

Cross correlators

for radio astronomy

Adam Deller May 12, 2014

Correlators and Interferometry

The function of a correlator

Why care about correlators?

- 1. One day you want to be a radio interferometry guru
- To help you propose the right observations and identify problems in data or images

A "dumb" correlator

 Use many analog filters to make many narrow channels; correlate each one separately with a separate complex correlator

A "dumb" correlator

 Use many analog filters to make many narrow channels; correlate each one separately with a separate complex correlator

The output

The output

Making it feasible

 Analog filters are costly & unstable; expensive and poor performance

Making it feasible

- Analog filters are costly & unstable; expensive and poor performance
- Fortunately, we can (and do) digitize the signal – meaning we can use a digital substitute: digital filterbank

The advantage of going digital

- Stable, cheap filters
- Produces complex output: use a 1 complex multiplier rather than 2 real multipliers and a phase shift

$$e^{i\phi} = \cos \phi + i \sin \phi$$

The "FX" correlator

The "FX" correlator

 Since this architecture consists of a <u>Fourier</u> transform (F) followed by <u>cross</u>-multiplication (X), we dub this the "FX" correlator

But first, we must compensate

Sampling

- Nyquist-Shannon sampling theorem:
 - real-valued signal is sampled every Δt sec
 - Original signal can be reconstructed perfectly so long as contains no power at frequencies ≥ 1 / (2 Δt) Hz (band-limited)

Adequately sampled

Undersampled, cannot be reconstructed

Sampling

- Nyquist-Shannon sampling theorem:
 - real-valued signal is sampled every Δt sec
 - Original signal can be reconstructed perfectly so long as contains no power at frequencies ≥ 1 / (2 Δt) Hz (band-limited)

Sampling

- Nyquist-Shannon sampling theorem:
 - real-valued signal is sampled every Δt sec
 - Original signal can be reconstructed perfectly so long as contains no power at frequencies ≥ 1 / (2 Δt) Hz (band-limited)

 When correlation is low (almost always) even very coarse quantization is ok!

Sensitivity loss:

 When correlation is low (almost always) even very coarse quantization is ok!

 When correlation is low (almost always) even very coarse quantization is ok!

 When correlation is low (almost always) even very coarse quantization is ok!

 When correlation is low (almost always) even very coarse quantization is ok!

Sensitivity loss:

8 bit: 0.1%

4 bit: 1.3%

2 bit: 12%

1 bit: 36%

Correct visibility amplitudes for this sensitivity loss (done after correlation, exact correction depends on correlation level)

Delay compensation

 Delay to the nearest sample is easy:

Delay compensation

 Delay to the nearest sample is easy:

Fringe rotation

Fringe rotation

- Implementation: rotate phase using complex multiplier
- $\Delta \phi = 2\pi \nu_0 \tau_g \quad \nu_0 = \text{sky frequency,}$ $\tau_g = \text{applied delay}$
- Most accurate: apply to voltages directly (time domain)
 - if τ_g is changing slowly (short baseline length), approximate as constant for short time, apply after FFT (frequency domain)

Alternate implementation

- We have shown how to build a practical FX correlator, which first Fourier transforms and then multiplies
- Convolution theorem: Multiplication in the frequency domain is equivalent to convolution in the time domain
- It is mathematically equivalent to convolve the two signals in the time domain and then Fourier transform

An equivalent "XF" correlator

An equivalent "XF" correlator visibility amplitude 0000 sample# (time) lag 0000 sample# (time)

AST(RON

An equivalent "XF" correlator visibility amplitude 0000 sample# (time) frequency 0000 sample# (time)

AST(RON

A realistic XF correlator

XF vs FX

 Different windowing in time domain gives different spectral response

XF vs FX: which is better?

- Advantages and disadvantages to both
 - FX many fewer operations overall
 - XF can make use of very efficient lowprecision integer multipliers up-front
 - FX: access to frequency domain at short timescale allows neat tricks and higher precision correction of delay effects
 - But issues with simple implementation of FX for very high spectral resolution

Correlator platforms


```
status = vectorFFT_CtoC_cf32(complexunpacked, fftd, pFFTSpecC, fftbuffer);
if(status != vecNoErr)
  csevere << startl << "Error doing the FFT!!!" << endl;</pre>
```

. . .

status = vectorAddProduct_cf32(vis1, vis2, &(scratchspace->threadcrosscorrs

Correlators on CPUs

- Many positive points:
 - Can implement in "normal" code (e.g.,
 C++); maintainable, many skilled coders
 - Development effort transferrable across generations of hardware
 - Incremental development is trivial
 - Natively good at floating point (good for FX), no cost to do high precision
- One major disadvantage:
 - CPUs not optimised for correlation; big system like JVLA would take many CPUs.

Correlators on CPUs

The Very
Long
Baseline
Array,
10 stations

GMRT, India, 30 stations

The Long
Baseline
Array,
Australia,
~6 stations

The European VLBI Network, ~20 stations

AST(RON

May 12 2014, Fourteenth Synthesis Imaging Worksh

Correlators on GPUs

Correlators on GPUs

Advantages:

- More powerful and more efficient than CPUs
- Also good at floating point

Disadvantages:

- Writing code is more difficult (GPUs are more specialized, less flexible: need to carefully manage data transfers)
- Fewer trained GPU programmers available
- Transfer-ability of code across hardware generations not yet reliable (but close)

Correlators on GPUs

Correlators on FPGAs

Correlators on FPGAs

Advantages:

 More efficient than CPUs or GPUs, particularly for integer multiplication

Disadvantages:

- Programming is harder again (especially debugging), yet fewer trained people
- Transfer-ability across hardware generations even more limited
- Synchronous (clocked) system, less robust to perturbations c.f. CPUs/GPUs

Correlators on FPGAs

"Roach" reconfigurable FPGA board used for correlation

The Precision Array to Probe the Epoch of Reionization (PAPER), 128 stations

Correlators on ASICs

Correlators on ASICs

Advantages:

Highest possible efficiency, low per-unit cost

Disadvantages:

- Highest development cost (time and manufacturing setup)
- Specialized knowledge required
- Can't be changed / very difficult to upgrade during lifetime

Correlators on ASICs

The Westerbork Synthesis Radio Telescope, Netherlands

The Very Large Array, New Mexico

Correlator platform overview

Questions?

May 12 2014, Fourteenth Synthesis Imaging Workshop, NRAO Socorro

Trends in correlator design

- Now: Small scale systems completely dominated by CPU, medium-scale being taken over by "custom GPU"
- Soon: GPUs become more CPU-like;
 "prepackaged" GPU systems available
- **5+ years:** the mother of all correlators (Square Kilometre Array) must be built: will have to be highly optimized

