

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA ELÉTRICA GRADUAÇÃO EM ENGENHARIA ELÉTRICA

Elementos Finitos Prof. José Roberto Camacho (PhD)

Relatório 1

Daniel Teodoro Gonçalves Mariano 11411EEL011

> Uberlândia 2016

Sumário

Li	sta d	e Figuras	iii				
Li	Lista de Tabelas e Quadros						
Li	sta d	e Abreviaturas e Siglas	iv				
1	Ativ	idade 1	1				
	1.1	Introdução	2				
	1.2	Materiais e Métodos	5				
	1.3	Resultados	11				
	1.4	Discussões e Conclusões	16				
2	Ativ	idade 2	17				
	2.1	Introdução	18				
	2.2	Materiais e Métodos	19				
	2.3	Resultados	20				
	2.4	Discussões e Conclusões	21				
Re	eferê	ncias Bibliográficas	21				

Lista de Figuras

1.1	Circuito magnético simplificado	3
1.2	Núcleo de chapas de aço com um enrolamento	5
1.3	Curva de magetização CC para o aço elétrico de grão orientado M-5 de	
	0.012 polegadas de espessura	5
1.4	Barra de ferramentas	7
1.5	Circuito magnético no FEMM	8
1.6	Propriedades para o circuito Icurr	9
1.7	Propriedades para o circuito -lcurr	9
1.8	Circuito magnético, enrolamento, fronteira	10
1.9	Malha de pontos gerada pelo FEMM	11
1.10	Densidade de fluxo (Mapa de calor)	11
1.11	Local de medição	12
1.12	Gráfico da densidade de fluxo magnético	13
1.13	Gráfico do potencial	13
1.14	Gráfico da intensidade de campo	13
1.15	Densidade de fluxo (mapa de calor) e local de medição	14
1.16	Gráfico da densidade de fluxo magnético	15
1.17	Gráfico do potencial	15
1.18	Gráfico da intensidade de campo	15

Lista de Tabelas e Quadros

1.1	Comparação entre variáveis dos circuitos elétricos e magnéticos	4
1.2	Parâmetros do problema	6
1.3	Materiais	8

Capítulo 1

Atividade 1

Neste trabalho é apresentada uma abordagem para um problema de circuitos magnéticos, utilizando uma ferramenta de resolução numérica chamada elementos finitos. O trabalho encontra-se divido em quatro seções. A primeira seção introduz brevemente o tópico de circuitos magnéticos. A segunda seção apresenta os materiais e métodos utilizados para o desenvolvimento do trabalho. A terceira seção apresenta os resultados obtidos. A quarta e última seção realiza as discussões e conclusões acerca deste trabalho.

1.1 Introdução

Circuitos magnéticos e materias magnéticos

Os transformadores e máquinas elétricas, de forma geral, utilizam material ferromagnético para direcionar e dar forma a campos magnéticos, os quais atuam como meio de transferência e conversão de energia. Um circuito magnético consiste em uma estrutura que, em sua maior parte, é composto por material magnético de permeabilidade elevada. A presença de um material de alta permeabilidade tende a fazer com que o fluxo mangético seja confinado aos caminhos delimitados pela estrutura, do mesmo modo que, em um circuito elétrico, as correntes são confinadas aos condutores [1]. A figura 1.1 apresenta um exemplo simplificado de um circuito magnético. Nesse caso, assume-se que o núcleo seja composto de material magnético cuja permeabilidade é muito maior que a do ar $(\mu \sim \mu_0)$. A fonte do campo magnético do núcleo é o produto entre o número de espiras (N) e a corrente (i), expressa em ampèresespira (Ae). A força magnetomotriz (FMM) que atua no circuito magnético é dada pelo produto Ni. Diferente do circuito apresentado aqui, transformadores e a maioria das máquinas rotativas possuem no mínimo dois enrolamentos, de forma que Ni deve ser ajustado pela soma algébrica dos ampères-espiras de todos os enrolamentos. O fluxo magnético que atravessa uma superfície S é a integral de superfície da componente normal de B expressa pela equação 1.1.

