

• We aim at maximizing the margin, i.e. find the equation if the hyperplan with maximal margin :

$$\frac{1}{2} \min_{\tilde{\boldsymbol{w}}, w_0} \|\tilde{\boldsymbol{w}}\|$$

Under the constraints

$$y_i \left(< \tilde{\boldsymbol{w}}, x_i > +w_0 \right) \geqslant 1, \quad \forall i \in \{1, ..., N\}$$

The solution depends only on points called support vectors

Important note: only dot products are involved

 We aim at maximizing the margin, i.e. find the equation if the hyperplan with maximal margin :

$$\frac{1}{2} \min_{\tilde{\boldsymbol{w}}, w_0} \|\tilde{\boldsymbol{w}}\|$$

Under the constraints

$$y_i \left(< \tilde{\boldsymbol{w}}, x_i > +w_0 \right) \geqslant 1, \quad \forall i \in \{1, ..., N\}$$

The solution depends only on points called support vectors

Important note: only dot products are involved

 We aim at maximizing the margin, i.e. find the equation if the hyperplan with maximal margin :

$$\frac{1}{2} \min_{\tilde{\boldsymbol{w}}, w_0} \|\tilde{\boldsymbol{w}}\|$$

Under the constraints

$$y_i \left(< \tilde{\boldsymbol{w}}, x_i > +w_0 \right) \geqslant 1, \quad \forall i \in \{1, ..., N\}$$

The solution depends only on points called support vectors

Important note: only dot products are involved

• We aim at maximizing the margin, i.e. find the equation if the hyperplan with maximal margin :

$$\frac{1}{2} \min_{\tilde{\boldsymbol{w}}, w_0} \|\tilde{\boldsymbol{w}}\|$$

Under the constraints

$$y_i \left(< \tilde{\boldsymbol{w}}, x_i > +w_0 \right) \geqslant 1, \quad \forall i \in \{1, ..., N\}$$

The solution depends only on points called support vectors

Important note: only dot products are involved!

 We aim at maximizing the margin, i.e. find the equation if the hyperplan with maximal margin :

$$\frac{1}{2} \min_{\tilde{oldsymbol{w}}, w_0} \|\tilde{oldsymbol{w}}\|$$

Under the constraints

$$y_i(K(\tilde{\boldsymbol{w}}, x_i) + w_0) \geqslant 1, \quad \forall i \in \{1, ..., N\}$$

The solution depends only on points called support vectors

Important note: only dot products are involved!

Illustration (http://perclass.com/doc/guide/classifiers/svm.html)

Illustration (http://www.ipb.uni-bonn.de/ivm/)

Illustration (http://www.dtreg.com/svm.htm)

Illustration (http://mlpy.sourceforge.net/)

- Regression : find a function f that approaches $y \approx f(x)$
- Linear regression : find the vector $\tilde{\boldsymbol{w}} = [\boldsymbol{w}, w_0]^T$ such that $f(x) = \langle \boldsymbol{w}, x \rangle + w_0$
- Linear Support Vector Regression: similarly than SVM, we look for a hyperplane closed to all data:

$$\begin{cases} \min \frac{1}{2} \|\tilde{w}\|^2 \\ \text{with constraints} \ |< w, x > +w_0| < \epsilon \end{cases}$$

- Regression : find a function f that approaches $y \approx f(x)$
- Linear regression : find the vector $\tilde{\boldsymbol{w}} = [\boldsymbol{w}, w_0]^T$ such that $f(x) = < \boldsymbol{w}, x > +w_0$
 - → Least-square
- Linear Support Vector Regression: similarly than SVM, we look for a hyperplane closed to all data:

$$\begin{cases} \min \frac{1}{2} \|\tilde{w}\|^2 \\ \text{with constraints} \ |< w, x > +w_0| < \epsilon \end{cases}$$

- Regression : find a function f that approaches $y \approx f(x)$
- Linear regression : find the vector $\tilde{\boldsymbol{w}} = [\boldsymbol{w}, w_0]^T$ such that $f(x) = < \boldsymbol{w}, x > +w_0$
 - → Least-square
- Linear Support Vector Regression: similarly than SVM, we look for a hyperplane closed to all data:

$$\begin{cases} \min \frac{1}{2} \|\tilde{w}\|^2 \\ \text{with constraints} \ |< w, x > +w_0| < \epsilon \end{cases}$$

