Лекции по математическому анализу 3 семестр

1 Функции нескольких вещественных переменных

$$X \subset \mathbb{R}^{n}.$$

$$x = (x_{1}, x_{2}, \dots, x_{n}) \in X.$$

$$x \to f(x).$$

$$f(x_{1}, x_{2}) = x_{1}^{2} + 3x_{2}.$$

$$z = x^{2} + 3y.$$

$$f : \mathbb{R}^{n} \to \mathbb{R}.$$

2 Замкнутый промежуток в п-мерном пространстве

$$a = (a_1, \dots, a_n).$$

$$b = (b_1, \dots, b_n).$$

$$x = (x_1, \dots, x_n).$$

$$\forall i \ 1 \le i \le n \ a_i \le x_i \le b_i.$$

3 Окрестность

Окрестность точки – открытый шар с центром в этой точке

4 Внутренняя точка

$$X \subset \mathbb{R}^n$$
.

$$a \in \mathbb{R}^n$$
.

а называется внутренней точкой множества X, если $\exists r B(a,r) \subset X$

5 Внешняя точка

а называется внешней точкой по отношению к множеству X, если $\exists B(a,r)\subset \mathbb{R}^n\setminus X.$

6 Граничная точка

Если любая граница точки содердит точки и из множества и не оттуда.

7 Обозначения шаров

$$B(a,r) = \{ x \in \mathbb{R}^n \mid \rho(x,a) < R \}.$$

$$\overline{B}(a,r) = \{x \in \mathbb{R}^n \mid \rho(x,a) \le R\}.$$

Множество называется открытым, если всего его точки внутренние

8 Открытое множество

Множество А открыто в X, если

$$A = X \cap U$$
.

U - открытое множество

Теорема 1. Пересечение двух открытых множеств является открытым.

Proof. Надо доказать, что все точки $U \cap V$ внутренние.

$$a \in X$$
.

а внутренняя точка множетсва U, значит $\exists r_1 \ B(a,r_1) \subset U$ а внутренняя точка множетсва V, значит $\exists r_2 \ B(a,r_2) \subset V$

$$r = \min r_1, r_2.$$

$$B(a,r) \subset U \cap V$$
.

Теорема 2.

$$\{U_{\alpha}\}_{\alpha\in I}$$
.

$$U_{\alpha} \in \mathbb{R}^n$$
.

пусть $\forall \alpha \ U_{\alpha}$ открытое тогда $\bigcup_{\alpha \in I} U_{\alpha}$ открыто

Теорема 3.

$$F \subset \mathbb{R}^n$$
.

F - замкнуто $\iff \mathbb{R}^n \setminus F$ - открытое

Теорема 4. 1. пересечение любого числа замкнутых множеств являкется замкнуть

2. объединение конечного числа замкунтых множеств замкнуто

Proof.

$$U_{\alpha} = \mathbb{R}^n \setminus F_{\alpha}.$$

Оно открытое

$$\mathbb{R}^n \setminus (\bigcap F_\alpha) = \cup (R_n \setminus F_\alpha) - -.$$

9 Замыкание

Определение 1. Пусть $X \subset \mathbb{R}^n$. Замыкание X, \overline{X} наименьшее замкнутое множество, в котором лежит X.

$$B(a,r)$$
.

$$\forall b \in B(a,r).$$

$$r_1 = r - d(a, b).$$

Рассмотрим $B(b,r_1)$, докажем, что $B(b,r_1)\subset B(a,r)$

$$\forall x \in B(b, r_1).$$

Нужно доказать, что $x \in B(a,r)$

$$d(x,a) < R$$
.

Итак, $d(x, a) \le d(x, b) + d(a, b)$

$$d(x,a) \le d(x,b) + r - r_1.$$

10 Компактно

Определение 2.

$$X \subset \mathbb{R}^n$$
.

Х компактно, если замкнуто и ограничено

Определение 3. Множетсво ограничено, если лежит в неком шаре.

11 Предел в \mathbb{R}^n

Определение 4.

$$(x_n \to a).$$

$$\forall \epsilon > 0 \ \exists n_0 \ \forall n \ge n_0 d(x_n, a) \le \epsilon.$$

Теорема 5 (о покоординатной сходимости). $(x^{(n)})$ – *последовательность точек в* \mathbb{R}^n , $a \in \mathbb{R}^n$

$$x^{(n)} \to a \iff x_k^{(n)} \to a_k.$$

Proof. Для случая n=2

$$(x_n, y_n), (a, b).$$

 $|x_n - a| \le \sqrt{(x_n - a)^2 + (y_n - b)^2}.$
 $|y_n - b| \le \sqrt{(x_n - a)^2 + (y_n - b)^2}.$

12 Упражнения

1. Пусть множество X замкнуто, тогда оно содержит все свои предельные точки. Верно ли обратное

13 Предел функции п переменных

$$X \subset \mathbb{R}^n.$$

$$V = abc.$$

$$X = \{(a, b, c) | a > 0, b > 0, c > 0\}.$$

$$x + y^2 + z^3 = 1.$$

Определение 5.

