Tejidos de Guatemala – Ixchel

Tabla de contenido

Descripción del Sistema	2
Entidades usadas	2
Orden	2
Tejido	3
Caja	3
Camión	3
Departamento de ventas	4
Elección de tejidos en pedidos	5
Sistema automatizado	6
Almacén – selección de tejidos a enviar	6
Centro de revisión	7
Centro de empaque	9
Transporte	11
Finanzas	12
Estados globales del modelo	13
Procesos del modelo	14
Procesos de selección de tejido	14
Proceso CrearNuevaEntidad	15
Proceso ElejirCantidadDeTejidos	16
Proceso LlamarACamion	16
Proceso SacarUltimoTejido	17
Proceso Simular Distancia Cliente Mayorista	17
Resultados	18
Mejoras del Sistema	20
Video	20
Conclusiones	21

Descripción del Sistema

La fábrica de tejidos y textiles Ixchel necesita mejorar sus procesos de pedido y abastecimiento a las tiendas que posee la fábrica, clientes mayoristas y también minoristas.

Todo los pedidos y el abastecimiento de las tiendas se hacen desde el departamento de ventas, posteriormente el producto es descargado del almacén, luego es revisado, empacado y llevado a los camiones de entrega, que posteriormente se dirigirán al lugar específico de la entrega según lo indica el pedido. A continuación, se explicará con mayores detalles el funcionamiento del sistema de ventas lxchel.

Entidades usadas

Orden

Entidad que simula las ordenes enviadas al departamento de ventas, esta entidad tiene los siguientes estados:

- **Tipo:** Estado para identificar de donde se realizó la orden, puede ser 1. cliente mayorista, 2. cliente minorista, 3. tienda 1 y 4. tienda 2.
- KgLana: Para llevar la cantidad de kg de Lana que se solicitó en la orden.
- KgSeda: Para llevar la cantidad de kg de Seda que se solicitó en la orden.
- KgLino: Para llevar la cantidad de kg de Lino que se solicitó en la orden.
- **KgAlgodon:** Para llevar la cantidad de kg de Algodón que se solicitó en la orden.
- **KgCanamo:** Para llevar la cantidad de kg de Cáñamo que se solicitó en la orden.
- TotalDeCajas: El total de cajas que se llevara el camión para atender la orden.

Los estados son representados con un Status Label.

Tejido

Entidad que simula los tejidos, cada entidad equivale a un kilogramo, esta entidad tiene los siguientes estados:

- Tipo: Estado para identificar que tipo de tejido es, puede tener los valores siguientes: 1. Lana, 2. Seda, 3. Lino, 4. Algodón, y 5. Cáñamo.
- Precio: El precio por tejido, ya que dependiendo el tipo de tejido tendrá un precio diferente.

El estado tipo se muestra en un status label, para conocer su tipo en todo momento.

Caja

Entidad que simula las cajas, en donde se almacenan los tejidos de un mismo tipo.

Camión

Entidad que simula los camiones, esta entidad simula el transporte en donde las cajas son llevadas a su destino.

Departamento de ventas

El departamento de ventas es el encargado de recibir la ordenes realizadas por los clientes. Las ordenes pueden hacerse personalmente o a través de teléfono, las ordenes siguen una distribución exponencial y en promedio se reciben 2 órdenes por hora. En esta parte se utilizó un Source con la siguiente configuración:

El tiempo que tarda el vendedor en tomar la orden sigue una distribución uniforme con mínimo de 100 segundos y máximo de 160 segundos, luego el vendedor revisa la orden en un tiempo que también sigue una distribución uniforme con un mínimo de 50 segundos y máximo de 80 segundos. Para simular el vendedor se utilizo con Server, con una secuencia de tareas.