$$\phi = \int_{S} B * da[Wb] \tag{1.1}$$

A equação 1.1 pode ser reduzida a uma equação escalar simples, uma vez que é considerado que a densidade de fluxo magnético é uniforme em uma seção reta de um circuito magnético.

$$\phi_c = B_c A_c \tag{1.2}$$

Onde:

- φ_c = fluxo no núcleo
- B_c = densidade de fluxo no núcleo
- A_c = área da seção reta do núcleo

A relação entra a força magnetomotriz que atua ao longo de qualquer segmento de um circuito magnético e o campo magnético naquele circuito pode ser calculada como:

$$FMM = Ni = \oint Hdl \tag{1.3}$$

As dimensões do núcleo são tais que o comprimento do caminho de qualquer linha de fluxo é aproximadamente igual ao comprimento médio do núcleo I_c . A integral de linha torna-se o produto escalar H_c I_c do módulo de H vezes o comprimento médico I_c do caminho do fluxo. A equação 1.3 pode ser reescrita da seguinte forma:

$$FMM = Ni = H_c l_c \tag{1.4}$$

Onde H_c é o módulo médio de H no núcleo. A relação entre a intensidade de campo magnético (H) e a densidade de fluxo magnético (B) é uma propriedade do material em que se encontra o campo magnético. É comum supor uma relação linear entre as duas variáveis, expressa por:

$$B = \mu H \tag{1.5}$$

Onde μ é a permeabilidade magnética do material.

Figura 1.1: Circuito magnético simplificado

A tabela 1.1 apresenta uma analogia entre as variáveis dos circuitos elétricos e magnéticos.

Tabela 1.1: Comparação entre variáveis dos circuitos elétricos e magnéticos

Circuito elétrico		Circuito magnético	
Grandeza		Grandeza	
Corrente	I	Fluxo magnético	φ
Densidade de corrente	J	Densidade de fluxo magnético	В
Força eletromotriz	٧	Força magnetomotriz	FMM
Intensidade de campo elétrico	Ε	Intensidade de campo magnético	Н
Condutividade elétrica	σ	Permeabilidade magnética	μ
Resistência	R	Relutância	R'

1.2 Materiais e Métodos

Descrição do problema

O núcleo magnético da figura 1.2 é feito de chapas de aço elétrico de grão orientado M-5. O enrolamento é excitado com uma tensão de 60 Hz produzindo no aço uma densidade de fluxo de B = 1.5 sen(ω t) [T], onde Ω = 2 π 60 = 377 rad/s. O aço ocupa 0.94 da área da seção reta. A densidade de massa do aço é 7.65 g/cm3.

Figura 1.2: Núcleo de chapas de aço com um enrolamento. Extraído de [1].

Figura 1.3: Curva de magetização CC para o aço elétrico de grão orientado M-5 de 0.012 polegadas de espessura. Extraído de [1].

Ferramenta de elementos finitos: FEMM

FEMM (Finite Elements Method Magnetics) é um conjunto de programas utilizados para a resolução de problemas eletromagnéticos de baixa frequência em domínios planares (bidimensional) ou assimétricos. O problema permite a resolução dos seguintes tipos de problemas: magnéticos lineares/não-lineares, problemas eletroestáticos lineares, problemas de fluxo de calor e problemas de fluxo de corrente [2].

Definições dos parâmetros do problema

Foram definidos os seguintes parâmetros do problema no FEMM: tipo do problema, unidade de medida, frequência, precisão, ângulo mínimo e método computacional, conforme apresentado na tabela 1.2.

