# Machine Learning

**Linear Regression** 



#### Functional Relationship – 2 Variables



$$Y = f(X)$$

Unit price \$2

| Period | # Units (X) | Sales \$ (Y) |
|--------|-------------|--------------|
| 1      | 75          | 150          |
| 2      | 25          | 50           |
| 3      | 130         | 260          |

$$(X_1, Y_1) = (75, 150)$$
  
 $(X_2, Y_2) = (25, 50)$   
 $(X_3, Y_3) = (130, 260)$ 

Function Relationship is perfect



#### Statistical Relationship – 2 Variables



Performance Evaluation of 10 employees at Mid Year and Year-End

There is a relationship but not perfect

For 2 Employees Mid Year Evaluation is same at X=80 But different Year End Evaluation

Indicates general tendency by which Year End Tendency vary with Midyear Evaluation



#### Formal Statement of Model

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

 $Y_i$  is the value of the response variable in the *i*th trial

 $\beta_0$  and  $\beta_1$  are parameters

 $X_i$  the value of the predictor variable in the *i*th trial

 $\epsilon_i$  random error with mean  $E\{\epsilon_i\}=0$  and Variance  $\sigma^2\{\epsilon_i\}=\sigma^2$ 



#### Project Statement

A certain spare part is manufactured by a company once a month in lots which vary in size as demand fluctuates. Data on lot size and number of man hours of labour for 10 production run performed under similar production conditions

First Trial  $(X_1, Y_1) = (30, 73)$  $ith Trial (X_i, Y_i) where i = 1, ..., n$ 

| Production Run i | Lot Size $X_i$ | Man-Hour ${m Y}_{m i}$ |
|------------------|----------------|------------------------|
| 1                | 30             | 73                     |
| 2                | 20             | 50                     |
| 3                | 60             | 128                    |
| 4                | 80             | 170                    |
| 5                | 40             | 87                     |
| 6                | 50             | 108                    |
| 7                | 60             | 135                    |
| 8                | 30             | 69                     |
| 9                | 70             | 148                    |
| 10               | 60             | 132                    |



### Analysis of Data

$$n = 10, \bar{X} = \frac{500}{10} = 50, \bar{Y} = \frac{1100}{10} = 110$$

| Run (i) | Lot Size $(X_i)$ | $ManHour (Y_i)$ | $X_i - \overline{X}$ | $Y_i - \overline{Y}$ | $(X_i - \overline{X})^2$ | $(Y_i - \overline{Y})^2$ |
|---------|------------------|-----------------|----------------------|----------------------|--------------------------|--------------------------|
| 1       | 30               | 73              | -20                  | -37                  | 400                      | 1369                     |
| 2       | 20               | 50              | -30                  | -60                  | 900                      | 3600                     |
| 3       | 60               | 128             | 10                   | 18                   | 100                      | 324                      |
| 4       | 80               | 170             | 30                   | 60                   | 900                      | 3600                     |
| 5       | 40               | 87              | -10                  | -23                  | 100                      | 529                      |
| 6       | 50               | 108             | 0                    | -2                   | 0                        | 4                        |
| 7       | 60               | 135             | 10                   | 25                   | 100                      | 625                      |
| 8       | 30               | 69              | -20                  | -41                  | 400                      | 1681                     |
| 9       | 70               | 148             | 20                   | 38                   | 400                      | 1444                     |
| 10      | 60               | 132             | 10                   | 22                   | 100                      | 484                      |
| Total   | 500              | 1100            | 0                    | 0                    | 3400                     | 13660                    |



 $\sum (X_i - \overline{X})^2 \sum (Y_i - \overline{Y})^2$ 

# Mean and Standard Deviation Lot Size $X_i$

Sample Size: n = 10

Degree of Freedom: DF = n - 1 = 9

Mean: 
$$\bar{X} = \frac{\sum X_i}{n} = \frac{500}{10} = 50$$

Variance: 
$$Var = \frac{\sum (X_i - \overline{X})^2}{n-1} = \frac{3400}{9} = 377.77$$

Standard Deviation : $s_X = \sqrt{Var} = \sqrt{377.77} = 19.436$ 



# Mean and Standard Deviation Man-Hours $Y_i$

Sample Size: n = 10

Degree of Freedom: DF = n - 1 = 9

Mean: 
$$\overline{Y} = \frac{\sum Y_i}{n} = \frac{1100}{10} = 110$$

Variance: 
$$Var = \frac{\sum (Y_i - \overline{Y})^2}{n-1} = \frac{13660}{9} = 1517.778$$

