SWAT

Generated by Doxygen 1.8.16

1 SWAT	1
2 Modules Index	7
2.1 Modules List	 7
3 Data Type Index	9
3.1 Data Types List	 9
4 File Index	11
4.1 File List	 11
5 Module Documentation	15
5.1 parm Module Reference	 15
5.1.1 Detailed Description	 99
5.1.2 Variable Documentation	 99
5.1.2.1 igropt	 99
6 Data Type Documentation	101
6.1 parm::fcgd Interface Reference	 101
6.2 parm::ndenit Interface Reference	
6.3 parm::regres Interface Reference	
6.4 parm::tair Interface Reference	 102
6.5 parm::theta Interface Reference	 102
7 File Documentation	103
7.1 albedo.f90 File Reference	 103
7.1.1 Detailed Description	 103
7.2 allocate_parms.f90 File Reference	 103
7.2.1 Detailed Description	 103
7.3 alph.f90 File Reference	 104
7.3.1 Detailed Description	 104
7.3.2 Function/Subroutine Documentation	 104
7.3.2.1 alph()	 104
7.4 apply.f90 File Reference	 104
7.4.1 Detailed Description	 105
7.4.2 Function/Subroutine Documentation	 105
7.4.2.1 apply()	 105
7.5 ascrv.f90 File Reference	 105
7.5.1 Detailed Description	 105
7.5.2 Function/Subroutine Documentation	 105
7.5.2.1 ascrv()	 106
7.6 atri.f90 File Reference	 106
7.6.1 Detailed Description	 106
7.6.2 Function/Subroutine Documentation	 106

7.6.2.1 atri()	07
7.7 aunif.f90 File Reference	07
7.7.1 Detailed Description	07
7.7.2 Function/Subroutine Documentation	07
7.7.2.1 aunif()	07
7.8 bmpinit.f90 File Reference	80
7.8.1 Detailed Description	80
7.8.2 Function/Subroutine Documentation	80
7.8.2.1 bmpinit()	80
7.9 burnop.f90 File Reference	80
7.9.1 Detailed Description	09
7.9.2 Function/Subroutine Documentation	09
7.9.2.1 burnop()	09
7.10 canopyint.f90 File Reference	09
7.10.1 Detailed Description	09
7.11 caps.f90 File Reference	09
7.11.1 Detailed Description	10
7.11.2 Function/Subroutine Documentation	10
7.11.2.1 caps()	10
7.12 cfactor.f90 File Reference	10
7.12.1 Detailed Description	10
7.13 clgen.f90 File Reference	10
7.13.1 Detailed Description	11
7.13.2 Function/Subroutine Documentation	11
7.13.2.1 clgen()	11
7.14 clicon.f90 File Reference	11
7.14.1 Detailed Description	11
7.14.2 Function/Subroutine Documentation	11
7.14.2.1 clicon()	12
7.15 command.f90 File Reference	12
7.15.1 Detailed Description	12
7.15.2 Function/Subroutine Documentation	12
7.15.2.1 command()	12
7.16 crackflow.f90 File Reference	13
7.16.1 Detailed Description	13
7.17 crackvol.f90 File Reference	13
7.17.1 Detailed Description	13
7.18 curno.f90 File Reference	13
7.18.1 Detailed Description	13
7.18.2 Function/Subroutine Documentation	14
7.18.2.1 curno()	14
7.19 dailycn.f90 File Reference	14

7.19.1 Detailed Description
7.20 dstn1.f90 File Reference
7.20.1 Detailed Description
7.20.2 Function/Subroutine Documentation
7.20.2.1 dstn1()
7.21 ee.f90 File Reference
7.21.1 Detailed Description
7.21.2 Function/Subroutine Documentation
7.21.2.1 ee()
7.22 eiusle.f90 File Reference
7.22.1 Detailed Description
7.23 estimate ksat.f90 File Reference
7.23.1 Detailed Description
7.23.2 Function/Subroutine Documentation
7.23.2.1 estimate_ksat()
7.24 etpot.f90 File Reference
7.24.1 Detailed Description
7.24.2 Function/Subroutine Documentation
7.24.2.1 etpot()
7.25 expo.f90 File Reference
7.25.1 Detailed Description
7.25.2 Function/Subroutine Documentation
7.25.2.1 expo()
7.26 fert.f90 File Reference
7.26.1 Detailed Description
7.26.2 Function/Subroutine Documentation
7.26.2.1 fert()
7.27 finalbal.f90 File Reference
7.27.1 Detailed Description
7.28 gcycl.f90 File Reference
7.28.1 Detailed Description
7.29 getallo.f90 File Reference
7.29.1 Detailed Description
7.30 graze.f90 File Reference
7.30.1 Detailed Description
7.30.2 Function/Subroutine Documentation
7.30.2.1 graze()
7.31 h2omgt_init.f90 File Reference
7.31.1 Detailed Description
7.32 harvestop.f90 File Reference
7.32.1 Detailed Description
7.32.2 Function/Subroutine Documentation

7.32.2.1 harvestop()	21
7.33 harvkillop.f90 File Reference	22
7.33.1 Detailed Description	22
7.33.2 Function/Subroutine Documentation	22
7.33.2.1 harvkillop()	22
7.34 headout.f90 File Reference	22
7.34.1 Detailed Description	23
7.35 hmeas.f90 File Reference	23
7.35.1 Detailed Description	23
7.36 hruaa.f90 File Reference	23
7.36.1 Detailed Description	23
7.36.2 Function/Subroutine Documentation	23
7.36.2.1 hruaa()	23
7.37 hruallo.f90 File Reference	24
7.37.1 Detailed Description	24
7.38 hrumon.f90 File Reference	24
7.38.1 Detailed Description	24
7.39 hruyr.f90 File Reference	24
7.39.1 Detailed Description	25
7.40 hydroinit.f90 File Reference	25
7.40.1 Detailed Description	25
7.41 icl.f90 File Reference	25
7.41.1 Detailed Description	25
7.41.2 Function/Subroutine Documentation	25
7.41.2.1 icl()	25
7.42 impnd_init.f90 File Reference	26
7.42.1 Detailed Description	26
7.43 impndmon.f90 File Reference	26
7.43.1 Detailed Description	26
7.44 impndyr.f90 File Reference	26
7.44.1 Detailed Description	27
7.45 irrigate.f90 File Reference	27
7.45.1 Detailed Description	27
7.45.2 Function/Subroutine Documentation	27
7.45.2.1 irrigate()	27
7.46 irrsub.f90 File Reference	27
7.46.1 Detailed Description	28
7.46.2 Function/Subroutine Documentation	28
7.46.2.1 irrsub()	28
7.47 jdt.f90 File Reference	28
7.47.1 Detailed Description	28
7.47.2 Function/Subroutine Documentation	28

7.47.2.1 jdt()	29
7.48 killop.f90 File Reference	29
7.48.1 Detailed Description	29
7.48.2 Function/Subroutine Documentation	29
7.48.2.1 killop()	29
7.49 lid_cistern.f90 File Reference	30
7.49.1 Detailed Description	30
7.49.2 Function/Subroutine Documentation	30
7.49.2.1 lid_cistern()	30
7.50 lid_greenroof.f90 File Reference	30
7.50.1 Detailed Description	31
7.50.2 Function/Subroutine Documentation	31
7.50.2.1 lid_greenroof()	31
7.51 lid_porpavement.f90 File Reference	31
7.51.1 Detailed Description	31
7.51.2 Function/Subroutine Documentation	32
7.51.2.1 lid_porpavement()	32
7.52 lid_raingarden.f90 File Reference	32
7.52.1 Detailed Description	32
7.52.2 Function/Subroutine Documentation	32
7.52.2.1 lid_raingarden()	32
7.53 lidinit.f90 File Reference	33
7.53.1 Detailed Description	33
7.53.2 Function/Subroutine Documentation	33
7.53.2.1 lidinit()	33
7.54 lids.f90 File Reference	33
7.54.1 Detailed Description	34
7.54.2 Function/Subroutine Documentation	34
7.54.2.1 lids()	34
7.55 lwqdef.f90 File Reference	34
7.55.1 Detailed Description	34
7.55.2 Function/Subroutine Documentation	35
7.55.2.1 lwqdef()	35
7.56 main.f90 File Reference	35
7.56.1 Detailed Description	35
7.57 modparm.f90 File Reference	35
7.57.1 Detailed Description	19
7.58 newtillmix.f90 File Reference	19
7.58.1 Detailed Description	19
7.58.2 Function/Subroutine Documentation	19
7.58.2.1 newtillmix()	19
7.59 openwth.f90 File Reference	20

7.59.1 Detailed Description
7.60 ovr_sed.f90 File Reference
7.60.1 Detailed Description
7.61 pgen.f90 File Reference
7.61.1 Detailed Description
7.61.2 Function/Subroutine Documentation
7.61.2.1 pgen()
7.62 pgenhr.f90 File Reference
7.62.1 Detailed Description
7.63 pkq.f90 File Reference
7.63.1 Detailed Description
7.63.2 Function/Subroutine Documentation
7.63.2.1 pkq()
7.64 plantop.f90 File Reference
7.64.1 Detailed Description
7.64.2 Function/Subroutine Documentation
7.64.2.1 plantop()
7.65 pmeas.f90 File Reference
7.65.1 Detailed Description
7.65.2 Function/Subroutine Documentation
7.65.2.1 pmeas()
7.66 qman.f90 File Reference
7.66.1 Detailed Description
7.66.2 Function/Subroutine Documentation
7.66.2.1 qman()
7.67 rchaa.f90 File Reference
7.67.1 Detailed Description
7.67.2 Function/Subroutine Documentation
7.67.2.1 rchaa()
7.68 rchday.f90 File Reference
7.68.1 Detailed Description
7.69 rchmon.f90 File Reference
7.69.1 Detailed Description
7.69.2 Function/Subroutine Documentation
7.69.2.1 rchmon()
7.70 rchyr.f90 File Reference
7.70.1 Detailed Description
7.70.2 Function/Subroutine Documentation
7.70.2.1 rchyr()
7.71 readatmodep.f90 File Reference
7.71.1 Detailed Description
7.72 readbsn.f90 File Reference

7.72.1 Detailed Description
7.73 readchm.f90 File Reference
7.73.1 Detailed Description
7.73.2 Function/Subroutine Documentation
7.73.2.1 readchm()
7.74 readcnst.f90 File Reference
7.74.1 Detailed Description
7.74.2 Function/Subroutine Documentation
7.74.2.1 readcnst()
7.75 readfcst.f90 File Reference
7.75.1 Detailed Description
7.76 readfert.f90 File Reference
7.76.1 Detailed Description
7.77 readfig.f90 File Reference
7.77.1 Detailed Description
7.78 readfile.f90 File Reference
7.78.1 Detailed Description
7.79 readgw.f90 File Reference
7.79.1 Detailed Description
7.79.2 Function/Subroutine Documentation
7.79.2.1 readgw()
7.80 readhru.f90 File Reference
7.80.1 Detailed Description
7.80.2 Function/Subroutine Documentation
7.80.2.1 readhru()
7.81 readinpt.f90 File Reference
7.81.1 Detailed Description
7.82 readlup.f90 File Reference
7.82.1 Detailed Description
7.83 readlwq.f90 File Reference
7.83.1 Detailed Description
7.83.2 Function/Subroutine Documentation
7.83.2.1 readlwq()
7.84 readmgt.f90 File Reference
7.84.1 Detailed Description
7.84.2 Function/Subroutine Documentation
7.84.2.1 readmgt()
7.85 readmon.f90 File Reference
7.85.1 Detailed Description
7.86 readops.f90 File Reference
7.86.1 Detailed Description
7.86.2 Function/Subroutine Documentation

7.86.2.1 readops()
7.87 readpest.f90 File Reference
7.87.1 Detailed Description
7.88 readplant.f90 File Reference
7.88.1 Detailed Description
7.89 readpnd.f90 File Reference
7.89.1 Detailed Description
7.89.2 Function/Subroutine Documentation
7.89.2.1 readpnd()
7.90 readres.f90 File Reference
7.90.1 Detailed Description
7.90.2 Function/Subroutine Documentation
7.90.2.1 readres()
7.91 readrte.f90 File Reference
7.91.1 Detailed Description
7.92 readru.f90 File Reference
7.92.1 Detailed Description
7.92.2 Function/Subroutine Documentation
7.92.2.1 readru()
7.93 readsdr.f90 File Reference
7.93.1 Detailed Description
7.93.2 Function/Subroutine Documentation
7.93.2.1 readsdr()
7.94 readsepticbz.f90 File Reference
7.94.1 Detailed Description
7.94.2 Function/Subroutine Documentation
7.94.2.1 readsepticbz()
7.95 readseptwq.f90 File Reference
7.95.1 Detailed Description
7.95.2 Function/Subroutine Documentation
7.95.2.1 readseptwq()
7.96 readsno.f90 File Reference
7.96.1 Detailed Description
7.96.2 Function/Subroutine Documentation
7.96.2.1 readsno()
7.97 readsol.f90 File Reference
7.97.1 Detailed Description
7.97.2 Function/Subroutine Documentation
7.97.2.1 readsol()
7.98 readsub.f90 File Reference
7.98.1 Detailed Description
7.98.2 Function/Subroutine Documentation

7.98.2.1 readsub()
7.99 readswq.f90 File Reference
7.99.1 Detailed Description
7.100 readtill.f90 File Reference
7.100.1 Detailed Description
7.101 readurban.f90 File Reference
7.101.1 Detailed Description
7.102 readwgn.f90 File Reference
7.102.1 Detailed Description
7.102.2 Function/Subroutine Documentation
7.102.2.1 readwgn()
7.103 readwus.f90 File Reference
7.103.1 Detailed Description
7.103.2 Function/Subroutine Documentation
7.103.2.1 readwus()
7.104 readwwq.f90 File Reference
7.104.1 Detailed Description
7.105 readyr.f90 File Reference
7.105.1 Detailed Description
7.105.2 Function/Subroutine Documentation
7.105.2.1 readyr()
7.106 resetlu.f90 File Reference
7.106.1 Detailed Description
7.107 rhgen.f90 File Reference
7.107.1 Detailed Description
7.108 rootfr.f90 File Reference
7.108.1 Detailed Description
7.108.2 Function/Subroutine Documentation
7.108.2.1 rootfr()
7.109 rsedaa.f90 File Reference
7.109.1 Detailed Description
7.109.2 Function/Subroutine Documentation
7.109.2.1 rsedaa()
7.110 rseday.f90 File Reference
7.110.1 Detailed Description
7.111 rsedmon.f90 File Reference
7.111.1 Detailed Description
7.111.2 Function/Subroutine Documentation
7.111.2.1 rsedmon()
7.112 rsedyr.f90 File Reference
7.112.1 Detailed Description
7.113 rteinit.f90 File Reference

7.113.1 Detailed Description	249
7.114 sched_mgt.f90 File Reference	249
7.114.1 Detailed Description	250
7.114.2 Function/Subroutine Documentation	250
7.114.2.1 sched_mgt()	250
7.115 schedule_ops.f90 File Reference	250
7.115.1 Detailed Description	250
7.115.2 Function/Subroutine Documentation	250
7.115.2.1 schedule_ops()	250
7.116 sim_inityr.f90 File Reference	251
7.116.1 Detailed Description	251
7.117 simulate.f90 File Reference	251
7.117.1 Detailed Description	251
7.118 slrgen.f90 File Reference	251
7.118.1 Detailed Description	252
7.118.2 Function/Subroutine Documentation	252
7.118.2.1 slrgen()	252
7.119 smeas.f90 File Reference	252
7.119.1 Detailed Description	252
7.120 snom.f90 File Reference	252
7.120.1 Detailed Description	253
7.120.2 Function/Subroutine Documentation	253
7.120.2.1 snom()	253
7.121 soil_chem.f90 File Reference	253
7.121.1 Detailed Description	253
7.121.2 Function/Subroutine Documentation	253
7.121.2.1 soil_chem()	253
7.122 soil_phys.f90 File Reference	254
7.122.1 Detailed Description	254
7.122.2 Function/Subroutine Documentation	254
7.122.2.1 soil_phys()	254
7.123 soil_write.f90 File Reference	254
7.123.1 Detailed Description	255
7.123.2 Function/Subroutine Documentation	255
7.123.2.1 soil_write()	255
7.124 solt.f90 File Reference	255
7.124.1 Detailed Description	255
7.125 std1.f90 File Reference	255
7.125.1 Detailed Description	256
7.126 std2.f90 File Reference	256
7.126.1 Detailed Description	256
7 127 std3 f90 File Reference	256

7.127.1 Detailed Description
7.128 storeinitial.f90 File Reference
7.128.1 Detailed Description
7.129 subbasin.f90 File Reference
7.129.1 Detailed Description
7.129.2 Function/Subroutine Documentation
7.129.2.1 subbasin()
7.130 submon.f90 File Reference
7.130.1 Detailed Description
7.131 subyr.f90 File Reference
7.131.1 Detailed Description
7.132 surface.f90 File Reference
7.132.1 Detailed Description
7.132.2 Function/Subroutine Documentation
7.132.2.1 surface()
7.133 surfst_h2o.f90 File Reference
7.133.1 Detailed Description
7.133.2 Function/Subroutine Documentation
7.133.2.1 surfst_h2o()
7.134 surq_daycn.f90 File Reference
7.134.1 Detailed Description
7.134.2 Function/Subroutine Documentation
7.134.2.1 surq_daycn()
7.135 surq_greenampt.f90 File Reference
7.135.1 Detailed Description
7.135.2 Function/Subroutine Documentation
7.135.2.1 surq_greenampt()
7.136 swbl.f90 File Reference
7.136.1 Detailed Description
7.136.2 Function/Subroutine Documentation
7.136.2.1 swbl()
7.137 tgen.f90 File Reference
7.137.1 Detailed Description
7.137.2 Function/Subroutine Documentation
7.137.2.1 tgen()
7.138 tillfactor.f90 File Reference
7.138.1 Detailed Description
7.138.2 Function/Subroutine Documentation
7.138.2.1 tillfactor()
7.139 tmeas.f90 File Reference
7.139.1 Detailed Description
7.140 tran.f90 File Reference

7.140.1 Detailed Description
7.140.2 Function/Subroutine Documentation
7.140.2.1 tran()
7.141 ttcoef.f90 File Reference
7.141.1 Detailed Description
7.141.2 Function/Subroutine Documentation
7.141.2.1 ttcoef()
7.142 ttcoef_wway.f90 File Reference
7.142.1 Detailed Description
7.143 varinit.f90 File Reference
7.143.1 Detailed Description
7.143.2 Function/Subroutine Documentation
7.143.2.1 varinit()
7.144 vbl.f90 File Reference
7.144.1 Detailed Description
7.144.2 Function/Subroutine Documentation
7.144.2.1 vbl()
7.145 volq.f90 File Reference
7.145.1 Detailed Description
7.145.2 Function/Subroutine Documentation
7.145.2.1 volq()
7.146 water_hru.f90 File Reference
7.146.1 Detailed Description
7.147 wattable.f90 File Reference
7.147.1 Detailed Description
7.148 weatgn.f90 File Reference
7.148.1 Detailed Description
7.148.2 Function/Subroutine Documentation
7.148.2.1 weatgn()
7.149 wmeas.f90 File Reference
7.149.1 Detailed Description
7.150 wndgen.f90 File Reference
7.150.1 Detailed Description
7.150.2 Function/Subroutine Documentation
7.150.2.1 wndgen()
7.151 writea.f90 File Reference
7.151.1 Detailed Description
7.151.2 Function/Subroutine Documentation
7.151.2.1 writea()
7.152 writed.f90 File Reference
7.152.1 Detailed Description

Index	277
Bibliography	275
7.160.1 Detailed Description	274
7.160 zeroini.f90 File Reference	274
7.159.1 Detailed Description	274
7.159 zero_urbn.f90 File Reference	274
7.158.1 Detailed Description	274
7.158 zero2.f90 File Reference	274
7.157.1 Detailed Description	273
7.157 zero1.f90 File Reference	273
7.156.1 Detailed Description	273
7.156 zero0.f90 File Reference	273
7.155.2.1 ysed()	273
7.155.2 Function/Subroutine Documentation	273
7.155.1 Detailed Description	272
7.155 ysed.f90 File Reference	272
7.154.1 Detailed Description	272
7.154 xmon.f90 File Reference	272
7.153.2.1 writem()	272
7.153.2 Function/Subroutine Documentation	272
7.153.1 Detailed Description	

SWAT

An upgraded SWAT 2012 revision 670 code

Objectives

- Standard indentation and translation to Fortran 90 by using findent. See the translate-fortran90.pl perl script file (:heavy_check_mark:)
- Exhaustive use of the "implicit none" directive to detect bad variable usage (:heavy_check_mark:)
- Generate a GNU Make makefile and compile with GNU GFortran. See the gernerate-makefile.pl perl script file (:heavy_check_mark:)
- Remove non-used variables and format labels (:heavy_check_mark:)
- Detect and solve all uninitialized variables (:heavy_check_mark: :construction:, some proposed solutions could be incorrect)
- Remove unneeded variable initializations (:heavy_check_mark:) as:

```
j=0 ! this line is not necessary
j=ihru
```

- Remove redundant code (:heavy_check_mark:)
- Exhaustive use of the "parameter" directive on constants (:heavy_check_mark:)
- Remove global counters (as i, ihru, iihru or idum in module parm). Using local counters or passing values as argument are preferred (:construction:)
- Generate a detailed list of issues detected in the original code (:heavy_check_mark:, see at the end of this README)
- Remove obsolete commented code (:x:)
- Update variable descriptions in comments (:construction:, a lot of work)
- Standardize comments by using Doxygen style in order to generate documentation. See at latex/refman.pdf (:construction:, a lot of work)

2 SWAT

Required tools

- GFortran (to compile the source code)
- · Make (to build the executable file)
- Perl (optional: to execute the perl scripts to update the makefile or to translate original files to Fortran 90)
- Findent (optional: to translate original files to Fortran 90 with a standard indentation)
- Doxygen (optional: to generate a reference programming manual from source code)
- Tex Live or MikTex (optional: to generate a reference programming manual from source code)
- On Microsoft Windows systems you have to install MSYS2 and the required utilities (GFortran and Make). You can follow detailed instructions in install-unix

Instructions to generate Fortran 90 style code from original code

In order to generate Fortran 90 style code with standard indentation from original code you have to type on a UNIX type terminal (you need Perl and Findent):

\$ perl translate-fortran90.pl

Instructions to generate an initial GNU make Makefile

Type on the UNIX type terminal, when translated the original code to Fortran 90 style (you need Perl):

\$ perl generate-makefile.pl

Instructions to generate an executable to test

Type on the UNIX type terminal (you need GFortran and Make)

· In UNIX type operative systems:

\$ make

• In a MSYS2 terminal in Microsoft Windows:

\$ EXE=".exe" LDFLAGS="-static" make

• Cross-compiling a 32 bits Microsoft Windows executable in a UNIX type operative system:

\$ prefix="i686-w64-mingw32-" EXE=".exe" LDFLAGS="-static" make

· Cross-compiling a 64 bits Microsoft Windows executable in a UNIX type operative system:

\$ prefix="x86_64-w64-mingw32-" EXE=".exe" LDFLAGS="-static" make

Instructions to generate an optimized executable file

Type on the UNIX type terminal (you need GFortran and Make)

· In UNIX type operative systems:

```
$ CFLAGS="-march=native -flto" LDFLAGS="-flto" make strip
```

• In a MSYS2 terminal in Microsoft Windows:

```
$ EXE=".exe" CFLAGS="-flto" LDFLAGS="-flto -static" make strip
```

• Cross-compiling a 32 bits Microsoft Windows executable in a UNIX type operative system:

```
$ prefix="i686-w64-mingw32-" EXE=".exe" CFLAGS="-flto" LDFLAGS="-flto -static" make strip
```

Cross-compiling a 64 bits Microsoft Windows executable in a UNIX type operative system:

```
$ prefix="x86\_64-w64-mingw32-" EXE=".exe" CFLAGS="-flto" LDFLAGS="-flto -static" make strip
```

Instructions to generate a reference programming manual from source code

Type on the UNIX type terminal (you need Doxygen and TeX Live or MiKTeX):

\$ make latex/refman.pdf

The reference programming manual file latex/refman.pdf is generated from source code in PDF format

Issues in the original source code

This is a list of possible issues detected in the original source code. These issues have been mostly detected by the GFortran compiler warnings. Some of them could not arise because the logic of the variables is not possible.

- In biofilm.f:
 - dcoef is used but not initialized. dcoef=3 as in watqual.f? Then, I propose at beginning: real*8, parameter :: dcoef = 3.
- In bmp_ri_pond.f:
 - qseep and qet could be used not initialized at lines 133 and 134. However the problem only arises for nstep<1
- In bmp_sand_filter.f:
 - sed_removed at line 342 could be used not initialized if sfsedstdev<=0</p>
- In bpm_sed_pond.f:
 - bmp_sed _pond seems to be bmp_sed_pond at line 186
- In bmp_wet_pond.f:
 - hvol could be used not initialized in ext_dpth subroutine at line 267 in first bucle iteration

4 SWAT

- · In clicon.f:
 - tmxbsb, tmnbsb, rbsb, rstpbsb, rhdbsb, rabsb, rmxbsb, daylbsb, fradbsb and u10bsb could be used not initialized at 186-207 lines
- · In conapply.f:
 - k and kk could be used not initialized at 121-122 lines if iday_pest(j)/=ipst_freq(j) and curyr>nyskip
- · In confert.f:
 - ifrt seems to be it at line 214
- · In curno.f:
 - smxold could be used not initialized if cn1 (h) <=1.e-6 and curyr/=0 at line 96
- In drains f:
 - nlayer could be used not initialized at line 23. However, the problem only arises if it is not set in the previous bucle (mlyr<=1 or sol_z (j1, j) <=0)
- · In etact.f:
 - sev could be used not initialized at line 286 if dep>=esd and ly==2
- · In filter.f:
 - remove21 seems to be remove2 at line 316
- · In grass wway.f:
 - sf_depth and sf_sed could be used not initialized at lines 133 and 137 if sf_area>0 and sf← _area<=1.e-6
- · In headout.f:
 - hedr array of column titles is written out of defined bounds at lines 118, 119, 121 and 133. It is written
 to mrcho (set to 62 in allocate_parms.f line 59) but in modparm.f the bound of hedr array is set to 46
 (line 663)
- · In hhnoqual.f:
 - algon seems to be algcon at line 190
- · In hhwatqual.f
 - orgnpin seems to be orgpin at line 278
 - thour=1.0 at line 377 overwrites previous thour calculation. It is wrong
- In hmeas.f:
 - rhdbsb could be used not initialized at line 84
- In killop.f:
 - ff1 and ff2 are used but not initialized at lines 167 and 267. They are set in harvkillop.f file (lines 257-258). They have to be included in modparm.f to share harvkillop.f values? or they have to be redefined as in harvkillop.f?
- In NCsed leach.f90:
 - perc_clyr could be used not initialized at line 221 if sol_nly(j)<2
- In nrain.f:
 - no2pcp seems to be no3pcp at line 72

· In pmeas.f:

- rbsb could be used not initialized at line 143
- flag could be used not initialized if 'a==' 'at line 210 -rainsbcould be used not initialized, however only ifnstep<=0`</pre>

· In pminrl2.f:

- at line 95 a comma is necessary between base and vara
- ssp could be used not initialized at line 196 if $xx \le 1.e-6$

· In pothole.f:

- solp_tileo could be used not initialized at line 593 if pot_vol(j) <=1.e-6 or potvol_← tile<=1.e-6</p>

· In potholehr.f:

- potflow seems to be potflwo at line 447

· In readatmodep.f:

 momax=12*nbyr is defined at line 65 but not used. It has to be mo_max? but then, it overwrites the file read

· In readops.f:

- year = 0. seems to be iyear = 0 at line 98
- mg13 seems to be mgt13 at line 206

· In readpnd.f:

- vselsetlpnd seems to be velsetlpnd at line 279

• In readru.f:

- tck is used but not initialized at line 79

• In readsepticbz.f:

– at line 135 4. e-8 seems to be 4.e-8

• In rewind_init.f:

- orig_tnylda is used but not initialized at line 174

• In routels.f:

- dstor is used but not initialized at line 134. It has to be calculated as in watbal.f? or as in the commented line 109?
- latqout and gwqout could be used not initialized at lines 142-143

• In rtbact.f:

- netwtr could be used not initialized at line 124, however only if nstep<1

• In rthpest.f:

- thour=1.0 at line 183 overwrites previous thour calculation. It is wrong
- frsol and frsrb could be used not initialized at lines 289-290 if hrtwtr(ii)>0.001 and hrtwtr(ii)/(idt*60)<=0.01

• In rtpest.f:

tday=1.0 at line 180 overwrites previous tday calculation. It is wrong

• In sched_mgt.f:

6 SWAT

- < = seems to be <= at 202 line
- huse and igrow at lines 264-265 are used but not initialized. huse has to be phu_op (iop, ihru) has in readmgt.f? igrow has to be igro (ihru) has in readmgt.f?
- · In smeas.f:
 - rabsb could be used not initialized at line 86
- · In sweep.f:
 - fr_curb is used but not initialized at line 56. It has to be added to modparm.f to share result with sched_mgt.f? or it has to be mgt 5op (nop (ihru), ihru) as in sched_mgt.f?
- · In tmeas.f:
 - tmxbsb and tmnbsb could be used not initialized at lines 109-110
- In transfer.f:
 - ratio, xx and ratio1 could be used not initialized at lines 236, 239 and 241 if ihout==2
- In wmeas.f:
 - u10bsb could be used not initialized at line 85
- In zero0.f:
 - sol_sumn03 seems to be sol_sumno3 at line 508
- In zero_urbn.f:
 - stp_stagdis seems to be dtp_stagdis at line 84
 - subdr_kg seems to be subdr_km at line 149
 - spl_eros is not defined at line 21, it could be eros_spl?

Modules Index

2.1 Modules List

Here is a list of all documented modules with brief descriptions:

narm			

8 Modules Index

Data Type Index

3.1 Data Types List

Here are the data types with brief descriptions:

parm::fcgd																							10
parm::ndenit																							101
parm::regres																							10
parm::tair .																							102
narm: theta																							102

10 Data Type Index

File Index

4.1 File List

Here is a list of all documented files with brief descriptions:

albedo.f90)3
allocate_parms.f90)3
alph.f90)4
apply.f90)4
ascrv.f90)5
atri.f90)6
aunif.f90)7
bmpinit.f90)8
burnop.f90)8
canopyint.f90)9
caps.f90)9
cfactor.f90	10
clgen.f90	10
clicon.f90	11
command.f90	12
crackflow.f90	13
crackvol.f90	13
curno.f90	13
dailycn.f90	14
dstn1.f90	14
ee.f90 11	15
eiusle.f90	16
estimate_ksat.f90	16
etpot.f90	17
expo.f90	18
fert.f90	18
finalbal.f90	19
gcycl.f90	19
getallo.f90	20
graze.f90	20
h2omgt_init.f90	21
harvestop.f90	21
harvkillop.f90	22
headout.f90	22
hmeas f90	23

12 File Index

hruaa.f90
hruallo.f90
hrumon.f90
hruyr.f90
hydroinit.f90
icl.f90
impnd_init.f90
impndmon.f90
impndyr.f90
irrigate.f90
irrsub.f90
jdt.f90
killop.f90
lid cistern.f90
lid greenroof.f90
lid porpavement.f90
lid raingarden.f90
lidinit.f90
lids.f90
lwgdef.f90
main.f90
modparm.f90
newtillmix.f90
openwth.f90
ovr sed.f90
pgen.f90
pgenhr.f90
pkq.f90
plantop.f90
pmeas.f90
qman.f90
rchaa.f90
rchday.f90
rchmon.f90
rchyr.f90
readatmodep.f90
readbsn.f90
readchm.f90
readcnst.f90
readfcst.f90
readfert.f90
readfig.f90
readfile.f90
readgw.f90
readhru.f90
readinpt.f90
readlup.f90
readlwq.f90
readmgt.f90
readmon.f90
readops.f90
readpest.f90
readplant.f90
readpnd.f90
readres.f90
readrte.f90
readru.f90
readsdr.f90

4.1 File List

·	238
	240
readsno.f90	240
readsol.f90	241
readsub.f90	242
readswq.f90	242
readtill.f90	243
readurban.f90	243
readwgn.f90	243
readwus.f90	244
readwwq.f90	245
•	245
•	246
	246
	246
	247
	248
•	248
	249
	249
	249
= 0	250
— I	-50 251
— <i>•</i>	-5. 251
	-o . 251
	-0 · 252
	-5- 252
	253
——————————————————————————————————————	-56 254
\dashv ,	-5- 254
	-55 255
	255
	256
	256
	256
	257
	257
	258
•	258
	259
-	259
	260
	261
	262
	262
	263
	264
	264
	265 265
	265 265
	266 266
	267 269
	268 268
	268 260
	269 260
	269 270
	270
WITIED THE	270

14 File Index

writed.f90																		 							27	71
writem.f90																		 							27	71
xmon.f90																										
ysed.f90 .																		 							27	72
zero0.f90																		 							27	73
zero1.f90																		 							27	73
zero2.f90																										
zero_urbn.																		 							27	74
zarojni f00																									2	7/

Module Documentation

5.1 parm Module Reference

main module containing the global variables

Data Types

- · interface fcgd
- interface ndenit
- interface regres
- · interface tair
- interface theta

Variables

- integer, parameter mvaro = 33
 max number of variables routed through the reach
- integer, parameter mhruo = 79

 maximum number of variables written to HRU output file (output.hru) (none)
- integer, parameter mrcho = 62

 maximum number of variables written to reach output file (.rch) (none)
- integer, parameter msubo = 24

 maximum number of variables written to subbasin output file (output.sub) (none)
- integer, parameter mstdo = 113
 max number of variables summarized in output.std
- integer, parameter **motot** = 600
- character(len=80), parameter prog = "SWAT Sep 7 VER 2018/Rev 670"
 SWAT program header string (name and version)

16 Module Documentation

character(len=13), dimension(mhruo), parameter heds = (/" PRECIPmm"," SNOFALLmm"," SNOMELTmm"," IRRmm"," PETmm"," ETmm"," SW_INITmm"," SW_ENDmm"," PERCmm"," GW_RCHGmm"," DA_RCH Gmm"," REVAPmm"," SA_IRRmm"," DA_IRRmm"," SA_STmm"," DA_STmm"," SURQ_GENmm","SURQ C_CNTmm"," TLOSSmm"," LATQGENmm"," GW_Qmm"," WYLDmm"," DAILYCN"," TMP_AVdgC"," TMP_WdgC"," SOL_TMPdgC","SOLARMJ/m2"," SYLDt/ha"," USLEt/ha","N_APPkg/ha","P_AP Pkg/ha","NAUTOkg/ha","PAUTOkg/ha"," NGRZkg/ha"," PGRZkg/ha","NCFRTkg/ha","PCFRTkg/ha","NRA INkg/ha"," NFIXkg/ha"," F-MNkg/ha"," A-SNkg/ha"," F-MPkg/ha"," AO-LPkg/ha"," L-APkg/ha"," A-SPkg/ha"," DNITkg/ha"," NUPkg/ha"," PUPkg/ha"," ORGNkg/ha"," ORGPkg/ha"," SEDPkg/ha","NSUR Qkg/ha","NLATQkg/ha"," NO3Lkg/ha","NO3GWkg/ha"," SOLPkg/ha"," P_GWkg/ha"," W_STRS"," TMP_S TRS"," N_STRS"," P_STRS"," BIOMt/ha"," LAI"," YLDt/ha"," BACTPct "," BACTLPct"," WTAB CLIm"," WT AB SOLm"," SNOmm"," CMUPkg/ha","CMTOTkg/ha"," QTILEmm"," TNO3kg/ha"," LNO3kg/ha"," GW_Q Dmm"," LATQCNTmm"," TVAPkg/ha"/)

column headers for HRU output file

character(len=13), dimension(msubo), parameter hedb = (/" PRECIPmm"," SNOMELTmm"," PETmm"," E ←
Tmm"," SWmm"," PERCmm"," SURQmm"," GW_Qmm"," WYLDmm"," SYLDt/ha"," ORGNkg/ha"," ORG←
Pkg/ha","NSURQkg/ha"," SOLPkg/ha"," LAT Q(mm)","LATNO3kg/h","GWNO3kg/ha","CHO←
LAmic/L","CBODU mg/L"," DOXQ mg/L"," TNO3kg/ha"," QTILEmm"," TVAPkg/ha"/)

column headers for subbasin output file

column headers for reach output file

character(len=13), dimension(41), parameter hedrsv = (/" VOLUMEm3"," FLOW_INcms"," FLOW_OU
 Tcms"," PRECIPm3"," EVAPm3"," SEEPAGEm3"," SED_INtons"," SED_OUTtons"," SED_CONCppm","
 ORGN_INkg"," ORGN_OUTkg"," RES_ORGNppm"," ORGP_INkg"," ORGP_OUTkg"," RES_ORGPppm","
 NO3_INkg"," NO3_OUTkg"," RES_NO3ppm"," NO2_INkg"," NO2_OUTkg"," RES_NO2ppm"," NH3_I
 Nkg"," NH3_OUTkg"," RES_NH3ppm"," MINP_INkg"," MINP_OUTkg"," RES_MINPppm"," CHLA_INkg","
 CHLA_OUTkg","SECCHIDEPTHm"," PEST_INmg"," REACTPSTmg"," VOLPSTmg"," SETTLPSTmg","R
 ESUSP_PSTmg","DIFFUSEPSTmg","REACBEDPSTmg"," BURYPSTmg"," PEST_OUTmg","PSTCNC
 Wmg/m3","PSTCNCBmg/m3"/)

column headers for reservoir output file

character(len=13), dimension(40), parameter <a headwit = (/" PNDPCPmm"," PND_INmm","PSED_It/ha"," PNDEVPmm"," PNDSEPmm"," PND_OUTmm","PSED_Ot/ha"," PNDVOLm^3","PNDORGNppm"," P↔ NDNO3ppm","PNDORGPppm","PNDMINPppm","PNDCHLAppm"," PNDSECIm"," WETPCPmm"," W← ET_INmm","WSED_It/ha"," WETEVPmm"," WETSEPmm"," WET_OUTmm","WSED_Ot/ha"," WETVO← Lm^3","WETORGNppm","WETNO3ppm","WETORGPppm","WETMINPppm","WETCHLAppm"," WETSE← CIm"," POTPCPmm"," POT_INmm","OSED_It/ha"," POTEVPmm"," POTSEPmm"," POT_OUTmm","OSE← D Ot/ha"," POTVOLm^3"," POT SAha","HRU SURQmm","PLANT ETmm"," SOIL ETmm"/)

column headers for HRU impoundment output file

- integer, dimension(mhruo), parameter icols = (/43,53,63,73,83,93,103,113,123,133,143,153,163,173,183,193,203,213,223,233, space number for beginning of column in HRU output file (none)
- integer, dimension(msubo), parameter icolb = (/35,45,55,65,75,85,95,105,115,125,135,145,155,165,175,185,195,205,215,225 space number for beginning of column in subbasin output file (none)
- integer, dimension(mrcho), parameter icolr = (/38,50,62,74,86,98,110,122,134,146,158,170,182,194,206,218,230,242,254,266 space number for beginning of column in reach output file (none)
- integer, dimension(41), parameter icolrsv = (/38,50,62,74,86,98,110,122,134,146,158,170,182,194,206,218,230,242,254,266,2 space number for beginning of column in reservoir output file (none)
- real *8, parameter ab = 0.02083

lowest value al5 can have (mm H2O)

- integer, dimension(13), parameter **ndays_leap** = (/0,31,60,91,121,152,182,213,244,274,305,335,366/)
- integer, dimension(13), parameter **ndays_noleap** = (/0,31,59,90,120,151,181,212,243,273,304,334,365/)
- · integer icalen
- real *8 prf_bsn

Basinwide peak rate adjustment factor for sediment routing in the channel. Allows impact of peak flow rate on sediment routing and channel reshaping to be taken into account.

- real *8 co2_x2
- real *8 co2 x
- real *8, dimension(:), allocatable alph e
- real *8, dimension(:), allocatable cdn

denitrification exponential rate coefficient

• real *8, dimension(:), allocatable nperco

nitrate percolation coefficient (0-1)

0:concentration of nitrate in surface runoff is zero

1:percolate has same concentration of nitrate as surface runoff

real *8, dimension(:), allocatable surlag

Surface runoff lag time. This parameter is needed in subbasins where the time of concentration is greater than 1 day. SURLAG is used to create a "storage" for surface runoff to allow the runoff to take longer than 1 day to reach the subbasin outlet (days)

- real *8, dimension(:), allocatable co p
- real *8, dimension(:), allocatable cmn

rate factor for humus mineralization on active organic N

real *8, dimension(:), allocatable phoskd

Phosphorus soil partitioning coefficient. Ratio of soluble phosphorus in surface layer to soluble phosphorus in runoff.

real *8, dimension(:), allocatable psp

Phosphorus availibility index. The fraction of fertilizer P remaining in labile pool after initial rapid phase of P sorption (none)

• real *8, dimension(:), allocatable sdnco

denitrification threshold: fraction of field capacity triggering denitrification

real *8 r2adj_bsn

basinwide retention parameter adjustment factor (greater than 1)

real *8 pst kg

amount of pesticide applied to HRU (kg/ha)

real *8 yield

yield (dry weight) (kg)

real *8 burn frlb

fraction of biomass and residue that burn(input in management file) range (0 - 1.0) (none)

- real *8 yieldgrn
- · real *8 yieldbms
- real *8 yieldtbr
- real *8 yieldn
- real *8 yieldp
- real *8 hi_bms
- real *8 hi_rsd
- real *8 yieldrsd
- real *8, dimension(:), allocatable I_k1
- real *8, dimension(:), allocatable I_k2
- real *8, dimension(:), allocatable I_lambda
- real *8, dimension(:), allocatable I_beta
- real *8, dimension(:), allocatable I_gama
- real *8, dimension(:), allocatable I_harea
- real *8, dimension(:), allocatable I vleng
- real *8, dimension(:), allocatable I_vslope

18 **Module Documentation**

- real *8, dimension(:), allocatable I_ktc
- real *8, dimension(:), allocatable biofilm_mumax
- real *8, dimension(:), allocatable biofilm_kinv
- real *8, dimension(:), allocatable biofilm klw
- real *8, dimension(:), allocatable biofilm kla
- real *8, dimension(:), allocatable biofilm_cdet
- real *8, dimension(:), allocatable biofilm_bm
- real *8, dimension(:,:), allocatable hru_rufr
- real *8, dimension(:,:), allocatable daru_km
- real *8, dimension(:,:), allocatable ru_k
- real *8, dimension(:,:), allocatable ru c
- real *8, dimension(:,:), allocatable ru_eiq
- real *8, dimension(:,:), allocatable ru_ovsl
- real *8, dimension(:,:), allocatable ru_a
- real *8, dimension(:,:), allocatable ru_ovs
- real *8, dimension(:,:), allocatable ru_ktc
- real *8, dimension(:), allocatable gwq_ru
- real *8, dimension(:), allocatable qdayout
- integer, dimension(:), allocatable ils2
- integer, dimension(:), allocatable ils2flag
- · integer ipest

pesticide identification number from pest.dat (none)

- · integer iru
- · integer mru
- · integer irch
- · integer isub
- integer mhyd_bsn
- · integer ils_nofig
- · integer mhru1
- integer, dimension(:), allocatable mhyd1
- · integer, dimension(:), allocatable irtun
- real *8 wshd_sepno3
- real *8 wshd_sepnh3
- real *8 wshd_seporgn
- real *8 wshd_sepfon
- real *8 wshd seporgp
- real *8 wshd_sepfop
- real *8 wshd_sepsolp
- real *8 wshd sepbod
- real *8 wshd_sepmm
- integer, dimension(:), allocatable isep_hru
- real *8 fixco

nitrogen fixation coefficient

real *8 nfixmx

maximum daily n-fixation (kg/ha)

real *8 res stlr co

reservoir sediment settling coefficient

real *8 rsd covco

residue cover factor for computing fraction of cover

real *8 vcrit

critical velocity

real *8 wshd snob

average amount of water stored in snow at the beginning of the simulation for the entire watershed (mm H20)

· real *8 wshd sw

water in soil at beginning of simulation, or\ average amount of water stored in soil for the entire watershed, or\ difference between mass balance calculated from watershed averages and actual value for water in soil at end of simulation (goal is to have wshd_sw = 0.) (mm H2O)

real *8 wshd_pndfr

fraction of watershed area which drains into ponds (none)

• real *8 wshd pndsed

total amount of suspended sediment in ponds in the watershed (metric tons), or mass balance discrepancy for pond sediment expressed as loading per unit hectare of drainage area (metric tons/ha)

real *8 wshd pndv

total volume of water in ponds in the watershed (m^3), or mass balance discrepancy for pond water volume expressed as depth over drainage area (m^3), or mass balance discrepancy for pond water volume expressed as depth over drainage area (m^3).

real *8 percop

pesticide percolation coefficient (0-1)

0: concentration of pesticide in surface runoff is zero

1: percolate has same concentration of pesticide as surface runoff

· real *8 wshd resfr

fraction of watershed area that drains into reservoirs (none)

real *8 wshd_pndha

watershed area in hectares which drains into ponds (ha)

real *8 wshd resha

watershed area in hectares which drains into reservoirs (ha)

real *8 wshd wetfr

fraction of watershed area which drains into wetlands (none)

real *8 wshd fminp

average annual amount of mineral P applied in watershed (kg P/ha)

real *8 wshd_fnh3

average annual amount of NH3-N applied in watershed (kg N/ha)

• real *8 wshd fno3

average annual amount of NO3-N applied in watershed (kg N/ha)

real *8 wshd_forgn

average annual amount of organic N applied in watershed (kg N/ha)

real *8 wshd ftotn

average annual amount of N (mineral & organic) applied in watershed (kg N/ha)

real *8 wshd_forgp

average annual amount of organic P applied in watershed (kg P/ha)

real *8 wshd_ftotp

average annual amount of P (mineral & organic) applied in watershed (kg P/ha)

real *8 wshd_yldn

amount of nitrogen removed from soil in watershed in the yield (kg N/ha)

real *8 wshd yldp

amount of phosphorus removed from soil in watershed in the yield (kg P/ha)

- real *8 wshd_fixn
- real *8 wshd_pup
- real *8 wshd_wstrs
- real *8 wshd_nstrsreal *8 wshd_pstrs
- real *0 wsild_pstis
- real *8 wshd_tstrs
- real *8 wshd_astrs
- real *8 ffcb

initial soil water content expressed as a fraction of field capacity

real *8 wshd_hmn

20 Module Documentation

- real *8 wshd_rwn
- real *8 wshd hmp
- real *8 wshd_rmn
- real *8 wshd dnit
- real *8 wdpq

die-off factor for persistent bacteria in soil solution (1/day)

- real *8 wshd_rmp
- real *8 wshd_voln
- real *8 wshd nitn
- real *8 wshd pas
- real *8 wshd pal
- real *8 wof_p

wash off fraction for persistent bacteria on foliage during a rainfall event

- real *8 wshd plch
- real *8 wshd raino3
- · real *8 ressedc
- · real *8 basno3f
- · real *8 basorgnf
- real *8 wshd_pinlet
- real *8 wshd_ptile
- real *8 sftmp

Snowfall temperature (deg C)

real *8 smfmn

Minimum melt rate for snow during year (Dec. 21) where deg C refers to the air temperature. (mm/deg C/day)

real *8 smfmx

Maximum melt rate for snow during year (June 21) where deg C refers to the air temperature. SMFMX and SM \leftarrow FMN allow the rate of snow melt to vary through the year. These parameters are accounting for the impact of soil temperature on snow melt. (mm/deg C/day)

real *8 smtmp

Snow melt base temperature. Mean air temperature at which snow melt will occur. (deg C)

real *8 wgpq

growth factor for persistent bacteria in soil solution (1/day)

- real *8 basminpf
- real *8 basorgpf
- real *8 wdlpq

die-off factor for less persistent bacteria in soil solution (1/day)

real *8 wshd_ressed

total amount of suspended sediment in reservoirs in the watershed (metric tons), or mass balance discrepancy for reservoir sediment expressed as loading per unit hectare of drainage area (metric tons/ha)

real *8 wshd_resv

total volume of water in all reservoirs in the watershed (m^3), or mass balance discrepancy for reservoir water volume expressed as depth over drainage area (mm H2O)

• real *8 basminpi

average amount of phosphorus initially in the mineral P pool in watershed soil (kg P/ha)

real *8 basno3i

average amount of nitrogen initially in the nitrate pool in watershed soil (kg N/ha)

real *8 basorgni

average amount of nitrogen initially in the organic N pool in watershed soil (kg N/ha)

real *8 wdps

die-off factor for persistent bacteria adsorbed to soil particles (1/day)

real *8 wglpq

growth factor for less persistent bacteria in soil solution (1/day)

· real *8 basorgpi

average amount of phosphorus initially in the organic P pool in watershed soil (kg P/ha)

real *8 peakr

peak runoff rate for the day in HRU (m^3/s)

real *8 albday

albedo of ground for the day in HRU, the fraction of the solar radiation reflected at the soil surface back into space (none)

real *8 pndsedin

sediment inflow to the pond from HRU (metric tons)

real *8 sw excess

amount of water stored in soil layer on the current day that exceeds field capacity (gravity drained water) (mm H2O)

real *8 timp

Snow pack temperature lag factor (0-1)

1 = no lag (snow pack temp=current day air temp) as the lag factor goes to zero, the snow pack's temperature will be less influenced by the current day's air temperature.

- real *8 wtabelo
- real *8 tilep
- · real *8 wt shall
- real *8 sq_rto
- real *8 qtile

drainage tile flow in HRU soil layer for the day (mm H2O)

real *8 inflpcp

amount of precipitation that infiltrates into soil (enters soil) (mm H2O)

real *8 crk

percolation due to crack flow (mm H2O)

real *8 fixn

amount of nitrogen added to plant biomass via fixation on the day in HRU (kg N/ha)

real *8 latlyr

amount of water in lateral flow in layer in HRU for the day (mm H2O)

real *8 snofall

amount of precipitation falling as freezing rain/snow on day in HRU (mm H2O)

real *8 snomlt

amount of water in snow melt for the day in HRU (mm H2O)

real *8 tloss

amount of water removed from surface runoff via transmission losses on day in HRU (mm H2O)

- real *8 pndloss
- real *8 wetloss
- real *8 potloss
- real *8 lpndloss
- real *8 lwetloss
- real *8 bioday

biomass generated on current day in HRU (kg)

real *8 cfertn

amount of nitrogen added to soil in continuous fertilizer operation on day (kg N/ha)

real *8 cfertp

amount of phosphorus added to soil in continuous fertilizer operation on day (kg P/ha)

real *8 fertn

total amount of nitrogen applied to soil in HRU on day (kg N/ha)

real *8 sepday

micropore percolation from bottom of the soil layer on day in HRU (mm H2O)

real *8 sol_rd

current rooting depth (mm)

- real *8 sedrch
- real *8 sepcrk
- real *8 sepcrktot
- real *8 fertno3
- real *8 fertnh3
- real *8 fertorgn
- real *8 fertsolp
- real *8 fertorgp
- real *8 wgps

growth factor for persistent bacteria adsorbed to soil particles (1/day)

real *8 qdfr

fraction of water yield that is surface runoff (none)

real *8 fertp

total amount of phosphorus applied to soil in HRU on day (kg P/ha)

real *8 grazn

amount of nitrogen added to soil in grazing on the day in HRU (kg N/ha)

real *8 grazp

amount of phosphorus added to soil in grazing on the day in HRU (kg P/ha)

real *8 soxy

saturation dissolved oxygen concentration (mg/L)

- real *8 sdti
- real *8 rtwtr
- real *8 ressa
- real *8 wdlps

die-off factor for less persistent bacteria absorbed to soil particles (1/day)

real *8 wglps

growth factor for less persistent bacteria adsorbed to soil particles (1/day)

real *8 da_km

area of the watershed in square kilometers (km²)

- real *8 rttime
- real *8 rchdep
- real *8 rtevp
- real *8 rttlc
- real *8 resflwi
- real *8 wdprch

die-off factor for persistent bacteria in streams (1/day)

- real *8 resflwo
- real *8 respcp
- real *8 resev
- real *8 ressep
- real *8 ressedi
- real *8 ressedo
- real *8 dtot
- real *8 pperco bsn

phosphorus percolation coefficient. Ratio of soluble phosphorus in surface to soluble phosphorus in percolate

real *8 nperco_bsn

basin nitrate percolation coefficient (0-1)

0:concentration of nitrate in surface runoff is zero

1:percolate has same concentration of nitrate as surface runoff

real *8 rsdco

residue decomposition coefficient. The fraction of residue which will decompose in a day assuming optimal moisture, temperature, C:N ratio, and C:P ratio

real *8 voltot

total volume of cracks expressed as depth per unit area (mm)

- real *8 phoskd_bsn
- real *8 msk x

weighting factor controling relative importance of inflow rate and outflow rate in determining storage on reach

real *8 volcrmin

minimum crack volume allowed in any soil layer (mm)

real *8 bactkdg

bacteria soil partitioning coefficient. Ratio of solution bacteria in surface layer to solution bacteria in runoff soluble and sorbed phase in surface runoff.

real *8 wdpf

die-off factor for persistent bacteria on foliage (1/day)

real *8 canev

amount of water evaporated from canopy storage (mm H2O)

real *8 precipday

precipitation, or effective precipitation reaching soil surface, for the current day in HRU (mm H2O)

real *8 uno3d

plant nitrogen deficiency for day in HRU (kg N/ha)

• real *8 usle

daily soil loss predicted with USLE equation (metric tons/ha)

- real *8 rcn
- real *8 surlag bsn
- real *8 thbact

temperature adjustment factor for bacteria die-off/growth

real *8 wlpq20

overall rate change for less persistent bacteria in soil solution (1/day)

real *8 wlps20

overall rate change for less persistent bacteria adsorbed to soil particles (1/day)

real *8 wpq20

overall rate change for persistent bacteria in soil solution (1/day)

real *8 wps20

overall rate change for persistent bacteria adsorbed to soil particles (1/day)

real *8 bactrop

persistent bacteria transported to main channel with surface runoff (# colonies/ha)

real *8 bactsedp

persistent bacteria transported with sediment in surface runoff (# colonies/ha)

real *8 wgpf

growth factor for persistent bacteria on foliage (1/day)

real *8 bactlchlp

less persistent bacteria removed from soil surface layer by percolation (# colonies/ha)

real *8 bactlchp

persistent bacteria removed from soil surface layer by percolation (# colonies/ha)

real *8 enratio

enrichment ratio calculated for day in HRU (none)

real *8 pndpcp

precipitation on pond during day (m^{\wedge} 3 H2O)

- real *8 wetpcp
- real *8 wetsep

seepage from wetland bottom for day (m^3 H2O)

real *8 pndev

evaporation from pond on day ($m^3 H2O$)

real *8 pndflwi

volume of water flowing into pond on day (m^3 H2O)

· real *8 pndsedo

sediment leaving pond during day (metric tons)

real *8 pndsep

seepage from pond on day (m^3 H2O)

real *8 wetev

evaporation from wetland for day (m^3 H2O)

real *8 wetflwi

volume of water flowing in wetland on day (m^3 H2O)

real *8 wetsedo

sediment loading from wetland for day (metric tons)

real *8 da ha

drainage area of watershed in hectares (ha)

real *8 pndflwo

volume of water flowing out of pond on day (m^3 H2O)

real *8 vpd

vapor pressure deficit (kPa)

real *8 wetflwo

volume of water flowing out wetland on day (m³ H2O)

real *8 wetsedi

sediment loading to wetland for day (metric tons)

• real *8 evlai

leaf area index at which no evaporation occurs. This variable is used in ponded HRUs where evaporation from the water surface is restricted by the plant canopy cover. Evaporation from the water surface equals potential ET when LAI = 0 and decreased linearly to O when LAI = EVLAI

real *8 evrch

Reach evaporation adjustment factor. Evaporation from the reach is multiplied by EVRCH. This variable was created to limit the evaporation predicted in arid regions.

real *8 wdlpf

die-off factor for less persistent bacteria on foliage (1/day)

real *8 ep_day

actual amount of transpiration that occurs on day in HRU (mm H2O)

real *8 pet_day

potential evapotranspiration on current day in HRU (mm H2O)

real *8 bactrolp

less persistent bacteria transported to main channel with surface runoff (# colonies/ha)

real *8 bactsedlp

less persistent bacteria transported with sediment in surface runoff (# colonies/ha)

real *8 adj_pkr

peak rate adjustment factor in the subbasin. Used in the MUSLE equation to account for impact of peak flow on erosion (none)

real *8 n_updis

nitrogen uptake distribution parameter. This parameter controls the amount of nitrogen removed from the different soil layer layers by the plant. In particular, this parameter allows the amount of nitrogen removed from the surface layer via plant uptake to be controlled. While the relationship between UBN and N removed from the surface layer is affected by the depth of the soil profile, in general, as UBN increases the amount of N removed from the surface layer relative to the amount removed from the entire profile increases

real *8 nactfr

nitrogen active pool fraction. The fraction of organic nitrogen in the active pool (none)

real *8 p_updis

phosphorus uptake distribution parameter This parameter controls the amount of phosphorus removed from the different soil layers by the plant. In particular, this parameter allows the amount of phosphorus removed from the surface layer via plant uptake to be controlled. While the relationship between UBP and P uptake from the surface layer is affected by the depth of the soil profile, in general, as UBP increases the amount of P removed from the surface layer relative to the amount removed from the entire profile increases

real *8 snoev

amount of water in snow lost through sublimation on current day in HRU (mm H2O)

- real *8 sno3up
- real *8 reactw
- real *8 es day

actual amount of evaporation (soil et) that occurs on day in HRU (mm H2O)

- real *8 sdiegropq
- real *8 sdiegrolpq
- real *8 sdiegrops
- real *8 sdiegrolps
- real *8 wof_lp

wash off fraction for less persistent bacteria on foliage during a rainfall event

real *8 ep max

maximum amount of transpiration (plant et) that can occur on day in HRU (mm H2O)

- real *8 sbactrop
- real *8 sbactrolp
- real *8 sbactsedp
- real *8 sbactsedlp
- real *8 sbactlchp
- real *8 sbactlchlp
- real *8 psp_bsn
- real *8 rchwtr
- real *8 resuspst
- real *8 setIpst
- real *8 bsprev

surface runoff lagged from prior day of simulation (mm H2O)

real *8 bssprev

lateral flow lagged from prior day of simulation (mm H2O)

- real *8 spadyo
- real *8 spadyev
- real *8 spadysp
- real *8 spadyrfv
- real *8 spadyosp
- real *8 qday

amount of surface runoff loading to main channel from HRU on current day (mm H2O)

real *8 al5

fraction of total rainfall that occurs during 0.5h of highest intensity rain (none)

real *8 no3pcp

nitrate added to the soil in rainfall (kg N/ha)

real *8 pndsedc

net change in sediment in pond during day (metric tons)

• real *8 usle ei

USLE rainfall erosion index on day for HRU (100(ft-tn in)/(acre-hr))

- real *8 rcharea
- real *8 volatpst
- real *8 ubw

water uptake distribution parameter. This parameter controls the amount of water removed from the different soil layers by the plant. In particular, this parameter allows the amount of water removed from the surface layer via plant uptake to be controlled. While the relationship between UBW and H2O removed from the surface layer is affected by the depth of the soil profile, in general, as UBW increases the amount of water removed from the surface layer relative to the amount removed from the entire profile increases

real *8 uobn

nitrogen uptake normalization parameter. This variable normalizes the nitrogen uptake so that the model can easily verify that upake from the different soil layers sums to 1.0

real *8 uobp

phosphorus uptake normalization parameter. This variable normalizes the phosphorus uptake so that the model can easily verify that uptake from the different soil layers sums to 1.0

real *8 uobw

water uptake normalization parameter. This variable normalizes the water uptake so that the model can easily verify that uptake from the different soil layers sums to 1.0

real *8 wglpf

growth factor for less persistent bacteria on foliage (1/day)

real *8 wetsedc

net change in sediment in wetland during day (metric tons)

- real *8 respesti
- real *8 rcor

correction coefficient for generated rainfall to ensure that the annual means for generated and observed values are comparable (needed only if IDIST=1)

real *8 rexp

value of exponent for mixed exponential rainfall distribution (needed only if IDIST=1)

real *8 snocov1

1st shape parameter for snow cover equation. This parameter is determined by solving the equation for 50% snow cover

real *8 snocov2

2nd shape parameter for snow cover equation. This parameter is determined by solving the equation for 95% snow cover

real *8 snocovmx

Minimum snow water content that corresponds to 100% snow cover. If the snow water content is less than SNOC← OVMX, then a certain percentage of the ground will be bare (mm H2O)

real *8 lyrtile

drainage tile flow in soil layer for day (mm H2O)

- real *8 lyrtilex
- real *8 sno50cov

Fraction of SNOCOVMX that corresponds to 50% snow cover. SWAT assumes a nonlinear relationship between snow water and snow cover.

real *8 ai0

ratio of chlorophyll-a to algal biomass (ug chla/mg alg)

real *8 ai1

fraction of algal biomass that is nitrogen (mg N/mg alg)

real *8 ai2

fraction of algal biomass that is phosphorus (mg P/mg alg)

real *8 ai3

the rate of oxygen production per unit of algal photosynthesis (mg O2/mg alg)

real *8 ai4

the rate of oxygen uptake per unit of algae respiration (mg O2/mg alg)

real *8 ai5

the rate of oxygen uptake per unit of NH3 nitrogen oxidation (mg O2/mg N)

real *8 ai6

the rate of oxygen uptake per unit of NO2 nitrogen oxidation (mg O2/mg N)

real *8 rhoq

algal respiration rate (1/day or 1/hr)

real *8 tfact

fraction of solar radiation computed in the temperature heat balance that is photosynthetically active

real *8 k l

half-saturation coefficient for light (MJ/(m2*hr))

real *8 k n

michaelis-menton half-saturation constant for nitrogen (mg N/L)

real *8 k p

michaelis-menton half saturation constant for phosphorus (mg P/L)

real *8 lambda0

non-algal portion of the light extinction coefficient (1/m)

real *8 lambda1

linear algal self-shading coefficient (1/(m*ug chla/L))

real *8 lambda2

nonlinear algal self-shading coefficient ((1/m)(ug chla/L)**(-2/3))

real *8 mumax

maximum specific algal growth rate (1/day or 1/hr)

real *8 p n

algal preference factor for ammonia

real *8 rnum1

variable to hold value for rnum1s(:) (none)

real *8 etday

actual evapotranspiration occuring on day in HRU (mm H2O)

· real *8 auton

amount of nitrogen applied in auto-fert application (kg N/ha)

real *8 autop

amount of phosphorus applied in auto-fert application (kg P/ha)

real *8 hmntl

amount of nitrogen moving from active organic to nitrate pool in soil profile on current day in HRU (kg N/ha)

real *8 hmptl

amount of phosphorus moving from active organic to nitrate pool in soil profile on current day in HRU (kg P/ha)

real *8 rmn2tl

amount of nitrogen moving from the fresh organic (residue) to the nitrate(80%) and active organic(20%) pools in soil profile on current day in HRU (kg N/ha)

real *8 rwntl

amount of nitrogen moving from active organic to stable organic pool in soil profile on current day in HRU (kg N/ha)

real *8 gwseep

amount of water recharging deep aquifer on current day (mm H2O)

real *8 revapday

amount of water moving from the shallow aquifer into the soil profile or being taken up by plant roots in the shallow aquifer (mm H2O)

real *8 rmp1tl

amount of phosphorus moving from the labile mineral pool to the active mineral pool in the soil profile on the current day in the HRU (kg P/ha)

real *8 rmptl

amount of phosphorus moving from the fresh organic (residue) to the labile(80%) and organic(20%) pools in soil profile on current day in HRU (kg P/ha)

real *8 roctl

amount of phosphorus moving from the active mineral pool to the stable mineral pool in the soil profile on the current day in the HRU (kg P/ha)

real *8 wdntl

amount of nitrogen lost from nitrate pool by denitrification in soil profile on current day in HRU (kg N/ha)

- real *8 cmn_bsn
- · real *8 reswtr
- real *8 wdlprch

die-off factor for less persistent bacteria in streams (1/day)

real *8 wdpres

die-off factor for persistent bacteria in reservoirs (1/day)

real *8 petmeas

potential ET value read in for day (mm H2O)

- real *8 bury
- real *8 difus
- · real *8 reactb
- real *8 solpesto
- real *8 wdlpres

die-off factor for less persistent bacteria in reservoirs (1/day)

- · real *8 sorpesto
- real *8 spcon_bsn
- real *8 spexp bsn
- real *8 solpesti
- real *8 sorpesti
- real *8 msk_co1

calibration coefficient to control impact of the storage time constant for the reach at bankfull depth (phi(10,:) upon the storage time constant for the reach used in the Muskingum flow method

real *8 msk co2

calibration coefficient to control impact of the storage time constant for the reach at 0.1 bankfull depth (phi(13,:) upon the storage time constant for the reach used in the Muskingum flow method

real *8 deepstp

depth of water in deep aquifer in HRU (mm H2O)

real *8 shallstp

depth of water in shallow aquifer in HRU on previous day (mm H2O)

real *8 snoprev

amount of water stored as snow on previous day (mm H2O)

real *8 swprev

amount of water stored in soil profile in the HRU on the previous day (mm H2O)

- real *8 ressolpo
- · real *8 resorgno
- real *8 resorgpo
- real *8 resno3o
- real *8 reschlao
- real *8 resno2o
- real *8 potevmm

volume of water evaporated from pothole expressed as depth over HRU (mm H2O)

real *8 potflwo

volume of water released to main channel from pothole exporessed as depth over HRU (mm H2O)

real *8 potpcpmm

precipitation falling on pothole water body expressed as depth over HRU (mm H2O)

real *8 potsepmm

seepage from pothole expressed as depth over HRU (mm H2O)

- real *8 resnh3o
- real *8 qdbank
- real *8 bactminlp

Threshold detection level for less persistent bacteria. When bacteria levels drop to this amount the model considers bacteria in the soil to be insignificant and sets the levels to zero (cfu/m^2)

real *8 bactminp

Threshold detection level for persistent bacteria. When bacteria levels drop to this amount the model considers bacteria in the soil to be insignificant and sets the levels to zero (cfu/m^2 2)

real *8 trnsrch

fraction of transmission losses from main channel that enter deep aquifer

real *8 wp20p_plt

overall rate change for persistent bacteria on foliage (1/day)

real *8 potsedo

sediment released to main channel from HRU (metric tons/ha)

- real *8 pest sol
- real *8 bact_swf

fraction of manure containing active colony forming units (cfu)

real *8 bactmx

bacteria percolation coefficient. Ratio of solution bacteria in surface layer to solution bacteria in percolate

· real *8 cncoef

plant ET curve number coefficient

real *8 wp20lp_plt

overall rate change for less persistent bacteria on foliage (1/day)

- real *8 cdn_bsn
- real *8 sdnco bsn
- real *8 bactmin
- real *8 cn_froz

drainge coefficient (mm day -1)

real *8 dorm_hr

time threshold used to define dormant (hours)

real *8 smxco

adjustment factor for max curve number s factor (0-1)

real *8 tb_adj

adjustment factor for subdaily unit hydrograph basetime

• real *8 chla_subco

regional adjustment on sub chla_a loading (fraction)

real *8 depimp_bsn

depth to impervious layer. Used to model perched water tables in all HRUs in watershed (mm)

real *8 ddrain_bsn

depth to the sub-surface drain (mm)

• real *8 tdrain_bsn

time to drain soil to field capacity (hours)

- real *8 gdrain_bsn
- real *8 rch_san
- real *8 rch_sil
- real *8 rch_cla
- real *8 rch_sag
- real *8 rch_lag
- real *8 rch_gra
- real *8 hlife_ngw_bsn

Half-life of nitrogen in groundwater? (days)

- real *8 ch opco bsn
- real *8 ch_onco_bsn
- real *8 decr min

Minimum daily residue decay.

real *8 rcn_sub_bsn

Concentration of nitrogen in the rainfall (mg/kg)

```
real *8 bc1_bsn
real *8 bc2_bsn

    real *8 bc3_bsn

    real *8 bc4 bsn

• real *8 anion excl bsn

    real *8, dimension(:), allocatable wat_tbl

    real *8, dimension(:), allocatable sol_swpwt

• real *8, dimension(:,:), allocatable vwt
 real *8 re bsn
     Effective radius of drains (range 3.0 - 40.0) (mm)
• real *8 sdrain_bsn
     Distance bewtween two drain or tile tubes (range 7600.0 - 30000.0) (mm)
• real *8 sstmaxd bsn
 real *8 drain co bsn
     Drainage coeffcient (range 10.0 - 51.0) (mm-day-1)
real *8 latksatf_bsn
     Multiplication factor to determine lateral ksat from SWAT ksat input value for HRU (range 0.01 - 4.0)
real *8 pc_bsn
     Pump capacity (def val = 1.042 mm h-1 or 25 mm day-1) (mm h-1)
· integer idlast
     number of days simulated in month (none)
• integer i_subhw
· integer imgt
· integer iwtr
· integer ifrttyp
· integer mo atmo

    integer mo atmo1

· integer ifirstatmo

    integer iyr_atmo

integer iyr_atmo1

    integer matmo

· integer mch
     maximum number of channels
· integer mcr
     maximum number of crops grown per year
· integer mcrdb
     maximum number of crops/landcover in database file (crop.dat)
· integer mfcst
     maximum number of forecast stations
· integer mfdb
     maximum number of fertilizers in fert.dat
· integer mhru
     maximum number of HRUs in watershed
· integer mhyd
     maximum number of hydrograph nodes
 integer mpdb
     maximum number of pesticides in pest.dat

    integer mrg

     maximum number of rainfall/temp gages (none)
· integer mcut
```

maximum number of cuttings per year

integer mgr

maximum number of grazings per year

· integer mnr

maximum number of years of rotation

· integer myr

maximum number of years of simulation

integer isubwq

subbasin water quality code

0 do not calculate algae/CBOD 1 calculate algae/CBOD drainmod tile equations

- · integer ffcst
- · integer isproj

special project code (none):

1 test rewind (run simulation twice)

· integer nbyr

number of calendar years simulated (none)

· integer irte

water routing method (none): 0 variable storage method 1 Muskingum method

· integer nrch

number of reaches in watershed (none)

· integer nres

total number of reservoirs in watershed (none)

· integer nhru

number of last HRU in previous subbasin or number of HRUs in watershed (none)

· integer i mo

current month being simulated or month of next day of simulation (none)

· integer immo

current cumulative month of simulation (none)

- · integer mo
- integer wndsim

wind speed input code (noen)

1 measured data read for each subbasin

2 data simulated for each subbasin

· integer ihru

HRU number (none)

· integer icode

variable to hold value for icodes(:) (none)

integer ihout

variable to hold value for ihouts(:) (none)

· integer inum1

variable to hold value for inum1s(:) (subbasin number) (none)

integer inum2

variable to hold value for inum2s(:) (none)

· integer inum3

variable to hold value for inum3s(:) (none)

· integer inum4

variable to hold value for inum4s(:) (none)

· integer icfac

icfac = 0 for C-factor calculation using Cmin (as described in manual) = 1 for new C-factor calculation from RUSLE (no minimum needed)

integer inum5

- · integer inum6
- · integer inum7
- integer inum8
- · integer mrech

maximum number of rechour files

integer nrgage

number of raingage files (none)

· integer nrgfil

number of rain gages per file (none)

integer nrtot

total number of rain gages (none)

integer ntgage

number of temperature gage files (none)

· integer ntgfil

number of temperature gages per file (none)

· integer nttot

total number of temperature gages (none)

integer tmpsim

temperature input code (none)

1 measured data read for each subbasin

2 data simulated for each subbasin

integer icrk

crack flow code

1: simulate crack flow in watershed

· integer irtpest

number of pesticide to be routed through the watershed. Redefined to the sequence number of pesticide in NPNO(:) which is to be routed through the watershed (none)

· integer igropt

Qual2E option for calculating the local specific growth rate of algae

1: multiplicative.

integer lao

Qual2E light averaging option. Qual2E defines four light averaging options. The only option currently available in SWAT is #2.

· integer npmx

number of different pesticides used in the simulation (none)

· integer curyr

current year in simulation (sequence) (none)

· integer itdrn

tile drainage equations flag/code

1 simulate tile flow using subroutine drains(wt_shall)

0 simulate tile flow using subroutine origtile(wt_shall,d)

integer iwtdn

water table depth algorithms flag/code

1 simulate wt_shall using subroutine new water table depth routine

0 simulate wt_shall using subroutine original water table depth routine

· integer ismax

maximum depressional storage selection flag/code

0 = static depressional storage

1 = dynamic storage based on tillage and cumulative rainfall

· integer iroutunit

not being implemented in this version drainmod tile equations

- integer ires_nut
- integer iclb

auto-calibration flag

· integer mrecc

maximum number of reccnst files

· integer mrecd

maximum number of recday files

integer mrecm

maximum number of recmon files

· integer mtil

max number of tillage types in till.dat

· integer mudb

maximum number of urban land types in urban.dat

· integer idist

rainfall distribution code

0 for skewed normal dist

1 for mixed exponential distribution

· integer mrecy

maximum number of recyear files

integer nyskip

number of years to skip output summarization and printing (none)

· integer slrsim

solar radiation input code (none)

1 measured data read for each subbasin

2 data simulated for each subbasin

· integer ideg

channel degredation code

0: do not compute channel degradation

1: compute channel degredation (downcutting and widening)

· integer ievent

rainfall/runoff code (none)

0 daily rainfall/curve number technique 1 sub-daily rainfall/Green&Ampt/hourly routing 3 sub-daily rainfall/ \leftarrow Green&Ampt/hourly routing

· integer ipet

code for potential ET method (none)

0 Priestley-Taylor method

1 Penman/Monteith method

2 Hargreaves method

3 read in daily potential ET data

- · integer iopera
- · integer idaf

beginning day of simulation (julian date)

• integer idal

ending day of simulation (julian date)

integer rhsim

relative humidity input code (none)

1 measured data read for each subbasin

2 data simulated for each subbasin

· integer leapyr

leap year flag (none)

0 leap year

1 regular year

integer id1

first day of simulation in current year (julian date)

· integer mo chk

current month of simulation (none)

· integer nhtot

total number of relative humidity records in file

· integer nstot

total number of solar radiation records in file (none)

· integer nwtot

total number of wind speed records in file

· integer ifirsts

solar radiation data search code (none) 0 first day of solar radiation data located in file 1 first day of solar radiation data not located in file

· integer ifirsth

relative humidity data search code (none)
0 first day of relative humidity data located in file
1 first day of relative humidity data not located in file

· integer ifirstw

wind speed data search code (none)
0 first day of wind speed data located in file
1 first day of wind speed data not located in file

- · integer icst
- integer ilog

streamflow print code (none)
0 print streamflow in reach
1 print Log10 streamflow in reach

· integer itotr

number of output variables printed (output.rch)

· integer iyr

current year of simulation (year)

· integer iwq

stream water quality code 0 do not model stream water quality 1 model stream water quality (QUAL2E & pesticide transformations)

integer iskip

flag for calculations performed only for the first year of simulation (none)

· integer ifirstpet

potential ET data search code (none)
0 first day of potential ET data located in file
1 first day of potential ET data not located in file

integer iprp

print code for output.pst file 0 do not print pesticide output 1 print pesticide output

· integer itotb

number of output variables printed (output.sub)

integer itots

number of output variables printed (output.hru)

· integer itoth

number of HRUs printed (output.hru/output.wtr)

• integer pcpsim

rainfall input code (none)
1 measured data read for each subbasin
2 data simulated for each subbasin

- integer nd_30
- integer iops
- · integer iphr

- · integer isto
- · integer isol
- · integer fcstcycles

number of times forecast period is simulated (using different weather generator seeds each time)

integer fcstday

beginning date of forecast period (julian date)

integer fcstyr

beginning year of forecast period

· integer iscen

scenarios counter

integer subtot

number of subbasins in watershed (none)

- · integer ogen
- integer mapp

maximum number of applications

integer mlyr

maximum number of soil layers

· integer mpst

max number of pesticides used in wshed

· integer mres

maximum number of reservoirs

· integer msub

maximum number of subbasins

integer igen

random number generator seed code (none):

0: use default numbers

1: generate new numbers in every simulation

integer iprint

print code (none): 0=monthly, 1=daily, 2=annually

• integer iida

day being simulated (current julian date) (julian date)

· integer icn

CN method flag (for testing alternative method):

0 use traditional SWAT method which bases CN on soil moisture

1 use alternative method which bases CN on plant ET

2 use tradtional SWAT method which bases CN on soil moisture but rention is adjusted for mildly-sloped tiled-drained watersheds.

