III. Kvazistatična polja (obravnavamo indukcijo)

Lenzevo pravilo

»Sprememba magnetnega pretoka skozi tokokrog (zanko) požene električni tok, ki se upira vzroku svojega nastanka«

5.1. Maxwellova formulacija elektromagnetne indukcije

Kvalitativni Faradayev zakon indukcije pravi

$$\Gamma_e = -\frac{d}{dt}\phi_m$$

To lahko zapišemo z integrali kot

$$\oint_{\partial S} \vec{E} \cdot d\vec{r} = -\frac{d}{dt} \int_{S} \vec{B} \cdot d\vec{S}$$

$$\int \nabla \times \vec{E} \ dS = -\int \frac{\partial \vec{B}}{\partial t} d\vec{S}$$

In smo dobili kinematično Maxwellovo enačbo

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

Opazimo, da ne vsebuje konstante za parameter.

5.1.1. Maxwellov impulz magnetnega polja

Velja torej

$$\nabla \times \vec{E} = -\frac{\partial}{\partial t} \vec{B} = -\frac{\partial}{\partial t} (\nabla \times \vec{A}) = -\nabla \times \left(\frac{\partial \vec{A}}{\partial t}\right)$$

Torej v splošnem velja

$$\vec{E} = -\frac{\partial \vec{A}}{\partial t}$$

Povezava z 2. Newtonovim zakonom

$$\vec{F} = e\vec{E} = e\frac{\partial \vec{A}}{\partial t} = -\frac{\partial}{\partial t}(e\vec{A}) = \frac{d\vec{p}}{dt}$$

Zveza $e\vec{A}$ torej predstavlja gibalno količino in indukcija je impulz te gibalne količine, ki jo vnesemo v sistem.

5.2. Popravljen kvazistatičen sistem Maxwellovih enačb

$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$
 $\nabla \times \vec{E} = -\frac{\partial}{\partial t} \vec{B}$

$$\nabla \cdot \vec{B} = 0 \qquad \qquad \nabla \times \vec{B} = \mu_0 \vec{J} + \cdots$$

in še to, da so tokovne zanke sklenjene. Torej

$$\nabla \cdot \vec{j} = 0$$

5.2.1. Elektromagnetna potenciala za kvazistatična polja

Zanima nas, kako zapisati \vec{E} in \vec{B} z osnovnima potencialoma φ in \vec{A} . Vemo, da velja

$$\nabla \cdot \vec{B} = 0 \Rightarrow \vec{B} = \nabla \times \vec{A}$$

in pa

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} = -\nabla \times \frac{\partial \vec{A}}{\partial t}$$

Če želimo zahtevati, da velja

$$\nabla \times \left(\vec{E} \times \frac{\partial \vec{A}}{\partial t} \right) = 0$$

Mora veljati potem

$$\vec{E} = -\nabla \varphi - \frac{\partial \vec{A}}{\partial t}$$

Torej v kvazistatičnem sistemu je električno polje podano z električnim **in** magnetnim vektorskim potencialom.

5.3. Prevodniki in Ohmov zakon

Snovi, v katerih so nosilci naboja prosto gibljivi imenujemo **prevodniki**. Nosilci naboja so lahko elektroni, ioni in vrzeli. Za prevodnike velja **Ohmov zakon**.

$$\vec{j} = \sigma_E \vec{E}$$

kjer je σ_E električna prevodnost[Glej sliko v zvezku]. Predpostavimo, da je v prevodniku vedno dovolj parov +/-, ki z ločitvijo lahko kompenzirajo električno polje. Kje je torej naboj? Znotraj velja

$$\vec{E} = 0 \rightarrow \nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0} \Rightarrow \rho = 0$$
 znotraj

Gibljivi naboj je na površini prevodnika. Na površini pa velja

$$\vec{E} \cdot \vec{n} = \frac{\sigma}{\varepsilon_0}$$

kjer je σ površinska gostota naboja.

