第4回 計算機構成

前回の内容

- 2進数から8進数・16進数への変換
- 正数と負数の表現
- 負数の表現
 - ▶ 1の補数
 - ▶ 2の補数
- 浮動小数点形式

今回の内容

- ■補数の例題の答合せ
- ■浮動小数点形式
- ▶ 課題1の答合せ
- ■ケチ表示
- ■非正規化数
- IEEE754

前回配布した資料を使います。

第3回までにできてること

- 固定小数点形式について説明できる
- 10進数, 2進数, 8進数, 16進数を相互に変 換できる
 - ▶ 整数,小数
- 負数の表現方法
 - ▶ 符号+絶対値, 1の補数, 2の補数
 - 配布資料「補数の演習」
 - ▶ バイアス表現
- 浮動小数点形式
 - ▶ 配布資料「浮動小数点形式」の課題1

■ 教科書

- ▶ 2.4 符号付き数と符号なし数
- ▶ 例題 2進から10進への変換 (p.75)
- ▶ 例題 正負反転の簡便法 (p.77)
- ▶ 例題 符号拡張の簡便法 (p.77)
- ▶ 自己診断 (p.78)

教科書は繰り返し読むこと

浮動小数点形式 (p.190)

■ 指数部と仮数部のビット分配

 $N=(-1)^S \times M \times 2^E$

S 指数部 E

仮数部 M

- ▶ 指数部 E のビット数を多くすると数値の範囲は広くなる.
- ▶ 仮数部 M のビット数を多くすると有効桁数が大きくなる.
- ▶ IEEE754では、符号 1 ビット、指数部 8 ビット、仮数部 2 3 ビット
- 仮数部の表現方法
 - ▶ 正規化+固定小数点による小数+ケチ表示
- 指数部の表現方法
 - ▶ 整数の表現→バイアス表現(ゲタばき表現) ※補数じゃないよ。

課題1

5ビットの浮動小数点形式について考える

- 符号1ビット, 指数部2ビット, 仮数部2ビット
 - ▶ 指数 exponent 仮数 mantissa
- 指数部はバイアス2のバイアス表現
- N=(-1)^S×M×2 e-2 S 指数部 e 仮数部 M

 e //	00(-2)	01(-1)	10(0)	11(1)
0.0				
0.1				
1.0				
1.1				

5ビットの浮動小数点形式 正規化しない

- 符号1ビット, 指数部2ビット, 仮数部2ビット
- 指数部はバイアス2のバイアス表現
- N=(-1)^S×M×2 e-2 S 指数部 e 仮数部 M

e M	00(-2)	01(-1)	10(0)	11(1)
0.0	0	0 0.5倍	0	0 2倍
0.1	0.125	0.25	0.5	1
1.0	0.25	0.5	1	2
1.1	0.375	0.75	1.5	3

- \blacksquare (1001)₂
 - ▶ 指数部e 10, 仮数部M 01
 - ▶ 指数部 10 → 20
 - ▶ 仮数部 01 → 0.12 → 0.510
 - $0.5 \times 2^{\circ} = 0.5$

5ビットの浮動小数点形式 正規化しない

- 符号1ビット, 指数部2ビット, 仮数部2ビット
- 指数部はバイアス2のバイアス表現
- N=(-1)^S×M×2 e-2 S 指数部 e 仮数部 M

e M	00(-2)	01(-1)	10(0)	11(1)
0.0	0 0.5倍	0	0 —2倍 —	0
0.1	0.125	0.25	0.5	1
1.0	0.25	0.5	1	2
1.1	0.375	0.75	1.5	3

- \blacksquare (0101)₂
 - ▶ 指数部e 01, 仮数部M 01
 - ▶ 指数部 01 → 2-1
 - ▶ 仮数部 01 → 0.12 → 0.510
 - $0.5 \times 2^{-1} = 0.25$

正規化とは

- 符号1ビット, 指数部2ビット, 仮数部2ビット
- 指数部はバイアス2のバイアス表現

- 00(-2) 01(-1) 10(0) 11(1) 0.0 0 0 0.125 0.25 0.5 0.1 1.0 0.25 2 0.375 0.75 1.5
- ■2つの0.25
 - \blacktriangleright 0101 → 0.1₂ × 2⁻¹ = 0.25
 - $0010 \rightarrow 1.0_2 \times 2^{-2} = 0.25$
- 2つの0.5
 - **▶** $1001 \rightarrow 0.12 \times 2^0 = 0.5$
 - **▶** $0110 \rightarrow 1.0_2 \times 2^{-1} = 0.5$
 - ■正規化とは
 - ▶ 仮数部が 1.xxx となるように指 数を調整する
 - ▶ $0.12 \times 2^{-1} \rightarrow 1.02 \times 2^{-2}$
 - ▶ $0.12 \times 2^0 \rightarrow 1.02 \times 2^{-1}$

