# Factors Influencing Salaries of Data Science Roles

## **Data Exploration**

#### **Dataset Overview**

```
import pandas as pd

salaries_data_frame = pd.read_csv("data/jobs_salaries_2023.csv")
print(salaries_data_frame.shape)
```

```
(1500, 11)
```

```
column_types = salaries_data_frame.dtypes
print(column_types)
```

```
work_year
                         int64
experience_level
                        object
employment_type
                        object
job_title
                        object
                       float64
salary
salary_currency
                        object
salary_in_usd
                       float64
employee_residence
                       object
remote_ratio
                         int64
company_location
                        object
company_size
                        object
dtype: object
```

### Work Year

```
import pandas as pd
import matplotlib.pyplot as plt

# Count occurrences of each work_year and sort by year
work_year_counts =
salaries_data_frame["work_year"].value_counts().sort_index()

# Calculate percentages
work_year_percent = (work_year_counts / work_year_counts.sum() *
```

```
100) round(2)
# Calculate mean and median salary per year
mean_salary = salaries_data_frame.groupby("work_year")
["salary in usd"].mean().round(2)
median salary = (
    salaries_data_frame.groupby("work_year")
["salary in usd"].median().round(2)
)
# Combine into one DataFrame for display
result = pd.DataFrame(
    {
        "count": work_year_counts,
        "percentage": work_year_percent,
        "mean_salary": mean_salary,
        "median_salary": median_salary,
    }
)
print(result)
```

```
count percentage mean_salary median_salary
work_year
2020
              75
                         5.0
                                 92266.67
                                                 72000.0
2021
             219
                        14.6
                                 95977.39
                                                 82500.0
2022
             714
                        47.6
                                129573.32
                                                130000.0
2023
             492
                        32.8
                                154600.18
                                                148500.0
```

```
# --- Pie Chart ---
plt.figure(figsize=(7, 7))
plt.pie(
    work_year_counts, labels=work_year_counts.index, autopct="%1.1f%%",
startangle=90
)
plt.title("Distribution of Records by Work Year")
plt.show()
```

## Distribution of Records by Work Year



### **Employment Type**

```
import pandas as pd

# Define custom order
order = ["FL", "CT", "PT", "FT"]

# Count occurrences of each employment_type
employment_type_counts =
salaries_data_frame["employment_type"].value_counts()

# Reorder according to the custom order
employment_type_counts = employment_type_counts.reindex(order)

# Calculate percentages
employment_type_percent = (
    employment_type_counts / employment_type_counts.sum() * 100
).round(2)

# Calculate mean and median salary per employment_type
mean_salary = (
```

```
salaries_data_frame.groupby("employment_type")["salary_in_usd"]
    .mean()
    round(2)
    .reindex(order)
)
median salary = (
    salaries_data_frame.groupby("employment_type")["salary_in_usd"]
    .median()
    round(2)
    reindex(order)
)
# Combine into one DataFrame
result = pd.DataFrame(
    {
        "count": employment_type_counts,
        "percentage": employment_type_percent,
        "mean_salary": mean_salary,
        "median_salary": median_salary,
    }
)
print(result)
```

```
percentage mean salary median salary
                 count
employment_type
FL
                     6
                                0.4
                                        45420.50
                                                        40261.5
                     9
CT
                               0.6
                                       116052.11
                                                        60000.0
PT
                    12
                                0.8
                                        38112.83
                                                        20371.0
                              98.2
FT
                  1473
                                       132134.13
                                                       130000.0
```

```
# --- Pie Chart ---
import matplotlib.pyplot as plt

plt.figure(figsize=(7, 7))
plt.pie(
    employment_type_counts,
    labels=employment_type_counts.index,
    autopct="%1.1f%%",
    startangle=90,
    colors=["#66c2a5", "#fc8d62", "#8da0cb", "#e78ac3"],
)
plt.title("Distribution of Employment Types")
plt.show()
```

## Distribution of Employment Types



#### Salary

```
import matplotlib.pyplot as plt
import seaborn as sns

salary_in_usd_series = salaries_data_frame["salary_in_usd"]

# --- 1. Descriptive statistics ---
mean_salary = salary_in_usd_series.mean()
median_salary = salary_in_usd_series.median()
min_salary = salary_in_usd_series.min()
max_salary = salary_in_usd_series.max()

print(f"Salary ranges from ${min_salary:,.0f} to ${max_salary:,.0f}")
print(f"Mean salary: ${mean_salary:,.0f}")
print(f"Median salary: ${median_salary:,.0f}")
```

```
# Skew check
skewness = salary_in_usd_series.skew()
print(f"Skewness: {skewness:.2f}")
```

```
Salary ranges from $5,409 to $450,000
Mean salary: $130,934
Median salary: $130,000
Skewness: 0.59
```

```
# --- 2. Histogram ---
plt.figure(figsize=(8, 5))
sns.histplot(salary_in_usd_series, bins=30, kde=True)
plt.axvline(
    mean_salary, color="red", linestyle="--", label=f"Mean =
{mean_salary:,.0f}"
)
plt.axvline(
    median_salary, color="blue", linestyle="--", label=f"Median =
{median_salary:,.0f}"
)
plt.title("Salary Distribution (USD)")
plt.xlabel("Salary")
plt.ylabel("Frequency")
plt.legend()
plt.show()
```



```
# --- 3. Boxplot (to reveal outliers) ---
plt.figure(figsize=(6, 3))
sns.boxplot(x=salary_in_usd_series)
plt.title("Salary in USD - Boxplot")
plt.xlabel("Salary in USD")
plt.show()
```





Experience Level (with Salary)

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Preprocessing
# =========
experience_level_order = ["EN", "MI", "SE", "EX"]
salaries data frame["experience level"] = pd.Categorical(
   salaries_data_frame["experience_level"],
   categories=experience_level_order,
   ordered=True,
)
# Counts and Percentages
# ==============
experience_level_counts = (
   salaries_data_frame["experience_level"].value_counts().sort_index()
experience_level_percent = (
   experience_level_counts / experience_level_counts.sum() * 100
) round(1)
result = pd.DataFrame(
   {"count": experience level counts, "percentage":
experience_level_percent}
)
# Mean and Median Salaries
summary_table = (
   salaries_data_frame.groupby("experience_level")["salary_in_usd"]
   .agg(Mean="mean", Median="median")
   round(∅)
)
# Combine Tables
# ===============
combined_table = result.join(summary_table)
print("Experience Level Summary:")
print(combined_table)
```

| SE | 922 | 61.5 | 151640.0 | 145000.0 |
|----|-----|------|----------|----------|
| EX | 58  | 3.9  | 192463.0 | 188518.0 |

/var/folders/jh/z981c7zj0vz0gmyfc8mhdxdr0000gn/T/ipykernel\_67267/674642401 .py:33: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.

salaries\_data\_frame.groupby("experience\_level")["salary\_in\_usd"]

## Distribution of Experience Levels



```
# =========
# Boxplot
plt.figure(figsize=(8, 6))
sns.boxplot(
    data=salaries_data_frame,
    x="experience_level",
    y="salary_in_usd",
    order=experience_level_order,
    palette="Set2",
    hue="experience_level",
    legend=False,
plt.title("Salary Distribution by Experience Level", fontsize=14)
plt.ylabel("Salary (USD)")
plt.xlabel("Experience Level")
plt.tight_layout()
plt.show()
```





#### Job Title (with Salary)

```
import pandas as pd
# Job title counts & percentages
job_counts = salaries_data_frame["job_title"].value_counts()
total_jobs = job_counts.sum()
# DataFrame with count and percentage
all_job_titles = job_counts.to_frame("count").reset_index()
all_job_titles.columns = ["job_title", "count"]
all_job_titles["percentage"] = (all_job_titles["count"] / total_jobs *
100) round(2)
# Add accumulated count and percentage
all_job_titles["accumulated_count"] = all_job_titles["count"].cumsum()
all_job_titles["accumulated_percentage"] = (
    all_job_titles["accumulated_count"] / total_jobs * 100
) round(2)
# ========
# Mean and median salary
```

