Let a > 0. Define the function $f : \mathbb{R} \to \mathbb{R}$ by:

M421 HW5 Harry Luo

$$f(x) = \begin{cases} \frac{\sqrt{x} - \sqrt{a}}{x - a} & (x \neq a, x > 0) \\ 0 & (x = a \text{ or } x \le 0). \end{cases}$$
 (1)

Find limit of f as x approaches a, and prove your answer.

When $x \neq a, x > 0$:

$$f(x) = \frac{\sqrt{x} - \sqrt{a}}{x - a} = \frac{\sqrt{x} - \sqrt{a}}{\left(\sqrt{x^2} - \sqrt{a^2}\right)} = \frac{1}{\sqrt{a} + \sqrt{x}}.@()$$
(2)

Claim:

$$\lim_{x \to a} f(x) = \frac{1}{2\sqrt{a}}.\tag{3}$$

Proof: For any given ε , let $\delta = \min\left(\frac{a}{2}, 2a^{3/2}c^2\varepsilon\right)$, where $c = 1 + \sqrt{2}/2$, s.t. if $|x - a| < \delta$, then $\left|f(x) - \frac{1}{2\sqrt{a}}\right| < \varepsilon$. Because:

$$|x - a| < \delta \Rightarrow a - \delta < x < a + \delta$$

$$\Rightarrow \sqrt{x} + \sqrt{a} > \sqrt{a - \delta} + \sqrt{a}$$
(4)

Since $\delta \leq \frac{a}{2}$,

$$\sqrt{x} - \sqrt{a} > \sqrt{a} + \sqrt{\frac{a}{2}}$$

$$= \left(1 + \frac{\sqrt{2}}{2}\right)\sqrt{a} := c\sqrt{a}$$
(5)

It follows that

$$2\sqrt{a}\left(\sqrt{a} + \sqrt{x}\right)^{2} > 2a^{\frac{3}{2}}c^{2}$$

$$\Rightarrow \frac{|x-a|}{2\sqrt{a}\left(\sqrt{x} + \sqrt{a}\right)^{2}} < \frac{|x-a|}{2a^{\frac{3}{2}}c^{2}}$$

$$= \frac{\delta}{2a^{\frac{3}{2}}c^{2}} < \varepsilon$$
(6)

So that:

$$\left| f(x) - \frac{1}{2\sqrt{a}} \right| = \left| \frac{1}{\sqrt{a} + \sqrt{x}} - \frac{1}{2\sqrt{a}} \right| = \frac{\left| \sqrt{a} - \sqrt{x} \right|}{2\sqrt{a}(\sqrt{a} + \sqrt{x})} = \frac{\left| x - a \right|}{2\sqrt{a}(\sqrt{x} + \sqrt{a})^2} < \varepsilon \tag{7}$$

Let $f:\mathbb{R}\to\mathbb{R}$ be a function s.t. $\lim_{x\to 0}f(x)=0$. Define the function $g:\mathbb{R}\to\mathbb{R}$ by

$$g(x) = \begin{cases} f(x) \cdot \sin(\frac{1}{x}) & \text{if } x = 0\\ 0 & \text{if } x \neq 0. \end{cases}$$
 (8)

Prove that $\lim_{x\to 0}g(x)=0$

• When $x \neq 0$:

$$|g(x)| = \left| f(x) \cdot \sin\left(\frac{1}{x}\right) \right| \le |f(x)| \tag{9}$$

Given that $\lim (x \to 0) f(x) = 0$, by definition, $\forall \varepsilon > 0$, $\exists \delta > 0$, s.t. $0 < |x| < \delta \implies |f(x)| < \varepsilon$. So for $0 < x < \delta$:

$$|g(x)| \le |f(x)| < \varepsilon. \tag{10}$$

Also notice that x = 0:

$$g(0) = 0 < \varepsilon. \tag{11}$$

So $\forall x \in \mathbb{R}, \forall \varepsilon > 0$, $\exists \delta > 0$ s.t. $0 < |x| < \delta \Rightarrow |g(x)| < \varepsilon$. In other words, $\lim_{x \to 0} g(x) = 0$.

Suppose that $f,g:\mathbb{R}\to\mathbb{R}$ are functions s.t. $|f(x)|\leq |g(x)|, \forall x\in\mathbb{R}$. g is continuous at 0, and g(0)=0. Prove that f is continuous at 0.

Given that g is continuous at 0, we know

$$\forall \varepsilon > 0, \exists \delta > 0 \ s.t. \ 0 < |x| < \delta \Rightarrow |g(x)| < \varepsilon. \tag{12}$$

So, for the same δ ,

$$0 < |x - 0| < \delta \Rightarrow |f(x) - 0| \le |g(x)| < \varepsilon \tag{13}$$

Noticing $|f(0)| \leq g(0) = 0 \quad \Rightarrow f(0) = 0$. We have thus proved that

$$\lim_{x \to 0} f(x) = f(0) \tag{14}$$

_

Let $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x|.

