10/4

Tuesday, October 03, 2023 4:53 PM

We have covered rank-nullity theorem and basic examples of matrix multiplication, row/col rank of a matrix and concluded that they are the same.

1.
$$A=\begin{pmatrix}1&1&2&4\\1&-3&3&1\\1&9&0&10\end{pmatrix}$$
 . Find its Col(A), Row(A), Nul(A) and their dimensions. What is rank(A)?

- 2. Let $A\in M_n\ (\mathbb{R})$ such that $A_{i,j}=0$ if i+j is odd and 1 if i+j is even . $n\geq 2.$ What is rankA? Give a basis for Col(A).
- 3. If matrix AB=(0), where (0) denotes the zero matrix. Show that $\operatorname{Col}(B)$ is a contained inside of Nul(A).

4. Let
$$v = \begin{pmatrix} 1 \\ 0 \\ 5 \\ 9 \end{pmatrix}$$
, $w = \begin{pmatrix} 0 \\ 1 \\ 9 \\ 2 \end{pmatrix}$

- a. Determine v^Tw . This is the alternative definition of dot product.
- b. Determine vv^T . Determine its rank.
- c. Show that in general, rank(vv^T) = 1, if $v \in \mathbb{R}^n$ and is non-zero.
- 5. Let A, B, C be matrices of appropriate sizes. Show that A(B+C) = AB + AC.
- 6. Let $T\in\mathscr{L}\left(V,W\right)$. Show that
 - a. If T is surjective $dimV \ge dimW$
 - b. If T is injective then $dimV \leq dimW$
 - c. If T is an isomorphism, dimV = dimW
 - d. If T is surjective and dimV=dimW, then T is also injective.
- 7. True or False
 - a. For any $m \times n$ matrices, rank(A+B) = rank(A) + rank(B)
 - b. For any $m \times n$ matrices, rank(A+B) \leq rank(A) + rank(B)
 - c. For any $m \times n$ matrices, rank(AB) = rank(A) rank(B)

Aran, when I did row space in class, I kept the rows in their c $A\in M_{m imes n}\left(\mathbb{R}
ight)$, Row(A) is inside $M_{1 imes n}(\mathbb{R})$

These are essentially corollaries from rank-nullity.