CSE/ISyE 6740 Computational Data Analysis

Feature Selection and Decision Tree

09/10/2025

Kai Wang, Assistant Professor in Computational Science and Engineering kwang692@gatech.edu

Outline

Supervised Learning

- Feature selection
 - Information gain
 - Feature selection algorithm

Decision tree

- How decision tree works
- Threshold splits
- Decision tree algorithm

Supervised Learning

Classification Problem

- Given a dataset $D = \{(x^1, y^1), (x^2, y^2), ..., (x^n, y^n)\}, x \in \mathbb{R}^d, y \in \{1, 2, ..., K\}$
- Given a new feature x, can we infer the label y?
 - A function mapping $f: X \to Y$

Image from scikit-learn

Feature Selection and Information Gain

Feature Selection

Task: classify emails as spam, work, ...

Data: presence/absence of words

Task: predict chances of lung disease

Data: medical history survey

Why Feature Selection?

 We are interested in features – we want to know which are relevant. If we fit a model, it should be interpretable.

Informativeness of a Feature

- We are uncertain about the label Y before seeing any input
 - Suppose we quantify using H(Y)
- Given a particular feature X_i , the uncertainty of Y changes
 - Suppose we quantify using $H(Y|X_i)$
- The reduction in uncertainty is the informativeness of feature X_i
 - $I(X_i, Y) = H(Y) H(Y|X_i)$
- How to quantify uncertainty?

Entropy: Quantify Uncertainty

Entropy H(Y) of a random variable Y

$$H(Y) = -\sum_{k=1}^{K} P(y=k) \log_2 P(y=k)$$
 (Shannon entropy)

$$H(Y) = \mathbb{E}_y[-\log_2 P(y)] = -\int_{y \in D} P(y) \log_2 P(y) dy$$
 (continuous case: **differential entropy**)

• *H*(*Y*) is the expected number of bits needed to encode a randomly drawn value of *Y* (under most efficient code)

Information theory

• Most efficient code assigns $-\log_2 P(Y=k)$ bits to encode the message Y=k. So, expected number of bits to code one random Y is

$$-\sum_{k=1}^{K} P(y=k) \log_2 P(y=k)$$

Entropy: Quantify Uncertainty

- "High entropy"
 - Y is from a uniform like distribution
 - Flat histogram
 - Values sampled from it are less predictable

- "Low entropy"
 - Y is from a varied (peaks and valleys) distribution
 - Histogram has many lows and highs
 - Values sampled from it are more predictable

Examples for Computing Entropy

$$H(S) := -p_+ \log_2 p_+ - p_- \log_2 p$$

Head	0
Tail	6

Head	1
Tail	5

$$P(head) = \frac{0}{6} = 0$$
 $P(tail) = \frac{6}{6} = 1$
Entropy = $-0 \log 0 - 1 \log 1 = -0 - 0 = 0$

$$P(head) = \frac{1}{6} \qquad P(tail) = \frac{5}{6}$$

Entropy = $-\frac{1}{6}\log\frac{1}{6} - \frac{5}{6}\log\frac{5}{6} = 0.65$

$$P(head) = \frac{2}{6}$$

$$P(tail) = \frac{4}{6}$$
Entropy = $-\frac{2}{6} \log \frac{2}{6} - \frac{4}{6} \log \frac{4}{6} = 0.92$

Conditional Entropy

• Conditional entropy H(Y|X) of a random variable Y given X

$$H(Y|X) = -\int_{x \in D_X} \left(\sum_{k=1}^K P(y=k|x) \log_2 P(y=k|x) \right) p(x) dx$$

$$H(Y|X) = -\int_{x \in D_X} \left(\int_{y \in D_Y} P(y|x) \log_2 P(y|x) \, dy \right) p(x) dx \quad \text{(continuous case)}$$