Standard Deviation :  $s_V = \sqrt{Var} = \sqrt{1517.778} = 38.9587$ 



#### Scatter Diagram



#### Scatter Diagram or Scatter Plot

suggests direct relationship between  $lot\ size\ and\ man-hour$ 

Larger *lot size* needs more man - hour

Relation is not perfect

Production run 1 and 8 of 30 parts needs different man - hour

Each point in scatter diagram represents *Observation* or *Trial* 



# Statistical Relationship



Line of Relationship describes statistical relationship between lot size and man — hour

Shows general tendency by which man - hour changes with  $lot \ size$ 

Scattering of points around the line represents the variation in man — hour which is not associated with  $lot\ size$ 



# **Probability Distribution**



Relation – Lot Size  $(X_i)$  and Required Man-Hours  $(Y_i)$   $Y_i = 9.5 + 2.1 X_i + \epsilon_i$   $\hat{Y}_i = E\{Y_i\} = 9.5 + 2.1 X_i$  For  $(X_i, Y_i) = (45, 108)$   $E\{Y_i\} = 9.5 + 2.1 \times 45 = 104$   $Y_i = 104 + 4 = 108$ 

Probability Distribution of Y when X = 45 indicates from where in the distribution Y = 108 comes



#### Method of Least Square

The objective of method of Least Square is to find estimates  $(\hat{\beta}_0 \ and \ \hat{\beta}_1)$  for  $\beta_0$  and  $\beta_1$  for which the sum of n square deviations is minimum

For each sample observation  $(X_i, Y_i)$ , the method of Least Square consider the deviation of  $Y_i$  from its expected value

$$Y_i - (\beta_0 + \beta_1 X_i)$$

If Sum of Square Deviation is Q

$$Q = \sum_{i=1}^{\infty} (Y_i - \beta_0 - \beta_1 X_i)^2$$



#### Linear Regression Coefficients



Parameters  $\beta_0$  and  $\beta_1$  are called Regression Coefficients

 $\beta_1$  is slope of regression line Indicates change in the mean of probability distribution of Y per unit increase in X

 $\beta_0$  indicates mean of probability distribution of Y when X=0

Least Square Estimators could be found by trial and error methods

Can also be found using *Normal Equations* 



#### Trial and Error Method



Draw a random line

$$\hat{Y}_i = E\{Y_i\} = 30 + (0)X_i$$

$$\hat{\beta}_0 = 30 \ and \ \hat{\beta}_1 = 0$$

The sum of Squared Error is 77,660

Deviation is large, so fit is poor



$$Q = \sum_{i=1}^{n} (Y_i - 30 - (0)X_i)^2$$

| Run (i) | Lot Size $(X_i)$ | ManHour (Y <sub>i</sub> ) | $\widehat{Y}_i = 30$ | $Y_i - \widehat{Y}_i$ | $(Y_i - \widehat{Y}_i)^2$ |
|---------|------------------|---------------------------|----------------------|-----------------------|---------------------------|
| 1       | 30               | 73                        | 30                   | 43                    | 1849                      |
| 2       | 20               | 50                        | 30                   | 20                    | 400                       |
| 3       | 60               | 128                       | 30                   | 98                    | 9604                      |
| 4       | 80               | 170                       | 30                   | 140                   | 19600                     |
| 5       | 40               | 87                        | 30                   | 57                    | 3249                      |
| 6       | 50               | 108                       | 30                   | 78                    | 6084                      |
| 7       | 60               | 135                       | 30                   | 105                   | 11025                     |
| 8       | 30               | 69                        | 30                   | 39                    | 1521                      |
| 9       | 70               | 148                       | 30                   | 118                   | 13924                     |
| 10      | 60               | 132                       | 30                   | 102                   | 10404                     |
|         |                  |                           |                      |                       | 77660                     |



#### Linear Regression Coefficients





Draw another line that is closer to the observations

$$\hat{Y}_i = E\{Y_i\} = 15 + (1.5)X_i$$

$$\hat{\beta}_0 = 15 \ and \ \hat{\beta}_1 = 1.5$$

The sum of Squared Error is 4,910 Deviation is lesser, so fit is some what better

