※ 시작 전 반드시 쪽 번호를 확인하시오.

문제 1. 루비스코 (rubisco) 단백질은 식물의 광합성 과정에서 공기 중의 CO₂를 고정하는 중요한 역할을 한다. 루비스코의 활성으로 인하여 글루코스와 같은 탄소 에너지원이 만들어지고 궁극적으로는 인간이 살아가기 위해 필요한 에너지를 공급하게 된다. 식물에서 추출한 루비스코를 순수한 형태로 정제하여 아래 그림과 같이 세 가지 방법으로 루비스코의 분자 결정을 만들고자 하였다. 루비스코를 침전제와 섞으면 용해도를 낮추어 결정화를 유도할 수 있으므로, 완충화된 1 mM 루비스코 수용액 A와 완충화된 2 M 황산암모늄 수용액 B를 각각 만들고, A와 B를 1:1 부피비로 섞어서 C 용액을 만들었다. 온도는 25°C로 일정하게 유지하였고, 압력은 1 기압이다. 수용성 루비스코를 결정 형태로 만드는 결정화 반응의 표준 엔탈피 변화(△Ho)는 약 -10 kcal/mol 정도이다. 단, 물을 제외한 다른 성분들은 모두 비휘발성이며 〈방법 1〉, 〈방법 2〉, 〈방법 3〉모두 닫힌계이다.

- 〈방법 1〉C 용액 4 µl로 얇은 유리판 위에 방울을 만들고 방울이 아래로 향하도록 뒤집어서 1 ml의 B 용액이 담긴 2 ml 크기의 용기를 덮어서 밀폐하였다.
- 〈방법 2〉 C 용액 4 μ I로 용기의 가운데 부분에 방울을 만들고, 그 위에 투과성이 없는 파라핀 오일을 덮어서 밀폐하였다.
- 〈방법 3〉C 용액 4 μl를 선택성 투과막으로 만든 주머니(루비스코는 통과하지 못하지만 용액 속에 있는 다른 성분들은 통과할 수 있으며 주머니의 부피는 변하지 않음)에 넣어서 1 ml의 B 용액이 담긴 2 ml 크기의 용기에 담그고, 얇은 유리판으로 덮어서 밀폐하였다.

1-1. 〈방법 1〉에서 방울의 크기가 시간에 따라서 어떻게 변할지 예측하여 정성적으로 그래프를 그리고, 그 이유를 설명하시오.

1-2. 아래는 루비스코의 결정화에 대한 상평형 그림이다. 루비스코는 황산암모늄의 농도에 따라서 수용성으로 존재하는 안정화 상태, 결정 형성과 성장이 유도되는 준안정화 상태, 그리고 비결정성 침전이 생기는 불안정화 상태로 존재한다.

총 8쪽 중 2쪽

이 문서는 상업적인 목적으로 사용할 수 없으며, 문서의 변형 및 발췌도 금지합니다.

- 1) 〈방법 1〉, 〈방법 3〉에 대해서 방울 또는 투과성 주머니 안의 초기 상태의 위치를 상평형 그림에 표시하시오.
- 2) 〈방법 1〉, 〈방법 3〉에 대하여 시간에 따라서 방울 또는 투과성 주머니의 황산암모늄 농도가 2 M에 가깝게 되는 경로를 위의 그래프에 각각 그리고, 그 이유를 설명하시오. (단, 루비스코 결정은 황산암모늄 농도가 2 M에 가까워질 때 형성된다.)
- 3) 현재의 A, B 농도에서는 〈방법 2〉를 통해서는 루비스코 결정이 생기지 않는 이유를 설명하시오.
- 1-3. 〈방법 1〉과 〈방법 3〉에서 루비스코 결정이 자발적으로 만들어지는 이유를 열역학적으로 설명하시오. (단, 수용성 루비스코의 표면에는 수백 개의 물이 수소결합으로 결합되어 있고, 루비스코 결정이 만들어질 때 루비스코 분자들이 서로 결합하면서 같은 표면에 결합되어 있던 물 분자들은 상당수 떨어져 나오게 된다. 루비스코 분자들이 결정을 형성할 때에 루비스코 분자들 간의 결합력은 매우 약한 편이다.)

문제 2. 과학자 리처드 파인만은 지금까지 인류가 발견한 가장 위대한 과학적 지식은 "모든 물질은 원자로 이루어졌다는 사실이다."라고 말한 바 있다.

