

Bayesian Networks for Interpretable and Extensible Multi-Sensor Fusion

Leete T. Skinner and Marc A. Johnson

Presentation Overview

- Problem Statement
- Review Relevant Background information
 - Review Air Defense Regime
 - Past usage of Bayesian networks and Interpretable ML
- Introduce Bayesian network prototype
- Review 5 Test Cases and Results
- Key Takeaways and Future Work

Problem Statement

- Modern Air Defense is a complex, high-stakes problem facing a myriad of advanced threats
- Legacy and Next-Generation systems need to be integrated cohesively – wide variety of available sensing units across domains need to be fused together [6,7]
- Data streams are typically fused at different levels to perform three core task stages [8]:
 - Detection, Tracking, Classification
- Then, higher level tasks can be performed [8]:
 - o Intent Classification, Situational Awareness, Impact Assessment
- Joint Target Tracking, Classification, and Intent (JTCI) Framework performs each stage simultaneously [8]
- Current generation, neural network-based AI solves some problems, but suffers from various limitations
- Some defense specific issues include [2,3]:
 - High volume of data, lacking labeled data
 - High compute costs (not-edge compliant)
 - Lack of explainable and interpretable outputs

Example Diagram of Sensor Systems and Communication Channels [4]

Example Sensor Fusion in Air Defense Regime [9]

Bayesian Network: Key Motifs

Figure 2. Object Classification input nodes and states.

- Objects:
 - Missiles
 - Fighter Jets
 - Bombers
 - o UAVs
- CPDs developed by intuition on characteristics of each platform

Figure 4. Sensor Reliability input nodes and states.

- Conditioned by:
 - Weather: Clear, Inclement
 - Range: Far, Medium, Near
 - Altitude: High, Medium Low
- CPDs populated by intuition, but could easily use empirical or operator supplied information

Figure 1. Intent input nodes and states.

- Intents:
 - Travel/cruise mode
 - Attack mode
 - Evasive/neutralized mode
- CPDs developed by heuristicbacked routine to distribute probabilistic mass according to intuitive rule base

Figure 3. Size and Speed input nodes and states.

- Size:
- Speed:
- Large

Medium

- FastMedium
- o Small

- o Slow
- CPDs developed by intuition of characteristics for each object

Assembled Bayesian Network

Figure 5. Full Bayesian Network architecture.

- Simple Layout
- Easy to extend behind abstract Fusion Node interfaces
- All CPDs can be populated empirically, through heuristics, or by human
- Exercise through several Test Cases:
 - 1. Network Baselining
 - 2. Network Verification
 - 3. Disagreement of Observables
 - 4. Network Sensitivity to Offline Sensors
 - 5. Extensibility of Network

Test Case 1: Network Baselining

Observations					
Conditions	none				
Range	none				
Altitude	none				
Size - Camera	none				
Size - Radar	none				
Speed - Radar	none				
Speed - IR	none				

Node	Class	Probability
	missile	0.257
Ohiost	fighter	0.257
Object	bomber	0.239
	uav	0.246
	cruise	0.439
Intent	attack	0.296
	evade/neut	0.265

Table 1. Results when no Observations present

Object	Intent	Probability
	attack	0.111
Missile	cruise	0.088
	evade	0.058
	cruise	0.112
Fighter	attack	0.073
	evade	0.073
	cruise	0.106
Bomber	attack	0.066
	evade	0.067
	cruise	0.111
UAV	attack	0.068
	evade	0.067

- Effectively equal likelihood of Objects
- **Cruise** is highest Intent
- Missile in Attack is only per-object case where Attack is highest

Test Case 2: Network Verification

Observations				
Conditions	clear			
Range	near			
Altitude	medium			
Size - Camera	large			
Size - Radar	large			
Speed - Radar	medium			
Speed - IR	medium			

Node	Class	Probability	
	missile	0.203	
Object	fighter	0.203	
	bomber	0.348	
	uav	0.245	
	cruise	0.233	
Intent	attack	0.466	
	evade/neut	0.301	

