Part V

IPv4 Routing

Chapter 15: Operating Cisco Routers

Chapter 16: Configuring IPv4 Addressing and Static Routes

Chapter 17: IP Routing in the LAN

Chapter 18: Troubleshooting IPv4 Routing

Part V Review

Operating Cisco Routers

This chapter covers the following exam topics:

1.0 Network Fundamentals

- 1.1 Explain the role and function of network components
 - 1.1.a Routers
- 1.2 Describe characteristics of network topology architectures
 - 1.2.e Small office/home office (SOHO)
- 1.6 Configure and verify IPv4 addressing and subnetting

Getting an IPv4 network up and working requires some basic steps: installing routers, installing cables, and ordering WAN services. The installation also requires some router configuration because routers often use defaults so that the router does not route IP packets until configuration has been added. You will need to configure IPv4 addresses, enable interfaces, and add IP routes—either through static configuration or by enabling some dynamic routing protocol. This chapter focuses on the first steps to creating a small working network: how to install an enterprise-class Cisco router and configure interfaces and IP addresses.

This chapter breaks the topics into two major headings. The first discusses the physical installation of an enterprise-class Cisco router. The second section looks at the command-line interface (CLI) on a Cisco router, which has the same look and feel as the Cisco switch CLI. This section first lists the similarities between a switch and router CLI and then introduces the configuration required to make the router start forwarding IP packets on its interfaces.

"Do I Know This Already?" Quiz

Take the quiz (either here or use the PTP software) if you want to use the score to help you decide how much time to spend on this chapter. The letter answers are listed at the bottom of the page following the quiz. Appendix C, found both at the end of the book as well as on the companion website, includes both the answers and explanations. You can also find both answers and explanations in the PTP testing software.

Table 15-1 "Do I Know This Already?" Foundation Topics Section-to-Question Mapping

Foundation Topics Section	Questions
Installing Cisco Routers	1
Enabling IPv4 Support on Cisco Routers	2–6

- **1.** Which of the following installation steps are more likely required on a Cisco router, but not typically required on a Cisco switch? (Choose two answers.)
 - a. Connect Ethernet cables
 - **b.** Connect serial cables
 - **c.** Connect to the console port
 - **d.** Connect the power cable
 - **e.** Turn the on/off switch to "on"
- 2. Which of the following commands might you see associated with a router CLI, but not with a switch CLI?
 - **a.** The show mac address-table command
 - **b.** The show ip route command
 - **c.** The show running-config command
 - d. The show interfaces status command
- **3.** Which answers list a task that could be helpful in making a router interface G0/0 ready to route packets? (Choose two answers.)
 - **a.** Configuring the **ip address** address mask command in G0/0 configuration mode
 - **b.** Configuring the **ip address** *address* and **ip mask** *mask* commands in G0/0 configuration mode
 - **c.** Configuring the **no shutdown** command in G0/0 configuration mode
 - **d.** Setting the interface description in G0/0 configuration mode
- **4.** The output of the **show ip interface brief** command on R1 lists interface status codes of "down" and "down" for interface GigabitEthernet 0/0. The interface connects to a LAN switch with a UTP straight-through cable. Which of the following could be true?
 - **a.** The shutdown command is currently configured for router interface G0/0.
 - **b.** The **shutdown** command is currently configured for the switch interface on the other end of the cable.
 - **c.** The router was never configured with an **ip address** command on the interface.
 - **d.** The router was configured with the **no ip address** command.
- **5.** Which of the following commands do not list the IP address and mask of at least one interface? (Choose two answers.)
 - a. show running-config
 - **b.** show protocols *type number*
 - **c.** show ip interface brief
 - d. show interfaces
 - e. show version

- **6.** Which of the following is different on the Cisco switch CLI for a Layer 2 switch as compared with the Cisco router CLI?
 - **a.** The commands used to configure simple password checking for the console
 - **b.** The number of IP addresses configured
 - **c.** The configuration of the device's hostname
 - **d.** The configuration of an interface description

Foundation Topics

Installing Cisco Routers

Routers collectively provide the main feature of the network layer—the capability to forward packets end to end through a network. As introduced in Chapter 3, "Fundamentals of WANs and IP Routing," routers forward packets by connecting to various physical network links, like Ethernet LAN, Ethernet WAN, and serial WAN links, then using Layer 3 routing logic to choose where to forward each packet. As a reminder, Chapter 2, "Fundamentals of Ethernet LANs," covered the details of making those physical connections to Ethernet networks, while Chapter 3 covered the basics of cabling with WAN links.

This section examines some of the details of router installation and cabling, first from the enterprise perspective and then from the perspective of connecting a typical small office/home office (SOHO) to an ISP using high-speed Internet.

Installing Enterprise Routers

A typical enterprise network has a few centralized sites as well as lots of smaller remote sites. To support devices at each site (the computers, IP phones, printers, and other devices), the network includes at least one LAN switch at each site. In addition, each site has a router, which connects to the LAN switch and to some WAN link. The WAN link provides connectivity from each remote site, back to the central site, and to other sites through the connection to the central site.

Figures 15-1 and 15-2 show a couple of different kinds of network diagrams that might be used to represent an enterprise network. The style of Figure 15-1 supports discussions about Layer 3 topics, showing the subnet IDs, masks, and interface IP addresses in shorthand. The figure also keeps the physical and data-link details to a minimum with these conventions:

Ethernet LAN: Simple straight lines with one or more LAN switches implied but not shown.

Ethernet WAN: Shown as a straight line, often with a cloud over it, with some kind of Ethernet interface identifier shown by the router (in this case, G0/1/0 and G0/0/0, which refers to GigabitEthernet interfaces).

Serial WAN: A line with a crooked part in the middle (a "lightning bolt") represents a typical point-to-point serial link as introduced in Chapter 3.

Figure 15-1 Generic Enterprise Network Diagram

In comparison, Figure 15-2 shows more detail about the physical cabling with less detail about the IP subnets and addresses. First, if the diagram needs to show physical details in the LAN, the diagram could show the LAN switches and related devices to the outside of the figure. The router Ethernet interfaces have an RJ-45 connector; just connect the appropriate UTP cable to both the router and the nearby LAN switch.

Figure 15-2 More Detailed Cabling Diagram for the Same Enterprise Network

Next, consider the hardware on the ends of the serial link, in particular where the channel service unit/data service unit (CSU/DSU) hardware resides on each end of the serial link. In a real serial link that runs through a service provider, the link terminates at a CSU/DSU. The CSU/DSU can either sit outside the router as a separate device (as shown on the left at router R1) or integrated into the router's serial interface hardware (as shown on the right).

As for cabling, the service provider will run the cable into the enterprise's wiring closet and often put an RJ-48 connector (same size as an RJ-45 connector) on the end of the cable. That cable should connect to the CSU/DSU. With an internal CSU/DSU (as with router R1 in Figure 15-2), the router serial port has an RJ-48 port to which the serial cable should

connect. With an external CSU/DSU, the CSU/DSU must be connected to the router's serial card via a short serial cable.

Cisco Integrated Services Routers

Product vendors, including Cisco, typically provide several different types of router hard-ware. Today, routers often do much more work than simply routing packets; in fact, they serve as a device or platform from which to provide many network services. Cisco even brands its enterprise routers not just as routers, but as "integrated services routers," emphasizing the multipurpose nature of the products.

As an example, consider the networking functions needed at a typical branch office. A typical enterprise branch office needs a router for WAN/LAN connectivity, and a LAN switch to provide a high-performance local network and connectivity into the router and WAN. Many branches also need voice-over-IP (VoIP) services to support IP phones, and several security services as well. Plus, it is hard to imagine a site with users that does not have Wi-Fi access today. So, rather than require multiple separate devices at one site, as shown in Figure 15-2, Cisco offers single devices that act as both router and switch and provide other functions as well.

For the sake of learning and understanding the different functions, this book focuses on using a separate switch and separate router, which provides a much cleaner path for learning the basics.

Figure 15-3 shows a photo of the Cisco 4321 ISR, with some of the more important features highlighted. The top part of the figure shows a full view of the back of the router. This model comes with two built-in Gigabit Ethernet interfaces and two modular slots that allow you to add small cards called Network Interface Modules (NIMs). The bottom of the figure shows one example NIM (a NIM that provides two serial interfaces). The router has other items as well, including both an RJ-45 and USB console port.

Figure 15-3 Photos of a Model 4321 Cisco Integrated Services Router (ISR)

Answers to the "Do I Know This Already?" quiz:

1 B, E **2** B **3** A, C **4** C **5** C, E **6** B

The figure shows an important feature for using routers to connect to both Ethernet LANs and Ethernet WAN services. Look closely at Figure 15-3's Gigabit interfaces. Gi0/1 refers to interface GigabitEthernet0/1 and is an RJ-45 port that supports UTP cabling only. However, interface Gi0/0 (short for GigabitEthernet0/0) has some interesting features:

- The router has two ports for one interface (Gi0/0).
- You can use one or the other at any point in time, but not both.
- One physical port is an RJ-45 port that supports copper cabling (implying that it is used to connect to a LAN).
- The other Gi0/0 physical port is a Small Form Pluggable (SFP) port that would support various fiber Ethernet standards, allowing the port to be used for Ethernet WAN purposes.

Cisco commonly makes one or more of the Ethernet ports on its Enterprise class routers support SFPs so that the engineer can choose an SFP that supports the type of Ethernet cabling provided by the Ethernet WAN service provider.

NOTE When building a lab network to study for CCNA or CCNP, because your devices will be in the same place, you can create Ethernet WAN links by using the RJ-45 ports and a UTP cable without the need to purchase an SFP for each router.

Physical Installation

Armed with the cabling details in images like Figure 15-2 and the router hardware details in photos like Figure 15-3, you can physically install a router. To install a router, follow these steps:

- Step 1. For any Ethernet LAN interface, connect the RJ-45 connector of an appropriate copper Ethernet cable between the RJ-45 Ethernet port on the router and one of the LAN switch ports.
- Step 2. For any serial WAN ports:
 - **A.** If using an external CSU/DSU, connect the router's serial interface to the CSU/DSU and the CSU/DSU to the line from the telco.
 - **B.** If using an internal CSU/DSU, connect the router's serial interface to the line from the telco.
- Step 3. For any Ethernet WAN ports:
 - **A.** When ordering the Ethernet WAN service, confirm the required Ethernet standard and SFP type required to connect to the link, and order the SFPs.
 - **B.** Install the SFPs into the routers, and connect the Ethernet cable for the Ethernet WAN link to the SFP on each end of the link.
- Step 4. Connect the router's console port to a PC (as discussed in Chapter 4, "Using the Command-Line Interface"), as needed, to configure the router.
- Step 5. Connect a power cable from a power outlet to the power port on the router.
- Step 6. Power on the router.

Note that Cisco enterprise routers typically have an on/off switch, while switches do not.

Installing SOHO Routers

The terms *enterprise router* and *small office/home office (SOHO) router* act as a pair of contrasting categories for routers, both in terms of how vendors like Cisco provide to the market, and how enterprises use and configure those devices. The term *enterprise router* typically refers to a router that a company would use in a permanent business location, while a *SOHO router* would reside at an employee's home or at a small permanent site with just a few people. However, as you might guess, the line between a router acting as an enterprise router and a SOHO router is blurry, so use these terms as general categories.

Even with that general comparison, SOHO routers typically have two features that an enterprise router would be less likely to have:

- SOHO routers almost always use the Internet and virtual private network (VPN) technology for their WAN connections to send data back and forth to the rest of the Enterprise.
- SOHO routers almost always use a multifunction device that does routing, LAN switching, VPN, wireless, and maybe other features.

For instance, at an enterprise business location, the building may contain enterprise routers, separate Ethernet switches, and separate wireless access points (AP), all connected together. At a permanent business site with four employees and 10 total devices in the network, one SOHO router could provide all those same features in one device.

For instance, Figure 15-4 shows a typical SOHO site. The three icons that represent a router, switch, and access point actually all exist inside one box; the figure just shows them separately to emphasize the fact that the one SOHO router provides several functions. On the left, the SOHO router provides wired and wireless LAN servers, and on the right, it provides WAN access through a cable Internet connection.

Figure 15-4 Devices in a SOHO Network with High-Speed CATV Internet

Figure 15-4 does not reflect the physical reality of a SOHO router, so Figure 15-5 shows one cabling example. The figure shows user devices on the left, connecting to the router via wireless or via Ethernet UTP cabling. On the right in this case, the router uses an external cable modem to connect to the coaxial cable provided by the ISP. Then the router must use a normal UTP Ethernet port to connect a short Ethernet cable between the SOHO router and the cable modem.

Figure 15-5 SOHO Network, Using Cable Internet and an Integrated Device

Enabling IPv4 Support on Cisco Router Interfaces

Routers support a relatively large number of features, with a large number of configuration and EXEC commands to support those features. You will learn about many of these features throughout the rest of this book.

NOTE For perspective, the Cisco router documentation includes a command reference, with an index to every single router command. A quick informal count of a recent IOS version listed around 5000 CLI commands.

This second section of the chapter focuses on commands related to router interfaces. To make routers work—that is, to route IPv4 packets—the interfaces must be configured. This section introduces the most common commands that configure interfaces, make them work, and give the interfaces IP addresses and masks.

Accessing the Router CLI

Accessing a router's command-line interface (CLI) works much like a switch. In fact, it works so much like accessing a Cisco switch CLI that this book relies on Chapter 4 instead of repeating the same details here. If the details from Chapter 4 are not fresh in your memory, it might be worthwhile to spend a few minutes briefly reviewing that chapter as well as Chapter 7, "Configuring and Verifying Switch Interfaces," before reading further.

Cisco switches and routers share many of the same CLI navigation features and many of the same configuration commands for management features. The following list mentions the highlights:

- User and Enable (privileged) mode
- Entering and exiting configuration mode, using the configure terminal, end, and exit commands and the Ctrl+Z key sequence
- Configuration of console, Telnet (vty), and enable secret passwords
- Configuration of Secure Shell (SSH) encryption keys and username/password login credentials
- Configuration of the hostname and interface description
- Configuration of Ethernet interfaces that can negotiate speed using the speed and duplex commands

- Configuration of an interface to be administratively disabled (shutdown) and administratively enabled (no shutdown)
- Navigation through different configuration mode contexts using commands like line console 0 and interface type number
- CLI help, command editing, and command recall features
- The meaning and use of the startup-config (in NVRAM), running-config (in RAM), and external servers (like TFTP), along with how to use the copy command to copy the configuration files and IOS images

At first glance, this list seems to cover most everything you have read so far in this book about the switch CLI. However, a couple of topics do work differently with the router CLI as compared to the switch CLI, as follows:

- The configuration of IP addresses differs in some ways, with switches using a VLAN interface and routers using an IP address configured on each working interface.
- Many Cisco router models have an auxiliary (Aux) port, intended to be connected to an external modem and phone line to allow remote users to dial in to the router, and access the CLI, by making a phone call. Cisco switches do not have auxiliary ports.
- Router IOS defaults to disallow both Telnet and SSH into the router because of the typical router default setting of transport input none in vty configuration mode. (Cisco Catalyst LAN switches typically default to allow both Telnet and SSH.) Chapter 6, "Configuring Basic Switch Management," already discussed the various options on this command to enable Telnet (transport input telnet), SSH (transport input ssh), or both (transport input all or transport input telnet ssh).

The router CLI also differs from a switch CLI just because switches and routers do different things. For example:

- Cisco Layer 2 switches support the show mac address-table command, while Cisco routers do not.
- Cisco routers support the **show ip route** command, while Cisco Layer 2 switches do not.
- Cisco Layer 2 switches use the **show interfaces status** command to list one line of output per interface (and routers do not), while routers use the show ip interface brief command to list similar information (but switches do not).

Note also that some Cisco devices perform both Layer 2 switching and Layer 3 routing, and those devices support both router and switch commands. Chapter 17, "IP Routing in the LAN," discusses one such device, a Layer 3 switch, in more detail.

Router Interfaces

One minor difference between Cisco switches and routers is that routers support a much wider variety of interfaces. Today, LAN switches support Ethernet LAN interfaces of various speeds. Routers support a variety of other types of interfaces, including serial interfaces, cable TV, DSL, 3G/4G wireless, and others not mentioned in this book.

Most Cisco routers have at least one Ethernet interface of some type. Many of those Ethernet interfaces support multiple speeds and use autonegotiation, so for consistency, the router IOS refers to these interfaces based on the fastest speed. For example, a 10-Mbps-only Ethernet interface would be configured with the interface ethernet *number* configuration command, a 10/100 interface with the interface fastethernet *number* command, and a 10/100/1000 interface with the interface gigabitethernet *number* command. However, when discussing these interfaces all together, engineers would simply call them *ethernet interfaces*, regardless of the maximum speed.

Some Cisco routers have serial interfaces. As you might recall from Chapter 3, Cisco routers use serial interfaces to connect to a serial link. Each point-to-point serial link can then use High-Level Data Link Control (HDLC, the default) or Point-to-Point Protocol (PPP).

Routers refer to interfaces in many commands, first by the type of interface (Ethernet, Fast Ethernet, Gigabit Ethernet, Serial, and so on) and then with a unique number of that router. Depending on the router model, the interface numbers might be a single number, two numbers separated by a slash, or three numbers separated by slashes. For example, all three of the following configuration commands are correct on at least one model of Cisco router:

```
interface ethernet 0
interface fastethernet 0/1
interface gigabitethernet 0/0
interface gigabitethernet 0/1/0
interface serial 1/0/1
```

Two of the most common commands to display the interfaces, and their status, are the **show ip interface brief** and **show interfaces** commands. The first of these commands displays a list with one line per interface, with some basic information, including the interface IP address and interface status. The second command lists the interfaces, but with a large amount of information per interface. Example 15-1 shows a sample of each command. The output comes from a 2900-series ISR router, used in many examples in this book; note that it has both a Gi0/0 interface and a Gi0/1/0 interface, showing a case with both two-digit and three-digit interface identifiers.

Example 15-1 Listing the Interfaces in a Router

```
R1# show ip interface brief
Interface
                           TP-Address
                                           OK? Method Status
                                                                            Protocol
Embedded-Service-Engine0/0 unassigned
                                           YES NVRAM administratively down down
GigabitEthernet0/0
                           172.16.1.1
                                           YES NVRAM up
GigabitEthernet0/1
                                           YES NVRAM administratively down down
                           unassigned
Serial0/0/0
                           172.16.4.1
                                           YES manual up
Serial0/0/1
                           unassigned
                                           YES unset administratively down down
GigabitEthernet0/1/0
                           172.16.5.1
                                           YES NVRAM up
R1# show interfaces gigabitEthernet 0/1/0
GigabitEthernet0/1/0 is up, line protocol is up
 Hardware is EHWIC-1GE-SFP-CU, address is 0201.a010.0001 (bia 30f7.0d29.8570)
 Description: Link in lab to R3's G0/0/0
 Internet address is 172.16.5.1/24
```

```
MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 10 usec,
   reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set
Keepalive set (10 sec)
Full Duplex, 1Gbps, media type is RJ45
output flow-control is XON, input flow-control is XON
ARP type: ARPA, ARP Timeout 04:00:00
Last input 00:00:29, output 00:00:08, output hang never
Last clearing of "show interface" counters never
Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
Oueueing strategy: fifo
Output queue: 0/40 (size/max)
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
   12 packets input, 4251 bytes, 0 no buffer
   Received 12 broadcasts (0 IP multicasts)
   0 runts, 0 giants, 0 throttles
   0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
   0 watchdog, 0 multicast, 0 pause input
   55 packets output, 8098 bytes, 0 underruns
   0 output errors, 0 collisions, 0 interface resets
   0 unknown protocol drops
   0 babbles, 0 late collision, 0 deferred
   0 lost carrier, 0 no carrier, 0 pause output
   0 output buffer failures, 0 output buffers swapped out
```

NOTE Commands that refer to router interfaces can be significantly shortened by truncating the words. For example, sh int gi0/0 or sh int g0/0 can be used instead of show interfaces gigabitethernet 0/0. In fact, many network engineers, when looking over someone's shoulder, would say something like "just do a show int G-i-oh-oh command" in this case, rather than speaking the long version of the command.

Also, note that the show interfaces command lists a text interface description on about the third line, if configured. In this case, interface G0/1/0 had been previously configured with the description Link in lab to R3's G0/0/0 command in interface configuration mode for interface G0/1/0. The description interface subcommand provides an easy way to keep small notes about what router interfaces connect to which neighboring devices, with the show interfaces command listing that information.

Interface Status Codes

Each interface has two interface status codes. To be usable, the two interface status codes must be in an "up" state. The first status code refers essentially to whether Layer 1 is working, and the second status code mainly (but not always) refers to whether the data-link layer protocol is working. Table 15-2 summarizes these two status codes.

Table 15-2 Interface Status Codes and Their Meanings

Name	Location	General Meaning
Line status	First status code	Refers to the Layer 1 status. (For example, is the cable installed, is it the right/wrong cable, is the device on the other end powered on?)
Protocol status	Second status code	Refers generally to the Layer 2 status. It is always down if the line status is down. If the line status is up, a protocol status of down is usually caused by a mismatched data-link layer configuration.

Several combinations of interface status codes exist, as summarized in Table 15-3. The table lists the status codes in order, from being disabled on purpose by the configuration to a fully working state.

Table 15-3 Typical Combinations of Interface Status Codes

Line Status	Protocol Status	Typical Reasons	
Administratively down	Down	The interface has a shutdown command configured on it.	
Down	Down	The interface is not shutdown , but the physical layer has a problem. For example, no cable has been attached to the interface, or with Ethernet, the switch interface on the other end of the cable is shut down, or the switch is powered off, or the devices on the ends of the cable use a different transmission speed.	
Up	Down	Almost always refers to data-link layer problems, most often configuration problems. For example, serial links have this combination when one router was configured to use PPP and the other defaults to use HDLC.	
Up	Up	Layer 1 and Layer 2 of this interface are functioning.	

