ACM/CS 114 Parallel algorithms for scientific applications

Michael A. G. Aïvázis

California Institute of Technology

Winter 2010

Dense matrix problems

- ▶ we'll take a look at
 - inner and outer products of two vector
 - matrix-vector and matrix-matrix multiplication
 - ► LU factorization and Cholesky decomposition
 - ► QR factorization
 - computing eigenvalues and eigenvectors
 - fast Fourier transforms
- \blacktriangleright when solving a problem of size n on p processors, we will assume
 - that p, and occasionally \sqrt{p} divides n
 - \triangleright that p is a perfect square, when forming two-dimensional process grids
 - ▶ matrices are $n \times n$ square, not rectangular
 - we are memory constrained and data replication must be minimized
- these problems have been studied extensively and form the core of scientific computing on parallel machines
 - excellent implementations available
 - interest has been revived due to the expected disruption by multi-core architectures

Vector inner product

 \blacktriangleright the inner product of two *n*-vectors *x*, *y* is given by

$$x^T y = \sum_{i=1}^n x_i y_i \tag{1}$$

which requires n multiplications and n-1 additions

- ▶ parallelization strategy:
 - ▶ *n* fine grain tasks, numbered i = 1, ..., n, that store x_i and y_i , and compute x_iy_i
 - ightharpoonup communication is a sum reduction over n fine grain tasks
 - \triangleright coarsening is achieved by coalescing n/p tasks together, assuming that each process can accommodate the data storage requirements
 - and mapping each coarse grain task to a process

Vector outer product

▶ the outer product of two *n*-vectors *x* and *y* is the $n \times n$ matrix *A* given by

$$A_{ij} = x_i y_j \tag{2}$$

which requires n^2 multiplications

- parallelization strategies are determined by the storage requirements
 - build a two-dimensional grid of n^2 fine grain tasks numbered (i, j), with i, j = 1, ..., n; each one computes $x_i y_i$
 - assuming no data replication is allowed
 - ▶ let task (i, 1) store x_i and task (1, i) store y_i
 - or, let task (i, i) store both x_i and y_i
 - either way, the task that owns each element must broadcast it to the other tasks: x_i along the ith task row, y_j along the jth task column
 - coarsening to p tasks can be accomplished by
 - ightharpoonup combining n/p rows or columns
 - forming $(n/\sqrt{p}) \times (n/\sqrt{p})$ grid of fine grain tasks
 - and each coarse grain task can be assigned to a process
- either way, naïve broadcasting of the components of x and y would require as much total memory as replication
 - storage can be reduced by circulating portions of x and y through the tasks, with each task using the available portion and passing it on

The product of a matrix with a vector

▶ given an $n \times n$ matrix A and an n-vector x, the matrix vector product yields an n-vector y whose components are given by

$$y_i = \sum_{j=1}^n A_{ij} x_j \tag{3}$$

requiring a total of n^2 multiply-add operations

- once again, the parallelization strategy is determined by how the data is distributed among fine grain tasks
 - build a two-dimensional grid of n^2 fine grain tasks numbered (i, j), with i, j = 1, ..., n; each one computes $A_{ij}x_i$
 - ▶ task (i,j) has $A_{i,j}$, but if no data replication is allowed
 - let task (i, 1) store x_i and task (1, i) store y_i
 - ightharpoonup or, let task (i, i) store both x_i and y_i
 - ▶ the task that owns x_j must broadcast it along the j^{th} task row, and y_i is formed by sum reduction along the i^{th} task column
 - ► coarsening into p tasks can be accomplished by combining n/p rows/columns, or by forming $(n/\sqrt{p}) \times (n/\sqrt{p})$ blocks
 - and each coarse grain task can be assigned to a process

Coarsening along rows or columns

- for one-dimensional coarsening into n/p task rows
 - if x is stored in one task, it must be broadcast to all others
 - if x is distributed among tasks, with n/p components per task, then multiple broadcasts are required
 - each task computes the inner product of its n/p rows of A with the entire x to produce n/p components of y
- for one-dimensional coarsening into n/p task columns
 - \triangleright n/p components of x are distributed among the tasks
 - each task computes the linear combination of its n/p columns with coefficients from its copy of x
 - since the right parts of x are already available, no communication is required
 - ▶ y is generated by a sum reduction across tasks
- ▶ these two are *duals* of each other
 - row coarsening begins with broadcast, followed by communication-free inner products
 - column coarsening begins with communication-free linear combinations, follows by a reduction

