Projektarbeit 1 + 2

Miro Göttler, Pol Zeimet

Gliederung

ZielWas soll in dieser
Arbeit erforscht
werden?

DatenDatensatz, Auswahl
und Format

Vorverarbeitung
Teilung, Normalisierung
und Sequenzierung der
Daten

Modelle
Beschreibung
und Ergebnisse
der Netze

Vergleich
Genauigkeit,
Konfusionsmatrix,
Cross View/Subject

FazitErgebnisse und nächste Schritte

Ziel der Arbeit

"Erkennung von Bewegungsvorgängen von Personen anhand 3D-Keypoint-Daten mit Rekurrenten und Convolutional Neuronalen Netzen."

Datenauswahl

Klasse 0 A028 – phone call

Klasse 2 A028 – taking a selfie

Klasse 1 A028 – play with phone

A001 A003 A010 A014 A019 A021	drink water brush teeth clapping put on jacket take off glasses take off hat/cap
--	--

Klasse 3 Restklasse

Datenvorverarbeitung

Daten teilen, Datenformat, Normalisierung

Test- und Trainingsdaten

Datenformat für CNN

Datenformat für RNN

2-dimensionales Frame

X-Achse Y-Achse Z-Achse

```
array([[ 0.144105 , 0.1797895 , 3.770897 ],
       0.1298895 , 0.4353971 , 3.716636 ],
        0.1148097 , 0.6858059 , 3.65103
       0.1407793 , 0.7899354 , 3.626976 ],
       0.00852378, 0.5821182, 3.602603],
      [-0.06197929, 0.3990757, 3.630781],
       0.1899347 , 0.4185481 , 3.537421 ],
       0.2423392 , 0.416668 , 3.551047 ],
       0.2229546 , 0.5959279 , 3.709957 ],
        0.2622133 , 0.4049372 , 3.580323 ],
        0.2006394 , 0.4397647 , 3.380641 ],
       0.215305 , 0.4403287 , 3.326553 ],
        0.09136374, 0.174307 , 3.716386 ],
        0.05568824, -0.1528607, 3.809743],
       0.04508911, -0.4464301, 3.96866
       0.05371094, -0.5288086, 3.935547],
       0.1945098 , 0.1821429 , 3.762648 ],
       0.206101 , -0.08332169, 3.867309 ],
        0.1672105 , -0.4358586 , 4.050102 ],
        0.2079305 , -0.4915422 , 3.953314
        0.118738 , 0.624014 , 3.669435 ],
        0.2684598 , 0.4491149 , 3.511355 ],
        0.2647159 , 0.3881126 , 3.570221 ],
       0.1888318 , 0.4359006 , 3.304096 ],
       [ 0.1816407 , 0.4335808 , 3.306019 ]])
```


1-dimensionales Frame

 $[X_1, Y_1, Z_1, X_2, Y_2, Z_2, \dots X_{25}, Y_{25}, Z_{25}]$

75 Gelenkpunkte in Reihe

Sliding Window

Fillup mit Pre-Zero-Padding

Normalisierung

Normalisierung der Daten

Als Versuch zum Vergleich zur Rotationsnormalisierung

- Übertragung der Gelenkpunkte in ein Körperkoordinatensystem.
- Neuberechnung des Koordinatensystems in jedem Frame

Normalisierung der Daten

Erweiterung der Normalisierung auf Körperkoordinatensystem:

- Körperkoordinatensystem wird nur im ersten Frame aufgestellt
- Folgeframes werden in Koordinatensystem des ersten Frame umgewandelt
- Erhalten der Räumlichen Bewegung

Rekurrente Neuronale Netze

Netzarchitektur und Ergebnisse

RNN Netzstruktur

Methoden zur Evaluierung

Vorverarbeitungs-Ergebnisse

	Ausprägung	Genauigkeit	Differenz
Normalisierung	True	87,15%	4,42%
	False	82,73%	4,4270
Dimensionen	3D	87,15%	7,04%
Dimensionen	2D	80,11%	7,04/0
Methode	Fillup	87,15%	10,44%
	Sliding	76,71%	10,4470

