Copyright© Alberto C. 2001/2002

Formulario di Analisi Matematica I

CENNI	I DI INSIEMISTICA	3
CAMPI	I E LORO PROPRIETÀ	3
1.1)	CAMPO	3
2.2)	TIPI DI CAMPI O INSIEMI NUMERICI.	
2.3)	Valore assoluto (o modulo).	
2.4)	POTENZE.	
2.5)	Logaritmi	
2.6)	RADICI.	
2.7)	Numeri complessi (C = R + I).	
CALCO	OLO COMBINATORIO	6
3.1)	DISPOSIZIONI.	6
3.2)	PERMUTAZIONI.	6
3.3)	Combinazioni.	6
INSIEN	MI E FUNZIONI	7
4.1)	Insiemi	7
4.1.1	INTERVALLI, INTORNI E PUNTI DI ACCUMULAZIONE.	7
4.1.2		
4.1.3		
4.1.4		
4.2)	Funzioni.	
4.2.1		
4.2.2		
4.2.3		
4.2.4		
TRIGO	DNOMETRIA	10
5.1)	Nozioni generali.	
5.2)	FORMULE DI ADDIZIONE.	
5.3)	FORMULE DI DUPLICAZIONE .	
5.4)	FORMULE DI BISEZIONE.	
5.5)	FORMULE DI PROSTAFERESI .	
5.6)	FORMULE PARAMETRICHE.	
5.7)	FUNZIONI INVERSE	
5.8)	FORMULE DELLE FUNZIONI IPERBOLICHE.	
5.8.1		
5.8.2		
5.8.3		
5.8.4		
5.8.5		
5.8.6		
5.9)	Archi associati.	
5.9.1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
5.9.2	Archi che differiscono di π ($\alpha+\beta>\pi+2\kappa\pi$).	14
5.9.3	Archi esplementari $(\alpha+\beta=2\pi+2\kappa\pi)$	14
5.9.4	ARCHI OPPOSTI $(\alpha + (-\alpha) = 0)$.	14
5.9.5		
5.9.6	, ,	
5.9.7	· · · · · · · · · · · · · · · · · · ·	
	IETRIA ANALITICA	
6.1)	IL SEGMENTO.	15
6.1.1		
6.1.2		
6.2)	La retta	
6.2.1		
6.2.2		
6.2.2		15

6.2.4	RETTE PERPENDICOLARI.	15
6.3)	LE CONICHE.	15
6.3.1	LA CIRCONFERENZA.	15
6.3.2	La parabola	16
6.3.3	L'ellisse	16
6.3.4	L'iperbole	16
LIMITI.		17
7.1)	DEFINIZIONI	
7.1)	TEOREMI	
7.2.1	T.MA DELLA PERMANENZA DEL SEGNO.	
7.2.1	1° T.MA DEL CONFRONTO.	
7.2.3	2° T.MA DEL CONFRONTO (CARABINIERI).	
7.2.4	T.MA DI CAUCHY.	
7.2.5	T.MA DELL'UNICITÀ DEL LIMITE.	
7.2.6	T.MA SULLA CONTINUITÀ DI UNA FUNZIONE.	
7.2.7	T.MA DI WEIERSTRASS.	
7.2.8	T.MA DELL'ANNULLAMENTO.	
7.2.9	T.MA SUL LIMITE DI UNA SUCCESSIONE.	
7.2.10		
7.2.11	T.MI PER LA RICERCA DI MASSIMI E MINIMI RELATIVI.	
7.3)	LIMITI NOTEVOLI.	20
7.4)	FORME INDETERMINATE.	20
7.4.1	F.I. [0/0], [∞/∞]	20
7.4.2	F. I. [+∞-∞].	
7.4.3	F. I. [1 [∞]].	
7.4.4	F. I. [1 [∞]], [0 ⁰], [∞ ⁰]	21
7.4.5	F. I. [0*∞].	
7.5)	Infinitesimi ed infiniti.	
7.5.1	Confronto tra infinitesimi.	
7.5.2	ORDINE DI UN INFINITESIMO.	
7.5.3	PRINCIPIO DI SOSTITUZIONE DI UN INFINITESIMO.	
7.5.4	Confronto tra infiniti.	
7.5.5	Ordine di un infinito.	
7.5.6	PRINCIPIO DI SOSTITUZIONE DI UN INFINITO.	
	ATE	
8.1)	DEFINIZIONE.	22
	SIGNIFICATO GEOMETRICO.	
8.3)	TEOREMI	
8.3.1 8.3.2		
8.3.2	T.MA DELLA SOMMA	
8.3.4	T.MA DEL PRODOTTOT.MA DEL QUOZIENTE	
8.3.5	T.MA DELLA POTENZA N-ESIMA.	
8.3.6	T.MA DELLA FUNZIONE COMPOSTA.	
8.3.7	T.MA SULLA FUNZIONE COMPOSTA	
8.3.8	T.MA DELLA FUNZIONE INVERSA	
8.3.9	T.MA DI ROLLE.	
8.3.10		
8.3.11		
8.3.12		
8.3.13		
8.4)	DERIVATE NOTEVOLI.	
	DI FUNZIONE	
9.1)	PROCEDIMENTO.	
9.2)	ASINTOTI.	
9.2.1	A. VERTICALI.	
9.2.2	A. ORIZZONTALE.	
923	A Obliouo	25

1) Cenni di Insiemistica.

$A \cap B$	A	Intersezione
$A \cup B$	A	Unione
A \ B oppure A – B	A	Complemento
A ⊆ B	'a' incluso o uguale a B	
a ∈ A	'a' appartiene ad A	
$\forall a \in A$	per ogni 'a' appartenente ad A	
∃ a ∈ A	esiste un 'a' appartenente ad A	

2) Campi e loro proprietà.

2.1) Campo.

Struttura algebrica, avente due operazioni (+ e .), che gode delle seguenti proprietà:

• Commutativa: x + y = y + x x * y = y * x

• Associativa: (x + y) + z = y + (x + z) (x * y) * z = x * (y * z)

• Distributiva della '.' rispetto alla '+' : (x + y) * z = zx + zy

e che possiede i seguenti elementi:

• Elemento neutro: x + 0 = x x * 1 = x

2.2) Tipi di campi o insiemi numerici.

N: 1,2,3,4... → Naturali
 Z: ...,-4,-3,-2,-1,0,1,2,3,4... → Interi

• **Q**: 1/2, -1/3, 1/8, $1.\overline{3}$,... \rightarrow Razionali

• \mathbf{R} : $\sqrt{2}$, $\sqrt{3}/2$, e, π ,... \rightarrow Reali (NB: $\overline{\mathbf{R}} = \mathbf{R} + \{+\infty, -\infty\}$)

• **C**: 1+3i, $5\sqrt{2}$ -8i, ... \rightarrow Complessi (NB: è un campo non ordinato)

• I : 3i, 1/3i, √2i,... → Immaginari

 $\mbox{NB:} \quad -\mbox{N} \subset \mbox{Z} \subset \mbox{Q} \subset \mbox{R} \subset \mbox{C} \qquad \wedge \qquad I \subset \mbox{C}$

- L' indica l'insieme numerico composto dai soli elementi negativi

- L⁺ indica l'insieme numerico composto dai soli elementi positivi

- Lo indica l'insieme numerico composto dai soli elementi positivi e lo zero

2.3) Valore assoluto (o modulo).

$$|x| = \begin{cases} x \text{ per } x > 0 \\ -x \text{ per } x < 0 \end{cases}$$

Proprietà del modulo:

• $|x-y| \ge ||x|-|y||$ NB: |x-y| è detta distanza di x da y

|xy| = |x| * |y|

• $|x \pm y| \le |x| + |y|$ \leftarrow Disuguaglianza triangolare

Proprietà delle potenze:

•
$$x^{n} * x^{m} = x^{(n+m)}$$
 $x^{n} / x^{m} = x^{(n-m)}$

•
$$(x^n)^m = x^{(n+m)}$$

•
$$x^{-n'} = 1/(x^n)$$
 $(x/y)^{-n} = (y/x)^n$

optical delice potenze.

