COMP2610 / COMP6261 - Information Theory

Lecture 8: Some Fundamental Inequalities

Robert C. Williamson

Research School of Computer Science

14 August 2018

Last time

Decomposability of entropy

Relative entropy (KL divergence)

Mutual information

Review

Relative entropy (KL divergence):

$$D_{\mathsf{KL}}(p\|q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}$$

Mutual information:

$$I(X; Y) = D_{KL}(p(X, Y)||p(X)p(Y))$$

= $H(X) + H(Y) - H(X, Y)$
= $H(X) - H(X|Y)$.

- Average reduction in uncertainty in *X* when *Y* is known
- I(X; Y) = 0 when X, Y statistically independent

Conditional mutual information of *X*, *Y* given *Z*:

$$I(X; Y|Z) = H(X|Z) - H(X|Y,Z)$$

This time

Mutual information chain rule

Jensen's inequality

"Information cannot hurt"

Data processing inequality

Outline

- Chain Rule for Mutual Information
- Convex Functions
- Jensen's Inequality
- Gibbs' Inequality
- Information Cannot Hurt
- Data Processing Inequality
- Wrapping Up

- Chain Rule for Mutual Information
- Convex Functions
- Jensen's Inequality
- Gibbs' Inequality
- Information Cannot Hurt
- Data Processing Inequality
- Wrapping Up

Recall: Joint Mutual Information

Recall the mutual information between *X* and *Y*:

$$I(X; Y) = H(X) + H(Y) - H(X, Y) = I(Y; X).$$

We can also compute the mutual information between X_1, \ldots, X_N and Y_1, \ldots, Y_M :

$$I(X_{1},...,X_{N}; Y_{1},...,Y_{M}) = H(X_{1},...,X_{N}) + H(Y_{1},...,Y_{M})$$

- $H(X_{1},...,X_{N},Y_{1},...,Y_{M})$
= $I(Y_{1},...,Y_{M};X_{1},...,X_{N}).$

Note that $I(X, Y; Z) \neq I(X; Y, Z)$ in general

 Reduction in uncertainty of X and Y given Z versus reduction in uncertainty of X given Y and Z

Chain Rule for Mutual Information

Let X, Y, Z be r.v. and recall that:

$$\begin{split} \rho(Z,Y) &= \rho(Z|Y)\rho(Y) \\ H(Z,Y) &= H(Z|Y) + H(Y) \\ I(X;Y,Z) &= I(Y,Z;X) \quad \text{symmetry} \\ &= H(Z,Y) - H(Z,Y|X) \quad \text{definition of mutual info.} \\ &= H(Z|Y) + H(Y) - H(Z|X,Y) - H(Y|X) \quad \text{entropy's chain rule} \\ &= \underbrace{H(Y) - H(Y|X)}_{I(Y;X)} + \underbrace{H(Z|Y) - H(Z|X,Y)}_{I(Z;X|Y)} \\ I(X;Y,Z) &= I(X;Y) + I(X;Z|Y) \quad \text{definition of mutual info and conditional mutual info} \end{split}$$

Similarly, by symmetry:

$$I(X; Y, Z) = I(X; Z) + I(X; Y|Z)$$

Chain Rule for Mutual Information

General form

For any collection of random variables X_1, \ldots, X_N and Y:

$$I(X_{1},...,X_{N};Y) = I(X_{1};Y) + I(X_{2},...,X_{N};Y|X_{1})$$

$$= I(X_{1};Y) + I(X_{2};Y|X_{1}) + I(X_{3},...,X_{N};Y|X_{1},X_{2})$$

$$= ...$$

$$= \sum_{i=1}^{N} I(X_{i};Y|X_{1},...,X_{i-1})$$

$$= \sum_{i=1}^{N} I(Y;X_{i}|X_{1},...,X_{i-1}).$$

- Chain Rule for Mutual Information
- Convex Functions
- Jensen's Inequality
- Gibbs' Inequality
- Information Cannot Hur
- Data Processing Inequality
- Wrapping Up

Convex Functions:

Introduction

A function is convex — if every chord of the function lies above the function

Convex and Concave Functions

Definitions

Definition

A function f(x) is convex \smile over (a,b) if for all $x_1,x_2\in(a,b)$ and

$$0 \leq \lambda \leq 1: \qquad f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2)$$

We say f is strictly convex \smile if for all $x_1, x_2 \in (a, b)$ the equality holds only for $\lambda = 0$ and $\lambda = 1$.

