

A STRUCTURE OF A FIELD EFFECT TRANSISTOR HAVING METALLIC SILICIDE AND MANUFACTURING METHOD THEREOF

The present application claiming priority under 35 U.S.C. 119 to Japanese

5 Application No. 2000-104733 filed on April 6, 2000, which is hereby incorporated by reference in its entirety for all purposes.

BACKGROUND OF THE INVENTION

(1). Field of the invention

The present invention relates to a field effect transistor (FET) which is formed in a silicon layer located on an insulating film, or a silicon on insulator (SOI) substrate. The SOI substrate has an insulating film and a thin silicon layer formed over a conductive substrate is used as the conventional substrate to form the FET, and to a method of manufacturing such field effect transistor.

15 (2). Description of the related art

Recently, a field effect transistor is formed on an SOI substrate (SOI-FET) in stead of a conventional bulk semiconductor substrate. The SOI-FET is formed in a thin silicon

film (SOI layer) formed on an insulating film. As a junction capacitance is reduced, the SOI-FET can operate with a high-speed. Particularly, a fully depleted SOI-FET formed in the SOI layer is known as a low-power device which has a small parasitic capacitance and a subthreshold swing smaller than that of the conventional bulk semiconductor substrate.

5 The fully depleted transistor has a depletion layer, which expands to the bottom surfaces of a source region and a drain region, when a voltage is supplied to a gate electrode thereof. As an expansion of depletion layers of the fully depleted SOI-FET is defined by a thickness of the SOI layer, a short channel effect can be restrained. Thus, for achieving the fully depleted operation of the SOI-FET, it is necessary to reduce the thickness of the SOI layer, as a device becomes microscopic.

The low-power device is shown in The article magazine of Institute of Electronics, Information and Communication Engineers C-II Vol. J81-C-II No. 3, pp. 313-319, "Deep Sub-0.1 μ m MOSFET's with Very Thin SOI Layer for Ultra-Low Power Applications", published in March 1998 (hereinafter a first thesis). The shorter the gate length of the SOI-FET, the thinner the thickness of the SOI layer is. In the case where the gate length is 0.1 μ m, the thickness of the SOI layer should be set 20 nm or below.

Therefore, it is necessary to reduce the thickness of the SOI layer, if the SOI-FET

becomes smaller. The thickness of the SOI layer becomes thinner, the deterioration of the drive current occurs since the enlargement of the parasitic resistance in the source and drain regions becomes remarkable. Nowadays, a silicide technology using titanium (Ti) or cobalt (Co) is adopted to restrain the deterioration of the drive current. A metallic silicide layer is comprised of refractory metal and silicon. Titanium disilicide ($TiSi_2$) and Cobalt disilicide ($CoSi_2$) are widely used for their low resistivity.

However, when the specific contact resistivity between a metallic silicide layer and a silicon layer exceeds $1 \times 10^{-7} \Omega\text{-cm}^2$, and the thickness of the SOI layer located under the metallic silicide layer is less than 10 nm, the parasitic resistance would be increased so as to increase a resistance of a diffusion layer. As a result, the drive current of the SOI-FET might be reducing. This relationship is shown in IEEE ELECTRON DEVICE LETTERS, VOL. 15 No. 9, and pp. 363-365, "Optimization of Series Resistance in Sub-0.2 μm SOI MOSFET's", published in September 1998 (hereinafter a second thesis).

