Exploratory Spatial Data Analysis in R

Hi, there.

- Research Analyst at The NPD Group
- MS in Urban Informatics at Northeastern
- BA Sociology & Anthropology @ Plymouth State, NH
 - Certificate in GIS
 - Minor in Math
 - I got a D in calc II though :/ Trig sub? Really?

Today's Goal

- Introduce the fundamentals of:
 - Spatial data
 - The first law of geography
 - The objective of ESDA
 - {sfdep} R package

Exploratory Data Analysis (EDA)

A brief review

"Exploratory Data Analysis (EDA) is an approach/philosophy for data analysis that employs a variety of techniques (mostly graphical) to:

- maximize insight into a data set;
- 2. uncover underlying structure;
- 3. extract important variables;
- 4. detect outliers and anomalies..."

- NIST Handbook

"EDA is not a formal process with a strict

set of rules. More than anything, EDA is a

state of mind." R for Data Science,

Hadley Wickham

Exploratory Data Analysis

- Goal: "discover potentially explicable patterns" (Good, 1983)
- Emphasis on data visualization
- Use of descriptive statistics
- Discovering outliers

Exploratory Spatial Data Analysis (ESDA)

Extending EDA to spatial data

First, spatial data.

First, spatial data

- Many sources and domains:
 - Transportation
 - Ecology
 - Environmental Sciences
 - Demography
- Let's explore a few

Road Networks

- Square Mile Street
 Network, Geoff Boeing
- Source

- Flower colors in Pune,
 India, Aseem Deodhar
- Source

Satellite Imagery

- Landsat Color Band Combinations,
 David Harbor
- Source

False Colour 6,5,2 Vegetation

False Colour 7,6,4 Urban

> Colour IR 5,4,3 Vegetation

False Colour 5,6,4 Land/Water

- Identifying
 Hard-to-Survey
 populations, Census
- <u>Source</u>

Digital Elevation Models

- {rayshader}, TylerMorgan-Wall
- <u>Source</u>

BIG Spatial Data

- Big Data is often Big Spatial Data
- ~80% of Big Data have a spatial component
 - Huang & Wang, 2020
- Sources:
 - LiDAR (Light detection and ranging)
 - Point-of-Sale (POS) data
 - Point-of-interest (POI) data
 - IoT devices
 - 311 services
 - Road network data

- How Autonomous Cars
 Map the Environment
- <u>Source</u>

- E.g. The NPD Group collects POS data from 600k+ retailers
- Every sales transaction is recorded
- Sales are tracker at a per-store level
- Stores are in a physical location
- Used to track sales performance

POI Data

- One of the fastest growing data markets
- Tracks any place:
 - Restaurants (Yelp)
 - Housing (Zillow, Trulia, etc)
 - Rentals (Airbnb)
- Vendors like SafeGraph and Carto

Types of Spatial Data

- Vector:
 - Coordinate based data
 - Points, lines, and polygons
 - Most commonly seen
- Raster:
 - A grid of cells (pixels) where each cell has a value

Vector Data

- Points: a (long, lat) coordinate
 - Sometimes Z (altitude)
- Lines: two or more connected points
- Polygons: four connected points that create a closed shape

Vector Data

Some terms you may see

Point Pattern:

- Refers to analysis of points

Lattice:

- Refers to analysis of polygons
- Much of ESDA fall into the lattice data category
- We'll focus on lattice

Some nice lattices

"Everything is related to everything else,

but near things are more related

than distant things."

66

(Waldo R. Tobler, 1970)

Exploratory Spatial Data Analysis (ESDA)

- Extends EDA to spatial relationships
- Are things randomly distributed?
- Are there spatial outliers?
- Focus on:
 - spatial autocorrelation
 - Are values related to their neighbors?
 - Spatial heterogeneity
 - Is there an uneven distribution of values?

ESDA

- EDA compares a part to the whole
- ESDA compares a part to its neighboring parts
- In ESDA we evaluate a location to its neighborhood
- How do we define a neighborhood?

- Take a chess board
- Each square is a polygon
- What is the neighborhood of each square?