· integer ised_det

max half-hour rainfall fraction calc option:

0 generate max half-hour rainfall fraction from triangular distribution

1 use monthly mean max half-hour rainfall fraction

- · integer fcstcnt
- · integer mtran
- · integer idtill
- integer, dimension(100) ida_lup
- integer, dimension(100) iyr_lup
- integer no_lup
- integer no_up
- · integer nostep
- character(len=8) date

date simulation is performed where leftmost eight characters are set to a value of yyyymmdd, where yyyy is the year, mm is the month and dd is the day

• character(len=10) time

time simulation is performed where leftmost ten characters are set to a value of hhmmss.sss, where hh is the hour, mm is the minutes and ss.sss is the seconds and milliseconds

character(len=5) zone

time difference with respect to Coordinated Universal Time (ie Greenwich Mean Time)

character(len=13) calfile

name of file containing calibration parameters

· character(len=13) rhfile

relative humidity file name (.hmd)

character(len=13) slrfile

solar radiation file name (.slr)

• character(len=13) wndfile

wind speed file name (.wnd)

character(len=13) petfile

potential ET file name (.pet)

- character(len=13) atmofile
- character(len=13) lucfile
- character(len=13) septdb

name of septic tank database file (septwq1.dat)

- character(len=13) dpd_file
- character(len=13) wpd_file
- character(len=13) rib file
- character(len=13) sfb file
- character(len=13) lid_file
- integer, dimension(9) idg

array location of random number seed used for a given process

- · integer, dimension(:), allocatable ifirstr
- integer, dimension(:), allocatable ifirsthr
- integer, dimension(8) values

values(1): year simulation is performed

values(2): month simulation is performed

values(3): day in month simulation is performed

values(4): time difference with respect to Coordinated Universal Time (ie Greenwich Mean Time)

values(5): hour simulation is performed

values(6): minute simulation is performed

values(7): second simulation is performed

values(8): millisecond simulation is performed

• integer, dimension(13) ndays

julian date for last day of preceding month (where the array location is the number of the month). The dates are for leap years (julian date)

- · integer mapex
- real *8, dimension(:), allocatable flodaya
- real *8, dimension(:), allocatable seddaya
- real *8, dimension(:), allocatable orgndaya
- real *8, dimension(:), allocatable orgpdaya
- real *8, dimension(:), allocatable no3daya
- real *8, dimension(:), allocatable **minpdaya**

real *8, dimension(:), allocatable hi_targ

harvest index target of cover defined at planting ((kg/ha)/(kg/ha))

real *8, dimension(:), allocatable bio_targ

biomass target (kg/ha)

• real *8, dimension(:), allocatable tnyld

modifier for autofertilization target nitrogen content for plant (kg N/kg yield)

- integer, dimension(:), allocatable idapa
- integer, dimension(:), allocatable iypa

- 5.1 parm Module Reference · integer, dimension(:), allocatable ifirsta • integer, dimension(100) mo_transb • integer, dimension(100) mo_transe integer, dimension(100) ih_tran integer msdb maximum number of sept wq data database (none) · integer iseptic real *8, dimension(:), allocatable sptqs flow rate of the septic tank effluent per capita (m3/d) real *8, dimension(:), allocatable percp real *8, dimension(:), allocatable sptbodconcs Biological Oxygen Demand of the septic tank effluent (mg/l) real *8, dimension(:), allocatable spttssconcs concentration of total suspended solid in the septic tank effluent (mg/l) real *8, dimension(:), allocatable spttnconcs concentration of total nitrogen in the septic tank effluent (mg/l) real *8, dimension(:), allocatable sptnh4concs concentration of total phosphorus of the septic tank effluent (mg/l) real *8, dimension(:), allocatable sptno3concs concentration of nitrate in the septic tank effluent (mg/l) real *8, dimension(:), allocatable sptno2concs concentration of nitrite in the septic tank effluent (mg/l) • real *8, dimension(:), allocatable sptorgnconcs concentration of organic nitrogen in the septic tank effluent (mg/l) real *8, dimension(:), allocatable spttpconcs concentration of total phosphorus in the septic tank effluent (mg/l) real *8, dimension(:), allocatable sptminps concentration of mineral phosphorus in the septic tank effluent (mg/l) real *8, dimension(:), allocatable sptorgps concentration of organic phosphorus in the septic tank effluent (mg/l) real *8, dimension(:), allocatable sptfcolis concentration of the facel caliform in the septic tank effluent (cfu/100ml) real *8, dimension(:), allocatable failyr • real *8, dimension(:), allocatable qstemm real *8, dimension(:), allocatable bio_amn real *8, dimension(:), allocatable bio_bod • real *8, dimension(:), allocatable biom real *8, dimension(:), allocatable rbiom real *8, dimension(:), allocatable fcoli real *8, dimension(:), allocatable bio_ntr • real *8, dimension(:), allocatable bz_perc real *8, dimension(:), allocatable sep_cap number of permanent residents in the hourse (none) real *8, dimension(:), allocatable plqm real *8, dimension(:), allocatable bz_area
 - real *8, dimension(:), allocatable bz z Depth of biozone layer(mm) real *8, dimension(:), allocatable bz thk thickness of biozone (mm) real *8, dimension(:), allocatable bio bd density of biomass (kg/m $^{\wedge}$ 3) carbon outputs for .hru file real *8, dimension(:), allocatable cmup_kgh

```
    real *8, dimension(:), allocatable cmtot_kgh

  real *8, dimension(:), allocatable coeff_denitr
      denitrification rate coefficient (none)
• real *8, dimension(:), allocatable coeff bod dc
      BOD decay rate coefficient (m^3/day)
• real *8, dimension(:), allocatable coeff bod conv
      BOD to live bacteria biomass conversion factor (none)

    real *8, dimension(:), allocatable coeff fc1

      field capacity calibration parameter 1 (none)
• real *8, dimension(:), allocatable coeff fc2
      field capacity calibration parameter 2 (none)

    real *8, dimension(:), allocatable coeff fecal

      fecal coliform bacteria decay rate coefficient (m^3/day)

    real *8, dimension(:), allocatable coeff mrt

      mortality rate coefficient (none)

    real *8, dimension(:), allocatable coeff_nitr

     nitrification rate coefficient (none)

    real *8, dimension(:), allocatable coeff_plg

      conversion factor for plaque from TDS (none)

    real *8, dimension(:), allocatable coeff rsp

      respiration rate coefficient (none)

    real *8, dimension(:), allocatable coeff_slg1

      slough-off calibration parameter (none)

    real *8, dimension(:), allocatable coeff_slg2

      slough-off calibration parameter (none)
  real *8, dimension(:), allocatable coeff pdistrb

    real *8, dimension(:), allocatable coeff_solpslp

• real *8, dimension(:), allocatable coeff_solpintc
  real *8, dimension(:), allocatable coeff_psorpmax
integer, dimension(:), allocatable isep_typ
      septic system type (none)

    integer, dimension(:), allocatable i_sep

  integer, dimension(:), allocatable isep opt
      septic system operation flag (1=active, 2=failing, 3=not operated) (none)
• integer, dimension(:), allocatable sep tsincefail
  integer, dimension(:), allocatable isep_tfail
  integer, dimension(:), allocatable isep_iyr
  integer, dimension(:), allocatable sep strm dist
• integer, dimension(:), allocatable sep den

    real *8, dimension(:), allocatable sol_sumno3

    real *8, dimension(:), allocatable sol_sumsolp

• real *8, dimension(:), allocatable strsw_sum
  real *8, dimension(:), allocatable strstmp_sum

    real *8, dimension(:), allocatable strsn sum

    real *8, dimension(:), allocatable strsp sum

  real *8, dimension(:), allocatable strsa_sum
· real *8, dimension(:), allocatable spill_hru
• real *8, dimension(:), allocatable tile_out

    real *8, dimension(:), allocatable hru_in

  real *8, dimension(:), allocatable spill_precip

    real *8, dimension(:), allocatable pot seep

    real *8, dimension(:), allocatable pot_evap
```

- real *8, dimension(:), allocatable pot_sedin
- real *8, dimension(:), allocatable pot_solp

soluble P loss rate in the pothole (.01 - 0.5) (1/d)

- real *8, dimension(:), allocatable pot_solpi
- real *8, dimension(:), allocatable pot_orgp
- real *8, dimension(:), allocatable pot orgpi
- real *8, dimension(:), allocatable pot_orgn
- real *8, dimension(:), allocatable pot_orgni
- real *8, dimension(:), allocatable pot_mps
- real *8, dimension(:), allocatable pot_mpsi
- real *8, dimension(:), allocatable pot_mpa
- real *8, dimension(:), allocatable pot_mpai
- real *8, dimension(:), allocatable pot_no3i
- real *8, dimension(:), allocatable precip_in
- real *8, dimension(:), allocatable tile sedo
- real *8, dimension(:), allocatable tile no3o
- real *8, dimension(:), allocatable tile_solpo
- real *8, dimension(:), allocatable tile_orgno
- real *8, dimension(:), allocatable tile orgpo
- real *8, dimension(:), allocatable tile_minpso
- real *8, dimension(:), allocatable tile minpao
- · integer ia b
- integer ihumus
- · integer itemp
- · integer isnow
- integer, dimension(46) ipdvar

output variable codes for output.rch file (none)

• integer, dimension(mhruo) ipdvas

output varaible codes for output.hru file (none)

• integer, dimension(msubo) ipdvab

output variable codes for output.sub file (none)

• integer, dimension(:), allocatable ipdhru

HRUs whose output information will be printed to the output.hru and output.wtr files.

• real *8, dimension(mstdo) wshddayo

wshddayo(1) average amount of precipitation in watershed for the day (mm H20) wshddayo(3) surface runoff in watershed for day (mm H20) wshddayo(4) lateral flow contribution to streamflow in watershed for day (mm H20) wshddayo(5) water percolation past bottom of soil profile in watershed for day (mm H20) wshddayo(6) water yield to streamflow from HRUs in watershed for day (mm H20) wshddayo(7) actual evapotranspiration in watershed for day (mm H20) wshddayo(12) sediment yield from HRUs in watershed for day (metric tons or metric tons/ha) wshddayo(35) amount of water stored in soil profile in watershed at end of day (mm H20) wshddayo(41) organic P loading to stream in watershed for day (kg P/ha) wshddayo(42) nitrate loading to stream in surface runoff in watershed for day (kg N/ha) wshddayo(43) soluble P loading to stream in watershed for day (kg P/ha) wshddayo(44) plant uptake of N in watershed for day (kg N/ha) wshddayo(45) nitrate loading to stream in lateral flow in watershed for day (kg N/ha) wshddayo(46) nitrate percolation past bottom of soil profile in watershed for day (kg N/ha) wshddayo(104) groundwater contribution to stream in watershed on day (mm H20) wshddayo(108) potential evapotranspiration in watershed on day (mm H20) wshddayo(109) drainage tile flow contribution to stream in watershed on day (mm H20)

• real *8, dimension(mstdo) wshdmono

```
watershed monthly output array (see definitions for wshddayo array elements) (varies)
wshdmono(1) average amount of precipitation in watershed for the month (mm H2O)
wshdmono(3) surface runoff in watershed for month (mm H2O)
wshdmono(4) lateral flow contribution to streamflow in watershed for month (mm H2O)
wshdmono(5) water percolation past bottom of soil profile in watershed for month (mm H2O)
wshdmono(6) water yield to streamflow from HRUs in watershed for month (mm H2O)
wshdmono(7) actual evapotranspiration in watershed for month (mm H2O)
wshdmono(8) average maximum temperature in watershed for the month (deg C)
wshdmono(9) average minimum temperature in watershed for the month (deg C)
wshdmono(12) sediment yield from HRUs in watershed for the month (metric tons)
wshdmono(39) freezing rain/snow fall in watershed for the month (mm H2O)
wshdmono(40) organic N loading to stream in watershed for the month (kg N/ha)
wshdmono(41) organic P loading to stream in watershed for the month (kg P/ha)
wshdmono(42) nitrate loading to stream in surface runoff in watershed for the month (kg N/ha)
wshdmono(43) soluble P loading to stream in watershed for the month (kg P/ha)
wshdmono(44) plant uptake of N in watershed for the month (kg N/ha)
wshdmono(45) nitrate loading to stream in lateral flow in watershed for the month (kg N/ha)
wshdmono(46) nitrate percolation past bottom of soil profile in watershed for the month (kg N/ha)
wshdmono(104) groundwater contribution to stream in watershed for the month (mm H2O)
wshdmono(108) potential evapotranspiration in watershed for the month (mm H2O)
wshdmono(109) drainage tile flow contribution to stream in watershed for the month (mm H2O)
```

• real *8, dimension(mstdo) wshdyro

```
watershed annual output array (varies)
wshdyro(1) average amount of precipitation in watershed for the year (mm H2O)
wshdyro(3) surface runoff in watershed for year (mm H2O)
wshdyro(4) lateral flow contribution to streamflow in watershed for year (mm H2O)
wshdyro(5) water percolation past bottom of soil profile in watershed for year (mm H2O)
wshdyro(6) water yield to streamflow from HRUs in watershed for year (mm H2O)
wshdyro(7) actual evapotranspiration in watershed for year (mm H2O)
wshdyro(8) average maximum temperature in watershed for the year (deg C)
wshdyro(9) average minimum temperature in watershed for the year (dea C)
wshdyro(12) sediment yield from HRUs in watershed for the year (metric tons)
wshdyro(40) organic N loading to stream in watershed for the year (kg N/ha)
wshdyro(41) organic P loading to stream in watershed for the year (kg P/ha)
wshdyro(42) nitrate loading to stream in surface runoff in watershed for the year (kg N/ha)
wshdyro(43) soluble P loading to stream in watershed for the year (kg P/ha)
wshdyro(44) plant uptake of N in watershed for the year
wshdyro(45) nitrate loading to stream in lateral flow in watershed for the year (kg N/ha)
wshdyro(46) nitrate percolation past bottom of soil profile in watershed for the year (kg N/ha)
wshdyro(104) groundwater contribution to stream in watershed for the year (mm H2O)
wshdyro(108) potential evapotranspiration in watershed for the year (mm H2O)
wshdyro(109) drainage tile flow contribution to stream in watershed for the year (mm H2O)
```

- real *8, dimension(16) fcstaao
- real *8, dimension(mstdo) wshdaao

```
watershed average annual output array (varies)
wshdaao(1) precipitation in watershed (mm H2O)
wshdaao(3) surface runoff loading to main channel in watershed (mm H2O)
wshdaao(4) lateral flow loading to main channel in watershed (mm H2O)
wshdaao(5) percolation of water out of root zone in watershed (mm H2O)
wshdaao(7) actual evapotranspiration in watershed (mm H2O)
wshdaao(13) sediment loading to ponds in watershed (metric tons)
wshdaao(14) sediment loading from ponds in watershed (metric tons)
wshdaao(15) net change in sediment level in ponds in watershed (metric tons)
wshdaao(19) evaporation from ponds in watershed (m^3 H2O)
wshdaao(20) seepage from ponds in watershed (m^3 H2O)
wshdaao(21) precipitation on ponds in watershed (m^3 H2O)
wshdaao(23) volume of water entering ponds in watershed (m^3 H2O)
wshdaao(38) transmission losses in watershed (mm H2O)
```

- real *8, dimension(:,:), allocatable wpstdayo
- real *8, dimension(:,:), allocatable wpstmono
- real *8, dimension(:,:), allocatable wpstyro

```
    real *8, dimension(:,:), allocatable bio_hv

      harvested biomass (dry weight) (kg/ha)

    real *8, dimension(:,:), allocatable yldkg

      yield (dry weight) by crop type in the HRU (kg/ha)

    real *8, dimension(:,:), allocatable rchmono

      reach monthly output array (varies)
      rchmono(1,:) flow into reach during month (m^3/s)
      rchmono(2,:) flow out of reach during month (m^3/s)
      rchmono(3,:) sediment transported into reach during month (metric tons)
      rchmono(4,:) sediment transported out of reach during month (metric tons)
      rchmono(5,:) sediment concentration in outflow during month (mg/L)
      rchmono(6,:) organic N transported into reach during month (kg N)
      rchmono(7,:) organic N transported out of reach during month (kg N)
      rchmono(8,:) organic P transported into reach during month (kg P)
      rchmono(9,:) organic P transported out of reach during month (kg P)
      rchmono(10,:) evaporation from reach during month (m^3/s)
      rchmono(11,:) transmission losses from reach during month (m^3/s)
      rchmono(12,:) conservative metal #1 transported out of reach during month (kg)
      rchmono(13,:) conservative metal #2 transported out of reach during month (kg)
      rchmono(14,:) conservative metal #3 transported out of reach during month (kg)
      rchmono(15,:) nitrate transported into reach during month (kg N)
      rchmono(16,:) nitrate transported out of reach during month (kg N)
      rchmono(17,:) soluble P transported into reach during month (kg P)
      rchmono(18,:) soluble P transported out of reach during month (kg P)
      rchmono(19,:) soluble pesticide transported into reach during month (mg pst)
      rchmono(20.:) soluble pesticide transported out of reach during month (mg pst)
      rchmono(21,:) sorbed pesticide transported into reach during month (mg pst)
      rchmono(22,:) sorbed pesticide transported out of reach during month (mg pst)
      rchmono(23,:) amount of pesticide lost through reactions in reach during month (mg pst)
      rchmono(24,:) amount of pesticide lost through volatilization from reach during month (mg pst)
      rchmono(25,:) amount of pesticide settling out of reach to bed sediment during month (mg pst)
      rchmono(26,:) amount of pesticide resuspended from bed sediment to reach during month (mg pst)
      rchmono(27,:) amount of pesticide diffusing from reach to bed sediment during month (mg pst)
      rchmono(28.:) amount of pesticide in sediment layer lost through reactions during month (mg pst)
      rchmono(29,:) amount of pesticide in sediment layer lost through burial during month (mg pst)
      rchmono(30.:) chlorophyll-a transported into reach during month (kg chla)
      rchmono(31,:) chlorophyll-a transported out of reach during month (kg chla)
      rchmono(32,:) ammonia transported into reach during month (kg N)
      rchmono(33,:) ammonia transported out of reach during month (kg N)
      rchmono(34,:) nitrite transported into reach during month (kg N)
      rchmono(35,:) nitrite transported out of reach during month (kg N)
      rchmono(36,:) CBOD transported into reach during month (kg O2)
      rchmono(37,:) CBOD transported out of reach during month (kg O2)
      rchmono(38,:) dissolved oxygen transported into reach during month (kg O2)
      rchmono(39,:) dissolved oxygen transported out of reach during month (kg O2)
      rchmono(40.:) persistent bacteria transported out of reach during month (kg bact)
      rchmono(41...) less persistent bacteria transported out of reach during month (kg bact)
      rchmono(43,:) total N (org N + no3 + no2 + nh4 outs) (kg)
      rchmono(44,:) total P (org P + sol p outs) (kg)

    real *8, dimension(:,:), allocatable rchyro

      reach annual output array (varies)
      rchyro(1,:) flow into reach during year (m^3/s)
      rchyro(2,:) flow out of reach during year (m^3/s)
      rchyro(3,:) sediment transported into reach during year (metric tons)
      rchyro(4,:) sediment transported out of reach during year (metric tons)
      rchyro(5,:) sediment concentration in outflow during year (mg/L)
      rchyro(6,:) organic N transported into reach during year (kg N)
      rchyro(7,:) organic N transported out of reach during year (kg N)
      rchyro(8,:) organic P transported into reach during year (kg P)
      rchyro(9,:) organic P transported out of reach during year (kg P)
      rchyro(10,:) evaporation from reach during year (m^{\wedge}3/s)
      rchyro(11,:) transmission losses from reach during year (m^3/s)
```

```
rchyro(12,:) conservative metal #1 transported out of reach during year (kg)
     rchyro(13,:) conservative metal #2 transported out of reach during year (kg)
     rchyro(14,:) conservative metal #3 transported out of reach during year (kg)
     rchyro(15,:) nitrate transported into reach during year (kg N)
     rchyro(16,:) nitrate transported out of reach during year (kg N)
     rchyro(17,:) soluble P transported into reach during year (kg P)
     rchyro(18,:) soluble P transported out of reach during year (kg P)
     rchyro(19,:) soluble pesticide transported into reach during year (mg pst)
     rchyro(20,:) soluble pesticide transported out of reach during year (mg pst)
     rchyro(21,:) sorbed pesticide transported into reach during year (mg pst)
     rchyro(22,:) sorbed pesticide transported out of reach during year (mg pst)
     rchyro(23,:) amount of pesticide lost through reactions in reach during year!> (mg pst)
     rchyro(24,:) amount of pesticide lost through volatilization from reach during year (mg pst)
     rchyro(25,:) amount of pesticide settling out of reach to bed sediment during year (mg pst)
     rchyro(26,:) amount of pesticide resuspended from bed sediment to reach during year (mg pst)
     rchyro(27,:) amount of pesticide diffusing from reach to bed sediment during year (mg pst)
     rchyro(28,:) amount of pesticide in sediment layer lost through reactions during year (mg pst)
     rchyro(29,:) amount of pesticide in sediment layer lost through burial during year (mg pst)
     rchyro(30,:) chlorophyll-a transported into reach during year (kg chla)
     rchyro(31,:) chlorophyll-a transported out of reach during year (kg chla)
      rchyro(32,:) ammonia transported into reach during year (kg N)
     rchyro(33,:) ammonia transported out of reach during year (kg N)
     rchyro(34,:) nitrite transported into reach during year (kg N)
     rchyro(35,:) nitrite transported out of reach during year (kg N)
     rchyro(36,:) CBOD transported into reach during year (kg O2)
     rchyro(37,:) CBOD transported out of reach during year (kg O2)
     rchyro(38,:) dissolved oxygen transported into reach during year (kg O2)
     rchyro(39,:) dissolved oxygen transported out of reach during year (kg O2)
     rchyro(40,:) persistent bacteria transported out of reach during year (kg bact)
      rchyro(41,:) less persistent bacteria transported out of reach during year (kg bact)
• real *8, dimension(:,:), allocatable wpstaao

    real *8, dimension(:,:), allocatable hrumono

     HRU monthly output data array (varies)
     hrumono(1,:) precipitation in HRU during month (mm H2O)
     hrumono(2,:) amount of precipitation falling as freezing rain/snow in HRU during month (mm H2O)
     hrumono(3,:) amount of snow melt in HRU during month (mm H2O)
     hrumono(4,:) amount of surface runoff to main channel from HRU during month (ignores impact of transmission
     losses) (mm H2O)
      hrumono(5,:) amount of lateral flow contribution to main channel from HRU during month (mm H2O)
     hrumono(6,:) amount of groundwater flow contribution to main channel from HRU during month (mm H2O)
     hrumono(7,:) amount of water moving from shallow aquifer to plants or soil profile in HRU during mont (mm H2O)h
     hrumono(8,:) amount of water recharging deep aquifer in HRU during month (mm H2O)
     hrumono(9,:) total amount of water entering both aquifers from HRU during month (mm H2O)
     hrumono(10,:) water yield (total amount of water entering main channel) from HRU during month (mm H2O)
     hrumono(11,:) amount of water percolating out of the soil profile and into the vadose zone in HRU during month (mm
     H20)
     hrumono(12,:) actual evapotranspiration in HRU during month (mm H2O)
     hrumono(13,:) amount of transmission losses from tributary channels in HRU for month (mm H2O)
     hrumono(14,:) sediment yield from HRU for month (metric tons/ha)
     hrumono(15,:) actual amount of transpiration that occurs during month in HRU (mm H2O)
     hrumono(16,:) actual amount of evaporation (from soil) that occurs during month in HRU (mm H2O)
     hrumono(17,:) amount of nitrogen applied in continuous fertilizer operation during month in HRU (kg N/ha)
     hrumono(18,:) amount of phosphorus applied in continuous fertilizer operation during month in HRU (kg P/ha)
     hrumono(22,:) amount of irrigation water applied to HRU during month (mm H2O)
     hrumono(23,:) amount of water removed from shallow aquifer in HRU for irrigation during month (mm H2O)
     hrumono(24,:) amount of water removed from deep aquifer in HRU for irrigation during month (mm H2O)
     hrumono(25,:) potential evapotranspiration in HRU during month (mm H2O)
     hrumono(26,:) monthly amount of N (organic & mineral) applied in HRU during grazing (kg N/ha)
     hrumono(27,:) monthly amount of P (organic & mineral) applied in HRU during grazing (kg P/ha)
```

hrumono(28,:) monthly amount of N (organic & mineral) auto-applied in HRU (kg N/ha) hrumono(29,:) monthly amount of P (organic & mineral) auto-applied in HRU (kg P/ha)

hrumono(31,:) water stress days in HRU during month (stress days) hrumono(32,:) temperature stress days in HRU during month (stress days)

```
hrumono(33,:) nitrogen stress days in HRU during month (stress days)
      hrumono(34,:) phosphorus stress days in HRU during month (stress days)
      hrumono(35,:) organic nitrogen in surface runoff in HRU during month (kg N/ha)
      hrumono(36,:) organic phosphorus in surface runoff in HRU during month (kg P/ha)
      hrumono(37,:) nitrate in surface runoff in HRU during month (kg N/ha)
      hrumono(38,:) nitrate in lateral flow in HRU during month (kg N/ha)
      hrumono(39,:) soluble phosphorus in surface runoff in HRU during month (kg P/ha)
      hrumono(40,:) amount of nitrogen removed from soil by plant uptake in HRU during month (kg N/ha)
      hrumono(41,:) nitrate percolating past bottom of soil profile in HRU during month (kg N/ha)
      hrumono(42,:) amount of phosphorus removed from soil by plant uptake in HRU during month (kg P/ha)
      hrumono(43,:) amount of phosphorus moving from labile mineral to active mineral pool in HRU during month (kg
      P/ha)
      hrumono(44,:) amount of phosphorus moving from active mineral to stable mineral pool in HRU during month (kg
      P/ha)
      hrumono(45,:) amount of nitrogen applied to HRU in fertilizer and grazing operations during month (kg N/ha)
      hrumono(46,:) amount of phosphorus applied to HRU in fertilizer and grazing operations during month (kg P/ha)
      hrumono(47,:) amount of nitrogen added to soil by fixation in HRU during month (kg N/ha)
      hrumono(48,:) amount of nitrogen lost by denitrification in HRU during month (kg N/ha)
      hrumono(49,:) amount of nitrogen moving from active organic to nitrate pool in HRU during month (kg N/ha)
      hrumono(50,:) amount of nitrogen moving from active organic to stable organic pool in HRU during month (kg N/ha)
      hrumono(51,:) amount of phosphorus moving from organic to labile mineral pool in HRU during month (kg P/ha)
      hrumono(52,:) amount of nitrogen moving from fresh organic to nitrate and active organic pools in HRU during month
      (kg N/ha)
      hrumono(53,:) amount of phosphorus moving from fresh organic to the labile mineral and organic pools in HRU during
      month (kg P/ha)
      hrumono(54,:) amount of nitrogen added to soil in rain (kg N/ha)
      hrumono(61,:) daily soil loss predicted with USLE equation (metric tons/ha)
      hrumono(63,:) less persistent bacteria transported to main channel from HRU during month (#bacteria/ha)
      hrumono(64,:) persistent bacteria transported to main channel from HRU during month (#bacteria/ha)
      hrumono(65,:) nitrate loading from groundwater in HRU to main channel during month (kg N/ha)
      hrumono(66,:) soluble P loading from groundwater in HRU to main channel during month (kg P/ha)
      hrumono(67,:) loading of mineral P attached to sediment in HRU to main channel during month (kg P/ha)

    real *8, dimension(:,:), allocatable rchdy

      rchdy(1,:) flow into reach on day (m^{\wedge}3/s)
      rchdy(2,:) flow out of reach on day (m^3/s)
      rchdy(3,:) evaporation from reach on day (m^3/s)
      rchdy(4,:) transmission losses from reach on day (m^{\wedge}3/s)
      rchdy(5,:) sediment transported into reach on day (metric tons)
      rchdy(6,:) sediment transported out of reach on day (metric tons)
      rchdy(7,:) sediment concentration in outflow (mg/L)
      rchdy(8,:) organic N transported into reach on day (kg N)
      rchdy(9,:) organic N transported out of reach on day (kg N)
      rchdy(10,:) organic P transported into reach on day (kg P)
      rchdy(11,:) organic P transported out of reach on day (kg P)
      rchdy(12,:) nitrate transported into reach on day (kg N)
      rchdy(13,:) nitrate transported out of reach on day (kg N)
      rchdy(14,:) ammonia transported into reach on day (kg N)
      rchdy(15,:) ammonia transported out of reach on day (kg N)
      rchdy(16,:) nitrite transported into reach on day (kg N)
      rchdy(17,:) nitrite transported out of reach on day (kg N)
      rchdy(18,:) soluble P transported into reach on day (kg P)
      rchdy(19,:) soluble P transported out of reach on day (kg P)
      rchdy(20,:) chlorophyll-a transported into reach on day (kg chla)
      rchdy(21,:) chlorophyll-a transported out of reach on day (kg chla)
      rchdy(22,:) CBOD transported into reach on day (kg O2)
      rchdy(23,:) CBOD transported out of reach on day (kg O2)
      rchdy(24,:) dissolved oxygen transported into reach on day (kg O2)
      rchdy(25,:) dissolved oxygen transported out of reach on day (kg O2)
      rchdy(26,:) soluble pesticide transported into reach on day (mg pst)
      rchdy(27,:) soluble pesticide transported out of reach o day (mg pst)
```

rchdy(28,:) sorbed pesticide transported into reach on day (mg pst) rchdy(29,:) sorbed pesticide transported out of reach on day (mg pst)

rchdy(30,:) amount of pesticide lost through reactions in reach on day (mg pst)

```
rchdy(31,:) amount of pesticide lost through volatilization from reach on day (mg pst)
      rchdy(32,:) amount of pesticide settling out of reach to bed sediment on day (mg pst)
      rchdy(33,:) amount of pesticide resuspended from bed sediment to reach on day (mg pst)
      rchdy(34,:) amount of pesticide diffusing from reach to bed sediment on day (mg pst)
      rchdy(35,:) amount of pesticide in sediment layer lost through reactions on day (mg pst)
      rchdy(36,:) amount of pesticide in sediment layer lost through burial on day (mg pst)
      rchdy(37,:) amount of pesticide stored in river bed sediments (mg pst)
      rchdy(38,:) persistent bacteria transported out of reach on day (kg bact)
      rchdy(39,:) less persistent bacteria transported out of reach on day (kg bact)
      rchdy(40,:) amount of conservative metal #1 transported out of reach on day (kg)
      rchdy(41,:) amount of conservative metal #2 transported out of reach on day (kg)
      rchdy(42,:) amount of conservative metal #3 transported out of reach on day (kg)
      rchdy(43,:) total N (org N + no3 + no2 + nh4 outs) (kg)
      rchdy(44,:) total P (org P + sol p outs) (kg)

    real *8, dimension(:,:), allocatable hruyro

      HRU annual output array (varies) hruyro(1,:) precipitation in HRU during year (mm H2O)
      hruyro(2,:) amount of precipitation falling as freezing rain/snow in HRU during year (mm H2O)
      hruyro(3,:) amount of snow melt in HRU during year (mm H2O)
      hruyro(4,:) amount of surface runoff to main channel from HRU during year (ignores impact of transmission losses)
      (mm H2O)
      hruyro(5,:) amount of lateral flow contribution to main channel from HRU during year (mm H2O)
      hruyro(6,:) amount of groundwater flow contribution to main channel from HRU during year (mm H2O)
      hruyro(7,:) amount of water moving from shallow aquifer to plants or soil profile in HRU during year (mm H2O)
      hruyro(8,:) amount of water recharging deep aquifer in HRU during year (mm H2O)
      hruyro(9,:) total amount of water entering both aquifers from HRU during year (mm H2O)
      hruyro(10,:) water yield (total amount of water entering main channel) from HRU during year (mm H2O)
      hruyro(11,:) amount of water percolating out of the soil profile and into the vadose zone in HRU during year (mm
      H2O)
      hruyro(12,:) actual evapotranspiration in HRU during year (mm H2O)
      hruyro(13,:) amount of transmission losses from tributary channels in HRU for year (mm H2O)
      hruyro(14,:) sediment yield from HRU for year (metric tons/ha)
      hruyro(15,:) actual amount of transpiration that occurs during year in HRU (mm H2O)
      hruyro(16,:) actual amount of evaporation (from soil) that occurs during year in HRU (mm H2O)
      hruyro(17,:) amount of nitrogen applied in continuous fertilizer operation during year in HRU (kg N/ha)
      hruyro(18,:) amount of phosphorus applied in continuous fertilizer operation during year in HRU (kg P/ha)
      hruyro(23,:) amount of water removed from shallow aquifer in HRU for irrigation during year (mm H2O)
      hruyro(24,:) amount of water removed from deep aquifer in HRU for irrigation during year (mm H2O)
      hruyro(25,:) potential evapotranspiration in HRU during year (mm H2O)
      hruyro(26,:) annual amount of N (organic & mineral) applied in HRU during grazing (kg N/ha)
      hruyro(27,:) annual amount of P (organic & mineral) applied in HRU during grazing (kg P/ha)
      hruyro(28,:) annual amount of N (organic & mineral) auto-applied in HRU (kg N/ha)
      hruyro(29,:) annual amount of P (organic & mineral) auto-applied in HRU (kg P/ha)
      hruyro(31,:) water stress days in HRU during year (stress days)
      hruyro(32,:) temperature stress days in HRU during year (stress days)
      hruyro(33,:) nitrogen stress days in HRU during year (stress days)
      hruyro(34,:) phosphorus stress days in HRU during year (stress days)
      hruyro(35,:) organic nitrogen in surface runoff in HRU during year (kg N/ha)
      hruyro(36,:) organic phosphorus in surface runoff in HRU during year (kg P/ha)
      hruyro(37,:) nitrate in surface runoff in HRU during year (kg N/ha)
      hruyro(38,:) nitrate in lateral flow in HRU during year (kg N/ha)
      hruyro(39,:) soluble phosphorus in surface runoff in HRU during year (kg P/ha)
      hruyro(40,:) amount of nitrogen removed from soil by plant uptake in HRU during year (kg N/ha)
      hruyro(41,:) nitrate percolating past bottom of soil profile in HRU during year (kg N/ha)
      hruyro(42,:) amount of phosphorus removed from soil by plant uptake in HRU during year (kg P/ha)
      hruyro(43,:) amount of phosphorus moving from labile mineral to active mineral pool in HRU during year (kg P/ha)
      hruyro(44,:) amount of phosphorus moving from active mineral to stable mineral pool in HRU during year (kg P/ha)
      hruyro(45,:) amount of nitrogen applied to HRU in fertilizer and grazing operations during year (kg N/ha)
      hruyro(46,:) amount of phosphorus applied to HRU in fertilizer and grazing operations during year (kg P/ha)
      hruyro(47,:) amount of nitrogen added to soil by fixation in HRU during year (kg N/ha)
      hruyro(48,:) amount of nitrogen lost by denitrification in HRU during year (kg N/ha)
      hruyro(49,:) amount of nitrogen moving from active organic to nitrate pool in HRU during year (kg N/ha)
      hruyro(50,:) amount of nitrogen moving from active organic to stable organic pool in HRU during year (kg N/ha)
      hruyro(51,:) amount of phosphorus moving from organic to labile mineral pool in HRU during year (kg P/ha)
```

```
hruyro(52,:) amount of nitrogen moving from fresh organic to nitrate and active organic pools in HRU during year (kg
      hruyro(53,:) amount of phosphorus moving from fresh organic to the labile mineral and organic pools in HRU during
      year (kg P/ha)
      hruyro(54,:) amount of nitrogen added to soil in rain during year (kg N/ha)
      hruyro(61,:) daily soil loss predicted with USLE equation (metric tons/ha)
      hruyro(63,:) less persistent bacteria transported to main channel from HRU during year (# bacteria/ha)
      hruyro(64,:) persistent bacteria transported to main channel from HRU during year (# bacteria/ha)
      hruyro(65,:) nitrate loading from groundwater in HRU to main channel during year (kg N/ha)
      hruyro(66,:) soluble P loading from groundwater in HRU to main channel during year (kg P/ha)
      hruyro(67,:) loading of mineral P attached to sediment in HRU to main channel during year (kg P/ha)

    real *8, dimension(:,:), allocatable rchaao

      reach average annual output array (varies)
      rchaao(1,:) flow into reach during simulation (m^3/s)
      rchaao(2,:) flow out of reach during simulation (m^3/s)
      rchaao(3,:) sediment transported into reach during simulation (metric tons)
      rchaao(4,:) sediment transported out of reach during simulation (metric tons)
      rchaao(5.:) sediment concentration in outflow during simulation (mg/L)
      rchaao(6,:) organic N transported into reach during simulation (kg N)
      rchaao(7,:) organic N transported out of reach during simulation (kg N)
      rchaao(8,:) organic P transported into reach during simulation (kg P)
      rchaao(9,:) organic P transported out of reach during simulation (kg P)
      rchaao(10,:) evaporation from reach during simulation (m^{\wedge} 3/s)
      rchaao(11,:) transmission losses from reach during simulation (m^3/s)
      rchaao(12,:) conservative metal #1 transported out of reach during simulation (kg)
      rchaao(13,:) conservative metal #2 transported out of reach during simulation (kg)
      rchaao(14,:) conservative metal #3 transported out of reach during simulation (kg)
      rchaao(15.:) nitrate transported into reach during simulation (kg N)
      rchaao(16.:) nitrate transported out of reach during simulation (kg N)
      rchaao(17,:) soluble P transported into reach during simulation (kg P)
      rchaao(18,:) soluble P transported out of reach during simulation (kg P)
      rchaao(19,:) soluble pesticide transported into reach during simulation
      rchaao(20,:) soluble pesticide transported out of reach during simulation
      rchaao(21,:) sorbed pesticide transported into reach during simulation
      rchaao(22,:) sorbed pesticide transported out of reach during simulation
      rchaao(23,:) amount of pesticide lost through reactions in reach during simulation
      rchaao(24,:) amount of pesticide lost through volatilization from reach during simulation
      rchaao(25,:) amount of pesticide settling out of reach to bed sediment during simulation
      rchaao(26.:) amount of pesticide resuspended from bed sediment to reach during simulation
      rchaao(27,:) amount of pesticide diffusing from reach to bed sediment during simulation
      rchaao(28,:) amount of pesticide in sediment layer lost through reactions during simulation
      rchaao(29,:) amount of pesticide in sediment layer lost through burial during simulation
      rchaao(30,:) chlorophyll-a transported into reach during simulation (kg chla)
      rchaao(31,:) chlorophyll-a transported out of reach during simulation (kg chla)
      rchaao(32,:) ammonia transported into reach during simuation (kg N)
      rchaao(33,:) ammonia transported out of reach during simuation (kg N)
      rchaao(34,:) nitrite transported into reach during simuation (kg N)
      rchaao(35,:) nitrite transported out of reach during simuation (kg N)
      rchaao(36.:) CBOD transported into reach during simulation (kg O2)
      rchaao(37.:) CBOD transported out of reach during simuation (kg O2)
      rchaao(38,:) dissolved oxygen transported into reach during simuation (kg O2)
      rchaao(39,:) dissolved oxygen transported out of reach during simulation (kg O2)
      rchaao(40,:) persistent bacteria transported out of reach during simulation (kg bact)
      rchaao(41,:) less persistent bacteria transported out of reach during simulation (kg bact)
      rchaao(43,:) Total N (org N + no3 + no2 + nh4 outs) (kg)
      rchaao(44,:) Total P (org P + sol p outs) (kg)

    real *8, dimension(:,:), allocatable submono

      subbasin monthly output array (varies)
      submono(1,:) precipitation in subbasin for month (mm H20)
      submono(2,:) snow melt in subbasin for month (mm H20)
      submono(3,:) surface runoff loading in subbasin for month (mm H20)
```

submono(4,:) water yield from subbasin for month (mm H20)

submono(5,:) potential evapotranspiration in subbasin for month (mm H20)

```
submono(6,:) actual evapotranspiration in subbasin for month (mm H20)
      submono(7,:) sediment yield from subbasin for month (metric tons/ha)
     submono(8,:) organic N loading from subbasin for month (kg N/ha)
     submono(9,:) organic P loading from subbasin for month (kg P/ha)
     submono(10,:) NO3 loading from surface runoff in subbasin for month (kg N/ha)
     submono(11,:) soluble P loading from subbasin for month (kg P/ha)
     submono(12,:) groundwater loading from subbasin for month (mm H20)
     submono(13,:) percolation out of soil profile in subbasin for month (mm H20)
     submono(14,:) loading to reach of mineral P attached to sediment from subbasin for month (kg P/ha)

    real *8, dimension(:,:), allocatable subyro

     subbasin annual output array (varies)
     subyro(1,:) precipitation in subbasin for year (mm H2O)
     subyro(2,:) snow melt in subbasin for year (mm H2O)
     subyro(3,:) surface runoff loading in subbasin for year (mm H2O)
     subyro(4,:) water yield from subbasin for year (mm H2O)
     subvro(5.:) potential evapotranspiration in subbasin for year (mm H2O)
     subyro(6,:) actual evapotranspiration in subbasin for year (mm H2O)
      subvro(7.:) sediment yield from subbasin for year (metric tons/ha)
      subyro(8,:) organic N loading from subbasin for year (kg N/ha)
      subyro(9,:) organic P loading from subbasin for year (kg P/ha)
      subyro(10,:) NO3 loading from surface runoff in subbasin for year (kg N/ha)
     subyro(11,:) soluble P loading from subbasin for year (kg P/ha)
     subyro(12,:) groundwater loading from subbasin for year (mm H2O)
     subyro(13,:) percolation out of soil profile in subbasin for year (mm H2O)
     subyro(14,:) loading to reach of mineral P attached to sediment from subbasin for year (kg P/ha)

    real *8, dimension(:,:), allocatable hruaao

     HRU average annual output array (varies)
     hruaao(1,:) precipitation in HRU during simulation (mm H2O)
     hruaao(2,:) amount of precipitation falling as freezing rain/snow in HRU during simulation (mm H2O)
     hruaao(3,:) amount of snow melt in HRU during simulation (mm H2O)
     hruaao(4,:) amount of surface runoff to main channel from HRU during simulation (ignores impact of transmission
     losses) (mm H2O)
     hruaao(5,:) amount of lateral flow contribution to main channel from HRU during simulation (mm H2O)
     hruaao(6,:) amount of groundwater flow contribution to main channel from HRU during simulation (mm H2O)
     hruaao(7,:) amount of water moving from shallow aquifer to plants or soil profile in HRU during simulation (mm H2O)
     hruaao(8,:) amount of water recharging deep aquifer in HRU during simulation (mm H2O)
     hruaao(9,:) total amount of water entering both aquifers from HRU during simulation (mm H2O)
     hruaao(10,:) water yield (total amount of water entering main channel) from HRU during simulation (mm H2O)
      hruaao(11,:) amount of water percolating out of the soil profile and into the vadose zone in HRU during simulation
      (mm H2O)
      hruaao(12,:) actual evapotranspiration in HRU during simulation
     hruaao(13,:) amount of transmission losses from tributary channels in HRU for simulation (mm H2O)
     hruaao(14,:) sediment yield from HRU for simulation (metric tons/ha)
     hruaao(17,:) amount of nitrogen applied in continuous fertilizer operation in HRU for simulation (kg N/ha)
     hruaao(18,:) amount of phosphorus applied in continuous fertilizer operation in HRU for simulation (kg P/ha)
     hruaao(23,:) amount of water removed from shallow aquifer in HRU for irrigation during simulation (mm H2O)
     hruaao(24,:) amount of water removed from deep aquifer in HRU for irrigation during simulation (mm H2O)
     hruaao(25,:) potential evapotranspiration in HRU during simulation (mm H2O)
     hruaao(26,:) annual amount of N (organic & mineral) applied in HRU during grazing (kg N/ha)
     hruaao(27,:) annual amount of P (organic & mineral) applied in HRU during grazing (kg P/ha)
     hruaao(28,:) average annual amount of N (organic & mineral) auto-applied in HRU (kg N/ha)
     hruaao(29,:) average annual amount of P (organic & mineral) auto-applied in HRU (kg P/ha)
     hruaao(31,:) water stress days in HRU during simulation (stress days)
     hruaao(32,:) temperature stress days in HRU during simulation (stress days)
     hruaao(33,:) nitrogen stress days in HRU during simulation (stress days)
     hruaao(34,:) phosphorus stress days in HRU during simulation (stress days)
     hruaao(35,:) organic nitrogen in surface runoff in HRU during simulation (kg N/ha)
     hruaao(36,:) organic phosphorus in surface runoff in HRU during simulation (kg P/ha)
     hruaao(37,:) nitrate in surface runoff in HRU during simulation (kg N/ha)
      hruaao(38,:) nitrate in lateral flow in HRU during simulation (kg N/ha)
      hruaao(39,:) soluble phosphorus in surface runoff in HRU during simulation (kg P/ha)
     hruaao(40,:) amount of nitrogen removed from soil by plant uptake in HRU during simulation (kg N/ha)
```

hruaao(41,:) nitrate percolating past bottom of soil profile in HRU during simulation (kg N/ha)

```
hruaao(42,:) amount of phosphorus removed from soil by plant uptake in HRU during simulation (kg P/ha)
      hruaao(43,:) amount of phosphorus moving from labile mineral to active mineral pool in HRU during simulation (kg
      P/ha)
      hruaao(44,:) amount of phosphorus moving from active mineral to stable mineral pool in HRU during simulation (kg
      P/ha)
      hruaao(45,:) amount of nitrogen applied to HRU in fertilizer and grazing operations during simulation (kg N/ha)
      hruaao(46,:) amount of phosphorus applied to HRU in fertilizer and grazing operations during simulation (kg P/ha)
      hruaao(47,:) amount of nitrogen added to soil by fixation in HRU during simulation (kg N/ha)
      hruaao(48,:) amount of nitrogen lost by denitrification in HRU during simulation (kg N/ha)
      hruaao(49,:) amount of nitrogen moving from active organic to nitrate pool in HRU during simulation (kg N/ha)
      hruaao(50,:) amount of nitrogen moving from active organic to stable organic pool in HRU during simulation (kg N/ha)
      hruaao(51,:) amount of phosphorus moving from organic to labile mineral pool in HRU during simulation (kg P/ha)
      hruaao(52,:) amount of nitrogen moving from fresh organic to nitrate and active organic pools in HRU during simula-
      tion (ka N/ha)
      hruaao(53,:) amount of phosphorus moving from fresh organic to the labile mineral and organic pools in HRU during
      simulation (kg P/ha)
      hruaao(54,:) amount of nitrogen added to soil in rain during simulation (kg N/ha)
      hruaao(61,:) daily soil loss predicted with USLE equation (metric tons/ha)
      hruaao(63,:) less persistent bacteria transported to main channel from HRU during simulation (# bacteria/ha)
      hruaao(64,:) persistent bacteria transported to main channel from HRU during simulation (# bacteria/ha)
      hruaao(65,:) nitrate loading from groundwater in HRU to main channel during simulation (kg N/ha)
      hruaao(66,:) soluble P loading from groundwater in HRU to main channel during simulation (kg P/ha)
      hruaao(67,:) loading of mineral P attached to sediment in HRU to main channel during simulation (kg P/ha)

    real *8, dimension(:,:), allocatable subaao

      subbasin average annual output array (varies)

    real *8, dimension(:,:), allocatable resoutm

      reservoir monthly output array (varies)
      resoutm(1,:) flow into reservoir during month (m^3/s)
      resoutm(2,:) flow out of reservoir during month (m^3/s)
      resoutm(3,:) sediment entering reservoir during month (metric tons)
      resoutm(4,:) sediment leaving reservoir during month (metric tons)
      resoutm(5,:) sediment concentration in reservoir during month (mg/L)
      resoutm(6,:) pesticide entering reservoir during month (mg pst)
      resoutm(7,:) pesticide lost from reservoir through reactions during month (mg pst)
      resoutm(8,:) pesticide lost from reservoir through volatilization during month (mg pst)
      resoutm(9,:) pesticide moving from water to sediment through settling during month (mg pst)
      resoutm(10,:) pesticide moving from sediment to water through resuspension during month (mg pst)
      resoutm(11,:) pesticide moving from water to sediment through diffusion during month (mg pst)
      resoutm(12,:) pesticide lost from reservoir sediment layer through reactions during month (mg pst)
      resoutm(13,:) pesticide lost from reservoir sediment layer through burial during month (mg pst)
      resoutm(14,:) pesticide transported out of reservoir during month (mg pst)
      resoutm(15,:) pesticide concentration in reservoir water during month (mg pst/m^3)
      resoutm(16,:) pesticide concentration in reservoir sediment layer during month (mg pst/m^3)
      resoutm(17,:) evaporation from reservoir during month (m^3 H2O)
      resoutm(18,:) seepage from reservoir during month (m^3 H2O)
      resoutm(19,:) precipitation on reservoir during month (m^3 H2O)
      resoutm(22,:) organic N entering reservoir during month (kg N)
      resoutm(23,:) organic N leaving reservoir during month (kg N)
      resoutm(24,:) organic P entering reservoir during month (kg P)
      resoutm(25,:) organic P leaving reservoir during month (kg P)
      resoutm(26,:) nitrate entering reservoir during month (kg N)
      resoutm(27,:) nitrate leaving reservoir during month (kg N)
      resoutm(28,:) nitrite entering reservoir during month (kg N)
      resoutm(29,:) nitrite leaving reservoir during month (kg N)
      resoutm(30,:) ammonia entering reservoir during month (kg N)
      resoutm(31,:) ammonia leaving reservoir during month (kg N)
      resoutm(32,:) mineral P entering reservoir during month (kg P)
      resoutm(33,:) mineral P leaving reservoir during month (kg P)
      resoutm(34,:) chlorophyll-a entering reservoir during month (kg chla)
      resoutm(35,:) chlorophyll-a leaving reservoir during month (kg chla)
      resoutm(36,:) organic P concentration in reservoir water during month (mg P/L)
      resoutm(37,:) mineral P concentration in reservoir water during month (mg P/L)
```

resoutm(38,:) organic N concentration in reservoir water during month (mg N/L)

```
resoutm(39,:) nitrate concentration in reservoir water during month (mg N/L)
      resoutm(40,:) nitrite concentration in reservoir water during month (mg N/L)
      resoutm(41,:) ammonia concentration in reservoir water during month (mg N/L)

    real *8, dimension(:,:), allocatable resouty

      reservoir annual output array (varies)
      resouty(1,:) flow into reservoir during year (m^3/s)
      resouty(2,:) flow out of reservoir during year (m^3/s)
      resouty(3,:) sediment entering reservoir during year (metric tons)
      resouty(4,:) sediment leaving reservoir during year (metric tons)
      resouty(5,:) sediment concentration in reservoir during year (mg/L)
      resoutv(6,:) pesticide entering reservoir during year (mg pst)
      resouty(7.:) pesticide lost from reservoir through reactions during year (mg pst)
      resouty(8,:) pesticide lost from reservoir through volatilization during year (mg pst)
      resouty(9,:) pesticide moving from water to sediment through settling during year (mg pst)
      resouty(10,:) pesticide moving from sediment to water through resuspension during year (mg pst)
      resouty(11,:) pesticide moving from water to sediment through diffusion during year (mg pst)
      resouty(12,:) pesticide lost from reservoir sediment layer through reactions during year (mg pst)
      resouty(13,:) pesticide lost from reservoir sediment layer through burial during year (mg pst)
      resouty(14,:) pesticide transported out of reservoir during year (mg pst)
      resouty(15,:) pesticide concentration in reservoir water during year (mg pst/m^3)
      resouty(16,:) pesticide concentration in reservoir sediment layer during year (mg pst/m^3)
      resouty(17.:) evaporation from reservoir during year (m^3 H2O)
      resouty(18.:) seepage from reservoir during year (m^3 H2O)
      resouty(19,:) precipitation on reservoir during year (m^3 H2O)
      resouty(22,:) organic N entering reservoir during year (kg N)
      resouty(23,:) organic N leaving reservoir during year (kg N)
      resouty(24,:) organic P entering reservoir during year (kg P)
      resouty(25,:) organic P leaving reservoir during year (kg P)
      resouty(26,:) nitrate entering reservoir during year (kg N)
      resouty(27,:) nitrate leaving reservoir during year (kg N)
      resouty(28,:) nitrite entering reservoir during year (kg N)
      resouty(29,:) nitrite leaving reservoir during year (kg N)
      resouty(30.:) ammonia entering reservoir during year (kg N)
      resouty(31,:) ammonia leaving reservoir during year (kg N)
      resouty(32,:) mineral P entering reservoir during year (kg P)
      resouty(33,:) mineral P leaving reservoir during year (kg P)
      resouty(34,:) chlorophyll-a entering reservoir during year (kg chla)
      resouty(35,:) chlorophyll-a leaving reservoir during year (kg chla)
      resouty(36,:) organic P concentration in reservoir water during year (mg P/L)
      resouty(37,:) mineral P concentration in reservoir water during year (mg P/L)
      resouty(38,:) organic N concentration in reservoir water during year (mg N/L)
      resouty(39,:) nitrate concentration in reservoir water during year (mg N/L)
      resouty(40.:) nitrite concentration in reservoir water during year (mg N/L)
      resouty(41,:) ammonia concentration in reservoir water during year (mg N/L)

    real *8, dimension(:,:), allocatable resouta

      reservoir average annual output array (varies)
      resouta(3,:) sediment entering reservoir during simulation (metric tons)
      resouta(4,:) sediment leaving reservoir during simulation (metric tons)
      resouta(17,:) evaporation from reservoir during simulation (m<sup>^</sup> 3 H2O)
      resouta(18,:) seepage from reservoir during simulation (m<sup>3</sup> H2O)
      resouta(19,:) precipitation on reservoir during simulation (m<sup>\(\circ\)</sup> 3 H2O)
      resouta(20,:) water entering reservoir during simulation (m^3 H2O)
      resouta(21,:) water leaving reservoir during simulation (m^3 H2O)
• real *8, dimension(12, 8) wshd_aamon
      wshd_aamon(:,1) average annual precipitation in watershed falling during month (mm H2O)
      wshd_aamon(:,2) average annual freezing rain in watershed falling during month (mm H2O)
      wshd_aamon(:,3) average annual surface runoff in watershed during month (mm H2O)
      wshd_aamon(:,4) average annual lateral flow in watershed during month (mm H2O)
      wshd_aamon(:,5) average annual water yield in watershed during month (mm H2O)
      wshd aamon(:,6) average annual actual evapotranspiration in watershed during month (mm H2O)
      wshd aamon(:,7) average annual sediment yield in watershed during month (metric tons)
      wshd aamon(:,8) average annual potential evapotranspiration in watershed during month (mm H2O)
```

 real *8, dimension(:,:), allocatable wtrmon HRU monthly output data array for impoundments (varies) wtrmon(1,:) evaporation from ponds in HRU for month (mm H2O) wtrmon(2,:) seepage from ponds in HRU for month (mm H2O) wtrmon(3,:) precipitation on ponds in HRU for month (mm H2O) wtrmon(4,:) amount of water entering ponds in HRU for month (mm H2O) wtrmon(5,:) sediment entering ponds in HRU for month (metric tons/ha) wtrmon(6,:) amount of water leaving ponds in HRU for month (mm H2O) wtrmon(7,:) sediment leaving ponds in HRU for month (metric tons/ha) wtrmon(8,:) precipitation on wetlands in HRU for month (mm H2O) wtrmon(9,:) volume of water entering wetlands from HRU for month (mm H2O) wtrmon(10,:) sediment loading to wetlands for month from HRU (metric tons/ha) wtrmon(11,:) evaporation from wetlands in HRU for month (mm H2O) wtrmon(12,:) seeepage from wetlands in HRU for month (mm H2O) wtrmon(13,:) volume of water leaving wetlands in HRU for month (mm H2O) wtrmon(14,:) sediment loading from wetlands in HRU to main channel during month (metric tons/ha) wtrmon(15,:) precipitation on potholes in HRU for month (mm H2O) wtrmon(16,:) evaporation from potholes in HRU for month (mm H2O) wtrmon(17,:) seepage from potholes in HRU for month (mm H2O) wtrmon(18,:) water leaving potholes in HRU for month (mm H2O) wtrmon(19,:) water entering potholes in HRU for month (mm H2O) wtrmon(20,:) sediment entering potholes in HRU for month (metric tons/ha) wtrmon(21,:) sediment leaving potholes in HRU for month (metric tons/ha) real *8, dimension(:.:), allocatable wtryr HRU impoundment annual output array (varies) wtryr(1,:) evaporation from ponds in HRU for year (mm H20) wtryr(2,:) seepage from ponds in HRU for year (mm H20)

```
wtryr(3,:) precipitation on ponds in HRU for year (mm H20)
wtryr(4,:) amount of water entering ponds in HRU for year (mm H20)
wtryr(5,:) sediment entering ponds in HRU for year (metric tons/ha)
wtryr(6,:) amount of water leaving ponds in HRU for year (mm H20)
wtryr(7,:) sediment leaving ponds in HRU for year (metric tons/ha)
wtryr(8,:) precipitation on wetlands in HRU for year (mm H20)
wtryr(9,:) volume of water entering wetlands from HRU for year (mm H20)
wtryr(10,:) sediment loading to wetlands for year from HRU (metric tons/ha)
wtryr(11,:) evaporation from wetlands in HRU for year (mm H20)
wtryr(12,:) seeepage from wetlands in HRU for year (mm H20)
wtryr(13,:) volume of water leaving wetlands in HRU for year (mm H20)
wtryr(14,:) sediment loading from wetlands in HRU to main channel during year (metric tons/ha)
wtryr(15,:) precipitation on potholes in HRU during year (mm H20)
wtryr(16,:) evaporation from potholes in HRU during year (mm H20)
wtryr(17,:) seepage from potholes in HRU during year (mm H20)
wtryr(18,:) water leaving potholes in HRU during year (mm H20)
wtryr(19,:) water entering potholes in HRU during year (mm H20)
wtryr(20,:) sediment entering potholes in HRU during year (metric tons/ha)
wtryr(21,:) sediment leaving potholes in HRU during year (metric tons/ha)
```

• real *8, dimension(:,:), allocatable wtraa

HRU impoundment average annual output array (varies)

real *8, dimension(:,:), allocatable sub_smfmx

max melt rate for snow during year (June 21) for subbasin(:) where deg C refers to the air temperature. SUB_SMFMX and SMFMN allow the rate of snow melt to vary through the year. These parameters are accounting for the impact of soil temperature on snow melt (range: -5.0/5.0) (mm/deg C/day)

real *8, dimension(:,:), allocatable sub_smfmn

min melt rate for snow during year (Dec 21) for subbasin(:) (range: -5.0/5.0) where deg C refers to the air temperature (mm/deg C/day)

real *8, dimension(:,:,:), allocatable hrupstd

hrupstd(:,1,:) amount of pesticide type in surface runoff contribution to stream from HRU on day (in solution) (mg pst) hrupstd(:,2,:) amount of pesticide type in surface runoff contribution to stream from HRU on day (sorbed to sediment) (mg pst)

• real *8, dimension(:,:,:), allocatable hrupstm

hrupstm(:,:,:)HRU monthly pesticide output array (varies)

hrupstm(:,1,:) amount of pesticide type in surface runoff contribution to stream from HRU during month (in solution) (ma pst) hrupstm(:,2,:) amount of pesticide type in surface runoff contribution to stream from HRU during month (sorbed to sediment) (mg pst) hrupstm(:,3,:) total pesticide loading to stream in surface runoff from HRU during month (mg pst) real *8, dimension(:,:,:), allocatable hrupsta HRU average annual pesticide output array (varies) real *8, dimension(:,:,:), allocatable hrupsty hrupsty(:,:,:) HRU annual pesticide output array (varies) hrupsty(:,1,:) amount of pesticide type in surface runoff contribution to stream from HRU during year (in solution) (mg hrupsty(:,2,:) amount of pesticide type in surface runoff contribution to stream from HRU during year (sorbed to sediment) (mg pst) · integer, dimension(:), allocatable ifirstt temperature data search code (none) 0 first day of temperature data located in file 1 first day of temperature data not located in file integer, dimension(:), allocatable ifirstpcp • integer, dimension(:), allocatable elevp elevation of precipitation gage station (m) · integer, dimension(:), allocatable elevt elevation of temperature gage station (m) real *8, dimension(:,:), allocatable ftmpmn avg monthly minimum air temperature (deg C) real *8, dimension(:,:), allocatable ftmpmx avg monthly maximum air temperature (deg C) real *8, dimension(:,:), allocatable ftmpstdmn standard deviation for avg monthly minimum air temperature (deg C) real *8, dimension(:,:), allocatable ftmpstdmx standard deviation for avg monthly maximum air temperature (deg C) real *8, dimension(:,:,:), allocatable fpcp stat fpcp_stat(:,1,:): average amount of precipitation falling in one day for the month (mm/day) fpcp stat(:,2,:): standard deviation for the average daily precipitation (mm/day) fpcp_stat(:,3,:): skew coefficient for the average daily precipitationa (none) real *8, dimension(:,:), allocatable fpr_w1 probability of wet day after dry day in month (none) real *8, dimension(:,:), allocatable fpr_w2 probability of wet day after wet day in month (none) real *8, dimension(:,:), allocatable fpr_w3 proportion of wet days in the month (none) real *8, dimension(:), allocatable ch_d average depth of main channel (m) • real *8, dimension(:), allocatable flwin real *8, dimension(:), allocatable flwout real *8, dimension(:), allocatable bankst real *8, dimension(:), allocatable ch_wi real *8, dimension(:), allocatable ch onco channel organic n concentration (ppm) real *8, dimension(:), allocatable ch_opco channel organic p concentration (ppm) real *8, dimension(:), allocatable ch_orgn real *8, dimension(:), allocatable ch_orgp real *8, dimension(:), allocatable drift

amount of pesticide drifting onto main channel in subbasin (kg)

- real *8, dimension(:), allocatable rch_dox
- real *8, dimension(:), allocatable rch_bactp
- real *8, dimension(:), allocatable alpha bnk

alpha factor for bank storage recession curve (days)

real *8, dimension(:), allocatable alpha_bnke

 $\exp(-alpha_b nk)$ (none)

- real *8, dimension(:), allocatable disolvp
- real *8, dimension(:), allocatable algae
- real *8, dimension(:), allocatable sedst
- real *8, dimension(:), allocatable rchstor
- real *8, dimension(:), allocatable organicn
- real *8, dimension(:), allocatable organicp
- real *8, dimension(:), allocatable chlora
- real *8, dimension(:), allocatable ch_li

initial length of main channel (km)

• real *8, dimension(:), allocatable ch_si

initial slope of main channel (m/m)

- real *8, dimension(:), allocatable nitraten
- real *8, dimension(:), allocatable nitriten
- real *8, dimension(:), allocatable ch bnk san
- real *8, dimension(:), allocatable ch_bnk_sil
- real *8, dimension(:), allocatable ch_bnk_cla
- real *8, dimension(:), allocatable ch_bnk_gra
- real *8, dimension(:), allocatable ch_bed_san
- real *8, dimension(:), allocatable ch_bed_sil
- real *8, dimension(:), allocatable ch_bed_cla
- real *8, dimension(:), allocatable ch_bed_gra
- real *8, dimension(:), allocatable depfp
- real *8, dimension(:), allocatable depsanfp
- real *8, dimension(:), allocatable depsilfp
- real *8, dimension(:), allocatable depclafp
- real *8, dimension(:), allocatable depsagfp
- real *8, dimension(:), allocatable deplagfp
- real *8, dimension(:), allocatable depch
- · real *8, dimension(:), allocatable depsanch
- real *8, dimension(:), allocatable depsilch
- real *8, dimension(:), allocatable depclach
- real *8, dimension(:), allocatable depsagch
- real *8, dimension(:), allocatable deplagch
- real *8, dimension(:), allocatable depgrach
- real *8, dimension(:), allocatable depgrafp
- real *8, dimension(:), allocatable grast
- real *8, dimension(:), allocatable r2adj

curve number retention parameter adjustment factor to adjust surface runoff for flat slopes (0.5 - 3.0) (dimensionless)

real *8, dimension(:), allocatable prf

Reach peak rate adjustment factor for sediment routing in the channel. Allows impact of peak flow rate on sediment routing and channel reshaping to be taken into account (none)

- real *8, dimension(:), allocatable depprch
- real *8, dimension(:), allocatable depprfp
- real *8, dimension(:), allocatable spcon

linear parameter for calculating sediment reentrained in channel sediment routing

real *8, dimension(:), allocatable spexp

exponent parameter for calculating sediment reentrained in channel sediment routing

- real *8, dimension(:), allocatable sanst
- · real *8, dimension(:), allocatable silst
- real *8, dimension(:), allocatable clast
- real *8, dimension(:), allocatable sagst
- real *8, dimension(:), allocatable lagst
- real *8, dimension(:), allocatable pot san
- real *8, dimension(:), allocatable pot_sil
- real *8, dimension(:), allocatable pot_cla
- real *8, dimension(:), allocatable pot_sag
- real *8, dimension(:), allocatable pot_lag
- real *8, dimension(:), allocatable potsani
- real *8, dimension(:), allocatable potsili
- real *8, dimension(:), allocatable potclai
- real *8, dimension(:), allocatable potsagi
- real *8, dimension(:), allocatable potlagi
- real *8, dimension(:), allocatable sanyld
- real *8, dimension(:), allocatable silvld
- real *8, dimension(:), allocatable clayId
- real *8, dimension(:), allocatable sagyld
- · real *8, dimension(:), allocatable lagyld
- real *8, dimension(:), allocatable grayld
- real *8, dimension(:), allocatable res san
- real *8, dimension(:), allocatable res_sil
- real *8, dimension(:), allocatable res cla
- real *8, dimension(:), allocatable res_sag
- real *8, dimension(:), allocatable res_lag
- real *8, dimension(:), allocatable res_gra
- real *8, dimension(:), allocatable pnd san
- real *8, dimension(:), allocatable pnd_sil
- real *8, dimension(:), allocatable pnd_cla
- real *8, dimension(:), allocatable pnd_sag
- real *8, dimension(:), allocatable pnd_lag
- real *8, dimension(:), allocatable wet_san
- real *8, dimension(:), allocatable wet_sil
- real *8, dimension(:), allocatable wet_cla
- real *8, dimension(:), allocatable wet_lag
- real *8, dimension(:), allocatable wet_sag
- · real *8 ressano
- · real *8 ressilo
- real *8 resclao
- real *8 ressago
- real *8 reslago
- real *8 resgrao
- real *8 ressani
- real *8 ressili
- real *8 resclai
- real *8 ressagi
- real *8 reslagi
- real *8 resgrai
- real *8 potsano
- real *8 potsilo
- real *8 potclao
- real *8 potsago
- real *8 potlago

```
    real *8 pndsanin

    real *8 pndsilin

· real *8 pndclain

    real *8 pndsagin

    real *8 pndlagin

• real *8 pndsano

    real *8 pndsilo

    real *8 pndclao

    real *8 pndsago

    real *8 pndlago

    real *8, dimension(:), allocatable ch di

      initial depth of main channel (m)

    real *8, dimension(:), allocatable ch_erod

      channel erodibility factor (0.0-1.0) (none)
      0 non-erosive channel
      1 no resistance to erosion

    real *8, dimension(:), allocatable ch | 12

      length of main channel (km)

    real *8, dimension(:), allocatable ch_cov

 real *8, dimension(:), allocatable ch bnk bd
      bulk density of channel bank sediment (1.1-1.9) (g/cc)

    real *8, dimension(:), allocatable ch_bed_bd

      bulk density of channel bed sediment (1.1-1.9) (g/cc)

    real *8, dimension(:), allocatable ch bnk kd

      erodibility of channel bank sediment by jet test (Peter Allen needs to give more info on this)

    real *8, dimension(:), allocatable ch_bed_kd

      erodibility of channel bed sediment by jet test (Peter Allen needs to give more info on this)

    real *8, dimension(:), allocatable ch bnk d50

      D50(median) particle size diameter of channel bank sediment (0.001 - 20)

    real *8, dimension(:), allocatable ch_bed_d50

      D50(median) particle size diameter of channel bed sediment (micrometers) (0.001 - 20)
• real *8, dimension(:), allocatable ch_cov1
      channel erodibility factor (0.0-1.0) (none)
      0 non-erosive channel
      1 no resistance to erosion

    real *8, dimension(:), allocatable ch cov2

      channel cover factor (0.0-1.0) (none)
      0 channel is completely protected from erosion by cover
      1 no vegetative cover on channel

    real *8, dimension(:), allocatable tc bed

      critical shear stress of channel bed (N/m2)

    real *8, dimension(:), allocatable tc_bnk

      critical shear stress of channel bank (N/m2)

    integer, dimension(:), allocatable ch_eqn

      sediment routine methods (DAILY):
      0 = original SWAT method
      1 = Bagnold's
      2 = Kodatie
      3 = Molinas WU
      4 = Yang

    real *8, dimension(:), allocatable chpst_rea

      pesticide reaction coefficient in reach (1/day)

    real *8, dimension(:), allocatable chpst_vol

      pesticide volatilization coefficient in reach (m/day)
```

```
    real *8, dimension(:), allocatable chpst_conc

    real *8, dimension(:), allocatable chpst_koc

      pesticide partition coefficient between water and sediment in reach (m<sup>^</sup>3/g)

    real *8, dimension(:), allocatable chpst rsp

      resuspension velocity in reach for pesticide sorbed to sediment (m/day)

    real *8, dimension(:), allocatable chpst_stl

      settling velocity in reach for pesticide sorbed to sediment (m/day)

    real *8, dimension(:), allocatable ch wdr

      channel width to depth ratio (m/m)

    real *8, dimension(:), allocatable chpst_mix

      mixing velocity (diffusion/dispersion) for pesticide in reach (m/day)

    real *8, dimension(:), allocatable sedpst_conc

      inital pesticide concentration in river bed sediment (mg/m^3)

    real *8, dimension(:), allocatable sedpst_bry

      pesticide burial velocity in river bed sediment (m/day)

    real *8, dimension(:), allocatable sedpst_rea

      pesticide reaction coefficient in river bed sediment (1/day)

    real *8, dimension(:), allocatable sedpst_act

      depth of active sediment layer in reach for pesticide (m)
• real *8, dimension(:), allocatable rch_cbod

    real *8, dimension(:), allocatable rch bactlp

  real *8, dimension(:), allocatable chside
      change in horizontal distance per unit vertical distance (0.0 - 5)
      0 = for vertical channel bank
      5 = for channel bank with gentl side slope
• real *8, dimension(:), allocatable rs1
      local algal settling rate in reach at 20 deg C (m/day or m/hour)

 real *8, dimension(:), allocatable rs2

      benthos source rate for dissolved phosphorus in reach at 20 deg C ((mg disP-P)/(m<sup>2</sup>*day) or (mg dis→
      P-P)/(m^2*hour))

    real *8, dimension(:), allocatable rs3

      benthos source rate for ammonia nitrogen in reach at 20 deg C ((mg NH4-N)/(m<sup>2</sup>*day) or (mg NH4-N)/(m<sup>2</sup>*hour))

    real *8, dimension(:), allocatable rs4

      rate coefficient for organic nitrogen settling in reach at 20 deg C (1/day or 1/hour)

    real *8, dimension(:), allocatable rs5

      organic phosphorus settling rate in reach at 20 deg C (1/day or 1/hour)

 real *8, dimension(:), allocatable rk1

      CBOD deoxygenation rate coefficient in reach at 20 deg C (1/day or 1/hour)

 real *8, dimension(:), allocatable rk2

      reaeration rate in accordance with Fickian diffusion in reach at 20 deg C (1/day or 1/hour)

    real *8, dimension(:), allocatable rk3

      rate of loss of CBOD due to settling in reach at 20 deg C (1/day or 1/hour)

    real *8, dimension(:), allocatable rk4

      sediment oxygen demand rate in reach at 20 deg C (mg O2/(m^2*day) or mg O2/(m^2*hour))

    real *8, dimension(:), allocatable rk5

      coliform die-off rate in reach (1/day)

    real *8, dimension(:), allocatable rs6

      rate coefficient for settling of arbitrary non-conservative constituent in reach (1/day)

    real *8, dimension(:), allocatable rs7

      benthal source rate for arbitrary non-conservative constituent in reach ((mg ANC)/(m^2*day))

    real *8, dimension(:), allocatable bc1
```

rate constant for biological oxidation of NH3 to NO2 in reach at 20 deg C (1/day or 1/hour)

• real *8, dimension(:), allocatable bc2

rate constant for biological oxidation of NO2 to NO3 in reach at 20 deg C (1/day or 1/hour)

real *8, dimension(:), allocatable bc3

rate constant for hydrolysis of organic N to ammonia in reach at 20 deg C (1/day or 1/hour)

• real *8, dimension(:), allocatable bc4

rate constant for the decay of organic P to dissolved P in reach at 20 deg C (1/day or 1/hour)

real *8, dimension(:), allocatable rk6

decay rate for arbitrary non-conservative constituent in reach (1/day)

- real *8, dimension(:), allocatable ammonian
- real *8, dimension(:), allocatable orig sedpstconc
- real *8, dimension(:,:), allocatable wurch

average daily water removal from the reach for the month $(10^{\circ} 4 \text{ m}^{\circ} 3/\text{day})$

- · integer, dimension(:), allocatable icanal
- · integer, dimension(:), allocatable itb
- real *8, dimension(:), allocatable ch_revap

revap coeff: this variable controls the amount of water moving from bank storage to the root zone as a result of soil moisture depletion(none)

- real *8, dimension(:), allocatable dep_chan
- real *8, dimension(:), allocatable harg_petco

coefficient related to radiation used in hargreaves eq (range: 0.0019 - 0.0032)

- real *8, dimension(:), allocatable subfr_nowtr
- real *8, dimension(:), allocatable cncoef_sub

soil water depletion coefficient used in the new (modified curve number method) same as soil index coeff used in APEX range: 0.5 - 2.0

- real *8, dimension(:), allocatable dr_sub
- · real *8, dimension(:), allocatable sub fr

fraction of total watershed area contained in subbasin (km2/km2)

real *8, dimension(:), allocatable sub_sw

water in soil profile in subbasin (mm H2O)

- real *8, dimension(:), allocatable wcklsp
- real *8, dimension(:), allocatable sub_minp
- real *8, dimension(:), allocatable sub sumfc
- real *8, dimension(:), allocatable sub gwno3
- real *8, dimension(:), allocatable sub_gwsolp
- real *8, dimension(:), allocatable co2

CO2 concentration (ppmv)

real *8, dimension(:), allocatable sub_km

area of subbasin in square kilometers (km²)

• real *8, dimension(:), allocatable wlat

latitude of weather station used to compile data (degrees)

real *8, dimension(:), allocatable sub_tc

time of concentration for subbasin (hour)

- real *8, dimension(:), allocatable sub_pet
- real *8, dimension(:), allocatable welev

elevation of weather station used to compile weather generator data (m)