For some examples, look back at Example 15-1's show ip interface brief command, to the three interfaces in the following list. The interfaces in this list each have a different combination of interface status codes; the list details the specific reasons for this status code in the lab used to create this example for the book.

G0/0: The interface is down/down, in this case because no cable was connected to the interface.

G0/1: The interface is administratively down/down, because the configuration includes the **shutdown** command under the G0/1 interface.

S0/0/0: The interface is up/up because a serial cable is installed, is connected to another router in a lab, and is working.

Router Interface IP Addresses

Cisco enterprise routers require at least some configuration beyond the default configuration before they will do their primary job: routing IP packets. The following facts tell us that to make a router ready to route IPv4 packets on an interface, you need to enable the interface and assign it an IPv4 address:

- Most Cisco router interfaces default to a disabled (shutdown) state and should be enabled with the no shutdown interface subcommand.
- Cisco routers do not route IP packets in or out an interface until an IP address and mask have been configured; by default, no interfaces have an IP address and mask.
- Cisco routers attempt to route IP packets for any interfaces that are in an up/up state and that have an IP address/mask assigned.

To configure the address and mask, simply use the ip address address mask interface subcommand. Figure 15-6 shows a simple IPv4 network with IPv4 addresses on Router R1, with Example 15-2 showing the matching configuration.

Figure 15-6 IPv4 Addresses Used in Example 15-2

Example 15-2 Configuring IP Addresses on Cisco Routers

```
R1# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R1config) # interface G0/0
R1(config-if)# ip address 172.16.1.1 255.255.255.0
R1(config-if)# no shutdown
R1(config-if)# interface S0/0/0
R1(config-if)# ip address 172.16.4.1 255.255.255.0
R1(config-if)# no shutdown
R1(config-if)# interface G0/1/0
R1(config-if)# ip address 172.16.5.1 255.255.255.0
R1(config-if)# no shutdown
R1(config-if)# ^Z
R1#
```

Example 15-3 shows the output of the show protocols command. This command confirms the state of each of the three R1 interfaces in Figure 15-6 and the IP address and mask configured on those same interfaces.

Example 15-3 *Verifying IP Addresses on Cisco Routers*

R1# show protocols Global values: Internet Protocol routing is enabled Embedded-Service-Engine0/0 is administratively down, line protocol is down GigabitEthernet0/0 is up, line protocol is up Internet address is 172.16.1.1/24 GigabitEthernet0/1 is administratively down, line protocol is down Serial0/0/0 is up, line protocol is up Internet address is 172.16.4.1/24 Serial0/0/1 is administratively down, line protocol is down GigabitEthernet0/1/0 is up, line protocol is up Internet address is 172.16.1.1/24

One of the first actions to take when verifying whether a router is working is to find the interfaces, check the interface status, and check to see whether the correct IP addresses and masks are used. Examples 15-1 and 15-3 showed samples of the key show commands, while Table 15-4 summarizes those commands and the types of information they display.

Table 15-4 Key Commands to List Router Interface Status

Command	Lines of Output per Interface	IP Configuration Listed	Interface Status Listed?
show ip interface brief	1	Address	Yes
show protocols [type number]	1 or 2	Address/mask	Yes
show interfaces [type number]	Many	Address/mask	Yes

Bandwidth and Clock Rate on Serial Interfaces

Cisco has included serial WAN topics in the CCNA exam topic list since its inception in 1998 until the CCNA 200-301 release in the year 2019. Because the CCNA 200-301 exam is the first to not mention serial technologies at all, this book includes some examples that show serial links. The exam might show them with the expectation that you at least understand basics, such as the fact that two routers can send data over a serial link if the router interfaces on both ends are up/up and the routers have IP addresses in the same subnet.

However, some of you will want to make serial links work in a lab because you have some serial interface cards in your lab. If so, take the time to look at a few pages in the section titled "Bandwidth and Clock Rate on Serial Interfaces," in Appendix J, "Topics from Previous Editions," which shows how to cable and configure a WAN serial link in the lab.

Router Auxiliary Port

Both routers and switches have a console port to allow administrative access, but most Cisco routers have an extra physical port called an auxiliary (Aux) port. The Aux port typically serves as a means to make a phone call to connect into the router to issue commands from the CLI.

The Aux port works like the console port, except that the Aux port is typically connected through a cable to an external analog modem, which in turn connects to a phone line. Then, the engineer uses a PC, terminal emulator, and modem to call the remote router. After being connected, the engineer can use the terminal emulator to access the router CLI, starting in user mode as usual.

Aux ports can be configured beginning with the **line aux 0** command to reach aux line configuration mode. From there, all the commands for the console line, covered mostly in Chapter 6, can be used. For example, the **login** and **password** *password* subcommands on the aux line could be used to set up simple password checking when a user dials in.

Chapter Review

One key to doing well on the exams is to perform repetitive spaced review sessions. Review this chapter's material using either the tools in the book or interactive tools for the same material found on the book's companion website. Refer to the "Your Study Plan" element for more details. Table 15-5 outlines the key review elements and where you can find them. To better track your study progress, record when you completed these activities in the second column.

Table 15-5 Chapter Review Tracking

Review Element	Review Date(s)	Resource Used
Review key topics		Book, website
Review key terms		Book, website
Answer DIKTA questions		Book, PTP
Review command tables		Book
Review memory tables		Website
Do labs		Blog
Watch video		Website

Review All the Key Topics

Table 15-6 Key Topics for Chapter 15

Key Topic	Description	Page Number		
List	Steps required to install a router	353		
List	Similarities between a router CLI and a switch CLI	355		
List	Items covered for switches in Chapters 4 and 6 that differ in some way on routers			
Table 15-2	Router interface status codes and their meanings	359		
Table 15-3	ble 15-3 Combinations of the two interface status codes and the likely reasons for each combination			
Table 15-4	Commands useful to display interface IPv4 addresses, masks, and interface status	361		

Key Terms You Should Know

enterprise router, SOHO router, Integrated Services Router (ISR)

Command References

Tables 15-7 and 15-8 list configuration and verification commands used in this chapter. As an easy review exercise, cover the left column in a table, read the right column, and try to recall the command without looking. Then repeat the exercise, covering the right column, and try to recall what the command does.

Table 15-7 Chapter 15 Configuration Command Reference

Command	Description	
interface type number	Global command that moves the user into configuration mode of the named interface.	
ip address address mask	Interface subcommand that sets the router's IPv4 address and mask.	
[no] shutdown	Interface subcommand that enables (no shutdown) or disables (shutdown) the interface.	
duplex {full half auto}	Interface command that sets the duplex, or sets the use of IEEE autonegotiation, for router LAN interfaces that support multiple speeds.	
speed {10 100 1000}	Interface command for router Gigabit (10/100/1000) interfaces that sets the speed at which the router interface sends and receives data.	
description text	An interface subcommand with which you can type a string of text to document information about that particular interface.	

Table 15-8 Chapter 15 EXEC Command Reference

Command	Purpose
show interfaces [type number]	Lists a large set of informational messages about each interface, or about the one specifically listed interface.
show ip interface brief	Lists a single line of information about each interface, including the IP address, line and protocol status, and the method with which the address was configured (manual or Dynamic Host Configuration Protocol [DHCP]).
show protocols [type number]	Lists information about the listed interface (or all interfaces if the interface is omitted), including the IP address, mask, and line/protocol status.

Configuring IPv4 Addresses and Static Routes

This chapter covers the following exam topics:

1.0 Network Fundamentals

1.6 Configure and verify IPv4 addressing and subnetting

3.0 IP Connectivity

- 3.1 Interpret the components of routing table
 - 3.1.a Routing protocol code
 - 3.1.b Prefix
 - 3.1.c Network mask
 - 3.1.d Next hop
- 3.1.e Administrative distance
- 3.1.f Metric
- 3.1.g Gateway of last resort
- 3.2 Determine how a router makes a forwarding decision by default
 - 3.2.a Longest match
 - 3.2.b Administrative distance
- 3.3 Configure and verify IPv4 and IPv6 static routing
 - 3.3.a Default route
 - 3.3.b Network route
 - 3.3.c Host route
 - 3.3.d Floating static

Routers route IPv4 packets. That simple statement actually carries a lot of hidden meaning. For routers to route packets, routers follow a routing process. That routing process relies on information called IP routes. Each IP route lists a destination—an IP network, IP subnet, or some other group of IP addresses. Each route also lists instructions that tell the router where to forward packets sent to addresses in that IP network or subnet. For routers to do a good job of routing packets, routers need to have a detailed, accurate list of IP routes.

Routers use three methods to add IPv4 routes to their IPv4 routing tables. Routers first learn *connected routes*, which are routes for subnets attached to a router interface. Routers can

also use *static routes*, which are routes created through a configuration command (**ip route**) that tells the router what route to put in the IPv4 routing table. And routers can use a routing protocol, in which routers tell each other about all their known routes, so that all routers can learn and build routes to all networks and subnets.

This chapter examines IP routing in depth with the most straightforward routes that can be added to a router's routing table. The router starts with a detailed look at the IP packet routing (forwarding process)—a process that relies on each router having useful IP routes in their routing tables. The second section then examines connected routes, which are routes to subnets that exist on the interfaces connected to the local router. The third section then examines static routes, which are routes the network engineer configures directly. The chapter ends with a section that looks more specifically at the IP routing process in a router, how it matches packets to the routing table, and how to interpret all the details in the output of the **show ip route** command.

"Do I Know This Already?" Quiz

Take the quiz (either here or use the PTP software) if you want to use the score to help you decide how much time to spend on this chapter. The letter answers are listed at the bottom of the page following the quiz. Appendix C, found both at the end of the book as well as on the companion website, includes both the answers and explanations. You can also find both answers and explanations in the PTP testing software.

Table 16-1 "Do I Know This Already?" Foundation Topics Section-to-Question Mapping

Foundation Topics Section	Questions
IP Routing	1
Configuring Connected Routes	2
Configuring Static Routes	3–5
IP Forwarding with the Longest Prefix Match	6

- **1.** Router R1 lists a route in its routing table. Which of the following answers list a fact from a route that the router uses when matching the packet's destination address? (Choose two answers.)
 - **a.** Mask
 - **b.** Next-hop router
 - c. Subnet ID
 - **d.** Outgoing interface

- **2.** After configuring a working router interface with IP address/mask 10.1.1.100/26, which of the following routes would you expect to see in the output of the **show ip route** command? (Choose two answers.)
 - **a.** A connected route for subnet 10.1.1.64 255.255.255.192
 - **b.** A connected route for subnet 10.1.1.0 255.255.255.0
 - **c.** A local route for host 10.1.1.100 255.255.255.192
 - **d.** A local route for host 10.1.1.100 255.255.255.255
 - **e.** A local route for host 10.1.1.64 255.255.255.255
- **3.** An engineer configures a static IPv4 route on Router R1. Which of the following pieces of information should not be listed as a parameter in the configuration command that creates this static IPv4 route?
 - a. The destination subnet's subnet ID
 - **b.** The next-hop router's IP address
 - **c.** The next-hop router's neighboring interface
 - **d.** The subnet mask
- 4. Which of the following commands correctly configures a static route?
 - **a.** ip route 10.1.3.0 255.255.255.0 10.1.130.253
 - **b.** ip route 10.1.3.0 serial 0
 - **c.** ip route 10.1.3.0 /24 10.1.130.253
 - **d.** ip route 10.1.3.0 /24 serial 0
- **5.** A network engineer configures the **ip route 10.1.1.0 255.255.255.0 s0/0/0** command on a router and then issues a **show ip route** command from enable mode. No routes for subnet 10.1.1.0/24 appear in the output. Which of the following could be true?
 - **a.** The **ip route** command has incorrect syntax and was rejected in config mode.
 - **b.** Interface s0/0/0 is down.
 - **c.** The router has no up/up interfaces in Class A network 10.0.0.0.
 - **d.** The **ip route** command is missing a next-hop router IP address.
- **6.** A router lists the following partial output from the **show ip route** command. Out which interface will the router route packets destined to IP address 10.1.15.122?

```
10.0.0.0/8 is variably subnetted, 8 subnets, 5 masks

10.1.15.100/32 [110/50] via 172.16.25.2, 00:00:04, GigabitEthernet0/0/0

10.1.15.64/26 [110/100] via 172.16.25.129, 00:00:09, GigabitEthernet0/1/0

10.1.14.0/23 [110/65] via 172.16.24.2, 00:00:04, GigabitEthernet0/2/0

10.1.15.96/27 [110/65] via 172.16.24.129, 00:00:09, GigabitEthernet0/3/0

0.0.0.0/0 [110/129] via 172.16.25.129, 00:00:09, GigabitEthernet0/0/0
```

- **a.** G0/0/0
- **b.** G0/1/0
- **c.** G0/2/0
- **d.** G0/3/0

Foundation Topics

IP Routing

IP routing—the process of forwarding IP packets—delivers packets across entire TCP/IP networks, from the device that originally builds the IP packet to the device that is supposed to receive the packet. In other words, IP routing delivers IP packets from the sending host to the destination host.

The complete end-to-end routing process relies on network layer logic on hosts and on routers. The sending host uses Layer 3 concepts to create an IP packet, forwarding the IP packet to the host's default gateway (default router). The process requires Layer 3 logic on the routers as well, by which the routers compare the destination address in the packet to their routing tables, to decide where to forward the IP packet next.

The routing process also relies on data-link and physical details at each link. IP routing relies on serial WAN links, Ethernet WAN links, Ethernet LANs, wireless LANs, and many other networks that implement data-link and physical layer standards. These lower-layer devices and protocols move the IP packets around the TCP/IP network by encapsulating and transmitting the packets inside data-link layer frames.

The previous two paragraphs summarize the key concepts about IP routing as introduced back in Chapter 3, "Fundamentals of WANs and IP Routing." Next, this section reviews IP routing, while taking the discussion another step or two deeper, taking advantage of the additional depth of knowledge discussed in all the earlier chapters in this book.

IPv4 Routing Process Reference

Because you already saw the basics back in Chapter 3, this section collects the routing process into steps for reference. The steps use many specific Ethernet LAN terms discussed in Parts II and III of this book and some IP addressing terms discussed in Part IV. The upcoming descriptions and example then discuss these summaries of routing logic to make sure that each step is clear.

The routing process starts with the host that creates the IP packet. First, the host asks the question: Is the destination IP address of this new packet in my local subnet? The host uses its own IP address/mask to determine the range of addresses in the local subnet. Based on its own opinion of the range of addresses in the local subnet, a LAN-based host acts as follows:

- If the destination is local, send directly: Step 1.
 - A. Find the destination host's MAC address. Use the already-known Address Resolution Protocol (ARP) table entry, or use ARP messages to learn the information.
 - **B.** Encapsulate the IP packet in a data-link frame, with the destination data-link address of the destination host.
- Step 2. If the destination is not local, send to the default gateway:
 - **A.** Find the default gateway's MAC address. Use the already-known Address Resolution Protocol (ARP) table entry, or use ARP messages to learn the information.
 - **B.** Encapsulate the IP packet in a data-link frame, with the destination data-link address of the default gateway.

Figure 16-1 summarizes these same concepts. In the figure, host A sends a local packet directly to host D. However, for packets to host B, on the other side of a router and therefore in a different subnet, host A sends the packet to its default router (R1). (As a reminder, the terms default gateway and default router are synonyms.)

Figure 16-1 Host Routing Logic Summary

Routers have a little more routing work to do as compared with hosts. While the host logic began with an IP packet sitting in memory, a router has some work to do before getting to that point. With the following five-step summary of a router's routing logic, the router takes the first two steps just to receive the frame and extract the IP packet, before thinking about the packet's destination address at Step 3. The steps are as follows:

- **1.** For each received data-link frame, choose whether or not to process the frame. Process it if
 - **A.** The frame has no errors (per the data-link trailer Frame Check Sequence [FCS]
 - **B.** The frame's destination data-link address is the router's address (or an appropriate multicast or broadcast address).
- 2. If choosing to process the frame at Step 1, de-encapsulate the packet from inside the data-link frame.
- **3.** Make a routing decision. To do so, compare the packet's destination IP address to the routing table and find the route that matches the destination address. This route identifies the outgoing interface of the router and possibly the next-hop router.
- **4.** Encapsulate the packet into a data-link frame appropriate for the outgoing interface. When forwarding out LAN interfaces, use ARP as needed to find the next device's MAC address.
- **5.** Transmit the frame out the outgoing interface, as listed in the matched IP route.

This routing process summary lists many details, but sometimes you can think about the routing process in simpler terms. For example, leaving out some details, this paraphrase of the step list details the same big concepts:

The router receives a frame, removes the packet from inside the frame, decides where to forward the packet, puts the packet into another frame, and sends the frame.

To give you a little more perspective on these steps, Figure 16-2 breaks down the same five-step routing process as a diagram. The figure shows a packet arriving from the left, entering a router Ethernet interface, with an IP destination of host C. The figure shows the packet arriving, encapsulated inside an Ethernet frame (both header and trailer).

Figure 16-2 Router Routing Logic Summary

Router R1 processes the frame and packet as shown with the numbers in the figure, matching the same five-step process described just before the figure, as follows:

- 1. Router R1 notes that the received Ethernet frame passes the FCS check and that the destination Ethernet MAC address is R1's MAC address, so R1 processes the frame.
- **2.** R1 de-encapsulates the IP packet from inside the Ethernet frame's header and trailer.
- **3.** R1 compares the IP packet's destination IP address to R1's IP routing table.
- **4.** R1 encapsulates the IP packet inside a new data-link frame, in this case, inside a High-Level Data Link Control (HDLC) header and trailer.
- **5.** R1 transmits the IP packet, inside the new HDLC frame, out the serial link on the right.

NOTE This chapter uses several figures that show an IP packet encapsulated inside a datalink layer frame. These figures often show both the data-link header as well as the data-link trailer, with the IP packet in the middle. The IP packets all include the IP header, plus any encapsulated data.

An Example of IP Routing

The next several pages walk you through an example that discusses each routing step, in order, through multiple devices. The example uses a case in which host A (172.16.1.9) sends a packet to host B (172.16.2.9), with host routing logic and the five steps showing how R1 forwards the packet.

Figure 16-3 shows a typical IP addressing diagram for an IPv4 network with typical address abbreviations. The diagram can get a little too messy if it lists the full IP address for every router interface. When possible, these diagrams usually list the subnet and then the last octet or two of the individual IP addresses—just enough so that you know the IP address but with

less clutter. For example, host A uses IP address 172.16.1.9, taking from subnet 172.16.1.0/24 (in which all addresses begin 172.16.1) and the .9 beside the host A icon. As another example, R1 uses address 172.16.1.1 on its LAN interface, 172.16.4.1 on one serial interface, and 172.16.5.1 on an Ethernet WAN interface.

Figure 16-3 *IPv4 Network Used to Show Five-Step Routing Example*

Now on to the example, with host A (172.16.1.9) sending a packet to host B (172.16.2.9).

Host Forwards the IP Packet to the Default Router (Gateway)

In this example, host A uses some application that sends data to host B (172.16.2.9). After host A has the IP packet sitting in memory, host A's logic reduces to the following:

- My IP address/mask is 172.16.1.9/24, so my local subnet contains numbers 172.16.1.0-172.16.1.255 (including the subnet ID and subnet broadcast address).
- The destination address is 172.16.2.9, which is clearly not in my local subnet.
- Send the packet to my default gateway, which is set to 172.16.1.1.
- To send the packet, encapsulate it in an Ethernet frame. Make the destination MAC address be R1's G0/0 MAC address (host A's default gateway).

Figure 16-4 pulls these concepts together, showing the destination IP address and destination MAC address in the frame and packet sent by host A in this case. Note that the figure uses a common drawing convention in networking, showing an Ethernet as a few lines, hiding all the detail of the Layer 2 switches.

Figure 16-4 *Host A Sends Packet to Host B*

Routing Step 1: Decide Whether to Process the Incoming Frame

Routers receive many frames in an interface, particularly LAN interfaces. However, a router can and should ignore some of those frames. So, the first step in the routing process begins with a decision of whether a router should process the frame or silently discard (ignore) the frame.

First, the router does a simple but important check (Step 1A in the process summary) so that the router ignores all frames that had bit errors during transmission. The router uses the data-link trailer's FCS field to check the frame, and if errors occurred in transmission, the router discards the frame. (The router makes no attempt at error recovery; that is, the router does not ask the sender to retransmit the data.)

The router also checks the destination data-link address (Step 1B in the summary) to decide whether the frame is intended for the router. For example, frames sent to the router's unicast MAC address for that interface are clearly sent to that router. However, a router can actually receive a frame sent to some other unicast MAC address, and routers should ignore these frames.

For example, routers will receive some unicast frames sent to other devices in the VLAN just because of how LAN switches work. Think back to how LAN switches forward unknown unicast frames—frames for which the switch does not list the destination MAC address in the MAC address table. The LAN switch floods those frames. The result? Routers sometimes receive frames destined for some other device, with some other device's MAC address listed as the destination MAC address. Routers should ignore those frames.

In this example, host A sends a frame destined for R1's MAC address. So, after the frame is received, and after R1 confirms with the FCS that no errors occurred, R1 confirms that the frame is destined for R1's MAC address (0200.0101.0101 in this case). All checks have been passed, so R1 will process the frame, as shown in Figure 16-5. (Note that the large rectangle in the figure represents the internals of Router R1.)

Figure 16-5 Routing Step 1, on Router R1: Checking FCS and Destination MAC

Routing Step 2: De-encapsulation of the IP Packet

After the router knows that it ought to process the received frame (per Step 1), the next step is relatively simple: de-encapsulating the packet. In router memory, the router no longer needs the original frame's data-link header and trailer, so the router removes and discards them, leaving the IP packet, as shown in Figure 16-6. Note that the destination IP address remains unchanged (172.16.2.9).