Inducirana površinska gostota naboja zasenči zunanje električno polje. Električno polje je v ravnovesju vedno pravokotno na površino prevodnika ($\vec{n} \times \vec{E} = 0$). Če to ne bi bilo tako, bi tekel električni tok in ne bi bili v ravnovesju. Kar vse to pomeni je, da je **površina polprevodnika ekvipotencialna ploskev**.

5.3.1. Časovna konstanta prevodnika

Ko vključimo električno polje, se v prevodniku prerazporedi naboj. Zanima nas koliko časa to traja in kako hitro se vzpostavi ravnovesje. Uporabimo **kontinuitetno enačbo**

$$\nabla \cdot \vec{j} + \frac{\partial \rho}{\partial t} = 0$$

$$\nabla \cdot \left(\sigma_E \vec{E}\right) + \frac{\partial \rho}{\partial t} = 0$$

Dobimo enačbo

$$\frac{\partial \rho}{\partial t} + \frac{\sigma_E}{\varepsilon_0} \rho = 0 \Rightarrow \rho(\vec{r}, t) = \rho_0(\vec{r}) e^{-t/\tau}; \ \tau = \frac{\varepsilon_0}{\sigma_E}$$

au je značilen čas. Večja kot je prevodnost prej bo prišel v ravnovesje. Za red velikosti je značilni čas za železo velikostnega reda 10^{-19} s, kar je pod atosekundami.

5.4. Mikroskopski izvor prevodnosti

Ohmov zakon lahko dobimo že iz preproste mikroskopske slike. Uporabimo **Drudejev model prevodnosti** (ki je v bistvu le samo 2. NZ)

$$m\frac{d\vec{v}}{dt} = -m\gamma\vec{v} + e\vec{E}(t)$$

Prvi člen predstavlja proces disipacije (sipanje v kristalih, hidrodinamika v elektrolitih). Drugi člen pa predstavlja sile na nabiti delec. Ko ni polja je torej rešitev preprosto

$$\vec{v}(t) = \vec{v}_0 e^{-\gamma t}$$

Hitrost eksponentno pojema s časom. Tako imamo disipacijo energije. To je izvor Joulove toplote

$$W_k = \frac{mv^2}{2} = \frac{mv_0^2}{2} e^{-2\gamma t}$$

Če pa imamo polje pa za rešitev vzamemo nastavek

$$v(t) = \frac{e}{m} \int_{-\infty}^{t} e^{-\gamma(t-t')} \vec{E}(t') dt'$$

Gostoto toka zapišemo z številsko gostoto n

$$\vec{j} = \rho \vec{v} = ne \vec{v}$$

Vstavimo

$$\vec{J} = ne\vec{v} = \frac{ne^2}{m} \int_{-\infty}^{t} e^{-\gamma(t-t')} \vec{E}(t') dt'$$

Za konstantno električno polje lahko nesemo ven iz integrala

$$\vec{J} = \frac{ne^2}{m} \vec{E} \int_{-\infty}^{t} e^{-\gamma(t-t')} dt' = \frac{ne^2}{m\gamma} \vec{E}$$

Tako uvedemo prevodnost kot

$$\sigma_E = \frac{ne^2}{m\gamma}$$

Prevodnost je večja za večje gostote naboja. Manjša pa je za težje nosilce ali pa če so delci močno dušeni.

5.5. Velikost električne prevodnosti

Enota za električno prevodnost je $[\sigma_E] = S/m$. Tu je S **Siemens** katerega enota je $S = \frac{1}{\Omega}$. Prevodnost je tipično močno odvisna od temperature.

Aluminij	$3.7 \cdot 10^7 \text{ S/m}$
Železo	$9.9 \cdot 10^7 \text{S/m}$
7Ba₂Cn₃O ₇ nad 92K	10 ⁶ S/m
7Ba₂Cn₃O ₇ pod 92K	∞ S/m
Steklo (300K)	10^{-15}S/m
Steklo (1000K)	10^{-7}S/m

5.6 Upornost

Električni tok omejimo na vodnik in vzamemo Ohmov zakon $\vec{j} = \sigma_E \vec{E}$. Tako je torej

$$\int \vec{J} \cdot d\vec{l} = \sigma \int_{(1)}^{(2)} \vec{E} \cdot d\vec{l} = \sigma[\varphi(2) - \varphi(1)]$$

