

EECE5645 Parallel Processing for Data Analytics

Lecture 10: Feature Selection

Linear Regression

$$y_i \approx f(x_i) = \beta^\top x_i = \sum_{k=1}^d \beta_k x_{ik}$$

Learn by minimizing Residual-Sum-of-Squares (RSS):

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^d}{\operatorname{arg \, min}} \operatorname{RSS}(\beta) = \underset{\beta \in \mathbb{R}^d}{\operatorname{arg \, min}} \sum_{i=1}^n (y_i - \langle \beta, x_i \rangle)^2$$
$$= (X^T X)^{-1} X^T y$$

Linear Regression

$$\hat{\beta} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^d} \mathtt{RSS}(\beta)$$

$$y_i \approx f(x_i) = \beta^\top x_i = \sum_{k=1}^d \beta_k x_{ik}$$

Expected Prediction Error:

$$\mathsf{EPE} \ \approx \sigma^2 + \sigma^2 \frac{d}{n}$$

What if Data is Not Linear?

What if Data is Not Linear?

What if Data is Not Linear?

\square Suppose f is quadratic:

$$f(x) = \frac{1}{2}x^{\mathsf{T}}Qx + b^{\mathsf{T}}x + c$$

$$= \frac{1}{2} \sum_{k=1}^{d} \sum_{k'=1}^{d} q_{kk'} x_k x_{k'} + \sum_{k=1}^{d} b_k x_k + c$$

$$= \frac{1}{2} \sum_{k=1}^{d} q_{kk} x_k^2 + \sum_{k=1}^{d} \sum_{k'>k}^{d} q_{kk'} x_k x_{k'} + \sum_{k=1}^{d} b_k x_k + c$$

Northeastern

Fitting Polynomials

To learn a polynomial f of degree

$$k = 2, 3, \dots$$
:

□ Produce new features containing all monomials:

$$\prod_{i=1}^{d} x_i^{k_i} = x_1^{k_1} x_2^{k_2} \dots x_d^{k_d}$$

where $k_1 + k_2 + ... + k_d \le k$.

☐ Perform linear regression on resulting new set of features

Lifting

- \square Affine in \mathbb{R}^d = Linear in \mathbb{R}^{d+1}
- oxedge Quadratic in \mathbb{R}^d = Linear in $\mathbb{R}^{d(d-1)/2+2d+1}=\mathbb{R}^{O(d^2)}$
- \square Polynomial of degree k in \mathbb{R}^d = Linear in $\mathbb{R}^{O(d^k)}$

Different Basis Functions

Coefficients to be learned

Known basis functions

$$f(x) = \sum_{\ell=1}^{m} \beta_{\ell} f_{\ell}(x)$$

- ☐ Polynomials: basis functions are monomials
- **Periodic functions:** $\sin(\ell \frac{x}{T}), \cos(\ell \frac{x}{T}), \ell \in \mathbb{N}, x \in [0, T]$
- \Box Other non linear features: $\log x_k$, e^{x_k}

$$(f_1(x), f_2(x), \dots, f_m(x)) \in \mathbb{R}^m$$

Stone-Weierstrass Theorem

Let $f:\mathbb{R}^d \to \mathbb{R}$ be a continuous function defined over a closed and bounded set $A \subset \mathbb{R}^d$. Then, for any $\delta > 0$, there exists a polynomial $p:\mathbb{R}^d \to \mathbb{R}$ such that:

$$|f(x) - p(x)| \le \delta$$

for all $x \in A$.

What Does This Imply?

Suppose features x_i are in $[0,100]^d$, and $f:\mathbb{R}^d\to\mathbb{R}$ is a continuous function.

Then, we can learn a polynomial that is **arbitrarily close to** f using linear regression!

