Linear Equations in Linear Algebra

Introductory Example

LINEAR MODELS IN ECONOMICS AND ENGINEERING

It was late summer in 1949. Harvard Professor Wassily Leontief was carefully feeding the last of his punched cards into the university's Mark II computer. The cards contained information about the U.S. economy and represented a summary of more than 250,000 pieces of information produced by the U.S. Bureau of Labor Statistics after two years of intensive work. Leontief had divided the U.S. economy into 500 "sectors," such as the coal industry, the automotive industry, communications, and so on. For each sector, he had written a linear equation that described how the sector distributed its output to the other sectors of the economy. Because the Mark II, one of the largest computers of its day, could not handle the resulting system of 500 equations in 500 unknowns, Leontief had distilled the problem into a system of 42 equations in 42 unknowns.

Programming the Mark II computer for Leontief's 42 equations had required several months of effort, and he was anxious to see how long the computer would take to solve the problem. The Mark II hummed and blinked for 56 hours before finally producing a solution. We will discuss the nature of this solution in Sections 1.6 and 2.6.

Leontief, who was awarded the 1973 Nobel Prize in Economic Science, opened the door to a new era in mathematical modeling in economics. His efforts at Harvard in 1949 marked one of the first significant uses of computers to analyze what was then a large-scale

mathematical model. Since that time, researchers in many other fields have employed computers to analyze mathematical models. Because of the massive amounts of data involved, the models are usually *linear*; that is, they are described by *systems of linear equations*.

The importance of linear algebra for applications has risen in direct proportion to the increase in computing power, with each new generation of hardware and software triggering a demand for even greater capabilities. Computer science is thus intricately linked with linear algebra through the explosive growth of parallel processing and large-scale computations.

Scientists and engineers now work on problems far more complex than even dreamed possible a few decades ago. Today, linear algebra has more potential value for students in many scientific and business fields than any other undergraduate mathematics subject! The material in this text provides the foundation for further work in many interesting areas. Here are a few possibilities; others will be described later.

Oil exploration. When a ship searches for offshore
oil deposits, its computers solve thousands of
separate systems of linear equations every day.
The seismic data for the equations are obtained
from underwater shock waves created by explosions
from air guns. The waves bounce off subsurface

rocks and are measured by geophones attached to mile-long cables behind the ship.

- Linear programming. Many important management decisions today are made on the basis of linear programming models that use hundreds of variables. The airline industry, for instance, employs linear programs that schedule flight crews, monitor the locations of aircraft, or plan the varied schedules of support services such as maintenance and terminal operations.
- Electrical networks. Engineers use simulation software to design electrical circuits and microchips involving millions of transistors. Such software

- relies on linear algebra techniques and systems of linear equations.
- Artificial intelligence. Linear algebra plays a key role in everything from scrubbing data to facial recognition.
- Signals and signal processing. From a digital
 photograph to the daily price of a stock, important
 information is recorded as a signal and processed
 using linear transformations.
- Machine learning. Machines (specifically computers) use linear algebra to learn about anything from online shopping preferences to speech recognition.

Systems of linear equations lie at the heart of linear algebra, and this chapter uses them to introduce some of the central concepts of linear algebra in a simple and concrete setting. Sections 1.1 and 1.2 present a systematic method for solving systems of linear equations. This algorithm will be used for computations throughout the text. Sections 1.3 and 1.4 show how a system of linear equations is equivalent to a *vector equation* and to a *matrix equation*. This equivalence will reduce problems involving linear combinations of vectors to questions about systems of linear equations. The fundamental concepts of spanning, linear independence, and linear transformations, studied in the second half of the chapter, will play an essential role throughout the text as we explore the beauty and power of linear algebra.

1.1 Systems of Linear Equations

A **linear equation** in the variables x_1, \ldots, x_n is an equation that can be written in the form

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = b \tag{1}$$

where b and the **coefficients** a_1, \ldots, a_n are real or complex numbers, usually known in advance. The subscript n may be any positive integer. In textbook examples and exercises, n is normally between 2 and 5. In real-life problems, n might be 50 or 5000, or even larger.