- Quantify the uncertainty in Y after seeing feature X_i
- $H(Y|X_i)$ is the expected number of bits needed to encode a randomly drawn value of Y
 - Given X_i , and
 - Average over the likelihood of seeing particular value of X_i

Conditional Entropy

Example

X\Y	0	1
0	$\frac{1}{4}$	$\frac{1}{4}$
1	$\frac{1}{2}$	0

• The **joint entropy** of (jointly distributed) random variables X and Y with $(X,Y) \sim p$

$$H(X,Y) = -\sum_{x,y} p(x,y) \log p(x,y)$$

• This is simply the entropy of the random variable
$$Z = (X, Y)$$

$$H(X, Y) = \frac{1}{2} \log \frac{1}{1/2} + \frac{1}{4} \log \frac{1}{1/4} + \frac{1}{4} \log \frac{1}{1/4}$$

$$= \frac{1}{2} * 1 + \frac{1}{2} * 2 = 1.5$$

Conditional Entropy

Example

X\Y	0	1
0	$\frac{1}{4}$	$\frac{1}{4}$
1	$\frac{1}{2}$	0

• What is H(Y|X) and H(X|Y)?

$$H(Y|X) = \mathbb{E}_{x}[H(Y|X=x)]$$

$$= \frac{1}{2}H(Y|X=0) + \frac{1}{2}H(Y|X=1)$$

$$= \frac{1}{2}H\left(\frac{1}{2}, \frac{1}{2}\right) + \frac{1}{2}H(1,0) = \frac{1}{2}$$

$$H(X|Y) = \mathbb{E}_{y}[H(X|Y=x)]$$

$$= \frac{3}{4}H(X|Y=0) + \frac{1}{4}H(X|Y=1)$$

$$= \frac{3}{4}H\left(\frac{2}{3}, \frac{1}{3}\right) + \frac{1}{4}H(1,0) = 0.6887$$

Mutual Information: Reduction in Uncertainty

• Mutual information: the reduction in uncertainty of Y after seeing feature X_i

$$I(X_i, Y) = H(Y) - H(Y|X_i)$$

- The more the reduction in entropy, the more information a feature contains
- Is mutual information symmetric?

•
$$I(X,Y) = I(Y,X)$$
?

A Feature Selection Algorithm

- Given a dataset $D = \{(x^1, y^1), (x^2, y^2), \dots, (x^n, y^n)\}, x \in \mathbb{R}^d, y \in \{1, 2, \dots, K\}$
- For reach value of the label y = k
 - Estimate density p(y = k)
- For the *i*-th feature entry x_i (e.g., attendance) where $i \in \{1,2,...,d\}$
 - Estimate its density $p(x_i)$ using density estimation
 - For each value of the label y = k
 - Estimate the density $p(x_i|y=k)$
 - Score feature x_i using:

$$I_i = I(Y; X_i) = \int \sum_{k=1}^K p(x_i | y = k) p(y = k) \log_2 \frac{p(x_i | y = k)}{p(x_i)} dx_i$$

• Choose those feature x_i with high score I_i

A Feature Selection Algorithm

Student ID	Age	Gender	Study Hours/Week	
S001	19	Female	8	
S002	21	Male	5	

- Given a dataset $D = \{(x^1, y^1), (x^2, y^2), \dots, (x^n, y^n)\}, x \in \mathbb{R}^d, y \in \{1, 2, \dots, K\}$
- For reach value of the label y = k
 - Estimate density p(y = k)

Among the students who get 6pt, what is the distribution of their attendance?

- For the *i*-th feature entry x_i (e.g., attendance) where $i \in \{1,2,...,d\}$
 - Estimate its density $p(x_i)$ using density estimation
 - For each value of the label y = k
 - Estimate the density $p(x_i|y=k)$
 - Score feature x_i using:

$$I_{i} = I(Y; X_{i}) = \int \sum_{k=1}^{K} p(x_{i}|y=k)p(y=k)\log_{2}\frac{p(x_{i}|y=k)}{p(x_{i})} dx_{i}$$
Why? Please verify it yourself!