•
$$x^n * x^m = x^{(n+m)}$$

• $(x^n)^m = x^{(n+m)}$

• $x^{-n} = 1/(x^n)$

• $x^0 = 1$

• $x^n * y^n = (x * y)^n$

• $x^n / x^m = x^{(n-m)}$

2.5) Logaritmi

 $\log_a b$ è l'esponente da dare ad 'a' per ottenere 'b'. Il logaritmo è definito per b>0 \land a>0 \land a \ne 1.

•
$$a^{\log_a b} = b$$

•
$$\log_a b_1 + \log_a b_2 = \log_a(b_1 b_2)$$
 $\log_a b_1 - \log_a b_2 = \log_a \left(\frac{b_1}{b_2}\right)$

•
$$n \log_a b = \log_a (b^n)$$

•
$$\log_c b = \frac{\log_a b}{\log_a c}$$
 $\log_a b = \frac{1}{\log_b a}$

2.6) *Radici*.

Data l'eq. $y^n = a \wedge a>0 \wedge a, n, y \in R$

• per n pari
$$\rightarrow$$
 2 soluzioni: y= \pm $^{n}\sqrt{a}$; se a<0 non ci sono soluzioni

Proprietà dei radicali:

•
$$\sqrt[n]{(a^n)} = \begin{cases} a & \text{per n dispari} \\ |a| & \text{per n pari} \end{cases}$$

•
$$\sqrt{a \pm \sqrt{b}} = \sqrt{\frac{a + \sqrt{a^2 - b}}{2}} \pm \sqrt{\frac{a - \sqrt{a^2 - b}}{2}}$$

2.7) Numeri complessi (C = R + I).

Un numero complesso "Z=a+ib" è formato da una parte reale 'a' (a∈R) e da un parte immaginaria 'ib' (ib∈I). In particolare $i=\sqrt[4]{-1}$, da ciò ne consegue che $i^2=-1$, per cui i gode delle seguenti proprietà: $i^{4n}=1$ $i^{4n+1}=i$ $i^{4n+2}=-1$ $i^{4n+3}=-i$

Dato il numero complesso "Z = a + ib" il suo coniugato è " \overline{Z} = a - ib".

Operazioni tra numeri complessi:

•
$$(a+ib) + (c+id) = (a+c) + i(b+d)$$

•
$$(a+ib) * (c+id) = (ac - bd) + i(ad+bc)$$

Forme dei numeri complessi:

•
$$Z = a + ib$$
 \rightarrow Forma algebrica

•
$$Z = \rho (\cos \theta + i \sin \theta)$$
 \rightarrow Forma trigonometrica

In particolare per analogia tra la forma algebrica e quella trigonometrica si ricava:

$$\rho = \sqrt{(a^2 + b^2)}$$
 $a = \rho^* \cos\theta$ $b = \rho^* \sin\theta$ $\theta = \arctan(-b/a)$

4

Usando la forma trigonometrica è molto più facile effettuare la moltiplicazione e la divisione tra due numeri complessi $Z_1 = a + ib = \rho_1(\cos \alpha + i \sin \alpha)$ e $Z_2 = c + id = \rho_1(\cos \alpha + i \sin \alpha)$:

•
$$Z_1 Z_2 = \rho_1 \rho_2 \left[\cos(\alpha + \beta) + i \sin(\alpha + \beta) \right]$$
 $\frac{Z_1}{Z_2} = \frac{\rho_1}{\rho_2} \left[\cos(\alpha - \beta) + i \sin(\alpha - \beta) \right]$

Potenza e radice di Z:

Si risolvono tramite la formula di De Moivre:

- $Z^n = \rho^n (\cos(n\theta) + i \sin(n\theta))$ $^n \sqrt{Z} = ^n \sqrt{\rho} (\cos[(\theta + 2k\pi) / n] + i \sin[(\theta + 2k\pi) / n])$ \wedge k = 0, 1, 2, ..., (n-1) ne consegue che l'estrazione di radice su un numero Z genera n soluzioni

Calcolo combinatorio.

Esso studia gli insiemi di oggetti calcolando il numero totale di gruppi che si possono formare con questi.

3.1) Disposizioni.

Dati 'n' elementi diversi e fissato un numero intero positivo k≤n, si dicono disposizioni _nD_k (o D_{n,k}) di 'n' elementi di classe 'k' i gruppi che si possono formare prendendo 'k' elementi dagli 'n' in modo tale che ogni gruppo differisca o per almeno un elemento o per l'ordine in cui gli elementi sono presi.

$$_{n}D_{k} = (n-0)(n-1)(n-2).....(n-(k-1)) = \frac{n!}{(n-k)!}$$

es: dato l'insieme $\{A,B,C\} \rightarrow n=3$, prendendo k=2:

3.2) Permutazioni.

Si dicono permutazioni P_n di 'n' elementi i gruppi che si possono formare prendendo tutti gli elementi e scambiandoli tra loro in tutti i modi possibili.

$$P_n = D_n = (n-0)(n-1)(n-2)....(n-(n-1)) = n!$$
 NB: 1! = 1 e 0! = 1

dato l'insieme
$$\{A,B,C\} \rightarrow n=3$$
 $P_3 = 6 \rightarrow ABC BCA CAB$
 $ACB BAC CBA$

3.3) Combinazioni.

Dati 'n' elementi diversi e fissato un numero intero positivo k≤n, si dicono combinazioni "C_k (o C_{n,k}) di 'n' elementi di classe 'k' tutti i possibili gruppi che si possono formare prendendo 'k' elementi dagli 'n' in modo tale che ogni gruppo differisca dagli altri per almeno un elemento.

$$_{n}C_{k} = \frac{_{n}D_{k}}{P_{k}} = \frac{n!}{(n-k)!k!} = \binom{n}{k}$$

es:

Le combinazioni sono spesso indicate come ${}_{n}C_{k}=\frac{n!}{(n-k)!\,k!}=\binom{n}{k}$ che si legge 'n su k'.

Le quantità $\binom{n}{k}$ comunemente indicate come *coefficienti binomiali*, godono delle seguenti proprietà:

•
$$\binom{n}{0} = 1$$
 ; $\binom{n}{n} = 1$; $\binom{n}{1} = n$; $\binom{n}{k} = 0$ se k<0 oppure k>n

•
$$\binom{n}{k} = \binom{n}{n-k}$$

•
$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

Esiste inoltre il teorema binomiale o teorema del binomio di Newton, che permette di sviluppare un binomio di potenza 'n':

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k \quad \land \quad a,b \in \mathbb{R} \quad \land \quad n \in \mathbb{N}$$

4) Insiemi e Funzioni.

4.1) Insiemi.

Un insieme è una collezione/un raggruppamento di oggetti che godono tutti di una stessa proprietà.

4.1.1 Intervalli, Intorni e Punti di accumulazione.

Un intervallo è un sottoinsieme di un campo ordinato (ad es R).

