Investigation of FEC Codes and Time-Diversity on Experimental FSO LEO-to-Ground Channels

Nguyen Trong Cuong,
Computer Communications Lab.,
The University of Aizu

Outline

- I. Introduction
- II. Simulation Model & Result

13-Nov-24

Free-Space Optics (FSO)-Based Satellite Systems

Free-space Optics (FSO):

- Infrared wavelength (700-1600 nm)
- Extremely high data rate (~ Gbps or even Tbps) thanks to a wide range of unlicensed bandwidth

Low-earth Orbit (LEO) Satellite

- Global coverage via constellation network
- Lower latency compared to other types of satellites

With extremely high data rates and global coverage, the FSO-based LEO satellite system is a promising architecture for beyond-5G networks.

Challenging Issues: Fading Channel

1. Atmospheric Turbulence:

 Cause: Inhomogeneity in refractive-index along the propagation path

2. Pointing Error:

- Cause: Misalignment between the center of beam footprint and that of the receiver detector
- ⇒ Random power fluctuation at the receiver
- ⇒ Fade mitigation techniques are required.

Channel Coding for FSO Satellite System

- To mitigate the FSO fading, channel coding or error-correction code (ECC) is one of the indispensable schemes.
- A challenge in channel codes design for optical systems: Slow fading channel
 - Long coherence time (in the order of milliseconds) and high data rate (\sim Gbps) \Rightarrow If deep fade happens, a wide range of bits will be canceled out.
 - \circ E.g., Coherence time: 1 ms, data rate: 1 Gbps => The fading remains constant over 10^6 consecutive bits.
 - => A large amount of parity bits is needed to ensure the system's reliability, which is ineffective and may be infeasible.

26-Feb-25 Winter Camp 2025

Possible Solution: Temporal Diversity Techniques

- To enhance the performance of ECC codes over a slow fading channel, an
 efficient solution to exploit the temporal diversity of the channel.
 - Temporal diversity refers to fade mitigation techniques, in which data is transmitted multiple times at different points in time.

There are two main methods: (1) Interleaver, and (2) Hybrid Automatic Repeat Request (HARQ)

Hybrid ARQ (ARQ + ECC)

Literature Review: ECC & Time-diversity Techniques

Literature review of ECC and time-diversity techniques investigation for satellite optical channels.

Works	Time-diversity Techniques		Carrilland FCC Caller	Damasla
	HARQ	Interleaver	Considered ECC Codes	Remarks
IEICE Trans. COM 2012		√	Non-binary staircase low-density generator matrix (LDGM) code	Propose a non-binary staircase LDGM code for the Marokov-based satellite-to-ground FSO channel model
ICSOS 2014			Luby transform (LT), systematic LT (SLT), LDGM codes	Investigate the performance of different ECC and interleaver
ICSO 2018		✓	Various types of low-density parity check (LDPC) codes	Present a simulation framework to compare different ECC codes
Optics Comm. 2019		✓	802.11n LDPC	Investigate the performance of LDPC code and block interleaver
ICICAS 2019	√	✓	LDPC codes (details are not provided)	Investigate the performance of chase combining (CC)-HARQ and interleaver
IEEE Trans. Veh. Tech. 2022	√		Rate-compatible punctured convolutional (RCPC) codes	Propose a design of incremental redundancy (IR)-HARQ based sliding window mechanism
IEEE Trans. Aerosp. Electron. Syst. 2024	✓		Protograph-based Raptor-like (PBRL) LDPC codes	Propose a mathematical framework for PBRL-based IR-HARQ design

Motivations & Contributions

- In practical system design, it is crucial to understand the strengths and weaknesses of each methods so that we can identify most efficient option for a specific need.
- => It is necessary to have a performance comparison among these designs across relevant metrics.
- However, the performance comparisons these designs have not been investigated in the literature.
- Main contributions:
 - Compare and investigate the performance of different designs based on ECC code and time-diversity techniques
 - Provide design guidelines and insightful discussions for practical design