The equations

$$4x_1 - 5x_2 + 2 = x_1$$
 and $x_2 = 2(\sqrt{6} - x_1) + x_3$

are both linear because they can be rearranged algebraically as in equation (1):

$$3x_1 - 5x_2 = -2$$
 and $2x_1 + x_2 - x_3 = 2\sqrt{6}$

The equations

$$4x_1 - 5x_2 = x_1x_2$$
 and $x_2 = 2\sqrt{x_1} - 6$

are not linear because of the presence of x_1x_2 in the first equation and $\sqrt{x_1}$ in the second.

A system of linear equations (or a linear system) is a collection of one or more linear equations involving the same variables—say, x_1, \ldots, x_n . An example is

$$2x_1 - x_2 + 1.5x_3 = 8$$

$$x_1 - 4x_3 = -7$$
(2)

A **solution** of the system is a list (s_1, s_2, \ldots, s_n) of numbers that makes each equation a true statement when the values s_1, \ldots, s_n are substituted for x_1, \ldots, x_n , respectively. For instance, (5, 6.5, 3) is a solution of system (2) because, when these values are substituted in (2) for x_1, x_2, x_3 , respectively, the equations simplify to 8 = 8 and -7 = -7.

The set of all possible solutions is called the **solution set** of the linear system. Two linear systems are called **equivalent** if they have the same solution set. That is, each solution of the first system is a solution of the second system, and each solution of the second system is a solution of the first.

Finding the solution set of a system of two linear equations in two variables is easy because it amounts to finding the intersection of two lines. A typical problem is

$$x_1 - 2x_2 = -1$$
$$-x_1 + 3x_2 = 3$$

The graphs of these equations are lines, which we denote by ℓ_1 and ℓ_2 . A pair of numbers (x_1, x_2) satisfies both equations in the system if and only if the point (x_1, x_2) lies on both ℓ_1 and ℓ_2 . In the system above, the solution is the single point (3, 2), as you can easily verify. See Figure 1.

FIGURE 1 Exactly one solution.

Of course, two lines need not intersect in a single point—they could be parallel, or they could coincide and hence "intersect" at every point on the line. Figure 2 shows the graphs that correspond to the following systems:

(a)
$$x_1 - 2x_2 = -1$$

 $-x_1 + 2x_2 = 3$
 (b) $x_1 - 2x_2 = -1$
 $-x_1 + 2x_2 = 1$

Figures 1 and 2 illustrate the following general fact about linear systems, to be verified in Section 1.2.

FIGURE 2 (a) No solution. (b) Infinitely many solutions.

A system of linear equations has

- 1. no solution, or
- 2. exactly one solution, or
- **3.** infinitely many solutions.

A system of linear equations is said to be **consistent** if it has either one solution or infinitely many solutions; a system is **inconsistent** if it has no solution.

Matrix Notation

The essential information of a linear system can be recorded compactly in a rectangular array called a **matrix**. Given the system

$$x_1 - 2x_2 + x_3 = 0$$

$$2x_2 - 8x_3 = 8$$

$$5x_1 - 5x_3 = 10$$
(3)

with the coefficients of each variable aligned in columns, the matrix

$$\begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & -8 \\ 5 & 0 & -5 \end{bmatrix}$$

is called the **coefficient matrix** (or **matrix of coefficients**) of the system (3), and the matrix

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 5 & 0 & -5 & 10 \end{bmatrix}$$
 (4)

is called the **augmented matrix** of the system. (The second row here contains a zero because the second equation could be written as $0 \cdot x_1 + 2x_2 - 8x_3 = 8$.) An augmented matrix of a system consists of the coefficient matrix with an added column containing the constants from the respective right sides of the equations.

The **size** of a matrix tells how many rows and columns it has. The augmented matrix (4) above has 3 rows and 4 columns and is called a 3×4 (read "3 by 4") matrix. If m and n are positive integers, an $m \times n$ matrix is a rectangular array of numbers with m rows and n columns. (The number of rows always comes first.) Matrix notation will simplify the calculations in the examples that follow.

Solving a Linear System

This section and the next describe an algorithm, or a systematic procedure, for solving linear systems. The basic strategy is to replace one system with an equivalent system (that is one with the same solution set) that is easier to solve.

Roughly speaking, use the x_1 term in the first equation of a system to eliminate the x_1 terms in the other equations. Then use the x_2 term in the second equation to eliminate the x_2 terms in the other equations, and so on, until you finally obtain a very simple equivalent system of equations.

