4. Displej a senzory

Obsah

- 1. Použité součástky a moduly
 - 1. LCD displej 1602
 - 2. <u>Teploměr</u>
 - 3. Světelný senzor
- 2. 1.úloha Zobrazení výstupu senzorů na displej (7 b)
 - 1. Domovská obrazovka
 - 2. Teploměr
 - 3. Mikrofon
 - 4. Akcelerometr
- 3. Implementace pomocí konečného automatu

Použité součástky a moduly

V dnešní úloze budete potřebovat displej a 3 senzory. Pokud nemáte 3 senzory, poraďte se se cvičícím, jak chybějící senzory nahradit.

LCD displej 1602

Znakový LCD displej 1602 umí zobrazit až 16 znaků na 2 řádcích. Ovládá se paralelním rozhraním, v 8b nebo 4b režimu. Pokud máte k displeji převodník <u>i2c (../12/index.html#chap-i2c)</u>, stačí vám na ovládání displeje 2 signály, jinak budete potřeboval alespoň 6 pinů (4 pro data + 2 řídící).

Prostudujte si dokumentaci ke knihovně <u>LiquidCrystal_i2c (https://www.arduino.cc/reference/en/libraries/liquidcrystal-i2c/)</u>, případně <u>LiquidCrystal (https://www.arduino.cc/en/Reference/LiquidCrystal)</u>.

Teploměr

Pokud máte jeden z doporučených teplotních senzorů, čtěte níže. Pokud máte jiný, nastudujte si dokumentaci, jak se používá, případně si najděte knihovny pro práci se senzorem.

Digitální senzor DHT11

Senzor DHT11 (a DHT22) kombinuje vlhkoměr a teploměr. S Arduinem komunikuje vlastním protokolem po jednom datovém vodiči. My pro čtení dat ze senzoru použijeme knihovnu DHT (https://www.arduino.cc/reference/en/libraries/dht-sensor-library/).

Analogový senzor

LM335 (cvičení)

Senzor LM335 budeme používat v nejjednodušším zapojení, jako Zenerovu diodu tedy sériově s rezistorem pro omezení proudu. Kalibrační výstup necháme nezapojený.

Napětí na senzoru závisí lineárně na teplotě. Z výroby je kalibrován tak, že napětí přímo odpovídá teplotě v Kelvinech: $T=\frac{U_t}{10~{
m mV}}{
m K}$ Jinými slovy, pokud je na senzoru 3.15 V, odpovídá to teplotě 315 K (42 °C).

Senzor pracuje stabilně pro prouv rozmezí mezi 400 μ A a 5 mA. Zvolíme tedy rezistor tak, aby rezistorem protékaly přibližně 2 mA. $R=\frac{U_{cc}-U_t}{I}=\frac{(5-3)\mathrm{V}}{2\mathrm{mA}}=1\mathrm{k}\Omega$

Další podrobnosti lze najít v dokumentaci: https://www.ti.com/lit/ds/symlink/lm335.pdf

TMP36 (simlátor)

Senzor TMP36 pracuje s napájecím napětím 2.7–5.5 V, jeho výstupem je napětí 0.1–2.0 V, v závislosti na teplotě. Toto napětí je pak třeba přepočítat na teplotu.

Vzorec pro výpočet teploty

$$T = \frac{V_o - 500}{10}$$

 V_o v mV, T v $^{\circ}$ C

Vzorec je převzat z https://learn.adafruit.com/tmp36-temperature-sensor.

LM19

Senzor LM19 pracuje s napájecím napětím 2.5–5.5 V, jeho výstupem je napětí 0–2.5 V, v závislosti na teplotě. Toto napětí je pak třeba přepočítat na teplotu.

Vzorec pro výpočet teploty

$$T = -1481.96 + \sqrt{2.1962 \cdot 10^6 + \frac{1.8639 - V_o}{3.88 \cdot 10^{-6}}}$$

 V_o ve V, T v $^{\circ}\mathrm{C}$

Vzorec je převzat z dokumentace k LM19 (https://www.ti.com/product/LM19).

