POLIMI GRADUATE MANAGEMENT

INTRODUCTION TO NATURAL LANGUAGE PROCESSING - 2

Andrea Mor - andrea.mor@polimi.it

Given a sequence (of words): $x = x_1 x_2 \cdots x_t$

Traditional NN

Music generation

Sentiment classification

Sentiment classification

Name entity recognition

Text translation

LSTM: LONG SHORT TERM MEMORY NETWORKS

- 1. We keep a cell state across the sequence C_t
- 2. After each step *t* we:
 - forget something: f_t
 - include something : i_t
 - ullet update the cell state: C_t
 - output something to the next step: h_t

LSTM: KEEP GLOBAL STATE

- 1. We keep a cell state across the sequence C_t
- 2. After each step t we:
 - forget something: f_t
 - ullet include something : i_t
 - update the cell state: C_t
 - ullet output something to the next step: h_t

LSTM: FORGET GATE STATE

- 1. We keep a cell state across the sequence C_t
- 2. After each step *t* we:
 - forget something: f_t
 - ullet include something : i_t
 - update the cell state: C_t
 - output something to the next step: h_t

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

LSTM: INPUT GATE STATE

- 1. We keep a cell state across the sequence C_t
- 2. After each step *t* we:
 - forget something: f_t
 - ullet include something : i_t
 - update the cell state: C_t
 - output something to the next step: h_t

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C$$

LSTM: UPDATE CELL STATE

- 1. We keep a cell state across the sequence C_t
- 2. After each step *t* we:
 - forget something: f_t
 - ullet include something : i_t
 - ullet update the cell state: C_t
 - ullet output something to the next step: h_t

LSTM: CELL OUTPUT

- 1. We keep a cell state across the sequence C_t
- 2. After each step t we:
 - forget something: f_t
 - include something : i_t
 - update the cell state: C_t
 - output something to the next step: h_t

$$o_{t} = \sigma \left(W_{o} \left[h_{t-1}, x_{t} \right] + b_{o} \right)$$
$$h_{t} = o_{t} * \tanh \left(C_{t} \right)$$

GENERATING TEXT

- 1. From the text, we create a training set form by couples $([x_1, \dots, x_t], y_t)$ where:
 - $[x_1,\ldots,x_t]$ is a sequence of t elements (letters, words)
 - ullet y_t is the element to be predicted
- 2. From a seed sequence we sequentially generate the text consider as input the last sequence.

THANK YOU