- Compared SAMI3 and SAMI 2 runs with Large Ionosonde Data Base
 - As First Step, Concentrated on Solar Quiet Time and Mid-Latitudes
 - Reduce Number of Drivers
 - Minimizes Dynamic Inputs
 - WHI in 2008 is a historically low period for solar activity
 - Investigated the affects that unknowns in empirical atmospheric model has on ionospheric densities
- Systematic differences Between the Ionosonde Data and the SAMI3 model at Mid-Latitudes
 - Daytime
 - SAMI3 has F2 peak densities too low
 - SAMI3 has F2 peak slightly high
 - Nighttime
 - SAMI3 has F2 peak density too low
 - SAMI3 has F2 peak height too high
- SAMI3 other issues
 - Globally SAMI3 has higher TEC than GPS data, In spite of foF2 (and nmF2) being systematically low
 - SAMI3 sometimes give unrealistic slab thickness (TEC/nmF2)
- SAMI2 runs adjusting MSIS atmospheric parameters (Temperature and Density)
 - Uncertainties in 2008 Solar Minimum Atmosphere do not fully explain systematic differences
 - Reduced Atmospheric Temperature
 - Adjusted MSIS density and temperature to match Solar Minimum 2008 measurements
 - Height differences likely due to drifts and winds
 - Try adjusting ExB Drifts to correct heights
 - Drifts are expected to be smaller during 2008 Solar Minimum
 - Look at recombination rates at high altitudes
 - At high altitude recombination rate proportional to $N_{H+}x$ N_e
 - Ionosphere transitions to H+ at lower altitudes during Solar Minimum