Three basic operations are used to simplify a linear system: Replace one equation by the sum of itself and a multiple of another equation, interchange two equations, and multiply all the terms in an equation by a nonzero constant. After the first example, you will see why these three operations do not change the solution set of the system.

EXAMPLE 1 Solve system (3).

SOLUTION The elimination procedure is shown here with and without matrix notation, and the results are placed side by side for comparison:

$$x_1 - 2x_2 + x_3 = 0
2x_2 - 8x_3 = 8
5x_1 - 5x_3 = 10$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 5 & 0 & -5 & 10 \end{bmatrix}$$

Keep x_1 in the first equation and eliminate it from the other equations. To do so, add -5 times equation 1 to equation 3. After some practice, this type of calculation is usually performed mentally:

$$\begin{array}{lll}
-5 \cdot [\text{equation 1}] & -5x_1 + 10x_2 - 5x_3 = 0 \\
+ [\text{equation 3}] & 5x_1 - 5x_3 = 10 \\
\hline
[\text{new equation 3}] & 10x_2 - 10x_3 = 10
\end{array}$$

The result of this calculation is written in place of the original third equation:

$$x_1 - 2x_2 + x_3 = 0 2x_2 - 8x_3 = 8 10x_2 - 10x_3 = 10$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 0 & 10 & -10 & 10 \end{bmatrix}$$

Now, multiply equation 2 by $\frac{1}{2}$ in order to obtain 1 as the coefficient for x_2 . (This calculation will simplify the arithmetic in the next step.)

$$x_1 - 2x_2 + x_3 = 0 x_2 - 4x_3 = 4 10x_2 - 10x_3 = 10$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 10 & -10 & 10 \end{bmatrix}$$

Use the x_2 in equation 2 to eliminate the $10x_2$ in equation 3. The "mental" computation is

$$\begin{array}{rrr}
-10 \cdot [\text{equation 2}] & -10x_2 + 40x_3 = -40 \\
+ [\text{equation 3}] & 10x_2 - 10x_3 = 10 \\
\hline
[\text{new equation 3}] & 30x_3 = -30
\end{array}$$

The result of this calculation is written in place of the previous third equation (row):

$$x_1 - 2x_2 + x_3 = 0 x_2 - 4x_3 = 4 30x_3 = -30$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 30 & -30 \end{bmatrix}$$

Now, multiply equation 3 by $\frac{1}{30}$ in order to obtain 1 as the coefficient for x_3 . (This calculation will simplify the arithmetic in the next step.)

$$x_1 - 2x_2 + x_3 = 0$$

$$x_2 - 4x_3 = 4$$

$$x_3 = -1$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

The new system has a *triangular* form (the intuitive term *triangular* will be replaced by a precise term in the next section):

$$x_1 - 2x_2 + x_3 = 0 x_2 - 4x_3 = 4 x_3 = -1$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Eventually, you want to eliminate the $-2x_2$ term from equation 1, but it is more efficient to use the x_3 in equation 3 first, to eliminate the $-4x_3$ and $+x_3$ terms in equations 2 and 1. The two "mental" calculations are

It is convenient to combine the results of these two operations:

Now, having cleaned out the column above the x_3 in equation 3, move back to the x_2 in equation 2 and use it to eliminate the $-2x_2$ above it. Because of the previous work with x_3 , there is now no arithmetic involving x_3 terms. Add 2 times equation 2 to equation 1 and obtain the system:

$$\begin{array}{ccccc}
x_1 & = & 1 & & \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ x_3 & = & -1 & & \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}
\end{array}$$

The work is essentially done. It shows that the only solution of the original system is (1,0,-1). However, since there are so many calculations involved, it is a good practice to check the work. To verify that (1,0,-1) is a solution, substitute these values into the left side of the original system, and compute:

$$1(1) - 2(0) + 1(-1) = 1 - 0 - 1 = 0$$

$$2(0) - 8(-1) = 0 + 8 = 8$$

$$5(1) - 5(-1) = 5 + 5 = 10$$

The results agree with the right side of the original system, so (1, 0, -1) is a solution of the system.

Example 1 illustrates how operations on equations in a linear system correspond to operations on the appropriate rows of the augmented matrix. The three basic operations listed earlier correspond to the following operations on the augmented matrix.

