PATENT ABSTRACTS OF JAPAN

(11)Publication number •

2004-044405

(43)Date of publication of application: 12.02.2004

07.07.2005

(51)Int.Cl.

F01N 3/08

(21)Application number: 2002-199634 (22)Date of filing:

09.07.2002

(71)Applicant: MITSUBISHI HEAVY IND 1 TD

(72)Inventor: NOJI KATSUMI

IIDA KOZO NOJIMA SHIGERU

YONEMURA MASANAO ENDO HIROYUKI

(54) REDUCER FEEDING DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a reducer feeding device capable of efficiently removing nitrogen oxides from exhaust gases by using urea as a reducer. SOLUTION: In an exhaust gas pipe allowed to communicate with a combustor, a through-hole 11 is formed at the tip of a nozzle 7 feeding urea water in a direction parallel to or perpendicular to the flow direction of combustion exhaust gas passed through the inside of the pipe. The nozzle 7 is disposed with the tip thereof facing downward, and a urea water upward spattering prevention board 15 is installed at a position higher than a position where the through-hole 11 is provided.

LEGAL STATUS

[Date of request for examination]

Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection?

(19)日本国特許厅(JP)

(12)公開特許公報(A)

(11)特許出顧公開番号

特開2004-44405 (P2004-44405A)

(P2004-44405A) (43) 公開日 平成16年2月12日(2004.2.12)

(51) Int.C1.⁷ FO1N 3/08 F1 FO1N 3/08 テーマコード (参考) 3G091

審査請求 未請求 請求項の数 4 〇L (全 10 頁)

		M TITTH 4	CALLE TO E MICHIGAN SENSON E CONTRACTOR		
(21) 出願番号	特願2002-199634 (P2002-199634)	(71) 出願人	000006208		
(22) 出顧日			三菱重工業株式会社		
		1	東京都港区港南二丁目16番5号		
		(74)代理人	100099623		
		. ,	弁理士 奥山 尚一		
		(74) 代理人	100096769		
			弁理士 有原 幸一		
		(74) 代理人	100107319		
			弁理士 松島 鉄男		
		(72) 発明者	野地 勝己		
			広島県広島市西区観音新町四丁目6番22		
			号 三菱重工業株式会社広島研究所内		
		(72) 発明者			
		(12) 70-94 [広島県広島市西区観音新町四丁目6番22		
		1	号 三菱重工業株式会社広島研究所内		
			最終質に続く		
		1	7 200 - 10 10 20 20 C		

(54) 【発明の名称】 還元剤供給装置

(57)【要約】

【課題】還元剤として尿素を使用し、排気ガス中の窒素 酸化物を効率よく除去することができる還元剤供給装置 を提供すること。

【解決手段】微熱器に進漸する接気ガス用のハイブ内に 尿素水を供給するノズル7の先端部に貫通孔11を形 成し、被買連孔11の配理位置をバイブ内を流離する燃 燃料気がJの流れ方向に対して平行または直交する向き 化形成している。そして、ノズル7の先端部を下方に向 けて配置し、貫通孔11を形成した位置よりも上側の位 歴には、原染水の上方飛散防止板15を設けている。 [週刊図] 図2

10

【特許請求の範囲】

【請求項1】

バイブ内を流れる紫焼排気ガス中に、窒素酸化物の還元剤として使用される尿素水をノズ ルによって上記パイブ内に供給する還元剤供給装置によいて、上記パイブ内に配設したノ ズルの周壁部に1つ以上の貫通孔を形成したことを整衡とする還元剤供給装置。

【請求項2】

上記貫通孔を上記燃焼排気ガスの流れ方向に対して平行な向きまたは燃焼排気ガスの流れ 方向に対して直交する向きに形成したことを特徴とする請求項1に記載の還元剤供給装置

