Análisis espaciales y multivariantes en R aplicados a estudios de biodiversidad

Análisis multivariantes en R

Diego Nieto Lugilde. Profesor Titular de la Universidad de Córdoba (España)

Contenidos

- ¿Qué son los análisis multivariantes?
 - Matrices de comunidades
- ¿Cuáles son los análisis multivariantes más frecuentes?
 - Ordenación
 - Agrupación
- ¿Cómo se realizan en R?
 - Paquete vegan

Análisis Multivariante

- Es un conjunto de métodos para describir e interpretar los datos que provienen de la observación de varias variables conjuntamente
- Estudiar, analizar, representar e interpretar los datos que resultan de observar más de una variable sobre una muestra de individuos
- Las variables deberían ser homogéneas y correlacionadas, sin que alguna predomine sobre las demás

Matrices multivariantes (variables ambientales)

Comunidad	T ^a annual	Prec. anual	C suelo	N suelo
1	10	100	5,5	25
2	8	100	7,5	15
•••				
n	12	150	8,3	20

Matrices multivariantes (variables bióticas)

Comunidad	Sp 1	Sp 2	Sp 3	Sp 4
1	10	10	80	55
2	8	10	75	45
•••				
n	12	15	83	70

Matrices multivariantes (variables bióticas)

Población	Genotipo 1	Genotipo 2	Genotipo 3	Genotipo 4
1	10	10	80	55
2	8	10	75	45
•••				
n	12	15	83	70

Matriz de comunidades de las marismas saladas de Nueva Jersey con % cobertura

						Qua	drats					
Species	1	2	3	4	5	6	7	8	9	10	11	12
1. Atriplex patula var hastata	1	10	2	1	1	2	5		1		5	2
2. Distichlis spicata		15	80	2	10	15	30	1	10	10	20	
3. Iva frutescens							5	1	2	1	20	10
4. Juncus gerardii			1			40	1					
5. Phragmites communis								1	10	20	5	30
6. Salicornia europaea	5	10	2	1	1		2			2		
7. Salicornia virginica				5	10							
8. Scirpus olneyi						5	20				1	
9. Solidago sempervirens									1	5	1	2
10. Spartina alterniflora	75	30	5	20	5	1		10	1	2		
11. Spartina patens							20	10	50		2	5
12. Suaeda maritima				20	10							

Matriz de comunidades de marismas saladas de Nueva Jersey con presencia/ausencia y transpuesta

	1	2	3	4	5	Spo 6	ecies 7	8	9	10	11	12
Quadrats	Atriplex patula var. hastata	Distichlis spicata	Iva frutescens	Juncus gerardii	Phragmites communis	Salicornia europaea	Salicornia virginica	Scirpus olneyi	Solidago sempervirens	Spartina alterniflora	Spartina patens	Suaeda maritima
1	1	0	0	0	0	1	0	0	0	1	0	0
2	1	1	0	0	0	1	0	0	0	1	0	0
3	1	1	0	1	0	1	0	0	0	1	0	0
4	1	1	0	0	0	1	1	0	0	1	0	1
5	1	1	0	0	0	1	1	0	0	1	0	1
6	1	1	0	1	0	0	0	1	0	1	0	0
7	1	1	1	1	0	1	0	1	0	0	1	0
8	0	1	1	0	1	0	0	0	0	1	1	0
9	1	1	1	0	1	0	0	0	1	1	1	0
10	0	1	1	0	1	1	0	0	1	1	0	0
11	1	1	1	0	1	0	0	1	1	0	1	0
12	1	0	1	0	1	0	0	0	1	0	1	0

Tipos de análisis multivariantes

Análisis de regresión multiple

Análisis de ordenación

- Análisis de Componentes Principales (PCA) y sus derivadas (v.gr. RDA)
- Análisis de Correspondencias (AC) y sus derivadas (v.gr. DCA, CCA)
- Escalamiento Multidimensional No-Métrico

Análisis de agrupación

- Clasificación jerárquica
- K-means
- Twinspam

Análisis de ordenación

- Organizar los datos en el espacio ambiental
 - Permite encontrar tendencias en las variables medidas
 - ... y reducir la dimensionalidad de los datos al detectar tendencias compartidas

Análisis de clasificación

 Agrupa los datos para identificar conjuntos de datos muy similares entre si y, a su vez, lo suficientemente diferentes del resto de datos

Ordenación versus agrupamiento

Jugamos a ordenar?

