

Document Title

315/433/490/868/915MHz FSK/GFSK Transceiver with 2K ~ 250Kbps

Revision History

Rev. No.	<u>History</u>	Issue Date	Remark
0.1	Initial issue	Sep., 2012	Preliminary
0.2	Modify contents of Document title/General description and update some register setting recommendation	Oct., 2012	Preliminary
0.3	Update Specification	Apr., 2013	Preliminary
0.4	Add WOR by preamble and carrier, WOT function, new preamble detect type, FIFO mode with 16K/infinite length, auto IF and auto-ack/resend function	Jun., 2013	Preliminary

AMICCOM reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice. AMICCOM integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of AMICCOM products in such applications is understood to be fully at the risk of the customer.

Table of contents

1. Typical Applications	4
2. General Description	
3. Features	
4. Pin Configurations	
5. RF Chip Block Diagram	
6. Pin Descriptions	
7. Absolute Maximum Ratings	7
8. Specification.	88
9. Control Register	
9.1 Control Register Table	
9.2 Control Register Description	
9.2.1 System clock (Address: 00h)	12
9.2.2 PLL I (Address: 01h)	12
9.2.3 PLL II (Address: 02h)	
9.2.4 PLL III (Address: 03h)	13
9.2.5 PLL IV (Address: 04h)	13
9.2.6 PLL V (Address: 05h)	14
9.2.7 PLL VI (Address: 06h)	
9.2.8 Crystal (Address: 07h)	
9.2.9 TX I (Address: 08h) Page 0	
9.2.9.1 WOR I (Address: 08h) Page1	15
9.2.9.2 WOR II (Address: 08h) Page 2	
9.2.9.3 RF Current (Address: 08h) Page 3	16
9.2.9.4 Power Manage (Address: 08h) Page 4	
9.2.9.5 AGC RSSI Threshold (Address: 08h) Page 5	
9.2.9.6 AGC Control (Address: 08h) Page 6	
9.2.9.7 AGC Control II (Address: 08h) Page 7	18
9.2.9.8 GPIO (Address: 08h) Page 8	19
9.2.9.9 CKO (Address: 08h) Page 9	
9.2.9.10 VCO current (Address: 08h) Page 10	
9.2.9.11 Channel Group (I) (Address: 08h) Page 11	22
9.2.9.12 Channel Group (II) (Address: 08h) Page 12	
9.2.9.13 FIFO (Address: 08h) Page 13	
9.2.9.14 Code (Address: 08h) Page 14	
9.2.9.15 WCAL (Address: 08h) Page 15	
9.2.10.0 TX II (Address: 09h) Page 0	
9.2.10.1 IF I (Address: 0 <mark>9h</mark>) Pa <mark>ge</mark> 1	
9.2.10.2 IF II (Address: 09h) Page2	
9.2.10.3 ACK (Address: 09h) Page3	
9.2.10.4 ART (Address: 09h) Page4	
9.2.11 RX I (Address: 0Ah)	
9.2.12 RX II (Address: 0Bh)	
9.2.13 ADC (Address: 0Ch)	21
9.2.14 Pin Control (Address: 0Dh)	
9.2.15 Calibration (Address: 0Eh)	
9.2.16 Mode Control (Address: 0Fh)	30
10. 1 SPI Format	
10.2 SPI Timing Chart	
10.4 SPI Timing Specification	
10.5 Reset Command	
10.6 Reset TX FIFO Pointer	
10.7 Reset Rx FIFO Pointer	
10.7 Reset RX FIFO Former 10.8 ID Read/Write Command	
10.9 FIFO R/W Command	
11. Crystal Oscillator	
11.1 Use External Crystal	
11.2 Use External Clock	
12. System Clock	
12.1 Clock Domain	
12.2 System Clock and IF Filter	
12.3 Example of 10Kbps data rate by 12.8MHz Xtal	
1	

12.4 Example of special data rate by 19.6608MHz Xtal	38
13. Tranceiver Frequency	40
14. State machine	41
14.1 Key Strobe Commands	41
14.2 FIFO mode	41
14.3 Direct mode	
15. Calibration.	
15.1 IF Calibration Process.	
15.2. VCO band Calibration Process	
16. FIFO (First In First Out)	
16.1 Packet Format	
16.2 Bit Stream Process	
16.3 Transmission Time	
16.4 Usage of TX and RX FIFO	
16.4.1 Easy FIFO Mode	
16.4.2 Segment FIFO	
16.4.3 FIFO Extension	
16.4.3.1 FIFO Extension with maximum 16K bytes length	50
16.4.3.2 FIFO Extension with infinite length	53
17. Analog Digital Converter	56
17.1 Temperature Measurement	56
17.2 RSSI Measurement	
17.3 RSSI Carrier Detector	56
18. Carrier Detect	
19. RC Oscillator	
19.1 WOT Function	
19.2 WOR Function	
19.3 TWOR Function	
20. Auto-ack and Auto-resend	
20.1 Basic FIFO plus Auto-ack and auto-resend	60 60
20.2 WTR Behavior during auto-ack and auto-resend	61
20.3 Examples of auto-ack and auto-resend	67
21. Auto-IF Function	0Z
22. Battery Detect	ເວ
23. Low Current RX mode setting	03
24. Application Circuit	05 65
24.1 MD7139-A30 (315MHz Band)	
24.1 MD7139-A40 (313MHz Band)	
24.3 MD7139-A50 (470MHz~ <mark>510MHz Band</mark>)	67
24.4 MD7139-A80 (868MHz Band)	
24.5 MD7139-A90 (915MHz Band)	00 60
24.5 NID7 139-A90 (915WHZ Bahlu)	70
26. Ordering Information.	10
27. Package Information	7 /
28. Top Marking mormation	
29. Reflow Profile	
31. Product Status	
31. FIUUUU Olalus	/5

1. Typical Applications

- ISM Band Data Communication
- Wireless Remote Controller
- RKE (Remote Keyless Entry)
- Building Automation

- Home Security
- Wireless Sensor Networking
- Energy Control and Management
- AMR (Auto Metering Reading)

2. General Description

A7139 is a monolithic low-IF architecture CMOS FSK/GFSK TRX for wireless applications in the 315/433/470/868/915MHz ISM bands. This device is especially suitable for battery-powered application and the 470MHz ~ 510MHz wireless AMR (Auto Meter Reading) in China and 868.3MHz wireless M-bus in Europe.

A7139 is one of AMICCOM's **Mini Power Consumption Family** in sub 1GHz ISM band product line. A7139 is optimized for very low power consumption (i.e. 434MHz band, 3.8mA @ RX mode). In addition, A7139 can offer a very good link budget with a high efficient class-E power amplifier up to 20 dBm and a low phase noise receiver (- 110 dBm RX sensitivity @ 100Kbps / FSK / 433.92MHz). Therefore, A7139 is very suitable for battery powered application with a nice LOS (line-of-sight) wireless range.

A7139 incorporates a baseband modem with the programmable data rate divider from 2K to 250Kbps. For a battery powered system, A7139 supports fast PLL settling time, Xtal settling time and on-chip Regulator settling time to reduce average power consumption. The RF synthesizer contains a VCO and a low noise fractional-N PLL with an output channel frequency resolution of 366 Hz. The VCO frequency operates at the wanted radio frequency to cover all RF band. Since A7139 is a low-IF architecture TRX with programmable IFBW (IF Filter Bandwidth, 50KHz/100KHz/150KHz/250KHz), the RXLO shall be configured to offset an intermediate frequency (IF) to TXRF regarding to the IFBW setting.

A7139's **control registers** are accessed via 3-wire or 4-wire SPI interface including TX/RF FIFO, VCO frequency, to chip calibration procedures. Another one, via SPI as well, is the unique Strobe command, A7139 can be controlled from power saving mode (deep sleep, sleep, idle, standby), PLL mode, TX mode and RX mode. In addition to SPI, the digital connections between A7139 and MCU are GIO1 and GIO2 (multi-function GPIO) to indicate A7139's status so that MCU could use either polling or interrupt for radio control.

For packet handling, A7139 supports direct mode and FIFO mode. In direct mode, MCU or Encoder shall deliver the defined packet (preamble + sync word + payload) to GIO1 or GIO2/TXD pin. Then, in RX mode, MCU or Decoder can receive the coming packet (preamble + sync word + payload) in bit sequence from GIO1 or GIO2/RXD pin.

In FIFO mode, preamble is self-generated by A7139. User just needs to assign the sync word to this device by ID R/W command via SPI. For payload, the built-in separated 64-bytes TX/RX FIFO are used to be this purpose to let user R/W the wanted payload. User can also enable additional packet features like CRC for error detection, FEC (hamming 7 by 4) for 1-bit data correction per code word, Manchester coding, as well as data whitening for data encryption / decryption.

Additional device features such as on-chip regulator, RSSI for clear channel assessment, a thermal sensor, low battery detector, carrier detect, preamble detect, frame sync in FIFO mode, auto-ack and auto-resend, AIF (Auto IF function), AFC (Auto Frequency compensation), Auto calibration (VCO, IF Filter), PLL/CLK Generator, on-chip compensated capacitors of Xtal loading, and WOR (Wake on RX) to support the ability to periodically wake up from sleep mode to RX mode and listen for incoming packets without MCU interaction, can be used to simplify system development and cost. Overall, A7139's highly integrated features and low current consumption offer a reduced BOM cost for a high performance ISM bands product. All features are integrated in a small QFN 4X4 24 pins package.

3. Features

- Small size (QFN 4X4, 24 pins).
- Frequency band: 315/433/470/510/868/915MHz.
- FSK and GFSK modulation.
- Programmable data rate from 2Kbps to 250Kbps.
- Programmable TX power level from -34dBm to 20dBm.
- On chip regulator, supports input voltage 1.9 ~ 3.6 V.
- Deep sleep current (0.3uA).
- Sleep current (1.5uA).
- Ultra Low Current Consumption
 - RX Current consumption (AGC Off) 434MHz: 3.8mA.

- ♠ RX Current consumption (AGC Off) 868MHz: 4.5mA.
- ◆ TX Current consumption 434MHz: 31.5mA @ 12.5dBm.
- ◆ TX Current consumption 868MHz: 67.5mA @ 13dBm.
- TX Current consumption 490MHz: 81mA @ 19dBm.
- Fast PLL settling time (120us).
- Supports low cost crystal (12.8/16/19.2MHz).
- AGC (Auto Gain Control) for the wide RSSI dynamic range.
- Programmable IF filter bandwidth (50KHz/100KHz/150KHz/250KHz).
- High RX sensitivity, i.e. 490MHz.
 - -118dBm at 2Kbps on-air data rate.
 - -112dBm at 50Kbps on-air data rate.
 - -109dBm at 100Kbps on-air data rate.
- Easy to use
 - ◆ Support 3-wire or 4-wire SPI.
 - Unique Strobe command via SPI.
 - ◆ AGC ON with 9-bits RSSI.
 - ♦ AGC OFF with 8-bits RSSI.
 - Auto Calibrations (VCO, IF Filter, RSSI).
 - Auto IF function.
 - Auto Frequency Compensation.
 - Auto CRC Filtering.
 - Auto FEC by (7, 4) Hamming code (1 bit error correction / code word).
 - ◆ Auto-resend (max 15 cycles).
 - Auto-acknowledgement.
 - Manchester encoding.
 - Programmable carrier sense indicator.
 - Data Whitening for payload encryption and decryption.
 - Separated 64 bytes RX and TX FIFO.
 - Easy FIFO / Segment FIFO / FIFO Extension (16K bytes to infinite).
 - Support FIFO mode with frame sync to MCU.
 - Support direct mode with recovery clock output to MCU.
- On chip 8-bits ADC.
- Low Battery indication.
- On-chip low power RC oscillator for WOT/WOR/TWOR function.

Figure 4.1 QFN4x4 Package Top View

5. RF Chip Block Diagram

Figure 5.1 System Block Diagram

6. Pin Descriptions

Note: I (input), O(output), G(Ground).

Pin No.	Symbol	1/0	Function Description
1	RSSI	I/O	I: ADC input.
2	GND	G	O: RSSI bypass. Connect to bypass capacitor. Ground.
3	RFI	Ī	RF input. Connect to matching circuit.
4	RFO	0	RF output. Connect to matching circuit. (recommend powered by VDD directly).
5	VDD_TX	0	TX supply voltage output.
6	VDD_VCO	I	VCO supply voltage input.
7	VCOP	I	VCO positive pin, connected to external inductor.
8	VCON	I	VCO negative pin, connected to external inductor.
9	VT	0	Charge-pump output. Connect to loop filter.
10	VDD_PLL	I	PLL supply voltage input.
11	XI	- 1	Crystal oscillator input. Connect to tank capacitor.
12	XO	0	Crystal oscillator output. Connect to tank capacitor.
13	GND	0	Digital ground pin.
14	SCS	DI	SPI chip select input.
15	SCK	DI	SPI clock input.
16	SDIO	DI/O	SPI data IO.
17	VDD_D	0	Digital supply voltage output. Connect to bypass capacitor.
18	VDD_D	0	Digital supply voltage output. Connect to bypass capacitor.

19	GIO1	DI/O	Multi-function IO 1 / SPI data output.
20	GIO2	DI/O	Multi-function IO 2 / SPI data output.
21	CKO	DO	Multi-function clock output.
22	REGI	-	Regulator input. Connect to VDD supply.
23	VDD_A	0	Analog supply voltage output. Connect to bypass capacitor.
24	BP_BG	0	Band-gap bypass. Connect to bypass capacitor.
	Back side plate	G	Ground. Backside plate shall be well solder to ground; otherwise, it will impact RF performance.

7. Absolute Maximum Ratings

Parameter	With respect to	Rating	Unit
Supply voltage range (VDD)	GND	-0.3 ~ 3.6	V
Digital IO pins range	GND	-0.3 ~ VDD+0.3	V
Voltage on the analog pins range	GND	-0.3 ~ 2.1	V
Max. Input RF level		10	dBm
Storage Temperature range		-55 ~ 125	°C
ESD Rating	HBM*	± 2K	V
	MM*	± 200	V

^{*}Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{*}Pin 4(RFO) is -2KV and -200V of HBM and MM, respectively. No ESD protection diode connected to positive power supply.

^{*}Device is ESD sensitive. Use appropriate ESD precautions. HBM (Human Body Mode) is tested under MIL-STD-883F Method 3015.7. MM (Machine Mode) is tested under JEDEC EIA/JESD22-A115-A.

^{*}Device is Moisture Sensitivity Level III (MSL 3).

^{*}Pin 3 (RFI) and Pin 7/8 (VCOP/VCON) are HBM ± 1KV and MM ± 100V

8. Specification

(Ta=25 $^{\circ}$ C, **VDD=3.3V**, F_{XTAL} =12.8MHz, FSK modulation with Matching circuit and low pass filter)

Parameter	Description	Min.	Тур.	Max.	Unit	
	General					
Operating Temperature		-40		85	°C	
Supply Voltage		1.9	3.3	3.6	V	
Current Consumption	Deep Sleep Mode		0.2			
	(no register retention) 1		0.3		uA	
	Sleep Mode (WOR Off) 1		1.5		uA	
	Sleep Mode (WOR On) 1		2.5		uA	
	Idle Mode(Xtal off)		0.15		mA	
	Standby Mode(Xtal on)		0.45		mA	
Current Consumption	PLL mode		2		mA	
315MHz band	RX mode (AGC Off)		3.8		mA	
	Low Current RX mode (AGC Off)		3		mA	
	TX -27dBm (TBG=0, TDC=0, PAC=0)		13.5		mA	
	TX 12.5dBm (TBG=3, TDC=0, PAC=0)		27		mA	
	TX 20dBm (TBG=7, TDC=3, PAC=3)		67		mA	
Current Consumption	PLL mode		2		mA	
434MHz band	RX mode (AGC Off)		3.8		mA	
	Low Current RX mode (AGC Off)		3		mA	
	TX -31dBm (TBG=0, TDC=0, PAC=0)		13.5		mA	
	TX 12.5dBm (TBG=5, TDC=0, PAC=0)		31.5		mA	
	TX 19dBm (TBG=6, TDC=1, PAC=1)		77		mA	
Current Consumption	PLL mode		2		mA	
470MHz ~ 510MHz band	RX mode (AGC Off)		3.8		mA	
(without LPF)	Low Current RX mode (AGC Off)		3.1		mA	
	TX -32dBm (TBG=0, TDC=0, PAC=0)		15		mA	
	TX 12.4dBm (TBG=5, TDC=0, PAC=0)		30		mA	
	TX 19dBm (TBG=6, TDC=1, PAC=1)		81		mA	
Current Consumption	PLL mode		2.5		mA	
868MHz band	RX mode (AGC Off)		4.5		mA	
	TX -34dBm (TBG=0, TDC=0, PAC=0)		14		mA	
	TX 13dBm (TBG=5, TDC=1, PAC=1)		67.5		mA	
	TX 16dBm (TBG=7, TDC=3, PAC=1)		76		mA	
Current Consumption	PLL mode		2.6		mA	
915MHz band	RX mode (AGC Off)		4.5		mA	
	TX -34dBm (TBG=0, TDC=0, PAC=0)		14		mA	
	TX 13.5dBm (TBG=5, TDC=3, PAC=1)		72		mA	
	TX 15.5dBm (TBG=7, TDC=3, PAC=1)		75		mA	
*	Phase Locked Loop					
X'TAL Settling Time	Couple=0, low current		600		us	
X'TAL frequency	Data rate (2K/10K/50K/100K/150Kbps)		12.8 /16/19.2		MHz	
	Data rate (250Kbps)		16		MHz	
	Data rate (32.768Kbps / 16.384Kbps)		12.582912			
	Data rate (38.4Kbps / 19.2Kbps / 9.6Kbps)		19.6608		MHz	
X'TAL ESR				100	Ohm	
X'TAL Capacitor Load (Cload)	Recommend		20		pF	
315MHz PLL Phase noise	PN @100KHz offset		80		dBc/Hz	
(loop component:	PN @500KHz offset		105		dBc/Hz	

