Relatório Técnico: Análise Comparativa de *Pipelines* de *Machine Learning* para Diagnóstico de Diabetes

Adriel Felipe Cândido Santos - 12.adriel@gmail.com, João Marcos Simões - joao marcos99@hotmail.com, Letícia Rodrigues Nepomucena Lopes - lehnep2@gmail.com, Lucas Felipe Silva - lucfsilva@gmail.com, Vagner Barbosa Dantas - contato@vagnerbarbosa.com

1.0 Introdução

Este relatório técnico é uma entrega obrigatória da Fase 1 do Tech Challenge IADT, que engloba os conhecimentos obtidos nas disciplinas dessa fase. O desafio central é apoiar um grande hospital universitário que busca implementar um sistema inteligente de suporte ao diagnóstico. Este sistema visa ajudar médicos e equipes clínicas na análise inicial de exames e dados, apoiando decisões médicas, reduzindo erros e otimizando o tempo dos profissionais. Nesta primeira fase, o foco é criar a base do sistema de IA focado em machine learning, realizando a classificação de exames com Machine Learning para diagnosticar se "a pessoa tem ou não uma doença".

O projeto utiliza o **Pima Indians Diabetes Dataset** e, para estabelecer essa fundação de ML, **compara duas abordagens distintas (Pipelines A e B)** de pré-processamento, modelagem e avaliação. Os resultados detalhados desta análise comparativa encontram-se no **Notebook** (Diabetes_Analysis.ipynb).

Este documento está estruturado para fornecer uma visão abrangente do projeto. Começa por delinear a metodologia central e o ambiente técnico, seguido por uma descrição detalhada das arquiteturas dos dois *pipelines*. Subsequentemente, o relatório apresenta a estrutura de avaliação, os resultados quantitativos da análise comparativa e uma discussão que interpreta esses resultados. O relatório conclui com uma recomendação final baseada na evidência empírica coletada. As seções a seguir detalham a metodologia, a arquitetura e a estrutura de avaliação que sustentam esta

2.0 Metodologia Central e Ambiente Técnico

Estabelecer uma base consistente e reprodutível é fundamental para qualquer experimento científico. Para garantir uma comparação justa e confiável entre os dois *pipelines*, decisões importantes relativas ao **conjunto de dados**, ao **ambiente técnico** e ao **tratamento proativo de desafios comuns de dados** foram padronizadas em todo o projeto.

2.1 Descrição do Conjunto de Dados

A análise foi conduzida utilizando o **Pima Indians Diabetes Dataset**, um conhecido conjunto de dados públicos para tarefas de classificação binária. Para garantir consistência e reprodutibilidade, o conjunto de dados foi obtido diretamente do Kaggle para ambos os *pipelines* usando a biblioteca kagglehub.

Fonte: https://www.kaggle.com/datasets/mathchi/diabetes-data-set/data

2.2 Ambiente Técnico e Reprodutibilidade

Para garantir um ambiente isolado e livre de conflitos para a execução, o método recomendado é o **Docker**. Essa abordagem encapsula todas as dependências e garante que os resultados possam ser replicados de forma confiável. Para execução local alternativa, o seguinte ambiente é necessário:

- 1. Versão do Python: O projeto é compatível com Python 3.10 ou 3.11.
- 2. **Bibliotecas Principais**: As dependências-chave, conforme listadas no arquivo requirements.txt, incluem pandas, numpy, scikit-learn, matplotlib, seaborn, imblearn, xgboost, kagglehub e shap.

2.3 Estratégia Comum de Pré-processamento: Desequilíbrio de Classes

Um potencial **desequilíbrio de classes** dentro do conjunto de dados foi identificado como um risco significativo para o desempenho do modelo, pois poderia levar a um

viés contra a classe minoritária (pacientes com diabetes). Para mitigar proativamente esse problema, a técnica **SMOTE** (*Synthetic Minority Over-sampling Technique*) foi aplicada como uma etapa padrão de pré-processamento em ambos os *pipelines*.

Com esta metodologia fundamental estabelecida, o relatório detalhou as diferenças arquitetônicas específicas entre os dois *pipelines* em comparação.