Figure 16-6 Routing Step 2 on Router R1: De-encapsulating the Packet

Routing Step 3: Choosing Where to Forward the Packet

While routing Step 2 required little thought, Step 3 requires the most thought of all the steps. At this point, the router needs to make a choice about where to forward the packet next. That process uses the router's IP routing table, with some matching logic to compare the packet's destination address with the table.

First, an IP routing table lists multiple routes. Each individual route contains several facts, which in turn can be grouped as shown in Figure 16-7. Part of each route is used to match the destination address of the packet, while the rest of the route lists forwarding instructions: where to send the packet next.

Figure 16-7 Routing Step 3 on Router R1: Matching the Routing Table

Focus on the entire routing table for a moment, and notice the fact that it lists five routes. Earlier, Figure 16-3 showed the entire example network, with five subnets, so R1 has a route for each of the five subnets.

Next, look at the part of the five routes that Router R1 will use to match packets. To fully define each subnet, each route lists both the subnet ID and the subnet mask. When matching the IP packet's destination with the routing table, the router looks at the packet's destination IP address (172.16.2.9) and compares it to the range of addresses defined by each subnet. Specifically, the router looks at the subnet and mask information; with a little math, the router can figure out in which of these subnets 172.16.2.9 resides (the route for subnet 172.16.2.0/24).

Finally, look to the right side of the figure, to the forwarding instructions for these five routes. After the router matches a specific route, the router uses the forwarding information in the route to tell the router where to send the packet next. In this case, the router matched the route for subnet 172.16.2.0/24, so R1 will forward the packet out its own interface S0/0/0, to Router R2 next, listed with its next-hop router IP address of 172.16.4.2.

NOTE Routes for remote subnets typically list both an outgoing interface and next-hop router IP address. Routes for subnets that connect directly to the router list only the outgoing interface because packets to these destinations do not need to be sent to another router.

Routing Step 4: Encapsulating the Packet in a New Frame

At this point, the router knows how it will forward the packet. However, routers cannot forward a packet without first wrapping a data-link header and trailer around it (encapsulation).

Encapsulating packets for serial links does not require a lot of thought, but the current CCNA 200-301 exam does not require a lot from us. Point-to-point serial WAN links use either HDLC (the default) or PPP as the data-link protocol. However, we can ignore any datalink logic, even ignoring data-link addressing, because serial links have only two devices on the link; the sender and the then-obvious receiver; the data-link addressing does not matter. In this example, R1 forwards the packet out S0/0/0, after encapsulating the packet inside an HDLC frame, as shown in Figure 16-8.

Figure 16-8 Routing Step 4 on Router R1: Encapsulating the Packet

Note that with some other types of data links, the router has a little more work to do at this routing step. For example, sometimes a router forwards packets out an Ethernet interface. To encapsulate the IP packet, the router would need to build an Ethernet header, and that Ethernet header's destination MAC address would need to list the correct value.

For example, consider a packet sent by that same PC A (172.16.1.19) in Figure 16-3 but with a destination of PC C (172.16.3.9). When R1 processes the packet, R1 matches a route that tells R1 to forward the packet out R1's G0/1/0 Ethernet interface to 172.16.5.3 (R3) next, R1 needs to put R3's MAC address in the header, and to do that, R1 uses its IP ARP table information, as shown in Figure 16-9. If R1 did not have an ARP table entry for 172.16.5.3, R1 would first have to use ARP to learn the matching MAC address.

Figure 16-9 Routing Step 4 on Router R1 with a LAN Outgoing Interface

Routing Step 5: Transmitting the Frame

After the frame has been prepared, the router simply needs to transmit the frame. The router might have to wait, particularly if other frames are already waiting their turn to exit the interface.

Configuring IP Addresses and Connected Routes

Cisco routers enable IPv4 routing globally, by default. Then, to make the router be ready to route packets on a particular interface, the interface must be configured with an IP address and the interface must be configured such that it comes up, reaching a "line status up, line protocol up" state. Only at that point can routers route IP packets in and out a particular interface.

After a router can route IP packets out one or more interfaces, the router needs some routes. Routers can add routes to their routing tables through three methods:

Connected routes: Added because of the configuration of the ip address interface subcommand on the local router

Static routes: Added because of the configuration of the ip route global command on the local router

Routing protocols: Added as a function by configuration on all routers, resulting in a process by which routers dynamically tell each other about the network so that they all learn routes

This second of three sections discusses several variations on how to configure connected routes, while the next major section discusses static routes.

Connected Routes and the ip address Command

A Cisco router automatically adds a route to its routing table for the subnet connected to each interface, assuming that the following two facts are true:

- The interface is in a working state. In other words, the interface status in the **show** interfaces command lists a line status of up and a protocol status of up.
- The interface has an IP address assigned through the ip address interface subcommand.

The concept of connected routes is relatively basic. The router, of course, needs to know the subnet number connected to each of its interfaces, so the router can route packets to that subnet. The router does the math, taking the interface IP address and mask and calculating the subnet ID. However, the router only needs that route when the interface is up and working, so the router includes a connected route in the routing table only when the interface is working.

Example 16-1 shows the connected routes on Router R1 in Figure 16-10. The first part of the example shows the configuration of IP addresses on all three of R1's interfaces. The end of the example lists the output from the show ip route command, which lists these routes with a c as the route code, meaning connected.

Figure 16-10 *Sample Network to Show Connected Routes*

Example 16-1 Connected and Local Routes on Router R1

```
! Excerpt from show running-config follows...
interface GigabitEthernet0/0
ip address 172.16.1.1 255.255.255.0
interface Serial0/0/0
ip address 172.16.4.1 255.255.255.0
interface GigabitEthernet0/1/0
ip address 172.16.5.1 255.255.255.0
R1# show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
       a - application route
       + - replicated route, % - next hop override, p - overrides from PfR
Gateway of last resort is not set
      172.16.0.0/16 is variably subnetted, 6 subnets, 2 masks
         172.16.1.0/24 is directly connected, GigabitEthernet0/0
         172.16.1.1/32 is directly connected, GigabitEthernet0/0
         172.16.4.0/24 is directly connected, Serial0/0/0
         172.16.4.1/32 is directly connected, Serial0/0/0
L
C
         172.16.5.0/24 is directly connected, GigabitEthernet0/1/0
L
         172.16.5.1/32 is directly connected, GigabitEthernet0/1/0
```

Take a moment to look closely at each of the three highlighted routes in the output of show ip route. Each lists a C in the first column, and each has text that savs "directly connected": both identify the route as connected to the router. The early part of each route lists the matching parameters (subnet ID and mask), as shown in the earlier example in Figure 16-7. The end of each of these routes lists the outgoing interface.

Note that the router also automatically produces a different kind of route, called a *local* route. The local routes define a route for the one specific IP address configured on the router interface. Each local route has a /32 prefix length, defining a host route, which defines a route just for that one IP address. For example, the last local route, for 172.16.5.1/32, defines a route that matches only the IP address of 172.16.5.1. Routers use these local routes that list their own local IP addresses to more efficiently forward packets sent to the router itself.

For the CCNA 200-301 exam, note that this example of the show ip route command reveals a few of the specific subitems within exam topic 3.1, with later examples revealing even more details. This section shows details related to the following terms from the exam topics:

- Routing Protocol Code: The legend at the top of the show ip route output (about nine lines) lists all the routing protocol codes (exam topic 3.1.a). This book references the codes for connected routes (C), local (L), static (S), and OSPF (O).
- Prefix: The word *prefix* (exam topic 3.1.b) is just another name for subnet ID.
- Mask: Each route lists a prefix (subnet ID) and network mask (exam topic 3.1.c) in prefix format, for example, /24.

The ARP Table on a Cisco Router

After a router has added these connected routes, the router can route IPv4 packets between those subnets. To do so, the router makes use of its IP ARP table.

The IPv4 ARP table lists the IPv4 address and matching MAC address of hosts connected to the same subnet as the router. When forwarding a packet to a host on the same subnet, the router encapsulates the packet, with a destination MAC address as found in the ARP table. If the router wants to forward a packet to an IP address on the same subnet as the router but does not find an ARP table entry for that IP address, the router will use ARP messages to learn that device's MAC address.

Example 16-2 shows RI's ARP table based on the previous example. The output lists RI's own IP address of 172.16.1.1, with an age of -, meaning that this entry does not time out. Dynamically learned ARP table entries have an upward counter, like the 35-minute value for the ARP table entry for IP address 172.16.1.9. By default, IOS will time out (remove) an ARP table entry after 240 minutes in which the entry is not used. (IOS resets the timer to 0 when an ARP table entry is used.) Note that to experiment in the lab, you might want to empty all dynamic entries (or a single entry for one IP address) using the clear ip arp [ip-address] EXEC command.

Example 16-2 Displaying a Router's IP ARP Table

R2# show ip arp					
Protocol	Address	Age (mi	n) Hardware Addr	Type	Interface
Internet	172.16.1.1		- 0200.2222.2222	ARPA	GigabitEthernet0/0
Internet	172.16.1.9	3	0200.3333.3333	ARPA	GigabitEthernet0/0

Thinking about how Router R1 forwards a packet to host A (172.16.1.9), over that final subnet, R1 does the following:

- R1 looks in its ARP table for an entry for 172.16.1.9.
- R1 encapsulates the IP packet in an Ethernet frame, adding destination 0200.3333.3333 to the Ethernet header (as taken from the ARP table).
- R1 transmits the frame out interface G0/0.

Configuring Static Routes

All routers add connected routes, as discussed in the previous section. Then, most networks use dynamic routing protocols to cause each router to learn the rest of the routes in an internetwork. Networks use static routes—routes added to a routing table through direct configuration—much less often than dynamic routing. However, static routes can be useful at times, and they happen to be useful learning tools as well. This next major section in the chapter discusses static routes.

NOTE The CCNA 200-301 exam topic 3.2 breaks IPv4 (and IPv6) static routes into four subtopics: network routes, host routes, floating static routes, and default routes. This section explains all four types as noted in the upcoming headings.

Static Network Routes

IOS allows the definition of individual static routes using the ip route global configuration command. Every ip route command defines a destination that can be matched, usually with a subnet ID and mask. The command also lists the forwarding instructions, typically listing either the outgoing interface or the next-hop router's IP address. IOS then takes that information and adds that route to the IP routing table.

The static route is considered a *network route* when the destination listed in the **ip route** command defines a subnet, or an entire Class A, B, or C network. In contrast, a default route matches all destination IP addresses, while a *bost route* matches a single IP address (that is, an address of one host.)

As an example of a network route, Figure 16-11 shows a subset of the figure used throughout this chapter so far, with some unrelated details removed. The figure shows only the details related to a static network route on R1, for destination subnet 172.16.2.0/24, which sits on the far right. To create that static network route on R1, R1 will configure the subnet ID and mask, and either R1's outgoing interface (S0/0/0) or R2 as the next-hop router IP address (172.16.4.2).

Figure 16-11 Static Route Configuration Concept

Example 16-3 shows the configuration of a couple of sample static routes. In particular, it shows routes on Router R1 in Figure 16-12, for the two subnets on the right side of the figure.

Figure 16-12 Sample Network Used in Static Route Configuration Examples

Example 16-3 Static Routes Added to R1

```
ip route 172.16.2.0 255.255.255.0 S0/0/0
ip route 172.16.3.0 255.255.255.0 172.16.5.3
```

The two example ip route commands show the two different styles of forwarding instructions. The first command shows subnet 172.16.2.0, mask 255.255.255.0, which sits on a LAN near Router R2. That same first command lists R1's S0/0/0 interface as the outgoing interface. This route basically states: To send packets to the subnet off Router R2, send them out my own local S0/0/0 interface (which happens to connect to R2).

The second route has the same kind of logic, except for using different forwarding instructions. Instead of referencing R1's outgoing interface, it instead lists the neighboring router's IP address on the WAN link as the next-hop router. This route basically says this: To send packets to the subnet off Router R3, send them to R3—specifically, R3's WAN IP address next.

The routes created by these two ip route commands actually look a little different in the IP routing table compared to each other. Both are static routes. However, the route that used the outgoing interface configuration is also noted as a connected route; this is just a quirk of the output of the show ip route command.

Example 16-4 lists these two routes using the show ip route static command. This command lists the details of static routes only, but it also lists a few statistics about all IPv4 routes. For example, the example shows two lines, for the two static routes configured in Example 16-4, but statistics state that this router has routes for eight subnets.

Example 16-4 Static Routes Added to R1

```
R1# show ip route static
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
! lines omitted for brevity
Gateway of last resort is not set
```

```
172.16.0.0/16 is variably subnetted, 8 subnets, 2 masks
   172.16.2.0/24 is directly connected, Serial0/0/0
   172.16.3.0/24 [1/0] via 172.16.5.3
```

IOS adds and removes these static routes dynamically over time, based on whether the outgoing interface is working or not. For example, in this case, if R1's S0/0/0 interface fails, R1 removes the static route to 172.16.2.0/24 from the IPv4 routing table. Later, when the interface comes up again, IOS adds the route back to the routing table.

Note that most sites use a dynamic routing protocol to learn all the routes to remote subnets rather than using static routes. However, when not using a dynamic routing protocol, the engineer would need to configure static routes to each subnet on each router. For example, if the routers had only the configuration shown in the examples so far, PC A (from Figure 16-12) would not be able to receive packets back from PC B because Router R2 does not have a route for PC A's subnet, R2 would need static routes for other subnets, as would R3,

Finally, note that static routes that will send packets out an Ethernet interface—LAN or WAN—should use the next-hop IP address option on the ip address command, as shown in Example 16-4. Routers expect their Ethernet interfaces to be able to reach any number of other IP addresses in the connected subnet. Referencing the next-hop router identifies the specific device in the connected subnet, while referencing the local router's outgoing interface does not identify the specific neighboring router.

Static Host Routes

Earlier, this chapter defined a host route as a route to a single host address. To configure such a static route, the ip route command uses an IP address plus a mask of 255.255.255.255 so that the matching logic matches just that one address.

An engineer might use host routes to direct packets sent to one host over one path, with all other traffic to that host's subnet over some other path. For instance, you could define these two static routes for subnet 10.1.1.0/24 and host 10.1.1.9, with two different next-hop addresses, as follows:

```
ip route 10.1.1.0 255.255.255.0 10.2.2.2
ip route 10.1.1.9 255.255.255.255 10.9.9.9
```

Note that these two routes overlap: a packet sent to 10.1.1.9 that arrives at the router would match both routes. When that happens, routers use the most specific route (that is, the route with the longest prefix length). So, a packet sent to 10.1.1.9 would be forwarded to next-hop router 10.9.9.9, and packets sent to other destinations in subnet 10.1.1.0/24 would be sent to next-hop router 10.2.2.2.

Note that the section "IP Forwarding with the Longest Prefix Match" later in this chapter gets into this topic in more detail.

Floating Static Routes

Next, consider the case in which a static route competes with other static routes or routes learned by a routing protocol. That is, the ip route command defines a route to a subnet, but the router also knows of other static or dynamically learned routes to reach that same

subnet. In these cases, the router must first decide which routing source has the better *administrative distance*, with lower being better, and then use the route learned from the better source.

To see how that works, consider the example illustrated in Figure 16-13, which shows a different design than in the previous examples, this time with a branch office with two WAN links: one very fast Gigabit Ethernet link and one rather slow (but cheap) T1. In this design, the network uses Open Shortest Path First Version 2 (OSPFv2) over the primary link, learning a route for subnet 172.16.2.0/24. R1 also defines a static route over the backup link to that exact same subnet, so R1 must choose whether to use the static route or the OSPF-learned route.

Figure 16-13 Using a Floating Static Route to Key Subnet 172.16.2.0/24

By default, IOS considers static routes better than OSPF-learned routes. By default, IOS gives static routes an administrative distance of 1 and OSPF routes an administrative distance of 110. Using these defaults in Figure 16-13, R1 would use the T1 to reach subnet 172.16.2.0/24 in this case, which is not the intended design. Instead, the engineer prefers to use the OSPF-learned routes over the much-faster primary link and use the static route over the backup link only as needed when the primary link fails.

To instead prefer the OSPF routes, the configuration would need to change the administrative distance settings and use what many networkers call a floating static route. A *floating static* route floats or moves into and out of the IP routing table depending on whether the better (lower) administrative distance route learned by the routing protocol happens to exist currently. Basically, the router ignores the static route during times when the better routing protocol route is known.

To implement a floating static route, you need to use a parameter on the **ip route** command that sets the administrative distance for just that route, making the value larger than the default administrative distance of the routing protocol. For example, the **ip route 172.16.2.0 255.255.255.0 172.16.5.3 130** command on R1 would do exactly that—setting the static route's administrative distance to 130. As long as the primary link stays up, and OSPF on R1 learns a route for 172.16.2.0/24, with a default administrative distance of 110, R1 ignores the static route.

Finally, note that while the **show ip route** command lists the administrative distance of most routes, as the first of two numbers inside two brackets, the **show ip route** *subnet* command plainly lists the administrative distance. Example 16-5 shows a sample, matching this most recent example.

Example 16-5 Displaying the Administrative Distance of the Static Route

```
R1# show ip route static
! Legend omitted for brevity
       172.16.0.0/16 is variably subnetted, 6 subnets, 2 masks
          172.16.2.0/24 is directly connected, Serial0/0/1
R1# show ip route 172.16.2.0
Routing entry for 172.16.2.0/24
  Known via "static", distance 130, metric 0 (connected)
  Routing Descriptor Blocks:
  * directly connected, via Serial0/0/1
      Route metric is 0, traffic share count is 1
```

Static Default Routes

When a router tries to route a packet, the router might not match the packet's destination IP address with any route. When that happens, the router normally just discards the packet.

Routers can be configured so that they use either a statically configured or dynamically learned default route. The default route matches all packets, so that if a packet does not match any other more specific route in the routing table, the router can at least forward the packet based on the default route.

One classic example in which companies might use static default routes in their enterprise TCP/IP networks is when the company has many remote sites, each with a single, relatively slow WAN connection. Each remote site has only one possible physical route to use to send packets to the rest of the network. So, rather than use a routing protocol, which sends messages over the WAN and uses precious WAN bandwidth, each remote router might use a default route that sends all traffic to the central site, as shown in Figure 16-14.

Figure 16-14 Example Use of Static Default Routes at 1000 Low-Speed Remote Sites

IOS allows the configuration of a static default route by using special values for the subnet and mask fields in the ip route command: 0.0.0.0 and 0.0.0.0. For example, the command ip route 0.0.0.0 0.0.0.0 SO/0/1 creates a static default route on Router B1—a route that matches all IP packets—and sends those packets out interface S0/0/1.

Example 16-6 shows an example of a static default route, using Router R2 from Figure 16-13. Earlier, that figure, along with Example 16-5, showed R1 with static routes to the two subnets on the right side of the figure. Example 16-6 completes the configuration of static IP routes by configuring R2, on the right side of Figure 16-13, with a static default route to route packets back to the routers on the left side of the figure.

Example 16-6 Adding a Static Default Route on R2 (Figure 16-13)

```
R2# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R2(config) # ip route 0.0.0.0 0.0.0.0 s0/0/1
R2(config)# ^Z
R2# show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2
      i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
      o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP
       + - replicated route, % - next hop override
Gateway of last resort is 0.0.0.0 to network 0.0.0.0
S* 0.0.0.0/0 is directly connected, Serial0/0/1
     172.16.0.0/16 is variably subnetted, 4 subnets, 2 masks
        172.16.2.0/24 is directly connected, GigabitEthernet0/0
        172.16.2.2/32 is directly connected, GigabitEthernet0/0
Τ.
        172.16.4.0/24 is directly connected, Serial0/0/1
С
L
        172.16.4.2/32 is directly connected, Serial0/0/1
```

The output of the show ip route command lists a few new and interesting facts. First, it lists the route with a code of S, meaning static, but also with a *, meaning it is a candidate default route. A router can learn about more than one default route, and the router then has to choose which one to use; the * means that it is at least a candidate to become the default route. Just above, the "Gateway of Last Resort" refers to the chosen default route, which in this case is the just-configured static route with outgoing interface S0/0/1.

Troubleshooting Static Routes

These final few pages about IPv4 static routes examine some issues that can occur with static routes, both reviewing some reasons mentioned over the last few pages, while adding more detail. This topic breaks static route troubleshooting into three perspectives:

- The route is in the routing table but is incorrect.
- The route is not in the routing table.
- The route is in the routing table and is correct, but the packets do not arrive at the destination host.

Troubleshooting Incorrect Static Routes That Appear in the IP Routing Table

This first troubleshooting item can be obvious, but it is worth pausing to think about. A static route is only as good as the input typed into the **ip route** command. IOS checks the syntax, and as mentioned earlier, makes a few other checks that this section reviews in the next heading. But once those checks are passed, IOS puts the route into the IP routing table, even if the route had poorly chosen parameters.

For instance, the route might use a subnet and mask that implies a different range of addresses than the addresses in the destination subnet. Or, for a router sitting in the middle of a diagram, the next-hop address might be a router to the left, while the destination subnet is to the right. Or the next-hop address could be an IP address in a connected subnet, but it might be a typo and be an address of a PC or even a currently unused IP address.

When you see an exam question that has static routes, and you see them in the output of **show ip route**, remember to check on these items:

- Is there a subnetting math error in the subnet ID and mask?
- Is the next-hop IP address correct and referencing an IP address on a neighboring router?
- Does the next-hop IP address identify the correct router?
- Is the outgoing interface correct, and referencing an interface on the local router (that is, the same router where the static route is configured)?

The Static Route Does Not Appear in the IP Routing Table

After configuring an **ip route** command, IOS might or might not add the route to the IP routing table. IOS also considers the following before adding the route to its routing table:

- For ip route commands that list an outgoing interface, that interface must be in an up/up state.
- For ip route commands that list a next-hop IP address, the local router must have a route to reach that next-hop address.

