Final Report

Help Boost Our Online Reach

ML PROJECT

TEAM - WeSmurfing
IMT2019073 Ronit Jain
IMT2019516 Rakshit Gupta

Problem Statement

The task is to identify the relevant, high-quality web pages from a pool of user-curated web pages to identify "ad-worthy" web pages. The challenge required us to build large-scale, end-to-end machine learning models that can classify a website as either "relevant" or "irrelevant", based on attributes such as alchemy category and its score, meta-information of the web pages, and a one-line description of the content of each webpage. To facilitate this, the agency has created a dataset of raw Html, meta statistics, and a binary label for each webpage. The binary label represents whether the webpage was selected for ad placement or not.

About the Dataset

The data set was provided on Kaggle. The data set included three files:

- train.csv the **training set** containing the target variable 'label.'
- test.csv the test set, which does not contain the target variable 'label.'
- html_content.zip A zip file containing the raw HTML content for each URL

The dataset contains an **ID column**, **25 features** and **one target** *label* **column**. This dataset includes rows of web pages and their description and meta-statistics, along with a label classifying them as either "ad-worthy" or not "ad-worthy", in **binary values 0 and 1**, respectively.

The **training data** set contained **5916** data points. The **test data** set contains **1479** data points.

Exploratory Data Analysis

Countplot

Displayed the number of Label counts.

Outliers

Displayed boxplot to find outliers in the data.

Correlation Map

Created heatmap for the rest numerical features.

Countplot Label Counts

```
print(df_train["label"].value_counts())
         sns.countplot(x='label',data=df_train)
      ✓ 0.1s
[246]
          3060
          2856
     Name: label, dtype: int64
     <AxesSubplot:xlabel='label', ylabel='count'>
</>
         3000
         2500
        2000
      ₩
1500
        1000
         500
                                  label
```

Correlation Heatmap

alchemy_category -	1	0.041	0.0054	0.037	0.00083	0.0012	0.07	0.0037	0.025	0.023
alchemy_category_score -	0.041	1	0.053	0.092	0.037	0.0041	0.038	0.1	0.14	0.00088
avgLinkWordLength -	0.0054	0.053	1	0.44	0.0069	0.14	0.15	0.11	0.11	0.041
AvglinkWithOneCommonWord -	0.037	0.092	0.44	1	0.28	0.18	0.12	0.23	0.15	0.081
frameTagRatio -	0.00083	0.037	0.0069	0.28	1	0.4	0.14	0.46	0.085	0.11
tagRatio -	0.0012	0.0041	0.14	0.18	0.4	1	0.36	0.19	0.027	0.22
imageTagRatio -	0.07	0.038	0.15	0.12	0.14	0.36	1	0.092	0.05	0.19
alphanumCharCount -	0.0037	0.1	0.11	0.23	0.46	0.19	0.092	1	0.11	0.068
wordCount -	0.025	0.14	0.11	0.15	0.085	0.027	0.05	0.11	1	0.074
parametrizedLinkRatio -	0.023	0.00088	0.041	0.081	0.11	0.22	0.19	0.068	0.074	1
	alchemy_category -	alchemy_category_score	avgLinkWordLength –	glinkWithOneCommonWord –	frameTagRatio –	tagRatio -	imageTagRatio –	alphanumCharCount -	wordCount -	parametrizedLinkRatio -

Outliers

... also for many more features

Preprocessing

- The feature "webpageDescription" has lots of data in text format, which will eventually be converted into numerical data.
- The feature named "url" is dropped because it's of no use in predictions.
- Removed the features "framebased" and "isNews" because they have only one kind of data.
- The missing data is presented in the next slide for both train and test data combined.

Missing Data

	Missing_Data	Percentage
isNews	2843	38.444895
alchemy_category	2342	31.670047
alchemy_category_score	2342	31.670047
isFrontPageNews	1248	16.876268

All NaN values are replaced with "unknown" in "alchemy_category",
 median in "alchemy_category_score", and mode in "isFrontPageNews".

Outliers Removal

- We used the following method to deal with the outliers.
- In the following function, if there's an outlier on either side of the whiskers, then that point is reset at the nearest whisker point.

```
class OutlierRemoval:
    def __init__(self, lower_quartile, upper_quartile):
        self.lower_whisker = lower_quartile - 1.5*(upper_quartile - lower_quartile)
        self.upper_whisker = upper_quartile + 1.5*(upper_quartile - lower_quartile)
    def removeOutlier(self, x):
        return (x if x <= self.upper_whisker and x >= self.lower_whisker else (self.lower_whisker if x < self.lower_whisker else (self.upper_whisker)))</pre>
```

```
vfor i in range(1, 21):
    column = df.iloc[:,i]
    # print(column.name)
    column_outlier_class = OutlierRemoval(column.quantile(0.25), column.quantile(0.75))
    outlier_removed_column = column.apply(column_outlier_class.removeOutlier)
    df[column.name] = outlier_removed_column
```

Feature Selection and Engineering

- After dealing with outliers, there were some features with the same kind of data, like "embedRatio", "domainLink", and "isFrontPageNews", so we dropped them.
- We used correlation and plotted heatmap to fetch out the valuable features. Also, to remove the highly correlated features.
- We also used **PCA** for **feature reduction**, but it didn't give better results, so we **dropped** it.
- We used the **vectorization** method to **create features** for the text data in "**webpageDescription**".

NLP

```
def nlp_func(text):
    text = "".join([char for char in text if char not in string.punctuation])
    tokens = re.split('\W+', text)
    # text = [ps.stem(word) for word in tokens if word not in stopword]
    text = [wn.lemmatize(word) for word in tokens if word not in stopword]
    return text
```

- We used the above methods like removing punctuation,
 tokenization, removing stopwords and lemmatization on the text data of the feature "webpageDescription".
- We also tried it using **stemming** instead of **lemmatization** but didn't get better results.

Vectorization

- We used the TF-IDF Vectorizer to convert the text into numeric data and create features.
- This process rules out more than 1lakh features, so we used some hyperparameters as shown below to limit the no. of features to < 50k.
- We used the above-discussed nlp_func for the analyzer part.

 We used "StandardScaler" to scale the rest 10 features of the dataset and then merged them with the features received after vectorization.

Models Used

Logistic Regression Model

2. Random Forest Model

```
RF_model = RandomForestClassifier(n_estimators=1000, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,

max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None,

random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None)

RF_model.fit(train_X, train_y)
```

3. Naive Bayes Model

```
NB_model = GaussianNB()
NB_model.fit(train_X, train_y)
```

Scores (Area under the Curve)

Logistic Regression Model

Random Forest Model

Naive Bayes Model

0.8820

0.8691

0.7328

Conclusion

- This project helped us gently get the idea of the domain of NLP.
- We used it to convert the string attributes of the dataset to some form of numerical data and then constructed ML models on this numerical data.
- We also faced some challenges; eventually, those problems only helped us learn new things and apply them.

Individual Contributions and References

Individual Contributions

We did the whole project as a team. We discussed everything and implemented everything together.

References

https://towardsdatascience.com/natural-language-processing-nlp-for-machine-learning-d44498845d5b

https://towardsdatascience.com/text-classification-in-python-dd95d264c802