$a \le x \le b$	[a, b]	Intervallo chiuso
a ≤ x < b	[a, b[Intervallo semiaperto a dx
a < x < b]a, b[Intervallo aperto

L'intorno I di un punto ' x_0 ' è un qualunque intervallo contenente ' x_0 '. L'intorno dx/sx di un punto ' x_0 ' è un qualunque intervallo aperto a dx/sx che abbia ' x_0 ' come estremo inferiore/superiore.

Un punto ' x_0 ' è detto di *accumulazione* quando in ogni suo intorno esiste almeno un punto distinto da ' x_0 '. Un punto $x_0 \in X$ che non è di accumulazione è detto *isolato*.

• *Teorema di Bolzano*: Ogni insieme limitato contenente infiniti punti contiene almeno un punto di accumulazione. Se un insieme e illimitato, i punti +∞ e -∞ sono di accumulazione.

Un punto ' x_0 ' è detto *interno* se $\exists I(x_0)$ tutto costituito da punti di X. Un punto ' x_0 ' è detto *esterno* se $\exists I(x_0)$ dove non cade nessun punto di X.

Se un punto non è né interno né esterno allora è di *frontiera*. L'insieme dei punti di frontiera è detto frontiera di X.

NB:- Un insieme è aperto se ogni punto è interno.

- Un insieme è chiuso se contiene anche la frontiera.

4.1.2 Massimi e minimi.

Un insieme X è dotato di un Max e di un min quando $\forall x \in X, \exists x_0 : m \le x \le M$

4.1.3 Maggioranti e minoranti.

Se $\forall x \in X$, $x \le k \rightarrow k$ è detto maggiorante di X Se $\forall x \in X$, $x \ge k \rightarrow k$ è detto minorante di X

Se X possiede sia un maggiorante che un minorante allora è detto *limitato* (se ne possiede uno solo è detto limitato inferiormente/superiormente).

NB: Un insieme chiuso e limitato è detto compatto.

4.1.4 Estremi.

Dato un insieme X≠Ø, l'estremo superiore 'L' è quell'elemento che gode di due proprietà:

- $\forall x \in X, x \leq L$
- dato un ε >0 piccolo a piacere $\exists x_0 > L \varepsilon$

Dato un insieme X≠Ø, l'estremo inferiore 'l' è quell'elemento che gode di due proprietà:

- $\forall x \in X, x \ge I$
- dato un ε >0 piccolo a piacere $\exists x_0 < L + \varepsilon$

NB: - Se un 'x' è un estremo di X e x∈ X allora x è anche un massimo o un minimo.

- Se X è illimitato (ad es \overline{R}): L = $+\infty$, I = $-\infty$

4.2) Funzioni.

4.2.1 Definizione di funzione e grafico.

Una corrispondenza univoca è una legge che Una corrispondenza plurivoca è una legge che associa ad un 'a' uno ed un solo 'b'.

associa ad un 'a' uno o più 'b'.

Una funzione è una corrispondenza univoca tra due insiemi A e B detti rispettivamente Dominio e Codominio e viene indicata con:

 $f: A \to B$ oppure $b = f(a) \land a \in A \land b \in B$.

Una funzione reale di variabile reale è una corrispondenza univoca avente per Dominio e Codominio l'insieme o un sottoinsieme dei numeri reali, in simboli:

 $f: R \to R$ oppure $y = f(x) \land x \in R \land y \in R$.

Il *grafico* di una funzione $f: A \rightarrow B$ è l'insieme delle coppie (a, f(a)) sottoinsieme del prodotto cartesiano di A e B, in simboli:

grafico di $f = \{(a, f(a)) : a \in A\} \subseteq AxB$

NB:- A₁ x A₂ x ... x A_n è detto *prodotto cartesiano* ed è l'insieme formato dalle n-uple (a₁, a₂, ..., a_n).

- Restrizione di una funzione: studio la funzione in un sottoinsieme del dominio.
- Prolungamento di una funzione: studio la funzione in un insieme maggiore del dominio.

4.2.2 Proprietà

- Una funzione è *invertibile* se $\forall x_1, x_2 \in X$, $x_1 \neq x_2 \land f(x_1) \neq f(x_2)$: $f: X \to Y \land f^{-1}: X \leftarrow Y \to f: X \leftrightarrow Y \Rightarrow f^{-1}(f(x)) = x$
- Date le due funzioni $f:A\to B$ e $g:B\to C$ è detta funzione composta $h:A\to C$ la funzione z = g[f(x)]
- Una funzione è detta periodica di periodo T>0 quando vale l'uguaglianza: f(x+T)=f(x)
- Una funzione, considerata in un intervallo]a,b[, è ivi convessa se i punti del suo grafico stanno al di sopra della retta che congiunge i punti (a, f(a)) e (b, f(b)), altrimenti è detta concava.

Funzione convessa

Funzione concava

- Una funzione è detta *pari* se f(x) = f(-x)Una funzione è detta dispari se f(x) = -f(-x)
- es: y=|x| es: y=x
- Una funzione è dotata di un min/max assoluto se è inferiormente/superiormente limitata e l'estremo inferiore/superiore appartiene al codominio.
- Una funzione è *crescente/decrescente* se $\forall x_1, x_2 \in D$ vale $f(x_1) > f(x_2)$

Se $\forall x_1, x_2 \in D$ vale $f(x_1) \leq f(x_2)$ la funzione è detta monotona.

Una funzione è detta continua in x_0 se $\exists \lim_{n \to \infty} f(x) = f(x_0) = l$.

Una funzione è detta continua nel suo dominio D se per ogni $x \in D \exists \lim_{x \to a} f(x) = f(x_0) = l$

4.2.3 Tipi di funzioni.

• Una funzione $f: X \to Y$ è detta *suriettiva* se per ogni $y \in Y$ esiste almeno un $x \in X$ per cui y = f(x), ovvero se il suo codominio coincide con Y.

es: $y = x^2$ non è una funzione suriettiva y = 2x è una funzione suriettiva

• Una funzione $f: X \to Y$ è detta *iniettiva* se $\forall x 1, x 2 \in X$ vale $f(x_1) \neq f(x_2) \land x_1 \neq x_2$.

es: $y = x^2$ non è una funzione iniettiva y = 5x è una funzione iniettiva

• Una funzione $f: X \to Y$ è detta *biunivoca* se è sia suriettiva che iniettiva.

es: y = x è una funzione biunivoca

NB: Se una funzione è biunivoca è anche invertibile.

4.2.4 Tipi di discontinuità.

• 1° specie:

Si ha quando esistono finiti i limiti nel punto x=c, e $\lim_{x\to c+} f(x) \neq \lim_{x\to c-} f(x)$.

• 2° specie:

Si ha quando non esiste o non è finito almeno uno dei limiti dx e sx nel punto x=c.

• 3° specie o eliminabile:

Si ha quando esiste finito il $\lim f(x)$ ma f(c) non esiste o è diversa dal valore del limite.

5) Trigonometria.

5.1) Nozioni generali.

