

Searches for invisible decays of the Higgs boson with the CMS detector

P. Dunne - Imperial College London

Introduction

- CMS and the LHC
- Why look for invisbly decaying Higgs bosons?
- How do you look for something invisible?
- What do we see?

CMS and the LHC

CMS

CMS

The Higgs boson

- Explains mass in the Standard model (SM)
 - Every particle with mass interacts with the Higgs
- SM compatible Higgs boson observed at the LHC
 - SM compatible doesn't mean incompatible with other theories

Dark matter

- What do we know?
 - ► Cold, massive, weakly interacting
- ▶ All other massive particles get mass from Higgs coupling
- If dark matter is light enough the Higgs will decay to it
- Look for invisibly decaying Higgs..

How do you look for something invisible: Associated production

- Higgs not always created alone
- ▶ Look for momentum imbalance

How do you look for something invisible: VBF

► Three main types of Higgs associated production:

ggH: high rate, normally no visible products

VBF: medium rate, jets+MET final state

ZH: low rate, leptons/b jets+MET final state

How do you look for something invisible: VBF strategy

- Select events with two quark jets and missing momentum
- ▶ Main backgrounds: $W \rightarrow \ell \nu/Z \rightarrow \nu \nu + \text{jets}$, QCD, top
 - QCD hard to model so use tight selection to remove
 - Veto events with leptons present
 - Estimate remaining backgrounds

VBF: background estimation

All major backgrounds have data driven normalisation

$$N_{bkg}^{sig} = rac{(N_{obs}^{control} - N_{other}^{control})}{N_{MC}^{control}} \cdot N_{MC}^{sig}$$

- Most backgrounds from missed lepton or misreconstructed jet
 - use control region where object is reconstructed

$$\begin{array}{c} \text{W} \rightarrow \mu\nu \text{ control region} \\ \text{Strong} \\ \text{Top} \\ \text{Top} \\ \text{W} \rightarrow \mu\nu \\ \text{SPAS-HIG-14-038} \\ \text{W} \rightarrow \mu\nu \\ \text$$

$Z \rightarrow \nu \nu$ control region

What do we see?

Total background	$439.7 \pm 41.0(stat.) \pm 55.8(syst.)$
VBF H(inv.) assuming B(H→inv)=100%	$273.4 \pm 31.2 (syst.)$
ggF H(inv.) assuming B(H \rightarrow inv)=100%	$22.6 \pm 15.6 (syst.)$
Observed data	508

▶ No significant excess seen

What do we see?

- ▶ Lack of excess rules out some values of invisible decay rate
 - ▶ VBF alone limits $B(H \to inv)$ for $m_H = 125$ GeV to less than 57%
- ► Combining with other searches the limit is less than 47%

What does this mean for dark matter?

 Invisible decay rate corresponds to DM interaction rate

$$\sigma_{S-N}^{SI} = \frac{4\Gamma_{inv}}{m_H^3 v^2 \beta} \frac{m_N^4 f_N^2}{(M_\chi + m_N)^2}$$

 Use invisible limit to constrain DM

Summary

- The Higgs discovery is only the beginning
- We have already placed tight constraints on Higgs-dark matter interactions
- ▶ LHC Run II will allow us to be even more sensitive

The Higgs Boson

What do I do?

Why Higgs to Invisible?

Experimental motivation

- Current measurements of the 125 GeV Higgs boson are compatible with Standard Model (SM) expectations
- large uncertainties can still accommodate significant beyond the SM (BSM) properties
- Additional Higgs bosons with exotic decays are not excluded

Theoretical motivation

- ► Many BSM theories predict Higgs boson decays to invisible final states:
- e.g. SUSY, extra dimensions, fourth-generation neutrinos
- ► These final state particles are often dark matter candidates