2.7.14

EE25BTECH11002 - Achat Parth Kalpesh

September 17,2025

Question

If θ is the angle between the two vectors $\mathbf{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ and $\mathbf{b} = 3\hat{i} - 2\hat{j} + \hat{k}$, find $\sin \theta$.

Theoretical Solution

Let the given vectors be represented by column matrices \mathbf{a} and \mathbf{b} .

$$\mathbf{a} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} \tag{1}$$

The sine of the angle θ between two vectors is given by the formula:

$$\sin \theta = \sin \left(\cos^{-1} \left(\frac{\left| \mathbf{a}^{\top} \mathbf{b} \right|}{\|\mathbf{a}\| \|\mathbf{b}\|} \right) \right)$$
 (2)

Theoretical Solution

$$\sin \theta = \sin \left(\cos^{-1} \left(\frac{ \left| \begin{pmatrix} 1 & -2 & 3 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} \right| }{ \left\| \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} \right\| \left\| \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} \right\| } \right) \right)$$
(3)

$$= \sin \left(\cos^{-1} \left(\frac{|(3)(1) + (-2)(-2) + (3)(1)|}{\sqrt{1^2 + (-2)^2 + 3^2} \sqrt{3^2 + (-2)^2 + 1^2}} \right) \right)$$
(4)

Theoretical Solution

$$= \sin\left(\cos^{-1}\left(\frac{|3+4+3|}{\sqrt{14}\sqrt{14}}\right)\right) \tag{5}$$

$$= \sin\left(\cos^{-1}\left(\frac{10}{14}\right)\right) \tag{6}$$

$$=\frac{2\sqrt{6}}{7}\tag{7}$$

Therefore, the value of $\sin \theta$ is $\frac{2\sqrt{6}}{7}$.

C code

```
#include <stdio.h>
#include <math.h>
float formula(float *a,float *b)
{
   float c[3];
   c[0] = a[1]*b[2] - a[2]*b[1]:
   c[1] = a[2]*b[0] - a[0]*b[2]:
   c[2] = a[0]*b[1] - a[1]*b[0]:
   return sqrt((c[0]*c[0] + c[1]*c[1] + c[2]*c[2]))/(sqrt(a[0]*a
       [0] + a[1]*a[1] + a[2]*a[2])*sqrt(b[0]*b[0] + b[1]*b[1] +
        b[2]*b[2]));
```

Python Code

```
import numpy as np
import matplotlib.pyplot as plt
import ctypes
import os
import sys
# Load the shared C library
lib_path = ctypes.CDLL("./formula.so")
# Define the argument types for the C function
lib_path.formula.argtypes = [
   ctypes.POINTER(ctypes.c_float),
   ctypes.POINTER(ctypes.c_float)
# Define the return type for the C function
lib path.formula.restype = ctypes.c_float
```

Python Code

```
# Define the input vectors as numpy arrays
vecA = np.array([1, -2, 3], dtype=np.float32)
vecB = np.array([3, -2, 1], dtype=np.float32)
# Call the C function
sin_theta = lib_path.formula(
   vecA.ctypes.data_as(ctypes.POINTER(ctypes.c float)),
   vecB.ctypes.data_as(ctypes.POINTER(ctypes.c float))
print(f"The value of sin(theta) is: {sin theta}")
# Theoretical value: 2*sqrt(6)/7 = 0.700
```

Python Code: Plotting

```
# Create a 3D plot
fig = plt.figure(figsize=(8, 8))
ax = fig.add_subplot(111, projection='3d')
# Define the origin point
origin = np.array([0, 0, 0])
# Plot the two vectors from the origin using ax.quiver
ax.quiver(*origin, *vecA, color='blue', label='Vector a = (1, -2,
     3)')
ax.quiver(*origin, *vecB, color='green', label='Vector b = (3,
    -2.1)')
# Set the limits of the plot for better visualization
\max \text{ val} = \text{np.max}(\text{np.abs}(\text{np.concatenate}((\text{vecA}, \text{vecB})))) + 1
ax.set xlim([-max val, max val])
ax.set ylim([-max val, max val])
ax.set zlim([-max val, max val])
```

Python Code: Finalizing Plot

```
# Add labels and a title
ax.set xlabel('X-axis')
ax.set_ylabel('Y-axis')
ax.set zlabel('Z-axis')
ax.set_title('Two 3D Vectors')
# Add a legend
ax.legend()
# Add a grid for better visualization
ax.grid(True)
# Save and show the plot
plt.savefig("plot_c.jpg")
plt.show()
```

Plot

Figure: Visualization of the two vectors