XMAC02 Métodos Matemáticos para Análise de Dados

- Condições
 - Amostra aleatória
 - Observações independentes
 - Distribuição amostral deve se aproximar de uma
 Distribuição Normal
 - População possui uma distribuição normal e o desvio padrão da população é conhecido
 OU
 - Tamanho da amostra >= 30

Uma amostra

Duas amostras

 H_0 : $\mu = 150cc$

 H_a : $\mu \neq 150cc$

 $z_{cal} = \frac{(\bar{x} - \mu)}{\sigma / \sqrt{n}}$

Hipótese nula: H_0 : $\mu_1 = \mu_2$

ou H_0 : $\mu_1 - \mu_2 = 0$

Hipótese alternativa: H_a : $\mu_1 \neq \mu_2$

$$z_{cal} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

- Exemplo: Duas máquinas fabricam perfumes. Foram coletadas 100 amostras de cada uma.
 - Máquina 1: Média = 151,2 ml / dp = 2,1 ml
 - Máquina 2: Média = 151,9 ml / dp = 2,2 ml
- Há diferença entre essas duas máquinas? (nível de confiança = 95%)

$$H_0$$
: $\mu_1 = \mu_2$
 H_a : $\mu_1 \neq \mu_2$

$$z_{cal} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

- Exemplo: Duas máquinas fabricam perfumes. Foram coletadas 100 amostras de cada uma.
 - Máquina 1: Média = 151,2 ml / dp = 2,1 ml
 - Máquina 2: Média = 151,9 ml / dp = 2,2 ml
- Há diferença entre essas duas máquinas? (nível de confiança = 95%)

$$z_{cal} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} = \frac{(151.2 - 151.9)}{\sqrt{\frac{2.1^2}{100} + \frac{2.2^2}{100}}} = -0.7/0.304 = -2.30$$

- Exemplo: Duas máquinas fabricam perfumes. Foram coletadas 100 amostras de cada uma.
 - Máquina 1: Média = 151,2 ml / dp = 2,1 ml
 - Máquina 2: Média = 151,9 ml / dp = 2,2 ml
- Há diferença entre essas duas máquinas? (nível de confiança = 95%)

$$Z_{cal} = -2,30$$
 $Z_{crítico} = ?$

Z Crítico

7

- $\alpha = 0.01$, duas caudas
 - □ 0,005 em cada cauda
 - Z crítico = 2,575
- $\alpha = 0.05$, duas caudas
 - □ 0,025 em cada cauda
 - Z crítico = 1,96
- $\alpha = 0,10$, duas caudas
 - □ 0,05 em cada cauda
 - Z crítico = 1,645
- $\alpha = 0.05$ cauda única
 - □ Z crítico = 1,645

z	0	1	2	3	4	5	6	7	8	9
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
2.5 2.6 2.7 2.8 2.9	.0062 .0047 .0035 .0026	.0060 .0045 .0034 .0025 .0018	.0059 .0044 .0033 .0024 .0018	.0057 .0043 .0032 .0023 .0017	.0055 .0041 .0031 .0023 .0016	.0054 .0040 .0030 .0022 .0016	.0052 .0039 .0029 .0021 .0015	.0051 .0038 .0028 .0021 .0015	.0049 .0037 .0027 .0020 .0014	.0048 .0036 .0026 .0019 .0014
3.0 3.1 3.2 3.3 3.4	.0013 .0010 .0007 .0005 .0003	.0013 .0009 .0007 .0005 .0003	.0013 .0009 .0006 .0005	.0012 .0009 .0006 .0004 .0003	.0012 .0008 .0006 .0004 .0003	.0011 .0008 .0006 .0004 .0003	.0011 .0008 .0006 .0004 .0003	.0011 .0008 .0005 .0004 .0003	.0010 .0007 .0005 .0004 .0003	.0010 .0007 .0005 .0003
3.5 3.6 3.7 3.8 3.9	.0002 .0002 .0001 .0001	.0002 .0002 .0001 .0001	.0002 .0001 .0001 .0001							

