Part III — Local Fields

Based on lectures by C. Johansson Summary created by Kaimyn Chapman-Brown Framework created by Dexter Chua

Michaelmas 2016

 $A\ brief\ summary\ of\ important\ ideas\ and\ results\ in\ the\ course$

0 Introduction III Local Fields

0 Introduction

Lecture 1

If we look at $f(x_1, \dots, x_n) \in \mathbb{Z}[x_1, \dots, x_n]$, what are the ways we can look for solutions $\mathbf{a} \in \mathbb{Z}^n$?

One way would be to look over \mathbb{R} , but the point of this course is to package all of the information modulo $p^n \forall n \geq 0$ together.

Notation. Throughout this course, all rings will be commutative with a 1, unless otherwise stated.

Basic Theory III Local Fields

1 Basic Theory

1.1 Some Generalities

Definition 1 (Absolute value). Let K be a field. An **absolute value** on K is a function $|\cdot|: K \to \mathbb{R}_{\geq 0}$ s.t.

- (i) $|x| = 0 \iff x = 0$
- (ii) $|xy| = |x| \cdot |y| \quad \forall x, y \in K$
- (iii) $|x+y| \le |x| + |y| \quad \forall x, y \in K$

Example. $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ with $|z| = \sqrt{z\overline{z}}$

Note that $||x| - |y|| \le |x - y| \ \forall x, y$. Also, an absolute value defines a metric d(x, y) = |x - y| on K

Definition 2 (Valued Field). A valued field is a field with an absolute value.

Definition 3 (Equivalent). If K is a field, then two absolute values $|\cdot|, |\cdot|'$ are **equivalent** if they induce the same topology.

Exercise 4. Using notation as in Definition 3, prove that TFAE

- (i) $|\cdot|$ and $|\cdot|'$ are equivalent
- (ii) $\forall x \in |x| < 1 \Rightarrow |x|' < 1$
- (iii) $\exists s \in \mathbb{R}_{>0} \text{ s.t. } |x|^s = |x|' \quad x \in K$

Exercise 5. Let K be a valued field. Then the completion \hat{K} of K is independent of $|\cdot|$ up to equivalence, and it is a valued field with an absolute value extending $|\cdot|$.

Definition 6 (Archimedean). An absolute value $|\cdot|$ on a field K is called **non-Archimedean** if it satisfies the strong triangle inequality, i.e.

$$|x+y| \le \max(|x|,|y|)$$

Otherwise, the absolute value is Archimedean.

Unless otherwise mentioned, all absolute values will be non-Archimedean. Also, all absolute values are assumed to be non-trivial.

Definition. If *K* is a valued field, then the **valuation ring** of *K* is $\mathcal{O} = \{x : |x| \le 1\}$.

Proposition 7. (i) \mathcal{O} is an open subring of K

- (ii) $\forall r \in (0,1], \{x : |x| < r\}$ and $\{x : |x| \le r\}$ are open ideals of \mathscr{O}
- (iii) $\mathscr{O}^{x} = \{x : |x| = 1\}$

Proof. Fairly trivial - obvious proof for each section works.

Proposition 8. Let K be a valued field. For parts (ii) and (iii), assume that K is complete.

- (i) Let (x_n) be a sequence in K. If $x_n x_{n+1} \to 0$, then (x_n) is Cauchy.
- (ii) Let (x_n) be a sequence in K. If $x_n x_{n+1} \to 0$, then (x_n) converges.
- (iii) Let $\sum_{n=0}^{\infty} y_n$ be a series in K. If $y_n \to 0$, then $\sum_{n=0}^{\infty} y_n$ converges.

Proof. The first follows from the Archimedean assumption - use epsilons and that:

$$|x_m - x_n| = |x_m - x_{m-1} + x_{m-1} - \dots - x_n| \le \max(|x_m - x_{m-1}|, \dots, |x_{n+1} - x_n|)$$

The other two follow easily from the first.

Lecture 2

Definition 9 (Integral Over a Ring). Let $R \subseteq S$ be rings, then $s \in S$ is **integral** over R if there exists a monic $f(x) \in R[x]$ s.t. f(s) = 0.

Proposition 10. Let $R \subseteq S$ be rings. Then, $s_1, \dots, s_n \in S$ are integral over $R \iff R[s_1, \dots, s_n] \subseteq S$ is a finitely generated R-module.

Proof. We do the \Rightarrow direction first.

By induction, it suffices to prove the case n=1. Pick a monic poly with f(s)=0, and construct any other polynomial using this and the division algorithm, so that $1, s, \dots, s^{\deg f-1}$ is a basis of R[s].

For the \Leftarrow direction, pick R-module generators and an element from $b \in R[s_1, \dots, s_n]$. Write bt_i in terms of the t_j to make a matrix, then use its determinant and an "inverse" (adjoint) to get a polynomial from the determinant.

