

FINNEGAN, HENDERSON, FARABOW, GARRETT & DUNNER, L.L.P.

1300 I STREET, N.W.
WASHINGTON, DC 20005-3315

202 • 408 • 4000
FACSIMILE 202 • 408 • 4400

ATLANTA
404•653•6400
PALO ALTO
650•849•6600

WRITER'S DIRECT DIAL NUMBER:

TOKYO
011•813•3431•6943
BRUSSELS
011•322•646•0353

(202) 408-4000

December 13, 1999

ATTORNEY DOCKET NO. 03384.0346-00000

Box PATENT APPLICATION
Assistant Commissioner for Patents
Washington, D.C. 20231

Re: New U.S. Patent Application
Title: "METHOD AND APPARATUS FOR VOICE
RECOGNITION FOR CALL TREATMENT
MODIFICATION ON MESSAGING"
Inventor: Peter Allen Huboi

Sir:

We enclose the following papers for filing in the United States Patent and Trademark Office in connection with the above patent application.

1. Application - 22 pages, including 16 independent claims and 54 claims total.
2. Abstract of the Disclosure
3. Drawings - 6 sheets of drawings (Figures 1 - 6).
4. Declaration and Power of Attorney.
5. Recordation Form Cover Sheet and Assignment to Nortel Networks Corporation.
6. A check for \$2,426 representing a \$760 filing fee, \$1,014 for 13 additional independent claims, \$612 for additional claims, and \$40.00 for recording the Assignment.

Please accord this application a serial number and filing date and record and return the Assignment to the undersigned.

FINNEGAN, HENDERSON, FARABOW, GARRETT & DUNNER, L.L.P.

Assistant Commissioner for Patents

December 13, 1999

Page 2

The Commissioner is hereby authorized to charge any additional filing fees due and any other fees due under 37 C.F.R. § 1.16 or § 1.17 during the pendency of this application to our Deposit Account No. 06-0916.

Respectfully submitted,

FINNEGAN, HENDERSON, FARABOW,
GARRETT & DUNNER, L.L.P.

By:
E. Robert Yoches
Reg. No. 30,120

CWC:wmr
Enclosures

United States Patent Application

of

Peter Allen Huboi

for

Methods and Apparatus for Voice Recognition for
Call Treatment Modification on Messaging

BACKGROUND OF THE INVENTION

The present invention relates generally to voice recognition, and more particularly, to analyzing voice information to determine call treatment.

In voice mail systems, callers leaving a message are typically directed to press numbers on their phone to perform various functions. For example, a caller may be able to press "0" to be directed to an operator, press "1" to mark a message as "Urgent", press "2" for standard delivery, or press "3" to mark a message private. This can be cumbersome for the caller, because the caller may not know which buttons to press or not want to take the time to find out. Thus, the caller may not mark messages or be directed to the proper person. For example, "Urgent" messages may not be marked as "Urgent" because marking the message is too cumbersome.

Further, in call processing centers, which may for example engage in telemarketing, supervisors may want to be informed of the call's status or other information regarding the call. However, at present, a call processing center supervisor is typically only informed of this information by either listening in on the call or by monitoring other data such as length of time transpired. A call processing center supervisor cannot listen to each and every call.

Accordingly, there is a need for analyzing voice information in order to determine call treatment.

20 SUMMARY OF THE INVENTION

Thus, it is desirable to have a method and system, which overcomes the above and other disadvantages of the prior art.

Methods and systems consistent with the present invention include methods and systems for processing a voice message. These methods and systems include storing one or more voice representations, wherein each voice representation corresponds to a word or phrase, and storing one or more actions, receiving a voice message, analyzing the voice message to determine if one or more of the stored one or more voice representations occur in the voice message, and performing one or more of the stored actions, if one or more of the one or more stored voice representations is found to occur in the voice message.

30 In another aspect, the invention includes methods and systems for analyzing voice information received from a called person. These methods and systems include storing one or more voice representations, where each voice representation corresponds to a word or phrase, storing one or more actions, receiving voice information from a called person analyzing the voice information from the called person to determine if one or more of the

~~one or more~~ stored voice representations occur in the voice information received from the called person, and performing one or more of the stored one or more actions if the voice information is found to include one or more of the one or more voice representations.

In another aspect, the invention includes methods and systems for analyzing voice information received from a called person by looking for a particular pattern of speech. These methods and systems include storing one or more actions, receiving voice information from the called person, analyzing the voice information from the called person to determine if the voice information exhibits a particular pattern of speech, and performing one or more of the stored one or more actions if the voice information is found to exhibit the particular pattern of speech.

In yet another aspect, the invention includes methods and systems for processing a voice message by looking for a particular pattern of speech. These methods and systems include storing one or more actions, receiving a voice message, analyzing the voice message to determine if the voice message exhibits a particular pattern of speech, and performing one or more of the stored actions if the particular pattern of speech is found to occur in the voice message.

