TEORIA DE JOGOS

Inteligência Artificial

Joaquim Filipe

INTRODUÇÃO

- Primeiros estudos de teoria de jogos datam de 1713, em que Charles Waldegrave sugere uma estratégia minimax para um jogo de cartas entre 2 pessoas.
- Pode haver jogos de 2 adversários ou de muitos adversários.
- Há diversos tipos de jogos e podem definir-se partições do espaço de jogos usando diversas características.

INTRODUÇÃO (CONT.)

- A área de estudo de "Teoria de Jogos" é estabelecida apenas em 1928 na sequência de um trabalho apresentado por John von Neumann.
- Em 1944 publica o livro <u>Theory of Games</u> and <u>Economic Behavior</u> em co-autoria com Oskar Morgenstern.

John von Neumann

TIPOS DE JOGOS: SEQUENCIAIS VS. SIMULTÂNEOS

- Jogos sequenciais (ou dinâmicos) são jogos em que cada jogador tem conhecimento do lance do seu antecessor.
 - Um subconjunto importante é o dos jogos com informação perfeita: em que cada jogador conhece todas as jogadas feitas por todos os outros jogadores.
 - Exemplos: xadrez, damas, go
- Jogos simultâneos são jogos onde os lances são executados simultaneamente, ou pelo menos os jogadores desconhecem previamente as ações dos seus adversários (tornando-os efetivamente simultâneos).
 - Um jogo simultâneo pode ser um jogo de informação perfeita?

REPRESENTAÇÃO FORMAL DE JOGOS

- A formalização dos jogos pode fazer-se de várias maneiras:
 - "Extensiva" Na forma de grafo
 - "Normal" na forma de matriz de pagamentos
 - A forma normal não permite representar jogos sequenciais
 - "Função característica" relaciona uma função de utilidade com uma dada população (von Neumann).

TIPOS DE JOGOS: SIMÉTRICOS VS. ASSIMÉTRICOS

- Simétrico se os resultados não dependem do jogador mas apenas da estratégia.
 - Exemplo: Dilema do Prisioneiro

A\B	N	Т
N	1,1	3,0
T	0,3	2,2

Se um dos prisioneiros trair e o outro não, o que trai sai em liberdade e o que não trai apanha 3 anos de prisão;

Se traírem os dois, apanham 2 ano cada;

Se nenhum trair, apanham 1 anos cada.

TIPOS DE JOGOS SOMA ZERO VS. SOMA NÃO-ZERO:

- No jogo de soma-zero o valor total dos jogadores, para qualquer combinação de estratégias, é zero, i.e. o que um jogador ganha é perdido pelo(s) outro(s).
 - Exemplos:
 - Poker: o vencedor recebe exatamente a soma das perdas de seus oponentes.
 - A maioria dos jogos clássicos de tabuleiro é de soma zero, incluindo o Go e o Xadrez.

TIPOS DE JOGOS COOPERATIVOS OU NÃO

- Nos jogos não-cooperativos não existem formas positivas de suportar alianças (e.g. contratos). A coordenação é estabelecida essencialmente através de ameaças credíveis.
 - Exemplo:
 - Dilema do prisioneiro
 - Jogo da galinha
- Nos jogos cooperativos estabelecem-se alianças baseadas em acordos ou contratos.
 - Exemplo:
 - Futebol
 - Tomada de decisão por consenso
 - Revolução

EQUILIBRIO DE NASH

- Em teoria de jogos, o equilíbrio de Nash é uma solução para um jogo não-cooperativo envolvendo 2 ou mais jogadores.
- Na situação de equilíbrio de Nash
 - Cada jogador toma a melhor decisão possível para si próprio dada a decisão que o outro tomou, desde que o outro não mude.
 - Nenhum jogador poderá melhorar a sua estratégia unilateralmente.
- Exemplo: a situação seguinte tem 2 pontos de equilíbrio de Nash:

A\B	Conduz à esquerda	Conduz à direita
Conduz à esquerda	10,10	0,0
Conduz à direita	0,0	10,10

Se A conduz à esquerda o B também deve conduzir à esquerda; e vice-versa.

Quantos pontos de equilíbrio de Nash existem no dilema do prisioneiro?

