静止流体中的压强: 大气

1bar: 一个大气压

1 mbar = 0.001 bar = 0.1 kPa

静止流体中的压强: 大气

帕斯卡定律

两边增加的压强相等,所以左边很小的力Fi在右边产生很大的力F₂

封闭的液体,压强可以无损 失的传递到液体的每一个部 分以及包含液体的容器内壁。

千斤顶

帕斯卡定律

封闭的液体,压强可以无损 失的传递到液体的每一个部分以及包含液体的容器内壁。

每个液柱底部的压强具有相同的值 P。

P和 p_0 的差别为 ρ gh

h为高度。所以所有的液柱具有同样的高度。

Cenco Physics

The pressure at the bottom of each liquid column has the same value p.

The difference between p and p_0 is ρgh , where h is the distance from the top to the bottom of the liquid column. Hence all columns have the same height.

气压计

$p = \rho g h$

水银气压

(b) Mercury barometer

 $p_0 = 0$ There is a near-vacuum at the top of the tube. 近似真空 The height to which the mercury rises depends on the atmospheric pressure exerted $h = y_2 - y_1$ on the mercury in the dish. $p = p_{\text{atm}}$

血液压强随身体位置变化,上臂和心脏平为标准参考点。

气压计

改变内部管道的压强,管子 弯曲或伸直,显示读数。

(b)

浮力

阿基米德定律:浸在液体(或气体)里的物体受到向上的浮力作用,浮力的大小等于被该物体排开的液体的重力。

密度计测量液体的密度

表面张力

气体或液体表面表面张力 是指气体或液体表面层由于分子引力不均 衡而产生的沿表面作用于任一界线上的张 力。因上层空间气相分子对它的吸引力小 于内部液相分子对它的吸引力,所以该分 子所受合力不等于零,其合力方向垂直指 向液体内部,结果导致液体表面具有自动 缩小的趋势,这种收缩力称为表面张力 Molecules in a liquid are attracted by neighboring molecules.

表面张力: 冲锋衣

表面张力: 冲锋衣

Breathable

Water vapor (sweat)

流体

理想流体:

不可压缩 (密度 不变)

无内部摩擦力 (粘滞力)

流体

风洞中的汽车显示流过车身周围 稳定的气流

流场、流线、流管

不可压缩流体: $\rho(\mathbf{r}, t) = \rho$

压强: $P(\mathbf{r}, t)$, Pascal = N/m^2

密度:ρ(r, t)

速度: v(r, t)

定常流动:P(r), $\rho(r)$, $\nu(r)$

不定常流动: $P(\mathbf{r}, t)$, $\rho(\mathbf{r}, t)$, $\mathbf{v}(\mathbf{r}, t)$

定常流动的流动性方程

定常流动:P(r), $\rho(r)$, v(r)

$$m_1 = \rho_1(v_1 dt) A_1$$

$$m_2 = \rho_2(v_2 dt) A_2$$

$$m_1 = m_2$$
 \Rightarrow $\rho_1 A_1 v_1 = \rho_2 A_2 v_2$
 \Rightarrow $\rho A v = \text{const.}$

不可压缩流体: $\rho(\mathbf{r}, t) = \rho$

对不可压缩流体, ρ 是常数

$$Av = \frac{m}{\rho dt} = 常数$$

伯努利方程

Daniel BernoulliSwiss physicist (1700–1782)

伯努利方程

$$E_{2} - E_{1} = \left(\frac{1}{2}mv_{2}^{2} + mgh_{2}\right) - \left(\frac{1}{2}mv_{1}^{2} + mgh_{1}\right)$$

$$= m\left[\left(\frac{1}{2}v_{2}^{2} + gh_{2}\right) - \left(\frac{1}{2}v_{1}^{2} + gh_{1}\right)\right]$$

w = FS

$$W = p_1 A_1 v_1 \Delta t - p_2 A_2 v_2 \Delta t = (p_1 - p_2) \frac{m}{\rho}$$

$$W = E_2 - E_1$$

$$p_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1 = p_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2$$

$$p + \frac{1}{2}\rho v^2 + \rho gh = \text{const.}$$

 $m = \rho A_1 v_1 dt = \rho A_2 v_2 dt$

伯努利方程的应用

水由直径2cm的进水口进入房屋,进入时的压力为 4×10^5 Pa(约为4个大气压).一根直径1cm的水管通向 二楼5米高处的浴室。当进水口的流速为1.5m/s,找出浴室中流速,压强和流入浴室的水的体积速率。