Netzarchitekturen

		Zellen pro Schicht						
		64	384	448				
	1	78,87%	82,73%	83,15%	85,22%	85,50%	86,05%	84,25%
C.	2	82,04%	87,15%	84,25%	86,33%	84,67%	85,50%	85,36%
Schichten	3	82,04%	83,98%	85,50%	84,39%	86,46%	85,64%	85,64%
chic	4	82,46%	84,12%	86,19%	85,22%	84,94%	86,05%	86,19%
Š	5	81,63%	83,29%	84,81%	84,81%	85,22%	84,67%	83,84%
	6	80,80%	83,43%	82,87%	84,81%	84,25%	83,98%	84,67%

- → 64 Zellen reichen nicht aus
- → Weniger ist besser
- → Große Netze brauchen deutlich länger zum Lernen

Auswirkungen der Netzstruktur auf Geschwindigkeit

- → Je weniger Schichten desto schnelleres Lernen
- → Anzahl der Zellen hat keinen Einfluss auf Geschwindigkeit
- → Zu hohe Komplexität führt zu Overfitting

RNN Metriken

"Play with phone" und "taking a selfie" klar unterscheidbar.

Werden oft nur mit "phone call" verwechselt.

Nur geringer Anteil "Rest-Klasse" richtig vorhergesagt

Convolutional Neuronale Netze

Netzarchitektur und Ergebnisse

Verschiedene Faltungskerne

In Blau

 Wir Falten jedes Gelenk individuell über die Zeit => Narrow Convolution

In Rot

Wir Falten alle Gelenke zusammen über die Zeit

=> Wide Convolution

Layer (type) Output Shape Param #
conv2d_20 (Conv2D) (None, 166, 25, 32) 512
max_pooling2d_10 (MaxPooling) (None, 162, 25, 32) 0
conv2d_21 (Conv2D) (None, 158, 25, 32) 5152
max_pooling2d_11 (MaxPooling) (None, 154, 25, 32) 0
flatten_8 (Flatten) (None, 123200) 0
dense_36 (Dense) (None, 100) 12320100
dropout_12 (Dropout) (None, 100) 0
dense_37 (Dense) (None, 50) 5050
dropout_13 (Dropout) multiple 0
dense_38 (Dense) (None, 20) 1020
dense_39 (Dense) (None, 20) 420
dense_40 (Dense) (None, 4) 84

Total params: 12,332,338

Trainable params: 12,332,338 Non-trainable params: 0

- 2 narrow Covolution Layer
- 2 narrow Pooling Layer
- Faltung und Pooling jeweils über 5 Frames hinweg
- Stride bei Faltung: 1
- Stride bei Pooling: 1
- .35 Dropout nach erstem Fully Connected Layer
- .25 Dropout in den restlichen Layern

Layer (type) Output Shape Param #
conv2d_22 (Conv2D) (None, 166, 25, 32) 512
max_pooling2d_12 (MaxPooling) (None, 165, 25, 32) 0
conv2d_23 (Conv2D) (None, 163, 25, 32) 3104
max_pooling2d_13 (MaxPooling (None, 162, 25, 32) 0
conv2d_24 (Conv2D) (None, 160, 25, 32) 3104
max_pooling2d_14 (MaxPooling) (None, 159, 25, 32) 0
flatten_9 (Flatten) (None, 127200) 0
dense_41 (Dense) (None, 100) 12720100
dropout_14 (Dropout) (None, 100) 0
dense_42 (Dense) (None, 50) 5050
dropout_15 (Dropout) multiple 0
dense_43 (Dense) (None, 20) 1020
dense_44 (Dense) (None, 4) 84
T

Total params: 12,732,974 Trainable params: 12,732,974 Non-trainable params: 0

- 3 narrow Covolution Layer
- 3 narrow Pooling Layer
- Faltung einmal über 5, zweimal über 3 Frames
- Pooling über 2 Frames
- Stride bei Faltung: 1
- Stride bei Pooling: 1
- .35 Dropout nach erstem Fully Connected Layer
- .25 Dropout in den restlichen Layern

Layer (type) Output Shape Param #
conv2d_25 (Conv2D) (None, 81, 25, 32) 992
conv2d_26 (Conv2D) (None, 39, 1, 32) 128032
flatten_10 (Flatten) (None, 1248) 0
dense_45 (Dense) (None, 100) 124900
dropout_16 (Dropout) multiple 0
dense_46 (Dense) (None, 50) 5050
dense_47 (Dense) (None, 20) 1020
dense_48 (Dense) (None, 20) 420
dense_49 (Dense) (None, 4) 84

