Électronique Numérique

Année académique 2020-2021

Solution

TD N°1 : Logique combinatoire

Pr: J-M. Redouté

Assistants: L. Burger

A. Halin

T. Peers

Question 1 : Analyse combinatoire

Figure 1 – Annotations de l'analyse du circuit.

La sortie du circuit F correspond à la sortie du MUX 4-1. Commençons par calculer les bits de sélection S0 et S1 de ce multiplexeur. L'analyse du circuit est annotée en rouge sur la figure 1.

Calcul de S0 et S1

Les sorties du HA, S_{HA} et C_{HA} , sont données par

$$S_{HA} = A \oplus X$$

$$C_{HA} = AX$$

Le bit de sélection S1 combine les sorties du HA via une porte OR

$$S1 = A \oplus X + AX$$

$$= \overline{A}X + A\overline{X} + AX$$

$$= X + A + AX$$

$$= A + X$$

Afin de trouver S0, analysons le mini-circuit à 2 étages (encadré en vert sur la figure) composés de 2 portes XOR et d'une porte NXOR. Les portes XOR et NXOR du 1er étage ont les mêmes entrées 1 et renvoient donc en sortie 2 respectivement K et \overline{K} . La porte XOR du 2ème

^{1.} C_{HA} et S1

^{2.} Pour info, $K = A \oplus X$

étage possède K et \overline{K} en entrée et renvoie donc toujours "1" en sortie.

Le bit de sélection S0 est la sortie d'une porte OR

$$S0 = 1 + S1$$
$$= 1$$

Testons les différentes combinaisons des bits de sélection S0 = 1 et S1 = A + X

$$\overline{S1}.\overline{S0} = 0
\overline{S1}.S0 = \overline{A}.\overline{X}
S1.\overline{S0} = 0
S1.S0 = A + X$$

Les entrées E0 et E2 sont inutiles 3 car elles n'interviennent pas dans l'expression de la sortie F. Seuls les calculs de E1 et E3 sont utiles. En effet, F est donné par

$$F = \overline{S1}.\overline{S0}.E0 + \overline{S1}.S0.E1 + S1.\overline{S0}.E2 + S1.S0.E3$$
$$= 0 + \overline{A}.\overline{X}.E1 + 0 + (A + X).E3$$

Calcul de E1

Les entrées du DEC 3-8 sont X (car $\overline{1 \oplus X} = \overline{\overline{X}} = X$), Y et Z, où X est le bit de poids fort et Z le bit de poids faible. Pour rappel, un décodeur est un générateur de mintermes. Ici, les sorties sont complémentées!

Le bit d'entrée E1 peut être exprimé comme une somme de mintermes

$$E1 = \sum m(0, 1, 4, 5, 6, 7)$$

En effet, plusieurs transformations du circuit permettent d'obtenir une porte OR à 6 entrées (= les 6 sorties/mintermes du DEC 3-8) :

- la porte XOR peut être remplacée par une porte NOT car $1 \oplus X = \overline{X}$
- une porte NAND dont les entrées sont complémentées est équivalent à une porte OR car $\overline{\overline{A}.\overline{B}}=A+B$

Ainsi, les 3 portes NAND (avec leurs entrées complémentées) peuvent être remplacées ⁴ par 3 portes OR. Le schéma simplifié du circuit est visible à la figure 2. Finalement, les 3 portes OR peuvent être combinées en une porte OR à 6 entrées.

L'expression booléenne de E1 est obtenue via une table de Karnaugh (voir figure 3)

$$E1 = X + \overline{Y}$$

^{3.} Pour info, E0 = 1 et E2 = 0

^{4. 2} transformations sur 3 sont encadrées en rouge sur la figure 1

FIGURE 2 – Schéma simplifié du DEC 3-8.

FIGURE 3 – Table de Karnaugh du bit d'entrée E1.

