I. Matrices compagnons et endomorphismes cycliques

I.A.

1. On a
$$\chi_{\mathrm{M}} = \det(\mathrm{XI}_n - \mathrm{M}) = \det\left((\mathrm{XI}_n - \mathrm{M})^{\!\top}\right) = \det(\mathrm{XI}_n - \mathrm{M}^{\!\top}) = \chi_{\mathrm{M}^{\!\top}} \operatorname{donc}$$

$$\forall \lambda \in \mathbb{K}, \ \lambda \in \operatorname{sp}(\mathrm{M}) \Leftrightarrow \chi_{\mathrm{M}}(\lambda) = 0 \Leftrightarrow \chi_{\mathrm{M}^{\!\top}}(\lambda) = 0 \Leftrightarrow \lambda \in \operatorname{sp}\left(\mathrm{M}^{\!\top}\right)$$

Ainsi $\operatorname{sp}(M) = \operatorname{sp}(M^{\mathsf{T}})$ et donc M et M^{T} ont même spectre

 $2. \Leftarrow : On suppose que M est diagonalisable.$ Ceci q nous fournit $P \in GL_n(\mathbb{K})$ et $D \in \mathcal{M}_n(\mathbb{K})$ diagonale telles que $M = PDP^{-1}$ donc $M^{\mathsf{T}} = (P^{-1})^{\mathsf{T}} D^{\mathsf{T}} P^{\mathsf{T}} = (P^{\mathsf{T}})^{-1} D P^{\mathsf{T}}$ d'où M^{T} est diagonalisable

 \Rightarrow : On suppose que M^{T} est diagonalisable.

Pour montrer que M est diagonalisable, on utilise l'implication précédente en remarquant que $M = (M^{T})^{\top}$. On a bien montré que M^{\top} est diagonalisable si et seulement si M est diagonalisable

I.B. Matrices compagnons

3. On a
$$\chi_{C_Q}(X) = \det(XI_n - C_Q) =$$

$$\begin{vmatrix} X & \dots & 0 & a_0 \\ -1 & X & \dots & 0 & a_1 \\ 0 & -1 & \vdots & a_2 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & -1 & X + a_{n-1} \end{vmatrix}$$
On effectue alors les opérations élémentaires pour i allant de $n-1$ à 1 :

On effectue alors les opérations élémentaires pour i allant de n-1 à $1:L_i\longleftarrow L_i+XL_{i+1}:$

$$\chi_{C_{Q}}(X) = \begin{vmatrix} 0 & \dots & \dots & 0 & Q(X) \\ -1 & 0 & \dots & 0 & X^{n-1} + a_{n-1}X^{n-2} + \dots + a_{2}X + a_{1} \\ 0 & -1 & \ddots & \vdots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots & & \vdots \\ 0 & \dots & 0 & -1 & X^{2} + a_{n-1}X + a_{n-2} \\ 0 & \dots & 0 & -1 & X + a_{n-1} \end{vmatrix}$$

On développe ensuite selon la première ligne pour obtenir :

$$\chi_{C_{Q}}(X) = (-1)^{n+1}Q(X) \begin{vmatrix} -1 & 0 & \dots & 0 \\ 0 & -1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & -1 & 0 \\ 0 & \dots & \dots & 0 & -1 \end{vmatrix} = (-1)^{n+1}Q(X)(-1)^{n-1}$$

Ainsi Q est le polynôme caractéristique de C_Q

4. On a
$$(C_{\mathbf{Q}})^{\top} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \dots & & 0 & 1 \\ -a_0 & -a_1 & \dots & & -a_{n-1} \end{pmatrix}$$
.

On a $\chi_{C_O}^{-} = \chi_{C_Q}^{-} = Q$ ainsi $Q(\lambda) = 0$.

Soit
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{K}),$$

$$(\mathbf{C}_{\mathbf{Q}})^{\mathsf{T}}\mathbf{X} = \lambda\mathbf{X} \Longleftrightarrow \begin{cases} x_{2} &= \lambda x_{1} \\ x_{3} &= \lambda x_{2} \\ \vdots & \Longleftrightarrow \\ x_{n} &= \lambda x_{n-1} \\ -a_{0}x_{1} &- \dots - a_{n-1}x_{n} = \lambda x_{n} \end{cases} \Longleftrightarrow \begin{cases} x_{2} = \lambda x_{1} \\ x_{3} = \lambda^{2}x_{1} \\ \vdots \\ x_{n} = \lambda^{n-1}x_{1} \\ (-a_{0} - a_{1}\lambda - \dots - a_{n-1}\lambda^{n-1})x_{1} = \lambda^{n}x_{1} \end{cases}$$

$$\text{Ainsi } (\mathbf{C}_{\mathbf{Q}})^{\mathsf{T}}\mathbf{X} = \lambda\mathbf{X} \Longleftrightarrow \begin{cases} \forall i \in [2, n], \ x_{i} = \lambda^{i-1}x_{1} \\ \mathbf{Q}(\lambda)x_{1} = 0 \end{cases}$$

Notez bien que le "ainsi" concerne toute l'équivalence!

Comme
$$\lambda$$
 est racine de Q, alors
$$\dim \left(\mathbf{E}_{\lambda} \left(\mathbf{C}_{\mathbf{Q}}^{\top} \right) \right) = 1, \ \mathbf{E}_{\lambda} \left(\mathbf{C}_{\mathbf{Q}}^{\top} \right) = \operatorname{vect}(\mathbf{X}_{\lambda}) \text{ où } \mathbf{X}_{\lambda} = \begin{pmatrix} 1 \\ \lambda \\ \vdots \\ \lambda^{n-1} \end{pmatrix}$$

I.C. Endomorphismes cycliques

5. \Rightarrow : On suppose que f est cyclique.

Ceci nous fournit $x_0 \in E$ tel que $\mathcal{B} = (x_0, f(x_0), \dots, f^{n-1}(x_0))$ soit une base de E

Il existe alors
$$(\lambda_0, \lambda_1, \dots, \lambda_{n-1}) \in \mathbb{K}^n$$
 tel que $f^n(x_0) = \sum_{i=0}^{n-1} \lambda_i f^i(x_0)$

Je pose alors
$$Q = X^n + \sum_{i=0}^{n-1} (-\lambda_i) X^i \in \mathbb{K}[X]$$

de sorte que Q est unitaire de degré n et $\mathcal{M}_{\mathcal{B}}(f) = \mathcal{C}_{\mathcal{Q}}$

 \Leftarrow : On suppose qu'il existe une base $\mathcal{B} = (e_0, e_1, \dots e_{n-1})$ de E dans laquelle la matrice de f est de la forme C_Q , où Q est un polynôme unitaire de degré n

Ainsi
$$\forall i \in [0, n-2], \ f(e_i) = e_{i+1}$$

donc $(e_0, f(e_0), f^2(e_0), \dots, f^{n-1}(e_0))$ est une base de E et donc f est cyclique

f est cyclique si et seulement s'il existe une base $\mathcal B$ de E dans laquelle la matrice de f est de la forme C_Q où Q est un polynôme unitaire de degré n

6. \Leftarrow : On suppose que χ_f est scindé sur \mathbb{K} et a toutes ses racines simples.

