第一章 行列式

1. 行列式
$$\begin{vmatrix} x & 1 & 0 & 1 \\ 0 & 1 & x & 1 \\ 1 & x & 1 & 0 \\ 1 & 0 & 1 & x \end{vmatrix}$$
 展开式中的常数项为()

- A. 4 B. 2 C. 1 D. 0

2. 计算
$$D = \begin{vmatrix} 4 & 1 & 1 & 1 \\ 1 & 4 & 1 & 1 \\ 1 & 1 & 4 & 1 \\ 1 & 1 & 1 & 4 \end{vmatrix} = ().$$

- A. 0 B. 27
- c. 189 D. 256

$$\begin{vmatrix} a_1 & 0 & 0 & b_1 \\ 0 & a_2 & b_2 & 0 \\ 0 & b_3 & a_3 & 0 \\ b_4 & 0 & 0 & a_4 \end{vmatrix}$$
的值等于

- $(A)a_1a_2a_3a_4 b_1b_2b_3b_4$ $(B)a_1a_2a_3a_4 + b_1b_2b_3b_4$
- $(C)(a_1a_2 b_1b_2)(a_3a_4 b_3b_4) (D)(a_2a_3 b_2b_3)(a_1a_4 b_1b_4)$ [

4.
$$\begin{vmatrix} a_1 + b_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 + b_2 & b_2 + c_2 & c_2 + a_2 \\ a_3 + b_3 & b_3 + c_3 & c_3 + a_3 \end{vmatrix} = m \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}, \quad \text{III m } \text{III } \text{m} \text{ ()}$$

- (A) 1 (B) 2 (C) 3 (D) 4

5.设
$$a,b,c$$
 是方程 $x^3 - 2x + 4 = 0$ 的三个根,则行列式 $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$ 的值等于 ().

- A. 1 B. O
- C. -1 D. -2

6. 已知行列式
$$D = \begin{vmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 2 & 2 \\ 2 & 0 & -2 & 1 \\ -1 & 1 & 1 & 3 \end{vmatrix}$$
, $A_{21}, A_{22}, A_{23}, A_{24}$ 是其第 2 行各元素对应的代数余

子式,那么 A_{21} – A_{22} – A_{23} + A_{24} 的值为 ().

- A. 1
- B. 0 C. -1 D. -2

7. 阶行列式
$$\begin{vmatrix} 2 & 0 & \cdots & 0 & 2 \\ -1 & 2 & \cdots & 0 & 2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 2 & 2 \\ 0 & 0 & \cdots & -1 & 2 \end{vmatrix} = \underline{\qquad}$$

第二章 矩 阵

1.已知
$$A = \begin{pmatrix} 2 & 4 & 6 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$
,则 $A^n = \underline{\qquad}$.

2.
$$\beta$$
 是三维列向量, β^r 是 β 的转置,若 $\beta\beta^T = \begin{bmatrix} 1 & -1 & -2 \\ -1 & 1 & 2 \\ -2 & 2 & 4 \end{bmatrix}$, $\beta^T\beta = ()$ 。

В. 6

3. 设
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
, E 为三阶单位矩阵, 若三阶矩阵 Q 满足关系 $AQ + E = A^2 + Q$, 则

Q的第一行的行向量是 ().

A. (1 0 1) B. (1 0 2) C. (2 0 1) D. (2 0 2)

10.
$$\Box \Xi XA + B = AB + X$$
, $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $\overline{x} X^{99}$.

$$X^{99} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

11 设
$$A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
 $B = P^{-1}AP$,其中 P 为3阶可逆矩阵,则 $B^{2004} - 2A^2 =$ _____.

12. 在
$$(x_1 \quad x_2 \quad x_3)$$
 $\begin{pmatrix} 1 & 0 & -2 \\ 2 & 4 & -1 \\ 0 & -3 & 5 \end{pmatrix}$ $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ 的展开式中, x_2x_3 项的系数是().

