ON H-CLOSED PARATOPOLOGICAL GROUPS

OLEKSANDR RAVSKY

Ivan Franko National University of Lviv, 1 Universitetska str. 79000 Lviv, Ukraine

A Hausdorff paratopological group is it H-closed if it is closed in every Hausdorff paratopological group containing it as a paratopological subgroup. Obtained a criterion when abelian topological group is H-closed and for some classes of abelian paratopological groups are obtained simple criteria of H-closedness.

 $\label{thm:condition} \mbox{Key words: } paratopological \ group, \ minimal \ topological \ group, \ absolutely \ closed \ topological \ group.$

All topological spaces considered in this paper are Hausdorff, if the opposite is not stated. We shall use the following notations. Let A be a subset of a group and n be an integer. Put $A^n = \{a_1 a_2 \cdots a_n : a_i \in A\}$ and $nA = \{a^n : a \in A\}$. For a group topology τ the closure of set A we define as \overline{A}^{τ} and the base of the unit as \mathcal{B}_{τ} .

A topological space X of a class C of topological spaces is C-closed provided X is closed in any space Y of the class C containing X as a subspace. It is well known that when C is the class of Tychonoff spaces than C-closedness coincides with compactness. For the class of Hausdorff spaces the following conditions for a space X are equivalent [1, 3.12.5]

- (1) The space X is H-closed.
- (2) If \mathcal{V} is a centered family of open subsets of X then $\bigcap \{\overline{V} : V \in \mathcal{V}\} \neq \emptyset$.
- (3) Every ultrafilter in the family of all open subsets of X is convergent.
- (4) Every cover \mathcal{U} of the space X contains a finite subfamily \mathcal{V} such that $\bigcup \{\overline{V}: V \in \mathcal{V}\} = X$.

The group G with topology τ is called a paratopological group if the multiplication on the group G is continuous. If the inversion on the group G is continuous then (G, τ) is a topological group. A group (G, τ) is paratopological if and only if the following conditions (known as Pontrjagin conditions) are satisfied for base \mathcal{B} at unit e of G [4,5].

- 1. $\bigcap \{UU^{-1} : U \in \mathcal{B}\} = \{e\}.$
- 2. $(\forall U, V \in \mathcal{B})(\exists W \in \mathcal{B}) : W \subset U \cap V$.
- 3. $(\forall U \in \mathcal{B})(\exists V \in \mathcal{B}): V^2 \subset U$.
- 4. $(\forall U \in \mathcal{B})(\forall u \in U)(\exists V \in \mathcal{B}) : uV \subset U$.
- 5. $(\forall U \in \mathcal{B})(\forall g \in G)(\exists V \in \mathcal{B}): g^{-1}Vg \subset U$.

The paratopological group G is a topological group if and only if

6. $(\forall U \in \mathcal{B})(\exists V \in \mathcal{B}): V^{-1} \subset U$.

A topological group is absolutely closed if it is closed in every Hausdorff topological group containing it as a topological subgroup. A topological group G is H-closed if and only if it is Rajkov-complete, that is complete with respect to the upper uniformity which is defined as the least upper bound $\mathcal{L} \vee \mathcal{R}$ of the left and the right uniformities on G. Recall that the sets $\{(x,y): x^{-1}y \in U\}$, where U runs over a base at unit of G, constitute a base of entourages for the left uniformity \mathcal{L} on G. In the case of the

[©] Ravsky Oleksandr, 2002

right uniformity \mathcal{R} , the condition $x^{-1}y \in U$ is replaced by $yx^{-1} \in U$. The Rajkov completion \hat{G} of a topological group G is the completion of G with respect to the upper uniformity $\mathcal{L} \vee \mathcal{R}$. For every topological group G the space \hat{G} has a natural structure of a topological group. The group \hat{G} can be defined as a unique (up to an isomorphism) Rajkov complete group containing G as a dense subgroup.

A paratopological group is *H-closed* if it is closed in every Hausdorff paratopological group containing it as a subgroup. In the present section we shall consider H-closed paratopological groups.

Question Let G be a regular paratopological group which is closed in every regular paratopological group containing it as a subgroup. Is G H-closed?

1. Lemma. Let (G, τ) be a paratopological group. If there exists a paratopology σ on the group $G \times \mathbb{Z}$ such that $\sigma|G \subset \tau$ and $e \in \overline{(G, 1)}^{\sigma}$ then (G, τ) is not H-closed.

