# Sobre la buena colocación del problema de Cauchy asociado a la ecuación con no linealidad modificada de Zakharov-Kusnetsov-Burgers en espacios de Sobolev $H^s(\mathbb{T}^n)$ .

María Alejandra Rodríguez Ríos.<sup>1</sup>

Mateo Andrés Manosalva Amaris.<sup>2</sup>

mrodriguezri@unal.edu.co

mmanosalva@unal.edu.co

Edgar Santiago Ochoa Quiroga<sup>3</sup>

eochoaq@unal.edu.co

22 de septiembre de 2024

#### Resumen

Este trabajo se centra en el estudio de la ecuación no lineal modificada de Zakharov-Kusnetsov-Burgers en  $\mathbb{T}^n$ , el cual es un dominio periódico. Utilizando resultados de series de Fourier y espacios de Sobolev, se realiza la buena colocación local del problema en dichos espacios. El resultado principal demuestra que, para  $n \geq 1$  y  $s > \frac{n}{2}$ , existe una única solución local en el tiempo que depende del dato inicial en  $H^s(\mathbb{T}^n)$ , se realiza la demostración en base a la fórmula integral de Duhamel, lo que permite un análisis formal de la dependencia continua de las soluciones.

## 1. Introducción

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

### 2. Preliminares

**Definición 2.1.** Sea  $\{e_j: 1 \leq j \leq n\}$  la base canónica de  $\mathbb{R}^n$ , una función  $f: \mathbb{R}^n \to \mathbb{C}$  se dice periódica de periodo  $L \neq 0$ , si

$$f(x + Le_j) = f(x)$$
, para todo  $x \in \mathbb{R}^n$  y  $1 \le j \le n$ ,

Algunas observaciones:

- Tenemos que dado  $L \in \mathbb{R} \{0\}$ , para todo  $m \in \mathbb{Z}$ , mL también es un periodo de f, es decir,  $f(x + mLe_j) = f(x)$ , para todo  $x \in \mathbb{R}^n$  y  $1 \le j \le n$ . En particular, -L también es un periodo para la función f. Por esto se puede asumir en particular que L > 0.
- Si f es periódica no constante, existe un periodo mínimo L > 0, el cual se conoce como periodo fundamental.

**Nota.** Dado L>0 el conjunto  $C_{per}([-L,L]^n)$  consiste en las funciones  $f:\mathbb{R}^n\to\mathbb{C}$  continuas con periodo 2L. Análogamente, dado  $k\in\mathbb{Z}^+, C^k_{per}([-L,L]^n)$  consiste de todas las funciones  $f:\mathbb{R}^n\to\mathbb{C}$  periódicas con periodo 2L de clase  $C^k$ .

Una manera equivalente de identificar los espacios anteriores es la siguiente:

$$C_{per}([-L, L]^n) := \{ f \in C([-L, L]^n) : f(Le_i) = f(-Le_i), 1 \le j \le n \}.$$

Cuando  $k \in \mathbb{Z}^+$ , dado un multiíndice  $\beta = (\beta_1, \dots, \beta_n)$ ,

$$\begin{split} C^k_{per}\left([-L,L]^n\right) := & \left\{ f \in C^k([-L,L]^n) : \partial^\beta f(Le_j) = \partial^\beta f(-Le_j), \text{ para todo } \beta \text{ tal que } |\beta| \leq k \right. \\ & \text{y para todo } 1 \leq j \leq n \right\}. \end{split}$$

Diremos que  $f \in C^{\infty}_{per}([-L,L]^n)$ , si  $f \in C^k_{per}([-L,L]^n)$  para cualquier  $k \in \mathbb{Z}^+$ .

Note que:

$$C_{per}([-L,L]^n) \supseteq C_{per}^1([-L,L]^n) \supseteq \cdots \supseteq C_{per}^k([-L,L]^n),$$

es decir, el conjunto es más pequeño cuando pedimos más regularidad a las funciones.

Dado L > 0, si f :  $\mathbb{R}^n \to \mathbb{C}$  es una función periódica de periodo 2L, entonces el mapeo

$$\widetilde{f}(x) := f\left(\frac{L}{\pi}x\right),$$

define una función periódica de periodo  $2\pi$ . Esto es, que los espacios  $C^k_{per}([-L,L]^n)$  y  $C^k_{per}([-\pi,\pi]^n)$  son isomorfos como espacios vectoriales. Por estas razones y sin pérdida de generalidad, trabajaremos con funciones de periodo  $2\pi$ .

Otra forma frecuente para trabajar sobre este espacio de funciones periódicas es considerar funciones sobre el toro  $\mathbb{T}^n$ . El toro  $\mathbb{T}^n$  es el intervalo  $[0, 2\pi]^n$  donde los lados opuestos se identifican.

