W6 – 2.5 – Solving Inequalities MHF4U

_, Solve each linear inequality

a)
$$x + 3 \le 5$$

b) 7x < 4 + 3x

2) Solve each inequality by graphing

a)
$$(x + 3)(x - 2) > 0$$

Factor table	- 80	7 1	-3	7	9
12019		- 9		3	
	213	-	+	+	
	12-2	/200		+	
	Overal)	(F)	-	(A)	1

b)
$$(x+2)(3-x)(x+1) < 0$$

Solution: $\chi Z - 3$ or $\chi > 2$ $\chi \in (-\infty, -3) \cup (2, \infty)$

Solution:
$$-2< x < -1 \text{ or } x > 3$$

 $x \in (-2, -1) \cup (3, 0)$

Graph: Degree 3; Nagative L. C.

3) Solve each of the following polynomial inequalities

a)
$$x^2 - 7x + 10 \ge 0$$

 $(2-2)(2-5) \ge 0$

- pi	0	3	6	00.
2-2	-	+	+	
1-5	324	_	+	
oveall	(1)	-	(+)	

Degree 2 + L.C.

c)
$$-x^2 + 36 \ge 0$$

$$-1(2-6)(2+6) > 0$$

-09	-71	09	7 1	
-1	-	-	_	
4-6	- \	~	+	
46	-	+	+	
vall	-	1	1 -	1

Evendeg.

b)
$$x^3 + 6x^2 - 16x > 0$$

 $\chi(\chi^2 + 6\chi - 16) > 0$

- 00	-10	-19	17	3 °	٥
N		-	+	+	
111 5	-	+	+	+	
X+8	-	_		+	
oveall	-	to	1_	(F)	

Solution:
$$-82x00$$
 or $x>2$
 $x\in(-8,0)\cup(2,\infty)$

Degree 3 + L.C.

d)
$$x^4 - 26x^2 + 25 > 0$$

$$(\chi^2 - 25)(\chi^2 - 1) > 0$$

$$(x-5)(x+5)(x-1)(x+1) > 0$$

- 0	-6	-2	0	2 }	6	
2-5		-	- \	_	+	
74+5		+	+	+	+	
7-1	-	_	_	+	+	
x+1	_	-	+	1	+	
overa 11	(±)	-	E	-	(A)	

e)
$$x^3 - 3x^2 \ge 25x - 75$$

 $\chi^3 \cdot 3\chi^3 - 35\chi + 75 > 0$

- a	-61	03	45	60	
x-3	-\	-	+	+	
V-5	124	2	-	+	
2+5	-	+	+	1+1	
overal	-	(+)	\ ~	(F)	

odddlg.

$f) - x^3 + 28x + 48 \ge 0$	-2	-1	0	28	48	
$(x+2)(-x^2+2x+24) \ge 0$ -1 $(x+2)(x^2-2x-24) \ge 0$					-48 R	+
$-1(x+2)(x-6)(x+4) \ge 0$)	72	X	出	R	
1-51-32 6 700						

-0	7 - 6	1 -0	2 6	0	٥
-11-1	-51	-3	01	7	
-1	_	-	- 1	_	
242	-	-	+	+	
2-6	-	-	-	4	
744	_	+	+	+	
verall	(+)	-	(+)	-	

Solution: $\chi \leq -4$ or $-2 \leq \chi \leq 6$ $\chi \in (-\infty, -4] \cup [-2, 6]$

odd Day

g)
$$x^3 - 2x^2 - 5x + 6 < 0$$
 f(1) = 0; & 1-1 is a factor h) $5x^3 - 12x^2 - 11x + 6 \le 0$ f(-1)=0; 1+1 is a factor

$$(x-1)(x^2-x-6)<0$$

 $(x-1)(x-3)(x+2)<0$

(x	-()	(x-	3)(X.	+2)
- (-3	0	اعا	4	00
X-1	-	-	+	+	
12-3	-	-		+	
747	-	+	+	+	
nerall	2	+	0	+	

$$(x+1)(5x^2-17x+6) \le 0$$

 $(x+1)(5x-2)(x-3) \le 0$

-	1 - 1	21	د ۲		
	-2	0	1	4	00
2+1	_	*	+	+	
X+1 5x-2	-	_	+	+	
1-3	-		-	+	
owall	10	+	10	+	

Solution: $\chi \le -1$ or $\frac{2}{5} \le \chi \le 3$ $\chi \in (-\infty, -1] \cup [\frac{2}{5}, 3]$

Odd deg.

Solution: x	16-2 or 16263
XE	(-0,-2)U(1,3)
odd deg	1
Q_{-}	-3

4) The price, p, in dollars, of a stock t years after 1999 can be modelled by the function $p(t) = 0.5t^3 - 5.5t^2 + 14t$. When will the stock be more than \$90? You may use technology to help you determine the solution.

$$0.5t^{3}-5.5t^{2}+14t>90$$

 $0.5t^{3}-5.5t^{2}+14t-90>0$

Using Desmos:

-70

Solution: t>10 tE(10,00)

& The stock will be more than \$90 offer 10 years.

ANSWER KEY

1)a)
$$x \le 2$$
 b) $x < 1$

2)a)
$$x < -3$$
 or $x > 2$ **b)** $-2 < x < -1$ or $x > 3$

3)a)
$$x \le 2$$
 or $x \ge 5$ b) $-8 < x < 0$ or $x > 2$ c) $-6 \le x \le 6$ d) $x < -5$ or $-1 < x < 1$ or $x > 5$

e)
$$-5 \le x \le 3$$
 or $x \ge 5$ f) $x \le -4$ or $-2 \le x \le 6$ g) $x < -2$ or $1 < x < 3$

h)
$$x \le -1$$
 or $\frac{2}{5} < x < 3$

4) after 10 years (2009)