1.	(i) Given that p and q are integers such that					
	pq is even					
	use algebra to prove by contradiction that at least one of p or q is even.	(3)				
	(ii) Given that x and y are integers such that					
	• <i>x</i> < 0					
	• $(x+y)^2 < 9x^2 + y^2$					
	show that $y > 4x$	(2)				
		(-)				

2. Prove, using algebra, that				
	$(n+1)^3-n^3$			
is odd for all $n \in \mathbb{N}$		(4)		
		(4)		

3			
	Drove using algebra that		
	Prove, using algebra, that	$n(n^2+5)$	
		n(n+3)	
	is even for all $n \in \mathbb{N}$.		
			(4)

Given that x is an obtuse angle, use algebra to prove by contradiction that	
$\sin x - \cos x \geqslant 1$	
he student starts the proof with:	
Assume that $\sin x - \cos x < 1$ when x is an obtuse angle	
$\Rightarrow (\sin x - \cos x)^2 < 1$	
\Rightarrow	
he start of the student's proof is reprinted below.	
omplete the proof.	(3)
Assume that $\sin x - \cos x < 1$ when x is an obtuse angle	
$\Rightarrow (\sin x - \cos x)^2 < 1$	

(i) Use proof by exhaustion to show that for $n \in \mathbb{N}$, $n \le 4$	
$(n+1)^3 > 3^n$	
	(2)
(ii) Given that $m^3 + 5$ is odd, use proof by contradiction to show, using algebra, that m is even.	
15 6 7 6 11.	(4)

6. (i) Prove that for all $n \in \mathbb{N}$, $n^2 + 2$ is not divisible by 4	(4)
	(4)
(ii) "Given $x \in \mathbb{R}$, the value of $ 3x - 28 $ is greater than or equal to the value of $(x - 9)$."	
State, giving a reason, if the above statement is always true, sometimes true or never	true. (2)
	(2)

7.	In this question you must show all stages of your working.	
	Solutions relying entirely on calculator technology are not acceptable.	
	A geometric series has common ratio r and first term a .	
	Given $r \neq 1$ and $a \neq 0$	
	(a) prove that	
	$S_n = \frac{a(1-r^n)}{1-r}$	(4)
	Given also that S_{10} is four times S_5	
	(b) find the exact value of <i>r</i> .	
		(4)

8.	Use algebra to prove that the square of any natural number is either a multiple of 3 or one more than a multiple of 3	
		(4)

2 2	
$4p^2 - q^2 = 25$	
	(4)
	()

. A stu	dent is attempting to prove that there are infinitely many prime numbers.	
The stu	ident's attempt to prove this is in the box below.	
	Assume there are only finitely many prime numbers, then there is a biggest prime number, p .	
	Let $n = 2p + 1$. Then n is bigger than p and since $2p + 1$ is not divisible by p , n is a prime number.	
	Hence n is a prime number bigger than p , contradicting the initial assumption. So we conclude there are infinitely many prime numbers.	
(a) Us	e $p = 7$ to show that the following claim made in the student's proof is not true	: :
	since $2p + 1$ is not divisible by p , n is a prime number.	(1)
The stu	udent changes their proof to use $n = 6p + 1$ instead of $n = 2p + 1$	(-)
(b) She	ow, by counter example, that this does not correct the student's proof.	(2)
	ite out a correct proof by contradiction to show that there are infinitely many me numbers.	
		(5) (+S1)