- real *8, dimension(:), allocatable sub_orgn
- real *8, dimension(:), allocatable sub_orgp
- real *8, dimension(:), allocatable sub_bd
- real *8, dimension(:), allocatable sub_wtmp
- real *8, dimension(:), allocatable sub sedpa
- real *8, dimension(:), allocatable sub_sedps

```
    real *8, dimension(:), allocatable daylmn

     shortest daylength occurring during the year (hour)

    real *8, dimension(:), allocatable sub minpa

• real *8, dimension(:), allocatable sub_minps

    real *8, dimension(:), allocatable latcos

     \cos(latitude) (none)

    real *8, dimension(:), allocatable latsin

     \sin(latitude) (none)

    real *8, dimension(:), allocatable phutot

      total potential heat units for year (used when no crop is growing) (heat unit)

    real *8, dimension(:), allocatable plaps

     precipitation lapse rate: precipitation change due to change in elevation (mm H2O/km)

    real *8, dimension(:), allocatable tlaps

      temperature lapse rate: temperature change due to change in elevation (deg C/km)
• real *8, dimension(:), allocatable tmp an
      average annual air temperature (deg C)

    real *8, dimension(:), allocatable sub_precip

      amount of water reaching soil surface in subbasin (mm H2O)

    real *8, dimension(:), allocatable rammo sub

      atmospheric deposition of ammonium values for entire watershed (mg/l)

    real *8, dimension(:), allocatable rcn_sub

      atmospheric deposition of nitrate for entire watershed (mg/l)

    real *8, dimension(:), allocatable pcpdays

    real *8, dimension(:), allocatable atmo_day

• real *8, dimension(:), allocatable sub_snom
      amount of snow melt in subbasin on day (mm H2O)

    real *8, dimension(:), allocatable sub_qd

      surface runoff that reaches main channel during day in subbasin (mm H2O)

    real *8, dimension(:), allocatable sub_sedy

  real *8, dimension(:), allocatable sub tran
      transmission losses on day in subbasin (mm H2O)
real *8, dimension(:), allocatable sub_no3
• real *8, dimension(:), allocatable sub_latno3

    real *8, dimension(:,:), allocatable sub_sftmp

      snowfall temperature for subbasin(:). Mean air temperature at which precip is equally likely to be rain as snow/freezing
      rain (range: -5.0/5.0) (deg C)

    real *8, dimension(:,:), allocatable sub_smtmp

     snow melt base temperature for subbasin(:) mean air temperature at which snow melt will occur (range: -5.0/5.0)
      (deg C)

    real *8, dimension(:,:), allocatable sub_timp

     snow pack temperature lag factor (0-1) (none)
      1 = no lag (snow pack temp=current day air temp) as the lag factor goes to zero, the snow pack's temperature will be
      less influenced by the current day's air temperature

    real *8, dimension(:), allocatable sub_tileno3

• real *8, dimension(:), allocatable sub_solp

    real *8, dimension(:), allocatable sub subp

    real *8, dimension(:), allocatable sub_etday

    real *8, dimension(:), allocatable sub_elev

      average elevation of HRU (m)

    real *8, dimension(:), allocatable sub_wyld

    real *8, dimension(:), allocatable sub surfq

• real *8, dimension(:), allocatable qird
```

- real *8, dimension(:), allocatable sub_gwq
 real *8, dimension(:), allocatable sub_sep
- real *8, dimension(:), allocatable sub_chl
- real *8, dimension(:), allocatable sub_cbod
- real *8, dimension(:), allocatable sub dox
- real *8, dimension(:), allocatable sub_solpst
- real *8, dimension(:), allocatable sub sorpst
- real *8, dimension(:), allocatable sub_yorgn
- real *8, dimension(:), allocatable sub_yorgp
- real *8, dimension(:), allocatable sub_lat

latitude of HRU/subbasin (degrees)

- real *8, dimension(:), allocatable sub_bactp
- real *8, dimension(:), allocatable sub_bactlp
- real *8, dimension(:), allocatable sub_latq
- real *8, dimension(:), allocatable sub gwg d
- real *8, dimension(:), allocatable sub_tileq
- real *8, dimension(:), allocatable sub_vaptile
- real *8, dimension(:), allocatable sub dsan
- real *8, dimension(:), allocatable sub_dsil
- real *8, dimension(:), allocatable sub dcla
- real *8, dimension(:), allocatable sub dsag
- real *8, dimension(:), allocatable sub_dlag
- real *8 vap_tile
- real *8, dimension(:), allocatable wnan
- real *8, dimension(:,:), allocatable sol_stpwt
- real *8, dimension(:,:), allocatable sub_pst
- real *8, dimension(:,:), allocatable sub_hhqd
- real *8, dimension(:,:), allocatable sub_hhwtmp
- real *8, dimension(:,:), allocatable huminc

monthly humidity adjustment. Daily values for relative humidity within the month are rasied or lowered by the specified amount (used in climate change studies) (none)

• real *8, dimension(:,:), allocatable radinc

monthly solar radiation adjustment. Daily radiation within the month is raised or lowered by the specified amount (used in climate change studies) (MJ/m^2)

real *8, dimension(:,:), allocatable rfinc

monthly rainfall adjustment. Daily rainfall within the month is adjusted to the specified percentage of the original value (used in climate change studies)(%)

real *8, dimension(:,:), allocatable tmpinc

monthly temperature adjustment. Daily maximum and minimum temperatures within the month are raised or lowered by the specified amount (used in climate change studies) (deg C)

real *8, dimension(:), allocatable ch_k1

effective hydraulic conductivity of tributary channel alluvium (mm/hr)

• real *8, dimension(:), allocatable ch k2

effective hydraulic conductivity of main channel alluvium (mm/hr)

real *8, dimension(:,:), allocatable elevb

elevation at the center of the band (m)

real *8, dimension(:,:), allocatable elevb fr

fraction of subbasin area within elevation band (the same fractions should be listed for all HRUs within the subbasin) (none)

real *8, dimension(:,:), allocatable wndav

average wind speed for the month (m/s)

real *8, dimension(:), allocatable ch n1

Manning's "n" value for the tributary channels (none)

• real *8, dimension(:), allocatable ch_n2

```
Manning's "n" value for the main channel (none)

    real *8, dimension(:), allocatable ch_s1

      average slope of tributary channels (m/m)
• real *8, dimension(:), allocatable ch s2
      average slope of main channel (m/m)

    real *8, dimension(:), allocatable ch_w1

      average width of tributary channels (m)

    real *8, dimension(:), allocatable ch w2

      average width of main channel (m)
• real *8, dimension(:,:), allocatable dewpt
      average dew point temperature for the month (deg C)

    real *8, dimension(:,:), allocatable amp r

      average fraction of total daily rainfall occuring in maximum half-hour period for month (none)

    real *8, dimension(:,:), allocatable solarav

      average daily solar radiation for the month (MJ/m^2/day)

    real *8, dimension(:,:), allocatable tmpstdmx

      standard deviation for avg monthly maximum air temperature (deg C)

    real *8, dimension(:,:), allocatable pcf

      normalization coefficient for precipitation generated from skewed distribution (none)

    real *8, dimension(:,:), allocatable tmpmn

      avg monthly minimum air temperature (deg C)

    real *8, dimension(:,:), allocatable tmpmx

     avg monthly maximum air temperature (deg C)
• real *8, dimension(:,:), allocatable tmpstdmn
      standard deviation for avg monthly minimum air temperature (deg C)

    real *8, dimension(:,:), allocatable otmpstdmn

    real *8, dimension(:,:), allocatable otmpmn

    real *8, dimension(:,:), allocatable otmpmx

    real *8, dimension(:,:), allocatable otmpstdmx

    real *8, dimension(:,:), allocatable ch_erodmo

    real *8, dimension(:,:), allocatable uh

    real *8, dimension(:,:), allocatable hqdsave

• real *8, dimension(:,:), allocatable hsdsave

    real *8, dimension(:,:), allocatable pr w1

     probability of wet day after dry day in month (none)

    real *8, dimension(:,:), allocatable pr w2

     probability of wet day after wet day in month (none)

    real *8, dimension(:,:), allocatable pr w3

     proportion of wet days in the month (none)

    real *8, dimension(:,:,:), allocatable pcp_stat

real *8, dimension(:,:), allocatable opr_w1
real *8, dimension(:,:), allocatable opr_w2

    real *8, dimension(:,:), allocatable opr_w3

    real *8, dimension(:,:,:), allocatable opcp_stat

    integer, dimension(:), allocatable ireg

     precipitation category (none):
      1 precipitation <= 508 mm/yr
     2 precipitation > 508 and <= 1016 mm/yr
      3 precipitation > 1016 mm/yr
· integer, dimension(:), allocatable hrutot
      number of HRUs in subbasin (none)
```

• integer, dimension(:), allocatable hru1

```
    integer, dimension(:), allocatable ihgage

      HRU relative humidity data code (gage # for relative humidity data used in as HRU) (none)

    integer, dimension(:), allocatable isgage

      HRU solar radiation data code (record # for solar radiation used in HRU) (none)

    integer, dimension(:), allocatable iwgage

      HRU wind speed gage data code (gage # for wind speed data used in HRU) (none)
· integer, dimension(:), allocatable subgis
      GIS code printed to output files (output.sub, .rch) (none)
· integer, dimension(:), allocatable irgage
      subbasin rain gage data code (gage # for rainfall data used in HRU) (none)

    integer, dimension(:), allocatable itgage

      subbasin temp gage data code (gage # for temperature data used in HRU) (none)
• integer, dimension(:), allocatable irelh
      (none) irelh = 0 (dewpoint)
      irelh = 1 (relative humidity)
      note: inputs > 1.0 (dewpoint)
      inputs < 1.0 (relative hum)

    integer, dimension(:), allocatable fcst_reg

    real *8, dimension(:,:), allocatable sol_aorgn

      amount of nitrogen stored in the active organic (humic) nitrogen pool (kg N/ha)

    real *8, dimension(:,:), allocatable sol fon

      amount of nitrogen stored in the fresh organic (residue) pool (kg N/ha)

    real *8, dimension(:,:), allocatable sol tmp

      average temperature of soil layer on previous day or
      daily average temperature of soil layer (deg C)

    real *8, dimension(:.:), allocatable sol_awc

      available water capacity of soil layer (mm H20/mm soil)

    real *8, dimension(:,:), allocatable volcr

      crack volume for soil layer (mm)

    real *8, dimension(:,:), allocatable sol prk

      percolation storage array (mm H2O)

    real *8, dimension(:,:), allocatable pperco_sub

      subbasin phosphorus percolation coefficient. Ratio of soluble phosphorus in surface to soluble phosphorus in perco-
      late

    real *8, dimension(:,:), allocatable sol_stap

      amount of phosphorus in the soil layer stored in the stable mineral phosphorus pool (kg P/ha)

    real *8, dimension(:,:), allocatable conv_wt

      factor which converts kg/kg soil to kg/ha (none)

    real *8, dimension(:,:), allocatable sol_actp

      amount of phosphorus stored in the active mineral phosphorus pool (kg P/ha)

    real *8, dimension(:,:), allocatable sol_solp

      soluble P concentration in top soil layer (mg P/kg soil) or
      amount of inorganic phosphorus stored in solution. NOTE UNIT CHANGE! (kg P/ha)

    real *8, dimension(:,:), allocatable crdep

      maximum or potential crack volume (mm)

    real *8, dimension(:,:), allocatable sol fc

      amount of water available to plants in soil layer at field capacity (fc - wp) (mm H2O)

    real *8, dimension(:,:), allocatable sol ul

      amount of water held in the soil layer at saturation (sat - wp water) (mm H2O)

    real *8, dimension(:,:), allocatable sol bd

      bulk density of the soil layer in HRU (Mg/m<sup>^</sup>3)
• real *8, dimension(:,:), allocatable sol_z
```

```
depth to bottom of soil layer (mm)

    real *8, dimension(:,:), allocatable sol_st

      amount of water stored in the soil layer on any given day (less wp water) (mm H2O)

    real *8, dimension(:,:), allocatable sol up

      water content of soil at -0.033 MPa (field capacity) (mm H2O/mm soil)

    real *8, dimension(:,:), allocatable sol_clay

      percent clay content in soil material (UNIT CHANGE!) (% or none)

    real *8, dimension(:,:), allocatable sol hk

      beta coefficent to calculate hydraulic conductivity (none)
• real *8, dimension(:,:), allocatable flat
      lateral flow storage array (mm H2O)
• real *8, dimension(:,:), allocatable sol_nh3
      amount of nitrogen stored in the ammonium pool in soil layer (kg N/ha)

    real *8, dimension(:,:), allocatable sol ec

      electrical conductivity of soil layer (dS/m)

    real *8, dimension(:,:), allocatable sol orgn

      amount of nitrogen stored in the stable organic N pool. NOTE UNIT CHANGE! (mg N/kg soil or kg N/ha)

    real *8, dimension(:,:), allocatable sol por

      total porosity of soil layer expressed as a fraction of the total volume (none)

    real *8, dimension(:,:), allocatable sol_wp

      water content of soil at -1.5 MPa (wilting point) (mm H20/mm soil)
• real *8, dimension(:,:), allocatable sol orgp
      amount of phosphorus stored in the organic P pool. NOTE UNIT CHANGE! (mg P/kg soil or kg P/ha)

    real *8, dimension(:,:), allocatable sol_hum

      amount of organic matter in the soil layer classified as humic substances (kg humus/ha)

    real *8, dimension(:,:), allocatable sol wpmm

      water content of soil at -1.5 MPa (wilting point) (mm H20)

    real *8, dimension(:,:), allocatable sol no3

      amount of nitrogen stored in the nitrate pool. This variable is read in as a concentration and converted to kg/ha (this
      value is read from the .sol file in units of mg/kg) (kg N/ha)

    real *8, dimension(:,:), allocatable sol cbn

      percent organic carbon in soil layer (%)

    real *8, dimension(:,:), allocatable sol k

      saturated hydraulic conductivity of soil layer (mm/hour)

    real *8, dimension(:,:), allocatable sol rsd

      amount of organic matter in the soil layer classified as residue (kg/ha)

    real *8, dimension(:,:), allocatable sol fop

      amount of phosphorus stored in the fresh organic (residue) pool (kg P/ha)

    real *8, dimension(:,:), allocatable sol rock

      percent of rock fragments in soil layer (%)

    real *8, dimension(:,:), allocatable sol silt

      percent silt content in soil material (UNIT CHANGE!) (% or none)

    real *8, dimension(:,:), allocatable sol_sand

      percent sand content of soil material (%)

    real *8, dimension(:,:), allocatable orig_solno3

    real *8, dimension(:,:), allocatable orig_solorgn

    real *8, dimension(:,:), allocatable orig_solsolp

    real *8, dimension(:,:), allocatable orig solorgp

    real *8, dimension(:,:), allocatable orig_soltmp

    real *8, dimension(:,:), allocatable orig solrsd
```

real *8, dimension(:,:), allocatable orig_solfop

```
    real *8, dimension(:,:), allocatable orig_solfon

• real *8, dimension(:,:), allocatable orig_solaorgn
• real *8, dimension(:,:), allocatable orig_solst

    real *8, dimension(:,:), allocatable orig solactp

    real *8, dimension(:,:), allocatable orig solstap

    real *8, dimension(:,:), allocatable orig_volcr

    real *8, dimension(:,:), allocatable conk

    real *8, dimension(:,:,:), allocatable sol pst

      sol_pst(:,:,1) initial amount of pesticide in first layer read in from .chm file (mg/kg)
      sol_pst(:,:,:) amount of pesticide in layer. NOTE UNIT CHANGE! (kg/ha)

    real *8, dimension(:,:,:), allocatable sol_kp

      pesticide sorption coefficient, Kp; the ratio of the concentration in the solid phase to the concentration in solution
      ((mg/kg)/(mg/L))

    real *8, dimension(:,:,:), allocatable orig_solpst

    real *8, dimension(:), allocatable velsetlr

    real *8, dimension(:), allocatable velsetlp

    real *8, dimension(:), allocatable br1

      1st shape parameter for reservoir surface area equation (none)

    real *8, dimension(:), allocatable evrsv

      lake evaporation coefficient (none)

 real *8, dimension(:), allocatable res k

      hydraulic conductivity of the reservoir bottom (mm/hr)

    real *8, dimension(:), allocatable lkpst conc

      pesticide concentration in lake water (mg/m<sup>^</sup>3)

    real *8, dimension(:), allocatable res evol

      volume of water needed to fill the reservoir to the emergency spillway (read in as 10^{4} m<sup>3</sup> and converted to m<sup>3</sup>)
      (m^{\wedge}3)

    real *8, dimension(:), allocatable res pvol

      volume of water needed to fill the reservoir to the principal spillway (read in as 10^4 m^3 and converted to m^3)
      (m^3)

    real *8, dimension(:), allocatable res vol

      reservoir volume (read in as 10^{\circ}4 \text{ m}^{\circ}3 and converted to \text{m}^{\circ}3) (\text{m}^{\circ}3)

    real *8, dimension(:), allocatable res_psa

      reservoir surface area when reservoir is filled to principal spillway (ha)

    real *8, dimension(:), allocatable lkpst rea

      pesticide reaction coefficient in lake water (1/day)

    real *8, dimension(:), allocatable lkpst_vol

      pesticide volatilization coefficient in lake water (m/day)

 real *8, dimension(:), allocatable br2

      2nd shape parameter for reservoir surface area equation (none)

    real *8, dimension(:), allocatable res_rr

      average daily principal spillway release volume (read in as a release rate in m^3/s and converted to m^3/day)
      (m^3/day)

    real *8, dimension(:), allocatable res_sed

      amount of sediment in reservoir (read in as mg/L and converted to kg/L) (kg/L)

    real *8, dimension(:), allocatable lkpst_koc

      pesticide partition coefficient between water and sediment in lake water (m^3/g)

    real *8, dimension(:), allocatable lkpst mix

      mixing velocity (diffusion/dispersion) in lake water for pesticide (m/day)

    real *8, dimension(:), allocatable lkpst rsp

      resuspension velocity in lake water for pesticide sorbed to sediment (m/day)
• real *8, dimension(:), allocatable lkpst_stl
```

```
settling velocity in lake water for pesticide sorbed to sediment (m/day)

    real *8, dimension(:), allocatable lkspst_conc

      pesticide concentration in lake bed sediment (mg/m<sup>^</sup>3)

    real *8, dimension(:), allocatable lkspst rea

      pesticide reaction coefficient in lake bed sediment (1/day)
• real *8, dimension(:), allocatable theta n

    real *8, dimension(:), allocatable theta_p

    real *8, dimension(:), allocatable con nirr

    real *8, dimension(:), allocatable con_pirr

• real *8, dimension(:), allocatable lkspst act
      depth of active sediment layer in lake for for pesticide (m)

    real *8, dimension(:), allocatable lkspst bry

      pesticide burial velocity in lake bed sediment (m/day)
  real *8, dimension(:), allocatable sed_stlr
  real *8, dimension(7) resdata
  real *8, dimension(:), allocatable res_nsed
      normal amount of sediment in reservoir (read in as mg/L and convert to kg/L) (kg/L)

    real *8, dimension(:), allocatable wurtnf

      fraction of water removed from the reservoir via WURESN which is returned and becomes flow from the reservoir
      outlet (none)
• real *8, dimension(:), allocatable chlar
      chlorophyll-a production coefficient for reservoir (none)

 real *8, dimension(:), allocatable res no3

      amount of nitrate in reservoir (kg N)

    real *8, dimension(:), allocatable res orgn

      amount of organic N in reservoir (kg N)

    real *8, dimension(:), allocatable res orgp

      amount of organic P in reservoir (kg P)

    real *8, dimension(:), allocatable res solp

      amount of soluble P in reservoir (kg P)

    real *8, dimension(:), allocatable res_seci

      secchi-disk depth (m)
• real *8, dimension(:), allocatable res_chla
  real *8, dimension(:), allocatable res esa
      reservoir surface area when reservoir is filled to emergency spillway (ha)

    real *8, dimension(:), allocatable res_nh3

      amount of ammonia in reservoir (kg N)

    real *8, dimension(:), allocatable res no2

      amount of nitrite in reservoir (kg N)

    real *8, dimension(:), allocatable seccir

      water clarity coefficient for reservoir (none)

    real *8, dimension(:), allocatable res_bactp

  real *8, dimension(:), allocatable res bactlp
  real *8, dimension(:), allocatable oflowmn_fps
      minimum reservoir outflow as a fraction of the principal spillway volume (0-1) (fraction)

    real *8, dimension(:), allocatable starg_fps

      target volume as a fraction of the principal spillway volume (.1-5) (fraction)
• real *8, dimension(:), allocatable weirc

    real *8, dimension(:), allocatable weirk

• real *8, dimension(:), allocatable weirw

    real *8, dimension(:), allocatable acoef
```

real *8, dimension(:), allocatable bcoef

```
5.1 parm Module Reference

    real *8, dimension(:), allocatable ccoef

    real *8, dimension(:), allocatable orig_resvol

    real *8, dimension(:), allocatable orig_ressed

    • real *8, dimension(:), allocatable orig_lkpstconc

    real *8, dimension(:), allocatable orig_lkspstconc

    real *8, dimension(:), allocatable orig_ressolp

    real *8, dimension(:), allocatable orig_resorgp

    real *8, dimension(:), allocatable orig_resno3

    real *8, dimension(:), allocatable orig_resno2

    real *8, dimension(:), allocatable orig resnh3

    real *8, dimension(:), allocatable orig_resorgn

    real *8, dimension(:,:), allocatable oflowmn

          minimum daily outlow for the month (read in as m^3/s and converted to m^3/day) (m^3/day)

    real *8, dimension(:,:), allocatable oflowmx

          maximum daily outlow for the month (read in as m^3/s and converted to m^3/day) (m^3/day)

    real *8, dimension(:,:), allocatable starg

          monthly target reservoir storage (needed if IRESCO=2) (read in as 10^4 m^3 and converted to m^3) (m^3)

    real *8, dimension(:), allocatable psetlr1

          phosphorus settling rate for mid-year period (read in as m/year and converted to m/day) (m/day)

    real *8, dimension(:), allocatable psetlr2

          phosphorus settling rate for remainder of year (read in as m/year and converted to m/day) (m/day)

    real *8, dimension(:), allocatable nsetlr1

          nitrogen settling rate for mid-year period (read in as m/year and converted to m/day) (m/day)

    real *8, dimension(:), allocatable nsetlr2

          nitrogen settling rate for remainder of year (read in as m/year and converted to m/day) (m/day)

    real *8, dimension(:,:), allocatable wuresn

          average amount of water withdrawn from reservoir each month for consumptive water use (read in as 10^{\circ}4 m^{\circ}3 and
          converted to m^3 (m^3)
    • real *8, dimension(:,:,:), allocatable res_out
          measured average daily outflow from the reservoir for the month (needed if IRESCO=1) (read in as m^3/s and
          converted to m^3/day (m^3/day)

    integer, dimension(:), allocatable res sub

          number of subbasin reservoir is in (weather for the subbasin is used for the reservoir) (none)
    · integer, dimension(:), allocatable ires1
          beginning of mid-year nutrient settling "season" (none)

    integer, dimension(:), allocatable ires2

          end of mid-year nutrient settling "season" (none)

    integer, dimension(:), allocatable iresco

          outflow simulation code (none):
          0 compute outflow for uncontrolled reservoir with average annual release rate
           1 measured monthly outflow
          2 simulated controlled outflow-target release
          3 measured daily outflow
          4 stage/volume/outflow relationship

    integer, dimension(:), allocatable iyres

          year of the simulation that the reservoir becomes operational (none)

    integer, dimension(:), allocatable mores
```

month the reservoir becomes operational (none)

integer, dimension(:), allocatable iflod1r

beginning month of non-flood season (needed if IRESCO=2) (none)

integer, dimension(:), allocatable iflod2r

ending month of non-flood season (needed if IRESCO=2) (none)

integer, dimension(:), allocatable ndtargr

```
number of days to reach target storage from current reservoir storage (needed if IRESCO=2) (days)

    real *8, dimension(:), allocatable ap_ef

      application efficiency (0-1) (none)

    real *8, dimension(:), allocatable decay f

      exponential of the rate constant for degradation of the pesticide on foliage (none)

    real *8, dimension(:), allocatable skoc

      soil adsorption coefficient normalized for soil organic carbon content ((mg/kg)/(mg/L))
  real *8, dimension(:), allocatable decay s
      exponential of the rate constant for degradation of the pesticide in soil (none)
  real *8, dimension(:), allocatable hlife_f
      half-life of pesticide on foliage (days)

    real *8, dimension(:), allocatable hlife s

     half-life of pesticide in soil (days)

    real *8, dimension(:), allocatable pst_wof

      fraction of pesticide on foliage which is washed-off by a rainfall event (none)

    real *8, dimension(:), allocatable pst_wsol

      solubility of chemical in water (mg/L (ppm))
• real *8, dimension(:), allocatable irramt
      depth of irrigation water applied to HRU (mm H2O)

    real *8, dimension(:), allocatable phusw

  real *8, dimension(:), allocatable phusw_nocrop
• integer, dimension(:), allocatable pstflg
      flag for types of pesticide used in watershed. Array location is pesticide ID number
     0: pesticide not used
      1: pesticide used

    integer, dimension(:), allocatable nope

      sequence number of pesticide in NPNO(:) (none)
· integer, dimension(:), allocatable nop
• integer, dimension(:), allocatable vr skip
• integer, dimension(:), allocatable isweep
• integer, dimension(:), allocatable icrmx

    integer, dimension(:), allocatable nopmx

• integer, dimension(:,:), allocatable mgtop
• integer, dimension(:,:), allocatable idop

    integer, dimension(:,:), allocatable mgt1iop

• integer, dimension(:,:), allocatable mgt2iop

    integer, dimension(:,:), allocatable mgt3iop

    real *8, dimension(:,:), allocatable mgt4op

• real *8, dimension(:,:), allocatable mgt5op
• real *8, dimension(:,:), allocatable mgt6op

    real *8, dimension(:,:), allocatable mgt7op

    real *8, dimension(:,:), allocatable mgt8op

    real *8, dimension(:,:), allocatable mgt9op

    real *8, dimension(:,:), allocatable mgt10iop

  real *8, dimension(:,:), allocatable phu_op
  real *8, dimension(:), allocatable cnyld
      fraction of nitrogen in yield (kg N/kg yield)

    real *8, dimension(:), allocatable rsdco pl

     plant residue decomposition coefficient. The fraction of residue which will decompose in a day assuming optimal
      moisture, temperature, C:N ratio, and C:P ratio (none)

    real *8, dimension(:), allocatable wac21

      1st shape parameter for radiation use efficiency equation (none)
• real *8, dimension(:), allocatable wac22
```

```
2nd shape parameter for radiation use efficiency equation (none)
• real *8, dimension(:), allocatable alai_min
      minimum LAI during winter dormant period (m^2/m^2)

    real *8, dimension(:), allocatable leaf1

      1st shape parameter for leaf area development equation (none)
• real *8, dimension(:), allocatable leaf2
      2nd shape parameter for leaf area development equation (none)
• real *8, dimension(:), allocatable wsyf
      Value of harvest index between 0 and HVSTI which represents the lowest value expected due to water stress
      ((kg/ha)/(kg/ha))
• real *8, dimension(:), allocatable bio e
     biomass-energy ratio. The potential (unstressed) growth rate per unit of intercepted photosynthetically active
      radiation.((kg/ha)/(MJ/m**2))

    real *8, dimension(:), allocatable hvsti

     harvest index: crop yield/aboveground biomass ((kg/ha)/(kg/ha))

    real *8, dimension(:), allocatable t base

      minimum temperature for plant growth (deg C)

    real *8, dimension(:), allocatable t_opt

     optimal temperature for plant growth (deg C)

    real *8, dimension(:), allocatable chtmx

     maximum canopy height (m)

    real *8, dimension(:), allocatable cvm

     natural log of USLE_C (the minimum value of the USLE C factor for the land cover) (none)

    real *8, dimension(:), allocatable gsi

     maximum stomatal conductance (m/s)

    real *8, dimension(:), allocatable vpd2

      rate of decline in stomatal conductance per unit increase in vapor pressure deficit ((m/s)*(1/kPa))

    real *8, dimension(:), allocatable wavp

      rate of decline in radiation use efficiency as a function of vapor pressure deficit (none)

    real *8, dimension(:), allocatable bio_leaf

      fraction of leaf/needle biomass that drops during dormancy (for trees only) (none)

    real *8, dimension(:), allocatable blai

     maximum (potential) leaf area index (none)

    real *8, dimension(:), allocatable cpyld

      fraction of phosphorus in yield (kg P/kg yield)

    real *8, dimension(:), allocatable dlai

      fraction of growing season when leaf area declines (none)

    real *8, dimension(:), allocatable rdmx

      maximum root depth of plant (m)

    real *8, dimension(:), allocatable bio_n1

      1st shape parameter for plant N uptake equation (none)

    real *8, dimension(:), allocatable bio_n2

      2nd shape parameter for plant N uptake equation (none)
• real *8, dimension(:), allocatable bio_p1
      1st shape parameter for plant P uptake equation (none)

    real *8, dimension(:), allocatable bio p2

      2st shape parameter for plant P uptake equation (none)

    real *8, dimension(:), allocatable bm_dieoff

      fraction above ground biomass that dies off at dormancy (fraction)

    real *8, dimension(:), allocatable bmx trees
```

real *8, dimension(:), allocatable ext_coef

 real *8, dimension(:), allocatable rsr1 initial root to shoot ratio at the beg of growing season real *8, dimension(:), allocatable rsr2 root to shoot ratio at the end of the growing season real *8, dimension(:), allocatable pltnfr1 nitrogen uptake parameter #1: normal fraction of N in crop biomass at emergence (kg N/kg biomass) real *8, dimension(:), allocatable pltnfr2 nitrogen uptake parameter #2: normal fraction of N in crop biomass at 0.5 maturity (kg N/kg biomass) real *8, dimension(:), allocatable pltnfr3 nitrogen uptake parameter #3: normal fraction of N in crop biomass at maturity (kg N/kg biomass) real *8, dimension(:), allocatable pltpfr1 phosphorus uptake parameter #1: normal fraction of P in crop biomass at emergence (kg P/kg biomass) real *8, dimension(:), allocatable pltpfr2 phosphorus uptake parameter #2: normal fraction of P in crop biomass at 0.5 maturity (kg P/kg biomass) real *8, dimension(:), allocatable pltpfr3 phosphorus uptake parameter #3: normal fraction of P in crop biomass at maturity (kg P/kg biomass) integer, dimension(:), allocatable idc crop/landcover category: 1 warm season annual legume 2 cold season annual legume 3 perennial legume 4 warm season annual 5 cold season annual 6 perennial 7 trees · integer, dimension(:), allocatable mat yrs real *8, dimension(:), allocatable bactpdb concentration of persistent bacteria in manure (fertilizer) (cfu/g manure) real *8, dimension(:), allocatable fminn fraction of fertilize/manure that is mineral N (NO3 + NH3) (kg minN/kg fert) real *8, dimension(:), allocatable forgn fraction of organic N in fertilizer/manure (kg orgN/kg fert) real *8, dimension(:), allocatable forgp fraction of fertilizer/manure that is organic P (kg orgP/kg fert) real *8, dimension(:), allocatable bactkddb fraction of bacteria in solution (the remaining fraction is sorbed to soil particles) (none): 1: all bacteria in solution 0: all bacteria sorbed to soil particles real *8, dimension(:), allocatable bactlpdb concentration of less persistent bacteria in manure (fertilizer) (cfu/g manure) real *8, dimension(:), allocatable fminp fraction of fertilizer that is mineral P in fertilizer/manure (kg minP/kg fert) real *8, dimension(:), allocatable fnh3n fraction of mineral N in fertilizer that is NH3-N in fertilizer/manure (kgNH3-N/kgminN) • character(len=8), dimension(200) fertnm name of fertilizer • real *8, dimension(:), allocatable curbden curb length density in HRU (km/ha) real *8, dimension(:), allocatable dirtmx maximum amount of solids allowed to build up on impervious surfaces (kg/curb km) real *8, dimension(:), allocatable fimp fraction of HRU area that is impervious (both directly and indirectly connected)(fraction)

```
    real *8, dimension(:), allocatable urbcoef

      wash-off coefficient for removal of constituents from an impervious surface (1/mm)

    real *8, dimension(:), allocatable thalf

      time for the amount of solids on impervious areas to build up to 1/2 the maximum level (days)

    real *8, dimension(:), allocatable tnconc

      concentration of total nitrogen in suspended solid load from impervious areas (mg N/kg sed)

    real *8, dimension(:), allocatable tno3conc

      concentration of NO3-N in suspended solid load from impervious areas (mg NO3-N/kg sed)

    real *8, dimension(:), allocatable tpconc

      concentration of total phosphorus in suspended solid load from impervious areas (mg P/kg sed)

    real *8, dimension(:), allocatable fcimp

      fraction of HRU area that is classified as directly connected impervious (fraction)

    real *8, dimension(:), allocatable urbcn2

      SCS curve number for moisture condition II in impervious areas (none)

 real *8 fr curb

      availability factor, the fraction of the curb length that is sweepable (none)

 real *8 frt kg

      amount of fertilizer applied to HRU (kg/ha)
real *8 pst_dep
      depth of pesticide in the soil (mm)
· real *8 sweepeff

    real *8, dimension(:), allocatable ranrns hru

· integer, dimension(:), allocatable itill

    real *8, dimension(:), allocatable deptil

      depth of mixing caused by tillage operation (mm)
• real *8, dimension(:), allocatable effmix
      mixing efficiency of tillage operation (none)

    real *8, dimension(:), allocatable ranrns

      random roughness of a given tillage operation (mm)

    character(len=8), dimension(550) tillnm

      8-character name for the tillage operation

    real *8, dimension(:), allocatable rnum1s

      For ICODES equal to (none)
      0,1,3,5,9: not used
      2: Fraction of flow in channel
      4: amount of water transferred (as defined by INUM4S)
      7,8,10,11: drainage area in square kilometers associated with the record file
      12: rearation coefficient.

    real *8, dimension(:), allocatable hyd dakm

      total drainage area of hydrograph in square kilometers (km<sup>2</sup>)

    real *8, dimension(:,:), allocatable varoute

    real *8, dimension(:,:), allocatable shyd

• real *8, dimension(:,:), allocatable vartran

    real *8, dimension(:,:,:), allocatable hhvaroute

    integer, dimension(:), allocatable icodes

      routing command code (none):
      0 = finish
      1 = subbasin
      2 = route
      3 = routres
      4 = transfer
      5 = add
      6 = rechour
      7 = recmon
```

```
8 = recyear
     9 = save
      10 = recday
      11 = reccnst
      12 = structure
      13 = apex
      14 = saveconc
      15 =
· integer, dimension(:), allocatable ihouts
     For ICODES equal to (none)
     0: not used
      1,2,3,5,7,8,10,11: hydrograph storage location number
      4: departure type (1=reach, 2=reservoir)
     9: hydrograph storage location of data to be printed to event file
      14:hydrograph storage location of data to be printed to saveconc file.
• integer, dimension(:), allocatable inum1s
      For ICODES equal to (none)
     0: not used
      1: subbasin number
     2: reach number
     3: reservoir number
      4: reach or res # flow is diverted from
     5: hydrograph storage location of 1st dataset to be added
      7,8,9,10,11,14: file number.
• integer, dimension(:), allocatable inum2s
      For ICODES equal to (none)
      0,1,7,8,10,11: not used
      2,3: inflow hydrograph storage location
      4: destination type (1=reach, 2=reservoir)
     5: hydrograph storage location of 2nd dataset to be added
     9,14:print frequency (0=daily, 1=hourly)
• integer, dimension(:), allocatable inum3s
      For ICODES equal to (none)
     0,1,5,7,8,10,11: not used
     2,3: subbasin number 4: destination number. Reach or reservoir receiving water
      9: print format (0=normal, fixed format; 1=txt format for AV interface, recday)

    integer, dimension(:), allocatable inum4s

     For ICODES equal to (none)
     0,2,3,5,7,8,9,10,11: not used
      1: GIS code printed to output file (optional)
      4: rule code governing transfer of water (1=fraction transferred out, 2=min volume or flow left, 3=exact amount trans-
      ferred)
• integer, dimension(:), allocatable inum5s
• integer, dimension(:), allocatable inum6s
• integer, dimension(:), allocatable inum7s
• integer, dimension(:), allocatable inum8s
• integer, dimension(:), allocatable subed
• character(len=10), dimension(:), allocatable recmonps
• character(len=10), dimension(:), allocatable recenstps
• character(len=5), dimension(:), allocatable subnum
• character(len=4), dimension(:), allocatable hruno

    real *8, dimension(:), allocatable grwat_n

     Mannings's n for grassed waterway (none)

    integer, dimension(:), allocatable grwat i

      flag for the simulation of grass waterways (none)
      = 0 inactive
      = 1 active

    real *8, dimension(:), allocatable grwat_l
```

```
length of grass waterway (km)

    real *8, dimension(:), allocatable grwat_w

      average width of grassed waterway (m)

    real *8, dimension(:), allocatable grwat d

      depth of grassed waterway from top of bank to bottom (m)
real *8, dimension(:), allocatable grwat_s
      average slope of grassed waterway channel (m)

    real *8, dimension(:), allocatable grwat_spcon

      linear parameter for calculating sediment in grassed waterways (none)
• real *8, dimension(:), allocatable tc_gwat

    real *8, dimension(:), allocatable pot_volmm

• real *8, dimension(:), allocatable pot_tilemm

    real *8, dimension(:), allocatable pot_volxmm

    real *8, dimension(:), allocatable pot_fr

      fraction of HRU area that drains into pothole (km^2/km^2)

    real *8, dimension(:), allocatable pot_tile

     average daily outflow to main channel from tile flow if drainage tiles are installed in pothole (needed only if current
      HRU is IPOT) (m^3/s)

    real *8, dimension(:), allocatable pot_vol

      initial or current volume of water stored in the depression/impounded area (read in as mm and converted to m^3)
      (needed only if current HRU is IPOT) (mm or m<sup>\(^{\)</sup>3 H20)

    real *8, dimension(:), allocatable potsa

      surface area of impounded water body (ha)

    real *8, dimension(:), allocatable pot_volx

      maximum volume of water stored in the depression/impounded area (read in as mm and converted to m^3) (needed
      only if current HRU is IPOT) (mm)

    real *8, dimension(:), allocatable wfsh

      wetting front matric potential (average capillary suction at wetting front) (mm)
• real *8, dimension(:), allocatable potflwi

    real *8, dimension(:), allocatable potsedi

    real *8, dimension(:), allocatable pot_no3l

      nitrate decay rate in impounded area (1/day)

    real *8, dimension(:), allocatable pot nsed

      normal sediment concentration in impounded water (needed only if current HRU is IPOT)(mg/L)

    real *8, dimension(:), allocatable gwno3

      nitrate-N concentration in groundwater loading to reach (mg N/L)
• real *8, dimension(:), allocatable newrti
      infiltration rate for last time step from the previous day (mm/hr)

    real *8, dimension(:), allocatable fsred

      reduction in bacteria loading from filter strip (none)

    real *8, dimension(:), allocatable pot_sed

    real *8, dimension(:), allocatable pot no3

    real *8, dimension(:), allocatable tmpavp

    real *8, dimension(:), allocatable dis stream

     average distance to stream (m)
• real *8, dimension(:), allocatable evpot
     pothole evaporation coefficient (none)

    real *8, dimension(:), allocatable pot_solpl

    real *8, dimension(:), allocatable sed con
```

real *8, dimension(:), allocatable orgn_con
 real *8, dimension(:), allocatable orgp_con
 real *8, dimension(:), allocatable pot_k

hydraulic conductivity of soil surface of pothole defaults to conductivity of upper soil $(0.\leftarrow$ 01-10.) real *8, dimension(:), allocatable soln_con real *8, dimension(:), allocatable solp_con • real *8, dimension(:), allocatable n reduc nitrogen uptake reduction factor (not currently used; defaulted 300.) real *8, dimension(:), allocatable n_lag lag coefficient for calculating nitrate concentration in subsurface drains (0.001 - 1.0) (dimensionless) real *8, dimension(:), allocatable n In power function exponent for calculating nitrate concentration in subsurface drains (1.0 - 3.0) (dimensionless) real *8, dimension(:), allocatable n Inco coefficient for power function for calculating nitrate concentration in subsurface drains (0.5 - 4.0) (dimensionless) • integer, dimension(:), allocatable ioper • integer, dimension(:), allocatable ngrwat real *8, dimension(:), allocatable usle Is USLE equation length slope (LS) factor (none) real *8, dimension(:), allocatable filterw filter strip width for bacteria transport (m) real *8, dimension(:), allocatable phuacc fraction of plant heat units accumulated (none) real *8, dimension(:), allocatable sumix sum of all tillage mixing efficiencies for HRU operation (none) real *8, dimension(:), allocatable epco plant water uptake compensation factor (0-1) (none) • real *8, dimension(:), allocatable esco soil evaporation compensation factor (0-1) (none) real *8, dimension(:), allocatable hru_slp average slope steepness (m/m) • real *8, dimension(:), allocatable slsubbsn average slope length for subbasin (m) • real *8, dimension(:), allocatable erorgn organic N enrichment ratio, if left blank the model will calculate for every event (none) real *8, dimension(:), allocatable erorgp organic P enrichment ratio, if left blank the model will calculate for every event (none) • real *8, dimension(:), allocatable biomix biological mixing efficiency. Mixing of soil due to activity of earthworms and other soil biota. Mixing is performed at the end of every calendar year (none) real *8, dimension(:), allocatable pnd seci secchi-disk depth of pond (m) real *8, dimension(:), allocatable canmx maximum canopy storage (mm H2O) real *8, dimension(:), allocatable divmax maximum daily irrigation diversion from the reach (when IRRSC=1 or IRR=3): when value is positive the units are mm H2O; when the value is negative, the units are $(10^{\circ} 4 \text{ m}^{\circ} 3 \text{ H2O})$ (mm H2O or $10^{\circ} 4 \text{ m}^{\circ} 3 \text{ H2O}$) real *8, dimension(:), allocatable flowmin minimum instream flow for irrigation diversions when IRRSC=1, irrigation water will be diverted only when streamflow is at or above FLOWMIN (m[^]3/s) real *8, dimension(:), allocatable usle p USLE equation support practice (P) factor (none) real *8, dimension(:), allocatable lat sed sediment concentration in lateral flow (g/L)

real *8, dimension(:), allocatable rch_dakm

```
total drainage area contributing to flow at the outlet (pour point) of the reach in square kilometers (km^2)

    real *8, dimension(:), allocatable cn1

      SCS runoff curve number for moisture condition I (none)

    real *8, dimension(:), allocatable pnd no3s

      amount of nitrate originating from lateral flow in pond at end of day (kg N)

    real *8, dimension(:), allocatable lat ttime

      lateral flow travel time or exponential of the lateral flow travel time (days or none)
 real *8, dimension(:), allocatable cn2
      SCS runoff curve number for moisture condition II (none)

    real *8, dimension(:), allocatable flowfr

      fraction of available flow in reach that is allowed to be applied to the HRU (none)

    real *8, dimension(:), allocatable sol_zmx

      maximum rooting depth (mm)
• real *8, dimension(:), allocatable tile_ttime
      exponential of the tile flow travel time (none)

    real *8, dimension(:), allocatable slsoil

      slope length for lateral subsurface flow (m)

    real *8, dimension(:), allocatable gwminp

      soluble P concentration in groundwater loading to reach (mg P/L)

    real *8, dimension(:), allocatable sol cov

      amount of residue on soil surface (kg/ha)

    real *8, dimension(:), allocatable sed_stl

      fraction of sediment remaining suspended in impoundment after settling for one day (kg/kg)

    real *8, dimension(:), allocatable ov_n

      Manning's "n" value for overland flow (none)

    real *8, dimension(:), allocatable pnd no3

      amount of nitrate originating from surface runoff in pond at end of day (kg N)

    real *8, dimension(:), allocatable pnd solp

      amount of soluble P originating from surface runoff in pond at end of day (kg P)

    real *8, dimension(:), allocatable yldanu

      annual yield (dry weight) in the HRU (metric tons/ha)

    real *8, dimension(:), allocatable driftco

      coefficient for pesticide drift directly onto stream (none)

    real *8, dimension(:), allocatable pnd orgn

      amount of organic N originating from surface runoff in pond at end of day (kg N)

    real *8, dimension(:), allocatable pnd_orgp

      amount of organic P originating from surface runoff in pond at end of day (kg P)
• real *8, dimension(:), allocatable cn3
      SCS runoff curve number for moisture condition III (none)

    real *8, dimension(:), allocatable twlpnd

      water lost through seepage from ponds on day in HRU (mm H2O)

    real *8, dimension(:), allocatable twlwet

      water lost through seepage from wetlands on day in HRU (mm H2O)

    real *8, dimension(:), allocatable hru fr

      fraction of subbasin area contained in HRU (km<sup>2</sup>/km<sup>2</sup>)

    real *8, dimension(:), allocatable sol_sumul

      amount of water held in soil profile at saturation (mm H2O)

    real *8, dimension(:), allocatable pnd_chla

      amount of chlorophyll-a in pond at end of day (kg chl_a)

    real *8, dimension(:), allocatable hru km

      area of HRU in square kilometers (km<sup>2</sup>)
```

```
    real *8, dimension(:), allocatable bio_ms

      land cover/crop biomass (dry weight) (kg/ha)

    real *8, dimension(:), allocatable sol alb

      albedo when soil is moist (none)

    real *8, dimension(:), allocatable strsw

      fraction of potential plant growth achieved on the day where the reduction is caused by water stress (none)
• real *8, dimension(:), allocatable pnd fr
      fraction of HRU/subbasin area that drains into ponds (none)

    real *8, dimension(:), allocatable pnd k

      hydraulic conductivity through bottom of ponds (mm/hr)

    real *8, dimension(:), allocatable pnd psa

      surface area of ponds when filled to principal spillway (ha)

    real *8, dimension(:), allocatable pnd_pvol

      runoff volume from catchment area needed to fill the ponds to the principal spillway (UNIT CHANGE!) (10<sup>\(\Delta\)</sup> 4 m<sup>\(\Delta\)</sup> 3
      H2O \text{ or } m^{\wedge} 3 \text{ } H2O)

    real *8, dimension(:), allocatable pnd esa

      surface area of ponds when filled to emergency spillway (ha)

    real *8, dimension(:), allocatable pnd_evol

      runoff volume from catchment area needed to fill the ponds to the emergency spillway (UNIT CHANGE!) (10^4 m^3
      H2O \text{ or } m^3 H2O)

    real *8, dimension(:), allocatable pnd vol

      volume of water in ponds (UNIT CHANGE!) (10<sup>^</sup>4 m<sup>^</sup>3 H2O or m<sup>^</sup>3 H2O)
• real *8, dimension(:), allocatable yldaa
      average annual yield (dry weight) in the HRU (metric tons)

    real *8, dimension(:), allocatable pnd nsed

      normal sediment concentration in pond water (UNIT CHANGE!) (mg/kg or kg/kg)

    real *8, dimension(:), allocatable pnd_sed

      sediment concentration in pond water (UNIT CHANGE!) (mg/kg or kg/kg)

    real *8, dimension(:), allocatable strsa

    real *8, dimension(:), allocatable dep_imp

    real *8, dimension(:), allocatable evpnd

• real *8, dimension(:), allocatable evwet

    real *8, dimension(:), allocatable wet fr

      fraction of HRU/subbasin area that drains into wetlands (none)

    real *8, dimension(:), allocatable wet_k

      hydraulic conductivity of bottom of wetlands (mm/hr)

    real *8, dimension(:), allocatable wet nsa

      surface area of wetlands in subbasin at normal water level (ha)

    real *8, dimension(:), allocatable wet_nvol

      runoff volume from catchment area needed to fill wetlands to normal water level (UNIT CHANGE!) (10^4 m^3 H2O
      or m^3 H20
· integer, dimension(:), allocatable iwetgw

    integer, dimension(:), allocatable iwetile

• real *8, dimension(:), allocatable wet_mxsa
      surface area of wetlands at maximum water level (ha)

    real *8, dimension(:), allocatable wet mxvol

      runoff volume from catchment area needed to fill wetlands to maximum water level (UNIT CHANGE!) (10^4 m^3
      H2O or m^3 H2O)

    real *8, dimension(:), allocatable wet vol

      volume of water in wetlands (UNIT CHANGE!) (10<sup>\(\Delta\)</sup> 4 m<sup>\(\Delta\)</sup> 3 H2O or m<sup>\(\Delta\)</sup> 3 H2O)

    real *8, dimension(:), allocatable wet_nsed

      normal sediment concentration in wetland water (UNIT CHANGE!) (mg/kg or kg/kg)
```

```
    real *8, dimension(:), allocatable wet_sed

      sediment concentration in wetland water (UNIT CHANGE!) (mg/L or kg/L)

    real *8, dimension(:), allocatable bp1

      1st shape parameter for pond surface area equation (none)

    real *8, dimension(:), allocatable bp2

      2nd shape parameter for the pond surface area equation (none)

    real *8, dimension(:), allocatable sci

      retention coefficient for CN method based on plant ET (none)

    real *8, dimension(:), allocatable smx

      retention coefficient for CN method based on soil moisture (none)

    real *8, dimension(:), allocatable bw1

      1st shape parameter for the wetland surface area equation (none)

    real *8, dimension(:), allocatable bw2

      2nd shape parameter for the wetland surface area equation (none)

    real *8, dimension(:), allocatable bactpq

      persistent bacteria in soil solution (# cfu/m^2)

    real *8, dimension(:), allocatable cnday

      curve number for current day, HRU and at current soil moisture (none)

    real *8, dimension(:), allocatable bactlp plt

      less persistent bacteria on foliage (# cfu/m^{\wedge}2)

    real *8, dimension(:), allocatable bactp_plt

      persistent bacteria on foliage (# cfu/m^2)

    real *8, dimension(:), allocatable auto eff

      fertilizer application efficiency calculated as the amount of N applied divided by the amount of N removed at harvest
      (none)

    real *8, dimension(:), allocatable secciw

      water clarity coefficient for wetland (none)

    real *8, dimension(:), allocatable sol_sw

      amount of water stored in soil profile on current day (mm H2O)

    real *8, dimension(:), allocatable bactlpq

      less persistent bacteria in soil solution (# cfu/m^{\wedge}2)
• real *8, dimension(:), allocatable chlaw
      chlorophyll-a production coefficient for wetland (none)

    real *8, dimension(:), allocatable tmpav

      average air temperature on current day in HRU (deg C)

    real *8, dimension(:), allocatable bactlps

      less persistent bacteria attached to soil particles (# cfu/m^2)

    real *8, dimension(:), allocatable bactps

      persistent bacteria attached to soil particles (# cfu/m^2)

    real *8, dimension(:), allocatable sno_hru

      amount of water stored as snow in HRU on current day (mm H2O)

    real *8, dimension(:), allocatable wet_orgn

      amount of organic N originating from surface runoff in wetland at end of day (kg N)

    real *8, dimension(:), allocatable hru_ra

      solar radiation for the day in HRU (MJ/m^{\wedge}2)

    real *8, dimension(:), allocatable subp

      precipitation for the day in HRU (mm H2O)

    real *8, dimension(:), allocatable rsdin

      initial residue cover (kg/ha)

 real *8, dimension(:), allocatable tmn

      minimum air temperature on current day in HRU (deg C)
```

```
 real *8, dimension(:), allocatable tmx

      maximum air temperature on current day in HRU (deg C)
• real *8, dimension(:), allocatable tmp hi
• real *8, dimension(:), allocatable tmp lo

    real *8, dimension(:), allocatable usle_k

      USLE equation soil erodibility (K) factor (none)
• real *8, dimension(:), allocatable tconc
      time of concentration for HRU (hour)

    real *8, dimension(:), allocatable hru_rmx

      maximum possible solar radiation for the day in HRU (MJ/m^{\wedge}2)

    real *8, dimension(:), allocatable rwt

      fraction of total plant biomass that is in roots (none)

    real *8, dimension(:), allocatable olai

  real *8, dimension(:), allocatable usle_cfac
· real *8, dimension(:), allocatable usle_eifac

    real *8, dimension(:), allocatable sol sumfc

      amount of water held in soil profile at field capacity (mm H2O)

    real *8, dimension(:), allocatable t_ov

      time for flow from farthest point in subbasin to enter a channel (hour)

    real *8, dimension(:), allocatable anano3

      total amount of NO3 applied during the year in auto-fertilization (kg N/ha)

    real *8, dimension(:), allocatable aird

      amount of water applied to HRU on current day (mm H2O)

    real *8, dimension(:), allocatable wet_orgp

      amount of organic P originating from surface runoff in wetland at end of day (kg P)

    real *8, dimension(:), allocatable sol_avpor

      average porosity for entire soil profile (none)
• real *8, dimension(:), allocatable usle_mult
      product of USLE K,P,LS,exp(rock) (none)
• real *8, dimension(:), allocatable rhd
      relative humidity for the day in HRU (none)

 real *8, dimension(:), allocatable u10

      wind speed (measured at 10 meters above surface) for the day in HRU (m/s)

    real *8, dimension(:), allocatable cht

      canopy height (m)

    real *8, dimension(:), allocatable aairr

      average annual amount of irrigation water applied to HRU (mm H2O)

    real *8, dimension(:), allocatable lai_aamx

      maximum leaf area index for the entire period of simulation in the HRU (none)

    real *8, dimension(:), allocatable deepirr

      amount of water removed from deep aquifer for irrigation (mm H2O)
• real *8, dimension(:), allocatable shallirr
      amount of water removed from shallow aquifer for irrigation (mm H2O)

    real *8, dimension(:), allocatable ch | 11

      longest tributary channel length in subbasin (km)

    real *8, dimension(:), allocatable wet no3

      amount of nitrate originating from surface runoff in wetland at end of day (kg N)

    real *8, dimension(:), allocatable ovrlnd

      overland flow onto HRU from upstream routing unit (mm H2O)

    real *8, dimension(:), allocatable canstor
```

amount of water held in canopy storage (mm H2O)

```
    real *8, dimension(:), allocatable irr_mx

      maximum irrigation amount per auto application (mm)

    real *8, dimension(:), allocatable auto wstr

      water stress factor which triggers auto irrigation (none or mm)

    real *8, dimension(:), allocatable cfrt_id

      fertilizer/manure id number from database (none)

    real *8, dimension(:), allocatable cfrt_kg

      amount of fertilzier applied to HRU on a given day (kg/ha)
· real *8, dimension(:), allocatable cpst_id
• real *8, dimension(:), allocatable cpst_kg
 real *8, dimension(:), allocatable irr asq
      surface runoff ratio

    real *8, dimension(:), allocatable irr_eff

• real *8, dimension(:), allocatable irrsq
      surface runoff ratio (0-1) .1 is 10% surface runoff (frac)

    real *8, dimension(:), allocatable irrsalt

      concentration of salt in irrigation water (mg/kg)
• real *8, dimension(:), allocatable irrefm

    real *8, dimension(:), allocatable bio eat

      dry weight of biomass removed by grazing daily ((kg/ha)/day)

    real *8, dimension(:), allocatable bio trmp

     dry weight of biomass removed by trampling daily ((kg/ha)/day)

    integer, dimension(:), allocatable ipst freq

      number of days between applications (days)
· integer, dimension(:), allocatable ifrt_freq

    integer, dimension(:), allocatable irr_noa

• integer, dimension(:), allocatable irr sc

    integer, dimension(:), allocatable irr_no

    integer, dimension(:), allocatable imp_trig

      release/impound action code (none):
      0 begin impounding water
      1 release impounded water
· integer, dimension(:), allocatable fert days
  integer, dimension(:), allocatable irr_sca

    integer, dimension(:), allocatable idplt

      land cover/crop identification code for first crop grown in HRU (the only crop if there is no rotation) (from crop.dat)
      (none)
integer, dimension(:), allocatable pest_days
· integer, dimension(:), allocatable wstrs id

    real *8, dimension(:,:), allocatable bio_aahv

• real *8, dimension(:), allocatable cumei
· real *8, dimension(:), allocatable cumeira
• real *8, dimension(:), allocatable cumrt
• real *8, dimension(:), allocatable cumrai

    real *8, dimension(:), allocatable wet_solp

      amount of soluble P originating from surface runoff in wetland at end of day (kg P)

    real *8, dimension(:), allocatable wet chla

      amount of chlorophyll-a in wetland at end of day (kg chla)

    real *8, dimension(:), allocatable wet_no3s

      amount of nitrate originating from lateral flow in wetland at end of day (kg N)

    real *8, dimension(:), allocatable pstsol

      soluble pesticide leached from bottom of soil profile (kg pst/ha)
```

```
    real *8, dimension(:), allocatable pnd_no3g

      amount of nitrate originating from groundwater in pond at end of day (kg N)

    real *8, dimension(:), allocatable wet seci

      secchi-disk depth in wetland at end of day (m)
 real *8, dimension(:), allocatable delay
      groundwater delay: time required for water leaving the bottom of the root zone to reach the shallow aquifer (days)

    real *8, dimension(:), allocatable gwht

      groundwater height (m)

    real *8, dimension(:), allocatable gw_q

      groundwater contribution to streamflow from HRU on current day (mm H2O)

    real *8, dimension(:), allocatable pnd_solpg

      amount of soluble P originating from groundwater in pond at end of day (kg P)

    real *8, dimension(:), allocatable alpha_bf

      alpha factor for groundwater recession curve (1/days)

    real *8, dimension(:), allocatable alpha_bfe

      \exp(-alpha_b f) (none)

    real *8, dimension(:), allocatable gw_spyld

      specific yield for shallow aguifer (m^{\wedge} 3/m^{\wedge} 3)
real *8, dimension(:), allocatable alpha_bf_d
      alpha factor for groudwater recession curve of the deep aquifer (1/days)
• real *8, dimension(:), allocatable alpha bfe d
      \exp(-alpha_b f_d) for deep aquifer (none)

    real *8, dimension(:), allocatable gw_qdeep

  real *8, dimension(:), allocatable gw_delaye
      \exp(-1/delay) (none)

    real *8, dimension(:), allocatable gw_revap

      revap coeff: this variable controls the amount of water moving from the shallow aguifer to the root zone as a result of
      soil moisture depletion (none)

    real *8, dimension(:), allocatable rchrg_dp

      recharge to deep aquifer: the fraction of root zone percolation that reaches the deep aquifer (none)

    real *8, dimension(:), allocatable anion excl

      fraction of porosity from which anions are excluded

    real *8, dimension(:), allocatable revapmn

      threshold depth of water in shallow aquifer required to allow revap to occur (mm H2O)

    real *8, dimension(:), allocatable rchrg

  real *8, dimension(:), allocatable bio_min
      minimum plant biomass for grazing (kg/ha)

    real *8, dimension(:), allocatable ffc

      initial HRU soil water content expressed as fraction of field capacity (none)
• real *8, dimension(:), allocatable surgsolp

    real *8, dimension(:), allocatable deepst

      depth of water in deep aquifer (mm H2O)

    real *8, dimension(:), allocatable shallst

      depth of water in shallow aquifer in HRU (mm H2O)

    real *8, dimension(:), allocatable wet_solpg

      amount of soluble P originating from groundwater in wetland at end of day (kg P)

    real *8, dimension(:), allocatable cklsp

  real *8, dimension(:), allocatable rchrg src
  real *8, dimension(:), allocatable trapeff
      filter strip trapping efficiency (used for everything but bacteria) (none)

    real *8, dimension(:), allocatable sol_avbd
```

```
average bulk density for soil profile (Mg/m<sup>^</sup>3)

    real *8, dimension(:), allocatable wet_no3g

      amount of nitrate originating from groundwater in wetland at end of day (kg N)

    real *8, dimension(:), allocatable tdrain

      time to drain soil to field capacity yield used in autofertilization (hours)

    real *8, dimension(:), allocatable gwqmn

      threshold depth of water in shallow aquifer required before groundwater flow will occur (mm H2O)

    real *8, dimension(:), allocatable snotmp

      temperature of snow pack in HRU (deg C)
• real *8, dimension(:), allocatable ppint

    real *8, dimension(:), allocatable gdrain

      drain tile lag time: the amount of time between the transfer of water from the soil to the drain tile and the release of
      the water from the drain tile to the reach (hours)

    real *8, dimension(:), allocatable ddrain

      depth to the sub-surface drain (mm)

    real *8, dimension(:), allocatable sol_crk

      crack volume potential of soil (none)

    real *8, dimension(:), allocatable brt

      fraction of surface runoff within the subbasin which takes 1 day or less to reach the subbasin outlet (none)
• real *8, dimension(:), allocatable dayl
      day length (hours)

    real *8, dimension(:), allocatable sstmaxd

      static maximum depressional storage; read from .sdr (mm)

 real *8, dimension(:), allocatable re

      effective radius of drains (mm)

    real *8, dimension(:), allocatable sdrain

      distance between two drain tubes or tiles (mm)

    real *8, dimension(:), allocatable ddrain_hru

  real *8, dimension(:), allocatable drain co
      drainage coefficient (mm/day)

    real *8, dimension(:), allocatable latksatf

      multiplication factor to determine conk(j1,j) from sol_k(j1,j) for HRU (none)

    real *8, dimension(:), allocatable pc

      pump capacity (default pump capacity = 1.042mm/hr or 25mm/day) (mm/hr)
• real *8, dimension(:), allocatable stmaxd
• real *8, dimension(:), allocatable rnd3
      random number between 0.0 and 1.0 (none)

    real *8, dimension(:), allocatable rnd2

      random number between 0.0 and 1.0 (none)
• real *8, dimension(:), allocatable twash

    real *8, dimension(:), allocatable sol_cnsw

    real *8, dimension(:), allocatable doxq

    real *8, dimension(:), allocatable rnd8

      random number between 0.0 and 1.0 (none)
• real *8, dimension(:), allocatable rnd9
      random number between 0.0 and 1.0 (none)

    real *8, dimension(:), allocatable percn

    real *8, dimension(:), allocatable sol_sumwp
```

real *8, dimension(:), allocatable qdr

real *8, dimension(:), allocatable tauton
 real *8, dimension(:), allocatable tautop

total amount of water entering main channel for day from HRU (mm H2O)

real *8, dimension(:), allocatable cbodu
 real *8, dimension(:), allocatable chl_a

```
• real *8, dimension(:), allocatable tfertn

    real *8, dimension(:), allocatable tfertp

• real *8, dimension(:), allocatable tgrazn

    real *8, dimension(:), allocatable tgrazp

    real *8, dimension(:), allocatable latq

      total lateral flow in soil profile for the day in HRU (mm H2O)

    real *8, dimension(:), allocatable latno3

    real *8, dimension(:), allocatable minpgw

    real *8, dimension(:), allocatable no3gw

• real *8, dimension(:), allocatable npInt
• real *8, dimension(:), allocatable tileq
• real *8, dimension(:), allocatable tileno3

    real *8, dimension(:), allocatable sedminpa

  real *8, dimension(:), allocatable sedminps

    real *8, dimension(:), allocatable sedorgn

· real *8, dimension(:), allocatable sedyld
     soil loss caused by water erosion for day in HRU (metric tons)

    real *8, dimension(:), allocatable sepbtm

     percolation from bottom of soil profile for the day in HRU (mm H2O)
• real *8, dimension(:), allocatable sedorgp
  real *8, dimension(:), allocatable strsn
  real *8, dimension(:), allocatable surfq
      surface runoff generated in HRU on the current day (mm H2O)
• real *8, dimension(:), allocatable strsp
  real *8, dimension(:), allocatable strstmp
• real *8, dimension(:), allocatable surqno3

    real *8, dimension(:), allocatable hru ha

     area of HRU in hectares (ha)

    real *8, dimension(:), allocatable hru dafr

     fraction of total watershed area contained in HRU (km2/km2)

    real *8, dimension(:), allocatable tcfrtn

• real *8, dimension(:), allocatable tcfrtp
  real *8, dimension(:), allocatable drydep no3
      atmospheric dry deposition of nitrates (kg/ha/yr)

    real *8, dimension(:), allocatable drydep_nh4

      atmospheric dry deposition of ammonia (kg/ha/yr)
• real *8, dimension(:), allocatable bio yrms
      annual biomass (dry weight) in the HRU (metric tons/ha)

    real *8, dimension(:), allocatable phubase

     base zero total heat units (used when no land cover is growing) (heat units)

    real *8, dimension(:), allocatable hvstiadi

      optimal harvest index for current time during growing season ((kg/ha)/(kg/ha))

    real *8, dimension(:), allocatable laiday

     leaf area index for HRU (m^2/m^2)

    real *8, dimension(:), allocatable chlap

      chlorophyll-a production coefficient for pond (none)

    real *8, dimension(:), allocatable pnd_psed

     amount of mineral P attached to sediment originating from surface runoff in pond at end of day (kg P)

    real *8, dimension(:), allocatable laimxfr

    real *8, dimension(:), allocatable seccip
```

```
water clarity coefficient for pond (none)

    real *8, dimension(:), allocatable plantn

      amount of nitrogen in plant biomass (kg N/ha)

    real *8, dimension(:), allocatable plt et

      actual ET simulated during life of plant (mm H2O)
real *8, dimension(:), allocatable wet_psed
      amount of mineral P attached to sediment originating from surface runoff in wetland at end of day (kg P)

    real *8, dimension(:), allocatable bio aams

      average annual biomass (dry weight) in the HRU (metric tons)

    real *8, dimension(:), allocatable plantp

      amount of phosphorus in plant biomass (kg P/ha)

    real *8, dimension(:), allocatable plt_pet

      potential ET simulated during life of plant (mm H2O)

    real *8, dimension(:), allocatable dormhr

      time threshold used to define dormant period for plant (when daylength is within the time specified by dl from the
      minimum daylength for the area, the plant will go dormant) (hour)

    real *8, dimension(:), allocatable lai yrmx

      maximum leaf area index for the year in the HRU (none)

    real *8, dimension(:), allocatable bio aamx

  real *8, dimension(:), allocatable lat pst
      amount of pesticide in lateral flow in HRU for the day (kg pst/ha)

    real *8, dimension(:), allocatable fld fr

      fraction of HRU area that drains into floodplain (km<sup>2</sup>/km<sup>2</sup>)

    real *8, dimension(:), allocatable orig snohru

    real *8, dimension(:), allocatable orig_potvol

    real *8, dimension(:), allocatable pltfr_n

      fraction of plant biomass that is nitrogen (none)

    real *8, dimension(:), allocatable orig alai

  real *8, dimension(:), allocatable orig_bioms

    real *8, dimension(:), allocatable pltfr_p

      fraction of plant biomass that is phosphorus (none)

    real *8, dimension(:), allocatable orig_phuacc

  real *8, dimension(:), allocatable orig sumix
  real *8, dimension(:), allocatable phu_plt
      total number of heat units to bring plant to maturity (heat units)

    real *8, dimension(:), allocatable orig_phu

• real *8, dimension(:), allocatable orig_shallst
  real *8, dimension(:), allocatable orig_deepst

    real *8, dimension(:), allocatable rip_fr

      fraction of HRU area that drains into riparian zone (km<sup>2</sup>/km<sup>2</sup>)

    real *8, dimension(:), allocatable orig_pndvol

    real *8, dimension(:), allocatable orig_pndsed

    real *8, dimension(:), allocatable orig_pndno3

    real *8, dimension(:), allocatable orig pndsolp

    real *8, dimension(:), allocatable orig pndorgn
```

real *8, dimension(:), allocatable orig_pndorgp
 real *8, dimension(:), allocatable orig_wetvol
 real *8, dimension(:), allocatable orig_wetsed
 real *8, dimension(:), allocatable orig_wetno3
 real *8, dimension(:), allocatable orig_wetsolp
 real *8, dimension(:), allocatable orig_wetorgn
 real *8, dimension(:), allocatable orig_wetorgp

```
• real *8, dimension(:), allocatable orig_solcov

    real *8, dimension(:), allocatable orig_solsw

• real *8, dimension(:), allocatable orig_potno3
• real *8, dimension(:), allocatable orig_potsed

    real *8, dimension(:), allocatable wtab

      water table based on 30 day antecedent climate (precip,et) (mm)

    real *8, dimension(:), allocatable wtab mn

real *8, dimension(:), allocatable wtab_mx

    real *8, dimension(:), allocatable shallst n

      nitrate concentration in shallow aquifer converted to kg/ha (ppm NO3-N)

    real *8, dimension(:), allocatable gw_nloss

  real *8, dimension(:), allocatable rchrg_n
• real *8, dimension(:), allocatable det san
• real *8, dimension(:), allocatable det sil

    real *8, dimension(:), allocatable det_cla

    real *8, dimension(:), allocatable det sag

    real *8, dimension(:), allocatable det_lag

• real *8, dimension(:), allocatable afrt surface
      fraction of fertilizer which is applied to top 10 mm of soil (the remaining fraction is applied to first soil layer) (none)

    real *8, dimension(:), allocatable tnylda

  real *8 frt surface
      fraction of fertilizer which is applied to the top 10 mm of soil (the remaining fraction is applied to the first soil layer)
      (none)

    real *8, dimension(:), allocatable auto nyr

      maximum NO3-N content allowed to be applied in one year (kg NO3-N/ha)

    real *8, dimension(:), allocatable auto_napp

      maximum NO3-N content allowed in one fertilizer application (kg NO3-N/ha)

    real *8, dimension(:), allocatable auto nstrs

      nitrogen stress factor which triggers auto fertilization (none)

    real *8, dimension(:), allocatable manure_kg

      dry weight of manure deposited on HRU daily ((kg/ha)/day)
real *8, dimension(:,:), allocatable rcn_mo

    real *8, dimension(:,:), allocatable rammo mo

• real *8, dimension(:,:), allocatable drydep_no3_mo
• real *8, dimension(:,:), allocatable drydep nh4 mo

    real *8, dimension(:), allocatable rcn d

    real *8, dimension(:), allocatable rammo d

    real *8, dimension(:), allocatable drydep_no3_d

    real *8, dimension(:), allocatable drydep_nh4_d

• real *8, dimension(:,:), allocatable yldn

    integer, dimension(:,:), allocatable qwati

• real *8, dimension(:,:), allocatable gwatn

    real *8, dimension(:,:), allocatable gwatl

    real *8, dimension(:,:), allocatable gwatw

• real *8, dimension(:,:), allocatable gwatd
  real *8, dimension(:,:), allocatable gwatveg

    real *8, dimension(:,:), allocatable gwata

    real *8, dimension(:,:), allocatable gwats

  real *8, dimension(:,:), allocatable gwatspcon

    real *8, dimension(:,:), allocatable rfqeo_30d

    real *8, dimension(:,:), allocatable eo 30d
```

real *8, dimension(:), allocatable psetlp1

phosphorus settling rate for 1st season (m/day)

```
    real *8, dimension(:), allocatable psetlp2
        phosphorus settling rate for 2nd seaso (m/day)n

    real *8, dimension(:,:), allocatable wgnold
```

previous value of wgncur(:,:) (none)

real *8, dimension(:,:), allocatable wgncur

parameter to predict the impact of precip on other weather attributes (none) wgncur(1,:) parameter which predicts impact of precip on daily maximum air temperature wgncur(2,:) parameter which predicts impact of precip on daily minimum air temperature wgncur(3,:) parameter which predicts impact of precip on daily solar radiation

real *8, dimension(:), allocatable wrt1

1st shape parameter for calculation of water retention (none)

real *8, dimension(:), allocatable wrt2

2nd shape parameter for calculation of water retention (none)

real *8, dimension(:,:), allocatable pst_enr

pesticide enrichment ratio (none)

- real *8, dimension(:,:), allocatable zdb
- real *8, dimension(:,:), allocatable pst_surq
- real *8, dimension(:,:), allocatable plt_pst

pesticide on plant foliage (kg/ha)

• real *8, dimension(:), allocatable psetlw1

phosphorus settling rate for 1st season (m/day)

• real *8, dimension(:), allocatable psetlw2

phosphorus settling rate for 2nd season (m/day)

- real *8, dimension(:,:), allocatable pst_sed
- real *8, dimension(:,:), allocatable wupnd

average daily water removal from the pond for the month $(10^{4} \text{ m}^{3}/\text{day})$

real *8, dimension(:,:), allocatable phi

phi(1,:) cross-sectional area of flow at bankfull depth $(m^{\wedge}2)$ phi(2,:) (none) phi(3,:) (none) phi(4,:) (none) phi(5,:) (none) phi(6,:) bottom width of main channel (m) phi(7,:) depth of water when reach is at bankfull depth (m) phi(8,:) average velocity when reach is at bankfull depth (m/s) phi(9,:) wave celerity when reach is at bankfull depth (m/s) phi(10,:) storage time constant for reach at bankfull depth (m/s) phi(12,:) wave celerity when reach is at 0.1 bankfull depth (m/s) phi(12,:) wave celerity when reach is at 0.1 bankfull depth (m/s) (m

real *8, dimension(:,:), allocatable pcpband

precipitation for the day in band in HRU (mm H2O)

real *8, dimension(:,:), allocatable tavband

average temperature for the day in band in HRU (deg C)

real *8, dimension(:), allocatable wat_phi1

cross-sectional area of flow at bankfull depth (m^{\wedge} 2)

real *8, dimension(:), allocatable wat_phi5

flow rate when reach is at bankfull depth (m^{\wedge} 3/s)

• real *8, dimension(:), allocatable wat_phi6

bottom width of main channel (m)