3.0 Arquiteturas dos Pipelines

O cerne desta análise envolve uma comparação direta de duas abordagens distintas para a tarefa de diagnóstico: uma linha de base direta projetada para **simplicidade** e **implantação rápida** (**Pipeline A**), e uma abordagem mais complexa e otimizada, projetada para máxima **sensibilidade diagnóstica** (**Pipeline B**). Esta seção relaciona os componentes e estratégias específicas que definem cada *pipeline*.

3.1 Pipeline A: A Abordagem Linha de Base/MLOps

O **Pipeline A** serve como o modelo de linha de base, representando uma abordagem padrão e robusta para um problema de classificação de *machine learning*. Sua arquitetura é caracterizada por sua simplicidade e confiança em técnicas bem estabelecidas.

- Imputação: Valores ausentes são tratados usando o KNN Imputer, que estima um valor com base nos "k-vizinhos mais próximos" no espaço de recursos (feature space).
- **Modelagem**: O *pipeline* emprega um conjunto de algoritmos de *machine learning* "clássicos" para classificação, fornecendo um sólido *benchmark* de desempenho.

3.2 Pipeline B: A Abordagem Otimizada/Deep Dive

O **Pipeline B** é um modelo aprimorado, especificamente projetado para melhorar a linha de base incorporando técnicas mais avançadas. Seu objetivo principal é aumentar a **sensibilidade diagnóstica**, um requisito crítico em um ambiente clínico.

 Pré-processamento Avançado: Este pipeline incorpora Engenharia de Recursos (Feature Engineering), criando novas variáveis de interação, como idade imc e glicose imc, para capturar relacionamentos complexos nos dados.

- Inclui também uma etapa deliberada de **remoção de recursos** para reduzir o ruído, mitigar a multicolinearidade e melhorar a generalização do modelo.
- Modelagem Avançada: Além dos modelos clássicos, este pipeline inclui o algoritmo XGBoost, conhecido por seu alto desempenho em tarefas de classificação de dados estruturados.
- Limiar Estratégico (Strategic Thresholding): Um limiar de classificação de 0.3 é
 explicitamente aplicado. Essa decisão foi tomada para deliberadamente priorizar e
 maximizar a métrica Recall, tornando o modelo mais sensível à detecção de
 casos positivos de diabetes.

A seção a seguir detalha a estrutura utilizada para avaliar e comparar rigorosamente o desempenho destas duas arquiteturas distintas.

4.0 Estrutura de Avaliação

A seleção de métricas de avaliação apropriadas é de importância crítica em um contexto clínico. Para tarefas de diagnóstico, nem todos os erros de previsão têm o mesmo peso. A estrutura de avaliação deve, portanto, refletir a prioridade clínica de **minimizar diagnósticos perdidos**, onde a falha em identificar um paciente com uma condição pode ter consequências graves.

4.1 Seleção de Métricas de Desempenho

As seguintes métricas foram escolhidas para fornecer uma avaliação abrangente do desempenho do modelo, com um foco claro na **utilidade clínica**.

- Recall (Sensibilidade): Definido como a porcentagem de casos positivos reais (pacientes com diabetes) que foram corretamente identificados pelo modelo. Esta métrica é essencial para este caso de uso, pois o objetivo principal é minimizar falsos negativos (FN) e garantir que o maior número possível de casos verdadeiros seja detectado.
- Precision (Precisão): Definida como a porcentagem de previsões positivas que estavam, de fato, corretas. Esta métrica é importante para reduzir o número de falsos positivos (FP), o que poderia levar a testes de acompanhamento desnecessários e ansiedade do paciente.
- **F1-score**: Definido como a média harmônica de *Precision* e *Recall*. Ele fornece uma medida única e **equilibrada** do desempenho de um modelo, o que é

particularmente útil em casos de desequilíbrio de classes.

4.2 Justificativa para Priorizar o Recall

Em um cenário de diagnóstico para uma condição crônica como a diabetes, um **falso negativo** (falhar em identificar uma pessoa com a doença) tem consequências para a saúde a longo prazo significativamente mais graves do que um **falso positivo** (sinalizar incorretamente uma pessoa saudável para testes adicionais, não invasivos). Um falso positivo leva a um reteste, enquanto um falso negativo pode levar a uma condição não tratada.

