# INTRODUCTION TO MACHINE LEARNING

**DIRK HESSE** 

**STK-INF4000, WEEK 4** 

## MACHINE LEARNING EXAMPLES

- Classify whether an email is spam or not, given the words in in it.
- Predict demand for a certain article, given past demand for similar articles.
  - How many copies of a book should we print?
  - How may gadgets do we need to stockpile?
- Predict CO2 levels today, given yesterday's levels and weather data.
- Predict relevance of a search result for a given user.
- Predict the sentiment of a product review.

#### **ROUGH DEFINITION**

Machine learning makes use of computers to interpret data and find patterns in it, often enabling us to predict properties of instances of the data not yet seen.

#### **DATA**

- We will denote our inputs X, and our target Y.
  - $\circ$  Example: X contains CO2 levels, temperature, etc. on a given day, it the CO2 levels the day after.
- ullet X is often a vector,  $X^T=(X_1,\ldots,X_p)$ .
- Y is often a scalar, but could be a vector as well.

#### **LEARNING TASK**

Given examples for X and Y, denoted

$$(x_i,y_i) \quad i=1,\ldots,n$$

find a function that gives a reasonable (for some value of reasonable) prediction  $\hat{y}$  given a previously unseen sample x.

$$x_i = \left(x_i^{(1)}, \dots, x_i^{(p)}
ight)^T$$
 and  $y_i$  are properties of the  $i$ -th example, e.g.

time spent on a website and numbers of links clicked during a visit of a specific user.

#### **TYPES OF DATA**

- Continuous
  - E.g. height, CO2 concentration.
- Categorical
  - Spam (yes or no), color.
- Ordered categorical
  - High, medium, low.

#### **TYPES OF LEARNING**

- Supervised learning.
  - As explained.
  - $\circ$  Given  $(x_i,y_i)$ , find a function to predict y given x.
  - Examples: Spam classification, demand prediction.
- Unsupervised learning.
  - $\circ$  No target Y.
  - Find patterns in the data.
  - Examples: Recommender systems, finding groups.

#### WHAT CAN BE LEARNED?

- *Y* must be dependent on *X*.
- Dependence can be very complex.
  - Example: Sentiment analysis.
  - Deep learning.

### SOME BASIC PROBABILITY

#### PROBABILITY DISTRIBUTIONS

- Discrete case:
  - $\circ$  Probability mass function, PMF:  $\mathrm{P}[X]$
  - $\circ$  Example: P[heads] = 0.5.
- Continuous case:
  - $\circ$  Probability density function, PDF: p(x)

#### **EXPECTATION VALUES**

#### **DISCRETE CASE**

$$\mathrm{E}[X] = \sum_x x \; \mathrm{P}[X = x]$$

$$\mathrm{E}[f(X)] = \sum_x f(x) \; \mathrm{P}[X=x] 
eq f(\mathrm{E}[X])$$

# EXPECTATION VALUES CONTINUOUS CASE

$$\mathrm{E}[X] = \int x \, p(x) \mathrm{d}x$$

$$\mathrm{E}[f(X)] = \int f(x) \, p(x) \mathrm{d}x 
eq f(\mathrm{E}[X])$$

# FAMOUS PROBABILITY DISTRIBUTIONS

### **DISCRETE DISTRIBUTIONS**

#### **BINOMIAL**

$$ext{P}[X=k| heta] = inom{N}{k} heta^k(1- heta)^{N-k}$$

- Email is spam with probability  $\theta$ , then  $P[X=k|\theta]$  is the probability of having k out of N emails spam.
- Production errors.
- Click rate.



#### **POISSON**

$$\mathrm{P}[X=k|\lambda] = rac{\lambda^k e^{-\lambda}}{k!}$$

- Events occurring at a rate  $\lambda$ .
- Radioactive decays.
- Cars arriving at intersection.
- Number of network packets arriving.



### **CONTINUOUS DISTRIBUTIONS**

#### **EXPONENTIAL**

$$p(x)=rac{1}{\lambda}e^{-rac{x}{\lambda}},\quad x>0$$

- Web server response time.
- Time to next earthquake.
- Time until hard drive failure.



#### GAUSSIAN / NORMAL

$$p(x)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{1}{2}rac{(x-\mu)^2}{\sigma^2}}$$

- CO2 levels.
- Telnet session length.
- Student scores.



#### **CONDITIONAL PROBABILITY**

Example: Study concerning income class (high, low).

|      | Female | Male |     |
|------|--------|------|-----|
| High | 9%     | 11%  | 20% |
| Low  | 46%    | 34%  | 80% |
|      | 55%    | 45%  |     |

- 9%, 11%, ...: joint probabilities.
- 20%, 60%, ...: marginal probabilities.

#### **CONDITIONAL PROBABILITY**

$$P(x|y) = rac{P(x,y)}{P(y)}$$

Here, P(High|Female) pprox 16%, while P(High|Male) pprox 24%.

# WHAT DOES THIS HAVE TO DO WITH ML?

### DECISION THEORY -SUPERVISED LEARNING

#### We have

- $X \in \mathbb{R}^p$  random input vector.
- $Y \in \mathbb{R}$  output vector.
- Looking for f(X) predicting Y.

### WHY?

#### **PREDICTION**

- ullet Exact form of f not too important.
- Accuracy important.

#### **INFERENCE**

- ullet Which parts of X are important for predicting Y?
- ullet What is the relationship between Y and X?
- What is the *functional* relationship between them? Linear?
- **Exact form** of f is important.

### HOW TO GET f?

- Loss function L(Y, f(X)),
  - $\circ$  Often  $L(Y,F(X))=(Y-f(X))^2$ .
- Minimize expected prediction error.

$$ext{EPE}(f) = E(Y-f(x))^2 = \int (y-f(x))^2 p(x,y) dx \, dy$$

#### CAREFUL, MATH!

Remember P(X,Y) = P(Y|X) P(X)? This gives

$$\mathrm{EPE}(f) = \mathrm{E}_X \, \mathrm{E}_{X|Y} ig( [Y - f(X)]^2 | X ig)$$

and thus we minimize point by point

$$f(x) = \mathop{
m argmin}\limits_{c} \, \mathrm{E}_{Y|X}ig([Y-c]^2|X=xig)$$

This yields

$$f(x) = \mathrm{E}(Y|X=x)$$

#### **HOW GOOD CAN WE DO?**

- Assume  $Y = f(X) + \epsilon$ .  $\circ \ \epsilon \sim N(0,\sigma)$  (normal distributed).
- Our estimate  $\hat{f}\left(X\right)=\hat{Y}$ :

$$\mathrm{E}(Y-\hat{Y})^2 = \mathrm{E}[f(X)+\epsilon-\hat{f}\left(X
ight)]^2 = \mathrm{E}[f(X)-\hat{f}\left(X
ight)]^2 + \mathrm{Var}(\hat{f}(X))^2$$

- We have control over  $\mathrm{E}[f(X)-\hat{f}\left(X
  ight)]^{2}$ .
- We have no control over  $\mathrm{Var}(\epsilon)$ .

#### K-NEAREST NEIGHBORS

KNN implements this in a very simple way:

$$\hat{f}\left(x
ight)=rac{1}{k}\sum_{z\in N_k\left(x
ight)}z\,,$$

where  $N_k(x)$  are the k closest training examples to x from a given training set.

# WHAT ABOUT OTHER LOSS FUNCTIONS?

$$L(Y, f(X)) = |Y - f(X)|$$

leads to

$$f(x) = \text{median}[Y|X = x]$$

Other choices are possible!