M1 UE2

Exercices de Réductions (chapitre 6)

1. * Soit
$$E = \mathcal{C}(\mathbb{R})$$
 et $\varphi : f \in E \mapsto \varphi(f)$ où $\varphi(f)(x) = \int_0^x t f(t) dt$.

- a) Montrer que $\varphi \in \mathcal{L}(E)$. φ est-il injectif? surjectif?
- b) Etudier les valeurs propres de φ .

2. ** $E = \mathcal{C}^{\infty}(\mathbb{R})$. Pour $f \in E$, on pose $L(f)(x) = 3f(0) + \int_{1}^{x} f(t)dt$. Montrer que $L \in \mathcal{L}(E)$. Donner ker L, imL, ainsi que les éléments propres de L.

 $\boxed{\bf 3.}$ * Soit $E=\mathcal{C}(\mathbbm{R})$. Pour $f\in E$, on définit $u(f):x\mapsto \int_{-x}^x f(t)dt$. Montrer que u est un endomorphisme de E, et donner ses éléments propres.

4. ** Soit
$$E = \mathbb{R}^{\mathbb{N}^*}$$
 et $\varphi : E \to E$; $(u_n) \mapsto (v_n)$ où $v_n = \frac{1}{n^2} \sum_{p=1}^n p u_p$. Montrer que $\varphi \in \mathcal{L}(E)$. Quels sont ses éléments propres ?

$$\boxed{\mathbf{5.}} *** \operatorname{Soit} A : \mathcal{C}([-1,1], \mathbb{R}) \to \mathcal{F}([-1,1], \mathbb{R}), \ f \mapsto Af : x \mapsto \int_{-1}^{-x} f(t) dt.$$

- a) Montrer que A est un endomorphisme de $\mathcal{C}([-1,1],\mathbb{R})$; déterminer son noyau et son image.
 - b) Déterminer les éléments propres de A.

6. ** Soit $(a,b) \in \mathbb{C}^2 \setminus \{(0,0)\}$. Soit u l'endomorphisme de $\mathbb{C}[X]$ défini par u(P) =[(aX+b)P]'. Déterminer les éléments propres de u. Que peut-on dire de la restriction de u à $\mathbb{C}_n[X]$?

[7.] * Soit $E = K_3[X]$, $A = X^4 - 1$, $B = X^4 - X$ et $\varphi : E \to E$; $P \to \text{reste de la division}$ euclidienne de AP par B. Montrer que $\varphi \in \mathcal{L}(E)$ et trouver les éléments propres de φ .

8. ** Soit
$$A = \begin{pmatrix} 0 & 1 & (0) \\ n-1 & \ddots & \ddots & \\ & \ddots & \ddots & n-1 \\ (0) & 1 & 0 \end{pmatrix} \in M_n(K).$$
a) Trouver $u \in \mathcal{L}(K_{n-1}[X])$ tel que $M_{\mathcal{B}}(u) = A$ (où $\mathcal{B} = (1, \dots, X^n)$).

- b) A est-elle diagonalisable?
- **9.** * Soit $A \in \mathcal{M}_n(\mathbb{C})$, non nulle, et $u: \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$, $M \mapsto \operatorname{tr}(A)M + \operatorname{tr}(M)A$.
- a) Montrer que u est un endomorphisme de $\mathcal{M}_n(\mathbb{C})$.
- b) Déterminer les éléments propres de u.

c) u est-il diagonalisable?

$$\boxed{\textbf{10.}} * \operatorname{Soit} A = \begin{pmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{pmatrix} \in \mathcal{M}_3(\mathbb{C}) \; ((a,b,c) \neq (0,0,0)). \; \text{\'Etudier la diagonalisabilit\'e} \\ \operatorname{de} A.$$

11. ** Diagonalisabilité de
$$A = \begin{pmatrix} 0 & a & b \\ a & 0 & b \\ a & b & 0 \end{pmatrix}$$
.

12. ** Soit
$$M = \begin{pmatrix} a & c & b \\ c & a+b & c \\ b & c & a \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

- a) Montrer que M est diagonalisable.
- b) Trouver $\alpha \in \mathbb{R}$ et $J \in \mathcal{M}_3(\mathbb{R})$ tels que $M = \alpha I_3 + cJ + bJ^2$.
- c) Trouver les éléments propres de M.

13. * Diagonalisabilité de
$$A = \begin{pmatrix} 0 & -1 & \cdots & -1 \\ 1 & \ddots & & (0) \\ \vdots & (0) & \ddots & \\ 1 & & 0 \end{pmatrix}$$
.

$$\boxed{\mathbf{14.}} * \text{ R\'eduction de } A = \begin{pmatrix} & & & 1 \\ & (0) & & \vdots \\ & & & \vdots \\ 1 & \dots & \dots & 1 \end{pmatrix}.$$

15. *
$$A = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & (0) & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$$
: valeurs propres et dimension des sous espaces propres de A .

16. * Diagonalisabilité de
$$A = \begin{pmatrix} 1 & -a_1 & \cdots & -a_n \\ a_1 & \ddots & & (0) \\ \vdots & (0) & \ddots & \\ a_n & & 1 \end{pmatrix}$$

- $\boxed{17.}$ *** Soit A une matrice carrée.
- a) Montrer que $\operatorname{Sp}(A) \subset \bigcup_{i} \overline{D}(a_{ii}, \rho_i)$ avec $\rho_i = \sum_{j \neq i} |a_{ij}|$.

b) Montrer que
$$A=\left(\begin{array}{cccc} 3 & 2 & & (0)\\ 1 & \ddots & \ddots\\ & \ddots & \ddots & 2\\ (0) & & 1 & 3 \end{array}\right)$$
 est inversible.

c) Trouver D diagonale telle que DAD^{-1} soit symétrique. Retrouver l'inversibilité de A.

