2.25 Test: Polynomial and rational expressions

A2.A.APR.6

1. The expression $\frac{x^4 - 5x^2 + 4x + 14}{x + 2}$ is equivalent to

(a)
$$x^3 - 2x^2 - x + 6 + \frac{2}{x+2}$$

(b)
$$x^3 - 5x + 4 - \frac{14}{x+2}$$

(c)
$$x^3 + 2x^2 - x + 2 + \frac{18}{x+2}$$

(d)
$$x^3 + 2x^2 - 9x + 22 - \frac{30}{x+2}$$

2. What is the solution set of the equation $\frac{x+2}{x} + \frac{x}{3} = \frac{2x^2+6}{3x}$?

(a)
$$\{-3\}$$

(b)
$$\{-3,0\}$$

(d)
$$\{0,3\}$$

3. Which equation represents a polynomial identity?

(a)
$$x^3 + y^3 = (x+y)^3$$

(b)
$$x^3 + y^3 = (x+y)(x^2 - xy + y^2)$$

(c)
$$x^3 + y^3 = (x+y)(x^2 - xy - y^2)$$

(d)
$$x^3 + y^3 = (x - y)(x^2 + xy + y^2)$$

4. Use polynomial long division

(A.APR.6 Rewrite rational expressions)

to find an expression of the form $ax^2 + bx + c + \frac{d}{x+e}$ with a, b, c, d, e integers that is equivalent to $\frac{x^3 + 9x^2 - 5x - 90}{x+4}$ for $x \neq -4$.

5. Solve algebraically for n: $\frac{2}{n^2} + \frac{3}{n} = \frac{4}{n^2}$

A2-APR.1 Perform operations with polynomials

6. Find the sum in standard form $(4x^4 + 5x^3 + 3x^2 - 4) + (x^4 - 2x^3 - 2x^2 - x + 1)$.

- 7. Which expression is equivalent to $(x+2)^2 5(x+2) + 6$?
 - (a) x(x+1)
 - (b) (x-3)(x+2)
 - (c) (x-4)(x+3)
 - (d) (x-6)(x+1)

8. Write the expression $A(x) \cdot B(x) - 3C(x)$ as a polynomial in standard form.

$$A(x) = x^3 + 2x - 1$$

$$B(x) = x^2 + 7$$

$$C(x) = x^4 - 5x$$

9. Stone Manufacturing has developed a cost model, $C(x) = 0.18x^3 + 0.02x^2 + 4x + 180$, where x is the number of sprockets sold, in thousands. The sale price can be modeled by S(x) = 95.4 - 6x and the company's revenue by $R(x) = x \cdot S(x)$. The company profits, R(x) - C(x), could be modeled by

(a)
$$0.18x^3 + 6.02x^2 + 91.4x + 180$$

(b)
$$0.18x^3 - 5.98x^2 - 91.4x + 180$$

(c)
$$-0.18x^3 - 6.02x^2 + 91.4x - 180$$

(d)
$$0.18x^3 + 5.98x^2 + 99.4x + 180$$

10. Given the rational function $r(x) = \frac{x+3}{x-2} - 3$.

(F.IF.7d Graph rational functions)

- (a) Sketch a graph of the function.
- (b) Mark the vertical asymptote as dotted line and label it with its equation.
- (c) Explain why the asymptote is located there.

A2-F.IF.7c Graph polynomials, identify zeros, end behavior

11. The polynomial f(x) and linear function g(x) are graphed below.

- (b) Is the leading coefficient of f(x) positive, negative, or zero?
- (c) If the polynomial f(x) is written as the product of linear factors, what factor would be squared?
- (d) Write down the three solutions to f(x) = g(x) as ordered pairs.

A2-F.BF.2 Write arithmetic and geometric sequences with recursive formulas

12. Write a recursive definition of the sequence $a_1 = 2$, $a_2 = 6$, $a_3 = 18$, $a_4 = 54$, ...