copi

Peferance in the he taken from a burney.

PART A IONOSPHERIC DATA

ISSUED OCTOBER 1958

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY BOULDER, COLORADO

CRPL-F 17O PART A

NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY 22 Oct. 1958 BOULDER, COLORADO

Issued

IONOSPHERIC DATA

CONTENTS

				Page
Symbols, Terminology, Conventions	•	•	•	ii
Predicted and Observed Sunspot Numbers	•	•	•	v
World-Wide Sources of Ionospheric Data	•	•	0	νi
Errata	•	•	•	viii
Tables of Ionospheric Data	•	•	•	1
Graphs of Ionospheric Data	•	•	•	13
Index of Tables and Graphs of Ionospheric				40
Data in CRPL-F170 (Part A)			0	49

SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1952, and continuing through December 1956, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Sixth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Geneva, 1951. Excerpts concerning symbols and terminology from Document No. 626-E of this Meeting are given on pages 2-7 of the report CRPL-F89, "Ionospheric Data," issued January 1952. Reprints of these pages are available upon request.

Beginning with data for January 1957, the symbols used are given in NBS Report 5033, "Summary of Changes in Ionospheric Vertical Soundings, Observing and Scaling Procedures - Effective 1 January 1957," which draws upon the First Report of the Special Committee on World-Wide Ionospheric Soundings (URSI/AGI), Brussels, Sept. 2, 1956. A list of these symbols is available upon request.

In the Second Report of the Special Committee on World-Wide Ionospheric Soundings of the URSI/AGI Committee, May 1957, a new descriptive letter was introduced:

M Measurement questionable because the ordinary and extraordinary components are not distinguishable.

There was an expansion in meaning of the following:

- Z (1) (qualifying letter) Measurement deduced from the third magnetoionic component.
 - (2) (descriptive letter) Third magnetoionic component present.

Beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

The following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given above.

a. For all ionospheric characteristics:

Values missing because of A, C, F, H, L, N or R are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h'F (and h'E near sunrise and sunset) missing for this reason are counted usually as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count.

Values missing because of G are counted:

- 1. For foF2, as equal to or less than foF1.
- 2. For h'F2, as equal to or greater than the median.

The symbol W is included in the median count only when it replaces a height characteristic; the descriptive symbol D, only when it replaces a frequency characteristic.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because of E or G are counted as equal to or less than the median foE, or equal to or less than the lower frequency limit of the recorder.

B for fEs is counted on the low side when there is a numberical value of a higher layer characteristic; otherwise it is omitted from the median count.

S for fEs is counted on the low side at night; during the day it is omitted from the median count (beginning with data for November 1957).

Values of fEs missing for any other reason, and values of h Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D.C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- 1. If the count is four or less, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, h'F or foEs, if the count is from five to nine, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as the count is at least five, the median is not considered doubtful. A count of at least 5 is considered sufficient for an h'Es median.
- 3. For all layers, if more than half of the data used to compute the medians are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

Ordinarily, a blank space in the fEs or foEs column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of foE. Blank spaces at the beginning and end of columns of h*F2 or h*F1, foF1, h*E, and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h*F1 and foF1 is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.
- c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.
- d. The tables may contain median values of either foEs or fEs.

 The graph of median Es corresponds to the table. Percentage curves of fEs are estimated from values of foEs when necessary.

PREDICTED AND OBSERVED SUNSPOT NUMBERS

The following predicted smoothed 12-month running-average Zurich sunspot numbers were used in constructing the contour charts:

Month	Predicted Sunspot Number										
	1959	1958	1957	1956	1955	1954	1953	1952	1951	1950	1949
December		150**	150*	150	42	11	15	33	53	86	108
November		150₩	150*	147	35	10	16	38	5 2	87	112
October		150*	150*	135	31	10	17	43	52	90	114
September		150%	150*	119	30	8	18	46	54	91	115
August		150*	150*	105	27	8	18	49	57	96	111
July		150*	150*	95	22	8	20	51	60	101	108
June		150%	150*	89	18	9	21	52	63	103	108
May		150*	150*	77	16	10	22	52	68	102	108
April		150¾	150*	68	13	10	24	52	74	101	109
March	150*	150☆	150*	60	14	11	27	52	78	103	111
February	150*	150*	150*	53	14	12	29	51	82	103	113
January	150%	150*	150*	48	12	14	30	53	85	105	112

^{*}This number is believed representative of solar activity at a maximum portion of the current sunspot cycle.

The latest available information follows concerning the corresponding observed Zürich numbers beginning with the minimum of April 1954. Final numbers are listed through June 1957.

Observed Sunspot Number

Month	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
1954				3	4	4	5	7	8	8	9	12
1955	14	16	19	23	29	35	40	46	55	64	73	81
1956	89	98	109	119	127	137	146	150	151	156	160	164
1957	170	172	174	181	186	188	191	194	196	198	200	199
1958	198	200	200									

WORLD - WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 72 and figures 1 to 144 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Republica Argentina, Ministerio de Marina: Decepcion I. Tucuman, Argentina

Commonwealth of Australia, Department of the Interior: Macquarie I.

Meteorological Service of the Belgian Congo and Ruanda-Urundi: Elisabethville, Belgian Congo Leopoldville, Belgian Congo

Escola Politecnica, University of Sao Paulo: Sao Paulo, Brazil

British Department of Scientific and Industrial Research, Radio Research Board:

Ibadan, Nigeria (University College of Ibadan) Inverness, Scotland Slough, England

Defence Research Board, Canada: Resolute Bay, Canada

Danish National Committee of URSI: Narsarssuak, Greenland

Central Institute of Meteorology, Budapest, Hungary: Budapest, Hungary

Icelandic Post and Telegraph Administration: Reykjavik, Iceland

Indian Council of Scientific and Industrial Research, Radio Research Committee, New Delhi, India: Ahmedabad (Physical Research Laboratory) Calcutta (Institute of Radio Physics and Electronics)

Ministry of Postal Services, Radio Research Laboratories, Tokyo, Japan:

Akita, Japan Tokyo (Kokubunji), Japan Wakkanai, Japan Yamagawa, Japan

```
Christchurch Geophysical Observatory, New Zealand Department
  of Scientific and Industrial Research:
     Cape Hallett (Adare)
     Christchurch, New Zealand
     Rarotonga, Cook Is.
Manila Observatory:
     Baguio, P. I.
Institute of Terrestrial Magnetism, Ionosphere and Radio Prop-
  agation, Moscow, U.S.S.R.:
     Alma-Ata
     Ashkabad
     Moscow
     Murmansk
     Rostov-on-Don
     Salehard
     Sverdlovsk
     Tomsk
Research Institute of National Defence, Stockholm, Sweden:
     Upsala, Sweden
United States Army Signal Corps:
     Adak, Alaska
     Fletchers Ice I.
     Grand Bahama I.
     St. John's, Newfoundland
     Thule, Greenland
     White Sands, New Mexico
National Bureau of Standards (Central Radio Propagation Labor-
  atory):
     Anchorage, Alaska
     Chiclayo, Peru
     Chimbote, Peru
     Huancayo, Peru (Instituto Geofisico de Huancayo)
     Maui, Hawaii
     Panama Canal Zone
     Point Barrow, Alaska
     Puerto Rico, W. I.
     San Francisco, California (Stanford University)
     Talara, Peru (Instituto Geofisico de Huancayo)
     Washington, D. C.
```

ERRATA

- 1. CRPL-F161 and 168(A): (M3000)F2 data from Rarotonga I. for the months of June, October and December 1957 as listed in the tables and plotted in the figs. are in error.
- 2. CRPL-F156, 158, 161, 167, and 169(A): (M3000)F2 data from Scott Base for the months of March June 1957, and October December 1957 as listed in the tables and plotted in the figs. are in error.

Note: Also see Erratum 4, CRPL-F163(A), p. viii.

July 1958 - June 1957

				Table	1								Table 2				
Washing	ton, D.C.	(38,7%	N, 77.1°W)				July 1958	Maui, H	awaii (20	.8°N, 15	6.5°W)					July 1950
Time	h*F2	foF2	h*F	foF1	h°E	foE	foEs	(M3000)F2	Time	h*F2	foF2	h*F	f oF 1	h*E	foE	foEs	(M3000)F2
7 ime 00 01 02 03 04 05 06 07 00 09 10 11 12 13 14	(470) 450 515 510 540 510 540 510 540 510	foF2 6.5 6.1 5.5 5.1 4.8 4.0 5.6 5.9 6.0 6.3 6.4 6.5 6.6 6.9	h'F 300 300 300 310 305 315 300 260 230 (220) 210 215 (210) 225	4.1 4.6 4.9 5.2 5.3 5.4 5.5 5.4 5.5	119 111 109 106 105 107 107 109 109	1.80 2.50 3.10 3.35 (3.70) 4.00 4.00 4.00 4.00 3.90	1.8 2.8 3.8 3.9 4.1 4.1 4.2 4.1 4.1 3.9			(385) 420 430 410 400 305	foF2 9,2 8,9 0,35 7,0 7,35 6,8 6,5 7,6 0,4 9,0 10,5 11,2 11,4 11,5 11,7	h F 310 290 <290 280 200 200 220 220 <220 215 220 <220 <215 220 <220 <215 220 <220 <215 220 <220 <215 220 <220 <215 220 <215 220 <230 230	5.8 6.1 6.2 6.3 6.2 6.2 6.2	115 (110) 105 105 105 106 107 107 107	(1,90) 2,70 3,30 3,65 3,90 4,00 (4,10) (4,10) 4,10 4,00	1.9 2.0 2.0 1.6 1.9 3.1 3.9 4.0 4.3 4.7 4.7 5.0 4.3 4.7	(M3000)F2 2.65 2.70 2.70 2.70 2.70 2.65 2.90 2.65 2.30 2.40 2.45 2.50 2.55 2.60
16 17 18 19 20 21 22 23	460 420 365 	7.0 7.2 7.2 7.1 7.2 7.3 7.0 6.9	220 230 250 <280 280 <280 290 300	5.2 5.0	109 111 (119)	3,60 3,30 2,00	3.6 3.2 3.0 2.8	2.55 2.65 2.70 2.65 2.60 2.60	17 18 19 20 21 22 23	360 330 310	11.0 11.4 10.9 10.3 10.0 9.8 9.8 9.5	230 <240 (250) 275 <295 305 300 305	5,8 (5,6)	107 109 113	3.75 3.32 2.65	4.3 4.2 4.9 4.2 3.5 3.3 3.1 3.0	2.65 2.75 2.75 2.70 2.65 2.60 2.60

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

uerto	Rico, W.1.	(10.5	N, 67.2°	W)				July 1958
Cime	h'F2	foF2	h'F	f oF l	h'E	foE	foEs	(M3000)F2
00		9.4	285					2.75
01		9.1	270					2.75
02		8.5	265					2,75
03		7.9	260					2.75
04		7.3	265					2.75
05	İ	7.1	(270)					2.70
06		7.1	280					2.75
07	1	7.8	245		116	2.62	2.8	2.95
08	340	0.4	230		109	3.20	3.5	2.00
09	350	9.4	220		109	3,60	3.9	2,70
10	415	9.9	215	5.6	109	4.00	4.2	2.60
ii	375	10.7	215	5.8	109	4.12	4.4	2,60
12	385	10.9	215	5.7	109	4.25	4.7	2.60
13	380	11,4	220	5.8	109	4.20	4.5	2.55
14	380	11.2	215	5.6	109	4.15	4.6	2,60
15	385	10.8	220	5.5	109	4.00	4.7	2,55
16	375	10.5	220	5.4	111	3,70	4.4	2,60
17	360	10, 2	235		113	3.30	4.4	2,60
18	(335)	9.9	250		115	2.70	3.6	2.62
19	(000)	9.7	275				2.9	2,65
20		9.6	280				1.8	2,60
21		9.7	290					2,60
22	1	9.5	300					2,60
23		9.4	295					2,65

Time: 60.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Panama (Canal Zone	(9 49N	79 900	Table 4				July 1953
Time	h'F2	foF2	h*F	foF1	h*E	foE	foEs	(M3000)F2
00 01 02 03 04 05 06 07 00 09 10 11 12 13 14 15 16 17 18 19 20 21 22	(400) 380 460 445 433 430 (330)	9. 2 3. 6 8. 2 7. 4 6. 9 6. 2 6. 05 7. 45 8. 5 9. 1 10. 0 11. 5 12. 0 11. 8 11. 7 11. 3 10. 8 9. 8 9. 4 9. 45 9. 6	280 275 270 265 280 300 310 260 245 230 225 230 (230) (245 (245 (255) 270 305 330 310	6.0 6.1 6.1 6.1 6.1 6.0 5.8 5.6	121 115 111 108 109 107 109 111 108 109 (115) 119	1.62 2.62 3.30 3.70 4.15 4.20 4.10 3.95 3.65 3.15 2.50	2.2 3.9 4.4 4.6 4.7 4.6 4.7 3.1 2.9	2, 65 2, 70 2, 70 2, 70 2, 70 2, 70 2, 52 2, 65 2, 85 2, 75 2, 40 2, 30 2, 25 2, 35 2, 40 2, 40 2, 40 2, 45 2, 45
2 3		9.4	295					2.60

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Chimbot	e, Peru (9.1°S, 70).6°W)	Table 5				July 1958
Time	h'F2	foF2	h*F	foF1	h*E	foE	foEs	(M3000)F2
00		7.8	235					2,90
01		7.7	230					2.95
02		7.6	230					3.00
03		6.8	235					3.10
04		5.75	240				2.0	3.05
05	1	5, 1	250					3,00
06	1	4.7	250				3.2	2.90
07	l	7.4	270		129	2,30	4.4	2.90
03		9.4	245		117	3,05	5.1	2.80
09	ì	10.1	230		111	3,50	7.1	2,52
10	!	10.4	220		111	3.80	7.5	2,40
11	1	10.5	215		111	4.00	8.6	2,30
12		10.6	210		109	4.00	9.0	2,20
13		10.3	210		109	4,00	9.0	2.15
14		10.0	210		111	3.95	7.4	2.15
15	(490)	9.9	210		111	3.70	7.0	2.10
16		9.7	225		113	3.40	5.6	2, 10
17		9.4	255		117	2.85	3.4	2, 20
18	1	9.1	295			1.98		2,20
19	1	8.7	365					2, 15
20		8.5	345					2, 25
21		8.6	295					2, 45
22	1	8.3	250					2,68
23	1	7.95	240					2.70

