Lógica computacional

Tema: Lógica de primer orden: Introducción y sintaxis.

Pilar Selene Linares Arévalo

Facultad de Ciencias Universidad Nacional Autónoma de México

marzo 2018

Material desarrollado bajo el proyecto UNAM-PAPIME PE102117.

Términos

Los **términos** del lenguaje son aquellas expresiones que representan objetos, elementos o individuos en el universo del discurso y se generan con la siguiente gramática:

$$t ::= x | c | f(t_1, ..., t_m)$$

Al conjunto de términos en lenguaje de la Lógica de Primer Oren lo denotaremos con TERM.

Fórmulas

El conjunto de expresiones atómicas se denotará con ATOM y está formado por:

- Las constantes lógicas \bot, \top .
- Las expresiones de la forma: $P_1(t_1, \ldots, t_n)$ donde t_1, \ldots, t_n son términos.
- Las expresiones de la forma $t_1 = t_2$, si el lenguaje cuenta con igualdad.

Los términos se construyen bajo la siguiente gramática:

$$ATOM ::= \bot | \top | P(t_1, ..., t_m) | t_1 = t_2$$

Fórmulas

El conjunto FORM de fórmulas compuestas, llamadas usualmente fórmulas, se define recursivamente como sigue:

- Si $\varphi \in$ ATOM entonces $\varphi \in$ FORM. Es decir, toda fórmula atómica es una fórmula.
- Si $\varphi \in FORM$ entonces $(\neg \varphi) \in FORM$.
- Si $\varphi, \psi \in \mathsf{FORM}$ entonces $(\varphi \land \psi), (\varphi \lor \psi), (\varphi \to \psi), (\varphi \leftrightarrow \psi) \in \mathsf{FORM}.$
- Si $\varphi \in \text{FORM}$ y $x \in \text{Var}$ entonces $(\forall x \varphi), (\exists x \varphi) \in \text{FORM}$.

La gramática correspondiente es:

$$F ::= ATOM \mid (\neg F) \mid (F \star F) \mid (\forall x F) \mid (\exists x F)$$

$$\star ::= \land \mid \lor \mid \to \mid \leftrightarrow$$

Convención: Los cuantificadores se aplican a la *mínima* expresión sintácticamente posible delante del cuantificador.

De manera que

$$\begin{array}{ccc} \forall x\varphi \to \psi & \text{ es } & (\forall x\varphi) \to \psi \\ \exists y\varphi \land \forall w\psi \to \chi & \text{ es } & (\exists y\varphi) \land (\forall w\psi) \to \chi \end{array}$$

Definición recursiva de funciones sobre términos

Para definir una función $h: \mathsf{TERM} \to A$, basta definir h como sigue:

- Definir h(x) para $x \in Var$.
- Definir h(c) para cada constante $c \in C$.
- Suponiendo que $h(t_1), \ldots, h(t_n)$ están definidas, definir $h(f(t_1, \ldots, t_n))$ para cada símbolo de función $f \in \mathcal{F}$ de índice n.

Definición recursiva de funciones sobre fórmulas

Para definir una función $h: FORM \rightarrow A$, basta definir h como sigue:

- Definir h para cada fórmula atómica, es decir, definir $h(\bot), h(\top), h(P(t_1, ..., t_n))$ y $h(t_1 = t_2)$ si el lenguaje tiene igualdad.
- Suponiendo definidas $h(\varphi)$ y $h(\psi)$, definir a partir de ellas a $h(\neg \varphi), \ h(\varphi \lor \psi), \ h(\varphi \land \psi), \ h(\varphi \to \psi), \ h(\forall x \varphi)$ y $h(\exists x \varphi).$

Principio de inducción estructural para términos

Sea $\mathcal P$ una propiedad acerca de términos. Para demostrar que $\mathcal P$ es válida para todos los términos, basta seguir los siguientes pasos:

- Caso base: mostrar que
 - ${f P}$ es válida para x, con $x \in \mathsf{Var}$.
 - lacksquare P es válida para c, con $c \in C$.
- Hipótesis de inducción: suponer \mathcal{P} para cualesquiera $t_1, \ldots, t_n \in \mathsf{TERM}$.
- Paso inductivo: usando la Hipótesis de inducción mostrar que
 - $f(t_1, \ldots, t_n)$ cumple \mathcal{P} , donde $f \in \mathcal{F}$ es un símbolo de función de índice n.

Principio de inducción estructural para fórmulas

Sea $\mathcal P$ una propiedad acerca de fórmulas. Para probar que toda fórmula $\varphi \in \mathsf{FORM}$ tiene la propiedad $\mathcal P$ basta seguir los siguientes pasos:

- $lue{}$ Caso base: mostrar que toda fórmula atómica tiene la propiedad \mathcal{P} .
- Hipótesis de inducción: suponer que φ y ψ cumplen \mathcal{P} .
- Paso inductivo: mostrar usando la Hipótesis de inducción que
 - $(\neg \varphi)$ también cumple \mathcal{P} .
 - $(\varphi \star \psi)$ tiene la propiedad \mathcal{P} , donde $\star \in \{\rightarrow, \land, \lor, \leftrightarrow\}$
 - $\exists \forall x \varphi \ y \ \exists x \varphi \ \text{cumplen} \ \mathcal{P}.$

Ligado y alcance

Ligado y alcance

Dada una cuantificación $\forall x \varphi$ o $\exists x \varphi$, la presencia de x en $\forall x$ o $\exists x$ es la variable que liga el cuantificador correspondiente; mientras que la fórmula φ es el **alcance**, ámbito o radio del cuantificador.

