Pandas是一个强大的分析结构化数据的工具集;它的使用基础是Numpy(提供高性能的矩阵运算);用于数据挖掘和数据分析,同时也提供数据清洗功能。本文将从以下方面对Pandas的用法进行介绍:

- 一、pandas主要结构
 - series
 - dataframe
- 二、pandas索引使用
 - 索引与取数
 - 重建索引
- 三、pandas统计基本功能
 - 描述性统计
 - 函数应用
 - 数据运算
 - pandas分组与聚合
 - pandas排序
 - pandas合并/连接
 - pandas迭代
 - pandas字符串和文本数据
- 四、pandas缺数数据处理
- 五、pandas2新功能

1. pandas主要结构

1.1 Series

系列(Series)是能够保存任何类型的数据(整数,字符串,浮点数,Python对象等)的一维标记数组。轴标签统称为索引。

1.1.1 创建Series

pandas.Series(data,index,dtype,copy)

- data:数据采取各种形式,如: ndarray,list,constants
- index:索引值必须是唯一的和散列的,与数据的长度相同。如果没有所有被传递,默认np.arange(n)
- dtype:用于数据类型。如果没有,将推断数据类型
- copy:复制数据,默认为false

可以使用各种输入创建一个系列,如:数组、字典、标量值或常数

```
[2] # 创建一个空的Series
import pandas as pd
import numpy as np
s = pd.Series()
s
```

Series([], dtype: float64)

```
[3] # 从ndarray创建一个Series
data = np.array(['a','b','c','d'])
s = pd.Series(data)
s # 这里没有传递任何索引,因此默认情况下,分配了从0到len(data)-1的索引
```

0 a
1 b
2 c
3 d
dtype: object

```
data = np.array(['a','b','c','d'])
s = pd.Series(data,index=[100,101,102,103])
s # 这里传递了索引值。现在可以在输出中看到自定义的索引值
```

100 a
101 b
102 c
103 d
dtype: object

```
[5] # 从字典中创建一个Series
data = {'a':0.,'b':1.,'c':2.}
s = pd.Series(data) # 注意,字典键用于构建索引
```

```
a 0.0
b 1.0
c 2.0
dtype: float64
```

```
data = {'a':0.,'b':1.,'c':2.}
s = pd.Series(data,index=['b','c','d','a']) # 索引顺序保持不变,缺少的元素使用NaN(不是数字)填充
s
```

```
b 1.0
c 2.0
d NaN
a 0.0
dtype: float64
```

```
[7] # 从标量创建一个Series
s = pd.Series(5,index=[0,1,2,3])
s
```

```
0 5
1 5
2 5
3 5
dtype: int64
```

1.1.2 访问数据

系列(Series)中的数据可以使用类似于访问ndarray中的数据来访问。

```
# 从具有位置的Series中访问数据
s = pd.Series([1,2,3,4,5],index=['a','b','c','d','e'])
print(s[0]) # 检索第一个元素
print(s[:3]) # 检索Series中前三个元素
print(s[-3:]) # 检索最后三个元素
```

```
1
a 1
b 2
```

```
# 使用标签检索数据
# 一个Series就像一个固定大小的字典,可以通过索引标签获取和设置值

s = pd.Series([1,2,3,4,5],index=['a','b','c','d','e'])
print(s['a']) # 使用索引标签值检索单个元素
print(s[['a','b','c']]) # 使用索引标签值检索多个元素

# 注意,如果索引不存在的标签,则会报错
```

1
a 1
b 2
c 3
dtype: int64

c 3

1.1.3 Series 基本功能

基本功能如下所示:

image.png

0 0.937618
1 -0.153430
dtype: float64

[52] s.tail(2) # 返回最后2行

2 -1.858608 3 -0.948485 dtype: float64

1.2 DataFrame

数据帧(DataFrame)是二维数据结构,即数据以行和列的表格方式排列。

数据帧(DataFrame)的功能特点:

- 潜在的列是不同的类型
- 大小可变
- 标记轴(行和列)
- 可以对行和列执行算术运算

1.2.1 DataFrame创建

pandas.DataFrame(data,index,columns,dtype,copy)

- data: 数据采用各种形式,如:ndarray,series,map,lists,dict,constant和另一个DataFrame
- index:对于行标签,要用于结果帧的索引是可选缺省值,如果没有传递,默认为 np.arange(n)
- columns:列标签,如果没有传入索引,则默认np.arange(n)
- dtype:每列的数据类型
- copy:默认值为False,则此命令用于复制数据

DataFrame可以使用各种输入创建,如:列表、字典、Series、ndarrays、另一个DataFrame

```
[16] # 创建一个空的DataFrame

df = pd.DataFrame()

df
```

```
[17] # 从列表创建DataFrame
data = [1,2,3,4,5]
df = pd.DataFrame(data)
df
```

	0
0	1
1	2
2	3
3	4
4	5

```
data = [['Alex',10],['Bob',12],['Clarke',13]] # 传入多个列表来创建
DataFrame
df = pd.DataFrame(data,columns=['Name','Age'])
df
```

	Name	Age
0	Alex	10
1	Bob	12
2	Clarke	13

```
data = [['Alex',10],['Bob',12],['Clarke',13]]

df = pd.DataFrame(data,columns=['Name','Age'],dtype = float)

#dtype将Age列的类型更改为浮点

df
```

	Name	Age
0	Alex	10.0
1	Bob	12.0

	Name	Age	
2	Clarke	13.0	

```
# 从ndarrays/Lists的字典来创建DataFrame
# 所有的ndarrays必须具有相同的长度。如果传递了索引(index),则索引的长度应等于数组的长度。

data = {'Name':['Tom','Jack','Steve','Ricky'],'Age':
[28,34,29,42]}
df = pd.DataFrame(data)
df
```

	Name	Age
0	Tom	28
1	Jack	34
2	Steve	29
3	Ricky	42

```
data = {'Name':['Tom','Jack','Steve','Ricky'],'Age':
        [28,34,29,42]}

df = pd.DataFrame(data,index=['rank1','rank2','rank3','rank4'])
        # 通过index参数,设置index的名字

df
```

	Name	Age
rank1	Tom	28
rank2	Jack	34
rank3	Steve	29
rank4	Ricky	42

```
[24] # 从列表创建DataFrame
data = [{'a':1,'b':2},{'a':5,'b':10,'c':20}]
df = pd.DataFrame(data) # NaN附加在缺失的区域
df
```

a b c

	а	b	С
0	1	2	NaN
1	5	10	20.0

	one	two
a	1.0	1
b	2.0	2
С	3.0	3
d	NaN	4

1.2.2 列、行相关操作

(1) 列选择

从数据帧(DataFrame)中选择一列。

[34] **df['one']** # 查询某一列

```
a 1.0
b 2.0
c 3.0
d NaN
```

Name: one, dtype: float64

	one	two
a	1.0	1
b	2.0	2
c	3.0	3
d	NaN	4

(2) 列添加

向现有数据框添加一个新列

```
[36] # 向现有数据框添加一个新列 df['three'] = pd.Series([10,20,30],index=['a','b','c']) df['four'] = df['one'] + df['two'] # 观测结果发现,NAN与其他常数相加的结果还是为NaN df
```

	one	two	three	four
а	1.0	1	10.0	2.0
b	2.0	2	20.0	4.0
С	3.0	3	30.0	6.0
d	NaN	4	NaN	NaN

(3) 列删除

列可以删除或弹出

[32] # 删除one列 **del** df['one'] df

	two	three	four
a	1	10.0	2.0

	two	three	four
b	2	20.0	4.0
С	3	30.0	6.0
d	4	NaN	NaN

```
[33] # 弹出two列
df.pop('two')
df
```

	three	four
а	10.0	2.0
b	20.0	4.0
c	30.0	6.0
d	NaN	NaN

(4) 行选择,添加和删除

```
      [34]
      # 标签选择loc

      # 通过将行标签传递给loc()函数来选择行

      d = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']), 'two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}

      df = pd.DataFrame(d) df.loc['b'] # 查询index为b的行
```

one 2.0 two 2.0

Name: b, dtype: float64

```
[35] # 按整数位置选择
```

通过将整数位置传递给iloc()函数来选择行

df.iloc[2] # 查询第3行信息

```
one 3.0
two 3.0
```

Name: c, dtype: float64

[36] # 行切片

可以使用:运算符选择多行

df[2:4]

	one	two
c	3.0	3
d	NaN	4

[39] # 附加行

使用append()函数将新行添加到DataFrame

```
df = pd.DataFrame([[1, 2], [3, 4]], columns = ['a','b'])
df2 = pd.DataFrame([[5, 6],[7, 8]],columns=['a','b'])
df = df.append(df2)
df
```

	а	b
0	1	2
1	3	4
0	5	6
1	7	8

[40] # 删除行

使用索引标签从DataFrame中删除或删除行。 如果标签重复,则会删除多行。 df = df.drop(0) # 删除标签为0的行 df

	а	b
1	3	4
1	7	8

1.2.3 DataFrame基本功能

基本功能如下所示: Dimage.png

	Name	Age	Rating
0	Tom	25	4.23
1	James	26	3.24
2	Ricky	25	3.98
3	Vin	23	2.56
4	Steve	30	3.20
5	Minsu	29	4.60
6	Jack	23	3.80

[55] # T 转置

df.T

	0	1	2	3	4	5	6
Name	Tom	James	Ricky	Vin	Steve	Minsu	Jack
Age	25	26	25	23	30	29	23
Rating	4.23	3.24	3.98	2.56	3.2	4.6	3.8