D4 0 0 (04 00 5 00 450 5)		T	1	T	T .=
R1=8.2K,C1=22nF,C2=150pF)	PN @1MHz offset		110		dBc/Hz
434MHz PLL Phase noise	PN @100KHz offset		85		dBc/Hz
(loop component: R1=8.2K,C1=22nF,C2=150pF)	PN @500KHz offset		105		dBc/Hz
	PN @1MHz offset		110		dBc/Hz
490MHz PLL Phase noise	PN @100KHz offset		80		dBc/Hz
(loop component: R1=8.2K,C1=22nF,C2=150pF)	PN @500KHz offset		100		dBc/Hz
	PN @1MHz offset		110		dBc/Hz
868MHz PLL Phase noise	PN @100KHz offset		80		dBc/Hz
(loop component: R1=8.2K,C1=22nF,C2=150pF)	PN @500KHz offset		100		dBc/Hz
	PN @1MHz offset		108		dBc/Hz
915MHz PLL Phase noise	PN @100KHz offset		80		dBc/Hz
(loop component: R1=8.2K,C1=22nF,C2=150pF)	PN @500KHz offset		100		dBc/Hz
R 1=8.2R,C 1=22ΠF,C2=130βF)	PN @1MHz offset		110		dBc/Hz
PLL Settling Time @settle to ± 25kHz (1 st packet)	Standby to PLL		750		μЅ
PLL Settling Time @settle to ± 7.5kHz	Standby to PLL		120		μS
	Transmitter		V		l
TX Power Range	480MHz	-31	18	20	dBm
TX Power Range	868MHz	-40	18	20	dBm
TX Settling Time	PLL to TX		60		μS
TX Spurious Emission	f < 1GHz				
1. Pout = 10 dBm	(RBW =100kHz)			-36	dBm
2. with LPF	47MHz< f <74MHz				
	87.5MHz< f <118MHz				
	174MHz< f <230MHz			-54	dBm
	470MHz< f < <mark>862MHz</mark> (RBW =100k H z)				
	Above 1GHz (RBW = 1MHz)			-30	dBm
	2 nd Harmonic			-30	dBm
	3 rd Harmonic			-30	dBm
	Receiver			-30	u d d l l l
IF Francisco	50K Mode	l	100	l	1
IF Frequency	100K Mode		200		
					KHz
	150K Mode		300		1112
IF Filter Bandwidth	250K Mode		500		
IF Filter Bandwidth	50K Mode		50		-
	100K Mode		100		V⊔-
	150K Mode		150		KHz
OATANIA DV Oversitis its. 2	250K Mode		250		
315MHz RX Sensitivity ² @BER=0.1% high gain mode	10kbps (IFBW = 50KHz, Fdev = 18.75KHz)		-114		
© BEIX-0.176 High gain mode	50kbps		-111		dBm
	100kbps		-109		d Diii
	100kbps (Low current RX mode)		-108		
	150kbps		-108		
	250kbps		TBD		
434MHz RX Sensitivity ²	10kbps (IFBW = 50KHz, Fdev = 18.75KHz)		-113		
@BER=0.1% high gain mode	50kbps		-110		
	100kbps		-107		- dBm
	100kbps (Low current RX mode)		-106		1
			1		1
	150kbps		-105		

490MHz RX Sensitivity 2	2kbps (IFBW = 50KHz, Fdev = 8KHz)		-118		
@BER=0.1% high gain mode	2kbps (IFBW = 100KHz, Fdev = 8KHz)		-115		
(with front end LPF)	10kbps (IFBW = 50KHz, Fdev = 18.75KHz)		-115		
	10kbps (IFBW = 100KHz, Fdev = 37.5KHz)		-114		
	50kbps (Fdev = 18.75KHz)		-111		dBm
	100kbps (Fdev = 37.5KHz)		-108		
	100kbps (Low current RX mode)		-106		
	150kbps (Fdev = 56.25KHz)		-105		
	250kbps (Fdev = 93.75KHz, Xtal = 16MHz)		-103		
868MHz RX Sensitivity ²	2kbps (IFBW = 50KHz, Fdev = 8KHz)		TBD		
@BER=0.1% high gain mode	2kbps (IFBW = 100KHz, Fdev = 8KHz)		TBD		
	10kbps (IFBW = 50KHz, Fdev = 18.75KHz)		TBD		
	10kbps (IFBW = 100KHz, Fdev = 37.5KHz)		-109		
	50kbps (Fdev = 18.75KHz)		-106		dBm
	100kbps (Fdev = 37.5KHz)		-104		
	150kbps (Fdev = 56.25KHz)		-101		
	250kbps (Fdev = 93.75KHz)		TBD		
915MHz RX Sensitivity ²	2kbps (IFBW = 50KHz, Fdev = 8KHz)		TBD		
@BER=0.1% high gain mode	10kbps (IFBW = 50KHz, Fdev = 18.75KHz)		TBD		
	10kbps (IFBW = 100KHz, Fdev = 37.5KHz)		-107		
	50kbps		-104		
	100kbps		-100		dBm
	150kbps		-99		
	250kbps		TBD		
Interference	Co-channel		-6		dB
(490MHz, 100Kbps)	ACR1 (C/I _{ch1})		27		dB
	ACR2 (C/I _{ch2})		41		dB
	Offset ± 10MHz		50		dB
	Image (C/I _{IM})		26		dB
RX Spurious	25MHz ~ 1GHz			-57	dBm
and Spains at	Above 1GHz			-47	dBm
Max Operation Input Power	@ RF input (BER = 0.1%)			10	dBm
RX Settling Time	PLL to RX		230		μS
	Standby to RX		350		μS
	Regulator				
Regulator settling time	Pin 19 connected to 1nF		1		ms
Band-gap reference voltage			0.6		V
Analog Regulator output voltage		1.2	1.2	1.5	٧
TX regulator output voltage		1.8	1.8	2.1	٧
Digital Regulator output voltage		1.2	1.8	1.8	٧
	Digital IO DC characteris	tics			
High Level Input Voltage (V _{IH})		0.8*VDD		VDD	V
Low Level Input Voltage (V _{IL})		0		0.2*VDD	٧
High Level Output Voltage (V _{OH})	@I _{OH} = -0.5mA	VDD-0.4		VDD	V
Low Level Output Voltage (V _{OL})	@I _{OL} = 0.5mA	0		0.4	V

Note 1: When digital I/O pins are configured as input, those pins shall NOT be floating but pull either high or low (SCS shall be pulled high only); otherwise, leakage current will be induced.

Note 2: Max Data rate= 50kbps @50K Mode, Max Data rate= 150kbps @150K Mode.

9. Control Register

A7139 chip contains 31 x 16-bit control registers, and can read or write data via simple 3-wire serial interface (SCS, SCK, SDIO) . All control registers are listed below.

9.1 Control Register Table

A d d / N =	DAA	Divis	Distan	D:140	D:uo	Dista	D:140	Dit 0	D:1.0	D: 1 7	D:1.0	Dit E	D:4.4	D:1 0	D:+ 0	Dit 4	D:1.0
Add/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00h Systemclock	W	SDR6	SDR5	SDR4	SDR3	SDR2	SDR1	SDR0	GRS	GRC4	GRC3	GRC2	GRC1	GRC0	CSC2	CSC1	CSC0
01h	R	SDR6	SDR5	SDR4	SDR3	SDR2	SDR1	SDR0	GRS	GRC4	GRC3	GRC2	GRC1	GRC0	CSC2	CSC1	CSC0
PLL I	W	-	CHI1	CHI0	CHF1	CHF0	CHI1	CHI0	IP8	IP7	IP6	IP5	IP4	IP3	IP2	IP1	IP0
02h PLL II	W	FP15	FP14	FP13	FP12	FP11	FP10	FP9	FP8	FP7	FP6	FP5	FP4	FP3	FP2	FP1	FP0
03h	W	AFC	MC14	MC13	MC12	MC11	MC10	MC9	MC8	MC7	MC6	MC5	MC4	МС3	MC2	MC1	MC0
PLL III	R	AFC	MC14	MC13	MC12	MC11	MC10	MC9	MC8	MC7	MC6	MC5	MC4	MC3	MC2	MC1	MC0
04h PLL IV	W	TXDBG	EDIVS	CKX2	MD1	PDL2	PDL1	PDL0	MD0	ADCR	VCI	CPS	ISDIV	SDPW1	SDPW0	NSDO	EDI
05h PLLV	W	VICMP	IA14	IA13	IA12	IA11	IA10	IA9	IA8	IA7	IA6	IA5	IA4	IA3	IA2	IA1	IA0
06h PLLVI	W	RFC3	RFC2	RFC1	RFC0	RIC11	RIC10	RIC9	RIC8	RIC7	RIC6	RIC5	RIC4	RIC3	RIC2	RIC1	RIC0
07h Crystal	W	PGAS3	PGAS2	PGAS1	PGAS0	CRCDNP	CRCINV	PGBS2	PGBS1	PGBS0	RBS	-	XCC	XCP1	XCP0	CGS	XS
08h PA0(TX I)	W	RCDLY2	RCDLY1	RCDLY0	TME	GS	FDP2	FDP1	FDP0	FD7	FD6	FD5	FD4	FD3	FD2	FD1	FD0
08h	W	WAC5	WAC4	WAC3	WAC2	WAC1	WAC0	WSL9	WSL8	WSL7	WSL6	WSL5	WSL4	WSL3	WSL2	WSL1	WSL0
PA1(WORI)	R	1	-	1	1	-		-	V	VBD	-	RCOC5	RCOC4	RCOC3	RCOC2	RCOC1	RCOC0
08h	W	RSSC_D1	RSSC_D0	RS_DLY2	RS_DLY1	RS_DLY0	WOR_CD	WN3	WN2	WN1	WN0	WOR_S	RCOSC_E	TSEL	TWSOE	RCOT1	RCOT0
PA2(WOR2)	R																
08h PA3(RFI)	W R	QCLIM RHM7	CDSEL1 RHM6	CDSEL0 RHM5	PRRC1 RHM4	PRRC0 RHM3	RSM1 RHM2	RSM0 RHM1	RAMP1 RHM0	RAMP0 RLM7	TRT2 RLM6	TRT1 RLM5	TRT0 RLM4	ASMV2 RLM3	ASMV1 RLM2	ASMV0 RLM1	AMVS RLM0
08h PA4(PM)	W	CST	POWRS	CELS	STS	LVR	PRE_S	RGC1	RGC0	SPSS	RGV1	RGV0	QDS	BVT2	BVT1	BVT0	BDS
08h PA5(RTH)	W	IRTH7	IRTH6	IRTH5	IRTH4	IRTH3	IRTH2	IRTH1	IRTH0	IRTL7	IRTL6	IRTL5	IRTL4	IRTL3	IRTL2	IRTL1	IRTL0
08h	W	EXTL	VRSEL	MS	MSCL4	MSCL3	MSCL2	MSCL1	MSCL0	HDM	AGCE	ERSSM	EXRSI	LGM1	LGM	MGM1	MGM0
PA6(AGC)	R					<u> </u>								LGC1	LGC	MGC1	MGC0
08h	W	RGVA1	RGVA0	RGVT1	RGVT0	LHM1	LHM0	MHM1	MHM0	IGM1	IGM0	CA1	CA0	TXIB1	TXIB0	RSA1	RSA0
PA7(AGC2)	R				-	LHC1	LHC0	MHC1	MHC0	IGC1	IGC0						
08h PA8(GPIO)	W	WRCKS	MCNT1	MCNT0	DDPC	G2S3	G2S2	G2S1	G2S0	G2I	G2OE	G1S3	G1S2	G1S1	G1S0	G1I	G10E
08h PA9(CKO)	W	INTXC	XCL4	XCL3	XCL2	XCL1	XCL0	WSEL2	WSEL1	WSEL0	CKS3	CKS2	CKS1	CKS0	CKOI	CKOE	SCT
08h	W	CDTM1	CDTM0	FEP13	FEP12	FEP11	FEP10	FEP9	FEP8	PKT1	PKT0	PKS	VCOC3	VCOC2	VCOC1	VCOC0	MVCS
PA10(VCB)	R												VCCF	VCB3	VCB2	VCB1	VCB0
08h PA11(CHG1)	W R				-	FPL3 FPL3	FPL2 FPL2	FPL1	FPL0 FPL0	IPL7	IPL6	IPL5	IPL4 IPL4	IPL3	IPL2	IPL1	IPL0 IPL0
08h	W	<u>-</u>				FPH3	FPH2	FPH1	FPH0	IPH7	IPH6	IPH5	IPH4	IPH3	IPH2	IPH1	IPH0
PA12(CHG2)	R	77				FPH3	FPH2	FPH1	FPH0	IPH7	IPH6	IPH5	IPH4	IPH3	IPH2	IPH1	IPH0
08h PA13 FIFO	W	FPM1	FPM0	PSA5	PSA4	PSA3	PSA2	PSA1	PSA0	FEP7	FEP6	FEP5	FEP4	FEP3	FEP2	FEP1	FEP0
08h PA14 Code	W	PML2	IDL1	WS6	WS5	WS4	WS3	WS2	WS1	WS0	MCS	WHTS	FECS	CRCS	IDL0	PML1	PML0
08h PA15 WCAL	W R						MRCT5	MRCT4 NUMH8	MRCT3 NUMH7	MRCT2 NUMH6	MRCT1 NUMH5	MRCT0 NUMH4	MVS1 NUMH3	MVS0 NUMH2	MCALS NUMH1	MAN NUMH0	ENCAL ENCAL
	W	MCNTR	DPR2	DPR1	DPR0	BT1	BT0	TDL1	TDL0	TXDI	PAC1	PAC0	TDC1	TDC0	TBG2	TBG1	TBG0
09h PB0 TX II	R	DID15	DID14	DID13	DID12	DID11	DID10	DID9	DID8	DID7	DID6	DID5	DID4	DID3	DID2	DID1	DID0
09h PB1 IF1	W	AIF	IFOA14	IFOA13	IFOA12	IFOA11	IFOA10	IFOA9	IFOA8	IFOA7	IFOA6	IFOA5	IFOA4	IFOA3	IFOA2	IFOA1	IFOA0
09h PB2 IF2	W	FPA15	FPA14	FPA13	FPA12	FPA11	FPA10	FPA9	FPA8	FPA7	FPA6	FPA5	FPA4	FPA3	FPA2	FPA1	FPA0
09h	W	MRCKS	RNUM3	RNUM2	RNUM1	RNUM0	CDRS1	CDRS0	SYNCS	VKM	VKP	ARTMS	ARC3	ARC2	ARC1	ARC0	EARKS
PB3 ACK	R										ARTEF	VPOAK	RCR3	RCR2	RCR1	RCR0	EARKS
09h PB3 PB4 ART	W	RND7	RND6	RND5	RND4	RND3	RND2	RND1	RND0	ARD7	ARD6	ARD5	ARD4	ARD3	ARD2	ARD1	ARD0
0Ah RX I	W	ETH2	DMT	MPL1	MPL0	SLF2	SLF1	SLF0	ETH1	ETH0	DMOS	DMG1	DMG0	BW1	BW0	ULS	RXDI
0Bh	W	PMD2	PMD1	PMD0	DCV7	DCV6	DCV5	DCV4	DCV3	DCV2	DCV1	DCV0	DCL2	DCL1	DCL0	DCM1	DCM0
RX II	R								ADCO8	ADCO7	ADCO6	ADCO5	ADCO4	ADCO3	ADCO2	ADCO1	ADCO0
0Ch	W	ARSSI	RADC	AVSEL1	AVSEL0	MVSEL1	MVSEL0	XADS	CDM	RTH7	RTH6	RTH5	RTH4	RTH3	RTH2	RTH1	RTH0

ADC	R	PWR	XEM	PLLEM	TRSM	TREM		VBD1	VBD0	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0
0Dh Pin control	W	RFT2	RFT1	RFT0	PRS	SCMDS	WMODE	INFS	IRQI	IRQ1	IRQ0	IRQE	CKOI	CKO1	CKO0	CKOE	SCKI
0Eh	W	MSCRC	VTL2	VTL1	VTL0	VTH2	VTH1	VTH0	MVBS	MVB2	MVB1	MVB0	MFBS	MFB3	MFB2	MFB1	MFB0
Calibration	R	FCD4	FCD3	FCD2	FCD1	FCD0	DVT1	DVT0	VBCF	VB2	VB1	VB0	FBCF	FB3	FB2	FB1	FB0
0Fh	W	DFCD	VBS	SWT	RSSC	VCC	CCE	WORE	FMT	FMS	CER	PLLE	TRSR	TRER	VBC	FBC	ADCM
Mode control	R			WORE	RSSC	CCER	FECF	CRCF	FMT	FMS	CER	PLLE	TRSR	TRER	VBC	FBC	ADCM

Legend: -- = unimplemented

9.2 Control Register Description

9.2.1 System clock (Address: 00h)

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00h	W	SDR6	SDR5	SDR4	SDR3	SDR2	SDR1	SDR0	GRS	GRC4	GRC3	GRC2	GRC1	GRC0	CSC2	CSC1	CSC0
System clock	R	SDR6	SDR5	SDR4	SDR3	SDR2	SDR1	SDR0	GRS	GRC4	GRC3	GRC2	GRC1	GRC0	CSC2	CSC1	CSC0
Reset		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0

SDR[6:0]: Data Rate Divider.

If DMOS (0Ah) = 0,
$$Data\ rate = \frac{1}{32} \cdot \frac{f_{CSCK}}{SDR[6:0]+1}$$

If DMOS (0Ah) = 1,
$$Data\ rate = \frac{1}{64} \cdot \frac{f_{CSCK}}{SDR[6:0]+1}$$

(recommended, where
$$f_{\text{CSCK}} = \frac{f_{\text{MSCK}}}{\text{CSC}[2:0]+1}$$
).

GRS: Reference Clock Selection for the internal CLK Generator.

[0]: PLL CLK Gen. = FCGRF x 48, where FCGRF is from below GRC divider

[1]: PLL CLK Gen. = F_{CGRF} x 32

GRC[4:0]: Generation Reference Clock Divider.

GRC [4:0] is the clock divider to generate a PFD clock for the internal CLK Generator.

$$f_{CGRF} = \frac{f_{xtal}}{GRC[4:0]+1}$$

CSC[2:0]: System Clock Divider setting.

CSC is the clock divider of F_{MSCK} to generate the wanted data clock and IF calibration clock where F_{MSCK} is either from Xtal itself (CGS = 0) or from the internal CLK Generator (CGS = 1).

$$f_{\text{CSCK}} = \frac{f_{\text{MSCK}}}{\text{CSC}[2:0]+1}$$

F_{CSCK} shall be set appropriately, otherwise, IF Filter calibration will be failure.

Please refer to chapter 12 for details.

9.2.2 PLL I (Address: 01h)

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
01h PLL I	W		CHI2F	CHI2I	CHF1	CHF0	CHI1	CHI0	IP8	IP7	IP6	IP5	IP4	IP3	IP2	IP1	IP0
Reset										1	0	0	0	0	0	0	0

CHI2F: Reserved. CHI2F shall be [0].

CHI2I: Reserved. CHI2I shall be [0].

CHF[1:0]: charge-pump current setting for fractional-N synthesizer. Recommend CHF = [01].

[00]: 48uA [01]: 96uA [10]: 192uA [11]: 384uA

CHI[1:0]: Reserved. CHI shall be [00].

IP[8:0]: LO frequency Integer Part setting.