【請求項3】

上記尿素水を供給エアーと共に上記ノズルからパイプ内に供給するようにしたことを特徴とする欝求項1または2に記載の還元剤供給装置。

【請求項4】

上記ノズルを横方向に延在する上記パイプの上部からノズルの先端部を下方に向けてパイプ内に配設し、上記ノズルの貫通孔を形成した位置よりも上側の位置には尿素水の上方飛散防止板を設け、ノズルの先端部の直下には、尿素水の底部飛散防止板を上記パイプの周壁面に対して間隔を開けて配置したことを特徴とする請求項1ないし3のいずれか1項に記載の憂元剤供給装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、パイプ内を流れる燃焼排気ガス中に、窒素酸化物の還元剤として使用される尿 素水をパイプ内にノズルによって供給する還元剤供給装置に関する。

[0002]

【従来の技術】

エンジン等の燃焼装置から発生する窒素酸化物を除去するために、脱硝装置が用いられて いる。この種の脱硝装置には、尿素水を摘下して排気ガス中に注入し、尿素水を蒸発させ て還元剤としてのアンモニアガスを発生させて、窒素酸化物を脱硝する週元剤供給装置が ある。

実開平6-15726号公報には、図6に示すような燃焼装置における還元剤供給装置5 301が開示され、その還元剤供給装置51は、軸を横方向に延在して配設したパイプ52内にノズル53の先端部54を貫通して配設し、その先端部54の向きを排気ガス55の流れ方向に向け、ノズル53の下部には、ノズル53から滴下する尿素水57を受ける受け皿56を配設した技術が開示されている。

[0003]

このような構造で、ノズル53から滴下された尿素水57は、滴下される際にパイプ52内を流通する排気ガスの熱により蒸発し、パイプ52内にアンモニアガスが生成される。そして、アンモニアにより窒素酸化物が還元されて図示しない脱硝姜置において窒素酸化物が脱硝される。

尿素水57は、排気ガス55の流速とパイプ52内の温度が適度である場合は、尿素水547をパイプ52の内部で十分に蒸発して拡散することができる。反対に燃焼装置の燃焼が 弱まったような状態では、排気ガスの流速が小さく温度が下がるので、尿素水57の蒸発 が適度に行われず、ノズル53から尿素水57が滴下する。

[0004]

【発明が解決しようとする課題】

上記したように、ノズル53から尿素水57が滴下する際に、尿素水57がノズル53の 先端部54で固化し、ノズル53が閉塞することがあった。また、尿素は、バイブ52内 の温度が下がると重合反応により、シアヌル酸等の副生物を生成する。シアヌル酸が生成 してバイブ52の内周壁に付着すると、窒素酸化物の還元剤となるアンモニアの生成量が 減少し、下流側にある脱硝装置の脱硝性能が低下してしまう。 すなわち、尿素水57の滴下量が多く、パイプ52の下側(底壁部)に尿素水57が溜まると、パイプ52の周壁は外気と接していることから、パイプ52の内部と湿度差があって、パイプ52の内風腫能に滴下した尿素水57がパイプ52の内周面を冷やしてシアヌル酸を生成することになる。これを防止するために、図5に示す還元利供給装置51は、受け皿56を設け、パイプ52の内周離に尿素水57を滴下させないようにしている。

[0005]

すなわち、バイブ52内に配設した受け皿56は、蒸発していない尿素水57が滴下すると、受け皿56上に溜まり、排気ガス55により加熱された受け皿56上にて、尿素水57を蒸発させて、それを解決しようとするものである。

本発明はこのような事情に鑑みてなされたものであって、燃焼排気ガス中の窒素酸化物を 10 除去するために設置する脱硝装置において、特に還元剤として尿素を使用し、排気ガス中の窒素酸化物を従来技術よりも、より効率よく除去するとともに、尿素水を供給するノズルの詰まりを防止する還元剤供給装置を提供することを目的とする。

[0006]