Wait...what?

kNN

 $oldsymbol{\Box} f: \mathbb{R}^d
ightarrow \mathbb{R} \ \ ext{is continuous}$

Curse of dimensionality

Linear Regression

 $oldsymbol{\square} \ f: \mathbb{R}^d o \mathbb{R} \ \ ext{is linear.}$

No curse: we have assumed it away!

Wait...what?

kNN

 $oldsymbol{\Box} f: \mathbb{R}^d
ightarrow \mathbb{R} \ \ ext{is continuous}$

Curse of dimensionality

Linear Regression

 $oldsymbol{\Box} f: \mathbb{R}^d
ightarrow \mathbb{R} \ \ ext{is continuous}$

Learn f through appropriate lifting. Did we escape the curse?!?

No, We Did Not.

$$y_i \approx f(x_i) = \beta^{\top} x_i = \sum_{k=1}^{a} \beta_k x_{ik}$$

$$n \ge \frac{d\sigma^2}{\epsilon}$$

No, We Did Not.

$$n \ge \frac{d^2 \sigma^2}{\epsilon}$$

No, We Did Not.

$$f(x) = \sum_{k_1, k_2, \dots, k_n : \sum_{i=1}^n k_i \le k} \beta_{k_1, k_2, \dots, k_n} \prod_{i=1}^n x_i^{k_i}.$$

$$n \ge \frac{d^k \sigma^2}{\epsilon}$$

To Lift or Not to Lift?

- ☐ If f is quadratic, we want to lift
- ☐ If f is linear and then LSE should still learn a linear model

Lifting Can Lead to Redundant Features

- ☐ If f is linear, quadratic features are redundant/irrelevant
- ☐ Lifting will make EPE increase compared to not lifting!

Over-fitting

Over-fitting

Over-fitting

Redundant Features May Exist in Data!

Only $d' \ll d$ features actually affect blood pressure!

Linear Regression needs:

$$n = O(d) \gg O(d')$$

to learn eta

Summary

One can increase number of features by:

☐ Collecting more measurements

☐ Transforming existing features/lifting:

- ☐ If features are redundant, regression will set corresponding weight to zero, but...
- ..it will require more samples to do this!!!

A New Challenge

☐ In practice, we are often just given a dataset

 \square We cannot increase n: we need to work with what we have

A New Challenge

A New Challenge

Feature Selection!!!

Feature Selection

Q: How can we find out which features matter?

A Simple Solution: Just ask!!!

Experts

Revisiting Venn Diagram

http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

Ok, but can we do this from data alone?

- No experts
- Experts do not know either
- Discover features experts do not know
- ш ...

Feature Selection

We actually need two things:

- □ A procedure for selecting features
- □ A way of measuring whether this selection is good

Feature Selection

- We actually need two things:
- □ A procedure for selecting features
- A way of measuring whether this selection is good

How can I tell if I have a good set of features?

Least-Squares Estimator (LSE)

Residual Sum of Squares $RSS(\beta)$

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^d}{\operatorname{arg\,min}} \sum_{i=1}^n (y_i - \langle \beta, x_i \rangle)^2$$

$$= \underset{\beta \in \mathbb{R}^d}{\operatorname{arg\,min}} \|X\beta - y\|_2^2$$

Q: Can I use RSS to see if I have a good set of features?

Residual Sum of Squares

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^d}{\operatorname{arg\,min}} \sum_{i=1}^n (y_i - \langle \beta, x_i \rangle)^2$$

$$RSS(\hat{\beta}) = \sum_{i=1}^{n} (y_i - \hat{\beta}^{\top} x_i)$$

Residual Sum of Squares: Adding a New Feature

$$\hat{\beta}' = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^{d+1}} \sum_{i=1}^{n} (y_i - \beta^{\top} x_i')^2$$

$$RSS(\hat{\beta}') = \sum_{i=1}^{n} (y_i - \hat{\beta}'^{\top} x_i')$$

$$\stackrel{?}{\lessgtr} \mathtt{RSS}(\hat{eta})$$

Adding Features Decreases RSS

Proof:
$$\operatorname{RSS}(\hat{\beta}') = \min_{\beta \in \mathbb{R}^{d+1}} \operatorname{RSS}(\beta)$$