Pease refer to Chapter 13 for detail.

9.2.3 PLL II (Address: 02h)

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
02h PLL II	W	FP15	FP14	FP13	FP12	FP11	FP10	FP9	FP8	FP7	FP6	FP5	FP4	FP3	FP2	FP1	FP0
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

FP[15:0]: LO Frequency Fractional Part setting.

$$f_{\text{LO_BASE}} = f_{PFD} \cdot (IP[8:0] + \frac{FP[15:0]}{2^{16}})$$
 (unit: Hz)

where $\,f_{\mathrm{LO\ BASE}}$, the base frequency of VCO

where $f_{\rm PFD} = f_{\it Xtal} \div (\it RFC[3:0]+1)$, the comparison frequency of RF_PLL.

A7139's RF frequency is implemented by an offset scheme regarding to the below formula.

The wanted RF frequency is equal to VCO frequency, $F_{RF} = F_{VCO} = F_{LO_BASE} + F_{OFFSET}$.

where f_{OFFSET} , the offset frequency of VCO is set by FPA [15:0] (09h, page 2) $f_{\text{OFFSET}} = f_{PFD} \cdot (\frac{FPA.[15:0] \cdot 2^6}{2^{16}})$

Please refer to Chapter 13 for details.

9.2.4 PLL III (Address: 03h)

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
03h	W	AFC	MC14	MC13	MC12	MC11	MC10	MC9	MC8	MC7	MC6	MC5	MC4	MC3	MC2	MC1	MC0
PLL III	R	AFC	MC14	MC13	MC12	MC11	MC10	MC9	MC8	MC7	MC6	MC5	MC4	MC3	MC2	MC1	MC0
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AFC: Auto Frequency Compensation selection.

[0]: manual [1]: auto

MC[14:0]: PLL Fractional Part Compensation value.

[Write]: Manual setting to LO fractional part compensation value when AFC = [0].

[Read] : Frequency offset value when AFC = [1].

9.2.5 PLL IV (Address: 04h)

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
04h PLL IV	W	TXDBG	EDIVS	CKX2	MD1	PDL2	PDL1	PDL0	MD0	ADCR	VCI	CPS	ISDIV	SDPW1	SDPW0	NSDO	EDI
Reset				0	0	0	1	1	0	0	0	1	0	0	0	0	0

TXDBG: TX Debug mode. TXDBG shall be [0].

[0]: Disable [1]: Enable

EDIVS: Synthesizer Selection. EDIVS shall be [0].

[0]: Fractional-N PLL

[1]: Reserved

MD1: RF Band select.

[0]: Low band (310MHz ~ 510MHz) [1]: High band (860MHz ~ 930MHz)

CKX2: Reserved. CKX2 shall be [0].

MD0: LO Buffer current select.

[0]: Low current [1]: High current

PDL[2:0]: PLL Settling Delay Time setting.

PDL [2:0]	PLL Delay Timer	Note
000	20 us	
001	40 us	
010	60 us	
011	80 us	Recommend
100	100 us	
101	120 us	
110	140 us	
111	160 us	

ADCR: Reserved. ADCR should be= [0].

VCI: VCO current calibration test bit. Reserved. VCI shall be [0].

CPS: Charge Pump tri-state setting. Recommend CPS = [1].

[0]: Tri-state.

[1]: Normal operation.

ISDIV: Divider current test bit. Recommend ISDIV = [0].

[0]: low current. [1]: high current.

SDPW[1:0]: Pulse Width of sigma-delta modulator. SDPW shall be [00].

NSDO: Mash sigma delta order setting. Recommend NSDO = [0].

[0]: order 2. [1]: order 3.

EDI: Dither Noise setting. Recommend EDI = [0].

[0]: Disable. [1]: Enable.

9.2.6 PLL V (Address: 05h)

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
05h PLL V	W	VICMP	IA14	IA13	IA12	IA11	IA10	IA9	IA8	IA7	IA6	IA5	IA4	IA3	IA2	IA1	IA0
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			·	·					·			·					·

VICMP: Reserved. VICMP shall be [0].

IA[14:0]: Reserved. IA shall be [0x0000].

9.2.7 PLL VI (Address: 06h)

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
06h PLL VI	W	RFC3	RFC2	RFC1	RFC0	RIC11	RIC10	RIC9	RIC8	RIC7	RIC6	RIC5	RIC4	RIC3	RIC2	RIC1	RIC0
Reset		0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1

RFC[3:0]: R-Counter for Fractional-N PLL

RFC is used to divide crystal frequency for the comparison frequency of the Franc-N PLL by $F_{PFD} = Fxtal / (RFC[3:0]+1)$

RIC[11:0]: Reserved. RIC shall be [0x000]

9.2.8 Crystal (Address: 07h)

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
07h Crystal	W	PGAS3	PGAS2	PGAS1	PGAS0	CRCDNP	CRCINV	PGBS2	PGBS1	PGBS0	RBS	-	XCC	XCP1	XCP0	cgs	xs
Reset		0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0

PGAS[3:0]: Page selector for the 08h register.

CRCDNP: CRC Mode Select.

[0]: CRC-CCITT ($X^{16} + X^{12} + X^5 + 1$). [1]: CRC-DNP ($X^{16} + X^{13} + X^{12} + X^{11} + X^{10} + X^8 + X^6 + X^5 + X^2 + 1$).

CRCINV: CRC Inverted Select.

[0]: disable. [1]: enable

PGBS[2:0]: Page selector for the 09h register.

RBS: REGA bandgap setting.

XCC: Crystal Current setting.

[0]: Low current. [1]: High current.

XCP[1:0]: Crystal Regulating Couple setting. Recommend XCP =[00].

CGS: Clock Generation Selection.

[0]: Disable, F_{MSCK} = Xtal freq. [1]: Enable, F_{MSCK} = CLK Generator. Please refer to chapter 12 for details.

XS: Crystal Oscillator Selection. Recommend XS = [1].

[0]: Disable [1]: Enable

9.2.9 TX I (Address: 08h) Page 0

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
08h TX I	W	RC_DL Y2	RC_DL Y1	RC_DL Y0	TME	GS	FDP2	FDP1	FDP0	FD7	FD6	FD5	FD4	FD3	FD2	FD1	FD0
Reset		0	0	0	1	0	1	0	1	0	1	0	0	0	0	0	0

RC_DLY[2:0]: RSSI calibration RL Delay setting. Recommend RC_DLY= [000]

[000]: 100us. [001]: 300us. [010]: 500us. [011]: 700us. [100]: 900us. [101]: 1.1ms. [110]: 1.3ms. [111]: 1.5ms.

TME: TX Modulation Enable.

[0]: Disable. [1]: Enable.

GS: Gaussian Filter Selection.

[0]: Disable. [1]: Enable.

FDP[2:0]: Frequency Deviation Exponential Coefficient setting.

FD[7:0]: TX Frequency Deviation setting.

For both Gaussian filter is enabled (GS = 1) or disabled (GS = 0) :

$$f_{dev} = 2 \cdot f_{PFD} \cdot FD[7:0] \cdot \frac{2^{FDP[2:0]}}{2^{19}}$$
 (unit: Hz)

where $f_{PFD} = f_{Xtal} \div (RFC[3:0]+1)$, is the comparison frequency of RF_PLL.

Note2: please refer to Chapter 13 for details.

9.2.9.1 WOR I (Address: 08h) Page1

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
001-	W	WOR															
08h	VV	_AC5	_AC4	_AC3	_AC2	_AC1	_AC0	_SL9	_SL8	_SL7	_SL6	_SL5	_SL4	_SL3	_SL2	_SL1	_SL0
TX	R									VBD							
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

WOR_AC [5:0]: 6-bits WOR Active Period.

WOR Active Period = (WOR_AC[5:0]+1) x (1/4096), (244us ~ 15.6ms).

WOR_SL [9:0]: 10-bits WOR Sleep Period.

WOR Sleep Period = $(WOR_SL[9:0]+1) \times (32/4096)$, $(7.8ms \sim 7.99s)$.

WOR_SL

FSK/GFSK Sub 1GHz Transceiver

WOR AC

RC Osc. Start WOR Sleep Sleep Sleep Sleep

WOR_SL

VBD: Battery Detection flag (Read Only).

[0]: Battery Low. [1]: Battery High.

9.2.9.2 WOR II (Address: 08h) Page 2

														$\overline{}$			
Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
08h WOR II	W	RSSC _D1	RSSC _D0	RS _DLY2	RS _DLY1	RS _DLY0	WOR _CD	WN3	WN2	WN1	WN0	WOR _S	RCOSC _E	TSEL	TWSOE	RCOT1	RCOT0
WORII																	
Reset		0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	0

RSSC_D [1:0]: RSSI calibration Delay setting. Recommend RSSC_D = [00].

[00]: 10us. [01]: 20us. [10]: 30us. [11]: 40us.

RS_DLY [2:0]: RSSI Measurement Delay while in RX mode. Recommend RS_DLY = [000].

[000]: 10us. [001]: 20us. [010]: 30us. [011]: 40us. [100]: 50us. [101]: 60us. [110]: 70us. [111]: 80us.

WOR_CD: Wake up MCU select.

WN[3:0]: The number of RX wake up times.

Wake up times = (WN[3:0] + 1).

WOR_S: Wake up MCU select.

[WOR_CD, WOR_S]	Wake up MCU select.
[00]	By frame sync
[01]	By preamble detect
[1x]	By carrier detect

RCOSC_E: RC Oscillator for WOT/WOR/TWOR.

[0]: Disable. [1]: Enable.

TSEL: TWOR Duty select.

[0]: Use WOR_AC [5:0]. (where WOR_AC is located in 08h, page 1) [1]: Use WOR_SL [9:0]. (where WOR_SL is located in 08h, page 1)

TWSOE: Wake up MCU Mode select.

[0]: By WOR mode. Wake up MCU while receiving a packet.

[1]: By TWOR mode. Wake up MCU by TWOR timer.

RCOT [1:0]: RC Oscillator current setting. Recommend RCOT = [00].

9.2.9.3 RF Current (Address: 08h) Page 3

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
08h	W	QCLIM	CD SEL1	CD SEL0	PRRC1	PRRC0	RSM1	RSM0	RMP1	RMP0	TRT2	TRT1	TRT0	ASMV2	ASMV1	ASMV0	AMVS
RFI	R	RHM7	RHM6	RHM5	RHM4	RHM3	RHM2	RHM1	RHM0	RLM7	RLM6	RLM5	RLM4	RLM3	RLM2	RLM1	RLM0
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

QCLIM: Reserved. Shall be [0].

CDSEL [1:0]: Carrier Detect select by GIO1S.

If GIO1S is set to be [0010], Carrier Detect scheme has below tree options.

[0X]: RSSI Carrier Detect.

[10]: In-band Carrier Detect.

[11]: RSSI Carrier Detect plus In-band Carrier Detect.

PRRC [1:0]: Reserved. PRRC shall be [10].

RSM [1:0]: RSSI Margin. Recommend RSM = [01].

RSM = (RTH - RTL).

[00]: 5. [01]: 10. [10]: 15. [11]: 20.

RMP [1:0]: PA Ramp up/down Timing Scale setting.

[00]: 1. [01]: 2. [10]: 4. [11]: 8.

TRT [2:0]: TX Ramp down discharge current select. Recommend TRT =[111].

ASMV [2:0]: TX Ramp up Timing Select. Recommend ASMV =[111].

[000]: 2us, [001]: 4us. [010]: 6us. [011]: 8us. [100]: 10us, [101]: 12us. [110]: 14us. [111]: 16us.

Actual TX ramp up time = ASMV [2:0] x RMP[1:0]

AMVS: PA Ramp Up Enable. Recommend AMVS = [1].

[0]: Disable. [1]: Enable.

RHM [7:0]: RSSI calibration high threshold level (Read Only).

RLM [7:0]: RSSI calibration low threshold (Read Only).

9.2.9.4 Power Manage (Address: 08h) Page 4

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
08h PM	W	CST	POWRS	CELS	STS	LVR	PRE_S	RGC1	RGC0	SPSS	RGV1	RGV0	QDS	BVT2	BVT1	BVT0	BDS
Reset		-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CST: DC average length selection. CST shall be [0].

[0]: DC average length unchanged. [1]: DC average length halves.

POWRS: Reserved. Shall be [0].

CELS: Reserved. Shall be [0].

STS: Reserved. Shall be [0].

LVR: Reserved. Shall be [0].

PRE S: Preamble Detect Select.

[0]: Normal preamble detection mode: PMDO=1 when preamble is matched. PMDO will be hold until RX state finished. If the preamble has problem during PMDO=1 period, PMDO will also be hold but if the preamble is matched again at this time, PMDO will be pulled low and pull high again immediately. This will affect the continuity of RCK output.

[1]: New preamble detection mode: PMDO=1 when preamble is matched. PMDO will not be hold if the preamble sequence is not matched and it will keep doing re-preamble matching scheme.

NOTE: PMDO will be hold when ID is matched no matter PRE_S=0 or 1.

RGC[1:0]: Reserved. Recommend RGC = [01].

SPSS: Mode Back select if WOT/WOR is enabled. Recommend SPSS = [0].

[0]: While WN≥1, the WOT/WOR operating will return to Standby mode. For example, if WN=2, the WOR operation period will be: Sleep -> RX -> Standby -> RX -> Standby -> RX -> Sleep.

[1]: While WN≥1, the WOT/WOR operating will return to PLL mode. For example, if WN=2, the WOR operation period will be: Sleep -> RX -> PLL -> RX -> PLL -> RX -> Sleep.

RGV [1:0]: Digital Regulator Voltage select. Recommend RGV = [11].

[00]: 1.2V

[**01**]: 1.**4**V

[10]: 1.6V

[11]: 1.8V

QDS: VDD_A Quick Discharge select. Recommend QDS = [1].

[0]: Normal. [1]: Quick discharge.

BVT [2:0]: Battery Voltage Threshold select.

[000]: 2.0V. [001]: 2.1V. [010]: 2.2V. [011]: 2.3V. [100]: 2.4V. [101]: 2.5V. [110]: 2.6V. [111]: 2.7V.

BDS: Battery Detection selection.

[0]: Disable. [1]: Enable.

9.2.9.5 AGC RSSI Threshold (Address: 08h) Page 5

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
--------------	-----	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	--

08h RTH	W	IRTH7	IRTH6	IRTH5	IRTH4	IRTH3	IRTH2	IRTH1	IRTH0	IRTL7	IRTL6	IRTL5	IRTL4	IRTL3	IRTL2	IRTL1	IRTL0
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

IRTH[7:0]: AGC high Threshold. Recommend IRTH = [0x03].

IRTL[7:0]: AGC low Threshold. Recommend IRTL = [0x02].

 $\begin{array}{ll} \text{If ADC} \leq \text{IRTL}. & \text{DVT[1:0] (0Eh)} = 11. \\ \text{If ADC} \geq \text{IRTH}. & \text{DVT[1:0] (0Eh)} = 00. \\ \text{If IRTL} \leq \text{ADC} \leq \text{IRTH}. & \text{DVT[1:0] (0Eh)} = 01. \\ \end{array}$

9.2.9.6 AGC Control (Address: 08h) Page 6

			_ •														
Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
08h	W	EXTL	VRSEL	MS	MSCL4	MSCL3	MSCL2	MSCL1	MSCL0	HDM	AGCE	ERSSM	EXRSI	LGM1	LGM0	MGM1	MGM0
AGC	R	-	-			-				-				LGC1	LGC0	MGC1	MGC0
Reset				0	0	0	0	0	0	0	0	0	0	1	1	1	1

EXTL: VCO Calibration test bit. EXTL shall be [0].

VRSEL: AGC Function select.

[0]: RSSI AGC. [1]: wideband AGC.

MS: AGC Manual Scale select. Recommend MS = [0].

[0]: Auto (RL-RH).

[1]: Manual by MSCL[4:0].

MSCL[4:0]: AGC Manual Scale setting.

HDM: AGC HOLD select.

[0]: No hold.

[1]: Hold Gain Switching when ID is sync.

AGCE: Auto Gain Control Enable.

[0]: Disable. [1]: Enable.

ERSSM : Ending mode for RSSI measurement. Recommend ERSSM = [0].

[0]: RSSI value frozen before leaving RX.

[1]: RSSI value frozen when valid frame sync (ID and header check ok).

EXRSI: Reserved. EXRSI shall be [0].

LGM [1:0]: LNA Gain Attenuation select. Recommend LGM = [00].

[00]: -18dB. [01]: -12dB. [10]: -6dB. [11]: Max.

MGM [1:0]: Mixer Gain Attenuation select. Recommend MGM = [00].

[00]: -18dB. [01]: -12dB. [10]: -6dB. [11]: Max.

LGC[1:0]: LNA Gain Check (Read Only).

MGC[1:0]: Mixer Gain Check (Read Only).

9.2.9.7 AGC Control II (Address: 08h) Page 7

Address/Nan	ne	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
08h		W	RGVA1	RGVA0	RGVT1	RGVT0	LHM1	LHM0	MHM1	MHM0	IGM1	IGM0	CA1	CA0	TXIB1	TXIB0	RSAGC1	RSAGC0
AGC2	4	R					LHC1	LHC0	MHC1	MHC0	IGC1	IGC0		-	-	-		
Reset															0	0	0	0

RGVA[1:0]: Analog Regulator Voltage Select. Recommend RGVA = [11].

[00]: 0.9V

[01]: 1.0V

[10]: 1.1V

[11]: 1.2V

RGVT[1:0]: PA Regulator Voltage Select. Recommend RGVT = [10].

[00]: 1.8V

[01]: 1.9V

[10]: 2.0V

[11]: 2.1V

LHM[1:0]: LNA Current Select. Recommend LHM = [10].

[00]: min. [01]: mid.

[10]: high

[11]: max

LHC[1:0]: LNA Current Check. (Read only)

MHM[1:0]: Mixer Current Select. Recommend MHM = [10].

[00]: min. [01]: mid.

[10]: high [11]: max

MHC[1:0]: Mixer Current Check. (Read only)

IGM[1:0]: BPF Gain Select. Recommend IGM = [11].

[00]: -18dB. [01]: -12dB. [10]: -6dB. [11]: Max.

IGC[1:0]: BPF Gain Check. (Read only)

CA[1:0]: AGC peak detect test bit. CA shall be [00].

TXIB[1:0]: Reserved. TXIB shall be [00].

RSAGC[1:0]: Reserved. RSAGC shall be [00].

9.2.9.8 GPIO (Address: 08h) Page 8

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9		Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
08h GPIO	W	WRCKS	MCNT1	MCNT0	DDPC	GIO2S3	GIO2S2	GIO2S1	G	10280	G2I	G2OE	GIO1S3	GIO1S2	GIO1S1	GIO1S0	G1I	G10E
Reset		0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0

WRCKS: WOR Reference clock select.

