Epreuve écrite

Examen de fin d'études secondaires 2008

Section: D

Branche: Mathématiques I

Numéro d'ordre du candidat

Question I

On considère les nombres complexes $z_1 = (1+i)^5$, $z_2 = (\sqrt{3}+3i)^4$ et $Z = \frac{z_1}{z_2}$.

- 1) Mettre z_1 et z_2 sous forme trigonométrique et sous forme algébrique.
- 2) Donner la forme algébrique, puis la forme trigonométrique de Z.
- 3) En déduire les valeurs exactes de $\cos \frac{\pi}{12}$, $\sin \frac{\pi}{12}$ et $\tan \frac{\pi}{12}$.

8+6+4=18 points

Question II

Soit le polynôme $P(z) = z^3 - 5z^2 + 13z - 5 + 12i$ et le nombre complexe $z_0 = \left(\frac{1+i}{1-i}\right)^3$.

- 1) Exprimer z_0 sous forme algébrique, puis vérifier que z_0 est une racine de ce polynôme.
- 2) Résoudre dans \mathbb{C} l'équation P(z) = 0.

4+8=12 points

Question III

Soit le système (s) $\begin{cases} 2x - 2y + mz = m \\ 2x + my - 2z = m \\ mx - 2y + 2z = 0 \end{cases}$ où m est un paramètre réel.

- 1) Déterminer les réels m pour que le système admette une solution unique.
- 2) Résoudre et interpréter géométriquement le système dans chacun des trois cas suivants :

a)
$$m=0$$

b)
$$m = 1$$

c)
$$m = 2$$

5+(4+6+3)=18 points

Tsvp

Epreuve écrite

Examen de fin d'études secondaires 2008 Section: D Branche: Mathématiques I	Numéro d'ordre du candidat
Question IV	
Dans l'espace muni d'un repère orthonormé, on considère le plan $\pi \equiv 2x - y + 3z = 4$ et la droite d comprenant les deux points $A(1,2,3)$ et $B(3,-2,1)$.	
a) Déterminer un système d'équations paramétriques de la droite d .	
b) Montrer que la droite d est sécante avec le plan π et calculer la coordonnée de leur point d'intersection I .	
c) Le point $C(1,-2,0)$ appartient-il à la droite d ? au plan π ? Justifier.	
d) Déterminer une équation cartésienne du plan CIA .	
	2+4+2+4=12 points