JOURNAL OF ELECTRONICS

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

110

115

120

125

130

135

140

145

150

155

160

165

170

175

180

185

190

195

200

205

210

215

220

225

230

235

240

245

250

255

260

265

270

275

280

285

290

295

300

305

310

315

320

325

330

335

340

345

350

355

360

365

370

375

380

385

390

395

400

405

410

415

420

425

430

435

440

445

450

455

460

465

470

475

480

485

490

495

500

505

510

515

520

525

530

535

540

545

550

555

560

565

570

575

580

585

590

595

600

605

610

615

620

625

630

635

640

645

650

655

660

665

670

675

680

685

690

695

700

705

710

715

720

725

730

735

740

745

750

755

760

765

770

775

780

785

790

795

800

805

810

815

820

825

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

905

910

915

920

925

930

935

940

945

950

955

960

965

970

975

980

985

990

995

1000

1005

1010

1015

1020

1025

1030

1035

1040

1045

1050

1055

1060

1065

1070

1075

1080

1085

1090

1095

1100

1105

1110

1115

1120

1125

1130

1135

1140

1145

1150

1155

1160

1165

1170

1175

1180

1185

1190

1195

1200

1205

1210

1215

1220

1225

1230

1235

1240

1245

1250

1255

1260

1265

1270

1275

1280

1285

1290

1295

1300

1305

1310

1315

1320

1325

1330

1335

1340

1345

1350

1355

1360

1365

1370

1375

1380

1385

1390

1395

1400

1405

1410

1415

1420

1425

1430

1435

1440

1445

1450

1455

1460

1465

1470

1475

1480

1485

1490

1495

1500

1505

1510

1515

1520

1525

1530

1535

1540

1545

1550

1555

1560

1565

1570

1575

1580

1585

1590

1595

1600

1605

1610

1615

1620

1625

1630

1635

1640

1645

1650

thin to form such silicide and silicon multi-layered structure.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide a field effect transistor, having a

5 satisfied drive current thereof for adapting microscopic devices.

In order to achieve the above object, in a field effect transistor having metallic

silicide layers composed of refractory metal and silicon. Wherein the bottom surfaces of
the metallic silicide layers respectively extend to the bottom surfaces of a semiconductor
layer. Wherein a ratio of the metal to the silicon in the metallic silicide layers is X to Y, a
ratio of the metal to the silicon of metallic silicide having the lowest resistance among
stoichiometric metallic silicides is X0 to Y0, and X, Y, X0 and Y0 satisfy the following
inequity: $(X / Y) > (X_0 / Y_0)$.

According to the present invention, a field effect transistor capable of restraining

the reduction of the drive current thereof. The transistor of the present invention can be

15 formed in a microscopic size.

Typical ones of various inventions of the present application have been shown in

brief. However, the various inventions of the present application and specific

configurations of these inventions will be understood from the following description.

BRIEF DESCRIPTION OF THE DRAWINGS

While the specification concludes with claims particularly pointing out and distinctly

5 claiming the subject matter which is regarded as the invention, it is believed that the

invention, the objects and features of the invention and further objects, features and

advantages thereof will be better understood from the following description taken in

connection with the accompanying drawings in which:

Fig. 1 is a cross-sectional view describing a field effect transistor according to a

first preferred embodiment,;

Fig. 2 is a cross-sectional view describing a field effect transistor according to a

second preferred embodiment,;

Fig. 3(a) – Fig. 3(b) are explanation diagrams describing relationship between the

drain current and drain voltage characteristics of the fully depleted SOI-FET,;

15 Fig. 4 is an explanation diagram showing the drain voltage dependence of a

threshold voltage for the fully depleted SOI-FET,;

Fig. 5(a) – Fig. 5(c) are cross-sectional views describing a method of fabricating a

field effect transistor according to a third preferred embodiment; and

Fig. 6 is an enlarged cross-sectional view illustrating the first preferred embodiment.

5

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Preferred embodiments of the present invention will hereinafter be described in detail with reference to the accompanying drawings. The drawings used for this description typically illustrate major characteristic parts in order that the present invention will be easily understood. In this description, one embodiment is shown in which the present invention is applied to a field effect transistor having metallic silicide layers.

First embodiment

Fig. 1 is a cross-sectional view describing a field effect transistor according to a first preferred embodiment, for detail, typically showing a fully depleted SOI-FET formed on an SOI substrate. The SOI-FET is formed in a thin silicon film (SOI layer) which is formed on an insulating film of the SOI substrate.

An SOI-FET 10 is formed on an SOI substrate which is comprised of a silicon substrate 1, an insulating layer 2 formed on the silicon substrate 1, and a thin silicon layer

(SOI layer) 3 formed on the insulating layer 2. The SOI-FET 10 is formed in an active area surrounded by field oxide films 6a and 6b, and includes a gate electrode 5 of the SOI-FET is formed on a gate oxide film 4 which is formed on the SOI layer 3. A pair of highly doped silicon layers 8a and 8b is formed in a source region and a drain region under sidewalls 7a and 7b, respectively. A channel region is defined between the pair of highly doped silicon layers 8a and 8b.