John F. Nash

TIPOS DE JOGOS: COMBINATÓRIOS

- Designam-se por combinatórios os jogos em que o encontrar a estratégia ótima padece do problema da explosão combinatória.
 - Exemplos: xadrez e go
- Há uma sub-área da teoria de jogos dedicadas a este tipo de jogos, decorrentes da teoria da complexidade computacional: complexidade de jogos.
 - A complexidade de alguns jogos conhecidos está descrita de forma tabular em:
 - https://en.wikipedia.org/wiki/Game_complexity

TIPOS DE JOGOS QUE SERÃO ANALISADOS

- Vamos centrar a atenção em:
- Jogos de 2 adversários
- Jogos simétricos
- Jogos sequenciais
- Jogos de soma nula, não cooperativos
- Jogos combinatórios

CONCEPTUALIZAÇÃO

- O jogo do xadrez foi o primeiro a ser abordado formalmente: 1950, por Claude Shannon e Alan Turing.
- Foco de atenção da IA em: jogos sequenciais simétricos com informação perfeita, de 2 adversários e de soma nula, de natureza combinatória.
 - A incerteza nos jogos surge não por falta de informação ou por informação inexata mas por falta de tempo para explorar a informação disponível.
 - Pode conceptualizar-se o jogo como um problema de procura em espaço de estados, em que existem agentes hostis que procuram diminuir o nosso próprio valor.

HEURISTICAS E FUNÇÕES DE AVALIAÇÃO

- Para facilitar a identificação da melhor jogada usam-se heurísticas.
- As heurísticas auxiliam a exploração das árvores que descrevem o espaço de estados mediante:
 - técnicas de corte da árvore (pruning)
 - funções de avaliação (evaluation functions)
- Isso permite calcular a utilidade de um estado sem explorar toda a subárvore respetiva.

FUNÇÕES DE UTILIDADE

 As heurísticas estão geralmente ligadas a funções de utilidade, e são diferentes de jogador para jogador.

 O princípio da "utilidade esperada", estabelecido por John von Neumann e Oskar Morgenstern, permite valorar a distribuição de probabilidade dos possíveis resultados de uma decisão e assim estabelecer a preferência entre as decisões associadas a estas distribuições de probabilidade.

JOGOS DE 2 PESSOAS

- Componentes da procura:
 - Estado inicial
 - Conjunto de operadores
 - Teste terminal
 - Função de utilidade

• MAX vs. MIN

- O MAX
 tenta maximizar o valor da sua função de utilidade; representa o jogador que toma a decisão.
- O MIN representa o adversário. Presume-se que o MIN tem uma função de utilidade simétrica do MAX e portanto ao tentar maximizar a sua própria utilidade irá minimizar a do MAX (o que pode ser irrealista).

O ALGORITMO MINIMAX

O algoritmo é desenhado para determinar a estratégia ótima para o MAX.

- 1. Gerar toda a árvore de procura desde o nó inicial até aos nós terminais.
- 2. Aplicar a função de utilidade a cada nó terminal para determinar o respectivo valor.
- 3. Usar a utilidade dos nós terminais para determinar através de um processo de backup a utilidade dos nós no nível imediatamente acima na árvore de procura:
 - 1. Se for um lance do MIN o valor calculado é o mínimo dos nós do nível inferior;
 - 2. se for o MAX a jogar, o valor calculado é o máximo.
- 4. Continuar a usar o processo de backup um nível de cada vez até atingir o nó inicial.
- 5. Tendo chegado ao nó inicial, realizar o lance correspondente ao valor determinado para esse nó.

EXEMPLO DE APLICAÇÃO DO MINIMAX

PSEUDOCÓDIGO DO MINIMAX

```
function minimax(node, depth, maximizingPlayer) is
  if depth = 0 or node is a terminal node then
    return the heuristic value of node
  if maximizingPlayer then
    value := -∞
    for each child of node do
       value := max(value, minimax(child, depth - 1, FALSE))
    return value
  else (* minimizing player *)
    value := +∞
    for each child of node do
       value := min(value, minimax(child, depth - 1, TRUE))
    return value
```

depth: Em termos práticos poderá definir-se um limiar de profundidade máximo para o minimax.

