Mining Data Streams

INF 553
Slides from:
Wensheng Wu
and
Mining of Massive Datasets
Jure Leskovec, Anand Rajaraman, Jeff Ullman stanford University
http://www.mmds.org

1

1

Roadmap

- Motivation
- Sampling
 - Fixed-portion & fixed-size (reservoir sampling)
- Filtering
 - Bloom filter
- Counting
 - Estimating # of distinct values, moments
- Sliding window
 - Counting # of 1's in the window

2

Data streams & applications

- Query streams
 - How many unique users at Google last month?
- URL streams while crawling
 - Which URLs have been crawled before?
- Sensor data
 - What is the maximum temperature so far?

3

3

Stream data processing

- Stream of tuples arriving at a rapid rate
 - In contrast to traditional DBMS where all tuples are stored in secondary storage
- Infeasible to use all tuples to answer queries
 - Cannot store them all in main memory
 - Too much computation
 - Query response time critical

4

Query types

- Standing queries
 - Executed whenever a new tuple arrives
 - keep only one value
 - e.g., report each new maximum value ever seen in the stream
- Ad-hoc queries
 - Normal queries asked one time
 - Need entire stream to have an exact answer
 - e.g., what is the number of unique visitors in the last two months?

5

5

Example: Running averages

- Given a window of size N
 - report the average of values in the window whenever a value arrives
 - N is so large that we can not store all tuples in the window
- How to do this?

7

7

Example: running averages

- First N inputs, accumulate sum and count
 - Avg = sum/count
- A new element i
 - Change the average by adding (i j)/N
 - *j* is the oldest element in the window
 - window size is fixed so we need to discard j

8

Roadmap

- Motivation
- Sampling
 - Fixed-portion & fixed-size (reservoir sampling)
- Filtering
 - Bloom filter
- Counting
 - Estimating # of distinct values, moments
- Sliding window
 - Counting # of 1's in the window

9

9

Sampling from a data stream

- Scenario: Search engine query stream
 - Stream of tuples: (user, query, time)
 - Answer questions such as: How often did a user run the same query in a single day
 - Have space to store **1/10**th of query stream
- Method 1: sample a fixed portion of elements

 e.g., 1/10
- Method 2: maintain a fixed-size sample

Sampling a fixed proportion

- Search engine query stream
 - Stream of tuples: (user, query, time)
- Example query
 - what fraction of queries by a user are duplicates?
- Assumption
 - Have space to store 1/10 of stream tuples

11

11

Naive solution

- For each tuple,
 - generate a random number in [0..9]
 - store it in the sample if the number is 0
 - Sample rate?
- Example stream tuples:
 - (john, data mining, 2015/12/01 9:45)
 - (mary, inf 553, 2015/12/01 10:08)
 - (john, data mining, 2015/12/01 11:30)
 - **–** ...
- Problems?

True fraction of queries with duplicates

- A user issued s queries once & d queries twice
 - E.g., data mining, inf 553, movie, movie, tom, tom (s=d=2)
- Total number of queries & duplicates = s + 2d
- True fraction of queries with duplicates = d/(s+d)
- Sampling rate = 1/10

13

13

Queries with duplicates in sample

- The sample contains:
 - s/10 "s" queries, e.g., data mining
 - 2d/10 "d" tuples, e.g., movie, tom, tom
- If sample = data mining, movie, tom, tom, question:
 - What is the expected number of d queries with duplicates in the sample?
 - movie **d** query without duplicates in the sample
 - tom, tom d query with duplicates in the sample
 - E.g., both tom's appear in the sample

Queries with duplicates in sample

- s₁, s₂, ..., s₈₀₀, d₁, d₁', d₂, d₂', ..., d₁₀₀, d₁₀₀' - s = 800, d = 100
- Each d_j has probability of 1/10 being selected so prob. of two d_i 's being selected = 1/10 * 1/10
- There are d number of d_j 's
- \Rightarrow so the expected number of pairs = d/100

15

15

"d" Queries without duplicates in sample

- The sample contains:
 - s/10 "s" queries, e.g., data mining
 - 2d/10 "d" tuples, e.g., movie, tom, tom
- Question:
 - What is the expected number of **d** queries without duplicates in the sample?
 - E.g., only one movie appears in the sample

