UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Deleksamen i: MAT1110 — Kalkulus og lineær algebra

Eksamensdag: Fredag 1. april 2011

Tid for eksamen: 15.00-17.00

Oppgavesettet er på 7 sider.

Vedlegg: Formelsamling, svarark

Tillatte hjelpemidler: Ingen

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Det er 17 oppgaver, hver med 5 svaralternativer. Hver oppgave teller likt. Riktig avkrysset svar gir 1 poeng. Feil svar, intet svar, eller to eller flere kryss på samme oppgave gir 0 poeng. Skravér eventuelt helt over et kryss hvis du ombestemmer deg og vil velge et annet svaralternativ.

Oppgave 1

Lineæravbildningen $\mathbf{T}\colon\mathbb{R}^2\to\mathbb{R}^3$ er slik at

$$T(1,1) = (1,2,3)$$
 og $T(1,-1) = (3,2,1)$

Hva er matrisen til lineæravbildningen?

 $\begin{pmatrix}
1 & 3 \\
2 & 2 \\
3 & 1
\end{pmatrix}$

 $\begin{bmatrix} 2 & -1 \\ 2 & 0 \\ 2 & 1 \end{bmatrix}$

 $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$

 $\begin{pmatrix}
2 & 2 & 2 \\
-1 & 0 & 1
\end{pmatrix}$

 $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

(Fortsettes på side 2.)

La $\mathbf{F}\colon\mathbb{R}^2\to\mathbb{R}^2$ være affinavbildningen gitt ved

$$\mathbf{F}(x,y) = (2x + 3 + y, -1 + x + 2y)$$

Med hvilken faktor multipliserer \mathbf{F} arealer?

- \Box A -3
- **□** B −1
- \Box C 0
- **□** D 3
- **□** E 5

Oppgave 3

La $\mathbf{G} \colon \mathbb{R}^2 \to \mathbb{R}^2$ være gitt ved

$$\mathbf{G}(x,y) = (\cos(x-y), \sin(x+y))$$

Anta at $f: \mathbb{R}^2 \to \mathbb{R}$ er deriverbar, med gradient

$$\nabla f(0,1) = (2,3)$$

i punktet (0,1). La $h: \mathbb{R}^2 \to \mathbb{R}$ være gitt ved $h(\mathbf{x}) = f(\mathbf{G}(\mathbf{x}))$ for alle \mathbf{x} . Hva er gradienten $\nabla h(\pi/2,0)$ til h i punktet $(\pi/2,0)$?

- \Box A (-2,2)
- \Box B (1,0)
- \Box C (2, -2)
- \Box D (0,1)
- \Box E (2,3)

Oppgave 4

Hva er et uttrykk for lineariseringen til

$$f(x,y) = \ln(x^2 + y^2)$$

i punktet (x,y)=(1,1)? (Her er l
n den naturlige logaritmen.)

- \Box A $2x/(x^2+y^2)$
- $\Box B \quad 2y/(x^2+y^2)$
- \Box C x+y
- \Box D x+y-2
- \Box E $x+y-2+\ln 2$

En kurve i \mathbb{R}^2 er parametrisert ved

$$\mathbf{r}(t) = (\cos(t^2), \sin(t^2))$$

for $t \in [0, 2]$. Hva er buelengden til kurven?

- \Box A $2\sin 2$
- **□** В 2
- \Box C 4
- \Box D 2π
- \Box E

Oppgave 6

La $f: \mathbb{R}^2 \to \mathbb{R}$ være skalarfeltet gitt ved

$$f(x,y) = x^3 + x^2 - y^2$$

og la den parametriserte kurven $\mathbf{r} \colon \mathbb{R} \to \mathbb{R}^2$ være deriverbar i punktet $0 \in \mathbb{R}$, med $\mathbf{r}(0) = (-2/3, 0)$. La $u(t) = f(\mathbf{r}(t))$ for alle $t \in \mathbb{R}$. Hva er u'(0)?

- \Box A -2/3
- □В -4/9
- \Box C 0
- \Box D 4/27
- Utilstrekkelig informasjon: ulike verdier av $\mathbf{r}'(0)$ gir forskjellige svar \Box E

Oppgave 7

La \mathcal{C} være kurven i \mathbb{R}^2 parametrisert ved

$$\mathbf{r}(t) = (2\cos t, \sin t)$$

for $t \in [0, \pi]$, og la

$$f(x,y) = \sqrt{3y^2 + 1}$$

være et skalarfelt på \mathbb{R}^2 . Hva er verdien til linjeintegralet $\int_{\mathcal{C}} f \, ds$? Hint: Husk at $\sin^2 t + \cos^2 t = 1$ og $\cos 2t = \cos^2 t - \sin^2 t$.

- \Box A 0
- \Box B
- \Box C $3\pi/2$
- $\Box D \quad 5\pi/2$ $\Box E \quad \sqrt{3\pi^2 + 1}$

La \mathcal{C} være kurven i \mathbb{R}^2 parametrisert ved

$$\mathbf{r}(t) = (t, t^3)$$

for $t \in [-1, 1]$, og la

$$\mathbf{F}(x,y) = (\sin x, 1)$$

være et vektorfelt på \mathbb{R}^2 . Hva er verdien til linjeintegralet $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$?