- 2-1. 단원자로 이루어진 기체의 압력(P)과 부피(V) 및 온도(T) 사이의 관계를 생각해 보자. 보일은 일정한 온도에서 일정량의 기체의 부피는 압력에 반비례함을 관측하였다(보일 법칙). 샤를은 압력이 일정할 때 기체의 종류에 관계없이 기체의 부피는 온도가 1℃ 높아질 때마다 0℃ 때 부피의 1/273 만큼 씩증가함을 관측하였다(샤를 법칙). 샤를 법칙에 따라 기체의 부피가 0이 되는 온도를 절대 0도(0 ₭)라 한다. 아보가드로는 일정한 온도와 압력에서 기체의 부피는 몰수(n)에 정비례한다는 가설을 제안하였는데 후에 실험을 통하여 입증되었다. 이 가설에 따르면 기체 1몰은 0℃, 1 기압(atm)에서 22.4나의 부피를 차지한다.
 - 1) 샤를 법칙으로부터 절대 온도(T K)와 섭씨 온도(t ℃)와의 관계를 표현하시오. 이 모든 관측 사실에 근거하여 단원자로 이루어진 기체의 압력(P)과 부피(V) 및 온도(T) 사이의 관계식을 비례상수 R(기체상수)을 사용하여 유도하시오.
 - 2) 기체 상수 R의 값은 얼마인지 단위를 명시하여 계산하시오.
 - 3) 기체 분자 운동론에 의하면 단원자 기체 원자들의 평균 운동에너지로부터 온도 T를 정의할 수 있다. 기체 상태의 단원자 한 개의 평균 운동에너지(ϵ)는 $\epsilon=\frac{3k_BT}{2}$ 이고 단원자 기체 1몰의 평균 운동에너지(E)는 $E=\frac{3RT}{2}$ 로 얻어진다. 아보가드로수(N_A , 1몰)는 얼마인지 구하시오. (볼츠만 상수(k_B), $k_B=1.38\times 10^{-23}J/(mol\cdot K)$, $1atm=1.013\times 10^5N/m^2$)

2-2. 질량 스펙트럼은 이온의 질량과 전하량의 비(m/e)에 따라 이온이 자기장 하에서 휘는 경로가 달라지는 사실을 이용하여 얻어진다. 어떤 원자 A에 대한 정보를 얻기 위하여 질량 분석기를 사용하여 A+ 이온의 아래와 같은 질량 스펙트럼을 얻었다. 질량 스펙트럼의 분석을 통하여 A 원자는 몇 종류의 동위원소를 가지는지 설명하고, 각 동위원소 간 상대적인 존재량의 비를 구하시오. 또한 A 원자의 평균 원자량은 얼마인지 구하시오. 아래의 질량 스펙트럼은 (m/e, 상대세기)로 표기하면 {(28, 0.92), (29, 0.05), (30, 0.03)}로 나타낼 수 있다. 질량은 원자 질량 단위(atomic mass unit; amu)로 나타내고, 이온의 전하량은 전자의 전하량 단위로 나타낸다. 유효숫자는 고려하지 않는다.

2-3. 질량분석기를 이용하여 A2+이온의 질량 스펙트럼을 측정하였다. A2+이온은 더 작은 이온들로 쪼개지지 않는다. A2+이온의 질량 스펙트럼을 예측하시오. 즉, 질량 스펙트럼 상의 각각의 m/e에서의 상대 신호세기를 문제 2-2에서 언급된 표기법(m/e, 상대세기)으로 나타내거나, 앞에서 제시한 질량 스펙트럼처럼 표시하시오. 유효숫자는 고려하지 않는다.

2-4. A 원자들은 서로 결합하여 다이아몬드 구조로 결정화된다. 다이아몬드 결정구조의 단위세포 (또는 단위격자) 내에는 몇 개의 A 원자가 존재하는지 설명하시오. 다이아몬드 단위격자 구조, 다이아몬드 구조, 면심 입방 단위격자는 아래 그림과 같다.

[출제의도] 화학

 활용 모집단위
 활용 문항

 자연과학대학 화학부
 [문제 1], [문제 2]

 간호대학, 농업생명과학대학(식물생산과학부, 산림과학부, 식품동물생명공학부, 응용생물화학부)
 [문제 1]

 생활과학대학(식품영양학과, 의류학과)
 [문제 1]

1-1.

[출제의도] 비휘발성 용질이 녹아 있는 용액의 증기 압력은 순수한 용매의 증기 압력과 용액 내 용매의 몰 분율을 곱한 것과 같다는 라울의 법칙과 닫힌계에서의 화학평형 개념을 확인한다.

[개념] 증기 압력 내림, 라울의 법칙, 닫힌 계의 화학 평형

[출처] 김희준 외, "I. 다양한 모습의 물질, 06. 묽은 용액의 총괄성이란 무엇일까?", 《고등학교 화학 II》, ㈜상상아카데미, 67~68쪽.

김희준 외, "Ⅲ. 화학 평형, 01. 화학 평형이란 무엇일까?", 《고등학교 화학Ⅱ》, ㈜상상아카데미, 125~129쪽

류해일 외, "I. 다양한 모습의 물질, 2-2. 용액의 총괄성", 《고등학교 화학 II》, 비상교육, 59~61쪽.

