Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Poly[[tetraaqua(μ_4 -imidazole-4,5-dicarboxylato)(μ_3 -imidazole-4,5-dicarboxylato)- μ_3 -sulfato- μ_2 -sulfato-cobalt(II)digadolinium(III)] monohydrate]

Li-Cai Zhu

School of Chemistry and Environment, South China Normal University, Guangzhou 510631, People's Republic of China

Correspondence e-mail: licaizhu1977@yahoo.com.cn

Received 29 October 2011; accepted 8 November 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean $\sigma(C-C) = 0.006$ Å; R factor = 0.022; wR factor = 0.054; data-to-parameter ratio = 10.6.

The asymmetric unit of the title compound, {[CoGd₂(C₅H₂- $N_2O_4)_2(SO_4)_2(H_2O)_4] \cdot H_2O_{n}$, contains one Co^{II} ion, two Gd^{III} ions, two imidazole-4,5-dicarboxylate ligands, two SO_4^{2-} anions, four coordinated water molecules and one uncoordinated water molecule. The CoII ion is six-coordinated by two O atoms from two coordinated water molecules, as well as two O atoms and two N atoms from two imidazole-4,5-dicarboxylate ligands, giving a slightly distorted octahedral geometry. Both Gd^{III} ions are eight-coordinated in a distorted bicapped trigonal-prismatic geometry. One Gd^{III} ion is coordinated by four O atoms from two imidazole-4,5-dicarboxylate ligands, three O atoms from three SO_4^{2-} anions and a water O atom; the other GdIII ion is bonded to five O atoms from three imidazole-4,5-dicarboxylate ligands, two O atoms from two SO₄²⁻ anions as well as a water O atom. These metal coordination units are connected by bridging imidazole-4.5dicarboxylate and sulfate ligands, generating a heterometallic layer parallel to the ac plane. The layers are stacked along the b axis via N-H···O, O-H···O, and C-H···O hydrogenbonding interactions, generating a three-dimensional framework.

Related literature

For applications of lanthanide–transition metal heterometallic complexes with bridging multifunctional organic ligands, see: Cheng *et al.* (2006); Kuang *et al.* (2007); Sun *et al.* (2006); Zhu *et al.* (2010).

Experimental

Crystal data

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.284, T_{\max} = 0.378$ 6174 measured reflections 4208 independent reflections 3790 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.016$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.054$ S = 1.024208 reflections 397 parameters 17 restraints

H atoms treated by a mixture of independent and constrained refinement $\Delta a = 0.79 \text{ e Å}^{-3}$

 $\Delta \rho_{\text{max}} = 0.79 \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.81 \text{ e Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-\mathbf{H}\cdot\cdot\cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathbf{H}\cdot\cdot\cdot A$
N1-H1···O1i	0.87 (4)	1.96 (4)	2.820 (5)	172 (5)
$O1W-H1W\cdots O5W^{ii}$	0.81 (4)	1.95 (3)	2.745 (5)	169 (6)
N3-H2···O14 ⁱⁱⁱ	0.87 (3)	1.93 (3)	2.787 (4)	169 (4)
$O2W-H3W\cdots O1^{i}$	0.80(3)	2.09 (4)	2.878 (5)	171 (5)
$O2W-H4W\cdots O14^{i}$	0.81 (4)	2.04 (4)	2.842 (5)	172 (5)
$O2W-H4W\cdots O15^{i}$	0.81 (4)	2.52 (4)	3.035 (5)	123 (4)
$O3W-H5W\cdots O12^{iv}$	0.82(3)	1.95 (4)	2.734 (4)	162 (5)
$O3W-H6W\cdots O14^{v}$	0.83 (3)	2.41 (4)	2.919 (4)	120 (3)
$O4W-H7W\cdots O3^{vi}$	0.82(3)	2.49 (3)	3.306 (6)	174 (6)
$O4W-H8W\cdots O5W^{iii}$	0.82 (5)	1.89 (5)	2.700 (6)	175 (6)
$O5W-H9W\cdots O12^{v}$	0.85 (4)	1.99 (4)	2.797 (6)	161 (5)
$O5W-H10W\cdots O1^{i}$	0.85 (5)	1.93 (5)	2.728 (5)	157 (6)
C3−H3···O3 ^{vii}	0.93	2.44	3.193 (5)	138

Symmetry codes: (i) x-1, y, z; (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) -x+1, -y+2, -z; (v) -x+1, -y+1, -z; (vi) -x+1, -y+1, -z+1; (vii) -x+1, -y, -z+1.

