Muon Cooling Project Updates

April 25, 2025

Progress from this week

- Continued investigation of dispersion and beta function
 - Adding more terms from FFT to fit
 - Letting more parameters (namely a and k) float in fit
 - Considering larger range of values
- Downloaded ECALC9
 - Tried running on Windows machine + installing Windows Docker image to run .exe — no success
 - Using Docker image with Fortran compiler to build from source instead

Dispersion

$$D(s) = \frac{\Delta r(s)}{\Delta p/p} -$$
 Reference momentum

Along 16 periods

$$\Delta p = -0.1 \; \text{MeV/c}$$

Dispersion

Along 16 periods

$$D_{x}(s) = \frac{\Delta x(s)}{\Delta p/p}$$

$$\Delta x = x(s) - x_0(s)$$

$$D_{y}(s) = \frac{\Delta y(s)}{\Delta p/p}$$

$$\Delta y = y(s) - y_0(s)$$

Dispersion

For a single period (third)

$$D_{x}(s) = \frac{\Delta x(s)}{\Delta p/p}$$

$$\Delta x = x(s) - x_0(s)$$

$$D_{y}(s) = \frac{\Delta y(s)}{\Delta p/p}$$

$$\Delta y = y(s) - y_0(s)$$

Comparing to the paper

- Order of magnitude of dispersion in agreement
- Do we expect our beam optics to be similar to Yuri's at this point?
 - Change in E along channel suggests not

Beta function

- Adding more peaks from FFT by eye yielded minimal improvement to the fit
 - Still missing some small-scale oscillations
- How to translate to actual estimate for beta function?

Figure 2. μ^+ transverse β -functions with no (top) and with constant quadrupole field of $G_q = -0.052 \,\text{T/m}$ (bottom).

Next steps

- Looking for Python function that automates sinusoid fitting process (to avoid uncertainty from picking out FFT peaks by hand)
- Further investigations into beam optics?
- Proposing to build a modernized version of ECALC9
 - Python (more user-friendly) or C++ (faster)
 - Interface with G4beamline
 - Available on GitHub for open use