

Codage et Transmission

- Pour transformer les informations en suites binaires (codage), on utilise des codes, qui font correspondre à chaque caractère une suite précise d'éléments binaires
 - Plusieurs codes ont été normalisés pour faciliter les échanges entre équipements informatiques
 - Code ASCII (7 bits)→128 caractères disponibles.
 - Unicode (16 bits) \rightarrow permet de prendre en compte toutes les langues du monde.
 - ...etc.
- Après l'étape du codage intervient celle de la transmission proprement dite, c'est-à-dire l'envoi des suites binaires de caractères vers l'utilisateur final

3

M1 Info - Dr Saadbouh O Cheikh El Mehdi

La couche physique

Transmission des informations

- Problème
 - Comment l'émetteur peut-il envoyer un signal que le récepteur reconnaîtra comme étant '0' ou '1' ??!
- Solutions
 - Transmission en bande de base
 - Transmission à large bande (par modulation)

4

Transmission en bande de base

- Les bits sont directement représentés par des valeurs de tensions
- Simplicité du codage mais distance limitée (moins de 5 Km)
 - Principalement réservé aux réseaux locaux
 - On peut augmenter un peu les distances grâce à l'utilisation de répéteurs (Les répéteurs reforment et régénèrent le signal)
- Plusieurs codages utilisés
 - Code tout ou rien
 - Code NRZ
 - Code bipolaire
 - ...etc.

5

M1 Info - Dr Saadbouh O Cheikh El Mehdi

La couche physique Exemples de codage en bande de base Code tout ou rien: Courant nul=0 Courant positif=1. Code NRZ: « difficulté d'obtenir un courant nul » Courant négatif = 0 Courant positif= 1 Code bipolaire: «difficulté de maintenir des courants continus» Courant alternativement positif ou négatif = 1

Exemples de codage en bande de base

Code RZ:

- Courant nul = 0
- Courant positif puis nul = 1

Code Manchester (biphase) :

- Courant négatif puis positif = 0
- Courant positif puis négatif = 1

7

M1 Info - Dr Saadbouh O Cheikh El Mehdi

La couche physique

Transmission en bande de base

Problèmes des Signaux en bande de base:

- Dégradation rapide au fur et à mesure de la distance parcourue.
- Si le signal n'est pas régénéré très souvent, il prend une forme quelconque que le récepteur est incapable de comprendre.

Solution (Modulation)

- Si distance (>5 km) on utilise plutôt un signal sous forme sinusoïdal
 - Ce type de signal même affaibli, peut très bien être décodé par le récepteur

8

Transmission à large bande (Modulation)

- Un matériel intermédiaire (Modem) est nécessaire pour moduler le signal sous une forme sinusoïdale
- Le modem reçoit un signal en bande de base et le module, c'est-àdire lui attribue une forme analogique sinusoïdale.
 - Le fait de n'avoir plus de fronts montants ni descendants protège beaucoup mieux le signal des dégradations occasionnées par la distance parcourue
 - Le codage est alors appelé modulation et le décodage est nommé démodulation, d'où le nom de l'appareil **modem**.
- Trois types de modulation pour représenter des données
 - Modulation d'amplitude,
 - Modulation de fréquence,
 - Modulation de phase.

M1 Info - Dr Saadbouh O Cheikh El Mehdi

.

La couche Liaison de données

- Encapsule chaque datagrame (récupéré de la couche réseau) dans une (ou plusieurs) trame(s)
- Assure l'échange de trames entre deux entités adjacentes avec
 - Service sans connexion, sans accusé de réception
 - Si taux d'erreur faible notamment dans les réseaux locaux (ex : Ethernet)
 - Service avec connexion, avec accusé de réception
 - Fiable car les trames seront reçues dans l'ordre d'émission et une seule fois (ex : HDLC)
- Assure le contrôle de flux des trames
- Fournit les services nécessaires pour établir, maintenir et libérer une connexion (Le moment approprié pour utiliser le support de transmission physique « Arbitrage »)

