1. Понятие функции.

Пусть X, Y — некоторые непустые числовые множества. Если каждому числу $x \in X$ единственным образом поставлено в соответствие число $y \in Y$, то говорят, что на множестве X определена (задана) функция и пишут y = f(x)

2. Числовые функции. График функции. Способы задания функции.

Множество X - область определения функции; x – независимая переменная (аргумент) функции; y, соответствующее данному значению x, - значение функции в точке x. множество y – множество значений функции. Геометрически функция y = f(x) изображается своим графиком. График функции – это множество точек M(x, f | x), $x \in X$ в прямоугольной системе координат Oxy.

3. Основные характеристики функции.

- 1. Функция y = f(x), определенная на множестве X, называется четной, если $\forall x \in X$ выполнены условия: $-x \in X$ и f x = f(x) Функция y = f(x), определенная на множестве X, называется нечетной, если $\forall x \in X$ выполнены условия: $-x \in X$ и f x = -f(x) График четной функции симметричен относительно оси ординат, график нечетной функции симметричен относительно начала координат.
- 2. Пусть функция y = f(x) определена на множестве X и $X1 \subset X$.

Если $\forall x1, x2 \in X1$ из неравенства x1 < x2 следует неравенство f(x1) < f(x2), то функция называется возрастающей на множестве X1.

Если $\forall x1, x2 \in X1$ $x1 < x2 \Rightarrow f(x1) \le f(x2)$, то функция называется неубывающей на множестве X1; Если $\forall x1, x2 \in X1$ $x1 < x2 \Rightarrow f(x1) > f(x2)$, то функция называется убывающей на множестве X1; Если $\forall x1, x2 \in X1$ $x1 < x2 \Rightarrow f(x1) \ge f(x2)$, то функция называется невозрастающей на множестве X1.

Возрастающие, невозрастающие, убывающие, неубывающие функции на множестве X1 называются монотонными на этом множестве, Возрастающие, и убывающие, функции на множестве X1 называются строго монотонными на этом множестве.

3. Функция y = f(x), определенная на множестве X, называется ограниченной на этом множестве, если существует такое число M > 0, что $\forall x \in X$ выполнено неравенство $f(x) \leq M$

3. Функция y = f(x), определенная на множестве X, называется периодической на этом множестве, если существует такое число T > 0, такое, что $\forall x \in X$ выполнены условия: $x + T \in X$ и f(x) + T = f(x)

4. Обратная функция.

Пусть задана функция y=f(x), определенная на множестве X и принимающая значения во множестве Y. Пусть каждому значению $y \in Y$ соответствует единственное значение $x \in X$. В этом случае говорят, что функция y=f(x) устанавливает взаимнооднозначное соответствие между элементами X и Y. Поставим каждому $y \in Y$ то число $x \in X$, для которого y=f(x), тем самым будет определена функция x=f-1 (y), которая называется обратной к функции y=f(x). Любая строго монотонная функция имеет обратную. При этом, если функция возрастает (убывает), то обратная также возрастает (убывает). Графики взаимно обратных функций симметричны относительно биссектрисы первого и третьего координатных углов.

5. Сложная функция.

Пусть аргумент t функции y = f(t) является не независимой переменной, а функцией некоторой переменной x: $t = \varphi(x)$. Тогда говорят, что переменная y является сложной функцией переменной x и пишут $y = f(\varphi(x))$.

6. Основные элементарные функции и их графики.

Степенная функция.

Логарифмическая функция.

Тригонометрические функции.

Обратные тригонометрические функции.

 $y = \arccos x$, $y = \arcsin x$, $y = \arctan x$, $y = \arctan x$

arcctg x

Функция, задаваемая одной формулой, составленной из основных элементарных функций и постоянных, с помощью конечного числа арифметических операций и операций взятия функции от функции называется элементарной.

7. Предел числовой последовательности.

Числовая последовательность — это функция, определенная на множестве натуральных чисел:

$$f(n): n \in \mathbb{N}$$
 $\{x_n\} = x_1, x_2, x_3, \dots, x_n, \dots$

Число A называется пределом числовой последовательности $\{x_n\}$, если $\forall \varepsilon > 0$ $\exists N \in \mathbb{N}$, такой, что $\forall n > N$ выполнено неравенство $|x_n - A| < \varepsilon$ $\lim_{n \to \infty} x_n = A$

Если последовательность имеет предел, то говорят, что она *сходится*, а если не имеет предела, то *расходится*.

8. Предельный переход в неравенствах.

(О предельном переходе в неравенстве). Если в окрестности некоторой точки a значения функции $f\left(x\right)$ не превосходят соответствующих значений функции $g\left(x\right)$, то и предел функции $f\left(x\right)$ в этой точке не превосходит предела функции $g\left(x\right)$ в этой же точке:

$$f\left(x\right) \leq g\left(x\right) \Rightarrow \lim_{x \to a} f\left(x\right) \leq \lim_{x \to a} g\left(x\right)$$

9. Предел монотонной ограниченной последовательности. Число е. Натуральные логарифмы.

Теорема Вейерштрасса. (Основная теорема теории последовательностей).

Если последовательность $\{x_n\}$ является нестрого возрастающей (нестрого убывающей) и $\{x_n\}$ ограничена сверху (снизу), то $\{x_n\}$ является сходящейся.

Данную теорему можно сформулировать немного иначе - Любая монотонная и ограниченная последовательность $\{x_n\}$ имеет предел.

$$e = \lim_{x o \infty} \left(1 + rac{1}{x}
ight)^x$$
 (второй замечательный предел).

