

# Finite Element Models of the Knee & Hip Joints: Using OpenSim to Predict Muscle Forces



Kevin S. Jones<sup>1</sup>, Spencer D. Wangerin<sup>2</sup>, Jeffrey D. Pyle<sup>2</sup>, Stephen M. Klisch<sup>2</sup>, Scott J. Hazelwood<sup>3</sup>

<sup>1</sup>STAR Program <sup>2</sup> Mechanical Engineering Dept., California Polytechnic State University <sup>3</sup>Biomedical & General Engineering Dept., California Polytechnic State University

## **Objectives**

- To develop finite element computer models of the knee/hip joints to predict stresses and strains within cartilage.
- To find accurate muscle forces in the lower body during gait using OpenSim.

## Why this Research?

- Among US adults, nearly 27 million have clinical osteoarthritis.
- Medical community has little quantitative data on stresses and strains within joint cartilage, which will help us better understand osteoarthritis.

# **OpenSim Description**

- Open-source software program.
- Musculoskeletal model of the human body.
- Models human motion and can predict muscle forces during simple motions such as the walking/running cycle.



#### **References:**

[1] Kim, Hyung J, et al. "Evaluation of Predicted Knee-Joint Muscle Forces during Gait Using an Instrumented Knee Implant." *J Orthop Res* 27 (2009): 1326-1331.

## **Methods:**

1. Scale the Model:

The default model is scaled to match the subject of interest by using kinematic marker data.



2. Put the Model in Motion:



The subject-specific model is put in motion by tracking the kinematic marker data.

3. Estimate Muscle Forces:



Muscle forces are estimated by calculating the combination of muscle activations that produce the walking motion from step 2 with minimal effort.

4. Calculate Joint Contact Forces & Moments:

3D statics problem is solved to find resultant forces and moments at each joint using muscle forces as inputs.

# **Computer Models**

The below solid models must be meshed to create finite element models:



(above) Solid computer model of the knee joint. (below) Solid model of the hip joint from a CT (or CAT) scan.



Muscle Forces as Inputs to Finite
Element Models





Muscle forces applied as external forces

### Results

Results represent one step of the walking cycle.

• Muscle Forces (Sample results)



• Knee Joint Contact Force (JCF)
As a result of the simulated muscle forces



• Our modeled JCFs are consistent with the JCFs seen in other studies<sup>1</sup>:



Grey line = Instrumented knee at 3 different speeds.
Black line = Results from Kim, et al. study

## Conclusion

Calculated knee JCFs are only slightly above JCFs from instrumented knees, thus allowing us to use the muscle force results as inputs to our finite element model.









