

Projet de Géophysique BUNEL Félix et VERGNET Hadrien M2 Physique 2015-2016

Master Sciences de la matière École Normale Supérieure de Lyon Université Claude Bernard Lyon 1

Titre

Sous-titre

Résumé:

 $\bf Mots$ $\bf clefs$: cailloux, galet de référence

Remerciements

Table des matières

Introduction							
1		miere j Premie	partie ère sous partie	2			
2	Que 2.1 2.2	discret	formules isation	2 2 2			
3	Mo 3.1	3.1.1 3.1.2 3.1.3 3.1.4	Description Données initiales et constantes Équations Équations discrétisées 2 Description Données initiales et constantes Équations Équations Équations	3 3 4 4 4 4 5			
Co	onclu	ısion		6			
Δ	Pre	mière :	anneye	7			

Introduction

Premiere partie 1

Première sous partie

2 Quelques formules

Remarque : $\frac{\partial F}{\partial x}$ sera noté $\partial_x F$ Équation de la chaleur avec terme de production :

$$\rho C_p \partial_t T = \operatorname{div}(\lambda \operatorname{grad}(T)) + P \tag{2.1}$$

À 1d ca devient

$$\rho C_p \partial_t T = \partial_x (\lambda \partial_x T) + P \tag{2.2}$$

À 3D en symétrie sphérique ça devient :

$$\rho C_p \partial_{t'} T = \frac{1}{r'^2} \partial_{r'} (\lambda r'^2 \partial_{r'} T) + P \tag{2.3}$$

En unités adimensionnées 3D en symétrie sphérique ça devient :

$$r = r'/R_T \tag{2.4}$$

$$t = t' \frac{\lambda}{\rho C_p R_T^2} \tag{2.5}$$

$$p = \frac{PR_T^2}{\lambda} \tag{2.6}$$

$$\partial_t T = \frac{1}{r^2} \partial_r (r^2 \partial_r T) + p \tag{2.7}$$

2.1discretisation

On note $T(t, r_i) : T_i^t$

$$\partial_t T \to \frac{T_r^{t+1} - T_r^{t+1}}{\Delta t} \tag{2.8}$$

$$\partial_r T \to \frac{T_{i+1/2}^t - T_{i-1/2}^t}{\Lambda r}$$
 (2.9)

$$\frac{1}{r^2}\partial_r(r^2\partial_r T) \to \frac{1}{r_i^2\Delta r} \left[r_{i+1/2}^2 \frac{T_{i+1}^t - T_i^t}{\Delta r} + r_{i-1/2}^2 \frac{T_{i-1}^t - T_i^t}{\Delta r} \right]$$
 (2.10)

équation implicite 2.2

$$\begin{split} \frac{T_i^{t+1} - T_i^t}{\Delta t} &= \frac{1}{r_i^2 \Delta r} \Big[r_{i+1/2}^2 \frac{T_{i+1}^{t+1} - T_i^{t+1}}{\Delta r} + r_{i-1/2}^2 \frac{T_{i-1}^{t+1} - T_i^{t+1}}{\Delta r} \Big] + p_i^t \\ &\qquad \qquad T_i^{t+1} + \frac{\Delta t}{r_i^2 \Delta r^2} \Big[r_{i+1/2}^2 (T_i^{t+1} - T_{i+1}^{t+1}) + r_{i-1/2}^2 (T_i^{t+1} - T_{i-1}^{t+1}) \Big] = T_r^t + \Delta t \ p_i^t \quad (2.11) \end{split}$$

On a ainsi l'équation matricielle implicite suivante :
$$MT^{t+1} = T^t$$
 Où : $M = \left[Id + \frac{\Delta t}{r_i^2\Delta r^2}\frac{r_{i+1/2}^2}{d1 + \frac{\Delta t}{r_i^2\Delta r^2}}\frac{d2}{d2}\right]$

$$d1 = \begin{bmatrix} 2 & -1 & -1 & 0 & \dots & 0 \\ 0 & 1 & -1 & 0 & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 & -1 \\ 0 & \dots & \dots & 0 & 0 \end{bmatrix} d2 = \begin{bmatrix} 0 & 0 & \dots & \dots & 0 \\ -1 & 1 & \ddots & & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & 0 & -1 & 1 & 0 \\ 0 & \dots & 0 & -1 & -1 & 2 \end{bmatrix}$$
(2.12)