- 1. (Replacement) Replace one row by the sum of itself and a multiple of another row.1
- 2. (Interchange) Interchange two rows.
- **3.** (Scaling) Multiply all entries in a row by a nonzero constant.

Each of the original equations determines a plane in three-dimensional space. The point (1,0,-1) lies in all three planes.

¹ A common paraphrase of row replacement is "Add to one row a multiple of another row."

Row operations can be applied to any matrix, not merely to one that arises as the augmented matrix of a linear system. Two matrices are called **row equivalent** if there is a sequence of elementary row operations that transforms one matrix into the other.

It is important to note that row operations are reversible. If two rows are interchanged, they can be returned to their original positions by another interchange. If a row is scaled by a nonzero constant c, then multiplying the new row by 1/c produces the original row. Finally, consider a replacement operation involving two rows—say, rows 1 and 2—and suppose that c times row 1 is added to row 2 to produce a new row 2. To "reverse" this operation, add -c times row 1 to (new) row 2 and obtain the original row 2. See Exercises 39–42 at the end of this section.

At the moment, we are interested in row operations on the augmented matrix of a system of linear equations. Suppose a system is changed to a new one via row operations. By considering each type of row operation, you can see that any solution of the original system remains a solution of the new system. Conversely, since the original system can be produced via row operations on the new system, each solution of the new system is also a solution of the original system. This discussion justifies the following statement.

If the augmented matrices of two linear systems are row equivalent, then the two systems have the same solution set.

Though Example 1 is lengthy, you will find that after some practice, the calculations go quickly. Row operations in the text and exercises will usually be extremely easy to perform, allowing you to focus on the underlying concepts. Still, you must learn to perform row operations accurately because they will be used throughout the text.

The rest of this section shows how to use row operations to determine the size of a solution set, without completely solving the linear system.

Existence and Uniqueness Questions

Section 1.2 will show why a solution set for a linear system contains either no solutions, one solution, or infinitely many solutions. Answers to the following two questions will determine the nature of the solution set for a linear system.

To determine which possibility is true for a particular system, we ask two questions.

TWO FUNDAMENTAL QUESTIONS ABOUT A LINEAR SYSTEM

- 1. Is the system consistent; that is, does at least one solution exist?
- **2.** If a solution exists, is it the *only* one; that is, is the solution *unique*?

These two questions will appear throughout the text, in many different guises. This section and the next will show how to answer these questions via row operations on the augmented matrix.

EXAMPLE 2 Determine if the following system is consistent:

$$x_1 - 2x_2 + x_3 = 0$$
$$2x_2 - 8x_3 = 8$$
$$5x_1 - 5x_3 = 10$$

SOLUTION This is the system from Example 1. Suppose that we have performed the row operations necessary to obtain the triangular form

$$x_1 - 2x_2 + x_3 = 0$$

$$x_2 - 4x_3 = 4$$

$$x_3 = -1$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

At this point, we know x_3 . Were we to substitute the value of x_3 into equation 2, we could compute x_2 and hence could determine x_1 from equation 1. So a solution exists; the system is consistent. (In fact, x_2 is uniquely determined by equation 2 since x_3 has only one possible value, and x_1 is therefore uniquely determined by equation 1. So the solution is unique.)

EXAMPLE 3 Determine if the following system is consistent:

$$x_2 - 4x_3 = 8$$

$$2x_1 - 3x_2 + 2x_3 = 1$$

$$4x_1 - 8x_2 + 12x_3 = 1$$
(5)

SOLUTION The augmented matrix is

$$\begin{bmatrix} 0 & 1 & -4 & 8 \\ 2 & -3 & 2 & 1 \\ 4 & -8 & 12 & 1 \end{bmatrix}$$

To obtain an x_1 in the first equation, interchange rows 1 and 2:

$$\begin{bmatrix} 2 & -3 & 2 & 1 \\ 0 & 1 & -4 & 8 \\ 4 & -8 & 12 & 1 \end{bmatrix}$$

To eliminate the $4x_1$ term in the third equation, add -2 times row 1 to row 3:

$$\begin{bmatrix} 2 & -3 & 2 & 1 \\ 0 & 1 & -4 & 8 \\ 0 & -2 & 8 & -1 \end{bmatrix}$$
 (6)