Světelný senzor

Fotorezistor je odporová součástka, která mění svůj odpor v závislosti na množství dopadajícího světla. Při sériovém spojení s pevným rezistorem (nebo s potenciometrem) vznikne odporový dělič. Jeho dělící poměr (a měřené napětí) závisí na intenzitě osvětlení. Rezistor volte tak, aby rozsah výstupního napětí byl co největší.

1.úloha - Zobrazení výstupu senzorů na displej (7 b)

2 z 9

Zobrazte na displej hodnotu teploměru, mikrofonu a světelného senzoru (nebo jiných senzorů, které máte k dispozici). Vytvořte menu, kde bude možné si zvolit jeden z těchto senzorů a vypsat jeho výstup na displej. Menu se bude ovládat pomocí 4 tlačítek SW1 až SW4.

PŘÍKLAD MAPOVÁNÍ TLAČÍTEK:

- Sw1: pohyb dolu
- SW2: vybrat senzor
- sw3: zpět do menu
- SW4: pohyb nahoru

Domovská obrazovka

Menu neboli domovská obrazovka slouží jako rozcestník pro výpis jednotlivých senzorů. Může vypadat například takto:

Příklad 1. Domovská obrazovka:

- > 1. Temperature
 - 2. Microphone

// druhá "obrazovka"

> 3. Light

Pohyb po menu se zobrazí pomocí znaku '>' před prvkem seznamu. (Zde se tedy aktuálně nacházíte na položce Temperature.) Dejte pozor, aby displej při pohybu po menu neblikal (tj. nemažte při posuvu znaku '>' celou obrazovku, ale pouze tento znak).

Pro každý senzor zvolte vhodný způsob zobrazení jeho hodnoty.

Příklady zobrazení některých senzorů:

Teploměr

Zvolením položky teploměr v menu, přejdete na obrazovku, kde se bude průběžně zobrazovat teplota (aktualizovaná každé 2 sekundy) ve stupních Celsia.

Pro obnovu dat po 2 sekundách, využijte funkce millis() z 1. cvičení.

Příklad 2. Obrazovka teploměru

TEMPERATURE

21 C

Pro převedení čísla na text můžete použít datový typ String (https://www.arduino.cc/reference/en/language/variables/data-types/stringobject/) a jeho metodu c_str().

Mikrofon

Zvolením položky mikrofon v menu, přejdete na obrazovku, kde se bude vykreslovat křivka podle momentálního zvuku z mikrofonu. Posuňte křivku na ose y lehce nahoru tak, aby byla vidět i v klidovém stavu (viz obrázek).

Příklad 3. Obrazovka mikrofonu

MICROPHONE

====== |

Zde je aktuální hodnota reprezentována znaky = a znak | označuje maximální hodnotu (za posledních x sekund).

Akcelerometr

Po zvolení položky akcelerometr v menu, zobrazíte na displeji kolečko, které se bude pohybovat v závislosti na aktuálním náklonu senzoru.

