Real Analysis Lecture Notes

Metric Spaces

December 5 2016 Last update: December 4, 2017

1 Connected Sets

We begin by restating the last few definitions and examples relating to connected sets that we introduced in the previous notes:

Definition: A metric space X is called <u>connected</u> if there does not exist any nonempty open subsets A and B in X such that

$$A \cap B = \emptyset$$
$$A \cup B = X$$

Example: Is \mathbb{R} connected? The only open A and B for $A \cup B$ to construct \mathbb{R} and satisfy $A \cap B = \emptyset$ is

$$\mathbb{R} \cap \emptyset = \emptyset$$
$$\mathbb{R} \cup \emptyset = \mathbb{R}$$

but clearly this involved the empty set. Thus, \mathbb{R} is indeed connected.

Example: Consider the punctured real line $\mathbb{R} \setminus \{2\} = X$. Then

$$X = (-\infty, 2) \cup (2, \infty)$$

Clearly we can construct X by $A=(-\infty,2)$ and $B=(2,\infty)$ with $A\cap B=\emptyset$. Therefore, X is *not* connected. Similarly,

$$X = [2, 3] \cup [4, 5]$$

is not connected since we cannot find open A or B to construct X without either being empty.

Interestingly, the puncture plane $\mathbb{R}^2 \setminus \{(0,0)\}$ is connected. We can think of this geometrically as the whole plane without the origin remains connected. However, by a similar argument, the real plane without the x-axis is not connected.

We can show that \mathbb{Q} is not connected by the following argument

$$(-\infty,\pi] \text{ is closed in } \mathbb{R} \text{ and } [\pi,\infty) \text{ is closed in } \mathbb{R}$$
 Let $A=(-\infty,\pi]\cap\mathbb{Q}$ is closed in \mathbb{Q} Let $B=[\pi,\infty)\cap\mathbb{Q}$ is closed in \mathbb{Q}
$$A\neq\emptyset \text{ and } B\neq\emptyset$$

$$A\cup B=\mathbb{Q}$$

$$A\cap B=\emptyset$$

Both A and B are clopen sets

 \mathbb{Q} is *not* connected

by a similar argument we can show that the irrationals $\mathbb{R} \setminus \mathbb{Q}$.

Example: We say that $f:[0,1] \to [0,1]$ given by

$$f(x) = \begin{cases} \sin\frac{1}{x} & x \in (0,1] \\ 0 & x = 0 \end{cases}$$

is the topologists sine curve. It turns out that the topologists sine curve defined by f is connected. We can show this by letting T denote the set of points defined by f and considering the set

$$A = \left\{ \left(x, \sin \frac{1}{x} \right) \in \mathbb{R}^2 : x \in \mathbb{R}^+ \right\}$$

and

$$B = \left\{ \left(x, \sin \frac{1}{x} \right) \in \mathbb{R}^2 : x \in \mathbb{R}^- \right\}$$

Then

$$T = \overline{A \cup B} = \overline{A} \cup \overline{B}$$

(It isn't difficult to show that both A and B are connected and so we just need that a) if A is connected and $A \subset C \subset \overline{A}$ then C is connected, and b) if A and B are connected and $A \cap B \neq \emptyset$ then $A \cup B$ is connected).

Proposition: Suppose $f: X \stackrel{\text{onto}}{\to} Y$ is onto and continuous. If X is connected then Y is connected.

Proof. Suppose Y is not connected. Then there exists open sets A and B such that

$$A \cup B = Y$$
$$A \cap B = \emptyset$$

Since f is onto and continuous we have that, because A and B are open

$$f^{-1}(A)$$
 is open $f^{-1}(B)$ is open

Is $f^{-1}(A) \cup f^{-1}(B) = X$? Take $x \in X$ so that $f(x) \in Y$. Without loss of generality assume $f(x) \in A \subset Y$. Then, for all x,

$$x \in f^{-1}(A)$$

and so, together with the case for $f(x) \in B \subset Y$,

$$f^{-1}(A) \cup f^{-1}(B) = X$$

Is $f^{-1}(A) \cap f^{-1}(B) = \emptyset$? Assume not so that there is at least one point x such that

$$x \in f^{-1}(A) \cap f^{-1}(B)$$

Then $f(x) \in A$ and $f(x) \in B$. However, $A \cap B = \emptyset$ by assumption that Y is not connected. Contradiction! Therefore

$$f^{-1}(A) \cap f^{-1}(B) = \emptyset$$

Without loss of generality, is $f^{-1}(A) \neq \emptyset$? Take some $a \in A$. Since f is onto we do indeed have some x such that $x = f^{-1}(a)$ with $f(x) = a \in A$