Sen
$$\alpha$$
 = HP / OP

Funzione seno

$$Cos \alpha = OH / OP$$

Funzione coseno

Tg
$$\alpha$$
 = HP / OH

Funzione tangente

Gradi	Radianti	sen	cos	tg
0	0	0	1	0
30	π/6	1/2	√3/2	√3/3
45	π/4	√2/2	√2/2	1
60	π/3	√3/2	1/2	√3
90	π/2	1	0	±∞ (al lim)
180	π	0	-1	0
270	3π/2	-1	0	±∞ (al lim)
360	2π	0	1	0

•
$$sen^2 \alpha + cos^2 \alpha = 1$$
 (Equazione fondamentale)

•
$$tg\alpha = \frac{\operatorname{sen}\alpha}{\cos\alpha} \wedge \alpha \neq \frac{\pi}{2} + k\pi$$

$$\cot \alpha = \frac{\cos \alpha}{\sin \alpha} \land \alpha \neq k\pi$$

•
$$\sec \alpha = \frac{1}{\cos \alpha}$$

$$\csc\alpha = \frac{1}{\sin\alpha}$$

NB: In particolare dalla fondamentale si ricava:

Noto↓ trovo →	senlpha	$\cos \alpha$	tgα
$sen \alpha$	X	$\sqrt{(1-\mathrm{sen}^2\alpha)}$	$\operatorname{sen}\alpha / \sqrt{(1-\operatorname{sen}^2\alpha)}$
$\cos \alpha$	$\sqrt{(1-\cos^2\alpha)}$	X	$\sqrt{(1-\cos^2\alpha)/\cos\alpha}$
tg lpha	$\pm tg\alpha / \sqrt{(1 + tg^2\alpha)}$	$\pm 1 / \sqrt{(1 + tg^2 \alpha)}$	X

5.2) Formule di ADDIZIONE.

•
$$\operatorname{sen}(\alpha \pm \beta) = \operatorname{sen} \alpha \cos \beta \pm \cos \alpha \operatorname{sen} \beta$$

•
$$tg(\alpha \pm \beta) = \frac{tg\alpha \pm tg\beta}{1 \mp tg\alpha * tg\beta}$$

•
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

5.3) Formule di **DUPLICAZIONE**.

•
$$\operatorname{sen}(2\alpha) = 2\operatorname{sen}\alpha\operatorname{cos}\alpha$$

•
$$tg(2\alpha) = \frac{2tg\alpha}{1 - tg^2\alpha}$$

•
$$\cos(2\alpha) = \begin{cases} \cos^2 \alpha - \sin^2 \beta \\ 2\cos^2 \alpha - 1 \\ 1 - 2\sin^2 \alpha \end{cases}$$

5.4) Formule di **BISEZIONE**.

•
$$\operatorname{sen}^2\left(\frac{\alpha}{2}\right) = \frac{1-\cos\alpha}{2}$$

•
$$tg^2\left(\frac{\alpha}{2}\right) = \frac{1-\cos\alpha}{1+\cos\alpha}$$

•
$$\cos^2\left(\frac{\alpha}{2}\right) = \frac{1+\cos\alpha}{2}$$

•
$$tg^2 \left(\frac{\alpha}{2}\right) = \frac{1 - \cos \alpha}{1 + \cos \alpha}$$

NB: $tg\left(\frac{\alpha}{2}\right) = \frac{\sin \alpha}{1 + \cos \alpha} = \frac{1 - \cos \alpha}{\sin \alpha}$

5.5) Formule di **PROSTAFERESI**.

Dalle formule di addizione:

$$sen(\alpha + \beta) + sen(\alpha - \beta) = 2 sen \alpha cos \beta$$

$$sen(\alpha + \beta) - sen(\alpha - \beta) = 2 sen \beta cos \alpha$$

$$cos(\alpha + \beta) + cos(\alpha - \beta) = 2 cos \alpha cos \beta$$

$$cos(\alpha + \beta) - cos(\alpha - \beta) = -2 sen \alpha sen \beta$$

e ponendo ($\alpha+\beta$)=p , ($\alpha-\beta$)=q :

•
$$\operatorname{sen}(p) + \operatorname{sen}(q) = 2\operatorname{sen}\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$
 • $\operatorname{cos}(p) + \operatorname{cos}(q) = 2\operatorname{cos}\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$
• $\operatorname{sen}(p) - \operatorname{sen}(q) = 2\operatorname{sen}\left(\frac{p-q}{2}\right)\cos\left(\frac{p+q}{2}\right)$ • $\operatorname{cos}(p) - \operatorname{cos}(q) = -2\operatorname{sen}\left(\frac{p+q}{2}\right)\operatorname{sen}\left(\frac{p-q}{2}\right)$

•
$$\operatorname{sen}(p) - \operatorname{sen}(q) = 2\operatorname{sen}\left(\frac{p-q}{2}\right)\cos\left(\frac{p+q}{2}\right)$$
 • $\cos(p) - \cos(q) = -2\operatorname{sen}\left(\frac{p+q}{2}\right)\operatorname{sen}\left(\frac{p-q}{2}\right)$

•
$$tg(p) \pm tg(q) = \frac{\operatorname{sen}(p \pm q)}{\operatorname{cos}(p)\operatorname{cos}(q)}$$

5.6) Formule PARAMETRICHE.

Usate per equazioni e disequazioni lineari, esse sono valide $\forall \alpha \neq \pi + 2k\pi$, perciò quando vengono usate bisogna verificare se i valori esclusi fanno parte delle soluzioni.

•
$$\operatorname{sen}(\alpha) = \frac{2tg\left(\frac{\alpha}{2}\right)}{1 + tg^2\left(\frac{\alpha}{2}\right)}$$

•
$$\cos(\alpha) = \frac{1 - tg^2 \left(\frac{\alpha}{2}\right)}{1 + tg^2 \left(\frac{\alpha}{2}\right)}$$

5.7) Funzioni inverse.

Le funzioni trigonometriche, essendo periodiche non hanno delle corrispondenti funzioni inverse, si è pensato per questo di studiarle in un intervallo di lunghezza pari al periodo e quindi invertirle. Si ricorda che le funzioni inverse scambiano tra loro dominio codominio.

5.8) Formule delle FUNZIONI IPERBOLICHE.

Le funzioni inverse sono dette settori semiiperbolici.

Di seguito sono riportate le funzioni iperboliche messe a confronto con le loro rispettive non iperboliche considerate tra $[-\pi/2; \pi/2]$.

5.8.1 Coseno iperbolico.

Funzione iperbolica:

$$\cosh(x) = \frac{e^x + e^{-x}}{2} \ge 1 \quad \text{funzione pari}$$

Funzione iperbolica inversa:

$$\operatorname{sett} \cosh(x) = 2\log(\sqrt{x+1} + \sqrt{x-1}) - \log 2$$

5.8.2 Seno iperbolico.

Funzione iperbolica:

$$senh(x) = \frac{e^x - e^{-x}}{2}$$
 funzione dispari

Funzione iperbolica inversa:

$$\operatorname{sett senh}(x) = \log(\sqrt{x^2 + 1} + x)$$

5.8.3 Tangente iperbolica.

Funzione iperbolica:

$$tgh(x) = \frac{senh(x)}{cosh(x)} = \frac{e^{2x} - 1}{e^{2x} + 1}$$
 funzione dispari

Funzione iperbolica inversa:

$$setttgh(x) = \frac{\log(1+x) - \log(1-x)}{2}$$

5.8.4 Cotangente iperbolica.

Funzione iperbolica:

$$cotgh(x) = \frac{1}{tgh(x)} = \frac{e^{2x} + 1}{e^{2x} - 1}$$
 funzione dispari

Funzione iperbolica inversa:

$$\operatorname{settcotgh}(x) = \frac{\log \frac{x+1}{x-1}}{2}$$

5.8.5 Secante iperbolica.

Funzione iperbolica:

$$\operatorname{sech}(x) = \frac{1}{\cosh(x)} = \frac{2e^x}{e^{2x} + 1} \le 1 \quad \text{funzione pari}$$

Funzione iperbolica inversa:

sett sec h(x) =
$$2 \log \left(\sqrt{\frac{x+1}{x}} + \sqrt{\frac{1-x}{x}} \right) - \log 2$$

5.8.6 Cosecante iperbolica.

Funzione iperbolica:

$$cosech(x) = \frac{1}{senh(x)} = \frac{2e^x}{e^{2x} - 1}$$
 funzione dispari

Funzione iperbolica inversa:

$$\operatorname{sett} \operatorname{cos} \operatorname{ech}(x) = \log \left(\frac{x\sqrt{\frac{x^2 + 1}{x^2}} + 1}{x} \right)$$

Altre formule:

$$\bullet \quad \cosh^2(x) - \sinh^2(x) = 1$$

5.9) Archi associati.