NEGAMAX

- Não é mais do que outra formulação do MINIMAX em que se passa a procurar sempre apenas o máximo, mas se troca o sinal em cada nível, após o backup.
- A ideia é tirar partido de que max(a, b) = -min(-a, -b)

PSEUDO-CÓDIGO DO NEGAMAX

```
;;; argumentos: nó n, profundidade d, cor c
;;; b = ramificação (número de sucessores)
function negamax (n, d, c &aux bestValue)
  if d = 0 ou n é terminal
    return c * valor heuristico de n
  bestValue := -∞
  para cada sucessor de n (n₁, ..., nk,..., nb)
  bestValue := max(bestValue, -negamax(nk, d-1, -c))
return bestValue
```

```
Valor do nó inicial rootNegamaxValue := negamax( rootNode, d, -1)
```

COMENTÁRIOS AO ALGORITMO MINIMAX

- Se a profundidade máxima da árvore for *m* e em cada ponto houver *b* lances possíveis (factor de ramificação), então a complexidade (temporal) do minimax é O(b^m).
- O algoritmo pode ser implementado essencialmente como procura em profundidade primeiro (depth-first) embora usando recursividade em vez de uma fila de nós por isso os requisitos de espaço são lineares em b e m.
- Para problemas reais o custo de tempo é geralmente inaceitável, mas este algoritmo serve de base a outros métodos mais realistas, bem como de suporte à análise matemática de jogos.

DECISÕES IMPERFEITAS

- Shannon propôs, em 1950, o corte da árvore de procura num nível acima dos nós terminais, e a utilização de uma função de avaliação para determinar a utilidade das folhas dessa árvore.
- Funções de avaliação:
 - Lineares
 - $F = w_1 f_1 + w_2 f_2 + \dots + w_n f_n$

Exemplo: xadrez – w importância de cada característica; f – valor dessa característica. Os w_i poderiam ser o valor dos tipos de peças e f_i o número de peças desse tipo.

Não-Lineares: e.g. Redes neuronais

EXEMPLO DE CORTE ALFA-BETA

ORDEM DE ANÁLISE DOS NÓS E CORTES ALFA-BETA

• A eficácia do Alfa-Beta depende da ordem com que os sucessores são examinados. Na figura anterior verifica-se que não foi possível eliminar A_3 porque os nós A_{31} e A_{32} foram gerados antes do A_{33} .

Isto sugere que seria melhor examinar primeiro os sucessores que tiverem maior probabilidade de ser melhores.

CORTES ALFA-BETA

- Objectivo: Calcular o minimax correto sem analisar todos os nós da árvore.
- Princípio geral: Considere-se um nó n tal que MAX tem a opção de jogar para esse nó. Se MAX detetar a possibilidade de escolher um nó m melhor que n, ou no nível do nó pai de n ou em algum nível acima desse, então n nunca será atingido durante o jogo. Por consequência, assim que se souber o suficiente acerca de n (explorando alguns dos seus descendentes) para validar esta conclusão, pode cortar-se o nó n.

TERMINOLOGIA

- O limite inferior do valor de um nó designa-se por alfa (α).
- O limite superior do valor de um nó designa-se por beta (β).
- O valor real do nó está no intervalo $[\alpha, \beta]$.
- Os valores α dos nós MAX nunca podem decrescer.
- Os valores β dos nós MIN nunca podem crescer.
- Estes considerandos permitem enunciar regras de descontinuação da procura (corte) – no próximo slide.

REGRAS DE CORTE

- A procura pode ser descontinuada abaixo de qualquer nó MIN com um valor β ≤ α de qualquer dos seus antecessores MAX (corte α).
 - ✓ Nesse caso, o valor retornado por esse nó MIN pode ser o seu valor β corrente, apesar de este valor poder não ser o mesmo que se obtém com o minimax.
- A procura pode ser descontinuada abaixo de qualquer nó MAX com um valor $\alpha \ge \beta$ de qualquer dos seus antecessores MIN (corte β).
 - ✓ Nesse caso, o valor retornado por esse nó MAX pode ser o seu valor α corrente.

ALGORITMO MINIMAX COM CORTES ALFA-BETA

- Notar que a procura alfabeta é do tipo depth-first, pelo que em cada instante apenas é necessário considerar os nós ao longo de um ramo da árvore de procura.
- Seja α o valor da melhor escolha encontrada até ao momento, ao longo do ramo corrente, para MAX.
- Seja β o valor da melhor escolha encontrada até ao momento, ao longo do ramo corrente, para MIN.
- O Alfa-Beta atualiza o valor de α e de β ao longo da procura e corta uma subárvore (terminando uma chamada recursiva) logo que se sabe ser pior que os valores correntes de α e de β .

