GRE Physics Study Notes

Courtesy of Nicole Duncan, transcribed by Jeren Suzuki

Last Edited 28th November 2012

Contents

1		es
	1.1	Doppler Effect
2	Opti	cs
	2.1	Thin Lenses
	2.2	Ray Diagrams
	2.3	Index of Refraction
	2.4	Telescope and Magnification
	2.5	Thin Films
	2.6	Resistance
3		tricity and Magnetism
J	3.1	Gauss' Laws
	-	
	3.2	V
	3.3	Conductivity / Current Density
	3.4	Potential and Electric Field
		3.4.1 Example Ring of Charge
	3.5	Electrostatics
	3.6	Classic E Examples
	3.7	Parallel Plate Capacitor
		3.7.1 Limits
	3.8	Coulomb
	3.9	Motion Through a Capacitor or Uniform Field
	3.10	<i>E</i> of a Dipole
	3.11	Gauss
	3.12	Current Density
		Drift Speed
		Capacitors
		Non-ohmic Materials
		Convention of Battery
		RC Circuit
		Work
		Magnetostatics
	5.19	3.19.1 Magnetic Field
		3.19.2 Current
		3.19.3 Force
		3.19.4 Cyclotron Motion
		3.19.5 Cycloid
		3.19.6 Solenoid
		3.19.7 Ring of Current
		3.19.8 Infinite Wire
		3.19.9 Surface Current
		3.19.10 Toroid
		3.19.11 Dipole
		3.19.12 Inductance
		3.19.13 Maxwell's Equations in Matter
	3.20	Dielectrics
		3.20.1 Dipoles and Bound Charges
		3.20.2 Dielectrics
		3.20.3 Linear Dielectrics
	3.21	Radiation
		3.21.1 Electric Dipole
		3.21.2 Point Charge
		3.21.3 An Oscillating Sphere with Changing Radius
		3.21.4 Magnetic Dipole Radiation
	2 99	Maxwell Faustions

	3 23	Ampere's Law	9
			L0
		V	10
			10
			10
		$oldsymbol{v}$	10
	3.29	Irradiance	10
			11
			11
			11
	2 21		11
			11
			11
			11
			12
	3.36	Radiation Pressure	12
4	Circ	<u>uits</u>	12
	4.1	Resistivity	12
	4.2	· ·	12
	4.3		12
	4.4		13
_	4.5		13
5			13
	5.1	·	13
	5.2		14
	5.3	Transmission / Reflection / Tunneling Through Barrier	14
	5.4	Hyperfine Splitting	14
	5.5		14
	5.6		15
	5.7		15
	5.8		15
	5.9		15 15
		Non degenerate returbation Theory	
	5.10		16
		0 1	16
	5.12		16
			16
	5.13	Traveling Wave Formalism	16
	5.14	Finite Potential Well	17
	5.15	Fundamental Particles	17
			17
			17
			L 7
c			17
6			18
	6.1		18
	6.2	·	18
		6.2.1 Underdamped $\omega_0 > \beta$	18
		6.2.2 Overdamped $\omega_0 < \beta$	18
		6.2.3 Critically Damped $\omega_0 = \beta$	18
	6.3		18
	6.4		19
7			19
	7.1		19 19
	•		
	7.2		19
			19
	7.3	Rocket Motion	[9

	7.4	Collisions	20
	7.5	Central Force Motion	20
	7.6	Moments of Inertia	20
8	Stati	stical Thermodynamics	21
	8.1	Laws of Thermodynamics	21
			21
			21
		8.1.3 3rd Law	21
	8.2		21
	8.3	V	21
	8.4		21
	8.5		21
			$\frac{1}{2}$
	8.6		$\frac{1}{2}$
	8.7		$\frac{1}{2}$
	8.8		$\frac{-}{22}$
	8.9		 23
			$\frac{23}{23}$
			$\frac{20}{23}$
			$\frac{20}{23}$
		V	23
	0.10	V	23
			23
	Q 1/I		$\frac{25}{24}$
			$\frac{24}{24}$
			$\frac{24}{24}$
9			$\frac{24}{24}$
9		V	$\frac{24}{24}$
	9.1		
	9.2		25
			25
			25
			25
4.0			25
10		v	25
		V O I	25
			26
11		V	26
			26
	11.2		26
12			26
			26
			26
			27
	10.4	D 11 D	0-

Introduction

By no means comprehensive, this list is meant to serve as additional study material to re-reading textbooks, practicing GRE tests, and nagging your physics friends for study help.

1 Waves

1.1 Doppler Effect

$$f = f_0 \left(\frac{v + v_s}{v + v_0} \right) \tag{1}$$

$$v_0 = \begin{cases} + & \text{away} \\ - & \text{towards} \end{cases}$$
$$v_s = \begin{cases} + & \text{towards} \\ - & \text{away} \end{cases}$$

$$\frac{\lambda}{\lambda_0} = \sqrt{\frac{1+\beta}{1-\beta}} , \beta = \frac{v}{c} \text{ for relativistic doppler shift}$$
 (2)

$$=\frac{f_0}{f}\tag{3}$$

Optics 2

2.1 Thin Lenses

$$d_i = \frac{f \cdot d_o}{f - d_o} \tag{4}$$

$$d_{i} = \frac{f \cdot d_{o}}{f - d_{o}}$$

$$M = \frac{h_{i}}{h_{o}} = -\frac{d_{i}}{d_{o}}$$

$$(5)$$

2.2Ray Diagrams

- 1. Through f, \parallel other side
- 2. Through center, continues along path
- 3. \parallel , goes through f on other side

Index of Refraction 2.3

$$n = \frac{c}{v} \tag{6}$$

$$v = v_Q = \frac{\omega}{k} = \sqrt{\frac{1}{\epsilon \mu}} \tag{7}$$

$$\lambda = \frac{\lambda_0}{n} \text{ inside a medium} \tag{8}$$

$$n = \frac{c}{v} = \sqrt{\frac{\epsilon \mu}{\epsilon_0 \mu_0}} \tag{9}$$

2.4 Telescope and Magnification

2 lenses share a common focal point

$$M = -\frac{f_{\rm o}}{f_{\rm e}} = \frac{\theta_{\rm eye}}{\theta_{\rm object}} \tag{10}$$

$$d_{\rm o} + d_{\rm e} = f_{\rm o} + f_{\rm e}$$
 (11)

2.5 Thin Films

$$\Delta \phi = \begin{cases} 0 & n_2 < n_1 \\ \pi & n_2 > n_1 \end{cases}$$

$$2d = \begin{cases} n\lambda/2 & \Delta\phi_{\text{tot}} = \pi\\ n\lambda & \Delta\phi_{\text{tot}} = 0, 2\pi \end{cases}$$