The summary of the invention and the following detailed description should not restrict the scope of the claimed invention. Both provide examples and explanations to enable others to practice the invention. The accompanying drawings, which form part of the description for carrying out the best mode of the invention, show several embodiments of the invention, and together with the description, explain the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

In the Figures:

Figure 1 provides a block diagram of a system for connecting telephone users with the public switched telephone network (PSTN), in accordance with methods and systems consistent with the invention;

Figure 2 provides a flow chart of a method for analyzing a voice message, in accordance with methods and systems consistent with the invention;

Figure 3 provides a flow chart of a method for analyzing voice information for specific words or phrases, in accordance with methods and systems consistent with the invention;

Figure 4 provides a flow chart of a method for analyzing voice information in a call center, in accordance with methods and systems consistent with the invention;

Figure 5 illustrates a computer for analyzing voice information, in accordance with methods and systems consistent with the invention.

5 Figure 6 illustrates a device for analyzing voice information that may be connected to a telephone, computer, or simply a telephone line, in accordance with methods and systems consistent with the invention.

DETAILED DESCRIPTION

10 Reference will now be made in detail to the preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.

15 In an embodiment of the invention, a person's incoming voice information is examined to determine if specific words or phrases are used. Depending on which words or phrases are determined to have been used, a specific action or actions is or are taken. For example, if a user wants to be notified via pager of an urgent voice message, the words or phrases specified would be words or phrases indicative of a voice message being urgent. These words or phrases could include, for example, "urgent," "as soon as possible," "now", etc. Further, these words or phrases may be specified by the user. For example, if they want to be paged if a particular person calls, the user could specify that the incoming voice information be checked for this person's name(s) or nickname(s) (i.e., "John," "Doe," "JD"). The incoming message is then analyzed to determine if any of these specified words or phrases is used. If so, then specific action or actions may be taken, for example, paging the user. Further, depending on which of the specified words or phrases is used and/or the frequency of the words or phrases used, 20 different actions may be taken. For example, if the voice information is determined to include only one use of the word "urgent" and no other specified words or phrases are used, the user may simply want the message to be marked as "urgent." However, if there are multiple uses of the specified words or phrases used or if a particular one or more of the specific words or phrases is used, the user may want the call to be redirected to a receptionist so that he/she can 25 immediately direct the caller to a person who can immediately handle the call. For example, if 30

the words "John" or "Doe" are found the user may want the call or message to be redirected to a receptionist.

In another embodiment, voice information is analyzed at a call processing center, which may be, for example, a call processing center for placing telemarketing calls to prospective

5 customers. In this embodiment, voice information from prospective customers is analyzed in real-time in order to gauge how the call is going by looking for specific words or phrases that the prospective customer may use. For example, if the prospective customer uses words or phrases such as "Neat" or "Wow" the call may be judged as going well, while if the prospective customer uses words such as "Come on" or "Get real" the call may be judged as going poorly.

10 This information then can be used to notify a supervisor or call agent of the status of a call. For example, if the call is judged as going well a green light could be turned on, while if the call is going poorly a red light could be turned on. The supervisor or call agent could then use this information to, for example, intervene in a call if it is going well so that they can close the sale, or alleviate a prospective customer's anger if the call is going poorly. Further, this information

15 may be used to compile statistics on calls. For example, by analyzing voice information for specific words, statistics may be compiled on whether calls are going well or poorly for a specific call agent or script. The specific words or phrases searched for may be user specified.

In yet another embodiment, voice information is analyzed to determine information regarding the call or message by examining the tone of the callers voice and the frequency of their speech. For example, if the voice information is rapid, loud, and high in tone, this may be indicative of a caller being stressed or angry. Accordingly, the call may be judged as urgent and specific actions may be taken, such as redirecting the call to a live person or marking the message as "urgent."

Figure 1 provides a block diagram of a system 100 for connecting telephone users with the public switched telephone network (PSTN). As illustrated, system 100 may include an incoming line 102, a switch 104, a storage device 106, and a plurality of end user's telephones 108. The incoming line 102 may be a standard incoming telephone line, and the switch 104 may be a Private Branch Exchange (PBX). In one embodiment, the storage device 106 stores a list of phoneme representations of specified words or phrases. Each of these phoneme 25 representations may be assigned a specific value. A phoneme is a member of the set of the smallest units of speech that serve to distinguish one utterance from another in a language or

dialect. As discussed above, the specific words or phrases checked for may be user specified. As will be obvious to one of skill in the art, the storage device 106 may be included as part of the switch 104.

When a call originating across the PSTN arrives on the communications line 102 at the 5 switch 104, it is directed to one of the end user telephones 108. If the phone call is not answered, the caller may be directed to leave a voice message. The voice messaging software and hardware may be contained within the switch 104, or be a separate device connected to the switch 104.

Figure 2 provides a flow chart of a method for analyzing a voice message by matching 10 words and or phrases and performing one or more actions in the event one or more of the words are found in the voice message, consistent with an embodiment of the invention. As illustrated, an analog voice message is received (S202), converted from analog to digital (S204) and then stored (S206). An analog to digital converter may be used for converting the voice message from analog to digital. In another embodiment, the voice information may be received in a digital format. As will be obvious to one of skill in the art, if the voice information is received in a digital format, there is no need to convert the voice from analog to digital. In other embodiments, the voice is received in an analog format and is left in its analog format. Accordingly, all processing in these embodiments is done using the analog voice information. Next, the procedure moves to the process illustrated in Figure 3 (S208).