$$X \subset \mathbb{R}^n, f: X \to \mathbb{R}.$$

$$a \in \mathbb{R}^n.$$

а предельная точка множества X

$$A = \lim_{x \to a} f(x).$$

если

$$\forall (x^{(n)}) \begin{cases} (x^{(n)}) \in X \\ x^{(n)} \neq a \\ x^{(n)} \to a \end{cases}$$
$$f(x^{(n)}) \to A.$$

$$\lim_{x \to a} f(x) = A \iff \forall \epsilon > 0 \exists \delta > 0 d(x, a) < \delta \implies |f(x) - A| < \epsilon.$$

Теорема 6 (Вейрештрасса). Пусть $X \subset \mathbb{R}^n, f: X \to \mathbb{R}$. f непрерывна на X f принимает на X наименьшее и наибольшее значение

14 Теоремы о непрерывных функциях

14.1 Связанное множество

Определение 6. Путь в \mathbb{R}^n – набор непрерывных функций $x(t)=(x_1(t),\dots,x_n(t))$ заданных на [a,b]

Точка x(a) называется началом пути. x(b) конечная точка пути. Множество всех точек $x(t), t \in [a,b]$ носитель пути.

Определение 7. Пусть $X \subset \mathbb{R}^n$. X называется связанным, если для любых точек $p,q \in X$ существует путь с началом p, концом q, носитель которого лежит в X

15 Теорема Вейрштрасса

Теорема 7. Пусть X – компактное подмножество \mathbb{R}^n , f функция заданная на X, u непрерывная во всех точках множества X. Тогда f принимает u наибольшее u наименьшее значение.

Proof. Случай для n=1

$$\forall x f(x) \neq M.$$

$$f(x) < M.$$

$$g(x) = \frac{1}{M - f(x)} \leq C.$$

$$M - f(x) \geq \frac{1}{C}.$$

$$M - \frac{1}{C} \geq f(x).$$

Пусть нет наибольшего значения

$$\exists x_1 f(x_1) > 1.$$

Исходный промежуток δ_1

$$\delta_1 \supset \delta_2.$$

$$x_2 \in \delta_2.$$

$$f(x_2) > 2.$$

$$f(x_n) > n.$$

$$\bigcup \delta = \{a\}.$$

$$x_n \to a.$$

$$x_n \in \delta_n, a \in \delta_n.$$

$$|\delta_n| = \frac{|\delta_1|}{2^{n-1}}.$$

$$|x_n - a| < \frac{|\delta_1|}{2^{n-1}} \to 0.$$

$$x_n \to a$$
.

$$f(x_n) \to f(a)$$
.

Неограниченная посл чисел стремится к числу, какакя-то хуйня такого не бывает.

Теперь для функции 2 переменных Докажем что f ограничена сверху. Предположи это неправда, тогда $\exists x^{(1)} \in \Delta_1 \cap X, f(x^{(1)}) > 1$

$$\exists x_2 \in \Delta x_2 \cap X.$$

f неограниченна на $\Delta_2\cap X, f(x^2)>2$ по лемме $8\cap\Delta=\{a\}$ состоит из одной точки. Тогда последовательность $x^{(n)}\to a$

$$x^{(n)} \in \Delta$$
.

$$d(x^n, a) \leq \sqrt{2}$$
размер Δ_n .

Дальше как и для функции одной переменной.

Лемма 8 (О вложенных отрезках).

$$a_1 \le x_1 \le b_1, x_1 \in [a_1, b_1].$$

 $a_2 \le x_2 \le b_2, x_2 \in [a_2, b_2].$

$$[a_1,b_1]\times[a_2,b_2].$$

n=2.

Дана последовательность вложенных замкнутых n мерных промежутков

$$\Delta_1 \supset \Delta_2 \supset$$
.

 $d(\Delta)$ - длина наибольшей стороны

$$d(\Delta_n) \to 0.$$

Тогда в пересечение одна точка

Proof. Спроектируем все промежутки на ось абцисс, мы получим последовательность замкнутых вложенных промежутков, лежаших впромежутке $[a_1,b_1]$ таких что длины этих прожетков стремятся к 0, пересечение таких промежутков состоит из 1 точки α_1 Анлогично спроектировали эти промежутки на ось ординат, получили последователя замкнутых вложенных промежутков лежаших в $[a_2,b_2]$ по лемму о вложенных промежутках их пересечение состоит из одной точки α_2 Рассмотрим точку с координата α_1,α_2

16 Теорема Больцано

Теорема 9. Пусть X связное подмножество пространства \mathbb{R}^n , пусть f непрерывная функция, заданная на X. Пусть p,q значения функции f, причем p < q. Тогда $\forall r \in (p,q) \exists x \in X$, f(x) = r

17 Множество уровня

$$f: X \subset \mathbb{R}^n \to \mathbb{R}.$$

$$f(x_1, \dots, x_n).$$

$$\{x \mid x \in X, f(x) = c\}.$$

18 Дифферинцирование нескольких переменных

Определение 8 (Производная по направлению).

$$\lim_{h\to 0} \frac{f(x_0+l_1h,y_0+l_2h)-f(x_0,y_0)}{h}.$$
 Пусть $\vec{l}=(0,1)$
$$\frac{\partial f}{\partial x} = \lim_{h\to 0} \frac{f(x_0+h,y_0)-f(x_0,y_0)}{h}.$$

частная производная по x

$$\frac{\partial f}{\partial y}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}.$$

Определение 9 (Градиент).

grad
$$f(x_0, y_0) = (\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial x}).$$

Определение 10 (точка экстренума (максимума)). (x_0, y_0) - точка максимума, если \exists окретсность U, $\forall x \in U \ f(x) < f(x_0)$

Теорема 10 (Ферма).

$$X \subset \mathbb{R}^2$$
.

$$f: X \to \mathbb{R}$$
.

