Matrix series

Introduction to dynamical systems #4

Hiroaki Sakamoto

§ Contents

- 1 Numerical series and convergence
 - 1.1 Sequences and series
 - 1.2 Tests for convergence
- 2 Matrix series and convergence
 - 2.1 Powers of matrices
 - 2.2 Matrix series and its convergence

1 Numerical series and convergence

1.1 Sequences and series

• Cauchy sequences

• A sequence $\{a_k\}$ in $\mathbb R$ is said to be a *Cauchy sequence* if for every $\varepsilon > 0$, there is an integer $n \in \mathbb N$ such that

$$l \geq m \geq n \implies |a_1 - a_m| < \varepsilon$$

- Cauchy criterion: for a sequence $\{a_k\}$ in \mathbb{R} , the following are euqivalent:
 - it converges to some $a \in \mathbb{R}$: for every $\varepsilon > 0$, there exists $n \in \mathbb{N}$ such that $|a_k a| < \varepsilon$ for all $k \ge n$
 - it is a Cauchy sequence

Series

o Given a sequence $\{a_k\}$ in \mathbb{R} , we define another sequence $\{s_t\}$ in \mathbb{R} by

$$s_t := \sum_{k=0}^t a_k = a_0 + a_1 + \ldots + a_t, \quad \forall t = 0, 1, 2, \ldots,$$

which is called a *series* and denoted as $\sum_k a_k$

- We say that a series $\sum_k a_k$ converges if $\{s_t\}$ converges
- By the Cauchy criterion, the following are equivalent:
 - a series $\sum_k a_k$ converges
 - for any $\varepsilon > 0$, there exists $n \in \mathbb{N}$ such that

$$l \ge m \ge n \implies \left| \sum_{k=m}^{l} a_k \right| < \varepsilon$$
 (1)

• It immediately follows that $\lim_{k\to\infty} a_k = 0$ whenever $\sum_k a_k$ converges:

$$\sum_{k} a_k$$
 is convergent \implies (1) with $l = m \implies \lim_{k \to \infty} a_k = 0$

Example

∘ If $a_k := x$ for all k and |x| < 1, then the series $\sum_k a_k$ converges:

$$\sum_{k=0}^{\infty} a_k = x^0 + x^1 + x^2 + \dots = (1-x)^{-1}$$
 (2)

1.2 Tests for convergence

Comparison test

- Consider a sequence $\{a_k\}$ in \mathbb{R}
- o If there exists another sequence $\{b_k\}$ in $\mathbb R$ such that
 - $\sum_k b_k$ converges, and
 - $|a_k|$ ≤ b_k for all $k \ge n_0$ for some fixed $n_0 \in \mathbb{N}$,

then $\sum_k a_k$ converges

- Proof:
 - Fix $\varepsilon > 0$
 - Since $\sum_k b_k$ converges, there exists $n_1 \in \mathbb{N}$ such that

$$l \ge m \ge n_1 \implies \left| \sum_{k=m}^l b_k \right| < \varepsilon$$

– Letting $n := \max\{n_0, n_1\}$, we then have $b_k \ge |a_k| \ge 0$ for all $k \ge n$ and thus

$$l \ge m \ge n \implies \left| \sum_{k=m}^{l} a_k \right| \le \sum_{k=m}^{l} |a_k| \le \sum_{k=m}^{l} b_k = \left| \sum_{k=m}^{l} b_k \right| < \varepsilon,$$

which implies $\sum_{k} a_k$ converges

Root test

• Consider a sequence $\{a_k\}$ such that the limit

$$r := \lim_{k \to \infty} |a_k|^{1/k}$$

exists in $\mathbb{R} \cup \{\infty\}$

- ∘ If r < 1, then $\sum_k a_k$ converges because:
 - Since r < 1, one can choose $\beta \in \mathbb{R}$ such that $r < \beta < 1$
 - Since $\lim_{k\to\infty} |a_k|^{1/k} = r$, there exists n_0 ∈ \mathbb{N} such that

$$k \ge n_0 \implies |a_k|^{1/k} < \beta \implies |a_k| < \beta^k$$

- Since $\sum_k \beta^k$ is convergent, so is $\sum_k a_k$ by the comparison test
- If r > 1, then $\sum_k a_k$ does not converge because:
 - Since r > 1 and since $\lim_{k \to \infty} |a_k|^{1/k} = r$, there exists $n \in \mathbb{N}$ such that

$$k \ge n \implies |a_k|^{1/k} > 1 \implies |a_k| > 1,$$

which means $\lim_{k\to\infty} a_k \neq 0$, violating the necessary condition for series convergence