Localidad	Sp1
а	2
b	6
С	8
d	1
е	5
f	9

No es tan difícil ¿verdad?

Localidad	Sp1
а	2
b	6
С	8
d	1
е	5
f	9

¿Os atrevéis con dos especies?

Localidad	Sp1	Sp2
а	2	7
b	6	0
С	8	1
d	1	9
е	5	3
f	9	4

Tampoco fué tan díficil

Localidad	Sp1	Sp2
а	2	7
b	6	0
С	8	1
d	1	9
е	5	3
f	9	4

¿Y con una o dos especies más?

Localidad	Sp1	Sp2	Sp3
а	2	7	2
b	6	0	9
С	8	1	5
d	1	9	6
е	5	3	5
f	9	4	4

Redundancia

Normalmente los datos contienen cierta cantidad de redundancia: Algunas especies son similares en su respuesta a los gradientes ambientales, lo que duplica la información de la variación.

Por eso en los análisis de ordenación se realiza una reducción de información, encaminada a eliminar esta redundancia.

Ruido

- Dos muestras, incluso en la misma comunidad, es poco probable que sean idénticas:
 - diferencias micro espala en factores locales;
 - variaciones locales en presiones de origen biótico como incendios o pastoreo;
 - la distribución al azar de los individuos y otros procesos estocásticos (dispersión, etcétera);
 - errores en la toma de datos de la abundancia.
- Aportan variación, pero pequeña y de poco interés, especialmente en comparación con la variación entre muestras de distintas comunidades.

3 tipos de variación

Variabilidad importante, permite explicar y comprender la relación ambiente/comunidad

Variabilidad redundante, aparece por acumulación de especies con respuestas parecidas a las condiciones ambientales

Variabilidad de menor detalle, y que puede interferir con la visión general

• Estudio de las relaciones que existen entre los objetos (las muestras)

• Estudio de las relaciones que existen entre las variables o descriptores (las especies)

	(a) Basado en datos (aproximación clásic		(b) Basado en	(c) Basado en	
	Lineal	Unimodal	transformaciones	distancias	
(1) Unconstrained (indirecto)	Análisis de Componentes Principales (PCA)	Análisis de Correspondencia (CA) Análisis de Correspondencia Sin Tendencia (DCA)	Análisis de Componentes Principales con transformación (tb- PCA)	Non-metric Multidimensional Scaling (NMDS)	
(2) Constrained (directo, canónico)	Análisis de Redundancia (RDA)	Análisis de Correspondencia Canónico (CCA)	Análisis de Redundancia con transformación (tb- RDA)	Análisis de Redundancia basado en distancias (db-RDA)	

tb-: Los datos de composición se modifican usando la transformación de Hellinger, resultando en distancias de Hellinger que son más adecuadas para datos ecológicos por que son asimétricas (no les afectan los dobles ceros)

PCA

PCA

- Se aplica sólo con datos cuantitativos
- No es necesario establecer jerarquías ni comprobar la normalidad
- Las variables originales deben estar correlacionadas
 - Si no, el análisis no tiene sentido
- Se usa la varianza para medir la cantidad de información incorporada en cada componente
- Los ejes se ordenan de mayor a menor varianza

	x1	x2
1	72	70
2	67	69
3	67	70
4	75	69
5	70	70
6	74	71
7	71	70
8	60	70
9	69	70
10	75	69

media	70.00	69.80
varianza	21.11	0.40

Genera un componente por cada variable (especies o muestras) en el conjunto de datos

Hasta que toda la variabilidad original queda recogida

Sólo unas pocas componentes recojan la mayor parte de la información (variabilidad) de los datos

• Si las variables no están correlacionadas, esto no ocurre y por eso no tiene sentido el análisis

Hay diferentes criterios para decidir el número de componentes a retener:

Broken stick

ebilidades

Define la disimilaridad sólo con la distancia Euclídea

 La distancia euclídea tiene problemas cuando hay especies ausentes en dos comunidades (dobles ceros)

No explica
bien las
relaciones no
lineales
(curvilíneas,
etc.) entre
variables.

