

CONTENTS

- 1. INTRODUCTION
- 2. METHODOLOGY
- 3. ANALYSIS
- 4. CONCLUSIONS
- 5. FUTURE WORK
- 6. APPENDIX

INTRODUCTION

- RULES, REGULATIONS & LAWS NOT CAUGHT UP WITH PRIVACY PROTECTION vs PERSONAL DATA COLLECTION
- INDIVIDUALS FEEL COMPELLED TO TAKE CONTROL OF THEIR ONLINE PRIVACY
- CAN WE IDENTIFY SOME CHARACTERISTICS OF PRIVACY MINDING INDIVIDUALS?

METHODOLOGY - 1

- DATA: AMERICAN TRENDS PANEL-49 BY PEW RESEARCH CENTER, JUN 2019
- 4,272 PARTICIPANTS, OVER 130 QUESTIONS w/CATEGORICAL RESPONSES
- SELECTED 87 FEATURES, TARGET INDIVIDUALS WHO FOLLOW PRIVACY NEWS "VERY CLOSELY"
- IMBALANCED TARGET DATA

METHODOLOGY - 2

- CONVERTED ALL DATA TO BINARY TYPE
- SELECTED BERNOULLI NB, LOGISTIC
 REGRESSION & RANDOM FOREST CLASSIFIERS
 FOR MODELING
- COMPARE F1, RECALL & PRECISION SCORES BETWEEN MODELS

ANALYSIS - 1

- MODEL OF CHOICE IS LOGISTIC REGRESSION
- FEATURE IMPORTANCE EXAMINATION TO IDENTIFY HALLMARKS
- FOCUS ON FEATURES w/POSITIVE LARGE COEFFICIENTS

	Perf. Improvement	Accuracy	F1	Recall	Precision
Bernoulli NB	None	0.819	0.344	0.448	0.280
Logistic Reg.	Threshold Adjustment	<mark>0.869</mark>	0.324	0.581	0.224
Random Forest	Change Target Class Weight	0.855	0.315	0.309	0.321

ANALYSIS - 2

- 355 BINARIZED FEATURES IN TOTAL
- FEATURES w/SCORES > 2:

BENEFITCO_W49_99

TRACKCO1a_W49_99

TRACKCO1b_W49_99

FITTRACK_W49_99

SOCMEDIAUSEb_W49_99

F_RELIG_5

PROFILE3_W49_3

CONCLUSIONS

- FEATURES POSITIVELY DRIVING THE MODEL TEND TO BE RESPONSES WITH _99 SUFFIX ("NO ANSWER")
- INDIVIDUALS WHO MIND THEIR ONLINE PRIVACY ARE ALSO MINDFUL ABOUT REVEALING TENDENCIES

FUTURE IMPROVEMENTS

- LOGISTIC REGRESSION & RANDOM FOREST MODELS MIGHT BENEFIT FROM OVER-SAMPLING THE TRAINING DATA
- DURING MODELING DID NOT CONSIDER USING RESPONDENT WEIGHTS DESIGNED BY PEW, CURIOUS TO SEE HOW, IF ANY, THEY MIGHT IMPACT THE SCORES

APPENDIX

- https://www.pewresearch.org/wp-content/uploads/2018/05/Codebook-and-instructions-for-working-with-ATP-data.pdf
- https://www.pewresearch.org/internet/2019/11/15/data-privacy-methodology/
- https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-controlover-their-personal-information/
- https://www.pewresearch.org/internet/2019/10/09/americans-and-digital-knowledge/
- https://www.pewresearch.org/internet/2019/09/05/more-than-half-of-u-s-adults-trust-law-enforcement-to-use-facialrecognition-responsibly/
- https://www.law.georgetown.edu/privacy-technology-center/publications/american-dragnet-data-driven-deportation-in-the-21st-century/
- https://datagy.io/sklearn-random-forests/
- https://medium.com/@curryrowan/simplified-logistic-regression-classification-with-categorical-variables-in-python-/
 1ce50c4b137
- https://medium.com/analytics-vidhya/evaluating-a-random-forest-model-9d165595ad56
- https://towardsdatascience.com/methods-for-dealing-with-imbalanced-data-5b761be45a18