Try drawing lines until you find the line with minimum error



$$Q = \sum_{i=1}^{n} (Y_i - 15 - (1.5)X_i)^2$$

| Run (i) | Lot Size $(X_i)$ | ManHour (Y <sub>i</sub> ) | $\widehat{Y}_i = 15 + 1.5X_i$ | $Y_i - \widehat{Y}_i$ | $(Y_i - \widehat{Y}_i)^2$ |
|---------|------------------|---------------------------|-------------------------------|-----------------------|---------------------------|
| 1       | 30               | 73                        | 60                            | 13                    | 169                       |
| 2       | 20               | 50                        | 45                            | 5                     | 25                        |
| 3       | 60               | 128                       | 105                           | 23                    | 529                       |
| 4       | 80               | 170                       | 135                           | 35                    | 1225                      |
| 5       | 40               | 87                        | 75                            | 12                    | 144                       |
| 6       | 50               | 108                       | 90                            | 18                    | 324                       |
| 7       | 60               | 135                       | 105                           | 30                    | 900                       |
| 8       | 30               | 69                        | 60                            | 9                     | 81                        |
| 9       | 70               | 148                       | 120                           | 28                    | 784                       |
| 10      | 60               | 132                       | 105                           | 27                    | 729                       |
|         |                  |                           |                               |                       | 4910                      |



#### Least Square Estimators

Least Square Estimators could be found by trial and error methods
Can also be found using Normal Equations

$$\hat{\beta}_1 = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$



#### Least Square Estimators

$$n = 10, \bar{X} = \frac{500}{10} = 50, \bar{Y} = \frac{1100}{10} = 110$$

| Run (i) | Lot Size $(X_i)$ | $ManHour (Y_i)$ | $X_i - \overline{X}$ | $Y_i - \overline{Y}$ | $(X_i-\overline{X})(Y_i-\overline{Y})$ | $(X_i - \overline{X})^2$ |
|---------|------------------|-----------------|----------------------|----------------------|----------------------------------------|--------------------------|
| 1       | 30               | 73              | -20                  | -37                  | 740                                    | 400                      |
| 2       | 20               | 50              | -30                  | -60                  | 1800                                   | 900                      |
| 3       | 60               | 128             | 10                   | 18                   | 180                                    | 100                      |
| 4       | 80               | 170             | 30                   | 60                   | 1800                                   | 900                      |
| 5       | 40               | 87              | -10                  | -23                  | 230                                    | 100                      |
| 6       | 50               | 108             | 0                    | -2                   | 0                                      | 0                        |
| 7       | 60               | 135             | 10                   | 25                   | 250                                    | 100                      |
| 8       | 30               | 69              | -20                  | -41                  | 820                                    | 400                      |
| 9       | 70               | 148             | 20                   | 38                   | 760                                    | 400                      |
| 10      | 60               | 132             | 10                   | 22                   | 220                                    | 100                      |
| Total   | 500              | 1100            | 0                    | 0                    | 6800                                   | 3400                     |



 $\sum X$ 

 $\sum Y_i$ 

$$\sum (X_i - \overline{X})(Y_i - \overline{Y}) \sum (X_i - \overline{X})^2_{19}$$

#### Least Square Estimators

$$\hat{\beta}_1 = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2}$$

$$\hat{\beta}_0 = \bar{Y} - \beta_1 \bar{X}$$

$$\sum (X_i - \bar{X})(Y_i - \bar{Y}) = 6800, \sum (X_i - \bar{X})^2 = 3400, n = 10, \bar{X} = \frac{500}{10} = 50, \bar{Y} = \frac{1100}{10} = 110$$

$$\hat{\beta}_1 = \frac{6800}{3400} = 2.0$$

$$\hat{\beta}_0 = 110 - 2 \times 50 = 10.0$$



#### Linear Regression Coefficients



$$\hat{Y}_i = E\{Y_i\} = 10 + (2.0)X_i$$

$$\hat{\beta}_0 = 10 \ and \ \hat{\beta}_1 = 2.0$$

The sum of Squared Error is 60 Mean Number of Man-Hours when X = 55

$$\hat{Y} = 10 + 2 \times 55 = 120$$



#### Residual



ith Residual is the difference between the observed value  $Y_i$  and the corresponding fitted value  $\hat{Y}_i$ 

$$e_i = Y_i - \hat{Y}_i$$

$$e_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i$$



#### Residuals

$$e_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i$$

| Run (i) | Lot Size $(X_i)$ | ManHour<br>(Y <sub>i</sub> ) | $\widehat{Y}_i = 10 + 2X_i$ | $e_i = \widehat{Y}_i - Y_i$ | $e_i^2 = (\widehat{Y}_i - Y_i)^2$ |
|---------|------------------|------------------------------|-----------------------------|-----------------------------|-----------------------------------|
| 1       | 30               | 73                           | 70                          | 3                           | 9                                 |
| 2       | 20               | 50                           | 50                          | 0                           | 0                                 |
| 3       | 60               | 128                          | 130                         | -2                          | 4                                 |
| 4       | 80               | 170                          | 170                         | 0                           | 0                                 |
| 5       | 40               | 87                           | 90                          | -3                          | 9                                 |
| 6       | 50               | 108                          | 110                         | -2                          | 4                                 |
| 7       | 60               | 135                          | 130                         | 5                           | 25                                |
| 8       | 30               | 69                           | 70                          | -1                          | 1                                 |
| 9       | 70               | 148                          | 150                         | -2                          | 4                                 |
| 10      | 60               | 132                          | 130                         | 2                           | 4                                 |
| Total   | 500              | 1100                         | 1100                        | 0                           | 60                                |