metal-organic compounds

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The author acknowledges South China Normal University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HP2018).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73–77.
- Kuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526–m2527.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2006). Chem. Commun. pp. 4700–4702.
 Zhu, L.-C., Zhao, Y., Yu, S.-J. & Zhao, M.-M. (2010). Inorg. Chem. Commun.
 13, 1299–1303.

supplementa	ry materials		

Acta Cryst. (2011). E67, m1741-m1742 [doi:10.1107/S160053681104726X]

Poly[[tetraaqua(μ_4 -imidazole-4,5-dicarboxylato)(μ_3 -imidazole-4,5-dicarboxylato)- μ_3 -sulfato- μ_2 -sulfato-cobalt(II)digadolinium(III)] monohydrate]

L.-C. Zhu

Comment

In the past few years, lanthanide-transition metal heterometallic complexs with bridging multifunctionnal organic ligands are of increasing interest, not only because of their impressive topological structures, but also due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probe(Cheng *et al.*, 2006; Kuang *et al.*, 2007; Sun *et al.*, 2006; Zhu *et al.*, 2010). As an extension of this research, the structure of the title compound, a new heterometallic coordination polymer, (I), has been determined which is presented in this artcle.

The asymmetric unite of the title compound (Fig. 1), contains one Co^{II} ion, two Gd^{III} ions, two imidazole-4, 5-dicarboxylate ligands, two SO₄²⁻ anions, four coordinated water molecules and one uncoordinated water molecule. The Co^{II} ion is six-coordinated with two O atoms from two coordinated water molecules, two O atoms and two N atoms from two imidazole-4, 5-dicarboxylate ligands, giving a slightly distorted octahedral geometry. Both Gd^{III} ions are eight-coordinated in a bicapped trigonal prismatic coordination geometry. One Gd^{III} ion is coordinated by four O atoms from two imidazole-4,5-dicarboxylate ligands, three O atoms from three SO₄²⁻ anions and one water molecule; the other Gd^{III} ion is bonded to five O atoms from three imidazole-4, 5-dicarboxylate ligands, two O atoms from two SO₄²⁻ anions as well as one coordinated water molecule. These metal coordination units are connected by bridging imidazole-4, 5-dicarboxylate and sulfate ligands, generating a two-dimensional heterometallic layer. The two-dimensional layers are stacked along *b* axis *via* N—H···O, O—H···O, and C—H···O hydrogen-bonding interactions to generate the three-dimensional framework(Table 1 and Fig. 2).

Experimental

A mixture of $CoSO_4.7H_2O(0.141 \text{ g}, 0.5 \text{ mmol})$, $Gd_2O_3(0.09 \text{ g}, 0.25 \text{ mmol})$, imidazole-4,5-dicarboxylic acid (0.156 g, 1 mmol), and $H_2O(7 \text{ ml})$ was sealed in a 20 ml Teflon-lined reaction vessel at 443 K for 5 days then slowly cooled to room temperature. The product was collected by filtration, washed with water and air-dried. Red block crystals suitable for X-ray analysis were obtained.

Refinement

H atoms bonded to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and $U_{iso}(H) = 1.2$ $U_{eq}(C)$. H atoms bonded to N atoms and H atoms of water molecules were found from difference Fourier maps and refined isotropically with a restraint of N—H = 0.87 Å, O—H = 0.82 or 0.86 Å and $U_{iso}(H) = 1.5$ $U_{eq}(N, O)$.

Figures

Fig. 1. The molecular structure showing the atomic-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (A) 2 - x, 1 - y, 1 - z; (B) 1 - x, 1 - y, 1 - z; (C) 1 - x, 1 - y, -z.

Fig. 2. A view of the three-dimensional structure of the title compound, the hydrogen bonding interactions showed as broken lines.

$Poly[[tetraaqua(\mu_4\text{-imidazole-4,5-dicarboxylato})(\mu_3\text{-imidazole-4,5-dicarboxylato})-\mu_3\text{-sulfato-}\mu_2\text{-sulfato-}cobalt(II)digadolinium(III)] monohydrate]$

Crystal data

$$\begin{split} & [\text{CoGd}_2(\text{C}_5\text{H}_2\text{N}_2\text{O}_4)_2(\text{SO}_4)_2(\text{H}_2\text{O})_4] \cdot \text{H}_2\text{O} & Z = 2 \\ & M_r = 963.82 & F(000) = 914 \\ & \text{Triclinic}, PT & D_x = 2.691 \text{ Mg m}^{-3} \end{split}$$

Hall symbol: -P 1 Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å a = 9.0916 (5) Å Cell parameters from 4033 reflections