$$\leq \operatorname{RSS}\left((\hat{\beta}, 0.0)\right)$$

$$= \sum_{i=1}^{n} \left(y_i - (\hat{\beta}, 0.0)^\top x_i'\right)^2$$

$$= \sum_{i=1}^{n} \left(y_i - \hat{\beta}^\top x_i\right)^2$$

$$= \operatorname{RSS}(\hat{\beta})$$

Same Principle As Overfitting!

RSS(linear) > RSS(poly(6))

Illustration: Best-Subset Selection

FIGURE 3.5. All possible subset models for the prostate cancer example. At each subset size is shown the residual sum-of-squares for each model of that size.

What Was EPE Again?

Estimate: $\hat{y}_0 = \hat{\beta}^\top x_0$

EPE:
$$\mathbb{E}[(y_0 - \hat{y}_0)^2] = \mathbb{E}[(y_0 - \beta^\top x_0)^2] + \mathbb{E}[(\beta^\top x_0 - \hat{\beta}^\top x_0)^2]$$
$$= \sigma^2 + x_0^\top \mathbb{E}[(\beta - \hat{\beta})(\beta - \hat{\beta})^\top] x_0$$
$$= \sigma^2 + x_0^\top \mathsf{Cov}(\hat{\beta}) x_0$$

If $x_i, x \in \mathbb{R}^d$ are sampled from the same distribution, then:

$$\mathbb{E}\left[\mathsf{EPE}
ight] pprox \sigma^2 + \sigma^2 rac{d}{n}$$

Problem: We don't know the distribution!

Solution: use data!!!

Estimating EPE

 \Box Train $\hat{\beta}$ by minimizing:

$$\mathtt{RSS}_{\mathtt{train}}(\beta) = \sum_{i \in \mathtt{train}} (y_i - \beta^\top x_i)^2$$

☐ Test $\hat{\beta}$ by evaluating:

$$\mathtt{RSS}_{\mathtt{test}}(\hat{\beta}) = \sum_{i \in \mathtt{test}} (y_i - \hat{\beta}^\top x_i)^2$$

"Proxy" for EPE!!

Feature Selection Revisited

Improvement #1

 \Box Train $\hat{\beta}$ by minimizing:

$$RSS_{train}(\beta) = \sum_{i \in train} (y_i - \beta^\top x_i)^2$$

☐ Test $\hat{\beta}$ by evaluating:

$$\mathrm{RSS}_{\mathtt{test}}(\hat{\beta}) = \sum_{i \in \mathtt{test}} (y_i - \hat{\beta}^\top x_i)^2$$

- \Box For each fold $\ell = 1, \ldots, k$:
 - \square Set test_{ℓ} to include all data in fold ℓ .
 - lue Put remaining folds in \mathtt{train}_ℓ

- \Box For each fold $\ell = 1, \ldots, k$:
 - \square Set test_{ℓ} to include all data in fold ℓ .
 - lacksquare Put remaining folds in train_{ℓ}
 - ☐ Train $\hat{\beta}$ by minimizing: $RSS_{train_{\ell}}(\beta) = \sum_{i=1,...} (y_i \beta^{\top} x_i)^2$

- \Box For each fold $\ell = 1, \ldots, k$:
 - \square Set test_{ℓ} to include all data in fold ℓ .
 - lacksquare Put remaining folds in train_{ℓ}
 - □ Train $\hat{\beta}$ by minimizing: $RSS_{train_{\ell}}(\beta) = \sum_{i=1,...} (y_i \beta^{\top} x_i)^2$