Next, use the x_2 term in the second equation to eliminate the $-2x_2$ term from the third equation. Add 2 times row 2 to row 3:

$$\begin{bmatrix} 2 & -3 & 2 & 1 \\ 0 & 1 & -4 & 8 \\ 0 & 0 & 0 & 15 \end{bmatrix} \tag{7}$$

The augmented matrix is now in triangular form. To interpret it correctly, go back to equation notation:

$$2x_1 - 3x_2 + 2x_3 = 1$$

$$x_2 - 4x_3 = 8$$

$$0 = 15$$
(8)

The equation 0 = 15 is a short form of $0x_1 + 0x_2 + 0x_3 = 15$. This system in triangular form obviously has a built-in contradiction. There are no values of x_1, x_2, x_3 that satisfy (8) because the equation 0 = 15 is never true. Since (8) and (5) have the same solution set, the original system is inconsistent (it has no solution).

Pay close attention to the augmented matrix in (7). Its last row is typical of an inconsistent system in triangular form.

The system is inconsistent because there is no point that lies on all three planes.

Reasonable Answers

Once you have one or more solutions to a system of equations, remember to check your answer by substituting the solution you found back into the original equation. For example, if you found (2, 1, -1) was a solution to the system of equations

$$x_1 - 2x_2 + x_3 = 2$$

 $x_1 - 2x_3 = -2$
 $x_2 + x_3 = 3$

you could substitute your solution into the original equations to get

It is now clear that there must have been an error in your original calculations. If upon rechecking your arithmetic, you find the answer (2, 1, 2), you can see that

$$2 - 2(1) + (2) = 2 = 2$$

 $2 - 2(2) = -2 = -2$
 $1 + 2 = 3 = 3$

and you can now be confident you have a correct solution to the given system of equations.

Numerical Note

In real-world problems, systems of linear equations are solved by a computer. For a square coefficient matrix, computer programs nearly always use the elimination algorithm given here and in Section 1.2, modified slightly for improved accuracy.

The vast majority of linear algebra problems in business and industry are solved with programs that use *floating point arithmetic*. Numbers are represented as decimals $\pm .d_1 \cdots d_p \times 10^r$, where r is an integer and the number p of digits to the right of the decimal point is usually between 8 and 16. Arithmetic with such numbers typically is inexact, because the result must be rounded (or truncated) to the number of digits stored. "Roundoff error" is also introduced when a number such as 1/3 is entered into the computer, since its decimal representation must be approximated by a finite number of digits. Fortunately, inaccuracies in floating point arithmetic seldom cause problems. The numerical notes in this book will occasionally warn of issues that you may need to consider later in your career.

Practice Problems

Throughout the text, practice problems should be attempted before working the exercises. Solutions appear after each exercise set.

1. State in words the next elementary row operation that should be performed on the system in order to solve it. [More than one answer is possible in (a).]

Practice Problems (Continued)

a.
$$x_1 + 4x_2 - 2x_3 + 8x_4 = 12$$

 $x_2 - 7x_3 + 2x_4 = -4$
 $5x_3 - x_4 = 7$
 $x_3 + 3x_4 = -5$
b. $x_1 - 3x_2 + 5x_3 - 2x_4 = 0$
 $x_2 + 8x_3 = -4$
 $2x_3 = 3$
 $x_4 = 1$

2. The augmented matrix of a linear system has been transformed by row operations into the form below. Determine if the system is consistent.

$$\begin{bmatrix}
1 & 5 & 2 & -6 \\
0 & 4 & -7 & 2 \\
0 & 0 & 5 & 0
\end{bmatrix}$$

3. Is (3, 4, -2) a solution of the following system?

$$5x_1 - x_2 + 2x_3 = 7$$

$$-2x_1 + 6x_2 + 9x_3 = 0$$

$$-7x_1 + 5x_2 - 3x_3 = -7$$

4. For what values of h and k is the following system consistent?

$$2x_1 - x_2 = h$$
$$-6x_1 + 3x_2 = k$$

1.1 Exercises

Solve each system in Exercises 1-4 by using elementary row operations on the equations or on the augmented matrix. Follow the systematic elimination procedure described in this section.