#### Properties of Fitted Regression Line

The sum of Residuals is Zero

$$\sum_{i=1}^{n} e_i = 0$$

- ullet The sum of Residual Square  $\sum e_i^{\,2}$  is minimum
- The sum of Observed Value  $Y_i$  is equal to sum of Fitted Value  $\widehat{Y}_i$

$$\sum_{i=1}^{n} Y_i = \sum_{i=1}^{n} \widehat{Y}_i$$



#### Properties of Fitted Regression Line

• The sum of weighted residuals is Zero when the residual in the ith trial is weighted by the level of independent variable in ith trial

$$\sum_{i=1}^{n} X_i e_i$$

 The sum of weighted residuals is Zero when the residual in the ith trial is weighted by the fitted value of response variable in ith trial

$$\sum_{i=1}^{\infty} \widehat{Y}_i e_i$$

• The Regression Line Always go through  $\overline{X}$ ,  $\overline{Y}$ 



#### Regression Summary Output

```
MULTIPLE R
                     0.99780 4-r
R SQUARE
                     0.99561
                     2.73861 ← √MSE
STANDARD ERROR
                   VARIABLES IN THE EQUATION
VARIABLE
                                         STD ERROR B
             2.000000 +- b1
SIZE
                                          → 0.04697
(CONSTANT)
              10.00000 -
VARIABLE
                             STANDARD DEV
                                               CASES
                            Sx -- 19.4365
SIZE
               ▶50.0000
HOURS
                            Sy --> 38.9587
ANALYSIS OF VARIANCE
                              SUM OF SQUARES
SSR-→13600.00000
                                                         MEAN SQUARE
REGRESSION
                                                  MSR-→13600.00000
RESIDUAL ← Error
                                 SSE →60.00000
                                                     MSE → 7.50000
```



# Regression Summary Output

| SUMMARY OUTPUT    |              |                |           |           |                |           |             |             |
|-------------------|--------------|----------------|-----------|-----------|----------------|-----------|-------------|-------------|
| Regression Sta    | ntistics     |                |           |           |                |           |             |             |
| Multiple R        | 0.9978014    |                |           |           |                |           |             |             |
| R Square          | 0.9956076    |                |           |           |                |           |             |             |
| Adjusted R Square | 0.9950586    |                |           |           |                |           |             |             |
| Standard Error    | 2.7386128    |                |           |           |                |           |             |             |
| Observations      | 10           |                |           |           |                |           |             |             |
| ANOVA             |              |                |           |           |                |           |             |             |
|                   | df           | SS             | MS        | F         | Significance F |           |             |             |
| Regression        | 1            | 13600          | 13600     | 1813.3333 | 1.01959E-10    |           |             |             |
| Residual          | 8            | 60             | 7.5       |           |                |           |             |             |
| Total             | 9            | 13660          |           |           |                |           |             |             |
|                   | Coefficients | Standard Error | t Stat    | P-value   | Lower 95%      | Upper 95% | Lower 95.0% | Upper 95.0% |
| Intercept         | 10           | 2.502939448    | 3.9953024 | 0.0039758 | 4.228211282    | 15.771789 | 4.2282113   | 15.771789   |
| X Variable 1      | 2            | 0.046966822    | 42.583252 | 1.02E-10  | 1.891694315    | 2.1083057 | 1.8916943   | 2.1083057   |



# Error Sum of Square (SSE)

| ANOVA          |    |        |      |      |       |           |                |
|----------------|----|--------|------|------|-------|-----------|----------------|
|                | df | SS     |      | М    | S     | F         | Significance F |
| Regression     | 1  | SSR 1  | 3600 | MSR: | 13600 | 1813.3333 | 1.01959E-10    |
| Residual Error | 8  | SSE    | 60   | MSE  | 7.5   |           |                |
| Total          | 9  | SSTO 1 | 3660 |      |       |           |                |

 $Y_i$  come from different probability distributions with different means, depending upon the level  $X_i$ 