 (x_0,y_0) внутренняя точка X. Пусть $\exists rac{\partial f}{\partial x}(x_0)$

18.1 Пример

$$f(x,y) = x^{2} + 2xy.$$

$$\frac{\partial f}{\partial x} = 2x + 2y = 0.$$

$$\frac{\partial f}{\partial y} = 2x = 0.$$

$$\begin{cases} x = 0 \\ y = 0 \end{cases}$$

$$f(0,0) = 0.$$

19 Условный экстренум

$$f(x_0 + h) - f(x_0)f'(x_0)h + o(h).$$

Определение 11 (Дифференцируемость функции).

$$f(x_0 + h) - f(x_0) = ch + o(h).$$

Теорема 11 (О полном приращении). Пусть функция f задана на $X \subset \mathbb{R}^2$, а внутренняя точка X, $a=(x_0,y_0)$. Пусть f имеет частную производную во всех точках в некоторой окрестности точки a. Пусть эти частные производные непрерывны в точке a. Тогда вблизи точки a имеет место

$$f(x,y) - f(x_0,y_0) = \partial_x f(x_0,y_0)(x_0 - y_0) + \partial_y f(x_0,y_0)(y - y_0) + \alpha(x,y)(x - x_0) + \beta(x,y)(y - y_0) + \alpha(x,y)(x - x_0) + \beta(x,y)(x - x_0) + \beta(x,y)$$

 α, β бесконечно малые в (x_0, y_0)

Обозначим $h = x - x_0, k = y - y_0$

$$f(x_0 + h) + g(x_0 + k) = \partial_x f(x_0, y_0)h + \partial_y f(x_0, y_0)k + \alpha(h, k)h - \beta(h, k)k.$$

 α, β бесконечно малые в (0,0)

Proof.

$$f(x_0+h, y_0+k)-f(x_0, y_0) = (f(x_0+h, y_0+k)-f(x_0, y_0+k))+(f(x_0, y_0+k)-f(x_0, y_0).$$

$$g(x) = f(x, y_0+k).$$

$$g(x_0+h) - g(x_0).$$

По теореме Лагранжа

$$g(x_0 + h) - g(x_0) = g'(c)h = \partial_x f(c, y_0 + h)h.$$

 $g(y) = f(x_0, y).$

$$g(y_0 + k) - g(y_0) = g'(d)k = \partial_y g(x_0, d)k.$$
$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = .$$

$$\partial_x f(x_0,y_0)h + \partial_y f(x_0,y_0)k + (\partial_x f(x,y_0+k) - \partial_x f(x_0,y_0))h + (\partial_y f(c,y_0+k) = \partial_y f(x_0,y_0))h + (\partial_y f(x_0,y_0) + \partial_y f(x_0,y_0) + \partial_y f(x_0,y_0) + (\partial_y f(x_0,y_0) + \partial_y f(x_0,y_0) + (\partial_y f(x_0,y_0) + \partial_y f(x_0,y_0) +$$

Определение 12 (Дифференцируемость функции нескольких переменных). Пусть $f: X \to \mathbb{R}, \ X \subset \mathbb{R}^2, \ a = (x_0, y_0) \in \mathbb{R}^2$ внутренняя f дифференцируема в точке a, если, $\exists A, B \in \mathbb{R}$ и функции $\alpha(x, y), \beta(x, y)$ бесконечно малые в (x_0, y_0) и вблизи (x_0, y_0) имеет место равенство

$$f(x,y) - f(x_0,y_0) = A(x-x_0) + B(y-y_0) + \alpha(x,y)(x-x_0) + \beta(x,y)(y-y_0).$$

Теорема 12. Eсли f дифференцируема в (x_0,y_0) , то $A=\partial_x f(x_0,y_0)$, $B=\partial_y f(x_0,y_0)$

Proof. Подставим $y = y_0$

$$f(x, y_0) - f(x_0, y_0) = A(x - x_0) + \alpha(x, y_0)(x - x_0).$$

$$\forall x \neq x_0.$$

$$\frac{f(x - y_0) - f(x_0, y_0)}{x - x_0} = A + \alpha(x, y_0).$$

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0} = \lim_{x \to 0} (A + \alpha(x)) = A.$$

Теорема 13.

$$f: X \to \mathbb{R}, a = (x_0, y_0) \in X, \vec{l} = (l_1, l_2), ||l|| = 1.$$

Пусть f дифференцируема в точке a, тогда $\exists \frac{\partial f}{\partial \vec{l}}(a)$

$$\frac{\partial f}{\partial \vec{l}}(a) = \frac{\partial f}{\partial x}(x_0, y_0)l_1 + \frac{\partial f}{\partial y}(a)l_2.$$

$$\operatorname{grad} f_{(x_0,y_0)} = (\frac{\partial f}{\partial x}(x_0,y_0), \frac{\partial f}{\partial y}(x_0,y_0)).$$

Proof.

