ВЕРОЯТНОСТНАЯ МОДЕЛЬ ТАНДЕМА СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ С ЦИКЛИЧЕСКИМ УПРАВЛЕНИЕМ С ПРОДЛЕНИЕМ

В.М. Кочеганов, А.В. Зорин

Нижегородский государственный университет им. Н.И. Лобачевского

Теория вероятностей, случайные процессы, математическая статистика и приложения (г. Минск, Республика Беларусь)

Содержательная постановка задачи

Рис.: Тандем перекрёстков

Тандем перекрестков как управляющая СМО

Рис.: Структурная схема системы массового обслуживания

Параметры системы

Входные потоки

Входные потоки Π_1 и Π_3 — неординарные пуассоновские потоки с интенсивностями λ_1 и λ_3 соответственно.

Распределение числа заявок в группе по потоку Π_j , $j \in \{1,3\}$, имеет производящую функцию:

$$f_j(z) = \sum_{
u=1}^\infty p_
u^{(j)} z^
u, \quad |z| < (1+arepsilon), arepsilon > 0.$$

Требования входных потоков Π_4 и Π_2 формируются из выходных требований потоков $\Pi_1^{\text{вых}}$ и $\Pi_4^{\text{вых}}$ соответственно.

Дисциплины очередей

Устройство $\delta_j,\,j\in\{1,2,3,4\}$, поддерживает FIFO дисциплину очереди $\mathcal{O}_j.$

Кибернетический подход І

Представлен, например, в следующих работах:

- Яблонский С. В. Основные понятия кибернетики / С. В. Яблонский // Проблемы кибернетики. Вып. 2. М.: Физматгиз. 1959. С. 7–38.
- Ляпунов А. А. Теоретические проблемы кибернетики /
 А. А. Ляпунов, С. В. Яблонский // Проблемы кибернетики. Вып. 9.
 М.: Физматгиз. 1963. С. 5–22
- Федоткин М. А. Процессы обслуживания и управляющие системы / М. А. Федоткин // Математические проблемы кибернетики. Вып. 6. М.: Наука. 1996. С. 51–70.
- Зорин А. В. Оптимизация управления дважды стохастическими неординарными потоками в системах с разделением времени / А. В. Зорин, М. А. Федоткин. // Автоматика и телемеханика. 7, 2005. С. 102–111.

23-26 02 2015

Кибернетический подход II

Требуется задание:

- ullet дискретных моментов наблюдения за системой с помощью точечного случайного процесса $\{ au_i, i \geqslant 0\}$;
- случайных величин и случайных элементов, описывающих СМО и соответствующим моментам наблюдения τ_i .

Рис.: Шкала моментов наблюдения

Кибернетический подход III

Основные принципы кибернетического подхода:

- принцип дискретности актов функционирования управляемой системы обслуживания во времени;
- принцип нелокальности при описании поэлементного строения управляемой системы обслуживания;
- принцип совместного рассмотрения поэлементного строения управляющей системы обслуживания и ее функционирования во времени.

Кибернетический подход IV

Основными составляющими кибернетической системы являются:

- схема
 - внешняя среда
 - входные и выходные полюса
 - внешняя и внутренняя память
 - устройства по переработке информации во входной и выходной памяти
- информация набор состояний среды, очередей в накопителях, обслуживающего устройства, потоков насыщения и потоков обслуженных требований
- координата блока номер блока на схеме
- функция обслуживание потоков по циклическому алгоритму

Кодирование информации

Пусть Z_+ — множество целых неотрицательных чисел.

- ullet $\{e^{(1)}\}$ множество состояний внешней среды (одно состояние)
- Z_{+}^{4} множество состояний входных полюсов
- Z_{+}^{4} множество состояний выходных полюсов
- ullet $\Gamma = \{\Gamma^{(k,r)}\colon k=0,1,\ldots,d; r=1,2,\ldots n_k\}$ множество состояний внутренней памяти
- Z_{+}^{4} множество состояний внешней памяти
- Z_+^4 множество состояний выходных полюсов
- $\{r^{(1)}\}$ множество состояний устройства по переработке информации во внешней памяти (одно состояние)
- граф смены переходов (будет описан ниже) описывает устройство по переработке информации во внутренней памяти

