

80V N-Channel Enhancement Mode MOSFET

Description

The SL80N08D uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

V_{DS} = 80V I_D =80A

 $R_{DS(ON)} < 6.5 m\Omega V_{GS} = 10 V$

Application

Battery protection

Load switch

Uninterruptible power supply

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
SL80N08D	TO-252-3L	SL80N08D	2500

Absolute Maximum Ratings (T_c=25°Cunless otherwise noted)

Symbol	Parameter	Rating	Units	
VDS	Drain-Source Voltage	80	V	
VGS	Gate-Source Voltage	±20	V	
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	80	А	
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	42.5	А	
IDM	Pulsed Drain Current ²	170	А	
EAS	Single Pulse Avalanche Energy ³ 57.8		mJ	
IAS	Avalanche Current	Avalanche Current 34		
P _D @T _C =25°C	Total Power Dissipation ⁴ 56		W	
TSTG	Storage Temperature Range -55 to 150		°C	
TJ	Operating Junction Temperature Range	-55 to 150	°C	
R _θ JA	Thermal Resistance Junction-Ambient ¹	62	°C/W	
R _θ JC Thermal Resistance Junction-Case ¹		2.2	°C/W	

www.slkormicro.com 1 Rev.1 -- 20 July 2017

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	80			V
RDS(ON)	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =20A		4.8	6.5	mΩ
RDS(ON)	Static Drain-Source On-Resistance ²	V _{GS} =4.5V , I _D =20A		6.3	8.5	mΩ
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	1.0		2.5	V
		V _{DS} =64V , V _{GS} =0V , T _J =25°C			1	
IDSS	Drain-Source Leakage Current	V _{DS} =64V , V _{GS} =0V , T _J =55°C			5	uA
Igss	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA
gfs	Forward Transconductance	V_{DS} =5 V , I_{D} =20 A		75		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		0.5		Ω
Qg	Total Gate Charge (10V)			40		
Qgs	Gate-Source Charge			7.2		nC
Qgd	Gate-Drain Charge			6.5		
Td(on)	Turn-On Delay Time			8.3		
Tr	Rise Time			4.2		ns
Td(off)	Turn-Off Delay Time	ID=20A		36		
Tf	Fall Time			6.9		
Ciss	Input Capacitance			2860		
Coss	Output Capacitance	── VDS=40V , VGS=0V , f=1MHz		410		pF
Crss	Reverse Transfer Capacitance			38		
ls	Continuous Source Current ^{1,5}	V _G =V _D =0V , Force Current			48	Α
VsD	Diode Forward Voltage ²	V _{GS} =0V , I _S =A , T _J =25°C		0.77	1.0	V
trr	Reverse Recovery Time			27		nS
Qrr	Reverse Recovery Charge	IF=20A , dI/dt=100A/μs , T _J =25°C		89		nC

Note:

^{1.}The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

^{2.}The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

^{3.} The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V, L=0.1mH, I_{AS} =34A

^{4.}The power dissipation is limited by 150°C junction temperature

^{5.} The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

^{6.} The maximum current rating is package limited.

Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Source Drain Forward Characteristics

Fig.5 Normalized V_{GS(th)} vs. T_J

Fig.2 On-Resistance vs G-S Voltage

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized R_{DSON} vs. T_J

Fig.7 Capacitance

Fig.8 Safe Operating Area

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.10 Switching Time Waveform

Fig.11 Unclamped Inductive Switching Waveform

Package Mechanical Data: TO-252-3L

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	2.10		2.50	0.083		0.098
A2	0		0.10	0		0.004
В	0.66		0.86	0.026		0.034
B2	5.18		5.48	0.202		0.216
С	0.40		0.60	0.016		0.024
C2	0.44		0.58	0.017		0.023
D	5.90		6.30	0.232		0.248
D1	5.30REF		0.209REF			
E	6.40		6.80	0.252		0.268
E1	4.63			0.182		
G	4.47		4.67	0.176		0.184
Н	9.50		10.70	0.374		0.421
L	1.09		1.21	0.043		0.048
L2	1.35		1.65	0.053		0.065
V1		7°			7°	
V2	0°		6°	0°		6°