Detection and Localization of Sperm Cells

Leveraging Computer Vision Techniques for Microscopic Image Analysis

Derrick Mayall, Eric Chaves, Shuai Shao

AGENDA

01	Problem Statement &
	Challenges

05 Our Method

Motivation

Results

O Dataset & Analysis

7 Conclusion

Future Works

Problem Statement & Challenges

We propose leveraging Convolutional Neural Networks (CNNs) to automate and expedite the process of sperm counting, offering a faster and more reliable alternative to manual methods.

Challenges:

- Finding data due to sensitivity
- Computing power and resources
- Model Design and Development

Motivation

- Rapekits are on a huge backlog, estimated to be anywhere from 200,000-400,000 still waiting to be processed ¹
- This problem only increases as this crime in the US continues to grow, self reporting alone has doubled in recent years²
- One large cause of this backlog is the amount of time it takes to actually process a kit, with steps of verifying enough counts for a good DNA sample, and then needing to actually extract that DNA ³

^{1:} https://en.wikipedia.org/wiki/Rape_kit#:~:text=A%20rape%20kit%20is%20considered,the%20forensic%20labs%20for%20analysis.

^{2:} https://www.nsvrc.org/statistics/statistics-depth#:~:text=The%20self%2Dreported%20incidence%20of,the%20United%20States%20in%202018.

^{3:}https://www.endthebacklog.org/what-is-the-backlog/#:~:text=When%20tested%2C%20DNA%20evidence%20contained,of%20receipt%20by%20the%20lab.

Dataset

- The dataset is the VISEM-Tracking
 - This is a sperm motility dataset used to teach models to count and analyze the state of a sperm cell (damaged versus healthy)
- We modified this dataset to better fit our subject
 - We did not worry about the sperm state since that would not matter in this case
 - Limited the dataset to smaller counts to account for how little the kits will be able to obtain a lot of the time

	frame_name	sperm_count	fid	bb0	bb1	bb2	bb3
0	14_frame_0	3	ckyw6zzlj001r3867thf0fuy7	0.208594	0.825000	0.035937	0.037500
1	14_frame_0	3	ckyw704kw001v3867kvyjtx6k	0.796094	0.797917	0.029687	0.037500
2	14_frame_0	3	ckyw708pn001z386779fr849h	0.827344	0.123958	0.035937	0.039583
3	14_frame_1	3	ckyw6zzlj001r3867thf0fuy7	0.208594	0.814583	0.035937	0.037500
4	14_frame_1	3	ckyw704kw001v3867kvyjtx6k	0.764062	0.781250	0.029687	0.037500
			mi.	***	***		***
19836	52_frame_427	6	cl1x89ze6000o3f6baic4zklo	0.464062	0.462500	0.037500	0.054167
19837	52_frame_427	6	cl1x8a7j3000s3f6bvn1rm1tw	0.416406	0.400000	0.029687	0.045833
19838	52_frame_427	6	cl1x8ih7n001 <mark>0</mark> 3f6b67egfbw2	0.057031	0.803125	0.032813	0.043750
19839	52_frame_427	6	cl52g254u000o3b6gcyhoi1fk	0.132031	0.112500	0.026562	0.037500
19840	52_frame_427	6	cl52g4ex1000s3b6g2941ltlj	0.297656	0.729167	0.039062	0.050000

Analysis

- First we looked the the blur scores of the images using the Laplacian Variance
- We found about ¼ of the dataset to be blurred (defined as ½ of the median)
- Thinking about the approach and problem at hand we decided to keep all images because not every kit will be perfectly readable making the blur even more important

Analysis

- Next we looked at noise and determined that no images needed to be removed due to noise (threshold defined as 1.5 times greater than median)
- Next we looked at count distributions ranging from 0-6 as we decided would be best range of lower counts, looking at the distribution we were satisfied and thought it seemed like a good balance

Existing Methods

- The largest existing paper we found that compares to our method idea was a research paper done on sperm motility of obese men using the same dataset
- They used a yolo v5 model to determine BB of sperm cells and whether the cell was damaged or not
- Using a fitness value shown below they found the Yolo v5l performs the best with a fitness score of 0.0920 with an estimated IoU of 0.5-0.75
 - This was estimated based on looking at the mAP

 $Fitness_value = (0.1 \times mAP_0.5 + 0.9 \times mAP_0.95)$

Derrick's Method

Backbone:

- EfficientNet-B0 is a lightweight and efficient convolutional network known for its excellent trade-off between speed and accuracy
- Using the feature extraction part to output high-level image features

Pooling:

 Used the MultiScaleRolAlign to convert variable-size regions intop 7x7 feature maps

• CNN:

 Used the FastRCNN to put everything into a pipeline and do the object detection

Derrick Results

YoloV5: 0.5 - 0.75 Baseline: 0.0061

IoU: 0.767134

Shuai's Method

YOLO-NAS:

- Speed and Accuracy: Optimized using NAS for a better tradeoff between real-time inference and high precision.
- Lightweight Structure: Efficient architecture suited for edge devices.
- Pretrained Weights: Trained initially on COCO dataset, easily fine-tuned for custom datasets.