Hkrati pa velja (kjer S predstavlja presek žice

$$\int \vec{J} \cdot d\vec{l} = \int \vec{J} \cdot \vec{t} \frac{d^3 \vec{r}}{S(l)} = I \int \frac{dl}{S(l)}$$

Vpeljemo **Upornost** kot

$$R = \int \frac{dl}{\sigma S(l)}$$

in dobimo Ohmov zakon

$$U = -(\varphi(2) - \varphi(1)) = RI$$

5.6.1. Disipacija energije

Na naboje v EM polju delujeta električna in magnetna sila. Magnetna sila je vedno pravokotna na tir delca zato ne troši ali pa dodaja energije. Velja torej

$$\vec{F} = \int \rho \vec{E} d^3 \vec{r}$$

Izračunamo Joulovo moč

$$P = \int \vec{f} \cdot \vec{v} \ d^3 \vec{r} = \int \frac{\vec{J}}{\rho} (\rho \vec{E} + \vec{J} \times \vec{B}) d^3 \vec{r} = \int \vec{J} \cdot \vec{E} \ d^3 \vec{r}$$

kjer je \vec{f} gostota sile. Zadnji izraz opisuje izgube pri gibanju nabitih delcev.

5.7. Kapacitivnost

V splošnem želimo vpeljati kapacitivnost prevodnika. Vzamemo N prevodnikov in jih oštevilčimo z indeksom i. Potencial na površini vsakega prevodnika je konstanten (ker so prevodniki). Prvo poglejmo celotno energijo električnega polja

$$W_e = \frac{1}{2} \int_V \rho(\vec{r}) \varphi(\vec{r}) d^3 \vec{r}$$

Ker so prevodniki so naboji le na površini

$$\rho(\vec{r})d^3\vec{r}\to\sum_i\sigma_idS_i$$

Dobimo tako

$$W_e = \frac{1}{2} \sum_i \oint \varphi_i \sigma_i dS_i = \frac{1}{2} \sum_i \varphi_i e_i$$

kjer je φ_i potencial na površini i-tega prevodnika in e_i naboj na i-tem prevodniku. Sedaj izrazimo isto energijo drugače

$$W_e = \frac{1}{2} \int_V \rho(\vec{r}) \varphi(\vec{r}) d^3 \vec{r}$$

kjer vstavimo splošno rešitev za električni potencial

$$\varphi(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3 \vec{r}'$$

Torej

$$= \frac{1}{2} \frac{1}{4\pi\varepsilon_0} \int_V \int_{V'} \frac{\rho(\vec{r})\rho(\vec{r}')}{|\vec{r}-\vec{r}'|} d^3\vec{r} \ d^3\vec{r}' = \frac{1}{8\pi\varepsilon_0} \sum_{i,j} \int_{(i)} \int_{(j)} \frac{\sigma_i \sigma_j}{|\vec{r}_i - \vec{r}_j|} d^3\vec{r} d^3\vec{r}' =$$

kjer integrala tečeta po površini i-tega in j-tega prevodnika in sta \vec{r}_i in \vec{r}_j poljubne točke na i-tem in j-tem prevodniku.

$$=\frac{1}{2}\sum_{i,j}\frac{1}{4\pi\varepsilon_0e_ie_j}e_ie_j\int_{(i)}\int_{(j)}\frac{\sigma_i\sigma_j}{\left|\vec{r}_i-\vec{r}_j\right|}dS_i\ dS_j$$

kjer uvedemo inverz tenzorja kapacitivnosti kot

$$C_{ij}^{-1} = \frac{1}{4\pi\varepsilon_0 e_i e_j} \int_{(i)} \int_{(j)} \frac{\sigma_i \sigma_j}{|\vec{r}_i - \vec{r}_j|} dS_i dS_j$$

Ta je normiran na naboj in vsebuje informacije o porazdelitvi nabojev po prostoru. Združimo torej ta dva zapisa za energijo

$$W = \frac{1}{2} \sum_{i} \varphi_{i} e_{i} = \frac{1}{2} \sum_{i,j} C_{ij}^{-1} e_{i} e_{j}$$