[0]: WOR Ref clock when PF8M is equal or close to 6.4MHz.

[1]: WOR Ref clock when PF8M is equal or close to 8MHz.

MCNT[1:0]: Main Clock Divider.

[00]: $f_{MCNT} = f_{MSCK}$

[01]: $f_{\text{MCNT}} = f_{\text{MSCK}} / 2$

[10]: $f_{\text{MCNT}} = f_{\text{MSCK}} / 3$

[11]: $f_{\text{MCNT}} = f_{\text{MSCK}} / 4$

Please refer to Chapter 12 for details.

DDPC (Direct mode data pin control): Direct mode modem data can be accessed via SDIO pin.

[0]: Disable. [1]: Enable.

GIO2S [3:0]: GIO2 pin function select.

GIO2S [3:0]	TX state	RX state
[0000]	WTR (Wait until T)	K or RX finished)
[0001]	EOAC (end of access code)	FSYNC (frame sync)
[0010]	TMEO (TX modulation enable)	CD (carrier detect)
[0011]	External sync input (for dir	
	Preamble Detect Output	
[0100]	TWOR, when TWC	R mode enabled
	CWTR (Cyclic TRX edge W	TR), when TWOR disabled
[0101]	Quadrature phase demodulator	input (DMII) or DVT[0](AGC)
[0110]	SDO (4 wires s	SPI data out)
[0111]	TRXD In/Out (Direct mode)
[1000]	RXD (Dire	ct mode)
[1001]	TXD (Direct	ct mode)
[1010]	PDN_	_TX
[1011]	External FSYNC input	in RX direct mode *
[1100]	VPOAK (Valid Packet or	Auto ACK OK Output)
[1101]	FP	F
[1110]	Battery Detect	t flag. (BDF)

FMRDI. (FIFO mode RX input for testing) (for internal testing)

If GIO2S = [1011] and direct mode is selected, the internal frame sync function will be disabled. In such case, A7139 supports to accept an external frame sync signal from MCU to feed to GIO2 pin to determine the timing of fixing DC estimation voltage of demodulator.

G2I: GIO2 pin output signal invert.

[0]: Non-inverted output. [1]: Inverted output.

G2OE: GIO2 pin output enable.

[0]: High Z. [1]: Enable.

GIO1S [3:0]: GIO1 pin function select.

GIO1S [3:0]	TX state	RX state
[0000]	WTR (Wait until T)	K or RX finished)
[0001]	EOAC (end of access code)	FSYNC (frame sync)
[0010]	TMEO (TX modulation enable)	CD (carrier detect)
[0011]	External sync input (for dir	ect mode), when SCT=0
	Preamble Detect Output	(PMDO), when SCT=1
[0100]	TWOR, when TWC	R mode enabled
	CWTR (Cyclic TRX edge W	TR), when TWOR disabled
[0101]	In phase demodulator input	(DMIQ) or DVT[1](AGC)
[0110]	SDO (4 wires s	SPI data out)
[0111]	TRXD In/Out (Direct mode)
[1000]	RXD (Dire	ct mode)
[1001]	TXD (Direct	ct mode)
[1010]	PDN_	_RX
[1011]	External FSYNC input	in RX direct mode *
[1100]	VPOAK (Valid Packet or	Auto ACK OK Output)
[1101]	FP	F
[1110]	PDN_	TX
[1111]	FMTDO (FIFO mode T)	(Data Output testing)

If GIO1S = [1011] and direct mode is selected, the internal frame sync function will be disabled. In such case, A7139 supports to accept an external frame sync signal from MCU to feed to GIO1 pin to determine the timing of fixing DC estimation voltage of demodulator.

G11: GIO1 pin output signal invert.

[0]: Non-inverted output. [1]: Inverted output.

G10E: GIO1pin output enable.

[0]: High Z. [1]: Enable.

9.2.9.9 CKO (Address: 08h) Page 9

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
08h CKO	W	INTXC	XCL4	XCL3	XCL2	XCL1	XCL0	WSEL2	WSEL1	WSEL0	CKS3	CKS2	CKS1	CKS0	СКОІ	CKOE	SCT
Reset		0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0

INTXC: Internal Crystal Load selection. Recommend INTXC = [1].

[0]: Use external capacitors. [1]: Use on-chip capacitors.

XCL[4:0]: On-chip Crystal Capacitor Load setting.

Set XCL = [10000] as the first value to fine tune the carrier frequency and minimize the frequency drift if Xtal Cload = 20pF.

XCL is active when INTXC=1 and Each XCL step is typical 1.68 pF.

XCL is the on-chip capacitor for Xtal oscillator to fine tune offset frequency of the wanted RF carrier.

Please refer to chapter 11 or contact AMICCOM's FAE.

XCL[4:0]	Xtal C-load (pF)
00000	0
00001	1.68
00010	3.36
11110	50.4
11111	52.08

WSEL[2:0]: Crystal Settling Delay setting (200us ~ 2.5ms). Recommend WSEL = [011]. [000]: 200us. [001]: 400us. [010]: 600us. [011]: 800us.

[100]: 1ms. [101]: 1.5ms. [110]: 2ms. [111]: 2.5ms.

CKOS [3:0]: CKO pin output select.

[0000]: DCK (TX data clock).

[0001]: RCK (RX recovery clock).

[0010]: FPF (FIFO pointer flag for FIFO extension).

[0011]: Logic OR gate by EOP, EOVBC, EOFBC, EOVCC, EOVDC and RSSC_OK. (Internal usage only).

[0100]: BBCK.

[0101]: BBCK.

[0110]: BBCK.

[0111]: 0.

[1000]: WCK.

[1001]: PF8M (F_{SYCK}).

[1010]: ROSC.

[1011]: EOADC.

[1100]: OKADON.

[1101]: EOCAL.

[1110]: VPOAK.

[1111]: Reserved.

CKOI: CKO pin Output signal invert.

[0]: Non-inverted output. [1]: Inverted output.

CKOE: CKO pin Output Enable.

[0]: High Z. [1]: Enable.

SCT: Reserved. SCT shall be [1].

9.2.9.10 VCO current (Address: 08h) Page 10

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
08h	W	CDTM 1	CDTM 0	FEP 13	FEP 12	FEP 11	FEP 10	FEP9	FEP8	PKT1	PKT0	PKS	VCOC3	VCOC2	VCOC1	VCOC0	MVCS
VCB	R	-	1	1	-	-	•	1	•	-	-	-	VCCF	VCB3	VCB2	VCB1	VCB0
Reset	0	0	0	0	0	0	0	0	0	-	-	-	0	0	0	0	0

FEP[13:8]: FIFO End Pointer for TX FIFO and Rx FIFO. Please see 9.2.9.13 FIFO (address:08h) Page 13.

CDTM[1:0]: Carrier detect number of times setting.

[00]: 16. [01]: 32 [10]: 64. [11]:128

PKT[1:0]: VCO Peak Detect threshold test bit. PKT shall be [00].

PKS: VCO Current Calibration Mode Select. Recommend PKS = [0].

[0]: Normal.

[1]: VCO current calibration by peak detection.

VCOC [3:0]: VCO Current Bank Calibration result. Recommend VCOC = [0010].

If SWT = [0] @ 0Fh, then VCOC= [1000].

If SWT = [1] @ 0Fh, then VCOC[3:0] = Manual setting.

MVCS: VCO current calibration select. Recommend MVCS = [0].

[0]: Auto. [1]: Manual.

VCCF: VCO Current Auto Calibration Flag (Read Only).

[0]: Pass. [1]: Fail.

VCB [3:0]: VCO Current Bank Calibration Value (Read Only).

MVCS= 0: Auto calibration value.

MVCS= 1: Manual calibration value.

9.2.9.11 Channel Group (I) (Address: 08h) Page 11

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
08h	W					FPL3	FPL2	FPL1	FPL0	IPL7	IPL6	IPL5	IPL4	IPL3	IPL2	IPL1	IPL0
CHG1	R					FPL3	FPL2	FPL1	FPL0	IPL7	IPL6	IPL5	IPL4	IPL3	IPL2	IPL1	IPL0
Reset						0	0	0	0	0	0	0	0	0	0	0	0

FPL [3:0]: VCO Calibration Fractional Part Setting for Low Boundary Channel Group.

Please refer to A7139's reference code for the wanted RF band.

IPL [7:0]: VCO Calibration Integer Part Setting for Low Boundary Channel Group.

Please refer to A7139's reference code for the wanted RF band.

9.2.9.12 Channel Group (II) (Address: 08h) Page 12

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
08h	W					FPH3	FPH2	FPH1	FPH0	IPH7	IPH6	IPH5	IPH4	IPH3	IPH2	IPH1	IPH0
CHG2	R					FPH3	FPH2	FPH1	FPH0	IPH7	IPH6	IPH5	IPH4	IPH3	IPH2	IPH1	IPH0
Reset						0	0	0	0	0	0	0	0	0	0	0	0

FPH [3:0]: VCO Calibration Fractional Part Setting for High Boundary Channel Group.

Please refer to A7139's reference code for the wanted RF band.

IPH [7:0]: VCO Calibration Integer Part Setting for High Boundary Channel Group.

Please refer to A7139's reference code for the wanted RF band.

9.2.9.13 FIFO (Address: 08h) Page 13

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
08h FIFO	W	FPM1	FPM0	PSA5	PSA4	PSA3	PSA2	PSA1	PSA0	FEP7	FEP6	FEP5	FEP4	FEP3	FEP2	FEP1	FEP0
Reset		0	1	0	0	0	0	0	0	0	0	1	1	0	1	1	1

FPM [1:0]: FIFO Pointer Margin.

FPM is used in FIFO extension mode for an indicator.

FPM[1:0]	Bytes in TX FIFO	Bytes in RX FIFO
[00]	4	60
[01]	8	56
[10]	12	52
[11]	16	48

PSA [5:0]: Used for Segment FIFO.

Used in FIFO segment mode.

FEP [13:0]: FIFO End Pointer for TX FIFO and Rx FIFO.

Where FEP[7:0] are located at here and FEP[13:8] are located at 08h page 10.

FIFO Length Setting = (FEP [13:0] +1). For example, if FEP = 0x3F, it means FIFO length is 64 bytes.

For FIFO extension mode, FEP's value shall be set larger than 0x3F.

Please refer to section 16.4.2 for details.

9.2.9.14 Code (Address: 08h) Page 14

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
08h Code	W	PML2	IDL1	WS6	WS5	WS4	WS3	WS2	WS1	WS0	MCS	WHTS	FECS	CRCS	IDL0	PML1	PML0
Reset		0	0	0	1	0	1	0	1	0	0	0	0	0	1	0	1

PML [2:0] (bit 15 / 1 / 0): Preamble Length Select. Recommend PML= [011].

[000]: 1 byte. [001]: 2 bytes. [010]: 3 bytes. [011]: 4 bytes. [100]: 16 byte. [101]: 32 bytes. [110]: 48 bytes. [111]: 64 bytes.

IDL[1:0] (bit 14 / 2): ID code length setting. Recommend IDL=[01].

IDL [1:0] = [Bit14, Bit2].

[00]: 2 bytes. [01]: 4 bytes. [10]: 6 bytes. [11]: 8 bytes.

WS [6:0]: Data Whitening Seed (data encryption key, only for FIFO mode).

MCS: Manchester Code Enable. (only for FIFO mode)

[0]: Disable. [1]: Enable.

WHTS: Data Whitening. (Data Encryption, only for FIFO mode)

[0]: Disable. [1]: Enable (The data is whitened by multiplying with PN7).

FECS: FEC Select. (only for FIFO mode)

[0]: Disable. [1]: Enable (The FEC is (7, 4) Hamming code).

CRCS: CRC Select. (only for FIFO mode)

[0]: Disable. [1]: Enable.

9.2.9.15 WCAL (Address: 08h) Page 15

						_											
Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
08h	W						MRCT5	MRCT4	MRCT3	MRCT2	MRCT1	MRCT0	MVS1	MVS0	MCALS	MAN	ENCAL
WCAL	R							NUMH8	NUMH7	NUMH6	NUMH5	NUMH4	NUMH3	NUMH2	NUMH1	NUMH0	ENCAL
Reset		, and the second	, and the second				0	0	0	0	0	0	0	0	0	0	0

MRCT[5:0]: Manual setting of RC Timer for WOR mode.

MVS[1:0]: WOR Calibration sample clock select based on CKOT.

[00]: 1/2. [01]: 1/4. [10]: 1/8. [11]: 1/16.

MCALS: WOR Calibration select.

[0]: Continuous mode. [1]: Single mode.

MAN: WOR Calibration Manual select.

[0]: Auto [1]: Manual

ENCAL: WOR Calibration Enable. ENCAL shall be [0] when WOR calibration is finished.

[0]: Disable. [1]: Enable.

ENCAL: WOR Calibration Flag (read only).

NUMLH[8:0]: WOR Calibration result. (Read only.)

9.2.10.0 TX II (Address: 09h) Page 0

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
09h TX II	W	MCNTR	DPR2	DPR1	DPR0	BT1	ВТ0	TDL1	TDL0	TXDI	PAC1	PAC0	TDC1	TDC0	TBG2	TBG1	TBG0
	R	DID15	DID14	DID13	DID12	DID11	DID10	DID9	DID8	DID7	DID6	DID5	DID4	DID3	DID2	DID1	DID0
Reset		0	0	0	0	0	0	0	0	0	0	1	1	0	1	1	1

MCNTR: Divided by 2 select.

[0]: $PF8M = f_{MCNT} \div 2$ where PF8M is one of baseband clock sources.

[1]: $PF8M = f_{MCNT}$

where $f_{\text{MCNT}} = f_{\text{MSCK}} \div (MCNT[1:0])$, located in 0x08 page 8.

Please refer to Chapter 12 for details.

DPR [2:0]: Scaling of PDL and TDL. Recommend DPR = [000].

BT [1:0]: Moving average for Gaussian filter select.

If GS = [0],

Gaussian filter is disabled, **BT** = **[00]**: not average. **[01]**: 2 bit average. **[10]**: 4 bit average. **[11]**: 8 bit average That means BT is used to smooth TX data transition.

If GS = [1],

Gaussian filter is enabled, BT = [00]: 2.0. [01]: 1.0. [10]: 0.5. [11]: 0.5

That means BT is used to configure shape of Gaussian filter.

TDL[1:0]:TX Settling Delay select.

TDL [1:0]	TX Delay Timer	Note
00	20 us	Recommend
01	40 us	
10	60 us	
11	80 us	

TXDI: TX data inverted. Recommend TXDI = [0].

[0]: normal. [1]: invert

PAC[1:0]: PA current setting.

Please refer to Chapter 8 and A7139 App. Note for programmable TX output power.

TDC[1:0]: TX Driver current setting.

Please refer to Chapter 8 and A7139 App. Note for programmable TX output power.

TBG[2:0]: TX Buffer Gain setting.

Please refer to Chapter 8 and A7139 App. Note for programmable TX output power.

DID [15:0]: Device ID data. (Read Only).

9.2.10.1 IF I (Address: 09h) Page1

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
09h IF I	W	AIF	IFOA14	IFOA13	IFOA12	IFOA11	IFOA10	IFOA9	IFOA8	IFOA7	IFOA6	IFOA5	IFOA4	IFOA3	IFOA2	IFOA1	IFOA0
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AIF: Auto IF enable.

[0]: disable. [1]: enable.

IFOA[14:0]: Auto IF offset frequency setting.

$$IFOA = \frac{f_{IFREF}}{f_{PFD}} * 65536$$

$$ex: IFBW = 100 \, KHz, f_{IFREF} = 200 \, KHz, Datarate = 100 \, Kbps$$

$$IFOA = \frac{200K}{12.8M} * 65536 = 1024$$

9.2.10.2 IF II (Address: 09h) Page2

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
09h IF II	W	FPA15	FPA14	FPA13	FPA12	FPA1	1 FPA10	FPA9	FPA8	FPA7	FPA6	FPA5	FPA4	FPA3	FPA2	FPA1	FPA0
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

FPA[15:0]: LO setting for frequency offset.

$$f_{\text{OFFSET}} = f_{PFD} \cdot (\frac{FPA[15:0] \cdot 2^6}{2^{16}})$$
 (unit: Hz)

Where $F_{PFD} = Fxtal/(RFC[3:0]+1)$

From PLL II (02h),
$$f_{\text{LO_BASE}} = f_{PFD} \cdot (IP[8:0] + \frac{FP[15:0]}{2^{16}})$$
 (unit: Hz)

Therefore, VLO frequency $F_{LO} = F_{RF} = F_{LO_BASE} + F_{OFFSET}$.

Please refer to Ch13 for details.

9.2.10.3 ACK (Address: 09h) Page3

				,													
Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
09h	W	MRCKS	RNUM3	RNUM2	RNUM1	RNUM0	CDRS1	CDRS0	SYNCS	VKM	VPM	ARTMS	ARC3	ARC2	ARC1	ARC0	EARKS
ACK	R										ARTEF	VPOAK	RCR3	RCR2	RCR1	RCR0	EARKS
Reset		0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	0

MRCKS: Reserved for internal usage only. Shall be set to [0].

RNUM[3:0]:Reserved for internal usage only. Shall be set to [011]..

SYNCS: RX demodulation sync word detect type select.

[0]: Sync word detect by re-preamble.

[1]: Sync word detect by using 64bytes buffer.

CDRS[1:0]: Carrier detect range select. Recommend CDRS = [01].

[00]: 8. [01]: 16. [10]: 24. [11]:32.

VKM: Valid Packet mode select.

[0]: by event. [1]: by pulse.

VPM: Valid Pulse width select.

[0]: 10u. [1]: 30u.

TX Mode (disable auto-resend, EARKS=0).

RX Mode (disable Auto-ack, EAKKS =0)

Note1, If auto-resend is enabled (EAR = 1), WTR behavior is different while it is output to GIO1 and GIO2. Note2, If auto-ack is enabled (EAK = 1), WTR behavior is different while it is output to GIO1 and GIO2. Note3, VPOAK's behavior is controlled by VPM (09h, page 3) and VKM (09h, page 3). Refer to chapter 21 for details

ARTMS: Auto-resend Interval select.

[0]: random interval. [1]: fixed interval.

ARC [3:0]: Auto-resend Cycle Setting.

[0000]: resend disable.

[0001]: 1 [0010]: 2 [0011]: 3 [0100]: 4 [0101]: 5 [0110]: 6 [0111]: 7

[1000]: 8 [1001]: 9 [1010]: 10 [1011]: 11 [1100]: 12 [1101]: 13 [1110]: 14 [1111]: 15

EARKS: Auto-ack or auto-resend enable.

