姜晓千 2023 年强化班笔记

数学笔记

Weary Bird

2025年7月21日

相见欢·林花谢了春红

林花谢了春红,太匆匆。无奈朝来寒雨晚来风。胭脂泪,相留醉,几时重。自是人生长恨水长东。

2025年7月21日

目录

第·	一章	一元函数微分学	1
	1.1	导数与微分的概念	1
	1.2	导数与微分的计算	4
	1.3	导数应用-切线与法线	10
	1.4	导数应用-渐近线	12
	1.5	导数应用-曲率	14
	1.6	导数应用-极值与最值	15
	1.7	导数应用-凹凸性与拐点	16
	1.8	导数应用-证明不等式	16
	1.9	导数应用-求方程的根	17
	1.10	微分中值定理证明题	17

第一章 一元函数微分学

1.1 导数与微分的概念

- 1. (2000, 数三) 设函数 f(x) 在点 x = a 处可导,则函数 |f(x)| 在点 x = a 处不可导的充分 条件是

 - A $f(a) = 0 \perp f'(a) = 0$ B $f(a) = 0 \perp f'(a) \neq 0$
 - C $f(a) > 0 \perp f'(a) > 0$ D $f(a) < 0 \perp f'(a) < 0$

2. (2001, 数一) 设 f(0) = 0, 则 f(x) 在 x = 0 处可导的充要条件为

- (A) $\lim_{h\to 0} \frac{1}{h^2} f(1-\cos h)$ 存在 (B) $\lim_{h\to 0} \frac{1}{h} f(1-e^h)$ 存在
- (C) $\lim_{h\to 0} \frac{1}{h^2} f(h-\sin h)$ 存在 (D) $\lim_{h\to 0} \frac{1}{h} [f(2h)-f(h)]$ 存在

3. (2016, 数一) 已知函数 $f(x) = \begin{cases} x, & x \leq 0 \\ \frac{1}{n}, & \frac{1}{n+1} < x \leq \frac{1}{n}, n = 1, 2, \cdots \end{cases}$ (A) x = 0 是 f(x) 的第一类间断点 (B) x = 0 是 f(x) 的第二类间断点

- (C) f(x) 在 x = 0 处连续但不可导 (D) f(x) 在 x = 0 处可导

1.2 导数与微分的计算

Remark (类型一分段函数求导).

4. (1997, 数一、数二) 设函数 f(x) 连续, $\varphi(x) = \int_0^1 f(xt)dt$, 且 $\lim_{x\to 0} \frac{f(x)}{x} = A(A$ 为常数), 求 $\varphi'(x)$, 并讨论 $\varphi'(x)$ 在 x=0 处的连续性。

Remark (类型二复合函数求导).

5. (2012, 数三) 设函数
$$f(x) = \begin{cases} \ln \sqrt{x}, & x \ge 1 \\ y = f(f(x)),$$
求 $\frac{dy}{dx} \Big|_{x=e} \end{cases}$

Remark (类型三隐函数求导).

6. (2007, 数二) 已知函数 f(u) 具有二阶导数,且 f'(0) = 1,函数 y = y(x) 由方程 $y - xe^{y-1} = 1$ 所确定。设 $z = f(\ln y - \sin x)$,求 $\frac{dz}{dx}\Big|_{x=0}$ 和 $\frac{d^2z}{dx^2}\Big|_{x=0}$

Remark (类型四反函数求导).

- 7. (2003, 数一、数二) 设函数 y = y(x) 在 $(-\infty, +\infty)$ 内具有二阶导数,且 $y' \neq 0, x = x(y)$ 是 y = y(x) 的反函数。
 - (i) 将 x = x(y) 所满足的微分方程 $\frac{d^2x}{dy^2} + (y + \sin x) \left(\frac{dx}{dy}\right)^3 = 0$ 变换为 y = y(x) 满足的微分方程
 - (ii) 求变换后的微分方程满足初始条件 $y(0) = 0, y'(0) = \frac{3}{2}$ 的解

Remark (类型五参数方程求导).

Remark (类型五参数万程求导).

8. (2008, 数二) 设函数
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = x(t) \\ y = \int_0^{t^2} \ln(1+u) du \end{cases}$$
 确定, 其中 $x(t)$ 是初值问题
$$\begin{cases} \frac{dx}{dt} - 2te^{-x} = 0 \\ x|_{t=0} = 0 \end{cases}$$
 的解, 求 $\frac{d^2y}{dx^2}$

值问题
$$\begin{cases} \frac{dx}{dt} - 2te^{-x} = 0 \\ x|_{t=0} = 0 \end{cases}$$
 的解, 求 $\frac{d^2y}{dx^2}$

Remark (类型六高阶导数).

1.3 导数应用-切线与法线

Remark (类型一直角坐标表示的曲线).

