Introduction to Machine Learning

Lasse Hansen

• ADA Journal Club

≥ lasse.hansen@clin.au.dk

= 25 May 2021

Terminology

Figure 1.5: Flowcharts showing how the different parts of an AI system relate to each other within different AI disciplines. Shaded boxes indicate components that are able to learn from data.

Rule-based Models

Rule-based Models

Flowcharts and decision trees based on **expert knowledge** or **learned from data**.

Rule-based Models

Flowcharts and decision trees based on *expert knowledge* or *learned from data*.

Classical Machine Learning

Classical Machine Learning

Models that learn from *structured features* such as what you find in the *SFIs* in the EHRs.

Classical Machine Learning

Models that learn from *structured features* such as what you find in the *SFIs* in the EHRs.

Representation/Deep Learning

Representation Learning

Models create their own representation from raw input data

Representation Learning

Models create their own representation from raw input data

Multiple layers of *non-linear* processing

Natural Language Processing

Natural Language Processing

Computers don't like working text. We need to convert it to numbers somehow.

Solution? Word vectors.

Handcrafted Word vectors

it was the best of times

it was the worst of times

it was the age of wisdom

it was the age of foolishness

best	the	times	was	worst	age	wisdom	foolishness
1	1	1	1	0	0	0	0
0	1	1	1	1	0	0	0
0	1	0	1	0	1	1	0
0	1	0	1	0	1	0	1

Handcrafted Word vectors

it was the best of times

it was the worst of times

it was the age of wisdom

it was the age of foolishness

Context and semantics are completely disregarded!

Instead, train a deep learning model to learn contextualized word vectors

best	the	times	was	worst	age	wisdom	foolishness
1	1	1	1	0	0	0	0
0	1	1	1	1	0	0	0
0	1	0	1	0	1	1	0
0	1	0	1	0	1	0	1

BERT

Machine Learning

- Learning from *handcrafted features*
- Encompasses a wide range of models, and very useful for most tasks
- Does not handle complex tasks like image or text analysis very well

Machine Learning

Deep Learning

- Learning from *handcrafted features*
- Encompasses a wide range of models, and very useful for most tasks
- Does not handle complex tasks like image or text analysis very well
- Creates meaningful features from raw input by itself
- Requires a lot of training data
- Very powerful, but can overfit if not careful

Machine Learning

Deep Learning

NLP

- Learning from *handcrafted features*
- Encompasses a wide range of models, and very useful for most tasks
- Does not handle complex tasks like image or text analysis very well
- Creates meaningful features from raw input by itself
- Requires a lot of training data
- Very powerful, but can overfit if not careful
- How to turn text into meaningful representations for computers
- BERT learns contextualised word representations
- Transfer learning is key to the success of deep learning and NLP

Questions?