Instituto Politécnico Nacional Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas

Análisis de señales y sistemas Evaluación (EE06) Entrega: 6/diciembre/2018 Tiempo:

Nombre:
Grupo:
Dr. Rafael Martínez Martínez

Este examen consta de 13 páginas (incluyendo esta portada) y 9 problemas. Verifique si falta alguna página. Escriba los datos solicitados en la parte superior y escriba sus iniciales en la parte superior de cada hoja por si llegarán a separarse las hojas.

Se requiere que muestre el trabajo realizado en cada problema de este examen. Las siguientes normas se aplicarán:

- Cada problema/ejercicio debe tener procedimiento ordenado y completo que justifique adecuadamente la respuesta anotada.
- Si falta el procedimiento o este no justifica la respuesta anotada entonces el problema vale 0 puntos aunque la respuesta sea correcta.
- Un examen sucio y/o en desorden puede provocar 10 puntos menos en la calificación del examen.
- Cualquier intento de fraude, por ejemplo compartir o copiar soluciones, amerita un reporte en subdirección académica y la cancelación inmediata de la evalaución.

No escriba en la tabla de la derecha.

Problema	Puntos	Calificación
1	10	
2	10	
3	20	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
Total:	100	

1.	10 puntos
----	-----------

Encuentra la tranformada de Fourier discreta, gráfica el espectro de magnitud y el espectro de fase, para la señal

$$x[n] = \gamma^{|n|}, \ |\gamma| < 1$$

2.	10	puntos

Encuentra la tranformada de Fourier discreta, gráfica el espectro de magnitud y el espectro de fase, para la señal

$$x[n] = \delta[n+1] - \delta[n-1]$$

3. 20 puntos

La transformada de Fourier inversa discreta se define como

$$x[n] = \frac{1}{2\pi} \int_{\langle 2\pi \rangle} X(\Omega) e^{jn\Omega} d\Omega \tag{1}$$

donde $< 2\pi >$ indica integración en un intervalo de longitud 2π , con esto mostraremos que $x[n] = 1 \Leftrightarrow X(\Omega) = 2\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - 2\pi k)$, observamos que esta es una delta continua, es decir es una delta de Dirac (no es un delta de Kronecker)

$$\begin{split} x[n] = & \frac{1}{2\pi} \int\limits_{<2\pi>} X(\Omega) e^{jn\Omega} d\Omega \\ = & \frac{1}{2\pi} \int\limits_{-\pi}^{\pi} 2\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - 2\pi k) e^{jn\Omega} d\Omega \\ = & \sum_{k=-\infty}^{\infty} \int\limits_{-\pi}^{\pi} \delta(\Omega - 2\pi k) e^{jn\Omega} d\Omega \\ = & \int\limits_{-\pi}^{\pi} \delta(\Omega) e^{jn\Omega} d\Omega = e^{jn\Omega} \big|_{\Omega=0} = 1 \end{split}$$

bosqueja la gráfica de x[n] y $X(\Omega)$. Con la información anterior y la propiedad de traslación en Ω muestra que

$$x[n] = e^{j\Omega_0 n} \Leftrightarrow X(\Omega) = 2\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - \Omega_0 - 2\pi k)$$

Ahora utilizando la identidad de Euler, linealidad y lo anterior, muestra que

$$x[n] = cos(\Omega_0 n) \Leftrightarrow X(\Omega) = \pi \sum_{k=-\infty}^{\infty} \delta(\Omega - \Omega_0 - 2\pi k) + \delta(\Omega + \Omega_0 - 2\pi k)$$

por último encuentra una expresión para la transformada de $f[n] = x[n]cos[\Omega_0 n]$ en términos de $X(\Omega)$

4. 10 puntos

Utiliza linealidad, inversión en n, y que la transformada de Fourier discreta de $x[n] = cos(\Omega_0 n)u[n]$ es

$$X(\Omega) = \frac{e^{j2\Omega} - e^{j\Omega}\cos(\Omega_0)}{e^{j2\Omega} - 2e^{j\Omega}\cos(\Omega_0) + 1} + \frac{\pi}{2} \sum_{k=-\infty}^{\infty} \delta(\Omega - \Omega_0 - 2\pi k) + \delta(\Omega + \Omega_0 - 2\pi k)$$

para mostrar que

$$x[n] = cos(\Omega_0 n) \Leftrightarrow X(\Omega) = \pi \sum_{k=-\infty}^{\infty} \delta(\Omega - \Omega_0 - 2\pi k) + \delta(\Omega + \Omega_0 - 2\pi k)$$

5. 10 puntos

Utiliza linealidad, la propiedad de traslación en n, y que la transformada de Fourier discreta de x[n] = u[n] es

$$X(\Omega) = \frac{e^{j\Omega}}{e^{j\Omega} - 1} + \pi \sum_{k = -\infty}^{\infty} \delta(\Omega - 2\pi k)$$

para encontrar la transformada de f[n]=u[n]-u[n-M] (observa que la delta es continua y no discreta). Con esta información y utilizando nuevamente la traslación en tiempo, encuentra la transformada de Fourier discreta para la señal que se muestra en la Figura 1

Figura 1: x[n]

gráfica esta transformada.

6. 10	puntos
-------	--------

Encuentra la transformada ${\mathscr Z}$ y la ROC, usa la definición:

$$x[n] = \gamma^{n-1}u[n-1]$$

7. 10 puntos

Para la señal discreta que se muestra en la Figura 2,

Figura 2: x[n]

deduce que:

$$X[z] = \frac{1 - z^{-m}}{1 - z^{-1}}$$

8.	10	puntos

Resue	lva

$$y[n+1] + 2y[n] = x[n+1]$$

y[n+1]+2y[n]=x[n+1] con la entrada $x[n]=e^{-(n-1)}u[n]$ y las condición inicial y[0]=1

9. 10 puntos

Resuelva la siguiente ecuación en diferencias

$$y[n+2] - 3y[n+1] + 2y[n] = x[n+1]$$
 con $x[n] = 3^n u[n]$ y $y[-1] = 2$, $y[-2] = 3$.

con
$$x[n] = 3^n u[n]$$
 y $y[-1] = 2$, $y[-2] = 3$.

