Adatszerkezetek és algoritmusok

Horváth Géza

második előadás

Előadások témái

- Az algoritmusokkal kapcsolatos alapfogalmak bevezetése egyszerű példákon keresztül.
- Az algoritmusok futási idejének aszimptotikus korlátai.
- Az adatszerkezetekkel kapcsolatos alapfogalmak. A halmaz, a multihalmaz és a tömb adatszerkezet bemutatása.
- Az adatszerkezetek folytonos és szétszórt reprezentációja. A verem, a sor és a lista.
- Táblázatok, önátrendező táblázatok, hash függvények és hash táblák, ütközéskezelés.
- Fák, bináris fák, bináris keresőfák, bejárás, keresés, beszúrás, törlés.
- Wiegyensúlyozott bináris keresőfák: AVL fák.
- Piros-fekete fák.
- B-fák.
- O Gráfok, bejárás, legrövidebb út megkeresése.
- Párhuzamos algoritmusok.
- Eldönthetőség és bonyolultság, a P és az NP problémaosztályok.
- Lineáris idejű rendezés. Összefoglalás.

Rendezési feladat

Bemenet: Számok véges ($n \ge 2$ elemű) sorozata $< a_1, a_2, \ldots, a_n >$.

Kimenet: A bemenet azon $\langle a'_1, a'_2, \dots, a'_n \rangle$ permutációja, melyre $a_1' \leq a_2' \leq \ldots \leq a_n'$.

Példa: Ha a bemenet < 31, 41, 59, 26, 41, 58 >, akkor egy rendező algoritmus kimenetként a < 26, 31, 41, 41, 58, 59 > sorozatot adja meg.

A beszúró rendezés – alapgondolat

Beszúró rendezés – példa

Beszúró rendezés – pszeudokód

INSERTION-SORT (A)

```
1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1..j-1].

4 i = j - 1

5 while i > 0 and A[i] > key

6 A[i+1] = A[i]

7 i = i - 1

8 A[i+1] = key
```

A beszúró rendezés vizsgálata

- (b)
- (c)

- (d)
- (e)
- (f)

times

for j = 2 to A. length kev = A[i]

INSERTION-SORT (A)

// Insert A[j] into the sorted sequence A[1...j-1].

i = i - 1

while i > 0 and A[i] > keyA[i+1] = A[i]6

i = i - 1

A[i+1] = key

$$c_1$$

cost

n-1 C_2

$$n-1$$
 $n-1$

 C_{Δ} $\sum_{i=2}^{n} t_j$ C5

 $\sum_{j=2}^{n} (t_j - 1)$ C_6 $\sum_{j=2}^{n} (t_j - 1)$

 C_{7} Ca

Debrecen, 2023

A beszúró rendezés vizsgálata

INSERTION-SORT (A)
$$cost$$
 times $cost$ times $cost$ $cost$

A beszúró rendezés vizsgálata legjobb eset – ha a bemenet eleve rendezett

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

Legjobb eset: $t_i = 1$ minden j = 2, ..., n esetén.

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$.

$$a = c_1 + c_2 + c_4 + c_5 + c_8$$

$$b = -1 * (c_2 + c_4 + c_5 + c_8)$$

T(n)=a*n+b

A beszúró rendezés vizsgálata legrosszabb eset – ha a bemenet fordítva rendezett

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

Legrosszabb eset: $t_i = j$ minden j = 2, ..., n esetén.

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$

and

$$\sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

 $T(n)=a*n^2+b*n+c$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- (c_2 + c_4 + c_5 + c_8) .$$

Polinomiális, lineáris, logaritmikus és konstans futási idő

n – bemenet méretem – futási idő

A konstans futási idő növelése

n – bemenet méretem – futási idő

A lineáris futási idő csökkentése

n – bemenet méretem – futási idő

A lineáris futási idő növelése

n – bemenet méretem – futási idő

Az \mathcal{O} jelölés – aszimptotikus felső korlát

Definíció

Egy adott g(n) függvény esetén $\mathcal{O}(g(n))$ jelöli a függvényeknek azt a halmazát, amelyre

$$\mathcal{O}(g(n)) = \{f(n) : l$$
 i létezik c és n_0 pozitív állandó úgy, hogy $0 \le f(n) \le c * g(n)$ teljesül minden $n \ge n_0$ esetén $\}.$

Aszimptotikus felső korlát – példák

Definíció

Egy adott g(n) függvény esetén O(g(n)) jelöli a függvényeknek azt a halmazát, amelyre

$$\mathcal{O}(g(n)) = \{f(n) : l$$
 i létezik c és n_0 pozitiv állandó úgy, hogy $0 \le f(n) \le c * g(n)$ teljesül minden $n \ge n_0$ esetén $\}$.

Példa

$$3*n+8=O(n)$$
.

Legyen c=4 és $n_0=8$. 4*n>3*n+8 ha n>8.

Példa

$$2*n^2+4*n=\mathcal{O}(n^2)$$
.

Legven c=3 és n_0 =4. $3*n^2 > 2*n^2 + 4*n$ ha n>4.

Másik megoldás: c=4 és $n_0=2$. $4*n^2 > 2*n^2 + 4*n$ ha n>2.

