APPLICATION FOR UNITED STATES LETTERS PATENT

INVENTOR:

Young-Joon SONG

TITLE:

PILOT SIGNALS FOR SYNCHRONIZATION AND/OR

CHANNEL ESTIMATION

ATTORNEYS:

The Law Offices of

&

FLESHNER & KIM

ADDRESS:

P. O. Box 221200

Chantilly, VA 20153-1200

DOCKET NO.: K-090B

PILOT SIGNALS FOR SYNCHRONIZATION AND/OR CHANNEL ESTIMATION

This application claims the benefit of U.S. Provisional Application No. 60/136,763 filed May 28,1999, and this application is also a continuation-in-part of Application No. ______ filed August 13, 1999, whose entire disclosure is incorporated herein by reference therein.

BACKGROUND OF THE INVENTION

1. <u>Field of the Invention</u>

The present invention relates to communication systems, and more particularly, cellular communication systems.

2. <u>Background of the Related Art</u>

The use of code division multiple access (CDMA) modulation techniques is one of several techniques for facilitating communications in which a large number of systems are present. Figure 1 generally illustrates a system 10, which uses CDMA modulation techniques in communication between user equipment (UE) 12a and 12b, each UE including a cellular telephone, and base stations (BTS) 14a and 14b. A base station controller (BSC) 16 typically includes an interface and processing circuitry for providing system control to the BTS 14a, 14b. The BSC 16 controls the routing of telephone calls

from the public switched telephone network (PSTN) to the appropriate BTS for transmission to the appropriate UE. The BSC 16 also controls the routing of calls from the UEs, via at least one BTS to the PSTN. The BSC 16 may direct calls between UEs via the appropriate BTS since UEs do not typically communicate directly with one another. The BSC 16 may be coupled to the BTS 14a and 14b by various means including dedicated telephone lines, optical fiber links or by microwave communication links.

The arrows 13a-13d define the possible communication links between the BTS 14a and UEs 12a and 12b. The arrows 15a-15d define the possible communication links between the BTS 14ba and UEs 12a and 12b. In the reverse channel or uplink (i.e., from UE to BTS), the UE signals is received by BTS 14a and/or BTS 14b, which, after demodulation and combining, pass the signal forward to the combining point, typically to the BSC 16. In the forward channel or downlink (i.e., from BTS to UE), the BTS signals are received by UE 12a and/or UE 12b. The above system is described in U.S. Patent Nos. 5,101,501; 5,103,459; 5,109,390; and 5,416,797, whose entire disclosure is hereby incorporated by reference therein.

A adio channel is a generally hostile medium in nature. It is rather difficult to predict its behavior. Traditionally, the radio channels are modeled in a statistical way using real propagation measurement data. In general, the signal fading in a radio environment can be decomposed into a large-scale path loss component together with a medium-scale slow varying component having a log-normal distribution, and a small-scale

fast varying component with a Rician or Rayleigh distribution, depending on the presence or absence of the line-of-sight (LOS) situation between the transmitter and the receiver.

Figure 2 illustrates these three different propagation phenomena. An extreme variation in the transmission path between the transmitter and receiver can be found, ranging from direct LOS to severely obstructed paths due to buildings, mountains, or foliage. The phenomenon of decreasing received power with distance due to reflection, diffraction around structures, and refraction is known as path loss.

As shown, the transmitted signal is reflected by many obstacles between a transmitter and a receiver, thus creating a multipath channel. Due to the interference among many multipaths with different time delays, the received signal suffers from frequency selective multipath fading. For example, when the 2GHz carrier frequency band is used and a car having a UE is travelling at a speed of 100km/h, the maximum Doppler frequency of fading is 185Hz. While coherent detection can be used to increase link capacity, under such fast fading, the channel estimation for coherent detection is generally very difficult to achieve. Because of fading channels, it is hard to obtain a phase reference for the coherent detection of data modulated signal. Therefore, it is beneficial to have a separate pilot channel.

Typically, a channel estimate for coherent detection is obtained from a common pilot channel. However, a common pilot channel transmitted with an omnidirectional antenna experiences a different radio channel than a traffic channel signal transmitted

through a narrow beam. It has been noticed that common control channels are often problematic in the downlink when adaptive antennas are used. The problem can be circumvented by user dedicated pilot symbols, which are used as a reference signal for the channel estimation. The dedicated pilot symbols can either be time or code multiplexed.

Figure 3 depicts a block diagram of a transmitter and a receiver for time multiplexed pilot symbols for an improved channel estimation method that works satisfactorily under slow-to-fast fading environments. Known pilot symbols are periodically multiplexed with the sequence of the transmitted data. The pilot symbols and data symbols following pilot symbols constitute a slot, as shown in Figure 3.

Further, in a DS-CDMA transmitter, the information signal is modulated by a spreading code, and in the receiver, it is correlated with a replica of the same code. Thus, low cross-correlation between the desired and interfering users is important to suppress the multiple access interference. Good autocorrelation properties are required for reliable initial synchronization, since large sidelobes of the autocorrelation function may lead to erroneous code synchronization decisions. Furthermore, good autocorrelation properties are important to reliably separate the multipath components.

Since the autocorrelation function of a spreading code should resemble, as much as possible, the autocorrelation function of white Gaussian noise, the DS code sequences are also called pseudo-noise (PN) sequences. The autocorrelation and cross-correlation functions are connected in such a way that it is not possible to achieve good

autocorrelation and cross-correlation values simultaneously. This can be intuitively explained by noting that having good autocorrelation properties is also an indication of good randomness of a sequence. Random codes exhibit worse cross-correlation properties than deterministic codes.

Such mobile communication system has gone through different stages of evolution, and various countries used different standards. First generation mobile systems in the 1980s used analog transmission for speech services. Advanced Mobile Phone Service (AMPS) in the United States, Total Access Communication System (TACS) in the United Kingdom, Nordic Mobile Telephones (NMT) in Scandinavia, Nippon Telephone and Telegraph (NTT) in Japan, etc., belonged to the first generation.

Second generation systems using digital transmission were introduced in the late 1980s. They offer higher spectrum efficiency, better data services, and more advanced roaming than the first generation systems. Global System for Mobile Communications (GSM) in Europe, Personal Digital Cellular (PDC) in Japan, and IS-95 in the United States belonged to the second generation.

Recently, third generation mobile radio networks have been under intense research and discussion and will emerge around the year 2000. In the International Telecommunication Union (ITU), the third generation networks are called International Mobile Telecommunications – 2000 (IMT-2000) and in Europe, Universal Mobile

Telecommunication System (UMTS). IMT-2000 will provide a multitude of services, including multimedia and high bit rate packet data.

Wideband CDMA has emerged as the mainstream air interface solution for the third generation networks. Wideband CDMA systems are currently being standardized by the European Telecommunications Standards Institute (ETSI) of Europe, the Association for Radio Industry and Business (ARIB) of Japan, the TIA Engineering Committees TR45 and TR46 and the T1 committee T1P1 of the United States, and the Telecommunication Technology Association TTA I and TTA II (renamed Global CDMA I and II, respectively) in Korea. The above description and a background of various systems can be found in WIDEBAND CDMA FOR THIRD GENERATION MOBILE COMMUNICATIONS by T. Ojanpera et al, published 1998, by Artech House Publishers, whose entire disclosure is hereby incorporated by reference therein.

Recently, ARIB in Japan, ETSI in Europe, T1 in U.S.A., and TTA in Korea have mapped out a third generation mobile communication system based on a core network and radio access technique of an existing global system for mobile communications (GSM) to provide various services including multimedia, such as audio, video and data. They have agreed to a partnership study for the presentation of a technical specification on the evolved next generation mobile communication system and named a project for the partnership study as a third generation partnership project (3GPP).

The 3GPP is classified into three part technical studies. The first part is a 3GPP system structure and service capability based on the 3GPP specification. The second part is a study of a universal terrestrial radio access network (UTRAN), which is a radio access network (RAN) applying wideband CDMA technique based on a frequency division duplex (FDD) mode, and a TD-CDMA technique based on a time division duplex (TDD) mode. The third part is a study of a core network evolved from a second generation GSM, which has third generation networking capabilities, such as mobility management and global roaming.

Among the technical studies of the 3GPP, the UTRAN study defines and specifies the transport and physical channels. This technical specification, TS S1.11 v1.1.0, was distributed on March of 1999, whose entire disclosure is hereby incorporated by reference therein. The physical channel includes the dedicated physical channels (DPCHs) used in the uplink and downlink. Each DPCH is generally provided with three layers, e.g., superframes, radio frames and timeslots. As specified in the 3GPP radio access network (RAN) standard, a superframe has a maximum frame unit of 720ms period. In view of the system frame numbers, one superframe is composed of seventy-two radio frames. Each radio frame has a period of 10ms, and a radio frame includes sixteen timeslots, each of which includes fields with corresponding information bits based on the DPCH.

Figure 4 illustrates a frame structure of an uplink DPCH based on the 3GPP RAN standard. The uplink DPCH is provided with two types of channels, e.g., a dedicated

physical data channel (DPDCH) and a dedicated physical control channel (DPCCH). The uplink DPDCH is adapted to transport the dedicated data and the uplink DPCCH is adapted to transport the control information.

The uplink DPCCH for the transport of the control information includes various fields such as a pilot field 21 of N_{pilot} bits, a transmit power-control (TPC) field 22 of N_{TPC} bits, a feedback information (FBI) field 23 of N_{FBI} bits and an optional transport-combination indicator (TFCI) field 24 of N_{TFCI} bits. The pilot field 21 includes pilot bits N_{pilot} for supporting channel estimation for coherent detection. The TFCI field 4 supports the simultaneous provision of a plurality of services by the system. The absence of the TFCI field 4 in the uplink DPCCH signifies that the associated service is a fixed rate service. The parameter k determines the number of bits per uplink DPDCH/DPCCH slot. It is related to the spreading factor SF of the physical channel as $SF = 256/2^k$. The spreading factor SF may thus range from 256 down to 4.

