This weeks problem set focuses isomorphisms and coordinate vectors and the matrices associated to linear transformations. It will be quite a large problem set, and because of the way we will be covering it in class, don't worry if you can't do some of the problems until after next Friday. A question marked with a † is difficult and probably too hard for an exam (though still illustrates a useful point). A question marked with a * is especially important.

Homework 2: due Friday 9 Feb: questions 4 and 5 below.

- 1. From section 2.4, problems 1, $2a, c, e, 3, 7, 14, 15^*, 17^*, 24^{*,\dagger}$.
- 2. From section 2.2, problems 1, 2a, c, f, 10, 11^{\dagger} , 12^{*} , 14^{\dagger} , 16.
- 3. From section 2.3, problems 1, 2a, 3, 12, 16, 17^{\dagger} , 16.

There are mathematical objects called \mathfrak{sl}_2 -representations which are important in quantum mechanics and beautiful objects in their own right. We won't define what they are exactly**, but their are vector spaces that come packaged with a certain pair of linear maps. The next questions give an example.

 $4.^{\dagger}$ Let $V = \mathbb{C}[x,y]$ be the vector space of polynomials in two variables. So we have $x^2 - 2xy^2 + 1 \in V$ for example. Define two linear maps $E, F: V \longrightarrow V$ where

$$E(p) = x \frac{\partial p}{\partial y}$$
 and $F(p) = y \frac{\partial p}{\partial x}$

- (a) Find a formula for H := EF FE.
- (b) A subspace $U \subset V$ is called a subrepresentation if $E(U) \subset U$ and $F(U) \subset U$. Let $V(n) = \text{span} \{ x^{n-a}y^a \mid 0 \le a \le n \}$, this is the space of homogeneous polynomials of degree n, i.e. every term on the polynomial has degree n. Show that V(n) is a subrepresentation, for any $n \ge 0$.
- (c) With the basis $x^n, x^{n-1}y, x^{n-2}y^2, \dots, y^n$, determine the matrix corresponding to the linear maps E, H, F restricted to the subspaces V(n).
- 5.† Another example of an \mathfrak{sl}_2 representation is given by $W=\mathbb{C}^2$ and where E' and F' are the linear transformations given by left multiplication by the matrices

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

Find an isomorphism $\theta: V(1) \longrightarrow W$ so that $\theta E = E'\theta$ and $\theta F = F'\theta$ as linear maps $V(1) \longrightarrow W$.

- 6. Show that there is no, nonzero, linear map $\theta: V(n) \longrightarrow V(m)$ so that $E\theta = \theta E$ and $F\theta = \theta F$ whenever $n \neq m$. Hint: if such a map does exist, where does x^n get sent? Now use that $H\theta = \theta H$. This is pretty hard, let me know if you need more hints
- ** Ok, if you really want to know exactly what they are here is the definition: An \mathfrak{sl}_2 -representation is a vector space V with two linear maps $E, F: V \longrightarrow V$ such that

$$E^2F - 2EFE + FE^2 = -2E$$

and the same equation with the E's and F's swapped. There is a much more intuitive definition but one would need to know some more abstract algebra. If you are really keen, try and find more \mathfrak{sl}_2 representations and show me!