Collective Intelligence Assignment 1: Aggregation

Laryza Mussavi, Seeun Park, Aryanne Thompson, Ohad Daniel, Angela Jagessar

THE TASK

To have agents aggregating as much as possible towards one among the potential sites, instead of splitting in the aggregates.

Only one location

Symmetric location - same size

Symmetric location - different size

INTRODUCTION

QUESTIONS ANSWERED WITH THE SIMULATION:

- How does the size of a shelter affect the aggregation behavior of the agents?
- Which probability method is most appropriate when determining the join and leave action of the agents?

METHODOLOGY

Probability Functions

$$P_{stay} = 0.03 + 0.48 * (1 - e^{-an});$$

$$P_{leave} = e^{-bn};$$

[1] N. Cambier, Bio-inspired collective exploration and cultural organisation. PhD thesis, 2019. Thèse de doctorat dirigée par Frémont, Vincent Informatique : Unité de recherche Heudyasic (UMR-7253) Compiègne 2019.

Results

Result Analysis

Parameters

- Number of agents \rightarrow 100
- Radius \rightarrow 50
- T_join \rightarrow 1 second
- $a \rightarrow -1.70188$
- $b \rightarrow -3.88785$

Join

Join

Equal Sizes

Varying sizes

Join

100 Sites Not on site Left site Right site 80 60 agents image_index 40 20 200 800 1000 1200 1400 400 600 frame

Equal Sizes

Varying sizes

Expectations

- Aggregation within shelters
- No sticking to edges
- Aggregation in one shelter
- Aggregation in bigger shelter
- Separation of agents

Results

- Aggregation within shelters
- No sticking to edges (few cases)
- No unique shelter chosen
 - \rightarrow P leave
- Bigger shelter, higher chances
- No separation

Conclusion

Aggregation of agents

- In a shelter
- In multiple shelters

Skills Learnt

Visualizing Data

Parameter Evaluation