- \Box For each fold $\ell = 1, \ldots, k$:
 - \square Set test_{ℓ} to include all data in fold ℓ .
 - lacksquare Put remaining folds in train_{ℓ}
 - ☐ Train $\hat{\beta}$ by minimizing: $RSS_{train_{\ell}}(\beta) = \sum_{i=1,...} (y_i \beta^{\top} x_i)^2$

- \Box For each fold $\ell = 1, \ldots, k$:
 - \square Set test_{ℓ} to include all data in fold ℓ .
 - lacksquare Put remaining folds in train_{ℓ}
 - ☐ Train $\hat{\beta}$ by minimizing: $RSS_{train_{\ell}}(\beta) = \sum_{i=1,...} (y_i \beta^{\top} x_i)^2$
 - $oldsymbol{\Box}$ Test \hat{eta} by evaluating: $\mathrm{RSS}_{\mathtt{test}_\ell}(\hat{eta}) = \sum_i (y_i \hat{eta}^{\top} x_i)^2$
- $\label{eq:Quality of Solution: RSS} \ = \frac{1}{k} \sum_{\ell=1}^k \mathtt{RSS}_{\mathtt{test}_\ell}$

"Proxy" for EPE!!

k-fold Cross Validation

Cross-validation error:

$$\overline{\mathtt{RSS}} = \frac{1}{k} \sum_{\ell=1}^k \mathtt{RSS}_{\mathtt{test}_\ell}$$

- ☐ Less sensitive to how split happens than train/test
- ☐ Can be applied to **other metrics** (accuracy, precision, recall, AUC)...
- ☐ Can be applied to **pick other parameters** of estimation procedure:
 - □ Feature selection
 - Number of iterations
 - **...**
- Can be used to compute standard deviation, confidence intervals, etc.

k-fold Cross Validation

THIS IS AN EXTREMELY IMPORTANT TOPIC!!! IF YOU ONLY REMEMBER A SINGLE THING FROM ENTIRE CLASS, PLEASE REMEMBER TO CROSS-VALIDATE!!!

Finding the Right Features

- ☐ Use k-fold CV to find right problem parameters:
 - □ Features
 - □ Iterations
 - ☐ Regularization parameters (coming up)...

- $oldsymbol{\Box}$ One model \hat{eta}_ℓ per fold $\ell=1,\ldots,k$.
 - ☐ Fix these parameters and then retrain model over entire dataset

Train using selected features, iterations, etc.

Feature Selection

We actually need two things:

- □ A procedure for selecting features
- □ A way of measuring whether this selection is good

Feature Selection

We actually need two things:

- □ A procedure for selecting features
- □ A way of measuring whether this selection is good

A Few Combinatorial Approaches

Best Subset Selection:

- ☐ Try all subsets of features
- □ Too expensive
- ☐ Greedy approaches:
 - ☐ Forward step-wise
 - Backward step-wise
 - ☐ Forward stage-wise

- ☐ More efficient
- □Not robust: solutions can change drastically with small changes in data

$$\hat{\beta} = \operatorname*{arg\,min}_{eta \in \mathbb{R}^d} \quad \sum_{i=1}^n (y_i - eta^\top x_i)^2 + c(eta)$$

Penalty if β is "complicated"

Occam's razor, KISS (Keep it Simple, Stratis): among two solutions that produce the same RSS, we prefer the one that has smaller complexity

$$\hat{\beta} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^d} \quad \sum_{i=1}^n (y_i - \beta^\top x_i)^2 + \lambda \|\beta\|_0 \text{ , for some } \lambda > 0$$

$$\|\beta\|_0 = \text{ \# of non-zero elements of } \beta \text{ (i.e., size of } \beta \text{'s support)}$$

Occam's razor: Between two β with the same RSS, we prefer the one that is **sparser**, i.e., has fewer features.