 $b = 10.7714 (6) \text{ Å} \theta = 2.4-27.9^{\circ}$ $c = 12.9736 (7) \text{ Å} \mu = 6.48 \text{ mm}^{-1}$ $\alpha = 93.119 (1)^{\circ} T = 296 \text{ K}$ $\beta = 96.416 (1)^{\circ} \text{Block, red}$

 $\gamma = 108.840 \, (1)^{\circ}$ 0.20 × 0.18 × 0.15 mm

 $V = 1189.35 (11) \text{ Å}^3$

Data collection

Bruker APEXII area-detector diffractometer 4208 independent reflections

Radiation source: fine-focus sealed tube 3790 reflections with $I > 2\sigma(I)$

graphite $R_{\text{int}} = 0.016$

 ϕ and ω scan $\theta_{max} = 25.2^{\circ}, \, \theta_{min} = 1.6^{\circ}$

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $h = -10 \rightarrow 8$ $K = -9 \rightarrow 12$ $k = -9 \rightarrow 12$ $k = -14 \rightarrow 15$

Refinement

Refinement on F^2	methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.022$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.054$	H atoms treated by a mixture of independent and constrained refinement
S = 1.02	$w = 1/[\sigma^2(F_0^2) + (0.0292P)^2 + 0.3497P]$ where $P = (F_0^2 + 2F_c^2)/3$
4208 reflections	$(\Delta/\sigma)_{\text{max}} = 0.002$
397 parameters	$\Delta \rho_{\text{max}} = 0.79 \text{ e Å}^{-3}$
17 restraints	$\Delta \rho_{\text{min}} = -0.81 \text{ e Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

0.01526 (7)
0.01441 (7)
0.01829 (13)
0.0196 (2)
0.0157 (2)
0.0152 (9)
0.0175 (9)
0.0224 (10)
0.027*
0.0176 (9)
0.0179 (9)
0.0183 (9)
0.0198 (9)
0.0262 (11)
0.031*
0.0212 (10)
0.0253 (10)

N1 N2 N3	0.3480 (4) 0.5066 (4) 0.6720 (5) 0.5169 (4) 1.0507 (4)	0.2571 (4) 0.2422 (3) 1.0523 (3) 0.9092 (3)	0.4626 (3) 0.5971 (3) 0.1057 (3)	0.0219 (8) 0.0188 (8) 0.0251 (9)
N3	0.6720 (5) 0.5169 (4)	1.0523 (3)	0.1057 (3)	
	0.5169 (4)			0.0251 (9)
3.7.4	` ′	0.9092(3)		0.0-01 ()
N4	1.0507 (4)		0.1936(3)	0.0209(8)
O1		0.2115 (3)	0.3471 (2)	0.0307 (8)
O2	0.9891 (4)	0.2677 (3)	0.5141 (2)	0.0260(7)
O3	0.7976 (4)	0.0979(3)	0.3993 (3)	0.0429 (10)
O4	0.8622 (4)	0.3220(3)	0.3559 (2)	0.0236 (7)
O5	0.8508(3)	0.4831 (3)	0.5314(2)	0.0191 (6)
O6	0.8087(3)	0.3626 (3)	0.6615 (2)	0.0195 (6)
O7	0.6446 (3)	0.5035 (3)	0.3536 (2)	0.0227 (7)
O8	0.4026 (4)	0.3819(3)	0.2864 (2)	0.0291 (8)
O9	0.4237 (4)	0.6481 (3)	0.1835 (2)	0.0216 (7)
O10	0.5663 (3)	0.6222 (3)	0.0648 (2)	0.0201 (7)
O11	0.7322 (4)	0.8084(3)	-0.0689(3)	0.0373 (9)
O12	0.8336 (4)	1.0256 (3)	-0.0559(3)	0.0371 (9)
O13	0.7800 (4)	0.5049 (3)	0.0081 (2)	0.0261 (7)
O14	0.8239 (4)	0.3108(3)	0.0655(2)	0.0302(8)
O15	0.8852 (4)	0.5027(3)	0.1839 (2)	0.0315 (8)
O16	0.6158 (4)	0.3748 (3)	0.1261 (2)	0.0296 (8)
H1	0.260 (4)	0.251 (5)	0.426 (3)	0.044*
H2	0.725 (5)	1.128 (3)	0.087 (4)	0.044*
O1W	0.8720 (5)	0.7325 (3)	0.2745 (3)	0.0411 (9)
H1W	0.931 (6)	0.807(3)	0.275 (4)	0.062*
H2W	0.843 (7)	0.703 (5)	0.216(2)	0.062*
O2W	0.1300 (4)	0.3676 (4)	0.1756 (3)	0.0301 (8)
H3W	0.115 (5)	0.331 (5)	0.227(2)	0.045*
H4W	0.046 (4)	0.359 (5)	0.143 (3)	0.045*
O3W	0.1637 (4)	0.7554(3)	0.1538 (2)	0.0305 (8)
H5W	0.166 (7)	0.811 (3)	0.113 (3)	0.046*
H6W	0.131 (6)	0.686(3)	0.114(3)	0.046*
O4W	0.2924 (5)	0.9293 (4)	0.3611 (3)	0.0402 (9)
H7W	0.267 (6)	0.916 (6)	0.419 (2)	0.060*
H8W	0.221 (5)	0.949 (6)	0.330 (4)	0.060*
O5W	0.0564 (5)	-0.0166 (4)	0.2481 (3)	0.0440 (10)
H9W	0.079 (7)	-0.006 (5)	0.187 (2)	0.066*
H10W	0.028 (7)	0.046 (4)	0.271 (4)	0.066*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Gd1	0.01463 (12)	0.01957 (12)	0.01160 (11)	0.00505 (9)	0.00226 (8)	0.00460 (8)
Gd2	0.01453 (12)	0.01764 (12)	0.01186 (11)	0.00550 (9)	0.00300(8)	0.00492 (8)
Co1	0.0212(3)	0.0206(3)	0.0141 (3)	0.0069(2)	0.0050(2)	0.0054(2)
S1	0.0214 (6)	0.0180 (5)	0.0181 (5)	0.0053 (4)	0.0011 (4)	0.0022 (4)
S2	0.0164 (5)	0.0211 (5)	0.0111 (5)	0.0077 (4)	0.0024 (4)	0.0041 (4)
C1	0.020(2)	0.017(2)	0.0083 (19)	0.0053 (18)	0.0044 (17)	0.0013 (16)
C2	0.022(2)	0.021(2)	0.0102 (19)	0.0082 (18)	0.0032 (17)	0.0004(17)