"d" Queries without duplicates in sample

- $s_1, s_2, ..., s_{800}, d_1, d_1', d_2, d_2', ..., d_{100}, d_{100}'$ - s = 800, d = 100
- Expected # of singleton d queries in sample
 - $-d_i$ selected, d_i not selected: 1/10 * 9/10
 - $-d_i$ not selected, d_i selected: 9/10 * 1/10
 - => 9d/100+9d/100 = 18d/100

17

17

Fraction of queries in sample w/ duplicates

- s₁, s₂, ..., s₈₀₀, d₁, d₁', d₂, d₂', ..., d₁₀₀, d₁₀₀' - s = 800, d = 100
- Fraction = $\frac{\frac{d}{100}}{\frac{s}{10} + \frac{d}{100} + \frac{18d}{100}} = \frac{d}{10s + 19d} \neq \frac{d}{s + d}$
- Note total # of d queries with and without duplicates =

-d/100 * 2 + 18d/100 = 20d/100 = 2d/10

What has been the problem?

- Mistake: sample by position
 - When search tuple arrives, we flip a 10-side coin
 - Retain it if the coin shows up as 0
- Solution: sample by user (by key)
 - When search tuple (user, query, time) arrives
 - We extract its user (key) component
 - Hash user into 10 buckets: 0, 1, ..., 9
 - Retain all tuples for the user in the bucket 0

19

19

Sample by user

- Sample = all queries for users hashed into bucket 0
- All or none of queries of a user will be selected
- Thus, the fraction of unique queries in sample
 - will be the same as that in the stream as a whole

General Sampling Problem

- Stream of tuples with *n* components
 - Key = a subset of components
- Search stream: (user, query, time)
 - Sample size: a/b
- Sampling strategy:
 - Hash key (e.g., user) to **b** buckets
 - Accept tuple if key value < a</p>

21

21

Example

- Tuples: (empID, dept, salary)
- Query: avg. range of salary within a dept.?
- Randomly selecting tuples
 - Might miss mix/max salary
- Key = dept.
- Sample: some departments and all tuples in these departments

Roadmap

- Motivation
- Sampling
 - Fixed-portion & fixed-size (reservoir sampling)
- Filtering
 - Bloom filter
- Counting
 - Estimating # of distinct values, moments
- Sliding window
 - Counting # of 1's in the window

23

23

Problem with fixed portion sample

- Sample size may grow too big when data stream in
 - Even 10% could be too big, e.g., tuples in bucket
 1/10 exceed the memory size
- Idea: throw away some queries
- Key: do this consistently
 - remove all or none of occurrences of a query

Controlling the sample size

- Put an upper bound on the sample size
 - Start out with 10%
- Solution:
 - Hash queries to a large # of buckets, say 100
 - Put them into sample if they hash to bucket 0 to 9
 - When sample grows too big, throw away bucket 9
 - So on

25

25

Maintaining a fixed-size sample

- Suppose we need to maintain a random sample, S, of size exactly s tuples (instead of %)
 - E.g., main memory size constraint
- Why? Don't know length of stream in advance
- Suppose at time n we have seen n items
 - Each item is in the sample **S** with equal prob. **s/n**

How to think about the problem: say s = 2

Stream: a x c y z k c d e g...

At n= 5, each of the first 5 tuples is included in the sample S with equal prob. At n= 7, each of the first 7 tuples is included in the sample S with equal prob. Impractical solution would be to store all the *n* tuples seen so far and out of them pick *s* at random

Solution: Fixed Size Sample

- Algorithm (a.k.a. Reservoir Sampling)
 - Store all the first s elements of the stream to S
 - Suppose we have seen n-1 elements, and now the n^{th} element arrives (n > s)
 - With probability s/n, keep the nth element, else discard it
 - If we picked the nth element, then it replaces one of the s elements in the sample S, picked uniformly at random
- Claim: This algorithm maintains a sample S
 with the desired property:
 - After *n* elements, the sample contains each element seen so far with probability *s/n*

27

27

Proof: By Induction

- We prove this by induction:
 - Assume that after *n* elements, the sample contains each element seen so far with probability *s/n*
 - We need to show that after seeing element n+1 the sample maintains the property
 - Sample contains each element seen so far with probability s/(n+1)
- Base case:
 - After we see n=s elements the sample S has the desired property
 - Each out of n=s elements is in the sample with probability
 s/s = 1

