Fundamentals of signals and systems

Course instructor: Dr. Baraka Maiseli

Department of Electronics and Telecommunications Engineering College of Information and Communication Technologies University of Dar es Salaam

June 3, 2018

Unit 4 Random signals and noise

- \triangleright Consider a random experiment that generates a sample space S
- Let S contain the sample points $s_1, s_2, \ldots, s_n, \ldots$
- For every $s_j \in S$, let $x(s_j, t)$ or $x_j(t)$ be a real-valued function of time

- ▶ The Figure in the previous slide shows a simple random process containing a set of waveforms, $x_j(t)$, associated with the sample points in S: s_1 , s_2 , s_3 , and s_4
- Each point s_j of S has $x_j(t)$ and probability P_j
- Let us observe the waveforms at particular time intervals, say t_1 and t_2
- For $j = 1, 2, 3, 4, x_j(t_1)$ and $x_j(t_2)$ give two random variables

- Random process (RP), denoted by X(t) contains the probability system with the following attributes:
 - ▶ Sample space
 - ▶ Ensemble (collection) of time functions
 - Probability measure
- ▶ RP denotes a function of two variables, namely s and $t \in (-\infty, \infty)$

- ▶ Generally, X(s,t) denotes a random process. For convenience, we will use X(t)
- $> x_j(t)$ (the individual waveforms in the Figure) denote sample functions
- Probability measure assigns the probability to any meaningful event in $x_i(t)$

Random processes

Definition of quantities

- \rightarrow X(t): Random process
- $\rightarrow x_i(t)$: Sample function associated with s_i
- ▶ $X(t_i)$: Random variable obtained by observing the process at $t = t_i$
- ▶ $x_j(t_i)$: Real-valued number, generating the value of $x_j(t)$ at $t = t_i$

Example

Let a fair coin be tossed, and consider a random process X(t) with the following definition:

$$X(t) = \begin{cases} \sin \pi t, & \text{Head shows up} \\ 2t, & \text{Tail shows up} \end{cases}$$

- ▶ Sketch the sample functions
- \blacktriangleright Find PDFs of the RVs by sampling the process at t=0 and t=1

Example

Let a fair die be thrown. A set of all possible outcomes (sample space) includes six sample points s_1, s_2, \ldots, s_6 corresponding to six die faces. If the sample functions are given by $x_i(t) = \frac{1}{2}t + (i-1), i = 1, \ldots, 6$ then find the mean of X = X(t) at t = 1

Note: In the given examples, (1) Number of sample functions is known, and (2) Sample functions can mathematically be modeled. In some situations, these conditions cannot be achieved.

Random processes

Example

Let a large storage box contain N identical resistors. Consider an experiment of randomly picking a resistor from the box, which results in the probability P. Also, consider that sample functions are represented by voltages across terminals of the resistors.

- **1** What happens to P as $N \to \infty$?
- ② Can we accurately describe time variation for any given waveform? Are the waveforms deterministic?
- **3** What makes this experiment random?
- Sketch the ensemble for this experiment

Stationarity

- The random process X(t) generates an infinite number of random variables in the range $-\infty < t < \infty$
- ② Let X(t) be observed at the time instants t_1, t_2, \ldots, t_n
- **3** Hence, we have the random variables $X(t_1), X(t_2), \ldots, X(t_n)$
- The Joint Distribution Function of $X(t_i)$, i = 1, 2, ..., n, can be given in vector form as

$$F_{X(t)}(x) = P\{X(t_1) \le x_1, \dots, X(t_2) \le x_2\}:$$

 $X(t) = \{X(t_1), \dots, X(t_2)\}, \text{ and } x = \{x_1, \dots, x_n\}$

Stationarity

1 Hence, joint PDF of $F_{X(t)}(x)$ is defined by

$$f_{X(t)}(x) = \frac{\partial^n}{\partial x_1 \partial x_2 \dots \partial x_n} F_{X(t)}(x)$$

Random processes

Stationarity

Let a random process X(t) pass through a set of windows (stationary points)

