Órbitas periódicas y bifurcación

Autor: Juan Carlos Llamas Núñez

Director: José María Arrieta Algarra

Universidad Complutense de Madrid

12 de julio de 2023

Objetivos y estructura del trabajo

Estudio de la existencia, estabilidad y bifurcación de soluciones periódicas.

Contenidos:

- Sistemas periódicos
 - Lineales: Teoría de Floquet
 - No lineales: Estabilidad de soluciones periódicas
- Estabilidad de órbitas periódicas en sistemas autónomos
- Teorema de la bifurcación de Hopf

Sistemas lineales periódicos

Sistemas lineales periódicos

$$x' = A(t)x$$
 con $A(t+T) = A(t)$ y $T > 0$

Observaciones

- Si X(t) es una matriz fundamental, entonces X(t+T) es matriz fundamental.
- Existe C no singular tal que X(t+T)=X(t)C que se conoce como matriz de monodromía.

Teorema de Floquet

Teorema de Floquet

Dada una matriz fundamental X(t) del sistema lineal periódico

$$x' = A(t)x$$
 con $A(t+T) = A(t)$ y $T > 0$

existe matriz no singular T-periódica P(t) y una matriz constante B tal que

$$X(t) = P(t)e^{tB}.$$

Ideas de la demostración:

- Relación X(t+T) = X(t)C.
- Existencia del logaritmo matricial $C = e^{TB}$.

Teorema de Floquet

Reducción de x' = A(t)x a y' = By

El cambio de variables no singular y T-periódico x(t) = P(t)y(t) permite transformar el sistema lineal periódico

$$x' = A(t)x$$
 con $A(t+T) = A(t)$ y $T > 0$

en el sistema lineal de coeficientes constantes y' = By.

Inconveniente

No conocemos la expresión explícita del cambio de variables P(t) ya que depende de la existencia una matriz fundamental X(t), en principio desconocida

Intuición

La estabilidad del sistema x' = A(t)x es la misma que la de y' = By

Matrices de monodromía

Definición

- Los autovalores μ de una matriz de monodromía son los multiplicadores característicos.
- Los valores λ tales que $\mu = e^{\lambda T}$ son los exponentes característicos.

Observación

Las matrices de monodromía son semejantes luego se puede hablar de los multiplicadores característicos del sistema.

Corolario

Existe una solución T-periódica si y solo si 1 es multiplicador característico

Estabilidad sistemas lineales periódicos

Teorema

Dado el sistema lineal x' = A(t)x con A(t+T) = A(t) y T > 0,

- 1 El sistema es estable si, y solo si, todos los exponentes característicos del sistema tienen parte real menor o igual que 0 y, para aquellos con parte real 0, la multiplicidad algebraica de su multiplicador característico asociado coincide con la multiplicidad geométrica.
- 2 El sistema es asintóticamente estable si, y solo si, todos los exponentes característicos del sistema tienen parte real negativa.

Ideas de la demostración:

- Teorema de Floquet.
- Teorema de estabilidad de sistemas lineales de coeficientes constantes.
- Los autovalores de B son exponentes característicos de x' = A(t)x

Sistemas periódicos no lineales

Teorema

Dado el sistema x'(t) = f(t,x(t)) donde $f(t+T,\xi) = f(t,\xi)$ para T>0, supongamos que tiene una solución T-periódica p(t). Sea

$$\tilde{y}' = D_x f(t, p(t)) \tilde{y}$$

la linealización del sistema anterior. Entonces,

- 1 Si todos los exponentes característicos del sistema linealizado tienen parte real estrictamente menor que 0, entonces la solución periódica p(t) es asintóticamente estable.
- 2 Si existe un exponente característico del sistema linealizado con parte real estrictamente mayor que 0, entonces la solución periódica p(t) es inestable.

Sistemas periódicos no lineales

Idea de la demostración:

$$x'(t) = f(t,x(t))$$
 donde $f(t+T,\xi) = f(t,\xi)$ para $T > 0$

y existe una solución p(t) T-periódica cuya estabilidad queremos analizar

$$Re(sp(B)) < 0 \implies As into ticamente estable$$

 $\exists \lambda \in sp(B), Re(\lambda) > 0 \implies In estable$

Estabilidad de órbitas periódicas de sistemas autónomos

$$x' = f(x)$$
, $p(t)$ solución periódica

1 es multiplicador característico de $\tilde{y}' = Df(p(t))\tilde{y}$

Advertencia

Una solución periódica de una sistema autónomo nunca puede ser asintóticamente estable porque p(t+ au) no converge a p(t) .

Alternativa

Nuevos conceptos de estabilidad basados en la órbita periódica.

Órbita estable

Órbita asintóticamente estable

Solución orbitalmente asintóticamente estable con fase asintótica

Solución orbitalmente asintóticamente estable con fase asintótica

Solución orbitalmente asintóticamente estable sin fase asintótica

Estabilidad de órbitas periódicas de sistemas autónomos

Teorema

Sea $f \in \mathcal{C}^1(\mathbb{R}^3, \mathbb{R}^3)$ y u una solución no constante y T-periódica de la ecuación autónoma x' = f(x). Si el multiplicador característico 1 del sistema linealizado

$$\frac{dy(\theta)}{d\theta} = Df(u(\theta))y(\theta)$$

es simple y los demás multiplicadores característicos tienen módulo menor que 1 (los exponentes característicos tienen parte real negativa), la solución periódica u de la ecuación x' = f(x) es orbitalmente asintóticamente estable con fase asintótica.