Total params: 260,498 Trainable params: 260,498 Non-trainable params: 0

Idee:

- Erste Faltung extrahieren für jedes Gelenk Features
- Zweite Schicht faltet über extrahierte Features für jedes Gelenk hinweg
 - => Geringere Parameteranzahl

- 1 narrow Covolution Layer.
 - Breite von 10
 - Stride von (2,1)
- 1 wide Covolution Layer
 - Breite von 5
 - Stride von (2,1)
- Keine Pooling Layer
- .2 Dropout in den Fully Connected Layern

Layer (type) Output Shape Param #
conv2d_37 (Conv2D) (None, 81, 25, 32) 992
conv2d_38 (Conv2D) (None, 39, 25, 16) 2576
conv2d_39 (Conv2D) (None, 18, 1, 32) 64032
flatten_15 (Flatten) (None, 576) 0
dense_68 (Dense) (None, 100) 57700
dropout_23 (Dropout) multiple 0
dense_69 (Dense) (None, 50) 5050
dense_70 (Dense) (None, 20) 1020
dense_71 (Dense) (None, 4) 84
Total params: 131,454

Idee:

Trainable params: 131,454

Non-trainable params: 0

- Bessere Feature Extrahierung
- Geringere Parameteranzahl

- 2 narrow Covolution Layer.
 - Einmal Breite von 10
 - Einmal Breite von 5
 - Stride von (2,1)
- 1 wide Covolution Layer
 - Breite von 5
 - Stride von (2,1)
- Keine Pooling Layer
- Ein Fully Connected Layer weniger
- .2 Dropout in den Fully Connected Layern

Vergleich der Netzstrukturen

Validierungs-Genauigkeit

Validierungs-Loss

- rotation_normalized_model_regularized_1/validation
- rotation_normalized_model_regularized_2/validation
- rotation_normalized_model_regularized_3/validation
- rotation_normalized_model_regularized_4/validation

Vergleich der genutzten Daten

Validierungs-Genauigkeit

Validierungs-Loss

- advanced_normalized_model_regularized/validation
- normalized_model_regularized_4/validation
- rotation_normalized_model_regularized_4/validation
- unnormalized_model_regularized_4/validation

Auf Trainingsdaten

			Vorhersagen				
		phone call	play with phone	taking a selfie	rest class		
	phone call	721	1	0	3		
Eigentliche Klasse	play with phone	0	725	0	0		
Eigentlich	taking a selfie	2	1	717	5		
	rest class	2	1	0	722		

- **Accuracy:** 0.9948
- Precision, Recall und F1-score für die Klassen:

class	precision	recall	f1-score	support	
phone call	0.99	0.99	0.99	725	
play with phone	1.00	1.00	1.00	725	
taking a selfie	1.00	0.99	0.99	725	
rest class	0.99	1.00	0.99	725	

 Precision Recall und F1-score im Schnitt:

Average Type	precision	recall	f1-score	support
micro avg	0.99	0.99	0.99	2900
macro avg	0.99	0.99	0.99	2900
weighted avg	0.99	0.99	0.99	2900
samples avg	0.99	0.99	0.99	2900

Auf Testdaten

		Vorhersagen				
		phone call	play with phone	taking a selfie	rest class	
	phone call	159	6	3	14	
Eigentliche Klasse	play with phone	8	168	1	4	
Eigentlicl	taking a selfie	6	1	160	14	
	rest class	4	1	6	165	

- **Accuracy:** 0.8993
- Precision, Recall und F1-score für die Klassen:

class	precision	recall	f1-score	support
phone call	0.90	0.87	0.89	182
play with phone	0.93	0.93	0.93	181
taking a selfie	0.94	0.88	0.91	181
rest class	0.84	0.91	0.87	181

 Precision Recall und F1-score im Schnitt:

Average Type	precision	recall	f1-score	support
micro avg	0.90	0.90	0.90	725
macro avg	0.90	0.90	0.90	725
weighted avg	0.90	0.90	0.90	725
samples avg	0.90	0.90	0.90	725

Cross View Test

			Vorhersagen				
		phone call	play with phone	taking a selfie	rest class		
	phone call	280	12	4	20		
Eigentliche Klasse	play with phone	5	297	6	8		
Eigentlich	taking a selfie	1	3	306	6		
	rest class	21	6	10	239		

