Adopted Levels, Gammas 2017Ke05

```
History
                                                                          Author
                                                                                                                                              Literature Cutoff Date
                               Type
                                                                                                                       Citation
                                                 J. H. Kelley, J. E. Purcell and C. G. Sheu
                                                                                                               NP A968,71 (2017)
                                                                                                                                                      1-Jan-2017
                        Full Evaluation
Q(\beta^{-})=-17338.1 \ 10; S(n)=18720.71 \ 6; S(p)=15956.68 \ 1; Q(\alpha)=-7366.59 \ 4
                                                                                                              2017Wa10
                                                                                           <sup>12</sup>C Levels
                                                                             Cross Reference (XREF) Flags
                                                                                                                                       12C(14N,14N)
                           Α
                                   ^{12}B \beta^- decay:20.20 ms
                                                                               ٧
                                                                                         ^{11}B(^{3}He,^{12}C)
                                                                                                                             AP
                                                                                         ^{11}B(\alpha,t)
                                                                                                                                       ^{12}C(^{16}O,^{12}C)
                           В
                                   ^{12}N \beta^{+} decay:11.000 ms
                                                                               W
                                                                                                                             AQ
                                                                                                                                       ^{12}\text{C}(^{40}\text{Ca},^{12}\text{C})
                                   ^{6}\text{Li}(^{6}\text{Li},\gamma), (^{6}\text{Li},p), (^{6}\text{Li},n):\text{res}
                                                                                         ^{11}B(^{7}Li,^{6}He)
                           C
                                                                               X
                                                                                                                             AR
                           D
                                   <sup>6</sup>Li(<sup>9</sup>Be,t)
                                                                               Y
                                                                                         ^{12}C(\gamma,\gamma)
                                                                                                                                       <sup>13</sup>B \beta^{-}n decay:17.30 ms
                                                                                                                             AS
                                   ^{9}Be(^{3}He,\gamma):res
                                                                                                                                       ^{13}C(\gamma,n), ^{13}C(e,e'n)
                           Ē
                                                                               Z
                                                                                         ^{12}C(\gamma,\alpha),(\gamma,n),(\gamma,p)
                                                                                                                             ΑT
                                   {}^{9}\text{Be}({}^{3}\text{He,n}),({}^{3}\text{He},\alpha):res {}^{9}\text{Be}(\alpha,n),(\alpha,{}^{12}\text{C})
                                                                                                                                       ^{13}C(\pi^+,p)
                           F
                                                                               Others:
                                                                                                                             AU
                                                                                         <sup>12</sup>C(e,e')
                           G
                                                                                                                                       ^{13}C(p,d)
                                                                               AA
                                                                                                                             A۷
                                   9Be(6Li,t)
                                                                                                                                       13C(d,t)
                           Н
                                                                               AB
                                                                                         ^{12}C(e,e'p)
                                                                                                                             ΑW
                                   <sup>9</sup>Be(<sup>9</sup>Be, <sup>6</sup>He)
                                                                                         ^{12}C(\pi,\pi),(\pi^-,\pi^-)
                           Ι
                                                                               AC
                                                                                                                             ΑX
                                                                                                                                       ^{13}\text{C}(^{3}\text{He},\alpha)
                                   ^{9}Be(^{10}C,^{12}C)
                                                                                                                                       <sup>13</sup>C(<sup>6</sup>Li, <sup>7</sup>Li), <sup>13</sup>C(<sup>7</sup>Li, <sup>8</sup>Li)
                           J
                                                                               AD
                                                                                         ^{12}C(n,n')
                                                                                                                             ΑY
                                   ^{10}Be(^{3}He,n)
                                                                                                                                       ^{13}O εp decay:8.58 ms
                           K
                                                                               ΑE
                                                                                         ^{12}C(p,p')
                                                                                                                             ΑZ
                                   ^{10}B(d,p),(d,d),(d,\alpha):res
                                                                                                                                       ^{14}C(p,t)
                                                                                         ^{12}C(p,p'),(\alpha,\alpha')
                           L
                                                                               ΑF
                                                                                                                             BA
                                   ^{10}B(^{3}He,p)
                                                                                                                                       ^{14}N(p,^{3}He)
                                                                               AG
                                                                                         ^{12}C(P,P'\alpha)
                                                                                                                             BB
                                   ^{10}B(^{3}He,p3\alpha),^{11}B(^{3}He,D3A)
                                                                                         ^{12}C(P,P'P),^{12}C(P,P'\alpha)
                                                                                                                                       ^{14}N(d,\alpha)
                                                                               AH
                                                                                                                             BC
                                                                                                                                       ^{15}N(p,\alpha)
                           0
                                   ^{10}B(^{6}Li.\alpha)
                                                                               ΑI
                                                                                         <sup>12</sup>C(d,d)
                                                                                                                             BD
                                   ^{11}B(p,\gamma):res
                                                                                                                                       ^{16}N \beta^{-}\alpha decay
                                                                                         ^{12}\text{C}(^{3}\text{He}, ^{3}\text{He})
                           P
                                                                               AJ
                                                                                                                             BE
                                                                                                                                       ^{16}O(P,P'\alpha)
                                   <sup>11</sup>B(p,n):res
                                                                                         ^{12}C(\alpha,\alpha')
                           Q
                                                                               AK
                                                                                                                             BF
                                                                                         <sup>12</sup>C(<sup>6</sup>Li, <sup>6</sup>Li)
                                   <sup>11</sup>B(p,p):res
                                                                                                                                       <sup>16</sup>O(d, <sup>6</sup>Li)
                           R
                                                                               ΑL
                                                                                                                             BG
                                                                                         ^{12}C(^{11}B,^{12}C),(^{11}B,^{11}B)
                                   ^{11}B(p,\alpha)
                                                                                                                                       ^{16}O(^{3}\text{He}, ^{7}\text{Be})
                           S
                                                                               ΑM
                                                                                                                             BH
                                                                                         ^{12}C(^{12}C,3\alpha)
                                   ^{11}B(d,n)
                           T
                                                                               AN
                                                                                                                                       ^{16}O(\alpha,^{8}Be)
                                                                                         ^{12}C(^{12}C,^{12}C),(^{12}C,X)
                                   ^{11}B(^{3}He,d)
                                                                               ΑO
                                                                           XREF
                                                                                                                                             Comments
                                                         AB DE GHI K MNOP
                                                                                          TU WX Z
                                                                                                           XREF: Others: AA, AC, AD, AE, AF, AI, AJ, AK, AL,
                                                                                                              AM, AO, AP, AQ, AS, AT, AU, AV, AW, AX, AY,
                                                                                                              AZ, BA, BB, BC, BD, BE, BF, BG, BH, BI
                                                                                                           T=0; g=2.0010415963 45 (2002Be82)
                              10.8 \times 10^{-3} \text{ eV } 6
                                                       AB DE GHI K MNOP
                                                                                                          XREF: Others: AA, AC, AD, AE, AF, AI, AJ, AK, AL,
  4439.82 21
                   2+
                                                                                          TU WXY
                                                                                                              AM, AO, AP, AQ, AS, AT, AU, AV, AW, AX, AY,
                                                                                                              AZ, BA, BB, BC, BD, BF, BG, BH, BI
                                                                                                           %IT=100
                                                                                                           T=0; Q=6 3 (1983Ve01)
                                                                                                          E(level): From average of values given in (1967Ch19,
                                                                                                              1967Ko14, 1971St22, 1974Jo14, 1974No07,
                                                                                                              2016Mu06). The value is dominated by E\gamma=4438.91
                                                                                                              keV 31 in (1967Ch19).
                                                                                                           Γ: From average of
                                                                                                              (1958Ra14,1967Cr01,1968Ri16,1970Co09,1970St10).
  7654.07 19 0+
                               9.3 eV 9
                                                        AB DE GHIJK MNOP
                                                                                          TUVWX
                                                                                                           XREF: Others: AA, AC, AD, AE, AF, AI, AJ, AK, AL,
                                                                                                              AN, AO, AP, AQ, AR, AU, AV, AW, AX, AY, AZ,
                                                                                                              BA, BB, BC, BD, BG, BH, BI
                                                                                                           %IT=4.16 \times 10^{-2}; %\alpha \approx 100
                                                                                                           E(level): See discussion in (1976No02). Note:
                                                                                                              E_x = 7657.8 \text{ keV } 10 \text{ is obtained from analysis of } \gamma \text{ rays}
                                                                                                              measured in (2016Mu06).
```

