2009-09-17

 La ditta di trasporti FAVELOX deve trasportare sette rotoli di lamiera del peso di 2, 3, 5, 3, 2, 4 e 3 tonnellate e dispone di quattro camion. I costi relativi ai camion sono riportati in tabella:

Camion	Capacità	Costo fisso (€)	Costo per tonnellata (€)
1	8	100	20
2	10	120	25
3	13	110	30
4	17	130	25

Si vuole pianificare il trasporto di costo minimo, considerando che, per motivi di sicurezza, almeno tre camion devono essere utilizzati. Inoltre tutti i camion utilizzati devono avere almeno il 50% della capacità occupata. Infine, per problemi legati al caricamento, il primo e il quarto rotolo di lamiera devono viaggiare sullo stesso camion. Si scriva il modello di programmazione lineare che risolva tale problema.

Consideriamo che il problema considera l'utilizzo di almeno 3 camion.

Quindi, avremo una variabile che modella esattamente questo.

 z_i : variabile logica che vale 1 se si usa il camion di tipo $i \in \{1,2,3,4\}$, 0 altrimenti.

$$z_1 + z_2 + z_3 + z_4 \ge 3$$

Inoltre, avremo il numero di tonnellate trasportate dai camion.

 y_j : numero di tonnellate di lamiera che si porta per il rotolo $j \in \{1,2,3,4,5,6,7\}$

Avremo infatti dei vincoli di capacità da dover rispettare, cioè "tutti i camion devono avere almeno il 50% della capacità occupata". Questo si traduce in:

 $y_1 \leq 8z_1, y_1 \geq 4z_1$ (primo camion minore alla capacità e con almeno la metà occupata)

 $y_2 \le 10z_2, y_2 \ge 5z_2$ (secondo camion minore alla capacità e con almeno la metà occupata)

 $y_3 \leq 13z_3, y_3 \geq \frac{13}{2}z_3$ (terzo camion minore alla capacità e con almeno la metà occupata)

 $y_4 \le 17z_4, y_4 \ge \frac{17}{2}z_4$ (quarto camion minore alla capacità e con almeno la metà occupata)

Inoltre, "il primo e il quarto rotolo di lamiera devono viaggiare sullo stesso camion".

Questo, banalmente, diventa $y_1 + y_4 = 5$.

Infine, abbiamo un vincolo di disponibilità massima sui rotoli di lamiera:

$$y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7 = 22$$

La f.o. in tutto questo è data dai costi fissi per tonnellata (considerando che i costi si ripetono, essendo 4 i camion e le parti di lamiera sono 7):

$$\min 100z_1 + 120z_2 + 110z_3 + 130z_4 + 20y_1 + 25y_2 + 30y_3 + 25y_4 + 20y_5 + 25y_6 + 30y_7$$

Domini:

$$x_i \in \{0,1\}, y_i \in Z_+, i \in \{1,2,3,4\}, j \in \{1,2,3,4,5,6,7\}$$