```
salary_summary = (
   salaries_data_frame.groupby("job_title")["salary_in_usd"]
   .agg(Mean="mean", Median="median")
   round(∅)
   .reset_index()
)
# Combine tables
# =========
all_job_titles = all_job_titles.merge(salary_summary, on="job_title",
how="left")
# Print summary
print(f"Number of unique job titles: {len(all_job_titles)}")
print("\nAll job titles with accumulation, mean & median salary:")
print(all_job_titles.to_string(index=False, line_width=10000))
```

| Number of uniq | ue job titles: 69                        |
|----------------|------------------------------------------|
| All job titles | with accumulation, mean & median salary: |
|                | <pre>job_title count percentage</pre>    |
| accumulated_co | ount accumulated_percentage Mean Median  |
|                | Data Engineer 366 24.40                  |
| 366            | 24.40 131523.0 130000.0                  |
|                | Data Scientist 360 24.00                 |
| 726            | 48.40 135659.0 141300.0                  |
|                | Data Analyst 210 14.00                   |
| 936            | 62.40 100195.0 100000.0                  |
|                | Machine Learning Engineer 106 7.07       |
| 1042           | 69.47 145421.0 141942.0                  |
|                | Analytics Engineer 53 3.53               |
| 1095           | 73.00 159451.0 152700.0                  |
|                | Data Architect 39 2.60                   |
| 1134           | 75.60 165886.0 167500.0                  |
|                | Applied Scientist 30 2.00                |
| 1164           | 77.60 189030.0 184000.0                  |
|                | Data Science Manager 29 1.93             |
| 1193           | 79.53 177154.0 175100.0                  |
|                | Research Scientist 27 1.80               |
| 1220           | 81.33 127143.0 102772.0                  |
|                | Machine Learning Scientist 17 1.13       |
| 1237           | 82.47 164900.0 180000.0                  |
|                | Research Engineer 14 0.93                |
| 1251           | 83.40 184365.0 179500.0                  |
| 1262           | Computer Vision Engineer 12 0.80         |
| 1263           | 84.20 139076.0 147500.0                  |
| 1275           | ML Engineer 12 0.80                      |
| 1275           | 85.00 114463.0 80682.0                   |

| _    |                                          |              |
|------|------------------------------------------|--------------|
| 1200 | Data Analytics Manager 11                | 0.73         |
| 1286 | 85.73 133176.0 140000.0                  | 0.67         |
| 1206 | BI Data Analyst 10                       | 0.67         |
| 1296 | 86.40 56665.0 51900.0                    | 0.67         |
| 1200 | AI Scientist 10                          | 0.67         |
| 1306 | 87.07 89447.0 50448.0                    | 0.67         |
| 1216 | Director of Data Science 10              | 0.67         |
| 1316 | 87.73 202086.0 180018.0                  | 0.67         |
| 1226 | Business Data Analyst 10                 | 0.67         |
| 1326 | 88.40 80750.0 84566.0                    | 0.60         |
| 1225 | Applied Machine Learning Scientist 9     | 0.60         |
| 1335 | 89.00 114501.0 75000.0                   | 0.60         |
| 1244 | Big Data Engineer 9                      | 0.60         |
| 1344 | 89.60 51565.0 48289.0                    | 0.52         |
| 1252 | ETL Developer 8                          | <b>0.</b> 53 |
| 1352 | 90.13 125192.0 93635.0                   | 0.52         |
| 1260 | Data Manager 8                           | 0.53         |
| 1360 | 90.67 124000.0 117500.0                  | 0.52         |
| 1260 | Principal Data Scientist 8               | <b>0.</b> 53 |
| 1368 | 91.20 198171.0 164630.0                  | <b>0.</b> 53 |
| 1276 | Applied Data Scientist 8                 | 0.55         |
| 1376 | 91.73 127158.0 89178.0<br>Head of Data 7 | 0.47         |
| 1383 | 92.20 199780.0 230000.0                  | 0.47         |
| 1303 | Data Science Consultant 7                | 0.47         |
| 1390 | 92.67 69421.0 76833.0                    | 0.47         |
| 1390 | Data Specialist 7                        | 0.47         |
| 1397 | 93.13 130000.0 130000.0                  | 0.47         |
| 1397 | Data Operations Engineer 6               | 0.40         |
| 1403 | 93.53 80000.0 80000.0                    | 0.40         |
| 1403 | AI Developer 6                           | 0.40         |
| 1409 | 93.93 169670.0 154000.0                  | 0140         |
| 1403 | Lead Data Engineer 6                     | 0.40         |
| 1415 | 94.33 139230.0 120111.0                  | 0140         |
| 1713 | Lead Data Scientist 5                    | 0.33         |
| 1420 | 94.67 87416.0 61566.0                    | 0.55         |
|      | ne Learning Infrastructure Engineer 5    | 0.33         |
| 1425 | 95.00 127133.0 148800.0                  | 0.00         |
|      | Machine Learning Developer 5             | 0.33         |
| 1430 | 95.33 89726.0 76814.0                    |              |
|      | Data Quality Analyst 5                   | 0.33         |
| 1435 | 95.67 92000.0 100000.0                   |              |
|      | Business Intelligence Engineer 4         | 0.27         |
| 1439 | 95.93 174150.0 171150.0                  |              |
|      | Computer Vision Software Engineer 4      | 0.27         |
| 1443 | 96.20 83705.0 82873.0                    |              |
|      | Head of Data Science 4                   | 0.27         |
| 1447 | 96.47 146719.0 138938.0                  |              |
|      | Data Analytics Engineer 4                | 0.27         |
| 1451 | 96.73 64799.0 64598.0                    |              |
|      | Lead Data Analyst 4                      | 0.27         |
|      |                                          |              |

| 1455 | 97.00 86152.0 77500.0                |      |
|------|--------------------------------------|------|
|      | Product Data Analyst 3               | 0.20 |
| 1458 | 97.20 55357.0 20000.0                |      |
|      | Data Science Engineer 3              | 0.20 |
| 1461 | 97.40 75803.0 60000.0                |      |
|      | Principal Data Engineer 2            | 0.13 |
| 1463 | 97.53 192500.0 192500.0              |      |
|      | Lead Machine Learning Engineer 2     | 0.13 |
| 1465 | 97.67 89720.0 89720.0                |      |
|      | Cloud Data Engineer 2                | 0.13 |
| 1467 | 97.80 124647.0 124647.0              |      |
|      | Principal Data Analyst 2             | 0.13 |
| 1469 | 97.93 122500.0 122500.0              |      |
|      | ETL Engineer 2                       | 0.13 |
| 1471 | 98.07 71394.0 71394.0                |      |
|      | Data Operations Analyst 2            | 0.13 |
| 1473 | 98.20 73500.0 73500.0                |      |
|      | Financial Data Analyst 2             | 0.13 |
| 1475 | 98.33 87500.0 87500.0                |      |
|      | Data Modeler 2                       | 0.13 |
| 1477 | 98.47 118900.0 118900.0              |      |
|      | Machine Learning Research Engineer 2 | 0.13 |
| 1479 | 98.60 16086.0 16086.0                |      |
|      | Data Strategist 2                    | 0.13 |
| 1481 | 98.73 81000.0 81000.0                |      |
|      | MLOps Engineer 2                     | 0.13 |
| 1483 | 98.87 129000.0 129000.0              |      |
|      | Data DevOps Engineer 1               | 0.07 |
| 1484 | 98.93 53654.0 53654.0                |      |
|      | BI Data Engineer 1                   | 0.07 |
| 1485 | 99.00 60000.0 60000.0                |      |
|      | Staff Data Scientist 1               | 0.07 |
| 1486 | 99.07 105000.0 105000.0              |      |
|      | Big Data Architect 1                 | 0.07 |
| 1487 | 99.13 99703.0 99703.0                |      |
|      | Staff Data Analyst 1                 | 0.07 |
| 1488 | 99.20 15000.0 15000.0                |      |
|      | Marketing Data Analyst 1             | 0.07 |
| 1489 | 99.27 88654.0 88654.0                |      |
|      | 3D Computer Vision Researcher 1      | 0.07 |
| 1490 | 99.33 5409.0 5409.0                  |      |
|      | Machine Learning Researcher 1        | 0.07 |
| 1491 | 99.40 50000.0 50000.0                |      |
|      | Machine Learning Manager 1           | 0.07 |
| 1492 | 99.47 117104.0 117104.0              |      |
|      | Applied Machine Learning Engineer 1  | 0.07 |
| 1493 | 99.53 69751.0 69751.0                |      |
|      | Data Analytics Lead 1                | 0.07 |
| 1494 | 99.60 405000.0 405000.0              |      |
|      | Compliance Data Analyst 1            | 0.07 |
| 1495 | 99.67 30000.0 30000.0                |      |
|      |                                      |      |

| 4.406 | Data Analytics Consultant 1 | 0.07 |
|-------|-----------------------------|------|
| 1496  | 99.73 113000.0 113000.0     |      |
|       | Head of Machine Learning 1  | 0.07 |
| 1497  | 99.80 76309.0 76309.0       |      |
|       | NLP Engineer 1              | 0.07 |
| 1498  | 99.87 60000.0 60000.0       |      |
|       | Cloud Data Architect 1      | 0.07 |
| 1499  | 99.93 250000.0 250000.0     |      |
|       | Finance Data Analyst 1      | 0.07 |
| 1500  | 100.00 61896.0 61896.0      |      |
|       |                             |      |

```
import matplotlib.pyplot as plt
import pandas as pd
# Count all job titles and calculate percentages
job_counts = salaries_data_frame["job_title"].value_counts()
total_jobs = job_counts.sum()
# Keep top 10 job titles and group the rest as 'Other'
top_n = 10
top_jobs = job_counts.head(top_n)
other_count = total_jobs - top_jobs.sum()
# Use pd.concat to combine top jobs and 'Other'
job_counts_for_pie = pd.concat([top_jobs, pd.Series({"Other":
other_count})])
# Pie Chart
plt.figure(figsize=(8, 8))
plt.pie(
    job_counts_for_pie,
    labels=job_counts_for_pie.index,
    autopct="%1.1f%",
    startangle=90,
    colors=plt.cm.tab20.colors # color map for slices
plt.title(f"Top {top_n} Job Titles Distribution")
plt.show()
```

Top 10 Job Titles Distribution



#### **Company Location**

```
all_locations["accumulated_count"] / total_locations * 100
) round(2)
# Mean and Median Salaries
# ===============
salary_summary = (
   salaries data frame.groupby("company location")["salary in usd"]
   .agg(Mean="mean", Median="median")
   round(∅)
   .reset_index()
)
# Merge with main table
all_locations = all_locations.merge(salary_summary, on="company_location",
how="left")
# ===========
# Print summary
print(f"Number of unique company locations: {len(all_locations)}")
```

Number of unique company locations: 58

```
pd.set_option("display.max_rows", None) # Show all rows in output
print("\nAll company locations with salary stats:")
print(all_locations.to_string(index=False, line_width=10000))
```

