MATH 512 - Project 4

Kanav Malhotra, Longzhe Yang

Wasif Ahmed, Haoxiang Deng, Jacob Fein-Ashley,

Question 1 Overview

- Let W_t be a standard Wiener process, with drift parameter zero and variance parameter $\sigma^2 = 1$.
- We divide the interval [0, 2] into L subintervals $[t_i, t_{i+1}]$, where $t_i = i\delta t$ and $\delta t = 2/L$.
- Let $W_i = W(t_i)$ and $\delta W_i = W_{i+1} W_i$.
- We verify numerically that:

 - $\sum_{\substack{i=0\\i=0}}^{L-1} |\delta W_i|$ is unbounded as δt goes to zero. $\sum_{\substack{i=0\\i=0}}^{L-1} \delta W_i^2$ converges to 2 in probability as δt goes to zero.

Question 1 Response

Question 1 Response

Figure: δW_i^2

Question 2a

Figure: 2a

Question 2b

Figure: 2b

Question 2c

Figure: 2c

Question 2d

Figure: 2d

Question 2e

Figure: 2e

Question 2f

Figure: 2f

Question 3: Weak and Strong Order of Convergence for EM Method

SDE:

$$dX(t) = \mu X(t)dt + \sigma X(t)dW(t)$$
, $X(0) = 3$, $\mu = 2$, $\sigma = 0.10$

• Weak order of convergence equal to 1: to show that

$$|E[X_1] - E[X(1)]| = C\Delta t$$

$$|X_0e^{\mu*1} - rac{1}{numPaths}\sum_{j=1}^{numuns}X_j(1)| = C\Delta t$$

• **Strong order of convergence equal to 0.5:** to show that

E
$$|X_1 - X(1)| = C\Delta t^{0.5}$$

$$rac{1}{numPaths}\sum_{j=1}^{numPaths}|X_{\circ}e^{\mu*1+\circ.5*\sigma^{2}*1}-X_{j}(1)|=C\Delta t^{\circ.5}$$

where X_1 is the exact solution and X(1) is the estimated solution.

Weak Order of Convergence Results

Weak Order of Convergence focuses on the **expected values** of the numerical solution compared to the exact solution

$$|E[X_1] - E[X(1)]| = C\Delta t$$

• A plot of the error versus Δt for the weak order of convergence of 1.

Strong Order of Convergence Results

Strong Order of Convergence to 0.5 is concerned with the **pathwise accuracy**, evaluating how closely the numerical solution follows individual realizations of the exact solution.

$$E|X_1 - X(1)| = C\Delta t^{0.5}$$

• A plot of the error versus $\Delta t^{0.5}$ for the strong order of convergence of 0.5.

Question 4

We consider the following SDE:

$$dX(t) = \mu X(t) dt + \sigma X(t) dW(t)$$
, $X(o) = 3$, $\mu = 2$, $\sigma = 0.10$

• Simulate this stochastic process over the interval [0, 20] using an implicit method of the form:

$$X_{n+1} = X_n + (1-\theta)\Delta t f(X_n) + \theta \Delta t f(X_{n+1}) + \sqrt{\Delta t} \alpha_n g(X_n)$$

- We use $\theta = 0.5$ and $\alpha_n = \sigma X_n$.
- We plot the results for $\Delta t = 0.01$ and $\Delta t = 0.001$.

We plot the explicit and implicit methods for $\Delta t = 0.01$ and $\Delta t = 0.001$:

Figure: Implicit Euler Method

Figure: Explicit Euler Method

We determine the values of μ and σ for which the SDE is mean-square stable:

Figure: Mean-Square Stability

We also determine that no values of θ provide mean-square stability.

We also find that the values of μ and σ in the previous slide satisfy asymptotic stability.

Question 5

An algorithm to simulate exit times for the SDE:

```
1: Choose a step size \Delta t
2: Choose some paths, M
 3: for s = 1 to M do
         Set t_n = 0 and X_n = X_0
 4:
         while X_n > a and X_n < b do
 5:
              Compute a N(0,1) sample \xi_n
 6:
              Replace X_n by X_n + \mu X_n \Delta t + \sigma X_n \xi_n
 7:
              Replace t_n by t_n + \Delta t
 8:
         end while
 9:
         Set T_s^{exit} = t_n - 1/2\Delta t
10:
11: end for
12: Set a_M = \frac{1}{M} \sum_{s=1}^{M} T_s^{exit}
13: Set b_M^2 = \frac{1}{M-1} \sum_{s=1}^{M} (T_s^{exit} - a_M)^2
```


Figure: 5

Figure: 5