Las ordenes pueden hacerlas los clientes mayoristas y minoristas o las dos tiendas que posee la empresa (Tienda 1 o Tienda 2). Las probabilidades del origen de cada orden se pueden observar en la siguiente tabla:

Id	Orden	Probabilidad
1	Cliente Mayorista	0.55

2	Cliente Minorista	0.25
3	Tienda 1	0.10
4	Tienda 2	0.10

Para simular el tipo de orden se utilizó una distribución discreta, la cual se realiza en el Source, La distribución es la siguiente:

Random.Discrete(CLIENTE_MAYORISTA, 0.55, CLIENTE_MINORISTA, 0.8, TIENDA_1, 0.9, TIENDA_2, 1)

Elección de tejidos en pedidos

La fábrica vende 5 tipos de tejidos, el cliente decide cuáles tipos de tejidos compra y define la cantidad en kilogramos de tejido de cada tipo que desea comprar.

La tabla siguiente se muestran las probabilidades de cada tipo de tejido de ser comprados y la cantidad de kilogramos de tejido que compra el cliente de cada tipo de tejido.

Id	Descripción	Probabilidad	Cantidad
1	Lana	0.50	Uniform(40, 65)
2	Seda	1	Uniform(15, 30)
3	Lino	0.10	Uniform(10, 15)
4	Algodón	0.20	Uniform(1, 5)
5	Cáñamo	0.05	Uniform(5, 10)

Para guardar la cantidad de kilogramos de cada tejido se utilizaron estados en la entidad Orden, los cuales fueron descritos ya anteriormente.

Para calcular esta cantidad se utilizo un proceso con una asignación, como por ejemplo para conocer cuanta cantidad de tejido de Lino solicitara el cliente se utilizó la siguiente formula:

Random.Discrete(Math.Round(Random.Uniform(10, 15)), 0.1, 0, 1)

El cual se tomó la probabilidad del 0.1, si se cumple se retorna la cantidad aproximada, si su contraparte se cumple retorna la cantidad de cero kilogramos.

Luego de tomar la orden, esta es enviada a una maquina inteligente que controla todo el sistema en la fábrica de tejidos Ixchel, el computador recibe la orden 15 segundos después de ser enviada. Esto fue representado con TimePath:

Sistema automatizado

La fábrica de tejidos posee un sistema automatizado controlado por una computadora inteligente, la cual es encargada de controlar el sistema que provee los kilogramos de tejido de las ordenes enviadas desde el centro de ventas. Las principales tareas que realiza el computador son: la selección de tejidos y descarga de tejidos en el almacén. Luego de terminar el proceso de selección de tejidos la orden es enviada al área de transporte para determinar la distancia hacia el destino de entrega de la orden. Para representar el computador inteligente se utilizo un servidor que realiza una tarea en secuencia. Cada tarea llama un proceso que corresponde a cada tipo de tejido.

Almacén – selección de tejidos a enviar

La selección de tejidos es controlada por el computador principal. Luego de leer la orden, el computador determina el tipo de tejido y la cantidad en kilogramos y le notifica a la máquina en el almacén para que los tejidos sean enviados uno a uno por una banda trasportadora. El almacén fue

representado por un Source que saca cada tejido a través de un evento que es activado por los procesos del computador inteligente.

El tiempo que tarda en salir cada tejido se distribuye triangularmente con un mínimo de 1.5 segundo, moda de 2 segundos, y un máximo de 2.5 segundos. Esto es representado por un delay en cada proceso que saca cada tejido.

La banda mide 12 metros y se mueve a una velocidad de 1.7 metros por segundo hacia el centro de revisión. Se uso un Conveyor para esto con la configuración siguiente:

Centro de revisión

En el centro de revisión se verifica el buen estado de los tejidos y el peso en kilogramos para evitar que haya tejidos que pesen más o menos de lo debido. Las dos revisiones por las que pasa cada tejido son realizadas por dos máquinas y se especifican en la siguiente tabla:

	Probabilidad de pasar	Probabilidad de no	Tiempo de revisión
	la revisión	pasar la revisión	(Segundos)
Revisión de tejido	0.89	0.11	Uniform(0.5, 1)
Revisión de peso	0.97	0.3	Uniform(2, 3)

Cada máquina de revisión es representada por un Server con sus tiempos de revisión correspondientes:

Las máquinas están unidas por una banda transportadora de 5 metros que se mueve a 0.5 metros por segundo.