```
All company locations with salary stats:
company_location count percentage accumulated_count
accumulated_percentage
                           Mean
                                  Median
                              73.40
              US
                   1101
                                                  1101
73.40 152070.0 145000.0
                               6.07
                                                  1192
79.47 83555.0 80036.0
                               3.33
                     50
                                                  1242
              CA
82.80 117373.0 97908.0
                               2.47
                                                  1279
              ΙN
                     37
85.27 33720.0 20670.0
              DE
                               2.33
                                                  1314
                     35
87.60 86249.0 76833.0
                     29
                               1.93
                                                  1343
              ES
89.53 50044.0 47282.0
                               1.33
                                                  1363
              FR
                     20
90.87
       61112.0 55196.0
              GR
                               0.87
                                                  1376
                     13
```

| 91.73 54786.0 52533.0<br>NL 11 | <b>0.</b> 73 | 1387  |  |
|--------------------------------|--------------|-------|--|
| 92.47 71873.0 69741.0          | 0.73         | 1307  |  |
| JP 6                           | 0.40         | 1393  |  |
| 92.87 114127.0 75682.0         |              |       |  |
| PT 6<br>93.27 40065.0 40062.0  | 0.40         | 1399  |  |
| BR 5                           | 0.33         | 1404  |  |
| 93.60 13975.0 12901.0          |              |       |  |
| AT 5                           | 0.33         | 1409  |  |
| 93.93 67765.0 61989.0<br>AU 5  | 0.33         | 1414  |  |
| 94.27 100834.0 83864.0         | 0.55         | 1414  |  |
| PL 4                           | 0.27         | 1418  |  |
| 94.53 65587.0 40103.0          | 0.27         | 4.422 |  |
| BE 4<br>94.80 76865.0 83398.0  | 0.27         | 1422  |  |
| DK 4                           | 0.27         | 1426  |  |
| 95.07 45558.0 37252.0          |              |       |  |
| TR 4                           | 0.27         | 1430  |  |
| 95.33 21322.0 22586.0<br>PR 4  | 0.27         | 1434  |  |
| 95.60 167500.0 167500.0        | 0127         | 1131  |  |
| NG 4                           | 0.27         | 1438  |  |
| 95.87 47500.0 40000.0<br>UA 4  | 0.27         | 1442  |  |
| 96.13 57850.0 55000.0          | 0.27         | 1442  |  |
| IE 3                           | 0.20         | 1445  |  |
| 96.33 117764.0 113750.0        |              |       |  |
| PK 3<br>96.53 13333.0 12000.0  | 0.20         | 1448  |  |
| 90.33 13333.0 12000.0<br>FI 3  | 0.20         | 1451  |  |
| 96.73 68793.0 68318.0          |              |       |  |
| LU 3                           | 0.20         | 1454  |  |
| 96.93 43943.0 59102.0<br>AE 3  | 0.20         | 1457  |  |
| 97.13 100000.0 115000.0        | 0.20         | 1437  |  |
| CH 3                           | 0.20         | 1460  |  |
| 97.33 60940.0 56536.0          | 0.13         | 1462  |  |
| IT 2<br>97.47 36366.0 36366.0  | 0.13         | 1462  |  |
| RU 2                           | 0.13         | 1464  |  |
| 97.60 157500.0 157500.0        |              |       |  |
| SI 2                           | 0.13         | 1466  |  |
| 97.73 63831.0 63831.0<br>MX 2  | 0.13         | 1468  |  |
| 97.87 46756.0 46756.0          | 0.1.20       | 1.00  |  |
| CF 2                           | 0.13         | 1470  |  |
| 98.00 48609.0 48609.0          | A 12         | 1470  |  |
| CZ 2<br>98.13 50234.0 50234.0  | 0.13         | 1472  |  |
|                                |              |       |  |

|       | 66 2                      | 0.42 | 4.47.4 |  |
|-------|---------------------------|------|--------|--|
| 00 27 | SG 2<br>77276.0 77276.0   | 0.13 | 1474   |  |
| 90.27 | ID 2                      | 0.13 | 1476   |  |
| 08 10 | 34208.0 34208.0           | 0.13 | 1470   |  |
| 30.40 | AS 2                      | 0.13 | 1478   |  |
| 08 53 | 34026.0 34026.0           | 0.13 | 1470   |  |
| 30133 | C0 1                      | 0.07 | 1479   |  |
| 98.60 | 21844.0 21844.0           | 0107 | 1473   |  |
| 30100 | HU 1                      | 0.07 | 1480   |  |
| 98.67 | 35735.0 35735.0           |      | _,_,   |  |
|       | KE 1                      | 0.07 | 1481   |  |
| 98.73 | 9272.0 9272.0             |      |        |  |
|       | TH 1                      | 0.07 | 1482   |  |
| 98.80 | 15000.0 15000.0           |      |        |  |
|       | NZ 1                      | 0.07 | 1483   |  |
| 98.87 | 125000.0 125000.0         |      |        |  |
|       | CL 1                      | 0.07 | 1484   |  |
| 98.93 | 40038.0 40038.0           |      |        |  |
|       | MD 1                      | 0.07 | 1485   |  |
| 99.00 | 18000.0 18000.0           |      |        |  |
|       | HR 1                      | 0.07 | 1486   |  |
| 99.07 | 45618.0 45618.0           |      |        |  |
|       | IL 1                      | 0.07 | 1487   |  |
| 99.13 | 119059.0 119059.0         |      |        |  |
|       | CN 1                      | 0.07 | 1488   |  |
| 99.20 | 100000.0 100000.0         | 0.07 | 4.400  |  |
| 00 27 | EE 1                      | 0.07 | 1489   |  |
| 99.27 | 31520.0 31520.0           | 0.07 | 1400   |  |
| 00 22 | IQ 1                      | 0.07 | 1490   |  |
| 99.33 | 100000.0 100000.0<br>RO 1 | 0.07 | 1491   |  |
| 00 40 | 60000.0 60000.0           | 0.07 | 1491   |  |
| 33.40 | DZ 1                      | 0.07 | 1492   |  |
| 99 47 | 100000.0 100000.0         | 0107 | 1492   |  |
| 33147 | HN 1                      | 0.07 | 1493   |  |
| 99.53 | 20000.0 20000.0           | 0107 | 1.33   |  |
|       | HK 1                      | 0.07 | 1494   |  |
| 99.60 | 65062.0 65062.0           |      |        |  |
|       | MY 1                      | 0.07 | 1495   |  |
| 99.67 | 40000.0 40000.0           |      |        |  |
|       | EG 1                      | 0.07 | 1496   |  |
| 99.73 | 22800.0 22800.0           |      |        |  |
|       | AR 1                      | 0.07 | 1497   |  |
| 99.80 | 50000.0 50000.0           |      |        |  |
|       | PH 1                      | 0.07 | 1498   |  |
| 99.87 | 50000.0 50000.0           |      |        |  |
|       | B0 1                      | 0.07 | 1499   |  |
|       | 7500.0 7500.0             |      |        |  |
| 99.93 |                           |      |        |  |
|       | MT 1<br>0 28369.0 28369.0 | 0.07 | 1500   |  |

# Company Location Distribution



```
import pandas as pd
import matplotlib.pyplot as plt
# Count company locations
# ===========
location_counts = salaries_data_frame["employee_residence"].value_counts()
total_locations = location_counts.sum()
# Create DataFrame with count and percentage
all locations = location counts.to frame("count").reset index()
all_locations.columns = ["employee_residence", "count"]
all locations["percentage"] = (all locations["count"] / total locations *
100) round(2)
# Add accumulated count and percentage
all locations["accumulated count"] = all locations["count"].cumsum()
all locations["accumulated percentage"] = (
   all locations["accumulated count"] / total locations * 100
) round(2)
# ==========
# Mean and Median Salaries
salary_summary = (
   salaries data frame.groupby("employee residence")["salary in usd"]
   .agg(Mean="mean", Median="median")
   round(0)
   .reset index()
)
# Merge with main table
all_locations = all_locations.merge(salary_summary,
on="employee_residence", how="left")
# Print summary
print(f"Number of unique company locations: {len(all_locations)}")
```

## Number of unique company locations: 61

