Estimating the effects of hybrid and remote work on weekly vehicle miles traveled

Neeco Beltran

University of Kentucky

September 14, 2025

• Uncertainty about the effects of hybrid and remote work on vehicle miles traveled (VMT).

- Uncertainty about the effects of hybrid and remote work on vehicle miles traveled (VMT).
 - VMT should decrease since work trips are reduced.

- Uncertainty about the effects of hybrid and remote work on vehicle miles traveled (VMT).
 - VMT should decrease since work trips are reduced.
 - Rebound effect: this decrease could be offset by *newly generated* trips during the work week.

- Uncertainty about the effects of hybrid and remote work on vehicle miles traveled (VMT).
 - VMT should decrease since work trips are reduced.
 - Rebound effect: this decrease could be offset by newly generated trips during the work week.
 - **Displacement effect**: Existing trips can be *shifted* between in-person and remote days, thus *displacing* VMT (rather than creating new VMT).

- Uncertainty about the effects of hybrid and remote work on vehicle miles traveled (VMT).
 - VMT should decrease since work trips are reduced.
 - Rebound effect: this decrease could be offset by *newly generated* trips during the work week.
 - **Displacement effect**: Existing trips can be *shifted* between in-person and remote days, thus *displacing* VMT (rather than creating new VMT).
- To that end, we need to understand how VMT changes *over the course of a week* to account for rebound and displacement effects.

• In-Person Paul, Hybrid Hannah, and Remote Randy are three friends who live in the same apartment complex and work(ed) in the same office complex.

- In-Person Paul, Hybrid Hannah, and Remote Randy are three friends who live in the same apartment complex and work(ed) in the same office complex.
- Pre-pandemic, they had the same activity pattern: work in-person Monday to Friday and get groceries on Monday and Thursday.

- In-Person Paul, Hybrid Hannah, and Remote Randy are three friends who live in the same apartment complex and work(ed) in the same office complex.
- Pre-pandemic, they had the same activity pattern: work in-person Monday to Friday and get groceries on Monday and Thursday.

• In-Person Paul works full-time in office and gets groceries on Monday and Thursday.

• In-Person Paul works full-time in office and gets groceries on Monday and Thursday.

• Hybrid Hannah works remotely Monday and Friday and is in office Tuesday to Thursday.

• Hybrid Hannah works remotely Monday and Friday and is in office Tuesday to Thursday.

Day	Activity Pattern	Daily VMT
Sunday (No Work)	None	0
Monday (Remote)	Home to Gym (2), Gym to Grocery Store (2), Grocery Store to Home (2)	6
Tuesday (In Office)	Home to Work (10), Work to Home (10)	20
Wednesday (In Office)	Home to Work (10), Work to Home (10)	20
Thursday (In Office)	Home to Work (10), Work to Home (10)	20
Friday (Remote)	Work from home only	0
Saturday (No Work)	Home to Gym (2), Gym to Grocery Store (2), Grocery Store to Home (2)	6
Weekly Total		72

• Remote Randy hasn't been in-person since March 2020!

Remote Randy hasn't been in-person since March 2020!

• The Minneapolis-St. Paul metropolitan planning organization conducts a week-long survey every two years (currently have 2019, 2021, and 2023).

- The Minneapolis-St. Paul metropolitan planning organization conducts a week-long survey every two years (currently have 2019, 2021, and 2023).
- Benefits of this survey

- The Minneapolis-St. Paul metropolitan planning organization conducts a week-long survey every two years (currently have 2019, 2021, and 2023).
- Benefits of this survey
 - We can explicitly model hybrid work.

- The Minneapolis-St. Paul metropolitan planning organization conducts a week-long survey every two years (currently have 2019, 2021, and 2023).
- Benefits of this survey
 - We can explicitly model hybrid work.
 - Travel behavior can be analyzed pre-COVID and post-COVID.

- The Minneapolis-St. Paul metropolitan planning organization conducts a week-long survey every two years (currently have 2019, 2021, and 2023).
- Benefits of this survey
 - We can explicitly model hybrid work.
 - Travel behavior can be analyzed pre-COVID and post-COVID.
 - Since it's a week-long survey, we can capture how VMT rebounds (and possibly is displaced)
 as a result of different work arrangements.

- The Minneapolis-St. Paul metropolitan planning organization conducts a week-long survey every two years (currently have 2019, 2021, and 2023).
- Benefits of this survey
 - We can explicitly model hybrid work.
 - Travel behavior can be analyzed pre-COVID and post-COVID.
 - Since it's a week-long survey, we can capture how VMT rebounds (and possibly is displaced) as a result of different work arrangements.
- Who's in the final survey for analysis?

