Multi-Period Asset Pricing Part 1

Vega Institute, Winter School, Sochi

Dmitry Kramkov and Mikhail Zhitlukhin

Carnegie Mellon University, Pittsburgh, USA Steklov Mathematical Institute, Moscow, Russia

November - December, 2022

Introduction to arbitrage-free pricing

Model of financial market Methodology of arbitrage-free pricing Problems

Financial security

$\mbox{Financial Security} = \mbox{Cash Flow}$

Example (Interest Rate Swap)

Pricing problem: compute a "fair" value of the security at t_0 .

Classification of financial securities

We divide all financial assets into 2 groups:

- 1. **Traded securities**: prices are *fixed* by the market.
- 2. Non-traded securities: prices have to be computed.

Remark

This "black-and-white" classification is quite idealistic. The same security may be considered as traded or non-traded at different times. For example, a call option is usually liquid *at-the-money* and illiquid deeply *out-of-the-money*.

Goal of the course: the **arbitrage-free pricing** (**AFP**) of non-traded securities (for finite financial models).

Financial market

```
Financial market (FM): all traded securities. 

Trading strategy: X_0 \xrightarrow[(\Delta_n)]{} X_N, where X_n = X_n(\omega): the total wealth at t = n (for outcome \omega). \Delta_n = \Delta_n(\omega): the number of the stocks at t = n. 

Arbitrage strategy: a trading strategy, where we 1. start with X_0 = 0 (nothing), 2. end with X_N(\omega) \ge 0 for all \omega and X_N(\omega') > 0 for some \omega' (something).
```

Assumption (NA)

The financial market is arbitrage free.

Arbitrage-free price

In addition to FM (with NA), we consider a non-traded option.

Definition (AFP)

The amount p is an arbitrage-free price (AFP) if given an opportunity to trade the option at p we still have NA:

Extended FM \triangleq {FM + option traded at p} has NA.

Basic questions:

- 1. How to compute AFP?
- 2. When is AFP unique?

Replication

Cash flow of non-traded option:

Replicating strategy:

- 1. starts with some initial capital X_0 ,
- 2. generates *exactly* the same cash flow in the future:

Methodology of AFP

Theorem

An AFP p is unique if and only if there is a replicating strategy. In this case,

$$p=X_0$$

where X_0 is the initial capital of a replicating strategy.

Main Principle:

Unique Arbitrage-Free Pricing (!AFP) = Replication

Remark

A replicating strategy may not be unique. However, its initial capital is unique. Otherwise, we get a contradiction with NA.

Methodology of AFP

Proof.

 \Leftarrow : We assume that a replicating strategy exists and that the option is traded at price p.

(a) If $p > X_0$, then we make an *arbitrage* by buying the replicating strategy and (short) selling the option. We get

profit =
$$p - X_0 > 0$$
.

(b) If $p < X_0$, then we make an *arbitrage* by (short) selling the strategy and buying the option. We receive

profit =
$$-p + X_0 > 0$$
.

Methodology of AFP

(c) If $p = X_0$, then there is NA. Indeed, a strategy on EFM (original FM + option)

$$Y_0 \xrightarrow[q \text{ options } +(\Delta_n)]{} Y_N(\omega)$$

has the same cash flow as the "twin" strategy on the original FM:

$$Y_0 \xrightarrow{q(\Delta_n^X)+(\Delta_n)} Y_N(\omega).$$

Here (Δ_n^X) is the number of stocks in the replicating strategy. To conclude the argument we just recall that FM has NA. \square

Problem on forward exchange rates

Problem

There is a financial market with times 0 and 1.

```
Spot FX: \$S_0 = \pounds 1.

\$ bank: \$1 \longrightarrow \$(1+r).

\pounds bank: \pounds 1 \longrightarrow \pounds (1+q).
```

Compute the forward $FX F_0$:

$$0 \longrightarrow \frac{1 - F_0}{\log position}$$

Solution

We choose F_0 so that the payoff $\in 1 - F_0$ of the long position in the forward contract can be replicated with $X_0 = 0$.

Problem on forward exchange rates

Replicating strategy: (a) + (b), where

$$\begin{cases}
\frac{1}{1+q} & \xrightarrow{\epsilon \text{ bank}} & \epsilon 1, \\
-\$ \frac{F_0}{1+r} & \xrightarrow{\$ \text{ bank}} & -\$ F_0.
\end{cases} \tag{a}$$

$$-\$\frac{F_0}{1+r} \xrightarrow{\$ \text{hapk}} -\$F_0.$$
 (b)

The initial capital in \$ is

$$X_0 = S_0 \frac{1}{1+q} - F_0 \frac{1}{1+r}.$$

In the absence of arbitrage, $X_0 = \$0$. Hence,

$$F_0 = S_0 \frac{1+r}{1+a}$$
 (in \$).

Problem on put-call parity

Problem

There is a financial market with times 0 and 1.

Discount factor: $D_0 \longrightarrow \$1$.

Call with strike $K: C_0 \longrightarrow \max(S_1 - K, 0)$, where S_1 is the stock price at t = 1.

Put with strike $K: P_0 \longrightarrow \max(K - S_1, 0)$.

Compute the forward price F_0 :

$$0 \xrightarrow{long position} S_1 - F_0.$$

Solution

We choose F_0 so that the payoff $S_1 - F_0$ can be replicated with $X_0 = 0$.

Problem on put-call parity

We write

$$S_1 - F_0 = \max(S_1 - K, 0) - \max(K - S_1, 0) + (K - F_0).$$

Hence, the replicating strategy is

call – put +
$$(K - F_0)$$
 discount factors.

The initial capital is

$$X_0 = C_0 - P_0 + D_0(K - F_0).$$

In the absence of arbitrage, $X_0 = 0$. It follows that

$$F_0 = \frac{1}{D_0}(C_0 - P_0) + K.$$

Problem on interest rates

Problem

There is a multi-period financial market.

Discount factors: $D_0(n)$ at $t = 0 \longrightarrow \$1$ at t = n.

Bank with stochastic interest rate (r_n) :

$$1$$
 at $t = n \longrightarrow (1 + r_n)$ at $t = n + 1$.

Compute the AFP of the option paying r_n at t = n + 1:

$$V_0$$
-? $\longrightarrow V_{n+1} = r_n$.

Problem on interest rates

Solution We write

$$V_{n+1} = r_n = 1 + r_n - 1.$$

Replicating strategy: (a) - (b), where

$$D_0(n)$$
 at $t=0$ $\xrightarrow{D(n)}$ \$1 at $t=n$ $\xrightarrow{\text{bank}}$ \$ $(1+r_n)$ at $t=n+1$, (a)

$$D_0(n+1)$$
 at $t=0 \xrightarrow{D(n+1)} \1 at $t=n+1$. (b)

We obtain that

$$V_0 = D_0(n) - D_0(n+1).$$