Figure 5 is a table showing various information of the uplink DPCCH, wherein channel bit and symbol rates are those just prior to spreading. (At the time of this technical specification, the exact number of bits of the different uplink DPCCH fields of Figure 4 (N_{pilot} , N_{TPC} , N_{FBI} , and N_{TFCI}) was not determined.)

Figure 6 is a table illustrating pilot bit patterns of the uplink DPCCH, and more particularly, 6-bit and 8-bit pilot bit patterns for each slot. In Figure 6, the non-shaded sequence is used for channel estimation, and shaded sequence can be used as frame

synchronization words or sequences. The pilot bits other than frame synchronization word, e.g., channel estimation word, have a value of 1.

For example, in the case where each slot includes six pilot bits $N_{pilot} = 6$, the sequences formed by slot #1 to slot #16 at bit #1, at bit #2, at bit #4, and at bit #5 are used as the frame synchronization words. In the case where each slot is composed of eight pilot bits ($N_{pilot} = 8$), the sequences at bit #1, at bit #3, at bit #5, and at bit #7 are used as the frame synchronization words. In the case where the pilot bits of each sequences slot are either 6 or 8 in number, a total of four is used as the frame synchronization word. As a result, because one radio frame is provided with sixteen timeslots, the number of pilot bits used as the frame synchronization word is 64 bits per frame.

Figure 7 shows a spreading/scrambling arrangement for the uplink DPCH based on the 3GPP RAN standard. The arrangement of Figure 7 is provided for the execution of a quadrature phase shift keying (QPSK) operation where the uplink DPDCH and DPCCH are mapped into I and Q channel branches, respectively.

The spreading is an operation for switching all symbols through the respective channel branches to a plurality of chips. The I and Q channel branches are spread respectively at chip rates based on two different orthogonal variable spreading factors (OVSFs), or channelizing codes C_D and C_C . The OVSF represents the number of chips per symbol on each channel branch. The spread of two channel branches are summed and then complex-scrambled by a specific complex scrambling code C_{scramb} . The complex-

scrambled result is separated into real and imaginary and then transmitted after being placed on respective carriers.

Figure 8 illustrates a frame structure of a downlink DPCH based on the 3GPP RAN standard. The number of pilot bits (or symbols) in the uplink DPCH is 6 or 8 because the uplink DPCH is activated at a fixed rate of 16Kbps. However, since the downlink DPCH is activated at a variable rate, it has pilot symbol patterns illustrated in Figure 9.

With reference to Figure 8, similar to the uplink DPCH, the downlink DPCH is provided with two types of channels, e.g., a dedicated physical data channel (DPDCH) and a dedicated physical control channel (DPCCH). In the downlink DPCH, the downlink DPDCH is adapted to transport the dedicated data and the downlink DPCCH is adapted to transport the control information. The downlink DPCCH for transporting the control information is composed of various fields such as a pilot field 27, TPC field 26 and TFCI field 25. The pilot field 27 includes pilot symbols for supporting the channel estimation for coherent detection.

Figure 9 is a table illustrating pilot symbol patterns contained in the downlink DPCCH, which are classified according to different symbol rates of the downlink DPCCH. For example, in the case where the symbol rate is 16, 32, 64 or 128Kbps, each slot includes four pilot symbols for an I channel branch and four pilot symbols for a Q channel branch, totaling eight pilot symbols.

In Figure 9, the non-shaded sequence is used for channel estimation and shaded sequences can be used as frame synchronization words. The remaining pilot symbols other than the frame synchronization word (e.g., channel estimation) have a value of 11. For example, in the case where the symbol rate is 16, 32, 64 or 128Kbps, the sequences, formed by pilot symbols from slot #1 to slot #16, at symbol #1 and at symbol #3 are used as the frame synchronization words. Accordingly, because the number of pilot symbols used as the frame synchronization words is 4 per slot, 64 pilot symbols are used in each radio frame.

Figure 10 illustrates a spreading/scrambling arrangement for the downlink DPCH based on the 3GPP RAN standard. The arrangement of Figure 10 is provided for the spreading and scrambling of the downlink DPCH and a common control physical channel (CCPCH). A QPSK operation is performed with respect to a pair of symbols of the two channels in such a manner that they are serial-to-parallel converted and then mapped into I and Q channel branches, respectively.

The I and Q channel branches are spread respectively at chip rates based on two equal channelizing codes C_{ch}. The spread of the two channel branches are summed and then complex-scrambled by a specific complex scrambling code C_{scramb}. The complex-scrambled result is separated into real and imaginary and then transmitted, after being placed on respective carriers. Noticeably, the same scrambling code is used for all physical channels in one cell, whereas different channelizing codes are used for different physical

channels. Data and various control information are transported to a receiver through the uplink and downlink DPCHs subjected to the above-mentioned spreading and scrambling.

The TS S1.11 v1.1.0 specification also specified a primary common control physical channel (PCCPCH), which is a fixed rate downlink physical channel used to carry the broadcast channel (BCH), and a secondary common control physical channel (SCCPCH) used to carry the forward access channel (FACH) and the paging channel (PCH) at a constant rate. Figures 11A and 11B illustrate the frame structure of PCCPCH and SCCPCH, each having a pilot field. The TS S1.11 v1.1.0 specification recommended the pilot patterns for the PCCPCH and SCCPCH. Further, the TS S1.11 v1.1.0 specification recommended the pilot pattern of the DPCH channel for the diversity antenna using open loop antenna diversity based on space time block coding based transmit diversity (STTD) and diversity antenna pilot patterns for PCCPCH and SCCPCH. Those patterns can be found in the TS S1.11 v1.1.0 specification, and detailed description is being omitted.

For frame synchronization, an autocorrelation function must be performed on the basis of the pilot pattern sequence. In the pilot sequence design, finding an autocorrelation of a sequence with the lowest out-of-phase coefficient is important to decrease the probability of false alarm regarding the synchronization. A false alarm is determined when a peak is detected when there should not be a peak detection.

Optimally, the result of the autocorrelation for a frame with a sequence at a prescribed pilot bit should have same maximum values at zero and middle time shifts of one correlation period, which are different in polarity, and the remaining sidelobes at time shifts other than zero and middle should have a value of zero. However, the various pilot patterns recommended in the TS S1.11 v1.1.0 do not meet this requirement, both in the uplink and downlink.

In an article entitled "Synchronization Sequence Design with Double Thresholds for Digital Cellular Telephone" by Young Joon Song et al. (August 18-20, 1998), the present inventor being a co-author, the article describes a correlator circuit for GSM codes where the out-of-phase coefficients are all zero except one exception at zero and middle shift having a first peak and a second peak, where the first and second peaks are opposite in polarity, but the peaks are not equal to one another. Further, the article describes lowest out-of-phase coefficients of +4 and -4. However, the article does not provide how such sequences and autocorrelation can be used to achieve the above described optimal results, and the article does not provide sufficient disclosure that the sequences achieve or can achieve the lowest autocorrelation sidelobes.

As described above, the pilot patterns used as frame synchronization words or sequences do not achieve the optimal results. Further, the background pilot patterns do not rapidly and accurately perform the frame synchronization. Moreover, the above pilot patterns and frame synchronization sequences do not provide optimal cross-correlation

and autocorrelation. Additionally, neither the TS specification nor the article provides a solution of the use of the pilot patterns for slot-by-slot double check frame synchronization scheme, and neither discloses the use of the frame synchronization sequence for channel estimation.

SUMMARY OF THE INVENTION

An object of the present invention is to obviate at least the problems and disadvantages of the related art.

An object of the present invention is to provide frame synchronization words resulting in optimal autocorrelation results.

A further object of the present invention is to eliminate or prevent sidelobes.

A further object of the present invention is to provide maximum values at zero and middle time shifts.

Another object of the present invention is to provide a synchronization word for at least one of rapid and accurate frame synchronization.

Another object of the present invention is to provide a slot-by-slot double check frame synchronization scheme.

Still another object of the present invention is to provide a frame synchronization word which can be used for channel estimation.

Still another object of the present invention is to provide good cross-correlation and autocorrelation simultaneously.

The present invention can be achieved in a whole or in parts by a method for synchronizing a frame using an optimal pilot symbol, comprising the steps of: (1) receiving a pilot symbol of each slot in the frame through respective physical channels on a communication link; (2) correlating a received position of each of the pilot symbols to a corresponding pilot sequence; (3) combining and summing more than one results of the correlations, and deriving a final result from the correlations in which sidelobes from the results of the correlations are offset; and (4) synchronizing the frame using the final result.

The pilot symbols are combined into each of the pilot sequences such that the final result of the correlations shows sidelobes with 0" values excluding particular positions of correlation periods. The particular positions are starting points (x = 0) of the correlation periods (x) and points of x /an integer. The pilot symbol is a combination of pilot symbols in a form of (a,/a). The pilot sequence provides least correlation resultants at positions excluding the starting points and half of the starting points in the correlation periods. The pilot symbols excluding the pilot symbols used in the correlation is used in a channel estimation for detecting coherent. The pilot symbol of each slot in the frame is transmitted, with the pilot symbol contained in a pilot field of an exclusive physical control channel among respective exclusive channels on the communication link. The pilot sequences different from each other on an up communication link are used in the correlation according to values of bits included in a pilot field of an exclusive physical control channel. The pilot sequences different from each other on a down

communication link are used in the correlation according to a symbol rate of an exclusive physical control channel.