Ainsi
$$|\operatorname{sp}(f)| = \operatorname{deg}(\chi_f) = \dim E$$

donc f est diagonalisable d'après le cours

 \Leftarrow : On suppose que f est diagonalisable. Comme f est cyclique, ceci nous fournit \mathcal{B} une base de E et $Q \in \mathbb{K}[X]$ unitaire de degré n tel que $\mathcal{M}_{\mathcal{B}}(f) = C_Q$ d'après 5. Ainsi C_Q est diagonalisable et il en est de même pour C_Q^{T} d'après 2

Ainsi
$$\mathbb{K}^n = \bigoplus_{\lambda \in \operatorname{sp}(f)} \mathcal{E}_{\lambda} \left(\mathcal{C}_{\mathcal{Q}}^{\top} \right) d$$
'où $n = \sum_{\lambda \in \operatorname{sp}\left(\mathcal{C}_{\mathcal{Q}}^{\top} \right)} \dim \left(\mathcal{E}_{\lambda} \left(\mathcal{C}_{\mathcal{Q}}^{\top} \right) \right)$

or on a $\forall \lambda \in \operatorname{sp}\left(\mathbf{C}_{\mathbf{Q}}^{\top}\right)$, dim $\left(\mathbf{E}_{\lambda}\left(\mathbf{C}_{\mathbf{Q}}^{\top}\right)\right) = 1$ d'après 4 donc $\left|\operatorname{sp}\left(\mathbf{C}_{\mathbf{Q}}^{\top}\right)\right| = n$

or d'après 1 : $\operatorname{sp}\left(\mathbf{C}_{\mathbf{Q}}^{\top}\right) = \operatorname{sp}\left(\mathbf{C}_{\mathbf{Q}}\right) = \operatorname{sp}\left(f\right)$

donc f admet n valeurs propres distinctes dans \mathbb{K}

donc χ_f est scindé sur \mathbb{K} et a toutes ses racines simples

Ainsi f est diagonalisable si et seulement si χ_f est scindé sur \mathbb{K} et a toutes ses racines simples

7. On suppose que f est cyclique.

Soit
$$(\lambda_0, \dots, \lambda_{n-1}) \in \mathbb{K}^n$$
 tel que $\sum_{i=0}^n \lambda_i f^i = 0_{\mathcal{L}(\mathbf{E})}$. Montrons $\forall i \in [0, n-1], \ \lambda_i = 0$

Comme f est cyclique, ceci nous fournit $x \in E$ tel que $\mathcal{B} = (x, f(x), \dots, f^{n-1}(x))$ soit une base de E

donc
$$\sum_{i=0}^{n} \lambda_i f^i(x) = 0_{\mathcal{L}(\mathbf{E})}(x) = 0_{\mathbf{E}}$$

ainsi $\forall i \in [0, n-1], \ \lambda_i = 0 \text{ car } \mathcal{B} \text{ est libre}$

Alors
$$(\mathrm{Id}, f, f^2, \dots, f^{n-1})$$
 est libre dans $\mathcal{L}(\mathrm{E})$

Je note d le degré de π_f . D'après le cours on a $d = \dim (\mathbb{K}[f])$.

Or $(\mathrm{Id}, f, f^2, \dots, f^{n-1})$ est libre dans $\mathbb{K}[f]$ donc $d \ge n$

de plus d'après Cayley-Hamilton, on a χ_f est annulateur de f

d'où $\pi_f \mid \chi_f$ or ce sont des polynômes non nuls ainsi on a $d = \deg(\pi_f) \leqslant \deg(\chi_f) = n$

ainsi n=d d'où le polynôme minimal de f est de degré n

 $On \ ne \ se \ sert \ pas \ de \ cette \ question \ pour \ montrer \ le \ th\'eor\`eme \ de \ Cayley-Hamilton \ dans \ le \ paragraphe \ \textbf{I.D} \ qui \ suit.$

I.D. Application à une démonstration du théorème de Cayley-Hamilton

8. On note $N_x = \left\{ m \in \mathbb{N}^* \mid (f^i(x))_{0 \leqslant i \leqslant m-1} \text{ libre} \right\}$.

On sait que $1 \in \mathcal{N}_x$ car $x \neq 0_{\mathcal{E}}$ et que $\forall m \geq n, \ m \notin \mathcal{N}_x$ car dim $\mathcal{E} = n$

Ainsi N_x est une partie de \mathbb{N}^* non vide majorée par n-1

donc N_x admet un plus grand élément $p \in \mathbb{N}^*$.

Ainsi la famille $(f^i(x))_{0 \le i \le p-1}$ est libre et la famille $(f^i(x))_{0 \le i \le p}$ est liée

On a bien l'existence de
$$p \in \mathbb{N}^*$$
 et de $(\alpha_0, \alpha_1, \dots, \alpha_{p-1}) \in \mathbb{K}^p$ tels que la famille $(x, f(x), f^2(x), \dots, f^{p-1}(x))$ est libre et $\alpha_0 x + \alpha_1 f(x) + \dots + \alpha_{p-1} f^{p-1}(x) + f^p(x) = 0$

9. On a $f\left(\operatorname{Vect}(x, f(x), f^{2}(x), \dots, f^{p-1}(x))\right) = \operatorname{Vect}(f(x), f^{2}(x), f^{3}(x), \dots, f^{p}(x))$ car f linéaire or $f^{p}(x) = -\alpha_{0}x - \alpha_{1}f(x) + \dots - \alpha_{p-1}f^{p-1}(x) \in \operatorname{Vect}(x, f(x), f^{2}(x), \dots, f^{p-1}(x))$ d'où $f\left(\operatorname{Vect}(x, f(x), f^{2}(x), \dots, f^{p-1}(x))\right) \subset \operatorname{Vect}(x, f(x), f^{2}(x), \dots, f^{p-1}(x))$ Ainsi $\left[\operatorname{Vect}(x, f(x), f^{2}(x), \dots, f^{p-1}(x))\right]$ est stable par f

- 10. Je note alors \tilde{f} l'endomorphisme induit par f sur $\text{Vect}(x, f(x), f^2(x), \dots, f^{p-1}(x))$ D'après ce qui précède $\mathcal{B} = \left(x, f(x), f^2(x), \dots, f^{p-1}(x)\right)$ est une base de $\text{Vect}(x, f(x), f^2(x), \dots, f^{p-1}(x))$ On remarque que $\mathcal{M}_{\mathcal{B}}(\tilde{f}) = C_Q$ en notant $Q = \alpha_0 + \alpha_1 X + \dots + \alpha_{p-1} X^{p-1} + X^p$ d'où $\chi_{\tilde{f}} = Q$ or $\chi_{\tilde{f}}|\chi_f$ car \tilde{f} induit par fOn a montré que $X^p + \alpha_{p-1} X^{p-1} + \dots + \alpha_0$ divise le polynôme χ_f
- 11. En reprenant les notations précédentes, on a Q(f)(x) = 0 et il existe $P \in K[X]$ tel que $PQ = \chi_f$ Ainsi $\chi_f(f) = P(f) \circ Q(f)$ donc $\chi(f)(x) = P(f)[Q(f)(x)] = P(f)(0) = 0$ car P(f) linéaire On a ainsi montré que : $\forall x \in E, \ \chi(f)(x) = 0$ or $\chi(f) \in \mathcal{L}(E)$ d'où $\chi_f(f)$ est l'endomorphisme nul

II. Etude des endomorphismes cycliques

II.A. Endomorphismes cycliques nilpotents

- 12. \Rightarrow : On suppose f cyclique alors $\deg(\pi_f) = n$ d'après 7 De plus d'après le cours, $\chi_f = \mathbf{X}^n$ car f nilpotente or $\pi_f | \chi_f$ selon Cayley-Hamilton et π_f est unitaire par définition donc $\pi_f = \mathbf{X}^n$ ainsi $f^n = 0$ et $\forall i \in [0, n-1], f^i \neq 0$ d'où r = n
 - \Leftarrow : On suppose que r = n donc $f^n = 0$ et $f^{n-1} \neq 0$ Ceci nous fournit $x \in E$ tel que $f^{n-1}(x) \neq 0$ Soit $\lambda_0, \dots, \lambda_{n-1} \in \mathbb{K}$ tels que $\sum_{i=1}^{n-1} \lambda_i f^i(x) = 0$.