10. (2000, 数二) 已知 f(x) 是周期为 5 的连续函数,它在 x = 0 的某个邻域内满足关系式 $f(1+\sin x) - 3f(1-\sin x) = 8x + \alpha(x)$,其中 $\alpha(x)$ 是当 $x \to 0$ 时比 x 高阶的无穷小,且 f(x) 在 x = 1 处可导,求曲线 y = f(x) 在点 (6,f(6)) 处的切线方程。

Remark (类型二参数方程表示的曲线).

11. 曲线
$$\begin{cases} x = \int_0^{1-t} e^{-u^2} du \\ y = t^2 \ln(2 - t^2) \end{cases}$$
 在 $(0,0)$ 处的切线方程为___

Solution. 【详解

Remark (类型三极坐标表示的曲线).

12. (1997, 数一) 对数螺线 $r=e^{\theta}$ 在点 $(e^{\frac{\pi}{2}},\frac{\pi}{2})$ 处切线的直角坐标方程为__

1.4 导数应用-渐近线

- 13. (2014, 数一、数二、数三) 下列曲线中有渐近线的是
 - (A) $y = x + \sin x$ (B) $y = x^2 + \sin x$

 - (C) $y = x + \sin \frac{1}{x}$ (D) $y = x^2 + \sin \frac{1}{x}$

14. (2007, 数一、数二、数三) 曲线 $y=\frac{1}{x}+\ln(1+e^x)$ 渐近线的条数为

- (A) 0 (B) 1 (C) 2
- (D) 3

1.5 导数应用-曲率

1.5 **寻致应用- 四 李**
15. (2014, 数二) 曲线
$$\begin{cases} x = t^2 + 7 & \text{对应于 } t = 1 \text{ 的点处的曲率半径是} \\ y = t^2 + 4t + 1 & \text{(A) } \frac{\sqrt{10}}{50} \text{ (B) } \frac{\sqrt{10}}{100} \text{ (C) } 10\sqrt{10} \text{ (D) } 5\sqrt{10} \end{cases}$$

1.6 导数应用-极值与最值

Remark. 函数的极值的充分条件

 $(\stackrel{\cdot}{\text{A}}) f(x)$ 连续, 且 f'(x) 在 $x = x_0$ 的左右去心邻域内 异号

(充分 2) $f'(x_0) = 0, f''(x_0) \neq 0$ 则有

$$f''(x) \begin{cases} > 0 & x_0 是极小值 \\ < 0 & x_0 是极大值 \end{cases}$$

(充分 3) 若 $f'(x_0) = f''(x_0) = \dots = f^{(n-1)(x_0)=0,f^{(n)}}(x_0) \neq 0$, 且 n 是大于 2 的偶数则有

$$f^{(n)}(x_0) \begin{cases} > 0 & x_0 是极小值 \\ < 0 & x_0 是极大值 \end{cases}$$

- 17. (2000, 数二) 设函数 f(x) 满足关系式 $f''(x) + [f'(x)]^2 = x$, 且 f'(0) = 0, 则
 - (A) f(0) 是 f(x) 的极大值
 - (B) f(0) 是 f(x) 的极小值
 - (C) 点(0, f(0)) 是曲线 y = f(x) 的拐点
 - (D) f(0) 不是 f(x) 的极值, 点(0, f(0)) 也不是曲线 y = f(x) 的拐点

Solution. 有题设知 f''(0) = 0, 对等式两边求导有 $f^{(3)}(0) = 1 \neq 0$ 由拐点充分条件可知,(0, f(0)) 为函数的拐点

18. (2010, 数一、数二) 求函数 $f(x) = \int_1^{x^2} (x^2 - t)e^{-t^2} dt$ 的单调区间与极值

Solution. 求导有

$$f'(x) = 2x \int_{1}^{x^2} e^{-t^2} dt$$

令 f'(x) = 0 有 x = 0 或 $x = \pm 1$ 并且无其余根, 带入可知 $x = \pm 1, f(\pm 1) = 0$ 为极小值点, $x = 0, f(0) = -\frac{1}{2}(e^{-1} - 1)$ 为极大值点

19. (2014, 数二) 已知函数 y = y(x) 满足微分方程 $x^2 + y^2y' = 1 - y'$, 且 y(2) = 0, 求 y(x) 的极大值与极小值

