UNIVERSIDADE DE SÃO PAULO – USP INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO DEPARTAMENTO DE SISTEMAS DE COMPUTAÇÃO

SSC0143 - Programação Concorrente Projeto 1 - Modelagem Gauss-Jordan

Adams Vietro Codignotto da Silva - 6791943 Jhonathan Roberto Viudes - 8532001 Gustavo Henrique Oliveira Aguiar - 8936912

Tabela de Conteúdo

1	Algoritmo de Eliminação de Gauss-Jordan	2
2	Paralelização	2
3	Particionamento	2
4	Comunicação	2
5	Aglomeração	3
6	Mapeamento	3

1 Algoritmo de Eliminação de Gauss-Jordan

O método de Gauss-Jordan encontra a matriz inversa de um dado sistema linear, encontrando assim a solução do mesmo. Para facilitar o cálculo e o algoritmo, é utilizado a forma com a matriz estendida, onde na matriz A inserimos uma matriz identidade I de tamanho n, obtendo:

$$[C] = [A|I]$$

Aplicando as transformações na matriz C e as mesmas transformações nas outras matrizes, transformamos a matriz C numa matriz identidade coluna por coluna.

2 Paralelização

Podemos separar cada passo da transformação em 2 passos.

No primeiro passo, convertemos o elemento a_{ii} em 1 dividindo a linha R_i por a_{ii} , seguindo a operação:

$$R_i = \frac{R_i}{a_{ii}}$$

Se a_{ii} é zero, somamos a linha com qualquer outra linha que não possui um elemento zero na mesma posição. No segundo passo, reduzimos todos os outros elementos da coluna j-ésima para 0 aplicando a operação sobre todas as linhas i exceto a j-ésima, da seguinte forma:

$$R_i = R_i - R_j * a_{ij}$$

Após a transformação da primeira coluna, obtemos a matriz C como:

3 Particionamento

Observando o resultado da primeira iteração (execução do passo 1 e passo 2) podemos notar que a partição por coluna é a mais adequada para o problema.

No primeiro passo, como há apenas uma dependência com o pivô, é possível granular mais o particionamento para um bloco por elemento. Porém para evitar comunicação excessiva, é preferível executar este passo no mesmo bloco do passo 2.

1	a_{12}/a_{11}	a_{13}/a_{11}	 	$1/a_{11}$	0	0	 0
0	$a_{22} - a_{21} \times a_{12}/a_{11}$	$a_{23} - a_{21} \times a_{13}/a_{11}$	 	$-a_{21}/a_{11}$	1	0	 0
0	$a_{32} - a_{31} \times a_{12}/a_{11}$	$a_{33} - a_{31} \times a_{13}/a_{11}$	 	$-a_{31}/a_{11}$	0	1	 0
:	<u>:</u>	<u>:</u>	 :	:		:	 :
0	$a_{n2} - a_{n1} \times a_{12}/a_{11}$	$a_{n3} - a_{n1} \times a_{13}/a_{11}$	 	$-a_{n1}/a_{11}$	0	0	 1

4 Comunicação

A comunicação se dá na necessidade de saber o resultado da coluna K - 1, para poder processar a coluna K na próxima iteração.

5 Aglomeração

6 Mapeamento

