1

Assignment 2

Suryaansh Jain cs21btech11057

Question 21(a) A product can be manufactured at a total cost $C(x) = \frac{x^2}{100} + 100x + 40$, where x is the number of units produced. The price at which each unit can be sold is given by $P = 200 - \frac{x}{400}$. Determine the production level x at which the profit is maximum. What is the price per unit and total profit at the level of production?

Solution.

$$c(x) = \frac{x^2}{100} + 100x + 40\tag{1}$$

$$\frac{p(x)}{x} = 200 - \frac{x}{400} \tag{2}$$

$$Profit = p(x) - c(c) \tag{3}$$

For maximum profit $\frac{dProfit}{dx} = 0$

$$\implies 100 - \frac{x}{40} = 0 \tag{4}$$

$$\implies x = 4000 \tag{5}$$

The total production level x = 4000.

Price per unit =
$$\frac{c(x)}{r}$$
 = 190 (6)

$$p(x) = 199960 (7)$$

Total profit = 199960