Max.Marks:75

Time: 3hrs

Vidya Jyothi Institute of Technology (Autonomous) 1 (Corredited by NAAC & NBA, Approved By A.I.C.T.E., New Delhi, Permanently Affiliated to JNTU, Hyderabad)

(Aziz Nagar, C.B.Post, Hyderabad -500075) Subject code: A21002

I B. Tech I SEM REGULAR EXAMINATION - DECEMBER 2018 **MATHEMATICS-I**

(COMMON TO CE, EEE, MECH, ECE, CSE AND IT)

	s question paper contains two PARTS A and B.	
	RTA is compulsory which carries 25 marks. Answer all questions. RTB consists of 5 questions. Answer all the questions.	
PART - A		
ANSWE	R ALL THE QUESTIONS	25 M
	Define unitary matrix.	2M
	Define rank of the matrix	3M 2M
3. I	Define Eigen value and Eigen vector of a matrix	3M
4. I 5. S	Find the nature, index and signature of the quadratic form $2x^2 + 2y^2 + 2z^2 + 2yz$ State Limit comparison test	2M
	Test the series $\sum u_n$ whose nth term is $\frac{1}{(4n^2-1)}$	3M
		2M
	State Rolle's theorem.	3M
0.	Show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$	2M
	If $x = r \cos \theta, y = r \sin \theta$, find $\frac{\partial(x,y)}{\partial(r,\theta)}$	
10.	Write the procedure to find maximum and minimum values of a function of two	3M
. ,	variables.	
PART-B		
ANSWER ALL THE QUESTIONS 5QXIOM=50M		
11.i)	$\begin{pmatrix} -1 & 2 & 1 & 8 \\ 2 & 1 & 1 & 0 \end{pmatrix}$ by reducing it in to eahelon form	5M
	a) Find the rank of $A = \begin{pmatrix} -1 & 2 & 1 & 8 \\ 2 & 1 & -1 & 0 \\ 3 & 2 & 1 & 7 \end{pmatrix}$ by reducing it in to echelon form.	
	b) Prove that the following set of equations are consistent $3x + 3y + 2z = 1$;	5M
	x + 2y = 4; $10y + 3z = -2$; $2x - 3y - z = 5$	
	OR	
ii)	a) Find the rank of the matrix $A = \begin{bmatrix} 0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 2 & 1 \end{bmatrix}$ by reducing it to normal form	5Mí
	a) Find the rank of the matrix $A = \begin{bmatrix} 4 & 0 & 2 & 0 \\ 2 & 1 & 3 & 1 \end{bmatrix}$	
	b) Show that the equations $x - 4y + 7z = 14$; $3x + 8y - 2z = 13$;	5M
	7x - 8y + 26z = 5 are not consistent.	
12.i)	a) Find the Eigen values and the corresponding Eigen vectors of the matrix	10M
	$\begin{vmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & 4 & 2 \end{vmatrix}$	
	$\begin{bmatrix} 2 & -4 & 3 \end{bmatrix}$	
	OR	
ii)	Determine the modal matrix P of $A = \begin{pmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{pmatrix}$. Verify that $P^{-\prime}AP$ is a	10M
	Determine the modal matrix P of $A = \begin{pmatrix} 2 & 1 & -6 \\ -1 & -2 & 0 \end{pmatrix}$. Verify that P AP is a	
	diagonal matrix.	
13.i)	a) Discuss the convergence of $\sum \frac{x^{2n}}{(n+2)\sqrt{(n+1)}}$, $(x>0)$	5M
	b) Examine the following series for absolute and conditional convergence $\frac{1}{5\sqrt{2}}$	5M
	$\frac{1}{5\sqrt{3}} + \frac{1}{5\sqrt{4}} - \dots + (-1)^n \frac{1}{5\sqrt{n}} + \dots$	

ii)

Test the convergence of the series

$$\frac{1}{2} + \frac{1.3}{2.4} + \frac{1.3.5}{2.4.6} + ----$$

10M

14.i) Prove that by using Lagrange's Mean Value theorem

10M

$$\frac{b-a}{\sqrt{(1-a^2)}} < Sin^{-1}b - Sin^{-1}a < \frac{b-a}{\sqrt{(1-b^2)}}$$

and hence deduce that $\frac{\pi}{6} - \frac{1}{2\sqrt{3}} < \sin^{-1} \frac{1}{4} < \frac{\pi}{6} - \frac{1}{\sqrt{15}}$

OR

ii) Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$

10M

15.i) a) Find the maximum and minimum values of the function $f(x,y) = x^3y^2(1-x-y)$

5M

b) If $u = x^2 - 2y$; v = x + y + z; w = x - 2y + 3z find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$

5M

OR

ii) A rectangular box open at the top is to have volume of 32 cubic ft. Find the dimensions of the box requiring least material for its construction.

VJIT(A)