Demostración

Construcción de una referencia ortonormal móvil

Demostración

Cambio de variables y ecuaciones en las nuevas variables

$$x' = f(x)$$

$$\updownarrow \quad x = u(\theta) + \rho_1 \xi_2(\theta) + \rho_2 \xi_3(\theta)$$
 $\theta' = 1 + g_1(\theta, \rho)$ $y \quad \rho' = A(\theta)\rho + g_2(\theta, \rho)$

Lema

Si el sistema lineal periódico

$$\frac{dy(\theta)}{d\theta} = Df(u(\theta))y(\theta)$$

tiene como multiplicadores característicos μ_1 , μ_2 y 1, entonces el sistema lineal periódico

$$\frac{d\rho(\theta)}{d\theta} = A(\theta)\rho(\theta)$$

tiene como multiplicadores característicos μ_1 y μ_2 .

Demostración

Conclusión

$$x' = f(x)$$

$$\updownarrow \quad x = u(\theta) + \rho_1 \xi_2(\theta) + \rho_2 \xi_3(\theta)$$

$$\theta' = 1 + g_1(\theta, \rho) \quad \text{y} \quad \rho' = A(\theta)\rho + g_2(\theta, \rho)$$

Ejemplo: Ecuación de Van der Pol

$$x'' - \lambda(1 - x^2)x' + x = 0, \quad \lambda > 0$$

- Existencia de una órbita periódica (Teorema Poincaré-Bendixson).
- Unicidad de órbitas periódicas (toda solución periódica es orbitalmente asintóticamente estable con fase asintótica).

Introducción a la bifurcación

$$x'' + \lambda x' + x = 0, \quad \lambda \in \mathbb{R}$$

Introducción a la bifurcación

Diagrama de bifurcación del oscilador lineal con rozamiento

Bifurcación de Hopf

Teorema de la bifurcación de Hopf

Sea el sistema plano de clase \mathscr{C}^k con $k \geq 3$ dado por

$$x' = A(\lambda)x + f(\lambda, x)$$

donde $\lambda \in \mathbb{R}$ es un parámetro y la función f verifica que $f(\lambda,0)=0$ y $D_x f(\lambda,0)=0$ cuando $|\lambda|$ es suficientemente pequeño. Además, sean $\alpha(\lambda)\pm i\beta(\lambda)$ los autovalores de la matriz $A(\lambda)$. Supongamos que $\alpha(0)=0$, $\beta(0)\neq 0$ y que $\frac{d\alpha(0)}{d\lambda}\neq 0$. Entonces, para todo entorno $\mathscr U$ del origen y para todo $\lambda_0>0$, existe un $\overline{\lambda}$ con $|\overline{\lambda}|<\lambda_0$ y tal que el sistema $x'=A(\overline{\lambda})x+f(\overline{\lambda},x)$ tiene una órbita periódica no trivial en $\mathscr U$.

Hipótesis del teorema de la Bifurcación de Hopf

Ideas de la demostración

• Utilizar las hipótesis sobre $\alpha(\lambda)$ y $\beta(\lambda)$ para reducir el sistema a uno donde

$$A(\lambda) = \begin{pmatrix} \lambda & 1 \\ -1 & \lambda \end{pmatrix}$$

• Realizar un cambio de variables a coordenadas polares donde las ecuaciones diferenciales que verifican θ y r son

$$\left\{ \begin{array}{l} r' = R(\lambda, r, \theta) \\ \theta' = 1 + \Theta(\lambda, r, \theta) \end{array} \right. ,$$

• Obtener, mediante el Teorema de la Función Implícita, una función $\lambda^*(r_0)$ que para cada r_0 da un valor de λ para el cual el sistema en el que se toma ese parámetro tiene una órbita periódica de "radio" r_0 .

Estabilidad de las órbitas generadas

Estabilidad de las órbitas generadas

Cuando r_0 es suficientemente pequeño, si $(\lambda^*)'(r_0) > 0$ la órbita periódica es asintóticamente estable y si $(\lambda^*)'(r_0) < 0$, la órbita periódica es inestable.

Ejemplo de bifurcación de Hopf

$$z'' - (\lambda - z^2)z' + z = 0$$
 \iff
$$\begin{cases} x' = y \\ y' = -x + (\lambda - x^2)y \end{cases}$$

Ejemplo de bifurcación de Hopf

$$z'' - (\lambda - z^2)z' + z = 0$$
 \iff
$$\begin{cases} x' = y \\ y' = -x + (\lambda - x^2)y \end{cases}$$

Ejemplo de bifurcación de Hopf

$$z'' - (\lambda - z^2)z' + z = 0$$
 \iff
$$\begin{cases} x' = y \\ y' = -x + (\lambda - x^2)y \end{cases}$$

Muchas gracias por su atención

¿Preguntas? ¿Comentarios?