A. 3

B. 2

C. -2

D. -4

13. A, B 都是n 阶阵,则下列结论不正确的是()

A .
$$\left|A+B\right|=\left|A\right|+\left|B\right|$$
 B. $\left|AB^{T}\right|=\left|A\right|\left|B\right|$

$$\mathsf{C.} \left\| A \middle| B \middle| = \middle| A \middle|^n \middle| B \middle|$$

$$\mathsf{D}.\left|A+B\right|\left|A-B\right|=\left|A-B\right|\left|A+B\right|$$

14. α , β , γ_1 , γ_2 , γ_3 均为4维列向量,已知 $|A|=|\alpha \gamma_1 \gamma_2 \gamma_3|=5$, |B|=

$$\begin{vmatrix} \beta & \gamma_1 & \gamma_2 & \gamma_3 \end{vmatrix} = -1, 则 \begin{vmatrix} A + B \end{vmatrix} =$$

$$(A)4 \qquad (B)6 \qquad (c)32 \qquad (D)48 \qquad [$$

15. 已知 $|\alpha,\beta,\gamma|=3$, α,β,γ 均为3维列向量,则

 $|-\alpha-\beta+\gamma,2\alpha-\beta-7\gamma,3\alpha+5\beta+2\gamma|=($

- (A) 9 (B) -9 (C) 15 (D) -15

16. 已知 n 阶方阵 A 满足 $A^3 + A^2 - 2A = 0$, 则下列矩阵中一定可逆的是 ().

A. A

B. A-E C. A+E D. A+2E

17. $A*是A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$ 的伴随矩阵. 若三阶矩阵 X满足A*X = A,则 X的第 3 行的行

向量是(C)

- A. $(2 \ 1 \ 1)$ B. $(1 \ 2 \ 1)$ C. $\left(1 \ \frac{1}{2} \ \frac{1}{2}\right)$ D. $\left(\frac{1}{2} \ \frac{1}{2} \ 1\right)$

(A)

- A. $-\frac{3}{4}$ B. $-\frac{1}{4}$ C. $\frac{3}{4}$ D. $\frac{27}{4}$

19. 若 $A = \begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ 1 & 2 & 1 \end{pmatrix}$,则 $A^{-1} = \underline{\qquad}$

20. (2013GCT24) 3 阶矩阵 A 满足 $A^2 - A - 2E = 0$, 其中 E 是 3 阶单位矩阵。若 A 的第 3/11

1 行是 $(-1\ 0\ 0)$,则 $(A+2E)^{-1}$ 的第 1 行是(

A. (100)* B. (-100) C. (-10-1) D. (101)

21. 设 A, B 都是 n 阶非零矩阵,且 AB = O ,则 A 和 B 的秩 ().

A. 必有一个等于零

B. 都小于 n

C. 一个小于n, 一个等于n

D. 都等于*n*

22. A 为 4 阶非零矩阵, 其伴随矩阵 A^* 的秩 $r(A^*) = 0$, 则 r(A) 等于 ().

A. 1或2.

B. 1或3

C. 2或3

23. 设
$$A = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 3 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 3 & 1 \end{pmatrix}$$
, 则 ().

A. |AB| = 2 B. |BA| = 0 C. |BA| = -8 D. |AB| = 0

24.
$$abla A = \begin{pmatrix} 2 & 0 & 0 \\ 3 & 4 & -1 \\ 2 & 4 & 5 \end{pmatrix}, B = \begin{pmatrix} -1 & 2 & 3 \\ 2 & -4 & -6 \\ -3 & 6 & 9 \end{pmatrix}, \ \ y|\ r(AB - B) = ()$$

A.3

B.. 2

C.1

D. 0

25.设 α 是n维单位列向量,E 为n 阶单位矩阵,则()

(A) $E - \alpha \alpha^T$ 不可逆 (B) $E + \alpha \alpha^T$ 不可逆

(C) $E + 2\alpha\alpha^T$ 不可逆 (D) $E - 2\alpha\alpha^T$ 不可逆

$$_{26.$$
设 A 和 B 都是 $_{\rm n}$ 阶矩阵, $^{\rm C}=\begin{pmatrix}A&0\\0&B\end{pmatrix}$ 则 $^{\rm C}=\begin{pmatrix}A&0\\0&B\end{pmatrix}$

$$(A) \begin{pmatrix} |A|A^* & 0 \\ 0 & |B|B^* \end{pmatrix} (B) \begin{pmatrix} |B|B^* & 0 \\ 0 & |A|A^* \end{pmatrix}$$

$$(C)\begin{pmatrix} |A|B^* & 0\\ 0 & |B|A^* \end{pmatrix}(D)\begin{pmatrix} |B|A^* & 0\\ 0 & |A|B^* \end{pmatrix}$$

第三章 向量

1. 下列向量组中线性相关性的向量组是()