Table 2. Test Case 2 Observations and Results

Object	mem	1 Tobability	
bomber	attack	0.201	
uav	attack	0.100	
fighter	attack	0.091	
uav	evade	0.084	
bomber	evade	0.079	
missile	attack	0.075	
missile	evade	0.070	
bomber	cruise	0.068	
fighter	evade	0.067	
uav	cruise	0.061	
missile	cruise	0.058	
fighter	cruise	0.045	

Intent Probability

- Define characteristics of Bomber in Attack all sensors agree
- As expected, Bomber in Attack is highest Object-Intent Pair
- Easy to interpret results:
 - Bomber receives 35% of probabilistic mass (10.9% abs increase, 145% relative increase)
 - Bomber in Attack 2x of next class, receiving 20% more probabilistic mass (13.5% abs increase, 304.5% relative increase)

Test Case 3: Disagreement of Observables

Observations			Node	Class	Probability
Conditions	inclement			missile	0.234
Range	near	[Object	fighter	0.234
Altitude	e medium		Object	bomber	0.261
Size - Camera	large	1		uav	0.271
Size - Radar	small			cruise	0.235
Speed - Radar	medium		Intent	attack	0.452
Speed - IR	medium			evade/neut	0.313

Object	Intent	Probability	
bomber	attack	0.149	
uav	attack	0.111	
fighter	attack	0.105	
uav	evade	0.093	
missile	attack	0.087	
missile	evade	0.082	
fighter	evade	0.078	
uav	cruise	0.067	
missile	cruise	0.065	
bomber	evade	0.060	
fighter	cruise	0.052	
bomber	cruise	0.051	
	bomber uav fighter uav missile missile fighter uav missile bomber fighter	bomber attack uav attack fighter attack uav evade missile attack missile evade fighter evade uav cruise missile cruise bomber evade fighter cruise	bomber attack 0.149 uav attack 0.111 fighter attack 0.105 uav evade 0.093 missile attack 0.087 missile evade 0.082 fighter evade 0.078 uav cruise 0.067 missile cruise 0.065 bomber evade 0.052

Size sensors disagree (Radar mis-reading)

Table 3, Test Case 3 Observations and Results

- Bomber is **not** the highest likelihood Object
- Attack is highest Intent
- Object-Intent pair is Bomber in Attack, at 1.3x probabilistic mass over UAV in Attack
- Network reasonings through disagreement

Test Case 4: Sensitivity to Offline Sensors

Object, Intent	MAD	STD
bomber, cruise	0.626	0.810
bomber, evade	0.623	0.598
bomber, attack	0.571	0.542
missile, attack	0.552	0.507
fighter, evade	0.458	0.429
missile, cruise	0.413	0.342
UAV, evade	0.341	0.298
bomber, attack	0.304	0.244
fighter, cruise	0.287	0.293
UAV, cruise	0.287	0.265
fighter, attack	0.260	0.195
missile, evade	0.623	0.598

- Two tests for each Fusion Node:
 - Size: Radar online, Camera offline (and vice versa)
 - Speed: Radar online, IR offline (and vice versa)
- Run against every combination of Weather, Range, Altitude values
- Network is very stable:
 - Maximum Mean Absolute Difference (MAD) is 0.625 (of 100)
 - In 8 of 12 object-intent pairs, less than 1% probabilistic mass shift, aka **99% consistency of predictions** as long as one producer for each fusion node is producing observables

Test Case 5: Extensibility

Table 5. Observations and inferred Size and Intent when integrating ATR Object observations

Observati	Inferred Size Value, by Object from ATR				Inferred	Intent			
Conditions	clear	Object	Large	Med	Small	Object	Cruise	Attack	Evade
Range	near	uav	0.197	0.428	0.374	missile	0.532	0.442	0.025
Altitude	medium	bomber	0.311	0.441	0.247	fighter	0.515	0.333	0.152
Speed - Radar	medium	fighter	0.187	0.426	0.387	bomber	0.435	0.535	0.030
Speed - IR	medium	missile	0.187	0.426	0.387	uav	0.403	0.349	0.248