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

lluancavo	o, Peru (12.0°S	75.3°W)	Table 6	2			July 1950
Time	h'F2	foF2	h*F	foF1	h*E	foE	foEs	(M3000)F2
				foF1	118 109 109 	FoE 2.38 3.10 (3.50) (3.80) (4.00) (4.00) (3.60) (3.60) (3.20) 1.45	4.5 6.5 7.2 7.9 8.8 9.0 8.9 8.9 8.0 7.6 6.0	
20 21 22 23		8.2 8.5 8.2 7.8	300 260 225 220					2. 48 2. 65 2. 80 2. 90

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Point B	arrow, Al	eska (7	1.3°N, 1	Table 7 56.8°W)				June 1958
Time	h*F2	foF2	h*F	foFl	h*E	foE	foEs	(M3000)F2
00		5.4	.330		<135	2,50	3,5	2,60
01		5.5	290		119	(2.15)	2.8	2.65
02	(390)	5.2	<320		115	2.10	4.0	2,60
03	460	5,2	<290	3.7	113	2.40	2.5	2.50
04	465	5.4	265	4.0	112	2,60		2,45
05	480	5.4	250	4.0	111	2.80		2,40
06	530	5.5	250	4.4	110	3.00		2.35
07	580	5.4	250	4.5	107	3,35		2,20
00	l G	<4.7	<230	4.6	107	(3,50)		G
09	l G	5.1	240	4.8	105	3.70		G
10	800	5.9	240	4.8	107	3,60		2.00
11	620	5.8	235	4.9	108	3.60		G
12	G	<5.2	230	(4.9)	107	3,60		G
13	650	5.7	225	4.9	107	3,50		2,00
14	570	6.0	240	4.9	106	3,50		2.25
15	5 6 5	5.8	230	5.0	111	(3,40)		2,25
16	550	6.0	230	4.8	107	3.40		2.30
17	525	6.0	(245)	4.7	111	3,20		2.35
18	495	5.9	245	4.5	109	3.20		2.40
19	470	6.0	255	4.3	111	2.95		2.50
20	470	6.0	270	4.1	113	2.80		2.50
21	(430)	5.6	295		115	2.80		2.65
22	(440)	5.6	320	3.7	123	(2,90)	3,2	2.70
23		5.5	315		125	2.70	3.8	2,60

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

	June 1958
foEs	(M3000)F2
2.9	2.50
2.8	2.48
2,2	2.50
	2,50
2.4	2.50
	2,40
	2,40
	2.35
3.5	2,30
	2.35
	2.30
4.0	2,30
3.9	2.30
	2.30
	2.30
	2,30
	2.40
	2.40
	2.55
2.8	2.60
3.0	2.70
	2.72
	2.70
1.8	2.62
	2.9 2.8 2.2 2.4 3.5 3.7 3.7 3.7 4.0 3.9

Time: 150,0°W, Sweep: 1.0 Me to 25.0 Mc in 13.5 seconds.

Teble 11 Adak, Aleske (51.9°N, 176.6°W) June 1950 T1me h'F2 foF1 h*E h°F foEs (N3000)F2 foF2 foE <330
<325
<340
340
300
265
250
(240)
<230
(215)
(210)
215
220
(235
(245)
(2465
(280)
295
300
<300 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 20 21 22 23 2.45 2.40 2.40 2.30 2.35 2.35 2.35 2.30 2.30 2.30 3.3 4.0 4.6 4.8 5.0 5.2 5.3 5.4 5.5 5.4 5.2 5.1 4.9 125 <121 111 109 103 101 102 102 101 103 109 109 109 107 475 465 465 470 480 525 530 530 510 2.00 2.50 2.95 3.30 3.70 3.85 3.90 3.95 3.90 3.50 3.15 2.70 2.25 2.7 3.3 4.0 4.6 4.0 4.0 4.6 >4.4 4.2 4.0 545 545 505 520 470 410 2.30 2.40 2.40 2.50 2.60 2.70 2.55 2.55 2.55 3.6 3.7 3.5 2.3 2.6 2.4 <121 121 (300)

Time: 180.0°W. Sweep: 1.0 Me to 25.0 Me in 13.5 seconds.

				Table 6				
Reykjav	ik, Icelai	nd (64.1	ON, 21.	30M)				June 1958
Time	h°F2	f oF 2	h °F	foFl	h*E	foE	foEs	(M3000)F2
00		>5.0	380				2.2	(2,60)
01		(5.4)	410				3.0	(2,40)
02		(5, 2)	(420)				3.4	(2,40)
03	(470)	(5.3)	(370)		<121		2,3	(2,50)
04	<460	5.3	(280)		(126)	(2,30)		2,40
05	(430)	5.6	<300	(4.0)	(119)	>2.50		2,50
06	<500	5.6	255	4.3	109	>2.75		2,50
07	560	5.6	250	4.7	109	>2.85		2,45
08	520	5.8	230	4.8	105	>2,90		2,40
09	520	6.0	230	5.0	103	(3.30)		2,40
10	540	6.2	225	5.2	101	(3.55)		2.35
11	520	6.3	220	5.2	101	(3,65)		2,40
12	530	6.4	220	5.3	101	(3,70)		2.40
13	510	6.5	225	5.3	101	(3.70)		2,40
14	485	6.7	230	5.3	101	(3,70)		2,50
15	470	6.5	230	5 .2	104	(3,60)		2,50
16	470	6.4	240	5.2	105	>3,25		2,50
17	480	6.3	240	4.9	107	>3.00		2,50
18	430	6.3	270	(4.8)	109	>3.00		2.60
19	480	5.9	270	4.4	111	(3,05)		2,55
20	455	>5.8	(320)		120	2.70	2.8	2.55
21	(420)	(5.8)	320		127	(2, 25)	3.8	(2,60)
22		(5.5)	375				3.0	(2,50)
23		(5.3)	380				2.7	(2.50)

Time: 15.0°W. Sweep: 1.0 Mc to 25.0 Mc in 16.2 seconds.

				Table 1	0			
Narsars	suak, Gre	enland	(61.2°N,	45.4°W)				June 1958
Time	h'F2	foF2	h'F	foFl	h*E	foE	foEs	(M3000)F2
00		(4.8)	360				5.5	(2,50)
01		(5.0)	350				3.9	(2,50)
02		(4.7)	(400)				3.6	(2.50)
03	(485)	(4.65)	(370)		114	(2.60)	3.8	(2.50)
04	(540)	4.9	(340)	(3.8)	115	(2.55)	3,6	2.42
05	G	4.7	(305)	4.0	109	2.80	4.1	2.38
06	665	5,2	270	4.5	105	3,20	3.9	2,35
07	560	5.7	245	4.8	105	3.35	3.6	2,45
08	590	5,85	235	5.0	101	3.50	6.4	2,42
09	545	6.2	225	5.2	101	3,60	4.4	2,45
10	535	6.3	215	5.3	101	3.72	4.2	2.45
11	515	6.4	220	5.3	101	3.80	4.7	2.48
12	500	6.55	220	5.4	101	3.80	4.2	2.45
13	510	6.8	220	5.4	101	3.80	4.2	2.40
14	475	6.7	220	5.2	101	3.70	4.4	2,48
15	470	6.5	230	5.2	101	3,60	4.4	2.45
16	490	6.4	240	5.0	101	3,50	3.6	2.45
17	495	6.3	235	4.9	103	3,40	3.8	2,50
18	460	6.3	260	4.6	105	3.05	3.4	2.55
19	415	6.1	265	(4.3)	109	(2.80)	>3.7	2,60
20	(420)	5.9	295		112	(2.50)	>3.3	2.55
21		(5.6)	330		(125)	(2.25)	4.4	2,60
22		(5.5)	350				3.8	2,55
23		5.2	340				3.4	2.55

Time: 45.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table				
St. John	n's, Newfo	undlend	(47.6°N,	52.79	1)			June 1958
Time	h'F2	foF2	h*F	foFl	h†E	foE	foEs	(M3000)F2
00 01 02 03 04 05	<500	6.9 6.2 5.9 5.2 5.6 6.0	315 315 305 300 275 250 230	4.6	115 112	2.65 3.10		2.50 2.50 2.50 2.60 2.70 2.80 2.70
07 00 09 10 11 12 13	530 530 470 480 490 495 475	6.5 6.8 6.9 7.0 7.2 7.0	230 <230 225 220 210 <220 230	4.8 5.2 5.6 5.8 5.0 5.8 5.0	103 102 101 101 102 101 101	3,50 (3,70) (3,90) (4,00)		2:75 2.60 2.60 2.50 2.55 2.50 2.50
14 15 16 17 18 19 20 21 22 23	460 435 430 400 (400)	7.4 7.6 7.6 7.6 0.0 0.0 0.0 0.2 7.8 7.1	230 230 235 240 260 280 290 290 300 300	5.7 5.4 5.1 4.7	101 105 105 111 <119	4.05 3.90 3.55 3.15 2.70		2,50 2,55 2,55 2,60 2,65 2,65 2,60 2,55 2,50 2,55

Time: 60.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table 13				
White S	ands, New	Mexico	(32.3°N,	106.5°W)				June 1958
Time	h'F2	foF2	h*F	foFl	h'E	foE	foEs	(M3000)F2
00 01 02 03 04 05	(435)	6.7 6.6 6.6 6.1 6.0 5.75 6.5	315 310 310 300 315 300 250		111 111	(2,55)	2.6 2.6 2.2 2.4 2.2 3.0	2.50 2.50 2.50 2.55 2.50 2.60 2.65
07 00 09 10	490 460 455 460 430	7.1 7.7 8.0 8.5 8.8	<235 220 215 200 205	4.8 5.1 5.5 5.6 5.6	103 103 101 103 101	3.10 3.50 (3.82) 4.05 (4.15)	3.5 4.2 4.4 4.5 4.6	2.52 2.55 2.50 2.45 2.45
12 13 14 15	460 450 420 425 430	8.5 >8.85 >8.8 8.65 8.0	210 215 215 220 230	5.7 5.7 5.6 5.5 5.2	101 101 101 103 101	4.20 (4.15) (4.10) 3.95 3.65	4.2 4.0	2.45 2.40 2.45 2.48 2.50
17 18 19 20 21 22 23	420	7.95 7.8 7.7 7.7 7.3 7.0 6.7	240 250 270 250 280 300 320	4.9	103 109	3.30 2.72	3.8 3.3 2.2 2.8 2.8 2.5 3.4	2.60 2.65 2.70 2.65 2.60 2.55 2.50

Time: 105.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table 1	5			
Baguio,	P.I. (16	.4°N, 12	0.6°E)					June 1958
Time	h'F2	f oF2	h*F	f oF 1	h¹E	foE	foEs	(M3000)F2
00		11.1	300				2.8	2,60
01		10.5	280				1.9	2.68
02		9.6	265					2.70
03		9.05	265					2.75
04		8.0	245					2.80
05		6.85	240				1.6	2.80
06		8.1	270		(127)	(2.30)	3.1	2.85
07		9.0	255		117	3.05	7.0	2.70
08		9.9	240		113	3.55	7.4	2.40
09		10.6	235		115	3.90	7.3	2,22
10		11.5	230		115	4.05	6.9	2.15
11		12.0	(230)		118	4.15	6.4	2.15
12	(510)	12.5	220	(6.7)	117	4.20	5.1	2.15
13	(530)	13.0	220	(6,4)	117	4.20	4.8	2.05
14	(570)	13.2	230		117	4.08	5.5	2.05
15		13.05	235		117	3.85	4.9	2.05
16		12.95	250		117	3.50	5.2	2.10
17		12.5	270		117	3.00	4.0	2.10
18		12.35	<300		131	2.30	4.7	2,12
19		11.95	365				4.0	2.08
20		11.0	420				2.8	2.05
21		11.0	420				3.2	2.10
22	ŀ	11.0	390				3.2	2,20
23		(11.25)	350				2.9	2.42

Time: 120.0°E. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Talara,	Peru (4	.6°S, 81.	.3°W)	<u>Table l</u>	7			June 1958
Time	h°F2	foF2	h*F	foFl	h'E	foE	foEs	(M3000)F2
00		9.4	230					2.72
01		9.6	2 50					2.80
02		9.6	250					2.90
03		8.95	2 35					3.10
04		7.4	230					3.02
05	!	6.15	235					2.95
06		5.2	250					2.90
07	1	7.5	2 65		121	2.30	3.5	2.85
08	i	8.75	240		110	3.05	3.6	2.75
09		9,65	230		109	3.60	3.6	2.45
10		10.1	215		105	3.90		2.30
11		10.4	210		105	4.05	5.0	2,20
12		10.6	205		105	4.15	4.4	2, 10
13		10.8	<210		103	4.10	4.4	2,10
14		10.9	<210		105	4.02	4.5	2.05
15		10.7	205		105	3.00	4.5	2.10
16		10.7	220		105	3.48	4.8	2.05
17	1	10.6	2 45		109	3.00	3.2	2.05
18	1	10.4	280		133	2,20	2.8	2.05
19		10.05	<360				2.9	2.05
20		9.9	370					2,20
21		10.0	340					2.30
22		10.15	280					2.45
23		9.95	240					2.65

