sine basis 02

Design matrix

Statistics: p-values adjusted for search volume

set-level		cluster-level				peak-level					mm mm mm		
p	С	p_{FWE-c}	<i>g</i> corrFDR-c	orr E	puncorr	p_{FWE-c}	g orrFDR-co	<i>T</i> orr	$(Z_{_{\equiv}})$	$p_{ m uncorr}$			11111
		1.000 1.000 1.000 1.000 1.000	0.781 0.781 0.781 0.781 0.781	8 3 13 11 11 3	0.372 0.598 0.254 0.294 0.294 0.598	1.000 1.000 1.000 1.000 1.000	0.999 0.999 0.999 0.999 0.999	3.04 3.03 3.02 3.02 3.00 3.00	3.02 3.01 3.00 3.00 2.99 2.99	0.001 0.001 0.001 0.001 0.001	-46 58 48	-74 -64 -52 -24 -70	-50 50 56 26 -10 -38
		1.000 1.000 1.000 1.000 1.000 1.000	0.781 0.781 0.781 0.781 0.781 0.781	12 21 16 13 24 10 27	0.273 0.152 0.208 0.254 0.128 0.317 0.108	1.000 1.000 1.000 1.000 1.000 1.000	0.999 0.999 0.999 0.999 0.999	2.99 2.98 2.97 2.95 2.95 2.94 2.82	2.97 2.96 2.95 2.94 2.94 2.92 2.81	0.001 0.002 0.002 0.002 0.002 0.002 0.002	-44 -6 -54 26 22 -66 6	24 20 -8 -14 38 -26 -66	34 38 6 64 46 0 50
		1.000 1.000 1.000 1.000 1.000 1.000	0.781 0.781 0.781 0.781 0.781 0.781 0.781	8 7 3 11 13 16 15 24	0.372 0.404 0.598 0.294 0.254 0.208 0.222 0.128	1.000 1.000 1.000 1.000 1.000 1.000	0.999 0.999 0.999 0.999 0.999 0.999	2.93 2.93 2.92 2.91 2.88 2.87 2.86 2.86	2.92 2.91 2.91 2.90 2.86 2.86 2.85 2.84	0.002 0.002 0.002 0.002 0.002 0.002 0.002	-46 -66 -34 -6 -14 46 -58 32	-40 -44 62 -46 -10 -62 -22 42	-2 28 6 40 24 18 0 -8

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 2.33, p = 0.010 (1.00 Ω) egrees of freedom = [1.0, 498.0]

Extent threshold: k = 0 voxels

FWHM = 6.7 6.6 6.8 mm mm mm; 3.3 3.3 3.4 {voxels}

Expected voxels per cluster, $\langle k \rangle = 10.794$ Volume: 1704456 = 213057 voxels = 5261.9 resels

Expected number of clusters, $\langle c \rangle = 222.53$ Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 37.51 voxels)

FWEp: 5.106, FDRp: Inf, FWEc: 201, FDRo? 494 3