De manera más rigurosa, el toro es el conjunto de clases de equivalencia de  $\mathbb{R}^n$  dadas por la relación  $x \sim y$  si y solo si  $x - y \in 2\pi\mathbb{Z}^n$ , esto es  $\mathbb{T}^n = \mathbb{R}^n/2\pi\mathbb{Z}^n$ . Adicionalmente el toro es un grupo aditivo por lo que será útil hacerle una traslación a  $[-\pi, \pi]^n$ 

Por las propiedades del toro que hemos mencionado, funciones  $f:\mathbb{T}^n\to\mathbb{C}$  se pueden identificar como funciones periódicas  $f:\mathbb{R}^n\to\mathbb{C}$  con periodo  $2\pi$ . De esta manera,  $C^k_{per}([-\pi,\pi]^n)$  es isomorfo a  $C^k(\mathbb{T}^n)$ , por comodidad en la notación durante el resto de este trabajo nos referiremos a este espacio como  $C^k(\mathbb{T}^n)$ . [1]

**Nota.** Dado que podemos identificar  $\mathbb{T}^n$  como  $[-\pi,\pi]^n$ , vemos que la integración de funciones sobre el toro resulta de restringir la medida de Lebesgue en  $[\pi,\pi]^n$  y por la periodicidad de las funciones en  $\mathbb{T}^n$  tenemos que:

$$\int_{\mathbb{T}^n} f(x) dx = \int_{[-\pi,\pi]^n} f(x) dx = \int_{[0,2\pi]^n} f(x) dx = \int_{[a_1,2\pi+a_1] \times \cdots \times [a_n,2\pi+a_n]} f(x) dx.$$

para cualesquiera  $a_1, \ldots, a_n \in \mathbb{R}$ , en efecto:

$$\begin{split} \int_{[\pi,\pi]^n} f(x) dx &= \int_{[-\pi,0]^n} f(x) dx + \int_{[0,\pi]^n} f(x) dx \\ &= \int_{[\pi,2\pi]^n} f(y - (2\pi, \dots, 2\pi)) dy + \int_{[0,\pi]^n} f(x) dx \\ &= \int_{[\pi,2\pi]^n} f(x) dx + \int_{[0,\pi]^n} f(x) dx \\ &= \int_{[0,2\pi]^n} f(x) dx. \end{split}$$

Para la última propiedad note que:

$$\int_{[0,2\pi]^n} f(x) dx = \int_{[0,2\pi]} \int_{[0,2\pi]} \dots \int_{[0,2\pi]} f(x) dx_1 \dots dx_n,$$

dado que f(x) es integrable entonces vale el teorema de fubini, dicho esto, basta ver que el resultado se tiene para una de las integrales, a saber:

$$\int_{[0,2\pi]} f(x) dx = \int_{[\alpha,2\pi+\alpha]} f(x) dx.$$

Si  $a > 2\pi$ , en efecto:

$$\begin{split} \int_{0}^{2\pi} f(x) dx &= \int_{0}^{\alpha} f(x) dx - \int_{2\pi}^{\alpha} f(x) dx \\ &= \int_{2\pi}^{2\pi + \alpha} f(y - 2\pi) dy - \int_{2\pi}^{\alpha} f(x) dx \\ &= \int_{2\pi}^{2\pi + \alpha} f(x) dx - \int_{2\pi}^{\alpha} f(x) dx \\ &= \int_{2\pi}^{2\pi + \alpha} f(x) dx, \end{split}$$

los casos  $a \in [0, 2\pi]$  y a < 0 son análogos.

Finalmente por la periodicidad, la integración por partes no nos deja términos de borde:

$$\begin{split} \int_{\mathbb{T}^n} \vartheta_{x_i} f(x) g(x) dx &= \int_{\mathbb{T}^{n-1}} \left( \int_{-\pi}^{\pi} \vartheta_{x_i} f(x) g(x) dx_i \right) d\widetilde{x} \\ &= \int_{\mathbb{T}^{n-1}} \left[ fg(x_1, \dots, \pi, \dots, x_n) - fg(x_1, \dots, -\pi, \dots, x_n) \right] d\widetilde{x} \\ &- \int_{\mathbb{T}^{n-1}} \int_{-\pi}^{\pi} f(x) \vartheta_{x_i} g(x) dx_i d\widetilde{x} \\ &= \int_{\mathbb{T}^{n-1}} 0 \, d\widetilde{x} - \int_{\mathbb{T}^n} f(x) \vartheta_{x_i} g(x) dx \\ &= - \int_{\mathbb{T}^n} f(x) \vartheta_{x_i} g(x) dx \end{split}$$

