CS 135 Spring 2022: Problem Set 6

Problem 1. (10 points) The factorial function fac(n) over the natural numbers is defined as:

$$fac(0) = 1$$
, $\forall n > 0$: $fac(n) = n \times fac(n-1)$

fac(n) is also denoted by n!.

Prove by induction that $1 \cdot 1! + 2 \cdot 2! + ... + n \cdot n! = (n+1)! - 1$ for all positive integers n.

BASIS: n = 1. $1 \cdot 1! = 1 = (1 + 1)! - 1$.

I.H.: for arbitrary k > 0, $1 \cdot 1! + 2 \cdot 2! + ... + k \cdot k! = (k + 1)! - 1$

I.S.: $1 \cdot 1! + 2 \cdot 2! + ... + k \cdot k! + (k+1)(k+1)!$ = (k+1)! - 1 + (k+1)(k+1)! (Using the I.H.) = (k+1)! (1+k+1) - 1= (k+2)(k+1)! - 1= (k+2)! - 1

Problem 2. (10 points) Prove by induction that

```
\forall n \geq 1 \colon (A_1 - B) \ \cup \ (A_2 - B) \ \cup \ldots \cup \ (A_n - B) = (A_1 \cup A_2 \cup \ldots \cup A_n) - B BASIS: n = 1, (A_1 - B) = (A_1 - B), which is true. n = 2, (A_1 - B) \cup (A_2 - B) = (A_1 \cap \bar{B}) \cup (A_2 \cap \bar{B}) = (A_1 \cup A_2) - B I.H.: for arbitrary k \geq 1, (A_1 - B) \cup (A_2 - B) \cup \ldots \cup (A_k - B) = (A_1 \cup A_2 \cup \ldots \cup A_k) - B I.S.: (A_1 - B) \cup (A_2 - B) \cup \ldots \cup (A_{k+1} - B) Using the I.H. = (A_1 \cup A_2 \cup \ldots \cup A_{k+1}) - B Using the Base Case n = 2.
```

Problem 3. (15 points) On his quiz Ben Bitdiddle must prove the claim that $\forall n \geq 0 \ P(n)$, where P(x) is a predicate over the natural numbers. Ben can establish that P(0) is true, but he is unable to establish the inductive step $\forall k \geq 0 \ (P(k) \Rightarrow P(k+1))$.

After some thinking, Ben is finally able to prove that $\forall k \geq 0 \ (P(k) \Rightarrow P(k+2))$

- a. Has Ben succeeded in proving the claim? Explain why or why not. No, Ben has established P(n) is true for all even numbers only.
- b. If not, and Ben remains unable to establish that $P(k) \Rightarrow P(k+1)$, what would you suggest Ben try to establish to complete his inductive proof?

Ben should establish P(1) is true as a second base case.

Problem 4. (15 points) Prove by induction the statement $\forall n \geq 5$: $2^n > n^2$ BASIS: n = 5. $2^5 = 32 > 5^2 = 25$. I.H.: for arbitrary $k \geq 5$, $2^k > k^2$. I.S.: First, note that k(k-2) > 1 when $k \geq 3$. From this it follows that $k^2 > 2k+1$, $k \geq 3$. Therefore, $2^{k+1} = 2^k + 2^k > k^2 + k^2$ (Using the I.H.) $> k^2 + 2k + 1$ (from the observation above) $= (k+1)^2$