E(level)	\mathbf{J}^{π}	$T_{1/2}$	XREF	Comments			
				Γ: Using $\Gamma_{\pi}/\Gamma=(6.7~6)\times 10^{-6}$ (average of 1972Ob01,1977Ro05,1977Al31) and $\Gamma_{E0}=\Gamma_{\pi}=(62.3~\mu\text{eV}~20)$ (see discussion in 2010Ch17,2011Vo16). $\Gamma_{\text{rad}}/\Gamma=(\Gamma_{\gamma}+\Gamma_{\pi})/\Gamma=(4.16~II)\times 10^{-4}$. From $10^4\times\Gamma_{\text{rad}}/\Gamma=3.3~9~(1961\text{Al}23)$, 3.5 $I2~(1964\text{Ha}23)$, 4.20 $22~(1974\text{Ch}03)$, 4.4 $2~(1975\text{Da}08)$, 4.15 $34~(1975\text{Ma}34)$, 4.09 $27~(1976\text{Ob}03)$, 3.87 $25~(1976\text{Ma}46)$. The value from (1961Al23) has sometimes been miscopied as 3.4, but it has no impact on the average. The value of (1975Da08) has been corrected, as indicated in (1976Ob03). The value (2.82 $29)\times 10^{-4}~(1963\text{Se}23)$ is a statistical outlier; including this value yields the average (3.99 $I8)\times 10^{-4}$ that is the weighted average using the external uncertainty. The value in (1990Aj01) did not use the corrected (1975Da08) value. In (2014Fr09), the value (4.19 $I0)\times 10^{-4}$ is deduced by rounding the above values to the nearest tenth. $\Gamma_{\text{rad}}=3.87~\text{meV}~39~\text{and}~\Gamma_{E2}=\Gamma_{\gamma}=3.81~\text{meV}~39$. Decay mechanisms were analyzed in (2017Sm03); the decay is >99.92% via sequential α-decay to $^8\text{Beg}_{.s.}$ and <0.047% via direct decay into 3α -particles. This is relevant for the astrophysical 3α rate, via detailed balance. Also see (2011Ra43, 2012Ma10, 2012Ki07, 2013Ra20, 2014It01, 2016Mo05, 2017De25).			
9641 5	3-	46 keV <i>3</i>	DE GHIJ MNOP TUVWXY	XREF: Others: AA, AC, AD, AE, AF, AT, AJ, AK, AL, AM, AN, AO, AP, AQ, AR, AV, AX, AY, BA, BB, BC, BG, BH, BI %IT<4.1×10 ⁻⁵ ; % α ≈100 T=0 E(level): From average of (1956Do41,1962Br10, 1960Fo01,1965Ha17,1969Su03). Γ _{rad} /Γ<4.1×10 ⁻⁷ (1974Ch32). This implies Γ _{rad} <19 meV. Γ: Weighted average of (1956Do41,1962Br10,2012Al22,2013Ko14) with external errors.			
9870 60	2+	850 keV 85		XREF: Others: AE, AF, AK %IT \approx 7.1×10 ⁻⁶ ; % $\alpha \approx$ 100 T=0 E(level), Γ : From average of (2011It08,2011Zi01,2013Zi03). $\Gamma_{\gamma 0}$ =60 meV 10 (2013Zi03); deduced from photobreakup.			
9930?# 30	0+	2710 keV 80		XREF: Others: AF, AK E(level), Γ: Support for a group at E_x =9.93 MeV is found separately in the 12 C(α , α') works of (2003Jo07) and (2011It08). In (2011It08) the group is suggested as a J^{π} =0 $_3^+$ and 0 $_4^+$ doublet with E_x =9.04 MeV 9 and Γ =1.45 MeV 18 and E_x =10.56 MeV 6 and Γ =1.42 MeV 8, respectively. Additional support for strength in this region is found in the R-matrix analysis of 12 B and 12 N β -decay data, (2010Hy01) report evidence for J^{π} = 2 $^+$ and 0 $^+$ states at E_x =11.1 MeV 3 and 11.2 MeV 3,			