График функции y=lnx симметричен графику функции y=ex относительно прямой y=x. Это экспонента, отличающаяся от других экспонент (графиков логарифмических функций с другими основаниями) тем, что угол между касательной к графику в точке x и осью абсцисс равен 45°.

Свойства функции у=lnx:

- 1) $D(f)=(0;+\infty)$;
- 2) не является ни чётной, ни нечётной;
- 3) возрастает на (0;+∞);
- 4) не ограничена ни сверху, ни снизу;
- 5) не имеет ни наибольшего, ни наименьшего значений;
- 6) непрерывна;
- 7) $E(f)=(-\infty;+\infty)$;
- 8) выпукла вверх;
- 9) дифференцируема.

10. Предел функции в точке.

Определение предела (по Коши). Число A называется пределом функции f(x) в точке a (при $x \to a$), если для любого $\varepsilon > 0$ найдется $\delta > 0$ такое, что для любого значения аргумента x из проколотой δ - окрестности точки a выполняется неравенство $|f(x) - A| < \varepsilon$.

$$\forall \varepsilon > 0 \ \exists \delta > 0: 0 < | \ x - a \ | < \delta \Longrightarrow | f(x) - A | < \varepsilon$$

 $\lim x \rightarrow a \ f(x) = A$

Замечание 1. Функция может иметь в данной точке не более одного предела.

Замечание 2. Если функция имеет предел в точке a, то она ограничена в некоторой окрестности этой точки.

Определение предела (по Гейне). Число b называется пределом функции f(x) в точке a, если для любой последовательности $\{x_n\}\subset D[f]$, которая сходится к a, соответствующая последовательность значений функции $\{f(x_n)\}$ сходится к b.

11. Односторонние пределы.

Функция может иметь различные предельные точки слева и справа в некоторой точке. Например,

Число A называется пределом функции f(x) в точке a справа (слева), если для любого $\varepsilon > 0$ найдется $\delta > 0$ такое, что для любого значения аргумента $x \in (a; a + \delta)$ (соответственно $x \in a - \delta; a$) выполняется неравенство $|f(x) - A| < \varepsilon$.

$$\lim x \to a + 0 \ f(x) = A$$
 или $f(a + 0) = A$
 $\lim x \to a - 0 \ f(x) = A$ или $f(a - 0) = A$

Теорема. Если у функции f x существуют в точке a предел слева и предел справа, причем f (a + 0) = f (a - 0) = A, то в данной точке существует предел этой функции, равный A.

12. Предел функции при $x ightarrow \infty$

Пусть функция f(x) задана на множестве X и $\forall N \; \exists \, x \in X \colon x > N$. Число A называется пределом функции f(x) при $x \to +\infty$, если $\forall \, \varepsilon > 0 \; \exists \, N$, такое, что для любого x > N выполнено неравенство $|f(x) - A| < \varepsilon$. $\lim x \to +\infty \; f(x) = A$

Аналогично определяется $\lim x \to -\infty f x = A$

Если $\lim x \to +\infty$ $f(x) = \lim x \to -\infty$ f(x) = A, то пишут $\lim x \to \infty$ f(x) = A

13. Бесконечно большая функция.

14. Бесконечно малая функция.

Функция f(x) называется бесконечно большой в мочке a (при $x \to a$), если $\forall A > 0 \ \exists \delta > 0, 0 < |x - a| < \delta \Longrightarrow |f(x)| > A$ $\lim_{x \to a} f(x) = \infty$ Функция f(x) называется бесконечно малой в мочке a (при $x \to a$), если $\lim_{x \to a} f(x) = 0$

15. Связь между функцией, ее пределом и бесконечно малой функцией.

Пусть f(x) определена в некоторой проколотой окрестности точки a, то 1) Eсли f(x) - δ . δ . δ точке a функция, то δ некоторой проколотой окрестности точки a определена функция $g(x) = \frac{1}{f(x)}$ и она является δ . δ . δ точке δ . δ . δ точке δ определена функция δ 0 окрестности точки δ 1 определена функция δ 2 δ 3 δ 4 она является δ 5. δ 6 отчке δ 6. δ 7 точке δ 6. δ 8 точке δ 6.

16. Основные теоремы о пределах.

1)

(О предельном переходе в равенстве). Если значения функций f(x) и g(x) в окрестности некоторой точки a равны, то и их пределы в этой точке совпадают:

$$f(x) = g(x) \Rightarrow \lim_{x \to a} f(x) = \lim_{x \to a} g(x)$$

(О предельном переходе в неравенстве). Если в окрестности некоторой точки a значения функции f(x) не превосходят соответствующих значений функции g(x), то и предел функции f(x) в этой точке не превосходит предела функции g(x) в этой же точке:

$$f\left(x\right) \leq g\left(x\right) \Rightarrow \lim_{x \to a} f\left(x\right) \leq \lim_{x \to a} g\left(x\right)$$

3)

Предел константы равен этой константе:

$$\lim_{x \to a} C = C, \ C = \text{const}$$

4)

Если функция f(x) имеет предел, то он единственный.