Proof. We shall build the paratopology ρ on the group $G \times \mathbb{Z}$ such that $\rho | G = \tau$ and $\overline{G}^{\rho} \neq G$. Determine the base of unit \mathcal{B}_{ρ} as follows. Let $S = \{(x, n) : x \in G, n > 0\}$. For every neighborhoods $U_1 \in \tau$, $U_2 \in \sigma$ such that $U_1 \subset U_2$ put $(U_1, U_2) = U_1 \cup (U_2 \cap S)$. Put $\mathcal{B}_{\rho} = \{(U_1, U_2) : U_1 \in \mathcal{B}_{\tau}, U_2 \in \mathcal{B}_{\sigma}\}$. Verify that \mathcal{B}_{ρ} satisfies the Pontrjagin conditions.

- 1. It is satisfied since $(U_1, U_2) \subset U_2$.
- 2. It is satisfied since $(U_1 \cap V_1, U_2 \cap V_2) \subset (U_1, U_2) \cap (V_1, V_2)$.
- 3. Select $V_2 \in \mathcal{B}_{\sigma}$ and $V_1 \in \mathcal{B}_{\tau}$ such that $V_2^2 \subset U_2$, $V_1^2 \subset U_1$ and $V_1 \subset V_2$. Let $y_1, y_2 \in (V_1, V_2)$. The following cases are possible
 - A. $y_1, y_2 \in V_1$. Then $y_1y_2 \in V_1^2 \in (U_1, U_2)$.
- B. $y_1 \in V_1, y_2 \in V_2 \cap S$. Then $y_1y_2 \in V_2^2 \in U_2$. Since $y_1 \in G$ and $y_2 \in S$ then $y_1y_2 \in S$ and hence $y_1y_2 \in U_2 \cap S$.
 - C. $y_1 \in V_2 \cap S, y_2 \in V_1$ is similar to the case B.
 - D. $y_1, y_2 \in V_2 \cap S$. Since S is a semigroup then $y_1y_2 \in U_2 \cap S$.
- 4. Let $y \in (U_1, U_2)$. There exist $V_2 \in \mathcal{B}_{\sigma}$ and $V_1 \in \mathcal{B}_{\tau}$ such that $yV_2 \subset U_2$ and $V_1 \subset V_2$. The following cases are possible
 - A. $y \in U_1$. We may suppose that $yV_1 \subset U_1$. Since $y \in G$ then $y(V_2 \cap S) \subset U_2 \cap S$.
- B. $y \in U_2 \cap S$. Since $V_1 \subset G$ then $yV_1 \in U_2 \cap S$. Since S is a semigroup and $y \in S$ then $y(V_2 \cap S) \subset U_2 \cap S$. Therefore $y(V_1, V_2) \subset (U_1, U_2)$.
- 5. Let $(g, n) \in G \times \mathbb{Z}$. There exist $V_2 \in \mathcal{B}_{\sigma}$ and $V_1 \in \mathcal{B}_{\tau}$ such that $V_1 \subset V_2$, $g^{-1}V_1g \subset U_1$ and $g^{-1}V_2g \subset U_2$. Then $(g, n)^{-1}(V_1, V_2)(g, n) = g^{-1}(V_1, V_2)g = g^{-1}(V_1 \cup (V_2 \cap S)g \subset U_1 \cup (U_2 \cap S) = (U_1, U_2)$.

Therefore (H, ρ) is a paratopological group. Since $(U_1, U_2) \cap G = U_1$ then $\rho | G = \tau$.

Since $e \in \overline{(G,1)}^o$ then for every $U_2 \in \mathcal{B}_\sigma$ there exists $g \in G$ such that $(g,1) \in U_2$. Then $g \in (e,-1)(U_2 \cap S)$ and therefore $(e,-1) \in \overline{G}^\rho$. \square

A group topology τ_1 on the group G is called complementable if there exist a nondiscrete group topology τ_2 on G and neighborhoods $U_i \in \tau_i$ such that $U_1 \cap U_2 = \{e\}$. In this case we say that τ_2 is a *complement* to τ_1 . Proposition 1.4 from [1] implies that in this case a topology $\tau_1 \wedge \tau_2$ is Hausdorff.