【課題を解決するための手段】

上記目的を達成するために、本発明の還元剤供給装置は、パイプ内を流れる燃焼排気ガス中に、窒素酸化物の還元剤として使用される尿素水をノズルによって上記パイプ内に供給する還元剤供給装置において、上記パイプ内に配設したノズルの周壁部に1つ以上の貫通孔を形成した。

上記還元剤供給装置は、上記貫通孔を上記燃焼排気ガスの流れ方向に対して平行な向きま ²⁰ たは燃焼排気ガスの流れ方向に対して直交する向きに形成することができる。

また、上記還元剤供給装置は、上記尿素水を供給エアーと共に上記ノズルからパイプ内に供給することができる。

さらには、上記遷元剤供給装置は、上記ノズルを横方向に延在する上記パイプの上部から ノズルの先端部を下方に向けてパイプ内に配設し、上記ノズルの貫通孔を形成した位置よ りも上側の位置には尿素水の上方飛散防止板を設け、ノズルの先端部の直下には、尿素水 の底部飛散防止板を上記パイプの周壁面に対して間隔を開けて配置することができる。

【0007】 【発明の実施の形態】

以下、本発明の実施の形態による還元剤供給装置について図面を参照しながら説明する。 図1は、本発明の還元剤供給装置を備えた燃焼装置の概略図である。燃焼装置1は、ディーゼルエンジンとしての燃焼器2と窒素酸化物の還元を助長する触媒を設けた脱硝装置3 との間をパイプ(短道)4 で接続し、パイプ4 は、燃焼器2で排出された排気ガス5を脱硝装置3まで流通させる。

本発明に係わる還元剤供給装置 6 は、そのパイプ 4 内に還元剤としての尿素を供給する装置である。

[0008]

図2は、その尿素をパイプ4内に供給するノズル7を取付けた還元供給装置のノズルアッセンブリ9を示す。ノズルアッセンブリ9は、四角形状の取付板口りにL字形状のチューブ16が賃通するようにして固定されている。チューブ16の一端側は、パイブ4の内部 40 に配設されるノズル7が設けられている。図3は、そのノズル7の拡大図である。ノズル7の先端部13の周壁12には、排気ガス5の流れ方向に平行する向きに形成された貫通孔11が、ノズル7の刷対方向に並べて複数個が設けられ、排気ガス5の流れ方向に上流側及び下流側の対向する各々の周壁12に形成されている。また、ノズル7の周壁12には、排気ガス5の流れ方向に対して直交する向きに、貫通孔14がノズル7の周期方向に並べて複数個が形成されている。この貫通孔14もまた周壁12に対向するようにして形成されている。すなわち、貫通孔11、14はノズル7の周方向に90度間隔で設けられている。また、ノズル7の貫通孔14を形成した位置よりも上側の周壁12の周囲には、円環板状の上方飛散防止板15が密接により取付けられている。

[0009]

図2に示すように、ノズルアッセンブリ9のチューブ16の他端側にはネジを形成した機ぎ手17が形成され、この機ぎ手17は配管18,30等を介して、尿素水の供給源19と接続され、尿素水の供給源19から尿素水は、供給ポンプ20により配管18を介して混合器29に供給される。また、混合器29には配管30を介してエアー供給用コンプレッサ28が接続され、尿素水の供給源19からの尿素をエアーにより希釈し、配管30を介してノブルアからパイプ4内に供給することができる。

ノズルアッセンブリ9の取付板10には、これをバイブ4に取付けるための取付孔21を 4隅に形成している。このノズルアッセンブリ9は、バイブ4に取付けた状態では、ノズル7の軸方向の向きが下方(本実施の形態では垂直とした)になるように取付けられ、ノズルアッセンブリ9自体は、バイブ4に形成した開口に対して取付板10が気密に取付け 10 られる。

[0010]

