Cognome	Nome
Matricola	Numero di CFU Fila 1
Università degli Studi di Bologna Esame di LOGICA PER L'INFO Utilizzare i riquadri bianchi per le risposte. Se strettan coda con ulteriore testo, indicando in alto nome, cognon	RMATICA (9 CFU), 16/02/2024 nente necessario, si può allegare un foglio protocollo in
L1 (5 punti). Definiamo in teoria degli insiemi il seguente	predicato di overlap fra due insiemi:
$A)B := \exists X.$	$(X \in A \land X \in B)$
Dimostrare in teoria degli insiemi che $\forall A.$ (abbreviare uno o più passi di deduzione nat	$((\exists C.A)(C) \Rightarrow \exists B.A \not\subseteq B)$. Ogni passaggio deve turale intuizionista al prim'ordine.
Esplicitare l'enunciato di tutti gli assiomi ut	tilizzati nella dimostrazione.
Assioma dell'insieme vuoto: $\forall X.X \notin \emptyset$ Teorema: $\forall A.((\exists C.A)(C) \Rightarrow \exists B.A \not\subseteq B)$ Dimostrazione: sia A insieme t.c. $\exists C.A)(C$. Quin temente, $\exists X.(X \in A \land X \in C)$. Quindi sia X l' Dimostriamo $\exists B.A \not\subseteq B$ scegliendo l'insieme vuot Supponiamo $A \subseteq \emptyset$, ovvero $\forall Y.(Y \in A \Rightarrow Y \in$ l'assioma dell'insieme vuoto, assurdo. Qed.	'insieme t.c. $X \in A$ (H1) e $X \in C$ (H2). so per B e riducendoci a dimostrare $A \nsubseteq \emptyset$.

L2 (5 punti).	Dimostrare in deduzione naturale per la logica al prim'ordine il seguente enunciato.	Preferire
	una prova intuizionista a una classica ove possibile.	

$$\forall n. \forall m. (P(f(n), m) \Rightarrow P(n, f(m)), \quad \forall n. \exists m. P(f(n), f(m)) \vdash \exists z. P(m, f(z))$$

$$\frac{\forall n. \forall m. P(f(n), m) \Rightarrow P(n, f(m))}{\exists x. P(f(n), f(x))} \forall_e[f(y)/x] \frac{\forall x. P(f(m), x) \Rightarrow P(m, f(x))}{P(f(m), f(y)) \Rightarrow P(m, f(f(y)))} \forall_e[f(y)/x]}{\exists z. P(m, f(z))} \exists_i[f(y)/z] \exists_i[f(y)/z] \exists_z P(m, f(z))$$

	Cognome	Nom	ne	
	Matricola	Nun	nero di CFU	_ Fila 1
	_		$A~(9~\mathrm{CFU}),~16/02/26$ rio, si può allegare un fogli	024
3 (5 pı	unti). Si consideri il seguente rag	gionamento:		
	finire male e non ci sarà un	re allora la coppia si lascerà o matrimonio, se la coppia si la nio e l'amore sarà per sempr	scerà. Se diventerà una	a coppia aperta
		l ragionamento utilizzando la c ova intuizionista se possibile.	leduzione naturale per l	la logica propo-
	$\neg A \Rightarrow B \lor C, B \Rightarrow D \land \neg E,$	$C \Rightarrow E \land A \vdash A \lor D$		
	$ \begin{array}{c} \vdots \\ \hline A \lor \neg A \end{array} EM \qquad \begin{array}{c} \neg A \Rightarrow B \lor C \qquad [\neg A] \\ \hline B \lor C \end{array} $	$\Rightarrow e \qquad \frac{B \Rightarrow D \land \neg E \qquad [B]}{\frac{D \land \neg E}{A \lor D} \land e1} \Rightarrow e$ $\Rightarrow A \lor D$ $A \lor D$	$\begin{array}{c c} C \Rightarrow E \land A & [C] \\ \hline & E \land A \\ \hline & A \\ \hline & A \lor D \\ \hline & \lor e \\ \hline & A \lor D \\ \hline & \lor e \\ \hline \end{array} \Rightarrow_e$	$\frac{[A]}{{A\vee D}}\vee_{i1}$