The present invention can be also achieved in a whole or in parts by a method for synchronizing a frame using an optimal pilot symbol, comprising the steps of: (1) receiving a pilot symbol of each slot in the frame through respective physical channels on a communication link; (2) correlating a received position of each of the pilot symbols to a corresponding pilot sequence; (3) combining and summing more than one results of the correlations, and deriving a final result from the correlations in which sidelobes from the results of the correlations have minimum values and the results of the correlations at starting points and middle points of correlation periods have maximum values with different polarity; and (4) synchronizing the frame using the final result.

The present invention can be achieved in a whole or in parts by a method of eliminating sidelobes in a communication channel between a base station and a mobile station, comprising the steps of: generating control signals and data signals within the communication channel, the control signals having a first sequence of L-bits and a second sequence of L-bits; generating a first set of prescribed values based on the first sequence, which has a first prescribed relationship with the first set of prescribed values; generating a second set of prescribed values based on the second sequence, which has a second prescribed relationship with the second set of prescribed values; and combining the first and second sets of prescribed values.

The present invention can be achieved in a whole or in parts by a method of establishing a communication channel, the method comprising the steps of: generating a plurality of frames; generating a L-number of slots for each frame, each slot having a pilot signal of N-bits and a corresponding bit in each slot forming a word of L-sequence of pilot bits such that there is N number of words, wherein the number of bit values of two pilot bits which are the same between two adjacent words from 1 to L slots minus the number of bit values of two pilot bits which are different between the two adjacent words from 1 to L is zero or a prescribed number close to zero.

The present invention can be achieved in a whole or in parts by a method of establishing a communication channel having at least one of frame synchronization and channel estimation, the method comprising the steps of: generating a plurality of frames; generating a L-number of slots for each frame, each slot having a pilot signal of N-bits and a corresponding bit in each slot forming a word of L-sequence of pilot bits such that there is N number of words, wherein the words have at least one of the following characteristics: cross-correlation between two adjacent sequences used for frame synchronization is zero at zero time shift, or cross-correlation between a word used for frame synchronization and a word used for channel estimation is zero at all time shifts.

The present invention can be achieved in a whole or in parts by a method of reducing sidelobes for frame synchronization, comprising the steps of: generating a plurality of frame synchronization words, each frame synchronization word having a

plurality of bits; performing autocorrelation functions on a pair of frame synchronization words to generate a pair of prescribed value sets; and combining the pair of prescribed value sets such that two peak values equal in magnitude and opposite in polarity are achieved at zero and middle time shifts.

The present invention can be achieved in a whole or in parts by a method of generating pilot signals of a prescribed pattern within a frame having L-number of slots, comprising the steps of: generating N-number of pilot bits for each slot; and forming N-number of words of L-bit based on above step, wherein a prescribed number of words is used for frame synchronization words and each frame synchronization word has a first prescribed number b_0 of bit values of "0" and a second prescribed number b_1 of bit values of "1", such that b_1 - b_0 is equal to zero or a number close to zero.

The present invention can be achieved in a whole or in parts by a communication link between a user equipment and a base station comprising a plurality of layers, wherein one of the layers is a physical layer for establishing communication between the user equipment and the base station and the physical layer has at least one of data and control information, one of the control information being a pilot field of N-bits transmitted for L-number of slots such that N-number of words of L-bit are formed, wherein cross-correlation between two adjacent words used for frame synchronization is zero at zero time shift or cross-correlation between a word used for frame synchronization and a word used for channel estimation is zero at all time shifts.

The present invention can be achieved in a whole or in parts by a correlator circuit for at least one of a user equipment and a base station, comprising: a plurality of latch circuits, each latch circuit latching a word formed by a pilot bit from a plurality of slots; a plurality of correlators, each correlator coupled to a corresponding latch circuit and correlating the word to a set of prescribed values; and a combiner that combines the set from each correlator such that maximum peak values of equal in magnitude and opposite in polarity are formed at zero and middle time shifts.

The present invention can be achieved in a whole or in parts by a communication device comprising: means for transmitting at least one of data and control information; means for receiving at least one of data and control information, wherein the receiving means includes: a plurality of latch circuits, each latch circuit latching a word formed by a pilot bit from a plurality of slots; a plurality of correlators, each correlator coupled to a corresponding latch circuit and correlating the word to a set of prescribed values; a plurality of buffers, each buffer coupled to a corresponding correlator to store the set of prescribed values; and a combiner that combines the set from each buffer such that maximum peaks of equal in magnitude and opposite in polarity are formed at zero and middle time shifts.

Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from

practice of the invention. The objects and advantages of the invention may be realized and attained as particularly pointed out in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described in detail with reference to the following drawings in which like reference numerals refer to like elements wherein:

Figure 1 generally illustrates a system, which uses CDMA modulation techniques in communication between user and base stations;

Figure 2 illustrates these three different propagation phenomena;

Figure 3 depicts a block diagram of a transmitter and a receiver for time multiplexed pilot symbols;

Figure 4 illustrates a frame structure of an uplink DPCH based on the 3GPP RAN standard;

Figure 5 is a table showing various information of the uplink DPCCH;

Figure 6 is a table illustrating pilot bit patterns of the uplink DPCCH;

Figure 7 shows a spreading/scrambling arrangement for the uplink DPCH based on the 3GPP RAN standard;

Figure 8 illustrates a frame structure of a downlink DPCH based on the 3GPP RAN standard;

Figure 9 is a table illustrating pilot symbol patterns contained in the downlink DPCCH;

Figure 10 illustrates a spreading/scrambling arrangement for the downlink DPCH based on the 3GPP RAN standard;

Figures 11A and 11B illustrate the frame structure of PCCPCH and SCCPCH, respectively;

Figure 12A is a table illustrating the frame synchronization words C_1 to C_{i-th} in accordance with a preferred embodiment of the present invention;

Figure 12B is a table illustrating the autocorrelation function of the sequences of pilot bits;

Figure 13A illustrates addition of two autocorrelation functions;

Figure 13B illustrates addition of the four autocorrelation functions;

Figures 14A and 14B are tables illustrating the pilot patterns in accordance with a preferred embodiment of the present invention for uplink DPCCH;

Figure 14C is a table illustrating the mapping relationship between the 8 synchronization words C₁-C₈ of Figure 12A and shaded pilot bit patterns of Figures 14A and 14B;

Figure 14D illustrates a correlation circuit for frame synchronization based on pilot bits of the uplink DPCCH in accordance with a preferred embodiment of the present invention;

Figure 14E is a table illustrating the correlation results at points A₁-A₄, and the summing of the correlation results at point B of Figure 14D.

Figure 14F is a table illustrating various results of the addition of correlation results based on the uplink pilot patterns of the frame synchronization words in accordance with the preferred embodiment of the present invention;

Figure 14G illustrates a correlator circuit for frame synchronization based on pilot bit sequences of an uplink DPCCH in accordance with an alternative embodiment;

Figure 14H illustrates the receiver circuit of a base station or a user equipment to recover the received spread signal including the frame synchronization words in the pilot field;

Figure 14I illustrates results of correlation circuit using the pilot pattern of the technical specification;

Figure 14J illustrates a time shift graph of the summation of results of Figure 14I; Figure 15A illustrates the pilot symbol patterns for downlink DPCH;

Figure 15B illustrates the mapping relationship between the 8 frame synchronization words of Figure 12A, and shaded pilot symbol pattern of Figure 15A;

Figure 15C illustrates a correlation circuit for frame synchronization for downlink DPCCH in accordance with the preferred embodiment;

Figure 16A illustrates pilot symbol pattern of PCCPCH;

Figure 16B illustrates the mapping relationship between the synchronization words C₁-C₈ of Figure 12A, and the shaded pilot symbol patterns of Figure 16A;

Figure 16C illustrates pilot symbol pattern of SCCHPCH;

Figure 16D illustrates the mapping relationship between the synchronization words C₁-C₈ of Figure 12A, and the shaded pilot symbol patterns of Figure 16C;

Figures 17A-17C illustrate addition of autocorrelation functions of frame synchronization word of the preferred embodiment and current pilot patterns (described in TS S1.11 v1.1.0 specification) for DPCHs and PCCPCH;

Figure 18A illustrates the parameters used for obtaining P_D, P_{FA}, and P_S on uplink DPCH and downlink DPCH over additive white Gaussian noise (AWGN);

Figure 18B illustrates the probability of detection P_D on downlink DPCCH over AWGN channel;

Figure 18C illustrates the probability of false alarm P_{FA} on downlink DPCCH over AWGN channel;

Figure 18D illustrates the probability of a frame synchronization confirmation success P_S on downlink DPCCH over AWGN channel;

Figure 19A illustrates pilot symbol patterns of downlink DPCH for the diversity antenna using a space time block coding based transmit diversity (STTD);

Figure 19B illustrates the mapping relationship between the 8 words C₁-C₈ of Figure 12A and shaded pilot symbol patterns of Figure 19A;

Figure 19C illustrates the diversity antenna pilot symbol pattern for PCCPCH;

Figure 19D illustrates the mapping relationship between the words C₁-C₈ of Figure 12A and shadowed pilot symbol patterns of Figure 19C;

Figure 19E illustrates the pilot symbol pattern for the diversity antenna when STTD encoding is used on the SCCPCH;

Figure 19F illustrates the mapping relationship between the words C₁-C₈ of Figure 12A and shaded pilot symbol patterns of Figure 19E;

Figure 20A is a table illustrating frame synchronization words C_1 - C_{16} (i = 16) and autocorrelated function in accordance with another preferred embodiment of the present invention;

Figure 20B is a table illustrating the autocorrelation function of the pilot bits of each frame synchronization word classified in the PCSP;

Figure 20C illustrates the pilot bit pattern of uplink DPCCH;

Figure 20D illustrates a mapping relationship between the alternative frame synchronization words C_1 - C_{16} of Figure 20A and the shaded frame synchronization words of Figure 20C;

Figures 20E and 20F illustrate the pilot symbol pattern of downlink DPCH;

Figure 20G illustrates a mapping relationship between the alternative frame synchronization words C₁-C₁₆ of Figure 20A and the shaded frame synchronization words of Figures 20E and 20F;

Figure 20H illustrates the pilot symbol pattern of downlink PCCPCH;

Figure 20I illustrates a mapping relationship between the alternative frame synchronization words C_1 - C_{16} of Figure 20A and the shaded frame synchronization words of Figure 20H.