• real *8, dimension(:), allocatable wat_phi7

depth of water when reach is at bankfull (m)

real *8, dimension(:), allocatable wat phi8

average velocity when reach is at bankfull depth (m/s)

real *8, dimension(:), allocatable wat_phi9

wave celerity when reach is at bankfull depth (m/s)

real *8, dimension(:), allocatable wat phi10

storage time constant for reach at bankfull depth (ratio of storage to discharge) (hour)

real *8, dimension(:), allocatable wat_phi11

```
average velocity when reach is at 0.1 bankfull depth (low flow) (m/s)

    real *8, dimension(:), allocatable wat_phi12

      wave celerity when reach is at 0.1 bankfull depth (low flow) (m/s)
• real *8, dimension(:), allocatable wat phi13
     storage time constant for reach at 0.1 bankfull depth (low flow) (ratio of storage to discharge) (hour)
• real *8, dimension(:,:), allocatable snoeb
     snow water content in elevation band on current day (mm H2O)

    real *8, dimension(:,:), allocatable wudeep

     average daily water removal from the deep aquifer for the month (10<sup>^</sup>4 m<sup>^</sup>3/day)
• real *8, dimension(:,:), allocatable wushal
     average daily water removal from the shallow aquifer for the month (10<sup>^</sup>4 m<sup>^</sup>3/day)

    real *8, dimension(:,:), allocatable tmnband

     minimum temperature for the day in band in HRU (deg C)
• real *8, dimension(:), allocatable bss1
• real *8, dimension(:), allocatable bss2
• real *8, dimension(:), allocatable bss3

    real *8, dimension(:), allocatable bss4

    real *8, dimension(:), allocatable nsetlw1

      nitrogen settling rate for 1st season (m/day)

    real *8, dimension(:), allocatable nsetlw2

     nitrogen settling rate for 2nd season (m/day)

    real *8, dimension(:,:), allocatable snotmpeb

      temperature of snow pack in elevation band (deg C)

    real *8, dimension(:), allocatable surf bs1

     amount of surface runoff lagged over one day (mm H2O)
  real *8, dimension(:), allocatable surf bs2
  real *8, dimension(:), allocatable surf_bs3

    real *8, dimension(:), allocatable surf_bs4

  real *8, dimension(:), allocatable surf bs5
  real *8, dimension(:), allocatable surf_bs6

    real *8, dimension(:), allocatable surf_bs7

  real *8, dimension(:), allocatable surf bs8
• real *8, dimension(:), allocatable surf_bs9

    real *8, dimension(:), allocatable surf bs10

  real *8, dimension(:), allocatable surf_bs11
real *8, dimension(:), allocatable surf_bs12
 real *8, dimension(:), allocatable surf_bs13

    real *8, dimension(:), allocatable surf_bs14

    real *8, dimension(:), allocatable surf_bs15

    real *8, dimension(:), allocatable surf_bs16

real *8, dimension(:), allocatable surf_bs17
  real *8, dimension(:), allocatable nsetlp1
     nitrogen settling rate for 1st season (m/day)
  real *8, dimension(:), allocatable nsetlp2
     nitrogen settling rate for 2nd season (m/day)
  real *8, dimension(:,:), allocatable tmxband
     maximum temperature for the day in band in HRU (deg C)

    real *8, dimension(:,:), allocatable frad

     fraction of solar radiation occuring during hour in day in HRU (none)
 real *8, dimension(:,:), allocatable rainsub
     precipitation for the time step during the day in HRU (mm H2O)
```

real *8, dimension(:), allocatable rstpbsb

```
    real *8, dimension(:,:), allocatable orig_snoeb

    real *8, dimension(:,:), allocatable orig_pltpst

    real *8, dimension(:,:), allocatable terr_p

real *8, dimension(:,:), allocatable terr_cn

    real *8, dimension(:,:), allocatable terr_sl

    real *8, dimension(:,:), allocatable drain d

    real *8, dimension(:,:), allocatable drain_t

• real *8, dimension(:,:), allocatable drain_g

    real *8, dimension(:.:), allocatable drain idep

    real *8, dimension(:,:), allocatable cont_cn

    real *8, dimension(:,:), allocatable cont_p

    real *8, dimension(:,:), allocatable filt w

    real *8, dimension(:,:), allocatable strip_n

    real *8, dimension(:,:), allocatable strip_cn

    real *8, dimension(:,:), allocatable strip c

    real *8, dimension(:,:), allocatable strip_p

    real *8, dimension(:,:), allocatable fire_cn

    real *8, dimension(:,:), allocatable cropno_upd

    real *8, dimension(:,:), allocatable hi_upd

    real *8, dimension(:,:), allocatable laimx_upd

    real *8, dimension(:,:,:), allocatable phug

      fraction of plant heat units at which grazing begins (none)

    real *8, dimension(:,::), allocatable pst lag

  integer, dimension(:), allocatable hrupest
      pesticide use flag (none)
      0: no pesticides used in HRU
      1: pesticides used in HRU
· integer, dimension(:), allocatable nrelease
      sequence number of impound/release operation within the year (none)

    integer, dimension(:), allocatable swtrg

      rainfall event flag (none):
      0: no rainfall event over midnight
      1: rainfall event over midnight

    integer, dimension(:), allocatable nrot

      number of years of rotation (none)

    integer, dimension(:), allocatable nfert

      sequence number of fertilizer application within the year (none)
• integer, dimension(:), allocatable nro
      sequence number of year in rotation (none)
· integer, dimension(:), allocatable igro
      land cover status code (none). This code informs the model whether or not a land cover is growing at the beginning
      of the simulation
      0 no land cover growing
      1 land cover growing
• integer, dimension(:), allocatable ipnd1
      beginning month of nutrient settling season (none)

    integer, dimension(:), allocatable ipnd2

      ending month of nutrient settling season (none)

    integer, dimension(:), allocatable nair

      sequence number of auto-irrigation application within the year (none)

    integer, dimension(:), allocatable iflod1

      beginning month of non-flood season (none)

    integer, dimension(:), allocatable iflod2
```

```
ending month of non-flood season (none)
· integer, dimension(:), allocatable ndtarg
      number of days required to reach target storage from current pond storage (none)
· integer, dimension(:), allocatable nirr
      sequence number of irrigation application within the year (none)
• integer, dimension(:), allocatable iafrttyp
• integer, dimension(:), allocatable nstress
• integer, dimension(:), allocatable igrotree

    integer, dimension(:), allocatable grz_days

      number of days grazing will be simulated (none)

    integer, dimension(:), allocatable nmgt

      management code (for GIS output only) (none)

    integer, dimension(:), allocatable nafert

      sequence number of auto-fert application within the year (none)

    integer, dimension(:), allocatable nsweep

      sequence number of street sweeping operation within the year (none)
· integer, dimension(:), allocatable icr
      sequence number of crop grown within the current year (none)
· integer, dimension(:), allocatable ncut
      sequence number of harvest operation within a year (none)
· integer, dimension(:), allocatable irrno
     irrigation source location (none)
     if IRRSC=1, IRRNO is the number of the reach
     if IRRSC=2, IRRNO is the number of the reservoir
     if IRRSC=3, IRRNO is the number of the subbasin
     if IRRSC=4, IRRNO is the number of the subbasin
     if IRRSC=5, not used

    integer, dimension(:), allocatable sol nly

     number of soil layers in HRU (none)

    integer, dimension(:), allocatable npcp

      prior day category (none)
      1 dry day
     2 wet day
· integer, dimension(:), allocatable irn
      average annual number of irrigation applications in HRU (none)

    integer, dimension(:), allocatable ncf

      sequence number of continuous fertilization operation within the year (none)
· integer, dimension(:), allocatable ngr
      sequence number of grazing operation within the year (none)
• integer, dimension(:), allocatable igrz
     grazing flag for HRU (none):
      0 HRU currently not grazed
      1 HRU currently grazed
• integer, dimension(:), allocatable ndeat
      number of days HRU has been grazed (days)
• integer, dimension(:), allocatable hru_sub
      subbasin in which HRU is located (none)
• integer, dimension(:), allocatable urblu
      urban land type identification number from urban.dat (none)

    integer, dimension(:), allocatable Idrain

      soil layer where drainage tile is located (none)
• integer, dimension(:), allocatable idorm
```

```
dormancy status code (none):
0 land cover growing (not dormant)
1 land cover dormant
```

- integer, dimension(:), allocatable hru_seq
- integer, dimension(:), allocatable iurban

urban simulation code (none):

0 no urban sections in HRU

1 urban sections in HRU, simulate using USGS regression equations

2 urban sections in HRU, simulate using build up/wash off algorithm

- · integer, dimension(:), allocatable iday_fert
- · integer, dimension(:), allocatable icfrt
- · integer, dimension(:), allocatable ifld

number of HRU (in subbasin) that is a floodplain (none)

integer, dimension(:), allocatable irip

number of HRU (in subbasin) that is a riparian zone (none)

• integer, dimension(:), allocatable hrugis

GIS code printed to output files (output.hru, .rch) (none)

- integer, dimension(:), allocatable ndcfrt
- · integer, dimension(:), allocatable irrsc

irrigation source code (none):

1 divert water from reach

2 divert water from reservoir

3 divert water from shallow aquifer

4 divert water from deep aguifer

5 divert water from source outside watershed

· integer, dimension(:), allocatable ntil

sequence number of tillage operation within current year (none)

- integer, dimension(:), allocatable orig_igro
- integer, dimension(:), allocatable iwatable
- integer, dimension(:), allocatable curyr_mat
- integer, dimension(:), allocatable icpst

icpst = 0 do not apply

icpst = 1 application period

• integer, dimension(:), allocatable ndcpst

current day within the application period (day)

- · integer, dimension(:), allocatable ncpest
- integer, dimension(:), allocatable iday_pest

current day between applications (day)

- integer, dimension(:), allocatable irr_flag
- integer, dimension(:), allocatable irra_flag
- integer, dimension(:,:), allocatable rndseed

random number generator seeds array. The seeds in the array are used to generate random numbers for the following purposes (none):

- (1) wet/dry day probability
- (2) solar radiation
- (3) precipitation
- (4) USLE rainfall erosion index
- (5) wind speed
- (6) 0.5 hr rainfall fraction
- (7) relative humidity
- (8) maximum temperature
- (9) minimum temperature
- (10) generate new random numbers
- integer, dimension(:,:), allocatable iterr
- integer, dimension(:,:), allocatable iyterr
- integer, dimension(:,:), allocatable itdrain

```
• integer, dimension(:,:), allocatable iydrain
• integer, dimension(:,:), allocatable ncrops
· integer, dimension(:), allocatable manure_id
      manure (fertilizer) identification number from fert.dat (none)
integer, dimension(:,:), allocatable mgt_sdr
  integer, dimension(:,:), allocatable idplrot

    integer, dimension(:,:), allocatable icont

• integer, dimension(:,:), allocatable iycont
• integer, dimension(:,:), allocatable ifilt
• integer, dimension(:,:), allocatable iyfilt

    integer, dimension(:,:), allocatable istrip

    integer, dimension(:,:), allocatable iystrip

• integer, dimension(:,:), allocatable iopday

    integer, dimension(:,:), allocatable iopyr

• integer, dimension(:,:), allocatable mgt_ops

    real *8, dimension(:), allocatable wshd_pstap

      total amount of pesticide type applied in watershed during simulation (kg/ha)

    real *8, dimension(:), allocatable wshd_pstdg

• integer, dimension(12) ndmo

    integer, dimension(:), allocatable npno

      array of unique pesticides used in watershed (none)
  integer, dimension(:), allocatable mcrhru
  character(len=13), dimension(18) rfile
      rainfall file names (.pcp)

    character(len=13), dimension(18) tfile

      temperature file names (.tmp)
• character(len=4), dimension(1000) urbname
      name of urban land use

    character(len=1), dimension(:), allocatable kirr

     irrigation in HRU

    character(len=1), dimension(:), allocatable hydgrp

  character(len=16), dimension(:), allocatable snam
      soil series name
• character(len=17), dimension(300) pname
      name of pesticide/toxin
• character(len=4), dimension(60) title
      description lines in file.cio (1st 3 lines)

    character(len=4), dimension(5000) cpnm

      four character code to represent crop name

    character(len=17), dimension(50) fname

  real *8, dimension(:,:,:), allocatable flomon
      average daily water loading for month (m<sup>^</sup>3/day)

    real *8, dimension(:,:,:), allocatable solpstmon

      average daily soluble pesticide loading for month (mg pst/day)

    real *8, dimension(:,:,:), allocatable srbpstmon

      average daily sorbed pesticide loading for month (mg pst/day)

    real *8, dimension(:,:,:), allocatable orgnmon

      average daily organic N loading for month (kg N/day)

    real *8, dimension(:,:,:), allocatable orgpmon

      average daily organic P loading for month (kg P/day)
```

real *8, dimension(:,:,:), allocatable sedmon

average daily sediment loading for month (metric tons/day)

```
    real *8, dimension(:,:,:), allocatable minpmon

      average daily mineral P loading for month (kg P/day)

    real *8, dimension(:,:,:), allocatable nh3mon

      average amount of NH3-N loaded to stream on a given day in the month (kg N/day)

    real *8, dimension(:,:,:), allocatable no3mon

      average daily NO3-N loading for month (kg N/day)

    real *8, dimension(:,:,:), allocatable bactlpmon

      average amount of less persistent bacteria loaded to stream on a given day in the month (# bact/day)

    real *8, dimension(:,:,:), allocatable bactpmon

      average amount of persistent bacteria loaded to stream on a given day in the month (# bact/day)

    real *8, dimension(:,:,:), allocatable no2mon

      average amount of NO2-N loaded to stream on a given day in the month (kg N/day)

    real *8, dimension(:,:,:), allocatable cmtl1mon

      average amount of conservative metal #1 loaded to stream on a given day in the month (# bact/day)

    real *8, dimension(:,:,:), allocatable cmtl2mon

      average amount of conservative metal #2 loaded to stream on a given day in the month (# bact/day)

    real *8, dimension(:,:,:), allocatable cmtl3mon

      average amount of conservative metal #3 loaded to stream on a given day in the month (# bact/day)

    real *8, dimension(:,:,:), allocatable cbodmon

      average daily loading of CBOD in month (kg/day)

    real *8, dimension(:,:,:), allocatable chlamon

      average daily loading of chlorophyll-a in month (kg/day)

    real *8, dimension(:,:,:), allocatable disoxmon

      average daily loading of dissolved O2 in month (kg/day)

    real *8, dimension(:,:), allocatable floyr

      average daily water loading for year (m^{\wedge} 3/day)

    real *8, dimension(:,:), allocatable orgnyr

      average daily organic N loading for year (kg N/day)

    real *8, dimension(:,:), allocatable orgpyr

      average daily organic P loading for year (kg P/day)

    real *8, dimension(:,:), allocatable sedyr

      average daily sediment loading for year (metric tons/day)

    real *8, dimension(:,:), allocatable minpyr

      average daily mineral P loading for year (kg P/day)

    real *8, dimension(:,:), allocatable nh3yr

      average daily NH3-N loading for year (kg N/day)

    real *8, dimension(:,:), allocatable no2yr

      average daily NO2-N loading for year (kg N/day)

    real *8, dimension(:,:), allocatable no3yr

      average daily NO3-N loading for year (kg N/day)

    real *8, dimension(:,:), allocatable bactlpyr

      average daily loading of less persistent bacteria for year (# bact/day)

    real *8, dimension(:,:), allocatable bactpyr

      average daily loading of persistent bacteria for year (# bact/day)

    real *8, dimension(:,:), allocatable cmtl1yr

      average daily loading of conservative metal #1 for year (kg/day)

    real *8, dimension(:,:), allocatable chlayr

      average daily loading of chlorophyll-a in year (kg/day)

    real *8, dimension(:,:), allocatable cmtl2yr

      average daily loading of conservative metal #2 for year (kg/day)

    real *8, dimension(:,:), allocatable cmtl3yr
```

average daily loading of conservative metal #3 for year (kg/day) real *8, dimension(:,:), allocatable cbodyr average daily loading of CBOD in year (kg/day) real *8, dimension(:,:), allocatable disoxyr average daily loading of dissolved O2 in year (kg/day) real *8, dimension(:,:), allocatable solpstyr average daily soluble pesticide loading for year (mg pst/day) real *8, dimension(:,:), allocatable srbpstyr average daily sorbed pesticide loading for year (mg pst/day) real *8, dimension(:,:), allocatable sol_mc • real *8, dimension(:,:), allocatable sol mn real *8, dimension(:,:), allocatable sol mp • real *8, dimension(:), allocatable flocnst real *8, dimension(:), allocatable orgnonst average daily organic N loading to reach (kg N/day) real *8, dimension(:), allocatable sedcnst average daily sediment loading for reach (metric tons/day) real *8, dimension(:), allocatable minponst average daily soluble P loading to reach (kg P/day) real *8, dimension(:), allocatable no3cnst average daily nitrate loading to reach (kg N/day) real *8, dimension(:), allocatable orgpcnst average daily organic P loading to reach (kg P/day) • real *8, dimension(:), allocatable bactpcnst average daily persistent bacteria loading to reach (# bact/day) • real *8, dimension(:), allocatable nh3cnst average daily ammonia loading to reach (kg N/day) real *8, dimension(:), allocatable no2cnst average daily nitrite loading to reach (kg N/day) • real *8, dimension(:), allocatable bactlpcnst average daily less persistent bacteria loading to reach (# bact/day) real *8, dimension(:), allocatable cmtl1cnst average daily conservative metal #1 loading (kg/day) real *8, dimension(:), allocatable cmtl2cnst average daily conservative metal #2 loading (kg/day) real *8, dimension(:), allocatable chlacnst average daily loading of chlorophyll-a (kg/day) real *8, dimension(:), allocatable cmtl3cnst average daily conservative metal #3 loading (kg/day) real *8, dimension(:), allocatable disoxcnst average daily loading of dissolved O2 (kg/day) • real *8, dimension(:), allocatable cbodcnst average daily loading of CBOD to reach (kg/day) real *8, dimension(:), allocatable solpstcnst average daily soluble pesticide loading (mg/day) real *8, dimension(:), allocatable srbpstcnst average daily sorbed pesticide loading (mg/day) integer nstep max number of time steps per day or number of lines of rainfall data for each day (none)

length of time step used to report precipitation data for sub-daily modeling (minutes)

Generated by Doxygen

 real *8, dimension(:), allocatable hrtwtr • real *8, dimension(:), allocatable hhstor · real *8, dimension(:), allocatable hdepth • real *8, dimension(:), allocatable hsdti real *8, dimension(:), allocatable hrchwtr real *8, dimension(:), allocatable halgae real *8, dimension(:), allocatable horgn real *8, dimension(:), allocatable hnh4 • real *8, dimension(:), allocatable hno2 • real *8, dimension(:), allocatable hno3 real *8, dimension(:), allocatable horgp real *8, dimension(:), allocatable hsolp real *8, dimension(:), allocatable hbod • real *8, dimension(:), allocatable hdisox real *8, dimension(:), allocatable hchla · real *8, dimension(:), allocatable hsedyld real *8, dimension(:), allocatable hsedst • real *8, dimension(:), allocatable hharea real *8, dimension(:), allocatable hsolpst • real *8, dimension(:), allocatable hsorpst real *8, dimension(:), allocatable hhqday surface runoff generated each timestep of day in HRU (mm H2O) real *8, dimension(:), allocatable precipdt precipitation, or effective precipitation reaching soil surface, in time step for HRU (mm H2O) real *8, dimension(:), allocatable hhtime • real *8, dimension(:), allocatable hbactp real *8, dimension(:), allocatable hbactlp integer, dimension(10) ivar_orig real *8, dimension(10) rvar_orig · integer nsave number of save commands in .fig file · integer nauto · integer iatmodep real *8, dimension(:), allocatable wattemp • real *8, dimension(:), allocatable Ikpst_mass real *8, dimension(:), allocatable lkspst mass • real *8, dimension(:), allocatable vel_chan real *8, dimension(:), allocatable vfscon fraction of the total runoff from the entire field entering the most concentrated 10% of the VFS (none) real *8, dimension(:), allocatable vfsratio field area/VFS area ratio (none) real *8, dimension(:), allocatable vfsch fraction of flow entering the most concentrated 10% of the VFS which is fully channelized (none) real *8, dimension(:), allocatable vfsi real *8, dimension(:,:), allocatable filter i real *8, dimension(:,:), allocatable filter_ratio • real *8, dimension(:,:), allocatable filter_con real *8, dimension(:,:), allocatable filter_ch real *8, dimension(:,:), allocatable sol_n · integer cswat

= 0 Static soil carbon (old mineralization routines)

= 1 C-FARM one carbon pool model

real *8, dimension(:,:), allocatable sol_bdp

= 2 Century model

- real *8, dimension(:,:), allocatable tillagef
- real *8, dimension(:), allocatable rtfr
- real *8, dimension(:), allocatable stsol_rd
- · integer urban flag
- · integer dorm_flag
- real *8 bf_flg
- real *8 iabstr
- real *8, dimension(:), allocatable ubnrunoff
- real *8, dimension(:), allocatable ubntss
- real *8, dimension(:,:), allocatable sub_ubnrunoff
- real *8, dimension(:,:), allocatable sub ubntss
- real *8, dimension(:,:), allocatable ovrlnd_dt
- real *8, dimension(:,:), allocatable hhsurf_bs1
- real *8, dimension(:,:), allocatable hhsurf_bs2
- · integer iuh

unit hydrograph method: 1=triangular UH; 2=gamma funtion UH;

· integer sed_ch

channel routing for HOURLY; 0=Bagnold; 2=Brownlie; 3=Yang;

real *8 eros expo

an exponent in the overland flow erosion equation ranges 1.5-3.0

real *8 eros_spl

coefficient of splash erosion varing 0.9-3.1

· real *8 rill mult

Multiplier to USLE_K for soil susceptible to rill erosion, range 0.5-2.0.

- real *8 sedprev
- real *8 c factor
- real *8 ch d50

median particle diameter of channel bed (mm)

• real *8 sig_g

geometric standard deviation of particle sizes for the main channel. Mean air temperature at which precipitation is equally likely to be rain as snow/freezing rain.

real *8 uhalpha

alpha coefficient for estimating unit hydrograph using a gamma function (*.bsn)

- real *8 abstinit
- real *8 abstmax
- real *8, dimension(:,:), allocatable hhsedy

sediment yield from HRU drung a time step applied to HRU (tons)

- real *8, dimension(:,:), allocatable sub_subp_dt
- real *8, dimension(:.:), allocatable sub hhsedy
- real *8, dimension(:,:), allocatable sub_atmp
- real *8, dimension(:), allocatable rhy
- real *8, dimension(:), allocatable init_abstrc
- real *8, dimension(:), allocatable dratio
- real *8, dimension(:), allocatable hrtevp
- real *8, dimension(:), allocatable hrttlc
- real *8, dimension(:,:,:), allocatable **rchhr**
- real *8, dimension(:), allocatable hhresflwi
- real *8, dimension(:), allocatable hhresflwo
- real *8, dimension(:), allocatable hhressedi
- real *8, dimension(:), allocatable hhressedo
- character(len=4), dimension(:), allocatable lu_nodrain
- integer, dimension(:), allocatable bmpdrain
- real *8, dimension(:), allocatable sub_cn2

- real *8, dimension(:), allocatable sub ha urb real *8, dimension(:), allocatable bmp_recharge real *8, dimension(:), allocatable sub_ha_imp real *8, dimension(:), allocatable subdr_km real *8, dimension(:), allocatable subdr ickm real *8, dimension(:,:), allocatable sf_im real *8, dimension(:,:), allocatable sf iy real *8, dimension(:,:), allocatable sp_sa • real *8, dimension(:,:), allocatable sp_pvol real *8, dimension(:,:), allocatable sp pd real *8, dimension(:,:), allocatable sp_sedi real *8, dimension(:,:), allocatable sp_sede real *8, dimension(:,:), allocatable ft_sa • real *8, dimension(:,:), allocatable ft_fsa real *8, dimension(:,:), allocatable ft_dep real *8, dimension(:,:), allocatable ft_h real *8, dimension(:,:), allocatable ft pd real *8, dimension(:,:), allocatable ft k real *8, dimension(:,:), allocatable ft_dp real *8, dimension(:,:), allocatable ft_dc real *8, dimension(:,:), allocatable ft por real *8, dimension(:,:), allocatable tss den real *8, dimension(:,:), allocatable ft_alp real *8, dimension(:,:), allocatable sf_fr real *8, dimension(:,:), allocatable sp_qi • real *8, dimension(:,:), allocatable sp_k real *8, dimension(:,:), allocatable ft qpnd real *8, dimension(:,:), allocatable sp_dp real *8, dimension(:,:), allocatable ft_qsw real *8, dimension(:,:), allocatable ft_qin • real *8, dimension(:,:), allocatable ft_qout real *8, dimension(:,:), allocatable ft sedpnd
- real *8, dimension(:,:), allocatable sp bpw real *8, dimension(:,:), allocatable ft bpw
- real *8, dimension(:,:), allocatable ft sed cumul
- real *8, dimension(:,:), allocatable sp_sed_cumul
- · integer, dimension(:), allocatable num_sf
- integer, dimension(:,:), allocatable sf_typ
- integer, dimension(:,:), allocatable sf dim
- integer, dimension(:,:), allocatable ft_qfg
- integer, dimension(:,:), allocatable sp_qfg
- integer, dimension(:,:), allocatable sf_ptp
- integer, dimension(:,:), allocatable ft_fc
- real *8 sfsedmean
- real *8 sfsedstdev
- integer, dimension(:), allocatable dtp imo

month the reservoir becomes operational (none)

integer, dimension(:), allocatable dtp_ivr

year of the simulation that the reservoir becomes operational (none)

- integer, dimension(:), allocatable dtp_numstage
 - total number of stages in the weir (none)
- integer, dimension(:), allocatable dtp_numweir

total number of weirs in the BMP (none)

integer, dimension(:), allocatable dtp_onoff

sub-basin detention pond is associated with (none) integer, dimension(:), allocatable dtp_reltype equations for stage-discharge relationship (none): 1=exponential function, 2=linear 3=logarithmic, 4=cubic. 5=power integer, dimension(:), allocatable dtp_stagdis (none): 0=use weir/orifice discharge equation to calculate outflow, 1=use stage-dicharge relationship • integer, dimension(:), allocatable dtp_subnum real *8, dimension(:), allocatable cf this parameter controls the response of decomposition to the combined effect of soil temperature and moisture. real *8, dimension(:), allocatable cfh maximum humification rate real *8, dimension(:), allocatable cfdec the undisturbed soil turnover rate under optimum soil water and temperature. Increasing it will increase carbon and organic N decomp. real *8, dimension(:), allocatable lat orgn real *8, dimension(:), allocatable lat_orgp • integer, dimension(:,:), allocatable dtp_weirdim weir dimensions (none). 1=read user input. 0=use model calculation integer, dimension(:,:), allocatable dtp_weirtype type of weir (none): 1=rectangular and 2=circular • real *8, dimension(:), allocatable dtp_coef1 coefficient of 3rd degree in the polynomial equation (none) real *8, dimension(:), allocatable dtp coef2 coefficient of 2nd degree in the polynomial equation (none) real *8, dimension(:), allocatable dtp_coef3 coefficient of 1st degree in the polynomial equation (none) real *8, dimension(:), allocatable dtp evrsv detention pond evaporation coefficient (none) real *8, dimension(:), allocatable dtp expont exponent used in the exponential equation (none) real *8, dimension(:), allocatable dtp_intcept intercept used in regression equations (none) • real *8, dimension(:), allocatable dtp_lwratio ratio of length to width of water back up (none) real *8, dimension(:), allocatable dtp_totwrwid total constructed width of the detention wall across the creek (m) real *8, dimension(:), allocatable dtp_inflvol real *8, dimension(:), allocatable dtp wdep real *8, dimension(:), allocatable dtp_totdep • real *8, dimension(:), allocatable dtp_watdepact real *8, dimension(:), allocatable dtp outflow real *8, dimension(:), allocatable dtp_totrel

real *8, dimension(:), allocatable dtp_backoff
 real *8, dimension(:), allocatable dtp_seep_sa

real *8, dimension(:), allocatable dtp evap sa real *8, dimension(:), allocatable dtp_pet_day real *8, dimension(:), allocatable dtp_pcpvol real *8, dimension(:), allocatable dtp seepvol real *8, dimension(:), allocatable dtp evapvol real *8, dimension(:), allocatable dtp_flowin real *8, dimension(:), allocatable dtp_backup_length real *8, dimension(:), allocatable dtp ivol real *8, dimension(:), allocatable dtp ised integer, dimension(:,:), allocatable so res flag integer, dimension(:,:), allocatable ro bmp flag real *8, dimension(:,:), allocatable sol_watp real *8, dimension(:,:), allocatable sol solp pre real *8, dimension(:,:), allocatable psp_store real *8, dimension(:,:), allocatable ssp_store real *8, dimension(:.:), allocatable so res real *8, dimension(:,:), allocatable sol_cal real *8, dimension(:,:), allocatable sol_ph integer sol p model integer, dimension(:,:), allocatable a days integer, dimension(:,:), allocatable b days real *8, dimension(:), allocatable min res minimum residue allowed due to implementation of residue managment in the OPS file (kg/ha) real *8, dimension(:), allocatable harv min real *8, dimension(:), allocatable fstap real *8, dimension(:.:), allocatable ro bmp flo real *8, dimension(:,:), allocatable ro_bmp_sed real *8, dimension(:,:), allocatable ro_bmp_bac real *8, dimension(:,:), allocatable ro bmp pp real *8, dimension(:,:), allocatable ro bmp sp real *8, dimension(:,:), allocatable ro bmp pn real *8, dimension(:,:), allocatable ro bmp sn real *8, dimension(:,:), allocatable ro_bmp_flos real *8, dimension(:,:), allocatable ro bmp seds real *8, dimension(:,:), allocatable ro bmp bacs real *8, dimension(:,:), allocatable ro bmp pps real *8, dimension(:,:), allocatable ro bmp sps real *8, dimension(:,:), allocatable ro bmp pns real *8, dimension(:,:), allocatable ro bmp sns real *8, dimension(:,:), allocatable ro bmp flot real *8, dimension(:,:), allocatable ro bmp sedt real *8, dimension(:,:), allocatable ro bmp bact real *8, dimension(:,:), allocatable ro_bmp_ppt real *8, dimension(:,:), allocatable ro_bmp_spt real *8, dimension(:,:), allocatable ro bmp pnt real *8, dimension(:,:), allocatable ro bmp snt real *8, dimension(:), allocatable bmp flo real *8, dimension(:), allocatable bmp_sed real *8, dimension(:), allocatable bmp_bac

real *8, dimension(:), allocatable bmp_pp real *8, dimension(:), allocatable bmp_sp real *8, dimension(:), allocatable bmp pn real *8, dimension(:), allocatable bmp sn real *8, dimension(:), allocatable bmp_flag 94 Module Documentation

```
    real *8, dimension(:), allocatable bmp flos

  real *8, dimension(:), allocatable bmp seds
  real *8, dimension(:), allocatable bmp_bacs
  real *8, dimension(:), allocatable bmp_pps
  real *8, dimension(:), allocatable bmp sps
  real *8, dimension(:), allocatable bmp_pns
  real *8, dimension(:), allocatable bmp_sns
  real *8, dimension(:), allocatable bmp flot
  real *8, dimension(:), allocatable bmp sedt
  real *8, dimension(:), allocatable bmp bact
  real *8, dimension(:), allocatable bmp ppt
  real *8, dimension(:), allocatable bmp_spt
  real *8, dimension(:), allocatable bmp_pnt
  real *8, dimension(:), allocatable bmp_snt
  real *8, dimension(:,:), allocatable dtp_addon
     the distance between spillway levels (m)

    real *8, dimension(:,:), allocatable dtp_cdis

     discharge coefficiene for weir/orifice flow (none)
• real *8, dimension(:,:), allocatable dtp_depweir
     depth of rectangular weir at different stages (m)

    real *8, dimension(:,:), allocatable dtp_diaweir

     diameter of orifice hole at different stages (m)
 real *8, dimension(:,:), allocatable dtp_flowrate
     maximum discharge from each stage of the weir/hole (m^3/s)

    real *8, dimension(:,:), allocatable dtp_pcpret

     precipitation for different return periods (not used) (mm)
 real *8, dimension(:,:), allocatable dtp_retperd
     return period at different stages (years)

    real *8, dimension(:,:), allocatable dtp wdratio

     width depth ratio of rectangular weirs (none)
  real *8, dimension(:,:), allocatable dtp wrwid
  real *8, dimension(:), allocatable ri_subkm
  real *8, dimension(:), allocatable ri_totpvol
  real *8, dimension(:), allocatable irmmdt
  real *8, dimension(:,:), allocatable ri_sed
  real *8, dimension(:,:), allocatable ri fr
  real *8, dimension(:,:), allocatable ri_dim
  real *8, dimension(:,:), allocatable ri_im
  real *8, dimension(:,:), allocatable ri iv
  real *8, dimension(:,:), allocatable ri_sa
  real *8, dimension(:,:), allocatable ri vol
  real *8, dimension(:,:), allocatable ri_qi
  real *8, dimension(:,:), allocatable ri_k
  real *8, dimension(:,:), allocatable ri dd
  real *8, dimension(:,:), allocatable ri evrsv
  real *8, dimension(:,:), allocatable ri dep
  real *8, dimension(:,:), allocatable ri_ndt
  real *8, dimension(:,:), allocatable ri_pmpvol
  real *8, dimension(:,:), allocatable ri sed cumul
  real *8, dimension(:,:), allocatable hrnopcp
  real *8, dimension(:,:), allocatable ri gloss
  real *8, dimension(:,:), allocatable ri pumpv
```

real *8, dimension(:,:), allocatable ri_sedi

 character(len=4), dimension(:,:), allocatable ri_nirr · integer, dimension(:), allocatable num_ri · integer, dimension(:), allocatable ri_luflg integer, dimension(:), allocatable num noirr • integer, dimension(:), allocatable wtp_subnum integer, dimension(:), allocatable wtp_onoff · integer, dimension(:), allocatable wtp_imo • integer, dimension(:), allocatable wtp_iyr integer, dimension(:), allocatable wtp_dim · integer, dimension(:), allocatable wtp_stagdis integer, dimension(:), allocatable wtp_sdtype real *8, dimension(:), allocatable wtp_pvol • real *8, dimension(:), allocatable wtp_pdepth • real *8, dimension(:), allocatable wtp_sdslope real *8, dimension(:), allocatable wtp_lenwdth real *8, dimension(:), allocatable wtp extdepth real *8, dimension(:), allocatable wtp_hydeff real *8, dimension(:), allocatable wtp_evrsv • real *8, dimension(:), allocatable wtp_sdintc real *8, dimension(:), allocatable wtp_sdexp real *8, dimension(:), allocatable wtp_sdc1 real *8, dimension(:), allocatable wtp sdc2 real *8, dimension(:), allocatable wtp_sdc3 • real *8, dimension(:), allocatable wtp_pdia real *8, dimension(:), allocatable wtp plen real *8, dimension(:), allocatable wtp_pmann real *8, dimension(:), allocatable wtp ploss real *8, dimension(:), allocatable wtp_k • real *8, dimension(:), allocatable wtp_dp real *8, dimension(:), allocatable wtp sedi real *8, dimension(:), allocatable wtp_sede real *8, dimension(:), allocatable wtp_qi real *8 lai init initial leaf area index of transplants real *8 bio init initial biomass of transplants (kg/ha) real *8 cnop SCS runoff curve number for moisture condition II (none) real *8 harveff harvest efficiency: fraction of harvested yield that is removed from HRU; the remainder becomes residue on the soil surface(none) real *8 hi_ovr harvest index target specified at harvest ((kg/ha)/(kg/ha)) real *8 frac_harvk real *8 lid_vgcl van Genuchten equation's coefficient, I (none) • real *8 lid_vgcm van Genuchten equation's coefficient, m (none)

cumulative amount of water infiltrated into the amended soil layer at the last time step in a day (mm H2O)

 real *8 lid_qsurf_total real *8 lid_farea_sum

real *8, dimension(:,:), allocatable lid_cuminf_last

real *8, dimension(:,:), allocatable lid_cumr_last

96 Module Documentation

```
cumulative amount of rainfall at the last time step in a day (mm H2O)

    real *8, dimension(:,:), allocatable lid excum last

      cumulative amount of excess rainfall at the last time step in a day (mm H2O)

    real *8, dimension(:,:), allocatable lid f last

     potential infiltration rate of the amended soil layer at the last time step in a day (mm/mm H2O)

    real *8, dimension(:,:), allocatable lid sw last

      soil water content of the amended soil layer at the last time step in a day (mm/mm H2O)

    real *8, dimension(:,:), allocatable lid gsurf

     depth of runoff generated on a LID in a given time interval (mm H2O)
  real *8, dimension(:,:), allocatable interval_last
  real *8, dimension(:,:), allocatable lid_str_last
  real *8, dimension(:,:), allocatable lid farea
• real *8, dimension(:,:), allocatable lid_sw_add
  real *8, dimension(:,:), allocatable lid cumpperc last

    real *8, dimension(:,:), allocatable lid_cumirr_last

    integer, dimension(:,:), allocatable gr_onoff

  integer, dimension(:,:), allocatable gr_imo
  integer, dimension(:,:), allocatable gr_iyr
  real *8, dimension(:,:), allocatable gr farea
      fractional area of a green roof to the HRU (none)

    real *8, dimension(:,:), allocatable gr_solop

    real *8, dimension(:.:), allocatable gr etcoef

  real *8, dimension(:,:), allocatable gr_fc
  real *8, dimension(:,:), allocatable gr_wp
 real *8, dimension(:,:), allocatable gr ksat

    real *8, dimension(:,:), allocatable gr_por

  real *8, dimension(:,:), allocatable gr hydeff
  real *8, dimension(:,:), allocatable gr_soldpt
  integer, dimension(:,:), allocatable rg onoff
  integer, dimension(:,:), allocatable rg_imo
  integer, dimension(:,:), allocatable rg_iyr

    real *8, dimension(:,:), allocatable rg farea

    real *8, dimension(:,:), allocatable rg solop

    real *8, dimension(:,:), allocatable rg etcoef

  real *8, dimension(:,:), allocatable rg fc

    real *8, dimension(:,:), allocatable rg wp

  real *8, dimension(:,:), allocatable rg_ksat
  real *8, dimension(:,:), allocatable rg_por

    real *8, dimension(:,:), allocatable rg hydeff

    real *8, dimension(:,:), allocatable rg soldpt

    real *8, dimension(:,:), allocatable rg dimop

  real *8, dimension(:,:), allocatable rg_sarea

    real *8, dimension(:,:), allocatable rg_vol

  real *8, dimension(:,:), allocatable rg sth
  real *8, dimension(:,:), allocatable rg_sdia

    real *8, dimension(:.:), allocatable rg bdia

    real *8, dimension(:,:), allocatable rg_sts

    real *8, dimension(:,:), allocatable rg orifice

  real *8, dimension(:,:), allocatable rg_oheight
• real *8, dimension(:,:), allocatable rg_odia
  integer, dimension(:,:), allocatable cs onoff
  integer, dimension(:,:), allocatable cs_imo
  integer, dimension(:,:), allocatable cs ivr
```

integer, dimension(:,:), allocatable cs_grcon

- real *8, dimension(:,:), allocatable cs_farea
- real *8, dimension(:,:), allocatable cs_vol
- real *8, dimension(:,:), allocatable cs_rdepth
- integer, dimension(:,:), allocatable pv_onoff
- integer, dimension(:,:), allocatable pv_imo
- integer, dimension(:,:), allocatable pv_iyr
- integer, dimension(:,:), allocatable pv_solop
- real *8, dimension(:,:), allocatable pv_grvdep
- real *8, dimension(:,:), allocatable pv grvpor
- real *8, dimension(:,:), allocatable pv_farea
- real *8, dimension(:,:), allocatable pv_drcoef
- real *8, dimension(:,:), allocatable pv_fc
- real *8, dimension(:,:), allocatable pv_wp
- real *8, dimension(:,:), allocatable pv_ksat
- real *8, dimension(:,:), allocatable pv_por
- real *8, dimension(:,:), allocatable pv_hydeff
- real *8, dimension(:,:), allocatable pv_soldpt
- integer, dimension(:,:), allocatable lid onoff
- real *8, dimension(:,:), allocatable sol_bmc
- real *8, dimension(:,:), allocatable sol bmn
- real *8, dimension(:,:), allocatable sol_hsc
- real *8, dimension(:,:), allocatable sol hsn
- real *8, dimension(:,:), allocatable sol hpc
- real *8, dimension(:,:), allocatable sol_hpn
- real *8, dimension(:,:), allocatable sol Im
- Teal *0, differision(.,.), allocatable 301_iii
- real *8, dimension(:,:), allocatable sol_lmc
- real *8, dimension(:,:), allocatable sol_lmn
- real *8, dimension(:,:), allocatable sol_ls
- real *8, dimension(:,:), allocatable sol_lsl
 real *8, dimension(:,:), allocatable sol lsc
- real *0, differision(.,.), allocatable **soi_isc**
- real *8, dimension(:,:), allocatable **sol_lsn**
- real *8, dimension(:,:), allocatable sol_rnmn
 real *8, dimension(:,:), allocatable sol_lslc
- real *8, dimension(:.:), allocatable sol Islnc
- real *8, dimension(:,:), allocatable sol rspc
- real *8, dimension(:,:), allocatable sol woc
- real *8, dimension(:,:), allocatable sol won
- real *8, dimension(:,:), allocatable sol_hp
- real *8, dimension(:,:), allocatable sol_hs
- real *8, dimension(:,:), allocatable sol_bm
- real *8, dimension(:,:), allocatable sol cac
- real *8, dimension(:,:), allocatable sol_cec
- real *8, dimension(:,:), allocatable sol_percc
- real *8, dimension(:,:), allocatable sol_latc
- real *8, dimension(:), allocatable sedc d
- real *8, dimension(:), allocatable surfqc d
- real *8, dimension(:), allocatable latc_d
- real *8, dimension(:), allocatable percc_d
- real *8, dimension(:), allocatable foc_d
- real *8, dimension(:), allocatable nppc_d
- real *8, dimension(:), allocatable rsdc d
- real *8, dimension(:), allocatable grainc_d
- real *8, dimension(:), allocatable stoverc_d
- real *8, dimension(:), allocatable soc_d
 real *8, dimension(:), allocatable rspc_d

98 Module Documentation

- real *8, dimension(:), allocatable emitc_d
- real *8, dimension(:), allocatable sub_sedc_d
- real *8, dimension(:), allocatable sub_surfqc_d
- real *8, dimension(:), allocatable sub latc d
- real *8, dimension(:), allocatable sub_percc_d
- real *8, dimension(:), allocatable sub_foc_d
- real *8, dimension(:), allocatable sub_nppc_d
- real *8, dimension(:), allocatable sub_rsdc_d
- real *8, dimension(:), allocatable sub_grainc_d
- real *8, dimension(:), allocatable sub stoverc d
- real *8, dimension(:), allocatable sub_emitc_d
- real *8, dimension(:), allocatable sub_soc_d
- real *8, dimension(:), allocatable sub_rspc_d
- real *8, dimension(:), allocatable sedc m
- real *8, dimension(:), allocatable surfqc_m
- real *8, dimension(:), allocatable latc_m
- real *8, dimension(:), allocatable percc_m
- real *8, dimension(:), allocatable foc m
- real *8, dimension(:), allocatable nppc_m
- real *8, dimension(:), allocatable rsdc_m
- real *8, dimension(:), allocatable grainc m
- real *8, dimension(:), allocatable stoverc_m
- real *8, dimension(:), allocatable emitc m
- real *8, dimension(:), allocatable soc m
- real *8, dimension(:), allocatable rspc_m
- real *8, dimension(:), allocatable sedc_a
- real *8, dimension(:), allocatable surfqc a
- real *8, dimension(:), allocatable latc a
- real *8, dimension(:), allocatable percc_a
- real *8, dimension(:), allocatable foc_a
- real *8, dimension(:), allocatable nppc_a
- real *8, dimension(:), allocatable rsdc_a
- real *8, dimension(:), allocatable grainc a
- real *8, dimension(:), allocatable stoverc_a
- real *8, dimension(:), allocatable emitc_a
- real *8, dimension(:), allocatable soc_a
- real *8, dimension(:), allocatable rspc_a
- integer, dimension(:), allocatable tillage_switch
- real *8, dimension(:), allocatable tillage_depth
- integer, dimension(:), allocatable tillage_days
- real *8, dimension(:), allocatable tillage_factor
- real *8 dthy

time interval for subdaily routing

- integer, dimension(4) ihx
- · integer, dimension(:), allocatable nhy
- real *8, dimension(:), allocatable rchx
- real *8, dimension(:), allocatable rcss
- real *8, dimension(:), allocatable qcap
- real *8, dimension(:), allocatable chxa
- real *8, dimension(:), allocatable chxp
- real *8, dimension(:,:,:), allocatable qhy
- real *8 ff1
- real *8 ff2

5.1.1 Detailed Description

main module containing the global variables

5.1.2 Variable Documentation

5.1.2.1 igropt

integer parm::igropt

Qual2E option for calculating the local specific growth rate of algae 1: multiplicative.

 $u = mumax\,fll\,fnn\,fpp$

2: limiting nutrient

 $u = mumax\,fll\,\min(fnn,\,fpp)$

3: harmonic mean

$$u = mumax \, fll \, \frac{2}{\frac{1}{fnn} + \frac{1}{fpp}}$$

100 Module Documentation

Chapter 6

Data Type Documentation

6.1 parm::fcgd Interface Reference

Public Member Functions

• real *8 function fcgd (xx)

The documentation for this interface was generated from the following file:

• modparm.f90

6.2 parm::ndenit Interface Reference

Public Member Functions

• subroutine ndenit (k, j, cdg, wdn, void)

The documentation for this interface was generated from the following file:

· modparm.f90

6.3 parm::regres Interface Reference

Public Member Functions

• real *8 function regres (k, j)

The documentation for this interface was generated from the following file:

modparm.f90

6.4 parm::tair Interface Reference

Public Member Functions

• real *8 function tair (hr, jj)

The documentation for this interface was generated from the following file:

· modparm.f90

6.5 parm::theta Interface Reference

Public Member Functions

• real *8 function theta (r20, thk, tmp)

The documentation for this interface was generated from the following file:

• modparm.f90

Chapter 7

File Documentation

7.1 albedo.f90 File Reference

Functions/Subroutines

subroutine albedo
 this subroutine calculates albedo in the HRU for the day

7.1.1 Detailed Description

file containing the subroutine albedo

Author

modified by Javier Burguete

7.2 allocate_parms.f90 File Reference

Functions/Subroutines

• subroutine allocate_parms

this subroutine allocates array sizes

7.2.1 Detailed Description

file containing the subroutine allocate_parms

Author

modified by Javier Burguete

7.3 alph.f90 File Reference

Functions/Subroutines

• subroutine alph (iwave, j)

this subroutine computes alpha, a dimensionless parameter that expresses the fraction of total rainfall that occurs during 0.5h @parm[in] iwave flag to differentiate calculation of HRU and subbasin sediment calculation (none) iwave = 0 for HRU MUSLE(sedyld) each hru is calculated independently using hru area and adjusted channel length iwave = 1 subbasin # for subbasin MUSLE is computed for entire subbasin using hru weighted KLSCP

7.3.1 Detailed Description

file containing the subroutine alph

Author

modified by Javier Burguete

7.3.2 Function/Subroutine Documentation

7.3.2.1 alph()

```
subroutine alph (
                integer, intent(in) iwave,
                 integer, intent(in) j )
```

this subroutine computes alpha, a dimensionless parameter that expresses the fraction of total rainfall that occurs during 0.5h @parm[in] iwave flag to differentiate calculation of HRU and subbasin sediment calculation (none) iwave = 0 for HRU MUSLE(sedyld) each hru is calculated independently using hru area and adjusted channel length iwave = 1 subbasin # for subbasin MUSLE is computed for entire subbasin using hru weighted KLSCP

Parameters

```
in j HRU number
```

7.4 apply.f90 File Reference

Functions/Subroutines

• subroutine apply (j)

this subroutine applies pesticide

7.5 ascrv.f90 File Reference

7.4.1 Detailed Description

file containing the subroutine apply

Author

modified by Javier Burguete

7.4.2 Function/Subroutine Documentation

7.4.2.1 apply()

```
subroutine apply ( \label{eq:integer} \text{integer, intent(in)} \ j \ )
```

this subroutine applies pesticide

Parameters

```
in j HRU number
```

7.5 ascrv.f90 File Reference

Functions/Subroutines

```
• subroutine ascrv (x1, x2, x3, x4, x5, x6)

this subroutine computes shape parameters x5 and x6 for the S curve equation
```

7.5.1 Detailed Description

file containing the subroutine ascrv

Author

modified by Javier Burguete

7.5.2 Function/Subroutine Documentation

7.5.2.1 ascrv()

```
subroutine ascrv (
    real*8, intent(in) x1,
    real*8, intent(in) x2,
    real*8, intent(in) x3,
    real*8, intent(in) x4,
    real*8, intent(out) x5,
    real*8, intent(out) x6)
```

this subroutine computes shape parameters x5 and x6 for the S curve equation

$$x = \frac{y}{y + \exp(x5 + x6y)}$$

given 2 (x,y) points along the curve. x5 is determined by solving the equation with x and y values measured around the midpoint of the curve (approx. 50% of the maximum value for x) and x6 is determined by solving the equation with x and y values measured close to one of the endpoints of the curve (100% of the maximum value for x). This subroutine is called from readbsn.f90 and readplant.f90

Parameters

in	x1	value for x in the above equation for first datapoint, x1 should be close to 0.5 (the midpoint of the curve)	
in	x2	value for x in the above equation for second datapoint, x2 should be close to 0.0 or 1.0	
in	хЗ	alue for y in the above equation corresponding to x1	
in	x4	alue for y in the above equation corresponding to x2	
out	x5	1st shape parameter for S curve equation characterizing the midpoint of the curve	
out	х6	2nd shape parameter for S curve equation characterizing the regions close to the endpoints of	
		the curve	

7.6 atri.f90 File Reference

Functions/Subroutines

• real *8 function atri (at1, at2, at3, at4i)

this function generates a random number from a triangular distribution given X axis points at start, end, and peak Y value

7.6.1 Detailed Description

file containing the function atri

Author

modified by Javier Burguete

7.6.2 Function/Subroutine Documentation

7.7 aunif.f90 File Reference 107

7.6.2.1 atri()

```
real*8 function atri (
    real*8, intent(in) at1,
    real*8, intent(in) at2,
    real*8, intent(in) at3,
    integer, intent(inout) at4i)
```

this function generates a random number from a triangular distribution given X axis points at start, end, and peak Y value

Parameters

in	at1	lower limit for distribution (none)
in	at2	monthly mean for distribution (none)
in	at3	upper limit for distribution (none)
in,out	at4i	random number seed (none)

Returns

daily value generated for distribution (none)

7.7 aunif.f90 File Reference

Functions/Subroutines

real *8 function aunif (x1)

This function generates random numbers ranging from 0.0 to 1.0. In the process of calculating the random number, the seed (x1) is set to a new value. This function implements the prime-modulus generator.

7.7.1 Detailed Description

file containing the function aunif

Author

modified by Javier Burguete

7.7.2 Function/Subroutine Documentation

7.7.2.1 aunif()

This function generates random numbers ranging from 0.0 to 1.0. In the process of calculating the random number, the seed (x1) is set to a new value. This function implements the prime-modulus generator.

$$xi = 16807 xi \mod (2^{31} - 1)$$

using code which ensures that no intermediate result uses more than 31 bits. The theory behind the code is summarized in [1]

Parameters

in,out	x1	random number generator seed (integer) where $0 < x1 < 2147483647$
--------	----	--

Returns

random number ranging from 0.0 to 1.0

7.8 bmpinit.f90 File Reference

Functions/Subroutines

• subroutine bmpinit (ii)

this subroutine sets default values for urban bmp parameters

7.8.1 Detailed Description

file containing the subroutine bmpinit

Author

modified by Javier Burguete

7.8.2 Function/Subroutine Documentation

7.8.2.1 bmpinit()

```
subroutine bmpinit ( integer,\ intent(in)\ \emph{ii}\ )
```

this subroutine sets default values for urban bmp parameters

Parameters

```
in ii subbasin number
```

7.9 burnop.f90 File Reference

Functions/Subroutines

• subroutine burnop (j)

this subroutine performs burning

7.9.1 Detailed Description

file containing the subroutine burnop

Author

modified by Javier Burguete

7.9.2 Function/Subroutine Documentation

7.9.2.1 burnop()

```
subroutine burnop (  \text{integer, intent(in) } j \; ) \\
```

this subroutine performs burning

Parameters

```
in j HRU number
```

7.10 canopyint.f90 File Reference

Functions/Subroutines

subroutine canopyint

this subroutine computes canopy interception of rainfall used for methods other than curve number

7.10.1 Detailed Description

file containing the subroutine canopyint

Author

modified by Javier Burguete

7.11 caps.f90 File Reference

Functions/Subroutines

• subroutine caps (file_name)

this subroutine reads the input and output names given in file.cio and converts all capital letters to lowercase letters.

7.11.1 Detailed Description

file containing the subroutine caps

Author

modified by Javier Burguete

7.11.2 Function/Subroutine Documentation

7.11.2.1 caps()

this subroutine reads the input and output names given in file.cio and converts all capital letters to lowercase letters.

Parameters

file_name | dummy argument, file name character string

7.12 cfactor.f90 File Reference

Functions/Subroutines

· subroutine cfactor

this subroutine predicts daily soil loss caused by water erosion using the modified universal soil loss equation

7.12.1 Detailed Description

file containing the subroutine cfactor

Author

modified by Javier Burguete

7.13 clgen.f90 File Reference

Functions/Subroutines

• subroutine clgen (j)

this subroutine calculates the daylength, distribution of radiation throughout the day and maximum radiation for day

7.13.1 Detailed Description

file containing the subroutine clgen

Author

modified by Javier Burguete

7.13.2 Function/Subroutine Documentation

7.13.2.1 clgen()

```
subroutine clgen ( \label{eq:clgen} \text{integer, intent(in) } \ j \ )
```

this subroutine calculates the daylength, distribution of radiation throughout the day and maximum radiation for day

Parameters

```
in j HRU number
```

7.14 clicon.f90 File Reference

Functions/Subroutines

• subroutine clicon (i)

this subroutine controls weather inputs to SWAT. Precipitation and temperature data is read in and the weather generator is called to fill in radiation, wind speed and relative humidity as well as missing precipitation and temperatures. Adjustments for climate changes studies are also made in this subroutine.

7.14.1 Detailed Description

file containing the subroutine clicon

Author

modified by Javier Burguete

7.14.2 Function/Subroutine Documentation

7.14.2.1 clicon()

```
subroutine clicon ( integer,\ intent(in)\ i\ )
```

this subroutine controls weather inputs to SWAT. Precipitation and temperature data is read in and the weather generator is called to fill in radiation, wind speed and relative humidity as well as missing precipitation and temperatures. Adjustments for climate changes studies are also made in this subroutine.

Parameters

in	i	current day of simulation (julian date)
	•	carrotte day of chinatation (janair dato)

7.15 command.f90 File Reference

Functions/Subroutines

• subroutine command (i)

for every day of simulation, this subroutine steps through the command lines in the watershed configuration (.fig) file. Depending on the command code on the .fig file line, a command loop is accessed

7.15.1 Detailed Description

file containing the subroutine command

Author

modified by Javier Burguete

7.15.2 Function/Subroutine Documentation

7.15.2.1 command()

```
subroutine command ( integer,\ intent(in)\ i\ )
```

for every day of simulation, this subroutine steps through the command lines in the watershed configuration (.fig) file. Depending on the command code on the .fig file line, a command loop is accessed

Parameters

in	i	current day in simulation-loop counter (julian date)
----	---	--

7.16 crackflow.f90 File Reference

Functions/Subroutines

· subroutine crackflow

this surboutine modifies surface runoff to account for crack flow

7.16.1 Detailed Description

file containing the subroutine crackflow

Author

modified by Javier Burguete

7.17 crackvol.f90 File Reference

Functions/Subroutines

· subroutine crackvol

this surboutine computes total crack volume for the soil profile and modifies surface runoff to account for crack flow

7.17.1 Detailed Description

file containing the subroutine crackvol

Author

modified by Javier Burguete

7.18 curno.f90 File Reference

Functions/Subroutines

• subroutine curno (cnn, h)

this subroutine determines the curve numbers for moisture conditions I and III and calculates coefficients and shape parameters for the water retention curve. The coefficients and shape parameters are calculated by one of two methods:

the default method is to make them a function of soil water,

the alternative method (labeled new) is to make them a function of accumulated PET, precipitation and surface runoff

7.18.1 Detailed Description

file containing the subroutine curno

Author

modified by Javier Burguete

7.18.2 Function/Subroutine Documentation

7.18.2.1 curno()

this subroutine determines the curve numbers for moisture conditions I and III and calculates coefficents and shape parameters for the water retention curve. The coefficents and shape parameters are calculated by one of two methods:

the default method is to make them a function of soil water,

the alternative method (labeled new) is to make them a function of accumulated PET, precipitation and surface runoff

Parameters

in	cnn	SCS runoff curve number for moisture condition II
in	h	HRU number

7.19 dailycn.f90 File Reference

Functions/Subroutines

• subroutine dailycn

calculates curve number for the day in the HRU

7.19.1 Detailed Description

file containing the subroutine dailycn

Author

modified by Javier Burguete

7.20 dstn1.f90 File Reference

Functions/Subroutines

• real *8 function dstn1 (rn1, rn2)

this function computes the distance from the mean of a normal distribution with mean = 0 and standard deviation = 1, given two random numbers

7.21 ee.f90 File Reference

7.20.1 Detailed Description

file containing the function dstn1

Author

modified by Javier Burguete

7.20.2 Function/Subroutine Documentation

7.20.2.1 dstn1()

```
real*8 function dstn1 (
                real*8, intent(in) rn1,
                real*8, intent(in) rn2 )
```

this function computes the distance from the mean of a normal distribution with mean = 0 and standard deviation = 1, given two random numbers

Parameters

in	rn1	first random number
in	rn2	second random number

Returns

distance from the mean

7.21 ee.f90 File Reference

Functions/Subroutines

• real *8 function ee (tk)

this function calculates saturation vapor pressure at a given air temperature

7.21.1 Detailed Description

file containing the function ee

Author

modified by Javier Burguete

7.21.2 Function/Subroutine Documentation

7.21.2.1 ee()

```
real*8 function ee ( real*8, intent(in) tk)
```

this function calculates saturation vapor pressure at a given air temperature

Parameters

in	tk	mean air temperature (deg C)	1
----	----	------------------------------	---

Returns

saturation vapor pressure (kPa)

7.22 eiusle.f90 File Reference

Functions/Subroutines

subroutine eiusle (j)
 this subroutine computes the USLE erosion index (EI)

7.22.1 Detailed Description

file containing the subroutine eiusle

Author

modified by Javier Burguete

7.23 estimate ksat.f90 File Reference

Functions/Subroutines

• subroutine estimate_ksat (perc_clay, esti_ksat)

This subroutine calculates ksat value for a soil layer given the % of clay in the soil layer.

7.23.1 Detailed Description

file containing the subroutine estimate_ksat

Author

modified by Javier Burguete

7.23.2 Function/Subroutine Documentation

7.23.2.1 estimate_ksat()

This subroutine calculates ksat value for a soil layer given the % of clay in the soil layer.

Background: published work of Walter Rawls. Calculated ksat values based on soil texture (sand, silt and clay). Idea: there exists a relationship between % clay and Ksat. Equations used in this subroutine are based on the above idea (Jimmy Willimas)

Parameters

in	perc_clay	clay percentage (%)
out	esti_ksat	estimated ksat

7.24 etpot.f90 File Reference

Functions/Subroutines

• subroutine etpot (j)

this subroutine calculates potential evapotranspiration using one of three methods. If Penman-Monteith is being used, potential plant transpiration is also calculated.

7.24.1 Detailed Description

file containing the subroutine etpot

Author

modified by Javier Burguete

7.24.2 Function/Subroutine Documentation

7.24.2.1 etpot()

```
subroutine etpot ( integer,\ intent(in)\ j\ )
```

this subroutine calculates potential evapotranspiration using one of three methods. If Penman-Monteith is being used, potential plant transpiration is also calculated.

Parameters

```
in j HRU number
```

7.25 expo.f90 File Reference

Functions/Subroutines

real *8 function expo (xx)

this function checks the argument against upper and lower boundary values prior to taking the Exponential

7.25.1 Detailed Description

file containing the function expo

Author

modified by Javier Burguete

7.25.2 Function/Subroutine Documentation

7.25.2.1 expo()

this function checks the argument against upper and lower boundary values prior to taking the Exponential

Parameters

in	XX	exponential argument (none)

Returns

 $\exp(xx)$

7.26 fert.f90 File Reference

Functions/Subroutines

• subroutine fert (j)

this subroutine applies N and P specified by date and amount in the management file (.mgt)

7.26.1 Detailed Description

file containing the subroutine fert

Author

modified by Javier Burguete

7.26.2 Function/Subroutine Documentation

7.26.2.1 fert()

```
subroutine fert ( integer,\ intent(in)\ j\ )
```

this subroutine applies N and P specified by date and amount in the management file (.mgt)

Parameters

```
in j HRU number
```

7.27 finalbal.f90 File Reference

Functions/Subroutines

· subroutine finalbal

this subroutine calculates final water balance for watershed

7.27.1 Detailed Description

file containing the subroutine finalbal

Author

modified by Javier Burguete

7.28 gcycl.f90 File Reference

Functions/Subroutines

· subroutine gcycl

This subroutine initializes the random number seeds. If the user desires a different set of random numbers for each simulation run, the random number generator is used to reset the values of the seeds.

7.28.1 Detailed Description

file containing the subroutine gcycl

Author

modified by Javier Burguete

7.29 getallo.f90 File Reference

Functions/Subroutines

· subroutine getallo

This subroutine calculates the number of HRUs, subbasins, etc. in the simulation. These values are used to allocate array sizes.

7.29.1 Detailed Description

file containing the subroutine getallo

Author

modified by Javier Burguete

7.30 graze.f90 File Reference

Functions/Subroutines

subroutine graze (j)
 this subroutine simulates biomass lost to grazing

7.30.1 Detailed Description

file containing the subroutine graze

Author

modified by Javier Burguete

7.30.2 Function/Subroutine Documentation

7.30.2.1 graze()

```
subroutine graze ( integer,\ intent(in)\ j\ )
```

this subroutine simulates biomass lost to grazing

Parameters

```
in j HRU number
```

7.31 h2omgt_init.f90 File Reference

Functions/Subroutines

subroutine h2omgt_init

This subroutine initializes variables related to water management (irrigation, consumptive water use, etc.)

7.31.1 Detailed Description

file containing the subroutine h2omgt_init

Author

modified by Javier Burguete

7.32 harvestop.f90 File Reference

Functions/Subroutines

• subroutine harvestop (j)

this subroutine performs the harvest operation (no kill)

7.32.1 Detailed Description

file containing the subroutine harvestop

Author

modified by Javier Burguete

7.32.2 Function/Subroutine Documentation

7.32.2.1 harvestop()

this subroutine performs the harvest operation (no kill)

Parameters

```
in j HRU number
```

7.33 harvkillop.f90 File Reference

Functions/Subroutines

• subroutine harvkillop (j)

this subroutine performs the harvest and kill operation

7.33.1 Detailed Description

file containing the subroutine harvkillop

Author

modified by Javier Burguete

7.33.2 Function/Subroutine Documentation

7.33.2.1 harvkillop()

```
subroutine harvkillop ( integer, \ intent(in) \ j \ )
```

this subroutine performs the harvest and kill operation

Parameters

7.34 headout.f90 File Reference

Functions/Subroutines

· subroutine headout

this subroutine writes the headings to the major output files

7.34.1 Detailed Description

file containing the subroutine headout

Author

modified by Javier Burguete

7.35 hmeas.f90 File Reference

Functions/Subroutines

· subroutine hmeas

this subroutine reads in relative humidity data from file and assigns the data to the HRUs

7.35.1 Detailed Description

file containing the subroutine hmeas

Author

modified by Javier Burguete

7.36 hruaa.f90 File Reference

Functions/Subroutines

• subroutine hruaa (years)

this subroutine writes average annual HRU output to the output.hru file

7.36.1 Detailed Description

file containing the subroutine hruaa

Author

modified by Javier Burguete

7.36.2 Function/Subroutine Documentation

7.36.2.1 hruaa()

this subroutine writes average annual HRU output to the output.hru file

Parameters

in	years	length of simulation (years)
----	-------	------------------------------

7.37 hruallo.f90 File Reference

Functions/Subroutines

· subroutine hruallo

This subroutine calculates the number of management operation types, etc. used in the simulation. These values are used to allocate array sizes for processes occurring in the HRU.

7.37.1 Detailed Description

file containing the subroutine hruallo

Author

modified by Javier Burguete

7.38 hrumon.f90 File Reference

Functions/Subroutines

· subroutine hrumon

this subroutine writes monthly HRU output to the output.hru file

7.38.1 Detailed Description

file containing the subroutine hrumon

Author

modified by Javier Burguete

7.39 hruyr.f90 File Reference

Functions/Subroutines

· subroutine hruyr

this subroutine writes annual HRU output to the output.hru file

7.39.1 Detailed Description

file containing the subroutine hruyr

Author

modified by Javier Burguete

7.40 hydroinit.f90 File Reference

Functions/Subroutines

· subroutine hydroinit

This subroutine computes variables related to the watershed hydrology: the time of concentration for the subbasins, lagged surface runoff, the coefficient for the peak runoff rate equation, and lateral flow travel time.

7.40.1 Detailed Description

file containing the subroutine hydroinit

Author

modified by Javier Burguete

7.41 icl.f90 File Reference

Functions/Subroutines

integer function icl (id)
 this function determines the month and day, given the julian date

7.41.1 Detailed Description

file containing the function icl

Author

modified by Javier Burguete

7.41.2 Function/Subroutine Documentation

7.41.2.1 icl()

```
integer function icl ( integer,\ intent(in)\ \emph{id}\ )
```

this function determines the month and day, given the julian date

Parameters

in id julian date	
-------------------	--

7.42 impnd_init.f90 File Reference

Functions/Subroutines

• subroutine impnd_init

this subroutine initializes variables related to impoundments (ponds, wetlands, reservoirs and potholes)

7.42.1 Detailed Description

file containing the subroutine impnd_init

Author

modified by Javier Burguete

7.43 impndmon.f90 File Reference

Functions/Subroutines

• subroutine impndmon

this subroutine writes monthly HRU impoundment output to the output.wtr file

7.43.1 Detailed Description

file containing the subroutine impndmon

Author

modified by Javier Burguete

7.44 impndyr.f90 File Reference

Functions/Subroutines

· subroutine impndyr

this subroutine writes annual HRU impondment output to the output.wtr file

7.44.1 Detailed Description

file containing the subroutine impndyr

Author

modified by Javier Burguete

7.45 irrigate.f90 File Reference

Functions/Subroutines

```
• subroutine irrigate (j, volmm)

this subroutine applies irrigation water to HRU
```

7.45.1 Detailed Description

file containing the subroutine irrigate

Author

modified by Javier Burguete

7.45.2 Function/Subroutine Documentation

7.45.2.1 irrigate()

```
subroutine irrigate (
                integer, intent(in) j,
                real*8, intent(in) volmm )
```

this subroutine applies irrigation water to HRU

Parameters

in	j	HRU number (none)
in	volmm	depth irrigation water applied to HRU (mm H2O)

7.46 irrsub.f90 File Reference

Functions/Subroutines

• subroutine irrsub (j)

this subroutine performs the irrigation operation when the source is the shallow or deep aquifer or a source outside the watershed

7.46.1 Detailed Description

file containing the subroutine irrsub

Author

modified by Javier Burguete

7.46.2 Function/Subroutine Documentation

7.46.2.1 irrsub()

```
subroutine irrsub ( integer,\ intent(in)\ j\ )
```

this subroutine performs the irrigation operation when the source is the shallow or deep aquifer or a source outside the watershed

Parameters

```
in j HRU number (none)
```

7.47 jdt.f90 File Reference

Functions/Subroutines

• integer function jdt (numdays, i, m)

this function computes the julian date given the month and the day of the month

7.47.1 Detailed Description

file containing the function jdt

Author

modified by Javier Burguete

7.47.2 Function/Subroutine Documentation

7.47.2.1 jdt()

```
integer function jdt (
          integer, dimension (13), intent(in) numdays,
          integer, intent(in) i,
           integer, intent(in) m )
```

this function computes the julian date given the month and the day of the month

Parameters

in	numdays	julian date for last day of preceding month (where the array location is the number of the month). The dates are for leap years (numdays=ndays) (julian date)
in	i	day
in	т	month

7.48 killop.f90 File Reference

Functions/Subroutines

```
• subroutine killop (j)

this subroutine performs the kill operation
```

7.48.1 Detailed Description

file containing the subroutine killop

Author

modified by Javier Burguete

7.48.2 Function/Subroutine Documentation

7.48.2.1 killop()

```
subroutine killop ( integer,\ intent(in)\ j\ )
```

this subroutine performs the kill operation

Parameters

in j	HRU number
--------	------------

7.49 lid_cistern.f90 File Reference

Functions/Subroutines

```
    subroutine lid_cistern (sb, j, k, lid_prec)
    simulate cistern processes
```

7.49.1 Detailed Description

file containing the subroutine lid_cistern

Author

modified by Javier Burguete

7.49.2 Function/Subroutine Documentation

7.49.2.1 lid_cistern()

simulate cistern processes

Parameters

in	sb	subbasin number (none)
in	j	HRU number (none)
in	k	subdaily time index (none)
in	lid_prec	precipitation depth a LID receives in a simulation time interval (mm)

7.50 lid_greenroof.f90 File Reference

Functions/Subroutines

subroutine lid_greenroof (sb, j, k, lid_prec)
 simulate green roof processes

7.50.1 Detailed Description

file containing the subroutine lid_greenroof

Author

modified by Javier Burguete

7.50.2 Function/Subroutine Documentation

7.50.2.1 lid_greenroof()

```
subroutine lid_greenroof (
    integer, intent(in) sb,
    integer, intent(in) j,
    integer, intent(in) k,
    real*8, intent(in) lid_prec )
```

simulate green roof processes

Parameters

in	sb	subbasin number (none)
in	j	HRU number (none)
in	k	subdaily time index (none)
in	lid_prec	precipitation depth a LID receives in a simulation time interval (mm)

7.51 lid_porpavement.f90 File Reference

Functions/Subroutines

```
    subroutine lid_porpavement (sb, j, k, lid_prec)
    simulate porous pavement processes
```

7.51.1 Detailed Description

file containing the subroutine lid_porpavement

Author

modified by Javier Burguete

7.51.2 Function/Subroutine Documentation

7.51.2.1 lid_porpavement()

```
subroutine lid_porpavement (
    integer, intent(in) sb,
    integer, intent(in) j,
    integer, intent(in) k,
    real*8, intent(in) lid_prec )
```

simulate porous pavement processes

Parameters

in	sb	subbasin number (none)
in	j	HRU number (none)
in	k	subdaily time index (none)
in	lid_prec	precipitation depth a LID receives in a simulation time interval (mm)

7.52 lid_raingarden.f90 File Reference

Functions/Subroutines

```
    subroutine lid_raingarden (sb, j, k, lid_prec)
    simulate rain garden processes
```

7.52.1 Detailed Description

file containing the subroutine lid_raingarden

Author

modified by Javier Burguete

7.52.2 Function/Subroutine Documentation

7.52.2.1 lid_raingarden()

```
subroutine lid_raingarden (
    integer, intent(in) sb,
    integer, intent(in) j,
    integer, intent(in) k,
    real*8, intent(in) lid_prec )
```

simulate rain garden processes

7.54 lids.f90 File Reference

Parameters

in	sb	subbasin number (none)
in	j	HRU number (none)
in	k	subdaily time index (none)
in	lid_prec	precipitation depth a LID receives in a simulation time interval (mm)

7.53 lidinit.f90 File Reference

Functions/Subroutines

• subroutine lidinit (i)

this subroutine sets default values for LID parameters

7.53.1 Detailed Description

file containing the subroutine lidinit

Author

modified by Javier Burguete

7.53.2 Function/Subroutine Documentation

7.53.2.1 lidinit()

```
subroutine lidinit ( integer,\ intent(in)\ i\ )
```

this subroutine sets default values for LID parameters

Parameters

```
in i subbasin number
```

7.54 lids.f90 File Reference

Functions/Subroutines

subroutine lids (sb, j, k, lid_prec)
 call subroutines to simulate green roof, rain garden, cistern and porous pavement processes

7.54.1 Detailed Description

file containing the subroutine lids

Author

modified by Javier Burguete

7.54.2 Function/Subroutine Documentation

7.54.2.1 lids()

```
subroutine lids (
    integer, intent(in) sb,
    integer, intent(in) j,
    integer, intent(in) k,
    real*8, intent(in) lid_prec )
```

call subroutines to simulate green roof, rain garden, cistern and porous pavement processes

Parameters

in	sb	subbasin number (none)
in	j	HRU number (none)
in	k	subdaily time index (none)
in	lid_prec	precipitation depth a LID receives in a simulation time interval (mm)

7.55 lwqdef.f90 File Reference

Functions/Subroutines

• subroutine lwqdef (ii)

this subroutine assigns default values for the lake water quality (.lwq) when the lake water quality file does not exists

7.55.1 Detailed Description

file containing the subroutine lwqdef

Author

modified by Javier Burguete

7.56 main.f90 File Reference 135

7.55.2 Function/Subroutine Documentation

7.55.2.1 lwqdef()

this subroutine assigns default values for the lake water quality (.lwq) when the lake water quality file does not exists

Parameters

in <i>ii</i>	reservoir number (none)
--------------	-------------------------

7.56 main.f90 File Reference

Functions/Subroutines

program main

this is the main program that reads input, calls the main simulation model, and writes output

7.56.1 Detailed Description

file containing the main program that reads input, calls the main simulation model, and writes output.

Author

modified by Javier Burguete Tolosa

7.57 modparm.f90 File Reference

Data Types

- interface parm::fcgd
- interface parm::regres
- · interface parm::tair
- interface parm::theta
- · interface parm::ndenit

Modules

module parm

main module containing the global variables

Variables

• integer, parameter parm::mvaro = 33

max number of variables routed through the reach

• integer, parameter parm::mhruo = 79

maximum number of variables written to HRU output file (output.hru) (none)

• integer, parameter parm::mrcho = 62

maximum number of variables written to reach output file (.rch) (none)

• integer, parameter parm::msubo = 24

maximum number of variables written to subbasin output file (output.sub) (none)

integer, parameter parm::mstdo = 113

max number of variables summarized in output.std

- integer, parameter parm::motot = 600
- character(len=80), parameter parm::prog = "SWAT Sep 7 VER 2018/Rev 670"

SWAT program header string (name and version)

character(len=13), dimension(mhruo), parameter parm::heds = (/" PRECIPmm"," SNOFALLmm"," SNOM ← ELTmm"," IRRmm"," PETmm"," ETmm"," SW_INITmm"," SW_ENDmm"," PERCmm"," GW_RCHGmm"," DA_RCHGmm"," BEVAPmm"," SA_IRRmm"," DA_IRRmm"," SA_STmm"," DA_STmm","SURQ_GE ← Nmm","SURQ_CNTmm"," TLOSSmm"," LATQGENmm"," GW_Qmm"," WYLDmm"," DAILYCN"," TMP ← AVdgC"," TMP_MXdgC"," TMP_MNdgC","SOL_TMPdgC","SOLARMJ/m2"," SYLDt/ha"," USLEt/ha","N_← APPkg/ha","P_APPkg/ha","NAUTOkg/ha","PAUTOkg/ha"," NGRZkg/ha"," PGRZkg/ha","NCFRTkg/ha","P← CFRTkg/ha","NRAINkg/ha"," NFIXkg/ha"," F-MNkg/ha"," A-SNkg/ha"," F-MPkg/ha","AO-L← Pkg/ha"," NAJNkg/ha"," DNITkg/ha"," NUPkg/ha"," PUPkg/ha"," ORGNkg/ha"," ORGPkg/ha"," SEDPkg/ha","NSURQkg/ha","NLATQkg/ha"," NO3Lkg/ha","NO3GWkg/ha"," SOLPkg/ha"," P_GWkg/ha"," W_STRS"," TMP_STRS"," N_STRS"," P_STRS"," BIOMt/ha"," LAI"," YLDt/ha"," BACTPct "," BACTL← Pct"," WTAB CLIm"," WTAB SOLm"," SNOmm"," CMUPkg/ha","CMTOTkg/ha"," QTILEmm"," TNO3kg/ha"," LNO3kg/ha"," GW_Q_Dmm"," LATQCNTmm"," TVAPkg/ha"/)

column headers for HRU output file

character(len=13), dimension(msubo), parameter parm::hedb = (/" PRECIPmm"," SNOMELTmm"," P← ETmm"," ETmm"," SWmm"," PERCmm"," SURQmm"," GW_Qmm"," WYLDmm"," SYLDt/ha"," ORG← Nkg/ha"," ORGPkg/ha","NSURQkg/ha"," SOLPkg/ha"," SEDPkg/ha"," LAT Q(mm)","LATNO3kg/h","GWN← O3kg/ha","CHOLAmic/L","CBODU mg/L"," DOXQ mg/L"," TNO3kg/ha"," QTILEmm"," TVAPkg/ha"/)

column headers for subbasin output file

column headers for reach output file

character(len=13), dimension(41), parameter parm::hedrsv = (/" VOLUMEm3"," FLOW_INcms"," FLO↔ W_OUTcms"," PRECIPm3"," EVAPm3"," SEEPAGEm3"," SED_INtons"," SED_OUTtons"," SED_CON↔ Cppm"," ORGN_INkg"," ORGN_OUTkg"," RES_ORGNppm"," ORGP_INkg"," ORGP_OUTkg"," RES_O↔ RGPppm"," NO3_INkg"," NO3_OUTkg"," RES_NO3ppm"," NO2_INkg"," NO2_OUTkg"," RES_NO2ppm"," NH3_INkg"," NH3_OUTkg"," RES_NH3ppm"," MINP_INkg"," MINP_OUTkg"," RES_MINPppm"," CHLA_↔ INkg"," CHLA_OUTkg","SECCHIDEPTHm"," PEST_INmg"," REACTPSTmg"," VOLPSTmg"," SETTLPS↔ Tmg","RESUSP_PSTmg","DIFFUSEPSTmg","REACBEDPSTmg"," BURYPSTmg"," PEST_OUTmg","PS↔ TCNCWmg/m3","PSTCNCBmg/m3"/)

column headers for reservoir output file

 character(len=13), dimension(40), parameter parm::hedwtr = (/" PNDPCPmm"," PND_INmm","PSED_ It/ha"," PNDEVPmm"," PNDSEPmm"," PND_OUTmm","PSED_Ot/ha"," PNDVOLm^3","PNDORGNppm"," PNDNO3ppm","PNDORGPppm","PNDMINPppm","PNDCHLAppm"," PNDSECIm"," WETPCPmm"," W← ET_INmm","WSED_It/ha"," WETEVPmm"," WETSEPmm"," WET_OUTmm","WSED_Ot/ha"," WETVO← Lm^3","WETORGNppm"," WETNO3ppm","WETORGPppm","WETMINPppm","WETCHLAppm"," WETSE← CIm"," POTPCPmm"," POT_INmm","OSED_It/ha"," POTEVPmm"," POTSEPmm"," POT_OUTmm","OSE← D Ot/ha"," POTVOLm^3"," POT SAha","HRU SURQmm","PLANT ETmm"," SOIL ETmm"/)

column headers for HRU impoundment output file

- integer, dimension(mhruo), parameter parm::icols = (/43,53,63,73,83,93,103,113,123,133,143,153,163,173,183,193,203,213,2 space number for beginning of column in HRU output file (none)
- integer, dimension(mrcho), parameter parm::icolr = (/38,50,62,74,86,98,110,122,134,146,158,170,182,194,206,218,230,242,26) space number for beginning of column in reach output file (none)
- integer, dimension(41), parameter parm::icolrsv = (/38,50,62,74,86,98,110,122,134,146,158,170,182,194,206,218,230,242,254 space number for beginning of column in reservoir output file (none)
- real *8, parameter parm::ab = 0.02083
 - lowest value al5 can have (mm H2O)
- integer, dimension(13), parameter parm::ndays_leap = (/0,31,60,91,121,152,182,213,244,274,305,335,366/)
- integer, dimension(13), parameter parm::ndays_noleap = (/0,31,59,90,120,151,181,212,243,273,304,334,365/)
- · integer parm::icalen
- real *8 parm::prf_bsn

Basinwide peak rate adjustment factor for sediment routing in the channel. Allows impact of peak flow rate on sediment routing and channel reshaping to be taken into account.

