Séries numériques

I. Généralités

Définition. Soit $u \in \mathbb{K}^{\mathbb{N}}$. On appelle série de terme général u_n la suite $\left(S_n = \sum_{k=0}^n u_k\right)_{n \in \mathbb{N}}$.

On la note $\sum u_n$.

La suite $(S_n)_{n\in\mathbb{N}}$ est appelée suite des sommes partielles associée à la série. La série $\sum u_n$ est dite convergente si la suite des sommes partielles converge et divergente sinon.

Lorsque la série $\sum u_n$ converge, sa limite est notée $\sum_{n=0}^{\infty} u_n$ et appelée somme de la série.

Proposition. Soit $\lambda \in \mathbb{C}$ alors la série $\sum \lambda^n$ converge si et seulement si $|\lambda| < 1$ et dans ce cas

$$\sum_{n=0}^{+\infty} \lambda^n = \frac{1}{1-\lambda}.$$

Proposition. Si la série $\sum u_n$ converge alors pour tout entier n, on note

$$R_n = \sum_{k=0}^{+\infty} u_k - \sum_{n=0}^{n} u_k = \sum_{n=0}^{+\infty} u_k - Sn.$$

Le scalaire R_n est appelé le reste d'ordre n et on note $R_n = \sum_{k=n+1}^{+\infty} u_k$. La suite $(R_n)_{n\in\mathbb{N}}$ converge vers zéro. Elle est appelée suite des restes.

Proposition. Soit $u \in \mathbb{K}^{\mathbb{N}}$ alors u est la série de terme général $v_n = \begin{cases} u_0 & \text{si } n = 0 \\ u_n - u_{n-1} & \text{sinon} \end{cases}$

Proposition. Une suite $u \in \mathbb{K}^{\mathbb{N}}$ est de même nature que la série $\sum (u_{n+1} - u_n)$

Théorème. Soit $u \in \mathbb{C}^{\mathbb{N}}$. Si la série $\sum u_n$ converge alors $\lim u = 0$.

Définition. Soit $u \in \mathbb{C}^{\mathbb{N}}$. On dit que la série $\sum u_n$ diverge grossièrement si $\lim u \neq 0$. Dans ce cas, la série $\sum u_n$ diverge.

Remarque : La divergence grossière est une condition suffisante mais non nécessaire de divergence comme le montre l'exemple suivant

Proposition. La série harmonique $\sum \frac{1}{n}$ diverge.

Proposition. Si les séries $\sum u_n$ et $\sum v_n$ converge, alors, pour tout $(\lambda, \mu) \in \mathbb{K}^2$, la série $\sum (\lambda u_n + \mu v_n)$ converge.

Proposition. Si la série $\sum u_n$ converge, alors les séries $\sum v_n$ et $\sum (u_n + v_n)$ sont de même nature.

Proposition. La série $\sum u_n$ converge si, et seulement si, les séries $\sum \operatorname{Re} u_n$ et $\sum \operatorname{Im} u_n$ convergent.

Dans ce cas,
$$\sum_{n=0}^{+\infty} u_n = \sum_{n=0}^{+\infty} \operatorname{Re} u_n + i \sum_{n=0}^{+\infty} \operatorname{Im} u_n$$

Proposition. Si les suites u et v sont égales à partir d'un certain rang, alors les séries $\sum u_n$ et $\sum v_n$ sont de même nature.

II. Séries à termes positifs

Proposition. Soit u une suite réelle positive alors la série $\sum u_n$ converge si et seulement si la suite des sommes partielles $\left(S_n = \sum_{k=0}^n u_k\right)_{n \in \mathbb{N}}$ est majorée.

Proposition. Soient u et v deux suites réelles **positives** telles que $u \leq v$ alors

- si la série $\sum v_n$ converge alors la série $\sum u_n$ aussi si la série $\sum u_n$ diverge alors la série $\sum v_n$ aussi

Les résultats sont conservés si l'inégalité est vraie à partir d'un certain rang

Proposition. Soient u et v deux suites réelles positives telles que u = O(v) alors

- si la série $\sum v_n$ converge alors la série $\sum u_n$ aussi
- si la série $\sum u_n$ diverge alors la série $\sum v_n$ aussi

Proposition. Soient u et v deux suites réelles positives telles que $u \sim v$ alors les séries $\sum u_n$ $et \sum v_n$ sont de même nature.

Remarque : La positivité (ou le signe constant) est indispensable.

Par exemple,
$$\frac{(-1)^n}{\sqrt{n}} \sim \frac{(-1)^n}{\sqrt{n}} + \frac{1}{n}$$
 mais $\sum \frac{(-1)^n}{\sqrt{n}}$ converge alors que $\sum \left(\frac{(-1)^n}{\sqrt{n}} + \frac{1}{n}\right)$ diverge.

Proposition. Soit $\alpha \in \mathbb{R}$. La série de Riemann $\sum \frac{1}{n^{\alpha}}$ converge si, et seulement si, $\alpha > 1$.

Corollaire. Critère de Riemann

Soit u une suite positive.