A. $\alpha_1 = (1 \ 0 \ 0)^T$, $\alpha_2 = (0 \ 1 \ 2)^T$, $\alpha_3 = (0 \ 3 \ 4)^T$.

B. $\beta_1 = (1 \ 0 \ 0 \ a)^T$, $\beta_2 = (0 \ 1 \ 2 \ b)^T$, $\beta_3 = (0 \ 3 \ 4 \ 0)^T$.

c. $\beta_1 = \begin{pmatrix} 1 & 0 & 0 & a \end{pmatrix}^T \beta_2 = \begin{pmatrix} 0 & 1 & 2 & b \end{pmatrix}^T \beta_3 = \begin{pmatrix} 0 & 3 & 4 & 0 \end{pmatrix}^T \beta_4 = \begin{pmatrix} 4 & 1 & -1 & 0 \end{pmatrix}^T$

D. $(1 \ 0 \ 1)^T$, $(1 \ 0 \ 2)^T$, $(3 \ 1 \ 2)^T$, $(2 \ 1 \ 1)^T$ (D)

2. 若向量组 α , β , γ 线性无关, 而向量组 $\alpha + 2\beta$, $2\beta + k\gamma$, $3\gamma + \alpha$ 线性相关, 则 k = ().

- B. 2 C. -2 D. -3
- 3. 设向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,下列向量组无关的是()
 - A. $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$ B. $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 \alpha_1$
 - C. $\alpha_1 + 2\alpha_2, \alpha_2 \alpha_3, \alpha_1 + \alpha_2 + \alpha_3$ D. $\alpha_1 \alpha_2, \alpha_2 \alpha_3, \alpha_3 \alpha_1$ (A)
- 4. 己知向量组 α , β , γ 线性无关, 则 $k \neq 1$ 是向量组 $\alpha + k\beta$, $\beta + k\gamma$, $\alpha \gamma$ 线性无关的(C).
- A. 充分必要条件

- B. 充分条件,但非必要条件
- C. 必要条件,但非充分条件
- D. 既非充分条件也非必要条件
- 5. 设向量组 α , β , γ 线性无关,而 α , β , δ 线性相关,则 ().
- A. α 必能被 β, γ, δ 线性表出
- B. β 必不能被 α, γ, δ 线性表出
- C. δ 必能被 α, β, γ 线性表出 D. δ 必不能被 α, β, γ 线性表出

答: C.

6. 设向量组 $S = \{\alpha_1, \alpha_2, \alpha_3\}$ 线性无关,下列向量组中与 S 等价的有()个.

 $\bigcirc \alpha_1 - \alpha_3, \alpha_2 - \alpha_3$

A. 1 В. 2 c. 3 D. 4

7. 设向量
$$\alpha_1 = \begin{pmatrix} 0 \\ 2 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} -1 \\ -1 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}$, 则向量组 $\left(\alpha_1, \alpha_2, \alpha_3, \alpha_4\right)$

的一个极大线性无关组是(D).

A.
$$\alpha_3, \alpha_4$$

A.
$$\alpha_3, \alpha_4$$
 B. $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ C. $\alpha_1, \alpha_2, \alpha_3$ D. $\alpha_1, \alpha_2, \alpha_4$

C.
$$\alpha_1, \alpha_2, \alpha_3$$

D.
$$\alpha_1, \alpha_2, \alpha_4$$

8. 设
$$\alpha_1,\alpha_2,\alpha_3,\alpha_4$$
 是 一 个 n 维 向 量 组 , 且 $\alpha=\alpha_1+\alpha_2+\alpha_3+\alpha_4$,

$$\beta_i = \alpha - \alpha_i \ (i = 1, 2, 3, 4), \ \text{M}$$
 ().

A.
$$r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = r(\beta_1, \beta_2, \beta_3, \beta_4)$$

B.
$$r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) > r(\beta_1, \beta_2, \beta_3, \beta_4)$$

C.
$$r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) < r(\beta_1, \beta_2, \beta_3, \beta_4)$$

D. 不能确定 $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 与 $r(\beta_1, \beta_2, \beta_3, \beta_4)$ 的关系

9.设矩阵
$$A=\begin{pmatrix}1&0&1\\1&1&2\\0&1&1\end{pmatrix}$$
, $\alpha_1,\alpha_2,\alpha_3$ 为线性无关的 3 维列向量组,则向量组 $A\alpha_1,A\alpha_2,A\alpha_3$

