AL1 - INITIATION AU CALCUL MATRICIEL

TI-82 STATS - TI-83 Plus - TI-84 Plus

Mots-clés: matrices, ES Spécialité, produit de matrices.

1. Objectifs

Introduire des matrices (tableau résumant une situation), multiplier une matrice par une matrice colonne, multiplier deux matrices. Ce TP est largement inspiré par l'exemple 1 des commentaires du programme officiel.

2. Résolution

Remarque: la calculatrice est en MODE Flott.

- 1) Pour entrer la matrice [A], matrice de 5 lignes et de 9 colonnes :
- accéder à l'éditeur de matrice par 2nd [MATRIX], sélectionner EDIT et valider avec ENTER (écran 1);
- donner les dimensions avec la séquence **5 ENTER 9 ENTER** (écran 2) ;
- saisir les coefficients ligne par ligne en validant chacun des coefficients avec la touche **ENTER** (écran 3).

Une matrice 4×7 aura 4 lignes et 7 colonnes.

 $A_{(2,4)}$ représente le coefficient de la 2^e ligne et de la 4^e colonne.

Pour obtenir $A_{(2,4)} = 11$, taper la séquence suivante :

2nd [MATRIX] 1 (2,4) ENTER.

2) Moyennes pondérées

- a) Les moyennes pondérées d'Abdel et Diana sont respectivement : 13,25 et 10,45.
- **b)** Pour la méthode de Victor :
- afficher la matrice B par la séquence : 2nd [MATRIX] EDIT 2 ;
- demander 9 lignes et 1 colonne : **9 ENTER 1 ENTER** ;
- puis saisir les coefficients, validés par **ENTER** (écran 4);
- revenir dans l'écran de calcul par 2nd [QUIT].
- calculer $\frac{1}{20}A \times B$ avec la séquence : $\mathbf{1} \div \mathbf{20} \times \mathbf{2nd}$ [MATRIX] $\mathbf{1} \times \mathbf{2}^{nd}$ [MATRIX] $\mathbf{2}$.

On vérifie que le calcul de $\frac{1}{20}$ $B \times A$ provoque un écran d'erreur (*écran* 6), car on a multiplié une matrice 9×1 par une matrice 5×9 .

 $\frac{1}{20}A \times B$ donne la moyenne pondérée de chacun des élèves.

écran 4

écran 5

écran 6

- c) Pour la méthode d'Henri:
- entrer la matrice ligne *C* (*écran* 7) ;
- calculer $\frac{1}{20} A \times C$: on obtient l'écran 6, le calcul est impossible ;
- calculer $\frac{1}{20}$ $C \times A$: le calcul est aussi impossible, on obtient le même écran d'erreur.

écran 7

d) On complète:

A est une matrice de a lignes et b colonnes ;

B est une matrice de c lignes et d colonnes ;

pour pouvoir effectuer le produit $A \times B$, il faut que b = c.

3) La matrice D est une matrice à 9 lignes, car A est une matrice 5×9 et l'on calcule le produit $A \times D$. Donc D est une matrice 9×3 . Chaque ligne correspond à une matière et chaque colonne à une section.

On entre la matrice D (écran 8), puis on effectue le calcul (écran 9) :

Abdel a une moyenne de 12,1 pour la section L, 12,65 pour la section ES et 14 pour la section S.

Remarque:

En passant à 5 le coefficient de l'EPS dans toutes les sections, tous les élèves auraient la moyenne dans toutes les sections.

4) E est une matrice 1×5 .

A est une matrice 5×9 .

Donc on peut effectuer le produit, et l'on obtient une matrice 1×9 .

Le premier 10,2 représente la moyenne en Français des notes des cinq élèves.

Chaque note est la moyenne des notes obtenues par les cinq élèves dans une matière.

AL1 - INITIATION AU CALCUL MATRICIEL

Voici un tableau représentant les notes obtenues par 5 élèves d'une classe de seconde :

	français	histoire géographie	LV1	LV2	SES	math	physique	biologie	EPS
Abdel	14	12	13	12	14	16	18	15	3
Benoît	12	13	12	11	10	4	6	8	15
Chloë	9	10	11	8	12	9	10	8	16
Diana	8	7	9	8	11	14	11	13	12
Erwann	8	9	7	4	9	6	8	8	18

Ce tableau peut être représenté en mathématiques par la matrice A qui comporte 5 lignes et 9 colonnes.

1) Rentrer dans la calculatrice la matrice représentant les notes.

On les placera dans la matrice [A] qui aura 5 lignes et 9 colonnes.

Recopier et compléter :

une matrice
$$4 \times 7$$
 aura ... lignes et ... colonnes.

Sur l'écran de la calculatrice, (2,4) désigne le coefficient de la *i*-ième ligne et de la *j*-ième colonne.

Pour la matrice [A], on notera ce coefficient [A](2,4); alors $A_{(2,4)} = \dots$.

2) On voudrait affecter aux matières les coefficients suivants :

- Français : 3 ; - Histoire-Géographie : 2 ;

- LV1 : 3; - LV2 : 1;

- Sciences Économiques et Sociales : 2; - Mathématiques : 3;

- Physique : 2; - Biologie : 2;

- Éducation Physique et Sportive : 2.

a) Sans utiliser les matrices, calculer les moyennes pondérées d'Abdel et Diana.

b) Victor décide de représenter ces coefficients dans un vecteur colonne
$$B = \begin{bmatrix} 3 \\ 1 \\ 2 \\ 3 \\ 2 \\ 2 \end{bmatrix}$$
 qu'il saisit dans la matrice

2

[B] de sa calculatrice.

Il tente de calculer, sur sa calculatrice, les produits de matrices :

$$\frac{1}{20}$$
 [A] × [B] et $\frac{1}{20}$ [B] × [A].

Que lui arrive-t-il ? Expliquer les résultats obtenus en utilisant les matrices A et B.

c) Henri lui décide de représenter ces coefficients par un vecteur ligne, $C = (3\ 2\ 3\ 1\ 2\ 3\ 2\ 2\ 2)$ qu'il saisit dans la matrice $[\mathbb{C}]$ de sa calculatrice.

Il tente de calculer avec sa calculatrice les matrices :

$$\frac{1}{20}$$
 [C] × [A] et $\frac{1}{20}$ [A] × [C].

Que lui arrive-t-il ? Expliquez les résultats obtenus à l'aide des matrices A et C.

- d) Recopier et compléter :
- A est une matrice de a lignes et b colonnes ;
- B est une matrice de c lignes et d colonnes ;
- pour pouvoir effectuer le produit $A \times B$, il faut que ...
- 3) Maintenant les coefficients dépendent de la section choisie :
- pour une section littéraire, les coefficients sont (total des coefficients = 20) :

• pour une section économique, les coefficients sont : (total des coefficients = 20) :

• pour une section scientifique, les coefficients sont : (total des coefficients = 20) :

On voudrait pour chaque élève pouvoir calculer la moyenne qu'il obtiendrait dans chacune des sections.

On entre ces coefficients dans une matrice [D], puis on effectue le produit $\frac{1}{20}$ [A] × [D].

Quelles sont les dimensions de la matrice D?

Choisir 3 coefficients de cette matrice et expliciter par une phrase ce qu'ils représentent concrètement.

4) On considère la matrice E de 1 ligne et de 5 colonnes dont tous les coefficients sont égaux à 1.

Peut-on effectuer
$$\frac{1}{5}$$
 [E] × [A] ?

Si oui, quelles seront les dimensions de la matrice résultat ? Que représente chacun de ses coefficients ?