Matemática Finita / Discreta

Exercícios Resolvidos 1 - Divisibilidade, Algoritmo de Euclides, Equação de Bézout

1. Determine o quociente e o resto, para a divisão inteira dos seguintes pares dividendo/divisor: (i) D=1745, d=23 (ii) D=-1745, d=23.

Resolução: (i) Pelo algoritmo usual obtemos $1745 = 23 \cdot 75 + 20$, donde o quociente é 75 e o resto é 20.

(ii) A equação anterior permite escrever $-1745 = 23 \cdot (-75) - 20$. Uma vez que o resto é, por definição um inteiro entre 0 e 22, temos que fazer a seguinte modificação:

$$-1745 = 23 \cdot (-75 - 1) + 23 - 20 = 23 \cdot (-76) + 3$$

pelo que, agora, o quociente é -76 e o resto 3.

2. Implemente o algoritmo de Euclides para determinar o máximo divisor comum d, entre os naturais 637 e 231. Verifique que 637/d e 231/d são números naturais.

Resolução: Aplicando o algoritmo de divisão sucessivamente, obtemos:

$$637 = 2 \cdot 231 + 175$$

$$231 = 1 \cdot 175 + 56$$

$$175 = 3 \cdot 56 + 7$$

$$56 = 8 \cdot 7$$

logo, (637,175) = 7. Finalmente temos 637/7 = 91 e 231/7 = 33, como pretendido.

- 3. Considere os inteiros a = 2406 e b = 654.
 - (a) Encontre d = mdc(a, b), o máximo divisor comum entre $a \in b$.
 - (b) Encontre inteiros $x \in y$, que satisfaçam a identidade de Bézout ax + by = d.

Resolução: (a) Para determinar o mdc, usamos o algoritmo de Euclides, fazendo sucessivas divisões com resto:

$$2406 = 3 \cdot 654 + 444$$

$$654 = 1 \cdot 444 + 210$$

$$444 = 2 \cdot 210 + 24$$

$$210 = 8 \cdot 24 + 18$$

$$24 = 1 \cdot 18 + 6$$

$$18 = 3 \cdot 6 + 0.$$

Logo

$$mdc(2406, 654) = mdc(654, 444) = \cdots = mdc(18, 6) = 6.$$

(b) Vamos usar o desenvolvimento do algoritmo de Euclides na alínea (a) para obter uma identidade da forma ax + by = 6. Assim, escrevemos:

$$6 = 24 + (-1) \cdot 18 =$$

$$= 24 + (-1) \cdot (210 - 8 \cdot 24) =$$

$$= (-1) \cdot 210 + 9 \cdot 24 =$$

$$= (-1) \cdot 210 + 9 \cdot (444 - 2 \cdot 210) =$$

$$= 9 \cdot 444 + (-19) \cdot 210 =$$

$$= 9 \cdot 444 + (-19) \cdot (654 - 444) =$$

$$= (-19) \cdot 654 + 28 \cdot 444 =$$

$$= (-19) \cdot 654 + 28 \cdot (2406 - 3 \cdot 654) =$$

$$= 28 \cdot 2406 + (-103) \cdot 654.$$

Assim, (x,y)=(28,-103) é uma solução. Esta solução pode também ser obtida através da tabela:

d_i	$-q_i$	x_i	y_i
2406		1	0
654	-3	0	1
444	-1	1	-3
210	-2	-1	4
24	-8	3	-11
18	-1	-25	92
6		28	-103

- 4. Considere novamente os inteiros a = 2406 e b = 654.
 - (a) Resolva a equação diofantina ax + by = 102, com x, y inteiros e y > 0.
 - (b) É possível resolver a equação ax + by = 184 com x, y inteiros?

Resolução: (a) Para resolver a equação ax + by = 102 primeiro verificamos que 6 é divisor de 102. De facto, $102 = 17 \cdot 6$. Como a, b e c = 102 são todos divisíveis por 6, a equação dada é equivalente a

$$\frac{2406}{6}x + \frac{654}{6}y = \frac{102}{6} \quad \Leftrightarrow 401x + 109y = 17.$$

A identidade do problema 3 mostra que $x':=28,\ y':=-103$ é solução da equação 401x+109y=1 (pois esta última equivale a 2406x+654y=6). Assim, $(x_0,y_0):=(17\cdot(28),17\cdot(-103)))=(476,-1751)$ é solução da equação pedida. No entanto, a coordenada y é negativa. Para encontrar uma outra solução com y positivo, usamos o facto de que todas as soluções de 401x+109y=17 (note-se que 401 e 109 são primos entre si) são dadas por

$$(x_k, y_k) = (x_0 + 109k, y_0 - 401k), \quad k \in \mathbb{Z}.$$

Assim, basta encontrar k inteiro de modo a ter -1751-401k positivo. Temos que ter $k \leq -5$. Por exemplo, com k = -5, obtemos $(x_k, y_k) = (-69, 254)$. [Verificação: $401 \cdot (-69) + 109 \cdot 254 = 17$.]