18. ** Soit
$$x \in \mathbb{R}$$
. À quelle condition sur x la matrice $A = \begin{pmatrix} 1 & 0 & x \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$ est-elle diagonalisable?

$$A = \begin{pmatrix} 1 & \cdots & 1 & a \\ \vdots & & \ddots & 1 \\ \vdots & & & \vdots \\ 1 & \cdots & \cdots & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{C}),$$

avec $a \in \mathbb{C} \setminus \{1\}$.

- a) Montrer que A est diagonalisable si et seulement si $a \neq 1 n^2/4$.
- b) On se place dans le cas où $a=1-n^2/4$. Soit u l'endomorphisme de \mathbb{C}^n canoniquement associé à A, et $\mathcal{C}=(e_1,\ldots,e_n)$ la base canonique de \mathbb{C}^n . Calculer $(u-n/2Id_{\mathbb{C}^n})^2(e_1)$, et en

$$\textbf{20.} ** \text{Soit } A = \begin{pmatrix} a & b & a & b & \dots & b \\ b & a & b & a & \dots & a \\ a & & \ddots & & & \\ \vdots & & & \ddots & & \\ \vdots & & & & \ddots & b \\ b & a & \dots & \dots & b & a \end{pmatrix} \in M_{2n}(K) \text{ (où } a \neq b). \text{ Eléments propres et }$$
 diagonalisabilité de A .

21. *** Déterminer les sous-espaces de
$$\mathbb{R}^3$$
 stables par u_A où $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \in M_3(\mathbb{R})$.

22. *** Soit
$$S_n = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ \vdots & \vdots & & \ddots & 1 \\ 1 & 0 & \dots & \dots & 0 \end{pmatrix}$$
 et $A_n = I_n + 2S_n + \dots + nS_n^{n-1}$.

- a) Montrer que $n(n+1)/2 \in \operatorname{Sp}(A_n)$.
- b) Montrer que toute autre valeur propre de A_n a une partie réelle égale à -n/2.
- c) Montrer que $Tr(A_n^2)$ est un polynôme de degré 4 en n.

23. ** Soit
$$A \in \mathcal{M}_n(\mathbb{C})$$
 et $B = \begin{pmatrix} 0 & I_n \\ 2A & A \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{C})$.

a) Montrer que $-2 \notin \operatorname{sp}(B)$.

- b) Montrer que $\lambda \in \operatorname{sp}(B)$ si et seulement si $\frac{\lambda^2}{\lambda+2} \in \operatorname{sp}(A)$.
- c) Donner une condition nécessaire et suffisante pour que B soit diagonalisable.

$$\boxed{24.} ** Soit A = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- a) Montrer que A n'est pas diagonalisable. Trigonaliser A.
- b) Trouver les matrices $M \in \mathcal{M}_3(\mathbb{R})$ telles que $M^2 = A$.

25. Déterminer
$$M \in \mathcal{M}_n(\mathbb{R})$$
 telle que $M^3 - 2M^2 + M = 0$ et $\operatorname{tr}(M) = 0$.

26. * Déterminer
$$M \in \mathcal{M}_n(\mathbb{R})$$
 telle que $M^3 - 2M^2 + M = 0$ et $\operatorname{tr}(M) = 0$.

27. Soit $A, B, C \in M_n(\mathbb{K})$ telles que $B \neq 0, C \neq 0$ et il existe λ, μ non nuls et distincts avec $A^p = \lambda^p B + \mu^p C$ pour $p \in \{1, 2, 3\}$. Montrer que A est diagonalisable et calculer A^p pour tout $p \in \mathbb{N}$.

28. ** Soit A, B dans
$$\mathcal{M}_n(\mathbb{C})$$
 telle que $AB - BA = A$.

- a) Montrer que A est non inversible.
- b) Montrer que, pour tout $k \in \mathbb{N}^*$, $A^k B B A^k = k A^k$.
- c) En déduire que A est nilpotente.

29. ** On donne
$$\phi: \mathcal{M}_n(\mathbb{C}) \to \mathbb{C}$$
 ayant les deux propriétés suivantes :

$$\overline{a}$$
) $\phi(XY) = \phi(X)\phi(Y)$.

b)
$$\phi\left(\begin{pmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix}\right) = \lambda$$
.

Montrer que $\phi(X) = \det X$ [on pourra d'abord comparer $\phi(X)$ et $\phi(Y)$ quand X et Y sont semblables, puis discuter suivant la diagonalisabilité].

30. ** Soit
$$A \in \mathcal{M}_n(\mathbb{R})$$
 telle que A soit symétrique, à coefficients dans $\{0,1\}$, de trace

nulle, et avec
$$A^2 + A - (d-1)I = J$$
 où $d \in \mathbb{N}^*$ et $J = (1)$. Soit $U = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \in \mathcal{M}_{n1}(\mathbb{R})$.

- a) Montrer que AU = dU. En déduire que $n = d^2 + 1$.
- b) Soit a, b les racines de $X^2 + X (d-1)$. Montrer que $\operatorname{sp}(A) \in \{a, b, d\}$.
- c) Montrer que $d \in \{1, 2, 3, 7, 57\}$.