[0]: disable. [1]: enable auto-resend (TX) or enable auto-ack (RX)

ARTEF: Auto-resend ending flag (read only).

[0]: Resend on going. [1]: Finish resending.

VPOAK: Valid Packet or ACK OK Flag (ready only).

This flag is clear by Strobe Command. [0]: Neither valid packet nor ACK OK.

[1]: Valid packet or ACK OK.

RCR [3:0]: Auto Resend Cycle Decremented Count (read only).

Decremented of ARC[3:0] during auto-resend.

9.2.10.4 ART (Address: 09h) Page4

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
09h	W	RND07	RND6	RND5	RND4	RND3	RND2	RND1	RND0	ARD7	ARD6	ARD5	ARD4	ARD3	ARD2	ARD1	ARD0
ART	R																
Reset		0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1

RND [7:0]: Random seed for auto-resend interval.

ARD[7:0]: Auto Resend Delay

ARD Delay = 200 us * (ARD+1) → (200us ~ 51.2 ms)

Each step is 200 us. [0000-0000]: 200 us. [0000-0001]: 400 us. [0000-0010]: 600 us.

...

[1111-1111]: 51.2 ms.

9.2.11 RX I (Address: 0Ah)

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0Ah RX I	W	ETH2	DMT	MPL1	MPL0	SLF2	SLF1	SLF0	ETH1	ETH0	DMOS	DMG1	DMG0	IFBW1	IFBW0	ULS	RXDI
Reset		0	0	0	1	1	0	0	0	1	0	0	1	0	0	0	0

ETH [2:0] (bit 15/8/7): ID code error bit tolerance. Recommend ETH = [001].

ETH [2:0] is located in [Bit15, Bit8, Bit7]

[000]: 0 bit. [001]: 1 bit. [010]: 2 bits. [011]: 3 bits. [100]: 4 bits. [101]: 5 bits. [110]: 6 bits. [111]: 7 bits.

DMT: Demodulator test bit. DMT shall be [0].

[0]: Normal.

[1]: Test mode.

MPL [1:0]: Symbol recovery loop filter setting after ID SYNC. MPL shall be [01].

SLF [2:0]: Symbol recovery loop filter setting. SLF shall be [100].

DMOS: Demodulator over-sample select. Recommend DMOS = [1].

[**0**]: x16. [**1**]: x32.

DMG [1:0]: Demodulator Gain select. Recommend DMG = [01].

[**00**]: x1. [**01**]: x3. [**1x**]: x5.

IFBW [1:0]: IF Band Pass Filter select.

[00]: 50KHz. data rate ≤50Kbps. (Xtal shall be chosen ± 10 ppm stability in case of RX sensitivity degradation.)

[01]: 100KHz. 50K < data rate \leq 100Kbps. [10]: 150KHz. 100K < data rate \leq 150Kbps. 150K < data rate \leq 250Kbps.

Since A7139 is a low-IF TRX, on-chip IFBW is implemented with 4 optional Filter Bandwidth.

The IF Filter shall be calibrated after power on reset. In performance point of view, the narrower IFBW results the better RX sensitivity. To make a successful IFBW calibration, an appreciated setting of calibration clock is necessary. Please refer to Chapter 12 and A7139's reference code for details.

ULS: RX Up/Low side band select. Recommend ULS = [0].

[0]: Up side band, TX frequency – IF = RX frequency [1]: Low side band, TX frequency + IF = RX frequency

RXDI: RX Data Invert. Recommend RXDI = [0].

[0]: normal. [1]: inverted.

9.2.12 RX II (Address: 0Bh)

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0Bh	W	PMD2	PMD1	PMD0	DCV7	DCV6	DCV5	DCV4	DCV3	DCV2	DCV1	DCV0	DCL2	DCL1	DCL0	DCM1	DCM0
RX II	R								ADCO 8	ADCO 7	ADCO 6	ADCO 5	ADCO 4	ADCO 3	ADCO 2	ADCO 1	ADCO 0
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PMD[2:0]: Preamble pattern detection. Recommend PMD = [100].

When DCM[1:0] = 01, 10, 11, chip will execute preamble length detection automatically.

[000]: 0 bit (Note: When PMD=[000], DC is not hold after ID detected.)

[001]: 4 bits

[010]: 8 bits (Default value)

[011]: 16 bits [100]: 24 bits.

[101] and [11x]: 32bits.

Remark: detection length setting should be smaller than the setting value of PML[1:0](08h, Page 14).

DCV[7:0]: Data DC average value setting. Recommend DCV = [10010].

This setting is only active when DCM (09h) = [00].

DCL[2:0]: Data Length of Peak Detect average setting. Recommend DCL = [010].

DCL[2:0] is used to let A7139 detects n times "0" or n times "1" to result DC estimation voltage of demodulator.

DCL[2:0]	DC a	verage
DCL[2.0]	Before ID Sync	After ID Sync
000	4	32
001	8	32
010	16	32
011	32	32
100	4	64
101	8	64
110	16	64
111	32	64

For example, if DCL[2:0] = 000,

Before ID sync, by peak detect method to update a new DC value for every 4 times 1" and 4 times "0". After ID sync, by peak detect method, to update a new DC value for every 32 times "1" and 32 times "0".

DCM [1:0]: Demodulator DC estimation mode. Recommend DCM = [01].

[00]: By DC average value, DCV[7:0],(0Bh).

[01]: DC holds after preamble detected.

[10]: DC holds after ID detected.

[11]: DC value when chip receive specific data length (set by DCL[:2:0])...

ADCO[8:0]: RSSI value if AGC =1 (Read Only).

9.2.13 ADC (Address: 0Ch)

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0Ch	W	ARSSI	RADC	AVSEL1	AVSEL0	MVSEL1	MVSEL0	XADS	CDM	RTH7	RTH6	RTH5	RTH4	RTH3	RTH2	RTH1	RTH0
ADC	R	PWR	XEM	PLLEM	TRSM	TREM		VBD1	VBD0	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ARSSI: Auto RSSI measurement enable.

[0]: Disable. [1]: Enable.

ARSSI shall be [1] for auto RSSI measurement before MCU issues RX strobe command.

RADC: ADC Read Out Average Mode.

[0]: 1, 2, 4, 8 average mode. If RADC = 0, ADC average is set by AVSEL[1:0] (0Ch). [1]: 8, 16, 32, 64 average mode. If RADC = 1, ADC average is set by MVSEL[1:0] (0Ch).

AVSEL [1:0]: ADC average mode. Recommend AVSEL = [10].

[00]: No average. [01]: 2. [10]: 4. [11]: 8.

MVSEL [1:0]: ADC average mode for VCO calibration and RSSI. Recommend MVSEL = [10].

[00]: 8. [01]: 16. [10]: 32. [11]: 64.

XADS: ADC input signal source select.

[0]: Internal temperature sensor or RSSI signal.

[1]: External signal source.

CDM: Carrier Detect enable

[0]: RSSI/Temperature measurement.

[1]: Carrier detect

RTH[7:0]: Threshold value of Carrier Detect (Active in RX mode only).

CD (Carrier Detect) =1 when RSSI \geq RTH.

CD (Carrier Detect) =0 when RSSI < RTL.

PWR: Power Status (Read Only).

[0]: Power off. [1]: Power on.

XEM: Crystal Status (Read Only).

[0]: Disable. [1]: Enable.

PLLER: PLL Status (Read Only).

[0]: Disable. [1]: Enable.

TRSM: TRX Mode Status (Read Only).

[0]: RX mode. [1]: TX mode.

TREM: TRX Status (Read Only).

[0]: Disable. [1]: Enable.

VBD[1:0]: VCO bias detect (Read Only).

ADC[7:0]: ADC value (Read Only).

9.2.14 Pin Control (Address: 0Dh)

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0Dh Pin Control	W	RFT2	RFT1	RFT0	PRS	SCMDS	WMO DE	INFS	IRQI	IRQ1	IRQ0	IRQE	СКОІ	CKO1	CKO0	CKOE	SCKI
Reset		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

RFT [2:0]: RF Analog Pin Configuration. Recommend RFT= [000].

{XADS, RFT[2:0]}	BP_BG (Pin 30)	RSSI (Pin 1)
[0000]	Band-gap voltage	RSSI voltage
[0001]	Analog temperature voltage	RSSI voltage
[0010]	Band-gap voltage	No connection
[0011]	Analog temperature voltage	No connection
[0100]	BPF positive in phase output	BPF negative in phase output
[0101]	BPF positive quadrature phase output	BPF negative quadrature phase output
[0110]	RSSI voltage	No connection
[0111]	RSSI voltage	No connection
[1000]	Band-gap voltage	External ADC input source
[1001]	Analog temperature voltage	External ADC input source
[1010]	Band-gap voltage	External ADC input source
[1011]	Analog temperature voltage	External ADC input source
[1100]	No connection	External ADC input source
[1101]	No connection	External ADC input source
[1110]	No connection	External ADC input source
[1111]	No connection	External ADC input source

PRS: Read frequency mode for AFC=1. Recommend PRS= [1].

[0]: no frequency compensation.

[1]: frequency offset in AFC mode

SCMDS: Strobe Command select. Recommend SCMDS=[1].

[0]: register control. [1]: strobe control.

WMODE: WOT/WOR select for WORE=1.

[1]: WOT (Wake-On-TX).

[0]: WOR (Wake-On-RX).

INFS: Infinite FIFO length select.

[0]: fixed length. [1]: infinite length

IRQI: Reserved. IRQI shall be [0].

IRQ[1:0]: Reserved. Use GIO1S/ GIO2S instead. Shall be [00].

IRQE: Reserved. Use G10E/ G20E instead. Shall be [0].

CKOI: Reserved. Use 08h page 9 instead. Shall be [0].

CKO[1:0]: Reserved. Use 08h page 9 CKOS instead. Shall be [00].

CKOE: Reserved. Use 08h page 9 instead. Shall be [0].

SCKI: SPI Clock Inverted. Recommend SCKI= [0].

[0]: Normal. [1]: Inverted.

9.2.15 Calibration (Address: 0Eh)

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0Eh	W	MSCRC	VTL2	VTL1	VTL0	VTH2	VTH1	VTH0	MVBS	MVB2	MVB1	MVB0	MIFS	MIF3	MIF2	MIF1	MIF0
Calibration	R	FCD4	FCD3	FCD2	FCD1	FCD0	DVT1	DVT0	VBCF	VB2	VB1	VB0	FBCF	FB3	FB2	FB1	FB0
Reset		0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0

MSCRC: CRC Filtering Enable. Recommend MSCRC = [1].

[0]: Disable. [1]: Enable.

VTL[2:0]: VT low threshold setting for VCO calibration. Recommend VTL = [100].

[000]: VTL=0.06V. [001]: VTL=0.12V. [010]: VTL=0.18V. [011]: VTL=0.24V. [100]: VTL=0.3V. [101]: VTL=0.36V.

[110]: VTL=0.42V. [111]: VTL=0.48V.

VTH[2:0]: VT high threshold setting for VCO calibration. Recommend VTH = [100].

[000]: VTH=Vdd-0.06V. [001]: VTH=Vdd-0.12V. [010]: VTH=Vdd-0.18V. [011]: VTH=Vdd-0.24V. [100]: VTH=Vdd-0.3V.

[101]: VTH=Vdd-0.36V. [110]: VTH=Vdd-0.42V. [111]: VTH=Vdd-0.48V.

MVBS: VCO band calibration select.

[0]: Auto. [1]: Manual.

MVB[2:0]: VCO bank manual setting. VCO frequency increases when MVB decreases.

MIFS: IF Filter Calibration Select.

[0]: Auto. [1]: Manual.

MIF[3:0]: IF filter Manual Setting.

FCD [4:0]: IF Filter Auto Calibration Deviation from Goal (read only).

DVT[1:0]: VT output (Read Only).

[00]: VT< VTL< VTH. [01]: VTL< VT< VTH.

[10]: No used.

[11]: VTL< VTH< VT.

VBCF: VCO Band Auto Calibration Flag (Read Only).

[0]: Pass. [1]: Fail.

VB[2:0]: VCO Bank Auto Calibration Result (Read Only).

FBCF: IF Filter Auto Calibration Flag (Read Only).

[0]: Pass. [1]: Fail.

FB[3:0]: IF Filter Auto Calibration Result (Read Only).

9.2.16 Mode Control (Address: 0Fh)

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0Fh	W	DFCD	VBS	SWT	RSSC	VCC	CCE	WORE	FMT	FMS	CER	PLLE	TRSR	TRER	VBC	FBC	ADCM
Mode Control	R			WORE	RSSC	CCER	FECF	CRCF	FMT	FMS	CER	PLLE	TRSR	TRER	VBC	FBC	ADCM
Reset	,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

DFCD: Packet Filtering by Carrier Detect.

The received packet is filtered if the input power level is below RTH (0Ah).

[0]: Disable. [1]: Enable.

VBS: Reserved. Should set to [0].

SWT: VCO Current and ADC clock and System clock select. Recommend SWT = [0].

[0]: Original [1]: Update

RSSC: RSSI Calibration.

[0]: Disable. [1]: Enable.

VCC: VCO current calibration

[0]: Disable [1]: Enable

CCE: Chip enable by register.

[0]: chip turn-off. [1]: chip turn-on.

WORE: WOT/WOR function enable.

[0]: Disable. [1]: Enable.

FMT: Reserved for internal usage only. Shall be set to [0]

FMS: Direct/FIFO mode select.

[0]: Direct mode. [1]: FIFO mode.

CER: Crystal enable by register.

[0]: crystal turn-off. [1]: crystal turn-on.

PLLE: PLL enable by register.

[0]: PLL off. [1]: PLL on.

TRSR: TRX Mode select by register.

[0]: RX mode. [1]: TX mode.

When bit TRER=1, the chip will enter TX or RX mode by TRSR register.

TRER: TRX mode enable by register. Shall be set to [1].

[1]: By register control (CER and TRSR). In FIFO mode, this bit will be cleared after end of packet encountered.

VBC: VCO Bank calibration enable (Auto clear when done).

[0]: Disable. [1]: Enable.

FBC: IF Filter Bank calibration enable (Auto clear when done).

[0]: Disable . [1]: Enable.

ADCM: ADC measurement (Auto clear when done).

[0]: Disable. [1]: Enable.

	Non-Rx mode	RX mode
[0]	None	None
[1]	Temperature measurement (XADS=0) or	RSSI, carrier detect
	external analog signal conversion from pin 1 (XADS=1)	

FECF: FEC flag. (Bit 10, FECF is read clear.)

[0]: FEC pass. [1]: FEC error.

CRCF: CRC flag. (Bit 9, CRCF is read clear.)

[0]: CRC pass. [1]: CRC error.

10. SPI (3-wire)

The A7139 communicates with a host MCU via 3-wire SPI interface (SCS, SCK, SDIO) or 4-wire SPI (SDO from GIO1 or GIO2) with a max data rate 10Mbps. A SPI transition is a 24-bits sequence which consists of an 8-bits address and a 16-bits data word. The MCU should set SCS (SPI chip select) pin low in order to access A7139. Via the SPI interface, user can access the **control registers** and issue **Strobe commands**. The SPI data will be latched into the registers at the rising edge of SCK. When reading registers from the RF chip, after input the wanted register address, the bit data will be transferred from the falling edge of SCK.

10.1 SPI Format

	Ac	ddre	ss E	Byte(8 bi	ts)								Data	word	s(16	bits)						
R/ W	Co	mma	and		Add	ress	;								Da	ta			1		V		
A7	A6	A5	Α4	АЗ	A2	A1	A0	D15	D15 D14 D13 D12 D11 D10 D9 C							D7	D6	D5	D4	D3	D2	D1	D0

SPI format

Address Byte (8 bits):

Bit A7: R/W bit

[0]: Write.

[1]: Read.

Bit A6~A4: Command

[00x]: read/write control register.

[01x]: read/write ID code.

[10x]: read/write FIFO register.

[110]: reset TX/RX FIFO pointer.

[111]: RF chip Reset (soft reset and all registers will be clean to initial value).

Bit A3~A0: Address of control register

Strobe Command table:

	A	ddre	ss B	yte	(8 bi	ts)		description									
A7	A6	A5	A4	А3	A2	A1	A0	description									
0	0	0	0	А3	A2	A1	A0	Write control register									
1	0	0	Х	АЗ	A2	A1	A0	Read control register									
0	0	1	X	X	X	X	X	Write ID code command									
1	0	1	X	X	X	X	X	Read ID code command									
0	1	0	Х	X	X	Х	Х	TX FIFO write command									
1	1	0	X	Х	X	X	Х	RX FIFO read command									
Χ	1	1 ,	1	X	X	Х	Х	Software Reset command									
0	1	1	0	X	Х	Х	Х	TX FIFO address pointer reset command									
1	1	1	0	X	Х	Х	Х	RX FIFO address pointer reset command									
0	0	0	1	0	0	0	0	Sleep mode									
0	0	0	1	0	0	1	0	Idle mode									
0	0	0	1	0	1	0	0	Standby mode									
0	0	0	1	0	1	1	0	PLL mode									
0	0	0	1	1	0	0	0	RX mode									
0	0	0	1	1	0	1	0	TX mode									
0	0	0	1	1	1	0	0	Deep sleep mode (tri-state)									
0	0	0	1	1	1	1	1	Deep sleep mode (pull-high)									

Remark: X (Don't care).

Data Words (16-bits): On-chip registers in sequence of D15~D0.

10.2 SPI Timing Chart

Figure 10.1. SPI read/write sequence

10.3 Control register access

Figure 10.2. Access type of control register

10.4 SPI Timing Specification

Figure 10.3 SPI timing sequence

Parameter	Description	Min.	Max.	Unit
T _{FC}	Clock frequency.		10	MHz
T _{SE}	SCS setup time.	50		ns

T _{HE}	SCS hold time.	50		ns
T _{SW}	SDIO setup time.	50		ns
T _{HW}	SDIO hold time.	50		ns
T_{DR}	SDIO delay time.	0	100	ns
T _{HR}	SDIO hold time.	0		ns

10.5 Reset Command

The MCU could issue a software reset command to A7139 by sending a Reset Command through the SPI interface as shown below. After a reset command, A7139 is in standby mode.

Figure 10.5 Reset Command

10.6 Reset TX FIFO Pointer

The SPI timing sequences for resetting TX FIFO Pointer is shown below. The address pointer of TX FIFO is reset to 0x00 at the rising edge of SCK at bit A0.

Figure 10.6 TX FIFO Pointer Reset

10.7 Reset Rx FIFO Pointer

The SPI timing sequences for resetting RX FIFO Pointer is shown below. The address pointer of RX FIFO is reset to 0x00 at the rising edge of SCK at bit A0.

