

Nucleotide Transformer for biological sequences

Laureando: Gio Formichella

Relatore: Prof. Paolo Frasconi

Edited C prediction

- La proteina APOBEC1 sostituisce alcuni nucleotidi con citosine.
- Il criterio con cui la proteina sceglie il nucleotide da editare non è ancora stato scoperto e, ad oggi, non esistono studi algoritmicopredittivi di questo fenomeno.
- Task: Predire per ogni citosina della sequenza di DNA se è
 derivante dall'editing biologico o meno. Si tratta quindi di un
 problema di classificazione binaria di tipo sequence-to-sequence.

Edited C prediction

 Un primo approccio: utilizzo dei k-mers, quindi dei nucleotidi vicini alle C, come variabili.

Risultato con Gradient boosting:

 Ritenendo di poter fare meglio con una diversa rappresentazione del contesto biologico, ho provato ad utilizzare gli embeddings di un modello Transformer.

Nucleotide Transformer

Modelli "Nucleotide Transformer" (Dalla-Torre et al. 2023):

- Modelli tra 50M 2.5B di parametri allenati su DNA proveniente da 500 – 4052 diversi genomi.
- Modelli allenati sul supercomputer Nvidia Cambridge-1: 128
 A100 GPU con tempi tra 1 e 28 giorni in base al modello.
- 6-mers tokens come trade-off tra lunghezza della sequenza e dimensione degli embeddings.
- Lunghezza massima delle sequenze processata pari a 1000.
- 20-esimo layer più performante dei 24.

Nucleotide Transformer

- Modello scelto: "500M_1000G"
- Ho utilizzato il modello pre-addestrato come una black box mediante API ed ho costruito la seguente pipeline:

Pipeline: input

CAGTCACATCTGTA

Pipeline: tokenizzazione

CAGTCACATCTGTA

- > Start token
- Token di nucleotidi
- Padding tokens

Pipeline: inferenza

CAGTCACATCTGTA

- Rappresentazione del token all'interno
- Array di float di lunghezza 1280
- Scartate le rappresentazioni dei padding token e, per task sequence-tosequence, anche dei CLS

Pipeline: classificatore

Utilizzato LightGBM (Ke et al. 2017) invece che le NN.

- X,X*: embeddings
- y: labels
- f: trained LightGBM
- f(X*): predictions

Enhancer type prediction

- Verifica del corretto funzionamento della pipeline.
- Problema di classificazione binaria di tipo sequence-to-class: ogni sequenza di DNA è "enhancer" o "non enhancer".
- Rappresentazione di sequenza = media aritmetica degli embedding dei token della sequenza.
- Risultato:
 - > Accuratezza del 75%

- Task di tipo sequence-to-sequence
- Proteina = sequenza di aminoacidi

Sequenza di aminoacidi	Classi aminoacidi	
M	С	
K	С	H: α-helix
T	С	E: β-sheet
Α	Н	C: coil
Υ	Н	Z. Con
M	Н	
1	Е	
K	Е	
Q	С	
Χ	С	
S	C	

- Conversione degli aminoacidi in proteine
- Non sempre c'è una corrispondenza biunivoca

Conversione di RNA in DNA

Sequenza di aminoacidi	Sequenza di RNA	Sequenza di DNA
M		•
K	•	•
Т	•	
Α	Α	Т
Υ	U	Α
M	G	C
	Α	T
K	U	Α
Q	Α	Т
Χ		
S		

RNA	DNA
Α	Т
U	Α
С	G
G	С

Embeddings di coppie di aminoacidi

Sequenza di aminoacidi	Sequenza di RNA	Sequenza di DNA	Tokens	Embeddings	Predictions
M		•			
K					
T	•		•	•	•
Α	Α	Т	•	•	•
Υ	U	Α			
M	G	C	→ <tactat> →</tactat>		LightGBM
1	Α	Т	VIACIAI		→ CH
K	U	Α		•	_
Q	Α	Т	•	•	•
X			•	•	•
S					

- Sequenze di aminoacidi scomposte in sottosequenze:
 - ➤ In presenza del carattere X
 - Quando la lunghezza supera la soglia ammessa dal modello
- Scartate sottosequenze di lunghezza < 200 caratteri.
- Risultato:
 - Accuratezza del 50% nella predizione delle 3 classi.

- L'accorciamento delle sequenze provoca perdita di contesto e, di conseguenza, peggiora gli embeddings.
- Verificato confrontando embeddings dei token comuni ad una sequenza e a quella ottenuta rimuovendo gli aminoacidi finali.
- Risultato:

• Modifica 1: Rimossi gli embeddings dei token ai margini delle sottosequenze. L'accuratezza, però, non è migliorata.

Verifica della confusion matrix: modello predice eccessivamente "CC" e

 Causa: le sequenze da predire sono composte da lunghe stringhe dello stesso carattere ripetuto molteplici volte, con prevalenza di C ed H mentre le E sono più rare.

 Modifica 2: impiego di 2 classificatori: uno per la label di sinistra e uno per la label di destra. Seppur rimosso il bias, le performance non sono cambiate.

Il problema risiede negli embeddings.

- Modifica 2: impiego di 2 classificatori: uno per la label di sinistra e uno per la label di destra. Seppur rimosso il bias, le performance non sono cambiate.
- Il problema risiede negli embeddings.

- Modifica 3: rimossa randomicità nella scelta dei codoni.
- Risultato:
 - > Accuratezza al 55%.

- Risultato ragionevole considerando le seguenti limitazioni:
 - Conversione non sempre esatta tra aminoacidi e codoni.
 - Rigidità della struttura dei token: non è possibile creare una singola rappresentazione per un singolo aminoacido della sequenza.
 - Assenza di informazione evolutiva: non sono stati utilizzati gli allineamenti multipli.
 - > Assenza di fine-tuning.

Edited C predicion

- K-mers:
 - > Finestra di 48 nucleotidi a destra e 48 a sinistra della C.
 - Considerati i 2,3,4-mers.
- Data la struttura dei token del NT:
 - > Token positivo: se contenente almeno una C editata.
 - > Token negativo: se contenente solo C non editate.
 - > Token non considerato: se non contenente alcuna C.
- Dato lo sbilanciamento del dataset (le citosine editate sono molto meno rispetto alle non editate) è stato fatto undersampling sul training set del classificatore e sono state confrontate le curve precision-recall.

Edited C predicion

- NT è leggermente più preciso dei k-mers.
- Data la complessità biologica del problema, neanche il NT ha colto il relativo segnale biologico.

Grazie per l'attenzione