분류 시스템의 성능 평가

회귀 분석과 달리 모수에 대한 t-검정, 신뢰 구간(confidence interval) 추정 등이 쉽지 않기 때문에 이를 보완하기 위해 다양한 성능 평가 기준이 필요하다

	Positive라고 예측	Negative라고 예측
실제 Positive	True Positive	False Negative
실제 Negative	False Positive	True Negative

참고) DS(Fraud Detection System)의 예

FDS(Fraud Detection System)는 금융 거래, 회계 장부 등에서 잘못된 거래, 사기 거래를 찾아내는 시스템을 말한다. FDS 의 예측 결과가 Positive 이면 사기 거래라고 예측한 것이고 Negative 이면 정상 거래라고 예측한 것이다. 이 결과가 사실과 일치하는지 틀리는 지에 따라 다음과 같이 말한다.

True Positive: 사기를 사기라고 정확하게 예측 True Negative: 정상을 정상이라고 정확하게 예측

False Positive: 정상을 사기라고 잘못 예측 False Negative: 사기를 정상이라고 잘못 예측

Precision 정밀도

클래스에 속한다고 출력한 샘플 중 실제로 클래스에 속하는 샘플 수의 비율 FDS 의 경우, 사기 거래라고 판단한 거래 중 실제 사기 거래의 비율. 유죄율 precision = TP/ (TP+FP)

Recall 재현율

TPR: true positive rate

실제 클래스에 속한 샘플 중에 클래스에 속한다고 출력한 샘플의 수
FDS 의 경우, 실제 사기 거래 중에서 실제 사기 거래라고 예측한 거래의 비율. 검거율 recall = TP/(TP+FN)

F Score 정밀도(Precision)과 재현율(Recall)의 가중 조화 평균 F Score = 2 x precision x recall/(precision + recall)

Accuracy 정확도

accuracy = (TP+TN)/(TP+TN+FP+FN)