• Ratio test

• Consider a sequence $\{a_k\}$ such that the limit

$$r := \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right|$$

exists in $\mathbb{R} \cup \{\infty\}$

- If r < 1, then $\sum_k a_k$ converges because:
 - − Since *r* < 1, one can choose β ∈ \mathbb{R} such that *r* < β < 1
 - Since $\lim_{k\to\infty} |a_{k+1}/a_k| = r$, there exists $n \in \mathbb{N}$ such that

$$k \ge n \implies |a_{k+1}/a_k| < \beta \implies |a_{k+1}| < \beta |a_k|$$

which implies $|a_k| < |a_n|\beta^{k-n}$ for all $k \ge n+1$

- Since $\sum_{k} |a_n| \beta^{k-n}$ is convergent, so is $\sum_{k} a_k$ by the comparison test
- If r > 1, then $\sum_k a_k$ does not converge because:
 - Since r > 1 and since $\lim_{k \to \infty} |a_{k+1}/a_k| = r$, there exists $n \in \mathbb{N}$ such that

$$k \ge n \implies |a_{k+1}/a_k| > 1 \implies |a_{k+1}| > |a_k|$$

which means $\lim_{k\to\infty} a_k \neq 0$, violating the necessary condition for series convergence

- · Power series and radius of convergence
 - A series $\sum_k a_k$ of the form

$$a_k := \alpha_k x^k \quad \forall k = 0, 1, 2, \dots,$$

is called a power series

• **Root test**: consider a power series $\sum_k \alpha_k x^k$ such that

$$\alpha := \lim_{k \to \infty} |\alpha_k|^{1/k}$$

exists in $\mathbb{R} \cup \{\infty\}$

- Define R ∈ \mathbb{R} ∪ {∞} by

$$R := \begin{cases} 0 & \text{if } \alpha \in \{-\infty, \infty\} \\ \infty & \text{if } \alpha = 0 \\ 1/\alpha & \text{otherwise} \end{cases},$$

which is called the *radius of convergence* of the power series $\sum_k \alpha_k x^k$

- If |x| < R, then $\sum_k \alpha_k x^k$ converges because $\lim_{k \to \infty} |\alpha_k x^k|^{1/k} = \lim_{k \to \infty} |\alpha_k|^{1/k} |x| = \alpha |x|$
- Similarly, if |x| > R, then $\sum_k \alpha_k x^k$ does not converge
- **Ratio test**: consider a power series $\sum_{k} \alpha_k x^k$ such that

$$\alpha := \lim_{k \to \infty} |\alpha_{k+1}/\alpha_k|$$

exists in $\mathbb{R} \cup \{\infty\}$

– The radius of convergence is given by $R := 1/\alpha$ because

$$\lim_{k \to \infty} \left| \frac{\alpha_{k+1} x^{k+1}}{\alpha_k x^k} \right| = \lim_{k \to \infty} \left| \frac{\alpha_{k+1}}{\alpha_k} \right| |x| = \alpha |x|$$

- Examples
 - What is the radius of convergence of the series defined in (2)?
- Does the following series converge? What is the radius of convergence?

$$\sum_{k=0}^{\infty} \frac{1}{k!} x^k := 1 + x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \dots$$
 (3)

2 Matrix series and convergence

2.1 Powers of matrices

- · Powers of Jordan blocks
 - Let $J_m(\lambda)$ be a Jordan block of size m:

$$J_{m}(\lambda) := \begin{bmatrix} \lambda & 1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda & 1 & \cdots & 0 & 0 \\ 0 & 0 & \lambda & \ddots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & 1 \\ 0 & 0 & 0 & \cdots & 0 & \lambda \end{bmatrix} = \lambda I + \underbrace{\begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \ddots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{bmatrix}}_{=:Z}$$

• It follows form the binomial theorem¹ that, for any $k \in \mathbb{N}$,

$$(\boldsymbol{J}_m(\lambda))^k = (\lambda \boldsymbol{I} + \boldsymbol{Z})^k = \sum_{l=0}^k \frac{k!}{l!(k-l)!} \lambda^{k-l} \boldsymbol{Z}^l,$$

where

$$Z^{0} = \begin{bmatrix} e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} & \cdots & e_{m} \end{bmatrix} = I$$
 $Z^{1} = \begin{bmatrix} 0 & e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & \cdots & e_{m-1} \end{bmatrix}$
 $Z^{2} = \begin{bmatrix} 0 & 0 & e_{1} & e_{2} & e_{3} & e_{4} & \cdots & e_{m-2} \end{bmatrix}$
 \vdots
 $Z^{m-1} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & \cdots & e_{1} \end{bmatrix}$

$$\mathbf{Z}^{l} = [\mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \cdots \ \mathbf{e}_{1}]$$
 $\mathbf{Z}^{l} = [\mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \cdots \ \mathbf{0}] = \mathbf{O} \quad \forall l \geq m$

