Lecture 6

Aakash Jog

Thursday 13th November, 2014

Contents

1	Circ	cular N	Moti	on															
	1.1	Time ?	Perio	od															
	1.2	Angul	lar V	elocity															
	1.3	Exam	ples																
		1.3.1	Exa	ample	1.														
		1.3.2	Exa	ample	2.														
		1.3.3	Exa	ample	3.														
		1.3.4	Exa	ample	4.														
		1.3.5	Exa	ample	5.														

1 Circular Motion

1.1 Time Period

Time period is defined as the time required to complete a full circle.

$$T \doteq \frac{2\pi}{\omega}$$

$$f \doteq \frac{1}{T} = \frac{\omega}{2\pi}$$

1.2 Angular Velocity

$$\overrightarrow{v} = \overrightarrow{\omega} \times \overrightarrow{r}$$

1.3 Examples

1.3.1 Example 1

If there is no friction,

$$N \sin \theta_0 = mg$$

$$N \cos \theta_0 = m\omega^2 R$$

$$\therefore \cot \theta_0 = \frac{\omega^2 h \tan \theta_0}{g}$$

$$\therefore T_0 = 2\pi \sqrt{\frac{h}{g}} \tan \theta_0$$

If friction is directed upwards,

$$f\cos\theta_0 + N\sin\theta_0 = mg$$

$$N\cos\theta_0 - f\sin\theta_0 = m\omega^2 R$$

$$= m\omega^2 (h\tan\theta_0)$$

$$\therefore T_{\text{max}} = T_0 \sqrt{\frac{\cos\theta_0}{\sin\theta_0} \cdot \frac{\mu_s\cos\theta_0 + \sin\theta_0}{\cos\theta_0 - \mu\sin\theta_0}}$$

If friction is directed downwards,

$$-f\cos\theta_0 + N\sin\theta_0 = mg$$

$$N\cos\theta_0 + f\sin\theta_0 = m\omega^2 R$$

$$= m\omega^2 (h\tan\theta_0)$$

$$\therefore T_{\min} = T_0 \sqrt{\frac{\cos\theta_0}{\sin\theta_0} \cdot \frac{-\mu_s\cos\theta_0 + \sin\theta_0}{\cos\theta_0 + \mu\sin\theta_0}}$$

1.3.2 Example 2

At the topmost point, if the ball just completes the circular motion

$$mg = m\frac{v^2}{R}$$
$$\therefore v = \sqrt{gR}$$

At a point at angle θ from the horizontal,

$$\begin{split} (-N - mg\sin\theta)\hat{r} - mg\cos\theta\hat{\theta} &= -mR(\dot{\theta})^2 + mR\ddot{\theta}\hat{\theta} \\ &\therefore -N - mg\sin\theta = -mR(\dot{\theta})^2 \\ &\therefore -mg\cos\theta = mR\ddot{\theta} \end{split}$$

1.3.3 Example 3

$$-N\hat{r} - \mu N\hat{\theta} = -mR(\dot{\theta})^2 \hat{r} + mR\ddot{\theta}\hat{\theta}$$
$$\mu mR(\dot{\theta})^2 = -mR\ddot{\theta}$$
$$\therefore \mu \omega^2 = -\dot{\omega}$$
$$= -\frac{\mathrm{d}\omega}{\mathrm{d}t}$$
$$\therefore \int \mu \, \mathrm{d}t = \int -\frac{\mathrm{d}\omega}{\omega^2} \therefore \mu t + c = \frac{1}{\omega}$$

At
$$t = 0$$
, $\omega = \omega_0$

$$\therefore c = \frac{1}{\omega_0}$$

$$\therefore \mu t + \frac{1}{\omega_0} = \frac{1}{\omega}$$

$$\therefore \frac{d\theta}{dt} = \omega(t) = \frac{\omega_0}{\mu \omega_0 t + 1}$$

$$\therefore \theta(t) = \frac{1}{\mu} \ln(\mu \omega_0 t + 1) + c_1$$

1.3.4 Example 4

If,

$$r = 4$$

$$\dot{r} = \ddot{r} = 0$$

$$\theta = \frac{\pi}{2}t$$

$$\dot{\theta} = \frac{\pi}{2}$$

$$\ddot{\theta} = 0$$

Find \overrightarrow{v}

Solution

$$\overrightarrow{r} = r\hat{r}$$

$$\overrightarrow{v} = \dot{\overrightarrow{r}} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta}$$

$$\overrightarrow{a} = \ddot{\overrightarrow{r}} = \left(\ddot{r} - r(\dot{\theta})^2\right)\hat{r} + \left(2\dot{r}\dot{\theta} + r\ddot{\theta}\right)\hat{\theta}$$

Therefore,

$$\overrightarrow{r} = 4\hat{r}$$

$$\overrightarrow{v} = 4\frac{\pi}{2}\hat{\theta} = 2\pi\hat{\theta}$$

Therefore,

$$\begin{split} \overrightarrow{r} &= 4\cos\left(\frac{\pi}{2}t\right)\hat{x} + 4\sin\left(\frac{\pi}{2}t\right)\hat{y} \\ \overrightarrow{v} &= -\frac{\pi}{2} \cdot 4\sin\left(\frac{\pi}{2}t\right)\hat{x} + \frac{\pi}{2} \cdot 4\cos\left(\frac{\pi}{2}t\right)\hat{y} \\ &= -2\pi\sin\left(\frac{\pi}{2}t\right)\hat{x} + 2\pi\cos\left(\frac{\pi}{2}t\right)\hat{y} \end{split}$$

1.3.5 Example 5

If,

$$r = v_0 t$$
 $\dot{r} = v_0$ $\ddot{r} = 0$ $\theta = \omega_0 t$ $\ddot{\theta} = \omega_0$ $\ddot{\theta} = 0$

Solution

$$\begin{aligned} \overrightarrow{r'} &= r\hat{r} \\ \overrightarrow{v} &= \dot{\overrightarrow{r'}} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta} \\ \overrightarrow{a} &= \ddot{\overrightarrow{r'}} = \left(\ddot{r} - r(\dot{\theta})^2\right)\hat{r} + \left(2\dot{r}\dot{\theta} + r\ddot{\theta}\right)\hat{\theta} \end{aligned}$$

Therefore,

$$\overrightarrow{r} = v_0 t \hat{r}$$

$$\overrightarrow{v} = v_0 \hat{r} + v_0 t \omega_0 \hat{\theta}$$

$$\overrightarrow{a} = -v_0 t \omega_0^2 \hat{r} + 2v_0 \omega_0 \hat{\theta}$$

Therefore,

$$\overrightarrow{r} = v_0 t \cos \omega_0 t \hat{x} + v_0 t \sin \omega_0 t \hat{y}$$

$$\overrightarrow{v} = (v_0 \cos \omega_0 t + v_0 t (-\omega_0 \sin \omega_0 t)) \hat{x} + (v_0 \sin \omega_0 t + v_0 t \omega_0 \cos \omega_0 t) \hat{y}$$