5.9.1 Archi supplementari

 $(\alpha + \beta = \pi + 2k\pi).$

Posto $(\pi - \alpha) = \varphi$

- $sen(\varphi) = sen(\alpha)$
- $\cos(\varphi) = -\cos(\alpha)$
- $tg(\varphi) = -tg(\alpha)$
- $\cot g(\varphi) = -\cot g(\alpha)$

5.9.2 Archi che differiscono di π

 $(\alpha+\beta > \pi+2k\pi)$.

Posto $(\pi + \alpha) = \varphi$

- $sen(\varphi) = -sen(\alpha)$
- $\cos(\varphi) = -\cos(\alpha)$
- $tg(\varphi) = tg(\alpha)$
- $\cot g(\varphi) = \cot g(\alpha)$

5.9.3 Archi esplementari

 $(\alpha + \beta = 2\pi + 2k\pi).$

Posto $(2\pi - \alpha) = \varphi$

- $sen(\varphi) = -sen(\alpha)$
- $\cos(\varphi) = \cos(\alpha)$
- $tg(\varphi) = -tg(\alpha)$
- $\cot \varphi(\varphi) = -\cot \varphi(\alpha)$

5.9.4 Archi opposti

$$(\alpha + (-\alpha) = 0).$$

- sen $(-\alpha)$ = sen (α)
- $\cos(-\alpha) = \cos(\alpha)$
- $tg(-\alpha) = -tg(\alpha)$
- $\cot (-\alpha) = -\cot (\alpha)$

5.9.5 Archi complementari

 $(\alpha + \beta = \pi/2 + 2k\pi).$

Posto
$$(\pi/2 - \alpha) = \varphi$$

- sen (φ) = cos (α)
- cos (φ) = sen (α)
- $tg(\phi) = cotg(\alpha)$
- $\cot \phi = \cot \phi$

5.9.6 Archi che differiscono di $\pi/2$

 $(\alpha + \beta > \pi/2 + 2k\pi).$

Posto
$$(\pi/2 + \alpha) = \varphi$$

- sen (φ) = cos (α)
- $\cos (\varphi) = \sin (\alpha)$
- $tg(\varphi) = -cotg(\alpha)$
- $\cot g(\varphi) = tg(\alpha)$

5.9.7 Archi che differiscono di $3\pi/2$ $(\alpha+\beta > 3\pi/2+2k\pi)$.

Posto $(3\pi/2 + \alpha) = \varphi$

- $sen (\varphi) = -cos (\alpha)$
- cos (φ) = sen (α)
- $tg(\varphi) = -cotg(\alpha)$
- $\cot g (\varphi) = tg (\alpha)$

6) Geometria analitica.

6.1) Il Segmento.

6.1.1 Punto medio.

Dato un segmento AB di estremi A(x_1,y_1), B(x_2,y_2) è detto punto medio M di AB quel punto di coordinate $x_M = (x_1 + x_2) / 2$ $y_M = (y_1 + y_2) / 2$

6.1.2 Lunghezza.

Dato un segmento AB di estremi A(x_1,y_1), B(x_2,y_2) è detta lunghezza L di AB: L = $\sqrt{[(x_2-x_1)^2+(y_2-y_1)^2]}$

6.2) La retta.

$$ax + by + c = 0$$
 Forma implicita $y = mx + q$ Forma esplicita

6.2.1 Fascio di rette passante per un punto.

Dato il punto P(x₁,y₁) l'equazione del fascio è: $a(x-x_1)+b(y-y_1)=0$.

6.2.2 Retta passante per due punti.

Dati i punti A(x₁,y₁), B(x₂,y₂) l'equazione della retta è: $\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}.$

6.2.3 Rette parallele.

Condizione necessaria è [a/b = a'/b'] oppure [m = m'].

6.2.4 Rette perpendicolari.

Condizione necessaria è $[(-a/b)^*(-a'/b') = 1]$ oppure [m = 1 / m'].

NB: La retta è un particolare tipo di conica.

6.3) Le coniche.

Tutte le coniche derivano dall'equazione: $ax^2 + bxy + cy^2 + dx + ey + f = 0$

Calcolando il discriminante $\Delta = b^2 - 4ac$ se $\Delta > 0$ \rightarrow ellisse o circonferenza

 $\Delta = 0 \rightarrow \text{parabola}$

 $\Delta < 0$ \rightarrow iperbole

6.3.1 La circonferenza.

Equazione canonica: $x^2 + y^2 + ax + by + c = 0$ di centro C(-a/2, -b/2) e raggio r = 1/2 $\sqrt{[a^2 + b^2 - 4c]}$.

Equazione esplicita: $(x-\alpha)^2 + (y-\beta)^2 = r^2$ di centro C(α , β) e raggio r = r

6.3.2 La parabola.

- Equazione generale: $y = ax^2 + bx + c$
- Per a>0 la concavità è verso l'alto (vedi fig.).
- Per a<0 la concavità è verso il basso.
- Se c=0 la parabola passa per l'origine.
- Se b=0 il suo asse 'a' coincide con 0y.

Formule:

vertice
$$V\left(\frac{-b}{2a}; \frac{-\Delta}{4a}\right)$$

fuoco
$$F\left(\frac{-b}{2a}; \frac{1-\Delta}{4a}\right)$$

direttrice
$$d: y = \frac{-(1+\Delta)}{4a}$$

asse
$$a: x = \frac{-b}{2a}$$

6.3.3 L'ellisse.

Posto: PF₁+PF₂ = 2a
$$\Lambda$$
 F₁F₂ = 2c
F1(-c, 0), F2(c, 0), P(x, y)
 $\Rightarrow \sqrt{(x-c)^2 + y^2} + \sqrt{(x+c)^2 + y^2} = 2a$
 $(a^2 - c^2)x^2 + a^2y^2 = a^2(a^2 - c^2)$
Sos: a>c \Rightarrow a² - c²>0 \Rightarrow posso porre a² - c² = b²
 $b^2x^2 + a^2y^2 = a^2b^2 \Rightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

questa è l'equazione canonica riferita all'origine, per ottenere quella traslata basta sostituire 'x' con ' $x - x_0$ ' e 'y' con ' $y - y_0$ '.