Proof: By Induction

- Inductive hypothesis: After n elements, the sample
 S contains each element seen so far with prob. s/n
- Now element n+1 arrives
- Inductive step: For elements already in S, probability that the algorithm keeps it in S is:

$$\left(1 - \frac{s}{n+1}\right) + \left(\frac{s}{n+1}\right) \left(\frac{s-1}{s}\right) = \frac{n}{n+1}$$
Element n+1 discarded Element n+1 Element in the

- So, at time *n*, tuples in *S* were there with prob. s/n
- Time $n \rightarrow n+1$, tuple stayed in **S** with prob. n/(n+1)
- So prob. tuple is in **S** at time $n+1 = \frac{s}{n} \cdot \frac{n}{n+1} = \frac{s}{n+1}$

29

Roadmap

- Motivation
- Sampling
 - Fixed-portion & fixed-size (reservoir sampling)
- Filtering
 - Bloom filter
- Counting
 - Estimating # of distinct values, moments
- · Sliding window
 - Counting # of 1's in the window

Stream filtering

- · Application: spam filtering
 - Check incoming emails against a large set of known email addresses (e.g., 1 billion)
- Application: URL filtering in Web crawling
 - Check if discovered URL's have already been crawled

31

31

Bloom filter

- Check if an object o is in a set S
 - w/o comparing ${\it o}$ with all objects in ${\it S}$ (explicitly)
- No false negatives
 - If Bloom says no, then ${m o}$ is definitely not in ${m S}$
- But may have false positives
 - If Bloom says yes, it is possible that o is not in S

Components in a Bloom filter

- An array A of n bits, initially all 0's: A[0..n-1]
- A set of hash functions, each
 - takes an object (stream element) as the input
 - returns a position in the array: 0..n-1
- A set **S** of objects

33

33

Construct and apply the filter

- Construction: for each object o in S,
 - Apply each hash function h_i to o
 - If $h_{i}(o) = i$, set A[i] = 1 (if it was 0)
- Application: check if new object o' is in S
 - Hash o' using each hash function
 - If for some hash function $h_i(o') = i$ and A[i] = 0, stop and report o' not in S

Example

- 11-bit array
- Stream elements = integers
- Two hash functions
 - $-h_1(x) = (odd-position bits from the right) % 11$
 - $-h_2(x) =$ (even-position bits from the right) % 11

35

35

Example: Building the filter

Stream element	h_1	h ₂	Filter									
			0 0	0	0	0	0	0	0	0	0	0
25 = 1 1 0 0 1	5	2	0 0	1	0	0	1	0	0	0	0	0
159 = 1 <mark>0 0 1 1 1 1 1</mark>	7	0	1 0	1	0	0	1	0	1	0	0	0
585 = 1 0 0 1 0 0 1 0 0 1	9	7	1 0	1	0	0	1	0	1	0	1	0

36

Example: Using the filter

- Is 118 in the set?
 - No false negative in Bloom

37

Example: False positive

- Is 38 in the set (25, 159, 585)?
 - It turns on the same bits as 25, but in diff. ways

False positive

- x not in S, but identified as in S
- Reason:
 - For all hash functions, **x** hashes into an **1** position
 - That is, $h_i(x) = h_i(e)$, for some e in S
 - Note: j may be different from i

39

39

False positive rate

- **n** = # of bits in array
- **k** = # of hash functions
- m = # of elements inserted
- **f** = fraction of 1's in bit array
- False positive rate = f^k
 - The probability of saying YES to the question "Is X in the set?"
- $f \le m*k/n$ (this is an upper bound, why?)

Example

- n = 8 billions (bits in array)
- **m** = 1 billion (objects in the set)
- **k** = 1 (# of hash function)
- f is estimated to be km/n = 1/8
 1/8 of bits in the array are 1
- False positive rate $\leq 1/8 = .125$

41

41

Accurate Estimation of fraction of 1's

- n = # of bits in array
- k = # of hash functions
- m = # of elements inserted
- Fraction of 1's = the probability that a bit in the array is set to 1 by at least one hashing
 - Total # of hashings: k * m

