

ani

Sula Huar

FCC PART 22H, PART 24E FCC PART 27 MEASUREMENT AND TEST REPORT

For

Posh Mobile Limited

1011A, 10/F., Harbour Centre Tower 1, No.1 Hok Cheung St., Hung Hom, Kowloon, Hong Kong

FCC ID: 2ABN6E550

Report Type: Product Type:

Original Report Titan Pro HD

Test Engineer: Dean Liu

Report Number: RDG150525004-00C

Report Date: 2015-06-12

Sula Huang

Reviewed By: RF Leader

Test Laboratory: Bay Area Compliance Laboratories Corp. (Dongguan)

No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China

Tel: +86-769-86858888 Fax: +86-769-86858891

www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan). This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
JUSTIFICATION	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
FCC §1.1310 & §2.1093- RF EXPOSURE	8
APPLICABLE STANDARD	
TEST RESULT	
FCC §2.1047 - MODULATION CHARACTERISTIC	9
FCC § 2.1046, § 22.913 (A) & § 24.232 (C) & § 27.50 - RF OUTPUT POW	ER10
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS TEST DATA	
FCC §2.1049, §22.917, §22.905 & §24.238 & §27.53- OCCUPIED BANDW	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	22
FCC §2.1051, §22.917(A) & §24.238(A) & §27.53- SPURIOUS EMISSION	IS AT ANTENNA TERMINALS30
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS TEST DATA	
FCC $\S 2.1053$, $\S 22.917$ & $\S 24.238$ & $\S 27.53$ - SPURIOUS RADIATED EMI	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS TEST DATA	
FCC §22.917(A) & §24.238(A) & §27.53(H)- BAND EDGES	
Applicable Standard	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	48
FCC §2.1055, §22.355 & §24.235 & §27.54 - FREQUENCY STABILITY.	62
APPLICABLE STANDARD	62

Bay Area	Compliance	Laboratories	Corp.	(Dongguan)

TEST PROCEDURE	62
TEST EQUIPMENT LIST AND DETAILS.	
TEST DATA	63

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Posh Mobile Limited*'s product, model number: *E550 (FCC ID: 2ABN6E550)* (the "EUT") in this report was a *Titan Pro HD*, which was measured approximately: 15.1 cm (L) x 7.8 cm (W) x 1.2 cm (H), rated input voltage: DC 3.8V rechargeable Li-ion battery or DC5V charging from adapter.

All measurement and test data in this report was gathered from production sample serial number: 150525004 (Assigned by BACL, Dongguan). The EUT was received on 2015-05-27.

Objective

This report is prepared on behalf of *Posh Mobile Limited* in accordance with: Part 2-Subpart J, Part 22-Subpart H, and Part 24-Subpart E of the Federal Communications Commission's rules. Part 2, Part 27 of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC rules for output power, modulation characteristic, occupied bandwidth, spurious emissions at antenna terminal, spurious radiated emission, frequency stability and band edge.

Related Submittal(s)/Grant(s)

FCC Part 15B JBP submissions with FCC ID: 2ABN6E550 FCC Part 15C DSS submissions with FCC ID: 2ABN6E550 FCC Part 15C DTS submissions with FCC ID: 2ABN6E550

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

Part 22 Subpart H - Public Mobile Services Part 24 Subpart E - Personal Communication Services Part 27 – Miscellaneous wireless communications services

Applicable Standards: TIA/EIA 603-D-2010.

All radiated and conducted emissions measurements were performed at Bay Area Compliance Laboratories Corp.(Dongguan).

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China

Test site at Bay Area Compliance Laboratories Corp. (Dongguan) has been fully described in reports submitted to the Federal Communications Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 06, 2015. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 273710. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

SYSTEM TEST CONFIGURATION

Justification

The EUT was configured for testing according to TIA/EIA-603-D-2010.

The test items were performed with the EUT operating at testing mode.

Equipment Modifications

No modification was made to the EUT.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
R&S	Universal Radio Communication Tester	CMU200	109038
N/A	ANTENNA	N/A	N/A

Configuration of Test Setup

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1310, §2.1093	RF Exposure	Compliance
\$2.1046; \$ 22.913 (a); \$ 24.232 (c); \$27.50	RF Output Power	Compliance
§ 2.1047	Modulation Characteristics	Not Applicable
\$ 2.1049; \$ 22.905 \$ 22.917; \$ 24.238; \$27.53	Occupied Bandwidth	Compliance
§ 2.1051, § 22.917 (a); § 24.238 (a); §27.53	Spurious Emissions at Antenna Terminal	Compliance
§ 2.1053 § 22.917 (a); § 24.238 (a); § 27.53	Field Strength of Spurious Radiation	Compliance
§ 22.917 (a); § 24.238 (a); §27.53	Out of band emission, Band Edge	Compliance
§ 2.1055 § 22.355; § 24.235; §27.54	Frequency stability vs. temperature Frequency stability vs. voltage	Compliance

FCC §1.1310 & §2.1093- RF EXPOSURE

Applicable Standard

FCC§1.1310 and §2.1093.

Test Result

Compliant, please refer to the SAR report: RDG150525004-20.

FCC §2.1047 - MODULATION CHARACTERISTIC

According to FCC \S 2.1047(d), Part 22H & 24E, Part 27 there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

FCC § 2.1046, § 22.913 (a) & § 24.232 (c) & § 27.50 - RF OUTPUT POWER

Applicable Standard

According to FCC §2.1046 and §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

According to FCC §2.1046 and §24.232 (C), mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

According to FCC §2.1046 and §27.50 (d), (4) Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP. Fixed stations operating in the 1710-1755 MHz band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in these bands must employ a means for limiting power to the minimum necessary for successful communications.