Una presencia de la variable x en la fórmula φ está **ligada** si figura en el alcance de un cuantificador y éste es el más cercano a x.

Si una presencia de la variable x no es ligada, decimos que es **libre**.

Sustitución sobre términos

La aplicación de una sustitución $[\vec{x}:=\vec{t}]$ a un término r, denotada $r[\vec{x}:=t]$, se define como el término obtenido al reemplazar **simultáneamente** todas las presencias de x_i en r por t_i . Este proceso de define recursivamente como sigue:

$$x_i[\vec{x}:=\vec{t}\,] = t_i \qquad 1\leqslant i\leqslant n$$

$$z[\vec{x}:=\vec{t}\,] = z \qquad \text{si } z\neq x_i \ 1\leqslant i\leqslant n$$

$$c[\vec{x}:=\vec{t}\,] = c \qquad \text{si } c\in\mathcal{C}, \text{ es decir, } c \text{ constante}$$

$$f(t_1,\ldots,t_m)[\vec{x}:=\vec{t}\,] = f(t_1[\vec{x}:=\vec{t}\,],\ldots,t_m[\vec{x}:=\vec{t}\,]) \qquad \text{con } f^{(m)}\in\mathcal{F}.$$

Debido a la presencia de variables libres y ligadas, la aplicación de una sustitución textual a una fórmula puede llevar a situaciones problemáticas, por ejemplo:

Generar expresiones que no son fórmulas:

$$(\forall x P(y, fx))[x, y := gy, z] = \forall gy P(z, fgy))$$

La expresión de la derecha no es una fórmula.

 Captura de variables: Consideremos la siguiente aplicación de sustitución

$$\forall x (\exists y (x \neq y))[x := y] -> -> \exists y ((x \neq y))[x := y] -> (x \neq y)[x := y] -> y \neq y$$

$$\forall x (\exists y (x \neq y))[x := y] = \forall x (\exists y (y \neq y))$$

Para solucionar lo anterior, vamos a preferir un método utilizado en teoría de lenguajes de programación: la aplicación de una sustitución a una fórmula se define renombrando variables ligadas de manera que siempre podremos obtener una sustitución admisible.

Sustitución sobre fórmulas

La aplicación de una sustitución a una fórmula $\varphi[\vec{x}:=\vec{t}]$ se define recursivamente como sigue:

$$\begin{array}{rcl} & \bot[\vec{x}:=\vec{t}\] &=& \bot\\ & \top[\vec{x}:=\vec{t}\] &=& \top\\ P(t_1,\ldots,t_m)[\vec{x}:=\vec{t}\] &=& P\big(t_1[\vec{x}:=\vec{t}\],\ldots,t_m[\vec{x}:=\vec{t}\]\big)\\ & (t_1=t_2)[\vec{x}:=\vec{t}\] &=& t_1[\vec{x}:=\vec{t}\] &= t_2[\vec{x}:=\vec{t}\]\\ & (\neg\varphi)[\vec{x}:=\vec{t}\] &=& \neg\big(\varphi[\vec{x}:=\vec{t}\]\big)\\ & (\varphi\star\psi)[\vec{x}:=\vec{t}\] &=& \big(\varphi[\vec{x}:=\vec{t}\]\star\psi[\vec{x}:=\vec{t}\]\big)\\ & (\forall y\varphi)[\vec{x}:=\vec{t}\] &=& \forall y\big(\varphi[\vec{x}:=\vec{t}\]\big) &\text{si } y\notin\vec{x}\cup Var(\vec{t})\\ & (\exists y\varphi)[\vec{x}:=\vec{t}\] &=& \exists y\big(\varphi[\vec{x}:=\vec{t}\]\big) &\text{si } y\notin\vec{x}\cup Var(\vec{t}) \end{array}$$

La definición de sustitución en fórmulas cuenta con una restricción aparente en el caso de los cuantificadores, por ejemplo, la sustitución

$$\forall x (Q(x) \to R(z, x))[z := f(x)]$$

no está definida, puesto que x figura en f(x) es decir $x \in Var(f(x))$, con lo que no se cumple la condición necesaria para aplicar la sustitución.

Esta restricción desaparece al notar que los nombres de las variables ligadas no importan: por ejemplo, las fórmulas $\forall x P(x)$ y $\forall y P(y)$ significan exactamente lo mismo.

Por lo tanto, convenimos en identificar fórmulas que sólo difieren en sus variables ligadas, esto se hace formalmente mediante la llamada relación de α -equivalencia definida como sigue:

Alfa Equivalencia

Decimos que dos fórmulas φ_1 , φ_2 son α -equivalentes lo cual escribimos $\varphi_1 \sim_{\alpha} \varphi_2$ si y sólo si φ_1 y φ_2 difieren unicamente en los nombres de sus variables ligadas.

Las siguientes expresiones son α -equivalentes.

$$\forall x P(x, y) \to \exists y R(x, y, z) \sim_{\alpha} \forall w P(w, y) \to \exists v R(x, v, z)$$

$$\forall w P(w, y) \rightarrow \exists v R(x, v, z) \sim_{\alpha} \forall z P(z, y) \rightarrow \exists u R(x, u, z)$$