Solutions to Homework 2

1

The rank of the resulting tensor is simply the number of open legs in the diagram.

$$(a) \sum_{i} A_{i}B_{i} = \underbrace{A}_{i} \underbrace{B}_{i}$$

$$(b) \sum_{j} A_{ij}B_{jk} = \underbrace{A}_{j} \underbrace{B}_{k}$$

$$(c) \sum_{i,j,k,l,n} A_{ij}B_{ijkl}C_{km}D_{lnn} = \underbrace{A}_{j} \underbrace{B}_{l}$$

$$tr(ABCDE) = \underbrace{A}_{l} \underbrace{B}_{l}$$

In practice we will seldom write explicitly the indices of a tensor networks. This can lead to some confusion as to which contraction a diagram actually represents since it can be unclear which index is which. For example we may be incorrectly lead to believe that figure above also represents the contraction $\operatorname{tr}(AEDCB)$. By writing down the indices explicitly, one can check that it is indeed a different contraction.

2

Act I Notice that the maximum number of Schmidt values (i.e. the Schmidt rank) is necessarily bounded by $\operatorname{rank}(c)$. It follow that $E(|\psi\rangle) \leq \log_2 D_{\min}$, where $D_{\min} = \min(D_1, D_2)$. By applying the mapping, we obtain $P|\psi\rangle = (P_1cP_2^\top)_{n',m'}|n'\rangle|m'\rangle$. Using the property $\operatorname{rank}(AB) \leq \min(\operatorname{rank}(A), \operatorname{rank}(B))$, the Schmidt rank is then bounded by

$$\operatorname{rank}(P_1 c P_2^{\top}) \leq \min \left(\operatorname{rank}(c), \operatorname{rank}(P_1), \operatorname{rank}(P_2) \right) \leq D_{\min}$$

Hence, $E(P|\psi\rangle) \leq \log_2 D_{\min}$.

Act II

- Using the previous point, $E(\bullet \bullet) \leq \log_2 D$.
- Divide \mathcal{A} into the boundary and the bulk: $\mathcal{A} = \partial \mathcal{A} + \mathcal{A}^{\circ}$. The bulk is in a pure state $(S_{\mathcal{A}^{\circ}} = 0)$ and will not contribute to the entanglement: $S_{A} \leq S_{\partial \mathcal{A}} + S_{\mathcal{A}^{\circ}}$, hence $S_{\mathcal{A}} = S_{\partial \mathcal{A}}$. A similar procedure applies to the pairs in $\bar{\mathcal{A}}$.
- We are cutting $|\partial A|$ entangled pairs, hence the entanglement will be bounded by $E_A \leq |\partial A| \log_2 D$.

Act III As we proved in Act I, local operations do not increase the entanglement. We can split the total mapping into the terms acting inside \mathcal{A} and the ones acting outside: $A_1 \otimes A_2 \otimes \cdots \otimes A_N = M_{\mathcal{A}} \otimes M_{\bar{\mathcal{A}}}$. By splitting the Hilbert space accordingly into $|\varphi\rangle = \sum c_{n,m} |n\rangle_{\mathcal{A}} |m\rangle_{\bar{\mathcal{A}}}$, we see that the mapping acts locally — much as in Act I — and the entropy cannot increase. Therefore, we obtain the area law for PEPS

$$E_{\mathcal{A}} \leq |\partial \mathcal{A}| \log_2 D.$$

3

The mapping M projects on the spin-1 subspace:

$$M^{+} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad M^{0} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad M^{-} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},$$

The state $|\Psi\rangle = \mathcal{M} |\Phi\rangle$ is then

$$|\Psi\rangle = \sum_{\boldsymbol{\sigma},\mathbf{a},\mathbf{b}} M_{a_1,b_1}^{\sigma_1} \Sigma_{b_1,a_2} M_{a_2,b_2}^{\sigma_2} \Sigma_{b_2,a_3} \dots \Sigma_{b_{L-1},a_L} A_{a_L,b_L}^{\sigma_L} \Sigma_{b_L,a_1} |\boldsymbol{\sigma}\rangle = \sum_{\boldsymbol{\sigma}} \operatorname{tr} \left(M^{\sigma_1} \Sigma M^{\sigma_2} \Sigma \dots M^{\sigma_L} \Sigma \right) |\boldsymbol{\sigma}\rangle$$

By introducing $A^{\sigma} = M^{\sigma} \Sigma$ we obtain the desired form.

$$A^+ = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad A^0 = \frac{1}{2} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad A^- = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}.$$

4

- (a) A bond dimension D=1 is sufficient: $A^0=0, A^1=1$.
- (b) Here we need to introduce a minimum of D=2

$$A^0 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad A^1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

.

