

Avaliação AV

avalie seus conhecimentos

Disc.: DGT1335 - ESTRUTURA DE DADOS Aluno: GABRIEL VIEIRA FRANCISCO

Data: 30/10/2023 21:31:47

Período: 2023.3 EAD (G) / AV Matrícula: 202208428215

RETORNAR À AVALIAÇÃO

Turma: 9004

3. Não esqueça de finalizar a avaliação colocando o código verificador no campo no final da

1^a Questão (Ref.: 202216276554)

Um vetor ou array é uma estrutura de dados simples que armazena elementos sequencialmente em memória. O tamanho em memória necessário para armazenar um vetor de 34 elementos onde cada elemento é uma variável inteira que ocupa 2 bytes é:

□ 136	bvtes.
-------	--------

🗷 68 bytes.

☐ 1156 bytes.

☐ 256 bytes.

☐ 34 bytes.

2^a Questão (Ref.: 202216276555)

Ao usar laços em Python, você pode facilmente iterar sobre um vetor sem se preocupar em criar uma variável especifica como contador. Entretanto, para algumas aplicações é necessário controlar qual é o número atual de execuções de um laço. Uma das soluções é a criação e manutenção de um contador. Outra solução é o uso de uma função intrínseca do Python, chamada:

enumerate

 \square index.

length.

count.

☐ find.

3 ^a Questão (Ref.: 20221627656

Uma lista L encadeada e ordenada está armazenada em memória seguindo o exemplo abaixo. Um novo nó será inserido, contendo a chave 6. Após a inserção, qual será o endereço contido no seu campo próximo?

	Endereço	Chave	Próximo
	128	5	64
	64	8	32
	32	11	null
>	24	3	128

□ 32.	
□ 24.	
□ 64.	
X 128.	
□ 136	

4^a Questão (Ref.: 202216276620)

Considerando que em uma estrutura do tipo lista circular simplesmente encadeada e com nó cabeça, a inserção ocorre sempre ao final da lista, quais são os passos para realizar a inserção de um novo nó?

- Percorrer a lista até o último nó, apontar o último nó para o novo nó, apontar o novo nó para nulo.

 Percorrer a lista até o último nó, apontar o último nó para o novo nó, apontar o novo nó para o nó cabeça.

 Apontar o novo nó para o seguinte ao nó cabeça, apontar o nó cabeça para o novo nó.

 Percorrer a lista até o último nó, apontar o último nó para o novo nó, apontar o novo nó para o último nó.
- Apontar o novo nó para o nó cabeça, apontar o nó cabeça para o novo nó.

5^a Questão (Ref.: 202216276628)

Você deve implementar a operação de remoção de uma pilha (Pop), alocada contiguamente em memória, em Python. A variável da pilha é P e a <u>próxima posição vazia</u> da pilha é guardada pelo índice topo. Qual código dentre os seguintes realiza a implementação de forma correta?

☐ if topo>0:
return P[topo]
topo=topo-1
tono=tono-1

```
return P[topo]

if topo>0:

topo=topo-1

return P[topo]

if topo==0:

topo=topo-1

return P[topo]

if topo>0:

topo=topo+1

return P[topo]
```

6^a Questão (Ref.: 202216276644)

Um algoritmo de busca chaves em árvore binária em Python podem ser visto abaixo:

```
def BuscaBST(raiz,chave):
    if raiz is None or raiz.chave == chave:
        return raiz

if raiz.chave < chave:
        return BuscaBST(raiz.direita, chave)
    else:
        return BuscaBST(raiz.esquerda,chave)</pre>
```

A análise de complexidade do código acima é:

- ☐ A busca é realizada em *O(n logn)*.
- \square A busca é realizada em O(n2).
- ☐ A busca é realizada em O(log n).
- 🗷 A busca é realizada em *O(n)*.
- \square A busca é realizada em O(1).

7^a Questão (Ref.: 202216276641)

Seja a seguinte árvore binária de busca abaixo, marque a sequência correta do percurso em pós-ordem:

- **X** 23,24,26,29,28,27,25
- 23,24,29,26,28,25,27
- 25,24,27,23,26,29,30
- 23,24,25,26,27,29,28
- 25,24,23,27,26,28,29

À	8^a Questão (Ref.: 202216276571)
	As rotações são operações fundamentais para ajuste da propriedade AVL. Analise as afirmativas abaixo.
	I - A inserção de uma nova chave em uma árvore AVL pode desregular diversos nós no caminho da raiz até a folha onde a nova chave foi inserida. Só é necessário aplicar uma rotação no nó mais profundo desregulado.
	Porque
	II - A aplicação da rotação resulta em uma subárvore com a mesma altura da subárvore original, isto é, antes da inserção da nova chave.
	Marque a alternativa correta.
	\square A primeira afirmativa é falsa e a segunda afirmativa é verdadeira.
	As duas afirmativas estão corretas e a segunda justifica a primeira.
	As duas afirmativas estão corretas e a segunda não justifica a primeira.
	A primeira afirmativa é verdadeira e a segunda afirmativa é falsa.
	As duas afirmativas são falsas.
à	9^a Questão (Ref.: 202216276579)
	As árvores binárias de busca são especializações das árvores binárias que permitem uma melhor organização dos algoritmos de busca. Sobre a inserção de uma nova chave em uma árvore binária de busca é correto afirmar que:
	O algoritmo de inserção em árvores binárias de busca é estático, isto é, é necessário recalcular toda árvore para inserir uma nova chave.
	Para determinar a posição da nova chave é necessário calcular o percurso em ordem simétrica da árvore obtida. Com este percurso, verifica-se se a sequência está ordenada em ordem crescente. Caso esteja, a posição da nova chave está correta.
	☐ Toda nova chave é inserida obrigatoriamente na raiz.
	Todas as chaves são inseridas em folhas, a posição da folha é determinada pela busca.
	A complexidade da inserção é sempre O(n), independentemente da altura da árvore.
à	10^a Questão (Ref.: 202216276580)
	Sobre as árvores binárias de busca balanceadas, analise as afirmativas abaixo:
	I - Tem altura proporcional a log n.
	II - As árvores completas são balanceadas.
	III - Existe algoritmo capaz de transformar uma árvore binária de busca não balanceada em balanceada em O(n). IV - Toda árvore balanceada é completa.
	V - A busca ocorre em um tempo proporcional a log n nas árvores balanceadas.
	☐ I, II, III e V são corretas. ☐ I, II, IV e V são corretas.
	☐ I, III, IV e V são corretas.
	■ I, III, IV e V são corretas.
	☐ I, II, III e IV são corretas.

Autenticação para a Prova Online Caso queira FINALIZAR a avaliação, digite o código de 4 carateres impresso abaixo. ATENÇÃO: Caso finalize esta avaliação você não poderá mais modificar as suas respostas. FINALIZAR Obs.: Os caracteres da imagem ajudam a Instituição a evitar fraudes, que dificultam a gravação das respostas.

Período de não visualização da avaliação: desde 12/09/2023 até 23/11/2023.