Estimation model

- Consider throwing **d** darts on **t** targets
- What is the probability, denoted as p, of a given target hit by at least one dart?
 - Prob. of a target not hit by a dart = 1-1/t
 - Prob. of a target not hit by all darts = $(1-1/t)^d$

since
$$(1-1/t)^t = ((1+\frac{1}{-t})^{-t})^{-1} = e^{-1} = 1/e$$
 for large t

- we have $(1-1/t)^{t*d/t} = e^{-d/t}$
- $-p=1-e^{-d/t}$

$$e=\lim_{n o\infty}\left(1+rac{1}{n}
ight)^n$$

43

43

Estimating the fraction of 1's

- n = # of bits in array
- k = # of hash functions
- m = # of elements inserted
- Fraction of 1's = the probability that a bit in the array is set to 1 by at least one hashing

$$-1-e^{-km/n}$$

Accurate false positive rate

- f = fraction of 1's in bit array
- k = # of hash functions
- m = # of elements inserted
- False positive rate = f^k
- Instead of $f \le m*k/n$, we have $f = 1 e^{-km/n}$
- so false positive rate = $(1 e^{-km/n})^k$
 - Multiple hash functions hit the same bit

45

45

Example

- n = 8 billions (bits in array)
- m = 1 billion (objects in the set)
- k = 1 (# of hash function)
- Recall that false positive rate $\leq 1/8 = .125$
- Actual rate = $(1 e^{-km/n})^k = 1 e^{-1/8} = .1175$
- What if k = 2?

Example

- n = 8 billions (bits in array)
- m = 1 billion (objects in the set)
- **k** = 2 (# of hash function)
- Actual rate = $(1 e^{-km/n})^k = (1 e^{-2/8})^2 = .2212^2 = .0489$

47

47

Optimal k

- *n* = 8 billions
- *m* = 1 billion
- **k** = # of hash functions

Optimal k = n/m ln(2)

$$-$$
 E.g., k = 8 In (2) = 5.54 $^{\sim}$ 6

• Error rate at k = 6: $(1-e^{-6/8})^6 = .0216$

Roadmap

- Motivation
- Sampling
 - Fixed-portion & fixed-size (reservoir sampling)
- Filtering
 - Bloom filter
- Counting
 - Estimating # of distinct values, moments
- Sliding window
 - Counting # of 1's in the window

49

49

Compute # of distinct elements

- Applications
 - Compute # of distinct users to Facebook
 - Compute # of distinct queries submitted to Google
- · Obvious solution:
 - Hash table of distinct elements
 - Check if new element is there; if not, add it
- Problems?

Flajolet-Martin algorithm

- Estimating the counts
- 1. Hash every element a to a sufficiently long bitstring (e.g., h(element a) = 1100 – 4 bits)
- 2. Maintain R = length of longest trailing zeros among all bit-strings (e.g., R = 2)
- 3. Estimate count = 2^R e.g.,= 4

51

51

Example

- Consider 4 distinct elements: a, b, c, d
- Hash value into bit string of length 4
- How likely do we see at least one hash value with a 0 in the last bit? Next slide
 - hash(a) = 0010
 - hash(b) = 0111
 - hash(c) = 1010
 - hash(d) = 1111

52

Example: at least one ends with 0

- E.g.,
 - hash(a) = 0010
 - hash(b) = 0111
 - hash(c) = 1010
 - hash(d) = 1111
- Prob. of none of hash values ending with 0:
 - $-(1-\frac{1}{2})^4$ (every string ends with 1; there are four strings)
- Prob. of at least one ending with 0:
 - $-1-(1-\frac{1}{2})^4=.9375$

53

53

Example: at least one ends with 00

- E.g.,
 - hash(a) = 0100
 - hash(b) = 0111
 - hash(c) = 1010
 - hash(d) = 1111
- Prob. of someone ending with 00:
 - $-(\frac{1}{2})^2$
- Prob. of none ending with 00:
 - $-(1-(\frac{1}{2})^2)^4=.32$
- Prob. of at least one ending with 00:
 - -1-.32 = .68

Example: at least one ends with 000

- E.g.,
 - hash(a) = 0000
 - hash(b) = 0111
 - hash(c) = 1010
 - hash(d) = 1111
- Prob. of someone ending with 000:
 - $-(\frac{1}{2})^3$
- Prob. of none ending with 000:
 - $-(1-(\frac{1}{2})^3)^4=.59$
- Prob. of at least one ending with 000:
 - -1-.59 = .41

5

55

Why it works?

- Prob. of h(a) having at least r trailing 0's
- Suppose there are **m** distinct elements
- Prob. that h(a) for some element a has at least r trailing 0's (as in the examples in the previous slides)

$$\begin{array}{l} -1-(1-2^{-r})^m=1-(1-2^{-r})^{2^r\frac{m}{2^r}}=\mathbf{1}-\mathbf{e}^{-\frac{\mathbf{m}}{2^r}}\\ -\operatorname{Recall:} \\ e=\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n \end{array}$$

Why it works?