Příklad 4. Obrazovka akcelerometru

V ----0------

Implementace pomocí konečného automatu

Obrázek 1. Graf přechodů stavového automatu, který tvoří kostru programu

Můžete použít následující základní strukturu programu.

```
Ukázka 1. Kostra programu:
 enum states {
   HOME_SEL_TEMP, HOME_SEL_MIC, HOME_SEL_ACCE, TEMP, MIC, ACCE
 };
 enum states STATE, NEXT_STATE;
 void setup() {
  // Proveďte inicializaci displeje
   display_menu();
                                                    // zobrazení domovské obrazovky
   STATE = HOME_SEL_TEMP;
 }
 void loop()
   switch (STATE)
       case HOME_SEL_TEMP:
                                                   // MENU - TEMPERATURE
           if(buttonEvent(DOWN))
                                                  // je stisknuto tlačítko 'pohyb dolu'?
```

```
change_position();
                                        // změna domovské obrazovky
     NEXT_STATE = HOME_SEL_MIC;
   }
                                // je stisknuto tlačítko 'vybrat senzor'?
   else if (buttonEvent(ENTER))
     NEXT_STATE = TEMP;
   break;
case HOME_SEL_MIC:
                                        // MENU - MICROPHONE
   if (buttonEvent(DOWN))
                                       // je stisknuto tlačítko 'pohyb dolu'?
                                        // změna domovské obrazovky
     change_position();
     NEXT_STATE = HOME_SEL_ACCE;
   else if (buttonEvent(UP))
                                  // je stisknuto tlačítko 'pohyb nahoru'?
     change_position();
                                        // změna domovské obrazovky
     NEXT_STATE = HOME_SEL_TEMP;
   else if (buttonEvent(ENTER)) // je stisknuto tlačítko 'vybrat senzor'?
     NEXT_STATE = MIC;
   }
   break;
case HOME_SEL_ACCE:
                                        // MENU - ACCELEROMETER
   if (buttonEvent(UP))
                                        // je stisknuto tlačítko 'pohyb nahoru'?
     change_position();
                                        // změna domovské obrazovky
     NEXT_STATE = HOME_SEL_MIC;
                                // je stisknuto tlačítko 'vybrat senzor'?
   else if (buttonEvent(ENTER))
     NEXT_STATE = ACCE;
   }
   break;
case TEMP:
                                        // DRAW TEMPERATURE
                                        // je stisknuto tlačítko 'zpět do menu'?
   if(buttonEvent(BACK))
     display_menu();
                                        // zobrazení domovské obrazovky
     NEXT_STATE = HOME_SEL_TEMP;
   }
   else
     draw_temp();
                                        // funkce draw_temp vykreslí aktuální teplotu každé 2 sekur
```

```
break;
      case MIC:
                                                 // DRAW MICROPHONE
          if(buttonEvent(BACK))
                                                 // je stisknuto tlačítko 'zpět do menu'?
                                                 // zobrazení domovské obrazovky
            display_menu();
            NEXT_STATE = HOME_SEL_MIC;
          else
          {
            draw_mic();
                                                 // funkce draw_mic vykreslí křivku podle momentálního zvuku
          break;
      case ACCE:
                                                 // DRAW ACCELEROMETER
          if(buttonEvent(BACK))
                                                 // je stisknuto tlačítko 'zpět do menu'?
            display_menu();
                                                 // zobrazení domovské obrazovky
            NEXT_STATE = HOME_SEL_ACCE;
          }
          else
            draw_acce();
                                                // funkce draw_acce zobrazí kolečko, které se bude pohybovat
          }
          break;
   STATE = NEXT_STATE;
}
```

Použijte následující funkci buttonEvent(int button) ve svém programu. Tuto funkci využijete při implementaci pohybu po domovské obrazovce. Funkce vrací true, jestliže bylo zadané tlačítko (parametr button) stisknuto a puštěno, případně false pokud stisknuto nebylo nebo naopak nebylo ještě puštěno.

V simulátoru Tinkercad je chyba, která se projevuje v následující funkci buttonEvent(). Kód jsme upravili, aby se chyba neprojevila.

Chyba se projevuje chybovou hláškou error: expected unqualified-id before 'else' na úpně nesouvisejícím místě v kódu.

Pokud už máte zkopírovanou starší verzi této funkce (nebo jste to v kódu napsali sami), tak stačí smazat whitespace kolem else - else mějte na stejném řádku jako předcházející }.

Ukázka 2. Funkce pro detekci stisku tlačítka

#define DOWN SW1

```
#define UP
#define ENTER SW2
#define BACK SW3
byte buttonFlag = 0;
bool buttonEvent(int button)
  switch(button)
    case UP:
     if (digitalRead(UP) == LOW)
      buttonFlag |= 1;
     } else if (buttonFlag & 1)
      buttonFlag ^= 1;
      return true;
     }
     break;
    case DOWN:
     if (digitalRead(DOWN) == LOW)
       buttonFlag |= 2;
     } else if (buttonFlag & 2)
       buttonFlag ^= 2;
      return true;
     }
     break;
    case BACK:
     if (digitalRead(BACK) == LOW)
      buttonFlag |= 4;
     } else if (buttonFlag & 4)
      buttonFlag ^= 4;
      return true;
     break;
    case ENTER:
     if (digitalRead(ENTER) == LOW)
       buttonFlag |= 8;
     } else if (buttonFlag & 8)
```

4. Displej a senzory tutorials/04/index.adoc, poslední změna 468c0e9e (11. 3. 2024 ve 14:28, Robert Hülle) Build status