Figure 3 provides a flow chart of a method for analyzing voice information for specific 20 words and/or phrases. The process is started by step S208 illustrated in Figure 2 (S302). First, the digitized voice is processed into phonemes (S304). Next, a criteria measurement value is set to zero (S306). The collection of phonemes is then checked to see if a consecutive 25 collection of them match a phoneme representation of a specified word or phrase stored in a database (S308). In this example, the words or phrases stored in the database are used to determine if a message should be marked as urgent, and may include words or phrases such as "Urgent," expletives, "Help," "Hurry," and "Where are you?". If the phoneme representation of the word or phrase is found in the voice message, the criteria measurement value is incremented by a value associated with the phoneme representation stored in the database(S310). 30 Otherwise, it is not incremented (S312). The process then moves to the next phoneme representation stored in the database (S314). If the end of the list is reached (S316), the final

criteria measurement value is stored (S318), and the process is ended (S320). Otherwise, steps 308 through 316 are repeated in order to check the voice message for the next word or phrase stored in the memory or database, and increment the criteria measurement value accordingly. This process is then repeated until all the words or phrases stored in the database are checked.

5 After which, the process illustrated in Figure 3 is terminated, and operation returns to the process illustrated in Figure 2.

Referring back to Figure 2, after the process illustrated in Figure 3 is completed (S208), the resulting criteria measurement value is checked to determine if it exceeds a threshold value indicating that the message is "Urgent" (S210). This threshold value may be stored and

10 retrieved from a memory or storage device. If the criteria measurement value exceeds the threshold value, the next step is to perform actions associated with a message having this specific criteria measurement value (S214). For example, these actions may include calling a user's pager number, calling a specific number and playing back the message when the call is answered, or forwarding the message to another user. Thus, for example, if the criteria

15 measurement value lies within a specific range, one set of actions may be performed; if it lies within another range, another set of actions may be performed, and so on. As such, if the criteria measurement value marginally exceeds the threshold value, the message may be simply forwarded to voice mail and marked as "Urgent." If the criteria measurement value falls in a higher range of values, a person's pager number may be dialed. Further, if the criteria

20 measurement value falls in yet a higher range, the message may be immediately redirected to another individual so that they may immediately handle the matter.

The hardware and software for performing the above described procedure may be contained in the switch 104, contained in a separate device connected to the switch 104, packaged along with the voice messaging hardware and software, or in some other combination. The hardware may include, for example, a processor, memory, and storage device. The processor in conjunction with the memory may perform the various procedures for analyzing the voice message. The storage device may store the words and phrases, their phoneme representations, their associated value, the actions, and the software for performing the analysis and actions. The memory may be, for example, Random Access Memory (RAM).

25 30 The storage device may, for example, be a hard disk drive.

Further, multiple variables may be used, where each variable is used to determine different things. For example, one variable may be used to determine if a call is urgent, another may be used to determine if the caller is angry, and yet another variable may be used to determine if a person's name is used. Also, this information can be combined with information gathered from the phone call itself, such as caller ID information, in determining what, if any, action(s) should be taken.

Further, in another embodiment, rather than searching for specific words or phrases, the voice message is analyzed for speech frequency and tone in order to gain information regarding the message. For example, if a message is urgent, a caller may speak rapidly, be out of breath,

or be speaking in a high pitch. Thus, the voice message may be analyzed looking for these characteristics. If these characteristics are found, a specific action could be triggered, such as forwarding the message to a person who could immediately handle the matter. For example, a

caller to a doctor's office after hours may leave an urgent message and not use any of the specific words that are indicative of a call being urgent, however the caller may be speaking

rapidly and be out of breath. Thus, by examining the caller's speech, the urgency of the call may be determined and the call forwarded to a person who could immediately handle the message. For example, the call may be forwarded to emergency personnel or to a doctor's home number. The message could then be listened to, and, if it is urgent, appropriate action could be taken, such as sending an ambulance.

Referring back to Figure 1, in another embodiment, a caller in a call center may use one of the telephones 108 to place a call through the switch 104, and communications line 102, over the PSTN to an individual(s). In this embodiment, a status of the call may be monitored by

analyzing the voice information received from the called individual(s). For example, as

discussed above, the invention may be used in telemarketing in order to monitor the status of a sales call, so that a supervisor, or sales agent can monitor whether the phone call is going well or poorly and take appropriate action.

Figure 4 provides an example flow chart for this embodiment. In this example, the process begins when a call is made to a prospective customer (S402). When the prospective customer answers, voice data is sent from the prospective customer's telephone to the call center where it is converted from analog to digital format (S404). This conversion may be accomplished using an analog to digital converter. In another embodiment, the voice

information may be received in a digital format. As will be obvious to one of skill in the art, if the voice information is received in a digital format, there is no need to convert the voice from analog to digital. Next, the digitized voice data is stored in a buffer (S406). This buffer can be any type of buffer, such as a Random Access Memory (RAM) buffer. Next, the process

5 illustrated in Figure 3 and discussed above is performed (S408).

