Intro to Binary Logic

Overview

- Two discrete values
 - True or false
 - Yes or no
 - High or low
 - -1 or 0
- Consists of binary variables and a set of logical operations

Overview

- Consists of binary variables and a set of logical operations
- 3 basic logical operations
 - AND
 - -OR
 - NOT
- Each of which produces a result z

AND

 Denoted by a dot (·) or the absence of a symbol.

$$x \cdot y = z = xy$$

- Interpreted to mean that
 - \blacksquare z = 1 if and only if (iff) x = 1 and y = 1
 - otherwise the result is z = 0.

AND

 The results of the operation can be shown by a truth table.

	Inputs		Result
-	$\boldsymbol{\mathcal{X}}$	y	$x \cdot y$
	0	0	0
	0	1	0
	1	0	0
	1	1	1

• All inputs must be true for the result to be true.

OR

Denoted by a plus (+)

$$x + y = z$$

- Interpreted to mean that
 - z = 1 if x = 1 or y = 1
 - otherwise the result is z = 0.

OR

The truth table

X	y	x + y
0	0	0
0	1	1
1	0	1
1	1	1

• At least 1 input must be true for the result to be true.

NOT

This operation is represented by a prime (')
 x' = z

Referred to as the complement operation.

$$\begin{array}{c|cc}
x & x' \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

Pitfall

- Binary logic should not be confused with binary arithmetic.
 - + implies OR

NOT addition

· implies AND

NOT multiplication

Logic Gates

 Electronic circuits that operate on one or more input signals to produce an output.

(a) Two-input AND gate

(b) Two-input OR gate

Copyright ©2013 Pearson Education, publishing as Prentice Hall

(c) NOT gate or inverter

Timing Diagram

Timing Diagram

Timing Diagram

Summary

- Binary logic is comprised of 3 basic operations.
 - AND, NOT, OR
- Be wary of the pitfall
 - Binary logic is not binary arithmetic

Will tie directly to Boolean Algebra in Chapter 2