Figure 21 illustrates a preferred embodiment for the new frame synchronization words C₁-C_{i-th};

Figure 22A illustrates the addition of two auto-correlation functions;

Figure 22B illustrates the addition of two cross-correlation functions between the two frame synchronization words within the same class;

Figure 22C illustrates the addition of four auto-correlation functions;

Figure 22D illustrates the addition of four cross-correlation functions between the four frame synchronization words of two classes;

Figures 23A illustrates the pilot bit patterns on uplink DPCCH with $N_{pilot} = 2$, 3, and 4;

Figure 23C illustrates the pilot bit patterns on uplink DPCCH with $N_{pilot} = 2,3$, and 4 in accordance with an alternative embodiment compared to Figure 23A;

Figures 23E and 23F illustrate the pilot bit patterns on uplink DPCCH with N_{pilot} = 5, 6, 7, and 8;

Figures 23B and 23D illustrate the mapping relationship between the frame synchronization words of Figure 21, and shaded frame synchronization words of Figures

23A and 23D, respectively;

Figure 23G illustrates the mapping relationship between the frame synchronization words of Figure 21, and the shaded frame synchronization words of Figures 23E and 23F;

Figure 23H illustrates the structure of random access channel;

Figure 23I illustrates the random access message control fields;

Figure 23J illustrates the pilot bit pattern of the RACH;

Figure 24A illustrates the pilot symbol patterns on downlink DPCH when N_{pilot} = 2, 4, 8, and 16;

Figure 24B illustrates the mapping relationship between the frame synchronization words C₁-C₈ of Figure 21 and shaded pilot symbol patterns of Figure 24A;

Figure 24C illustrates the pilot symbol patterns of downlink DPCH for the diversity antenna using STTD;

Figure 24D illustrates the mapping relationship between the frame synchronization words C₁-C₈ of Figure 21 and shaded pilot symbol patterns of Figure 24C;

Figure 25A illustrates the pilot symbol patterns for downlink SCCPCH for N_{pilot} = 8 and 16;

Figure 25B illustrates the mapping relationship of the frame synchronization words C₁-C₈ of Figure 21 and shaded pilot symbol patterns of Figure 25A;

Figure 25C illustrates the pilot symbol patterns of downlink SCCPCH for Npilot

= 8 and 16 for the diversity antenna using STTD;

Figure 25D illustrates the mapping relationship between the frame synchronization words C₁-C₈ of Figure 21 and shaded pilot symbol patterns of Figure 25C;

Figure 26A illustrates the parameters used to evaluate the performance of the pilot bit pattern on uplink DPCCH over AWGN;

Figure 26B illustrates the probability of frame synchronization confirmation success P_S on uplink DPCCH with $N_{pilot} = 6$ over AWGN channel;

Figure 26C illustrates the probability of a false alarm P_{FA} on uplink DPCCH with N_{pilot} =6 over AWGN channel; and

Figure 27 is a comparision chart between the embodiments for 15 timeslots and 16 slots.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The new frame synchronization words in accordance with the preferred embodiment have the lowest out-of-phase values of autocorrelation function with two peak values equal in magnitude and opposite in polarity at zero and middle shifts. The frame synchronization words are suitable for frame synchronization confirmation since by simply adding autocorrelation functions of such words, double maximum correlation values equal in magnitude and opposite polarity at zero and middle shifts can be achieved. This property can be used to double-check frame synchronization timing and reduce the synchronization search time.

The UE establishes downlink chip synchronization and frame synchronization based on the Primary CCPCH synchronization timing and the frame offset group, slot offset group notified from the network. The frame synchronization can be confirmed using the frame synchronization word. The network establishes uplink channel chip synchronization and frame synchronization based on the frame offset group and slot offset group. The frame synchronization can also be confirmed using the frame synchronization word.

When long scrambling code is used on uplink channels or downlink channels, failure in frame synchronization confirmation using frame synchronization words always means losing frame and chip synchronizations since the phase of long scrambling code repeats every frame. Whereas in the case of short scrambling code on uplink DPCCH, failure in frame synchronization confirmation does not always implies losing chip synchronization since the length of short scrambling code is 256 and it corresponds to one symbol period of uplink DPCCH with SF = 256. Thus, the frame synchronization word of pilot pattern can detect synchronization status and this information can be used in RRC Connection Establishment and Release Procedures of Layer 2.

Figure 12A is a table illustrating the frame synchronization words C_1 to $C_{i\text{-th}}$ in accordance with a preferred embodiment of the present invention, where each word comprises L number (L>1) of sequence of pilot bits from a prescribed bit position of the N_{pilot} bits (N_{pilot} >0) from each slot of L number of slots. In the preferred first

embodiment described hereinafter, the number of synchronization words i equals 8, the number of slots L = 16 and the number of pilot bits N_{pilot} in each slot is between 4 and 16, but the present invention is applicable to different variations of i, L, and N_{pilot} .

The synchronization words C₁-C₈ of the preferred embodiment can be divided into 4 classes (E-H, referred to as Preferred Correlation Sequence Pair (PCSP)) according to the autocorrelation function of the synchronization words, as follows:

$$E = \{C_1, C_5\}$$

$$F = \{C_2, C_6\}$$

$$G = \{C_3, C_7\}$$

$$H = \{C_4, C_8\}$$

Figure 12B is a table illustrating the autocorrelation function of 1 to 16 sequences of pilot bits of each frame synchronization word classified in classes E, F, G and H within one correlation period from a time shift of 0 to 15. As shown in Figures 12A and 12B, each class contains 2 sequences, and sequences of the same class have the same autocorrelation function. From Figure 12B, the synchronization words have the lowest out-of-phase values of autocorrelation function with two peak values equal in magnitude and opposite in polarity at zero and middle shifts. Moreover, the results R₁ and R₂ of the autocorrelation function are complements of each other. The following relationships between the autocorrelation functions are expressed in equations (1)-(4):

$$R_{\rm E}(z) = R_{\rm F}(z) = R_{\rm G}(z) = R_{\rm H}(z) , \ \tau \text{ is even}$$
 (1)

$$R_{\rm E}(z) = -R_{\rm F}(z)$$
, τ is odd (2)

$$R_{\rm G}(z) = -R_{\rm H}(z) , \ \tau \, \text{is odd}$$
 (3)

$$R_i(\tau) + R_i(\tau + 8) = 0$$
, $i \in \{E, F, G, H\}$, for all τ (4)

From equations (1), (2), and (3), the following equation is obtained.

$$R_{\rm E}(z) + R_{\rm F}(z) = R_{\rm G}(z) + R_{\rm H}(z) , \text{ for all } \tau$$
 (5)

The addition of two autocorrelation functions $R_{\rm E}(t)$ and $R_{\rm F}(t)$, or $R_{\rm G}(t)$ and $R_{\rm H}(t)$ becomes the function with two peak values equal in magnitude and opposite in polarity at zero and middle shifts, and all zero values except the zero and middle shifts, which is depicted in Figure 13A, where the peak values equal 2*L or -2*L. In the preferred embodiment, the peak values of Figure 13A are 32 and -32, since L=16. The other combinations such as $(R_{\rm E}(t) + R_{\rm G}(t))$, $(R_{\rm E}(t) + R_{\rm H}(t))$, $(R_{\rm F}(t) + R_{\rm G}(t))$, and $(R_{\rm F}(t) + R_{\rm H}(t))$ do not have the same value as in Figure 13A. By using the derived properties of the frame synchronization words, the following property is achieved.

$$\sum_{i=1}^{2\alpha} R_i(\tau) = \alpha \cdot (R_E(\tau) + R_F(\tau)), 1 \le \alpha \le 4$$
 (6)

where $R_i(\tau)$ is the autocorrelation function of sequence C_i , $1 \le i \le 8$.

The addition of the four autocorrelation functions is illustrated in Figure 13B, which is the same as Figure 13B except that the maximum value is doubled to 4*L or -4*L (the maximum values being 64 and -64 for the preferred embodiment) since $(R_E(\tau) + R_F(\tau))$

 $+R_{G}(\vec{r})+R_{H}(\vec{r})=2$ ($R_{E}(\vec{r})+R_{F}(\vec{r})$) by equations (5) and (6). This property allows the double-checking of the frame synchronization timing and the reduction of the synchronization search time.

First Embodiment for Uplink DPCCH

Figures 14A and 14B are tables illustrating the pilot patterns in accordance with a preferred embodiment of the present invention for uplink DPCCH with $N_{pilot} = 5$, 6, 7, and 8. The shaded pattern of Figures 14A and 14B are used for frame synchronization (which can also be used for channel estimation), and the pilot bit other than the frame synchronization words (e.g., channel estimation) has a value of 1. Figure 14C is a table illustrating the mapping relationship between the 8 synchronization words C_1 - C_8 of Figure 12A and shaded pilot bit patterns of Figures 14A and 14B, where frame synchronization words C_1 , C_2 , C_3 , and C_4 are the elements of the set {E, F, G, and H}, respectively. The results of Figures 13A and 13B are obtained by $\alpha = 1$ and 2 in equation (6), respectively, which allows a double-check of the frame synchronization timing and a reduction of the synchronization time on uplink DPCCH with $N_{pilot} = 5$, 6, 7, and 8.