- The Minneapolis-St. Paul metropolitan planning organization conducts a week-long survey every two years (currently have 2019, 2021, and 2023).
- Benefits of this survey
 - We can explicitly model hybrid work.
 - Travel behavior can be analyzed pre-COVID and post-COVID.
 - Since it's a week-long survey, we can capture how VMT rebounds (and possibly is displaced) as a result of different work arrangements.
- Who's in the final survey for analysis?
 - People with 7 days' worth of data.
 - No students, no people who drive for work (i.e. delivery drivers), no people on vacation.
- 3,266 people making 131,255 trips

1. By what percentage does hybrid and remote work reduce an individual's total weekly VMT compared to an equivalent in-person worker?

- 1. By what percentage does hybrid and remote work reduce an individual's total weekly VMT compared to an equivalent in-person worker?
- 2. What are the factors that influence someone being an always in-person, hybrid, or always remote worker?

- 1. By what percentage does hybrid and remote work reduce an individual's total weekly VMT compared to an equivalent in-person worker?
- 2. What are the factors that influence someone being an always in-person, hybrid, or always remote worker?
- 3. By what percentage does additional non-work VMT change as a result of a given work arrangement (rebound effect)?

- 1. By what percentage does hybrid and remote work reduce an individual's total weekly VMT compared to an equivalent in-person worker?
- 2. What are the factors that influence someone being an always in-person, hybrid, or always remote worker?
- 3. By what percentage does additional non-work VMT change as a result of a given work arrangement (rebound effect)?
- 4. How is non-work travel displaced as a result of a given work arrangement (displacement effect)?

Three phases for answering these research questions.

• Phase 1: Exploratory data analysis.

Three phases for answering these research questions.

- Phase 1: Exploratory data analysis.
- Phase 2: Statistical modeling.

Three phases for answering these research questions.

- Phase 1: Exploratory data analysis.
- Phase 2: Statistical modeling.
- Phase 3: Representation in a travel demand model.

Always in-person work has decreased since 2019, and hybrid/always remote work have increased.

Always remote and hybrid workers have higher weekly non-work VMT than always in-person workers.

But the increase in non-work VMT from always remote and hybrid workers doesn't necessarily offset the savings in work VMT.

Work Arrangement	Weekly Total VMT Pct. Change (Relative to Always In-Person)	Weekly Work VMT Pct. Change (Relative to Always In-Person)	Weekly Non-Work VMT Pct. Change (Relative to Always In-Person)
Always Remote	-36%	-99%	102%
Hybrid	-13%	-36%	37%

An ordinary least squares (OLS) regression model can control for other factors that affect weekly VMT.

•
$$In(WeeklyVMT_i) = \alpha + \beta_1 ObesrvedWorkArrangement_i + \beta_2 \mathbf{S_i} + \beta_3 \mathbf{H_i} + \beta_4 \mathbf{B_i} + \beta_5 Year + \varepsilon$$

An ordinary least squares (OLS) regression model can control for other factors that affect weekly VMT.

- $In(WeeklyVMT_i) = \alpha + \beta_1 ObesrvedWorkArrangement_i + \beta_2 S_i + \beta_3 H_i + \beta_4 B_i + \beta_5 Year + \varepsilon$
 - S_i is a vector of socioeconomic covariates (age group, gender, employment level, race) for respondent i.
 - **H**_i is a vector of household characteristics (household income, number of kids, number of vehicles, number of other hybrid or remote employees in the same home)
 - B_i are measures of the built environment (jobs per household, employment entropy, intersection density, jobs within 30 minutes of transit).
 - Year is the year the survey was taken (2019, 2021, or 2023)

An ordinary least squares (OLS) regression model can control for other factors that affect weekly VMT.

- $In(WeeklyVMT_i) = \alpha + \beta_1 ObesrvedWorkArrangement_i + \beta_2 \mathbf{S_i} + \beta_3 \mathbf{H_i} + \beta_4 \mathbf{B_i} + \beta_5 Year + \varepsilon$
 - S_i is a vector of socioeconomic covariates (age group, gender, employment level, race) for respondent i.
 - **H**_i is a vector of household characteristics (household income, number of kids, number of vehicles, number of other hybrid or remote employees in the same home)
 - **B**_i are measures of the built environment (jobs per household, employment entropy, intersection density, jobs within 30 minutes of transit).
 - Year is the year the survey was taken (2019, 2021, or 2023)
- Estimation results.

However, the OLS model doesn't account for selection biases.

