Napake

Jih je veliko in so nasploh zelo depresivne in vse metode so slabe.

Nelinearne enačbe

Iščemo ničle α funkcije f. Občutljivost $\frac{1}{f'(\alpha)}$, za dvojno ničlo $\sqrt{\frac{2}{f''(x)}}$.

BISEKCIJA: razpolavljamo interval, na katerem imamo ničlo. Št korakov za natančnost ε : $k \ge \log\left(\frac{|b-a|}{\varepsilon}\right)$.

NAVADNA ITERACIJA: Iščemo fiksno točno $g(\alpha) = \alpha$. Metoda: $x_{r+1} = g(x_r)$. Če je $|g'(\alpha)| < 1$ je točka privlačna, če $|g'(\alpha)| > 1$ je odbojna. Red konvergence je p, če je α p-kratna ničla g.

TANGENTNA METODA: $x_{r+1} = x_r - \frac{f(x_r)}{f'(x_r)}$. Konvergenca je za enojne ničle kvadratična, za večkratne ničle linearna.

Če za enostavno ničlo velja $f''(\alpha)=0$ je konvergenca kubična, itn... Vse ničle so privlačne.

SEKANTNA METODA: $x_{r+1} = x_r - \frac{f(x_r)(x_r - x_{r-1})}{f(x_r) - f(x_{r-1})}$. Red konvergence: $\frac{1+\sqrt{5}}{2}$.

LAGUERROVA METODA za iskanje ničel polinomov: $z_{r+1} = z_r - \frac{np(z_r)}{p'(z_r) \pm \sqrt{(n-1)((n-1)p'^2(z_r) - np(z_r)p''(z_r))}}$

Pri stabilni metodi izberemo predznak tako, da je absolutna vrednost imenovalca največja. Če izbiramo vedno - ali + skonvergiramo k levi oz. desni ničli, če so vse ničle realne. Konvergenca v bližini enostavne ničle je kubična. Metoda najde tudi kompleksne ničle.

REDUKCIJA POLINOMA: Imamo eno ničlo, radi bi jo faktorizirali ven. Poznamo obratno in direktno redukcijo, pri katerih je stabilno izločati ničle v padajočem in naraščajočem vrstnem redu po absolutni vrednosti. V praksi uporabimo kombinirano metodo: do nekega r uporabimo z ene strani obratno, z druge pa direktno. Ta r izberemo tako, da je $|\alpha^r a_{n-r}|$ maksimalen.

DURAND-KERNERJEVA METODA: Iščemo vse ničle na
enkrat: $x_k^{(r+1)} = x_k^{(r)} - \frac{p(x_k^{(r)})}{\prod_{\substack{j=1 \ j \neq k}}^n (x_k^{(r)} - x_j^{(r)})}$. Kvadratična konver-

genca. Za kompleksne ničle je treba začeti s kompleksnimi približki.

Linearni sistemi

Rešujemo sistem Ax = b. Za napako x velja ocena:

$$\frac{\|\Delta x\|}{\|x\|} \leq \frac{\kappa(A)}{1-\kappa(A)\frac{\|\Delta A\|}{\|A\|}} \left(\frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta b\|}{\|b\|}\right)$$

Količina $\kappa(A)$ se imenuje občutljivost matrike. $\kappa(A) = ||A|| ||A^{-1}|| = \frac{\sigma_1(A)}{\sigma_n(A)} \ge 1$

LU RAZCEP s kompletnim pivotiranjem: matriko A zapišemo kot PAQ = UL, L sp. trikotna z 1 na diagnoali in U zg. trikotna, ter P,Q permutacijski matriki stolpcev in vrstic. Algoritem:

```
Q = I, P = I
for j = 1 to n:
    r, q taka, da a_rq največji v podmatriki A(j+1:n)
    zamenjaj vrstici r in j v A, L, P
    zamenjaj stolpca q in j v A, L, Q
    for i = j+1 to n:
        l_ij = a_ij / a_jj
        for k = j+1 to n:
        a_ik = a_ik - l_ij * a_jk
```