Tabela 1.2: Parâmetros do problema

Parâmetro	Descrição
Tipo do problema	Planar
Unidade de medida	Milimetros
Frequência (Hz)	0
Precisão	1E-008
Ângulo Mín	30°
Método	Aprox. Suc

Cálculo da área do condutor

$$Area_{condutor} = \frac{i}{D_{cu}} = \frac{0.1[A]}{2.5[\frac{A}{mm^2}]} = 0.04[mm^2]$$
 (1.6)

Achando o valor de diâmetro:

$$Area_{condutor} = \frac{\pi d^2}{4} \tag{1.7}$$

$$d = \sqrt{\frac{4 \times Area_{condutor}}{\pi}} = 0.225676[mm] \tag{1.8}$$

Como não há disponível um material com o valor de diâmetro igual a 0.225676 [mm], adota-se o material com medida mais próxima. O material escolhido foi o

30AWG, com diâmetro igual a 0.254724 [mm]. A partir do novo diâmetro, realiza-se o cálculo para Área'.

$$Area'_{condutor} = \frac{\pi d^2}{4} = \frac{\pi 0.254724^2}{4} = 0.050960[mm^2]$$
 (1.9)

Conforme a descrição do problema o enrolamento possui 200 espiras. Dessa forma:

$$AreaT'_{condutor} = N_{espiras} * Area'_{condutor} = 200 * 0.050960[mm^2]$$
(1.10)

$$AreaT'_{condutor} = 10.192026[mm^2] \approx 10[mm^2]$$
 (1.11)

A partir do valor da área total do condutor, considerando as 200 espiras, é possível encontrar diversas medidas que possuam o valor de área de 10 [mm²]:

- 10.0 [mm] X 1.0 [mm]
- 5.0 [mm] X 2.0 [mm]
- 4.0 [mm] X 2.5 [mm]

Para a construção da espira no circuito magnético, optou-se pelas dimensões 5.0 X 2.0 [mm].

Construção do circuito magnético no FEMM

O problema foi reconstruido na camada de interação. A camada de interação do FEMM possui uma barra de ferramentas (Figura 1.4) que permite a construção de objetos geométricos bidimensionais. A partir dai são inseridos os pontos e os segmentos de retas para construção do circuito magnético análogo do enunciado do problema.

Figura 1.4: Barra de ferramentas.

Figura 1.5: Circuito magnético no FEMM

Definição dos materiais a serem utilizados

Após a construção geométrica do circuito magnético, é necessário atribuir os materiais a serem utilizados. O FEMM disponibiliza uma biblioteca de materiais com parâmetros definidos.

Tabela 1.3: Materiais						
Material	sigma [MS/m]	Atributos especiais				
Ar	0	Não laminado				
US Steel Type 2-S	6.25	Laminado no plano				
30 AWG	58	Fio magnético				

Definição dos circuitos

Foram definidos dois circuitos para o problema:

- Icurr (Corrente do circuito série com 0.1 [A])
- -lcurr (Corrente do circuito série com -0.1 [A])

Figura 1.6: Propriedades para o circuito Icurr

Figura 1.7: Propriedades para o circuito -lcurr

Condições de contorno

As condições de contorno delimitam as dimensões do problema. A partir das condições de contorno foram definidas as regiões do problema (ar, enrolamento eo circuito magnético). Uma vez definidas as regiões, foram atribuidos os materiais específicos de cada uma delas.

Figura 1.8: 1) Circuito Magnético; 2) enrolamento; 3) fronteira circular

1.3 Resultados

Após a construção do problema no FEMM, foi executado o gerador de malhas

Figura 1.9: Malha de pontos gerada pelo FEMM.

Figura 1.10: Densidade de fluxo (Mapa de calor).

Análise do fluxo magnético, potencial e da intensidade de campo a partir de uma linha reta que passa pelo eixo central do circuito magnético

Para realizar a análise do fluxo magnético, potencial e da intensidade de campo, foi inserida no circuito magnético uma linha reta que coincide com o eixo central do mesmo, conforme ilustrado na figura 1.11. Os gráficos das figuras 1.12, 1.13 e 1.14 apresentam, respectivamente, a densidade de fluxo magnético (B), o potencial e a intensidade de corrente (H).

Figura 1.11: Local de medição.

Figura 1.12: Gráfico da densidade de fluxo magnético.