 $\rho L \frac{\partial \phi}{\partial t} = \rho L \frac{d\phi}{dT} \frac{\partial T}{\partial t}$ avec ϕ qui est une marche, on peut l'approximer par une fonction un peu plus dérivable par ex : $\phi \simeq \arctan(T - T_{fusion})$

$$\begin{aligned} & \text{Fex}: \phi \cong arctan(T-T_{fusion}) \\ & \rho C p_{eff} = \rho C p(\phi) + \rho L \frac{d\phi}{dT} \\ & R_T = at^b, T = T(t, r/R_T(t)) \\ & \Rightarrow \frac{\partial T(t, r/R_T(t))}{\partial t} = \frac{\partial T}{\partial t} + \frac{\partial \frac{r}{R_T(t)}}{\partial t} \frac{\partial T}{\partial r} = \frac{\partial T}{\partial t} + \frac{\partial \frac{r}{R_T(t)}}{\partial t} \frac{\partial T}{\partial r} \end{aligned}$$

3 Modèles

Note pour tous les modèles suivants on supposera que la Terre est composée d'un mélange homogène de $\phi = 18\%$ de métal et 82% de silicates. Et que les propriétés de ces matériaux ne changent pas avec la température ou le changement d'état.

Les constantes respectives et moyennes du mélange sont les suivantes :

Grandeur	moyenne	metal	silicate	unité
Densité (ρ)	4028	7800	3200	${\rm kgm^{-3}}$
Capacité calorifique (C_p)	1065	450	1200	$ m JK^{-1}kg^{-1}$
Conductivité	11.48	50	3	$ m WK^{-1}m^{-1}$
Chaleur latente de fusion		250	500	${ m kJkg^{-1}}$
Température de fusion		1261	1408	K

Pour la suite ρ désignera une valeur moyenne et $\rho_{materiau}$ la valeur respective d'un des matériaux.

3.1 Modèle 1

Fichier: sim1.py

3.1.1 Description

On fait une première simulation la plus simple possible. Hypothèses :

- 1. Rayon de la Terre constant
- 2. Chauffage causé par la désintégration du ²⁶Al et par le rayonnement de corps noir.

3.1.2 Données initiales et constantes

$500\mathrm{km}$
300 K
300 K
$5.67 \times 10^{-8} \mathrm{Wm^{-2}K^{-4}}$
$0.74\mathrm{My}$
$1.5 \times 10^{-7} \mathrm{Wkg} - 1$

3.1.3 Équations

On considère les variables adimentionnées suivantes :

$$t = \frac{t'}{\tau_{1/2}^{Al}}$$
 , $r = r'\sqrt{\frac{\rho C_p}{k_T \tau_{1/2}}}$ et $T = \frac{T'}{T_{neb}}$ (3.1)

Il en résulte l'équation suivante :

$$\frac{\rho C_p T_{neb}}{\tau_{1/2}} \partial_t T = \frac{\rho C_p T_{neb}}{\tau_{1/2}} \frac{1}{r^2} \partial_r (r^2 \partial_r T) + P + S (+ Q_L)$$
(3.2)

Avec:

$$P = \rho H_0 e^{-ln(2)t} \tag{3.3}$$

$$S = \frac{\sigma T_{neb}^4}{\Delta r} (1 - T^4) \quad \text{à la surface uniquement}$$
 (3.4)

 Q_L représente la chaleur "perdue" lors du changement de phase de chaque matériau. Ce changement de phase est géré en dehors de l'équation de la chaleur. On note ϕ_{met} la proportion solide/liquide du métal et ϕ_{sil}

pour le silicate ($\phi_{sil} = 0 \Rightarrow$ solide, $\phi_{sil} = 1 \Rightarrow$ liquide). On detecte le changement de phase solide \rightarrow liquide du métal par la condition $T' > T_{fus,met}$ et $\phi_{met} < 1$ on "échange" alors de la température contre du changement de phase de sorte à obtenir soit $T' = T_{fus,met}$ soit $\phi_{met} = 1$. On fait de même avec la transition inverse et avec

Exemples : on part de $T' > T_{fus,met}$, $\phi_{met} < 1$

!! Attention T_i, T_f et T_{afus} sont des variables adimentionées contrairement à T' et T_{neb} !!

