Student Information

Full Name : Batuhan Karaca

Id Number : 2310191

Answer 1

a)

i)
$$D = A \cap (B \cup C)$$

ii)
$$E = (A \cap B) \cup C$$

iii)
$$D = (A - B) \cup (A \cap C)$$

b)

i)

1.	$(A \times B) \times C = A \times (B \times C)$	premise
2.	$\forall x (x \in ((A \times B) \times C))$	assumption
3.	$\forall x (x \in \{(a, b, c) ((a \in A) \land (b \in B)) \land (c \in C)\})$	definition of the cartesian product
4.	$\forall x (x \in \{(a, b, c) (a \in A) \land ((b \in B) \land (c \in C))\})$	associativity
5.	$\forall x (x \in (A \times (B \times C)))$	definition of the cartesian product
6.	$\forall x((x \in ((A \times B) \times C)) \to (x \in A \times (B \times C)))$	\rightarrow i,2–5
7.	$(A \times B) \times C \subseteq A \times (B \times C)$	definition of the subset
8.	$\forall x (x \in (A \times (B \times C)))$	assumption
9.	$\forall x (x \in \{(a, b, c) (a \in A) \land ((b \in B) \land (c \in C))\})$	definition of the cartesian product
10.	$\forall x (x \in \{(a, b, c) ((a \in A) \land (b \in B)) \land (c \in C)\})$	associativity
11.	$\forall x (x \in ((A \times B) \times C))$	definition of the cartesian product
12.	$\forall x((x\in (A\times (B\times C)))\to (x\in (A\times B)\times C))$	\rightarrow i,8–11
13.	$A \times (B \times C) \subseteq (A \times B) \times C$	definition of the subset
14.	$(A \times B) \times C = A \times (B \times C)$	

ii)

1.	$(A \cap B) \cap C = A \cap (B \cap C)$	premise		
2.	$\forall x (x \in ((A \cap B) \cap C))$	assumption		
3.	$\forall x (x \in \{x ((x \in A) \land (x \in B)) \land (x \in C)\})$	definition of the intersection		
4.	$\forall x (x \in \{x (x \in A) \land ((x \in B) \land (x \in C))\})$	associativity		
5.	$\forall x (x \in (A \cap (B \cap C)))$	definition of the intersection		
6.	$\forall x((x\in ((A\cap B)\cap C))\to (x\in A\cap (B\cap C)))$	\rightarrow i,2–5		
7.	$(A \cap B) \cap C \subseteq A \cap (B \cap C)$	definition of the subset		
8.	$\forall x (x \in (A \cap (B \cap C)))$	assumption		
9.	$\forall x (x \in \{x (x \in A) \land ((x \in B) \land (x \in C))\})$	definition of the intersection		
10.	$\forall x (x \in \{x ((x \in A) \land (x \in B)) \land (x \in C)\})$	associativity		
11.	$\forall x (x \in ((A \cap B) \cap C))$	definition of the intersection		
12.	$\forall x((x\in (A\cap (B\cap C)))\to (x\in (A\cap B)\cap C))$	ightarrow i,8–11		
13.	$A \cap (B \cap C) \subseteq (A \cap B) \cap C$	definition of the subset		
14.	$(A \cap B) \cap C = A \cap (B \cap C)$			

iii)

A	B	C	$A \oplus B$	$B \oplus C$	$(A \oplus B) \oplus C$	$A \oplus (B \oplus C)$
1	1	1	0	0	1	1
1	1	0	0	1	0	0
1	0	1	1	1	0	0
1	0	0	1	0	1	1
0	1	1	1	0	0	0
0	1	0	1	1	1	1
0	0	1	0	1	1	1
0	0	0	0	0	0	0

By the membership table above, $(A \oplus B) \oplus C = A \oplus (B \oplus C)$.