Fuzzy Logic:

- Introduced to softly evaluate the reliability of detections.
- Input Variable: Detection confidence score (ranging from 0 to 1).
- Output Variable: Reliability score (ranging from 0 to 1).

Eric's Method

Figure 5: The latest incarnation of the R-CNN family, Faster R-CNN, introduces a Region Proposal Network (RPN) that bakes region proposals directly in the architecture, alleviating the need for the Selective Search algorithm. (Image credit: Figure 2 of Girshick et al., 2015)

Faster R-CNN: Two-stage object detector.

- Stage 1 (RPN): suggests candidate object regions (proposals).
- Stage 2 (ROI Head): Refines and classifies the proposals.

Backbone:

- ResNet-50 pretrained on ImageNet.
- Used as a feature extractor (final classification layers removed).

Modifications for this project:

- Converted grayscale images to 3-channel RGB to match ResNet50 input requirements.
- Tuned anchor sizes and aspect ratios to detect small sperm cells.
- Customized NMS threshold and Score threshold for better proposal filtering.

Architecture Highlights:

- Anchor Sizes: (8, 16, 32, 64, 128)
- Aspect Ratios: (0.5, 1.0, 1.5, 2.0)
- NMS Threshold: 0.5
- Score Threshold: 0.7

Loss Functions:

- RPN
 - Binary cross entropy (object vs background)
 - Smooth L1 Loss (anchor box regression).
- Rol Head
 - Cross-Entropy(sperm vs background)
 - Smooth L1 Loss (bounding box regression).

Preprocessing

YOLO to Corner Conversion

 Converted bounding boxes from YOLO format (x_center, y_center, width, height) to corner coordinates (xmin, ymin, xmax, ymax) in pixel space using original image dimensions.

Grayscale to RGB Conversion

 Images loaded as single-channel grayscale and expanded into 3-channel RGB by duplication to meet ResNet-50 input requirements.

No image resizing

Images retained original resolution (640×480).

Transforms

Basic transformations (e.g., tensor conversion).
 No heavy augmentation applied during training.

Experiments and Hyperparameter Search

Initial Random Search (IoU - 0.6949)

- Explored wide ranges of learning rate, weight decay, step size, gamma, anchor sizes, aspect ratios, box NMS threshold, and score threshold.
- o Ran 20 configurations for 2 epochs each
- Next Random Search (IoU 0.7494)
 - Focused search around the best-performing configurations to further improve IoU.
 - Ran 20 configurations for 2 epochs each
- Final Grid Search (IoU 0.8088)
 - Centered around the best configuration from the previous random search.
 - o Total of 48 configurations
 - 3 epochs per configuration

• Final Training (IoU - 0.9143)

- Best hyperparameters used for final training:
 - lr: 7.5e-05
 - weight_decay: 0.0001
 - step_size: 6
 - gamma: **0.2**
 - anchor_sizes: (8, 16, 32, 64, 128)
 - aspect_ratios: (0.5, 1.0, 1.5, 2.0) ×5
 - box_nms_thresh: 0.5
 - score_thresh: 0.7
- Final Mean IoU after full training (30 epochs):
 0.9143

Comparison of Results

Baseline CNN Model

- Mean IoU across epochs ≈ 0.001 to 0.006.
- Poor localization ability.
- MSE loss decreased during training, but bounding box predictions were inaccurate.
- Model architecture too simple (only one convolutional layer).

Faster R-CNN Model

- Final Mean IoU after full training: 0.9143
- Able to accurately localize sperm cells even in cluttered images.
- Very few false positives and false negatives in visual inspections.
- Highly stable validation IoU across epochs after convergence.

Samples

Observations

- Advanced two-stage detectors (like Faster R-CNN) are crucial for fine-grained object detection.
- Naive CNN models cannot effectively handle bounding box regression and localization without specialized mechanisms.
- Careful hyperparameter tuning (anchors, thresholds, learning rates) was **critical** for achieving high performance.
- Preserving full image resolution helped maintain positional accuracy for small sperm cells.

Conclusion

- Faster R-CNN with ResNet-50 backbone achieved high localization accuracy for small sperm cells.
- Mean IoU of 0.9143 demonstrates strong model reliability.
- YOLO to Corner conversion and grayscale-to-RGB adaptation were crucial preprocessing steps.
- Careful hyperparameter tuning significantly boosted performance.
- Preserving full image resolution helped detect small objects accurately.
- Baseline CNN comparison showed that simple architectures are insufficient for fine-grained detection tasks.

Future Work

Upgrade Backbone

 Experiment with ResNet-152 backbone for richer feature extraction and possibly higher accuracy.

Data Augmentation

 Introduce augmentations (e.g., random flips, rotations, brightness/contrast adjustments) to improve model robustness to image variability.

Fuzzy Logic

- Using adaptive fuzzy systems that learn rules over time.
- Exporting the model to ONNX format for deployment on mobile or edge devices.