Chapitre 5: Quelques différents pendules

Classe: Terminale SG

Partie: Mécanique

Préparé par

Elie Nakkaf

B- Pendule simple

1. <u>Définition:</u>

Un pendule simple est constitué d'un fil inextensible de masse négligeable (M=0) et de longueur L, et d'une boule ponctuelle attaché à l'extrémité du fil tel que son rayon R est largement plus petit que la longueur du fil (le centre d'inertie de la boule est confondu avec la boule).

On donne:

- O est l'extrémité fixe du fil
- Le point A représente l'extrémité libre du fil sur laquelle on a attaché la boule.
- OA=L

On écarte le pendule d'un angle θ (supposé faible), et on désigne par G_0 le centre d'inertie de la boule lorsque le pendule se trouve dans sa position d'équilibre. Le niveau de référence de l'énergie potentielle de pesanteur est le plan horizontal passant par G_0 .

On lâche le pendule, il commence à osciller.

2. Cas de frottements nuls:

Système étudié {pendule, support, Terre} Référentiel terrestre supposé galiléen <u>Etat choisi:</u> A un instant t quelconque

• Energie mécanique:

$$E_{m} = E_{C} + E_{PP}$$

$$E_{m} = \frac{1}{2} . I. \theta'^{2} + mgz_{G}$$

$$E_{m} = \frac{1}{2} . I. \theta'^{2} + m. g. L(1 - cos\theta)$$

$$z_G = HG_0 = OA - OH = L - OH (car OA=L)$$

$$cosθ = \frac{OH}{L}$$
 → OH = L . $Cosθ$

$$z_G = L - OH = L - L .cos\theta$$

• Equation différentielle:

Le système étant énergétiquement isolé, les forces de frottements sont négligeables, le système est donc conservatif et l'énergie mécanique est conservée:

E_m= Constante
$$\Rightarrow \frac{dE_m}{dt} = 0$$
 or $E_m = \frac{1}{2}.I.\theta'^2 + m.g.L(1 - cos\theta)$

$$= \frac{1}{2}.I.\theta'^2 + m.g.L - m.g.L.cos\theta$$

$$[(\cos\theta)' = -\theta'\sin\theta]$$

$$\rightarrow \frac{1}{2}$$
. I. 2. θ'' . $\theta' + m$. g . L. $\theta' sin \theta = 0$

$$\rightarrow \theta'[I.\theta'' + m.g.L.sin\theta] = 0$$

 $\theta' = 0$: ne convient pas car elle montre un état d'équilibre

$$I.\theta'' + m.g.L.\sin\theta = 0$$

 $I.\theta'' + m.g.L.\theta = 0$

or θ est faible \rightarrow sin $\theta \approx \theta$ en rad

$$\rightarrow \theta'' + \frac{m.g.L}{I} \cdot \theta = 0$$

Le moment d'inertie I de la boule ponctuelle est : $I = m.L^2$ On remplace I dans l'équation:

$$\theta'' + \frac{m.g.L}{m.L^2}.\theta = 0$$

$$\theta^{\prime\prime} + \frac{g}{L} \cdot \theta = 0$$

 $\theta'' + \frac{g}{L}$. $\theta = 0$: est l'équation différentielle qui régit le mouvement d'un oscillateur harmonique.

Elle est de la forme : $\theta'' + \omega_0^2$. $\theta = 0$ avec $\omega_0^2 = \frac{g}{L}$

$$\rightarrow \omega_0 = \sqrt{\frac{g}{L}}$$
: la pulsation du pendule.

$$\omega_0 = \frac{2\pi}{T_0} \rightarrow T_0 = \frac{2\pi}{\omega_0} = \frac{2\pi}{\sqrt{\frac{g}{L}}} = 2\pi \sqrt{\frac{L}{g}}$$

$$T_0 = 2\pi \sqrt{\frac{L}{g}}$$
: la période propre du pendule (L en m et T_0 en s)

Cette relation montre que la période propre d'un pendule simple dans le cas de faible amplitude est:

- Indépendante de l'amplitude $\theta_{\rm m}$.
- Indépendante de la masse du pendule.