FAIL-SOFT VS. FAIL-HARD

- A versão Fail-soft do alfabeta permite que sejam devolvidos valores fora do intervalo [a, β]
- A versão Fail-hard é uma variante do pseudo-código anterior em que o valor devolvido é limitado ao intervalo [a, β] definido em parâmetros.
- Isso corresponde a, no caso de haver um sucessor que dê origem a um corte (valor fora do intervalo [a, β]) devolver o valor limite do intervalo.

PSEUDOCÓDIGO DO ALFABETA (FAIL-SOFT)

AlfaBeta(n; α ; β)

- 1. Se **n** no limite de profundidade **d**, devolve AlfaBeta(\mathbf{n})= $f(\mathbf{n})$, caso contrário calcula os sucessores $\mathbf{n}_1, ..., \mathbf{n}_k, ... \mathbf{n}_b$ (por ordem), faz k=1 e, se **n** é um nó MAX, vai p/2 c.c. vai p/ ii.
- $2. \quad \vee = -\infty$
- 3. $v \leftarrow \max[v, AlfaBeta(\mathbf{n}_k; \alpha; \beta)]$
- 4. $\alpha \leftarrow \max[v, \alpha]$
- 5. Se $\alpha \ge \beta$ devolve v (corte)
- 6. Se k=b devolve v; c.c. vai para n_{k+1} i.e. k \leftarrow k+1 e vai p/3
- ii. ∨ = + ∞
- iii. $\vee \longleftarrow \min[\vee, AlfaBeta(\mathbf{n}_k; \alpha; \beta)]$
- iv. $\beta \leftarrow \min[v, \beta]$
- v. Se $\beta \le \alpha$ devolve v (corte)
- vi. Se k=b devolve v; c.c. vai para \mathbf{n}_{k+1} i.e. k \leftarrow k+1 e vai p/iii

PSEUDOCÓDIGO DO ALFABETA (FAIL-HARD)

AlfaBeta(n; α ; β)

- 1. Se **n** no limite de profundidade **d**, devolve AlfaBeta(\mathbf{n})= $f(\mathbf{n})$, caso contrário calcula os sucessores $\mathbf{n}_1, ..., \mathbf{n}_k, ... \mathbf{n}_b$ (por ordem), faz k=1 e, se **n** é um nó MAX, vai p/2 c.c. vai p/ ii.
- $2. \quad \vee = -\infty$
- 3. $\vee \leftarrow \max[\vee, AlfaBeta(\mathbf{n}_k; \alpha; \beta)]$
- 4. $\alpha \leftarrow \max[v, \alpha]$
- 5. Se $\alpha \ge \beta$ devolve β (corte)
- 6. Se k=b devolve v; c.c. vai para n_{k+1} i.e. k \leftarrow k+1 e vai p/3
- ii. ∨ = + ∞
- iii. $\vee \longleftarrow \min[\vee, AlfaBeta(\mathbf{n}_k; \alpha; \beta)]$
- iv. $\beta \leftarrow \min[v, \beta]$
- v. Se $\beta \le \alpha$ devolve α (corte)
- vi. Se k=b devolve v; c.c. vai para \mathbf{n}_{k+1} i.e. k \leftarrow k+1 e vai p/iii

PSEUDOCÓDIGO (FAIL-HARD) SIMPLIFICADO

AlfaBeta(n; α ; β)

- 1. Se \mathbf{n} no limite de profundidade \mathbf{d} , devolve AlfaBeta(\mathbf{n})= $f(\mathbf{n})$, caso contrário calcula os sucessores \mathbf{n}_1 , ..., \mathbf{n}_k , ... \mathbf{n}_b (por ordem), faz k=1 e, se \mathbf{n} é um nó MAX, vai p/2 c.c. vai p/ ii.
- 2. $\alpha \leftarrow \max[\alpha, AlfaBeta(\mathbf{n}_k; \alpha; \beta)]$
- 3. Se $\alpha \ge \beta$ devolve β ; c.c. continua
- 4. Se k=b devolve α ; c.c. vai para \mathbf{n}_{k+1} i.e. k \leftarrow k+1 e vai p/2
- ii. $\beta \leftarrow \min[\beta, AlfaBeta(\mathbf{n}_k; \alpha; \beta)]$
- iii. Se $\beta \le \alpha$ devolve α ; c.c. continua
- iv. Se k=b devolve β ; c.c. vai para \mathbf{n}_{k+1} i.e. k \leftarrow k+1 e vai p/ii