$$f(x_0 + hl_1, y + kl_2) - f(x_0, y_0) = .$$

Направление наибольшего возрастания функции **20**

$$-||\vec{a}, \vec{b}|| \le |(\vec{a}, \vec{b})| \le ||\vec{a}|| ||\vec{b}||.$$

 \vec{l} направление наибольшего возрастания, если $\vec{l} = \frac{1}{||\gcd(f(x_0,y))||} \gcd(f(x_0,y_0))$

21

$$y'(3y^{2}) + y' + 1 = 0.$$

$$y'(3y^{2} + 1) = -1.$$

$$y' = -\frac{1}{3y^{2} + 1}.$$

$$y^{3}(-2) + y(-2) - 2 = 0.$$

$$y(-2) = 1.$$

22

$$y^{2} + y - x = 0.$$
$$y = \frac{-1 \pm \sqrt{1 + 4x}}{2}.$$

Теорема 14.

$$f: X \subset \mathbb{R}^2 \to \mathbb{R}$$
.

X- открытое множество.

$$x, y: I \to \mathbb{R}$$
.

I – открытый промежуток

$$t \in T$$
.
$$t \to x(t)$$
.
$$t \to y(t)$$
.
$$F(t) = f(x(t), y(t))$$
.

Пусть x(t),y(t) дифференцируемы в точке t_0 из I, f дифференцируема в точке $(x(t_0),y(t_0))$

$$F'(t_0) = \partial_x f(x(t_0), y(t_0)) x'(t_0) + \partial_y (x(t_0), y(t_0)) y'(t_0).$$

Proof.

$$F'(x_0) = \lim_{t \to t_0} \frac{F(t) - F(t_0)}{t - t_0}.$$

$$F(t) - F(x_0) = f(x(t), y(t)) - f(x(t_0), y(t_0)).$$

Теорема 15.

$$f: X \subset \mathbb{R} \to \mathbb{R}$$
.

X - открытое множество, f дифференцируема на X. Пусть $(x_0, y_0), (x, y) \in X$

$$f(x,y) - f(x_0, y_0) = \partial_x f(c_1, c_2)(x - x_0) + \partial_y f(c_1, c_2)(y - y_0).$$

Proof.

$$f(x_0 + t(x - x_0), y_0 + t(y - y_0)) - f(x_0, y_0) - f(x_0, y_0).$$

Следствие 15.1. Пусть X выпуклое. Пусть $\partial_x f, \partial_y f$ тождественно равны 0. Тогда f постоянна

Следствие 15.2. Пусть Х область (открытое связное множество)

23 K. 3.60

23.1

$$3u^{2}\partial_{x}u + 3y(u + x\partial_{x}u) = 0.$$
$$y^{2}\partial_{x}u + yu + yx\partial u = 0.$$
$$\partial_{x}u(u^{2} + xy) = -yu.$$
$$3u^{2}\partial_{y}x.$$

23.2

$$\partial_x u e^u - y(x + x \partial_x u) = 0.$$

$$e^{u(1,0)} = 2.$$

$$u = \ln 2.$$

$$\partial_x u(e^u - yx) - yx = 0.$$

$$2\partial_x u = 0.$$

$$u + \ln(x + y + u) = 0.$$

$$u'_x(1 + u'_x) \frac{1}{x + y + u} = 0.$$

$$u'_y + (1 + u'_y) \frac{1}{x + y + u} = 0.$$

$$u'_x + \frac{1}{x + y + u} + \frac{u'_x}{x + y + u} = 0.$$

$$(1 + \frac{1}{x+y+u})u'_x = -\frac{1}{x+y+u}.$$

$$u(1,-1) + \ln u(1,-1) = 0.$$

$$t = u(1,-1).$$

$$t + \ln t = 0.$$

25 Теорема о неявной функции

Теорема 16. Пусть $(x_0,y_0) \in \mathbb{R}^2$, U окретсность точки (x_0,y_0) , пусть функция $F:U \to \mathbb{R}$ Пусть выполняются условия

- $1. \ F$ непрерывно дифференцируема в U
- 2. $F(x_0, y_0) = 0$
- 3. $F'_y(x_0, y_0) \neq 0$

Тогда существует открытый промежуток $I_x \times I_y$, I_x окретсность x_0 , I_y окрестность y_0

$$I_x = \{x | |x - x_0| < \alpha\}.$$

 $I_y = \{y | |y - y_0| < \beta\}.$

Которые лежат в U и $\exists f$ заданная на I_x принимающая значения I_y , такая что $f \in C^1(I_x)$ (непрерывно дифференцируема на I_x), $F(x,y) = 0 \iff y = f(x)$, для $x \in I_x$, $f'(x) = -\frac{F'_x(x,f(x))}{F'_x(x,f(x))}$, $\forall x \in I$

Proof. Пусть F непрерывно дифференцируема, т.е F_x', F_y' непрерывны в (x_0, y_0) , то $F_y'(x,y)>0$ для (x,y) вблизи (x_0,y_0) . Рассмотрим $F(x,y_0-\beta)$

$$\forall x \in (x_0 - \alpha, x_0 + \alpha) F(x, y_0 - \beta) < 0.$$
$$F(x_0, y_0 + \beta) > 0.$$

