Лабораторная работа 5.

О сравнении качества оценок.

Для трех распределений $X \sim N(a,\sigma)$, $X \sim U\left(a-\frac{\delta}{2},a+\frac{\delta}{2}\right)$ и распределения Лапласа или двойного показательного — "L(a,u)= $a+Exp_{\lambda}-Exp_{\lambda}$, $\lambda=\frac{1}{u}$ " (суммируемые показательные распределения независимы). Сравнить следующие оценки параметра а — математического ожидания и медианы всех распределений, X_n - выборочного среднего, med_n - выборочной медианы и $\frac{x_{(1)}+x_{(n)}}{2}$ — полусуммы минимума и максимума вариационного ряда. Все оценки не смещены. Сравнивать оценки нужно с точки зрения квадратичного риска (т. е. для несмещенных оценок одномерного параметра — дисперсии оценки). При n=100 — объем выборки, m=100 — количество выборок, построить 100 оценок каждого вида и сравнить их выборочные среднеквадратичные отклонения, повторить при n=10000, m=100. Сравнить с теоретическими среднеквадратичными отклонениями. Результат — 6 таблиц и вывод о том какая из оценок с точки зрения квадратичного риска является наилучшей.

X~N(0,1), n=100, m=100.	X_n	med_n	$(x_{(1)} + x_{(n)})/2$
σ - теоретическое	0.1	0.1253	0.2947
σ - практическое	0.091432	0.1088	0.3475

X~N(0,1), n=10000, m=100.	$\frac{X_n}{}$	med_n	$(x_{(1)} + x_{(n)})/2$
σ - теоретическое	0.01	0.012533	0.2084
σ - практическое	0.00878	0.01184	0.2259

$X \sim U(-1, 1)$, n=100, m=100.	X_n	med_n	$(x_{(1)} + x_{(n)})/2$
σ - теоретическое	0.057735	0.1	0.014142
σ - практическое	0.050864	0.090618	0.010953

$X \sim U(-1, 1)$, n=10000, m=100.	$\frac{X_n}{}$	med_n	$(x_{(1)} + x_{(n)})/2$
σ – теоретическое	0.0057735	0.01	0.00014142
σ - практическое	0.0054435	0.0098436	0.00017334

X~L(0,1), n=100, m=100.	X_n	med_n	$(x_{(1)} + x_{(n)})/2$
σ - теоретическое	0.1414	0.1	0.9487
σ - практическое	0.1490	0.1157	0.8914

X~L(0,1), n=10000, m=100.	X_n	med_n	$(x_{(1)} + x_{(n)})/2$
σ - теоретическое	0.014142	0.01	0.9487
σ - практическое	0.014107	0.0097093	0.7645

Вывод:

Наилучшая оценка для нормального распределения – полу сумма минимума и максимума.

Наилучшая оценка для равномерного распределения – медиана.

Наилучшая оценка для нормального распределения – среднее.