For example, earlier in Example 16-3, R1's command ip route 172.16.3.0 255.255.255.0 172.16.5.3 defines a static route. Before adding the route to the IP routing table, R1 looks for an existing IP route to reach 172.16.5.3. In that case, R1 will find a connected route for subnet 172.16.5.0/24 as long as its Ethernet WAN link is up. As a result, R1 adds the static route to subnet 172.16.3.0/24. Later, if R1's G0/1/0 were to fail, R1 would remove its connected route to 172.16.5.0/24 from the IP routing table—an action that would also then cause R1 to remove its static route to 172.16.3.0/24.

You can configure a static route so that IOS ignores these basic checks, always putting the IP route in the routing table. To do so, just use the **permanent** keyword on the **ip route** command. For example, by adding the **permanent** keyword to the end of the two commands as demonstrated in Example 16-7, R1 would now add these routes, regardless of whether the two WAN links were up.

Example 16-7 Permanently Adding Static Routes to the IP Routing Table (Router R1)

ip route 172.16.2.0 255.255.255.0 S0/0/0 permanent

ip route 172.16.3.0 255.255.255.0 172.16.5.3 permanent

Note that although the **permanent** keyword lets the router keep the route in the routing table without checking the outgoing interface or route to the next-hop address, it does not magically fix a broken route. For example, if the outgoing interface fails, the route will remain in the routing table, but the router cannot forward packets because the outgoing interface is down.

The Correct Static Route Appears but Works Poorly

This last section is a place to make two points—one mainstream and one point to review a bit of trivia.

First, on the mainstream point, the static route can be perfect, but the packets from one host to the next still might not arrive because of other problems. An incorrect static route is just one of many items to check when you're troubleshooting problems like "host A cannot connect to server B." The root cause may be the static route, or it may be something else. Chapter 18, "Troubleshooting IPv4 Routing," goes into some depth about troubleshooting these types of problems.

On the more specific point, be wary of any **ip route** command with the **permanent** keyword. IOS puts these routes in the routing table with no checks for accuracy. You should check whether the outgoing interface is down and/or whether the router has a route to reach the next-hop address.

IP Forwarding with the Longest Prefix Match

A router's IP routing process requires that the router compare the destination IP address of each packet with the existing contents of that router's IP routing table. Often, only one route matches a particular destination address. When only one route matches the packet's destination, the action is obvious: forward the packet based on the details listed in that route.

In some cases, a particular destination address matches more than one of the router's routes. For instance, one route might list subnet 10.1.0.0/16, another 10.1.1.0/25, and another 10.1.1.1/32. All would match packets sent to IP address 10.1.1.1. Many legitimate router features can cause these multiple routes to appear in a router's routing table, including

- Static routes
- Route autosummarization
- Manual route summarization

This fourth of four major sections of this chapter explains how a router makes its routing decisions when a packet matches multiple routes. When more than one route matches a packet's destination address, the router uses the "best" route, defined as follows:

When a particular destination IP address matches more than one route in a router's IPv4 routing table, the router uses the most specific route—in other words, the route with the longest prefix length mask.

Using show ip route to Find the Best Route

We humans have a couple of ways to figure out what choice a router makes for choosing the best route. One way uses the **show ip route** command, plus some subnetting math, to decide

the route the router will choose. To let you see how to use this option, Example 16-8 shows a series of overlapping routes, all created with OSPF, so the output lists only OSPF-learned routes.

Example 16-8 show ip route Command with Overlapping Routes

```
R1# show ip route ospf
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP
       + - replicated route, % - next hop override
Gateway of last resort is 172.16.25.129 to network 0.0.0.0
    172.16.0.0/16 is variably subnetted, 9 subnets, 5 masks
       172.16.1.1/32 [110/50] via 172.16.25.2, 00:00:04, GigabitEthernet0/0/0
0
       172.16.1.0/24 [110/100] via 172.16.25.129, 00:00:09, GigabitEthernet0/1/0
        172.16.0.0/22 [110/65] via 172.16.24.2, 00:00:04, GigabitEthernet0/2/0
        172.16.0.0/16 [110/65] via 172.16.24.129, 00:00:09, GigabitEthernet0/3/0
0
        0.0.0.0/0 [110/129] via 172.16.25.129, 00:00:09, GigabitEthernet0/0/0
0
```

To predict which of its routes a router will match, two pieces of information are required: the destination IP address of the packet and the contents of the router's routing table. The subnet ID and mask listed for a route define the range of addresses matched by that route. With a little subnetting math, a network engineer can find the range of addresses matched by each route. For instance, Table 16-2 lists the five subnets listed in Example 16-8 and the address ranges implied by each.

Table 16-2 Analysis of Address Ranges for the Subnets in Example 16-8

Subnet/Prefix	Address Range
172.16.1.1/32	172.16.1.1 (just this one address)
172.16.1.0/24	172.16.1.0 – 172.16.1.255
172.16.0.0/22	172.16.0.0 – 172.16.3.255
172.16.0.0/16	172.16.0.0 – 172.16.255.255
0.0.0.0/0	0.0.0.0 – 255.255.255.255 (all addresses)

NOTE The route listed as 0.0.0.0/0 is the default route.

As you can see from these ranges, several of the routes' address ranges overlap. When matching more than one route, the route with the longer prefix length is used. That is, a route with /16 is better than a route with /10; a route with a /25 prefix is better than a route with a /20 prefix; and so on.

For example, a packet sent to 172.16.1.1 actually matches all five routes listed in the routing table in Example 16-8. The various prefix lengths range from /0 to /32. The longest prefix (largest /P value, meaning the best and most specific route) is /32. So, a packet sent to 172.16.1.1 uses the route to 172.16.1.1/32, and not the other routes.

The following list gives some examples of destination IP addresses. For each address, the list describes the routes from Table 16-2 that the router would match, and which specific route the router would use.

172.16.1.1: Matches all five routes; the longest prefix is /32, the route to 172.16.1.1/32.

172.16.1.2: Matches the last four routes; the longest prefix is /24, the route to 172.16.1.0/24.

172.16.2.3: Matches the last three routes; the longest prefix is /22, the route to 172.16.0.0/22.

172.16.4.3: Matches the last two routes; the longest prefix is /16, the route to 172.16.0.0/16.

Using show ip route address to Find the Best Route

A second way to identify the route a router will use, one that does not require any subnetting math, is the **show ip route** *address* command. The last parameter on this command is the IP address of an assumed IP packet. The router replies by listing the route it would use to route a packet sent to that address.

For example, Example 16-9 lists the output of the **show ip route 172.16.4.3** command on the same router used in Example 24-4. The first line of (highlighted) output lists the matched route: the route to 172.16.0.0/16. The rest of the output lists the details of that particular route, like the outgoing interface of GigabitEthernet0/1/0 and the next-hop router of 172.16.25.129.

Example 16-9 show ip route Command with Overlapping Routes

```
R1# show ip route 172.16.4.3

Routing entry for 172.16.0.0/16

Known via "ospf 1", distance 110, metric 65, type intra area

Last update from 10.2.2.5 on GigabitEthernet0/2/0, 14:22:06 ago

Routing Descriptor Blocks:

* 172.16.25.129, from 172.16.25.129, 14:22:05 ago, via GigabitEthernet0/1/0

Route metric is 65, traffic share count is 1
```

Certainly, if you have an option, just using a command to check what the router actually chooses is a much quicker option than doing the subnetting math.

Interpreting the IP Routing Table

The **show ip route** command plays a huge role in verifying and troubleshooting IP routing and addressing. This final topic of the chapter pulls the concepts together in one place for easier reference and study.

Figure 16-15 shows the output of a sample show ip route command. The figure numbers various parts of the command output for easier reference, with Table 16-3 describing the output noted by each number.

Figure 16-15 show ip route Command Output Reference

Table 16-3 Descriptions of the show ip route Command Output

Item	Idea	Value in the Figure	Description
1	Classful network	10.0.0.0/8	The routing table is organized by classful network. This line is the heading line for classful network 10.0.0.0; it lists the default mask for Class A networks (/8).
2	Number of subnets	13 subnets	The number of routes for subnets of the classful network known to this router, from all sources, including local routes—the /32 routes that match each router interface IP address.
3	Number of masks	5 masks	The number of different masks used in all routes known to this router inside this classful network.
4	Legend code	C, L, O	A short code that identifies the source of the routing information. <i>O</i> is for OSPF, <i>D</i> for EIGRP, <i>C</i> for Connected, <i>S</i> for static, and <i>L</i> for local. (See Example 16-8 for a sample of the legend.)
5	Prefix (Subnet ID)	10.2.2.0	The subnet number of this particular route.
6	Prefix length (Mask)	/30	The prefix mask used with this subnet.
7	Administrative distance	110	If a router learns routes for the listed subnet from more than one source of routing information, the router uses the source with the lowest administrative distance (AD).
8	Metric	128	The metric for this route.
9	Next-hop router	10.2.2.5	For packets matching this route, the IP address of the next router to which the packet should be forwarded.
10	Timer	14:31:52	For OSPF and EIGRP routes, this is the time since the route was first learned.
11	Outgoing interface	Serial0/0/1	For packets matching this route, the interface out which the packet should be forwarded.

Chapter Review

One key to doing well on the exams is to perform repetitive spaced review sessions. Review this chapter's material using either the tools in the book or interactive tools for the same material found on the book's companion website. Refer to the "Your Study Plan" element for more details. Table 16-4 outlines the key review elements and where you can find them. To better track your study progress, record when you completed these activities in the second column.

Table 16-4 Chapter Review Tracking

Review Element	Review Date(s)	Resource Used
Review key topics		Book, website
Review key terms		Book, website
Answer DIKTA questions		Book, PTP
Review command tables		Book
Do labs		Blog

Review All the Key Topics

 Table 16-5
 Key Topics for Chapter 16

Key Topic Element	Description	Page Number
List	Steps taken by a host when forwarding IP packets	369
List	Steps taken by a router when forwarding IP packets	370
Figure 16-2	Diagram of five routing steps taken by a router	371
Figure 16-7	Breakdown of IP routing table with matching and forwarding details	374
List	Three common sources from which routers build IP routes	376
List	Rules regarding when a router creates a connected route	376
Figure 16-11	Static route configuration concept	379
List	Troubleshooting checklist for routes that do appear in the IP routing table	385
List	Troubleshooting checklist for static routes that do not appear in the IP routing table	385
Paragraph	A description of how a router makes a longest prefix decision to match the routing table	386
Table 16-3	List of items found in a Cisco router IP routing table	389

Key Terms You Should Know

ARP table, routing table, next-hop router, outgoing interface, connected route, static route, default route, host route, floating static route, network route, administrative distance

Command References

Tables 16-6 and 16-7 list configuration and verification commands used in this chapter. As an easy review exercise, cover the left column in a table, read the right column, and try to recall the command without looking. Then repeat the exercise, covering the right column, and try to recall what the command does.

Table 16-6 Chapter 16 Configuration Command Reference

Command	Description
ip address ip-address mask	Interface subcommand that assigns the interface's IP address
interface type number.subint	Global command to create a subinterface and to enter configuration mode for that subinterface
[no] ip routing	Global command that enables (ip routing) or disables (no ip routing) the routing of IPv4 packets on a router or Layer 3 switch
ip route prefix mask {ip-address interface-type interface-number} [distance] [permanent]	Global configuration command that creates a static route

Table 16-7 Chapter 16 EXEC Command Reference

Command	Description
show ip route	Lists the router's entire routing table
show ip route [connected static ospf]	Lists a subset of the IP routing table
show ip route <i>ip-address</i>	Lists detailed information about the route that a router matches for the listed IP address
show arp, show ip arp	Lists the router's IPv4 ARP table
clear ip arp [ip-address]	Removes all dynamically learned ARP table entries, or if the command lists an IP address, removes the entry for that IP address only

IP Routing in the LAN

This chapter covers the following exam topics:

1.0 Network Fundamentals

1.6 Configure and verify IPv4 addressing and subnetting

2.0 Network Access

2.4 Configure and verify (Layer 2/Layer 3) EtherChannel (LACP)

The preceding two chapters showed how to configure an IP address and mask on a router interface, making the router ready to route packets to/from the subnet implied by that address/mask combination. While true and useful, all the examples so far ignored the LAN switches and the possibility of VLANs. In fact, the examples so far show the simplest possible cases: the attached switches as Layer 2 switches, using only one VLAN, with the router configured with one **ip address** command on its physical interface. This chapter takes a detailed look at how to configure routers so that they route packets to/from the subnets that exist on each and every VLAN.

Because Layer 2 switches do not forward Layer 2 frames between VLANs, a network must use routers to route IP packets between subnets to allow those devices in different VLANs/ subnets to communicate. To review, Ethernet defines the concept of a VLAN, while IP defines the concept of an IP subnet, so a VLAN is not equivalent to a subnet. However, the set of devices in one VLAN are typically also in one subnet. By the same reasoning, devices in two different VLANs are normally in two different subnets. For two devices in different VLANs to communicate with each other, routers must connect to the subnets that exist on each VLAN, and then the routers forward IP packets between the devices in those subnets.

This chapter discusses the configuration and verification steps related to three methods of routing between VLANs with three major sections:

- VLAN Routing with Router 802.1Q Trunks: The first section discusses how to configure a router to use VLAN trunking as connected to a Layer 2 switch. The router does the routing, with the switch creating the VLANs. The link between the router and switch use trunking so that the router has an interface connected to each VLAN/subnet. This feature is known as routing over a VLAN trunk and also known as router-on-a-stick (ROAS).
- VLAN Routing with Layer 3 Switch SVIs: The second section discusses using a LAN switch that supports both Layer 2 switching and Layer 3 routing (called a Layer 3 switch or multilayer switch). To route, the Layer 3 switch configuration uses interfaces called switched virtual interfaces (SVI), which are also called VLAN interfaces.
- VLAN Routing with Layer 3 Switch Routed Ports: The third major section of the chapter discusses an alternative to SVIs called routed ports, in which the physical switch ports are made to act like interfaces on a router. This third section also introduces the concept of an EtherChannel as used as a routed port in a feature called Layer 3 EtherChannel.

"Do I Know This Already?" Quiz

Take the quiz (either here or use the PTP software) if you want to use the score to help you decide how much time to spend on this chapter. The letter answers are listed at the bottom of the page following the quiz. Appendix C, found both at the end of the book as well as on the companion website, includes both the answers and explanations. You can also find both answers and explanations in the PTP testing software.

Table 17-1 "Do I Know This Already?" Foundation Topics Section-to-Question Mapping

Foundation Topics Section	Questions
VLAN Routing with Router 802.1Q Trunks	1, 2
VLAN Routing with Layer 3 Switch SVIs	3, 4
VLAN Routing with Layer 3 Switch Routed Ports	5, 6

- 1. Router 1 has a Fast Ethernet interface 0/0 with IP address 10.1.1.1. The interface is connected to a switch. This connection is then migrated to use 802.1Q trunking. Which of the following commands could be part of a valid configuration for Router 1's Fa0/0 interface? (Choose two answers.)
 - a. interface fastethernet 0/0.4
 - **b.** dot1g enable
 - c. dot1q enable 4
 - d. trunking enable
 - e. trunking enable 4
 - f. encapsulation dot1q 4
- 2. Router R1 has a router-on-a-stick (ROAS) configuration with two subinterfaces of interface G0/1: G0/1.1 and G0/1.2. Physical interface G0/1 is currently in a down/down state. The network engineer then configures a **shutdown** command when in interface configuration mode for G0/1.1 and a **no shutdown** command when in interface configuration mode for G0/1.2. Which answers are correct about the interface state for the subinterfaces? (Choose two answers.)
 - G0/1.1 will be in a down/down state.
 - **b.** G0/1.2 will be in a down/down state.
 - **c.** G0/1.1 will be in an administratively down state.
 - **d.** G0/1.2 will be in an up/up state.

- **3.** A Layer 3 switch has been configured to route IP packets between VLANs 1, 2, and 3 using SVIs, which connect to subnets 172.20.1.0/25, 172.20.2.0/25, and 172.20.3.0/25, respectively. The engineer issues a **show ip route connected** command on the Layer 3 switch, listing the connected routes. Which of the following answers lists a piece of information that should be in at least one of the routes?
 - **a.** Interface Gigabit Ethernet 0/0.3
 - **b.** Next-hop router 172.20.2.1
 - c. Interface VLAN 2
 - **d.** Mask 255.255.255.0
- **4.** An engineer has successfully configured a Layer 3 switch with SVIs for VLANs 2 and 3. Hosts in the subnets using VLANs 2 and 3 can ping each other with the Layer 3 switch routing the packets. The next week, the network engineer receives a call that those same users can no longer ping each other. If the problem is with the Layer 3 switching function, which of the following could have caused the problem? (Choose two answers.)
 - a. Six (or more) out of 10 working VLAN 2 access ports failing due to physical problems
 - **b.** A shutdown command issued from interface VLAN 4 configuration mode
 - **c.** VTP on the switch removing VLAN 3 from the switch's VLAN list
 - **d.** A **shutdown** command issued from VLAN 2 configuration mode
- **5.** A LAN design uses a Layer 3 EtherChannel between two switches SW1 and SW2, with port-channel interface 1 used on both switches. SW1 uses ports G0/1, G0/2, and G0/3 in the channel. Which of the following are true about SW1's configuration to make the channel be able to route IPv4 packets correctly? (Choose two answers.)
 - **a.** The **ip address** command must be on the port-channel 1 interface.
 - **b.** The ip address command must be on interface G0/1 (lowest numbered port).
 - c. The port-channel 1 interface must be configured with the no switchport command.
 - **d.** Interface G0/1 must be configured with the **routedport** command.
- **6.** A LAN design uses a Layer 3 EtherChannel between two switches SW1 and SW2, with port-channel interface 1 used on both switches. SW1 uses ports G0/1 and G0/2 in the channel. However, only interface G0/1 is bundled into the channel and working. Think about the configuration settings on port G0/2 that could have existed before adding G0/2 to the EtherChannel. Which answers identify a setting that could prevent IOS from adding G0/2 to the Layer 3 EtherChannel? (Choose two answers.)
 - **a.** A different STP cost (spanning-tree cost value)
 - **b.** A different speed (speed *value*)
 - **c.** A default setting for switchport (**switchport**)
 - **d.** A different access VLAN (switchport access vlan *vlan-id*)

Foundation Topics

VLAN Routing with Router 802.1Q Trunks

Almost all enterprise networks use VLANs. To route IP packets in and out of those VLANs, some devices (either routers or Layer 3 switches) need to have an IP address in each subnet and have a connected route to each of those subnets. Then the IP addresses on those routers or Layer 3 switches can serve as the default gateways in those subnets.

This chapter breaks down the LAN routing options into four categories:

- Use a router, with one router LAN interface and cable connected to the switch for each and every VLAN (typically not used)
- Use a router, with a VLAN trunk connecting to a LAN switch (known as router-on-astick, or ROAS)
- Use a Layer 3 switch with switched virtual interfaces (SVI)
- Use a Layer 3 switch with routed interfaces (which may or may not be Layer 3 EtherChannels)

Of the items in the list, the first option works, but to be practical, it requires far too many interfaces. It is mentioned here only to make the list complete.

As for the other three options, this chapter discusses each in turn as the main focus of one of the three major sections in this chapter. Each feature is used in real networks today, with the choice to use one or the other driven by the design and needs for a particular part of the network. Figure 17-1 shows cases in which these options could be used.

Figure 17-1 Layer 3 Switching at the Central Site

Figure 17-1 shows two switches, labeled A and B, which could act as Layer 3 switches—both with SVIs and routed interfaces. The figure shows a central site campus LAN on the left, with 12 VLANs. Switches A and B act as Layer 3 switches, combining the functions of a router and a switch, routing between all 12 subnets/VLANs, as well as routing to/from the Core router. Those Layer 3 switches could use SVIs, routed interfaces, or both.

Figure 17-1 also shows a classic case for using a router with a VLAN trunk. Sites like the remote sites on the right side of the figure may have a WAN-connected router and a LAN switch. These sites might use ROAS to take advantage of the router's ability to route over an 802.1O trunk.

Note that Figure 17-1 just shows an example. The engineer could use Layer 3 switching at each site or routers with VLAN trunking at each site.

Configuring ROAS

This next topic discusses how routers route packets to subnets associated with VLANs connected to a router 802.1Q trunk. That long description can be a bit of a chore to repeat each time someone wants to discuss this feature, so over time, the networking world has instead settled on a shorter and more interesting name for this feature: router-on-a-stick (ROAS).

ROAS uses router VLAN trunking configuration to give the router a logical router interface connected to each VLAN. Because the router then has an interface connected to each VLAN, the router can also be configured with an IP address in the subnet that exists on each VLAN.

Routers use subinterfaces as the means to have an interface connected to a VLAN. The router needs to have an IP address/mask associated with each VLAN on the trunk. However, the router has only one physical interface for the link connected to the trunk. Cisco solves this problem by creating multiple virtual router interfaces, one associated with each VLAN on that trunk (at least for each VLAN that you want the trunk to support). Cisco calls these virtual interfaces *subinterfaces*. The configuration can then include an **ip address** command for each subinterface.

Figure 17-2 shows the concept with Router B1, one of the branch routers from Figure 17-1. Because this router needs to route between only two VLANs, the figure also shows two sub-interfaces, named G0/0.10 and G0/0.20, which create a new place in the configuration where the per-VLAN configuration settings can be made. The router treats frames tagged with VLAN 10 as if they came in or out of G0/0.10 and frames tagged with VLAN 20 as if they came in or out G0/0.20.

Figure 17-2 Subinterfaces on Router B1

In addition, note that most Cisco routers do not attempt to negotiate trunking, so both the router and switch need to manually configure trunking. This chapter discusses the router side of that trunking configuration; the matching switch interface would need to be configured with the **switchport mode trunk** command.

