2학기 중간 **2025 1학년 공통수학2 보충프린**토

1. 그림과 같이 좌표평면 위에 세 점 A(-8, a), B(7, 3), C(-6, 0)이 있다. 선분 AB를 2:1로 내분하는 점을 P라 할 때, 직선 PC가 삼각형 AOB의 넓이를 이등분한다. 양수 a의 값은? (단, O는 원점이다.)

2. 그림과 같이 좌표평면 위에 직선 $l_1: x-2y-2=0$ 과 평행하고 y 절편이 양수인 직선 l_9 가 있다. 직선 l_1 이 x축, y축과 만나는 점을 각각 A, B라 하고 직선 l_2 가 x축, y축과 만나는 점을 각각 C, D라 할 때, 사각형 ADCB의 넓이가 25이다. 두 직선 l_1 과 l_2 사이의 거리를 d라 할 때, d^2 의 값을 구하시오.

3. 좌표평면 위에 점 A(0, 1)과 직선 l: y = -x + 2가 있다. 직선 l 위의 제1사분면 위의 점 B(a,b)와 x축 위의 점 C에 대하여 $\overline{AC} + \overline{BC}$ 의 값이 최소일 때, $a^2 + b^2$ 의 값은?

- \bigcirc $\frac{1}{2}$ $3\frac{3}{2}$ $\bigcirc \frac{5}{2}$ 2 1 4 2
- **4.** 원 $C: x^2 + y^2 2x ay b = 0$ 에 대하여 좌표평면에서 원 C의 중심이 직선 y=2x-1 위에 있다. 원 C와 직선 y=2x-1이 만나는 서로 다른 두 점을 A, B라 하자.

원 C 위의 점 P에 대하여 삼각형 ABP의 넓이의 최댓값이 4일 때, a+b의 값은? (단, a, b는 상수이고, 점 P는 점 A도 아니고 점 B도 아니다.)

- ② 2 3 3 4 **⑤** 5 1
- **5.** 좌표평면에서 두 양수 a, b에 대하여 원 $(x-a)^2 + (y-b)^2 = b^2$ 을 x축의 방향으로 3만큼, y축의 방향으로 -8만큼 평행이동한 원을 C라 하자. 원 C가 x축과 y축에 동시에 접할 때, a+b의 값은?
- ① 5 (2) 6 ③ 7 (4) 8 (5) 9

6. 두 자연수 m, n에 대하여 원 C: (x-2)²+(y-3)²=9를 x축의 방향으로 m만큼 평행이동한 원을 C₁, 원 C₁을 y축의 방향으로 n만큼 평행이동한 원을 C₂ 라 하자. 두 원 C₁, C₂와 직선 l: 4x-3y=0은 다음 조건을 만족시킨다.

(가) 원 G은 직선 l과 서로 다른 두 점에서 만난다.

() 원 C_{0} 은 직선 l과 서로 다른 두 점에서 만난다.

m+n의 최댓값을 구하시오.

7 그림과 같이 좌표평면 위의 점 A(a, 2)(a>2)를 직선 y=x에 대하여 대칭이동한 점을 B, 점 B를 x축에 대하여 대칭이동한 점을 C라 하자. 두 삼각형 ABC, AOC의 외접원의 반지름의 길이를 각각 r_1, r_2 라 할 때, $r_1 \times r_2 = 18\sqrt{2}$ 이다. 상수 a에 대하여 a^2 의 값을 구하시오. (단, O는 원점이다.)

8. 좌표평면에서 두 직선 y=2x+6, y=-2x+6에 모두 접하고 점 (2,0)을 지나는 서로 다른 두 원의 중심을 각각 O_1 , O_2 라 할 때, 선분 O_1O_2 의 길이를 구하시오.

9. 두 실수 a, b에 대하여 이차함수 $f(x)=a(x-b)^2$ 이 있다. 중심이 함수 y=f(x)의 그래프 위에 있고 직선 $y=\frac{4}{3}x$ 와 x 축에 동시에 접하는 서로 다른 원의 개수는 3이다. 이 세 원의 중심의 x 좌표를 각각 x_1 , x_2 , x_3 이라 할 때, 세 실수 x_1 , x_2 , x_3 이 다음 조건을 만족시킨다.