 Por tanto, sólo sirve para estudiar gradientes ambientales relativamente homogéneos, sin grandes cambios en la composición.

short ecological gradient

long ecological gradient

Análisis de Correspondencias (CA)

- Se basa en Chi cuadrado
- No sufre de simetría (doble cero)
- Sufre de arqueado de los gráficos, por falta de linearidad entre el primer componente y el resto

Análisis de Correspondencia Sin Tendencia (DCA)

- Surge para corregir el arqueado de los gráficos de CA.
- Lo hace segmentando el primer eje y "linealizándolo" a la fuerza. Demasiado tosco y mucha gente no lo recomienda.
- No obstante, es útil para decider si es necesario una aproximación lineal o una unimodal (PCA o CA).
- Una alternativa es usar las aproximaciones basadas en transformaciones (dt-PCA).

DCA y DS del primer componente

Métodos de ordenación directos

Incorporan la información ambiental para "condicionar" la ordenación en base a dichos gradientes

RDA

Tipos de análisis de clasificación

After Round 1 **Initial Seeding** After Round 2 **Final**

K-means

- El número de grupos se establecen a priori por el investigador
- Proceso iterativo
 - Sensible a soluciones locales
 - Mejor repetir varias veces

classification of samples

Twinspan

Se basa en la distribución de las especies a lo largo del primer eje de un análisis de ordenación.

Análisis de clasificación jerarquica

Matriz de (di)similitud: índices de betadiversidad

- Jaccard: $S_J = \frac{c}{a+b+c}$
- Sorensen: $S_S = \frac{2c}{a+b}$
- ...
 - a: N^o especies exclusivas del punto 1
 - b: No especies exclusivas del punto 2
 - c: N^o especies comunes en ambos puntos

Matriz de similitud del coeficiente de Czekanowski

	1	2	3	4	5	6	7	8	9	10	11	12
1	0.00											
2	0.51	0.00										
3	0.91	0.69	0.00									
4	0.66	0.58	0.87	0.00								
5	0.88	0.67	0.73	0.44	0.00							
6	0.97	0.72	0.75	0.93	0.76	0.00						
7	0.96	0.70	0.60	0.94	0.80	0.69	0.00					
8	0.81	0.75	0.89	0.69	0.80	0.95	0.77	0.00				
9	0.97	0.83	0.86	0.94	0.79	0.83	0.58	0.71	0.00			
10	0.93	0.73	0.79	0.89	0.66	0.79	0.79	0.84	0.60	0.00		
11	0.99	0.66	0.69	0.94	0.76	0.69	0.52	0.87	0.67	0.64	0.00	
12	0.99	0.97	0.97	0.98	0.98	0.96	0.82	0.81	0.69	0.48	0.61	0.00

Similitud = 1 - Disimilitud

- Betadiversidad (β)
 - Reemplazo (turnover) de especies entre dos sitios
 - Término ecológico
 - Característico para parejas de puntos
- Interpretación
 - β = 1: Sitios completamente diferentes
 - β = 0: Sitios completamente similares
- Similitud = 1 Disimilitud

	P1	P2	Р3	P4
P1	0	β ₁₂	β ₁₃	β ₁₄
P2	β ₁₂	0	β_{23}	β_{24}
Р3	β ₁₃	β ₂₃	0	β ₃₄
P4	β ₁₄	β_{24}	β_{34}	0

	P1	P2	P3
P1			
P2	0.1		
P3	0.5	0.6	

	P1	P2	P 3	P4
P1				
P2	0.1			
P3	0.5	0.6		
P4	0.7	0.8	0.3	

dendrograma

	P1	P2	Р3	P4	P5
P1					
P2	0.1				
Р3	0.5	0.6			
P4	0.7	0.8	0.3		
P5	0.4	0.6	0.5	0.7	

- Single linkage
- Complete linkage
- Average linkage (UPGMA)
- Centroid linkage