Deviation of an observation  $Y_i$  must be calculated around its estimated mean  $\widehat{Y}_i$  Deviation of residuals is

$$Y_i - \hat{Y}_i = e_i$$

Error Sum of Square or Residual Sum of Square (SSE) is

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i)^2 = \sum_{i=1}^{n} e_i^2$$



# Error Mean Square (MSE)

| ANOVA          |    |            |                |           |                |
|----------------|----|------------|----------------|-----------|----------------|
|                | df | SS         | MS             | F         | Significance F |
| Regression     | 1  | SSR 13600  | MSR 13600      | 1813.3333 | 1.01959E-10    |
| Residual Error | 8  | SSE 60     | <b>MSE</b> 7.5 |           |                |
| Total          | 9  | SSTO 13660 |                |           |                |

The Error Sum of Square MSE has n-2 degree of freedom associated with it Two degree of freedom are lost because both  $\beta_0$  and  $\beta_1$  had to be estimated in obtaining  $\hat{Y}_i$ 

Error Mean Square (MSE) is

$$MSE = \frac{SSE}{n-2} = \frac{\sum (Y_i - \hat{Y}_i)^2}{n-2} = \frac{\sum (Y_i - b_0 - b_1 X_i)^2}{n-2} = \frac{\sum e_i^2}{n-2}$$



#### $Standard\ Error - \sigma$

| ANOVA          |    |            |                |           |                |
|----------------|----|------------|----------------|-----------|----------------|
|                | df | SS         | MS             | F         | Significance F |
| Regression     | 1  | SSR 13600  | MSR 13600      | 1813.3333 | 1.01959E-10    |
| Residual Error | 8  | SSE 60     | <b>MSE</b> 7.5 |           |                |
| Total          | 9  | SSTO 13660 |                |           |                |

MSE is unbiased estimator of  $\sigma^2$  for the regression model

$$E(MSE) = \sigma^2$$

So

Standard Error 
$$(\sigma) = \sqrt{E(MSE)}$$



#### Residuals

$$e_i = Y_i - b_o - b_1 X_i$$

| Run (i) | Lot Size $(X_i)$ | ManHour<br>(Y <sub>i</sub> ) | $\widehat{Y}_i = 10 + 2X_i$ | $e_i = \widehat{Y}_i - Y_i$ | $e_i^2 = (\widehat{Y}_i - Y_i)^2$ |
|---------|------------------|------------------------------|-----------------------------|-----------------------------|-----------------------------------|
| 1       | 30               | 73                           | 70                          | 3                           | 9                                 |
| 2       | 20               | 50                           | 50                          | 0                           | 0                                 |
| 3       | 60               | 128                          | 130                         | -2                          | 4                                 |
| 4       | 80               | 170                          | 170                         | 0                           | 0                                 |
| 5       | 40               | 87                           | 90                          | -3                          | 9                                 |
| 6       | 50               | 108                          | 110                         | -2                          | 4                                 |
| 7       | 60               | 135                          | 130                         | 5                           | 25                                |
| 8       | 30               | 69                           | 70                          | -1                          | 1                                 |
| 9       | 70               | 148                          | 150                         | -2                          | 4                                 |
| 10      | 60               | 132                          | 130                         | 2                           | 4                                 |
| Total   | 500              | 1100                         | 1100                        | 0                           | 60                                |



#### Example

| ANOVA          |    |            |                |           |                |
|----------------|----|------------|----------------|-----------|----------------|
|                | df | SS         | MS             | F         | Significance F |
| Regression     | 1  | SSR 13600  | MSR 13600      | 1813.3333 | 1.01959E-10    |
| Residual Error | 8  | SSE 60     | <b>MSE</b> 7.5 |           |                |
| Total          | 9  | SSTO 13660 |                |           |                |

$$SSE = \sum_{i=1}^{n} e_i^2 = 60$$

$$MSE = \frac{SSE}{n-2} = \frac{60}{10-2} = \frac{60}{8} = 7.5$$

Standard Error 
$$(\sigma) = \sqrt{E(MSE)} = \sqrt{7.5} = 2.7386$$



#### SSTO



#### Total Sum of Squares

**Measures Total Variation** 

Greater the SSTO, greater the variation among the *Y* observations

$$SSTO = \sum (Y_i - \overline{Y})^2$$



# SSE 40 60 80 X

#### Error Sum of Squares

Uncertainty of data of Yobservations around regression line

If SSE = 0, all observations fall on Regression Line

Larger the SSE, the greater is the variation of *Y* observation around Regression Line

$$SSE = \sum (Y_i - \widehat{Y}_i)^2$$



#### SSR



#### Regression Sum of Squares

Difference between fitted value on Regression line and the mean of fitted value

Measure of the variability of the Y's associated with Regression Line

Larger the SSR in relation to SSTO, greater the effect of regression relation in accounting for total variation in the Yobservations

$$SSR = \sum (\hat{Y}_i - \bar{Y})^2$$





#### Relationship SSTO, SSE, SSR

$$Y_i - \overline{Y} = (Y_i - \widehat{Y}_i) + (\widehat{Y}_i - \overline{Y})$$

Total Deviation = Deviation of Fitted Regression Line + Deviation around Regression Line.