Similarly, a function f is concave \frown if -f is convex \smile , i.e. if every chord of the function lies below the function.

Examples of Convex and Concave Functions

Verifying Convexity

Theorem (Cover & Thomas, Th 2.6.1)

If a function f has a second derivative that is non-negative (positive) over an interval, the function is convex \smile (strictly convex \smile) over that interval.

This allows us to verify convexity or concavity.

Examples:

•
$$x^2$$
: $\frac{d}{dx}\left(\frac{d}{dx}(x^2)\right) = \frac{d}{dx}(2x) = 2$

•
$$e^x$$
: $\frac{d}{dx}\left(\frac{d}{dx}(e^x)\right) = \frac{d}{dx}(e^x) = e^x$

•
$$\sqrt{x}$$
, $x > 0$: $\frac{d}{dx} \left(\frac{d}{dx} (\sqrt{x}) \right) = \frac{1}{2} \frac{d}{dx} \left(\frac{1}{\sqrt{x}} \right) = -\frac{1}{4} \frac{1}{\sqrt{x^3}}$

Convexity, Concavity and Optimization

If f(x) is concave \frown and there exists a point at which

$$\frac{df}{dx}=0,$$

then f(x) has a maximum at that point.

Note: the converse does not hold: if a concave f(x) is maximized at some x, it is not necessarily true that the derivative is zero there.

- f(x) = -|x|: is maximized at x = 0 where its derivative is undefined
- $f(p) = \log p$ with $0 \le p \le 1$, is maximized at p = 1 where $\frac{df}{dp} = 1$
- Similarly for minimisation of convex functions

- Chain Rule for Mutual Information
- Convex Functions
- Jensen's Inequality
- Gibbs' Inequality
- Information Cannot Hurt
- Data Processing Inequality
- Wrapping Up

Jensen's Inequality for Convex Functions

Theorem: Jensen's Inequality

If f is a convex \smile function and X is a random variable then:

$$f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)].$$

Moreover, if f is strictly convex \smile , the equality implies that $X = \mathbb{E}[X]$ with probability 1, i.e X is a constant.

In other words, for a probability vector **p**,

$$f\left(\sum_{i=1}^N p_i x_i\right) \leq \sum_{i=1}^N p_i f(x_i).$$

Similarly for a concave \frown function: $\mathbb{E}[f(X)] \leq f(\mathbb{E}[X])$.

Jensen's Inequality for Convex Functions

Proof by Induction

(1)
$$K = 2$$
:

- ▶ Two-state random variable $X \in \{x_1, x_2\}$
- With $\mathbf{p} = (p_1, p_2) = (p_1, 1 p_1)$
- ▶ $0 \le p \le 1$

we simply follow the definition of convexity:

$$\underbrace{p_1 f(x_1) + p_2 f(x_2)}_{\mathbb{E}[f(X)]} \ge f(\underbrace{p_1 x_1 + p_2 x_2}_{\mathbb{E}[X]})$$

Jensen's Inequality for Convex Functions

Proof by Induction — Cont'd

(2) $(K-1) \rightarrow K$: Assuming the theorem is true for distributions with K-1 states, and writing: $p'_i = p_i/(1-p_K)$ for $i=1,\ldots,K-1$:

$$\sum_{i=1}^{K} p_i f(x_i) = p_K f(x_K) + (1 - p_K) \sum_{i=1}^{K-1} p_i' f(x_i)$$

$$\geq p_K f(x_K) + (1 - p_K) f\left(\sum_{i=1}^{K-1} p_i' x_i\right) \quad \text{Induction hypothesis}$$

$$\geq f\left(p_K x_K + (1 - p_K) \sum_{i=1}^{K-1} p_i' x_i\right) \quad \text{definition of convexity}$$

$$\sum_{i=1}^{K} p_i f(x_i) \geq f\left(\sum_{i=1}^{K} p_i x_i\right) \Rightarrow \mathbb{E}[f(X)] \geq f(\mathbb{E}[X]) \quad \text{equality case?}$$

Jensen's Inequality Example: The AM-GM Inequality

Recall that for a concave \frown function: $\mathbb{E}[f(X)] \leq f(\mathbb{E}[X])$.