(7) $x_1 \times x_2 \times x_3 > 0$

(나) 세 점 $(x_1, f(x_1)), (x_2, f(x_2)), (x_3, f(x_3))$ 을 꼭짓점으로 하는 삼각형의 무게중심의 y좌표는 $-\frac{7}{3}$ 이다.

 $f(4) \times f(6)$ 의 값을 구하시오.

10. 두 자연수 $a,\ b(b \le 20)$ 에 대하여

전체집합 $U=\{x|x$ 는 20 이하의 자연수 $\}$ 의 두 부분집합

 $A = \{x | x 는 a$ 의 배수, $x \in U\}$, $B = \{x | x 는 b$ 의 약수, $x \in U\}$

가 다음 조건을 만족시킨다.

 $(7) \{3, 6\} \subset A \cap B$

(나) n(B-A)=2

집합 A-B의 모든 원소의 합의 최솟값을 구하시오.

11. 전체집합 $U = \{x | x \vdash 10 \text{ 이하의 자연수}\}$ 의 부분집합 $A = \{x | x \vdash 10$ 의 약수 $\}$ 에 대하여

 $X-A\subset A-X$ 를 만족시키는 U의 부분집합 X의 개수를 구하시오.

- **12.** 전체집합 $U = \{1, 2, 4, 8, 16, 32\}$ 의 두 부분집합 A, B가 다음 조건을 만족시킨다.
 - (가) 집합 $A \cup B^C$ 의 모든 원소의 합은 집합 B A의 모든 원소의 합의 6배이다.
 - (나) $n(A \cup B) = 5$

집합 A의 모든 원소의 합의 최솟값을 구하시오. (단, $2 \le n(B-A) \le 4$)

13. 전체집합 $U = \{x \mid x \vdash 10 \text{ 이하의 자연수}\}$ 의 두 부분집합 $A = \{1, 2, 3, 4, 5\}, \quad B = \{3, 4, 5, 6, 7\}$

에 대하여 집합 U의 부분집합 X가 다음 조건을 만족시킬 때, 집합 X의 모든 원소의 합의 최솟값은?

(71) n(X) = 6

(나) A - X = B - X

 $(\Gamma_{+})(X-A)\cap(X-B)\neq\emptyset$

① 26

② 27

③ 28

④ 29

(5) 30

- **14.** 전체집합 $U = \{x | x \vdash 20 \text{ 이하의 자연수}\}$ 의 두 부분집합 *A. B*가 다음 조건을 만족시킨다.
 - (7) n(A) = n(B) = 8, $n(A \cap B) = 1$
 - (나) 집합 *A*의 임의의 서로 다른 두 원소의 합은 9의 배수가 <u>아니다.</u>
 - (다) 집합 *B*의 임의의 서로 다른 두 원소의 합은 10의 배수가 <u>아니다.</u>

집합 A의 모든 원소의 합을 S(A), 집합 B의 모든 원소의 합을 S(B)라 할 때, S(A) - S(B)의 최댓값을 구하시오.

<해설>

1. 선분의 내분을 활용하여 문제 해결하기

직선 PC와 선분 AO가 만나는 점을 Q라 하고 삼각형 AOB의 넓이를 S라 하자.

두 삼각형 AOP, AQP의 넓이가 각각 $\frac{2}{3}S$,

 $\frac{1}{2}S$ 이므로 삼각형 QOP의 넓이는 $\frac{1}{6}S$ 이다.

두 삼각형 AQP와 QOP의 넓이의 비는

선분 AQ와 선분 QO의 길이의 비와 같다.

