Hash Table

Anoop S Babu
Faculty Associate
Dept. of Computer Science & Engineering
bsanoop@am.amrita.edu

Hashing (Hash Function)

• Hashing is a technique to convert a range of key values into a range of indexes of an array.

• H(x) = x % 20

Key	Hash	Array Index
1	1 % 20 = 1	1
2	2 % 20 = 2	2
42	42 % 20 = 2	2
4	4 % 20 = 4	4
12	12 % 20 = 12	12
14	14 % 20 = 14	14
17	17 % 20 = 17	17
13	13 % 20 = 13	13
37	37 % 20 = 17	17

Hash Table

- Hash Table is a data structure which stores data in an associative manner.
- In a hash table, data is stored in an array format, where each data value has its own unique index value.
- Designed to use a special function called the Hash function which is used to map a given value with a particular key for faster access of elements.

Hash Collision

- When the hash function generates the same index for multiple keys, there will be a conflict.
- This is called a hash collision.
- Example
 - Let H(x) = x % 10.
 - H(11) = 1
 - H(21) = 1
 - H(41) = 1

Collision resolution by Chaining

- In chaining, if a hash function produces the **same index for multiple elements**, these elements are stored in the same index by using a **linked list**.
- If j is the slot for multiple elements, it contains a pointer to the head of the list of elements.

