Q1.1

This problem can be solved using binomial distribution. Probability of winning a match is 0.6. Matches left.

P= P(win) + P(lose)  
Formula = 
$$p^k(1-p)^{(n-k)}$$

$$P = {8 \choose 1} (.6)^{1} (.4)^{7} + {8 \choose 1} (.6)^{7} (.4)^{1} = 0.097$$

Q1.2

In this question we were required to find the winning probability of a player in a game of tennis. It was given that the game is tied at 40:40. This problem can also be solved using binomial distribution. We have two scenarios:

$$p = p(w), 1-p = p(I)$$

1)WLWLWWLWL....

2)WW,WIWWW.....

So adding both probabilities:

$$P(W) = p^2 * (1 + (1-p)p + (1-p)^2 * p^2 + ....) + ((1-p)*p^3)*(1 + (1-p)p + (1-p)^2 * p^2 + ....)$$

Using the summation formula of the infinite series:  $P(W) = (p^2 + p^3 + p^4) / (1 - p + p^2)$ Graph:



## Q4.1

For the uniqueness of the solution we are given  $||w_1|| = 1$ , and also  $\Sigma = COV(x)$ .

So considering this and that  $\mathbf{w}^{\mathsf{T}}_{1} \mathbf{x} = \mathbf{z}_{1}$ 

$$W_{1}^{T} E[(x - \mu)(x - \mu)^{T}] W_{1} = W_{1}^{T} \Sigma W_{1} = Var(z_{1}).$$

IF we take derivative with respect to  $\sum w_1$  and equating it to zero, we have  $\Sigma w_1$  = a  $w_1$ 

Hence  $w_1$  can be considered as eigen vector of  $\Sigma$  and  $\Lambda$  is the corresponding Eigen value.

Hence the largest  $\Lambda = a_1$ 

While maximizing the w, it is necessary to use Lagrange method.

## Q4.2

In this part we are to show, that the second component is the eigenvector of the covariance matrix with the second largest eigenvalue. So to prove this the second principal component  $W_2$  should also maximize variance, be unit length, and orthogonal to  $w_1$ .

So in this part we also maximize  $w^T \sum w$  called as  $w_2$ . Taking the derivative and equating it to zero, and then multiply with the transpose, we get  $\sum w_2 = a_2 w_2$ 

Hence a<sub>2</sub> is the second largest eigen value.