Answers to the "Do I Know This Already?" quiz:

1 A, F 2 B, C 3 C 4 C, D 5 A, C 6 B, C

Example 17-1 shows a full example of the 802.1Q trunking configuration required on Router B1 in Figure 17-2. More generally, these steps detail how to configure 802.1Q trunking on a router:

- Step 1. Use the interface type number subint command in global configuration mode to create a unique subinterface for each VLAN that needs to be routed.
- Step 2. Use the **encapsulation dot1q** *vlan id* command in subinterface configuration mode to enable 802.1Q and associate one specific VLAN with the subinterface.
- Step 3. Use the ip address address mask command in subinterface configuration mode to configure IP settings (address and mask).

Example 17-1 Router Configuration for the 802.10 Encapsulation Shown in Figure 17-2

```
B1# show running-config
! Only pertinent lines shown
interface gigabitethernet 0/0
! No IP address up here! No encapsulation up here!
interface gigabitethernet 0/0.10
encapsulation dot1q 10
 ip address 10.1.10.1 255.255.255.0
interface gigabitethernet 0/0.20
encapsulation dot1q 20
 ip address 10.1.20.1 255.255.255.0
```

First, look at the subinterface numbers. The subinterface number begins with the period, like .10 and .20 in this case. These numbers can be any number from 1 up through a very large number (over 4 billion). The number just needs to be unique among all subinterfaces associated with this one physical interface. In fact, the subinterface number does not even have to match the associated VLAN ID. (The encapsulation command, and not the subinterface number, defines the VLAN ID associated with the subinterface.)

NOTE Although not required, most sites do choose to make the subinterface number match the VLAN ID, as shown in Example 17-1, just to avoid confusion.

Each subinterface configuration lists two subcommands. One command (encapsulation) enables trunking and defines the VLAN whose frames are considered to be coming in and out of the subinterface. The ip address command works the same way it does on any other interface. Note that if the physical Ethernet interface reaches an up/up state, the subinterface should as well, which would then let the router add the connected routes shown at the bottom of the example.

Now that the router has a working interface, with IPv4 addresses configured, the router can route IPv4 packets on these subinterfaces. That is, the router treats these subinterfaces like

any physical interface in terms of adding connected routes, matching those routes, and forwarding packets to/from those connected subnets.

The configuration and use of the native VLAN on the trunk require a little extra thought. The native VLAN can be configured on a subinterface, or on the physical interface, or ignored as in Example 17-1. Each 802.1Q trunk has one native VLAN, and if the router needs to route packets for a subnet that exists in the native VLAN, then the router needs some configuration to support that subnet. The two options to define a router interface for the native VLAN are

- Configure the ip address command on the physical interface, but without an
 encapsulation command; the router considers this physical interface to be using the
 native VLAN.
- Configure the ip address command on a subinterface and use the encapsulation dot1q vlan-id native subcommand to tell the router both the VLAN ID and the fact that it is the native VLAN.

Example 17-2 shows both native VLAN configuration options with a small change to the same configuration in Example 17-1. In this case, VLAN 10 becomes the native VLAN. The top part of the example shows the option to configure the router physical interface to use native VLAN 10. The second half of the example shows how to configure that same native VLAN on a subinterface. In both cases, the switch configuration also needs to be changed to make VLAN 10 the native VLAN.

Example 17-2 Router Configuration Using Native VLAN 10 on Router B1

```
! First option: put the native VLAN IP address on the physical interface interface gigabitethernet 0/0
ip address 10.1.10.1 255.255.255.0
!
interface gigabitethernet 0/0.20
encapsulation dot1q 20
ip address 10.1.20.1 255.255.255.0
! Second option: like Example 17-1, but add the native keyword interface gigabitethernet 0/0.10
encapsulation dot1q 10 native
ip address 10.1.10.1 255.255.255.0
!
interface gigabitethernet 0/0.20
encapsulation dot1q 20
ip address 10.1.20.1 255.255.255.0
```

Verifying ROAS

Beyond using the **show running-config** command, ROAS configuration on a router can be best verified with two commands: **show ip route** [connected] and **show vlans**. As with any router interface, as long as the interface is in an up/up state and has an IPv4 address configured, IOS will put a connected (and local) route in the IPv4 routing table. So, a first and obvious check would be to see if all the expected connected routes exist. Example 17-3 lists the connected routes per the configuration shown in Example 17-1.

Example 17-3 Connected Routes Based on Example 17-1 Configuration

```
B1# show ip route connected

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
! Legend omitted for brevity

10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks

C 10.1.10.0/24 is directly connected, GigabitEthernet0/0.10

L 10.1.20.0/24 is directly connected, GigabitEthernet0/0.20

C 10.1.20.0/24 is directly connected, GigabitEthernet0/0.20

L 10.1.20.1/32 is directly connected, GigabitEthernet0/0.20
```

As for interface and subinterface state, note that the ROAS subinterface state does depend to some degree on the physical interface state. In particular, the subinterface state cannot be better than the state of the matching physical interface. For instance, on Router B1 in the examples so far, physical interface G0/0 is in an up/up state, and the subinterfaces are in an up/up state. But if you unplugged the cable from that port, the physical port would fail to a down/down state, and the subinterfaces would also fail to a down/down state. Example 17-4 shows another example, with the physical interface being shut down, with the subinterfaces then automatically changed to an administratively down state as a result.

Example 17-4 Subinterface State Tied to Physical Interface State

```
B1# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
B1(config)# interface g0/0
B1(config-if)# shutdown
B1(config-if)# ^Z
B1# show ip interface brief | include 0/0
GigabitEthernet0/0 unassigned YES manual administratively down down
GigabitEthernet0/0.10 10.1.10.1 YES manual administratively down down
GigabitEthernet0/0.20 10.1.20.1 YES manual administratively down down
```

Additionally, the subinterface state can also be enabled and disabled independently from the physical interface, using the **no shutdown** and **shutdown** commands in subinterface configuration mode.

Another useful ROAS verification command, **show vlans**, spells out which router trunk interfaces use which VLANs, which VLAN is the native VLAN, plus some packet statistics. The fact that the packet counters are increasing can be useful when verifying whether traffic is happening or not. Example 17-5 shows a sample, based on the Router B1 configuration in Example 17-2 (bottom half), in which native VLAN 10 is configured on subinterface G0/0.10. Note that the output identifies VLAN 1 associated with the physical interface, VLAN 10 as the native VLAN associated with G0/0.10, and VLAN 20 associated with G0/0.20. It also lists the IP addresses assigned to each interface/subinterface.

Example 17-5 Sample show vlans Command to Match Sample Router Trunking Configuration

```
R1# show vlans
Virtual LAN ID: 1 (IEEE 802.1Q Encapsulation)
  vLAN Trunk Interface: GigabitEthernet0/0
  Protocols Configured: Address: Received: Transmitted:
       Other
                                                          83
  69 packets, 20914 bytes input
  147 packets, 11841 bytes output
Virtual LAN ID: 10 (IEEE 802.1Q Encapsulation)
   vLAN Trunk Interface: GigabitEthernet0/0.10
This is configured as native Vlan for the following interface(s):
GigabitEthernet0/0 Native-vlan Tx-type: Untagged
     Protocols Configured: Address: Received: Transmitted:
                10.1.10.1
         Other
                                             0
                                                            1
  3 packets, 722 bytes input
  4 packets, 264 bytes output
Virtual LAN ID: 20 (IEEE 802.1Q Encapsulation)
   vLAN Trunk Interface: GigabitEthernet0/0.20
   Protocols Configured: Address: Received: Transmitted:
          IP 10.1.20.1
                                           0
                                                       134
        Other
   0 packets, 0 bytes input
   135 packets, 10498 bytes output
```

Troubleshooting ROAS

The biggest challenge when troubleshooting ROAS has to do with the fact that if you misconfigure only the router or misconfigure only the switch, the other device on the trunk has no way to know that the other side is misconfigured. That is, if you check the show ip route and show vlans commands on a router, and the output looks like it matches the intended configuration, and the connected routes for the correct subinterfaces show up, routing may still fail because of problems on the attached switch. So, troubleshooting ROAS often begins with checking the configuration on both the router and switch because there is no status output on either device that tells you where the problem might be.

First, to check ROAS on the router, you need to start with the intended configuration and ask questions about the configuration:

- 1. Is each non-native VLAN configured on the router with an encapsulation dot1q vlan-id command on a subinterface?
- 2. Do those same VLANs exist on the trunk on the neighboring switch (show interfaces trunk), and are they in the allowed list, not VTP pruned, and not STP blocked?
- 3. Does each router ROAS subinterface have an IP address/mask configured per the planned configuration?
- **4.** If using the native VLAN, is it configured correctly on the router either on a subinterface (with an encapsulation dot1q vlan-id native command) or implied on the physical interface?
- 5. Is the same native VLAN configured on the neighboring switch's trunk in comparison to the native VLAN configured on the router?
- **6.** Are the router physical or ROAS subinterfaces configured with a **shutdown** command?

For some of these steps, you need to be ready to investigate possible VLAN trunking issues on the LAN switch. The reason is that on many Cisco routers, router interfaces do not negotiate trunking. As a result, ROAS relies on static trunk configuration on both the router and switch. If the switch has any problems with VLANs or the VLAN trunking configuration on its side of the trunk, the router has no way to realize that the problem exists.

For example, imagine you configured ROAS on a router just like in Example 17-1 or Example 17-2. However, the switch on the other end of the link had no matching configuration. For instance, maybe the switch did not even define VLANs 10 and 20. Maybe the switch did not configure trunking on the port connected to the router. Even with blatant misconfiguration or missing configuration on the switch, the router still shows up/up ROAS interfaces and subinterfaces, IP routes in the output of show ip route, and meaningful configuration information in the output of the show vlans command.

VLAN Routing with Layer 3 Switch SVIs

Using a router with ROAS to route packets makes sense in some cases, particularly at small remote sites. In sites with a larger LAN, network designers choose to use Layer 3 switches for most inter-VLAN routing.

A Layer 3 switch (also called a multilayer switch) is one device, but it executes logic at two layers: Layer 2 LAN switching and Layer 3 IP routing. The Layer 2 switch function forwards frames inside each VLAN, but it will not forward frames between VLANs. The Layer 3 forwarding (routing) logic forwards IP packets between VLANs.

Layer 3 switches typically support two configuration options to enable IPv4 routing inside the switch, specifically to enable IPv4 on switch interfaces. This section explains one option, an option that uses switched virtual interfaces (SVI). The final major section of the chapter deals with the other option for configuring IPv4 addresses on Layer 3 switches: routed interfaces.

Configuring Routing Using Switch SVIs

The configuration of a Layer 3 switch mostly looks like the Layer 2 switching configuration shown back in Parts II and III of this book, with a small bit of configuration added for

the Layer 3 functions. The Layer 3 switching function needs a virtual interface connected to each VLAN internal to the switch. These VLAN interfaces act like router interfaces, with an IP address and mask. The Layer 3 switch has an IP routing table, with connected routes off each of these VLAN interfaces. (These interfaces are also referred to as switched virtual interfaces [SVI].)

To show the concept of Layer 3 switching with SVIs, the following example uses the same branch office with two VLANs shown in the earlier examples, but now the design will use Layer 3 switching in the LAN switch. Figure 17-3 shows the design changes and configuration concept for the Layer 3 switch function with a router icon inside the switch, to emphasize that the switch routes the packets.

Figure 17-3 Routing on VLAN Interfaces in a Layer 3 Switch

Note that the figure represents the internals of the Layer 3 switch within the box in the middle of the figure. The branch still has two user VLANs (10 and 20), so the Layer 3 switch needs one VLAN interface for each VLAN. The figure shows a router icon inside the gray box to represent the Layer 3 switching function, with two VLAN interfaces on the right side of that icon. In addition, the traffic still needs to get to router B1 (a physical router) to access the WAN, so the switch uses a third VLAN (VLAN 30 in this case) for the link to Router B1. The physical link between the Layer 3 switch and router B1 would not be a trunk, but instead be an access link.

The following steps show how to configure Layer 3 switching using SVIs. Note that on some switches, like the 2960 and 2960-XR switches used for the examples in this book, the ability to route IPv4 packets must be enabled first, with a reload of the switch required to enable the feature. The steps that occur after the reload would apply to all models of Cisco switches that are capable of doing Layer 3 switching.

Step 1. Enable IP routing on the switch, as needed:

- **A.** Use the sdm prefer lanbase-routing command (or similar) in global configuration mode to change the switch forwarding ASIC settings to make space for IPv4 routes at the next reload of the switch.
- **B.** Use the reload EXEC command in enable mode to reload (reboot) the switch to pick up the new sdm prefer command setting.
- **C.** Once reloaded, use the **ip routing** command in global configuration mode to enable the IPv4 routing function in IOS software and to enable key commands like show ip route.

- Configure each SVI interface, one per VLAN for which routing should be done Step 2. by this Layer 3 switch:
 - **A.** Use the interface vlan vlan id command in global configuration mode to create a VLAN interface and to give the switch's routing logic a Laver 3 interface connected into the VLAN of the same number.
 - **B.** Use the ip address address mask command in VLAN interface configuration mode to configure an IP address and mask on the VLAN interface, enabling IPv4 routing on that VLAN interface.
 - **C.** (As needed) Use the **no shutdown** command in interface configuration mode to enable the VLAN interface (if it is currently in a shutdown state).

Example 17-6 shows the configuration to match Figure 17-3. In this case, switch SW1 has already used the sdm prefer global command to change to a setting that supports IPv4 routing, and the switch has been reloaded. The example shows the related configuration on all three VLAN interfaces.

Example 17-6 VLAN Interface Configuration for Layer 3 Switching

```
ip routing
interface vlan 10
ip address 10.1.10.1 255.255.255.0
interface vlan 20
ip address 10.1.20.1 255.255.255.0
interface vlan 30
ip address 10.1.30.1 255.255.255.0
```

Verifying Routing with SVIs

With the VLAN configuration shown in the previous section, the switch is ready to route packets between the VLANs as shown in Figure 17-3. To support the routing of packets, the switch adds connected IP routes as shown in Example 17-7; note that each route is listed as being connected to a different VLAN interface.

Example 17-7 Connected Routes on a Layer 3 Switch

```
SW1# show ip route
! legend omitted for brevity
       10.0.0.0/8 is variably subnetted, 6 subnets, 2 masks
          10.1.10.0/24 is directly connected, Vlan10
L
          10.1.10.1/32 is directly connected, Vlan10
          10.1.20.0/24 is directly connected, Vlan20
L
          10.1.20.1/32 is directly connected, Vlan20
C
          10.1.30.0/24 is directly connected, Vlan30
          10.1.30.1/32 is directly connected, Vlan30
L
```

The switch would also need additional routes to the rest of the network (not shown in the figures in this chapter). The Layer 3 switch could use static routes or a routing protocol, depending on the capabilities of the switch. For instance, if you then enabled OSPF on the Layer 3 switch, the configuration and verification would work the same as it does on a router, as discussed in Chapter 20, "Implementing OSPF." The routes that IOS adds to the Laver 3 switch's IP routing table would list the VLAN interfaces as outgoing interfaces.

NOTE Some models of Cisco enterprise switches, based on model, IOS version, and IOS feature set, support different capabilities for IP routing and routing protocols, so for real networks, check the capabilities of the switch model by browsing at Cisco.com. In particular, check the Cisco Feature Navigator (CFN) tool at http://www.cisco.com/go/cfn.

Troubleshooting Routing with SVIs

There are two big topics to investigate when troubleshooting routing over LANs with SVIs. First, you have to make sure the switch has been enabled to support IP routing. Second, the VLAN associated with each VLAN interface must be known and active on the local switch; otherwise, the VLAN interfaces do not come up.

First, about enabling IP routing, note that some models of Cisco switches default to enable Layer 3 switching, and some do not. So, to make sure your switch supports Layer 3 routing, look to those first few configuration commands listed in the configuration checklist found in the earlier section "Configuring Routing Using Switch SVIs." Those commands are sdm prefer (followed by a reload) and then ip routing (after the reload).

The sdm prefer command changes how the switch forwarding chips allocate memory for different forwarding tables, and changes to those tables require a reload of the switch. By default, many access switches that support Layer 3 switching still have an SDM default that does not allocate space for an IP routing table. Once changed and reloaded, the ip routing command then enables IPv4 routing in IOS software. Both are necessary before some Cisco switches will act as a Layer 3 switch.

Example 17-8 shows some symptoms on a router for which Layer 3 switching had not yet been enabled by the sdm prefer command. As you can see, both the show ip route EXEC command and the ip routing config command are rejected because they do not exist to IOS until the sdm prefer command has been used (followed by a reload of the switch).

Example 17-8 Evidence That a Switch Has Not Yet Enabled IPv4 Routing

```
SW1# show ip route
% Invalid input detected at '^' marker.
SW3# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
SW3 (config) # ip routing
% Invalid input detected at '^' marker.
```

The second big area to investigate when troubleshooting SVIs relates to the SVI state, a state that ties to the state of the associated VLANs. Each VLAN interface has a matching VLAN of the same number, and the VLAN interface's state is tied to the state of the VLAN in certain ways. In particular, for a VLAN interface to be in an up/up state:

- The VLAN must be defined on the local switch (either explicitly or learned with VTP).
- The switch must have at least one up/up interface using the VLAN, either/both: Step 2.
 - **A.** An up/up access interface assigned to that VLAN
 - **B.** A trunk interface for which the VLAN is in the allowed list, is STP forwarding, and is not VTP pruned
- Step 3. The VLAN (not the VLAN interface) must be administratively enabled (that is, not shutdown).
- Step 4. The VLAN interface (not the VLAN) must be administratively enabled (that is, not **shutdown**).

When working through the steps in the list, keep in mind that the VLAN and the VLAN interface are related but separate ideas, and the configuration items are separate in the CLI. The VLAN interface is a switch's Layer 3 interface connected to the VLAN. If you want to route packets for the subnets on VLANs 11, 12, and 13, the matching VLAN interfaces must be numbered 11, 12, and 13. And both the VLANs and the VLAN interfaces can be disabled and enabled with the shutdown and no shutdown commands (as mentioned in Steps 3 and 4 in the previous list), so you have to check for both.

Example 17-9 shows three scenarios, each of which leads to one of the VLAN interfaces in the previous configuration example (Figure 17-3, Example 17-6) to fail. At the beginning of the example, all three VLAN interfaces are up/up. VLANs 10, 20, and 30 each have at least one access interface up and working. The example works through three scenarios:

- Scenario 1: The last access interface in VLAN 10 is shut down (F0/1), so IOS shuts down the VLAN 10 interface.
- Scenario 2: VLAN 20 (not VLAN interface 20, but VLAN 20) is deleted, which results in IOS then bringing down (not shutting down) the VLAN 20 interface.
- Scenario 3: VLAN 30 (not VLAN interface 30, but VLAN 30) is shut down, which results in IOS then bringing down (not shutting down) the VLAN 30 interface.

Example 17-9 Three Examples That Cause VLAN Interfaces to Fail

SW1# s	now interfaces	status		
! Only	ports related	to the	example are	shown
Port	Name		Status	Vlan
Fa0/1			connected	10
Fa0/2			notconnect	10
Fa0/3			connected	20
Fa0/4			connected	20
Gi0/1			connected	30

```
SW1# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
! Case 1: Interface F0/1, the last up/up access interface in VLAN 10, is shutdown
SW1(config) # interface fastEthernet 0/1
SW1(config-if)# shutdown
SW1(config-if)#
*Apr 2 19:54:08.784: %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan10, changed
state to down
SW1(config-if)#
*Apr 2 19:54:10.772: %LINK-5-CHANGED: Interface FastEthernet0/1, changed state to
administratively down
*Apr 2 19:54:11.779: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1,
changed state to down
! Case 2: VLAN 20 is deleted
SW1(config)# no vlan 20
SW1 (config) #
*Apr 2 19:54:39.688: %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan20, changed
state to down
! Case 3: VLAN 30, the VLAN from the switch to the router, is shutdown
SW1(config)# vlan 30
SW1(config-vlan)# shutdown
SW1(config-vlan)# exit
SW1(config)#
*Apr 2 19:55:25.204: %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan30, changed
state to down
! Final status of all three VLAN interfaces are below
SW1# show ip interface brief | include Vlan
Vlan1
                      unassigned
                                     YES manual administratively down down
Vlan10
                      10.1.10.1
                                     YES manual up
                                                                        down
Vlan20
                      10.1.20.1
                                     YES manual up
                                                                        down
Vlan30
                       10.1.30.1
                                      YES manual up
                                                                        down
```

Note that the example ends with the three VLAN interfaces in an up/down state per the show ip interface brief command.

VLAN Routing with Layer 3 Switch Routed Ports

When Layer 3 switches use SVIs, the physical interfaces on the switches act like they always have: as Layer 2 interfaces. That is, the physical interfaces receive Ethernet frames. The switch learns the source MAC address of the frame, and the switch forwards the frame based on the destination MAC address. To perform routing, any Ethernet frames destined for any of the SVI interface MAC addresses trigger the processing of the Layer 2 switching logic, resulting in normal routing actions like stripping data-link headers, making a routing decision, and so on.

Alternately, the Layer 3 switch configuration can make a physical port act like a router interface instead of a switch interface. To do so, the switch configuration makes that port a routed port. On a routed port, the switch does not perform Layer 2 switching logic on that frame. Instead, frames arriving in a routed port trigger the Layer 3 routing logic, including

- 1. Stripping off the incoming frame's Ethernet data-link header/trailer
- 2. Making a Layer 3 forwarding decision by comparing the destination IP address to the IP routing table
- **3.** Adding a new Ethernet data-link header/trailer to the packet
- Forwarding the packet, encapsulated in a new frame

This third major section of the chapter examines routed interfaces as configured on Cisco Layer 3 switches, but with a particular goal in mind: to also discuss Layer 3 EtherChannels. The exam topics do not mention routed interfaces specifically, but the exam topics do mention L3 EtherChannels, meaning Layer 3 EtherChannels.

