가. 커리큘럼 주요내용

o 총 960시간으로 구성

- 이론 및 실습 : 480시간

- 서브프로젝트 및 통합프로젝트 : 480시간

o 커리큘럼 구성 순서

- 이론->실습->서브프로젝트 1->실습->서브프로젝트2->이론, 실습->서브프로젝트3 ->통합프로젝트

o 커리큘럼 표

주차	구분	과정	주요학습내용	학습방법	시간
1	클라우드를 위한 네트워크 인프라	네트워크 기초	OSI 및 TCP/IP 모델 프로토콜 스펙 및 동작 네트워크 장비	이론 70% 실습 30%	40H
2		라우팅 / 스위칭 관리	정적 / 동적 라우팅 구성 STP / VLAN 구성 ACL 및 보안 구성	이론 40% 실습 60%	40H
3	클라우드를 위한 운영체제	리눅스 기초	리눅스 시스템 특징 리눅스 기본 명령 권한 및 프로세서 제어	이론 40% 실습 60%	40H
4		리눅스 관리	파일시스템 및 볼륨 관리 서비스 및 부트 절차 페키지 및 네트워크 관리	이론 40% 실습 60%	40H
5		리눅스 서비스	네트워크 인프라 관리 스토리지 관리 웹 및 DB 관리	이론 40% 실습 60%	40H
6	세미 프로젝트 1	네트워크/시스템 인프라 구현 프로젝트	네트워크 인프라 구현 시스템 인프라 구현 웹 서비스 구현	프로젝트	40H
7	클라우드 인프라 구성 및 관리	가상화 인프라 관리	서버 가상화 기본 KVM 가상화 관리 oVirt 구성 및 통합	이론 40% 실습 60%	40H

주차	구분	과정	주요학습내용	학습방법	시간
8		프라이빗 클라우드 인프라 관리	OpenStack 아키텍처 OpenStack 설치 및 구성 OpenStack 운영	이론 40% 실습 60%	40H
9		소프트웨어 정의 네트워크 관리	SDN 및 NFV 기본 OpenStack 네트워크 관리 OpenFlow 관리	이론 40% 실습 60%	40H
10		퍼블릭 클라우드 인프라 관리	퍼블릭 클라우드 아키텍처 Amazon AWS 관리 Microsoft Azure 관리	이론 40% 실습 60%	40H
11	세미 프로젝트	클라우드 인프라 구현 프로젝트	프라이빗 클라우드를 이용한 인프라 구현 또는 퍼블릭 클라우드를 이용한 인프라 구현	프로젝트	40H
12	2				40H
13	클라우드 인프라 오케스트레 이션	DevOps를 위한 컨테이너 환경 구축	DevOps 기본 Docker 컨테이너 관리 Kubernetes 클러스터	이론 40% 실습 60%	40H
14		오케스트레이션을 위한 코딩	Python 자료형, 제어문 Python 함수, 모듈, 페키지 Python을 이용한 자동화	이론 40% 실습 60%	40H
15		Infrastructure as Code(IaC)	Ansible 아키텍처 Playbook 작성 Ansible을 이용한 자동화	이론 40% 실습 60%	40H
16	세미 프로젝트 3	클라우드 인프라 오케스트레이션 프로젝트	컨테이너 및 클러스터를 이용한 DevOps 환경 구축 또는 ython 및 Ansible을 이용한 인프라 자동화 구현	프로젝트	40H
17 ~24	통합 프로젝트	산학 프로젝트 진행	팀별 별도의 산업체 연계 프로젝트 수행	프로젝트	320H

나. 통합 프로젝트 주제(안)

- * 아래 프로젝트를 세미프로젝트와 통합 프로젝트와 하위 구분 및 연계하여 진행예정
- * 프로젝트는 지속 개발예정이며 아래 책임멘토와 부멘토는 사업선정 후 운영위원회를 통해 최종 확정 예정임

NO.	주제	주요내용
1	프라이빗 클라우드 구축 프로젝트	본 프로젝트를 통해 프라이빗 클라우드 구축에 필요한 기본 인프라 환경을 설계하고 구축하며, 빈번한 반복 작업이 예상되는 프로세스를 자동화하여 효율적인 클라우드 운영 프로그램을 작성한다.
2	Kubernetes 기반의 Serverless Framework 구현과 Dashboard 적용	본 프로젝트를 통해 Kubernetes 설치를 자동화하고, AWS 의 Lamda 와 같은 Serverless Framework 구축하며, 마이크로서비스 아키텍처 프레임워크를 제공하며, 대시보드 제공을 통해 보다 완성도 있는 DevOps 운영플랫폼 인프라를 구현하고자 한다.
3	소프트웨어정의 데이터센터(SDDC) 기반 프라이빗 클라우드 보안 인프라 설계/테스트베드 구축	본 프로젝트를 통해 소프트웨어정의데이터센터(SDDC) 기반 프라이빗 클라우드 인프라와 보안 인프라에 대한 실무적 설계능력을 배양하고 테스트베드 구축을 통해 현업에서 즉시 활용 가능한 능력을 배양
4	표준컨테이너 기반 프라이빗 PaaS 클라우드 구축 프로젝트	본 프로젝트를 통해 표준 컨테이너 및 쿠버네티스에 대해 이해하고, 프라이빗 PaaS 클라우드 구축에 필요한 기본 인프라 환경을 설계하고 구축하며, 애플리케이션 개발을 위한 DevOps 환경을 포함하는 클라우드 환경을 구축한다.
5	OpenStack 을 이용한 고가용성 프라이빗 클라우드 인프라 구축	온프레미스 환경에서 OpenStack을 이용하여 프라이빗 클라우드를 구축하고, 클라우드 인프라의 고가용성 구성을 통해 안정적인 클라우드 환경에서 서비스를 운영 한다.
6	Kubernetes 클러스터 환경의 DevOps 인프라 구현	Docker 컨테이너 및 Kubernetes 클러스터를 이용하여 인프라 환경을 구현하고, DevOps 환경을 제공하기 위한 컨테이너 개발을 통해 서비스 개발부터 운영까지 통합 클라우드 환경을 제공한다.
7	컨테이너를 이용한 멀티클라우드 구축	특정 클라우드 서비스의 의존성을 줄이거나 특정 기능의 요구에 따라 클라우드를 선택하여 사용할 수 있는 멀티클라우드 환경에서 유연하게 서비스를 옮겨갈 수 있도록 멀티클라우드를 위한 컨테이너 환경을 구현한다.