[56] df.axes # 返回行轴标签和列轴标签列表

```
[RangeIndex(start=0, stop=7, step=1),
Index(['Name', 'Age', 'Rating'], dtype='object')]
```

```
[59] df.dtypes # 返回每列的数据类型
```

```
Name object
Age int64
Rating float64
dtype: object
```

```
[60] df.empty # 表示对象是否为空
```

False

```
[62] df.ndim # 返回对象的维度
```

2

[63] df.shape # 返回DataFrame的维度元组

(7, 3)

[64] df.size # 返回DataFrame中的元素数

21

[65] df.values # 将DataFrame中的实际数据作为NDarray返回

```
[66] df.head() # 显示前5行
```

	Name	Age	Rating
0	Tom	25	4.23
1	James	26	3.24
2	Ricky	25	3.98
3	Vin	23	2.56
4	Steve	30	3.20

[67] **df.tail() #** 显示最后**5**行

	Name	Age	Rating
2	Ricky	25	3.98
3	Vin	23	2.56
4	Steve	30	3.20
5	Minsu	29	4.60
6	Jack	23	3.80

2. pandas索引使用

2.1 Pandas索引和选择数据

Pandas现在支持三种类型的多轴索引,描述如下: image.png

2.1.1 .loc()

loc 具有多种访问方式,如:

- 单个标量标签
- 标签列表
- 切片对象
- 一个布尔数组

```
a -2.301160
b 0.478381
c -0.380384
d -0.010446
e 0.681384
f 0.434043
g -0.086158
h -1.385513
```

Name: A, dtype: float64

[132] df.loc[:,['A','C']] # 查询多列

	A	С
а	-2.301160	-1.884736
b	0.478381	-1.723643
С	-0.380384	-1.811889
d	-0.010446	0.171356
e	0.681384	-0.308361
f	0.434043	-0.223542
g	-0.086158	0.307840
h	-1.385513	-0.985612

[133] df.loc[['a','b','h'],['A','C']] # 根据标签查询对应的行和列

	A	С
а	-2.301160	-1.884736
b	0.478381	-1.723643
h	-1.385513	-0.985612

[134] df.loc['a':'h'] # 查询a行到h列

	А	В	С	D
а	-2.301160	0.996447	-1.884736	-0.670557
b	0.478381	-1.251332	-1.723643	-0.333731
C	-0.380384	-0.454469	-1.811889	1.545611
d	-0.010446	0.763911	0.171356	-1.095339
е	0.681384	1.102832	-0.308361	1.433643
f	0.434043	0.132015	-0.223542	0.777121
g	-0.086158	0.069122	0.307840	1.260087
h	-1.385513	1.664279	-0.985612	-0.710963

[135] df.loc['a']>0

A False B True

C False

D False

Name: a, dtype: bool

2.1.2 .iloc()

纯整数索引

各种访问方式如下:

- 整数
- 整数列表

• 系列值

[138] df.iloc[:4] # 查询前4行

	А	В	С	D
а	-2.301160	0.996447	-1.884736	-0.670557
b	0.478381	-1.251332	-1.723643	-0.333731
С	-0.380384	-0.454469	-1.811889	1.545611
d	-0.010446	0.763911	0.171356	-1.095339

[139] df.iloc[1:5,2:4] # 查询某些行和某些列

	С	D
b	-1.723643	-0.333731
С	-1.811889	1.545611
d	0.171356	-1.095339
е	-0.308361	1.433643

[140] df.iloc[[1,3,5],[1,3]]

	В	D
b	-1.251332	-0.333731
d	0.763911	-1.095339
f	0.132015	0.777121

2.1.3 .ix()

除了基于纯标签和整数之外,Pandas还提供了一种使用.ix()运算符进行选择和子集化对象的混合方法。

```
df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])
df.ix[:4] # 查询标签为0到4的行
```

C:\Users\lenovo\Anaconda3\lib\site-packages\ipykernel_launcher.py:4:
DeprecationWarning:

- .ix is deprecated. Please use
- .loc for label based indexing or
- .iloc for positional indexing

See the documentation here:

http://pandas.pydata.org/pandas-docs/stable/indexing.html#ix-indexer-isdeprecated

after removing the cwd from sys.path.

area removing the and rrain ayarpath.				
	A	В	С	D
0	-0.575100	1.853529	0.508817	-1.315724
1	-0.375026	1.440633	0.966445	0.638055
2	1.011297	1.139015	-0.215854	1.108127
3	2.515484	0.503384	-1.440738	1.577413
4	0.257918	0.088944	-0.288562	0.360140

[143] df.ix[:,'A'] # 查找A列

C:\Users\lenovo\Anaconda3\lib\site-packages\ipykernel_launcher.py:1:
DeprecationWarning:

- .ix is deprecated. Please use
- .loc for label based indexing or
- .iloc for positional indexing

See the documentation here:

http://pandas.pydata.org/pandas-docs/stable/indexing.html#ix-indexer-isdeprecated

"""Entry point for launching an IPython kernel.

- 0 -0.575100
- 1 -0.375026
- 2 1.011297
- 3 2.515484
- 4 0.257918
- 5 1.090887
- 6 -2.466789
- 7 1.668839

Name: A, dtype: float64

[144] # 还可以通过以下方式获取某些列的值 df['A']

-0.575100 0

1 -0.375026

2 1.011297

3 2.515484

0.257918 4

1.090887 6 -2.466789

5

7 1.668839

Name: A, dtype: float64

[145] **df[['A','C']]** # 获取多列

	A	С
0	-0.575100	0.508817
1	-0.375026	0.966445
2	1.011297	-0.215854
3	2.515484	-1.440738
4	0.257918	-0.288562
5	1.090887	-0.575322
6	-2.466789	-0.145785
7	1.668839	-0.942069

[146] # 属性访问

df.A # 查询A列数据

0 -0.575100

1 -0.375026

2 1.011297

3 2.515484

4 0.257918

1.090887 5

6 -2.466789

7 1.668839

Name: A, dtype: float64

2.2 Pandas重建索引

重新索引会更改DataFrame的行标签和列标签。重新索引意味着符合数据以匹配特定轴上的一组给定的标签。

可以通过索引来实现多个操作:

- 重新排序现有数据以匹配一组新的标签
- 在没有标签数据的标签位置插入缺失值(NA)标记

	А	С	В
0	2019-01-01	High	NaN
2	2019-01-03	High	NaN
5	2019-01-06	Low	NaN

2.2.1 重建索引与其他对象对齐

有时可能希望采取一个对象和重新索引,其轴被标记为与另一个对象相同。

```
# 构建样例数据

df1 = pd.DataFrame(np.random.randn(10,3),columns=
['col1','col2','col3'])

df2 = pd.DataFrame(np.random.randn(7,3),columns=
['col1','col2','col3'])

df1
```

col1	col2	col3

	col1	col2	col3
0	0.116654	-0.920242	-0.094980
1	0.997855	0.085608	-1.738815
2	1.443946	0.019549	0.251528
3	-1.212119	-1.210960	0.147220
4	0.788829	2.812478	-0.393173
5	1.139606	1.718862	-0.949964
6	1.123598	-1.121778	0.035585
7	-0.200309	0.043714	0.287871
8	-0.553097	-0.334700	-0.648229
9	-1.081606	-0.174223	0.057483

[88] **df2**

	col1	col2	col3
0	1.362711	2.126439	-0.294538
1	1.062274	1.118789	-0.180609
2	-0.446018	-0.036722	-1.754342
3	0.496308	0.287495	-0.544084
4	0.394956	2.235108	-0.087951
5	1.242660	0.346076	0.685478
6	0.094422	0.742144	0.743658

```
[89] # reindex_like()
# 让一个对象和另一个对象有相同的index 和 colums
df1 = df1.reindex_like(df2) # 将df1的index和columns都转换成跟df2的
index、columns一样
df1
```

	col1	col2	col3
0	0.116654	-0.920242	-0.094980

	col1	col2	col3
1	0.997855	0.085608	-1.738815
2	1.443946	0.019549	0.251528
3	-1.212119	-1.210960	0.147220
4	0.788829	2.812478	-0.393173
5	1.139606	1.718862	-0.949964
6	1.123598	-1.121778	0.035585

2.2.2 填充时重新加注

reindex_like()采用可选参数方法,它是一个填充方法,其值如下:

pad/ffill: 向前填充值bfill/backfill: 向后填充值nearest: 从最近的索引值填充

[92] # 构建样例数据

```
df1 = pd.DataFrame(np.random.randn(6,3),columns=
['col1','col2','col3'])
df2 = pd.DataFrame(np.random.randn(2,3),columns=
['col1','col2','col3'])
df2.reindex_like(df1)
```

	col1	col2	col3
0	0.176328	0.841434	-0.714321
1	-0.779040	2.391771	-1.126933
2	NaN	NaN	NaN
3	NaN	NaN	NaN
4	NaN	NaN	NaN
5	NaN	NaN	NaN

	col1	col2	col3
0	0.176328	0.841434	-0.714321
1	-0.779040	2.391771	-1.126933
2	-0.779040	2.391771	-1.126933
3	-0.779040	2.391771	-1.126933
4	-0.779040	2.391771	-1.126933
5	-0.779040	2.391771	-1.126933

2.2.3 重新索引时的填充限制

限制参数在重建索引时提供对填充的额外控制。限制指定连续匹配的最大计数。

[94] # 使用limit参数进行填充限制 df2.reindex_like(df1,method='ffill',limit=1)

	col1	col2	col3
0	0.176328	0.841434	-0.714321
1	-0.779040	2.391771	-1.126933
2	-0.779040	2.391771	-1.126933
3	NaN	NaN	NaN
4	NaN	NaN	NaN
5	NaN	NaN	NaN