E(level)	J^{π}	T _{1/2}			XREF		Comments
							respectively. Differences in assumptions and analysis techniques may suggest the $J^{\pi}=0^+$ state seen in (2010Hy01) could be the same as the one in (2011It08). In the present evaluation, the higher precision E_x =9.93 MeV J is accepted for a tentative state.
10.3×10 ³ ? 3	(0+)	3.0 MeV 7	AB		N	Z	XREF: Others: AD, AI, AN, AV $\%\alpha\approx100$ T=0 E(level), Γ : From (1966Sc23). The R-matrix analysis of (2010Hy01) indicates the origin of the 10.3 MeV group is related to interference between the $J^{\pi}=0^{+}$ state at $E_{x}=7.65$ MeV and higher-lying strength near 11 MeV that, "gives the very broad component from 8.5 to 11 MeV, which has been mistaken for a 10.3 MeV resonance with a 3 MeV width". We continue to list this state because of the value of the historic record of reports and studies of the $E_{x}=10.3$ MeV group, and because of still unresolved questions on the $J^{\pi}=0^{+}$ (and 2^{+}) strength in the $E_{x}=9-13$ MeV region. However, future studies may provide different and more complete interpretation of this region.
10847 <i>4</i>	1-	273 keV 5	D	GH	MN	TUV X	XREF: Others: AA, AD, AE, AF, AI, AJ, AK, AL, AM, AN, AP, AQ, AX, BC $\%\alpha\approx100$ T=0 E(level): From (2012A122). Γ : From average of Γ_{lab} values from (1961Hi08,1971Re03) and $\Gamma_{c.m.}$ values from (1962Br10,2012A122).
11836 4	2-	230 keV 8	D	GH	MNO	TUV XY	XREF: Others: AA, AD, AE, AF, AI, AJ, AK, AL, AN, AP, AX, BC %IT>0; %α≈100 E(level): From (1962Br10,1965Ol01,2012Al22). Γ: From average of (1961Hi08, 1962Br10, 1965Ol01, 1971Re03, 2012Al22).
12400?	(5+,4-,6-,7+)				N		% α ≈100 T _{1/2} : Broad. E(level),T _{1/2} : From (2012Al22).
12710 [†] 6	1+	18.1 eV 28	AB	GH	MNOP	TUVWXY	XREF: Others: AA, AC, AD, AE, AG, AI, AJ, AL, AN, AP, AT, AV, AW, AX, AY, BA, BB, BC %IT=2.2; $%\alpha$ =97.8 T=0; $\Gamma\alpha$ =17.7 eV 28; $\Gamma_{\gamma 0}/\Gamma$ =1.93×10 ⁻² 12 E(level): From (1961Hi08,1962Br10,1965Ha17, 1965Pe17,1969Su03). Γ: From $\Gamma_{\gamma 0}/\Gamma$ =1.93×10 ⁻² 12 (1977Ad02) and $\Gamma_{\gamma 0}$ =0.35 eV 5 (1974Ce01). Γ_{α}/Γ =0.978 1 (1977Ad02), which implies Γ_{α} =17.7 eV 28.

E(level)	J^{π}	T _{1/2}		XREF			Comments
$13.3 \times 10^3?^{\#} 2$	4+	1.7 MeV 2	G				T=0
13316 20	4-	360 keV <i>43</i>	I	MN	T V	Y	E(level), $T_{1/2}$: From (2011Fr02). XREF: Others: AD, AE, AK, AL, AN, AP, AX, BC %IT>0; $%\alpha \approx 100$ T=0 E(level): From average of
14079 5	4+	272 keV 6	GHI	MN	Т		(1961Hi08,1962Br10,2012Al22). Γ: From (1962Br10,1966Wa16,1971Re03). XREF: Others: AA, AD, AE, AG, AJ, AK, AL, AN, A0, AP, AQ, AV, AX, BA, BB, BC, BD, BF, BG, BI %α≈100 T=0 E(level): From average of (1962Br10,2012Al22). Γ: From (1962Br10,1966Wa16,2012Al22).
15110 [†] 3	1+	43.6 eV 10	В Е	MNOP	TU	XY	XREF: Others: AA, AC, AD, AE, AI, AJ, AT, AV, AW, AX, BA, BB, BC %IT=95.9; $%\alpha$ =4.1 T=1; $\Gamma\alpha$ =1.8 eV 4; Γ_{γ} =41.8 eV 12 E(level): From average of (1955Ma76,1958Ka31,1962Br10,1965Ha17, 1969Su03,1974Pa01). Γ: Using Γ_{γ} 0=38.5 eV 8 (1983De53), the value Γ_{γ} =41.8 eV 9 is deduced from the measured γ branching ratios of (1972Al03). Then, using Γ_{α}/Γ =0.041 9 (1974Ba42) one obtains Γ_{α} =1.79 eV 39 and Γ =43.6 eV 10. Also see Γ_{α}/Γ =0.012
15440# 40	(2+)	1.77 MeV 20					7 (1970Re09) and 0.060 25 (1970Ar30). XREF: Others: AA, AE, AH, AI, AJ, AK, AV %α≈100 T=(0) E(level): From (1983De53, 1976Na17, 1977Bu19, 1979Go16, 1977Bu03). Γ: From (1983De53, 1977Bu19, 1979Go16,
16106.0 8	2+	5.3 keV 2	K	C MN P	STU	XY	1997Te14, 1977Bu03). XREF: Others: AA, AD, AE, AH, AJ, AT, AV, AW, AX, BA, BB, BD %IT=0.27; %p=0.41; %α=99.3 T=1 Γ_{γ} =14.4 eV 17; Γ_{p} =21.5 eV 33; $\Gamma\alpha$ =5.26 keV 2 E(level): From 16106.9 keV 6 (2016He05), 16105.2 keV 4 (1987Be17) and 16106.7 keV 4 (1979Da03). Γ: From Γ =5.3 keV 2 (1987Be17), 5.2 keV +5-2 (1979Da03) 5.0 keV 8 (2016He05). Γ_{γ} : Using Γ =5.3 keV 2, $\Gamma_{\gamma 1}/\Gamma$ =2.42×10 ⁻³ 29 (1977Ad02), the γ -ray branching ratios to Γ_{γ} =2 (19.44, 9.64, 12.72) (1977Ad02), and Γ_{γ} =1 from Γ_{γ} =1 from Γ_{γ} =2 from Γ_{γ} =2 from Γ_{γ} =3 from Γ_{γ} =3 from Γ_{γ} =4 from Γ_{γ} =6 (1977Ad02). Γ_{α} : From $\Gamma_{\alpha 0}/\Gamma_{\alpha 1}$ =0.051 5 (2016La27),
16620 <i>50</i>	2-	280 keV 28		MNOP	S		Γ=5.3 keV 2 and Γ _γ and Γ _p from above. XREF: Others: AA, AE, AH, AJ, AV %IT=2.9×10 ⁻³ ; %p≈50; %α≈50 T=1

