材 料 力 学

- 【1】図 1(a)のように、長さ ℓ_1 で直径 d_1 の丸棒 I と長さ ℓ_2 で両端の直径が d_1 , d_2 のテーパ棒 II とが結合している. 縦弾性係数 E および線膨張係数 α として、以下の問いに答えよ.
 - (1) 両端を力 P で引張るとき、丸棒 I の伸び λ_1 およびテーパ棒 II の伸び λ_2 を求めよ. なお、テーパ棒 II の伸びは、図 I(b) のように直径 d_1 の 端から x をとり微小部分 dx の伸びを積分して求めよ.
 - (2) 棒を両壁間に固定して、温度 t 上昇させたときの丸棒 I に生じる軸応力 σ を求めよ.

- 【2】図2のように、三角形分布荷重を受ける一端固定他端支持はりについて、 縦弾性係数Eおよび断面2次モーメントIとして、以下の問いに答えよ.
 - (1) 図のように (x,y) 座標をとり、支持端 A の反力 R_A を未知数として曲 げモーメント M(x)を表せ.
 - (2) たわみの基礎式 (微分方程式) およびはりの境界条件を示して、反力 R_A を求めよ.
 - (3) 固定端 B 点の反力 R_B および曲げモーメント M_B を求めて、はりのせん断力線図(SFD)および曲げモーメント線図(BMD)を描け.

材 料 力 学

- 【3】平面応力状態にある物体に関して以下の問いに答えよ. ただし, この材料の縦弾性係数をE, ポアソン比を ν とする.
 - (1) 図 3 に示すように、材料内の点 A を含む微小要素に垂直応力 σ_x と σ_y が作用している.このとき、xy 座標系を反時計回りに $\pi/4$ だけ回転させた x'y' 座標系における応力成分 $\sigma_{x'}$ 、 $\sigma_{y'}$ 、 $\tau_{xy'}$ を求めよ.
 - (2) xy座標系における垂直応力 σ_x と σ_y がそれぞれ $\sigma_x = -\sigma$, $\sigma_y = \sigma$ ($\sigma > 0$)で与えられるとき,x'y'座標系における応力成分 $\sigma_{x'}$, $\sigma_{y'}$, $\tau_{x'y'}$ を σ で表せ.また,このx'y'座標系における応力状態を一般に何と呼ぶか.
 - (3) (2)の応力状態にあるとき,点 A における最大主応力 σ_{\max} と最小主応力 σ_{\min} を求めよ.
 - (4) (2) の応力状態にあるとき、点 \mathbf{A} における最大主ひずみ $\boldsymbol{\varepsilon}_{\max}$ と最小主ひずみ $\boldsymbol{\varepsilon}_{\min}$ を求めよ.
 - (5) (2) の応力状態にあるとき、点 A における最大せん断ひずみの大きさ $|\gamma_{\max}|$ を求めよ。ただし、解答には横弾性係数Gを用いないこと。