2.6 Resistance

$$R = \frac{\rho L}{A} = \frac{L}{\sigma A} \tag{12}$$

Electricity and Magnetism 3

3.1 Gauss' Laws

$$\int E \cdot da = \frac{Q_{\text{encl}}}{\epsilon_0}$$

$$\nabla \cdot E = \frac{\rho}{\epsilon_0}$$
(13)

$$\nabla \cdot E = \frac{\rho}{\epsilon_0} \tag{14}$$

$$\int B \cdot dl = \mu_0 I_{\text{encl}}(\text{in Amperes}) \to \int B \cdot da = 0$$
 (15)

$$\nabla \cdot B = 0 \tag{16}$$

$$\int g \cdot da = 4\pi MG \tag{17}$$

$$\nabla \cdot g = -4\pi G s \rho \tag{18}$$

$$\nabla \cdot g = -4\pi G s \rho \tag{18}$$

3.2 Cyclotron

$$\omega = \frac{qB}{m} \tag{19}$$

$$F_c = F_B \to \frac{mv^2}{r} = qvB \tag{20}$$

$$v = \frac{qBr}{m} = r\omega \tag{21}$$

$$\omega = \frac{qB}{m} \tag{22}$$

Conductivity / Current Density 3.3

$$J = nq\bar{v} \tag{23}$$

$$J = \frac{ne^2\tau}{m}E = \sigma E \; , \quad \sigma = \frac{ne^2\tau}{m} \tag{24}$$

Potential and Electric Field

$$E = \int \frac{kdQ}{r^2} = k \int \frac{\sigma dA}{r^2} = k \int \frac{\rho dv}{r^2} = k \int \frac{\lambda dl}{r^2}$$
 (25)

$$V = \int \frac{kdq}{r} \tag{26}$$

Example Ring of Charge

Imagine a ring with radius R and a point P above the ring at a height z making an angle θ above the ring plane.

$$E = k \int \frac{dQ}{r^2}$$

$$r^2 = R^2 + z^2$$
(27)

$$r^2 = R^2 + z^2 (28)$$

$$dq = \lambda dl = Q \tag{29}$$

$$\sin \theta = \frac{z}{r} = \frac{E_z}{E} \tag{30}$$

$$E = \frac{kQ}{R^2 + z^2} , \text{But } E = \hat{E}_z$$
 (31)

$$E = \frac{kQ}{R^2 + z^2} \sin \theta = \frac{kQ}{R^2 + z^2} \frac{z}{r} = kQz$$
 (32)

3.5 **Electrostatics**

$$F = \frac{kq_1q_2}{r^2} , \quad k_{\text{vacuum}} = \frac{1}{4\pi\epsilon_0} , \quad k_{\text{medium}} = \frac{1}{4\pi\epsilon} , \quad \epsilon = k\epsilon_0$$
 (33)

$$\nabla \cdot E = \frac{\rho_{\rm in}}{\epsilon_0} \tag{34}$$

$$\nabla \times E = 0 \tag{35}$$

3.6 Classic E Examples

- 1. Sphere $\propto \frac{1}{r^2}$
- 2. Infinite Line $\propto \frac{1}{r}$
- 3. Infinite Plane doesn't fall off $E_{\rm plane} = \tfrac{\sigma}{2\epsilon_0} \hat{n}$
- 4. Ring of charge: $E \propto \frac{x}{d^3} = \frac{x}{(x^2 + R^2)^{3/2}}$
- 5. Disk of charge: $E=\frac{\sigma}{2\epsilon_0}\left(1-\frac{z}{(z^2+R^2)^{1/2}}\right)\ ,\ \ \sigma=\text{area charge density}$

3.7 Parallel Plate Capacitor

Model as infinite planes:

$$E_{\rm out} = 0 \tag{36}$$

$$E_{\rm in} = \frac{\sigma}{\epsilon_0} \tag{37}$$

3.7.1 Limits

- 1. As $x \to \infty$, all finite objects look like point charges
- 2. Sometimes must use binomial approximation to get behavior at ∞ . Disk of charge \rightarrow 0 if you don't use it.
- 3. $(1+X)^n \sim 1 + nX$ for small x

3.8 Coulomb

$$E = k \int \frac{dQ}{r^2} \tag{38}$$

$$dQ = \lambda dl \sim \sigma dA \sim \rho dV$$
, be careful of symmetry when integrating! (39)

For a ring of radius R in the x-y plane, a point is a distance r from the ring, making an angle θ on the z-axis. For ring of charge, must integrate by saying:

$$E = E_{\hat{z}} \tag{40}$$

$$\cos \theta = \frac{z}{r} \tag{41}$$

$$r = \sqrt{z^2 + R^2} \tag{42}$$

$$\lambda = \frac{Q}{2\pi R} \tag{43}$$

$$dl = RdQ (44)$$

$$dE_{\hat{z}} = dE\cos\theta = \frac{k\lambda dl}{r^2}\cos\theta \tag{45}$$

$$E = k\lambda \int \frac{dl}{r^2} \cos \theta = \frac{kQ}{2\pi R} (R) \int_0^{2\pi} \frac{dQ}{r^2} \frac{z}{r}$$
(46)

$$R = \frac{kQ}{2\pi} (2\pi) \frac{z}{r^3} = \frac{kQz}{(R^2 + z^2)^{3/2}}$$
(47)

3.9 Motion Through a Capacitor or Uniform Field

Kinematics equation: F = ma = eE. Find v_c, a, t to get θ deflection

3.10 E of a Dipole

$$\bar{p} = qd \tag{48}$$

$$E_{\rm dipole} = \begin{cases} \frac{k2\bar{p}}{r^3} & \text{on axis of } \hat{d} \\ \frac{k\bar{p}}{r^3} & \text{plane perpendicular to } \hat{d} \end{cases}$$

3.11 Gauss

$$\Phi_E = \int E \cdot dA = \frac{Q_{\text{enclosed}}}{\epsilon_0} \tag{49}$$

3.12 Current Density

Continuity Equation:

$$\frac{\partial \rho}{\partial t} = \overline{\nabla} \cdot \bar{J} \tag{50}$$

$$J = q_{\alpha} n_{\alpha} v_{\alpha} , I = JA = \frac{\text{current}}{m^2} \text{ of the cross section } = \frac{A}{m^2}$$
 (51)

3.13 Drift Speed

$$v_{\text{drift}} = \frac{e\tau E}{m} \tag{52}$$

3.14 Capacitors

 ${\cal C}$ depends upon geometry of electrodes

3.15 Non-ohmic Materials

Do not obey V = IR: batteries, semiconductors, capacitors, inductors

3.16 Convention of Battery

Long side of battery is positive.