According to §24.232 (d) Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Test Procedure

GPRS/EGPRS

Function: Menu select > GSM Mobile Station > GSM 850/1900

Press Connection control to choose the different menus

Press RESET > choose all the reset all settings

Connection Press Signal Off to turn off the signal and change settings

Network Support > GSM + GPRS or GSM + EGSM

Main Service > Packet Data

Service selection > Test Mode A – Auto Slot Config. off

MS Signal Press Slot Config Bottom on the right twice to select and change the number of time slots and power setting

> Slot configuration > Uplink/Gamma

> 33 dBm for GPRS 850 > 30 dBm for GPRS 1900 > 27 dBm for EGPRS 850 > 26 dBm for EGPRS 1900

BS Signal Enter the same channel number for TCH channel (test channel) and BCCH channel

Frequency Offset > + 0 Hz

Mode > BCCH and TCH

BCCH Level > -85 dBm (May need to adjust if link is not stabe)

BCCH Channel > choose desire test channel [Enter the same channel number for TCH channel (test

channel) and BCCH channel]

Channel Type > Off P0 > 4 dB

Slot Config > Unchanged (if already set under MS signal)

TCH > choose desired test channel

Hopping > Off Main Timeslot > 3

Network Coding Scheme > CS4 (GPRS) and MCS5 (EGPRS)

Bit Stream > 2E9-1 PSR Bit Stream

AF/RF Enter appropriate offsets for Ext. Att. Output and Ext. Att. Input Connection Press Signal on to turn on the signal and change settings

WCDMA-Release 99

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification. The EUT has a nominal maximum output power of 24dBm (+1.7/-3.7).

	Loopback Mode	Test Mode 1
WCDMA	Rel99 RMC	12.2kbps RMC
WCDMA General Settings	Power Control Algorithm	Algorithm2
	βc / βd	8/15

WCDMA HSDPA

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification.

	Mode	HSDPA HSDPA HSDPA HSDPA					
	Subset	1	2	3	4		
	Loopback Mode			Test Mode	1		
	Rel99 RMC			12.2kbps RM	IC		
	HSDPA FRC			H-Set1			
WCDMA	Power Control Algorithm			Algorithm2			
WCDMA	βc	2/15	12/15	15/15	15/15		
General Settings	βd	15/15	15/15	8/15	4/15		
Settings	βd (SF)	64					
	βc/ βd	2/15	12/15	15/8	15/4		
	βhs	4/15 24/15 30/15 30/15					
	MPR(dB)	0 0 0.5 0.5					
	DACK			8			
	DNAK			8			
HSDPA	DCQI	8					
Specific	Ack-Nack repetition	3					
Settings	factor	Ž					
Strings	CQI Feedback	4ms					
	CQI Repetition Factor			2			
	Ahs=βhs/ βc			30/15			

WCDMA HSUPA

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification.

Copback Mode		Mode	HSUPA	HSUPA	HSUPA	HSUPA	HSUPA
Rel99 RMC							
HSDPA FRC HSUPA Loopback		Loopback Mode			Test Mode 1	•	
HSUPA Test Power Control Algorithm2		Rel99 RMC 12.2kbps RMC					
Power Control Algorithm		HSDPA FRC			H-Set1		
A General Settings Bc 11/15 6/15 15/15 2/15 15/15 0				HS	SUPA Loopb	ack	
General Settings					Algorithm2		
Settings			11/15	6/15	15/15	2/15	15/15
Second		βd					
B β β β β β β β β β β β β β	Settings	βec	209/225	12/15	30/15	2/15	5/15
Bhs 22/15 12/15 30/15 4/15 5/15 CM(dB) 1.0 3.0 2.0 3.0 1.0 MPR(dB) 0 2 1 2 0 DACK 8 DNAK 8 DCQI 8 Ack-Nack repetition factor 3 CQI Repetition Factor 2 Ahs=βhs/βc 30/15 DE-DPCCH 6 8 8 5 7 DHARQ 0 0 0 0 0 AG Index 20 12 15 17 21 ETFCI 75 67 92 71 81 Associated Max UL Data Rate kbps 242.1 174.9 482.8 205.8 308.9 HSUPA Specific Settings Reference E_FCIs E-TFCI PO 18 E-TFCI 10 E-TFCI 10 E-TFCI PO 18 E-TFCI 75 E-TFCI 75 E-TFCI E-TFCI 75 E-TFCI 90 18 E-TFCI 75 E-TFCI 90 18 E-TFCI 75 E-TFCI 90 18 E-TFCI 75 E-TFCI PO 26 E-TFCI 81 E-TFCI 81 E-TFCI 81 E-TFCI 81 E-TFCI 81 E-TFCI			11/15	6/15		2/15	-
CM(dB)			22/15	12/15	30/15	4/15	5/15
MPR(dB)							
DACK DNAK 8 S DCQI 8 S Ack-Nack repetition factor Settings CQI Feedback 4ms CQI Repetition Factor 2 Settings DE-DPCCH 6 8 8 5 7 Settings DE-DPCCH 6 8 8 5 7 Settings DHARQ 0 0 0 0 0 0 O O O O					1		
HSDPA Specific Settings Se			,		8		· · · · ·
DCQI							
Ack-Nack repetition factor Specific Settings							
Specific Settings Factor CQI Feedback 4ms	HSDPA	Ack-Nack repetition				Annual Control	
CQI Repetition Factor State Factor State	Specific						
Factor 2 30/15	Settings	CQI Feedback					
Ahs=βhs/βc 30/15 DE-DPCCH 6	S				2		
DE-DPCCH					30/15		
DHARQ		DE-DPCCH	6	8		5	7
AG Index 20 12 15 17 21 ETFCI 75 67 92 71 81 Associated Max UL Data Rate kbps 242.1 174.9 482.8 205.8 308.9 E-TFCI 11 E							0
HSUPA Specific Settings Reference E_FCls Reference E_FCls E-TFCI PO23 E-TFCI PO26 E-TF							
Data Rate kbps				67	92	71	
HSUPA E-TFCI 11 E E-TFCI 11 E E-TFCI 11 E E-TFCI 11 E E-TFCI 12 E-TFCI 12 E-TFCI 13 E-TFCI 14 E-TFCI 14 E-TFCI 15 E-TFCI 15 E-TFCI 16 E-TFCI 16		Associated Max UL	242.1	174.0	192.9	205.9	208.0
HSUPA Specific Settings Reference E_FCls Reference E_FCls E-TFCI PO 4 E-TFCI PO 4 E-TFCI PO 4 E-TFCI PO 18 E-TFCI PO 18 E-TFCI PO 18 E-TFCI PO 18 E-TFCI PO 23 E-TFCI PO 18 E		Data Rate kbps	242.1	1/4.9	482.8	203.8	308.9
	Specific	Reference E_FCls	E-TFC E-TFCI E-TFCI E-TFCI E-TFCI E-TFCI E-TFCI	I PO 4 CI 67 PO 18 CI 71 I PO23 CI 75 I PO26 CI 81	E-TFCI PO4 E-TFCI 92 E-TFCI	E-TFC E-TF E-TFC E-TFC E-TFC E-TFC E-TFC	CI PO 4 CI 67 I PO 18 CI 71 I PO23 CI 75 I PO26 CI 81