```
pd.set_option("display.max_rows", None) # Show all rows in output
print("\nAll company locations with salary stats:")
print(all_locations.to_string(index=False, line_width=10000))
```

|        |                      |                  | percentage accum | ulated_count |  |
|--------|----------------------|------------------|------------------|--------------|--|
| accumu | ıcated_pei           | rcentage         |                  | 4074         |  |
| 74 60  | 452064.0             | US 1074          | 71.60            | 1074         |  |
| /1.60  | 153964.0             |                  | F 70             | 1100         |  |
| 77 22  | 02552 0              | GB 86            | 5.73             | 1160         |  |
| //.33  | 83552.0              |                  | 2.20             | 1200         |  |
| 00 50  | 440047.0             | CA 48            | 3.20             | 1208         |  |
| 80.53  | 118217.0             |                  | 2 07             | 1254         |  |
| 02 60  | 41 401   A           | IN 46            | 3.07             | 1254         |  |
| 83.00  | 41481.0              | 22124.0          | 2 07             | 1205         |  |
| OE 67  | 58777.0              | ES 31            | 2.07             | 1285         |  |
| 03.07  | 36///•0              | 46269.0<br>DE 30 | 2.00             | 1315         |  |
| 07 67  | 01712 0              | 78015.0          | 2.00             | 1313         |  |
| 0/10/  | 91/12.0              | FR 24            | 1.60             | 1339         |  |
| 20 27  | 54593.0              |                  | 1.00             | 1333         |  |
| 09121  | J <del>-</del> J9J∎V | GR 15            | 1.00             | 1354         |  |
| 90.27  | 57953.0              |                  | 1100             | 1337         |  |
| 30127  | 5,55510              | NL 12            | 0.80             | 1366         |  |
| 91.07  | 72966.0              |                  | 0100             | 1500         |  |
| 31.07  | ,230010              | PT 10            | 0.67             | 1376         |  |
| 91.73  | 48791.0              |                  | 0.07             | 13, 0        |  |
|        | .0,0110              | BR 8             | 0.53             | 1384         |  |
| 92.27  | 42735.0              |                  |                  |              |  |
|        |                      | JP 7             | 0.47             | 1391         |  |
| 92.73  | 103538.0             |                  | -                |              |  |
|        | Í                    | PK 6             | 0.40             | 1397         |  |
| 93.13  | 27036.0              | 16000.0          |                  |              |  |
|        |                      | AU 6             | 0.40             | 1403         |  |
| 93.53  | 95414.0              | 83518.0          |                  |              |  |
|        |                      | NG 5             | 0.33             | 1408         |  |
| 93.87  | 41000.0              | 30000.0          |                  |              |  |
|        |                      | PR 5             | 0.33             | 1413         |  |
| 94.20  | 166000.0             | 160000.0         |                  |              |  |
|        |                      | PL 4             | 0.27             | 1417         |  |
| 94.47  | 55682.0              | 40103.0          |                  |              |  |
|        |                      | IT 4             | 0.27             | 1421         |  |
| 94.73  | 61600.0              | 36366.0          |                  |              |  |
|        |                      | TR 4             | 0.27             | 1425         |  |
| 95.00  | 21322.0              | 22586.0          |                  |              |  |
|        |                      | AT 4             | 0.27             | 1429         |  |
| 95.27  | 69339.0              | 68060.0          |                  |              |  |
|        |                      | BE 4             | 0.27             | 1433         |  |
| 95.53  | 76865.0              | 83398.0          |                  |              |  |
|        |                      | RU 4             | 0.27             | 1437         |  |
| 95.80  | 105750.0             | 72500.0          |                  |              |  |
|        |                      | UA 4             | 0.27             | 1441         |  |
| 96.07  | 57850.0              | 55000.0          |                  |              |  |
|        |                      | B0 3             | 0.20             | 1444         |  |
|        |                      |                  |                  |              |  |

| 96.27 | 52500.0  |               |   | • • • | 4447 |
|-------|----------|---------------|---|-------|------|
| 06 47 | 31193.0  | DK<br>28600 0 |   | 0.20  | 1447 |
| 90.47 | 21192.0  | 2800910<br>AR |   | 0.20  | 1450 |
| 96.67 | 52667.0  |               |   |       |      |
|       |          | IE            | 3 | 0.20  | 1453 |
| 96.87 | 117764.0 |               |   |       |      |
| 07.07 |          | SG            |   | 0.20  | 1456 |
| 9/.0/ | 91203.0  | 69294.0<br>AE |   | 0.20  | 1459 |
| 97.27 | 100000.0 |               |   | 0120  | 1133 |
|       |          | SI            | 2 | 0.13  | 1461 |
| 97.40 | 63831.0  |               |   |       |      |
| 07.52 |          | CH            |   | 0.13  | 1463 |
| 97.53 | 88469.0  | 88469.0<br>CF |   | 0.13  | 1465 |
| 97.67 | 48609.0  |               |   | 0115  | 1403 |
|       |          | R0            | 2 | 0.13  | 1467 |
| 97.80 | 51419.0  |               |   |       |      |
| 07.00 | CEE 42 0 | HK            |   | 0.13  | 1469 |
| 97.93 | 65542.0  | 65542.0<br>VN |   | 0.13  | 1471 |
| 98.07 | 44200.0  |               |   | 0.13  | 14/1 |
|       |          | FI            |   | 0.13  | 1473 |
| 98.20 | 69030.0  |               |   |       |      |
| 00.33 | 47000 0  | PH            |   | 0.13  | 1475 |
| 98.33 | 47880.0  | 47880.0<br>HU |   | 0.13  | 1477 |
| 98.47 | 35997.0  |               |   | 0115  | 1477 |
|       |          | RS            | 1 | 0.07  | 1478 |
| 98.53 | 25532.0  |               |   |       |      |
| 00.00 | 100000 0 | JE            |   | 0.07  | 1479 |
| 98.00 | 100000.0 | 100000.0      |   | 0.07  | 1480 |
| 98.67 | 9272.0   |               |   | 0107  | 1400 |
|       |          | LU            |   | 0.07  | 1481 |
| 98.73 | 59102.0  |               |   |       |      |
| 00.00 | 21044 0  | CO            |   | 0.07  | 1482 |
| 98.80 | 21844.0  | 21844.0<br>NZ |   | 0.07  | 1483 |
| 98.87 | 125000.0 |               |   | 0107  | 1403 |
|       |          | CL            | 1 | 0.07  | 1484 |
| 98.93 | 40038.0  |               |   |       |      |
| 00.00 | 10000 0  | MD            |   | 0.07  | 1485 |
| 99.00 | 18000.0  | 18000.0<br>HR |   | 0.07  | 1486 |
| 99.07 | 45618.0  |               |   | 0.07  | 1.00 |
|       |          | MX            |   | 0.07  | 1487 |
| 99.13 | 33511.0  |               |   |       |      |
| 00.20 | 22000 0  | EG            | 1 | 0.07  | 1488 |
| 99.20 | 22800.0  | 220UU.U       |   |       |      |

|        |          | BG       | 1 | 0.07 | 1489 |
|--------|----------|----------|---|------|------|
| 99.27  | 80000.0  | 80000.0  |   |      |      |
|        |          | IQ       | 1 | 0.07 | 1490 |
| 99.33  | 100000.0 | 100000.0 |   |      |      |
|        |          | DZ       | 1 | 0.07 | 1491 |
| 99.40  | 100000.0 | 100000.0 |   |      |      |
|        |          | CZ       | 1 | 0.07 | 1492 |
| 99.47  | 69999.0  | 69999.0  |   |      |      |
|        |          | TN       | 1 | 0.07 | 1493 |
| 99.53  | 30469.0  | 30469.0  |   |      |      |
|        |          | HN       | 1 | 0.07 | 1494 |
| 99.60  | 20000.0  | 20000.0  |   |      |      |
|        |          | EE       | 1 | 0.07 | 1495 |
| 99.67  | 31520.0  | 31520.0  |   |      |      |
|        |          | MY       |   | 0.07 | 1496 |
| 99.73  | 200000.0 | 200000.0 |   |      |      |
|        |          | ID       |   | 0.07 | 1497 |
| 99.80  | 15000.0  | 15000.0  |   |      |      |
|        |          | D0       |   | 0.07 | 1498 |
| 99.87  | 110000.0 | 110000.0 |   |      |      |
|        |          | TH       |   | 0.07 | 1499 |
| 99.93  | 15000.0  | 15000.0  |   |      |      |
|        |          | MT       |   | 0.07 | 1500 |
| 100.00 | 28369.0  | 28369.0  | 9 |      |      |

## Company Location Distribution



## **Remote Ratio (with Salary)**

```
# Calculate percentages
remote_ratio_percent = (remote_ratio_counts / remote_ratio_counts.sum() *
100) round(2)
# ==========
# Mean and Median Salaries
salary summary = (
   salaries_data_frame.groupby("remote_ratio")["salary_in_usd"]
   .agg(Mean="mean", Median="median")
   round(∅)
   .reindex(order)
# Combine into one DataFrame
# ==========
result = pd.DataFrame(
   {
       "count": remote ratio counts,
       "percentage": remote_ratio_percent,
       "Mean": salary_summary["Mean"],
       "Median": salary_summary["Median"],
   }
)
print("Remote Work Ratio Summary:")
print(result)
```

```
Remote Work Ratio Summary:
              count percentage
                                     Mean
                                            Median
remote_ratio
                579
                          38.60 143867.0
                                          139430.0
50
                130
                          8.67
                                 81360.0
                                           65135.0
100
                791
                          52.73 129658.0
                                          131050.0
```

## Remote Work Ratio Distribution



#### **Company Size (with Salary)**

```
salary_summary = (
   salaries_data_frame.groupby("company_size")["salary_in_usd"]
    .agg(Mean="mean", Median="median")
    round(∅)
    .reindex(order)
)
# Combine into one DataFrame
# ===============
result = pd.DataFrame(
   {
       "count": company_size_counts,
       "percentage": company_size_percent,
       "Mean": salary_summary["Mean"],
       "Median": salary_summary["Median"],
   }
print("Company Size Summary:")
print(result)
```

```
Company Size Summary:
              count percentage
                                    Mean
                                            Median
company_size
S
                107
                          7.13
                                77723.0
                                           61566.0
М
               1073
                          71.53 139114.0 137270.0
L
                320
                          21.33 121396.0 112300.0
```

## Distribution of Company Size



## Data Preparation and Model Training

Handling Data Issues

### **Missing Values Issues**

```
# Drop rows with any missing values
salaries_data_frame = salaries_data_frame.dropna()
salaries_data_frame.shape
```

(1494, 11)

#### **Employment Type Filter**

```
# Keep only full-time employees
salaries_data_frame =
salaries_data_frame[salaries_data_frame["employment_type"] == "FT"] #
assuming "FT" is the code for full-time
salaries_data_frame.shape
```

```
(1467, 11)
```

#### **Job Titles Filter**

```
# ===== FILTER OUT JOB TITLES WITH FEWER THAN 100 RECORDS =====
threshold = 100
job_counts = salaries_data_frame["job_title"].value_counts()
salaries_data_frame =
salaries_data_frame[salaries_data_frame["job_title"].isin(job_counts[job_c
ounts >= threshold].index)]
salaries_data_frame.shape
```

```
(1030, 11)
```

### Salary Distribution after Filter

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# --- 1. Descriptive statistics ---
salary_in_usd_series = salaries_data_frame["salary_in_usd"]

mean_salary = salary_in_usd_series.mean()
median_salary = salary_in_usd_series.median()
min_salary = salary_in_usd_series.min()
max_salary = salary_in_usd_series.max()

print(f"Salary ranges from ${min_salary:,.0f} to ${max_salary:,.0f}")
print(f"Mean salary: ${mean_salary:,.0f}")

# Skew check
skewness = salary_in_usd_series.skew()
print(f"Skewness: {skewness:.2f}")
```

```
Salary ranges from $5,679 to $412,000
Mean salary: $128,589
Median salary: $129,300
Skewness: 0.43
```

```
# --- 2. Histogram ---
plt.figure(figsize=(8, 5))
sns.histplot(salary_in_usd_series, bins=30, kde=True)
plt.axvline(
    mean_salary, color="red", linestyle="--", label=f"Mean =
{mean_salary:,.0f}"
)
plt.axvline(
    median_salary, color="blue", linestyle="--", label=f"Median =
{median_salary:,.0f}"
)
plt.title("Salary Distribution (USD)")
plt.xlabel("Salary")
plt.ylabel("Frequency")
plt.legend()
plt.show()
```



```
# --- 3. Boxplot (to reveal outliers) ---
plt.figure(figsize=(6, 3))
sns.boxplot(x=salary_in_usd_series)
plt.title("Salary in USD - Boxplot")
plt.xlabel("Salary in USD")
plt.show()
```