Postopek na roke:

- 1. * Če delamo pivotiranje zamenjamo primerne vrstice in stolpce v A, P, Q, da je a_{00} največji.
- 2. Prvi stolpec delimo z a_{00} , razen a_{00} , ki ga pustimo na miru.
- 3. Za vsak element v podmatriki A(2,n): $a_{ij} = a_{ij} a_{i1} \cdot a_{1j}$ (odštejemo produkt \leftarrow in \uparrow).
- 4. Ponovimo postopek na matriki A(2, n).

Delno pivotiranje uporablja samo matriko P, za LU razcep brez pivotiranja pa preskočimo 1.

Skalarni produkt potrebuje 2n operacij. Reševanje s premimi substitucijami potrebuje n^2 , z obratnimi $n^2 + n$. Reševanje z LU razcepov potrebuje $\frac{2}{3}n^3$ operacij.

RAZCEP CHOLESKEGA:

Nelinearni sistemi

NEWTONOVA METODA:

Problem najmanjših kvadratov

Reševanje predoločenih sistemov: Za dan predoločen sistem Ax = b rešujemo normalni sistem $A^TAx = A^Tb$.

Lastne vrednosti

GERSCHGORINOV IZREK: Naj bo $A \in \mathbb{C}^{n \times n}$, $C_i = \overline{K}(a_{ii}, r = \sum_{j=1, j \neq i}^n |a_{ij}|), i = 1, 2, \ldots, n$. Potem vsaka lastna vrednost leži v vsaj enem Gerschgorinovem krogu. Če m krogov C_i sestavlja povezano množico, ločeno od ostalih n-m krogov, potem ta množica vsebuje natanko m lastnih vrednosti. Diagonalno dominantna matrika $(|a_{ij}| > \sum_{j=1, j \neq i}^n |a_{ij}|)$ je obrnljiva.

Interpolacija

LAGRANGEEV INTERPOLACIJSKI POLINOM:

$$l_{n,j}(x) = \frac{\prod_{i=0, i \neq j}^{n} (x - x_i)}{\prod_{i=0, i \neq j}^{n} (x_j - x_i)}$$

Polinom: $p(x) = \sum_{i=0}^{n} f(x_i) l_{n,i}(x)$ Deljene diference:

• Če so točke paroma različne: $D_{i,0} = y_i$, ostalo izračunamo po rekurzivni formuli: $D_{i,j} = \frac{D_{i,j-1} - D_{i-1,j-1}}{x_i - x_{i-j}}$. Če sta dve točki na j-tem koraku enaki, je $D_{i,j} = \frac{f^{(j)}(x_i)}{j!}$.

Polinom: $p(x) = D_{1,1} + D_{2,2}(x - x_0) + D_{3,3}(x - x_0)(x - x_1) + \cdots + D_{n,n}(x - x_0) + \cdots + D_{n,n}(x - x_n)$

Integriranje

Ekvidistančne točke $a=x_0 < x_1 < \dots < x_n = b, \ x_i = x_0 + ih.$ Sest. Trapezno pravilo: $\int_a^b f(x) dx = \frac{h}{2} (f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{m-1}) + f(x_m)) - \frac{h^2}{12} (b-a) f''(\xi)$ Sest. Simpsonovo: $\int_a^b f(x) dx = \frac{h}{3} (f(x_0) + 4f(x_1) + 2f(x_2) + \dots + 2f(x_{2m-2}) + 4f(x_{2m-1}) + f(x_{2m})) - \frac{h^4}{180} (b-a) f^{(4)}(\xi)$ 3/8 pravilo: $\int_a^b f(x) dx = \frac{3}{8} h(f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)) - \frac{3}{80} h^5 f^{(4)}(\xi), \quad \xi \in (x_0, x_3)$