2.2.4 重命名

rename()允许基于一些映射(字典或者系列)或任意函数来重新标记一个轴

```
[97] # 使用rename修改列名
df1.rename(columns={'col1':'c1','col2':'c2'}, # 将col1更改为
c1,col2更改为c2
index = {0:'apple',1:'banana',2:'durian'},
```

	c1	c2	col3
apple	1.393154	0.510697	-1.160332
banana	-0.952572	-0.257124	2.261260
durian	-0.196542	-0.817034	1.297915
3	-0.110799	2.349779	-0.869405
4	-0.632141	-1.251734	1.320231
5	-0.576398	-1.051619	-0.053604

3. pandas统计基本功能

3.1 Pandas描述性统计

Pandas中描述性统计信息的函数如下: image.png

	Name	Age	Rating
0	Tom	25	4.23
1	James	26	3.24

	Name	Age	Rating
2	Ricky	25	3.98
3	Vin	23	2.56
4	Steve	30	3.20
5	Minsu	29	4.60
6	Jack	23	3.80
7	Lee	34	3.78
8	David	40	2.98
9	Gasper	30	4.80
10	Betina	51	4.10
11	Andres	46	3.65

```
[69] # sum()方法
# 返回所请求轴的值得总和。默认情况下,对每一列进行求和
df.sum()
```

Name TomJamesRickyVinSteveMinsuJackLeeDavidGasperBe...
Age 382
Rating 44.92

dtype: object

[70] df.sum(axis=1) # 对每一行进行求和

0 29.23 29.24 1 2 28.98 3 25.56 4 33.20 5 33.60 6 26.80 7 37.78 8 42.98 34.80 55.10 10 11 49.65 dtype: float64 [71] # mean() # 返回平均值 df.mean()

> Age 31.833333 Rating 3.743333

dtype: float64

[73] # std()

返回数字列的标准偏差

df.std()

Age 9.232682 Rating 0.661628 dtype: float64

[75] # 汇总数据

describe()函数是用来计算有关DataFrame列的统计信息的摘要。

df.describe() # 默认情况下只统计"数字值"

	Age	Rating
count	12.000000	12.000000
mean	31.833333	3.743333
std	9.232682	0.661628
min	23.000000	2.560000
25%	25.000000	3.230000
50%	29.500000	3.790000
75%	35.500000	4.132500
max	51.000000	4.800000

[76] df.describe(include='all') # 将所有列汇总在一起

	Name	Age	Rating
count	12	12.000000	12.000000
unique	12	NaN	NaN

	Name	Age	Rating
top	Gasper	NaN	NaN
freq	1	NaN	NaN
mean	NaN	31.833333	3.743333
std	NaN	9.232682	0.661628
min	NaN	23.000000	2.560000
25%	NaN	25.000000	3.230000
50%	NaN	29.500000	3.790000
75%	NaN	35.500000	4.132500
max	NaN	51.000000	4.800000

3.2 Pandas函数应用

3.2.1 Pandas统计函数

3.2.1.1 pct_change()函数

系列,DatFrames和Panel都有pct_change()函数。此函数将每个元素与其前一个元素进行比较,并计算变化百分比。

```
[147] s = pd.Series([1,2,3,4,5,4])
s.pct_change()
```

```
0 NaN
1 1.000000
2 0.500000
3 0.333333
4 0.250000
5 -0.200000
dtype: float64
```

3.2.1.2 协方差

协方差适用于系列数据。Series对象有一个方法cov用来计算序列对象之间的协方差。

```
# 计算过程中NA将被自动排除
s1 = pd.Series(np.random.randn(10))
s2 = pd.Series(np.random.randn(10))
s1.cov(s2)
```

-0.36071798212082085

```
# 当应用于DataFrame时,协方差方法计算所有列之间的协方差值 frame = pd.DataFrame(np.random.randn(10,5),columns= ['a','b','c','d','e']) frame.cov()
```

	a	b	С	d	е
a	1.252565	0.035958	-0.158454	-0.220398	0.054208
b	0.035958	0.215841	-0.197608	-0.153136	-0.055824
С	-0.158454	-0.197608	1.023348	-0.152120	0.151749
d	-0.220398	-0.153136	-0.152120	0.899057	-0.284535
е	0.054208	-0.055824	0.151749	-0.284535	0.748557

3.2.1.3 相关性

相关性显示了任何两个数值(Series)之间的线性关系。

[150] # 有多种方法来计算 pearson(默认), spearman 和 kendall之间的相关性。

frame.corr() # 如果DataFrame中存在任何非数字列,则会自动排除

	a	b	С	d	е
а	1.000000	0.069156	-0.139956	-0.207689	0.055982

b	0.069156	1.000000	-0.420461	-0.347630	-0.138880
С	-0.139956	-0.420461	1.000000	-0.158591	0.173381
d	-0.207689	-0.347630	-0.158591	1.000000	-0.346841
е	0.055982	-0.138880	0.173381	-0.346841	1.000000

3.2.1.4 数据排名

数据排名为元素数组中的每个元素生成排名。在关系的情况下,分配平均等级。

Rank可选地使用一个默认为true的升序参数; 当错误时, 数据被反向排序, 也就是较大的值被分配较小的排序。Rank支持不同的方法:

average: 并列组平均排序等级min: 组中最低的排序等级max: 组中最高的排序等级

• first: 按照它们出现在数组中的顺序分配队列

```
s = pd.Series(np.random.np.random.randn(5),index=list('abcde'))
s['d'] = s['b'] # 构造一个相同的情况
s.rank()
```

a 5.0 b 3.5 c 2.0 d 3.5 e 1.0

dtype: float64

```
[154] s.rank(method='min') # 使用min方法后,比如有两个排名并列第三,则两个的排名都为3
```

a 5.0 b 3.0 c 2.0 d 3.0 e 1.0

dtype: float64

[155] s.rank(method='max') # 使用max方法后,比如有两个排名并列第三,则两个数的排名都为4

a 5.0 b 4.0 c 2.0 d 4.0 e 1.0

dtype: float64

[156] s.rank(method='first') # 数值大小相同情况下,根据在数组中的位置来定排名前后

a 5.0 b 3.0 c 2.0 d 4.0 e 1.0

dtype: float64

3.2.2 Pandas窗口函数

为了处理数字数据,Pandas提供了几个变体,如滚动,展开和指数移动窗口统计的权重。其中包括总和,均值,中位数,方差,协方差,相关性等。

3.2.2.1 .rolling()函数

这个函数可以应用于一系列数据。指定window=n参数并在其上应用适当的统计函数。

DataFrame.rolling(window, min_periods=None, freq=None, center=False, win_type=None, on=None, axis=0, closed=None)

- window:表示时间窗的大小,注意有两种形式(intoroffset)。如果使用int,则数值表示计算统计量的观测值的数量即向前几个数据。如果是offset类型,表示时间窗的大小。
- min_periods: 最少需要有值的观测点的数量,对于int类型,默认与window相等。对于offset类型,默认为1。
- center: 是否使用window的中间值作为label,默认为false。只能在window是int时使用。

	A	В	С	D
2019-01-01	-1.327987	0.663651	1.631045	-0.042281
2019-01-02	-0.005253	0.420348	0.442055	-0.218387
2019-01-03	0.356261	0.755611	-0.105040	-1.126363
2019-01-04	0.853231	-0.272414	1.696901	-0.336484
2019-01-05	-0.432228	-2.321604	-0.300705	0.965461
2019-01-06	0.032065	0.464344	1.346653	-0.127116
2019-01-07	-0.988206	-1.518681	0.443509	1.601487
2019-01-08	-0.396659	2.169251	-0.342024	-1.092281
2019-01-09	0.380469	-1.009371	0.117781	-0.157493
2019-01-10	-1.792407	-1.456297	-1.377632	1.093072

```
[160] # 用途: 滚动窗口计算 按指定周期计算 df.rolling(window=3).mean() # 由于窗口大小为3,前两个元素为空值,第三个元素的值为n,n-1,n-2元素的平均值
```

	А	В	С	D
2019-01-01	NaN	NaN	NaN	NaN
2019-01-02	NaN	NaN	NaN	NaN
2019-01-03	-0.325660	0.613203	0.656020	-0.462344
2019-01-04	0.401413	0.301181	0.677972	-0.560411
2019-01-05	0.259088	-0.612802	0.430385	-0.165796
2019-01-06	0.151023	-0.709891	0.914283	0.167287
	А	В	С	D
2019-01-07	-0.462790	-1.125313	0.496486	0.813277

2019-01-08	-0.450933	0.371638	0.482713	0.127363
2019-01-09	-0.334799	-0.119600	0.073089	0.117237
2019-01-10	-0.602865	-0.098806	-0.533958	-0.052234

3.2.2.2 .expanding()函数

提供扩展转换

DataFrame.expanding(min_periods=1, center=False, axis=0),其中参数的意义和rolling一样,只是其不是固定窗口长度,其长度是不断的扩大的。

[163] # 用途:提供扩展转换。累计计算,如累加求和 df.expanding(min_periods=3).mean() # 第n个结果值为 第1,2,...,n-1的值求和再求平均

	А	В	С	D
2019-01-01	NaN	NaN	NaN	NaN
2019-01-02	NaN	NaN	NaN	NaN
2019-01-03	-0.325660	0.613203	0.656020	-0.462344
2019-01-04	-0.030937	0.391799	0.916240	-0.430879
2019-01-05	-0.111195	-0.150882	0.672851	-0.151611
2019-01-06	-0.087319	-0.048344	0.785151	-0.147529
2019-01-07	-0.216017	-0.258392	0.736345	0.102331
2019-01-08	-0.238597	0.045063	0.601549	-0.046996
2019-01-09	-0.169812	-0.072096	0.547797	-0.059273
2019-01-10	-0.332071	-0.210516	0.355254	0.055961

