Trees and Atmospheric Chemistry

Eloïse A Marais

7 November 2017

EES, St. Andrews

Biosphere-Atmosphere Interactions

BVOCs: Biogenic volatile organic compounds

Biogenic Emissions of Isoprene

Most isoprene is emitted by tropical trees

[Guenther et al., 2012]

Factors that affect emissions:

plant type, temperature, light, soil moisture, CO₂, plant physiology

Isoprene Impacts Air Quality

Air pollution (mostly fine aerosols) is detrimental to health

Isoprene also affects climate:

ozone is a greenhouse gas and aerosols absorb and scatter radiation

Isoprene Impacts Air Quality

Air pollution (mostly fine aerosols) is detrimental to health

Isoprene also affects climate:

ozone is a greenhouse gas and aerosols absorb and scatter radiation

Isoprene Impacts Air Quality

Air pollution (mostly fine aerosols) is detrimental to health

<u>lsoprene also affects climate:</u>

ozone is a greenhouse gas and aerosols absorb and scatter radiation

Top-down Estimate of Isoprene Emissions

Isoprene
$$\xrightarrow{OH}$$
 HCHO $\xrightarrow{photolysis}$ CO, HO₂

Use a chemical transport model to convert HCHO columns to isoprene emissions

[Palmer et al., 2003; Millet et al., 2008]

Isolate Biogenic Formaldehyde (HCHO)

[Marais et al., ACP, 2012]

Convert HCHO to Isoprene Emissions

Yields of HCHO from isoprene depend on ambient concentrations of NO_x

Evaluate State-of-Science Emission Inventory

Large regional differences between satellite and inventory emissions

Maps: Annual means

[Marais et al., ACP, 2012]

Values Inset: Annual total isoprene emitted

Implication: Impacts ability to determine contribution of isoprene to local and regional air quality and climate

Isoprene Organic Aerosol Formation

Organic aerosol (OA) is ubiquitous in the atmosphere

Sulfate Nitrate Ammonium Organics (OA)

Updated Mechanism for Aerosol Formation

Couple isoprene secondary organic aerosol (SOA) mechanism to detailed gas-phase chemistry in the GEOS-Chem model

Anthropogenic sulfate influences formation of isoprene SOA

Extensive Model Validation in Southeast US

Reproduce mean isoprene SOA at surface site in Southeast US

Consistent spatial variability in the Southeast US boundary layer

Mean isoprene SOA:

Observations:

 $1.4 \pm 1.4 \, \mu g \, sm^{-3}$

Model:

 $1.3 \pm 1.2 \, \mu g \, sm^{-3}$

[Marais et al., ACP, 2016]

Model Used to Inform Future Air Quality

Test the effect of future SO₂ and NO_x emission controls on isoprene SOA

Changes in sulfate, aerosol pH, and isoprene SOA

Near-equivalent decrease in sulfate and isoprene SOA

Policy implication: Dual benefit from targeting SO₂ sources

Supplementary Slides

Isoprene Emissions are Poorly Constrained

Majority of isoprene emission models rely on the same algorithm

Few observations in key locations (Africa) to constrain models

[Guenther et al., 2006]

Satellite observations provide global coverage of the isoprene oxidation product formaldehyde (HCHO)

Top-down Estimate of Isoprene Emissions

Isoprene
$$\xrightarrow{OH}$$
 HCHO $\xrightarrow{\text{photolysis}}$ CO, HO₂

Satellite observations of HCHO over Africa

[Data source: Harvard-Smithsonian retrieval group]

Filter out biomass burning and anthropogenic contribution

Convert biogenic HCHO columns to isoprene emissions

Ground-Based Observations to Arbitrate

Satellite-derived emissions more consistent with flux measurements than a state-of-the-science emission inventory

Flux measurement locations

Tower sites: 1 and 4

Aircraft: 2 and 3

Comparison of isoprene fluxes