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Puerto	Rico, W.I	. (18.5	°N, 67.2°	Table 1	.4			June 1958
Time	h'F2	foF2	h'F	foF1	h*E	foE	foEs	(M3000)F2
00		10.4	280					2,70
01		9.9	270					2.75
02		9.3	270					2.70
03		9.0	280					2,65
04		8.6	275					2,70
05		8.0	260					2.80
06		7.8	265					2.80
07		8.7	<250		114	2.70	3.0	2,85
08	(530)	9, 2	230		109	3.30	4.2	2.75
09	(490)	10.0	230	5.2	109	3.70	4.2	2.55
10	370	10.6	220	5.6	109	4.00	4.6	2,55
11	390	11,2	215	5.8	109	4.15	4.5	2,55
12	380	11.8	215	6.0	109	4.25	4.6	2,50
13	380	11.9	220	5.7	109	4.25	4.8	2,50
14	390	11.8	220	5.8	111	4.20	4.9	2,50
15	380	11.4	220	5.6	111	4.00	4.8	2.55
16	370	11.2	230		113	3.70	5.3	2.50
17	365	10.8	240		111	3.30	4.4	2,55
18		10.6	(250)		117	2.60	3.6	2,60
19		10.6	285				2.9	2,60
20		10.4	290				2.4	2.55
21		10.6	300					2.55
22		10.6	300					2.60
23	l	10.6	300				2,2	2,60

Time: 60.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Panama	Canal Zone	e (9.4°N	. 79.9°W	Table 1	<u>6</u>			June 1958
Time	h*F2	foF2	h*F	foF1	h * E	foE	foEs	(M3000)F2
00		9.6	295					2,60
01		9.0	290					2,55
02		8.8	280					2,60
03		8.1	280					2.65
04		7.55	2 65					2.65
05		6.9	270					2,60
06		6.7	<300		117	1.78	3.8	2.55
07		7.65	260		112	2.70	4.2	2,70
00	(510)	8.7	245		111	3.35	4.7	2.60
09		9.7	2 35		111	3.75	4.9	2.38
10	(455)	10.2	230	5.7	109	4.00	5.3	2.25
11.	475	11.3	230	6.2	109	4.20	5.1	2.25
12	465	11.0	230	6.0	109	4.25	5.8	2,30
13	470	12.0	230	6.1	109	4.22	4.9	2,30
14	460	12.3	(230)	6.0	107	4.20	5.2	2.35
15	430	12.2	(230)	6.0	109	3.90	5.0	2.40
16	410	11.8	(245)	5.5	111	3.55	4.7	2,40
17	390	11.4	250		111	3.00	4.6	2,40
18	(350)	11.0	280		119	2.30	4.2	2,40
19		10.3	305				3.4	2.40
20		9.7	335				2.6	2.35
21	i	10.0	330					2,45
22		9.9	305					2.55
23		9.9	300					2.55

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				lable .	10			
Chimbot	e, Peru (9.1°S, 7	3.6°W)				_	June 1958
Time	h*F2	foF2	h*F	foF1	h*E	foE	foEs	(M3000)F2
00		8.2	240					2,80
01		8.4	240				3.2	2,80
02		8.2	240				2.5	3.00
03		7.25	240				3.0	3.00
04		6.3	240				3.5	3.00
05		5.9	240				3.7	3.00
06		5.5	255				4.0	2,95
07		7.8	270		<129	2,30	5.0	2.85
00		9.25	240		117	3.05	7.2	2.70
09		10.5	230		112	3.50	7.4	2.48
10		10.5	220		111	3.05	9.1	2.35
11		10.4	215		110	4.00	9.0	2,20
12		10.2	210		109	4.10	9.4	2.15
13		10.25	210		109	4.05	9.0	2.12
14		10.3	210		110	4.00	8.9	2.12
15		10.0	220		111	3.70	8.6	2.10
16		9.9	230		113	3.30	7.7	2.10
17		9.85	260		117	2.75	7.0	2.15
18		9.2	300			1.85	4.6	2.15
19		8.65	365					2,15
20		8.5	360					2,20
21		8.5	320					2.35
22		8.4	270				2.6	2,50
23		8.2	250					2.60

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table	19									Table 2	0			
Huancay	o, Peru (12.0°S,	75.3°W)					June 1958	_	Fletcher	s Ice I.	(80.09	N, 115.0)oW)*				May 1958
Time	h*F2	foF2	h'F	foFl	h¹E	foE	foEs	(M3000)F2	_	Time	h*F2	foF2	h*F	f oF 1	_h * E	foE	foEs	(M3000)F2
00	l	7.7	220					2.92		00	490	6.0	265	3.9	109	2.50		2.40
01		7.8	230					3.00		01		6.2	270	3.8	109	2.35		2.50
02		7.1	230					3.02		02	430	6.4	270	4.0	109	2.35		2.45
03	l	6.5	230					3.02		03	(480)	6.6	270	4.0	109	2.35		2.55
04		5.7	240					3.05		04	430	6.6	260	3.9	109	2,35		2.50
05		5.3	235					3.00		05	430	6.1	260	4.0	109	2.45		2,50
06		5.5	260			Ε		2.90		06	430	6.0	250	4.2	109	2.60		2.50
07	į.	8.35	2 55		119	2.40	5.6	2,95		07	470	6.0	250	4.1	103	2.70		2.42
08	ŀ	10.45	2 35		109	(3, 12)	7.0	2.75		00	465	6.2	245	4.5	101	2.75		2.40
09		11.0	220		107	(3.58)	7.5	2.55		09	450	6.1	240	4.6	101	2.90		2.38
10		11.0	210			(3.90)	8.0	2.42		10	470	5.9	240	4.6	101	3.00		2.38
11		10.7	205			(4,00)	8.0	2,30		11	505	5.95	230	4.7	101	(3, 10)		2.35
12		10.5	205				8.1	2.25		12	480	6.0	230	4.7	101	3.20		2.30
13		10.35	205				8.2	2.25		13	490	6.25	225	4.6	101	(3.20)		2.28
14		10.0	210				7.8	2.22		14	500	5.7	220	4.6	101	(3.30)		2.30
15		9.7	215			(3,60)	7.6	2.20		15	550	5.9	<230	4.6	101	(3.30)		2.30
16	1	9.6	2 35			(3.15)	7.0	2.25		16	5 2 5	6.0	235	4.5	101	(3,30)		2.30
17		9.5	2 60			(2.50)	6.0	2.25		17	550	5.65	<240	4.5	101	(3.25)		2.30
18		9.0	300			1.40	1.7	2.30		18	550	5.9	<240	4.5	101	(3.15)		2.18
19		8.4	335					2.25		19	500	5.65	(245)	4.5	101	3.00		2.30
20		8.25	320					2.40		20	470	6.0	245	4.5	103	2.95		2.35
21		8.1	270					2.55		21	480	6.2	250	4.3	103	2.78		2.30
22	1	8.0	240					2.70		22	450	6.3	2 60	4.4	105	2.60		2.35
23		7.7	230					2.90		23	470	6.2	250	4.1	109	2.55		2.40

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time: 75.0°M. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds. *Preliminary estimated average position.

				Table 21	1			
Thule,	reenland	(76.6°N	, 68.70	W)				May 1958
Time	h*F2	f oF 2	h*F	foFl	h*E	foE	foEs	(M3000)F2
00		6.0	270		111	2.10		2.60
01	(480)	6.2	260		111	(2.20)		2.60
02	(530)	6.0	255	3.7	109	2.30		2.55
03	(520)	5.8	250	3.8	109	2.40		2.55
04	550	6.2	245	4.1	107	2,60		2.60
05	495	5.5	240	4.2	105	2.80		2.50
06	560	5.8	240	4.4	105	2.95		2.40
07	530	6.3	235	4.5	103	3.10		2.55
00	560	6.0	225	4.8	101	3,20		2.45
09	545	5.8	230	4.8	101	3.35		2.35
10	500	6.1	225	4.8	101	3,40		2.40
11	540	6.2	220	4.8	101	3.50		2.40
12	545	6.0	225	4.8	101	3.45		2.30
13	480	6.4	230	4.8	101	3.40		2,40
14	480	6.2	230	4.8	101	3.30		2.40
15	485	6.5	230	4.7	103	3.20		2.40
16	465	6.5	235	4.6	105	3.05		2.40
17	475	6.2	235	4.2	106	3,00		2.50
18	555	6.8	240	4.2	107	2.85		2,55
19	(465)	6.4	240	4.2	109	2.60		2,55
20	(440)	6.5	245		109	2.45		2.55
21		6.2	260		111	2.35		2.60
22		6.2	260		111	2.25		2.60
23		6.0	270		113	2.20		2.70

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time	h'F2	foF2	h*F	foFl	h*E	foE	foEs	(M3000)F
00		>5.2	420				2.7	
01			400				3.3	
02			400				3.2	
03		>5.4	390				3.6	(2.45)
04	(470)	5.4	315				2.1	2.40
05	(430)	5.7	305		119	2.50		2.50
06	(510)	5.9	2 80		111	2.70		2.50
07	(510)	6.0	250	4.5	109	(3,00)		2.50
08	490	6.3	250	4.8	109	(3, 15)		2.45
09	510	6.4	245	5.0	108	(3.40)		2.40
10	520	6.8	235	5.3	109	(3,50)		2.40
11	480	6.9	230	5.4	109	3.60		2.40
12	485	7.0	230	5.5	106	3,65		2.40
13	490	7.1	230	5.4	107	(3.70)		2.40
14	470	7.1	230	5.4	107	(3.60)		2.40
15	460	7.1	230	5.2	105	(3,50)		2.45
16	450	7.1	240	5.2	108	(3,35)		2.45
17	440	7.0	250	4.8	109	>3.00		2,50
18	420	6.8	2 80	(4.6)	111	>2.05		2.50
19	(520)	(6.5)	(300)		115	(2.70)		(2.55)
20	(425)	(6.0)	<350		121	(2.50)	2.8	(2.50
21		>5.7	380		<131	(2.20)	3.2	(2.50)
22		>5.6	395				3.6	(2.40)

Time: 15.0°W. Sweep: 1.0 Mc to 25.0 Mc in 16.2 seconds.

White S	ands, New	Mexico	(32.3°N,	106.5%	V)			May 1958
Time	h'F2	foF2	h*F	foFl	h * E	foE	foEs	(M3000)F2
00		7.3	310				2.3	2,50
01	i	7.0	310				2.8	2.55
02		6.8	300				2.6	2,50
03		6.6	310				2.8	2.50
04	ľ	6.35	310				2.7	2.50
05		6.4	310				2.1	2.55
06		7.7	250		114		3.0	2.80
07		8.6	235		109	(3, 10)	3.5	2.65
08	(500)	9.4	225	5.2	105	(3.58)	4.2	2,55
09	440	10.0	220	5.6	105	(3.90)	4.4	2, 45
10	430	10.8	<220	5.8	101	4.05	4.5	2,45
11	400	11.2	215	6.0	101	4.25	4.4	2,45
12	400	11.15	215	6.2	101	4.25	4.2	2.45
13	420	11.15	225	6.0	101	4.20	4.3	2,45
14	410	11.3	230	5.9	101	4.10	4.3	2.50
15	400	10.85	230	5.8	101	3.92	4.1	2.50
16	395	10.75	230	5.2	103	3,60	4.0	2.55
17	l	10.4	<250		109	3,20	4.2	2.60
18	ł	9.9	260		<115		3.4	2.70
19		9.0	2 60				3.3	2.70
20		8.35	250				3.0	2.60
21		7.8	(280)				3.1	2.55
22		7.4	315				3.7	2.50
23		7.2	320				2.2	2.45

Time: 105.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Grand B	ahama I.	(26.6°N	78.2°W)					May 195
Time	h'F2	foF2	h*F	f oF 1	h'E	foE	foEs	(M3000)
00		8.5	300					2.55
01		8.3	300					2.60
02		8.0	290					2.55
03		7.8	280					2.55
04		7.55	290				2.2	2.65
05		7.3	280					2.62
06		8.0	260		<119	2,22	2.4	2,85
07		8.85	235		109	(3,00)	3.2	2.82
08	(425)	10.0	220		107	(3.40)	4.1	2.70
09	(440)	10.5	<220	5.5	107	(3.80)	4.2	2.60
10	425	10.9	210	5.7	108	4.00	4.1	2.55
11	420	11.4	210	6.1	107	4.15	>4.1	2.45
12	410	11.8	215	6.0	107	(4.25)		2.45
13	395	11.6	220	6.3	107	(4.30)	4.3	2.50
14	390	11.5	220	6.0	109	4.15	4.2	2.50
15	390	11.2	225	(5.8)	109	4.00	4.2	2.50
16	410	10.9	235		111	3.62	4.1	2.55
17	(395)	10.6	(235)		110	3.20	3.8	2.55
18	1	10.2	260		114		2.8	2.60
19		9.7	2 65				2.8	2.60
20		9.1	<280					2.50
21		8.6	300					2.50
22		8.5	(310)					2.55
23		8.6	320				2.4	2,50

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Talara,	Peru (4	.6°5, 81.	3°W)	Table	<u>25</u>			May 1958
Time	h*F2	foF2	h*F	foF1	h¹E	foE	foEs	(M3000)F2
				foFl	** E <125 113 109 109 107 107 105	foE 2,40 3,20 3,70 4,00 4,10 4,20 4,10	3.0 3.3 4.2 4.4	
14 15 16 17 18 19 20 21 22 23		(12.5) 12.6 12.2 11.8 (11.3) 11.0 11.0 11.4 >10.8 >10.5	<210 210 230 255 290 370 385 340 270 230	===	105 105 109 <112 <140	4.00 3.75 3.40 2.95 2.15	4.4 4.2 4.5 4.9 4.5 3.0 2.3	(2,05) 2,05 2,05 2,10 (2,00) 2,00 2,10 (2,25) 2,50 2,60

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table_2	<u>:7</u>			11 1050
Chimbote	, Peru (9,105,	78.6°W)					May 1958
Time	h'F2	foF2	h*F	foF1	h°E	foE	foEs	(M3000)F2
00		9.0	240					2.80
01		9.2	230					2.85
02		8.55	235				2,2	2,90
03		7.2	240				1.8	3,00
04		6.3	240					2,90
05		6.0	245					2.90
06		6.1	260				1.8	2.80
07		9.0	265		127	2,45	4.0	2.85
00		11.5	245		119	3,20	5.0	2.75
09		12.2	235		117	3,60	7.1	2.50
10		12.4	225		115	3.90	8.4	2.30
11		12.3	220		114	4.05	9.0	2.20
12		11.9	215		111	4.10	9.0	2.10
13		11.8	210		111	4.02	9.0	2.10
14		11.6	215		(111)	(3.95)	9.0	2.05
15		11.5	(220)		111	(3.70)	9.0	2.10
16		11.2	(245)		115	3,30	9.0	2.10
17		10.8	2 65		119	2.78	6.6	2,08
18		10.5	315				5.0	2.10
19		9.4	400					2.05
20		9,1	370					2.12
21		9.0	330				2.5	2.30
22		8.4	265				3.0	2.60
23		8.6	240				2.2	2,65

Time: 75.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Table 29												
Reykjan	rik, Icela	and (64.	1°N, 21.8	3°W)				April 1958				
Time	h°F2	foF2	h'F	f oF l	h*E	foE	foEs	(M3000)F2				
00		>4.5	430				2.9					
01	1	>5.0	415				3.2					
02		>4.5	455				3.6	(2,22)				
03		(5.1)	420				3.0	(2,35)				
04		5.15	395				3.5	(2,35)				
05		5.4	335				3.4	2.45				
06		5.8	295		114	(2.28)		2.60				
07		6.05	270		111	2.55		2.60				
08	(470)	6.65	250	(4.6)	109	(2.90)		2.55				
. 09	485	7.05	250	5.0	111	3.20		2.55				
10	480	7.45	250	(5.3)	(109)	3.50		2.45				
11	455	8.15	240	5.5	109	3.60		2,40				
12	450	8.6	230	5.6	109	3.58		2.45				
13	420	8.6	230	5.6	111	3.50		2.45				
14	410	8.5	240	5.2	109	3.50		2.45				
15	430	8.0	250	4.8	109	3.40		2,50				
16	430	7.45	(260)	(4.7)	109	>3.20		2.50				
17	(410)	7.4	270		109	>2.95		2.55				
18		7.0	(300)		109	3.10		2.55				
19	(500)	>6.6	320		118	2.75	3.5	2.45				
20		>5.8	370		<137		3.5	(2.45)				
21	1	>5,65	<400				3.4					
22		>5.65	415				>3.9					
23	1		400				2.9					

Time: 15.0°W. 5weep: 1.0 Mc to 25.0 Mc in 16.2 seconds.