On montre que $\forall i \in [0, n-1], \ \lambda_i = 0$

On suppose, par l'absurde, que la propriété est fausse

Je note alors j le minimum de $\{i \in [0, n-1] \mid \lambda_i \neq 0\}$

Ainsi
$$0 = f^{n-1-j} \left(\sum_{i=0}^{n-1} \lambda_i f^i(x) \right) = f^{n-1-j} \left(\sum_{i=j}^{n-1} \lambda_i f^i(x) \right) = \lambda_j f^{n-1}(x) + \sum_{i=j}^{n-1} \lambda_i f^{n-1+i-j}(x)$$

Or $\forall i \geq p, \ f^i(x) = 0 \ \text{donc} \ \lambda_j f^{n-1}(x) = 0 \ \text{et} \ \lambda_j \neq 0$

d'où $f^{n-1}(x)=0$ ce qui est absurde

Ainsi $(x, f(x), \dots, f^{n-1}(x))$ est une famille libre composée de n vecteurs de E et dim E = n

donc $(x,f(x),\dots,f^{n-1}(x))$ est une base de E

donc f est cyclique.

On a montré que f est cyclique si et seulement si r = n

On remarque que la matrice compagnon associée est unique car les coefficients de cette matrices sont donnés par ceux du polynôme caractéristique.

On sait que si f est cyclique et nilpotente, alors $\chi_f = X^n$

ainsi la matrice compagnon de
$$f$$
 dans ce cas est
$$\begin{pmatrix} 0 & \dots & \dots & 0 & 0 \\ 1 & 0 & \dots & \dots & 0 & 0 \\ 0 & 1 & \ddots & & \vdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & & \ddots & 1 & 0 & 0 \\ 0 & \dots & \dots & 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$

II.B.

13. Pour $k \in [1, p]$, $(f - \lambda_k \operatorname{Id}_E)^{m_k}$ et f commutent car $\mathbb{C}[f]$ est une algèbre commutative

donc $F_k = \text{Ker}((f - \lambda_k \text{Id}_E)^{m_k})$ est stable par fOn a $\chi_f(X) = \prod_{k=0}^p (X - \lambda_k)^{m_k}$ et les polynômes $(X - \lambda_k)^{m_k}$ sont deux à deux premiers entre eux

Alors selon le lemme de décomposition des noyaux, on a

$$\operatorname{Ker}(\chi_f(f)) = \operatorname{Ker}((f - \lambda_1 \operatorname{Id}_{\mathbf{E}})^{m_1}) \oplus \cdots \oplus \operatorname{Ker}((f - \lambda_p \operatorname{Id}_{\mathbf{E}})^{m_p}) = \operatorname{F}_1 \oplus \cdots \oplus \operatorname{F}_p$$

de plus selon Cayley-Hamilton, $\chi_f(f) = 0$ et donc Ker $(\chi_f(f)) = E$ d'où \mid $\mathbf{E} = \mathbf{F}_1 \oplus \cdots \oplus \mathbf{F}_p$

14. Soit $x \in F_k$. On a $(f - \lambda_k \operatorname{Id})^{m_k}(x) = 0$

Pour tout $y \in F_k$, on a $(f - \lambda_k \operatorname{Id})(y) = \varphi_k(y) \in F_k$

ainsi pour tout $p \in \mathbb{N}$, $(f - \lambda_k \operatorname{Id})^p(x) = \varphi_k^p(x)$ par récurrence immédiate sur p

donc $\varphi_k^{m_k}(x) = 0$, comme c'est vrai pour tout $x \in F_k$, on conclut que φ_k est un endomorphisme nilpotent de φ_k

- 15. D'après le cours, l'indice de nilpotence de φ_k , endomorphisme de F_k est majoré par dim F_k
- ainsi $\nu_k \leq \dim(\mathbf{F}_k)$ 16. Je note $\mathbf{P} = \prod_{i=1}^{p} (\mathbf{X} \lambda_i)^{\nu_i}$. Soit $k \in [1, p]$. Soit $x \in \mathbf{F}_k$.

On a
$$P(f) = \begin{bmatrix} \prod_{\substack{i=1\\i\neq k}}^p (X - \lambda_i)^{\nu_i}(f) \end{bmatrix} \circ (f - \lambda_k \operatorname{Id})^{\nu_k}$$

donc
$$P(f)(x) = \left[\prod_{\substack{i=1\\i\neq k}}^p (X - \lambda_i)^{\nu_i}(f)\right] \left(\varphi_k^{\nu_k}(x)\right) = \left[\prod_{\substack{i=1\\i\neq k}}^p (X - \lambda_i)^{\nu_i}(f)\right] (0) = 0$$

donc P(f) coïncide avec l'endomorphisme nul sur chaque F_k et $E=F_1\oplus\cdots\oplus F_p$ d'après 13 donc P(f) = 0

Je note d le degré de P comme P est unitaire alors $(\mathrm{Id},f,f^2,\ldots,f^d)$ est liée donc $d \ge n$ car $(\mathrm{Id}, f, f^2, \dots, f^{n-1})$ est libre

or
$$d = \sum_{i=0}^{p} \nu_i$$
 d'où $n \leqslant \sum_{i=0}^{p} \nu_i$

On remarque à l'aide de la question 14 que $\nu_k \leqslant m_k$ pour tout $k \in [1, p]$

$$\operatorname{donc}\, n \leqslant \sum_{k=0}^p \nu_k \leqslant \sum_{i=0}^p m_k = n$$

ainsi les inégalités sont des égalités et pour tout $k \in [1, p]$, on a $\nu_k = m_k$

17. Comme $E = F_1 \oplus \cdots \oplus F_p$ d'après 13 et $\forall k \in [1, p], \nu_k \leq \dim F_k$ d'après 15

on a donc avec la question précédente $n=\sum_{k=1}^p \nu_k \leqslant \sum_{k=1}^p \dim(\mathbf{F}_k)=n$

Comme à la question précédente, on obtient : $\forall k \in [1, p], \nu_k = m_k = \dim(\mathbf{F}_k)$

 φ_k est un endomorphisme nilpotent de F_k d'indice $\nu_k = m_k = \dim(F_k)$ donc selon 12, φ_k est nilpotent et cyclique.

ceci nous fournit une base \mathcal{B}_k de \mathcal{F}_k tel que $\mathcal{M}_{\mathcal{B}_k}(\varphi_k) = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & \ddots & & \vdots \\ 0 & 1 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_{m_k}(\mathbb{C})$

En notant f_k l'endomorphisme induit par f sur \mathcal{F}_k ,

on a alors
$$\mathcal{M}_{\mathcal{B}_k}(f_k) = \begin{pmatrix} \lambda_k & 0 & \dots & \dots & 0 \\ 1 & \lambda_k & \ddots & & & \vdots \\ 0 & 1 & \lambda_k & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \lambda_k & 0 \\ 0 & \dots & \dots & 0 & 1 & \lambda_k \end{pmatrix} \in \mathcal{M}_{m_k}(\mathbb{C})$$

En concaténant les bases \mathcal{B}_k pour k allant de 1 à p

On obtient une base $\mathcal B$ adaptée à la décomposition en somme directe $E=F_1\oplus\cdots\oplus F_p$

ainsi $\mathcal{B} = (u_1, \dots, u_n)$ est une base de E dans laquelle f a une matrice diagonale par blocs de formes voulues

Remarque : pour la suite on peut démontrer que pour une telle base on a nécessairement :

$$\forall k \in [1, p], (f - \lambda_k \text{Id})^{m_k} (u_{m_1 + \dots + m_{k-1} + 1}) = 0 \text{ puis}$$

$$\forall k \in [1, p], \ \forall i \in [1, m_k], \ u_{m_1 + \dots + m_{k-1} + i} \in F_k$$

On peut aussi supposer que l'on travaille avec la base choisie.