Consider $X \in \{x_1, \dots, x_N\}$, $X \ge 0$ with uniform probability distribution $\mathbf{p} = (\frac{1}{N}, \dots, \frac{1}{N})$ and the strictly concave \frown function $f(x) = \log x$:

$$\frac{1}{N} \sum_{i=1}^{N} \log x_i \le \log \left(\frac{1}{N} \sum_{i=1}^{N} x_i \right)$$
$$\log \left(\prod_{i=1}^{N} x_i \right)^{\frac{1}{N}} \le \log \left(\frac{1}{N} \sum_{i=1}^{N} x_i \right)$$
$$\left(\prod_{i=1}^{N} x_i \right)^{\frac{1}{N}} \le \frac{1}{N} \sum_{i=1}^{N} x_i$$
$$\sqrt[N]{x_1 x_2 \dots x_N} \le \frac{x_1 + x_2 \dots + x_N}{N}$$

- Chain Rule for Mutual Information
- Convex Functions
- Jensen's Inequality
- Gibbs' Inequality
- Information Cannot Hurt
- Data Processing Inequality
- Wrapping Up

Gibbs' Inequality

Theorem

The relative entropy (or KL divergence) between two distributions p(X) and q(X) with $X \in \mathcal{X}$ is non-negative:

$$D_{\mathsf{KL}}(p\|q) \geq 0$$

with equality if and only if p(x) = q(x) for all x.

Gibbs' Inequality

Proof (1 of 2)

Recall that:
$$D_{\mathsf{KL}}(\rho\|q) = \sum_{x \in \mathcal{X}} \rho(x) \log \frac{\rho(x)}{q(x)} = \mathbb{E}_{\rho(X)} \left[\log \frac{\rho(X)}{q(X)} \right]$$
Let $\mathcal{A} = \{x : \rho(x) > 0\}$. Then:
$$-D_{\mathsf{KL}}(\rho\|q) = \sum_{x \in \mathcal{A}} \rho(x) \log \frac{q(x)}{\rho(x)}$$

$$\leq \log \sum_{x \in \mathcal{A}} \rho(x) \frac{q(x)}{\rho(x)} \qquad \text{Jensen's inequality}$$

$$= \log \sum_{x \in \mathcal{A}} q(x)$$

$$\leq \log \sum_{x \in \mathcal{X}} q(x)$$

$$= \log 1$$

$$= 0$$

Gibbs' Inequality

Proof (2 of 2)

Since $\log u$ is strictly convex we have equality if $\frac{q(x)}{p(x)} = c$ for all x. Then:

$$\sum_{x\in\mathcal{A}}q(x)=c\sum_{x\in\mathcal{A}}p(x)=c$$

Also, the last inequality in the previous slide becomes equality only if:

$$\sum_{x\in\mathcal{A}}q(x)=\sum_{x\in\mathcal{X}}q(x).$$

Therefore c=1 and $D_{\mathsf{KL}}(p\|q)=0 \Leftrightarrow p(x)=q(x)$ for all x.

Alternative proof: Use the fact that $\log x \le x - 1$.

Non-Negativity of Mutual Information

Corollary

For any two random variables X, Y:

$$I(X; Y) \geq 0$$
,

with equality if and only if X and Y are statistically independent.

Proof: We simply use the definition of mutual information and Gibbs' inequality:

$$I(X; Y) = D_{\mathsf{KL}}(p(X, Y) || p(X)p(Y)) \ge 0,$$

with equality if and only if p(X, Y) = p(X)p(Y), i.e. X and Y are independent.

- Chain Rule for Mutual Information
- Convex Functions
- Jensen's Inequality
- Gibbs' Inequality
- Information Cannot Hurt
- Data Processing Inequality
- Wrapping Up

Conditioning Reduces Entropy

Information Cannot Hurt — Proof

Theorem

For any two random variables X, Y,

$$H(X|Y) \leq H(X)$$
,

with equality if and only if *X* and *Y* are independent.

Proof: We simply use the non-negativity of mutual information:

$$I(X; Y) \ge 0$$

$$H(X) - H(X|Y) \ge 0$$

$$H(X|Y) \le H(X)$$

with equality if and only if p(X, Y) = p(X)p(Y), i.e X and Y are independent.

