Versuch ...

Frederik Strothmann, Henrik Jürgens 22. Oktober 2014

Inhaltsverzeichnis

1	Einleitung	5
2	Verwendete Materialien	5
3	Versuchsteil	5
	3.1 Versuchsaufbau	. 5
	3.2 Versuchsdurchführung	. 5
	3.3 Verwendete Formeln	
	3.4 Messergebnisse	. 5
	3.5 Auswertung	
	3.6 Diskussion	
4	Fazit	5
5	Versuchsteil 2	5
	5.1 Versuchsaufbau	. 5
	5.2 Versuchsdurchführung	. 7
	5.3 Verwendete Formeln	
	5.4 Messergebnisse	
	5.5 Auswertung	
	5.6 Digly use ion	7

Vorgefertigte Skizzenausschnitte

Abbildung 1: Schaltskizze einer Verbindung zwischen Funktionsgenerator und Oszilloskop, mit kurzem Koaxialkabel 2

Abbildung 2: Schaltskizze einer Verbindung zwischen Funktionsgenerator und Oszilloskop, mit langem Koaxialkabel 4

Abbildung 3: Schaltskizze einer Verbindung zwischen Funktionsgenerator und Oszilloskop, mit langem Koaxialkabel und Abschlusskabel 6

Abbildung 4: Schaltskizze einer Verbindung zwischen Funktionsgenerator und Oszilloskop, mit langem Koaxialkabel und Kurzschluss 8

²Abbildung entnommen von http://www.atlas.uni-wuppertal.de/~kind/ep1_14.pdf Seite 12 am 19.10.2014

⁴Abbildung entnommen von http://www.atlas.uni-wuppertal.de/~kind/ep1_14.pdf Seite 12 am 19.10.2014

⁶Abbildung entnommen von http://www.atlas.uni-wuppertal.de/~kind/ep1_14.pdf Seite 12 am 19.10.2014

Abbildung 5: Schaltskizze einer Verbindung zwischen Funktionsgenerator und Oszilloskop, mit Patch- und Koaxialkabel 10

Abbildung 6: Schaltskizze einer Verbindung zwischen Funktionsgenerator und Oszilloskop, mit Patch- und Koaxialkabel (geschlossen mit Potentiometer) 12

Abbildung 7: Schaltskizze zur Bestimmung des Kapazitätsbelags 13

⁸Abbildung entnommen von http://www.atlas.uni-wuppertal.de/~kind/ep1_14.pdf Seite 13 am 19.10.2014

¹⁰Abbildung entnommen von http://www.atlas.uni-wuppertal.de/~kind/ep1_14.pdf Seite 14 am 19.10.2014

 $^{^{12} \}mathrm{Abbildung}$ entnommen von http://www.atlas.uni-wuppertal.de/ \sim kind/ep1_14.pdf Seite 14 am 19.10.2014

 $^{^{13} \}text{Abbildung}$ entnommen von http://www.atlas.uni-wuppertal.de/ \sim kind/ep1_14.pdf Seite 14 am 19.10.2014

- 1 Einleitung
- 2 Verwendete Materialien
- 3 Versuchsteil...
- 3.1 Versuchsaufbau
- 3.2 Versuchsdurchführung
- 3.3 Verwendete Formeln
- 3.4 Messergebnisse
- 3.5 Auswertung
- 3.6 Diskussion
- 4 Fazit

5 Versuchsteil 2

Im zweitem Versuchsteil sollte die Störanfälligkeit von Signalen bei Übertragung mit Bananenkabeln überprüft werden. Dabei wurden drei verschiedene Übertragungsmöglichkeiten verwendet, Übertragung mit nur einem Bananenkabel, mit zwei Bananenkabeln und mit einem twisted-pair Kabel aus zwei Bananenkabeln.

5.1 Versuchsaufbau

Für die Signalübertragung mit nur einem Bananenkabel wurde der Aufbau aus Abbildung ?? verwendet.

Abbildung 8: Schaltskizze einer Verbindung zwischen Funktionsgenerator und Oszilloskop, mit einem Bananenkabel 15

Bei der Signalübertragung mit zwei Bananenkabeln wurde der Aufbau von Abbildung 8 verwendet.

 $^{^{15}}$ Abbildung entnommen von http://www.atlas.uni-wuppertal.de/ \sim kind/ep1_14.pdf Seite 8 am 19.10.2014

Abbildung 9: Schaltskizze einer Verbindung zwischen Funktionsgenerator und Oszilloskop, mit zwei Bananenkabeln^{17}

Für die Signalübertragung über ein twisted-pair Kabel wurde der Aufbau aus Abbildung 9 verwendet.

Abbildung 10: Schaltskizze einer Verbindung zwischen Funktionsgenerator und Oszilloskop, mit zwei verdrillten Bananenkabeln¹⁹

Da die Signalquelle nicht Potentialfrei ist verwendet man als Signalquelle in Mikrofon. Das Signal wir über einen Operationsverstärker, siehe Abbildung 11 verstärkt, um das Signal auf dem Oszilloskop sichtbar zu machen.

Abbildung 11: Schaltskizze zum Anschlusses des Operationsverstärkers²⁰

Der Operationsverstärker und das Mikrofon werden dann nach Schaltbild 12 zusammen geschaltet.

 $^{^{17} \}mathrm{Abbildung}$ entnommen von http://www.atlas.uni-wuppertal.de/ \sim kind/ep1_14.pdf Seite 8 am 19.10.2014

 $^{^{19}}$ Abbildung entnommen von http://www.atlas.uni-wuppertal.de/ \sim kind/ep1_14.pdf Seite 9 am 19.10.2014

 $^{^{20} \}text{Abbildung}$ entnommen von http://www.atlas.uni-wuppertal.de/ \sim kind/ep1_14.pdf Seite 11 am 19.10.2014

Abbildung 12: Schaltskizze des Aufbaus mit Operationsverstärker und verdrillten Bananenkabeln^{22}

Zum Vergleich wird dann Widerstand 3 noch an die Massen angelegt, Aufbau nach Abbildung 13.

Abbildung 13: Schaltskizze des Aufbaus mit Operationsverstärker und verdrillten Bananenkabeln, bei parallel geschaltetem ${\rm R_3}^{24}$

- 5.2 Versuchsdurchführung
- 5.3 Verwendete Formeln
- 5.4 Messergebnisse
- 5.5 Auswertung
- 5.6 Diskussion

 $^{^{22} \}text{Abbildung}$ entnommen von http://www.atlas.uni-wuppertal.de/ \sim kind/ep1_14.pdf Seite 11 am 19.10.2014

 $^{^{24}}$ Abbildung entnommen von
http://www.atlas.uni-wuppertal.de/ \sim kind/ep
1_14.pdf Seite 11 am 19.10.2014