• Consider the case with m = 4, for example:

and thus

¹For any $a, b \in \mathbb{R}$ and $k \in \mathbb{N}$, we have $(a+b)^k = a^k + ka^{k-1}b + \frac{k(k-1)}{2}a^{k-2}b^2 + \dots + \frac{k(k-1)}{2}a^2b^{k-2} + kab^{k-1} + b^k = \sum_{l=0}^k \frac{k!}{l!(k-l)!} a^{k-l}b^l$. The binomial theorem is also true for square matrices $A, B \in \mathbb{R}^{n \times n}$ provided that AB = BA.

In general,

$$(\mathbf{J}_{m}(\lambda))^{k} = \begin{bmatrix} c_{0}(k) & c_{1}(k) & c_{2}(k) & \cdots & c_{m-1}(k) \\ 0 & c_{0}(k) & c_{1}(k) & \cdots & c_{m-2}(k) \\ 0 & 0 & c_{0}(k) & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & c_{0}(k) \end{bmatrix}, \quad c_{l}(k) := \begin{cases} \frac{k!}{l!(k-l)!} \lambda^{k-l} & k \geq l \\ 0 & k < l \end{cases}$$

• Notice that for each l = 1, ..., m - 1

$$c_l(k) = \frac{k!}{l!(k-l)!} \lambda^{k-l} = \frac{k(k-1)\cdots(k-l+1)}{l(l-1)\cdots(l-l+1)} \lambda^{k-l} \le k^l \lambda^{k-l} \quad \forall k \ge l,$$

which, since $\lim_{k\to\infty} k^l \lambda^k = 0$ iff $|\lambda| < 1$, implies

$$\lim_{k \to \infty} c_l(k) = 0 \iff |\lambda| < 1$$

Therefore

$$\lim_{k\to\infty} (\mathbf{J}_m(\lambda))^k = \mathbf{O} \iff |\lambda| < 1$$

• Powers of Jordan matrices

• Let $J \in \mathbb{R}^{n \times n}$ be a Jordan matrix of the following form:

$$J = egin{bmatrix} J_{n_1}(\lambda_1) & O & \cdots & O \ O & J_{n_2}(\lambda_2) & \cdots & O \ dots & dots & \ddots & dots \ O & O & \cdots & J_{n_d}(\lambda_d) \end{pmatrix},$$

where $n_1 + n_2 + ... + n_d = n$

• The kth power of J is

$$J^k = egin{bmatrix} (J_{n_1}(\lambda_1))^k & O & \dots & O \ O & (J_{n_2}(\lambda_2))^k & \dots & O \ dots & dots & \ddots & dots \ O & O & \dots & (J_{n_d}(\lambda_d))^k \end{bmatrix}$$

and therefore

$$\lim_{k\to\infty} J^k = O \iff \max\{|\lambda_1|, |\lambda_2|, \dots, |\lambda_d|\} < 1$$

• Powers of general matrices

- Consider a square matrix $A \in \mathbb{R}^{n \times n}$
- Denote by $\rho(A) \in \mathbb{R}_+$ the largest (in absolute terms) eigenvalue of A, i.e.,

$$\rho(A) := \max\{|\lambda| \in \mathbb{R}_+ \mid \lambda \text{ is an eigenvalue of } A\},$$

which is called the *spectral radius* of *A*

• The *k*th power of *A* is

$$A^k = (VJV^{-1})^k = VJ^kV^{-1}$$

and therefore

$$\lim_{k\to\infty} A^k = \mathbf{O} \iff \mathbf{V}\left(\lim_{k\to\infty} \mathbf{J}^k\right) \mathbf{V}^{-1} = \mathbf{O} \iff \rho(\mathbf{A}) < 1$$

• Note: if $\rho(A) < 1$ and $\rho(B) < 1$, then $\rho(A \otimes B) < 1$

2.2 Matrix series and its convergence

- Geometric series and Neumann series lemma
- Let $A \in \mathbb{R}^{n \times n}$ be an arbitrary square matrix
- We define the *geometric series* generated by A as

$$\sum_{k=0}^{t} A^{k} := A^{0} + A^{1} + A^{2} + \ldots + A^{t}, \quad t = 0, 1, 2, 3, \ldots$$