Los tejidos que no pasan la prueba de revisión son enviados a un contendor de reciclaje a una distancia de 15 metros del centro de revisión por medio de una banda trasportadora que se mueve a 0.5 metros por segundo.

Los tejidos que si pasan la prueba son enviados al centro de empaque por una banda transportadora que mide 14 metros y se mueve a 1.3 metros por segundo

Properties: Conveyor5 (Conveyo	r)
■ Travel Logic	
Initial Traveler Capacity	Infinity
Entry Ranking Rule	First In First Out
☐ Initial Desired Speed	1.3
Units	Meters per Second
Entity Alignment	Any Location
Drawn To Scale	False
□ Logical Length	14
Units	Meters
Accumulating	True

Centro de empaque

En el centro de empaque los tejidos son almacenadas en cajas con capacidad para 8 kilogramos de tejido. El tiempo de empaque se distribuye triangularmente con mínimo de 5 segundos, un promedio de 7 segundos y un máximo de 10 segundos. Es representado por un Combiner el cual su batch tiene como cantidad de 8, y en la expresión de match es el tipo para emparejar los tipos correctamente.

Las cajas son enviadas desde un dispensador de cajas que se encuentra a 7 metros a través de una banda transportadora que se mueve a 1.2 metros por segundo.

Las cajas se envían cada vez que se necesitan, es decir cada vez que una caja sea llenada con 8 kilogramos de tejido es enviada una nueva caja por la banda trasportadora. Se utilizo un Source el cual llama a una caja cada vez que otra sale de empaque, a través de un evento.

Luego de empaquetar los tejidos, las cajas son enviadas al área de transporte a 15 metros por una banda transportadora que se mueve a 1.85 metros por segundo.

Transporte

Cuando la orden es empacada completamente es cargada a un camión al cual se le indica la distancia a la que debe entregar la orden, dependiendo si el pedido fue realizado por un cliente minorista, mayorista o alguna de las tiendas que posee la fábrica tienda 1 y tienda 2.

En la tabla siguiente se muestra las distancias que un camión recorre para entregar cada orden.

Tipo de orden	Distancia
Cliente mayorista	Uniform(15, 40) Kilómetros
Cliente minorista	Uniform(5,20) kilómetros
Tienda 1	15 kilómetros
Tienda 2	10 kilómetros

Para la tienda 1 y tienda 2, se utilizaron paths con distancia fija. Por ejemplo, para la tienda 1 se utilizó la siguiente configuración:

Para el cliente mayorista se utilizo un proceso, con un delay que simula el tiempo en que tarda en viajar de la fabrica hacia donde se encuentra el cliente. Se utilizo la siguiente formula:

```
Properties: Delay 2 (Delay Step Instance)

Basic Logic

Delay Time 1000 * Random.Uniform(5, 20) / CamionEntity.DesiredSpeed

Advanced Ontions
```

Se sabe que actualmente la fábrica de tejidos Ixchel, únicamente cuenta con 4 camiones para poder repartir los pedidos, por lo que si una orden se encuentra empaquetada y no hay camiones disponibles deberá esperar hasta que regrese uno de los camiones a la fábrica para poder ser cargada y posteriormente entregada.

Esto se utilizó un Source para crear entidades de tipo Camión, al inicio de la simulación se encuentra los cuatro camiones, cuando una orden llega a transporte está a través de condiciones en la selección de peso de los paths escoge su destino, una vez llega a su destino de las cuatro, se utilizó cuatros Sink que simula estos clientes.

Finanzas

Los costos por utilizar cada máquina son de 40 quetzales por hora. El pago al vendedor por hora es de 50 quetzales. Y las ganancias obtenidas por cada venta de tejido posee diferentes precios, en las siguientes tablas, se encuentra mejor descrito los costos y ganancias en el sistema.