— Si
$$u_n = O\left(\frac{1}{n^{\alpha}}\right)$$
 avec $\alpha > 1$, alors le série $\sum u_n$ converge.

— Si
$$\frac{1}{n^{\alpha}} = O(u_n)$$
 avec $\alpha \le 1$, alors le série $\sum u_n$ diverge.

Exercice. Nature des séries $\sum \frac{\ln n}{n^2}$ et $\sum \frac{1}{\sqrt{n \ln n}}$

Proposition. Critère de d'Alembert

Soit u une suite réelle strictement positive à partir d'un certain rang telle que $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \ell$

- $\begin{array}{lll} & si \; \ell < 1 \; alors \; la \; s\'erie \; \sum u_n \; converge \\ & si \; \ell > 1 \; alors \; la \; s\'erie \; \sum u_n \; diverge \end{array}$
- $si \ell = 1$ alors on ne peut pas conclure.

III. Séries à termes quelconques

1. Convergence absolue

Définition. Soit $u \in \mathbb{C}^{\mathbb{N}}$.

La série $\sum u_n$ est dite absolument convergente si la série $\sum |u_n|$ converge.

Théorème. Une série absolument convergente est convergente.

De plus, si la série $\sum u_n$ est absolument convergente alors $\left|\sum_{n=1}^{+\infty} u_n\right| \leq \sum_{n=1}^{+\infty} |u_n|$

Proposition. Soit $u \in \mathbb{C}^{\mathbb{N}}$ et v une suite réelle **positive**. Si u = O(v) et si la série $\sum v_n$ converge alors la série $\sum u_n$ converge.

Remarque : La positivité (ou le signe constant) de v est indispensable.

Par exemple,
$$\frac{1}{n} = O\left(\frac{(1)^n}{n}\right)$$
 mais $\sum \frac{(1)^n}{n}$ converge alors que $\sum \frac{1}{n}$ diverge.

Proposition. Soit $u \in \mathbb{C}^{\mathbb{N}}$ et $\alpha \in \mathbb{R}$. Si $u_n = O\left(\frac{1}{n^{\alpha}}\right)$ et si $\alpha > 1$ alors la série $\sum u_n$ converge.

Remarque: Si $\frac{1}{n^{\alpha}} = O(u_n)$ et si $\alpha \leq 1$ alors la série $\sum |u_n|$ diverge mais la série $\sum u_n$ peut quand même converger. Par exemple $\sum \frac{(-1)^n}{n}$.

Proposition. Critère de d'Alembert

Soit $u \in \mathbb{C}^{\mathbb{N}}$ ne s'annulant pas à partir d'un certain rang et vérifiant $\lim_{n \to +\infty} \left| \frac{u_{n+1}}{u_n} \right| = \ell$ alors

- si $\ell < 1$ alors la série $\sum u_n$ converge si $\ell > 1$ alors la série $\sum u_n$ diverge
- $si \ell = 1$ alors on ne peut pas conclure.

2. Séries alternées

Définition. Soit u une suite réelle. On dit que la série $\sum u_n$ est alternée si la suite $((-1)^n u_n)_{n\in\mathbb{N}}$ est de signe constant.

Théorème. Théorème des séries alternées

Soit $\sum u_n$ une série alternée telle que |u| soit décroissante et de limite nulle alors la série $\sum u_n$ converge.

De plus, pour tout entier n, le reste
$$\sum_{k=n+1}^{+\infty} u_k$$
 est du signe de u_{n+1} et $\left|\sum_{k=n+1}^{+\infty} u_k\right| \leq |u_{n+1}|$.

Proposition. Soit $\alpha \in \mathbb{R}$. La série $\sum \frac{(-1)^n}{n^{\alpha}}$ converge si et seulement si $\alpha > 0$.

3. Comparaison séries-intégrale

Soit f une fonction continue par morceaux sur \mathbb{R} et monotone alors pour tout entier n non nul,

$$-\int_{n-1}^{n} f \le f(n) \le \int_{n}^{n+1} f \text{ si } f \text{ est croissante}$$
$$-\int_{n}^{n+1} f \le f(n) \le \int_{n-1}^{n} f \text{ si } f \text{ est décroissante}$$

Cet encadrement peut permettre de connaître la nature de la série $\sum f(n)$, de trouver un équivalent des sommes partielles lorsque la série $\sum f(n)$ diverge ou des restes lorsque la série $\sum f(n)$

Exercice. Soit $\alpha \in]1, +\infty[$. La série de Riemann $\sum \frac{1}{n^{\alpha}}$ converge et

$$\sum_{k=n}^{+\infty} \frac{1}{k^{\alpha}} \sim \frac{1}{(\alpha - 1)n^{\alpha - 1}}$$

Exercice. Soit $\beta \in \mathbb{R}$. La série de Bertrand $\sum \frac{1}{n(\ln n)^{\beta}}$ converge si et seulement si $\beta > 1$ et dans ce cas

$$\sum_{k=n}^{+\infty} \frac{1}{k(\ln k)^{\beta}} \sim \frac{1}{(\beta-1)(\ln n)^{\beta-1}}$$