1.
$$x_1 + 5x_2 = 7$$

 $-2x_1 - 7x_2 = -5$

$$x_1 + 5x_2 = 7$$
 2. $2x_1 + 4x_2 = -4$
 $-2x_1 - 7x_2 = -5$ $5x_1 + 7x_2 = 11$

3. Find the point (x_1, x_2) that lies on the line $x_1 + 5x_2 = 7$ and on the line $x_1 - 2x_2 = -2$. See the figure.

4. Find the point of intersection of the lines $x_1 - 5x_2 = 1$ and $3x_1 - 7x_2 = 5$.

Consider each matrix in Exercises 5 and 6 as the augmented matrix of a linear system. State in words the next two elementary row operations that should be performed in the process of solving the system.

5.
$$\begin{bmatrix} 1 & 3 & -4 & 0 & 9 \\ 1 & 1 & 5 & 0 & -8 \\ 0 & 0 & 1 & 0 & 7 \\ 0 & 0 & 0 & 1 & -6 \end{bmatrix}$$

6.
$$\begin{bmatrix} 1 & -6 & 4 & 0 & -1 \\ 0 & 2 & -7 & 0 & 4 \\ 0 & 0 & 1 & 2 & -3 \\ 0 & 0 & 3 & 1 & 6 \end{bmatrix}$$

In Exercises 7–10, the augmented matrix of a linear system has been reduced by row operations to the form shown. In each case, continue the appropriate row operations and describe the solution set of the original system.

7.
$$\begin{bmatrix} 1 & 7 & 3 & -4 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$
 8.
$$\begin{bmatrix} 1 & 1 & 5 & 0 \\ 0 & 1 & 9 & 0 \\ 0 & 0 & 7 & -7 \end{bmatrix}$$

$$\mathbf{8.} \begin{bmatrix} 1 & 1 & 5 & 0 \\ 0 & 1 & 9 & 0 \\ 0 & 0 & 7 & -7 \end{bmatrix}$$

$$\mathbf{9.} \begin{bmatrix} 1 & -1 & 0 & 0 & -4 \\ 0 & 1 & -3 & 0 & -7 \\ 0 & 0 & 1 & -3 & -1 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}$$

$$\mathbf{10.} \begin{bmatrix} 1 & -2 & 0 & 3 & 0 \\ 0 & 1 & 0 & -4 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Solve the systems in Exercises 11–14.

11.
$$x_2 + 4x_3 = -4$$

 $x_1 + 3x_2 + 3x_3 = -2$
 $3x_1 + 7x_2 + 5x_3 = 6$

12.
$$x_1 - 3x_2 + 4x_3 = -4$$

 $3x_1 - 7x_2 + 7x_3 = -8$
 $-4x_1 + 6x_2 + 2x_3 = 4$

13.
$$x_1 - 3x_3 = 8$$

 $2x_1 + 2x_2 + 9x_3 = 7$
 $x_2 + 5x_3 = -2$

14.
$$x_1 - 3x_2 = 5$$

 $-x_1 + x_2 + 5x_3 = 2$
 $x_2 + x_3 = 0$

- 15. Verify that the solution you found to Exercise 11 is correct by substituting the values you obtained back into the original equations.
- **16.** Verify that the solution you found to Exercise 12 is correct by substituting the values you obtained back into the original
- 17. Verify that the solution you found to Exercise 13 is correct by substituting the values you obtained back into the original
- **18.** Verify that the solution you found to Exercise 14 is correct by substituting the values you obtained back into the original

Determine if the systems in Exercises 19 and 20 are consistent. Do not completely solve the systems.

19.
$$x_1 + 3x_3 = 2$$

 $x_2 - 3x_4 = 3$
 $-2x_2 + 3x_3 + 2x_4 = 1$
 $3x_1 + 7x_4 = -5$

20.
$$x_1$$
 $-2x_4 = -3$
 $2x_2 + 2x_3 = 0$
 $x_3 + 3x_4 = 1$
 $-2x_1 + 3x_2 + 2x_3 + x_4 = 5$

21. Do the three lines $x_1 - 4x_2 = 1$, $2x_1 - x_2 = -3$, and $-x_1 - 3x_2 = 4$ have a common point of intersection? Explain.

22. Do the three planes $x_1 + 2x_2 + x_3 = 4$, $x_2 - x_3 = 1$, and $x_1 + 3x_2 = 0$ have at least one common point of intersection? Explain.

In Exercises 23–26, determine the value(s) of h such that the matrix is the augmented matrix of a consistent linear system.