Corollary 11. Let $R \subseteq S$ be rings. If s_1, s_2 are integral over R, then $s_1 + s_2$ and s_1s_2 are integral over R.

Moreover, the set $R \subseteq S$ of all elements of S integral over R is a ring.

Definition (Integral Closure). \widetilde{R} is called the **integral closure** of R in S. If $R = \widetilde{R}$, then we say R is integrally closed in S.

Proof. s_1s_2 integral over R, so $R[s_1, s_2]$ finite over R and hence any $b \in R[s_1, s_2]$ is integral over R.

Definition 12 (Ring Topology). Let R be a ring. A topology on R is called a **ring topology** on R if addition and multiplication are a continuous map $R \times R \to R$, where $R \times R$ is given the product topology.

A ring with a ring topology is called a **topological ring**.

Exercise. Let K be a valued field. Then K is a topological ring.

Definition 13 (*I*-adically Open). Let R be a ring, $I \subseteq R$ an ideal. A subset $U \subseteq R$ is called *I*-adically open if $\forall x \in U, \exists n \geq 1 \text{ s.t. } x + I^n \subseteq U$.

Proposition 14. The set of all I-adically open sets form a topology on R, call the I-adic topology.

Proof. ϕ , R are I-adically open by definition, as are arbitrary unions of I-adically open sets. Also, if U, V are I-adically open and $x \in U \cap V$ with $x + I^m \subseteq U$ and $x + I^n \subseteq V$, then $x + I^{\max(m,n)} \subseteq U \cap V$

Exercise. The I-adic topology is a ring topology of R.

Definition 15 (Inverse Limit). Let R_1, R_2, \cdots be topological rings with continuous homomorphisms $f_n : R_{n+1} \to R_n \ \forall n \ge 1$. Then, the **inverse limit** or **projective limit** of the R_i is the ring:

$$\stackrel{\text{lim}}{=} \left\{ (x_n) \in \prod_n R_n : f_n(x_{n+1}) = x_n \ \forall n \ge 1 \right\} \subseteq \prod_n R_n$$

with coordinate-wise addition/multiplication, together with the subspace topology induced by the product topology on $\prod_n R_n$.

Proposition 16. The inverse limit topology is a ring topology.

¹called the inverse limit topology

d Basic Theory III Local Fields

Proof. Use that $\prod R_n \times \prod R_n \to \prod R_n$ is continuous, with the map being coordinatewise addition/multiplication, as well as containment of the inverse limit inside $\prod R_n$ and the projection map. Also, use the map $\left(\frac{\lim}{n} R_n\right) \times \left(\frac{\lim}{n} R_n\right) \to \prod R_n \times \prod R_n$

Definition 17 (*I*-adic completion). R a ring, I an ideal. The I-adic completion of R is the topological ring:

$$\stackrel{\text{lim}}{\longleftarrow} R/I^n$$

Where R/I^n has the discrete topology and $R/I^{n+1} \to R/I^n$ is the natural map.

$$\mathscr{A}\subset X^{\lfloor n/2\rfloor}\cup X^{\lceil n/2\rceil}$$

Lecture 3

Definition (*I*-adically Complete). R a ring, $I \subseteq R$ an ideal. Then \exists a map

$$\nu: R \to \left(\stackrel{\text{lim}}{\leftarrow} R/I^n\right)$$
$$r \mapsto (r \bmod I^n)_n$$

This map is a cts ring homomorphism when R is given the I-adic topology. We say that R is I-adically complete if ν is a bijection.

Exercise. If ν is a bijection, then ν is a homeomorphism

If I = xR, then we often call the *I*-adic topology the *x*-adic topology.

2 The p-adic numbers

From now on in this course, p will be taken to mean a prime number. If $x \in \mathbb{Q} \setminus \{0\}$, then there is a unique representation $p^n \frac{a}{b}$, where $a, n \in \mathbb{Z}, \ b \in \mathbb{Z}_{\geq 0}$ and (a, p) = (b, p) = (a, b) = 1

Definition (*p*-adic Absolute Value). We define the *p*-adic absolute value on \mathbb{Q} to be the function $|\cdot|:\mathbb{Q}\to\mathbb{R}_{>0}$ given by:

$$|x|_p = \begin{cases} 0, & \text{if } x = 0\\ p^{-n}, & \text{if } x = p^n \frac{a}{b} \end{cases}$$
 (i.e. $x \neq 0$)

That $|\cdot|$ is a (non-Archimedean) absolute value is clear.

