PERFORMANCE AND FINAL SUBMISSION PHRASE

Date	14 November 2023
Team ID	Team- 591769
Project Name	ASL - Alphabet image recognition
Maximum Marks	10 Marks

Model Performance Testing:

S.No.	Parameter	Values	Screenshot
1.	Metrics	Classification Model: VGG16 model	Confusion Matrix:-
		Confusion Matrix , Classification Report &	tf.Tensor([[578] 1 0 0 2 0 0 0 0 0 0 0 0 5 1 0 0 0 0 [7 58] 1 0 0 1 0 0 3 0 0 0] [8 58] 1 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 [9 58] 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 [9 158] 0 0 0 0 0 0 0 0 1 0] [1 1 0 0 0 0 0 0 0 2 0 3] [1 0 6 0 584 0 2 0 0 1 0 0 0 0 0 5 0 0 [1 0 0 1 50 0 0 0 0 0 0 0] [1 2 6 0 585 5 1 0 0 5 0 0 0 2 0 1 0 0 0
		Accuracy Scores-	7 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
		Training accuracy:- 94.98%	[1 0 1 1 0 0 2 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		Testing accuracy:- 96.26%	[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
			Classification report:-

		136/136 [====================================
		### A
		Still
		scores = model.evaluate(test_generator) print("Kis 2783" % ("Evaluate Test Accuracy", scores[1]*100)) 136/136 [
2. Tune the Model	Hyperparameter Tuning: The model is tuned with following hyper parameters- Optimizer - Adam Learning rate - 0.0001 Loss - Categorical cross entropy Batch size - 128 EPOCHS - 10 Validation Method: The validation of the model is done through the validation data , which is set to 20% of training data. Data augmentation and callbacks are also used to validate performance. Accuracy is the validation parameter that we have monitored	Hyperparameter Tuning:- 1 # Compile the model 2 model.compile(optiniter=Adam(Ir=0.0001), loss='categorical_crossentropy', metrics=['accuracy']) 1 # Configuration 2 class (FG: 3 # Set the batch size for training 4 batch_size = 128 5 # Set the height and width of input images 6 img_height = 32 7 img_width = 32 8 epochs = 10 Validation Method:- 22 # split the training set into training and validation sets 23 X_train, X_val, y_train, y_val = train_test_split(25 deter_train['alega_pith'], 26 test_size=0.200.7., # Assuming you want 20% for validation out of the training set 27 randoms_state_205, # Assuming_you want 20% for validation out of the training set 28 shuffle=True, 29 straitfy-data_train['label'] 30 31 # Create a DataFrame([34 'inage_path'; x_val], 35 'label'; y_val 30 30 31 # Create a ModelCheckpoint callback 5 checkpoint callback = modelCheckpoint(6 filepather_content/sample_data/best_model_weights.h5', 7 monitor=val_accuracy', # Monitor validation accuracy for saving the best model 8 save_best_only=True, 9 mode='max', 10 verbose=1 11)