Stationarity

If $f_{X(t)}(x)$ is known, how can we compute the probability of an event

$$A = \{s : a_1 \le X(t_1) \le b_1, a_2 \le X(t_2) \le b_2, a_3 \le X(t_3) \le b_3\}?$$

Intuitively,

$$P(A) = \int_{a_1}^{b_1} \int_{a_2}^{b_2} \int_{a_3}^{b_3} f_{X(t)}(\mathbf{x}) \ d\mathbf{x}$$

Where
$$X(t) = \{X(t_1), X(t_2), X(t_3)\}$$
 and $dx = dx_1 dx_2 dx_3$

Stationarity

- A random process is said to be *Strictly Stationary* or *Stationary in Strict Sense* (SSS) if the joint PDF $f_{X(t)}(x)$ is invariant to translation of the time origin
- X(t) is SSS if

$$f_{X(t+T)}(x) = f_{X(t)}(x)$$

Where
$$(t + T) = \{t_1 + T, t_2 + T, \dots, t_n + T\}$$

Stationarity

Implication of stationarity:

- \blacktriangleright Let X(t) be SSS
- \blacktriangleright Then, probability of a set of sample functions of X(t) passing through the selected windows equals probability of a set of sample functions passing through the corresponding time shifted windows. The two pairs of sample functions are unnecessarily the same.

Random processes

Stationarity

Example:

Let $X(t) = \sin 2\pi F t$, where F denotes a random variable with PDF

$$f_F(f) = \begin{cases} \frac{1}{100}, & 100 \le f \le 200Hz\\ 0, & \text{Elsewhere} \end{cases}$$

Show that X(t) is non-stationary.

▶ Hint: Plot a few members of the ensemble, say with f = 100, 150, and 200. Observe behavior of the ensemble at t = 0, 0 < t < 2.5ms, and -2.5 < t < 0. Compute $X(t_1)$ for $t_1 = 1ms$ and $X(t_2)$ for $t_2 = -1ms$. Note that SSS process is independent of the observation instant.

Stationarity

Example:

▶ Hint: Plot a few members of the ensemble, say with f = 100, 150, and 200. Observe behavior of the ensemble at t = 0, 0 < t < 2.5ms, and -2.5 < t < 0. Compute $X(t_1)$ for $t_1 = 1ms$ and $X(t_2)$ for $t_2 = -1ms$. Note that SSS process is independent of the observation instant.

Ensemble averages

- ▶ Characterization of a random process depends on the availability of $f_{\boldsymbol{X}(t)}(\boldsymbol{x})$
- ▶ If $f_{X(t)}(x)$ is unknown, we may need to use *ensemble averages* to characterize the random process
 - Mean
 - ▶ Auto-correlation
 - Auto-covariance

Ensemble averages

Mean

$$m_X(t) = \overline{X(t)} = \int_{-\infty}^{\infty} x f_{X(t)}(x) \ dx$$

Let X_i be a random variable generated by sampling the random process at $t = t_i$. Then,

$$m_X(t_i) = \overline{X_i} = \int_{-\infty}^{\infty} x f_{X_i(t)}(x) \ dx$$

Ensemble averages

Auto-Correlation Function (ACF)

- \blacktriangleright Function of two variables, t_i and t_j
- Let $R_X(t_i, t_j)$ denote ACF of X(t). Then, $R_X(t_i, t_j) = E[X(t_i)X(t_j)]$
- ▶ Let the Joint PDF between $X(t_i)$ and $X(t_j)$ be $f_{X_i,X_j}(x,y)$. Then,

$$R_X(t_i, t_j) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{X_i, X_j}(x, y) \ dxdy$$

Ensemble averages

Auto-Correlation Function (ACF)

Properties: Let $R_X(\tau) = E[X(t+\tau)X(t)]$, where τ denotes the sampling time difference, be ACF of a wide sense stationary process X(t). Then,

- Mean square value of the process: $R_X(0) = E[X^2(t)]$
- **2** ACF is an even function of τ : $R_X(-\tau) = R_X(\tau)$
- **3** The origin gives the maximum ACF: $R_X(0) \ge |R_X(\tau)|$
- ① If the sample functions of X(t) are periodic, then ACF is also periodic with the same period