Figure 10.7 RX FIFO Pointer Reset

10.8 ID Read/Write Command

A7139 has built-in 32-bits ID Registers for customized identification code. It is accessed via SPI interface. ID length is recommended to be 32 bits by setting IDL. The timing sequences are shown below. First execute the ID Red/write command in address byte, and then write data bytes with length of the 4 bytes.

Figure 10.9 ID Read Command

10.9 FIFO R/W Command

TX FIFO Write Command

To execute the TX FIFO write procedure, according to the command table, user should write the corresponding command into Address Byte, and then write data into the Data Bytes. After completing the writing action, toggle SCS=1 to end the TX FIFO writing procedure.

Figure 10.10 TX FIFO Write Command

RX FIFO Write Command

To execute the RX FIFO read procedure, according to the command table, user should write the corresponding command into Address Byte, and then read out RX FIFO. After completing the reading action, toggle SCS=1 to end the RX FIFO writing procedure.

Figure 10.11 RX FIFO Read Command

11. Crystal Oscillator

A7139 needs external crystal or external clock to generate internal wanted clock.

Relative Control Register / Crystal (Address: 07h)

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
07h Crystal	W	PGAS3	PGAS2	PGAS1	PGAS0	CRCDNP	CRCINV	PGBS2	PGBS1	PGBS0	-	1	XCC	XCP1	XCP0	CGS	XS
Reset		0	0	0	0	0	0	0	0	0	0	0	1	1 🛮	0	0	0

11.1 Use External Crystal

Figure 12.1 shows the connection of crystal network between XI and XO pins. C1 and C2 capacitance built inside A7139 are used to adjust different crystal loading. User can set INTXC [4:0] (08h, page 9) to meet crystal loading requirement. A7139 supports low cost crystal within ± 30 ppm accuracy. Be aware that crystal accuracy requirement includes initial tolerance, temperature drift, aging and crystal loading.

CKO (Address: 08h) Page 9

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
08h CKO	W	INTXC	XCL4	XCL3	XCL2	XCL1	XCL0	WSEL2	WSEL1	WSEL0	CKS3	CKS2	CKS1	CKS0	СКОІ	CKOE	SCT
Reset		0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0

Note: set XS= 1 (07h) and INTXC(08h, page 9) to enable external crystal oscillator and on-chip crystal compensated capacitors.

Figure 11.1 Crystal network connection for using external crystal

11.2 Use External Clock

A7139 has built-in AC couple capacitor to support external clock input. Figure 11.2 shows how to connect. In such case, XI pin is left opened.

Note: set XS = 0 (07h) to select external clock (AC couple capacitor active.). And the frequency accuracy of external clock shall be controlled within \pm 30 ppm and the clock swing (peak-to-peak) shall be larger than 1.0V.

External clock is controlled within ± 30ppm and Vpp is above 1.0V.

Figure 11.2 Connect to external clock source

12. System Clock

A7139's main system clock, F_{MSCK} , can be either come from Xtal oscillator itself or from the internal PLL clock generator. The purpose of the internal clock generator is used to support multi Xtal frequency and/or special requirements of the wanted data rate.

12.1 Clock Domain

Since F_{MSCK} is the root of the data rate clock, IF Filter calibration clock, as well as baseband clock, therefore, there are several clock dividers implemented by configurable registers such as CSC, SDR, DMOS, MCNT and MCNTR. Table 12.1 lists the most important constraints how to configure those registers successfully and figure 12.1 illustrates the detailed clock domain.

Signal	Constraints	Note
F _{MSCK} (main system clk)	If CGS = 0, F_{MSCK} = Xtal freq.	If using Clk Gen, F _{MSCK} range can be from 20M
	If CGS = 1, F_{MSCK} = Clk Gen	~ 50MHz that depends on GRC and GRS.
DCK (data rate clock)	$1 f_{ccov}$	DCK = the wanted data rate
	$DCK = \frac{1}{64} \cdot \frac{f_{CSCK}}{SDR[6:0]+1}$	
	$64 \ SDR[6:0]+1$	
Demodulator Oversample	$F_{MSCK} = F_{IFREF} \times (32)$	Use 32 oversample by set DMOS = 1
IFBW calibration	F _{IFREF} = IF Filter BW x (2)	F _{IFREF} is derived from F _{MSCK}
PF8M	equal or close to 6.4MHz	Set WRCKS = 0 for successful WOR calibration
	equal or close to 8MHz	Set WRCKS = 1 for successful WOR calibration

Table 12.1 Constraints of the key signals and its usage.

Figure 12.1 Illustrations from Xtal oscillator to main system clock and its clock domain.

12.2 System Clock and IF Filter

In general, data rate is almost the first consideration to start a new design. While choosing a wanted data rate, A7139 offers 4 optional IFBW (50KHz / 100KHz / 150KHz / 250KHz) to trade off RX sensitivity and frequency tolerance.

Table 12.2 lists the recommended IFBW vs data rate. For example, 10Kbps data rate is mapping to 50KHz IFBW. In this case, using \pm 10 ppm Xtal is necessary this is because the narrower IFBW the poorer frequency tolerance, but, the better RX sensitivity. However, user can also choose 100KHz IFBW to handle a larger frequency tolerance in a RF system. That means using a larger Xtal tolerance is ok, i.e. \pm 20 ppm. But, its disadvantage is to suffer RX sensitivity.

Data rate	IFBW	F _{IFREF}	Constraints
2K ~ 50kbps	~ 50kHz	~ 50kHz x 2	The actual FIFREF, which is derived
≦100kbps	~ 100kHz	~ 100kHz x2	from system clock, is double of
≦150kbps	~ 150kHz	~ 150kHz x2	IFBW
≦250kbps	~ 250kHz	~ 250kHz x2	

Table 12.2 General case of IFBW mapping to Data Rate.

12.3 Example of 10Kbps data rate by 12.8MHz Xtal

Since IFBW is so important to impact RX sensitivity, A7139 has an IFBW calibration procedure to overcome the process deviation of semiconductor. To make a successful IFBW calibration, the relationships among F_{MSCK}, F_{IFREF} and DCK must be satisfied. Figure 12.2 illustrates the detailed configurations to clock dividers.

- 1. Data rate = 10Kbps
- 2. Xtal = 12.8MHz
- Clk Gen = disable
- 4. IFBW[1:0] = [00], targeted BW = 50KHz

Figure 12.2 Configurations of 10Kbps when IFBW = 50KHz

- 5. If choosing IFBW = 100KHz, figure 12.3 illustrates the different results of CSC and F_{CSCK}.
- 6. Data rate = 10Kbps
- 7. Xtal = 12.8MHz
- 8. Clk Gen = disable
- 9. IFBW[1:0] = [01], targeted BW = 100KHz

Figure 12.3 Configurations of 10Kbps when IFBW = 100KHz

12.4 Example of special data rate by 19.6608MHz Xtal.

A7139 can support most general data rate such as 10K, 50K, 100K, 150K, 250Kbps. For special data rate such as 38.4Kbps, the internal Clk Gen can be enabled with a special Xtal frequency to get the wanted DCK and IFBW. Figure 12.4 illustrates the detailed configurations to clock dividers.

- 1. Data rate = 38.4Kbps
- 2. Xtal = 19.6608MHz
- 3. Clk Gen = disable
- 4. IFBW[1:0]= [10], targeted BW = 150KHz

Figure 12.4 Configurations of 38.4Kbps when IFBW = 153.6KHz

- 5. If choosing IFBW = [11]. IFBW will become 307.2KHz instead of the expected 250KHz because of FIFREF (higher FIFREF results larger IF bandwidth if IF Filter Calibration is successful.). Figure 12.5 illustrates the different results of CSC and FCSCK.
- Data rate = 38.4Kbps
- Xtal = 19.6608MHz
- Clk Gen = enable IFBW = 307.2KHz

Figure 12.5 Configurations of 38.4Kbps when IFBW = 307.2KHz

13. Tranceiver Frequency

A7139 is a half-duplex transceiver with embedded PA and LNA. For TX or RX frequency setting, user just needs to set up LO (Local Oscillator) frequency for two ways radio transmission.

To target full range of Sub 1GHz ISM band (315/433/470/868/915MHz band), A7139 applies offset concept by LO frequency $F_{LO} = F_{LO_BASE} + F_{OFFSET}$. Therefore, this device is easy to implement single channel operation or frequency hopping (multi-channels) by setting, IF Register II (FPA [15:0]).

Below is the frequency synthesizer block diagram which shows that VCO frequency (F_{VCO}) is operated at the wanted RF frequency (F_{RF}).

Figure 13.1 Frequency synthesizer block diagram

 $F_{RF} = F_{VCO} = F_{LO_BASE} + F_{OFFSET}$ (unit: Hz)

where f_{RF} , the wanted RF frequency, is equal to VCO frequency.

where $f_{
m LO~BASE}$, the base frequency of LO frequency.

where $f_{
m OFFSET}$, the offset frequency of LO frequency.

Example:

How to get $(F_{RF}) = 433.921$ MHz by a 12.8MHz Xtal.

- 1. Set AFC = 0 to disable AFC function.
- 2. Set RFC (06h) = [000], (F_{PFD}) = Xtal frequency = 12.8MHz.
- 3. Set MD1 (04h) = [0] for 433MHz band.
- 4. Set IP [7:0] (01h) for integer part. Set IP[8:0] = 33 = 0x021
- 5. Set FP [15:0] (02h) for fractional part. Set FP[15:0] = 58987 = 0xE66B

6.

$$f_{\text{LO_BASE}} = f_{PFD} \cdot (IP[8:0] + \frac{FP[15:0]}{2^{16}}) = 12.8 \times (33 + \frac{58987}{2^{16}}) = 433.921 \text{ (MHz)}$$

- 7. Set FPA [15:0] (09h, page 2) for offset part. Set FPA = 0x0000 for zero offset.
- 8.

$$f_{\text{OFFSET}} = f_{PFD} \cdot (\frac{FPA[15:0] \cdot 2^6}{2^{16}}) = 12.8 \times \frac{0}{2^{10}} = 0 \text{ (MHz)}$$

- 9. For TX radio frequency (F_{TXRF}) is equal to $F_{RF} = F_{VCO} = F_{LO_BASE} + F_{OFFSET} = 433.921 + 0 = 433.921$ (MHz).
- 10. RX LO frequency (F_{RXLO}) is shall be set to ONE F_{IF} offset because low-IF architecture.
- RX LO frequency $F_{RXLO} = F_{TXRF} F_{IFREF}$; when ULS (0Ah) = 0 for up side band.

14. State machine

A7139 has seven major operation modes from current consumption point of view as shown in Table 14.1. From accessing data point of view, if FMS=1 (0Fh), FIFO mode is enabled, otherwise, A7139 is in direct mode.

14.1 Key Strobe Commands

A7139 has below 7 operation modes in current consumption point of view. Those are,

- (1) Deep Sleep mode
- (2) Sleep mode
- (3) Idle mode
- (4) Standby mode
- (5) PLL mode
- (6) TX mode
- (7) RX mode

After power on reset or software reset or deep sleep mode, user has to do calibration process because all control registers are in initial values. The calibration process of A7139 is very easy, user only needs to issue Strobe commands and enable calibration registers. If so, the calibrations are automatically completed by A7139's internal state machine. Table 14.1 shows a summary of key circuitry among those strobe commands.

Mode	Register retention	Regulator	Xtal Osc.	vco	PLL	RX	TX	Strobe Command
Deep Sleep (Tri-state)	No	OFF	OFF	OFF	OFF	OFF	OFF	(0001-1100)b
Deep Sleep (pull-high)	No	OFF	OFF	OFF	OFF	OFF	OFF	(0001-1111)b
Sleep	Yes	OFF	OFF	OFF	OFF	OFF	OFF	(0001-0000)b
Idle	Yes	ON	OFF	OFF	OFF	OFF	OFF	(0001-0010)b
Standby	Yes	ON	ON	OFF	OFF	OFF	OFF	(0001-0100)b
PLL	Yes	ON	ON	ON	ON	OFF	OFF	(0001-0110)b
TX	Yes	ON	ON	ON	ON	OFF	ON	(0001-1010)b
RX	Yes	ON	ON	ON	ON	ON	OFF	(0001-1000)b
SW RST								(x111-xxxx)b

Remark: x means "don't care'

Table 14.1. Operation mode and strobe command

14.2 FIFO mode

This mode is suitable for the requirements of general purpose applications and can be chosen by setting FMS = 1. After calibration, user can issue Strobe command to enter standby mode where write TX FIFO or read RX FIFO. From standby mode to packet data transmission, only one Strobe command is needed. Once transmission is done, A7139 is auto back to standby mode. Figure 14.1 and Figure 14.2 are TX and RX timing diagram respectively. Figure 14.3 illustrates state diagram of FIFO mode.

Figure 14.1 TX timing of FIFO Mode

Figure 14.3 State diagram of FIFO Mode

14.3 Direct mode

This mode is suitable to let MCU to drive customized packet to A7139 directly by setting FMS = 0. In TX mode, MCU shall send customized packet in bit sequence (simply called raw TXD) to GIO1 or GIO2 pin. In RX mode, the receiving raw bit streams (simply called RXD) can be configured output to GIO1 or GIO2 pin. Be aware that a customized packet shall be preceded by a 32 bits preamble to let A7139 get a suitable DC estimation voltage. After calibration flow, for every state transition, user has to issue Strobe command to A7139 for fully control. This mode is also suitable for the requirement of versatile packet format.

Figure 14.4 and Figure 14.5 are TX and RX timing diagram in direct mode respectively. Figure 14.3 illustrates state diagram of direct mode.

Figure 14.4 TX timing of Direct Mode

Figure 14.5 RX timing of Direct Mode

15. Calibration

A7139 needs calibration process during initialization with 2 calibration items, they are IF CAL (IF Filter calibration) and VCO band CAL (VCO band calibration).

- 1. VCO Bank Calibration is to select best VCO frequency bank for the calibrated frequency.
- 2. VCO Current Calibration.
- 3. IF Filter Bank Calibration is to calibrate IF filter bandwidth and center frequency.

Please notice that VCO Current, Bank and Deviation should be calibrated in PLL mode by sequence. IF Filter Bank and RSSI could be calibrated in either standby or PLL mode.

15.1 IF Calibration Process

Under the Stand by state (XOSC is on), set bit MIFS=0(auto calibration) or bit MIFS=1(Manual calibration) to execute the IF calibration. When the mode control register bit FBC=1, the chip will enter CAL state, and starts the calibration process.

If RF chip is not in the STB state when bit FBC is set to 1, RF chip will not start the calibration process until it enters the STB state. Once the calibration is completed, bit FBC will be cleared to 0 automatically, and RF chip will leave from CAL state and back to STB state.

If the mode control register bit TRER=1, FBC=1 or VBC=1are set simultaneously, RF chip will enter the CAL state first, and after completion of IF filter calibration or VCO band calibration process, RF chip can then enter into TX/RX state. The maximum time required for A7139 RF chip to perform IF Calibration process is about 16 * 256 * (1 / system clock).

15.2. VCO band Calibration Process

Before the VCO band calibration, user should first set operating frequency in PLL I and PLL II registers, meanwhile, the range of VT (VTH[2:0], VTL[2:0]) and VCO also needs to be set properly.

Under the Stand by state (XOSC is on), set bit MVBS=0(auto calibration) or bit MVBS=1(manual calibration) to execute the VCO band calibration. After setting the mode control register bit VBC=1, the chip will enter CAL state, and starts the calibration process. If RF chip is not in the STB state when bit VBC is set to 1, RF chip will not start the calibration process until it entering STB state. When the calibration is completed, bit VBC will be cleared to 0 automatically, and chip will leave from CAL state and back to STB state.

If the mode control register bit TRER=1, FBC=1 or VBC=1 are set simultaneously, RF chip will enter the CAL state first, and after completion of IF filter calibration or VCO band calibration process, RF chip can then enter into TX/RX state. The maximum time required for A7139 RF chip to perform IF Calibration process is about 16 * 256 * (1 / system clock). The maximum time required for A7139 RF chip to perform VCO band Calibration process is about 4 * PLL settling time.

Calibration (Address: 0Eh)

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0Eh	W	MSCRC	VTL2	VTL1	VTL0	VTH2	VTH1	VTH0	MVBS	MVB2	MVB1	MVB0	MIFS	MIF3	MIF2	MIF1	MIF0
Calibration	R	FCD4	FCD3	FCD2	FCD1	FCD0	DVT1	DVT0	VBCF	VB2	VB1	VB0	FBCF	FB3	FB2	FB1	FB0
Reset		0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0

16. FIFO (First In First Out)

A7139 supports separated 64-bytes TX and RX FIFO by enabling FMS =1 (0Fh). TX FIFO represents transmitted payload. On the other hand, once RX circuitry synchronizes ID Code, received payload is stored into RX FIFO.

16.1 Packet Format

Figure 16.1 Packet Format of FIFO mode

Figure 16.2 ID Code Format

Preamble:

The packet is led by preamble composed of alternate 0 and 1. If the first bit of ID code is 0, preamble shall be 0101...0101. In the contrast, if the first bit of ID code is 1, preamble shall be 1010...1010.

Preamble length is recommended to set 4 bytes by PML [1:0] (08h, page 14).

ID code:

ID code is recommended to set 4 bytes by IDL=1 (08h, page 14). ID Code is sequenced by Byte 2, 4, 6 and 8 (Recommend to set ID Byte 0 = 5xh or Axh). If RX circuitry checks the ID code correct, received payload will be stored into RX FIFO. In special case, ID code could be set error tolerance (0~ 3bit error) by ETH [1:0] (0Ah) for ID synchronization check.

Payload:

Payload length is programmable by FEP [13:0] (08h, page 10, 13) to define the FIFO length. The physical FIFO length is 64 bytes. A7139 also supports logical FIFO extension up to 16K bytes. See section 16.4.3 for details.

CRC (option):

In FIFO mode, if CRC is enabled (CRCS=1, 08h, page 14), 2-bytes of CRC value is transmitted automatically after payload. In the same way, RX circuitry will check CRC value and show the result to CRC Flag (0Fh).

16.2 Bit Stream Process

A7139 supports 3 optional bit stream processes for payload, they are,

- (1) CCITT-16 CRC $(x^{16} + x^{15} + x^2 + 1)$.
- (2) (7, 4) Hamming FEC
- (3) Data Whitening by XOR PN7 (7-bits Pseudo Random Sequence).

CRC (Cyclic Redundancy Check):

- CRC is enabled by CRCS= 1 (08h, page 14). TX circuitry calculates the CRC value of payload (preamble, ID code excluded) and transmits 2-bytes CRC value after payload.
- 2. RX circuitry checks CRC value and shows the result to CRC Flag (0Fh). If CRCF=0, received payload is correct, else error occurred. (CRCF is read only, it is revised internally while receiving every packet.)

