

A 28-nm Convolutional Neuromorphic Processor **Enabling Online Learning with Spike-Based Retinas**

Charlotte Frenkel*, Jean-Didier Legat and David Bol

ICTEAM Institute, Université catholique de Louvain, Belgium

*Now with Institute of Neuroinformatics, UZH and ETH Zürich, Switzerland charlotte@ini.uzh.ch

> 2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21, 2020

Background

Neuromorphic IC design strategies

Bottom-up
design
(exp. platforms)

Large-scale silicon integration

Neuron & synapse building blocks

Versatility / efficiency tradeoff

Top-down previous work with on-chip learning:

- SNNs (LCAs), at the expense of reduced accuracy (e.g., [Kim, VLSI-C, 2015], [Buhler, VLSI-C, 2017])
- BNNs, at the expense of frame-based processing (e.g., [Chen, VLSI-C, 2018], [Park, ISSCC, 2019])

Best of both worlds, from sensing to processing?

Outline

- SPOON Proposed convolutional neuromorphic processor enabling online learning with spike-based retinas
- Conclusion and perspectives

Outline

 SPOON – Proposed convolutional neuromorphic processor enabling online learning with spike-based retinas

Dataflow
Algorithm
Architecture
Implementation
Benchmarking

Conclusion and perspectives

Leveraging sparsity, event-driven sensing and maximizing data reuse From sensing to processing

Learning algorithm — Direct random target projection (DRTP)

Releasing the weight transport and update locking of backprop

Computational and memory cost \

Architecture of SPOON

SPOON – A Spiking Online-Learning Convolutional Neuromorphic Processor

Dataflow > Algorithm > Architecture > Implementation > Benchmarks >

SPOON implementation results

Specifications and pre-silicon performance metrics

Technology	28nm FDSOI CMOS
Implementation	Digital
Area	$0.32 \text{mm}^2 \ (0.26 \text{mm}^2 \ \text{excl. rails})$
Topology	C5×5@10–FC128–FC10
Online learning	Stochastic DRTP, 8-bit weights
Time constant	Biological to accelerated
Supply voltage	0.6V - 1.0V
Max. clock frequency	150MHz
Leakage power	$61\mu\mathrm{W}$ at $0.6\mathrm{V}$
Energy for CONV core	1.7nJ/event at 0.6V
Energy for FC core	55nJ/inference at 0.6V
Online learning overhead	16.8% in power, 11.8% in area

Dataflow > Algorithm > Architecture > Implementation > Benchmarks

SPOON benchmarking

Temporal code for edge detection also demonstrated on N-MNIST

MNIST (TTFS-encoded):

- off-chip BP training: 97.5% test-set accuracy

- on-chip online DRTP training: 92.8% accuracy (one epoch)

95.3% accuracy (100 epochs)

- energy efficiency: 313nJ/inference

N-MNIST (only the first saccade, only the first event of each pixel):

- off-chip BP training: 93.8% test-set accuracy

- on-chip online DRTP training: 90.2% accuracy (one epoch)

93.0% accuracy (100 epochs)

- energy efficiency: 665nJ/inference

SPOON benchmarking

Against state-of-the-art SNNs, ANNs, CNNs and BNNs on MNIST

SPOON benchmarking

Against state-of-the-art SNNs, ANNs, CNNs and BNNs on MNIST

Outline

• SPOON – Proposed convolutional neuromorphic processor enabling online learning with spike-based retinas

Conclusion and perspectives

Summary of the key messages

Conclusion

Background

Proposed SPOON eCNN

Only SPOON allows reaching the efficiency of ANN/CNN/BNN accelerators while enabling online learning with event-based sensors.

Thank you!

Further resources:

The corresponding ISCAS paper (more info on the architecture)

The DRTP preprint: https://arxiv.org/pdf/1909.01311.pdf

DRTP PyTorch code open-sourced on https://github.com/chfrenkel