Costos de operación y pago de	Cantidad en quetzales	Cantidad de servidores
salarios.		
Maquinas en el sistema	40 por hora	7
Vendedores	50 por hora	1
Pilos de camión	45 por hora	4

Tipo de tejido	Precio de kilogramo
Lana	70 quetzales
Seda	85 quetzales

Lino	100 quetzales
Algodón	125 quetzales
Cáñamo	175 quetzales

Estados globales del modelo

- **CLIENTE_MAYORISTA:** Es una constante que representa el ID del cliente, su valor es igual a 1.
- CLIENTE_MINORISTA: Es una constante que representa el ID del cliente, su valor es igual a
 2.
- TIENDA_1: Es una constante que representa el ID del cliente, su valor es igual a 3.
- TIENDA_2: Es una constante que representa el ID del cliente, su valor es igual a 4.
- TipoActualTejido: Es el tejido actual que tiene que sacar la máquina del almacén.
- CantidadDeTejidosActual: La cantidad de tejidos del tipo actual que la maquina del almacén debe sacar.
- CantidadDeCajasActual: La cantidad de cajas necesarias para empaquetar todos los tejidos de una orden.
- Contador De Tejidos: Contador de tejidos que van llegando a la máquina de empaque.
- LANA: Es una constante que representa el ID del tejido, su valor es igual a 1.
- **SEDA**: Es una constante que representa el ID del tejido, su valor es igual a 2.
- **LINO**: Es una constante que representa el ID del tejido, su valor es igual a 3.
- ALGODÓN: Es una constante que representa el ID del tejido, su valor es igual a 4.
- CANAMO: Es una constante que representa el ID del tejido, su valor es igual a 5.
- ContadorDeTejidosFaltantes: Contador de tejidos que falta para sacar del almacén.
- SacoTejidos: Bandera para saber si la maquina si saco un tejido del tipo actual.
- TotalDeCajasActual: Es el total de cajas que tiene que sacar la maquina del almacén de cajas para el pedido actual.
- Los estados restantes son contadores, para llevar el control de los tejidos que si fueron empaquetados y los que fueron rechazados.

La imagen siguiente se puede visualizar los estados y sus tipos de variable.

■ CLIENTE_MINORISTA	Integer State Variable	CLIENTE_MINORISTA
■ TIENDA_1	Integer State Variable	TIENDA_1
■ TIENDA_2	Integer State Variable	TIENDA_2
■ TipoActualTejido	Integer State Variable	TipoActualTejido
CantidadDeTejidosActual	Integer State Variable	CantidadDeTejidosActual
CantidadDeCajasActual	Integer State Variable	CantidadDeCajasActual
ContadorDeTejidos	Integer State Variable	ContadorDeTejidos
■ LANA	Integer State Variable	LANA
■ SEDA	Integer State Variable	SEDA
LINO	Integer State Variable	LINO
■ ALGODON	Integer State Variable	ALGODON
■ CANAMO	Integer State Variable	CANAMO
ContadorTejidosFaltantes	Integer State Variable	ContadorTejidosFaltantes
✓ SacoTejidos	Boolean State Variable	SacoTejidos
■ TotalDeCajasActual	Integer State Variable	TotalDeCajasActual
ContadorDeLanaRevisados	Integer State Variable	ContadorDeLanaRevisados
ContadorDeSedaRevisados	Integer State Variable	ContadorDeSedaRevisados
ContadorDeLinoRevisados	Integer State Variable	ContadorDeLinoRevisados
ContadorDeAlgodonRevisados	Integer State Variable	ContadorDeAlgodonRevisados
ContadorDeCanamoRevisados	Integer State Variable	ContadorDeCanamoRevisados
ContadorDeLanaRechazados	Integer State Variable	ContadorDeLanaRechazados
ContadorDeSedaRechazados	Integer State Variable	ContadorDeSedaRechazados
Contador De Lino Rechazados	Integer State Variable	ContadorDeLinoRechazados
ContadorDeAlgodonRechazados	Integer State Variable	ContadorDeAlgodonRechazados
ContadorDeCanamoRechazados	Integer State Variable	ContadorDeCanamoRechazados