First, the digitized voice is processed into phonemes (S304). Next, a criteria measurement value is set to zero (S306). The collection of phonemes stored in the buffer is then checked to see if a consecutive collection of them matches a phoneme representation of a specified word or phrase stored in a memory or database (S308). In this example, the words or 10 phrases stored in the database are used to determine if the call is going poorly, and could include words or phrases such as "Come on", "Give me a break", or "Get real." If the phoneme representation of the word or phrase is found in the voice message, the criteria measurement value is incremented by a value associated with the phoneme representation stored in the memory or database(S310). Otherwise, it is not incremented (S312). In some cases, the value 15 associated with a specific phoneme may be positive, while in other cases it may be a negative value. For example, the word "Wonderful" may be indicative of a call that is going well and thus has a positive value associated with it, while the word "Liar" may be indicative of a call going poorly and thus has a negative value associated with it.

The process then moves to the next phoneme representation stored in the memory or 20 database (S314). If the end of the list is reached (S316), the final criteria measurement value is stored (S318), and the process is ended (S320). Otherwise, steps 308 through 316 are repeated in order to check the voice message for the next word or phrase stored in the memory or database, and increment the criteria measurement value accordingly. This process is then 25 repeated until all the words or phrases stored in the memory or storage are checked. After which, the process illustrated in Figure 3 is terminated, and operation returns to the process illustrated in Figure 4.

Referring back to Figure 4, the next step is determining whether an absolute value of a 30 criteria measurement value returned by the process illustrated in Figure 3 exceeds a threshold value (S410). This threshold value may be stored in and retrieved from a memory or other storage device. If the absolute value of the criteria measurement value exceeds the threshold value, a set of actions associated with this value may be performed. If the threshold value is

exceeded, actions associated with this specific value are performed (S412). As in the process illustrated in Figure 2 and discussed above, different actions may be performed depending upon the specific value of the criteria measurement value or a specific range that the criteria measurement value falls within. For example, if a value is positive, a green light may be turned

5 on so that a supervisor knows that the call is going well. The supervisor may then monitor the call, and step in if they think they can close the sale. Further, a red light may be turned on if the value is negative so that the supervisor knows the call is going poorly. The actions associated with a specific criteria measurement value or range of values may be stored in a storage device, such as memory or a database. Next, the process determines whether there is more voice

10 information to process (S414). For example, if the call is on-going the buffer will be constantly receiving new voice information. If there is still voice information to process, steps 408 - 414 are repeated. This process then continues until the call ends and there is no further voice information to process.

15 Further, information generated by monitoring the status of a call can be used to generate call center statistics. For example, the information can be used to determine the percentage of customers that are happy, the percentage that are uninterested, the percentage that become angry, and the percentage that are pleased. These statistics could then, for example, be used in modifying or creating a script that is more successful. For example, if a high percentage of prospective customers are determined to be reacting negatively or uninterested during a specific

20 portion of the script, this portion could be modified.

The hardware and software for performing the above described procedure illustrated in Figures 4 and 5 may be contained in the switch 104, contained in a separate device connected to the switch 104, or in some other combination. The hardware may include, for example, a processor, memory, and storage device. The processor in conjunction with the memory may perform the various procedures for analyzing the voice information. The storage device may store the words and phrases, their phoneme representations, their associated values, the actions, and the software for performing the analysis and actions. The memory may be, for example, Random Access Memory (RAM). The storage device may be, for example, a hard disk drive.

25 In another embodiment, rather than analyzing the voice information for specific words or phrases, the voice information is analyzed looking for particular speech characteristics, such as frequency and tone. As such, information regarding the prospective customer or called

person may be gained by analyzing their speech for these characteristics. For example, a prospective customer's speech may be analyzed to determine if they are angry by analyzing their speech for characteristics indicative of a person being angry.

In another embodiment, software operating on a user's computer examines voice

5 messages left for the user and performs specific action(s) if specific words or phrases appear in the message. The words or phrases checked for may be user specified. Figure 5 illustrates a computer 500 for analyzing voice information. As illustrated, the computer 500 includes a processor 510, memory 512, a storage device 514, a modem 516, and a user interface 518, consistent with such an embodiment. The storage device 514 may be any type of storage

10 device. For example, it may be a hard disk drive. The memory 512 can be any type of memory. For example, it may be Random Access Memory (RAM). The user interface 518 may be connected to a keyboard (not shown) or mouse (not shown) for receiving user information. Further, the computer may be connected to a display device (not shown) for displaying information to the user. The modem 516 may be an internal modem, an external modem, or a

15 PC card that plugs into the computer. The modem 516 may be connected to a standard telephone line. In this embodiment, the modem serves multiple functions and may be equipped with digital signal processor that allows voice data to be converted to digital data for further processing.

In this example, the modem converts the voice it receives over the attached telephone

20 line from analog to digital. The digitized voice information is then processed, looking for specific words or phrases that are stored in memory 512, the storage device 514 or a combination of the two. As discussed above, the specific words or phrases depend on the particulars of the specific implementation of the invention. For example, if the voice is being analyzed to determine if the person is angry, the words or phrases include words or phrases

25 indicative of a person being angry, for example, expletives. Depending on the results of this analysis, a specific action or actions is/are undertaken. These actions depend on the specific implementation. For example, if the person wants to be paged in the event a message is angry, the word or phrases checked for would be words or phrases indicative of a caller being angry, and the action to take would be to dial the person's pager number. Further, as discussed above,

30 the processor may analyze the voice information looking for particular patterns of speech.

The processing of the voice information may be performed by software running on the processor 510, a processor included with the modem 516, or a combination of the two. The computer's memory 512 and/or storage device 514 may store the software, word and phrases, and associated actions, or they may be stored in a memory and/or a storage device built into the 5 modem 516 or other device, or a combination of memory and storage devices in both the modem 516 and computer 500. The words or phrases checked may be user specified and entered into the computer 500 through the user interface 518. The processor 510 in conjunction with any other appropriate hardware and/or software may perform the specified action(s). For example, the processor 510 in conjunction with a dialer may call a pager number.

10 Figure 6 illustrates a device 600 that can be connected to a telephone, computer, or simply a telephone line. As shown, the device may include a processor 602, a memory/storage device 604, and an interface 606 for connecting to a computer, telephone, telephone line, or other device. In this example, software may be stored in the memory/storage device 604 that may be executed by the processor 602. The memory/storage device may be any type of memory or storage capable of storing the software. The software is executed by the processor. As with the examples discussed above, the device 600 examines voice information looking for specific words or phrases, or patterns of speech. Depending on the specific words or phrases uttered, the device takes a specific action that depends on the specific implementation. Also, user specified words or phrases may be entered by the user through a computer connected to the 15 device 600 or through a user interface (not shown) that may be included with the device.

20 While it has been illustrated and described what is at present considered to be the preferred embodiment and methods of the present invention, it will be understood by those skilled in the art that various changes and modifications may be made, and equivalents may be substituted for elements thereof without departing from the true scope of the invention.

25 In addition, many modifications may be made to adapt a particular element, technique or, implementation to the teachings of the present invention without departing from the central scope of the invention. Therefore, it is intended that this invention not be limited to the particular embodiment and methods disclosed herein, but that the invention includes all embodiments falling within the scope of the appended claims.

WHAT IS CLAIMED IS:

1. A method for processing a voice message, comprising:

 storing one or more voice representations, wherein each voice representation corresponds to a word or phrase;

 storing one or more actions;

5 receiving a voice message;

 analyzing the voice message to determine if one or more of the stored voice representations occur in the voice message;

 performing one or more of the stored actions if one or more of the stored voice representations are found to occur in the voice message.

2. The method of claim 1, wherein each of the stored voice representations is a phoneme representation of a word or phrase.

3. The method of claim 2, wherein the received voice message is an analog voice message, the method further comprising:

 converting the analog voice message from analog to digital; and

 processing the digitized voice message into phonemes;

5 wherein the step of analyzing the voice message to determine if one or more of the stored voice representation is used, includes comparing the phonemes from the voice message with one or more of the stored voice representations.

4. The method of claim 1, further comprising the steps of:

 the user specifying one or more words or phrases;

 storing a voice representation of each of the user specified words or phrases; and

 wherein in the step of analyzing the voice message, the stored voice representations

5 include the stored voice representations of the user specified words or phrases.

5. The method of claim 1, further comprising the steps of:

the user specifying one or more actions, wherein the actions are to be performed in the event one or more of the voice representations is found in the voice message;

storing the user specified one or more actions; and

5 wherein in the step of performing one or more of the stored actions, the stored actions include the user specified actions.

6. The method of claim 1, wherein the stored one or more actions includes marking the message as urgent.

7. The method of claim 1, wherein the stored one or more actions includes calling a pager.

8. The method of claim 1, wherein the stored one or more actions includes forwarding the voice message.

9. The method of claim 1, wherein the voice message is received over a telephone line.

10. A method for analyzing voice information received from a person over a communications line, comprising

storing one or voice representations, where each voice representation corresponds to a word or phrase;

5 storing one or more actions;

receiving voice information from a person over a communications line;

analyzing the voice information from the person to determine if one or more of the stored voice representations occur in the voice information received from the person; and

10 performing one or more of the stored actions if the voice information is found to include one or more of the stored voice representations.

11. The method of claim 10, wherein each of the stored voice representations is a phoneme representation of a word or phrase.

12. The method of claim 11, wherein the received voice information is analog voice information, the method further comprising:

converting the analog voice information from analog to digital; and

5 processing the digitized voice information into phonemes;
wherein the step of analyzing the voice information to determine if one or more of the stored voice representations is used, includes comparing the phonemes from the voice information with one or more of the stored voice representations.

13. The method of claim 10, further comprising the steps of:
a user specifying one or more words or phrases;
storing a voice representation of each of the user specified words or phrases; and
wherein in the step of analyzing the voice information, the stored voice
5 representations include the stored voice representations of the user specified words or phrases.

14. The method of claim 10, further comprising the steps of:
the user specifying one or more actions, wherein the actions are to be performed in the event one or more of the stored voice representations is found in the voice information;
storing the user specified actions; and
5 wherein in the step of performing one or more of the stored actions, the stored actions include the user specified actions.

15. The method of claim 10, wherein the one or more actions include compiling statistics on the call.

16. The method of claim 10, wherein the communications line is a telephone line.

17. An apparatus for processing a voice message, comprising:
a storage device for storing one or more voice representations where each voice representation corresponds to a word or phrase, and for storing one or more actions;
a processor for receiving a voice message, analyzing the voice message to determine
5 if one or more of the stored voice representations occur in the voice message, and performing one or more of the stored actions if one or more of the stored voice representations is found to occur in the voice message.

18. The apparatus of claim 17, wherein each of the voice representations is a phoneme representation of a word or phrase.

19. The apparatus of claim 18, further comprising

an analog to digital converter for converting an analog voice message from analog to digital; and

wherein the processor is further for processing the digitized voice message into

5 phonemes and comparing the phonemes from the voice message with one or more of the stored voice representations.

20. The apparatus of claim 17, further comprising:

a user interface for receiving user specified words or phrases;

wherein the storage device is further for storing a voice representation of each of the user specified words or phrases; and

5 wherein in analyzing the voice message the stored voice representations include the stored one or more voice representations of the one or more user specified words or phrases.

21. The apparatus of claim 17, further comprising

a user interface for receiving user specified actions, wherein the actions are to be performed in the event one or more of the stored voice representations is found in the voice message; and

5 wherein the storage device is further for storing the user specified actions.

22. The apparatus of claim 17, wherein the apparatus is connected to a telephone line, and the processor is capable of receiving the voice message over the telephone line.

23. An apparatus for analyzing voice information received from a person over a communications line, comprising

a storage device for storing one or voice representations, where each voice representation corresponds to a word or phrase, and for storing one or more actions;

5 a processor for receiving voice information from a person over a communications line, analyzing the voice information to determine if one or more of the stored voice representations occur in the voice information received from the person, and performing one or more of the stored actions if the voice information is found to include one or more of the stored voice representations.

24. The apparatus of claim 23, wherein each of the voice representations is a phoneme representation of a word or phrase.

25. The apparatus of claim 24, wherein the received voice information is analog voice information, further comprising:

an analog to digital converter for converting the analog voice information from analog to digital; and

5 wherein the processor is further for processing the digitized voice information into phonemes and comparing the phonemes from the voice information with one or more of the stored voice representations.

26. The apparatus of claim 23, further comprising:

a user interface for receiving information regarding user specified words or phrases;

27. The apparatus of claim 23, further comprising:

a user interface for receiving information regarding user specified actions, wherein the actions are to be performed in the event one or more of the voice representations is found in the voice information; and

5 wherein the storage device is further for storing the user specified actions.

28. The apparatus of claim 23, wherein the one or more actions include compiling statistics on the call.

29. The apparatus of claim 23, wherein the processor is capable of receiving the voice information over a telephone line.

30. A method for processing a voice message, comprising:

storing one or more actions;

receiving a voice message;

analyzing the voice message to determine if the voice message exhibits a

5 predetermine pattern of speech;

performing one or more of the stored actions, if the predetermined pattern of speech is found to occur in the voice message.

31. The method of claim 30, further comprising:
converting the analog voice message from analog to digital; and
processing the digitized voice message into phonemes.

32. The method of claim 30, further comprising the steps of:
the user specifying one or more actions, wherein the actions are to be performed in
the event the predetermined pattern of speech is found in the voice message;
storing the user specified one or more actions; and
5 wherein in the step of performing one or more stored actions, the stored actions
include the user specified actions.

33. The method of claim 30, wherein the stored actions include marking the message as
urgent.

34. The method of claim 30, wherein the stored actions include calling a pager.

35. The method of claim 30, wherein the stored actions include forwarding the voice
message.

36. The method of claim 30, wherein the voice message is received over a telephone line.

37. A method for analyzing voice information received from a person over a
communications line, comprising
storing one or more actions;
receiving voice information from a person over a communications line;
5 analyzing the voice information from the person to determine if the voice information
exhibits a predetermined pattern of speech; and
performing one or more of the stored actions if the voice information is found to
exhibit the predetermined pattern of speech.

38. The method of claim 37, further comprising:
converting the voice information from analog to digital; and
processing the digitized voice information into phonemes.

39. The method of claim 37, further comprising the steps of:
the user specifying one or more actions, wherein the actions are to be performed in
the event one or more of the voice representations is found in the voice information;
storing the user specified one or more actions; and
5 wherein in the step of performing one or more stored actions, the stored actions
include the user specified actions.

40. The method of claim 37, wherein the communications line is a telephone line.

41. An apparatus for processing a voice message, comprising:
a storage device for storing information regarding a predetermined pattern of speech,
and for storing one or more actions;
a processor for receiving a voice message, analyzing the voice message to
5 determine if the voice message exhibits the predetermined pattern of speech, and
performing one or more of the stored actions if the voice message is found to exhibit the
predetermined pattern of speech.

42. The apparatus of claim 41, further comprising

a user interface for receiving user specified actions, wherein the actions are to be performed in the event the voice information is found to exhibit the predetermined pattern of speech; and

5 wherein the storage device is further for storing the user specified actions.

43. The apparatus of claim 41, wherein the apparatus is connected to a telephone line and wherein the processor is capable of receiving the voice information over the telephone line.

44. An apparatus for analyzing voice information received from a person over a communications line, comprising

a storage device for storing information regarding a predetermined pattern of speech, and for storing one or more actions;

5 a processor for receiving voice information from a person over a communications line, analyzing the voice information to determine if the voice information exhibits the predetermined pattern of speech, and performing one or more of the stored actions if the voice information is found to exhibit the predetermined pattern of speech.

45. The apparatus of claim 44, further comprising:

a user interface for receiving information regarding user specified actions, wherein the actions are to be performed in the event the voice information is found to exhibit the predetermined pattern of speech; and

5 wherein the storage device is further for storing the user specified actions.

46. The apparatus of claim 44, wherein the apparatus is connected to a telephone line and wherein the processor is capable of receiving the voice information over the telephone line.

47. A apparatus for processing a voice message, comprising:

means for storing one or more voice representations, wherein each voice representation corresponds to a word or phrase, and for storing one or more actions;

means for receiving a voice message; and

5 means for analyzing the voice message to determine if one or more of the stored voice representations occur in the voice message, and performing one or more of the stored

actions, if one or more of the stored voice representations is found to occur in the voice message.

48. An apparatus for analyzing voice information received from a person over a communications line, comprising:

means for storing one or voice representations, where each voice representation corresponds to a word or phrase, and for storing one or more actions;

5 means for receiving voice information from a person over a communications line; and

means for analyzing the voice information from the person to determine if one or more of the stored voice representations occur in the voice information received from the person, and performing of the stored actions if the voice information is found to include one 10 or more of the voice representations.

49. An apparatus for processing a voice message, comprising:

means for storing one or more actions;

means for receiving a voice message; and

means for analyzing the voice message to determine if the voice message exhibits a

5 predetermined pattern of speech, and performing one or more of the stored actions, if the predetermined pattern of speech is found to occur in the voice message.

50. An apparatus for analyzing voice information received from a person over a communications line, comprising:

means for storing one or more actions;

means for receiving voice information from a person over a communications line;

5 and

means for analyzing the voice information from the person to determine if the voice information exhibits a predetermined pattern of speech, and performing one or more of the stored actions if the voice information is found to exhibit the predetermined pattern of speech.

51. A computer readable medium whose contents cause a computer to perform a procedure for processing a voice message comprising the steps of:

receiving a voice message;

analyzing the voice message to determine if one or more stored voice representations
5 occur in the voice message, wherein each voice representation corresponds to a word or
phrase; and

performing one or more stored actions if one or more of the stored voice
representations are determined to occur in the voice message.

52. A computer readable medium whose contents cause a computer to perform a procedure
for processing voice information comprising the steps of:

receiving voice information from a person over a communications line;

analyzing the voice information from the person to determine if one or more stored
5 voice representations occur in the voice information, wherein each voice representation
corresponds to a word or phrase; and

performing one or more stored actions if one or more of the stored voice
representations are determined to occur in the voice information.

53. A computer readable medium whose contents cause a computer to perform a procedure
for processing a voice message comprising the steps of:

receiving a voice message;

analyzing the voice message to determine if the voice message exhibits a
5 predetermined pattern of speech;
performing one or more stored actions, if the predetermined pattern of speech is
determined to occur in the voice message.

54. A computer readable medium whose content cause a computer to perform a procedure for processing voice information comprising the steps of:

receiving voice information from a person over a communications line;

analyzing the voice information from the person to determine if the voice

5 information exhibits a predetermined pattern of speech; and

performing one or more stored actions if the voice information is determined to exhibit the predetermined pattern of speech.

ABSTRACT

Methods and systems for analyzing voice information to determine if specific words or phrases are used or if the voice information exhibits a particular pattern of speech.

Depending on which words or phrases are determined to have been used, a specific action

- 5 or actions is taken. The words or phrases along with the actions may be user specified. In one example, a voice message is analyzed to determine if it includes any of the specified words or phrases or whether it exhibits a particular pattern of speech. If so, a specified action, such as forwarding the voice message to a particular person, is performed. In another example, voice information from a called person is analyzed to gain information
- 10 regarding the status of a call. This information may be used, for example, for generating call statistics or notifying a supervisor on the status of a call.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
988
989
989
990
991
992
993
994
995
996
997
997
998
998
999
999
1000

ABSTRACT

Methods and systems for analyzing voice information to determine if specific words or phrases are used or if the voice information exhibits a particular pattern of speech.

Depending on which words or phrases are determined to have been used, a specific action

5 or actions is taken. The words or phrases along with the actions may be user specified. In one example, a voice message is analyzed to determine if it includes any of the specified words or phrases or whether it exhibits a particular pattern of speech. If so, a specified action, such as forwarding the voice message to a particular person, is performed. In another example, voice information from a called person is analyzed to gain information 10 regarding the status of a call. This information may be used, for example, for generating call statistics or notifying a supervisor on the status of a call.

the *Journal of the Royal Society of Medicine* (1980, 73, 101-102) and the *Journal of Clinical Pathology* (1980, 34, 101-102).

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

DECLARATION AND POWER OF ATTORNEY

As a below named inventor, I hereby declare that: my residence, post office address and citizenship are as stated below next to my name; I believe I am the original, first, and sole inventor (if only one name is listed below) or an original, first, and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled: **METHODS AND APPARATUS FOR VOICE RECOGNITION FOR CALL TREATMENT MODIFICATION ON MESSAGING** the specification of which is attached and/or was filed on _____ as United States Application Serial No. _____ or PCT International Application No. _____ and was amended on _____ (if applicable).