E(level)	J^{π}	T _{1/2}	XREF			Comments
17230	1-	1.15 MeV	P	RSTU	YZ	Γ _p =140 keV; Γα=140 keV; Γ _γ =8 eV E(level),Γ: From (1997Te14). Γ _{p0} /Γ=0.5, Γα/Γ=0.5 (1965Se06). Γα≈Γα1, Γα0<0.27 keV (1965Se06). Γγ≈Γγ1=8 eV. Γγ0=4.8×10 ⁻² eV 8 (1965Se06,1983De53). %IT=4.3×10 ⁻³ ; %p=87; %α=13 T=1 Γ _p =1.0 MeV; Γα=150 keV; Γγ≈50 eV E(level),Γ: From (1965Se05). Γ _{p0} =1 MeV, Γα0=10 keV, Γα1=140 keV,
17760 20	0+	96 keV 5	K P	RS		$\Gamma_{\gamma 0}$ =44 eV $\Gamma_{\gamma 1}$ = 5 eV, $(2J+1)\Gamma_{\gamma 0}$ ≥115 eV (1965Se06). XREF: Others: AA, AV, BA, BD %IT=4.0×10 ⁻³ ; %p=82; %α=17.4 T=1
						E(level): From (1974Pa01). Γ: From (1982Ha12). $\Gamma_{p0} \approx 76$ keV, $\Gamma_{\alpha 0} \approx 4.6$ keV, $\Gamma_{\alpha 1} \approx 11.4$ keV (1965Se06). $\Gamma_{\gamma} (\rightarrow 12.71 \text{ MeV}) = 3.7$ eV 15 (1982Ha12).
18160 <i>70</i>	(1 ⁺)	240 keV 50	P			XREF: Others: AA, AV %IT>0; %p<100 T=(0) E(level),Γ: From 13 C(p,d): (1987Le24,1984Sm04), respectively. (2J+1) Γ_{γ} (\rightarrow 15.1) \geq 2.8 eV 6 (1972Su08).
18350 [‡] 50	3-	220 keV 50	P	RSTU	ХҮ	XREF: Others: AJ, AK %IT>0; %p=22; %α=78 T=1 $\Gamma_{p0}/\Gamma=0.22$, $\Gamma_{\alpha 0}/\Gamma=0.21$, $\Gamma_{\alpha 1}/\Gamma=0.57$, $\Gamma_{\gamma 0}<1.5$ eV, $\Gamma_{\gamma 1}=3.2$ eV (1965Se06). $\Gamma_{\gamma}(\rightarrow^{12}\text{C*}(9640))=5.7$ eV 23 (1982Ha12). E(level), $\Gamma_{1/2}$: At least two levels are present at $E_x=18.35$ MeV. In (1983Ne11), the discussion describes an interpretation with two similar width states having $J^{\pi}=2^{-}$ and 3^{-} . At present, Γ for the 3^{-} state is taken from (1971Re03) while Γ of the 2^{-} state is taken from (1983Ne11). However, $J^{\pi}=(2^{+})$ has also been reported in (1977Bu19,1987Ki16).
18350 [‡] <i>50</i>	2-	350 keV <i>50</i>		R T	XY	XREF: Others: AE, AH, AI, AJ, AK $\%p{\approx}100$ T=0+1 E(level), $T_{1/2}$: See comments above for $E_x{=}18350$
18390?	0-	43 keV	PQ)RS		J^{π} =3 ⁻ . %p≈100 T=(1) E(level),Γ: From (1965Se06). Γ_{p0}/Γ =0.79, Γ_{p1}/Γ =0.21 (1965Se05).
18.6×10 ³ ? [#] 1	(3-)	300 keV				XREF: Others: AA T _{1/2} : Calculated. E(level),T _{1/2} : From (1970To13, 1971Ya03,1972An03).

E(level)	\mathbf{J}^{π}	$T_{1/2}$	XREF	Comments
18710		100 keV	P S	%p<10; %α≥90 T=(1) E(level),Γ: From (1965Se06).
18800 40	2+	100 keV <i>15</i>	PQRS	$\Gamma_{p0}/\Gamma \le 0.1$. XREF: Others: AJ, AV, BA %IT=2.5×10 ⁻³ ; %n=1; %p=99 E(level): From (1974Pa01). Γ: Mainly from (1974Pa01,1987Le24) and $^{11}\beta^+$ p references in (1980Aj01).
19.2×10 ³ 6	(1-)	≈1.1 MeV	PQRS U	Γ_{p0} =97 keV, Γ_{p1} =2 keV, Γ_{n} =1.1 keV, $\Gamma_{\gamma0}$ ≈0.4 eV, $\Gamma_{\gamma 1}$ =2 eV (1965Se06). XREF: Others: AJ %IT=3.2×10 ⁻³ ; %n=14; %p=63; %α=23 T=(1) E(level): From (1979Ko05). Γ: From (1965Se06). Γ_{p0} =300 keV, Γ_{p1} =400 keV, Γ_{n} =150 keV,
19400 [‡] 25	2-	490 keV <i>30</i>	PQRS	$\Gamma_{\alpha 0}$ =50 keV, $\Gamma_{\alpha 1}$ =200 keV $\Gamma_{\gamma 0}$ =25 eV, $\Gamma_{\gamma 1}$ =10 eV (1965Se06). XREF: Others: AA, AE, AH, BC %IT=6×10 ⁻⁴ ; %p=46; % α =43; %n=9
				T=1 E(level): From average of
19555‡ 25	4-	485 keV <i>40</i>	TU	XREF: Others: AA, AE, AH, AJ %IT>0; %p=42; %α=58 T=1 E(level): (1983Ba62) suggests an isospin mixed doublet with J ^π =4 ⁻ . E(level): From (1964Go14, 1969Ba06, 1977Bu19, 1983Ne11, 1984Hi06). Γ: From (1964Go14, 1983Ne11, 1984Hi06). See discussion on J ^π =2 ⁻ and 4 ⁻ doublet and partial
19690	1+	230 keV <i>35</i>	QR	widths in (1983Ne11). XREF: Others: AG %n<100; %p<100 E(level), \Gamma: See (1957De11, 1977Ma37, 1977Ri01).
20.0×10 ³ I	2+	375 keV <i>100</i>	QR	XREF: Others: AA, AV %IT>0; %n<100; %p<100 E(level): See (1975Aj02).
20270 50	(1+)	215 keV <i>45</i>	QR	Γ: From (1987Le24). XREF: Others: AE , AV %n<100; %p<100 T=(1) E(level): From ¹² C(p,p')(1977Bu19). Γ: From average of values reported in ¹¹ B(p,n), ¹¹ B(p,p'), ¹² C(p,p') and ¹³ C(p,d).
20553 5	(3+)	300 keV <i>50</i>	MN P S Y	XREF: Others: AA, AH, BA, BC %IT>0; %p<100; % α <100