- **Accuracy:** 0.9167
- Precision, Recall und F1-score für die Klassen:

class	precision	recall	f1-score	support
phone call	0.91	0.89	0.90	316
play with phone	0.93	0.94	0.94	316
taking a selfie	0.94	0.97	0.95	316
rest class	0.88	0.87	0.87	276

Precision Recall und F1-score im Schnitt:

Average Type	precision	recall	f1-score	support
micro avg	0.92	0.92	0.92	1224
macro avg	0.92	0.92	0.91	1224
weighted avg	0.92	0.92	0.92	1224
samples avg	0.92	0.92	0.92	1224

Cross Subject Test

			Vorhersagen				
		phone call	play with phone	taking a selfie	rest class		
	phone call	230	15	8	22		
Eigentliche Klasse	play with phone	7	256	5	7		
Eigentlicl	taking a selfie	5	4	257	10		
	rest class	25	13	10	228		

• **Accuracy:** 0.8811

 Precision, Recall und F1-score für die Klassen:

class	precision	recall	f1-score	support
phone call	0.86	0.84	0.85	275
play with phone	0.89	0.93	0.91	275
taking a selfie	0.92	0.93	0.92	276
rest class	0.85	0.83	0.84	276

 Precision Recall und F1-score im Schnitt:

Average Type	precision	recall	f1-score	support
micro avg	0.88	0.88	0.88	1102
macro avg	0.88	0.88	0.88	1102
weighted avg	0.88	0.88	0.88	1102
samples avg	0.88	0.88	0.88	1102

Vergleich der Modelle

RNN vs. CNN

RNN vs. CNN

RNN

• Parameteranzahl: 237.060

• **Accuracy:** 0.8715

 Precision, Recall und F1-score für die Klassen:

	precision	recall	f1-score	support
phone call	82%	85%	84%	181
play with phone	84%	93%	88%	181
taking a selfie	94%	90%	92%	181
rest_class	90%	80%	85%	181

 Precision Recall und F1-score im Schnitt:

Average Type	precision	recall	f1-score	support
macro avg	87%	87%	87%	181
weighted avg	87%	87%	87%	181

• **ROC AUC Score**: 0.9723

CNN

Parameteranzahl: 260.498

• **Accuracy:** 0.8993

 Precision, Recall und F1-score für die Klassen:

	precision	recall	f1-score	support
phone call	90%	87%	89%	182
play with phone	93%	93%	93%	181
taking a selfie	94%	88%	91%	181
rest_class	84%	91%	87%	181

 Precision Recall und F1-score im Schnitt:

Average Type	precision	recall	f1-score	support
micro avg	90%	90%	90%	725
macro avg	90%	90%	90%	725
weighted avg	90%	90%	90%	725
samples avg	90%	90%	90%	725

Konfusions Matrix

RNN

			Vorhersagen				
		phone call	play with phone	taking a selfie	rest class		
	phone call	154	15	2	10		
Eigentliche Klasse	play with phone	9	169	2	1		
Eigentlich	taking a selfie	9	3	163	6		
	rest class	15	14	7	145		

CNN

		Vorhersagen			
		phone call	play with phone	taking a selfie	rest class
Eigentliche Klasse	phone call	159	6	3	14
	play with phone	8	168	1	4
	taking a selfie	6	1	160	14
	rest class	4	1	6	165

Vergleich zwischen CNN und RNN

Spezifische Anwendungsfälle der Bewegungsklassifizierung

Aktionen in Trainings- und Validierungsdaten von jeweils unterschiedlichen Darstellern.

Generalisiert das Modell gut oder trainiert es Merkmale der Darsteller?

Cross View

Trainingsdaten aus verschiedenen Winkeln, Testdaten entstammen einem unbekannten Blickwinkel.

Wie gut verallgemeinert Modell unabhängig vom Blickwinkel?

Cross View & Cross Subject

Fazit

- Richtige Vorverarbeitung wichtig
- CCN > RNN
- Restklasse erschwert Klassifizierungsaufgabe deutlich

Nächste Schritte

- Cross Validation um Algorithmen noch besser zu vergleichen
- Falsch klassifizierte Fälle genauer untersuchen
- Algorithmen auf eigenen Daten testen (Kinect)
- Transformer