Machine Learning with Python

Life is too short, You need Python

실습 내용

- Diabetes 데이터로 모델링합니다.
- KNN 알고리즘으로 모델링합니다.

1.환경 준비

• 기본 라이브러리와 대상 데이터를 가져와 이후 과정을 준비합니다.

```
In [1]: # 라이브러리 불러오기
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings

warnings.filterwarnings(action='ignore')
%config InlineBackend.figure_format='retina'
```

```
In [2]: # 데이터 읽어오기
path = 'https://raw.githubusercontent.com/jangrae/csv/master/diabetes.csv'
data = pd.read_csv(path)
```

2.데이터 이해

• 분석할 데이터를 충분히 이해할 수 있도록 다양한 탐색 과정을 수행합니다.

In [3]: # 상위 몇 개 행 확인

data.head()

Out[3]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	Diabetes Pedigree Fu	ınction	Age
	0	6	148	72	35	0	33.6		0.627	50
	1	1	85	66	29	0	26.6		0.351	31
	2	8	183	64	0	0	23.3		0.672	32
	3	1	89	66	23	94	28.1		0.167	21
	4	0	137	40	35	168	43.1		2.288	33
										•

데이터설명

피마 인디언 당뇨 데이터셋은 몇 명의 여성 피마 인디언의 진료 자료와 진단 후 5년 내 당뇨 발병 여부로 구성됨

• Pregnancies: 임신 횟수

• Glucose: 포도당 부하 검사 수치

• BloodPressure: 혈압(mm Hg)

• SkinThickness: 팔 삼두근 뒤쪽의 피하지방 측정값(mm)

• Insulin: 혈청 인슐린(mu U/ml)

• BMI: 체질량지수(체중(kg)/키(m))^2

• DiabetesPedigreeFunction: 당뇨 내력 가중치 값

• Age: 나이

• Outcome: 클래스 결정 값(0 또는 1)

diabetes

- 당뇨병(糖尿病, diabetes)은 높은 혈당 수치가 오랜 기간 지속되는 대사 질환이다.
- 혈당이 높을 때의 증상으로는 소변이 잦아지고, 갈증과 배고픔이 심해진다.
- 이를 치료하지 않으면 다른 합병증을 유발할 수 있다. (출처: 위키백과)

In [4]: # 기술통계 확인

data.describe()

24. 3. 29. 오후 5:20	. 오후 5:20 실습03_03_KNN(Diabetes)										
Out[4]:		Pregnancies	Glucose	Blood	Pressure	SkinThickness	Insulin	ВМІ	Dia	betesPedig	gr
	count	768.000000	768.000000	768	3.000000	768.000000	768.000000	768.000000			
	mean	3.845052	120.894531	69	9.105469	20.536458	79.799479	31.992578			
	std	3.369578	31.972618	19	9.355807	15.952218	115.244002	7.884160			
	min	0.000000	0.000000	(0.000000	0.000000	0.000000	0.000000			
	25%	1.000000	99.000000	62	2.000000	0.000000	0.000000	27.300000			
	50%	3.000000	117.000000	72	2.000000	23.000000	30.500000	32.000000			
	75%	6.000000	140.250000	80	0.000000	32.000000	127.250000	36.600000			
	max	17.000000	199.000000	122	2.000000	99.000000	846.000000	67.100000			
4										•	•
In [5]:		:값 개수 확인 Outcome'].va		()							
Out[5]:	1 2	e 00 68 count, dtype	: int64								
In [6]:	# 상관관계 확인 data.corr(numeric_only=True)										
Out[6]:			Preg	nancies	Glucose	BloodPressur	e SkinThick	ness Ins	ulin	ВМІ	C
		Pregna	ncies 1	.000000	0.129459	0.14128	2 -0.08	1672 -0.073	535	0.017683	
		Gle	ucose 0	.129459	1.000000	0.15259	0 0.05	7328 0.331	357	0.221071	
		BloodPre	ssure 0	.141282	0.152590	1.00000	0 0.20	7371 0.088	933	0.281805	
		SkinThic	kness -0	.081672	0.057328	0.20737	1 1.00	0000 0.436	783	0.392573	
		lı	nsulin -0	.073535	0.331357	0.08893	3 0.43	6783 1.000	0000	0.197859	
			BMI 0	.017683	0.221071	0.28180	5 0.39	2573 0.197	859	1.000000	
	Diabete	es Pedigree Fun	-0	.033523	0.137337	0.04126	5 0.18	3928 0.185	071	0.140647	
			Age 0	.544341	0.263514	0.23952	8 -0.11	3970 -0.042	163	0.036242	
		Out	come 0	.221898	0.466581	0.06506	8 0.07	4752 0.130)548	0.292695	

3.데이터 준비

• 전처리 과정을 통해 머신러닝 알고리즘에 사용할 수 있는 형태의 데이터를 준비합니다.

1) x, y 분리

```
In [7]: # target 확인
target = 'Outcome'

# 데이터 분리
x = data.drop(target, axis=1)
y = data.loc[:, target]
```

2) 학습용, 평가용 데이터 분리

```
In [8]: # 모듈 불러오기
from sklearn.model_selection import train_test_split

# 7:3으로 분리
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=1)
```

```
In [9]: plt.boxplot(x_train, vert=False, labels=list(x))
    plt.show()
```


3) 정규화

```
In [29]: # 모듈 불러오기
from sklearn.preprocessing import MinMaxScaler

# 정규화
scaler = MinMaxScaler()
scaler.fit(x_train)
x_train_s = scaler.transform(x_train)
x_test_s = scaler.transform(x_test)

In [30]: plt.boxplot(x_train_s, vert=False, labels=list(x))
plt.show()
```


4.모델링

• 본격적으로 모델을 선언하고 학습하고 평가하는 과정을 진행합니다.

```
In [31]:
          # 1단계: 불러오기
          from sklearn.neighbors import KNeighborsClassifier
          from sklearn.metrics import mean_absolute_error, r2_score
          # 2단계: 선언하기
In [32]:
          model = KNeighborsClassifier()
          # 3단계: 학습하기
In [33]:
          model.fit(x_train, y_train)
Out[33]:
          ▼ KNeighborsClassifier
         KNeighborsClassifier()
          # 정규화 전
 In [ ]:
In [34]:
          # 4단계 예측하기
          y_pred = model.predict(x_test)
         # 5단계: 평가하기
In [35]:
          print('MAE:', mean_absolute_error(y_test, y_pred))
          print('R2:', r2_score(y_test, y_pred))
         MAE: 0.22943722943722944
         R2: 0.013456889605157452
          # 정규화 후
 In [ ]:
```

```
In [36]: # 4단계 예측하기
y_pred = model.predict(x_test_s)

In [37]: # 5단계: 평가하기
print('MAE:', mean_absolute_error(y_test, y_pred))
print('R2:', r2_score(y_test, y_pred))

MAE: 0.36796536796536794
R2: -0.5821917808219172

In []:
```