두 삼각형 AQP와 QOP의 넓이의 비가 3:1이므로

$$\left(\frac{3\times0+1\times(-8)}{3+1}, \frac{3\times0+1\times a}{3+1}\right) = \left(-2, \frac{a}{4}\right)$$

점 P의 좌표는

$$\left(\frac{2\times 7+1\times (-8)}{2+1}, \frac{2\times 3+1\times a}{2+1}\right) = \left(2, \frac{a+6}{3}\right)$$

직선 PC의 방정식은

$$y = \frac{\frac{a+6}{3}}{2-(-6)}(x+6) = \frac{a+6}{24}(x+6)$$

점 Q가 직선 PC 위의 점이므로

$$\frac{a}{4} = \frac{a+6}{24} \times (-2+6)$$
. 따라서 $a = 12$

2. 직선의 방정식 이해하기

두 직선 l_1 , l_5 가 서로 평행하므로

 $l_2: x-2y+a=0 \; (a>0)$

(사각형 ADCB의 넓이)

=(삼각형 ADC의 넓이)+(삼각형 ACB의 넓이)

$$=\frac{1}{2}\times(a+2)\times\frac{a}{2}+\frac{1}{2}\times(a+2)\times1$$

$$= \frac{1}{2}(a+2)\left(\frac{a}{2}+1\right) = \frac{a^2}{4}+a+1 = 25$$

 $a^2 + 4a - 96 = 0$. (a+12)(a-8)=0

a = -12 또는 a = 8, a > 0이므로 a = 8

두 직선 l_1 과 l_2 사이의 거리는 직선 l_1 위의 점 $\mathbf{A}(2,\ 0)$ 과 직선

 $l_2: x-2y+8=0$ 사이의 거리와 같으므로

$$d = \frac{|2+8|}{\sqrt{1^2 + (-2)^2}} = 2\sqrt{5} \ . \ 따란처 \ d^2 = 20$$

3. 대칭이동을 이용하여 추론하기

점 B가 직선 y=-x+2 위의 점이므로 점 B의 좌표는 (a,-a+2)이다. 점 A를 x축에 대하여 대칭이동한 점을 A'이라하면 $\overline{AC}+\overline{BC}=\overline{A'C}+\overline{BC}\geq\overline{A'B}$ 이고 $\overline{A'B}$ 가 최소일 때

A'B²도 최소이므로

$$\overline{A'B}^2 = a^2 + (-a+3)^2 = 2a^2 - 6a + 9 = 2\left(a - \frac{3}{2}\right)^2 + \frac{9}{2}$$

0 < a < 2이므로 $a = \frac{3}{2}$ 에서 $\overline{AC} + \overline{BC}$ 의 값은 최소이다.

$$b = -a + 2 = \frac{1}{2}$$
 따라서 $a^2 + b^2 = \frac{9}{4} + \frac{1}{4} = \frac{5}{2}$

4. 원의 방정식을 활용하여 문제해결하기

 $x^{2} + y^{2} - 2x - ay - b = 0$

$$(x-1)^2 + \left(y - \frac{a}{2}\right)^2 = \frac{a^2}{4} + b + 1$$
이므로

원 C의 중심의 좌표는 $\left(1, \frac{a}{2}\right)$,

반지름의 길이는 $\sqrt{\frac{a^2}{4}+b+1}$

원 C의 중심이 직선 y=2x-1 위에 있으므로

 $\frac{a}{2} = 2 \times 1 - 1$ 에서 a = 2,

원 C의 반지름의 길이는 $\sqrt{b+2}$

삼각형 ABP의 밑변을 선분 AB라 하면

선분 AB는 원 C의 지름이므로 삼각형 ABP의

높이의 최댓값은 원 *C*의 반지름의 길이와 같다.

그러므로 삼각형 ABP의 넓이의 최댓값은

$$\frac{1}{2} \times 2\sqrt{b+2} \times \sqrt{b+2} = 4$$

b+2=4, b=2

따라서 a+b=4

5. 평행이동 이해하기

원 $(x-a)^2+(y-b)^2=b^2$ 은 중심의 좌표가 (a,b)이고 반지름의 길이가 b이므로 원 C는 중심의 좌표가 (a+3,b-8)이고 반지름의 길이가 b이다.