5ビットの浮動小数点形式 正規化+けち表示

- 符号1ビット、指数部2ビット、仮数部2ビット
- 指数部はバイアス2のバイアス表現
- N=(-1)^S×1.m×2 e-2 S 指数部 e 仮数部 m

e 1.m	00(-2)	01(-1)	10(0)	11(1)
.00	0.25	0.5	1.0	2.0
.01	0.3215	<u>0.625</u>	<u>1.25</u>	<u>2.5</u>
.10	0.375	0.75	1.5	3
.11	0.4375	0.875	1.75	3.5

- ■正規化+けち表示
 - **▶** $0101 \rightarrow 1.01 \times 2^{-1} = 0.625$
 - \blacktriangleright 0010→ \bot 10 × 2-2 = 0.375
 - \blacktriangleright 10**01** → 1.**01** × 2⁰ = 1.25
 - **▶** $0110 \rightarrow 1.10 \times 2^{-1} = 0.75$

5ビットの浮動小数点形式 正規化+けち表示

- 符号1ビット, 指数部2ビット, 仮数部2ビット
- 指数部はバイアス2のバイアス表現

■ N=(-1)^S×1.m×2 e-2 S 指数部 e 仮数部 m

e 1.m	00(-2)	01(-1)	10(0)	11(1)
.00	0.25	0.5	1.0	2.0
.01	0.3215	0.625	<u>1.25</u>	<u>2.5</u>
.10	0.375	0.75	1.5	3
.11	0.4375	0.875	1.75	3.5

- 4ビットで16通りの数値表現
 - ▶ 下線の数値
 - 正規化によって増えた数値
- 問題点
 - ▶ ゼロがない
- ゼロがない原因
 - ▶ ケチ表現→1が省略されている
- ■ゼロの場所
 - ▶ (0000)2をゼロとするのが自然
- ■数直線で考えてみる

ゼロ Zeroをどうするか?

e 1.m	00(2-2)	01 (2-1)	10(20)	11(21)
00	0.25	0.5	1	2
01	0.3125	0.625	1.25	2.5
10	0.375	0.75	1.5	3
11	0.4375	0.875	1.75	3.5

	e 1.m	00(2-2)	01(2-1)	10(20)	11(2 ¹)
	00	Zero	0.5	1	2
ĺ	01	0.3125	0.625	1.25	2.5
ĺ	10	0.375	0.75	1.5	3
	11	0.4375	0.875	1.75	3.5

正規化数

5ビットの浮動小数点形式

■ 5ビットの2進浮動小数点形式

S e m

$$N = (-1)^{s} \times 0.m \times 2^{-1}$$

$$N = (-1)^{s} \times 1.m \times 2^{e-2}$$

e 1.m	00(2 ⁻¹) 0.m	01(2-1)	10(20)	11(2¹)
00	Zero	0.5	1	2
01	0.125	0.625	1.25	2.5
10	0.25	0.75	1.5	3
11	0.375	0.875	1.75	3.5

5ビットの浮動小数点形式 ■ 5ビットの2進浮動小数点形式 $N = (-1)^s \times 0.m \times 2^{-1}$

 $N = (-1)^s \times 1.m \times 2^{e-2}$

5ビットの浮動小数点形式(正規化+けち表示、バイアスが2)

■ 最終的な浮動小数点形式

e 1.m	00(2 ⁻¹) 0.m	01(2-1)	10(20)	11(21)
00	Zero	0.5	1	2
01	0.125	0.625	1.25	2.5
10	0.25	0.75	1.5	3
11	0.375	0.875	1.75	3.5

■ 無限大∞の追加。IEEE754.

e 1.m	00(2 ⁻¹) 0.m	01(2-1)	10(20)	11(21)
00	Zero	0.5	1	∞
01	0.125	0.625	1.25	NaN
10	0.25	0.75	1.5	NaN
11	0.375	0.875	1.75	NaN

浮動小数点形式 (p.190)