C3	0.021(2)	0.024(2)	0.020(2)	0.0035 (19)	0.0038 (19)	0.0055 (18)
C4	0.018(2)	0.021(2)	0.013(2)	0.0056 (18)	0.0011 (17)	0.0031 (17)
C5	0.017(2)	0.029(2)	0.010(2)	0.0095 (19)	0.0058 (17)	0.0057 (17)
C6	0.018(2)	0.020(2)	0.015(2)	0.0039 (18)	-0.0011 (18)	0.0041 (18)
C7	0.023(2)	0.018(2)	0.018(2)	0.0057 (18)	0.0050 (18)	0.0017 (17)
C8	0.038(3)	0.017(2)	0.025(2)	0.009(2)	0.012(2)	0.0031 (19)
C9	0.026(3)	0.014(2)	0.021(2)	0.0034 (18)	0.0045 (19)	0.0031 (18)
C10	0.027(3)	0.024(3)	0.023(2)	0.003(2)	0.010(2)	0.005(2)
N1	0.016(2)	0.031(2)	0.0177 (19)	0.0067 (17)	0.0005 (15)	0.0044 (16)
N2	0.020(2)	0.0204 (19)	0.0142 (17)	0.0039 (15)	0.0035 (15)	0.0047 (14)
N3	0.035(2)	0.0154 (19)	0.025(2)	0.0043 (17)	0.0127 (18)	0.0081 (16)
N4	0.024(2)	0.0188 (19)	0.0185 (18)	0.0050 (16)	0.0045 (16)	0.0011 (15)
O1	0.033(2)	0.046(2)	0.0184 (16)	0.0199 (16)	0.0057 (14)	0.0000 (15)
O2	0.037(2)	0.0269 (17)	0.0154 (15)	0.0120 (15)	0.0022 (14)	0.0038 (13)
O3	0.031(2)	0.0262 (19)	0.057(2)	-0.0065 (15)	-0.0102 (18)	0.0148 (17)
O4	0.0266 (18)	0.0222 (16)	0.0229 (16)	0.0107 (14)	-0.0012 (14)	0.0020 (13)
O5	0.0160 (16)	0.0252 (16)	0.0149 (14)	0.0041 (13)	0.0030 (12)	0.0064 (12)
O6	0.0167 (16)	0.0296 (17)	0.0125 (14)	0.0070 (13)	0.0029 (12)	0.0074 (12)
O7	0.0161 (16)	0.0295 (17)	0.0225 (16)	0.0057 (13)	0.0029 (13)	0.0122 (13)
O8	0.0191 (17)	0.048(2)	0.0167 (16)	0.0052 (15)	0.0010 (13)	0.0133 (15)
O9	0.0276 (18)	0.0182 (15)	0.0193 (15)	0.0049 (13)	0.0105 (13)	0.0067 (12)
O10	0.0246 (17)	0.0149 (15)	0.0209 (15)	0.0048 (13)	0.0084 (13)	0.0036 (12)
O11	0.053(2)	0.0187 (18)	0.037(2)	0.0021 (16)	0.0258 (18)	0.0011 (15)
O12	0.050(2)	0.0236 (18)	0.039(2)	0.0061 (16)	0.0248 (18)	0.0103 (15)
O13	0.0230 (18)	0.042(2)	0.0184 (16)	0.0142 (15)	0.0053 (13)	0.0170 (14)
O14	0.039(2)	0.0200 (17)	0.0346 (18)	0.0095 (15)	0.0187 (16)	0.0038 (14)
O15	0.035(2)	0.0346 (19)	0.0158 (16)	0.0001 (15)	0.0002 (14)	-0.0013 (14)
O16	0.0236 (18)	0.045 (2)	0.0275 (17)	0.0164 (15)	0.0122 (14)	0.0208 (15)
O1W	0.053(3)	0.029(2)	0.035(2)	0.0081 (18)	-0.0066 (19)	0.0089 (16)
O2W	0.0199 (18)	0.049(2)	0.0271 (18)	0.0154 (16)	0.0092 (14)	0.0182 (16)
O3W	0.035(2)	0.0295 (18)	0.0251 (17)	0.0100 (16)	-0.0016 (15)	0.0045 (14)
O4W	0.055(3)	0.041(2)	0.032(2)	0.0265 (19)	0.0098 (18)	0.0015 (18)
O5W	0.063(3)	0.040(2)	0.043 (2)	0.028(2)	0.026(2)	0.0114 (18)
Geometric par	ameters (Å, °)					
Gd1—O7		2.283 (3)	C3—]	N2	1.31	4 (5)
Gd1—O2 ⁱ		2.319 (3)	C3—1	N1	1.33	6 (5)
Gd1—O4		2.337 (3)	C3—l		0.93	* *
Gd1—O15		2.343 (3)	C4—]		1.37	
Gd1—O5		2.375 (3)	C4—(1.49	
Gd1—O1W		2.447 (3)	C5—(1.24	
Gd1—O6 ⁱ		2.447 (3)	C5—(1.24	
_						
Gd1—O5 ⁱ		2.562 (3)	C6—(1.26	
Gd1—C1 ⁱ		2.905 (4)	C6—(1.26	
Gd1—Gd1 ⁱ		4.0465 (4)	C6—(1.47	
Gd2—O11 ⁱⁱ		2.244 (3)	C7—		1.37	
Gd2—O13 ⁱⁱ		2.338 (3)	C7—]	N4	1.39	9 (5)

