Inteligencja Obliczeniowa

Uniwersytet Gdański – Instytut Informatyki

 ${\bf Streszczenie}\,$ Notatki z wykładów z przedmiotu Inteligencja Obliczeniowa, Gdańsk, Jesień-Zima 2017.

Spis treści

In	teligencja Obliczeniowa	1
1	Wykład 1 – 14.10.2017	2
	1.1 Algorytmy genetyczne	2
	1.2 Przykłady	2
2	Bibliografia	4

1 Wykład 1 – 14.10.2017

Inteligencja Obliczeniowa (CI) zajmuje się teorią rozwiązywania problemów, które nie są efektywnie algoytmiczne. Obejmuje wiele dziedzin np. sieci neuronowe, algorytmy genetyczne i ewolucyjne, algorytmy mrówkowe i rojowe, systemy rozmyte, metody zgłębiania danych. Systemy korzystajace z CI przetwarzają i interpretują dane o różnorodnym charakterze, np. dane numer numeryczne, symboliczne.

1.1 Algorytmy genetyczne

Oparte na mechanizmach doboru naturalnego i dziedziczenia. Nie przechowują bezpośrednio parametrów zadania, tylko ich zakodowaną postać, prowadzą poszukiwania wychodząć z pewnej populacji, nie z pojednyczego punktu, korzystają z funkcji przystosowania (celu). Osobniki towrzą populację – zawierają rozwiązanie, pupulacja zawiera osobników, istnieją operatory genetyczne i funkcje przypisania.

Klasyczny algorytm genetyczny

- 1. Inicjalizacja wybór początkowej populacji,
- 2. Ocena przystosowania osobników w populacji,
- 3. Iteracja postępowania:
 - (a) selekcja osobników,
 - (b) zastosowanie operatorów genetycznych,
 - (c) ustalenie nowej populacji,
- 4. Wypisanie najleszego osobnika.

Operator mutacji odgrywa drugoplanową rolę w sotsunku do krzyżowania, które to występuje prawie zawsze, mutacja bardzo rzadko (z prawdopodbieństwem rzędu 0.01).

Algorytm ewolucyjny Algorytm ewolucyjny jest pewnym uogólnieniem algoytmu genetycznego – nie musi być nieparzystą binarną opartą nie tylko genetycznie, ale dane do zrealizowania. Elementy określające algorytm genetyczny: sposób reprezentacji osobników, metoda zdefiniowania populacji początkowej, określenie funkcji przystosowania, wybór operatorów, określenie kryterium zakończenia.

1.2 Przykłady

Problem Komiwojażera Jak określić funkcje przystosowania? Jak reprezenotwać osobniki? Można uzyć tak zwanej reprezentacji ścieżkowej, czyli osobnik jest permutacją liczb od 1 do n; jak zdefiniować krzyżowanie i mutację? W reprezentacji prządkowej określa się tak zwany wzorzec, osobnik na i-tej pozycji może zawierać liczbę między 1 i n-i+1 np. dla n=7 wzorzec (1 2 3 4 5 6 7), osobnik jest listą (1 1 4 2 1 1 1) reprezentującą trasę 1-2-6-4-3-5-7.

Szeregowanie Zadań Dany jest zbiór złożony z n zadań, ponadto dane są: czasy przetwarzania $p_1,...,p_n$, d czas zakończenia, kary $a_1,...,a_n$ za wykonanie zadania zbyt wcześnie, kary $b_1,...,b_n$ za wykonanie zadania zbyt późno, jeśli ci jest czasem zakończenia i-tego zadania, to funkcję, która należy zminimalizować jest funkcja oceny.

4 Uniwersytet Gdański

2 Bibliografia

- 1. L. Rutkowski Metody i techniki sztucznej inteligencji, PWN,
- 2. J. Han Data Mining. Concepts and Techniques, Morgan Kaufmann,
- 3. T. Morz Eksploracja danych. Metody i algorytmy, PWN,
- 4. A.P. Engelbrecht Computional Inteligence. An Itroduction, Wiley,
- 5. UCI Repository, http://archive.ics.uci.edu/ml,