10

La couche Liaison de données - Trame -

- Une trame est une suite de bits
- Selon le protocole, elle peut être de taille fixe ou variable (mais bornée)
 - X25.2, Ethernet : taille est variable
 - ATM: taille fixe (53 octets)
- Délimitation explicite ou implicite
 - Utilisation de fanion de début et de fin de trame
- La structure varie selon le protocole, mais toujours divisée en trois parties: en-tête, données et en-queue (terminaison)
 - L'en-tête et l'en-queue forment le PCI

11

M1 Info - Dr Saadbouh O Cheikh El Mehdi

La couche Liaison de données

- Format général d'une Trame -

	En-tête				<u>Données</u>			
\								
	Début	Adresses	Туре	Contrôle	<u>Données</u>	FCS	Fin	

- Début / Fin = indicateur de début et de fin de trame
- Adresses= adresse destination et/ou adresse source
- Type= type de données transportées
- Bits de contrôle=drapeau pour différentes options
- Données = un paquet de données de la couche réseau (couche 3)
- FCS «Frame Check Sequence»=pour détecter les erreurs de transmission

12

- Transmission fiable -

- Comment savoir que le récepteur a correctement reçu toutes les trames émises, dans le bon ordre ?
- Diverses techniques :
 - Acquittements
 - Gestion des timers
 - Numérotation des trames
- Chaque trame envoyée doit être acquittée par le récepteur
- L'acquittement peut être positif (ACK) ou négatif (NACK)

La couche Liaison de données

- Transmission fiable -

Problème 1

Solution:

- Armer un temporisateur T1 après l'envoi d'une trame d'information.
- Si T1 expire avant la réception d'un acquittement, l'émetteur renvoi la même trame d'information.

Problème 2

Solution : Numérotation de trames (identification).

14

- Transmission fiable -

Problème 3:

- Si chaque trame doit être acquittée par une trame spécifique et d'une manière individuelle l'efficacité de la liaison sera très faible.
- La plupart de temps les extrémités de la liaison seront en état d'attente d'acquittement.

Solution

- L'émetteur peut envoyer **w** trames sans avoir un acquittement
- Le récepteur peut acquitter par une seule trame un groupe de trames reçues.

15

M1 Info - Dr Saadbouh O Cheikh El Mehdi

La couche Liaison de données

- Exemple de protocoles: HDLC -

- HDLC: High Level Data Link Control (obsolète, mais reste un modèle pour bien comprendre toutes fonctionnalités de ce niveau)
- Protocole de niveau 2, normalisé en 1976
- Évidement, l'unité de transfert est la trame (Frame), car niveau 2
- Chaque trame est limitée par un fanion
- Le fanion est représenté par la séquence « 01111110 »
- 3 types de trames
 - Trame I: trame d'information (échange de données)
 - Trame S: trame de supervision (supervision de l'échange)
 - Trame U: trame non numéroté (supervision de la liaison)
- Le fanion de queue peut faire office de fanion de tête de la trame suivante

Format des trames HDLC

- Exemple de protocoles: HDLC -

- Problème: garantir l'unicité de fanion !?
- Solution:
 - A l'émission, insérer un «0» après chaque séquence de cinq «1» consécutifs
 - A la réception, enlever les « 0 » après les séquences de cinq «1» consécutifs
 - Les « 0 » insérés sont appelés bits de transparence (ou bits de bourrage)

Le champ « commande »

	bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6	bit 7
Trame I	0	Ns		P/F	Nr			
Trame S	1	0	S	S	P/F	Nr		
Trame U	1	1	U	U	P/F	U	U	U

17

M1 Info - Dr Saadbouh O Cheikh El Mehdi

La couche Liaison de données

- Exemple de protocoles: HDLC -

Les trames d'information:

Ns: Numéro de la trame d'information (3 bits - modulo 8)

Nr: Numéro de la prochaine trame d'information attendue (3 bits - modulo 8)

- acquitte toutes les trames de numéros strictement inférieurs à Nr
- la perte d'un acquittement peut ainsi être compensée par le prochain acquittement

Le bit P/F:

- On dit que le bit **P/F** est *positionné* s'il a la valeur 1.
- Il est appelé **P** dans une trame de commande, **F** dans une trame de réponse
- P=1: sollicite une réponse explicite du secondaire
- Réponse à P=1 par F=1: le secondaire répond par un acquittement
- Une station qui reçoit une trame de commande avec le bit P/F=1 doit répondre avec P/F=1

