Miruna Oprescu

 ♦ New York, NY
 ⋈ amo78@cornell.edu
 ♦ mirunaoprescu.com
 in antonia-miruna-oprescu

Summary

I design machine learning algorithms for causal inference, reinforcement learning, and data-driven decision-making under uncertainty. My work tackles fundamental challenges including imperfect compliance in experiments, robustness to unobserved or limited data, off-policy evaluation, and learning from structured datasets such as spatiotemporal and networked data. My overarching goal is to develop trustworthy and effective models for high-stakes applications in healthcare, scientific research, and AI-assisted decision-making.

Education

Cornell University (Cornell Tech)

Fall 2021 - Present

Ph.D. Candidate in Computer Science. Advisor: Nathan Kallus M.S. in Computer Science (2024, awarded en route to Ph.D.) Department of Energy Computational Science Graduate Fellow

Harvard University 2011 – 2015

Joint A.B. degree in Physics and Mathematics. Minor in Computer Science Cum laude in field with High Honors in Physics and Mathematics

Experience

Machine Learning Research Intern

Summer 2025

Netflix, New York City, NY

• Building causal models of user engagement and retention, with applications to content value and membership dynamics. Mentors: David Hubbard, Yonatan Gur.

Research Intern Summer 2024

Brookhaven National Laboratory, Brookhaven, NY

o Developed causal inference methods for spatiotemporal applications in Earth Science. Mentor: Shinjae Yoo.

Machine Learning Research Intern

Summer 2022

Netflix, Los Gatos, CA

• Built a causal ML model for estimating the effect of watching a new title on long-term user engagement. Mentors: Sudeep Das, Aish Fenton.

Senior Data and Applied Scientist

2017 - 2021

Microsoft Research, Cambridge, MA

- o Drove core research in causal ML, weather forecasting, and cancer modeling; results published in top venues.
- Core contributor to the EconML library.

Software Development Engineer

2015 - 2017

Microsoft, Cambridge, MA

• Developed and published scalable ML algorithms as a core contributor to the MMLSpark library.

Selected Publications

† equal contribution, ‡ alphabetical authors. Full publication list available on Google Scholar.

- [1] **Miruna Oprescu**, Brian M Cho, and Nathan Kallus. Efficient adaptive experimentation with non-compliance. *Advances in Neural Information Processing Systems*, 2025. To appear.
- [2] Miruna Oprescu, David K Park, Xihaier Luo, Shinjae Yoo, and Nathan Kallus. Gst-unet: A neural framework for spatiotemporal causal inference with time-varying confounding. Advances in Neural Information Processing Systems, 2025. To appear.

- [3] Miruna Oprescu and Nathan Kallus. Estimating heterogeneous treatment effects by combining weak instruments and observational data. Advances in Neural Information Processing Systems, 37:118777–118806, 2025.
- [4] Andrew Bennett, Nathan Kallus, Miruna Oprescu[†], Wen Sun, and Kaiwen Wang[†]. Efficient and sharp off-policy evaluation in robust markov decision processes. Advances in Neural Information Processing Systems, 37:112962–113000, 2025.
- [5] Miruna Oprescu, Jacob Dorn, Marah Ghoummaid, Andrew Jesson, Nathan Kallus, and Uri Shalit. B-learner: Quasi-oracle bounds on heterogeneous causal effects under hidden confounding. In *Proceedings of the 40th International Conference on Machine Learning*, pages 26599–26618. PMLR, 2023.
- [6] Nathan Kallus[†] and **Miruna Oprescu**[†]. Robust and agnostic learning of conditional distributional treatment effects. In *International Conference on Artificial Intelligence and Statistics*, pages 6037–6060. PMLR, 2023.
- [7] Keith Battocchi[†], Eleanor Dillon[†], Maggie Hei[†], Greg Lewis[†], **Miruna Oprescu**[†], and Vasilis Syrgkanis[†]. Estimating the long-term effects of novel treatments. Advances in Neural Information Processing Systems, 34:2925–2935, 2021.
- [8] Miruna Oprescu[†], Vasilis Syrgkanis[†], and Zhiwei Steven Wu[†]. Orthogonal random forest for causal inference. In *International Conference on Machine Learning*, pages 4932–4941. PMLR, 2019.
- [9] Vasilis Syrgkanis, Victor Lei, Miruna Oprescu, Maggie Hei, Keith Battocchi, and Greg Lewis. Machine learning estimation of heterogeneous treatment effects with instruments. Advances in Neural Information Processing Systems, 32:15193–15202, 2019. Spotlight presentation.
- [10] Miruna Oprescu[†], Vasilis Syrgkanis[†], Keith Battocchi[†], Maggie Hei[†], and Greg Lewis[†]. EconML: A Machine Learning Library for Estimating Heterogeneous Treatment Effects. In CausalML Workshop, NeurIPS, 2019. Spotlight presentation.

Talks

- o Causal Inference for Spatiotemporal Interventions, SIAM CSE, 2025.
- Reliable Treatment Effect Estimation Using Weak Instruments and Observational Data, Workshop in Operations Research and Data Science (WORDS), Duke University, 2024.
- Uncertainty Quantification in Causal Inference: Sharp and Efficient Bounds on Heterogeneous Causal Effects Under Hidden Confounding, Computational Science Seminar, Brookhaven National Lab, 2023.
- o Causal Inference and Machine Learning in Practice with EconML and CausalML, SIGKDD, 2021.
- EconML: A Machine Learning Library for Estimating Heterogeneous Treatment Effects, ODSC East, 2019.
- o MMLSpark: Lessons from Building a SparkML Compatible Machine Learning Library, Spark Summit, 2017.

Honors & Awards

o Department of Energy Computational Science Graduate Fellowship	2022-2026
o DOE Communicate Your Science & Engineering (CYSE) Award	2025
o Meta PhD Research Fellowship Finalist	2022
o Cum laude, Harvard University	2015
• High Honors, Harvard Physics Department	2015
o Derek C. Bok Award for Distinction in Teaching (Data Science), Harvard	2014

Professional Service

o Director, Summer Science Program (SSP)	2023–Present
• Reviewer, NeurIPS	2021–2025
• Reviewer, ICML	2024–2025
• Reviewer, AISTATS	2024

Teaching

• Teaching Assistant, Cornell University	
 Learning, Inference, and Decision Making from Data 	Spring 2022
- Applied Machine Learning	Fall 2021
\circ Teaching Fellow, Harvard University	
 Mechanics and Special Relativity 	Fall 2014
- Data Science	Fall 2014
 Linear Algebra and Real Analysis 	Spring 2013
– Algebra I	Fall 2013