- real *8 parm::co2 x2
- real *8 parm::co2 x
- real *8, dimension(:), allocatable parm::alph_e
- real *8, dimension(:), allocatable parm::cdn

denitrification exponential rate coefficient

real *8, dimension(:), allocatable parm::nperco

nitrate percolation coefficient (0-1)

0:concentration of nitrate in surface runoff is zero

1:percolate has same concentration of nitrate as surface runoff

real *8, dimension(:), allocatable parm::surlag

Surface runoff lag time. This parameter is needed in subbasins where the time of concentration is greater than 1 day. SURLAG is used to create a "storage" for surface runoff to allow the runoff to take longer than 1 day to reach the subbasin outlet (days)

- real *8, dimension(:), allocatable parm::co_p
- real *8, dimension(:), allocatable parm::cmn

rate factor for humus mineralization on active organic N

real *8, dimension(:), allocatable parm::phoskd

Phosphorus soil partitioning coefficient. Ratio of soluble phosphorus in surface layer to soluble phosphorus in runoff.

real *8, dimension(:), allocatable parm::psp

Phosphorus availibility index. The fraction of fertilizer P remaining in labile pool after initial rapid phase of P sorption (none)

real *8, dimension(:), allocatable parm::sdnco

denitrification threshold: fraction of field capacity triggering denitrification

real *8 parm::r2adj bsn

basinwide retention parameter adjustment factor (greater than 1)

real *8 parm::pst_kg

amount of pesticide applied to HRU (kg/ha)

real *8 parm::yield

yield (dry weight) (kg)

real *8 parm::burn frlb

fraction of biomass and residue that burn(input in management file) range (0 - 1.0) (none)

- real *8 parm::yieldgrn
- real *8 parm::vieldbms
- real *8 parm::yieldtbr
- real *8 parm::yieldn
- real *8 parm::yieldp
- real *8 parm::hi_bms
- real *8 parm::hi_rsd
- · real *8 parm::yieldrsd
- real *8, dimension(:), allocatable parm::l_k1
- real *8, dimension(:), allocatable parm::l_k2
- real *8, dimension(:), allocatable parm::l_lambda
- real *8, dimension(:), allocatable parm:: beta
- real *8, dimension(:), allocatable parm::l_gama
- real *8, dimension(:), allocatable parm::l_harea
- real *8, dimension(:), allocatable parm::l vleng
- real *8, dimension(:), allocatable parm::l_vslope
- real *8, dimension(:), allocatable parm::| ktc
- real *8, dimension(:), allocatable parm::biofilm_mumax
- real *8, dimension(:), allocatable parm::biofilm_kinv
- real *8, dimension(:), allocatable parm::biofilm_klw
- real *8, dimension(:), allocatable parm::biofilm_kla
- real *8, dimension(:), allocatable parm::biofilm_cdet
- real *8, dimension(:), allocatable parm::biofilm bm
- real *8, dimension(:,:), allocatable parm::hru rufr
- real *8, dimension(:,:), allocatable parm::daru_km
- real *8, dimension(:,:), allocatable parm::ru k
- real *8, dimension(:,:), allocatable parm::ru_c
- real *8, dimension(:.:), allocatable parm::ru eig
- real *8, dimension(:,:), allocatable parm::ru_ovsl
- real *8, dimension(:,:), allocatable parm::ru_a
- real *8, dimension(:,:), allocatable parm::ru ovs
- real *8, dimension(:,:), allocatable parm::ru_ktc
- real *8, dimension(:), allocatable parm::gwq_ru
- real *8, dimension(:), allocatable parm::qdayout
- integer, dimension(:), allocatable parm::ils2
- integer, dimension(:), allocatable parm::ils2flag
- integer parm::ipest

pesticide identification number from pest.dat (none)

- integer parm::iru
- integer parm::mru
- · integer parm::irch
- · integer parm::isub
- integer parm::mhyd_bsn
- integer parm::ils_nofig
- integer parm::mhru1
- integer, dimension(:), allocatable parm::mhyd1
- integer, dimension(:), allocatable parm::irtun
- real *8 parm::wshd_sepno3
- real *8 parm::wshd_sepnh3
- real *8 parm::wshd seporgn
- real *8 parm::wshd sepfon
- real *8 parm::wshd_seporgp

```
real *8 parm::wshd_sepfop
```

- real *8 parm::wshd_sepsolp
- real *8 parm::wshd_sepbod
- real *8 parm::wshd sepmm
- integer, dimension(:), allocatable parm::isep_hru
- real *8 parm::fixco

nitrogen fixation coefficient

real *8 parm::nfixmx

maximum daily n-fixation (kg/ha)

real *8 parm::res_stlr_co

reservoir sediment settling coefficient

real *8 parm::rsd covco

residue cover factor for computing fraction of cover

real *8 parm::vcrit

critical velocity

real *8 parm::wshd_snob

average amount of water stored in snow at the beginning of the simulation for the entire watershed (mm H20)

real *8 parm::wshd sw

water in soil at beginning of simulation, or\ average amount of water stored in soil for the entire watershed, or\ difference between mass balance calculated from watershed averages and actual value for water in soil at end of simulation (goal is to have wshd_sw = 0.) $(mm\ H2O)$

real *8 parm::wshd_pndfr

fraction of watershed area which drains into ponds (none)

real *8 parm::wshd_pndsed

total amount of suspended sediment in ponds in the watershed (metric tons), or mass balance discrepancy for pond sediment expressed as loading per unit hectare of drainage area (metric tons/ha)

real *8 parm::wshd_pndv

total volume of water in ponds in the watershed (m^3), or mass balance discrepancy for pond water volume expressed as depth over drainage area (mm H2O)

real *8 parm::percop

pesticide percolation coefficient (0-1)

0: concentration of pesticide in surface runoff is zero

1: percolate has same concentration of pesticide as surface runoff

real *8 parm::wshd resfr

fraction of watershed area that drains into reservoirs (none)

real *8 parm::wshd_pndha

watershed area in hectares which drains into ponds (ha)

real *8 parm::wshd_resha

watershed area in hectares which drains into reservoirs (ha)

real *8 parm::wshd_wetfr

fraction of watershed area which drains into wetlands (none)

real *8 parm::wshd_fminp

average annual amount of mineral P applied in watershed (kg P/ha)

real *8 parm::wshd_fnh3

average annual amount of NH3-N applied in watershed (kg N/ha)

real *8 parm::wshd fno3

average annual amount of NO3-N applied in watershed (kg N/ha)

real *8 parm::wshd_forgn

average annual amount of organic N applied in watershed (kg N/ha)

• real *8 parm::wshd ftotn

average annual amount of N (mineral & organic) applied in watershed (kg N/ha)

real *8 parm::wshd_forgp average annual amount of organic P applied in watershed (kg P/ha) real *8 parm::wshd ftotp average annual amount of P (mineral & organic) applied in watershed (kg P/ha) real *8 parm::wshd_yldn amount of nitrogen removed from soil in watershed in the yield (kg N/ha) real *8 parm::wshd_yldp amount of phosphorus removed from soil in watershed in the yield (kg P/ha) real *8 parm::wshd fixn real *8 parm::wshd_pup real *8 parm::wshd_wstrs real *8 parm::wshd nstrs real *8 parm::wshd_pstrs real *8 parm::wshd_tstrs real *8 parm::wshd_astrs real *8 parm::ffcb initial soil water content expressed as a fraction of field capacity real *8 parm::wshd_hmn real *8 parm::wshd_rwn real *8 parm::wshd_hmp real *8 parm::wshd rmn real *8 parm::wshd dnit real *8 parm::wdpq die-off factor for persistent bacteria in soil solution (1/day) real *8 parm::wshd_rmp real *8 parm::wshd_voln real *8 parm::wshd_nitn real *8 parm::wshd pas real *8 parm::wshd_pal real *8 parm::wof_p wash off fraction for persistent bacteria on foliage during a rainfall event real *8 parm::wshd plch real *8 parm::wshd_raino3 real *8 parm::ressedc real *8 parm::basno3f · real *8 parm::basorgnf real *8 parm::wshd pinlet real *8 parm::wshd_ptile real *8 parm::sftmp Snowfall temperature (deg C) real *8 parm::smfmn Minimum melt rate for snow during year (Dec. 21) where deg C refers to the air temperature. (mm/deg C/day) real *8 parm::smfmx Maximum melt rate for snow during year (June 21) where deg C refers to the air temperature. SMFMX and SM← FMN allow the rate of snow melt to vary through the year. These parameters are accounting for the impact of soil temperature on snow melt. (mm/deg C/day) real *8 parm::smtmp Snow melt base temperature. Mean air temperature at which snow melt will occur. (deg C) real *8 parm::wgpq growth factor for persistent bacteria in soil solution (1/day) real *8 parm::basminpf real *8 parm::basorgpf real *8 parm::wdlpq

die-off factor for less persistent bacteria in soil solution (1/day)

real *8 parm::wshd_ressed

total amount of suspended sediment in reservoirs in the watershed (metric tons), or mass balance discrepancy for reservoir sediment expressed as loading per unit hectare of drainage area (metric tons/ha)

· real *8 parm::wshd resv

total volume of water in all reservoirs in the watershed (m^3), or mass balance discrepancy for reservoir water volume expressed as depth over drainage area (mm H2O)

real *8 parm::basminpi

average amount of phosphorus initially in the mineral P pool in watershed soil (kg P/ha)

real *8 parm::basno3i

average amount of nitrogen initially in the nitrate pool in watershed soil (kg N/ha)

real *8 parm::basorgni

average amount of nitrogen initially in the organic N pool in watershed soil (kg N/ha)

real *8 parm::wdps

die-off factor for persistent bacteria adsorbed to soil particles (1/day)

real *8 parm::wglpq

growth factor for less persistent bacteria in soil solution (1/day)

real *8 parm::basorgpi

average amount of phosphorus initially in the organic P pool in watershed soil (kg P/ha)

real *8 parm::peakr

peak runoff rate for the day in HRU (m^{\wedge} 3/s)

real *8 parm::albday

albedo of ground for the day in HRU, the fraction of the solar radiation reflected at the soil surface back into space (none)

real *8 parm::pndsedin

sediment inflow to the pond from HRU (metric tons)

real *8 parm::sw_excess

amount of water stored in soil layer on the current day that exceeds field capacity (gravity drained water) (mm H2O)

real *8 parm::timp

Snow pack temperature lag factor (0-1)

1 = no lag (snow pack temp=current day air temp) as the lag factor goes to zero, the snow pack's temperature will be less influenced by the current day's air temperature.

- real *8 parm::wtabelo
- real *8 parm::tilep
- real *8 parm::wt_shall
- real *8 parm::sq_rto
- real *8 parm::qtile

drainage tile flow in HRU soil layer for the day (mm H2O)

real *8 parm::inflpcp

amount of precipitation that infiltrates into soil (enters soil) (mm H2O)

real *8 parm::crk

percolation due to crack flow (mm H2O)

real *8 parm::fixn

amount of nitrogen added to plant biomass via fixation on the day in HRU (kg N/ha)

real *8 parm::latlyr

amount of water in lateral flow in layer in HRU for the day (mm H2O)

real *8 parm::snofall

amount of precipitation falling as freezing rain/snow on day in HRU (mm H2O)

real *8 parm::snomlt

amount of water in snow melt for the day in HRU (mm H2O)

real *8 parm::tloss

```
amount of water removed from surface runoff via transmission losses on day in HRU (mm H2O)
real *8 parm::pndloss
real *8 parm::wetloss
• real *8 parm::potloss
real *8 parm::lpndloss
real *8 parm::lwetloss
real *8 parm::bioday
     biomass generated on current day in HRU (kg)
· real *8 parm::cfertn
     amount of nitrogen added to soil in continuous fertilizer operation on day (kg N/ha)
· real *8 parm::cfertp
     amount of phosphorus added to soil in continuous fertilizer operation on day (kg P/ha)

    real *8 parm::fertn

     total amount of nitrogen applied to soil in HRU on day (kg N/ha)
real *8 parm::sepday
     micropore percolation from bottom of the soil layer on day in HRU (mm H2O)

 real *8 parm::sol rd

     current rooting depth (mm)
real *8 parm::sedrch
real *8 parm::sepcrk
real *8 parm::sepcrktot
real *8 parm::fertno3
real *8 parm::fertnh3
• real *8 parm::fertorgn

    real *8 parm::fertsolp

real *8 parm::fertorgp
real *8 parm::wgps
     growth factor for persistent bacteria adsorbed to soil particles (1/day)
· real *8 parm::qdfr
     fraction of water yield that is surface runoff (none)

 real *8 parm::fertp

     total amount of phosphorus applied to soil in HRU on day (kg P/ha)

    real *8 parm::grazn

     amount of nitrogen added to soil in grazing on the day in HRU (kg N/ha)
real *8 parm::grazp
     amount of phosphorus added to soil in grazing on the day in HRU (kg P/ha)

    real *8 parm::soxy

     saturation dissolved oxygen concentration (mg/L)
real *8 parm::sdti
real *8 parm::rtwtr
real *8 parm::ressa
· real *8 parm::wdlps
     die-off factor for less persistent bacteria absorbed to soil particles (1/day)
real *8 parm::wglps
     growth factor for less persistent bacteria adsorbed to soil particles (1/day)

 real *8 parm::da km

     area of the watershed in square kilometers (km^{\wedge}2)
• real *8 parm::rttime
real *8 parm::rchdep
real *8 parm::rtevp
real *8 parm::rttlc

    real *8 parm::resflwi
```

real *8 parm::wdprch

die-off factor for persistent bacteria in streams (1/day)

- real *8 parm::resflwo
- real *8 parm::respcp
- real *8 parm::resev
- real *8 parm::ressep
- real *8 parm::ressedi
- real *8 parm::ressedo
- real *8 parm::dtot
- real *8 parm::pperco_bsn

phosphorus percolation coefficient. Ratio of soluble phosphorus in surface to soluble phosphorus in percolate

real *8 parm::nperco_bsn

basin nitrate percolation coefficient (0-1)

0:concentration of nitrate in surface runoff is zero

1:percolate has same concentration of nitrate as surface runoff

real *8 parm::rsdco

residue decomposition coefficient. The fraction of residue which will decompose in a day assuming optimal moisture, temperature, C:N ratio, and C:P ratio

real *8 parm::voltot

total volume of cracks expressed as depth per unit area (mm)

- real *8 parm::phoskd bsn
- real *8 parm::msk_x

weighting factor controling relative importance of inflow rate and outflow rate in determining storage on reach

real *8 parm::volcrmin

minimum crack volume allowed in any soil layer (mm)

real *8 parm::bactkdq

bacteria soil partitioning coefficient. Ratio of solution bacteria in surface layer to solution bacteria in runoff soluble and sorbed phase in surface runoff.

real *8 parm::wdpf

die-off factor for persistent bacteria on foliage (1/day)

real *8 parm::canev

amount of water evaporated from canopy storage (mm H2O)

real *8 parm::precipday

precipitation, or effective precipitation reaching soil surface, for the current day in HRU (mm H2O)

real *8 parm::uno3d

plant nitrogen deficiency for day in HRU (kg N/ha)

real *8 parm::usle

daily soil loss predicted with USLE equation (metric tons/ha)

- real *8 parm::rcn
- real *8 parm::surlag bsn
- · real *8 parm::thbact

temperature adjustment factor for bacteria die-off/growth

real *8 parm::wlpq20

overall rate change for less persistent bacteria in soil solution (1/day)

real *8 parm::wlps20

overall rate change for less persistent bacteria adsorbed to soil particles (1/day)

real *8 parm::wpq20

overall rate change for persistent bacteria in soil solution (1/day)

real *8 parm::wps20

overall rate change for persistent bacteria adsorbed to soil particles (1/day)

real *8 parm::bactrop

persistent bacteria transported to main channel with surface runoff (# colonies/ha)

real *8 parm::bactsedp

persistent bacteria transported with sediment in surface runoff (# colonies/ha)

real *8 parm::wgpf

growth factor for persistent bacteria on foliage (1/day)

real *8 parm::bactlchlp

less persistent bacteria removed from soil surface layer by percolation (# colonies/ha)

real *8 parm::bactlchp

persistent bacteria removed from soil surface layer by percolation (# colonies/ha)

real *8 parm::enratio

enrichment ratio calculated for day in HRU (none)

real *8 parm::pndpcp

precipitation on pond during day (m[^]3 H2O)

- real *8 parm::wetpcp
- real *8 parm::wetsep

seepage from wetland bottom for day (m^3 H2O)

real *8 parm::pndev

evaporation from pond on day (m^3 H2O)

• real *8 parm::pndflwi

volume of water flowing into pond on day (m^3 H2O)

real *8 parm::pndsedo

sediment leaving pond during day (metric tons)

real *8 parm::pndsep

seepage from pond on day (m^3 H2O)

· real *8 parm::wetev

evaporation from wetland for day (m^3 H2O)

real *8 parm::wetflwi

volume of water flowing in wetland on day (m^3 H2O)

real *8 parm::wetsedo

sediment loading from wetland for day (metric tons)

real *8 parm::da_ha

drainage area of watershed in hectares (ha)

real *8 parm::pndflwo

volume of water flowing out of pond on day (m^3 H2O)

real *8 parm::vpd

vapor pressure deficit (kPa)

real *8 parm::wetflwo

volume of water flowing out wetland on day (m[^] 3 H2O)

real *8 parm::wetsedi

sediment loading to wetland for day (metric tons)

real *8 parm::evlai

leaf area index at which no evaporation occurs. This variable is used in ponded HRUs where evaporation from the water surface is restricted by the plant canopy cover. Evaporation from the water surface equals potential ET when LAI = 0 and decreased linearly to O when LAI = EVLAI

real *8 parm::evrch

Reach evaporation adjustment factor. Evaporation from the reach is multiplied by EVRCH. This variable was created to limit the evaporation predicted in arid regions.

real *8 parm::wdlpf

die-off factor for less persistent bacteria on foliage (1/day)

real *8 parm::ep_day

actual amount of transpiration that occurs on day in HRU (mm H2O)

real *8 parm::pet_day

potential evapotranspiration on current day in HRU (mm H2O)

real *8 parm::bactrolp

less persistent bacteria transported to main channel with surface runoff (# colonies/ha)

real *8 parm::bactsedlp

less persistent bacteria transported with sediment in surface runoff (# colonies/ha)

real *8 parm::adj_pkr

peak rate adjustment factor in the subbasin. Used in the MUSLE equation to account for impact of peak flow on erosion (none)

real *8 parm::n updis

nitrogen uptake distribution parameter. This parameter controls the amount of nitrogen removed from the different soil layer layers by the plant. In particular, this parameter allows the amount of nitrogen removed from the surface layer via plant uptake to be controlled. While the relationship between UBN and N removed from the surface layer is affected by the depth of the soil profile, in general, as UBN increases the amount of N removed from the surface layer relative to the amount removed from the entire profile increases

· real *8 parm::nactfr

nitrogen active pool fraction. The fraction of organic nitrogen in the active pool (none)

real *8 parm::p updis

phosphorus uptake distribution parameter This parameter controls the amount of phosphorus removed from the different soil layers by the plant. In particular, this parameter allows the amount of phosphorus removed from the surface layer via plant uptake to be controlled. While the relationship between UBP and P uptake from the surface layer is affected by the depth of the soil profile, in general, as UBP increases the amount of P removed from the surface layer relative to the amount removed from the entire profile increases

real *8 parm::snoev

amount of water in snow lost through sublimation on current day in HRU (mm H2O)

- real *8 parm::sno3up
- real *8 parm::reactw
- real *8 parm::es_day

actual amount of evaporation (soil et) that occurs on day in HRU (mm H2O)

- real *8 parm::sdiegropq
- real *8 parm::sdiegrolpq
- real *8 parm::sdiegrops
- real *8 parm::sdiegrolps
- real *8 parm::wof_lp

wash off fraction for less persistent bacteria on foliage during a rainfall event

real *8 parm::ep_max

maximum amount of transpiration (plant et) that can occur on day in HRU (mm H2O)

- real *8 parm::sbactrop
- real *8 parm::sbactrolp
- real *8 parm::sbactsedp
- real *8 parm::sbactsedlp
- real *8 parm::sbactlchp
- real *8 parm::sbactlchlp
- real *8 parm::psp_bsn
- real *8 parm::rchwtr
- real *8 parm::resuspst
- real *8 parm::setlpst
- real *8 parm::bsprev

surface runoff lagged from prior day of simulation (mm H2O)

real *8 parm::bssprev

lateral flow lagged from prior day of simulation (mm H2O)

- real *8 parm::spadyo
- real *8 parm::spadyev
- real *8 parm::spadysp
- real *8 parm::spadyrfv

- real *8 parm::spadyosp
- real *8 parm::qday

amount of surface runoff loading to main channel from HRU on current day (mm H2O)

real *8 parm::al5

fraction of total rainfall that occurs during 0.5h of highest intensity rain (none)

real *8 parm::no3pcp

nitrate added to the soil in rainfall (kg N/ha)

real *8 parm::pndsedc

net change in sediment in pond during day (metric tons)

• real *8 parm::usle ei

USLE rainfall erosion index on day for HRU (100(ft-tn in)/(acre-hr))

- real *8 parm::rcharea
- real *8 parm::volatpst
- real *8 parm::ubw

water uptake distribution parameter. This parameter controls the amount of water removed from the different soil layers by the plant. In particular, this parameter allows the amount of water removed from the surface layer via plant uptake to be controlled. While the relationship between UBW and H2O removed from the surface layer is affected by the depth of the soil profile, in general, as UBW increases the amount of water removed from the surface layer relative to the amount removed from the entire profile increases

real *8 parm::uobn

nitrogen uptake normalization parameter. This variable normalizes the nitrogen uptake so that the model can easily verify that upake from the different soil layers sums to 1.0

real *8 parm::uobp

phosphorus uptake normalization parameter. This variable normalizes the phosphorus uptake so that the model can easily verify that uptake from the different soil layers sums to 1.0

real *8 parm::uobw

water uptake normalization parameter. This variable normalizes the water uptake so that the model can easily verify that uptake from the different soil layers sums to 1.0

· real *8 parm::wglpf

growth factor for less persistent bacteria on foliage (1/day)

• real *8 parm::wetsedc

net change in sediment in wetland during day (metric tons)

- real *8 parm::respesti
- real *8 parm::rcor

correction coefficient for generated rainfall to ensure that the annual means for generated and observed values are comparable (needed only if IDIST=1)

real *8 parm::rexp

value of exponent for mixed exponential rainfall distribution (needed only if IDIST=1)

real *8 parm::snocov1

1st shape parameter for snow cover equation. This parameter is determined by solving the equation for 50% snow cover

real *8 parm::snocov2

2nd shape parameter for snow cover equation. This parameter is determined by solving the equation for 95% snow cover

real *8 parm::snocovmx

Minimum snow water content that corresponds to 100% snow cover. If the snow water content is less than SNOC← OVMX, then a certain percentage of the ground will be bare (mm H2O)

real *8 parm::lyrtile

drainage tile flow in soil layer for day (mm H2O)

- real *8 parm::lyrtilex
- real *8 parm::sno50cov

Fraction of SNOCOVMX that corresponds to 50% snow cover. SWAT assumes a nonlinear relationship between snow water and snow cover.

```
real *8 parm::ai0
     ratio of chlorophyll-a to algal biomass (ug chla/mg alg)
real *8 parm::ai1
      fraction of algal biomass that is nitrogen (mg N/mg alg)
real *8 parm::ai2
     fraction of algal biomass that is phosphorus (mg P/mg alg)
real *8 parm::ai3
     the rate of oxygen production per unit of algal photosynthesis (mg O2/mg alg)
real *8 parm::ai4
     the rate of oxygen uptake per unit of algae respiration (mg O2/mg alg)
real *8 parm::ai5
      the rate of oxygen uptake per unit of NH3 nitrogen oxidation (mg O2/mg N)
real *8 parm::ai6
      the rate of oxygen uptake per unit of NO2 nitrogen oxidation (mg O2/mg N)

 real *8 parm::rhoq

     algal respiration rate (1/day or 1/hr)

    real *8 parm::tfact

      fraction of solar radiation computed in the temperature heat balance that is photosynthetically active
real *8 parm::k 1
     half-saturation coefficient for light (MJ/(m2*hr))
real *8 parm::k_n
     michaelis-menton half-saturation constant for nitrogen (mg N/L)
real *8 parm::k p
     michaelis-menton half saturation constant for phosphorus (mg P/L)
• real *8 parm::lambda0
     non-algal portion of the light extinction coefficient (1/m)

    real *8 parm::lambda1

     linear algal self-shading coefficient (1/(m*ug chla/L))
real *8 parm::lambda2
     nonlinear algal self-shading coefficient ((1/m)(ug chla/L)**(-2/3))
real *8 parm::mumax
     maximum specific algal growth rate (1/day or 1/hr)
real *8 parm::p_n
     algal preference factor for ammonia

 real *8 parm::rnum1

      variable to hold value for rnum1s(:) (none)

    real *8 parm::etday

     actual evapotranspiration occuring on day in HRU (mm H2O)

    real *8 parm::auton

      amount of nitrogen applied in auto-fert application (kg N/ha)

    real *8 parm::autop

      amount of phosphorus applied in auto-fert application (kg P/ha)

    real *8 parm::hmntl

      amount of nitrogen moving from active organic to nitrate pool in soil profile on current day in HRU (kg N/ha)

    real *8 parm::hmptl

      amount of phosphorus moving from active organic to nitrate pool in soil profile on current day in HRU (kg P/ha)
real *8 parm::rmn2tl
      amount of nitrogen moving from the fresh organic (residue) to the nitrate(80%) and active organic(20%) pools in soil
     profile on current day in HRU (kg N/ha)
real *8 parm::rwntl
      amount of nitrogen moving from active organic to stable organic pool in soil profile on current day in HRU (kg N/ha)
```

real *8 parm::gwseep

amount of water recharging deep aquifer on current day (mm H2O)

real *8 parm::revapday

amount of water moving from the shallow aquifer into the soil profile or being taken up by plant roots in the shallow aquifer (mm H2O)

real *8 parm::rmp1tl

amount of phosphorus moving from the labile mineral pool to the active mineral pool in the soil profile on the current day in the HRU (kg P/ha)

real *8 parm::rmptl

amount of phosphorus moving from the fresh organic (residue) to the labile(80%) and organic(20%) pools in soil profile on current day in HRU (kg P/ha)

real *8 parm::roctl

amount of phosphorus moving from the active mineral pool to the stable mineral pool in the soil profile on the current day in the HRU (kg P/ha)

real *8 parm::wdntl

amount of nitrogen lost from nitrate pool by denitrification in soil profile on current day in HRU (kg N/ha)

- real *8 parm::cmn_bsn
- real *8 parm::reswtr
- real *8 parm::wdlprch

die-off factor for less persistent bacteria in streams (1/day)

real *8 parm::wdpres

die-off factor for persistent bacteria in reservoirs (1/day)

real *8 parm::petmeas

potential ET value read in for day (mm H2O)

- real *8 parm::bury
- real *8 parm::difus
- real *8 parm::reactb
- real *8 parm::solpesto
- real *8 parm::wdlpres

die-off factor for less persistent bacteria in reservoirs (1/day)

- real *8 parm::sorpesto
- real *8 parm::spcon_bsn
- real *8 parm::spexp_bsn
- real *8 parm::solpesti
- real *8 parm::sorpesti
- real *8 parm::msk_co1

calibration coefficient to control impact of the storage time constant for the reach at bankfull depth (phi(10,:) upon the storage time constant for the reach used in the Muskingum flow method

real *8 parm::msk_co2

calibration coefficient to control impact of the storage time constant for the reach at 0.1 bankfull depth (phi(13,:) upon the storage time constant for the reach used in the Muskingum flow method

real *8 parm::deepstp

depth of water in deep aquifer in HRU (mm H2O)

real *8 parm::shallstp

depth of water in shallow aquifer in HRU on previous day (mm H2O)

real *8 parm::snoprev

amount of water stored as snow on previous day (mm H2O)

real *8 parm::swprev

amount of water stored in soil profile in the HRU on the previous day (mm H2O)

- real *8 parm::ressolpo
- real *8 parm::resorgno
- real *8 parm::resorgpo
- real *8 parm::resno3o

```
    real *8 parm::reschlao

• real *8 parm::resno2o

    real *8 parm::potevmm

      volume of water evaporated from pothole expressed as depth over HRU (mm H2O)

    real *8 parm::potflwo

      volume of water released to main channel from pothole exporessed as depth over HRU (mm H2O)
real *8 parm::potpcpmm
     precipitation falling on pothole water body expressed as depth over HRU (mm H2O)
• real *8 parm::potsepmm
     seepage from pothole expressed as depth over HRU (mm H2O)
real *8 parm::resnh3o
real *8 parm::qdbank

    real *8 parm::bactminlp

      Threshold detection level for less persistent bacteria. When bacteria levels drop to this amount the model considers
     bacteria in the soil to be insignificant and sets the levels to zero (cfu/m^2)

    real *8 parm::bactminp

      Threshold detection level for persistent bacteria. When bacteria levels drop to this amount the model considers
     bacteria in the soil to be insignificant and sets the levels to zero (cfu/m^22)

    real *8 parm::trnsrch

     fraction of transmission losses from main channel that enter deep aquifer
real *8 parm::wp20p_plt
     overall rate change for persistent bacteria on foliage (1/day)

    real *8 parm::potsedo

     sediment released to main channel from HRU (metric tons/ha)
real *8 parm::pest_sol

    real *8 parm::bact_swf

     fraction of manure containing active colony forming units (cfu)
real *8 parm::bactmx
     bacteria percolation coefficient. Ratio of solution bacteria in surface layer to solution bacteria in percolate

    real *8 parm::cncoef

     plant ET curve number coefficient
real *8 parm::wp20lp_plt
     overall rate change for less persistent bacteria on foliage (1/day)
real *8 parm::cdn bsn

    real *8 parm::sdnco_bsn

    real *8 parm::bactmin

 real *8 parm::cn_froz
     drainge coefficient (mm day -1)
real *8 parm::dorm_hr
     time threshold used to define dormant (hours)
real *8 parm::smxco
     adjustment factor for max curve number s factor (0-1)

 real *8 parm::tb adj

     adjustment factor for subdaily unit hydrograph basetime

    real *8 parm::chla subco

     regional adjustment on sub chla a loading (fraction)
real *8 parm::depimp_bsn
     depth to impervious layer. Used to model perched water tables in all HRUs in watershed (mm)
• real *8 parm::ddrain_bsn
```

depth to the sub-surface drain (mm)

time to drain soil to field capacity (hours)

real *8 parm::tdrain_bsn

```
real *8 parm::gdrain_bsn
real *8 parm::rch_san
• real *8 parm::rch_sil
• real *8 parm::rch_cla
real *8 parm::rch sag
real *8 parm::rch_lag

    real *8 parm::rch_gra

real *8 parm::hlife_ngw_bsn
     Half-life of nitrogen in groundwater? (days)
real *8 parm::ch opco bsn
real *8 parm::ch onco bsn
real *8 parm::decr_min
     Minimum daily residue decay.

    real *8 parm::rcn sub bsn

     Concentration of nitrogen in the rainfall (mg/kg)
real *8 parm::bc1_bsn
real *8 parm::bc2 bsn
real *8 parm::bc3 bsn
real *8 parm::bc4 bsn

    real *8 parm::anion excl bsn

• real *8, dimension(:), allocatable parm::wat tbl

    real *8, dimension(:), allocatable parm::sol_swpwt

• real *8, dimension(:,:), allocatable parm::vwt

    real *8 parm::re bsn

     Effective radius of drains (range 3.0 - 40.0) (mm)

    real *8 parm::sdrain bsn

     Distance bewtween two drain or tile tubes (range 7600.0 - 30000.0) (mm)
real *8 parm::sstmaxd_bsn
  real *8 parm::drain co bsn
     Drainage coeffcient (range 10.0 - 51.0) (mm-day-1)

    real *8 parm::latksatf bsn

     Multiplication factor to determine lateral ksat from SWAT ksat input value for HRU (range 0.01 - 4.0)

    real *8 parm::pc bsn

     Pump capacity (def val = 1.042 mm h-1 or 25 mm day-1) (mm h-1)
· integer parm::idlast
     number of days simulated in month (none)
· integer parm::i_subhw
· integer parm::imgt
· integer parm::iwtr
integer parm::ifrttyp
· integer parm::mo atmo
· integer parm::mo atmo1

    integer parm::ifirstatmo

integer parm::iyr_atmo
· integer parm::iyr_atmo1
· integer parm::matmo
integer parm::mch
     maximum number of channels
· integer parm::mcr
     maximum number of crops grown per year

    integer parm::mcrdb

     maximum number of crops/landcover in database file (crop.dat)
```

integer parm::mfcst

maximum number of forecast stations integer parm::mfdb maximum number of fertilizers in fert.dat · integer parm::mhru maximum number of HRUs in watershed · integer parm::mhyd maximum number of hydrograph nodes integer parm::mpdb maximum number of pesticides in pest.dat · integer parm::mrg maximum number of rainfall/temp gages (none) integer parm::mcut maximum number of cuttings per year · integer parm::mgr maximum number of grazings per year integer parm::mnr maximum number of years of rotation integer parm::myr maximum number of years of simulation · integer parm::isubwq subbasin water quality code 0 do not calculate algae/CBOD 1 calculate algae/CBOD drainmod tile equations integer parm::ffcst · integer parm::isproj special project code (none): 1 test rewind (run simulation twice) integer parm::nbyr number of calendar years simulated (none) · integer parm::irte water routing method (none): 0 variable storage method 1 Muskingum method integer parm::nrch number of reaches in watershed (none) integer parm::nres total number of reservoirs in watershed (none) integer parm::nhru number of last HRU in previous subbasin or number of HRUs in watershed (none) integer parm::i mo current month being simulated or month of next day of simulation (none) integer parm::immo current cumulative month of simulation (none) · integer parm::mo · integer parm::wndsim wind speed input code (noen) 1 measured data read for each subbasin 2 data simulated for each subbasin · integer parm::ihru

HRU number (none)

integer parm::icode

variable to hold value for icodes(:) (none)

integer parm::ihout

variable to hold value for ihouts(:) (none)

· integer parm::inum1

variable to hold value for inum1s(:) (subbasin number) (none)

integer parm::inum2

variable to hold value for inum2s(:) (none)

• integer parm::inum3

variable to hold value for inum3s(:) (none)

· integer parm::inum4

variable to hold value for inum4s(:) (none)

· integer parm::icfac

icfac = 0 for C-factor calculation using Cmin (as described in manual) = 1 for new C-factor calculation from RUSLE (no minimum needed)

- integer parm::inum5
- integer parm::inum6
- integer parm::inum7
- · integer parm::inum8
- · integer parm::mrech

maximum number of rechour files

integer parm::nrgage

number of raingage files (none)

· integer parm::nrgfil

number of rain gages per file (none)

· integer parm::nrtot

total number of rain gages (none)

integer parm::ntgage

number of temperature gage files (none)

integer parm::ntgfil

number of temperature gages per file (none)

integer parm::nttot

total number of temperature gages (none)

· integer parm::tmpsim

temperature input code (none)

1 measured data read for each subbasin

2 data simulated for each subbasin

integer parm::icrk

crack flow code

1: simulate crack flow in watershed

integer parm::irtpest

number of pesticide to be routed through the watershed. Redefined to the sequence number of pesticide in NPNO(:) which is to be routed through the watershed (none)

integer parm::igropt

Qual2E option for calculating the local specific growth rate of algae

1: multiplicative.

integer parm::lao

Qual2E light averaging option. Qual2E defines four light averaging options. The only option currently available in SWAT is #2.

integer parm::npmx

number of different pesticides used in the simulation (none)

· integer parm::curyr

current year in simulation (sequence) (none)

integer parm::itdrn

tile drainage equations flag/code

1 simulate tile flow using subroutine drains(wt_shall)

0 simulate tile flow using subroutine origtile(wt_shall,d)

· integer parm::iwtdn

water table depth algorithms flag/code

1 simulate wt_shall using subroutine new water table depth routine

0 simulate wt_shall using subroutine original water table depth routine

integer parm::ismax

maximum depressional storage selection flag/code

0 = static depressional storage

1 = dynamic storage based on tillage and cumulative rainfall

· integer parm::iroutunit

not being implemented in this version drainmod tile equations

- integer parm::ires_nut
- · integer parm::iclb

auto-calibration flag

· integer parm::mrecc

maximum number of reccnst files

· integer parm::mrecd

maximum number of recday files

· integer parm::mrecm

maximum number of recmon files

· integer parm::mtil

max number of tillage types in till.dat

· integer parm::mudb

maximum number of urban land types in urban.dat

· integer parm::idist

rainfall distribution code

0 for skewed normal dist

1 for mixed exponential distribution

· integer parm::mrecy

maximum number of recyear files

· integer parm::nyskip

number of years to skip output summarization and printing (none)

· integer parm::slrsim

solar radiation input code (none)

1 measured data read for each subbasin

2 data simulated for each subbasin

· integer parm::ideg

channel degredation code

0: do not compute channel degradation

1: compute channel degredation (downcutting and widening)

· integer parm::ievent

rainfall/runoff code (none)

0 daily rainfall/curve number technique 1 sub-daily rainfall/Green&Ampt/hourly routing 3 sub-daily rainfall/ \leftarrow Green&Ampt/hourly routing

integer parm::ipet

code for potential ET method (none)

0 Priestley-Taylor method

1 Penman/Monteith method

2 Hargreaves method

3 read in daily potential ET data

integer parm::iopera

· integer parm::idaf beginning day of simulation (julian date) integer parm::idal ending day of simulation (julian date) integer parm::rhsim relative humidity input code (none) 1 measured data read for each subbasin 2 data simulated for each subbasin · integer parm::leapyr leap year flag (none) 0 leap year 1 regular year integer parm::id1 first day of simulation in current year (julian date) integer parm::mo chk current month of simulation (none) · integer parm::nhtot total number of relative humidity records in file integer parm::nstot total number of solar radiation records in file (none) · integer parm::nwtot total number of wind speed records in file integer parm::ifirsts solar radiation data search code (none) 0 first day of solar radiation data located in file 1 first day of solar radiation data not located in file · integer parm::ifirsth relative humidity data search code (none) 0 first day of relative humidity data located in file 1 first day of relative humidity data not located in file · integer parm::ifirstw wind speed data search code (none) 0 first day of wind speed data located in file 1 first day of wind speed data not located in file · integer parm::icst · integer parm::ilog streamflow print code (none) 0 print streamflow in reach 1 print Log10 streamflow in reach integer parm::itotr number of output variables printed (output.rch) · integer parm::iyr current year of simulation (year) integer parm::iwq stream water quality code 0 do not model stream water quality 1 model stream water quality (QUAL2E & pesticide transformations) integer parm::iskip flag for calculations performed only for the first year of simulation (none) integer parm::ifirstpet potential ET data search code (none) 0 first day of potential ET data located in file 1 first day of potential ET data not located in file

· integer parm::iprp

print code for output.pst file
0 do not print pesticide output
1 print pesticide output
eger parm::itoth

integer parm::itotb

number of output variables printed (output.sub)

integer parm::itots

number of output variables printed (output.hru)

· integer parm::itoth

number of HRUs printed (output.hru/output.wtr)

· integer parm::pcpsim

rainfall input code (none)
1 measured data read for each subbasin
2 data simulated for each subbasin

integer parm::nd_30integer parm::iopsinteger parm::iphrinteger parm::isto

• integer parm::isol

integer parm::fcstcycles

number of times forecast period is simulated (using different weather generator seeds each time)

integer parm::fcstday

beginning date of forecast period (julian date)

integer parm::fcstyr

beginning year of forecast period

· integer parm::iscen

scenarios counter

integer parm::subtot

number of subbasins in watershed (none)

• integer parm::ogen

· integer parm::mapp

maximum number of applications

integer parm::mlyr

maximum number of soil layers

· integer parm::mpst

max number of pesticides used in wshed

integer parm::mres

maximum number of reservoirs

· integer parm::msub

maximum number of subbasins

• integer parm::igen

random number generator seed code (none):

0: use default numbers

1: generate new numbers in every simulation

integer parm::iprint

print code (none): 0=monthly, 1=daily, 2=annually

• integer parm::iida

day being simulated (current julian date) (julian date)

• integer parm::icn

CN method flag (for testing alternative method):

0 use traditional SWAT method which bases CN on soil moisture

1 use alternative method which bases CN on plant ET

2 use tradtional SWAT method which bases CN on soil moisture but rention is adjusted for mildly-sloped tiled-drained watersheds.

· integer parm::ised_det

max half-hour rainfall fraction calc option:
0 generate max half-hour rainfall fraction from triangular distribution
1 use monthly mean max half-hour rainfall fraction

integer parm::fcstcnt

- integer parm::mtran
- · integer parm::idtill
- integer, dimension(100) parm::ida_lup
- integer, dimension(100) parm::iyr_lup
- integer parm::no_lup
- integer parm::no_up
- · integer parm::nostep
- character(len=8) parm::date

date simulation is performed where leftmost eight characters are set to a value of yyyymmdd, where yyyy is the year, mm is the month and dd is the day

• character(len=10) parm::time

time simulation is performed where leftmost ten characters are set to a value of hhmmss.sss, where hh is the hour, mm is the minutes and ss.sss is the seconds and milliseconds

character(len=5) parm::zone

time difference with respect to Coordinated Universal Time (ie Greenwich Mean Time)

character(len=13) parm::calfile

name of file containing calibration parameters

character(len=13) parm::rhfile

relative humidity file name (.hmd)

character(len=13) parm::slrfile

solar radiation file name (.slr)

• character(len=13) parm::wndfile

wind speed file name (.wnd)

character(len=13) parm::petfile

potential ET file name (.pet)

- character(len=13) parm::atmofile
- character(len=13) parm::lucfile
- character(len=13) parm::septdb

name of septic tank database file (septwq1.dat)

- character(len=13) parm::dpd_file
- character(len=13) parm::wpd_file
- character(len=13) parm::rib_file
- character(len=13) parm::sfb_file
- character(len=13) parm::lid_file
- integer, dimension(9) parm::idg

array location of random number seed used for a given process

- integer, dimension(:), allocatable parm::ifirstr
- · integer, dimension(:), allocatable parm::ifirsthr
- integer, dimension(8) parm::values

values(1): year simulation is performed

values(2): month simulation is performed

values(3): day in month simulation is performed

values(4): time difference with respect to Coordinated Universal Time (ie Greenwich Mean Time)

values(5): hour simulation is performed

values(6): minute simulation is performed

values(7): second simulation is performed

values(8): millisecond simulation is performed

integer, dimension(13) parm::ndays

julian date for last day of preceding month (where the array location is the number of the month). The dates are for leap years (julian date)

- integer parm::mapex
- real *8, dimension(:), allocatable parm::flodaya
- real *8, dimension(:), allocatable parm::seddaya
- real *8, dimension(:), allocatable parm::orgndaya
- real *8, dimension(:), allocatable parm::orgpdaya
- real *8, dimension(:), allocatable parm::no3daya
- real *8, dimension(:), allocatable parm::minpdaya
- real *8, dimension(:), allocatable parm::hi targ

harvest index target of cover defined at planting ((kg/ha)/(kg/ha))

real *8, dimension(:), allocatable parm::bio_targ
 biomass target (kg/ha)

real *8, dimension(:), allocatable parm::tnyld

modifier for autofertilization target nitrogen content for plant (kg N/kg yield)

- integer, dimension(:), allocatable parm::idapa
- integer, dimension(:), allocatable parm::iypa
- integer, dimension(:), allocatable parm::ifirsta
- integer, dimension(100) parm::mo transb
- integer, dimension(100) parm::mo_transe
- integer, dimension(100) parm::ih_tran
- · integer parm::msdb

maximum number of sept wq data database (none)

- · integer parm::iseptic
- real *8, dimension(:), allocatable parm::sptqs

flow rate of the septic tank effluent per capita (m3/d)

- real *8, dimension(:), allocatable parm::percp
- real *8, dimension(:), allocatable parm::sptbodconcs

Biological Oxygen Demand of the septic tank effluent (mg/l)

• real *8, dimension(:), allocatable parm::spttssconcs

concentration of total suspended solid in the septic tank effluent (mg/l)

real *8, dimension(:), allocatable parm::spttnconcs

concentration of total nitrogen in the septic tank effluent (mg/l)

• real *8, dimension(:), allocatable parm::sptnh4concs

concentration of total phosphorus of the septic tank effluent (mg/l)

• real *8, dimension(:), allocatable parm::sptno3concs

concentration of nitrate in the septic tank effluent (mg/l)

real *8, dimension(:), allocatable parm::sptno2concs

concentration of nitrite in the septic tank effluent (mg/l)

• real *8, dimension(:), allocatable parm::sptorgnconcs

concentration of organic nitrogen in the septic tank effluent (mg/l)

real *8, dimension(:), allocatable parm::spttpconcs

concentration of total phosphorus in the septic tank effluent (mg/l)

real *8, dimension(:), allocatable parm::sptminps

concentration of mineral phosphorus in the septic tank effluent (mg/l)

real *8, dimension(:), allocatable parm::sptorgps

concentration of organic phosphorus in the septic tank effluent (mg/l)

• real *8, dimension(:), allocatable parm::sptfcolis

concentration of the facel caliform in the septic tank effluent (cfu/100ml)

- real *8, dimension(:), allocatable parm::failyr
- real *8, dimension(:), allocatable parm::qstemm
- real *8, dimension(:), allocatable parm::bio_amn

```
    real *8, dimension(:), allocatable parm::bio_bod
    real *8, dimension(:), allocatable parm::biom
```

- real *8, dimension(:), allocatable parm::rbiom
- real *8, dimension(:), allocatable parm::fcoli
- real *8, dimension(:), allocatable parm::bio_ntr
- real *8, dimension(:), allocatable parm::bz_perc
- real *8, dimension(:), allocatable parm::sep_cap

number of permanent residents in the hourse (none)

- real *8, dimension(:), allocatable parm::plqm
- real *8, dimension(:), allocatable parm::bz_area
- real *8, dimension(:), allocatable parm::bz_z
 Depth of biozone layer(mm)
- real *8, dimension(:), allocatable parm::bz_thk thickness of biozone (mm)
- real *8, dimension(:), allocatable parm::bio_bd
 density of biomass (kg/m[^]3) carbon outputs for .hru file
- real *8, dimension(:), allocatable parm::cmup_kgh
- real *8, dimension(:), allocatable parm::cmtot kgh
- real *8, dimension(:), allocatable parm::coeff_denitr denitrification rate coefficient (none)
- real *8, dimension(:), allocatable parm::coeff_bod_dc
 BOD decay rate coefficient (m[^]3/day)
- real *8, dimension(:), allocatable parm::coeff_bod_conv
 BOD to live bacteria biomass conversion factor (none)
- real *8, dimension(:), allocatable parm::coeff_fc1
 field capacity calibration parameter 1 (none)
- real *8, dimension(:), allocatable parm::coeff_fc2
 field capacity calibration parameter 2 (none)
- real *8, dimension(:), allocatable parm::coeff_fecal fecal coliform bacteria decay rate coefficient (m^ 3/day)
- real *8, dimension(:), allocatable parm::coeff_mrt
 mortality rate coefficient (none)
- real *8, dimension(:), allocatable parm::coeff_nitr
 nitrification rate coefficient (none)
- real *8, dimension(:), allocatable parm::coeff_plq conversion factor for plague from TDS (none)
- real *8, dimension(:), allocatable parm::coeff_rsp respiration rate coefficient (none)
- real *8, dimension(:), allocatable parm::coeff_slg1
 slough-off calibration parameter (none)
- real *8, dimension(:), allocatable parm::coeff_slg2 slough-off calibration parameter (none)
- real *8, dimension(:), allocatable parm::coeff pdistrb
- real *8, dimension(:), allocatable parm::coeff_solpslp
- real *8, dimension(:), allocatable parm::coeff_solpintc
- real *8, dimension(:), allocatable parm::coeff_psorpmax
- integer, dimension(:), allocatable parm::isep_typ septic system type (none)
- integer, dimension(:), allocatable parm::i_sep
- integer, dimension(:), allocatable parm::isep_opt
 - septic system operation flag (1=active, 2=failing, 3=not operated) (none)
- integer, dimension(:), allocatable parm::sep_tsincefail

```
integer, dimension(:), allocatable parm::isep tfail
  integer, dimension(:), allocatable parm::isep_iyr
  integer, dimension(:), allocatable parm::sep strm dist
  integer, dimension(:), allocatable parm::sep_den
  real *8, dimension(:), allocatable parm::sol sumno3
  real *8, dimension(:), allocatable parm::sol_sumsolp
  real *8, dimension(:), allocatable parm::strsw_sum
  real *8, dimension(:), allocatable parm::strstmp sum
  real *8, dimension(:), allocatable parm::strsn_sum
  real *8, dimension(:), allocatable parm::strsp_sum
  real *8, dimension(:), allocatable parm::strsa_sum
  real *8, dimension(:), allocatable parm::spill hru
  real *8, dimension(:), allocatable parm::tile_out
  real *8, dimension(:), allocatable parm::hru_in
  real *8, dimension(:), allocatable parm::spill_precip
  real *8, dimension(:), allocatable parm::pot_seep
  real *8, dimension(:), allocatable parm::pot_evap
  real *8, dimension(:), allocatable parm::pot_sedin
  real *8, dimension(:), allocatable parm::pot_solp
     soluble P loss rate in the pothole (.01 - 0.5) (1/d)
  real *8, dimension(:), allocatable parm::pot_solpi
  real *8, dimension(:), allocatable parm::pot_orgp
  real *8, dimension(:), allocatable parm::pot orqpi
  real *8, dimension(:), allocatable parm::pot orgn
  real *8, dimension(:), allocatable parm::pot_orgni
  real *8, dimension(:), allocatable parm::pot_mps
  real *8, dimension(:), allocatable parm::pot_mpsi
  real *8, dimension(:), allocatable parm::pot_mpa
  real *8, dimension(:), allocatable parm::pot_mpai
  real *8, dimension(:), allocatable parm::pot_no3i
  real *8, dimension(:), allocatable parm::precip in
  real *8, dimension(:), allocatable parm::tile sedo
  real *8, dimension(:), allocatable parm::tile_no3o
  real *8, dimension(:), allocatable parm::tile_solpo
  real *8, dimension(:), allocatable parm::tile_orgno
  real *8, dimension(:), allocatable parm::tile orgpo
  real *8, dimension(:), allocatable parm::tile minpso
  real *8, dimension(:), allocatable parm::tile_minpao
  integer parm::ia_b
  integer parm::ihumus
  integer parm::itemp
  integer parm::isnow
  integer, dimension(46) parm::ipdvar
     output variable codes for output.rch file (none)
• integer, dimension(mhruo) parm::ipdvas
     output varaible codes for output.hru file (none)
 integer, dimension(msubo) parm::ipdvab
     output variable codes for output.sub file (none)
```

real *8, dimension(mstdo) parm::wshddayo

integer, dimension(:), allocatable parm::ipdhru

HRUs whose output information will be printed to the output.hru and output.wtr files.

```
wshddayo(1) average amountof precipitation in watershed for the day (mm H20)
wshddayo(3) surface runoff in watershed for day (mm H20)
wshddayo(4) lateral flow contribution to streamflow in watershed for day (mm H20)
wshddayo(5) water percolation past bottom of soil profile in watershed for day (mm H20)
wshddayo(6) water yield to streamflow from HRUs in watershed for day (mm H20)
wshddayo(7) actual evapotranspiration in watershed for day (mm H20)
wshddayo(12) sediment yield from HRUs in watershed for day (metric tons or metric tons/ha)
wshddayo(35) amount of water stored in soil profile in watershed at end of day (mm H20)
wshddayo(41) organic P loading to stream in watershed for day (kg P/ha)
wshddayo(42) nitrate loading to stream in surface runoff in watershed for day (kg N/ha)
wshddayo(43) soluble P loading to stream in watershed for day (kg P/ha)
wshddayo(44) plant uptake of N in watershed for day (kg N/ha)
wshddayo(45) nitrate loading to stream in lateral flow in watershed for day (kg N/ha)
wshddayo(46) nitrate percolation past bottom of soil profile in watershed for day (kg N/ha)
wshddayo(104) groundwater contribution to stream in watershed on day (mm H20)
wshddayo(108) potential evapotranspiration in watershed on day (mm H20)
wshddayo(109) drainage tile flow contribution to stream in watershed on day (mm H20)
```

real *8, dimension(mstdo) parm::wshdmono

```
watershed monthly output array (see definitions for wshddayo array elements) (varies)
wshdmono(1) average amount of precipitation in watershed for the month (mm H2O)
wshdmono(3) surface runoff in watershed for month (mm H2O)
wshdmono(4) lateral flow contribution to streamflow in watershed for month (mm H2O)
wshdmono(5) water percolation past bottom of soil profile in watershed for month (mm H2O)
wshdmono(6) water yield to streamflow from HRUs in watershed for month (mm H2O)
wshdmono(7) actual evapotranspiration in watershed for month (mm H2O)
wshdmono(8) average maximum temperature in watershed for the month (deg C)
wshdmono(9) average minimum temperature in watershed for the month (deg C)
wshdmono(12) sediment yield from HRUs in watershed for the month (metric tons)
wshdmono(39) freezing rain/snow fall in watershed for the month (mm H2O)
wshdmono(40) organic N loading to stream in watershed for the month (kg N/ha)
wshdmono(41) organic P loading to stream in watershed for the month (kg P/ha)
wshdmono(42) nitrate loading to stream in surface runoff in watershed for the month (kg N/ha)
wshdmono(43) soluble P loading to stream in watershed for the month (kg P/ha)
wshdmono(44) plant uptake of N in watershed for the month (kg N/ha)
wshdmono(45) nitrate loading to stream in lateral flow in watershed for the month (kg N/ha)
wshdmono(46) nitrate percolation past bottom of soil profile in watershed for the month (kg N/ha)
wshdmono(104) groundwater contribution to stream in watershed for the month (mm H2O)
wshdmono(108) potential evapotranspiration in watershed for the month (mm H2O)
wshdmono(109) drainage tile flow contribution to stream in watershed for the month (mm H2O)
```

real *8, dimension(mstdo) parm::wshdyro

```
watershed annual output array (varies)
wshdyro(1) average amount of precipitation in watershed for the year (mm H2O)
wshdyro(3) surface runoff in watershed for year (mm H2O)
wshdyro(4) lateral flow contribution to streamflow in watershed for year (mm H2O)
wshdyro(5) water percolation past bottom of soil profile in watershed for year (mm H2O)
wshdyro(6) water yield to streamflow from HRUs in watershed for year (mm H2O)
wshdyro(7) actual evapotranspiration in watershed for year (mm H2O)
wshdyro(8) average maximum temperature in watershed for the year (deg C)
wshdyro(9) average minimum temperature in watershed for the year (deg C)
wshdyro(12) sediment yield from HRUs in watershed for the year (metric tons)
wshdyro(40) organic N loading to stream in watershed for the year (kg N/ha)
wshdyro(41) organic P loading to stream in watershed for the year (kg P/ha)
wshdyro(42) nitrate loading to stream in surface runoff in watershed for the year (kg N/ha)
wshdyro(43) soluble P loading to stream in watershed for the year (kg P/ha)
wshdyro(44) plant uptake of N in watershed for the year
wshdyro(45) nitrate loading to stream in lateral flow in watershed for the year (kg N/ha)
wshdyro(46) nitrate percolation past bottom of soil profile in watershed for the year (kg N/ha)
wshdyro(104) groundwater contribution to stream in watershed for the year (mm H2O)
wshdyro(108) potential evapotranspiration in watershed for the year (mm H2O)
wshdyro(109) drainage tile flow contribution to stream in watershed for the year (mm H2O)
```

- real *8, dimension(16) parm::fcstaao
- real *8, dimension(mstdo) parm::wshdaao

```
watershed average annual output array (varies)
      wshdaao(1) precipitation in watershed (mm H2O)
      wshdaao(3) surface runoff loading to main channel in watershed (mm H2O)
      wshdaao(4) lateral flow loading to main channel in watershed (mm H2O)
      wshdaao(5) percolation of water out of root zone in watershed (mm H2O)
      wshdaao(7) actual evapotranspiration in watershed (mm H2O)
      wshdaao(13) sediment loading to ponds in watershed (metric tons)
      wshdaao(14) sediment loading from ponds in watershed (metric tons)
      wshdaao(15) net change in sediment level in ponds in watershed (metric tons)
      wshdaao(19) evaporation from ponds in watershed (m^3 H2O)
      wshdaao(20) seepage from ponds in watershed (m^3 H2O)
      wshdaao(21) precipitation on ponds in watershed (m^3 H2O)
      wshdaao(22) volume of water entering ponds in watershed (m^3 H2O)
      wshdaao(23) volume of water leaving ponds in watershed (m<sup>3</sup> H2O)
      wshdaao(38) transmission losses in watershed (mm H2O)

    real *8, dimension(:,:), allocatable parm::wpstdayo

• real *8, dimension(:,:), allocatable parm::wpstmono
  real *8, dimension(:,:), allocatable parm::wpstyro
  real *8, dimension(:,:), allocatable parm::bio hv
      harvested biomass (dry weight) (kg/ha)

    real *8, dimension(:,:), allocatable parm::yldkg

      yield (dry weight) by crop type in the HRU (kg/ha)

    real *8, dimension(:,:), allocatable parm::rchmono

     reach monthly output array (varies)
     rchmono(1,:) flow into reach during month (m^3s)
     rchmono(2,:) flow out of reach during month (m^3/s)
     rchmono(3,:) sediment transported into reach during month (metric tons)
     rchmono(4,:) sediment transported out of reach during month (metric tons)
     rchmono(5,:) sediment concentration in outflow during month (mg/L)
     rchmono(6,:) organic N transported into reach during month (kg N)
     rchmono(7,:) organic N transported out of reach during month (kg N)
     rchmono(8,:) organic P transported into reach during month (kg P)
     rchmono(9,:) organic P transported out of reach during month (kg P)
     rchmono(10,:) evaporation from reach during month (m^3/s)
     rchmono(11,:) transmission losses from reach during month (m^{\wedge}3/s)
     rchmono(12,:) conservative metal #1 transported out of reach during month (kg)
     rchmono(13,:) conservative metal #2 transported out of reach during month (kg)
     rchmono(14,:) conservative metal #3 transported out of reach during month (kg)
      rchmono(15,:) nitrate transported into reach during month (kg N)
      rchmono(16,:) nitrate transported out of reach during month (kg N)
     rchmono(17,:) soluble P transported into reach during month (kg P)
     rchmono(18,:) soluble P transported out of reach during month (kg P)
     rchmono(19,:) soluble pesticide transported into reach during month (mg pst)
     rchmono(20,:) soluble pesticide transported out of reach during month (mg pst)
     rchmono(21,:) sorbed pesticide transported into reach during month (mg pst)
     rchmono(22,:) sorbed pesticide transported out of reach during month (mg pst)
     rchmono(23,:) amount of pesticide lost through reactions in reach during month (mg pst)
     rchmono(24,:) amount of pesticide lost through volatilization from reach during month (mg pst)
     rchmono(25,:) amount of pesticide settling out of reach to bed sediment during month (mg pst)
     rchmono(26,:) amount of pesticide resuspended from bed sediment to reach during month (mg pst)
     rchmono(27,:) amount of pesticide diffusing from reach to bed sediment during month (mg pst)
     rchmono(28,:) amount of pesticide in sediment layer lost through reactions during month (mg pst)
     rchmono(29,:) amount of pesticide in sediment layer lost through burial during month (mg pst)
     rchmono(30,:) chlorophyll-a transported into reach during month (kg chla)
     rchmono(31,:) chlorophyll-a transported out of reach during month (kg chla)
     rchmono(32,:) ammonia transported into reach during month (kg N)
     rchmono(33,:) ammonia transported out of reach during month (kg N)
     rchmono(34,:) nitrite transported into reach during month (kg N)
     rchmono(35,:) nitrite transported out of reach during month (kg N)
      rchmono(36,:) CBOD transported into reach during month (kg O2)
      rchmono(37,:) CBOD transported out of reach during month (kg O2)
      rchmono(38,:) dissolved oxygen transported into reach during month (kg O2)
```

```
rchmono(39,:) dissolved oxygen transported out of reach during month (kg O2)
      rchmono(40,:) persistent bacteria transported out of reach during month (kg bact)
      rchmono(41,:) less persistent bacteria transported out of reach during month (kg bact)
      rchmono(43,:) total N (org N + no3 + no2 + nh4 outs) (kg)
      rchmono(44,:) total P (org P + sol p outs) (kg)

    real *8, dimension(:,:), allocatable parm::rchyro

      reach annual output array (varies)
      rchyro(1,:) flow into reach during year (m^3/s)
      rchyro(2,:) flow out of reach during year (m^3/s)
      rchyro(3,:) sediment transported into reach during year (metric tons)
      rchyro(4,:) sediment transported out of reach during year (metric tons)
      rchyro(5,:) sediment concentration in outflow during year (mg/L)
      rchyro(6,:) organic N transported into reach during year (kg N)
      rchyro(7,:) organic N transported out of reach during year (kg N)
      rchyro(8,:) organic P transported into reach during year (kg P)
      rchyro(9,:) organic P transported out of reach during year (kg P)
      rchyro(10,:) evaporation from reach during year (m^3/s)
      rchyro(11,:) transmission losses from reach during year (m^{\wedge}3/s)
      rchyro(12,:) conservative metal #1 transported out of reach during year (kg)
      rchyro(13,:) conservative metal #2 transported out of reach during year (kg)
      rchyro(14,:) conservative metal #3 transported out of reach during year (kg)
      rchyro(15,:) nitrate transported into reach during year (kg N)
      rchyro(16,:) nitrate transported out of reach during year (kg N)
      rchyro(17,:) soluble P transported into reach during year (kg P)
      rchyro(18,:) soluble P transported out of reach during year (kg P)
      rchyro(19,:) soluble pesticide transported into reach during year (mg pst)
      rchyro(20,:) soluble pesticide transported out of reach during year (mg pst)
      rchyro(21,:) sorbed pesticide transported into reach during year (mg pst)
      rchyro(22,:) sorbed pesticide transported out of reach during year (mg pst)
      rchyro(23,:) amount of pesticide lost through reactions in reach during year!> (mg pst)
      rchyro(24,:) amount of pesticide lost through volatilization from reach during year (mg pst)
      rchyro(25,:) amount of pesticide settling out of reach to bed sediment during year (mg pst)
      rchyro(26,:) amount of pesticide resuspended from bed sediment to reach during year (mg pst)
      rchyro(27,:) amount of pesticide diffusing from reach to bed sediment during year (mg pst)
      rchyro(28,:) amount of pesticide in sediment layer lost through reactions during year (mg pst)
      rchyro(29,:) amount of pesticide in sediment layer lost through burial during year (mg pst)
      rchyro(30.:) chlorophyll-a transported into reach during year (kg chla)
      rchyro(31,:) chlorophyll-a transported out of reach during year (kg chla)
      rchyro(32,:) ammonia transported into reach during year (kg N)
      rchyro(33,:) ammonia transported out of reach during year (kg N)
      rchyro(34,:) nitrite transported into reach during year (kg N)
      rchyro(35,:) nitrite transported out of reach during year (kg N)
      rchyro(36,:) CBOD transported into reach during year (kg O2)
      rchyro(37,:) CBOD transported out of reach during year (kg O2)
      rchyro(38.:) dissolved oxygen transported into reach during year (kg O2)
      rchyro(39,:) dissolved oxygen transported out of reach during year (kg O2)
      rchyro(40.:) persistent bacteria transported out of reach during year (kg bact)
      rchyro(41,:) less persistent bacteria transported out of reach during year (kg bact)
• real *8, dimension(:,:), allocatable parm::wpstaao

    real *8, dimension(:,:), allocatable parm::hrumono

      HRU monthly output data array (varies)
      hrumono(1,:) precipitation in HRU during month (mm H2O)
      hrumono(2,:) amount of precipitation falling as freezing rain/snow in HRU during month (mm H2O)
      hrumono(3,:) amount of snow melt in HRU during month (mm H2O)
      hrumono(4,:) amount of surface runoff to main channel from HRU during month (ignores impact of transmission
      losses) (mm H2O)
      hrumono(5,:) amount of lateral flow contribution to main channel from HRU during month (mm H2O)
      hrumono(6,:) amount of groundwater flow contribution to main channel from HRU during month (mm H2O)
      hrumono(7,:) amount of water moving from shallow aguifer to plants or soil profile in HRU during mont (mm H2O)h
      hrumono(8,:) amount of water recharging deep aquifer in HRU during month (mm H2O)
      hrumono(9,:) total amount of water entering both aquifers from HRU during month (mm H2O)
      hrumono(10,:) water yield (total amount of water entering main channel) from HRU during month (mm H2O)
      hrumono(11,:) amount of water percolating out of the soil profile and into the vadose zone in HRU during month (mm
```

```
H2O)
     hrumono(12,:) actual evapotranspiration in HRU during month (mm H2O)
     hrumono(13,:) amount of transmission losses from tributary channels in HRU for month (mm H2O)
     hrumono(14,:) sediment yield from HRU for month (metric tons/ha)
     hrumono(15,:) actual amount of transpiration that occurs during month in HRU (mm H2O)
     hrumono(16,:) actual amount of evaporation (from soil) that occurs during month in HRU (mm H2O)
     hrumono(17,:) amount of nitrogen applied in continuous fertilizer operation during month in HRU (kg N/ha)
     hrumono(18.:) amount of phosphorus applied in continuous fertilizer operation during month in HRU (kg P/ha)
     hrumono(22,:) amount of irrigation water applied to HRU during month (mm H2O)
     hrumono(23,:) amount of water removed from shallow aquifer in HRU for irrigation during month (mm H2O)
     hrumono(24,:) amount of water removed from deep aquifer in HRU for irrigation during month (mm H2O)
     hrumono(25,:) potential evapotranspiration in HRU during month (mm H2O)
     hrumono(26,:) monthly amount of N (organic & mineral) applied in HRU during grazing (kg N/ha)
     hrumono(27,:) monthly amount of P (organic & mineral) applied in HRU during grazing (kg P/ha)
     hrumono(28,:) monthly amount of N (organic & mineral) auto-applied in HRU (kg N/ha)
     hrumono(29,:) monthly amount of P (organic & mineral) auto-applied in HRU (kg P/ha)
     hrumono(31,:) water stress days in HRU during month (stress days)
     hrumono(32,:) temperature stress days in HRU during month (stress days)
     hrumono(33,:) nitrogen stress days in HRU during month (stress days)
     hrumono(34,:) phosphorus stress days in HRU during month (stress days)
     hrumono(35,:) organic nitrogen in surface runoff in HRU during month (kg N/ha)
     hrumono(36,:) organic phosphorus in surface runoff in HRU during month (kg P/ha)
     hrumono(37,:) nitrate in surface runoff in HRU during month (kg N/ha)
     hrumono(38,:) nitrate in lateral flow in HRU during month (kg N/ha)
     hrumono(39,:) soluble phosphorus in surface runoff in HRU during month (kg P/ha)
     hrumono(40,:) amount of nitrogen removed from soil by plant uptake in HRU during month (kg N/ha)
     hrumono(41,:) nitrate percolating past bottom of soil profile in HRU during month (kg N/ha)
     hrumono(42,:) amount of phosphorus removed from soil by plant uptake in HRU during month (kg P/ha)
     hrumono(43,:) amount of phosphorus moving from labile mineral to active mineral pool in HRU during month (kg
     hrumono(44,:) amount of phosphorus moving from active mineral to stable mineral pool in HRU during month (kg
     P/ha)
     hrumono(45,:) amount of nitrogen applied to HRU in fertilizer and grazing operations during month (kg N/ha)
     hrumono(46,:) amount of phosphorus applied to HRU in fertilizer and grazing operations during month (kg P/ha)
     hrumono(47,:) amount of nitrogen added to soil by fixation in HRU during month (kg N/ha)
     hrumono(48,:) amount of nitrogen lost by denitrification in HRU during month (kg N/ha)
     hrumono(49,:) amount of nitrogen moving from active organic to nitrate pool in HRU during month (kg N/ha)
     hrumono(50,:) amount of nitrogen moving from active organic to stable organic pool in HRU during month (kg N/ha)
     hrumono(51,:) amount of phosphorus moving from organic to labile mineral pool in HRU during month (kg P/ha)
     hrumono(52,:) amount of nitrogen moving from fresh organic to nitrate and active organic pools in HRU during month
      (kg N/ha)
      hrumono(53,:) amount of phosphorus moving from fresh organic to the labile mineral and organic pools in HRU during
     month (kg P/ha)
     hrumono(54,:) amount of nitrogen added to soil in rain (kg N/ha)
     hrumono(61,:) daily soil loss predicted with USLE equation (metric tons/ha)
     hrumono(63,:) less persistent bacteria transported to main channel from HRU during month (#bacteria/ha)
     hrumono(64,:) persistent bacteria transported to main channel from HRU during month (#bacteria/ha)
     hrumono(65,:) nitrate loading from groundwater in HRU to main channel during month (kg N/ha)
     hrumono(66,:) soluble P loading from groundwater in HRU to main channel during month (kg P/ha)
      hrumono(67,:) loading of mineral P attached to sediment in HRU to main channel during month (kg P/ha)

    real *8, dimension(:,:), allocatable parm::rchdy

     rchdy(1,:) flow into reach on day (m^3/s)
     rchdy(2,:) flow out of reach on day (m^3/s)
     rchdy(3,:) evaporation from reach on day (m^{\wedge}3/s)
     rchdy(4,:) transmission losses from reach on day (m^{\wedge}3/s)
     rchdy(5,:) sediment transported into reach on day (metric tons)
     rchdy(6,:) sediment transported out of reach on day (metric tons)
     rchdy(7,:) sediment concentration in outflow (mg/L)
     rchdy(8,:) organic N transported into reach on day (kg N)
     rchdy(9,:) organic N transported out of reach on day (kg N)
      rchdy(10,:) organic P transported into reach on day (kg P)
      rchdy(11,:) organic P transported out of reach on day (kg P)
```

rchdy(12,:) nitrate transported into reach on day (kg N)

```
rchdy(13,:) nitrate transported out of reach on day (kg N)
      rchdy(14,:) ammonia transported into reach on day (kg N)
      rchdy(15,:) ammonia transported out of reach on day (kg N)
      rchdy(16,:) nitrite transported into reach on day (kg N)
      rchdy(17,:) nitrite transported out of reach on day (kg N)
      rchdy(18,:) soluble P transported into reach on day (kg P)
      rchdy(19,:) soluble P transported out of reach on day (kg P)
      rchdy(20,:) chlorophyll-a transported into reach on day (kg chla)
      rchdy(21,:) chlorophyll-a transported out of reach on day (kg chla)
      rchdy(22,:) CBOD transported into reach on day (kg O2)
      rchdy(23,:) CBOD transported out of reach on day (kg O2)
      rchdy(24,:) dissolved oxygen transported into reach on day (kg O2)
      rchdy(25,:) dissolved oxygen transported out of reach on day (kg O2)
      rchdy(26,:) soluble pesticide transported into reach on day (mg pst)
      rchdy(27,:) soluble pesticide transported out of reach o day (mg pst)
      rchdy(28,:) sorbed pesticide transported into reach on day (mg pst)
      rchdy(29,:) sorbed pesticide transported out of reach on day (mg pst)
      rchdy(30,:) amount of pesticide lost through reactions in reach on day (mg pst)
      rchdy(31,:) amount of pesticide lost through volatilization from reach on day (mg pst)
      rchdy(32,:) amount of pesticide settling out of reach to bed sediment on day (mg pst)
      rchdy(33,:) amount of pesticide resuspended from bed sediment to reach on day (mg pst)
      rchdy(34,:) amount of pesticide diffusing from reach to bed sediment on day (mg pst)
      rchdy(35,:) amount of pesticide in sediment layer lost through reactions on day (mg pst)
      rchdy(36,:) amount of pesticide in sediment layer lost through burial on day (mg pst)
      rchdy(37,:) amount of pesticide stored in river bed sediments (mg pst)
      rchdy(38,:) persistent bacteria transported out of reach on day (kg bact)
      rchdy(39,:) less persistent bacteria transported out of reach on day (kg bact)
      rchdy(40,:) amount of conservative metal #1 transported out of reach on day (kg)
      rchdy(41,:) amount of conservative metal #2 transported out of reach on day (kg)
      rchdy(42,:) amount of conservative metal #3 transported out of reach on day (kg)
      rchdy(43,:) total N (org N + no3 + no2 + nh4 outs) (kg)
      rchdy(44,:) total P (org P + sol p outs) (kg)

    real *8, dimension(:,:), allocatable parm::hruyro

      HRU annual output array (varies) hruyro(1,:) precipitation in HRU during year (mm H2O)
      hruyro(2,:) amount of precipitation falling as freezing rain/snow in HRU during year (mm H2O)
      hruyro(3,:) amount of snow melt in HRU during year (mm H2O)
      hruyro(4,:) amount of surface runoff to main channel from HRU during year (ignores impact of transmission losses)
      (mm H2O)
      hruyro(5,:) amount of lateral flow contribution to main channel from HRU during year (mm H2O)
      hruyro(6,:) amount of groundwater flow contribution to main channel from HRU during year (mm H2O)
      hruyro(7,:) amount of water moving from shallow aquifer to plants or soil profile in HRU during year (mm H2O)
      hruyro(8,:) amount of water recharging deep aquifer in HRU during year (mm H2O)
      hruyro(9,:) total amount of water entering both aquifers from HRU during year (mm H2O)
      hruyro(10,:) water yield (total amount of water entering main channel) from HRU during year (mm H2O)
      hruyro(11,:) amount of water percolating out of the soil profile and into the vadose zone in HRU during year (mm
      H20)
      hruyro(12,:) actual evapotranspiration in HRU during year (mm H2O)
      hruyro(13,:) amount of transmission losses from tributary channels in HRU for year (mm H2O)
      hruyro(14,:) sediment yield from HRU for year (metric tons/ha)
      hruyro(15,:) actual amount of transpiration that occurs during year in HRU (mm H2O)
      hruyro(16,:) actual amount of evaporation (from soil) that occurs during year in HRU (mm H2O)
      hruyro(17,:) amount of nitrogen applied in continuous fertilizer operation during year in HRU (kg N/ha)
      hruyro(18,:) amount of phosphorus applied in continuous fertilizer operation during year in HRU (kg P/ha)
      hruyro(23,:) amount of water removed from shallow aquifer in HRU for irrigation during year (mm H2O)
      hruyro(24,:) amount of water removed from deep aquifer in HRU for irrigation during year (mm H2O)
      hruyro(25,:) potential evapotranspiration in HRU during year (mm H2O)
      hruyro(26,:) annual amount of N (organic & mineral) applied in HRU during grazing (kg N/ha)
      hruyro(27,:) annual amount of P (organic & mineral) applied in HRU during grazing (kg P/ha)
      hruyro(28,:) annual amount of N (organic & mineral) auto-applied in HRU (kg N/ha)
      hruyro(29,:) annual amount of P (organic & mineral) auto-applied in HRU (kg P/ha)
      hruyro(31,:) water stress days in HRU during year (stress days)
      hruyro(32,:) temperature stress days in HRU during year (stress days)
```