• Work arrangement isn't randomly assigned, so there's a selection bias we need to account for.

However, the OLS model doesn't account for selection biases.

- Work arrangement isn't randomly assigned, so there's a selection bias we need to account for.
- Moreover, there are unobservable factors that influence work arrangement that also affect weekly VMT (e.g. being a homebody, desire for work/life balance, etc.).

However, the OLS model doesn't account for selection biases.

- Work arrangement isn't randomly assigned, so there's a selection bias we need to account for.
- Moreover, there are unobservable factors that influence work arrangement that also affect weekly VMT (e.g. being a homebody, desire for work/life balance, etc.).
- Ordered probit switching regression (OPSR) addresses both of these concerns. 1

¹Wang and Mokhtarian (2024), Heimgartner and Wang (2024).

• A probit model accounting for selection into work arrangement *j*.

- A probit model accounting for selection into work arrangement *j*.
 - $P(W_{ij}) = f(S_i, H_i, B_i, Year)$.

- A probit model accounting for selection into work arrangement *j*.
 - $P(W_{ii}) = f(S_i, H_i, B_i, Year)$.
- A regression model measures the impact of different variables on weekly VMT conditional on being in a given work arrangement.²

- A probit model accounting for selection into work arrangement *j*.
 - $P(W_{ii}) = f(S_i, H_i, B_i, Year)$.
- A regression model measures the impact of different variables on weekly VMT conditional on being in a given work arrangement.²
 - $In(WeeklyVMT_i) = f(S_i, H_i, B_i, Year).$

²While there is overlap between probit model and regression model, they do not have the exact same variables because this causes identification problems. See Chiburis and Lokshin (2007) for more.

- A probit model accounting for selection into work arrangement *j*.
 - $P(W_{ii}) = f(S_i, H_i, B_i, Year).$
- A regression model measures the impact of different variables on weekly VMT conditional on being in a given work arrangement.²
 - $In(WeeklyVMT_i) = f(S_i, H_i, B_i, Year).$
- Starting point: follow the specification in Wang and Mokhtarian (2024)³

²While there is overlap between probit model and regression model, they do not have the exact same variables because this causes identification problems. See Chiburis and Lokshin (2007) for more.

 $^{^3}$ Since the data I have is repeated cross-sectional data, I account for year and interact it with relevant variables.

- A probit model accounting for selection into work arrangement *j*.
 - $P(W_{ii}) = f(S_i, H_i, B_i, Year)$.
- A regression model measures the impact of different variables on weekly VMT conditional on being in a given work arrangement.²
 - $In(WeeklyVMT_i) = f(S_i, H_i, B_i, Year).$
- Starting point: follow the specification in Wang and Mokhtarian (2024)³
- Estimation results.

²While there is overlap between probit model and regression model, they do not have the exact same variables because this causes identification problems. See Chiburis and Lokshin (2007) for more.

³Since the data I have is repeated cross-sectional data, I account for year and interact it with relevant variables.

Accounting for selection on unobservables reduces the effect of hybrid/remote work on weekly VMT (compared to other methods).

Specification	Pct. difference in weekly VMT for always remote workers (relative to always in-person)	Pct. difference in weekly VMT for hybrid workers (relative to always in-person)
Difference in means	-36%	-13%
OLS Model	-40%	-9%
OPSR Model	-29%	-6%

• The same OPSR model can be run for weekdays to give travel demand models a calibration target.

- The same OPSR model can be run for weekdays to give travel demand models a calibration target.
- ActivitySim is an open-source, activity-based travel demand model that simulates an average weekday.

- The same OPSR model can be run for weekdays to give travel demand models a calibration target.
- ActivitySim is an open-source, activity-based travel demand model that simulates an average weekday.
 - Run a scenario where work from home is an option and run the same scenario but change those who work from home to working in-person.

- The same OPSR model can be run for weekdays to give travel demand models a calibration target.
- ActivitySim is an open-source, activity-based travel demand model that simulates an average weekday.
 - Run a scenario where work from home is an option and run the same scenario but change those who work from home to working in-person.
 - Compare percentage differences in mean VMTs by work arrangement between ActivitySim and results from statistical models.

- The same OPSR model can be run for weekdays to give travel demand models a calibration target.
- ActivitySim is an open-source, activity-based travel demand model that simulates an average weekday.
 - Run a scenario where work from home is an option and run the same scenario but change those who work from home to working in-person.
 - Compare percentage differences in mean VMTs by work arrangement between ActivitySim and results from statistical models.
- More broadly, this could be useful for modelers working with jurisdictions that have VMT reduction goals (e.g. California, Colorado, Minnesota).