3.17 RC Circuit

$$Q = Q_0 e^{-t/\tau} \tag{53}$$

$$I = I_0 e^{-t/\tau} , \tau = RC \tag{54}$$

$$Q = VC \tag{55}$$

$$V = V_0 e^{-t/\tau} , \text{decay}$$
 (56)

$$= V_0(1 - e^{-t/\tau}) , \text{charging up}$$
 (57)

3.18 Work

$$W = F \cdot d = eE \cdot d = e\Delta V \tag{58}$$

3.19 Magnetostatics

3.19.1 Magnetic Field

Biot-Savart Law:

$$B = \frac{\mu_0}{4\pi} \frac{\bar{I} \times \hat{r}}{r^2} = \frac{\mu_0}{4\pi} I \frac{d\bar{l} \times \hat{r}}{r^2} , d\bar{l} = \text{ the actual length of the segment, not just the direction}$$
 (59)

$$Tesla = T = \frac{N}{A \cdot m} \tag{60}$$

3.19.2 Current

$$I = \int J da_{\perp} \tag{61}$$

if
$$J = Kr, I = \int_{0}^{2\pi} \int_{0}^{r} kr'(r'dr'd\phi) = \frac{2\pi}{3}kr^{3}$$
 (62)

3.19.3 Force

$$\bar{F} = q\bar{v} \times B = I(d\bar{l} \times \bar{B}) \tag{63}$$

3.19.4 Cyclotron Motion

$$v_{\parallel}B \to \text{helical}$$
 (64)

$$\frac{mv^2}{r} = qvB \tag{65}$$

3.19.5 Cycloid

E in +z direction and B in +x direction with particle traveling in +y direction make a cycloid.

3.19.6 Solenoid

$$B = \begin{cases} \mu_0 n I \hat{z} & \text{inside }, n = \frac{N}{L} \\ 0 & \text{outside} \end{cases}$$

3.19.7 Ring of Current

$$B = \frac{\mu_0 I}{2R} \tag{66}$$

Any displacement along center of ring should reduce to this equation as $x \to 0$, as $x \to \infty$ should be field of dipole.

3.19.8 Infinite Wire

$$B = \frac{\mu_0 I}{2\pi r}$$
, in limits, $\theta_1 = -\frac{\pi}{2}$, $\theta_2 = \frac{\pi}{2}$, and r is the distance from the wire (67)

3.19.9 Surface Current

$$B = \begin{cases} -\frac{\mu_0}{2} & z > 0 \\ \frac{\mu_0}{2} & z < 0 \end{cases}$$
, use Amperian square loop

3.19.10 Toroid

$$B = \begin{cases} \frac{\mu_0 IN}{2\pi r} \hat{\phi} & \text{inside} \\ 0 & \text{outside} \end{cases}$$

3.19.11 Dipole

$$B \propto \frac{\mu}{r^3} \tag{68}$$

$$\mu = IA, x \to \infty$$
 limit looks like this (69)

Field far away from a current loop = field of a dipole.

Magnetic fields do no work.

3.19.12 Inductance

$$\Phi = LI \tag{70}$$

$$\epsilon = -L\frac{dI}{dt} \tag{71}$$

$$\Phi_B = \int B \cdot dA \tag{72}$$

$$Henry = H = \frac{Vs}{A} \tag{73}$$

Inductor in serial with resistor: $\tau = \frac{L}{R}$.

$$W = \frac{1}{2}LI^2 = U_{\text{stored}} \tag{74}$$

L is like mass, the greater the L the harder it is to try and change the current.

VLR Circuit: Voltage log's to V.

Ohms':

$$\epsilon_0 - L \frac{dI}{dt} = IR = V \tag{75}$$

Solution to differential equation:

$$I(t) = \frac{\epsilon_0}{R} + ke^{-(R/L)t} , \tau = \frac{L}{R}$$
 (76)

If t = 0, V = 0, just plugged in, $k = -\frac{\epsilon_0}{R}$

$$I(t) = \frac{\epsilon_0}{R} \left(1 - e^{-(k/L)t} \right) \tag{77}$$

3.19.13 Maxwell's Equations in Matter

$$\begin{array}{lll} \nabla \cdot D = \rho f & \nabla \times \bar{E} = -\frac{\partial B}{\partial t} & D = \epsilon E & \epsilon = \epsilon_0 (1 + \chi_e) \\ \nabla \cdot B = 0 & \nabla \times H = \bar{J}_f + \frac{\partial D}{\partial t} & B = \mu H & \mu = \mu_0 (1 + \chi_m) \end{array}$$

3.20 Dielectrics

3.20.1 Dipoles and Bound Charges

$$\begin{split} \rho_b &= -\overline{\nabla} \cdot \bar{p} &\quad \sigma_b = \bar{p} \cdot \hat{n} &\quad \bar{p} = q\bar{d} \\ \tau &= \bar{p} \times \bar{E} &\quad \bar{U} = -\bar{p} \cdot \bar{E} \end{split}$$

3.20.2 Dielectrics

- 1. Electric Displacement: $\bar{D} = \epsilon_0 \bar{E} + \bar{p}$
- 2. Gauss' Law:

$$\nabla \cdot D = \rho_{\text{free}} \tag{78}$$

$$\int D \cdot da = Q_{\text{enclosed}} \tag{79}$$

3.20.3 Linear Dielectrics

Conduction:

$$\bar{p} = \epsilon_0 \underbrace{\chi_e}_{\text{electric susceptibility}} \bar{E}$$
 (80)

$$F = \frac{1}{4\pi \underbrace{\epsilon}} \frac{qQ}{r^2} \tag{81}$$

only thing that changes $(\epsilon_0 \to \epsilon)$

$$= \frac{1}{4\pi\epsilon_0\epsilon_r} \frac{qQ}{r^2} = \frac{F_{\text{vac}}}{\epsilon_r} = F_{\text{medium}}$$
(82)

$$E_{\text{medium}} = \frac{E_{\text{vac}}}{\epsilon_r} \to E = \frac{E_0}{k}$$
(83)

1. Permittivity = ϵ

2. Dielectric Constant: $\epsilon_r = \frac{\epsilon}{\epsilon_0}$

3. Displacement: $\bar{D} = \epsilon \bar{E}$

3.21 Radiation

Electric Dipole 3.21.1

$$P \propto q^2 \omega^4 d^2 \tag{84}$$

$$\langle s \rangle \propto \frac{q^2 d^2 \omega^4}{r^2} \sin^2 \theta$$
 (85)

Where the $\sin^2 \theta$ component is so we don't see along the direction of motion.

3.21.2 Point Charge

$$P \propto q^2 a^2 \tag{86}$$

$$\langle s \rangle \propto \frac{q^2 a^2 \sin^2 \theta}{r^2}$$
 (87)

Once again, no power radiated along motion direction. $\langle s \rangle_{\text{max}} @ \theta = 90$ to motion.

An Oscillating Sphere with Changing Radius

...emits no radiation. Use Gauss' law for symmetry problems, E is constant. an uncharged particle accelerates more than a charged particle because the charged particle emits radiation, $F_{\rm in} - d$.