- (b) Como $184/6 = 30 + \frac{2}{3}$, 6 não é divisor de 184, pelo que a equação dada não tem soluções inteiras.
- 5. Encontre todas as soluções $x, y \in \mathbb{Z}$ da equação $\det A = 14$ onde

$$A = \left(\begin{array}{cc} x & 70 \\ y & 343 \end{array}\right).$$

Resolução: A equação pretendida é

$$336x - 70y = 14$$

cuja identidade de Bézout associada é:

$$336x' + 70y' = (336, 70).$$

Recorremos ao algoritmo de Euclides estendido através da tabela:

d_i	q_i	x_i	y_i
343		1	0
70	-4	0	1
63	-1	1	-4
7	-9	-1	5
0		10	-49

pelo que $343 \cdot (-1) + 70 \cdot 5 = 7$. Assim, temos

$$343(-2) - 70(-10) = 14$$

pelo que x=-2 e y=-5 é uma solução da equação pretendida. Para encontrar todas as soluções, vemos que 343/7=49 e 70/7=10 pelo que temos, finalmente:

$$x = -2 + 10k,$$
 $y = -10 - 49k,$ $k \in \mathbb{Z}.$

- 6. Mostre as seguintes propriedades da relação de divisibilidade, com $a, b \in \mathbb{Z}$:
 - (a) Para todos os inteiros a, k, temos $a \mid ka$;
 - (b) Se $a \mid b$ para todo o $a \in \mathbb{Z}$, então b = 0; Se $a \mid b$ para todo o $b \in \mathbb{Z}$, então $a = \pm 1$;
 - (c) Sejam $a, b \in \mathbb{Z}$. Se $a|b \in b|a$ então |a| = |b|;

Resolução: (a) Sejam $a, k \in \mathbb{Z}$. Por definição $a|ka \Leftrightarrow \exists q \in \mathbb{Z}$ tal que ka = qa. Esta afirmação é válida com q := k, pelo que a|ka verifica-se sempre.

(b) A expressão " $a|b \ \forall a \in \mathbb{Z}$ ", significa, por definição, que "b é um inteiro tal que, para todo a inteiro, existe $q \in \mathbb{Z}$, tal que b = qa". Seja a > b > 0; Então a|b é impossível (pois para isso teríamos $q = \frac{b}{a}$, que não é inteiro). Seja 0 > b > a; então novamente, a|b é impossível (pela mesma razão). Assim, b só pode ser 0. De facto, com b = 0 basta escolher q = 0 para termos $0 = 0 \cdot a$

para todo o $a \in \mathbb{Z}$.

A expressão " $a|b \ \forall b \in \mathbb{Z}$ ", significa, por definição, que "a é um inteiro tal que, para todo b inteiro, existe $q \in \mathbb{Z}$, tal que b = qa". Seja a um número natural maior que 1. Então $a+1 \in \mathbb{N}$ e a não divide a+1, pois o resto da divisão de a+1 por a é 1. Se a=0 não há forma de encontrar q para resolver a equação $b=q\cdot 0$ com $b\neq 0$. Mas se a=1, dado $b\in \mathbb{Z}$ temos sempre 1|b pois existe $q\in \mathbb{Z}$ (de facto, q:=b) tal que $b=q\cdot 1$. Assim, se $a\in \mathbb{N}$, a única hipótese é a=1. Do mesmo modo, se $a\in -\mathbb{N}$, verifica-se que a única hipótese é a=-1.

- (c) Sejam a, b positivos. Então a|b e b|a implica que $a \le b$ e $b \le a$ respectivamente. Logo a = b. Se a é positivo e b negativo, seja c = -b. Aplicando o raciocínio anterior, temos a = -b. Os outros casos são análogos, pelo que se sempre se conclui que |a| = |b|.
- 7. Mostre ou indique um contra-exemplo para as seguintes afirmações:
 - (a) Sejam $a, b, c \in \mathbb{Z}$. Se $a \mid bc$ então $a \mid b$ ou $a \mid c$;
 - (b) Sejam $a, b, q, r \in \mathbb{Z}$ tais que a = bq + r. Então (a, b) = (b, r);
 - (c) Sejam $a,b\in\mathbb{Z}.$ Se(a,b)=dentão $(\frac{a}{d},\frac{b}{d})=1.$
 - (d) Para $a, b \in \mathbb{Z}$, e $k \in \mathbb{N}$, temos $(ka, kb) = k \cdot (a, b)$.

Resolução: (a) A afirmação é falsa em geral. Por exemplo, se a=6, b=3 e c=4 temos que a|bc pois 6|12. No entanto, 6 não divide nem 3, nem 4. A afirmação é verdadeira nos casos em que a é primo (visto nas aulas), ou em que (b,c)=1 (ver o problema seguinte).

(b) Seja d=(a,b). Então $d\mid a$ e $d\mid b$. Logo, $d\mid (a-bq)$ pelo que $d\mid r$. Logo d é um divisor comum a r e a b. Seja c um outro inteiro que divide b e r simultaneamente. Então também divide a=bq+r. Como c divide a e b, então divide d (por definição de d=(a,b)). Assim, qualquer divisor comum a b e r divide d. Conclui-se então que d é o mdc de b e r.

(c) Se (a,b)=d então, pela aplicação do algoritmo de Euclides, existe solução inteira de ax+by=d. Mas a/d e b/d são também inteiros e aquela equação é equivalente a

$$\frac{a}{d}x + \frac{b}{d}y = 1.$$

Seja $(\frac{a}{d}, \frac{b}{d}) = c$. Então temos $c|\frac{a}{d} e c|\frac{b}{d}$, e esta equação implica c|1. Mas isto quer dizer que c=1.

(d) Seja d=(a,b). Então $kd\mid ka$ e $kd\mid kb$, porque d|a e d|b. Logo kd é um divisor comum a ka e kb. Por outro lado, pela identidade de Bézout, é possível resolver a equação d=ax+by, com $x,y\in\mathbb{Z}$, equação que equivale a kd=kax+kby. Consideremos $c\in\mathbb{Z}$ tal que c|ka e c|kb. Pela última equação c|kd. Assim, por definição, kd é o máximo divisor comum entre ka e kb.