

五、智能工廠推動進度報告

本部於2021年起推動生產設備由自動化往數位工廠演進,將現有營運管理及生產管理,導入雲端運算、行動裝置、大數據分析及人工智慧等技術,朝向模擬工廠與整廠優化及營運數位化的目標改善。

模擬工廠與整廠優化

資料數位化

即時數據資料庫現場輪班管理數位化

製程優化

製程單元預測模組 製程跨單元整合優化

設備管理

設備保全/電氣SCADA系統 設備性能智能監診模組

製程模擬

製程質能平衡試算 試算製程/設備優化指標

廢水處理優化

曝氣槽菌相影像辨識 廢水生物處理整合優化

工廠安全

作業人員安全行為監控 管線腐蝕、洩漏監控

營運數位化

產銷管理

產、銷、庫存協調數位化 產品損益預估

績效管理

產品單位利益彙總分析 產品 KPI競爭力績效分析

營業管理

內/外銷銷售及交運狀態產品價格走勢及流向

五、智能工廠推動進度報告

模擬工廠與整廠優化,主要是將工廠各單元及設備的運轉效率可視化,並提供最佳化操作建議,以達到整廠即時優化;另可將現有被動式異常管理模式,發展為具備預測、預警及優化功能的主動管理模式,強化產品競爭力以達永續經營目標。

模擬工廠與整廠優化開發共分為五大部分,預定2023年12月完成,進度 彙總如下:

		11 - 40 lat lies	SM廠(麥寮)		SM廠(海豐)		合成酚廠		苯酚廠(寧波)		合計
		化二部模擬工廠	已完成 /總數	完成日 (預完日)	已完成 /總數	完成日 (預完日)	已完成/總數	完成日 (預完日)	已完成 /總數	完成日 (預完日)	已完成 /總數
	1	建立全廠即時數據資料庫	10, 957/ 10, 957	2012. 1	8, 889/ 8, 889	2012. 1	7, 430/ 7, 430	2012. 1	8, 595/ 8, 595	2020.11	35, 871/ 35, 871
	2	全廠製程模擬模型	13/30	(2023. 12)	5/14	(2023. 7)	12/21	(2022. 12)	4/11	(2022. 12)	34/76
	3	製程單元優化預測模組	6/17	(2023. 6)	4/13	(2023. 12)	8/17	(2023. 6)	2/7	(2023. 10)	20/54
	4	跨單元整合優化預測模組	0/1	(2023. 12)	0/1	(2023. 12)	1/3	(2023. 12)	0/1	(2023. 3)	1/6
	5	設備性能及預警模組	56/96	(2022.6)	49/77	(2022.6)	71/124	(2022.6)	5/26	(2022. 12)	181/323

五、智能工廠推動進度報告

針對化二部模擬工廠第三項開發「製程單元優化預測模組」案件彙總報告

項次	項目	內容摘要	效益	效益 (千元/年)	完成日
1	SM廠(麥寮)多效蒸 餾系統優化模組	能源優化,降低蒸汽耗用。	蒸汽: 2.3噸/時	18,955	2021.1.29
2	SM廠 (海豐)脫氫反 應系統優化模組	提升SM產率,以降低 蒸餾區蒸汽耗用。	蒸汽: 3.2噸/時	30,870	2019.08.05
3	SM廠 (海豐) 汽提塔 優化模組	能源優化,降低蒸汽耗用。	蒸汽: 2.0噸/時	16,112	2020.10.25
4	合成酚廠裂鍵反應 AMS產率優化模組	建立優化應用平台,AMS 產率由81.4提升至84.2%。	原料回收: 817噸/年	29,724	2020.05.31
5	合成酚廠氧化塔 出口產率優化模組	預測氧化塔出口CHP濃度, 產率由92.8提升至93.3%。	原料回收: 3,688噸/年	134,175	2021.11.30
6	已完成:20案 其他 進行中:13案 待規劃:21案			112,008	(2023.12.30)
		合計共54案		341,844	

- 1.乙苯塔為蒸餾區能耗最大的蒸餾塔,因此SM廠(麥寮)於2020年5月將乙苯塔整合做多效蒸餾(MED)改善,蒸汽總用量由61.7噸/時降至46.2噸/時,減少15.5噸/時,降低了25%能耗。
- 2.經檢討操作上還有優化的空間,為了更進一步降低乙苯塔的能耗, 擬導入AI人工智慧技術,建立MED的AI預測模組,來優化操作, 減少蒸汽使用。

定義問題與目標 資料盤點與清理 數據探索分析 模組開發 線上應用

- 1.SM 廠 (麥寮)多效蒸餾改善 (MED),主要是利用高壓乙苯塔 (C-281/C-282) 塔頂製程流出物的潛熱作為低壓乙苯塔 (C-202)的再沸器熱源,節省蒸汽使用。
- 2.多效蒸餾的三塔操作受到6個入料條件及9個控制變數影響,各塔之間的操作相互連動而不易調整,為兼顧品質及能耗,故導入AI技術優化操作,在確保品質合格(塔頂:苯乙烯 < 3%、塔底:乙苯< 450ppm),得到最低蒸汽耗用量的操作條件。