то сущестует $\alpha_2 \forall x \in (x_0 - \alpha_2, x_0 + \alpha_2), F(x, y_0 + \beta) > 0$ Пусть $\alpha = \min \alpha_1, \alpha_2$ Итак м построили $I_x \times I_y, I_x = (x_0 - \alpha, x_0 + \alpha), I_y = (x_0 - \beta, x_0 + \beta)$

$$F'_y(x,y) > 0, (x,y) \in Y.$$

F возрастает значит существует единственное значени y, такое что F(x,y)=0 Нужно доказать, что f дифференцируема $(x_0-\alpha;x+\alpha)$

25.1 Пример

$$x^{2} +^{2} - 1 = 0.$$

 $\exists U(x_{0}, y_{0}).$
 $F(x, y) = 0.$

Данная функция дифференциуема в точке (x_0, y_0)

$$F(x,y) - F(x_0, y_0) = \partial_x F(x_0, y_0)(x - x_0) + \partial_y F(x_0, y_0)(y - y_0) + \dots$$

$$(x_0, y_0) \in C.$$

$$\frac{\partial_x F(x_0, y_0)}{\partial_y F(x_0, y_0)} + \frac{y - y_0}{x - x_0} = 0.$$

26 K 62

$$u'_{x} - 4u - 4xu'_{x} = 0.$$

$$u'_{y} - 4xu'_{y} + 2y = 0.$$

$$u^{3}(1, -2) - 4u(1, -2) = 0.$$

$$u(1, -2) \in \{0, 2, -2\}.$$

27 Достаточное условие строгого экстренума

Теорема 17.

$$x^0 = (x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)}) \in \mathbb{R}.$$
 $U(x^{(0)}) - O$ крестность.
 $f: U(x^{(0)}) \to \mathbb{R}.$

Пусть

$$f \in C^{(2)}(U(x^{(0)})).$$

По формуле Тейлора

$$f(x^{(0)} + h) = f(x^{(0)}) + \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (x^{(0)}) h_{i} h_{j} + o(||h||^{2}).$$

$$Q(h) = \sum_{i,j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x^{(0)}) h_{i} h_{j}.$$

Тогда

- $1. \,\,$ если Q(h) положительно определена, то $x^{(0)}$ точка строгого минимума.
- 2. Если Q(h) отрицательно определена, то $x^{(0)}$ точка строгого максимума
- 3. если Q(h) принимает значения разных знаков, то $x^{(0)}$ не является точкой экстренум

Proof. 1. Пусть $h \neq 0$, x_0 критическая точка

$$f(x^{(0)}) + ||h^2|| \left(\frac{1}{2} \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}\right) (x_0) \left(\frac{h_i}{||h||} \frac{h_j}{||h||} + \alpha(h)\right).$$

$$\frac{t_i}{||h||} = t_i.$$

$$\sum_{i,j=1}^k \frac{\partial^2 f}{\partial x_i \partial x_j} * t_i * t_j.$$

||t||- nмерная сфера радиуса 1.

Это множество компанктно

По т Вейрштрасса эта квадратичная форма принимает наибольшее и наименьшее значение

$$\sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j} t_i t_j.$$

обозначили их m, M

$$0 < m \le M$$
.

Принимает наименьшее значение равное $\frac{1}{2}m$, тк $\alpha(h)$ бесконечное малое для всех h достаточно близких к 0 $|\alpha(h)| < 0$

$$\frac{1}{2} \sum_{i,j=1}^{n}.$$

Следовательно для всех таких h

$$f(x_0^{(0)} + h) > f(x^{(0)}).$$

следовательно x^0 точка минимума

- 2. Аналогично
- 3. Пусть e_m та точка единичной сферы, в которой квадратичная форма принимает наименьшее значение

$$\sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j}(x^{(0)}) t_i t_j.$$

 e_M наибольшее значение. Хочу доказать, что в любой окружность $x^{(0)}$ есть значения и больше и меньше.

$$h = \lambda e_m$$
.

$$f(x^{0} + \lambda e_{m}) - f(x^{(0)}) = \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x^{(0)}) \lambda \alpha_{i} \lambda \alpha_{j} + \alpha(||\lambda e_{m}||^{2}) = \frac{1}{2} \lambda^{2} \left(\sum_{i,j}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)$$

28 Ищем критические точки на границах

Пусть (x_0,y_0) тогда экстренум f(x,y) кривой g(x,y)=0. Тогда $(f_x'(x_0,y_0),f_y'(x_0,y_0))$ колинерен $(g'x(x_0,y_0),g_y'(x_0,y_0))$

$$g(x,y) = 0 \implies y = \phi(x).$$

$$f(x,\phi(x))' = f'_x(x,\phi(x)) + f'_y(x,\phi(x))\phi'(x) = f'_x(x,\phi(x)) - f'_y(x,\phi(x)) \frac{g'_x(x,\phi(x))}{g'_y(x,\phi(x))} = 0.$$

$$\frac{f'_x(x,\phi(x))}{f'_y(x,\phi(x))} = \frac{g'_x(x,\phi(x))}{g'_y(x,\phi(x))}.$$

