Quotient spaces

2016-04-12 11:00

Definition (Quotient map)

Let X, Y be topological spaces and $p: X \to Y$ a surjective map. Then p is called a quotient map if $U \subseteq Y$ is open if and only if $p^{-1}(U)$ is open in X.

Definition (Quotient map)

Let X, Y be topological spaces and $p: X \to Y$ a surjective map. Then p is called a quotient map if $U \subseteq Y$ is open if and only if $p^{-1}(U)$ is open in X.

Definition (Quotient map)

Let X, Y be topological spaces and $p: X \to Y$ a surjective map. Then p is called a quotient map if $U \subseteq Y$ is open if and only if $p^{-1}(U)$ is open in X.

Remarks

• p is a quotient map if and only if p is surjective and $p^{-1}(A)$ is closed in X if and only if $A \subseteq Y$ closed.

Definition (Quotient map)

Let X, Y be topological spaces and $p: X \to Y$ a surjective map. Then p is called a quotient map if $U \subseteq Y$ is open if and only if $p^{-1}(U)$ is open in X.

- p is a quotient map if and only if p is surjective and $p^{-1}(A)$ is closed in X if and only if $A \subseteq Y$ closed.
- Maps which are open, continuous and surjective are quotient maps.

Definition (Quotient map)

Let X, Y be topological spaces and $p: X \to Y$ a surjective map. Then p is called a quotient map if $U \subseteq Y$ is open if and only if $p^{-1}(U)$ is open in X.

- p is a quotient map if and only if p is surjective and $p^{-1}(A)$ is closed in X if and only if $A \subseteq Y$ closed.
- Maps which are open, continuous and surjective are quotient maps.
- Maps which are closed, continuous and surjective are quotient maps.

Saturated subsets

Definition (Fiber)

Let $p: X \to Y$ be a *surjective* map between sets and $y \in Y$. The inverse image set

$$p^{-1}(\{y\}) = \{x \in X \mid p(x) = y\}$$

will be denoted as $p^{-1}(y)$ and referred to as the fiber of y.

Saturated subsets

Definition (Fiber)

Let $p: X \to Y$ be a *surjective* map between sets and $y \in Y$. The inverse image set

$$p^{-1}(\{y\}) = \{x \in X \mid p(x) = y\}$$

will be denoted as $p^{-1}(y)$ and referred to as the fiber of y.

Definition (Saturated set)

Let $p: X \to Y$ be a *surjective* map between sets. We say that $A \subseteq X$ is saturated (with respect to p) if $A \cap p^{-1}(y) \neq \emptyset$ implies $p^{-1}(y) \subseteq A$

• A is saturated if and only if $A = p^{-1}(p(A))$.

- A is saturated if and only if $A = p^{-1}(p(A))$.
- If $U \subseteq Y$, then $p^{-1}(U)$ is saturated.

- A is saturated if and only if $A = p^{-1}(p(A))$.
- If $U \subseteq Y$, then $p^{-1}(U)$ is saturated.
- p is a quotient map if and only if p is surjective, continuous, and A saturated and open implies p(A) open.

- A is saturated if and only if $A = p^{-1}(p(A))$.
- If $U \subseteq Y$, then $p^{-1}(U)$ is saturated.
- p is a quotient map if and only if p is surjective, continuous, and A saturated and open implies p(A) open.
- p is a quotient map if and only if p is surjective, continuous, and A saturated and closed implies p(A) closed.

Quotient topology

Quotient topology

Let X be a space, A a set, and $p: X \to A$ a surjective map. Then there is exactly one topology on A that makes p a quotient map, such topology is called quotient topology.

Quotient topology

Quotient topology

Let X be a space, A a set, and $p: X \to A$ a surjective map. Then there is exactly one topology on A that makes p a quotient map, such topology is called quotient topology.

Remark

One must check that:

$$\tau = \{ U \subseteq A \mid p^{-1}(U) \text{ is open in } X \}$$

is a topology on A.

Partitions

Definition (Partition)

Let X be a set. A partition \tilde{X} of X is a collection of nonempty disjoint subsets of X with union X

Partitions

Definition (Partition)

Let X be a set. A partition \tilde{X} of X is a collection of nonempty disjoint subsets of X with union X

Quotient space

Let X be a topological space, \tilde{X} be a partition of X, and $p\colon X\to \tilde{X}$ the natural surjection. If we give \tilde{X} the quotient topology induced by p, the space \tilde{X} is called a quotient space of X

If $p: X \to Y$ is a quotient map and $A \subseteq X$ is a subspace, it does not necessarily follow that the restriction of $p: A \to p(A)$ is a quotient map. However we have:

If $p: X \to Y$ is a quotient map and $A \subseteq X$ is a subspace, it does not necessarily follow that the restriction of $p: A \to p(A)$ is a quotient map. However we have:

Theorem (Quotients and subspaces)

Let $p: X \to Y$ be a quotient map and $A \subseteq X$ a subspace, that is saturated with respect to p, and let $q: A \to p(A)$ the restriction of p. Then:

If $p: X \to Y$ is a quotient map and $A \subseteq X$ is a subspace, it does not necessarily follow that the restriction of $p: A \to p(A)$ is a quotient map. However we have:

Theorem (Quotients and subspaces)

Let $p: X \to Y$ be a quotient map and $A \subseteq X$ a subspace, that is saturated with respect to p, and let $q: A \to p(A)$ the restriction of p. Then:

• if A is open or closed, then q is a quotient map,

If $p: X \to Y$ is a quotient map and $A \subseteq X$ is a subspace, it does not necessarily follow that the restriction of $p: A \to p(A)$ is a quotient map. However we have:

Theorem (Quotients and subspaces)

Let $p: X \to Y$ be a quotient map and $A \subseteq X$ a subspace, that is saturated with respect to p, and let $q: A \to p(A)$ the restriction of p. Then:

- if A is open or closed, then q is a quotient map,
- if p is open or closed, then q is a quotient map.

Proof

We verify the following:

$$q^{-1}(V) = p^{-1}(V)$$
 if $V \subseteq p(A)$,
 $p(U \cap A) = p(U) \cap p(A)$ if $U \subseteq X$.

Quotients and compositions

Theorem

Composition of quotient maps is a quotient map.

Fundamental theorem

Theorem (Fundamental theorem)

Let $p: X \to Y$ be a quotient map. Let Z be a space, and $g: X \to Z$ a continuous map that is constant on each fiber of p, that is p(x) = p(x') implies g(x) = g(x'). Then g induces a continuous map $\overline{g}: Y \to Z$ such that $\overline{g} \circ p = g$. The function \overline{g} is unique with the property that $\overline{g} \circ p = g$

Fundamental theorem

Theorem (Fundamental theorem, for equivalence relations)

Let X be a space, and \sim an equivalence relation on X. Let $g\colon X\to Z$ be a continuous map such that g(x)=g(x') whenever $x\sim x'$. Then, if we denote by $p\colon X\to X/\sim$ the quotient map, the map g induces a unique continuous map $\overline{g}\colon X/\sim \to Z$ such that $\overline{g}\circ p=g$