However, X is connected so it is a *contradiction* to state that

$$f^{-1}(A) \neq \emptyset$$
 and $f^{-1}(B) \neq \emptyset$

and

$$f^{-1}(A) \cap f^{-1}(B) = \emptyset$$

and

$$f^{-1}(A) \cup f^{-1}(B) = X$$

Thus, we have both X is connected and X is not connected. Contradiction! Therefore, we must conclude that Y is connected. That is, if $f: X \to Y$ is a continuous onto function and X is some connected set, then Y must also be connected, as desired.

Recall the Intermediate Value Theorem:

Theorem: Intermediate Value Theorem. Let $f:[a,b] \to \mathbb{R}$ be a continuous function with f(a) < f(b). Then there exists some $c \in [a,b]$ such that $f(a) \le z \le f(b)$ with f(c) = z.

Now, the Intermediate Value Theorem for connected spaces:

Theorem: Intermediate Value Theorem for Connected Spaces. Let X be connected and consider a continuous function $f: X \to \mathbb{R}$. Take $x, y \in X$ and $c \in \mathbb{R}$ such that f(x) < c < f(y). Then $\exists z \in X$ such that f(z) = c.

Proof. Suppose the result is false. That is, c is not in the image of f for some $z \in X$. Consider the open sets

$$(-\infty, c)$$
 and (c, ∞)

Let

$$A = f^{-1}(-\infty, c)$$
 (open in X)
 $B = f^{-1}(c, \infty)$ (open in X)

Therefore

$$A \cap B \neq \emptyset$$

We have that $A \neq \emptyset$ since $x \in A$ and $B \neq \emptyset$ since $y \in B$ by assumption. Furthermore

$$A \cup B = X$$

since c is not in the range of f by assumption. Thus, X is not connected. Contradiction! Therefore, c is in the range of f for some $z \in X$, as desired.

Lemma: If a set of real numbers is bounded above by a positive real then it is bounded above by a positive integer.

Proof. This is an obvious application of the Archimedean principle. \Box

Lemma: Let $f: X \to \mathbb{R}$ be continuous. Then $|f|: X \to \mathbb{R}$ is also continuous.

Proof. We have done this proof before when discussing continuity. \Box

Note that for [0, t], t > 0 a closed set we have that $|f|^{-1}[0, t]$ must be closed in X since it is continuous. Therefore

$$\{x \in X : |f(x)| \le t\}$$

is closed in X.

Theorem: Uniform Boundedness Principle. Let \mathcal{F} be a family of real-valued continuous functions on a complete metric space X. Suppose that for each x inX there is some number M_x such that $|f(x)| \leq M_x$ for all $f \in \mathcal{F}$. Then, there is a nonempty open set $O \subset X$ and a constant M such that $|f(x)| \leq M$ for all $f \in \mathcal{F}$ and all $x \in O$.

Proof. For each integer m, let $E_{m,f} = \{x \in X : |f(x)| \le m\}$, and

$$E_m = \bigcap_{f \in \mathcal{F}} E_{m,f}$$

Since each f is continuous, $E_{m,f}$ is closed, and so E_m must also be closed.

Now, for each $x \in X$ there is an integer m such that $|f(x)| \leq m$ for all $f \in \mathcal{F}$. That is, there is an integer m such that $x \in E_m$. Therefore

$$X = \bigcup_{m=1}^{\infty} E_m$$

If all E_m were nowhere dense then X is of the first category. However, X is an open set and so some E_m is not nowhere dense. Since this non-nowhere dense E_m is closed, it must have an open set within it, say

$$O \subset E_m$$

However, for every $x \in O$ we have defined

$$O \subset \bigcap_{f \in \mathcal{F}} E_{m,f} = \bigcap_{f \in \mathcal{F}} \{x \in X : |f(x)| \le m\}$$

That is, for every $x \in O$ we have $|f(x)| \leq m$ for all $f \in \mathcal{F}$. Thus, there is a nonempty open set $O \subset X$ and a constant M such that

$$\forall f \in \mathcal{F}, \ \forall x \in O, \ |f(x)| \le M$$

as desired.