 Prob. that h(a) for some element a has at least r trailing 0's

$$-p = 1 - (1 - 2^{-r})^m = 1 - e^{-\frac{m}{2^r}}$$

• Tayler expansion of ex

$$-1+\frac{x^1}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots \sim 1+\frac{x^1}{1!}, if |X| \ll 1$$

•
$$p = 1 - e^{-\frac{m}{2^r}} \sim 1 - \left(1 - \frac{m}{2^r}\right) = \frac{m}{2^{r'}}$$
 if $2^r \gg m$

57

57

Why it works?

• Prob. that h(a) for some element a has at least r trailing 0's

$$- p = 1 - (1 - 2^{-r})^m = 1 - e^{-\frac{m}{2^r}}$$

• Prob. that *h(a)* for NO element a has at least r trailing 0's

$$- p' = (1 - 2^{-r})^m = e^{-\frac{m}{2^r}}$$

(1) If $2^r \gg m$, $p = \frac{m}{2^r} \to 0$; p' = 1

- the probability of finding a tail length at least r approaches 0
- R is unlikely to be too large, since otherwise it may not show up at all
- (2) If $2^r \ll m, p = 1 1/e^{\frac{m}{2^r}} \to 1; p' = 0$
 - the probability that we shall find a tail of length at least r approaches 1
 - Since R is the longest 0's, it is unlikely to be too small.
- \Rightarrow So, **R** is unlikely to be either much too high or much too low
 - \Rightarrow **2**^R is around **m**

Problems in combining estimates

- We can hash multiple times, take avg. of 2^R values
- Problem: ExpectedValue(2^R) $\rightarrow \infty$
 - When $2^R \ge m$, increase R by 1 => probability halves, but value 2^R doubles

•
$$p = 1 - (1 - 2^{-r})^m = 1 - e^{-\frac{m}{2^r}}$$

- Contribution from each large R to E(2^R) grows, when R grows
- Can have very large 2^R
- · What about taking median instead?

59

59

Combining the estimates

- Avg only: what if one very large value?
- Median: all values are power of 2
 - 1, 2, 4, 8,...,1024, 2048,...
- Solution:
 - Partition hash functions into small groups
 - Take average for each group
 - Take the median of the averages

Roadmap

- Motivation
- Sampling
 - Fixed-portion & fixed-size (reservoir sampling)
- Filtering
 - Bloom filter
- Counting
 - Estimating # of distinct values, moments
- Sliding window
 - Counting # of 1's in the window

61

61

Moments

- A stream S of elements drawn from a universal set: ν₁, ν₂, ..., ν_n
 - $-m_i$ is the number of occurrences of v_i in S
 - -(1, 4, 1, 3, 4, 1) M₁ = 3; M₂ = 2;
- k-th moment of S:
 - $-\sum_{i=1}^n (m_i)^k$

K-th moments

- 0-th moment of the stream S
 - # of distinct elements in S
 - -(1, 4, 1, 3, 4, 1)
- 1st moment of S
 - Length of S

$$\sum_{i=1}^n (m_i)^k$$

- 2nd moment of **S**: sum of squared frequencies
 - Surprise number, measuring the evenness of distribution of elements in S

63

63

Surprise number

- Steam of 100 elements, 11 values appear
- Unsurprising: $m_i = 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9$
 - Surprise number = $10^2 + 10 * 9^2 = 910$

 $\sum_{i=1}^n (m_i)^k$

- Surprising: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
 - Surprise number = $90^2 + 10 * 1^2 = 8,110$

AMS (Alon-Matias-Szegedy) Algorithm

- Estimating 2nd moment of a stream of length *n*
- Pick k random numbers between 1 to n
- For each, construct a variable X at t
 - Record its count from position t on as X.value
- Estimate = $1/k \sum_{i=1}^{k} n(2x_k \cdot value 1)$ Explain next

65

65

Example

- Stream: a, b, c, b, d, a, c, d, a, b, d, c, a, a, b
 - Stream length n = 15
 - a occurs 5 times
 - b occurs 4 times
 - c and d each occurs 3 times
- 2^{nd} moment = $5^2 + 4^2 + 3^2 + 3^2 = 59$