원 C가 x축과 y축에 동시에 접하므로 a+3=|b-8|=b

 $b-8 \neq b$ 이므로 -b+8=b.

b=4이고 a+3=4, a=1이므로 a+b=5

6. 평행이동 이해하기

원 C이 직선 l과 서로 다른 두 점에서 만나려면 원 C의 중심 (2+m,3)과 직선 4x-3y=0과의 거리가 원의 반지름의 길이인 3보다 작아야 하므로

$$\frac{|4(2+m)-9|}{\sqrt{4^2+(-3)^2}} < 3 \text{ on } \lambda - \frac{7}{2} < m < 4$$

따라서 자연수 m의 값은 1, 2, 3이다. 원 C_0 가 직선 l과 서로 다른 두 점에서 만나려면 원 C_2 의 중심 (2+m,3+n)과 직선 4x-3y=0과의 거리가 원의 반지름의 길이인 3보다 작아야 하므로

$$\frac{ \ |\ 4(2+m)-3(3+n)\ |}{\sqrt{4^2+(-3)^2}} < 3 \ \ \circlearrowleft \ |\ \lambda| \ \ -14 < 4m-3n < 16$$

(i)
$$m=1$$
일 때, $-4 < n < 6$ $(n=1,2,\cdots,5)$

(ii)
$$m=2$$
일 때, $-\frac{8}{3} < n < \frac{22}{3}$ $(n=1,2,\,\cdots,7)$

m+n의 최댓값은 3+8=11이다.

7. 대칭이동을 활용하여 문제 해결하기

점 A(a, 2)를 직선 y = x에 대하여 대칭이동한 점은 B(2, a)이고, 점 B를 x축에 대하여 대칭이동한 점은 C(2, -a)

 $\overline{OA} = \overline{OB} = \overline{OC} = \sqrt{a^2 + 4}$ 이므로 점 O는 삼각형 ABC의 외접원의 중심이고 $r_1 = \overline{OA}$

선분 BC와 직선 y=x가 만나는 점을 D라 하면 삼각형 BDA는 직각이등변삼각형이므로 ∠ABD = ∠ABC = 45°

두 삼각형 ABC, AOC의 외접원을 각각 C_1 , C_2 라 하자.

 \angle ABC는 원 C_1 의 호 AC에 대한 원주각이고, \angle AOC는 원 C_1 의 호 AC에 대한 중심각이므로 ∠AOC=2×∠ABC=90°

 $\angle AOC = 90$ °이므로 선분 AC는 원 C_9 의 지름이다.

$$r_2 = \frac{\sqrt{2}}{2} \times \overline{\mathrm{OA}} = \frac{\sqrt{2}}{2} r_1$$

$$r_1 \times r_2 = \frac{\sqrt{2}}{2} r_1^2 = 18 \sqrt{2}$$
, $r_1 = 6$

$$\overline{OA} = \sqrt{a^2 + 4} = 6$$
. 따라서 $a^2 = 32$

[참고]

A(a, 2), C(2, -a)이므로

직선 OA의 기울기 $\frac{2}{a}$, 직선 OC의 기울기 $-\frac{a}{2}$

두 직선 OA, OC의 기울기의 곱이

 $\frac{2}{a} \times \left(-\frac{a}{2}\right) = -1$ 이므로 두 직선 OA, OC가 서로 수직이다.

8 원과 직선의 위치 관계를 활용하여 문제해결하기

두 직선 y = 2x + 6, y = -2x + 6에 모두 접하는 원의 중심을 C(a, b), 반지름의 길이를 r이라 하자. 점 C와 직선 2x-y+6=0 사이의 거리는 r이고 점 C와 직선 2x+y-6=0 사이의 거리도 r이므로

$$r = \frac{|2a-b+6|}{\sqrt{2^2 + (-1)^2}} = \frac{|2a+b-6|}{\sqrt{2^2 + 1^2}} \cdots \bigcirc$$

에서 |2a-b+6|=|2a+b-6|이고,

2a-b+6=2a+b-6이면 b=6.

2a-b+6=-(2a+b-6)이면 a=0이다.