hruyro(33,:) nitrogen stress days in HRU during year (stress days)

```
hruyro(34,:) phosphorus stress days in HRU during year (stress days)
      hruyro(35,:) organic nitrogen in surface runoff in HRU during year (kg N/ha)
      hruyro(36,:) organic phosphorus in surface runoff in HRU during year (kg P/ha)
      hruyro(37,:) nitrate in surface runoff in HRU during year (kg N/ha)
      hruyro(38,:) nitrate in lateral flow in HRU during year (kg N/ha)
      hruyro(39,:) soluble phosphorus in surface runoff in HRU during year (kg P/ha)
      hruyro(40,:) amount of nitrogen removed from soil by plant uptake in HRU during year (kg N/ha)
      hruyro(41,:) nitrate percolating past bottom of soil profile in HRU during year (kg N/ha)
      hruyro(42,:) amount of phosphorus removed from soil by plant uptake in HRU during year (kg P/ha)
      hruyro(43,:) amount of phosphorus moving from labile mineral to active mineral pool in HRU during year (kg P/ha)
      hruyro(44,:) amount of phosphorus moving from active mineral to stable mineral pool in HRU during year (kg P/ha)
      hruyro(45,:) amount of nitrogen applied to HRU in fertilizer and grazing operations during year (kg N/ha)
      hruyro(46,:) amount of phosphorus applied to HRU in fertilizer and grazing operations during year (kg P/ha)
      hruyro(47,:) amount of nitrogen added to soil by fixation in HRU during year (kg N/ha)
      hruyro(48,:) amount of nitrogen lost by denitrification in HRU during year (kg N/ha)
      hruyro(49,:) amount of nitrogen moving from active organic to nitrate pool in HRU during year (kg N/ha)
      hruyro(50,:) amount of nitrogen moving from active organic to stable organic pool in HRU during year (kg N/ha)
      hruyro(51,:) amount of phosphorus moving from organic to labile mineral pool in HRU during year (kg P/ha)
      hruyro(52,:) amount of nitrogen moving from fresh organic to nitrate and active organic pools in HRU during year (kg
      hruyro(53,:) amount of phosphorus moving from fresh organic to the labile mineral and organic pools in HRU during
      hruyro(54,:) amount of nitrogen added to soil in rain during year (kg N/ha)
      hruyro(61,:) daily soil loss predicted with USLE equation (metric tons/ha)
      hruyro(63,:) less persistent bacteria transported to main channel from HRU during year (# bacteria/ha)
      hruyro(64,:) persistent bacteria transported to main channel from HRU during year (# bacteria/ha)
      hruyro(65,:) nitrate loading from groundwater in HRU to main channel during year (kg N/ha)
      hruyro(66,:) soluble P loading from groundwater in HRU to main channel during year (kg P/ha)
      hruyro(67,:) loading of mineral P attached to sediment in HRU to main channel during year (kg P/ha)

    real *8, dimension(:,:), allocatable parm::rchaao

      reach average annual output array (varies)
      rchaao(1,:) flow into reach during simulation (m^3/s)
      rchaao(2,:) flow out of reach during simulation (m^3/s)
      rchaao(3,:) sediment transported into reach during simulation (metric tons)
      rchaao(4,:) sediment transported out of reach during simulation (metric tons)
      rchaao(5,:) sediment concentration in outflow during simulation (mg/L)
      rchaao(6,:) organic N transported into reach during simulation (kg N)
      rchaao(7,:) organic N transported out of reach during simulation (kg N)
      rchaao(8,:) organic P transported into reach during simulation (kg P)
      rchaao(9,:) organic P transported out of reach during simulation (kg P)
      rchaao(10,:) evaporation from reach during simulation (m^3/s)
      rchaao(11,:) transmission losses from reach during simulation (m^3/s)
      rchaao(12,:) conservative metal #1 transported out of reach during simulation (kg)
      rchaao(13,:) conservative metal #2 transported out of reach during simulation (kg)
      rchaao(14,:) conservative metal #3 transported out of reach during simulation (kg)
      rchaao(15,:) nitrate transported into reach during simulation (kg N)
      rchaao(16,:) nitrate transported out of reach during simulation (kg N)
      rchaao(17,:) soluble P transported into reach during simulation (kg P)
      rchaao(18,:) soluble P transported out of reach during simulation (kg P)
      rchaao(19,:) soluble pesticide transported into reach during simulation
      rchaao(20,:) soluble pesticide transported out of reach during simulation
      rchaao(21,:) sorbed pesticide transported into reach during simulation
      rchaao(22,:) sorbed pesticide transported out of reach during simulation
      rchaao(23,:) amount of pesticide lost through reactions in reach during simulation
      rchaao(24,:) amount of pesticide lost through volatilization from reach during simulation
      rchaao(25,:) amount of pesticide settling out of reach to bed sediment during simulation
      rchaao(26.:) amount of pesticide resuspended from bed sediment to reach during simulation
      rchaao(27,:) amount of pesticide diffusing from reach to bed sediment during simulation
      rchaao(28,:) amount of pesticide in sediment layer lost through reactions during simulation
      rchaao(29,:) amount of pesticide in sediment layer lost through burial during simulation
      rchaao(30,:) chlorophyll-a transported into reach during simulation (kg chla)
      rchaao(31,:) chlorophyll-a transported out of reach during simulation (kg chla)
      rchaao(32,:) ammonia transported into reach during simuation (kg N)
```

```
rchaao(33,:) ammonia transported out of reach during simuation (kg N)
      rchaao(34,:) nitrite transported into reach during simuation (kg N)
     rchaao(35,:) nitrite transported out of reach during simuation (kg N)
     rchaao(36,:) CBOD transported into reach during simulation (kg O2)
     rchaao(37,:) CBOD transported out of reach during simuation (kg O2)
     rchaao(38,:) dissolved oxygen transported into reach during simuation (kg O2)
     rchaao(39,:) dissolved oxygen transported out of reach during simulation (kg O2)
     rchaao(40,:) persistent bacteria transported out of reach during simulation (kg bact)
     rchaao(41,:) less persistent bacteria transported out of reach during simulation (kg bact)
     rchaao(43,:) Total N (org N + no3 + no2 + nh4 outs) (kg)
      rchaao(44,:) Total P (org P + sol p outs) (kg)

    real *8, dimension(:,:), allocatable parm::submono

      subbasin monthly output array (varies)
     submono(1.:) precipitation in subbasin for month (mm H20)
     submono(2,:) snow melt in subbasin for month (mm H20)
     submono(3,:) surface runoff loading in subbasin for month (mm H20)
     submono(4,:) water yield from subbasin for month (mm H20)
     submono(5,:) potential evapotranspiration in subbasin for month (mm H20)
     submono(6,:) actual evapotranspiration in subbasin for month (mm H20)
     submono(7,:) sediment yield from subbasin for month (metric tons/ha)
     submono(8,:) organic N loading from subbasin for month (kg N/ha)
     submono(9,:) organic P loading from subbasin for month (kg P/ha)
     submono(10,:) NO3 loading from surface runoff in subbasin for month (kg N/ha)
      submono(11.:) soluble P loading from subbasin for month (kg P/ha)
      submono(12.:) groundwater loading from subbasin for month (mm H20)
      submono(13,:) percolation out of soil profile in subbasin for month (mm H20)
      submono(14,:) loading to reach of mineral P attached to sediment from subbasin for month (kg P/ha)

    real *8, dimension(:,:), allocatable parm::subyro

     subbasin annual output array (varies)
     subyro(1,:) precipitation in subbasin for year (mm H2O)
      subyro(2,:) snow melt in subbasin for year (mm H2O)
      subyro(3,:) surface runoff loading in subbasin for year (mm H2O)
      subyro(4,:) water yield from subbasin for year (mm H2O)
      subyro(5,:) potential evapotranspiration in subbasin for year (mm H2O)
     subyro(6,:) actual evapotranspiration in subbasin for year (mm H2O)
     subyro(7,:) sediment yield from subbasin for year (metric tons/ha)
     subyro(8,:) organic N loading from subbasin for year (kg N/ha)
     subyro(9,:) organic P loading from subbasin for year (kg P/ha)
     subyro(10,:) NO3 loading from surface runoff in subbasin for year (kg N/ha)
     subyro(11,:) soluble P loading from subbasin for year (kg P/ha)
     subyro(12,:) groundwater loading from subbasin for year (mm H2O)
     subyro(13,:) percolation out of soil profile in subbasin for year (mm H2O)
      subyro(14,:) loading to reach of mineral P attached to sediment from subbasin for year (kg P/ha)

    real *8, dimension(:,:), allocatable parm::hruaao

     HRU average annual output array (varies)
     hruaao(1,:) precipitation in HRU during simulation (mm H2O)
     hruaao(2,:) amount of precipitation falling as freezing rain/snow in HRU during simulation (mm H2O)
     hruaao(3,:) amount of snow melt in HRU during simulation (mm H2O)
     hruaao(4,:) amount of surface runoff to main channel from HRU during simulation (ignores impact of transmission
     losses) (mm H2O)
     hruaao(5,:) amount of lateral flow contribution to main channel from HRU during simulation (mm H2O)
     hruaao(6,:) amount of groundwater flow contribution to main channel from HRU during simulation (mm H2O)
     hruaao(7,:) amount of water moving from shallow aquifer to plants or soil profile in HRU during simulation (mm H2O)
     hruaao(8,:) amount of water recharging deep aquifer in HRU during simulation (mm H2O)
     hruaao(9,:) total amount of water entering both aquifers from HRU during simulation (mm H2O)
     hruaao(10,:) water yield (total amount of water entering main channel) from HRU during simulation (mm H2O)
     hruaao(11,:) amount of water percolating out of the soil profile and into the vadose zone in HRU during simulation
      (mm H2O)
      hruaao(12,:) actual evapotranspiration in HRU during simulation
      hruaao(13,:) amount of transmission losses from tributary channels in HRU for simulation (mm H2O)
      hruaao(14,:) sediment yield from HRU for simulation (metric tons/ha)
     hruaao(17,:) amount of nitrogen applied in continuous fertilizer operation in HRU for simulation (kg N/ha)
```

```
hruaao(18,:) amount of phosphorus applied in continuous fertilizer operation in HRU for simulation (kg P/ha)
      hruaao(23,:) amount of water removed from shallow aquifer in HRU for irrigation during simulation (mm H2O)
      hruaao(24,:) amount of water removed from deep aquifer in HRU for irrigation during simulation (mm H2O)
      hruaao(25,:) potential evapotranspiration in HRU during simulation (mm H2O)
      hruaao(26,:) annual amount of N (organic & mineral) applied in HRU during grazing (kg N/ha)
      hruaao(27,:) annual amount of P (organic & mineral) applied in HRU during grazing (kg P/ha)
      hruaao(28,:) average annual amount of N (organic & mineral) auto-applied in HRU (kg N/ha)
      hruaao(29,:) average annual amount of P (organic & mineral) auto-applied in HRU (kg P/ha)
      hruaao(31,:) water stress days in HRU during simulation (stress days)
      hruaao(32,:) temperature stress days in HRU during simulation (stress days)
      hruaao(33,:) nitrogen stress days in HRU during simulation (stress days)
      hruaao(34,:) phosphorus stress days in HRU during simulation (stress days)
      hruaao(35,:) organic nitrogen in surface runoff in HRU during simulation (kg N/ha)
      hruaao(36,:) organic phosphorus in surface runoff in HRU during simulation (kg P/ha)
      hruaao(37,:) nitrate in surface runoff in HRU during simulation (kg N/ha)
      hruaao(38,:) nitrate in lateral flow in HRU during simulation (kg N/ha)
      hruaao(39,:) soluble phosphorus in surface runoff in HRU during simulation (kg P/ha)
      hruaao(40,:) amount of nitrogen removed from soil by plant uptake in HRU during simulation (kg N/ha)
      hruaao(41,:) nitrate percolating past bottom of soil profile in HRU during simulation (kg N/ha)
      hruaao(42,:) amount of phosphorus removed from soil by plant uptake in HRU during simulation (kg P/ha)
      hruaao(43,:) amount of phosphorus moving from labile mineral to active mineral pool in HRU during simulation (kg
      hruaao(44,:) amount of phosphorus moving from active mineral to stable mineral pool in HRU during simulation (kg
      P/ha)
      hruaao(45,:) amount of nitrogen applied to HRU in fertilizer and grazing operations during simulation (kg N/ha)
      hruaao(46,:) amount of phosphorus applied to HRU in fertilizer and grazing operations during simulation (kg P/ha)
      hruaao(47,:) amount of nitrogen added to soil by fixation in HRU during simulation (kg N/ha)
      hruaao(48,:) amount of nitrogen lost by denitrification in HRU during simulation (kg N/ha)
      hruaao(49,:) amount of nitrogen moving from active organic to nitrate pool in HRU during simulation (kg N/ha)
      hruaao(50,:) amount of nitrogen moving from active organic to stable organic pool in HRU during simulation (kg N/ha)
      hruaao(51,:) amount of phosphorus moving from organic to labile mineral pool in HRU during simulation (kg P/ha)
      hruaao(52,:) amount of nitrogen moving from fresh organic to nitrate and active organic pools in HRU during simula-
      tion (kg N/ha)
      hruaao(53,:) amount of phosphorus moving from fresh organic to the labile mineral and organic pools in HRU during
      simulation (kg P/ha)
      hruaao(54,:) amount of nitrogen added to soil in rain during simulation (kg N/ha)
      hruaao(61,:) daily soil loss predicted with USLE equation (metric tons/ha)
      hruaao(63,:) less persistent bacteria transported to main channel from HRU during simulation (# bacteria/ha)
      hruaao(64,:) persistent bacteria transported to main channel from HRU during simulation (# bacteria/ha)
      hruaao(65,:) nitrate loading from groundwater in HRU to main channel during simulation (kg N/ha)
      hruaao(66,:) soluble P loading from groundwater in HRU to main channel during simulation (kg P/ha)
      hruaao(67,:) loading of mineral P attached to sediment in HRU to main channel during simulation (kg P/ha)
• real *8, dimension(:,:), allocatable parm::subaao
      subbasin average annual output array (varies)

    real *8, dimension(:,:), allocatable parm::resoutm

      reservoir monthly output array (varies)
      resoutm(1.:) flow into reservoir during month (m<sup>\land</sup> 3/s)
      resoutm(2,:) flow out of reservoir during month (m^{\wedge}3/s)
      resoutm(3,:) sediment entering reservoir during month (metric tons)
      resoutm(4,:) sediment leaving reservoir during month (metric tons)
      resoutm(5,:) sediment concentration in reservoir during month (mg/L)
      resoutm(6,:) pesticide entering reservoir during month (mg pst)
      resoutm(7,:) pesticide lost from reservoir through reactions during month (mg pst)
      resoutm(8,:) pesticide lost from reservoir through volatilization during month (mg pst)
      resoutm(9,:) pesticide moving from water to sediment through settling during month (mg pst)
      resoutm(10,:) pesticide moving from sediment to water through resuspension during month (mg pst)
      resoutm(11,:) pesticide moving from water to sediment through diffusion during month (mg pst)
      resoutm(12,:) pesticide lost from reservoir sediment layer through reactions during month (mg pst)
      resoutm(13,:) pesticide lost from reservoir sediment layer through burial during month (mg pst)
      resoutm(14,:) pesticide transported out of reservoir during month (mg pst)
      resoutm(15,:) pesticide concentration in reservoir water during month (mg pst/m<sup>\(^{\)</sup>3)
      resoutm(16,:) pesticide concentration in reservoir sediment layer during month (mg pst/m^3)
      resoutm(17,:) evaporation from reservoir during month (m^3 H2O)
```

```
resoutm(18,:) seepage from reservoir during month (m^3 H2O)
      resoutm(19,:) precipitation on reservoir during month (m^3 H2O)
      resoutm(22,:) organic N entering reservoir during month (kg N)
      resoutm(23,:) organic N leaving reservoir during month (kg N)
      resoutm(24,:) organic P entering reservoir during month (kg P)
      resoutm(25,:) organic P leaving reservoir during month (kg P)
      resoutm(26.:) nitrate entering reservoir during month (kg N)
      resoutm(27,:) nitrate leaving reservoir during month (kg N)
      resoutm(28,:) nitrite entering reservoir during month (kg N)
      resoutm(29,:) nitrite leaving reservoir during month (kg N)
      resoutm(30,:) ammonia entering reservoir during month (kg N)
      resoutm(31,:) ammonia leaving reservoir during month (kg N)
      resoutm(32,:) mineral P entering reservoir during month (kg P)
      resoutm(33,:) mineral P leaving reservoir during month (kg P)
      resoutm(34,:) chlorophyll-a entering reservoir during month (kg chla)
      resoutm(35,:) chlorophyll-a leaving reservoir during month (kg chla)
      resoutm(36,:) organic P concentration in reservoir water during month (mg P/L)
      resoutm(37,:) mineral P concentration in reservoir water during month (mg P/L)
      resoutm(38,:) organic N concentration in reservoir water during month (mg N/L)
      resoutm(39,:) nitrate concentration in reservoir water during month (mg N/L)
      resoutm(40,:) nitrite concentration in reservoir water during month (mg N/L)
      resoutm(41,:) ammonia concentration in reservoir water during month (mg N/L)

    real *8, dimension(:,:), allocatable parm::resouty

      reservoir annual output array (varies)
      resouty(1,:) flow into reservoir during year (m^3/s)
      resouty(2,:) flow out of reservoir during year (m^3/s)
      resouty(3,:) sediment entering reservoir during year (metric tons)
      resouty(4,:) sediment leaving reservoir during year (metric tons)
      resouty(5,:) sediment concentration in reservoir during year (mg/L)
      resouty(6.:) pesticide entering reservoir during year (mg pst)
      resouty(7.:) pesticide lost from reservoir through reactions during year (mg pst)
      resouty(8,:) pesticide lost from reservoir through volatilization during year (mg pst)
      resouty(9,:) pesticide moving from water to sediment through settling during year (mg pst)
      resouty(10,:) pesticide moving from sediment to water through resuspension during year (mg pst)
      resouty(11,:) pesticide moving from water to sediment through diffusion during year (mg pst)
      resouty(12,:) pesticide lost from reservoir sediment layer through reactions during year (mg pst)
      resouty(13,:) pesticide lost from reservoir sediment layer through burial during year (mg pst)
      resouty(14,:) pesticide transported out of reservoir during year (mg pst)
      resouty(15,:) pesticide concentration in reservoir water during year (mg pst/m<sup>\(^{\)</sup>3)
      resouty(16,:) pesticide concentration in reservoir sediment layer during year (mg pst/m^3)
      resouty(17.:) evaporation from reservoir during year (m^3 H2O)
      resouty(18,:) seepage from reservoir during year (m^3 H2O)
      resouty(19,:) precipitation on reservoir during year (m<sup>\(\circ\)</sup> 3 H2O)
      resouty(22,:) organic N entering reservoir during year (kg N)
      resouty(23,:) organic N leaving reservoir during year (kg N)
      resouty(24,:) organic P entering reservoir during year (kg P)
      resouty(25,:) organic P leaving reservoir during year (kg P)
      resouty(26,:) nitrate entering reservoir during year (kg N)
      resouty(27,:) nitrate leaving reservoir during year (kg N)
      resouty(28,:) nitrite entering reservoir during year (kg N)
      resouty(29,:) nitrite leaving reservoir during year (kg N)
      resouty(30.:) ammonia entering reservoir during year (kg N)
      resouty(31,:) ammonia leaving reservoir during year (kg N)
      resouty(32,:) mineral P entering reservoir during year (kg P)
      resouty(33,:) mineral P leaving reservoir during year (kg P)
      resouty(34,:) chlorophyll-a entering reservoir during year (kg chla)
      resouty(35,:) chlorophyll-a leaving reservoir during year (kg chla)
      resouty(36,:) organic P concentration in reservoir water during year (mg P/L)
      resouty(37,:) mineral P concentration in reservoir water during year (mg P/L)
      resouty(38,:) organic N concentration in reservoir water during year (mg N/L)
      resouty(39,:) nitrate concentration in reservoir water during year (mg N/L)
      resouty(40,:) nitrite concentration in reservoir water during year (mg N/L)
      resouty(41,:) ammonia concentration in reservoir water during year (mg N/L)
```

```
    real *8, dimension(:,:), allocatable parm::resouta

     reservoir average annual output array (varies)
     resouta(3,:) sediment entering reservoir during simulation (metric tons)
     resouta(4,:) sediment leaving reservoir during simulation (metric tons)
     resouta(17,:) evaporation from reservoir during simulation (m^3 H2O)
     resouta(18,:) seepage from reservoir during simulation (m^3 H2O)
     resouta(19,:) precipitation on reservoir during simulation (m^3 H2O)
     resouta(20,:) water entering reservoir during simulation (m^3 H2O)
     resouta(21,:) water leaving reservoir during simulation (m^{\wedge}3 H2O)

    real *8, dimension(12, 8) parm::wshd_aamon

      wshd aamon(:,1) average annual precipitation in watershed falling during month (mm H2O)
      wshd aamon(:,2) average annual freezing rain in watershed falling during month (mm H2O)
      wshd aamon(:.3) average annual surface runoff in watershed during month (mm H2O)
      wshd aamon(:,4) average annual lateral flow in watershed during month (mm H2O)
      wshd_aamon(:,5) average annual water yield in watershed during month (mm H2O)
      wshd_aamon(:,6) average annual actual evapotranspiration in watershed during month (mm H2O)
      wshd_aamon(:,7) average annual sediment yield in watershed during month (metric tons)
      wshd_aamon(:,8) average annual potential evapotranspiration in watershed during month (mm H2O)

    real *8, dimension(:,:), allocatable parm::wtrmon

      HRU monthly output data array for impoundments (varies)
      wtrmon(1,:) evaporation from ponds in HRU for month (mm H2O)
      wtrmon(2,:) seepage from ponds in HRU for month (mm H2O)
      wtrmon(3,:) precipitation on ponds in HRU for month (mm H2O)
      wtrmon(4,:) amount of water entering ponds in HRU for month (mm H2O)
      wtrmon(5,:) sediment entering ponds in HRU for month (metric tons/ha)
      wtrmon(6.:) amount of water leaving ponds in HRU for month (mm H2O)
      wtrmon(7,:) sediment leaving ponds in HRU for month (metric tons/ha)
      wtrmon(8,:) precipitation on wetlands in HRU for month (mm H2O)
      wtrmon(9,:) volume of water entering wetlands from HRU for month (mm H2O)
      wtrmon(10,:) sediment loading to wetlands for month from HRU (metric tons/ha)
      wtrmon(11,:) evaporation from wetlands in HRU for month (mm H2O)
      wtrmon(12,:) seeepage from wetlands in HRU for month (mm H2O)
      wtrmon(13,:) volume of water leaving wetlands in HRU for month (mm H2O)
      wtrmon(14,:) sediment loading from wetlands in HRU to main channel during month (metric tons/ha)
      wtrmon(15,:) precipitation on potholes in HRU for month (mm H2O)
      wtrmon(16.:) evaporation from potholes in HRU for month (mm H2O)
      wtrmon(17,:) seepage from potholes in HRU for month (mm H2O)
      wtrmon(18,:) water leaving potholes in HRU for month (mm H2O)
      wtrmon(19,:) water entering potholes in HRU for month (mm H2O)
     wtrmon(20,:) sediment entering potholes in HRU for month (metric tons/ha)
      wtrmon(21,:) sediment leaving potholes in HRU for month (metric tons/ha)

    real *8, dimension(:,:), allocatable parm::wtryr

     HRU impoundment annual output array (varies)
      wtryr(1,:) evaporation from ponds in HRU for year (mm H20)
      wtryr(2,:) seepage from ponds in HRU for year (mm H20)
      wtryr(3,:) precipitation on ponds in HRU for year (mm H20)
      wtryr(4,:) amount of water entering ponds in HRU for year (mm H20)
      wtryr(5,:) sediment entering ponds in HRU for year (metric tons/ha)
      wtryr(6,:) amount of water leaving ponds in HRU for year (mm H20)
      wtryr(7,:) sediment leaving ponds in HRU for year (metric tons/ha)
      wtryr(8,:) precipitation on wetlands in HRU for year (mm H20)
      wtryr(9,:) volume of water entering wetlands from HRU for year (mm H20)
      wtryr(10,:) sediment loading to wetlands for year from HRU (metric tons/ha)
      wtryr(11,:) evaporation from wetlands in HRU for year (mm H20)
      wtryr(12,:) seeepage from wetlands in HRU for year (mm H20)
      wtryr(13,:) volume of water leaving wetlands in HRU for year (mm H20)
      wtryr(14,:) sediment loading from wetlands in HRU to main channel during year (metric tons/ha)
      wtryr(15,:) precipitation on potholes in HRU during year (mm H20)
      wtryr(16,:) evaporation from potholes in HRU during year (mm H20)
      wtryr(17,:) seepage from potholes in HRU during year (mm H20)
      wtryr(18,:) water leaving potholes in HRU during year (mm H20)
```

wtryr(19,:) water entering potholes in HRU during year (mm H20)

wtryr(20,:) sediment entering potholes in HRU during year (metric tons/ha) wtryr(21,:) sediment leaving potholes in HRU during year (metric tons/ha)

real *8, dimension(:,:), allocatable parm::wtraa

HRU impoundment average annual output array (varies)

real *8, dimension(:,:), allocatable parm::sub smfmx

max melt rate for snow during year (June 21) for subbasin(:) where deg C refers to the air temperature. SUB_SMFMX and SMFMN allow the rate of snow melt to vary through the year. These parameters are accounting for the impact of soil temperature on snow melt (range: -5.0/5.0) (mm/deg C/day)

real *8, dimension(:,:), allocatable parm::sub_smfmn

min melt rate for snow during year (Dec 21) for subbasin(:) (range: -5.0/5.0) where deg C refers to the air temperature (mm/deg C/day)

real *8, dimension(:,:,:), allocatable parm::hrupstd

hrupstd(:,1,:) amount of pesticide type in surface runoff contribution to stream from HRU on day (in solution) (mg pst) hrupstd(:,2,:) amount of pesticide type in surface runoff contribution to stream from HRU on day (sorbed to sediment) (mg pst)

• real *8, dimension(:,:,:), allocatable parm::hrupstm

hrupstm(:,:,:)HRU monthly pesticide output array (varies)

hrupstm(:,1,:) amount of pesticide type in surface runoff contribution to stream from HRU during month (in solution) (mg pst)

hrupstm(:,2,:) amount of pesticide type in surface runoff contribution to stream from HRU during month (sorbed to sediment) (mg pst)

hrupstm(:,3,:) total pesticide loading to stream in surface runoff from HRU during month (mg pst)

• real *8, dimension(:,:,:), allocatable parm::hrupsta

HRU average annual pesticide output array (varies)

• real *8, dimension(:,:,:), allocatable parm::hrupsty

hrupsty(:,:,:) HRU annual pesticide output array (varies)

hrupsty(:,1,:) amount of pesticide type in surface runoff contribution to stream from HRU during year (in solution) (mg pst)

hrupsty(:,2,:) amount of pesticide type in surface runoff contribution to stream from HRU during year (sorbed to sediment) (mg pst)

• integer, dimension(:), allocatable parm::ifirstt

temperature data search code (none)

0 first day of temperature data located in file

1 first day of temperature data not located in file

- integer, dimension(:), allocatable parm::ifirstpcp
- integer, dimension(:), allocatable parm::elevp

elevation of precipitation gage station (m)

integer, dimension(:), allocatable parm::elevt

elevation of temperature gage station (m)

real *8, dimension(:,:), allocatable parm::ftmpmn

avg monthly minimum air temperature (deg C)

• real *8, dimension(:,:), allocatable parm::ftmpmx

avg monthly maximum air temperature (deg C)

• real *8, dimension(:,:), allocatable parm::ftmpstdmn

standard deviation for avg monthly minimum air temperature (deg C)

real *8, dimension(:,:), allocatable parm::ftmpstdmx

standard deviation for avg monthly maximum air temperature (deg C)

real *8, dimension(:,:,:), allocatable parm::fpcp_stat

fpcp_stat(:,1,:): average amount of precipitation falling in one day for the month (mm/day)

fpcp_stat(:,2,:): standard deviation for the average daily precipitation (mm/day)

fpcp_stat(:,3,:): skew coefficient for the average daily precipitationa (none)

real *8, dimension(:,:), allocatable parm::fpr_w1

probability of wet day after dry day in month (none)

real *8, dimension(:,:), allocatable parm::fpr_w2

probability of wet day after wet day in month (none)

```
real *8, dimension(:,:), allocatable parm::fpr_w3
     proportion of wet days in the month (none)
 real *8, dimension(:), allocatable parm::ch d
     average depth of main channel (m)

    real *8, dimension(:), allocatable parm::flwin

  real *8, dimension(:), allocatable parm::flwout
  real *8, dimension(:), allocatable parm::bankst
• real *8, dimension(:), allocatable parm::ch_wi
  real *8, dimension(:), allocatable parm::ch onco
     channel organic n concentration (ppm)
  real *8, dimension(:), allocatable parm::ch_opco
     channel organic p concentration (ppm)
  real *8, dimension(:), allocatable parm::ch_orgn
  real *8, dimension(:), allocatable parm::ch_orgp
  real *8, dimension(:), allocatable parm::drift
     amount of pesticide drifting onto main channel in subbasin (kg)
  real *8, dimension(:), allocatable parm::rch dox
  real *8, dimension(:), allocatable parm::rch_bactp
  real *8, dimension(:), allocatable parm::alpha bnk
     alpha factor for bank storage recession curve (days)
 real *8, dimension(:), allocatable parm::alpha bnke
     \exp(-alpha_b nk) (none)
  real *8, dimension(:), allocatable parm::disolvp
  real *8, dimension(:), allocatable parm::algae
• real *8, dimension(:), allocatable parm::sedst
  real *8, dimension(:), allocatable parm::rchstor
  real *8, dimension(:), allocatable parm::organicn
  real *8, dimension(:), allocatable parm::organicp
  real *8, dimension(:), allocatable parm::chlora
 real *8, dimension(:), allocatable parm::ch li
     initial length of main channel (km)
  real *8, dimension(:), allocatable parm::ch si
     initial slope of main channel (m/m)
  real *8, dimension(:), allocatable parm::nitraten
  real *8, dimension(:), allocatable parm::nitriten
  real *8, dimension(:), allocatable parm::ch_bnk_san
  real *8, dimension(:), allocatable parm::ch bnk sil
  real *8, dimension(:), allocatable parm::ch_bnk_cla
  real *8, dimension(:), allocatable parm::ch bnk gra
  real *8, dimension(:), allocatable parm::ch bed san
  real *8, dimension(:), allocatable parm::ch bed sil
  real *8, dimension(:), allocatable parm::ch bed cla
  real *8, dimension(:), allocatable parm::ch_bed_gra
  real *8, dimension(:), allocatable parm::depfp
  real *8, dimension(:), allocatable parm::depsanfp

    real *8, dimension(:), allocatable parm::depsilfp

  real *8, dimension(:), allocatable parm::depclafp
  real *8, dimension(:), allocatable parm::depsagfp
  real *8, dimension(:), allocatable parm::deplagfp
  real *8, dimension(:), allocatable parm::depch
  real *8, dimension(:), allocatable parm::depsanch
  real *8, dimension(:), allocatable parm::depsilch
  real *8, dimension(:), allocatable parm::depclach
```

- real *8, dimension(:), allocatable parm::depsagch
- real *8, dimension(:), allocatable parm::deplagch
- real *8, dimension(:), allocatable parm::depgrach
- real *8, dimension(:), allocatable parm::depgrafp
- real *8, dimension(:), allocatable parm::grast
- real *8, dimension(:), allocatable parm::r2adj

curve number retention parameter adjustment factor to adjust surface runoff for flat slopes (0.5 - 3.0) (dimensionless)

real *8, dimension(:), allocatable parm::prf

Reach peak rate adjustment factor for sediment routing in the channel. Allows impact of peak flow rate on sediment routing and channel reshaping to be taken into account (none)

- real *8, dimension(:), allocatable parm::depprch
- real *8, dimension(:), allocatable parm::depprfp
- real *8, dimension(:), allocatable parm::spcon

linear parameter for calculating sediment reentrained in channel sediment routing

real *8, dimension(:), allocatable parm::spexp

exponent parameter for calculating sediment reentrained in channel sediment routing

- real *8, dimension(:), allocatable parm::sanst
- real *8, dimension(:), allocatable parm::silst
- real *8, dimension(:), allocatable parm::clast
- real *8, dimension(:), allocatable parm::sagst
- real *8, dimension(:), allocatable parm::lagst
- real *8, dimension(:), allocatable parm::pot_san
- real *8, dimension(:), allocatable parm::pot sil
- real *8, dimension(:), allocatable parm::pot cla
- real *8, dimension(:), allocatable parm::pot sag
- real *8, dimension(:), allocatable parm::pot_lag
- real *8, dimension(:), allocatable parm::potsani
- real *8, dimension(:), allocatable parm::potsili
- real *8, dimension(:), allocatable parm::potclai
- real *8, dimension(:), allocatable parm::potsagi
- real *8, dimension(:), allocatable parm::potlagi
- real *8, dimension(:), allocatable parm::sanyld
- real *8, dimension(:), allocatable parm::silvld
- real *8, dimension(:), allocatable parm::clayId
- · real *8, dimension(:), allocatable parm::sagyld
- real *8, dimension(:), allocatable parm::lagyld
- real *8, dimension(:), allocatable parm::grayId
- real *8, dimension(:), allocatable parm::res_san
- real *8, dimension(:), allocatable parm::res_sil
- real *8, dimension(:), allocatable parm::res_cla
- real *8, dimension(:), allocatable parm::res_sag
- real *8, dimension(:), allocatable parm::res_lag
- real *8, dimension(:), allocatable parm::res_gra
- real *8, dimension(:), allocatable parm::pnd_san
- real *8, dimension(:), allocatable parm::pnd_sil
- real *8, dimension(:), allocatable parm::pnd_cla
- real *8, dimension(:), allocatable parm::pnd_sag
- real *8, dimension(:), allocatable parm::pnd_lag
- real *8, dimension(:), allocatable parm::wet_san
 real *8, dimension(:), allocatable parm::wet_sil
- real *8, dimension(:), allocatable parm::wet cla
- real *8, dimension(:), allocatable parm::wet_lag
- real *8, dimension(:), allocatable parm::wet_sag
- real *8 parm::ressano

real *8 parm::ressilo

```
    real *8 parm::resclao

    real *8 parm::ressago

    real *8 parm::reslago

    real *8 parm::resgrao

• real *8 parm::ressani
• real *8 parm::ressili
 real *8 parm::resclai

    real *8 parm::ressagi

    real *8 parm::reslagi

    real *8 parm::resgrai

  real *8 parm::potsano
• real *8 parm::potsilo
• real *8 parm::potclao

    real *8 parm::potsago

    real *8 parm::potlago

  real *8 parm::pndsanin
• real *8 parm::pndsilin
• real *8 parm::pndclain

    real *8 parm::pndsagin

    real *8 parm::pndlagin

• real *8 parm::pndsano

    real *8 parm::pndsilo

 real *8 parm::pndclao
  real *8 parm::pndsago

    real *8 parm::pndlago

 real *8, dimension(:), allocatable parm::ch_di
     initial depth of main channel (m)
• real *8, dimension(:), allocatable parm::ch_erod
     channel erodibility factor (0.0-1.0) (none)
     0 non-erosive channel
      1 no resistance to erosion
• real *8, dimension(:), allocatable parm::ch_l2
     length of main channel (km)

    real *8, dimension(:), allocatable parm::ch cov

• real *8, dimension(:), allocatable parm::ch_bnk_bd
     bulk density of channel bank sediment (1.1-1.9) (g/cc)

    real *8, dimension(:), allocatable parm::ch_bed_bd

     bulk density of channel bed sediment (1.1-1.9) (g/cc)

    real *8, dimension(:), allocatable parm::ch_bnk_kd

     erodibility of channel bank sediment by jet test (Peter Allen needs to give more info on this)
• real *8, dimension(:), allocatable parm::ch bed kd
     erodibility of channel bed sediment by jet test (Peter Allen needs to give more info on this)

    real *8, dimension(:), allocatable parm::ch_bnk_d50

     D50(median) particle size diameter of channel bank sediment (0.001 - 20)

    real *8, dimension(:), allocatable parm::ch_bed_d50

     D50(median) particle size diameter of channel bed sediment (micrometers) (0.001 - 20)

    real *8, dimension(:), allocatable parm::ch_cov1

     channel erodibility factor (0.0-1.0) (none)
     0 non-erosive channel
      1 no resistance to erosion
• real *8, dimension(:), allocatable parm::ch_cov2
```

channel cover factor (0.0-1.0) (none)

0 channel is completely protected from erosion by cover

```
1 no vegetative cover on channel

    real *8, dimension(:), allocatable parm::tc bed

     critical shear stress of channel bed (N/m2)

    real *8, dimension(:), allocatable parm::tc bnk

      critical shear stress of channel bank (N/m2)

    integer, dimension(:), allocatable parm::ch eqn

      sediment routine methods (DAILY):
     0 = original SWAT method
      1 = Bagnold's
     2 = Kodatie
     3 = Molinas WU
      4 = Yang

    real *8, dimension(:), allocatable parm::chpst_rea

     pesticide reaction coefficient in reach (1/day)
real *8, dimension(:), allocatable parm::chpst_vol
      pesticide volatilization coefficient in reach (m/day)
real *8, dimension(:), allocatable parm::chpst_conc
  real *8, dimension(:), allocatable parm::chpst koc
     pesticide partition coefficient between water and sediment in reach (m^3/g)
  real *8, dimension(:), allocatable parm::chpst rsp
      resuspension velocity in reach for pesticide sorbed to sediment (m/day)
 real *8, dimension(:), allocatable parm::chpst_stl
      settling velocity in reach for pesticide sorbed to sediment (m/day)
  real *8, dimension(:), allocatable parm::ch wdr
      channel width to depth ratio (m/m)

    real *8, dimension(:), allocatable parm::chpst_mix

      mixing velocity (diffusion/dispersion) for pesticide in reach (m/day)

    real *8, dimension(:), allocatable parm::sedpst_conc

      inital pesticide concentration in river bed sediment (mg/m<sup>^</sup>3)
real *8, dimension(:), allocatable parm::sedpst_bry
      pesticide burial velocity in river bed sediment (m/day)

    real *8, dimension(:), allocatable parm::sedpst_rea

      pesticide reaction coefficient in river bed sediment (1/day)
• real *8, dimension(:), allocatable parm::sedpst_act
      depth of active sediment layer in reach for pesticide (m)

    real *8, dimension(:), allocatable parm::rch_cbod

  real *8, dimension(:), allocatable parm::rch_bactlp
  real *8, dimension(:), allocatable parm::chside
      change in horizontal distance per unit vertical distance (0.0 - 5)
     0 = for vertical channel bank
     5 = for channel bank with gentl side slope

    real *8, dimension(:), allocatable parm::rs1

      local algal settling rate in reach at 20 deg C (m/day or m/hour)

    real *8, dimension(:), allocatable parm::rs2

     benthos source rate for dissolved phosphorus in reach at 20 deg C ((mg disP-P)/(m<sup>^</sup>2*day) or (mg dis←
      P-P)/(m^2*hour))

    real *8, dimension(:), allocatable parm::rs3

     benthos source rate for ammonia nitrogen in reach at 20 deg C ((mg NH4-N)/(m^2*day) or (mg NH4-N)/(m^2*hour))

    real *8, dimension(:), allocatable parm::rs4

      rate coefficient for organic nitrogen settling in reach at 20 deg C (1/day or 1/hour)

    real *8, dimension(:), allocatable parm::rs5
```

175 organic phosphorus settling rate in reach at 20 deg C (1/day or 1/hour) real *8, dimension(:), allocatable parm::rk1 CBOD deoxygenation rate coefficient in reach at 20 deg C (1/day or 1/hour) real *8, dimension(:), allocatable parm::rk2 reaeration rate in accordance with Fickian diffusion in reach at 20 deg C (1/day or 1/hour) real *8, dimension(:), allocatable parm::rk3 rate of loss of CBOD due to settling in reach at 20 deg C (1/day or 1/hour) real *8, dimension(:), allocatable parm::rk4 sediment oxygen demand rate in reach at 20 deg C (mg O2/(m^2*day) or mg O2/(m^2*hour)) real *8, dimension(:), allocatable parm::rk5 coliform die-off rate in reach (1/day) real *8, dimension(:), allocatable parm::rs6 rate coefficient for settling of arbitrary non-conservative constituent in reach (1/day) real *8, dimension(:), allocatable parm::rs7 benthal source rate for arbitrary non-conservative constituent in reach ((mg ANC)/(m^2*day)) real *8, dimension(:), allocatable parm::bc1 rate constant for biological oxidation of NH3 to NO2 in reach at 20 deg C (1/day or 1/hour) real *8, dimension(:), allocatable parm::bc2 rate constant for biological oxidation of NO2 to NO3 in reach at 20 deg C (1/day or 1/hour) real *8, dimension(:), allocatable parm::bc3 rate constant for hydrolysis of organic N to ammonia in reach at 20 deg C (1/day or 1/hour) real *8, dimension(:), allocatable parm::bc4 rate constant for the decay of organic P to dissolved P in reach at 20 deg C (1/day or 1/hour) real *8, dimension(:), allocatable parm::rk6 decay rate for arbitrary non-conservative constituent in reach (1/day) • real *8, dimension(:), allocatable parm::ammonian real *8, dimension(:), allocatable parm::orig_sedpstconc real *8, dimension(:,:), allocatable parm::wurch average daily water removal from the reach for the month (10^{\(\)}4 m^{\(\)}3/day) integer, dimension(:), allocatable parm::icanal • integer, dimension(:), allocatable parm::itb real *8, dimension(:), allocatable parm::ch_revap revap coeff: this variable controls the amount of water moving from bank storage to the root zone as a result of soil moisture depletion(none) • real *8, dimension(:), allocatable parm::dep chan real *8, dimension(:), allocatable parm::harg_petco coefficient related to radiation used in hargreaves eq (range: 0.0019 - 0.0032) real *8, dimension(:), allocatable parm::subfr_nowtr real *8, dimension(:), allocatable parm::cncoef_sub soil water depletion coefficient used in the new (modified curve number method) same as soil index coeff used in APEX range: 0.5 - 2.0 real *8, dimension(:), allocatable parm::dr_sub real *8, dimension(:), allocatable parm::sub_fr fraction of total watershed area contained in subbasin (km2/km2) real *8, dimension(:), allocatable parm::sub_sw water in soil profile in subbasin (mm H2O)

 real *8, dimension(:), allocatable parm::wcklsp • real *8, dimension(:), allocatable parm::sub_minp real *8, dimension(:), allocatable parm::sub sumfc real *8, dimension(:), allocatable parm::sub_gwno3 real *8, dimension(:), allocatable parm::sub_gwsolp

real *8, dimension(:), allocatable parm::co2

CO2 concentration (ppmv) real *8, dimension(:), allocatable parm::sub_km area of subbasin in square kilometers (km²) real *8, dimension(:), allocatable parm::wlat latitude of weather station used to compile data (degrees) real *8, dimension(:), allocatable parm::sub_tc time of concentration for subbasin (hour) real *8, dimension(:), allocatable parm::sub_pet real *8, dimension(:), allocatable parm::welev elevation of weather station used to compile weather generator data (m) • real *8, dimension(:), allocatable parm::sub_orgn real *8, dimension(:), allocatable parm::sub_orgp real *8, dimension(:), allocatable parm::sub bd real *8, dimension(:), allocatable parm::sub wtmp real *8, dimension(:), allocatable parm::sub_sedpa real *8, dimension(:), allocatable parm::sub_sedps real *8, dimension(:), allocatable parm::daylmn shortest daylength occurring during the year (hour) real *8, dimension(:), allocatable parm::sub_minpa real *8, dimension(:), allocatable parm::sub_minps real *8, dimension(:), allocatable parm::latcos $\cos(latitude)$ (none) real *8, dimension(:), allocatable parm::latsin $\sin(latitude)$ (none) • real *8, dimension(:), allocatable parm::phutot total potential heat units for year (used when no crop is growing) (heat unit) • real *8, dimension(:), allocatable parm::plaps precipitation lapse rate: precipitation change due to change in elevation (mm H2O/km) real *8, dimension(:), allocatable parm::tlaps temperature lapse rate: temperature change due to change in elevation (deg C/km) real *8, dimension(:), allocatable parm::tmp_an average annual air temperature (deg C) real *8, dimension(:), allocatable parm::sub_precip amount of water reaching soil surface in subbasin (mm H2O) real *8, dimension(:), allocatable parm::rammo sub atmospheric deposition of ammonium values for entire watershed (mg/l) real *8, dimension(:), allocatable parm::rcn_sub atmospheric deposition of nitrate for entire watershed (mg/l) real *8, dimension(:), allocatable parm::pcpdays real *8, dimension(:), allocatable parm::atmo day real *8, dimension(:), allocatable parm::sub snom amount of snow melt in subbasin on day (mm H2O) real *8, dimension(:), allocatable parm::sub_qd surface runoff that reaches main channel during day in subbasin (mm H2O) real *8, dimension(:), allocatable parm::sub sedy real *8, dimension(:), allocatable parm::sub_tran transmission losses on day in subbasin (mm H2O) real *8, dimension(:), allocatable parm::sub_no3 real *8, dimension(:), allocatable parm::sub_latno3 real *8, dimension(:,:), allocatable parm::sub_sftmp snowfall temperature for subbasin(:). Mean air temperature at which precip is equally likely to be rain as snow/freezing rain (range: -5.0/5.0) (deg C)

- - average elevation of HRU (m)
- real *8, dimension(:), allocatable parm::sub_wyld
 real *8, dimension(:), allocatable parm::sub_surfq
- real *8, dimension(:), allocatable parm::gird
- real *8, dimension(:), allocatable parm::sub_gwq
- real *8, dimension(:), allocatable parm::sub_sep
- real *8, dimension(:), allocatable parm::sub_chl
- real *8, dimension(:), allocatable parm::sub cbod
- real *8, dimension(:), allocatable parm::sub dox
- real *8, dimension(:), allocatable parm::sub_solpst
- real *8, dimension(:), allocatable parm::sub_sorpst
- real *8, dimension(:), allocatable parm::sub_yorgn
- real *8, dimension(:), allocatable parm::sub_yorgp
- real *8, dimension(:), allocatable parm::sub_lat

latitude of HRU/subbasin (degrees)

- real *8, dimension(:), allocatable parm::sub_bactp
- real *8, dimension(:), allocatable parm::sub_bactlp
- real *8, dimension(:), allocatable parm::sub_latq
- real *8, dimension(:), allocatable parm::sub_gwq_d
- real *8, dimension(:), allocatable parm::sub_tileq
- real *8, dimension(:), allocatable parm::sub_vaptile
- real *8, dimension(:), allocatable parm::sub_dsan
- real *8, dimension(:), allocatable parm::sub_dsil
- real *8, dimension(:), allocatable parm::sub_dcla
- real *8, dimension(:), allocatable parm::sub_dsag
- real *8, dimension(:), allocatable parm::sub_dlag
- real *8 parm::vap_tile
- real *8, dimension(:), allocatable parm::wnan
- real *8, dimension(:,:), allocatable parm::sol stpwt
- real *8, dimension(:,:), allocatable parm::sub_pst
- real *8, dimension(:,:), allocatable parm::sub_hhqd
- real *8, dimension(:,:), allocatable parm::sub_hhwtmp
- real *8, dimension(:,:), allocatable parm::huminc

monthly humidity adjustment. Daily values for relative humidity within the month are rasied or lowered by the specified amount (used in climate change studies) (none)

- real *8, dimension(:,:), allocatable parm::radinc
 - monthly solar radiation adjustment. Daily radiation within the month is raised or lowered by the specified amount (used in climate change studies) (MJ/m^2)
- real *8, dimension(:,:), allocatable parm::rfinc
 - monthly rainfall adjustment. Daily rainfall within the month is adjusted to the specified percentage of the original value (used in climate change studies)(%)
- real *8, dimension(:,:), allocatable parm::tmpinc

```
monthly temperature adjustment. Daily maximum and minimum temperatures within the month are raised or lowered
      by the specified amount (used in climate change studies) (deg C)

    real *8, dimension(:), allocatable parm::ch k1

      effective hydraulic conductivity of tributary channel alluvium (mm/hr)

    real *8, dimension(:), allocatable parm::ch_k2

      effective hydraulic conductivity of main channel alluvium (mm/hr)
  real *8, dimension(:,:), allocatable parm::elevb
      elevation at the center of the band (m)

    real *8, dimension(:,:), allocatable parm::elevb fr

      fraction of subbasin area within elevation band (the same fractions should be listed for all HRUs within the subbasin)
• real *8, dimension(:,:), allocatable parm::wndav
      average wind speed for the month (m/s)

    real *8, dimension(:), allocatable parm::ch n1

      Manning's "n" value for the tributary channels (none)
• real *8, dimension(:), allocatable parm::ch_n2
      Manning's "n" value for the main channel (none)

    real *8, dimension(:), allocatable parm::ch s1

      average slope of tributary channels (m/m)
real *8, dimension(:), allocatable parm::ch_s2
      average slope of main channel (m/m)

    real *8, dimension(:), allocatable parm::ch_w1

      average width of tributary channels (m)

    real *8, dimension(:), allocatable parm::ch_w2

      average width of main channel (m)

    real *8, dimension(:,:), allocatable parm::dewpt

      average dew point temperature for the month (deg C)

    real *8, dimension(:,:), allocatable parm::amp r

      average fraction of total daily rainfall occuring in maximum half-hour period for month (none)

    real *8, dimension(:,:), allocatable parm::solarav

      average daily solar radiation for the month (MJ/m^{\wedge}2/day)

    real *8, dimension(:,:), allocatable parm::tmpstdmx

      standard deviation for avg monthly maximum air temperature (deg C)
  real *8, dimension(:,:), allocatable parm::pcf
     normalization coefficient for precipitation generated from skewed distribution (none)

    real *8, dimension(:,:), allocatable parm::tmpmn

      avg monthly minimum air temperature (deg C)

    real *8, dimension(:,:), allocatable parm::tmpmx

      avg monthly maximum air temperature (deg C)
• real *8, dimension(:,:), allocatable parm::tmpstdmn
      standard deviation for avg monthly minimum air temperature (deg C)

    real *8, dimension(:,:), allocatable parm::otmpstdmn

  real *8, dimension(:,:), allocatable parm::otmpmn

    real *8, dimension(:,:), allocatable parm::otmpmx

    real *8, dimension(:,:), allocatable parm::otmpstdmx

• real *8, dimension(:,:), allocatable parm::ch_erodmo

    real *8, dimension(:,:), allocatable parm::uh

    real *8, dimension(:,:), allocatable parm::hqdsave

• real *8, dimension(:,:), allocatable parm::hsdsave
  real *8, dimension(:,:), allocatable parm::pr w1
     probability of wet day after dry day in month (none)
```

real *8, dimension(:,:), allocatable parm::pr_w2

```
probability of wet day after wet day in month (none)
real *8, dimension(:,:), allocatable parm::pr_w3
     proportion of wet days in the month (none)

    real *8, dimension(:,:,:), allocatable parm::pcp_stat

    real *8, dimension(:,:), allocatable parm::opr_w1

real *8, dimension(:,:), allocatable parm::opr_w2

    real *8, dimension(:,:), allocatable parm::opr_w3

    real *8, dimension(:,:,:), allocatable parm::opcp_stat

    integer, dimension(:), allocatable parm::ireg

     precipitation category (none):
      1 precipitation <= 508 mm/yr
     2 precipitation > 508 and <= 1016 mm/yr
     3 precipitation > 1016 mm/yr

    integer, dimension(:), allocatable parm::hrutot

      number of HRUs in subbasin (none)

    integer, dimension(:), allocatable parm::hru1

    integer, dimension(:), allocatable parm::ihgage

      HRU relative humidity data code (gage # for relative humidity data used in as HRU) (none)
• integer, dimension(:), allocatable parm::isgage
      HRU solar radiation data code (record # for solar radiation used in HRU) (none)

    integer, dimension(:), allocatable parm::iwgage

      HRU wind speed gage data code (gage # for wind speed data used in HRU) (none)

    integer, dimension(:), allocatable parm::subgis

      GIS code printed to output files (output.sub, .rch) (none)

    integer, dimension(:), allocatable parm::irgage

      subbasin rain gage data code (gage # for rainfall data used in HRU) (none)

    integer, dimension(:), allocatable parm::itgage

      subbasin temp gage data code (gage # for temperature data used in HRU) (none)

    integer, dimension(:), allocatable parm::irelh

      (none) irelh = 0 (dewpoint)
      irelh = 1 (relative humidity)
     note: inputs > 1.0 (dewpoint)
     inputs < 1.0 (relative hum)

    integer, dimension(:), allocatable parm::fcst reg

    real *8, dimension(:,:), allocatable parm::sol_aorgn

      amount of nitrogen stored in the active organic (humic) nitrogen pool (kg N/ha)

    real *8, dimension(:,:), allocatable parm::sol_fon

      amount of nitrogen stored in the fresh organic (residue) pool (kg N/ha)

    real *8, dimension(:,:), allocatable parm::sol_tmp

      average temperature of soil layer on previous day or
      daily average temperature of soil layer (deg C)
real *8, dimension(:,:), allocatable parm::sol_awc
      available water capacity of soil layer (mm H20/mm soil)

    real *8, dimension(:,:), allocatable parm::volcr

      crack volume for soil layer (mm)

    real *8, dimension(:,:), allocatable parm::sol prk

     percolation storage array (mm H2O)

    real *8, dimension(:,:), allocatable parm::pperco_sub

     subbasin phosphorus percolation coefficient. Ratio of soluble phosphorus in surface to soluble phosphorus in perco-

    real *8, dimension(:,:), allocatable parm::sol stap

      amount of phosphorus in the soil layer stored in the stable mineral phosphorus pool (kg P/ha)

    real *8, dimension(:,:), allocatable parm::conv_wt
```

```
factor which converts kg/kg soil to kg/ha (none)

    real *8, dimension(:,:), allocatable parm::sol_actp

      amount of phosphorus stored in the active mineral phosphorus pool (kg P/ha)

    real *8, dimension(:,:), allocatable parm::sol_solp

      soluble P concentration in top soil layer (mg P/kg soil) or
      amount of inorganic phosphorus stored in solution. NOTE UNIT CHANGE! (kg P/ha)

    real *8, dimension(:,:), allocatable parm::crdep

      maximum or potential crack volume (mm)

    real *8, dimension(:,:), allocatable parm::sol fc

      amount of water available to plants in soil layer at field capacity (fc - wp) (mm H2O)

    real *8, dimension(:,:), allocatable parm::sol_ul

      amount of water held in the soil layer at saturation (sat - wp water) (mm H2O)

    real *8, dimension(:,:), allocatable parm::sol_bd

      bulk density of the soil layer in HRU (Mg/m<sup>^</sup>3)

    real *8, dimension(:,:), allocatable parm::sol_z

      depth to bottom of soil layer (mm)
real *8, dimension(:,:), allocatable parm::sol_st
      amount of water stored in the soil layer on any given day (less wp water) (mm H2O)

    real *8, dimension(:,:), allocatable parm::sol_up

      water content of soil at -0.033 MPa (field capacity) (mm H2O/mm soil)

    real *8, dimension(:,:), allocatable parm::sol_clay

      percent clay content in soil material (UNIT CHANGE!) (% or none)

    real *8, dimension(:,:), allocatable parm::sol hk

      beta coefficent to calculate hydraulic conductivity (none)

    real *8, dimension(:,:), allocatable parm::flat

      lateral flow storage array (mm H2O)

    real *8, dimension(:,:), allocatable parm::sol nh3

      amount of nitrogen stored in the ammonium pool in soil layer (kg N/ha)

    real *8, dimension(:,:), allocatable parm::sol_ec

      electrical conductivity of soil layer (dS/m)

    real *8, dimension(:,:), allocatable parm::sol_orgn

      amount of nitrogen stored in the stable organic N pool. NOTE UNIT CHANGE! (mg N/kg soil or kg N/ha)

    real *8, dimension(:,:), allocatable parm::sol_por

      total porosity of soil layer expressed as a fraction of the total volume (none)

    real *8, dimension(:,:), allocatable parm::sol wp

      water content of soil at -1.5 MPa (wilting point) (mm H20/mm soil)

    real *8, dimension(:,:), allocatable parm::sol_orgp

      amount of phosphorus stored in the organic P pool. NOTE UNIT CHANGE! (mg P/kg soil or kg P/ha)

    real *8, dimension(:,:), allocatable parm::sol_hum

      amount of organic matter in the soil layer classified as humic substances (kg humus/ha)

    real *8, dimension(:,:), allocatable parm::sol wpmm

      water content of soil at -1.5 MPa (wilting point) (mm H20)

    real *8, dimension(:,:), allocatable parm::sol no3

      amount of nitrogen stored in the nitrate pool. This variable is read in as a concentration and converted to kg/ha (this
      value is read from the .sol file in units of mg/kg) (kg N/ha)

    real *8, dimension(:,:), allocatable parm::sol cbn

      percent organic carbon in soil layer (%)

    real *8, dimension(:,:), allocatable parm::sol_k

      saturated hydraulic conductivity of soil layer (mm/hour)

    real *8, dimension(:,:), allocatable parm::sol rsd

      amount of organic matter in the soil layer classified as residue (kg/ha)
```

```
    real *8, dimension(:,:), allocatable parm::sol_fop

      amount of phosphorus stored in the fresh organic (residue) pool (kg P/ha)

    real *8, dimension(:,:), allocatable parm::sol rock

      percent of rock fragments in soil layer (%)

    real *8, dimension(:,:), allocatable parm::sol_silt

      percent silt content in soil material (UNIT CHANGE!) (% or none)

    real *8, dimension(:,:), allocatable parm::sol sand

      percent sand content of soil material (%)

    real *8, dimension(:,:), allocatable parm::orig solno3

    real *8, dimension(:,:), allocatable parm::orig_solorgn

    real *8, dimension(:,:), allocatable parm::orig solsolp

    real *8, dimension(:,:), allocatable parm::orig_solorgp

• real *8, dimension(:,:), allocatable parm::orig_soltmp

    real *8, dimension(:,:), allocatable parm::orig_solrsd

    real *8, dimension(:,:), allocatable parm::orig_solfop

• real *8, dimension(:,:), allocatable parm::orig solfon

    real *8, dimension(:,:), allocatable parm::orig_solaorgn

    real *8, dimension(:,:), allocatable parm::orig solst

    real *8, dimension(:,:), allocatable parm::orig solactp

    real *8, dimension(:,:), allocatable parm::orig_solstap

    real *8, dimension(:,:), allocatable parm::orig_volcr

• real *8, dimension(:,:), allocatable parm::conk

    real *8, dimension(:,:,:), allocatable parm::sol pst

      sol pst(:,:,1) initial amount of pesticide in first layer read in from .chm file (mg/kg)
      sol_pst(:,:,:) amount of pesticide in layer. NOTE UNIT CHANGE! (kg/ha)

    real *8, dimension(:,:,:), allocatable parm::sol kp

      pesticide sorption coefficient, Kp; the ratio of the concentration in the solid phase to the concentration in solution
      ((mg/kg)/(mg/L))

    real *8, dimension(:,:,:), allocatable parm::orig_solpst

    real *8, dimension(:), allocatable parm::velsetlr

    real *8, dimension(:), allocatable parm::velsetlp

    real *8, dimension(:), allocatable parm::br1

      1st shape parameter for reservoir surface area equation (none)

    real *8, dimension(:), allocatable parm::evrsv

      lake evaporation coefficient (none)

    real *8, dimension(:), allocatable parm::res_k

      hydraulic conductivity of the reservoir bottom (mm/hr)

    real *8, dimension(:), allocatable parm::lkpst_conc

      pesticide concentration in lake water (mg/m<sup>^</sup>3)

    real *8, dimension(:), allocatable parm::res_evol

      volume of water needed to fill the reservoir to the emergency spillway (read in as 10<sup>4</sup> m<sup>3</sup> and converted to m<sup>3</sup>)

    real *8, dimension(:), allocatable parm::res pvol

      volume of water needed to fill the reservoir to the principal spillway (read in as 10^4 m^3 and converted to m^3)
      (m^3)

    real *8, dimension(:), allocatable parm::res vol

      reservoir volume (read in as 10^{\circ}4 \text{ m}^{\circ}3 and converted to \text{m}^{\circ}3) (\text{m}^{\circ}3)

    real *8, dimension(:), allocatable parm::res_psa

      reservoir surface area when reservoir is filled to principal spillway (ha)

    real *8, dimension(:), allocatable parm::lkpst_rea

      pesticide reaction coefficient in lake water (1/day)

    real *8, dimension(:), allocatable parm::lkpst_vol

      pesticide volatilization coefficient in lake water (m/day)
```

```
    real *8, dimension(:), allocatable parm::br2

      2nd shape parameter for reservoir surface area equation (none)

    real *8, dimension(:), allocatable parm::res rr

      average daily principal spillway release volume (read in as a release rate in m^{\wedge}3/s and converted to m^{\wedge}3/day)
      (m^3/day)

    real *8, dimension(:), allocatable parm::res_sed

     amount of sediment in reservoir (read in as mg/L and converted to kg/L) (kg/L)

    real *8, dimension(:), allocatable parm::lkpst koc

     pesticide partition coefficient between water and sediment in lake water (m^3/g)

    real *8, dimension(:), allocatable parm::lkpst_mix

      mixing velocity (diffusion/dispersion) in lake water for pesticide (m/day)

    real *8, dimension(:), allocatable parm::lkpst rsp

      resuspension velocity in lake water for pesticide sorbed to sediment (m/day)

    real *8, dimension(:), allocatable parm::lkpst_stl

      settling velocity in lake water for pesticide sorbed to sediment (m/day)

    real *8, dimension(:), allocatable parm::lkspst_conc

      pesticide concentration in lake bed sediment (mg/m<sup>^</sup>3)

    real *8, dimension(:), allocatable parm::lkspst_rea

     pesticide reaction coefficient in lake bed sediment (1/day)

    real *8, dimension(:), allocatable parm::theta n

    real *8, dimension(:), allocatable parm::theta_p

    real *8, dimension(:), allocatable parm::con_nirr

    real *8, dimension(:), allocatable parm::con_pirr

• real *8, dimension(:), allocatable parm::lkspst_act
      depth of active sediment layer in lake for for pesticide (m)

    real *8, dimension(:), allocatable parm::lkspst bry

     pesticide burial velocity in lake bed sediment (m/day)
  real *8, dimension(:), allocatable parm::sed_stlr
  real *8, dimension(7) parm::resdata
  real *8, dimension(:), allocatable parm::res nsed
      normal amount of sediment in reservoir (read in as mg/L and convert to kg/L) (kg/L)

    real *8, dimension(:), allocatable parm::wurtnf

      fraction of water removed from the reservoir via WURESN which is returned and becomes flow from the reservoir
      outlet (none)

    real *8, dimension(:), allocatable parm::chlar

      chlorophyll-a production coefficient for reservoir (none)
• real *8, dimension(:), allocatable parm::res_no3
      amount of nitrate in reservoir (kg N)

    real *8, dimension(:), allocatable parm::res orgn

      amount of organic N in reservoir (kg N)
  real *8, dimension(:), allocatable parm::res orgp
      amount of organic P in reservoir (kg P)
  real *8, dimension(:), allocatable parm::res_solp
      amount of soluble P in reservoir (kg P)

    real *8, dimension(:), allocatable parm::res_seci

      secchi-disk depth (m)
• real *8, dimension(:), allocatable parm::res_chla
  real *8, dimension(:), allocatable parm::res esa
      reservoir surface area when reservoir is filled to emergency spillway (ha)
 real *8, dimension(:), allocatable parm::res nh3
      amount of ammonia in reservoir (kg N)
```

real *8, dimension(:), allocatable parm::res no2

amount of nitrite in reservoir (kg N) real *8, dimension(:), allocatable parm::seccir water clarity coefficient for reservoir (none) • real *8, dimension(:), allocatable parm::res_bactp real *8, dimension(:), allocatable parm::res bactlp real *8, dimension(:), allocatable parm::oflowmn_fps minimum reservoir outflow as a fraction of the principal spillway volume (0-1) (fraction) real *8, dimension(:), allocatable parm::starg fps target volume as a fraction of the principal spillway volume (.1-5) (fraction) • real *8, dimension(:), allocatable parm::weirc • real *8, dimension(:), allocatable parm::weirk real *8, dimension(:), allocatable parm::weirw real *8, dimension(:), allocatable parm::acoef real *8, dimension(:), allocatable parm::bcoef real *8, dimension(:), allocatable parm::ccoef real *8, dimension(:), allocatable parm::orig_resvol real *8, dimension(:), allocatable parm::orig ressed real *8, dimension(:), allocatable parm::orig_lkpstconc real *8, dimension(:), allocatable parm::orig_lkspstconc real *8, dimension(:), allocatable parm::orig ressolp real *8, dimension(:), allocatable parm::orig_resorgp • real *8, dimension(:), allocatable parm::orig_resno3 real *8, dimension(:), allocatable parm::orig resno2 real *8, dimension(:), allocatable parm::orig_resnh3 real *8, dimension(:), allocatable parm::orig_resorgn real *8, dimension(:,:), allocatable parm::oflowmn minimum daily outlow for the month (read in as m^3 /s and converted to m^3 /day) (m^3 /day) real *8, dimension(:,:), allocatable parm::oflowmx maximum daily outlow for the month (read in as m^3 /s and converted to m^3 /day) (m^3 /day) real *8, dimension(:,:), allocatable parm::starg monthly target reservoir storage (needed if IRESCO=2) (read in as $10^{\circ}4 \text{ m}^{\circ}3$ and converted to $m^{\circ}3$) ($m^{\circ}3$) real *8, dimension(:), allocatable parm::psetlr1 phosphorus settling rate for mid-year period (read in as m/year and converted to m/day) (m/day) real *8, dimension(:), allocatable parm::psetlr2 phosphorus settling rate for remainder of year (read in as m/year and converted to m/day) (m/day) real *8, dimension(:), allocatable parm::nsetlr1 nitrogen settling rate for mid-year period (read in as m/year and converted to m/day) (m/day) real *8, dimension(:), allocatable parm::nsetlr2 nitrogen settling rate for remainder of year (read in as m/year and converted to m/day) (m/day) real *8, dimension(:,:), allocatable parm::wuresn average amount of water withdrawn from reservoir each month for consumptive water use (read in as 10⁴ m³ and converted to m^3 (m^3) real *8, dimension(:,:,:), allocatable parm::res_out measured average daily outflow from the reservoir for the month (needed if IRESCO=1) (read in as m^3/s and converted to m^3/day) (m^3/day) integer, dimension(:), allocatable parm::res_sub number of subbasin reservoir is in (weather for the subbasin is used for the reservoir) (none) integer, dimension(:), allocatable parm::ires1

Generated by Doxygen

beginning of mid-year nutrient settling "season" (none)

end of mid-year nutrient settling "season" (none)integer, dimension(:), allocatable parm::iresco

integer, dimension(:), allocatable parm::ires2

```
outflow simulation code (none):
      0 compute outflow for uncontrolled reservoir with average annual release rate
      1 measured monthly outflow
     2 simulated controlled outflow-target release
     3 measured daily outflow
      4 stage/volume/outflow relationship

    integer, dimension(:), allocatable parm::iyres

      vear of the simulation that the reservoir becomes operational (none)

    integer, dimension(:), allocatable parm::mores

      month the reservoir becomes operational (none)
 integer, dimension(:), allocatable parm::iflod1r
      beginning month of non-flood season (needed if IRESCO=2) (none)

    integer, dimension(:), allocatable parm::iflod2r

      ending month of non-flood season (needed if IRESCO=2) (none)

    integer, dimension(:), allocatable parm::ndtargr

      number of days to reach target storage from current reservoir storage (needed if IRESCO=2) (days)

    real *8, dimension(:), allocatable parm::ap_ef

      application efficiency (0-1) (none)

    real *8, dimension(:), allocatable parm::decay f

      exponential of the rate constant for degradation of the pesticide on foliage (none)

    real *8, dimension(:), allocatable parm::skoc

      soil adsorption coefficient normalized for soil organic carbon content ((mg/kg)/(mg/L))

    real *8, dimension(:), allocatable parm::decay s

      exponential of the rate constant for degradation of the pesticide in soil (none)

    real *8, dimension(:), allocatable parm::hlife f

      half-life of pesticide on foliage (days)

    real *8, dimension(:), allocatable parm::hlife s

     half-life of pesticide in soil (days)

    real *8, dimension(:), allocatable parm::pst_wof

      fraction of pesticide on foliage which is washed-off by a rainfall event (none)

    real *8, dimension(:), allocatable parm::pst wsol

      solubility of chemical in water (mg/L (ppm))

    real *8, dimension(:), allocatable parm::irramt

      depth of irrigation water applied to HRU (mm H2O)

    real *8, dimension(:), allocatable parm::phusw

  real *8, dimension(:), allocatable parm::phusw_nocrop
  integer, dimension(:), allocatable parm::pstflg
      flag for types of pesticide used in watershed. Array location is pesticide ID number
      0: pesticide not used
      1: pesticide used

    integer, dimension(:), allocatable parm::nope

      sequence number of pesticide in NPNO(:) (none)
integer, dimension(:), allocatable parm::nop
• integer, dimension(:), allocatable parm::yr_skip

    integer, dimension(:), allocatable parm::isweep

• integer, dimension(:), allocatable parm::icrmx

    integer, dimension(:), allocatable parm::nopmx

    integer, dimension(:,:), allocatable parm::mgtop

• integer, dimension(:,:), allocatable parm::idop

    integer, dimension(:,:), allocatable parm::mgt1iop

• integer, dimension(:,:), allocatable parm::mgt2iop

    integer, dimension(:,:), allocatable parm::mgt3iop
```

real *8, dimension(:,:), allocatable parm::mgt4op

```
    real *8, dimension(:,:), allocatable parm::mgt5op

    real *8, dimension(:,:), allocatable parm::mgt6op

    real *8, dimension(:,:), allocatable parm::mgt7op

• real *8, dimension(:,:), allocatable parm::mgt8op

    real *8, dimension(:,:), allocatable parm::mgt9op

    real *8, dimension(:,:), allocatable parm::mgt10iop

    real *8, dimension(:,:), allocatable parm::phu op

    real *8, dimension(:), allocatable parm::cnyld

      fraction of nitrogen in yield (kg N/kg yield)

    real *8, dimension(:), allocatable parm::rsdco_pl

      plant residue decomposition coefficient. The fraction of residue which will decompose in a day assuming optimal
      moisture, temperature, C:N ratio, and C:P ratio (none)

    real *8, dimension(:), allocatable parm::wac21

      1st shape parameter for radiation use efficiency equation (none)

    real *8, dimension(:), allocatable parm::wac22

     2nd shape parameter for radiation use efficiency equation (none)

    real *8, dimension(:), allocatable parm::alai_min

      minimum LAI during winter dormant period (m^2/m^2)

    real *8, dimension(:), allocatable parm::leaf1

      1st shape parameter for leaf area development equation (none)

    real *8, dimension(:), allocatable parm::leaf2

      2nd shape parameter for leaf area development equation (none)

    real *8, dimension(:), allocatable parm::wsyf

      Value of harvest index between 0 and HVSTI which represents the lowest value expected due to water stress
      ((kg/ha)/(kg/ha))

    real *8, dimension(:), allocatable parm::bio e

     biomass-energy ratio. The potential (unstressed) growth rate per unit of intercepted photosynthetically active
     radiation.((kg/ha)/(MJ/m**2))

    real *8, dimension(:), allocatable parm::hvsti

     harvest index: crop yield/aboveground biomass ((kg/ha)/(kg/ha))

    real *8, dimension(:), allocatable parm::t_base

      minimum temperature for plant growth (deg C)

    real *8, dimension(:), allocatable parm::t_opt

      optimal temperature for plant growth (deg C)

    real *8, dimension(:), allocatable parm::chtmx

     maximum canopy height (m)

    real *8, dimension(:), allocatable parm::cvm

      natural log of USLE_C (the minimum value of the USLE C factor for the land cover) (none)

    real *8, dimension(:), allocatable parm::gsi

     maximum stomatal conductance (m/s)

    real *8, dimension(:), allocatable parm::vpd2

      rate of decline in stomatal conductance per unit increase in vapor pressure deficit ((m/s)*(1/kPa))

    real *8, dimension(:), allocatable parm::wavp

      rate of decline in radiation use efficiency as a function of vapor pressure deficit (none)

    real *8, dimension(:), allocatable parm::bio_leaf

      fraction of leaf/needle biomass that drops during dormancy (for trees only) (none)

    real *8, dimension(:), allocatable parm::blai

      maximum (potential) leaf area index (none)

    real *8, dimension(:), allocatable parm::cpyld

      fraction of phosphorus in yield (kg P/kg yield)
  real *8, dimension(:), allocatable parm::dlai
      fraction of growing season when leaf area declines (none)
```

```
    real *8, dimension(:), allocatable parm::rdmx

      maximum root depth of plant (m)

    real *8, dimension(:), allocatable parm::bio n1

      1st shape parameter for plant N uptake equation (none)

    real *8, dimension(:), allocatable parm::bio_n2

      2nd shape parameter for plant N uptake equation (none)

    real *8, dimension(:), allocatable parm::bio p1

      1st shape parameter for plant P uptake equation (none)

    real *8, dimension(:), allocatable parm::bio p2

      2st shape parameter for plant P uptake equation (none)

    real *8, dimension(:), allocatable parm::bm_dieoff

      fraction above ground biomass that dies off at dormancy (fraction)

    real *8, dimension(:), allocatable parm::bmx_trees

  real *8, dimension(:), allocatable parm::ext_coef
  real *8, dimension(:), allocatable parm::rsr1
      initial root to shoot ratio at the beg of growing season

    real *8, dimension(:), allocatable parm::rsr2

      root to shoot ratio at the end of the growing season

    real *8, dimension(:), allocatable parm::pltnfr1

      nitrogen uptake parameter #1: normal fraction of N in crop biomass at emergence (kg N/kg biomass)

    real *8, dimension(:), allocatable parm::pltnfr2

      nitrogen uptake parameter #2: normal fraction of N in crop biomass at 0.5 maturity (kg N/kg biomass)

    real *8, dimension(:), allocatable parm::pltnfr3

      nitrogen uptake parameter #3: normal fraction of N in crop biomass at maturity (kg N/kg biomass)

    real *8, dimension(:), allocatable parm::pltpfr1

      phosphorus uptake parameter #1: normal fraction of P in crop biomass at emergence (kg P/kg biomass)

    real *8, dimension(:), allocatable parm::pltpfr2

      phosphorus uptake parameter #2: normal fraction of P in crop biomass at 0.5 maturity (kg P/kg biomass)

    real *8, dimension(:), allocatable parm::pltpfr3

      phosphorus uptake parameter #3: normal fraction of P in crop biomass at maturity (kg P/kg biomass)

    integer, dimension(:), allocatable parm::idc

      crop/landcover category:
      1 warm season annual legume
      2 cold season annual legume
      3 perennial legume
      4 warm season annual
      5 cold season annual
      6 perennial
      7 trees
• integer, dimension(:), allocatable parm::mat_yrs
  real *8, dimension(:), allocatable parm::bactpdb
      concentration of persistent bacteria in manure (fertilizer) (cfu/g manure)

    real *8, dimension(:), allocatable parm::fminn

      fraction of fertilize/manure that is mineral N (NO3 + NH3) (kg minN/kg fert)

    real *8, dimension(:), allocatable parm::forgn

      fraction of organic N in fertilizer/manure (kg orgN/kg fert)

    real *8, dimension(:), allocatable parm::forgp

      fraction of fertilizer/manure that is organic P (kg orgP/kg fert)
  real *8, dimension(:), allocatable parm::bactkddb
      fraction of bacteria in solution (the remaining fraction is sorbed to soil particles) (none):
      1: all bacteria in solution
      0: all bacteria sorbed to soil particles
```

 real *8, dimension(:), allocatable parm::bactlpdb concentration of less persistent bacteria in manure (fertilizer) (cfu/g manure) real *8, dimension(:), allocatable parm::fminp fraction of fertilizer that is mineral P in fertilizer/manure (kg minP/kg fert) real *8, dimension(:), allocatable parm::fnh3n fraction of mineral N in fertilizer that is NH3-N in fertilizer/manure (kgNH3-N/kgminN) character(len=8), dimension(200) parm::fertnm name of fertilizer real *8, dimension(:), allocatable parm::curbden curb length density in HRU (km/ha) real *8, dimension(:), allocatable parm::dirtmx maximum amount of solids allowed to build up on impervious surfaces (kg/curb km) real *8, dimension(:), allocatable parm::fimp fraction of HRU area that is impervious (both directly and indirectly connected)(fraction) real *8, dimension(:), allocatable parm::urbcoef wash-off coefficient for removal of constituents from an impervious surface (1/mm) real *8, dimension(:), allocatable parm::thalf time for the amount of solids on impervious areas to build up to 1/2 the maximum level (days) real *8, dimension(:), allocatable parm::tnconc concentration of total nitrogen in suspended solid load from impervious areas (mg N/kg sed) real *8, dimension(:), allocatable parm::tno3conc concentration of NO3-N in suspended solid load from impervious areas (mg NO3-N/kg sed) real *8, dimension(:), allocatable parm::tpconc concentration of total phosphorus in suspended solid load from impervious areas (mg P/kg sed) • real *8, dimension(:), allocatable parm::fcimp fraction of HRU area that is classified as directly connected impervious (fraction) real *8, dimension(:), allocatable parm::urbcn2 SCS curve number for moisture condition II in impervious areas (none)

real *8 parm::fr curb

availability factor, the fraction of the curb length that is sweepable (none)

real *8 parm::frt_kg

amount of fertilizer applied to HRU (kg/ha)

real *8 parm::pst_dep

depth of pesticide in the soil (mm)