5)

Если каждое слагаемое в сумме/разности функций имеет предел при $x \to a$, то и сумма/разность имеет предел при $x \to a$, причем предел суммы/разности равен сумме/разности пределов от каждой из функций:

$$\lim_{x\to a}\left[f\left(x\right)+g\left(x\right)-h\left(x\right)\right]=\lim_{x\to a}f\left(x\right)+\lim_{x\to a}g\left(x\right)-\lim_{x\to a}h\left(x\right)$$

6

Если каждый из функций в конечном произведении имеет предел при $x \to a$, то и произведение имеет предел при $x \to a$, причем предел произведения равен произведению пределов:

$$\lim_{x \to a} \left[f\left(x\right) \cdot g\left(x\right) \cdot h\left(x\right) \right] = \lim_{x \to a} f\left(x\right) \cdot \lim_{x \to a} g\left(x\right) \cdot \lim_{x \to a} h\left(x\right)$$

7

Постоянный множитель можно выносить за знак предела:

$$\lim_{x\rightarrow a}Cf\left(x\right) =C\lim_{x\rightarrow a}f\left(x\right)$$

8

Если функции $f\left(x\right)$ и $g\left(x\right)$ имеют предел при $x \to a$, причем $\lim_{x \to a} g\left(x\right) \neq 0$, то и их частное имеет предел при $x \to a$, причем предел частного равен частному пределов:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}; \ \lim_{x \to a} g(x) \neq 0$$

9

Если функция f(x) имеет предел b при $x \to +\infty$, то ее можно представить как сумму числа b и бесконечно малой функции при $x \to +\infty$.

10)

Если функцию f(x) можно представить как сумму некоторого числа b и некоторой бесконечно малой функции при $x \to +\infty$, то указанное число b является пределом функции f(x) при $x \to +\infty$.

17. Признаки существования пределов.

Не всякая функция, даже ограниченная, имеет предел. Например, функция $y = \sin x$ при $x \to \infty$ предела не имеет. Во многих вопросах анализа бывает достаточно только убедиться в существовании предела функции. В таких случаях пользуются признаками существования предела.

Теорема 1 (о пределе промежуточной функци*u*). Если функция f(x) заключена между двумя функциями $\varphi(x)$ и g(x), стремящихся к одному и тому же пределу, то она также стремится к этому пределу, т.е. если

$$\lim_{x \to x_0} \phi(x) = A, \lim_{x \to x_0} g(x) = A, \phi(x) \le f(x) \le g(x), \text{ To } \lim_{x \to x_0} f(x) = A.$$

Теорема 2 (о пределе монотонной функции). Если функция f(x) монотонна и ограничена при $x < x_0$ или $\lim_{x \to x_0 \to 0} f(x) = f(x_0 - 0)$ при $x > x_0$, то существует ее левый предел $\lim_{x \to x_0 \to 0} f(x) = f(x_0 + 0)$ или ее правый предел $\lim_{x \to x_0 \to 0} f(x) = f(x_0 + 0)$.

18. Первый замечательный предел.

Формы первого замечательного предела:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \lim_{x \to 0} \frac{tgx}{x} = 1; \lim_{x \to 0} \frac{\arcsin x}{x} = 1; \lim_{x \to 0} \frac{\arctan x}{x} = 1$$

19.Второй замечательный предел.

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e$$

$$\lim_{x \to +\infty} (1 + x)^{\frac{1}{x}} = e$$

20. Сравнение бесконечно малых функций.

или

Пусть f(x) и g(x) – б.м. в точке a.

Функция f(x) называется бесконечно малой более высокого порядка (имеет более высокий порядок малости), чем g(x) при $x \to a$, если

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 0$$

Функции f(x) и g(x) называются бесконечно малыми одного порядка (имеют одинаковый порядок малости) при $x \to a$, если

$$\lim_{x \to a} \frac{f(x)}{g(x)} = A \neq 0$$

Обозначение f = O(g) при $x \to a$ (O - большое от g)

Обозначение f = o(g) при $x \to a$ (o - малое om g)

Функции f(x) и g(x) называются эквивалентными бесконечно малыми при $x \to a$, если

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1$$

Обозначение $f \sim g$ при $x \to a$

21. Эквивалентные бесконечно малые и основные теоремы о них.

Теорема 1. Предел отношения двух бесконечно малых функций не изменится, если каждую или одну из них заменить эквивалентной ей бесконечно малой.

Теорема 2. Разность двух эквивалентных бесконечно малых функций есть бесконечно малая более высокого порядка, чем каждая из них.

Теорема 3. Сумма конечного числа бесконечно малых функций разных порядков эквивалентна слагаемому низшего порядка.

22. Применение эквивалентных бесконечно малых.

Основные эквивалентные соотношения $(x \to 0)$

1.	$\sin x \sim x$	6.	$\ln(1+x)\sim x$
2.	$\arcsin x \sim x$	7.	$\log_a x \sim \frac{x}{\ln a}$
3.	$tgx \sim x$	8.	$a^x - 1 \sim x \ln a$
4.	$arctgx \sim x$	9.	$e^x - 1 \sim x$
5.	$1-\cos x \sim \frac{x^2}{2}$	10.	$(1+x)^m - 1 \sim mx$

23. Непрерывность функции в точке, в интервале и на отрезке.

В точке

Пусть функция y = f(x) определена в некоторой окрестности точки x = a (включая саму эту точку).

Функция y = f(x) называется **непрерывной в точке** x = a, если существует предел $\lim_{x \to a} f(x)$, равный значению f(a) функции y = f(x) в этой точке: f(x) непрерывна при

$$x = a \Leftrightarrow \lim_{x \to a} f(x) = f(a)$$

В интервале

Рассмотрим функцию y = f(x), которая определена в полуинтервале $[a; a + \delta)$.