Random variables

- Each random variable X records:
 - X.element: element in X
 - X.value: # of occurrences of X from time t to n
- X.value = 1 at time t
- X.value++, when another X.element is seen

67

67

Random variables

- Stream: a, b, c, b, d, a, c, d, a, b, d, c, a, a, b
- Suppose we keep three variables: X₁, X₂, X₃
 - Introduced at position: 3, 8, and 13
- Position 3: X₁.element = c, X₁.value = 1
- Position 7: X₁.value = 2

Random variables

- Stream: a, b, c, b, d, a, c, d, a, b, d, c, a, a, b
- Position 8: X₂.element = d, X₂.value = 1
- Position 11: X₂.value = 2
- Position 12: X₁.value = 3
- Position 13: X₃.element = a, X₃.value = 1
- Position 14: X₃.value = 2

69

69

Random variables: final values

- X₁.value = 3, X₂.value = 2, X₃.value = 2
- Estimate of 2nd moment = n(2*X.value 1)
- Estimate using X_1 : 15(6-1) = 75
- Estimate using X₂or X₃: 15(4-1) = 45
- Avg. = (75+45+45)/3 = 55 (recall actual is 59)

Why AMS works?

- e(i): element that appears in position i
 - A random variable introduced at this positon will have X.element = e(i)
- c(i): # of times e(i) appears in positions i..n
 X.value = c(i)
- e(6) = a, c(6) = 4

71

71

Why AMS works?

• Stream: a, b, c, b, d, a, c, d, a, b, d, c, a, a, b

- $e(1) = a, c(1) = 5 = m_a$
- e(2) = b, $c(2) = 4 = m_b$
- $e(3) = c, c(3) = 3 = m_c$
- $e(4) = b, c(4) = m_b-1$ 1, 2, 3, ..., m_a
- ...
- e(13) = a, c(13) = 2
- e(14) = a, c(14) = 1
- e(15) = b, c(15) = 1

If we can have a lot of random variables (e.g., 15)...

72

Why AMS works?

- Estimate = $1/k \sum_{i=1}^{k} n(2x_k \cdot value 1)$
- E(n(2X.value 1))
 - average over all positions i between 1 and n

$$= \frac{1}{n} \sum_{i=1}^{n} n(2c(i) - 1)$$

$$= \sum_{i=1}^{n} (2c(i) - 1)$$

$$= \sum_{x} 1 + 3 + \dots + (2m_{x} - 1)$$
 for each x
$$= \sum_{x} m_{x}^{2}$$

• Note: 1+3+... + (2n-1) = n^2 $\sum_{i=1}^{m_i} (2i-1) = 2 \frac{m_i(m_i+1)}{2} - m_i = (m_i)^2$

73

73

Expectation Analysis

- 2nd moment is $S = \sum_x m_x^2$
- c_t ... number of times item at time t appears from time t onwards ($c_1=m_a$, $c_2=m_a-1$, $c_3=m_b$)

Expectation Analysis

Count: 1 2 3 m_a

Stream: a a b b b a b a b

- $E[f(X)] = \frac{1}{n} \sum_{x} n (1 + 3 + 5 + \dots + 2m_x 1)$
 - Little side calculation: $(1+3+5+\cdots+2m_x-1)=$ $\sum_{x=1}^{m_x}(2x-1)=2\frac{m_x(m_x+1)}{2}-m_x=(m_x)^2$
- Then $E[f(X)] = \frac{1}{n} \sum_{x} n (m_x)^2$
- So, $E[f(X)] = \sum_{x} (m_x)^2 = S$
- We have the second moment (in expectation)!

75

75

Higher-Order Moments

- For estimating kth moment we essentially use the same algorithm but change the estimate:
 - For k=2 we used $n (2 \cdot c 1)$
 - For k=3 we use: $n(3\cdot c^2 3c + 1)$ (where c=X.val)
- Why?
 - For k=2: Remember we had $(1+3+5+\cdots+2m_i-1)$ and we showed terms **2c-1** (for **c=1,...,m**) sum to m^2
 - $\sum_{c=1}^{m} 2c 1 = \sum_{c=1}^{m} c^2 \sum_{c=1}^{m} (c-1)^2 = m^2$
 - So: $2c 1 = c^2 (c 1)^2$
 - **For k=3:** $\mathbf{c^3}$ $(\mathbf{c-1})^3$ = $3\mathbf{c^2}$ $3\mathbf{c}$ + 1 $\sum_{v=1}^m 3v^2 3v + 1 = m^3$
- Generally: Estimate = $n (c^k (c-1)^k)$

