$$X_n = AX_{n-1} + V_n$$
; $V_n \sim N(0, Q)$
 $Y_n = CX_n + W_n$; $W_n \sim N(0, R)$
Dimensions: $X_n, V_n = S_{x,1}$
 $Y_n, W_n = M_{x,1}$
 $A, Q = S_{x,S} = \text{"stoke tranks}$

A, Q SXS - "state transition rale's"

C m XS - "measurement matrix"

m xm - "measurement

Company

Goal: find $\hat{\chi}_n \triangleq E[\chi_n | \chi_1, \chi_2, \dots, \chi_{n-1}]$

As with the sodal case, we use USE updates:

$$\hat{X}_{n} = A\hat{X}_{n-1} + K_{n}\hat{Y}_{n} = A\hat{X}_{n-1} + K_{n}(\hat{Y}_{n} - C\hat{X}_{n|m-1})$$
physics talman innovation, $m \times 1$
estimate, $S \times 1$ gain, $S \times m$

Want Kn minimizing the MSE.
Say state estimates have a covaliance mateix Pun-

Fiest, ne make a physics plediction:

X_{n|n-1} = AX_{n-1|n-1} encode the Vn in the covariance charge. PnIn-1 = $AP_{n-1}I_{n-1}A^T + Q$ Rule being used here: Y = AXNow $Y = A(var X)A^T$ analogous to scalar $Y = Q^T + Q^$ $\hat{X}_{n \mid n} = \hat{X}_{n \mid n-1} + K_n \left(Y_n - C \hat{X}_{n \mid n-1} \right)$ = trn / + (I-RC) / min-1 Pn/n = KnRK, T + (I-kc) Pn/n-1 (I-kc) T To minimize MSE, set $\frac{\partial T_R P_{n|n}}{\partial K_n} = 0$ $\frac{\partial K_n}{\partial K_n} = m \times s$ maklix (TR A = Z Qio : minimizing TR Pnin is minimizing the Sum of Variances of each state valiable) $\frac{\partial}{\partial K_n} \left(T_R \left(k_n R k_n T \right) + T_R \left(P_{n \mid n-1} \right) - 2 T_R \left(k_n C P_{n \mid n-1} \right) \right)$ $+ T_R \left(k_n C P_{n \mid n-1} C^T R_n T \right) \right) = 0$

Trace differentiation properties: $\frac{\partial}{\partial A}$ Tr. $ABA^T = A(B+B^T)$ $\frac{\partial}{\partial A}$ Tr. $AC = C^T$

 $2k_nR - 2P_{n|n-1}C^T + 2k_nCP_{n|n-1}C^T = 0$ Solve for k_n :

Kn = Pn/n-1 CT (CPn/m-1 CT + R)

In steady state, Pnin-1 and Kn are constants, so

K= PCT (CPCT +R)