For example, the frame synchronization words at bit #1 (C_1), at bit #2 (C_2), at bit #4 (C_3) and at bit #5 (C_4) are used in the autocorrelation process for the frame synchronization when $N_{pilot}=6$. For $N_{pilot}=8$, the frame synchronization words at bit #1

 (C_1) , at bit #3 (C_2) , at bit #5 (C_3) and at bit #7 (C_4) are used in the autocorrelation process for the frame synchronization. For $N_{pilot}=5$, 6, 7, and 8 in each slot, a total of four frame synchronization words are used. As a result, since one radio frame has sixteen timeslots, the number of pilot bits used for the frame synchronization is only 64 per frame in the preferred embodiment. As can be appreciated, the number of words used for frame synchronization can vary depending on variations of N_{pilot} . For example, when $N_{pilot}=1$, one of the frame synchronization words C_1 - C_8 can be used for both frame synchronization and channel estimation due to the novel feature of the preferred embodiment.

Figure 14D illustrates a correlation circuit for frame synchronization based on pilot bits of the uplink DPCCH in accordance with a preferred embodiment of the present invention when frame synchronization words C₁-C₄ are used. The frame synchronization words C₁-C₄ are latched in latch circuits 31-34, respectively. The correlators 41-44 perform correlation function R(x), where x=0 to L-1,of the frame synchronization words C₁-C₄, respectively, to generate the correlation results A₁-A₄, which are stored in buffers 51-53.

Figure 14E is a table illustrating the correlation results at points A₁-A₄, and the summing of the correlation results at point B. As shown, the result has maximum values of opposite polarity at zero and middle time shifts R(0) and R(8). Further, the remaining sidelobes at time shifts other than zero and middle have values of zero after the addition

at point B. The sidelobes are eliminated or minimized, and the results at point B correspond to the optimal results of Figure 13B.

Figure 14F is a table illustrating various results of the addition of correlation results of points A_1 - A_4 based on the uplink pilot patterns of the frame synchronization words C_1 - C_4 in accordance with the preferred embodiment of the present invention. The respective addition of the autocorrelation results of points $(A_1 + A_2)$, $(A_3 + A_4)$, $(A_1 + A_4)$ and $(A_2 + A_3)$ exhibit the same characteristics of the optimal results illustrated in Figure 13A.

Figure 14G illustrates a correlator circuit for frame synchronization based on pilot bit sequences of an uplink DPCCH in accordance with an alternative embodiment. The elements are the same as the correlator circuit of Figure 14D. The frame synchronization words of (C₁ and C₂), (C₂ and C₃), (C₃ and C₄), or (C₄ and C₁) are correlated and summed to provide the results at point D. The summation result at point D of Figure 14G is similar to the correlator circuit of Figure 14D other than the maximum values of opposite polarity being 2*L (32) and -2*L (-32), rather than 4*L (64) and -4*L (-64), respectively, corresponding to the results of Figure 14F and optimal results of Figure 13A.

Figure 14H illustrates the receiver circuit 60 of a base station or a user equipment to recover the received spread signal including the frame synchronization words in the pilot field. After despreading the received spread signal by the despreading circuit 61, the channel estimator and frame synchronizer 62 performs the channel estimation and the

frame synchronization based on the pilot field. The Rake combiner 63 uses the results of the channel estimator and frame synchronizer, and after rake combining, the data is deinterleaved by the deinterleaving circuit 64 in the reverse order of the transmitter side. Thereafter, the data is recovered after decoding by a decoder 65.

The advantages of the present invention can be readily discerned based on comparison of the frame synchronization words previously recommended in TS S1.11 v1.1.0 specification and the frame synchronization words for, e.g., N_{pilot} =6. Applying the same principle of equations (1)-(6) and the correlator circuit of Figure 14D, the results in Figure 14I are obtained for the pilot pattern indicated in the technical specification. When the summation result at point B is mapped on a time shift graph, the problem of sidelobes is readily apparent, as shown in Figure 14J. In other words, there is no maximum peak values of opposite polarity at zero and middle time shifts, and sidelobes are present at time shifts other than zero and middle.

As described in the background art, obtaining good cross-correlation and autocorrelation simultaneous is difficult to achieve, where cross-correlation relates to different words at different time shifts and autocorrelation relates to same sequences which are time shifted version. The good cross-correlation and autocorrelation of the present invention is based on unique properties of the frame synchronization words.

The unique characteristics of the frame synchronization words in accordance with the preferred embodiment can be readily discerned in view of Figures 12, 14A and 14B. As shown in frame synchronization words C_1 - C_8 of Figure 12, each word has substantially the same number of 1 and 0. In other words, the number (b_1) of pilot bits of a frame synchronization words having a value of 1 minus the number (b_0) of pilot bits of the frame synchronization having a value of 0 is equal to zero or close to zero. In the preferred embodiment, when there are even number of slot numbers, there are the same number of pilot bits having a value of 1 and 0 in a single frame synchronization word such that b_1 - b_0 is zero. As can be appreciated, when there are an odd number of pilot bits in a single frame synchronization word, the result of b_1 - b_0 is plus or minus one, e.g., close to zero.

The second characteristic of the frame synchronization words can be discerned by an examination between a pair of adjacent frame synchronization words (shaded patterns of Figures 14A and 14B for N_{pilot} =5, 6, and 7), or between a pair of adjacent frame synchronization word and channel estimation word (shaded and non-shaded patterns of Figures 14A and 14B for N_{pilot} =5, 6, 7, and 8). Generally, the number (b₃) of bit values which are the same (0, 0 and 1,1) between a pair of adjacent words (i.e., between two adjacent frame synchronization words, or between a frame synchronization word and a channel estimation word, which are adjacent) minus the number (b₄) of bit values which are different (1,0 or 0,1) between adjacent words (i.e., between two adjacent frame

synchronization words, or between a frame synchronization word and a channel estimation word, which are adjacent) equals zero or a prescribed number close to zero.

In the preferred embodiment, the number (b_3) of pilot bit values which are the same between two adjacent words equals the number (b_4) of pilot bit value which are different between the two adjacent words, i.e., b_3 - b_4 =0. In the preferred embodiment, when the N_{pilot} =5, between two synchronization words of C_1 at bit #0 and C_2 at bit #1, there same number of pilot bit values which are the same (0,0 and 1,1) and pilot bit values which are different (1,0 and 0,1) from slot #1 to slot #16, as shown in Figure 14A. Similarly, between a synchronization word C_2 at bit #1 and a channel estimation word at bit #2, there same number of pilot bit values which are the same (0,0 and 1,1) and pilot bit values which are different (1,0 and 0,1) from slot #1 to slot #16. The same applies between two adjacent words at bit #2 and bit #3, and between two adjacent words at bit #3 and bit #4. The above also applies to adjacent words of N_{pilot} =6, 7 and 8. As can be appreciated, when an odd number of slots are used, the result of b_3 - b_4 equals plus or minus one, e.g., close to zero.

As a result of such a characteristic, cross-correlation between two adjacent words used for frame synchronization is zero (orthogonal) at zero time shift. Further, the cross-correlation between a word used for frame synchronization and the sequence used for channel estimation is zero (orthogonal) at all time shifts. In other word, within N_{pilot}

number of words of L-bits, there are an even number of words used for frame synchronization, but all words perform channel estimation, wherein between adjacent words used for frame synchronization, there is substantially zero cross-correlation. Moreover, the words used for frame synchronization has substantially zero cross-correlation with words not used for frame synchronization, i.e., channel estimation, at any time shifts.

Further, each N_{pilot} words corresponds to a prescribed number by an autocorrelation function such that when a pair from a set of autocorrelated results corresponding to words used for frame synchronization is combined, two peak values equal in magnitude and opposite in polarity are achieved at zero and middle time shift while sidelobes are substantially eliminated at time shifts other than zero and middle. Autocorrelation in accordance with the present invention can be generally defined as a correlation between a word and its time shifted replica (including replica at zero time shift), where correlation is the number of bit values which are the same between two words minus the number of bit values which are different between the same two words. Further, as shown in Figure 12B, R_1 and R_2 are complements of each other.

First Embodiment for Downlink DPCH

Figure 15A illustrates the pilot symbol patterns for downlink DPCH for N_{pilot} =4, 8 and 16, where two pilot bits form a symbol since the right bit is used for the I channel branch and the left bit is used for the Q channel branch. In the preferred embodiment, N_{pilot} =4 can be used for 8 ksps (kilo symbols per second); N_{pilot} =8 can be used for 16, 32, 64, and 128 ksps; and N_{pilot} =16 can be used for 256, 512, and 1024ksps. The shaded symbols of Figure 15A can be used for frame synchronization, and the value of pilot symbol other than for frame synchronization word, e.g., channel estimation (channel estimation word), is 11. The results of Figure 15A is obtained by allowing α = 1 for N_{pilot} =4, α = 2 for N_{pilot} =8, and α = 4 for N_{pilot} =16 in equation (6) for downlink DPCH.

Figure 15B illustrates the mapping relationship between the 8 frame synchronization words of Figure 12A, and shaded pilot symbol pattern of Figure 15A. For example, in the preferred embodiment of N_{pilot}=4, the symbol #1 includes two frame synchronization words of C₁ (for the I channel branch I-CH, i.e., left sequence of bits from slot #1 to slot #16) and C₂ (for the Q channel branch Q-CH, i.e., right sequence of bits from slot #1 to slot #16). For N_{pilot}=8 and N_{pilot}=16, the correspondence of words to channels for corresponding symbols is self-explanatory in Figure 15B. Similar to the uplink DPCCH, slot-by-slot double-check of the frame synchronization timing and a

reduction of the frame synchronization search time can be achieved by using the autocorrelation property of the pilot symbol pattern based on equation (6).

