Analysis of Battery Dataset Preprocessing Code

BatteryML Framework Analysis

September 15, 2025

1 Input Variables Across All Datasets

1.1 Common Input Variables (Present in Most Datasets)

- Voltage (V) Battery terminal voltage
- Current (A) Charge/discharge current
- Time (s) Test time or cycle time
- Cycle Index Cycle number
- Charge Capacity (Ah) Cumulative charge capacity
- Discharge Capacity (Ah) Cumulative discharge capacity
- Temperature (°C) Cell temperature (when available)

1.2 Dataset-Specific Variables

CALCE Dataset:

• Test_Time(s), Current(A), Voltage(V), Cycle_Index, date

HNEI Dataset:

• Test_Time (s), Current (A), Voltage (V), Cell_Temperature (C), Discharge_Capacity (Ah), Charge_Capacity (Ah), Cycle_Index

HUST Dataset:

• Current (mA), Time (s), Voltage (V) (converted from mA to A)

MATR Dataset:

- I, V, Qc, Qd, Qdlin, T, Tdlin, dQdV, t (from HDF5 files)
- Additional: Internal resistance, charge time, temperature statistics

OX Dataset:

• Test_Time (s), Current (A), Voltage (V), Cell_Temperature (C), Discharge_Capacity (Ah), Charge_Capacity (Ah), Cycle_Index

RWTH Dataset:

• Zeit, Programmdauer, Strom, Spannung (German column names)

SNL Dataset:

• Test_Time (s), Current (A), Voltage (V), Cell_Temperature (C), Discharge_Capacity (Ah), Charge_Capacity (Ah), Cycle_Index

UL-PUR Dataset:

• Test_Time (s), Current (A), Voltage (V), Cell_Temperature (C), Discharge_Capacity (Ah), Charge_Capacity (Ah), Cycle_Index

ARBIN/NEWARE Datasets:

 Configurable column mapping with standard variables plus additional fields like energy, step index, internal resistance

2 Preprocessing Steps Applied

2.1 Data Loading and Format Conversion

- CALCE: Handles both Excel (.xlsx/.xls) and text (.txt) files with different parsing logic
- HUST: Loads from pickle files with nested data structure
- MATR: Loads from HDF5 (.mat) files with complex nested structure
- RWTH: Multi-level zip file extraction and CSV parsing
- ARBIN/NEWARE: Configurable file format support (CSV, Excel)

2.2 Data Cleaning and Quality Control

2.2.1 Cycle Filtering:

- CALCE: Uses median filter with 21-point window to remove abnormal cycles (threshold: 3× median absolute deviation)
- HNEI: Skips first 12 problematic cycles, uses Hampel filter for outlier detection
- HUST: Skips first 2 cycles for specific cells
- MATR: Removes batteries that don't reach 80% capacity
- RWTH: Removes abnormal cycles using statistical methods
- SNL: Extensive list of cells to drop (24 specific cells), uses Hampel filter
- UL-PUR: Skips first 12 cycles, uses Hampel filter

2.2.2 Outlier Detection Methods:

- Hampel Filter: Used by HNEI, SNL, UL-PUR (threshold: 3× median absolute deviation)
- Median Filter: Used by CALCE
- Statistical Methods: Used by RWTH (window-based anomaly detection)

2.3 Data Transformation

2.3.1 Capacity Calculation:

- CALCE, HUST, RWTH: Calculate charge/discharge capacity using numerical integration: $Q[i] = Q[i-1] + I[i] \times (t[i] t[i-1])/3600$
- Other datasets: Use pre-calculated capacity values

2.3.2 Unit Conversions:

- CALCE: mA \rightarrow A (\div 1000), mV \rightarrow V (\div 1000)
- **HUST**: mA \rightarrow A (\div 1000)
- RWTH: Time conversion from hours to seconds
- NEWARE: Configurable scaling factors

2.3.3 Cycle Index Organization:

- CALCE: Reorganizes cycle indices to be sequential
- HNEI, UL-PUR: Adjusts cycle numbers after skipping initial cycles

2.4 Missing Data Handling (NaN Values)

2.4.1 Forward/Backward Fill:

- NEWARE: Uses ffill() and bfill() for internal resistance data
- ARBIN: Similar approach for missing internal resistance values

