Lista 2 - Álgebra Linear Espaços e subespaços vetoriais

3° quadrimestre de 2014 - Professores Maurício Richartz e Vladislav Kupriyanov

- 1 Determine quais dos conjuntos abaixo, com as operações usuais de adição e de multiplicação por escalar, formam um espaço vetorial real. Justifique sua resposta.
 - a) O conjunto dos vetores $\mathbf{v} = (x, y, z)$ em \mathbb{R}^3
 - b) O conjunto M(2,2) das matrizes reais 2×2 .
 - c) O conjunto P₃ dos polinômios de grau menor igual a 3.
 - d) O conjunto das funções reais.
 - e) O conjunto das matrizes 2×2 cujo traço é zero.
 - f) O conjunto das matrizes 2×2 cujo determinante é zero.
 - g) O conjunto de todas as funções reais tais que f(0) = f(1).
 - h) O conjunto das funções reais tais que f(0) = 1 + f(1).
- 2 Seja $S = \mathbb{R}^2$ o conjunto de pares ordenados reais (x_1, x_2) . Em cada um dos itens abaixo, determine se S é um espaço vetorial para as operações indicadas. Justifique sua resposta.
 - a) $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2),$ $\alpha(x_1, x_2) = (\alpha x_1, 0).$
 - $\mathrm{b}) \quad (x_1, x_2) + (y_1, y_2) = (x_1 + y_1, 0), \qquad \alpha(x_1, x_2) = (\alpha x_1, \alpha x_2).$
 - $\mathrm{c}) \quad (x_1, x_2) + (y_1, y_2) = (x_1, x_2 + y_2), \qquad \alpha(x_1, x_2) = (\alpha x_1, \alpha x_2).$
 - $\mathrm{d}) \quad (x_1, x_2) + (y_1, y_2) = (x_1 y_1, x_2 y_2), \qquad \alpha(x_1, x_2) = (\alpha x_1, \alpha x_2).$
 - e) $(x_1, x_2) + (y_1, y_2) = (3x_1 + 3y_1, 5x_2 + 5y_2),$ $\alpha(x_1, x_2) = (\alpha x_1, \alpha x_2).$
- 3 Para cada espaço vetorial V abaixo, determine se o subconjunto $W \subset V$ é um subespaço de V. Obs: as operações de soma e multiplicação por escalar são as usuais em cada caso.
 - a) V=o conjunto M(2,2) das matrizes reais 2×2 W= conjunto das matrizes 2x2 cujo traço é zero. [comparar com 1e]
 - b) V = o conjunto M(2,2) das matrizes reais 2×2 W = conjunto das matrizes 2x2 cujo determinante é zero. [comparar com 1f]
 - c) V = o conjunto das funções reais W = conjunto das funções reais tais que f(0) = f(1). [comparar com 1g]
 - d) V=o conjunto das funções reais W= conjunto das funções reais tais que f(0)=1+f(1). [comparar com 1h]

e) V = o conjunto M(3,3) das matrizes reais 3×3 W = conjunto das matrizes 3×3 triangulares superiores, i.e, o conjunto das matrizes da forma:

$$\left(\begin{array}{ccc}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{array}\right)$$

f) V = o conjunto M(2,2) das matrizes reais 2×2 W = conjunto das matrizes 2×2 da forma

$$\left(\begin{array}{cc}
a & a+b \\
a+b & b
\end{array}\right)$$

- g) V = o conjunto das funções reais W = conjunto das funções reais crescentes.
- h) V=0 conjunto das funções reais W= conjunto das funções contínuas em [0,1] tais que $\int_0^1 f(x) dx = 0$.
- i) $V = \mathbb{R}^3$ $W = \text{conjunto dos vetores } (x, y, z) \text{ em } \mathbb{R}^3 \text{ tais que } z = 0.$
- j) $V = \mathbb{R}^3$ $W = \text{conjunto dos vetores } (x, y, z) \text{ em } \mathbb{R}^3 \text{ tais que } 5x + 2y + 3z = 0.$
- k) $V = \mathbb{R}^3$ $W = \text{conjunto dos vetores } (x, y, z) \text{ em } \mathbb{R}^3 \text{ tais que } 5x + 2y = 0 \text{ e } z = 0.$
- l) $V = \mathbb{R}^3$ $W = \text{conjunto dos vetores } (x, y, z) \text{ em } \mathbb{R}^3$ que satisfazem simultaneamente 2x + 4y + z = 0, x + y + 2z = 1, x + 3y z = 0.
- 4 Sejam V um espaço vetorial, $\mathbf{v} \in V$ um elemento qualquer de V e $\alpha \in \mathbb{R}$ um número real. Use os axiomas de espaço vetorial para provar que:
 - a) $\mathbf{v} + \mathbf{v} + \mathbf{v} = 3\mathbf{v}$.
 - b) 0.v = 0.
 - c) $\alpha . 0 = 0$.
 - d) se $\alpha \cdot \mathbf{v} = \mathbf{0}$, então $\alpha = 0$ ou $\mathbf{v} = \mathbf{0}$.
- **5** A intersecção de dois subespaços vetoriais é um subespaço vetorial? E a união de dois subespaços vetoriais? Demonstre ou dê um contra-exemplo.
- **6** Defina a média $\mathbf{u} \star \mathbf{v}$ entre dois vetores \mathbf{u}, \mathbf{v} no espaço vetorial V pondo $\mathbf{u} \star \mathbf{v} = \frac{1}{2}\mathbf{u} + \frac{1}{2}\mathbf{v}$. Prove que $(\mathbf{u} \star \mathbf{v}) \star \mathbf{w} = \mathbf{u} \star (\mathbf{v} \star \mathbf{w})$ se e somente se $\mathbf{u} = \mathbf{w}$.