18

- Exemple de protocoles: HDLC -

Les trames de supervision

- RR Receive Ready: -00: Acquittement
 - Confirme la réception des trames de données de N° < Nr
 - Demande la transmission des trames suivantes
- RNR Receive Not Ready 10 : contrôle de flux
 - Confirme la réception des trames de données de N° < Nr
 - Interdit la transmission des trames suivantes
- **REJ** REJect- **01** : protection contre les erreurs
 - Confirme la réception des trames de données de N° < Nr
 - Demande la retransmission des trames de Nº >=Nr
- **SREJ S**elective **REJ**ect **11** : protection contre les erreurs
 - Confirme la réception des trames de données de N° < Nr
 - Demande la retransmission de la trame de Nº = Nr

19

M1 Info - Dr Saadbouh O Cheikh El Mehdi

La couche Liaison de données

- Exemple de protocoles: HDLC -

Trames de gestion

Trames non numérotées de commande

- SABM [11110]: Demande de connexion.
- UA [00110]: Trame de confirmation de connexion
- DISC [11010] : Libération de la connexion
- FRMR[11011]: Rejet de trames

20

- Sous couches -

La couche liaison de données a la particularité d'être divisée en 2 sous couches:

1. Media Access Control (MAC):

- Sert d'interface entre la partie logicielle contrôlant la liaison du système et la couche physique. 'Interface avec le matériel''
- Effectue l'adressage et l'encapsulation des données dans les trames
- Coordonne l'injection de données dans le medium (<u>Accès au medium</u>)
 - plusieurs protocoles (méthodes d'accès)

2. Logical Link Control (LLC):

 Permet de fiabiliser le protocole MAC par un contrôle d'erreurs et un contrôle de flux

21

La couche Liaison de données - Accès au medium -

Réseaux point à point :

- Deux noeuds seulement
- Exemples : PPP, HDLC, Frame Relay

Réseaux à multiples accès :

- Plusieurs nœuds
- Exemples: Ethernet, 802.11 (Wi-Fi), Frame Relay Multipoint

Adressage physique

- Dans le cas d'une liaison multipoint, il est nécessaire de disposer d'une adresse physique pour chaque machine
- Les réseaux Ethernet, Token Ring et FDDI utilisent le même type d'adressage : **l'adressage MAC**.
- Cette adresse (sur 48 bits) permet d'identifier de manière <u>unique</u> un nœud <u>dans le monde</u> (ipconfig –all)

22

- Méthodes d'Accès au medium -

Méthodes d'Accès

Dans le cas des LAN, deux méthodes sont habituellement utilisées :

- Non déterministes : méthodes de contrôle de contention (exemple Ethernet) :
 - Les machines surveillent le réseau pour trouver un créneau et émettre leurs trames
 - Si une collision est détectée, le processus recommence
- Déterministes : à l'aide d'un passage de jeton (Token Ring) :
 - La machine possédant le jeton peut émettre

23

M1 Info - Dr Saadbouh O Cheikh El Mehdi

La couche Liaison de données - Ethernet -

Généralités

- Conçu dans les années 1970 par Robert Meltcafe à Xerox
- Normalisé en 83 (Norme IEEE 802.3)
- Correspond aux couches 1 et 2 du modèle OSI !!
- Actuellement, la technologie LAN "dominante" grâce aux points suivants:
 - Première technologie LAN haut débit grand public
 - Les autres technologies sont sensiblement plus complexes
 - Usage d'un protocole entièrement décentralisé et simple (CSMA/CD)
 - Coût d'équipement beaucoup plus faible que les technologies concurrentes
- Technologies concurrentes :
 - Token Ring (IEEE 802.5)
 - FDDI (802.7)
 - ATM,
 - •...