Answer 2

$$\mathbf{a})f(S) = \{t | \exists (s \in S)(t = f(s))\}$$
 defined in the book. Since f is $A \to B$ and $A_0 \in A$,

$$f(A_0) = \{t | \forall (s \in A_0)(t = f(s))\}.f^{-1}(f(A_0))(i)$$

If f is not injective:

$$\exists (x \in A_0) \exists (y \in A_0) \exists (z \in f(A_0)) ((x \neq y) \land (f(x) = f(y) = z))$$

Since f is a function $A \to B$, there exists no $p, t \in A$ such that, $f(p) = r, f(t) = s \in B$ is undefined. Since $A_0 \in A$, if $p, t \in A_0$, then $p, t \in A$ (argument1). For the value z, there are more than one preimages since $x \neq y$ such that $f^{-1}(z) = x, y(case1)$. Since f is not injective, the set $S = f(A_0)$ includes such value z. For any set A_0 , every function $g: A_0 \to S = f(A_0)$ is surjective. Then, every element r, s in the set S is mapped to its multiple -more than one in quantity (case1)- preimages $\{p_0, p_1, \ldots\}, \{t_0, t_1, \ldots\};$ or a single -one in quantity, which is $x = y, then f^{-1}(z) = x = y$ - preimage p, t under f^{-1} (argument2).

By (argument1) and (argument2), the set comprised of such elements p_x, t_x , is A_0 . Then $f^{-1}(S) = A_0$. Hence, $f^{-1}(f(A_0)) = A_0$. Since every set is a subset of its own, $A_0 \subseteq f(f^{-1}(A_0))$.

If f is injective, since we introduced the cases for every $x, y \in A_0$ which result in $f(f^{-1}(A_0)) = A_0$, case with the single preimage will also hold this equality- Because this case is the subcase.

b)If f is not surjective:

$$\exists (x \in B_0) \exists (y \in B - B_0) \forall (z \in A) ((f(z) \neq x) \lor (f(z) \neq y))$$

- (i) If the set includes such x, then some elements in B_0 can not be mapped to its preimage(s)-single and multiple, defined in part(a). For every element that has a single preimage z or multiple preimages $\{z_0, z_1, z_2, ...\}$, since there may exist some $t \in B B_0$ that has a preimage some $z \in A A_0$, some z is a member of a set $S \subseteq A$. Then we have the set $f^{-1}(B_0) = S \subseteq A$. Since there are some $x \in B_0$ that f maps no z to, we have $f(S) \subset B_0$. We have, in this case $f(f^{-1}(B_0)) = f(S) \subset B_0$
- (ii) If f is surjective, then B includes no such x and y, then every element in B_0 can be mapped to its preimage(s)-single and multiple. For every element that has a single preimage z or multiple preimages $\{z_0, z_1, z_2, ...\}$, since there may exist some $t \in B B_0$ that has a preimage some $z \in A A_0$, some z is a member of a set $S \subseteq A$. Then we have the set $f^{-1}(B_0) = S \subseteq A$. Since there are no $x \in B_0$ that f maps no z to, for every $x \in B_0$, we have a preimage in S, then $f(S) = B_0$. Hence we have $f(f^{-1}(B_0)) = f(S) = B_0$. We conclude by (i) and (ii), that $f(f^{-1}(B_0)) \subseteq B_0$

Answer 3

(i) \rightarrow (ii) By definition, a set is countable either it is finite, or has the same cardinality as the set of positive integers. For an infinite non empty set A, if A is countable, it should have the property:

$$|A| = |\mathbb{Z}^+| \equiv (|A| \ge |\mathbb{Z}^+|) \land (|A| \le |\mathbb{Z}^+|)$$

Since $|A| \leq |\mathbb{Z}^+|$, there is a surjective function $f: \mathbb{Z}^+ \to A$. If A is a finite non empty set, since infinite sets have larger cardinality than of finite sets $|A| \leq |\mathbb{Z}^+|$ holds. There is a surjective function $f: \mathbb{Z}^+ \to A$.

(ii) \rightarrow (iii) For a non empty set A, if there is a surjective function $f: \mathbb{Z}^+ \rightarrow A$, then:

$$(|A| \leq |\mathbb{Z}^+|) \equiv (|\mathbb{Z}^+| \geq |A|)$$

There exists an injective function $f: A \to \mathbb{Z}^+$.

