

Similarities in resting state and feature-driven activity: Non-parametric evaluation of human fMRI

Jacquelyn A. Shelton^{1,2}, Matthew B. Blaschko³, Arthur Gretton^{1,4}, Jan Müller⁵, Elvira Fischer¹, Andreas Bartels^{1,6}

¹Max Planck Inst. for Biological Cybernetics, ²Frankfurt Inst. for Advanced Studies, ³Univ. Oxford, ⁴UC London, Gatsby Unit, ⁵TU Berlin, ⁶Cent. for Int. Neuroscience

Motivation

- fMRI: natural source of high-dimensional time series data
- Want: characterize brain activity in various feature-driven scenarios and in the absence of any task (resting state)
- Aim: test the hypothesis that fMRI data acquired in resting state is statistically similar to feature-driven activity from natural, complex stimuli
- Challenges: fMRI data has strong imbalance in high-dimensionality versus sample size, and difficult temporal and spatial dependencies in the data

1 Introduction

Acquisition of fMRI time-series data.

- Data-driven analyses reveal similar functional architecture [4, 2] of resting state activity and feature-driven activity.
- Activation in brain arising in the absence of any task
- Not feature-driven characterization of data faces particular challenges
- Semi-supervised framework results shows [1]:
- Resting state data can **increase generalizability of model** in feature-driven fMRI analyses
- Learning with resting state data **reveals previously identified functional areas** of the brain from purely feature-driven studies
- Strong indications that resting state data is similar to natural feature-driven data

2 Methods and Materials

- •3D fMRI brain volumes in vector space $(x_1, ..., x_n) \in \mathbb{R}^{d \times n}$ acquired with a Siemens 3T TIM scanner, separated by 2.3 or 3 seconds (TR), 40ms echo time, 3x3x3 mm spatial resolution.
- Pre-processed: Statistical Parametric Mapping (SPM) toolbox [6].
- fMRI data of one human volunteer in 3 conditions:
 - (a) **resting state**: eyes closed, no task (n = 344 time-slices)
 - (b) viewing of **natural video stimuli** (n = 344 time-slices)

(c) viewing of unnatural stimuli (n = 209 time-slices)

static

- → Task-execution in block-paradigm: subject exposed to several distinct random dot displays (12s each) containing flow, random motion, static dots, hemi-field stimulation and blank screen.
- → During exposure, subject performed a central distractor task requiring button-press when a centrally presented char was presented twice in a row.

Non-parametric two-sample tests [3, 5] Analysis of 1-voxel regions

Kolmogorov-Smirnov Statistic [5]:

$$D_{s_1,s_2} = \sup_x |F_{s_1}(x) - F_{s_2}(x)| \tag{1}$$

 F_{s_1} , F_{s_2} : CDFs for the 2 samples, s_1 , $s_2 \in \mathbb{R}^{n \times 1}$ Analysis of higher dimensional voxel regions

• Maximum Mean Discrepancy [3]:

$$D_{s_1, s_2} = \| \frac{1}{m_1} \sum_{i} \phi(s_1^i) - \frac{1}{m_2} \sum_{j} \phi(s_2^j) \|_{\mathcal{H}}^2$$
 (2)

 ϕ maps input data s^i , s^j to respective Hilbert space ${\cal H}$

3 Results

Resting state compared with both natural and unnatural data.

Conclusions

- We show that, while we are able to find meaningful dependencies in one-dimensional tests, high-dimensional non-parametric tests do not yield an interpretable result.
- It is our belief that modified tests that incorporate spatial and temporal dependencies would help to counter the difficulties arising from very high dimensional recordings.

References

M. Blaschko, J. Shelton, and A. Bartels. Augmenting Feature-driven fMRI Analyses: Semi-supervised learning and resting state activity. In NIPS, 2009.
 M. D. Greicius, K. Supekar, V. Menon, and R. F. Dougherty. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex, pages 7279, 2009.

[3] A. Gretton, Z. Harchaoui, K. Fukumizu, and B. K. Sriperumbudur. A fast, consistent kernel two-sample test, 2009.

[4] M. E. Raichle and A. Z. Snyder. A default mode of brain function: a brief history of an evolving idea. Neuroimage, pages 10831090, 2007.

[5] N. V. Smirnov. Tables for estimating the goodness of fit of empirical distributions. Annals of Mathematical Statistic, 1948.

[6] Friston, K., Ashburner, J., Kiebel, S., Nichols, T., Penny, W. (Eds.) Statistical Parametric Mapping: The Analysis of Functional Brain Images, Academic