ANÁLISIS NUMÉRICO I/ANÁLISIS NUMÉRICO – 2019 Trabajo de Laboratorio N
O 2

- 1. Escribir una función en Julia que implemente el método de bisección para hallar una raíz de $f: \mathbb{R} \to \mathbb{R}$ en el intervalo [a,b]. La función debe llamarse "rbisec", y tener como entrada los argumentos (fun,I,err,mit), donde fun es una función que dado x retorna f(x), I=[a,b] es un intervalo en \mathbb{R} , err es la tolerancia deseada del error y mit es el número máximo de iteraciones permitidas. El algoritmo debe finalizar en la k-ésima iteración si $|f(x_k)| <$ err o si $k \ge$ mit. Los argumentos de salida deben ser [hx,hf] donde $hx=[x_1,\ldots,x_N]$ es el histórico de puntos medios y $hf=[f(x_1),\ldots,f(x_N)]$ el histórico de los respectivos valores funcionales.
- 2. Utilizar la función rbisec para:
 - (a) encontrar la menor solución positiva de la ecuación $2x = \tan(x)$ con un error menor a 10^{-5} en menos de 100 iteraciones. ¿Cuántas iteraciones son necesarias cuando comenzamos con el intervalo [0.8, 1.4]? Usar la siguiente sintaxis: Julia> $[hx,hy]=rbisec(@fun_lab2ej2a,[0.8,1.4],1e-5,100)$
 - (b) Encontrar una aproximación a $\sqrt{3}$ con un error menor a 10^{-5} . Para esto, considere la función $x \mapsto x^2 3$ (que debe llamarse fun_lab2ej2b).
 - (c) Graficar conjuntamente f y los pares $(x_k, f(x_k))$ para las dos funciones anteriores y con al menos dos intervalos iniciales distintos para cada una.
- 3. Escribir una función en Julia que implemente el método de Newton para hallar una raíz de f: R → R partiendo de un punto inicial x₀. La función debe llamarse "rnewton", y tener como entrada (fun,x0,err,mit) donde fun es una función que dado x retorna f(x) y f'(x), x0 es un punto inicial en R, err es la tolerancia deseada del error y mit es el número máximo de iteraciones permitidas. El algoritmo debe finalizar en la k-ésima iteración si vale alguna de las siguientes:

$$\frac{|x_k-x_{k-1}|}{|x_k|}<\text{err}, \qquad |f(x_k)|<\text{err}, \qquad k\geq \text{mit}.$$

La salida debe ser [hx,hf] donde hx= $[x_1, ..., x_N]$ es el histórico de puntos generados y hf= $[f(x_1), ..., f(x_N)]$ el histórico de los respectivos valores funcionales.

- 4. Escribir dos funciones, lab2ej4a y lab2ej4b, que ingresando a > 0 retorne una aproximación de $\sqrt[3]{a}$. La aproximación debe realizarse usando el método de Newton del ejercicio anterior para resolver $x^3 a = 0$ con un error menor a 10^{-6} mediante:
 - (a) el uso de la función $x \mapsto x^2 a$ (fun_lab2ej4a) donde a es definida como una variable global (use el comando global a),
 - (b) el uso de la función $(x,a) \mapsto x^2 a$ (fun_lab2ej4b) e invocando rnewton para la función @(x)fun_lab2ej4b(x,a).

- 5. Escribir una función en Julia que implemente el método de iteración de punto fijo para hallar un punto fijo de $\varphi: \mathbb{R} \to \mathbb{R}$ partiendo de un punto inicial x_0 . La función debe llamarse "ripf", y tener como entrada (fun,x0,err,mit) donde fun es una función que dado x retorna $\varphi(x)$, x0 es un punto en \mathbb{R} , err es la tolerancia deseada del error y mit es el número máximo de iteraciones permitidas. El algoritmo debe finalizar en la k-ésima iteración si $|x_k x_{k-1}| < \text{err o } k \ge \text{mit}$. La salida debe ser hx donde hx= $[x_1, \ldots, x_N]$ es el histórico de puntos generados.
- 6. Se quiere usar la fórmula de iteración $x_{n+1} = 2^{x_n-1}$ para resolver la ecuación $2x = 2^x$. Utilizar la función del ejercicio anterior para investigar si converge; y en caso afirmativo, estudiar hacia quévalores lo hace para distintas elecciones de x_0 , tomando un número máximo de 100 iteraciones y un error menor a 10^{-5} . Usar la siguiente sintaxis: Julia> hx=ripf(@fun_lab2ej6,x0,1e-5,100)
- 7. Se desea conocer la gráfica de una función u definida implícitamente: u(x) = y donde y es solución de

$$y - e^{-(1-xy)^2} = 0.$$

Implementar tres versiones de esta función, hallando el valor de y con los métodos de los ejercicios de biseccion (lab2ej7bisec), Newton (lab2ej7newton) y punto fijo (lab2ej7ipf). Los valores iniciales y tolerancias usadas por los distintos métodos deben ser escogidos de manera que cualquier usuario pueda graficar u en el intervalo [0, 1.5] sin inconvenientes.