Функция $y=f\left(x
ight)$ называется **непрерывной справа** в точке x=a, если существует односторонний предел

$$f\left(a+0\right)=\lim_{x\rightarrow a+0}f\left(x\right)=f\left(a\right)$$

Пусть функция y = f(x) определена в полуинтервале $(a - \delta; a]$.

Функция $y=f\left(x
ight)$ называется **непрерывной слева** в точке x=a, если существует левый предел в этой точке

$$f\left(a-0\right) = \lim_{x \to a-0} f\left(x\right) = f\left(a\right)$$

На отрезке

Функция $y=f\left(x
ight)$ называется **непрерывной на интервале** $(a;\;b)$, если она непрерывна в каждой точке этого интервала.

Функция y = f(x) называется **непрерывной на отрезке** [a; b], если она непрерывна на интервале (a; b), непрерывна справа в точке a и непрерывна слева в точке b.

24. Точки разрыва функции и их классификация.

Предельная точка области определения функции, в которой функция не является непрерывной называется точкой разрыва функции.

 $\frac{\text{Устранимый разрыв.}}{\text{устранимого разрыва}}$. Точка a называется m очкой y странимого разрыва функции f(x), если существует

$$\lim_{x \to a} f(x) = b$$

но в точке x = a функция f(x) либо не определена, либо $f(a) \neq b$.

Если положить f(a) = b разрыв будет устранен, т.е. функция станет непрерывной в точке a.

Разрыв 1-го рода. Точка a называется точкой разрыва 1-го рода функции f(x), если существуют

 $\lim_{x \to a+0} f(x) = b \quad \text{if } \lim_{x \to a-0} f(x) = c$

но они не равны.

Величину |b-c| называют *скачком функции* в точке разрыва 1-го рода.

Разрыв 2-го рода. Точка a называется точкой разрыва 2-го рода функции f(x), если в этой точке не существует по крайней мере один из односторонних пределов

 $\lim_{x \to a+0} f(x)$ и $\lim_{x \to a-0} f(x)$

25. Основные теоремы о непрерывных функциях. Непрерывность элементарных функций.

Теорема 1. Если функции f(x) и g(x) непрерывны в точке a, то функции $f(x) \pm g(x)$, $f(x) \cdot g(x)$, f(x)/g(x) (при условии $g(a) \neq 0$ также непрерывны в точке a.

Теорема 2. (о непрерывности сложной функции) Пусть функция t = g(x) непрерывна в точке a, g(a) = b а функция y = f(t) непрерывна в точке b. Тогда сложная функция y = f(g(x)) непрерывна в точке a.

Теорема 3. (о непрерывности обратной функции) Пусть функция y = f(x) определена, строго монотонна и непрерывна на X = [a;b]. Тогда множеством ее значений является Y = [f(a);f(b)]; на [f(a);f(b)] существует обратная функция $x = f^{-1}(y)$; обратная функция также строго монотонна; обратная функция непрерывна на Y = [f(a);f(b)].

 Теорема 4.
 Всякая
 элементарная
 функция

 непрерывна
 в каждой точке, в которой она

 определена.

26. Свойства функций, непрерывных на отрезке.

Свойство 1: (Первая теорема Вейерштрасса) Функция, непрерывная на отрезке, ограничена на этом отрезке, т.е. на отрезке [a,b] выполняется условие - $M \le f(x) \le M$.

Доказательство этого свойства основано на том, что функция, непрерывная в точке x_0 , ограничена в некоторой ее окрестности, а если разбивать отрезок x_0 на бесконечное количество отрезков, которые "стягиваются" к точке x_0 , то образуется некоторая окрестность точки x_0 .

Свойство 2: Функция, непрерывная на отрезке [a,b], принимает на нем наибольшее и наименьшее значения.

Т.е. существуют такие значения X_1 и X_2 , что $^{f(x_1)=m, f(x_2)=M}$, причем $^{m \leq f(x) \leq M}$.

Свойство 3: (Вторая теорема Коши). Функция, непрерывная на отрезке $^{[a,b]}$, принимает на этом отрезке все значения между двумя произвольными величинами.

Свойство 4: Если функция f(x) непрерывна в точке $x = x_0$, то существует некоторая окрестность точки x_0 , в которой функция сохраняет знак.

Свойство 5: (Первая теорема Коши). Если функция f(x) - непрерывная на отрезке $\begin{bmatrix} a,b \end{bmatrix}$ и имеет на концах отрезка значения противоположных знаков, то существует такая точка внутри этого отрезка, где f(x)=0.

Т.е. если
$$sign(f(a)) \neq sign(f(b))$$
 , то $\exists x_0 : f(x_0) = 0$.

Свойство 6: (Теорема Кантора) Функция, непрерывная на отрезке, равномерно непрерывна на нем. (Это свойство справедливо только для отрезков, а не для интервалов и полуинтервалов.)

Свойство 7: Если функция f(x) определена, монотонна и непрерывна на некотором промежутке, то и обратная ей функция f(x) тоже однозначна, монотонна и непрерывна.

27. Определение производной. Ее механический и геометрический смысл. Уравнение касательной и нормали к кривой.

Производной функции f(x) ($f'(x_0)$) в точке x_0 называется число, к которому стремится разностное отношение $\frac{\Delta f(x)}{\Delta x} = \frac{f(x_a + \Delta x) - f(x_a)}{\Delta x}$ при $\frac{\Delta x}{x}$, стремящемся к нулю.