DRAFTS 3232323232323232

10

15

The source and the drain regions excepting the highly-doped silicon impurity layers

8a and 8b are comprised of metallic silicide layers 9a and 9b. The metallic silicide layers

9a and 9b are composed of refractory metal and silicon. An amount of refractory metal

contained in the metallic silicide layers 9a and 9b is more than that of silicon. In the first

preferred embodiment, the metallic silicide layers 9a and 9b are comprised of a CoSiz

layer in which a ratio of cobalt to silicon is one to z ($1 < z < 2$). In other words, a ratio of

metal to silicon in the metallic silicide layer is X to Y, a ratio of metal to silicon of metallic

silicide having the lowest resistance among stoichiometric metallic silicides is X0 to Y0,

and X, Y, X0 and Y0 satisfy the following inequity: $(X / Y) > (X0 / Y0)$. The CoSiz layers

9a and 9b are formed by a conventional silicide process, for more detail, all of the source

region and the drain region except under the sidewalls 7a and 7b are changed into the

cobalt silicide layers 9a and 9b. That is, bottom surfaces of the cobalt silicide layers 9a and 9b extend to bottom surfaces of the SOI layer 3. An electrical connection between the CoSiz layers 9a and 9b and the SOI layer 3 is performed between the highly doped silicon layers 8a and 8b and the CoSiz layers 9a and 9b only.

5 According to the second thesis as described above, in the case where the contact specific resistance between refractory metal and silicon becomes less than $1 \times 10^{-7} \Omega\text{-cm}^2$,
the parasitic resistance of the transistor does not increase and the drive current of the
transistor does not reduce. Inventors of the present invention found that the metallic
silicide layers 9a and 9b are able to cause the contact specific resistance between
refractory metal and silicon to be less than $1 \times 10^{-7} \Omega\text{-cm}^2$. A result of verification will be
shown as follows.

Fig. 3(a) – Fig. 3(b) are explanation diagrams describing relationship between the
drain current and the drain voltage characteristic of the fully depleted SOI-FET. In the
first preferred embodiment, the SOI-FET 10 is an N type MOS transistor. A characteristic
15 between a drain current and a drain voltage of a conventional SOI-FET is shown in Fig.
3(a). The conventional SOI-FET is comprised of an SOI layer having a thickness of 50
nm and a pair of impurity layers having a thickness of more than 10 nm under CoSi_2 layers.

A characteristic between the drain current and the drain voltage of the first preferred embodiment is shown in Fig. 3(b). The SOI-FET 10 is comprised of an SOI layer 3 having a thickness of 20 nm, sidewalls 7a and 7b having a width of 0.1 μ m, a pair of highly doped silicon layers 8a and 8b, and the CoSiz layers 9a and 9b formed by a silicide process. The CoSiz layers 9a, 9b are composed that all of the source region and the drain region except under sidewalls 7a and 7b are changed into the cobalt silicide layers 9a and 9b. Both of the conventional FET and the SOI-FET of the first preferred of the invention are comprised of a gate length of 0.18 μ m, a gate width of 10 μ m and a gate oxide film having a thickness of 4.5 nm.

The drain current shown in Fig. 3(a) is similar to the current shown in Fig. 3(b).

Wherefore, it is easily understood that the drive current of SOI-FET structure in the first preferred embodiment becomes stable. In other words, the drain current of both structures becomes stable when the drain voltage thereof exceeds a predetermined voltage. Additionally, it has been already identified that the drive current of a P type MOS 15 SOI-FET is as stable as that of the N type MOS SOI-FET comprised of the N type MOS transistor. A range of the total series parasitic resistance of the SOI-FETs of the present embodiment is obtained as follows. The total series parasitic resistance of the N type

MOS transistor is about $400 \Omega \cdot \mu\text{m}$. That of the P type MOS transistor is about $1K \Omega \cdot \mu\text{m}$.

An estimated total series parasitic resistance of the SOI-FET of the first preferred

embodiment will next be described. Fig. 6 is an enlarged partial cross-sectional view of

5 the SOI-FET described in Fig. 1. Incidentally, the same reference numbers identifies the
same elements of structure as the SOI-FET shown in Fig. 1 and the description of certain
common elements will therefore be omitted.

The total series parasitic resistance R_{tot} of the SOI-FET 10 is derived from a

following formula.

$$R_{tot} = 2 \times (R_{ac} + R_{sp} + R_{sh} + R_{sh-s} + R_{co})$$

Wherein:

R_{ac} represents an accumulation resistance of the highly doped silicon layer 8.

R_{sp} represents a spreading resistance of the highly doped silicon layer 8.

R_{sh} represents a diffusion layer resistance of the highly doped silicon layer 8

15 under a sidewall 7.

R_{sh-s} represents a sheet resistance of the CoSiz layer 9.

R_{co} represents a contact resistance between the highly doped silicon layer 8 and

the CoSiz layer 9.

As the accumulation resistance R_{ac} , the spreading resistance R_{sp} , and the sheet resistance R_{sh} -s are negligible small, they are out of consideration in the above formula.

