Metaheurísticas

Seminario 2. Problemas de optimización con técnicas basadas en búsqueda local

- Problema de Maximizar la Influencia en Redes Sociales (SNIMP)
 - Definición del Problema
 - Ejemplo de Aplicación
 - Análisis del Problema
 - Solución Greedy
 - Búsquedas por Trayectorias Simples
 - Casos del problema.
 - Agradecimientos

55%

of consumers learn about brands or companies on social media

78% 61% 56% 35%
Gen Z Millenials Gen X Baby Boomers

Influencer Marketing Stats

90%
of consumers trust peer recommendations

0—0

O User generated content is

50%

more trusted by internet users than traditional media

O Consumers are

71%

more likely to make a purchase based on social media referrals

0-0

81%

of U.S. consumers trust advice and information from blogs

HOW EFFECTIVE IS INFLUENCER MARKETING?

 Social Network Influence Maximization Problem, SNIMP

Encontrar los K usuarios más influyentes en una red social, simulando un modelo de difusión de influencia.

Utilidades del Problema

Márketing digital.

Modelos epidémicos

- El Problema de Maximizar la Influencia en Redes Sociales, Social Networks Influence Maximization Problem, SNIMP, es un problema de optimización combinatoria con una formulación sencilla pero una resolución compleja (es NP-completo).
- El problema general consiste en seleccionar un subconjunto *Sel* de m elementos (|M|=m) de un conjunto inicial S de n elementos (obviamente, n > m) de forma que se **maximice** la influencia entre los elementos escogidos.
- Además de los n elementos (e_i , i=1,...,n) y el número de elementos a seleccionar m, se dispone de una matriz $C=(C_{ij})$ de dimensión $n\times n$ no simétrica que contiene las conexiones entre los nodos de la red.
- C puede ser bastante dispersa, con un número muy variable de conexiones para cada nodo.

Definición del Problema SNIMP

Para el problema con el que trabajaremos en prácticas, se busca lo siguiente:

$$s^* \leftarrow_{s \in S} max ICM(G, S, p, ev)$$

- G es el grafo del problema.
- S es el conjunto de posibles combinaciones.
- p es la probabilidad de influencia/contagio (p=0.01)
- ev es el número de simulación del ICM (ev=10)

Definición del Problema SNIMP

```
Algorithm 1 ICM(G = (V, E), S, p, ev)
```

```
1: I \leftarrow \emptyset
 2: for i \in 1 \dots ev do
 3: A^* \leftarrow S
 4: A \leftarrow S
                                      A* es el conjunto de nodos activados, I su tamaño
 5: while A \neq \emptyset do
 6:
           B \leftarrow \emptyset
                                      B es el conjunto de nuevos nodos
 7:
           for v \in A do
 8:
               for (u,v) \in E do
                   if rnd(0,1) \leq p then Por cada vecino de cada nodo en A se
 9:
                       B \leftarrow B \cup \{u\} comprueba si se ha infectado
10:
                   end if
11:
12:
               end for
13:
      end for
                                   Se añaden los nuevos.
    A^{\star} \leftarrow A^{\star} \cup B
14:
                                   En la siguiente iteración se van a explorar los
15: A \leftarrow B
                                   vecinos de los nuevos nodos influidos
16: end while
    I \leftarrow I + |A^{\star}|
17:
18: end for
                      Se devuelve el promedio de nodos infectados en las 10 iteraciones
19: return I/ev
                      del bucle
```

Solución Greedy

I. Lozano-Osorio, J. Sánchez-Oro, A. Duarte, y O. Cordón, "A quick GRASP-based method for influence maximization in social networks", J Ambient Intell Human Comput, vol. 14, n. 4, pp. 3767-3779, abr. 2023, doi: 10.1007/s12652-021-03510-4.

- La mayoría de propuestas abordadas son Greedy.
- Hay varias definiciones.
- Vamos a usar una de las más sencillas que ofrece un buen resultado según experimentos:

Añadir secuencialmente el elemento no seleccionado que presente un mayor número de vecinos y vecinos de éstos

Solución Greedy

ALGORITMO GREEDY:

```
1: S \leftarrow \emptyset
2: CL ← V
3: v_0 \leftarrow \texttt{SelectRandom}(\texttt{CL})
                                                  Solución Inicial
4: S \leftarrow S \cup \{v_0\}
5: CL \leftarrow CL \setminus \{v_0\}
6: while |S| < m do
7: RCL \leftarrow CL
8: u \leftarrow \arg\min g(v)
                                                  Aplicar heurística
                 \nu \in RCL
9: S \leftarrow S \cup \{u\}
10: CL \leftarrow CL \setminus \{u\}
11: end while
12: return S
```

Solución Greedy

1) Se calcula para cada nodo *u* el número de nodos vecinos:

$$d+(u)=|N_u^+|, N_u^+=w\in V:(u,v)\in E$$

2) Se define como valor heurístico de un nodo el total de vecinos, y vecinos de éstos:

$$g(u) = d_u^+ + s \sum_{v \in N_u^+} d_u^+$$

- 3) Se listan los valores posibles ordenados por su valor heurístico.
- 4) Se escogen los *k* primeros.