E(level)	\mathbf{J}^{π}	$T_{1/2}$	XREF	Comments
20600 30	(3 ⁻)	280 keV <i>75</i>	PQRSTU	T=(1) E(level): From (2012Al22). Γ: From (1984Hi06). XREF: Others: AA, AE, AV %IT>0; %n>0; %p=68; %α=32 T=(1) E(level): From average of (1975As06, 1977Bu19, 1983Ne11, 1984Sm04). Γ: From ¹¹ B(p,g) references in (1975A ₃ 02,1980A ₃ 01), ¹¹ B(p,n) references in
20990		≈370 keV	Q	(1968Aj02), (1975As06, 1977Bu19,1983Bo19,1987Le24). XREF: Others: AG %n<100; %p<100
21.60×10 ³ 10	(2+,3-)	1.20 MeV <i>15</i>	PQRS	E(level),Γ: From (1981Ho13). XREF: Others: AB, AE, AG, AH, AJ, AK, AQ %IT>0; %n<100; %p<100; %α<100 T=0 E(level),Γ: Possibly unresolved states with Γ=1.4 MeV 2 and Γ=0.43 MeV 8; see discussion in (1977Bu19) and see (1961Le11,1964Ba16,1972Fa07,1976Kn05,
21990 50	1-	0.61 MeV <i>11</i>	QRS	1983Bo19,1997Te14). XREF: Others: AA, AE, AH, AI %IT>0; %n<100; %p<100 T=1 E(level): From (1997Te14).
22370 50	(1-)	290 keV 40	QR U	 Γ: From average of (1977Bu19,1997Te14). XREF: Others: AE, BC %n<100; %p<100 T=(1) E(level): From average of ¹¹B(³He,d) values given in (1975Aj02) and (1977Bu19,1976Va07). Γ: From average of ¹¹B(³He,d) values from references in (1975Aj02) and (1977Bu19).
22.40×10 ³ ? 20	(5 ⁻)			XREF: Others: AJ, AK $\%\alpha \approx 100$ T=1
22.65×10 ³ 10	1-	3.2 MeV	PQ S Z	%IT=0.08; %n<100; %p<100; %α<100 T=1 E(level): From average of values given in (1974Pa01,1977Bu19,1984B112,1997Te14) and values from ¹² C(e,e') given in (1975Aj02). Γ: From (1964A120). See other values reported in (1965Ov01, 1974Pa01, 1977Bu19, 1984B112, 1997Te14) and ¹² C(e,e') given in
23040	(2-)	60 keV	QRS	(1975Aj02). %n<100; %p<100 T=(1) E(level): From average of (1965Ov01, 1975Va04).

E(level)	J^π	T _{1/2}		XR	EF_		Comments
23530 30	1-	238 keV 24		K	PQ S		Γ: From (1965Ov01). XREF: Others: AA, AE, AH, AJ %IT>0; %n<100; %p<100; %α<100 T=1
23990 50	1-	0.57 MeV <i>12</i>			Q		E(level): From average of (1974Go23, 1977Bu03, 1977Bu19, 1997Te14). Γ: From (1977Bu19, 1997Te14). XREF: Others: AA, AE, AH, AK, BC %IT>0; %n<100; %p<100 T=1 E(level): From average of (1976Va07, 1977Bu19,
24380 50	2+	671 keV <i>67</i>			Q		1997Te14). Γ: From (1976Va07, 1997Te14). XREF: Others: AG, AH %n<100; %p<100 T=0
24.41×10 ³ <i>15</i>		1.3 MeV 3			PQ		E(level), Γ : From (1997Te14). %IT>0; %n<100; %p<100 E(level), Γ : From (2008Ch13). (2J+1) $\Gamma_{p0}\Gamma_{\gamma}/\Gamma$ =20.8 28.
24.90×10 ³ 20		920 keV			Q		XREF: Others: AA %n<100; %p<100 E(level): From (1969Gu05). Γ: From (1965Ov01).
25.30×10 ³ 15	(1-)	0.51 MeV <i>10</i>			Q		XREF: Others: AE , AJ %n<100; %p<100 T=(1)
25.40×10 ³ 10	(1-)	2 MeV		L	P S	Z	E(level), Γ : From (1977Bu19). XREF: Others: AA, AI, AJ, AK, AQ, AV %IT>0; %n<100; %p<100 E(level): From (1984Sm04). Γ : From 12 C(γ ,n) (1975Ah06). Γ : See resonances in $^{11}\beta$ (p, γ) and $^{11}\beta$ (p, α)
25960	2+	710 keV		L	PQ		reactions in Table 12.11 (1990Aj01). %n<100; %p<100; %d<100; %α<100 E(level): From (1965Ov01). Γ: From (2005Ga59).
26800		275 keV		L	PQ S		%IT>0; %n<100; %p<100; %d<100; % α <100 E(level): From average of values in $^{10}\beta^+$ d and $^{11}\beta^+$ p.
27.0×10 ³ 3	(1-)	1.4 MeV 2		L	P	Z	Γ: From ¹¹ B(p,n) references in (1975Aj02). XREF: Others: AE, AI, AK %IT>0; %p<100 T=(1)
27595.0 24	0+	≤30 keV	E	K			E(level), Γ : From (1977Bu19). XREF: Others: BA %IT>0; % α =19.6; %p=27.4; %d=2.8 T=2 E(level), Γ : From (1978Ro08). Γ_{p0}/Γ =0.030 22. Γ_{p1}/Γ =0.080 23. Γ_{p2}/Γ =0.0 33. Γ_{p3}/Γ =0.084 32. Γ_{p4+5}/Γ =0.08 5. Γ_{d}/Γ =0.028 20.