Defining Spatial Neighbors

- Lattice data uses contiguity
- Contiguity:
 - "touching or being next to something."
- Two main types:
 - Rook (edges) contiguity:
 - touching by sides
 - Queen (edges and vertices) contiguity:
 - Touching by sides and corners

Queen's Gambit: Rook Contiguity

- 1. d4 ..
- Edges (sides) touch:
 - c4
 - d3, d5
 - e4
- 4 total neighbors

Queen's Gambit: Queen Contiguity

- Neighbors:
 - c3, c4, c5
 - d3, d5
 - e3, e4, e5
- 8 total neighbors

Rook & Queen Contiguity

- Vertices and edges aren't so simple in reality
- A region in France and its neighbors

How do we evaluate the neighborhood?

- We compare a point value to the neighborhood's point values
- Calculate the spatial lag
 - The average value for a variable in a neighborhood
 - More on this in a bit
- But how important should each neighbor be?

Spatial Weights

- Based on Tobler's first law, closer neighbors should have higher weights
- No effective distance measure for polygons
- Each polygon gets an equal weight
 - Called row standardized weights
 - Defined as $w_{ij(s)} = w_{ij} / \sum_{i} w_{ij}$.
 - More simply: 1 / (# of neighbors)
 - E.g. 4 neighbors with weight 0.25

What is the average value of a neighborhood?

Spatial Lag

- In time-series a lag compares a value to itself after an amount of time
- In spatial analysis, compare a value to its neighbours
- The expected value of the neighborhood (excluding the observed point)
- Given by $[Wy]_i = \sum_{j=1}^n w_{ij}y_j$

Spatial Lag Example

```
xi <- 100
xj <- c(5, 40, 100, 35)
wj <- 1 / length(xj)
sum(xj * wj)
#> [1] 45
```


Chess Board Spatial Lag

57	58	59	60	61	62	63	64
49	50	51	52	53	54	55	56
41	42	43	44	45	46	47	48
33	34	35	36	37	38	39	40
25	26	27	28	29	30	31	32
17	18	19	20	21	22	23	24
9	10	11	12	13	14	15	16
1	2	3	4	5	6	7	8

52.3	53.2	54.2	55.2	56.2	57.2	58.2	58
49.6	50	51	52	53	54	55	55.4
41.6	42	43	44	45	46	47	47.4
33.6	34	35	36	37	38	39	39.4
25.6	26	27	28	29	30	31	31.4
17.6	18	19	20	21	22	23	23.4
9.6	10	11	12	13	14	15	15.4
7	6.8	7.8	8.8	9.8	10.8	11.8	12.7

Crime in 1830's France

Plotting the Spatial Lag

- Use a scatter plot
 - AKA Moran Plot
- X axis: original variable
- Y axis: the lagged variable
- Slope of the regression line Y ~ X is the autocorrelation
- Can use the plot to classify clusters

Moran Plot

- Intercepts at mean
 - Centers at 0
- Effectively plotting
 Z-scores
- Quadrants identify cluster types

- High-High
 - Large value with large value neighbors
- High-Low
 - Large value with low value neighbors
- Low-Low
 - Small value with low value neighbors
- Low-High
 - Small value with high value neighbors

Slope represents spatial autocorrelation

Spatial Autocorrelation

- The tendency of like values to cluster in space
- Based on the assumption of spatial randomness
 - Values are randomly dispersed through a landscape
- Positive: when like values cluster together
- Negative: when dissimilar values cluster together

Global Moran's I

- Most common measure of autocorrelation
- Like Pearson's R, ranges from [-1, 1]
- -1 perfect negative autocorrelation
- 1 perfect positive autocorrelation

- Defined as
$$\frac{\sum_{i}(z_{i} \times \sum_{j} w_{ij}z_{j})}{\sum_{i} z_{i}^{2}}$$

Moran Plot

- Moran's I is 0.411 here

Inference

- Null hypothesis: spatial randomness
- Traditional hypothesis testing uses assumptions of normality
- Normality is rarely observed in spatial data
- Permutation based inference is used
- Permutations create a random reference distribution
- p = (R + 1) / (M + 1)

Inference

- Uses conditional permutation
 - Neighbors are randomly sampled at point i
 - Point i can never be its own neighbor
 - Simulates spatial randomness
- Calculate Moran's I with randomized neighbors
- M is the number of permutations
- R is the number of times the random Moran's I is greater than the observed Moran's I

Inference

- Simulated p-value is dependent upon how many simulations you run
- Be extra conservative!
- Typically a p-value of 0.01 or 0.001 is used for significance cut-offs

A tidy interface to spdep for spatial dependence.