Ensemble averages

Auto-Covariance Function

- Function of two variables, t_i and t_j
- ▶ Let $C_X(t_i, t_j)$ denote the auto-covariance function of X(t). Then, $C_X(t_i, t_j) = E[(X(t_i) m_X(t_i))(X(t_j) m_X(t_j))]$
- ▶ Assignment: Show that

$$C_X(t_i, t_j) = R_X(t_i, t_j) - m_X(t_i)m_X(t_j)$$

A random process with zero mean value $(m_X(t) = 0)$ has $C_X(t_i, t_i) = R_X(t_i, t_i)$

Ensemble averages

Auto-Covariance Function

- ▶ Mean value of a stationary process is constant
- ▶ That is

$$m_X(t) = m_X$$

Show that if X(t) denotes a stationary process, then

- $R_X(t_i, t_j) = E[X(t_i t_j)X(0)] = R_X(t_i t_j, 0)$
- $C_X(t_i, t_j) = C_X(t_i t_j, 0)$

Ensemble averages

Auto-Covariance Function

Wise Sense Stationary (WSS) processes satisfy the following conditions:

• Constant mean value:

$$m_X(t) = m_X$$

2 Time-difference dependence of ACF:

$$R_X(t_i, t_j) = R_X(t_i - t_j, 0)$$

Random signals and noise Ensemble averages

Example

Consider an experiment of tossing a fair die. Assume that the sample functions corresponding to every sample point s_i , i = 1, 2, ..., 6, are given by $x_i(t) = \frac{1}{2}t + (i-1)$. Find $R_X(2,4)$. (Ans. 18.66)

Ensemble averages

Question

Consider a random process X(t) with six equally likely sample functions, defined by $x_i(t) = it$, i = 1, 2, ..., 6. Let X and Y be the random variables obtained by sampling the process at t = 1 and t = 2, respectively. Find

- \bullet E[X] and E[Y]
- \bullet $f_{X,Y}(x,y)$
- **3** $R_X(1,2)$

Random signals and noise Ensemble averages

Question

A random process X(t) consists of five sample functions, each with an occurrence chance of $\frac{1}{5}$. Four of these sample functions are $x_1(t) = \cos 2\pi t - \sin 2\pi t$, $x_2(t) = \sin 2\pi t - \cos 2\pi t$, $x_3(t) = -\sqrt{2}\cos t$, and $x_4(t) = -\sqrt{2}\sin t$. Find the fifth sample function $x_5(t)$ such that X(t) is (i) zero mean, and $R_X(t_1,t_2) = R_X(|t_1-t_2|)$. Let V be the random variable of X(t) at t=0 and let W be the random variable at $t=\frac{\pi}{4}$. Show that the process is WSS, and that, despite this condition, $f_V(v) \neq f_W(v)$.

Ensemble averages

Correlation

- Consider two random processes, X(t) and Y(t)
- Let t_1 and t_2 be the time instants that X(t) and Y(t) were observed, respectively
- ▶ The cross-correlation between these processes is given by

$$R_{X,Y}(t_1, t_2) = E[X(t_1)Y(t_2)]$$

Ensemble averages

Correlation

▶ Alternatively,

$$R_{X,Y}(t_1, t_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{X,Y}(x, y; t_1, t_2) \ dx \ dy$$

▶ The auto-correlation function of X(t) contains two variables, t_k and t_i , and is given by

$$R_X(t_k, t_i) = E[X(t_k)X(t_i)]$$

Ensemble averages

Correlation

▶ Alternatively,

$$R_{X,Y}(t_1, t_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{X,Y}(x, y; t_1, t_2) \ dx \ dy$$

▶ The auto-correlation function of X(t) contains two variables, t_k and t_i , and is given by

$$R_X(t_k, t_i) = E[X(t_k)X(t_i)]$$

Ensemble averages

Questions

- Consider the previous example of throwing a die. Find $R_X(2,4)$. (Ans: 18.66)
- ▶ Consider six equally likely sample functions, given by $x_i(t) = it$ (i = 1, ..., 6), of a random process X(t). Let X and Y be random variables obtained by sampling the process at t = 1 and t = 2, respectively. Find
 - \blacktriangleright E[X] and E[Y]
 - $F_{X,Y}(x,y)$
 - $R_X(1,2)$

