Solved selected problems of Real Analysis - Carothers

Franco Zacco

Chapter 7 - Completeness

Proof. 2

- (\Rightarrow) Let $A \subset \mathbb{R}$ such that A is totally bounded then given $\epsilon > 0$ there are finitely many points $x_1, ..., x_n \in \mathbb{R}$ such that $A \subset \bigcup_{i=1}^n B_{\epsilon}(x_i)$. Now let us grab $x_M = \max_{1 \leq i \leq n}(x_i)$ so we have that $a \leq x_M + \epsilon$ for every $a \in A$ hence A has an upper bound, if we now grab $x_m = \min_{1 \leq i \leq n}(x_i)$ then we have that $x_m \epsilon \leq a$ so A has a lower bound and therefore A is bounded.
- (\Leftarrow) Let $A \subset \mathbb{R}$ such that A is bounded then there are $x_m, x_M \in \mathbb{R}$ such that $x_m \leq a \leq x_M$ for every $a \in A$. Given some $\epsilon > 0$ we select $x_1 = x_m + \epsilon$ then $x_2 = x_1 + 2\epsilon$ and so on such that $x_{i+1} = x_i + 2\epsilon$ until we arrive to some finite n where $x_n \geq x_M \epsilon$. Then with this set we conclude that $A \in \bigcup_{i=1}^n B_{\epsilon}(x_i)$. Therefore A is totally bounded.

Finally let I be a closed, bounded, interval in \mathbb{R} and $\epsilon > 0$. Then there are $x_m, x_M \in I$ such that $x_m \leq y \leq x_M$ for all $y \in I$. Let us select $x_1 \in I$ such that $x_1 = x_m + \epsilon/2$ then the ball $J_1 = B_{\epsilon/2}(x_1)$ covers the interval $[x_m, x_m + \epsilon]$ the following $x_2 \in I$ let us select it as $x_2 = x_1 + \epsilon$ so it covers $J_2 = [x_m + \epsilon, x_m + 2\epsilon]$ if we continue this way we can select finitely many $x_{i+1} = x_i + \epsilon$ such that $\bigcup_{i=1}^n J_i$ covers I as we wanted. \square

Proof. **3** Given that $(0,1) \subset \mathbb{R}$ and that (0,1) is bounded then (0,1) is totally bounded because of the result we got in problem 2. But \mathbb{R} is not bounded therefore it's not totally bounded. Hence totally boundedness is not preserved by homeomorphisms.

Proof. 4

- (\Rightarrow) Let A be a totally bounded set then given $\epsilon/2>0$ there exists finitely many points $x_1,...,x_n\in M$ such that $A\subset\bigcup_{i=1}^n B_{\epsilon/2}(x_i)$. In particular, if we take the closed balls $B'_{\epsilon/2}(x_i)=\{y\in M:d(x_i,y)\leq \epsilon/2\}$ we see that $A\subset\bigcup_{i=1}^n B'_{\epsilon/2}(x_i)$ is still true therefore A can be covered by finitely many closed sets of diameter at most ϵ .
- (\Leftarrow) If A can be covered by finitely many closed sets of diameter at most ϵ then A can be also covered by a finite set of closed balls i.e. there are $x_1,...,x_n$ such that $A \subset \bigcup_{i=1}^n B'_{\epsilon/2}(x_i)$ where $B'_{\epsilon/2}(x_i) = \{y \in M : d(x_i,y) \le \epsilon/2\}$. Now let us take the set of open balls $B_{\epsilon}(x_i)$ where we know that $B'_{\epsilon/2}(x_i) \subset B_{\epsilon}(x_i)$ so A can be covered by this set too i.e. $A \subset \bigcup_{i=1}^n B_{\epsilon}(x_i)$. Therefore A is totally bounded.

Proof. 5

 (\Rightarrow) Let A be a totally bounded set and $\epsilon/2 > 0$ then there exist finitely many points $x_1, ..., x_n \in M$ such that $A \subset \bigcup_{i=1}^n B_{\epsilon/2}(x_i)$ for each ball we have that $\overline{B_{\epsilon/2}(x_i)} \subseteq B_{\epsilon}(x_i)$. Also, since the closure is the smallest closed set that contains A. It must happen that

$$\overline{A} \subseteq \bigcup_{i=1}^{n} \overline{B_{\epsilon/2}(x_i)} \subseteq \bigcup_{i=1}^{n} B_{\epsilon}(x_i)$$

Hence, \overline{A} is totally bounded too.