Calcul de E3

Le bit d'entrée E3 est donné par la porte OR

$$E3 = C_{FA}.\overline{C_{FA}} + S_{FA}$$

$$= 0 + W \oplus W \oplus Y$$

$$= (W \oplus W) \oplus Y$$

$$= 0 \oplus Y$$

$$= Y$$

Sortie du circuit F

La sortie du MUX 4-1, F, est donné par

$$F = \overline{A}.\overline{X}.E1 + (A + X).E3$$

$$= \overline{A}.\overline{X}.(X + \overline{Y}) + (A + X).Y$$

$$= \overline{A}.\overline{X}.X + \overline{A}.\overline{X}.\overline{Y} + A.Y + X.Y$$

$$= \overline{A}.\overline{X}.\overline{Y} + A.Y + X.Y$$

Sa table de vérité est visible à la table 1.

Implémentation de F avec un nombre minimum de portes NOR

Afin d'implémenter F avec un nombre minimum de portes NOR, F doit être exprimé sous la forme d'un produit de somme optimal. A cette fin, nous utilisons la table de Karnaugh sur \overline{F} (pour obtenir \overline{F} = somme de produit optimal) suivi du théorème De Morgan (pour obtenir F = produit de somme optimal).

A	X	Y	F	\overline{F}	m_i
0	0	0	1	0	0
0	0	1	0	1	1
0	1	0	0	1	2
0	1	1	1	0	3
1	0	0	0	1	4
1	0	1	1	0	5
1	1	0	0	1	6
1	1	1	1	0	7

Table 1 – Table de vérité de F et \overline{F} .

Via la table de Karnaugh (voir figure 4), nous obtenons

$$\overline{F} = A.\overline{Y} + X.\overline{Y} + \overline{A}.\overline{X}.Y$$

FIGURE 4 – Table de Karnaugh de \overline{F} .

L'application du théorème De Morgan permet d'obtenir l'expression de F sous forme d'une produit de somme

$$F = (\overline{A} + Y).(\overline{X} + Y).(A + X + \overline{Y})$$

Le double complément de F, $\overline{\overline{F}}$, nous donne directement l'implémentation de F avec un nombre minimum de portes NOR (visible figure 5)

$$F = \overline{\overline{F}}$$

$$= \overline{(\overline{A} + Y).(\overline{X} + Y).(A + X + \overline{Y})}$$

$$= \overline{(\overline{\overline{A} + Y}) + (\overline{\overline{X} + Y}) + (\overline{A} + X + \overline{Y})}$$

FIGURE 5 – Implémentation de F avec un nombre minimum de portes NOR.

Question 2 : Synthèse combinatoire

La solution présentée n'est pas unique.

1. Déterminez les entrées/sorties du système en veillant à optimiser le nombre de bits utilisés.

Entrées

(4 bits)

$$C_c = \begin{cases} 1 & \text{si le bouton "café court" est pressé} \\ 0 & \text{sinon} \end{cases}$$

$$C_l = \begin{cases} 1 & \text{si le bouton "café long" est pressé} \\ 0 & \text{sinon} \end{cases}$$

$$L = \begin{cases} 1 & \text{si le bouton "lait" est press\'e} \\ 0 & \text{sinon} \end{cases}$$

$$N_L = \begin{cases} 1 & \text{si le capteur indique que le "niveau de lait" est insuffisant} \\ 0 & \text{sinon} \end{cases}$$

Remarque : Le sucre n'a aucune influence puisqu'il n'impacte ni le prix (identique avec ou sans sucre) ni l'affichage en tant que tel (cf : énoncé "[Le client n'a pas] la possibilité de demander du sucre seul, bien que cette action n'ait aucun effet sur l'affichage.")

Sorties

(2 bits)

$$S_1 S_0 = 0 0$$
 si l'écran affiche "Faites votre sélection"

0 1 si l'écran affiche "0,50 €"

1 0 si l'écran affiche "1,00 €"

1 1 si l'écran affiche "1,50 €"

2. Établissez la table de vérité ainsi que l'(les) équation(s) simplifiée(s) de la (des) sortie(s).