76

Combining Samples

- In practice:
 - Compute f(X) = n(2c-1) for as many variables X as you can fit in memory
 - Average them in groups
 - Take median of averages
- Problem: Streams never end
 - We assumed there was a number n, the number of positions in the stream
 - But real streams go on forever, so n is a variable – the number of inputs seen so far

77

77

Streams Never End: Fixups

- (1) The variables X have n as a factor –
 keep n separately; just hold the count in X
- (2) Suppose we can only store k counts.
 We must throw some Xs out as time goes on:
 - Objective:
 - Estimating 2nd moment of a stream of length *n*
 - Each starting time t is selected with probability k/n
 - Solution: (fixed-size sampling!)
 - Choose the first **k** times for **k** variables
 - When the nth element arrives (n > k), choose it with probability k/n
 - If you choose it, throw one of the previously stored variables
 X out, with equal probability

Roadmap

- Motivation
- Sampling
 - Fixed-portion & fixed-size (reservoir sampling)
- Filtering
 - Bloom filter
- Counting
 - Estimating # of distinct values, moments
- Sliding window
 - Counting # of 1's in the window

79

79

Sliding Windows

- A useful model of stream processing is that queries are about a window of length N – the N most recent elements received
- Interesting case: N is so large that the data cannot be stored in memory, or even on disk
 - Or, there are so many streams that windows for all cannot be stored
- Amazon example:
 - For every product X we keep 0/1 stream of whether that product was sold in the n-th transaction
 - We want answer queries, how many times have we sold X in the last k sales (e.g., k = 10, 20, or 200; N=100,000)

Sliding Window: 1 Stream

N = 6

 Sliding window on a single stream: qwertyuiopasdfghjklzxcvbnm

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

← Past Future →

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

81

81

Counting Bits (1)

- Problem:
 - Given a stream of **0**s and **1**s
 - Be prepared to answer queries of the form How many 1s are in the last N bits?
- Obvious solution:

Store the most recent N bits

- When new bit comes in, discard the N+1st bit

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

32

Counting Bits (2)

- You cannot get an exact answer without storing the entire window
- Real Problem:

What if we cannot afford to store N bits?

- E.g., we're processing 1 billion streams and N = 1 billion

 Past

 Past

 Future

 Past

 Future
- But we are happy with an approximate answer

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

83

83

An attempt: Simple solution

- Q: How many 1s are in the last N bits?
- A simple solution that does not really solve our problem: Uniformity assumption

- Maintain 2 counters:
 - − S: number of 1s from the beginning of the stream
 - Z: number of 0s from the beginning of the stream
- How many 1s are in the last N bits? $N \cdot \frac{S}{S+Z}$
- · But, what if stream is non-uniform?
 - What if distribution changes over time?
 - Cannot handle various k

84

DGIM Method

- DGIM solution that does <u>not</u> assume uniformity
- We store $O(\log N \times \log N)$ bits per stream $-O(\log^2 N)$
- Solution gives approximate answer, never off by more than 50%
 - Error factor can be reduced to any fraction > 0, with more complicated algorithm and proportionally more stored bits

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

85

85

Idea: Exponential Windows

- Solution that doesn't (quite) work:
 - Summarize exponentially increasing regions of the stream, looking backward
 - Drop small regions if they begin at the same point

We can reconstruct the count of the last N bits, except we are not sure how many of the last $\mathbf{6}$ 1s are included in the N

What's Not So Good?

- As long as the 1s are fairly evenly distributed, the error due to the unknown region is small – no more than 50%
- But it could be that all the 1s are in the unknown area at the end
- In that case, the error is unbounded!

87

DGIM Algorithm

- Storage: O(log2N) bits
- Error rate for the queries \leq **50%**
- Key idea:
 - Partition N into a (small) set of buckets
 - Remember count for each bucket
 - Use the counts to approximate answers to queries

DGIM: Timestamps

- Each bit in the stream has a timestamp, starting 1, 2, ...
- Record timestamps modulo N (the window size), so we can represent any relevant timestamp in O(log₂N) bits

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

90

90

Bucket

- Each represents a sequence of bits in window
 - It does not store the actual bits
 - Rather a timestamp and # of 1's in the sequence
- Timestamp of bucket
 - Timestamp of its end time
- Bucket size = # of 1's in the bucket
 - Always some power of 2: 1, 2, 4, ...