3.2.3 Pandas其他函数应用

Pandas函数应用主要有以下几方面的运用:

表合理函数应用: pipe()行或列函数应用: apply()元素函数应用: applymap()

3.2.3.1 表格函数应用

可以通过将函数和适当数量的参数作为管道参数来执行自定义操作。

```
# adder函数
# adder函数将两个数值作为参数相加并返回总和
def adder(ele1,ele2):
    return ele1+ele2
df = pd.DataFrame(np.random.randn(5,3),columns=
['col1','col2','col3'])
df.pipe(adder,2) # 为所有元素相加一个值2
```

	col1	col2	col3
0	2.134922	1.742178	2.275130
1	2.076044	1.235144	0.440649
2	1.825690	1.395828	0.175502
3	1.272963	0.227594	0.623802
4	2.309135	0.535770	2.385485

3.2.3.2 行或列合理函数应用

可以使用apply()方法沿DataFrame或Panel的轴应用任意函数,它与描述性统计方法一样,采用可选的axis参数。默认情况下,操作按列执行,将每列列为数组。

```
# apply()
# 可以使用apply()方法沿DataFrame或Panel的轴应用任意函数

df = pd.DataFrame(np.random.randn(5,3),columns=
['col1','col2','col3'])
df.apply(np.mean)
```

col1 0.324740 col2 1.023603 col3 -0.097148 dtype: float64

[38] df.apply(np.mean,axis=1)

0 0.883146 1 0.500423 2 -0.016306 3 -0.588286 4 1.306348 dtype: float64

[39] df.apply(lambda x:x.max() - x.min())

col1 1.750537 col2 4.022997 col3 2.924760 dtype: float64

3.2.3.3 元素合理函数应用

并不是所有的函数都可以向量化(也不是返回另一个数组的NumPy数组,也不是任何值),在DataFrame上的方法applymap()和类似于在Series上的map()接受任何Python函数,并且返回单个值。

[41] # map针对于Series df['col1'].map(lambda x:x*100)

0 -32.095232 1 136.731397 2 48.233763 3 -38.322272 4 47.822448 Name: coll, dtype: float64

applymap针对DataFrame df.applymap(lambda x:x*100)

	col1	col2	col3
0	-32.095232	340.825931	-43.786954
1	136.731397	-3.286422	16.681865
2	48.233763	65.502181	-118.627596
3	-38.322272	-61.473778	-76.689607
4	47.822448	170.233595	173.848357

```
# 可以利用applymap对DataFrame中的每个值进行操作
# 比如: 将DataFrame中的各个浮点值保留两位小数
f=lambda x: '%.2f'%x
df.applymap(f)
```

	col1	col2	col3
0	-0.32	3.41	-0.44
1	1.37	-0.03	0.17
2	0.48	0.66	-1.19
3	-0.38	-0.61	-0.77
4	0.48	1.70	1.74

3.3 数据运算

3.3.1 Series之间的运算

```
import pandas as pd
m = pd.Series([1,2,3,4],index=['a','b','c','d'])
n = pd.Series([1,-1,3,-7,-2],index=['a','e','c','f','g'])
m
```

```
a 1
b 2
c 3
```

```
dtype: int64
     а
        1
        -1
     е
         3
     f
        -7
        -2
     g
     dtype: int64
    m+n
         2.0
     а
     b
         NaN
         6.0
     С
     d
         NaN
         NaN
     е
     f
         NaN
         NaN
     g
     dtype: float64
     sereis相加会自动进行数据对齐操作,在不重叠的索引处会使用NA(NaN)值进行填充,
     series进行算术运算的时候,不需要保证series的大小一致。其余操作类似。
[6] m-n
         0.0
     а
     b
         NaN
     С
         0.0
     d
         NaN
     е
         NaN
     f
         NaN
         NaN
     dtype: float64
     m*n
     а
         1.0
```

d

b

NaN

```
c 9.0
d NaN
e NaN
f NaN
g NaN
dtype: float64
```

[8] **m/n**

```
a 1.0
b NaN
c 1.0
d NaN
e NaN
f NaN
g NaN
dtype: float64
```

3.3.2 DataFrame之间的运算

```
d1 = np.arange(1,10).reshape(3,3)
  data1 = pd.DataFrame(d1,index=["a","b","c"],columns=
    ["one","two","three"])
  d2 = np.arange(1,10).reshape(3,3)
  data2 = pd.DataFrame(d2,index=["a","b","e"],columns=
    ["one","two","four"])
  data1 + data2
```

	four	one	three	two
a	NaN	2.0	NaN	4.0
b	NaN	8.0	NaN	10.0
c	NaN	NaN	NaN	NaN
e	NaN	NaN	NaN	NaN

dataFrame相加时,对齐操作需要行和列的索引都重叠的时候才会相加,否则会使用NA 值进行填充。其他操作类似

[8] data1 - data2

	four	one	three	two
a	NaN	0.0	NaN	0.0
b	NaN	0.0	NaN	0.0
С	NaN	NaN	NaN	NaN
е	NaN	NaN	NaN	NaN

[11] data1 * data2

	four	one	three	two
а	NaN	1.0	NaN	4.0
b	NaN	16.0	NaN	25.0
c	NaN	NaN	NaN	NaN
е	NaN	NaN	NaN	NaN

[12] data1 / data2

	four	one	three	two
а	NaN	1.0	NaN	1.0
b	NaN	1.0	NaN	1.0
С	NaN	NaN	NaN	NaN
е	NaN	NaN	NaN	NaN

3.3.3 DataFrame与Series的混合运算

```
# DataFrame的行进行广播
a = np.arange(9).reshape(3,3)
d = pd.DataFrame(a,index=['a','b','c'],columns=
['one','two','three'])
# 取d的第一行为Series
s = d.ix[0]
```

d + s # dataframe每一行都与第一行的数值相加

C:\Users\lenovo\Anaconda3\lib\site-packages\ipykernel_launcher.py:5:
FutureWarning:

- .ix is deprecated. Please use
- .loc for label based indexing or
- .iloc for positional indexing

See the documentation here:

http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#ixindexer-is-deprecated

11 11 1

	one	two	three
а	0	2	4
b	3	5	7
c	6	8	10

- [17] # DataFrame的列进行广播
 - s = d['one']
 - d.add(s,axis=0) # dataframe每一列都与第一列的数值相加

	one	two	three
a	0	1	2
b	6	7	8
С	12	13	14

3.4 pandas分组与聚合

3.4.1 分组

任何分组(groupby)操作都涉及原始对象的以下操作之一:

- 分割对象
- 应用一个函数
- 结合的结果

	Team	Rank	Year	Points
0	Riders	1	2014	876
1	Riders	2	2015	789
2	Devils	2	2014	863
3	Devils	3	2015	673
4	Kings	3	2014	741
5	kings	4	2015	812
6	Kings	1	2016	756
7	Kings	1	2017	788
8	Riders	2	2016	694
9	Royals	4	2014	701
10	Royals	1	2015	804
11	Riders	2	2017	690

```
[197] # groupby 将数据拆分为组
df.groupby('Team') # 按Team来分组
```

<pandas.core.groupby.groupby.DataFrameGroupBy object at
0x0000016E441FCA90>

3.4.1.1 查看分组

[198] df.groupby('Team').groups

```
{'Devils': Int64Index([2, 3], dtype='int64'),
       'Kings': Int64Index([4, 6, 7], dtype='int64'),
       'Riders': Int64Index([0, 1, 8, 11], dtype='int64'),
       'Royals': Int64Index([9, 10], dtype='int64'),
       'kings': Int64Index([5], dtype='int64')}
[199] # 按多列分组
      df.groupby(['Team','Year']).groups
     {('Devils', 2014): Int64Index([2], dtype='int64'),
       ('Devils', 2015): Int64Index([3], dtype='int64'),
       ('Kings', 2014): Int64Index([4], dtype='int64'),
       ('Kings', 2016): Int64Index([6], dtype='int64'),
       ('Kings', 2017): Int64Index([7], dtype='int64'),
       ('Riders', 2014): Int64Index([0], dtype='int64'),
       ('Riders', 2015): Int64Index([1], dtype='int64'),
       ('Riders', 2016): Int64Index([8], dtype='int64'),
       ('Riders', 2017): Int64Index([11], dtype='int64'),
       ('Royals', 2014): Int64Index([9], dtype='int64'),
       ('Royals', 2015): Int64Index([10], dtype='int64'),
       ('kings', 2015): Int64Index([5], dtype='int64')}
     3.4.1.2 迭代遍历分组
      # 对于groupby对象,可以遍历类似itertools.obj的对象
      grouped = df.groupby('Year')
      for name, group in grouped:
          print(name)
          print(group)
     2014
          Team Rank Year Points
     0 Riders
                  1 2014
                               876
     2 Devils
                  2 2014
                               863
     4
         Kings
                   3 2014
                               741
     9 Royals 4 2014
                               701
```

```
Team Rank Year Points
          2 2015
 Riders
                      789
3 Devils 3 2015
5 kings 4 2015
                    673
                    812
10 Royals 1 2015
                      804
2016
   Team Rank Year Points
6
 Kings 1 2016
                     756
8 Riders 2 2016
                     694
2017
    Team Rank Year Points
7
  Kings 1 2017
                    788
11 Riders 2 2017
                    690
```

[201] #选择一个分组

使用get_group()方法,可以选择一个组。

grouped = df.groupby('Year')
grouped.get_group(2014)