Because the frame synchronization words of the downlink DPCH is based on frame synchronization words of Figure 12A, the characteristics described for uplink DPCCH is applicable to downlink DPCH. For example, the number (b₃) of bit values which are the same (0,0 and 1,1) between adjacent words (i.e., between synchronization word of I channel branch and synchronization word of Q channel branch of a frame synchronization symbol, or between a channel estimation word of the Q channel branch and a frame synchronization word of the I channel branch, which are adjacent, or between a frame synchronization word of the Q channel branch and a channel estimation word of the I channel branch, which are adjacent) minus the number (b₄) of bit values which are different (1,0 and 0,1) between adjacent words (i.e., between synchronization word of I channel branch and synchronization word of Q channel branch of a frame synchronization symbol, or between a channel estimation word of the Q channel branch and a frame synchronization word of the I channel branch, which are adjacent, or between a frame synchronization word of the Q channel branch and a channel estimation word of the I channel branch, which are adjacent) equals zero or a prescribed number close to zero.

For example, for $N_{pilot}=8$, between the symbols #0 and #1, the number of a pair of adjacent bits, i.e., one bit from the Q channel branch of the symbol #0 and one bit from the I channel branch of the symbol #1, having bit values of 1,1 and 0,0 is the same as the number of adjacent bits having bit values of 1,0 and 0,1. In other words, $b_3-b_4=0$. As can be appreciated, if the number of slots L is an odd number, the result of b_3-b_4 is plus or minus one, e.g., a prescribed number close to zero.

Figure 15C illustrates a correlation circuit for frame synchronization for downlink DPCCH of N_{pilot} =8 in accordance with the preferred embodiment. The operation and components are the same as the correlation circuit of Figure 14D for uplink DPCCH, except for the reception of I channel branch and Q channel branch synchronization words. The results of points A_1 - A_4 and point B is the same as Figure 14E. Similarly, the sidelobes are eliminated or minimized, and the results correspond to the optimal results of Figure 13B. Because the number of pilot symbols (or pilot bits) used for the frame synchronization is 2 symbols per slot (or 4 bit per slot), 32 pilot symbols (or 64 pilot bits) are used in each radio frame for the frame synchronization.

For N_{pilot} =4 in the downlink DPCCH, the correlator circuit of Figure 14G can be used. In such a case, the I and Q channel frame synchronization words are inputted to the correlator circuit. The summation result would be the same as Figure 14F, which corresponds to the optimal results of Figure 13A. In this case, the number of pilot

symbols (or pilot bits) used for the frame synchronization is 1 symbol per slot (or 2 bits per slot), and 16 symbols (or 32 pilot bits) are used in each radio frame for the frame synchronization.

As per N_{pilot}=16 in the downlink DPCCH, the correlation circuit of Figure 15C can be expanded to accommodate the additional frame synchronization words of the I and Q channel branches of pilot symbol #5 and symbol #7. The summation result would be similar to the optimal results of Figure 13B, but the maximum peak values of opposite polarity would be 128 (8*L) and -128 (-8*L). Further, the number of pilot symbols (or pilot bits) used for the frame synchronization is 4 symbols per slot (or 8 bits per slot), and 64 pilot symbols (or 128 pilot bits) are used in each radio frame for the frame synchronization.

First Embodiment of Downlink PCCPCH and SCCPCH

Figure 16A illustrates pilot symbol pattern of PCCPCH. The shaded symbols can be used for frame synchronization, and the value of pilot symbol other than for frame synchronization is 11. Figure 16B illustrates the mapping relationship between the synchronization words C_1 - C_8 of Figure 12A, and the shaded pilot symbol patterns of Figure 16A. A double-check frame of the synchronization timing and the reduction of the synchronization search time can be achieved with $\alpha = 1$ or 2 in equation (6).

Figure 16C illustrates pilot symbol pattern of SCCPCH. The shaded symbols can be used for frame synchronization, and the value of pilot symbol other than for frame synchronization is 11. Figure 16D illustrates the mapping relationship between the synchronization words C_1 - C_8 of Figure 12A, and the shaded pilot symbol patterns of Figure 16C.

As shown above, the frame synchronization words of PCCPCH and SCCPCH is based on the frame synchronization words C₁-C₈, and the disclosure for the uplink DPCCH and the downlink DPCH is applicable. Hence, a detailed description regarding the various characteristics including cross-correlation and autocorrelation, operations and implements are omitted since one of ordinary skill in the art can readily appreciate the present invention based on the uplink DPCCH and downlink DPCH.

As described above, the non-shaded symbols are the pilot symbols not used for frame synchronization comprises symbols of 11, and the shaded symbols are used for frame synchronization. The frame synchronization words of the pilot pattern are used for frame synchronization confirmation, and the summation of autocorrelated values for each frame synchronization words is required. The property of summation of autocorrelated values of frame synchronization words is very important.

The addition of autocorrelation functions of frame synchronization word of the preferred embodiment and current pilot patterns (described in TS S1.11 v1.1.0

specification) for DPCHs and PCCPCH are depicted in Figures 17A (N_{pilot} =4), Figure 17B (N_{pilot} =8) and Figure 17C (N_{pilot} =16). As shown, the current pilot patterns have non-zero out-of-phase autocorrelation function with peak value at zero shift, whereas the frame synchronization words of the preferred embodiment have zero out-of-phase autocorrelation function with two peak values equal in magnitude and opposite in polarity at zero and middle time shifts (delays).

Correlation to a prescribed frame synchronization word is optimum method for frame synchronization. Since the frame synchronization word of pilot pattern is used for frame synchronization confirmation, the following events and parameters are used to evaluate the performance of frame synchronization confirmation using the frame synchronization words of the preferred embodiment and the current pilot patterns:

H₁: The event that the correlator output exceeds the predetermined threshold when the code phase offset between the received shadowed column frame synchronization word and its corresponding receiver stored frame synchronization word is zero.

H₂: The event that the correlator output exceeds the predetermined threshold when the code phase offset between the received shadowed column frame synchronization word and its corresponding receiver stored frame synchronization word is not zero.

 H_3 : One event of H_1 and no event of H_2 for one frame.

H₄: The event that the correlator output exceeds the predetermined threshold or is smaller than -1×(predetermined threshold) when the code phase offset between the received shadowed column frame synchronization word and its corresponding receiver stored frame synchronization word is 0 or 8, respectively.

 H_5 : The event that the correlator output exceeds the predetermined threshold or is smaller than $-1\times$ (predetermined threshold) when the code phase offset between the received shadowed column frame synchronization word and its corresponding receiver stored frame synchronization word is not 0 and 8.

 H_6 : One event of H_4 and no event of H_5 for one frame.

 P_D : Probability of a detection.

P_{FA}: Probability of a false alarm.

 P_s : Probability of a frame synchronization confirmation success for one frame.

From the above definitions, when the current pilot pattern is used for frame synchronization confirmation, the probability of a detection and a false alarm can be expressed as:

$$P_{D} = Prob(H_{1}) \tag{7}$$

$$P_{FA} = Prob(H_2) \tag{8}$$

The probability of a frame synchronization confirmation success for one frame becomes $P_S = \text{Prob}(H_3)$ and it can be expressed as

$$P_{S} = P_{D}(1-P_{FA})^{15}$$
 (9)

Whereas in the case of the frame synchronization words of the preferred embodiment, as has been stated, double thresholds are needed for double-check frame synchronization, and the probability of a detection and a false alarm can be expressed as:

$$P_{D} = Prob(H_{4}) \tag{10}$$

$$P_{FA} = Prob(H_5) \tag{11}$$

Similarly, in the case of frame synchronization words of the preferred embodiment, the probability of a frame confirmation success for one frame becomes P_S = $Prob(H_6)$ and it is given by

$$P_{S} = P_{D}(1-P_{FA})^{14}$$
 (12)

From equations (9) and (12), the probability of a frame synchronization confirmation is greatly affected by the probability of a false alarm since P_S is proportional to P_D and $(1-P_{FA})^{14}$ or $(1-P_{FA})^{15}$. For example, assume that $P_{FA} = 10^{-1}$, then $(1-P_{FA})^{14} = 0.2288$ and $(1-P_{FA})^{15} = 0.2059$. Now let $P_{FA} = 10^{-3}$, then $(1-P_{FA})^{14} = 0.9861$ and $(1-P_{FA})^{15} = 0.9851$. The performance of frame synchronization can be sufficiently evaluated by selecting the threshold so that the P_{FA} is much smaller than $(1-P_D)$.

The parameters of Figure 18A are used for obtaining P_D, P_{FA}, and P_S on uplink DPCCH and downlink DPCH over additive white Gaussian noise (AWGN). Figure 18B

illustrates the probability of detection P_D on downlink DPCCH with N_{pilot} =4 over AWGN channel, Figure 18C illustrates the probability of false alarm P_{FA} on downlink DPCCH with N_{pilot} =4 over AWGN channel, and Figure 18D illustrates the probability of a frame synchronization confirmation success P_S on downlink DPCCH with N_{pilot} =4 over AWGN between the pilot pattern of the preferred embodiment and the current pilot pattern, where P_D , P_{FA} , and P_S are given as a function of E_b/N_0 ratio (E_b = energy per bit, N_0 = noise power spectral density).