Необходимы случайные величины

- ullet $au_i \in \mathbb{R}_+, \ i=0,\ 1,\ \ldots$ момент смены состояния обслуживающего утройства;
- $\eta_{j,i} \in Z_+$ число требований потока Π_j , поступивших за промежуток $(\tau_i, \tau_{i+1}];$
- $\xi_{j,i} \in Z_+$ число требований потока насыщения Π_j^{hac} на промежутке $(\tau_i, \tau_{i+1}];$
- ullet $arkappa_{j,i}\in Z_+$ число требований в очереди O_j в момент au_i ;
- $\Gamma_i \in \Gamma = \{\Gamma^{(k,r)} \colon k = 0, 1, \dots, d; r = 1, 2, \dots n_k\}$ состояние обслуживающего устройства в момент τ_i ;
- ullet $\overline{\xi}_{j,i}\in Z_+$ число требований выходного потока $\Pi_j^{ exttt{Bых}}$ на промежутке $(au_i, au_{i+1}],$

для j = 1, 2, 3, 4.

Закон изменения состояний обслуживающего устройства I

Изменение состояний обслуживающего устройства: $\Gamma_{i+1} = h(\Gamma_i, \varkappa_{3,i}).$

Рис.: Класс графов переходов (отображение $h(\cdot,\cdot)$).

Закон изменения состояний обслуживающего устройства II

Таким образом,

$$\Gamma = ig(igcup_{k=1}^d C_kig)igcup \{\Gamma^{(0,1)},\Gamma^{(0,2)},\dots,\Gamma^{(0,n_0)}\}, \quad C_k = C_k^{\mathrm{I}} \cup C_k^{\mathrm{O}} \cup C_k^{\mathrm{N}}.$$

$$h(\Gamma^{(k,r)},y) = \begin{cases} \Gamma^{(k,r\oplus_k 1)}, & \text{если } \Gamma^{(k,r)} \in C_k \setminus C_k^{\mathsf{O}}; \\ \Gamma^{(k,r\oplus_k 1)}, & \text{если } \Gamma^{(k,r)} \in C_k^{\mathsf{O}} \text{ и } y > L; \\ \Gamma^{(0,h_1(\Gamma^{(k,r)}))}, & \text{если } \Gamma^{(k,r)} \in C_k^{\mathsf{O}} \text{ и } y \leqslant L; \\ \Gamma^{(0,h_2(r))}, & \text{если } k = 0 \text{ и } y \leqslant L; \\ h_3(r), & \text{если } k = 0 \text{ и } y > L. \end{cases}$$

где

$$h_1(\cdot)\colon \bigcup_{k=1}^d C_k^{\mathsf{O}} \to N_0, \quad h_2(\cdot)\colon N_0 \to N_0, \quad h_3(\cdot)\colon N_0 \to \bigcup_{k=1}^d C_k^{\mathsf{I}},$$

и $N_0 = \{1, 2, \ldots, n_0\}.$

Рекуррентные соотношения

Функционирование системы подчиняется следующим функциональным соотношениям:

$$\overline{\xi}_{j,i} = \min\{\varkappa_{j,i} + \eta_{j,i}, \xi_{j,i}\}, \qquad j \in \{1, 2, 3\},
\varkappa_{j,i+1} = \varkappa_{j,i} + \eta_{j,i} - \overline{\xi}_{j,i}, \qquad j \in \{1, 2, 3\},
\varkappa_{j,i+1} = \max\{0, \varkappa_{j,i} + \eta_{j,i} - \xi_{j,i}\}, \qquad j \in \{1, 2, 3\},
\varkappa_{4,i+1} = \varkappa_{4,i} + \eta_{4,i} - \eta_{2,i},
\xi_{4,i} = \varkappa_{4,i}.$$
(1)

Свойства условных распределений І

Определим функции $\varphi_j(\cdot,\cdot),\,j\in\{1,3\},\,$ и $\psi(\cdot,\cdot,\cdot)$ из разложений:

$$\sum_{
u=0}^\infty z^
u arphi_j(
u,t) = \exp\{\lambda_j t(f_j(z)-1)\}, \quad \psi(k;y,u) = C_y^k u^k (1-u)^{y-k}.$$

Пусть $a=(a_1,a_2,a_3,a_4)\in\mathbb{Z}_+^4$ и $x=(x_1,x_2,x_3,x_4)\in\mathbb{Z}_+^4$.