Magnetic Dipole Radiation 3.21.4

- 1. Model a wire loop with alternating current
- 2. $P \propto b^4 I_0^2 \omega^4$
- 3. $\langle s \rangle \propto \frac{b^4 I_0^2 \omega^4 \sin^2 \theta}{r^2}$

3.22 Maxwell Equations

$$\begin{array}{ll} \nabla \cdot E = \frac{\rho}{\epsilon_0} & \nabla \times E = -\frac{\partial B}{\partial t} \\ \nabla \cdot B = 0 & \nabla \times B = \mu_0 J - \mu_0 \epsilon_0 \frac{\partial E}{\partial t} \\ \text{Magnetic monopoles would symmetrize the equations... *wrings hands*} \end{array}$$

3.23 Ampere's Law

$$\oint B \cdot dl = \mu_0 I_{\text{enclosed}}$$
(88)

3.24 Current

$$I = \int J \cdot dA \tag{89}$$

3.25 Boundary Conditions E&M Waves

- 1. $E_{\parallel} = 0$ $B_{\perp} = 0 \rightarrow \text{reflections}$
- 2. For reflection, $E_{\text{tot}} = 0$ $B_{\text{tot}} = 2B_{\text{wave}}$
- 3. E_{\perp} is always discontinuous by $\frac{\sigma}{\epsilon_0}$ @ boundary
- 4. E_{\parallel} is always continuous

$$\begin{aligned} \epsilon_1 E_1 - \epsilon_2 E_2^{\perp} &= \sigma_p & E_1^{\parallel} &= E_2^{\parallel} \\ B_1^{\perp} &= B_2^{\perp} & \frac{1}{\mu_1} B_1^{\parallel} - \frac{1}{\mu_2} B_2^{\parallel} &= \underbrace{k_f}_{\text{free current}} x \hat{n} \end{aligned}$$

3.26 E&M Fields

E/B are in phase and perpendicular

- 1. $B_0 = \frac{k}{\omega} E_0 = \frac{1}{c} E_0$
- 2. Radiation Pressure: $p = \frac{\langle s \rangle}{c}$
- 3. Energy Density: $\langle U \rangle = \frac{1}{2} \epsilon_0 E^2$
- 4. $\bar{s} = \frac{1}{\mu_0} (\bar{E} \times \bar{B})$
- 5. Intensity: $I = \langle s \rangle = \frac{1}{2}c\epsilon_0 E^2$
- 6. $\hat{s} = \text{propagation of E\&M field}$

3.27 Energy Stored in E&M

$$U = \epsilon_0 E^2 = \frac{1}{\mu_0} B^2 , U_E = U_B$$
 (90)

3.28 Poynting Vector

$$\bar{S} = \frac{1}{\mu_0} \bar{E} \times \bar{B} \tag{91}$$

3.29 Irradiance

$$I = \langle s \rangle \tag{92}$$

$$=c\epsilon_0\langle E^2\rangle \tag{93}$$

$$=\frac{c}{\mu_0}\langle B^2\rangle\tag{94}$$

3.30 Relativistic E&M

- 1. E&M consistent with relativity
- 2. Between reference frames the E&M processes change but particle motion and outcome is always the same
- 3. Charge is invariant

3.30.1 Example: Parallel Plate Capacitor

$$S: E^{\perp} = \frac{\sigma_0}{\epsilon_0} \hat{y} \tag{95}$$

$$S': E^{\perp} = \frac{\sigma}{\epsilon_0} \hat{y}$$
, only σ changes (96)

Charge on each plate is invariant, width is unchanged, but the length (along direction of motion) is contracted.

$$l = \frac{l_0}{\gamma} \to \sigma = \frac{\sigma_0}{\gamma} \tag{97}$$

For motion in \hat{x} , $E_{\hat{y}}$ is changed while $E_{\hat{x}}$ is unchanged since $E = E_{\hat{y}}$.

$$E_{\perp} = \gamma E_{\perp} \tag{98}$$

$$E_{\parallel} = E_{\parallel} \tag{99}$$

3.30.2 Special Cases

If B = 0 in any one reference frame,

$$\bar{B} = -\frac{1}{c^2}(\bar{V} \times \bar{E}) \tag{100}$$

If E = 0 in any one reference frame,

$$\bar{E} = \bar{V} \times \bar{B} \tag{101}$$

3.31 Coordinate Systems

- 1. Cartesian: $dl = dx\hat{x} + dy\hat{y} + dz\hat{z}$, dV = dxdydz
- 2. Spherical: $dl = dr\hat{r} + rd\theta\hat{\theta} + r\sin\theta d\phi\hat{\phi}$, $dV = r^2\sin\theta dr d\phi d\theta$
- 3. Cylindrical: $dl = ds\hat{s} + sd\phi\hat{\phi} + dz\hat{z}$, $dV = sdsd\phi dz$

3.32 Vectors

$$\nabla \times (\nabla \times A) = \nabla(\nabla \cdot A) - \nabla^2 A \tag{102}$$

3.33 Diamagnetism

Caused by change in orbital moment (μ) induced by B. Acts to negate B, anti-parallel to B.

3.34 Paramagnetism

In a magnetic field, breaking of energy levels by spin/spin or spin/orbit coupling induced along B.

3.35 Ferromagnetism

Any material that exhibits a spontaneous B. (A net magnetic moment in the absence of an external B)

3.36 **Radiation Pressure**

Energy Density of the wave

$$P = U = V_e + U_B \tag{103}$$

$$\langle p \rangle = \frac{\langle s \rangle}{c} \tag{104}$$

(105)

1. Perfect reflection: light enters with +c and exits with -cso $\Delta v = 2c \rightarrow \langle p \rangle = \frac{2\langle s \rangle}{c}$

Curl-less Fields: \bar{E}

$$\frac{\text{Div-less Fields: } \bar{B}}{\nabla \cdot F = 0}$$

 $\nabla \times F = 0$ everywhere

$$\nabla \cdot F = 0$$

 $\int\limits_{-}^{b}F\cdot dl = \text{pattern independent} \quad \int F\cdot dA = \text{independent of any bound line}$

 $\oint\limits_{0}^{a}F\cdot dl=0$ closed loop

$$\oint F \cdot dA = 0$$
 for all surfaces $\bar{F} = \bar{\nabla} \times \bar{A}$

$$F = -\nabla V$$

$$\bar{F} = \bar{\nabla} \times \bar{A}$$

Circuits 4

Resistivity 4.1

$$\rho(T_2) = \rho(T_1)(1 + \alpha \Delta T) \tag{106}$$

For metals:

- 1. $\alpha = (+)$
- 2. $\rho \uparrow T \uparrow$
- 3. Doping increases ρ

while for semiconductors:

- 1. $\alpha = (-)$
- 2. $\rho \downarrow T \uparrow$
- 3. Doping decreases ρ

Types of Cells 4.2

- 1. Conventional Cell: Contains more than 1 lattice point.
- 2. Primitive Cell: Contains 1 lattice point. $V_{cc}/N_{cc lattice points} = V_{pc}$

