

でルフ某大学 THWESTERN POLYTECHNICAL UNIVERSITY

徐爽

第四节 条件概率、 全概率公式 与贝叶斯公式

- 一、条件概率
- 二、全概率公式与贝叶斯公式

随机事件的概率

n >> N 频率 ≈ 概率

古典概型 $P(A) = \frac{n_A}{n}$ 几何概型 $P(A) = \frac{\mu(A)}{\mu(\Omega)}$.

简单随机现象

复杂随机现象

一、条件概率

1. 问题的引入:

/5i 1 | H

甲乙两台车床加工同一种机械零件,

质量表如下:

三	正品数	次品数	合计
甲车床	35	5	40
乙车床	50	10	60
总计	85	15	100

从这100个零件中任取一个,求下列事件的概率:

西北工业大学概率统计教研室

(1) 取出的一个为正品;

$$A n_A = 85$$

(2) 取出的一个为甲车床加工的零件;

$$B n_B = 40$$

(3) 取出的一个为甲车床加工的正品;

$$AB$$
 $n_{AB} = 35$

(4) 已知取出的一个为甲车床加工的零件,其为正品。C

解 古典概型 $n_{\Omega} = 100$

$$n_{\Omega} = 100$$

(1)
$$P(A) = \frac{85}{100} = 0.85$$
.

(2)
$$P(B) = \frac{40}{100} = 0.40$$
.

$$(3) P(AB) = \frac{35}{100} = 0.35.$$

HALTANA BATTALANGATTAL MAKTA	正品数	次品数	合计
甲车床	35	5	40
乙车床	50	10	60
总计	85)	15	100

(4) ℃: 已知取出的一个为甲车床加工的零件, 其为正品.

附加条件B

 $C = A \mid B$: "B发生的条件下,A发生"

 \Leftrightarrow 属于B的样本点必然出现的条件下,属于A的样本点出现。

$$n_{\Omega}=100$$
 \longrightarrow $n_{B}=40$.

$$P(C) = P(A|B) = \frac{n_{AB}}{n_B} = \frac{35}{40}$$

$$= \frac{n_{AB} / n_{\Omega}}{n_{B} / n_{\Omega}} = \frac{P(AB)}{P(B)} = 0.875.$$

	#WARRANT AND THE	VARIOTENNE DOTTO LA LETTO A PAR	ANNO PARLAMENTAL AND
	正品数	次品数	合计
甲车床	35	5	40
乙车床	50	10	60
总计	85	15	100

2. 定义1.8 (条件概率的定义)

设A, B是两个事件, 且P(B) > 0,则称

$$P(A|B) = \frac{P(AB)}{P(B)}$$

为事件B发生的条件下,事件A发生的条件概率.

西北工业大学概率统计教研室

类似地,以A为条件,相当于把样本空间变为A

3. 条件概率的性质

 $(1) 非负性: 0 \le P(A|B) \le 1;$

$$:: AB \subset B :: 0 \le P(AB) \le P(B)$$

$$\mathbb{X} : P(B) > 0$$
 $\therefore 0 \le \frac{P(AB)}{P(B)} \le 1$

即
$$0 \le P(A|B) \le 1$$
.

(2)规范性: $P(\Omega|B) = 1$, $P(\emptyset|B) = 0$;

$$\mathbb{H} : \Omega B = B$$

$$\therefore P(\Omega|B) = \frac{P(\Omega B)}{P(B)} = \frac{P(B)}{P(B)} = 1.$$

(3) 可列可加性:

对于两两互斥的事件序列: A_1 , A_2 ,...,

有
$$P((\sum_{k=1}^{\infty} A_k) | B) = \sum_{k=1}^{\infty} P(A_k | B)$$
.

$$= \frac{P(\sum_{k=1}^{\infty} (A_k B))}{P(B)} = \frac{\sum_{k=1}^{\infty} P(A_k B)}{P(B)} = \sum_{k=1}^{\infty} P(A_k | B).$$

(4) 加法公式:

$$P((A_1 \cup A_2)|B) = P(A_1|B) + P(A_2|B) - P(A_1A_2|B).$$

$$i \mathbb{E} P((A_1 \cup A_2)B) = P(A_1B \cup A_2B)$$

$$= P(A_1B) + P(A_2B) - P(A_1A_2B)$$

$$P((A_1 \cup A_2)|B) = \frac{P((A_1 \cup A_2)B)}{P(B)}$$

$$= \frac{P(A_1B) + P(A_2B) - P(A_1A_2B)}{P(B)}$$

$$= P(A_1|B) + P(A_2|B) - P(A_1A_2|B).$$

(5) 逆事件的条件概率: $P(A|B) = 1 - P(\overline{A}|B)$.

(数学一2012年第14题)设A, B, C是随机事件,A与C互不相容, $P(AB) = 1/2, P(C) = 1/3, 则<math>P(AB | \overline{C}) =$ ____.

