

Formulario de trigonometría

Descarga y comparte

MEDIDA DE UN ÁNGULO

	$L = \theta r$	
180° =	= 200 ^g =	= π rad
$\frac{S}{180^{\circ}} =$	$=\frac{C}{200^{\circ}}=$	$=\frac{R}{\pi rad}$
1°	$=\frac{\pi}{180}$	rad

 $1\,rad = \frac{180^{\circ}}{}$

TRIGONOMETRÍA DE ÁNGULO RECTO (SOH-CAH-TOA)				
	$S\frac{O}{H}$	$C\frac{A}{H}$;	$T\frac{O}{A}$
o O	$sen \theta = \frac{O}{H}$	cos θ =	$=\frac{A}{H}$	$\tan\theta = \frac{O}{A}$
A	$\csc\theta = \frac{H}{O}$	sec θ =	$=\frac{H}{A}$	$\cot\theta = \frac{A}{O}$
0 = cateto O puesto	A = cateto Adyacente $H = Hipote$		= H ipotenusa	
S = seno	C = coseno		T	= tangente

¿PROBLEMAS CON TRIGONOMETRÍA?

Si quieres aprender trigonometría, dale un vistazo a nuestro curso virtual, con cientos de ejercicios resueltos y explicaciones detalladas.

RAZONES TRIGONOMÉTRICAS DE ÁNGULOS NOTABLES				
θ	radianes	sen θ	cos θ	tan θ
0°	0	0	1	0
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	$\frac{\pi}{2}$	1	0	_
180°	π	0	-1	0
270°	$\frac{3\pi}{2}$	-1	0	_
360°	0	0	1	0

CIRCUNFERENCIA TRIGONOMÉTRICA

$sen \theta = y$	$\cos \theta = x$	$\tan\theta = \frac{y}{x}$
$\csc\theta = \frac{1}{y}$	$\sec \theta = \frac{1}{x}$	$\cot \theta = \frac{x}{y}$

IDENTIDADES DE TANGENTE Y COTANGENTE

$$tan \theta = \frac{sen \theta}{cos \theta} \qquad cot \theta = \frac{cos \theta}{sen \theta}$$

IDENTIDADES RECÍPROCAS		
$\csc\theta = \frac{1}{\operatorname{sen}\theta}$	$sen \ \theta = \frac{1}{csc \ \theta}$	
$\sec\theta = \frac{1}{\cos\theta}$	$\cos\theta = \frac{1}{\sec\theta}$	
$\cot\theta = \frac{1}{\tan\theta}$	$\tan\theta = \frac{1}{\cot\theta}$	

IDENTIDADES PITAGÓRICAS
$sen^2 \theta + cos^2 \theta = 1$
$tan^2 \theta + 1 = sec^2 \theta$
$\cot^2\theta + 1 = \csc^2\theta$

IDENTIDADES PAR / IMPAR		
$sen(-\theta) = -sen \theta$ $csc(-\theta) = -csc \theta$		
$cos(-\theta) = cos \theta$	$sec(-\theta) = sec \theta$	
$tan(-\theta) = -tan\theta$	$cot(-\theta) = -\cot\theta$	

Redes sociales

matemovil1

Matemóvil

Matemóvil

Formulario de trigonometría

Descarga y comparte

LEY DE SENOS

$$\frac{\operatorname{sen} A}{a} = \frac{\operatorname{sen} B}{b} = \frac{\operatorname{sen} C}{c}$$

LEY DE COSENOS

$$a^2 = b^2 + c^2 - 2bc\cos A$$

$$b^2 = a^2 + c^2 - 2ac\cos B$$

$$c^2 = a^2 + b^2 - 2ab\cos C$$

LEY DE TANGENTES

$$\frac{a-b}{a+b} = \frac{\tan\left[\frac{1}{2}(\alpha-\beta)\right]}{\tan\left[\frac{1}{2}(\alpha+\beta)\right]}$$

$$\frac{b-c}{b+c} = \frac{\tan\left[\frac{1}{2}(\beta-\gamma)\right]}{\tan\left[\frac{1}{2}(\beta+\gamma)\right]}$$

$$\frac{a-c}{a+c} = \frac{\tan\left[\frac{1}{2}(\alpha-\gamma)\right]}{\tan\left[\frac{1}{2}(\alpha+\gamma)\right]}$$

IDENTIDADES DE SUMA A PRODUCTO

$$sen \alpha + sen \beta = 2 sen \left(\frac{\alpha + \beta}{2}\right) cos \left(\frac{\alpha - \beta}{2}\right)$$

$$sen \alpha - sen \beta = 2 cos \left(\frac{\alpha + \beta}{2}\right) sen \left(\frac{\alpha - \beta}{2}\right)$$

$$\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$

$$\cos \alpha - \cos \beta = -2 \operatorname{sen}\left(\frac{\alpha + \beta}{2}\right) \operatorname{sen}\left(\frac{\alpha - \beta}{2}\right)$$

IDENTIDADES DE PRODUCTO A SUMA

$$sen \alpha sen \beta = \frac{1}{2} [cos(\alpha - \beta) - cos(\alpha + \beta)]$$

$$\cos\alpha\cos\beta = \frac{1}{2}[\cos(\alpha - \beta) + \cos(\alpha + \beta)]$$

$$sen \alpha cos \beta = \frac{1}{2} [sen(\alpha + \beta) + sen(\alpha - \beta)]$$

$$\cos \alpha \operatorname{sen} \beta = \frac{1}{2} [\operatorname{sen}(\alpha + \beta) - \operatorname{sen}(\alpha - \beta)]$$