**Teorema 2.2.** Si  $k\in\mathbb{Z}^n$ , sea  $\Phi_k(x):=e^{\mathrm{i} k\cdot x}$  entonces que para  $k,m\in\mathbb{Z}^n$ 

$$(\Phi_k \mid \Phi_m) = \int_{\mathbb{T}^n} \Phi_k(x) \overline{\Phi_m(x)} = \begin{cases} 0 & \text{si } m \neq k, \\ (2\pi)^n & \text{si } m = k \end{cases}$$

**Demostración.** En efecto, por el teorema de Tychonoff tenemos que el producto cartesiano de conjuntos compactos es compacto y como  $\mathbb{T}^n = [-\pi, \pi] \times [-\pi, \pi] \times \ldots \times [-\pi, \pi]$  entonces  $\mathbb{T}^n$  es compacto, por lo cual, como  $\Phi_k(x)$  es una función continua en  $[-\pi, \pi]^n$  podemos aplicar el teorema de Fubini como sigue:

$$\begin{split} (\Phi_k \mid \Phi_m) &= \int_{[-\pi,\pi]^n} e^{ik\cdot x} e^{-im\cdot x} dx \\ &= \int_{[-\pi,\pi]} \int_{[-\pi,\pi]} \dots \int_{[-\pi,\pi]} e^{i(k-m)\cdot x} dx_1 \dots dx_n \\ &= \int_{[-\pi,\pi]} \int_{[-\pi,\pi]} \dots \int_{[-\pi,\pi]} e^{i(k_1-m_1)x_1} e^{i(k_2-m_2)x_2} \dots e^{i(k_n-m_n)x_n} dx_1 \dots dx_n \\ &= \int_{[-\pi,\pi]} e^{i(k_1-m_1)x_1} dx_1 \int_{[-\pi,\pi]} e^{i(k_2-m_2)x_2} dx_2 \dots \int_{[-\pi,\pi]} e^{i(k_n-m_n)x_n} dx_n. \end{split}$$

y como:

$$\int_{-\pi}^{\pi}e^{i(k_i-m_i)x_i}dx_i=\begin{cases} 0, & \text{ si } m_i\neq k_i,\\ 2\pi, & \text{ si } m_i=k_i. \end{cases}$$

entonces se concluye que:

$$(\Phi_k|\Phi_m) = \begin{cases} 0, & \text{si } m \neq k, \\ (2\pi)^n & \text{si } m = k. \end{cases}$$

Dado el sistema ortogonal  $\varphi_k(x)=e^{ik\cdot x}$  con  $k\in\mathbb{Z}^n$  y  $x\in\mathbb{R}^n$ , queremos escribir a  $f\in C(\mathbb{T}^n)$  como:

$$f(x) = \sum_{k \in \mathbb{Z}^n} c_k e^{ik \cdot x},$$

procedamos formalmente asumiendo que la serie anterior converge uniformemente, así:

$$(f|\Phi_m) = \sum_{k \in \mathbb{Z}^n} c_k (\Phi_k | \Phi_m)$$
  
=  $c_m (2\pi)^n$ ,

donde  $c_m$ , con  $m \in \mathbb{Z}^n$  son los coeficientes de Fourier, esto es:

$$c_{\mathfrak{m}} = \frac{1}{(2\pi)^{\mathfrak{n}}} \left( f | \Phi_{\mathfrak{m}} \right) = \frac{1}{(2\pi)^{\mathfrak{n}}} \int_{\mathbb{T}^{\mathfrak{n}}} f(x) e^{-i\mathfrak{m} \cdot x} dx,$$

esto motiva la definición de la transformada y serie de Fourier en  $C(\mathbb{T}^n)$ .

**Definición 2.3.** Dada  $f \in C(\mathbb{T}^n)$  la secuencia de números complejos  $\{\widehat{f}(k)\}_{k \in \mathbb{Z}^n}$  se llama la transformada de Fourier de f y está definida como

$$\widehat{f}(k) = \frac{1}{(2\pi)^n} \int_{\mathbb{T}^n} f(x) e^{-ik \cdot x} dx.$$

Al número complejo  $\hat{f}(k)$  se le llama el coeficiente de Fourier. La serie (puede ser no convergente)

$$\sum_{k=\mathbb{Z}^n} \widehat{f}(k) e^{ik \cdot x}.$$

se llama la serie de Fourier de f.

Se puede estudiar a detalle la convergencia de esta serie, sin embargo esto se sale del propósito de este trabajo. Más adelante presentaremos resultados conocidos de la convergencia de la serie de Fourier que requerimos para obtener nuestro resultado de buena colocación, no adentraremos en los detalles de la demostración de los mismos, esto se puede consultar en [2] o en [3].