Búsquedas por Trayectorias Simples: Búsqueda Local del Mejor

■ **Representación**: Problema de selección: un conjunto $Sel = \{s_1, ..., s_m\}$ que almacena los m elementos seleccionados de entre los n elementos del conjunto S

Para ser una solución candidata válida, tiene que satisfacer las restricciones (ser un conjunto de tamaño *m*):

- No puede tener elementos repetidos
- Ha de contener exactamente m elementos
- El orden de los elementos no es relevante

Búsquedas por Trayectorias Simples: Búsqueda Local del Mejor

 Operador de vecino de intercambio y su entorno: El entorno de una solución Sel está formado por las soluciones accesibles desde ella a través de un movimiento de intercambio

Dada una solución (conjunto de elementos seleccionados) se escoge un elemento y se intercambia por otro que no estuviera seleccionado (*Int*(*Sel*,*i*,*j*)):

$$Sel = \{s_1, ..., i, ..., s_m\} \Rightarrow Sel' = \{s_1, ..., j, ..., s_m\}$$

Int(Sel,i,j) verifica las restricciones: si la solución original Sel es factible y el elemento j se escoge de los no seleccionados en Sel, es decir, del conjunto S-Sel, siempre genera una solución vecina Sel' factible

Búsquedas por Trayectorias Simples: Búsqueda Local del Mejor

- Su aplicación provoca que el tamaño del entorno sea demasiado grande (m!), m=10 => más de 3 millones combinaciones.
- La BL del Mejor del MDP explora todo el vecindario, las soluciones resultantes de los $m \cdot (n-m)$ intercambios posibles, escoge el mejor vecino y se mueve a él siempre que se produzca mejora
- Si no la hay, detiene la ejecución y devuelve la solución actual
- El método funciona bien pero es muy lento incluso para casos no demasiado grandes.
- Vamos a probar también parar cuando tras Nvecinos no mejore (Nvecinos=50).

Casos del Problema

Se utilizarán 4 casos reales seleccionados de varios de los conjuntos de instancias del Stanford Large Network Dataset Collection:

https://snap.stanford.edu/data/index.html.

- Se podría usar esos ficheros, pero hemos modificado y puesto en PRADO una versión sin los nodos sin conexiones, para agilizar y reducir el uso de memoria.
- No planteamos el óptimo, porque en la mayoría de los casos no se conocen, compararemos directamente los valores obtenidos de la función objetivo.
- Para el MDDP, disponemos de cuatro conjunto de datos:
 - Ca-GrCQc: Relación de autores en revista científica, tiene 5 242 nodos y 14 496 enlaces.
- P2p-Gnutella05: Intercambio de mensajes en una red social el 5 Agosto 2002, tiene 8846 nodos, y 31 839 enlaces.
- P2p-Gnutella08: Intercambio de mensajes en una red social el 8 Agosto 2002, tiene
 6301 nodos, y 20 777 enlaces.
- P2p-Gnutella25: Intercambio de mensajes en una red social, 25 Agosto 2002, tiene 22 687 nodos, y 54 705 enlaces.

La Biblioteca MDPLIB

El formato de los ficheros de datos es un fichero de texto con la siguiente cabecera:

```
# Directed graph (each unordered pair of nodes is saved once): NombreFichero.txt
# Descripción
# Nodes: N Edges: E
# FromNodeId ToNodeId
u1 v1
u2 v2
```

- Donde N es el número de elementos, E es el número de conexiones.
- A continuación aparecen los pares de valores (u, v) pertenecientes a E. La matriz de conexiones es una matriz dispersa, por lo que se solo se guardan las conexiones con valor de 1.

La Biblioteca MDPLIB

EJEMPLO: FICHERO DEL CASO ca-GrQc.txt:

```
#....
# FromNodeId ToNodeId
   8
9
   10
4410
     370
4974 4973
4974 4976
1189 1061
1189
     1176
1189
     1177
```

Agradecimientos

- Para la preparación de las transparencias de presentación del problema MDDP se han usado material de los profesores.
 - Isaac Lozano-Osorio. Universidad Rey Juan Carlos
 - Jesús Sánchez-Oro. Universidad Rey Juan Carlos
 - Abraham Duarte. Universidad Rey Juan Carlos
 - Óscar Cordón, Universidad de Granada.
- Otra referencia que me ha servido muy útil:

Y. Ye, Y. Chen, y W. Han, «Influence maximization in social networks: Theories, methods and challenges», Array, vol. 16, p. 100264, dic. 2022, doi: 10.1016/j.array.2022.100264.

Además, agradecimientos a Óscar por introducirme al problema.