Chialay	a Down (4 005 7	0.0001)	Table 2	6			
	o, Peru (May 1958
Time	h°F2	foF2	h'F	foFl	h¹E	foE	foEs	(M3000)F2
00		9,6	2 35					2,70
01		10.1	230					2.80
02	l	9.7	230					2.90
03		8.1	230					2,90
04		6.8	240					2,90
05		6.4	245					2.88
06		6.6	255					2,80
07	1	9,05	265		121	2.50		2,80
08	1	11,15	240		111	3,20		2.70
09		11.9	230		111	3,60	5.0	2,45
10	1	12.5	225		111	4,00		2,30
11		12,2	220		109	(4, 10)		2.20
12		12.0	210		109	(4.15)	4.4	2.08
13		12.35	<215		109	4.10	4.4	2.05
14		12.2	(210)		109	(4,00)	4.4	2.02
15		12.0	215		111	3.80		2.00
16	1	11.8	(235)		109	3,40	4.7	2.05
17		11.2	265		111	2.90	5.1	2.05
18		11.0	300			2.02	4.0	2,00
19		10.1	395					2.05
20		9.8	390					2, 10
21		9.6	330				2.3	2,25
22		9.4	260				2.0	2.50
23		9.1	235					2,60

Time: 75.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Resolut	e Bay, Ca	nada (74	.7°N. 9	Table 26 4.9°W)	3			April 1958
Time	h°F2	foF2	h'F	foF1	h * E	foE	ſ Es	(M3000)F2
00		6.4	290		120	1.5	1.5	2,5
01		6.4	280		120	1.6	1.6	2, 4
02		6.2	300		110	1.7	1.7	2.5
03		6.2	280		110	1.8	1.1	2.5
04		6.4	290		105	1.9		2.5
05		6.9	280		105	2, 1		2.6
06	(450)	6.4	260		105	2.3		2.5
07	420	6.0	250	4.0	100	2,6		2,5
08	480	6.1	250	4.2	100	2.9		2.4
09	460	6.2	240	4.4	100	3.0		2.4
10	480	6.4	240	4.8	100	3.0		2.4
11	480	6,2	230	4.9	100	3.1		2.4
12	500	6.0	230	4.8	100	3.2		2.3
13	520	6.0	240	4.6	100	3.2		2.3
14	520	5.9	240	4.8	100	3.1		2.4
15	460	6.4	250	4.7	100	3.0		2.4
16	440	6.5	240	4.4	100	3.0		2,4
17	510	6.0	260	4.5	100	2.8		2.4
18	420	6.7	270	4.2	100	2,6		2.4
19	(430)	6.2	280	4.0	110	2.4		2.5
20		6.4	290		110	2.0		2.5
21		7.0	290		110	1.9		2.5
22		6.8	290		110	1.7	1.7	2.5
2 3		6.8	280		110	1.7		2,5

Time: 90.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time h*F2 foF2 h*F foF1 h*E fo E fES 00 5.3 360 2.1 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.4 335 2.4 4.8 340 E 2.6 4.8 340 E 2.6 3.0 3.1 3.1 3.0 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.6 3.1 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.7 3.6 3.7 3.7 3.6 3.7 3.7 3.6 3.7 3.5 5.0 10	17.6°E) April 19	958
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	h'F foF1 h'E foE fEs (M3000)F2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	360 2.1 2.3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	350 2.7 2.3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	345 2.4 2.3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	280 125 1,80 3,1 2,6	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	255 115 2.40 3.6 2.7	
09 390 8.4 240 5.70 105 3.40 4.7 10 395 9.1 225 5.60 105 3.55 5.1 11 425 9.5 230 6.10 105 3.65 5.6 12 420 9.8 230 6.05 105 3.70 4.5 13 400 9.6 240 6.00 105 3.70 4.5 14 400 9.6 240 5.65 105 3.35 4.4 15 390 9.6 240 5.65 105 3.35 4.4 16 370 9.8 240 5.40 105 3.10 10 17 6 9.7 245 5.30 110 2.70 3.3 18 6 9.6 255 120 2.25 3.0 19 9.2 260 1.55 2.3	245 5.00 110 2.85 5.0 2.7	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	240 5.40 105 3.20 5.0 2.6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	240 5.70 105 3.40 4.7 2.6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	225 5.80 105 3.55 5.1 2.5	
13 400 9,6 240 6,00 105 3,70 4,5 14 400 9,6 230 5,95 105 3,55 4,4 15 390 9,6 240 5,65 105 3,35 16 370 9,8 240 5,40 105 3,10 17 6 9,7 245 5,30 110 2,70 3,3 18 6 9,6 255 120 2,25 3,0 19 9,2 260 1,55 2,3	230 6,10 105 3,65 5,6 2,5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	230 6.05 105 3.70 4.6 2.5	
15 390 9.6 240 5.65 105 3.35 16 370 9.8 240 5.40 105 3.10 17 6 9.7 245 5.30 110 2.70 3.3 18 6 9.6 255 120 2.25 3.0 19 9.2 260 1.55 2.3	240 6.00 105 3.70 4.5 2.5	
16 370 9.8 240 5.40 105 3.10 17 6 9.7 245 5.30 110 2.70 3.3 18 6 9.6 255 120 2.25 3.0 9.2 260 1.55 2.3	230 5.95 105 3.55 4.4 2.5	
17 G 9.7 245 5.30 110 2.70 3.3 18 G 9.6 255 120 2.25 3.0 19 9.2 260 1.55 2.3	240 5.65 105 3.35 2.55	5
18 G 9.6 255 120 2.25 3.0 19 9.2 260 1.55 2.3	240 5.40 105 3.10 2.6	
19 9.2 260 1.55 2.3	245 5.30 110 2.70 3.3 2.7	
	255 120 2.25 3.0 2.7	
	260 1.55 2.3 2.7	
	260 E 2.6	
21 7.1 280		
22 6,6 330	330 2,3	

Time: 15.0°E.

5weep: 1.4 Mc to 17.0 Mc in 6 minutes, automatic operation.

				Table 3	1			
5lough,	England	(51.5°N,	0.6°W)		_			April 1958
Time	h*F2	foF2	h 'F	foF1	h*E	foE	foEs	(M3000)F2
00	1	>7.0	335				<1.3	2,20
01		>7.0	325				1.0	2,25
02	1	6.4	315				1.0	2,25
03	ľ	6.1	330				<1.0	2, 20
04		5.8	325			(1,35)		2,30
05		5.7	300		140	1.70		2.50
06		6.5	260		115	2.30		2.75
07	i	7.4	245		105	2.85		2.65
00		8.2	230		105	3.35		2,60
09	450	9.4	225		100	3,60	3.7	2,55
10	450	10.4	225	5.7	100	3,80	-,.	2,55
11	450	10.9	220	5.7	100	3,90		2.50
12	445	11.2	225	5.8	100	4.00		2.50
13	430	11.2	230		100	3,90		2.50
14	440	11.0	230		100	3.05		2.50
15		10.8	235		100	3,70		2.55
16		10.6	240		105	3,35		2,55
17	l	10.6	250		105	2,90		2,60
18	Ī	10.4	255		115	2.40		2.65
19		10.2	260		150	1.75		2.65
20		9.3	2 55				<1,6	2,60
21		8.4	260				<1.6	2.45
22		7.9	300				<1.6	2,25
23		>7.0	335				<1.6	2.20

Time: 0.0° Sweep: 0.67 Mc to 25.0 Mc in 5 minutes, automatic operation.

Table 33 Grand Bahama I. (26.6°N, 78.2°W) April 1958 Time h*F2 foF2 h * E foE foEs (M3000)F2 8.6 8.55 8.25 2.55 00 <310 01 02 (300) 2.60 2.60 290 7.9 7.6 7.15 8.0 2.60 2.60 2.60 280 270 03 04 05 06 07 00 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 <200 265 2.75 (2.80) 3.25 (3.60) 4.00 (4.05) (4.18) 240 230 6.4 109 109 >2.4 10.05 ---11.35 12.15 12.75 2.80 2.75 2.60 2.55 2.50 2.50 2.50 2.55 2.65 2.65 2.55 2.55 220 215 109 109 13.05 13.2 13.0 12.95 109 109 109 111 220 230 (365) 390 6.6 230 230 400 (4.20) 4,05 (3,92) 3,60 410 (430) 12.7 12.05 230 240 110 111 3.9 3.4 2.5 ---12.05 11.65 11.2 10.3 9.35 9.35 9.15 240 260 111 <117 (3.08) 250 (270) (290) (300) 2.60 2.55

9.05 Time: 75.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

<310

Table 32
San Francisco, California (37.4°N, 122.2°W) April 1958 Time h°F2 h'F foFl foF2 h*E foE foEs (M3000)F2 00 6.8 6.8 (300) 300 305 01 02 03 04 05 06 07 00 09 10 11 12 13 14 15 16 17 18 19 20 21 22 6.5 6.5 6.05 310 (320) 6.05 310 2.05 2.80 3.30 3.60 3.75 3.95 2.2 3.0 3.6 4.0 3.9 7.2 9.2 10.5 260 (123)109 103 101 240 230 ---11.6 12.4 12.7 13.0 225 ---215 101 103 103 101 101 (390) 215 220 4.00 4.00 3.85 3.70 3.42 3.00 2.30 (400) 13.0 13.0 220 225 12.45 11.7 11.45 230 235 102 103 105 3.2 2.6 2.3 2.5 2.2 240 11.0 10.3 9.0 7.9 7.2 7.1 245 240 240 250 (280) 23 (300)

Time: 120.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Talara,	Peru (4,	6°5, 81.	3°W)	Table 3	34			April 1958
Time	h¹F2	foF2	h*F	f oF 1	h E	foE	foEs	(M3000)F2
00		11.6	225				3.0	2.65
01		12.1	240					2.75
02		11.2	250					2.05
03		10.2	240					2.90
04		9.1	240					2.85
05		8.0	250					2,90
06		7.5	255					2.90
07		10.0	270		129	2.40	3.2	2.85
00		12.5	250		122	3,25		2.80
09		13.5	240		119	3,75		2,60
10		14.2	230		117	4.05		2.40
11		14.5	225		115	4.25		2,30
12		14.4	220		113	4.30		2, 15
13		14.5	220		112	4.30		2.10
14		14.1	215		111	4, 20		2.05
15		14.1	220		111	3,85		2.05
16		14.0	235		109	3,50	3,9	2.05
17		13.5	260		117	3,05	3.4	2.05
18		13.0	295		<129	2.35	4.7	2.05
19		12.0	380					1.95
20		>11.7	410					2.00
21		>12.0	330				1.9	2.25
22		11.6	255					2.50
23		12.0	230				2.4	2.55

Time: 75.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Chiciay	o, Peru (6.005, 7	79.8°W)					April 1958
Time	h'F2	foF2	h*F	f oF 1	h'E	foE	foEs	(M3000)F2
00		10.8	230				2.6	2,60
01		10.6	240					2.70
02		10.3	245					2.00
03		9.2	245					2.85
04		0.6	250					2.05
05		8.05	245					2.90
06		7.4	255					2.85
07		10.2	265		127	2.50		2.90
08		12.7	250		119	3.30		2.75
09	1	14.0	240		117	3.70	>3.4	2,50
10	1	14.6	230		115	4.10		2.35
11		14.65	225		113	(4.20)		2.15
12		14,55	220		113	4.28		2.05
13		14.25	220		113	4.30		2.02
14		13.8	<225		111	(4, 10)		2.05
15	1	13.8	225		111	3,90		2.05
16		13.7	245		111	3.45	3.8	2.00
17	l	13.2	260		113	(3.00)	3.6	2.00
18	Ī	12.35	300			2.20	2.7	2,00
19	İ	11.45	390					1,95
20		>11.0	410					2,02
21		>11.5	320				1.8	2.30
22		11.0	260				2.4	(2.40)
23	1	>11.0	230				2.5	2,55

Time: 75.0°W. 1.0 Mc to 25.0 Mc in 13.5 seconds.