23.
$$\begin{bmatrix} 1 & h & 4 \\ 3 & 6 & 8 \end{bmatrix}$$
 24. $\begin{bmatrix} 1 & h & -3 \\ -2 & 4 & 6 \end{bmatrix}$ 25. $\begin{bmatrix} 1 & 3 & -2 \\ -4 & h & 8 \end{bmatrix}$ 26. $\begin{bmatrix} 3 & -4 & h \\ -6 & 8 & 9 \end{bmatrix}$

In Exercises 27-34, key statements from this section are either quoted directly, restated slightly (but still true), or altered in some way that makes them false in some cases. Mark each statement True or False, and justify your answer. (If true, give the approximate location where a similar statement appears, or refer to a definition or theorem. If false, give the location of a statement that has been quoted or used incorrectly, or cite an example that shows the statement is not true in all cases.) Similar true/false questions will appear in many sections of the text and will be flagged with a (T/F) at the beginning of the question.

- 27. (T/F) Every elementary row operation is reversible.
- 28. (T/F) Elementary row operations on an augmented matrix never change the solution set of the associated linear system.
- **29.** (T/F) A 5×6 matrix has six rows.
- 30. (T/F) Two matrices are row equivalent if they have the same number of rows.
- **31.** (T/F) The solution set of a linear system involving variables x_1, \ldots, x_n is a list of numbers (s_1, \ldots, s_n) that makes each equation in the system a true statement when the values s_1, \ldots, s_n are substituted for x_1, \ldots, x_n , respectively.
- **32. (T/F)** An inconsistent system has more than one solution.
- 33. (T/F) Two fundamental questions about a linear system involve existence and uniqueness.
- **34. (T/F)** Two linear systems are equivalent if they have the same solution set.
- **35.** Find an equation involving g, h, and k that makes this augmented matrix correspond to a consistent system:

$$\begin{bmatrix} 1 & -3 & 5 & g \\ 0 & 2 & -3 & h \\ -3 & 5 & -9 & k \end{bmatrix}$$

- 36. Construct three different augmented matrices for linear systems whose solution set is $x_1 = -2$, $x_2 = 1$, $x_3 = 0$.
- 37. Suppose the system below is consistent for all possible values of f and g. What can you say about the coefficients c and d? Justify your answer.

$$x_1 + 5x_2 = f$$

$$cx_1 + dx_2 = g$$

$$ax_1 + bx_2 = f$$

$$cx_1 + dx_2 = g$$

In Exercises 39–42, find the elementary row operation that transforms the first matrix into the second, and then find the reverse row operation that transforms the second matrix into the first.

39.
$$\begin{bmatrix} 0 & -2 & 5 \\ 1 & 4 & -7 \\ 3 & -1 & 6 \end{bmatrix}, \begin{bmatrix} 1 & 4 & -7 \\ 0 & -2 & 5 \\ 3 & -1 & 6 \end{bmatrix}$$

40.
$$\begin{bmatrix} 1 & 3 & -4 \\ 0 & -2 & 6 \\ 0 & -5 & 9 \end{bmatrix}, \begin{bmatrix} 1 & 3 & -4 \\ 0 & 1 & -3 \\ 0 & -5 & 9 \end{bmatrix}$$

41.
$$\begin{bmatrix} 1 & -3 & 2 & 0 \\ 0 & 4 & -5 & 6 \\ 5 & -7 & 8 & -9 \end{bmatrix}, \begin{bmatrix} 1 & -3 & 2 & 0 \\ 0 & 4 & -5 & 6 \\ 0 & 8 & -2 & -9 \end{bmatrix}$$

42.
$$\begin{bmatrix} 1 & 2 & -5 & 0 \\ 0 & 1 & -3 & -2 \\ 0 & -3 & 9 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 2 & -5 & 0 \\ 0 & 1 & -3 & -2 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

An important concern in the study of heat transfer is to determine the steady-state temperature distribution of a thin plate when the temperature around the boundary is known. Assume the plate shown in the figure represents a cross section of a metal beam, with negligible heat flow in the direction perpendicular to the plate. Let T_1, \ldots, T_4 denote the temperatures at the four interior nodes of the mesh in the figure. The temperature at a node is approximately equal to the average of the four nearest nodes—to the left, above, to the right, and below.² For instance,

$$T_1 = (10 + 20 + T_2 + T_4)/4$$
, or $4T_1 - T_2 - T_4 = 30$

- **43.** Write a system of four equations whose solution gives estimates for the temperatures T_1, \ldots, T_4 .
- **44.** Solve the system of equations from Exercise 43. [*Hint:* To speed up the calculations, interchange rows 1 and 4 before starting "replace" operations.]