The P_D and P_S of the pilot patterns of the preferred embodiment are greater than that of current pilot pattern. Furthermore, the P_{FA} of the pilot patterns in accordance with the preferred embodiment are also smaller than that of the current pilot patterns. The theoretical equations (9) and (12) are identical to simulation results of Figure 18D. Therefore, there is significant difference between the frame synchronization performance of pilot patterns of the preferred embodiment and that of current pilot pattern. For example, from Figure 18D, there is 3dB gain at $P_S = 0.93$ by employing the pilot patterns of the preferred embodiment.

The frame synchronization words of the preferred embodiment are especially suitable for frame synchronization confirmation. By adding the autocorrelation functions of shaded frame synchronization words, double maximum values equal in magnitude and opposite polarity at zero and middle shifts are obtained. This property can be used to slot-

by-slot and double-check frame synchronization timing and reduce the synchronization search time. The performance of frame synchronization confirmation over AWGN using pilot pattern illustrate the significant differences between the frame synchronization performance of the pilot pattern of the preferred embodiment and the current pilot pattern.

First Embodiment of Downlink DPCH, PCCPCH and SCCPH for STTD Diversity

Figure 19A illustrates new pilot symbol patterns of Downlink DPCH for the diversity antenna using a space time block coding based transmit diversity (STTD). For the diversity pilot symbol pattern on downlink DPCH, STTD is applied to the shaded pilot symbols #1 and #3 for $N_{pilot} = 8$, and the shaded pilot symbols #1, #3, #5, and #7 for $N_{pilot} = 16$. The non-shaded pilot symbols #0 and #2 for $N_{pilot} = 8$, and non-shaded pilot symbols #0, #2, #4,and #6 for $N_{pilot} = 16$ are encoded to be orthogonal to the pilot symbol of Figure 15A. However, the diversity pilot pattern for downlink DPCH with $N_{pilot} = 4$ are STTD encoded since STTD encoding requires two symbols. Figure 19B illustrates the mapping relationship between the 8 words C_1 - C_8 of Figure 12A and shaded pilot symbol patterns of Figure 19A.

Figure 19C illustrates the new diversity antenna pilot symbol pattern for PCCPCH. The pilot symbols of Figure 19C are encoded to be orthogonal to the pilot

symbols of Figure 16A. Figure 19D illustrates the mapping relationship between the words C₁-C₈ of Figure 12A and shadowed pilot symbol patterns of Figure 19C.

Figure 19E illustrates the new pilot symbol pattern for the diversity antenna when STTD encoding is used on the SCCPCH. For the diversity pilot symbol pattern on SCCPCH, STTD is applied to the shaded pilot symbols #1, and #3 of $N_{pilot} = 8$, and shaded pilot symbols #1, #3, #5 and #7 of $N_{pilot} = 16$ in Figure 19E, whereas the non-shaded pilot symbols #0 and #2 of $N_{pilot} = 8$, and non-shaded #0, #2, #4, #6 of $N_{pilot} = 16$ are encoded to be orthogonal to those of Figure 16C. Figure 19F illustrates the mapping relationship between the words C_1 - C_8 of Figure 12A and shaded pilot symbol patterns of Figure 19E.

Since the above is based on words C₁-C₈, the previous discussion regarding the uplink DPCH and downlink DPCH, PCCPCH and SCCPH is readily applicable. One of ordinary skill in the art can readily appreciate the features for downlink using diversity antenna based on previous disclosure, and a detailed disclosure is omitted.

Alternative Embodiments for Uplink DPCCH and Downlink DPCH and PCCPCH

Figure 20A is a table illustrating frame synchronization words C_1 - C_{16} (i = 16) and autocorrelated function in accordance with another preferred embodiment of the present invention. The frame synchronization words C_1 - C_{16} can be classified into the PCSP of the first embodiment, as follows:

$$E = \{C_1, C_3, C_9, C_{11}\}$$

$$F = \{C_2, C_4, C_{10}, C_{12}\}$$

$$G = \{C_5, C_7, C_{13}, C_{15}\}$$

$$H = \{C_6, C_8, C_{14}, C_{16}\}$$

The classification of the alternative frame synchronization words C₁-C₁₆ are also applicable to equations (1)-(6), and have the same properties and characteristics of the first embodiment. Figure 20B is a table illustrating the autocorrelation function of the pilot bits of each frame synchronization word classified in the PCSP. In this particular case, each class contains four sequences and the sequences of the same class have the same autocorrelation function.

Figure 20C illustrates the pilot bit pattern of uplink DPCCH with N_{pilot}=6 and 8 and Figure 20D illustrates a mapping relationship between the alternative frame synchronization words C₁-C₁₆ of Figure 20A and the shaded frame synchronization words of Figure 20C. Figures 20E and 20F illustrate the pilot symbol pattern of downlink DPCH with 8, 16, 32, 64, 128, 256, 512, 1024, 2048 and 4096 ksps, and Figure 20G illustrates a mapping relationship between the alternative frame synchronization words C₁-C₁₆ of Figure 20A and the shaded frame synchronization words of Figures 20E and 20F. Figure 20H illustrates the pilot symbol pattern of downlink PCCPCH and Figure

20I illustrates a mapping relationship between the alternative frame synchronization words C_1 - C_{16} of Figure 20A and the shaded frame synchronization words of Figure 20H.

Since the above is based on alternative words C_1 - C_{16} , which have the same features as the words C_1 - C_8 of the first embodiment, the previous discussion regarding the uplink DPCH and downlink DPCH, PCCPCH and SCCPH of the first embodiment is readily applicable. One of ordinary skill in the art can readily appreciate the features of this embodiment based on previous disclosure, and a detailed disclosure is omitted.

The frame synchronization words of the preferred embodiment are especially suitable for frame synchronization confirmation. By adding the autocorrelation functions of shaded frame synchronization words, double maximum values equal in magnitude and opposite polarity at zero and middle shifts are obtained. This property can be used to slot-by-slot and double-check frame synchronization timing and reduce the synchronization search time. Further the present invention allows a simpler construction of the correlator circuit for a receiver, thereby reducing the complexity of the receiver. Due to various advantages of the present invention, the first preferred embodiment has been accepted by the 3GPP, as shown in TS 25.211 v2.0.1, distributed June 1999, whose entire disclosure is hereby incorporated by reference therein.

Preferred Embodiment for L=15

The above pilot patterns in accordance with preferred embodiments of the present

invention have various advantages including frame synchronization confirmation. However, alternative pilot patterns are needed for 15 slots (L=15) due to OHG harmonization. Figure 21 illustrates a preferred embodiment for the new frame synchronization words C_1 - C_{i-th} , which has the auto-correlation function of lowest out-of-phase coefficient and the lowest magnitude of cross-correlation function with minus peak value at middle shift, where i=8. The frame synchronization words are used to design the regular pilot patterns and diversity antenna pilot patterns of uplink DPCH, and downlink DPCH and SCCPCH of the preferred embodiment. By using the two correlation functions, it is possible to double check frame synchronization at zero and middle shifts. When performance evaluation of single-check and double-check frame synchronization confirmation is carried out over AWGN environment, the words C_1 - C_8 of Figure 21 are suitable for frame synchronization confirmation

The frame synchronization words C₁-C₈ have the following two-valued autocorrelation function:

$$R_{i}(\tau) = \begin{cases} 15, & \tau = 0 \\ -1, & \tau \neq 0 \end{cases}, \quad i = 1, 2, \Lambda, 8$$
 (13)

where $R_i(\tau)$ is the auto-correlation function of frame synchronization word C_i . Similar to L=16, the words of Figure 21 can be divided into 4 classes, as follows:

$$E = \{C_1, C_2\}$$

$$F = \{C_3, C_4\}$$

$$G = \{C_5, C_6\}$$

$$H = \{C_7, C_8\}$$

The two words within the same class are PCSP. The cross-correlation spectrum for the preferred pair $\{C_1, C_2\}$, $\{C_3, C_4\}$, $\{C_5, C_6\}$, or $\{C_7, C_8\}$ is

$$R_{i,j}(\tau) = \begin{cases} -15, & \tau = 7 \\ 1, & \tau \neq 7 \end{cases}$$
 (14)

$$R_{j,i}(\tau+1) = \begin{cases} -15, & \tau = 7\\ 1, & \tau \neq 7 \end{cases}$$
 (15)

where $R_{i,j}(\tau)$ is cross-correlation function between two words of preferred pair of E, F, G, H, and i, j = 1, 2, 3, ..., 8. By combining such auto-correlation and cross-correlation functions, the following equations (16) and (17) are obtained:

$$\sum_{i=1}^{\alpha} R_i(\tau) = \begin{cases} \alpha \cdot 15, & \tau = 0 \\ -\alpha, & \tau \neq 0 \end{cases}, \quad \alpha = 1, 2, 3, \dots, 8$$
 (16)

$$\sum_{i=1}^{\alpha/2} (R_{2i-1,2i}(\tau) + R_{2i,2i-1}(\tau+1)) = \begin{cases} -\alpha \cdot 15, & \tau = 7\\ \alpha, & \tau \neq 7 \end{cases}, \quad \alpha = 2,4,6,8$$
 (17)

From equations (16) and (17), when $\alpha=2$, Figure 22A illustrates the addition of two auto-correlation functions, and Figure 22B illustrates the addition of two cross-correlation functions between the two frame synchronization words within the same class. Similarly, from equations (16) and (17), when $\alpha=4$, Figure 22C illustrates the addition of four auto-correlation functions, and Figure 22D illustrates the addition of four cross-correlation functions between the four frame synchronization words of two classes E and F.