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^d}{\arg\min} \quad \sum_{i=1}^n (y_i - \beta^\top x_i)^2 + \lambda \|\beta\|_0 \text{ , for some } \lambda > 0$$

$$\|\beta\|_0 = \text{ \# of non-zero elements of } \beta \text{ (i.e., size of } \beta \text{'s support)}$$

 $\lambda \gg 0$: optimal solution contains only zeros

 $\lambda = 0$: linear regression

Varying λ can be used for feature selection!

$$\hat{\beta} = \operatorname*{arg\,min}_{eta \in \mathbb{R}^d} \quad \sum_{i=1}^n (y_i - eta^\top x_i)^2 + \lambda \|eta\|_0 \text{ , for some } \lambda > 0$$

Problem: Alas, this is **not a convex objective!**

Solution: We replace it with convex relaxations

Ridge Regression

$$\hat{\beta}^{\text{ridge}} = \underset{\beta \in \mathbb{R}^d}{\text{arg min}} \quad \sum_{i=1}^n (y_i - \beta^\top x_i)^2 + \lambda \|\beta\|_2^2, \text{ for some } \lambda > 0$$
 where $\|\beta\|_2^2 = \beta^\top \beta = \sum_{k=1}^d \beta_k^2$ Strongly Convex!!!!

Lasso Regression

$$\hat{eta}^{ extsf{lasso}} = rg \min_{eta \in \mathbb{R}^d} \sum_{i=1}^n (y_i - eta^ op x_i)^2 + \lambda \|eta\|_1$$
, for some $\lambda > 0$ where $\|eta\|_1 = \sum_{k=1}^d |eta_k|$ Convex! (not differentiable)

Ridge Regression

I2-penalty,ridge penalty,regularization term,

Ridge Regression

Ridge Regression

For every $\lambda \geq 0$, there exists a $t \geq 0$ such that the two problems produce the same solution

Minimize:
$$\sum_{i=1}^{n} (y_i - \beta^\top x_i)^2 + \lambda \|\beta\|_2^2$$

subject to:
$$\beta \in \mathbb{R}^d$$

Minimize:
$$\sum_{i=1}^{n} (y_i - \beta^{\top} x_i)^2$$

subject to:
$$\|\beta\|_2^2 \le t$$

For every $\lambda \ge 0$, there exists a $t \ge 0$ such that the two problems produce **the same solution**

PROBLEM 1

Minimize: $\sum_{i=1}^{n} (y_i - \beta^\top x_i)^2 + \lambda \|\beta\|_2^2$

subject to: $\beta \in \mathbb{R}^d$

PROBLEM 2

Minimize: $\sum_{i=1}^{n} (y_i - \beta^{\top} x_i)^2$

subject to: $\|\beta\|_2^2 \le t$

Proof: Given a $\lambda \geq 0$, let β^* be an optimal solution to PROBLEM 1.

Let $t = \|\beta^*\|_2^2$. Then, β^* is an optimal solution to PROBLEM 2 for this $t \ge 0$.

Suppose not. Then, there exists a $\beta' \neq \beta^*$ such that $\|\beta'\|_2^2 \leq t$ and

$$\sum_{i=1} (y_i - {\beta'}^{\top} x_i)^2 < \sum_{i=1} (y_i - {\beta^*}^{\top} x_i)^2$$

a contradiction, as β^* is an optimal solution to PROBLEM 1

PROBLEM 1

Minimize:
$$\sum_{i=1}^{n} (y_i - \beta^{\top} x_i)^2 + \lambda \|\beta\|_2^2$$

subject to: $\beta \in \mathbb{R}^d$

PROBLEM 2

Minimize: $\sum_{i=1}^{n} (y_i - \beta^{\top} x_i)^2$

subject to: $\|\beta\|_2^2 \le t$

$$y_i=eta^{ op}x_i+arepsilon_i,\quad i=1,\ldots,n$$
 $arepsilon_i$ i.i.d., $\mathbb{E}[arepsilon_i]=0$, $\mathbb{E}[arepsilon_i^2]=\sigma^2<\infty$