连续性方程+伯努利方程

$$v_2 = \frac{A_1}{A_2} v_1$$

$$p_2 = p_1 - \frac{1}{2} \rho (v_2^2 - v_1^2) - \rho g (h_2 - h_1)$$

伯努利原理

"在水流或气流里,如果速度小,压强就大;如果速度大,压强就小。

$$p + \frac{1}{2}\rho v^2 + \rho gh = \text{const.}$$

火车吸力

伯努利原理

1912年,奥林匹克号轮船和毫克号巡洋舰 相撞

急流中游泳

大风掀翻屋顶

香蕉球-马格努斯效应

香蕉球

马格努斯效应

伯努利方程的应用

$$p + \frac{1}{2}\rho v^2 + \rho gh = \text{const.}$$

壶里开阔,水面速度近似为0

伯努利方程:
$$p + \frac{1}{2}\rho v^2 + \rho gh = 常数$$

$$P_1 + \frac{1}{2}\rho v_1^2 + \rho g z_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g z_2$$

$$P_1 = P_2 = P_{atm}$$

$$v_1 = 0, z_1 = h, z_2 = 0$$

$$v_2 = \sqrt{2gh}$$

空速管

空速管

$$p + \frac{1}{2}\rho v^2 + \rho gh = p_{tot}(总压)$$

$$p_3 = p + \frac{1}{2}\rho v^2$$
(2处的压强和速度) (内管 2-3相通)

 $p_4 = p_1 = p$

(忽略高度差, 静压, 外管 1-4相通)

$$V = \sqrt{2(p_3 - p_4)/\rho}$$

伯努利方程的应用-虹吸现象

$$p_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1 = p_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2$$
$$= p_3 + \frac{1}{2}\rho v_3^2 + \rho g h_3$$

$$v_1 = 0$$
 (大罐子), $p_1 = 0$ (开口), $p_3 = 0$

$$A_2v_2 = A_3v_3$$
(连续性方程)

管子粗细一样,
$$v_2 = v_3$$

$$v_3 = \sqrt{2g(h_1 - h_3)} = v_2$$

文丘里流量计

$$p_1 + \frac{1}{2}\rho v_1^2 = p_2 + \frac{1}{2}\rho v_2^2$$

而根据流动性方程 $v_2 = (A_1 / A_2)v_1$

$$p_1 - p_2 = \frac{1}{2} \rho v_1^2 \left[\left(\frac{A_1}{A_2} \right)^2 - 1 \right]$$

而压强差 $p_1 - p_2 = \rho gh$,所以

$$p + \frac{1}{2}\rho v^2 + \rho gh = \text{const.}$$

伯努利方程的应用-飞行

Flow lines are crowded together above the wing, so flow speed is higher there and pressure is lower.

液体的粘滯性

牛奶 蜂蜜 沥青

沥青滴漏实验

沥青滴漏实验时间表

年份	状况	到达此状态 所用时间	从切开封口 所用总时间	从架设实验 所用总时间
1927年	架设实验		/	/ making
1930年	切开封口	3年	/	3年
1938年12月	第一滴	8年11个月	8年11个月	11年11个月
1947年2月	第二滴	8年3个月	17年1个月	20年1个月
1954年4月	第三滴	7年2个月	24年3个月	27年3个月
1962年5月	第四滴	8年1个月	32年4个月	35年4个月
1970年8月	第五滴	8年3个月	40年7个月	43年7个月
1979年4月	第六滴	8年8个月	49年3个月	52年3个月
1988年7月	第七滴	9年3个月	58年6个月	61年6个月
2000年11月28日	第八滴	12年5个月	70年11个月	73年11个月

全球持续时间最长的实验

沥青比水粘性大2.3×10¹¹倍

流体的粘滞性

力作用于顶板 顶部速度为U 底部速度为0

速度沿z线性变化

$$\frac{dv}{dz} = \frac{U}{b}$$

最终推出:

剪应力
$$\tau = \eta \frac{dv}{dz}$$

流体的粘滯性

图 5.4-1 流体的粘滞性

流体的粘滞性

层间粘滞力:
$$f = \eta \frac{dv}{dz} \Delta S = \tau \Delta S$$
 粘滞系数,粘度 (单位: Pa·s = N·s·m-2)

泊肃叶定律

速度分布

$$v(r) = \frac{p_1 - p_2}{4\eta l} (R^2 - r^2)$$

流量公式:

$$Q = \int_0^R v dS = \int_0^R v(r) 2\pi r dr = \frac{\pi}{i} \frac{p_1 - p_2}{\eta l} R^4$$

$$Q \propto (p_1 - p_2)R^4$$

胆固醇过高,血管变窄

高血压