Геометрический смысл производной. Производная в точке x_0 равна угловому коэффициенту касательной к графику функции y=f(x) в этой точке

 $f'(x) = ta\alpha > 0$

 $f'(x_{\alpha}) = tg\alpha = 0$

Физический смысл производной. Если точка движется вдоль оси x и ее координата изменяется по закону x(t), то мгновенная скорость точки: y(t) = x'(t)

Уравнение касательной к графику функции y=f(x) в точке x_0 : $y = f(x_a) + f'(x_a)(x - x_a)$

Уравнение нормали. Если существует конечная и отличная от нуля производная $f'(x_0)$, то уравнение нормали к графику функции y = f(x) в точке $f(x_0; f(x_0))$ выражается следующим уравнением:

$$y - f(x_0) = -\frac{1}{f'(x_0)}(x - x_0)$$

28. Связь между непрерывностью и дифференцируемостью функции.

Функция y = f(x), имеющая производную в точке, называется дифференцируемой в этой

Функция y = f(x), имеющая производную в каждой точке интервала (а; b), называется дифференцируемой в этом интервале.

Теорема. Если функция дифференцируема в некоторой точке, то она непрерывна в ней.

Обратная теорема не верна.

Функция y = |x| в точке x = 0 не Пример. имеет производной, но является непрерывной.

Eсли функция y = f(x) имеет непрерывную производную в некотором интервале (a; b), то функция называется гладкой на этом

29. Производная суммы, разности, произведения и частного функций.

$$(u \pm v)' = u' \pm v'$$

$$(u \cdot v)' = u' \cdot v \pm u \cdot v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v \pm u \cdot v'}{v^2}$$

30. Производная сложной и обратной функций

Производная обратной функции

Теорема. Пусть функция y = f(x) определена, строго монотонна и непрерывна окрестности точки x_0 , дифференцируема в точке x_0 и $f'(x_0) \neq 0$. Пусть $f(x_0) = y_0$. Тогда в некоторой окрестности точки уо существует обратная функция $x = f^{-1}(y)$, эта функция дифференцируема в точке у и

Производная сложной функции

Рассмотрим сложную функцию y = f(t), где $t = \varphi(x)$, то есть $y = f(\varphi(x))$.

Теорема. Пусть функция дифференцируема в точке x_0 , $\varphi(x_0)=t_0$, функция y = f(t) дифференцируема в точке t_0 . Тогда сложная функция $y = f(\varphi(x))$ дифференцируема в точке x_0 и выполнено

$$[f(\varphi(x_0))]' = f'(t_0) \cdot \varphi'(x_0) = f_{\varphi}' \cdot \varphi_{x'}$$

$f^{-1'}(y_0) = \frac{1}{f'(x_0)}$

31. Производные основных элементарных функций.

1.
$$c' = 0$$
, $c = con$
2. $(x^n)' = nx^{n-1}$

1.
$$c' = 0$$
, $c = \text{const}$
2. $(x^n)' = nx^{n-1}$
3. $(a^x)' = a^x \cdot \ln a$
4. $(e^x)' = e^x$
5. $(\log_a x)' = \frac{1}{x \ln a}$
6. $(\ln x)' = \frac{1}{x}$
7. $(\sin x)' = \cos x$
8. $(\cos x)' = -\sin x$
9. $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$
10. $(\operatorname{tg} x)' = \frac{1}{\sin^2 x}$
12. $(\operatorname{arcsin} x)' = \frac{1}{\sqrt{1 - x^2}}$
13. $(\operatorname{arccos} x)' = -\frac{1}{\sqrt{1 - x^2}}$
14. $(\operatorname{arctg} x)' = \frac{1}{1 + x^2}$
15. $(\operatorname{arcctg} x)' = -\frac{1}{1 + x^2}$
16. $(\operatorname{sh} x)' = \operatorname{ch} x$
17. $(\operatorname{ch} x)' = \operatorname{sh} x$
18. $(\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x}$
19. $(\operatorname{th} x)' = -\frac{1}{\operatorname{sh}^2 x}$

3.
$$(a^x) = a^x \cdot \ln$$

4. $(e^x)' = e^x$

5.
$$(\log_a x)' = \frac{1}{x \ln a}$$

6.
$$(\ln x)' = \frac{1}{x}$$

7.
$$(\sin x) = \cos x$$

8. $(\cos x)' = -\sin x$

9.
$$(\sqrt{x})' = \frac{1}{2\sqrt{x}}$$

10. $(tgx)' = \frac{1}{2\sqrt{x}}$

10.
$$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$$

11. $(\operatorname{ctg} x)' = -\frac{1}{\cos^2 x}$

$$\sqrt{1-13} \cdot (\arccos x)' = -\frac{1}{\sqrt{1-13}}$$

3.
$$(\arccos x) = -\frac{1}{\sqrt{1 - x^2}}$$

4. $(\arctan x)' = \frac{1}{\sqrt{1 - x^2}}$

14.
$$(\operatorname{arctg} x) = \frac{1}{1+x^2}$$

15. $(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$

$$16. \left(\sinh x \right)' = \cosh x$$

$$17. \left(\operatorname{ch} x \right)' = \operatorname{sh} x$$

18.
$$(\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x}$$

19.
$$(\operatorname{th} x)' = -\frac{1}{\operatorname{sh}^2 x}$$

32. Гиперболические функции и их производные.

Гиперболические функции — семейство элементарных функций, выражающихся через экспоненту и тесно связанных с тригонометрическими функциями.