Por esta razão, o **Recall** foi designado como a **métrica primária** para determinar o *pipeline* superior. O modelo que demonstra a maior capacidade de identificar corretamente os pacientes com diabetes é considerado o mais valioso clinicamente.

A seção a seguir apresenta os resultados quantitativos da aplicação desta estrutura de avaliação a ambos os *pipelines*.

5.0 Resultados e Análise Comparativa

Esta seção apresenta os resultados quantitativos do experimento. As métricas de desempenho para o Pipeline A e o Pipeline B são resumidas, seguidas por uma comparação direta para identificar a abordagem mais eficaz com base na estrutura de avaliação estabelecida na seção anterior.

5.1 Resumo do Desempenho Quantitativo

Os principais resultados de desempenho para ambos os *pipelines* são resumidos na tabela abaixo. Os valores representam o intervalo de desempenho aproximado observado durante a execução do modelo.

Métrica de Desempenho	Pipeline A (Linha de Base)	Pipeline B (Otimizado)
Melhor Modelo (por Recall)	KNeighbors	Random Forest

Máximo <i>Recall</i> (Melhor)	~ 0.82 - 0.87\$	\$\approx 0.89 - 0.91\$
Melhor <i>F1-scor</i> e	~0.65 - 0.70\$	\$\approx 0.70 - 0.72\$

5.2 Análise do Desempenho Comparativo

Os resultados empíricos demonstram uma vantagem de desempenho decisiva para o Pipeline B.

- O Pipeline B demonstra um desempenho superior na métrica primária, Recall, atingindo uma pontuação máxima no intervalo de 0.89-0.91. Esta é uma melhoria notável em relação ao melhor desempenho do Pipeline A de \$0.82-0.87\$, significando uma maior capacidade de identificar corretamente pacientes com diabetes.
- Esse aumento na sensibilidade foi alcançado com um impacto gerenciável na precision, como evidenciado pelo F1-score estável. Isso demonstra uma troca bem-sucedida e deliberada, priorizando a captura de casos verdadeiros positivos enquanto controla a taxa de falsos alarmes.
- O Pipeline B também atinge um F1-score ligeiramente superior, indicando que seus ganhos no recall foram alcançados mantendo um forte equilíbrio geral.
- O modelo com melhor desempenho para atingir o Recall máximo diferiu entre os dois pipelines: KNeighbors foi o de melhor desempenho no Pipeline A, enquanto Random Forest produziu os melhores resultados no Pipeline B.

Estes resultados numéricos destacam um vencedor claro. A seção a seguir passa destas descobertas quantitativas para uma discussão mais aprofundada sobre por que esses resultados ocorreram e suas implicações.

6.0 Discussão e Interpretação

Embora os resultados quantitativos apontem para um vencedor claro, é crucial entender as razões subjacentes para a diferença de desempenho. Esta seção interpreta os resultados conectando-os às **decisões arquitetônicas específicas** tomadas no Pipeline B e discute as implicações mais amplas de equilibrar a complexidade do modelo com os ganhos de desempenho em uma aplicação clínica.

6.1 Impacto da Otimização no Recall

O Recall superior do Pipeline B é um resultado direto de suas escolhas de design específicas. A engenharia de recursos (feature engineering) permitiu que o modelo aprendesse relacionamentos não lineares mais complexos indicativos da doença, criando variáveis de interação como idade_imc. Concomitantemente, o uso de um limiar de classificação mais baixo (0.3) ajustou deliberadamente o limite de decisão do modelo para se alinhar com a prioridade clínica de minimizar os casos perdidos. Essa combinação foi o principal fator para o aumento de sua sensibilidade na captura de casos verdadeiros positivos.

6.2 Interpretabilidade do Modelo e Importância dos Recursos

Para garantir a **confiança clínica** e a **validade do modelo**, priorizamos a interpretabilidade do Pipeline B mais complexo. Técnicas como **Importância dos Recursos** (*Feature Importance*) e **gráficos SHAP** (*SHAP plots*) foram empregadas para validar a lógica do modelo. Essas análises confirmaram que os recursos de interação projetados (por exemplo, *idade_imc*, *glicose_imc*) possuíam alto valor preditivo, fornecendo evidências empíricas de que a etapa de engenharia de recursos foi eficaz e clinicamente relevante.

