

EECS 16A

Spring 2023 - Profs. Muller & Waller Lecture 8B — Capacitors & Capacitive Touchscreens

Toolbox

KVL: Voltage drops around a loop sum to 0

KCL: All currents coming out of a node sum to 0

$$V = IR$$

 $P = IV$ $R = \frac{\rho L}{A}$
 $V_{\text{source}}(\text{off}) \rightarrow \text{short}$

$$I_{\text{source}}(\text{off}) \rightarrow \text{open}$$

$$I = \frac{V_S}{R_1 + R_2}$$

$$V_S \qquad V_S \qquad V_S$$

$$R_{Th} = V_{Th}/I_N$$

Thevenin Equivalent Circuit

Norton Equivalent Circuit

Last Time

Capacitance C in [Farads] or [F]

Circuit Example 1

Find the current in the capacitor I_C

-> Vc hasn't changed in a loong time. (steading state) KCL: I, +IZ=0 Unknowns: I I-V relation for C: $*T_c = \frac{c_d V_c}{dt} = 0 \quad V_c = U_1 - 0 = V_S$

U1=V5

Circuit Example 2

At time t = 0, $U_1 = U_1(0)$ Volts Plot U_1 vs. time Cap is discharged

$$V_{1}(0) = 0$$

$$V_{1}(0) = 0$$

$$V_{2}(t=0) = 0$$

$$V_{3}(t=0) = 0$$

$$V_{4}(t=0) = 0$$

$$V_{5}(t=0) = 0$$

$$V_{6}(t=0) = 0$$

$$V_{7}(t=0) = 0$$

$$V_{8}(t=0) = 0$$

$$V_{1}(t=0) = 0$$

$$V_{1}(t=0) = 0$$

$$V_{2}(t=0) = 0$$

$$V_{3}(t=0) = 0$$

$$V_{4}(t=0) = 0$$

$$V_{5}(t=0) = 0$$

$$V_{7}(t=0) = 0$$

$$V_{7}(t=0) = 0$$

$$V_{8}(t=0) = 0$$

$$V_{8}(t=0) = 0$$

$$V_{1}(t=0) = 0$$

$$V_{1}(t=0) = 0$$

$$V_{2}(t=0) = 0$$

$$V_{3}(t=0) = 0$$

$$V_{4}(t=0) = 0$$

$$V_{5}(t=0) = 0$$

$$V_{7}(t=0) = 0$$

$$V_{8}(t=0) = 0$$

$$V_{1}(t=0) = 0$$

$$V_{2}(t=0) = 0$$

$$V_{3}(t=0) = 0$$

$$V_{4}(t=0) = 0$$

$$V_{5}(t=0) = 0$$

$$V_{7}(t=0) = 0$$

$$V_{8}(t=0) = 0$$

$$V_{8}(t=$$

Circuit Example 2

At time t = 0, $U_1 = U_1(0)$ Volts Plot U_1 vs. time

Circuit Example 3 *What is the steady-state potential U₁?

know U, doesn't change

If you have a Vc that doesn't change there's no current

$$I = \frac{\text{CdV}}{\text{dt}} \qquad Q = CV$$

Equivalent Circuits with Capacitors

*Capacitor – only circuits

$$T_C = C \frac{dV_C}{dt}$$

Two Methods

$$I_{C} = C \frac{dV_{C}}{dt}$$

Method 1:Apply I_{test}Measure dV_{test}/dt

Method 2: Apply dV_{test}/dt Measure I_{test}

$$I_C = C \frac{dV_C}{dt}$$

Method 2:
Apply dV_{test}/dt
Measure I_{test}

$$C_1$$
 A_1
 A_2
 A_1
 C_2

$$= C \frac{dv_C}{dt}$$

$$I_C = C \frac{dV_C}{dt}$$

$$\frac{\partial}{\partial t} = \frac{\partial V_{c1}}{\partial t} - \frac{\partial V_{c2}}{\partial t} = \frac{\partial V_{c1}}{\partial t} + \frac{\partial V_{c2}}{\partial t}$$

$$\frac{\partial}{\partial t} = \frac{\partial V_{c1}}{\partial t} = \frac{\partial V_{c2}}{\partial t}$$

$$\frac{\partial}{\partial t} = \frac{\partial V_{c1}}{\partial t} = \frac{\partial V_{c2}}{\partial t}$$

$$\frac{\partial}{\partial t} = \frac{\partial V_{c1}}{\partial t} = \frac{\partial V_{c2}}{\partial t}$$

$$\frac{\partial}{\partial t} = \frac{\partial V_{c1}}{\partial t} = \frac{\partial V_{c2}}{\partial t} = \frac{\partial V_{c2}}{\partial t}$$

$$C_1 = C_2$$

Equivalent Capacitors Summary

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\$$

$$\frac{1}{d_1 + d_2} \times \frac{1}{d_1 +$$

Capacitive Touchscreens

Capacitive Touchscreen – Model without Touch

Capacitive Touchscreen – Model with Touch

*Problem: One of the terminals is a finger?!?

Capacitive Touchscreen – Model with Touch

Capacitive Touchscreen – Model with Touch

