第六章 弯曲变形

重要概念的回顾与强化

挠曲线: 梁轴线变形后成为一条连续光滑的平面曲线。

挠度w: 挠曲线上任意点的纵坐标(梁轴线任意点竖直方向的位移)

截面转角: 横截面对其原来位置的角位移,用 θ 表示。

重要概念的回顾与强化

挠曲线的近似微分方程

$$w'' = \frac{M(x)}{EI_z}$$
 EI_z : 抗弯刚度

转角
$$\theta = w' = \int \frac{M}{EI_z} dx + C$$

挠度
$$w = \int \left(\frac{M}{EI_z} dx\right) dx + Cx + D$$

积分常数的确定

$$\theta = w' = \frac{1}{EI_z} \int M(x) dx + C$$

$$w = \frac{1}{EI_z} \int M(x) dx dx + Cx + D$$

- □ 在简支梁中, 左右两铰支座处的挠度w_A和w_B都等于0。
- □ 在悬臂梁中, 固定端处的挠度 W_A 和转角 θ_A 都等于0。
- □ 在弯曲变形的对称点上, 转角应等于零
- □ 在挠曲线的任一点上,有唯一确定的挠度和转角

1. 位移边界条件

2. 光滑连续条件

积分法

可以给出全梁的挠度和转角

$$w = \frac{Fx^2}{6EI}(x - 3l)$$

$$\theta = \frac{Fx}{2EI}(x - 2l)$$

可求出某一截面的挠度和转角

$$w_B = -\frac{Fl^3}{3EI}$$

$$w'' = \frac{M(x)}{EI_z}$$

$$\theta_B = -\frac{Fl^2}{2EI}$$

积分法

可以给出全梁的挠度和转角

叠加法

小变形 (线弹性范围内工作)

多种载荷同时作用下的总变形,等于每一载荷单独作用下的变形的叠加。

常见载荷下梁的挠度与转角 (P195, 表6.1)

序号	梁上载荷及弯矩图	挠曲线方程	端截面转角与最大挠度		
1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$w = -\frac{M_e x^2}{2EI}$	$\theta_{B} = -\frac{M_{e}l}{EI}$ $w_{B} = -\frac{M_{e}l^{2}}{2EI}$		
2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$w = -\frac{Fx^2}{6EI}(3l - x)$	$\theta_B = -\frac{Fl^2}{2EI}$ $w_B = -\frac{Fl^3}{3EI}$		
3	$ \begin{array}{c c} & F \\ A & B \\ \hline & A \\ \hline & B \\ \hline & $	$w = -\frac{Fx^2}{6EI}(3a - x) \qquad (0 \le x \le a)$ $w = -\frac{Fx^2}{6EI}(3x - a) \qquad (a \le x \le l)$	$\theta_B = -\frac{Fa^2}{2EI}$ $w_B = -\frac{Fa^2}{6EI}(3l - a)$		

常见载荷下梁的挠度与转角 (P195, 表6.1)

序号	梁上载荷及弯矩图	挠曲线方程	端截面转角与最大挠度	
4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$w = -\frac{qx^2}{24EI} \left(x^2 - 4lx + 6l^2\right)$	$\theta_B = -\frac{ql^3}{6EI}$ $w_B = -\frac{ql^4}{8EI}$	
5	$ \begin{array}{c c} y q_0 \\ \hline x \\ l \\ \hline $	$w = -\frac{q_0 x^2}{120EIl} (10l^3 - 10l^2 x + 5lx^2 - x^3)$	$\theta_B = -\frac{q_0 l^3}{24EI}$ $w_B = -\frac{q l^4}{30EI}$	

常见载荷下梁的挠度与转角 (P195, 表6.1)

序号	梁上载荷及弯矩图	挠曲线方程	端截面转角与最大挠度		
1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$w = -\frac{M_A x}{6EIl} (l - x)(2l - x)$	$\theta_{A} = -\frac{M_{A}l}{3EI}, \qquad \theta_{B} = \frac{M_{A}l}{6EI}$ $w_{C} = -\frac{M_{A}l^{2}}{16EI} \qquad \left(x = \frac{l}{2}\right)$ $w_{\text{max}} = -\frac{M_{A}l^{2}}{9\sqrt{3}EI}$		
2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$w = -\frac{M_B x}{6EII} \left(l^2 - x^2 \right)$	$\theta_{A} = -\frac{M_{B}l}{6EI}, \qquad \theta_{B} = \frac{M_{B}l}{3EI}$ $w_{C} = -\frac{M_{B}l^{2}}{16EI} \qquad \left(x = \frac{l}{2}\right)$ $w_{\text{max}} = -\frac{M_{B}l^{2}}{9\sqrt{3}EI}$		
3	q $ql^2/8$ $x \rightarrow l$	$w = -\frac{qx}{24EI} \left(l^3 - 2lx^2 + x^3\right)$	$ heta_A = -rac{ql^3}{24EI}, \qquad heta_B = rac{ql^3}{24EI}$ $w_{ m max} = -rac{5ql^4}{384EI}$		