FEC (Forward Error Correction):

- FEC is enabled by FECS= 1 (08h, page 14). Payload and CRC value (if CRCS=1) are encoded by (7, 4) Hamming code.
- Each 4-bits (nibble) of payload is encoded into 7-bits code word as well as delivered out automatically. (ex. 64 bytes payload will be encoded to 128 code words, each code word is 7 bits.)
- 3. RX circuitry decodes received code words automatically. FEC supports 1-bit error correction each code word. Once 1-bit error occurred, FEC flag=1 (0Fh). (FECF is read only, it is revised internally while receiving every packet.)

Data Whitening:

- Data whitening is enabled by WHTS= 1 (08h, page 14). The initial seed of PN7 is WS [6:0] (08h, page 14).
 Payload is always encrypted by bit XOR operation with PN7. CRC and/or FEC are also encrypted if CRCS=1 and/or if FECS=1.
- 2. RX circuitry decrypts received payload and 2-bytes CRC (if CRCS=1) automatically. Please notice that user shall set the same WS [6:0] to TX and RX.

16.3 Transmission Time

Based on CRC and FEC options, the transmission time differs depending on the chosen of CRC and FEC options. See table 16.1 for details.

Data Rate = 250 Kbps

Preamble (bits)	ID Code (bits)	Payload (bits)	CRC (bits)	FEC	Transmission Time / Packet
32	32	512	Disable	Disable	576 bit X 4 us = 2.304 ms
32	32	512	16 bits	Disable	592 bit X 4 us = 2.368 ms
32	32	512	Disable	512 x 7 / 4	960 bit X 4 us = 3.840 ms
32	32	512	16 x 7 / 4	512 x 7 / 4	988 bit X 4 us = 3.952 ms

Data Rate = 125 Kbps

Preamble (bits)	ID Code (bits)	Payload (bits)	CRC (bits)	FEC	Transmission Time / Packet
32	32	512	Disable	Disable	576 bit X 8 us = 4.608 ms
32	32	512	16 bits	Disable	592 bit X 8 us = 4.736 ms
32	32	512	Disable	512 x 7 / 4	960 bit X 8 us = 7.580 ms
32	32	512	16 x 7 / 4	512 x 7 / 4	988 bit X 8 us = 7.904 ms

Data Rate = 50 Kbps

Preamble (bits)	ID Code (bits)	Payload (bits)	CRC (bits)	FEC	Transmission Time / Packet
32	32	512	Disable	Disable	576 bit X 20 us = 11.52 ms
32	32	512	16 bits	Disable	592 bit X 20 us = 11.84 ms
32	32	512	Disable	512 x 7 / 4	960 bit X 20 us = 19.20 ms
32	32	512	16 x 7 / 4	512 x 7 / 4	988 bit X 20 us = 19.76 ms

Data Rate = 2 Kbps

Preamble (bits)	ID Code (bits)	Payload (bits)	CRC (bits)	FEC	Transmission Time / Packet
32	32	512	Disable	Disable	576 bit X 0.5 ms = 0.288 s
32	32	512	16 bits	Disable	592 bit X 0.5 ms = 0.296 s
32	32	512	Disable	512 x 7 / 4	960 bit X 0.5 ms = 0.480 s
32	32	512	16 x 7 / 4	512 x 7 / 4	988 bit X 0.5 ms = 0.494 s

Table 16.1 Transmission time

16.4 Usage of TX and RX FIFO

In application points of view, A7139 supports 3 options of FIFO arrangement.

- (1) Easy FIFO
- (2) Segment FIFO
- (3) FIFO Extension

16.4.1 Easy FIFO Mode

In Easy FIFO mode, max FIFO length is 64 bytes. FIFO length is equal to **(FEP [13:0] +1)**. User just needs to control FEP [13:0] and disable PSA and FPM as shown below.

TX	RX	Control Registers				
TX-FIFO (byte)	RX-FIFO (byte)	FEP[13:0]	PSA [5:0]	FPM [1:0]		
1	1	0x000	0	0		
8	8	0x007	0	0		
16	16	0x00F	0	0		
32	32	0x01F	0	0		
64	64	0x03F	0	0		

Table 16.2 Control registers of Easy FIFO

Procedure of TX FIFO Transmitting

- 1. Initialize all control registers (refer to A7139 reference code).
- 2. Set FEP [13:0] = 0x3F for 64-bytes FIFO.
- 3. Issue TX FIFO write pointer reset.
- 4. MCU writes 64-bytes data to TX FIFO.
- 5. Issue TX mode.
- 6. Done.

Procedure of RX FIFO Reading

- 1. When RX FIFO is full, WTR (or FSYNC) can be used to trigger MCU for RX FIFO reading.
- 2. Issue RX FIFO read pointer reset.
- 3. MCU read 64-bytes from RX FIFO.
- 4. Done

Figure 16.3 Easy FIFO mode

16.4.2 Segment FIFO

In Segment FIFO, TX FIFO length is equal to (FEP [13:0] - PSA [5:0] + 1). FPM [1:0] should be zero. This function is very useful for button applications. In such case, each button is used to transmit fixed code (data) every time. During initialization, each fixed code is written into corresponding segment FIFO once and for all. Then, if button is triggered, MCU just assigns corresponding segment FIFO (PSA [5:0] and FEP [13:0]) and issues TX strobe command.

For example, if TX FIFO is arranged into 8 segments, each TX segment and RX FIFO length is divided into 8 bytes

		тх	Control Registers				
Segment	PSA	FEP	FIFO Length	PSA[5:0]	FEP[13:0]	FPM[1:0]	
1	PSA1	FEP1	8 bytes	0x00	0x007	0	
2	PSA2	FEP2	8 bytes	0x08	0x00F	0	
3	PSA3	FEP3	8 bytes	0x10	0x017	0	
4	PSA4	FEP4	8 bytes	0x18	0x01F	0	
5	PSA5	FEP5	8 bytes	0x20	0x027	0	
6	PSA6	FEP6	8 bytes	0x28	0x02F	0	
7	PSA7	FEP7	8 bytes	0x30	0x037	0	
8	PSA8	FEP8	8 bytes	0x38	0x03F	0	

RX	Control Registers					
FIFO Length	PSA[5:0]	FEP[13:0]	FPM[1:0]			
8 bytes	0	0x007	0			

Table 16.3 Segment FIFO is arranged into 8 segments

Procedures of TX FIFO Transmitting

- 1. Initialize all control registers (refer to A7139 reference code).
- 2. Strobe command TX FIFO write pointer reset.
- 3. Input the wanted code to the corresponding segment FIFO once and for all.
- 4. To transmit segment 1, set PSA = 0x00 and FEP= 0x007
 - Else, to transmit segment 2, set PSA = 0x08 and FEP= 0x00F
 - Else, to transmit segment 3, set PSA = 0x10 and FEP= 0x017
 - Else, to transmit segment 4, set PSA = 0x18 and FEP= 0x01F
 - Else, to transmit segment 5, set PSA = 0x20 and FEP= 0x027
 - Else, to transmit segment 6, set PSA = 0x28 and FEP= 0x02F Else, to transmit segment 7, set PSA = 0x30 and FEP= 0x037
 - Else, to transmit segment 8, set PSA = 0x38 and FEP= 0x03F
- 5. Send TX Strobe Command.
- 6. Done.

Procedures of RX FIFO Reading

- 1. Set FEP [13:0] = 0x007.
- 2. If RX FIFO is full, WTR (or FSYNC) is used to trigger MCU for RX FIFO reading.
- 3. Strobe command RX FIFO read pointer reset.
- 4. MCU read 8-bytes from RX FIFO.
- 5. Done.

Figure 16.4 Segment FIFO Mode

16.4.3 FIFO Extension

In FIFO Extension, MCU can deliver a packet more than 64 bytes by monitoring FPF signal (from CKO or GIO1 or GIO2 pin). FIFO length is equal to **(FEP [13:0] +1)** except infinite length mode. PSA [5:0] shall be zero, and FPM [1:0] is used to set FPF threshold (FIFO Pointer Flag). There are two FIFO Extension operations for the data length ≤ 16K bytes and > 16K bytes to infinite length. User could refer the following chapter for the desired operations.

Be notice, SPI speed is important to prevent error operation (over-write) in FIFO extension mode. We recommend the min. SPI speed shall be equal or greater than (A7139 on-air data rate + 100Kbps). Please refer to AMICCOM's reference code (FIFO extension) for details.

16.4.3.1 FIFO Extension with maximum 16K bytes length

In this operation, the maximum data length is 16,384 bytes by setting FEP [13:0] to define the actual length user would like to use.

Procedures of TX FIFO Extension (Max. 16K Bytes Length)

- 1. Initialize all control registers (refer to A7139 reference code).
- 2. Set FEP [13:0] = 0x0FF for 256-byte FIFO extension.
- 3. Set FPM [1:0] = [11] for FPF trigger condition.
- Set CKOS = [0010] to output FPF signal.
- 5. Strobe command TX FIFO write pointer reset.
- 6. MCU writes 1st 64-bytes TX FIFO.
- 7. TX Strobe command.
- MCU monitors FPF from A7139's CKO pin.
- 9. FPF triggers MCU to write 2nd 48-bytes TX FIFO.
- Monitor FPF.
- 11. FPF triggers MCU to write 3rd 48-bytes TX FIFO.
- 12. Monitor FPF.
- 13. FPF triggers MCU to write 4th 48-bytes TX FIFO.
- 14. Monitor FPF.
- 15. FPF triggers MCU to write 5th 48-bytes TX FIFO.
- 16. Done.

Figure 16.5 TX FIFO Extension Mode - Max. 16K Bytes

Procedures of RX FIFO Reading (Max. 16K Bytes Length)

- Initialize all control registers (refer A7139 reference code). 1.
- 2. Set FEP [13:0] = 0x0FF for 256-byte FIFO extension.
- Set FPM [1:0] = 11b for FPF trigger condition. 3.
- Set CKOS = [0010] to output FPF signal. 4.
- Send Strobe command RX FIFO read pointer reset. 5.
- Send RX Strobe command. 6.
- 7.
- MCU monitors FPF from A7139's CKO pin. FPF triggers MCU to read 1st 48-bytes RX FIFO. 8.
- Monitor FPF. 9.
- FPF triggers MCU to read 2nd 48-bytes RX FIFO. 10.
- Monitor FPF. 11.
- FPF triggers MCU to read 3rd 48-bytes RX FIFO.
- Monitor FPF. 13.
- FPF triggers MCU to read 4th 48-bytes RX FIFO. 14.
- 15. Monitor FPF.
- FPF triggers MCU to read 5th 48-bytes RX FIFO. 16.
- Monitor WTR falling edge or WTR = low, read the rest 16-bytes RX FIFO 17.
- 18.

Figure 16.6 RX FIFO Extension Mode - Max. 16K Bytes

16.4.3.2 FIFO Extension with infinite length

By setting INFS (0Dh) to high, FIFO Extension will enter infinite length mode. In this mode, the maximum data length is infinite. FEP [13:0] does not present the data length now. FEP [13:0] will be used to define the last remaining byte number when user would like to terminate current infinite transmission by setting INFS to low. Please note that while setting the FEP [13:0] for termination, the legal range should be FEP [13:0] < 64.

Procedures of TX FIFO Extension (Infinite Length)

- 1. Initialize all control registers (refer to A7139 reference code).
- 2. Set FEP [13:0] = 0x01F for the last 32-byte remaining length before TX termination.
- 3. Set INFS = 1 for infinite length operation.
- 4. Set FPM [1:0] = [11] for FPF trigger condition.
- 5. Set CKOS = [0010] to output FPF signal.
- 6. Strobe command TX FIFO write pointer reset.
- MCU writes 1st 64-byte TX FIFO.
- 8. TX Strobe command.
- 9. Monitor FPF rising edge which means 1st 48-byte have transmitted.
- 10. MCU writes 2nd 48-byte TX FIFO.
- 11. Monitor FPF falling edge which mean 1st 64-byte have transmitted.
- 12. MCU writes 2nd 16-byte TX FIFO.
- 13. Monitor FPF rising edge means 2nd 48-byte have transmitted.
- 14. MCU writes 3rd 48-byte TX FIFO.
- 15. Monitor FPF falling edge means 2nd 64-byte have transmitted.
- 16. MCU writes 3rd 16-byte TX FIFO.
- 17. Monitor FPF rising edge means (n-1)th 48-byte have transmitted.
- 18. MCU writes (n)th 48-byte TX FIFO.
- 19. Monitor FPF falling edge means (n-1)th 64-byte have transmitted.
- 20. MCU writes (n)th 16-byte TX FIFO.
- 21. Monitor FPF rising edge means (n)th 48-byte have transmitted.
- 22. MCU writes the last 32-byte TX FIFO.
- 23. Monitor FPF falling edge means (n)th 64-byte have transmitted and set INFS=0 to terminate infinite transmission in the period of 8*(data rate clock).
- 24. A7139 starts to count down and transmit the last remaining 32-byte (set by FEP) data.
- 25. WTR goes low after transmit the last remaining 32-byte (set by FEP) data.
- 26. Done.

Figure 16.7 TX FIFO Extension Mode – Infinite Length

Procedures of RX FIFO Reading (Infinite Length)

- 1. Initialize all control registers (refer A7139 reference code).
- 2. Set FEP [13:0] = 0x01F for the last 32-byte remaining length before TX termination.
- 3. Set INFS = 1 for infinite length operation.
- Set FPM [1:0] = 11b for FPF trigger condition. 4.
- 5. Set CKOS = [0010] to output FPF signal.
- 6. Send Strobe command – RX FIFO read pointer reset.
- 7. Send RX Strobe command.
- Monitor FPF rising edge which means 1st 48-byte have received. 8.
- MCU reads 1st 48-byte RX FIFO. 9.
- Monitor FPF falling edge which mean 1st 64-byte have received. 10.
- MCU reads 1st 16-byte RX FIFO. 11.
- Monitor FPF rising edge means 2nd 48-byte have received. MCU reads 2nd 48-byte RX FIFO. 12.
- 13.
- Monitor FPF falling edge means 2nd 64-byte have received. 14.
- MCU reads 2nd 16-byte RX FIFO. 15.
- Monitor FPF rising edge means (n-1)th 48-byte have received. 16.
- MCU reads (n-1)th 48-byte RX FIFO. 17.
- Monitor FPF falling edge means (n-1)th 64-byte have received. MCU reads (n-1)th 16-byte RX FIFO. Monitor FPF rising edge means (n)th 48-byte have received. 18.
- 19.
- 20.
- MCU reads (n)th 48-byte RX FIFO. 21.
- Monitor FPF falling edge means (n)th 64-byte have received and set INFS=0 to terminate infinite transmission in the period of 8*(data rate clock).
- MCU reads (n)th 16-byte RX FIFO and A7139 starts to count down to receive the last remaining 32-byte (set by 23. FEP) data.
- 24. MCU monitors WTR goes low and start to read the last remaining 32-byte (set by FEP) data.
- 25. Done.

GIO1 Pin - WTR]
FYNC	RX 1 st 48-byte	RX 1 st 16-byte	RX 2 nd 48-byte	RX 2 nd 16-byte		RX (n-1) th 48-byte	RX (n-1) th 16-byte	RX (n) th 48-byte	RX (n) th 16-byte	RX last 32-byte	
Step 7: StrobeCMD RX											
Step 8/10: Pin CKO - FPF		FPF									
Step 9/11: MCU - Read 1st RX FIFO		Read 48-byte	Read 16-byte								
Step 12/14: Pin CKO - FPF				FPF						Y	
Step 13/15: MCU - Read 2 nd RX FIFO				Read 48-byte	Read 16-byte						
Step 16/18: Pin CKO - FPF							FPF				
Step 17/19: MCU – Read n-1 th RX FIF <u>O</u>							Read 48-byte	Read 16-byte			
Step 20/22: Pin CKO - FPF							V	7	FPF	INFS=0	
Step 21/23: MCU – Read n th RX FIFO				4		X	-		Read 48-byte	Read 16-byte	
Step 24: MCU – Read last 32-byteRX FIFO											Read 32-byte

Figure 16.8 RX FIFO Extension Mode – Infinite Length

17. Analog Digital Converter

A7139 contains a built-in 8-bit ADC for internal temperature measurement, RSSI measurement.

XADS	CDM	None Rx state	RX state
0	0	Temperature measurement	RSSI measurement
0	1	N/A	RSSI carrier detector

The conversion time of 8-bit ADC is depends on the clock input to ADC. It takes 24 cycles to complete the conversion. The clock source of ADC comes from PF8M where ADC clock source is PF8M ÷ 2.

17.1 Temperature Measurement

A7139 has a simple on-chip temperature sensor. Set bit CDM=0 in ADC register first, then enable bit ADCM=1 in the mode control register to start the measurement of temperature. When the measurement is completed, the bit ADCM will be cleared to 0. User can then read the ADC[7:0] values from the ADC register.

17.2 RSSI Measurement

A7139 has a built-in RSSI (received signal strength indicator) read from ADC to measure the received RF signal strength. When the measurement procedure is completed, the RSSI value can be read form ADC register, the range of RSSI is 0~511. Larger signal strength is corresponding to higher RSSI value, and vice versa. In RX state, set bit CDM=0 in ADC register, and then set bit ADCM=1 in mode control register to start the RSSI measurement. Once the measurement is completed, the bit ADCM will be cleared to 0. User can read the RSSI value from ADCO[8:0] (0x0B).

Figure 17.1 RSSI curve when AGC is disabled

17.3 RSSI Carrier Detector

RSSI carrier detect is one type of carrier detect signals. If the carrier signal strength is greater than the value set by bit RTH[7:0] in ADC register, CD will go high, or it will stay low. In RX state, set ADC register bit CDM=1, set mode control register bit ADCM=1 to start the carrier signal measurement. The value is stored in bit ADC[7:0] and it will be updated in each measurement period till the end of detection action.

18. Carrier Detect

A7139 provides a CD signal (Carrier Detect output from GIO1 or GIO2) to monitor that there is a carrier or not. There are

FSK/GFSK Sub 1GHz Transceiver

three type of carrier detect signals: RSSI carrier detection, in-band carrier detection and RSSI plus in-band carrier detection. CDSEL (08h, page 3) is used to select these three types of signals.

- (1) RSSI carrier detection: Please refer the chapter 17.3 RSSI Carrier Detector.
- (2) In-band carrier detection: in-band carrier is another type of carrier detect signals. There are two parameters need to be set for in-band carrier detection: CDTM (08h, page 10) and CDRS (09h, page 3). While the air signal waveform satisfied CDTM and CDRS conditions under in-band carrier detection mode, CD signal goes high. CDRS defines the carrier detect dynamic range to void the detected signal unstable and rapid varied. CDTM defines valid carrier detection numbers of the coming signals which signal level is falling in CDRS defined range. The CDTM detect rate is 8*Data Rate. For example, if Data Rate is 10Kbps and CDTM=128, the detection tine will be 128*(1/(8*10K))=1.6ms.
- (3) RSSI plus in-band carrier detection: Combinational AND operation of RSSI carrier detection and in-band carrier detection.

