

Team Introduction

Yen Fu (Michael) Lin
Finance

Pattamon Taltatsirapob

Marketing

Juan Peña Strategy

Alfa Wesley Sirra
Finance

Mingi Um
Finance

Table of Contents

- Overview
- Key Findings
- Models Development
- Suggestions

Market Overview

Transportation Breakdown in Malaysia

- Motorcycle
- Automobile
- Public Transportation
- Other Motor Vehicles
- Bicycle
- Other

Source: Statista Market Insights

Motorcycle Market Trend in Malaysia

Business Overview

Company Overview

- Our capstone team is focused on a loan portfolio prediction project with a finance company in Malaysia who specializes in motorcycle loans
- The company's value proposition lies in providing:
 - Accessible financial solutions
 - Facilitating mobility
 - Enhancing lifestyle choices for customers
- By offering financing solutions, the company plays a pivotal role in helping customers to purchase motorcycles

Loan Comparison

	Auto Loan and Motorcycle Loan Comparison			
ı		Auto Loan	Motorcycle Loan	
_	Target Customer	Individuals looking to purchase a car	Individuals looking to purchase a motorcycle	
	Loan Amount	High (Average USD \$10,000)	Low (Average USD \$2,500)	
	Term	12 ~ 108 months (Average 90 months)	12 ~ 60 months (Average 48 months)	
	Customer Credit	Generally stable	Generally lower	
	Interest Rate	Average 8%	Average 10%	

Customer Journey Flowchart

Loss Caused by Lost Cases

Number of lost cases: 7460

Average loss per lost case: USD 1971

Total amount lent to lost cases: Million USD 14.7

Defaulter - Lost case

Defaulter: Customer missed paying 3 consecutive installments

Lost case: Customer completely stopped paying back

Yes / no

Default Lost

Yes / no

Default or not Lost case or not

When?

Default when?

Lost when?

Key Finding 1: Loan Amount Distribution

Key Finding 2: High Churn Rate

Key Finding 2: Client Attrition Speed

Key Finding 2: How much loses are

Key Finding 3

Complete Loan Terms VS. Stop Paying

Key Finding 3

Higher income, lesser default rate.

Key Finding 3

Clients owning a house have less change to stop paying.

Project Objective

Challenges

High competition

Intense finance competition

More non-performing loans

Goals

Reduce losses from clients stop paying

Spot clients' profile causing loss

Identify potential clients' characteristics

Features Selection: Correlation & SelectKBest

Total 34 Chose 8 Variables Multicollinearity & redundancy

Chi-squared Test Categorical Anova Test (Analysis of variance) Numeric

Feature selection - Correlation heatmaps

Description of Our Data

Risk Grade

Credit range of the applicant form by 3rd party credit agency

Net Income

Applicant's net income per month in Malaysian Ringgits

Loan Amount

Total initial borrowing amount

House Status

Applicant's housing situation (own, rent, relative, etc.)

Employment Period

How long has the applicant been employed

Enquiry Count

Count of how many times this customer requested for a loan in past 12 months

Trade Bureau

Count of how many other financial obligations this customer has with Companies like Telephone bill, and etc

Model Development Overview

Loan Defaulter/lost case Prediction

- Machine learning algorithms tried
 - Random Forest
 - o Decision Tree
 - Logistic Regression
 - ∘ XGBoost
- Logistic Regression model was the optimal prediction model for our business needs

Cost/Benefit Matrix

For every \$100

Prediction/Actual	Non-Default	Default	
Non-Default	\$23.65 (\$73.95)		
Default	\$0	\$0	

Model	Accuracy	Delta performance	Expected Value
Random Forest	66%	-20%	\$134,360
Decision Tree	83%	-2%	\$166,770
Logistic Regression	93%	8%	\$191,040
XGBoost	59%	-26%	\$148,345

Model Development Overview

Default/Lost Case Month Prediction

Approach

Decision tree

Objective

Identify potential defaulters, then initiate proactive measures to minimize defaults.