**Teorema 2.4** (Desigualdad de Bessel). Si  $f \in C(\mathbb{T}^n)$  entonces:

$$\sum_{k\in\mathbb{Z}^n}|\widehat{f}(k)|^2\leq \frac{1}{(2\pi)^n}\|f\|_{L^2}^2=\frac{1}{(2\pi)^n}\int_{\mathbb{T}^n}|f(x)|^2\,dx.$$

**Demostración.** Sabemos que como la norma es mayor o igual a cero, entonces

$$\begin{split} &0 \leq \left\| f(x) - \sum_{\substack{k \in \mathbb{Z}^n \\ |k| \leq N}} \widehat{f}(k) e^{ik \cdot x} \right\|_{L^2}^2 \\ &= \|f\|_{L^2}^2 + \left\| \sum_{\substack{k \in \mathbb{Z}^n \\ |k| \leq N}} \widehat{f}(k) e^{ik \cdot x} \right\|_{L^2}^2 - 2 \mathfrak{R} \left( f(x) \left| \sum_{\substack{k \in \mathbb{Z}^n \\ |k| \leq N}} \widehat{f}(k) e^{ik \cdot x} \right| \right) \\ &= \|f\|_{L^2}^2 + \sum_{\substack{k, m \in \mathbb{Z}^n \\ |k|, |m| \leq N}} \widehat{f}(k) \overline{\widehat{f}(m)} (e^{ik \cdot x} | e^{im \cdot x}) - 2 \mathfrak{R} \left( \sum_{\substack{k \in \mathbb{Z}^n \\ |k| \leq N}} \overline{\widehat{f}(k)} \left( f(x) | e^{ik \cdot x} \right) \right) \\ &= \|f\|_{L^2}^2 + \sum_{\substack{k \in \mathbb{Z}^n \\ |k| \leq N}} (2 \pi)^n \left| \widehat{f}(k) \right|^2 - 2 \sum_{\substack{k \in \mathbb{Z}^n \\ |k| \leq N}} (2 \pi)^n \left| \widehat{f}(k) \right|^2 \\ &= \|f\|_{L^2}^2 - \sum_{\substack{k \in \mathbb{Z}^n \\ |k| \leq N}} (2 \pi)^n \left| \widehat{f}(k) \right|^2. \end{split}$$

Así

$$0 \leq \|f\|_{[L^2}^2 - (2\pi)^n \sum_{\substack{k \in \mathbb{Z}^n \\ |k| \leq N}} \left| \widehat{f}(k) \right|^2.$$

Por lo cual

$$\sum_{\substack{k \in \mathbb{Z}^n \\ |k| \leq N}} \left| \widehat{f}(k) \right|^2 \leq \frac{1}{(2\pi)^n} ||f||_{L^2}^2.$$

Luego tomando el límite cuando  $N \to \infty$ , se sigue que:

$$\sum_{k\in\mathbb{Z}^n}\left|\widehat{f}(k)\right|^2\leq \frac{1}{(2\pi)^n}\|f\|_{L^2}^2.$$

**Teorema 2.5.** Si  $f \in C^l(\mathbb{T}^n)$  y  $\beta = (\beta_1, \ldots, \beta_n)$  es un multi-índice de orden l, es decir,  $|\beta| = \beta_1 + \cdots + \beta_n = l$ , entonces  $\widehat{\partial^\beta f}(k) = \mathfrak{i}^{|\beta|} k^\beta \widehat{f}(k)$ , para todo  $k \in \mathbb{Z}^n$ .

**Demostración.** Procedamos por inducción sobre el orden del multi-índice, primero note que si  $\beta$  es un multi-índice de orden 1, entonces  $\beta = (0, ..., 1, ..., 0)$ , así:

$$\partial^{\beta} f(x) = \partial_{x_i} f(x),$$

luego:

$$\begin{split} \widehat{\vartheta^{\beta}f}(k) &= \widehat{\vartheta_{k_{j}}f}(k) \\ &= \frac{1}{(2\pi)^{n}} \int_{\mathbb{T}^{n}} \vartheta_{k_{j}}f(x)e^{-ik\cdot x} \\ &= -\frac{1}{(2\pi)^{n}} \int_{\mathbb{T}^{n}} (-ik_{j})f(x)e^{-ik\cdot x} \\ &= \frac{i^{|\beta|}k^{\beta}}{(2\pi)^{n}} \int_{\mathbb{T}^{n}} f(x)e^{-ik\cdot x} \\ &= i^{|\beta|}k^{\beta}\widehat{f}(k). \end{split}$$

Ahora supongamos que la igualdad se tiene para todo multi-índice  $\alpha$  de orden n, note que dado un multi-índice de orden n + 1,  $\beta$ , existe un multi-índice  $\alpha$  de orden n tal que:

$$\partial^{\beta} f(x) = \partial_{x_i} \partial^{\alpha} f(x),$$

así:

$$\begin{split} \widehat{\partial^{\beta}f}(k) &= \widehat{\delta_{k_{j}}} \widehat{\partial^{\alpha}f}(k) \\ &= ik_{j} \widehat{\partial^{\alpha}f}(k) \\ &= ik_{j} i^{|\alpha|} k^{\alpha} \widehat{f}(k) \\ &= i^{|\beta|} k^{\beta} \widehat{f}(k). \end{split}$$

Por el principio de inducción matemática se sigue la igualdad.

