

Съдържание

1. Електрически свойства на водата

Силно полярна течност с:

- ✓ голяма относителна диелектрична проницаемост $\varepsilon_r \approx 80$;
- ✓ високи загуби (tg δ ≈ 0,08 при 1 MHz);
- ✓ ниско изолационно съпротивление ($\rho \sim 10^3 \div 10^4 \ \Omega$.m).

2. Степен на умокряне

Определя се с т. нар. капков тест

мокрещи се (полярни) немокрещи се (неполярни)

3. Хигроскопичност Н

$$H = \frac{G_1 - G_0}{G_0}.100, \%$$

където G_0 е първоначално тегло на образеца; G_1 – тегло, след като образеца е престоял достатъчно дълго време (24 или 48 часа) в условия на повишена влажност (ϕ = 98% при T = 20°C)

4. Влагопроницаемост *А*

$$M = A \frac{\Delta p.S}{d}.t$$

където M е количеството влага, преминало за време t през повърхност S на образец с дебелина d под въздействието на разлика в налягането на водните пари Δp от двете страни на образеца.

A = 7000 за целофана и A = 0 за стъклото.

1. Топлоустойчивост

Свойство на материала да издържа въздействието на висока температура (за кратко време или за време, съизмеримо с експлоатационния срок).

На практика това е температурата, при която параметрите на материала се променят недопустимо (извън определени граници).

Органични материали – механични свойства. Неорганични – електрически свойства.

1. Топлоустойчивост

Класове на топлинна устойчивост

Клас	Топлоустойчивост	Материали
Υ	90°C	Органични на целулозна основа, полиетилен
Α	105°C	Като клас Ү, но импрегнирани с лак
Е	120°C	Гетинакс, текстолит
В	130°C	Композиционни – неорганична основа (слюда, стъкло и др.) + огранична смола

1. Топлоустойчивост

Класове на топлинна устойчивост

Клас	Топлоустойчивост	Материали
F	155°C	Композиционни – неорганична + епоксидни, полиуретанови смоли
Н	180°C	Композиционни – неорганична + силиконови смоли
С	над 180°C	Неорганични материали, тефлон

2. Студоустойчивост

Да издържат ниски температури – под – 60°C

При ниски температури органичните материали влошават механичните си свойства.

3. Коефициент на топлопроводимост h_T

$$h_T = \frac{\Delta P_T}{\Delta S} \cdot \frac{dl}{dT}, \quad \text{Wm.°C}$$

където ΔP_T е мощност на топлинния поток през сечението ΔS ;

$$\dfrac{dl}{dT}$$
 – температурният градиент по дължината l на образеца

3. Коефициент на топлопроводимост h_T

Материал	<i>h</i> _T , W/m.°C
Въздух	0,03
Гетинакс	0,35
Кварц (кристален)	12,5
Берилиева керамика	218
Мед	406