Chimbot	e, Peru (9.1°S, 7	8.6°W)	Table 3	<u>6</u>			April 1958
Time	h'F2	foF2	h F	foFl	h*E	foE	foEs	(M3000)F2
00		10.0	240				4.2	2.60
01		9.95	240				2.6	2.70
02		9.5	250					2.75
03	1	8.7	250				3.0	2.80
04	1	8.2	250				1.8	2.88
05	!	7.6	250				2.5	2.90
06	ĺ	7.4	250					2.85
07	1	10.7	2 65		131	2.60	3.3	2.90
00		12,9	250		123	3.30	3.4	2.78
09	l	14.2	240		120	3.75	4.5	2.52
10	{	14.7	230		119	4.05	4.7	2,35
11	ł	14.6	230		119	4. 2 5	7.0	2.15
12	1	14.1	220		118	4,30	6.6	2.10
13	l	13.65	(220)		117	4.30	7.1	2.05
14		13.2	220		116	4.10	7.7	2.05
15	1	13.3	220		115	3.80	7.0	2.05
16		13.05	245		115	3.50	7.1	2,05
17		12.45	270		119	2.95	7.0	2.00
18	i	11,35	310			2.10	4.0	(2.05)
19		9.5	415					2.00
20		(9, 1)	410					2.10
21		>10,0	325					2,25
22		9.8	260				3.2	2.55
23		9.6	240				4.5	2.60

Time: 75.0°W, 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

March 1958

(M3000)F2

2.45 2.40 2.40 2.40 2.50 2.85 2.95 2.95 2.95 2.80 2.80 2.75 2.80 2.80 2.75 2.75 2.65 2.75 2.55

Inverne	Table 37 Inverness, Scotland (57.4°N, 4.2°W) M											
Time	h'F2	foF2	h*F	foF1	h F.	foE	foEs	(M3800)F2				
00 01 02 03 84 05 06 07 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	375 330 400 395 380 405 310 325	5.3 4.9 4.8 4.6 5.2 6.1 7.3 8.2 8.8 9.6 10.6 10.3 10.9 11.2 10.8 10.7 10.2 8.8 7.0 6.0 5.6	350 360 368 350 335 310 290 265 250 245 245 245 245 250 250 250 250 250 250 250 250 250 25	4.8 5.3 5.3	125 120 120 115 110 115 110 115 115 115 120 135 140	1.80 2.15 2.95 3.15 3.30 3.35 3.30 2.50 1.95 1.60	<1.3 1.6 <1.7 <1.3 <1.3 <1.3 <1.3 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6	2, 25 2, 25 2, 28 2, 35 2, 30 2, 45 2, 60 2, 80 2, 75 2, 70 2, 70 2, 65 2, 70 2, 70 2, 70 2, 75 2, 70 2, 70				

Time: 0.0°. Sweep: 0.67 Mc to 25.0 Mc in 5 minutes, automatic operation.

				Table 3	19			
Akita,	Japan (39	.7°N, 14	0.1°E)					March 1958
Time	h'F2	foF2	h'F	foFl	h'E	foE	foEs	(M3000)F2
00		8.0	300					2.60
01		7.8	300					2.55
02		7.2	305					2,50
03		7.2	300					2.50
04		7.0	325					2.45
05		7.0	305					2.50
06		8.8	250					2.85
07		11.7	230			2,65		3.00
08		13.5	230			3,20		3.00
09		14.2	240			3,50	3.6	2.90
10	245	14.8	230			3.70		2,85
11		14.8	235			3,90		2.80
12	245	14.8	240			3.90		2.70
13		14.4	240			3.95		2.70
14		14.0	240			3.80		2.70
15		13.4	245			3,55		2,70
16	1	13.0	245			3.05		2.75
17		12.5	250			2.40		2.80
18		11.7	250					2.80
19		10.2	245					2.75
20		9.5	260					2.75
21	1	9.1	275					2.70
22	1	8.6	285					2.65
23	1	8.4	295					2,65

Time: 135.0°E. Sweep: 1.6 Mc to 20.0 Mc in 20 seconds.

7.8 6.9 6.5 6.4 8.0 10.2 113.3 13.8 13.8 13.8 13.0 12.5 12.3 11.0 9.5 8.0 9.5 7.5 7.3 04 85 06 07 88 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 240 240 240 245 245 2.30 240 250 255 265 285

Table 38

foFI

h*E

foE

2.20 2.55 3.05 3.40 3.55 3.60

3.65 3.60 3.50 3.35 2.90

foEs

Time: 135.0°E. Sweep: 1.0 Mc to 20.7 Mc in 1 minute.

Japan (45.4°N, 141.7°E)

h *F

295 310

310 300

318 305

235 240

foF2

h*F2

Wakkanai, Time

00

01 02

Table 40										
San Fra	ncisco, C	aliforn	ia (37.4°	N, 122.2	(Wo			March 1950		
Time	h*F2	foF2	h*F	foFl-	h*E	foE	foEs	(M3000)F2		
00		5.6	(290)					2,50		
01	ł	5.6	305					2.50		
02	l	5.7	300					2.50		
03		5.6	<300					2,50		
04		5.4	<300				2.1	2.50		
05		5.2	(300)					2.55		
06	1	5.7	280					2,60		
07		8.0	240		115	2.20		3.00		
88	l	10.9	230		105	3.00		3.10		
09	l	11.7	225		101	3.35		2.95		
18		12.6	215		101	3,60		2.85		
11	1	13.0	220		105	3.75		2.75		
12	1	13.2	220		105	3.90		2.70		
13	1	>13.2	220		101	3.90		2.70		
14		13.1	225		103	3.80		2.65		
15		13.0	230		103	3.60		2.70		
16		>12.8	235		107	3.30		2.75		
17		12.6	235		111	2.70	>2.6	2.80		
18		12.0	235		(125)	1.90	2.2	2.90		
19		10.6	220				2.4	2.85		
20		8.8	230				2.5	2.85		
21		7.6	240				2.3	2.75		
22	1	6.4	(250)				2.1	2.70		
23	1	5.9	(270)					2.55		

Time: 120.0°M. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds. Note: Around equinox, height scale was expanded.

Tokyo,	March 1958							
Time	h'F2	foF2	h'F	foF1	h'E	foE	foEs	(M3000)F2
00		8.4	290					2.70
01	1	8.0	280					2.70
02		7.4	300					2,60
03		7.3	280					2.50
04	1	7.1	320					2,45
85		7.1	315					2.50
06		9.1	255					2.85
07		11.8	235			2,70		3.05
03	t .	13.3	235			3,20		3.00
09		14.1	230			3.55		2.90
10		14.7	230			3,70	4.1	2,80
11		15.1	235			3.80		2.75
12		14.9	235			3, 90	3.9	2.70
13		14.6	235			3,95		2,65
14		14.3	240			3,85		2.65
15		13.8	245			3,65		2,65
16		13.2	250			3.20		2.70
17		12.9	250			2.50	2.8	2.75
18		12.1	250				2.7	2.80
19		10.6	250					(2.75)
20		9.5	270				2.3	2.70
21		9.3	270				0	2,65
22		8.9	280					2,70
23		8.8	290					2.65

Time: 135.0°E. Sweep: 1.0 Mc to 20.0 Mc in 20 seconds.

				Table 4	2			
Yamagawa	, Japan	(31.2°N,	130.60	E)				March 1958
Time	h'F2	foF2	h'F	foFl	h°E	foE	foEs	(M3800)F2
00		9,5	260					2.85
01		9.0	250					2,90
02		8.5	250					2.75
03		8.0	250					2.70
04		7.4	245					2,60
05		7.0	275					2,60
06		7.4	285					2.70
07		10.3	240			2.10		3.10
08		12.9	230			3,00		3.15
09		13.9	225			3,45	3.8	3.05
10		14.5	220			3,70	4.2	2.95
11		15.0	220			3,90	4.4	2.85
12		15.5	220			3,95	4.7	2.80
13		15.5	220			4,00	4.4	2.75
14		15.5	220			4.00	4.2	2.75
15		15.1	230			3,85	4.4	2.70
16		14.5	235			3.50		2.75
17		14.0	245			3.00	3.3	2.75
18		13.5	250			2,10	2.6	2.85
19		12.7	245				2.9	2.85
20		11.5	250				2.4	2.80
21		11.4	250				2.3	2.70
22		11.0	250					2.80
23		10.4	250					2.80

Time: 135.0°E. Sweep: 1.0 Mc to 20.0 Mc in 1 minute.

Leopold	Table 43 Leopoldville, Belgian Congo (4.4°S, 15.2°E) March 1958											
Time	h'F2	foF2	h'F1	foF1	h*E	foE	f Es	(M3000)F2				
00	230	13.6						2,55				
01	240	11.6						2.55				
02	230	10,4					1.5	2.61				
03	225	9.0					1.6	2.71				
04	225	6,1					1.6	2.78				
05	250	6.0					2.3	2,57				
06	250	9.6	245		115	2.8	3.5	2,78				
07	260	11.4	240		110	3.5	4.0	2,53				
08	(280)	12.4	230		110	3.9	4.6	2,34				
09	(345)	13.8	225		110	4.0		2,28				
10	(400)	14.5	240		110	4.3		2, 24				
11	415	15,4	240		110	4.3		2,20				
12	420	16.4	240		110	4.3		2, 13				
13	420	16.2	230		110	4.1		2, 11				
14	430	16.0	240		110	4.0		2.06				
15	430	16.0	240		110	3.6		2,06				
16	410	16.0	255		115	3.0	3,1	2,13				
17	360	16.2	285				2.4	2.17				
18	340	17.0					2.4	2, 16				
19	310	17.1						2, 29				
20	240	17.6						2.47				
21	220	17.2						2.56				
22	230	16.8						2,50				
23	230	15.0						2.57				

Time: 0.0°. Sweep: 1.0 Mc to 20.0 Mc in 7 seconds.

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 9.8 9.6 9.0 8.3 7.8 6.6 10.2 13.1 14.6 15.0 15.2 13.8 12.7 12.5 12.6 11.7 11.6 10.0 (9.0) 2.75 2.80 2.90 2.95 3.00 3.00 2.90 2.90 2.40 2.10 2.10 2.10 2.05 2.10 2.10 2.00 (2.20) 2.20 4.7 4.4 4.0 3.0 3.8 3.2 4.6 4.1 5.4 7.0 8.3 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 240 250 240 240 240 250 260 250 230 230 (225 220 (220) (225) 230 260 290 365 425 330 129 <121 119 117 117 <114 (113) 2.60 3.30 3.80 4.10 4.25 4.35 4.30 4.00 3.60 3.10 2.40 113 113 111 111 (10.3) 9.9 280 240 4.6 4.6

Table 44

foFl

h¹€

foE

foEs

March 1958

(M3000)F2

Time: 75,0°W.
Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.
Note: Around equinox, height scale was expanded.

Chimbote, Peru (9.1°S, 78.6°W)

foF2

h'F

235

h¹F2

Time

Table 45 Elisabethville, Belgian Congo (11.6°S, 27.5°E) March 1958											
Time	h'F2	foF2	h*Fl	foF1	h*E	foE	f Es	(M3000)F2			
00	225	6.8						2,51			
01	250	6.5						2,46			
02	255	6.0					2.0	2,58			
03	260	4.8					2.0	2,50			
04	270	5.6					2.0	2.50			
05	245	9.8			110	2.5	3.2	2.84			
06	250	11.4	2 35		105	3.3	3.6	2.73			
07	260	12.1	230		105	3.8	4,0	2.54			
08	300	13.0	230		105	4.0		2.40			
09	325	13.7	230		105	4.0		2.35			
10	360	14.2	240		105	4.1		2.30			
11	375	14.6	245		105	4.0		2.28			
12	375	14.9	240		105	4.0		2,25			
13	370	14.5	250		110	4.0	4.6	2.26			
14	365	14.0	250		110	3.6	4.7	2,23			
15	350	13.8	250		110	3.0	4.2	2,28			
16	295	14.0	270			2.3	3.0	2.36			
17	200	13.8					2.5	2,45			
18	260	13.0					2,2	2,43			
19	245	13.5					2.5	2,50			
20	240	13.0					1.9	2.54			
21	245	12.0						2.58			
22	240	11,2						2,59			
23	230	9.5						2,62			

Time: 0.0°. Sweep: 1.0 Mc to 20.0 Mc in 7 seconds.

San Fra	ncisco, C	February 1958						
Time	h¹F2	foF2	h'F	foFl	h*E	foE	foEs	(M3000)F2
00		4.7	(270)				2.1	2,65
01		4.5	(280)					2.65
02		4.4	280					2.60
03		4.5	280					2,60
04	i	4.4	300					2.55
05		4.3	310				2.4	2,50
06		4.3	310				2.6	2,55
07		6.45	255		(116)	1.95	2.6	2.90
08		10.1	230		111	2.58		3.20
09		12.4	225		105	3, 10		3,10
10		13.0	220		103	3.40		3.05
11		13.7	220		107	3.65		3.00
12		13.6	220		107	3.70		2,90
13		13.6	220		109	3.70		2.85
14		13.4	225		109	3,60		2,80
15		13.4	230		109	3,35		2.80
16		13.0	230		111	2,90		2.80
17		12,6	225		115	2,30		2.90
18		11.8	220				2.2	2.95
19		10.1	215				2,2	3.00
20		8.5	220				2, 2	3.00
21		6.7	230				2.4	2.98
22		5,85	(250)				2.3	2.90
23		4.95	<260					2.80

Time: 120.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Chimbot	e, Peru	(9,105,7	(8.6°W)				Fe	bruary 1950
Time	h'F2	foF2	h*F	foFl	h*E	foE	foEs	(M3000)F2
00		11.1	240				4.4	2,00
01	1	9.85	245				4.4	2,90
02		9.15	255				4.4	2.80
03		8.6	250				4.1	2.95
04		8.1	240				4.2	3.00
05	t	7.0	2 35				4.0	3.10
06	i	6.9	240				4.4	2.95
07		10.35	260		<125	2.50	4.9	2.98
00		12,65	240		117	3.30	6.0	2,78
09	1	14.1	230		115	3,80	6.7	2,55
10		14.7	220		113	4.05	7.8	2.35
11		>14.0	215		113	4.20	8.4	2, 20
12	l .	13.7	210		113	4.30	8.2	2.15
13		12.7	210		113	4.30	8.6	2,15
14		12.7	200		112	4.20	8.4	2, 10
15		12.3	215		113	4.00	7.7	2, 15
16		12,55	230		113	3,68	8.0	2.10
17	i	12,35	250		115	3.20	6.6	2.18
18	ſ	12,2	270		(121)	2.48	4.8	2,20
19	l .	11.75	320				2.8	2,25
20		11.4	370					2, 12
21		11.6	3 2 5					2,35
22		11.75	<280				3.7	2.45
23		11.75	250				4.0	2,70

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

8udapes	<u>Table 48</u> 8udapest, Hungary (47.4°N, 19.2°E) January 1958										
Time	h¹F2	foF2	h F	foFl	h'€	foE	f Es	(M3000)F2			
00		(5.0)	(340)								
01		4.9	320								
02		>4.6	305								
03		4.3	310								
04	l	4.0	300								
05		>3.9	310								
06		5.8	270								
07	(250)	>10.1	245	2.5	145	2.4					
08		13.3	240		135	2.7					
09		13.9	235		130	3.0					
10		14.2	240		125	3.2					
11		14.0	240		125	3.2					
12		(13.5)	(245)								
13		13.5	245		130	2.9					
14		12.8	<245		135	2.6					
15		(11.8)	250								
16		10,6	240								
17		9.2	245								
18		8.0	250								
19		6,2	27 5								
20		>5.8	300								
21		5.4	310								
22		5.2	320								
23		5.0	320								

Time: 0.0°. Sweep: 1.0 Mc to 20.0 Mc in 35 seconds.

