MAC 0460 / 5832 Introduction to Machine Learning

17 — Support Vector Machines (SVM)

- hyperplane
 margin
 margin violation
- QP problems
 dual problems
 kernel trick

IME/USP (16/06/2021)

SVM roadmap

- Binary linear classification: The linearly separable case
- hard-margin SVM: Maximum margin formulation
- Binary linear classification: The non-linearly separable case
- soft-margin SVM: allows margin violation
- hard-margin/soft-margin SVM is a QP problem
- Dual of hard-margin/soft-margin SVM is also QP
- How to solve QP problems
- Non-linear classification: the kernel trick

Linearly separable case

Given a linearly separable D, a linear decision boundary separating negatives from positives can be obtained using, for instance, PLA or logistic regression

Intuition

Depending on where the separating line is, it is more or less robust to noise

Maximum margin

Any of these lines separate the negatives from the positives

They have margins of different sizes

Problem formulation

How to find the separating **hyperplane that maximizes the margin** ?

In **SVM**, this is achieved by formulating the problem as a quadratic programming (QP) optimization problem

QP: optimization of quadratic functions with linear constraints on the variables

Notations

Previous Chapters

$$\mathbf{x} \in \{1\} \times \mathbb{R}^d; \ \mathbf{w} \in \mathbb{R}^{d+1}$$

$$\mathbf{x} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix}; \quad \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix}.$$

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

This Chapter

$$\mathbf{x} \in \mathbb{R}^d; \ b \in \mathbb{R}, \ \mathbf{w} \in \mathbb{R}^d$$

$$b = \text{bias}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ \end{bmatrix}; \quad \mathbf{w} = \begin{bmatrix} w_1 \\ \vdots \\ \end{bmatrix}.$$

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b)$$

$$h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}_n + b = 0$$
 defines a hyperplane H

Classification based on H

Output class: $h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + b)$

Relate parameters to margin

The classifier has parameters (\mathbf{w}, b) :

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + b)$$

We need to somehow relate \mathbf{w} and \mathbf{b} with the margin

Margin is the distance between H and the closest point among all points in D

 \Longrightarrow Let us examine $d(\mathbf{x}, H)$!

Recap: vector normal to the hyperplane

$$h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

The vector \mathbf{w} is \perp to the plane in the \mathcal{X} space:

Take \mathbf{x}' and \mathbf{x}'' on the plane

77

Recap: vector normal to the hyperplane

$$h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

The vector \mathbf{w} is \perp to the plane in the \mathcal{X} space:

Take \mathbf{x}' and \mathbf{x}'' on the plane

$$\underline{\mathbf{w}}^{\mathsf{T}}\mathbf{x}' + b = 0 \quad \text{and} \quad \underline{\mathbf{w}}^{\mathsf{T}}\mathbf{x}'' + b = 0$$

$$\implies \underline{\mathbf{w}}^{\mathsf{T}}(\mathbf{x}' - \mathbf{x}'') = 0$$

Recap: distance between point and hyperplane

$$d(\mathbf{x}_n, H) = ?$$

Recap: distance between point and hyperplane

$$d(\mathbf{x}_n, H) = ?$$

Distance between \mathbf{x}_n and the plane:

Take any point ${f x}$ on the plane

Projection of $\mathbf{x}_n - \mathbf{x}$ on \mathbf{w}

$$\hat{\mathbf{w}} = \frac{\mathbf{w}}{\|\mathbf{w}\|} \implies \mathsf{distance} = \left|\hat{\mathbf{w}}^{\scriptscriptstyle\mathsf{T}}(\mathbf{x}_n - \mathbf{x})\right|$$

The points in D may be in one or in the other side of H

Thus, distance is given by the absolute value $|\hat{\mathbf{w}}^T(\mathbf{x}_n - \mathbf{x})|$