18. Pour $k \in [1, p]$, on a $u_{m_1 + \dots + m_{k-1} + 1} \in F_k$

ainsi $\forall i \in \mathbb{N}, \ f^i(u_{m_1+\cdots+m_{k-1}+1}) \in \mathbb{F}_k \ \mathrm{car} \ \mathbb{F}_k \ \mathrm{stable} \ \mathrm{par} \ f$

puis pour tout $P \in \mathbb{C}[X]$, on a $P(f)(u_{m_1+\cdots+m_{k-1}+1}) \in F_k$ car F_k est stable par combinaison linéaire.

Et ainsi $P(f)(x_0) = \sum_{k=1}^{r} P(f)(u_{m_1+\cdots+m_{k-1}+1})$ est la décomposition de $P(f)(x_0)$ sur $F_1 \oplus \cdots \oplus F_p$

Soit $Q \in \mathbb{C}[X]$. On a donc $Q(f)(x_0) = 0 \iff \forall k \in [1, p], \ Q(f)(e_k) = 0$

Je note $e_k = u_{m_1 + \dots + m_{k-1} + 1}$ et on a $\mathcal{B}_k = (e_k, \varphi_k(e_k), \dots, \varphi_k^{m_k - 1}(e_k))$ est une base de F_k

On a vu que la matrice de φ_k dans cette base est $\mathcal{C}_{\mathcal{X}^{m_k}}$

donc $\pi_{\varphi_k}=\mathbf{X}^{m_k}$ car φ_k est cyclique et nilpotent et $\dim(\mathbf{F}_k)=m_k$ selon 12

$$\forall k \in [1, p], (f - \lambda_k \text{Id})^{m_k} (u_{m_1 + \dots + m_{k-1} + 1}) = 0 \text{ puis}$$

$$\forall k \in [1, p], \ \forall i \in [1, m_k], \ u_{m_1 + \dots + m_{k-1} + i} \in F_k$$

Par ailleurs on montre facilement que

$$\forall P \in \mathbb{C}[X], P(\varphi_k) = 0 \iff P(\varphi_k)(e_k) = 0$$

car $P(\varphi_k)$ commute avec tout φ_k^i et que $(\varphi_k^i(e_k))_{0 \le i < m_k}$ est une base de F_k .

Par ailleurs on a $Q(\varphi_k) = 0 \iff X^{m_k}|Q$ (nilpotent et cyclique)

donc
$$Q(f)(e_k) = 0 \iff Q(\varphi_k + \lambda_k \mathrm{Id}_{F_k})(e_k) = 0 \iff X^{m_k}|Q(X + \lambda_k)$$

ainsi $Q(f)(e_k) = 0 \iff (X - \lambda_k)^{m_k} |Q(X)|$

donc comme les $(X - \lambda_k)^{m_k}$ sont deux à deux premiers entre eux,

on a finalement
$$Q(f)(x_0) = 0 \iff \prod_{k=1}^p (X - \lambda_k)^{m_k} |Q|$$

19. Soit
$$(\lambda_i)_{0 \leqslant i \leqslant n-1} \in \mathbb{K}^n$$
 tel que $\sum_{i=0}^{n-1} \lambda_i f^i(x_0) = 0$ Je note $Q = \sum_{i=0}^{n-1} \lambda_i X^i$ de sorte que $Q(f)(x_0) = 0$

ainsi
$$\prod_{k=1}^{p} (X - \lambda_k)^{m_k} | Q$$
 d'après la question précédente or $\deg(Q) \leqslant n - 1 < n = \deg\left(\prod_{k=1}^{p} (X - \lambda_k)^{m_k}\right)$

donc Q est le polynôme nul et ainsi $\forall i \in [0, n-1], \ \lambda_i = 0$

donc $(f^i(x_0))_{0 \le i \le n-1}$ est une famille libre de n vecteurs de E et $n = \dim E$

d'où $(f^i(x_0))_{0 \le i \le n-1}$ est une base de E ce qui justifie que f est cyclique

III. Endomorphismes commutants, décomposition de Frobenius

20. L'application $g \mapsto f \circ g - g \circ f$ est un endomorphisme de $\mathcal{L}(E)$ dont le noyau est C(f) Ainsi C(f) est un sous-espace vectoriel de $\mathcal{L}(E)$

De plus, soit g et $h \in C(f)$. On a $(g \circ h) \circ f = g \circ f \circ h = f \circ (g \circ h)$

ainsi C(f) est stable par \circ et il est clair que $Id \in C(f)$

Ainsi C(f) est une sous-algèbre de $\mathcal{L}(E)$

III.A. Commutant d'un endomorphisme cyclique

21. On a $g(x_0) \in E$ et $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ est une base de E.

d'où l'existence de
$$\lambda_0,\lambda_1,\dots,\lambda_{n-1}$$
 de $\mathbb K$ tels que $g(x_0)=\sum_{k=0}^{n-1}\lambda_kf^k(x_0)$

22. Il suffit d'établir que les applications linéaires g et $\sum_{k=0}^{n-1} \lambda_k f^k$ coïncident sur la base $(x_0, f(x_0), \dots, f^{n-1}(x_0))$.

On montre par récurrence immédiate que $\forall i \in \mathbb{N}, g \in C(f^i)$

Soit $i \in [\![0,n-1]\!]$. En utilisant 21 et le fait que l'algèbre $\mathbb{K}[f]$ est commutative

$$g(f^{i}(x_{0})) = f^{i}(g(x_{0})) = f^{i}\left(\sum_{k=0}^{n-1} \lambda_{k} f^{k}(x_{0})\right) = \sum_{k=0}^{n-1} \lambda_{k} f^{k}(f^{i}(x_{0}))$$

donc
$$g = \sum_{k=0}^{n-1} \lambda_k f^k$$
 et $g \in \mathbb{K}[f]$

23. On vient d'établir le sens direct (avec un polynôme de degré $\leq n-1$)

La réciproque vient du fait que $\mathbb{K}[f]$ est une algèbre commutative et que $\mathbb{K}_{n-1}[X] \subset \mathbb{K}[X]$ et $f \in \mathbb{K}[f]$. On conclut que

$$g \in C(f)$$
 si et seulement s'il existe un polynôme $R \in \mathbb{K}_{n-1}[X]$ tel que $g = R(f)$

III.B. Décomposition de Frobenius

24. On suppose que $G = F_1 \cup \cdots \cup F_r$ est un sous espace de E.

Par l'absurde, je suppose qu'aucun des sous-espaces F_i ne contient tous les autres.