January 1958

(M3000)F2 2,30

Ibadan,	Nigeria	(7.4°N,	3.9°E)	Table 4	9			January 1958
Time	h'F2	foF2	h*F	foFl	h¹E	foE	foEs	(M3000)F2
00		(8.6)	270					2.50
01		(8,8)	260					(2,60)
02		(8.7)	250					2.80
03		8.8	245					2.95
04		8.0	225					3,10
05		6.6	215					3, 10
06		6.9	255		135	1.70		2.80
07		>10.0	250		110	2.80	4.8	2.70
08		11.5	240		105	3.45	6.6	2.50
09		(12.3)	230		105	3.95	7.1	(2.30)
10		12.8	220		105	4.20	7.3	2.15
11		12.2	210	5.1	105	4.30	8.8	2.10
12		11.7	205		105	(4,30)	8.7	2.00
13		11.7	210	(5.2)	105	(4,30)	8.6	1.95
14		11.9	220		105	4.10	>7.0	<2.00
15		>11.7	235		105	3.85	7.0	2.05
16		>11.5	250		110	3,40	3.4	(2,00)
17		(11.4)	275		110	2,65	3.2	<2.05
18		(9.7)	350		150	1,55		<2.00
19		(8.6)	450					(1.90)
20		8.4	490					
21		<8.5	395					
22		<8.5	320					
23		(8.5)	295					(2, 45)

Time: 0.0°. 5weep: 0.67 Mc to 25.0 Mc in 5 minutes, automatic operation.

Cape Hallett (72.3°5, 170.3°E) Table 51 January 1958											
Time	h*F2	foF2	h'F	f oF l	h¹E	foE	foEs	(M3000)F2			
00		5.3	295	3.2	110	2.2		2.40			
01	(555)	(5.1)	290	(3.2)	111	2.2		2.35			
02	(615)	4.7	285	3.6	109	2.3		2,30			
03	(585)	5.2	280	3.8	109	2.6		2,20			
04	(700)	4.8	270	3.9	106	2.8		2.15			
05	640	(5.3)	260	4.1	103	3.0		2.10			
06	595	(5.8)	250	(4.4)	101	3.4		(2,20)			
07	545	(6.3)	240	4.7	101	3.4		2.30			
03	530	6.6	240	4.9	101	3.5		2.30			
09	505	6.8	220	5.0	101	3.6		2.35			
10	525	6.7	225	5.1	101	3.6		2.25			
11	540	6.4	220	5.0	99	3.8		2.30			
12	540	6.2	220	5.1	101	3.8		2,20			
13	580	6.4	225	5.2	101	3.7		2,20			
14	570	6.6	230	5.1	101	3.6		2.25			
15	530	6.6	220	5.0	101	3.5	4.0	2.20			
16	540	6.4	240	4.8	101	3.3	4.2	2.25			
17	510	6.4	240	4.7	101	3.2		2.30			
18	480	6.8	250	4.5	103	3.0		2.30			
19	460	6.8	255	4.2	107	2.9		2.30			
20	460	6.5	270	4.0	109	2.7		2,35			
21	480	6.1	280	3.8	111	2.5		2,30			
22		5.9	285	3.6	111	2.3		2,40			
23	(525)	5.7	295	3.4	109	2.2		2,35			

Time: 165.0°E. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

10.7 Time: 75.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

>11.3 10.95

Chimbote, Peru (9.1°5, 78.6°W)

foF2

10.5

285 280

240 230 280

240

230 220

210 210

<210 210 240

345

10.6 10.05 8.95 8.0 6.2 7.4 10.3 12.4 13.65 12.75 11.7 11.8 12.35 13.0 13.3 >13.0

h'F2

(580) (570)

Time

5an Fra	ncisco, C	aliforni	a (37.4°	N, 122.2	•W)		December 1957		
Time	h'F2	foF2	h F	foFl	h*E	foE	foEs	(M3000)F2	
00		4.2	<300				2.2	2.55	
01		4.0	290					2.50	
02		4.2	295					2.60	
03		3.9	290					2.55	
04		3.8	280					2,55	
05	1	3.6	310					2.45	
06	i .	3.5	<290					2.62	
07		5.4	270				2.4	2.70	
08	į.	9.5	230		119	2.38		3.15	
09		11.7	230		111	3.10		3.00	
10	1	13.0	220		111	3.45		2.95	
11	l	13.0	<230		111	3.60		2.80	
12	1	13.0	230		111	3,65		2.70	
13	1	12.8	230		111	3.65		2.60	
14	1	12.7	230		111	3.50		2.60	
15		12.35	230		111	3.10	3.3	2.60	
16	i	12.0	240		118	2.40	3.1	2.70	
17	1	11.7.	2 35				3.0	2.72	
18		10.5	240				2.0	2.75	
19		8.8	230				2.4	2.85	
20		7.2	230				2.2	2.85	
21		5.4	(240)				2.5	2.80	
22		4.6	265				2.2	2.68	
23	1	4.2	290				2.7	2,60	

Table 50

foF1

6.7

h¹ €

111

foE

2.80 3.50 4.00 4.20

4.35 4.45

4.35 4.10 3.75 3.30 2.55

foEs

3.9 4.2 4.5 4.3 4.2 4.1 4.2 5.0

5.0 7.6 8.0 8.0 7.8 4.8

4.7 5.4 6.0 5.6 3.2

3.3

Time: 120.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table 53				
 Moscow,	U.5.5.R.	(55.5°N,	37.3°E)			No	ember 1957
Time	h'F2	foF2	h F	foFl	h*E	foE	foEs	(M3000)F2
00		5.3	315					2.40
01		5.2	315					2.45
02	i	4.9	300					2.40
03		4.8	300					2.40
04		4.6	280					2.50
05		4.3	270					2.55
06		4.6	250			E		2.60
07	1	7.6	250			1.80		2.80
03		11.2	240			2.50		2.95
09		14.0	230			2.80		2.90
10		15.3	230			3.00		2.90
11	1	15.4	230			3.10		2.90
12	1	15.4	230			3.05		2.90
13		15.4	230			3.00		2.85
14		15.2	235			2.60	2.6	2.80
15		14.6	230			2.10		2.80
16		13.6	230			1.40		2.90
17		11.5	225			E		2.80
18	1	9.8	230					2.75
19		8.1	235					2.75
20		6.7	240					2.70
21		6.2	270					2.55
22	1	5.7	300					2.50
23	1	5.7	300					2,40

Time: 30.0°E. 5weep: 1.0 Mc to 20.0 Mc in 30 seconds.

				Table 5	54			
5an Fra	ncisco, C	aliforni	ia (37.4°	N, 122.2	eoW)		No	vember 1957
Time	h'F2	foF2	h'F	foF1	h*E	foE	foEs	(M3000)F2
00		5.2	(270)					2,60
01		5.0	<280					2,60
02		4.9	(285)					2,60
03		4.7	<310					2,50
04	1	4.6	<290					2.45
05	1	4.5	<300					2.50
06		4.7	<290					2.55
07		7.7	250		(149)	2.00	2.0	2.90
03		11.8	230		129	2.80	3.0	3.10
09		13.2	220		121	3.25	3.8	3.00
10		14.0	220		117	3.60		2.85
11		14.5	220		114	3.75		2.75
12	İ	14.5	220		111	3.80		2.65
13		14.0	225		113	3.80		2.60
14		13.8	225		109	3.60		2.60
15		13.7	230		109	3.10	3.2	2.60
16		13.6	230		115	2.50	2.7	2.65
17		12.6	230			1.85	2.1	2.70
18		11.4	230				2.4	2.70
19		9.7	<230					2.75
20		8.5	230					2.75
21		7.2	2 35					2.80
22		6.2	<250					2.80
23		5.7	<2 55					2.65

Time: 120.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table :	<u>55</u>			
Ibadan,	Nigeria	(7.4°N,	3.9°E)				No	vember 1957
Time	h'F2	foF2	h¹F	foFl	h'E	foE	foEs	(M3000)F2
00		(10,5)	300					(2,40)
01	1	(10, 4)	270					(2,50)
02	1	(11,1)	250					(2.70)
03	1	(10, 3)	240					2.90
04		9.0	240					3,00
05	1	(7.5)	220					3,05
06		9.1	270		<140	2,25		2,80
07		(11.6)	245		110	3,20	6.7	(2,60)
00	1	13.0	240		105	3.70	8.6	2,35
09		13,2	225		105	4.10	11.0	2, 10
10	i	13,2	220		105	4.25	10.8	2.00
11		13.2	210		105	4.35	11.1	2,00
12		13,2	210		(105)	4.35	11.0	2.00
13		13, 1	215		105	4.25	10.8	1.95
14		13,0	220		105	4.05	10.8	1,90
15		12,4	240		110	3,70	8.8	1.90
16	i	(11.8)	255		110	3, 15	7.0	<1.95
17		(11.0)	2 95		115	2,30	>5.2	<2.00
18		(10,2)	405			(1, 25)		(1.90)
19		(9.0)	460					1.90
20		(8,8)	420					2,00
21		(8.7)	360					(2,05)
22		(9, 2)	340					<2.15
23		(9,3)	310					(2.30)

Time: 0.0° . Sweep: $0.67~\mathrm{Mc}$ to $25.0~\mathrm{Mc}$ in 5 minutes, automatic operation.

				Table 57	_			
Sao Pau	lo, Brazil	(23.50	5, 46.5°	PW)			N	ovember 1957
Time	h°F2	foF2	h°F	foFl	h*E	foE	f Es	(M3000)F2
00		(14,6)	300				<2.2	(2.70)
01		13.5	290				<2.1	2.70
02		12.5	260				<2.1	2.70
03		11, 1	270				<2.1	2.70
04		9.5	270				<2.1	2.65
05		8.1	280				<2.2	2.45
06		9.4	260					2.65
07		10.4	250			3.35		2.60
08		11.3	240			3.50		2.40
09	1	11.6	240					2.30
10		12.3	240					2,25
11		(13.0)	(250)					(2,25)
12	1	13.2						(2,25)
13		(13, 2)						(2,30)
14		(13, 4)	(240)					(2,30)
15		(13, 4)	250					(2,30)
16	ł	(13,6)	260			(3,55)		(2,30)
17		(13,6)	260				4.2	(2.30)
18	Į.	(13,6)	300				3.8	(2.30)
19		(13,6)	380				<2.5	(2,25)
20		(13, 4)	435				<2.4	(2,25)
21		(13.6)	420				<2.4	(2,20)
22		(13.2)	380				<2.3	(2, 40)
23		>13.6	330				<2.2	(2,70)

Time: 45.0°W. 5weep: 1.75 Mc to 20.0 Mc in 2 minutes 30 seconds.

	ga I. (21	205 15	0.00%)	Table 5	<u>6</u>			
								vember 1957
Time	h'F2	foF2	h'F	foF1	h'E	foE	foEs	(M3000)F2
00		(13.4)	.300				3,2	
01		(9.3)	280				3.2	
02		(9.4)	(300)				2.9	(2,30)
03		(9.6)	340				1.8	(2, 20)
04		(9.3)	<340				2,3	(2, 25)
05		(9,2)	310				1.9	(2, 30)
06	ļ.	(9,8)	300				2.8	(2, 40)
07	Ì	(11, 2)	250				4.0	(2,75)
00		(12, 2)	<250		100	3.4	4.7	2,55
09		12.5	240		100	3.9	5.1	2,45
10		13.3	240		110	4.1	5.2	2,35
11	(460)	14.2	<240	7.6	100	(4.3)	4.9	2.35
12	460	14.0	220	7.8	110	(4.4)		2.35
13	450	15.1	<220	7.4	110	(4.4)		(2,30)
14	450	14.7	240	7.1	110	(4.4)		2,35
15	450	14.2	240	7.0	110	4.2	4.3	2,30
16	<450	(13.6)	2 50		110	3.9	4.2	(2, 30)
17	440	(13.3)	250		100	3.4	4.3	(2, 35)
18		(13.5)	280			2.7	4.9	(2, 35)
19		(13, 2)	(320)				4.1	
20		(11.6)	360				4.7	
21		(12.0)	350				3.9	
22			<350				3, 2	
23		>13.6	(320)				3.0	

Time: 150,0°W. 5weep: 1.5 Mc to 20.0 Mc in 5 minutes, manual operation.