Band Pass 4.3

$$\omega_0 \to \omega_0 L = \frac{1}{\omega_0 C} \to \omega_0 = \frac{1}{\sqrt{LC}} \tag{107}$$

Low Pass 4.4

Either looks like a RC or LR circuit, but perpendicular to each other. Purpose is to cut out high frequencies, essentially letting low frequencies pass through.

$$T_1 = \frac{\frac{1}{jwc}}{R + \frac{1}{jwc}} \tag{108}$$

$$=\frac{\frac{1}{jwc}}{\frac{R_{jwc}+1}{jwc}}\tag{109}$$

$$=\frac{1}{1+jwcR}\tag{110}$$

- 1. As $\omega \to \infty$, $T_1 \to 0$
- 2. As $\omega \to 0$, $T_1 \to 1$

$$T_2 = \frac{R}{jwc + R} \tag{111}$$

- 1. As $\omega \to \infty$, $T_2 \to 0$
- 2. As $\omega \to 0$, $T_2 \to 1$

4.5 **High Pass**

Either looks like a CR or RL circuit, like a low pass filter configuration but with elements reversed. Cuts out low frequencies.

$$T_1 = \frac{R}{R + \frac{1}{jwc}} \tag{112}$$

$$= \frac{R}{\frac{jwcR+1}{jwc}}$$

$$= \frac{jwcR}{jwcR+1}$$
(113)

$$=\frac{jwcR}{iwcR+1}\tag{114}$$

- 1. As $\omega \to \infty$, $T_1 \to 1$
- 2. As $\omega \to 0$, $T_1 \to 0$

$$T_2 = \frac{jwL}{R + jwL} \tag{115}$$

- 1. As $\omega \to \infty$, $T_2 \to 1$
- 2. As $\omega \to 0$, $T_2 \to 0$

Quantum Mechanics 5

5.1**Operators**

$$\hat{x} = x \tag{116}$$

$$\hat{H} = -\frac{\hbar^2}{2m} \nabla^2 + V$$

$$\hat{p} = -i\hbar \frac{\partial}{\partial x}$$
(117)

$$\hat{p} = -i\hbar \frac{\partial}{\partial x} \tag{118}$$

5.2**Hermitian Operators**

- 1. Represent observables
- 2. $\langle \hat{Q} \rangle = \langle \Psi | \hat{Q} | \Psi \rangle = \text{real } \#$
- 3. Conditions: $\langle f|\hat{Q}g\rangle = \langle \hat{Q}f|g\rangle \Rightarrow \hat{a}^{\dagger} = \hat{a}^* = \hat{a}$
- 4. Determinant states are eigenfunctions of \hat{Q}
- 5. $\left(\frac{\partial}{\partial x}\right)^{\dagger} = -\frac{\partial}{\partial x}$, note

5.3 Transmission / Reflection / Tunneling Through Barrier

- 1. Incident: Ae^{ikx}
- 2. Reflection: Re^{-ikx}
- 3. Transmission: Te^{-ikx}
- 4. Limits:

$$v_0 \to 0$$
, $R \to 0$
 $v_0 \to \infty$, $T \to 0$

- 5. Probability(Transmission) = $|T/A|^2$
- 6. Probability(Reflection) = $|R/A|^2$
- 7. Probability(Transmission) + Probability(Reflection) = 1 $T^2 + R^2 = A^2$
- 8. Tunneling Depth $d \propto \frac{1}{\sqrt{V-E}}$

Hyperfine Splitting 5.4

- 1. Spin/spin of e^- nucleus
- 2. Responsible for 21 cm line

$$\mu_p = \frac{ge}{Zm_p}\overline{s_p} \tag{119}$$

$$\mu_e = \frac{-e}{m_e} \overline{s_e} \tag{120}$$

$$\mu_{e} = \frac{-e}{m_{e}} \overline{s_{e}}$$

$$E_{n'_{f}} = \frac{\mu_{0} g_{p} e^{2}}{3\pi m_{p} m_{e} a^{3}} \langle \overline{s_{p}} \cdot \overline{s_{e}} \rangle$$

$$E_{n'_{f}} \propto \frac{e^{2}}{m_{p} m_{e} a^{3}} \langle \overline{s_{p}} \cdot \overline{s_{e}} \rangle$$

$$(120)$$

$$E_{n'_f} \propto \frac{e^2}{m_e m_e a^3} \langle \overline{s_p} \cdot \overline{s_e} \rangle$$
 (122)

5.5 Fine Structure

- 1. Spin/orbit coupling + relativistic correction
- 2. Breaks l degeneracy, retains j degeneracy
- 3. Why $E_{2s} < E_{2p}$

5.6 Zeeman Effect

- 1. Atom in external \bar{B}
- 2. Spin+orbital angular momentum/B coupling
- 3. $H_{z'} = (-\bar{\mu}_e + \bar{\mu}_s) \cdot \bar{B}_{\text{ext}}$
- 4. Weak $B_{\rm ext} \ll B_{\rm int} \to E' = \mu_b g_j \underbrace{m_j}_{\rm Bext} B_{\rm ext}$ breaks m_i degeneracy into 2j+1 levels
- 5. Strong $B_{\text{ext}} \gg B_{\text{int}} \to E' = \mu_b B_{\text{ext}} (m_l + 2m_s)$

5.7 Stark Effect

- 1. External \bar{E}
- 2. not spin dependent
- 3. $H' = eE_z$ if $E = \hat{E}_z$
- 4. Hydrogen, $E_1' = \langle H' \rangle = eE \int_0^\infty d^3r \underbrace{z}_{\text{odd}} |\underbrace{\Psi_{100}}_{\text{even}}|^2 = 0$

5.8 Degenerate Perturbation Theory

- 1. A state when n degenerate states breaks into n distinct E levels
- 2. Tensor, $w_{aa}, w_{bb}, w_{cc} = E_a, E_b, E_c$ of unperturbed states
- 3.

$$\left(\begin{array}{cc} w_{aa} & w_{ab} \\ w_{ba} & w_{bb} \end{array}\right) \Rightarrow w_{ab} = w_{ba}^*$$

5.9 Non degenerate Perturbation Theory

- 1. $H = H' + H^0$
- 2. First order: $E_n' = \langle \Psi_n | H' | \Psi_n \rangle = \langle H' \rangle$

$$\Psi_{n'} \sum_{m,n} \frac{\langle \Psi_m^0 | H' | \Psi_n^0 \rangle}{E_n^0 - E_m^0} \Psi_m^0 \tag{123}$$

