HOCHSCHULE LUZERN

Informatik
FH Zentralschweiz

Basic Structures - Übung 1

Prof. Dr. Josef F. Bürgler

I.BA_DMATH, Semesterwoche 2

Die Aufgaben sind zusammen mit dem Lösungweg in möglichst einfacher Form darzustellen. Numerische Resultate sind mit einer Genauigkeit von 4 Stellen anzugeben. Skizzen müssen qualitativ und quantitativ richtig sein.

Sie sollten im Durschnitt 75% der Aufgaben bearbeiten. Die mit grossen römischen Zahlen gekennzeichneten Aufgaben **müssen** bearbeitet werden und die Lösungen dieser Aufgaben werden kontolliert und bewertet. Abgabetermin ihrer Übungsaufgaben ist die letzte Vorlesungsstunde in der Woche nachdem das Thema im Unterricht besprochen wurde.

Referenz: Kenneth H. Rosen, Discrete Mathematics and its Applications, McGraw-Hill International Edition, 6.

Auflage, kurz: KR

Mengen

- 1. **KR**, **Abschnitt 2.1**, **Aufgabe 19b:** Wie lautet die Potenzmenge von $\{a, b\}$?
- 2. **KR**, **Abschnitt 2.2**, **Aufgabe 3:** Gegeben seien die Mengen $A = \{1, 2, 3, 4, 5\}$ und $B = \{0, 3, 6\}$. Bestimmen sie dann (a) $A \cup B$, (b) $A \cap B$, (c) $A \setminus B$ und (d) $B \setminus A$.
- 3. **KR**, **Abschnitt 2.2**, **Aufgabe 15:** Zeigen sie, dass für zwei Mengen A und B gilt: $\overline{A \cup B} = \overline{A} \cap \overline{B}$.
- 4. **KR**, **Abschnitt 2.2**, **Aufgabe 50**: Die Universalmenge sei $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Drücken sie jede der folgenden Mengen mit einem Bitstring der Länge 10 (denn U hat genau 10 Elemente) aus, wobei das i-te Bit 1 ist, falls das i in der Menge ist (und Null sonst): (a) $\{3, 4, 5\}$, (b) $\{1, 3, 6, 10\}$ und (c) $\{2, 3, 4, 7, 8, 9\}$.
- 5. **KR**, **Abschnitt 2.2**, **Aufgabe 51:** Welche Mengen stellen die folgenden Bitstrings dar, wenn man die Universalmenge aus der letzten Aufgabe verwendet: (a) 1111001111, (b) 0101111000 und (c) 1000000001.

Funktionen

- 1. KR, Abschnitt 2.3, Aufgabe 5b: Gesucht ist der Definitions- und Wertebereich der Funktion f, die jedem Bitstring das doppelte der Anzahl Nullen im Bitstring zuordnet (z.B. gilt f(101000) = $2 \cdot 4 = 8$, $f(111) = 2 \cdot 0 = 0$ und $f(00) = 2 \cdot 2 = 4$).
- 6. **KR**, **Abschnitt 2.3**, **Aufgaben 8a bis 9c:** Gesucht sind die folgenden Werte: (a) $\begin{bmatrix} \frac{3}{4} \end{bmatrix}$, (b) $\begin{bmatrix} 1.1 \end{bmatrix}$ und (c) |-0.1|. Hier haben wir die *ceiling*- und *floor*-Funktionen verwendet:

$$\lceil \cdot \rceil : \mathbb{R} \to \mathbb{Z}, x \mapsto \lceil x \rceil = \min \{ n \in \mathbb{Z} \mid x \le n \}$$
$$| \cdot | : \mathbb{R} \to \mathbb{Z}, x \mapsto |x| = \max \{ n \in \mathbb{Z} \mid n \le x \}$$

Zeichnen Sie die Graphen der beiden Funktionen auf: Sie werden sehen, dass es sich um äusserst nützliche Funktionen handelt! Man sieht sofort, dass gilt:

$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1.$$

- 7. **KR**, **Abschnitt 2.3**, **Aufgabe 11:** Welche Funktionen von $\{a, b, c, d\}$ auf sich selbst sind bijektiv: (a) f(a) = b, f(b) = a, f(c) = c, f(d) = d, (b) f(a) = b, f(b) = b, f(c) = d, f(d) = c, und (c) f(a) = d, f(b) = b, f(c) = c, f(d) = d?
- 8. KR, Abschnitt 2.3, Aufgaben 19a, 19b: Untersuchen Sie, ob die folgenden Funktionen von R nach \mathbb{R} bijektiv sind: (a) f(x) = 2x + 1 und (b) $f(x) = x^2 + 1$.
- 9. **KR**, **Abschnitt 2.3**, **Aufgaben 26:** Sei $S = \{-1, 0, 2, 4, 7\}$. Gesucht ist f(S) falls (a) $f(x) = \lceil x/5 \rceil$, (b) $f(x) = |(x^2 + 1)/3|$.

Folgen, Summationen und Produkte

- 10. **KR, Abschnitt 2.4, Aufgabe 1:** Gegeben sei die Zahlenfolge $\{a_n\}$ mit $a_n = 2 \cdot (-3)^n + 5^n$. Berechnen Sie **a**) a_0 **b**) a_1 **c**) a_4 **d**) a_5
- 11. KR, Abschnitt 2.4, Aufgabe 5d: Bestimmen Sie die ersten 10 Glieder der Zahlenfolge, deren *n*-tes Glied gleich $n! - 2^n$ ist.
- 12. KR, Abschnitt 2.4, Aufgabe 9c: Wir betrachten die folgende (Anfangs)sequenz natürlicher Zahlen: 1,0,2,0,4,0,8,0,16,0,... Bestimmen Sie ein allgemeines Bildungsgesetz für diese Zahlenfolge, d.h. eine Vorschrift der Gestalt $a_n = f(n)$, so dass $a_1 = 1$, $a_2 = 0$, ...
- 13. KR, Abschnitt 2.4, Aufgaben 13a, 13d und 17d: Bestimmen Sie die Werte der folgenden Summen:

a)
$$\sum_{k=1}^{5} (k+1)$$
 b) $\sum_{j=0}^{8} (2^{j+1} - 2^{j})$ c) $\sum_{i=0}^{2} \sum_{j=0}^{3} ij$

II. KR, Abschnitt 2.4, Aufgabe 27: Bestimmen Sie die Werte der folgenden Produkte 1

$$a) \prod_{i=0}^{10} i \qquad b) \prod_{i=5}^{8} i \qquad c) \prod_{i=1}^{100} (-1)^{i} \qquad d) \prod_{i=1}^{10} 2$$

1
Das Produkt der Zahlen a_m, a_{m+1}, \dots, a_n kann mit Hilfe des Produktzeichen wie folgt abgekürzt werden:
$$\prod_{j=m}^{n} a_j = a_m \cdot a_{m+1} \cdot \dots \cdot a_n.$$
 Beispielsweise ist
$$\prod_{j=0}^{5} (2j+1) = 1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11 = 10'395.$$

$$\prod_{i=m}^{n} a_j = a_m \cdot a_{m+1} \cdot \ldots \cdot a_n.$$
 Beispielsweise ist
$$\prod_{i=0}^{5} (2j+1) = 1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11 = 10'395.$$

III. KR, Abschnitt 2.4, Aufg. 15: Was ist der Wert der folgenden Summen:

a)
$$\sum_{i=0}^{8} 3 \cdot 2^{i}$$

$$b) \sum_{k=1}^{8} 2^{k}$$

c)
$$\sum_{l=2}^{8} (-3)^{l}$$

a)
$$\sum_{i=0}^{8} 3 \cdot 2^{i}$$
 b) $\sum_{k=1}^{8} 2^{k}$ c) $\sum_{l=2}^{8} (-3)^{l}$ d) $\sum_{i=0}^{8} 2 \cdot (-3)^{i}$

