Mushroom Classification

Notebook adapted from the 05.08 Random Forests notebook from the Python Data Science Handbook.

Modified by: Gábor Major Last Modified date: 2024-11-22

Description:

This notebook processes data about mushrooms in the Agaricus and Lepiota Family. It uses the features of the mushrooms to predict whether a mushroom is edible or poisonous.

Disclaimer

This model does not guarantee safe classification of mushrooms.

Do not use this for ingesting mushrooms.

Consult real world professionals on foraging and consuming mushrooms.

```
# Imports
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn import metrics
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from sklearn.ensemble import RandomForestClassifier
import matplotlib.pyplot as plt
import pickle
```

Declare conversion dictionary for later use

```
conversion_dict = {
    'poisonous': {
        'EDIBLE': 0,
        'POISONOUS': 1
},
    'cap-shape': {
        'BELL': 0,
        'CONICAL': 1,
        'CONVEX': 2,
        'FLAT': 3,
        'KNOBBED': 4,
        'SUNKEN': 5
},
    'cap-surface': {
        'FIBROUS': 0,
        'GROOVES': 1,
```

```
'SCALY': 2,
    'SM00TH': 3
'BROWN': 0,
    'BUFF': 1,
    'CINNAMON': 2,
    'GRAY': 3,
    'GREEN': 4,
    'PINK': 5,
    'PURPLE': 6,
    'RED': 7,
    'WHITE': 8,
    'YELLOW': 9
},
'bruises': {
    'BRUISES': 0,
    'NO': 1
},
'odor': {
    'ALMOND': 0,
    'ANISE': 1,
    'CREOSOTE': 2,
    'FISHY': 3,
    'FOUL': 4,
    'MUSTY': 5,
    'NONE': 6,
    'PUNGENT': 7,
    'SPICY': 8
},
'gill-attachment': {
    'ATTACHED': 0,
    'DESCENDING': 1,
    'FREE': 2,
    'NOTCHED': 3
},
'gill-spacing': {
    'CLOSE': 0,
    'CROWDED': 1,
    'DISTANT': 2
},
'gill-size': {
    'BROAD': 0,
    'NARROW': 1
'gill-color': {
    'BLACK': 0,
    'BROWN': 1,
    'BUFF': 2,
```

```
'CHOCOLATE': 3,
    'GRAY': 4,
    'GREEN': 5,
    'ORANGE': 6,
    'PINK': 7,
    'PURPLE': 8,
    'RED': 9,
    'WHITE': 10,
    'YELLOW': 11
},
'stalk-shape': {
    'ENLARGING': 0,
    'TAPERING': 1
},
'stalk-root': {
    'BULBOUS': 0,
    'CLUB': 1,
    'CUP': 2,
    'EQUAL': 3,
    'RHIZOMORPHS': 4,
    'R00TED': 5,
    '?': 6
},
'stalk-surface-above-ring': {
    'FIBROUS': 0,
    'SCALY': 1,
    'SILKY': 2,
    'SM00TH': 3
'stalk-surface-below-ring': {
    'FIBROUS': 0,
    'SCALY': 1,
    'SILKY': 2,
    'SM00TH': 3
},
'stalk-color-above-ring': {
    'BROWN': 0,
    'BUFF': 1,
    'CINNAMON': 2,
    'GRAY': 3,
    'ORANGE': 4,
    'PINK': 5,
    'RED': 6,
    'WHITE': 7,
    'YELLOW': 8
},
'stalk-color-below-ring': {
    'BROWN': 0,
    'BUFF': 1,
```

```
'CINNAMON': 2,
     'GRAY': 3,
     'ORANGE': 4,
     'PINK': 5,
     'RED': 6,
    'WHITE': 7,
     'YELLOW': 8
},
'veil-type': {
     'PARTIAL': 0,
     'UNIVARSAL': 1
'veil-color': {
     'BROWN': 0,
    'ORANGE': 1,
'WHITE': 2,
     'YELLOW': 3,
},
'ring-number': {
     'NONE': 0,
     'ONE': 1,
     'TW0': 2
},
'ring-type': {
'COBWERBY':
     'COBWEBBY': 0,
     'EVANESCENT': 1,
     'FLARING': 2,
     'LARGE': 3,
     'NONE': 4,
     'PENDANT': 5,
     'SHEATHING': 6,
     'ZONE': 7
},
'spore-print-color': {
     'BLACK': 0,
     'BROWN': 1,
     'BUFF': 2,
     'CHOCOLATE': 3,
    'GREEN': 4,
     'ORANGE': 5,
     'PURPLE': 6,
     'WHITE': 7,
     'YELLOW': 8
},
'population': {
     'ABUNDANT': 0,
     'CLUSTERED': 1,
     'NUMEROUS': 2,
     'SCATTERED': 3,
```

```
'SEVERAL': 4,
'SOLITARY': 5
},
'habitat': {
    'GRASSES': 0,
    'LEAVES': 1,
    'MEADOWS': 2,
    'PATHS': 3,
    'URBAN': 4,
    'WASTE': 5,
    'WOODS': 6
}
```

Import Data

Mushroom data from: UC Irvine Machine Learning Repository.