CONFUSION MATRIX:-

+.c			,							-				-					
[[:		nsor(. 0	0	2	0	0	0	0	0	0	0	5	1	0	0	0	0	
LL-	7	1	1	0	0	1	0	3	9	9	01	٠	_	_					
1		585	0	0	1	1	0	0	0	0	1	0	0	0	1	0	0	5	
-	0	0	5	0	0	0	0	0	0	1	0]								
[0		585	0	0	0	0	3	0	0	0	0	0	0	3	0	1	0	
	1	1	0	- 0	0	0	0	0	2	0	3]	_	_	_	_	_	_	_	
[9	6	9	584	0	2	0	0	1	9	0	0	0	0	5	0	0	1	
г	12	9 6	9	1	9 565	0	9	0	9	9	0] 0	0	2	0	1	0	0	0	
L	7	0	0	1	0	ø	0	0	0	0	0]	٠	_		_				
]	0	2	0	3		590	0	0	0	0	0	0	1	0	1	0	0	0	
-	1	0	0	0	0	0	1	0	0	0	0]								
[3	0	0	0	0	0	572	5	2	6	0	0	0	0	0	5	0	0	
	2	0	0	2	0	0	1	_ 1	0	0	1]	_	_	_		_	_	_	
[9	9	9	9	9	9	9	589 2	0	2	0	0	0	0	1	0	0	0	
1	1	6	9	1	4	0	0	9	568	8	0] 0	0	0	0	0	0	0	4	
L	1	0	1	1	0	0	2	3	9	9	01							-	
]	0	0	0	0	0	0	0	3	6	584	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	4	3	0	0	0]								
[0	12	0	2	0	0	0	0	2		544	0	0	0	0	0	0	9	
	0	0	0	27	3	0	0	0	0	1	0]		_	_	_	_	_	_	
[2	0 10	9	9	0	9	2	9	5 0	3	0 S	72	0	0	0	0	0	0	
1	9	10	9	9	1	9	9	9	9	9	9	а	578	18	2	0	0	0	
L	1	0	0	0	ė	0	0	0	0	0	0]		376	10	_				
]	9	0	0	0	0	0	0	1	0	0	0	0	39	551	0	0	0	0	
-	4	0	3	0	0	0	0	0	1	1	0]								
[0	0	0	2	0	0	0	0	0	0	0	0	0	0	585	2	0	1	
	7	0	0	0	0	0	0	1	1	0	1]	_	_	_	_		_	_	
[0	9	9	9	9	0	9	9	0	9	9	0	0	0	0	593	2	0	
1	9	9	1	9	9	0	0	9	9	9	1] 0	0	0	0	0	1	592	0	
L	0	0	0	0	0	0	9	1	4	9	1]					_	JJ2		
1	0	0	0	0	0	0	0	1	4	0	1	0	0	0	0	0	0	560	
	6	0	18	6	0	4	0	0	0	0	0]								
[3	0	0	0	0	0	0	0	0	0	0	0	3	3	0	0	0	0	
	578	2	2	0	0	4	0	3	0	1	1]								
[9	9	9	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	
Г	12 0	576 0	9	9	9	0	4	6	9	9	0] 0	0	0	0	1	0	0	50	
L	4		539	2	0	4	9	0	0	0	01	•			_			50	
[0	0	0	0	0	0	0	0	2	0	12	0	1	0	0	0	0	10	
	7	1	5	548	8	6	0	0	0	0	0]								
[0	0	0	0	0	0	0	0	0	0	6	0	1	0	0	0	0	2	
	2	0	1		563	0	2	1	0	0	0]	_	_	_	_	_	_	_	
[2	0	9	0	0	0	0	0	1	0	0	1	2	0	0	0	0	8	
1	44 0	3	9	1	9	529 0	9	5 0	0	1	0] 0	0	0	0	0	0	0	0	
L	4	1	9	0	0	0	590	2	9	9	0]	-	-	-		-	0	-	
]	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	
-	9	0	0	0	0	1	3		0	0	0]								
[0	0	0	0	0	0	0	2	0	0	0	0	1	1	1	1	2	0	
-	1	0	0	0	0	0	1	2	584	2	2]		_	_	_	_	_	_	
[9	0	9	9	0	0	9	0	0	9 599	0 01	0	0	0	0	0	0	0	
	-	-	-	-		-			-										

CLASSIFICATION REPORT:-

136/136 [====	:=======		=====] - 25	5s 181ms/step
-	precision		f1-score	support
А	0.95	0.95	0.95	600
В	0.94	0.96	0.95	600
C	1.00	0.97	0.98	600
D	0.99	0.98	0.98	600
E	0.98	0.94	0.96	600
F	0.99	0.97	0.98	600
G	0.99	0.95	0.97	600
Н	0.97	0.98	0.97	600
I	0.97	0.96	0.96	600
J	0.97	0.97	0.97	600
K	0.94	0.91	0.93	600
L	1.00	0.96	0.98	600
M	0.93	0.93	0.93	600
N	0.94	0.95	0.94	600
0	0.97	0.99	0.98	600
P	0.98	0.98	0.98	600
Q	0.99	0.98	0.98	600
R	0.84	0.93	0.88	600
S	0.81	0.96	0.88	600
T	0.98	0.95	0.96	600
U	0.91	0.89	0.90	600
V	0.91	0.91	0.91	600
W	0.98	0.93	0.96	600
X	0.96	0.87	0.91	600
Υ	0.97	0.97	0.97	600
Z	0.95	0.98	0.96	600
del	0.98	0.97	0.98	600
nothing	0.98	1.00	0.99	600
space	0.98	0.98	0.98	600
accuracy			0.95	17400
macro avg	0.96	0.95	0.95	17400
weighted avg	0.96	0.95	0.95	17400

