

AD-A073 656 WISCONSIN UNIV-MADISON DEPT OF PHYSICS
EXPERIMENTAL EVALUATION OF NEW SOLID STATE LASER SCHEMES.(U)
MAY 79 W M YEN

F/G 20/5

N00014-76-C-0402

NI

UNCLASSIFIED

| OF |
AD
A073 656

END
DATE
FILED
10-79
DDC

UNCLASSIFIED**LEVEL**

12

READ INSTRUCT.
BEFORE COMPLETING

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		
1. REPORT NUMBER N00014-76-C-0402	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Experimental Evaluation of New Solid State Laser Schemes.		5. TYPE OF REPORT & PERIOD COVERED Final <i>rept.</i> Nov. 77-Oct. 78
7. AUTHOR(s) William M. Yen		6. PERFORMING ORG. REPORT NUMBER N00014-76-C-0402
9. PERFORMING ORGANIZATION NAME AND ADDRESS Department of Physics The University of Wisconsin Madison, WI 53706		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NR 381-019
11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research Arlington, VA 22217		12. REPORT DATE May 1979
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 12
		15. SECURITY CLASS. (of this report) Unclassified
		16a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) DISTRIBUTION STATEMENT A Approved for public release; Distribution Unlimited		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES DDC FILE COPY REF FILED RESULTS SEP 11 1979 D		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Excited state absorption YAG:Ce ³⁺ Color center lasers		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Various schemes for tunable solid state lasers are discussed. Results of measurements of excited state absorption for YAG:Ce ³⁺ are presented. The potential of color center lasers for blue-green emission is examined.		

The Final Report to the
Office of Naval Research
(Physics Section - Arlington)
For Contract No. N00014-76-C-0402
entitled
"Experimental Evaluation of New Solid State Laser Schemes"
by
William M. Yen (S.S. 556-46-8160)

Principal Investigator
Department of Physics, College of Letters and Sciences
The University of Wisconsin, 1150 University Avenue
Madison, Wisconsin 53706

Accession For	
NTIS GRA&I <input checked="" type="checkbox"/>	
DDC TAB <input type="checkbox"/>	
Unannounced <input type="checkbox"/>	
Justification _____	
By Per Mr. on file	
Distribution/	
Availability Codes	
Print	Avail and/or special
A	

DISTRIBUTION STATEMENT A	
Approved for public release; Distribution Unlimited	

We report here the results of our investigation of new solid state laser schemes during the 1977-78 contract period. The emphasis has remained on identifying promising allowed transitions of ions or centers in crystalline solids since these are characterized by broad absorption and emission bands which facilitate pumping and permit tuning. For this final contract period the research has concentrated in two areas: Firstly, we have carefully investigated the excited state absorption (ESA) found in YAG:Ce³⁺ because of the major implications it has for all potential $4f^{n-1}5d \rightarrow 4f^n$ laser schemes. Secondly, we have examined F-center complexes in alkali halides as another possible source of blue-green stimulated emission.

As part of our survey we examined YLF:Ce³⁺, another likely candidate for a tunable laser. Pump bands were found at 250 nm and 286 nm; at these wavelengths there are no simple and inexpensive pumps which can provide sufficient excitation. The emission peaks in the ultraviolet at 325 nm, well outside the acceptable limits for a blue-green laser. For these reasons we discontinued work on this system although subsequently other investigators obtained stimulated emission from YLF:Ce³⁺.¹

We have made a detailed study of the transient absorption first observed in this laboratory for YAG:Ce³⁺ with the objectives of identifying its origin, determining its magnitude, and measuring its spectrum.^{2,3} This transient absorption consists of a part which decays rapidly (called the short component) and a part which decays more slowly (long component). Our investigation shows conclusively that the short component is Ce³⁺ ESA with the lowest 5d band as the initial state; the long component is most likely due to absorption by excited centers in the

YAG host.

A block diagram of the apparatus is shown in Figure 1. The Ce³⁺ ions were excited by pumping the 334 nm absorption band with a nitrogen laser and monitoring the attenuation of a probe beam passing through the excited region (Figure 2).

Our experiments show clearly that the short component is associated with the Ce³⁺ ion: it is present in all Ce³⁺ doped samples regardless of origin or concentration, but it is absent in all undoped samples. The lifetime of the short component (68 ns) is the same for all samples and is identical to that of the lowest Ce³⁺ 5d level.² This makes it unlikely that the initial state for this process is an upper 5d band (lifetime ≤ 2 ns⁴). These observations were later verified by other investigators.⁵

We have additionally measured the ESA spectrum over most of the visible spectrum and find indications of a peak in the red or near infrared (Figure 3). This peak is at the expected position for a 5d-5d transition and eliminates the possibility that an unrelaxed ²F level is the initial state for the ESA. The short component ESA was measured as a function of excitation intensity and was fitted with a theoretical curve (Figure 4).³ The observed saturation (due to every Ce³⁺ ion within the probed volume being excited) not only provides additional evidence that the absorption is due to Ce³⁺ but also allows us to obtain an accurate value for the ESA cross section, $\sigma^* = 1.4 \times 10^{-19}$ cm² at 633 nm. Additionally, we find the magnitude of the ESA to be unchanged at 77 K.