	Team	Rank	Year	Points
0	Riders	1	2014	876
2	Devils	2	2014	863
4	Kings	3	2014	741
9	Royals	4	2014	701

[202] # 对分组后的数据进行统计操作

df.groupby('Year').mean() # 按Year列分组,获取其他列均值

	Rank	Points
Year		
2014	2.5	795.25
2015	2.5	769.50
2016	1.5	725.00
2017	1.5	739.00

```
[203] # 按多列分组,并获取其他列的均值 df.groupby(['Year','Team']).mean()
```

		Rank	Points
Year	Team		
2014	Devils	2	863
	Kings	3	741
	Riders	1	876
	Royals	4	701
2015	Devils	3	673
	Riders	2	789
	Royals	1	804
	kings	4	812
2016	Kings	1	756
	Riders	2	694
2017	Kings	1	788
	Riders	2	690

```
[206] # 也可以分组后,选择列进行运算
g = df.groupby('Year') # 先按Year列分组
g['Points'].mean() # 再对分组总的Points列进行求均值
```

Year 2014 795.25 2015 769.50 2016 725.00 2017 739.00

Name: Points, dtype: float64

3.4.2 聚合

- [3] #聚合函数为每个组返回单个聚合值。当创建了分组(group by)对象,就可以对分组数据执行多个聚合操作。
 - # 比较常用的是使用agg

```
grouped = df.groupby('Year')
grouped['Points'].agg(np.mean)
```

```
Year
2014 795.25
2015 769.50
2016 725.00
2017 739.00
Name: Points, dtype: float64
```

```
# 一次应用多个聚合函数
grouped = df.groupby('Year')
grouped['Points'].agg([np.sum,np.mean,np.std])
```

	sum	mean	std
Year			
2014	3181	795.25	87.439026
2015	3078	769.50	65.035888
2016	1450	725.00	43.840620
2017	1478	739.00	69.296465

3.4.2.1 转换

```
# transform能返回完整数据的某一变换。输出的形状和输入一致。
g = df.groupby('Team')
score = lambda x: (x - x.mean()) / x.std()*10
g.transform(score)
```

	Rank	Year	Points
0	-15.000000	-11.618950	12.843272
1	5.000000	-3.872983	3.020286
2	-7.071068	-7.071068	7.071068
3	7.071068	7.071068	-7.071068
4	11.547005	-10.910895	-8.608621
5	NaN	NaN	NaN

	Rank	Year	Points
6	-5.773503	2.182179	-2.360428
7	-5.773503	8.728716	10.969049
8	5.000000	3.872983	-7.705963
9	7.071068	-7.071068	-7.071068
10	-7.071068	7.071068	7.071068
11	5.000000	11.618950	-8.157595

3.4.2.2 agg 与 transform 比较

[15] # agg会返回数据的缩减版本,而transform能返回完整数据

下面以举例的形式说明

g.agg(np.mean)

	Rank	Year	Points
Team			
Devils	2.500000	2014.500000	768.000000
Kings	1.666667	2015.666667	761.666667
Riders	1.750000	2015.500000	762.250000
Royals	2.500000	2014.500000	752.500000
kings	4.000000	2015.000000	812.000000

[17] # 查看一下分组的结果

for k,v in g:
 print(k,v)

```
Devils Team Rank Year Points
2 Devils 2 2014 863
3 Devils 3 2015 673
Kings Team Rank Year Points
4 Kings 3 2014 741
6 Kings 1 2016 756
7 Kings 1 2017 788
Riders Team Rank Year Points
```

```
0 Riders 1 2014 876
1 Riders 2 2015 789
8 Riders 2 2016 694
11 Riders 2 2017 690
Royals Team Rank Year Points
9 Royals 4 2014 701
10 Royals 1 2015 804
kings Team Rank Year Points
5 kings 4 2015 812
```

[19] g.transform(np.mean)

结果解释,第0、1、8、11行的数据是一样的,这是因为在Riders这个Team中,总共有四行数据,且每一行都用该组的均值表示

	Rank	Year	Points
0	1.750000	2015.500000	762.250000
1	1.750000	2015.500000	762.250000
2	2.500000	2014.500000	768.000000
3	2.500000	2014.500000	768.000000
4	1.666667	2015.666667	761.666667
5	4.000000	2015.000000	812.000000
6	1.666667	2015.666667	761.666667
7	1.666667	2015.666667	761.666667
8	1.750000	2015.500000	762.250000
9	2.500000	2014.500000	752.500000
10	2.500000	2014.500000	752.500000
11	1.750000	2015.500000	762.250000

3.4.2.3 过滤

```
[10] # filter()函数用于过滤数据
```

f = df.groupby('Team').filter(lambda x: len(x)>3) #筛选出记录数大于3 的组

[#] 根据定义的标准过滤数据,并返回数据的子集

	Team	Rank	Year	Points
0	Riders	1	2014	876
1	Riders	2	2015	789
8	Riders	2	2016	694
11	Riders	2	2017	690

df.groupby('Team').filter(lambda x: np.max(x['Rank'])<=3) # 筛选 出组中最大排名不超过3的组

	Team	Rank	Year	Points
0	Riders	1	2014	876
1	Riders	2	2015	789
2	Devils	2	2014	863
3	Devils	3	2015	673
4	Kings	3	2014	741
6	Kings	1	2016	756
7	Kings	1	2017	788
8	Riders	2	2016	694
11	Riders	2	2017	690

3.5 pandas排序

Pandas有两种排序方式,分别是:

- 按标签
- 按实际值

unsorted_df=pd.DataFrame(np.random.randn(10,2),index= [1,4,6,2,3,5,9,8,0,7],columns=['col2','col1']) unsorted_df # 该df中,标签和值未排序

	col2	col1
1	0.679809	-0.327875
4	1.580933	-0.024787
6	0.600616	-0.057837
2	-0.047888	-0.268427
3	-0.137648	-0.615558
5	-0.742281	0.966626
9	-0.696446	0.869444
8	0.285668	0.652800
0	-0.460373	1.873532
7	0.177655	1.459921

3.5.1 按标签排序

使用sort_index()方法,通过传递axis参数和排序顺序,可以对DataFrame进行排序。

[108] # 默认情况下,按照升序对行标签进行排序

sorted_df = unsorted_df.sort_index()
sorted_df

	col2	col1
0	-0.460373	1.873532
1	0.679809	-0.327875
2	-0.047888	-0.268427
3	-0.137648	-0.615558
4	1.580933	-0.024787
5	-0.742281	0.966626

	col2	col1
6	0.600616	-0.057837
7	0.177655	1.459921
8	0.285668	0.652800
9	-0.696446	0.869444

[109] # 通过将布尔值传递给升序参数,可以控制排序顺序(ascending参数) sorted_df = unsorted_df.sort_index(ascending=False) #降序 sorted_df

	col2	col1
9	-0.696446	0.869444
8	0.285668	0.652800
7	0.177655	1.459921
6	0.600616	-0.057837
5	-0.742281	0.966626
4	1.580933	-0.024787
3	-0.137648	-0.615558
2	-0.047888	-0.268427
1	0.679809	-0.327875
0	-0.460373	1.873532

3.5.2 按列排序

通过传递axis参数值为0或1,可以对列标签进行排序。默认情况下,axis=0,逐行排列。

[112] sorted_df = unsorted_df.sort_index(axis = 1)
 sorted_df

col1	col2
------	------

	col1	col2
1	-0.327875	0.679809
4	-0.024787	1.580933
6	-0.057837	0.600616
2	-0.268427	-0.047888
3	-0.615558	-0.137648
5	0.966626	-0.742281
9	0.869444	-0.696446
8	0.652800	0.285668
0	1.873532	-0.460373
7	1.459921	0.177655

3.5.3 按值排序

像索引排序一样,sort_values()是按值排序的方法。它接受一个by参数,它将使用要与 其排序值的DataFrame的列名称。

```
# sort_values()
unsorted_df = pd.DataFrame({'col1':[2,1,1,1],'col2':[1,3,2,4]})
sorted_df = unsorted_df.sort_values(by='col1') # 根据列col1的值来排序
sorted_df
```

	col1	col2
1	1	3
2	1	2
3	1	4
0	2	1

```
[115] # 可以根据多列的值大小来排序
# 比如下列,先按col1列的值排序,当col1列的值相同时,再考虑col2列的值大小
sorted_df = unsorted_df.sort_values(by=['col1','col2'])
sorted_df
```

	col1	col2
2	1	2
1	1	3
3	1	4
0	2	1

3.5.4 排序算法

sort_values()提供了从mergeesort,heapsort和quicksort中选择算法的一个配置。

```
[117] # Mergesort是唯一稳定的算法
```

sorted_df = unsorted_df.sort_values(by='col1',kind='mergesort')
sorted_df

	col1	col2
1	1	3
2	1	2
3	1	4
0	2	1

3.6 Pandas合并/连接

Pandas具有功能全面的高性能内存中连接操作,与SQL等关系数据库非常相似。

3.6.1 merge函数

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,left_index=False, right_index=False, sort=True)

