Assignment 1 - EE1030

ee24btech11018 - D. Swaraj Sharma

SECTION-B // JEE MAIN / AIEEE

1.	If $1, \log_9$	$(3^{1-x} + 2)^{-x}$	$\log_3 (4.3^x - 1)$	are	in	A.P
	then x equ		,	[2002]		

- (a) $\log_1 4$ (c) $1 \log_4 3$ (b) $1 \log_3 4$ (d) $\log_4 3$

2.
$$l, m, n$$
 are the p^{th}, q^{th} and r^{th} term of a G.P. all positive, then $\begin{vmatrix} \log l & p & 1 \\ \log m & q & 1 \\ \log n & r & 1 \end{vmatrix}$ equals [2002]

(a) 1

(c) 1

(*b*) 2

(d) 0

3. The value of
$$2^{\frac{1}{4}}.4^{\frac{1}{8}}.8^{\frac{1}{16}}...\infty$$
 is [2002]

(a) 1

(*b*) 2

- (a) 256
- (c) 1024
- (b) 512
- (d) none of these
- 5. Sum of infinite number of terms of a GP is 20 and sum of their square is 100. The common ratio of GP is [2002]
 - (*a*) 5

(b) $\frac{3}{5}$

6.
$$1^3 - 2^3 + 3^3 - 4^3 + ... + 9^3 =$$
 [2002]

- (a) 425
- (c) 475
- (b) -425
- (d) -475

7. The sum of the series
$$\frac{1}{1.2} - \frac{1}{2.3} + \frac{1}{3.4} \cdots$$
 up to ∞ is equal to [2003]

- (a) $\log_e \left(\frac{4}{e}\right)$ (c) $\log_e 2 1$ (b) $2\log_e 2$ (d) $\log_e 2$

8. If
$$S_n = \sum_{r=0}^n \frac{1}{{}^nC_r}$$
 and $t_n = \sum_{r=0}^n \frac{r}{{}^nC_r}$, then $\frac{t_n}{S_n}$ is equal to [2004]

(a)
$$\frac{2n-1}{2}$$

(a)
$$\frac{2n-1}{2}$$
 (c) $n-1$
(b) $\frac{1}{2}n-1$ (d) $\frac{1}{2}n$

$$(d)$$
 $\frac{1}{2}n$

9. Let T_r be the $r^t h$ term of an A.P. whose first term is a and common difference is d. If for some positive integers $m, n, m \neq n, T_m = \frac{1}{n}$ and $T_n = \frac{1}{m}$, then a - d equals

- (a) $\frac{1}{m} + \frac{1}{n}$ (b) 1

10. The sum of the first n terms of the series $1^2 +$ $2.2^2 + 3^2 + 2.4^2 + 5^2 + 2.6^2 + \cdots$ is $\frac{n(n+1)^2}{2}$ when n is even. When n is odd the sum is [2004]

- (a) $\left[\frac{n(n+1)}{2}\right]^2$ (c) $\frac{n(n+1)^2}{4}$ (b) $\frac{n^2(n+1)}{2}$ (d) $\frac{3n(n+1)}{2}$

11. The sum of series $\frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \cdots$ is [2004]

- (a) $\frac{(e^2-2)}{e}$ (b) $\frac{n^2(n+1)}{2}$

- (c) $\frac{n(n+1)^2}{2e}$ (d) $\frac{(e^2-1)}{2}$

12. If the coefficients of rth, (r+1)th, and (r+2) th terms in the bionomial expansion of $(1+y)^m$ are in A.P., then m and r satisfy the equation

[2005]

- (a) $m^2 m(4r 1) + 4r^2 2 = 0$
- (b) $m^2 m(4r + 1) + 4r^2 + 2 = 0$
- (c) $m^2 m(4r + 1) + 4r^2 2 = 0$
- (d) $m^2 m(4r 1) + 4r^2 + 2 = 0$

13. If $x = \sum_{n=0}^{\infty} a^n$, $y = \sum_{n=0}^{\infty} b^n$, $z = \sum_{n=0}^{\infty} c^n$ where a, b, c are in A.P and |a| < 1, |b| < 1, |c| < 1 then x, y, zare in [2005]

- (a) G.P.
- (b) A.P.
- (c) Arithmetic Geometric Progression
- (d) H.P.
- 14. The sum of the series $1 + \frac{1}{4.2!} + \frac{1}{16.4!} + \frac{1}{64.6!} + \cdots \infty$ [2005]

- $(a) \frac{e-1}{\sqrt{e}}$ $(b) \frac{e+1}{\sqrt{e}}$

- $\begin{array}{cc}
 (c) & \frac{e-1}{2\sqrt{e}} \\
 (d) & \frac{e+1}{2\sqrt{e}}
 \end{array}$
- 15. Let $a_1, a_2, a_3 \cdots$ be terms on A.P. If $\frac{a_1 + a_2 + \cdots + a_p}{a_1 + a_2 + \cdots + a_q} = \frac{p^2}{q^2}, p \neq q$, then $\frac{a_6}{a_{21}}$ equals [2006]

- (a) $\frac{41}{11}$ (b) $\frac{7}{2}$
- $\begin{array}{cc} (c) & \frac{2}{7} \\ (d) & \frac{11}{41} \end{array}$