report4

Jaiveer Kiran S. K ee22b042

June 2025

Target Specifications

- Output Voltage = $1.2V \pm 1\%$
- Supply Voltage = $1.8V \pm 10\%$
- Power Consumption $< 500 \mu W$
- Temperature Range: $-40\,^{\circ}\mathrm{C}$ to $125\,^{\circ}\mathrm{C}$

Bias Currents

$$(I_{\text{total}})_{\text{max}} = \frac{500 \,\mu\text{W}}{1.8 \,\text{V}} = 277.8 \,\mu\text{A}$$

Current Division

$$85\mu A + 85\mu A + 85\mu A + 20\mu A$$
 (approx. 10%)

Design Equations

•

$$\frac{\frac{k}{q}\ln(n)}{R_1} = \frac{0.002}{R_2}$$

$$\Rightarrow \frac{R_2}{R_1} \approx 11.18$$
(1)

•

$$85\mu = \frac{\frac{k}{q}(233)\ln n + V_{\text{OS}}}{R_1} + \frac{0.6}{R_2}$$
 (2)

Solving:

$$R_1 = 1239.76 \ \Omega, \quad R_2 \approx 14,000 \ \Omega$$

Current Mirrors

$$R_3 = \frac{1.2}{85\mu A}$$

= 14,117.6 \Omega

Figure 1: NMOS characteristics

Figure 2: PMOS characteristics

• The PMOS for Output Voltage has the lowest headroom available.

$$[1.8 - 10\%] - [1.2 + 1\%]$$

$$\frac{g_m}{I_D} = \frac{2}{V_{\text{DSAT}}} = \frac{2}{400 \text{ mV}} = 5$$

 $I_{\rm per\ unit\ width} \approx 15\ \mu A$

• Due to CLM, current is lower here than other branches.

$$m = \frac{85}{15} = 5.666 \Rightarrow \text{Round off to 5 (lower)}$$

Observations

$$R_1 = 2,200 \ \Omega$$

 $R_2 = 15,000 \ \Omega$

Currents

$$74 \ \mu A$$
, $80 \ \mu A$, $80 \ \mu A$, $30 \ \mu A$ (11.4%)

$$R_3 = \frac{1.2}{74\mu A}$$
$$= 16.2k \Omega$$

Figure 3: Total Current consumed

Bandgap Reference:

 \bullet Voltage Output at 27 degrees: 1.1947398V.

 \bullet Range of errors : +9 to -12 mV (within 1 percent of 1.2 volt).

• Maximum power : 486.72μ W.

Figure 4:

Figure 5: Output voltage

Figure 6: errors in output voltage

Figure 7: Current values