Figura 1.13: Gráfico do potencial.

Figura 1.14: Gráfico da intensidade de campo.

Análise para a corrente do circuito com módulo igual a 0.2 [A]

Para comparar a influência da corrente na análise, foi realizada uma segunda análise utilizando uma corrente de circuito de módulo igual a 0.2 [A]. A mesma linha de referência foi utilizada conforme ilustrado na figura conforme ilustrado na figura 1.15. As figuras 1.16, 1.17 e 1.18 representam, respectivamente, a densidade de fluxo magnético (B), o potencial e a intensidade de corrente (H).

Figura 1.15: Densidade de fluxo (mapa de calor) e local de medição.

Figura 1.16: Gráfico da densidade de fluxo magnético.

Figura 1.17: Gráfico do potencial.

Figura 1.18: Gráfico da intensidade de campo.

1.4 Discussões e Conclusões

O trabalho vigente apresentou uma abordagem de um problema de circuitos magnéticos utilizando os métodos dos elementos finitos. As soluções numéricas baseadas nos métodos dos elementos finitos são bem comuns e tornaram-se ferramentas indispensáveis para a realização de análises e projetos de máquinas elétricas. Essas técnicas podem ser empregas para o refinamento de análises analíticas. Ainda que soluções analíticas exatas não sejam possíveis de se obter na prática, não se pode desconsiderar a importância da análise analítica no que diz respeito a compreesnão dos princípios fundamentais e do desempenho básico de máquinas elétricas. O software FEMM possibilitou de forma prática a modelagem de um problema de domínio magnético, utilizando os métodos dos elementos finitos. Os arquivos gerados pelo programa assim como esse relatório encontra-se disponíveis para acesso/download em um repositório do GitHub, no endereço https://github.com/dtgmariano/FiniteElements-101/tree/master/Assignment_01.

Capítulo 2

Atividade 2

Neste trabalho é apresentada uma abordagem para elementos finitos, utilizando a linguagem computacional LUA. O projeto desenvolvido no 1, utilizando a ferramenta FEMM (Finite Elements Method Magnetics), será adaptado para um script escrito em LUA. O trabalho encontra-se divido em quatro seções. A primeira seção introduz brevemente o tópico de circuitos magnéticos. A segunda seção apresenta os materiais e métodos utilizados para o desenvolvimento do trabalho. A terceira seção apresenta os resultados obtidos. A quarta e última seção realiza as discussões e conclusões acerca deste trabalho.

2.1 Introdução

Lua script

Lua é uma linguagem de script de multiparadigma, pequena, reflexiva e leve, projetada para expandir aplicações em geral, por ser uma linguagem extensível (que une partes de um programa feitas em mais de uma linguagem), para prototipagem e para ser embarcada em softwares complexos, como jogos. Assemelha-se com Python, Ruby e Icon, entre outras. Foi projetada e desenvolvida na PUC-Rio, no Brasil. A linguagem de extensão LUA foi usada para adicionar recursos de processamento para o programa FEMM. A camada de interação pode executar scripts LUA, selecionado a opção "Open Lua Script"no menu de arquivos do programa. Outra possibilidade é a execução de comandos LUA inseridos em um console próprio para a lin-

guagem LUA. Além das funções inerentes da linguagem, existem funções específicas

Comandos básicos FEMM-Lua

para o aplicativo FEMM.

- clearconsole(): Limpa a janela de saída;
- **newdocument(doctype)**: Cria um novo documento pré-processador;
- print(): Comando de saída para envio de mensagem;
- quit(): Fecha todos os documentos e sai da camada de interação;

2.2 Materiais e Métodos

2.3 Resultados

2.4 Discussões e Conclusões

Referências Bibliográficas

- [1] A. E. Fitzgerald, C. Kingsley Jr, and S. D. Umans, *Máquinas Elétricas*. Porto Alegre: Bookman, 2008.
- [2] D. Meeker, "Finite Element Method Magnetics User's Manual (v4.2)," 2014.