You might recall that Chapter 10, "RSTP and EtherChannel Configuration," discussed Layer 2 EtherChannels. Like Layer 2 EtherChannels, Layer 3 EtherChannels also treat multiple links as one link. Unlike Layer 2 EtherChannels, however, Layer 3 EtherChannels treat the channel as a routed port instead of switched port. So this section first looks at routed ports on Cisco Layer 3 switches and then discusses Layer 3 EtherChannels.

Implementing Routed Interfaces on Switches

When a Layer 3 switch needs a Layer 3 interface connected to a subnet, and only one physical interface connects to that subnet, the network engineer can choose to use a routed port instead of an SVI. Conversely, when the Layer 3 switch needs a Layer 3 interface connected to a subnet, and many physical interfaces on the switch connect to that subnet, an SVI needs to be used. (SVIs forward traffic internally into the VLAN, so that then the Layer 2 logic can forward the frame out any of the ports in the VLAN. Routed ports cannot.)

To see why, consider the design in Figure 17-4, which repeats the same design from Figure 17-3 (used in the SVI examples). In that design, the gray rectangle on the right represents the switch and its internals. On the right of the switch, at least two access ports sit in both VLAN 10 and VLAN 20. However, that figure shows a single link from the switch to Router B1. The switch could configure the port as an access port in a separate VLAN, as shown with VLAN 30 in Examples 17-6 and 17-7. However, with only one switch port needed, the switch could configure that link as a routed port, as shown in the figure.

Figure 17-4 Routing on a Routed Interface on a Switch

Enabling a switch interface to be a routed interface instead of a switched interface is simple: just use the **no switchport** subcommand on the physical interface. Cisco switches capable of being a Layer 3 switch use a default of the **switchport** command to each switch physical interface. Think about the word *switchport* for a moment. With that term, Cisco tells the switch to treat the port like it is a port on a switch—that is, a Layer 2 port on a switch. To make the port stop acting like a switch port and instead act like a router port, use the **no switchport** command on the interface.

Once the port is acting as a routed port, think of it like a router interface. That is, configure the IP address on the physical port, as implied in Figure 17-4. Example 17-10 shows a completed configuration for the interfaces configured on the switch in Figure 17-4. Note that the design uses the exact same IP subnets as the example that showed SVI configuration in Example 17-6, but now, the port connected to subnet 10.1.30.0 has been converted to a routed port. All you have to do is add the **no switchport** command to the physical interface and configure the IP address on the physical interface.

Example 17-10 Configuring Interface G0/1 on Switch SW1 as a Routed Port

```
ip routing
!
interface vlan 10
  ip address 10.1.10.1 255.255.255.0
!
interface vlan 20
  ip address 10.1.20.1 255.255.255.0
!
interface gigabitethernet 0/1
  no switchport
  ip address 10.1.30.1 255.255.255.0
```

Once configured, the routed interface will show up differently in command output in the switch. In particular, for an interface configured as a routed port with an IP address, like interface GigabitEthernet0/1 in the previous example:

show interfaces: Similar to the same command on a router, the output will display the IP address of the interface. (Conversely, for switch ports, this command does not list an IP address.)

show interfaces status: Under the "VLAN" heading, instead of listing the access VLAN or the word *trunk*, the output lists the word *routed*, meaning that it is a routed port.

show ip route: Lists the routed port as an outgoing interface in routes.

show interfaces *type number* switchport: If a routed port, the output is short and confirms that the port is not a switch port. (If the port is a Layer 2 port, this command lists many configuration and status details.)

Example 17-11 shows samples of all four of these commands as taken from the switch as configured in Example 17-10.

Example 17-11 Verification Commands for Routed Ports on Switches

```
SW11# show interfaces q0/1
GigabitEthernet0/1 is up, line protocol is up (connected)
Hardware is Gigabit Ethernet, address is bcc4.938b.e541 (bia bcc4.938b.e541)
Internet address is 10.1.30.1/24
! lines omitted for brevity
SW1# show interfaces status
! Only ports related to the example are shown; the command lists physical only
Port
          Name
                             Status
                                          Vlan
                                                     Duplex Speed Type
Fa0/1
                             connected
                                          1.0
                                                      a-full a-100 10/100BaseTX
Fa0/2
                                                               auto 10/100BaseTX
                             notconnect
                                          10
                                                     a-full a-100 10/100BaseTX
Fa0/3
                             connected
                                          2.0
Fa0/4
                                                      a-full a-100 10/100BaseTX
                             connected
                                          2.0
                                                      a-full a-1000 10/100/1000BaseTX
Gi0/1
                             connected routed
SW1# show ip route
! legend omitted for brevity
       10.0.0.0/8 is variably subnetted, 6 subnets, 2 masks
          10.1.10.0/24 is directly connected, Vlan10
C
          10.1.10.1/32 is directly connected, Vlan10
Τ.
С
          10.1.20.0/24 is directly connected, Vlan20
Τ.
          10.1.20.1/32 is directly connected, Vlan20
          10.1.30.0/24 is directly connected, GigabitEthernet0/1
т.
          10.1.30.1/32 is directly connected, GigabitEthernet0/1
SW1# show interfaces g0/1 switchport
Name: Gi0/1
Switchport: Disabled
```

So, with two options—SVI and routed ports—where should you use each?

For any topologies with a point-to-point link between two devices that do routing, a routed interface works well.

Figure 17-5 shows an example of where to use SVIs and where to use routed ports in a typical core/distribution/access design. In this design, the core (Core1, Core2) and distribution (D11 through D14) switches perform Layer 3 switching. All the ports that are links directly between the Layer 3 switches can be routed interfaces. For VLANs for which many interfaces (access and trunk) connect to the VLAN, SVIs make sense because the SVIs can send and receive traffic out multiple ports on the same switch. In this design, all the ports on Core1 and Core2 will be routed ports, while the four distribution switches will use some routed ports and some SVIs.

Figure 17-5 Using Routed Interfaces for Core and Distribution Layer 3 Links

Implementing Layer 3 EtherChannels

So far, this section has stated that routed interfaces can be used with a single point-to-point link between pairs of Layer 3 switches, or between a Layer 3 switch and a router. However, in most designs, the network engineers use at least two links between each pair of distribution and core switches, as shown in Figure 17-6.

Figure 17-6 Two Links Between Each Distribution and Core Switch

While each individual port in the distribution and core could be treated as a separate routed port, it is better to combine each pair of parallel links into a Layer 3 EtherChannel. Without using EtherChannel, you can still make each port on each switch in the center of the figure be a routed port. It works. However, once you enable a routing protocol but don't use Ether Channels, each Layer 3 switch will now learn two IP routes with the same neighboring switch as the next hop—one route over one link, another route over the other link.

Using a Layer 3 EtherChannel makes more sense with multiple parallel links between two switches. By doing so, each pair of links acts as one Layer 3 link. So, each pair of switches has one routing protocol neighbor relationship with the neighbor, and not two. Each switch learns one route per destination per pair of links, and not two. IOS then balances the traffic, often with better balancing than the balancing that occurs with the use of multiple IP routes to the same subnet. Overall, the Layer 3 EtherChannel approach works much better than leaving each link as a separate routed port and using Layer 3 balancing.

Compared to what you have already learned, configuring a Layer 3 EtherChannel takes only a little more work. Chapter 10 already showed you how to configure an EtherChannel. This chapter has already shown how to make a port a Layer 3 routed port. Next, you have to combine the two ideas by combining both the EtherChannel and routed port configuration. The following checklist shows the steps, assuming a static definition.

- Step 1. Configure the physical interfaces as follows, in interface configuration mode:
 - **A.** Add the channel-group *number* mode on command to add it to the channel. Use the same number for all physical interfaces on the same switch, but the number used (the channel-group number) can differ on the two neighboring switches.
 - **B.** Add the **no switchport** command to make each physical port a routed port.

Step 2. Configure the PortChannel interface:

- **A.** Use the interface port-channel *number* command to move to port-channel configuration mode for the same channel number configured on the physical interfaces.
- **B.** Add the **no switchport** command to make sure that the port-channel interface acts as a routed port. (IOS may have already added this command.)
- **C.** Use the **ip address** *address mask* command to configure the address and mask.

NOTE Cisco uses the term *EtherChannel* in concepts discussed in this section and then uses the term *PortChannel*, with command keyword **port-channel**, when verifying and configuring EtherChannels. For the purposes of understanding the technology, you may treat these terms as synonyms. However, it helps to pay close attention to the use of the terms PortChannel and EtherChannel as you work through the examples in this section because IOS uses both.

Example 17-12 shows an example of the configuration for a Layer 3 EtherChannel for switch SW1 in Figure 17-7. The EtherChannel defines port-channel interface 12 and uses subnet 10.1.12.0/24.

Figure 17-7 Design Used in EtherChannel Configuration Examples

Example 17-12 Layer 3 EtherChannel Configuration on Switch SW1

```
interface GigabitEthernet1/0/13
no switchport
no ip address
channel-group 12 mode on
interface GigabitEthernet1/0/14
no switchport
no ip address
channel-group 12 mode on
interface Port-channel12
no switchport
ip address 10.1.12.1 255.255.255.0
```

Of particular importance, note that although the physical interfaces and PortChannel interface are all routed ports, the IP address should be placed on the PortChannel interface only. In fact, when the **no switchport** command is configured on an interface, IOS adds the **no ip address** command to the interface. Then configure the IP address on the PortChannel interface only.

Once configured, the PortChannel interface appears in several commands, as shown in Example 17-13. The commands that list IP addresses and routes refer to the PortChannel interface. Also, note that the show interfaces status command lists the fact that the physical ports and the port-channel 12 interface are all routed ports.

Example 17-13 Verification Commands Listing Interface Port-Channel 12 from Switch SW1

```
SW1# show interfaces port-channel 12
Port-channel12 is up, line protocol is up (connected)
  Hardware is EtherChannel, address is bcc4.938b.e543 (bia bcc4.938b.e543)
Internet address is 10.1.12.1/24
! lines omitted for brevity
SW1# show interfaces status
! Only ports related to the example are shown.
Port
         Name
                            Status
                                        Vlan
                                                   Duplex Speed Type
Gi1/0/13
                            connected routed
                                                   a-full a-1000 10/100/1000BaseTX
Gi1/0/14
                            connected
                                        routed
                                                   a-full a-1000 10/100/1000BaseTX
Po12
                            connected routed
                                                   a-full a-1000
SW1# show ip route
! legend omitted for brevity
      10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks
C
         10.1.2.0/24 is directly connected, Vlan2
         10.1.2.1/32 is directly connected, Vlan2
         10.1.12.0/24 is directly connected, Port-channel12
          10.1.12.1/32 is directly connected, Port-channel12
```

For a final bit of verification, you can examine the EtherChannel directly with the show etherchannel summary command as listed in Example 17-14. Note in particular that it lists a flag legend for characters that identify key operational states, such as whether a port is bundled (included) in the PortChannel (P) and whether it is acting as a routed (R) or switched (S) port.

Example 17-14 *Verifying the EtherChannel*

```
SW1# show etherchannel 12 summarv
Flags: D - down
                      P - bundled in port-channel
      I - stand-alone s - suspended
      H - Hot-standby (LACP only)
      R - Layer3 S - Layer2
      U - in use
                    f - failed to allocate aggregator
      M - not in use, minimum links not met
      u - unsuitable for bundling
      w - waiting to be aggregated
      d - default port
Number of channel-groups in use: 1
Number of aggregators:
Group Port-channel Protocol Ports
12
      Po12(RU)
                               Gi1/0/13(P) Gi1/0/14(P)
```

Troubleshooting Layer 3 EtherChannels

When you are troubleshooting a Layer 3 EtherChannel, there are two main areas to consider. First, you need to look at the configuration of the channel-group command, which enables an interface for an EtherChannel. Second, you should check a list of settings that must match on the interfaces for a Layer 3 EtherChannel to work correctly.

As for the channel-group interface subcommand, this command can enable EtherChannel statically or dynamically. If dynamic, this command's keywords imply either Port Aggregation Protocol (PaGP) or Link Aggregation Control Protocol (LACP) as the protocol to negotiate between the neighboring switches whether they put the link into the EtherChannel.

If all this sounds vaguely familiar, it is the exact same configuration covered way back in the Chapter 10 section "Configuring Dynamic EtherChannels." The configuration of the channel-group subcommand is exactly the same, with the same requirements, whether configuring Layer 2 or Layer 3 EtherChannels. So, it might be a good time to review those EtherChannel configuration details from Chapter 10. However, regardless of when you review and master those commands, note that the configuration of the EtherChannel (with the **channel-group** subcommand) is the same, whether Layer 2 or Layer 3.

Additionally, you must do more than just configure the **channel-group** command correctly for all the physical ports to be bundled into the EtherChannel. Layer 2 EtherChannels have a longer list of requirements, but Layer 3 EtherChannels also require a few consistency checks between the ports before they can be added to the EtherChannel. The following is the list of requirements for Layer 3 EtherChannels:

no switchport: The PortChannel interface must be configured with the no switchport command, and so must the physical interfaces. If a physical interface is not also configured with the **no switchport** command, it will not become operational in the EtherChannel.

Speed: The physical ports in the channel must use the same speed.

duplex: The physical ports in the channel must use the same duplex.

Chapter Review

One key to doing well on the exams is to perform repetitive spaced review sessions. Review this chapter's material using either the tools in the book or interactive tools for the same material found on the book's companion website. Refer to the "Your Study Plan" element for more details. Table 17-2 outlines the key review elements and where you can find them. To better track your study progress, record when you completed these activities in the second column.

Table 17-2 Chapter Review Tracking

Review Element	Review Date(s)	Resource Used
Review key topics		Book, website
Review key terms		Book, website
Repeat DIKTA questions		Book, PTP
Review config checklists		Book, website
Review command tables		Book
Do labs		Blog
Watch video		Website

Review All the Key Topics

Table 17-3 Key Topics for Chapter 17

Key Topic Element	Description	Page Number
Figure 17-2	Concept of VLAN subinterfaces on a router	396
List	Two alternative methods to configure the native VLAN in a ROAS configuration	398
List	Troubleshooting suggestions for ROAS configuration	401
Figure 17-3	Layer 3 switching with SVIs concept and configuration	402

Key Topic Element	Description	Page Number
List	Troubleshooting suggestions for correct operation of a Layer 3 switch that uses SVIs	405
Figure 17-4	Layer 3 switching with routed ports concept and configuration	407
List	show commands that list Layer 3 routed ports in their output	408
Figure 17-7	Layer 3 EtherChannel concept and configuration	411
List	List of configuration settings that must be consistent before IOS will bundle a link with an existing Layer 3 EtherChannel	414

Key Terms You Should Know

router-on-a-stick (ROAS), switched virtual interface (SVI), VLAN interface, Layer 3 EtherChannel (L3 EtherChannel), routed port, Layer 3 switch, multilayer switch, subinterfaces

Command References

Tables 17-4 and 17-5 list configuration and verification commands used in this chapter. As an easy review exercise, cover the left column in a table, read the right column, and try to recall the command without looking. Then repeat the exercise, covering the right column, and try to recall what the command does.

Table 17-4 Chapter 17 Configuration Command Reference

Command	Description
interface type number.subint	Router global command to create a subinterface and to enter configuration mode for that subinterface
encapsulation dot1q vlan-id [native]	Router subinterface subcommand that tells the router to use 802.1Q trunking, for a particular VLAN, and with the native keyword, to not encapsulate in a trunking header
[no] ip routing	Global command that enables (ip routing) or disables (no ip routing) the routing of IPv4 packets on a router or Layer 3 switch
interface vlan vlan-id	A switch global command on a Layer 3 switch to create a VLAN interface and to enter configuration mode for that VLAN interface
sdm prefer lanbase-routing	Command on some Cisco switches that reallocates forwarding chip memory to allow for an IPv4 routing table
[no] switchport	Layer 3 switch subcommand that makes the port act as a Layer 2 port (switchport) or Layer 3 routed port (no switchport)

Command	Description
interface port-channel channel- number	A switch command to enter PortChannel configuration mode and also to create the PortChannel if not already created
channel-group channel-number mode {auto desirable active passive on}	Interface subcommand that enables EtherChannel on the interface

Table 17-5 Chapter 17 EXEC Command Reference

Command	Description
show ip route	Lists the router's entire routing table
show ip route [connected]	Lists a subset of the IP routing table
show vlans	Lists VLAN configuration and statistics for VLAN trunks configured on routers
show interfaces [interface type number]	Lists detailed status and statistical information, including IP address and mask, about all interfaces (or the listed interface only)
show interfaces [interface type number] status	Among other facts, for switch ports, lists the access VLAN or the fact that the interface is a trunk; or, for routed ports, lists "routed"
show interfaces <i>interface-id</i> switchport	For switch ports, lists information about any interface regarding administrative settings and operational state; for routed ports, the output simply confirms the port is a routed (not switched) port
show interfaces vlan number	Lists the interface status, the switch's IPv4 address and mask, and much more
show etherchannel [channel-group-number] summary	Lists information about the state of EtherChannels on this switch, including whether the channel is a Layer 2 or Layer 3 EtherChannel

Troubleshooting IPv4 Routing

This chapter covers the following exam topics:

1.0 Network Fundamentals

1.6 Configure and verify IPv4 addressing and subnetting

3.0 IP Connectivity

- 3.3 Configure and verify IPv4 and IPv6 static routing
 - 3.3.a Default route
 - 3.3.b Network route
 - 3.3.c Host route
 - 3.3.d Floating static

The first three chapters in this part of the book took you from a starting point of understanding IP addressing and subnetting to the details of implementing IP addressing, routing between connected subnets, and configuring static routes. All those steps include the idea of configuring a command and seeing a route show up in the IP routing table on that same router.

This chapter turns our attention to routing from end-to-end across an entire enterprise network. How do you troubleshoot an IPv4 network? How do you verify correct operation, identify root causes, and fix those for various IP routing features? How do you do that in the presence of an IP addressing and subnetting plan, requiring you to apply all that subnetting math from Part IV of this book and the basic address/mask and static route configuration from the other chapters here in Part V? This chapter answers some of those questions.

In particular, this chapter focuses on two tools and how to use them: ping and traceroute. Both tools test the IPv4 data plane; that is, the ability of each networking device to route or forward IPv4 packets. This chapter devotes a major section each to **ping** and **traceroute**. The chapter then ends with a short discussion of two other router tools that can also be useful for troubleshooting: Telnet and Secure Shell (SSH).

"Do I Know This Already?" Quiz

I put DIKTA quizzes in most of the chapters as a tool to help you decide how to approach reading a chapter. However, this chapter does not have a DIKTA quiz because I think you should read it regardless of your prior knowledge. As with all chapters in this book, this chapter introduces new concepts, but it also acts as a tool to review and deepen your understanding of IP routing. I hope you enjoy the perspectives on using ping and traceroute in this chapter.

Foundation Topics

Problem Isolation Using the ping Command

Someone sends you an email or text, or a phone message, asking you to look into a user's network problem. You Secure Shell (SSH) to a router and issue a **ping** command that works. What does that result rule out as a possible reason for the problem? What does it rule in as still being a possible root cause?

Then you issue another ping to another address, and this time the ping fails. Again, what does the failure of that ping command tell you? What parts of IPv4 routing may still be a problem, and what parts do you now know are not a problem?

The ping command gives us one of the most common network troubleshooting tools. When the ping command succeeds, it confirms many individual parts of how IP routing works, ruling out some possible causes of the current problem. When a ping command fails, it often helps narrow down where in the internetwork the root cause of the problem may be happening, further isolating the problem.

This section begins with a brief explanation of how ping works. It then moves on to some suggestions and analysis of how to use the **ping** command to isolate problems by removing some items from consideration.

Ping Command Basics

The ping command tests connectivity by sending packets to an IP address, expecting the device at that address to send packets back. The command sends packets that mean "if you receive this packet, and it is addressed to you, send a reply back." Each time the ping command sends one of these packets and receives the message sent back by the other host, the ping command knows a packet made it from the source host to the destination and back.

More formally, the ping command uses the Internet Control Message Protocol (ICMP), specifically the ICMP echo request and ICMP echo reply messages. ICMP defines many other messages as well, but these two messages were made specifically for connectivity testing by commands like ping. As a protocol, ICMP does not rely on TCP or UDP, and it does not use any application layer protocol. It functions as part of Layer 3, as a control protocol to assist IP by helping manage the IP network functions.

Figure 18-1 shows the ICMP messages, with IP headers, in an example. In this case, the user at host A opens a command prompt and issues the ping 172.16.2.101 command, testing connectivity to host B. The command sends one echo request and waits (Step 1); host B receives the messages and sends back an echo reply (Step 2).

Figure 18-1 Concept Behind ping 172.16.2.101 on Host A

The ping command is supported on many different devices and many common operating systems. The command has many options: the name or IP address of the destination, how many times the command should send an echo request, how long the command should wait (timeout) for an echo reply, how big to make the packets, and many other options. Example 18-1 shows a sample from host A, with the same command that matches the concept in Figure 18-1: a ping 172.16.2.101 command on host A.

Example 18-1 Sample Output from Host A's ping 172.16.2.101 Command

```
Wendell-Odoms-iMac:~ wendellodom$ ping 172.16.2.101

PING 172.16.2.101 (172.16.2.101): 56 data bytes

64 bytes from 172.16.2.101: icmp_seq=0 ttl=64 time=1.112 ms

64 bytes from 172.16.2.101: icmp_seq=1 ttl=64 time=0.673 ms

64 bytes from 172.16.2.101: icmp_seq=2 ttl=64 time=0.631 ms

64 bytes from 172.16.2.101: icmp_seq=3 ttl=64 time=0.674 ms

64 bytes from 172.16.2.101: icmp_seq=3 ttl=64 time=0.674 ms

64 bytes from 172.16.2.101: icmp_seq=4 ttl=64 time=0.642 ms

64 bytes from 172.16.2.101: icmp_seq=5 ttl=64 time=0.656 ms

^C

--- 172.16.2.101 ping statistics ---

6 packets transmitted, 6 packets received, 0.0% packet loss

round-trip min/avg/max/stddev = 0.631/0.731/1.112/0.171 ms
```

Strategies and Results When Testing with the ping Command

Often, the person handling initial calls from users about problems (often called a customer support rep, or CSR) cannot issue **ping** commands from the user's device. In some cases, talking users through typing the right commands and making the right clicks on their machines can be a problem. Or, the user just might not be available. As an alternative, using different **ping** commands from different routers can help isolate the problem.