Per trovare i fuochi: $F_{1,2} = \left(\pm \sqrt{a^2 - b^2}\right)$; 0

6.3.4 L'iperbole.

Posto: PF₁-PF₂ = 2a
$$\Lambda$$
 F₁F₂ = 2c
F1(-c, 0), F2(c, 0), P(x, y)

$$\Rightarrow \left| \sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2} \right| = 2a$$

$$(c^2 - a^2)x^2 - a^2y^2 = a^2(c^2 - a^2)$$
Oss: c>a \Rightarrow c² - a²>0 \Rightarrow posso porre c² - a² = b²

$$b^2x^2 - a^2y^2 = a^2b^2 \Rightarrow \boxed{\frac{x^2}{a^2} - \frac{y^2}{b^2}} = 1$$

questa è l'equazione canonica riferita all'origine, per ottenere quella traslata basta sostituire 'x' con ' $x - x_0$ ' e 'y' con ' $y - y_0$ '.

Per trovare i fuochi: $F_{1,2} = \left(\pm \sqrt{a^2 + b^2}\right)$; 0

Mentre per gli asintoti: $y_1 = (b/a)x$; $y_2 = (-b/a)x$

7) Limiti.

7.1) Definizioni.

Simbologia:

\Leftrightarrow	Se e solo se	
\rightarrow	Si ha, ne consegue	
ε	Numero arbitrariamente piccolo	
M	Numero arbitrariamente grande	
$I(c,\varepsilon)$ o $I(c,M)$	Intorno del punto 'c', dipendente da ϵ o da M	
$K(c) \circ K(M)$	Un numero K dipendente da s o da M	

• $\lim_{x \to c} f(x) = l \iff \forall \varepsilon > 0, \quad \exists I(c, \varepsilon) : \forall x \in I(c, \varepsilon) - \{c\} \to |f(x) - l| < \varepsilon$

• $\lim_{x \to c} f(x) = \infty \Leftrightarrow \forall M > 0, \quad \exists I(c, M) : \forall x \in I(c, M) - \{c\} \to |f(x)| > M$

 $\lim_{x \to \infty} f(x) = l \Leftrightarrow \forall \varepsilon > 0, \quad \exists I(\infty, \varepsilon) : \forall x \in I(\infty, \varepsilon) \to \left| f(x) - l \right| < \varepsilon$ oppure

$$\lim_{x \to \infty} f(x) = l \iff \forall \varepsilon > 0, \quad \exists K(\varepsilon) : \forall |x| > K \to |f(x) - l| < \varepsilon$$

• $\lim_{x \to \infty} f(x) = \infty \Leftrightarrow \forall M > 0$, $\exists I(\infty, M) : \forall x \in I(\infty, M) \to |f(x)| > M$ oppure

$$\lim_{x \to \infty} f(x) = \infty \Leftrightarrow \forall M > 0, \quad \exists K(M) : \forall |x| > K \to |f(x)| > M$$

NB: Se $\lim_{x\to c^-} f(x) = \lim_{x\to c^+} f(x)$, il limite nel punto 'c' è ammesso.

7.2) Teoremi.

7.2.1 T.ma della permanenza del segno.

Se $\exists \lim_{x \to c} f(x) = l \neq 0$, $\exists I(c) : \forall x \in I(c)$ i valori della f(x) hanno lo stesso segno del limite.

7.2.2 1° T.ma del confronto.

Se $\forall x \in D \ f(x) \ge g(x)$, ed ammettono entrambe un limite finito per $x \to c$ allora anche: $\lim_{x \to c} f(x) \ge \lim_{x \to c} g(x)$

7.2.3 2° T.ma del confronto (carabinieri).

Se $\forall x \in D \ f(x) < z(x) < g(x)$, ed f,g ammettono entrambe un limite finito per $x \rightarrow c$ si ha: $l-\varepsilon < f(x) < l+\varepsilon$ e $l-\varepsilon < g(x) < l+\varepsilon$ da cui ne deriva che vale anche: $l-\varepsilon < z(x) < l+\varepsilon$.

7.2.4 T.ma di Cauchy.

Se esiste finito il
$$\lim_{x \to c} f(x) = l \ \text{e} \ \forall \varepsilon > 0, \quad \exists I(c,\varepsilon) : \forall x_1,x_2 \in I(c,\varepsilon) - \{c\} \to \left| f(x_2) - f(x_1) \right| < \varepsilon$$

7.2.5 T.ma dell'unicità del limite.

Se f(x) ammette un limite, questo limite è unico.

7.2.6 T.ma sulla continuità di una funzione.

Una funzione è detta continua in x_0 se $\exists \lim_{x \to c} f(x) = f(c) = l$.

Una funzione è detta continua nel suo dominio D se per ogni $x \in D$ $\exists \lim_{x \to c} f(x) = f(c) = l$

7.2.7 T.ma di Weierstrass.

Se f(x) è continua in un insieme [a, b] limitato ∧ a≠b allora è dotata di un Max e un Min assoluti.

7.2.8 T.ma dell'annullamento.

Se f(x) è continua in un insieme [a, b] \land a \neq b, e assume valori di segno opposto allora si annulla in almeno un punto di questo insieme.

7.2.9 T.ma sul limite di una successione.

Una successione è una funzione qualunque che ha per dominio l'insieme dei numeri naturali.

Data una
$$f(x) \land x=n \land n \in N \to f(n) = a_n = \{ a_1, a_2, a_3, ..., a_n, ... \}.$$

Se
$$\lim_{n \to +\infty} a_n = \begin{cases} l & \leftarrow \text{ successione convergente} \\ \infty & \leftarrow \text{ successione divergente} \end{cases}$$
 $\Rightarrow \leftarrow \text{ successione indeterminata}$

Una succ. de/crescente limitata converge all'estremo sup/inferiore dei suoi termini.

Una succ. de/crescente non limitata diverge a $+\infty/-\infty$.

7.2.10 T.ma sul limite di una funzione monotona.

Considerando f(x) decrescente/crescente nel dominio D il quale è situato a sx di un punto P si ha che:

$$\lim_{x \to c^{-}} f(x) = \begin{array}{c} L \leftarrow \text{estremo superiore} \\ l \leftarrow \text{estremo inferiore} \end{array}$$

7.2.11 T.mi per la ricerca di massimi e minimi relativi.

f(x) ha in 'c' un punto di massimo/minimo se $\exists I(c): \forall x \in I(c) \rightarrow f(x) \leq f(c) / f(x) \geq f(c)$ se la disuguaglianza è verificata in modo stretto i punti sono detti propri.

Il più grande/piccolo valore che una f(x) assume nel dominio è detto Max/Min assoluto.

- Sia f(x) definita in [a, b] e 'c' è un punto di Max/Min interno a tale intervallo, se f(x) è derivabile in 'c' $\rightarrow f'(c) = 0$.
- Sia f(x) definita in [a, b] e derivabile in 'c' interno a tale intervallo, se:

$$f_{-}'(c) > 0 \land f_{+}'(c) < 0 \rightarrow$$
 'c' è un punto di Max

$$f_{-}'(c) < 0 \land f_{+}'(c) > 0 \rightarrow$$
 'c' è un punto di Min

NB: Sono condizioni sufficienti.

• Sia f(x) definita in [a, b] e derivabile (n-1) volte in 'c' interno a tale intervallo, se succede che:

$$f'(c) = f''(c) = \dots = f^{n-1}(c) = 0 \land f^n(c) \neq 0$$

se
$$f^{n}(c) < 0 \rightarrow$$

- se n è pari: se $f^n(c) < 0 \rightarrow$ 'c' è un Max proprio

se
$$f^{n}(c) > 0$$

se $f^{n}(c) > 0 \rightarrow$ 'c' è un Min proprio

- se n è dispari: Non ci sono né massimi né minimi.