류해일 외, "Ⅲ. 화학 평형, 1-1. 화학 평형", 《고등학교 화학Ⅱ》, 비상교육, 127~129쪽.

박종석 외, "Ⅲ. 다양한 모습의 물질, 2-1. 묽은 용액의 총괄성", 《고등학교 화학Ⅱ》, 교학사, 59~61쪽.

박종석 외, "Ⅲ. 화학 평형, 1-1. 가역 반응과 평형", 《고등학교 화학Ⅱ》, 교학사, 139~142쪽.

1-2.

[출제의도] 상평형 그림을 해석함으로써 물질의 상태변화를 예측할 수 있는지를 평가하고자 한다.

[개념] 상평형

[출처] 김희준 외, "비. 화학 평형, 03. 상태 변화는 상평형과 어떤 관계일까?", 《고등학교 화학비》, 상상아카데미, 150쪽.

류해일 외, "Ⅲ. 화학 평형, 2-1. 상평형", 《고등학교 화학Ⅱ》, 비상교육, 151쪽.

박종석 외, "Ⅲ. 화학 평형, 1-4. 상평형", 《고등학교 화학Ⅱ》, 교학사, 162~164쪽.

1-3.

[출제의도] 결정화 반응의 자발성을 깁스 자유 에너지의 개념(△G=△H-T△S)을 이용하여 논리적으로 설명할 수 있는지 확인하고자한다.

[개념] 깁스 자유 에너지

[출처] 김희준 외, "Ⅱ. 물질 변화와 에너지, 04. 화학 반응의 자발성은 어떻게 결정될까?", 《고등학교 화학Ⅱ》, 상상아카데미, 109~114쪽.

류해일 외, "Ⅱ. 물질 변화와 에너지, 2-2. 자유 에너지", 《고등학교 화학Ⅱ》, 비상교육, 108~113쪽.

박종석 외, "Ⅱ. 물질 변화와 에너지, 2-2. 자유 에너지", 《고등학교 화학Ⅱ》, 교학사, 115~118쪽.

[출제의도] 화학

2-1.

[출제의도] 단원자 기체의 온도, 압력, 부피와의 상호 관계를 이해하고 절대 온도, 보편 상수인 기체 상수, 아보가드로수의 의미를 파악한다.

[개념] 기체의 여러 가지 법칙(보일 법칙, 샤를 법칙, 아보가드로 법칙), 이상 기체 방정식

[출처] 노태희 외, "I. 다양한 모습의 물질, 1-02. 기체의 압력과 부피 및 온도 사이의 관계", 《고등학교 화학Ⅱ》, 천재교육, 18~25쪽.

류해일 외, "I. 다양한 모습의 물질, 1-2 기체", 《고등학교 화학 II》, 비상교육, 19~25쪽. 박종석 외, "I. 다양한 모습의 물질, 1-2. 기체", 《고등학교 화학 II》, 교학사, 21~26쪽.

2-2.

[출제의도] 동위 원소의 존재비를 고려하여 평균 원자량을 계산한다.

[개념] 평균 원자량, 질량 분석기

[출처] 노태희 외, "I. 화학의 언어, 2-01. 화학식량과 몰", 《고등학교 화학 I》, 천재교육, 25쪽.

노태희 외, "I. 화학의 언어, 2-02. 화합물의 조성 및 구조", 《고등학교 화학 I》, 천재교육, 35쪽. 류해일 외, "I. 화학의 언어, 2-1. 원자량, 분자량과 몰", 《고등학교 화학 I》, 비상교육, 31~32쪽.

2-3.

[출제의도] 질량 스펙트럼 해석 및 이원자 분자의 분자량 및 자연 존재비 계산

[개념] 동위원소, 분자량

[출처] 노태희 외, "I. 화학의 언어, 2-01. 화학식량과 몰", 《고등학교 화학 I》, 천재교육, 25~28쪽.

류해일 외, "I. 화학의 언어, 2-1. 원자량, 분자량과 몰", 《고등학교 화학 I》, 비상교육, 33쪽. 박종석 외, "I. 화학의 언어, 2. 물질의 조성과 화학 반응식", 《고등학교 화학 I》, 교학사, 49쪽.

2-4

[출제의도] 면심 입방 격자와 유사한 구조를 가지는 다이아몬드의 단위 격자 구조를 이해하고 단위 격자 구조 당 원자 개수를 계산한다.

[개념] 고체의 결정 구조

[출처] 노태희 외, "I. 다양한 모습의 물질, 2-02. 고체", 《고등학교 화학II》, 천재교육, 46~50쪽.

류해일 외, "I. 다양한 모습의 물질, 1-3. 액체와 고체", 《고등학교 화학II》, 비상교육, 40~44쪽.

박종석 외, "I. 다양한 모습의 물질, 1-3. 액체와 고체", 《고등학교 화학II》, 교학사, 40~43쪽.