図4は、底部飛散防止板8を備えた防止板アッセンブリ22を示す。管状の防止板アッセンブリ22には、排気ガス5の流れに対して上流側に位置させて環状フランジ23が設けられ、中間部には筒状の管状部24か設けられ、下流側の水遮部には底部飛散防止板8が形成されている。底部飛散防止板8は、ほぼ半円形の湾曲し舌片状に突き出した周壁面から形成され、上方側が開かれている。本実施の形態では、底部飛散防止板8の長さ(バイブ4の軸方向長さ)を、40mmとした。

この防止板アッセンブリ22は、パイプ4に取付けられた状態では、図1に示すように、パイプ4に設けられた一対のフランジ継ぎ手25,26間に環状フランジ23が挟持され20 ように代象に取付けられる。底部飛散防止板8は、この板面がパイプ4の輸方向に延びるように配設され、管状部24及び底部飛散防止板8と、パイプ4の周壁との間には、関隔が設けられている。また、パイプ4,4の間には、エキスパンション27が配設されている。

[0 0 1 1]

次に、本発明の還元剤供給装置の作用について説明する。

燃焼器2の作動により、排気ガス5がパイプ4内に排出される。燃焼器2が適度に作動している状態では、排気ガス5によりパイプ4内の温度が300~400℃となる。供給源19からの尿素水の供給量は10cc/minとし、圧縮空気の供給量は10~20リットル/minとした。

排気ガス5の流逃が適度な状態では、還元測供給装置6から滴下される尿素太がパイプ4 内で分散され、蒸発してアンモニアガスが生成され、この還元剤としてのアンモニアガス が脱硝装置3内で反応して、窒素酸化物が還元して除去される。

[0012]

この際、排気ガス5の流速が大きい場合は、ノズル7から尿素水が飛散するが、ノズル7 には貫通孔11,14を形成しているので、ノズル7の先端部間口のみならず、それらの 貫通孔11,14からも尿素水が分散し、より分散性が向上する。この際、上方には上方 飛散防止板15が配設されており、下方には底部飛散防止板8が配設されているので、パ イブ4の内周壁に尿素水が下流個へ放射状に飛散するのを防止することができる。特に、 排気ガス5の流速がやや小さい場合は、重力作用で内周盤の下側や両サイドに尿素水が多 40 く飛散するが、底部飛散防止板8が湾曲しているので、パイブ4の内周盤の下部のみなら ず、両サイドへの飛散をも有効に防止することができる。

また、尿素水が滴下されている状態では、ノズル7に複数の貫通孔11,14が形成されているので、ノズル7が詰まり尿素水の供給が遮断されることが防止される。

[0013]

燃焼器2の燃焼量が小さく、パイブ4内の温度が下がった場合や排気ガス5の流量が少ない場合は、尿素水はノズル7から前下する。このような状態では、底部飛散防止板8に尿素水が滴下する。しかしながら、防止板アッセンブリ22の管状部24金体及び底部飛散防止板8が排気ガス5と接触し、底部飛散防止板8が漕曲していることから、平面状のものよりも排気ガス5との接触面積が大きく、かつ、それらとパイブ4の内周壁との間に隙 50

間を形成していることから、底部飛散防止板8の保温効果が大きく、さらには底部飛散防 止板8の温度が降下するような場合は、管状部24からの執伝導を受けてそれの温度保持 を図れることから、尿素水を効率良く蒸発させることができる。また、ノズル4の先端が 詰まるようなことがあっても、ノズル4の周壁部に貫通孔11、14を形成していること から、貫通孔11.14から尿麦を排出できる。

[0014] 以下、本発明の実施例と比較例について説明する。

[実施例1]

実施例1として、図5のAに示すように、パイプ4にノズル7を配設した状態で脱硝性能 試験を行った。図1に示す燃焼装置1の設備と異なるのは、防止板アッセンブリ22を設 10 けていないこと、及びノズル7に設けていた上方飛散防止板15の無い物を使用したこと である。