24

Trame

L'interface émettrice encapsule le datagramme IP (ou un paquet d'un autre protocole de la couche réseau) dans une trame Ethernet

8 octets	6 octets	6 octets	2 octets	46 à 1500 octets	4 octets	
	Adresse	Adresse				ı
Préambule	destination	source	Type	Données	FCS	

Préambule:

Ce champ est codé sur 8 octets :

7 octets de « 10101010 »: pour synchroniser les horloges de l'émetteur et du récepteur

1 octet « 10101011 »: pour indiquer à la carte réceptrice le début de la trame

25

M1 Info - Dr Saadbouh O Cheikh El Mehdi

La couche Liaison de données - Ethernet -

Trame

Adresses:

- Indique les adresses source et destination
- Plusieurs types d'adresses :
 - Adresse unicast : adresse MAC d'un seul dispositif
 - Adresse broadcast (FF:FF:FF:FF:FF): tous les dispositifs
 - Adresse multicast : groupes spécifiques de dispositifs
- Si l'interface reçoit la trame ayant sa propre adresse comme destination, ou l'adresse de diffusion (broadcast), elle passe la trame au protocole de la couche réseau. sinon, l'interface abandonne la trame

Type: Indique au récepteur (couche Ethernet) a qui (couche réseau) remettre les données. Exemple : 0x0800 (IP) ; 0x0806 (ARP) ...etc.

Données:

Ce champ contient les données de taille entre 46 et 1500 octets :

Si les données sont trop petites, des bits de bourrage sont utilisés

Trame

FCS:

- C'est une somme de contrôle permettant de détecter les éventuelles erreurs de transmission
- Vérifié au niveau du récepteur. En cas d'erreur, la trame est simplement jetée

Format des adresses MAC

6 octets = 48 bits

XX : XX : XX : XX : XX : XX

Partie distinguant le fabricant

Partie distinguant l'interface

- Chaque carte **Ethernet** possède une adresse MAC unique (dans le monde)
- Une adresse MAC a une longueur de 48 bits (6 octets)
 - Les 3 premiers octets identifient le fabricant (Ex: 00:00:0C (Cisco) 00:C0:4F (DELL))
 - Les 3 derniers sont attribués par le fabricant
- Adresse de broadcast (diffusion)= FF: FF: FF: FF: FF

M1 Info - Dr Saadbouh O Cheikh El Mehdi

La couche Liaison de données - Ethernet -

Mode & Service

- Mode non connecté :
 - Pas de procédure de connexion entre l'émetteur et le récepteur !
- Service non fiable:

l'interface du récepteur n'envoie pas de **ACK** ou **NACK** à l'interface de l'émetteur:

- le flux de datagrammes passés à la couche réseau peut présenter des trous
- les trous peuvent être comblés si l'application utilise TCP (niveau transport)
- sinon, l'application doit vivre avec ces trous

28

27

Accès au canal : CSMA/CD

- 1. La station surveille si une transmission est en cours
- 2. Si aucune transmission, la station peut émettre (64 premiers octets):
 - Aucune permission au préalable n'est nécessaire
- 3. Pendant l'émission, une collision peut être détectée

En cas de collision:

- Émission de bruit (**Jam**) pour renforcer la collision (**32 bits**)
- Arrêt de toute émission
- Algorithme de reprise après collision (Binary Exponential Backoff « BEB »)
- Le nombre de tentatives est limité à 16

Contrainte : temps d'émission de trame doit être supérieur au temps de traversée aller-retour (RTT) du signal entre 2 points d'extrémité

29

M1 Info - Dr Saadbouh O Cheikh El Mehdi

La couche Liaison de données - Ethernet -

CSMA/CD- Algorithme BEB

BEB: Binary Exponential Backoff (retransmission selon une loi exponentielle binaire)

- Après la collision les stations impliquées arrêtent leur émission sur une durée de tranche canal
- Pour éviter que les stations commencent à émettre aussitôt, chaque station tire au sort la durée **d** d'attente avant la prochaine tentative de rémission
- $d = R \times 51,2 \ \mu s$
 - où $(0 \le R \le 2^k 1)$ où k = min(n,10), n = nbre de collisions) $1^{\grave{e}re}$ collision: choisir R dans $\{0,1\}$; après une 2^{nde} collision: choisir R dans $\{0,1,2,3\}$ après 10 collisions, choisir R dans $\{0,1,2,3,4,...,1023\}$
- 51,2 µs ?! La tranche canal ou (Time Slot): durée nécessaire à une station pour que celle-ci soit certaine que son message a été transmis sans problème (ce qui revient à 64 octets à 10 Mbit/s)

30