2.4.2 Imputation Strategies:

- HNEI, SNL, UL-PUR: Forward imputation for missing cycles uses data from the next available valid cycle
- MATR: Complex data merging between batches for cells that span multiple files

2.4.3 Data Validation:

- RWTH: Removes time anomalies (time jumps ¿ 1e5)
- ARBIN/NEWARE: Logs warnings for missing cycles but continues processing

2.5 Protocol and Metadata Assignment

Each dataset assigns specific:

- Charge/Discharge Protocols: C-rates, voltage limits, SOC ranges
- Battery Specifications: Form factor, materials, capacity
- Operating Limits: Voltage and current limits

3 Key Preprocessing Logic Details

3.1 Robust Outlier Detection

The preprocessing uses multiple statistical methods to identify and handle outliers:

- Hampel Filter: $|value median| > 3 \times median_absolute_deviation$
- Median Filter: Removes values that deviate significantly from local median
- Rolling Window Analysis: Compares values with neighboring cycles

3.2 Cycle Imputation Strategy

For missing cycles, the system uses forward imputation:

- 1. Identifies missing cycles in the sequence
- 2. Finds the next valid cycle with data
- 3. Copies that cycle's data and reassigns the cycle number
- 4. This ensures continuous cycle numbering

3.3 Data Quality Gates

- Capacity Thresholds: Remove cycles with capacity i 0.1 Ah (CALCE)
- Cycle Life Requirements: Remove batteries that don't reach 80% capacity (MATR)
- Temperature Validation: Skip cycles with missing temperature data
- Time Continuity: Remove records with anomalous time jumps

3.4 Format Standardization

All datasets are converted to a common BatteryData structure with:

- Standardized column names and units
- Consistent cycle numbering
- Unified metadata format
- Pickle serialization for efficient storage

The preprocessing pipeline is quite sophisticated, handling the diverse formats and quality issues present in real-world battery testing data while maintaining data integrity and providing robust outlier detection and imputation strategies.

Dataset Coverage of Common Variables

Variable	CALCE	HNEI	HUST	MATR	OX	RWTH	SNL	UL-PUR	ARBIN	ľ
voltage_in_V	✓	✓	✓	✓	1	✓	1	✓	✓	
$current_in_A$	✓	✓	✓	✓	1	✓	✓	✓	✓	
$time_in_s$	✓	✓	✓	✓	1	✓	✓	✓	✓	
charge_capacity_in_Ah	✓	✓	✓	✓	1	✓	✓	✓	✓	
discharge_capacity_in_Ah	✓	✓	✓	✓	1	✓	✓	✓	✓	
$temperature_in_C$	×	✓	X	✓	1	X	✓	✓	✓	
internal_resistance_in_ohm	X	Х	X	✓	X	X	X	X	✓	

Answer: No, not all datasets provide all common column values.

Datasets with Complete Common Variables (7/7)

- MATR: Has all common variables including temperature and internal resistance.
- ARBIN: Has all common variables including temperature and internal resistance.
- NEWARE: Has all common variables including temperature and internal resistance.

Datasets with Most Common Variables (6/7)

- HNEI: Missing internal resistance.
- OX: Missing internal resistance.
- SNL: Missing internal resistance.
- UL-PUR: Missing internal resistance.

Datasets with Limited Common Variables (5/7)

- CALCE: Missing temperature and internal resistance.
- HUST: Missing temperature and internal resistance.
- RWTH: Missing temperature and internal resistance.

Key Observations

• Temperature Data: 6 out of 10 datasets have temperature measurements.

Available: HNEI, MATR, OX, SNL, UL-PUR, ARBIN, NEWARE.

Missing: CALCE, HUST, RWTH.

• Internal Resistance Data: Only 3 out of 10 datasets have internal resistance.

Available: MATR, ARBIN, NEWARE.

Missing: All others.

- Core Variables: All datasets have the essential battery cycling variables: Voltage, Current, Time, Charge/Discharge Capacity.
- Data Quality Impact: The missing variables affect the types of analysis that can be performed:
 - Temperature-dependent models can only use 6 datasets.
 - Internal resistance-based features can only use 3 datasets.
 - Basic voltage/current/capacity analysis can use all 10 datasets.

This variable availability pattern reflects the different experimental setups and measurement capabilities of the various research groups that generated these datasets.