Ainsi $r \geqslant 2$ et $G \neq \{0\}$.

Méthode 1 : Quitte à réduire le nombre, on peut supposer qu'aucun F_i n'est inclus dans la réunion des autres. Cela nous fournit $x_1 \in F_1$ qui n'est dans aucun des F_i pour $i \ge 2$.

Sinon, $F_1 \neq G$ et on peut aussi trouver $y \in G \setminus F_1$.

Pour tout scalaire λ , on a $y + \lambda x_1 \notin F_1$ (car sinon $y \in F_1$) et ainsi $y + \lambda x_1 \in F_2 \cup \cdots \cup F_r$.

La droite affine $y + \mathbb{K}x_1$ est donc incluse dans $F_2 \cup \cdots \cup F_r$ et contient une infinité d'éléments

car \mathbb{K} est infini et $t \in \mathbb{K} \mapsto y + tx_1$ est injective car $x_1 \neq 0$

Ceci nous fournit $j \in [2, r]$ et $\lambda \neq \lambda'$ dans \mathbb{K} tel que $y + \lambda x_1 \in F_j$ et $y + \lambda' x_1 \in F_j$

donc $x_1 \in \mathcal{F}_i$ (par combinaison linéaire) ce qui est absurde

Méthode 2: Comme G est un K-espace vectoriel de dimension finie, on peut munir G d'une norme.

De plus les notions topologiques sur G sont indépendantes du choix de la norme car dim $G < +\infty$.

Comme les F_i sont des sous-espaces de G de dimensions finies, ce sont des fermés de G.

Soit $i \in [1, r]$. Comme $F_i \neq G$, cela nous fournit $e \in G \setminus F_i$.

Soit $x \in \mathcal{F}_i$. On a alors : $\forall p \in \mathbb{N}^*, \ x + \frac{1}{p}e \notin \mathcal{F}_i$

Pour toute boule B_x centré en x, il existe $p_0 \in \mathbb{N}^*$, $x + \frac{1}{p_0}e \in B_x$ car $\left(x + \frac{1}{p_0}e\right)_{n \ge 1}$ converge vers x

Ainsi relativement à G, les F_i sont des fermés d'intérieurs vides.

Donc pour $i \in [1, r]$, $\Omega_i = G \setminus F_i$ un ouvert dense dans G

On pose
$$V_i = \bigcap_{i=1}^i \Omega_i$$

On montre par récurrence finie que les V_i $(1 \le i \le r)$ sont des ouverts non vides de G

Pour l'initialisation c'est évident car $V_1 = \Omega_1$ est dense dans G.

Pour l'hérédité, on suppose pour i < r que V_i est un ouvert non vide

on a $V_{i+1} = V_i \cap \Omega_{i+1}$ est un ouvert (intersection de deux ouverts) et non vide car $V_i \neq \emptyset$ et Ω_{i+1} dense

donc
$$V_r \neq \emptyset$$
 et $V_r = G \setminus \left(\bigcup_{j=1}^r F_j\right) = \emptyset$ ce qui est absurde

Ainsi l'un des sous-espaces F_i contient tous les autres

Remarque : Pour r = 2, il existe une preuve classique purement algébrique. Pour le cas général, la preuve doit utiliser le fait que \mathbb{K} est infini.

En effet, si je prends le corps $K = \mathbb{Z}/2\mathbb{Z}$, $E = K^2$, $F_1 = \text{Vect}((1,0))$, $F_2 = \text{Vect}((0,1))$ et $F_3 = \text{Vect}((1,1))$.

On a $E = F_1 \bigcup F_2 \bigcup F_3$ et pourtant aucun des sous-espaces F_i ne contient tous les autres.

25. Soit $x \in E$ On considère l'application $\varphi_x : P \in \mathbb{K}[X] \longmapsto P(f)(x) \in E$.

Comme $I_x = \{P \in \mathbb{K}[X]/ P(f)(x) = 0\}$ est le noyau de l'application linéaire φ_x ,

 I_x un sous groupe de ($\mathbb{K}[X], +$)

Pour $P \in I_x$ et $Q \in K[X]$, on a $QP \in I_x$

 $\operatorname{car}\left(\operatorname{QP}(f)(x) = \left(\operatorname{Q}(f) \circ \operatorname{P}(f)\right)(x) = \operatorname{Q}(f)\left(\operatorname{P}(f)(x)\right) = 0 \operatorname{car} \operatorname{Q}(f) \in \mathcal{L}(\operatorname{E})$

d'où I_x est un idéal de $\mathbb{K}[X]$ comme $\pi_f \in I_x$, cet idéal est non réduit à $\{0\}$

ce qui nous fournit $\pi_{f,x} \in \mathbb{K}[X]$ unitaire (donc non nul) tel que $I_x = (\pi_{f,x}) = \{\pi_{f,x}P \mid P \in \mathbb{K}[X]\}$

On remarque que : $\forall x \in E, \ \pi_{f,x} | \pi_f$

Si on écrit $\pi_f = \prod_{k=1}^{N} P_i^{\alpha_i}$ décomposition en facteurs irréductibles, où $N \in \mathbb{N}^*$, les P_i sont irréductibles unitaires et distincts deux à deux et enfin les $\alpha_i \in \mathbb{N}^*$.

Alors le nombre de diviseurs unitaires de π_f est $\prod_{k=1}^{N} (\alpha_i + 1)$

Ainsi l'ensemble $\{\pi_{f,x} \mid x \in E\}$ est fini de cardinal noté r où $r \in [1, \prod_{k=1}^{N} (\alpha_i + 1)]$

On peut donc choisir $u_1, \ldots u_r \in \mathcal{E}$, tel que $\{\pi_{f,x} \mid x \in \mathcal{E}\} = \{\pi_{f,u_i} \mid i \in [1,r]\}$

Ainsi
$$E = \bigcup_{i=1}^{r} \ker(\pi_{f,u_i}(f)) \operatorname{car} \forall x \in E, \ x \in \ker(\pi_{f,x}(f))$$

La question 24 nous fournit $i_0 \in [1, r]$ tel que $\ker(\pi_{f, u_{i_0}}(f)) = E$

On note $x_1 = u_{i_0}$ et on a $\ker(\pi_{f,x_1}(f)) = E$

On remarque que $\pi_{f,x_1}(f) = 0_{\mathcal{L}(E)}$ donc $\pi_f | \pi_{f,x_1}$

or $\pi_{f,x_1}|\pi_f$ et ce sont des polynômes unitaires

donc $\pi_{f,x_1} = \pi_f$ Finalement

$$\forall P \in \mathbb{K}[X], \ P(f)(x_1) = 0 \Longleftrightarrow \pi_f | P$$

en faisant comme en 19, on montre que $(x_1, f(x_1), \dots, f^{d-1}(x_1))$ est libre

26. En faisant comme en 9, on montre que E_1 est stable par f

De plus, on a $E_1 = \{P(f)(x_1)/P \in \mathbb{K}_{d-1}[X]\} \subset \{P(f)(x_1)/P \in \mathbb{K}[X]\}$

Soit $P \in \mathbb{K}[X]$. Comme $\pi_f \neq 0$,

le théorème de la division euclidienne nous fournit Q et $R \in \mathbb{K}[X]$ tels que $\begin{cases} P = Q\pi_f + R \\ \deg(R) < d = \deg(\pi_f) \end{cases}$