• From the ordinal probit switching regression (OPSR) model:

- From the ordinal probit switching regression (OPSR) model:
 - Always in-person \rightarrow always remote: 29% decrease in weekly VMT.
 - \bullet Always in-person \to hybrid: 6% decrease in weekly VMT.

- From the ordinal probit switching regression (OPSR) model:
 - Always in-person \rightarrow always remote: 29% decrease in weekly VMT.
 - Always in-person \rightarrow hybrid: 6% decrease in weekly VMT.
 - How much of this is a rebound effect? How much of this is a displacement effect?

- From the ordinal probit switching regression (OPSR) model:
 - Always in-person \rightarrow always remote: 29% decrease in weekly VMT.
 - Always in-person \rightarrow hybrid: 6% decrease in weekly VMT.
 - How much of this is a rebound effect? How much of this is a displacement effect?
- Next steps.

- From the ordinal probit switching regression (OPSR) model:
 - Always in-person \rightarrow always remote: 29% decrease in weekly VMT.
 - Always in-person \rightarrow hybrid: 6% decrease in weekly VMT.
 - How much of this is a rebound effect? How much of this is a displacement effect?
- Next steps.
 - Think of ways to quantify rebound and displacement effects.

- From the ordinal probit switching regression (OPSR) model:
 - Always in-person \rightarrow always remote: 29% decrease in weekly VMT.
 - Always in-person \rightarrow hybrid: 6% decrease in weekly VMT.
 - How much of this is a rebound effect? How much of this is a displacement effect?
- Next steps.
 - Think of ways to quantify rebound and displacement effects.
 - Run a model to get the impact of remote work on daily VMT (weekdays only).

- From the ordinal probit switching regression (OPSR) model:
 - Always in-person \rightarrow always remote: 29% decrease in weekly VMT.
 - Always in-person \rightarrow hybrid: 6% decrease in weekly VMT.
 - How much of this is a rebound effect? How much of this is a displacement effect?
- Next steps.
 - Think of ways to quantify rebound and displacement effects.
 - Run a model to get the impact of remote work on daily VMT (weekdays only).
 - Try more specifications for the OPSR models.

- From the ordinal probit switching regression (OPSR) model:
 - Always in-person \rightarrow always remote: 29% decrease in weekly VMT.
 - Always in-person \rightarrow hybrid: 6% decrease in weekly VMT.
 - How much of this is a rebound effect? How much of this is a displacement effect?
- Next steps.
 - Think of ways to quantify rebound and displacement effects.
 - Run a model to get the impact of remote work on daily VMT (weekdays only).
 - Try more specifications for the OPSR models.
- Main takeaway: utilizing a week-long survey gets us closer to modeling the true effects
 of hybrid and remote-work on VMT.

Appendix A: OLS Model Estimation Results

	ln_weekly_vmt	
work_arrAlways Remote	-0.503*** (0.083)	
work_arrHybrid	-0.092** (0.037)	
age_group18 to 34	0.049** (0.023)	
age_group55 or older	-0.068** (0.029)	
genderMale	0.047* (0.026)	
employmentEmployed part-time	-0.105*** (0.030)	
employmentSelf-employed	0.047 (0.088)	
racenonWhite	-0.130*** (0.025)	
50K	0.036 (0.033)	
150K	0.039 (0.027)	
200κ	-0.008 (0.032)	
200K+	0.018 (0.035)	
income_detailed∪ndisclosed	0.040 (0.040)	
num_kids1+ kid	-0.124*** (0.028)	
educationno_bach_plus	0.020 (0.021)	
num_vehicles1 vehicle	1.511*** (0.187)	
num_vehicles2+ vehicles	1.563*** (0.187)	
num_hybrid_or_remote	-0.077** (0.037)	

```
jobs per hh
                                             0.006** (0.003)
emp8 ent
                                              0.009 (0.048)
intersection den
                                           -0.002*** (0.0002)
transit jobs30
                                          -0.00000*** (0.00000)
survey_year2021
                                             -0.043(0.033)
survey_year2023
                                             -0.002(0.026)
work_arrAlways Remote:survey_year2021
                                              0.019 (0.103)
work_arrHybrid:survey_year2021
                                              0.071 (0.065)
work_arrAlways Remote:survey_year2023
                                              0.151 (0.103)
work arrHybrid:survey year2023
                                             -0.049 (0.056)
genderMale:num kids1+ kid
                                            0.097*** (0.037)
Constant
                                            3.803*** (0.191)
observations
                                                  3.266
R2
                                                  0.147
Adjusted R2
                                                  0.140
Residual Std. Error
                                            8.713 \text{ (df = 3236)}
                                       *p<0.1: **p<0.05: ***p<0.01
 Note:
```

