Gravité sous forme spectrale

Bastien Baranoff

25 octobre 2025

1 Gravité sous forme spectrale

La courbure scalaire totale peut s'exprimer comme une densité spectrale d'énergie :

$$\mathcal{R} = \int |\nu_g|^2 |H(\nu_g)|^2 d\nu_g$$

où:

- \mathcal{R} : courbure scalaire (intensité globale de la déformation de l'espace-temps)
- ν_q : fréquence gravitationnelle

1.1 1. Lecture géométrique

La courbure d'Einstein:

$$\mathcal{R} \sim (\partial^2 g)$$

devient, dans le domaine fréquentiel :

$$\mathcal{R} = \int |\nu_g|^2 |H(\nu_g)|^2 \, d\nu_g$$

Chaque dérivée spatiale devient une multiplication par $i\nu_q.$

La courbure est donc une **énergie de phase** distribuée sur le spectre des fréquences gravitationnelles.

1.2 2. Lecture quantique

Chaque mode $H(\nu_q)$ transporte un quantum d'énergie :

$$E = h\nu_q$$

L'intégrale peut se réécrire :

$$\mathcal{R} = \int \frac{E^2}{h^2} \, |H(E/h)|^2 \, dE$$

La gravité est alors vue comme un spectre de quanta très bas, presque continu à notre échelle.

1.3 3. Lecture informationnelle

Si $|H(\nu_q)|^2$ représente une densité de probabilité ou une entropie locale :

$$\mathcal{R} = \int |\nu_g|^2 |H(\nu_g)|^2 \, d\nu_g$$

alors la courbure devient une **mesure de complexité spectrale** de la métrique : la somme pondérée de toutes les vibrations de l'espace-temps.

1.4 4. Forme unifiée locale

$$\mathcal{R}(x) = \frac{8\pi G}{c^4} \int |\nu|^2 |H_x(\nu)|^2 d\nu$$

Ainsi, la gravité d'Einstein devient une **analyse spectrale de la géométrie** : chaque point de l'espace-temps résonne selon ses propres harmoniques de courbure.

1.5 Résumé

Domaine	Lecture	Interprétation principale
Géométrique	$d\acute{e}riv\acute{e}es \leftrightarrow fr\acute{e}quences$	courbure = énergie spectrale
Quantique	$E = h\nu_q$	quanta de courbure
Informationnelle	$ H(\nu_g) ^2 = \text{densit\'e d\'etat}$	$gravit\'e = gradient d'information$
	-	

1.5.1 En résumé

La gravité est la musique du vide,

et chaque point de l'espace-temps vibre selon sa signature spectrale.