The need to treat the two cases (if-else situation) is not convenient

Remember logistic regression? There we used a trick o avoid if-else:

$$\underbrace{P(y|\mathbf{x}) = \theta(y \mathbf{w}^{\mathsf{T}} \mathbf{x})}_{P(y|\mathbf{x}) = P(y = 1|\mathbf{x})^{\mathsf{Y}} [1 - P(y = 1|\mathbf{x})]^{1-\mathsf{Y}}}_{P(y|\mathbf{x}) = P(y = 1|\mathbf{x})^{\mathsf{Y}} [1 - P(y = 1|\mathbf{x})]^{1-\mathsf{Y}}}$$

$$dist(\mathbf{x}_n, H) = |\hat{\mathbf{w}}^T(\mathbf{x}_n - \mathbf{x})|$$

12

$$dist(\mathbf{x}_n, H) = |\hat{\mathbf{w}}^T(\mathbf{x}_n - \mathbf{x})| = \frac{1}{||\mathbf{w}||} |\mathbf{w}^T(\mathbf{x}_n - \mathbf{x})|$$

$$dist(\mathbf{x}_n, H) = |\hat{\mathbf{w}}^T(\mathbf{x}_n - \mathbf{x})| = \frac{1}{||\mathbf{w}||} |\mathbf{w}^T(\mathbf{x}_n - \mathbf{x})|$$

$$\mathbf{w}^T(\mathbf{x}_n - \mathbf{x}) = \mathbf{w}^T\mathbf{x}_n - \mathbf{w}^T\mathbf{x}$$

$$dist(\mathbf{x}_n, H) = |\hat{\mathbf{w}}^T(\mathbf{x}_n - \mathbf{x})| = \frac{1}{||\mathbf{w}||} |\mathbf{w}^T(\mathbf{x}_n - \mathbf{x})|$$

$$\mathbf{w}^T(\mathbf{x}_n - \mathbf{x}) = \mathbf{w}^T\mathbf{x}_n - \mathbf{w}^T\mathbf{x} = \mathbf{w}^T\mathbf{x}_n + \mathbf{b} - (\mathbf{w}^T\mathbf{x} + \mathbf{b})$$

$$dist(\mathbf{x}_n, H) = |\hat{\mathbf{w}}^T(\mathbf{x}_n - \mathbf{x})| = \frac{1}{||\mathbf{w}||} |\mathbf{w}^T(\mathbf{x}_n - \mathbf{x})|$$

$$\mathbf{w}^{T}(\mathbf{x}_{n} - \mathbf{x}) = \mathbf{w}^{T}\mathbf{x}_{n} - \mathbf{w}^{T}\mathbf{x} = \mathbf{w}^{T}\mathbf{x}_{n} + \mathbf{b} - (\mathbf{w}^{T}\mathbf{x} + \mathbf{b})$$
$$= \mathbf{w}^{T}\mathbf{x}_{n} + b - 0 = \mathbf{w}^{T}\mathbf{x}_{n} + b$$

$$dist(\mathbf{x}_n, H) = |\hat{\mathbf{w}}^T(\mathbf{x}_n - \mathbf{x})| = \frac{1}{||\mathbf{w}||} |\mathbf{w}^T(\mathbf{x}_n - \mathbf{x})|$$

$$\mathbf{w}^{T}(\mathbf{x}_{n} - \mathbf{x}) = \mathbf{w}^{T}\mathbf{x}_{n} - \mathbf{w}^{T}\mathbf{x} = \mathbf{w}^{T}\mathbf{x}_{n} + \mathbf{b} - (\mathbf{w}^{T}\mathbf{x} + \mathbf{b})$$

$$= \mathbf{w}^{T}\mathbf{x}_{n} + \mathbf{b} - 0 = \mathbf{w}^{T}\mathbf{x}_{n} + \mathbf{b}$$

Why ${\bf w}^{T}{\bf x} + b = 0$?

$$dist(\mathbf{x}_n, H) = |\hat{\mathbf{w}}^T(\mathbf{x}_n - \mathbf{x})| = \frac{1}{||\mathbf{w}||} |\mathbf{w}^T(\mathbf{x}_n - \mathbf{x})|$$

$$\mathbf{w}^{T}(\mathbf{x}_{n} - \mathbf{x}) = \mathbf{w}^{T}\mathbf{x}_{n} - \mathbf{w}^{T}\mathbf{x} = \mathbf{w}^{T}\mathbf{x}_{n} + \mathbf{b} - (\mathbf{w}^{T}\mathbf{x} + \mathbf{b})$$
$$= \mathbf{w}^{T}\mathbf{x}_{n} + b - 0 = \mathbf{w}^{T}\mathbf{x}_{n} + b$$

