EXERCISE 6B: BLACK BODY RADIATION FLUX

Objectives:

- Finish deriving the Planck Law of Radiation
- Derive the Stefan-Boltzmann Law and Stefan-Boltzmann Constant
- Understand the relation between absorptivity and emissivity

Useful results from last time:

- Planck distribution for photon number s in a single mode: $\langle s \rangle_{\omega} = \frac{1}{e^{\phi \hbar \omega/\tau} 1}$
- Density of states of radiation: $\mathcal{D}(\omega) = \frac{\omega^2 V}{\pi^2 c^3}$
- 1. Planck Law of Radiation.
 - a. The radiant energy per unit volume U/V can be found by integrating the spectral density of radiation u_{ω} over all frequencies:

$$U/V = \int d\omega u_{\omega}. \tag{1}$$

b. Give an expression for u_{ω} in terms of the density of states $\mathcal{D}(\omega)$ and the average number $\langle s \rangle_{\omega}$ of photons in the mode.

c. Plug in your results for $\mathcal{D}(\omega)$ and $\langle s \rangle_{\omega}$ to obtain an explicit expression for the spectral density of radiation at temperature τ . The result is the **Planck radiation law**.

$$u_{\omega} = \frac{\hbar \omega}{e^{\hbar \omega / \tau} - 1} \cdot \frac{\omega^2}{\pi^2 c^3} = \frac{\hbar \omega^3}{\pi^2 c^3 \left(e^{\hbar \omega / \tau} - 1\right)}$$

$$\frac{\hbar\omega^3}{\hbar\omega ccr} = \frac{\hbar\omega^3}{\pi^2c^3} \left(\hbar\omega/r\right) = \frac{\omega^2\tau}{\pi^2c^3}$$

d. Sketch the Planck spectrum u_{ω} . Which portion of this spectrum could have been correctly predicted by classical theory? Which range of parameters requires the quantum mechanical description?

- e. Explain physically the behavior of the black-body spectrum in the low- and high-frequency limits.
- * At low Requerey twict, the quantization of light can be reglected and the spectrum is well described simply by taking two account the scalary D(w) or will describe d simply by taking two account the scalary D(w) or will density of states and assuming every not per mode. So uw >0 as w >0 just because the spece of possible states in k-space becomes variously small.
- * At high Frequency, the occupation of modes with energy perphoton two >> ?

 is exponentially suggressed by Boltzmann Factor hence the
 exponential decay of use as w > 00 is explained only
 by accounting for quantization of light.

f. The peak of the Planck black body spectrum is at $\hbar\omega_{\rm max}\approx 2.82k_BT$. What wavelength does this correspond to...

i. ... for the sun?
$$(T = 5800 \text{ K})$$

ii. ... for the earth? $(T \sim 300 \text{ K})$

What are the implications for the amount of radiation emitted in the *visible* regime of the spectrum?

$$\lambda_{\text{sun}} = \frac{2\pi c}{\omega_{\text{sun}}} = \frac{2\pi hc}{2.82 k_{\text{B}} T} = \frac{hc}{2.82 k_{\text{B}} T} = 880 \text{ nm}$$

$$\lambda_{\text{earth}} = \lambda_{\text{sun}} \times \left(\frac{5800 \text{ K}}{300 \text{ K}}\right) = 17 \text{ um}$$

See sholes for graphs of
$$u_{\omega}$$
 @ Tsun, Tearth and $u_{z} = u_{\omega} | \frac{d\omega}{dz} |$

Note: if we mstead look @ speakum vs. wavelength (un), the sun peaks @ 550 nm (Wien displacement law)

Black-Body Spectra

Spectral density vs. frequency:

Black-Body Spectra

Spectral density per unit wavelength:

Blackbody Radiation

E.g., emission spectrum of the sun.

g. Evaluate the integral in Eq. 1 to obtain the **Stefan-Boltzmann law of radiation**. You will need the definite integral:

$$\int_0^\infty dx \frac{x^3}{e^x - 1} = \frac{\pi^4}{15} \tag{2}$$

$$U/V = \int d\omega \cdot u\omega = \int_0^\infty \frac{\hbar \omega^3 d\omega}{\pi^2 c^3 (e^{\hbar \omega/2} - 1)} \times \frac{1}{\pi} dx$$

$$= \frac{\hbar}{\pi^2 c^2} \int_0^\infty \frac{x^3 \cdot t^3 / \hbar^3}{e^x - 1} \cdot \frac{\tau}{\hbar} dx$$

$$= \frac{\tau^4}{\pi^2 \hbar^2 c^3} \int_0^\infty \frac{x^3}{e^x - 1} dx$$

$$U/V = \frac{\pi^2}{15h^3c^3} \cdot 2^4$$

h) Strong scaling of energy density of temperature!

- more modes accessible movementy density of modes,

Wher energy per mode.

- 2. The Stefan-Boltzmann Law tells us the radiant energy density inside a black body at temperature τ . How do we determine the radiant energy flux J, i.e., the power emitted per unit surface area?
 - a. Consider a small hole in the surface of a black body at temperature τ . Radiation can exit this hole at a variety of different angles θ, ϕ , where θ is measured relative to the surface normal.
 - i. Draw a sketch illustrating the angle θ . He black body its surface, and a ii. What is the relevant range of values θ, ϕ ? Photon exiting at angle ϕ .
 - ii. What is the relevant range of values θ, ϕ ?

0 < 9 < 21

To consider the full half-sphere of argles, we can take 0606 T

b. Let du_{ω} denote the infinitesimal spectral density of radiant energy density that is directed into an infinitesimal solid angle $d\Omega = \sin\theta d\theta d\phi$ centered about (θ, ϕ) .

i. Express du_{ω} in terms of the total spectral density u_{ω} and $d\Omega$.

ii. What are the dimensions of du_{ω} , in terms of energy, length, and time?

i. The radiation is distributed isotropteally so we simply have
$$du_{\omega} = u_{\omega} \cdot \frac{dSZ}{4\pi r}$$

- c. Let dj_{ω} denote the infinitesimal spectral density of radiant energy **flux** that is directed into the solid angle $d\Omega$ centered about (θ, ϕ) .
 - i. What are the dimensions of dj_{ω} , in terms of energy, length, and time?
 - ii. Express dj_{ω} in terms of du_{ω} , the speed of light c, and the angles θ and/or ϕ .

- d. To calculate the spectral density of radiant energy flux j_{ω} through the hole, we must integrate over all possible angles at which the radiation can exit the hole.
 - i. Write down an integral expression for j_{ω} in terms of u_{ω} , θ , and ϕ .
 - ii. Do the integral to calculate j_{ω} in terms of u_{ω} .

in jou =
$$\int dj\omega$$
 where $dj\omega = c \cdot \cos\theta \cdot \frac{u\omega}{4\pi}$ is smoothed by = $\int_0^{2\pi} d\theta \int_0^{\pi/2} d\theta \cdot \frac{u\omega \cdot c \cdot \cos\theta \sin\theta}{4\pi}$

= $\frac{2\pi c}{4\pi r} u\omega \int_0^{\pi/2} d\theta \cdot \frac{1}{2} \sin(2\theta) = \frac{cu\omega}{4} \left[-\frac{1}{2} \cos(2\theta) \right]_0^{\pi/2}$
 $\int_0^{\pi/2} d\theta \cdot \frac{1}{2} \sin(2\theta) = \frac{cu\omega}{4} \left[-\frac{1}{2} \cos(2\theta) \right]_0^{\pi/2}$