Гиперболические функции задаются следующими формулами:

• гиперболический синус:

$$\sh x = \frac{e^x - e^{-x}}{2}$$

(в англоязычной литературе обозначается $\sinh x$)

• гиперболический косинус:

$$\operatorname{ch} x = rac{e^x + e^{-x}}{2}$$

(в англоязычной литературе обозначается $\cosh x$)

$$h x = rac{ h x}{ h x} = rac{e^x - e^{-x}}{e^x + e^{-x}} = rac{e^{2x} - 1}{e^{2x} + 1}$$

(в англоязычной литературе обозначается $\tanh x$)

• гиперболический котангенс:

$$cth x = \frac{1}{ h x}$$

(в англоязычной литературе обозначается $\coth x$)

• гиперболический секанс:

$$\operatorname{sch} x = \frac{1}{\operatorname{ch} x}$$

Гиперболический секанс иногда также обозначается как $\mathrm{sech}\,x$.

• гиперболический косеканс:

$$\operatorname{csch} x = \frac{1}{\operatorname{sh} x}$$

33. Дифференцирование неявных и параметрически заданных функций.

Если функция задана уравнением y=f(x), разрешенным относительно y, то функция задана в явном виде (явная функция). Под **неявным заданием** функции понимают задание функции в виде уравнения F(x;y)=0, не разрешенного относительно y.

Всякую явно заданную функцию y=f(x) можно записать как неявно заданную уравнением f(x)-y=0, но не наоборот.

Если неявная функция задана уравнением F(x; y)=0, то для нахождения производной от у по x нет необходимости разрешать уравнение относительно у: достаточно продифференцировать это уравнение по x, рассматривая при этом у как функцию x, и полученное затем уравнение разрешить относительно у'. Производная неявной функции выражается через аргумент x и функцию у.

Зависимость функции y от аргумента x может осуществляться через посредство третьей переменной t,

$$\begin{cases} x = \varphi(t) \\ (a \le t \le b) \end{cases}$$
 называемой параметром: $\begin{cases} y = \psi(t) \\ y = \psi(t) \end{cases}$

В этом случае говорят, что функция *у* от *х* **задана параметрически**. Параметрическое задание функции удобно тем, что оно дает общую запись для прямой и обратной функций.

Предположим, что на некотором промежутке функции $x = \varphi(t)$ и $y = \psi(t)$ имеют производные, причем $\varphi'(t) \neq 0$. Кроме того, для $x = \varphi(t)$ существует обратная функция $x^{-1} = t(x)$ (производная обратной функции равна обратной величине производной прямой функции).

Тогда $\mathbf{y}(\mathbf{x}) = \psi(\mathbf{t}(\mathbf{x}))$ — сложная функция и ее производная: $\mathbf{y}_x' = \psi_t' \cdot \mathbf{t}_x' = \frac{\mathbf{y}_t'}{\mathbf{x}_t'}$. Производную тоже запишем в

$$\left\{egin{aligned} x = oldsymbol{arphi}(t), \ y_x' = rac{y_t'}{x_t'}. \end{aligned}
ight.$$
 параметрической форме:

34. Логарифмическое дифференцирование.

Суть такого дифференцирования заключается в следующем: вначале находится логарифм заданной функции, а уже затем вычисляется от него производная. Пусть задана некоторая функция y=f(x). Прологарифмируем левую и правую части данного выражения: $\ln y = \ln f(x)$

35. Производные высших порядков.

Пусть функция y = f(x) дифференцируема в каждой точке интервала (a;b). Тогда производная f'(x) является функцией, определенной на (a;b). Если f'(x) дифференцируема в некоторой точке из (a;b), то производная от f'(x) в точке x называется второй производной функции f(x) в точке x (или производной второго порядка) и обозначается f''(x).

Производная n -го порядка функции y = f(x) определяется как производная от производной (n-1)-го порядка.

$$f^{(n)}(x) = [f^{(n-1)}(x)]'$$

36. Дифференциал функции.

Приращение Δy дифференцируемой функции состоит из двух слагаемых: $f'(x) \cdot \Delta x$ и $o(\Delta x)$, если $f'(x) \neq 0$, то $f'(x) \cdot \Delta x = O(\Delta x)$.

<u>Определение.</u> Дифференциалом функции y = f(x) в точке x называется линейная функция аргумента Δx :

$$dy = f'(x) \cdot \Delta x$$

Если $f'(x) \neq 0$, то $dy = f'(x) \cdot \Delta x$ является главной частью Δy при $\Delta x \rightarrow 0$.

Дифференциалом независимой переменной х называется приращение этой переменной:

$$dx = \Delta x$$

Отсюда следует, что

$$f'(x) = \frac{dy}{dx}$$

Пример 2. Рассмотрим функцию $y = \sin x$. $dy = d\sin x = \cos x \, dx$

В частности,

$$d(\sin x)|_{x=\frac{\pi}{3}} = \frac{1}{2}dx,$$

$$d(\sin x)|_{x=\frac{\pi}{2},\Delta x=0,1} = 0.05$$

37. Геометрический смысл дифференциала функции.

Дифференциал dy равен тому изменению функции y = f(x) при изменении аргумента на Δx , которое имела бы функция, если бы на отрезке $[x, x + \Delta x]$ она была линейной с угловым коэффициентом, равным f'(x).

38. Основные теоремы о дифференциалах.

