Smooth Sorting

Aresh Pourkavoos

October 11, 2023

softmax:
$$\mathbb{R}^n \to [0,1]^n$$
, softmax $(v)_i = \frac{\exp(v_i)}{\sum_{j=1}^n \exp(v_j)}$

softmax: $\mathbb{R}^n \to [0,1]^n$, softmax $(v)_i = \frac{\exp(v_i)}{\sum_{j=1}^n \exp(v_j)}$ Gives smoothed version of argmax, which returns vector with 1 in position of largest element and 0 elsewhere Entries have sum 1: may be interpreted as probability that given element of v is the largest Want to generalize to $\operatorname{soft}_k(v)$ for $k \in \{1, \ldots, n\} = [n]$: probability that v_i is the k^{th} -largest Desired properties:

- 1. $soft_1 = softmax$
- 2. $\operatorname{soft}_{n+1-k}(v) = \operatorname{soft}_k(-v)$
- 3. The largest entry of soft_k(v) is in the same place as the k^{th} -largest entry of v
- 4. $\sum_{i=1}^{n} \operatorname{soft}_{k}(v)_{j} = 1$ (exactly one element of v is at position k)
- 5. $\sum_{k=1}^{n} \operatorname{soft}_{k}(v)_{j} = 1$ (v_{j} is in exactly one position)
- 6. soft_k is smooth
- 7. $\operatorname{soft}_k(v) = \operatorname{soft}_k(u)$ if there is $c \in \mathbb{R}$ such that for all $i, u_i = v_i + c$, i.e. $soft_k$ does not change when adding a constant to all elements of the input

Define $S \in \mathbb{R}^{n \times n}$ by $S_{jk} = \operatorname{soft}_k(v)_j$

Properties 4 and 5: S is doubly stochastic

Birkhoff's theorem: $S = \sum_{\pi} P(\pi) M_{\pi}$ over permutations π of [n], M_{π} has 1 in position $(\pi(i), i)$ and 0 elsewhere, $P(\pi) \in [0, 1]$, $\sum_{\pi} P(\pi) = 1$ Interpretation: $P(\pi) = \text{probability of } v_{\pi(k)}$ being k^{th} -largest for all k

Justification: $S_{jk} = \sum_{\pi(k)=j} P(\pi)$: v_j is k^{th} -largest iff a permutation where v_j is k^{th} -largest is chosen Reframe problem: define a distribution over permutations, get 4 and 5 for free

Equivalently, define procedure to pick a random permutation: "smooth" sorting

First attempt: property 1 may be rewritten $P(\pi(1) = j) = \operatorname{softmax}(v)_i$ Can ensure by picking $\pi(1) = a$ first, then permuting the remaining n-1 elements recursively:

- Define $\sigma: [n] \setminus \{a\} \leftrightarrow [n-1]$ by $\sigma(i) = i$ if i < a and i-1 if i > a: map between indices
- Let $v' \in \mathbb{R}^{n-1}$ where $v'_i = v_{\sigma(i)}$ (i.e. v' is v with v_a removed)
- Find permutation π' of [n-1] based on v'
- Define $\pi(i) = a$ if i = 1 and $\sigma^{-1}(\pi'(i-1))$ otherwise

Base case n=0: identity permutation

Since softmax satisfies independence of irrelevant alternatives (IIA), this is equivalent to:

- Repeatedly pick $i \in [n]$ with probability softmax $(v)_i$
- If already seen, discard; else, add to list

• Once list has length $n, \pi(k) =$ element at k^{th} position

However, this procedure does not satisfy property 2:

- Let n = 3, $v_1 = 2$, $v_2 = 1$, $v_3 = 0$
- Then $soft_3(v)_3 = soft_1(-v)_3 = \frac{\exp(0)}{\exp(-2) + \exp(-1) + \exp(0)} \approx 0.67$
- \bullet Procedure picks v_3 last iff either $(v_1$ first, then $v_2)$ or $(v_2$ first, then $v_1)$
- Probability = $\frac{\exp(2)}{\exp(2) + \exp(1) + \exp(0)} \frac{\exp(1)}{\exp(1) + \exp(0)} + \frac{\exp(1)}{\exp(2) + \exp(1) + \exp(0)} \frac{\exp(2)}{\exp(2) + \exp(0)} \approx 0.70$

New procedure: should act on v "symmetrically" to satisfy property 2

Idea: pick $\pi(1) = a$ and $\pi(n) = b$ at once, then find middle recursively using v without v_a or v_b

(Base cases are now n = 0 or 1: still identity)

First attempt: pick a by softmax(v) and b by softmax(-v) independently Equivalently:

- Define matrix E by $E_{ab} = \exp(v_a v_b)$
- Pick (a,b) with probability proportional to E_{ab} , i.e. equal to $E_{ab}/(\text{sum of entries of }E)$

E stores non-normalized joint distribution of (a,b)

Non-normalized marginal distribution of a given by $\sum_b E_{ab} = \exp(v_a) \sum_b \exp(-v_b)$

Proportional to $\exp(v_a)$, which is proportional to softmax $(v)_a$, so property 1 satisfied

Problem: a could equal b since $E_{aa} = \exp(v_a - v_a) = 1 \neq 0$: can't have $\pi(1) = \pi(n)$

Need to fix E by making diagonal 0 without changing marginal distributions (ratios of row/column sums) First attempt:

- Just zero out diagonal
- Equivalently, try to pick a and b again with the same probabilities until $a \neq b$
- Sum of each row decreases by 1, but since rows can have different sums, their ratio can change
- Thus marginal distribution of a not preserved (same for b)
- Scaling E to restore sum of entries doesn't help since ratios of row/column sums don't change

Second attempt:

- Zero out diagonal, add $\frac{1}{n-1}$ to all other entries
- Equivalently, pick a and b as usual, but if a = b, pick a distinct pair uniformly instead
- Row/column sums decrease by 1 in 1 spot and increase by $\frac{1}{n-1}$ in n-1 spots: no change
- \bullet Thus marginal distributions of a and b preserved: success!

Recall this is a single iteration: overall process finds $\pi(1)$ and $\pi(n)$, then $\pi(2)$ and $\pi(n-1)$, ... Use probabilities of picking each π to define soft_k as described by Birkhoff's thm.

Satisfies properties 1, 2, 4, 5, 6, and 7 by virtue of its construction

However, procedure suggests that closed form of soft_k must case on whether k < n/2

(Also expensive by naive method, but not currently a concern)