In tako dobimo končno

$$\varphi_i = \sum_j C_{ij}^{-1} e_j$$

OZ.

$$e_i = \sum_i C_{ij} \varphi_j$$

kjer je \mathcal{C}_{ij} kapacitivnost med i in j tim prevodnikom. Zadnja oblika nas spomni na prej poznano zvezo $e=\mathcal{C}U$

5.8. Induktivnost

Podobno kot kapacitivnost samo v jeziku magnetizma. Imamo N tokovnih vodnikov (žic) označenih z indeksom i po katerih teče tok I_i . Poglejmo energijo magnetnega polja na prvi način

$$W_m = \frac{1}{2} \int_V \vec{j} \cdot \vec{A} d^3 \vec{r} =$$

Tu uporabimo $\vec{l}d^3\vec{r} = Id\vec{l}$ da dobimo

$$=\frac{1}{2}\sum_{i}I_{i}\oint\vec{A}\cdot d\vec{l}=\frac{1}{2}\sum_{l}I_{i}\iint_{S}\nabla\times\vec{A}d\vec{S}=\frac{1}{2}\sum_{i}I_{i}\int_{S_{i}}\vec{B}\cdot d\vec{S}=\frac{1}{2}\sum_{i}I_{i}\phi_{m_{i}}$$

Poglejmo magnetno energijo še na drug način. Zapišimo jo z splošno rešitvijo za vektorski potencial

$$\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{\vec{J}(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3 \vec{r}$$

to vstavimo in dobimo

$$W_m = \frac{1}{2} \frac{\mu_0}{4\pi} \int_{V'} \int_V \frac{\vec{j}(\vec{r}) \vec{r}(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3 \vec{r} \ d^3 \vec{r}' = \frac{1}{2} \sum_{i,j} \frac{\mu_0}{4\pi} I_i I_j \int_{(i)} \int_{(j)} \frac{d\vec{l}_i d\vec{l}_j}{|\vec{r}_i - \vec{r}_j|} =$$

Tu uvedemo tenzor induktivnosti kot

$$L_{ij} = \frac{\mu_0}{4\pi} \int_{(i)} \int_{(j)} \frac{d\vec{l}_i d\vec{l}_j}{|\vec{r}_i - \vec{r}_j|}$$

 L_{ii} imenujemo lastna induktivnost. Ta dva izraza lahko združimo in dobimo

$$\phi_{m_i} = \sum_{i} L_{ij} I_j$$

kar nas spomni na poznan izraz $U + L\dot{I}$ če naredimo časovni odvod.

5.11. Kožni pojav (skin effect)

Ko <u>izmenični tok</u> teče skozi <u>prevodnik</u>, se razporedi tako, da je gostota toka največja blizu sten prevodnika. Temu se reče kožni pojav.

5.11.1. Osnovne enačbe kožnega pojava

Uporabimo Maxwellove enačbe in Ohmov zakon za prevodnik.

$$\nabla \cdot \vec{E} = 0 \qquad \qquad \nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad \nabla \times \vec{B} = \mu_0 \vec{J} = \mu_0 \sigma_E \vec{E}$$

Delujmo z rotorjem na rotorski enačbi

$$\nabla \times (\nabla \times \vec{E}) = -\frac{\partial}{\partial t} \nabla \times \vec{B} = -\mu_0 \sigma_E \frac{\partial \vec{E}}{\partial t}$$

$$\nabla \times (\nabla \times \vec{B}) = \mu_0 \sigma_E \nabla \times \vec{E} = -\mu_0 \sigma_E \frac{\partial \vec{B}}{\partial t}$$