简支梁

常见载荷下梁的挠度与转角 (P195, 表6.1)

序号	梁上载荷及弯矩图	挠曲线方程	端截面转角与最大挠度		
4	q_0 q_0 $q_0 l^2$ $9\sqrt{3}$ $x \rightarrow l$ $l/\sqrt{3}$	$w = -\frac{q_0 x}{360EIl} (7l^4 - 10l^2 x^2 + 3x^4)$	$ heta_{A} = -rac{7q_{0}l^{3}}{360EI}, \qquad heta_{B} = rac{q_{0}l^{3}}{45EI}$ $w_{\max} = -rac{5q_{0}l^{4}}{768EI}$		
5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$w = -\frac{Fx}{48EI} (3l^2 - 4x^2) \left(0 \le x \le \frac{l}{2}\right)$	$ heta_A = -rac{Fl^2}{16EI}, \qquad heta_B = rac{Fl^2}{16EI}$ $w_{ m max} = -rac{Fl^3}{48EI}$		
6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$w = -\frac{Fbx}{6EIl} (l^2 - x^2 - b^2) (0 \le x \le a)$ $w = -\frac{Fbx}{6EIl} \left[\frac{l}{b} (x - a)^2 + (l^2 - b^2)x - x^3 \right] (a \le x \le l)$	$\theta_{A} = -\frac{Fab(l+b)}{6EIl}, \qquad \theta_{B} = \frac{Fab(l+a)}{6EIl}$ $w_{C} = -\frac{Fb(3l^{2} - 4b^{2})}{48EI} \qquad (x = \frac{l}{2}, \ \ \pm a \ge b \ \)$ $w_{\text{max}} = -\frac{Fb(l^{2} - b^{2})^{3/2}}{9\sqrt{3}EIl} \qquad (x = \sqrt{\frac{l^{2} - b^{2}}{3}}, \ \ \pm a \ge b \ \)$		

选择题1:已知等直梁在某一段上的挠曲线方程为 $w(x) = -ax^4$, a 是不为零的常量,则在该段梁上()。

A. 分布载荷是x的一次函数

B. 分布载荷是x的二次函数

C. 有均匀分布载荷作用

D. 无分布载荷作用

选择题2: 已知等截面直梁在某一段上的挠曲线方程为 $y(x) = Ax^2(4lx-6l^2-x^2), A$ 是不为零的常量,则在该段梁上()。

A. 无分布载荷作用

B. 有均布载荷作用

C. 分布载荷是x的一次函数

D. 分布载荷是x的二次函数

$$w = -\frac{qx^2}{24EI} \left(x^2 - 4lx + 6l^2 \right)$$

常见载荷下梁的挠度与转角 (P195, 表6.1)

序号	梁上载荷及弯矩图	最大挠度	最大转角
1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$w_B = -\frac{M_e l^2}{2EI} \left(\right)$	$\theta_{B} = -\frac{M_{e}l}{EI} \left(\right)$
2	$ \begin{array}{c c} & & & & & & \\ A & & & & & & \\ \hline & & & & & & \\ & & & & & & \\ \hline & & & & & & \\ & & & & & & \\ \hline & & & & & & \\ & & & & & & \\ \hline & & & & & & \\ & & & & & & \\ \hline & & & & & & \\ & & & & & & \\ \hline & & & & & & \\ & & & & & & \\ \hline & & & & & & \\ & & & & & & \\ \hline & & & & & & \\ & & & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$	$w_B = -\frac{Fl^3}{3EI} \left(\downarrow \right)$	$\theta_{B} = -\frac{Fl^{2}}{2EI} \left(\right)$
3	$y \qquad q$ $x \qquad b$ $x \qquad ql^2/2$	$w_B = -\frac{ql^4}{8EI} \left(\downarrow \right)$	$\theta_{B} = -\frac{ql^{3}}{6EI} \left(\right)$

常见载荷下梁的挠度与转角 (P195, 表6.1)

