Sec1.5

February 12, 2020

1 1.5 Linear First-Order Equations

It is

$$\frac{dy}{dx} + P(x)y = Q(x)$$

1.1 Integrating factor

An **integration factor** of a DE is a function $\rho(x, y)$ such that the multiplication of each side of the DE by $\rho(x, y)$ yeilds an equation where each side is recognizable as a derivative.

For Linear First-Order Equation, it is

$$\rho(x) = e^{\int P(x)dx}$$

METHOD: SOLUTION OF FIRST-ORDER EQUATIONS

- 1. Begin by calculating the integrating factor $\rho(x) = e^{\int P(x) dx}$.
- **2.** Then multiply both sides of the differential equation by $\rho(x)$.
- 3. Next, recognize the left-hand side of the resulting equation as the derivative of a product:

$$D_x \left[\rho(x) y(x) \right] = \rho(x) Q(x).$$

4. Finally, integrate this equation,

$$\rho(x)y(x) = \int \rho(x)Q(x) dx + C,$$

then solve for y to obtain the general solution of the original differential equ tion.

1.2 Example

Solve the IVP

$$\frac{dy}{dx} - y = \frac{11}{8}e^{-x/3}, \qquad y(0) = -1.$$

1.3 Example

Solve the DE

$$(x^2+1)\frac{dy}{dx} + 3xy = 6x.$$

The Linear First-Order Equation

If the functions P(x) and Q(x) are continuous on the open interval I containing the point x_0 , then the initial value problem

$$\frac{dy}{dx} + P(x)y = Q(x), \quad y(x_0) = y_0$$
 (11)

has a unique solution y(x) on I, given by the formula in Eq. (6) with an appropriate value of C.

1.4 Remarks

- Linear First-Order equations have no singular solutions.
- We can solve the initial value problem directly by computing

$$\rho(x) = e^{\int_{x_0}^x P(t)dt}$$

1.5 Problems

Find general solutions of the differential equations in Problems 1 through 25. If an initial condition is given, find the corresponding particular solution. Throughout, primes denote derivatives with respect to x.

1.
$$y' + y = 2$$
, $y(0) = 0$

2.
$$y' - 2y = 3e^{2x}$$
, $y(0) = 0$

$$3. \ y' + 3y = 2xe^{-3x}$$

4.
$$y' - 2xy = e^{x^2}$$

5.
$$xy' + 2y = 3x$$
, $y(1) = 5$

6.
$$xy' + 5y = 7x^2$$
, $y(2) = 5$

7.
$$2xy' + y = 10\sqrt{x}$$

8.
$$3xy' + y = 12x$$

9.
$$xy' - y = x$$
, $y(1) = 7$

10.
$$2xy' - 3y = 9x^3$$

11.
$$xy' + y = 3xy$$
, $y(1) = 0$

12.
$$xy' + 3y = 2x^5$$
, $y(2) = 1$

13.
$$y' + y = e^x$$
, $y(0) = 1$

14.
$$xy' - 3y = x^3$$
, $y(1) = 10$

15.
$$y' + 2xy = x$$
, $y(0) = -2$

16.
$$y' = (1 - y)\cos x$$
, $y(\pi) = 2$

17.
$$(1+x)y' + y = \cos x$$
, $y(0) = 1$

18.
$$xy' = 2y + x^3 \cos x$$

19.
$$y' + y \cot x = \cos x$$

20.
$$y' = 1 + x + y + xy$$
, $y(0) = 0$

21.
$$xy' = 3y + x^4 \cos x$$
, $y(2\pi) = 0$

22.
$$y' = 2xy + 3x^2 \exp(x^2), y(0) = 5$$

23.
$$xy' + (2x - 3)y = 4x^4$$

24.
$$(x^2 + 4)y' + 3xy = x$$
, $y(0) = 1$

25.
$$(x^2 + 1)\frac{dy}{dx} + 3x^3y = 6x \exp\left(-\frac{3}{2}x^2\right), y(0) = 1$$