UM EXEMPLO DE ALFA-BETA (FAIL-SOFT)

Árvore percorrida da esquerda para a direita; nós a cinzento não são explorados.

NEGAMAX CONJUGADO COM CORTES ALFA-BETA E PROFUNDIDADE LIMITADA

```
;;; argumentos: nó n, profundidade d, cor c
;;; b = ramificação (número de sucessores)
function negamax (n, d, \alpha, \beta, c)
   se d = 0 ou n é terminal
      return c * valor heuristico de n
   sucessores := OrderMoves(GenerateMoves(n))
   bestValue := -∞
   para cada sucessor n<sub>k</sub> em sucessores
      bestValue := max (bestValue, -negamax (n_k, d-1, -\beta, -\alpha, -c))
      \alpha := \max (\alpha, \text{bestValue})
      se \alpha \ge \beta
        break
   return bestValue
```

Valor do nó inicial rootNegamaxValue := negamax(rootNode, depth, $-\infty$, $+\infty$, 1)

EFICIÊNCIA DO MINIMAX COM CORTES ALFA-BETA

- Admita-se que uma árvore tem profundidade d e um fator de ramificação média b.
- Assumindo que seria possível obter uma estimativa da ordenação do valor dos sucessores, o alfa-beta apenas necessitaria de examinar O(b^{d/2}) nós-folha para escolher o melhor lance, em vez de O(b^d) com o minimax.
- Isto significa que o factor de ramificação efectivo é \sqrt{b} em vez de b. Assim, o alfa-beta consegue examinar mais níveis do que o minimax, no mesmo tempo.
- Não é possível obter a ordenação numa situação real, mas demonstra-se que em média, o alfa-beta avaliaria um número de nós na ordem de O(b³d/4) o que permite aumentar a profundidade de pesquisa em cerca de 4/3.
- A ordem pode ser estimada com base na função de avaliação estática. A eficácia depende da heurística.

TABELAS DE TRANSPOSIÇÃO

- Em certos jogos de informação perfeita, em que é
 possível chegar a um estado de mais do que uma
 maneira (transposições), é viável acelerar a procura
 usando hash tables, que são consultadas de cada vez
 que se gera um novo estado, constituindo uma
 espécie de cache.
- Quando há um hit, não se poupa apenas a avaliação da posição mas sim a de toda a subárvore abaixo da mesma.
- Quanto maior o hit rate maior o ganho de eficiência.

HASH TABLES

Criar uma hash table:

(make-hash-table &key test size rehash-size rehash-threshold)

Valores por default:

test: eql

size, rehash-size rehash-threshold: dependente da implementação

Acesso:

(gethash <entrada> <hashtable>)

Alteração/modificação:

(setf (gethash <entrada> <hashtable>) <valor>)

EXEMPLO DE UTILIZAÇÃO DE HASH TABLES

```
(defparameter *my-hash* (make-hash-table))
*MY-HASH*
(setf (gethash 'one-entry *my-hash*) "one")
"one"
(setf (gethash 'another-entry *my-hash*) 2/4)
\frac{1}{2}
(gethash 'one-entry *my-hash*)
"one"
(gethash 'another-entry *my-hash*)
\frac{1}{2}
```

PROGRAMAÇÃO DINÂMICA E MEMOIZAÇÃO

- A programação dinâmica é um método para resolver problemas complexos em que se divide um problema em problemas mais simples que ocorrem várias vezes e se guardam as soluções destes para que a resolução só seja efetuada 1 vez.
- A abordagem de guardar em memória as soluções dos subproblemas designa-se por memoização. Não confundir com "memorização".
 - https://en.wikipedia.org/wiki/Memoization
- Memoização foi um termo criado por Donald Michie em 1968.

