МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Информационная безопасность систем и технологий»

Отчет

по Заданию 2

на тему «Принципы нелинейного кодирования и декодирования»

Дисциплина: СиСПИ

Группа: 21ПИ1

Выполнил: Водолазов Д. С.

Количество баллов:

Дата сдачи:

Принял: Иванов А. П.

2 Задание. Выполнить кодирование дискретных отсчетов методом ИКМ и декодирование кодовых комбинаций цифрового сигнала. Величины эталонных напряжений для нижней границы каждого сегмента и при кодировании внутри сегмента представлены на рисунке 1.

Номер	Эталонное	Эталонные напряжения при			
сегмента	напряжение	кодировании в пределах сегмента			
N _c	нижней	$8\Delta_i(A)$	$4\Delta_i(B)$	$2\Delta_{i}I(C)$	$\Delta_i(D)$
	границы				
	сегмента				
0	0	$8\Delta_0$	$4\Delta_0$	$2\Delta_0$	$1\Delta_0$
1	$16\Delta_0$	$8\Delta_0$	$4\Delta_0$	$2\Delta_0$	$1\Delta_0$
2	$32\Delta_0$	$16\Delta_0$	$8\Delta_0$	$4\Delta_0$	$2\Delta_0$
3	$64\Delta_0$	$32\Delta_0$	$16\Delta_0$	$8\Delta_0$	$4\Delta_0$
4	$128\Delta_0$	$64\Delta_0$	$32\Delta_0$	$16\Delta_0$	$8\Delta_0$
5	$256\Delta_0$	$128\Delta_0$	$64\Delta_0$	$32\Delta_0$	$16\Delta_0$
6	$512\Delta_0$	$256\Delta_0$	$128\Delta_0$	$64\Delta_0$	$32\Delta_0$
7	$1024\Delta_0$	$512\Delta_0$	$256\Delta_0$	$128\Delta_0$	$64\Delta_0$

Рисунок 1 - Величины эталонных напряжений

- 3 Выполнение задания.
- 3.1 Кодирование. Был получен вариант задания. Вариант задания представлен в таблице 1.

Таблица 1 — Вариант задания для кодирования

Номер варианта	Значения дискретных отсчетов в единицах Δ			
32	88	-222	-2011	

- 3.1.1 Кодирование отсчета 88Δ .
- Была определена полярность отсчета: 1;
- Был определен сегмент отсчета: 3;
- Были определены уровни квантования в пределах сегмента: 0110;
- Закодированный дискретный отсчет: 1011 0110.
- 3.1.2 Кодирование отсчета -222Δ .
- Была определена полярность отсчета: 0;

- Был определен сегмент отсчета: 4;
- Были определены уровни квантования в пределах сегмента: 1010;
- Закодированный дискретный отсчет: 0100 1010.
- 3.1.3 Кодирование отсчета -2011Δ .
- Была определена полярность отсчета: 0;
- Был определен сегмент отсчета: 7;
- Были определены уровни квантования в пределах сегмента: 1111;
- Закодированный дискретный отсчет: 0111 1111.
- 3.2 Декодирование. Был получен вариант задания. Вариант задания представлен в таблице 2.

Таблица 2 — Вариант задания для декодирования

Номер варианта	Десятичное число кодовых комбинаций		
32	211	88	22

- 3.2.1 Декодирование числа 211.
- Был получен двоичный код числа: 1101 0011.
- Была определена полярность отсчета: 1;
- Был определен сегмент отсчета: 5;
- Был определен дискретный отсчет: 304 Δ .
- 3.2.2 Декодирование числа 88.
- Был получен двоичный код числа: 0101 1000.
- Была определена полярность отсчета: 0;
- Был определен сегмент отсчета: 5;
- Был определен дискретный отсчет: -384 Δ .
- 3.2.3 Декодирование числа 22.
- Был получен двоичный код числа: 0001 0110.
- Была определена полярность отсчета: 0;
- Был определен сегмент отсчета: 1;
- Был определен дискретный отсчет: -22∆.
- 4 Вывод: были изучены принципы нелинейного кодирования и декодирования.