- real *8 parm::sweepeff
- real *8, dimension(:), allocatable parm::ranrns_hru
- integer, dimension(:), allocatable parm::itill
- real *8, dimension(:), allocatable parm::deptil

depth of mixing caused by tillage operation (mm)

real *8, dimension(:), allocatable parm::effmix

mixing efficiency of tillage operation (none)

real *8, dimension(:), allocatable parm::ranrns

random roughness of a given tillage operation (mm)

character(len=8), dimension(550) parm::tillnm

8-character name for the tillage operation

real *8, dimension(:), allocatable parm::rnum1s

For ICODES equal to (none)

0,1,3,5,9: not used

2: Fraction of flow in channel

4: amount of water transferred (as defined by INUM4S)

7,8,10,11: drainage area in square kilometers associated with the record file

12: rearation coefficient.

```
    real *8, dimension(:), allocatable parm::hyd_dakm

     total drainage area of hydrograph in square kilometers (km<sup>2</sup>)

    real *8, dimension(:,:), allocatable parm::varoute

    real *8, dimension(:,:), allocatable parm::shyd

• real *8, dimension(:,:), allocatable parm::vartran

    real *8, dimension(:,:,:), allocatable parm::hhvaroute

• integer, dimension(:), allocatable parm::icodes
     routing command code (none):
     0 = finish
      1 = subbasin
      2 = route
     3 = routres
     4 = transfer
     5 = add
     6 = rechour
     7 = recmon
     8 = recyear
     9 = save
      10 = recday
      11 = reccnst
      12 = structure
      13 = apex
      14 = saveconc
      15 =
• integer, dimension(:), allocatable parm::ihouts
      For ICODES equal to (none)
     0: not used
      1,2,3,5,7,8,10,11: hydrograph storage location number
     4: departure type (1=reach, 2=reservoir)
      9: hydrograph storage location of data to be printed to event file
      14:hydrograph storage location of data to be printed to saveconc file.
• integer, dimension(:), allocatable parm::inum1s
      For ICODES equal to (none)
     0: not used
      1: subbasin number
     2: reach number
     3: reservoir number
      4: reach or res # flow is diverted from
     5: hydrograph storage location of 1st dataset to be added
      7,8,9,10,11,14: file number.
• integer, dimension(:), allocatable parm::inum2s
      For ICODES equal to (none)
     0,1,7,8,10,11: not used
     2,3: inflow hydrograph storage location
      4: destination type (1=reach, 2=reservoir)
     5: hydrograph storage location of 2nd dataset to be added
      9,14:print frequency (0=daily, 1=hourly)

    integer, dimension(:), allocatable parm::inum3s

      For ICODES equal to (none)
     0,1,5,7,8,10,11: not used
     2,3: subbasin number 4: destination number. Reach or reservoir receiving water
     9: print format (0=normal, fixed format; 1=txt format for AV interface, recday)

    integer, dimension(:), allocatable parm::inum4s

      For ICODES equal to (none)
     0,2,3,5,7,8,9,10,11: not used
      1: GIS code printed to output file (optional)
      4: rule code governing transfer of water (1=fraction transferred out, 2=min volume or flow left, 3=exact amount trans-
      ferred)
integer, dimension(:), allocatable parm::inum5s
```

```
    integer, dimension(:), allocatable parm::inum6s

• integer, dimension(:), allocatable parm::inum7s
• integer, dimension(:), allocatable parm::inum8s

    integer, dimension(:), allocatable parm::subed

    character(len=10), dimension(:), allocatable parm::recmonps

• character(len=10), dimension(:), allocatable parm::reccnstps

    character(len=5), dimension(:), allocatable parm::subnum

    character(len=4), dimension(:), allocatable parm::hruno

• real *8, dimension(:), allocatable parm::grwat_n
      Mannings's n for grassed waterway (none)

    integer, dimension(:), allocatable parm::grwat i

      flag for the simulation of grass waterways (none)
      = 0 inactive
      = 1 active

    real *8, dimension(:), allocatable parm::grwat_l

     length of grass waterway (km)

    real *8, dimension(:), allocatable parm::grwat_w

      average width of grassed waterway (m)

    real *8, dimension(:), allocatable parm::grwat d

      depth of grassed waterway from top of bank to bottom (m)

    real *8, dimension(:), allocatable parm::grwat s

      average slope of grassed waterway channel (m)

    real *8, dimension(:), allocatable parm::grwat_spcon

      linear parameter for calculating sediment in grassed waterways (none)

    real *8, dimension(:), allocatable parm::tc_gwat

    real *8, dimension(:), allocatable parm::pot_volmm

• real *8, dimension(:), allocatable parm::pot_tilemm

    real *8, dimension(:), allocatable parm::pot_volxmm

    real *8, dimension(:), allocatable parm::pot fr

      fraction of HRU area that drains into pothole (km^2/km^2)

    real *8, dimension(:), allocatable parm::pot_tile

      average daily outflow to main channel from tile flow if drainage tiles are installed in pothole (needed only if current
     HRU is IPOT) (m<sup>^</sup>3/s)

    real *8, dimension(:), allocatable parm::pot vol

      initial or current volume of water stored in the depression/impounded area (read in as mm and converted to m^3)
      (needed only if current HRU is IPOT) (mm or m<sup>3</sup> H20)

    real *8, dimension(:), allocatable parm::potsa

      surface area of impounded water body (ha)

    real *8, dimension(:), allocatable parm::pot volx

      maximum volume of water stored in the depression/impounded area (read in as mm and converted to m^3) (needed
      only if current HRU is IPOT) (mm)

    real *8, dimension(:), allocatable parm::wfsh

      wetting front matric potential (average capillary suction at wetting front) (mm)

    real *8, dimension(:), allocatable parm::potflwi

    real *8, dimension(:), allocatable parm::potsedi

  real *8, dimension(:), allocatable parm::pot no3l
      nitrate decay rate in impounded area (1/day)

    real *8, dimension(:), allocatable parm::pot_nsed

      normal sediment concentration in impounded water (needed only if current HRU is IPOT)(mg/L)

    real *8, dimension(:), allocatable parm::gwno3

      nitrate-N concentration in groundwater loading to reach (mg N/L)

    real *8, dimension(:), allocatable parm::newrti
```

infiltration rate for last time step from the previous day (mm/hr)

```
    real *8, dimension(:), allocatable parm::fsred

      reduction in bacteria loading from filter strip (none)

    real *8, dimension(:), allocatable parm::pot sed

    real *8, dimension(:), allocatable parm::pot no3

    real *8, dimension(:), allocatable parm::tmpavp

    real *8, dimension(:), allocatable parm::dis_stream

      average distance to stream (m)

    real *8, dimension(:), allocatable parm::evpot

     pothole evaporation coefficient (none)

    real *8, dimension(:), allocatable parm::pot solpl

• real *8, dimension(:), allocatable parm::sed con
• real *8, dimension(:), allocatable parm::orgn_con

    real *8, dimension(:), allocatable parm::orgp_con

    real *8, dimension(:), allocatable parm::pot_k

      hydraulic conductivity of soil surface of pothole defaults to conductivity of upper soil (0.\leftarrow
      01-10.) layer
• real *8, dimension(:), allocatable parm::soln_con
  real *8, dimension(:), allocatable parm::solp_con
  real *8, dimension(:), allocatable parm::n_reduc
      nitrogen uptake reduction factor (not currently used; defaulted 300.)

    real *8, dimension(:), allocatable parm::n_lag

      lag coefficient for calculating nitrate concentration in subsurface drains (0.001 - 1.0) (dimensionless)

    real *8, dimension(:), allocatable parm::n In

     power function exponent for calculating nitrate concentration in subsurface drains (1.0 - 3.0) (dimensionless)

    real *8, dimension(:), allocatable parm::n_lnco

      coefficient for power function for calculating nitrate concentration in subsurface drains (0.5 - 4.0) (dimensionless)

    integer, dimension(:), allocatable parm::ioper

• integer, dimension(:), allocatable parm::ngrwat
  real *8, dimension(:), allocatable parm::usle_ls
      USLE equation length slope (LS) factor (none)

    real *8, dimension(:), allocatable parm::filterw

      filter strip width for bacteria transport (m)

    real *8, dimension(:), allocatable parm::phuacc

      fraction of plant heat units accumulated (none)

    real *8, dimension(:), allocatable parm::sumix

      sum of all tillage mixing efficiencies for HRU operation (none)

    real *8, dimension(:), allocatable parm::epco

     plant water uptake compensation factor (0-1) (none)
• real *8, dimension(:), allocatable parm::esco
      soil evaporation compensation factor (0-1) (none)

    real *8, dimension(:), allocatable parm::hru_slp

      average slope steepness (m/m)
• real *8, dimension(:), allocatable parm::slsubbsn
      average slope length for subbasin (m)

    real *8, dimension(:), allocatable parm::erorgn

      organic N enrichment ratio, if left blank the model will calculate for every event (none)

    real *8, dimension(:), allocatable parm::erorgp

      organic P enrichment ratio, if left blank the model will calculate for every event (none)

    real *8, dimension(:), allocatable parm::biomix

     biological mixing efficiency. Mixing of soil due to activity of earthworms and other soil biota. Mixing is performed at
      the end of every calendar year (none)

    real *8, dimension(:), allocatable parm::pnd seci
```

```
secchi-disk depth of pond (m)

    real *8, dimension(:), allocatable parm::canmx

      maximum canopy storage (mm H2O)

    real *8, dimension(:), allocatable parm::divmax

      maximum daily irrigation diversion from the reach (when IRRSC=1 or IRR=3): when value is positive the units are
      mm H2O; when the value is negative, the units are (10<sup>4</sup> m<sup>3</sup> H2O) (mm H2O or 10<sup>4</sup> m<sup>3</sup> H2O)

    real *8, dimension(:), allocatable parm::flowmin

      minimum instream flow for irrigation diversions when IRRSC=1, irrigation water will be diverted only when streamflow
      is at or above FLOWMIN (m<sup>^</sup>3/s)

    real *8, dimension(:), allocatable parm::usle p

      USLE equation support practice (P) factor (none)

    real *8, dimension(:), allocatable parm::lat_sed

      sediment concentration in lateral flow (g/L)

    real *8, dimension(:), allocatable parm::rch_dakm

      total drainage area contributing to flow at the outlet (pour point) of the reach in square kilometers (km^2)

    real *8, dimension(:), allocatable parm::cn1

      SCS runoff curve number for moisture condition I (none)

    real *8, dimension(:), allocatable parm::pnd no3s

      amount of nitrate originating from lateral flow in pond at end of day (kg N)

    real *8, dimension(:), allocatable parm::lat ttime

      lateral flow travel time or exponential of the lateral flow travel time (days or none)

    real *8, dimension(:), allocatable parm::cn2

      SCS runoff curve number for moisture condition II (none)

    real *8, dimension(:), allocatable parm::flowfr

      fraction of available flow in reach that is allowed to be applied to the HRU (none)

    real *8, dimension(:), allocatable parm::sol zmx

      maximum rooting depth (mm)

    real *8, dimension(:), allocatable parm::tile ttime

      exponential of the tile flow travel time (none)

    real *8, dimension(:), allocatable parm::slsoil

      slope length for lateral subsurface flow (m)

    real *8, dimension(:), allocatable parm::gwminp

      soluble P concentration in groundwater loading to reach (mg P/L)

    real *8, dimension(:), allocatable parm::sol_cov

      amount of residue on soil surface (kg/ha)

    real *8, dimension(:), allocatable parm::sed_stl

      fraction of sediment remaining suspended in impoundment after settling for one day (kg/kg)

    real *8, dimension(:), allocatable parm::ov_n

      Manning's "n" value for overland flow (none)

    real *8, dimension(:), allocatable parm::pnd_no3

      amount of nitrate originating from surface runoff in pond at end of day (kg N)

    real *8, dimension(:), allocatable parm::pnd_solp

      amount of soluble P originating from surface runoff in pond at end of day (kg P)

    real *8, dimension(:), allocatable parm::yldanu

      annual yield (dry weight) in the HRU (metric tons/ha)

    real *8, dimension(:), allocatable parm::driftco

      coefficient for pesticide drift directly onto stream (none)

    real *8, dimension(:), allocatable parm::pnd_orgn
```

amount of organic N originating from surface runoff in pond at end of day (kg N)

amount of organic P originating from surface runoff in pond at end of day (kg P)

real *8, dimension(:), allocatable parm::pnd_orgp

real *8, dimension(:), allocatable parm::cn3

SCS runoff curve number for moisture condition III (none)

```
    real *8, dimension(:), allocatable parm::twlpnd

      water lost through seepage from ponds on day in HRU (mm H2O)
  real *8, dimension(:), allocatable parm::twlwet
      water lost through seepage from wetlands on day in HRU (mm H2O)

    real *8, dimension(:), allocatable parm::hru fr

      fraction of subbasin area contained in HRU (km^2/km^2)

    real *8, dimension(:), allocatable parm::sol sumul

     amount of water held in soil profile at saturation (mm H2O)

    real *8, dimension(:), allocatable parm::pnd chla

      amount of chlorophyll-a in pond at end of day (kg chl_a)

    real *8, dimension(:), allocatable parm::hru_km

      area of HRU in square kilometers (km<sup>2</sup>)

    real *8, dimension(:), allocatable parm::bio ms

      land cover/crop biomass (dry weight) (kg/ha)

    real *8, dimension(:), allocatable parm::sol alb

      albedo when soil is moist (none)

    real *8, dimension(:), allocatable parm::strsw

      fraction of potential plant growth achieved on the day where the reduction is caused by water stress (none)

    real *8, dimension(:), allocatable parm::pnd fr

      fraction of HRU/subbasin area that drains into ponds (none)

    real *8, dimension(:), allocatable parm::pnd_k

      hydraulic conductivity through bottom of ponds (mm/hr)

    real *8, dimension(:), allocatable parm::pnd_psa

      surface area of ponds when filled to principal spillway (ha)
• real *8, dimension(:), allocatable parm::pnd_pvol
      runoff volume from catchment area needed to fill the ponds to the principal spillway (UNIT CHANGE!) (10<sup>^4</sup> m <sup>^3</sup>
     H2O or m^3 H2O)

    real *8, dimension(:), allocatable parm::pnd esa

      surface area of ponds when filled to emergency spillway (ha)

    real *8, dimension(:), allocatable parm::pnd_evol

      runoff volume from catchment area needed to fill the ponds to the emergency spillway (UNIT CHANGE!) (10^4 m^3
     H2O or m^3 H2O)

    real *8, dimension(:), allocatable parm::pnd_vol

      volume of water in ponds (UNIT CHANGE!) (10<sup>^</sup>4 m<sup>^</sup>3 H2O or m<sup>^</sup>3 H2O)

    real *8, dimension(:), allocatable parm::yldaa

      average annual yield (dry weight) in the HRU (metric tons)

    real *8, dimension(:), allocatable parm::pnd nsed

      normal sediment concentration in pond water (UNIT CHANGE!) (mg/kg or kg/kg)

    real *8, dimension(:), allocatable parm::pnd_sed

      sediment concentration in pond water (UNIT CHANGE!) (mg/kg or kg/kg)

    real *8, dimension(:), allocatable parm::strsa

  real *8, dimension(:), allocatable parm::dep_imp

    real *8, dimension(:), allocatable parm::evpnd

    real *8, dimension(:), allocatable parm::evwet

  real *8, dimension(:), allocatable parm::wet fr
      fraction of HRU/subbasin area that drains into wetlands (none)

    real *8, dimension(:), allocatable parm::wet k

      hydraulic conductivity of bottom of wetlands (mm/hr)

    real *8, dimension(:), allocatable parm::wet nsa
```

surface area of wetlands in subbasin at normal water level (ha)
 real *8, dimension(:), allocatable parm::wet_nvol
 runoff volume from catchment area needed to fill wetlands to normal water level (UNIT CHANGE!) (10[^]4 m[^]3 H2O or m[^]3 H2O)
 integer, dimension(:), allocatable parm::iwetgw
 integer, dimension(:), allocatable parm::iwetile
 real *8, dimension(:), allocatable parm::wet_mxsa
 surface area of wetlands at maximum water level (ha)
 real *8, dimension(:), allocatable parm::wet_mxvol
 runoff volume from catchment area needed to fill wetlands to maximum water level (UNIT CHANGE!) (10[^]4 m[^]3

H2O or m[^]3 H2O)

• real ∗8, dimension(:), allocatable parm::wet_vol

volume of water in wetlands (UNIT CHANGE!) (10[^]4 m[^]3 H2O or m[^]3 H2O)

real *8, dimension(:), allocatable parm::wet_nsed

normal sediment concentration in wetland water (UNIT CHANGE!) (mg/kg or kg/kg)

real *8, dimension(:), allocatable parm::wet_sed

sediment concentration in wetland water (UNIT CHANGE!) (mg/L or kg/L)

real *8, dimension(:), allocatable parm::bp1

1st shape parameter for pond surface area equation (none)

real *8, dimension(:), allocatable parm::bp2

2nd shape parameter for the pond surface area equation (none)

real *8, dimension(:), allocatable parm::sci

retention coefficient for CN method based on plant ET (none)

real *8, dimension(:), allocatable parm::smx

retention coefficient for CN method based on soil moisture (none)

real *8, dimension(:), allocatable parm::bw1

1st shape parameter for the wetland surface area equation (none)

real *8, dimension(:), allocatable parm::bw2

2nd shape parameter for the wetland surface area equation (none)

real *8, dimension(:), allocatable parm::bactpq

persistent bacteria in soil solution (# cfu/m^2)

real *8, dimension(:), allocatable parm::cnday

curve number for current day, HRU and at current soil moisture (none)

real *8, dimension(:), allocatable parm::bactlp_plt

less persistent bacteria on foliage (# cfu/m^2)

real *8, dimension(:), allocatable parm::bactp_plt

persistent bacteria on foliage (# cfu/m^2)

real *8, dimension(:), allocatable parm::auto_eff

fertilizer application efficiency calculated as the amount of N applied divided by the amount of N removed at harvest (none)

• real *8, dimension(:), allocatable parm::secciw

water clarity coefficient for wetland (none)

• real *8, dimension(:), allocatable parm::sol sw

amount of water stored in soil profile on current day (mm H2O)

real *8, dimension(:), allocatable parm::bactlpq

less persistent bacteria in soil solution (# cfu/m $^{\wedge}$ 2)

real *8, dimension(:), allocatable parm::chlaw

chlorophyll-a production coefficient for wetland (none)

real *8, dimension(:), allocatable parm::tmpav

average air temperature on current day in HRU (deg C)

real *8, dimension(:), allocatable parm::bactlps

```
less persistent bacteria attached to soil particles (# cfu/m^2)

    real *8, dimension(:), allocatable parm::bactps

     persistent bacteria attached to soil particles (# cfu/m^2)

    real *8, dimension(:), allocatable parm::sno hru

      amount of water stored as snow in HRU on current day (mm H2O)

    real *8, dimension(:), allocatable parm::wet orgn

      amount of organic N originating from surface runoff in wetland at end of day (kg N)

    real *8, dimension(:), allocatable parm::hru ra

      solar radiation for the day in HRU (MJ/m^2)

    real *8, dimension(:), allocatable parm::subp

     precipitation for the day in HRU (mm H2O)

    real *8, dimension(:), allocatable parm::rsdin

     initial residue cover (kg/ha)
  real *8, dimension(:), allocatable parm::tmn
     minimum air temperature on current day in HRU (deg C)

    real *8, dimension(:), allocatable parm::tmx

     maximum air temperature on current day in HRU (deg C)

    real *8, dimension(:), allocatable parm::tmp hi

• real *8, dimension(:), allocatable parm::tmp_lo
  real *8, dimension(:), allocatable parm::usle k
      USLE equation soil erodibility (K) factor (none)

    real *8, dimension(:), allocatable parm::tconc

      time of concentration for HRU (hour)

    real *8, dimension(:), allocatable parm::hru_rmx

     maximum possible solar radiation for the day in HRU (MJ/m^2)

    real *8, dimension(:), allocatable parm::rwt

      fraction of total plant biomass that is in roots (none)

    real *8, dimension(:), allocatable parm::olai

• real *8, dimension(:), allocatable parm::usle_cfac
  real *8, dimension(:), allocatable parm::usle eifac
• real *8, dimension(:), allocatable parm::sol_sumfc
      amount of water held in soil profile at field capacity (mm H2O)

    real *8, dimension(:), allocatable parm::t_ov

      time for flow from farthest point in subbasin to enter a channel (hour)

    real *8, dimension(:), allocatable parm::anano3

      total amount of NO3 applied during the year in auto-fertilization (kg N/ha)
• real *8, dimension(:), allocatable parm::aird
      amount of water applied to HRU on current day (mm H2O)

    real *8, dimension(:), allocatable parm::wet_orgp

      amount of organic P originating from surface runoff in wetland at end of day (kg P)

    real *8, dimension(:), allocatable parm::sol avpor

      average porosity for entire soil profile (none)

    real *8, dimension(:), allocatable parm::usle mult

     product of USLE K,P,LS,exp(rock) (none)
  real *8, dimension(:), allocatable parm::rhd
     relative humidity for the day in HRU (none)

    real *8, dimension(:), allocatable parm::u10

      wind speed (measured at 10 meters above surface) for the day in HRU (m/s)

    real *8, dimension(:), allocatable parm::cht

     canopy height (m)
```

real *8, dimension(:), allocatable parm::aairr

```
average annual amount of irrigation water applied to HRU (mm H2O)

    real *8, dimension(:), allocatable parm::lai_aamx

      maximum leaf area index for the entire period of simulation in the HRU (none)

    real *8, dimension(:), allocatable parm::deepirr

      amount of water removed from deep aquifer for irrigation (mm H2O)

    real *8, dimension(:), allocatable parm::shallirr

      amount of water removed from shallow aguifer for irrigation (mm H2O)

    real *8, dimension(:), allocatable parm::ch | 11

     longest tributary channel length in subbasin (km)

    real *8, dimension(:), allocatable parm::wet_no3

      amount of nitrate originating from surface runoff in wetland at end of day (kg N)

    real *8, dimension(:), allocatable parm::ovrlnd

      overland flow onto HRU from upstream routing unit (mm H2O)

    real *8, dimension(:), allocatable parm::canstor

      amount of water held in canopy storage (mm H2O)

    real *8, dimension(:), allocatable parm::irr_mx

      maximum irrigation amount per auto application (mm)

    real *8, dimension(:), allocatable parm::auto wstr

      water stress factor which triggers auto irrigation (none or mm)

    real *8, dimension(:), allocatable parm::cfrt_id

      fertilizer/manure id number from database (none)

    real *8, dimension(:), allocatable parm::cfrt kg

      amount of fertilzier applied to HRU on a given day (kg/ha)

    real *8, dimension(:), allocatable parm::cpst id

real *8, dimension(:), allocatable parm::cpst_kg

    real *8, dimension(:), allocatable parm::irr_asq

      surface runoff ratio

    real *8, dimension(:), allocatable parm::irr eff

  real *8, dimension(:), allocatable parm::irrsq
      surface runoff ratio (0-1) .1 is 10% surface runoff (frac)

    real *8, dimension(:), allocatable parm::irrsalt

      concentration of salt in irrigation water (mg/kg)
• real *8, dimension(:), allocatable parm::irrefm

    real *8, dimension(:), allocatable parm::bio eat

      dry weight of biomass removed by grazing daily ((kg/ha)/day)

    real *8, dimension(:), allocatable parm::bio trmp

      dry weight of biomass removed by trampling daily ((kg/ha)/day)

    integer, dimension(:), allocatable parm::ipst_freq

      number of days between applications (days)

    integer, dimension(:), allocatable parm::ifrt_freq

    integer, dimension(:), allocatable parm::irr_noa

• integer, dimension(:), allocatable parm::irr_sc
• integer, dimension(:), allocatable parm::irr_no

    integer, dimension(:), allocatable parm::imp_trig

      release/impound action code (none):
      0 begin impounding water
      1 release impounded water
integer, dimension(:), allocatable parm::fert_days
• integer, dimension(:), allocatable parm::irr_sca

    integer, dimension(:), allocatable parm::idplt

      land cover/crop identification code for first crop grown in HRU (the only crop if there is no rotation) (from crop.dat)
```

(none)

integer, dimension(:), allocatable parm::pest_days

```
· integer, dimension(:), allocatable parm::wstrs_id

    real *8, dimension(:,:), allocatable parm::bio_aahv

• real *8, dimension(:), allocatable parm::cumei
• real *8, dimension(:), allocatable parm::cumeira

    real *8, dimension(:), allocatable parm::cumrt

    real *8, dimension(:), allocatable parm::cumrai

• real *8, dimension(:), allocatable parm::wet_solp
      amount of soluble P originating from surface runoff in wetland at end of day (kg P)

    real *8, dimension(:), allocatable parm::wet chla

      amount of chlorophyll-a in wetland at end of day (kg chla)

    real *8, dimension(:), allocatable parm::wet no3s

      amount of nitrate originating from lateral flow in wetland at end of day (kg N)
• real *8, dimension(:), allocatable parm::pstsol
      soluble pesticide leached from bottom of soil profile (kg pst/ha)

    real *8, dimension(:), allocatable parm::pnd no3g

      amount of nitrate originating from groundwater in pond at end of day (kg N)

    real *8, dimension(:), allocatable parm::wet_seci

      secchi-disk depth in wetland at end of day (m)

    real *8, dimension(:), allocatable parm::delay

      groundwater delay: time required for water leaving the bottom of the root zone to reach the shallow aquifer (days)

    real *8, dimension(:), allocatable parm::gwht

      groundwater height (m)

    real *8, dimension(:), allocatable parm::gw_q

      groundwater contribution to streamflow from HRU on current day (mm H2O)

    real *8, dimension(:), allocatable parm::pnd_solpg

      amount of soluble P originating from groundwater in pond at end of day (kg P)

    real *8, dimension(:), allocatable parm::alpha_bf

      alpha factor for groundwater recession curve (1/days)
• real *8, dimension(:), allocatable parm::alpha_bfe
      \exp(-alpha_b f) (none)

    real *8, dimension(:), allocatable parm::gw_spyld

      specific yield for shallow aquifer (m^3/m^3)
real *8, dimension(:), allocatable parm::alpha_bf_d
      alpha factor for groudwater recession curve of the deep aquifer (1/days)

    real *8, dimension(:), allocatable parm::alpha_bfe_d

     \exp(-alpha_b f_d) for deep aquifer (none)

    real *8, dimension(:), allocatable parm::gw_qdeep

  real *8, dimension(:), allocatable parm::gw_delaye
     \exp(-1/delay) (none)

    real *8, dimension(:), allocatable parm::gw revap

     revap coeff: this variable controls the amount of water moving from the shallow aquifer to the root zone as a result of
      soil moisture depletion (none)

    real *8, dimension(:), allocatable parm::rchrg dp

      recharge to deep aquifer: the fraction of root zone percolation that reaches the deep aquifer (none)

    real *8, dimension(:), allocatable parm::anion excl

      fraction of porosity from which anions are excluded

    real *8, dimension(:), allocatable parm::revapmn

      threshold depth of water in shallow aguifer required to allow revap to occur (mm H2O)

    real *8, dimension(:), allocatable parm::rchrg

    real *8, dimension(:), allocatable parm::bio_min
```

```
minimum plant biomass for grazing (kg/ha)

    real *8, dimension(:), allocatable parm::ffc

      initial HRU soil water content expressed as fraction of field capacity (none)
• real *8, dimension(:), allocatable parm::surqsolp

    real *8, dimension(:), allocatable parm::deepst

      depth of water in deep aquifer (mm H2O)

    real *8, dimension(:), allocatable parm::shallst

      depth of water in shallow aquifer in HRU (mm H2O)

    real *8, dimension(:), allocatable parm::wet_solpg

      amount of soluble P originating from groundwater in wetland at end of day (kg P)

    real *8, dimension(:), allocatable parm::cklsp

    real *8, dimension(:), allocatable parm::rchrg_src

    real *8, dimension(:), allocatable parm::trapeff

      filter strip trapping efficiency (used for everything but bacteria) (none)

    real *8, dimension(:), allocatable parm::sol avbd

      average bulk density for soil profile (Mg/m<sup>^</sup>3)

    real *8, dimension(:), allocatable parm::wet no3g

      amount of nitrate originating from groundwater in wetland at end of day (kg N)

    real *8, dimension(:), allocatable parm::tdrain

      time to drain soil to field capacity yield used in autofertilization (hours)

    real *8, dimension(:), allocatable parm::gwqmn

      threshold depth of water in shallow aquifer required before groundwater flow will occur (mm H2O)

    real *8, dimension(:), allocatable parm::snotmp

      temperature of snow pack in HRU (deg C)

    real *8, dimension(:), allocatable parm::ppInt

    real *8, dimension(:), allocatable parm::gdrain

      drain tile lag time: the amount of time between the transfer of water from the soil to the drain tile and the release of
      the water from the drain tile to the reach (hours)

    real *8, dimension(:), allocatable parm::ddrain

      depth to the sub-surface drain (mm)

    real *8, dimension(:), allocatable parm::sol crk

      crack volume potential of soil (none)

    real *8, dimension(:), allocatable parm::brt

      fraction of surface runoff within the subbasin which takes 1 day or less to reach the subbasin outlet (none)

    real *8, dimension(:), allocatable parm::dayl

      day length (hours)

    real *8, dimension(:), allocatable parm::sstmaxd

      static maximum depressional storage; read from .sdr (mm)

    real *8, dimension(:), allocatable parm::re

      effective radius of drains (mm)

    real *8, dimension(:), allocatable parm::sdrain

      distance between two drain tubes or tiles (mm)

    real *8, dimension(:), allocatable parm::ddrain_hru

    real *8, dimension(:), allocatable parm::drain_co

      drainage coefficient (mm/day)

    real *8, dimension(:), allocatable parm::latksatf

      multiplication factor to determine conk(j1,j) from sol_k(j1,j) for HRU (none)

    real *8, dimension(:), allocatable parm::pc

      pump capacity (default pump capacity = 1.042mm/hr or 25mm/day) (mm/hr)
```

real *8, dimension(:), allocatable parm::stmaxd
 real *8, dimension(:), allocatable parm::rnd3

```
    real *8, dimension(:), allocatable parm::rnd2

     random number between 0.0 and 1.0 (none)

    real *8. dimension(:), allocatable parm::twash

  real *8, dimension(:), allocatable parm::sol cnsw

    real *8, dimension(:), allocatable parm::doxq

  real *8, dimension(:), allocatable parm::rnd8
     random number between 0.0 and 1.0 (none)
 real *8, dimension(:), allocatable parm::rnd9
     random number between 0.0 and 1.0 (none)
• real *8, dimension(:), allocatable parm::percn
  real *8, dimension(:), allocatable parm::sol_sumwp
  real *8, dimension(:), allocatable parm::qdr
     total amount of water entering main channel for day from HRU (mm H2O)
  real *8, dimension(:), allocatable parm::tauton
  real *8, dimension(:), allocatable parm::tautop
  real *8, dimension(:), allocatable parm::cbodu
  real *8, dimension(:), allocatable parm::chl a
  real *8, dimension(:), allocatable parm::tfertn
 real *8, dimension(:), allocatable parm::tfertp
  real *8, dimension(:), allocatable parm::tgrazn
  real *8, dimension(:), allocatable parm::tgrazp
 real *8, dimension(:), allocatable parm::lato
     total lateral flow in soil profile for the day in HRU (mm H2O)
 real *8, dimension(:), allocatable parm::latno3
  real *8, dimension(:), allocatable parm::minpgw
  real *8, dimension(:), allocatable parm::no3gw
  real *8, dimension(:), allocatable parm::nplnt

    real *8, dimension(:), allocatable parm::tileq

  real *8, dimension(:), allocatable parm::tileno3
  real *8, dimension(:), allocatable parm::sedminpa

    real *8, dimension(:), allocatable parm::sedminps

  real *8, dimension(:), allocatable parm::sedorgn

    real *8, dimension(:), allocatable parm::sedyld

     soil loss caused by water erosion for day in HRU (metric tons)

    real *8, dimension(:), allocatable parm::sepbtm

     percolation from bottom of soil profile for the day in HRU (mm H2O)
  real *8, dimension(:), allocatable parm::sedorgp
  real *8, dimension(:), allocatable parm::strsn
  real *8, dimension(:), allocatable parm::surfq
     surface runoff generated in HRU on the current day (mm H2O)

    real *8. dimension(:), allocatable parm::strsp

  real *8, dimension(:), allocatable parm::strstmp

    real *8, dimension(:), allocatable parm::surqno3

  real *8, dimension(:), allocatable parm::hru ha
     area of HRU in hectares (ha)

    real *8, dimension(:), allocatable parm::hru dafr

     fraction of total watershed area contained in HRU (km2/km2)
  real *8, dimension(:), allocatable parm::tcfrtn
  real *8, dimension(:), allocatable parm::tcfrtp
  real *8, dimension(:), allocatable parm::drydep no3
     atmospheric dry deposition of nitrates (kg/ha/yr)

    real *8, dimension(:), allocatable parm::drydep nh4
```

random number between 0.0 and 1.0 (none)

```
atmospheric dry deposition of ammonia (kg/ha/yr)

    real *8, dimension(:), allocatable parm::bio_yrms

      annual biomass (dry weight) in the HRU (metric tons/ha)

    real *8, dimension(:), allocatable parm::phubase

     base zero total heat units (used when no land cover is growing) (heat units)

    real *8, dimension(:), allocatable parm::hvstiadj

     optimal harvest index for current time during growing season ((kg/ha)/(kg/ha))

    real *8, dimension(:), allocatable parm::laiday

     leaf area index for HRU (m^2/m^2)

    real *8, dimension(:), allocatable parm::chlap

      chlorophyll-a production coefficient for pond (none)

    real *8, dimension(:), allocatable parm::pnd_psed

      amount of mineral P attached to sediment originating from surface runoff in pond at end of day (kg P)
• real *8, dimension(:), allocatable parm::laimxfr
  real *8, dimension(:), allocatable parm::seccip
      water clarity coefficient for pond (none)

    real *8, dimension(:), allocatable parm::plantn

      amount of nitrogen in plant biomass (kg N/ha)

    real *8, dimension(:), allocatable parm::plt_et

      actual ET simulated during life of plant (mm H2O)

    real *8, dimension(:), allocatable parm::wet_psed

      amount of mineral P attached to sediment originating from surface runoff in wetland at end of day (kg P)

    real *8, dimension(:), allocatable parm::bio aams

      average annual biomass (dry weight) in the HRU (metric tons)

    real *8, dimension(:), allocatable parm::plantp

      amount of phosphorus in plant biomass (kg P/ha)

    real *8, dimension(:), allocatable parm::plt_pet

      potential ET simulated during life of plant (mm H2O)

    real *8, dimension(:), allocatable parm::dormhr

      time threshold used to define dormant period for plant (when daylength is within the time specified by dl from the
      minimum daylength for the area, the plant will go dormant) (hour)

    real *8, dimension(:), allocatable parm::lai yrmx

      maximum leaf area index for the year in the HRU (none)

    real *8, dimension(:), allocatable parm::bio aamx

  real *8, dimension(:), allocatable parm::lat_pst
      amount of pesticide in lateral flow in HRU for the day (kg pst/ha)

    real *8, dimension(:), allocatable parm::fld_fr

      fraction of HRU area that drains into floodplain (km<sup>2</sup>/km<sup>2</sup>)
• real *8, dimension(:), allocatable parm::orig_snohru
  real *8, dimension(:), allocatable parm::orig potvol

    real *8, dimension(:), allocatable parm::pltfr_n

      fraction of plant biomass that is nitrogen (none)

    real *8, dimension(:), allocatable parm::orig_alai

  real *8, dimension(:), allocatable parm::orig_bioms
  real *8, dimension(:), allocatable parm::pltfr_p
      fraction of plant biomass that is phosphorus (none)

    real *8, dimension(:), allocatable parm::orig phuacc

  real *8, dimension(:), allocatable parm::orig_sumix
• real *8, dimension(:), allocatable parm::phu_plt
```

total number of heat units to bring plant to maturity (heat units)

real *8, dimension(:), allocatable parm::orig_phu
 real *8, dimension(:), allocatable parm::orig_shallst

```
    real *8, dimension(:), allocatable parm::orig deepst

    real *8, dimension(:), allocatable parm::rip_fr

      fraction of HRU area that drains into riparian zone (km<sup>2</sup>/km<sup>2</sup>)

    real *8, dimension(:), allocatable parm::orig pndvol

  real *8, dimension(:), allocatable parm::orig_pndsed

    real *8, dimension(:), allocatable parm::orig_pndno3

  real *8, dimension(:), allocatable parm::orig pndsolp

    real *8, dimension(:), allocatable parm::orig pndorgn

    real *8, dimension(:), allocatable parm::orig pndorgp

    real *8, dimension(:), allocatable parm::orig wetvol

    real *8, dimension(:), allocatable parm::orig_wetsed

    real *8, dimension(:), allocatable parm::orig wetno3

  real *8, dimension(:), allocatable parm::orig_wetsolp

    real *8, dimension(:), allocatable parm::orig_wetorgn

    real *8, dimension(:), allocatable parm::orig wetorgp

    real *8, dimension(:), allocatable parm::orig solcov

    real *8, dimension(:), allocatable parm::orig_solsw

    real *8, dimension(:), allocatable parm::orig_potno3

    real *8, dimension(:), allocatable parm::orig potsed

    real *8, dimension(:), allocatable parm::wtab

      water table based on 30 day antecedent climate (precip,et) (mm)
• real *8, dimension(:), allocatable parm::wtab_mn
  real *8, dimension(:), allocatable parm::wtab_mx
  real *8, dimension(:), allocatable parm::shallst n
      nitrate concentration in shallow aquifer converted to kg/ha (ppm NO3-N)

    real *8, dimension(:), allocatable parm::gw nloss

  real *8, dimension(:), allocatable parm::rchrg_n

    real *8, dimension(:), allocatable parm::det san

    real *8, dimension(:), allocatable parm::det sil

    real *8, dimension(:), allocatable parm::det_cla

    real *8, dimension(:), allocatable parm::det_sag

    real *8, dimension(:), allocatable parm::det lag

    real *8, dimension(:), allocatable parm::afrt surface

      fraction of fertilizer which is applied to top 10 mm of soil (the remaining fraction is applied to first soil layer) (none)
  real *8, dimension(:), allocatable parm::tnylda
  real *8 parm::frt_surface
      fraction of fertilizer which is applied to the top 10 mm of soil (the remaining fraction is applied to the first soil layer)
      (none)

    real *8, dimension(:), allocatable parm::auto_nyr

      maximum NO3-N content allowed to be applied in one year (kg NO3-N/ha)

    real *8, dimension(:), allocatable parm::auto_napp

      maximum NO3-N content allowed in one fertilizer application (kg NO3-N/ha)

    real *8, dimension(:), allocatable parm::auto nstrs

     nitrogen stress factor which triggers auto fertilization (none)

    real *8, dimension(:), allocatable parm::manure kg

     dry weight of manure deposited on HRU daily ((kg/ha)/day)
  real *8, dimension(:,:), allocatable parm::rcn_mo

    real *8, dimension(:,:), allocatable parm::rammo_mo

    real *8, dimension(:,:), allocatable parm::drydep_no3_mo

  real *8, dimension(:,:), allocatable parm::drydep_nh4_mo

    real *8, dimension(:), allocatable parm::rcn d

    real *8, dimension(:), allocatable parm::rammo d
```

real *8, dimension(:), allocatable parm::drydep_no3_d

```
    real *8, dimension(:), allocatable parm::drydep nh4 d

    real *8, dimension(:,:), allocatable parm::yldn

• integer, dimension(:,:), allocatable parm::gwati

    real *8, dimension(:,:), allocatable parm::gwatn

    real *8, dimension(:,:), allocatable parm::gwatl

    real *8, dimension(:,:), allocatable parm::gwatw

    real *8, dimension(:,:), allocatable parm::gwatd

    real *8, dimension(:,:), allocatable parm::gwatveg

• real *8, dimension(:,:), allocatable parm::gwata

    real *8, dimension(:,:), allocatable parm::gwats

    real *8, dimension(:,:), allocatable parm::gwatspcon

    real *8, dimension(:,:), allocatable parm::rfgeo 30d

    real *8, dimension(:,:), allocatable parm::eo_30d

    real *8, dimension(:), allocatable parm::psetlp1

      phosphorus settling rate for 1st season (m/day)

    real *8, dimension(:), allocatable parm::psetlp2

      phosphorus settling rate for 2nd seaso (m/day)n

    real *8, dimension(:,:), allocatable parm::wgnold

      previous value of wancur(:.:) (none)

    real *8, dimension(:,:), allocatable parm::wgncur

      parameter to predict the impact of precip on other weather attributes (none)
      wgncur(1,:) parameter which predicts impact of precip on daily maximum air temperature
      wgncur(2,:) parameter which predicts impact of precip on daily minimum air temperature
      wgncur(3,:) parameter which predicts impact of precip on daily solar radiation

    real *8, dimension(:), allocatable parm::wrt1

      1st shape parameter for calculation of water retention (none)
  real *8, dimension(:), allocatable parm::wrt2
      2nd shape parameter for calculation of water retention (none)
real *8, dimension(:,:), allocatable parm::pst_enr
      pesticide enrichment ratio (none)

    real *8, dimension(:,:), allocatable parm::zdb

    real *8, dimension(:,:), allocatable parm::pst_surq

  real *8, dimension(:,:), allocatable parm::plt_pst
      pesticide on plant foliage (kg/ha)

    real *8, dimension(:), allocatable parm::psetlw1

      phosphorus settling rate for 1st season (m/day)

    real *8, dimension(:), allocatable parm::psetlw2

      phosphorus settling rate for 2nd season (m/day)
  real *8, dimension(:,:), allocatable parm::pst_sed
  real *8, dimension(:,:), allocatable parm::wupnd
      average daily water removal from the pond for the month (10<sup>\(\)</sup>4 m<sup>\(\)</sup>3/day)

    real *8, dimension(:,:), allocatable parm::phi

      phi(1,:) cross-sectional area of flow at bankfull depth (m^2) phi(2,:) (none) phi(3,:) (none) phi(4,:) (none) phi(5,:)
      (none) phi(6,:) bottom width of main channel (m) phi(7,:) depth of water when reach is at bankfull depth (m) phi(8,:)
      average velocity when reach is at bankfull depth (m/s) phi(9,:) wave celerity when reach is at bankfull depth (m/s)
      phi(10,:) storage time constant for reach at bankfull depth (ratio of storage to discharge) (hour) phi(11,:) average
      velocity when reach is at 0.1 bankfull depth (low flow) (m/s) phi(12,:) wave celerity when reach is at 0.1 bankfull depth
      (low flow) (m/s) phi(13,:) storage time constant for reach at 0.1 bankfull depth (low flow) (ratio of storage to discharge)
      (hour)

    real *8, dimension(:,:), allocatable parm::pcpband

      precipitation for the day in band in HRU (mm H2O)
  real *8, dimension(:,:), allocatable parm::tavband
      average temperature for the day in band in HRU (deg C)
```

real *8, dimension(:), allocatable parm::wat_phi1

```
cross-sectional area of flow at bankfull depth (m^2)

    real *8, dimension(:), allocatable parm::wat_phi5

      flow rate when reach is at bankfull depth (m^3/s)

    real *8, dimension(:), allocatable parm::wat phi6

     bottom width of main channel (m)

    real *8, dimension(:), allocatable parm::wat phi7

     depth of water when reach is at bankfull (m)
 real *8, dimension(:), allocatable parm::wat_phi8
     average velocity when reach is at bankfull depth (m/s)
  real *8, dimension(:), allocatable parm::wat_phi9
      wave celerity when reach is at bankfull depth (m/s)

    real *8, dimension(:), allocatable parm::wat_phi10

     storage time constant for reach at bankfull depth (ratio of storage to discharge) (hour)
real *8, dimension(:), allocatable parm::wat_phi11
      average velocity when reach is at 0.1 bankfull depth (low flow) (m/s)
real *8, dimension(:), allocatable parm::wat_phi12
      wave celerity when reach is at 0.1 bankfull depth (low flow) (m/s)

    real *8, dimension(:), allocatable parm::wat phi13

      storage time constant for reach at 0.1 bankfull depth (low flow) (ratio of storage to discharge) (hour)

    real *8, dimension(:,:), allocatable parm::snoeb

      snow water content in elevation band on current day (mm H2O)

    real *8, dimension(:,:), allocatable parm::wudeep

     average daily water removal from the deep aquifer for the month (10<sup>\(\circ\)</sup> 4 m<sup>\(\circ\)</sup> 3/day)

    real *8, dimension(:,:), allocatable parm::wushal

     average daily water removal from the shallow aquifer for the month (10<sup>\(\circ\)</sup> 4 m<sup>\(\circ\)</sup> 3/day)

    real *8, dimension(:,:), allocatable parm::tmnband

      minimum temperature for the day in band in HRU (deg C)

    real *8, dimension(:), allocatable parm::bss1

• real *8, dimension(:), allocatable parm::bss2
  real *8, dimension(:), allocatable parm::bss3
  real *8, dimension(:), allocatable parm::bss4
  real *8, dimension(:), allocatable parm::nsetlw1
     nitrogen settling rate for 1st season (m/day)

    real *8, dimension(:), allocatable parm::nsetlw2

     nitrogen settling rate for 2nd season (m/day)
 real *8, dimension(:,:), allocatable parm::snotmpeb
      temperature of snow pack in elevation band (deg C)
  real *8, dimension(:), allocatable parm::surf bs1
     amount of surface runoff lagged over one day (mm H2O)

    real *8, dimension(:), allocatable parm::surf_bs2

 real *8, dimension(:), allocatable parm::surf_bs3
  real *8, dimension(:), allocatable parm::surf_bs4

    real *8, dimension(:), allocatable parm::surf bs5

 real *8, dimension(:), allocatable parm::surf bs6

    real *8, dimension(:), allocatable parm::surf_bs7

    real *8, dimension(:), allocatable parm::surf_bs8

    real *8, dimension(:), allocatable parm::surf_bs9

• real *8, dimension(:), allocatable parm::surf_bs10
 real *8, dimension(:), allocatable parm::surf bs11
real *8, dimension(:), allocatable parm::surf_bs12

    real *8, dimension(:), allocatable parm::surf bs13
```

real *8, dimension(:), allocatable parm::surf_bs14

```
    real *8, dimension(:), allocatable parm::surf bs15

    real *8, dimension(:), allocatable parm::surf_bs16

    real *8, dimension(:), allocatable parm::surf_bs17

    real *8, dimension(:), allocatable parm::nsetlp1

      nitrogen settling rate for 1st season (m/day)

    real *8, dimension(:), allocatable parm::nsetlp2

      nitrogen settling rate for 2nd season (m/day)
• real *8, dimension(:,:), allocatable parm::tmxband
      maximum temperature for the day in band in HRU (deg C)

    real *8, dimension(:,:), allocatable parm::frad

      fraction of solar radiation occuring during hour in day in HRU (none)

    real *8, dimension(:,:), allocatable parm::rainsub

      precipitation for the time step during the day in HRU (mm H2O)
• real *8, dimension(:), allocatable parm::rstpbsb
  real *8, dimension(:,:), allocatable parm::orig_snoeb

    real *8, dimension(:,:), allocatable parm::orig_pltpst

    real *8, dimension(:,:), allocatable parm::terr p

    real *8, dimension(:,:), allocatable parm::terr_cn

    real *8, dimension(:,:), allocatable parm::terr_sl

    real *8, dimension(:,:), allocatable parm::drain_d

    real *8, dimension(:,:), allocatable parm::drain_t

    real *8, dimension(:.:), allocatable parm::drain q

    real *8, dimension(:,:), allocatable parm::drain_idep

real *8, dimension(:,:), allocatable parm::cont_cn

    real *8, dimension(:,:), allocatable parm::cont_p

    real *8, dimension(:,:), allocatable parm::filt_w

    real *8, dimension(:.:), allocatable parm::strip n

    real *8, dimension(:,:), allocatable parm::strip cn

    real *8, dimension(:,:), allocatable parm::strip_c

    real *8, dimension(:,:), allocatable parm::strip_p

    real *8, dimension(:,:), allocatable parm::fire_cn

    real *8, dimension(:,:), allocatable parm::cropno upd

    real *8, dimension(:,:), allocatable parm::hi upd

    real *8, dimension(:,:), allocatable parm::laimx_upd

  real *8, dimension(:,:,:), allocatable parm::phug
      fraction of plant heat units at which grazing begins (none)
  real *8, dimension(:,:,:), allocatable parm::pst lag

    integer, dimension(:), allocatable parm::hrupest

     pesticide use flag (none)
      0: no pesticides used in HRU
      1: pesticides used in HRU
• integer, dimension(:), allocatable parm::nrelease
      sequence number of impound/release operation within the year (none)

    integer, dimension(:), allocatable parm::swtrg

      rainfall event flag (none):
     0: no rainfall event over midnight
      1: rainfall event over midnight

    integer, dimension(:), allocatable parm::nrot

      number of years of rotation (none)

    integer, dimension(:), allocatable parm::nfert

      sequence number of fertilizer application within the year (none)
  integer, dimension(:), allocatable parm::nro
      sequence number of year in rotation (none)
```

• integer, dimension(:), allocatable parm::igro land cover status code (none). This code informs the model whether or not a land cover is growing at the beginning of the simulation 0 no land cover growing 1 land cover growing integer, dimension(:), allocatable parm::ipnd1 beginning month of nutrient settling season (none) integer, dimension(:), allocatable parm::ipnd2 ending month of nutrient settling season (none) integer, dimension(:), allocatable parm::nair sequence number of auto-irrigation application within the year (none) integer, dimension(:), allocatable parm::iflod1 beginning month of non-flood season (none) integer, dimension(:), allocatable parm::iflod2 ending month of non-flood season (none) integer, dimension(:), allocatable parm::ndtarg number of days required to reach target storage from current pond storage (none) · integer, dimension(:), allocatable parm::nirr sequence number of irrigation application within the year (none) • integer, dimension(:), allocatable parm::iafrttyp • integer, dimension(:), allocatable parm::nstress • integer, dimension(:), allocatable parm::igrotree integer, dimension(:), allocatable parm::grz days number of days grazing will be simulated (none) integer, dimension(:), allocatable parm::nmgt management code (for GIS output only) (none) integer, dimension(:), allocatable parm::nafert sequence number of auto-fert application within the year (none) integer, dimension(:), allocatable parm::nsweep sequence number of street sweeping operation within the year (none) integer, dimension(:), allocatable parm::icr sequence number of crop grown within the current year (none) • integer, dimension(:), allocatable parm::ncut sequence number of harvest operation within a year (none) integer, dimension(:), allocatable parm::irrno irrigation source location (none) if IRRSC=1, IRRNO is the number of the reach if IRRSC=2. IRRNO is the number of the reservoir if IRRSC=3, IRRNO is the number of the subbasin if IRRSC=4, IRRNO is the number of the subbasin if IRRSC=5, not used integer, dimension(:), allocatable parm::sol nly number of soil layers in HRU (none) integer, dimension(:), allocatable parm::npcp prior day category (none) 1 dry day 2 wet day integer, dimension(:), allocatable parm::irn average annual number of irrigation applications in HRU (none) integer, dimension(:), allocatable parm::ncf sequence number of continuous fertilization operation within the year (none) integer, dimension(:), allocatable parm::ngr

sequence number of grazing operation within the year (none)

```
    integer, dimension(:), allocatable parm::igrz

      grazing flag for HRU (none):
      0 HRU currently not grazed
      1 HRU currently grazed

    integer, dimension(:), allocatable parm::ndeat

      number of days HRU has been grazed (days)
integer, dimension(:), allocatable parm::hru_sub
      subbasin in which HRU is located (none)

    integer, dimension(:), allocatable parm::urblu

      urban land type identification number from urban.dat (none)
• integer, dimension(:), allocatable parm::ldrain
      soil layer where drainage tile is located (none)

    integer, dimension(:), allocatable parm::idorm

      dormancy status code (none):
     0 land cover growing (not dormant)
      1 land cover dormant
• integer, dimension(:), allocatable parm::hru_seq
• integer, dimension(:), allocatable parm::iurban
      urban simulation code (none):
      0 no urban sections in HRU
      1 urban sections in HRU, simulate using USGS regression equations
     2 urban sections in HRU, simulate using build up/wash off algorithm
• integer, dimension(:), allocatable parm::iday_fert
· integer, dimension(:), allocatable parm::icfrt
· integer, dimension(:), allocatable parm::ifld
      number of HRU (in subbasin) that is a floodplain (none)

    integer, dimension(:), allocatable parm::irip

      number of HRU (in subbasin) that is a riparian zone (none)
• integer, dimension(:), allocatable parm::hrugis
      GIS code printed to output files (output.hru, .rch) (none)
· integer, dimension(:), allocatable parm::ndcfrt
 integer, dimension(:), allocatable parm::irrsc
     irrigation source code (none):
      1 divert water from reach
      2 divert water from reservoir
      3 divert water from shallow aguifer
      4 divert water from deep aquifer
      5 divert water from source outside watershed

    integer, dimension(:), allocatable parm::ntil

      sequence number of tillage operation within current year (none)
• integer, dimension(:), allocatable parm::orig_igro
• integer, dimension(:), allocatable parm::iwatable
• integer, dimension(:), allocatable parm::curyr_mat

    integer, dimension(:), allocatable parm::icpst

      icpst = 0 do not apply
     icpst = 1 application period

    integer, dimension(:), allocatable parm::ndcpst

      current day within the application period (day)
  integer, dimension(:), allocatable parm::ncpest
  integer, dimension(:), allocatable parm::iday_pest
      current day between applications (day)
• integer, dimension(:), allocatable parm::irr_flag
  integer, dimension(:), allocatable parm::irra flag
  integer, dimension(:,:), allocatable parm::rndseed
```

```
random number generator seeds array. The seeds in the array are used to generate random numbers for the following
     purposes (none):
     (1) wet/dry day probability
     (2) solar radiation
     (3) precipitation
     (4) USLE rainfall erosion index
     (5) wind speed
     (6) 0.5 hr rainfall fraction
     (7) relative humidity
     (8) maximum temperature
     (9) minimum temperature
     (10) generate new random numbers
• integer, dimension(:,:), allocatable parm::iterr
• integer, dimension(:,:), allocatable parm::iyterr
• integer, dimension(:,:), allocatable parm::itdrain
• integer, dimension(:,:), allocatable parm::iydrain
  integer, dimension(:,:), allocatable parm::ncrops
• integer, dimension(:), allocatable parm::manure_id
     manure (fertilizer) identification number from fert.dat (none)
integer, dimension(:,:), allocatable parm::mgt_sdr

    integer, dimension(:.:), allocatable parm::idplrot

    integer, dimension(:,:), allocatable parm::icont

• integer, dimension(:,:), allocatable parm::iycont
• integer, dimension(:,:), allocatable parm::ifilt
• integer, dimension(:,:), allocatable parm::iyfilt

    integer, dimension(:,:), allocatable parm::istrip

    integer, dimension(:,:), allocatable parm::iystrip

    integer, dimension(:,:), allocatable parm::iopday

• integer, dimension(:,:), allocatable parm::iopyr

    integer, dimension(:,:), allocatable parm::mgt_ops

real *8, dimension(:), allocatable parm::wshd_pstap
     total amount of pesticide type applied in watershed during simulation (kg/ha)
• real *8, dimension(:), allocatable parm::wshd_pstdg
  integer, dimension(12) parm::ndmo
• integer, dimension(:), allocatable parm::npno
     array of unique pesticides used in watershed (none)
• integer, dimension(:), allocatable parm::mcrhru
• character(len=13), dimension(18) parm::rfile
     rainfall file names (.pcp)

    character(len=13), dimension(18) parm::tfile

     temperature file names (.tmp)

    character(len=4), dimension(1000) parm::urbname

     name of urban land use

    character(len=1), dimension(:), allocatable parm::kirr

     irrigation in HRU

    character(len=1), dimension(:), allocatable parm::hydgrp

 character(len=16), dimension(:), allocatable parm::snam
     soil series name

    character(len=17), dimension(300) parm::pname

     name of pesticide/toxin
• character(len=4), dimension(60) parm::title
     description lines in file.cio (1st 3 lines)

    character(len=4), dimension(5000) parm::cpnm
```

four character code to represent crop name

```
    character(len=17), dimension(50) parm::fname

  real *8, dimension(:,:,:), allocatable parm::flomon
     average daily water loading for month (m^3/day)

    real *8, dimension(:,:,:), allocatable parm::solpstmon

      average daily soluble pesticide loading for month (mg pst/day)

    real *8, dimension(:,:,:), allocatable parm::srbpstmon

     average daily sorbed pesticide loading for month (mg pst/day)
  real *8, dimension(:,:,:), allocatable parm::orgnmon
     average daily organic N loading for month (kg N/day)

    real *8, dimension(:,:,:), allocatable parm::orgpmon

      average daily organic P loading for month (kg P/day)

    real *8, dimension(:,:,:), allocatable parm::sedmon

      average daily sediment loading for month (metric tons/day)

    real *8, dimension(:,:,:), allocatable parm::minpmon

     average daily mineral P loading for month (kg P/day)

    real *8, dimension(:,:,:), allocatable parm::nh3mon

      average amount of NH3-N loaded to stream on a given day in the month (kg N/day)

    real *8, dimension(:,:,:), allocatable parm::no3mon

     average daily NO3-N loading for month (kg N/day)

    real *8, dimension(:,:,:), allocatable parm::bactlpmon

     average amount of less persistent bacteria loaded to stream on a given day in the month (# bact/day)

    real *8, dimension(:,:,:), allocatable parm::bactpmon

      average amount of persistent bacteria loaded to stream on a given day in the month (# bact/day)

    real *8, dimension(:,:,:), allocatable parm::no2mon

      average amount of NO2-N loaded to stream on a given day in the month (kg N/day)

    real *8, dimension(:,:,:), allocatable parm::cmtl1mon

      average amount of conservative metal #1 loaded to stream on a given day in the month (# bact/day)

    real *8, dimension(:,:,:), allocatable parm::cmtl2mon

      average amount of conservative metal #2 loaded to stream on a given day in the month (# bact/day)

    real *8, dimension(:,:,:), allocatable parm::cmtl3mon

      average amount of conservative metal #3 loaded to stream on a given day in the month (# bact/day)
 real *8, dimension(:,:,:), allocatable parm::cbodmon
     average daily loading of CBOD in month (kg/day)

    real *8, dimension(:,:,:), allocatable parm::chlamon

     average daily loading of chlorophyll-a in month (kg/day)

    real *8, dimension(:,:,:), allocatable parm::disoxmon

      average daily loading of dissolved O2 in month (kg/day)

    real *8, dimension(:,:), allocatable parm::floyr

      average daily water loading for year (m^3/day)

    real *8, dimension(:,:), allocatable parm::orgnyr

     average daily organic N loading for year (kg N/day)

    real *8, dimension(:,:), allocatable parm::orgpyr

     average daily organic P loading for year (kg P/day)

    real *8, dimension(:,:), allocatable parm::sedyr

      average daily sediment loading for year (metric tons/day)

    real *8, dimension(:,:), allocatable parm::minpyr

     average daily mineral P loading for year (kg P/day)

    real *8, dimension(:,:), allocatable parm::nh3yr

      average daily NH3-N loading for year (kg N/day)

    real *8, dimension(:,:), allocatable parm::no2yr

      average daily NO2-N loading for year (kg N/day)
```

```
    real *8, dimension(:,:), allocatable parm::no3yr

     average daily NO3-N loading for year (kg N/day)
  real *8, dimension(:,:), allocatable parm::bactlpyr
     average daily loading of less persistent bacteria for year (# bact/day)
  real *8, dimension(:,:), allocatable parm::bactpyr
      average daily loading of persistent bacteria for year (# bact/day)

    real *8, dimension(:,:), allocatable parm::cmtl1yr

      average daily loading of conservative metal #1 for year (kg/day)

    real *8, dimension(:,:), allocatable parm::chlayr

     average daily loading of chlorophyll-a in year (kg/day)

    real *8, dimension(:,:), allocatable parm::cmtl2yr

     average daily loading of conservative metal #2 for year (kg/day)
 real *8, dimension(:,:), allocatable parm::cmtl3yr
     average daily loading of conservative metal #3 for year (kg/day)

    real *8, dimension(:,:), allocatable parm::cbodyr

     average daily loading of CBOD in year (kg/day)

    real *8, dimension(:,:), allocatable parm::disoxyr

      average daily loading of dissolved O2 in year (kg/day)

    real *8, dimension(:,:), allocatable parm::solpstyr

     average daily soluble pesticide loading for year (mg pst/day)

    real *8, dimension(:,:), allocatable parm::srbpstyr

      average daily sorbed pesticide loading for year (mg pst/day)
• real *8, dimension(:,:), allocatable parm::sol_mc
  real *8, dimension(:,:), allocatable parm::sol mn
  real *8, dimension(:,:), allocatable parm::sol_mp
  real *8, dimension(:), allocatable parm::flocnst
  real *8, dimension(:), allocatable parm::orgncnst
     average daily organic N loading to reach (kg N/day)

    real *8, dimension(:), allocatable parm::sedcnst

     average daily sediment loading for reach (metric tons/day)

    real *8, dimension(:), allocatable parm::minpcnst

     average daily soluble P loading to reach (kg P/day)

    real *8, dimension(:), allocatable parm::no3cnst

     average daily nitrate loading to reach (kg N/day)

    real *8, dimension(:), allocatable parm::orgpcnst

      average daily organic P loading to reach (kg P/day)
• real *8, dimension(:), allocatable parm::bactpcnst
      average daily persistent bacteria loading to reach (# bact/day)

    real *8, dimension(:), allocatable parm::nh3cnst

     average daily ammonia loading to reach (kg N/day)

    real *8, dimension(:), allocatable parm::no2cnst

     average daily nitrite loading to reach (kg N/day)

    real *8, dimension(:), allocatable parm::bactlpcnst

     average daily less persistent bacteria loading to reach (# bact/day)
  real *8, dimension(:), allocatable parm::cmtl1cnst
     average daily conservative metal #1 loading (kg/day)
  real *8, dimension(:), allocatable parm::cmtl2cnst
     average daily conservative metal #2 loading (kg/day)
  real *8, dimension(:), allocatable parm::chlacnst
```

average daily loading of chlorophyll-a (kg/day)
 real *8, dimension(:), allocatable parm::cmtl3cnst

```
average daily conservative metal #3 loading (kg/day)

    real *8, dimension(:), allocatable parm::disoxcnst

      average daily loading of dissolved O2 (kg/day)

    real *8, dimension(:), allocatable parm::cbodcnst

      average daily loading of CBOD to reach (kg/day)

    real *8, dimension(:), allocatable parm::solpstcnst

     average daily soluble pesticide loading (mg/day)

    real *8, dimension(:), allocatable parm::srbpstcnst

     average daily sorbed pesticide loading (mg/day)
· integer parm::nstep
      max number of time steps per day or number of lines of rainfall data for each day (none)

    integer parm::idt

     length of time step used to report precipitation data for sub-daily modeling (minutes)

    real *8, dimension(:), allocatable parm::hrtwtr

• real *8, dimension(:), allocatable parm::hhstor
 real *8, dimension(:), allocatable parm::hdepth
• real *8, dimension(:), allocatable parm::hsdti

    real *8, dimension(:), allocatable parm::hrchwtr

    real *8, dimension(:), allocatable parm::halgae

    real *8, dimension(:), allocatable parm::horgn

  real *8, dimension(:), allocatable parm::hnh4

    real *8, dimension(:), allocatable parm::hno2

    real *8, dimension(:), allocatable parm::hno3

    real *8, dimension(:), allocatable parm::horgp

    real *8, dimension(:), allocatable parm::hsolp

    real *8, dimension(:), allocatable parm::hbod

    real *8, dimension(:), allocatable parm::hdisox

    real *8, dimension(:), allocatable parm::hchla

    real *8, dimension(:), allocatable parm::hsedyld

• real *8, dimension(:), allocatable parm::hsedst

    real *8, dimension(:), allocatable parm::hharea

    real *8, dimension(:), allocatable parm::hsolpst

  real *8, dimension(:), allocatable parm::hsorpst
  real *8, dimension(:), allocatable parm::hhqday
      surface runoff generated each timestep of day in HRU (mm H2O)

    real *8, dimension(:), allocatable parm::precipdt

     precipitation, or effective precipitation reaching soil surface, in time step for HRU (mm H2O)

    real *8, dimension(:), allocatable parm::hhtime

  real *8, dimension(:), allocatable parm::hbactp

    real *8, dimension(:), allocatable parm::hbactlp

    integer, dimension(10) parm::ivar orig

    real *8, dimension(10) parm::rvar_orig

    integer parm::nsave

     number of save commands in .fig file
integer parm::nauto
· integer parm::iatmodep
• real *8, dimension(:), allocatable parm::wattemp

    real *8, dimension(:), allocatable parm::lkpst mass

real *8, dimension(:), allocatable parm::lkspst_mass
• real *8, dimension(:), allocatable parm::vel_chan
  real *8, dimension(:), allocatable parm::vfscon
      fraction of the total runoff from the entire field entering the most concentrated 10% of the VFS (none)

    real *8, dimension(:), allocatable parm::vfsratio
```

field area/VFS area ratio (none)

real *8, dimension(:), allocatable parm::vfsch

fraction of flow entering the most concentrated 10% of the VFS which is fully channelized (none)

- real *8, dimension(:), allocatable parm::vfsi
- real *8, dimension(:,:), allocatable parm::filter_i
- real *8, dimension(:,:), allocatable parm::filter_ratio
- real *8, dimension(:,:), allocatable parm::filter_con
- real *8, dimension(:,:), allocatable parm::filter_ch
- real *8, dimension(:,:), allocatable parm::sol_n
- integer parm::cswat
 - = 0 Static soil carbon (old mineralization routines)
 - = 1 C-FARM one carbon pool model
 - = 2 Century model
- real *8, dimension(:,:), allocatable parm::sol_bdp
- real *8, dimension(:,:), allocatable parm::tillagef
- real *8, dimension(:), allocatable parm::rtfr
- real *8, dimension(:), allocatable parm::stsol_rd
- integer parm::urban_flag
- integer parm::dorm_flag
- real *8 parm::bf_flg
- real *8 parm::iabstr
- real *8, dimension(:), allocatable parm::ubnrunoff
- real *8, dimension(:), allocatable parm::ubntss
- real *8, dimension(:,:), allocatable parm::sub_ubnrunoff
- real *8, dimension(:,:), allocatable parm::sub_ubntss
- real *8, dimension(:,:), allocatable parm::ovrlnd dt
- real *8, dimension(:,:), allocatable parm::hhsurf_bs1
- real *8, dimension(:,:), allocatable parm::hhsurf_bs2
- integer parm::iuh

unit hydrograph method: 1=triangular UH; 2=gamma funtion UH;

integer parm::sed_ch

channel routing for HOURLY; 0=Bagnold; 2=Brownlie; 3=Yang;

real *8 parm::eros expo

an exponent in the overland flow erosion equation ranges 1.5-3.0

real *8 parm::eros_spl

coefficient of splash erosion varing 0.9-3.1

real *8 parm::rill_mult

Multiplier to USLE_K for soil susceptible to rill erosion, range 0.5-2.0.