MEMOIZAÇÃO APLICADA À SÉRIE DE FIBONNACI

```
(defun fib (n)
 (cond ((<= n 1) 1)
        († (+ (fib (1-n)) (fib (-n2)))
(let ((tab (make-hash-table)))
 (defun fib-memo (n)
   (or (gethash n tab)
      (let ((val (funcall #'fib n)))
         (setf (gethash n tab) val)
        val))))
```

Implementação em LISP: **Closure**, i.e. "let over lambda"

EXEMPLO DE FUNCIONAMENTO: 1º RUN

> (trace fib)

> (fib-memo 4)

0 FIB > ...

>> N:4

1 FIB > ...

>> N:3

2 FIB > ...

>> N:2

3 FIB > ...

>> N:1

3 FIB < ...

<< VALUE-0 : 1

3 FIB > ...

>> N:0

3 FIB < ...

<< VALUE-0 : 1

2 FIB < ...

<< VALUE-0 : 2

2 FIB > ...

>> N:1

2 FIB < ...

<< VALUE-0 : 1

1 FIB < ...

<< VALUE-0:3

1 FIB > ...

>> N:2

2 FIB > ...

>> N:1

2 FIB < ...

<< VALUE-0 : 1

2 FIB > ...

>> N:0

2 FIB < ...

<< VALUE-0 : 1

1 FIB < ...

<< VALUE-0 : 2

0 FIB < ...

<< VALUE-0 : 5

-5

CONT. EXEMPLO FUNCIONAMENTO: 2° RUN

> (fib-memo 4)

5

Qual é o ganho de eficiência?

Inconveniente: a função (closure) fib-memo só serve para memoização da função fib

Terá de se fazer uma função de memoização para cada função diferente?

GENERALIZAÇÃO

```
(defun memo (fn)
  (let ((table (make-hash-table)))
     (lambda (x)
          (or (gethash x table)
                (let ((val (funcall fn x)))
                      (setf (gethash x table) val)
                      val))))))
```

Implementação em LISP: **Closure generator**, i.e. "lambda over let over lambda"

```
(defun fib (n)
(cond ((<= n 1) 1)
(t (+ (fib (1- n)) (fib (- n 2)))
)))
```

```
 (setf memo-fib (memo 'fib))
#<CLOSURE -67820031>
```

(funcall memo-fib 4) ;; symbol value / function? ➤ 5

https://letoverlambda.com/textmode.cl/guest/chap2.html

NOTA FINAL SOBRE MEMOIZAÇÃO

 Todos os programas que jogam jogos de informação perfeita, caracterizados por explosão combinatória, como o xadrez, damas, etc., usam tabelas de transposição, i.e. Memoização.

LIMITAÇÃO DA ÁRVORE DE PROCURA

- Método 1: Usar um limite de profundidade fixo d.
- Método 2: Usar o iterative deepening.
- Estes métodos podem ter resultados desastrosos, pois pode haver uma variação brusca no valor da função de avaliação no nível seguinte a d.
 - Efeito de horizonte (Horizon Effect)
 - Procura quiescente a função de avaliação só é aplicada a posições com baixa probabilidade de terem variações bruscas no valor da função de avaliação. As posições não-quiescentes podem ser expandidas até se atingirem posições quiescentes.
 - O problema do efeito de horizonte é um dos mais difíceis de eliminar. O valor de uma posição pode aparentar ser estável durante muitas jogadas, não o sendo de facto.
 - https://en.wikipedia.org/wiki/Horizon_effect

EXEMPLO DE EXECUÇÃO DE UM ALGORITMO ALFABETA

Cédric Grueau (c) 2017

EXEMPLO ALFABETA (1)

Max

EXEMPLO ALFABETA (2)

Max

EXEMPLO ALFABETA (3)

Max

EXEMPLO ALFABETA (4)

Max

Min

Max

EXEMPLO ALFABETA (5)

Max

Min

Max

EXEMPLO ALFABETA (6)

Max

Min

Max

EXEMPLO ALFABETA (7)

Max

Min

Max

EXEMPLO ALFABETA (8)

Max

Min

Max

EXEMPLO ALFABETA (9)

EXEMPLO ALFABETA (10)

Max

Min

Max

EXEMPLO ALFABETA (11)

Max

Max

EXEMPLO ALFABETA (12)

Max

Min

Max

EXEMPLO ALFABETA (13)

