COL 362 & COL 632

Relational 11 Jan 2023

Weak entity sets to relations

- Relation for a weak
 entity set must include
 attributes for its
 complete key (including
 those belonging to other
 entity sets), as well as its
 own, nonkey attributes.
- A supporting relationship is redundant and yields no relation (unless it has attributes).

Has (DeptName, InstName, Instlocation)

Hierarchies to relations Toystory, 1998, English
(Toystory, 1998, Despey) **Title Actor** Movie PlaysIn Year Language Voice isa **Animation** Animation Type Movie (<u>Title</u>, <u>Year</u>, Language) Animation (Title, Year, AnimationType) AllMovies (<u>Title</u>, <u>Year</u>, Language, AnimationType) Actor (Name, DOB, City)

Combining relations (1/2) (Toystory, 1998, English)

(Toystory, 1998, English) (Cars, 2000, English)

Movie (<u>Title</u>, <u>Year</u>, Language)

Studio (Name, Address, President)

Produce (Title, Year, StudioName)

Movie (<u>Title</u>, <u>Year</u>, Language, StudioName)

Studio (Name, Address, President)

Studio (Name, Address, President)
MTitle, Mean)

Combining relations (2/2)

Actor (Name, DOB, Address)

Movie (Title, Year, Language)

PlaysIn (Name, DOB, Title, Year)

Movie (Title, Year, Language)

Actor (Name, DOB, Address)

Movie (Title, Year, Language, ActorName, DOB)

Anomalies

	Name	DOB	Address	MovieTitle	Year	Language
\ \	Ayushman Khurana	1984	Mumbai	DoctorG	2022	Hindi
	Ayushman Khurana	1984	Mumbai	Andhadhun	2018	Hindi
	Henry Cavill	1983	Beverley Hills	Man of Steel	2013	English
	Tom Cruise	1962	LA	Top Gun: Maverick	2022	English
	Peter Sellers	1925	London (Dr. Strangelove)1964	English

- Redundancy
- Update Anomalies
 - Ayushman Khurana changed his name to to Ayushmaan Khurrana
- Deletion Anomalies
 - Delete the movie "Dr. Strangelove" from the DB

Normalization is the process of systematically eliminating these anomalies => Leads us to better database designs

Functional Dependencies The student in one dept of the de

- world.
- For example, some of the constraints that are expected to hold in a university database ...

- Legal instance of a relation: an instance that satisfies all real-world constraints
 - A legal instance of a database = all relations are legal
- Require that the value for a certain set of attributes determines uniquely the value for another set of attributes.
 - A functional dependency is a generalization of the notion of a key.

Functional Dependencies

- A functional dependency is another kind of constraint
- If two tuples in a relation agree on the values of one set of attributes, then they must also agree on the values of another set of attributes.

$$R(A_1,A_2,A_3,B_1,B_2,B_3)$$

$$A_1A_2A_3 \to B_1$$

$$A_1A_2A_3 \to B_2$$

$$\cdots$$
 Shorthand $A_1A_2A_3 \to B_1B_2B_3$

Functional Dependencies

Let R be a relation schema

$$\alpha \subset R$$
 and $\beta \subset R$

The functional dependency

 $\alpha \rightarrow \beta$ holds on R if and only if

for any legal relations r(R), whenever any two tuples t_1 and t_2 of r agree on the attributes α , they also agree on the attributes β .

That is,

$$t_1[\alpha] = t_2[\alpha] \implies t_1[\beta] = t_2[\beta]$$

• Example: Consider r(A,B) with the following instance of r.

• On this instance, $B \rightarrow A$ hold; $A \rightarrow B$ does **NOT** hold,

Functional Dependencies

• Example (figure out the right FDs)

Actor (Name, DOB, Address)

Movie (Title, Year, Language, StudioName)

PlaysIn (Name, DOB, Title, Year)

Name DOB → Address

Title Year → Language StudioName

Title → Language

Language → Title Year

Name DOB → Title Year

Actor (Name, DOB, Address, MovieTitle, Year, Language)

Name DOB → Address
Name DOB Address → Language
Name DOB MovieTitle Year → Address
MovieTitle Year DOB → Name
DOB Address MovieTitle → Name
DOB Address MovieTitle Year → Name

Can you figure out the functional dependencies from the data?

Trivial and non-trivial FDs

Actor (Name, DOB, Address)

Movie (Title, Year, Language)

PlaysIn (Name, DOB, Title, Year)

Name DOB → Address

Name DOB → Name

Name DOB → Name Address

In general, $\alpha \to \beta$ is trivial if $\beta \subseteq \alpha$

Keys and superkeys

Movie (Title, Year, Language, Length)

Keys need not be unique

{Title, Year, Language}

Superkey

- Functionally determines all other attributes
- Not necessarily minimal

Terminology

- Key = Candidate Key
- Superkey
- Primary key
- Prime attribute

Inferring FDs

- Given a set of FDs, which other FDs follow from it?
- Example:
 - Given: Name DOB → Address
 - Address → City
 - Inferred: Name, DOB → City

Inferred through transitivity of FDs

Armstrong's Axioms

- Reflexivity
 If B is a subset of A, then A → B
- Augmentation
 If A → B, then AC → BC
- Transitivity
 If A → B and B → C, then A → C

Closure of FDs

- Given: S, the set of FDs
- Output: S⁺, the *closure* of S, containing all FDs derivable from S