E(level)	$_J^\pi$	T _{1/2}		XR	EF			Comments
27.8×10 ³ 2		≈350 keV	F		P	S		and $\Gamma_{\alpha 0}/\Gamma = 0.105 \ 30$. Partial widths from (1979Fr04). XREF: Others: AA %IT>0; %n<100; %p<100; % ³ He<100; % α <100 E(level): From (1969Gu05).
28200	1-	1.6 MeV	E					Γ: From (1963Du12,1965Di06). %IT>1.7×10 ⁻³ ; % ³ He≈100 T=1
28830 40		1.54 MeV 9	E	L	P			E(level),Γ: From (1972B117). XREF: Others: AI, AJ, AK %IT>0; %p<100; %d<100; % ³ He<100; %α<100 E(level): From (1972Li29,1974Sh01).
29.4×10 ³ 3	(2+)	≈800 keV	F		P		YZ	XREF: Others: AE %IT>0; %n<100; %p<100; % ³ H<100; % ³ He<100 T=(1) E(level): From (1977Bu19).
29630 50		≤200 keV						Γ: From (2008Af04). XREF: Others: BA %α≈20; %p=80 T=2
30290 <i>30</i>	(2+,2-)	1.54 MeV 9	C E					E(level),Γ: From (1976As01) Γ_p/Γ =0.8 2, Γ_{p0}/Γ =0.4, Γ_{α}/Γ ≈0.2. XREF: Others: AA %IT>0; %³He<100; %α<100 T=(0,1)
31160 <i>30</i>		2.10 MeV <i>15</i>	E					E(level), \(\text{F: From (1972Li29, 1974Sh01)}. \) %IT>0; \(\text{%}^3 \text{He} < 100 \) E(level), \(\text{F: From (1972Li29, 1974Sh01)}. \)
32290 40		1.32 MeV <i>23</i>	CE					XREF: Others: AA %IT>0; %n<100; %p<100; % ³ He<100 Also decays via ⁶ Li emission.
33.47×10 ³ 21		1.93 MeV 5	E					E(level), F: From (1972Li29, 1974Sh01). %IT>0; % ³ He<100 E(level), F: From (1972Li29, 1974Sh01).

 $^{^{\}dagger}$ See discussion on the charge-dependent matrix element between $^{12}C*(12710,15110)$ in Table 12.18 (2017Ke05). ‡ See discussion in (1983Ne11). $^{\sharp}$ Decay mode not specified.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	Comments
4439.82	2+	4438.94	100	0	0^{+}	E2	$\Gamma_{\gamma} = 10.8 \times 10^{-3} \text{ eV } 6$; B(E2)(W.u.)=4.65 26
7654.07	0_{+}	3213.79	100	4439.82	2+	E2	$\Gamma_{\gamma} = 3.81 \times 10^{-3} \text{ eV } 39; \text{ B(E2)(W.u.)} = 8.26 85$
9641	3-	9637	100	0	0^{+}	E3	$\Gamma_{\gamma} = 3.1 \times 10^{-4} \text{ eV } 4 \text{ (1967Cr01)}; \text{ B(E3)(W.u.)} = 12.2$
12710	1+	8267	15 <i>3</i>	4439.82	2+	M1	$\Gamma_{\gamma} = 5.3 \times 10^{-2} \text{ eV } 10; \text{ B(M1)(W.u.)} = 4.5 \times 10^{-3} \text{ 8}$
		12703	100 14	0	0+	M1	Γ_{γ} =0.35 eV 5; B(M1)(W.u.)=8.1×10 ⁻³ 12 $\Gamma_{\gamma 1}$ from $\Gamma_{\gamma 1}/\Gamma_{\gamma 0}$ =0.150 18 (1977Ad02). See also (1972Al03) who found I_{γ} (12.1 MeV \rightarrow 0)=(15 4)% and I_{γ} (12 MeV \rightarrow 4.44 MeV)=(85 4)%, which implies $\Gamma_{\gamma 1}/\Gamma_{\gamma 0}$ =0.17 5.
15110	1+	2400 [‡]	1.5 4	12710	1+	M1	Γ_{γ} =0.59 eV 17; B(M1)(W.u.)=2.0 6

γ ⁽¹²C) (continued)

E_i (level)	\mathtt{J}_{i}^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}	E_f	\mathbf{J}_f^π	Mult.	Comments
15110	1+	4809	4.2 15	10.3×10 ³ ?	(0^+)		Γ_{γ} =1.6 eV 6
		7453 [‡]	2.83 36	7654.07	0^{+}	M1	Γ_{γ} =1.09 eV 14; B(M1)(W.u.)=0.13 2
		10665 [‡]	2.49 34	4439.82	2+	M1	$\Gamma_{\gamma} = 0.96 \text{ eV } 13; \text{ B(M1)(W.u.)} = 3.8 \times 10^{-2} \text{ 5}$
		15100	100 2	0	0_{+}	M1	Γ_{γ} =38.5 eV 8; B(M1)(W.u.)=0.531 11
16106.0	2+	3396	1.5 3	12710	1+	M1	Γ_{γ} =0.19 eV 4; B(M1)(W.u.)=0.23 5
		5257	3.8 9	10847	1-	E1	$\Gamma_{\gamma} = 0.48 \text{ eV } 12$
		6463	2.4 5	9641 4439.82	3 ⁻	E1	Γ_{γ} =0.31 eV 6; B(E1)(W.u.)=3.2×10 ⁻³ 6
		11660.1 16094.4	100 <i>12</i> 4.6 <i>9</i>	4439.82	2 ⁺ 0 ⁺	M1 E2	Γ_{γ} =12.8 eV 15; B(M1)(W.u.)=0.38 5 Γ_{γ} =0.59 eV 11; B(E2)(W.u.)=0.40 8
16620	2-	12180	100	4439.82		1.2	Γ_{γ} =8 eV; B(E1)(W.u.)=1.2×10 ⁻²
10020	-	16608	0.60 1	0	0^{+}	M2	$\Gamma_{\gamma} = 4.80 \times 10^{-2} \text{ eV } 8; \text{ B(M2)(W.u.)} = 0.48 \text{ 8}$
17230	1-	12783	11	4439.82			$\Gamma_{\gamma} = 5 \text{ eV}; B(E1)(W.u.) = 6.7 \times 10^{-3}$
		17217	100	0	0^{+}		Γ_{γ} =44 eV; B(E1)(W.u.)=2.4×10 ⁻²
							I_{γ} : From (1965Se06).
17760	0+	5049	100	12710	1+		Γ_{γ} =3.7 eV 15; B(M1)(W.u.)=1.4 6
18160	(1^+)	3049	100	15110	1+		F 57 N 22 P(M) (W) 0 41 2
18350	3-	8706	100	9641	3-		Γ_{γ} =5.7 eV 23; B(M1)(W.u.)=0.41 2 I_{γ} : From (1965Se06).
		13902	56	4439.82			Γ_{γ} =3.2 eV; B(E1)(W.u.)=3.3×10 ⁻³
		18335	3.5×10^{-4}	0	0_{+}		Γ_{γ} <1.5 eV; B(E3)(W.u.)<6.5×10 ²
18800	2+	14351	100	4439.82	2+		Γ_{γ} =2 eV; B(M1)(W.u.)=3.2×10 ⁻² I _γ : From (1965Se06).
		18784	<20	0	0^{+}		$\Gamma_{\gamma} \approx 0.4 \text{ eV}; \text{ B(E2)(W.u.)} \approx 0.13$
19.2×10^3	(1^{-})	14.75×10^3	40	4439.82			$\Gamma_{\gamma} = 10 \text{ eV}$
	. ,	19.2×10^3	100	0	0^{+}		$\Gamma_{\gamma} = 25 \text{ eV}$
							I_{γ} : From (1965Se06).
19400	2-	14950	100	4439.82			I_{γ} : From (1965Se06).
20553	(3^+)	20534		0	0_{+}		
20600 21.60×10^3	(3^{-}) $(2^{+},3^{-})$	20581 21.58×10^3		0	0+		
21.00×10	1-	21.58×10		0	0+		
22.65×10^3	1-	22.63×10^3		0	0+		
23530	1-	19074		4439.82			
		23505		0	0_{+}		
24.41×10^3		9.29×10^{3}		15110	1+		
25.40×10^3	(1^{-})	20.94×10^3		4439.82			
2.6000		25.37×10^3		0	0^{+}		
26800		19130		7654.07			
27595.0	0+	22338 12478		4439.82 15110	1 ⁺		
27.8×10^3	U	23.3×10^3		4439.82			
27.0×10		27.8×10^3		0	0+		
28200	1-	20.52×10^3		7654.07			
		28.16×10^3		0	0^{+}		
28830		21156		7654.07			
		28793		0	0+		
29.4×10^3	(2+)	29.4×10^3		0	0+		
30290	$(2^+,2^-)$	25.82×10^3		4439.82			
31160		31.12×10^3		0	0+		
32290		24.61×10^3		7654.07			
		27.82×10^3		4439.82	2		