In most cases, user is free to choose which signal he would like to adapt. The only exception is that when WOR mode is active and WOR by CD function is selected ([WOR_CD, WOR_S]=[1x]), the CD signal will become the combinational signal of RSSI carrier detect signal and in-band carrier detect automatically. While applying this function, user has to set CDSEL (08h, page 3)=[1x] manually to apply WOR function correctly.

19. RC Oscillator

A7139 has an internal RC oscillator to supports WOT (Wake On TX), WOR (Wake On RX) and TWOR (Timer Wake On RX) functions. RCOSC_E (08h, page 2) is used to enable RC oscillator. WORE (0Fh) is used to enable WOT/WOR/TWOR function and WMODE (0Dh) is used to select WOT (WMODE=1) or WOR/TWOR (WMODE=0) mode. TWSOE (08h, page 2) is used to switch between WOR and TWOR. After done calibrations of RC oscillator, WOT/WOR/TWOR function can be operated from -40°C to 85°C.

Parameter	Min	Max	Unit	Note
Calibrated Freq.	3.8K	4.2K	Hz	
Sleep period	7.82	8007.68	ms	[(WOR_SL [9:0]) +1] x 7.8 ms
RX period	0.244		ms	[(WOR_AC [5:0]) +1] x 244 us
Operation temperature	-40	85	$^{\circ}\mathbb{C}$	After calibration.

Table 19.1 Ring Oscillator Characteristic

Register	WOT	WOR	TWOR	Note
RCOSC_E (08h, page 2)		1	1	Enable Ring Oscillator
ENCAL (08h, page 15)	0 (Cal. Done)	0 (Cal. Done)	0 (Cal. Done)	WOR Cal. Done Flag
CKOS (08h, page 9)	WCK	WCK	WCK	Output Ring Oscillator Freq. to CKO pin
SPSS (08h, page 4)	0 (back to STB mode) 1 (back to PLL mode)	0 (back to STB mode) 1 (back to PLL mode)	X	Set TX-TX or RX-RX space return state when WN≥1
TSEL (08h, page 2)	Х	X	0/1	Only for TWOR function
WN[3: <mark>0</mark>] (08h, page 2)	Set the numbers of TX times each cycle.	Set the numbers of RX times each cycle.	X	Only for WOR function
WOR_AC (08h, page 1)	Set TX to TX space time when WN≥1	Set RX period/ Set RX to RX space time when WN≥1	Duty cycle by WOR_AC	TSEL = 0
WOR_SL (08h, page 1)	Set Sleep period	Set Sleep period	Duty cycle by WOR_SL	TSEL = 1
TWSOE (08h, page 2)	Х	0 (Select WOR function)	1 (Select TWOR function)	WOR/TWOR mode selection
WMODE (0Dh)	1	0	0	Select WOT or WOR
WORE (0Fh)	1	1	X	Enable WOR function

Remark: "x" means don't care

Table 19.2 Overview of WOR and TWOR function

The internal RC oscillator used for the WOR function varies with temperature and CMOS process deviation. In order to keep the frequency as accurate as possible, the RC oscillator shall be calibrated (ENCAL=1) whenever possible. After done calibrations, MCU shall set WORE=1 and issue sleep strobe command to start WOT/WOR/TWOR function. To end up WOR function, MCU just needs to set WORE=0.

19.1 WOT Function

When WOT is enabled (RCOSC_E=1, WORE=1 and WMODE=1), A7139 periodically wakes up from sleep and transmit (auto-enter TX mode) packet with TX FIFO contents without MCU interaction. While WN=0, A7139 will stay in sleep mode based on WOR_SL timer and enter TX mode to transmit one TX packet then return to sleep mode for next cycle. While WN≥1, that is, A7139 will send (WN+1) TX packets after waking up. WOR_AC timer defines the gap period between two TX packets. SPSS (08h, page 4) is used to set the return Mode between Standby mode (SPSS=0) and PLL mode (SPSS=1) while WN≥1. See figure below:

Figure 19.1 Timing of WOT function

19.2 WOR Function

When WOR is enabled (RCOSC_E=1, WORE=1, WMODE=0 and TWSOE=0), A7139 periodically wakes up from sleep and listen (auto-enter RX mode) for incoming packets without MCU interaction. Therefore, A7139 will stay in sleep mode based on WOR_SL timer and RX mode based on WOR_AC timer unless a packet is received. While MCU starts WOR function, the device goes to RX mode to check coming packets after a period (WOR_SL) in sleep mode. And then, A7139 is back to sleep mode for the next WOR cycle. Beware, please turn on MSCRC (0Eh, CRC data filtering) when CRCS=1 (08h, page 14, CRC select) in WOR function.

There are three ways to activate WOR packet receiving procedure: by frame sync (ID matched), by preamble and by carrier. It is the way to define that RX circuitry will start to receive data according to frame sync signal (FSYNC) or preamble signal (PMDO) or carrier signal (CD) when a packet is coming during one active RX period under WOR mode. User could select this WOR activated way by setting [WOR_CD (08h, page 2), WOR_S (08h, page 2)].

- (1) WOR by FSYNC ([WOR_CD, WOR_S]=[00]): If FSYNC (packet ID matched) goes high during WOR RX period, RX circuitry will stay turn on until the whole packet is received.
- (2) WOR by PMDO ([WOR_CD, WOR_S]=[01]): If PMDO (preamble detected) goes high during WOR RX period, RX circuitry will stay turn on until the whole packet is received.
- (3) WOR by CD ([WOR_CD, WOR_S]=[1x]): If CD (carrier detected) goes high during WOR RX period, RX circuitry will stay turn on until the whole packet is received. CDSEL has to be set to [11] for CD signal composed of RSSI and in-band carrier detect signal.

After RX receiving procedure is done, A7139 will acknowledge MCU this event by using TWOR signal. User could also let MCU know this event by FSYNC/PMDO/CD according to which activating way he is using and waked up in advance to wait for RX receiving procedure finished. While WN≥1, A7139 will also have repeated (WN+1) RX times between two WOR_SL period. The active and RX to RX space time are both decided by WOR_AC. The SPSS also defines the return state in this repeated (WN+1) RX scheme.

FSK/GFSK Sub 1GHz Transceiver

Strobe CMD WORE Strobe cmd No Command Required (SCS,SCK,SDIO) Coming Packet **RF IN Pin** Sleep Sleep RX **GIO1 -- WTR** WN=[000] WOR_SL WOR_SL WOR_SL WOR_AC WOR_AC WOR AC GI01 -- WTR RX2 Sleep WN=[001] WOR_SL WOT_SL WOR_AC WOR_AC If SPSS=0, standby mode Start WOT End of WOT If SPSS=1, PLL mode (set WORE=1) (set WORE = 0) A7139 MCU Sleep , but TWOR or WTR GIO1 / ext. interrupt is GIO2 active SPI RX

Figure 19.2 Timing and block diagram of WOR function

19.3 TWOR Function

The RC oscillator inside A7139 can also be used to supports programmable TWOR (Timer Wake On RX, RCOSC_E=1, WORE=1, WMODE=0 and TWSOE=1) function that enables A7139 to output a periodic square wave from GIO1 (or GIO2). The duty cycle of this square wave is set by WOR_AC (08h, page 1) or WOR_SL (08h, page 1) regarding to TSEL (08h, page 2). User can use this square wave to wake up MCU or other purposes.

Figure 19.3 Block diagram of TWOR function

20. Auto-ack and Auto-resend

A7139 supports auto-resend and auto-ack scheme by enable EARKS = 1 for easy two-way communication. It can only be operated with basic FIFO function.

20.1 Basic FIFO plus Auto-ack and auto-resend

Set EARKS = 1 to enable auto-ack and auto-resend. Please refer to the below TX and ACK packet format of the sender and the receiver site respectively.

Sender Site (TX packet format)

Preamble: Max 64 Bytes	ID Code 2/4/6/8 Bytes		CRC: 2 Bytes
Preamble	ID Code	Payload	(CRC)
PML[1:0]	IDL[1:0]	FEP[11:0]	CRCS

The sender will repeat transmitting the above TX packet based on setting of ACK (0x09h, page3) until the sender receives the below ACK packet successfully.

Receiver Site (ACK packet format)

Preamble: ID Code
Max 64 Bytes 2/4/6/8 Bytes

Preamble ID Code

PML[1:0] IDL[1:0]

The receiver will automatically transmit the above ACK packet as long as the receiver gets the valid packet from the sender.

20.2 WTR Behavior during auto-ack and auto-resend

If auto-ack and auto-resend are enabled (EARKS = 1), WTR (GIOxS=[0000]) represents a completed transmission period and CWTR (GIOxS=[0100]) is a debug signal that represents the cyclic TX period and cyclic RX period. Please refer to the below timing diagrams for details.

Sender Site (Auto-resend)

Receiver Site (auto-ack)

Remark:

Refer to ACK (0x09h, page3) for EARKS setting. Refer to ACK (0x09h, page3) for VKM setting. Refer to ART (0x09h, page4) for ARD[7:0] setting.

GIO2 - VPOAK

20.3 Examples of auto-ack and auto-resend

Once EARKS are enabled, below case $1 \sim \text{case } 3$ illustrate the most common cases as a timing reference (assume ARD = 800 us) in two ways radio communications.

21. Auto-IF Function

A7139 is a low-IF architecture transceiver system. That is, the frequency difference between TX and RX should be equal to IF frequency. If TX frequency is larger than RX, we call this scenario "Up Side Band". If not, it is "Low Side Band". By setting ULS (0x0Ah) user could decide the application to use up (ULS=0) or low (ULS=1) side band system. In most cases, user could set TX and RX frequencies manually to match the requirement above. But user could also adapt A7139 Auto-IF function to simplify the register setting work.

When AIF (0x09h, page1) is enabled (IFOA (0x09h, page1) should be set accordingly in advance), user could set their Master and Slave frequencies to be the same value, 433.921MHz for example. We also assume our IF=200KHz. While Master or Slave is entering RX mode, its frequency (RX side) will be changed to 433.921MHz – 200KHz = 433.721MHz automatically in up side band (ULS=0) mode. If it is low side band (ULS=1) mode, RX frequency will be 434.101MHz. Only RX side frequency will be changed to add or subtract one IF frequency to fit TX side up or low side band rule automatically.

22. Battery Detect

A7139 has built-in battery detector to check supply voltage (REGI pin). After enable battery detect function, user can read VBD flag or output VBD to GIO1 or GIO2. The detect range is 2.0V ~ 2.7V in 8 levels.

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
08h PM	W	CST	POWRS	CELS	STS	LVR	!	RGC1	RGC0	SPSS	RGV1	RGV0	QDS	BVT2	BVT1	BVT0	BDS
Reset		-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

BVT [2:0]: Battery Voltage Threshold select.

[000]: 2.0V. [001]: 2.1V. [010]: 2.2V. [011]: 2.3V. [100]: 2.4V. [101]: 2.5V. [110]: 2.6V. [111]: 2.7V.

BDS: Battery Detection selection.

[0]: Disable. [1]: Enable.

Below is the procedure of battery detect for low voltage detection (ex., below 2.1V):

- 1. Set A7139 in standby or PLL mode.
- 2. Set detection level by BVT [2:0] = [001] and enable BDS = 1.
- 3. After 5 us, BDS is auto clear.
- 4. MCU check VBD flag.
 If REGI pin > 2.1V,
 VBD = 1. Else, VBD = 0.

23. Low Current RX mode setting

A7139 supports ultra low current RX mode by reducing 0~3 dB sensitivity. User could have lower RX current by setting PLL comparing frequency to be half of crystal frequency (Compare frequency is 6.4 MHz if crystal is 12.8 MHz; 8 MHz if crystal is 16 MHz) and setting Mixer current select register (MHM) and LNA current select register (LHM) to 0. Please note that the Low current RX mode is only suitable in 315/433/490 MHz mode. It is suggested to use this mode in 10Kbps data rate setting which will only suffer 0~1 dB sensitivity loss. In 100Kbps application, the loss will be 2~3 dB.

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
06h PLL VI	W	RFC3	RFC2	RFC1	RFC0	RIC11	RIC10	RIC9	RIC8	RIC7	RIC6	RIC5	RIC4	RIC3	RIC2	RIC1	RIC0
Reset		0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1

RFC[3:0]: R-Counter for Fractional-N PLL. Please set RFC[3:0]=[0001] to have FPFD as half of crystal frequency.

Address/Name	R/W	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
08h	W	RGVA1	RGVA0	RGVT1	RGVT0	LHM1	LHM0	MHM1	MHM0	IGM1	IGM0	CA1	CA0	TXIB1	TXIB0	RSAGC1	RSAGC0
AGC2	R					LHC1	LHC0	MHC1	MHC0	IGC1	IGC0						
Reset														0	0	0	0

MHM[1:0]: Mixer Current Select. Please set MHM[1:0]=[00].

LHM[1:0]: LNA Current Select. Please set LHM[1:0]=[00].

24. Application Circuit

24.1 MD7139-A30 (315MHz Band)

24.2 MD7139-A40 (433MHz Band)

24.3 MD7139-A50 (470MHz~510MHz Band)

24.4 MD7139-A80 (868MHz Band)

24.5 MD7139-A90 (915MHz Band)

25. Abbreviations

ADC Analog to Digital Converter

AFC Automatic Frequency Compensation

AGC Automatic Gain Control

BER Bit Error Rate
BW Bandwidth
CD Carrier Detect

CRC Cyclic Redundancy Check FEC Forward Error Correction

FIFO First in First out

FSK Frequency Shift Keying

ID Identifier

IF Intermediate Frequency
ISM Industrial, Scientific and Medical

LO Local Oscillator
MCU Micro Controller Unit

PFD Phase Frequency Detector for PLL

PLL Phase Lock Loop POR Power on Reset RX Receiver

RXLO Receiver Local Oscillator

RSSI Received Signal Strength Indicator SPI Serial to Parallel Interface SYCK System Clock for digital circuit

TX Transmitter

TXRF Transmitter Radio Frequency VCO Voltage Controlled Oscillator

XOSC Crystal Oscillator

XREF Crystal Reference frequency

XTAL Crystal

26. Ordering Information

Part No.	Package	Units Per Reel / Tray
A71X39AQFI/Q	QFN24L, Pb Free, Tape & Reel, -40 $^\circ$ C \sim 85 $^\circ$ C	3K
A71X39AQFI	QFN24L, Pb Free, Tray, -40°C ∼85°C	490EA
A71X39AH	Die form, -40°C ~85°C	250EA

27. Package Information

QFN 24L (4 X 4 X 0.8mm) Outline Dimensions

unit: inches/mm

Symbol		Dimensions in inche	s	I	Dimensions in m	m		
	Min	Nom	Max	Min	Nom	Max		
Α	0.028	0.030	0.032	0.70	0.75	0.80		
A1	0.000	0.001	0.002	0.00	0.02	0.05		
Аз		0.008 REF			0.203 REF			
b	0.007	0.010	0.012	0.18	0.25	0.30		
D	0.154	0.158	0.161	3.90	4.00	4.10		
D ₂	0.075		0.114	1.90	i	2.90		
ш	0.154	0.158	0.161	3.90	4.00	4.10		
E2	0.075	-	0.114	1.90	-	2.90		
е		0.020 BSC		0.50 BSC				
L	0.012	0.016	0.020	0.30	0.40	0.50		
у		0.003			0.08			

28. Top Marking Information

A71X39AQFI

■ Part No. : A71X39AQFI

Pin Count
 Package Type
 Dimension
 Mark Method
 24
 QFN
 4*4 mm
 Laser Mark

■ Character Type : Arial

* CHARACTER SIZE : (Unit in mm)

A: 0.55 B: 0.36 C1: 0.25 C2: 0.3 C

C1:0.25 C2:0.3 C3:0.2 D:0.03

F=G |=J

K=L

0.80

YWW

: DATECODE

Χ

: PKG HOUSE ID

: LOT NO.

(max. 9 characters)

0.65 **7139**

29. Reflow Profile

31. Tape Reel Information

Cover / Carrier Tape Dimension

Unit: mm

TYPE	Р	A0	В0	P0	P1	D0	D1	E	F	W	K0	t	Cover tape width
QFN3*3	8±0.1	3.2 5±0.1	3.25 ±0.1	4±0.2	2±0.1	1.5±0.1	1.5	1.75 ±0.1	5.5 ±0.05	12±0.3	1.25 ±0.1	0.3 ±0.05	9.3±0.1
QFN 4*4	8±0.1	4.35 ±0.1	4.35 ±0.1	4±0.2	2±0.1	1.5±0.1	1.5	1.75 ±0.1	5.5 ±0.05	12±0.3	1.2 5±0.1	0.3 ±0.05	9.3±0.1
QFN 5*5	8±0.1	5.25 ±0.1	5.25 ±0.1	4±0.2	2±0.1	1.5±0.1	1.5	1.75 ±0.1	5.5 ±0.05	12±0.3	1.25 ±0.1	0.3 ±0.05	9.3±0.1
SSOP	12±0.1	8.2±1	8.8±1.5	4.0±0.1	2.0±0.1	1.5±0.1	1.5±0.1	1.75 ±0.1	7.5±0.1	16±0.1	2.1±0.4	0.3 ±0.05	13.3 ±0.1

REEL DIMENSIONS

Unit: mm

TYPE	G	N	М	D	K	L	R
QFN	12.9±0.5	102 REF±2.0	2.3±0.2	13.15±0.35	2.0±0.5	330±3.0	19.6±2.9
SSOP	16.3±1	102 REF±2.0	2.3±0.2	13.15±0.35	2.0±0.5	330±3.0	19.6±2.9

31. Product Status

Data Sheet Identification	Product Status	Definition
Objective	Planned or Under Development	This data sheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	Engineering Samples and First Production	This data sheet contains preliminary data, and supplementary data will be published at a later date. AMICCOM reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
No Identification	Noted Full Production	This data sheet contains the final specifications. AMICCOM reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Obsolete	Not In Production	This data sheet contains specifications on a product that has been discontinued by AMICCOM. The data sheet is printed for reference information only.

Headquarter

A3, 1F, No.1, Li-Hsin 1st Rd., Hsinchu Science Park, Hsinchu, Taiwan 30078 Tel: 886-3-5785818

Shenzhen Office

Rm., 2003, DongFeng Building, No. 2010, Shennan Zhonglu Rd., Futian Dist., Shenzhen, China Post code: 518031

Web Site

http://www.amiccom.com.tw