Outline

- I. Introduction
- II. Simulation Model & Result

13-Nov-24

Overview of Considered Systems

- We consider four different systems which are the combination of ECC, interleaver, and ARQ
- The evaluation is simulated over recorded channel gains from the SOTA experiment provided by NICT.
- Performance metrics: outage probability, goodput, and average number of decoding iterations (for LDPC codes)

Experiment Overview

- Low-earth orbit (LEO) satellite-to-ground laser-communication.
- Optical signals from the SOTA is transmitted to the OGS at at Koganei, Tokyo.
- The data was recorded at both OGS, which are around 10 meters apart.
- Date of experiment: April 5 and May 5, 2016
- Wavelength: 1550 nm

OGS with 1-meter telescope

OGS with 1.5meter telescope

Optical ground stations (OGS) at Koganei

Experiment Overview (cont.)

• The data is recorded using 5-cm receivers aperture mounted on the 1/1.5-meter telescopes.

Sampling rate: 20 kHz

Recorded time: 150 seconds

• Beam divergence full-angle: 223 μ rad => Beam footprint diameter is 130 meters.

1.5-meter telescope from outside

12

Data Overview

Four datasets: April 5th and May 5th on two OGS

Plot of raw dataset sota20160405_105 versus time.

Simulation Model

 $_{\circ}$ We assume a discrete-time channel model in which the received data symbol y_i at time i is given as

$$y_i = h_i x_i + n_i,$$

where

- x_i is the On-Off Keying (OOK)-modulated symbol (normalized to $\{0,1\}$)
- n_i is the additive white Gaussian noise (AWGN)
- h_i is the channel coefficient taken from the experimental records. h_i is blockwise for $T_{
 m B}$ consecutive symbols, where

$$T_{\rm B} = \frac{\text{channel sampling time}}{\text{symbol time}}$$

Considered ECCs: DVB-S2

Two ECCs are considered: DVB-S2 LDPC code and 5G NR LDPC code

(1) DVB-S2 LDPC code:

- DVB-S2(Digital Video Broadcasting Satellite Second Generation) is a standard, that is primarily adopted for satellite television broadcasting systems
- DVB-S2 channel code standard: BCH (outer code) + LDPC code (inner code)
- DVB-S2 is recommended <u>in the orange book</u> <u>of Consultative Committee for Space Data</u> <u>Systems (CCSDS) for optical space-to-ground</u> links
 - CCSDS: an international forum of by the major space agencies around the world (e.g., NASA, JAXA, etc.)
 - Aim to develop standards for space data systems and communications.
 - Orange book: document experimental work that does not yet have consensus of enough member agencies to standardize.

Considered ECC: 5G NR LDPC

(2) 5G NR LDPC code:

- 5G NR LDPC: type of LDPC codes used in the 3GPP 5G New Radio standard
- Compared to LDPC codes of DVB-S2:
 - Support rate-compatible for IR-HARQ
 - Support wide range of block length
- 5G NR LDPC is used <u>in the Optical</u>
 <u>Communication Terminal (OCT) Standard by</u>
 <u>the Space Development Agency (SDA) for</u>
 <u>optical space-to-ground links</u>
 - SDA (formed in 2019) is managed by U.S. Space Force
 - OCT standard is their own effort to standardize the optical satellite communication systems
 - Current version: OCT 3.1.0 (released in 2023), they are working on version 4.0

Block Interleaver

Block interleaver is considered for the system

Simulation Scenario & Parameters

- Consider 1000 samples (~ 50 ms)
- Channel coherence time: 0.55 ms
- o Interleaver parameters: $I_{res} = 8$ (bits), N = 100 frames
- o DVB-S2 LDPC code: R = 4/9, coded frame length $N_{\rm frame} = 16200$ bits
- o 5G NR LDPC code: R = 1/2, $N_{\text{frame}} = 16936 \text{ bits}$

- Maximum number of iterations: 100
- Performance metric: outage probability

outage probability =
$$\frac{\text{# of unsuccessfully decoded frames}}{\text{# of transmitted frames}}$$