Appendix B: OPSR Model Estimation Results (Weekly VMT)

	Model 1		
kappa1	1.110	(0.074)	***
kappa2	2.024	(0.080)	***
sigma1	0.535	(0.010)	***
sigma2	0.521	(0.061)	***
sigma3	0.558	(0.060)	***
rho1	-0.074	(0.115)	
rho2	0.304	(0.368)	
rho3	0.385	(0.290)	
s_hh_income_under50	-0.290	(0.112)	
s_hh_income100to150	0.151	(0.089)	
s_hh_income150to200	0.348	(0.101)	***
s_hh_income_200plus	0.530	(0.082)	***
s_hh_income_undisclosed	0.127	(0.146)	
s_no_bach_plus	-0.266	(0.063)	www
s_employed_part_time	-0.180	(0.091)	
s_self_employed	0.778	(0.118)	We she sh
s_year2021	0.865	(0.065)	***
s_year2023	0.742	(0.064)	***
s_self_employed:year2021	0.034	(0.239)	

o1_(Intercept)		(0.291)	
o1_employed_part_time	-0.078	(0.037)	
o1_self_employed	0.129	(0.079)	
o1_male	0.109	(0.022)	***
o1_age18to34	0.004	(0.027)	
o1_age55plus	-0.113	(0.032)	***
o1_kids_1plus	-0.112	(0.026)	***
o1_nonWhite	-0.079	(0.035)	
o1_vehicle1	0.876	(0.288)	
o1_vehicle2plus	0.957	(0.286)	***
o1_jobs_per_hh	-0.000	(0.002)	
ol_intersection_den	-0.002	(0.000)	***
o1_emp8_ent	-0.058	(0.059)	
o1_vear2021	0.090	(0.057)	
o1_year2023	0.009	(0.040)	
o1_self_employed:year2021	-0.260	(0.153)	
o1_vehicle2plus:year2021		(0.064)	
o1_vehicle2plus:year2021	-0.139	(0.064)	*

```
o2 (Intercept)
                               5.166 (0.323) ***
o2_no_bach_plus
                              -0.069 (0.086)
o2 employed part time
                              -0.046(0.085)
o2_self_employed
                               0.054 (0.170)
o2_iobs_per_hh
                              -0.011 (0.008)
o2 intersection den
                              -0.002 (0.000) ***
o2_emp8_ent
                               0.064(0.117)
o2_remote_day_pct
                              -0.470 (0.116) ***
o2_year2021
                               0.193 (0.152)
o2_year2023
                               0.091 (0.166)
o2 self employed:year2021
                               0.405(0.239)
o2_year2021:vehicle2plus
                              -0.110 (0.105)
o3 (Intercept)
                               4.322 (0.410) ***
o3 hh income under50
                              -0.071(0.214)
o3_hh_income100to150
                               0.139 (0.123)
o3_hh_income150to200
                               0.110 (0.137)
o3 hh income 200plus
                               0.118 (0.136)
o3_hh_income_undisclosed
                               0.321 (0.176)
o3 male
                              -0.170 (0.079) *
o3_iobs_per_hh
                               0.002 (0.007)
o3 intersection den
                              -0.000(0.001)
o3_emp8_ent
                               0.080(0.180)
o3 kids 1plus
                              -0.203 (0.075) **
o3_year2021
                               0.167 (0.161)
o3_vear2023
                               0.220 (0.146)
o3_vear2021:self_employed
                               0.305 (0.188)
o3 year2021:vehicle2plus
                               0.023 (0.122)
ATC
                            9370, 620
RTC
                            9754.374
Loa Likelihood
                           -4622, 310
Num. obs.
                            3266
   p < 0.001: ** p < 0.01: * p < 0.05
```

Appendix B: OPSR Model Estimation Results (Weekly VMT)

```
print(opsr model1 rep te)
Treatment Effects
TE
             G1
T1->T2 -0.18342 *** -0.05674 *** -0.18438
T1->T3 -0.90173 *** -0.49210 *** -0.33863
T2->T3 -0.71831 *** -0.43536 *** -0.15426 ***
ATE
   T1->T2
              T1->T3
                           T2->T3
 -0.1601 *** -0.7869 *** -0.6268 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> ## Average treatment effect on treated (hybrid workers)
> \exp(-0.05674) - 1
[1] -0.0551603
 ## Average treatment effect on treated (always remote workers)
 \exp(-0.33863) - 1
[1] -0.2872539
```