On diagonal
$$i = 1$$

$$J = 1$$

$$I_{i,j} = 1$$

$$\propto_{P, P_{GFP}} = \checkmark \cdot \frac{K_{r}}{V_{r}} + \frac{\Gamma_{cd1}^{1}V_{2}}{\Gamma_{cd1}^{1}V_{2}}$$

$$= \checkmark \cdot \frac{K_{r}}{V_{r}} + \frac{\Gamma_{cd1}^{1}V_{2}}{\Gamma_{cd1}^{1}V_{2}}$$

Off diagonal

$$j=1$$
 $j=2$
 $L_{i,j}=0$ > there should be no modulation

 $L_{j,i}=0$
 $X_{i,j}$
 $X_{i,j}$

high i & high j

Et [Cdi] n. O. 1

Doesn't necessarily have to be symmetrical

1 2 3

On diagonal

$$i = 1$$
 $0.5 - 0.5 - 0.5 = 1$
 $i =$

Bor activation

Off diagonal
$$J=1$$

No interaction
 (152)
 $U_{1}=(1\cdot [P_{01}]) + (0 + [P_{02}])$
 $U_{2}=(0\cdot [P_{01}]) + (1 + [P_{02}])$
 $Q=\frac{1}{2}\cdot \frac{[P_{01}]}{[P_{01}]+1} + 1$

Synergy
$$(1 \stackrel{?}{,}3) \quad U_1 = (1 \cdot [P_{01}]) + (0.5 \cdot [P_{03}])$$

$$U_3 = (0.5 \cdot [P_{01}]) + (1 \cdot [P_{03}])$$

$$Q = 1 \cdot (P_{01}] \cdot 0.5 \cdot [P_{03}]$$

$$Q = 1 \cdot (P_{01}] \cdot 0.5 \cdot [P_{03}]$$

$$9 = \frac{1}{2} \cdot \left(\frac{[P_{d1}] \cdot 0.5 [P_{d3}]}{\sqrt{[P_{d1}] \cdot 0.5 [P_{d3}] + 1}} + 1 \right) \cdot \left(\frac{[P_{d3}] \cdot 0.5 [P_{d1}]}{\sqrt{[P_{d3}] \cdot 0.5 [P_{d1}] + 1}} + 1 \right)$$

Interference
$$y = Z$$
 $y = 3$ $U_2 = (1 \cdot [P_d 2]) + (-0.5 \cdot [P_d 3])$ $U_3 = (-0.5 \cdot [P_d 2]) + (1 \cdot [P_d 3])$ $U_4 = (-0.5 \cdot [P_d 2]) + (1 \cdot [P_d 3])$ $U_5 = (-0.5 \cdot [P_d 2]) + (1 \cdot [P_d 3])$ $U_6 = (-0.5 \cdot [P_d 3]) + (-$

Is RNAP bound to Promoter	Is TF1 bound to its binding site
Yes	No l
· · · · · · · · · · · · · · · · · · ·	

$$\propto_{GFP} = \propto_{i=1}^{\circ} \cdot \frac{1}{2} g_i$$

$$g_{i} = \frac{\left(\frac{K_{r} I_{ij}}{K_{r} I_{ij}} \right)^{n}}{\left(\frac{K_{r} I_{ij}}{K_{r} I_{ij}} \right)^{n} + \frac{\left[C_{d2J} \right]^{n/2}}{\left[C_{d2J} \right]^{n/2}}}$$

	1	
. 1	0	0.5
	(-	10.5
05	-0.5	1

$$=\frac{1}{2}\left(\frac{u_1}{\sqrt{u_1^2+1}}+1\right)$$