的秩为

- 10. 设 $A \setminus B \setminus C$ 均为 n 阶矩阵, 若AB = C.则B可逆,则
 - (A) 矩阵 C 行向量组与 A 的行向量组等价
 - (B)矩阵 C列向量组与 A 的列向量组等价
 - (C) 矩阵 C 行向量组与 B 的行向量组等价
 - (D) 矩阵 C 列向量组与 B 的列向量组等价

第四章 线性方程组

1. 当
$$a=($$
)时,方程组 $\begin{cases} x_1+ax_2+x_3=0 \\ x_1+x_2+2x_3=0$ 有非零解. $x_1+x_2+3x_3=0 \end{cases}$

- A. 1
- B. 0
- c. 6
- D. -6
- 2. A 为 $m \times n$ 的非零矩阵,方程组 Ax = 0 只有零解的充分必要条件是 (A).
- A. A 的列向量组线性无关
- B. A的列向量组线性相关
- C. A 的行向量组线性无关
- D. A 的行向量组线性相关
- 3. 已知三阶非零矩阵 B 的每一列都是方程组 $\begin{cases} x_1 + 2x_2 2x_3 = 0 \\ 2x_1 x_2 + \lambda x_3 = 0 \end{cases}$ 的解, $3x_1 + x_2 x_3 = 0$

则 $\lambda = ()$.

(C)

- 4. 设 $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & k & 0 \end{pmatrix}$, 且 r(A) = 2, 则 $A^*X = 0$ 的通解是().

- A. $k_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ B. $k_1 \begin{pmatrix} 2 \\ 1 \\ k \end{pmatrix}$ C. $k_1 \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$ D. $k_1 \begin{pmatrix} 1 \\ 0 \\ k \end{pmatrix} + k_2 \begin{pmatrix} 2 \\ 1 \\ k \end{pmatrix}$

 (k_1,k_2) 为任意常数)

- 5. 已知 α_1 , α_2 , α_3 ,是齐次方程组Ax=0的基础解系,那么基础解系还可以是().
 - $(A)k_1\alpha_1+k_2\alpha_2+k_3\alpha_3;$
- $(C)\alpha_1-\alpha_2, \quad \alpha_2-\alpha_3;$
- $egin{align} egin{align} \left(B
 ight)lpha_1+lpha_2, & lpha_2+lpha_3, & lpha_3+lpha_1; \ \left(C
 ight)lpha_1, & lpha_1-lpha_2+lpha_3, & lpha_3-lpha_2. \end{matrix}$ $(C)\alpha_1$, $\alpha_1 - \alpha_2 + \alpha_3$, $\alpha_3 - \alpha_2$.
- 6. 设 $A = \begin{pmatrix} 1 & 1 & \alpha \\ 0 & 1 & -1 \\ 1 & \alpha^2 & -1 \end{pmatrix}$, $b = \begin{pmatrix} -1 & -1 & \alpha \end{pmatrix}^T$, 则当 $\alpha = ($) 时方程组AX = b无解.
- A. -2
- B. -1 C. 1
- 7. 设 β_1 , β_2 是线性方程组Ax=b的两个不同的解, α_1 , α_2 是方程组导出组Ax=0的基 础解系,则方程组 Ax = b 的通解是 ().
- A. $\frac{1}{2}(\beta_1 \beta_2) + k_1\alpha_1 + k_2\alpha_2$
- B. $\frac{1}{2}(\beta_1 \beta_2) + k(\alpha_1 + \alpha_2)$
- C. $\frac{1}{2}(\beta_1 + \beta_2) + k_1\alpha_1 + k_2(\beta_1 \beta_2)$ D. $\frac{1}{2}(\beta_1 + \beta_2) + k_1\alpha_1 + k_2\alpha_2$

其中 k,k_1,k_2 是任意常数.

8. 设 A 是 5×4 矩阵,b 是 4 维列向量,r(A) = 3 , X_1, X_2, X_3 是方程组 AX = b 的三个解 向量,且满足 $X_1 + X_2 = (1,2,-1,0)^T, X_1 + X_3 = (0,1,2,-3)^T$,则方程组AX = b的通解为 (). (其中 k₁, k₂ 为任意常数)

A.
$$k_1 \begin{pmatrix} 1 \\ 2 \\ -1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix}$$
 B. $k_1 \begin{pmatrix} 1 \\ 1 \\ -3 \\ 3 \end{pmatrix} + \begin{pmatrix} \frac{1}{2} \\ 1 \\ -\frac{1}{2} \\ 0 \end{pmatrix}$ C. $k_1 \begin{pmatrix} 1 \\ 2 \\ -1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 0 \\ 1 \\ 2 \\ -3 \end{pmatrix}$ D. 以上结果均不正确

9. 已知 $A = (a_{ii})$ 为 3 阶矩阵, $A^T A = E (A^T \oplus A)$ 的转置矩阵,E 是单位矩阵). 若 $a_{11} = -1$, $b = (1,0,0)^T$,则方程组 AX = b 的解 X = (D).

