

第六組

資科碩二 108753014 廖宇凡 資科碩一 109753128 紀秉杰 109753102 黃渝庭 資科三 107703048 陳子賢 107703004 李元亨

Our goal / Input

- Goal
 - Predict the Big Mart Sales Prediction Problem.
- Data source
 - From Analytics Vidhya Big Mart Sales Prediction Problem
- Input format
 - CSV file
- Any preprocessing
 - Handle Redundant Data (Object Identification)
 - Handle Missing Data

Data Dictionary

Variable	Description		
Item_Identifier	Unique product ID		
Item_Weight	Weight of product		
Item_Fat_Content	Whether the product is low fat or not		
Item_Visibility	The % of total display area of all products in a store allocated to the particular product		
Item_Type	The category to which the product belongs		
Item_MRP	Maximum Retail Price (list price) of the product		
Outlet_Identifier	Unique store ID		
Outlet_Establishment_Year	The year in which store was established		
Outlet_Size	The size of the store in terms of ground area covered		
Outlet_Location_Type	The type of city in which the store is located		
Outlet_Type	t_Type Whether the outlet is just a grocery store or some sort of supermarket		
Item_Outlet_Sales	Sales of the product in the particular store. This is the outcome variable to be predicted.		

Item_type

16 categories

Outlet_Establishment_Year

Year = 2013 - Outlet_Establishment_Year

Item_MPR (Maximum Retail Price)

Outlet_Location & Outlet_Type & Outlet_Identifier

Handle Redundant Data - Item_Fat_Content

Low Fat

- Low Fat
- low fat
- o LF
- Regular
 - Regular
 - o reg

Handle Missing Data

Item_Weight with NA value, Item_Visibility with 0 value and Outlet_Size with "" (Null String)

Item_Identifier	Item_Weight	<pre>Item_Fat_Content</pre>	Item_Visibility
0	2439	0	879
<pre>Item_Type</pre>	Item_MRP	Outlet_Identifier	Outlet_Establishment_Year
0	0	0	0
Outlet_Size	Outlet_Location_Type	Outlet_Type	<pre>Item_Outlet_Sales</pre>
4016	0	0	5681

Handle Missing Data - Item_Weight

Fill the missing Item_Weight by same Item_Identifier's Item_Weight

ex: > combined\$Item_Weight[combined\$Item_Identifier=="FDA15"]
[1] 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3

Handle Missing Data - Item_Visibility

Replace 0 Item_Visibility by mean of Item_Visibility

Handle Missing Data - Outlet_Size

	Outlet_Id	${\tt Item_Count}$	Outlet_Size	Categories	
1	0UT049	925		Grocery Store	
3	OUT010	1543		Supermarket Type1	
8	0UT046	1548		Supermarket Type1	
2	OUT018	1553	High	Supermarket Type1	
4	0UT013	1546	Medium	Supermarket Type2	
6	0UT045	1559	Medium	Supermarket Type3	
10	0UT019	1550	Medium	Supermarket Type1	
5	0UT027	880	Small	Grocery Store	
7	0UT017	1550	Small	Supermarket Type1	
9	0UTØ35	1550	Small	Supermarket Type1	

Handle Missing Data - Outlet_Size

Fill the missing Outlet_Size by mode Outlet_Size

New Feature !!! Item_Volume ?

New Feature !!! Item_Volume ?

```
## Create Item Volume Sold.
Train_Base$Item_Volume = Train_Base$Item_Outlet_Sales/Train_Base$Item_MRP
Train_Base$Item_Volume = round(Train_Base$Item_Volume)
Train_Base$Item_Outlet_Sales = NULL
```

With Volume:

Without Item_Outlet_Sales:

1142.60973123

1148.27349433

Feature Enginnering

One-Hot Encoding

Feature Name	轉變特徵數
Item_Fat_Content	2
Item_Type	16
Outlet_Identifier	10
Outlet_Location_Type	3
Outlet_Type	4

Modeling

- O Which method do we use?
 - Decision Tree
 - Random Forest ✓ (The Best)
 - LM
 - XGBoost
- What is a null model for comparison?
- How do our perform evaluation?
 - Cross-validation

Modeling

- 比賽是要用 RMSE 做評估指標
- Cross-validation 用訓練資料集的 銷售額與驗證的銷售額做RMSE

K_fold	Decision_Tree	Random_Forest	Linear_Regression	XGbroost
5	1077.46413951898	1071.29311435776	1073.2443445258	1077.62239518269
6	1077.1344650447	1071.12655842728	1073.59116898707	1078.27178609537
7	1077.14547957488	1071.34912143392	1073.22723985423	1077.99311882657
8	1076.89412708332	1070.65932563204	1073.39534198406	1077.55870129798
9	1077.12432841435	1071.26071666094	1073.54238450253	1077.61389299975
10	1077.05102579142	1071.23977941237	1072.84508213554	1077.7869157259

Result

排名26/40204

百分比0.065%

Score	Submission Trend	Participant's approach	AV Rank
1140.6077767546		Add approach	9836

Demo

You should provide an example commend to reproduce your result

```
Rscript code.r
```

Running code.r is going to output 5 .csv files, including

- k_fold.csv
- 2. Sub_v1_Tree.csv
- 3. Sub_v1_RF.csv
- 4. Sub_v1_LM.csv
- 5. Sub_v1_XG.csv

Reference

- https://datahack.analyticsvidhya.com/contest/practice-problem-big-mart-salesiii/
- https://www.kaggle.com/usamakhan8199/big-mart-prediction-top-100-with-opt imisation
- https://www.kaggle.com/bgsumanth/plots-in-r
- https://rpubs.com/prateekjoshi565/381886?fbclid=lwAR3G67crQULEmecWed galysWx4OuA9DzWdY8S2Km96xv5wf7IW2gN7z2Z2Q
- https://github.com/Param-Trivedi/Big-Mart-Sales-Data-Prediction