29 Задача лагранжа

Есть кривая, есть функция

$$L(x, y, \lambda) = f(x, y) - \lambda g(y).$$

$$L'_{x} = f'_{x} - \lambda g'_{x} = 0.$$

$$L'_{y} = f'_{y} - \lambda f'_{y} = 0.$$

$$L'_{\lambda} = -g(x, y) = 0.$$

30 Интеграл фип

Определение 13 (Разбиение промежутка). Рассмотрим произвол

Определение 14 (Интегральные суммы). Пусть $I = [a,b] \times [c,d]$. Рассмотрим произвольное разбиение отрезка $[a,b]: a < x_1 < \cdots < x_{n-1} < b$, произвольное разбиение отрезка $[c,d]: c < y_1 < y_2 < \cdots < y_{m-1} < d$. Рассмотрим

$$[x_{i-1}, x_i] \times [y_{j-1}, y_j].$$

$$\xi_i \in [x_{i-1}, x_i].$$
 $\mu_i \in [y_{i-1}, y_i].$

 (ξ_i, μ_j) оснащенное разбиение.

$$\Delta x_i = x_i - x_{i-1}.$$

$$\Delta y_j = y_j - y_{j-1}.$$

$$S(f, (\tau, \xi)) = \sum_i f(\xi_i, \mu_j) \Delta x_i \Delta y_j.$$

30.1 Свойства интегральных сумм

1.

$$S(\alpha f, (\tau, \xi)) = \sum \alpha f(\xi_i, \mu_j) \Delta x_i \Delta y_j.$$

2.

$$f, g: I \to \mathbb{R}^2.$$

$$S(f+g, (\tau, \xi)) = \sum f(\xi_i, \mu_j) \Delta x_i \Delta y_j + g(\xi_i, \mu_j) \Delta x_i \Delta y_j.$$

3.

$$f(x,y) \le g(x,y) \forall x, y.$$

$$S(f,\tau,\xi) < S(g,\tau,\xi).$$

 $\lambda(au,\xi)$ — наибольшая из сторон прямоугольника.

Определение 15. пусть функция f задана на двумерном промежутке Π . Число I называется интегралом по промежутку Π , если для любой последовательности оснащенных разбиений, последовательность рангов стремится к 0 последоватлеьност частичных сумм стремится к I

Теорема 18. Если функция интегрируема, то она ограничена

Proof. Пусть функция не ограничена сверху

$$\int_{\Pi} f.$$

$$\int_{\Pi} f(x, y) dx dy.$$

$$\sum_{i=1,\dots,j=1\dots m}.$$

31

$$\Delta_{i,j} = [x_{i-1}, x_i] \times [y_{j-1}, y_j].$$

Ранг разбиения – наибольшая из длин промежутка разбиения.

Определение 16 (Оснащенное разбиение). *Оснащенное разбиение - это разбиение в каждом промежутке которого выбрано по точке.*

$$(\tau, \xi)$$
.

Определение 17. Пусть функция задана на промежутке Π пусть (τ, ξ) оснащенное разбиение промежутка Интегральной суммой функции f построенной для разбиение (τ, ξ) называется число

$$S(f,(\tau,\xi)) = \sum_{i=1...n,j=1...m} f(\xi_{ij}) \Delta x_i \Delta y_j.$$

Определение 18 (Множество меры нуль). Пусть $X \subset R^2$ х имеет меру нуль, если $\forall \epsilon > 0 \exists$ последовательность промежутков Π_1, Π_2, \dots

$$X \subset \bigcap \Pi$$
.

сумма площадей этих P меньше ϵ

31.1 Упражнение

 \cap, \cup, \setminus .

множетсв меры нуль есть множетсво меры нуль

$$A \subset B$$
.

В имеет меру нуль, значит А имеет меру нуль

31.2 Упражнение

 ∂ .

граница

1.
$$\partial(A \cup B) \subset \partial(A) \cap \partial(B)$$

31.3 Интеграл по промежутку

Пусть $(\tau^{(n)}, \xi^{(n)})$ последовательность оснащенных разбиений. Будем говорить, что эта последовательность измельчающаяся, если последовательность рангов

$$\lambda(\tau^{(n)}, \xi^{(n)}) \to 0.$$

Определение 19. Пусть функция задана на промежутке Π . Функция f называется интегрируемой если

 $\exists I \forall$ измельчающийся последовательности $(au^{(n)}, \xi^{(n)}).$

$$S(f, (\tau^{(n)}, \xi^{(n)})) \to I.$$

Если f интегрируема на множетстве Π I называется интегралом по промежутку P

$$I = \int_{\Pi} f.$$

Другие обозначения

$$\int\limits_\Pi f(x,y) dx dy.$$

$$\int\limits_\Pi f(x,y) dx dy.$$

$$\int\limits_\Pi f(x) dx \ \mathbf{x} - \mathbf{B} \mathbf{e} \mathbf{k} \mathbf{T} \mathbf{o} \mathbf{p}.$$

31.4 Пример

$$\Pi = [a,b] \times [c,d].$$

$$f(x,y) = C.$$

$$\int_{\Pi} f(x,y) dx dy = C(b-a)(d-c).$$

31.5 Пример

$$\Pi = [0,1] \times [0,1].$$

$$f(x,y) = \begin{cases} 0, \text{хотя бы одно число иррационально} \\ 1, \text{оба рациональныe} \end{cases}$$

Докажем, что эта функция неинтегрируема Сравним два разбиения. Первое оснащение $\xi_{i,j}$ обе координаты рациональны, второе оснащение ξ'_{ij} одна из координат которых рациональна. Тогда

$$S(f, (\tau^{(n)}, \xi_{ij})) = 1.$$

 $S(f, (\tau^{(n)}, \xi')) = 0.$

Множество всех интегрируемых функций на Π , $R(\Pi)$

31.6 Простейшие свойства интегралов

1.

