

Universidade Federal Fluminense Pós- Graduação em Computação

Dicionários Avançados: AVL e Árvore Rubro-Negra

Roteiro

- árvores binárias de busca
- balanceamento em árvores
- propriedades das AVL e Árvores Rubro-Negras
- análises de complexidade dos algoritmos
- exemplos de aplicação de uso
- comparações
- artigos relacionados

É uma árvore?

NULL

Sim.

É uma árvore?

Sim.

subárvore

Árvore Binária

É uma árvore Binária?

Não.

Árvore Binária

Não é árvore de busca por propriedade.

Árvore Binária de Busca

Inserindo o 40

Percurso em ordem em árvore binária de busca

AVL: Adelson-Velsky e Landis

Georgy Adelson-Velsky

Yevgeniy Landis

AVL

Altura em árvores

Altura da árvore: 3

Altura da subárvore a partir do nó x: 2

Árvore balanceada

Árvore desbalanceada

Inserindo o 30 na AVL a seguir

Será inserido como filho à direita do 20.

Inserindo o 30 na AVL a seguir

Árvore binária de busca

AVL

Rotações em AVL

Fator de Balanceamento do nó	Fator de Balanceamento do nó filho	Tipo de Rotação
2	1	Simples
	0	
	-1	Dupla
-2	1	
	0	Simples
	-1	

Rotações Simples

O elemento 17 está sendo removido e o fator de balanceamento de 9 vai para 2. FB = 0

FB = 0

FB = 0

Rotação dupla

Inserindo o 6, a árvore fica desbalanceada

Na primeira rotação o 6 vai parar entre o 7 e o 5.

Na segunda rotação o 6 passa a ser raiz da árvore.

FB = 0

FB = 0

Custo Computacional

Árvore Binária de Busca

AVL

para 2 nó antes dele.

Árvore Rubro-Negra

Propriedades de Árvore Rubro-Negra

- Todo nó é rubro ou negro;
- A raiz da árvore é sempre negra, ou seja, nunca haverá um raiz vermelha;
- Todo nó nulo tem cor negra;
- Se um nó é rubro, então ambos os filhos são negros;
- Qualquer caminho de um nó até um nó nulo tem sempre o mesmo número de nós negros.

Inserção do 62 na árvore

Inserindo o 62.
Vai entrar como filho à esquerda de 69.

Inserção do 62 na árvore

Balanceando a árvore

Árvore balanceada.

Inserindo o 95

Balanceando

Balanceando

Rotação simples

Rotação dupla

Árvore balanceada.

Quadro comparativo a partir da análise de complexidade

Operações	Árvore Binária de Busca	AVL	Árvore Rubro-Negra
inserção, remoção e busca	O(n)	O(log n)	O(log n)

AVL e Árvore Rubro-Negra

Úteis para mapas finitos.

- Árvore Rubro-Negra é melhor para inserção e remoção.
- AVL é melhor para busca.

Referências

LIEW, C. W.; NGUYEN, H. Using an Intelligent Tutoring System to Teach Red Black Trees. [s.l.], p. 1280–1280, 2019. DOI: 10.1145/3287324.3293823.

STRBAC-SAVIĆ, S.; TOMASEVIC, M. Comparative performance evaluation of the AVL and red-black trees. *ACM International Conference Proceeding Series*, [s.l.], p. 14–19, 2012. ISBN: 9781450312400, DOI: 10.1145/2371316.2371320.

XHAKAJ, F.; LIEW, C. W. A new approach to teaching red black trees. *Annual Conference on Innovation and Technology in Computer Science Education, ITiCSE*, [s.l.], v. 2015-June, p. 278–283, 2015. ISBN: 9781450334402, ISSN: 1942647X, DOI: 10.1145/2729094.2742624.

Leiserson, Charles E., Stein, Clifford., Cormen, Thomas H., Rivest, Ronald L. Introduction to Algorithms. Reino Unido: MIT Press, 2009.

Ascencio, Ana; Araújo, Gabriela. Estruturas de Dados: Algoritmos, Análise da Complexidade e Implementações em Java e C C++. Brazil: Pearson, 2010.

Universidade Federal Fluminense Pós- Graduação em Computação

Dicionários Avançados: AVL e Árvore Rubro-Negra

Obrigado!