If the impurity of $1 \times 10^{17}/\text{cm}^3$ is distributed in an N type drain region, the diffusion

5 layer resistance of the N type MOS transistor becomes $80 \Omega/\text{sq.}$ Also, if the impurity of

$1 \times 10^{20}/\text{cm}^3$ is distributed in a P type drain region, the diffusion layer resistance of the P

tape MOS transistor is $500 \Omega/\text{sq.}$ The diffusion layer resistances R_{sh} of the N type

MOS and the P type MOS transistors each having a channel width of $1 \mu\text{m}$ are $192 \Omega\text{-}\mu$

m and $450 \Omega\text{-}\mu\text{m}$, respectively. The contact specific resistances between the N⁺ and P⁺

type drain regions and the CoSiz 9 is about $4 \times 10^{-8} \Omega\text{-cm}^2$ and $9 \times 10^{-8} \Omega\text{-cm}^2$, respectively.

In fact, it will be expected that the contact specific resistance go further reduce, by

considering the accumulation resistance R_{ac} , the spreading resistance R_{sp} and the sheet

resistance R_{sh} -s in the above formula. The contact specific resistance between the

cobalt silicide (CoSix) and the silicon of the first preferred embodiment is far smaller than

15 $1 \times 10^{-7} \Omega\text{-cm}^2$ introduced in the above second thesis.

Fig. 4 is an explanation diagram showing the drain voltage dependence of a threshold voltage for the fully depleted SOI-FET. In Fig. 4, the SOI-FET is the N type

MOS transistor, as well as Fig. 3(a) and Fig. 3(b). The drain voltage of the conventional SOI-FET is shown as a mark of "X" and that of the first preferred embodiment is shown as a mark of "●". When a substrate floating effect, such as a parasitic bipolar effect occurs in the fully depleted SOI-FET, the drain voltage will rise up. Fig. 4 shows that a reduction 5 of a threshold voltage of the conventional SOI-FET is remarkable, as a drain voltage rises up. However, the reduction of the threshold voltage of the SOI-FET of the first preferred embodiment is loose. In other words, a leakage current of the SOI-FET can be cut down.

According to the first preferred embodiment of the present invention, a field effect transistor capable of restraining the reduction of the drive current of the SOI-FET. Further, 10 the SOI-FET of the first preferred enables to form microscopic devices. Additionally, since the SOI-FET of the first preferred embodiment can precisely reduce the leakage current, the SOI-FET is useful as a low-power transistor.

Second embodiment

Fig. 2 is a cross-sectional view describing a field effect transistor (FET) according 15 to a second preferred embodiment. Particularly, the FET is a fully depleted SOI-FET formed on an SOI substrate. Incidentally, the same reference numbers identifies the same elements of structure as those shown in Fig. 1.

An SOI-FET 20 is formed on an SOI substrate which comprises a silicon substrate

1, an insulating layer 2 formed on the silicon substrate 1, and a thin silicon layer (SOI

layer) 3 formed on the insulating layer 2. The SOI-FET 20 is formed in an active area

surrounded by field oxide film 6a and 6b. the SOI-FET 20 has a gate electrode 5 formed

5 on a gate oxide film 4 located on the SOI layer 3. A pair of highly doped silicon layers

18a and 18b is formed in a source region and a drain region. A channel region is defined

between to the pair of highly doped silicon layers 18a and 18b.

The source and the drain regions include the highly doped silicon layers 18a and

18b and metallic silicide layers 19a and 19b, respectively. The metallic silicide layers 19a

10 and 19b are composed of refractory metal and silicon. An amount of refractory metal

contained in the metallic silicide layers 19a and 19b is more than that of silicon. In the

second embodiment as well as the first embodiment, the metallic silicide layers 19a and

19b are comprised of a CoSiz layer having a ratio of cobalt to silicon is one to z ($1 < z < 2$).

The CoSix layers 19a and 19b are formed by the conventional silicide process. For more

15 detail, the source region and the drain region expect under the sidewalls 7a and 7b are

changed into the cobalt silicide layers 19a and 19b.

The CoSiz layers 19a and 19b respectively have a thickness which is equal to or

more than 80% thickness of from top surfaces of the CoSiz layers 19a and 19b to bottom surfaces of the SOI layer 3. In other words, portions 21a and 21b of the highly doped silicon layers 18a and 18b respectively extend between bottom surfaces of the CoSix layers 19a and 19b and a top surface of the insulating layer 2.

5 A conventional CoSi₂ layer is used as the metallic silicide layer. The conventional CoSi₂ layer is formed so as to have a thickness of the CoSi₂ layer less than 80% thickness of from top surfaces of the CoSi₂ to bottom surfaces of the SOI layer.