$$dist(\mathbf{x}_n, H) = \frac{1}{||\mathbf{w}||} |\mathbf{w}^T \mathbf{x_n} + b| = \frac{1}{||\mathbf{w}||} y_n(\mathbf{w}^T \mathbf{x_n} + b)$$

$$dist(\mathbf{x}_n, H) = |\hat{\mathbf{w}}^T(\mathbf{x}_n - \mathbf{x})| = \frac{1}{||\mathbf{w}||} |\mathbf{w}^T(\mathbf{x}_n - \mathbf{x})|$$

$$= \bigvee^{\mathbf{W}^{\mathsf{T}}} \mathbf{W}^{\mathsf{T}} \mathbf{v}_{\mathsf{n}} + b | = y_n (\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + b) ?$$

$$dist(\mathbf{x}_n, H) = \frac{1}{||\mathbf{w}||} |\mathbf{w}^T \mathbf{x_n} + b| = \frac{1}{||\mathbf{w}||} y_n (\mathbf{w}^T \mathbf{x_n} + b)$$

$$dist(\mathbf{x}_n, H) = |\hat{\mathbf{w}}^T(\mathbf{x}_n - \mathbf{x})| = \frac{1}{||\mathbf{w}||} |\mathbf{w}^T(\mathbf{x}_n - \mathbf{x})|$$

$$\mathbf{w}^{T}(\mathbf{x}_{n} - \mathbf{x}) = \mathbf{w}^{T}\mathbf{x}_{n} - \mathbf{w}^{T}\mathbf{x} = \mathbf{w}^{T}\mathbf{x}_{n} + \mathbf{b} - (\mathbf{w}^{T}\mathbf{x} + \mathbf{b})$$
$$= \mathbf{w}^{T}\mathbf{x}_{n} + b - 0 = \mathbf{w}^{T}\mathbf{x}_{n} + b$$

$$dist(\mathbf{x}_n, H) = \frac{1}{||\mathbf{w}||} |\mathbf{w}^T \mathbf{x}_n + b| = \frac{1}{||\mathbf{w}||} y_n(\mathbf{w}^T \mathbf{x}_n + b)$$
(because if \mathbf{x}_n is at the correct side $\implies y_n(\mathbf{w}^T \mathbf{x}_n) > 0$)

Nina S. T. Hirata (IME/USP) 17. MAC0460/MAC5832 (2021)

12

Choosing a convenient hyperplane representation (weights)

Distance as seen before:

$$dist(\mathbf{x}_n, H) = \frac{1}{||\mathbf{w}||} |\mathbf{w}^T \mathbf{x_n} + b| = \frac{1}{||\mathbf{w}||} y_n(\mathbf{w}^T \mathbf{x_n} + b)$$

If I manage to make
$$|\mathbf{w}^T\mathbf{x}_n + b| = 1$$
, then I will have
$$dist(\mathbf{x}_n, H) = \frac{1}{||\mathbf{w}||}$$

We can always rescale (\mathbf{w}, b) so as to have $y_n(\mathbf{w}^T \mathbf{x}_n + b) = 1$.

Let us do that with respect to the closest point to the hyperplane:

$$\rho = \min_{n=1,\dots,N} y_n(\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + b),$$

If we divide (\mathbf{w}, \mathbf{b}) by ρ , the hyperplane does not change:

$$\min_{n=1,\dots,N} y_n \left(\frac{\mathbf{w}^{\mathsf{T}}}{\rho} \mathbf{x}_n + \frac{b}{\rho} \right) = \frac{1}{\rho} \left(\min_{n=1,\dots,N} y_n (\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + b) \right) = \frac{\rho}{\rho} = 1.$$

Homework

Exercise 8.2

Consider the data below and a 'hyperplane' (b, \mathbf{w}) that separates the data.

$$\mathbf{X} = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} 1.2 \\ -3.2 \end{bmatrix} \quad b = -0.5$$

- (a) Compute $\rho = \min_{n=1,...,N} y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b)$.
- (b) Compute the weights $\frac{1}{\rho}(b,\mathbf{w})$ and show that they satisfy (8.2).
- (c) Plot both hyperplanes to show that they are the same separator.