 $oldsymbol{\square}$ Suppose, in addition, that $arepsilon_i \sim N(0,\sigma^2)$

Then, LSE is a Maximum Likelihood Estimator:

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^d}{\operatorname{arg \, min}} \sum_{i=1}^n (y_i - \langle \beta, x_i \rangle)^2 = \underset{\beta \in \mathbb{R}^d}{\operatorname{arg \, min}} - \log (P(y|\beta, X))$$
$$= \underset{\beta \in \mathbb{R}^d}{\operatorname{arg \, max}} P(y|\beta, X)$$

$$y_i=eta^ op x_i+arepsilon_i,\quad i=1,\ldots,n$$
 $arepsilon_i$ i.i.d., $\mathbb{E}[arepsilon_i]=0$, $\mathbb{E}[arepsilon_i^2]=\sigma^2<\infty$

☐ Suppose, in addition, that

and
$$\varepsilon_i \sim N(0,\sigma^2) \text{ Bayes prior }$$

$$\beta \sim N(0,\frac{\sigma^2}{\lambda}I)$$

Then, Ridge Regression is a Maximum A-Posteriori (MAP) Estimation:

$$\hat{\beta}^{\texttt{ridge}} = \underset{\beta \in \mathbb{R}^d}{\arg\min} \sum_{i=1}^n (y_i - \beta^\top x_i)^2 + \lambda \|\beta\|_2^2 = \underset{\beta \in \mathbb{R}^d}{\arg\min} - \log(P(y|\beta)) - \log P(\beta) \qquad \text{ the higher our "prior" belief on small } \|\beta\|_2$$

$$= \underset{\beta \in \mathbb{R}^d}{\arg\max} P(y, \beta) = \underset{\beta \in \mathbb{R}^d}{\arg\max} P(\beta|y) = \underset{\beta \in \mathbb{R}^d}{\arg\max} P(\beta|y)$$

Towards Intuition #3

Best Linear Unbiased Estimator

LSE has the "smallest" covariance among all linear unbiased estimators

What About Ridge Regression?

$$\hat{\beta}^{\text{ridge}} = \underset{\beta \in \mathbb{R}^d}{\arg \min} \sum_{i=1}^n (y_i - \beta^\top x_i)^2 + \lambda \|\beta\|_2^2$$
$$= (\lambda I + X^\top X)^{-1} X^\top y$$

This is a linear estimator!

- □ Q: Does it have a smaller covariance than LSE?
- ☐ Yes! Because it is **biased!**

Bias of Ridge Regression

$$\hat{\beta}^{\text{ridge}} = (\lambda I + X^{\top} X)^{-1} X^{\top} y$$

$$\begin{split} \mathbb{E}[\hat{\beta}^{\text{ridge}}] &= \mathbb{E}[(\lambda I + X^\top X)^{-1} X^\top y] = (\lambda I + X^\top X)^{-1} X^\top \mathbb{E}[y] \\ &= (\lambda I + X^\top X)^{-1} X^\top X \beta \\ &= (\lambda I + X^\top X)^{-1} X^\top X \beta + \lambda (\lambda I + X^\top X)^{-1} \beta - \lambda (\lambda I + X^\top X)^{-1} \beta \\ &= (\lambda I + X^\top X)^{-1} (X^\top X + \lambda I) \beta - \lambda (\lambda I + X^\top X)^{-1} \beta \\ &= \beta - \lambda (\lambda I + X^\top X)^{-1} \beta \end{split}$$

So the **bias** or the ridge estimator is:

$$\mathbf{b} = \mathbb{E}[\hat{\beta}^{\text{ridge}}] - \beta = -\lambda(\lambda I + X^{\top}X)^{-1}\beta \neq 0$$