**Teorema 2.6.** Si  $m > \frac{n}{2}$  con m entero, entonces la serie de Fourier de una función  $f \in C^m(\mathbb{T}^n)$  converge absoluta y uniformemente a f, además, se tiene que  $\|f\|_{\infty} \leq \|\widehat{f}\|_1$  donde  $\|\cdot\|_1$  es la norma de  $l^1(\mathbb{Z}^n)$ . Más aún, vale la identidad de Parseval

$$\|\widehat{f}\|_{2}^{2} = \sum_{k \in \mathbb{Z}^{n}} |\widehat{f}(k)|^{2} = \frac{1}{(2\pi)^{n}} \int_{\mathbb{T}^{n}} |f(x)|^{2} dx = \frac{1}{(2\pi)^{n}} \|f\|_{L^{2}}^{2}.$$
 (1)

De manera equivalente, si f,  $g \in C^{\mathfrak{m}}\left(\mathbb{T}^{\mathfrak{n}}\right)$ ,

$$(\widehat{f} \mid \widehat{g}) = \sum_{k \in \mathbb{Z}^n} \widehat{f}(k) \overline{\widehat{g}(k)} = \frac{1}{(2\pi)^n} \int_{\mathbb{T}^n} f(x) \overline{g(x)} dx = \frac{1}{(2\pi)^n} (f \mid g).$$
 (2)

A continuación presentamos el espacio  $L^2(\mathbb{T}^n)$ .

**Definición 2.7.** El espacio  $L^2(\mathbb{T}^n) = L^2([-\pi, \pi]^n)$  consiste de funciones  $f: [-\pi, \pi]^n \to \mathbb{C}$  medibles según Lebesgue tales que:

$$||f||_{L^2}^2 = \int_{\mathbb{T}^n} |f(x)|^2 dx < \infty.$$

Asumimos que,

**Teorema 2.8.** El espacio  $C^{\infty}(\mathbb{T}^n)$  es denso en  $L^2(\mathbb{T}^n)$ .

**Nota.** Recordemos que  $C^{\infty}(\mathbb{T}^n) \subset C^m(\mathbb{T}^n) \subset \ldots \subset C(\mathbb{T}^n)$ , es claro que las funciones en  $C(\mathbb{T}^n)$  son funciones en  $L^2(\mathbb{T}^n)$  por la continuidad sobre un compacto, esto nos dice que el conjunto  $C^m(\mathbb{T}^n)$  es denso en  $L^2(\mathbb{T}^n)$  para todo  $m \geq 0$ 

Ahora por lo anterior podemos probar que si  $f \in C^{\infty}(\mathbb{T}^n)$  entonces  $\widehat{f}$  es inyectiva.

**Teorema 2.9.** Sean  $f,g\in C^\infty(\mathbb{T}^n)$ . Suponga que  $\widehat{f}(k)=\widehat{g}(k)$  para todo  $k\in\mathbb{Z}^n$ . Entonces f=g.

**Demostración.** Sea h = f - g luego, por propiedades de las funciones continuas en  $\mathbb{T}^n$ , tenemos que  $h \in C^{\infty}(\mathbb{T}^n)$  y por hipótesis  $\hat{h}(k) = 0$  para todo  $k \in \mathbb{Z}$ , por el Teorema 2.6, se sigue que  $\|h\| = 0$ , es decir, h = 0.

**Nota.** Sobre la transformada de Fourier en  $L^2(\mathbb{T}^n)$  tenemos de la desigualdad de Cauchy-Schwartz:

$$\begin{split} |\widehat{f}(k)| &= \left| \frac{1}{(2\pi)^n} \int_{\pi^n} f(x) e^{-ik \cdot x} dx \right| \\ &= \frac{1}{(2\pi)^n} |(f|e^{ik \cdot x})| \\ &\leq \frac{1}{(2\pi)^n} ||f||_{L^2} ||\Phi_k||_{L^2} \\ &\leq (2\pi)^{-\frac{n}{2}} ||f||_{L^2}, \end{split}$$

dado que  $\|f\|_{L^2} < \infty$  entonces sabemos que  $\widehat{f} = \{\widehat{f}(k)\} \in l^{\infty}(\mathbb{Z}^n)$ , sin embargo podemos decir aún más sobre la transformada de Fourier en  $L^2(\mathbb{T}^n)$ 

Teorema 2.10. La transformada de Fourier

$$\wedge: L^2(\mathbb{T}^n) \to l^2(\mathbb{Z}^n)$$

es un isomorfismo. Además, vale la identidad de Parseval (1) y (2)

