DAVID WIEDEMANN

ALGEBRE LINEAIRE I

Table des matières

0.1 Relation de composition par les applications reciproques

5

∠ List of Theorems

1	■ Definition (Injectivite)	3
2	■ Definition (Surjectivite)	3
3	■ Definition (Bijectivite)	3
1	♦ Proposition (Injectivite et cardinalite)	4
2	♦ Proposition (Surjectivite et cardinalite)	4
3	♦ Proposition (injectivite et condition)	4
4	♦ Proposition (Surjectivite et condition)	4
6	♣ Lemme (Composition d'applications surjectives et in-	
	jectives)	5
		5
7	♦ Proposition (Inverse d'une composition)	6
	P Proof	6

Lecture 2: Injectivite, Surjectivite et Bijectivite

Tue 15 Sep

■ Definition 1 (Injectivite)

Une application $f: X \mapsto Y$ *est injective* (*injection*) $si \forall y \in$ $Yf^{-1}(\{y\})$ ne possede pas plus d'un element. On note

$$f: X \hookrightarrow Y$$

Remarque: Une condition equivalente d'injectivite:

$$\forall x \neq x' \in X \Rightarrow f(x) \neq f(x')$$

■ Definition 2 (Surjectivite)

Une application $f: X \mapsto Y$ *est surjective* (*surjection*) $si \forall y \in$ $Yf^{-1}(\{y\})$ possede au moins un element.

On note

$$f:X \twoheadrightarrow Y$$

Soit $f^{-1}(\{y\}) \neq \emptyset$, il existe au moins $x \in X$ tq f(x) = yDe maniere equivalente

surjectif
$$\iff$$
 $Im(f) = f(X) = Y$

Alors on a une application

$$"f": X \mapsto Y$$
$$x \mapsto f(x)$$

Cette application est toujours surjective.

■ Definition 3 (Bijectivite)

Une application $f: X \mapsto Y$ *est bijective* (*bijection*) *si elle est injective* et surjective, cad si $\forall y \in Y$, $f^{-1}(\{y\})$ (l'ensemble des antecedents de y par f) possede exactement un element. On note la bijectivite par

$$f: X \simeq Y$$

Si $f: X \simeq Y$, alors on peut identifier les els de X avec ceux de Y:

$$x \in X \leftrightarrow f(x) \in Y$$

Remarque : Si $f: X \hookrightarrow Y$ Y' = f(X) l'application

$$f: X \twoheadrightarrow Y' = f(x)$$

et toujours surjective. et comme f est injective, on obtient une bijection $f: X \simeq Y' = f(X)$ entre X et f(X).

X peut etre identifie a f(X).

- $Id_X : \underbrace{X \mapsto X}_{x \mapsto x}$ est bijective
- $x \in \mathbb{R}_{\geq 0} \mapsto x^2 \in \mathbb{R}_{\geq 0}$ est inj et bijective.
- $\mathcal{P} \simeq \{0,1\}^X = \mathcal{F}(X,\{0,1\})$

Exercice

 $C: \mathbb{N} \times \mathbb{N} \mapsto \mathbb{N}$

$$(m,n) \simeq \frac{1}{2}((m+n)^2 + m + 3n)$$

Montrer la bijectivite.

Dans ce qui suit, soient X et Y des ensembles finis possedant respectivement |X| et |Y| elements et $f:X\mapsto Y$ une application entre ces ensembles. On a les proprietes suivantes :

♦ Proposition 1 (Injectivite et cardinalite)

 $Si\ f: X \hookrightarrow Y \ est \ injective \ alors \ |X| \le |Y|$

♦ Proposition 2 (Surjectivite et cardinalite)

Si $f : \rightarrow Y$ est surjective alors $|X| \ge |Y|$.

♦ Proposition 3 (injectivite et condition)

Si $f: X \hookrightarrow Y$ et $|X| \ge |Y|$ alors |Y| = |X| et f bijective.