Uporabimo identiteto $\nabla \times (\nabla \times \vec{A}) = \nabla (\nabla \cdot \vec{A}) - \nabla^2 \vec{A}$ in dobimo

$$\nabla^2 \vec{E} = \mu_0 \sigma_E \frac{\partial \vec{E}}{\partial t}$$

$$\nabla^2 \vec{B} = \mu_0 \sigma_E \frac{\partial \vec{B}}{\partial t}$$

Iščemo rešitve kot (predpostavimo, da lahko časovno odvisnost zapišemo kot sinus in kosinus pri neki frekvenci)

$$\vec{E}(\vec{r},t) = \vec{E}(\vec{r})e^{-i\omega t}$$

$$\vec{B}(\vec{r},t) = \vec{B}(\vec{r})e^{-i\omega t}$$

Dobimo Helmholtzovo enačbo

$$\nabla^2 \vec{E} = -i\omega \mu_0 \sigma_E \vec{E}$$

$$\nabla^2 \vec{B} = -i\omega \mu_0 \sigma_E \vec{B}$$

Vzamemo za $k^2=-i\omega\mu_0\sigma_E$, in dobimo $k=rac{1-i}{\sqrt{2}}\sqrt{\omega\mu_0\sigma_E}$. Tako dobimo rešitev v 1D kot

$$E \propto e^{-kz} = e^{-\sqrt{\frac{\omega\mu_0\sigma_E}{2}}} e^{i\sqrt{\frac{\omega\mu_0\sigma_E}{2}}}$$

Tako dobimo udorno globino

$$x = \sqrt{\frac{2}{\omega \mu_0 \sigma_E}}$$

Ta je za baker pri $60~{\rm Hz}$ okoli $1~{\rm cm.}$, pri $750~{\rm Mhz}$ (internet) pa je okoli $1\mu{\rm m}$ kar je le okoli $10^4~{\rm atomov}$ debeline.

5.11.2. Geometrija polj in ustrezna rešitev

Vzamemo cilindrične koordinate in cilindrično bazo (r, ϕ, z) in $(\hat{e}_r, \hat{e}_\phi, \hat{e}_z)$. Od nič različni so le E_z in B_ϕ . Torej

$$E_z(r,t) = E_z(r)e^{-i\omega t}$$

$$B_{\phi}(r,t) = B_{\phi}(r)e^{-i\omega t}$$

Laplaceov operator v cilindričnih koordinatah in cilindrični bazi je

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial}{\partial r}\right) - \frac{1}{r^2}$$

Torej

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial B_{\phi}}{\partial r}\right) - \frac{B_{\phi}}{r^2} = -i\omega\mu_0\sigma_E B_{\phi}$$

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial E_z}{\partial r}\right) - \frac{E_z}{r^2} = -i\omega\mu_0\sigma_E E_z$$

Ti dve enačbi sta skopljeni ker mora veljati povezava/vez $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$. Če rešimo eno, bomo dobili rešitev druge. Pri nas tako preživi le z smer in dobimo

$$i\omega B_{\phi} = \left(\nabla \times \vec{E}\right)_{\phi} = -\frac{\partial E_z}{\partial r}$$

Rešitev enačb je tako

$$E_z(r) = AJ_0(kr)$$

$$B_{\phi}(r) = -\frac{iAk}{\omega} J_1(kr)$$

kjer je $k=\frac{1-i}{\sqrt{2}}\sqrt{\omega\mu_0\sigma_E}$ in J_n modificirana Besselova funkcija (mora biti sposobna vzeti kompleksni argument).

5.11.3. Tok skozi cilindrični vodnik

Gostota električnega toka je tako $\vec{j}=\sigma\vec{E} ~\to~ j=\sigma E_z=\sigma A J_0(kr)$. Celotni tok je tako

$$I = \int \vec{J} \cdot \hat{n} dS = \sigma \int_0^a E_z 2\pi r dr = i \frac{2\pi a}{\omega \mu_0} \left(\frac{\partial E_z}{\partial r} \right) \Big|_0^a = \frac{2\pi a}{\mu_0} B_{\phi}(a)$$

kjer smo uporabili $E_z r = \frac{i}{\omega \mu_0 \sigma_E} \frac{\partial}{\partial r} \left(r \frac{\partial E_z}{\partial r} \right)$ in povezavo med odvodom E_z in B_ϕ . Tok skozi električno žico je pogojen z odvodom električnega polja na površini žice oz. z magnetnim poljem na površini žice. Loči se močen in šibek kožni pojav glede na velikost frekvence.