Ministr	ry of Higher Education
Higher Institute for En	gineering and Technology at Manzala
First semester S ₁ : 2022/2023	Date: 18/1/2023
Final Exam	Level: 1
Department: Electronic Engineering.	Time allowed: 3 hrs.
Total Marks: 90	Code: COM111
Course title: Fundamentals of Electronic Eng	
عسد سه الإلكتونه (۱) Question	إ مس راح [25 marks]
Part .I (Multiple Choice Questions)	[10 marks]
 a) what are the applications of the PN jun a) can be used as a photodiode c) can be used as rectifiers 	b) Can be used as solar cell d) All of the above
2) Which one of the following has a large	
a) Semiconductors b)Conducto	
3) Which type of transformer is required to	create a 180 degree input to a rectifier?
a) center-tapped secondaryc) stepped-up secondary	b) step-down secondaryd) split winding primary
4) In photodiode, when there is no incide called	ent light, the reverse current is almost negligible and is
a) zener currentc) photo current	b) dark current d) none of the above
a) remains the same b) is decrea	
a) properly reverse bias the zenerb) properly forward bias the zener	b) protect the zener d) none of the above
 7) A zener diode is used as	tor c) rectifier d) multivibrator rent through the junction increases abruptly at
a) 0.5 V b) 1.1 V c) 0.9) The varactor is usually	
 10) The depletion layer across a p-n⁺ junct a) mostly in the p-region c) equally in both the p and n⁺-r 	b) mostly in the n ⁺ -region
11) When the graph between current thr device is referred to as	
12) The most widely used rectifier isa) half-wave rectifierc) bridge full-wave rectifier	

P.T.O

Part. II

Aided with the configurations, draw a bridge rectifier and illustrate the output voltage waveform in case of: i) filter capacitor ii) without filter capacitor

Also derive the relation for the ripple factor as a function of C, f and I_{DC} [5 marks]

c) A full-wave rectifier is fed from 50 Hz ac source with 120V (rms) at the secondary coil. It is connected to a load drawing a DC current of 50 mA and using a filter capacitor 100 μ F.

Determine the following:

- i) DC output voltage V_{DC} and the resistor R_L .
- ii) The peak to peak ripple voltage V_r and its rms value.
- iii) Ripple factor γ .

[10 marks]

Question (2) [15 marks]

a) Sketch the charge density distributions ρ , electric field intensity E, and potential V across the pn junction under equilibrium. [5 marks]

b) An abrupt silicon p-n junction having doping of $N_A = 10^{18} \, \mathrm{cm}^{-3}$; $N_D = 10^{16} \, \mathrm{cm}^{-3}$ and a circular cross section with diameter of 0.02 inch. Consider $n_i = 1.5 \times 10^{10} \, \mathrm{cm}^{-3}$ for silicon at room temperature, relative permittivity of silicon $\varepsilon_S = 11.9$ and $\varepsilon_O = 8.85 \times 10^{-14}$ F/cm.

Determine the following:

- i) The value of barrier voltage V_h .
- ii) The depletion width in n-region x_{no}.
- iii) The depletion width in p-region x_{po}.
- iv) Total depletion width Wd.
- v) The charges Q_p and Q_n in the depletion region.
- vi) The value of maximum electric field.

[10 marks]

a) Write down the parameters of both LED and Varactor according to the following table

[5 marks]

No.	Parameters	Light emitting diode (LED)	Varactor
1	Function		
2	Schematic symbol		
3	Bias for normal operation		
4	Applications (at least two)		

- b) An SCR in Fig.1 has $V_g I_g$ characteristics given as $V_g = 1.5 + 8I_g$. In a certain application the gate voltage consists of rectangular pulses of 12 V and duration 50 μ s with duty cycle 0.2. Find
 - i) R_g in gate circuit to limit the peak power dissipation in gate to 5 Watt.
 - ii) Average power dissipation in gate.

[10 marks]

Fig.1 SCR Circuit

a) Draw and explain one of the applications for the zener diode.

[5 marks]

b) Consider a zener diode regulator circuit as shown in Fig. 2. $V_{ss} = 120 \text{ V}$, $R_L = 10 \text{ k}\Omega$,

 $R = 5 \text{ k}\Omega$ and $V_z = 50 \text{ V}$. Compute the following:

[10 marks]

Fig.2

- i) The current flowing through the load, $I_L = \dots$
- ii) The source current, $I_s = \dots$
- iv) The zener current at full load $I_z = \dots$
- v) Power of zener diode P_z . =
- vi) Power supplied by the source, $P_s = \dots$
- v) Output voltage with removing the zener diode
- c) Compare between zener and avalanche breakdown.

[5 marks]

No.	Parameters	Zener breakdown	Avalanche breakdown
1	Doping		
2	Depletion region		
3	Reverse voltage		
4	Electric Field		
5	Junction		
6	Ionization		

d) Draw the breakdown characteristic of both zener and avalanche junctions

Question (5)

[15 marks]

a) For the common emitter BJT amplifier circuit shown in Fig. 3, calculate I_B , I_C , V_{CE} , V_B , V_C and V_{CB} . Also draw its ac equivalent circuit and compute the voltage gain A_v . and the input resistance R_{inp} . [5 marks]

b) Compare the following parameters for the BJT and JFET devices.

[5 marks]

No.	Parameters	JFET	ВЈТ
1	Control element		
2	Device type		
3	Types of carriers		
4	Input resistance	de sied de reg	
5	Thermal stability		
6	Schematic symbol	k ta i sa	
7	Gain		

c) Aided with the configurations, draw the structure of n and p channels for both JFET and MOSFET devices. Also discuss and explain the physical operation for each one of them.

[5 marks]