入料條件(6個): SM 1入料流量 (x_1) 、SM 2入料流量 (x_2) 、SM1入料乙苯組成 (x_6) 、SM1入料苯乙烯組成 (x_7) 、SM2入料乙苯組成 (x_8) 、SM2入料苯乙烯組成 (x_9)

控制變數(9個):C281入料流量 (x_3) 、C202入料流量 (x_4) 、C282入料流量 (x_5) 、C281塔頂壓力 (x_{10}) 、

C202塔頂壓力 (x_{11}) 、C282塔頂壓力 (x_{12}) 、C281回流流量 (x_{13}) 、C202回流流量 (x_{14}) 、

C282回流流量(x₁₅)

定義問題與目標 資料盤點與清理 數據探索分析

模組開發

線上應用

C282塔底

C282塔頂

- 1. 收集MED系統2020/8/17~2020/12/10, DCS操作數據165,600筆(1筆/分)及品管化驗數據345筆(3筆/天), 經資料對齊及刪除離群值後,剩下237筆。
- 2. 由於製程長期以100%產能穩定操作生產,所收集的現場數據變異範圍小,會 等致AI模組的適用廣度及準確度不足。
- 3. 為提高訓練資料的廣度與準確度,以具製程領域專業的工程師根據文獻、設計資料,使用製程模擬軟體(Aspen+)建置並擬合適用SM廠(麥寮)的MED系統穩態理論模型,將15個特徵變數在設計操作範圍內,排列出不同的操作變數組合,產出62,208筆廣域且具有物理意義的大數據。

C281 塔頂

C281塔底

Jan Roll City del.	模擬範圍				
控制變數	min	max			
I_SM1_Feed_Flow(kg/h)	48, 000	54, 500			
I_SM2_Feed_Flow(kg/h)	70, 000	76, 000			
I_C281_Feed_Flow(kg/h)	26, 784	30, 956			
•	•	•			
_C282_Top_Press(kg/cm ² *g)	-0. 612	-0. 571			

製程數據模擬

乙苯濃度 模擬結果 苯乙烯 乙苯濃度 苯乙烯 乙苯濃度 苯乙烯 濃度(%) 濃度(%) 濃度(%) (ppm) (ppm) (ppm) 15.13 1.38 322 Out 1 810 2.9 97 Out 2 6, 48 324 3.6 13.8 114 472 Out 3 2.2 473 8.8 262 9.8 381 Out 62208 0.31 622 2.6 837 0.9 532

C202塔頂

C202塔底

產出62,208筆廣域具物理意義的大數據

設計的控制組合&操作範圍製程專業篩選15個特徵變數

- 1.利用ASPEN +模型產出的大量模擬數據,透過脊回歸(Ridge)演算法來建置初步的AI模型。
- 2.整合操作/分析數據,透過遷移學習與殘差補償修正理論與實際的偏差,使模型符合現況。
- 3.以工廠運轉數據丟入訓練模型中,經驗證符合驗收指標後導入線上應用。
- 4. 最後開發出屬於SM 廠 (麥寮)的M ED 節能優化模組,提供推薦操作指引。

定義問題與目標 資料盤點與清理 數據探索分析 模組開發 線上應用

- 1.A I預測模型根據入料條件,在控制變數的操作範圍內,試算並列出所有品質合格的操作組合。
- 2.再由MED節能優化模組進行篩選,找到蒸汽使用量最低的組合條件,呈現於介面(Dashboard)做為推薦值,指引盤控進行製程優化調整。

現況值

優化目標值

現況預測值

優化 目標値

現況預測值

現況值

優化目標值

現況預測值

2022-03-09 12:00:00

2022-03-09 12:00:00

2022-03-09 12:00:00

案例:智能工廠-MED節能優化模組

線上應用 定義問題與目標 資料盤點與清理 數據探索分析 模組開發

MED節能優化操作介面已於2020年12月完成上線應用,如下圖:

2022-03-09 12:00:00

2. 顯示模組的入料條件

4. 顯示現況值及優化目標值

模組效益

利用Dashboard的推薦,於2020年12月中開始調整,並以12月初的數據作為比較基準

14 1/4 = 1 = 1 = 1 = 1								V 12 V 24 C 1/2	7-11		
	操作參數								目標結果		
驗證	C281	C202	C282	C281	C202	C282	C281	C202	C282	C281	C282
測試	入料量	入料量	入料量	塔頂壓力	塔頂壓力	塔頂壓力	回流量	回流量	回流量	蒸汽用量	蒸汽用量
	(M^3/H)	(M^3/H)	(M^3/H)	(kg/cm^2)	(kg/cm^2)	(kg/cm^2)	(M^3/H)	(M^3/H)	(M^3/H)	(kg/H)	(kg/H)
調整前	27, 998	58, 995	35, 315	-0.657	-0. 930	-0. 617	101, 563	229, 824	143, 824	18, 802	27, 436
模組推薦	28, 129	58, 826	34, 895	-0. 619	-0. 921	-0. 622	100, 246	214, 781	140, 829	17, 693	26, 267
調整後	27, 997	58. 663	35, 094	-0. 618	-0. 922	-0. 617	100, 658	214, 323	141, 117	17, 891	26, 082

由模組推薦的最佳操作建議,截至2022/3/9,經調整後蒸汽用量由46.2噸/時降至43.9噸/時,減少蒸汽耗用2.3噸/時,年效益18,955千元。