6.3 Análise de Complexidade versus Ganho de Desempenho

Uma questão central para este projeto era se o ganho de desempenho oferecido pelo Pipeline B justifica sua complexidade adicional. O **custo marginal** do aumento da complexidade de implementação — principalmente o tempo do desenvolvedor para engenharia e calibração de recursos — é **esmagadoramente compensado** pelo **valor clínico** da redução de falsos negativos. Em um contexto de saúde, o custo de um diagnóstico perdido não é medido em recursos computacionais, mas em potenciais resultados adversos para o paciente, tornando o *recall* superior do Pipeline B uma **vantagem inegociável**.

Esta interpretação fornece a justificativa para a recomendação final apresentada na seção de conclusão.

7.0 Conclusão e Recomendação

Este relatório detalhou uma análise comparativa de dois *pipelines* de *machine learning* para diagnóstico de diabetes. A análise conclui que uma estratégia de otimização direcionada produz uma melhoria **substancial e clinicamente significativa** na métrica de desempenho mais relevante.

7.1 Resumo das Descobertas

Os principais resultados da análise comparativa são sintetizados abaixo:

- O Pipeline Otimizado (B) superou consistente e significativamente o Pipeline Linha de Base (A) na métrica clínica mais crítica, Recall.
- Essa melhoria de desempenho foi diretamente atribuível a técnicas de otimização específicas, a saber, engenharia de recursos avançada e um ajuste estratégico do limiar de classificação para priorizar a sensibilidade.
- O Pipeline B também demonstrou um F1-score ligeiramente superior, indicando que seus ganhos no Recall foram alcançados mantendo um equilíbrio robusto geral entre precisão e sensibilidade.

7.2 Recomendação Final

Com base nesta análise abrangente, a recomendação inequívoca é **adotar o Pipeline B como a arquitetura fundamental** para o módulo de diagnóstico de diabetes do hospital. O trabalho futuro deve se concentrar na validação deste *pipeline* em relação aos dados internos dos pacientes e na sua preparação para **ensaios clínicos**.

Embora os resultados sejam promissores, é importante reconhecer o contexto e as restrições deste estudo.

8.0 Limitações do Projeto

Embora os resultados deste projeto sejam altamente encorajadores, é importante reconhecer as limitações do estudo atual para orientar futuros esforços de desenvolvimento e validação.

Fonte de Dados: O modelo foi treinado exclusivamente no conjunto de dados

- público *Pima Indians Diabetes Dataset*. Este conjunto de dados pode não ser totalmente representativo da população de pacientes específica do hospital, o que pode afetar o desempenho no mundo real.
- Desequilíbrio de Classes Inerente: O conjunto de dados tem um desequilíbrio natural entre casos positivos e negativos. Embora mitigado usando a técnica SMOTE em ambos os pipelines, isso continua sendo uma consideração crítica para a calibração do modelo e o desempenho no mundo real.
- Validação Clínica: Os modelos ainda não foram submetidos a validação clínica direta. As percepções e previsões devem ser revisadas e verificadas por profissionais médicos qualificados antes de qualquer consideração para uso clínico.
- **Escopo dos Recursos**: O conjunto de dados usado para este projeto carece de variáveis socioeconômicas potencialmente relevantes ou contextuais mais amplas que poderiam aprimorar ainda mais a precisão diagnóstica.

9.0 Apêndices

9.1 Contribuintes do Projeto

Este projeto foi um esforço colaborativo dos seguintes membros da equipe:

- Adriel Santos
- João Marcos
- Leticia Nepomucena
- Lucas Silva
- Vagner Barbosa

9.3 Arquivos gerados pelo projeto

Todo o material utilizado no projeto se encontra no seguinte endereço do Github:

https://github.com/vagnerbarbosa/tech-challenge-fase-1

O Vídeo demonstrativo https://www.youtube.com/watch?v=d62wPNKj1TU

9.2 Ética e Conformidade de Dados

Este projeto foi conduzido em **aderência aos padrões de ética de dados**, utilizando exclusivamente um conjunto de dados público e anonimizado para todo o treinamento e

análise.