**Demostración.** Veamos que si  $f \in L^2(\mathbb{T}^n)$ , entonces  $\widehat{f} \in \ell^2(\mathbb{Z}^n)$ . Sea  $\{f_n\}$  una sucesión, de manera que  $\{f_n\} \subset C^m(\mathbb{T}^n)$  tal que  $f_n$  converge a f en el sentido de  $L^2$ . Por los Teoremas 2.6 y 2.9, sabemos que vale la identidad de Parseval para funciones en  $C^m(\mathbb{T}^n)$ , lo cual implica

$$\|\mathbf{f}_{n} - \mathbf{f}_{m}\|_{L^{2}(\mathbb{T}^{n})}^{2} = (2\pi)^{n} \|\hat{\mathbf{f}}_{n} - \hat{\mathbf{f}}_{m}\|_{2}^{2},$$

para todo n, m  $\in \mathbb{Z}^n$ .

Luego, como  $\{f_n\} \subset C^m(\mathbb{T}^n)$  converge en  $L^2$ , tenemos que define una secuencia de Cauchy. Teniendo en cuenta la nota mencionada anteriormente, tenemos que esto implica que la secuencia de transformadas de Fourier  $\{\widehat{f}_n\}$  es de Cauchy en  $\ell^2(\mathbb{Z}^n)$ . Puesto que  $\ell^2(\mathbb{Z}^n)$  es completo. Sea  $\{\alpha_k\} \in \ell^2(\mathbb{Z}^n)$  el límite de  $\{\widehat{f}_n\}$ .

Según yo hay dos opciones aquí cual les gusta más, 1 es oscar version xd

Ahora, veamos que  $\hat{f} = \{\hat{f}(k)\} = \{\alpha_k\}$ , es decir,  $\alpha_k = \hat{f}(k)$  para todo entero k.

Note que,

$$|\widehat{f}_n(k) - \alpha_k|^2 \leq \sum_{k=-\infty}^{\infty} |\widehat{f}_n(k) - \alpha_k|^2 = \|\widehat{f}_n - \{\alpha_k\}\|_2^2 \to 0 \quad \text{cuando} \quad n \to \infty.$$

Por otro lado, la desigualdad de Cauchy-Schwarz nos da

$$|\widehat{f}_{n}(k) - \widehat{f}(k)| = \frac{1}{(2\pi)^{n}} \int_{-\pi}^{\pi} (f_{n}(x) - f(x)) e^{-ik \cdot x} dx \le (2\pi)^{-\frac{n}{2}} ||f_{n} - f||_{2} \to 0.$$

#### version 2

Sea  $\{\alpha_m\}_{m\in\mathbb{Z}^n}$  una sucesión de números complejos tal que  $\{\alpha_m\}_{m\in\mathbb{Z}^n}\in\ell^2(\mathbb{Z}^n)$ . Sea

$$f_N(x) := \frac{1}{(2\pi)^N} \sum_{|m| \le N} \alpha_m e^{-im \cdot x},$$

Observe que  $\{f_N\}$  es una sucesión de Cauchy en  $L^2(\mathbb{T}^n)$ , es decir,

$$\int_{\mathbb{T}^n} \|f_N - f_M\|_{L^2}^2 = \int_{\mathbb{T}^n} |f_N(x) - f_M(x)|^2 \, dt = \frac{1}{(2\pi)^{N-M}} \sum_{M < |m| \leq N} |\alpha_m|^2 \to 0 \quad \text{cuando} \quad M, N \to \infty.$$

Por tanto, existe  $f \in L^2(\mathbb{T}^n)$  tal que

$$\lim_{N\to\infty}f_N=f.$$

Además,

$$\widehat{f}(k) = \langle f, \phi_k \rangle = \lim_{N \to \infty} \frac{1}{(2\pi)^N} \sum_{|m| < N} \alpha_m \langle e^{-im \cdot x}, \phi_k \rangle = \frac{1}{(2\pi)^n} \alpha_k.$$

Por lo tanto,  $\widehat{f}(\mathfrak{m})=\alpha_{\mathfrak{m}}$  para todo  $\mathfrak{m}\in\mathbb{Z}^{n}.$ 

El teorema anterior implica que existe la inversa de la transformada de Fourier que denotaremos como

$$\vee: l^2(\mathbb{Z}^n) \to L^2(\mathbb{T}^n)$$

definida como  $\left\{\alpha_k\right\}^\vee = \sum_{k \in \mathbb{Z}^n} \alpha_k \Phi_k$ , donde el sentido de esta serie es en  $L^2$ .

# 2.1. Espacios de Sobolev

En esta subsección presentamos los espacios de Sobolev periódicos  $H^s(\mathbb{T}^n)$  y algunas propiedades importantes que necesitaremos en la prueba de buena colocación, estos espacios se estudian de manera más detallada en [4].