## Salary in USD - Boxplot



```
# --- 4. Identify outliers using IQR rule ---
Q1 = salary_in_usd_series.quantile(0.25)
Q3 = salary_in_usd_series.quantile(0.75)
IQR = Q3 - Q1

lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR

outliers = salaries_data_frame[
    (salaries_data_frame["salary_in_usd"] < lower_bound)
    | (salaries_data_frame["salary_in_usd"] > upper_bound)
]

print(f"\nNumber of outliers: {len(outliers)}")
print("Outlier rows:")
print(outliers.sort_values("salary_in_usd").to_string(index=False, line_width=10000))
```

```
Number of outliers: 6
Outlier rows:
work_year experience_level employment_type
                                                               job_title
salary_salary_currency salary_in_usd employee_residence remote_ratio
company_location company_size
      2023
                          SE
                                           FT Machine Learning Engineer
304000.0
                      USD
                                304000.0
                                                          US
                                                                        100
US
              М
      2023
                          SE
                                           FΤ
                                                         Data Scientist
317070.0
                      USD
                                317070.0
                                                          US
                                                                          0
US
              М
      2023
                          SE
                                           FT Machine Learning Engineer
318300.0
                      USD
                                318300.0
                                                          US
                                                                        100
US
              Μ
```

| 2022     |   | EX  |          | FT             | Data Enginee   | r   |
|----------|---|-----|----------|----------------|----------------|-----|
| 324000.0 |   | USD | 324000.0 |                | US             | 100 |
| US       | М |     |          |                |                |     |
| 2023     |   | SE  |          | FT Machine Lea | arning Enginee | r   |
| 342300.0 |   | USD | 342300.0 |                | US             | 0   |
| US       | L |     |          |                |                |     |
| 2020     |   | SE  |          | FT             | Data Scientis  | t   |
| 412000.0 |   | USD | 412000.0 |                | US             | 100 |
| US       | L |     |          |                |                |     |
|          |   |     |          |                |                |     |

```
# --- 5. Remove outliers ---
print(f"\nData shape before removing outliers:
{salaries_data_frame.shape}")

salaries_data_frame = salaries_data_frame[
    (salaries_data_frame["salary_in_usd"] >= lower_bound)
    & (salaries_data_frame["salary_in_usd"] <= upper_bound)
].copy()

print(f"Data shape after removing outliers: {salaries_data_frame.shape}")</pre>
```

```
Data shape before removing outliers: (1030, 11)
Data shape after removing outliers: (1024, 11)
```

Model Training and Performance (Supervised Learning)

#### **First Try**

```
print(salaries_data_frame.shape)
# 2. Define features & target
categorical cols = [
   "experience_level",
   "job title",
   "employee residence",
   "company_location",
   "company_size",
1
numeric_cols = ["remote_ratio"]
features = categorical_cols + numeric_cols
X = salaries_data_frame[features]
X. shape
y = salaries_data_frame["salary_in_usd"]
y.shape
# ==========
# 3. Split dataset
X_train, X_test, y_train, y_test = train_test_split(
   X, y, test_size=0.2, random_state=42
# 4. Preprocess features
# ==============
preprocessor_1 = ColumnTransformer(
   transformers=[
       ("cat", OneHotEncoder(handle_unknown="ignore"), categorical_cols),
       ("num", StandardScaler(), numeric_cols),
)
X_train_processed = preprocessor_1.fit_transform(X_train)
X_test_processed = preprocessor_1.transform(X_test)
# 5. Define models_1
# ==============
models_1 = {
   "LinearRegression": LinearRegression(),
   "RandomForest": RandomForestRegressor(
       n_estimators=500,
       max_depth=10,
       min_samples_leaf=2,
       max_features="sqrt",
       random_state=42,
       n_jobs=-1,
   ),
```

```
"GradientBoosting": GradientBoostingRegressor(
        n_estimators=500, learning_rate=0.05, max_depth=5, random_state=42
    ),
    "XGBoost": XGBRegressor(
        n estimators=500,
        learning rate=0.05,
        \max depth=6,
        subsample=0.8,
        colsample bytree=0.8,
        random_state=42,
    ),
    "LightGBM": LGBMRegressor(
        n_estimators=500,
        learning_rate=0.05,
        max depth=-1,
        num leaves=31,
        subsample=0.8,
        colsample bytree=0.8,
        random state=42,
        verbose=-1,
    ),
    "CatBoost": CatBoostRegressor(
        iterations=500, learning_rate=0.05, depth=6, random_state=42,
verbose=0
   ),
}
# ==============
# 6. Train & evaluate
# ===========
results = {}
true_avg_salary = y_test.mean() # True average salary
for name, model in models_1.items():
    model.fit(X_train_processed, y_train)
    y_pred = model.predict(X_test_processed)
    rmse = root_mean_squared_error(y_test, y_pred)
    mae = mean_absolute_error(y_test, y_pred)
    r2 = r2_score(y_test, y_pred)
    pred_avg_salary = y_pred.mean() # Predicted average salary
    results[name] = {
        "RMSE": rmse,
        "RMSE % of Avg": (rmse / true_avg_salary) * 100,
        "MAE": mae,
        "MAE % of Avg": (mae / true_avg_salary) * 100,
        "R<sup>2</sup>": r<sup>2</sup>,
        "True Avg Salary": true_avg_salary,
        "Predicted Avg Salary": pred_avg_salary,
    }
# Convert to DataFrame for easy comparison
results_df = pd.DataFrame(results).T
results_df = results_df.sort_values(by="R2", ascending=False)
```

```
print(results_df.round(2).to_string(line_width=10000))
print("\nBest model based on R2:", results_df.index[0])
```

| True Ava Colory            |                               | •         | MAE       | MAE % of Avg   | R²   |
|----------------------------|-------------------------------|-----------|-----------|----------------|------|
| -                          | Predicted Avg Sa              | -         | 27385.69  | 22.21          | 0 62 |
| LinearRegression 123309.06 |                               | 29.00     | 2/363.09  | 22.21          | 0.02 |
| 123309.00<br>RandomForest  | 120824.26<br>36751.52         | 20.00     | 29248.37  | 23.72          | 0 60 |
| 123309.06                  | 124106.12                     | 29.00     | 29240.37  | 23.72          | 0.00 |
| CatBoost                   | 36966.07                      | 29.98     | 28581.21  | 23.18          | 0 E0 |
| 123309.06                  | 124048.19                     | 29.90     | 20301.21  | 23.10          | 0.59 |
| LightGBM                   | 37853.95                      | 30 70     | 30307.25  | 24.58          | 0 50 |
| 123309 <b>.</b> 06         | 124148.50                     | 30.70     | 30307.23  | 24.30          | 0.30 |
| GradientBoosting           |                               | 30 73     | 28769.98  | 23,33          | 0 57 |
| 123309.06                  | 124405.32                     | 30.73     | 20709190  | 23.33          | 0.57 |
| XGBoost                    | 39276.33                      | 31 85     | 29720.77  | 24.10          | 0 54 |
| 123309.06                  | 125220.46                     | 31103     | 23720177  | 24110          | 0154 |
| 123303100                  | 1232231.0                     |           |           |                |      |
| Best model based           | on R <sup>2</sup> : LinearReg | ression   |           |                |      |
|                            |                               |           |           |                |      |
|                            | / 11 2 42 / 11                |           |           |                |      |
| /opt/homebrew/lib          |                               |           |           |                |      |
| packages/sklearn/          |                               |           |           | _              |      |
| valid taatura nam          | nes, but LGBMRegr             | essor was | titted wi | th teature nam | es   |

#### **Linear Regression**

```
import matplotlib.pyplot as plt

# Fit Linear Regression only
lin_model = LinearRegression()
lin_model.fit(X_train_processed, y_train)

# Predictions
y_pred_lin = lin_model.predict(X_test_processed)

# Evaluation
rmse = root_mean_squared_error(y_test, y_pred_lin)
r2 = r2_score(y_test, y_pred_lin)

print(f"Linear Regression → RMSE: {rmse:.2f}, R²: {r2:.3f}")

# ======= Plot Predicted vs Actual ========
plt.figure(figsize=(6,6))
plt.scatter(y_test, y_pred_lin, alpha=0.5, edgecolor="k")
```

Linear Regression  $\rightarrow$  RMSE: 35762.74, R<sup>2</sup>: 0.621



## **Features Importance**

```
# ==========
# Get coefficients from LinearRegression
linreg_coefs = models_1["LinearRegression"].coef_
# Use same OHE feature names as before
ohe = preprocessor_1.named_transformers_["cat"]
ohe features = ohe.get feature names out(categorical cols)
all_features = list(ohe_features) + numeric_cols
# Map back to original columns
def map_to_original(feature_name):
    for col in categorical_cols:
        if feature_name.startswith(col + "_"):
            return col
    if feature_name in numeric_cols:
        return feature_name
    return feature name
original_features = [map_to_original(f) for f in all_features]
# Aggregate absolute coefficients as importance
feature_importance_salaries_data_frame = (
    pd.DataFrame({"feature": original_features, "importance":
abs(linreg coefs)})
    .groupby("feature")
    sum()
    .sort_values(by="importance", ascending=False)
    .reset_index()
)
print("\n=== Aggregated Feature Importances (LinearRegression
coefficients) ===")
print(feature_importance_salaries_data_frame)
```

```
data=feature_importance_salaries_data_frame)
plt.title("Aggregated Feature Importances (LinearRegression
Coefficients)")
plt.xlabel("Importance (absolute coefficient)")
plt.ylabel("Feature")
plt.tight_layout()
plt.show()
```



## Second Training (Removing Company Size and Remote Ratio)

```
# ===============
# 2. Define features & target
features_2 = ["experience_level", "job_title", "employee_residence",
"company location"]
X = salaries_data_frame[features_2]
X. shape
y = salaries_data_frame["salary_in_usd"]
y.shape
# 3. Split dataset
X_train_2, X_test_2, y_train_2, y_test_2 = train_test_split(
   X, y, test_size=0.2, random_state=42
# 4. Preprocess features
# ==========
preprocessor_2 = ColumnTransformer(
   transformers=[("cat", OneHotEncoder(handle_unknown="ignore"),
features 2)]
)
X train processed 2 = preprocessor 2.fit transform(X train 2)
X_test_processed_2 = preprocessor_2.transform(X_test_2)
# ================
# 5. Define models 2
models_2 = {
   "LinearRegression": LinearRegression(),
   "RandomForest": RandomForestRegressor(
       n_estimators=500,
       max_depth=10,
       min_samples_leaf=2,
       max_features="sqrt",
       random_state=42,
       n_{jobs=-1}
   "GradientBoosting": GradientBoostingRegressor(
       n_estimators=500, learning_rate=0.05, max_depth=5, random_state=42
   ),
   "XGBoost": XGBRegressor(
       n_estimators=500,
       learning_rate=0.05,
       max_depth=6,
       subsample=0.8,
       colsample_bytree=0.8,
       random_state=42,
   ),
```

```
"LightGBM": LGBMRegressor(
        n estimators=500,
        learning_rate=0.05,
       max_depth=-1,
        num leaves=31,
        subsample=0.8,
        colsample_bytree=0.8,
        random state=42,
       verbose=-1,
    ),
    "CatBoost": CatBoostRegressor(
        iterations=500, learning_rate=0.05, depth=6, random_state=42,
verbose=0
   ),
}
# =========
# 6. Train & evaluate
results 2 = \{\}
true_avg_salary = y_test.mean() # True average salary
for name, model in models_2.items():
    model.fit(X_train_processed_2, y_train_2)
    y_pred_2 = model.predict(X_test_processed_2)
    rmse_2 = root_mean_squared_error(y_test_2, y_pred_2)
    mae_2 = mean_absolute_error(y_test_2, y_pred_2)
    r2_2 = r2_score(y_test_2, y_pred_2)
    pred_avg_salary_2 = y_pred_2.mean() # Predicted average salary
    results_2[name] = {
       "RMSE": rmse_2,
        "MAE": mae_2,
        "R<sup>2</sup>": r2_2,
        "Predicted Avg Salary": pred_avg_salary_2,
    }
# Convert to DataFrame for easy comparison
results_df_2 = pd.DataFrame(results_2).T
results_df_2 = results_df_2.sort_values(by="R2", ascending=False)
print(results_df_2)
print("\nBest model based on R2:", results_df_2.index[0])
```

```
(1024, 11)

RMSE MAE R<sup>2</sup> Predicted Avg
Salary
LinearRegression 35460.262713 27612.691817 0.627127
120270.467793
CatBoost 36032.043269 28061.036067 0.615005
```

```
122543.885647
GradientBoosting
                  36277.145824 27990.598879 0.609749
123513.312532
XGBoost
                  36652.996185 28507.822847 0.601621
123548.078125
RandomForest
                  36753.630485 29243.640004 0.599430
123197.168178
LightGBM
                  37258.456403 29757.696103 0.588351
122402.832104
Best model based on R<sup>2</sup>: LinearRegression
/opt/homebrew/lib/python3.13/site-
packages/sklearn/utils/validation.py:2739: UserWarning: X does not have
valid feature names, but LGBMRegressor was fitted with feature names
  warnings.warn(
```

## **Feature Importance**

```
# 7. Aggregate feature importances by original feature (LinearRegression)
# Get coefficients from LinearRegression
linear regression coefs = models 2["LinearRegression"].coef
# Use same OHE feature names as before
ohe_2 = preprocessor_2.named_transformers_["cat"]
ohe_features_2 = ohe_2.get_feature_names_out(features_2)
all_features_2 = list(ohe_features_2)
# Map back to original columns
def map_to_original(feature_name):
   for col in categorical_cols:
       if feature_name.startswith(col + "_"):
           return col
   if feature_name in numeric_cols:
       return feature_name
   return feature_name
original_features_2 = [map_to_original(f) for f in all_features_2]
# Aggregate absolute coefficients as importance
feature_importance_salaries_data_frame = (
   pd.DataFrame(
       {"feature": original_features_2, "importance":
abs(linear_regression_coefs)}
```

```
.groupby("feature")
    sum()
    .sort_values(by="importance", ascending=False)
    .reset index()
)
print("\n=== Aggregated Feature Importances (LinearRegression
coefficients) ===")
print(feature_importance_salaries_data_frame)
# 8. Visualize aggregated feature importances
plt.figure(figsize=(8, 5))
sns.barplot(x="importance", y="feature",
data=feature_importance_salaries_data_frame)
plt.title("Aggregated Feature Importances (LinearRegression
Coefficients)")
plt.xlabel("Importance (absolute coefficient)")
plt.ylabel("Feature")
plt.tight_layout()
plt.show()
```



## Group Employees by Job Title, Experience Level, Employee Residence, Company Location

```
import pandas as pd
# Group by multiple columns
grouped = (
    salaries_data_frame.groupby(
        ["job_title", "experience_level", "employee_residence",
"company_location"]
    )["salary_in_usd"]
    .agg(count="count", mean_salary="mean", median_salary="median")
    .reset_index()
)
# Round salaries
grouped["mean_salary"] = grouped["mean_salary"].round(0)
grouped["median_salary"] = grouped["median_salary"].round(0)
# Add percentage column
total_count = grouped["count"].sum()
grouped["percentage"] = (grouped["count"] / total_count * 100).round(2)
# Remove rows with count = 0 (safety check)
grouped = grouped[grouped["count"] > 0]
# Sort by count (descending)
grouped = grouped.sort_values(by="count", ascending=False)
# Reorder columns
```

/var/folders/jh/z981c7zj0vz0gmyfc8mhdxdr0000gn/T/ipykernel\_67267/346195264 2.py:5: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.

salaries\_data\_frame.groupby(

|        |        | <pre>job_title</pre> | experience. | _level employe | ee_residence  |
|--------|--------|----------------------|-------------|----------------|---------------|
| compar | ny_loc | cation count p       | percentage  | mean_salary    | median_salary |
|        |        | Data Engineer        |             | SE             | US            |
| US     | 216    | 21.09                | 154309.0    | 150000.0       |               |
|        |        | Data Scientist       |             | SE             | US            |
| US     | 212    | 20.70                | 165500.0    | 160000.0       |               |
|        |        | Data Analyst         |             | SE             | US            |
| US     | 114    | 11.13                | 121276.0    | 115467.0       |               |
| Machir | ne Lea | arning Engineer      |             | SE             | US            |
| US     | 52     | 5.08                 | 177997.0    | 183000.0       |               |
|        |        | Data Engineer        |             | MI             | US            |
| US     | 35     | 3.42                 | 117558.0    | 110000.0       |               |
|        |        | Data Analyst         |             | MI             | US            |
| US     | 29     | 2.83                 | 109606.0    | 110000.0       |               |
|        |        | Data Scientist       |             | MI             | US            |
| US     | 28     | 2.73                 | 129219.0    | 130000.0       |               |
|        |        | Data Engineer        |             | MI             | GB            |
| GB     | 27     | 2.64                 | 84430.0     | 82528.0        |               |
|        |        | Data Engineer        |             | EN             | US            |
| US     | 16     | 1.56                 | 82625.0     | 82500.0        |               |
|        |        | Data Scientist       |             | MI             | GB            |
| GB     | 16     | 1.56                 | 86411.0     | 78497.0        |               |
|        |        | Data Analyst         |             | EN             | US            |
| US     | 15     | 1.46                 | 74620.0     | 72000.0        |               |
|        |        | Data Engineer        |             | EX             | US            |
| US     | 13     | 1.27                 | 206038.0    | 207000.0       |               |
|        |        |                      |             |                |               |