On a alors $P(f)(x_1) = [Q(f) \circ \pi_f(f)](x_1) + R(f)(x_1) = R(f)(x_1) \in \{T(f)(x_1) / T \in \mathbb{K}_{d-1}[X]\}$

On conclut que $E_1 = \{P(f)(x_1)/P \in \mathbb{K}[X]\}$

27. D'après ce qui précède $\mathcal{B}=(e_1,e_2,\ldots,e_d)$ est une base de E_1 .

De plus on a $\mathcal{M}_{\underline{\mathcal{B}}}(\psi_1) = \mathcal{C}_{\pi_f}$ matrice compagnon du π_f polynôme unitaire de degré $d = \dim(\mathcal{E}_1)$

alors d'après 5, ψ_1 est cyclique

28. Pour $i \in \mathbb{N}$, on note $F_i = \operatorname{Ker} \left(\Phi \circ f^i \right)$ ainsi $F = \bigcap_{i \in \mathbb{N}} F_i$ est bien un sous-espace de E

De plus, on a pour $i \ge 1$, $f(F_i) \subset F_{i-1}$ donc

$$f(\mathbf{F}) \subset f\left(\bigcap_{i \in \mathbb{N}^*} \mathbf{F}_i\right) \subset \bigcap_{i \in \mathbb{N}^*} f\left(\mathbf{F}_i\right) \subset \bigcap_{i \in \mathbb{N}^*} \mathbf{F}_{i-1} = \mathbf{F}$$

d'où
$$F$$
 est stable par f
Soit $u \in E_1 \cap F$.

Comme
$$u \in E_1$$
, cela nous fournit $\lambda_1, \ldots, \lambda_d \in \mathbb{K}$ tels que $u = \sum_{k=1}^d \lambda_k e_k$

or
$$\Phi(x) = \lambda_d$$
 et $\Phi(f^0(x)) = 0$ car $u \in F$, donc $\lambda_d = 0$ d'où $u = \sum_{k=1}^{d-1} \lambda_k e_k$

puis
$$f(u) = \sum_{k=1}^{d-1} \lambda_k e_{k+1}$$
 et donc $\lambda_{d-1} = 0$ et $f(u) = \sum_{k=1}^{d-2} \lambda_k e_{k+1}$

En réitérant le procédé, on trouve $\lambda_{d-2} = \ldots = \lambda_1 = 0$

donc u = 0

L'autre inclusion étant évidente, on a $E_1 \cap F = \{0\}$ d'où E_1 et F sont en somme directe

29. Je note Ψ_1 l'application linéaire induite par Ψ entre \mathbf{E}_1 et \mathbb{K}^d

Soit $x \in \text{Ker}(\Psi_1)$.

On a
$$x \in E_1$$
 et $\Phi(x) = \Phi(f(x)) = \dots = \Phi(f^{d-1}(x)) = 0$.

En faisant comme à la question précédente, on obtient x=0

L'autre inclusion étant évidente, on a $Ker(\Psi_1) = \{0\}$

Ainsi Ψ_1 est une application linéaire injective entre E_1 et \mathbb{K}^d or $\dim(E_1) = d = \dim(\mathbb{K}^d)$

En utilisant le théorème du rang, on obtient que Ψ_1 est surjective puis bijective

Ainsi Ψ induit un isomorphisme entre \mathbf{E}_1 et \mathbb{K}^d

30. De la question précédente, on montre que Ψ est surjective de E vers \mathbb{K}^d et que $\ker(\Psi) \cap E_1 = \{0\}$.

Ainsi
$$\dim (E_1) = d = \operatorname{rg}(\Psi)$$
 et $\dim(E) = \dim (\ker(\Psi)) + \operatorname{rg}(\Psi) = \dim (\ker(\Psi)) + \dim (E_1)$

 $\mathrm{donc}\ E=E_1\oplus\mathrm{Ker}(\Psi)$

On a
$$\operatorname{Ker} \Psi = \bigcap_{i=0}^{d-1} \operatorname{F}_i$$
 (les F_i sont introduits en 28) on a donc $\operatorname{F} \subset \operatorname{Ker} \Psi$

Soit $x \in \text{Ker}(\Psi)$. Montrons que $x \in F$

Soit $i \in \mathbb{N}$. Il suffit d'établir que $\Phi(f^i(x)) = 0$

Le théorème de la division euclidienne nous fournit Q et $R \in \mathbb{K}[X]$ tel que $\deg(R) < d$ et $X^i = Q\pi_f + R$.

On peut écrire $\mathbf{R} = \sum_{k=0}^{d-1} a_k \mathbf{X}^k$. On a comme en 26 et car Φ est linéaire

$$\Phi(f^{i}(x)) = \Phi(0) + \Phi(R(f)(x)) = 0 + \sum_{k=0}^{d-1} a_{k} \Phi(f^{k}(x)) = 0$$

ainsi F $\supset \operatorname{Ker} \Psi$ d'où F $= \operatorname{Ker} \Psi$

on conclut que $E = E_1 \oplus F$

31. **Préambule :** Avant de commencer la construction par récurrence, on remarque que dans ce qui précède le polynôme minimal de f est celui de ψ_1 et donc que $\forall x \in F, \pi_{\psi_1}(f)(x) = 0$

Initialisation: On prend E_1 , F et ψ_1 comme ci dessus.

On a E_1 stable par F et ψ_1 cyclique.

On pose $\mathbf{P}_1=\pi_f=\pi_{\psi_1},\,\mathbf{G}_1=\mathbf{F}$ de sorte que $\mathbf{E}_1\oplus\mathbf{G}_1=\mathbf{E}$

On a $\forall x \in G_1, P_1(f)(x) = 0$

Hérédité: Soit $k \in \mathbb{N}^*$.

On suppose avoir l'existence de k sous-espaces vectoriels de E, notés E_1, \ldots, E_k et G_k tous stables par f, tels que

- E = E₁ $\oplus \cdots \oplus$ E_k \oplus G_k;
- pour tout $1 \leq i \leq k$, l'endomorphisme ψ_k induit par f sur le sous-espace vectoriel E_i est cyclique;
- si on note P_i le polynôme minimal de ψ_i , alors P_{i+1} divise P_i pour tout entier i tel que $1 \le i \le k-1$
- $-\forall x \in G_k, P_k(f)(x) = 0$

Si dim $G_k = 0$, on s'arrête et on pose r = k

Sinon, on applique 24 à 30 à l'endomorphisme induit par f sur G_k

On obtient alors E_{k+1} , G_{k+1} sous espaces stables par f et le polynôme P_{k+1} tels que

- E = E₁ $\oplus \cdots \oplus$ E_{k+1} \oplus G_{k+1};
- l'endomorphisme ψ_{k+1} induit par f sur le sous-espace vectoriel \mathbf{E}_{k+1} est cyclique;
- si on note P_{k+1} le polynôme minimal de ψ_{k+1} , alors P_{k+1} divise P_k
- $\forall x \in G_{k+1}, P_{k+1}(f)(x) = 0$

On a ainsi la construction voulue au rang k.

Conclusion: Cette construction algorithmique s'arrête car à chaque étape $\dim(E_k) \leq 1$ et donc $r \leq \dim(E)$. car $(\dim G_k)_k$ est une suite à valeurs dans $\mathbb N$ strictement décroissante.

On obtient ainsi le résultat voulu.