Transmission of random processes through LTI systems

- ▶ LTI systems can be excited by random signals
- ▶ Let h(t) denote the known impulse response of the LTI system being excited by a random process X(t) to produce an output Process Y(t)
- Objective: To characterize Y(t) in terms of X(t) and h(t)

Transmission of random processes through LTI systems

- ▶ Let $x_i(t) \in X(t)$ be the sample function of X(t)
- ▶ Let $y_i(t) \in Y(t)$ be the corresponding output
- ▶ Then,

$$y_j(t) = \int_{-\infty}^{\infty} h(\tau)x_j(t-\tau) d\tau$$

Transmission of random processes through LTI systems

▶ Because the equation for $y_j(t)$ is true for all sample functions of X(t), then

$$Y(t) = \int_{-\infty}^{\infty} h(\tau)X(t-\tau) d\tau$$

 \blacktriangleright Computing mean of the output process Y(t), we have

$$m_Y(t) = E[Y(t)] = E\left[\int_{-\infty}^{\infty} h(\tau)X(t-\tau) d\tau\right]$$

Transmission of random processes through LTI systems

- ▶ If E[X(t)] is finite $\forall t$ and the system is stable then orders of expectation and integration can be interchanged with respect to τ
- ▶ Hence,

$$m_Y(t) = E[Y(t)] = \int_{-\infty}^{\infty} h(\tau) E[X(t-\tau)] d\tau$$

Note that $h(\tau)$ is deterministic, and can be taken outside the expectation operator $E[\cdot]$

Transmission of random processes through LTI systems

- Given that X(t) is WSS, then $E[X(t)] = m_X$ (constant value)
- ▶ Hence,

$$m_Y(t) = m_X \int_{-\infty}^{\infty} h(\tau) d\tau = m_X H(0)$$

Where H(0) denotes the transfer function H(f) of the system at f = 0

 $m_Y(t)$ is constant

Transmission of random processes through LTI systems

Question

▶ Show that

$$R_Y(t, u) = \int_{-\infty}^{\infty} h(\tau_1) \ d\tau_1 \int_{-\infty}^{\infty} h(\tau_2) R_X(\tau - \tau_1 + \tau_2) \ d\tau_2$$

Where $\tau = t - u$. From this equation, explain why X(t) is WSS.

 $ightharpoonup R_Y(t,u)$ is a function of t-u only, and thus $R_Y(t,u)=R_Y(\tau)$

Power spectral density (PSD) of random processes

- Provides frequency domain description of stationary random processes
- Given by

$$S_X(f) = \int_{-\infty}^{\infty} R_X(\tau) e^{-j2\pi f \tau} d\tau$$

▶ From the PSD formula,

$$R_X(\tau) = \int_{-\infty}^{\infty} S_X(f) e^{j2\pi f \tau} df$$

Power spectral density (PSD) of random processes

Properties

▶ PSD of a WSS process at f = 0 equals the total area under the ACF curve:

$$S_X(0) = \int_{-\infty}^{\infty} R_X(\tau) \ d\tau$$

▶ Mean square value of a WSS process equals the total area under the PSD curve:

$$E[X^{2}(t)] = \int_{-\infty}^{\infty} S_{X}(f) df$$

- $S_X(-f) = S_X(f)$
- $S_X(f) \geq 0$

Random signals and noise Power spectral density (PSD) of random processes

Example

Let $X(t) = A\cos(\omega_c t + \Theta)$, where A and ω_c are constants, and Θ denotes a random variable with PDF

$$f_{\Theta}(\theta) = \begin{cases} \frac{1}{2\pi}, & 0 \le \theta \le 2\pi \\ 0, & \text{Otherwise} \end{cases}$$

Find

- \bullet $m_X(t)$ and $R_X(t_1, t_2)$
- PSD

- Contains great practical and mathematical significances
 - ▶ Most real-world noise processes interfering with communication systems can be described using Gaussian processes
 - Mathematical analysis of Gaussian processes is feasible