Es posible demostrar que el espacio  $C^1(\mathbb{T}^n)$  no es completo con la norma

$$\|f\|_{H^1} = \frac{1}{(2\pi)^{\frac{n}{2}}} \left( \|f\|_{L^2}^2 + \|f'\|_{L^2}^2 \right)^{\frac{1}{2}}$$

La norma anterior es interesante para establecer si una función es integrable y diferenciable (en algún sentido) y estudiar si su derivada conserva la misma propiedad de integrabilidad. Esto motiva a definir el espacio completado [1].

$$H^1_{per}(\mathbb{T}^n) = \overline{(C^1(\mathbb{T}^n), \|\cdot\|_{H^1})}.$$

Dado que la transformada de Fourier en L<sup>2</sup> es un isomorfismo observamos lo siguiente:

Ya vengo voy a la tienda y sigo más tarde xd

# 3. Resultados de Buen Planteamiento

Consideremos el problema de valor inicial asociado a la ecuación con no linealidad modificada de Zakharov-Kusnetsov-Burgers

$$\begin{cases} u_{t} + \partial_{x_{1}} \Delta u - \Delta u + u^{3} = 0, & (x, t) \in (-\pi, \pi)^{n} \times (0, \infty), \\ u(x, 0) = u_{0}(x), & x \in [-\pi, \pi]^{n}. \end{cases}$$
(3)

Procedamos de manera formal en búsqueda de un candidato a solución, tomando la transformada de Fourier respecto a la variable espacial

$$\begin{split} (u_t + \partial_{x_1} \Delta u - \Delta u + u^3)^\wedge(k) &= \widehat{u}_t(k) + \widehat{\partial_{x_1} \Delta u}(k) - \widehat{\Delta u}(k) + \widehat{u^3}(k) \\ &= \partial_t \widehat{u}(k) + i k_1 \widehat{\Delta u}(k) - \widehat{\Delta u}(k) + \widehat{u^3}(k) \\ &= \partial_t \widehat{u}(k) + (i k_1 - 1) \sum_{i=1}^n \widehat{\partial_{x_i}^2 u}(k) + \widehat{u^3}(k) \\ &= \partial_t \widehat{u}(k) + (i k_1 - 1) \sum_{i=1}^n i^2 k_i^2 \widehat{u}(k) + \widehat{u^3}(k) \\ &= \partial_t \widehat{u}(k) + (1 - i k_1) |k|^2 \widehat{u}(k) + \widehat{u^3}(k). \end{split}$$

Así junto al hecho de que  $\widehat{u}(k,0)=\widehat{u}_0(k)$  para todo  $k\in\mathbb{Z}^n$  tenemos una ecuación diferencial ordinaria asociada a un problema de valor inicial respecto a la variable temporal

$$\begin{cases} \frac{d}{dt}\widehat{u}(k)+(|k|^2-ik_1|k|^2)\widehat{u}(k)=-\widehat{u^3}(k), & k\in\mathbb{Z}^n, t>0\\ \widehat{u}(k,0)=\widehat{u}_0(k), & k\in\mathbb{Z}. \end{cases}$$

Luego usando el factor integrante  $e^{(|k|^2-ik_1|k|^2)t}$ , e integrando a ambos lados de 0 a t tenemos que

$$e^{(|k|^2-ik_1|k|^2)t}\widehat{u}(k,t)-\widehat{u}_0(k)=-\int_0^t e^{(|k|^2-ik_1|k|^2)t'}\widehat{u^3}(k,t')\,dt'.$$

Así despejando  $\widehat{u}(k, t)$  llegamos a que

$$\widehat{u}(k,t) = e^{(ik_1|k|^2 - |k^2|)t} \widehat{u}_0(k) - \int_0^t e^{(ik_1|k|^2 - |k^2|)(t - t')} \widehat{u^3}(k,t') dt',$$

tomando la transformada inversa de Fourier tenemos que

$$\begin{split} u(x,t) &= (e^{(ik_1|k|^2-|k^2|)t}\widehat{u}_0(k))^\vee - \int_0^t (e^{(ik_1|k|^2-|k^2|)(t-t')}\widehat{u^3}(k,t'))^\vee \, dt' \\ &= \sum_{k \in \mathbb{Z}^n} e^{(ik_1|k|^2-|k^2|)t+ik\cdot x} \widehat{u}_0(k) - \int_0^t \sum_{k \in \mathbb{Z}^n} e^{(ik_1|k|^2-|k^2|)(t-t')+ik\cdot x} \widehat{u^3}(k,t') \, dt'. \end{split}$$

Teniendo en cuenta esto, es en cierta medida natural definir la familia de operadores  $\{U(t)\}_{t\geq 0}$  tal que:

$$U(t)f(x) = \begin{cases} \sum_{k \in \mathbb{Z}^n} e^{(ik_1|k|^2 - |k^2|)t + ik \cdot x} \widehat{f}(k), & t > 0, \\ f(x), & t = 0 \end{cases}$$

