Recap – Naïve Bayes

Rina BUOY

AMERICAN UNIVERSITY OF PHNOM PENH

STUDY LOCALLY. LIVE GLOBALLY.

Machine Learning Process

Regression Tasks

• Imagine you have a dataset containing information about houses: their sizes (in square feet) and their prices (in dollars). Now, let's say you want to build a model that can predict the price of a house given its size.

Classification Tasks

• Suppose you have a dataset containing information about emails: their subject lines, body text, and whether they are spam or not (classified as either "spam" or "not spam").

Machine Learning as a mapping function

Spam Filter Task

Training Set

Email	Label
Buy Viagra!	Spam
You good?	Ham
Viagra help you.	Spam
Good Viagra help.	Spam
I need Viagra for my health condition.	Ham

Predict whether this email is spam or ham:

You buy Viagra!

Emails as word collections

Email	Set of Words in the Email
SUBJECT: Top Secret Business Venture	{top, secret, business, venture, dear, sir, first, I, must, solicit, your, confidence, in,
Dear Sir. First, I must solicit your confidence in this transaction, this is by virtue of its nature as being utterly confidential and top secret	this, transaction, is, by, virtue, of, its, nature, as, being, utterly, confidencial, and}
Hello hello there.	{hello, there}
You buy Viagra!	{you, buy, viagra}

For simplicity, we will

- Ignore Duplicate Words
- Ignore Punctuation
- Ignore Casing

Idea

Compute and Compare:

$$\mathbb{P}(\text{spam} \mid \text{"You buy Viagra!"})$$
 $\mathbb{P}(\text{ham} \mid \text{"You buy Viagra!"})$

Then predict whichever is larger! Can we get away with just computing one of them?

Equivalently, note that these add to 1, so we can just compute $\mathbb{P}(\text{spam} \mid \text{"You buy Viagra!"})$

and if it is greater than 0.5, then we predict spam.

Otherwise, we predict ham.

Note: We resolve the tie in favor of ham.

Naive Bayes Classifier - The naive part

It is somewhat unlikely that we have the email "You buy Viagra!" in our training data. (In this case we don't!)

We <u>naively</u> assume that words are conditionally independent from each other, given the label (In reality, they aren't):

$$\mathbb{P}(\{\text{"you"}, \text{"buy"}, \text{"viagra"}\} \mid \text{spam})$$

 $\approx \mathbb{P}(\text{"you"} \mid \text{spam})\mathbb{P}(\text{"buy"} \mid \text{spam})\mathbb{P}(\text{"viagra"} \mid \text{spam})$

Then we estimate for example that

$$\mathbb{P}(\text{"you"} \mid \text{spam}) = \frac{\text{number of spam emails containing "you" (in training set)}}{\text{number of spam emails (in training set)}}$$

P (spam | "You buy Viagra")

Example

$$\mathbb{P}(\{"you","buy","viagra"\}| spam) \mathbb{P}(spam)$$

$$\overline{\mathbb{P}\big(\big\{\text{"you","buy","viagra"}\big\}|\text{ spam}\big)\,\mathbb{P}(\text{spam}) + \mathbb{P}\big(\big\{\text{"you","buy","viagra"}\big\}|\text{ ham}\big)\,\mathbb{P}(\text{ham})}$$

 $\frac{\mathbb{P}(\text{"you"}\mid \text{spam})\mathbb{P}(\text{"buy"}\mid \text{spam})\mathbb{P}(\text{"viagra"}\mid \text{spam})\mathbb{P}(\text{spam})}{\mathbb{P}(\text{"you"}\mid \text{spam})\mathbb{P}(\text{"buy"}\mid \text{spam})\mathbb{P}(\text{"viagra"}\mid \text{spam})\mathbb{P}(\text{"you"}\mid \text{ham})\mathbb{P}(\text{"buy"}\mid \text{ham})\mathbb{P}(\text{"viagra"}\mid \text{ham})\mathbb{P}(\text{ham})}$

Email	Label
Buy Viagra!	Spam
You good?	Ham
Viagra help you.	Spam
Good Viagra help.	Spam
I need Viagra for my health condition.	Ham

$$= \frac{\frac{2}{5} \cdot \frac{2}{5} \cdot \frac{4}{5} \cdot \frac{3}{5}}{\frac{2}{5} \cdot \frac{2}{5} \cdot \frac{4}{5} \cdot \frac{3}{5} + \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{2}{5}} \approx 0.7544$$

$$\mathbb{P}(\text{spam}) = \frac{3}{5} \qquad \mathbb{P}(\text{ham}) = \frac{2}{5}$$

$$\mathbb{P}(\text{"you"} \mid \text{spam}) = \frac{1+1}{3+2} = \frac{2}{5} \qquad \mathbb{P}(\text{"you"} \mid \text{ham}) = \frac{1+1}{2+2} = \frac{1}{2}$$

$$\mathbb{P}(\text{"buy"} \mid \text{spam}) = \frac{1+1}{3+2} = \frac{2}{5} \qquad \mathbb{P}(\text{"buy"} \mid \text{ham}) = \frac{0+1}{2+2} = \frac{1}{4}$$

 $\mathbb{P}(\text{"viagra"} \mid \text{spam}) = \frac{3+1}{3+2} = \frac{4}{5} \quad \mathbb{P}(\text{"viagra"} \mid \text{ham}) = \frac{1+1}{2+2} = \frac{1}{2}$

Think about Khmer fake facebook post detection

Post	Status
5ឆ្នាំទៀតខ្ញុំចង់!និយាយមិន អោយខុស	OKAY
#តារាចម្រៀង #សិល្បៈ # កម្សាន្ត #ព័ត៌មានថ្មីៗ	NOT OKAY
	•••
•••	

Other cases

- Think about news article classification?
- Think about sentiment analysis?
- Think about product reviews?
- Etc.