Informe de Trabajo Práctico N°5

Cinemática Inversa

Robótica I

Ingeniería en Mecatrónica Facultad de Ingeniería - UNCUYO

Alumno: Juan Manuel BORQUEZ PEREZ Legajo: 13567

1. Ejercicio 1

Figura 1: Robot Ejercicio 1

1.1.

Utilice el método geométrico para hallar un conjunto de ecuaciones cerradas que resuelvan el siguiente problema

$$\overline{q} = f(x, y, \gamma)$$

Al tratarse de un robot con solo dos grados de libertad, una **postura alcanzable está** suficientemente definida al especificar a lo sumo dos variables en el plano, esto es, (x, y), (x, γ) o (y, γ) ; mientras que la tercera variable queda determinada. Luego, como el problema se formula en término de las tres variables, las mismas deben ser congruentes para que exista solución.

Las posiciones alcanzables por el extremo del robot quedan definidas por las siguientes condiciones:

$$\sqrt{x^2 + y^2} \le a_1 + a_2 \quad (extension \, maxima)$$

$$(a_1 > a_2) \to \sqrt{x^2 + y^2} \ge a_1 - a_2 \quad (extesion \, minima)$$
(1)

Cuando la posición es alcanzable, θ_2 se puede determinar por análisis de la suma de los vectores indicados en la fig. 2, como se indica a continuación:

$$\mathbf{w} = \mathbf{u} + \mathbf{v}$$

$$\mathbf{w}^2 = \mathbf{u}^2 + \mathbf{v}^2 + 2\mathbf{u} \cdot \mathbf{v}$$

$$x^2 + y^2 = a_1^2 + a_2^2 + 2a_1a_2\cos(\theta_2)$$

Luego:

$$\theta_2 = \arccos\left(\frac{x^2 + y^2 - a_1^2 - a_2^2}{2a_1 a_2}\right) \tag{2}$$

Esto da lugar a **dos posibles valores**, uno positivo (codo abajo) y otro negativo (codo arriba).

Figura 2: Análisis geométrico

El ángulo θ_1 se determina ahora por análisis de las proyecciones sobre los ejes Sobre el eje X:

$$x = a_1 \cos(\theta_1) + a_2 \cos(\theta_1 + \theta_2)$$

$$x = a_1 \cos(\theta_1) + a_2 \left[\cos(\theta_1) \cos(\theta_2) - \sin(\theta_1) \sin(\theta_2)\right]$$

$$x = \underline{[a_1 + a_2 \cos(\theta_2)]} \cos(\theta_1) - \underline{a_2 \sin(\theta_2)} \sin(\theta_1)$$

$$x = \underline{A} \cos(\theta_1) - \underline{B} \sin(\theta_1)$$

Sobre el eje Y:

$$y = a_1 \sin(\theta_1) + a_2 \sin(\theta_1 + \theta_2)$$

$$y = a_1 \sin(\theta_1) + a_2 \left[\sin(\theta_1)\cos(\theta_2) + \cos(\theta_1)\sin(\theta_2)\right]$$

$$y = \underline{[a_1 + a_2\cos(\theta_2)]}\sin(\theta_1) + \underline{a_2\sin(\theta_2)}\cos(\theta_1)$$

$$y = \underline{A}\sin(\theta_1) + \underline{B}\cos(\theta_1)$$

Se obtiene el siguiente sistema de ecuaciones lineales:

$$\begin{cases} x = A\cos(\theta_1) - B\sin(\theta_1) \\ y = B\cos(\theta_1) + A\sin(\theta_1) \end{cases}$$

Entonces se puede obtener θ_1 a partir de las siguientes:

$$\begin{cases}
\cos(\theta_1) &= \frac{Ax + By}{A^2 + B^2} \\
\sin(\theta_1) &= \frac{Ay - Bx}{A^2 + B^2} \\
\theta_1 &= \arctan\left(\frac{Ay - Bx}{Ax + By}\right) = atan2(Ay - Bx, Ax + By)
\end{cases} \tag{3}$$

La última se utiliza para determinar dos posibles soluciones para θ_1 mientras que el signo de las primeras dos determinan el valor correcto (el cuadrante). La eq. (3) se resuleve para cada valor de B (uno por cada valor de θ_2 dados en la eq. (2)).

Finalmente, la orientación dada para la postura en la formulación del problema debe ser congruente, y esta dada por:

$$\gamma = \theta_1 + \theta_2$$

En resumen, para $\overline{q} = (x, y, \gamma)$ en el rango del robot según eq. (1) se obtiene un par de posibles soluciones (codo arriba y codo abajo) dadas por:

$$\begin{cases} \theta_2 &= \arccos\left(\frac{x^2 + y^2 - a_1^2 - a_2^2}{2a_1 a_2}\right) \to A = a_1 + a_2 \cos(\theta_2); B = a_2 \sin(\theta_2) \\ \theta_1 &= \operatorname{atan2}(Ay - Bx, Ax + By) \\ \overline{q} &= (\theta_1, \theta_2) \\ \operatorname{solo si } \gamma &= \theta_1 + \theta_2 \end{cases}$$

$$(4)$$

En los extremos del movimiento del robot se puede obtener a lo sumo una solución (no un par).

1.2.

Utilice el método geométrico para hallar un conjunto de ecuaciones cerradas que resuelvan el siguiente problema

$$\overline{q} = f(x, y)$$

La solución es la misma que en el caso anterior solamente que en este caso la orientación queda determinada por los desplazamientos angulares obtenidos:

$$\begin{cases}
\theta_2 = \arccos\left(\frac{x^2 + y^2 - a_1^2 - a_2^2}{2a_1 a_2}\right) \to A = a_1 + a_2 \cos(\theta_2); B = a_2 \sin(\theta_2) \\
\theta_1 = \operatorname{atan2}(Ay - Bx, Ax + By) \\
\overline{q} = (\theta_1, \theta_2)
\end{cases}$$
(5)

1.3.

Indique la cantidad de soluciones posibles que tendría cada conjunto de ecuaciones anterior, si los límites articulares fueran los siguientes

Robótica I - Año: 2024

Trabajo Práctico 5: Cinemática Inversa

1.3.1. $\pm 90^{\circ}$

La mínima extensión alcanzable por el robot se consigue cuando los eslabones forman un ángulo recto. Luego la condición de rango señalada en eq. (1) es ahora:

$$\sqrt{x^2 + y^2} \le a_1 + a_2 \quad (extension \, maxima)$$

$$x^2 + y^2 \ge a_1^2 + a_2^2 \quad (extension \, minima)$$
(6)

Para los puntos dentro del rango del robot, definido en eq. (6), y analizando eq. (3) vemos que tendremos dos posibles soluciones (codo arriba y codo abajo) siempre que para ambos valores de θ_2 en el rango articular sea $Ay - Bx \ge 0$, habrá una única solución cuando solo para uno de los valores de θ_2 la desigualdad de un valor positivo y no habrá soluciones cuando para ambos valores de θ_2 la desigualdad de valores negativos.

- 1.3.2. $\pm 180^{\circ}$
- 1.3.3. $\pm 225^{\circ}$
- 1.3.4. $\pm \infty$