7.3) Limiti notevoli.

Se f(x) è una di queste funzioni:

sen, arcsen, tq, arctq, senh, arcsenh, tgh, arctgh, log(1+x), $(e^x -1)$

allora è vero che:

$$\lim_{x \to 0} \frac{f(x)}{x} = 1$$

((α)	x
$\lim_{x\to\infty}$	1+-	$=e^{\alpha}$
$x \rightarrow \infty$	x	

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0$$

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$$

7.4) Forme indeterminate.

7.4.1 F.I. [0/0], [∞/∞].

Per le FI $\left\lceil \frac{0}{0} \right\rceil$ e $\left\lceil \frac{\infty}{\infty} \right\rceil$ se il limite è un rapporto di polinomi si raccoglie e si semplifica la 'x' di grado

massimo tra denominatore e numeratore, mentre se il limite è formato da funzioni trascendentali (vedi

Cap. 5) occorre semplificare e/o ridurre tutto o alcune parti nel limite notevole 'sen(x)/x'.

Es:
$$\lim_{x \to 0} \frac{4x^3 - 2x^2 + x}{3x^2 + 2x} = \lim_{x \to 0} \frac{4x^2 - 2x + 1}{3x + 2} = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{\sin(ax)}{\sin(bx)} = \lim_{x \to 0} \frac{\sin(ax) * ax}{ax} * \frac{bx}{\sin(bx)bx} = \frac{a}{b}$$

7.4.2 F. I. [+∞-∞].

La FI $[+\infty-\infty]$ solitamente si presenta come il limite di una somma di polinomi, perciò occorre semplificare usando le regole di questi ultimi.

Es:
$$\lim_{x \to +\infty} (\sqrt{x} - \sqrt{x+3}) = \lim_{x \to 0} \frac{-3}{\sqrt{x} + \sqrt{x+3}} = 0$$

7.4.3 F. I. [1[∞]].

La FI $\left[1^{\infty}\right]$ può essere risolta nel seguente modo: con $x \to c \land f(x) \to 1 \land g(x) \to \pm \infty$ si ha

$$\lim_{x \to c} f(x)^{g(x)} = \lim_{x \to c} \left\{ \left[1 + f(x) - 1 \right] \frac{1}{f(x) - 1} \right\}^{\left[(f(x) - 1)g(x) \right]} = \lim_{x \to c} e^{\left[(f(x) - 1)g(x) \right]}$$

7.4.4 F. I. $[1^{\infty}]$, $[0^{0}]$, $[\infty^{0}]$.

 $\text{Le FI } \left[1^{\infty}\right] \ \left[0^{0}\right] \ \left[\infty^{0}\right] \ \text{possono essere risolte cosi: } \lim_{x \to c} f(x)^{g(x)} = \lim_{x \to c} e^{g(x)\log(f(x))}$

7.4.5 F. I. [0*∞].

La FI $[0*\infty]$ si risolve usando le regole dell'algebra dei polinomi dei logaritmi ed usando i limiti notevoli.

Es:
$$\lim_{x \to +\infty} (\sqrt{x} - \sqrt{x+3}) = \lim_{x \to 0} \frac{-3}{\sqrt{x} + \sqrt{x+3}} = 0$$

7.5) Infinitesimi ed infiniti.

 $f(\mathbf{x})$ è un infinitesimo quando $\lim_{x \to c} f(x) = 0$, mentre è un infinito se $\lim_{x \to c} f(x) = \infty$.

NB: 'o' è il simbolo di LANDALL, La scrittura se $\exists \lim_{x \to c} \frac{f(x)}{g(x)} = 0$ è equivalente a $f(x) = o(g(x)) \land x \to 0$

7.5.1 Confronto tra infinitesimi.

Con
$$g(x) \neq 0$$
, se $\exists \lim_{x \to c} \frac{f(x)}{g(x)} = \begin{cases} 0 & f(x) \text{ è di ordine > di } g(x) \\ k \neq 0 & f(x) \text{ è di ordine = di } g(x) \end{cases}$

$$\int_{\infty}^{\infty} \frac{f(x) \text{ è di ordine > di } g(x)}{f(x) \text{ è di ordine < di } g(x)}$$

7.5.2 Ordine di un infinitesimo.

Con $n \in \mathbb{N}$ se $\exists \lim_{x \to c} \frac{f(x)}{[g(x)]^n} = k \neq 0$ si ha che f(x) è un infinitesimo di ordine 'n' rispetto a g(x).

7.5.3 Principio di sostituzione di un infinitesimo.

Con F(x) e G(x) infinitesimi di ordine superiore a f(x) e g(x), considero:

$$\lim_{x \to c} \frac{f(x) + F(x)}{g(x) + G(x)} = \lim_{x \to c} \left[\frac{f(x)}{g(x)} \frac{1 + F(x)/f(x)}{1 + G(x)/g(x)} \right] = \lim_{x \to c} \frac{f(x)}{g(x)} \wedge \exists \lim_{x \to c} \frac{f(x)}{g(x)}$$

7.5.4 Confronto tra infiniti.

Con
$$g(x) \neq 0$$
, se $\exists \lim_{x \to c} \frac{f(x)}{g(x)} = \begin{cases} 0 & f(x) \text{ è di ordine } < \text{di } g(x) \\ k \neq 0 & f(x) \text{ è di ordine } = \text{di } g(x) \end{cases}$

$$\underset{\infty}{} = \begin{cases} 0 & f(x) \text{ è di ordine } < \text{di } g(x) \\ f(x) \text{ è di ordine } > \text{di } g(x) \end{cases}$$

7.5.5 Ordine di un infinito.

Con le stesse condizioni del par 7.5.2, si ha che f(x) è un infinito di ordine 'n' rispetto a g(x).

7.5.6 Principio di sostituzione di un infinito.

Con F(x) e G(x) infiniti di ordine superiore a f(x) e g(x), considero:

$$\lim_{x \to c} \frac{f(x) + F(x)}{g(x) + G(x)} = \lim_{x \to c} \left[\frac{F(x)}{G(x)} \frac{1 + f(x)/F(x)}{1 + g(x)/G(x)} \right] = \lim_{x \to c} \frac{F(x)}{G(x)} \wedge \exists \lim_{x \to c} \frac{F(x)}{G(x)}$$

8) Derivate.

8.1) Definizione.

Sia f(x) una funzione definita in [a, b]; fissato un punto $c \in [a, b]$, diamo a 'c' un incremento h, positivo o negativo, in modo che $(c+h) \in [a, b]$.

La differenza $[f(x+h)-f(x)]=\Delta y$ rappresenta l'incremento che la funzione subisce passando dal valore x a x+h. Il rapporto [f(x+h)-f(x)] / $h = \Delta y/\Delta x$ fra l'incremento della funzione e quello della variabile indipendente si chiama *rapporto incrementale*.

Se
$$\exists \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0} \frac{\Delta y}{\Delta x}$$
 questo si chiama *derivata* della funzione $f(x)$ nel punto 'c'.

Se il limite è ∞ , la derivata è detta infinita; se esso non esiste, la derivata non esiste; se invece esiste ed è finito si dice che la funzione è derivabile in quel punto.

Se il limite esiste ed è finito in un insieme di punti dove la f(x) esiste allora si dice che f(x) è derivabile in quell'insieme.

la derivata dx e sx, calcolate in quel punto, esistono e coincidono tra loro.