Тогда вероятность $\varphi(a, k, r, x)$ одновременного выполнения равенств $\eta_{1,i}=a_1,\,\eta_{2,i}=a_2,\,\eta_{3,i}=a_3,\,\eta_{4,i}=a_4$ есть

$$\varphi_1(a_1,h_T(\Gamma^{(k,r)},x_3)) \times \psi(a_2,x_4,p_{\tilde{k},\tilde{r}}) \times \varphi_3(a_3,h_T(\Gamma^{(k,r)},x_3)) \times \delta_{a_4,\min{\{\ell(\tilde{k},\tilde{r},1),x_1+a_1\}}},$$

где

$$\Gamma^{(ilde{k}, ilde{r})} = h(\Gamma^{(k,r)},x_3), \quad \delta_{i,j} = egin{cases} 1, & ext{ если } i=j \ 0, & ext{ если } i
eq j, \end{cases}$$

И

$$T_{i+1} = h_T(\Gamma_i, \varkappa_{3,i}) = T^{(k,r)}, \quad \Gamma^{(k,r)} = \Gamma_{i+1} = h(\Gamma_i, \varkappa_{3,i}).$$

Свойства условных распределений II

Пусть $b=(b_1,b_2,b_3,b_4)\in\mathbb{Z}_+^4$. Тогда вероятность $\zeta(b,k,r,x)$ одновременного выполнения равенств $\xi_{1,i}=b_1,\,\xi_{2,i}=b_2,\,\xi_{3,i}=b_3,\,\xi_{4,i}=b_4$ при фиксированном значении метки $\nu_i=(\Gamma(k,r);x)$ есть

$$\delta_{b_1,\ell(\tilde{k},\tilde{r},1)} \times \delta_{b_2,\ell(\tilde{k},\tilde{r},2)} \times \delta_{b_3,\ell(\tilde{k},\tilde{r},3)} \times \delta_{b_4,x_4}.$$

где

$$\Gamma^{(\tilde{k},\tilde{r})}=h(\Gamma^{(k,r)},x_3).$$

Полученные результаты І

Теорема 1. Пусть

$$\gamma_0 = \Gamma^{(k_0, r_0)} \in \Gamma, \quad x^0 = (x_{1,0}, x_{2,0}, x_{3,0}, x_{4,0}) \in \mathbb{Z}_+^4$$

фиксированы. Тогда существует вероятностное пространство $(\Omega, \mathcal{F}, \mathbf{P}(\cdot))$ и заданные на нем случайные величины $\eta_{j,i} = \eta_{j,i}(\omega), \xi_{j,i} = \xi_{j,i}(\omega), \varkappa_{j,i} = \varkappa_{j,i}(\omega)$ и случайные элементы $\Gamma_i = \Gamma_i(\omega), \ i \geqslant 0, \ j \in \{1,2,3,4\},$ такие, что

- ullet имеют место равенства $\Gamma_0(\omega)=\gamma_0$ и $arkappa_0(\omega)=x^0$;
- выполняются соотношения (1);
- ullet для любых a, b, $x^t=(x_{1,t},x_{2,t},x_{3,t},x_{4,t})\in \mathbb{Z}_+^4$, $\Gamma^{(k_t,r_t)}\in \Gamma$, $t=1,2,\ldots$, условное распределение векторов η_i , u ξ_i имеет вид

$$\begin{split} \mathbf{P}(\{\omega\colon \eta_i = a, \xi_i = b\} | \cap_{t=0}^i \{\omega\colon \Gamma_t = \Gamma(k_t, r_t), \varkappa_t = x^t\}) = \\ &= \varphi(a, k_i, r_i, x^i) \times \zeta(b, k_i, r_i, x^i), \end{split}$$

◆ロト ◆部ト ◆意ト ◆意ト 連首 からの

Полученные результаты II

Теорема 2.

Пусть $\Gamma_0 = \Gamma^{(k,r)} \in \Gamma$ и $(\varkappa_{1,0}, \varkappa_{2,0}, \varkappa_{3,0}, \varkappa_{4,0}) = (x_1, x_2, x_3, x_4) \in \mathbb{Z}_+^4$ фиксированы.

Тогда последовательность $\{(\Gamma_i, \varkappa_{1,i}, \varkappa_{2,i}, \varkappa_{3,i}, \varkappa_{4,i}); i \geqslant 0\}$ является однородной счетной цепью Маркова.