• left: 一个DataFrame对象

- right: 另一个DataFrame对象
- on: 用于连接的列名,必须在左和右DataFrame对象中存在的列
- left_on: 左侧DataFrame用作连接的键,可以是列名或长度等于DataFrame长度的数组
- right_on: 右边的DataFrame用作连接的键
- left_index: 如果为True,则使用左侧DataFrame中的索引(行标签)作为其连接键。在具有MultiIndex(分层)的DataFrame的情况下,级别的数量必须与来自右 DataFrame的连接键的数量相匹配。
- right_index: 与left_index用法相同
- how: 它是left, right, outer以及inner之中的一个,默认为内inner。
- sort: 按照字典顺序通过连接键对结果DataFrame进行排序。默认为True,设置为 False时,在很多情况下大大提高性能。

```
[40] # 构建样例数据
      left = pd.DataFrame({'id':[1,2,3,4,5],
                          'Name':['Alex', 'Amy', 'Allen', 'Alice',
      'Ayoung'],
                          'subject':
      ['sub1', 'sub2', 'sub3', 'sub4', 'sub5']})
      right = pd.DataFrame({'id':[1,2,3,4,5],
                          'Name':['Billy', 'Brian', 'Bran', 'Bryce',
      'Betty'],
                          'subject':
      ['sub2', 'sub4', 'sub3', 'sub6', 'sub5']})
      print(left)
      print('----')
      print(right)
        id
            Name subject
```

```
0
 1 Alex sub1
           sub2
1
  2
      Amy
2 3 Allen sub3
3 4 Alice sub4
  5 Ayoung
            sub5
  id Name subject
  1 Billy sub2
0
1 2 Brian
           sub4
2 3 Bran
          sub3
3 4 Bryce
           sub6
4 5 Betty sub5
```

```
import pandas as pd
pd.show_versions()
```

INSTALLED VERSIONS

commit: None

python: 3.6.4.final.0

python-bits: 64

OS: Windows
OS-release: 10
machine: AMD64

processor: AMD64 Family 22 Model 48 Stepping 1, AuthenticAMD

byteorder: little

LC_ALL: None LANG: None

LOCALE: None.None

pandas: 0.23.4
pytest: 3.3.2
pip: 19.0.3

setuptools: 38.4.0

Cython: 0.27.3 numpy: 1.16.2 scipy: 1.3.1 pyarrow: None xarray: None IPython: 6.2.1 sphinx: 1.6.6

patsy: 0.5.0
dateutil: 2.6.1
pytz: 2017.3

blosc: None
bottleneck: 1.2.1

tables: 3.4.2 numexpr: 2.6.4

feather: None
matplotlib: 3.1.1

openpyxl: 2.4.10

xlrd: 1.1.0 xlwt: 1.3.0

xlsxwriter: 1.0.2

lxml: 4.1.1 bs4: 4.6.0

html5lib: 1.0.1 sqlalchemy: 1.2.1

pymysql: None

psycopg2: 2.8.3 (dt dec pq3 ext lo64)

jinja2: 2.10
s3fs: None

fastparquet: None
pandas_gbq: None

pandas_datareader: None

在一个键上合并两个DataFrame pd.merge(left,right,on='id') # 默认参数how是inner内连接

	id	Name_x	subject_x	Name_y	subject_y
0	1	Alex	sub1	Billy	sub2
1	2	Amy	sub2	Brian	sub4
2	3	Allen	sub3	Bran	sub3
3	4	Alice	sub4	Bryce	sub6
4	5	Ayoung	sub5	Betty	sub5

[42] # 合并多个键上的两个DataFrame pd.merge(left,right,on=['id','subject'])

	id	Name_x	subject	Name_y
0	3	Allen	sub3	Bran
1	5	Ayoung	sub5	Betty

	id_x	Name_x	subject	id_y	Name_y
0	1	Alex	sub1	NaN	NaN
1	2	Amy	sub2	1.0	Billy
2	3	Allen	sub3	3.0	Bran
3	4	Alice	sub4	2.0	Brian
4	5	Ayoung	sub5	5.0	Betty

right join
右连接,右侧DataFrame取全部值,左侧DataFrame匹配右侧DataFrame
pd.merge(left,right,on='subject',how='right')

	id_x	Name_x	subject	id_y	Name_y
0	2 0	Amv	suh2	1	Rillv

•	۷.۰	,y	3452	-	y
1	3.0	Allen	sub3	3	Bran
2	4.0	Alice	sub4	2	Brian
3	5.0	Ayoung	sub5	5	Betty
4	NaN	NaN	sub6	4	Bryce

```
[45] # outer join
# 外连接,就是左连接和右连接的并集
pd.merge(left,right,how='outer',on='subject')
```

	id_x	Name_x	subject	id_y	Name_y
0	1.0	Alex	sub1	NaN	NaN
1	2.0	Amy	sub2	1.0	Billy
2	3.0	Allen	sub3	3.0	Bran
3	4.0	Alice	sub4	2.0	Brian
4	5.0	Ayoung	sub5	5.0	Betty
5	NaN	NaN	sub6	4.0	Bryce

```
[46] # inner join
# 内连接,就是左连接和右连接的交集
pd.merge(left,right,on='subject',how='inner')
```

	id_x	Name_x	subject	id_y	Name_y
0	2	Amy	sub2	1	Billy
1	3	Allen	sub3	3	Bran
2	4	Alice	sub4	2	Brian
3	5	Ayoung	sub5	5	Betty

```
[49] # 当两边合并字段不同时,可以使用left_on和right_on参数设置合并字段。
pd.merge(left,right,left_on='subject',right_on='subject')
```

	id_x	Name_x	subject	id_y	Name_y
n	2	Amv	suh2	1	Rillv

·	_	,,	JUNZ	-	Jy
1	3	Allen	sub3	3	Bran
2	4	Alice	sub4	2	Brian
3	5	Ayoung	sub5	5	Betty

```
# 可以通过设置left_index或者right_index的值为True来使用索引连接df1 = pd.DataFrame({'key':list('bbaca'),'data1':range(5)})df2 = pd.DataFrame({'key':['a','b','d'],'data2':range(3)})# df1使用data1作为连接关键字,而df2使用索引当连接关键字pd.merge(df1,df2,left_on='data1',right_index=True)
```

	key_x	data1	key_y	data2
0	b	0	а	0
1	b	1	b	1
2	а	2	d	2

	key_df1	data1	key_df2	data2
0	b	0	a	0
1	b	1	b	1
2	а	2	d	2

3.6.2 concat函数

pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False)

- objs: series,dataframe或者是panel构成的Series或映射
- axis: 需要合并连接的轴, 0是行, 1是列
- join: 连接方式inner,或者outer

```
df1 = pd.DataFrame({'A':[1,2,3,4],'B':[5,6,7,8],'C':
  [9,10,11,12]})
df2 = pd.DataFrame({'A':[100,2,300,4,6],'B':
  [500,6,700,8,100],'D':[900,10,1100,12,20]})
```

```
[61] # 相同字段的表首尾相接
pd.concat([df1,df2]) # 默认axis=0
```

C:\Users\lenovo\Anaconda3\lib\site-packages\ipykernel_launcher.py:2:
FutureWarning: Sorting because non-concatenation axis is not aligned. A
future version
of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False'.

To retain the current behavior and silence the warning, pass 'sort=True'.

	Α	В	С	D
0	1	5	9.0	NaN
1	2	6	10.0	NaN
2	3	7	11.0	NaN
3	4	8	12.0	NaN
0	100	500	NaN	900.0
1	2	6	NaN	10.0
2	300	700	NaN	1100.0
3	4	8	NaN	12.0
4	6	100	NaN	20.0

```
[62] # 使用key来标识数据来源于哪张表 pd.concat([df1,df2],keys=['df1','df2'])
```

C:\Users\lenovo\Anaconda3\lib\site-packages\ipykernel_launcher.py:2:
FutureWarning: Sorting because non-concatenation axis is not aligned. A
future version

of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False'.

To retain the current behavior and silence the warning, pass

		Α	В	С	D
df1	0	1	5	9.0	NaN
	1	2	6	10.0	NaN
	2	3	7	11.0	NaN
	3	4	8	12.0	NaN
df2	0	100	500	NaN	900.0
	1	2	6	NaN	10.0
	2	300	700	NaN	1100.0
	3	4	8	NaN	12.0
	4	6	100	NaN	20.0

[63] # 当axis=1的时候,就是行对齐,然后将两张表的列合并pd.concat([df1,df2],axis=1)

	A	В	С	A	В	D
0	1.0	5.0	9.0	100	500	900
1	2.0	6.0	10.0	2	6	10
2	3.0	7.0	11.0	300	700	1100
3	4.0	8.0	12.0	4	8	12
4	NaN	NaN	NaN	6	100	20

join # inner 得到的是两表的交集 pd.concat([df1,df2],axis=1,join='inner')

	Α	В	С	Α	В	D
0	1	5	9	100	500	900
1	2	6	10	2	6	10
2	3	7	11	300	700	1100

	Α	В	С	Α	В	D
3	4	8	12	4	8	12

[65] # outer 得到的是两表的并集

pd.concat([df1,df2],axis=1,join='outer')

	Α	В	С	Α	В	D
0	1.0	5.0	9.0	100	500	900
1	2.0	6.0	10.0	2	6	10
2	3.0	7.0	11.0	300	700	1100
3	4.0	8.0	12.0	4	8	12
4	NaN	NaN	NaN	6	100	20

[68] # 如果有join_axes的参数传入,可以指定根据哪个轴来对齐数据

pd.concat([df1,df2],axis=1,join_axes=[df1.index])

	Α	В	С	Α	В	D
0	1	5	9	100	500	900
1	2	6	10	2	6	10
2	3	7	11	300	700	1100
3	4	8	12	4	8	12

[69] # append是series和dataframe的方法,使用它就是默认沿着列进行拼接(axis = 0,列对齐)

df1.append(df2)

C:\Users\lenovo\Anaconda3\lib\site-packages\pandas\core\frame.py:6211: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version

of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False'.