Representing a Stream by Buckets

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size
 - Earlier buckets are not smaller than later buckets
- Buckets disappear when their end-time is > N time units in the past

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets,

93

93

Three properties of buckets that are maintained:

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size

9

95

Updating Buckets (1)

- When a new bit comes in, drop the last (oldest) bucket if its end-time is prior to N time units before the current time
- 2 cases: Current bit is 0 or 1
- If the current bit is 0:
 no other changes are needed

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Updating Buckets (2)

- If the current bit is 1:
 - (1) Create a new bucket of size 1, for just this bit
 - End timestamp = current time
 - (2) If there are now three buckets of size 1,
 combine the oldest two into a bucket of size 2
 - (3) If there are now three buckets of size 2,
 combine the oldest two into a bucket of size 4
 - (4) And so on ...

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

97

97

Example: Updating Buckets

Current state of the stream:

Bit of value 1 arrives

Two blue buckets get merged into a yellow bucket

Next bit 1 arrives, new blue bucket is created, then 0 comes, then 1:

Buckets get merged...

State of the buckets after merging

98

DGIM: Buckets

- A bucket in the DGIM method is a record consisting of:
 - (A) The timestamp of its end [O(log₂ N) bits]
 - (B) The number of 1s between its beginning and end [O(log₂ log₂ N) bits]
 - log₂ N is the maximum # of bit, X, in a bucket (of size N)
 - · to store X, we need log₂ X bits
- Constraint on buckets:

Number of 1s must be a power of 2

That explains the O(log₂ log₂ N) in (B) above

99

Storage for each bucket

- Timestamp: 0..N-1 (N is the window size)
 - So *log₂N* bits
- Number of 1's: $2^{j} \le N$, $j \le log_2N$
 - So log₂(log₂N) for representing j
 - Can ignore; too small comparing to the timestamp requirement
- Each bucket requires ≈ O(log₂N)

Storage requirements of DGIM

- At most 2*j buckets
 - of sizes: 2^j, 2^{j-1}, ..., 1 (at most two for each size)
- Size of the largest bucket $2^{j} \le N$
 - So $j \le log_2N$ and $2j \le 2log_2N$
- Total storage: $O(log_2N * log_2N)$ or $O(log^2N)$
 - Recall that each bucket requires O(log₂N)

101

101

How to Query?

- To estimate the number of 1s in the most recent N bits:
 - 1. Sum the sizes of all buckets but the last

(note "size" means the number of 1s in the bucket)

- 2. Add half the size of the last bucket
- Remember: We do not know how many 1s of the last bucket are still within the wanted window

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

103

How close is the estimate?

- Suppose # of 1's in the last bucket **b** = **2**^j
- Case 1: estimate < actual value c
 - Worst case: all 1's in bucket b are within range
 - So estimate missed "at most half of 2^{j} " -> 2^{j-1}
 - Want to show $c \ge 2^j$, so what's the minimum C?
 - C has at least one 1 from b, plus at least one of buckets of lower powers: 2^{j-1} + 2^{j-2}... + 1 = 2^j-1; c >= 1 + 2^j-1; missed at most 2^{j-1}
 - $1 + 2 + 4 + ... + 2^{r-1} = 2^r 1$
 - So estimate missed at most 50% of c
 - That is, the estimate is at least 50% of c

104

How close is the estimate?

- Suppose # of 1's in the last bucket b = 2^j
- Case 2: estimate > actual value c
 - Worst case: only rightmost bit of b is within range
 - And only one bucket for each smaller power
 - $-c = 1 + 2^{j-1} + 2^{j-2} + ... + 1 = 1 + 2^{j} 1 = 2^{j}$
 - Estimate = 2^{j-1} (last bucket) + 2^{j-1} + ... + 1
 - = $2^{j} 1$ (c minus the right most bit) + 2^{j-1} (last bucket)
 - $-2^{j-1}+2^{j-2}...+1=2^{j}-1$
 - So estimate is no more than 50% greater than c

105

105

Extensions

- Can we use the same trick to answer queries
 How many 1's in the last k? where k < N?
 - A: Find earliest bucket B that at overlaps with k.
 Number of 1s is the sum of sizes of more recent buckets + ½ size of B

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

106