Since the auto-correlation function of the frame synchronization words C₁-C₈ in accordance with this preferred embodiment has the lowest out-of-phase coefficient, single-check frame synchronization confirmation is feasible by applying the positive threshold value at (a) of the auto-correlation function output of Figure 22C. Furthermore, double-check frame synchronization confirmation is also achieved by setting the negative threshold value at (b) of the cross-correlation function output of Figure 22D.

Figures 23A illustrates the pilot bit patterns on uplink DPCCH with $N_{pilot} = 2$, 3, and 4 in accordance with an alternative embodiment compared to Figure 23A. Further, Figures 23E and 23F illustrate the pilot bit patterns on uplink DPCCH with

N_{pilot} = 5, 6, 7, and 8. The shaded parts of Figures 23A, 23C, 23E and 23F can be used for frame synchronization words, and the value of pilot bit other than the frame synchronization word is 1. Figures 23B and 23D illustrate the mapping relationship between the frame synchronization words of Figure 21, and shaded frame synchronization words of Figures 23A and 23D, respectively. Further, Figure 23G illustrates the mapping relationship between the frame synchronization words of Figures 23E and 23F.

The various description of above for uplink DPCCH when L=16 is readily applicable to this preferred embodiment when L=15, including the correlator circuits (with some modifications) and the generally characteristics. For example, as shown in frame synchronization words C₁-C₈ of Figure 21, each word has substantially the same number of 1 and 0. In this preferred embodiment, the result of b₁-b₀ is plus or minus one, e.g., close to zero. Further, when the number of slots is 15, i.e., odd, the result of b₃-b₄ equals plus or minus one, e.g., close to zero. Further, since two frame synchronization words are used for $N_{pilot} = 2$, 3, and 4 and there are fifteen timeslots in a radio frame, the number of pilot bits used for synchronization is 30 per frame. For N_{pilot} = 5, 6, 7 and 8, since four synchronization words are used for fifteen timeslots in a radio frame, the number of pilot bits used for synchronization is 60 per frame. Moreover, the result of the addition of two or four auto-correlation functions and cross-correlation functions between two or four frame synchronization words corresponds to Figures 22A-22D.

The Random Access Channel (RACH) is an uplink transport channel that is used to carry control information from the UE. The RACH may also carry short user packets. The RACH is always received from the entire cell. Figure 23H illustrates the structure of random access channel. The 10 ms message is split into 15 slots, each of length $T_{\text{slot}} = 2560$ chips. Each slot has two parts, a data part that carries Layer 2 information and a control part that carries Layer 1 control information. The data and control parts are transmitted in parallel.

The data part includes $10*2^k$ bits, where k=0,1,2,3. This corresponds to a spreading factor of 256, 128, 64, and 32 respectively for the message data part. The control part has 8 known pilot bits to support channel estimation for coherent detection and 2 bits of rate information. This corresponds to a spreading factor of 256 for the message control part. Figure 23I illustrates the random access message control fields and there is always 8 pilot symbols per slot for channel estimation. Due to the unique characteristics of the frame synchronization words in accordance with the preferred embodiment, the frame synchronization words C_1 - C_8 can be used in the pilot bit pattern of the RACH for channel estimation. Figure 23J illustrates the pilot bit pattern of the RACH, and the mapping relationship is the same as the mapping relationship illustrated in Figure 23G for $N_{\text{pilot}}=8$. Due to the novel characteristics of the frame synchronization words C_1 - C_8 , which can also be used solely for channel estimation, it is easy to reuse the pilot patterns, which allows commonality between different uplink channels.

Figure 24A illustrates the pilot symbol patterns on downlink DPCH when N_{pilot} = 2, 4, 8, and 16. The shaded parts of Figure 24A can be used for frame synchronization symbols, each symbol having one frame synchronization word for the I channel branch and another frame synchronization word for the Q channel branch, and the value of pilot symbol other than the frame synchronization word is 11. Figure 24B illustrates the mapping relationship between the frame synchronization words C₁-C₈ of Figure 21 and shaded pilot symbol patterns of Figure 24A.

Figure 24C illustrates the pilot symbol patterns of downlink DPCH for the diversity antenna using STTD. For the diversity pilot symbol pattern on downlink DPCH, STTD is applied to the shaded pilot symbols #1 and #3 for N_{pilot} = 8, and #1, #3, #5, and #7 for N_{pilot} = 16. The non-shaded pilot symbols of #0 and #2 for N_{pilot} = 8 and 0#, #2, #4 and #6 for N_{pilot} = 16 are encoded to be orthogonal to the pilot symbol of Figure 24A. However, the diversity pilot pattern for downlink DPCH with N_{pilot} = 4 are STTD encoded since STTD encoding requires two symbols. Since the STTD encoded pilot symbol pattern is orthogonal to ordinary pilot symbol pattern, the STTD encoded pilot pattern can also be used for antenna verification of feedback mode diversity. Figure 24D illustrates the mapping relationship between the frame synchronization words C_1 - C_8 of Figure 21 and shaded pilot symbol patterns of Figure 24C.

Figure 25A illustrates the pilot symbol patterns for downlink SCCPCH for N_{pilot}
= 8 and 16, and Figure 25B illustrates the mapping relationship of the frame

synchronization words C_1 - C_8 of Figure 21 and shaded pilot symbol patterns of Figure 25A. Further, Figure 25C illustrates the pilot symbol patterns of downlink SCCPCH for Npilot = 8 and 16 for the diversity antenna using STTD, and Figure 25D illustrates the mapping relationship between the frame synchronization words C_1 - C_8 of Figure 21 and shaded pilot symbol patterns of Figure 25C.

As can be appreciated, the various description of above for downlink DPCH when L=16 is readily applicable to this preferred embodiment when L=15, including the correlator circuits (with some modifications) and the generally characteristics. Moreover, the result of the addition of two or four auto-correlation functions and cross-correlation functions between two or four frame synchronization words corresponds to Figures 22A-22D.

In order to evaluate the performance of the frame synchronization words in accordance with the preferred embodiment for 15 slots per frame, the following events and parameters are first defined:

 H_1 : The event that the auto-correlator output exceeds the predetermined threshold at zero slot offset.

 H_2 : The event that the auto-correlator output exceeds the predetermined threshold at zero slot offset or the cross-correlator output is smaller than $-1\times$ (predetermined threshold) at 7 slot offset.

H₃: The event that the auto-correlator exceeds the predetermined threshold at slot offset except zero.

 H_4 : The event that the cross-correlator output is smaller than $-1\times$ (predetermined threshold) at slot offset except 7.

P_S: Probability of a frame synchronization confirmation success.

 P_{FA} : Probability of a false alarm.

The frame synchronization is confirmed if the output of the correlator using the frame synchronization word exceeds the predetermined threshold. The success of the frame synchronization confirmation is determined when the successive S_R frame synchronization is confirmed. Otherwise, the frame synchronization confirmation failure is determined. Thus, the probability of a frame synchronization confirmation success is defined by

$$P_{S} = \begin{cases} (Prob(H_{1}))^{S_{R}}, & \text{single check} \\ (Prob(H_{2}))^{S_{R}}, & \text{double check} \end{cases}$$
 (18)

The probability of a false alarm can be expressed as

$$P_{FA} = \operatorname{Pr} \operatorname{ob}(H_{3})$$

$$= \operatorname{Pr} \operatorname{ob}(H_{4})$$
(19)

The parameters of Figure 26A are used to evaluate the performance of the pilot bit pattern on uplink DPCCH over AWGN. Figure 26B illustrates the probability of frame

synchronization confirmation success P_S on uplink DPCCH with N_{pilot} =6 over AWGN channel. Further, Figure 26C illustrates the probability of a false alarm P_{FA} on uplink DPCCH with N_{pilot} =6 over AWGN channel. The P_S and P_{FA} are given as a function of E_b/N_0 ratio (E_b = energy per bit, N_0 = noise power spectral density).

The P_S of single-check and double-check frame synchronization confirmation with $S_R = 3$ on uplink DPCCH is smaller than 0.945 and 0.99 at -5dB, respectively. Further, about 4dB gain is obtained by employing double-check method compared to single-check method. From Figure 26C, the probability of a false alarm with normalized threshold = 0.6 at -5dB is smaller than 2.5×10^{-4} . The pilot pattern can be used for frame synchronization confirmation since perfect frame synchronization confirmation success with zero false alarm was detected at Eb/No = 0dB when double-check frame synchronization confirmation method was used.

Figure 27 is a comparision chart between the embodiments for 15 timeslots and 16 slots. Including the various advantages for L=16, the pilot bit/symbol patterns for L=15 in accordance with the preferred embodiment have additional advantages. By using this property/characteristics of the frame synchronization words, double-check frame synchronization scheme can be obtained. There is significant gain about 4dB by employing the double-check frame synchronization confirmation method compared to single-check method. However, in the case of 15 slots, the complexity of the correlator

circuit is doubled since an auto-correlator for positive peak detection and a cross-correlator for negative peak detection are used.

Since the auto-correlation function of the frame synchronization words of the 15 slots has the lowest out-of-phase coefficient, the single-check frame synchronization confirmation method can also be employed; whereas, in the case of 16 slots, there is some problems due to +4 or -4 out-of-phase coefficients. The pilot patterns of 15 slots is very suitable for frame synchronization confirmation since perfect frame synchronization confirmation success with zero false alarm was detected at Eb/No = 0dB on uplink DPCH when double-check frame synchronization confirmation method was used. Due to the various advantageous of the preferred embodiment, the pilot bit/symbol patterns of 15 slots have been again accepted by the 3GPP.

The foregoing embodiments are merely exemplary and are not to be construed as limiting the present invention. The present teaching can be readily applied to other types of apparatuses. The description of the present invention is intended to be illustrative, and not to limit the scope of the claims. Many alternatives, modifications, and variations will be apparent to those skilled in the art. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures.