EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos — Programa ajustado

Duração da prova: 120 minutos

2000

1.ª FASE 1.ª CHAMADA

PROVA ESCRITA DE MATEMÁTICA

COTAÇÕES

Primeira Parte	63
Cada resposta certa Cada resposta errada Cada questão não respondida ou anulada	- 3
Nota: um total negativo nesta parte da prova vale 0 (zero) pontos.	
Segunda Parte	137
1	21
2.	33
3.	33
4. 18 4.1.1. 7 4.1.2. 11 4.2. 14	32
5	18
TOTAL	200

V.S.F.F.

435/C/1

CRITÉRIOS DE CLASSIFICAÇÃO

Primeira Parte

Deverão ser anuladas todas as questões com resposta de leitura ambígua (letra confusa, por exemplo) e todas as questões em que o examinando dê mais do que uma resposta.

As respostas certas são as seguintes:

Questões	1	2	3	4	5	6	7
Versão 1	D	D	Α	В	В	С	В
Versão 2	С	D	В	D	Α	Α	D

Na tabela seguinte indicam-se os pontos a atribuir, nesta primeira parte, em função do número de respostas certas e do número de respostas erradas.

Resp. erradas Resp. certas	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	9	6	3	0	0	0	0	
2	18	15	12	9	6	3		
3	27	24	21	18	15		*	
4	36	33	30	27		1		
5	45	42	39					
6	54	51		<u> </u>				
7	63	1					· · · · · · · · · · · · · · · · · · ·	

Segunda Parte

Critérios gerais

A cotação a atribuir a cada alínea deverá ser sempre um número inteiro de pontos.

O professor deverá valorizar o raciocínio do examinando em todas as questões.

Algumas questões da prova podem ser correctamente resolvidas por mais do que um processo. Sempre que um examinando utilizar um processo de resolução não contemplado nestes critérios, caberá ao professor corrector adoptar um critério de distribuição da cotação que julgue adequado e utilizá-lo em situações idênticas.

Pode acontecer que um examinando, ao resolver uma questão, não explicite todos os passos previstos nas distribuições apresentadas nestes critérios. Todos os passos não expressos pelo examinando, mas cuja utilização e/ou conhecimento estejam implícitos na resolução da questão, devem receber a cotação indicada.

Erros de contas ocasionais, que não afectem a estrutura ou o grau de dificuldade da questão, não devem ser penalizados em mais de dois pontos.

435/C/2

Critérios específicos

Escrever uma condição em \mathbb{C} que defina o interior do círculo de centro na origem e raio $1.$ Exemplo: $ z <1$	4
Escrever uma condição em \mathbb{C} que defina o segundo quadrante, excluindo os eixos. Exemplo: $Re(z)<0\wedgeIm(z)>0$	4
Indicar a conjunção das duas condições	1
Este exercício pode ser resolvido por, pelo menos, três processos:	
1.º Processo:	
Determinar o módulo do numerador: $\sqrt{1+\left(\sqrt{3} ight)^2}=2$	3
Referir que o módulo do denominador é 4	3
Concluir que o módulo do quociente é $\ 1/2$	3
Concluir que, pelo facto de o seu módulo ser inferior a 1 , o número complexo dado pertence, efectivamente, ao conjunto A	3
2.º Processo:	
$rac{1+\sqrt{3}i}{4cisrac{\pi}{6}} = rac{2cisrac{\pi}{3}}{4cisrac{\pi}{6}}$	3
$\frac{2\operatorname{cis}\frac{\pi}{3}}{4\operatorname{cis}\frac{\pi}{6}} = \frac{1}{2}\operatorname{cis}\frac{\pi}{6} \dots$	3
Referir que o módulo do quociente é $\ 1/2$	3
Concluir que, pelo facto de o seu módulo ser inferior a 1, o número	
complexo dado pertence, efectivamente, ao conjunto A	3

3.º Processo:

$$\frac{1+\sqrt{3}\,i}{4\,cis\,\frac{\pi}{6}} = \frac{1+\sqrt{3}\,i}{2\sqrt{3}+2\,i}$$
 3

$$\frac{1+\sqrt{3}i}{2\sqrt{3}+2i} = \frac{\sqrt{3}}{4} + \frac{1}{4}i \qquad 3$$

$$f(0) = 0$$
.....3

Escrever uma equação da recta pedida4

Determinar os zeros de
$$\,f^{\,\prime\prime}\,$$
4

5		18
Concluir que	$\lim_{x \to +\infty} f(x) = 0 \dots$	5
Concluir que	$\lim_{x\to +\infty} \ \frac{1}{f(x)} = \ + \infty \ \ (\text{ver nota 1})$	5

Notas:

 O examinando não necessita, para a conclusão pretendida, de referir o sinal do infinito. Portanto, se não colocar qualquer sinal, não deverá ser penalizado.

Por outro lado, se o examinando escrever $+\infty$, não se exige que ele justifique o sinal + (a justificação é evidente, pelo que o examinando pode não sentir necessidade de a fazer).

Se o examinando escrever $-\infty$, ou $\pm\infty$, deverá ser penalizado em 2 pontos.

2. Deverão ser valorizadas as respostas formalmente correctas e reveladoras de um raciocínio bem estruturado.

Notas:

- O examinando pode começar por indicar o número de casos possíveis e o número de casos favoráveis e só depois escrever a fracção.
 No entanto, se não o fizer, isto é, se escrever directamente a fracção, não deverá ser penalizado.
- 2. Indicam-se a seguir possíveis respostas do examinando, no que respeita à escrita da fracção, com a respectiva cotação a atribuir.
 Esta discriminação é feita apenas para o primeiro processo; no caso de o examinando utilizar o segundo processo, a situação é análoga, com a única diferença de se considerarem arranjos em vez de combinações.

- 3. Se o examinando indicar o número de casos possíveis e o número de casos favoráveis, mas não escrever a fracção, deverá ser atribuído à sua resposta menos 1 ponto do que nas situações atrás referidas.
- **4.** Se o examinando indicar (correctamente) apenas o número de casos possíveis, deverão ser atribuídos 4 pontos à sua resposta.
- Se o examinando indicar (correctamente) apenas o número de casos favoráveis, deverão ser atribuídos 8 pontos à sua resposta.

4.1.2.		11
	Número pedido $={}^4A_2 \times {}^6A_4 \times 4!$ (ver nota)	
	Nota: Indicam-se a seguir possíveis respostas do examinando, com a respectiva cotação a atribuir. Caberá ao corrector fazer as extrapolações necessárias para outras situações.	
	$^{4}A_{2} \times ^{6}A_{4}$	
4.2		14
	Este exercício pode ser resolvido por, pelo menos, dois processos:	
	1.º Processo: O espaço de resultados é a colecção de conjuntos $\{a,b,c\}$, onde a,b e c designam quaisquer três dos dez vértices do poliedro.	
	Número de casos possíveis $={}^{10}C_3$	
	Número de casos favoráveis $=2 imes{}^4C_3$	
	Probabilidade pedida $= \frac{2 imes ^4 C_3}{^{10} C_3} = \frac{1}{15}$	
	2.º Processo: O espaço de resultados é o conjunto de sequências (a,b,c) , com $a \neq b$, $a \neq c$ e $b \neq c$, onde a , b e c designam quaisquer três dos dez vértices do poliedro.	
	Número de casos possíveis $={}^{10}A_3$	
	Número de casos favoráveis $=2 imes{}^4A_3$	
	Probabilidade pedida $= rac{2 imes ^4 A_3}{^{10} A_3} = rac{1}{15}$	
	Qualquer que seja o processo utilizado pelo examinando, as cotações devem ser atribuídas de acordo com o seguinte critério:	
	Escrita da fracção (ver notas 1, 2, 3, 4 e 5)	

Simplificação da fracção1

4. O processo gráfico, referido na nota anterior, para obter os valores 153,4 e 191,6 é o mais esperado e o mais natural, de acordo com o espírito do programa.