соответствуют теоремам о производных:

$$\begin{aligned} d(u \pm v) &= du \pm dv \\ d(u \cdot v) &= v \cdot du + u \cdot dv \\ d\left(\frac{u}{v}\right) &= \frac{du \cdot v - u \cdot dv}{v^2} \ (v \neq 0) \end{aligned}$$

Дифференциал сложной функции $y = f(x) = f(\varphi(x))$ равен:

$$dy = f_{\varphi}' \cdot d\varphi$$

40. Теорема Ролля.

Теорема Ролля. (О нуле производной функции, принимающей на концах отрезка равные значения)

Пусть функция y = f(x)

- 1. непрерывна на отрезке [a; b];
- 2. $\,$ дифференцируема на интервале (a;b);
- 3. на концах отрезка [a;b] принимает равные значения f(a) = f(b).

Тогда на интервале (a;b) найдется, по крайней мере, одна точка x_0 , в которой $f'(x_0)=0$.

41. Теорема Коши.

Теорема Коши. (Об отношении конечных приращений двух функций)

Если функции y = f(x) и y = g(x):

- 1. непрерывны на отрезке [a;b];
- 2. $\,$ дифференцируемы на интервале (a;b);
- 3. производная $g'(x) \neq 0$ на интервале (a; b)

тогда на этом интервале найдется по крайней мере одна точка x_0 , такая, что $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(x_0)}{g'(x_0)}$

42. Теорема Лагранжа.

Теорема Лагранжа. (О конечных приращениях)

Пусть функция y = f(x)

- 1. непрерывна на отрезке [a; b];
- 2. дифференцируема на интервале (a; b).

Тогда на интервале (a;b) найдется по крайней мере одна точка x_0 , такая, что $\frac{f(b)-f(a)}{b-a}=f'(x_0)$

43 (1). Правило Лопиталя.

Метод нахождения пределов функций, раскрывающий неопределённости вида 0/0 и беск./беск. . Обосновывающая метод теорема утверждает, что при некоторых условиях предел отношения функций равен пределу отношения их производных.

Пусть выполнены условия:

- функция f(x) и g(x)определены и дифференцируемы в некоторой проколотой окрестности точки а;
- $\lim f(x) = \lim g(x) = 0;$
- $g'(x) \neq 0$ в указанной проколотой окрестности точки а;
- существует $\lim_{x \to a} \frac{f'(x)}{g'(x)}$

Тогда существует
$$\lim_{x \to a} \frac{f(x)}{g(x)}$$
 и выполнено:
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

44 (2). Возрастание и убывание функции и ее производная.

Пусть функция f(x) определена на интервале (a; b) и $c \in (a; b)$.

Определение. Говорят, что f(x) возрастает в точке с, если существует окрестность точки с, в которой f(x) > f(c) при x > c и f(x) < f(c) $npu \ x < c$.

Аналогично определяется убывание функции в точке.

Теорема. Если функция дифференцируема в точке c, u f'(c) > 0 (f'(c) < 0) то она возрастает (убывает) в точке с.

45 (3). Максимум и минимум функции и ее производная.

(1.Определение)

Некоторая точка называется точкой минимума заданной функции y=f(x), если для всех точек из некоторой окрестности данной точки справедливо неравенство $f(x) \geq f(x_0), x_0$ - точка минимума.

(2.Определение)

Некоторая точка называется точкой максимума заданной функции y=f(x), если для всех точек из некоторой окрестности данной точки справедливо неравенство $f(x) \leq f(x_0)$, x_0 - точка максимума.

(1.Теорема (Необходимое условие экстремума))

Если заданная функция y=f(x) имеет экстремум в некоторой точке x_0 , то ее производная f'(x) в данной точке либо равна нулю, либо не существует.

(2.Теорема (Достаточное условие экстремума 1))

Первое условие.

Пусть для заданной функции y = f(x) выполнены условия:

- 1. данная функция y = f(x)непрерывна в окрестности точки x_0 ;
- 2. f'(x) при $x=x_0$ равна нулю или f'(x) не существует;
- 3. производная f'(x) при переходе через данную точку x_0 меняет знак.

Тогда в точке $x=x_0$ заданная функция y=f(x) имеет экстремум, причем он является минимумом, если при переходе через точку x_0 производная меняет знак с «-» на «+»; является минимумом, если при переходе через точку x_0 производная меняет знак с «+» на «-».

(3.Теорема (Достаточное условие экстремума 2))

Второе условие.

Пусть для заданной функции y=f(x) выполнены условия:

- 1. данная функция y = f(x)непрерывна в окрестности точки x_0 ;
- 2. f'(x) при $x = x_0$ равна нулю;
- 3. f''(x) при $x = x_0$ не равна нулю.

Тогда в точке $x=x_0$ заданная функция y=f(x) имеет экстремум, причем, если f''(x)>0 при $x=x_0$, то в данной точке заданная функция y=f(x) имеет минимум; если f''(x)

46 (4). Наибольшее и наименьшее значения функции на отрезке.

Если функция y=f(x) определена и непрерывна на отрезке [a;b], то она на этом отрезке достигает своих наибольшего и наименьшего значений. Если свое наибольшее значение M функция f(x) принимает в точке $x_0\in [a;b]$, то $M=f(x_0)$ будет локальным максимумом функции f(x), так как в этом случае существует окрестность точки x_0 , такая, что $f(x)\leq f(x_0)$.