1. If E introduced

$$H' = eE \to E' = 0 \tag{124}$$

1. Potential raised by constant

$$H' = v_0 \to E' = v_0 \tag{125}$$

Particle in a Box - Infinite Square Well 5.10

$$E_n = n^2 E_0 \tag{126}$$

$$E_0 = \frac{\hbar^2 k_0^2}{2m} = \frac{p_0^2}{2m}$$

$$k_n = \frac{n\pi}{a}$$
(127)

$$k_n = \frac{n\pi}{a} \tag{128}$$

$$p_n = \hbar k_n \tag{129}$$

$$\psi = \sqrt{\frac{2}{a}}\sin(k_n x) \tag{130}$$

3D:
$$E = \frac{\hbar^2}{2m} [k_x^2 + k_y^2 + k_z^2]$$
 (131)

Schrödinger's Equation 5.11

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V\right)\Psi = i\hbar\frac{\partial\Psi}{\partial t} \tag{132}$$

Separable Solutions:

$$\Psi = \Phi(t)\Psi(x) \tag{133}$$

$$\Phi(t) = e^{-iE_n t/\hbar} \tag{134}$$

5.12 Free Particle

$$\Psi = Ae^{i(kx - \omega t)} \tag{135}$$

Wave Packet Solutions 5.12.1

$$\Psi = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \Phi(k)e^{ikx}dk \tag{136}$$

$$\Phi = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \Psi(x)e^{-ikx}dx \tag{137}$$

- 1. Packet moves at group velocity, $v_g = \frac{\partial \omega}{\partial k}$
- 2. $\Delta x \Delta k \sim 1$
- 3. $\Delta x \Delta p \sim \hbar$, $p = \hbar k$

Traveling Wave Formalism 5.13

$$\frac{\partial^2 \Psi}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \Psi}{\partial t^2} , v = \sqrt{\frac{\text{restoring force}}{\text{density}}}$$
 (138)

$$v_{\phi} = \frac{\omega}{k} \tag{139}$$

$$\Psi = A\cos(k(vt - X)) = A\cos(\omega t - kx)$$
(140)

In one period, $x - vT = 2\pi$

5.14 Finite Potential Well

$$E \propto n^2 \tag{141}$$

$$d \propto \frac{1}{\sqrt{V - E_n}} , d = \frac{\hbar}{\sqrt{2m(V - E_N)}}$$

$$\tag{142}$$

$$d \propto n \tag{143}$$

5.15 Fundamental Particles

Bosons: Force carriers
 Gauge Boson: Gluon-strong
 W,Z Boson - a.k.a Weak Boson
 photons - E&M

other: Higgs, graviton, pion

2. Fermions: Associated with matter Quarks: up, down, top, bottom, strange, charm Leptons: electron, muon, tauon, neutrino flavors of each

3. Composite Fermions: Protons and Neutrons, etc.

5.16 Single Slit Diffraction

$$w\sin\theta = n\lambda$$
, $\tan\theta = \frac{y}{L}$ (144)

Central maximum width:

$$\frac{2L\lambda}{d} = \Delta y_{\text{max}} \tag{145}$$

5.17 Diffraction Grating

$$d\sin\theta = n\lambda\tag{146}$$

$$y = L \tan \theta = L \frac{\sin \theta}{\cos \theta} = \frac{Ln\lambda}{d\cos \theta}$$
 (147)

5.18 Double Slit Interference

$$d\sin\theta = n\lambda , d\sin\theta = n\left(\lambda + \frac{\lambda}{2}\right)$$
 (148)

5.19 Bragg Diffraction

$$2d\sin\theta = n\lambda\tag{149}$$

$$d = \underbrace{\frac{1}{\sqrt{h^2 + k^2 + l^2}}}_{\text{miller indices}} \tag{150}$$

6 Harmonics

6.1 Harmonic Oscillator Potential

$$E_n = \hbar\omega \left(n + \frac{1}{2}\right)$$
, lowest $n = 0$ (151)

$$\langle v \rangle = \langle T \rangle = \frac{1}{2}\hbar\omega \left(n + \frac{1}{2} \right)$$
 (152)

$$\omega = \sqrt{\frac{k}{m}} \tag{153}$$

$$X = A\sin\omega t + B\cos\omega t \tag{154}$$

$$\Psi_n \propto e^{-\frac{m\omega x^2}{2\hbar}} H_n(x) \tag{155}$$

6.2 Damped-Driven Oscillator

$$F = -k \underbrace{x}_{\text{Hooke's}} -b \underbrace{\dot{x}}_{\text{driver}} + A \underbrace{\cos \theta}_{\text{driver}}$$
(156)

$$\omega_0 = \sqrt{\frac{k}{m}} \tag{157}$$

$$\beta = \frac{b}{2m} \tag{158}$$

6.2.1 Underdamped $\omega_0 > \beta$

$$X_u = Ae^{-\beta t}\cos(\omega' t + \phi) , \omega' = \sqrt{\omega_0^2 - \beta^2}$$
(159)

6.2.2 Overdamped $\omega_0 < \beta$

$$X_o = Ae^{-\beta t}e^{-\omega''t}, \omega'' = \sqrt{\beta^2 - \omega_0^2}$$
 (160)

6.2.3 Critically Damped $\omega_0 = \beta$

$$X_c = A_1 e^{-\omega_0 t} + A_2 t e^{-\omega_0 t} \tag{161}$$

6.3 Springs and Simple Harmonic Oscillators

$$F = -kx \Rightarrow U = \frac{1}{2}kx^2, \omega = \sqrt{\frac{k}{m}}$$
 (162)

$$ma = -kx \tag{163}$$

$$\ddot{x} = -\omega_0^2 x = -\frac{k}{m} x \tag{164}$$

Solutions: sines and cosines

1. $A = \max \text{ amplitude}$

2.
$$E_{tot} = \frac{1}{2}KA^2$$

3.
$$KE = \frac{1}{2}KA^2\cos^2(\omega_0 t)$$

4.
$$PE = \frac{1}{2}KA^2\sin^2(\omega_0 t)$$

To find oscillations about the minimum of E in an arbitrary u:

- 1. Find equilibrium value: $\frac{\partial u}{\partial x} = 0 \rightarrow x_0 = ?$
- 2. 2nd derivative of taylor series gives $\omega_a \to \frac{1}{2}v''(x_0) = \frac{1}{2}m\omega^2$

6.4 Beats

$$f_b = f_1 - f_2 (165)$$

$$T_b = \frac{1}{f_1 - f_2} \tag{166}$$

Kinematics 7

Linear \rightarrow Rotational Kinematics

$$\begin{array}{lll} x \rightarrow \theta & s_{\rm arc} = r\theta & \Delta x = v_0 t + \frac{1}{2} a t^2 \rightarrow \Delta \theta = \omega_0 t + \frac{1}{2} \alpha t^2 \\ v \rightarrow \omega & v_\perp = r \times \omega & v = v_0 + a t \\ a \rightarrow \alpha & a_\perp = r \times \alpha & v^2 = v_0^2 + 2 a \Delta x \\ p \rightarrow L & L = r \times p & L = I \omega \; (p = m v) \\ F \rightarrow \tau & \tau = r \times F & \tau = \frac{\partial L}{\partial t} \; (F = \frac{\partial p}{\partial t}) \\ m \rightarrow I & I \propto m r^2 \end{array}$$