중심이 C(a, 6)이고 두 직선 y = 2x + 6.

y = -2x + 6에 모두 접하는 원은 (2, 0)을 지날 수

없으므로 $b \neq 6$

그러므로 a=0이고, 원의 중심 C의 좌표는 C(0,b)점 C(0, b)에서 점 (2, 0)까지의 거리가 r이므로

□에 의하여

$$\sqrt{(2-0)^2+(0-b)^2} = \frac{|b-6|}{\sqrt{5}}$$

$$b^2 + 4 = \frac{(b-6)^2}{5}$$

 $4b^2 + 12b - 16 = 4(b+4)(b-1) = 0$

에서 b=-4 또는 b=1

그러므로 두 직선 y=2x+6, y=-2x+6에 모두 접하는 두 원의 중심 01, 09의 좌표는

(0, -4), (0, 1)

따라서 선분 O₁O₂의 길이는 5

9. 원과 직선의 위치 관계를 활용하여 추론하기

 $x_1 < x_2 < x_3$ 이라 하면 조건 (가)에 의하여 $x_1 > 0$, $x_2 > 0$, $x_3 > 0$ 또는 $x_1 < 0$, $x_2 < 0$, $x_3 > 0$

조건 (나)에 의하여 세 점 $(x_1, f(x_1)), (x_2, f(x_2)), (x_3, f(x_3))$ 을 꼭짓점으로 하는 삼각형의 무게중심의 y좌표가 음수이므로 a<0원의 중심을 P(p, q)라 하면 q<0

점 P와 직선 4x-3y=0 사이의 거리는

점 P와 x축 사이의 거리 -q와 같다.

$$\frac{|4p-3q|}{\sqrt{4^2+(-3)^2}} = \frac{|4p-3q|}{5} = -q$$

(i) 4p-3q=-5q인 경우

q = -2p이므로 점 P는 이차함수 y = f(x)의 그래프와 직선 y = -2x가 만나는 점이다.

(ii) -(4p-3q)=-5q인 경우

 $q = \frac{1}{2}p$ 이므로 점 P는 이차함수 y = f(x)의 그래프와 직선

 $y = \frac{1}{2}x$ 가 만나는 점이다.

조건 (가)와 (i), (ii)에 의하여

 $x_1 < 0$, $x_2 < 0$, $x_3 > 0$ 이고 b < 0

이차함수 y=f(x)의 그래프는 직선 y=-2x에 접하고, 직선 $y=\frac{1}{2}x$ 와 서로 다른 두 점에서 만난다.

함수 y = f(x)의 그래프의 개형은 다음과 같다.

실수 t에 대하여 $P(t, a(t-b)^2)$ 이라 하자.

① 점 P가 직선 y=-2x 위의 점인 경우

t에 대한 이차방정식 $a(t-b)^2 = -2t$ 가 중근 x_3 을 갖는다.

$$at^2 - 2(ab - 1)t + ab^2 = 0 \cdots \bigcirc$$

이차방정식 $at^2 - 2(ab - 1)t + ab^2 = 0$ 의 판별식을 D라 하면

$$\frac{D}{4} = (ab - 1)^2 - a^2b^2 = 0$$

 $a^2b^2 - 2ab + 1 - a^2b^2 = 0$

$$b = \frac{1}{2a} \cdots \bigcirc$$

①, ⓒ에서 $at^2 + t + \frac{1}{4a} = 0$

$$a\left(t+\frac{1}{2a}\right)^2=0, \ x_3=-\frac{1}{2a}$$

② 점 P가 직선 $y = \frac{1}{2}x$ 위의 점인 경우

t에 대한 이차방정식 $a(t-b)^2=rac{1}{2}t$ 가 서로 다른 두 근 $x_1,\ x_2$ 를

갖는다.

$$2at^2 - (4ab + 1)t + 2ab^2 = 0$$

$$\bigcirc$$
에서 $b = \frac{1}{2a}$ 이므로 $2at^2 - 3t + \frac{1}{2a} = 0$

이차방정식의 근과 계수의 관계에 의하여 $x_1 + x_2 = \frac{3}{2a}$

조건 (나)와 ①, ②에 의하여

$$\frac{f(x_1) + f(x_2) + f(x_3)}{3} = -\frac{7}{3}$$

$$\begin{split} f(x_1) + f(x_2) + f(x_3) &= \frac{x_1}{2} + \frac{x_2}{2} - 2x_3 \\ &= \frac{1}{2}(x_1 + x_2) - 2x_3 = \frac{1}{2} \times \frac{3}{2a} - 2 \times \left(-\frac{1}{2a}\right) \\ &= \frac{3}{4a} + \frac{1}{a} = \frac{7}{4a} = -7 \end{split}$$

