

Nombre: José Luis Martínez Contreras	FISICA	II 1S2022
Carné: _201700848	Sección:P	Entrega: Lunes 28/03
Profesor: _Bayron Cuyan	Auxiliar: José Balux_	

Problema No. 1: Para el circuito que se muestra en la figura R_1 =1.50Ω, R_2 =3.30Ω, R_3 =430Ω, R_4 =6.20Ω, R_5 =120Ω, R_6 =820Ω y V_1 =45.0 Volt. Determine:

- a) La resistencia equivalente que ve la fuente. R// $7.276~\Omega$
- b) La corriente que entrega la fuente. R// 6.18 A
- c) La corriente en cada resistencia.
- d) El voltaje en cada resistencia.
- e) La potencia total disipada por las resistencias. R// 278 Watts

Problema No. 2: Para el circuito que se muestra en la figura, si la corriente en la resistencia de $25.0~\Omega$ es de 1.25~A hacia la izquierda; determine:

- a) La resistencia equivalente entre los puntos "a" y"b". R//86.82Ω
- b) El valor de la fem "ε". R// 398 V

Problema No. 3: Para la siguiente configuración, utilizando las leyes de Kirchhoff, determine:

- a) la corriente en cada resistencia. R// I(R₁)=0.385mA, I(R₂)=3.08mA, I(R₃)=2.69mA
- b) La diferencia de potencial V_{fc}. R// -69.2 volt

Problema No. 4: En el siguiente circuito sí R_1 =11.0 Ω , R_2 =12.0 Ω , R_3 =13.0 Ω , R_4 =14.0 Ω , R_5 =15.0 Ω , R_6 =16.0 Ω , V_1 =20.0 Volt y V_2 =40.0 Volt. Utilizando las leyes de Kirchhoff, determine:

- a) La corriente que pasa por cada resistencia. $R//i(R_1)=0.339$ A, $i(R_2)=0.684$ A, $i(R_3)=0.345$ A, $i(R_4)=6.17$ mA, $i(R_5)=1.029$ A, $i(R_6)=1.023$ A.
- b) La diferencia de potencial Vcf. R// 36.3 Volt

$$\frac{\sqrt{a}}{282.08+3.3} + \frac{\sqrt{a} - 45}{1.5} - + \frac{\sqrt{a}}{5.895} = 0$$

$$\begin{array}{c}
C \\
I_1 = 6.186 \Delta \\
I_2 = 0.126 \Delta \\
I_3 = 0.082 \Delta \\
I_4 = 5.76 \Delta \\
I_5 = 0.292 \Delta \\
I_6 = 0.043 \Delta
\end{array}$$

$$\begin{array}{c}
(1) & V_1 = 9.27 V \\
V_2 = 0.412 V \\
V_3 = 35.26 V \\
V_4 = 35.71 V \\
V_5 = 35.71 V \\
V_6 = 35.26 V
\end{array}$$

(3#2)

$$J_a = 3.33$$
 $V = 31.25$
 $V =$

$$=7$$
 $I_{z} = \frac{31.25}{15} = \frac{25}{12}$

$$I_3 = \frac{31.25}{25} = 1.25$$

$$\frac{\sqrt{1} = 0}{\sqrt{2000}} + \sqrt{\frac{10 + 60}{2000}} + \sqrt{\frac{10 + 80}{4000}} = 0$$

$$I_1 = 3.84 \times 10^4 A$$
 $I_2 = 3.076 \times 10^{-3} A$
 $I_3 = 2.69 \times 10^{-3} A$

=)
$$V_{\phi}$$
 + 3000 (3.016×10³) + 60 = V_{ϕ}
 $N_{c} - V_{\phi} = 69.22 V$
 $\Delta V_{c} f = 69.22$

Malla 1

$$i_1 = -0.2466A$$
 =)
 $i_2 = 0.795A$
 $i_3 = -0.175A$

H 4

(b)
$$V_{c} + 14(0.246) - 20 - 16(0.795) = V_{f}$$

$$V_{c} - V_{f} = 32.3756 V$$

$$DV_{cf} = 37.37V$$