Two dimensional coarsening

- ▶ for two dimensional coarsening, we form $(n/\sqrt{p}) \times (n/\sqrt{p})$ blocks of fine grain task
 - each one holding a $(n/\sqrt{p}) \times (n/\sqrt{p})$ block of A
 - with components of x distributed either across one task row, or along the diagonal, n/p components per task
- the algorithm combines the features of row/column coarsening
 - components of x are broadcast along task columns
 - each task performs n^2/p multiplications locally and sums n/\sqrt{p} sets of products
 - sum reductions along task rows produce the components of y by combining the component products

Matrix multiplication

▶ the product of two $n \times n$ matrices A and B is an $n \times n$ matrix C given by

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} \tag{4}$$

where each one of n^2 entries requires n multiply-adds for a total of n^3 operations

- matrix multiplication can be viewed as
 - \triangleright n^2 inner products
 - \blacktriangleright the sum of *n* outer products
 - n matrix vector products
- each one produces a parallel algorithm for matrix multiplication
- but we'll explore a direct solution instead

Partitioning and communication patterns

- we build a three dimensional array of n^3 fine grain tasks
 - with i, j, k = 1, ..., n, let task (i, j, k) be responsible for computing the product $A_{ii}B_{ik}$
 - assuming no data replication, we have to distribute the data for A and B among 2n² tasks
 - ▶ suppose that task (i,j,j) holds $A_{i,j}$ and task (i,j,i) holds $B_{i,j}$
 - we will refer to tasks along i and j as task rows and columns
 - and tasks along k as layers
- ▶ the communication requirements among tasks are satisfied if we
 - broadcast the entries of the k^{th} column of A from task (i, j, j) to each task row in the k^{th} layer
 - broadcast the entries of the k^{th} row of B from task (i, j, i) to each task column of the k^{th} layer
 - ▶ form the result C_{ij} by the sum reduction of the values held by all the tasks layers k

Coarsening

- ▶ there are four natural ways to coarsen our $n \times n \times n$ fine grain tasks into p coarse grain tasks
 - by task rows: combine the $(n/p) \times n \times n$ tasks along a given task row
 - by task columns: combine the $n \times (n/p) \times n$ tasks along a given task column
 - ▶ partition the layers in a two dimensional grid by combining $(n/\sqrt{p}) \times (n/\sqrt{p}) \times n$ fine grain tasks
 - ▶ using three dimensional blocks by combining $(n/\sqrt[3]{p}) \times (n/\sqrt[3]{p}) \times (n/\sqrt[3]{p})$ tasks
- ▶ the two one dimensional coarsening strategies are similar
 - ► for row coarsening
 - each task needs only the part of A it already has, but needs all B entries
 - ▶ so global communication is required to broadcast the n^2/p entries of B held by each task
 - conversely, for column coarsening
 - each task needs only the parts of B that it already has, but it needs all of A
 - ▶ so global communication is required to broadcast the n^2/p entries of A held by each task
 - if accumulating A or B on each processor is not feasible, tasks can circulate portions of the array in a ring

Coarsening using a two dimensional grid

- block matrix multiplication has the same overall form as actual product, with scalar operations replaced by the matrix product of blocks!
- you should verify that

$$C_{ij} = \sum_{k=1}^{\sqrt{p}} A_{ik} B_{kj} \tag{5}$$

for
$$i, j = 1, \dots, \sqrt{p}$$

- ▶ assume that task (i,j) has local access to block A_{ij} and B_{ij} and computes block C_{ij} of the result
- ▶ this requires all blocks A_{ik} and B_{kj} for $k = 1, ..., \sqrt{p}$ to be communicated
 - ▶ first, a global broadcast of A blocks across each task row
 - ▶ followed by a global broadcast of *B* blocks across each task column
- memory requirements can be addressed by either of the following:
 - broadcast blocks of A across rows while circulating blocks of B across columns in lock step, so that they arrive at a given task at the same time
 - circulate blocks of A horizontally and blocks of B vertically, after an initial circular shift, so that blocks meet at a given task at the right time