On the other hand, 1993 IEEE, pp. IEDM 93-723 ~ 726-IEDM 93, "OPTIMIZATIN OF SERIES RESISTANCE IN SUB-0.2 m SOI MOSFETs" (hereinafter a third thesis), reports as follows.

10 1) A void would be generated at an interface between a metallic silicide layer and a silicon layer.

2) A parasitic resistance, which increases traceable to increase a sheet resistance of the metallic silicide layer. The void and the parasitic resistance influence a characteristic of a semiconductor device.

15 According to the second preferred embodiment of the present invention, since the metallic silicide layers are comprised of the CoSiz layer in which a ratio of cobalt to silicon

is one to z ($1 < z < 2$), a field effect transistor can be formed by the CoSiz layer having a thickness which occupies equal to or more than 80% thickness of from a top surface of the CoSiz layer to bottom surfaces of the SOI layer. In fact, the degradation of a device characteristic traceable to above 1) and 2) can be perfected.

5 According to the second preferred embodiment of the present invention, as a small amount of silicon remains under the metallic silicide layers, a field effect transistor having a low resistance and a stable metallic silicide layer can be provided.

Third embodiment

TOP SECRET//COMINT

A method of manufacturing the field effect transistor described in the third preferred embodiment, will be shown hereinafter referring to Fig. 5(a) – Fig. 5(c). In Fig. 5(a), the SOI-FET is formed on an SOI substrate, which comprises a silicon substrate 51, an insulating film 52, and an SOI layer 53. Field oxide films 56a and 56b and heavily impurity layers 58a and 58b are formed in the SOI layer 53 by using a conventional process. A channel region is defined between the pair of highly doped silicon layers 58a and 58b. A gate electrode 55 is formed on a gate oxide film 54 and located on the channel region. Cobalt (Co) film 60 is formed on the gate electrode 55 and highly doped silicon layers 58a and 58b. The cobalt film 60 is a refractory metal film for forming a

metallic silicide layer. A titanium (Ti) film 61 or a titanium nitride (TiN) film 61 are formed on the cobalt film 60 as an antioxidant film 61 when a following heat treatment.

Then, a first heat treatment is carried out. The first heat treatment is conducted at a temperature within a range of 400°C ~ 600°C with a lamp. Thereby, the cobalt silicide layers 58a and 58b are formed on top surfaces of the gate electrode 55 and the highly doped silicon layers 58a and 58b. The cobalt silicide layers 62a and 62b are comprised of CoSi which has a composition ratio of cobalt to silicon that is 1:1, and Co₂Si that includes more cobalt than silicon. In the third preferred embodiment, the cobalt silicide layers 62a and 62b formed by the first heat treatment, are comprised of Co_zSi ($z \geq 1$) as stated previously.

After the first heat treatment, the antioxidant film 61 and the cobalt film 60 remaining on the field oxide film 56 and the sidewalls 57a and 57b, are selectively removed by a conventional etching agent, such as aqueous sulfuric or aqueous ammonia, as shown in Fig. 5(b). Thereby, the cobalt layer remaining on the gate electrode 55 and the highly doped silicide layers 58a, 58b are removed.

Then, a dielectric interlayer is formed over the SOI substrate including the cobalt silicide layer 62a and 62b. Contact holes are formed in the dielectric interlayer, by a conventional process. In the third preferred embodiment, an illustration and a description

of the conventional process are omitted.

Then, a second heat treatment is carried out. The second heat treatment is

conducted at a temperature equal to or more than 700°C with a lamp. Thereby, cobalt

silicide layers 63a and 63b are formed on top surfaces of the gate electrode 55 and all of

5 the highly doped silicon layers 58a and 58b except under sidewalls 57a and 57b, as

shown in Fig. 5(c). The resistance of the cobalt silicide layers 63a and 63b are smaller

than that of the CozSi layers 62a and 62b. In the third preferred embodiment, the cobalt

silicide layers 63a and 63b formed by the second heat treatment, are comprised of a

CoSiz in which a composition ratio of cobalt to silicon is one to z ($1 < z < 2$).

The third preferred embodiment could be applied to manufacture the SOI-FET

explained in the second preferred embodiment, as well as the first preferred embodiment.

According to the present invention, a field effect transistor capable of restraining

the reduction of the current drive capacity of the transistor. Also, the transistor enables to

form microscopic devices including the SOI-FET described above. Since the transistor of

15 the present invention can precisely reduce the leakage current, a low-power transistor can

be provided. Additionally, as a small amount of silicon remains under the metallic silicide

layers, a field effect transistor having a low resistance and a stable metallic silicide layer

can be provided.

TSINGHUA UNIVERSITY