Cas 1 on atteint $\phi_{met} = 1$. Calculons la température finale :

$$T_f = T_i + (\phi_{met} - 1) \frac{\phi L_{met}}{T_{neb} C_{n.met}}$$
(3.5)

Cas 2 on atteint $T' = T_{fus,met}$. Calculons le ϕ_{met} final :

$$\phi_f = \phi_i + (T_i - T_{afus,met}) \frac{T_{neb}C_{p,met}}{\phi L_{met}}$$
(3.6)

Équations discrétisées

On pose $c_0 = \frac{\Delta t \tau_{1/2}}{\rho C_p T_{neb}}$ On a l'équation matricielle suivante :

$$MT^{t+1} = T^t + c_0(P+S) (3.7)$$

Avec la matrice M calculée plus tôt : $M = \left[Id + \frac{\Delta t}{r_i^2 \Delta r^2} \frac{r_{i+1/2}^2}{d1} + \frac{\Delta t}{r_i^2 \Delta r^2} \frac{r_{i-1/2}^2}{d2} \right]$

$$d1 = \begin{bmatrix} 2 & -1 & -1 & 0 & \dots & 0 \\ 0 & 1 & -1 & 0 & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 & -1 \\ 0 & \dots & \dots & 0 & 0 \end{bmatrix} d2 = \begin{bmatrix} 0 & 0 & \dots & \dots & 0 \\ -1 & 1 & \ddots & & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & 0 & -1 & 1 & 0 \\ 0 & \dots & 0 & -1 & -1 & 2 \end{bmatrix}$$
(3.8)

Modèle 2 3.2

Fichier: sim2.py

Description

Pour cette deuxième simulation on va prendre en compte l'accretion qui change le rayon de la Terre au cours du temps

Hypothèses:

- 1. Rayon de la Terre évoluant en $\dot{R} \simeq R^{\beta}$
- 2. Chauffage causé par la désintégration du ²⁶Al et par le rayonnement de corps noir.

3.2.2Données initiales et constantes

$5\mathrm{km}$
300 K
300 K
$5.67 \times 10^{-8} \mathrm{Wm^{-2}K^{-4}}$
$0.74\mathrm{My}$
$1.5 \times 10^{-7} \text{Wkg} - 1$

3.2.3 Équations

On considère les variables adimentionnées suivantes :

$$t = \frac{t'}{\tau_{1/2}}$$
 , $r = \frac{r'}{R(t)}$ et $T = \frac{T'}{T_{neb}}$ (3.9)

$$t = \frac{t'}{\tau_{1/2}^{Al}}$$
 , $r = r' \sqrt{\frac{\rho C_p}{k_T \tau_{1/2}}}$ et $T = \frac{T'}{T_{neb}}$ (3.10)

Il en résulte l'équation suivante :

$$\frac{\rho C_p T_{neb}}{\tau_{1/2}} \partial_t T = \frac{\rho C_p T_{neb}}{\tau_{1/2}} \frac{1}{r^2} \partial_r (r^2 \partial_r T) + P + S \ (+ \ Q_L)$$
 (3.11)

Avec:

$$P = \rho H_0 e^{-ln(2)t} \tag{3.12}$$

$$S = \frac{\sigma T_{neb}^4}{\Lambda r} (1 - T^4) \quad \text{à la surface uniquement}$$
 (3.13)

 Q_L représente la chaleur "perdue" lors du changement de phase de chaque matériau. Ce changement de phase est géré en dehors de l'équation de la chaleur. On note ϕ_{met} la proportion solide/liquide du métal et ϕ_{sil} pour le silicate ($\phi_{sil}=0 \Rightarrow$ solide, $\phi_{sil}=1 \Rightarrow$ liquide). On detecte le changement de phase solide \rightarrow liquide du métal par la condition $T'>T_{fus,met}$ et $\phi_{met}<1$ on "échange" alors de la température contre du changement de phase de sorte à obtenir soit $T'=T_{fus,met}$ soit $\phi_{met}=1$. On fait de même avec la transition inverse et avec le silicate.