A Banach measure is a real function μ defined on the family of all subsets of a group G which satisfies the following conditions:

- (a) $\mu(G) = 1$.
- (b) if $A, B \subset G$ and $A \cap B = \emptyset$ then $\mu(A \cup B) = \mu(A) + \mu(B)$.
- (c) $\mu(qA) = \mu(A)$ for every element $q \in G$ and for every subset $A \subset G$.

2. Lemma. [3, p.37]. Let G be an abelian group and let μ be a Banach measure on G. Let τ be a group topology on G. Suppose that the set nG is U-unbounded for some natural number n and for some neighborhood U of zero in (G,τ) . Then $\mu(\{x \in G : nx \in gW\}) = 0$ for every element $g \in G$ and for every neighborhood W of zero satisfying $WW^{-1} \subset U$.

Let U be a neighborhood of zero in a topological group (G, τ) . We say that a subset $A \subset G$ is U-unbounded if $A \not\subset KU$ for every finite subset $K \subset G$.

Given any elements a_0, a_1, \ldots, a_n of an abelian group G put

$$Y(a_0, a_1, \dots, a_n) = \{a_0^{x_0} a_1^{x_1} \cdots a_n^{x_n} : 0 \leqslant x_i \leqslant i+1, i \leqslant n, \sum x_i^2 > 0\},\$$

$$X(a_0, a_1, \dots, a_n) = \{a_0^{x_0} a_1^{x_1} \cdots a_n^{x_n} : -(i+1) \leqslant x_i \leqslant i+1, i \leqslant n\}.$$

Then
$$X(a_0, a_1, \ldots, a_n) = Y(a_0, a_1, \ldots, a_n)Y(a_0, a_1, \ldots, a_n)^{-1}$$
.

3. Lemma. Let (G, τ) be an abelian paratopological group of the infinite exponent. If there exists a neighborhood $U \in \mathcal{B}_{\tau}$ such that a group nG is UU^{-1} -unbounded for every natural number n then the paratopological group (G, τ) is not H-closed.

Proof. Define a seminorm $|\cdot|$ on the group G such that for all $x,y \in G$ holds $|xy| \leq |x| + |y|$. Suppose that there exists a non periodic element $x_0 \in G$. Determine a map $\phi_0 : \langle x_0 \rangle \to \mathbb{Z}$ putting $\phi_0(x_0^n) = n$. Since \mathbb{Q} is a divisible group then the map ϕ_0 can be extended to a homomorphism $\phi : G \to \mathbb{Q}$. Put $|x| = |\phi(x)|$ for every element $x \in G$. If G is periodic then put |e| = 0 and $|x| = [\ln \operatorname{ord}(x)] + 1$, where $\operatorname{ord}(x)$ denotes the order of the element x.

Fix a neighborhood $V \in \mathcal{B}_{\tau}$ such that $V^2 \subset U$ and put $W = VV^{-1}$. We shall construct a sequence $\{a_n\}$ such that

- (a) $|a_n| > n$.
- (b) $W \cap X(a_0, a_1, \dots, a_n) = \{e\}.$
- (c) $Y(a_0, a_1, ..., a_n) \not\ni e$.
- (d) if $-n \leqslant k \leqslant n, k \neq 0$ then $a_n^k \notin 2X(a_0, a_1, \dots, a_{n-1})$.

Take any element $a_0 \notin W$. Suppose that the elements a_0, \ldots, a_n have been chosen satisfying conditions (a) and (b). Put

$$B_n = \{ x \in G : (\forall g \in X(a_0, a_1, \dots, a_{n-1})) (\forall k \in \mathbb{Z} \setminus \{0\} : -e^{n+1} \leqslant k \leqslant e^{n+1}) : kx \notin gW \}.$$

If the group G is periodic then |x| > n for every element $x \in B_n$. Lemma 2 implies that $\mu(B_n) = 1$. If the group G is not periodic then the construction of the seminorm $|\cdot|$ implies that $\mu(\{x \in G : |x| \leq n\}) = \mu(\phi^{-1}[-n;n]) = 0$. In both cases there exists an element $a_n \in B_n$ such that $|a_n| > n$. Then $W \cap X(a_0, a_1, \ldots, a_n) = \emptyset$. Considering a subsequence and applying condition (a) we can satisfy conditions (c) and (d) also.