To retain the current behavior and silence the warning, pass 'sort=True'.

sort=sort)

	A	В	С	D
0	1	5	9.0	NaN
1	2	6	10.0	NaN
2	3	7	11.0	NaN
3	4	8	12.0	NaN
0	100	500	NaN	900.0
1	2	6	NaN	10.0
2	300	700	NaN	1100.0
3	4	8	NaN	12.0
4	6	100	NaN	20.0

[70] # ignore_index参数为True,合并完后的表,再重新整理一个新的index pd.concat([df1,df2],ignore_index=True)

C:\Users\lenovo\Anaconda3\lib\site-packages\ipykernel_launcher.py:2:
FutureWarning: Sorting because non-concatenation axis is not aligned. A
future version
of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False'.

To retain the current behavior and silence the warning, pass 'sort=True'.

	Α	В	С	D
0	1	5	9.0	NaN
1	2	6	10.0	NaN
2	3	7	11.0	NaN
3	4	8	12.0	NaN
4	100	500	NaN	900.0
5	2	6	NaN	10.0
6	300	700	NaN	1100.0
7	4	8	NaN	12.0

	A	В	С	D
8	6	100	NaN	20.0

3.7 Pandas迭代

Pandas对象之间的基本迭代的行为取决于类型。

- 当迭代一个Series时,它被视为数组式,基本迭代产生这些值。
- 其他数据结构,如: DataFrame和Panel,遵循迭代对象的键。

3.7.1 迭代DataFrame

迭代DataFrame提供列名。

Α

Χ

У

С

D

要遍历DataFrame中的数据,可以使用以下函数:

- iteritems(): 将列迭代为(列名, Series)
- iterrows(): 将行迭代为(索引, Series)
- itertuples():将为DataFrame中的每一行返回一个产生一个命名元组的迭代器。元组的第一个元素将是行的相应索引值,而剩余的值是行值。

```
[101] # iteritems()示例
      df = pd.DataFrame(np.random.randn(4,3),columns=
      ['col1','col2','col3'])
      for key, value in df.iteritems(): # 遍历每一列
          print(key,value)
     col1 0 -2.981358
          1.542898
          0.034994
          0.403110
     Name: col1, dtype: float64
     col2 0 1.191964
     1 -1.765181
         1.338140
     3 -0.909445
     Name: col2, dtype: float64
     col3 0 0.691264
     1 -1.294775
     2 -1.079091
         1.267020
     Name: col3, dtype: float64
[102] # iterrows()示例
      df = pd.DataFrame(np.random.randn(4,3),columns =
      ['col1','col2','col3'])
      for row_index,row in df.iterrows(): # 遍历每一行
          print(row_index,row)
     0 col1 0.331482
     col2 -0.082465
     col3
            0.901383
     Name: 0, dtype: float64
     1 col1
              0.457225
     col2 1.749560
            1.179433
     col3
     Name: 1, dtype: float64
     2 col1 -0.388538
     col2
            0.299423
     col3 -0.372152
     Name: 2, dtype: float64
     3 col1 0.659592
     col2
            0.073732
     col3
            2.732768
     Name: 3, dtype: float64
```

```
# itertuples示例

df = pd.DataFrame(np.random.randn(4,3),columns=
['col1','col2','col3'])

for row in df.itertuples():
    print(row)
```

```
Pandas(Index=0, col1=0.48602901733344783, col2=-1.5539391457438123, col3=-0.04430705476956224)

Pandas(Index=1, col1=-0.9228596975040277, col2=-1.0228389027349492, col3=0.3386591733220599)

Pandas(Index=2, col1=0.921381562496179, col2=-0.8499061523092819, col3=0.04792091892126008)

Pandas(Index=3, col1=0.4704347338291297, col2=-0.4652555976370797, col3=-0.5262806115372778)
```

注意 - 不要尝试在迭代时修改任何对象。迭代是用于读取,迭代器返回原始对象(视图)的副本,因此更改将不会反映在原始对象上。具体如下所示:

```
[104] for index,row in df.iterrows():
    row['a'] = 10
    df # 观察发现,修改变化并未反映出来
```

	col1	col2	col3
0	0.486029	-1.553939	-0.044307
1	-0.922860	-1.022839	0.338659
2	0.921382	-0.849906	0.047921
3	0.470435	-0.465256	-0.526281

3.8 Pandas字符串和文本数据

Pandas提供了一组字符串函数,可以方便地对字符串数据进行操作。最重要的是,这些函数忽略丢失/NaN值

具体字符串的操作函数描述如下: pimage.png


```
[44] # 生成样例数据
     s = pd.Series(['Tom','William
     Rick','John','Alber@t',np.nan,'1234','SteveMinsu'])
     0
                  Tom
     1
          William Rick
     2
                 John
     3
             Alber@t
     4
                  NaN
     5
                 1234
     6
           SteveMinsu
     dtype: object
[45] # lower()函数示例
     s.str.lower() # 字符串转换成小写
     0
                  tom
          william rick
     1
     2
                 john
     3
              alber@t
     4
                  NaN
     5
                 1234
           steveminsu
     dtype: object
[46] # upper()函数示例
     s.str.upper() # 字符串转换成大写
                  TOM
     0
     1
          WILLIAM RICK
     2
                 JOHN
     3
              ALBER@T
     4
                  NaN
     5
                 1234
           STEVEMINSU
     dtype: object
[47] # len()函数示例
```

s.str.len() # 返回字符串的长度

0

1

3.0

12.0

```
4
           NaN
      5
           4.0
      6
           10.0
      dtype: float64
[48] # strip()函数示例
      s.str.strip()
      0
                    Tom
      1
          William Rick
      2
                   John
                Alber@t
      3
      4
                    NaN
      5
                   1234
      6
             SteveMinsu
      dtype: object
    s.str.strip(' ')
      0
                    Tom
      1
          William Rick
      2
                   John
      3
                Alber@t
      4
                    NaN
                   1234
      5
             SteveMinsu
      dtype: object
[50] # cat(sep=pattern)函数示例
      s.str.cat(sep='<=>')
      'Tom<=>William Rick<=>John<=>Alber@t<=>1234<=>SteveMinsu'
      # get_dummies()函数示例
      s.str.get_dummies()
                                                              William Rick
             1234
                     Alber@t
                                John
                                         SteveMinsu
                                                      Tom
                                                              William Rick
             1234
                     Alber@t
                                John
                                         SteveMinsu
                                                      Tom
```

2

3

4.0

7.0

N

 \cap

 \cap

N

N

_	v	·	•	·	-	~
1	0	0	0	0	0	1
2	0	0	1	0	0	0
3	0	1	0	0	0	0
4	0	0	0	0	0	0
5	1	0	0	0	0	0
6	0	0	0	1	0	0

```
[52] # contains()函数示例
s.str.contains(' ')
```

```
0 False
1 True
2 False
3 False
4 NaN
5 False
6 False
dtype: object
```

4. Pandas缺失数据

数据丢失(缺失)在现实生活中总是一个问题。 机器学习和数据挖掘等领域由于数据缺失导致的数据质量差,在模型预测的准确性上面临着严重的问题。 在这些领域,缺失值处理是使模型更加准确和有效的重点。

4.1 查找缺失值

对于数值数据,pandas使用浮点值NaN(Not a Number)表示缺失数据。我们称其为哨兵值,可以方便的检测出来:

```
import pandas as pd
import numpy as np
```

```
data = pd.DataFrame({'A':[1,6,np.nan,4,np.nan],'B':
[2,np.nan,3,9,5],'C':[5,7,9,8,4]})
```

data

	Α	В	С
0	1.0	2.0	5
1	6.0	NaN	7
2	NaN	3.0	9
3	4.0	9.0	8
4	NaN	5.0	4

[3] # 通过isnull()和notnull()函数检查缺失值 data.isnull() # True表示NaN

	Α	В	С
0	False	False	False
1	False	True	False
2	True	False	False
3	False	False	False
4	True	False	False

[4] data.notnull() # False表示NaN

	Α	В	С
0	True	True	True
1	True	False	True
2	False	True	True
3	True	True	True
4	False	True	True

[5] # 统计每一列有多少个缺失值

data.isnull().sum()

A 2 B 1 C 0 dtype: int64

[6] # 统计每一行有多少个缺失值 data.isnull().sum(axis=1)

[7] # 查找出具有缺失值的行index data.index[data.isnull().sum(axis=1)>0]

Int64Index([1, 2, 4], dtype='int64')

4.2 删除缺失值

[10] # dropna()函数

dropna(axis=0, how='any', thresh=None, subset=None,
inplace=False)

axis: 默认为0, 删除包含缺失值的行; 当为1时, 删除包含缺失值得列

how: 默认为'any',只要有缺失值出现,就删除;'all',所有的值都缺失,才删除

thresh: axis中至少有thresh个非缺失值,否则删除

subset: 在哪些列中查看是否有缺失值

inplace: 是否在原数据上操作。如果为真,返回None否则返回新的copy

data.dropna() # 删除存空值的行,how默认为any

	Α	В	С
0	1.0	2.0	5
3	4.0	9.0	8

	С
0	5
1	7
2	9
3	8
4	4

[12] data.dropna(axis=1,how='all') # 当列中的数据都为空时,才删除

	Α	В	С
0	1.0	2.0	5
1	6.0	NaN	7
2	NaN	3.0	9
3	4.0	9.0	8
4	NaN	5.0	4

[13] data.dropna(axis = 1,thresh = 4) # 每一列的非空值个数>=4, 否则删除

	В	С
0	2.0	5
1	NaN	7
2	3.0	9
3	9.0	8
4	5.0	4

data.dropna(axis = 1,thresh = 4, inplace = True) # 在原数据上操作 data

ВС

	В	С
0	2.0	5
1	NaN	7
2	3.0	9
3	9.0	8
4	5.0	4

4.3 缺失值填补

你可能不想滤除缺失数据(有可能会丢弃跟它有关的其他数据),而是希望通过其他 方式填补那些"空洞"。对于大多数情况而言, fillna方法是最主要的函数。通过一个常 数调用fillna就会将缺失值替换为那个常数值

```
[15] # fillna()函数可以通过几种方法用非空数据"填充"NA值
     # fillna(value=None, method=None, axis=None, inplace=False,
     limit=None, downcast=None, **kwargs)
     # value: 用于填充缺失值的标量值或字典对象
     # method: 插值方式。如果函数调用时未指定其他参数的话,默认为'ffill'
     # axis: 待填充的轴,默认为0
     # inplace: 修改调用者对象而不产生副本
     # limit: (对于前向和后向填充)可以连续填充的最大数量
     # 用标量数据填充缺失值
     data = pd.DataFrame({'A':[1,6,np.nan,4,np.nan],'B':
     [2,np.nan,3,9,5], 'C':[5,7,9,8,4]})
     print(data)
     print('=======')
     print(data.fillna(0)) # 使用0来填充缺少值
```

```
2 NaN 3.0 9
3 4.0 9.0 8
4 NaN 5.0 4
B C
   Α
0 1.0 2.0 5
1 6.0 0.0 7
2 0.0 3.0 9
3 4.0 9.0 8
4 0.0 5.0 4
```