Gd2—O8	2.348 (3)	C8—N4	1.320 (5)
Gd2—O2W	2.361 (3)	C8—N3	1.347 (6)
Gd2—O16	2.373 (3)	C8—H8	0.9300
Gd2—O10 ⁱⁱ	2.414 (3)	C9—N3	1.372 (5)
Gd2—O10	2.535 (3)	C9—C10	1.493 (6)
Gd2—O9	2.561 (3)	C10—O12	1.226 (5)
Gd2—C6	2.934 (4)	C10—O11	1.265 (5)
Gd2—Gd2 ⁱⁱ	4.0349 (4)	N1—H1	0.87 (4)
Co1—N4	2.058 (4)	N2—Co1 ⁱⁱⁱ	2.086 (3)
Co1—N2 ⁱⁱⁱ	2.086 (3)	N3—H2	0.87 (3)
Co1—O6 ⁱⁱⁱ	2.096 (3)	O2—Gd1 ⁱ	2.319 (3)
Co1—O4W	2.097 (4)	O5—Gd1 ⁱ	2.562 (3)
Co1—O3W	2.122 (3)	O6—Co1 ⁱⁱⁱ	2.096 (3)
Co1—O9	2.157 (3)	O6—Gd1 ⁱ	2.498 (3)
S1—O3	1.443 (3)	O10—Gd2 ⁱⁱ	2.414 (3)
S1—O1	1.478 (3)	O11—Gd2 ⁱⁱ	2.244 (3)
S1—O2	1.483 (3)	O13—Gd2 ⁱⁱ	2.338 (3)
S1—O4	1.486 (3)	O1W—H1W	0.81 (4)
S2—O14	1.459 (3)	O1W—H2W	0.789 (19)
S2—O15	1.469 (3)	O2W—H3W	0.80(3)
S2—O13	1.470 (3)	O2W—H4W	0.81 (4)
S2—O16	1.476 (3)	O3W—H5W	0.82(3)
C1—O5	1.264 (5)	O3W—H6W	0.83(3)
C1—O6	1.269 (5)	O4W—H7W	0.82(3)
C1—C2	1.458 (6)	O4W—H8W	0.82 (5)
C1—Gd1 ⁱ	2.905 (4)	O5W—H9W	0.85 (4)
C2—C4	1.369 (6)	O5W—H10W	0.85 (5)
C2—N2	1.377 (5)		
O7—Gd1—O2 ⁱ	103.56 (11)	O4W—Co1—O3W	93.45 (14)
O7—Gd1—O4	87.61 (10)	N4—Co1—O9	78.00 (12)
O2 ⁱ —Gd1—O4	139.04 (10)	N2 ⁱⁱⁱ —Co1—O9	87.71 (13)
O7—Gd1—O15	90.06 (11)	O6 ⁱⁱⁱ —Co1—O9	91.82 (11)
O2 ⁱ —Gd1—O15	137.61 (11)	O4W—Co1—O9	178.18 (14)
O4—Gd1—O15	80.42 (11)	O3W—Co1—O9	87.04 (13)
O7—Gd1—O5	76.05 (10)	O3—S1—O1	112.2 (2)
O2 ⁱ —Gd1—O5	71.43 (10)	O3—S1—O2	108.8 (2)
04—Gd1—O5	73.46 (10)	O1—S1—O2	107.78 (19)
O15—Gd1—O5	150.71 (11)	O3—S1—O4	110.53 (19)
O7—Gd1—O1W	77.94 (12)	O1—S1—O4	107.51 (18)
$O2^{i}$ — $Gd1$ — $O1W$	74.57 (11)	O2—S1—O4	110.02 (17)
04—Gd1—01W	146.18 (11)	O14—S2—O15	108.6 (2)
O15—Gd1—O1W	69.33 (12)	014—S2—013 014—S2—013	108.6 (2)
O5—Gd1—O1W	130.26 (12)	O15—S2—O13	107.94 (19)
07—Gd1—Of ⁱ	164.37 (9)	O13—S2—O15 O14—S2—O16	110.07 (19)
O2 ⁱ —Gd1—O6 ⁱ	76.75 (10)	O15—S2—O16	109.10 (19)