|          | _      |              |          |               |              |
|----------|--------|--------------|----------|---------------|--------------|
|          |        |              |          | EN            | US           |
| US       |        |              |          | 90000.0       |              |
|          |        | ta Scientist |          | SE            | CA           |
| CA       | 10     | 0.98         | 169443.0 | 175500.0      |              |
|          | [      | Data Analyst |          | MI            | GB           |
| GB       | 9      | 0.88         | 50965.0  | 49253.0       |              |
| Machine  | Learni | ing Engineer |          | EN            | US           |
| US       | 8      | 0.78         | 137635.0 | 131500.0      |              |
| Machine  | Learn  | ing Engineer |          | MI            | US           |
| US       |        |              |          | 193900.0      |              |
|          |        | Data Analyst |          | SE            | CA           |
| CA       |        | •            |          | 130000.0      | <del>-</del> |
| <b>.</b> |        | ata Engineer |          | MI            | GR           |
| GR       | 6      | _            |          | 73546.0       |              |
| OIX      |        | ata Engineer |          | SE            | GB           |
| GB       |        |              |          | 89281.0       | QD           |
| GD       |        |              |          | MI            | ES           |
| ГC       |        | ata Engineer |          |               | _            |
| ES       |        |              |          | 73546.0       |              |
| EC       |        | ta Scientist |          | SE 42460 0    | ES           |
| ES       |        |              |          | 43460.0       |              |
|          |        | ata Engineer |          | EN            | IN           |
| IN       |        |              |          | 17022.0       |              |
|          |        | ta Scientist |          | MI            | IN           |
| IN       |        |              |          | 30523.0       |              |
|          |        | ta Scientist |          | MI            | DE           |
| DE       | 5      | 0.49         | 82179.0  | 88654.0       |              |
|          | Dat    | ta Scientist |          | EN            | FR           |
| FR       | 4      | 0.39         | 44382.0  | 44781.0       |              |
|          | Dat    | ta Scientist |          | EX            | US           |
| US       | 4      | 0.39         | 197188.0 | 192500.0      |              |
|          | Dat    | ta Scientist |          | EN            | IN           |
| IN       | 4      | 0.39         | 24712.0  | 25646.0       |              |
|          | Dat    | ta Scientist |          | MI            | NL           |
| NL       | 4      | 0.39         | 83265.0  | 81426.0       |              |
|          |        | Data Analyst |          | EN            | CA           |
| CA       | 3      | -            | 53221.0  |               | -            |
|          |        | ing Engineer |          | MI            | GB           |
| GB       |        | 0.29         |          |               |              |
| 0.5      |        | Data Analyst |          | MI            | GR           |
| GR       | 3      | -            | 31182.0  |               | GIV          |
|          |        | ing Engineer |          | 51520.0<br>EN | GB           |
|          |        | •            |          |               | GD.          |
| GB       |        | 0.29         |          |               | CP           |
| CD       |        | ata Engineer |          | EN 45300.0    | GB           |
| GB       | 3      |              | 45913.0  |               | F.C          |
| =-       |        | ta Scientist |          | MI            | ES           |
| ES       | 3      |              | 41137.0  |               |              |
|          |        | ata Engineer |          | SE            | PR           |
| PR       | 2      |              | 167500.0 |               |              |
|          |        | ta Scientist |          | MI            | CA           |
| CA       | 2      | 0.20         | 71686.0  | 71686.0       |              |
|          |        | Data Analyst |          | MI            | ES           |
|          |        |              |          |               |              |

| ES                                            | 2 0.20                |          |               | C A |
|-----------------------------------------------|-----------------------|----------|---------------|-----|
| CA                                            | Data Analyst 2 0.20   |          | MI<br>80000.0 | CA  |
|                                               | Data Analyst          |          | EX            | US  |
| US                                            |                       |          | 120000.0      |     |
|                                               | Learning Engineer     |          | SE            | IN  |
| IN                                            | 2 0.20                |          |               | DD. |
|                                               | Learning Engineer     |          | SE            | PR  |
| PR                                            | 2 0.20                |          |               | DE  |
| DE                                            | Data Scientist        |          | EN            | BE  |
| BE                                            | 2 0.20                |          |               | CA  |
| CA                                            | Data Scientist        |          | EN 51417 0    | CA  |
| CA                                            | 2 0.20                |          |               | DE  |
| DE                                            | Data Scientist 2 0.20 |          | EN FF007 A    | DE  |
| DE                                            |                       |          |               | ED  |
| ED                                            | Data Analyst          |          | EN<br>43735.0 | FR  |
| FR                                            |                       |          | 43733.0<br>SE | CA  |
| CA                                            | Data Engineer 2 0.20  |          | 161600.0      | CA  |
| CA                                            |                       |          | MI            | TR  |
| TR                                            | Data Engineer 2 0.20  | 20060.0  |               | IK  |
| IK                                            | Data Engineer         |          | 20000.0<br>MI | DE  |
| DE                                            | _                     | 62484.0  | 62484.0       | DΕ  |
| DL                                            | Data Analyst          |          | SE            | CF  |
| CF                                            |                       | 48609.0  |               | CI  |
| CI                                            | Data Analyst          |          | SE            | GB  |
| GB                                            | •                     |          | 73880.0       | GD. |
| OD                                            | Data Analyst          |          | SE            | ES  |
| ES                                            | 2 0.20                |          |               | LJ  |
|                                               | Learning Engineer     |          | SE            | AE  |
| AE                                            | 2 0.20                |          |               | AL  |
| , <u>, , , , , , , , , , , , , , , , , , </u> | Data Scientist        |          | SE            | FR  |
| FR                                            |                       | 65438.0  |               |     |
|                                               | Data Scientist        |          | SE            | IE  |
| IE                                            |                       | 142500.0 | 142500.0      |     |
|                                               | Data Engineer         |          | EN            | PK  |
| DE                                            |                       | 55108.0  | 55108.0       |     |
|                                               | Data Engineer         |          | MI            | FR  |
| FR                                            |                       | 67640.0  | 67640.0       |     |
|                                               | Learning Engineer     |          | SE            | CA  |
| CA                                            | • •                   | 105000.0 | 105000.0      |     |
|                                               | Data Scientist        |          | SE            | GB  |
| GB                                            | 2 0.20                | 104663.0 | 104663.0      |     |
|                                               | Data Scientist        |          | SE            | TR  |
| TR                                            | 1 0.10                |          | 20171.0       |     |
|                                               | Data Scientist        |          | MI            | TR  |
| TR                                            | 1 0.10                | 25000.0  | 25000.0       |     |
|                                               | Data Scientist        |          | SE            | BR  |
|                                               | 1 0 10                | 100000.0 | 100000.0      |     |
| US                                            | 1 0.10                | 10000010 |               |     |
|                                               | Learning Engineer     |          | EN            | СН  |

|              |          |            |          | SE                     |            |  |
|--------------|----------|------------|----------|------------------------|------------|--|
| GB           |          |            |          | 88256.0                |            |  |
| шс           | Data     | Scientist  | 60420 0  | SE<br>68428.0<br>SE    | GR         |  |
| US           | T D-+-   | 0.10       | 68428.0  | 08428.0                | <b>A T</b> |  |
| Λ <b>.</b> Τ | Data     | Scientist  | 01227 6  | SE<br>01227 A          | AT         |  |
| AT           | Loorning | Engineer   | 91237.0  | 91237 <b>.</b> 0<br>MI | FR         |  |
| DE           | 1        | a 1a       | 94053 A  | 0/053 W                | IN         |  |
| Machine      | Learning | . Fngineer | 0405510  | 84053.0<br>EN          | CO         |  |
| CO           | 1        | 0 10       | 21844 0  | 21844.0                |            |  |
|              |          | Engineer   |          | EN                     | DE         |  |
| DF           | 1        | 0.10       | 24823.0  | 24823.0                | DE.        |  |
| Machine      | Learning | . Fngineer | 2402510  | 24823.0<br>SE          | PT         |  |
| US           | 1        | 0.10       | 150000.0 | 150000.0               |            |  |
|              |          | Engineer   |          | SE                     | NL         |  |
|              |          |            |          |                        |            |  |
| Machine      | Learning | ı Engineer |          | 59888.0<br>SE          | IE         |  |
| IE           | 1        | 0.10       | 68293.0  | 68293.0                |            |  |
| Machine      | Learning | Engineer   |          | 68293 <b>.</b> 0<br>SE | HR         |  |
| HR           | 1        | 0.10       | 45618.0  | 45618.0                |            |  |
| Machine      | Learning | Engineer   |          | 45618.0<br>SE          | FI         |  |
| FI           | 1        | 0.10       | 63040.0  | 63040.0                |            |  |
|              |          | Engineer   |          | SE                     | DE         |  |
|              |          |            |          |                        |            |  |
| Machine      | Learning | Engineer   |          | 94564 <b>.</b> 0<br>SE | BE         |  |
| BE           | 1        | 0.10       | 82744.0  | 82744.0                |            |  |
|              |          | Engineer   |          | MI                     | SI         |  |
| SI           | 1        | 0.10       | 24823.0  | 24823.0                |            |  |
| Machine      | Learning | , Engineer |          | MI                     | PL         |  |
| PL           | 1        | 0.10       | 46597.0  | 46597.0                |            |  |
| Machine      | Learning | , Engineer |          | MI                     | NL         |  |
| NL           | 1        | 0.10       | 96578.0  | 96578.0                |            |  |
| Machine      | Learning | , Engineer |          | MI                     | JP         |  |
| JP           | 1        | 0.10       | 74000.0  | 74000.0                |            |  |
| Machine      | Learning | , Engineer |          | MI                     | IT         |  |
| IT           | 1        | 0.10       | 51064.0  | 51064.0                |            |  |
| Machine      | Learning | , Engineer |          | MI                     | IN         |  |
| IN           | 1        | 0.10       | 20984.0  | 20984.0                |            |  |
|              |          | Scientist  |          | MI                     | RU         |  |
|              |          |            | 48000.0  | 48000.0                |            |  |
|              | _        | , Engineer |          | MI                     | ES         |  |
|              |          |            | 47282.0  |                        |            |  |
|              | _        | , Engineer |          | MI                     | BE         |  |
| BE           |          |            | 88654.0  |                        |            |  |
|              | _        | Engineer   |          | MI                     | AU         |  |
|              |          |            | 83864.0  |                        |            |  |
|              | _        | Engineer   |          | EN                     | NL         |  |
|              |          |            | 85000.0  |                        |            |  |
|              | _        | Engineer   |          | EN                     | IN         |  |
| IN           |          |            | 20000.0  |                        | 66         |  |
|              | рата     | Scientist  |          | MI                     | SG         |  |
|              |          |            |          |                        |            |  |