В С

Α 0 1.0 2.0 5 1 6.0 NaN 7

	A	В	С
0	1.000000	2.00	5
1	6.000000	4.75	7
2	3.666667	3.00	9
3	4.000000	9.00	8
4	3.666667	5.00	4

[22] # 若是通过一个字典调用fillna,就可以实现对不同的列填充不同的值 data.fillna(value = {'A':0.5,'B':0.4}) # 用0.5来填补A列的空值,0.4 来填补B列的空值

	A	В	С
0	1.0	2.0	5
1	6.0	0.4	7
2	0.5	3.0	9
3	4.0	9.0	8
4	0.5	5.0	4

- [35] # 利用填充的概念,来填补缺失的值
 - # pad/fill 填充方法向前
 - # bfill/backfill 填充方法向后

data.fillna(method='pad') # 将缺失值按照前面一个值进行填充。

	Α	В	С
0	1.0	2.0	5
1	6.0	2.0	7
2	6.0	3.0	9
3	4.0	9.0	8
4	4.0	5.0	4

[36] data.fillna(method='bfill') # 将缺失值按照后面一个值进行填充

	Α	В	С
0	1.0	2.0	5
1	6.0	3.0	7
2	4.0	3.0	9
3	4.0	9.0	8
4	NaN	5.0	4

[39] data.fillna(axis=1,method='bfill') # 修改轴方向,用后面列的值来填充

	Α	В	С
0	1.0	2.0	5.0
1	6.0	7.0	7.0
2	3.0	3.0	9.0
3	4.0	9.0	8.0
4	5.0	5.0	4.0

```
[40] # limit 限制填充个数
df = pd.DataFrame({'A':[1,6,np.nan,np.nan],'B':
        [2,np.nan,3,9,5],'C':[5,7,9,8,4]})
print(df)
print('===========')
print(df.fillna(method='pad',limit=1)) # 限制向前填充个数为1
```

2 6.0 3.0 9

```
3 NaN 9.0 8
4 NaN 5.0 4
```

4.4 数据替换

	one	two
0	10	1000
1	20	100
2	30	30
3	40	40
4	50	50

[57] # 用字典形式来替换多个数值 # 字典的key为原值, value为替换后的值 df.replace({0:666,1000:888})

	one	two
0	10	888
1	20	666
2	30	30
3	40	40
4	50	50

[58] # 也可以用列表的形式替换多个数值 # 传入两个列表,第一个列表中的值为原值,第二列表中的值为替换值 df.replace([0,50],[666,5]) # 用666来替换0;5替换50

	one	two
0	10	1000
1	20	666
2	30	30
3	40	40
4	5	5

[59] df.replace([0,50],['A','B'],inplace = **True**) # 在原数据上修改df

	one	two
0	10	1000
1	20	Α
2	30	30
3	40	40
4	В	В

- [63] # 使用正则表达式来替换
 - # 注意,在使用正则表达式替换时,必须将regex设置为True df.replace(r'[A-Z]','N',regex=True) # 将所有大写英文替换成N

	one two	
0	10	1000
1	20	N
2	30	30
3	40	40
4	N	N

5. pandas2新功能

5.1 Groupby的命名聚合

可以直接为指定的聚合输出列命名

	品种	身高	体重
0	猫	9.1	7.9
1	狗	6.0	7.5
2	猫	9.5	9.9
3	狗	34.0	198.0

在Pandas2中,命名聚合支持中文变量名,不过在平时的代码书写中,建议还是使用英文变量名

```
animals.groupby('品种').agg(
最低 = pd.NamedAgg(column='身高',aggfunc='min'),
最高 = pd.NamedAgg(column='身高',aggfunc='max'),
平均体重 = pd.NamedAgg(column='体重',aggfunc=np.mean)
```

	最低	最高	平均体重
品种			
狗	6.0	34.0	102.75
猫	9.1	9.5	8.90

上面的写法看起来还是有点繁琐,我们可以使用更简单的写法,只需传递一个Tuple就可以了,在Tuple的第一个元素是指定列,第二个元素是聚合函数,具体如下所示:

```
animals.groupby('品种').agg(
最低 = ('身高',min),
最高 = ('身高',max),
平均体重 = ('体重',np.mean)
)
```

	最低	最高	平均体重
品种			
狗	6.0	34.0	102.75
猫	9.1	9.5	8.90

5.2 Groupby聚合支持多个lambda函数

以 list 方式向 agg() 函数传递多个 lambda 函数

	<lambda_0></lambda_0>	<lambda_1></lambda_1>
品种		
狗	6.0	34.0
猫	9.1	9.5

	身高		体重	
	<lambda_0> <lambda_1></lambda_1></lambda_0>		<lambda_0></lambda_0>	<lambda_1></lambda_1>
品种				

, , ,				
狗	-28.0	40.0	-190.5	205.5
猫	-0.4	18.6	-2.0	17.8

这个功能也有个小遗憾,多 lambda 函数的输出没有像命名聚合那样可以自定义命名,还要后面手动修改,有些不方便

5.3 优化了MultiIndex显示输出

MultiIndex 输出的每行数据以 Tuple 显示,且垂直对齐,这样一来,MultiIndex 的结构显示的更清晰了。

```
pd.MultiIndex.from_product([['a','abc'],range(500)])
```

```
MultiIndex([( 'a',
                      0),
              'a',
                      1),
              'a',
                      2),
            (
              'a',
                      3),
              'a',
            (
                      4),
            (
              'a',
                      5),
            (
              'a',
                     6),
            ( 'a',
                     7),
              'a',
                     8),
            ( 'a',
                      9),
            ('abc', 490),
            ('abc', 491),
            ('abc', 492),
            ('abc', 493),
            ('abc', 494),
            ('abc', 495),
            ('abc', 496),
            ('abc', 497),
            ('abc', 498),
            ('abc', 499)],
           length=1000)
```

5.4 精简显示Series与DataFrame

超过 60 行的 Series 与 DataFrame,pandas 会默认最多只显示 60 行(见 display.max_rows 选项)。这种设置依然会占用大量垂直屏幕空间。因此,0.25 版引入了 display.min_rows 选项,默认只显示 10 行:

- 数据量小的 Series 与 DataFrame,显示 max_row 行数据,默认为 60 行,前 30 行 与后 30 行:
- 数据量大的 Series 与 DataFrame,如果数据量超过 max_rows, 只显示 min_rows 行,默认为 10 行,即前 5 行与后 5 行。

Jupyter Notebook目前还不支持这个设置

5.5 json_normalize()支持max_level

json_normalize() 支持按层级(level)读取,增加了 max_level 控制参数

	CreatedBy.Name	Lookup.TextField	Lookup.UserField	Image.a
0	User001	Some text	{'Id': 'ID001', 'Name': 'Name001'}	b

5.6 增加explode()方法,把list"炸"成行

Series 与 DataFrame 增加了 explode() 方法,把 list 形式的值转换为单独的行

```
[20] df = pd.DataFrame([{'变量1': 'a,b,c', '变量2': 1}, {'变量1': 'd,e,f', '变量2': 2}])
df
```

	变量1	变量2	
0	a,b,c	1	
1	d,e,f	2	

df.assign(变量1=df.变量1.str.split(',')).explode('变量1')

	变量1	变量2
0	a	1
0	b	1
0	С	1
1	d	2
1	е	2
1	f	2

5.7 SparseDataFrame已废弃

0.25 以前专门有 SparseDataFrame(),生成稀疏矩阵,0.25 以后,这个函数被废弃了,改成 pd.DataFrame 里的 pd.SparseArray()

pd.DataFrame({"A":pd.SparseArray([0,1])})

	A
0	0
1	1

5.8 Groupby.apply的修改

对 DataFrame Groupby 后,Groupby.apply 对每组只处理一次

```
[23] df = pd.DataFrame({'a':['x','y'],'b':[1,2]})
def func(group):
```

```
print(group.name)
    return group

df.groupby('a').apply(func)
```

X		
У		
	a	b
0	Х	1
1	У	2

5.9 Query()支持列名空格

上面的 data 示例 DataFrame的列名是有空格的,现在用反引号(`)括住列名,就可以直接查询了

[31] data.query('`年 龄` < 19')

	姓名	城市	年龄	爱好	财务状况
0	张三	北京	18	NaN	NaN

Г