Solution. 比较简单, 答案为极小值为 y(-1) = 0, 极大值为 y(1) = 1

1.7 导数应用-凹凸性与拐点

Remark. 拐点也有三个充分条件

- $(\widehat{\Omega}_{0}, f(x))$ 连续, 且 f''(x) 在 $x = x_{0}$ 的左右去心邻域内 异号
- (充分 2) $f''(x_0) = 0, f'''(x_0) \neq 0$ 则有 $(x_0, f(x_0))$ 为函数拐点
- (充分 3) 若 $f'(x_0) = f''(x_0) = \dots = f^{(n-1)(x_0)=0,f^{(n)}}(x_0) \neq 0$, 且 n 是大于 3 的奇数则有 $(x_0, f(x_0))$ 为函数的拐点
 - 20. (2011, 数一) 曲线 $y = (x-1)(x-2)^2(x-3)^3(x-4)^4$ 的拐点是 (A) (1,0) (B) (2,0) (C) (3,0) (D) (4,0)

Solution. 直接用高中的穿针引线法画图就可以

1.8 导数应用-证明不等式

Remark. 通常优先考虑单调性, 较难的题会结合微分中值定理 (通常是拉格朗日/柯西/泰勒)

21. (2017, 数一、数三) 设函数 f(x) 可导,且 f(x)f'(x) > 0,则

$$(A) \ f(1) > f(-1) \quad (B) \ f(1) < f(-1) \qquad (C) \ |f(1)| > |f(-1)| \quad (D) \ |f(1)| < |f(-1)|$$

Solution. 这道题的辅助函数比较好想, 显然 $F(x) = \frac{1}{2}f^2(x)$, 由题设知 F'(x) > 0 恒成立, 故 F(x) 单调递增即 $F(1) > F(-1) \implies f(2)(1) > f(2)(-1) \implies |f(1)| > |f(-1)|$

22. (2015, 数二) 已知函数 f(x) 在区间 $[a, +\infty)$ 上具有二阶导数, f(a) = 0, f'(x) > 0, f''(x) > 0。设 b > a,曲线 y = f(x) 在点 (b, f(b)) 处的切线与 x 轴的交点是 $(x_0, 0)$,证明 $a < x_0 < b$ 。

Solution. 这道题的几何直观非常明显, 证明也不算很难.

由题可知切线方程为 y = f'(b)(x-b) + f(b) 令 y = 0 有 $x_0 = b - \frac{f(b)}{f'(b)}$

$$a < b - \frac{f(b)}{f'(b)} < b$$

$$\Leftarrow 0 < \frac{f(b)}{f'(b)} < b - a$$

$$\Leftarrow 0 < f(b) < f'(b)(b - a)$$

由 f(a) = 0 和拉格朗日中值定理有 $f(b) = f(b) - f(a) = f'(\xi)(b - a), a < \xi < b,$ 又 f''(x) > 0 故 $f'(\xi) < f'(b)$ 故 f(b) < f'(b)(b - a) 从而原不等式成立

1.9 导数应用-求方程的根

23. (2015, 数二) 已知函数 $f(x) = \int_x^1 \sqrt{1+t^2} dt + \int_1^{x^2} \sqrt{1+t} dt$, 求 f(x) 零点的个数。

Solution. 这道题也比较简单, 感觉是高中题现在考研已经不太可能出了 $f'(x) = (2x-1)\sqrt{1+x^2}$, 显然只有唯一根 f'(1/2) = 0 又 f(1) = 0 故 f(1/2) < 0 又 f(-1) > 0 故 f(x) 在 f(-1) 上必然还有唯一根, 故 f(x) 在 R 上仅有两根

1.10 微分中值定理证明题

Remark. 证明含有一个 ξ 的等式

如果不含导数,通常使用单调性 + 零点存在定理

如果包含导数,通常需要构建辅助函数并使用费马引理/罗尔定理

构建辅助函数中比较困难的题目,可以采用积分还原法做,其基本思路为

- (1) 将 *ξ* 都改写成 *x*, 变形做不定积分去掉导数
- (2) 改写 C=0, 移项构建辅助函数
- 25. (2013, 数一、数二) 设奇函数 f(x) 在 [-1,1] 上具有二阶导数, 目 f(1) = 1。证明:
 - (i) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 1$;

(ii) 存在 $\eta \in (-1,1)$, 使得 $f''(\eta) + f'(\eta) = 1$ 。

Solution. (1) 显然构建 F(x) = f(x) - x, 有 F(1) = F(0) = 0 由 roller Th 可知 $\exists \xi \in (0,1), F'(\xi) = 0$ 即 $f'(\xi) = 1$

(2) 由 f(x) 是可导的奇函数容易得知 f'(x) 偶函数

(方法一) 构建 G(x) = f'(x) + f(x) - x, 则 G(-1) = f'(1) = G(1) 由 roller Th 有...