Solutions to Practice Problems

- 1. a. For "hand computation," the best choice is to interchange equations 3 and 4. Another possibility is to multiply equation 3 by 1/5. Or, replace equation 4 by its sum with -1/5 times row 3. (In any case, do not use the x_2 in equation 2 to eliminate the $4x_2$ in equation 1. Wait until a triangular form has been reached and the x_3 terms and x_4 terms have been eliminated from the first two equations.)
 - b. The system is in triangular form. Further simplification begins with the x_4 in the fourth equation. Use the x_4 to eliminate all x_4 terms above it. The appropriate step now is to add 2 times equation 4 to equation 1. (After that, move to equation 3, multiply it by 1/2, and then use the equation to eliminate the x_3 terms above it.)
- 2. The system corresponding to the augmented matrix is

$$x_1 + 5x_2 + 2x_3 = -6$$
$$4x_2 - 7x_3 = 2$$
$$5x_3 = 0$$

The third equation makes $x_3 = 0$, which is certainly an allowable value for x_3 . After eliminating the x_3 terms in equations 1 and 2, you could go on to solve for unique values for x_2 and x_1 . Hence a solution exists, and it is unique. Contrast this situation with that in Example 3.

² See Frank M. White, *Heat and Mass Transfer* (Reading, MA: Addison-Wesley Publishing, 1991), pp. 145–149.

Since (3, 4, -2) satisfies the first two equations, it is on the line of the intersection of the first two planes. Since (3, 4, -2) does not satisfy all three equations, it does not lie on all three planes.

3. It is easy to check if a specific list of numbers is a solution. Set $x_1 = 3$, $x_2 = 4$, and $x_3 = -2$, and find that

$$5(3) - (4) + 2(-2) = 15 - 4 - 4 = 7$$

 $-2(3) + 6(4) + 9(-2) = -6 + 24 - 18 = 0$
 $-7(3) + 5(4) - 3(-2) = -21 + 20 + 6 = 5$

Although the first two equations are satisfied, the third is not, so (3, 4, -2) is not a solution of the system. Notice the use of parentheses when making the substitutions. They are strongly recommended as a guard against arithmetic errors.

4. When the second equation is replaced by its sum with 3 times the first equation, the system becomes

$$2x_1 - x_2 = h$$
$$0 = k + 3h$$

If k + 3h is nonzero, the system has no solution. The system is consistent for any values of h and k that make k + 3h = 0.

Row Reduction and Echelon Forms

This section refines the method of Section 1.1 into a row reduction algorithm that will enable us to analyze any system of linear equations. By using only the first part of the algorithm, we will be able to answer the fundamental existence and uniqueness questions posed in Section 1.1.

The algorithm applies to any matrix, whether or not the matrix is viewed as an augmented matrix for a linear system. So the first part of this section concerns an arbitrary rectangular matrix and begins by introducing two important classes of matrices that include the "triangular" matrices of Section 1.1. In the definitions that follow, a nonzero row or column in a matrix means a row or column that contains at least one nonzero entry; a **leading entry** of a row refers to the leftmost nonzero entry (in a nonzero row).

DFFINITION

A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties:

- 1. All nonzero rows are above any rows of all zeros.
- 2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.
- **3.** All entries in a column below a leading entry are zeros.

If a matrix in echelon form satisfies the following additional conditions, then it is in reduced echelon form (or reduced row echelon form):

- **4.** The leading entry in each nonzero row is 1.
- **5.** Each leading 1 is the only nonzero entry in its column.

¹ The algorithm here is a variant of what is commonly called *Gaussian elimination*. A similar elimination method for linear systems was used by Chinese mathematicians in about 250 B.C. The process was unknown in Western culture until the nineteenth century, when a famous German mathematician, Carl Friedrich Gauss, discovered it. A German engineer, Wilhelm Jordan, popularized the algorithm in an 1888 text on geodesy.