$$\int_{\Pi} \alpha f = \alpha \int_{\Pi} f.$$

- 2. $f, g \in R(\Pi) \implies f + g \in R(\Pi)$
- 3. $f, g \in R(\pi) f \leq g \implies \int_{\Pi} f \leq \int_{\Pi} g$
- 4. $f \in R(\Pi) \iff$ множество точек разрыва имеет меру нуль

31.7 Допустимое мноежстево

Определение 20. Множество D называется допустимым, если его граница ∂D имеет меру 0

31.7.1 Замечание

Множество D допустимо \iff

$$\forall \epsilon > 0 \exists M, N.$$

 $M\subset D\subset N$, площаль N - площаль $M<\epsilon_2$

31.8 Определение интеграла по допустимому множеству

Лемма 19. Пусть D допустимое множество, f функция заданная на D, пусть Π_1, Π_2

$$D \subset \Pi_1, D \subset \Pi_2.$$

 $Paccмompuм функции \overline{f_1}$

$$\overline{f_1} = \begin{cases} f(x,y), x \in \Pi_1 \\ 0, x \notin \Pi_1 \end{cases} .$$

$$\overline{f_2} = \begin{cases} f(x,y), x \in \Pi_2 \\ 0, x \notin \Pi_2 \end{cases}.$$

Тогда

$$\int_{\Pi_1} \overline{f_1} = \int_{\Pi_2} \overline{f_2}.$$

Proof. Рассмотрим $\Pi = \Pi_1 \cap \Pi_2$

$$\exists \int_{\Pi} f \iff \exists \int_{\Pi_1} f.$$

$$\overline{f(x,y)} = \begin{cases} f(x,y), (x,y) \in D \\ 0, (x,y) \notin D \end{cases}.$$

 \overline{f} интегрируема на $\Pi \iff$ множество точек разрыва имеет меру 0,

 $\overline{f_1}$ интегрируемо на $\Pi_1 \iff$ множество ее точек разрыва имеет меру 0. Докажем

$$\int_{\Pi_1} \overline{f_1} = \int_{\Pi} \overline{f}.$$

Тогда для вычисления интеграла можно рассмотреть какую нибудь одну измельчающую последовательность оснащенных разбиений. Тогда интегральная сумма каждого такого разбиения, совпадает с некоторой интегральной суммой функции

Определение 21. Пусть функциия f задана на допустимом множестве D, пусть Π произвольный промежуток, такой что $D \subset \Pi$ рассмотрим функцию \overline{f} заданную на Π

$$\overline{f}(x,y) = \begin{cases} f(x,y), (x,y) \in D \\ f(x,y), (x,y) \notin D \end{cases}.$$

Функция f назывется интегрируемой на Π , и интеграл функции f по множеству D называется $\int\limits_{\Pi}\overline{f}$

31.9 Свойства интеграла по произвольному допустимому множести

1.
$$f \in R(D) \iff \alpha f \in R(D) \land \int_{D} \alpha f = \alpha \int_{D} f$$

2.
$$f, g \in R(D) \iff f + g \in R(D) \land \int_D (f + g) = \int_D f + \int_D g$$

3.
$$f \leq g$$
 на D $\iff \int_D f \leq \int_D g$

- 4. Пусть множество D имеет меру нуль, тогда $\int\limits_{D}f=0$
- 5. Пусть D допустимое множество, $f,g \in R(D)$, пусть множество точек из D в которых $f(x,y) \neq g(x,y)$ имеет меру нуль, тогда $\int\limits_D f = \int\limits_D g$

Proof. 1. Самостоятельно

2. Пусть A множество точек разрыва f, B множество точек разрыв g. Множество точек разрыва f+g лежит в $A\cup B$

$$\int_{D} (f+g) = \int_{\Pi} \overline{f+g} = \int_{\Pi} \overline{f} + \int_{\Pi} \overline{g}.$$

32 Доказательство свойства 4

Пусть $f \in R(D)$ Множество D имеет меру 0, тогда $\int\limits_{D} f = 0$

$$D \subset \Pi.$$

$$\overline{f} = \begin{cases} f(x,y), (x,y) \in D \\ 0, (x,y) \notin D \end{cases}.$$

$$\int_D f = \int_\Pi \overline{f} = \lim S(\overline{f}, (\tau^{(n)}, \xi^{(n)})).$$

для которых $\lambda(\tau^{(n)}) \to 0$

Известно, что $\overline{f} \in R(\Pi)$, то последовательность оснащенных разбиений, моно выбирать как хотим. D имеет меру нуль, то для кадого $t^{(n)}$ в любом промежутке разбиения. В прямоугольник Δ_{ij} выберем точку $\xi_{ij} \notin D$ Тогда

$$S(\overline{f},(au^{(n)},\xi^{(n)}))=\sum_{i,j}f(\xi_{ij})$$
площ $\Delta_{ij}=0.$

33 Доказательство свойства 5

$$f,g \in R(D)$$
.