- IV. KR, Abschnitt 2.4, Aufg. 24: Bestimmen Sie die Summe $\sum_{k=00}^{200} k^3$.
- V. Was sind die Werte der folgenden Produkte:

a)
$$\prod_{i=0}^{10} 2^i$$

b)
$$\prod_{i=5}^{8} e^{-i}$$

a)
$$\prod_{i=0}^{10} 2^i$$
 b) $\prod_{i=5}^{8} e^{-i}$ c) $\prod_{i=1}^{100} (-2)^i$ d) $\prod_{i=1}^{10} 2^{-1}$

$$d) \prod_{i=1}^{10} 2^{-1}$$

VI. KR, Abschnitt 2.4, Aufg. 29 und 30: Bestimmen Sie

a)
$$\sum_{j=0}^{4} j!$$
 b) $\prod_{j=0}^{4} j!$

b)
$$\prod_{i=0}^4 j!$$

VII. KR, Abschnitt 2.4, Aufg. 19: Gegeben die Folge von reellen Zahlen $\{a_0, a_1, \dots, a_n\}$. Zeigen Sie, dass folgendes gilt

$$\sum_{j=1}^{n} (a_j - a_{j-1}) = a_n - a_0$$

Schreiben Sie die Summe für kleine n auf. Zwei aufeinander folgende Terme heben sich gegenseitig weg: deshalb nennt man Summen dieser Art teleskopierende Summen.

VIII. KR, Abschnitt 2.4, Aufg. 20: Man verwende vorige Aufgabe und die Identität

$$\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$$

um die folgende Summe zu berechnen:

$$\sum_{k=1}^{n} \frac{1}{k(k+1)}$$

Lösungen

- 1. $\{\emptyset, \{a\}, \{b\}, \{a,b\}\}\$ (die Elemente dieser Menge sind selbst Mengen!)
- 2. (a) $\{0,1,2,3,4,5,6\}$, (b) $\{3\}$, (c) $\{1,2,4,5\}$, (d) $\{0,6\}$
- 3. Wir erstellen eine Tabelle für die Mitgliedschaften in beiden Mengen. Ergänzen Sie die fehlenden Einträge.

\boldsymbol{A}	B	$A \cup B$	$\overline{A \cup B}$	\overline{A}	\overline{B}	$ \overline{A} \cap \overline{B}$
1	1	1	0	0	0	0
1	0					
0	1					
0	0			1	1	1
	1	1 1 1 0	1 1 1 1 0	1 1 1 0 1 0	1 1 1 0 0 1 0	1 1 1 0 0 0 1 0

	Teilmenge	Bitstring		
4.	{1,2,3,4,5,6,7,8,9,10}	1111111111		
	\emptyset	0000000000		
	{3,4,5}	0011100000		
	{1,3,6,10}	1010010001		
	$\{2,3,4,7,8,9\}$	0111001110		
5.	Teilmenge	Bitstring		
	{1,2,3,4,5,6,7,8,9,10}	1111111111		
	Ø	0000000000		
	$\{1,2,3,4,7,8,9,10\}$	1111001111		
	•			
	?	0101111000		

- 6. (a) 1, (b) 2, (c) 0.
- 7. (a) bijektiv, (b) weder injektiv noch surjektiv, (c) weder injektiv noch surjektiv.
- 8. (a) ist bijektiv, (b) ist weder injektiv noch surjektiv und damit auch nicht bijektiv.
- 9. (a) $f(S) = \{0,0,1,1,2\}$, (b) $f(S) = \{0,0,1,5,16\}$.
- 10. a) $a_0 = 3$, b) $a_1 = -1$, c) $a_4 = 787$, d) $a_5 = 2639$
- 11. Falls wir mit n = beginnen, lautet die Folge

$$(a_n) = (0, -1, -2, -2, 8, 88, 656, 4'912, 40'064, 362'368)$$

12. Man verifiziert durch Einsetzen sofort, dass

$$a_n = 2^{\frac{n}{2}} \frac{1 + (-1)^n}{2} = 2^{\frac{n}{2} - 1} ((-1)^n + 1)$$

mit n = 0 beginnend die Zahlen 1, 0, 2, 0, 4, ... liefert.

13. a) 20, b) 511, c) 18.