A. $(-1,1,0)^T$ B. $(-1,0,1)^T$ C. $(-1,-1,0)^T$ D. $(-1,0,0)^T$

(C)

10. $A \in M_{mn}$, AX = 0 是 AX = b 对应的齐次方程组.则

A. 若 AX = 0 只有零解,则 AX = b 有唯一解.

B. 若AX=0有非零解,则AX=b有无穷多解.

C. 若 AX = b 有无穷多解,则 AX = 0 有非零解.

D. 若 AX = b 无解,则 AX = 0 只有零解.

11.设线性方程组Ax = b有n个未知量,m个方程,且r(A) = r,则此方程组().

(A)r = m时,有解;

(B)r = n时,有惟一解;

(C)m = n时,有惟一解;

(D)r < n时,有无穷多解.

 $12.A \in M_{4.5}, A$ 的行向量线性无关,则错误的是

A. $A^T X = 0$ 只有零解. B. $A^T A X = 0$ 必有无穷多解.

 $C. \forall b, A^T X = b$ 有惟一解. D. $\forall b, AX = b$ 总有无穷多解.

13.设
$$A = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}$$
, 且可逆,则方程组
$$\begin{cases} a_1x_1 + a_2x_2 = a_3 \\ b_1x_1 + b_2x_2 = b_3 \\ c_{1_1}x_1 + c_2x_2 = c_3 \end{cases}$$

A.有唯一解. B.有无穷多解. C.无解 D.不能确定

第五章 特征值与特征向量

1. 已知三阶矩阵 M 的特征值为 $\lambda_1 = -1$, $\lambda_2 = 0$, $\lambda_3 = 1$, 它们对应的特征向量为

$$\alpha_1 = (1,0,0)^T$$
, $\alpha_2 = (0,2,0)^T$, $\alpha_3 = (0,0,1)^T$, 则矩阵 M 为 ().

A.
$$\begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

B.
$$\begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

A.
$$\begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 B. $\begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ C. $\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ D. $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

$$D. \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

2. 矩阵
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & -1 \end{pmatrix}$, 若 A 的特征值和 B 的特征值对应相等,则其中

().

A.
$$x = 1, y = 1$$

B.
$$x = 0, y = 1$$

A.
$$x = 1, y = 1$$
 B. $x = 0, y = 1$ C. $x = -1, y = 0$ D. $x = 0, y = -1$

D.
$$x = 0, y = -1$$

3. 设
$$A*$$
是 $A = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 3 & 5 \\ 0 & 0 & 5 \end{bmatrix}$ 的伴随矩阵,则 $A*$ 的一个特征值为(A)。

4. 设 X_1, X_2 是三阶矩阵A的属于 λ_1 的两个线性无关的特征向量, X_3 是A的属于 λ_2 的特

征向量,且 $\lambda_1 \neq \lambda_2$,则().(其中 k_1,k_2 为任意常数)

A.
$$k_1X_1 + k_2X_2$$
 是 A 的特征向量

A.
$$k_1X_1 + k_2X_2$$
 是 A 的特征向量 B. $k_1X_1 + k_2X_3$ 是 A 的特征向量

C.
$$X_1 + X_2$$
是 $2A - E$ 的特征向量

C.
$$X_1 + X_2$$
 是 $2A - E$ 的特征向量 D. $X_1 + X_3$ 是 $2A - E$ 的特征向量

5. 三阶矩阵 A 的元素全为 2 ,则 A 的特征值为 ().

$$0.0,-6$$

D.
$$0.2.6$$

6. 若矩阵
$$B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
, $A \neq B$ 的相似矩阵,则矩阵 $A + E$ (E 是单位矩阵)的秩是

().

7.设 $A \in M_3$, A的特征值为 $\lambda = -1,2,3$ 。则|3I + A| = ().

c.
$$-6$$
 D. -20

8. 设 A 是 3 阶不可逆矩阵,E 是 3 阶单位矩阵. 若线性齐次方程组(A-3E)x=0 的基础解 9/11

系由两个线性无关的解向量构成,则行列式中|A+E|=(

9. 设
$$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, 其中彼此相似的矩阵是

().