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above. I acknowledge the duty to disclose information which is material to patentability as defined in 37 CFR § 1.56.

I hereby claim foreign priority benefits under 35 U.S.C. § 119(a)-(d) or § 365(b) of any foreign application(s) for patent or inventor's certificate or § 365(a) of any PCT international application(s) designating at least one country other than the United States, listed below and have also identified below, any foreign application(s) for patent or inventor's certificate, or any PCT International application(s) having a filing date before that of the application(s) of which priority is claimed:

Country	Application Number	Date of Filing	Priority Claimed Under 35 U.S.C.
			<input type="checkbox"/> YES <input type="checkbox"/> NO
			<input type="checkbox"/> YES <input type="checkbox"/> NO

I hereby claim the benefit under 35 U.S.C. § 119(e) of any United States provisional application(s) listed below:

Application Number	Date of Filing

I hereby claim the benefit under 35 U.S.C. § 120 of any United States application(s) or § 365(c) of any PCT International application(s) designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application(s) in the manner provided by the first paragraph of 35 U.S.C. § 112, I acknowledge the duty to disclose information which is material to patentability as defined in 37 CFR § 1.56 which became available between the filing date of the prior application(s) and the national or PCT International filing date of this application:

Application Number	Date of Filing	Status (Patented, Pending, Abandoned)
1234567890	2023-01-15	Pending

Thereby appoint the following attorney and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith. FINNEGAN, HENDERSON, FARABOW, GARRETT & DUNNER, L.L.P., Douglas B. Henderson, Reg. No. 20,291; Ford F. Parabow, Jr., Reg. No. 20,630; Arthur S. Garrett, Reg. No. 20,338; Donald R. Dunner, Reg. No. 19,073; Brian G. Brunsvoold, Reg. No. 22,593; Tipton D. Jennings, IV, Reg. No. 20,645; Jerry D. Voight, Reg. No. 23,020; Laurence R. Heffer, Reg. No. 20,827; Kenneth E. Payne, Reg. No. 23,098; Herbert H. Mintz, Reg. No. 26,691; C. Larry O'Rourke, Reg. No. 26,014; Albert J. Santorelli, Reg. No. 22,610; Michael C. Elmer, Reg. No. 25,857; Richard H. Smith, Reg. No. 20,609; Stephen L. Peterson, Reg. No. 26,325; John M. Romary, Reg. No. 26,331; Bruce C. Zoller, Reg. No. 27,680; Dennis P. O'Reilly, Reg. No. 27,932; Allen M. Sokal, Reg. No. 26,695; Robert D. Bajesky, Reg. No. 25,387; Richard L. Stroup, Reg. No. 28,478; David W. Hill, Reg. No. 28,220; Thomas L. Irving, Reg. No. 28,619; Charles E. Lipsky, Reg. No. 28,165; Thomas W. Winland, Reg. No. 27,605; Basil J. Lewris, Reg. No. 28,818; Martin I. Fuchs, Reg. No. 28,508; E. Robert Yoches, Reg. No. 30,120; Barry W. Graham, Reg. No. 29,924; Susan Haberman Griffen, Reg. No. 30,907; Richard B. Racine, Reg. No. 30,415; Thomas H. Jenkins, Reg. No. 30,857; Robert E. Converse, Jr., Reg. No. 27,432; Clair X. Mullen, Reg. Jr., Reg. No. 20,548; Christopher P. Foley, Reg. No. 31,354; John C. Paul, Reg. No. 30,413; Roger D. Taylor, Reg. No. 28,992; David M. Kelly, Reg. No. 30,953; Kenneth J. Meyers, Reg. No. 25,146; Carol P. Einaudi, Reg. No. 32,220; Walter Y. Boyd, Jr., Reg. No. 31,738; Steven M. Anzalone, Reg. No. 32,095; Jean B. Fordin, Reg. No. 32,984; Barbara C. McCurdy, Reg. No. 32,120; James K. Hammond, Reg. No. 31,964; Richard V. Burgujian, Reg. No. 33,694; Vincent P. Kovalick, Reg. No. 32,867; William E. Edmundson, Reg. No. 33,871; Michael R. McGurk, Reg. No. 32,045; Joann M. Neth, Reg. No. 36,363; Gerson S. Panitch, Reg. No. 33,751; Cheri M. Taylor, Reg. No. 33,216; Charles E. Van Horn, Reg. No. 40,266; Linda A. Wadler, Reg. No. 33,218; Jeffrey A. Berkowitz, Reg. No. 36,743; Michael R. Kelly, Reg. No. 33,921; and James B. Monroe, Reg. No. 33,971; and . Please address all correspondence to FINNEGAN, HENDERSON, FARABOW,

GARRETT & RUNNER, 111, 1300 I Street, N.W., Washington, D.C. 20005. Telephone No. (202) 408-4000.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Full Name of First Inventor	Peter Allen HUBOI	Inventor's Signature	Date
Residence	609 Cathedral Drive, Aptos, CA 95003		12-01-1999
Post Office Address	same as above		

Listing of Inventors Continued on Page 2 hereof. Yes No

FINNEGAN, HENDERSON, FARABOW, GARRETT & DUNNER, L.L.P.