Cogno	me	Nome					
Matric	cola	Numero di CFU	_ Fila 1				
	Università degli Studi di Bologna, Corso di Laurea in Informatica Esame di LOGICA PER L'INFORMATICA (9 CFU), 16/02/2024 Utilizzare i riquadri bianchi per le risposte. Se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.						
	siderate la seguente sintassi per all ri: $T:=\emptyset \mid \langle T, \mathbb{Z}, T \rangle$ dove \mathbb{Z} gener	peri binari i cui nodi interni sono etichet ra tutti i numeri interi.	tati con numeri				
(a)	Scrivere per ricorsione strutturale di tutti gli interi contenuti nell'al	una funzione sum che, dato un albero, c bero.	alcola la somma				
(b)	_	e una funzione <i>prune</i> che, dato un alle gli interi negativi sono stati rimpiazzati					
(c)	intuizionista a una classica ove pe	urale che $\forall T.sum(prune(T)) \geq 0$. Prefossibile. tilizzare come date le operazioni di som	_				
	_	nma che dice che la somma di numeri int					

(a) Prima arte di ricorsione strutturale:

```
sum(\emptyset) = 0
sum(\langle T_1, x, T_2 \rangle) = sum(T_1) + x + sum(T_2)
```

(b) Seconda arte di ricorsione strutturale:

```
prune(\emptyset) = \emptyset

prune(\langle T_1, x, T_2 \rangle) = \langle prune(T_1), \text{ if } (x \ge 0) \text{ then } x \text{ else } 0, prune(T_2) \rangle
```

(c) Parte di induzione strutturale:

Teorema: $\forall T.sum(prune(T)) \geq 0$.

Dimostrazione: procediamo per induzione strutturale su T per dimostrare $sum(prune(T)) \geq 0$

- Caso \emptyset : dobbiamo dimostrare $sum(prune(\emptyset)) \ge 0$ o, equivalentemente, $0 \ge 0$. Ovvio per la proprietà riflessiva del \ge .
- Caso $\langle T_1, x, T_2 \rangle$: per ipotesi induttiva $sum(prune(T_1)) \geq 0$ (II1) e $sum(prune(T_2)) \geq 0$ (II2). Dobbiamo dimostrare $sum(prune(\langle T_1, x, T_2 \rangle)) \geq 0$ o, equivalentemente, $sum(prune(T_1)) + (if (x \geq 0) \text{ then } x \text{ else } 0) + sum(prune(T_2)) \geq 0$. Dimostriamo che if $(x \geq 0)$ then $x \text{ else } 0 \geq 0$ per casi su $x \geq 0$:
 - Caso $x \ge 0 = true$: if (true) then x else $0 = x \ge 0$ in quando $x \ge 0$
 - Caso $x \ge 0 = false$: if (false) then x else $0 = 0 \ge 0$ per la proprietà riflessiva del >

La tesi consegue dalle ipotesi induttive II1 e II2, da quanto appena dimostrato e dalla proprietà dei numeri interi che dice che la somma di numeri non negativi è non negativa.

Qed.

Cognome	Nome	
Matricola	Numero di CFU	Fila 1

Università degli Studi di Bologna, Corso di Laurea in Informatica Esame di LOGICA PER L'INFORMATICA (9 CFU), 16/02/2024

Utilizzare i riquadri bianchi per le risposte. Se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.

A5 (3 punti). Per ciascuno dei seguenti enunciati, indica se é vero o falso. Se falso, scrivi un controesempio.

	Linguaggio	V	· F (scrivi controesempio)
(a)	$(\mathbb{R}, \times, 0)$ forma un monoide.		No, 0 non é l'elemento neutro per \times .
(b)	Considera il monoide $(\mathbb{L}, ++, [])$ dove \mathbb{L} é l'insieme di liste di numeri naturali, $++$ é la concatenazione di liste, e $[]$ é la lista vuota. La funzione $f: \mathbb{L} \to \mathbb{L}$ definita come $f(l) = 0 :: l$ é un morfismo di monoidi da $(\mathbb{L}, ++, [])$ a $(\mathbb{L}, ++, [])$.		f([1,2] + +[1]) = [0,1,2,1] ma $f([1,2]) + +f([1]) = [0,1,2,0,1].$
(c)	$(\mathcal{P}(X), \cup, \emptyset, \cap)$, dove $\mathcal{P}(X)$ é l'insieme dei sottoinsiemi di un dato insieme X , é un semianello.	Si	

A6 (3 punti). Sia $f: \mathbb{A} \to \mathbb{B}$ un morfismo tra strutture algebriche \mathbb{A} e \mathbb{B} dello stesso tipo.