Exemples : on part de $T' > T_{fus,met}$, $\phi_{met} < 1$

!! Attention T_i , T_f et T_{afus} sont des variables adimentionées contrairement à T' et T_{neb} !!

Cas 1 on atteint $\phi_{met} = 1$. Calculons la température finale :

$$T_f = T_i + (\phi_{met} - 1) \frac{\phi L_{met}}{T_{neb} C_{p,met}}$$
(3.14)

Cas 2 on atteint $T' = T_{fus,met}$. Calculons le ϕ_{met} final :

$$\phi_f = \phi_i + (T_i - T_{afus,met}) \frac{T_{neb}C_{p,met}}{\phi L_{met}}$$
(3.15)

3.2.4 Équations discrétisées

$$\rho C_p(\partial_{t'}T' - r\frac{\dot{R}}{R}\partial_r T') = \frac{1}{r^2}\partial_r(k_T \frac{r^2}{R^2}\partial_r T') + P$$
(3.16)

$$\frac{\rho C_p T_{neb}}{\tau_{1/2}} \partial_t T = \frac{1}{r^2} \partial_r (T_{neb} k_T \frac{r^2}{R^2} \partial_r T) + \rho C_p T_{neb} r \frac{\dot{R}}{R} \partial_r T + P$$
(3.17)

$$T^{t+1} - T^t = \frac{\tau_{1/2}k_T}{\rho C_v} \frac{\Delta t}{r^2} \partial_r \left(\frac{r^2}{R^2} \partial_r T\right) + r\tau_{1/2} \Delta t \frac{\dot{R}}{R} \partial_r T + \frac{\tau_{1/2} \Delta t}{\rho C_v T_{neb}} P$$
(3.18)

$$T_{i}^{t+1} + \frac{\tau_{1/2}k_{T}\Delta t}{\rho C\Delta r^{2}R^{2}r_{i}^{2}} \left[r_{i+1/2}^{2} (T_{i}^{t+1} - T_{i+1}^{t+1}) + r_{i-1/2}^{2} (T_{i}^{t+1} - T_{i-1}^{t+1}) \right] + \tau_{1/2}\Delta t \frac{r\dot{R}}{2\Delta rR} \left[T_{i-1}^{t+1} - T_{i+1}^{t+1} \right] = T_{r}^{t} + \frac{\tau_{1/2}\Delta t}{\rho CT_{neb}} P_{i}^{t}$$
(3.19)

On a l'équation matricielle suivante :

$$\left[Id + c_1 d_1 + c_2 d_2 + c_3 d_3 \right] T^{t+1} = T^t + c_0 P$$
(3.20)