- real *8 parm::sedprev
- real *8 parm::c_factor
- real *8 parm::ch_d50

median particle diameter of channel bed (mm)

· real *8 parm::sig_g

geometric standard deviation of particle sizes for the main channel. Mean air temperature at which precipitation is equally likely to be rain as snow/freezing rain.

real *8 parm::uhalpha

alpha coefficient for estimating unit hydrograph using a gamma function (*.bsn)

- real *8 parm::abstinit
- real *8 parm::abstmax
- real *8, dimension(:,:), allocatable parm::hhsedy

sediment yield from HRU drung a time step applied to HRU (tons)

- real *8, dimension(:,:), allocatable parm::sub subp dt
- real *8, dimension(:,:), allocatable parm::sub_hhsedy

real *8, dimension(:,:), allocatable parm::sub atmp real *8, dimension(:), allocatable parm::rhy real *8, dimension(:), allocatable parm::init_abstrc real *8, dimension(:), allocatable parm::dratio real *8, dimension(:), allocatable parm::hrtevp real *8, dimension(:), allocatable parm::hrttlc real *8, dimension(:,:,:), allocatable parm::rchhr real *8, dimension(:), allocatable parm::hhresflwi real *8, dimension(:), allocatable parm::hhresflwo real *8, dimension(:), allocatable parm::hhressedi real *8, dimension(:), allocatable parm::hhressedo character(len=4), dimension(:), allocatable parm::lu_nodrain integer, dimension(:), allocatable parm::bmpdrain real *8, dimension(:), allocatable parm::sub cn2 real *8, dimension(:), allocatable parm::sub_ha_urb real *8, dimension(:), allocatable parm::bmp recharge real *8, dimension(:), allocatable parm::sub ha imp real *8, dimension(:), allocatable parm::subdr km real *8, dimension(:), allocatable parm::subdr_ickm real *8, dimension(:,:), allocatable parm::sf im real *8, dimension(:,:), allocatable parm::sf_iy real *8, dimension(:,:), allocatable parm::sp sa real *8, dimension(:,:), allocatable parm::sp pvol real *8, dimension(:,:), allocatable parm::sp_pd real *8, dimension(:,:), allocatable parm::sp sedi real *8, dimension(:,:), allocatable parm::sp_sede real *8, dimension(:,:), allocatable parm::ft sa real *8, dimension(:,:), allocatable parm::ft fsa real *8, dimension(:,:), allocatable parm::ft dep real *8, dimension(:,:), allocatable parm::ft h real *8, dimension(:,:), allocatable parm::ft_pd real *8, dimension(:,:), allocatable parm::ft_k real *8, dimension(:,:), allocatable parm::ft_dp real *8, dimension(:,:), allocatable parm::ft dc real *8, dimension(:,:), allocatable parm::ft_por real *8, dimension(:.:), allocatable parm::tss den real *8, dimension(:,:), allocatable parm::ft alp real *8, dimension(:,:), allocatable parm::sf_fr real *8, dimension(:,:), allocatable parm::sp_qi real *8, dimension(:,:), allocatable parm::sp_k real *8, dimension(:,:), allocatable parm::ft qpnd real *8, dimension(:,:), allocatable parm::sp_dp real *8, dimension(:,:), allocatable parm::ft qsw real *8, dimension(:,:), allocatable parm::ft_qin real *8, dimension(:,:), allocatable parm::ft qout real *8, dimension(:,:), allocatable parm::ft sedpnd real *8, dimension(:,:), allocatable parm::sp bpw real *8, dimension(:,:), allocatable parm::ft bpw real *8, dimension(:,:), allocatable parm::ft_sed_cumul real *8, dimension(:,:), allocatable parm::sp_sed_cumul integer, dimension(:), allocatable parm::num_sf integer, dimension(:,:), allocatable parm::sf tvp

integer, dimension(:,:), allocatable parm::sf_dim integer, dimension(:,:), allocatable parm::ft_qfg integer, dimension(:,:), allocatable parm::sp_qfg

```
integer, dimension(:,:), allocatable parm::sf_ptp
integer, dimension(:,:), allocatable parm::ft_fc
· real *8 parm::sfsedmean

    real *8 parm::sfsedstdev

    integer, dimension(:), allocatable parm::dtp_imo

      month the reservoir becomes operational (none)

    integer, dimension(:), allocatable parm::dtp_iyr

     year of the simulation that the reservoir becomes operational (none)

    integer, dimension(:), allocatable parm::dtp_numstage

      total number of stages in the weir (none)

    integer, dimension(:), allocatable parm::dtp_numweir

      total number of weirs in the BMP (none)

    integer, dimension(:), allocatable parm::dtp_onoff

      sub-basin detention pond is associated with (none)

    integer, dimension(:), allocatable parm::dtp_reltype

      equations for stage-discharge relationship (none):
      1=exponential function.
      2=linear.
     3=logarithmic.
      4=cubic.
      5=power
· integer, dimension(:), allocatable parm::dtp_stagdis
      0=use weir/orifice discharge equation to calculate outflow,
      1=use stage-dicharge relationship
• integer, dimension(:), allocatable parm::dtp_subnum

    real *8, dimension(:), allocatable parm::cf

      this parameter controls the response of decomposition to the combined effect of soil temperature and moisture.

    real *8, dimension(:), allocatable parm::cfh

      maximum humification rate

    real *8, dimension(:), allocatable parm::cfdec

      the undisturbed soil turnover rate under optimum soil water and temperature. Increasing it will increase carbon and
     organic N decomp.
real *8, dimension(:), allocatable parm::lat_orgn
• real *8, dimension(:), allocatable parm::lat_orgp
• integer, dimension(:,:), allocatable parm::dtp_weirdim
      weir dimensions (none),
      1=read user input.
     0=use model calculation

    integer, dimension(:,:), allocatable parm::dtp weirtype

      type of weir (none):
      1=rectangular and
      2=circular

    real *8, dimension(:), allocatable parm::dtp_coef1

      coefficient of 3rd degree in the polynomial equation (none)

    real *8, dimension(:), allocatable parm::dtp_coef2

      coefficient of 2nd degree in the polynomial equation (none)

    real *8, dimension(:), allocatable parm::dtp coef3

      coefficient of 1st degree in the polynomial equation (none)

    real *8, dimension(:), allocatable parm::dtp_evrsv

     detention pond evaporation coefficient (none)
  real *8, dimension(:), allocatable parm::dtp expont
      exponent used in the exponential equation (none)

    real *8, dimension(:), allocatable parm::dtp_intcept
```

```
intercept used in regression equations (none)

    real *8, dimension(:), allocatable parm::dtp lwratio

     ratio of length to width of water back up (none)

    real *8, dimension(:), allocatable parm::dtp_totwrwid

     total constructed width of the detention wall across the creek (m)

    real *8, dimension(:), allocatable parm::dtp inflvol

    real *8, dimension(:), allocatable parm::dtp_wdep

  real *8, dimension(:), allocatable parm::dtp totdep
  real *8, dimension(:), allocatable parm::dtp watdepact
  real *8, dimension(:), allocatable parm::dtp_outflow

    real *8, dimension(:), allocatable parm::dtp_totrel

  real *8, dimension(:), allocatable parm::dtp_backoff
  real *8, dimension(:), allocatable parm::dtp seep sa
  real *8, dimension(:), allocatable parm::dtp evap sa
real *8, dimension(:), allocatable parm::dtp_pet_day
  real *8, dimension(:), allocatable parm::dtp pcpvol
  real *8, dimension(:), allocatable parm::dtp_seepvol
• real *8, dimension(:), allocatable parm::dtp_evapvol
  real *8, dimension(:), allocatable parm::dtp flowin
  real *8, dimension(:), allocatable parm::dtp_backup_length

    real *8, dimension(:), allocatable parm::dtp ivol

  real *8, dimension(:), allocatable parm::dtp ised
  integer, dimension(:,:), allocatable parm::so_res_flag
  integer, dimension(:,:), allocatable parm::ro bmp flag

    real *8, dimension(:,:), allocatable parm::sol_watp

  real *8, dimension(:,:), allocatable parm::sol solp pre
  real *8, dimension(:,:), allocatable parm::psp store

    real *8, dimension(:,:), allocatable parm::ssp_store

  real *8, dimension(:,:), allocatable parm::so_res
  real *8, dimension(:,:), allocatable parm::sol_cal

    real *8, dimension(:,:), allocatable parm::sol ph

  integer parm::sol p model
  integer, dimension(:,:), allocatable parm::a days
  integer, dimension(:,:), allocatable parm::b_days

    real *8, dimension(:), allocatable parm::min res

     minimum residue allowed due to implementation of residue managment in the OPS file (kg/ha)

    real *8, dimension(:), allocatable parm::harv_min

  real *8, dimension(:), allocatable parm::fstap
  real *8, dimension(:,:), allocatable parm::ro_bmp_flo

    real *8, dimension(:,:), allocatable parm::ro bmp sed

  real *8, dimension(:,:), allocatable parm::ro bmp bac
real *8, dimension(:,:), allocatable parm::ro_bmp_pp

    real *8, dimension(:,:), allocatable parm::ro bmp sp

  real *8, dimension(:,:), allocatable parm::ro bmp pn
  real *8, dimension(:,:), allocatable parm::ro bmp sn

    real *8, dimension(:,:), allocatable parm::ro bmp_flos

• real *8, dimension(:,:), allocatable parm::ro_bmp_seds
  real *8, dimension(:,:), allocatable parm::ro bmp bacs
  real *8, dimension(:,:), allocatable parm::ro bmp pps

    real *8, dimension(:,:), allocatable parm::ro bmp sps
```

real *8, dimension(:,:), allocatable parm::ro_bmp_pns
 real *8, dimension(:,:), allocatable parm::ro_bmp_sns
 real *8, dimension(:,:), allocatable parm::ro_bmp_flot
 real *8, dimension(:,:), allocatable parm::ro_bmp_sedt

```
real *8, dimension(:,:), allocatable parm::ro bmp bact
real *8, dimension(:,:), allocatable parm::ro bmp ppt
real *8, dimension(:,:), allocatable parm::ro bmp spt
real *8, dimension(:,:), allocatable parm::ro bmp pnt
real *8. dimension(:.:), allocatable parm::ro bmp snt
real *8, dimension(:), allocatable parm::bmp_flo
real *8, dimension(:), allocatable parm::bmp_sed
real *8, dimension(:), allocatable parm::bmp bac
real *8, dimension(:), allocatable parm::bmp pp
real *8, dimension(:), allocatable parm::bmp sp
real *8, dimension(:), allocatable parm::bmp pn
real *8, dimension(:), allocatable parm::bmp_sn
real *8, dimension(:), allocatable parm::bmp flag
real *8, dimension(:), allocatable parm::bmp_flos
real *8, dimension(:), allocatable parm::bmp seds
real *8, dimension(:), allocatable parm::bmp bacs
real *8, dimension(:), allocatable parm::bmp_pps
real *8, dimension(:), allocatable parm::bmp sps
real *8, dimension(:), allocatable parm::bmp_pns
real *8, dimension(:), allocatable parm::bmp sns
real *8, dimension(:), allocatable parm::bmp flot
real *8, dimension(:), allocatable parm::bmp sedt
real *8, dimension(:), allocatable parm::bmp_bact
real *8, dimension(:), allocatable parm::bmp ppt
real *8, dimension(:), allocatable parm::bmp_spt
real *8, dimension(:), allocatable parm::bmp pnt
real *8, dimension(:), allocatable parm::bmp_snt
real *8, dimension(:,:), allocatable parm::dtp_addon
   the distance between spillway levels (m)
```

- real *8, dimension(:,:), allocatable parm::dtp cdis discharge coefficiene for weir/orifice flow (none)
- depth of rectangular weir at different stages (m) real *8, dimension(:,:), allocatable parm::dtp_diaweir

real *8, dimension(:,:), allocatable parm::dtp_depweir

- diameter of orifice hole at different stages (m) real *8, dimension(:,:), allocatable parm::dtp_flowrate
- maximum discharge from each stage of the weir/hole (m^3/s) real *8, dimension(:,:), allocatable parm::dtp_pcpret
- precipitation for different return periods (not used) (mm) real *8, dimension(:,:), allocatable parm::dtp retperd
- return period at different stages (years)
- real *8, dimension(:.:), allocatable parm::dtp_wdratio width depth ratio of rectangular weirs (none)
- real *8, dimension(:,:), allocatable parm::dtp wrwid
- real *8, dimension(:), allocatable parm::ri subkm
- real *8, dimension(:), allocatable parm::ri totpvol
- real *8, dimension(:), allocatable parm::irmmdt
- real *8, dimension(:,:), allocatable parm::ri_sed
- real *8, dimension(:.:), allocatable parm::ri fr
- real *8, dimension(:,:), allocatable parm::ri_dim
- real *8, dimension(:,:), allocatable parm::ri im
- real *8, dimension(:,:), allocatable parm::ri iy
- real *8, dimension(:,:), allocatable parm::ri_sa

```
    real *8, dimension(:,:), allocatable parm::ri vol

real *8, dimension(:,:), allocatable parm::ri_qi
real *8, dimension(:,:), allocatable parm::ri_k
• real *8, dimension(:,:), allocatable parm::ri_dd

    real *8, dimension(:,:), allocatable parm::ri evrsv

    real *8, dimension(:,:), allocatable parm::ri_dep

real *8, dimension(:,:), allocatable parm::ri_ndt
  real *8, dimension(:,:), allocatable parm::ri_pmpvol
• real *8, dimension(:,:), allocatable parm::ri_sed_cumul

    real *8, dimension(:,:), allocatable parm::hrnopcp

    real *8, dimension(:,:), allocatable parm::ri_qloss

    real *8, dimension(:,:), allocatable parm::ri pumpv

  real *8, dimension(:,:), allocatable parm::ri_sedi
character(len=4), dimension(:,:), allocatable parm::ri_nirr
  integer, dimension(:), allocatable parm::num_ri
  integer, dimension(:), allocatable parm::ri_luflg
  integer, dimension(:), allocatable parm::num noirr
  integer, dimension(:), allocatable parm::wtp subnum
  integer, dimension(:), allocatable parm::wtp_onoff
· integer, dimension(:), allocatable parm::wtp_imo
  integer, dimension(:), allocatable parm::wtp_iyr
  integer, dimension(:), allocatable parm::wtp dim
  integer, dimension(:), allocatable parm::wtp_stagdis

    integer, dimension(:), allocatable parm::wtp sdtype

  real *8, dimension(:), allocatable parm::wtp_pvol
• real *8, dimension(:), allocatable parm::wtp_pdepth

    real *8, dimension(:), allocatable parm::wtp sdslope

    real *8, dimension(:), allocatable parm::wtp_lenwdth

  real *8, dimension(:), allocatable parm::wtp_extdepth
  real *8, dimension(:), allocatable parm::wtp_hydeff
• real *8, dimension(:), allocatable parm::wtp_evrsv
  real *8, dimension(:), allocatable parm::wtp sdintc

    real *8, dimension(:), allocatable parm::wtp_sdexp

    real *8, dimension(:), allocatable parm::wtp_sdc1

  real *8, dimension(:), allocatable parm::wtp_sdc2
real *8, dimension(:), allocatable parm::wtp_sdc3
• real *8, dimension(:), allocatable parm::wtp_pdia
• real *8, dimension(:), allocatable parm::wtp_plen

    real *8, dimension(:), allocatable parm::wtp pmann

    real *8, dimension(:), allocatable parm::wtp_ploss

    real *8, dimension(:), allocatable parm::wtp_k

  real *8, dimension(:), allocatable parm::wtp_dp

    real *8, dimension(:), allocatable parm::wtp_sedi

    real *8, dimension(:), allocatable parm::wtp_sede

    real *8, dimension(:), allocatable parm::wtp_qi

    real *8 parm::lai init

     initial leaf area index of transplants

    real *8 parm::bio init
```

initial biomass of transplants (kg/ha)

real *8 parm::cnop

SCS runoff curve number for moisture condition II (none)

real *8 parm::harveff

harvest efficiency: fraction of harvested yield that is removed from HRU; the remainder becomes residue on the soil surface(none)

```
    real *8 parm::hi ovr

      harvest index target specified at harvest ((kg/ha)/(kg/ha))

    real *8 parm::frac harvk

  real *8 parm::lid vgcl
      van Genuchten equation's coefficient, I (none)

    real *8 parm::lid vgcm

      van Genuchten equation's coefficient, m (none)
  real *8 parm::lid qsurf total
  real *8 parm::lid farea sum
  real *8, dimension(:,:), allocatable parm::lid cuminf last
      cumulative amount of water infiltrated into the amended soil layer at the last time step in a day (mm H2O)

    real *8, dimension(:,:), allocatable parm::lid cumr last

      cumulative amount of rainfall at the last time step in a day (mm H2O)

    real *8, dimension(:,:), allocatable parm::lid excum last

      cumulative amount of excess rainfall at the last time step in a day (mm H2O)

    real *8, dimension(:,:), allocatable parm::lid f last

     potential infiltration rate of the amended soil layer at the last time step in a day (mm/mm H2O)

    real *8, dimension(:,:), allocatable parm::lid sw last

      soil water content of the amended soil layer at the last time step in a day (mm/mm H2O)

    real *8, dimension(:,:), allocatable parm::lid gsurf

      depth of runoff generated on a LID in a given time interval (mm H2O)

    real *8, dimension(:,:), allocatable parm::interval_last

    real *8. dimension(:.:). allocatable parm::lid str last

    real *8, dimension(:,:), allocatable parm::lid farea

    real *8, dimension(:.:), allocatable parm::lid sw add

    real *8, dimension(:,:), allocatable parm::lid cumqperc last

• real *8, dimension(:,:), allocatable parm::lid_cumirr_last
  integer, dimension(:,:), allocatable parm::gr onoff

    integer, dimension(:,:), allocatable parm::gr imo

integer, dimension(:,:), allocatable parm::gr_iyr
  real *8, dimension(:,:), allocatable parm::gr farea
      fractional area of a green roof to the HRU (none)

    real *8, dimension(:,:), allocatable parm::gr_solop

  real *8, dimension(:,:), allocatable parm::gr etcoef

    real *8, dimension(:,:), allocatable parm::gr fc

real *8, dimension(:,:), allocatable parm::gr_wp
  real *8, dimension(:,:), allocatable parm::gr ksat

    real *8, dimension(:,:), allocatable parm::gr_por

    real *8, dimension(:,:), allocatable parm::gr hydeff

  real *8, dimension(:,:), allocatable parm::gr soldpt
integer, dimension(:,:), allocatable parm::rg_onoff

    integer, dimension(:.:), allocatable parm::rg imo

    integer, dimension(:,:), allocatable parm::rg_iyr

• real *8, dimension(:,:), allocatable parm::rg_farea

    real *8, dimension(:,:), allocatable parm::rg solop

    real *8, dimension(:,:), allocatable parm::rg_etcoef

    real *8, dimension(:,:), allocatable parm::rg fc

    real *8, dimension(:,:), allocatable parm::rg wp

• real *8, dimension(:,:), allocatable parm::rg_ksat
  real *8, dimension(:,:), allocatable parm::rg por

    real *8, dimension(:,:), allocatable parm::rg_hydeff
```

real *8, dimension(:,:), allocatable parm::rg_soldpt
 real *8, dimension(:,:), allocatable parm::rg_dimop

real *8, dimension(:,:), allocatable parm::rg sarea real *8, dimension(:,:), allocatable parm::rg vol real *8, dimension(:,:), allocatable parm::rg_sth real *8, dimension(:,:), allocatable parm::rg sdia real *8, dimension(:,:), allocatable parm::rg bdia real *8, dimension(:,:), allocatable parm::rg_sts real *8, dimension(:,:), allocatable parm::rg orifice real *8, dimension(:,:), allocatable parm::rg_oheight real *8, dimension(:,:), allocatable parm::rg odia integer, dimension(:,:), allocatable parm::cs onoff integer, dimension(:,:), allocatable parm::cs_imo integer, dimension(:,:), allocatable parm::cs_iyr integer, dimension(:,:), allocatable parm::cs grcon real *8, dimension(:,:), allocatable parm::cs_farea real *8, dimension(:,:), allocatable parm::cs_vol real *8, dimension(:,:), allocatable parm::cs rdepth integer, dimension(:,:), allocatable parm::pv_onoff integer, dimension(:,:), allocatable parm::pv imo integer, dimension(:,:), allocatable parm::pv_iyr integer, dimension(:,:), allocatable parm::pv solop real *8, dimension(:,:), allocatable parm::pv_grvdep real *8, dimension(:,:), allocatable parm::pv grvpor real *8, dimension(:,:), allocatable parm::pv farea real *8, dimension(:,:), allocatable parm::pv_drcoef real *8, dimension(:,:), allocatable parm::pv fc real *8, dimension(:,:), allocatable parm::pv_wp real *8, dimension(:,:), allocatable parm::pv ksat real *8, dimension(:,:), allocatable parm::pv por real *8. dimension(:.:), allocatable parm::pv hvdeff real *8, dimension(:,:), allocatable parm::pv soldpt integer, dimension(:,:), allocatable parm::lid onoff real *8, dimension(:,:), allocatable parm::sol_bmc real *8, dimension(:,:), allocatable parm::sol_bmn real *8, dimension(:.:), allocatable parm::sol hsc real *8, dimension(:,:), allocatable parm::sol_hsn real *8, dimension(:.:), allocatable parm::sol hpc real *8, dimension(:,:), allocatable parm::sol_hpn real *8, dimension(:,:), allocatable parm::sol_lm real *8, dimension(:,:), allocatable parm::sol_lmc real *8, dimension(:,:), allocatable parm::sol_lmn real *8, dimension(:,:), allocatable parm::sol Is real *8, dimension(:,:), allocatable parm::sol_lsl real *8, dimension(:,:), allocatable parm::sol lsc real *8, dimension(:,:), allocatable parm::sol_lsn real *8, dimension(:,:), allocatable parm::sol rnmn real *8, dimension(:,:), allocatable parm::sol Islc real *8, dimension(:,:), allocatable parm::sol Islnc real *8, dimension(:,:), allocatable parm::sol rspc real *8, dimension(:,:), allocatable parm::sol woc real *8, dimension(:,:), allocatable parm::sol_won real *8, dimension(:,:), allocatable parm::sol_hp real *8, dimension(:,:), allocatable parm::sol hs real *8, dimension(:,:), allocatable parm::sol bm real *8, dimension(:,:), allocatable parm::sol cac

real *8, dimension(:,:), allocatable parm::sol_cec

- real *8, dimension(:,:), allocatable parm::sol_percc
- real *8, dimension(:,:), allocatable parm::sol_latc
- real *8, dimension(:), allocatable parm::sedc_d
- real *8, dimension(:), allocatable parm::surfqc_d
- real *8, dimension(:), allocatable parm::latc d
- real *8, dimension(:), allocatable parm::percc_d
- real *8, dimension(:), allocatable parm::foc d
- real *8, dimension(:), allocatable parm::nppc_d
- real *8, dimension(:), allocatable parm::rsdc d
- real *8, dimension(:), allocatable parm::grainc d
- real *8, dimension(:), allocatable parm::stoverc d
- real *8, dimension(:), allocatable parm::soc_d
- real *8, dimension(:), allocatable parm::rspc_d
- real *8, dimension(:), allocatable parm::emitc_d
- real *8, dimension(:), allocatable parm::sub_sedc_d
- real *8, dimension(:), allocatable parm::sub surfac d
- real *8, dimension(:), allocatable parm::sub_latc_d
- real *8, dimension(:), allocatable parm::sub percc d
- real *8, dimension(:), allocatable parm::sub_foc_d
- real *8, dimension(:), allocatable parm::sub nppc d
- real *8, dimension(:), allocatable parm::sub_rsdc_d
- real *8, dimension(:), allocatable parm::sub_grainc_d
- real *8, dimension(:), allocatable parm::sub stoverc d
- real *8, dimension(:), allocatable parm::sub_emitc_d
- real *8, dimension(:), allocatable parm::sub soc d
- real *8, dimension(:), allocatable parm::sub_rspc_d
- real *8, dimension(:), allocatable parm::sedc m
- real *8, dimension(:), allocatable parm::surfqc_m
- real *8, dimension(:), allocatable parm::latc_m
- real *8, dimension(:), allocatable parm::percc_m
- real *8, dimension(:), allocatable parm::foc_m
- real *8, dimension(:), allocatable parm::nppc_m
- real *8, dimension(:), allocatable parm::rsdc_m
- real *8, dimension(:), allocatable parm::grainc_m
- real *8, dimension(:), allocatable parm::stoverc_m
- real *8, dimension(:), allocatable parm::emitc_m
- real *8, dimension(:), allocatable parm::soc_m
 real *8, dimension(:), allocatable parm::rspc_m
- real *8, dimension(:), allocatable parm::sedc_a
- real *8, dimension(:), allocatable parm::setc_a
 real *8.
- real *8, dimension(:), allocatable parm::latc a
- real *8, dimension(:), allocatable parm::percc_a
- real *8, dimension(:), allocatable parm::foc a
- real *8, dimension(:), allocatable parm::nppc_a
- real *8, dimension(:), allocatable parm::rsdc_a
- real *8, dimension(:), allocatable parm::grainc_a
- real *8, dimension(:), allocatable parm::stoverc_a
- real *8, dimension(:), allocatable parm::emitc a
- real *8, dimension(:), allocatable parm::soc a
- real *8, dimension(:), allocatable parm::rspc_a
- integer, dimension(:), allocatable parm::tillage_switch
- real *8, dimension(:), allocatable parm::tillage_depth
- integer, dimension(:), allocatable parm::tillage_days
- real *8, dimension(:), allocatable parm::tillage_factor
- real *8 parm::dthy

time interval for subdaily routing

- integer, dimension(4) parm::ihx
- · integer, dimension(:), allocatable parm::nhy
- real *8, dimension(:), allocatable parm::rchx
- real *8, dimension(:), allocatable parm::rcss
- real *8, dimension(:), allocatable parm::qcap
- real *8, dimension(:), allocatable **parm::chxa**
- real *8, dimension(:), allocatable **parm::chxp**
- real *8, dimension(:,:,:), allocatable parm::qhy
- real *8 parm::ff1
- real *8 parm::ff2

7.57.1 Detailed Description

file containing the module parm

Author

modified by Javier Burguete Tolosa

7.58 newtillmix.f90 File Reference

Functions/Subroutines

• subroutine newtillmix (j, bmix)

this subroutine mixes residue and nutrients during tillage and biological mixing. Mixing was extended to all layers. A subroutine to simulate stimulation of organic matter decomposition was added. March 2009: testing has been minimal and further adjustments are expected. Use with caution!

7.58.1 Detailed Description

file containing the subroutine newtillmix

Author

Armen R. Kemanian, Stefan Julich, Cole Rossi modified by Javier Burguete

7.58.2 Function/Subroutine Documentation

7.58.2.1 newtillmix()

```
subroutine newtillmix (
                integer, intent(in) j,
                real*8, intent(in) bmix )
```

this subroutine mixes residue and nutrients during tillage and biological mixing. Mixing was extended to all layers. A subroutine to simulate stimulation of organic matter decomposition was added. March 2009: testing has been minimal and further adjustments are expected. Use with caution!

Parameters

in	j	HRU number (none)
in	bmix	biological mixing efficiency: this number is zero for tillage operations (none)

7.59 openwth.f90 File Reference

Functions/Subroutines

· subroutine openwth

this subroutine opens the precipitation, temperature, solar radiation, relative humidity and wind speed files for simulations using measured weather data

7.59.1 Detailed Description

file containing the subroutine openwth

Author

modified by Javier Burguete

7.60 ovr sed.f90 File Reference

Functions/Subroutines

• subroutine ovr_sed ()

this subroutine computes splash erosion by raindrop impact and flow erosion by overland flow

7.60.1 Detailed Description

file containing the subroutine ovr_sed

Author

modified by Javier Burguete

7.61 pgen.f90 File Reference

Functions/Subroutines

• subroutine pgen (j)

this subroutine generates precipitation data when the user chooses to simulate or when data is missing for particular days in the weather file

7.61.1 Detailed Description

file containing the subroutine pgen

Author

modified by Javier Burguete

7.61.2 Function/Subroutine Documentation

7.61.2.1 pgen()

```
subroutine pgen ( \label{eq:continuous} \text{integer, intent(in) } j \; )
```

this subroutine generates precipitation data when the user chooses to simulate or when data is missing for particular days in the weather file

Parameters

```
in j HRU number
```

7.62 pgenhr.f90 File Reference

Functions/Subroutines

subroutine pgenhr (jj)
 this subroutine distributes daily rainfall exponentially within the day @parameter[in] jj HRU number

7.62.1 Detailed Description

file containing the subroutine pgenhr

Author

modified by Javier Burguete

7.63 pkq.f90 File Reference

Functions/Subroutines

• subroutine pkq (iwave, j)

this subroutine computes the peak runoff rate for each HRU and the entire subbasin using a modification of the rational formula @parm[in] iwave flag to differentiate calculation of HRU and subbasin sediment calculation (none) iwave = 0 for HRU MUSLE(sedyld) each hru is calculated independently using hru area and adjusted channel length iwave = 1 subbasin # for subbasin MUSLE is computed for entire subbasin using hru weighted KLSCP

7.63.1 Detailed Description

file containing the subroutine pkq

Author

modified by Javier Burguete

7.63.2 Function/Subroutine Documentation

7.63.2.1 pkq()

this subroutine computes the peak runoff rate for each HRU and the entire subbasin using a modification of the rational formula @parm[in] iwave flag to differentiate calculation of HRU and subbasin sediment calculation (none) iwave = 0 for HRU MUSLE(sedyld) each hru is calculated independently using hru area and adjusted channel length iwave = 1 subbasin # for subbasin MUSLE is computed for entire subbasin using hru weighted KLSCP

Parameters

```
in j HRU number (none)
```

7.64 plantop.f90 File Reference

Functions/Subroutines

```
• subroutine plantop (j)

this subroutine performs the plant operation
```

7.64.1 Detailed Description

file containing the subroutine plantop

Author

modified by Javier Burguete

7.64.2 Function/Subroutine Documentation

7.64.2.1 plantop()

```
subroutine plantop ( \label{eq:continuous} \text{integer, intent(in) } j \; )
```

this subroutine performs the plant operation

Parameters

```
in j HRU number
```

7.65 pmeas.f90 File Reference

Functions/Subroutines

• subroutine pmeas (i)

this subroutine reads in precipitation data and assigns it to the proper subbasins

7.65.1 Detailed Description

file containing the subroutine pmeas

Author

modified by Javier Burguete

7.65.2 Function/Subroutine Documentation

7.65.2.1 pmeas()

this subroutine reads in precipitation data and assigns it to the proper subbasins

Parameters

in	i	current day of simulation (julian date)

7.66 qman.f90 File Reference

Functions/Subroutines

• real *8 function qman (x1, x2, x3, x4)

this subroutine calculates flow rate or flow velocity using Manning's equation. If x1 is set to 1, the velocity is calculated. If x1 is set to cross-sectional area of flow, the flow rate is calculated.

7.66.1 Detailed Description

file containing the function qman

Author

modified by Javier Burguete

7.66.2 Function/Subroutine Documentation

7.66.2.1 qman()

this subroutine calculates flow rate or flow velocity using Manning's equation. If x1 is set to 1, the velocity is calculated. If x1 is set to cross-sectional area of flow, the flow rate is calculated.

Parameters

in	x1	cross-sectional flow area or 1 (m^2 or none)
in	x2	hydraulic radius (m)
in	хЗ	Manning's "n" value for channel (none)
in	x4	average slope of channel (m/m)

Returns

flow rate or flow velocity (m^3/s or m/s)

7.67 rchaa.f90 File Reference

Functions/Subroutines

• subroutine rchaa (years)

this subroutine writes the average annual reach output to the .rch file

7.67.1 Detailed Description

file containing the subroutine rchaa

Author

modified by Javier Burguete

7.67.2 Function/Subroutine Documentation

7.67.2.1 rchaa()

this subroutine writes the average annual reach output to the .rch file

Parameters

	in	years	length of simulation (years)	ı
--	----	-------	------------------------------	---

7.68 rchday.f90 File Reference

Functions/Subroutines

subroutine rchday

this subroutine writes the daily reach output to the .rch file

7.68.1 Detailed Description

file containing the subroutine rchday

Author

modified by Javier Burguete

7.69 rchmon.f90 File Reference

Functions/Subroutines

• subroutine rchmon (mdays)

this subroutine writes the monthly reach output to the .rch file

7.69.1 Detailed Description

file containing the subroutine rchmon

Author

modified by Javier Burguete

7.69.2 Function/Subroutine Documentation

7.69.2.1 rchmon()

this subroutine writes the monthly reach output to the .rch file

Parameters

	in	mdays	number of days simulated in month	
--	----	-------	-----------------------------------	--

7.70 rchyr.f90 File Reference

Functions/Subroutines

subroutine rchyr (i)
 this subroutine writes the annual reach output to the .rch file

7.70.1 Detailed Description

file containing the subroutine rchyr

Author

modified by Javier Burguete

7.70.2 Function/Subroutine Documentation

7.70.2.1 rchyr()

```
subroutine rchyr (  \text{integer, intent(in) } i \text{ )}
```

this subroutine writes the annual reach output to the .rch file

Parameters

in	current	day of simulation (julian date)
----	---------	---------------------------------

7.71 readatmodep.f90 File Reference

Functions/Subroutines

subroutine readatmodep

this subroutine reads the atmospheric deposition values

7.71.1 Detailed Description

file containing the subroutine readatmodep

Author

modified by Javier Burguete

7.72 readbsn.f90 File Reference

Functions/Subroutines

subroutine readbsn

this subroutine reads data from the basin input file (.bsn). This file contains information related to processes modeled or defined at the watershed level

7.72.1 Detailed Description

file containing the suborutine readbsn

Author

modified by Javier Burguete

7.73 readchm.f90 File Reference

Functions/Subroutines

• subroutine readchm (I)

This subroutine reads data from the HRU/subbasin soil chemical input file (.chm). This file contains initial amounts of pesticides/nutrients in the first soil layer. (Specifics about the first soil layer are given in the .sol file.) All data in the .chm file is optional input.

7.73.1 Detailed Description

file containing the subroutine readchm

Author

modified by Javier Burguete

7.73.2 Function/Subroutine Documentation

7.73.2.1 readchm()

```
subroutine readchm ( integer,\ intent(in)\ \textit{l}\ )
```

This subroutine reads data from the HRU/subbasin soil chemical input file (.chm). This file contains initial amounts of pesticides/nutrients in the first soil layer. (Specifics about the first soil layer are given in the .sol file.) All data in the .chm file is optional input.

Parameters

```
in / HRU number (none)
```

7.74 readcnst.f90 File Reference

Functions/Subroutines

• subroutine readcnst (jj)

reads in the loading information for the recenst command

7.74.1 Detailed Description

file containing the subroutine readcnst.f90

Author

modified by Javier Burguete

7.74.2 Function/Subroutine Documentation

7.74.2.1 readcnst()

```
subroutine readcnst ( integer,\ intent(in)\ jj\ )
```

reads in the loading information for the recenst command

Parameters

in | jj | file number associated with recenst command (none)

7.75 readfcst.f90 File Reference

Functions/Subroutines

· subroutine readfcst

this subroutine reads the HRU forecast weather generator parameters from the .cst file

7.75.1 Detailed Description

file containing the subroutine readfcst

Author

modified by Javier Burguete

7.76 readfert.f90 File Reference

Functions/Subroutines

· subroutine readfert

this subroutine reads input parameters from the fertilizer/manure (i.e. nutrient) database (fert.dat)

7.76.1 Detailed Description

file containing the subroutine readfert

Author

modified by Javier Burguete

7.77 readfig.f90 File Reference

Functions/Subroutines

• subroutine readfig

reads in the routing information from the watershed configuration input file (.fig) and calculates the number of subbasins, reaches, and reservoirs

7.77.1 Detailed Description

file containing the subroutine readfig

Author

modified by Javier Burguete

7.78 readfile.f90 File Reference

Functions/Subroutines

· subroutine readfile

this subroutine opens the main input and output files and reads watershed information from the file.cio

7.78.1 Detailed Description

file containing the subroutine readfile

Author

modified by Javier Burguete

7.79 readgw.f90 File Reference

Functions/Subroutines

• subroutine readgw (i, j)

this subroutine reads the parameters from the HRU/subbasin groundwater input file (.gw)

7.79.1 Detailed Description

file containing the suroutine readgw

Author

modified by Javier Burguete

7.79.2 Function/Subroutine Documentation

7.79.2.1 readgw()

```
subroutine readgw (
                integer, intent(in) i,
                integer, intent(in) j )
```

this subroutine reads the parameters from the HRU/subbasin groundwater input file (.gw)

Parameters

in	i	subbasin number (none)
in	j	HRU number (none)

7.80 readhru.f90 File Reference

Functions/Subroutines

• subroutine readhru (i, j)

this subroutine reads data from the HRU general input file (.hru). This file contains data related to general processes modeled at the HRU level.

7.80.1 Detailed Description

file containing the subroutine readhru

Author

modified by Javier Burguete

7.80.2 Function/Subroutine Documentation

7.80.2.1 readhru()

this subroutine reads data from the HRU general input file (.hru). This file contains data related to general processes modeled at the HRU level.

Parameters

in	i	subbasin number (none)
in	j	HRU number (none)

7.81 readinpt.f90 File Reference

Functions/Subroutines

subroutine readinpt

this subroutine calls subroutines which read input data for the databases and the HRUs

7.81.1 Detailed Description

file containing the subroutine readinpt

Author

modified by Javier Burguete

7.82 readlup.f90 File Reference

Functions/Subroutines

· subroutine readlup

this subroutine reads data from the HRU/subbasin management input file (.mgt). This file contains data related to management practices used in the HRU/subbasin.

7.82.1 Detailed Description

file containing the subroutine readlup

Author

modified by Javier Burguete

7.83 readlwq.f90 File Reference

Functions/Subroutines

subroutine readlwq (ii)

this subroutine reads data from the lake water quality input file (.lwq). This file contains data related to initial pesticide and nutrient levels in the lake/reservoir and transformation processes occuring within the lake/reservoir. Data in the lake water quality input file is assumed to apply to all reservoirs in the watershed.

7.83.1 Detailed Description

file containing the subroutine readlwq

Author

modified by Javier Burguete

7.83.2 Function/Subroutine Documentation

7.83.2.1 readlwq()

```
subroutine readlwq ( integer,\ intent(in)\ ii\ )
```

this subroutine reads data from the lake water quality input file (.lwq). This file contains data related to initial pesticide and nutrient levels in the lake/reservoir and transformation processes occuring within the lake/reservoir. Data in the lake water quality input file is assumed to apply to all reservoirs in the watershed.

Parameters

in ii reservoir number (none)	in /
-----------------------------------	------

7.84 readmgt.f90 File Reference

Functions/Subroutines

• subroutine readmgt (k)

this subroutine reads data from the HRU/subbasin management input file (.mgt). This file contains data related to management practices used in the HRU/subbasin.

7.84.1 Detailed Description

file containing the subroutine readmgt

Author

modified by Javier Burguete

7.84.2 Function/Subroutine Documentation

7.84.2.1 readmgt()

this subroutine reads data from the HRU/subbasin management input file (.mgt). This file contains data related to management practices used in the HRU/subbasin.

Parameters

in	k	HRU number (none)

7.85 readmon.f90 File Reference

Functions/Subroutines

• subroutine readmon (i)

reads in the input data for the recmon command

7.85.1 Detailed Description

file containing the subroutine readmon

Author

modified by Javier Burguete

7.86 readops.f90 File Reference

Functions/Subroutines

• subroutine readops (k)

this subroutine reads data from the HRU/subbasin management input file (.mgt). This file contains data related to management practices used in the HRU/subbasin.

7.86.1 Detailed Description

file containing the subroutine readops

Author

modified by Javier Burguete

7.86.2 Function/Subroutine Documentation

7.86.2.1 readops()

this subroutine reads data from the HRU/subbasin management input file (.mgt). This file contains data related to management practices used in the HRU/subbasin.

Parameters

in k HRU num	nber (none)
--------------	-------------

7.87 readpest.f90 File Reference

Functions/Subroutines

subroutine readpest

this subroutine reads parameters from the toxin/pesticide database (pest.dat)

7.87.1 Detailed Description

file containing the subroutine readpest

Author

modified by Javier Burguete

7.88 readplant.f90 File Reference

Functions/Subroutines

· subroutine readplant

this subroutine reads input parameters from the landuse/landcover database (plant.dat)

7.88.1 Detailed Description

file containing the subroutine readplant

Author

modified by Javier Burguete

7.89 readpnd.f90 File Reference

Functions/Subroutines

• subroutine readpnd (i)

This subroutine reads data from the HRU/subbasin pond input file (.pnd). This file contains data related to ponds and wetlands in the HRUs/subbasins.

7.89.1 Detailed Description

file containing the subroutine readpnd

Author

modified by Javier Burguete

7.89.2 Function/Subroutine Documentation

7.89.2.1 readpnd()

```
subroutine readpnd ( integer, \ intent(in) \ i \ )
```

This subroutine reads data from the HRU/subbasin pond input file (.pnd). This file contains data related to ponds and wetlands in the HRUs/subbasins.

Parameters

in	i	subbasin number (none)	
in	i	subbasin number (none)	

7.90 readres.f90 File Reference

Functions/Subroutines

• subroutine readres (i)

the purpose of this subroutine is to read in data from the reservoir input file (.res)

7.90.1 Detailed Description

file containing the subroutine readres

Author

modified by Javier Burguete

7.90.2 Function/Subroutine Documentation

7.90.2.1 readres()

```
subroutine readres ( integer,\ intent(in)\ i\ )
```

the purpose of this subroutine is to read in data from the reservoir input file (.res)

Parameters

in	i	reservoir number (none)

7.91 readrte.f90 File Reference

Functions/Subroutines

· subroutine readrte

this subroutine reads data from the reach (main channel) input file (.rte). This file contains data related to channel attributes. Only one reach file should be made for each subbasin. If multiple HRUs are modeled within a subbasin, the same .rte file should be listed for all HRUs in file.cio

7.91.1 Detailed Description

file containing the subroutine readrte

Author

modified by Javier Burguete

7.92 readru.f90 File Reference

Functions/Subroutines

• subroutine readru (i)

this subroutine reads data from the sub input file (.sub). This file contains data related to routing

7.92.1 Detailed Description

file containing the subroutine readru

Author

modified by Javier Burguete

7.92.2 Function/Subroutine Documentation

7.92.2.1 readru()

```
subroutine readru ( integer,\ intent(in)\ i\ )
```

this subroutine reads data from the sub input file (.sub). This file contains data related to routing

Parameters

in	i	subbasin number

7.93 readsdr.f90 File Reference

Functions/Subroutines

subroutine readsdr (j)

this subroutine reads data from the HRU/subbasin management input file (.mgt). This file contains data related to management practices used in the HRU/subbasin.

7.93.1 Detailed Description

file containing the subroutine readsdr

Author

modified by Javier Burguete

7.93.2 Function/Subroutine Documentation

7.93.2.1 readsdr()

```
subroutine readsdr ( integer\ j\ )
```

this subroutine reads data from the HRU/subbasin management input file (.mgt). This file contains data related to management practices used in the HRU/subbasin.

Parameters

```
in j HRU number (none)
```

7.94 readsepticbz.f90 File Reference

Functions/Subroutines

• subroutine readsepticbz (j)

this subroutine reads data from the septic input file (.sep). This file contains information related to septic tanks modeled or defined at the watershed level

7.94.1 Detailed Description

file containing the subroutine readsepticbz

Author

modified by Javier Burguete

7.94.2 Function/Subroutine Documentation

7.94.2.1 readsepticbz()

```
subroutine readsepticbz ( \label{eq:integer} \text{integer, intent(in) } j \; )
```

this subroutine reads data from the septic input file (.sep). This file contains information related to septic tanks modeled or defined at the watershed level

Parameters

in	j	HRU number (none)
----	---	-------------------

7.95 readseptwq.f90 File Reference

Functions/Subroutines

· subroutine readseptwq

this subroutine reads input parameters from the sept wq database (septwq.dat). Information is used when a hru has septic tank.

7.95.1 Detailed Description

file containing the subroutine readseptwq

Author

C. Santhi, modified by Javier Burguete

7.95.2 Function/Subroutine Documentation

7.95.2.1 readseptwq()

```
subroutine readseptwq ( )
```

this subroutine reads input parameters from the sept wq database (septwq.dat). Information is used when a hru has septic tank.

This routine was developed by C. Santhi. Inputs for this routine are provided in septwq.dat of septic documentation. Data were compiled from [3] and [2].

7.96 readsno.f90 File Reference

Functions/Subroutines

• subroutine readsno (i)

this subroutine reads snow data from the HRU/subbasin soil chemical input

7.96.1 Detailed Description

file containing the subroutine readsno

Author

modified by Javier Burguete

7.96.2 Function/Subroutine Documentation

7.96.2.1 readsno()

```
subroutine readsno ( integer,\ intent(in)\ i\ )
```

this subroutine reads snow data from the HRU/subbasin soil chemical input

Parameters

```
in i subbasin number (none)
```

7.97 readsol.f90 File Reference

Functions/Subroutines

• subroutine readsol (k)

this subroutine reads data from the HRU/subbasin soil properties file (.sol). This file contains data related to soil physical properties and general chemical properties

7.97.1 Detailed Description

file containing the subroutine readsol

Author

modified by Javier Burguete

7.97.2 Function/Subroutine Documentation

7.97.2.1 readsol()

```
subroutine readsol ( integer,\ intent(in)\ k\ )
```

this subroutine reads data from the HRU/subbasin soil properties file (.sol). This file contains data related to soil physical properties and general chemical properties

Parameters

in k HR	U number
-------------	----------

7.98 readsub.f90 File Reference

Functions/Subroutines

• subroutine readsub (i)

this subroutine reads data from the HRU/subbasin general input file (.sub). This file contains data related to general processes modeled at the HRU/subbasin level.

7.98.1 Detailed Description

file containing the subroutine readsub

Author

modified by Javier Burguete

7.98.2 Function/Subroutine Documentation

7.98.2.1 readsub()

```
subroutine readsub ( integer,\ intent(in)\ i\ )
```

this subroutine reads data from the HRU/subbasin general input file (.sub). This file contains data related to general processes modeled at the HRU/subbasin level.

Parameters

in	i	subbasin number (none)
----	---	------------------------

7.99 readswq.f90 File Reference

Functions/Subroutines

· subroutine readswq

this subroutine reads parameters from the subbasin instream water quality file (.swq) and initializes the QUAL2E variables which apply to the individual subbasins

7.99.1 Detailed Description

file containing the subroutine readswq

Author

modified by Javier Burguete

7.100 readtill.f90 File Reference

Functions/Subroutines

· subroutine readtill

this subroutine reads input data from tillage database (till.dat)

7.100.1 Detailed Description

file containing the subroutine readtill

Author

modified by Javier Burguete

7.101 readurban.f90 File Reference

Functions/Subroutines

· subroutine readurban

this subroutine reads input parameters from the urban database (urban.dat). Information from this database is used only if the urban buildup/washoff routines are selected for the modeling of urban areas

7.101.1 Detailed Description

file containing the subroutine readurban

Author

modified by Javier Burguete

7.102 readwgn.f90 File Reference

Functions/Subroutines

• subroutine readwgn (ii)

this subroutine reads the HRU weather generator parameters from the .wgn file

7.102.1 Detailed Description

file containing the subroutine readwgn

Author

modified by Javier Burguete

7.102.2 Function/Subroutine Documentation

7.102.2.1 readwgn()

```
subroutine readwgn ( integer,\ intent(in)\ ii\ )
```

this subroutine reads the HRU weather generator parameters from the .wgn file

Parameters

	in	ii	subbasin number	(none)	
--	----	----	-----------------	--------	--

7.103 readwus.f90 File Reference

Functions/Subroutines

• subroutine readwus (i)

This subroutine reads data from the HRU/subbasin water use input file (.wus). The water use file extracts water from the subbasin and it is considered to be lost from the watershed. These variables should be used to remove water transported outside the watershed.

7.103.1 Detailed Description

file containing the subroutine readwus

Author

modified by Javier Burguete

7.103.2 Function/Subroutine Documentation

7.103.2.1 readwus()

```
subroutine readwus ( integer,\ intent(in)\ i\ )
```

This subroutine reads data from the HRU/subbasin water use input file (.wus). The water use file extracts water from the subbasin and it is considered to be lost from the watershed. These variables should be used to remove water transported outside the watershed.

Parameters

in i subbasin num

7.104 readwwq.f90 File Reference

Functions/Subroutines

subroutine readwwg

this subroutine reads the watershed stream water quality input data (.wwq file) and initializes the QUAL2E variables which apply to the entire watershed

7.104.1 Detailed Description

file containing the subroutine readwwq

Author

modified by Javier Burguete

7.105 readyr.f90 File Reference

Functions/Subroutines

• subroutine readyr (i)

reads in the input data for the recyear command

7.105.1 Detailed Description

file containing the subroutine readyr

Author

modified by Javier Burguete

7.105.2 Function/Subroutine Documentation

7.105.2.1 readyr()

```
subroutine readyr ( integer,\ intent(in)\ i\ )
```

reads in the input data for the recyear command

Parameters

in	i	reservoir number (none)	
----	---	-------------------------	--

7.106 resetlu.f90 File Reference

Functions/Subroutines

• subroutine resetlu

this subroutine reads data from the HRU/subbasin management input file (.mgt). This file contains data related to management practices used in the HRU/subbasin.

7.106.1 Detailed Description

file containing the subroutine resetlu

Author

modified by Javier Burguete

7.107 rhgen.f90 File Reference

Functions/Subroutines

• subroutine rhgen (j)

this subroutine generates weather relative humidity, solar radiation, and wind speed.

7.107.1 Detailed Description

file containing the subroutine rhgen

Author

modified by Javier Burguete

7.108 rootfr.f90 File Reference

Functions/Subroutines

• subroutine rootfr (j)

this subroutine distributes dead root mass through the soil profile

7.108.1 Detailed Description

file containing the subroutine rootfr

Author

Armen R. Kemanian, modified by Javier Burguete

7.108.2 Function/Subroutine Documentation

7.108.2.1 rootfr()

```
subroutine rootfr ( \label{eq:continuous} \text{integer, intent(in) } j \; )
```

this subroutine distributes dead root mass through the soil profile

Parameters

```
in j HRU number
```

7.109 rsedaa.f90 File Reference

Functions/Subroutines

• subroutine rsedaa (years)

this subroutine writes the annual reach output to the .sed file

7.109.1 Detailed Description

file containing the subroutine rsedaa

Author

modified by Javier Burguete

7.109.2 Function/Subroutine Documentation

7.109.2.1 rsedaa()

this subroutine writes the annual reach output to the .sed file

Parameters

years length of simulation (years)

7.110 rseday.f90 File Reference

Functions/Subroutines

• subroutine rseday

7.110.1 Detailed Description

file containing the subroutine rseday

Author

modified by Javier Burguete

7.111 rsedmon.f90 File Reference

Functions/Subroutines

subroutine rsedmon (mdays)
 this subroutine writes the monthly reach output to the .sed file

7.111.1 Detailed Description

file containing the subroutine rsedmon

Author

modified by Javier Burguete

7.111.2 Function/Subroutine Documentation

7.111.2.1 rsedmon()

this subroutine writes the monthly reach output to the .sed file

Parameters

in	mdays	number of days simulated in month
----	-------	-----------------------------------

7.112 rsedyr.f90 File Reference

Functions/Subroutines

· subroutine rsedyr

this subroutine writes the yearly reach output to the .sed file

7.112.1 Detailed Description

file containing the subroutine rsedyr

Author

modified by Javier Burguete

7.113 rteinit.f90 File Reference

Functions/Subroutines

• subroutine rteinit

This subroutine reads in the areas associated with files processed with the recday, recepic, recmon and recyear commands, calculates subbasin areas, calculates reach and hydrograph node drainage areas.

7.113.1 Detailed Description

file containing the subroutine rteinit

Author

modified by Javier Burguete

7.114 sched_mgt.f90 File Reference

Functions/Subroutines

• subroutine sched_mgt (j)

this subroutine performs all management operations

7.114.1 Detailed Description

file containing the subroutine sched_mgt

Author

modified by Javier Burguete

7.114.2 Function/Subroutine Documentation

7.114.2.1 sched_mgt()

```
subroutine sched_mgt ( integer,\ intent(in)\ j\ )
```

this subroutine performs all management operations

Parameters

```
in j HRU number
```

7.115 schedule_ops.f90 File Reference

Functions/Subroutines

• subroutine schedule_ops (j)

this subroutine controls the simulation of the land phase of the hydrologic cycle

7.115.1 Detailed Description

file containing the subroutine schedule_ops

Author

modified by Javier Burguete

7.115.2 Function/Subroutine Documentation

7.115.2.1 schedule_ops()

this subroutine controls the simulation of the land phase of the hydrologic cycle

Parameters

in .	i HRU nur	nber
------	-----------	------

7.116 sim_inityr.f90 File Reference

Functions/Subroutines

• subroutine sim_inityr

this subroutine initializes variables at the beginning of the year

7.116.1 Detailed Description

file containing the subroutine sim_inityr

Author

modified by Javier Burguete

7.117 simulate.f90 File Reference

Functions/Subroutines

• subroutine simulate

this subroutine contains the loops governing the modeling of processes in the watershed

7.117.1 Detailed Description

file containing the subroutine simulate

Author

modified by Javier Burguete

7.118 slrgen.f90 File Reference

Functions/Subroutines

• subroutine slrgen (j)

this subroutine generates solar radiation

7.118.1 Detailed Description

file containing the subroutine sIrgen

Author

modified by Javier Burguete

7.118.2 Function/Subroutine Documentation

7.118.2.1 slrgen()

```
subroutine slrgen ( integer,\ intent(in)\ j\ )
```

this subroutine generates solar radiation

Parameters

```
in j HRU number
```

7.119 smeas.f90 File Reference

Functions/Subroutines

subroutine smeas

this subroutine reads in daily solar radiation data and assigns the values to the proper HRUs

7.119.1 Detailed Description

file containing the subroutine smeas

Author

modified by Javier Burguete

7.120 snom.f90 File Reference

Functions/Subroutines

• subroutine snom (j)

this subroutine predicts daily snom melt when the average air temperature exceeds 0 degrees Celsius

7.120.1 Detailed Description

file containing the subroutine snom

Author

modified by Javier Burguete

7.120.2 Function/Subroutine Documentation

7.120.2.1 snom()

```
subroutine snom ( \label{eq:snom} \text{integer, intent(in) } j \ )
```

this subroutine predicts daily snom melt when the average air temperature exceeds 0 degrees Celsius

Parameters

```
in j HRU number
```

7.121 soil_chem.f90 File Reference

Functions/Subroutines

subroutine soil_chem (ii)
 this subroutine initializes soil chemical properties

7.121.1 Detailed Description

file containing the subroutine soil_chem

Author

modified by Javier Burguete

7.121.2 Function/Subroutine Documentation

7.121.2.1 soil_chem()

```
subroutine soil_chem ( integer, \; intent \, (in) \; ii \; )
```

this subroutine initializes soil chemical properties

Parameters

in ii HRU number

7.122 soil_phys.f90 File Reference

Functions/Subroutines

```
• subroutine soil_phys (ii)

this subroutine initializes soil physical properties
```

7.122.1 Detailed Description

file containing the subroutine soil_phys

Author

modified by Javier Burguete

7.122.2 Function/Subroutine Documentation

7.122.2.1 soil_phys()

```
subroutine soil_phys ( integer, \; intent(in) \; ii \; )
```

this subroutine initializes soil physical properties

Parameters

```
in ii HRU number
```

7.123 soil_write.f90 File Reference

Functions/Subroutines

• subroutine soil_write (i)

this subroutine writes output to the output.sol file

7.124 solt.f90 File Reference 255

7.123.1 Detailed Description

file containing the subroutine soil_write

Author

modified by Javier Burguete

7.123.2 Function/Subroutine Documentation

7.123.2.1 soil_write()

```
subroutine soil_write ( integer,\ intent(in)\ i\ )
```

this subroutine writes output to the output.sol file

Parameters

in i current day in simulation - loop counter (julian date)

7.124 solt.f90 File Reference

Functions/Subroutines

subroutine solt (j)

this subroutine estimates daily average temperature at the bottom of each soil layer @parameter[in] j HRU number

7.124.1 Detailed Description

file containing the subroutine solt

Author

modified by Javier Burguete

7.125 std1.f90 File Reference

Functions/Subroutines

subroutine std1

this subroutine writes general information to the standard output file and header lines to miscellaneous output files

7.125.1 Detailed Description

file containing the subroutine std1

Author

modified by Javier Burguete

7.126 std2.f90 File Reference

Functions/Subroutines

subroutine std2

this subroutine writes general information to the standard output file and to miscellaneous output files

7.126.1 Detailed Description

file containing the subroutine std2

Author

modified by Javier Burguete

7.127 std3.f90 File Reference

Functions/Subroutines

• subroutine std3

this subroutine writes the annual table header to the standard output file

7.127.1 Detailed Description

file containing the subroutine std3

Author

modified by Javier Burguete

7.128 storeinitial.f90 File Reference

Functions/Subroutines

· subroutine storeinitial

this subroutine saves initial values for variables that must be reset to rerun the simulation for different real time weather scenarios

7.128.1 Detailed Description

file containing the subroutine storeinitial

Author

modified by Javier Burguete

7.129 subbasin.f90 File Reference

Functions/Subroutines

• subroutine subbasin (i)

this subroutine controls the simulation of the land phase of the hydrologic cycle

7.129.1 Detailed Description

file containing the subroutine subbasin

Author

modified by Javier Burguete

7.129.2 Function/Subroutine Documentation

7.129.2.1 subbasin()

```
subroutine subbasin ( integer,\ intent(in)\ i\ )
```

this subroutine controls the simulation of the land phase of the hydrologic cycle

Parameters

in i current day in simulation—loop counter (julian date)

7.130 submon.f90 File Reference

Functions/Subroutines

• subroutine submon

this subroutine writes monthly subbasin output to the output.sub file

7.130.1 Detailed Description

file containing the subroutine submon

Author

modified by Javier Burguete

7.131 subyr.f90 File Reference

Functions/Subroutines

· subroutine subyr

this subroutine writes annual subbasin output to the output.sub file

7.131.1 Detailed Description

file containing the subroutine subyr

Author

modified by Javier Burguete

7.132 surface.f90 File Reference

Functions/Subroutines

subroutine surface (i, j)
 this subroutine models surface hydrology at any desired time step

7.132.1 Detailed Description

file containing the subroutine surface

Author

modified by Javier Burguete

7.132.2 Function/Subroutine Documentation

7.132.2.1 surface()

```
subroutine surface (
                integer, intent(in) i,
                integer, intent(in) j )
```

this subroutine models surface hydrology at any desired time step

Parameters

in	i	current day in simulation-loop counter (julian date)
in	j	HRU number (none)

7.133 surfst h2o.f90 File Reference

Functions/Subroutines

• subroutine surfst_h2o (j)

this subroutine determines the net surface runoff reaching the main channel on a given day. The net amount of water reaching the main channel can include water in surface runoff from the previous day and will exclude surface runoff generated on the current day which takes longer than one day to reach the main channel

7.133.1 Detailed Description

file containing the subroutine surfst_h2o

Author

modified by Javier Burguete

7.133.2 Function/Subroutine Documentation

7.133.2.1 surfst_h2o()

```
subroutine surfst_h2o ( integer,\ intent(in)\ j\ )
```

this subroutine determines the net surface runoff reaching the main channel on a given day. The net amount of water reaching the main channel can include water in surface runoff from the previous day and will exclude surface runoff generated on the current day which takes longer than one day to reach the main channel

Parameters

```
in j HRU number
```

7.134 surq_daycn.f90 File Reference

Functions/Subroutines

subroutine surq_daycn (j)

predicts daily runoff given daily precipitation and snow melt using a modified SCS curve number approach

7.134.1 Detailed Description

file containing the subroutine surg dayon

Author

modified by Javier Burguete

7.134.2 Function/Subroutine Documentation

7.134.2.1 surq_daycn()

```
subroutine surq_daycn ( integer,\ intent(in)\ j\ )
```

predicts daily runoff given daily precipitation and snow melt using a modified SCS curve number approach

Parameters

```
in | j | HRU number (none)
```

7.135 surq_greenampt.f90 File Reference

Functions/Subroutines

• subroutine surq_greenampt (j)

predicts daily runoff given breakpoint precipitation and snow melt using the Green & Ampt technique

7.135.1 Detailed Description

file containing the subroutine surg greenampt

Author

modified by Javier Burguete

7.135.2 Function/Subroutine Documentation

7.135.2.1 surq_greenampt()

```
subroutine surq_greenampt (  \text{integer, intent(in) } j \ ) \\
```

predicts daily runoff given breakpoint precipitation and snow melt using the Green & Ampt technique

Parameters

```
in j HRU number (none)
```

7.136 swbl.f90 File Reference

Functions/Subroutines

• subroutine swbl (snow, irrg)

this subroutine checks the soil water balance at the end of the simulation

7.136.1 Detailed Description

file containing the subroutine swbl

Author

modified by Javier Burguete

7.136.2 Function/Subroutine Documentation

7.136.2.1 swbl()

this subroutine checks the soil water balance at the end of the simulation

Parameters

	in	snow	snow in watershed at end of simulation
ĺ	in	irrg	irrigation water applied to watershed

7.137 tgen.f90 File Reference

Functions/Subroutines

• subroutine tgen (j)

this subroutine generates temperature data when the user chooses to simulate or when data is missing for particular days in the weather file

7.137.1 Detailed Description

file containing the subroutine tgen

Author

modified by Javier Burguete

7.137.2 Function/Subroutine Documentation

7.137.2.1 tgen()

```
subroutine tgen ( integer,\ intent(in)\ j\ )
```

this subroutine generates temperature data when the user chooses to simulate or when data is missing for particular days in the weather file

Parameters

```
in j HRU number
```

7.138 tillfactor.f90 File Reference

Functions/Subroutines

• subroutine tillfactor (j, bmix, emix, dtil, sol thick)

this procedure increases tillage factor (tillagef(l,j) per layer for each operation. The tillage factor settling will depend of soil moisture (tentatively) and must be called every day. For simplicity the settling is calculated now at the soil carbon sub because soil water content is available.

7.138.1 Detailed Description

file containing the subroutine tillfactor

Author

modified by Javier Burguete

7.138.2 Function/Subroutine Documentation

7.138.2.1 tillfactor()

```
subroutine tillfactor (
    integer, intent(in) j,
    real*8, intent(in) bmix,
    real*8, intent(inout) emix,
    real*8, intent(in) dtil,
    real*8, dimension(sol_nly(j)), intent(in) sol_thick)
```

this procedure increases tillage factor (tillagef(I,j) per layer for each operation. The tillage factor settling will depend of soil moisture (tentatively) and must be called every day. For simplicity the settling is calculated now at the soil carbon sub because soil water content is available.

Parameters

in	j	HRU number (none)
in	bmix	biological mixing efficiency: this number is zero for tillage operations (none)
in,out	emix	mixing efficiency (none)
in	dtil	depth of mixing (mm)
in	sol_thick	The tillage factor depends on the cumulative soil disturbance rating = csdr For simplicity, csdr is a function of emix. First step is to calculate "current" csdr by inverting tillage factor function. The effect of texture on tillage factor (ZZ) is removed first (and recovered at the end of the procedure).
		YY=tillagef(l,j)/ZZ Since the tillage factor function is non linear, iterations are needed. $XX=0.5$ is the initial value that works OK for the range of values observed. If a layer is only partially tilled then emix is corrected accordingly

7.139 tmeas.f90 File Reference

Functions/Subroutines

· subroutine tmeas

this subroutine reads in temperature data and assigns it to the HRUs

7.139.1 Detailed Description

file containing the subroutine tmeas

Author

modified by Javier Burguete

7.140 tran.f90 File Reference

Functions/Subroutines

```
• subroutine tran (j)

this subroutine computes tributary channel transmission losses
```

7.140.1 Detailed Description

file containing the subroutine tran

Author

modified by Javier Burguete

7.140.2 Function/Subroutine Documentation

7.140.2.1 tran()

```
subroutine tran ( integer,\ intent(in)\ j\ )
```

this subroutine computes tributary channel transmission losses

Parameters

```
in j HRU number (none)
```

7.141 ttcoef.f90 File Reference

Functions/Subroutines

• subroutine ttcoef (k)

this subroutine computes travel time coefficients for routing along the main channel

7.141.1 Detailed Description

file containing the subroutine ttcoef

Author

modified by Javier Burguete

7.141.2 Function/Subroutine Documentation

7.141.2.1 ttcoef()

```
subroutine ttcoef ( integer,\ intent(in)\ k\ )
```

this subroutine computes travel time coefficients for routing along the main channel

Parameters

in	k	HRU number

7.142 ttcoef_wway.f90 File Reference

Functions/Subroutines

subroutine ttcoef_wway (j)

this subroutine computes travel time coefficients for routing along the main channel - grassed waterways

7.142.1 Detailed Description

file containing the subroutine ttcoef_wway

Author

modified by Javier Burguete

7.143 varinit.f90 File Reference

Functions/Subroutines

• subroutine varinit (j)

this subroutine initializes variables for the daily simulation of the land phase of the hydrologic cycle (the subbasin command loop)

7.143.1 Detailed Description

file containing the subroutine varinit

Author

modified by Javier Burguete

7.143.2 Function/Subroutine Documentation

7.143.2.1 varinit()

```
subroutine varinit ( \label{eq:continuous} \text{integer, intent(in) } j \; )
```

this subroutine initializes variables for the daily simulation of the land phase of the hydrologic cycle (the subbasin command loop)

Parameters

```
in j HRU number
```

7.144 vbl.f90 File Reference

Functions/Subroutines

• subroutine vbl (evx, spx, pp, qin, ox, vx1, vy, yi, yo, ysx, vf, vyf, aha)

this subroutine checks the water and sediment balance for ponds and reservoirs at the end of a simulation

7.144.1 Detailed Description

file containing the subroutine vbl

Author

modified by Javier Burguete

7.144.2 Function/Subroutine Documentation

7.144.2.1 vbl()

```
subroutine vbl (
    real*8, intent(in) evx,
    real*8, intent(in) spx,
    real*8, intent(in) pp,
    real*8, intent(in) qin,
    real*8, intent(in) ox,
    real*8, intent(inout) vx1,
    real*8, intent(inout) vy,
    real*8, intent(in) yi,
    real*8, intent(in) yo,
    real*8, intent(in) ysx,
    real*8, intent(in) vf,
    real*8, intent(in) vyf,
    real*8, intent(in) vyf,
    real*8, intent(in) vyf,
    real*8, intent(in) aha)
```

this subroutine checks the water and sediment balance for ponds and reservoirs at the end of a simulation

Parameters

in	evx	evaporation from water body
in	spx	seepage from water body
in	рр	precipitation on water body
in	qin	water entering water body
in	ox	water leaving water body
in,out	vx1	(in) volume of water in water body at beginning of simulation
		(out) dfw expressed as depth over drainage area
in,out	vy	(in) sediment in water body at beginning of simulation
		(out) dfy expressed as loading per unit area for drainage area
in	yi	sediment entering water body
in	yo	sediment leaving water body
in	ysx	change in sediment level in water body
in	vf	volume of water in water body at end of simulation
in	vyf	sediment in water body at end of simulation
in	aha	area draining into water body

7.145 volq.f90 File Reference

Functions/Subroutines

• subroutine volq (j)

call subroutines to calculate the current day's CN for the HRU and to calculate surface runoff

7.145.1 Detailed Description

file containing the subroutine volq

Author

7.145.2 Function/Subroutine Documentation

7.145.2.1 volq()

```
subroutine volq ( integer, intent(in) \ j \ )
```

call subroutines to calculate the current day's CN for the HRU and to calculate surface runoff

Parameters

```
in j HRU number (none)
```

7.146 water_hru.f90 File Reference

Functions/Subroutines

subroutine water_hru (j)
 this subroutine compute pet and et using Priestly-Taylor and a coefficient

7.146.1 Detailed Description

file containing the subroutine water_hru

Author

modified by Javier Burguete

7.147 wattable.f90 File Reference

Functions/Subroutines

subroutine wattable (j)
 this subroutine is the master soil percolation component. param[in] j HRU number

7.147.1 Detailed Description

file containing the subroutine wattable

Author

7.148 weatgn.f90 File Reference

Functions/Subroutines

• subroutine weatgn (j)

this subroutine generates weather parameters used to simulate the impact of precipitation on the other climatic processes

7.148.1 Detailed Description

file containing the subroutine weatgn

Author

modified by Javier Burguete

7.148.2 Function/Subroutine Documentation

7.148.2.1 weatgn()

```
subroutine weatgn ( integer,\ intent(in)\ j\ )
```

this subroutine generates weather parameters used to simulate the impact of precipitation on the other climatic processes

Parameters

in j HRU number

7.149 wmeas.f90 File Reference

Functions/Subroutines

· subroutine wmeas

this subroutine reads in wind speed data from file and assigns the data to HRUs

7.149.1 Detailed Description

file containing the subroutine wmeas

Author

7.150 wndgen.f90 File Reference

Functions/Subroutines

• subroutine wndgen (j)

this subroutine generates wind speed

7.150.1 Detailed Description

file containing the subroutine wndgen

Author

modified by Javier Burguete

7.150.2 Function/Subroutine Documentation

7.150.2.1 wndgen()

```
subroutine wndgen ( integer, intent(in) \ j \ )
```

this subroutine generates wind speed

Parameters

```
in j HRU number
```

7.151 writea.f90 File Reference

Functions/Subroutines

• subroutine writea (i)

this subroutine writes annual output

7.151.1 Detailed Description

file containing the subroutine writea

Author

7.151.2 Function/Subroutine Documentation

7.151.2.1 writea()

```
subroutine writea ( integer,\ intent(in)\ i\ )
```

this subroutine writes annual output

Parameters

in i current day of simulation (julian of	date)
---	-------

7.152 writed.f90 File Reference

Functions/Subroutines

• subroutine writed

this subroutine contains the daily output writes

7.152.1 Detailed Description

file containing the subroutine writed

Author

modified by Javier Burguete

7.153 writem.f90 File Reference

Functions/Subroutines

• subroutine writem (i)

this subroutine writes monthly output

7.153.1 Detailed Description

file containing the subroutine writem

Author

7.153.2 Function/Subroutine Documentation

7.153.2.1 writem()

this subroutine writes monthly output

Parameters

in	i	current day of simulation (julian date)
----	---	---

7.154 xmon.f90 File Reference

Functions/Subroutines

· subroutine xmon

this subroutine determines the month, given the julian date and leap year flag

7.154.1 Detailed Description

file containing the subroutine xmon

Author

modified by Javier Burguete

7.155 ysed.f90 File Reference

Functions/Subroutines

• subroutine ysed (iwave, j)

this subroutine predicts daily soil loss caused by water erosion using the modified universal soil loss equation

7.155.1 Detailed Description

file containing the subroutine ysed

Author

7.155.2 Function/Subroutine Documentation

7.155.2.1 ysed()

this subroutine predicts daily soil loss caused by water erosion using the modified universal soil loss equation

Parameters

in	iwave	flag to differentiate calculation of HRU and subbasin sediment calculation (none) iwave = 0 for HRU iwave = subbasin # for subbasin
in	j	HRU number

7.156 zero0.f90 File Reference

Functions/Subroutines

• subroutine zero0

this subroutine initializes the values for some of the arrays

7.156.1 Detailed Description

file containing the subroutine zero0

Author

modified by Javier Burguete

7.157 zero1.f90 File Reference

Functions/Subroutines

subroutine zero1

this subroutine initializes the values for some of the arrays

7.157.1 Detailed Description

file containing the subroutine zero1

Author

7.158 zero2.f90 File Reference

Functions/Subroutines

subroutine zero2

this subroutine zeros all array values

7.158.1 Detailed Description

file containing the subroutine zero2

Author

modified by Javier Burguete

7.159 zero_urbn.f90 File Reference

Functions/Subroutines

• subroutine zero_urbn

this subroutine zeros all array values used in urban modeling

7.159.1 Detailed Description

file containing the subroutine zero_urbn

Author

modified by Javier Burguete

7.160 zeroini.f90 File Reference

Functions/Subroutines

· subroutine zeroini

this subroutine zeros values for single array variables

7.160.1 Detailed Description

file containing the subroutine zeroini

Author

Bibliography

- [1] P Bratley, B L Fox, and L E Schrage. A Guide to Simulation. Springer-Verlag, New York, USA, 1983. 107
- [2] J. E. McCray, S. L. Kirkland, R. L. Siegrist, and G. D. Thyne. Model parameters for simulating fate and transport of on-site wastewater nutrients. *Ground Water*, 43(4):628–639, 2005. 240
- [3] R. L. Siegrist, J. McCray, L. Weintraub, C. Chen, J. Bagdol, P. Lemonds, S. Van Cuyk, K. Lowe, R. Goldstein, and J. Rada. Quantifying site-scale processes and watershed-scale cumulative effects of decentralized wastewater systems, project no. wu-ht-00-27. Prepared for the National Decentralized Water Resources Capacity Development Project, Washington University, St. Louis, MO, by the Colorado School of Mines, 2005. 240

276 BIBLIOGRAPHY

Index

albedo.f90, 103	crackflow.f90, 113
allocate_parms.f90, 103	crackvol.f90, 113
alph	curno
alph.f90, 104	curno.f90, 114
alph.f90, 104	curno.f90, 113
alph. 104	curno, 114
	cumo, 114
apply	dailycn.f90, 114
apply.f90, 105	dstn1
apply.f90, 104	
apply, 105	dstn1.f90, 115
ascrv	dstn1.f90, 114
ascrv.f90, 105	dstn1, 115
ascrv.f90, 105	
ascrv, 105	ee
atri	ee.f90, 116
atri.f90, 106	ee.f90, 115
atri.f90, 106	ee, 116
*	eiusle.f90, 116
atri, 106	estimate ksat
aunif	estimate_ksat.f90, 117
aunif.f90, 107	estimate ksat.f90, 116
aunif.f90, 107	estimate ksat, 117
aunif, 107	etpot
	•
bmpinit	etpot.f90, 117
bmpinit.f90, 108	etpot.f90, 117
bmpinit.f90, 108	etpot, 117
bmpinit, 108	expo
burnop	expo.f90, 118
burnop.f90, 109	expo.f90, 118
burnop.f90, 108	expo, 118
•	
burnop, 109	fert
concervint f00, 100	fert.f90, 119
canopyint.f90, 109	fert.f90, 118
caps	fert, 119
caps.f90, 110	finalbal.f90, 119
caps.f90, 109	
caps, 110	gcycl.f90, 119
cfactor.f90, 110	getallo.f90, 120
clgen	graze
clgen.f90, 111	graze.f90, 120
clgen.f90, 110	graze.f90, 120
clgen, 111	graze, 120
clicon	graze, 120
clicon.f90, 111	h2omgt init.f90, 121
,	<u> </u>
clicon.f90, 111	harvestop
clicon, 111	harvestop.f90, 121
command	harvestop.f90, 121
command.f90, 112	harvestop, 121
command.f90, 112	harvkillop
command, 112	harvkillop.f90, 122

harvkillop.f90, 122	lidinit.f90, 133
harvkillop, 122	lidinit, 133
headout.f90, 122	lids
hmeas.f90, 123	lids.f90, 134
hruaa	lids.f90, 133
hruaa.f90, 123	lids, 134
hruaa.f90, 123	lwqdef
hruaa, 123	lwqdef.f90, 135
hruallo.f90, 124	lwqdef.f90, 134
hrumon.f90, 124	lwqdef, 135
hruyr.f90, 124	main.f90, 135
hydroinit.f90, 125	modparm.f90, 135
: 41	mouparm.iso, 155
icl	newtillmix
icl.f90, 125	newtillmix.f90, 219
icl.f90, 125	newtillmix.f90, 219
icl, 125	newtillmix, 219
igropt 00	,
parm, 99	openwth.f90, 220
impnd_init.f90, 126	ovr_sed.f90, 220
impndmon.f90, 126	
impndyr.f90, 126	parm, 15
irrigate	igropt, 99
irrigate.f90, 127	parm::fcgd, 101
irrigate.f90, 127	parm::ndenit, 101
irrigate, 127	parm::regres, 101
irrsub	parm::tair, 102
irrsub.f90, 128	parm::theta, 102
irrsub.f90, 127	pgen
irrsub, 128	pgen.f90, 221
idt	pgen.f90, 220
jdt	pgen, <mark>221</mark>
jdt.f90, 128 jdt.f90, 128	pgenhr.f90, 221
-	pkq
jdt, 128	pkq.f90, <mark>222</mark>
killop	pkq.f90, 221
killop.f90, 129	pkq, 222
killop.f90, 129	plantop
killop, 129	plantop.f90, 222
κιιορ, 123	plantop.f90, 222
lid cistern	plantop, 222
lid cistern.f90, 130	pmeas
lid cistern.f90, 130	pmeas.f90, 223
lid cistern, 130	pmeas.f90, 223
lid greenroof	pmeas, 223
lid greenroof.f90, 131	aman
lid greenroof.f90, 130	qman
lid_greenroof, 131	qman.f90, 224
lid_porpavement	qman.f90, 224
lid_porpavement.f90, 132	qman, 224
lid_porpavement.f90, 131	rchaa
lid_porpavement, 132	rchaa.f90, 225
lid raingarden	rchaa.f90, 224
lid_raingarden.f90, 132	rchaa, 225
lid raingarden.f90, 132	rchday.f90, 225
lid_raingarden, 132	rchmon
lidinit	rchmon.f90, 226
lidinit.f90, 133	rchmon.f90, 225
nannaloo, 100	131111011.130, 223

	L L (00, 000
rchmon, 226	readsdr.f90, 238
rchyr rchyr.f90, 226	readsdr.f90, 237 readsdr, 238
rchyr.f90, 226	readsepticbz
rchyr, 226	readsepticbz.f90, 238
readatmodep.f90, 227	readsepticbz.f90, 238
readbsn.f90, 227	readsepticbz, 238
readchm	readseptwq
readchm.f90, 228	readseptwq.f90, 240
readchm.f90, 227	readseptwq.f90, 240
readchm, 228	readseptwq, 240
readcnst	readsno
readcnst.f90, 228	readsno.f90, 241
readcnst.f90, 228	readsno.f90, 240
readcnst, 228	readsno, 241
readfcst.f90, 229	readsol
readfert.f90, 229	readsol.f90, 241
readfig.f90, 229	readsol.f90, 241
readfile.f90, 230	readsol, 241 readsub
readgw	readsub.f90, 242
readgw.f90, 230	readsub.f90, 242
readgw.f90, 230	readsub, 242
readgw, 230	readswq.f90, 242
readhru f00, 001	readtill.f90, 243
readhru.f90, 231 readhru.f90, 231	readurban.f90, 243
readhru, 231	readwgn
readinpt.f90, 231	readwgn.f90, 244
readlup.f90, 232	readwgn.f90, 243
readlwq	readwgn, 244
readlwq.f90, 232	readwus
readlwg.f90, 232	readwus.f90, 244
readlwg, 232	readwus.f90, 244
readmgt	readwus, 244
readmgt.f90, 233	readwwq.f90, 245
readmgt.f90, 233	readyr
readmgt, 233	readyr.f90, 245 readyr.f90, 245
readmon.f90, 233	readyr, 245
readops	resetlu.f90, 246
readops.f90, 234	rhgen.f90, 246
readops.f90, 234	rootfr
readops, 234	rootfr.f90, 247
readpest.f90, 234	rootfr.f90, 246
readplant.f90, 235	rootfr, 247
readpnd f00, 335	rsedaa
readpnd.f90, 235	rsedaa.f90, 247
readpnd. 135	rsedaa.f90, <mark>247</mark>
readpnd, 235 readres	rsedaa, 247
readres.f90, 236	rseday.f90, 248
readres.f90, 236	rsedmon
readres, 236	rsedmon.f90, 248
readrte.f90, 236	rsedmon.f90, 248
readru	rsedmon, 248
readru.f90, 237	rsedyr.f90, 249 rteinit.f90, 249
readru.f90, 237	1 teiiiil.130, 443
readru, 237	sched_mgt
readsdr	sched_mgt.f90, 250

sched_mgt.f90, 249	swbl.f90, 261
sched_mgt, 250	swbl, 261
schedule_ops	
schedule_ops.f90, 250	tgen
schedule_ops.f90, 250	tgen.f90, 262
schedule_ops, 250	tgen.f90, 262
sim_inityr.f90, 251	tgen, 262
simulate.f90, 251	tillfactor
slrgen	tillfactor.f90, 263
slrgen.f90, 252	tillfactor, 962
slrgen.f90, 251	tillfactor, 263 tmeas.f90, 263
slrgen, 252	tran
smeas.f90, 252	tran.f90, 264
snom	tran.f90, 264
snom.f90, 253	tran, 264
snom.f90, 252	ttcoef
snom, 253	ttcoef.f90, 265
soil_chem	ttcoef.f90, 264
soil_chem.f90, 253	ttcoef, 265
soil_chem.f90, 253	ttcoef_wway.f90, 265
soil_chem, 253	
soil_phys	varinit
soil_phys.f90, 254	varinit.f90, 266
soil_phys.f90, 254	varinit.f90, 265
soil_phys, 254 soil_write	varinit, 266
	vbl
soil_write.f90, 255 soil write.f90, 254	vbl.f90, 266
soil write, 255	vbl.f90, 266
solt.f90, 255	vbl, 266
std1.f90, 255	volq
std2.f90, 256	volq.f90, 268
std3.f90, 256	volq.f90, 267
storeinitial.f90, 256	volq, 268
subbasin	
subbasin.f90, 257	water_hru.f90, 268
subbasin.f90, 257	wattable.f90, 268
subbasin, 257	weatgn
submon.f90, 257	weatgn.f90, 269
subyr.f90, 258	weatgn.f90, 269
surface	weatgn, 269
surface.f90, 258	wmeas.f90, 269
surface.f90, 258	wndgen
surface, 258	wndgen.f90, 270
surfst h2o	wndgen.f90, 270
surfst h2o.f90, 259	wndgen, 270
surfst_h2o.f90, 259	writea f00, 271
surfst_h2o, 259	writea.f90, 271 writea.f90, 270
surq_daycn	
surq_daycn.f90, 260	writea, 271 writed.f90, 271
surq_daycn.f90, 259	writem
surq_daycn, 260	writem.f90, 272
surq_greenampt	writem.f90, 271
surq_greenampt.f90, 260	writem, 272
surq_greenampt.f90, 260	mioni, Li L
surq_greenampt, 260	xmon.f90, 272
swbl	,
swbl.f90, 261	ysed

```
ysed.f90, 273
ysed.f90, 272
ysed, 273
zero0.f90, 273
zero1.f90, 274
zero_urbn.f90, 274
zeroini.f90, 274
```