HSPA+

The following tests were conducted according to the test requirements in Table C.11.1.4 of 3GPP TS 34.121-1

Sub- test	β _c (Note3)	Note3) (Note1) (2xSF2) (2xSF4) (dB) (dB) Index (Note 5) (boost,							E-TFCI (boost)		
					(Note 4)	(Note 4)	(Note 2)	(Note 2)	(Note 4)		
1	1	0	30/15	30/15	β _{ed} 1: 30/15	β _{ed} 3: 24/15	3.5	2.5	14	105	105
					β _{ed} 2: 30/15	β _{ed} 4: 24/15					
Note 1	Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c .										
Note 2	Note 2: CM = 3.5 and the MPR is based on the relative CM difference, MPR = MAX(CM-1,0).										
Note 3	Note 3: DPDCH is not configured, therefore the β_c is set to 1 and β_d = 0 by default.										
Note 4	Note 4: β _{ed} can not be set directly, it is set by Absolute Grant Value.										
Note 5	Note 5: All the sub-tests require the UE to transmit 2SF2+2SF4 16QAM EDCH and they apply for UE using E-										
	DPDCH category 7. E-DCH TTI is set to 2ms TTI and E-DCH table index = 2. To support these E-DCH										
	configurations DPDCH is not allocated. The UE is signalled to use the extrapolation algorithm.										

DC-HSDPA

The following tests were conducted according to the test requirements in Table C.8.1.12 of 3GPP TS 34.121-1

Table C.8.1.12: Fixed Reference Channel H-Set 12

Avg. Inf. Bit Rate					
rrg. iiii. Dit i tato	kbps	60			
Distance	TTľs	1			
of HARQ Processes	Proces ses	6			
on Bit Payload (N_{INF})	Bits	120			
Code Blocks	Blocks	1			
annel Bits Per TTI	Bits	960			
Total Available SML's in UE SML's					
of SML's per HARQ Proc.	SML's	3200			
ate		0.15			
of Physical Channel Codes	Codes	1			
Modulation					
Note 1: The RMC is intended to be used for DC-HSDPA mode and both cells shall transmit with identical parameters as listed in the table. Note 2: Maximum number of transmission is limited to 1, i.e.,					
	of HARQ Processes on Bit Payload (N _{INF}) Code Blocks nannel Bits Per TTI ilable SML's in UE of SML's per HARQ Proc. ate of Physical Channel Codes on The RMC is intended to be used for mode and both cells shall transmit parameters as listed in the table. Maximum number of transmission	of HARQ Processes Proces ses on Bit Payload ($N_{I\!N\!F}$) Code Blocks SML's SML's SML's SML's Atte Of Physical Channel Codes The RMC is intended to be used for DC-HSD mode and both cells shall transmit with identi parameters as listed in the table.			

constellation version 0 shall be used.

Radiated method:

ANSI/TIA 603-D section 2.2.17

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2015-05-09	2016-05-09
Sunol Sciences	Antenna	JB3	A060611-3	2014-11-06	2017-11-05
HP	Amplifier	8447E	2434A02181	2014-09-01	2015-09-01
R&S	Spectrum Analyzer	FSEM	DE31388	2015-05-09	2016-05-09
ETS LINDGREN	Horn Antenna	3115	000 527 35	2012-09-06	2015-09-06
Mini-Circuit	Amplifier	ZVA-213-S+	054201245	2015-02-19	2016-02-19
Giga	Signal Generator	1026	320408	2015-05-09	2016-05-09
EMCO	Adjustable Dipole Antenna	3121C	9109-753	N/A	N/A
TDK RF	Horn Antenna	HRN-0118	130 084	2012-09-06	2015-09-06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25.9 °C
Relative Humidity:	54%
ATM Pressure:	100kPa

The testing was performed by Dean Liu on 2015-05-30.