| TI       | 1 | 0.10           | 110050 0 | 110050 0 |      |
|----------|---|----------------|----------|----------|------|
| I L      | T | 0.10           |          |          | AD   |
| AD       | 4 | Data Analyst   |          | EN       | AR   |
| AR       | 1 |                | 50000.0  |          | D.C. |
| <b>.</b> | _ | Data Scientist |          | MI       | RS   |
| DE       | 1 | 0.10           |          |          |      |
|          | _ | Data Analyst   |          | SE       | DE   |
| DE       | 1 |                | 63831.0  |          |      |
|          |   | Data Engineer  |          | MI       | NL   |
| NL       | 1 |                | 45391.0  |          |      |
|          |   | Data Engineer  |          | MI       | MT   |
| MT       | 1 |                | 28369.0  |          |      |
|          |   | Data Engineer  |          | MI       | HK   |
| GB       | 1 |                | 66022.0  | 66022.0  |      |
|          |   | Data Engineer  |          | MI       | ES   |
| US       | 1 | 0.10           | 130800.0 | 130800.0 |      |
|          |   | Data Engineer  |          | MI       | AT   |
| AT       | 1 | 0.10           | 74130.0  | 74130.0  |      |
|          |   | Data Engineer  |          | EN       | NL   |
| NL       | 1 | 0.10           | 59888.0  | 59888.0  |      |
|          |   | Data Engineer  |          | EN       | JP   |
| JP       | 1 | 0.10           | 41689.0  | 41689.0  |      |
|          |   | Data Engineer  |          | EN       | DE   |
| DE       | 1 | 0.10           | 65013.0  | 65013.0  |      |
|          |   | Data Analyst   |          | SE       | PH   |
| PH       | 1 | 0.10           | 50000.0  | 50000.0  |      |
|          |   | Data Analyst   |          | SE       | BG   |
| US       | 1 | 0.10           | 80000.0  | 80000.0  |      |
|          |   | Data Engineer  |          | MI       | R0   |
| US       | 1 | 0.10           | 26005.0  | 26005.0  |      |
|          |   | Data Analyst   |          | MI       | SG   |
| SG       | 1 | 0.10           | 65257.0  | 65257.0  |      |
|          |   | Data Analyst   |          | MI       | PK   |
| PK       | 1 | 0.10           | 8000.0   | 8000.0   |      |
|          |   | Data Analyst   |          | MI       | IN   |
| IN       | 1 | 0.10           | 5723.0   | 5723.0   |      |
|          |   | Data Analyst   |          | MI       | FR   |
| FR       | 1 | 0.10           | 46759.0  | 46759.0  |      |
|          |   | Data Analyst   |          | EN       | PT   |
| PT       | 1 | 0.10           | 22809.0  | 22809.0  |      |
|          |   | Data Analyst   |          | EN       | NG   |
| NG       | 1 | 0.10           | 10000.0  | 10000.0  |      |
|          |   | Data Analyst   |          | EN       | IN   |
| IN       | 1 | 0.10           | 6072.0   | 6072.0   |      |
|          |   | Data Analyst   |          | EN       | ID   |
| ID       | 1 | 0.10           | 15000.0  | 15000.0  |      |
|          |   | Data Analyst   |          | EN       | FR   |
| IN       | 1 | 0.10           | 6359.0   | 6359.0   |      |
|          |   | Data Engineer  |          | MI       | PL   |
| PL       | 1 | 0.10           | 28476.0  | 28476.0  |      |
|          | _ | Data Engineer  |          | SE       | ES   |
| US       | 1 | 0.10           | 193000.0 |          |      |
|          | _ |                |          |          |      |

|      |   | Data Scientist      |         |               | PL         |  |
|------|---|---------------------|---------|---------------|------------|--|
| PL   |   | 0.10                |         |               | <b>C</b> I |  |
| CI   |   | Data Scientist      |         | MI            | CL         |  |
| CL   |   | 0.10                |         |               | DII        |  |
|      |   | Data Scientist      | 45760.0 | MI            | PH         |  |
| US   | 1 | 0.10                |         |               | 110        |  |
| NG   |   | Data Scientist      |         | MI            | NG         |  |
| NG   |   | 0.10                |         |               | T11        |  |
| 116  | 4 | Data Scientist      | 5670.0  | MI            | IN         |  |
| US   | T | 0.10                |         | 50/9.0        | TNI        |  |
| TD   | 4 | Data Scientist      |         | MI            | IN         |  |
| ID   |   | 0.10                |         |               | 1111       |  |
| ШП   |   | Data Scientist 0.10 |         |               | HU         |  |
| HU   | 1 | Data Scientist      |         | 33/33.0<br>MI | НК         |  |
| HK   | 1 | 0.10                |         |               | ПК         |  |
| ПК   |   | Data Scientist      |         |               | FR         |  |
| LU   |   | 0.10                |         |               | ΓK         |  |
| LU   | 1 | Data Scientist      |         | MI            | FR         |  |
| FR   | 1 | 0.10                |         |               | I K        |  |
| 111  |   | Data Scientist      |         |               | DE         |  |
| AT   |   | 0.10                |         |               | DL         |  |
| Ai   |   | Data Scientist      |         | MI            | СН         |  |
| СН   | 1 | 0.10                |         |               | CII        |  |
| CII  |   | Data Engineer       |         |               | GR         |  |
| GR   | 1 | 0.10                | 47899.0 | 47899.0       | OI (       |  |
| O. t | _ | Data Scientist      |         | MI            | BR         |  |
| BR   | 1 | 0.10                |         |               |            |  |
|      |   | Data Analyst        |         |               | BR         |  |
| BR   | 1 | •                   |         | 7799.0        |            |  |
|      |   | Data Scientist      |         | EN            | UA         |  |
| UA   | 1 | 0.10                | 13400.0 | 13400.0       |            |  |
|      |   | Data Scientist      |         | EN            | JP         |  |
| MY   | 1 | 0.10                | 40000.0 | 40000.0       |            |  |
|      |   | Data Scientist      |         | EN            | ES         |  |
| ES   | 1 | 0.10                | 31520.0 | 31520.0       |            |  |
|      |   | Data Scientist      |         | EN            | AU         |  |
| AU   | 1 | 0.10                | 83171.0 | 83171.0       |            |  |
|      |   | Data Engineer       |         | EX            | ES         |  |
| ES   | 1 | 0.10                | 79833.0 | 79833.0       |            |  |
|      |   | Data Engineer       |         | SE            | R0         |  |
| GB   | 1 | 0.10                | 76833.0 | 76833.0       |            |  |
|      |   | Data Engineer       |         | SE            | MX         |  |
| MX   | 1 | 0.10                | 33511.0 | 33511.0       |            |  |
|      |   | Data Scientist      |         | EN            | US         |  |
| DE   | 1 | 0.10                | 50000.0 | 50000.0       |            |  |
|      |   |                     |         |               |            |  |

 $<sup>\</sup>ensuremath{\text{\# 1.}}$  Create new samples with STRING values and updated realistic salary fields

```
new_samples = pd.DataFrame(
    ſ
        {
            "work_year": 2023,
            "experience level": "SE",
            "employment_type": "FT",
            "job_title": "Data Scientist",
            "employee_residence": "US", ## United States
            "company_location": "US", ## United States
            "company_size": "M",
            "remote_ratio": 100,
            "salary": 160000,
            "salary_currency": "USD",
            "salary_in_usd": 160000,
        },
            "work_year": 2023,
            "experience level": "MI",
            "employment_type": "FT",
            "job_title": "Data Engineer",
            "employee_residence": "GB", ## United Kingdom
            "company_location": "GB", ## United Kingdom
            "company_size": "L",
            "remote_ratio": 50,
            "salary": 82528.0,
            "salary_currency": "USD",
            "salary_in_usd": 82528.0,
        },
            "work_year": 2023,
            "experience level": "EN",
            "employment_type": "FT",
            "job_title": "Data Analyst",
            "employee_residence": "BR", ## Brazil
            "company_location": "BR", ## Brazil
            "company_size": "S",
            "remote_ratio": 0,
            "salary": 8000,
            "salary_currency": "USD",
            "salary_in_usd": 8000,
        },
    ]
)
# 2. Drop target columns (keep only features the model expects)
X_new = new_samples.drop(columns=["salary", "salary_currency",
"salary_in_usd"])
# 3. Apply the SAME preprocessing pipeline you used for training
X_new_processed = preprocessor_2.transform(X_new)
# 4. Predict using the trained model
predictions = models_2["LinearRegression"].predict(X_new_processed)
```

```
# 5. Attach predictions back
new_samples["predicted_salary_usd"] = predictions.round(2)
import numpy as np
# 6. Compute error percentage
new_samples["error_percentage"] = (
    (new_samples["predicted_salary_usd"] - new_samples["salary_in_usd"])
    / new samples["salary in usd"]
    * 100
) round(2)
# 7. Add comment about acceptability (e.g., <20% is okay in salary
prediction)
new_samples["comment"] = np.where(
    new_samples["error_percentage"].abs() <= 20, "▼ Acceptable", "△ High
Error"
)
# 8. Print results clearly
print(new_samples.to_string(index=False, line_width=10000))
```

| work_year exper | <del>-</del>  |       |                               | _      |
|-----------------|---------------|-------|-------------------------------|--------|
| • • –           | • • •         |       | ompany_size remote_ratio      | -      |
| salary_currency | salary_in_usd | predi | cted_salary_usd error_perce   | entage |
| comment         |               |       |                               |        |
| 2023            | SE            |       | FT Data Scientist             |        |
| US              | US            | М     | 100 160000.0                  | USD    |
| 160000.0        | 161299.83     |       | 0.81 🔽 Acceptable             |        |
| 2023            | MI            |       | FT Data Engineer              |        |
| GB              | GB            | L     | 50 82528.0                    | USD    |
| 82528.0         | 78889.00      |       | -4.41 ☑ Acceptable            |        |
| 2023            | EN            |       | FT Data Analyst               |        |
| BR              | BR            | S     | 0 8000.0                      | USD    |
| 8000.0          | -23555.56     |       | -394 <b>.</b> 44 △ High Error |        |
|                 |               |       |                               |        |