(8.2)
$$\min_{n=1,\ldots,N} y_n(\mathbf{w}^T \mathbf{x}_n + b) = 1$$

Wrapping up

Let \underline{D} be a linearly separable set of points, $\underline{\mathbf{x}}_n \in \underline{D}$, and a separating hyperplane \underline{H} characterized by $(\underline{\mathbf{w}}, \underline{b})$. Then

$$dist(\mathbf{x}_n, H) = \frac{1}{||\mathbf{w}||} y_n(\mathbf{w}^T \mathbf{x_n} + b)$$

We can always choose (\mathbf{w}, \mathbf{b}) such that the closest point \mathbf{x}_n to H satisfies

$$y_n(\mathbf{w}^T\mathbf{x_n}+b)=1$$

In such case

$$dist(\mathbf{x}_n, H) = \frac{1}{||\mathbf{w}||}$$

The problem we want to solve

The problem we want to solve

$$\label{eq:maximize} \begin{split} & \underset{\mathbf{w},b}{\operatorname{maximize}} & & \frac{1}{||\mathbf{w}||} \\ & \text{subject to} & & \underset{i=1,\dots,N}{\min} \, y_i(\mathbf{w}^T\mathbf{x}_i + b) = 1 \end{split} \quad \blacktriangleleft$$

- The constraint $\min_{i=1,\dots,N} y_i(\mathbf{w}^T\mathbf{x}_i + b) = 1$ implies $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$ which has the effect of forcing all examples to be classified correctly
- The equality $\min_{\substack{i=1,\dots,N}} y_i(\mathbf{w}^T\mathbf{x}_i + b) = 1$ implies that the distance of the closest point to the hyperplane is $\frac{1}{||\mathbf{w}||}$ (a nice objective function!)

The problem we want to solve

maximize
$$\frac{1}{||\mathbf{w}||}$$
 subject to $\min_{n=1,...,N} y_n(\mathbf{w}^T \mathbf{x}_n + b) = 1$

Equivalent formulation

ormulation

minimize
$$\frac{1}{2}\mathbf{w}^T\mathbf{w}$$

subject to $\min_{\mathbf{w},b} y_n(\mathbf{w}^T\mathbf{x}_n + b) = 1$

subject to
$$\min_{n=1,\dots,N} y_n(\mathbf{w}^T \mathbf{x}_n + b) = 1$$

18

Relaxed formulation

Original minimization formulation:

Equivalent relaxed formulation:

minimize
$$\frac{1}{2}\mathbf{w}^T\mathbf{w}$$

subject to $y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1, n = 1, ..., N$

The equivalence can be proved by contradiction (see Chapter on SVM, page 7)

19

A toy example

Constraints:
$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$$
?

$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix}$$

A toy example

$$X = \begin{bmatrix} \frac{0}{2} & 0 \\ \frac{2}{2} & 0 \\ 3 & 0 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix}$$

Constraints:
$$y_i(\underbrace{\mathbf{w}^T\mathbf{x}_i} + b) \ge 1$$
 ?

$$-b \ge 1$$
, (1)
 $-(2w_1 + 2w_2 + b) \ge 1$ (2)
 $2w_1 + b \ge 1$ (3)
 $3w_1 + b \ge 1$ (4)

Solving it by hand

$$-b \ge 1$$
 (1)
 $-(2w_1 + 2w_2 + b) \ge 1$ (2)
 $2w_1 + b \ge 1$ (3)
 $3w_1 + b \ge 1$ (4)

Solving it by hand

$$-b \ge 1 \quad (1)
-(2w_1 + 2w_2 + b) \ge 1 \quad (2)
\underline{2w_1 + b \ge 1} \quad (3)
\underline{3w_1 + b \ge 1} \quad (4)$$

• From (3) and (1) $2w_1 + b > 1 \Rightarrow 2w_1 \ge 1 - b \Rightarrow w_1 \ge \frac{1}{2}(1 - b) \&\& b \le -1$ $\implies w_1 \ge 1$

Solving it by hand

$$-b \ge 1$$
 (1)
 $-(2w_1 + 2w_2 + b) \ge 1$ (2)
 $2w_1 + b \ge 1$ (3)
 $3w_1 + b \ge 1$ (4)