Однако свое наибольшее значение M функция f(x) может принимать и на концах отрезка [a;b]. Поэтому, чтобы найти наибольшее значение M непрерывной на отрезке [a;b] функции f(x), надо найти все максимумы функции на интервале (a;b) и значения f(x) на концах отрезка [a;b], то есть f(a) и f(b), и выбрать среди них наибольшее. Вместо исследования на максимум можно ограничиться нахождением значений функции в критических точках.

Наименьшим значением m непрерывной на отрезке [a;b] функции f(x) будет наименьший минимум среди всех минимумов функции f(x) на интервале (a;b) и значений f(a) и f(b).

47 (5). Выпуклость графика функции. Точки перегиба.

График функции y = f(x), дифференцируемой на интервале (a;b), является на этом интервале выпуклым, если график этой функции в пределах интервала (a;b) лежит не выше любой своей касательной (рис. 1).

График функции y=f(x), дифференцируемой на интервале (a;b), является на этом интервале вогнутым, если график этой функции в пределах интервала (a;b) лежит не ниже любой своей касательной (рис. 2).

ТЕОРЕМЫ О ВЫПУКЛОСТИ ФУНКЦИИ И ТОЧКАХ ПЕРЕГИБА

Теорема

(Об условиях выпуклости или вогнутости графика функции)

Пусть функция y=f(x) определена на интервале (a;b) и имеет непрерывную, не равную нулю в точке $x_0\in (a;b)$ вторую производную. Тогда, если f''(x)>0 всюду на интервале (a;b), то функция имеет вогнутость на этом интервале, если f''(x)<0, то функция имеет выпуклость.

Определение

Точкой перегиба графика функции y=f(x) называется точка $M(x_1;f(x_1))$, разделяющая промежутки выпуклости и вогнутости.

Теорема

(О необходимом условии существования точки перегиба)

Если функция y=f(x) имеет перегиб в точке $M(x_1;f(x_1))$, то $f''(x_1)=0$ или не существует.

Теорема

(О достаточном условии существования точки перегиба)

Если

- . 1. первая производная f'(x) непрерывна в окрестности точки x_1 ;
- . 2. вторая производная f''(x) = 0 или не существует в точке x_1 ;
- . 3. f''(x) при переходе через точку x_1 меняет свой знак,

тогда в точке $M(x_1; f(x_1))$ функция y = f(x) имеет перегиб.

СХЕМА ИССЛЕДОВАНИЯ ФУНКЦИИ НА ВЫПУКЛОСТЬ, ВОГНУТОСТЬ

- . 1. Найти вторую производную функции.
- . 2. Найти точки, в которых вторая производная равна нулю или не существует.
- . 3. Исследовать знак производной слева и справа от каждой найденной точки и сделать вывод об интервалах выпуклости и точках перегиба.

48 (6). Асимптоты графика функции.

Определение. Прямая x = aназывается вертикальной асимптотой графика функции y = f(x), если хотя бы один из односторонних пределов

$$\lim_{x \to a-0} f(x)$$
 или $\lim_{x \to a+0} f(x)$

равен +∞ или -∞.

Теорема. Для того, чтобы прямая y = kx + bбыла наклонной асимптотой графика функции $npu \quad x \to +\infty$, необходимо и y = f(x)достаточно, чтобы существовали два предела:

Пусть функция определена на полупрямой
$$(a; +\infty)$$
.

Определение. Прямая y = kx + b называется наклонной асимптотой графика функции y = f(x) при $x \to +\infty$, если f(x) представима в

$$f(x) = kx + b + \alpha(x),$$

где $\alpha(x)$ – бесконечно малая при $x \to +\infty$. Аналогично определяется наклонная асимптота при $x \to -\infty$.

$$\lim_{x \to +\infty} \frac{f(x)}{x} = k \quad \text{и} \quad \lim_{x \to +\infty} (f(x) - kx) = b$$

 $\lim_{x \to +\infty} \frac{f(x)}{x} = k$ и $\lim_{x \to +\infty} (f(x) - kx) = b$

Замечание. Если k = 0, то асимптота является горизонтальной.

49 (7). Общая схема исследования функции и построения ее графика.

- А) Исследуем функцию без использования производных:
- 1) Находим область определения;
- 2) Исследуем свойства графика функции (точки пересечения с осями координат, четность или периодичность, нечетность. оси симметрии, промежутки знакопостоянства);
- 3) Исследуем точки разрыва и находим асимптоты графика функции;

Строим эскиз графика;

- Б) Исследуем функцию с помощью производных:
- 4) Находим промежутки монотонности и точки локального экстремума;

Строим график.

50 (8). Формула Тейлора.

Формула Тейлора показывает поведение функции в окрестности некоторой точки. Формула Тейлора функции часто используется при доказательстве теорем в дифференциальном исчислении.

Формула Тейлора

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x)$$

, где $R_{\mathbf{n}}(\mathbf{x})$ - остаточный член формулы Тейлора.

Остаточный член формулы Тейлора

В форме Лагранжа:

$$R_n(x) = \frac{f^{(n+1)}(a+\theta(x-a))}{(n+1)!}(x-a)^{n+1}, \quad 0 < \theta < 1.$$

В форме Коши:

$$R_n(x) = \frac{f^{(n+1)}(a + \theta_1(x - a))}{n!} (1 - \theta_1)^n (x - a)^{n+1}, \quad 0 < \theta_1 < 1.$$

Если после изучения данного теоретического материала (Формула Тейлора) у Вас возникли проблемы при решении задач на данную тему или появились вопросы образовательного характера, то Вы всегда можете задать их на нашем форуме.