ノズル7は図5のAに示すように。内径3mm、外径5mmであり、ノズル7の周壁部に 内径2mmの貫通孔11、14を各々5組宛、計10組を設けた。そして、脱硝装置3の 上流側にノズル7を設置し、脱硝性能評価試験を実施した。評価条件及び尿素水供給条件 を以下に示す。

·脱硝性能評価条件

:700ppm NOx濃度

:10% 0, : 200 Nm3 /hr ガス量

排ガス温度 :350℃

· 尿素水供給条件

尿要水量 :10cc/min エアー量 :17L/min

試験結果を表1の実施例1に示す

[0015] 【表 1 】

表1 言語用付供給ノズルを用いた場合の脱稿率

	供給装置の形態	アシストエア	脱硝率 (at 350℃)
突旋例 1	貫通孔付供給ノズル	有り	93%
実施例 2	貫通孔付供給ノズル + 上下尿素水飛散防止板	有り	95%
比較例1	供給パイプ(責通孔 11、14 無し)	有り	80%
比較例 2	黄通孔付供給ノズル	無し	60%

試験結果から脱硝率は93%であった。

[0 0 1 6]

[実施例2] 実施例2として、図1に示す燃焼装置1を用いて脱硝性能試験を行った。すなわち、上記 40

実施例1と異なり、バイブ4に防止板アッセンブリ22を配設し、ノズル7に上方飛散防 止板15を取付けたものを使用した。上方飛散防止板16は、直径15mm、厚さ2mm の円板状のものを使用し、貫通孔11.14の上部に配設した。また、下方飛散防止板1 1は、直径65Aであり、厚さ5mmの半円筒形である。ノズル7のサイズ形状は実施例 1と同じであり、内径3mm、外径5mmであり、ノズル7の周壁部に内径2mmの貫通 孔11.14を各々5組筑、計10組を設けた。そして、脱硝性能評価試験を実施した。 評価条件及び尿素水供給条件は、以下のように実施例1同じとした。

·脱硝性能評価条件

NOx湊度 :700ppm 0,

50

20

30

ガス量 : 200 Nm³/hr

状やその他形状を用いることができる。

```
:350%
排ガス温度
· 尿素水供給条件
尿素水量 :10cc/min
エアー量
      : 17 L/min
試験結果は、表1の実施例2に示すように、脱硝率が95%であり、実施例1よりも脱硝
率が向上した。
[0017]
「比較例1]
比較例1として、図5のBに示すように、パイプ4にノズル7を配設した状態で脱硝性能 10
試験を行った。図1に示す燃焼装置1の設備と異なるのは、防止板アッセンブリ22を外
していることと、ノズル7に設けていた上方飛散防止板15の無い物を使用し、さらにノ
ズル7の周壁に貫通孔11.14の無いものを使用した。
ノズル7は図5のBに示すように。内径3mm、外径5mmのものを用い、脱硝装置3の
上流側にノズル7を設置し、脱硝性能評価試験を実施した。評価条件及び尿素水供給条件
は、以下のように実施例1と同じとした。
脱硝性能評価条件
NOx 濃度 : 700 ppm
             :10%
0.
ガス量
       : 2 0 0 Nm3 /hr
排ガス温度
       :350℃
· 尿素水供給条件
尿素水量 :10cc/min
エアー量
      :17L/min
試験結果は、表1の比較例1に示すように、脱硝率が80%であり、実施例1及び2より
も脱硝率が劣っている。
[0018]
「比較例2]
比較例2として、図5のAに示す装置で、脱硝性能試験を行った。実施例1と異なるのは
、図1に示すエアー供給用コンプレッサ28からのアシストエアーを使用しないことであ 30
る。他は、実施例1と同じ条件で行った。
脱硝性能評価条件及び尿素水供給条件を以下に示す。
脱硝性能評価条件
NOx濃度 :700ppm
0,
            : 10%
ガス量
       : 200 Nm3 /hr
排ガス温度
      :350℃
· 尿素水供給条件
尿素水量 : 10 c c / m i n
試験結果は、表1の比較例2に示すように、脱硝率が60%であり、実施例1、2及び比 40
較例1よりも脱硝率が劣っている。
[0019]
以上、本発明の実施の形態について説明したが、本発明は、勿論、本発明の技術的思想に
基づいて、種々の変形または変更が可能である。
```