- Regression : find a function f that approaches $y \approx f(x)$
- Linear regression : find the vector $\tilde{\boldsymbol{w}} = [\boldsymbol{w}, w_0]^T$ such that $f(x) = < \boldsymbol{w}, x > +w_0$
 - → Least-square
- Linear Support Vector Regression: similarly than SVM, we look for a hyperplane closed to all data:

$$\begin{cases} \min \frac{1}{2} \|\tilde{w}\|^2 \\ \text{with constraints} \ \ |< \pmb{w}, x > + w_0| < \epsilon \end{cases}$$

- Regression : find a function f that approaches $y \approx f(x)$
- Linear regression : find the vector $\tilde{\boldsymbol{w}} = [\boldsymbol{w}, w_0]^T$ such that $f(x) = < \boldsymbol{w}, x > +w_0$
 - ⇒ Least-square
- Linear Support Vector Regression: similarly than SVM, we look for a hyperplane closed to all data:

$$\begin{cases} \min \frac{1}{2} \|\tilde{w}\|^2 \\ \text{with constraints} \ \ |< \pmb{w}, x > + w_0| < \epsilon \end{cases}$$

Kernel-trick

 Linear Support Vector Regression: similarly than SVM, we look for a hyperplane closed to all data:

$$\begin{cases} \min \frac{1}{2} \|\tilde{w}\|^2 \\ \text{with constraints} \quad |< \boldsymbol{w}, x > +w_0| < \epsilon \end{cases}$$

Kernel-trick

 Linear Support Vector Regression: similarly than SVM, we look for a hyperplane closed to all data:

$$\begin{cases} \min \frac{1}{2} \|\tilde{w}\|^2 \\ \text{with constraints} \quad |< \boldsymbol{w}, x > +w_0| < \epsilon \end{cases}$$

Illustration (http://images.1233.tw/support-vector-machine-kernel/)

SVR - Illustrations

Illustration (http://onlinesvr.altervista.org/Download.html

Precision - Recall - F1-score

Precision for class i

$$precision(i) = \frac{\text{nb elem correctly assigned to } i}{\text{nb elem assigned to } i}$$

ullet Overall precision for K classes

$$\frac{\sum_{i=1}^{K} precision(i)}{K}$$

• Nice if $precision \approx 1$ (but not enough)

Precision - Recall - F1-score

Precision for class i

$$precision(i) = \frac{\text{nb elem correctly assigned to } i}{\text{nb elem assigned to } i}$$

ullet Overall precision for K classes

$$\frac{\sum_{i=1}^{K} precision(i)}{K}$$

• Nice if $precision \approx 1$ (but not enough)

Precision - Recall - F1-score

Precision for class i

$$precision(i) = \frac{\text{nb elem correctly assigned to } i}{\text{nb elem assigned to } i}$$

Overall precision for K classes

$$\frac{\sum_{i=1}^{K} precision(i)}{K}$$

• Nice if $precision \approx 1$ (but not enough)

Precision - Recall - F1-score

Recall for class i

$$recall(i) = \frac{\text{nb elem correctly assigned to } i}{\text{nb elem in } \ i}$$

Overall recall for K classes

$$\frac{\sum_{i=1}^{K} recall(i)}{K}$$

• Nice if $recall \approx 1$ (but not enough)

Precision - Recall - F1-score

Recall for class i

$$recall(i) = \frac{\text{nb elem correctly assigned to } i}{\text{nb elem in } \ i}$$

Overall recall for K classes

$$\frac{\sum_{i=1}^{K} recall(i)}{K}$$

• Nice if $recall \approx 1$ (but not enough)

Precision - Recall - F1-score

Recall for class i

$$recall(i) = \frac{\text{nb elem correctly assigned to } i}{\text{nb elem in } \ i}$$

Overall recall for K classes

$$\frac{\sum_{i=1}^{K} recall(i)}{K}$$

• Nice if $recall \approx 1$ (but not enough)