Motivation

- PPUA 7237: Advanced Spatial Analytics w/ Geoff Boeing, 2019
- Used python and Pysal library
- Forever miffed if I have to use python
- Mind blown by spatial regression
- An R tool for ESDA sat in the back of my mind

Mid-pandemic 2021

- Somehow got the idea to relearn spatial stats
- Discovered r-spatial/spdep
- spdep felt idiosyncratic as a tidyverse-stan
- spdep *almost* tidyverse compatible
- Resultant objects lacked "list" class and could not be included in a tibble
- <u>Issue 59</u> insightful and motivational

- In May, 2021 developed {sfweight}
 - Too heavy reliance on dplyr
 - Ignored advice from Issue 59
- Added functionality to spdep and learned a lot
- Decided on a new interface to spdep

{sfdep} principles

- Always use sf objects for geometry
- Always return dplyr friendly objects
 - Vectors, lists, data frames
- Functionality is not dependent upon dplyr
- Minimal light dependencies
- All functionality is implemented on spdep objects when possible
 - nb and listw class objects

Making neighbors

- st_contiguities(geometry, queen = TRUE)
- Takes an sfc class object
 - the geometry column of an sf object
- Returns a nb class object (list)

Making neighbors

- library(sf)
 library(sfdep)
 library(tidyverse)
- st_contiguity(st_geometry(guerry))
- #> Neighbour list object:
- #> Neignbour list object
 #> Number of regions: 85
- #> Number of nonzero links: 420
- #> Percentage nonzero weights: 5.813149
 - #> Average number of links: 4.941176

Making neighbors

```
guerry |>
 transmute(nb = st_contiguity(geometry))
#> Simple feature collection with 85 features and 1 field
#> Geometry type: MULTIPOLYGON
#> Dimension:
                 XY
#> Bounding box: xmin: 47680 ymin: 1703258 xmax: 1031401 ymax: 2677441
#> CRS:
                  NA
#> # A tibble: 85 × 2
#>
     nb
                                                                            geometry
#> * <nb>
                                                                      <MULTIPOLYGON>
   1 <int [4]> (((801150 2092615, 800669 2093190, 800688 2095430, 800780 2095795,...
   2 <int [6]> (((729326 2521619, 729320 2521230, 729280 2518544, 728751 2517520,...
   3 <int [6]> (((710830 2137350, 711746 2136617, 712430 2135212, 712070 2134132,...
```

The neighbor list

- Each element is an integer vector
- Elements contain row position of neighbors

```
nb <- st_contiguity(st_geometry(guerry))
nb[1:3]
#> [[1]]
#> [1] 36 37 67 69
#> [[2]]
#> [1] 7 49 57 58 73 76
#> [[3]]
#> [1] 17 21 40 56 61 69
```

Spatial Weights

- st_weights(nb) requires a nb object
 - Row standardized by default
 - Each weight is the same
- Each element is a numeric vector
 - Contains weight for each indexed observation in nb

Spatial Weights

```
guerry_nb <- guerry_nb |>
 mutate(nb = st_contiguity(geometry),
        wt = st_weights(nb))
pull(guerry_nb, "wt")[1:2]
#> [[1]]
#> [1] 0.25 0.25 0.25 0.25
#>
#> [[2]]
#> [1] 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667
```

Spatial Lag

- st_lag(x, nb, wt) calculates the spatial lag for x
 - X is a numeric vector
 - nb is a neighbor object
 - wt is a weights list
- Use cases:
 - Moran Plot
 - Identify neighborhood averages
 - Useful in regression