(iii) \rightarrow (i) For a non empty set A, if there is an injective function $f: A \rightarrow \mathbb{Z}^+$, then:

$$(|A| \le |\mathbb{Z}^+|) \equiv (|\mathbb{Z}^+| \ge |A|)$$

Since, $(|A| \leq |\mathbb{Z}^+|)$, if $\mathbb{Z}^+|$ is countable, A is countable. We can define a bijection $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ which is f(x) = x. Then:

$$|\mathbb{Z}^+| = |\mathbb{Z}^+|$$

Since the cardinality of the set is equal to the cardinality of positive integers, the set positive integers is countable. Hence the set A is countable.

Answer 4

- a) By definition, a set is countable either it is finite, or has the same cardinality as the set of positive integers. Since the set of finite binary strings is finite, it is countable.
- b) Assume the set of infinite binary strings is countable. Then we could list all the elements likewise:

```
s_1 = d_{11}d_{12}d_{13} ... s_2 = d_{21}d_{22}d_{23} ... ... .
```

For any string s_n , the string must be in the set. We will define a string s_n , such that:

$$s_n = f_1 f_2 f_3 \dots \qquad for f_i \neq d_{ii}$$

Since we cannot find any matching string s_i for s_n in the set, by contradiction the set is uncountable.

Answer 5

a) For all integers $n \geq k$, there exists k such that k = 1. Then:

```
\begin{split} \log(n) + \log(n) & \ldots + \log(n) \geq \log(1) + \log(2) + \ldots + \log(n) \\ n\log(n) & \geq \log(n!) \\ |n\log(n)| & \geq |\log(n!)| \end{split} We proved that: \exists k \exists c (\forall x > k) (|x\log(x)| \geq c |\log(n!)|)
```

With the values of c and k such that c = 1 and k = 1. Hence:

$$nlog(n) = \Omega(log(n!))$$

We will ignore the first half of the terms. Then:

$$(\lceil \frac{n}{2} \rceil)(\lceil \frac{n}{2} \rceil)...(\lceil \frac{n}{2} \rceil) \le (1)(2)(3)...(n)$$

$$\left\lceil \frac{n}{2} \right\rceil^{n - \left\lceil \frac{n}{2} \right\rceil + 1} \le n!$$

$$\left(\frac{n}{2}\right)^{\frac{n}{2}} \le \left\lceil \frac{n}{2} \right\rceil^{n - \left\lceil \frac{n}{2} \right\rceil + 1}$$

$$\left(\frac{n}{2}\right)^{\frac{n}{2}} \le n!$$

$$log((\frac{n}{2})^{\frac{n}{2}}) \le log(n!)$$

$$(\frac{n}{2})log(\frac{n}{2}) \le log(n!)$$

$$(\frac{n}{2})log(\frac{1}{2}) + (\frac{n}{2})log(n) \le log(n!)$$

$$(\frac{n}{2})log(n) \leq (\frac{n}{2})log(\frac{1}{2}) + (\frac{n}{2})log(n)$$

$$(\tfrac{n}{2})log(n) \leq log(n!)$$

$$nlog(n) \le 2log(n!)$$

$$|nlog(n)| \le 2|log(n!)|$$

We proved that:

$$\exists k \exists c (\forall x > k) (|xlog(x)| \le c |log(n!)|)$$

With the values of c and k such that c=2 and k=1. Hence:

$$nlog(n) = O(log(n!))$$

Since we proved nlog(n) = O(log(n!)) and $nlog(n) = \Omega(log(n!))$:

$$nlog(n) = \Theta(log(n!))$$

b) $\forall n((n \in \mathbb{Z}) \to (((n+1)! - n! = n(n!)) \land (2^{n+1} - 2^n = 2^n)))$. Because we are involved in integers, growth rates can be determined as such. If we order two sides one by one:

$$1 \quad \bullet \quad 2 \quad \bullet \quad 3 \quad \dots \quad n-1 \quad \bullet \quad n \quad \bullet \quad n$$

By the commutativity rule for product:

$$n \bullet 2 \bullet 3 \dots n-1 \bullet n$$

 $2 \bullet 2 \bullet 2 \dots 2 \bullet 2$

Then:

$$\forall (n \ge 2)(n(n!) \ge 2^n)$$

We conclude that for all $n \geq 2$, growth rate of n! is greater than of 2^n . Hence n! grows faster as n goes larger.