序号	梁上载荷及弯矩图	最大挠度	梁端转角
1	$ \begin{array}{c cccc} & & & & & & & \\ & & & & & & & \\ & & & &$	$w_C = -\frac{M_B l^2}{16EI} \left(\downarrow \right)$	$\theta_{A} = -\frac{M_{B}l}{6EI} ()$ $\theta_{B} = \frac{M_{B}l}{3EI} ()$
2	q $q^{P/8}$ $x \rightarrow l$	$w_C = -\frac{5ql^4}{384EI} \left(\downarrow \right)$	$ heta_A = -rac{ql^3}{24EI}$ $ heta$ $ heta_B = rac{ql^3}{24EI}$ $ heta$
3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$w_C = -\frac{Fl^3}{48EI} \left(\rule{0mm}{4mm} \right)$	$\theta_{A} = -\frac{Fl^{2}}{16EI} \left(\begin{array}{c} \\ \\ \end{array} \right)$ $\theta_{B} = \frac{Fl^{2}}{16EI} \left(\begin{array}{c} \\ \\ \end{array} \right)$

例题3 用叠加法求 w_C 、 θ_A 、 θ_B

例题4 已知:悬梁臂受力如图所示,q、a、EI 均已知,求C截面的挠度和转角。

利用梁全长承受均布载荷的已知结果

例题4 已知:悬梁臂受力如图所示,q、a、EI 均为已知,求C截面的挠度和转角。

全梁承受均布载荷作用时:

$$w_{\rm C1} = -\frac{q(2a)^4}{8EI} = -\frac{2qa^4}{EI}$$

$$\theta_{C1} = -\frac{q(2a)^3}{6EI} = -\frac{4qa^3}{3EI}$$

例题4 已知:悬梁臂受力如图所示,q、a、EI 均为 已知,求C截面的挠度和转角。

解: 2. 分别计算两种载荷下C截面的挠度和转角

梁AB段承受均布载荷作用时:

$$w_{\rm B2} = \frac{qa^4}{8EI} \qquad \theta_{\rm B2} = \frac{qa^3}{6EI}$$

$$\theta_{\rm B2} = \frac{qa^3}{6EI}$$

故:

$$\theta_{\rm C2} = \theta_{\rm B2} = \frac{qa^3}{6EI}$$

$$w_{\text{C2}} = w_{\text{B2}} + \theta_{\text{B2}} \times a = \frac{qa^4}{8EI} + \frac{qa^3}{6EI} \times a = \frac{7qa^4}{24EI}$$

例题4 已知:悬梁臂受力如图所示,q、a、EI 均为已知,求C截面的挠度和转角。

解: 3. 将结果叠加

$$w_{\rm C} = -\frac{2qa^4}{EI} + \frac{7qa^4}{24EI} = -\frac{41qa^4}{24EI} \quad (1)$$

$$\theta_{C1} = -\frac{4qa^3}{3EI} + \frac{qa^3}{6EI} = -\frac{7qa^3}{6EI}$$
 (5)

例题5 (逐段刚化法)

用叠加法求图示变截面梁B、C截面的挠度 w_B 、 w_C 。

分析: 求w_B

$$w_C = w_{C1} + w_{C2}$$

例题5 (逐段刚化法)

用叠加法求图示变截面梁B、C截面的挠度 w_B 、 w_C 。

解: (1) B截面

$$w_B = -\frac{Pa^3}{3(2EI)} - \frac{Pa \cdot a^2}{2(2EI)}$$
$$= -\frac{5Pa^3}{12EI} (\downarrow)$$

$$\theta_{B} = -\frac{Pa^{2}}{2(2EI)} - \frac{Pa \cdot a}{2EI}$$

$$= -\frac{3Pa^{2}}{4EI} \ (\mathfrak{Z})$$

例题5 (逐段刚化法)

用叠加法求图示变截面梁B、C截面的挠度 w_B 、 w_C 。

解: (2) C截面

$$W_{C2} = -\frac{Pa^3}{3EI}$$

$$W_{C1} = W_B + \theta_B \cdot a$$

$$w_C = w_{C1} + w_{C2}$$

$$=-\frac{3Pa^3}{2EI}(\downarrow)$$

静定梁: 约束力用静力平衡方程即可确定

单凭静力平衡方程不能求出全部支反力的梁, 称为超静定梁。(即支反力数目大于有效平衡方程数目的梁)

超静定梁的求解

(1) 解除多余约束,建立等效系统

将可动绞支座看作多余约束,

解除多余约束代之以约束反力 R_B ,

得到原超静定梁的等效静定系。

(2) 变形协调方程

$$w_B = 0$$

多余约束虽然增加了未知力,但也提供了建立变形协调方程的可能!