Define a base $\mathcal{B}_{\tau\{a_n\}}$ at the unit of group topology $\tau\{a_n\}$ on the group $G \times \mathbb{Z}$ as follows. Put $A_n^+ = \{(e,0)\} \cap \{(a_k,1) : k \ge n\}$. For every increasing sequence $\{n_k\}$ put $A[n_k] = \bigcup_{l \in \mathbb{N}} A_{n_1}^+ \cdots A_{n_l}^+$. Put $\mathcal{B}_{\tau\{a_n\}} = \{A[n_k]\}$. We claim that $(G \times Z, \tau\{a_n\})$ is a zero dimensional paratopological group.

Put $F = \bigcup_{n \in \omega} X(a_0, a_1, \dots, a_n)$. Let $A[n_k] \in \mathcal{B}_{\tau\{a_n\}}, (x, n_x) \not\in A[n_k]$. If $x \not\in F$ then $(x, n_x)A[n] \cap A[n_k] = \varnothing$. Let $x \in X(a_0, a_1, \dots, a_m)$. Put $m_k = m + k$. Suppose that

 $(x, n_x)A[m_k] \cap A[n_k] \neq \emptyset$. Select the minimal k such that $(x, n_x)(A_{m_1}^+ \cdots A_{m_k}^+) \cap A[n_k] \neq \emptyset$. Let

$$(*) (x, n_x)(a_{l_1}, 1) \cdots (a_{l_k}, 1) = (a_{l'_1}, 1) \cdots (a_{l'_{k'}}, 1)$$

and for all i,i' holds $m_i \leq l_i \leq l_{i+1}, n_i' \leq l_{i'}' \leq l_{i'+1}'$. Remark that a member a_q occurs in each part of the equality (**) no more than q times. If $l_k > l_{k'}'$ then if we move all members which are not equal to $(a_{l_k},1)$ from the left side of the equality (*) to the right one, we obtain contradiction to condition (d). The case $l_k < l_{k'}'$ is considered similarly. Therefore $l_k = l_{k'}'$, a contradiction to that k is the minimal number such that the equality (*) holds. It is showed similarly that if $x \neq e$ and $m_k = m + k + 1$ then $(x, n_x) \not\in A[m_k]$. If x = e and $n_x \neq 0$ then condition (c) implies that $A[n] \not\ni (x, n_x)$. Hence Pontrjagin condition 1 for $\mathcal{B}_{\tau\{a_n\}}$ is satisfied. Since $A[n_{2k}]^2 \subset A[n_k]$, Pontrjagin condition 3 is satisfied. All other Pontrjagin conditions are obvious.

Condition (b) implies that $A[n]A[n]^{-1} \cap VV^{-1} = \{(e,0)\}$. Therefore the topology $\tau\{a_n\}_g$ is a complement to the topology $(\tau \times \{0\})_g$, where $\tau \times \{0\}$ is the product topology on the group $(G,\tau) \times \mathbb{Z}$. Therefore the topology $\sigma = \tau\{a_n\}(\tau \times \{0\})$ is Hausdorff. Since $(e,0) \in \overline{(G,1)}^{\tau\{a_n\}} \subset \overline{(G,1)}^{\sigma}$ then (G,τ) is not H-closed. \square We shall need the following lemma.

4. Lemma. Let G be a paratopological group and H be a normal subgroup of the group G. If H and G/H are topological groups then G is a topological group.

Proof. Let U be an arbitrary neighborhood of the unit. There exist neighborhoods V,W of the unit such that $V\subset U,\ (V^{-1})^2\cap H\subset U$ and $W\subset V,\ W^{-1}\subset VH$. If $x\in W^{-1}$ then there exist elements $v\in V,h\in H$ such that x=vh. Then $h=v^{-1}x\in V^{-1}W^{-1}\cap H\subset U$. Therefore $x\in VU\subset U^2$. Hence G is a topological group. \square

5. Theorem. An abelian topological group (G, τ) is H-closed if and only if (G, τ) is Rajkov complete and for every group topology $\sigma \subset \tau$ on G the quotient group \hat{G}/G is periodic, where \hat{G} is the Rajkov completion of the group (G, σ) .

Proof. Suppose that there exists a group topology $\sigma \subset \tau$ on G such that the quotient group \hat{G}/G is not periodic, where \hat{G} is the Rajkov completion of the group (G,σ) . Select a non periodic element $x \in \hat{G}$ such that $\langle x \rangle \cap G = \{e\}$. Then $G \times \langle x \rangle$ is naturally isomorphic to a group $G \times \mathbb{Z}$ and Lemma 1 implies that the group (G,τ) is not H-closed.

