Question 1

The problem

In this problem, we observe n i.i.d. values from an unknown (μ , σ) normal distribution which we want to find the maximum likelihood estimates. Since the data is rounded into d decimal places, we need to find mle by maximizing the probability of having a point in the interval which could be rounded into our data point.

II. The method

a) In function rnd_norm_mle1, we could find the each probability by integrating the normal density function over the interval $[X_i-0.5\times 10^{-d-1}]$, $X_i+0.5\times 10^{-d-1}]$,

In particular,

$$\int_{X_i - 0.5 \times 10^{-d-1}}^{X_i + 0.5 \times 10^{-d-1}} f(x) dx$$

Therefore the log likelihood can be calculated by:

$$L(\mu, \sigma) = \sum_{X_i} log(\int_{X_i - 0.5 \times 10^{-d-1}}^{X_i + 0.5 \times 10^{-d-1}} f(x) dx)$$

We should use the log of σ so that there is no constraint on estimations.

b) In the function rnd norm mle2 each probability is generated by

$$\phi(X_i + 0.5 \times 10^{-d-1}) - \phi(X_i - 0.5 \times 10^{-d-1})$$

Where $\phi(X)$ is the normal distribution function.

$$L(\mu,\sigma) = \sum_{X_i} log(\phi(X_i + 0.5 \times 10^{-d-1} - \phi(X_i - 0.5 \times 10^{-d-1}))))$$
 Similarly,

c) We could use the sample mean and the exponential of sample std as the initial value of nlm function.

III . The output

Table 1 : Data Summary

Dataset	Number of data	Sample mean	Sample standard	True mean	True standard deviation
			deviation		
X1	25	2.408	0.9560858	2.24	1
X2	50	2.238	0.1085902	2.24	0.1
Х3	4000	2.2355	0.8515991	2.24	0.8

Table 2: Estimated mean

Dataset	Number	Estimate mean using	Estimate mean using	
	of data	rnd_norm_mle1	rnd_norm_mle2	
X1	25	2.4079988	2.4079988	
X2	50	2.237962	2.237962	
Х3	4000	2.2355587	2.2355587	

Table 3: Estimated standard error

Dataset	Number	Estimate mean using	Estimate mean using	
	of data	rnd_norm_mle1	rnd_norm_mle2	
X1	25	0.9363236	0.9363236	
X2	50	0.10351	0.10351	
Х3	4000	0.8007662	0.8007662	

Table 4: Operating time

Dataset	Number	Estimate using	Estimate using	Estimate using
	of data	rnd_norm_mle1	rnd_norm_mle2	sample mean
X1	25	0.03	0	0
X2	50	0.07	0.02	0
Х3	4000	4.08	1.01	0

IV. Comments

- a) From the table 2 and table 3, we can clearly see that the 2 estimate functions returns exactly the same results. So in terms of precision, the 2 algorithms are indifferent.
- b) To compare the mean estimation using mle and sample mean, we can check table 1 and table 2. From the table there is a very little difference between the 2 methods, for all n=25,50 and 4000. Therefore, using maximum likelihood estimates of μ and simply using the sample mean returns very similar results. In addition, as n gets larger, from 25 to 50, the error of estimates becomes smaller for both sample mean method and mle method. However, as n changes from 50 to 4000, both of the methods return a larger error.
- c) To compare the standard deviation estimation, we need to check table 1 and table 3. In the n = 25 case, sample standard deviation makes a better estimate, while in the n = 50, and n =4000 cases, the mle method shows slightly better estimates. What's more, as n getting larger, the error in mle method becomes significantly smaller.
- d) From table 4, the operating time using integrate is longer than that using pnorm. The operating time using sample mean method is always 0.

Question 2

I. The problem

In this problem, we observe n pairs of values. The two values within each pair may be dependent, following a bivariate normal distribution. We are also given a prior density distribution with $\sigma \in (0,\infty)$ and $\rho \in (-1,+1)$. We need to compute the normalizing constant for the posterior distribution given data X and the marginal posterior density (with correct normalization) of ρ given data X.

II. The method and functions

$$f(\sigma, \rho | X_1, X_2, ..., X_n) = \frac{h(\sigma, \rho) L(X_i | \sigma, \rho)}{\int_{-1}^{1} \int_{0}^{-\infty} h(\sigma, \rho) L(X_i | \sigma, \rho) d\sigma d\rho}$$

Since the prior distribution is singular at ρ = 0, we need to split the integral into 2 parts. Thus the normalizing constant C can be calculated by:

$$C = \int_{-1}^{0} \int_{0}^{-\infty} h(\sigma, \rho) L(X_{i}|\sigma, \rho) d\sigma d\rho + \int_{0}^{1} \int_{0}^{-\infty} h(\sigma, \rho) L(X_{i}|\sigma, \rho) d\sigma d\rho$$

Table of functions

Function Name	Function description
jd	Calculate the joint density of single data pairs given σ and ρ
bvn_prior	Calculate the prior density, return a vector.
bnv_likelihood	Returns the likelihood for given σ and ρ values and the data
lik_v	Given data, returns a vector of likelihood for different σ values and a single ρ value.
m_rho	Marginal posterior density (before normalization) of ρ , given data. Return vectors.
bvn_normalize	Compute the normalizing constant for the posterior distribution given data X
bvn_posterior_rho	Marginal posterior density (with normalization) of ρ , given data.
lik_rho	Marginal likelihood function of $ ho$ with given data.

III. The output

Normalizing constant for Xa	1.204831e-47
Normalizing constant for Xb	1.871503e-50

Plot 1 Data = Xa

Plot 2

Data = Xb

IV. Comments

- a) From plot 1 and 2, we can find that the marginal likelihood distribution has local maximum at around sample correlation.
- The marginal posterior function also attains local maximum at around sample correlation. However the local maximum for data Xa is a little bit divergent from x = sample correlation.

The reason might be that the marginal prior decreases around the sample correlation, which draws the local maximum of function $L(Xa,\rho)h(\rho)$ leftward, since $f(\rho|Xa)=\frac{L(Xa,\rho)h(\rho)}{Ca}$

c) As we know, the true values of correlations for Xa and Xb are 0 and 0.25. The ρ estimate using posterior is not effective when the data pairs are uncorrelated. For non-zero ρ value, the posterior gives a reasonable estimation.

Bonus Question

To find out the size of n which the function start to fail due to underflow, I wrote a function to search which n makes the normalizing constant zero. My function shows that the n is between 250 and 258. The likelihood is too closed to zero which had caused the underflow. To alleviate the issue, we can multiply a large constant (i.e 10^50) to the

likelihood function. This has no effect on the posterior distribution, since

$$f(\sigma, \rho | X_1, X_2, ..., X_n) = \frac{h(\sigma, \rho) \times C \times L(X_i | \sigma, \rho)}{\int_{-1}^{1} \int_{0}^{-\infty} h(\sigma, \rho) CL(X_i | \sigma, \rho) d\sigma d\rho}$$

By doing this, the overflow issue can be alleviated.