Sum of Squared deviation have the same relationship

$$\sum (Y_i - \bar{Y})^2$$

$$= \sum (Y_i - \hat{Y}_i)^2 + \sum (\hat{Y}_i - \bar{Y})^2$$

$$SSTO = SSE + SSR$$



#### SSTO = SSE+SSR

$$n = 10, \bar{X} = \frac{500}{10} = 50, \bar{Y} = \frac{1100}{10} = 110$$

| Run (i) | Lot Size $(X_i)$ | ManHour<br>(Y <sub>i</sub> ) | $\widehat{\boldsymbol{Y}}_{i}$ | $(Y_i - \overline{Y})^2$ | $(Y_i - \widehat{Y}_i)^2$ | $(\widehat{Y}_i - \overline{Y})^2$ |
|---------|------------------|------------------------------|--------------------------------|--------------------------|---------------------------|------------------------------------|
| 1       | 30               | 73                           | 70                             | 1369                     | 9                         | 1600                               |
| 2       | 20               | 50                           | 50                             | 3600                     | 0                         | 3600                               |
| 3       | 60               | 128                          | 130                            | 324                      | 4                         | 400                                |
| 4       | 80               | 170                          | 170                            | 3600                     | 0                         | 3600                               |
| 5       | 40               | 87                           | 90                             | 529                      | 9                         | 400                                |
| 6       | 50               | 108                          | 110                            | 4                        | 4                         | 0                                  |
| 7       | 60               | 135                          | 130                            | 625                      | 25                        | 400                                |
| 8       | 30               | 69                           | 70                             | 1681                     | 1                         | 1600                               |
| 9       | 70               | 148                          | 150                            | 1444                     | 4                         | 1600                               |
| 10      | 60               | 132                          | 130                            | 484                      | 4                         | 400                                |
| Total   | 500              | 1100                         | 0                              | 13660                    | 60                        | 13600                              |



$$\sum Y_{i}$$

$$\sum (Y_{i} - \overline{Y})^{2} = \sum (Y_{i} - \widehat{Y}_{i})^{2} + \sum (\widehat{Y}_{i} - \overline{Y})^{2}_{37}$$

## Degree of Freedom df

$$SSTO \ df = (n-1)$$

1 df is lost because deviation  $Y_i - \overline{Y}$  should sum to 0

$$SSE df = (n-2)$$

2 df are lost because two parameter  $\beta_0$  and  $\beta_1$  were used to calculate  $\hat{Y}_i$ 

$$SSR df = 1$$

There are two parameters in regression equation (intercept and slope). One df is lost because  $\widehat{Y}_i - \overline{Y}$  should sum to Zero. So one — df is lost

Degree of Freedom are additive 
$$(n-1) = (n-2) + 1$$



#### Mean Squares

| ANOVA          |    |            |           |           |                |
|----------------|----|------------|-----------|-----------|----------------|
|                | df | SS         | MS        | F         | Significance F |
| Regression     | 1  | SSR 13600  | MSR 13600 | 1813.3333 | 1.01959E-10    |
| Residual Error | 8  | SSE 60     | MSE 7.5   |           |                |
| Total          | 9  | SSTO 13660 |           |           |                |

Sum of Squares divided by degree of Freedom is called *Mean Square* (*MS*)

Regression Mean Square 
$$MSR = \frac{SSR}{1} = SSR$$

Error Mean Square 
$$MSE = \frac{SSE}{(n-2)}$$

#### **In Our Example**

$$MSR = SSR = 13600$$

$$MSE = \frac{60}{8} = 7.5$$



#### F Test

To Establish a Relationship between the Response and Predictors

We check whether  $\beta_1 = 0$  using Hypothesis

$$H_0: \beta_1 = 0$$

$$H_a$$
:  $\beta_1 \neq 0$ 

$$F^* = \frac{MSR}{MSE}$$

If 
$$F^* \leq F(1-\alpha; 1; n-2)$$
, conclude  $H_0$   
If  $F^* \geq F(1-\alpha; 1; n-2)$ , conclude  $H_a$ 