The problem with using **ping** commands from routers, instead of from the host that has the problem, is that no single router **ping** command can exactly replicate a **ping** command done from the user's device. However, each different **ping** command can help isolate a problem further. The rest of this section of **ping** commands discusses troubleshooting IPv4 routing by using various **ping** commands from the command-line interface (CLI) of a router.

Testing Longer Routes from Near the Source of the Problem

Most problems begin with some idea like "host X cannot communicate with host Y." A great first troubleshooting step is to issue a ping command from X for host Y's IP address. However, assuming the engineer does not have access to host X, the engineer can instead issue the ping from the router nearest X, typically the router acting as host X's default gateway.

For instance, in Figure 18-1, imagine that the user of host A had called IT support with a problem related to sending packets to host B. A ping 172.16.2.101 command on host A would be a great first troubleshooting step, but the CSR cannot access host A or get in touch with the user of host A. So, the CSR telnets to Router R1 and pings host B from there, as shown in Example 18-2.

Example 18-2 Router R2 Pings Host B (Two Commands)

```
R1# ping 172.16.2.101
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.16.2.101, timeout is 2 seconds:
.1111
Success rate is 80 percent (4/5), round-trip min/avg/max = 1/2/4 ms
R1# ping 172.16.2.101
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.16.2.101, timeout is 2 seconds:
Success rate is 100 percent (5/5), round-trip min/avq/max = 1/2/4 ms
```

First, take a moment to review the output of the first IOS ping command. By default, the Cisco IOS ping command sends five echo messages, with a timeout of 2 seconds. If the command does not receive an echo reply within 2 seconds, the command considers that message to be a failure, and the command lists a period. If a successful reply is received within 2 seconds, the command displays an exclamation point. So, in this first command, the first echo reply timed out, whereas the other four received a matching echo reply within 2 seconds.

As a quick aside, the example shows a common and normal behavior with ping commands: the first ping command shows one failure to start, but then the rest of the messages work. This usually happens because some device in the end-to-end route is missing an ARP table entry.

Now think about troubleshooting and what a working ping command tells us about the current behavior of this internetwork. First, focus on the big picture for a moment:

- R1 can send ICMP echo request messages to host B (172.16.2.101).
- R1 sends these messages from its outgoing interface's IP address (by default), 172.16.4.1 in this case.
- Host B can send ICMP echo reply messages to R1's 172.16.4.1 IP address (hosts send echo reply messages to the IP address from which the echo request was received).

Figure 18-2 shows the packet flow.

Figure 18-2 Standard ping 172.6.2.101 Command Using the Source Interface IP Address

Next, think about IPv4 routing. In the forward direction, R1 must have a route that matches host B's address (172.16.2.101); this route will be either a static route or one learned with a routing protocol. R2 also needs a route for host B's address, in this case a connected route to B's subnet (172.16.2.0/24), as shown in the top arrow lines in Figure 18-3.

Figure 18-3 Layer 3 Routes Needed for R1's Ping 172.16.2.101 to Work

The arrow lines on the bottom of Figure 18-3 show the routes needed to forward the ICMP echo reply message back to Router R1's 172.16.4.1 interface. First, host B must have a valid default router setting because 172.16.4.1 sits in a different subnet than host B. R2 must also have a route that matches destination 172.16.4.1 (in this case, likely to be a connected route).

The working ping commands in Example 18-2 also require the data-link and physical layer details to be working. The WAN link must be working: The router interfaces must be up/up, which typically indicates that the link can pass data. On the LAN, R2's LAN interface must be in an up/up state. In addition, everything discussed about Ethernet LANs must be working because the ping confirmed that the packets went all the way from R1 to host B and back. In particular

- The switch interfaces in use are in a connected (up/up) state.
- Port security (discussed in the CCNA 200-301 Official Cert Guide, Volume 2) does not filter frames sent by R2 or host B.
- STP has placed the right ports into a forwarding state.

The ping 172.16.2.101 command in Example 18-2 also confirms that IP access control lists (ACL) did not filter the ICMP messages. One ACL contains a set of matching rules and actions: some matched packets are filtered (discarded), while others can continue on their path as normal. ACLs can examine packets as they enter or exit a router interface, so Figure 18-4 shows the various locations on routers R1 and R2 where an ACL could have filtered (discarded) the ICMP messages. (Note that an outbound ACL on router R1 would not filter packets created on R1, so there is no rightward-facing arrow over R1.)

Figure 18-4 Locations Where IP ACLs Could Have Filtered the Ping Messages

Finally, the working ping 172.16.2.101 command on R1 can also be used to reasonably predict that ARP worked and that switch SW2 learned MAC addresses for its MAC address table. R2 and host B need to know each other's MAC addresses so that they can encapsulate the IP packet inside an Ethernet frame, which means both must have a matching ARP table entry. The switch learns the MAC address used by R2 and by host B when it sends the ARP messages or when it sends the frames that hold the IP packets. Figure 18-5 shows the type of information expected in those tables.

Figure 18-5 Router and Host ARP Tables, with the Switch MAC Address Table

As you can see from the last few pages, a strategy of using a **ping** command from near the source of the problem can rule out a lot of possible root causes of any problems between two hosts—assuming the **ping** command succeeds. However, this **ping** command does not act exactly like the same **ping** command on the actual host. To overcome some of what is missing in the **ping** command from a nearby router, the next several examples show some strategies for testing other parts of the path between the two hosts that might have a current problem.

Using Extended Ping to Test the Reverse Route

Pinging from the default router, as discussed in the past few pages, misses an opportunity to test IP routes more fully. In particular, it does not test the reverse route back toward the original host.

For instance, referring to the internetwork in Figure 18-2 again, note that the reverse routes do not point to an address in host A's subnet. When R1 processes the ping 172.16.2.101 command, R1 has to pick a source IP address to use for the echo request, and routers choose the *IP address of the outgoing interface*. The echo request from R1 to host B flows with source IP address 172.16.4.1 (R1's G0/0/0 IP address). The echo reply flows back to that same address (172.16.4.1).

A standard ping often does not test the reverse route that you need to test. In this case, the standard ping 172.16.2.101 command on R1 does not test whether the routers can route back to subnet 172.16.1.0/24, instead testing their routes for subnet172.16.4.0. A better ping test would test the route back to host A's subnet; an extended ping from R1 can cause that test to happen. Extended ping allows R1's ping command to use R1's LAN IP address from within subnet 172.16.1.0/24. Then, the echo reply messages would flow to host A's subnet, as shown in Figure 18-6.

Figure 18-6 Extended Ping Command Tests the Route to 172.16.1.51 (Host A)

The extended ping command does allow the user to type all the parameters on a potentially long command, but it also allows users to simply issue the ping command, press Enter, with IOS then asking the user to answer questions to complete the command, as shown in Example 18-3. The example shows the ping command on R1 that matches the logic in Figure 18-6. This same command could have been issued from the command line as ping 172.16.2.101 source 172.16.1.1.

Example 18-3 Testing the Reverse Route Using the Extended Ping

```
R1# ping
Protocol [ip]:
Target IP address: 172.16.2.101
Repeat count [5]:
Datagram size [100]:
Timeout in seconds [2]:
Extended commands [n]: y
Source address or interface: 172.16.1.1
Type of service [0]:
Set DF bit in IP header? [no]:
Validate reply data? [no]:
Data pattern [0xABCD]:
Loose, Strict, Record, Timestamp, Verbose[none]:
Sweep range of sizes [n]:
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.16.2.101, timeout is 2 seconds:
Packet sent with a source address of 172.16.1.1
11111
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms
```

This particular extended **ping** command tests the same routes for the echo request going to the right, but it forces a better test of routes pointing back to the left for the ICMP echo reply. For that direction, R2 needs a route that matches address 172.16.1.1, which is likely to be a route for subnet 172.16.1.0/24—the same subnet in which host A resides.

From a troubleshooting perspective, using both standard and extended **ping** commands can be useful. However, neither can exactly mimic a **ping** command created on the host itself because the routers cannot send packets with the host's IP address. For instance, the extended **ping** in Example 18-3 uses source IP address 172.16.1.1, which is not host A's IP address. As a result, neither the standard or extended **ping** commands in these two examples so far in this chapter can test for some kinds of problems, such as the following:

- IP ACLs that discard packets based on host A's IP address but allow packets that match the router's IP address
- LAN switch port security that filters A's frames (based on A's MAC address)
- IP routes on routers that happen to match host A's 172.16.1.51 address, with different routes that match R1's 172.16.1.1 address
- Problems with host A's default router setting

NOTE IP ACLs and LAN switch port security are covered in *CCNA 200-301 Official Cert Guide*, *Volume 2*. For now, know that IP ACLs can filter packets on routers, focusing on the Layer 3 and 4 headers. Port security can be enabled on Layer 2 switches to filter based on source MAC addresses.

Testing LAN Neighbors with Standard Ping

Testing using a **ping** of another device on the LAN can quickly confirm whether the LAN can pass packets and frames. Specifically, a working **ping** rules out many possible root causes of a problem. For instance, Figure 18-7 shows the ICMP messages that occur if R1 issues the command **ping 172.16.1.51**, pinging host A, which sits on the same VLAN as R1.

172.16.1.0 /24

Figure 18-7 Standard ping Command Confirms That the LAN Works

If the ping works, it confirms the following, which rules out some potential issues:

- The host with address 172.16.1.51 replied.
- The LAN can pass unicast frames from R1 to host 172.16.1.51 and vice versa.

- You can reasonably assume that the switches learned the MAC addresses of the router and the host, adding those to the MAC address tables.
- Host A and Router R1 completed the ARP process and list each other in their respective Address Resolution Protocol (ARP) tables.

The failure of a ping, even with two devices on the same subnet, can point to a variety of problems, like those mentioned in this list. For instance, if the ping 172,16,1,51 on R1 fails (Figure 18-7), that result points to this list of potential root causes:

- IP addressing problem: Host A could be statically configured with the wrong IP address.
- DHCP problems: If you are using Dynamic Host Configuration Protocol (DHCP), many problems could exist. Chapter 7, "Implementing DHCP" in CCNA 200-301 Official Cert Guide, Volume 2, discusses those possibilities in some depth.
- VLAN trunking problems: The router could be configured for 802.10 trunking, when the switch is not (or vice versa).
- LAN problems: A wide variety of issues could exist with the Layer 2 switches, preventing any frames from flowing between host A and the router.

So, whether the ping works or fails, simply pinging a LAN host from a router can help further isolate the problem.

Testing LAN Neighbors with Extended Ping

A standard ping of a LAN host from a router does not test that host's default router setting. However, an extended ping can test the host's default router setting. Both tests can be useful, especially for problem isolation, because

- If a standard ping of a local LAN host works...
- But an extended ping of the same LAN host fails...
- The problem likely relates somehow to the host's default router setting.

First, to understand why the standard and extended ping results have different effects, consider first the standard ping 172.16.1.51 command on R1, as shown previously in Figure 18-7. As a standard ping command, R1 used its LAN interface IP address (172.16.1.1) as the source of the ICMP Echo. So, when the host (A) sent back its ICMP echo reply, host A considered the destination of 172.16.1.1 as being on the same subnet. Host A's ICMP echo reply message, sent back to 172.16.1.1, would work even if host A did not have a default router setting at all!

In comparison, Figure 18-8 shows the difference when using an extended ping on Router R1. An extended ping from local Router R1, using R1's S0/0/0 IP address of 172.16.4.1 as the source of the ICMP echo request, means that host A's ICMP echo reply will flow to an address in another subnet, which makes host A use its default router setting.

The comparison between the previous two figures shows one of the most classic mistakes when troubleshooting networks. Sometimes, the temptation is to connect to a router and ping the host on the attached LAN, and it works. So, the engineer moves on, thinking that the network layer issues between the router and host work fine, when the problem still exists with the host's default router setting.

Figure 18-8 Extended ping Command Does Test Host A's Default Router Setting

Testing WAN Neighbors with Standard Ping

As with a standard ping test across a LAN, a standard ping test between routers over a serial or Ethernet WAN link tests whether the link can pass IPv4 packets. With a properly designed IPv4 addressing plan, two routers on the same serial or Ethernet WAN link should have IP addresses in the same subnet. A ping from one router to the IP address of the other router confirms that an IP packet can be sent over the link and back, as shown in the ping 172.16.4.2 command on R1 in Figure 18-9.

Figure 18-9 Pinging Across a WAN Link

A successful ping of the IP address on the other end of an Ethernet WAN link that sits between two routers confirms several specific facts, such as the following:

- Both routers' WAN interfaces are in an up/up state.
- The Layer 1 and 2 features of the link work.
- The routers believe that the neighboring router's IP address is in the same subnet.
- Inbound ACLs on both routers do not filter the incoming packets, respectively.
- The remote router is configured with the expected IP address (172.16.4.2 in this case).

Testing by pinging the other neighboring router does not test many other features. However, although the test is limited in scope, it does let you rule out WAN links as having a Layer 1 or 2 problem, and it rules out some basic Layer 3 addressing problems.

Using Ping with Names and with IP Addresses

All the ping examples so far in this chapter show a ping of an IP address. However, the ping command can use hostnames, and pinging a hostname allows the network engineer to further test whether the Domain Name System (DNS) process works.

First, most every TCP/IP application today uses hostnames rather than IP addresses to identify the other device. No one opens a web browser and types in 72.163.4.185. Instead, they type in a web address, like www.cisco.com, which includes the hostname www.cisco.com. Then, before a host can send data to a specific IP address, the host must first ask a DNS server to resolve that hostname into the matching IP address.

For example, in the small internetwork used for several examples in this chapter, a ping B command on host A tests A's DNS settings, as shown in Figure 18-10. When host A sees the use of a hostname (B), it first looks in its local DNS name cache to find out whether it has already resolved the name B. If not, host A first asks the DNS to supply (resolve) the name into its matching IP address (Step 1 in the figure). Only then does host A send a packet to 172.16.2.101, host B's IP address (Step 2).

Figure 18-10 DNS Name Resolution by Host A

When troubleshooting, testing from the host by pinging using a hostname can be very helpful. The command, of course, tests the host's own DNS client settings. For instance, a classic comparison is to first ping the destination host using the hostname, which requires a DNS request. Then, repeat the same test, but use the destination host's IP address instead of its name, which does not require the DNS request. If the ping of the hostname fails but the ping of the IP address works, the problem usually has something to do with DNS.

Problem Isolation Using the traceroute Command

Like **ping**, the **traceroute** command helps network engineers isolate problems. Here is a comparison of the two:

- Both send messages in the network to test connectivity.
- Both rely on other devices to send back a reply.
- Both have wide support on many different operating systems.
- Both can use a hostname or an IP address to identify the destination.
- On routers, both have a standard and extended version, allowing better testing of the reverse route.

The biggest differences relate to the more detailed results in the output of the **traceroute** command and the extra time and effort it takes **traceroute** to build that output. This second major section examines how **traceroute** works; plus it provides some suggestions on how to use this more detailed information to more quickly isolate IP routing problems.

traceroute Basics

Imagine some network engineer or CSR starts to troubleshoot some problem. The engineer pings from the user's host, pings from a nearby router, and after a few commands, convinces herself that the host can indeed send and receive IP packets. The problem might not be solved yet, but the problem does not appear to be a network problem.

Now imagine the next problem comes along, and this time the **ping** command fails. It appears that some problem does exist in the IP network. Where is the problem? Where should the engineer look more closely? Although the **ping** command can prove helpful in isolating the source of the problem, the **traceroute** command may be a better option. The **traceroute** command systematically helps pinpoint routing problems by showing how far a packet goes through an IP network before being discarded.

The **traceroute** command identifies the routers in the path from source host to destination host. Specifically, it lists the next-hop IP address of each router that would be in each of the individual routes. For instance, a **traceroute 172.16.2.101** command on host A in Figure 18-11 would identify an IP address on Router R1, another on Router R2, and then host B, as shown in the figure. Example 18-4, which follows, lists the output of the command, taken from host A.

Figure 18-11 IP Addresses Identified by a Successful traceroute 172.16.2.101 Command

Example 18-4 Output from traceroute 172.16.2.101 on Host A

```
Wendell-Odoms-iMac:~ wendellodom$ traceroute 172.16.2.101
traceroute to 172.16.2.101, 64 hops max, 52 byte packets
1 172.16.1.1 (172.16.1.1) 0.870 ms 0.520 ms 0.496 ms
2 172.16.4.2 (172.16.4.2) 8.263 ms 7.518 ms 9.319 ms
3 172.16.2.101 (172.16.2.101) 16.770 ms 9.819 ms 9.830 ms
```

How the traceroute Command Works

The **traceroute** command gathers information by generating packets that trigger error messages from routers; these messages identify the routers, letting the **traceroute** command list the routers' IP addresses in the output of the command. That error message is the ICMP Time-to-Live Exceeded (TTL Exceeded) message, originally meant to notify hosts when a packet had been looping around a network.

Ignoring traceroute for a moment and instead focusing on IP routing, IPv4 routers defeat routing loops in part by discarding looping IP packets. To do so, the IPv4 header holds a field called Time To Live (TTL). The original host that creates the packet sets an initial TTL value. Then each router that forwards the packet decrements the TTL value by 1. When a router decrements the TTL to 0, the router perceives the packet is looping, and the router discards the packet. The router also notifies the host that sent the discarded packet by sending an ICMP TTL Exceeded message.

Now back to traceroute. Traceroute sends messages with low TTL values to make the routers send back a TTL Exceeded message. Specifically, a **traceroute** command begins by sending several packets (usually three), each with the header TTL field equal to 1. When that packet arrives at the next router—host A's default Router R1 in the example of Figure 18-12—the router decrements TTL to 0 and discards the packet. The router then sends host A the TTL Exceeded message, which identifies the router's IP address to the **traceroute** command.

Figure 18-12 How traceroute Identifies the First Router in the Route

The traceroute command sends several TTL=1 packets, checking them to see whether the TTL Exceeded messages flow from the same router, based on the source IP address of the TTL Exceeded message. Assuming the messages come from the same router, the traceroute command lists that IP address as the next line of output on the command.

To find all the routers in the path, and finally confirm that packets flow all the way to the destination host, the **traceroute** command sends a small set of packets with TTL=1, then a small set with TTL=2, then 3, 4, and so on, until the destination host replies. Figure 18-13 shows the packet from the second set with TTL=2. In this case, one router (R1) actually forwards the packet, while another router (R2) happens to decrement the TTL to 0, causing a TTL Exceeded message to be sent back to host A.

Figure 18-13 *TTL=2 Message Sent by* traceroute

The figure shows these four steps:

- 1. The traceroute command sends a packet from the second set with TTL=2.
- **2.** Router R1 processes the packet and decrements TTL to 1. R1 forwards the packet.
- **3.** Router R2 processes the packet and decrements TTL to 0. R2 discards the packet.
- **4.** R2 notifies the sending host of the discarded packet by sending a TTL Exceeded ICMP message. The source IP address of that message is 172.16.4.2.

Finally, the choice of source IP address to use on the time-exceeded message returned by routers has a big impact on the output of the **traceroute** command. Most routers use simpler

logic that also makes command output like traceroute more consistent and meaningful. That logic: choose the TTL Exceeded message's source IP address based on the source interface of the original message that was discarded due to TTL. In the example in Figure 18-13, the original message at Step 2 arrived on R2's G0/0/1 interface, so at Step 3, R2 uses G0/0/1's IP address as the source IP address of the TTL Exceeded message, and as the interface out which to send the message.

Standard and Extended traceroute

The standard and extended options for the traceroute command give you many of the same options as the ping command. For instance, Example 18-5 lists the output of a standard traceroute command on Router R1. Like the standard ping command, a standard traceroute command chooses an IP address based on the outgoing interface for the packet sent by the command. So, in this example, the packets sent by R1 come from source IP address 172.16.4.1. R1's G0/0/0 IP address.

Example 18-5 Standard traceroute Command on R1

```
R1# traceroute 172.16.2.101
Type escape sequence to abort.
Tracing the route to 172.16.2.101
VRF info: (vrf in name/id, vrf out name/id)
  1 172.16.4.2 0 msec 0 msec 0 msec
   2 172.16.2.101 0 msec 0 msec *
```

The extended traceroute command, as shown in Example 18-6, follows the same basic command structure as the extended ping command. The user can type all the parameters on one command line, but it is much easier to just type traceroute, press Enter, and let IOS prompt for all the parameters, including the source IP address of the packets (172.16.1.1 in this example).

Extended traceroute Command on R1 Example 18-6

```
R1# traceroute
Protocol [ip]:
Target IP address: 172.16.2.101
Source address: 172.16.1.1
Numeric display [n]:
Timeout in seconds [3]:
Probe count [3]:
Minimum Time to Live [1]:
Maximum Time to Live [30]:
Port Number [33434]:
Loose, Strict, Record, Timestamp, Verbose[none]:
Type escape sequence to abort.
Tracing the route to 172.16.2.101
VRF info: (vrf in name/id, vrf out name/id)
   1 172.16.4.2 0 msec 0 msec 0 msec
   2 172.16.2.101 0 msec 0 msec *
```

Both the **ping** and **traceroute** commands exist on most operating systems, including Cisco IOS. However, some operating systems use a slightly different syntax for **traceroute**. For example, most Windows operating systems support **tracert** and **pathping**, and not **traceroute**. Linux and OS X support the **traceroute** command.

