

(L.7) Une équiphence en logique VC ∈ AxB p(c) <> Va ∈ A VA ∈ B. p(a, G))

L& si t ens also \$x A = A x \$P = \$

(19) in ACA' et BCB' => AxBCAxB'.

C3 Relations & relations d'ordre

(D1) (Relation) \mathcal{R} est une relation entre A et \mathcal{B} in \mathcal{R} $\subset A \times \mathcal{B}$. \mathcal{R} \mathcal{C} \mathcal{R} \mathcal{C} \mathcal{R} \mathcal{C} \mathcal{C}

R-1 = det (b,a) E Bx A | (a,6) & Rg

Pax définio: RCAXBCAXB? $\Im m(R) = \exists y \in B \mid \exists a : (n,y) \in R$

(23) A,B,C,D, & révision+ RC AxB et RC CxD

D9 $J_m(R) \stackrel{\text{def}}{=} \{ y \in B \mid \exists a : (x,y) \in R \}.$ Dem (R) = Im (R-1) = freA (Fy: (y, x) E R-3 $2om(R^{-1}) = Im(R) = 3 \Rightarrow 3$

Dom (R) CA et Jm(R) CB

(D) Image direct de X par la relat P. RCXI, R[x] = 16 e Im(R) | Za EX (G, C) ERS

· R-1[Y] = fa & Im(R-1) | 36 6 4 (b,a) & R-19 = {a ∈ Dom(R) / 36 ∈ 4. (a, b) ∈ R }

(i) R[x] = [beB |] nex: (n, 6) eRg (ii) RI[Y] = fact 17y EY: (a,y) ERG $\Rightarrow \{y \in \mathcal{B} \mid \exists n : (x,y) \in \mathcal{R} \mathcal{G} = \{y \in \mathcal{D} \mid \exists n : (x,y) \in \mathcal{R} \} \ (\overline{u}i) \forall m(\mathcal{R}) = \mathcal{R} \subseteq \mathcal{A} \} \ \text{et } \mathcal{D}om(\mathcal{R}) = \mathcal{R}^{-1} \subseteq \mathcal{B} \}$

(La VA. A+16 = [38 FC: CES CO FDIDEN ON CES)

D. & Relat d'ordre R soit A ens, alors une relad d'ordre (partid) sur A est un sous-ensemble RCAXA verifiant (i), (ii), (iii).

Q a ⟨ b <=> (a,b) € ≤.

(i) $\forall a \in A : a \le a$ réflerivité (ii) $\forall a, b \in A : a \le b \text{ et } b \le a \Rightarrow a = b$ symitrie. (iii) Va, b, c E A: a < b of & SC => a < c transinté Rest total m: (iv) ta, b EA: a < B out < a.

(210) hi & est une relat d'ordre sur un ens A alors la relationimera > est auxi une relat d'ordo sur A. et si < est PR total alas > l'est aussi.

(iv) Y a, b EA il y a sure & une sol ppté vaie pourmi les trois: a < b, a = b et a>b. · CC P(A) x P(A) on C = d(n,y) & P(A) x P(A) /2 Cy &

C4- Applica Os

D1 (Applicate) soit frume relation tre 2 ens A et 3.
Chlors Jest appelée une applicate de A de B. l'en A et appelé
l'ens rource de l'applicat f et l'ens B est appelé l'ens but de l'applicat f si le sous-ens f C Ax B: (i) VneA Jy: (n,y) e f

(ii) $\forall x,y,z: [(x,y) \in f \text{ et } (x,z) \in f] \Rightarrow y=z.$ → sif CAxB on note f. A → B < → J CAxB on pt motor $b \in B$ por b = f(a): $b = f(a) \stackrel{\text{def}}{\Longrightarrow} (a,b) \in S.$

• $f:A \rightarrow B$ est injective $xi \in f \subset A \times S$. (iii) $\forall x,y,z : [(y,z) \in f \text{ et } (z,z) \in f] \Rightarrow y=z$. · fest surjective à (iv) tre B Jy: (y,x) Ef.

o bijective: injective & surjective.

(C13) YX,YCA: XRY (=> XCY.

(i) $\forall x \in A \exists y : (n,y) \in f \iff Dom(f) = A$ (ii) $\forall n,y,z : [(n,y) \in f \text{ et } (n,z) \in f] \Rightarrow y = z$ $\Rightarrow f : Dom(f) \longrightarrow B$

(3) $f:g:A \rightarrow B$, on a l'égalité f=g (b) $\forall a \in A: f(a) = g(a)$

 $\Delta = \{ C \in A \times A \mid \exists a \in A : C = (g, a) \}.$

Notat: D={(a,a)|a∈AJ.

L6) soit of CAXB une applicant de A dans B. closs la relat d'inverse f-1 CBXA est une applicat de B de A mi f est bijective.

PS $T_A = \{C \in (A \times B) \times A \mid \exists a \in A \exists b \in B : C = ((a_b b), a) \}$ et $T_B = \{C \in (A \times B) \times B \mid \exists a \in A \exists b \in B : C = ((a_b b), b) \}$ At the application de $A \times B$ down A et de $A \times B$ down Brespectivement $T_A((a_b b)) = a$ et $T_B((a_b b)) = b$.

Notation $T_A = d((a,b),a)$ | $a \in A$ et $B \in BS$ et $T_B = d((a,b),b)$ | $a \in A$ et $B \in BS$

PM sort A ens. Alors I 1 et 1 sh applicat f. \$\phi \tag{A}.

cette applicat est tips injective: elle est surjective

PM A = \$\phi\$. Pax contre, in A m'est pas vide, alors \$\frac{1}{2}\$

ch'applicat de A dans \$\phi\$.

(1) (Composito)

So $R = 2(a,c) \in Ancl \exists \theta : (a,b) \in R \text{ et } (b,c) \in Sg.$

L12 soit A, B et C trois ens, soit $f: A \rightarrow B$ une applie de A dans B et soit $g: B \rightarrow C$ une applicat de B do C. Others la rulate $g \circ f \subset A \times C$ est une applicat de A de C.