O4—Gd1—O6 ⁱ	102.43 (10)	O13—S2—O16	111.47 (17)
O15—Gd1—O6 ⁱ	80.01 (10)	O5—C1—O6	118.6 (4)
O5—Gd1—O6 ⁱ	118.09 (9)	O5—C1—C2	123.7 (3)
O1W—Gd1—O6 ⁱ	87.23 (12)	O6—C1—C2	117.7 (3)
O7—Gd1—O5 ⁱ	144.56 (9)	O5—C1—Gd1 ⁱ	61.8 (2)
O2 ⁱ —Gd1—O5 ⁱ	75.17 (10)	O6—C1—Gd1 ⁱ	58.9 (2)
O4—Gd1—O5 ⁱ	73.51 (10)	C2—C1—Gd1 ⁱ	163.6 (3)
O15—Gd1—O5 ⁱ	115.09 (11)	C4—C2—N2	109.0 (4)
O5—Gd1—O5 ⁱ	69.99 (11)	C4—C2—C1	135.5 (4)
O1W—Gd1—O5 ⁱ	132.85 (11)	N2—C2—C1	115.5 (3)
O6 ⁱ —Gd1—O5 ⁱ	50.97 (9)	N2—C3—N1	110.9 (4)
O7—Gd1—C1 ⁱ	168.66 (10)	N2—C3—H3	124.5
O2 ⁱ —Gd1—C1 ⁱ	70.40 (11)	N1—C3—H3	124.5
O4—Gd1—C1 ⁱ	91.09 (11)	C2—C4—N1	105.5 (3)
O15—Gd1—C1 ⁱ	100.83 (11)	C2—C4—C5	133.9 (4)
O5—Gd1—C1 ⁱ	92.78 (10)	N1—C4—C5	120.4 (4)
O1W—Gd1—C1 ⁱ	108.73 (12)	O7—C5—O8	125.4 (4)
O6 ⁱ —Gd1—C1 ⁱ	25.79 (9)	O7—C5—C4	119.5 (4)
O5 ⁱ —Gd1—C1 ⁱ	25.77 (10)	O8—C5—C4	115.1 (4)
O7—Gd1—Gd1 ⁱ	111.99 (7)	O9—C6—O10	119.1 (4)
O2 ⁱ —Gd1—Gd1 ⁱ	69.58 (7)	O9—C6—C7	117.3 (4)
O4—Gd1—Gd1 ⁱ	69.70 (7)	O10—C6—C7	123.6 (4)
O15—Gd1—Gd1 ⁱ	141.31 (9)	O9—C6—Gd2	60.5 (2)
O5—Gd1—Gd1 ⁱ	36.51 (7)	O10—C6—Gd2	59.4 (2)
O1W—Gd1—Gd1 ⁱ	144.09 (9)	C7—C6—Gd2	171.4 (3)
O6 ⁱ —Gd1—Gd1 ⁱ	82.97 (6)	C9—C7—N4	109.2 (4)
O5 ⁱ —Gd1—Gd1 ⁱ	33.48 (6)	C9—C7—C6	135.5 (4)
C1 ⁱ —Gd1—Gd1 ⁱ	57.20 (7)	N4—C7—C6	115.3 (4)
O11 ⁱⁱ —Gd2—O13 ⁱⁱ	104.05 (12)	N4—C8—N3	110.6 (4)
O11 ⁱⁱ —Gd2—O8	90.51 (12)	N4—C8—H8	124.7
O13 ⁱⁱ —Gd2—O8	138.78 (11)	N3—C8—H8	124.7
O11 ⁱⁱ —Gd2—O2W	79.70 (13)	N3—C9—C7	105.2 (4)
O13 ⁱⁱ —Gd2—O2W	75.63 (11)	N3—C9—C10	119.4 (4)
O8—Gd2—O2W	69.29 (11)	C7—C9—C10	135.2 (4)
O11 ⁱⁱ —Gd2—O16	85.00 (13)	O12—C10—O11	125.0 (4)
O13 ⁱⁱ —Gd2—O16	139.36 (10)	O12—C10—C9	117.9 (4)
08—Gd2—016	79.29 (11)	O11—C10—C9	117.1 (4)
O2W—Gd2—O16	144.68 (10) 76.41 (10)	C3—N1—C4	108.3 (3) 125 (4)
O11 ⁱⁱ —Gd2—O10 ⁱⁱ O13 ⁱⁱ —Gd2—O10 ⁱⁱ	76.41 (10) 71.52 (10)	C3—N1—H1 C4—N1—H1	125 (4) 126 (4)
O13"—Gd2—O10" O8—Gd2—O10 ⁱⁱ			
U8—G02—U10	149.64 (11)	C3—N2—C2	106.3 (3)