7.2 Lagrangian

7.2 Lagrangian
$$L = T - U \qquad H = T + U \text{ if } U \neq U(v) \neq U(t)$$

$$\frac{\partial L}{\partial q} - \underbrace{\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}}\right)}_{\text{EOMS}} = 0 \qquad p = \frac{\partial L}{\partial \dot{q}}$$

7.2.1 EOMS:

$$\dot{q}_k = \frac{\partial H}{\partial p_k} \tag{167}$$

$$\dot{q}_k = \frac{\partial H}{\partial p_k}$$

$$-\dot{p}_k = \frac{\partial H}{\partial q_k}$$

$$(167)$$

7.3 **Rocket Motion**

$$U\frac{dm}{dt} + M\frac{dv}{dt} = 0 ag{169}$$

$$v_f = v_0 + u \ln \left(\frac{M_i}{M_f}\right) \tag{170}$$

7.4 Collisions

- 1. Momentum + mass are always conserved classically
- 2. Use p equalities for before/after collisions even if elastic
- 3. Elastic \rightarrow conservation of kinetic energy

$$\epsilon = 1 = \underbrace{\frac{|v_1| + |v_2|}{|u_1| + |u_2|}}_{\text{before}} \tag{171}$$

Don't forget to include (-) and (+) for direction of velocity in momentum equations!

- 1. Only use kinetic energy for conservation of total energy either before or after the collision
- 2. Impulse $J = F\Delta t = \Delta p = \Delta L$
- 3. Cross section: $N_{\rm scat} = \frac{N_{\rm target}}{\rm area} \, N_{\rm incident} \sigma$

7.5 Central Force Motion

$$\mu = \frac{m_1 \cdot m_2}{m_1 + m_2} \tag{172}$$

$$r_{\rm CM} = \frac{\sum_{i} m_i r_i}{\sum_{i} m_i} \tag{173}$$

$$T = \frac{1}{2}\mu |\dot{r}|^2 \tag{174}$$

$$\overline{r}_1 = \frac{m_2}{m_1 + m_2} \overline{r} \tag{175}$$

$$\overline{r}_2 = \frac{m_1}{m_1 + m_2} \overline{r} \tag{176}$$

$$\overline{r} = \overline{r}_1 - \overline{r}_2 \tag{177}$$

7.6 Moments of Inertia

- 1. $I = CMR^2$, where C is a constant
- 2. $I_{\text{hoop}} = MR^2$
- 3. $I_{\text{disk}} = \frac{1}{2}MR^2$
- 4. $I_{\text{hollow sphere}} = \frac{2}{3}MR^2$
- 5. $I_{\text{solid sphere}} = \frac{2}{5}MR^2$
- 6. $I_{\text{point mass}} = MR^2$
- 7. $I_{\text{rod end}} = \frac{1}{3}ML^2$
- 8. $I_{\text{rod center}} = \frac{1}{12}ML^2$
- 9. $L_{\rm rot} = I\omega$
- 10. $T_{\text{rot}} = \frac{1}{2}I\omega^2$

11.
$$\tau = Idv = \frac{dL}{dt}$$

12.
$$I_{\text{parallel axis}} = I_{\text{CM}} + MR_{\text{displaced}}^2$$

Statistical Thermodynamics

Laws of Thermodynamics

8.1.1 1st Law

$$\Delta U = Q + W \tag{178}$$

2nd Law 8.1.2

E flows spontaneously until the system is at the most likely microstate \Rightarrow entropy tends to increase

8.1.3 3rd Law

$$S(T=0) = 1 , \text{ so } C_v \to 0 \text{ as } T \to 0$$
 (179)

Maxwell Velocity Distribution

Speed of molecules in ideal gas:

$$D(v) \propto v^2 e^{-E/k_b T} \tag{180}$$

Mean Free Path 8.3

$$l = \frac{1}{n\sigma}$$

$$n = \frac{\text{particles}}{\text{volume}}$$
(181)

$$n = \frac{\text{particles}}{\text{volume}} \tag{182}$$

$$\sigma = \text{scattering cross section}$$
 (183)

Particle Diffusion

Fick's Law:

$$J_p = -\underbrace{D}_{\text{constant}} \nabla n \tag{184}$$

Thermal Diffusion 8.5

Fourier's Law:

$$J_q = \Phi_q = -\underbrace{\sigma}_{\text{conductivity (Thermal)}} \nabla T \tag{185}$$

$$\Phi_q = -k\nabla T , k = \text{thermal conductivity with units} = \frac{W}{\text{m degrees K}}$$
 Flow of energy/time · area, units of $\frac{W}{m^2}$

8.5.1 Thermodynamic Identity

$$dU = TdS - PdV + \mu dN \tag{187}$$

8.6 Heat Capacity

$$c = \frac{dQ}{dt} \tag{188}$$

$$c_p = \left(\frac{\partial Q}{\partial T}\right)_P = T\left(\frac{\partial S}{\partial T}\right) \tag{189}$$

$$c_v = \left(\frac{\partial Q}{\partial T}\right)_V = \left(\frac{\partial U}{\partial T}\right)_V, \ U = \text{total } E$$
 (190)

 $c_P > c_V$ since at constant P the system loses E in the form of work \Rightarrow for the same Q, $dT_P < dT_V$, thus $c_P > c_V$.

8.7 Isothermal Compression (Slow)

$$P_1 V_1 = P_2 V_2 \tag{191}$$

$$W = Nk \ln(V_i/V_f) , W = -\int_{V_i}^{V_f} PdV$$
 (192)

$$\Delta U = 0 \text{ since } \Delta T = 0 , \Delta U = \frac{f}{2} Nk\Delta T$$
 (193)

8.8 Adiabatic Compression (Fast)

If no heat flows,

$$\Delta Q = 0 \to \Delta U = W \tag{194}$$

Equipartion Theorem,

$$\Delta U = Nk\Delta T = W \tag{195}$$

$$V_f T_f^{f/2} = V_i T_i^{f/2}$$
, $f =$ Degrees of Freedom (196)

$$V_f^{\gamma} P_f = V_i^{\gamma} P_f \ , \gamma = \frac{f+2}{f} \tag{197}$$

$$W = \frac{P_f V_f - P_i V_i}{1 - \gamma} \tag{198}$$

$$PV^{\gamma} = C \to P = \frac{C}{V^{\gamma}} \tag{199}$$

$$W = \int P dV = C \frac{dV}{V^{\gamma}} = \frac{1}{\gamma} \frac{C}{V^{\gamma - 1}} \Big|_{V_1}^{V_2}$$
 (200)

8.9 Heat

$$Q = TdS (201)$$

$$= mc\Delta T \tag{202}$$

$$= Power \cdot t \tag{203}$$

8.10 Multiplicity/States

Probability(
$$\Omega_n$$
) = $\Omega(n)/\Omega(\text{all})$ (204)

- 1. Ω = multiplicity = how many different microstates yield a macrostate
- 2. Total number of macrostates = $(\# \text{ states thing can be in})^{(\# \text{ of things})}$
- 3. e.g., 3 coins $\rightarrow 2^3 = 8 = \Omega$
- 4. # of ways to choose n things from N: $\Omega\binom{N}{n} = \frac{N!}{(N-n)!n!}$

8.11 Boltzmann Statistics

$$P(s) = \frac{g_s e^{E_s/kT}}{Z} , Z = \sum_i g_i e^{-E_i/kT} , g_i = \text{degeneracy of I}$$
 (205)

$$P(A)/P(B) = \frac{g_a}{g_b} e^{(-A+B)/kT}$$
 (206)

$$\langle \bar{x} \rangle = \frac{1}{Z} \sum_{s} x_s e^{-E_s/kT}$$
 average of any value (207)

$$\langle \bar{E} \rangle = \frac{1}{Z} \sum_{i} E_{i} e^{-E_{i}/kT} \tag{208}$$

$$U = N\overline{E}$$
: total energy of the system (209)

8.12 Density of State Distributions

Fermions:

$$N_i = \frac{g_i}{e^{(E_i - \mu)/kT} + 1} \tag{210}$$

Mesons/Bosons:

$$N_i = \frac{g_i}{e^{[E_i - \mu]/kT} - 1} \tag{211}$$

Boltzmann:

$$N_i = g_i e^{(E_i - \mu)/kT} - 1 (212)$$

8.13 Blackbody Radiation

8.13.1 Wein's Law

$$T \cdot \lambda_{\text{max}} = 3 \text{ mm} \cdot K \tag{213}$$

8.13.2 Stephan-Boltzmann

$$P \propto aT^4 \tag{214}$$

8.14 **Heat Engines**

$$e \le 1 - \frac{T_c}{T_h} \tag{215}$$

$$e \le 1 - \frac{T_c}{T_h}$$

$$e = \frac{\text{benefit}}{\text{cost}} = \frac{W}{Q_h}, W = Q_h - Q_c$$
(215)

8.15 Refrigerators

$$e \le \frac{T_c}{T_h - T_c} \tag{217}$$

$$W = Q_h - Q_c (218)$$

$$\Delta S = 0$$
, independednt of working substances (219)

8.16 Big People

1. Onnes: Superconductivity in Hg

2. Anderson: Positron

3. Yukawa: Strong Nuclear

4. Fermi: First nuclear reactor

5. Mann + Zweig: Quarks

6. Rontengen: X-rays

7. Penzias & Wilson: Background Radiation

8. Huygens: Wavefronts

9. Cavendish: G

10. Oersted: Connection between E&M

11. Ampere: B force law

12. Hertz: Showed E&M waves existed

9 Relativity

Space-Time Diagram

$\Delta S > 0$ Spacelike

- 1. Ordering of events depends on reference frame
- 2. There exists a reference frame where 2 events occur simultaneously, but they can't occur at the same location in space

$\Delta S < 0$ Timelike

- 1. Ordering of events is absolute
- 2. Casual relationships are timelike
- 3. Two events can occur at same point in space

Special Relativity

$$\begin{array}{ccc} v/c & \gamma \\ .1 & 1.005 \\ .25 & 1.033 \\ .5 & 1.151 \\ .75 & 1.55 \\ .9 & 2.29 \end{array}$$

$$x = \gamma(x' + vt') \tag{220}$$

$$t = \gamma \left(t' + \frac{vx}{c^2} \right) \tag{221}$$

$$t = \gamma \left(t' + \frac{vx}{c^2} \right)$$

$$u'_x = \frac{u_x + v}{1 + \frac{u_x v}{c^2}}$$

$$(221)$$

$$u_z' = \frac{u_z}{\gamma \left(1 + \frac{u_x v}{c^2}\right)} \tag{223}$$

9.2.1 Time Dilation

$$t' = \gamma t_0$$
, $t_0 = \text{rest time}$ (224)

9.2.2 Length Contraction

$$x' = \frac{x_0}{\gamma}, x_0 = \text{rest length}$$
 (225)

Invariant Interval

$$\Delta s^2 = \Delta x^2 - (ct)^2 \leftarrow \text{transform between 2 moving frames}$$
 (226)

9.2.4 Energy

$$E_{\rm rel} = \gamma E_0 \tag{227}$$

$$p = \gamma p = \gamma mv \tag{228}$$

$$E_{\rm rel}^2 = E_0^2 + (pc)^2 \tag{229}$$

$$E_{\rm rel} \neq \frac{p_{\rm rel}^2}{2m} \tag{230}$$

$$p_x = \gamma \left(p_{x'} + \frac{v}{c^2} E' \right) \tag{231}$$

$$E = \gamma \left(E' + v p_{x'} \right) \tag{232}$$

Last 2 lines employ the invariant 4-vector, where $p_{y'} = p_y$.

Atomic Physics 10

Hydrogen Spectral Series 10.1

$$\frac{1}{\lambda} = R_y \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) , \quad R_y \approx 1 \times 10^7 \text{m}^{-1}$$
 (233)

1. Lyman: $n_f = 1$

2. Balmer: $n_f = 2$

3. Paschen: $n_f = 3$

$$\Delta E = E_0 \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) \tag{234}$$

10.2 Atomic Notation

$$_{Z}^{A}X \tag{235}$$

1. A = mass number = $p^+ + n^0$

2. Z = number of protons = chemical number

11 Particle Physics

11.1 Fermi

$$E_F = k_b T_F \tag{236}$$

$$p_F = \hbar k_F \to E_F = \frac{p^2}{2mn} = \frac{\hbar^2 k^2}{2m} , \quad v_F = \frac{p_F}{m}$$
 (237)

$$k_F \left(\frac{3\pi^2 N}{\text{volume}}\right)^{1/3} , \quad p_F = \frac{2}{3} \frac{E_F}{v}$$
 (238)

Degenerate Fermi gas, so cold that nearly all states below E_F are occupied and above states are unoccupied.

11.2 Degeneracy Pressure of a Solid

 $P = \frac{3}{2} \frac{E}{V}$: The stabilizing internal pressure that comes from the anti-symmetrization requirement for the wave functions of identical fermions.

12 Misc

12.1 Water Density

1 liter = 1 kg ,
$$\rho = 1 \text{ g/cm}^3$$
 (239)

Beats occur when f_1 and f_2 are close together

12.2 Fundamental Law of Statistical Mechanics

All accessible microstates are equally likely

12.3 Irreversible Process

Creates new entropy

12.4 Reversible Process

Creates no new entropy