Conducted Power

Cellular Band (Part 22H) & PCS Band (Part 24E)

	D . Channel		Peak Output Power (dBm)									
Band	No.	GSM	GPRS 1 TX Slot	GPRS 2 TX Slot	GPRS 3 TX Slot	GPRS 4 TX Slot	EDGE 1 TX Slot	EDGE 2 TX Slot	EDGE 3 TX Slot	EDGE 4 TX Slot		
	128	32.48	32.29	31.10	29.30	28.46	26.01	24.07	22.78	21.82		
Cellular	190	32.60	32.24	31.02	29.46	28.60	26.05	24.25	22.99	21.95		
	251	32.37	32.06	30.97	29.17	28.27	26.16	24.12	22.89	21.73		
	512	29.98	29.13	28.19	26.12	25.24	25.14	23.19	22.18	21.04		
PCS	661	30.13	29.28	28.50	26.23	25.22	25.27	23.23	22.21	21.15		
	810	29.89	29.18	28.05	26.06	25.14	25.09	23.05	22.05	20.91		

WCDMA Band II

			Aver	age Output	Power (dB	m)	
Mode	3GPP Sub Test	Low Channel (Ave. Power)	Low Channel (PAR)	Middle Channel (Ave. Power)	Middle Channel (PAR)	High Channel (Ave. Power)	High Channel (PAR)
Rel 99	1	22.05	2.72	22.29	2.72	21.93	2.52
	1	22.13	2.71	22.21	2.79	21.86	2.55
HSDPA	2	22.02	2.68	22.10	2.78	21.80	2.53
HSDPA	3	21.99	2.68	22.03	2.78	21.72	2.54
	4	21.94	2.68	21.97	2.77	21.68	2.54
	1	22.07	2.68	22.03	2.78	21.81	2.52
HSUPA	2	21.94	2.69	21.96	2.78	21.70	2.54
HSUPA	3	21.97	2.71	21.99	2.76	21.57	2.51
	4	21.88	2.72	21.83	2.76	21.55	2.56
	5	21.77	2.72	21.79	2.77	21.46	2.55
	1	21.31	2.71	21.74	2.77	21.53	2.51
DC-HSDPA	2	21.33	2.67	21.65	2.8	21.48	2.53
	3	21.17	2.69	21.59	2.78	21.46	2.54
	4	21.26	2.67	21.52	2.79	21.56	2.55
HSPA+	1	20.46	2.72	20.74	2.77	20.53	2.51

WCDMA Band IV (PART 27)

			Cond	ucted Outpu	t Power (dl	Bm)	
Mode	3GPP Sub Test	Low Channel (Ave. Power)	Low Channel (PAR)	Middle Channel (Ave. Power)	Middle Channel (PAR)	High Channel (Ave. Power)	High Channel (PAR)
Rel 99	1	22.66	2.56	21.83	2.72	22.11	2.36
	1	22.09	2.54	20.93	2.71	21.68	2.34
HSDPA	2	22.03	2.49	20.98	2.67	21.63	2.34
HSDPA	3	22.10	2.55	20.91	2.71	21.66	2.24
	4	22.05	2.51	20.96	2.71	21.60	2.25
	1	21.98	2.6	20.88	2.71	21.57	2.3
	2	22.00	2.54	20.82	2.72	21.53	2.27
HSUPA	3	21.96	2.62	20.85	2.69	21.58	2.3
	4	21.92	2.6	20.80	2.72	21.52	2.31
	5	21.99	2.49	20.86	2.7	21.49	2.36
	1	21.98	2.53	20.83	2.69	21.41	2.32
DC HCDD 4	2	21.91	2.5	20.81	2.73	21.48	2.26
DC-HSDPA	3	21.85	2.54	20.76	2.74	21.46	2.3
	4	21.90	2.55	20.84	2.66	21.40	2.29
HSPA+	1	21.87	2.61	20.63	2.7	21.32	2.33

WCDMA Band V

			Avei	age Output	Power (dB	m)	
Mode	3GPP Sub Test	Low Channel (Ave. Power)	Low Channel (PAR)	Middle Channel (Ave. Power)	Middle Channel (PAR)	High Channel (Ave. Power)	High Channel (PAR)
Rel 99	1	22.16	3.13	22.25	3.09	21.93	3.01
	1	22.21	3.13	22.22	3.14	21.74	3.01
HSDPA	2	22.13	3.17	22.04	3.14	21.86	3.02
HSDPA	3	22.05	3.17	22.13	3.1	21.79	2.99
	4	21.97	3.14	21.96	3.12	21.88	3.01
	1	22.15	3.15	22.12	3.12	21.79	2.98
DC-HSDPA	2	22.04	3.14	21.89	3.11	21.72	3.01
DC-HSDPA	3	21.98	3.13	22.01	3.1	21.92	2.97
	4	22.00	3.13	22.07	3.14	21.89	3.01
	1	21.90	3.15	21.93	3.12	21.81	3.04
	2	22.04	3.18	21.9	3.11	22.19	2.93
HSUPA	3	22.09	3.13	21.89	3.11	22.25	2.97
	4	22.00	3.17	21.81	3.1	22.11	2.98
	5	22.01	3.14	21.85	3.14	22.28	3.01
HSPA+	1	21.14	3.16	20.98	3.1	21.20	3.02

Note: peak-to-average ratio (PAR) <13 dB.

Peak-to-average ratio (PAR)

WCDMA Band II

Low Channel

Complementary Cumulative Distribution Function (100000 samples)

Trace 1
Mean 21.85 dBm
Peak 24.92 dBm
Crest 3.07 dB

10 % 1.60 dB
1 % 2.32 dB

2.72 dB

2.92 dB

Date: 30.MAY.2015 12:17:44

.1 %

.01 %

Middle Channel

Complementary Cumulative Distribution Function (100000 samples) ${\tt Trace} \quad 1$

Peak 24.57 dBm Crest 3.06 dB 10 % 1.64 dB 1 % 2.32 dB .1 % 2.72 dB .01 % 2.92 dB

Mean

21.51 dBm

Date: 30.MAY.2015 12:15:46

High Channel

Complementary Cumulative Distribution Function (100000 samples)

Trace 1
Mean 21.76 dBm
Peak 24.57 dBm
Crest 2.81 dB

10 % 1.52 dB 1 % 2.20 dB .1 % 2.52 dB .01 % 2.68 dB

Date: 30.MAY.2015 12:19:00

WCDMA Band IV (PART 27)

Low Channel

Complementary Cumulative Distribution Function (100000 samples)