解:
$$P(AB \mid \overline{C}) = \frac{P(AB\overline{C})}{P(\overline{C})} = \frac{P(AB - C)}{1 - P(C)}$$
$$= \frac{P(AB) - P(ABC)}{1 - P(C)} = \frac{1/2 - 0}{1 - 1/3} = \frac{3}{4}$$

(数学-2015年第7题)若A, B为任意两个随机事件,则:

- $\bigcirc P(AB) \le (P(A) + P(B))/2 \bigcirc P(AB) \le P(A)P(B)$

提示: $P(A|B) = P(AB)/P(B) \le 1$

4.乘法公式

条件概率

$$P(A|B) = \frac{P(AB)}{P(B)}$$

乘法公式

若
$$P(B) > 0$$
,则有 $P(AB) = P(B)P(A|B)$.
若 $P(A) > 0$,则有 $P(AB) = P(A)P(B|A)$.

意义: 积事件的概率等于某一事件的概率乘以 另一事件在该事件发生条件下的条件概率。

乘法公式把样本空间又变成Ω

乘法公式推广

设A,B,C为事件,且P(AB)>0,则

P(ABC) = P(AB)P(C|AB)

A ABC B C C C

$$P(A) > 0$$
$$P(B) > 0$$

$$= P(A)P(B|A)P(C|AB).$$

简单

复杂

特殊

一般

西北工业大学概率统计教研室

乘法公式

若P(B) > 0,则有P(AB) = P(B)P(A|B).

若P(A) > 0,则有P(AB) = P(A)P(B|A).

乘法公式推广

设 A_1, A_2 L A_n 是n个事件,若 $P(A_1A_2 \cdots A_{n-1}) > 0$,

 $P(A_1 A_2 \cdots A_n) = P(A_1) P(A_2 | A_1) P(A_3 | A_1 A_2) \cdots$

 $\cdots P(A_n | A_1 A_2 \cdots A_{n-1}).$

复杂事件的概率

分解

简单事件概率的乘积

例2 抽奖是否与次序有关?

10000张奖券,其中100张有奖,先后无放回

抽奖,则每个人中奖的概率是否相同?

解 设 A_i 表示第i个人中奖, $i=1,2,\cdots n$

古典概型

$$P(A_1) = \frac{k}{n} = \frac{1}{100}$$

其中n = 10000, k = 100。

A,:第2个人中奖

$$A_2 = A_1 A_2 \bigcup \overline{A_1} A_2$$

$$A_2 = A_1 A_2 \cup \overline{A_1} A_2 \quad (A_1 A_2 \cap A_1 A_2 = \emptyset)$$

有限可加性

$$P(A_2) = P(A_1A_2) + P(A_1A_2)$$
 乘法公式

古典概型

$$= P(A_1)P(A_2|A_1) + P(\overline{A_1})P(A_2|\overline{A_1})$$

$$= \frac{k}{n} \times \left[\frac{k-1}{n-1} \right] + \frac{n-k}{n} \times \left[\frac{k}{n-1} \right] = \frac{1}{100}$$

其中
$$n=10000, k=100$$
。

 A_3 :第3个人中奖

$$P(A_3) = P(A_1\overline{A_2}A_3) + P(\overline{A_1}A_2A_3) + P(\overline{A_1}\overline{A_2}A_3) + P(\overline{A_1}\overline{A_2}A_3) + P(A_1A_2A_3)$$

乘法公式推广

$$P(A_1\overline{A_2}A_3) = P(A_1)P(\overline{A_2}|A_1)P(A_3|A_1\overline{A_2})$$

$$P(\overline{A_1}A_2A_3)=P(\overline{A_1})P(A_2|\overline{A_1})P(A_3|\overline{A_1}A_2)$$

古典概型

$$= \frac{k}{n} \times \frac{n-k}{n-1} \times \frac{k-1}{n-2}$$

$$= \frac{n-k}{n} \times \frac{k}{n-1} \times \frac{k-1}{n-2}$$

$$P(\overline{A_1} \ \overline{A_2} A_3) = P(\overline{A_1}) P(\overline{A_2} | \overline{A_1}) P(A_3 | \overline{A_1} \ \overline{A_2})$$

$$= \frac{n-k}{n} \times \frac{n-k-1}{n-1} \times \frac{k}{n-2}$$

$$P(A_1 A_2 A_3) = P(A_1) P(A_2 | A_1) P(A_3 | A_1 A_2)$$

$$= \frac{k}{n} \times \frac{k-1}{n-1} \times \frac{k-2}{n-2}$$

$$\therefore P(A_3) = P(A_1 \overline{A_2} A_3) + P(\overline{A_1} A_2 A_3)$$

$$+ P(\overline{A_1} \ \overline{A_2} A_3) + P(A_1 A_2 A_3)$$

$$k = 1$$

n = 100

抽奖是否与次序有关?

10000张奖券, 其中100张有奖,

先后无放回抽奖,则每个人中奖的概率是否相同?

解 设 A_i 表示第i个人中奖, i=1,2...n

则
$$P(A_1) = P(A_2) = P(A_3) = \frac{1}{100}$$

依次类推
$$P(A_4) = P(A_5) = \cdots = P(A_{10000}) = \frac{1}{100}$$
.

抽奖是公平的,中奖率与次序无关!

抽奖原理(抓阄原理):

n个人抽奖,奖项有m个(m < n),则第k个人中奖的概率为 $\frac{m}{n}$.

例子:设袋中有50只乒乓球,其中20只黄球,30只白球,现从中依次不放回地任取两只,则第二次取得黄球的概率为____2/5____.