A.
$$A$$
, B B. B , C C. A , C D. A , B , C

$$10.$$
 下列矩阵中,与对角阵 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ 相似的矩阵是 ().

A.
$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

B.
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

A.
$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 B. $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ C. $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ D. $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

$$\begin{array}{cccc}
D. & \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}
\end{array}$$

11. 与
$$-1$$
是矩阵 $A = \begin{pmatrix} 3 & 1 & -2 \\ -t & -1 & t \\ 4 & 1 & -3 \end{pmatrix}$ 的特征值,则当 $t = ($)时矩阵 A 可对角化.

A.
$$-1$$

13.
$$A = \begin{pmatrix} & & 1 \\ x & 1 & y \\ 1 & & \end{pmatrix}$$
,可对角化,则 x, y 满足条件().

A.
$$x - y = 0$$

B.
$$x - 2y = 0$$

$$c. x + v = 0$$

A.
$$x - y = 0$$
 B. $x - 2y = 0$ C. $x + y = 0$ D. $x + 2y = 0$

14. 三阶矩阵 A 的特征值为 $\lambda_1 = -1, \lambda_2 = 0, \lambda_3 = 1$, 属于特征值的特征向量分别是

$$\alpha_1 = (1 \ 0 \ 0)^T, \alpha_2 = (0 \ 2 \ 0)^T, \alpha_3 = (0 \ 0 \ 1)^T, \quad \mathbb{M} A = (0 \ 0 \ 1)^T$$

$$A. \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad B. \begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \quad C. \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad D. \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

15.
$$A \in M_2, |A| < 0, 则$$

(A) A与一对角阵相似.

(B) A 不能与一对角阵相似

(C)不能确定
$$A$$
 能否与一对角阵相似 (D) $A = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$ (A)

16.下列矩阵中,不能与对角矩阵相似的是().

A.
$$\begin{pmatrix} -1 & 0 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
 B. $\begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$ C. $\begin{pmatrix} 4 & -3 & 0 \\ -3 & -5 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ D. $\begin{pmatrix} 4 & 6 & 0 \\ -3 & -5 & 0 \\ -3 & -6 & 1 \end{pmatrix}$

17.若
$$A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ -2 & a & 2 \end{pmatrix}$$
与 $B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 相似,则 $a = ($).

18.设
$$A = \begin{pmatrix} 3 & 4 & 0 \\ 4 & -5 & 0 \\ a & 2 & -1 \end{pmatrix}$$
,若 A 的三重特征值 λ 对应两个线性无关的特征向量,则 $a = ($).

A. 1 B. 2 C. -1 D. -2*

19.设矩阵
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}, 则 ()$$

(A) A与C相似,B与C相似

- (B) A与C相似,B与C不相似
- (c) A与C不相似,B与C相似
- (D) A与C不相似, B与C不相似

20. 二次型 $f(x_1,x_2,x_3)$ 在正交变换 x=Py 下的标准形为 $2y_1^2+y_2^2-y_3^2$,其中 $P=(\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3)$,若 $Q=(\mathbf{e}_1,-\mathbf{e}_3,e_2)$, $f(x_1,x_2,x_3)$ 在正交变换 x=Qy 下的标准型为()

(A)
$$2y_1^2 - y_2^2 + y_3^2$$
 (B) $2y_1^2 + y_2^2 - y_3^2$

(C)
$$2y_1^2 - y_2^2 - y_3^2$$
 (D) $2y_1^2 + y_2^2 + y_3^2$

21. 设 3 阶矩阵 $A = (\alpha_1, \alpha_2, \alpha_3)$ 有 3 个不同的特征值,且 $\alpha_3 = \alpha_1 + 2\alpha_2$ 。

(I) 证明 r(A) = 2;

 (Π) 若 $\beta = \alpha_1 + \alpha_2 + \alpha_3$,求方程组 $Ax = \beta$ 的通解。

22.设二次型
$$f(x_1, x_2, x_3) = 2x_1^2 - x_2^2 + ax_3^2 + 2x_1x_2 - 8x_1x_3 + 2x_2x_3$$

在正交变换 X = QY 下的标准型 $\lambda_1 y_1^2 + \lambda_2 y_2^2$, 求 a 的值及一个正交矩阵 Q