Идея построения вероятностного пространства I

- 1 шаг. Строится «начальное» вероятностное пространство $(\Omega_0, \mathcal{F}_0, P_0(\cdot))$.
 - $\omega_0=(\omega_{1,0},\omega_{2,0},\omega_{3,0}),\ \omega_{j,0}\in Z_+.$ По своему смыслу $\omega_{j,0}$ есть количество требований в очереди O_j в момент времени $\tau_0.$
 - $\mathcal{F}_0 = 2^{\Omega_0}$.
 - $P_0(\{(a_1, a_2, a_3)\}) = \varphi_1(a_1, h_T(\Gamma^{(k_0, r_0)})) \times \psi(a_2, x_{2,0}, p_{\tilde{k}, \tilde{r}}) \times \varphi_3(a_3, h_T(\Gamma^{(k_0, r_0)})).$

Идея построения вероятностного пространства II

${f 2}$ mar. По индукции строится пространство

 $(\Omega_{n+1}, \mathcal{F}_{n+1}, P(\omega_0, \omega_1, \dots, \omega_n; \cdot)).$

- $\omega_{n+1}=(\omega_{1,n+1},\omega_{2,n+1},\omega_{3,n+1}),\ \omega_{j,n+1}\in Z_+.$ По своему смыслу $\omega_{j,n+1Fn+1}=2^{\Omega_{n+1}}$ есть количество требований в очереди O_j в момент времени $\tau_{n+1}.$
- $\mathcal{F}_{n+1} = 2^{\Omega_{n+1}}$.
- $P(\omega_0, \omega_1, \ldots, \omega_n; \{(a_1, a_2, a_3)\}) = \varphi_1(a_1, h_T(\Gamma_n, x_{3,n})) \times \psi(a_2, x_{4,n}, p_{k^*,r^*}) \times \varphi_3(a_3, h_T(\Gamma_n, x_{3,n})).$

Идея построения вероятностного пространства III

3 шаг. По теореме Ионеску-Тулчи строится агрегированное вероятностное пространство $(\Omega, \mathcal{F}, \mathbf{P}(\cdot))$, где

$$\bullet \ \Omega = \prod_{i=0}^{\infty} \Omega_i;$$

•
$$\mathcal{F} = \bigotimes_{i=0}^{\infty} \mathcal{F}_i$$
;

$$\begin{split} \bullet & \mathbf{P}\{\omega \colon \omega_0 \in A_0, \omega_1 \in A_1, \ldots, \omega_i \in A_i\} = P_i(A_0 \times A_1 \times \ldots \times A_i) \\ & \mathbf{p} \\ & P_i(A_0 \times A_1 \times \ldots \times A_i) = \\ & \int_{A_0} P_0(d\omega_0) \int_{A_1} P(\omega_0; d\omega_1) \ldots \int_{A_i} P(\omega_0, \omega_1, \ldots, \omega_{i-1}; d\omega_i), \ A_i \in \mathcal{F}_i. \end{split}$$

Классический подход

Представлен, например, в работах А. Эрланга, А.Я. Хинчина, А.Н. Колмогорова, Д. Кендалла, Б.В. Гнеденко.

Требуется задать:

- входной поток в виде конечномерных распределений процесса $\{\eta(t)\colon t\geqslant 0\},$ где $\eta(t)$ есть число поступивших требований до момента времени t;
- процесс обслуживания в виде интегральной функции распределения длительности обслуживани произвольной заявки;
- дисциплину формирования очереди в виде словесного описания на содержательном уровне;
- структуру системы в виде словесного описания на содержательном уровне.

Асимптотический подход

Сформулирован и развивается в работах А.А. Боровкова.

Требуется задание случайного процесса

$$\{(\eta(t),\nu(t),\zeta(t)); t\geqslant 0\},$$

где

- $\eta(t)$ число поступивших заявок за промежуток [0,t);
- $\nu(t)$ число получивших отказ заявок за промежуток [0,t);
- $\zeta(t)$ число обслуженных заявок за промежуток [0,t);

Основная цель — изучение общих предельных свойств распределения длины очереди

$$\eta(t) - \nu(t) - \zeta(t)$$
.

Сложность перечисленных методов

- Не удается решить проблему изучения выходных потоков.
- Не удается рассмотреть системы с немгновенным перемещением требований между узлами и с зависимыми, разнораспределенными длительностями обслуживания требований.