例えば、上記実施の形態では、貫通孔11,14を排気ガス5の流れに対して平行または 直交させたが、それ以外の場所に形成してもよく、貫通孔の数は1個以上であればよい。 また、上方飛散防止板15の形状を円板形としたが、その形状についても角形若しくは底 部飛散防止板8のように湾曲させてもよい。ノズル7の向きについては、傾斜若せては底 い。さらに、底部飛散防止板8の形状についても、円弧状に限定されず、平板状、コ字形

50

【0020】 【発明の効果】

以上説明したように、本発明の還元剤供給装置は、パイプ内を流れる燃焼排気ガス中に、 窒素酸化物の還元剤として使用される尿素水をノズルによって上記パイプ内に供給する還 元剤供給装置において、上記パイプ内に配設したノズルの周壁部に1つ以上の貫通孔を形 成したので、尿素液の分散性の向上と、ノズルの閉塞を防止することができる。

また、上記貫通孔を上記燃焼排気ガスの流れ方向に対して平行な向きまたは燃焼排気ガスの流れ方向に対して直交する向きに形成したので、より分散性の向上を図ることができる

上記尿素水を供給エアーと共に上記ノズルからパイプ内に供給するようしたので、尿素水 10 の希釈化を図ることができるようになった。

さらに、上記ノズルを横方向に延在する上記パイプの上部からノズルの先端部を下方に向けてパイプ内に配設し、上記ノズルの貫通孔を形成した位置よりも上側の位置には尿素水の上方飛散防止板を設け、ノズルの先端部の直下には、尿素水の底部飛散防止板を上記パイプの周壁面に対して間隔を開けて配置したので、尿素水がパイプの内周壁に付着することを防止できるようになった。

【図面の簡単な説明】

【図1】本発明の実施の形態による還元剤供給装置を備えた燃焼装置の概略側面図である

【図2】図1の還元剤供給装置のノズルアッセンブリの拡大斜視図である。

【図3】図2のノズルアッセンブリのノズルの拡大斜視図である。

【図4】図1の還元剤供給装置の防止板アッセンブリの拡大斜視図である。

【図5】 Aは、本発明の実施例1に用いた還元剤供給装置の概略図であり、図2は比較例1に用いた還元剤供給装置の概略図である。

【図6】従来の還元剤供給装置の概略側面図である。

【符号の説明】

- 1 燃焼装置
- 2. 烘燒器
- 3 脱硝装置
- 4 バイプ
- 5 排気ガス
- 6 還元剤供給装置
- 7 ノズル
- 8 底部飛散防止板
- 9 ノズルアッセンブリ
- 10 取付板
- 11,14 貫通孔
- 12 周壁
- 13 先端部
- 15 上方飛散防止板
- 16 チューブ
- 17 継ぎ手
- 18 配管
- 19 尿素水の供給源
- 20 供給ポンプ
- 2.1 取付孔
- 22 防止板アッセンブリ
- 23 環状フランジ
- 24 管状部
- 25, 26 フランジ継ぎ手

20

30

50

- エキスパンション エアー供給用コンプレッサ
- 2 7 2 8 2 9

【図3】

【図4】

【図5】

【図6】

フロントページの続き

(72)発明者 野島 繁

広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内

(72)発明者 米村 将直

広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内

(72)発明者 遠藤 浩之

長崎県長崎市深堀町五丁目717番1号 三菱重工業株式会社長崎研究所内

Fターム(参考) 3G091 AB04 BA14 CA16 HB01