Trace 1
Mean 20.66 dBm
Peak 23.51 dBm
Crest 2.85 dB

10 % 1.56 dB
1 % 2.20 dB
.1 % 2.56 dB

2.72 dB

Date: 30.MAY.2015 13:08:08

.01 %

Middle Channel

Complementary Cumulative Distribution Function (100000 samples)

Trace 1
Mean 21.04 dBm
Peak 24.14 dBm
Crest 3.10 dB

10 % 1.64 dB 1 % 2.36 dB .1 % 2.72 dB .01 % 2.88 dB

Date: 30.MAY.2015 13:03:39

High Channel

Complementary Cumulative Distribution Function (100000 samples)

Trace 1
Mean 22.04 dBm
Peak 24.64 dBm
Crest 2.60 dB

10 % 1.52 dB 1 % 2.08 dB .1 % 2.36 dB .01 % 2.52 dB

Date: 30.MAY.2015 13:17:29

ERP & EIRP

	Dagaiyan		Sı	ubstituted Me	ethod	Absolute		
Frequency (MHz)		Receiver Reading (dBµV)	S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
	GSM 850 Middle Channel							
836.60	Н	95.33	20.4	0.0	1.0	19.4	38.45	19.05
836.60	V	104.32	32.5	0.0	1.0	31.5	38.45	6.95
			EDGE	850_High C	hannel			
848.800	Н	87.74	12.9	0.0	1.0	11.9	38.45	26.55
848.800	V	97.22	25.6	0.0	1.0	24.6	38.45	13.85
	WCDMA Band V Middle Channel							
836.600	Н	83.07	8.1	0.0	1.0	7.1	38.45	31.35
836.600	V	94.60	22.8	0.0	1.0	21.8	38.45	16.65

		~ .	St	ubstituted Me	ethod		Vestington too		
Frequency (MHz) Polar (H/V)		Receiver Reading (dBµV)	S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
	PCS 1900 Middle Channel								
1880.000	Н	90.34	18.7	11.7	1.4	29.0	33.0	4.0	
1880.000	V	86.37	14.9	11.7	1.4	25.2	33.0	7.8	
	EDGE 1900 Middle Channel								
1880.000	Н	85.52	13.9	11.7	1.4	24.2	33.0	8.8	
1880.000	V	81.15	9.7	11.7	1.4	20.0	33.0	13.0	
			WCDMA	Band II Mide	lle Channel				
1880.000	Н	82.59	11	11.7	1.4	21.3	33.0	11.7	
1880.000	V	79.34	7.9	11.7	1.4	18.2	33.0	14.8	
	WCDMA Band IV Low Channel								
1712.400	Н	85.32	12.1	10.8	1.4	21.5	33.0	11.5	
1712.400	V	82.37	8.9	10.8	1.4	18.3	33.0	14.7	

^{*}Within measurement uncertainty!

Note:

- 1) The unit of Antenna Gain is dBd for frequency below 1GHz, and the unit of Antenna Gain is dBi for frequency above 1GHz.
- 2) Absolute Level = SG Level Cable loss + Antenna Gain
- 3) Margin = Limit-Absolute Level

FCC §2.1049, §22.917, §22.905 & §24.238 & §27.53- OCCUPIED BANDWIDTH

Applicable Standard

FCC §2.1049, §22.917, §22.905, §24.238 and §27.53.

Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The 26 dB & 99% bandwidth was recorded.

Test Equipment List and Details

Manufacturer	Description	Description Model Seria		Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSP 38	100478	2015-05-09	2016-05-09

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25.9 °C
Relative Humidity:	54%
ATM Pressure:	100kPa

The testing was performed by Dean Liu on 2015-05-30.

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following table and plots.

Band	Channel No.	Mode	99% Occupied Bandwidth (kHz)	26 dB Occupied Bandwidth (kHz)
Cellular	190	GSM	246	320
Celiulai	190	EDGE	250	322
PCS	661	PCS	246	320
rcs	001	EDGE	250	324
	9400	Rel 99	4160	4760
WCDMA Band II	9400	HSDPA	4180	4740
	9400	HSUPA	4160	4760
	4183	Rel 99	4160	4720
WCDMA Band V	4183	HSDPA	4160	4720
Dana v	4183	HSUPA	4160	4720
	1413	Rel 99	4180	4720
WCDMA Band IV	1413	HSDPA	4180	4740
Dulla I ,	1413	HSUPA	4180	4740

GMSK 850 Cellular Band

Date: 30.MAY.2015 11:24:29

EDGE 850 Cellular Band

Date: 30.MAY.2015 11:35:17

GMSK PCS Band

Date: 30.MAY.2015 11:10:08

EDGE PCS Band

Date: 30.MAY.2015 11:47:46

REL99 Band II

Date: 30.MAY.2015 12:08:14

HSDPA Band II

Date: 30.MAY.2015 12:09:12

HSUPA Band II

Date: 30.MAY.2015 12:10:03

REL99 Band V

Date: 30.MAY.2015 12:31:10

HSDPA Band V

Date: 30.MAY.2015 12:32:18

HSUPA Band V

Date: 30.MAY.2015 12:33:49

REL99 Band IV

Date: 30.MAY.2015 13:00:45

Date: 30.MAY.2015 13:01:56

HSUPA Band IV

Date: 30.MAY.2015 13:02:58

FCC §2.1051, §22.917(a) & §24.238(a) & §27.53- SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

FCC §2.1051, §22.917(a), §24.238(a) and §27.53.

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1051.

Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSP 38	100478	2015-05-09	2016-05-09

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25.9 °C
Relative Humidity:	54%
ATM Pressure:	100kPa

The testing was performed by Dean Liu on 2015-05-30.

Please refer to the following plots.

