

Transformer Networks for small molecules

Motivation

- We want to use SMILES strings as the input for a Transformer Network Encoder
- After training, we want to extract a single numerical vector representing the small molecule
 - For example, the elementwise mean of all token representations
- Use the resulting vector as the input of a machine learning prediction model

2 hhu.de

Tokenization of SMILES strings (1)

- Not as straightforward as for protein amino acid sequences
- Options for tokenization:
 - Each character is a separate token
 - Search for most common patterns
 - Byte Pair Encoding:

SMILES dataset:	ın of
C[C@H](N)C(=O)O	O.
C/C=C/C(=O)O	•
C[C@H](O)[C@@H](O)C(=O)O	•
F[C@](Cl)(Br)l	•
	•
	•
C[C@H]([C@@H](C(=O)O)N)O	•
C[C@@H]1CN(C)C[C@H]1C	•
C[C@H](C)[C@H](C(=O)O)N	•

Initial set of tokens:

- C
- [
- @
- ...
-]
- (
- N
-)

Additional tokens:

- [C
- [C@
- ...

Special Tokens:

- <bos>
- eos>
- <pad>
- <mask>
- ..

Most common combination of existing tokens:

- Options for tokenization:
 - Based on SMILES rules

Special Tokens:

- <bos>
- <eos>
- <pad>
- <mask>
- ..

Single Characters:

- (C -) - O
 - / N
- \ F
- - S
- = P
- # I
- I D
- ... Br
- 9 c
 - _

Complex Tokens:

- [C@H] [N-] - [C@@H] - [Si]
- [C@] [n+]
- [C@@] [2H] - [N+] - [nH]
- [O-] [Na+]
- [S@] [Cl-]
- [S@@] [c-]
- ..

Positional embeddings

- Options for positional embeddings:
 - Learned embeddings

$$\begin{pmatrix} p_{1,1} & \cdots & p_{1,d} \\ \vdots & \ddots & \vdots \\ p_{512,1} & \cdots & p_{512,d} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} p_{2,1} \\ p_{2,2} \\ \vdots \\ p_{2,d} \end{pmatrix}$$

Sinusoidal positional encodings

$$PE(pos, 2i) = \sin\left(\frac{pos}{10000^{2i/d}}\right),$$
 $PE(pos, 2i + 1) = \cos\left(\frac{pos}{10000^{2i/d}}\right)$

Rotary Positional Embeddings (RoPE)

$$\theta$$
 rotation constant

$$\vec{w} = \binom{w_1}{w_2} \xrightarrow{\text{rotate by } m \cdot \theta} \vec{\widetilde{w}}$$

Model training

- Masked Language Modelling (MLM):
 - Masking 15% of the tokens in each input string
 - Training the model to correctly identify the masked tokens
 - Problems:
 - In contrast to language/proteins it is much less restricted what token you can have at what positions

- Multi-task Regression (MTR)
 - Compute a set of 200 molecular properties for each compound in our training dataset
 - Properties can be calculated from SMILES strings using RDKit

MLM vs. MTR

	BACE RMSE	Clearance RMSE	Delaney <i>RMSE</i>	Lipo RMSE	BACE ROC	BBBP ROC	ClinTox ROC	SR-p53 ROC
ChemBERTa-2								
MLM-5M	1.451	54.601	0.946	0.986	0.793	0.701	0.341	0.762
MLM-10M	1.611	53.859	0.961	1.009	0.729	0.696	0.349	0.748
MLM-77M	1.509	52.754	1.025	0.987	0.735	0.698	0.239	0.749
MTR-5M	1.477	50.154	0.874	0.758	0.734	0.742	0.552	0.834
MTR-10M	1.417	48.934	0.858	0.744	0.783	0.733	0.601	0.827
MTR-77M	1.363	48.515	0.889	0.798	0.799	0.728	0.563	0.817

Popular small molecule Transformer

	ChemBERTa-2 ¹	Molformer ²
Architecture	Encoder only	Encoder only
Model size	3.4M	~85M
Pre-training task	MTR	MLM
Training set size	77M	1.1B
Input	canonical SMILES	canonical SMILES
Pos. embedding	Learned	RoPE
Tokenization	Frequency-based method?	Based on SMILES rules