On en déduit qu'il existe r sous-espaces vectoriels de E, notés E_1, \ldots, E_r , tous stables par f, tels que :

- $E = E_1 \oplus \cdots \oplus E_r;$
- pour tout $1 \le i \le r$, l'endomorphisme ψ_i induit par f sur le sous-espace vectoriel \mathbf{E}_i est cyclique;
- si on note P_i le polynôme minimal de ψ_i , alors P_{i+1} divise P_i pour tout entier i tel que $1 \le i \le r-1$.

III.C. Commutant d'un endomorphisme quelconque

32. Je reprends les notations de la questions précédente pour la décomposition de Frobenius de f.

Je note Λ l'application telle que pour $(g_1,\ldots,g_r)\mathcal{L}(\mathrm{E}_1)\times\cdots\times\mathcal{L}(\mathrm{E}_r)$, on a $\Lambda(g_1,\ldots,g_r)$ défini sur E par

$$\Lambda(g_1, \dots, g_r)(x) = g_1(x_1) + \dots + g_r(x_r) \text{ où } x = \sum_{k=1}^r x_k \text{ et les } x_k \in \mathcal{E}_k$$

Ainsi définie, Λ est linéaire de $\mathcal{L}(E_1) \times \cdots \times \mathcal{L}(E_r)$ à valeurs dans $\mathcal{L}(E)$

De plus on montre facilement que Λ est injective et que $\Lambda(C(\psi_1) \times \cdots \times C(\psi_r)) \subset C(f)$

Ainsi dim $(C(f)) \ge \dim (C(\psi_1) \times \cdots \times C(\psi_r)) = \dim (C(\psi_1)) + \cdots + \dim (C(\psi_r))$

or pour $i \in [1, r]$, en notant $n_i = \dim \mathcal{E}_i$ on a $\mathcal{C}(\psi_i) = \mathrm{Vect}(\psi_i^0, \psi_i^1, \dots, \psi_i^{n_i-1})$ d'après 23 du III.A

Comme ψ_i est cyclique alors $(\psi_i^0, \psi_i^1, \dots, \psi_i^{n_i-1})$ est libre d'après 7

donc dim $(C(\psi_i)) = n_i = \dim(E_i)$ d'où

$$\dim \left(\mathrm{C}(\psi_1) \right) + \dots + \dim \left(\mathrm{C}(\psi_r) \right) = \dim \left(\mathrm{E}_1 \right) + \dots + \dim \left(\mathrm{E}_r \right) = \dim \left(\mathrm{E}_1 \oplus \dots \oplus \mathrm{E}_r \right) = \dim \left(\mathrm{E} \right) = n$$

Ainsi la dimension de C(f) est supérieure ou égale à n

33. On note $d = \deg(\pi_f)$. D'après le cours, on a dim $(\mathbb{K}[f]) = d$

or $\mathbb{K}[f] = \mathcal{C}(f)$ et dim $\mathcal{C}(f) \geqslant n$ donc $d \geqslant n$.

Or on a $\pi_f|\chi_f$ comme conséquence de Cayley-Hamilton ainsi $d\leqslant n$

donc d = n

Or en reprenant les notations précédentes, on a $\dim(E_1) = d = n$

Donc $E_1 = E$ et $\psi_1 = f$ or ψ_1 est cyclique

ainsi f est cyclique

IV. Endomorphismes orthocycliques

IV.A. Isométries vectorielles orthocycliques

34. Pour $\theta \in \mathbb{R}$, la matrice $R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ est semblable à la matrice $R(-\theta)$ (géométriquement en échangeant les deux vecteurs de la base orthonormée ce qui change l'orientation du plan).

Si $\theta \equiv 0$ [2 π], alors R(θ) = I₂.

Si $\theta \equiv \pi$ [2 π], alors R(θ) = -I₂.

Si $\theta \not\equiv 0$ [π], alors il existe $\theta' \in [0, \pi[$ tel que $R(\theta')$ soit semblable à $R(\theta')$.

D'après le cours sur la réduction des automorphismes orthogonaux, il existe une base orthonormale \mathcal{B} , p,qet $r \in \mathbb{N}$ et $\theta_1, \ldots, \theta_r \in]0, \pi[$ tels que la matrice de f dans \mathcal{B} soit diagonale par blocs de la forme : diag $(I_p, -I_q, R(\theta_1), \dots, R(\theta_r)).$

On remarque que $p + q + 2r = n = \dim(E)$

et
$$\chi_{R(\theta)} = X^2 - tr(R(\theta)) + det(R(\theta)) = X^2 - 2\cos(\theta) + 1 = (X - e^{i\theta})(X - e^{-i\theta})$$

On remarque que
$$p + q + 2r = n = \dim(E)$$

et $\chi_{R(\theta)} = X^2 - \operatorname{tr}(R(\theta)) + \det(R(\theta)) = X^2 - 2\cos(\theta) + 1 = (X - e^{i\theta})(X - e^{-i\theta})$
on a ainsi $\chi_f = \chi_{I_p} \times \chi_{(-I_q)} \times \chi_{R(\theta_1)} \times \cdots \times \chi_{R(\theta_r)} = (X - 1)^p (X + 1)^q \prod_{i=1}^r (X - e^{i\theta_i})(X - e^{-i\theta_i})$

Quitte à réordonner les vecteurs de la base, on peut supposer que $0 < \theta_1 \leqslant \theta_2 \leqslant \cdots \leqslant \theta_r < \pi$

ainsi p est la multiplicité de 1, q est la multiplicité de -1 dans χ_f et les $\theta_1, \ldots, \theta_r$ sont donnés dans l'ordre par les racines non réelles de χ_f

Ainsi comme $\chi_f = \chi_{f'}$, on pourra trouver \mathcal{B}' base orthonormée telle que $\mathcal{M}_{\mathcal{B}'}(f')$ ait la même forme diagonale par blocs.

ainsi | il existe des bases orthonormales \mathcal{B} et \mathcal{B}' de E telles que $\mathcal{M}_{\mathcal{B}}(f) = \mathcal{M}_{\mathcal{B}'}(f')$

35. \Longrightarrow : On suppose que f est orthocyclique.

Ceci nous fournit $Q = X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0 \in \mathbb{R}[X]$ et \mathcal{B} une base orthonormée de E tels que

$$\mathcal{MB}(f) = \mathbf{C}_{\mathbf{Q}} = \begin{pmatrix} 0 & \dots & \dots & 0 & -a_{0} \\ 1 & 0 & \dots & \dots & 0 & -a_{1} \\ 0 & 1 & \ddots & & \vdots & -a_{2} \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & & \ddots & 1 & 0 & -a_{n-2} \\ 0 & \dots & \dots & 0 & 1 & -a_{n-1} \end{pmatrix} = (\mathbf{C}_{1}| \dots | \mathbf{C}_{n})$$

où C_1, \ldots, C_n désigne les colonnes de la matrice.

Comme $f \in O(E)$, \mathcal{B} est orthonormée, alors $\mathcal{M}_{\mathcal{B}}(f) \in O(n)$

d'où (C_1, \ldots, C_n) est une base orthonormée de \mathbb{R}^n muni du produit scalaire usuel noté $\langle \cdot, \cdot \rangle$

donc pour $1 \leq i \leq n-1$, on a $C_i \perp C_n$ et donc $0 = \langle C_i, C_n \rangle = -a_i$ et $1 = \langle C_n, C_n \rangle = a_0^2$

ainsi
$$a_0 \in \{-1, 1\}$$
 et $\mathcal{M}_{\mathcal{B}}(f) = \mathcal{C}_{\mathcal{Q}} = \begin{pmatrix} 0 & \dots & \dots & 0 & -a_0 \\ 1 & 0 & \dots & \dots & 0 & 0 \\ 0 & 1 & \ddots & & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & & \ddots & 1 & 0 & 0 \\ 0 & \dots & \dots & 0 & 1 & 0 \end{pmatrix}$

Ainsi d'après 3, on a $\chi_f \in \{X^n - 1, X^n + 1\}$

 \Leftarrow : On suppose que $\chi_f = X^n + a$ avec $a \in \{-1, 1\}$.