GSM850_Middle Channel

Date: 30.MAY.2015 11:25:39

Date: 30.MAY.2015 11:26:24

EDGE850_ Middle Channel

Date: 30.MAY.2015 11:37:12

Date: 30.MAY.2015 11:38:47

PCS 1900_ Middle Channel

Date: 30.MAY.2015 11:11:48

Date: 30.MAY.2015 11:13:24

EDGE1900_ Middle Channel

Date: 30.MAY.2015 11:48:54

Date: 30.MAY.2015 11:49:17

$REL99\;Band\;II_\;Middle\;Channel$

Date: 30.MAY.2015 12:11:17

Date: 30.MAY.2015 12:12:35

HSDPA Band II _Middle Channel

Date: 30.MAY.2015 12:11:52

Date: 30.MAY.2015 12:12:48

HSUPA Band II _ **Middle Channel**

Date: 30.MAY.2015 12:12:01

Date: 30.MAY.2015 12:13:14

REL99 Band $V_{\rm M}$ Middle Channel

Date: 30.MAY.2015 12:35:26

Date: 30.MAY.2015 12:37:47

$HSDPA \ Band \ V_ \ Middle \ Channel$

Date: 30.MAY.2015 12:36:13

Date: 30.MAY.2015 12:38:34

$HSUPA \ Band \ V_ \ Middle \ Channel$

Date: 30.MAY.2015 12:36:48

Date: 30.MAY.2015 12:39:40

WCDMA Band IV

REL99 Band IV_Middle Channel

Date: 30.MAY.2015 13:18:42

Date: 30.MAY.2015 13:19:32

HSDPA Band IV _Middle Channel

Date: 30.MAY.2015 13:18:53

Date: 30.MAY.2015 13:19:39

HSUPA Band IV _ **Middle Channel**

Date: 30.MAY.2015 13:19:01

Date: 30.MAY.2015 13:19:48

FCC §2.1053, §22.917 & §24.238 & §27.53- SPURIOUS RADIATED EMISSIONS

Applicable Standard

FCC § 2.1053, §22.917, § 24.238 and § 27.53.

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in $dB = 10 \lg (TXpwr in Watts/0.001) - the absolute level$

Spurious attenuation limit in $dB = 43 + 10 \text{ Log}_{10}$ (power out in Watts)

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2015-05-09	2016-05-09
Sunol Sciences	Antenna	ЈВ3	A060611-3	2014-07-28	2017-07-27
HP	Amplifier	8447E	2434A02181	2014-09-01	2015-09-01
R&S	Spectrum Analyzer	FSEM	DE31388	2015-05-09	2016-05-09
ETS LINDGREN	Horn Antenna	3115	000 527 35	2012-09-06	2015-09-06
Mini-Circuit	Amplifier	ZVA-213-S+	054201245	2015-02-19	2016-02-19
Giga	Signal Generator	1026	320408	2015-05-09	2016-05-09
EMCO	Adjustable Dipole Antenna	3121C	9109-753	N/A	N/A
TDK RF	Horn Antenna	HRN-0118	130 084	2012-09-06	2015-09-06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

2509.800

2509.800

Environmental Conditions

Temperature:	24.1 °C
Relative Humidity:	60 %
ATM Pressure:	99.8 kPa

The testing was performed by Dean Liu on 2015-05-28..

50.28

53.69

EUT Operation Mode: Transmitting

30 MHz-10 GHz:

V

Cellular Band

		Receiver	Sı	ubstituted Me	thod	Absolute		
Frequency (MHz)	Polar (H/V)	Reading (dBµV)	S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
			Freque	ncy:836.600 M	IHz			
1673.200	Н	53.49	-47.6	10.6	1.5	-38.5	-13.0	25.5
1673.200	V	55.26	-46.1	10.6	1.5	-37.0	-13.0	24.0

For below 1GHz, all spurious emissions are 20dB below the limit or are on the system noise floor level.

-47.7

-43.4

WCDMA Band V

13.1

13.1

		Dansiron	Sı	ubstituted Me	thod	Abgoluto		
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
			Freque	ncy:836.600 M	IHz			
1673.200	Н	40.66	-60.4	10.6	1.5	-51.3	-13.0	38.3
1673.200	V	35.46	-65.9	10.6	1.5	-56.8	-13.0	43.8

For below 1GHz, all spurious emissions are 20dB below the limit or are on the system noise floor level.

Report No.: RDG150525004-00C

-13.0

-13.0

24.4

-37.4

-33.1

2.8

PCS Band

30 MHz-20 GHz:

		Dagairon	Sı	ubstituted Me	thod	Absoluto		
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
			Frequen	cy:1880.000 N	ИHz			
3760.000	Н	44.26	-50.0	13.8	2.9	-39.1	-13.0	26.1
3760.000	V	37.39	-55.7	13.8	2.9	-44.8	-13.0	31.8

For below 1GHz, all spurious emissions are 20dB below the limit or are on the system noise floor level.

WCDMA Band II

		D:	Sı	ubstituted Me	thod	A la ma landa		
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
			Frequen	cy:1880.000 N	ИHz			
3760.000	Н	47.57	-46.7	13.8	2.9	-35.8	-13.0	22.8
3760.000	V	41.25	-51.8	13.8	2.9	-40.9	-13.0	27.9

WCDMA Band IV

		D	Sı	ubstituted Me	thod	Alamalanta		
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
			Frequen	cy:1732.600 N	ИHz			
3465.200	Н	39.36	-57.6	13.9	1.9	-45.6	-13.0	32.6
3465.200	V	34.58	-61.6	13.9	1.9	-49.6	-13.0	36.6

Note:

- 1) The unit of Antenna Gain is dBd for frequency below 1GHz, and the unit of Antenna Gain is dBi for frequency above 1GHz.
- 2) Absolute Level = SG Level Cable loss + Antenna Gain
- 3) Margin = Limit-Absolute Level

Report No.: RDG150525004-00C

FCC §22.917(a) & §24.238(a) & §27.53(h)- BAND EDGES

Applicable Standard

According to § 22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

According to \$24.238(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

According to §27.53 (h), AWS emission limits—(1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSP 38	100478	2015-05-09	2016-05-09

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25.9 °C
Relative Humidity:	54%
ATM Pressure:	100kPa

The testing was performed by Dean Liu on 2015-05-30.