♦ Proposition 4 (Surjectivite et condition)

Si $f: X \rightarrow Y$ et |X| < |Y| alors |Y| = |X| et f bijective.

♣ Propriete 5 (Bijectivite)

Si f bijective, on peut lui associer une application reciproque:

$$f^{-1}: Y \mapsto X$$
$$y \mapsto x$$

$$y\mapsto x$$

tel que $f^{-1}(\{y\}) = \{x\}$, x unique.

0.1 Relation de composition par les applications reciproques

—
$$f: X \simeq Y$$
 et $f^{-1}: Y \simeq X$

$$f^{-1} \circ f : X \mapsto Y \mapsto X = Id_X.$$

En effet, $\forall x \in X$ si on pose y = f(x)

on a
$$f^{-1}(y) = x = f^{-1}(f(x)) = x$$

$$- f \circ f^{-1} : Y \mapsto X \mapsto Y$$
$$f \circ f^{-1} = Id_Y$$

$$-(f^{-1})^{-1}=f$$

$$-f: X \simeq Y \text{ et } g: Y \simeq Z$$

Alors $g \circ f : X \mapsto Z$ est bijective et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

- Lemme 6 (Composition d'applications surjectives et injectives) bijectivite
- 1. Si f et g sont injectives, $g \circ f$ est injective.
- 2. Si f et g sont surjectives, $g \circ f$ est surjective.
- 3. Si f et g sont bijectives, $g \circ f$ est bijective et

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

Proof

$$\mathbf{1.} \ g \circ f : X \mapsto Y \mapsto Z$$

$$x \mapsto g(f(x))$$

 $\forall z \in Z$ on veut montrer que $(g \circ f)^{-1}(\{z\})$ a au plus un element

$$(g \circ f)^{-1}(\{z\}) = \{x \in X | g(f(x)) = z\}$$

$$si g(f(x)) = z \Rightarrow f(x) \in g^{-1}(\{z\})$$

l'ensemble $\{x \in X | g(f(x)) = z\}$ est contenu dans $g^{-1}(\{z\})$ et donc possede au plus 1 element. Si cet ensemble est vide on a fini $(g \circ f)^{-1}(\{z\}) = \emptyset$. Si $g^{-1}(\{z\}) \neq \emptyset$ alors $g^{-1}(\{z\}) = \{y\}$ et $x \in (g \circ f)^{-1}(\{z\})$ verifie

$$f(x) = y \Rightarrow x \in f^{-1}(\{y\})$$

Comme f^{-1} est injective $f^{-1}(\{y\})$ possede au plus un element.

Et donc $g^{-1}(f^{-1}(\{z\}))$ a au plus 1 element car g est surjective

- 2. Surjectivite: Exercice
- 3. Bijectivite : si f et g sont bijectives g ∘ f est bijective.
 f et g sont inj ⇒ g ∘ f inj.
 f et g sont surj ⇒ g ∘ f surj

Si f et g sont bij $\Rightarrow g \circ f$ est injective et surjective $\Rightarrow g \circ f$ bijective.

♦ Proposition 7 (Inverse d'une composition)

On veut montrer que $\forall z \in Z$

$$X := (g \circ f)^{-1}(z) = f^{-1} \circ g^{-1}(z) \underbrace{=}_{?} f^{-1}(g^{-1}(z)) = x'$$

Proof

$$g \circ f(x) = g(f(x)) = z$$
$$g \circ f(f^{-1}(g^{-1}(z))) = g(f(f^{-1}(g^{-1}(z))))$$
$$= g(f \circ f^{-1}(g^{-1}(z)))$$

Or on sait que

$$f \circ f^{-1} = g \circ g^{-1} Id_Y$$

et donc

$$g(f \circ f^{-1}(g^{-1}(z))) = g(g^{-1}(z)) = z = (g \circ f)(x)$$

On a donc montre que

$$(g \circ f)(x) = z = (g \circ f)(x')$$