Fact. $x \in \mathbb{Z}_{\neq 0} \implies |x|_p = p^{-n} \iff p^n ||x||_p$

Definition 18 (*p*-adic Numbers/Integers). The *p*-adic numbers, \mathbb{Q}_p is the completion of \mathbb{Q} with respect to $|\cdot|_p$

The valuation ring $\mathbb{Z}_p = \{x \in \mathbb{Q}_p : |x|_p \leq 1\}$ is called the *p*-adic integers.

Proposition 19. \mathbb{Z}_p is the closure of \mathbb{Z} inside \mathbb{Q}_p .

Proof. Consider that $\mathbb{Z}_{(p)} = \{x \in \mathbb{Q} : |x|_p \leq 1\}$ is dense in $\mathbb{Z}_{(p)}$ and that $\mathbb{Z} \subseteq \mathbb{Z}_{(p)}$. Show that \mathbb{Z} is dense in $\mathbb{Z}_{(p)}$.

Proposition 20. The non-zero ideals of \mathbb{Z}_p are $p^n\mathbb{Z}_p$ for $p\geq 0$. Moreover,

$$\mathbb{Z}/p^n\mathbb{Z} \cong \mathbb{Z}_p/p^n\mathbb{Z}_p$$

Proof. Pick an ideal I and a maximal element $x \neq 0$ from it. Show that I = xR and $p^n \mathbb{Z}_p = x\mathbb{Z}_p$ to get the first part.

For the second part, look at $f_n: \mathbb{Z} \to \mathbb{Z}_p/p^n\mathbb{Z}_p$ and its kernel (which is $p^n\mathbb{Z}$), showing that it induces an isomorphism.

Corollary 21. \mathbb{Z}_p is a PID with a unique prime element p (up to units).

Proposition 22. The topology on \mathbb{Z} induced by $|\cdot|_p$ is the *p*-adic topology

Proof. Straightforward - pick $U \subseteq \mathbb{Z}$ and show it directly.

Proposition 23. \mathbb{Z}_p is *p*-adically complete and is isomorphic to the *p*-adic completion of \mathbb{Z} .

Proof. The second part follows from the first by the proof of Proposition 20 via

$$\mathbb{Z}_p \stackrel{\iota}{\leftarrow} \left(\stackrel{\text{lim}}{\leftarrow} \mathbb{Z}_p/p^n \mathbb{Z}_p \right) \stackrel{\nu}{\rightarrow} \lim \mathbb{Z}/p^n \mathbb{Z}$$

To prove the first part, we get injectivity by looking at $x \in \ker(\nu) \iff x \in p^n \mathbb{Z}_p \ \forall n \iff x = 0.$

We get surjectivity by picking $(z_n) \in \frac{\lim}{n} \mathbb{Z}_p/p^n \mathbb{Z}_p$ with the unique representative of z_n in $\{0, 1, \dots, p^n - 1\}$ as $x_n = \sum_{i=0}^{n-1} a_i p_i$, then considering $x = \sum_{i=0}^{\infty} a_i p^i$.

Corollary 24. Every $a \in \mathbb{Z}_p$ has a unique expansion $a = \sum_{i=0}^{\infty} a_i p^i$ with $a_i \in \{0, 1, \dots, p-1\}$

Also, every $a \in \mathbb{Q}_p^{\mathbf{x}}$ has a unique expansion $a = \sum_{i=n}^{\infty} a_i p^i$ with $n \in \mathbb{Z}$, $n = -\log_p |a|_p$ and $a_n \neq 0$.

8 Valued Fields III Local Fields

3 Valued Fields

Definition 25 (Valuation). Let K be a valued field. A **valuation** on K is a function $V: K \to \mathbb{R} \cup \{\infty\}$ s.t., $\forall x, y \in K$:

- (i) $v(x) = \infty \iff x = 0$
- (ii) v(xy) = v(x) + v(y)
- (iii) $v(x+y) \ge \min(v(x), v(y))$

Here we use the conventions $r + \infty = \infty$, $r \leq \infty$ $\forall r \in \mathbb{R} \cup \{\infty\}$

Remarks. If V is a valuation, and $|x| = c^{-V(x)}$ for some $c \in \mathbb{R}_{>1}$, then $|\cdot|$ is an absolute value.

Conversely, $|\cdot|$ an absolute value implies that $V(x) = -\log_c |x|$.

Definition (Field of Formal Laurent Series'). If K a field, then the **field of formal** Laurent series' over K is

$$K((T)) = \left\{ \sum_{i \gg -\infty}^{\infty} a_i T^i : a_i \in K \right\}$$

Exercise. Show that $v\left(\sum a_i T^i\right) = \min\{i : a_i \neq 0\}$ is a valuation of K((T))

Notation. The valuation ring: $\mathcal{O} = \mathcal{O}_k = \{x \in K : |x| \leq 1\}$

The maximal ideal: $\mathfrak{m} = \mathfrak{m}_k = \{x \in K : |x| < 1\}$

The **residue field**: $k = k_K = \mathcal{O}/\mathfrak{m}$

Definition (Primitive). If K a valued field and $a_0 + a_1x + \cdots + a_nx^n = F(x) \in K[x]$ is a polynomial, we say F is **primitive** if $\max_i |a_i| = 1$ (so $F \in \mathcal{O}[x]$).

