Linear Algebra I Summary of Lectures: Inner Product Spaces

and Bilinear and Sesquilinear Forms

Dr Nicholas Sedlmayr

- 1. Definition 3.1: If V is a vector space over \mathbb{R} , then an inner product on V is a map $(\langle | \rangle)$ from $V \times V$ to \mathbb{R} with the following properties:
 - (a) Symmetry: $\langle v|w\rangle = \langle w|v\rangle \ \forall v, w \in V$.
 - (b) Linearity: $\langle u|\lambda v + \mu w \rangle = \lambda \langle u|v \rangle + \mu \langle u|w \rangle \ \forall u, v, w \in V \ \text{and} \ \forall \lambda, \mu \in \mathbb{R}.$
 - (c) Positive definiteness:
 - (i) $\langle v|v\rangle \geq 0 \ \forall v \in V$, and
 - (ii) $\langle v|v\rangle = 0$ iff v = 0.

As the inner product is linear with respect to both variables it is sometimes called bilinear.

- 2. Definition 3.2: A finite dimensional vector space over \mathbb{R} with an inner product defined is called a Euclidean space.
- 3. Definition 3.3: The norm (or length) of a vector v is written as ||v|| and defined by

$$||v|| = \sqrt{\langle v|v\rangle},$$

the positive square root of the inner product of v with itself. The distance between two vectors v and w is written as d(v, w) and is d(v, w) = ||v - w||.

- 4. Proposition 3.4: $\forall v \in V$, where V is a Euclidean space, and $\forall \lambda \in \mathbb{R}$ then $||\lambda v|| = |\lambda| \cdot ||v||$.
- 5. Proposition 3.5: The "Cauchy-Schwarz inequality" says that $\forall v, w \in V$, where V is a Euclidean space, then

$$|\langle v|w\rangle| \leq ||v|| \cdot ||w||$$
.

6. Proposition 3.6: The "triangle inequality" says that $\forall v, w \in V$, where V is a Euclidean space, then

$$||v+w|| \le ||v|| + ||w||$$
.

7. Definition 3.7: If V is a Euclidean space, and $v, w \in V$, then v and w are said to be orthogonal if $\langle v|w\rangle=0$. If both v and w are nonzero, then the angle between v and w is defined to be $\theta,\,0\leq\theta\leq\pi$ and

$$\cos \theta = \frac{\langle v|w\rangle}{||v|| \cdot ||w||}.$$