This cross section is much larger than would be expected for the parity-forbidden $5d \rightarrow 5d$ transition. One possible explanation is the admixture of opposite parity states from higher lying configurations into the $5d$ levels. Another is that the transition is from a $5d$ state to either a charge transfer band or an opposite parity configuration whose levels have been strongly split by the local ligand field.

In contrast, the long component is found to be extremely sample dependent both with respect to magnitude and lifetime. It is also observed in undoped YAG samples although for these the lifetimes are three orders of magnitude shorter and the absorption is a factor of five weaker. In addition, the long component lifetimes are nonexponential, suggesting a recombination process often associated with centers in crystals. Detailed results will be presented in reference 3, but our conclusion is that the long component of ESA is associated with ultraviolet excitation of defects already present in the YAG host. Some of these centers may be associated with Ce^{3+} ions or may be involved in an energy transfer process with the Ce^{3+} . In any case, losses due to the long component at realistic pump levels are not as significant as those due to the Ce^{3+} ESA and can probably be reduced through advances in materials preparation.

Our investigation of YAG:Ce³⁺ as a model system for tunable rare earth lasers has produced significant results with regard to the development of $4f^{n-1}5d \rightarrow 4f^n$ lasers in general and the blue-green laser program in particular. The most important implication is that one cannot a priori neglect ESA losses from transitions which would be forbidden for an isolated ion. Since both the wavelength of $4f^{n-1}5d \rightarrow 4f^n$ transitions and the existence of ESA are host-dependent, our investigation indicates that one must examine potential systems on a case by case basis.

In addition to rare earth lasers we examined the feasibility of color center lasers for visible operation. Several complexes of alkali halide F-centers have been used for highly efficient lasers in the infrared.^{6,7} We investigated the possibility of extending these results into the visible spectrum using F_2 and F_3^+ centers in LiF since these lie closest to the wavelength range of interest. In order to obtain experience with these systems we built and operated a tunable color center laser using F_2^+ centers in LiF.

A number of major problems were found, the most serious of which is the ease with which these centers are bleached. Although oscillation has been reported at 670 nm for the F_2 center in LiF,⁷ this center is quickly photo-ionized through a two-step process even at low pump levels⁸ and as a lasing material would probably have a useful lifetime of only seconds. The F_3^+ center (emission maximum at 525 nm) is equally sensitive to two-step bleaching.

There are, in addition, materials problems associated with these centers. It is impossible to produce crystals with only one type of center present and the absorption bands of undesired centers generally overlap those of the desired center. This makes effective pumping impossible unless the undesired centers are decolorized by a selective process. Many of these centers are unstable at room temperature and to maintain a sufficiently high concentration it is necessary to either keep the crystals permanently at reduced temperature or to develop techniques to grow them with impurities which are effective room temperature electron traps.

In conclusion, we feel that at least for the present alkali halide color centers hold little promise as blue-green laser materials. Allowed transitions of rare earths in solids still have great potential but must be individually

-5-

evaluated for unforeseen loss mechanisms.

REFERENCES

1. Peter Moulton, private communication.
2. W. J. Miniscalco, J. M. Pellegrino, and W. M. Yen, J. Appl. Phys. 49, 6109 (1978)
3. W. J. Miniscalco, S. Yokono, E. Strauss, and W. M. Yen, to be published.
4. M. J. Weber, Solid State Comm. 12, 741 (1973).
5. R. R. Jacobs, W. F. Krupke, and M. J. Weber, Appl. Phys. Lett. 33, 410 (1978).
6. L. F. Mollenauer and D. H. Olsen, J. Appl. Phys. 46, 3109 (1975);
Yu. L. Gusev, S. I. Marennikov, and V. P. Chebotayev, Appl. Phys. 14, 121 (1977);
L. F. Mollenauer, Opt. Lett. 1, 164 (1977).
7. Yu. L. Gusev, S. N. Konoplin, and S. I. Marennikov, Sov. J. Quantum Electron. 7, 1157 (1977).
8. L. F. Mollenauer, D. M. Bloom, and H. Guggenheim, Appl. Phys. Lett. 33, 506 (1978).

- Figure 1.** Block diagram of apparatus for measuring ESA.
- Figure 2.** Sample geometry for ESA measurements showing overlap between probe beam and excitation beam.
- Figure 3.** Energy levels for YAG:Ce³⁺. Insert shows cross section for excited state absorption as a function of photon energy measured relative to the lowest 5d level. Lined region around 19,000 cm⁻¹ corresponds to the fluorescence photon energy.
- Figure 4.** Magnitude of the short component of ESA at 633 nm as a function of excitation power. Data are the crosses; the solid line is the theoretical fit. Note saturation of absorption resulting from excitation of all Ce³⁺ ions probed. Fit gives ESA cross section of $1.4 \times 10^{-19} \text{ cm}^2$.

BLOCK DIAGRAM OF APPARATUS FOR
EXCITED STATE ABSORPTION MEASUREMENTS

GEOMETRY FOR EXCITED STATE ABSORPTION MEASUREMENTS