- Let X(t) be sampled at time instants t_1, t_2, \ldots, t_n
- Let $X(t_1) = x_1, X(t_2) = x_2, \dots, X(t_n) = x_n$ and \boldsymbol{x} represent a row vector $\{x_1, x_2, \dots, x_n\}$
- For X(t) to be Gaussian, $f_X(x)$ must be an n-dimensional joint Gaussian density for every $n \ge 1$ and $(t_1, t_2, \dots, t_n) \in (-\infty, \infty)$

 \blacktriangleright The *n*-dimensional Gaussian PDF is given by

$$f_X(x) = rac{1}{(2\pi)^{rac{n}{2}} |C_X|^{rac{1}{2}}} \exp\left[-rac{1}{2}(x-m{m}_X)C_X^{-1}(x-m{m}_X)^T
ight]$$

where $|C_X|$ denotes determinant of the covariance matrix C_X , whose inverse is given by C_X^{-1} ; m_X represents the mean vector: $\{\overline{x_1}, \overline{x_2}, \dots, \overline{x_n}\}$; and T denotes transpose.

▶ The covariance matrix is given by

$$C_X = \begin{bmatrix} \lambda_{11} & \lambda_{12} & \dots & \lambda_{1n} \\ \lambda_{21} & \lambda_{22} & \dots & \lambda_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \lambda_{n1} & \lambda_{n2} & \dots & \lambda_{nn} \end{bmatrix}$$

where
$$\lambda_{ij} = \text{cov}[x_i, x_j] = E[(x_i - \overline{x_i})(x_j - \overline{x_j})]$$

$$(x - m_X) = (x_1 - \overline{x_1}, x_2 - \overline{x_2}, \dots, x_n - \overline{x_n})$$

Example

 X_1 and X_2 are two joint Gaussian variables with $\overline{X_1} = \overline{X_2} = 0$ and $\sigma_1 = \sigma_2 = \sigma$. The correlation coefficient between X_1 and X_2 is ρ . Write the joint PDF of X_1 and X_2 in matrix and expanded forms.

- ▶ Electronic communication systems consist of various circuit components: inductors (L), resistors (R), capacitors (C), transistors, and diodes, among others
- ▶ These components, even when in non-operational state, generate internal circuit noise because of random movement of electrons caused by temperature
- ▶ This noise limits quality of communication systems

- ▶ Major noise types in communication systems are
 - Thermal noise
 - 2 Shot noise
- ▶ Thermal noise in metallic resistors was first studied by Johnson and Nyquist. Hence, this noise type is also referred to as Johnson (or resistance) noise
- Assignment: Describe the origin of thermal noise in electronic circuits

White noise

- ▶ Has noise quantity with flat power spectrum
- ▶ Contains PSD with frequency components in equal proportions between $-\infty < f < \infty$
- ▶ Has PSD given as

$$S_W(f) = \frac{N_0}{2}$$

(Unit: Watts/Hz)

White noise

- ▶ The constant $\frac{1}{2}$ in $S_W(f)$ means 50% of the power is associated with positive frequencies, and the remaining 50% corresponds to negative frequencies
- ▶ ACF of a white noise is given by

$$R_W(\tau) = \frac{N_0}{2}\delta(\tau)$$

▶ WGN (White Gaussian Noise) refers to a Gaussian process that contains white noise

Narrowband noise

- In communication theory, we are usually concerned with NarrowBand BandPass (NBBP) signals
- ▶ Spectrum of NBBP signals is concentrated around a (nominal) center frequency f_c
- \blacktriangleright Bandwidth of NBBP signals is smaller than f_c

Narrowband noise

- Let N(t) represent the noise process at the output of a narrowband filter generated in response to a white noise process W(t)
- ▶ $S_W(f) = \frac{N_0}{2}$; if H(f) denotes the filter transfer function, then

$$S_N(f) = \frac{N_0}{2} |H(f)|^2$$

Random signals and noise Reference

The materials in this Lecture have been based largely on Chapter 3 of the book *Principles of Communication*, "Random signals and noise," by V. Venkata Rao

End of Unit 4