$\gamma(^{12}C)$ (continued)

[†] From level energy difference; recoil correction applied.

 $^{^{\}ddagger}$ Γ data based on $\Gamma_{\gamma 0}$ of (1983De53) and on branching ratios of (1972Al03): 12 c*(15110) to 12 c*(0,4439,7654,12710) are (92 2)%, (2.3 3)%, (2.6 7)%, (1.4 4)%, respectively. In addition, an undetected branching of 1.6% to 12 c*(10300) is indicated in the β^- decay work of (1972Al03). See also (1980Aj01).

Adopted Levels, Gammas 2017Ke05

Level Scheme

Intensities: Relative photon branching from each level

Adopted Levels, Gammas 2017Ke05

Level Scheme (continued)

Intensities: Relative photon branching from each level

Adopted Levels, Gammas 1991Aj01

	History		
Type	Author	Citation	Literature Cutoff Date
Update	F. Ajzenberg-selove, J. H. Kelley and C. D. Nesaraja	NP A523,1 (1991)	1-Jul-1990

 $Q(\beta^-)=156.476\ 4$; S(n)=8176; $S(p)=20831.2\ 11$; $Q(\alpha)=-12012.5\ 1$ 2012Wa38 Note: Current evaluation has used the following Q record 156.475 4 8176.4425 20831.3 11–12011.6 4 1997Au04. Additional information 1.

¹⁴C Levels

Cross Reference (XREF) Flags

Α	$^{14}\mathrm{B}~\beta^-$ decay	K	$^{13}C(p,\pi^{+})$	U	$^{14}\text{C}(^{14}\text{C},^{14}\text{C'})$
В	13 C(n, γ) E=thermal	L	$^{13}C(d,p)$	V	$^{14}N(\gamma,\pi^{+})$
C	13 C(n, γ) res	M	13 C(t,d)	W	$^{14}N(\pi^{-},\gamma)$
D	⁹ Be(⁶ Li,p)	N	$^{13}\mathrm{C}(^{7}\mathrm{Li},^{6}\mathrm{Li})$	X	$^{14}N(n,p)$
E	⁹ Be(⁷ Li,d)	0	$^{14}C(\gamma,n)$ res	Y	$^{14}N(d,2p)$
F	$^{11}\mathrm{B}(\alpha,\mathrm{p})$	P	$^{14}\mathrm{C}(\mathrm{e,e'})$	Z	$^{14}N(t,^{3}He)$
G	11 B(6 Li, 3 He), 11 B(7 Li, α)	Q	$^{14}C(\pi,\pi')$	Other	s:
H	12 C(t,p)	R	14 C(p,p')	AA	$^{15}N(\gamma,p)$
I	$^{12}C(\alpha,2p)$	S	$^{14}C(d,d')$	AB	$^{15}N(d,^{3}He)$
J	13 C(n,n') res	T	$^{14}\text{C}(\alpha,\alpha')$	AC	$^{16}O(^{6}Li,^{8}B)$

E(level) $J^{\prime\prime}$ $T_{1/2}$ XREF 0.0 0^+ 5700 y 30 AB DEFGHIJKLMNOPQRSTUVWXYZ Comments

 $\%\beta^{-}=100$

XREF: Others: AA, AB, AC

T=1

 $T_{1/2}$: From the weighted average of the values 5780 y 65 [Watt et al. Intern. J. Appl. Radiat. Isot. 11 (1961) 68], 5680 y 40 (1962Ol04), 5745 y 50 (1964Hu09), 5660 y 30 (1968Be47), and 5736 y 56 (1968ReZZ and 1972Em01). The reduced- χ^2 for this average is 1.06. These values were obtained from specific activity measurements. Values that have not been included in the average, all earlier, are 4700 y 400 (1946Re10), 5100 y 200 (1948No02), 7200 y (1948Ya02), 6360 y 200 (1949Ha52), 5589 y 75 (1949Jo07), 5580 y 90 [Engelkemeir & Libby, Rev. Sci. Instr. 21 (1950) 550], 6360 y 190 and 5513 y 165 [Miller et al., Phys. Rev. 77 (1950) 714], 5370 y 200 [Manov & Curtiss, J. Research Nat. Bur. Std. 46 (1951) 328], 6100 y 85 (1952Je11), 5900 y 250 [Caswell et al., J. Research Nat. Bur. Std. 53 (1954) 27]. These values were omitted because of their large uncertainties and the later improvements in the measurement methods. From a similar evaluation, 1990Ho28 gives a result of 5715 y 30 from an unweighted average of eight values. Evaluated by V. Chechev in 1998 in conjunction with the Decay Data Evaluation Project (1999BeZS,1999BeZQ).