EXEMPLO ALFABETA (14)

EXEMPLO ALFABETA (15)

EXEMPLO ALFABETA (16)

Max

Max

EXEMPLO ALFABETA (17)

Max

Max

EXEMPLO ALFABETA (18)

Max

Min

Max

EXEMPLO ALFABETA (19)

Max

Min

Max

EXEMPLO ALFABETA (20)

EXEMPLO ALFABETA (21)

Max

Min

Max

EXEMPLO ALFABETA (22)

EXEMPLO ALFABETA (23)

EXEMPLO ALFABETA (24)

Max

EXEMPLO ALFABETA (25)

EXEMPLO ALFABETA (26)

EXEMPLO ALFABETA (27)

Max

EXEMPLO ALFABETA (28)

EXEMPLO ALFABETA (29)

EXEMPLO ALFABETA (30)

EXEMPLO ALFABETA (31)

EXEMPLO ALFABETA (32)

EXEMPLO ALFABETA (33)

EXEMPLO ALFABETA (34)

EXEMPLO ALFABETA (35)

EXEMPLO ALFABETA (36)

EXEMPLO ALFABETA (37)

EXEMPLO ALFABETA (38)

OUTROS ALGORITMOS

- SSS*
 - Realiza uma procura do tipo A* em vez de DF
- DUAL*
 - Similar ao SSS* mas invertendo as operações do SSS*
- SCOUT
- PVS (Principal Variation Search)
 também designado por NegaScout
- MTD(F)
- BNS

- O MINIMAX com cortes alfa-beta usa uma estratégia de análise da árvore de procura do tipo depth-first.
- Seria expectável que formas de percorrer a árvore similares ao A* pudessem dar melhores resultados.
 - Um algoritmo que usa esta estratégia é o SSS* (George Stockman, 1979)
 - Existe uma lista de ABERTOS ordenada por ordem decrescente do seu valor (heurístico).
 - O problema é que em cada passo é preciso remover o nó com o maior valor da lista de ABERTOS e sempre que um nó MAX interior (não-folha) é resolvido todos os descendentes diretos e indiretos têm de ser removidos de ABERTOS. Estes 2 passos ocupam mais de 90% do tempo de CPU.
 - O SSS* foi por isso declarado impraticável.

SCOUT

- Proposto por Judea Perl em 1980
- A ideia é:
 - Quando se está a analisar um nó MAX (por exemplo) admite-se que ele deverá ter um valor mínimo admissível v_{min} e por isso primeiro verifica-se se cada sucessor desse nó poderá devolver um valor maior do que v_{min}.
 - Se não: então não há necessidade de analisar esse sucessor
 - Se sim: analisar o sucessor
 - Para os nós MIN é o simétrico
- Este algoritmo requer uma heurística para determinar o valor de v_{min} .

SCOUT (ALGORITMO)

- Em cada lance o jogador tem 1 de b possibilidades legais (branching)
- O jogo é pesquisado até à profundidade d (depth)
- Os nós folha são avaliados com uma função estática v₀
- O algoritmo usa duas funções recursivas: EVAL e TEST.
 - EVAL(S) devolve o valor minimax da posição S, V(S).
 - TEST(S, v, >) devolve o valor lógico da desigualdade V(S)>v em que v é um dado valor de referência.

SCOUT (TEST & EVAL)

TEST(S, v, >)

Aplica-se o teste aos sucessores:

- Se S é MAX dá Verdade logo que um sucessor é maior que v; Falso c.c.
- Se S é MIN dá Verdade logo que um sucessor é menor ou igual a v; Falso c.c.

EVAL(S) – para um nó MAX:

- Avalia começando por avaliar (i.e. EVAL(S₁)) o seu primeiro sucessor;
- Depois faz o "scouting" dos restantes sucessores fazendo o respetivo TEST: $V(S_k)>V(S_1)$.
- Se o resultado para S_k for Verdade então o nó é realmente avaliado usando $EVAL(S_k)$ e o seu valor passa a ser usado para o "scouting" dos restantes sucessores.
- Após todos os sucessores terem sido avaliados, o último valor obtido é dado como V(S).
- O EVAL(S) de um nó MIN é similar e simétrico fazendo o TEST: V(S_k)<V(S₁).

