FMI, Info, Anul I

Logică matematică și computațională

Seminar 6

(S6.1) Să se arate, folosind substituția, că formula

$$\chi := (((v_0 \to \neg (v_3 \to v_5)) \to v_6) \land (\neg (v_4 \to v_{10}) \to v_2)) \to ((v_0 \to \neg (v_3 \to v_5)) \to v_6)$$

este tautologie.

(S6.2) Fie $\Gamma \cup \{\varphi, \psi\} \subseteq Form$. Să se demonstreze:

- (i) Dacă $\Gamma \vDash \varphi$ și $\Gamma \vDash \varphi \rightarrow \psi$, atunci $\Gamma \vDash \psi$.
- (ii) $\Gamma \cup \{\varphi\} \vDash \psi$ dacă și numai dacă $\Gamma \vDash \varphi \to \psi$.
- (iii) $\Gamma \vDash \varphi \land \psi$ dacă și numai dacă $\Gamma \vDash \varphi$ și $\Gamma \vDash \psi$.

Notație. Pentru orice mulțime Γ de formule și orice formulă φ , notăm cu $\Gamma \vDash_{fin} \varphi$ faptul că există o submulțime finită Δ a lui Γ a.î. $\Delta \vDash \varphi$.

- (S6.3) Să se arate că pentru orice mulțime de formule Γ și orice formulă φ avem că $\Gamma \vDash_{fin} \varphi$ dacă și numai dacă $\Gamma \cup \{\neg \varphi\}$ nu este finit satisfiabilă.
- (S6.4) Demonstrați că următoarele afirmații sunt echivalente:
 - (V1) Pentru orice $\Gamma \subseteq Form$, Γ este satisfiabilă ddacă Γ este finit satisfiabilă.
 - (V2) Pentru orice $\Gamma \subseteq Form$, Γ este nesatisfiabilă ddacă Γ nu este finit satisfiabilă.
- (V3) Pentru orice $\Gamma \subseteq Form$, $\varphi \in Form$, $\Gamma \vDash \varphi$ dacă și numai dacă $\Gamma \vDash_{fin} \varphi$.