Theorem 26 (Hensel's Lemma). Assume that K is complete and that $F \in K[x]$ is primitive. Put $f = F \mod \mathfrak{m} \in \mathfrak{k}[x]$. Then, if there's a factorisation f(x) = g(x)h(x) with (g,h) = 1, then there's a factorisation F(x) = G(x)H(x) in $\mathscr{O}[x]$ with $g \equiv G$, $h \equiv H \mod \mathfrak{m}$ and $\deg g = \deg G$.

Proof. Put $d = \deg F$, $m = \deg g$, giving $\deg h \leq d - m$. Pick lifts $G_0, H_0 \in \mathscr{O}[x]$ of g, h with $\deg G_0 = \deg g$ and $\deg H_0 \leq d - m$.

So, $(g,h) = 1 \implies \exists A, B \in \mathscr{O}[x] \text{ s.t. } AG_0 + BH_0 \equiv 1 \mod \mathfrak{m}$

Pick $\pi \in \mathfrak{m}$ s.t. $F = G_0 H_0 \equiv A G_0 + B H_0 - 1 \equiv 0 \mod \pi$. Then, we want to find:

$$G = G_0 + \pi P_1 + \pi^2 P_2 + \cdots H = H_0 + \pi Q_1 + \pi^2 Q_2 + \cdots$$
 $\in \mathscr{O}[x]$

with $P_i, Q_i \in \mathcal{O}[x]$, deg $P_i < m$ and deg $Q_i \le d - m$. By the definition of \mathfrak{m} , this would converge, so doing this suffices.

We want $F \equiv G_{n-1}H_{n-1} \mod \pi^n$ then to take the limit, which we'll find by induction. The base case is trivial, so we assume we have G_{n-1}, H_{n-1} . We want to find $G_n = G_{n-1} + \pi^n P_n$ and $H_n = H_{n-1} + \pi^n Q_n$.

Expanding $F - G_n H_n$, it is equivalent to find

$$F - G_{n-1}H_{n-1} \equiv \pi^n \left(G_{n-1}Q_n + H_{n-1}P_n \right) \mod \pi^{n+1}$$

Divide by π^n to get:

$$G_0Q_n + H_0P_n \equiv G_{n-1}Q_n + H_{n-1}P_n \equiv \frac{1}{\pi^n} (F - G_{n-1}H_{n-1}) \mod \pi$$

But $AG_0 + BH_0 \equiv 1 \mod \pi \implies F_n \equiv AG_0F_n + BH_0F_n \mod \pi$. Now, write $BF_n = SG_0 + P_n$, with $\deg P_n < \deg G_0, P_n \in \mathscr{O}[x]$ and S is some quotient. Then,

$$G_0(AF_n + H_0Q) + H_0P_n \equiv F_n \mod \pi$$

Omit all coefficients from $AF_n + H_0Q$ divisible by π to get Q_n .

3 Valued Fields III Local Fields

Corollary 27. Let $F(x) = a_0 + a_1 x + \cdots + a_n x^n \in k[x]$, k complete and $a_0 a_n \neq 0$. If F is irreducible, then $|a_i| \leq \max(|a_0|, |a_n|) \ \forall i$

Proof. WLOG F is primitive (scale). Pick the minimal r s.t. $|a_r|=1$ and look at F modulo \mathfrak{m} . If $\max(|a_0|,|a_n|)\neq 1$, then F lifts to a non-trivial factorisation via Hensel's Lemma.

Corollary 28. $F \in \mathscr{O}[x]$, k complete. If F mod \mathfrak{m} has a simple root $\bar{\alpha} \in k$, then F has a unique simple root $\alpha \in \mathscr{O}$ lifting $\bar{\alpha}$

Index III Local Fields

Index

p-adic	inverse limit, 4
integers, 6	
numbers, 6	p-adic
topology, 6	absolute value, 6 maximal ideal, 7
absolute value, 3	residue field, 7
assumptions, 3	valuation ring, 7
metric, 3	primitive, 7
Archimedean, 3 non, 3	projective limit, 4
	ring
field of formal Laurent series, 7	integral, 4
Hensel's lemma, 7	topological, 4 topology, 4
I-adic	triangle inequality
complete, 5 completion, 5	strong, 3
open, 4	valuation, 7
topology, 4	valuation ring, 3
integral clsoure, 4	valued field, 3
integrally closed, 4	equivalent, 3