 (\Leftarrow) Let \overline{A} be totally bounded and let $\epsilon > 0$ then there exist finitely many points $x_1, ..., x_n \in M$ such that $\overline{A} \subset \bigcup_{i=1}^n B_{\epsilon}(x_i)$ but since $A \subseteq \overline{A}$ we have that $A \subset \bigcup_{i=1}^n B_{\epsilon}(x_i)$. Therefore A is totally bounded.

Proof. 10 Let M be a totally bounded metric space then for each 1/n > 0 there is a set D_n with m finitely many points such that $M \subset \bigcup_{i=1}^m B_{1/n}(x_i)$. Now let us define $D = \bigcup_{n=1}^{\infty} D_n$ since the union of countable sets is still countable then D is a countable set too. Also, for each $x \in M$ there is some $x_j \in D$ and some 1/n > 0 such that $x \in B_{1/n}(x_j)$ i.e. $B_{1/n}(x_j) \cap M \neq \emptyset$ which implies that for every open set U formed by an arbitrary union of open balls we have that $U \cap M \neq \emptyset$. Therefore D is a countable dense set which implies that M is separable.

Proof. **12** Suppose (A, d) is a complete subset of (M, d) and let (x_n) be a sequence in A that converges to some $x \in M$ then (x_n) is Cauchy in (A, d) hence it converges to some point in A this implies that $x \in A$. Therefore (A, d) is closed in (M, d).

Proof. **15** Let $f: \mathbb{R} \to (0,1)$ such that $f(x) = \arctan(x)/\pi + 1/2$ we know that f is continuous and \mathbb{R} is complete but $f(\mathbb{R}) = (0,1)$ is not complete since we have a sequence $x_n = 1/n$ which is Cauchy and converges to $0 \notin (0,1)$. Therefore we disproved the statement.

Proof. **16** Let us assume \mathbb{R}^n is complete under $\|\cdot\|_1$ we want to prove that \mathbb{R}^n is also complete under $\|\cdot\|_{\infty}$ then let (x_m) be a Cauchy sequence on \mathbb{R}^n under the norm $\|\cdot\|_{\infty}$ then we know that for some $\epsilon > 0$ there is some $N \in \mathbb{N}$ such that when i, j > N we have that $\|x_i - x_j\|_{\infty} < \epsilon$ also, let $x \in \mathbb{R}^n$ be the limit of (x_m) under $\|\cdot\|_1$ which we know converges since (x_m) is also a Cauchy sequence under $\|\cdot\|_1$ and \mathbb{R}^n is complete under $\|\cdot\|_1$ then we have that

$$||x_i - x_j||_{\infty} = ||x_i - x + x - x_j||_{\infty} \le ||x_i - x||_{\infty} + ||x - x_j||_{\infty}$$

Also, we know that there is $M \in \mathbb{N}$ such that when m > M we get that $\|x - x_m\|_1 < \epsilon$ but in addition we know that $\|\cdot\|_{\infty} \le \|\cdot\|_2 \le \|\cdot\|_1 \le n\|\cdot\|_{\infty}$ then we get that

$$||x_i - x||_{\infty} + ||x - x_i||_{\infty} \le ||x - x_m||_1 + ||x - x_m||_1 < 2\epsilon$$

Therefore since (x_m) also converges under $\|\cdot\|_{\infty}$ we get that \mathbb{R}^n is complete under $\|\cdot\|_{\infty}$

In the same way, using the inequality we have, we can prove that assuming \mathbb{R}^n is complete in any metric it is also complete in any of the other metrics.

Proof. 17

- (\Rightarrow) Let $(x_n) \subseteq M$ and $(y_n) \subseteq N$ be Cauchy sequences we want to prove that $x_n \to x$ and $y_n \to y$ for some $x \in M$ and $y \in N$. We know that $((x_n, y_n)) \subseteq M \times N$ is a Cauchy sequence from $M \times N$ and since $M \times N$ is complete this implies that $(x_n, y_n) \to (x, y)$ for some $(x, y) \in M \times N$ but this implies that $x_n \to x$ and $y_n \to y$ for $x \in M$ and $y \in N$. Therefore M and N are both complete.
- (\Leftarrow) Let $((x_n, y_n)) \subseteq M \times N$ be a Cauchy sequence we want to prove that $(x_n, y_n) \to (x, y)$ where $(x, y) \in M \times N$. We know that $(x_n) \subseteq M$ and $(y_n) \subseteq N$ are Cauchy sequences such that $x_n \to x$ and $y_n \to y$ because both M and N are complete but this implies that $(x_n, y_n) \to (x, y)$. Therefore $M \times N$ is also complete.

