ECE ING4 MACHINE LEARNING

Jeremy Cohen

Logistic Regression

Week 2 Review

Machine Learning Process

PREDICTION

Classification vs Regression

Regression

What is the temperature going to be tomorrow?

Classification

Will it be Cold or Hot tomorrow?

Classification

Classification

Multi-Class Classification

3 Datasets

Training Set

~70% of the dataset

Used to train the model

Validation Set

Test Set

~20% of the dataset

Used to **test** the model and **generalize better to new data**

~10% of the dataset

Used **only once** when both accuracies are good and ready for real-world

3 Datasets

Linear Regression formula

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define $x_0 = 1$ $(x_0^{(i)} = 1)$

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$h_{\theta}(x) = \sum_{i=1}^{n} \theta_i x_i = \theta^T x$$

Mean Squared Error

Gradient Descent Recap

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

In this case, the derivative (gradient) $\partial J(\theta) / \partial \theta < 0$. $\theta^A - \alpha^* \partial J(\theta) / \partial \theta > \theta^A$ θ^A is moving to the right θ is increasing

In this case, the derivative (gradient) $\partial J(\theta) / \partial \theta > 0$. $\theta^B - \alpha^* \partial J(\theta) / \partial \theta < \theta^B$ θ^B is moving to the left θ is decreasing

Gradient Descent Recap

Repeat
$$\left\{ \begin{array}{ll} \theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \\ \\ \left\{ \begin{array}{ll} \text{(simultaneously update } \theta_j \text{ for } \\ j = 0, \dots, n) \end{array} \right. \end{array} \right.$$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{\substack{i=1\\m}}^m (h_\theta(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

. . .

Performance

Classification

Classification Example

Binary vs Multi-Class Classification

Output has 2 categories

Cancer
Not Cancer

Output has more than categories

Can Linear Regression help?

Linear Regression vs Classification

Linear Regression output : $-\infty < h\theta(x) < +\infty$

Classification output: y = 0 or 1

Logistic Regression output : $0 \le h\theta(x) \le 1$

Linear Regression can't help

We want $0 \le h\theta(x) \le 1$

Use the Sigmoid / Logistic Function : $g(z)=rac{1}{1+e^{-z}}$ $h_{ heta}(x)=g(heta^Tx)$ $g(z)=rac{1}{1+e^{-z}}$

Logistic Regression

 $h_{\theta}(x)$ = estimated probability that y = 1 given the input x parameterized by θ

$$h_{\theta}(x) = P(y = 1 | x; \theta) = 1 - P(y = 0 | x; \theta)$$

$$P(y = 1 | x; \theta) + P(y = 0 | x; \theta) = 1$$

$$0.8$$
Hypothesis:
$$y = 1 \text{ when } g(\theta^{T}x) \ge 0.5 \Rightarrow \theta^{T}x \ge 0$$

$$y = 0 \text{ when } g(\theta^{T}x) < 0.5 \Rightarrow \theta^{T}x < 0$$

$$0.0 - 6 - 4 - 2 \quad 0 \quad 2 \quad 4 \quad 6$$

 $\theta^T x$

Logistic Regression

If
$$h_{\theta}(x) \geq 0.5$$
, predict "y = 1" $\theta^T x \geq 0$

If
$$h_{\theta}(x) < 0.5$$
, predict "y = 0" $\theta^T x < 0$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

$$\theta = -3$$

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$

$$x1 + x2 \ge 3$$

Non-Linearities

$$h_{\theta}(x) = g(\theta^{T}x) = \frac{1}{1 + e^{-\theta^{T}x}}$$

Example: $h_{\theta}(x) = g (\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$

- $\theta = [-1, 0, 0, 1, 1]$
- o Predict 1 if $-1 + x_1^2 + x_2^2 \ge 0 \Rightarrow x_1^2 + x_2^2 \ge 1$
- o Predict 0 if $-1 + x_1^2 + x_2^2 < 0 \Rightarrow x_1^2 + x_2^2 < 1$

We can work with non-linearly separable data

Non-Linearities

As with polynomial regression, we can have more complex decision boundaries by adding higher polynomial terms $h_{\theta}(x) = g (\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1^3 + \theta_6 x_2^3)$

Decision boundary
$$x_2$$
 $y=0$ x_1

How to choose θ ?