Covariance of Ridge Regression

$$\begin{split} \hat{\beta}^{\text{ridge}} &= (\lambda I + X^\top X)^{-1} X^\top y \\ \mathbb{E}[\hat{\beta}^{\text{ridge}}] &= \beta - \lambda (\lambda I + X^\top X)^{-1} \beta \neq \beta \\ \text{Cov}\left(\hat{\beta}^{\text{ridge}}\right) &= \mathbb{E}\left[\left(\hat{\beta}^{\text{ridge}} - \mathbb{E}[\hat{\beta}^{\text{ridge}}]\right) \left(\hat{\beta}^{\text{ridge}} - \mathbb{E}[\hat{\beta}^{\text{ridge}}]\right)^\top\right] \\ &= \dots \\ &= \sigma^2 (\lambda I + X^\top X)^{-1} X^\top X (\lambda I + X^\top X)^{-1} \end{split}$$

So What?

$$\begin{split} \hat{\beta}^{\text{ridge}} &= (\lambda I + X^\top X)^{-1} X^\top y \\ \mathbb{E}[\hat{\beta}^{\text{ridge}}] &= \beta - \lambda (\lambda I + X^\top X)^{-1} \beta \neq \beta \\ \text{Cov}(\hat{\beta}^{\text{ridge}}) &= \sigma^2 (\lambda I + X^\top X)^{-1} X^\top X (\lambda I + X^\top X)^{-1} \end{split}$$

Recall that $X^{\top}X \succeq 0$

Let $0 \le \lambda_1 \le \lambda_2 \le \ldots \le \lambda_d$ be its eigenvalues, and $e_i, i = 1, \ldots, d$ the corresponding eigenvectors.

Then:

$$X^{\top}X = \sum_{i=1}^{d} \lambda_i e_i e_i^{\top} \qquad \lambda I + X^{\top}X = \sum_{i=1}^{d} (\lambda + \lambda_i) e_i e_i^{\top} \succ X^{\top}X$$
 Hence: $(\lambda I + X^{\top}X)^{-1} = \sum_{i=1}^{d} \frac{1}{\lambda + \lambda_i} e_i e_i^{\top}$

So What?

$$X^{\top}X = \sum_{i=1}^{d} \lambda_i e_i e_i^{\top} \qquad (\lambda I + X^{\top}X)^{-1} = \sum_{i=1}^{d} \frac{1}{\lambda + \lambda_i} e_i e_i^{\top}$$

$$\begin{split} \operatorname{Cov}(\hat{\beta}^{\mathrm{ridge}}) &= \sigma^2 (\lambda I + X^\top X)^{-1} X^\top X (\lambda I + X^\top X)^{-1} \\ &= \sigma^2 \sum_{i=1}^d \frac{1}{\lambda + \lambda_i} e_i e_i^\top \cdot \sum_{i=1}^d \lambda_i e_i e_i^\top \cdot \sum_{i=1}^d \frac{1}{\lambda + \lambda_i} e_i e_i^\top \\ &= \sigma^2 \sum_{i=1}^d \frac{\lambda_i}{(\lambda + \lambda_i)^2} e_i e_i^\top \\ &= \sigma^2 \sum_{i=1}^d \frac{1}{\lambda_i + 2\lambda + \frac{\lambda^2}{\lambda_i}} e_i e_i^\top \\ &\prec \sigma^2 \sum_{i=1}^d \frac{1}{\lambda_i} e_i e_i^\top = (X^\top X)^{-1} = \operatorname{Cov}(\hat{\beta}^{\mathrm{LSE}}) \end{split}$$

Opposite of What G-M predicts!

$$\operatorname{Cov}(\hat{\beta}^{\mathtt{ridge}}) \prec \operatorname{Cov}(\hat{\beta}^{\mathtt{LSE}})$$

No contradiction with G-M, as ridge estimator is biased.

$$\operatorname{Cov}(\hat{\beta}^{\mathrm{ridge}}) = \sigma^2 \sum_{i=1}^{a} \frac{\lambda_i}{(\lambda + \lambda_i)^2} e_i e_i^{\top}$$