O2W—Gd2—O10 ⁱⁱ	132.68 (11)	C3—N2—Co1 ⁱⁱⁱ	140.8 (3)
O16—Gd2—O10 ⁱⁱ	72.45 (10)	C2—N2—Co1 ⁱⁱⁱ	112.8 (3)
O11 ⁱⁱ —Gd2—O10	145.26 (11)	C8—N3—C9	109.0 (4)
O13 ⁱⁱ —Gd2—O10	76.33 (10)	C8—N3—H2	125 (4)
O8—Gd2—O10	112.31 (10)	C9—N3—H2	126 (4)
O2W—Gd2—O10	131.93 (11)	C8—N4—C7	106.0 (4)
O16—Gd2—O10	74.61 (10)	C8—N4—Co1	139.7 (3)
O10 ⁱⁱ —Gd2—O10	70.80 (11)	C7—N4—Co1	114.0 (3)
O11 ⁱⁱ —Gd2—O9	163.85 (11)	S1—O2—Gd1 ⁱ	144.35 (18)
O13 ⁱⁱ —Gd2—O9	74.78 (10)	S1—O4—Gd1	141.43 (18)
O8—Gd2—O9	80.86 (10)	C1—O5—Gd1	143.6 (3)
O2W—Gd2—O9	84.47 (11)	C1—O5—Gd1 ⁱ	92.4 (2)
O16—Gd2—O9	106.54 (11)	Gd1—O5—Gd1 ⁱ	110.01 (11)
O10 ⁱⁱ —Gd2—O9	117.44 (9)	C1—O6—Co1 ⁱⁱⁱ	115.4 (3)
O10—Gd2—O9	50.71 (9)	C1—O6—Gd1 ⁱ	95.3 (2)
O11 ⁱⁱ —Gd2—C6	169.70 (11)	Co1 ⁱⁱⁱ —O6—Gd1 ⁱ	143.17 (13)
O13 ⁱⁱ —Gd2—C6	71.59 (11)	C5—O7—Gd1	145.3 (3)
O8—Gd2—C6	98.84 (11)	C5—O8—Gd2	134.4 (3)
O2W—Gd2—C6	107.59 (12)	C6—O9—Co1	115.0 (3)
O16—Gd2—C6	92.46 (12)	C6—O9—Gd2	94.1 (2)
O10 ⁱⁱ —Gd2—C6	93.30 (11)	Co1—O9—Gd2	149.36 (13)
O10—Gd2—C6	25.50 (10)	C6—O10—Gd2 ⁱⁱ	142.3 (3)
O9—Gd2—C6	25.43 (10)	C6—O10—Gd2	95.1 (2)
O11 ⁱⁱ —Gd2—Gd2 ⁱⁱ	112.07 (8)	Gd2 ⁱⁱ —O10—Gd2	109.20 (11)
O13 ⁱⁱ —Gd2—Gd2 ⁱⁱ	70.24 (7)	C10—O11—Gd2 ⁱⁱ	159.9 (3)
O8—Gd2—Gd2 ⁱⁱ	139.01 (7)	S2—O13—Gd2 ⁱⁱ	144.17 (19)
O2W—Gd2—Gd2 ⁱⁱ	145.64 (8)	S2—O15—Gd1	141.6 (2)
O16—Gd2—Gd2 ⁱⁱ	69.68 (7)	S2—O16—Gd2	142.69 (18)
O10 ⁱⁱ —Gd2—Gd2 ⁱⁱ	36.40 (6)	Gd1—O1W—H1W	130 (4)
O10—Gd2—Gd2 ⁱⁱ	34.41 (6)	Gd1—O1W—H2W	104 (4)
O9—Gd2—Gd2 ⁱⁱ	82.98 (6)	H1W—O1W—H2W	108 (3)
C6—Gd2—Gd2 ⁱⁱ	57.82 (8)	Gd2—O2W—H3W	122 (4)
N4—Co1—N2 ⁱⁱⁱ	102.68 (14)	Gd2—O2W—H4W	127 (3)
N4—Co1—O6 ⁱⁱⁱ	169.67 (13)	H3W—O2W—H4W	108 (3)
N2 ⁱⁱⁱ —Co1—O6 ⁱⁱⁱ	78.43 (12)	Co1—O3W—H5W	120 (4)
N4—Co1—O4W	100.20 (15)	Co1—O3W—H6W	121 (4)
N2 ⁱⁱⁱ —Co1—O4W	92.40 (14)	H5W—O3W—H6W	102 (3)
O6 ⁱⁱⁱ —Co1—O4W	89.98 (14)	Co1—O4W—H7W	121 (4)
N4—Co1—O3W	94.51 (14)	Co1—O4W—H8W	113 (4)
N2 ⁱⁱⁱ —Co1—O3W	160.56 (13)	H7W—O4W—H8W	104 (3)
O6 ⁱⁱⁱ —Co1—O3W	83.04 (12)	H9W—O5W—H10W	110 (3)
Symmetry codes: (i) $-x+2$, $-y+1$, $-z+1$	` '		· /
- ' ' ' ' '			