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following plots.

Report No.: RDG150525004-00C

GSM 850, Left Band Edge

Date: 30.MAY.2015 11:19:41

GSM 850, Right Band Edge

Date: 30.MAY.2015 11:22:20

EDGE 850, Left Band Edge

Date: 30.MAY.2015 11:32:11

EDGE850, Right Band Edge

Date: 30.MAY.2015 11:33:32

GSM 1900, Left Band Edge

Date: 30.MAY.2015 11:00:30

GSM 1900, Right Band Edge

Date: 30.MAY.2015 11:03:54

EDGE 1900, Left Band Edge

Date: 30.MAY.2015 11:43:36

EDGE1900, Right Band Edge

Date: 30.MAY.2015 11:45:16

REL99 Band II, Left Band Edge

Date: 30.MAY.2015 12:03:10

REL99 Band II, Right Band Edge

Date: 30.MAY.2015 12:05:09

HSDPA Band II, Left Band Edge

Date: 30.MAY.2015 12:03:36

HSDPA Band II, Right Band Edge

Date: 30.MAY.2015 12:04:53

HSUPA Band II, Left Band Edge

Date: 30.MAY.2015 12:03:53

HSUPA Band II, Right Band Edge

Date: 30.MAY.2015 12:04:40

REL99 Band V, Left Band Edge

Date: 30.MAY.2015 12:25:56

REL99 Band V Right Band Edge

Date: 30.MAY.2015 12:28:13

HSDPA Band V, Left Band Edge

Date: 30.MAY.2015 12:26:45

HSDPA Band V, Right Band Edge

Date: 30.MAY.2015 12:27:59

HSUPA Band V, Left Band Edge

Date: 30.MAY.2015 12:26:57

HSUPA Band V, Right Band Edge

Date: 30.MAY.2015 12:27:47

REL99 Band IV, Left Band Edge

Date: 30.MAY.2015 13:04:49

REL99 Band IV Right Band Edge

Date: 30.MAY.2015 13:16:15

HSDPA Band IV, Left Band Edge

Date: 30.MAY.2015 13:05:06

HSDPA Band IV, Right Band Edge

Date: 30.MAY.2015 13:15:54

HSUPA Band IV, Left Band Edge

Date: 30.MAY.2015 13:05:35

HSUPA Band IV, Right Band Edge

Date: 30.MAY.2015 13:15:32

FCC §2.1055, §22.355 & §24.235 & §27.54 - FREQUENCY STABILITY

Applicable Standard

FCC § 2.1055 (a), § 2.1055 (d), §22.355, §24.235, §27.54

According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table below:

			_				
Frequency	Tolerance	for T	ransmitters	in the	Public	Mohile	Services
riculucite	I Oldiand	. 1()1 1	таныницыз	III LIIC	i umic	IVIOLIL	DUI VICUS

Frequency Range (MHz)	Base, fixed (ppm)	Mobile ≤3 watts (ppm)	Mobile ≤ 3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929.	5.0	N/A	N/A
929 to 960.	1.5	N/A	N/A
2110 to 2220	10.0	N/A	N/A

According to §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stays within the authorized frequency block.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: An external variable DC power supply was connected to the battery terminals of the equipment under test. The voltage was set from 85% to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Dongzhixu	High Temperature Test Chamber	DP1000	201105083-3	2014-08-01	2015-08-01
R&S	Universal Radio Communication Tester	CMU200	109 038	2015-05-09	2016-05-09

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25.9 °C
Relative Humidity:	54%
ATM Pressure:	100kPa

The testing was performed by Dean Liu on 2015-05-30.

Cellular Band (Part 22H)

G	GMSK, Middle Channel, f _c = 836.6 MHz					
Temperature	Voltage	Frequency Error	Frequency Error	Limit		
င	V_{DC}	Hz	ppm	ppm		
-30	3.8	23	0.027	2.5		
-20	3.8	19	0.023	2.5		
-10	3.8	30	0.036	2.5		
0	3.8	22	0.026	2.5		
10	3.8	28	0.033	2.5		
20	3.8	23	0.027	2.5		
30	3.8	25	0.030	2.5		
40	3.8	20	0.024	2.5		
50	3.8	22	0.026	2.5		
20	3.6	27	0.032	2.5		
20	4.3	26	0.031	2.5		

WCDMA Band V: Re199

	Middle Channel, $f_c = 836.6 \text{ MHz}$				
Temperature	Voltage	Frequency Error	Frequency Error	Limit	
℃	V _{DC}	Hz	ppm	ppm	
-30	3.8	16	0.019	2.5	
-20	3.8	19	0.023	2.5	
-10	3.8	21	0.025	2.5	
0	3.8	17	0.020	2.5	
10	3.8	13	0.016	2.5	
20	3.8	15	0.018	2.5	
30	3.8	11	0.013	2.5	
40	3.8	20	0.024	2.5	
50	3.8	18	0.022	2.5	
20	3.6	10	0.012	2.5	
20	4.3	13	0.016	2.5	

Report No.: RDG150525004-00C

WCDMA Band V: HSDPA

Middle Channel, f _c = 836.6 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Limit
င	V_{DC}	Hz	ppm	ppm
-30	3.8	32	0.038	2.5
-20	3.8	37	0.044	2.5
-10	3.8	39	0.047	2.5
0	3.8	28	0.033	2.5
10	3.8	29	0.035	2.5
20	3.8	33	0.039	2.5
30	3.8	25	0.030	2.5
40	3.8	41	0.049	2.5
50	3.8	39	0.047	2.5
20	3.6	38	0.045	2.5
20	4.3	37	0.044	2.5

WCDMA Band V: HSUPA

Middle Channel, f _c = 836.6 MHz					
Temperature	Voltage	Frequency Error	Frequency Error	Limit	
ొ	V_{DC}	Hz	ppm	ppm	
-30	3.8	21	0.025	2.5	
-20	3.8	25	0.030	2.5	
-10	3.8	22	0.026	2.5	
0	3.8	18	0.022	2.5	
10	3.8	23	0.027	2.5	
20	3.8	14	0.017	2.5	
30	3.8	15	0.018	2.5	
40	3.8	23	0.027	2.5	
50	3.8	16	0.019	2.5	
20	3.6	15	0.018	2.5	
20	4.3	22	0.026	2.5	

PCS Band (Part 24E)

GMSK, Middle Channel, f _c = 1880.0 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Result
C	V_{DC}	Hz	ppm	
-30	3.8	18	0.010	Pass
-20	3.8	11	0.006	Pass
-10	3.8	13	0.007	Pass
0	3.8	20	0.011	Pass
10	3.8	22	0.012	Pass
20	3.8	16	0.009	Pass
30	3.8	15	0.008	Pass
40	3.8	17	0.009	Pass
50	3.8	19	0.010	Pass
20	3.6	20	0.011	Pass
20	4.3	16	0.009	Pass

8	8PSK, Middle Channel, f _c = 1880.0 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Result	
℃	V_{DC}	Hz	ppm		
-30	3.8	14	0.007	Pass	
-20	3.8	16	0.009	Pass	
-10	3.8	20	0.011	Pass	
0	3.8	18	0.010	Pass	
10	3.8	19	0.010	Pass	
20	3.8	18	0.010	Pass	
30	3.8	17	0.009	Pass	
40	3.8	12	0.006	Pass	
50	3.8	14	0.007	Pass	
20	3.6	16	0.009	Pass	
20	4.3	17	0.009	Pass	

WCDMA Band II: Re199

Middle Channel, f _c = 1880.0 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Result
Ç	V _{DC}	Hz	ppm	
-30	3.8	12	0.006	Pass
-20	3.8	17	0.009	Pass
-10	3.8	13	0.007	Pass
0	3.8	14	0.007	Pass
10	3.8	18	0.010	Pass
20	3.8	13	0.007	Pass
30	3.8	17	0.009	Pass
40	3.8	15	0.008	Pass
50	3.8	16	0.009	Pass
20	3.6	14	0.007	Pass
20	4.3	13	0.007	Pass

WCDMA Band II: HSDPA

1						
	Middle Channel, $f_c = 1880.0 \text{ MHz}$					
Temperature	Voltage	Frequency Error	Frequency Error	Result		
°C	V _{DC}	Hz	ppm			
-30	3.8	30	0.016	Pass		
-20	3.8	21	0.011	Pass		
-10	3.8	20	0.011	Pass		
0	3.8	32	0.017	Pass		
10	3.8	25	0.013	Pass		
20	3.8	17	0.009	Pass		
30	3.8	19	0.010	Pass		
40	3.8	21	0.011	Pass		
50	3.8	23	0.012	Pass		
20	3.6	26	0.014	Pass		
20	4.3	27	0.014	Pass		

WCDMA Band II: HSUPA

Middle Channel, f _c = 1880.0 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Result
ů	V_{DC}	Hz	ppm	
-30	3.8	29	0.015	Pass
-20	3.8	24	0.013	Pass
-10	3.8	26	0.014	Pass
0	3.8	30	0.016	Pass
10	3.8	25	0.013	Pass
20	3.8	22	0.012	Pass
30	3.8	17	0.009	Pass
40	3.8	21	0.011	Pass
50	3.8	23	0.012	Pass
20	3.6	24	0.013	Pass
20	4.3	20	0.011	Pass

WCDMA Band IV: Re199

Middle Channel, f _c = 1732.6 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Result
°C	V_{DC}	Hz	ppm	
-30	3.8	27	0.016	Pass
-20	3.8	23	0.013	Pass
-10	3.8	28	0.016	Pass
0	3.8	19	0.011	Pass
10	3.8	26	0.015	Pass
20	3.8	24	0.014	Pass
30	3.8	20	0.012	Pass
40	3.8	22	0.013	Pass
50	3.8	25	0.014	Pass
20	3.6	19	0.011	Pass
20	4.3	21	0.012	Pass

Report No.: RDG150525004-00C

WCDMA Band IV: HSDPA

Middle Channel, f _c = 1732.6 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Result
ပ	V _{DC}	Hz	ppm	
-30	3.8	43	0.025	Pass
-20	3.8	40	0.023	Pass
-10	3.8	37	0.021	Pass
0	3.8	45	0.026	Pass
10	3.8	44	0.025	Pass
20	3.8	46	0.027	Pass
30	3.8	39	0.023	Pass
40	3.8	42	0.024	Pass
50	3.8	38	0.022	Pass
20	3.6	43	0.025	Pass
20	4.3	40	0.023	Pass

WCDMA Band IV: HSUPA

Middle Channel, f _c = 1732.6 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Result
℃	V_{DC}	Hz	ppm	
-30	3.8	34	0.020	Pass
-20	3.8	36	0.021	Pass
-10	3.8	28	0.016	Pass
0	3.8	31	0.018	Pass
10	3.8	27	0.016	Pass
20	3.8	32	0.018	Pass
30	3.8	35	0.020	Pass
40	3.8	30	0.017	Pass
50	3.8	33	0.019	Pass
20	3.6	35	0.020	Pass
20	4.3	29	0.017	Pass

***** END OF REPORT *****

Report No.: RDG150525004-00C