Expectation

Minimize loss from defaulters

Model Development Overview

Loan Default / lost month Prediction

```
Original Data:
```

Decision Tree Performance:

Mean Absolute Error: 9.256702412868632 Mean Squared Error: 146.02077747989276

Root Mean Squared Error: 12.083905721243143

New applicant's original default_month is: 7
Decision Tree Prediction for New Applicant: [10.]

New applicant's original default_month is: 25 Decision Tree Prediction for New Applicant: [25.]

New applicant's original default_month is: 19 Decision Tree Prediction for New Applicant: [21.]

Natural experiment

- A natural experiment analysis was conducted to determine if the Covid-19 pandemic affected loan defaults
- Three time periods were assessed (before, during, after) to determine impact using statistical and regression approaches
- Results show that borrowers were more likely to default during and after the pandemic, despite improvement in time to default

Time period	Logistic coefficient	Odds ratio
Pre- pandemic	-0.493	0.61
Post- pandemic	0.541	1.71

Counterfactual experiment - Total limit

- 0_8280 to 8280_25000 Level 2
- Performance Improvement: 17.7%
- Not Zero/too little previous loans,
 Not too many other loans
- 8280_25000 to 25000_74475 dropped performance by 24.48%

Counterfactual experiment - Housing

- Rent to Own Level 4
- Performance Improvement: 15.8%
- Not Zero/too little previous loans,
 Not too many other loans
- Own to rent showed inverse effect

Counterfactual experiment - Income level

- 1000 < N < 1500 to 1500 < N < 2000
 - Level 3
- **Performance Improvement: 22.5%**
- Level 4 to 3 also has shown improvement in performance
- Level 3 to 4, performance dropped

Updated income levels

Suggestions Overview

Suggestion 1: Use Acquisition

Now

100%

Agents = Motorcycle Shops

Limitation

Characteristics of clients depend on locations of motorcycle shops.

Proactive User Acquisition

- The company website
- Offline Activities

Solution

Physical shops will not be a barrier for reaching out to better quality clients.

Suggestion 1: Use Acquisition

Areas people search using keyword "motorcycle loan"

Source : Google Trend

Try to find best placements to acquire potential prospects

Client ID	Income	House Status	UTM Tag
00001	2000= <n< td=""><td>Own</td><td>abc_dotcom</td></n<>	Own	abc_dotcom
00002	1000=N< 1500	Relatives' House (Local)	KOL1
00003	1500= <n <2000</n 	Own	campaign24
00004	2000= <n< td=""><td>Own</td><td>abc_park</td></n<>	Own	abc_park

Try different approaches and use UTM tags to help identify best placements

Suggestion 2: Retention Campaigns

Expectations

- Reduce client attrition to below 45%
- Prolong lifetime until 18th month or more

Promotions

- Discount on interest
- Reward system

Reward Size < Expected Profit

Positive Reinforcement

Take action before loss happens

Suggestion 3: Sell Some Loans / Seized Motorcycles

Expectations

- Turn debts to profit
- A new unit boosting revenue

Actions

Difficult-to-Collect Debts

 Sell debts to debt buying company

Seized Motorcycles

- Sell seized motorcycles
- Found a business unit

Suggestion 4: Dynamic Interest Rate

Expectations

- More number of clients
- Sell seized motorcycles proactively

Actions

Interest Rate

- A new department for pricing
- Different type of clients, different offer

Value Depreciation - ROI

	Standard Market Depreciation Rate	Berjaya's Depreciation Rate	Defaulted - ROI - Market	Defaulted - ROI - Berjaya
6 months	30%	35%	85	80
Year 1	30%	35%	100	95
Year 2	20%	25%	110	105
Year 3	10%	15%	120	115
Year 4	10%	15%	120	115
Year 5	10%	15%	120	115

Lost in 6 months USD 524,272

Lost in 1 year USD 329,373