	Table 58										
Christe	hurch, New	Zealand	(43,6	°5, 172.8°	E)		No	vember 1957			
Time	h*F2	foF2	h*F	foFl	h°E	foE	foEs	(M3000)F2			
Time 00 01 02 03 04 05 06 07 08 09 10 11 12	550 550 490 460 500 500	foF2 8.0 7.4 6.7 6.5 6.3 6.4 6.7 7.4 8.3 9.0 9.4 9.8 9.6 9.4	h*F 340 350 350 360 340 320 280 250 250 240 230 240			1.2 1.9 2.6 3.2 3.6 3.9 4.0 4.1 4.1					
14 15 16 17 18 19 20 21 22 23	490 490 480 430 	9.2 9.1 9.0 9.0 9.0 9.0 9.2 9.1 8.6 8.4	240 250 250 250 260 300 310 330 340	6.4 6.1 5.4	100 100 100 100 105 115	4.1 4.0 3.9 3.4 3.0 2.4	3.2 3.0 <2.2 2.9 2.6 2.8	2.35 2.35 2.40 2.40 2.40 2.35 2.30 2.30			

Time: 180.0°E. 5weep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

Time 00	h*F2	6-50				November 1957		
		foF2	h*F	foF1	h'E	foE	foEs	(M3000)F2
		(5,4)					4.5	(2, 1)
01		5.0	(420)				3.6	(2, 15)
02		(5.3)	(340)				3,5	(2.2)
03		5.0	(300)		110	1.7		2,3
04		5.4	300		100	2,4		2.4
05		5.6	250		100	2.9		2.4
06	(700)	6.3	250	5.0	100	3,3		2.3
07	550	6.9	240	5.2	100	3,6		2,25
00	580	7.2	240	5.9	100	3.0		2.1
09	570	7.1	220	5.9	100	4.0		2,2
10	550	7.6	(230)	6.0	100	(4.1)		2.2
11	540	7.5		5.0	100	>4.0		2, 1
12	520	7.8	(230)	5.9	100	(4.1)		2,2
13	510	8.0	220	5.6	100	4.0		2.2
14	500	7.9	230	5.6	100	3.9		2, 1
15	490	8.0	240	5.2	100	3.7		2,2
16	470	>7.6	250	5.2	100	3.4		2,2
17		6.7	260	4.9	100	3.0	3.5	(2,3)
18		(5.6)	290		100	2.5	3.5	
19		5.9	340		120	2.1	4.0	(2, 15)
20		(5.8)	350				4.2	(2,2)
21		(6, 2)	(330)				5.0	
22 23		(6,0)	(320)				4.8	(2, 15)

Time: 150.0°E. 5weep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

lbadan,	Nigeria	(7.4°N,	3,9°E)				5ер	tember 1957
Time	h'[2	foF2	h'F	foFl	h'E	foE	foEs	(M3000)F2
00		>0.8	295					(2.60)
01	Į.	(0.0)	270					(2.75)
02	Ī	(9.1)	250					<2.95
03	1	(8.9)	240					3.05
04	1	8.0	220					3.15
05	l	5.3	2 25					3,15
06		0.2	255		110	2,35		3.05
07	1	11.6	250		110	3.20	3.4	3,00
00	ľ	13.2	240		110	3.75	5.9	<2.80
09	l	14.0	22 5		105	4.15	11.0	2,50
10	l	14.0	220		105	4.35	11.3	<2.25
11	i	13.7	215	(5.4)	105	4.50	11.2	2.10
12	ì	12.7	210		105	4.50	11.3	2.10
13		12.2	210	(5.4)	105	4.35	11.2	2.10
14		12.1	210	(5.3)	105	4.20	10.9	2.05
15		11.6	225		110	3,90	>9.2	2.05
16		11.6	250		115	3,35	>6.7	2.10
17		>11.4	2 65		115	2.75	3,2	2.10
18		10.4	3 2 0		150	1.50		2.10
19		(9.2)	435					(2,00)
20		(8.3)	450					<2.20
21		(8,2)	380					<2.15
22		>9.7	330					(2.20)
23		>0.4	300					<2.50

Table 60

Time: 0.0°. 5weep: 0.67 Mc to 25.0 Mc in 5 minutes, automatic operation.

July 1957

(M3000)F2

foEs

2.0 2.2 2.8 2.8 2.8 2.9

3.7 3.7

2.6 2.1 2.0

Murmans	Table 61 Jurmansk, U.S.S.R. (69.0°N, 33.0°E) Jul							July 1957 Salehard, U.S.S.R. (66.5°N, 66.5					
Time	h'F2	foF2	h'F	foF1	h'E	foE	foEs	(M3000)F2	Time	h'F2	foF2	h*F	foF
00		6,1	310				2.7	2.6	00		(7.2)	280	
01		6.4	320				3.0	2.6	01		(6.8)	290	
02	350	6.2	280			2.0	3.5	2.6	02	(380)	(6,6)	310	
03	450	6.4	270	3.6		2.2	3.0	2.6	03	390	6.1	290	3.
04	430	6.1	250	4.0		2.6	2.7	2.7	04	400	6.1	260	4.
05	400	6.1	230	4.1		2.0		2.6	05	400	6.1	250	4.
06	420	6.5	230	4.4		3.0	3.0	2.6	06	430	6.7	240	4.
07	380	6.9	230	4.8		3,2	3.2	2.6	07	430	6.7	230	5.
03	420	7.0	220	5.0		3.2	3.2	2.5	00	430	6.8	230	4.
09	420	7.1	220	5.1		3.4	3.7	2,6	09	400	7.3	230	5.
10	430	7.0	220	5.1		3.2	3.8	2.5	10	440	7.2	230	5.
11	420	7.2	220	5.2		3.3	3.9	2.6	11	450	7.4	230	5.
12	420	7.2	220	5.3		3.5	3.8	2.6	12	430	7.2	230	5.
13	430	6.8	220	5.2		3.4	3.5	2.6	13	445	7.4	230	5.
14	430	6.8	210	5.2		3,3		2.6	14	430	7.3	230	5.
15	410	6.8	220	5.1		3,3		2.6	15	420	7.2	230	5.
16	420	6.6	220	5.0		3.2		2.7	16	380	7.1	240	5.
17	380	6.6	220	4.8		3.1		2,7	17	355	7.0	240	4.
18	(330)	6.4	230			3.0		2.8	18	330	6.9	250	4.
19	(400)	6.5	250			2.6	3.0	2.8	19	(340)	6.9	250	
20	(310)	6.6	260			2.3	3.0	2.0	20		6.7	260	
21	350	6.4	260			2.2	2,5	2.0	21		6.8	270	
22	(350)	6.5	200				2.8	2.7	22		6.8	280	
23	1	6.2	320				3.0	2.6	23		6.6	280	
	1												

30.0°E. Time: Sweep: 0.5 Mc to 20.0 Mc in 30 seconds.

Table 63 July 1957 Sverdlovsk, U.S.S.R. (56.7°N, 61.1°E) Time h'F2 foF2 h*F foFl h * E foE foEs (M3000)F2 2.55 2.50 2.45 2.50 2.50 2.50 300 00 6.6 320 320 330 310 280 01 02 6.4 2.2 03 04 05 06 07 00 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 (440) (3,2) 1.9 2.4 2.0 3.2 3.4 3.6 3.7 3.8 3.8 3.8 3.6 3.4 3.2 2.9 2.5 1.9 420 420 6.6 7.0 7.5 7.7 7.9 8.0 260 250 240 2.55 2.50 (4.8) 5.2 5.3 5.5 420 420 3.6 3.0 4.2 4.4 4.3 4.3 4.0 3.9 2.50 2.50 430 430 240 230 230 230 2.45 2.50 440 430 8.3 5.6 5.7 2.50 2.55 5.6 5.6 (5.5) (5.2) (4.9) 420 400 410 240 230 240 240 250 8.4 8.1 7.9 7.6 7.5 7.5 7.5 7.5 7.1 2.55 2.55 2.55 2.65 3.8 370 260 270 280 300 3.5 3.1 3.0 3.0 2.65 2.70 2.70 2.65 (350)300 300 3.0 2.8 2.60

Time: 60.0°E. Sweep: 1.5 Mc to 18.0 Mc in 10 minutes, manual operation.

Time: 60.0°E. Sweep: 1.9 Mc to 16.0 Mc in 1 minute.

				Table 64	1			
Tomsk, l	J.S.S.R.	(56.5°N,	85.0°E)		_			July 1957
Time	h'F2	f oF2	h 'F	f oF l	h * E	foE	foEs	(M3000)F2
00		7,2	260				2.2	2,60
01		6.8	270				2.2	2,60
02		6.3	280				1.2	2.60
03		5.9	300			Ε	1.2	2,60
04		6.1	300			1.5		2.60
05	340	6.6	260	3.8		2.0		2.70
06	340	6.9	250	(4.0)		2.6		2,70
07	360	7.2	240	4.7		3.0		2,60
00	380	7.0	240	5.0		3,2		2,60
09	370	7.4	220	5,1		3.3		2,60
10	400	7.7	220	5.3		3.5		2,60
11	380	7.8	210	5.4		3.6		2.60
12	400	8.0	210	5.5		3.7		2.50
13	400	8.0	210	5.6		3.7		2,60
14	400	8.0	220	5.6		3.7		2,60
15	400	7.8	220	5.5		3.6		2,60
16	370	7.8	230	5.3		3.3		2,60
17	350	7.6	230	5.0		3,2		2,70
18	350	7.5	240	(4.6)		2.9		2.70
19	300	7.4	250			2.5		2.70
20	ł	7.4	260			1.9		2.80
21		7.2	260			E	2.1	2.80
22	İ	7.4	260				2.0	2,60
23	1	7.3	260				2,2	2.60

Table 62

foF1

3.5

4.0

4.6 5.0 4.9 5.2 5.4 5.3 5.3 5.4 5.3

5.0

4.7

h*E

foE

Ε

F

2.1 2.5 2.8 3.1 3.3 3.4 3.5

3.6 3.6 3.7 3.8

3.6 3.5 3.3 3.2 2.9 2.6

2.2 E

E

Time: 90.0°E.

Sweep: 1.0 Mc to 16.0 Mc in 9 seconds.

	11 C C D	/ E E E E O N	27 20	Table 6	5			July 1957	R
Time	U.S.S.R. h'F2	foF2	h'F	foF1	h*E	foE	foEs	(M3000)F2	T
00		6,7	.300				(2, 4)	2,50	
01	1	6.3	300			E	(2, 3)	2.50	
02		6.0	300			E	(2.1)	2,50	
03	380	5.7	310	2.7		1.40	(2,7)	2,50	
04	320	6.4	275	3,6		2, 10	(3,0)	2,60	
05	330	6.7	250	4.2		2.45	3.1	2,60	
06	360	6.8	240	4.8		3.00	3,4	2,50	
07	390	7.1	240	5.1		3.30	4.0	2.55	
03	410	7.3	240	5.3		3,50	4.3	2,50	
09	400	7.6	230	5.5		3,60	4.5	2,50	
10	400	8.1	220	5,6		3.70	4.3	2.55	
11	430	8.2	225	5.7		3,80	4.3	2,50	
12	420	8.0	220	5.7		3,80	4.2	2,55	
13	420	7.7	220	5.6		3,80	4.2	2,50	
14	420	7.5	225	5,6		3.70	4,2	2.60	
15	390	7.5	230	5.5		3.50	4.0	2,60	
16	380	7.4	230	5.2		3,35	3.8	2,60	
17	340	7.3	240	4.8		3.10	3.4	2.70	
18	320	7.4	250	4.5		2,60	3.4	2,70	
19	300	7.4	270	3.3		2.10	2.9	2.75	
20		7.4	270			1,40	(2.8)	2.70	
21		7.5	280				(2,6)	2,70	
22	1	7.4	280			E E	(2.4)	2,60	
23	1	7.0	290				(2,3)	2.55	

Time: 30.0°E. Sweep: 0.5 Mc to 20.0 Mc in 30 seconds.

Rostov-c	on-Don, U.	S.S.R.	(47.2°N	Table 66	<u>6</u>			July 1957
Time	h'F2	foF2	h*F	foFl	h'E	foE	foEs	(M3000)F2
00		7,4	320				3.0	2.45
01 02		7.1	320 330				3.4	2.50
03		7.4 7.0	320				2.6 3.0	2,50 2,50
04		6.8	320				2,0	2.55
05	(340)	7.0	300			1.7	2.3	2.60
06	340	7.4	260	4.3		2.6	2.9	2.65
07	320	7.8	250	4.9		3.1	3,6	2.80
08	370	8.4	240	5.4		3.5	4.2	2,60
09	350	8.8	240	5.5		3.8	5.1	2,60
10	390	8.9	240	6.0		3.9	5,3	2.55
11	380	9.2	230	6.0		4.0	5.4	2,50
12	390	9.4	230	6.0		4.2	4.8	2,60
13	400	9.1	230	6.0		4.1	4.8	2,60
14	400	9.0	230	6.0		4.1	5.0	2,60
15	400	8.6	220	6.0		3,8	4.6	2,60
16	400	8.4	230	5.9		3.9	4.5	2,65
17	350	8.5	240	5.3		3.5	4.2	2.65
18	320	8.4	250	5.0		3, 2	3.9	2.70
19	300	8.5	250	(4.0)		2.5	4.3	2,75
20		8.6	280				3.8	2,70
21		7.9	270				3.5	2.70
22		7.7	290				3.8	2.50
23		7.6	320				3,6	2,50

Time: $45.0^{\circ}E$. Sweep: $1.6~\mathrm{Mc}$ to $10.0~\mathrm{Mc}$ in $10~\mathrm{minutes}$, manual operation.

