Experimental Class

Xin Jin

Image upsampling

The original color image is represented as a $64 \times 64 \times 3$ matrix of intensities *I*. The image is provided by "lena64color.tiff". The downsampled color image is represented as a $32 \times 32 \times 3$ matrix of intensities *D*. The image is provided by "lena32color.tiff". Your job is to upsample the image *D* to be a 64×64 color image, by guessing the missing pixels. Generally, for a upsampling application, the original high resolution image is not available. If the upsampled image will be represented by *U*, we can try to guarantee that *U* satisfies the condition: $U_{ij} = D_{mk}$, m = i/2+1, k = j/2+1. So:

- 1. Please design the convex optimization model to derive the upsampled image. You can think about minimizing ℓ_2 , ℓ_1 and ℓ_∞ norm and compare the effect of each of them;
- 2. Please try to introduce some regularization items to your model for some smooth regions to guarantee the smoothness in the variation of intensities, such as \(\ell_2\) regularization:

$$\sum_{i=2}^{512} \sum_{i=2}^{512} \left(\left(U_{ij} - U_{i-1,j} \right)^2 + \left(U_{ij} - U_{i,j-1} \right)^2 \right) ,$$

and ℓ_1 regularization:

$$\sum_{i=2}^{512} \sum_{i=2}^{512} \left(\left| U_{ij} - U_{i-1,j} \right| + \left| U_{ij} - U_{i,j-1} \right| \right) \cdot$$

- 3. Image *I* cannot be used in the model. I
- 4. Compare the upsampled image U with I using PSNR (Average PSNR of RGB). Let's see who can win among you.
- 5. Please provide:
 - (\mathcal{T}) The m file (including the code of calculating the PSNR performance) and the upsampled images;
 - (1) The report describes your model, your implementation, results and performance comparison in detail.