- Can easily add and remove observable producers behind abstract interfaces
 - Can insert Object detectors (such as Automatic Target Recognition (ATR) systems)
 - Can insert new Size, Speed sensors
- "Known" values from new producers' condition both downstream and upstream nodes, reducing uncertainty of entire network

Key Takeaways & Future Research

- Bayesian networks are:
 - Intuitive to interpret and understand
 - Capable of **reasoning** through inconsistent sensor readings
 - Consistent and operationally robust and against subsystems going offline
 - Easy to **extend** to add new sensors and classifiers
 - Can coexist with other neural networkbased black box models
- Highly useful for performing last-mile reasoning over information produced by a variety of systems

Example Cascading Control Loop containing Outer and Inner loops [14]

- In this work, only explored inference at point in time assuming all observables available
- In real world, sensor readings come at different frequencies
- Following Control Theory: higher frequency observables should be used to update priors of lower frequency "outer" loops, and when "outer" loops complete, supply that information as priors to the faster "inner" loops

Questions?

References

- [1] Danzig, R., "Technology roulette: Managing loss of control as many militaries pursue technological superiority," (2018). (Accessed: 2 August 2024).
- [2] Allen, G., "Understanding ai technology," (2020). (Accessed: 2 August 2024).
- [3] Gunning, D. and Aha, D., "Darpa's explainable artificial intelligence (xai) program," AI Magazine 40, 44–58 (Jun. 2019).
- [4] Harrison, T., "Battle Networks and the Future Force Part 1: A Framework for Debate," (2021) https://www.csis.org/analysis/battle-networks-and-future-force
- [5] Mittal, A., "The Black Box Problem in LLMs: Challenges and Emerging Solutions," (2023). (Accessed: 8 September 2024). https://www.unite.ai/the-black-box-problem-in-llms-challenges-and-emerging-solutions/
- [6] Maltese, D. and Lucas, A., "Data fusion: quite silent search function in naval air defense," in [Infrared Technology and Applications XXV], Andresen, B. F. and Strojnik, M., eds., 3698, 36 – 47, International Society for Optics and Photonics, SPIE (1999).

References

- [7] Maltese, D. and Lucas, A., "Data fusion: principles and applications in air defense," in [Signal Processing, Sensor Fusion, and Target Recognition VII], Kadar, I., ed., 3374, 329 336, International Society for Optics and Photonics, SPIE (1998).
- [8] Zhang, W., Yang, F., and Liang, Y., "A bayesian framework for joint target tracking, classification, and intent inference," IEEE Access 7, 66148–66156 (2019).
- [9] "Sensor Fusion," (Accessed: 8 September 2024).
 "https://en.wikipedia.org/wiki/Sensor_fusion". Attributed to:
 "http://www.mil.no/multimedia/archive/00089/2_Eurofighter_capabi_89302a.pdf
 (page 24/60) Sensor fusion in the Typhoon, from Eurofighter presentation to Norway"
- [10] "A DSP For Implementing High-Performance Sensor Fusion On An Embedded Budget". (Accessed 8 September 2024). https://semiengineering.com/a-dsp-forimplementing-high-performance-sensor-fusion-on-an-embedded-budget/

References

- [11] Ribeiro, M., Singh, S. and Guestrin, C., "Why Should {I} Trust You?": Explaining the Predictions of Any Classifier}. CoRR, abs/1602.04938. (2016). http://arxiv.org/abs/1602.04938
- [12] Wan, Z., Et al., "Towards Cognitive AI Systems: a Survey and Prospective on Neuro-Symbolic AI," (2024). https://arxiv.org/abs/2401.01040
- [13] "Introduction to Bayesian Networks". (Accessed: 8 September 2024). https://towardsdatascience.com/introduction-to-bayesian-networks-81031eeed94e
- [14] "Importance of Control Engineering Inner/Outer Loops". (Accessed: 8 September 2024). http://petersengineering.blogspot.com/2019/08/importance-of-control-engineering.html

