TD n°1 - partie 1

① Info

script R: td_1_1.R

Questions de cours

- Rappeler la définition d'une mesure de probabilité.
- Rappeler la définition d'une suite croissante d'événements.
- Soit (A_n) une telle suite. Que peut-on dire de la suite des probabilités $\mathrm{P}(A_n)$?

Exercice 1

Question 1

Soit X un nombre positif mesuré à l'issue d'une épreuve aléatoire. On suppose que

$$orall \ 0 \leq s \leq t < \infty, \quad \mathrm{P}(X \in [s,t)) = \int_{-ts} e^{-x} dx.$$

- Pour tout $t \geq 0$, montrer que $\mathrm{P}(X \geq t) = e^{-t}$.
- Calculer $P(\sin X \ge 0)$.

Question 2

Soit U un nombre pris au hasard dans $\left[0,1\right]$ tel que

$$\forall 0 \le a \le b \le 1, \quad P(U \in [a, b)) = b - a.$$

- Pour tout $0 \leq s \leq t < \infty$, calculer la probabilité $\mathrm{P}(\ln(1/U) \in [s,t))$.
- ullet En déduire une manière d'obtenir un nombre au hasard ayant les mêmes propriétés que X.

Question 3

Le langage R dispose de nombreux générateurs aléatoires, dont un générateur de variables aléatoires uniformément réparties sur (0,1).

• En utilisant le générateur aléatoire de loi uniforme $\ \,$ runif , effectuer n=1000000 simulations de la variable X.

```
n = 1000000
x <- -log(runif(n))</pre>
```

• Calculer la fréquence de l'événement X>1 et comparer cette valeur empirique à la valeur théorique calculée dans la question 1. Idem pour la probabilité de l'événement $(\sin(X)>0)$.

```
mean(x > 1)
exp(-1)
mean(sin(x) > 0)
```