Data are helpful, they don't increase uncertainty on average.

Conditioning Reduces Entropy

Information Cannot Hurt — Example (from Cover & Thomas, 2006)

Let *X*, *Y* have the following joint distribution:

$$\begin{array}{c|ccccc}
p(X, Y) & X & p(X) = (1/8, 7/8) \\
\hline
1 & 2 & p(Y) = (3/4, 1/4) \\
\hline
Y & 1 & 0 & 3/4 & p(X|Y = 1) = (0, 1) \\
2 & 1/8 & 1/8 & p(X|Y = 2) = (1/2, 1/2)
\end{array}$$

$$H(X) \approx 0.544$$
 bits $H(X|Y=1) = 0$ bits $H(X|Y=2) = 1$ bit

We see that in this case
$$H(X|Y=1) < H(X)$$
, $H(X|Y=2) > H(X)$.

However,
$$H(X|Y) = \sum_{y \in \{1,2\}} p(y)H(X|Y=y) = \frac{1}{4} = 0.25 \text{ bits} < H(X)$$

 $H(X|Y = y_k)$ may be greater than H(X) but the average: H(X|Y) is always less or equal to H(X).

Information cannot hurt on average

- Chain Rule for Mutual Information
- Convex Functions
- Jensen's Inequality
- Gibbs' Inequality
- Information Cannot Hur
- Data Processing Inequality
- Wrapping Up

Markov Chain

Definition

Random variables X, Y, Z are said to form a Markov chain in that order (denoted by $X \to Y \to Z$) if their joint probability distribution can be written as:

$$p(X, Y, Z) = p(X)p(Y|X)p(Z|Y)$$

Consequences:

- X → Y → Z if and only if X and Z are conditionally independent given Y.
- $X \to Y \to Z$ implies that $Z \to Y \to X$.
- If Z = f(Y), then $X \to Y \to Z$

Definition

Theorem

if
$$X \to Y \to Z$$
 then: $I(X; Y) \ge I(X; Z)$

- X is the state of the world, Y is the data gathered and Z is the processed data
- No "clever" manipulation of the data can improve the inferences that can be made from the data
- No processing of Y, deterministic or random, can increase the information that Y contains about X

Recall that the chain rule for mutual information states that:

$$I(X; Y, Z) = I(X; Y) + I(X; Z|Y)$$

= $I(X; Z) + I(X; Y|Z)$

Therefore:

Proof

$$I(X;Y)+\underbrace{I(X;Z|Y)}_0=I(X;Z)+I(X;Y|Z)$$
 Markov chain assumption
$$I(X;Y)=I(X;Z)+I(X;Y|Z) \quad \text{but } I(X;Y|Z)\geq 0$$

$$I(X;Y)\geq I(X;Z)$$

Functions of the Data

Corollary

In particular, if Z = g(Y) we have that:

$$I(X; Y) \geq I(X; g(Y))$$

Proof: $X \to Y \to g(Y)$ forms a Markov chain.

Functions of the data Y cannot increase the information about X

Observation of a "Downstream" Variable

Corollary

If
$$X \to Y \to Z$$
 then $I(X; Y|Z) \le I(X; Y)$

Proof: We use again the chain rule for mutual information:

$$I(X; Y, Z) = I(X; Y) + I(X; Z|Y)$$

= $I(X; Z) + I(X; Y|Z)$

Therefore:

$$I(X;Y)+\underbrace{I(X;Z|Y)}_0=I(X;Z)+I(X;Y|Z)$$
 Markov chain assumption $I(X;Y|Z)=I(X;Y)-I(X;Z)$ but $I(X;Z)\geq 0$ $I(X;Y|Z)\leq I(X;Y)$

The dependence between *X* and *Y* cannot be increased by the observation of a "downstream" variable.

- Chain Rule for Mutual Information
- Convex Functions
- Jensen's Inequality
- Gibbs' Inequality
- Information Cannot Hur
- Data Processing Inequality
- Wrapping Up

Summary & Conclusions

- Chain rule for mutual information
- Convex Functions
- Jensen's inequality, Gibbs' inequality
- Important inequalities regarding information, inference and data processing
- Reading: Mackay §2.6 to §2.10, Cover & Thomas §2.5 to §2.8

Next time

Law of large numbers

Markov's inequality

Chebychev's inequality