(c) The most compact representation of the $|W\rangle$ state is not translationally invariant. We then have to resort to different tensors and write $|W\rangle = \sum \operatorname{tr}(A^{i_A}B^{i_B}C^{i_C})|i_A,i_B,i_C\rangle$, with

$$A^{0} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad B^{0} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad C^{0} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
$$A^{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad B^{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad C^{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Note The choice of the tensors is not unique, you may well find a different combination that works.

5

The proposed solution the MATLAB script multent.m provided. The easiest way to approach the problem is to define the tensor c_{ijkl} , reshape it into the desired matrix, and then perform an SVD decomposition. Care should be taken when constructing the state, since most routines use column-major versus rowmajor reshaping.

6

Applying the definition of \hat{b}_k ,

$$\epsilon_k = -\frac{2t}{R}\cos\left(\frac{2\pi k}{R}\right).$$

In the thermodynamic limit $R \to \infty$, the gap goes to zero. Hence this Hamiltonian is gapless. Doing the inverse Fourier transform, we obtain

$$|\Psi_0\rangle = \frac{1}{\sqrt{N!}} \left(\frac{1}{\sqrt{R}} \sum_{i=1}^R \hat{a}_i^{\dagger} \right)^N |0\rangle.$$

We split the sum and write

$$\begin{split} |\Psi_0\rangle &= \frac{R^{-N/2}}{\sqrt{N!}} \left(\sqrt{L}\hat{a}_A^\dagger + \sqrt{R-L}\hat{a}_{\bar{A}}^\dagger\right)^N |0\rangle \\ &= \frac{R^{-N/2}}{\sqrt{N!}} \sum_{n=0}^N \binom{N}{n} \left(\sqrt{L}\hat{a}_A^\dagger\right)^n \left(\sqrt{R-L}\hat{a}_{\bar{A}}^\dagger\right)^{N-n} |0\rangle \\ &= \sum_{n=0}^N \frac{\sqrt{N!}}{\sqrt{n!}\sqrt{(N-n)!}} \left(\frac{L}{R}\right)^{\frac{n}{2}} \left(\frac{R-L}{R}\right)^{\frac{N-n}{2}} \frac{(\hat{a}_A^\dagger)^n}{\sqrt{n!}} \frac{(\hat{a}_{\bar{A}}^\dagger)^{N-n}}{\sqrt{(N-n)!}} |0\rangle \\ &= \sum_{n=0}^N \sqrt{\lambda_n} |n\rangle_A |N-n\rangle_{\bar{A}}, \quad \lambda_n = \binom{N}{n} \left(\frac{L}{R}\right)^n \left(1-\frac{L}{R}\right)^{N-n} \end{split}$$

This is explicitly a Schmidt decomposition, i.e. $\rho_n = \lambda_n$. Notice also that λ_n follows a binomial distribution with parameter p = L/R, therefore as $N \to \infty$ it approaches a normal distribution $\mathcal{N}(Np, Np(1-p))$. Computing the entropy is a Gaussian integral. Using $\int_{-\infty}^{\infty} e^{-x^2/\alpha^2} = \sqrt{\pi/\alpha}$ and $\int_{-\infty}^{\infty} x^2 e^{-x^2/\alpha^2} = \sqrt{\pi/\alpha^3/2}$,

$$E_A = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{n^2}{2\sigma^2}} \left(\frac{1}{2\sigma^2} n^2 + \log \sqrt{2\pi\sigma^2} \right) dn = \frac{1}{2} + \log \sqrt{2\pi\sigma^2} = \log \sigma + \frac{1 + \log(2\pi)}{2}.$$

Since $\sigma^2 = \frac{N}{R}(1 - \frac{L}{R})L \to \frac{N}{R}L$ when $N, R \to \infty$

$$E_A = \frac{1}{2}\log(L) + \frac{\log(N/R) + \log(2\pi) + 1}{2}.$$

In this case, the area law is violated. From the calculations shown above, the Hamiltonian is gapless, so we can't apply the known theorems to show an area law.

Note If you used the base-2 logarithm, you have to rescale this result by a factor $\log_2 e$.