Let a paratopological group (H, τ') contains (G, τ) as non closed subgroup. Since G is abelian then \overline{G} is an abelian semigroup. Choose an arbitrary element $x \in \overline{G} \backslash G$. Then a group hull $F = \langle G, x \rangle$ with a topology $\tau' | F$ is an abelian paratopological group. Then the group G is dense in (F, τ'_g) . Since the Rajkov completion \hat{F} of the topological group $(F, \tau' | F_g)$ is periodic then there exists a natural number n such that $x^n \in G$. Therefore $F^n \subset G$. Lemma 4 implies that F is a topological group and therefore G is closed in (F, τ'_g) , a contradiction. \square

6. Corollary. A Rajkov completion of a isomorphic condensation of H-closed abelian topological group is H-closed.

7. Proposition. Let G be a Rajkov complete topological group, H be H-closed paratopological subgroup of the group G. If a group G/H has finite exponent then G is an H-closed paratopological group.

Proof. Select a number n such that $g^n \in H$ for every element $g \in G$. Let $F \supset G$ be a paratopological group. Since H is closed in F then for every element $g \in \overline{G}$ holds $g^n \in H$. Denote continuous maps $\phi : \overline{G} \to \overline{G}$ as $\phi(g) = g^{n-1}$ and $\psi : \overline{G} \to H$ as $\psi(g) = (g^n)^{-1}$. Then for every element $g \in \overline{G}$ holds $g^{-1} = \phi(g)\psi(g)$ and therefore the inversion on the group \overline{G} is continuous. Since \overline{G} is a topological group and G is Rajkov complete then $\overline{G} = G$. \square

8. Proposition. Let G be a paratopological group and K be a compact normal subgroup of the group G. If a group G/K is H-closed then the group G is H-closed.

Proof. Suppose that there exists a paratopological group F containing the group G such that $\overline{G} \neq G$. Since K is compact then F/K is a Hausdorff paratopological group by Proposition 1.13 from [4]. Let $\pi: F \to F/K$ be the standard map. Then $\overline{G/K} \supset \pi(\overline{\pi^{-1}(G/K)}) \supset \pi(\overline{G}) \neq \pi(G) = G/K$. This implies that the group G/K is not H-closed, a contradiction. \square

Let G be a topological group, N be a closed normal subgroup of the group G. Then if N and G/N are Rajkov complete so is the group G [5]. This suggests the following

- 9. Question. Let G be a paratopological group, N be a closed normal subgroup of the group G and the groups N and G/N are H-closed. Is the group G H-closed?
- Let (G, τ) be a paratopological group. Then there exists the finest group topology τ_g coarser than τ (see [2]), which is called the group reflection of the topology τ .
- **10. Proposition.** Let (G, τ) be an abelian paratopological group. If (G, τ_g) is H-closed then (G, τ) is H-closed. If (G, τ) is H-closed and (G, τ_g) is Rajkov complete then (G, τ_g) is H-closed.

Proof. Suppose that the group (G, τ_g) is H-closed and (G, τ) is not. Let a paratopological $(H, \hat{\tau})$ contains (G, τ) as non-closed subgroup. Without loss of generality we may suppose that there exists an element $x \in H \backslash G$ such that $H = \langle G, x \rangle$ and the group H is abelian. Let $\hat{\tau}_g$ be the group reflection of the topology $\hat{\tau}$. Since $\hat{\tau}_g | G \subset \tau_g$ then Theorem 5 implies that the group H/G is periodic. Without loss of generality we may suppose that $x^p \in G$ for some prime p.

