Introduction to 8086 Microprocessor (part 1)

Microprocessors and microcomputer-based system design Mohamad Rafiquzzaman >Chapter 3 section 3.1, 3.2, 3.3

Assembly language programming Ytha Yu > Chapter 3 section 3.2

Micro-processor interfacing with memory device (ROM/RAM) and I/O device (keyboard/printer)

microprocessor

Microprocessors Family

8085 : 8-bit micro-processor

8086 Family:

8086: First 16-bit processor

80186: 16-bit 8086 with peripheral devices

80286: Advanced version of 8086 used for multitasking.

80386: 32-bit processor architecture

80486: 32-bit processor architecture with floating point

processor(80387) integrated into the chip.

8088 Family:

8088: Same as 8086 but 8-bit databus.

80188: 8088 with peripheral devices.

8086 Pin Diagram

8086 Internal Architecture

8086 Features

- Operating Clock rates are 5, 8, 10 MHz.
- 16-bit Arithmetic Logic Unit
- 16-bit data bus
- 20-bit address bus

AD₀-AD₁₅ (Bidirectional)

Address/Data bus

Low order address bus; these are multiplexed with data.

When AD lines are used to transmit memory address the symbol A is used instead of AD, for example A_0 - A_{15} .

When data are transmitted over AD lines the symbol D is used in place of AD, for example D_0 - D_7 , D_8 - D_{15} or D_0 - D_{15} .

 A_{16}/S_3 , A_{17}/S_4 , A_{18}/S_5 , A_{19}/S_6

High order address bus. These are multiplexed with status signals

BHE (Active Low)/ S_7 (Output)

Bus High Enable/Status

It is used to enable data onto the most significant half of data bus, D_8 - D_{15} . 8-bit device connected to upper half of the data bus use BHE (Active Low) signal. It is multiplexed with status signal S_7 .

MN/ MX

MINIMUM / MAXIMUM

This pin signal indicates what mode the processor is to operate in.

RD (Read) (Active Low)

The signal is used for read operation.
It is an output signal.
It is active when low.

Intel 8086 known as 16 bit microprocessor

The bit size of a processor is normally defined by it ALU width, which equates to its main working register width. (e.g.: AX, BX, CX, DX).

8086 processor is capable to process the 16 bit data together. It means a data with 16 bit can be processed and can be send to processor in single oscillation.

Memory capacity/size

Address 20 bit

0000000000000000001

00000000000000000010

0000000000000000011

0000000000000000100

Data 8 bit

1st data

2nd data

3rd data

4th data

5th data

Memory

Data bus 16 bit

8086 capacity/size

- Memory addressing capacity depends upon number of address lines in CPU
- Set of all possible addresses that can be generated by CPU is called address space. CPU can directly address all the addresses of it's address space.
- Eg: 8086 intel microprocessor has 20 address lines and can address <u>1MB</u> of memory directly using 20 bit address bus.
- Thus 1MB is the address space of INTEL 8086 microprocessor. This is also it's memory size or capacity.

8086 capacity/size

- $\mathbf{2}$ 0 = 1048576 no. of memory locations
- Each memory location has 8 bit data size
- •Total memory size: 1048576 * 8 bit=8388608 bit = 1048576 byte = 1024 Kbyte = 1Mbyte

Difference between micro-processor 8085 and 8086

Parameter	8085	8086
Size	It is an 8 bit processor	It is 16 bit processor
Address bus	Address bus is 16 bits	Address bus is 20 bits
Data bus	Data bus is 8 bit.	Data bus is 16 bit
Memory	It can access upto 2 ¹⁶ =65,536 bytes (64KB)	It can access upto 2 ²⁰ =1,048,576 bytes(1MB)
Instruction Queue	It does not have an instruction queue	It has 6 byte instruction queue
Pipelining	It does not support pipelining	It support pipelining architecture
I/Os	It Can address 28 = 256 I/O locations	It can address 2 ¹⁶ =65,536 I/O locations
Multiprocessing support	It does not have multiprocessing support	It supports multiprocessing. It has compatibility with further processors like 80386

