

GRADE

#A - # Operation

#B - Perimeter of

#C - Calculating

#D - Fill Matrix

#E - Five Wins

Problem

Information

Area

Black Grid Cells

for Matrix

题库

记录

工具

Operation for Matrix The concept of matrices is essential in linear algebra and computer science.

Background

All matrix operations are derived from vector operations. In this part, a one-dimensional array is used to represent a vector. The addition, subtraction, and multiplication operations are described as follows.

Addition:

$$egin{bmatrix} a_1 \ a_2 \ dots \ a_m \end{bmatrix} + egin{bmatrix} b_1 \ b_2 \ dots \ b_m \end{bmatrix} = egin{bmatrix} a_1 + b_1 \ a_2 + b_2 \ dots \ a_m + b_m \end{bmatrix}$$

Subtraction:

$$egin{bmatrix} a_1 \ a_2 \ dots \ a_m \end{bmatrix} - egin{bmatrix} b_1 \ b_2 \ dots \ b_m \end{bmatrix} = egin{bmatrix} a_1 - b_1 \ a_2 - b_2 \ dots \ a_m - b_m \end{bmatrix}$$

Multiplication:

$$a*b=egin{bmatrix} a_1 & a_2 & \cdots & a_m\end{bmatrix}*egin{bmatrix} b_1 \ b_2 \ dots \ b_m\end{bmatrix}=a_1*b_1+a_2*b_2\cdots+a_m*b_m$$

Then, let's expand vectors into a two-dimensional matrix. In this case, the matrices are stored by using two-dimensional arrays (only square matrices are considered, that is, $A \in$ $R^{n \times n}$). The addition and subtraction operations are the same as the corresponding vector ones. Furthermore, two new operations, transpose and multiplication, are introduced. Transpose:

$$egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}^{ ext{T}} = egin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \ a_{12} & a_{22} & \cdots & a_{m2} \ dots & dots & \ddots & dots \ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}^{ ext{T}}$$

Multiplication:

$$A = egin{bmatrix} a_1 \ a_2 \ dots \end{bmatrix}, a_k \in R^n$$

$$A*B^T = egin{bmatrix} a_1 \ a_2 \ dots \ a_n \end{bmatrix} * egin{bmatrix} b_1^T & b_2^T & \cdots & b_n^T \end{bmatrix} = egin{bmatrix} a_1*b_1^T & \cdots & \cdots & a_1*b_n^T \ dots & & dots \ dots & & & & & & dots \ dots & & & & & & dots \ dots & & & & & & dots \ dots & & & & & & & dots \ dots & & & & & & & dots \ dots & & & & & & & & dots \ dots & & & & & & & & \ dots & & & & & & & & \ dots & & & & & & & & \ dots & & & & & & & & \ dots & & & & & & & \ dots & & & & & & & \ dots & & & & & & & \ dots & & & & & & & \ dots & & & & \ dots & & & & & \ dots & & & \ dots & & & \ dots & & & & \ dots & & \ dots & & & \ dots & & & \ dots & \ dots & \ dots & & \ dots & \ dots & \ dots & & \ dots & \$$

In this problem, we define a brand new new operator # . The following equation shows how

Description

works on two matrices A and B: $A\#B = egin{bmatrix} C_1 & C_2 \ C_3 & C_4 \end{bmatrix} = egin{bmatrix} A_1 & A_2 \ A_3 & A_4 \end{bmatrix} \# egin{bmatrix} B_1 & B_2 \ B_3 & B_4 \end{bmatrix} = egin{bmatrix} A_1 + B_1 & A_2 * B_2^T \ B_3 * A_3^T & A_4 - B_4 \end{bmatrix}$

$$[C_3 \quad C_4] \quad [A_3 \quad A_4] \quad [D_3 \quad D_4] \quad [D_3 * A_3 \quad A_4 - D_4]$$
Example

$$\begin{bmatrix} 22 & 3 & 89 & 5 \\ 5 & 20 & 18 & 6 \\ 5 & 17 & 222 & 10 \\ 1 & 6 & 0 & 334 \end{bmatrix} \# \begin{bmatrix} 4 & 2 & 12 & 50 \\ 53 & 0 & 432 & 70 \\ 67 & 9 & 43 & 100 \\ 213 & 92 & 876 & 1 \end{bmatrix} = \begin{bmatrix} 26 & 5 & 1318 & 38798 \\ 58 & 20 & 516 & 8196 \\ 488 & 121 & 179 & -90 \\ 2629 & 765 & -876 & 333 \end{bmatrix}$$
 The task of this problem is to compute the result of # operations on A and B . We

Input

guarantee that $A,B\in R^{2n\mathrm{x}2n}$, $A_i,B_i\in R^{n\mathrm{x}n}$, try to make the corresponding operation

• The first row gives n, the size of the two matrices. • The following n line are the elements of the first matrix (noted as A).

- The following $\, {\sf n} \,$ line are the elements of the second matrix (noted as B). • All elements in all matrices are integers.
- For all test cases, We guarantee that

Copy

1. n is a multiple of 2

2. $0 < n \le 100$ 3. $0 \le a_{ij} \le 100$

- 4. $0 \le b_{ij} \le 100$
- Output

Output the result of A # B.

Sample

4 0 4 10 5

Input #1

8 5 7 6

8 5 7 4 3 9 5 9 5 4 2 8 1 2 1 6 4 2 3 3 7 8 Input #2 Copy 38 18 3 2 $39 \ 9 \ 2 \ -3$

5 3 7 2

7 0 4 0

12 0 28 2

Output #2

Output #1

9 9 50 20

8 13 40 19

反馈

服务

使用指南 API开发文档 版本规划

南科大计算机系

外部链接

演化机器智能实 验室 JCoder早期版本 **介**开发团队

JLOCEC

指尖之触,大厦之筑

JCoder 在线教学终端 ©2020-2021,版权所有;由Invrise与Satan开 发呈现

Copy

Copy

C

Problem Java Only Type **2**000 **Time Limit 1**28 Memory Limit MB **Stream**

10 Unknown Difficulty **Sources**