Nome: Cognome: Matricola:	
---------------------------	--

Esercizio 1Si consideri il seguente schema ER.

Parte A:
Lo studente completi la seguente tavola dei volumi

Entità/Relazione	Num. Istanze	Motivazione
Dipartimenti	10	Per ipotesi
Afferenza		
Strutturati		
Locazione2		
Responsabile		
Gestione		
PC		
Stanze		
Locazione1		

sapendo che:

- Esistono 10 dipartimenti
- Ad ogni dipartimento afferiscono in media 50 strutturati
- Ogni strutturato ha in media 1,2 stanze
- Ogni strutturato è responsabile, in media, di 3 PC
- In media, ogni dipartimento ha direttamente in gestione 10 PC

- I PC o sono sotto la responsabilità di uno strutturato o sono sotto la gestione diretta di un dipartimento.
- In ogni stanza ci sono, in media, 2 strutturati

Soluzione:

Entità/Relazione	Num. Istanze	Motivazione
Dipartimenti	10	Per ipotesi
Afferenza	500 = 50 x 10	Ad ogni dipartimento afferiscono in media 50 strutturati
Strutturati	500	Cardinalità (1,1) con la relazione Afferenza
Locazione2	600 = 500 x 1,2	Ogni strutturato ha in media 1,2 stanze
Responsabile	1500 = 500 x 3	Ogni strutturato è respondabile, in media, di 3 PC
Gestione	100 = 10 x 10	In media, ogni dipartimento ha direttamente in gestione 10 PC
PC	1600 = 1500 + 100	I PC o sono sotto la responsabilità di uno strutturato o sono sotto la gestione diretta di un dipartimento.
Stanze	300 = 600 / 2	In ogni stanza ci sono, in media, 2 strutturati
Locazione1	1600	Cardinalità (1,1) con l'entità PC

Esercizio 2

Lo studente risponda alle seguenti domande

Parte A:

Quale è la definizione di "espressioni equivalenti" in algebra relazionale?

Soluzione:

Due espressioni sono equivalenti se producono lo stesso risultato qualunque sia l'istanza attuale della base di dati

Parte B:

Perché sono importanti le "espressioni equivalenti"?

Soluzione:

Le "espressioni equivalenti" sono importanti perché i DBMS cercano sempre di eseguire espressioni equivalenti a quelle date, ma meno "costose"

Esercizio 3

Lo studente consideri la seguente tabella:

Tabella (Attr-A, Attr-B, Attr-C, Attr-D)

Parte A

Lo studente individui tutte le superchiavi della suddetta tabella costituite da un unico attributo, sapendo che su tale tabella valgono le seguenti dipendenze funzionali:

- Attr-A \rightarrow Attr-B, Attr-C
- Attr-B \rightarrow Attr-D
- Attr-D \rightarrow Attr-B
- Attr-C \rightarrow Attr-A

Soluzione:

Le superchiavi per la tabella sono:

Attr-C: se Attr-C \rightarrow Attr-A e Attr-A e Attr-B e Attr-B \rightarrow Attr-D, allora Attr-C \rightarrow (Attr-A, Attr-B, Attr-D)

Attr-A: in quanto Attr-A \rightarrow Attr-C e Attr-C è una chiave candidata

Esercizio 4

Lo studente consideri la seguente base di dati

- Confini (CodStato 1, CodStato 2)
- Fiumi (CodFiume, Nome, Lunghezza, CodStatoSorgente, Foce, CodStatoFoce)
- Stati_attraversati (<u>CodFiume</u>, <u>CodStato</u>, Km)
- Stati (<u>CodStato</u>, Nome, Popolazione, Capitale, Superficie, Continente)

Parte A

Lo studente individui tutti i vincoli interrelazionali presenti in tale base di dati.

Solzuione:

Esistono i seguenti vincoli di integrità referenziale:

- Tra l'attributo CodStato_1 della tabella Confini e l'attributo CodStato della tabella Stati
- Tra l'attributo CodStato_2 della tabella Confini e l'attributo CodStato della tabella Stati
- Tra l'attributo CodStatoSorgente della tabella Fiumi e l'attributo CodStato della tabella Stati
- Tra l'attributo CodStatoFoce della tabella Fiumi e l'attributo CodStato della tabella Stati
- Tra l'attributo CodFiume della tabella Stati_attraversati e l'attributo CodFiume della tabella Fiumi
- Tra l'attributo CodStato della tabella Stati_attraversati e l'attributo CodStato della tabella Stato

Esercizio 5

Si consideri la seguente basi di dati:

- Citta (<u>CodCitta</u>, Nome, Popolazione, CodStato)
- Citta_attraversate (<u>CodFiume</u>, <u>CodCitta</u>)
- Confini (CodStato 1, CodStato 2)
- Fiumi (CodFiume, Nome, Lunghezza, CodStatoSorgente, Foce, CodStatoFoce)
- Stati_attraversati (<u>CodFiume</u>, <u>CodStato</u>, Km)
- Stati (<u>CodStato</u>, Nome, Popolazione, CodCapitale, Superficie, Continente)

Parte A

Lo studente scriva un'espressione dell'algebra relazionale che permetta di elencare i nomi degli stati dell'Asia attraversati da almeno un fiume, ma la cui capitale non e' attraversata da alcun fiume.

Soluzione:

$$\Pi_{Nome} \begin{pmatrix} \Pi_{CodStato,Nome,CodCapitale} \left(\sigma_{Continente="Asia"} \left(Stati \right) \right) \rhd \triangleleft \\ \Pi_{CodStato} \left(Stati_attraversati \right) \rhd \triangleleft_{CodCapitale=CodCitta} \\ \left(\Pi_{CodCitta} \left(Citta \right) - \Pi_{CodCitta} \left(Citta_attraversate \right) \right) \end{pmatrix}$$

Parte B

Lo studente esprimera la query precedente nel calcolo dei domini.

Soluzione:

{Nome: $n \mid Stati (CodStato: cs, Nome: n, Popolazione: p, CodCapitale: cc, Superficie: s, Continente: c) <math>\land Stati_attraversati (CodFiume: cf, CodStato: cs, Km: k) <math>\land (\neg \exists cf. Citta_Attraversate(CodFiume: cf, CodCitta: cc)) \land c="Asia" }$