Falha em rejeitar H₀

$$Z_{cal} = -2,30$$

$$Z_{crítico} = 1,96$$

Conclusão: Rejeitar hipótese nula $\mu_1 \neq \mu_2$

- Condições
 - Amostra aleatória
 - Observações independentes
 - Distribuição amostral deve se aproximar de uma
 Distribuição Normal
 - População possui uma distribuição normal e o desvio padrão da população não é conhecido

E

Tamanho da amostra < 30</p>

Tipos de Teste t

- □ Teste t de duas amostras
 - Conjuntos de dados são independentes
 - Valores de uma amostra não revelam informação a respeito da outra amostra
 - Exemplo: Duas máquinas de envase de perfume
- Teste t pareado
 - Conjuntos de dados são dependentes
 - Valores de uma amostra afetam valores da outra amostra
 - Exemplo: Pressão arterial antes e depois de tomar um remédio

Variância igual para as duas amostras?

$$t_{cal} = \frac{(\bar{x}_1 - \bar{x}_2)}{s_p \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

$$df = n_1 + n_2 - 2$$

$$t_{cal} = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}}$$

$$dlf = \frac{\left[\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right]^2}{\frac{(s_1^2/n_1)^2}{(n_1 - 1)} + \frac{(s_2^2/n_2)^2}{(n_2 - 1)}}$$

Teste t de duas amostras Mesma variância

- Exemplo: Amostras envasadas por duas máquinas apresentam os seguintes volumes:
 - Máquina A: 150, 152, 154, 152, 151
 - Máquina B: 156, 155, 158, 155, 154
- □ A média é diferente? Calcular com 95% de confiança

$$n_1 = 5$$

$$n_2 = 5$$

$$s_1 = 1,48$$

$$s_2 = 1,52$$

$$\bar{x}_1 = 151,8$$

$$\bar{x}_2 = 155,6$$

$$H_0$$
: $\mu_A = \mu_B$

$$H_a$$
: $\mu_A \neq \mu_B$

Mesma variância

$$n_1 = 5$$

$$n_2 = 5$$

$$s_1 = 1,48$$

$$s_1 = 1,48$$
 $s_2 = 1,52$

$$\bar{x}_1 = 151,8$$

$$\vec{x_1} = 151,8$$
 $\vec{x_2} = 155,6$

$$H_0$$
: $\mu_A = \mu_B$

$$H_a$$
: $\mu_A \neq \mu_B$

$$t_{cal} = \frac{(\bar{x}_1 - \bar{x}_2)}{s_p \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

Mesma variância

$$n_1 = 5$$

$$n_2 = 5$$

$$s_1 = 1,48$$

$$s_1 = 1,48$$
 $s_2 = 1,52$

$$\bar{x}_1 = 151,8$$

$$\vec{x_1} = 151,8$$
 $\vec{x_2} = 155,6$

$$H_0$$
: $\mu_A = \mu_B$

$$H_a$$
: $\mu_A \neq \mu_B$

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

$$s_p^2 = \frac{(5-1)^*1,48^2 + (5-1)^*1,52^2}{5+5-2}$$

$$s_p = 1,50$$

Mesma variância

$$n_1 = 5$$

$$n_2 = 5$$

$$s_1 = 1,48$$

$$s_2 = 1,52$$

$$\bar{x_1} = 151,8$$

$$n_1 = 5$$
 $n_2 = 5$ $n_2 = 5$ $n_3 = 1,48$ $n_4 = 1,52$ $n_5 = 1,52$ $n_7 = 1,52$ $n_7 = 1,52$ $n_7 = 1,52$ $n_7 = 1,52$

$$H_0$$
: $\mu_A = \mu_B$

$$H_a$$
: $\mu_A \neq \mu_B$

$$t_{cal} = \frac{(\bar{x}_1 - \bar{x}_2)}{s_p \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{151.8 - 155.6}{1.5\sqrt{\left(\frac{1}{5} + \frac{1}{5}\right)}} = -4.01$$

	TAIL PROBABILITY P											
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	.765	.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	.741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	.727	.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	.718	.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	.711	.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	.706	.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	.703	.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	.700	.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	.697	.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	.695	.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	.694	.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	.692	.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	.691	.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	.690	.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	.689	.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	.688	.862	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.611	3.922
19	.688	.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	.687	.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	.686	.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	.686	.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	.685	.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	.685	.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.749
25	.684	.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	.684	.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	.684	.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690
28	.683	.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674
29	.683	.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30	.683	.854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.640

