肌电/诱发电位仪

所属学校:重庆大学

77171-3	子仪: 里仄入子						仪器编号		05030631				
仪器基本信息								E E	Electromyograph and Evoked				
							所属校内单位		Potential Equipment 城市建设与环境工程学院				
							放置地点		B区建筑环境与设备工程实验研究中心 212 室				
							仪器负责人				商国别 日本		
							制造厂商	714	光电工业株式会社			H	
							规格型号		MEB – 9104K				
							仪器原值	23.02	23.02 万元		置日期 2005.01		
	主要技术	<i>÷lr</i> -↓	• BR 64	日形	ktr 2 /	4 提 <i>比</i> 安							
仪器	指标	★ 放大器的导联数:2/4、操作系统:Windows 2000/NT、CPU:inter p5、内存:128MB、显示器:DELL 液 晶显示器、屏幕大小:15 寸、显示分辨率:1024×768。											
仪器性能信息	主要功能及特色	一)经传导研究:运动神经传导速度(MCS),感觉神经传动速度(SCS),F-波,H-波反射,瞬目反射,低频和高频重复刺激;二)肌电图测试:针肌电图,定量肌电图,长轨迹测试,表面肌电图,单纤/巨肌电图。											
	主要研究 方向	人体热舒适、噪声对人体或动植物的生理影响以及医用生理测试。											
相关科研信息	在研或曾 承担的重 大项目	国家科技支撑项目重大课题"建筑室内热湿环境控制与改善关键技术研究"; 国家自然科学基金重点项目课题"建筑热环境动态调节与控制的理论与方法"; 国家科技支撑项目重大课题"长江流域住宅建筑节能理论与策略研究"。											
		近三年利用该仪器作为主要科研手段发表的代表性论文:											
	学术论文	序号	作者	Í		论文是	页 目	期刊	期刊名称		卷(期)	起止页	
		1	ZHENG Jie		G Impact of indoor thermal comfort on physiological parameters of human body			i_ "	of Central niversity of	2009	16(1)	024 – 027	
		2	谈美兰		夏季空气流动对人体热舒适性的景			土木建筑程	土木建筑与环境工程			70 – 73	
	专利或奖项	城镇基础设施建设关键技术与工程示范(2008-177),2009-02-20,教育部"高等学技术进步"一等奖.									之校科学		
	收费标准	联盟外 320 元/天											
共享服务信息		联盟内		170 元/天									
	联系信息	联系人		郑									
信息	开放时间	7/ /	.,,	提前预约									
		定則											