No entanto, também é possível que o examinando apresente uma resolução que não se apoie nas capacidades gráficas da calculadora, como a que se exemplifica a seguir:

$$\begin{split} &12,2+2,64\, \operatorname{sen}\, \frac{\pi\, (n-81)}{183} > 14,7 \; \Leftrightarrow \; \operatorname{sen}\, \frac{\pi\, (n-81)}{183} > \frac{2,5}{2,64} \; \Leftrightarrow \\ &\Leftrightarrow \operatorname{sen}^{-1}\left(\frac{2,5}{2,64}\right) < \frac{\pi\, (n-81)}{183} < \pi - \operatorname{sen}^{-1}\left(\frac{2,5}{2,64}\right) \Leftrightarrow \\ &\Leftrightarrow 81 + \frac{183}{\pi} \operatorname{sen}^{-1}\left(\frac{2,5}{2,64}\right) < n < 81 + \frac{183}{\pi} \left[\pi - \operatorname{sen}^{-1}\left(\frac{2,5}{2,64}\right)\right] \end{split}$$

Tem-se, então, que 153,445 < n < 191,555

- 5. O examinando pode obter directamente o conjunto solução da inequação, $\{154, 155, \ldots, 191\}$, sem passar pelo passo anterior, se utilizar, por exemplo, a ferramenta *table* da calculadora.
- 6. Qualquer que seja o método utilizado pelo examinando, ele deverá ser explicitado (tal é exigido no enunciado).
 Se o examinando não explicar como obteve o conjunto solução da inequação, deverá ser cotado em zero dos catorze pontos previstos para a resolução da mesma.
- 7. Pode acontecer que o examinando, depois de obter a condição 153,4 < n < 191,6, escreva 191,6-153,4=38,2, concluindo então que o número pedido é 38 (arredondando a diferença obtida, ou ignorando a parte decimal da mesma).

Note-se que, apesar de o resultado estar certo, o método é incorrecto. Basta pensar que o resultado final estaria mal se os números fossem $153,1\,$ e $191,9\,$ e arredondássemos a diferença, ou se os números fossem $153,6\,$ e $191,4\,$ e ignorássemos a parte decimal da diferença.

Se o examinando cometer este erro, deverão ser atribuídos zero dos sete pontos (5 + 2) previstos para a obtenção do conjunto solução da inequação e para a conclusão.

4.1.1.		••••			7
	Número pedido	=	10!	6	
	Número pedido	=	3628800	1	

V.S.F.F.

Notas:

- Se o examinando não escrever esta inequação, mas, na sua resposta, existir evidência de que ele procura as suas soluções, estes 2 pontos deverão ser atribuídos.
- 2. Os valores 153,4 e 191,6 podem ser obtidos graficamente, com a calculadora, utilizando, por exemplo, as ferramentas zoom e trace, ou a ferramenta intersect.

Nesta situação, uma utilização não totalmente correcta da calculadora pode conduzir a aproximações grosseiras dos valores pretendidos (partes inteiras diferentes de $153\,$ e/ou de 191). Se tal acontecer, deverão ser atribuídos zero, ou cinco, dos nove pontos previstos para este passo da resolução do problema, conforme o examinando tiver errado uma, ou duas, das aproximações.

- 3. Pode igualmente acontecer que o examinando escreva 153 < n < 191, em vez de 153,4 < n < 191,6.
 - Note-se que a condição 153 < n < 191 conduz à solução errada 37. Nesta situação, deverão ser atribuídos cinco dos nove pontos previstos para este passo da resolução do problema.

	Estudar o sinal de f'' 4	
	Concluir que o gráfico de f tem a concavidade voltada para cima em $]-\infty,-4]$ e em $[-1,+\infty[$ e voltada para baixo em $[-4,-1]$ (ver nota)	
	Concluir que o gráfico de f tem dois pontos de inflexão2	
	Nota: Se o examinando apresentar os intervalos abertos, não deverá ser penalizado.	
3.1.		15
	n = 844	
	$f(84) \approx 12,336$	
	Concluir que o pôr do Sol ocorreu às $18h$ $50m$ 8	
	$12,336 h \approx 12 h \ 20 m$ 4	
	$6 h 30 m + 12 h 20 m = 18 h 50 m \dots 4$	
	ou	
	$6.5 + 12.336 = 18.836$ 4 $18.836 h \approx 18 h 50 m$	
3.2.		18
	Traduzir o problema por uma inequação: $f(n)>14$,7 $$ (ver nota 1)2	
	Resolver a inequação (utilizando a calculadora)14	
	$f(n) > 14.7 \Leftrightarrow$	
	$\Leftrightarrow \ 153, 4 < \ n < \ 191, 6 \text{(ver notas 2, 3 e 4)} \ldots \ldots 9$	
	$\Leftrightarrow \ n \in \{154, 155,, \ 191\} \ \ \text{(ver notas 5 e 6)} \$	
	Conclusão (número pedido $=38$) (ver nota 7)2	