Spatial Weights

```
guerry_lag <- guerry_nb |>
 mutate(crime_lag = st_lag(crime_pers, nb, wt))
select(guerry_lag, crime_pers, crime_lag) |>
  slice(1:3)
#> # A tibble: 3 × 3
#>
     crime_pers crime_lag
                                                                            geometry
          <int>
                   <dbl>
                                                                      <MULTIPOLYGON>
#>
#> 1
          28870 23048. (((801150 2092615, 800669 2093190, 800688 2095430, 80078...
          26226
#> 2
                   26920. (((729326 2521619, 729320 2521230, 729280 2518544, 72875...
#> 3
          26747
                   26195. (((710830 2137350, 711746 2136617, 712430 2135212, 71207...
```

Classifying observations

- Utilize dplyr to classify observations into clusters
- Use to clusters to create a Moran Plot

```
guerry_clusters <- guerry_lag |>
  mutate(cluster = case_when(
  crime_pers > mean(crime_pers) & crime_lag > mean(crime_lag) ~ "HH",
  crime_pers > mean(crime_pers) & crime_lag < mean(crime_lag) ~ "HL",
  crime_pers < mean(crime_pers) & crime_lag < mean(crime_lag) ~ "LL",
  crime_pers < mean(crime_pers) & crime_lag > mean(crime_lag) ~ "LH"
  ))
```

Creating a Moran Plot

- Create a basic scatter plot
- Add intercepts to delineate clusters

```
guerry_clusters |>
  ggplot(aes(crime_pers, crime_lag, color = cluster)) +
  geom_point() +
  geom_vline(aes(xintercept = mean(crime_pers)), lty = 2) +
  geom_hline(aes(yintercept = mean(crime_lag)), lty = 2) +
  theme_minimal()
```


Local Indicators of Spatial Association (LISAs)

- LISAs evaluate a statistic at the neighborhood
- Moran's I can be calculated for each region
 - Called the Local Moran
 - The OG LISA
- Local Moran evaluates autocorrelation within clusters
- Uses conditional permutation for significance

Local Moran

- local_moran(x, nb, wt)
 - Calculates Moran's I at each point
 - Identifies clusters (High-High, Low-Low, etc.)
 - Calculates multiple p-values
 - Assumption of normality
 - Simulated rank-based p-values
 - Simulated p-values using (R + 1) / (M + 1)
 - Returns a data frame
 - tidyr to the rescue

Local Moran

```
# calculate local moran
guerry_lisa <- guerry_nb |>
 mutate(lisa = local_moran(crime_pers, nb, wt)) |>
 unnest(lisa)
# preview rows
guerry_lisa |>
 st_drop_geometry() |>
 select(last_col(11):last_col()) |>
 glimpse()
```

Local Moran

#> \$ skewness

#> \$ kurtosis

#> \$ mean

#> \$ median

#> \$ pysal

#> \$ p folded sim <dbl> 0.180, 0.004, 0.026, 0.054, 0.120, 0.054, 0.286, 0.052, 0...

<dbl> -0.08509936, -0.07472420, -0.07216080, -0.02028766, -0.21...

<dbl> -0.399030265, -0.109908940, 0.221181963, -0.033306492, -0...

<fct> High-High, High-High, High-High, Low-Low, Low-Low, Low-Lo...

<fct> High-High, High-High, High-High, Low-Low, Low-Low, Low-Lo...

<fct> High-High, High-High, High-High, Low-Low, Low-Low, Low-Lo...

Local Moran Clusters

```
guerry_lisa |>
  mutate(cluster = ifelse(
    p_folded_sim <= 0.05,
    as.character(mean), NA)) |>
  ggplot(aes(fill = cluster)) +
  geom_sf(lwd = 0.2, color = "black") +
  theme_void()
```


Educational Attainment in Boston To RStudio we go.

It can't just be this one statistic...

Topics to explore

- Point pattern analysis
- Different neighbors:
 - k-NN, distance band, lagged neighbors
- Different weighting:
 - Distance based
 - Kernel decay
 - Inverse distance
- Spatial regressionx

Some other measures

- Join Counts
 - Evaluates binary variables
- Neighbor match test
 - Continuous variables
 - Compare neighbors in physical and attribute distance
- Colocation
 - Categorical variables
 - Checks for asymmetric relationships between points

Thank you!