IDENTIDADES DE SUMA Y DIFERENCIA

$$sen(\alpha \pm \beta) = sen \alpha cos \beta \pm cos \alpha sen \beta$$

$$cos(\alpha \pm \beta) = cos \alpha cos \beta \mp sen \alpha sen \beta$$

$$tan(\alpha \pm \beta) = \frac{tan \alpha \pm tan \beta}{1 \mp tan \alpha tan \beta}$$

IDENTIDADES PERIÓDICAS		
$sen(\theta + 2\pi n) = sen \theta$ $csc(\theta + 2\pi n) = csc \theta$		
$\cos(\theta + 2\pi n) = \cos\theta$	$sec(\theta + 2\pi n) = sec \theta$	
$tan(\theta + \pi n) = tan \theta$	$\cot(\theta + \pi n) = \cot\theta$	

IDENTIDADES DE COFUNCIONES		
$sen\left(\frac{\pi}{2} - \theta\right) = cos \theta$	$\csc\left(\frac{\pi}{2} - \theta\right) = \sec\theta$	
$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$	$\cos\left(\frac{\pi}{2} - \theta\right) = \operatorname{sen}\theta$	
$\sec\left(\frac{\pi}{2} - \theta\right) = \csc\theta$	$\cot\left(\frac{\pi}{2} - \theta\right) = \tan\theta$	

FÓRMULAS DEL ÁNGULO DOBLE

$$sen(2\theta) = 2 sen \theta cos \theta$$

$$cos(2\theta) = cos^{2} \theta - sen^{2} \theta$$
$$= 2 cos^{2} \theta - 1$$
$$= 1 - 2sen^{2} \theta$$

$$tan(2\theta) = \frac{2 \tan \theta}{1 - tan^2 \theta}$$

FÓRMULAS DEL ANGULO MITAD

$$sen\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 - \cos\theta}{2}}$$

$$cos\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1+cos\theta}{2}}$$

$$\tan\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 - \cos\theta}{1 + \cos\theta}}$$

FÓRMULAS DEL ÁNGULO TRIPLE

$$sen(3\theta) = 3 sen \theta - 4 sen^3 \theta$$

$$cos(3\theta) = 4 cos^3 \theta - 3 cos \theta$$

$$tan(3\theta) = \frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta}$$

Redes sociales

matemovil1

Matemóvil

Matemóvil

Formulario de trigonometría

Descarga y comparte

FUNCIONES TRIGONOMÉTRICAS

$sen \theta = \frac{y}{r}$	$\cos\theta = \frac{x}{r}$	$\tan\theta = \frac{y}{x}$

$$\csc \theta = \frac{r}{y} \quad \sec \theta = \frac{r}{x} \quad \cot \theta = \frac{x}{y}$$

GRÁFICAS DE FUNCIONES TRIGONOMÉTRICAS

DOMINIO DE FUNCIONES TRIGONOMÉTRICAS

 θ puede tomar cualquier valor real

 $\cos \theta$, θ puede tomar cualquier valor real

$$\tan \theta$$
, $\theta \neq \left(n + \frac{1}{2}\right)\pi$, $n = 0, \pm 1, \pm 2, \pm 3, \cdots$

 $\theta \neq n\pi$, $n = 0, \pm 1, \pm 2, \pm 3, \cdots$ $csc \theta$,

$$\sec \theta$$
, $\theta \neq \left(n + \frac{1}{2}\right)\pi$, $n = 0, \pm 1, \pm 2, \pm 3, \cdots$

 $\theta \neq n\pi$, $n = 0, \pm 1, \pm 2, \pm 3, \cdots$ $\cot \theta$,

RANGO DE FUNCIONES TRIGONOMÉTRICAS

$-1 \le sen x \le +1$	$-1 \le \cos x \le +1$	$-\infty \le \tan x \le \infty$
$\csc x \le -1 \ \lor \csc x \ge 1$	$sec x \le -1 \lor sec x \ge 1$	$-\infty \le \cot x \le \infty$

Versión 1.00 Fórmulas: Danna. Gráficas: Jorge.

PERÍODO DE FUNCIONES TRIGONOMÉTRICAS

$$sen(\omega\theta) \to T = \frac{2\pi}{\omega}$$

$$cos(\omega\theta) \to T = \frac{2\pi}{\omega}$$

$$tan(\omega\theta) \to T = \frac{\pi}{\omega}$$

$$csc(\omega\theta)\to T=\frac{2\pi}{\omega}$$

$$sec(\omega\theta) \to T = \frac{2\pi}{\omega}$$

$$cot(\omega\theta) \to T = \frac{\pi}{\omega}$$

ESTUDIA CON NOSOTROS

Si quieres aprender mates, dale un vistazo a nuestro canal: Matemóvil.

NOTACIÓN DE FUNCIONES INVERSAS

$sen^{-1}x \equiv arcsen \ x \equiv A sen \ x$
--

$$cos^{-1}x \equiv arccos x \equiv A cos x$$

$$tan^{-1}x \equiv arctan \ x \equiv A \tan x$$

DOMINIO DE FUNCIONES INVERSAS

$$sen^{-1}x: -1 \le x \le +1$$

$$cos^{-1}x$$
: $-1 \le x \le +1$

$$tan^{-1}x{:}-\infty \leq x \leq \infty$$

RANGO DE FUNCIONES INVERSAS

$$-\frac{\pi}{2} \le sen^{-1}x \le \frac{\pi}{2}$$

$$0 \leq cos^{-1}x \leq \pi$$

$$-\frac{\pi}{2} \le tan^{-1}x \le \frac{\pi}{2}$$

Redes sociales

 ${\mathcal T}$ matemovil1

Matemóvil