				Table 6	7			
Alma-At	a, U.S.S.	R. (43.2	ON, 76.9	9°E)				July 1957
Time	h'F2	foF2	h'F	f oF l	h¹E	foE	foEs	(M3000)F2
. 00		7.5	300				3,8	2,55
01	ł	7.3	310				3,6	2,60
02		6.9	320				3,4	2,60
03		6.5	310				3.5	2,60
84		6.3	310			1.6	3, 2	2,60
85	290	7.0	280	3, 2		2.0	2.7	2,70
06	300	8.1	250	4.1		2.7	3,2	2.70
07	300	8.9	240	4.8		3.3	3.8	2.70
08	310	9.4	240	5.3		3,7	4.5	2,70
09	340	10.0	240	5.7		4.2	5.3	2,65
18	350	10.4	240	5.9		4.5	5.4	2.55
11	360	10.3	230	6.0		4.6	5.5	2.55
12	360	10.5	240	6.0		4.6	5.5	2.55
13	380	10.2	240	6.0		4.5	5.2	2.60
14	350	9.9	230	5.8		4.4	5.3	2,60
15	360	9.4	240	5.7		4.3	4.9	2.60
16	340	9.2	240	5.4		3.7	5.1	2.65
17	320	8.9	240	5.0		3.4	4.2	2.70
18	290	0.6	250	4.5		2.9	4.1	2.75
19	280	8.7	270	3.5		2.2	3.8	2.75
20		8.8	280			1.7	4.0	2.70
21		8.3	280				3.2	2.70
22		8.1	300				3.6	2.65
23		7.8	300				3.9	2.60

Time: 75.0°E. 5weep: 1.5 Mc to 16.0 Mc in 15 minutes, manual operation.

Tucuman	. Argenti	ina (26.9	°5. 65.	Table 6	9			July 1957
Time	h'F2	foF2	h*F	foF1	h*E	foE	foEs	(M3000)F2
00	İ	10.6	210				2,6	3,10
01		9.7	230					3.00
02	l .	8.9	230				2.6	3.10
03		7.8	230				2.6	3.20
04		6.6	220					3.30
05	i	4.5	230					3.05
06		4.3	250					3.00
07		5.8	280			(1.70)		3.00
08	ľ	9.8	240		111	(2,60)		3,40
09	(250)	11.5	230		109	(3, 20)		3.30
18	265	(12.8)	220		105	(3,40)		(3,20)
11	(260)	(13, 2)	215		105			(3.05)
12		13.2	210		105			(2.95)
13		>13.6	210	(6.5)	104			2.90
14	(325)	(13.9)	210	6.2	104			(2.80)
15	(335)	>14.0	220	6.0	105	(3, 45)		(2.70)
16		(14.0)	240		111	(3, 10)		(2,90)
17	1	(14.0)	250		115	(2,50)		(2,95)
18		(13,8)	240				2.1	(3,00)
19	1	(13.0)	240					(3,00)
20		(12.5)	230					(2,85)
21		(12.6)	230					(3.00)
22		(12.3)	220					(3.10)
23	1	11.7	220					3,20

Time: 60.0°W. Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

				Table 6	8			
Ashkabad	d. U.5.S.	₹. (37.9	°N, 58.	3°E)				July 1957
Time_	h¹F2	foF2	h*F	foF1	h'E	foE	foEs	(M3000)F2
00		7.9	320				4.2	2.6
01		7.7	320				4.2	2.6
02		7.6	310				3.6	2.6
03		7.1	300				3.6	2.6
04	!	6.8	310				3.4	2.6
05		7.0	300			1.8	2.4	2.6
06	(420)	7.9	260			2.4	3.5	2.7
07	330	9.0	250	5.0		3.0	4.3	2.8
00	320	9.4	240	5.4		3.4	4.7	2.0
09	320	9.7	240	5.7		3.7	5.6	2.7
10	350	10.2	230	5.8		3.9	5.9	2.6
11	370	10.0	240	6.0		4.0	6.9	2.6
12	390	10.2	230	6.1		4.0	6.6	2.6
13	380	10.4	230	6.1		4.1	6.0	2.6
14	370	10.1	230	5.8		4.0	5.9	2.6
15	380	9.9	230	5.8		3.8	5.3	2.7
16	360	9.5	240	5.6		3.6	5,1	2.7
17	340	9.3	250	5.2		3.3	4.8	2.7
18	300	9.2	260	4.4		2.9	4.5	2.8
19	(320)	9.1	280			2,4	4.3	2.8
20		8.7	270			1.7	3.8	2.8
21		8.3	270				3,2	2.6
22		8.1	300				3.9	2.6
23		8.0	300				3,7	2.6
	I							

Time: $60.0^{\circ}E$. 5weep: 1.5 Mc to 15.0 Mc in 15 minutes, manual operation.

		005 66	7011)	Table 7	0			July 1957
	ion I. (63							
Time	h'F2	f oF2	h*F	foFl	h*E	foE	foEs	(M3000)F2
00		2.6	300					
01		2.6	305					
02		2,6	300					
03		2.7	300					
04	1	2.6	300					
85		2.5	270					
06		2.4	260					
07		2.8	245					
00		4.0	190					
09		7.1	170					
10		8.7	170					
11		9.8	160					
12	1	9.1	165					
13		9.5	170					
14	1	8.8	160					
15	!	8.2	170					
16	1	6.1	160					
17	1	5,8	170					
18	1	4.0	180					
19		3, 1	210					
20		2,6	240					
21		2.5	290					
22	1	2,4	300					
23	1	2.4	310					

Time: 60.0°W. 5weep: 1.5 Mc to 18.0 Mc in 30 seconds.

Ahmedab	ad, Indi	a (23,0°	N, 72.6°E	Tahle 7	<u> </u>			June 1957
Time	h¹F2	foF2	h*F	foFl	h'E	foE	foEs	(M3000)F2
00		8,6	330				2.5	2.45
01		8.0	310				2.8	2,55
02		7.4	300				2.1	2.50
03		7.4	300					2,50
04		7.2	300				1.2	2.50
05	l	7.1	300				1,2	2,55
06		8.5	260		115	2.0	2.0	2.95
07	250	9.0	250	4.7	110	3.0	3,2	2,90
88	270	9.4	240	5.2	115	3.5	3,7	2,75
09	270	9.9	230	6.0	105	3.8	4, 2	2.55
10	320	10.6	(225)	6.0				2,40
11	400	11.4	(235)	6.3				2.35
12	430	12.3	(250)	6.4				2,30
13	430	>13.0	(250)	6.4				2.35
14	420	14.2	<250	6.4				2.40
15	400	14.3	<250	6,2		4.0		2,45
16	375	14.3	240	6.0	107	3.8		2,45
17	350	14.2	250	5.6	110	3,3		2.50
18	315	13.6	260	5.0	117	2.6	3.2	2.55
19	1	12.6	295				2.9	2,55
20		11.0	305				2.9	2.45
21	1	9.7	330				2.5	2.35
22	1	9.1	355				2.5	2.35
23	1	8.7	350				2.2	2,40

Time: 75.0°E . Sweep: 0.6 Mc to 25.0 Mc in 5 minutes, automatic operation.

				Table	[2			
Calcutta	a, India	(22.9°N,	80.5°E)				_	June 1957
Time	h¹F2	foF2	h*F	foFl	h¹E	foE	foEs	(M3000)F2
00		8.5	320				(2.5)	2.9
01		8.3	320				(2.6)	2.9
02		7.6	300					3.0
03		7.0	300				(1.8)	2.9
04		7.0	300					2.95
05		6.9	2 85					3.1
06		8.9	250		110	2.5	(2.9)	3.3
07	(290)	9.8	250	5.5	110	3.2	(3.5)	3.1
08	320	10.4	250	6.0	100	3.5	(3.8)	3.0
09	380	11.0	2 50	6.3	100	3.7	(4.8)	2.7
18	400	11.8	250	6.5	100	3.8	(4.7)	2.7
11	450	12.6	240	6.5	100	4.0		2.6
12	450	0	230	7.0	100	4.1		(2.6)
13	450	0	240	6.5	100	4.0		
14	430	0	250	6.5	100	3.8		
15	410	0	250	6.4	100	3,6		
16	400	0	270	6.0	100	3.3	(4.5)	
17	350	0	290	5.8	100	3.0	(3,5)	(2,95)
18	345	0	320	5.4	110	2.3	(3.5)	(3.15)
19		0	330				(3, 4)	3.0
20		12.0	330				(2,6)	2.9
21		10.8	350				(2,5)	2.8
22		10.8	350				(2,5)	2.8
23		10.2	350				(2,0)	2.8

Time: 90.0°E. 5weep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

US COMM-NBS-BL

 \geq

VIRTUAL

TING TING

PERCENTAGE OF FOR FEST AND SECOND SEC

--- LIMITING FREQUENCY = 3 Mc.
--- LIMITING FREQUENCY = 5 Mc.
--- LIMITING FREQUENCY = 7 Mc.

N85 490

26.6°N, 78.2°W

MAY 1958

40.0 20 00 30.0 10.0 8.0 £40 FREQUENCY 2020 ITICAL E 15 LOCAL TIME 20

APRIL 1958

4.6°S, 81.3°W

APRIL 1958

9.1°S, 78.6°W

Fig. 95. BUDAPEST, HUNGARY

47.4°N, 19.2°E

JANUARY 1958

L.

NBS 490

≥ 400

, .

Index of Tables and Graphs of Ionospheric Data

in CRPL-F170 (Part A)

	Table page	Figure page
Adak, Alaska	0	10
June 1958	. 2	18
June 1957	. 12	48
March 1958	. 7	32
Alma-Ata, U.S.S.R. July 1957	. 12	46
Anchorage, Alaska June 1958	. 2	17
Ashkabad, U.S.S.R.	. 12	46
July 1957		-
June 1958	. 3	20
Janúary 1958	. 8	36
June 1957	. 12	48
Cape Hallett January 1958	. 9	38
Chiclayo, Peru May 1958	. 5	25
April 1958		30
Chimbote, Peru July 1958	. 1	15
June 1958		21
May 1958		26
April 1958		30
March 1958		34
February 1958	. 8	36
January 1958	. 9	37
Christchurch, New Zealand	10	4.5
November 1957	. 10	41
Deception I. July 1957	. 12	47
Elisabethville, Belgian Congo	•	**
March 1958	. 8	35
Fletchers Ice I. May 1958	4	22
Grand Bahama I.	, <u>1</u>	
May 1958	. 4	24
April 1958	. 6	29
Huancayo, Peru July 1958	7	15
	. 1	15
June 1958	. 4	22

Index (CRPL-F170 (Part A), continued)

	Table page	Figure page
Ibadan, Nigeria		
January 1958	. 9	37
November 1957	. 10	40
September 1957		42
Inverness, Scotland	•	
March 1958	. 7	31
Leopoldville, Belgian Congo	•	-
Narch 1958	. 8	34
Macquarie I.		
November 1957	. 10	42
Maui, Hawaii		
July 1958	. 1	13
Moscow, U.S.S.R.		
November 1957	. 9	39
July 1957	. 11	45
Murmansk, U.S.S.R.		
July 1957	. 11	43
Narsarssuak, Greenland	•	
June 1958	. 2	17
Panama Canal Zone		_,
July 1958	. 1	14
June 1958	. 3	20
Point Barrow, Alaska		
June 1958	. 2	16
Puerto Rico, W. I.		
July 1958	. 1	14
June 1958		19
Rarotonga I.		
November 1957	. 10	40
Resolute Bay, Canada		
April 1958	. 5	26
Reykjavik, Iceland		
June 1958	. 2	16
May 1958	. 4	2 3
April 1958	. 5	27
Rostov-on-Don, U.S.S.R.		
July 1957	. 11	45
St. John's, Newfoundland		
June 1958	. 2	18
Salehard, U.S.S.R.		
Julý 1957	. 11	43
San Francisco, California		
April 1958	. 6	2 8
March 1958	. 7	32
February 1958	. 8	35
December 1957	。 9	38
November 1957	. 9	39

Index (CRPL-F170 (Part A), concluded)

Table page	Figure page
Sao Paulo, Brazil	
November 1957	41
Slough, England April 1958 6	28
Sverdlovsk, U.S.S.R.	20
July 1957	44
Talara, Peru June 1958	21
May 1958	25
April 1958 6	29
Thule, Greenland	23
May 19584 Tokyo, Japan	23
March 1958	33
Tomsk, U.S.S.R.	AA
July 1957	44
July 1957	47
Upsala, Sweden	0.00
April 1958	27
March 1958	31
Washington, D. C.	
July 1958	13
June 1958	19
May 1958 4	24
Yamagawa, Japan	0.0
March 1958	33

CRPL Reports

[A detailed list of CRPL publications is available from the Central Radio Propagation Laboratory upon request] Daily:

Radio disturbance forecasts, every half hour from broadcast stations WWV and WWVH of the National Bureau of Standards.

Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Semiweekly:

North Atlantic Radio Propagation Forecast (of days most likely to be disturbed during following CRPL-J. month).

North Pacific Radio Propagation Forecast (of days most likely to be disturbed during following CRPL-Jp. month).

Semimonthly:

CRPL—Ja. Semimonthly Frequency Revision Factors For CRPL Basic Radio Propagation Prediction Reports.

Monthly: Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Air Force, TO 31-3-28 series). On sale by Superintendent of Documents.* Members of the Armed Forces should address cognizant CRPL-D.

military office. (Part A). Ionospheric Data.

CRPL-F. (Part B).

Solar-Geophysical Data.

Limited distribution. These publications are in general disseminated only to those individuals or scientific organizations which collaborate in the exchange of ionospheric, solar, geomagnetic or other radio propagation data.

Catalog of Data:

A catalog of records and data on file at the U.S. IGY World Data Center A for Airglow and Ionosphere, Boulder Laboratories, National Bureau of Standards, which includes a fee schedule to cover the cost of supplying copies, is available upon request.

The publications listed above may be obtained without charge from the Central Radio Propagation Laboratory, National Bureau of Standards, Boulder Laboratories, Boulder, Colorado, unless otherwise indicated. Please note that the F series is not generally available.

Circulars of the National Bureau of Standards pertaining to Radio Sky Wave Transmission:

NBS Circular 462. NBS Circular 465. Ionospheric Radio Propagation. \$1.25.

Instructions for the Use of Basic Radio Propagation Predictions.

Worldwide Radio Noise Levels Expected in the Frequency Band 10 Kilocycles to 100 Megacycles. 30 cents. NBS Circular 557.

NBS Circular 582. Worldwide Occurrence of Sporadic E. \$3.25.

> These Circulars are on sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Members of the Armed Forces should address the respective military office having cognizance of radio wave propagation.

^{*} For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington 25, D. C. Price 10 cents (single copy). Subscription Price: \$1.00 a year; 25 cents additional for foreign mailing.

