

- 1) HARDECT remouse your:
- 2) ognocoopament yrun: 24 u L 5; L3 u L6
- 3) cootherobennou ynou: ~1 u L 5; L 4 u L 8; L 2 u L 6; L 3 u L 7

Теорема

Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.

Доказательство

Пусть при пересечении прямых а и в секущей АВ накрест лежащие углы равны: $\angle 1 = \angle 2$ (рис. 101, a).

Докажем, что $a \parallel b$. Если углы 1 и 2 прямые (рис. 101, б), то прямые a и b перпендикулярны к прямой АВ и, следовательно, параллельны.

Рассмотрим случай, когда углы 1 и 2 не прямые.

Из середины O отрезка AB проведем Рис. 101 перпендикуляр ОН к прямой а (рис. 101, в). На прямой b от точки B отложим отрезок BH,, равный отрезку АН, как показано на рисунке 101, e, и проведем отрезок OH_1 . Треугольники ОНА и ОН,В равны по двум сторонам и углу между ними (AO = BO, AH = BH, $\angle 1$ = $\angle 2$), поэтому $\angle 3$ = $\angle 4$ и $\angle 5$ = $\angle 6$. Из равенства $\angle 3 = \angle 4$ следует, что точка H_1 лежит на продолжении луча ОН, т. е. точки Н, О и H, лежат на одной прямой, а из равенства $\angle 5 = \angle 6$ следует, что угол 6 — прямой (так как угол 5 — прямой). Итак, прямые а и в перпендикулярны к прямой НН,, поэтому они параллельны. Теорема доказана.

Korgor eems repress, purisse repress, to manual cypusts o norpounements

Теорема

Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

Доказательство

Пусть при пересечении прямых a и b секущей c соответственные углы равны, например $\angle 1 = \angle 2$ (рис. 102).

Так как углы 2 и 3 — вертикальные, то $\angle 2 = \angle 3$. Из этих двух равенств следует, что $\angle 1 = \angle 3$. Но углы 1 и 3 — накрест лежащие, поэтому прямые a и b параллельны. Теорема доказана.

Рис. 102

$$L1 = L2$$

 $L2 = L3(\tau.n. lep \tauuk)$
 $L1 = L3(\tau.k. H.n)$
 $ou/16$

Теорема

Если при пересечении двух прямых секущей сумма односторонних углов равна 180°, то прямые параллельны.

Доказательство

Пусть при пересечении прямых a и b секущей c сумма односторонних углов равна 180°, например $\angle 1+\angle 4=180^\circ$ (см. рис. 102).

Так как углы 3 и 4 — смежные, то $\angle 3+\angle 4=180^\circ$. Из этих двух равенств следует, что накрест лежащие углы 1 и 3 равны, поэтому прямые a и b параллельны. Теорема доказана.

Рис. 102

1. На рисунке прямые a и b параллельны, угол 1 равен 28^0 . Найдите угол 2.

На рисунке прямые a и b параллельны, угол 1 равен 38. Найдите угол 2.

На рисунке прямые m и n параллельны, угол 1 равен 75. Найдите угол 2.

5. На рисунке прямые a и b параллельны, $\angle 1 + \angle 2 = 250$. Найдите угол 3.

$$21 \text{ u } 12 - \cos 20$$
. => $21 = 22$
 $21 + 22 = 250$
 $21 = 125^{\circ}$
 $22 = 125^{\circ}$