- 1. Prove that f is continuous.
- 2. Let $g:\mathbb{R}\to\mathbb{R}$ be a continuous function. Prove that |g| is also a continuous function.
- 1. Consider arbitrary point $c \in \mathbb{R}$. To prove that f is continuous over \mathbb{R} , we need to show that

$$\forall \varepsilon > 0, \exists \delta > 0, s.t. |x - c| < \delta \Rightarrow |f(x) - f(c)| < \varepsilon. \tag{15}$$

Let $\varepsilon > 0$ be given, choosing $\delta = \min\{\varepsilon, |c|\}$ when $c \neq 0$, then

• c > 0:

$$|f(x) - f(c)| = ||x| - c| = |x - c| < \delta = \varepsilon.$$

$$\tag{16}$$

• c < 0:

$$|f(x) - f(c)| = ||x| - |c|| = |-x + c| = |x - c| < \delta = \varepsilon.$$
 (17)

• c = 0: choose $\delta = \varepsilon$.

$$|f(x) - f(c)| = ||x| - |0|| = |x| < \delta = \varepsilon.$$
 (18)

So in all cases and for all $\varepsilon > 0$, there exists a $\delta > 0$ s.t. $|x - c| < \delta \Rightarrow |f(x) - f(c)| < \varepsilon$. Therefore, f is continuous over \mathbb{R} .

2. Given that g is a continuous function, and, from part 1, that |x| is continuous, we can construct their composite function $|g| = f \circ g$.

From lecture, we know that the composition of two continuous functions is also continuous. Therefore, |g| is a continuous function.

Let $a,b,c \in \mathbb{R}$ with a < b < c. Suppose that $f:[a,b] \to \mathbb{R}; g:[b,c] \to \mathbb{R}$ are both continuous, and f(b)=g(b). Prove that the function $h:[a,c] \to \mathbb{R}$ defined by

$$h(x) = \begin{cases} f(x) & \text{if } x \le b \\ g(x) & \text{if } x > b \end{cases}$$
 (19)

is continuous.

- Continuity on [a, b]: when $x \in [a, b)$, h(x) = f(x). Since f is continuous on [a, b], h is continuous on [a, b].
- Continuity on (b, c]: when $x \in (b, c]$, h(x) = g(x). Since g is continuous on [b, c], h is continuous on (b, c].
- Continuity at b: Given that f(x) is continuous on [a,b], and g(x) is continuous on [b,c], we have the following:

$$\lim_{x \to b-} f(x) = f(b), \quad \lim_{x \to b+} g(x) = g(b) \tag{20}$$

Since f(b) = g(b), it follows that

$$\lim_{x \to b-} h(x) = \lim_{x \to b-} f(x) = f(b) = g(b) = \lim_{x \to b+} g(x) = \lim_{x \to b+} h(x). \tag{21}$$

Using the fact that

$$\lim_{x \to b} h(x) = l \Leftrightarrow \lim_{x \to b^{-}} h(x) = l = \lim_{x \to b^{+}} h(x), \tag{22}$$

and h(b)=f(b) , We have shown that $\lim_{x\to b}h(x)=h(b)$, and thus h is continuous at b.

• Collecting the above, we have shown that h is continuous on [a, c].

Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a continuous function. Prove that for any open set $U \subseteq \mathbb{R}$, the set $f^{-1}(U)$ is also open.

Take an arbitrary point $x_0 \in f^{-1}(U)$. By definition of preimage, $f(x_0) \in U$. Since U is an open set, then by definition

$$\exists \varepsilon > 0, s.t. \left(f(x_0) - \varepsilon, f(x_0) + \varepsilon \right) \subseteq U. \tag{23}$$

Considering the continuity of f at $x_0 \in \mathbb{R}$, we have

$$\begin{split} \forall \varepsilon > 0, \exists \delta > 0, s.t. \ |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon. \\ \Rightarrow \quad x_0 - \delta < x < x_0 + \delta; \quad f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon. \end{split} \tag{24}$$

It follows that

$$f(x) \in (f(x_0) - \varepsilon, f(x_0) + \varepsilon) \subseteq U. \tag{25}$$

So by definition of preimage,

$$x \in f^{-1}(U). \tag{26}$$

Since x_0 is arbitrary, we have shown that

$$\forall x_0 \in f^{-1}(U), \exists \delta > 0, s.t. \ (x_0 - \delta, x_0 + \delta) \subseteq f^{-1}(U). \tag{27}$$

Which satisfies the definition of an open set. Therefore, $f^{-1}(U)$ is open.