Predicted Value: $\hat{y}_0 = \langle \hat{\beta}^{\text{ridge}}, x_0 \rangle$ $\mathbf{b} = -\lambda (\lambda I + X^\top X)^{-1} \beta$

$$\mathbf{b} = -\lambda(\lambda I + X^{\top}X)^{-1}\beta$$

Expected Prediction Error:

noise

$$\mathbb{E}[(y_0 - \hat{y}_0)^2] = \mathbb{E}[(y_0 - \beta^\top x_0)^2] + \mathbb{E}\left[\left(\beta^{\mathtt{ridge}}^\top x_0 - \mathbb{E}[\beta^{\mathtt{ridge}}]^\top x_0\right)^2\right] + \left(\mathbb{E}[\beta^{\mathtt{ridge}}]^\top x_0 - \beta^\top x_0\right)^2$$

λ establishes a bias variance trade-off

Intuition 3 Has a Universal, General Interpretation

- □ Cross-Validation minimizes EPE, assuming new data comes from same distribution as existing data
- When varying model complexity, we are establishing a tradeoff between variance and bias

Lasso Regression

$$\hat{eta}^{ extsf{lasso}} = rg \min_{eta \in \mathbb{R}^d} \sum_{i=1}^n (y_i - eta^ op x_i)^2 + \lambda \|eta\|_1$$
, for some $\lambda > 0$ where $\|eta\|_1 = \sum_{k=1}^d |eta_k|$ Convex! (not differentiable)

Lasso Regression

For every $\lambda \geq 0$, there exists a $t \geq 0$ such that the two problems produce the same solution

Minimize:
$$\sum_{i=1}^{n} (y_i - \beta^\top x_i)^2 + \lambda \|\beta\|_1$$

subject to:
$$\beta \in \mathbb{R}^d$$

Minimize:
$$\sum_{i=1}^n (y_i - \beta^\top x_i)^2$$

subject to:
$$\|\beta\|_1 \le t$$

Lasso Regression vs. Ridge Regression

Lasso is more prone to sparse solutions

Varying λ in Ridge Regression

Varying λ in Lasso Regression

Lasso Regression via Constrained Optimization

Minimize:
$$\sum_{i=1}^{n} (y_i - \beta^{\top} x_i)^2 + \lambda \sum_{k=1}^{d} |\beta_k|$$

subject to:
$$\beta \in \mathbb{R}^d$$

Lasso Regression via Constrained Optimization

Minimize:
$$\sum_{i=1}^{n} (y_i - \beta^{\top} x_i)^2 + \lambda \sum_{k=1}^{d} t_k$$

$$\beta_k \leq t_k,$$

$$\beta_k \ge -t_k$$

$$\beta_k \ge -t_k, \qquad \forall k = 1, \dots, d$$

Least Angle Regression

- Computes entire path under λ
 - □ needed anyway for CV
- ☐ Same complexity as standard linear regression
- Not that easy to parallelize

Alternating Directions Method of Multipliers

<u>Distributed optimization and statistical learning via the alternating direction method</u> <u>of multipliers</u> S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, 2011

Alternating Directions Method of Multipliers

<u>Distributed optimization and statistical learning via the alternating direction method</u> <u>of multipliers</u> S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, 2011

A Note on Biases and Regularization

$$\min_{\beta \in \mathbb{R}^d, \beta_0 \in \mathbb{R}} \quad \sum_{i=1}^n \|y_i - \beta^\top x_i - \beta_0\|_2^2 + \lambda \|\beta\|_1$$

- ☐ Bias is typically **not** regularized
- ☐ Intuition: solution should be invariant to shifting the origin of either features or response

Conclusions

 \square Learning f \longrightarrow learning right **features**

☐ Fitting is not enough! **Cross**Validation

■ Model complexity → Bias-Variance Tradeoff

Conclusions: Relaxing ||·||₀