■ 指数部と仮数部のビット分配

N=(-1)^S × M × 2^E s 指数部 E

指数部 E 仮数部 M

- ▶ 指数部 E のビット数を多くすると数値の範囲は広くなる.
- ▶ 仮数部 M のビット数を多くすると有効桁数が大きくなる。
- ▶ IEEE754では、符号 1 ビット、指数部 8 ビット、仮数部 2 3 ビット
- 仮数部の表現方法
 - ▶ 正規化+固定小数点による小数+ケチ表示
- 指数部の表現方法
 - ▶ 整数の表現→バイアス表現(ゲタばき表現) ※補数じゃないよ。

5ビットの浮動小数点形式 正規化+けち表示

- 符号1ビット,指数部2ビット,仮数部2ビット
- 指数部はバイアス2のバイアス表現
- N=(-1)^S×1.m×2 e-2 S 指数部 e 仮数部 m 指数部が0のとき N=(-1)^S×0.m×2 -1

1.m	00(-1)	01(-1)	10(0)	11(1)
.00	0	0.5	1.0	2.0
.01	0.125	0.625	<u>1.25</u>	<u>2.5</u>
.10	0.25	0.75	1.5	3
.11	0.375	0.875	1.75	3.5

- 指数部が00の場合は正規化しない
 - $N=(-1)^{S}\times 0.m\times 2^{-1}$
- ■非正規化数
 - ▶ 指数部00の数値
- ■浮動小数点に関するキーワード
 - ▶ ゲタばき表現(バイアス表現)
 - ▶ 正規化
 - ▶ けち表現
 - ▶ 非正規化数
 - ▶ 無限大

5ビットの浮動小数点形式 正規化+けち表示

- 符号1ビット, 指数部2ビット, 仮数部2ビット
- 指数部はバイアス2のバイアス表現
- N=(-1)^s×1.m×2 e-2 S 指数部 E 仮数部 M 指数部が0のとき N=(-1)^s×0.m×2 -1

1.m	00(-1)	01(-1)	10(0)	11(1)
.00	0	0.5	1.0	∞
.01	0.125	0.625	<u>1.25</u>	NaN
.10	0.25	0.75	1.5	Nan
.11	0.375	0.875	1.75	Nan

- 指数部がすべて 0
 - ▶ 非正規化数 N=(-1)^S×0.m×2 e-1
- 指数部がすべて1
 - ▶ 無限大, NaN : Not a Number
- 浮動小数点に関するキーワード
 - ▶ ゲタばき表現 (バイアス表現)
 - ▶ 正規化
- ▶ けち表現
- ▶ 非正規仮数

浮動小数点形式の表現について

- 符号ビット、指数部、仮数部の並びになっている理由
- 符号ビットを最上位ビットにする.

S 指数部 E 仮数部 M

▶ 正負の判定が速い。

- ▶ 整数型と同じように正負の判定ができる。
- ゲタばき表現の指数部が仮数部より上位にある
 - ▶ 整数比較命令を使って整列ができる.

2進数	符号なし (正数)		符号つき バイアス3	
	(111,000)	_	,,,,,	
000	0		-3	
001	1		-2	
010	2		-1	
011	3		0	
100	4		1	
101	5		2	
110	6		3	
111	7		4	/

次回

- 教科書 2 命令: コンピュータの言葉
 - ▶ 2.1 はじめに
 - ▶ 2.2 コンピュータ・ハードウェアの演算
 - ▶ 2.3 コンピュータ・ハードウェアのオペランド
 - ▶ 2.4 符号付き数と符号なし数
 - ▶ 2.5 コンピュータ内での命令の表現
 - ▶ 2.6 論理演算
 - ▶ 2.7 条件判定用の命令
 - if, else, while, do-while, switch-case

論理演算	Cの演算子
左シフト	<<
右シフト	>>
ビット単位のAND	&
ビット単位のOR	1
ビット単位のNOT	~
AND	&&
OR	1.1
NOT	!

IEEE標準形式 IEEE754

■ 単精度(32ビット)

S e(8) M(23)

▶ e=255&M≠0; Not A Number

▶ e=255&M=0; (-1)sx∞

0 < e < 255 ; $(-1)^{s} \times 2^{e-127} \times (1.m)$

 \blacktriangleright e=0&M≠0 ; (-1)s×2-126×(0.m)

▶ e=0&M=0 ; 0

e 1.m	000	001	101	111
000	0			∞
001				NaN
				NaN
101				NaN
111				NaN

 $(-1)^{s} \times 2^{e-126} \times (0.m)$ $(-1)^{s} \times 2^{e-127} \times (1.m)$