Procesos del modelo

Procesos de selección de tejido

Estos procesos se ejecutan cuando la orden llega al computador inteligente, para seleccionar los tejidos. Los procesos se ejecutan en el siguiente orden: 1_SeleccionarTejidoLana, 2_SeleccionarTejidoSeda, 3_SeleccionarTejidoLino, 4_SeleccionarTejidoAlgodon, y 5_SeleccionarTejidoCanamo. Por ejemplo, el proceso 1_SeleccionarTejidoLana en seudocódigo es el siguiente:

CantidadDeTejidosActual = OrdenEntity.KgLana

TipoActualTejido = LANA

ContadorTejidosFaltantes = CantidadDeTejidosActual

SacoTejidos = False

SI ContadorTejidosFaltantes > 0 ENTONCES

ContadorTejidosFaltantes = ContadorTejidosFaltantes - 1

SacoTejidos = True

Retrasar(Random.Triangular(1.5, 2, 2.5), segundos)

Lanzar_Evento_SacarTejido

Regresar_a_Decision

SINO

SI SacoTejidos Entonces

Esperar_Evento_UltimoTejido

SINO

FIN

La representación de este seudocódigo en SIMIO es el siguiente:

Este flujo se repite para los otros procesos mencionados.

Proceso CrearNuevaEntidad

Este proceso es utilizado en la papelera cuando uno de los tejidos es rechazado para crear una nueva entidad de tipo tejido con las mismas propiedades de la cual se rechazó. En seudocódigo es el siguiente:

Retrasar(Random.Triangular(1.5, 2, 2.5), segundos)

Lanzar_Evento_SacarTejido

FIN

La representación de este seudocódigo en SIMIO es el siguiente:

Proceso ElejirCantidadDeTejidos

Este proceso es utilizado para asignar la cantidad de tejidos que se piden en cada orden y la cantidad de cajas a utilizar. El seudocódigo es el siguiente:

OrdenEntity.KgLana = Random.Discrete(Math.Round(Random.Uniform(40, 65)), 0.5, 0, 1)

OrdenEntity.KgSeda = Math.Round(Random.Uniform(15, 30))

OrdenEntity.KqLino = Random.Discrete(Math.Round(Random.Uniform(10, 15)), 0.1, 0, 1)

OrdenEntity.KgAlgodon = Random.Discrete(Math.Round(Random.Uniform(1, 5)), 0.2, 0, 1)

OrdenEntity.KgCanamo = Random.Discrete(Math.Round(Random.Uniform(5, 10)), 0.05, 0, 1)

OrdenEntity.TotalDeCajas = Math.Ceiling(OrdenEntity.KgLana / 8) +

Math.Ceiling(OrdenEntity.KgSeda / 8) + Math.Ceiling(OrdenEntity.KgLino / 8) +

Math.Ceiling(OrdenEntity.KgAlgodon / 8) + Math.Ceiling(OrdenEntity.KgCanamo / 8)

FIN

La representación de este seudocódigo en SIMIO es el siguiente:

ElejirCantidadDeTejidos

Proceso LlamarACamion

Este proceso se llama para crear una nueva entidad camión cada vez que uno sale de un sink, esto para mantener siempre la cantidad de 4 camiones, para crear la entidad llama a un evento. El seudocódigo es el siguiente:

Lanzar_Evento_LlegadaCamion

FIN

La representación de este seudocódigo en SIMIO es el siguiente:

Proceso SacarUltimoTejido

Proceso que va verificando en el servidor de Empaque que todos los tejidos de un tipo y de una orden salgan en cajas. El seudocódigo es el siguiente:

ContadorDeTejidos = ContadorDeTejidos + 1

SI ContadorDeTejidos == CantidadDeTejidosActual ENTONCES

ContadorDeTejidos = 0

Lanzar_Evento_UltimoTejido

SINO

FIN

La representación de este seudocódigo en SIMIO es el siguiente:

Proceso Simular Distancia Cliente Mayorista

Este proceso ayuda a simular la distancia a través del tiempo que tarda un camión de ir de la fabrica de tejidos hacia la localización del cliente mayorista. El seudocódigo es el siguiente:

RETRASAR(1000 * Random.Uniform(5, 20) / CamionEntity.DesiredSpeed, horas)

