Quiz 5 - Two-species Stability Analysis

Mv	name	is:	
0			

1) Determine the elements of the Community Matrix ${\bf A}$ for the two-species model

$$\frac{dX}{dt} = (a - bY)X$$

$$\frac{dX}{dt} = (a - bY)X$$
$$\frac{dY}{dt} = (pbX - q)Y,$$

remembering that, generally-speaking,

$$A_{ij} = \left. \frac{\partial \frac{dx_i}{dt}}{\partial x_j} \right|_{\vec{N}^*}.$$

2) What is the biological interpretation of elements A_{12} and A_{21} ?			
3) How would you determine whether a given equilibrium point (not necessarily the coexistence equilibrium) will exhibit the following dynamics after a pulse perturbation?			
a) locally stable,			
b) locally unstable (including attractor-repeller dynamics),			
c) or neutrally stable			