- \Box A 0
- \Box B $2-2\cos 1$
- \Box C 2
- \Box D 2 + 2 cos 1
- \Box E $2\sqrt{2}$

Oppgave 9

La $\mathbf{F}(x,y)=(P(x,y),Q(x,y))$ være et vektorfelt på $\mathbb{R}^2,$ der

$$P(x,y) = \frac{\sin y}{1 + x^2 \sin^2 y}$$
 og $Q(x,y) = \frac{x \cos y}{1 + x^2 \sin^2 y}$

Hvilken påstand er sann?

- \Box A $\partial P/\partial y = \partial Q/\partial x$ og **F** er konservativt
- \Box B $\partial P/\partial y = \partial Q/\partial x$, men **F** er ikke konservativt
- \Box C $\partial P/\partial y \neq \partial Q/\partial x$ og **F** er konservativt
- $\ \Box \ D \ \partial P/\partial y \neq \partial Q/\partial x,$ men ${\bf F}$ er ikke konservativt
- \Box E **F** er et gradientfelt, men ikke konservativt

Oppgave 10

Likningen

$$4x^2 - 8x - y^2 + 6y = 21$$

beskriver hvilket kjeglesnitt i xy-planet?

- □ A En parabel med brennvidde 1
- $\hfill \Box$ B $\,$ En ellipse med sentrum i (1,-3)
- \Box C En ellipse med halvakser 1 og 2
- $\ \square$ D $\$ En hyperbel med asymptoter $y=\pm 2x$
- \square E En hyperbel med sentrum i (1,3)

La $A = \mathbb{R}^3 \setminus \{(0,0,0)\}$ være \mathbb{R}^3 minus origo, og la $f : A \to \mathbb{R}$ være skalarfeltet gitt ved $f(x,y,z) = \phi$, der (ρ,ϕ,θ) er kulekoordinatene til punktet (x,y,z) $(\phi$ er inklinasjonen). Hvilken påstand om nivåflaten

$$N_{\pi/4} = \{(x, y, z) \in A \mid f(x, y, z) = \pi/4\}$$

for f er sann?

- \square A $N_{\pi/4}$ er planet gitt ved likningen $z = \pi/4$
- \square B $N_{\pi/4}$ er inneholdt i planet der x=y
- \square C $N_{\pi/4}$ er en kuleflate med radius $\pi/4$
- \square D $N_{\pi/4}$ er inneholdt i kjegleflaten der $z^2 = x^2 + y^2$
- \square E $N_{\pi/4}$ er tom

Oppgave 12

Hva er verdien til dobbeltintegralet

$$\iint_{R} (\ln x + \ln y) \, dx dy$$

over rektangelet $R = [1, 2] \times [1, e]$?

- \Box A 0
- \Box B 2(2 ln 2 1)
- \Box C $(e-1)(2 \ln 2 1) + 1$
- \Box D $2(e-1)(2\ln 2-1)$
- \Box E e-1

Oppgave 13

Hva er verdien til dobbeltintegralet

$$\iint_A y \, dx dy$$

der A er type I området i xy-planet hvor $y \ge x^2$ og $x^2 + y^2 \le 2$?

- \Box A 0
- \Box B $4\sqrt{2}/15$
- □ C 11/15
- \Box D $8\sqrt{2}/15$
- \Box E 22/15

Hva er verdien til dobbeltintegralet

$$\iint_A (x^2 + y^2) \, dx dy$$

der A er sirkelskiven hvor $x^2+y^2\leq 1$? Hint: Bruk polarkoordinater.

- \Box A $\pi/3$
- \Box B $\pi/2$
- \Box C $2\pi/3$
- \Box D π
- \Box E 2π

Oppgave 15

La A være sirkelskiven hvor $x^2+y^2\leq 1$. Hva er arealet til grafen til funksjonen $f\colon A\to\mathbb{R}$ gitt ved

$$f(x,y) = \frac{1}{2}(x^2 - y^2)$$

 $der(x,y) \in A$? Hint: Bruk polarkoordinater.

- \Box A 0
- \Box B π
- \Box C $(2\pi/3)(2\sqrt{2}-1)$
- \Box D $\pi(2\sqrt{2}-1)$
- \Box E $(4\pi/3)(2\sqrt{2}-1)$

Oppgave 16

Hva er arealet avgrenset av den enkle, lukkede kurven med parametrisering

$$\mathbf{r}(t) = (\cos^3 t, \sin t)$$

der $t \in [0, 2\pi]$? Hint: Bruk Greens teorem for vektorfeltet $\mathbf{F} = (P, Q)$ med P(x, y) = 0 og Q(x, y) = x, og husk at $\cos 2t = \cos^2 t - \sin^2 t$.

- \Box A 0
- \Box B $\pi/2$
- \Box C $3\pi/4$
- \Box D π
- \Box E $3\pi/2$

Hva er verdien til det uegentlige integralet

$$\iint_A \frac{1}{x^2 y^2} \, dx dy$$

der $A = [1, \infty) \times [1, \infty)$ er området i xy-planet hvor $x \geq 1$ og $y \geq 1$?

- \Box A 0
- **□** B 1
- $\ \ \square \ C \quad \ 2$
- **□** D 3
- **□** E 4

SLUTT