Precision - Recall - - F1-score

$$F1 = 2 \frac{precision \cdot recall}{precision + recall}$$

- If precision is good but not recall (we miss data for some classe) : F1 decreases (since recall is small)
- If recall is good but not precision (to many data assigned to a class) : F1 decreases (since precision is small)
- If recall and precision are good : $F1 \approx 1$

Precision - Recall - - F1-score

$$F1 = 2 \frac{precision \cdot recall}{precision + recall}$$

- If precision is good but not recall (we miss data for some classe) : F1 decreases (since recall is small)
- If recall is good but not precision (to many data assigned to a class) : F1 decreases (since precision is small)
- If recall and precision are good : $F1 \approx 1$

Precision - Recall - - F1-score

$$F1 = 2 \frac{precision \cdot recall}{precision + recall}$$

- If precision is good but not recall (we miss data for some classe) : F1 decreases (since recall is small)
- If recall is good but not precision (to many data assigned to a class) : F1 decreases (since precision is small)
- If recall and precision are good : $F1 \approx 1$

Precision - Recall - - F1-score

$$F1 = 2 \frac{precision \cdot recall}{precision + recall}$$

- If precision is good but not recall (we miss data for some classe) : F1 decreases (since recall is small)
- If recall is good but not precision (to many data assigned to a class) : F1 decreases (since precision is small)
- If recall and precision are good : $F1 \approx 1$

About time series

What possibilities for time series?

how to compare them?

What possibilities for time series?

• how to compare them?

Principles: create a path between time series

- ullet Given two series $m{t}_1 = [t_{1,1}, t_{1,2}, ..., t_{1,m}]^T$ and $m{t}_2 = [t_{2,1}, t_{2,2}, ..., t_{2,n}]^T$

$$P(i,j) = |t_{1,i} - t_{2,i}|. (1)$$

			1	2	5	9	4	2		
P(i,j) =	t_1	2	1		3	7	2		1	
		3	2	1	2	6	1	1	2	
		6	5	4	1	3	2	4	3	
		9		7	4		5	7	4	(2)
		5	4	3		4	1		5	
		4		2	1	5		2	6	
		3	2	1	2	6	1	1	7	COPERN IN DIG
										IN DIG

Principles: create a path between time series

- Given two series $t_1 = [t_{1,1}, t_{1,2}, ..., t_{1,m}]^T$ and $t_2 = [t_{2,1}, t_{2,2}, ..., t_{2,n}]^T$
- ullet Penalization matrix P of size $m \times n$, each element P(i,j) represents the cost to switch from $t_{1,i}$ to $t_{2,j}$:

$$P(i,j) = |t_{1,i} - t_{2,i}|. (1)$$

Example : $t_1 = (2, 3, 6, 9, 5, 4, 3)$ (card = 7) $t_2 = (1, 2, 5, 9, 4, 2)$ (card = 6)

Principles: create a path between time series

- ullet Given two series $m{t}_1 = [t_{1,1}, t_{1,2}, ..., t_{1,m}]^T$ and $m{t}_2 = [t_{2,1}, t_{2,2}, ..., t_{2,n}]^T$
- ullet Penalization matrix P of size $m \times n$, each element P(i,j) represents the cost to switch from $t_{1,i}$ to $t_{2,j}$:

$$P(i,j) = |t_{1,i} - t_{2,i}|. (1)$$

Example: $t_1 = (2, 3, 6, 9, 5, 4, 3)$ (card = 7) $t_2 = (1, 2, 5, 9, 4, 2)$ (card = 6)

					t						
			1	2	5	9	4	2	i=	_	
P(i,j) =		2	1	0	3	7	2	0	1	-	
	t_1	3	2	1	2	6	1	1	2		
		6	5	4	1	3	2	4	3		(2)
		9	8	7	4	0	5	7	4		(2)
		5	4	3	0	4	1	3	5		
		4	3	2	1	5	0	2	6		
		3	2	1	2	6	1	1	7	CITS (W),	COPERN IN DIG
			1			-					III DIG

Elastic distances: DTW

Principles: create a path between time series

A warping path has to respect

$$W = w_1, ..., w_K, K \in [max(m, n), m + n - 1]$$
:

- $w_1 = (1,1)$ and $w_K = (m,n)$ (start and end points);
- w_{i+1} is connected w_i for all $i \in [1, K-1]$ (continuity of the path);
- $(w_{i+1}-w_i)(w_i-w_{i-1})>0$ for $i\in[2,K-1]$ (monotony : no backward path).

