# 4to2 Encoder

# Putta Shreyash Chandra IITH - Future Wireless Communication (FWC)

## **Contents**

- 1 Components
- 2 Implementation

2.1 SOLUTION: ........

them into a single encoded output. So we can say that a binary encoder, is a multi-input combinational logic circuit that converts the logic level "1" data at its inputs into an equivalent binary code at its output.

D2D3

## Karnugh Map:

K-map for Q0:

D0D1

**Abstract** 

This manual shows the implementation of 4to2 encoder instructions in AVR GCC compiler in C language using Arduino UNO.



Figure 1.1

#### K-map for Q1: D2D3D0D1

# 1 Components

| Components  | Values | Quantity |
|-------------|--------|----------|
| Arduino     | UNO    | 1        |
| JumperWires | M-M    | 7        |
| Breadboard  |        | 1        |
| LEDs        | -      | 2        |

# 2 Implementation

The truth table for Figure -1.1 is available in Table-1

| D3 | D2 | D1 | D0 | Q1 | Q0 |
|----|----|----|----|----|----|
| 0  | 0  | 0  | 1  | 0  | 0  |
| 0  | 0  | 1  | 0  | 0  | 1  |
| 0  | 1  | 0  | 0  | 1  | 0  |
| 1  | 0  | 0  | 0  | 1  | 1  |

TABLE 1.1

The Digital Encoder more commonly called a Binary Encoder takes ALL its data inputs one at a time and then converts

Figure 2.1

Using Boolean logic, output Q0 Q1 in Table 1 can be expressed in terms of the inputs D0,D1,D2,D3 as

$$Q0 = D3'.D2'.D1.D0' + D3.D2'.D1'.D0' \text{ (eq2.1)}$$

$$Q1=D3'.D2.D1'.D0' + D3.D2'.D1'.D0' (eq2.2)$$

The expressions in (2.1) AND (2.2) can be minimized by the observing the outputs logic

Thus, after minimization can be expressed as

 ${
m Q1} = {
m D2} + {
m D3}$  by eq2.2 Verify the truth table for Q0 and Q1 in TABLE 1.1.

## 2.1 SOLUTION:

5,6,7,8 Pins of Arduino are manually given inputs as D1,D2,D3,D0 and verify the logic of Q0,Q1 in Table 1

| Encoder | D1 | D2 | D3 | D0 | Q1 | Q0 |
|---------|----|----|----|----|----|----|
| Arduino | 5  | 6  | 7  | 8  | 13 | 4  |

TABLE 2.1

The code below realizes the Boolean logic for 4to2 encoder in 1.1~using~5V,GND of Arduino as binary Inputs with the help of breadboard and jumperwires. Built in LED at pin- 13~of~Arduino~will~glow~for~the~logic'1'~of~Q1,and~off~for~the~logic'0'~of~Q1~and~a~LED~circuit~at~pin-4~of~Arduino~will~glow~for~the~logic'1'~of~Q0,and~off~for~the~logic'0'~of~Q0

 $https://github.com/chanduputta/FWCassignments/tree/\\ main/AVR\%20GCC\%20assignment/code$