超静定梁的求解

(3) 叠加法

$$w_B = w_{B,q} + w_{B,R_B} = \mathbf{0}$$

由该式解得

$$R_B = \frac{3}{8}ql$$

例题6 求解右图梁的支座反力。

- 解: (1) 判定超静定次数;
 - (2) 解除多余约束,建立等效系统;
 - (3) 变形协调条件 $W_B = 0$
 - (4) 叠加法求解

$$w_{B} = w_{B,F} + w_{B,F_{By}} = 0$$

例题6 求梁的支反力,梁的抗弯刚度为EI。

解: 查表得:

$$w_{BF} = -\frac{F(2a)^2}{6EI}(9a - 2a) = -\frac{14Fa^3}{3EI}$$

$$w_{BF_{By}} = \frac{8F_{By}a^3}{3EI}$$

$$-\frac{14Fa^3}{3EI} + \frac{8F_{By}a^3}{3EI} = 0$$

$$F_{By} = \frac{7}{4}F$$

$$+$$
 A
 B
 F_{Bv}

§6.6 弯曲刚度准则

$$w_{\max} \leq [w], \qquad \theta_{\max} \leq [\theta]$$

机械工程 (轴):
$$[w] = \left(\frac{1}{5000} \sim \frac{1}{10000}\right)l$$

土木工程 (梁):
$$[w] = \left(\frac{1}{250} \sim \frac{1}{1000}\right)l$$

传动轴:
$$[\theta] = 0.005 \sim 0.001$$
 rad

§6.6 弯曲刚度准则

例题8 工字钢梁 l=8 m, I_z = 2370 cm⁴, W_z = 237 cm³, [w] = l/500, E = 200 GPa, $[\sigma] = 100$ MPa。

试根据梁的刚度条件,确定梁的许可载荷[P],并校核强度。

解:由刚度条件

$$w_{\text{max}} = \frac{Pl^3}{48EI} \le [w] = \frac{l}{500}$$

$$\sigma_{\text{max}} = \frac{M_{\text{max}}}{W_z} = \frac{Pl}{4W_z} = 60\text{MPa} \le [\sigma]$$

所以满足强度条件。

影响梁弯曲变形的因素:

- > 梁的支承和载荷情况
- ➢ 梁的材料、截面尺寸、形状等

(1) 增大梁的抗弯刚度EI

➤ 增大E

选用弹性模量E较高的材料能提高梁的刚度

$$w'' = \frac{M(x)}{EI_z}$$

增大弹性模量

钢结构形成整体的巨型大跨度空间马鞍形结构,钢桁架(steel truss)最长313米,横跨体育场一至四层,最倾斜的钢柱和地面夹角达到59°

特种钢材Q460:钢材受力强度达到460 MPa 时才会发生塑性变形

影响梁弯曲变形的因素:

- > 梁的支承和载荷情况
- > 梁的材料、截面尺寸、形状等

$$\frac{1}{\rho} = \frac{M(x)}{EI_z}$$

(1) 增大梁的抗弯刚度EI

- ▶ 增大E
- ▶ 增大Ⅰ

工程中常采用工字型,框型截面

影响梁弯曲变形的因素:

- > 梁的支承和载荷情况
- > 梁的材料、截面尺寸、形状等
 - (1) 增大梁的抗弯刚度EI

$$\frac{1}{\rho} = \frac{M(x)}{EI_z}$$

(2) 改善结构形式,减少梁的弯矩

改变支座类型

(2) 改善结构形式,减少梁的弯矩

改变载荷类型

(2) 改善结构形式,减少梁的弯矩

(4) 采用超静定结构

作业

6.10 (a) 叠加法

6.15 刚度校核

6.27 逐段刚化法

6.10 用叠加法求图示各梁截面 A 的挠度和截面 B 的转角。EI 为已知常数。

作业

6. 15 桥式起重机的最大载荷为 $W=20~{\rm kN}$ 。起重机大梁为 No. 32a 工字钢, $E=210~{\rm GPa}, l=8.76~{\rm m}$ 。规定[w] = $\frac{l}{500}$ 。试校核大梁的刚度。

mil					截面	理论	参考数值								
型 尺寸/mm				面积	重量	x-x			<i>y</i> - <i>y</i>						
号	6	<i>b</i>	d	,	r	r,	/cm ²	/(kg/m)	I_{x}	W_{x}	i_x	$I_x:S_x$	I_{y}	W,	i_y
	h	Ь	a		,	-1			/cm ⁴	/cm³	/cm	/cm	/cm ⁴	/cm³	/cm
32a	320	130	9.5	15.0	11.5	5.8	67.156	52.717	11 100	692	12.8	27.5	460	70.8	2.62

6.27 图中两根梁的 EI 相同,且等于常量。两梁由铰链相互连接。试求 F 力作用点 D 的挠度。