• Choose the feature x_i with high score I_i

Classification and Decision Tree

Classification Problem

- Given a dataset $D = \{(x^1, y^1), (x^2, y^2), ..., (x^n, y^n)\}, x \in \mathbb{R}^d, y \in \{1, 2, ..., K\}$
- Given a new feature x, can we infer the label y?
 - A function mapping $f: X \to Y$

Image from scikit-learn

Hypotheses: Decision Trees!

- Each internal node tests an attribute/feature x_i
- One branch for each possible attribute value
 - $x_i \le v \text{ or } x_i > v$
- Each leaf assigns a class y
- To classify input *x*:
 - Traverse the tree from root to leaf, output the labeled y

Learning Simplest Decision Tree: NP-hard

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- A greedy heuristic:
 - Start from empty decision tree
 - Split on next best attribute (feature)
 - Recurse

Key Idea: Greedily Learn Trees Using Recursion

• Given a dataset $D = \{(x^1, y^1), ..., (x^n, y^n)\}$, predict Atlanta apartment rental price.

Learning Decision Trees

- **Initialization**: start from empty decision tree with dataset *D*
- Based on D, compute information gain of each attribute (feature) X_i $I(X_i,Y) = H(Y) H(Y|X_i)$
- Pick the best attribute (feature) $i \coloneqq \arg\max_{i} I(X_{i}, Y) = \arg\max_{i} H(Y) H(Y|X_{i})$
- Split the tree and the dataset at node X_i
- Create subtrees and recurse through all subtrees

Real-Valued Features?

- What should we do if some of the features are real-valued?
 - E.g., room size? Distance to school?
- One branch for each numeric value?
 - Infinite number of possible split values!!!
 - Hopeless: hypothesis with such a high branching factor will easily overfit any dataset

Threshold Splits

- **Binary tree**: split on attribute X_i at value t
 - One branch $X_i < t$
 - Other branch $X_i \ge t$
- Allow repeated splits on same variable along a path

The Set of All Possible Thresholds

- **Binary tree**: split on attribute X_i at value t
 - One branch $X_i < t$
 - Other branch $X_i \ge t$
- But how do we pick the threshold t?
 - Sounds difficult?
 - But only a finite number of t's are important

• Sort X_i in the dataset and consider splits between any two possible values

Learning Decision Trees

- **Initialization**: start from empty decision tree with dataset *D*
- Based on D, compute information gain of each attribute (feature) X_i and split t $I(X_i > t, Y) = H(Y) H(Y|X_i > t)$
- Pick the best attribute (feature) and split t

$$i, t \coloneqq \arg \max_{i,t} I(X_i > t, Y) = \arg \max_{i,t} H(Y) - H(Y|X_i > t)$$

- Split the tree and the dataset at node $X_i > t$
- Create subtrees and recurse through all subtrees

When to Stop?

Base Case One:

If all data within the subtree have the same outputs, then don't recurse

Base Case Two:

If all data within the subtree have exactly the same input features, then don't recurse

Base Case Three: (bad idea!!)

- If all attributes have small information gain, then don't recurse
- Example: $Y = X_1 XOR X_2$
- Check:
 - Each of the splits X_1 and X_2 has 0 information gain
 - But splitting both can perfectly learn Y

X_1	X_2	Y
0	0	0
0	1	1
1	0	1
1	1	0

Decision Tree Summary

- Decision trees are one of the most popular ML tools
 - Easy to understand, implement, and use
 - Computationally cheap (to solve heuristically)
- Information gain to select attributes
- Can be used for regression and density estimation too
- Decision trees will overfit!!!
 - Must use tricks to find "simple trees", e.g.,
 - Fixed depth/Early stopping
 - Pruning
 - Use ensembles of different trees (random forests)

