CHAPTER 2

PIXEL RELATION

By: Prof. (Dr.) Paramartha Dutta
Visva Bharati University
Santiniketan, West Bengal, India

Pixel Relationship

- □ Pixel
- Pixel Neighbourhood and Type of Neighbourhood
- □ Pixel Connectivity
- □ Connected Component
- Different Distance Measure Techniques
- □ Arithmetic/Logical Operator
- Neighborhood Operation

Back to Course Content Page

What is Pixel?

- After sampling we get no. of analog samples and each sample have intensity value which can be Quantized as final step of digitization
- Quantized to discrete label
- 8bit for black and white image
- 24bit for colour image
- A matrix element is called pixel.
- For 8 bit a pixel can have value between 0 to 256

Neighbourhood

A pixel p at location (x,y) has 2 horizontal and 2 vertical neighbour. In total a pixel p has four neighbour.

	(x-1, y)	
(x, y-1)	P (x, y)	(x, y+1)
	(x+1, y)	

- □ This set of four pixel is called 4 neighbour of $p = N_4(p)$
- Each of this neighbour is at a unit distance from p
- If p is a boundary pixel then it will have less neighbours.

Neighbourhood Cont..

Boundary Pixel

Boundary pixel has only two neighbour

A pixel p has four diagonal neighbour N_D(p)

(x-1, y-1)		(x-1, y+1)
	P (x, y)	
(x+1, y-1)		(x+1, y+1)

 $_{\square}$ The point of $N_{_{4}}(p)$ and $N_{_{D}}(p)$ together are called 8 neighbourof p

$$N_8(p) = N_D(p) U N_D(p)$$

Pixel Connectivity

Pixel connectivity is very useful for establishing object boundary and defining image component/ region etc.

```
If f(x,y) > Th (threshold)

(x,y) \in object

else

(x,y) \in background
```


Here pixel connected to 1 belongs to one object

Pixel Connectivity Cont...

- Two pixel are said to be connected if they are adjacent in same sense
 - \blacksquare They are neighbour ($N_4 N_D$ or N_8) and
 - Their intensity value (gray level) are similar
 - Example: For a binary image B two points p and q will be connected if $q \in N(p)$ are $p \in N(q)$ and B(p) = B(q)

Р		
	q	

р	
q	

р	q

Here p and q are connected iff their intensity value are same

Define Connectivity in Gray Level

- □ Let v be the set of gray level used to define connectivity for two points (p,q) € V
- Three type of connectivity are defined
 - 4 connectivity \rightarrow p,q \in v & p \in N₄(q)
 - 8 connectivity \rightarrow p,q \in v & p \in N₈(q)
 - M connectivity (Mixed Connectivity) p,q e v are m connected if
 - \blacksquare q \in N₄(p) or
 - $\mathbf{q} \in N_D(p)$ and $N_4(p) \cap N_D(p) = \Phi$

Mixed Connectivity

- Mixed connectivity is modification of 8 connectivity
 - Only inclusion of concept is eliminating the multiple path often arises with 8 connectivity

 \square Example $V = \{1\}$

0

0	1		— 1	<u>ر</u>
0	1	•	0	
0	0		1	

Multiple path

 $N_4(p) \cap N_D(p) = ^{\phi}$ so $N_D(p)$ is not taken

4 connected

0

0

0

0

8 connected

M connected

Connected Component

- Adjacency: Two pixel p & q are adjacent if they are connected
 - 4 adjacency
 - 8 adjacency
 - M adjacency
- Depending on type of connectivity used two image subset s_i and s_i are adjacent If p ∈ s_i and q ∈ s_j such that p and q are adjacent

Connected Component

Path: A path from p(x,y) to q(s,t) is a sequence of distinct pixel

$$(x_0,y_0)$$
, (x_1,y_1) ,, (x_n,y_n)
Where $(x_0,y_0)=(x,y)$ and $(x_n,y_n)=(s,t)$
 (x_i,y_i) is adacent to (x_{i-1},y_{i-1}) for $1 \le l \le n$
here n is the length of path

Connected Component

- □ Let $S \subseteq I$ and $p,q \in S$
- Then p is connected to q in S if there is a path from p to q consisting entirely of pixels in S
- □ For any p ∈ S, the set of pixel in S that are connected to p is call a connected component of S

Point p is connected to point q and r but not connected with point k

Connected Component Labeling

- Ability to assign different label to the various disjoint connected components of an image
- Connected component labeling is fundamental step in automated image analysis

Two disjoint connected component

connected component labeling

Algorithm (Group identification)

- Scan image from Left to Right and Top to Bottom
- Assume 4 connectivity
- P be a pixel at any step in the scanning process

- Before p point r and t are scanned i.e before p its neighbours are scanned
- The purpose of this algorithm is to assign identification no.