• The following result is called the *Neumann series lemma*:

$$\sum_{k=0}^{t} A^{k} \text{ converges } \iff \rho(A) < 1$$

 \circ In particular, if ho(A) < 1, then $\sum_k A^k$ converges and

$$\lim_{t \to \infty} \sum_{k=0}^{t} A^k = (I - A)^{-1}$$

- Sufficiency (⇐=)
- Notice that

$$\sum_{k=0}^{t} A^{k} (I - A) = (A^{0} + A^{1} + A^{2} + \dots + A^{t}) (I - A) = I - A^{t+1}$$

Hence

$$\rho(A) < 0 \implies \lim_{t \to \infty} A^{t+1} = \mathbf{O} \implies \lim_{t \to \infty} \sum_{k=0}^{t} A^{k} \left(\mathbf{I} - A \right) = \mathbf{I} \implies \lim_{t \to \infty} \sum_{k=0}^{t} A^{k} = \left(\mathbf{I} - A \right)^{-1}$$

- Necessity (\Longrightarrow)
- If (λ, v) is an eigenpair of A, we have $A^k v = \lambda^k v$ and thus

$$\left(\sum_{k=0}^t A^k\right) v = \sum_{k=0}^t \left(A^k v\right) = \sum_{k=0}^t \left(\lambda^k v\right) = \left(\sum_{k=0}^t \lambda^k\right) v,$$

which means that (because $v \neq 0$)

$$\sum_{k=0}^{t} A^{k} \text{ converges } \implies \sum_{k=0}^{t} \lambda^{k} \text{ converges } \implies |\lambda| < 1$$

- Since this must be true for any eigenpair of A, we conclude that $\rho(A) < 1$
- Examples
 - Consider a square matrix

$$A := \begin{bmatrix} 5/8 & -1/4 \\ -1/16 & 5/8 \end{bmatrix}$$

6

• Does the series $\sum_k A^k$ converge? If so, what is the limit?

• The characteristic polynomial of *A* is

$$\phi_A(t) = \begin{vmatrix} 5/8 - t & -1/4 \\ -1/16 & 5/8 - t \end{vmatrix} = (3/4 - t)(1/2 - t),$$

which means that the eigenvalues of A are $\lambda_1 := 3/4$ and $\lambda_2 := 1/2$

 \circ Since $\rho(A) = \max\{|\lambda_1|, |\lambda_2|\} = 3/4 < 1$, we know that $\sum_k A^k$ must converge to

$$(I-A)^{-1} = \begin{bmatrix} 1-5/8 & 1/4 \\ 1/16 & 1-5/8 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & -2 \\ -1/2 & 3 \end{bmatrix}$$

• To verify this, we decompose *A* through eigenvectors:

$$(A - \lambda_1 \mathbf{I})\mathbf{v} = \mathbf{0} \iff \begin{bmatrix} 5/8 - 3/4 & -1/4 \\ -1/16 & 5/8 - 3/4 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff \mathbf{v} = \alpha \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \quad \forall \alpha$$

and

$$(A - \lambda_2 \mathbf{I})v = \mathbf{0} \iff \begin{bmatrix} 5/8 - 1/2 & -1/4 \\ -1/16 & 5/8 - 1/2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff v = \alpha \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix} \quad \forall \alpha$$

so we choose

$$oldsymbol{\Lambda} := egin{bmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{bmatrix}$$
 , $oldsymbol{v}_1 := egin{bmatrix} 1 \ -rac{1}{2} \end{bmatrix}$, $oldsymbol{v}_2 := egin{bmatrix} 1 \ rac{1}{2} \end{bmatrix}$

and

$$V := egin{bmatrix} v_1 & v_2 \end{bmatrix} = egin{bmatrix} 1 & 1 \ -1/2 & 1/2 \end{bmatrix} \implies V^{-1} = egin{bmatrix} 1/2 & -1 \ 1/2 & 1 \end{bmatrix}$$