(方法二) 构建 $G(x) = e^x(f'(x) - 1)$, 则由第一问有 $f'(-\xi) = f'(\xi) = 1$ 带入 G(x), 再由 roller Th 也可以得到答案

26. 设函数 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,f(1)=0,证明:存在 $\xi \in (0,1)$,使得 $(2\xi+1)f(\xi)+\xi f'(\xi)=0$ 。

Solution. 这道题很难通过观察法得到辅助函数, 考虑使用积分还原法

$$\frac{f'(x)}{f(x)} = -(2 + \frac{1}{x})$$
$$\int \frac{f'(x)}{f(x)} dx = \int -(2 + \frac{1}{x}) dx$$

即

$$\ln|f(x)| + \ln x + \ln e^{2x} - \ln|C| = 0$$

化简且令 C=0 后有

$$xe^{2x}f(x) = 0$$

故辅助函数 $G(x) = xe^{2x}f(x)$, 又 G(1) = G(0) 由 roller Th 可知原等式成立

Remark. 类型二证明含有两个点的等式

若要求的是两个相异的点,则分区间讨论(具体看下题 1)

若并不要求两个相异的点,则可能需要一次拉格朗日一次柯西(具体见下题 2)

- 27. 设 f(x) 在 [0,1] 上连续, 在 (0,1) 内可导, 且 f(0) = 0, f(1) = 1。证明:
 - (i) 存在两个不同的点 $\xi_1, \xi_2 \in (0,1)$, 使得 $f'(\xi_1) + f'(\xi_2) = 2$;
 - (ii) 存在 $\xi, \eta \in (0,1)$, 使得 $\eta f'(\xi) = f(\eta) f'(\eta)$ 。

Solution. 对于(1)这种题目不应该从正面突破,而应该先假设.

假设 $\exists \xi_1 \in (0,c), \xi_2(c,1)$ 有

$$f'(\xi_1) = \frac{f(c) - f(0)}{f}$$
$$f'(\xi_2) = \frac{f(1) - f(c)}{1 - c}$$

带入题设条件 $f'(\xi_1) + f'(\xi_2) = 2 \implies c = \frac{1}{2}$

以上分析均不需要写在试卷上

由 lagrange Th $\exists \xi_1 \in (0, 1/2), \xi_2(1/2, 1)$ 有....

(2) 由 lagrange Th 可知 $\exists \xi \in (0,1), f'(\xi) = f(1) - f(0) = 1$ 题目要求的为

$$f'(\xi) = \frac{f(\eta)f'(\eta)}{\eta}$$

考虑柯西中值定理, 左侧分式实际是

$$\frac{f^2(1) - f^2(0)}{1^2 - 0^2} = \frac{f'(\eta)f(\eta)}{\eta} = 1 = f'(\xi)$$

Remark. 类型三证明含有高阶导数的等式或不等式

基本就是 Taylor 的题, 当然有时也可以通过多次拉格朗日求出来.

这种问题的关键点在于如何寻找展开点,基本思路就是谁信息多展开谁,例如端点,极值点,最值点,零点等等

- 28. (2019, 数二) 已知函数 f(x) 在 [0,1] 上具有二阶导数,且 $f(0) = 0, f(1) = 1, \int_0^1 f(x) dx = 1$ 。证明:
 - (i) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 0$;
 - (ii) 存在 $\eta \in (0,1)$, 使得 $f''(\eta) < -2$.

Solution. 这道题算是比较难的题目, 当然不是最难的最难的那道比较像数学分析的题 (方法一) (1) 由积分中值定理可知 $\exists f(c) = 1$ 又 f(1) = f(c) = 1 由 roller Th 可知 $\exists \xi, f'(\xi) = 0$

(2) 要证明 $f''(\eta) < -2$ 只需证明对于 $F(x) = f(x) + x^2, \exists \eta, F''(x) < 0$ 分别在区间 (0,c)(c,1) 上使用 lagrange Th 有

$$F(c) - F(0) = F'(\xi_1)c = 1 + c^2, \xi_1 \in (0, c)$$

$$F(1) - F(c) = F'(\xi_2)(1 - c) = 1 - c^2, \xi_2 \in (c, 1)$$

再在区间 (ξ_1, ξ_2) 使用 lagrange Th 有

$$F'(\xi_2) - F'(\xi_1) = F''(\eta)(\xi_2 - \xi_1), \eta \in (\xi_1, \xi_2)$$

将 $F'(\xi_1), F'(\xi_2)$ 带入上式, 有

$$F''(\eta) = \frac{c-1}{c(\xi_2 - \xi_1)} < 0$$

故原不等式成立

(方法二) (1) 由题设知在区间 (0,1) 内必然存在最值, 且 $f(\xi) > 1$, 由费马引理可知 $f'(\xi) = 0$

(2) 在 $x = \xi$ 处进行 Taylor 展开有

$$f(x) = f(\xi) + f'(\xi)(x - \xi) + \frac{f''(\eta)}{2}(x - \xi)^2$$

带入 x = 0 点有

$$0 = f(\xi) + \frac{f''(\eta)}{2}\xi^2 \implies f''(\eta) = -\frac{2f(\xi)}{\xi^2} < -2$$