

Can we take a purely logical approach?

- Risks falsehood: "A₄₅ will get me there on time"
- Leads to conclusions that are too weak for decision making:
 - \square A_{45} will get me there on time if there is no accident on the bridge and it doesn't rain and my tires remain intact, etc.
 - \square A_{1440} might reasonably be said to get me there on time but I'd have to stay overnight at the airport!
- Logic represents uncertainty by disjunction but cannot tell us how likely the different conditions are.

Methods for handling uncertainty

- ☐ Assume my car does not have a flat tire
- \square Assume A_{45} works unless contradicted by evidence
- $\hfill \square$ Issues: What assumptions are reasonable? How to handle contradiction?
- Rules with ad-hoc fudge factors:
 - $\square A_{45}$
 - \longrightarrow 0.99 WetGrass □ Sprinkler

 - □ WelGrass /→ 0.7 Rain □ Issues: Problems with combination, e.g., Sprinkler causes Rain??
- Probability
 - ☐ Model agent's degree of belief
 - \square Given the available evidence, A_{45} will get me there on time with probability 0.04
- □ Probabilities have a clear calculus of combination

Our Alternative: Use Probability

• Given the available evidence, A_{45} will get me there on time with probability 0.04

 $P(A_{45}) = 0.04$ (prior/unconditional probability)

- Probabilistic assertions summarize the effects of
 - □ Laziness: too much work to list the complete set of antecedents or consequents to ensure no exceptions
 - ☐ *Theoretical ignorance*: medical science has no complete theory for the domain
 - □ *Uncertainty:* Even if we know all the rules, we might be uncertain about a particular patient

Uncertainty (Probabilistic Logic): Foundations

Q

- Probability theory provides a quantitative way of encoding likelihood
- Frequentist
 - ☐ Probability is inherent in the process
 - \square Probability is estimated from measurements
- Subjectivist (Bayesian)
 - ☐ Probability is a model of *your* degree of belief

Subjective (Bayesian) Probability

- Probabilities relate propositions to *one's own state of* knowledge
 - \square Example: $P(A_{45}|no\ reported\ accidents) = 0.06$ (Conditional probability)
- These are *not* assertions about the world
- Probabilities of propositions change with new evidence \square Example: $P(A_{45}|no\ reported\ accidents,\ 5am) = 0.15$

Making decisions under uncertainty

- Suppose I believe the following:
 - P(A₄₅ gets me there on time | ...)
- = 0.04
- P(A₉₀ gets me there on time | ...)
- = 0.70 = 0.95
- P(A₁₈₀ gets me there on time | ...) P(A₁₄₄₀ gets me there on time | ...)
- = 0.9999
- Which action to choose?
 - Depends on my preferences for missing flight vs. time spent waiting, etc.

Decision Theory

- Decision Theory develops methods for making optimal decisions in the presence of uncertainty.
 - ☐ Decision Theory = utility theory + probability theory
- Utility theory is used to represent and infer preferences: Every state has a degree of usefulness
- An agent is rational if and only if it chooses an action that yields the highest expected utility, averaged over all possible outcomes of the

Random variables

- A discrete random variable is a function that
 - □ takes discrete values from a countable domain and
 - □ maps them to a number between 0 and 1
 - ☐ Example: Weather is a discrete (propositional) random variable that has domain <sunny,rain,cloudy,snow
 - ☐ sunny is an abbreviation for Weather = sunny
 - □ P(Weather=sunny)=0.72, P(Weather=rain)=0.1, etc.
 - ☐ Can be written: P(sunny)=0.72, P(rain)=0.1, etc.
 - □ Domain values must be exhaustive and mutually exclusive
- Other types of random variables:
 - ☐ Boolean random variable has the domain <true,false>,
 - □ e.g., Cavity (special case of discrete random variable)
- □ Continuous random variable as the domain of real numbers, e.g., Temp

Propositions

■ Elementary proposition constructed by assignment of a value to a random variable:

□ e.g. Weather = sunny \square e.g. *Cavity* = *false* (abbreviated as \neg *cavity*)

 Complex propositions formed from elementary propositions & standard logical connectives

□ e.g. Weather = sunny ∨ Cavity = false

Atomic Events

- Atomic event.
 - ☐ A *complete* specification of the state of the world about which the agent is uncertain
 - ☐ E.q., if the world consists of only two Boolean variables *Cavity* and Toothache, then there are 4 distinct atomic events:

Cavity = false \(\tau \) Toothache = false

Cavity = false ∧ Toothache = true

Cavity = true ∧ Toothache = false Cavity = true ∧ Toothache = true

■ Atomic events are mutually exclusive and exhaustive

Axioms of Probability

- For any proposition $a, 0 \le P(a) \le 1$
- P(true) = 1 and P(false) = 0
- \blacksquare P(A \vee B) = P(A) + P(B) P(A \wedge B)

Example:

$$\Box P(a \vee \neg a) = P(a) + P(\neg a) - P(a \wedge \neg a)$$

$$\Box P(true) = P(a) + P(\neg a) - P(false)$$

$$\Box 1 = P(a) + P(\neg a)$$

$$\Box P(\neg a) = 1 - P(a)$$

Prior probability

- Prior (unconditional) probability
 - $\hfill\Box$ corresponds to belief prior to arrival of any (new) evidence
 - □ *P(sunny)=0.72, P(rain)=0.1*, etc.
- *Probability distribution* gives values for all possible assignments:
 - $\hfill\Box$ Vector notation: Weather is one of <0.72, 0.1, 0.08, 0.1>, where weather is one of <sunny,rain,cloudy,snow>.
 - □ **P**(Weather) = <0.72,0.1,0.08,0.1
 - ☐ Sums to 1 over the domain

Conditional Probability

Ó

■ E.g., *P*(*A*₄₅/no reported accidents) = 0.06

The probability of plan A_{45} getting us there in time is 0.06, given that all we know is there are no reported accidents

- Definition of Conditional Probability: $P(A \mid B) = P(A \land B)/P(B)$
- Product rule gives an alternative formulation:

 $P(A \land B) = P(A \mid B) * P(B)$ $= P(B \mid A) * P(A)$

■ A general version holds for whole distributions: P(Weather, Cavity) = P(Weather | Cavity) * P(Cavity)

☐ P(toothache) = 0.05 [add elements of toothache column]

Probabilistic Inference Probabilistic inference: the computation □ from observed evidence ☐ from prior and *conditional probabilities* □ for auery propositions. ■ We use the *full joint distribution* as the "knowledge base" from which answers to questions may be derived. ■ E.g., three Boolean variables *Toothache (T), Cavity (C), ShowsOnXRay (X)* X $\neg X$ X $\neg X$ C 0.108 0.012 0.072 0.008 0.016 0.064 0.144 $\neg C$ Probabilities in joint distribution sum to 1

Conditional Independence

- A and B are *conditionally independent given C* iff
 - $\square P(A \mid B, C) = P(A \mid C)$
 - $\square P(B \mid A, C) = P(B \mid C)$
 - $\square P(A \land B \mid C) = P(A \mid C) * P(B \mid C)$
- Toothache (T), Spot in Xray (X), Cavity (C)
 - $\hfill\square$ None of these propositions are independent of one other
 - □ But T and X are conditionally independent given C

Conditional Independence II

- In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in *n* to linear in *n*.
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Bayes' Rule

- $P(A \mid B) = (P(B \mid A) * P(A)) / P(B)$
- P(disease | symptom) = P(symptom | disease) * P(disease)
- Useful for assessing diagnostic probability from causal probability:

 □ P(Cause|Effect) = (P(Effect|Cause) * P(Cause)) / P(Effect)
- Imagine
 - ☐ disease = Zika, symptom = fever
 - □ *P(disease | symptom)* is different in Zika-indicated country vs. Australia
 - □ *P(symptom | disease)* should be the same
 - ☐ It is more useful to learn *P(symptom | disease)*
 - ☐ What about P(symptom)?
 ☐ Use *conditioning*

Combining Evidence

★ Bayesian updating given two pieces of information

$$P(C|T,X) = \frac{P(T,X|C)P(C)}{P(T,X)}$$

■ Assume that T and X are conditionally independent given C (naïve Bayes Model)

- $P(C|T,X) = \frac{P(T|C)P(X|C)P(C)}{P(T,X)}$
- We can do the evidence combination sequentially

Summary

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Queries can be answered by summing over atomic events
- For nontrivial domains, we must find a way to reduce the joint size
- Independence and conditional independence provide the tools
- Conditioning and Bayes' rule provide basic and powerful mechanisms for probabilistic inference