$$\text{Avec}: c_1 = \frac{\tau_{1/2} k_T \Delta t}{\rho C} \frac{r_{i+1/2}^2}{\Delta r^2 R^2 r_i^2} \;, \; c_2 = \frac{\tau_{1/2} k_T \Delta t}{\rho C} \frac{r_{i-1/2}^2}{\Delta r^2 R^2 r_i^2} \;, \; c_3 = \tau_{1/2} \Delta t \frac{r\dot{R}}{2\Delta rR} \;, \; c_0 = \frac{\Delta t \tau_{1/2}}{\rho C_p T_{neb}} \frac{r_{neb}^2}{2\Delta r^2 R^2 r_i^2} \;, \; c_0 = \frac{r_{1/2} k_T \Delta t}{\rho C_p T_{neb}} \frac{r_{neb}^2}{2\Delta r^2 R^2 r_i^2} \;, \; c_0 = \frac{r_{1/2} k_T \Delta t}{\rho C_p T_{neb}} \frac{r_{neb}^2}{2\Delta r^2 R^2 r_i^2} \;, \; c_0 = \frac{r_{1/2} k_T \Delta t}{\rho C_p T_{neb}} \frac{r_{neb}^2}{2\Delta r^2 R^2 r_i^2} \;, \; c_0 = \frac{r_{1/2} k_T \Delta t}{\rho C_p T_{neb}} \frac{r_{neb}^2}{2\Delta r^2 R^2 r_i^2} \;, \; c_0 = \frac{r_{1/2} k_T \Delta t}{\rho C_p T_{neb}} \frac{r_{neb}^2}{2\Delta r^2 R^2 r_i^2} \;, \; c_0 = \frac{r_{1/2} k_T \Delta t}{\rho C_p T_{neb}} \frac{r_{neb}^2}{2\Delta r^2 R^2 r_i^2} \;, \; c_0 = \frac{r_{1/2} k_T \Delta t}{\rho C_p T_{neb}} \frac{r_{neb}^2}{2\Delta r^2 R^2 r_i^2} \;, \; c_0 = \frac{r_{1/2} k_T \Delta t}{\rho C_p T_{neb}} \frac{r_{neb}^2}{2\Delta r^2 R^2 r_i^2} \;, \; c_0 = \frac{r_{1/2} k_T \Delta t}{\rho C_p T_{neb}} \frac{r_{neb}^2}{2\Delta r^2 R^2 r_i^2} \;, \; c_0 = \frac{r_{1/2} k_T \Delta t}{\rho C_p T_{neb}} \frac{r_{neb}^2}{2\Delta r^2 R^2 r_i^2} \;, \; c_0 = \frac{r_{1/2} k_T \Delta t}{\rho C_p T_{neb}} \frac{r_{neb}^2}{2\Delta r^2 R^2 r_i^2} \;, \; c_0 = \frac{r_{1/2} k_T \Delta t}{\rho C_p T_{neb}} \frac{r_{neb}^2}{2\Delta r^2 R^2 r_i^2} \;, \; c_0 = \frac{r_{1/2} k_T \Delta t}{\rho C_p T_{neb}} \frac{r_{neb}^2}{2\Delta r^2 R^2 r_i^2} \;, \; c_0 = \frac{r_{1/2} k_T \Delta t}{\rho C_p T_{neb}} \frac{r_{neb}^2}{2\Delta r^2 R^2 r_i^2} \;, \; c_0 = \frac{r_{1/2} k_T \Delta t}{\rho C_p T_{neb}} \frac{r_{neb}^2}{2\Delta r^2 R^2 r_i^2} \;, \; c_0 = \frac{r_{1/2} k_T \Delta t}{\rho C_p T_{neb}} \frac{r_{neb}^2}{2\Delta r^2 R^2 r_i^2} \;, \; c_0 = \frac{r_{1/2} k_T \Delta t}{\rho C_p T_{neb}} \frac{r_{neb}^2}{2\Delta r^2 R^2 r_i^2} \;, \; c_0 = \frac{r_{1/2} k_T \Delta t}{\rho C_p T_{neb}} \frac{r_{1/2} k_T \Delta$$

$$d_{1} = \begin{bmatrix} 2 & -1 & -1 & 0 & \dots & 0 \\ 0 & 1 & -1 & 0 & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 & -1 \\ 0 & \dots & \dots & 0 & 0 \end{bmatrix} d_{2} = \begin{bmatrix} 0 & 0 & \dots & \dots & 0 \\ -1 & 1 & \ddots & & & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & 0 & -1 & 1 & 0 \\ 0 & \dots & 0 & -1 & -1 & 2 \end{bmatrix} d_{3} = \begin{bmatrix} 2 & -2 & 0 & \dots & \dots & 0 \\ 1 & 0 & -1 & \ddots & & \vdots \\ 0 & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 & 2 \\ 0 & \dots \end{bmatrix}$$

Conclusion

A Première annexe