In this notebook the data with the expanded attribute names and larger amount of rows is used. Header names is set according to the data description.

```
mushroom_data = pd.read_csv('../mushroom-data/agaricus-lepiota-
expanded.data', sep=',', names=list(conversion_dict.keys()))
print(mushroom data.loc[0])
poisonous
                               EDIBLE
                               CONVEX
cap-shape
cap-surface
                               SM00TH
                                WHITE
cap-color
bruises
                              BRUISES
odor
                               ALMOND
gill-attachment
                                 FREE
                              CROWDED
gill-spacing
gill-size
                               NARROW
gill-color
                                WHITE
stalk-shape
                             TAPERING
stalk-root
                              BULBOUS
stalk-surface-above-ring
                               SM00TH
stalk-surface-below-ring
                               SM00TH
stalk-color-above-ring
                                WHITE
stalk-color-below-ring
                                WHITE
veil-type
                              PARTIAL
veil-color
                                WHITE
ring-number
                                  ONE
                              PENDANT
ring-type
                               PURPLE
spore-print-color
population
                              SEVERAL
habitat
                                WOODS
Name: 0, dtype: object
```

Convert the imported categories into numbers for decision tree.

```
for key, value in conversion dict.items():
    mushroom data[key] = mushroom data[key].map(value)
    print(mushroom_data[key].unique())
[0 1]
[2 3 0 5 4 1]
[3 0 2 1]
[8 9 0 3 7 5 6 4 1 2]
[0 1]
[0 1 6 7 2 4 3 8 5]
[2 0]
[1 0]
[1 \ 0]
[10 7 1 4 0 3 8 5 9 2 11 6]
[1 0]
[0 1 5 3 6]
[3 0 2 1]
[3 1 0 2]
[7 5 3 1 0 6 2 8 4]
[7 5 3 1 0 6 8 2 4]
[0]
[2 3 1 0]
[1 2 0]
[5 1 3 2 4]
[6 1 0 3 4 7 8 5 2]
[4 3 2 5 0 1]
[6 2 0 3 4 1 5]
```

Remove veil-type as it only has data saying partial

```
mushroom_data = mushroom_data.drop(columns=['veil-type'])
```

Create data sets

Split data into 60% training, 20% validation, and 20% testing sets.

```
mushroom_target = mushroom_data['poisonous']
mushroom_data = mushroom_data.drop(columns=['poisonous'])
# Split off 20% test set
xTrain, xTest, yTrain, yTest = train_test_split(mushroom_data,
mushroom_target, test_size=0.2)
# Split 80% of full data into 60% and 20% sets
xTrain, xValidation, yTrain, yValidation = train_test_split(xTrain,
yTrain, test_size=0.25)
```

Create Decision Tree

Create single decision tree for predicting

```
decision_tree_model = DecisionTreeClassifier()
decision_tree_model.fit(xTrain, yTrain)
DecisionTreeClassifier()
```

Predict using xValidation data set, Show classification report and confusion matrix for predicted data

```
yPrediction = decision tree model.predict(xValidation)
print(metrics.classification report(yPrediction, yValidation))
                            recall f1-score
              precision
                                               support
           0
                              1.00
                                                   864
                   1.00
                                        1.00
           1
                   1.00
                              1.00
                                                   819
                                        1.00
                                        1.00
                                                  1683
    accuracy
                                        1.00
   macro avg
                   1.00
                              1.00
                                                  1683
                                                  1683
weighted avg
                   1.00
                              1.00
                                        1.00
target names = ['Edible', 'Poisonous']
matrix = confusion_matrix(yValidation, yPrediction)
display matrix = ConfusionMatrixDisplay(confusion matrix=matrix,
display labels=target names)
display matrix.plot(cmap=plt.cm.Blues)
plt.title('Confusion Matrix')
plt.show()
```


Visually show the decision tree

```
fig = plt.figure(figsize=(25,20))
feature_names = ['Cap-Shape', 'Cap-Surface', 'Cap-Color', 'Bruises',
'Odor', 'Gill-Attachment', 'Gill-Spacing', 'Gill-Size', 'Gill-Color',
'Stalk-Shape', 'Stalk-Root', 'Stalk-Surface-Above-Ring', 'Stalk-Surface-Below-Ring', 'Stalk-Color-Above-Ring', 'Stalk-Color-Below-Ring', 'Veil-Color', 'Ring-Number', 'Ring-Type', 'Spore-Print-Color',
'Population', 'Habitat']

plot_tree(decision_tree_model, feature_names=feature_names,
class_names=target_names, filled=True)
plt.title('Decision Tree Visualisation')
plt.show()
```