ACCURACY SCORE:-

```
Epoch 1/10
Epoch 1: val_accuracy improved from -inf to 0.41754, saving model to /content/sample_data/best_model_weights.h5
543/543 [==========] - 163s 273ms/step - loss: 2.6236 - accuracy: 0.1762 - val loss: 1.6868 - val accuracy: 0.4175
       Epoch 2: val_accuracy improved from 0.41754 to 0.78942, saving model to /content/sample_data/best_model_weights.h5
543/543 [==========] - 130s 239ms/step - loss: 1.0716 - accuracy: 0.6257 - val_loss: 0.6494 - val_accuracy: 0.7894
Epoch 3/10
Epoch 3: val_accuracy improved from 0.78942 to 0.84824, saving model to /content/sample_data/best_model_weights.h5
Epoch 4: val_accuracy improved from 0.84824 to 0.89718, saving model to /content/sample_data/best_model_weights.h5
543/543 [===
            ==========] - 129s 237ms/step - loss: 0.3992 - accuracy: 0.8792 - val_loss: 0.3558 - val_accuracy: 0.8972
Fnoch 5/10
543/543 [============] - ETA: 0s - loss: 0.2839 - accuracy: 0.9199
Epoch 6: val_accuracy improved from 0.90045 to 0.92727, saving model to /content/sample_data/best_model_weights.h5
Epoch 7/10
Epoch 7: val accuracy did not improve from 0.92727
543/543 [============] - ETA: 0s - loss: 0.2162 - accuracy: 0.9397
Epoch 8: val_accuracy improved from 0.92727 to 0.94934, saving model to /content/sample_data/best_model_weights.h5
543/543 [===========] - 129s 238ms/step - loss: 0.2162 - accuracy: 0.9397 - val_loss: 0.1797 - val_accuracy: 0.9493
Epoch 9/10
Epoch 9: val_accuracy improved from 0.94934 to 0.95262, saving model to /content/sample_data/best_model_weights.h5
543/543 [============] - ETA: 0s - loss: 0.1810 - accuracy: 0.9498
Epoch 10: val_accuracy improved from 0.95262 to 0.95701, saving model to /content/sample_data/best_model_weights.h5
543/543 [===========] - 141s 259ms/step - loss: 0.1810 - accuracy: 0.9498 - val_loss: 0.1669 - val_accuracy: 0.9570
scores = model.evaluate(test_generator)
print("%s: %2f%%" % ("Evaluate Test Accuracy", scores[1]*100))
Evaluate Test Accuracy: 96.264368%
```

HYPERPARAMETER TUNING:-

```
1 # Compile the model
2 model.compile(optimizer=Adam(lr=0.0001), loss='categorical_crossentropy', metrics=['accuracy'])
3
```

```
1 # Configuration
2 class CFG:
3  # Set the batch size for training
4  batch_size = 128
5  # Set the height and width of input images
6  img_height = 32
7  img_width = 32
8  epochs = 10
```

VALIDATION METHOD:-

11)

```
22 # Split the training set into training and validation sets
   23 X_train, X_val, y_train, y_val = train_test_split(
  24 data_train['image_path'],
  25 data_train['label'],
  26 test_size=0.2/0.7, # Assuming you want 20% for validation out of the training set
   27 random state=2253,
      shuffle=True,
        stratify=data_train['label']
  29
  30)
  32 # Create a DataFrame for the validation set
  33 data val = pd.DataFrame({
         'image_path': X_val,
         'label': y_val
4 # Create a ModelCheckpoint callback
 5 checkpoint_callback = ModelCheckpoint(
      filepath='/content/sample data/best model weights.h5',
      monitor='val accuracy', # Monitor validation accuracy for saving the best model
 7
      save_best_only=True,
      mode='max',
9
10
      verbose=1
```