On note $Q = \chi_f$ et on considère $\mathcal{B} = (e_1, \dots, e_{n-1}, e_n)$ une base orthonormée de E.

On considère alors l'unique endomorphisme $g \in \mathcal{L}(E)$ tel que $\mathcal{M}_{\mathcal{B}}(g) = C_{\mathbb{Q}}$ fourni par le cours.

g envoie la base \mathcal{B} sur la famille $\mathcal{F} = (e_2, \ldots, e_n, ae_1)$.

On remarque que \mathcal{F} est une famille orthonormale de E composée de n vecteurs de E or dim(E) = n donc q est un endomorphisme de E qui envoie la base orthonormée \mathcal{F} sur la base orthonormée \mathcal{F}

Ainsi
$$g \in O(E)$$
 et $\chi_g = \chi_{\mathcal{M}_B(g)} = \chi_{C_O} = Q = \chi_f$ et $f \in O(E)$.

Alors la question 34 nous fournit les deux bases orthonormées respectivement \mathcal{B}_f et \mathcal{B}_g pour lesquelles respectivement f et g ont la même matrice notée M. Ainsi il existe $P \in O(n)$ matrice de changement de bases orthonormales telle que

$$\mathbf{M} = \mathbf{P}^{-1} \mathcal{M}_{\mathcal{B}}(g) \mathbf{P} = \mathbf{P}^{-1} \mathbf{C}_{\mathbf{Q}} \mathbf{P}$$

Ainsi la matrice $C_Q = PMP^{-1} = P\mathcal{M}_{\mathcal{B}_f}(f)P^{-1}$ représente f dans une base orthonormée.

Ce qui prouve que f est orthocyclique.

On en déduit que : f est orthocyclique si et seulement si $\chi_f = X^n - 1$ ou $\chi_f = X^n + 1$

IV.B. Endomorphismes nilpotents orthocycliques

36. Comme f est nilpotent, le cours nous fournit une base $\mathcal{B}_s = (e_1^s, \dots, e_n^s)$ telle que $\mathcal{M}_{\mathcal{B}_s}(f)$ soit triangulaire supérieure.

On applique le procédé de Gram-Schmidt à \mathcal{B}_s pour obtenir une base orthonormale $\mathcal{B}_o = (\epsilon_1, \epsilon_2, \dots, \epsilon_n)$ et en notant la matrice de passage P de \mathcal{B}_s à \mathcal{B}_o est triangulaire supérieure ainsi que P^{-1} .

Comme le sous-espace des matrices triangulaires supérieures est stable par produit;

alors la matrice $\mathcal{M}_{\mathcal{B}_o}(f) = \mathbf{P}^{-1}\mathcal{M}_{\mathcal{B}_s}(f)\mathbf{P}$ est triangulaire supérieure.

Alors en notant $\mathcal{B}_i = (\epsilon_n, \dots, \epsilon_2, \epsilon_1)$, on a \mathcal{B}_i base orthonormale de E et $\mathcal{M}_{\mathcal{B}_i}(f)$ triangulaire inférieure

ainsi [i] existe une base orthonormale de E dans laquelle la matrice de f est triangulaire inférieure

37. \Leftarrow : On suppose que f est de rang n-1 et que $\forall x,y \in (\ker f)^{\perp}, \ (f(x)|f(y))=(x|y).$

La question précédente nous fournit une base orthonormée $\mathcal{B}=(e_1,\ldots,e_n)$ tel que $A=\mathcal{M}_{\mathcal{B}}(f)$ soit triangulaire inférieure.

Je note $A = (C_1 | \dots | C_n)$ en colonnes.

Comme f est nilpotente, alors $\chi_f = \mathbf{X}^n$ d'après le cours

donc la matrice est triangulaire strictement inférieure (diagonale nulle)

ainsi $e_n \in \operatorname{Ker} f \setminus \{0\}$ et comme dim $(\operatorname{Ker} f) = n - \operatorname{rg}(f) = 1$,

on a Ker $f = \text{Vect}(e_n)$ et Ker $(f)^{\perp} = \{e_n\}^{\perp} = \text{Vect}(e_1, \dots, e_{n-1})$ car \mathcal{B} est orthonormée

Ainsi pour tout $i,j\in [\![1,n-1]\!],$ par calcul dans une base orthonormée on a :

$$\langle C_i, C_j \rangle = (f(e_i)|f(e_j)) = (e_i|e_j) = \delta_{i,j}$$
 (symbole de Kronecker)

donc si $1 \le i < j \le n-1$, on a $\langle C_i, C_j \rangle = 0$ et $\langle C_i, C_i \rangle = \langle C_j, C_j \rangle = 1$

On a donc
$$C_n = \begin{pmatrix} 0 \\ \vdots \\ \vdots \\ 0 \end{pmatrix}$$
 et $C_{n-1} = \begin{pmatrix} 0 \\ \vdots \\ \vdots \\ 0 \\ a_{n-1} \end{pmatrix}$ avec $a_{n-1} \in \{-1, 1\}$ car $a_{n-1}^2 = \langle C_{n-1}, C_{n-1} \rangle = 1$

On trouve ensuite
$$C_{n-2} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ a_{n-2} \\ 0 \end{pmatrix}$$
 avec $a_{n-1} \in \{-1,1\}$ car $\langle C_{n-2}, C_{n-1} \rangle = 0$ et $\langle C_{n-2}, C_{n-2} \rangle = 1$
En procédant de même, on obtient $A = \begin{pmatrix} 0 & \dots & \dots & 0 & 0 \\ a_1 & 0 & \dots & \dots & 0 & 0 \\ 0 & a_2 & \ddots & & \vdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & a_{n-2} & 0 & 0 \\ 0 & \dots & \dots & 0 & a_{n-1} & 0 \end{pmatrix}$ où les $a_i \in \{-1,1\}$

Ainsi f est orthocyclique.

 \implies : On suppose que f est orthocyclique.

Comme f est cyclique et nilpotent , on a $\pi_f = \chi_f = X^n$ d'après 12

Commune f est orthocyclique,

cela nous fournit une base orthonormée $\mathcal{B} = (e_1, \dots, e_n)$ telle que $\mathcal{M}_{\mathcal{B}}(f) = C_Q$.

Comme $X^n = \chi_f = \chi_{C_Q} = Q$, on a $\mathcal{M}_{\mathcal{B}}(f) = C_{X^n}$.

donc $\operatorname{rg}(f) = \operatorname{rg}(C_{X^n}) = n - 1$, $\operatorname{Vect}(e_n) = \operatorname{Ker} f$ et $\operatorname{Vect}(e_1, \dots, e_{n-1}) = (\operatorname{Ker} f)^{\perp}$

et on vérifie facilement que $\forall x, y \in (\ker f)^{\perp}$, (f(x)|f(y)) = (x|y) par calcul dans la base orthonormée \mathcal{B}