Notazioni:
$$Df(x) = f'(x) = \frac{df(x)}{dx}$$

8.2) Significato geometrico.

Se f(x) è derivabile in 'c', la retta y=mx+q passante per P(c, f(c)) è detta tangente in P alla curva f(x). La derivata di f(x) calcolata nel punto 'c' corrisponde al coefficiente angolare 'm' della suddetta retta.

8.3) Teoremi.

8.3.1 T.ma sulla continuità di una funzione.

Se la f(x) è derivabile in 'c' allora significa che ivi è anche continua, ma non vale il viceversa.

8.3.2 T.ma della somma.

La derivata di una somma equivale alla somma delle derivate: D(f(x) + g(x)) = Df(x) + Dg(x)

8.3.3 T.ma del prodotto.

La derivata del prodotto equivale a: D(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)

8.3.4 T.ma del quoziente.

La derivata del quoziente equivale a:
$$D\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{\left[g(x)\right]^2}$$

8.3.5 T.ma della potenza n-esima.

La derivata della potenza n-esima equivale a: $D(f(x)^n) = nf(x)^{n-1} f'(x)$

8.3.6 T.ma della funzione composta.

La derivata della funzione di funzione equivale a: D[f(g(x))] = f'(g(x))g'(x)

8.3.7 T.ma sulla funzione alla potenza di funzione.

La derivata della funzione alla potenza di funzione è:

$$D[f(x)^{g(x)}] = D[e^{g(x)\log f(x)}] = f(x)^{g(x)} \left(g'(x)\log f(x) + g(x)\frac{f'(x)}{f(x)}\right)$$

8.3.8 T.ma della Funzione Inversa.

La derivata di una funzione inversa è il reciproco della derivata della funzione data.

8.3.9 T.ma di Rolle.

Sia f(x) una funzione definita in [a, b] e derivabile in]a, b[se f(a) = f(b) allora esiste almeno un punto interno all'intervallo dove f'(c) = 0.

Se f'(x) = 0 in tutto]a, b[$\rightarrow f(x) = k$.

Se $f'(x) \leq 0$ in tutto]a, b[$\rightarrow f(x)$ è una funzione monotona decrescente/crescente.

Se $\exists f''(x) \leq 0$ in tutto]a, b[$\rightarrow f(x)$ è una funzione concava convessa.

8.3.10 T.ma di Lagrange.

Se f(x) è una funzione definita in [a, b] e derivabile in]a, b[

$$\rightarrow \exists c \in]a,b[: \frac{f(b)-f(a)}{b-a} = f'(c)$$

8.3.11 T.ma di Cauchy.

Siano f(x), g(x) funzioni definite in [a, b] e derivabili in]a, b[con $g'(x) \neq 0$

$$\rightarrow \exists c \in]a,b[: \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

8.3.12 T.ma dell'Hospital.

Siano f(x), g(x) funzioni definite in e derivabili $[a, b] \land x \neq c \land g'(x) \neq 0$

$$\exists \lim_{h \to c} \frac{f'(x)}{g'(x)} = \lim_{h \to c} \frac{f(x)}{g(x)} \xrightarrow{\to} 0 \xrightarrow{o} \infty$$

Se abbiamo
$$\exists \lim_{h \to c} f(x)g(x) = [0\infty] \to \lim_{h \to c} \frac{f(x)}{1/g(x)} = \begin{bmatrix} 0\\0 \end{bmatrix} \overset{H}{=} \cdots$$

Se abbiamo
$$\exists \lim_{h \to c} f(x) - g(x) = [\infty - \infty] \to \lim_{h \to c} \frac{\frac{1}{g(x)} - \frac{1}{f(x)}}{\frac{1}{f(x)g(x)}} = \left[\frac{0}{0}\right] \overset{H}{=} \cdots$$

Se abbiamo
$$\exists \lim_{h \to c} f(x)^{g(x)} = [0^0; \infty^0; 1^\infty] \to \lim_{h \to c} e^{g(x)\log f(x)} = e^{[0\infty]} \overset{H}{=} \dots$$

8.3.13 T.ma sul punto di Flesso.

Un punto 'c' è detto di *flesso* se in ogni suo intorno la f(x) passa dalla concavità alla convessità e viceversa, condizione necessaria è quindi che f''(c) = 0.

In figura si nota come la figura cambia di concavità al passaggio per il punto di flesso F

8.4) Derivate notevoli.

Funzione $f(x)$	Derivata $f'(x)$	
k	0	
χ^n	nx^{n-1}	
	x/ x	
sen(x)	$\cos(x)$	
$\cos(x)$	$-\operatorname{sen}(x)$	
tg(x)	$1/\cos^2(x) = 1 + tg^2(x)$	
$\cot g(x)$	$-1/\text{sen}^2(x) = -(1+tg^2(x))$	
$\sqrt[n]{x}$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$	
$\log_a x$	$\frac{1}{x}\log_a e = \frac{1}{x\ln a}$	
$\ln x = o - \log x$	1/x	
a^x	$a^x \ln a$	
e^x	$a^x \ln a$ e^x	
arcsen(x)	$\frac{1}{\sqrt{1-x^2}}$	
arccos(x)	$\frac{1}{\sqrt{1-x^2}}$ $\frac{-1}{\sqrt{1+x^2}}$ $\frac{1}{1+x^2}$ $\frac{-1}{1+x^2}$	
arctg(x)	$\frac{1}{1+x^2}$	
accotg(x)	$\frac{-1}{1+x^2}$	
senh(x)	$\cosh(x)$	
$\cosh(x)$	senh(x)	
tgh(x)	$\frac{1}{\cosh^2(x)}$	
cotgh(x)	$\frac{-1}{\mathrm{senh}^2(x)}$	

9) Studio di funzione.

9.1) Procedimento.

I punti principali da seguire per uno studio di funzione sono i seguenti:

- Si determini il dominio D della funzione.
- Si determinino eventuali simmetrie e periodicità: se la funzione è pari o dispari basterà studiarla per x≥0 e se è periodica di periodo T basterà studiarla in un intervallo di ampiezza T.
- Si determinino gli eventuali punti di intersezione del grafico con gli assi cartesiani.
- Si calcolino i limiti della funzione agli estremi del dominio e nei punti critici (es: punti di discontinuità, di cuspide, ecc...) e si trovino gli eventuali asintoti verticali, orizzontali o obliqui.
- Si studi il segno della funzione (opzionale).
- Si calcoli la derivata prima, determinandone dominio e segno in modo da poter stabilire crescenze/decrescenze/Max/Min/(flessi a tg orizzontale) della funzione.
- Si calcoli la derivata seconda, determinandone dominio e segno in modo da poter stabilire concavità e flessi della funzione.
- Si sintetizzino i risultati mediante rappresentazione grafica.

9.2) Asintoti.

9.2.1 A. Verticali.

La retta x=c è A.V.
$$\Leftrightarrow \lim_{x\to c} f(x) = \infty$$
.

9.2.2 A. Orizzontale.

La retta y=c è A.O.
$$\Leftrightarrow \lim_{x\to\infty} f(x) = c$$
.

9.2.3 A. Obliquo.

Se la funzione ha grado di infinito pari a uno allora esiste l'asintoto obliquo. La retta y=mx+q è A.Obl. $\Leftrightarrow \lim_{x\to\infty} [f(x)-mx+q]=0$, da ciò ne deriva che:

$$m = \lim_{x \to \infty} \frac{f(x)}{x}$$
 e $q = \lim_{x \to \infty} [f(x) - mx]$