It follows that

$$\boldsymbol{A}^k = \begin{pmatrix} \boldsymbol{V}\boldsymbol{\Lambda}\boldsymbol{V}^{-1} \end{pmatrix}^k = \boldsymbol{V}\boldsymbol{\Lambda}^k\boldsymbol{V}^{-1} = \begin{bmatrix} 1 & 1 \\ -1/2 & 1/2 \end{bmatrix} \begin{bmatrix} (3/4)^k & 0 \\ 0 & (1/2)^k \end{bmatrix} \begin{bmatrix} 1/2 & -1 \\ 1/2 & 1 \end{bmatrix}$$

and therefore

$$\begin{split} \sum_{k=0}^{t} A^k &= \sum_{k=0}^{t} \left(V \Lambda^k V^{-1} \right) \\ &= V \left(\sum_{k=0}^{t} \Lambda^k \right) V^{-1} \\ &= \begin{bmatrix} 1 & 1 \\ -1/2 & 1/2 \end{bmatrix} \begin{bmatrix} \sum_{k=0}^{t} (3/4)^k & 0 \\ 0 & \sum_{k=0}^{t} (1/2)^k \end{bmatrix} \begin{bmatrix} 1/2 & -1 \\ 1/2 & 1 \end{bmatrix} \\ &\to \begin{bmatrix} 1 & 1 \\ -1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1/2 & -1 \\ 1/2 & 1 \end{bmatrix} \quad (t \to \infty) \\ &= \begin{bmatrix} 3 & -2 \\ -1/2 & 3 \end{bmatrix} \end{split}$$

• What about the following matrix?

$$A := \begin{bmatrix} 3/4 & -1/2 \\ -1/8 & 3/4 \end{bmatrix}$$

Convergence of general power series

Consider a more general power series

$$\sum_{k=0}^{t} \alpha_k A^k := \alpha_0 A^0 + \alpha_1 A^1 + \alpha_2 A^2 + \ldots + \alpha_t A^t, \quad t = 0, 1, 2, 3, \ldots,$$

where α_k is not necessarily 1

We claim that

$$\sum_{k=0}^{t} |\alpha_k(\rho(A))^k| \text{ converges } \implies \sum_{k=0}^{t} \alpha_k A^k \text{ converges}$$

∘ To prove this, let *R* be the radius of convergence of the series $\sum_k \alpha_k \rho^k$ so that the function

$$f(\rho) := \lim_{t \to \infty} \sum_{k=0}^{t} \alpha_k \rho^k \quad \forall \rho \in (-R, R)$$

is well-defined, differentiable on (-R, R), and

$$\frac{d^l f(\rho)}{d\rho^l} = \lim_{t \to \infty} \sum_{k=0}^t \frac{k!}{(k-l)!} \alpha_k \rho^{k-l} \quad \forall \rho \in (-R, R), \quad \forall l = 1, 2, \dots$$

meaning that the limit on the right-hand side exists for any $\rho \in (-R, R)$

Hence,

$$\sum_{k=0}^{t} |\alpha_k(\rho(A))^k| \text{ converges } \implies \rho(A) < R \implies \sum_{k=0}^{t} \frac{k!}{(k-l)!} |\alpha_k| (\rho(A))^{k-l} \text{ converges}$$

o Then, the above claim follows form the observation that

$$\sum_{k=0}^{t} \alpha_k A^k = V \left(\sum_{k=0}^{t} \alpha_k J^k \right) V^{-1}$$

$$= V \left(\begin{bmatrix} \sum_{k=0}^{t} \alpha_k (J_{n_1}(\lambda_1))^k & O & \cdots & O \\ O & \sum_{k=0}^{t} \alpha_k (J_{n_2}(\lambda_2))^k & \cdots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \cdots & \sum_{k=0}^{t} \alpha_k (J_{n_d}(\lambda_d))^k \end{bmatrix} \right) V^{-1},$$

where a typical element of $\sum_{k=0}^{t} \alpha_k(J_{n_i}(\lambda_i))^k$ satisfies

$$\left| \sum_{k=0}^{t} \frac{k!}{l!(k-l)!} \alpha_k \lambda_i^{k-l} \right| \leq \frac{1}{l!} \sum_{k=0}^{t} \frac{k!}{(k-l)!} |\alpha_k| |\lambda_i|^{k-l} \leq \frac{1}{l!} \sum_{k=0}^{t} \frac{k!}{(k-l)!} |\alpha_k| (\rho(A))^{k-l},$$

which means that each element of $\sum_{k=0}^{t} \alpha_k(J_{n_i}(\lambda_i))^k$ converges due to the comparison test

Example

Consider a matrix sequence of the form

$$\sum_{k=0}^{\infty} \frac{1}{k!} A^k := I + A + \frac{1}{2!} A^2 + \frac{1}{3!} A^3 + \dots$$

Does this series converge? For any matrix A?