Proof. **20** If (x_n) and (y_n) are Cauchy in (M,d) then for some $\epsilon/2 > 0$ we know that there is $N_x \in \mathbb{N}$ and $N_y \in \mathbb{N}$ such that when $n, m \geq N_x$ and $n', m' \geq N_y$ we have that $d(x_n, x_m) < \epsilon/2$ and $d(y_{n'}, y_{m'}) < \epsilon/2$ so let us define $N = \max(N_x, N_y)$ such that when $n, m \geq N$ we have that $d(x_n, x_m) < \epsilon/2$ and $d(y_n, y_m) < \epsilon/2$.

On the other hand, we have that

$$d(x_n, y_n) \le d(x_n, x_m) + d(x_m, y_n) \le d(x_n, x_m) + d(x_m, y_m) + d(y_m, y_n)$$

and that

$$d(x_m, y_m) \le d(x_m, x_n) + d(x_n, y_m) \le d(x_m, x_n) + d(x_n, y_n) + d(y_n, y_m)$$

Hence

$$d(x_n, y_n) - d(x_m, y_m) \le d(x_n, x_m) + d(y_n, y_m) < \epsilon/2 + \epsilon/2 = \epsilon$$

$$d(x_m, y_m) - d(x_n, y_n) \le d(x_n, x_m) + d(y_n, y_m) < \epsilon/2 + \epsilon/2 = \epsilon$$

Therefore $|d(x_n, y_n) - d(x_m, y_m)| < \epsilon$ which implies that $(d(x_n, y_n))_{n=1}^{\infty}$ is Cauchy in \mathbb{R} .

Proof. 21

 (\Rightarrow) Let (x_n) and (y_n) be two Cauchy sequences with the same limit $m \in (M, d)$ then $d(x_n, m) \to 0$ and $d(y_n, m) \to 0$ also we know that

$$0 \le d(x_n, y_n) \le d(x_n, m) + d(y_n, m) \to 0$$

Therefore it must also happen that $d(x_n, y_n) \to 0$.

 (\Leftarrow) Let $d(x_n, y_n) \to 0$ also we know that (x_n) and (y_n) are Cauchy in (M, d) which is complete hence they converge to some $x \in M$ and $y \in M$ respectively then $d(x_n, x) \to 0$ and $d(y_n, y) \to 0$. Also, let us notice that

$$0 \le d(x,y) \le d(x_n,x) + d(x_n,y) \le d(x_n,x) + d(x_n,y_n) + d(y_n,y) \to 0$$

Where $d(x_n, x) + d(x_n, y_n) + d(y_n, y) \to 0$ since every term tend to 0. Therefore $d(x, y) \to 0$ and x = y which implies that (x_n) and (y_n) have the same limit.

Proof. 31 Let $\sum_{n=1}^{\infty} x_n$ be a convergent series in a normed vector space X. Let us some $x_n \in X$ then they must preserve the triangle inequality, hence

$$||x_n + x_{n+1}|| \le ||x_n|| + ||x_{n+1}||$$

this implies that

$$\left\| \sum_{n=1}^{N} x_n \right\| \le \sum_{n=1}^{N} \|x_n\|$$

for some $N \in \mathbb{N}$. Now if we take the limit of the series on both sides as $N \to \infty$ we get that

$$\left\| \sum_{n=1}^{\infty} x_n \right\| \le \sum_{n=1}^{\infty} \|x_n\|$$

Proof. **36** Let $f(x) = x^2$ and let $0 < \delta < 1$ also suppose that $|x - p_0| < \delta$ then since $p_0 = 0$ we have that |x| < 1 so if we multiply both sides of the inequality by |x| we get that $|x|^2 < |x|$ hence $|x^2 - 0| < |x - 0|$ and therefore $|f(x) - p_0| < |x - p_0|$.

Now we want to conclude that $f^n(x) \to p_0$ whenever $|x - p_0| < \delta$. So given $\epsilon > 0$ we take some δ such that $\delta < \epsilon$ and $0 < \delta < 1$. We know that $|f^n(x) - p_0| = |f(f^{n-1}(x)) - p_0|$ and we saw that $|f(f^{n-1}(x)) - p_0| < |f^{n-1}(x) - p_0|$ so we can continue this process n times to see that $|f^n(x) - p_0| < |x - p_0| < \delta < \epsilon$ which implies that $f^n(x) \to p_0$.