Множество точек, где $f(x,y) \neq g(x,y)$ имеет меру нуль, то

$$\int_{D} f = \int_{D} g.$$

$$\int_{D} f = \int_{D} g \iff \int_{D} (f - g) = 0.$$

34 Аддитивность

пусть D_1, D_2 допустимые множества

- 1. $D_1 \cup D_2$, $D_2 \cap D_1$ допустиыме множесва
- 2. $f \in R(D_1 \cup D_2) \iff f \in R(D_1), \in R(D_2) \implies f \in R(D_1 \cap D_2)$
- 3. $\int_{D_1 \cup D_2} f = \int_{D_1} f + \int_{D_2} f \int_{D_1 \cap D_2} f$
- 4. Если $D_1 \cap D_2$ имеет меру 0, то

$$\int_{D_1 \cup D_2} = \int_{D_1} f + \int_{D_2} f.$$

34.1 Доказательство

$$\partial(D_1 \cup D_2) \subset \partial D_1 \cup \partial D_2$$
.

1.

2.

$$f \in R(D_1 \cup D_2) \iff D_1 \cup D_2$$
 Допустимо.

и множестсво точек разрыва имеет меру нуль

$$\begin{cases} f \in R(D_1) \\ f \in R(D_2) \end{cases} \iff \begin{cases} D_1, D_2 - \text{Допустимы} \\ \text{Множество всех точек разрыва имеет меру нуль} \end{cases}$$

3. Рассмотрим прямоугольник, содержащий как D_1 , так и D_2 Строим следущие функции, $\overline{f_1},\overline{f_2},\overline{f_3},\overline{f}$

$$\overline{f} = egin{cases} f, & \mathbf{ha} \ D_1 \cup D_2 \ 0 \end{cases}$$
 .

$$\overline{f_1} = \begin{cases} f, \mathbf{Ha}D_1 \\ 0 \end{cases}$$

$$\overline{f} = \overline{f_1} + \overline{f_2} - \overline{f_3}.$$

Пусть $(x,y) \in \Pi$

(a)
$$(x,y) \notin D_1 \cap D_2$$
 все функции 0

(b)
$$(x,y) \in D_1 \land (x,y) \notin D_2$$

$$\overline{f}(x,y) = f(x,y).$$

$$\overline{f_1(x,y)} = f(x,y).$$

$$\overline{f_2(x,y)} = 0.$$

$$\overline{f_3}(x,y) = 0.$$

Равенство выполнилось

$$\int\limits_{D_1 \cup D_2} f = \int\limits_{\Pi} \overline{f} = \int\limits_{\Pi} (\overline{f_1} + \overline{f_2} - \overline{f_3}) = \int\limits_{D_1} f + \int\limits_{D_2} f - \int\limits_{D_1 \cup D_2} f.$$

4.

35 Вычисление двойного интеграла

Пусть $f:\Pi \to \mathbb{R}$

$$\iint_{\Pi} f(x,y) dx dy \int_{a}^{b} dx \int_{c}^{d} f(x,y) dy.$$

$$\iint_{\Pi} f(x,y)dxdy = \int_{c}^{d} dy \int_{a}^{b} f(x,y)dx.$$

36

$$\int_{0}^{2} dy \int_{y^{2}}^{y+2} f(x, y).$$

37 Замечание

$$S(f, (\tau^{(n)}, \xi)) = \sum_{i=1...n, j=1...n} f(\xi_i, \mu_j) \Delta x_i \Delta y_j.$$

38 Полярные Коорднаты

 (r, ϕ)

$$x = r \cos \phi$$
.

$$y = r \sin \phi$$
.

38.1 Пример

$$\iint_D y dx dy.$$

$$D = \{(x, y) \mid x^2 + y^2 < 2x, x \ge y\}.$$

Как делать без полярных все понятно

Proof. \Box

39 Замена переменной в определнном интегале

Вспомним первый курс

$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(t)dt.$$

Теорема 20. *g непревно дифференцируемая (g' дифференцируема) д обратима* **Теорема 21.**

$$\iint_{D_{x,y}} .$$

$$\iint_{D_{u,v}} f(u,v) du dv.$$

$$(g_1, g_2)_{(x,y)} \to (g_1(x,y), g_2(x,y)).$$

$$\iint_{D} f(g_1(x,y), g_2(x,y)) |J| dx dy = \iint_{G_{u,v}} f(u,v) du dv.$$

$$(g_1, g_2) : D_{x,y} \to G_{u,v}.$$

$$(x,y) \to (g_1(x,y), g_2(x,y)).$$

$$J = \begin{vmatrix} \partial_x g_1 & \partial_y g_1 \\ \partial_x g_2 & \partial_y g_2 \end{vmatrix}.$$

$$du = \partial_x g_1 dx + \partial_y g_1 dy.$$

$$dv = \partial_x g_2 dx + \partial_y g_2 dy.$$

$$f : (x, y) \rightarrow (f_1(x, y), f_2(x, y)).$$

$$\overline{k_0} = (x_0, y_0).$$

$$\overline{h} = (h, kj).$$

$$f(\overline{k_0} + \overline{h}) - f(\overline{k_0}) = L(\overline{h}) + \dots$$

$$f_1(x_0 + h, y_0 + k) - f_1(x_0, y_0) + \partial_y f_1(x_0, y_0) + \partial_y f_1(x_0, y_0) + \partial_y f_1(x_0, y_0) + \partial_y f_2(x_0, y_0) + \partial_y f_$$