SCOUT (CONCL.)

- O algoritmo SCOUT parece desperdiçar tempo pois qualquer nó S_k que passe o teste é submetido de novo para avaliação.
- No entanto, uma análise mais cuidada revela que o desperdício não é muito significativo e apesar de algum esforço duplicado, a redução do fator de ramificação compensa para análises com 4 ou mais níveis de profundidade.
- Esta vantagem do SCOUT pode deteriorar-se para fatores de ramificação muito elevados.

SCOUT VS. ALFABETA

Search Depth	Random Ordering			Dynamic Ordering		
	SCOUT	α-β	% Improvement	SCOUT	α-β	% Improvement
2	82	70	-17.0	39	37	-5.4
3	394	380	-3.7	62	61	-1.6
4	1173	1322	+11.3	91	96	-1.1
5	2514	4198	+40.1	279	336	+17.0
6	5111	6944	+26.4	371	440	+15.7

Pearl, J. (1980) **SCOUT:** "A SIMPLE **GAME-SEARCHING ALGORITHM** WITH **PROVEN** OPTIMAL **PROPERTIES**", in AAAI-80 Proceedings.

PVS/NEGASCOUT PRINCIPAL VARIATION SEARCH

- O algoritmo NEGASCOUT é similar ao NEGAMAX mas para o SCOUT.
- O NEGASCOUT (aliás à semelhança do SCOUT) funciona melhor se o primeiro nó for de facto o melhor do seu nível (variação principal) para que o TEST dos restantes os isente do EVAL.
- Se estiver a ser aplicado um método iterative deepening, o melhor nó do nível k deverá ser o primeiro a ser considerado no nível k+1 (variação principal).

MTD(F) (MEMORY-ENHANCED TEST DRIVER)

- Algoritmo desenvolvido em 1994 por Aske Plaat et al.
- Usa uma função de teste similar à do algoritmo "TEST" de Judea Pearl, que realiza procuras alfa-beta com janelas nulas.
- Uma janela nula causa mais cortes mas devolve menos informação: apenas a fronteira do valor minimax.
- Para encontrar o valor minimax, o MTD(f) chama o alfabeta várias vezes, convergindo para o valor exato.
- A utilização de uma tabela de transposição permite evitar a reexploração das partes da árvore já anteriormente exploradas.

PSEUDO-CÓDIGO DO MTD(F)

```
function MTDF(root, f, d)
   g := f
   upperBound := +∞
   lowerBound := -∞
   while lowerBound < upperBound
     \beta := max(g, lowerBound+1)
     g := AlphaBetaWithMemory(root, \beta-1, \beta, d)
     if g < \beta then
        upperBound := g
     else
        lowerBound := g
  return g
```

https://askeplaat.wordpress.com/534-2/mtdf-algorithm/

BEST NODE SEARCH (BNS)

- Desenvolvido em 2011. Aparentemente, experiências realizadas com árvores aleatórias mostram que é o algoritmo minimax mais eficiente.
- É uma evolução do MTD(F).
- Indica qual a jogada ideal do ponto de vista do minimax mas não indica o seu valor.
- Determina qual a sub-árvore em que o minimax é maior ou menor que um dado valor (adivinhado), mudando este valor até que o alfa e o beta estão suficientemente próximos ou apenas uma subárvore é maior que o valor adivinhado.

BNS

Rutko, D. (2011) "Fuzzified Algorithm for Game Tree Search with Statistical and Analytical Evaluation" in Scientific Papers, University of Latvia. Vol. 770

PSEUDO-CÓDIGO (BNS)

```
function BNS (node, \alpha, \beta)
subtreeCount := number of children of node
do
  test := NextGuess(a, β, subtreeCount)
  betterCount := 0
  foreach child of node
    bestVal := -AlphaBeta(child, -test, -(test - 1))
    if bestVal≥test
       betterCount := betterCount + 1
       bestNode := child
  //update number of sub-trees that exceeds separation test value
  //update alpha-beta range
while not((\beta - \alpha < 2) or (betterCount = 1))
return bestNode
```

EXERCICIO

• Aplicar o alfa-beta para calcular o valor do nó raiz.

RESOLUÇÃO

• Percorrendo a árvore da esquerda para a direita: Os valores indicados nos nós são os do minimax e não do alfabeta

