Tutorial 8B: Type inference

Exercise 1: In the lambda-calculus, the **values** or **answers** of a computation are the **normal forms** of reduction: those λ -terms without redexes.

a) Convince yourself that if a term is in normal form, it has the shape

$$\lambda x_1 \dots \lambda x_n \cdot x N_1 \dots N_k$$

where each N_i is in normal form. (Either n or k may be zero, that is, a term might just look like $xN_1\dots N_k$ or like $\lambda x_1.\lambda x_2.x$, for instance.)

- b) Using this characterization, write down all the closed normal forms (i.e. normal forms with no free variables) of the following types:
 - \bullet $o \rightarrow o$
 - \bullet $o \rightarrow o \rightarrow o$
 - $(o \rightarrow o) \rightarrow o \rightarrow o$
 - $(o \rightarrow o) \rightarrow o$

Exercise 2: Recall the following standard terms in the lambda-calculus:

true
$$\triangleq \lambda x.\lambda y. x$$

false $\triangleq \lambda x.\lambda y. y$
iszero $\triangleq \lambda n. n (\lambda f. \text{ false}) \text{ true}$
add $\triangleq \lambda m.\lambda n.\lambda f.\lambda x. m f (n f x)$

Find the most general types of the following terms, or show that none exists.

- a) the numerals 2, 1, and 0
- b) the terms true and false
- c) add
- d) add 0.1
- e) iszero
- f) iszero 2
- g) $\lambda x.xx$
- h) $\lambda x.\lambda f. x (f x)$
- i) $\lambda f.\lambda x.\lambda y. f(xy)(yx)$
- j) $\lambda f. f(\lambda x. f(\lambda y. x))$