- (a) Definisci cosa si intende per immagine di f, notazione Imm(f).
- (b) Definisci cosa si intende per insieme quoziente di \mathbb{A} rispetto ad f, notazione $\mathbb{A}_{/\sim_f}$.
- (c) Enuncia il teorema fondamentale dei morfismi per $f: \mathbb{A} \to \mathbb{B}$.

- (a) Sia B il sostegno di B. L'immagine di f é il suo sottoinsieme $\{b \in B \mid \exists a. f(a) = b\}$.
- (b) Sia A il sostegno di \mathbb{A} . L'insieme quoziente ha come elementi le classi di equivalenza della relazione R su A definita da: $(a,b) \in R$ se e solo se f(a) = f(b).
- (c) $\mathbb{A}_{/\sim_f}$ é il sostegno di una struttura algebrica dello stesso tipo di \mathbb{A} , e tale struttura é isomorfa all'immagine di f.

A7 (4 punti). Sia (X, \circ, e, e^{-1}) un gruppo abeliano, con operazione binaria \circ , elemento neutro e, ed operazione unaria \cdot^{-1} . Sia $Y \subseteq X$ un sottoinsieme non vuoto di X. Assumiamo che:

- (I) X é un insieme finito, diciamo di k elementi, che indichiamo come $\{a_1, a_2, \ldots, a_k\}$.
- (II) Y é chiuso sotto l'operazione \circ , cioé $x \in Y$ e $y \in Y$ implica $x \circ y \in Y$.

Dimostra le seguenti proposizioni (A), (B), (C), e (D):

- (A) Dimostra che, dati $a \in X$ e $b \in X$, $a \circ b = a$ implica b = e.
- (B) Definiamo per ricorsione sui numeri naturali:

$$\begin{array}{rcl} a^0 & = & e \\ a^{n+1} & = & a \circ a^n \end{array}$$

Per cui, ad esempio, $a^3 = a \circ (a \circ a)$. Dimostra che esiste j > 0 tale che $a^j = e$.

- (C) Dimostra che, se $a \in Y$, allora $a^{-1} \in Y$.
- (D) Dimostra che $(Y, \circ, e, ^{-1})$ forma un sottogruppo di $(X, \circ, e, ^{-1})$.

Nota che nel dimostrare ciascuna proposizione puoi assumere le precedenti come date.

Cognome	Nome	
Matricola	Numero di CFU	Fila 1

Università degli Studi di Bologna, Corso di Laurea in Informatica Esame di LOGICA PER L'INFORMATICA (9 CFU), 16/02/2024

Utilizzare i riquadri bianchi per le risposte. Se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.

- Dimostriamo che, se $a=a\circ b$, allora b deve essere e. Abbiamo che $e=a^{-1}\circ a=a^{-1}\circ (a\circ b)=(a^{-1}\circ a)\circ b=e\circ b=b$.
- Dal momento che X é finito, esiste j > 0 per cui $a^{n+j} = a^n$. Per definizione, $a^{n+j} = a^n \circ a^j$. Perció $a^n \circ a^j = a^n$, che implica $a^j = e$ per la proposizione precedente.
- Supponi $a \in Y$. Per la proposizione precedente, abbiamo m tale che $a^{m+1} = e$. Perció $a \circ a^m = a^{m+1} = e$. Quindi a^m é l'elemento inverso di a. (Nota che non dobbiamo anche dimostrare $a^m \circ a = e$ in quanto il gruppo é abeliano.) Per definizione di a^n , dal momento che per assunzione Y é chiuso rispetto all'operazione \circ , abbiamo che $a^n \in Y$ per ogni n > 0. Inoltre, per n = 0, abbiamo anche che $a^n = e$ é in Y per la proposizione precedente. Perció in particolare l'inverso a^m di a é in Y.
- Abbiamo giá dimostrato che Y é chiuso rispetto all'operazione $^{-1}$, e per assunzione é chiuso rispetto all'operazione \circ . Rimane da dimostrate che contiene l'elemento neutro e. Dato $a \in Y$, abbiamo che $a^{-1} \in Y$, e anche $a \circ a^{-1} \in Y$. Dato che $a \circ a^{-1} = e$, questo conclude la dimostrazione. Alternativamente, possiamo utilizzare Proposizione (B).