 $\alpha = 0.05$ Two Tails

$$4 \cdot df = 8$$

0.025

df = degree of freedom

Mesma variância

- Exemplo: Amostras envasadas por duas máquinas têm apresentam os seguintes volumes:
 - Máquina A: 150, 152, 154, 152, 151
 - Máquina B: 156, 155, 158, 155, 154

Falha em rejeitar H₀

A média é diferente?

- $t_{cal} = -4,01$ $t_{crítico} = 2,306$

Variâncias diferentes

- Exemplo: Amostras envasadas por duas máquinas apresentam os seguintes volumes:
 - Máquina A: 150, 152, 154, 152, 151
 - Máquina C: 144, 162, 177, 150, 140
- □ A média é diferente? Calcular com 95% de confiança

$$n_1 = 5$$

$$n_2 = 5$$

$$s_1 = 1,48$$

$$s_2 = 15,0$$

$$\bar{x}_1 = 151,8$$

$$\bar{x}_2 = 154,6$$

$$H_0$$
: $\mu_A = \mu_B$

$$H_a$$
: $\mu_A \neq \mu_B$

Variâncias diferentes

$$n_1 = 5$$

$$n_2 = 5$$

$$s_1 = 1,48$$

$$s_2 = 15,0$$

$$\bar{x}_1 = 151.8$$

$$s_1 = 1,48$$
 $s_2 = 15,0$ $\overline{x_1} = 151,8$ $\overline{x_2} = 154,6$

$$H_0$$
: $\mu_A = \mu_B$
 H_a : $\mu_A \neq \mu_B$

$$t_{cal} = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}} = \frac{151,8 - 154,6}{\sqrt{\left(\frac{1,48^2}{5} + \frac{15,0^2}{5}\right)}} = -0,41$$

Variâncias diferentes

$$n_1 = 5$$

$$n_2 = 5$$

$$s_1 = 1,48$$

$$s_2 = 15,0$$

$$\bar{x}_1 = 151,8$$

$$s_1 = 1,48$$
 $s_2 = 15,0$ $\overline{x_1} = 151,8$ $\overline{x_2} = 154,6$

$$H_0$$
: $\mu_A = \mu_B$

$$H_a$$
: $\mu_A \neq \mu_B$

$$dlf = \frac{\left[\frac{1}{n_1} + \frac{2}{n_2}\right]}{\frac{(s_1^2/n_1)^2}{(n_1 - 1)} + \frac{(s_2^2/n_2)^2}{(n_2 - 1)}} = 4,078 = 4$$

	TAIL PROBABILITY P											
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	.765	.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	.741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	.727	.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	.718	.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	.711	.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	.706	.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	.703	.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	.700	.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	.697	.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	.695	.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	.694	.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	.692	.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	.691	.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	.690	.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	.689	.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	.688	.862	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.611	3.922
19	.688	.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	.687	.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	.686	.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	.686	.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	.685	.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	.685	.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	.684	.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	.684	.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	.684	.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690
28	.683	.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674
29	.683	.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30	.683	.854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.646

 $\alpha = 0.05$ Two Tails

 \Leftrightarrow df = 4

0.025

0.0

t crítico = 2,776

df = degree of freedom

Variâncias diferentes

- Exemplo: Amostras envasadas por duas máquinas têm apresentam os seguintes volumes:
 - Máquina A: 150, 152, 154, 152, 151
 - Máquina C: 144, 162, 177, 150, 140

Falha em rejeitar H₀

A média é diferente?

- $t_{cal} = -0.41$ $t_{crítico} = 2.776$

Teste t de duas amostras Interpretação dos resultados

Machine A	Machine B	Machine C
150	156	144
152	155	162
154	158	177
152	155	150
151	154	140
$\bar{x}_{\mathbf{A}} = 151.8$	$, \bar{x}_{\rm B} = 155.6$	$\bar{x}_{\rm C} = 154.6$