Denote the family of neighborhoods at unit in the topology τ as $\mathcal{B}_{\hat{\tau}}$. Let $U \in \mathcal{B}_{\hat{\tau}}$. If $U \cap xG = \emptyset$ then there exists a neighborhood V of unit such that $V^p \subset U$ and thus $V \subset G$ and G is open in $(H, \hat{\tau})$. Therefore a set $\mathcal{F} = \{x^{-1}(xG \cap U) : U \in \mathcal{B}_{\tau}\}$ is a filter. Let $U \in \mathcal{B}_{\hat{\tau}}$. There exists $V \in \mathcal{B}_{\hat{\tau}}$ such that $V^p \subset U$. Then $(xG \cap V)^p \subset U$. Let $xg \in (xG \cap V)$. Then $x^{-1}(xG \cap V) \subset x^{-1}((xg)^{1-p}(xG \cap V)^p) \cap G \subset x^{-p}g^{1-p}(U \cap G)$ and hence \mathcal{F} is a Cauchy filter in the group (G, τ_g) . Let $h \in G$ be a limit of the filter \mathcal{F} on the group (G, τ_g) . But then for every neighborhood of the unit U in the topology $\hat{\tau}_g$ holds $U \cap xhU \supset U \cap xh(U \cap G) \neq \emptyset$ and therefore $(H, \hat{\tau}_g)$ is not Hausdorff, a contradiction.

Let (G, τ_g) is Rajkov complete and (G, τ_g) is not H-closed. Then Theorem 5 implies that there exists a group topology $\sigma \subset \tau$ on G such that the quotient group \hat{G}/G of the Rajkov completion \hat{G} of the group (G, σ) is not periodic. Then Lemma 1 implies that a group (G, τ) is not H-closed. \square

11. Lemma. Let topological group (H, σ_H) be a closed subgroup of an abelian topological group (G, τ) and $\sigma_H \subset \tau|_H$. Then there exists a group topology $\sigma \subset \tau$ on the group G such that $\sigma|_H = \sigma_H$.

Proof Let \mathcal{B}_{τ} and $\mathcal{B}_{\sigma H}$ be bases of unit of (G,τ) and (H,σ_H) respectively.

Put $\mathcal{B}_{\sigma} = \{U_1U_2 : U_1 \in \mathcal{B}_{\tau}, U_2 \in \mathcal{B}_{\sigma H}\}$. Verify that the family \mathcal{B}_{σ} satisfies the Pontrjagin conditions.

- 2. It is satisfied since $(U_1 \cap V_1)(U_2 \cap V_2) \subset U_1U_2 \cap V_1V_2$.
- 3. Select $V_2 \in \mathcal{B}_{\sigma H}$ and $V_1 \in \mathcal{B}_{\tau}$ such that $V_2^2 \subset U_2$, $V_1^2 \subset U_1$. Then $(V_1V_2)^2 \subset U_1U_2$.
- 4. Let $y \in U_1U_2$. Then there exist points $y_1 \in U_1$ and $y_2 \in U_2$ such that $y = y_1y_2$. Therefore there exist a neighborhoods $V_1 \in \mathcal{B}_{\tau}$ and $V_2 \in \mathcal{B}_{\sigma H}$ such that $y_iV_i \subset U_i$. Then $yV_1V_2 \subset U_1U_2$.
 - 5. It is satisfied since G is abelian.
 - 6. $(U_1^{-1}U_2^{-1})^{-1} \subset U_1U_2$.
- 1. Since all others Pontrjagin conditions are satisfied then it suffice to show that $\bigcap \mathcal{B}_{\sigma} = \{e\}$. Let $x \in G$ and $x \neq e$. If $x \in H$ then there exists $U_2 \in \mathcal{B}_{\sigma H}$ such that $U_2^2 \not\ni x$ and $U_1 \in \mathcal{B}_{\sigma}$ such that $U_1 \cap H \subset U_2$. Then $U_1U_2 \cap \{x\} = U_1U_2 \cap \{x\} \cap H \subset U_2^2 \cap \{x\} = \emptyset$. If $x \notin H$ then $(G \setminus xH)H \not\ni x$.

Therefore (G, σ) is a topological group. Since $U_1U_2 \cap H = (U_1 \cap H)U_2$ then $\sigma|H = \sigma_H$. \square

12. Proposition. A closed subgroup of an H-closed abelian group is H-closed.

Proof. Let H be a closed subgroup of an H-closed abelian group (G, τ) . Then G and H are Rajkov complete. Let $\sigma_H \subset \tau|H$ be a group topology on the group H. Lemma 11 implies that there exists a group topology σ on the group G such that $\sigma|H=\sigma_H$. Let $(\hat{G},\hat{\sigma})$ be the Rajkov completion of the group (G,σ) . Then a closure $\overline{H}^{\hat{\sigma}}$ of the group H in the group $(\hat{G},\hat{\sigma})$ is a Rajkov completion of the group (H,σ_H) . Let $x\in \overline{H}^{\hat{\sigma}}$. Theorem 5 implies that there exists n>0 such that $x^n\in G$. Since $\overline{H}^{\hat{\sigma}}\cap G=H$ then $x^n\in H$. Therefore Theorem 5 implies that H is H-closed. \square

13. Proposition. Let G be a H-closed abelian topological group. Then $K = \bigcap_{n \in \mathbb{N}} \overline{nG}$ is compact and for each neighborhood U of zero in G there exists a natural n with $\overline{nG} \subset KU$.