#### F Test

$$MSR = 13600; MSE = 7.5$$

$$F^* = \frac{MSR}{MSE} = \frac{13600}{7.5} = 1813.333$$

For  $\alpha = 0.05$  and n = 10

$$F(1 - 0.05; 1; 8) = 5.32$$

Since  $F^* \geq 5.32$ , we conclude  $H_a$ 

Calculate excel function =F.INV(0.95,1,8)

Hence, there is a linear association between lot-size and man-hours



## Analysis Of Variance Table (ANOVA)

| Source of Variation | SS                                   | Df  | MS                        | F                       |
|---------------------|--------------------------------------|-----|---------------------------|-------------------------|
| Regression          | $SSR = \sum (\hat{Y}_i - \bar{Y})^2$ | 1   | $MSR = \frac{SSR}{1}$     | $F^* = \frac{MSR}{MSE}$ |
| Error               | $SSE = \sum (Y_i - \widehat{Y}_i)^2$ | n-2 | $MSE = \frac{SSE}{(n-2)}$ |                         |
| Total               | $SSTO = \sum (Y_i - \overline{Y})^2$ | n-1 |                           |                         |

| ANOVA          |    |      |       |            |       |           |                |
|----------------|----|------|-------|------------|-------|-----------|----------------|
|                | df | S.   | S     | M          | S     | F         | Significance F |
| Regression     | 1  | SSR  | 13600 | MSR 1      | L3600 | 1813.3333 | 1.01959E-10    |
| Residual Error | 8  | SSE  | 60    | <b>MSE</b> | 7.5   |           |                |
| Total          | 9  | SSTO | 13660 |            |       |           |                |



## Analysis Of Variance Table (ANOVA)

| Source of Variation | SS           | Df | MS                              | F                                    |
|---------------------|--------------|----|---------------------------------|--------------------------------------|
| Regression          | SSR = 13600  | 1  | $MSR = \frac{13600}{1} = 13600$ | $F^* = \frac{13600}{7.5} = 1813.333$ |
| Error               | SSE = 60     | 8  | $MSE = \frac{60}{8} = 7.5$      |                                      |
| Total               | SSTO = 13660 | 9  |                                 |                                      |

| ANOVA          |    |            |                |           |                |
|----------------|----|------------|----------------|-----------|----------------|
|                | df | SS         | MS             | F         | Significance F |
| Regression     | 1  | SSR 13600  | MSR 13600      | 1813.3333 | 1.01959E-10    |
| Residual Error | 8  | SSE 60     | <b>MSE</b> 7.5 |           |                |
| Total          | 9  | SSTO 13660 |                |           |                |



### Assessing Model Accuracy

Quantify the extent to which model fits the data or measure of lack of fit

- 4 Methods
- Multiple R
- 2. R<sup>2</sup> Statistics
- 3. Adjusted R<sup>2</sup> Statistics
- 4. Residual Standard Error

| Regression Sto    | itistics  |  |  |  |
|-------------------|-----------|--|--|--|
| Multiple R        | 0.9978014 |  |  |  |
| R Square          | 0.9956076 |  |  |  |
| Adjusted R Square | 0.9950586 |  |  |  |
| Standard Error    | 2.7386128 |  |  |  |
| Observations      | 10        |  |  |  |



### Residual Standard Error (RSE)

RSE - Average amount that response will deviate from true regression line RSE is estimate of the standard deviation of  $\epsilon$ 

$$RSE = \sqrt{MSE} = \sqrt{\frac{SSE}{(n-2)}} = \sqrt{\frac{\sum (Y_i - \widehat{Y}_i)^2}{(n-2)}}$$

If the predictions using the model are very close to true outcome value, then we can conclude that model fits the data very well

If the predictions are very far from the true outcome value, RSE will may be large, we can conclude that model does not fit the data well

RSE gives the absolute value in terms of Y but we are not sure about what constitutes good RSE (eg 2.7386 in our example)

In this case RSE =  $\sqrt{7.5} = 2.7386$ 



### $r^2$ – Coefficient of Determination

Alternate is  $r^2$  Statistics – Proportion of Variance Explained. Value Varies between 0 and 1 and independent of the scale of Y

$$r^2 = \frac{SSTO - SSE}{SSTO} = \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO}$$

Since  $0 \le SSE \le SSTO$  it follows

$$0 \le r^2 \le 1$$

**SSE** measures the amount of variability that is left unexplained after performing the Regression

SSTO-SSE measures the amount of variability that is explained (or Removed) after performing the Regression  $r^2$  Proportion of variability in Y that can be explained using X

| Regression Statistics |           |  |  |  |
|-----------------------|-----------|--|--|--|
| Multiple R            | 0.9978014 |  |  |  |
| R Square              | 0.9956076 |  |  |  |
| Adjusted R Square     | 0.9950586 |  |  |  |
| Standard Error        | 2.7386128 |  |  |  |
| Observations          | 10        |  |  |  |
| Objet vations         | 10        |  |  |  |