$$a = -\frac{1}{4}$$

©에서
$$b=\frac{1}{2a}$$
이므로 $b=-2$

$$f(x) = -\frac{1}{4}(x+2)^2$$

따라서 $f(4) \times f(6) = 144$

10. 집합의 포함 관계를 이용하여 추론하기

 $A\cap B\subset A$ 이므로 조건 (가)에서 $\{3,6\}\subset A$

3, 6이 모두 a의 배수이므로 a=1 또는 a=3

a=1이면 A=U가 되어 $B-A=\emptyset$ 이므로

조건 (나)를 만족시키지 않는다.

그러므로 a=3이고, $A=\{3,6,9,12,15,18\}$

또한 $A \cap B \subset B$ 이므로 조건 (가)에서 $\{3,6\} \subset B$

3, 6이 모두 *b*의 약수이므로

b = 6 또는 b = 12 또는 b = 18

(i) b=6일 때

B={1, 2, 3, 6}이므로 B-A={1, 2}가 되어

조건 (나)를 만족시킨다.

A−*B*= {9, 12, 15, 18}이므로

집합 A-B의 모든 원소의 합은

9+12+15+18=54

(ii) b=12일 때

B= {1, 2, 3, 4, 6, 12}이므로

B− *A* = {1, 2, 4}가 되어

조건 (나)를 만족시키지 않는다.

(iii) b=18일 때

B= {1, 2, 3, 6, 9, 18}이므로

 $B-A=\{1,2\}$ 가 되어 조건 (나)를 만족시킨다.

A−*B*={12, 15}이므로

집합 A-B의 모든 원소의 합은 12+15=27

따라서 (i), (ii), (iii)에 의하여

집합 A-B의 모든 원소의 합의 최솟값은 27

11. 집합의 연산을 이용하여 추론하기

 $X-A \subset A-X \\ |X| \quad (X-A) \cap (A-X) = X-A \\ |X| \quad (X-A) \cap (A-X) = (X\cap A^c) \cap (A\cap X^c)$

 $= (X \cap X^c) \cap (A \cap A^c) = \emptyset \cap \emptyset = \emptyset$

즉 $X-A=\varnothing$ 이므로 $X\subset A=\{1,2,5,10\}$ 이므로 구하는 부분집합 X의 개수는 $2^4=16$

12. 집합의 연산을 이용하여 추론하기

집합 B-A의 모든 원소의 합을 k라 하자.

 $A \cup B^C = (A^C \cap B)^C = (B - A)^C$ 이고 조건 (가)에서 집합 $A \cup B^C$ 의 모든 원소의 합은 6k이므로 전체집합 U의 모든 원소의 합은 7k이다.

7k = 1 + 2 + 4 + 8 + 16 + 32 = 63, k = 9

집합 B-A의 모든 원소의 합이 9이므로 $B-A=\{1,8\}$

 $A \cap (B-A) = \emptyset$ 이므로 $A \subset (B-A)^C = \{2, 4, 16, 32\},$

 $A\cup B=A\cup (B-A), n(A\cup B)=n(A)+n(B-A)$ 이고 조건 (나)에 서

 $n(A \cup B) = 5$ 이므로 n(A) = 3. 따라서 집합 A의 모든 원소의 합의 최솟값은 $A = \{2, 4, 16\}$ 일 때 2 + 4 + 16 = 22

13. 집합의 연산을 이용하여 추론하기

 $A-X\subset A,\ B-X\subset B$ 이고 조건 (나)에서 A-X=B-X이므로 $A-X=B-X\subset A\cap B=\{3,4,5\}$

 $A-X\subset\{3,4,5\}$ 에서 $\{1,2\}\subset X$ 이코

 $B-X\subset \{3,4,5\}$ 에서 $\{6,7\}\subset X$ 이므로 $\{1,2,6,7\}\subset X$ … ① 조건 (다)에서

 $(X-A)\cap (X-B) = (X\cap A^C)\cap (X\cap B^C) = X\cap (A^C\cap B^C)$

 $= X \cap (A \cup B)^C = X \cap \{8, 9, 10\} \neq \emptyset \cdots \bigcirc$

조건 (7)에서 n(X)=6이고

①에 의하여 $n(X \cap \{3, 4, 5, 8, 9, 10\}) = 2$ ··· ©

ⓒ에 의하여 세 원소 8, 9, 10 중 적어도 하나의 원소는 집합 X에 속해야 한다.