Lanzar_Evento_LlegadaCamion

FIN

La representación de este seudocódigo en SIMIO es el siguiente:

Proceso Simular Distancia Cliente Minorista

Este proceso ayuda a simular la distancia a través del tiempo que tarda un camión de ir de la fábrica de tejidos hacia la localización del cliente minorista. El seudocódigo es el siguiente:

RETRASAR(1000 * Random.Uniform(15, 40) / CamionEntity.DesiredSpeed, horas)

Lanzar_Evento_LlegadaCamion

FIN

La representación de este seudocódigo en SIMIO es el siguiente:

Resultados

La siguiente imagen muestra las cantidades de tejidos que se venden y se rechazan en un día laboral.

Los costos por las maquinas y empleados y por cada tejido rechazado. Y el costo total

Costos	
Costo de	maquina s y empleado s: 4 8649.581156091
Costo po	r tejido de Lana rechazados: 6370 r tejido de Seda rechazados: 3655 r tejido de Lino rechazados: 100 r tejido de Algodón rechazados: 0 r tejido de Cáñamo rechazados: 0
Costo To	tal: 58774.5811560917

Los ingresos por cada tejido vendido:

Ingresos
Ingreso por Tejidos de Lana: 36120 Ingreso por Tejidos de Seda: 30090 Ingreso por Tejidos de Lino: 1500 Ingreso por Tejidos de Algodón: 125 Ingreso por Tejidos de Cáñamo: 0
Ingreso Total: 67835

Las ganancias, que es la resta entre el Ingreso y el costo total:

Ganancias

Ganancia total: 9060.41884390831

Mejoras del Sistema

La siguiente imagen se podrá visualizar la utilización de cada servidor del sistema

Server	ComputadorPrincipal	[Resource]	Capacity	ScheduledUtilization	Percent	15.5028
	RevisionPeso	[Resource]	Capacity	ScheduledUtilization	Percent	8.7376
	RevisionTejido	[Resource]	Capacity	ScheduledUtilization	Percent	2.9156
	Vendedor	[Resource]	Capacity	ScheduledUtilization	Percent	12.1685
Combiner	Empaque	[Resource]	Capacity	ScheduledUtilization	Percent	3.5023

Se puede observar que los servidores principales no son muy utilizados, esto da como resultados tiempos grandes de ocio, la razón de esto se debe a que a la fabrica se solicitan muy pocas ordenes por hora, se recomendaría realizar algún estudio de publicidad para aumentar la cantidad de órdenes, y aumentar el tiempo de utilización de los servidores.

Una de las mejoras que también se pudo observar es que se necesita al menos un camión más para repartir todas las órdenes. Como se puede observar en la siguiente imagen:

Ya que los clientes mayoristas son los que se encuentra más lejos de la fábrica.

Como se menciono anteriormente los servidores tienen mucho tiempo de ocio, así que se hace la recomendación de cambiar las dos máquinas de revisión, por una maquina que realice ambas acciones, esto para reducir los costos y evitar el costo de ocio de ambas maquinas.

Video

https://youtu.be/nkxQGhPp6rc

Conclusiones

- Según los datos de resultados se puede observar que los dos tejidos que más se vende en la fabrica es la Lana y la Seda y también son los dos tipos de tejidos que mas son rechazados.
- Viendo los resultados se puede apreciar que se tiene mayores ingresos que costos, pero esto no indica que el modelo sea el mas optimo, ya que existe grandes tiempos de ocio provocando perdidas para la fábrica.
- Como conclusión se podría decir que aumentar la capacidad de las cajas, ya que actualmente solo soporta ocho kilogramos de tejido, al aumentar la capacidad se pueden enviar más cantidad de tejido hacia la sección de transporte.
- Visto los resultados se pudo llegar a la conclusión de que no es necesario tener dos máquinas de revisión, sino que se puede conseguir una maquina que realice ambas acciones.
- En conclusión, los clientes mayoristas son los que mas solicitan los tejidos, por lo tanto podría tenerse camiones que se encarguen solamente de estos clientes.