Dynamic Time Warping: extract of the minimal cost path to switch from series t_1 to t_2 :

$$D_{dtw}(t_1, t_2) = \min \frac{\sum_{k=1}^{K} P(w_k)}{K}.$$
 (3)

Elastic distances: DTW

Principles: create a path between time series

A warping path has to respect

$$W = w_1, ..., w_K, K \in [max(m, n), m + n - 1]$$
:

- $w_1 = (1,1)$ and $w_K = (m,n)$ (start and end points);
- w_{i+1} is connected w_i for all $i \in [1, K-1]$ (continuity of the path);
- $(w_{i+1}-w_i)(w_i-w_{i-1})>0$ for $i\in[2,K-1]$ (monotony : no backward path).

Dynamic Time Warping : extract of the minimal cost path to switch from series t_1 to t_2 :

$$D_{dtw}(\mathbf{t}_1, \mathbf{t}_2) = \min \frac{\sum_{k=1}^{K} P(w_k)}{K}.$$
 (3)

Elastic distances: DTW

Dynamic Time Warping: extraction of the minimal cost path to switch from series $m{t}_1$ to $m{t}_2$:

$$D_{dtw}(t_1, t_2) = \min \frac{\sum_{k=1}^{K} P(w_k)}{K}.$$
 (4)

		1.		_ t	2			Ι.			Ι.		_ t	2	_	_	١.
		1	2	5	9	4	2	i=	_		1	2	5	9	4	2	i=
	2 3	1	0	3	7	2	0	1		2	1	1	4	11	13	13	1
		2	1	2	6	1	1	2		3	3	2	3	9	10	11	2
P =	6	5	4	1	3	2	4	3	D	6	8	6	3	6	8	12	3
	t1 9	8	7	4	0	5	7	4	D =	t 1 9	16	13	7	3	8	15	4
	5 4	4	3	0	4	1	3	5		5	20	16	7	7	4	7	5
		3	2	1	5	0	2	6		4	23	18	8	12	4	6	6
	3	2	1	2	6	1	1	7		3	25	19	10	14	5	5	7
	j =	1	2	3	4	5	6		=	j =	1	2	3	4	5	6	
															(!	5)	

DTW - Illustrations

Illustration (Cassisi et al, 2012)

No analytical formulae

• Average of $[x_1,...,x_N]$ w.r.t distance D:

$$\boldsymbol{\mu} = \arg\min_{\boldsymbol{x}^*} \sum_{i=1}^N D^2(\boldsymbol{x}_i, \boldsymbol{x}^*)$$

No analytical formulae

• For DTW:

$$oldsymbol{\mu}_t = \arg\min_{oldsymbol{t}^*} \sum_{i=1}^N DTW^2(oldsymbol{t}_i, oldsymbol{t}^*)$$

No analytical formulae

• For DTW:

$$\boldsymbol{\mu}_t = \arg\min_{\boldsymbol{t}^*} \sum_{i=1}^N DTW^2(\boldsymbol{t}_i, \boldsymbol{t}^*)$$

Initial curves

No analytical formulae

• For DTW:

$$\boldsymbol{\mu}_t = \arg\min_{\boldsymbol{t}^*} \sum_{i=1}^N DTW^2(\boldsymbol{t}_i, \boldsymbol{t}^*)$$

Possible averages w.r.t. DTW

No analytical formulae

• For DTW:

$$\boldsymbol{\mu}_t = \arg\min_{\boldsymbol{t}^*} \sum_{i=1}^N DTW^2(\boldsymbol{t}_i, \boldsymbol{t}^*)$$

Eucledian mean

Illustration DTW: pathological alignments

Regularized DTW

Illustration DTW : pathological alignments