집합 X의 모든 원소의 합이 최소이려면 $8 \in X$ 이고

©에 의하여 다섯 원소 3, 4, 5, 9, 10 중 가장 작은 원소는 집합 X에 속해야 하므로 $3 \in X$ 따라서 $X = \{1, 2, 3, 6, 7, 8\}$ 일 때 모든 원소의 합이 최소이고 집합 X의 모든 원소의 합의 최솟값은 1 + 2 + 3 + 6 + 7 + 8 = 27

14. 집합의 성질을 이용하여 추론하기

조건 (7), (4), (4), (4)를 만족시키는 두 집합 (4) 등에 대하여 (4) 등이 있어 최대가 되려면 (4) 등이 없이 최대이고 (4) 등이 없이 최소이어야 한다. (4) 등은 나는 나머지가 같은 원소들로 이루어진 부분집합을 표로 나타내면 다음과 같다.

나머	부분집	나머	부분집
지	합	지	합
1	{1, 10, 19	8	{8, 17}
2	{2, 11, 20	7	{7, 16}
3	{3, 12}	6	{6, 15}
4	{4, 13}	5	{5, 14}
0	{9}	0	{18}

나머지의 합이 0 또는 9가 되는 두 부분집합 중 한 집합의 원소들만 집합 A에 속할 수 있다. 따라서 S(A)가 최대가 되려면 집합 U의 부분집합 $\{1, 10, 19\}, \{2, 11, 20\}, \{6, 15\}, \{5, 14\}, \{18\}의 원소 중 큰 수부터 차례대로 집합 <math>A$ 의 원소가 되어야 한다. 조건 (T)에서 n(A)=8이므로 S(A)가 최대가 되기 위해 가능한 집합 A는

{6, 10, 11, 14, 15, 18, 19, 20} ····· → 10으로 나눈 나머지가 같은 원소들로 이루어진 부분집합을 표로 나타내면 다음과 같다.

나머	부분집	나머	부분집
지	합	지	합
1	{1, 11}	9	{9, 19}
2	$\{2, 12\}$	8	{8, 18}
3	{3, 13}	7	{7, 17}
4	{4, 14}	6	$\{6, 16\}$
5	{5}	5	{ 15}
0	{10}	0	{ 20}

나머지의 합이 0 또는 10이 되는 두 부분집합 중 한 집합의 원소들만 집합 B에 속할 수 있다. 따라서 S(B)가 최소가 되려면 집합 U의 부분집합

{1, 11}, {2, 12}, {3, 13}, {4, 14}, {5}, {10}의 원소 중 작은 수부터 차례대로 집합 B의 원소가 되어야 한다.

조건 (7)에서 n(B)= 8이므로 S(B)가 최소가 되기 위해 가능한 집합 B는 $\{1, 2, 3, 4, 5, 10, 11, 12\}$ ····· ©

①과 ©에서 조건 (가)의 $n(A\cap B)=1$ 을 만족시키려면 10, 11은 동시에 집합 $A\cap B$ 에 속할 수 없다.

 $10 \in B$, $11 \in B$ 이면 $10 \not\in A$ 또는 $11 \not\in A$ 이다. 이때 1, 2, 5 중 적어도 하나가 집합 A에 속해야 하므로 $n(A \cap B) \neq 1$ 이 되어 조건 (7)를 만족시키지 않는다.

S(B)가 최소가 되려면 $10 \in B$, $11 \not\in B$ 이어야 한다. 따라서 $A = \{6, 10, 11, 14, 15, 18, 19, 20\}$, $B = \{1, 2, 3, 4, 5, 10, 12, 13\}$ 일 때 S(A) - S(B)의 최댓값은 63이다.