Vorksung 7 Netzwerk-Analyse cont'cl

Von letzter VL: Sei $G = (V_i E)$ ein $G_i raph$. Das <u>Volumen</u> von $G_i raph$ definiert als $Vol(G) := \sum_{v \in V} deg(v) = Z \cdot lEl$

Theorem 7.1

Sei $G=(V_1E)$ ein Groph, n=IVI und λ_G , λ_{n-I} wie in der lekkn VL $(\lambda_G, \lambda_{n-I} = EW \text{ von } L(G))$. Seien $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$ zwei Teilgraphun von G_1 , s.d.

Sei weiterhin

$$\lambda_{G} \leq \varepsilon \left(\frac{\text{vol}(G_{\lambda})}{\text{vol}(G_{\lambda})+\varepsilon}\right) \leq \lambda_{H-1}.$$

(2) Tall G bipartit ist mit Komponenten
$$G_{11}$$
, G_{2} ; $Vol(G_{1}) = Vol(G_{2}) = 0$ and $\varepsilon = |E| = \frac{Vol(G_{1})}{Z}$

Dann; $\varepsilon = \frac{Vol(G_{1})}{Vol(G_{1})} = \frac{Vol(G_{2})}{Vol(G_{2})} = \frac{Vol(G_{1})}{Vol(G_{2})} = \frac{Vol(G_{1})}{Vol(G_{2})} = \frac{Vol(G_{2})}{Vol(G_{2})} = \frac{Vol(G_{1})}{Vol(G_{2})} = \frac{Vol(G_{1})}{Vol(G_{2})} = \frac{Vol(G_{2})}{Vol(G_{2})} = \frac{Vol(G$

Beweis von Thm 7.1

$$Z \text{ deg(u)} = Z \left(\sum_{v \in V_i} 1 + Z \text{ veV}_i : lu,v \in E \right)$$

=
$$Vol(G_i)$$
 + \mathcal{E} = M_i

Dies zeift vol (G) = mx fmz.

Wir definiern eine Funktion f & F(V). (d.h.: f: V-> IR) wie foly/;

$$f(u) = \begin{cases} m_2 \cdot \sqrt{\deg(u)'}, & \text{falls } u \in V_A \\ -m_A \cdot \sqrt{\deg(u)'}, & \text{falls } u \in V_Z \end{cases}$$

$$\langle f, T^{\prime \prime} e \rangle = \sum_{u \in V_{\lambda}} f(u) e(u) + \sum_{u \in V_{\lambda}} f(u) e(u)$$

$$\lim_{\eta \in \widehat{\mathfrak{f}}(V)}
 = \max_{\eta \in \widehat{\mathfrak{f}}(V)}
 < \frac{g_1 L_g}{\langle g_1 g_2 \rangle}$$

Daher: la =
$$\frac{\langle f, lf \rangle}{\langle f, f \rangle} \leq l_{n-1}$$

Es gill:
$$\frac{\langle f, lf \rangle}{\langle f, f \rangle} = \frac{1}{\sum_{u \in V} f(u)^2} \sum_{\{uv\} \in E} \left(\frac{f(u)}{\sqrt{deg(u)}} - \frac{f(v)}{\sqrt{deg(v)}} \right)^2$$

fur $f(u) = \begin{cases} m_2 \cdot \sqrt{deg(u)}', & falls \ u \in V_A \\ -m_A \cdot \sqrt{deg(u)}', & falls \ u \in V_A \end{cases}$

Es gill: $f(u) = \begin{cases} m_2 \cdot \sqrt{deg(u)}', & falls \ u \in V_A \end{cases}$
 $u_1 \vee e \vee u_2 \cdot \left(\frac{f(u)}{\sqrt{deg(u)}} - \frac{f(v)}{\sqrt{deg(v)}} \right)^2 = \left(m_2 - m_2 \right)^2 = 0$
 $u_1 \vee e \vee u_2 \cdot \left(\frac{f(u)}{\sqrt{deg(u)}} - \frac{f(v)}{\sqrt{deg(v)}} \right)^2 = \left(-m_A + (-m_A) \right)^2 = 0$

and somify

 $\frac{\langle f, lf \rangle}{\langle f, f \rangle} = \frac{1}{\sum_{u \in V} f(u)^2} \sum_{u \in V_A} \sum_{v \in V_L : \{u,v\} \in E :$

$$= \frac{1}{\sum_{u \in V_1}^{\infty} f(u)^2} \text{ vol}(G)^2 \cdot \mathcal{E}$$

$$= \frac{\text{vol}(G)^2 \cdot \mathcal{E}}{\sum_{u \in V_1}^{\infty} f(u)^2 + \sum_{u \in V_2}^{\infty} f(u)^2} = \frac{\text{vol}(G)^2 \cdot \mathcal{E}}{m_2^2 \sum_{u \in V_1}^{\infty} deg(u) + m_1^2 \sum_{u \in V_2}^{\infty} deg(u)}$$

$$= \frac{\text{vol}(G)^2 \cdot \mathcal{E}}{m_1 m_2^2 + m_2 m_1^2}$$

$$= \frac{\text{vol}(G)}{m_1 m_2} \cdot \frac{\mathcal{E}}{m_1 m_2} = \frac{\text{vol}(G)}{m_1 m_2} \cdot \frac{\mathcal{E}}{m_2 m_2} = \frac{\mathcal{E}}{m_1 m_2^2 + m_2 m_1^2}$$