Coordinate systems, vectors

August 29, 2024

Here are some key ideas from sections 8.1 and 8.2.

• The **distance formula** in *n*-dimensions tells us how to get from a point $P_1(a_1, \dots, a_n)$ to $P_2(b_1, \dots, b_n)$. It says

$$|P_1P_2| =$$

• The set of points at a constant distance from a given point forms a , and its formula is given by

 $r^2 =$

• **Vectors** have both vectors, we use the tip-to-tail rule.

• When we scale a vector by some number c, we multiply the vector's magnitude by c without changing the . A unit vector has magnitude .

• If $\vec{a} = [a_1, a_2]$ and $\vec{b} = [b_1, b_2]$, and c is some number, then

$$\vec{a} + \vec{b} =$$

$$c\vec{a} =$$

Problem 1: (Apostol 12.4) Let $\vec{a} = [1, 3, 6]$, $\vec{b} = [4, -3, 3]$, and $\vec{c} = [2, 1, 5]$ be three vectors in \mathbb{R}^3 . Determine each of the following:

a)
$$\vec{a} + \vec{b}$$
;

b)
$$\vec{a} - \vec{b}$$

c)
$$\vec{a} + \vec{b} - \vec{c}$$

b)
$$\vec{a} - \vec{b}$$
; c) $\vec{a} + \vec{b} - \vec{c}$; d) $7\vec{a} - 2\vec{b} - 3\vec{c}$; e) $2\vec{a} + \vec{b} - 3\vec{c}$.

e)
$$2\vec{a} + \vec{b} - 3\vec{c}$$

My Attempt:

Solution:

axes.	
My Attempt:	Solution:
Problem 3: (Stewart & Day 8.1) Find an equation of	f the sphere with center $(2, -6, 4)$ and radius 5.
My Attempt:	Solution:
Problem 4: (Stewart & Day 8.2) Find an equation of $(1, 2, 3)$.	f the sphere that passes through the origin and whose center is
My Attempt:	Solution:

Problem 2: (Stewart & Day 8.1) Sketch the points (0,5,2), (4,0,-1), (2,4,6) and (1,-1,2) on a single set of coordinate

the vector by so the magnitude	is 1?		
My Attempt:		Solution:	
	s against any strain contained		s in a defined antigenic space. centered at $(2,1,0)$. For which
a) Strain A at $(0,0,0)$;	b) Strain B at $(1,0,3)$;	c) Strain C at $(1,0,1)$;	d) Strain D at $(1/4, 2, 1)$.
My Attempt:		Solution:	
Problem 7: (Stewart & Day $x + y = 2$. <i>Hint: the z-axis is t</i>		e surface in \mathbb{R}^3 (three-dimen	sional space) represented by
My Attempt:		Solution:	
Challenge Problem: (Stewar and <i>z</i> -axes respectively. Show	rt & Day 8.2) Suppose that so w that $\cos^2 \theta_1 + \cos^2 \theta_2 + \cos^2 \theta_3$	ome vector in \mathbb{R}^3 makes angle $ heta_3=1.$	es θ_1 , θ_2 , and θ_3 with the x , y ,

Problem 5: (Stewart & Day 8.2) Find a unit vector that has the same direction as [-3,7]. Hint: what should we scale