Para f lo suficientemente regular. De esta manera, nuestro candidato a solución es la formula de Duhamel dada por

$$u(x,t) = U(t)u_0(x) - \int_0^t U(t-t')u^3(x,t') dt'.$$
 (4)

**Definición 3.1.** Dado  $s \ge 0$ . Diremos que el problema (3) esta localmente bien planteado en  $H^s(\mathbb{T}^n)$  si:

- (Existencia y Unicidad). Dado  $u_0 \in H_s(\mathbb{T}^n)$ , existe T > 0 y una única solución de la formula de Duhamel (4) con dato inicial  $u_0$  en el espacio  $C([0,T];H^s(\mathbb{T}^n))$ .
- (Dependencia Continua). Dado  $u_0 \in H^s(\mathbb{T}^n)$  existe una vecindad V de  $u_0$  en  $H^s(\mathbb{T}^n)$  y T > 0 tal que la aplicación dato inicial solución

$$v_0 \in H^s(\mathbb{T}^n) \mapsto v \in C([0,T];H^s(\mathbb{T}^n)).$$

Es continua.

Antes de continuar con el resultado principal debemos hacer varias salvedades. Primero definimos el espacio  $C([0,T];H^s(\mathbb{T}^n))$ .

**Definición 3.2.** El espacio  $C([0,T];H^s(\mathbb{T}^n))$  consiste de funciones  $f:[0,T]\to H^s(\mathbb{T}^n)$ , continuas en el siguiente sentido:

Dado  $t' \in (0, T)$  tenemos que

$$\lim_{t \to t'} \|f(t) - f(t')\|_{H^s} = 0,$$

si t' = 0 o t' = T se toma el limite lateral.

Segundo introducimos los conceptos claves de contracción y punto fijo.

**Definición 3.3.** Sea (M, d) un espacio métrico  $y \psi : M \to M$  una función.

•  $\psi$  es una **contracción** si existe 0 < L < 1 tal que

$$d(\psi(x), \psi(y)) \leq Ld(x, y),$$

para todo  $x, y \in M$ .

■ Dado  $x \in M$ , si  $\psi(x) = x$ , se dice que x es un **punto fijo** de  $\psi$ .

**Teorema 3.4** (Punto fijo de Banach). Sea (M, d) un espacio métrico completo. entonces toda contracción tiene un único punto fijo.

La idea para el buen planteamiento es ver (4) como una aplicación y usar (3.4) para encontrar soluciones como puntos fijos en espacios de funciones adecuados. Con todo esto procedemos a la demostración de el resultado principal, la buena colocación local.

**Teorema 3.5.** Para cualquier  $n \ge 1$  fijo, el problema de Cauchy (3) esta localmente bien planteado en  $H^s(\mathbb{T}^n)$ ,  $s > \frac{n}{2}$ . Esto es:

- (Existencia y Unicidad). Para cualquier  $u_0 \in H^s(\mathbb{T}^n)$ , existe un tiempo T > 0 y una unica  $u \in C([0,T];H^s(\mathbb{T}^n))$  solución de la formula integral (4) con dato inicial  $u_0$ .
- (Dependencia Continua). Dado  $u_0 \in H^s(\mathbb{T}^n)$  existe una vecindad V de  $u_0$  en  $H^s(\mathbb{T}^n)$  y T > 0 tal que la aplicación dato inicial solución

$$v_0 \in V \mapsto v \in C([0,T]; H^s(\mathbb{T}^n)).$$

Es continua.

**Demostración.** Dividiremos la prueba en tres partes.

i) **Existencia.** Sea  $\mathfrak{u}_0\in H^s(\mathbb{T}^n)$  con  $s>\frac{\mathfrak{n}}{2}$  arbitrario pero fijo. Veamos que existe una solución de (4) con dato inicial  $\mathfrak{u}_0$ . Si  $\mathfrak{u}_0=\mathfrak{0}$ , tomando  $\mathfrak{u}=\mathfrak{0}$  tenemos la existencia. Ahora si asumimos  $\mathfrak{u}_0\neq \mathfrak{0}$  tenemos que  $\|\mathfrak{u}_0\|_{H^s}>\mathfrak{0}$ .

# Referencias

- [1] O. Riaño. Notas de clase: Series de Fourier. UNAL, 2024.
- [2] L Grafakos. Classical Fourier Analysis. Springer, 2008.
- [3] R. J. Iorio Jr. and V. d. M. A. Iorio. *Fourier Analysis and Partial Differential Equations*, volume 70 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, Cambridge, 2001.
- [4] R. Iório Júnior and V. d. M. A. Iório. *Equações Diferenciais Parciais: Uma Introdução*. Projeto Euclides. 2001.