6093.8 2 6589.4 2 6728.2 <i>13</i>	1 ⁻ 0 ⁺ 3 ⁻	<7 fs 3.0 ps 4 66 ps 8	AB	DEFGH DEF H DEFGHI	LM	
6902.6 <i>2</i> 7012 <i>4</i>	0 ⁻ 2 ⁺	25 fs <i>3</i> 9.0 fs <i>14</i>	_	DE GH DEFGH		PQRS
7341 <i>3</i>	2^{-}	111 fs 42	Α	DE GH	KLMN	P T

XREF: Others: **AB** μ=0.816 21 (1989Ra17)

XREF: Others: AB

XREF: Others: AB, AC XREF: Others: AB

Adopted Levels, Gammas 1991Aj01 (continued)

E(level)	J^π	$T_{1/2}$	XREF Comments	
8317.9 8	2+	3.4 keV 7	B DEFGHIJKLM PQ T W YZ XREF: Others: AC	
9746 [†] 7	0^{+}		%IT=?; %n=?	
9746 7 9801 <i>6</i>	3-	45 keV <i>12</i>	XREF: Others: AB D FGH JKLM P T XREF: Others: AB	
7001 0		13 Re V 12	%IT=?; %n=?	
10425 5	2+		D F H JKLM P T XREF: Others: AB	
10449 7	≥1		%n=100 D FGH JK XREF: Others: AB	
			%n=100	
10498 <i>4</i>	(3^{-})	26 keV 8	D GH JKLM XREF: Others: AB	
10736 [†] 5	4+	20 keV 7	%n=100 D FGHI KLM T W	
11306 15	1 ⁺	46 keV 12	D F J OP XREF: Others: AB	
			%IT=0.015 5; %n=99.985 5	
11395 8	1-	22 keV 7	D FGH LM T %n=100 J %n=100	
11500?	1-,2-		J $%$ n=100 $T_{1/2}$: Γ =broad.	
11666 <i>10</i>	4-	20 keV 7	D FGHI KLM PQRST XREF: Others: AB	
11730 [†] 9	(5^{-})		D FGHI K	
$119 \times 10^2 \ 3$	(1-)	950 keV <i>300</i>	J LM %n=100	
12583 <i>10</i>	$(2^-,3^-)$	95 keV <i>15</i>	D GH J LM Q T XREF: Others: AB %n=100	
12863 8		30 keV 10	D GH J LM P %n=100	
12963 9	(3-)	30 keV 10	D GH J LM T %n=100	
135×10^2 ? [†] 1		<200 keV	K	
13700	2-	≈1800 keV	J %n=100	
140.5×10 ² ? [†] 10 14667 20	(4 ⁺)	<200 keV 57 keV <i>15</i>	K D FG J %n=100	
14868 [†] 20	$(6^+,5^-)$	37 KEV 13	D FGHI K XREF: Others: AB	
15200 [†] 23	4-		D FG K PQ	
15370?† 30			D D	
15440 <i>40</i>	(3-)		D J %n=100	
16020? 50	(4^{+})		D	
16430 [†] 16			D FGH	
16570? [†] <i>40</i> 16715 <i>30</i>	(1 ⁺)	≈200 keV		
17300 <i>30</i>	(1) 4 ⁻	≈200 Ke v	B D F %IT=?; %n=? D FG PQRS	
17500?	(1^+)	≈200 keV	B %IT=?; %n=?	
17950 [†] 40			D	
18100 [†] <i>40</i>			D	
18500 [†]			K $T_{1/2}$: Γ =broad.	
20400			\mathbf{X} $T_{1/2}$: Γ =wide.	
21400?	(a-)		F	
$221 \times 10^2 I$	(2^{-})		P T=2 T: tentative.	
23288 [†] <i>15</i>		≈50 keV	F K	
$244 \times 10^2 I$	4-	<300 keV	PQ T=2	
			T: tentative.	
24500 [†]			K Q $T_{1/2}$: Γ =wide.	

 $^{^{\}dagger}$ Decay mode not specified.

Adopted Levels, Gammas 1991Aj01 (continued)

γ (14C)

$E_i(level)$	J_i^{π}	E_{γ}	I_{γ}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	$I_{(\gamma+ce)}$	Comments
6093.8	1-	6092.4 2	100	$0.0 0^{+}$	[E1]		B(E1)(W.u.)>7.3×10 ⁻⁴
6589.4	0_{+}	495.35 10	100.0 <i>I</i>	6093.8 1-	[E1]		B(E1)(W.u.)=0.0032 4
		6587.7 2		0.0 0+	[E0]	1.1 <i>I</i>	$I_{(\gamma+ce)}$: this decay mode is due entirely to internal pairs.
6728.2	3-	634.4 13	3.7 13	6093.8 1	[E2]		B(E2)(W.u.)=1.5 6
		6726.5 <i>13</i>	100.1 <i>13</i>	$0.0 0^{+}$	[E3]		B(E3)(W.u.)=2.4 3
6902.6	0_{-}	808.8 <i>3</i>	100	6093.8 1	[M1]		B(M1)(W.u.)=1.6 2
7012	2+	918 <i>4</i>	1.4 7	6093.8 1	[E1]		B(E1)(W.u.)=0.0023 12
		7010 4	100.0 7	$0.0 0^{+}$	[E2]		B(E2)(W.u.)=1.8 3
7341	2-	613 <i>3</i>	70 <i>7</i>	6728.2 3-	[M1]		B(M1)(W.u.)=0.29 10
							δ : δ (E2/M1)=-0.07 30.
		1248 <i>3</i>	100 7	6093.8 1	[M1]		B(M1)(W.u.)=0.049 20
							δ : δ (E2/M1)=0.04 9.
		7339 <i>3</i>	34 7	$0.0 \ 0^{+}$	[M2]		B(M2)(W.u.)=0.38 15
11306	1+	11301 <i>15</i>	100	$0.0 \ 0^{+}$	[M1]		B(M1)(W.u.)=0.225

Adopted Levels, Gammas 1991Aj01

Level Scheme

Intensities: Relative photon branching from each level