77 1 1	1	18	٥.
Hydrogen-bon	d geometrv	(A.	٧)

<i>D</i> —H··· <i>A</i>	<i>D</i> —H	$H\cdots A$	D··· A	D— H ··· A
N1—H1···O1 ^{iv}	0.87 (4)	1.96 (4)	2.820 (5)	172 (5)
O1W—H1W···O5W ^v	0.81 (4)	1.95 (3)	2.745 (5)	169 (6)
N3—H2···O14 ^{vi}	0.87 (3)	1.93 (3)	2.787 (4)	169 (4)
O2W—H3W···O1 ^{iv}	0.80(3)	2.09 (4)	2.878 (5)	171 (5)
O2W—H4W···O14 ^{iv}	0.81 (4)	2.04 (4)	2.842 (5)	172 (5)
O2W—H4W···O15 ^{iv}	0.81 (4)	2.52 (4)	3.035 (5)	123 (4)
O3W—H5W···O12 ^{vii}	0.82(3)	1.95 (4)	2.734 (4)	162 (5)
O3W—H6W···O14 ⁱⁱ	0.83 (3)	2.41 (4)	2.919 (4)	120 (3)
O4W—H7W···O3 ⁱⁱⁱ	0.82(3)	2.49 (3)	3.306 (6)	174 (6)
O4W—H8W···O5W ^{vi}	0.82 (5)	1.89 (5)	2.700 (6)	175 (6)
O5W—H9W···O12 ⁱⁱ	0.85 (4)	1.99 (4)	2.797 (6)	161 (5)
O5W—H10W···O1 ^{iv}	0.85 (5)	1.93 (5)	2.728 (5)	157 (6)
C3—H3···O3 ^{viii}	0.93	2.44	3.193 (5)	138.

Symmetry codes: (iv) x-1, y, z; (v) x+1, y+1, z; (vi) x, y+1, z; (vii) -x+1, -y+2, -z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1; (viii) -x+1, -y, -z+1.

Fig. 1

Fig. 2