Aszimptotikus felső korlát – példák

Példa

$$2*n^2+4*n=\mathcal{O}(n^2)$$
.
Legyen $c=3$ és $n_0=4$. $3*n^2 \ge 2*n^2+4*n$ ha $n \ge 4$.
Másik megoldás: $c=4$ és $n_0=2$. $4*n^2 \ge 2*n^2+4*n$ ha $n \ge 2$.

Az Ω jelölés – aszimptotikus alsó korlát

Definíció

Egy adott g(n) függvény esetén $\Omega(g(n))$ jelöli a függvényeknek azt a halmazát, amelyre

$$\Omega(g(n)) = \{f(n) : l \text{\'etezik } c \text{\'es } n_0 \text{ pozit\'ev \'alland\'o \'ugy, hogy} \\ 0 \le c * g(n) \le f(n) \text{ teljes\"ul minden } n \ge n_0 \text{ eset\'en} \}.$$

Aszimptotikus alsó korlát – példák

Definíció

Egy adott g(n) függvény esetén $\Omega(g(n))$ jelöli a függvényeknek azt a halmazát, amelyre

$$\Omega(g(n)) = \{f(n) : létezik c és n_0 pozitív állandó úgy, hogy $0 \le c * g(n) \le f(n)$ teljesül minden $n \ge n_0$ esetén $\}$.$$

Példa

 $2*n-6=\Omega(n)$.

Legyen c=1 és $n_0=6$. $n \le 2*n-6$ ha $n \ge 6$.

Példa

$$n^2 - 3*n = \Omega(n^2)$$
.

Legyen c=0.5 és $n_0=6$. $\frac{n^2}{2} \le n^2-3*n$ ha $n \ge 6$.

A Θ jelölés – aszimptotikus éles korlát

Definíció

Egy adott g(n) függvény esetén $\Theta(g(n))$ jelöli a függvényeknek azt a halmazát, amelyre

$$\Theta(g(n)) = \{f(n) : létezik c_1, c_2 \text{ és } n_0 \text{ pozitív állandó úgy, hogy } 0 \le c_1 * g(n) \le f(n) \le c_2 * g(n) \text{ teljesül minden } n \ge n_0 \text{ esetén} \}.$$

Aszimptotikus éles korlát – példa

Definíció

Egy adott g(n) függvény esetén $\Theta(g(n))$ jelöli a függvényeknek azt a halmazát, amelyre

$$\Theta(g(n)) = \{f(n) : létezik c_1, c_2 \text{ és } n_0 \text{ pozitív állandó úgy, hogy } 0 \le c_1 * g(n) \le f(n) \le c_2 * g(n) \text{ teljesül minden } n \ge n_0 \text{ esetén} \}.$$

Példa

$$\frac{n^2}{2} + n = \Theta(n^2)$$
.

Lgyen
$$c_1 = 0.5$$
, $c_2 = 1$ és $n_0 = 2$. $\frac{n^2}{2} \le \frac{n^2}{2} + n \le n^2$ ha $n \ge 2$.

Aszimptotikus éles korlát – példa

n – bemenet méretem – futási idő

Aszimptotikus éles korlát

Definíció

Egy adott g(n) függvény esetén $\Theta(g(n))$ jelöli a függvényeknek azt a halmazát, amelyre

$$\Theta(g(n)) = \{f(n) : létezik c_1, c_2 \text{ és } n_0 \text{ pozitív állandó úgy, hogy } 0 \le c_1 * g(n) \le f(n) \le c_2 * g(n) \text{ teljesül minden } n \ge n_0 \text{ esetén} \}.$$

Tétel

Bármely két f(n) és g(n) függvény esetén $f(n) = \Theta(g(n))$ akkor és csak akkor, ha $f(n) = \mathcal{O}(g(n))$ és $f(n) = \Omega(g(n))$.

Számítási kapacitás egységnyi idő alatt megtett lépések száma

We assume a 30 day month and 365 day year.

	1 Second	1 Minute	1 Hour	1 Day	1 Month	1 Year	1 Century
- lg n	$2^{1\times10^{6}}$	$2^{6 \times 10^7}$	$2^{3.6 \times 10^9}$	$2^{8.64 \times 10^{10}}$	$2^{2.592 \times 10^{12}}$	$2^{3.1536 \times 10^{13}}$	$2^{3.15576 \times 10^{15}}$
$-\sqrt{n}$	1×10^{12}	3.6×10^{15}	1.29×10^{19}	7.46×10^{21}	6.72×10^{24}	9.95×10^{26}	9.96×10^{30}
\overline{n}	1×10^{6}	6×10^{7}	3.6×10^{9}	8.64×10^{10}	2.59×10^{12}	3.15×10^{13}	3.16×10^{15}
$n \lg n$	62746	2801417	133378058	2755147513	71870856404	797633893349	6.86×10^{13}
n^2	1000	7745	60000	293938	1609968	5615692	56176151
n^3	100	391	1532	4420	13736	31593	146679
2^n	19	25	31	36	41	44	51
n!	9	11	12	13	15	16	17

Irodalomjegyzék