### $r^2$ Statistics



Fig(a) -  $r^2 = 1 \& SSE = 0$ 

X accounts for all variations in Y

Fig (b) - 
$$r^2 = 0 \& SSE = SSTO$$
  
No linear relationship between  $X - Y$ 



### $r^2$ Statistics

| Regression Statistics |           |  |  |  |
|-----------------------|-----------|--|--|--|
| Multiple R            | 0.9978014 |  |  |  |
| R Square              | 0.9956076 |  |  |  |
| Adjusted R Square     | 0.9950586 |  |  |  |
| Standard Error        | 2.7386128 |  |  |  |
| Observations          | 10        |  |  |  |

 $r^2$  Statistics is measure of Linear Relationship between X and Y In practice  $r^2$  is not equal to 0 or 1. It is some where between Closer to 1 - greater degree of linear association between X and Y

Our Example

$$r^2 = 1 - \frac{SSE}{SSTO} = 1 - \frac{60}{13660} = 0.9956$$

Means - The variation in man-hours is reduced by 99.56% when lot-size is considered



| Regression Statistics |           |  |  |
|-----------------------|-----------|--|--|
| Multiple R            | 0.9978014 |  |  |
| R Square              | 0.9956076 |  |  |
| Adjusted R Square     | 0.9950586 |  |  |
| Standard Error        | 2.7386128 |  |  |
| Observations          | 10        |  |  |

Multiple r (Coefficient of Correlation) is Square Root of  $r^2$ 

$$r = \pm \sqrt{r^2}$$

A Plus/Minus sign is attached to measure according to whether the slope of fitted regression line is positive or negative

The Range of r is:

$$-1 \le r \le +1$$

Any  $r^2$  other then 0 or 1,  $r^2 < |r|$ , r may give an impression of a closer relationship between X and Y than  $r^2$ .

Example :  $r = \sqrt{r^2} = \sqrt{0.9956} = +0.9978$  (+ because  $b_1$  is positive)



## Adjusted $r^2$

| Regression Statistics |           |  |  |
|-----------------------|-----------|--|--|
| Multiple R            | 0.9978014 |  |  |
| R Square              | 0.9956076 |  |  |
| Adjusted R Square     | 0.9950586 |  |  |
| Standard Error        | 2.7386128 |  |  |
| Observations          | 10        |  |  |
|                       |           |  |  |

It measures the proportion of variation explained by only those independent variables that really help in explaining the dependent variable.

It penalizes you for adding independent variable that do not help in predicting the dependent variable.

Adjusted R-Squared can be calculated mathematically in terms of sum of squares. The only difference between R-square and Adjusted R-square equation is degree of freedom.

Adjusted 
$$r^2 = 1 - \frac{\frac{SSE}{df}}{\frac{SSTO}{df}} = 1 - \frac{\frac{60}{8}}{\frac{13660}{9}} = 0.9950586$$



## Adjusted $r^2$

| Regression Statistics |           |
|-----------------------|-----------|
| Multiple R            | 0.9978014 |
| R Square              | 0.9956076 |
| Adjusted R Square     | 0.9950586 |
| Standard Error        | 2.7386128 |
| Observations          | 10        |

Adjusted R-squared value can be calculated based on value of r-squared, number of independent variables (predictors), total sample size.

Adjusted 
$$r^2 = 1 - \frac{(1 - r^2)(N - 1)}{(N - p - 1)} = 1 - \frac{(1 - 0.9956)(10 - 1)}{(10 - 1 - 1)}$$
  
= 0.9950586

Where  $r^2$  is the value of  $r^2$ 

p is the number of predictors

N is the Sample Size



#### What are the flaws in R-squared?

- There are two major flaws of R-squared:
- **Problem- 1:** As we are adding more and more predictors, R<sup>2</sup> always increases irrespective of the impact of the predictor on the model. As R<sup>2</sup> always increases and never decreases, it can always appear to be a better fit with the more independent variables(predictors) we add to the model. This can be completely misleading.
- **Problem- 2:** Similarly, if our model has too many independent variables and too many high-order polynomials, we can also face the problem of over-fitting the data. Whenever the data is over-fitted, it can lead to a misleadingly high R<sup>2</sup> value which eventually can lead to misleading predictions.



# Thanks

Samatrix Consulting Pvt Ltd