Cost Function

Cost Function for Linear Regression

Cost Function for Linear Regression

Possible to run Gradient Descent

Impossible to run Gradient Descent

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Cost = 0 if
$$y = 1, h_{\theta}(x) = 1$$

But as $h_{\theta}(x) \to 0$
 $Cost \to \infty$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

```
Repeat \{ \theta_j:=\theta_j-\alpha\frac{\partial}{\partial\theta_j}J(\theta) \{ (simultaneously update all \theta_j)
```

Gradient Descent

$$J(\theta) = -\frac{1}{m} [\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))]$$
 Want $\min_{\theta} J(\theta)$:
$$\text{Repeat } \{$$

$$\theta_{j} := \theta_{j} - \alpha \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

$$\text{(simultaneously update all } \theta_{j})$$

Support Vector Machine

SVM

GOAL

Separate the dataset into classes with as much correctly classified points as possible

SVM

support vectors

PROCESS

- Select the line that correctly classifies as many points as possible
- Select the line that maximizes distance with support vectors

SVM

NOTABLE

 Robust to outliers/exceptions; line will not be affected

SVM

NOTABLE

• If the data is non linearly separable, we can make it

Multiclass Classification

On a new input, to make a prediction, pick the class that maximizes: $max_i \; h_{ heta}{}^i(x)$

On a new input, to make a prediction, pick the class that maximizes: $max_i \; h_{ heta}{}^i(x)$

Overfitting

Linear Regression

UNDERFITTING

JUST RIGHT

OVERFITTING

high variance

high bias

Linear Regression

Logistic Regression

JUST RIGHT

OVERFITTING

high bias

UNDERFITTING

high variance

Performance

Accuracy

$$Accuracy = \frac{number\ of\ data\ points\ \textit{classified\ correctly}}{all\ data\ points}$$

Confusion Matrix

Imbalanced Classification Problem

If a classifier labels everyone as not terrorist:

Confusion Matrix

Precision & Recall

$$Precision = \frac{True \ positive}{True \ positive + False \ positive}$$

$$Recall = \frac{True \ positive}{True \ positive + False \ negative}$$

	Positive	Negative
Num examples	53	47
Correct	48	40
Wrong	5	7

90

10

PREDICTED/ ACTUAL	Positive	Negative
Positive	0 (TP)	0 (FP)
Negative	10 (FN)	90 (TN)

If we label everyone as non-terrorists, our recall and precision are 0 or not computable

90

10

PREDICTED/ACTUAL	Positive	Negative
Positive	10 (TP)	90 (FP)
Negative	0 (FN)	0 (TN)

Recall is the ability to find relevant cases in a dataset!

90

10

PREDICTED / ACTUAL	Positive	Negative
Positive	3 (TP)	0 (FP)
Negative	7 (FN)	90 (TN)

Precision is the ability to find only the relevant data points

90

10

PREDICTED / ACTUAL	Positive	Negative
Positive	4 (TP)	3 (FP)
Negative	6 (FN)	87 (TN)

All Examples (100)

F1 Score

$$F_1 = 2 * \frac{precision * recall}{precision + recall}$$

Accuracy is used when the True Positives and True negatives are **more important** while **F1-score** is used when the False Negatives and False Positives are crucial.

Accuracy can be used when the class distribution is similar while **F1-score** is a **better** metric when there are imbalanced classes as in the above case

K-Fold Cross-Validation

Problem

Training Set

Validation Set

A part of the dataset is not used for training

K-Fold Cross Validation

Here, the test set is 20% of the dataset. We loose ¼ of the dataset.

Dataset

Run K-Experiments in which we:

- Choose a test set
- Train
- Test

After all the experiments, we average the results

Thank

You

jeremycohen.podia.com

https://www.linkedin.com/in/jeremycohen2626/