Proof. Let Φ be a filter on G with a base $\{\overline{nG}:n\in\mathbb{N}\}$, and Ψ be an arbitrary ultrafilter on G with $\Psi\supset\Phi$. Let U be a closed neighborhood of the unit in G. Lemma 2 implies that there exists a number n such that the set \overline{nG} is U-bounded. Since $\overline{nG}\in\Phi$ and Ψ is an ultrafilter, there exists $g\in G$ with $gU\in\Psi$. Hence Ψ is a Cauchy filter on G. By the completeness of G, Ψ is convergent. Therefore each ultrafilter Ψ on G with $\Psi\supset\Phi$ converges. In particular each ultrafilter on K is convergent, and since K is closed, K is compact.

To show that there exists a number n with $\overline{nG} \subset KU$ it suffices to prove that $KU \in \Phi$. Assume that $KU \notin \Phi$. Then there exists an ultrafilter $\Psi \supset \Phi$ with $G \setminus KU \in \Psi$. As we have proved, Ψ is convergent. Clearly $\lim \Psi \in K$. Therefore $KU \in \Psi$ which is a contradiction. Hence $KU \in \Phi$, and this completes the proof. \square

14. Corollary. A divisible abelian H-closed topological group is compact. \Box

15. Proposition. Every H-closed abelian topological group is a union of compact groups.

Proof. Let G be such a group. It suffice to show that every element $x \in G$ is contained in a compact subgroup. Let X be the smallest closed subgroup of G containing the element x. Then $X = \bigcup_{k=0}^{n} (kx + \overline{nX})$ for every natural n. Let U be an arbitrary neighborhood of the zero. By Lemma 15 there exists a natural number n such that nG is U-bounded. Then X is also U-bounded. Hence X is a precompact group. Since X is Rajkov complete then X is compact. \square

- **16.** Conjecture. An abelian topological group G is H-closed if and only if G is Rajkov complete and nG is precompact for some natural n.
- 17. Proposition. The Conjecture 16 is true provided the group (G, τ) satisfies the following two conditions:
 - (1) There exists a σ -compact subgroup L of G such that G/L is periodic.
- (2) There exists a group topology $\tau' \subset \tau$ such that the Rajkov completion \hat{G} of the group (G, τ') is Baire.

Proof. Let G be such a group and $L = \bigcup_{k \in \mathbb{N}} L_k$ be a union of compact subsets L_k . Put $G(n,k) = \{x \in \hat{G} : nx \in L_k\}$ for every natural n and k. Then every set G(n,k) is closed. By Theorem 5 holds $\hat{G} = \bigcup_{n,k \in \mathbb{N}} G(n,k)$. Since \hat{G} is Baire then there exist natural numbers n and k such that int $G(n,k) \neq \emptyset$. Then F = G(n,k) - G(n,k) is a neighborhood of the zero. By Corollary 6 the group \hat{G} is H-closed. Put $K = \bigcap_{n \in \mathbb{N}} n\hat{G}$. By Proposition 13 there exists a natural m such that $m\hat{G} \subset F + K$. Then $mnG \subset mn\hat{G} \subset L_k - L_k + K$ and hence the group mnG is precompact. \square

^{1.} Engelking R. General topology. – Monografie Matematyczne, Vol. 60, Polish Scientific Publ. – Warsaw, 1977.

^{2.} Graev M.I. Theory of topological groups // UMN, 1950 (in Russian).

^{3.} Protasov I., Zelenyuk E., Topologies on Groups Determined by Sequences. – VNTL Publishers, 1999.

^{4.} Ravsky O.V. // Paratopological groups I // Matematychni Studii. – 2001. – Vol. 16. – 1. – P.37-48.

^{5.} Ravsky O.V. // Paratopological groups II // Matematychni Studii. – 2002. – Vol. 17. – 1. – P.93-101.