Decision Tree Visualisation

Smaller Decision Tree

The above model is overfit for the data as it achieves a 0% error rate. To remedy this the above code can be reran with a restriction on the size of the tree.

```
tree_depth = 3
# Train smaller model
smaller_decision_tree_model =
DecisionTreeClassifier(max_depth=tree_depth)
smaller_decision_tree_model.fit(xTrain, yTrain)

# Show metrics
yPrediction = smaller_decision_tree_model.predict(xValidation)
print(metrics.classification_report(yPrediction, yValidation))

# Show confusion matrix
target_names = ['Edible', 'Poisonous']
```

```
matrix = confusion matrix(vValidation, vPrediction)
display matrix = ConfusionMatrixDisplay(confusion matrix=matrix,
display labels=target names)
display matrix.plot(cmap=plt.cm.Blues)
plt.title('Confusion Matrix')
plt.show()
# Show tree
fig = plt.figure(figsize=(25,20))
feature_names = ['Cap-Shape', 'Cap-Surface', 'Cap-Color', 'Bruises',
'Odor', 'Gill-Attachment', 'Gill-Spacing', 'Gill-Size', 'Gill-Color', 'Stalk-Shape', 'Stalk-Root', 'Stalk-Surface-Above-Ring', 'Stalk-Surface-Below-Ring', 'Stalk-Color-Above-Ring', 'Stalk-Color-Below-Ring', 'Veil-Color', 'Ring-Number', 'Ring-Type', 'Spore-Print-Color',
'Population', 'Habitat']
plot tree(smaller decision tree model, feature names=feature names,
class_names=target_names, filled=True)
plt.title('Decision Tree Visualisation')
plt.show()
                  precision
                                   recall f1-score
                                                           support
              0
                         0.96
                                     0.97
                                                  0.97
                                                                 857
                         0.97
                                     0.96
                                                  0.97
                                                                 826
                                                  0.97
                                                               1683
     accuracy
                                                  0.97
    macro avg
                         0.97
                                     0.97
                                                               1683
weighted avg
                         0.97
                                     0.97
                                                  0.97
                                                               1683
```


Decision Tree Visualisation

Create Random Forest

A Random Forest can also be created with the same **max_depth** to achieve better error rates.

```
# Train Random Forest
random_forest_model = RandomForestClassifier(max_depth=tree_depth)
random_forest_model.fit(xTrain, yTrain)

# Show metrics
yPrediction = random_forest_model.predict(xValidation)
print(metrics.classification_report(yPrediction, yValidation))

# Show confusion matrix
target_names = ['Edible', 'Poisonous']

matrix = confusion_matrix(yValidation, yPrediction)
display_matrix = ConfusionMatrixDisplay(confusion_matrix=matrix,
display_labels=target_names)
display_matrix.plot(cmap=plt.cm.Blues)
```

<pre>plt.title('Confusion Matrix') plt.show()</pre>				
	precision	recall	f1-score	support
0 1	0.99 0.97	0.97 0.99	0.98 0.98	881 802
accuracy macro avg weighted avg	0.98 0.98	0.98 0.98	0.98 0.98 0.98	1683 1683 1683

Testing with Test Set

Finally the Test set is used on both the smaller Decision Tree and the Random Forest.

Testing Decision Tree

```
# Show metrics
yPrediction = smaller_decision_tree_model.predict(xTest)
print(metrics.classification_report(yPrediction, yTest))
```

```
# Show confusion matrix
target_names = ['Edible', 'Poisonous']
matrix = confusion matrix(yTest, yPrediction)
display matrix = ConfusionMatrixDisplay(confusion matrix=matrix,
display_labels=target_names)
display matrix.plot(cmap=plt.cm.Blues)
plt.title('Confusion Matrix')
plt.show()
              precision
                            recall f1-score
                                               support
           0
                   0.96
                              0.97
                                        0.97
                                                   859
           1
                   0.97
                              0.96
                                        0.96
                                                   825
                                                  1684
                                        0.97
    accuracy
                   0.97
                              0.97
                                        0.97
                                                  1684
   macro avg
                   0.97
                              0.97
                                        0.97
                                                  1684
weighted avg
```



```
# Show metrics
yPrediction = random forest model.predict(xTest)
print(metrics.classification_report(yPrediction, yTest))
# Show confusion matrix
target_names = ['Edible', 'Poisonous']
matrix = confusion matrix(yTest, yPrediction)
display matrix = ConfusionMatrixDisplay(confusion matrix=matrix,
display labels=target names)
display matrix.plot(cmap=plt.cm.Blues)
plt.title('Confusion Matrix')
plt.show()
                           recall f1-score
              precision
                                               support
           0
                   0.99
                             0.97
                                        0.98
                                                   881
           1
                   0.97
                             0.99
                                        0.98
                                                   803
                                        0.98
                                                  1684
    accuracy
                             0.98
                                                  1684
   macro avg
                   0.98
                                        0.98
weighted avg
                   0.98
                             0.98
                                        0.98
                                                  1684
```


Save model to disk

```
with open(f'models/random_forest.pkl', 'wb') as f:
    pickle.dump(random_forest_model,f)
```