used technique:We used C#/.NET (?) as our programming language, and since C# does not have OpenMP we relied on Parallel.For to handle our threads.

scheduling scheme: Scheduling is handled by .NET's task scheduler

additional finding: /

interesting remarks: /

performance comparison on a 1024 times 1024 image and following input:

double minX = -2.0;

double minY = -1.0;

double maxX = 1.0;

double maxY = 1.0;

int maxIterations = 500;

Single Thread: 1124ms

Speedup Graph:

speedup quotient

David Strauß, Gabriel Wiedermann

As you can see, the graph follows a logarithmic curve. It looks a bit wonky because we only used a single measurement. Averaging out a few more measurements would surely smooth the curve.

# cores	time in ms	speedup quotient
1	1124	
2	562	2
3	388	2.89690722
4	302	3.7218543
5	258	4.35658915
6	233	4.82403433
7	196	5.73469388
8	176	6.38636364
9	167	6.73053892
10	166	6.77108434
11	155	7.2516129
12	152	7.39473684
13	145	7.75172414
14	141	7.97163121
15	136	8.26470588
16	133	8.45112782