Algorithm Steps

- □ I(p): pixel at position p
- L(p): label assigned to pixel location p
- \Box If I(p) = 0, move to next scanning position
- □ If I(p) = 1, and I(r) = I(t) = 0
 - Then assign a new label to position p
- \square If I(p) = 1 and only one of two neighbour is 1
 - Then assign its label to p
- \square If I(p) = 1 and both r and t are 1
 - Then
 - If L(r) = L(t) then L(p) = L(r)
 - If $L(r) \neq L(t)$ then assign one of the label to p

Algorithm Steps Cont..

- At the end of scan all pixel with value 1 are labeled
- Some label are equivalent
- Equivalent label make a pais
- During second pass process equivalent pairs to form equivalent classes
- Assign different label to each class
- In the second pass through the image replace each label by label assign to its equivalent class

Algorithm Demo

First Pass

(1,2) , (4,3) and (5,1) are equivalent pair

Assign 1 because its left neighbour is 1

Assign new label (say 2) as I(r) = I(t) = 0

Algorithm Demo

Second Pass: In the second pass through the image replace each label by label assign to its equivalent class

Here two separate region/ group are identified YELLOE (1) region and RED (3) region

Distance Measure

- Take three pixel
- \square p \approx (x,y) q \approx (s,t)

 $z \approx (U,V)$

- D is distance function if
 - \square D(p,q) ≥ 0 ; D(p,q) = 0 iff p = q (p & q is same pixel)
 - \square D(p,q) = D(q,p) (distance from p to q & q to p is same)
 - \square D(p, z) \leq D(p,q) + D(q,z)

Distance Measure Technique

- Euclidean Distance
- City Block Distance (Manhattan Distance)
- Chess Board Distance
- Euclidean distance between two point p(x,y) & q(s,t)
 is defined as

$$D(p,q) = [|x-s|^2 + |y-t|^2]^{1/2}$$

Distance Measure Technique

- City Block Distance
- \square D₄ distance or City Block (Manhattan) distance is defined as

$$D_4(p,q) = |x-s| + |y-t|$$

Point having city block distance from p less than or equal to r from

diamond center

				3				
			3	2	3			
		3	2	1	2	3		
	3	2	1	р	1	2	3	
		3	2	1	2	3		
			3	2	3			
				3				

Distance Measure Technique

- Chess Board Distance
- \square D₈ distance or Chess Board Distance is defined as

$$D_8(p,q) = max(|x-s|, |y-t|)$$

 \square Point with $D_8 = 1$ are 8 neighbour of p

	3	3	3	3	3	3	3	
	3	2	2	2	2	2	3	
	3	2	1	1	1	2	3	
	3	2	1	P	1	2	3	
	3	2	1	1	1	2	3	
	3	2	2	2	2	2	3	
	3	3	3	3	3	3	3	

Arithmetic/Logical Operator

- □ If pixel $p \in I_1$ and $q \in I_2$ where I_1 and I_2 are two different images then
- Arithmetic Operators are
- □ p + q
- □ p q
- □ p * q
- □ p % q
- Logical Operator
- p.q (Logical AND)
- p+q (Logical OR)
- □ p' (NOT)
- Logical operators are only applied to binary image

Logical Operator

Neighbourhood Operation

The value assigned to a pixel is a function of its gray label and the gray label of its neighbours

Averaging

$$Z = 1/9 (Z_1 + Z_2 + \dots + Z_9)$$

Neighbourhood Operation

More general form

$$\begin{array}{c|cccc}
Z_1 & Z_2 & Z_3 \\
\hline
Z_4 & Z_5 & Z_6 \\
\hline
Z_7 & Z_8 & Z_9
\end{array}$$

$$Z = W_1 Z_1 + W_2 Z_2 + \dots + W_9 Z_9$$

= $\sum W_i Z_i$ for $i = 1$ to 9

It is useful for

Noise filtering

Edge Detection

Various important operation can be implemented by proper selection of coefficient W_i