Lois de fonctionnement

1. cf : énoncé "Si aucune sélection n'est effectuée, le distributeur affiche le message : "Faites votre sélection"." (et ce quel que soit le niveau de lait)

$$\Rightarrow$$
 Si $C_c C_l L N_L = 0.00 X \longrightarrow S_1 S_0 = 0.0$

2. cf : énoncé "Le client n'a pas la possibilité de sélectionner un café à la fois court et long. On ne peut alors pas prévoir l'affichage du distributeur dans le cas où les deux boutons seraient pressés simultanément."

$$\Rightarrow$$
 Si $C_c C_l L N_L = 11 X X \longrightarrow S_1 S_0 = X X$

3. cf: énoncé "Si le réservoir de lait est vide (ou presque) et qu'une sélection valide comprenant du lait a été effectuée, l'écran continue à afficher "Faites votre sélection" au lieu du prix de la sélection, pour indiquer qu'il est à court de lait."

$$\Rightarrow \quad \text{Si} \ \ \textbf{C_c} \ \textbf{C_l} \ \textbf{L} \ \textbf{N_L} = \textbf{X} \ \textbf{X} \ \textcolor{red}{\textbf{1}} \ \textcolor{blue}{\textbf{1}} \ \textbf{1} \ \textbf{1} \ \textbf{1} \ \textbf{1} \ \textbf{(non valide)} \quad \longrightarrow \quad \textbf{S_1} \ \textbf{S_0} = \textcolor{blue}{\textbf{0}} \ \textcolor{blue}{\textbf{0}}$$

- 4. dans tous les autres cas, l'écran affiche le prix de la sélection :
 - · café court (sucré ou non) au prix de 0,50€

$$\Rightarrow$$
 Si $C_c C_l L N_L = 100 X \longrightarrow S_1 S_0 = 01$

· café court (sucré ou non) avec du lait au prix de 1,00€

$$\Rightarrow$$
 Si $C_c C_l L N_L = 1010 \longrightarrow S_1 S_0 = 10$

· café long (sucré ou non) au prix de 1,00€

$$\Rightarrow$$
 Si $C_c C_l L N_L = 0.10 X \longrightarrow S_1 S_0 = 1.0$

· café long (sucré ou non) avec du lait au prix de 1,50€

$$\Rightarrow$$
 Si $C_c C_l L N_L = 0 1 1 0 \longrightarrow S_1 S_0 = 1 1$

· lait (sucré ou non) au prix de 0,50€

$$\Rightarrow$$
 Si $C_c C_l L N_L = 0010 \longrightarrow S_1 S_0 = 01$

Cette analyse (facultative) permet d'écrire la table de vérité du système, reprise à la table 2. Les deux dernières colonnes de la table représentent les entrées d'information d'un multiplexeur implémentant respectivement la sortie S_1 et S_0 du système, pour des entrées de sélections C_c et C_l .

Table de vérité

C_c	C_l	$oldsymbol{L}$	N_L	S_1	S_0	m_i	$E_i(S_1)$	$E_i(S_0)$
0	0	0	0	0	0	0		
0	0	0	1	0	0	1		
0	0	1	0	0	1	2	0	$Lar{N}_L$
0	0	1	1	0	0	3		
0	1	0	0	1	0	4		
0	1	0	1	1	0	5		
0	1	1	0	1	1	6	$(\overline{LN_L})$	$Lar{N}_L$
0	1	1	1	0	0	7		
1	0	0	0	0	1	8		
1	0	0	1	0	1	9		
1	0	1	0	1	0	10	$Lar{N}_L$	$ar{L}$
1	0	1	1	0	0	11		
1	1	0	0	X	X	12		
1	1	0	1	X	X	13	X	X
1	1	1	0	X	X	14		(e.g. $\bar{m{L}}$)
1	1	1	1	X	X	15		

Table 2 – Table de vérité relative à la question de synthèse

Equations simplifiées des sorties

Par Karnaugh (voir figure 6), on obtient:

$$S_1 = C_l.\bar{L} + C_l.\bar{N}_L + C_c.L.\bar{N}_L$$

$$S_0 = C_c.\bar{L} + \bar{C}_c.L.\bar{N}_L$$

FIGURE 6 – Tables de Karnaugh pour les sorties du système

3. Exprimez la (une des) sortie(s) à l'aide d'un multiplexeur.

Implémentation de S_0 à l'aide d'un multiplexeur

Vu la dernière colonne de la table de vérité, on peut implémenter la sortie S_0 à l'aide d'un multiplexeur 2-1 en identifiant la portion de S_0 valant $Don't\ Care$ à \bar{L} , ce qui élimine l'entrée C_l des entrées de sélection. Ce résultat est illustré à la figure 7.

Figure 7 – Implémentation de la sortie S_0 à l'aide d'un multiplexeur