On the other hand, let $\delta = 1/2$ then if |x-1| < 1/2 we get that 1/2 < x < 3/2 hence x+1>3/2 but also |x+1|>3/2 so we see that

$$|x^2 - 1| = |x + 1||x - 1| > \frac{3}{2}|x - 1| > |x - 1|$$

Therefore since $f(x) = x^2$ and $p_1 = 1$ we get that $|f(x) - p_1| > |x - p_1|$. \square

Proof. **37** Let $f:(a,b)\to(a,b)$ with a fixed point $p\in(a,b)$ where f is differentiable. If |f'(p)|<1 then from the definition of f'(p) we have that

$$f'(p) = \lim_{x \to p} \frac{f(x) - f(p)}{x - p} = \lim_{x \to p} \frac{f(x) - p}{x - p}$$

and we know that $\left|\lim_{x\to p} \frac{f(x)-p}{x-p}\right| < 1$. Then by using the limits definition, let $\epsilon < 1 - |f'(p)|$ we know there is some $\delta > 0$ such that when $|x-p| < \delta$ we have that

$$\left| \left| \frac{f(x) - p}{x - p} \right| - |f'(p)| \right| \le \left| \frac{f(x) - p}{x - p} - f'(p) \right| < \epsilon < 1 - |f'(p)|$$

Then we have that

$$\left| \frac{f(x) - p}{x - p} \right| \le \left| \left| \frac{f(x) - p}{x - p} \right| - |f'(p)| \right| + |f'(p)| < 1$$

Therefore we get that |f(x)-p| < |x-p| which implies that p is an attracting fixed point for f.

In the same way if |f'(p)| > 1 we get that $\left| \lim_{x \to p} \frac{f(x) - p}{x - p} \right| > 1$. Then by using the limits definition, let $\epsilon < |f'(p)| - 1$ we know there is some $\delta > 0$ such that when $|x - p| < \delta$ we have that

$$\left| \left| \frac{f(x) - p}{x - p} \right| - |f'(p)| \right| \le \left| \frac{f(x) - p}{x - p} - f'(p) \right| < \epsilon < |f'(p)| - 1$$

Then we have that

$$\left| \left| \frac{f(x) - p}{x - p} \right| - |f'(p)| \right| - |f'(p)| < -1$$

so multiplying by -1 and applying to both sides of the inequality the absolute value we get that

$$1 < \left| |f'(p)| - \left| \left| \frac{f(x) - p}{x - p} \right| - |f'(p)| \right| \right|$$

Hence

$$1 < \left| |f'(p)| - \left| \left| \frac{f(x) - p}{x - p} \right| - |f'(p)| \right| \right| \le \left| \frac{f(x) - p}{x - p} \right|$$

Therefore we get that |f(x) - p| > |x - p| which implies that p is a repelling fixed point for f.

Proof. 38

(a) Let $f(x) = \arctan x$ we know that $f'(x) = 1/(x^2 + 1)$ then if x = 0 we get that f'(0) = 1 also we know that

$$|f(x) - 0| = |\arctan x| < |x| = |x - 0|$$

Therefore from problem 36, we can say that 0 is an attracting fixed point for f.

(b) Let $g(x) = x^3 + x$ we know that $g'(x) = 3x^2 + 1$ then if x = 0 we get that g'(0) = 1. Now we want to prove that

$$|x^3 + x| = |g(x) - 0| > |x - 0| = |x|$$

For x > 0 we see that

$$x^3 \ge 0$$
$$x^3 + x \ge x = |x|$$

and if x < 0 we see that

$$x^3 < 0$$
$$x^3 + x < x = -|x|$$

Therefore $|x^3 + x| > |x|$ which implies that 0 is a repelling fixed point for q according to problem 36.

(c) Let $h(x) = x^2 + 1/4$ we know that h'(x) = 2x then if x = 1/2 we get that h'(1/2) = 1. If $x \ge 1/2$ we see that

$$x^2 - 1/4 \ge x - 1/2$$

hence $|x^2 - 1/4| \ge |x - 1/2|$. On the other hand, we are interested in knowing if this is also true for x < 1/2. Suppose $x \in (0, 1/2)$ then we have that |x - 1/2| = -x + 1/2 but also in this interval we have that $|x^2 - 1/4| = -x^2 + 1/4$ and we see that

$$-x^2 + 1/4 < -x + 1/2$$

Then $|x^2-1/4| < |x-1/2|$ when $x \in (0,1/2)$. Therefore h(x) is neither an attracting nor a repelling fixed point because $|h(x)-1/2| \nleq |x-1/2|$ nor $|h(x)-1/2| \not \geqslant |x-1/2|$ for every $x \in \mathbb{R}$.

Proof. **46** Let \hat{M} be the completion of M then M is dense in \hat{M} which implies that $\overline{M} = \hat{M}$. But also we know that $\overline{A} = M$ because A is dense in M hence $\overline{M} = \overline{\overline{A}} = \overline{A} = \hat{M}$ which implies that A is also dense in \hat{M} . Therefore since (A, d) is an isometry to A and A is dense in \hat{M} we see that \hat{M} is a completion to A too.