NOTE Host OS traceroute commands usually create ICMP echo requests. The Cisco IOS traceroute command instead creates IP packets with a UDP header. This bit of information may seem trivial at this point. However, note that an ACL may actually filter the traffic from a host's traceroute messages but not the router traceroute command, or vice versa.

Telnet and SSH

The ping and traceroute commands do give networkers two great tools to begin isolating the cause of an IP routing problem. However, these two commands tell us nothing about the operation state inside the various network devices. Once you begin to get an idea of the kinds of problems and the possible locations of the problems using ping and traceroute, the next step is to look at the status of various router and switch features. One way to do that is to use Telnet or Secure Shell (SSH) to log in to the devices.

Common Reasons to Use the IOS Telnet and SSH Client

Normally, a network engineer would log in to the remote device using a Telnet or SSH client on a PC, tablet, or any other user device. In fact, often, the same software package does both Telnet and SSH. However, in some cases, you may want to take advantage of the Telnet and SSH client built in to IOS on the routers and switches to Telnet/SSH from one Cisco device to the next.

To understand why, consider the example shown in Figure 18-14. The figure shows arrowed lines to three separate IP addresses on three separate Cisco routers. PC1 has attempted to Telnet to each address from a different tab in PC1's Telnet/SSH client. However, R2 happens to have an error in its routing protocol configuration, so R1, R2, and R3 fail to learn any routes from each other. As a result, PC1's Telnet attempt to both 10.1.2.2 (R2) and 10.1.3.3 (R3) fails.

Figure 18-14 *Telnet Works from PC1 to R1 but Not to R2 or R3*

In some cases, like this one, a Telnet or SSH login from the network engineer's device can fail, while you could still find a way to log in using the **telnet** and **ssh** commands to use the Telnet and SSH clients on the routers or switches. With this particular scenario, all the individual data links work; the problem is with the routing protocol exchanging routes. PC1 can

ping R1's 10.1.1.1 IP address, R1 can ping R2's 10.1.2.2 address, and R2 can ping R3's 10.1.3.3 address. Because each link works, and each router can send and receive packets with its neighbor on the shared data link, you could Telnet/SSH to each successive device.

Figure 18-15 shows the idea. On the left, PC1 begins with either a Telnet/SSH or a console connection into Router R1, as shown on the left. Then the user issues the telnet 10.1.2.2 command from R1 to Telnet to R2. Once logged in to R2, the user can issue commands on R2. Then from R2, the user could issue the telnet 10.1.3.3 command to Telnet to R3, from which the user could issue commands on R3.

Figure 18-15 Successive Telnet Connections: PC1 to R1, R1 to R2, and R2 to R3

The Telnet connections shown in Figure 18-15 work because each Telnet in this case uses source and destination addresses in the same subnet. For example, R1's telnet 10.1,2.2 command uses 10.1.2.2 as the destination, of course. R1 uses the outgoing interface IP address used to send packets to 10.1.2.2, 10.1.2.1 in this case. Because each of these telnet commands connects to an IP address in a connected subnet, the routing protocol could be completely misconfigured, and you could still Telnet/SSH to each successive device to troubleshoot and fix the problem.

Network engineers also use the IOS Telnet and SSH client just for preference. For instance, if you need to log in to several Cisco devices, you could open several windows and tabs on your PC, and log in from your PC (assuming the network was not having problems). Or, you could log in from your PC to some nearby Cisco router or switch, and from there Telnet or SSH to other Cisco devices.

IOS Telnet and SSH Examples

Using the IOS Telnet client via the telnet *host* command is pretty simple. Just use the IP address or hostname to identify the host to which you want to connect, and press Enter. Example 18-7 shows an example based on Figure 18-15, with R1 using Telnet to connect to 10.1.2.2 (R2).

Example 18-7 Telnet from R1 to R2 to View Interface Status on R2

```
R1# telnet 10.1.2.2
Trying 10.1.2.2 ... Open
User Access Verification
Username: wendell
Password:
R2>
R2> show ip interface brief
```

ı	Interface	IP-Address	OK?	Method	Status	Protocol
l	GigabitEthernet0/0	unassigned	YES	unset	administratively down	down
l	GigabitEthernet0/1	10.1.3.2	YES	manual	up	up
l	GigabitEthernet0/2	10.1.2.2	YES	manual	up	up
l	GigabitEthernet0/3	unassigned	YES	unset	administratively down	down

Take the time to pay close attention to the command prompts. The example begins with the user logged in to Router R1, with the R1# command prompt. After issuing the telnet 10.1.2.2 command, R2 asks the user for both a username and password because Router R2 uses local username authentication, which requires those credentials. The show ip interfaces brief command at the end of the output shows Router R2's interfaces and IP addresses again per Example 18-7 and Figure 18-15.

The **ssh** -**l** *username bost* command in Example 18-8 follows the same basic ideas as the **telnet** *bost* command, but with an SSH client. The -**l** flag means that the next parameter is the login username. In this case, the user begins logged in to Router R1 and then uses the **ssh** -**l wendell 10.1.2.2** command to SSH to Router R2. R2 expects a username/password of wendell/odom, with wendell supplied in the command and odom supplied when R2 prompts the user.

Example 18-8 SSH Client from R1 to R2 to View Interface Status on R2

R1# ssh -1 wendell 10.1.2	1.2			
_ ,				
Password:				
R2>				
Interface	IP-Address	OK? Method	Status	Protocol
GigabitEthernet0/0	unassigned	YES unset	administratively down	down
GigabitEthernet0/1	10.1.3.2	YES manual	up	up
GigabitEthernet0/2	10.1.2.2	YES manual	up	up
GigabitEthernet0/3	unassigned	YES unset	administratively down	down
1				

When you have finished using the other router, you can log out from your Telnet or SSH connection using the exit or quit command.

Finally, note that IOS supports a mechanism to use hotkeys to move between multiple Telnet or SSH sessions from the CLI. Basically, starting at one router, you could telnet or SSH to a router, do some commands, and instead of using the exit command to end your connection, you could keep the connection open while still moving back to the command prompt of the original router. For instance, if starting at Router R1, you could Telnet to R2, R3, and R4, suspending but not exiting those Telnet connections. Then you could easily move between the sessions to issue new commands with a few keystrokes.

Chapter Review

One key to doing well on the exams is to perform repetitive spaced review sessions. Review this chapter's material using either the tools in the book or interactive tools for the same material found on the book's companion website. Refer to the "Your Study Plan" element for more details. Table 18-1 outlines the key review elements and where you can find them. To better track your study progress, record when you completed these activities in the second column.

Table 18-1 Chapter Review Tracking

Review Element	Review Date(s)	Resource Used
Review key topics		Book, website
Review key terms		Book, website
Watch video		Website

Review All the Key Topics

Table 18-2 Key Topics for Chapter 18

Table 10 = 110) represent chapter 10			
Description	Page Number		
ARP tables on Layer 3 hosts, with MAC address tables on Layer 2 switch	423		
Figure 18-6 How extended ping in IOS performs a better test of the reverse route			
Figure 18-7 Why a standard ping over a LAN does not exercise a host's default router logic			
List Network layer problems that could cause a ping to fail between a router and host on the same LAN subnet			
Testing a host's default router setting using extended ping	426		
Comparisons between the ping and traceroute commands	428		
	ARP tables on Layer 3 hosts, with MAC address tables on Layer 2 switch How extended ping in IOS performs a better test of the reverse route Why a standard ping over a LAN does not exercise a host's default router logic Network layer problems that could cause a ping to fail between a router and host on the same LAN subnet Testing a host's default router setting using extended ping		

Key Terms You Should Know

ping, traceroute, ICMP echo request, ICMP echo reply, extended ping, forward route, reverse route, DNS

Part V Review

Keep track of your part review progress with the checklist in Table P5-1. Details on each task follow the table.

Table P5-1 Part V Part Review Checklist

Activity	1st Date Completed	2nd Date Completed
Repeat All DIKTA Questions		
Answer Part Review Questions		
Review Key Topics		
Do Labs		
Review Videos		

Repeat All DIKTA Questions

For this task, answer the "Do I Know This Already?" questions again for the chapters in this part of the book, using the PTP software.

Answer Part Review Questions

For this task, use PTP to answer the Part Review questions for this part of the book.

Review Key Topics

Review all key topics in all chapters in this part, either by browsing the chapters or by using the Key Topics application on the companion website.

Labs

Depending on your chosen lab tool, here are some suggestions for what to do in lab:

Pearson Network Simulator: If you use the full Pearson ICND1 or CCNA simulator, focus more on the configuration scenario and troubleshooting scenario labs associated with the topics in this part of the book. These types of labs include a larger set of topics and work well as Part Review activities. (See the Introduction for some details about how to find which labs are about topics in this part of the book.)

Blog Config Labs: The author's blog includes a series of configuration-focused labs that you can do on paper, each in 10–15 minutes. Review and perform the labs for this part of the book, as found at http://blog.certskills.com. Then navigate to the Hands-on Config labs.

Other: If using other lab tools, here are a few suggestions: Make sure to experiment heavily with IPv4 addressing, static routing, and Layer 3 switching. In each case, test all your routes using ping and traceroute.

Watch Videos

Chapters 15, 17, and 18 each list a video to be found on the companion website, on topics ranging from how to use the router CLI, how to configure ROAS, and how to troubleshoot using Extended ping.

Part IV began the story in this book about IP Version 4 (IPv4) addressing. Part V continued that story with how to implement addressing in Cisco routers, along with a variety of methods to route packets between local interfaces. But those topics delayed the discussion of one of the most important topics in TCP/IP, namely IP routing protocols.

Routers use IP routing protocols to learn about the subnets in an internetwork, choose the current best routes to reach each subnet, and to add those routes to each router's IP routing table. Cisco chose to include one and only one IP routing protocol in the CCNA 200-301 exam: the Open Shortest Path First (OSPF) routing protocol. This entire part focuses on OSPF as an example of how routing protocols work.

Part VI

OSPF

Chapter 19: Understanding OSPF Concepts

Chapter 20: Implementing OSPF

Chapter 21: OSPF Network Types and Neighbors

Part VI Review

Understanding OSPF Concepts

This chapter covers the following exam topics:

3.0 IP Connectivity

- 3.2 Determine how a router makes a forwarding decision by default
 - 3.2.b Administrative distance
 - 3.2.c Routing protocol metric
- 3.4 Configure and verify single area OSPFv2
 - 3.4.a Neighbor adjacencies
 - 3.4.b Point-to-point
 - 3.4.c Broadcast (DR/BR selection)
 - 3.4.d Router ID

This chapter takes a long look at Open Shortest Path First Version 2 (OSPFv2) concepts. OSPF runs on each router, sending and receiving OSPF messages with neighboring (nearby) routers. These messages give OSPF the means to exchange data about the network and to learn and add IP Version 4 (IPv4) routes to the IPv4 routing table on each router.

Most enterprises over the last 25 years have used either OSPF or the Enhanced Interior Gateway Routing Protocol (EIGRP) for their primary IPv4 routing protocol. For perspective, both OSPF and EIGRP have been part of CCNA throughout most of its 20+ year history. For the CCNA 200-301 exam blueprint, Cisco has included OSPFv2 as the only IPv4 routing protocol. (Note that Cisco does include EIGRP in the CCNP Enterprise certification.)

This chapter breaks the content into three major sections. The first section sets the context about routing protocols in general, defining interior and exterior routing protocols and basic routing protocol features and terms. The second major section presents the nuts and bolts of how OSPFv2 works, using OSPF neighbor relationships, database exchange, and then route calculation. The third section wraps up the discussion by looking at OSPF areas and LSAs.

"Do I Know This Already?" Quiz

Take the quiz (either here or use the PTP software) if you want to use the score to help you decide how much time to spend on this chapter. The letter answers are listed at the bottom of the page following the quiz. Appendix C, found both at the end of the book as well as on the companion website, includes both the answers and explanations. You can also find both answers and explanations in the PTP testing software.

Table 19-1 "Do I Know This Already?" Foundation Topics Section-to-Question Mapping

Foundation Topics Section	Questions
Comparing Dynamic Routing Protocol Features	1–3
OSPF Concepts and Operation	4, 5
OSPF Areas and LSAs	6

- 1. Which of the following routing protocols is considered to use link-state logic?
 - a. RIPv1
 - **b.** RIPv2
 - c. EIGRP
 - d. OSPF
- **2.** Which of the following routing protocols use a metric that is, by default, at least partially affected by link bandwidth? (Choose two answers.)
 - a. RIPv1
 - **b.** RIPv2
 - c. EIGRP
 - d. OSPF
- Which of the following interior routing protocols support VLSM? (Choose three answers.)
 - a. RIPv1
 - **b.** RIPv2
 - c. EIGRP
 - d. OSPF
- **4.** Two routers using OSPFv2 have become neighbors and exchanged all LSAs. As a result, Router R1 now lists some OSPF-learned routes in its routing table. Which of the following best describes how R1 uses those recently learned LSAs to choose which IP routes to add to its IP routing table?
 - **a.** Each LSA lists a route to be copied to the routing table.
 - **b.** Some LSAs list a route that can be copied to the routing table.
 - **c.** Run some SPF math against the LSAs to calculate the routes.
 - **d.** R1 does not use the LSAs at all when choosing what routes to add.

- **5.** Which of the following OSPF neighbor states is expected when the exchange of topology information is complete between two OSPF neighbors?
 - **a.** 2-way
 - **b.** Full
 - c. Up/up
 - d. Final
- **6.** A company has a small/medium-sized network with 15 routers and 40 subnets and uses OSPFv2. Which of the following is considered an advantage of using a single-area design as opposed to a multiarea design?
 - **a.** It reduces the processing overhead on most routers.
 - **b.** Status changes to one link may not require SPF to run on all other routers.
 - **c.** It allows for simpler planning and operations.
 - **d.** It allows for route summarization, reducing the size of IP routing tables.

Foundation Topics

Comparing Dynamic Routing Protocol Features

Routers add IP routes to their routing tables using three methods: connected routes, static routes, and routes learned by using dynamic routing protocols. Before we get too far into the discussion, however, it is important to define a few related terms and clear up any misconceptions about the terms routing protocol, routed protocol, and routable protocol. The concepts behind these terms are not that difficult, but because the terms are so similar, and because many documents pay poor attention to when each of these terms is used, they can be a bit confusing. These terms are generally defined as follows:

- Routing protocol: A set of messages, rules, and algorithms used by routers for the overall purpose of learning routes. This process includes the exchange and analysis of routing information. Each router chooses the best route to each subnet (path selection) and finally places those best routes in its IP routing table. Examples include RIP, EIGRP, OSPF, and BGP.
- Routed protocol and routable protocol: Both terms refer to a protocol that defines a packet structure and logical addressing, allowing routers to forward or route the packets. Routers forward packets defined by routed and routable protocols. Examples include IP Version 4 (IPv4) and IP Version 6 (IPv6).

NOTE The term *path selection* sometimes refers to part of the job of a routing protocol, in which the routing protocol chooses the best route.

Even though routing protocols (such as OSPF) are different from routed protocols (such as IP), they do work together very closely. The routing process forwards IP packets, but if a router does not have any routes in its IP routing table that match a packet's destination address, the router discards the packet. Routers need routing protocols so that the routers can learn all the possible routes and add them to the routing table so that the routing process can forward (route) routable protocols such as IP.

Routing Protocol Functions

Cisco IOS software supports several IP routing protocols, performing the same general functions:

- Learn routing information about IP subnets from neighboring routers.
- Advertise routing information about IP subnets to neighboring routers.
- **3.** If more than one possible route exists to reach one subnet, pick the best route based on a metric.
- If the network topology changes—for example, a link fails—react by advertising that some routes have failed and pick a new currently best route. (This process is called convergence.)

NOTE A neighboring router connects to the same link as another router, such as the same WAN link or the same Ethernet LAN.

Figure 19-1 shows an example of three of the four functions in the list. Router R1, in the lower left of the figure, must make a decision about the best route to reach the subnet connected off router R2, on the bottom right of the figure. Following the steps in the figure:

- Step 1. R2 advertises a route to the lower right subnet—172.16.3.0/24—to both router R1 and R3.
- Step 2. After R3 learns about the route to 172.16.3.0/24 from R2, R3 advertises that route to R1.
- Step 3. R1 must make a decision about the two routes it learned about for reaching subnet 172.16.3.0/24—one with metric 1 from R2 and one with metric 2 from R3. R1 chooses the lower metric route through R2 (function 3).

The other routing protocol function, *convergence*, occurs when the topology changes—that is, when either a router or link fails or comes back up again. When something changes, the best routes available in the network can change. Convergence simply refers to the process by which all the routers collectively realize something has changed, advertise the information about the changes to all the other routers, and all the routers then choose the currently best routes for each subnet. The ability to converge quickly, without causing loops, is one of the most important considerations when choosing which IP routing protocol to use.

In Figure 19-1, convergence might occur if the link between R1 and R2 failed. In that case, R1 should stop using its old route for subnet 172.16.3.0/24 (directly through R2) and begin sending packets to R3.

Figure 19-1 *Three of the Four Basic Functions of Routing Protocols*

Interior and Exterior Routing Protocols

IP routing protocols fall into one of two major categories: interior gateway protocols (IGP) or exterior gateway protocols (EGP). The definitions of each are as follows:

- IGP: A routing protocol that was designed and intended for use inside a single autonomous system (AS)
- EGP: A routing protocol that was designed and intended for use between different autonomous systems

NOTE The terms *IGP* and *EGP* include the word *gateway* because routers used to be called gateways.

These definitions use another new term: *autonomous system* (AS). An AS is a network under the administrative control of a single organization. For example, a network created and paid for by a single company is probably a single AS, and a network created by a single school system is probably a single AS. Other examples include large divisions of a state or national government, where different government agencies might be able to build their own networks. Each ISP is also typically a single different AS.

Some routing protocols work best inside a single AS by design, so these routing protocols are called IGPs. Conversely, routing protocols designed to exchange routes between routers

Answers to the "Do I Know This Already?" quiz:

1 D 2 C, D 3 B, C, D 4 C 5 B 6 C

in different autonomous systems are called EGPs. Today, Border Gateway Protocol (BGP) is the only EGP used.

Each AS can be assigned a number called (unsurprisingly) an AS number (ASN). Like public IP addresses, the Internet Assigned Numbers Authority (IANA, www.iana.org) controls the worldwide rights to assigning ASNs. It delegates that authority to other organizations around the world, typically to the same organizations that assign public IP addresses. For example, in North America, the American Registry for Internet Numbers (ARIN, www.arin.net) assigns public IP address ranges and ASNs.

Figure 19-2 shows a small view of the worldwide Internet. The figure shows two enterprises and three ISPs using IGPs (OSPF and EIGRP) inside their own networks and with BGP being used between the ASNs.

Figure 19-2 Comparing Locations for Using IGPs and EGPs

Comparing IGPs

Organizations have several options when choosing an IGP for their enterprise network, but most companies today use either OSPF or EIGRP. This book discusses OSPFv2, with the CCNP Enterprise certification adding EIGRP. Before getting into detail on these two protocols, the next section first discusses some of the main goals of every IGP, comparing OSPF, EIGRP, plus a few other IPv4 routing protocols.

IGP Routing Protocol Algorithms

A routing protocol's underlying algorithm determines how the routing protocol does its job. The term routing protocol algorithm simply refers to the logic and processes used by different routing protocols to solve the problem of learning all routes, choosing the best

route to each subnet, and converging in reaction to changes in the internetwork. Three main branches of routing protocol algorithms exist for IGP routing protocols:

- Distance vector (sometimes called Bellman-Ford after its creators)
- Advanced distance vector (sometimes called "balanced hybrid")
- Link-state

Historically speaking, distance vector protocols were invented first, mainly in the early 1980s. Routing Information Protocol (RIP) was the first popularly used IP distance vector protocol, with the Cisco-proprietary Interior Gateway Routing Protocol (IGRP) being introduced a little later.

By the early 1990s, distance vector protocols' somewhat slow convergence and potential for routing loops drove the development of new alternative routing protocols that used new algorithms. Link-state protocols—in particular, Open Shortest Path First (OSPF) and Integrated Intermediate System to Intermediate System (IS-IS)—solved the main issues. They also came with a price: they required extra CPU and memory on routers, with more planning required from the network engineers.

NOTE All references to OSPF in this chapter refer to OSPFv2 unless otherwise stated.

Around the same time as the introduction of OSPF, Cisco created a proprietary routing protocol called Enhanced Interior Gateway Routing Protocol (EIGRP), which used some features of the earlier IGRP protocol. EIGRP solved the same problems as did link-state routing protocols, but EIGRP required less planning when implementing the network. As time went on, EIGRP was classified as a unique type of routing protocol. However, it used more distance vector features than link-state, so it is more commonly classified as an advanced distance vector protocol.

Metrics

Routing protocols choose the best route to reach a subnet by choosing the route with the lowest metric. For example, RIP uses a counter of the number of routers (hops) between a router and the destination subnet, as shown in the example of Figure 19-1, OSPF totals the cost associated with each interface in the end-to-end route, with the cost based on link bandwidth. Table 19-2 lists the most common IP routing protocols and some details about the metric in each case.

Table 19-2 IP IGP Metrics

IGP	Metric	Description	
RIPv2	Hop count	The number of routers (hops) between a router and the destination subnet	
OSPF	Cost	The sum of all interface cost settings for all links in a route, with the cost defaulting to be based on interface bandwidth	
EIGRP	Calculation based on bandwidth and delay	Calculated based on the route's slowest link and the cumulative delay associated with each interface in the route	

A brief comparison of the metric used by the older RIP versus the metric used by OSPF shows some insight into why OSPF and EIGRP surpassed RIP. Figure 19-3 shows an example