- From (3) and (1) $2w_1 + b \ge 1 \rightsquigarrow 2w_1 \ge 1 b \rightsquigarrow w_1 \ge \frac{1}{2}(1 b) \&\& b \le -1$ $\Longrightarrow w_1 \ge 1$
- From (2) and (3): $\frac{-(2w_1 + 2w_2 + b) > 1}{2w_2 \le -2w_1 - b - 1} \Leftrightarrow 2w_1 - 2w_2 - b \ge 1 \Rightarrow w_2 \le -1$

Nina S. T. Hirata (IME/USP)

Solving it by hand

$$-b \ge 1$$
 (1)
 $-(2w_1 + 2w_2 + b) \ge 1$ (2)
 $2w_1 + b \ge 1$ (3)
 $3w_1 + b \ge 1$ (4)

- From (3) and (1) $2w_1 + b \ge 1 \rightsquigarrow 2w_1 \ge 1 b \rightsquigarrow w_1 \ge \frac{1}{2}(1 b)$ && $b \le -1$ $\implies w_1 \ge 1$
- From (2) and (3): $-(2w_1 + 2w_2 + b) \ge 1 \rightsquigarrow -2w_1 2w_2 b \ge 1 \rightsquigarrow \\ 2w_2 \le -2w_1 b 1 \&\& 2w_1 + b \ge 1 \Longrightarrow w_2 \le -1$

Thus,
$$\frac{1}{2} \mathbf{w}^T \mathbf{w} = \frac{1}{2} (w_1^2 + w_2^2) \ge 1$$
 and the minimum is at $\mathbf{w} = (1, -1)$; $(b = -1, w_1 = 1, w_2 = -1)$ satisfies the 4 constraints

Solution (by hand) of the toy example

The separating hyperplane H with maximum margin is given by $x_1 - x_2 - 1 = 0$.

$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix}$$

The margin is
$$\frac{1}{\|\mathbf{w}\|} = \frac{1}{\sqrt{2}} \approx 0.707$$

Summary (linearly separable case)

- The goal is to find a hyperplane that maximizes the margin
- We examined the formulation of the hard margin SVM
- It can be written as a QP otimization (quadratic objective function with linear inequality constraints)
- We solved a toy example by hand
- We still do not know how to solve QP problems

Non-linearly separable case

This case is dealt by considering a **soft margin** formulation as opposed to the (previuous) **hard margin** formulation:

Soft margin:
$$y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1 - \xi_n$$

(Hard margin:
$$y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1$$
)

Soft-margin SVM

C >= 0 is an user-specified parameter; the larger it is, the smaller the allowed margin violation

Compare to the hard-margin formulation:

minimize
$$\frac{1}{2}\mathbf{w}^T\mathbf{w}$$

subject to $y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1, n = 1, ..., N$

Intuition on constant *C*

How to solve QP optimization problems?

Both cases, hard and soft margin SVM, can be formulated as a QP optimization problem

Primal formulation: Standard QP optimization

Dual formulation: based on Lagrange formulation, dual QP

27

Standard QP optimization

Standard form of QP problems

M inequality constraints and *Q* positive semi-definite

minimize
$$\frac{1}{2}\mathbf{u}^TQ\mathbf{u} + \mathbf{p}^T\mathbf{u}$$

subject to: $\mathbf{a}_m^T\mathbf{u} \ge c_m \quad (m = 1, ..., M)$

In matrix form

minimize
$$\frac{1}{2}\mathbf{u}^T Q \mathbf{u} + \mathbf{p}^T \mathbf{u}$$
 subject to: $\mathbf{A}\mathbf{u} \ge \mathbf{c}$

QP solvers can be used to compute the optimal solution \mathbf{u}^* :

$$\mathbf{u}^* \leftarrow \operatorname{QP}(Q, \mathbf{p}, A, \mathbf{c})$$

$$= \bigwedge_{\mathbf{n}} \bigwedge_{\mathbf{n}} \bigwedge_{\mathbf{n}} \bigwedge_{\mathbf{n}}$$

SVM – standard **QP** formulation

QP problem formulation

minimize
$$\frac{1}{2}\mathbf{u}^T Q \mathbf{u} + \mathbf{p}^T \mathbf{u}$$

subject to: $\mathbf{a}_m^T \mathbf{u} \ge c_m$
 $i = m, \dots, M$

QP of hard-margin SVM 🕊

minimize
$$\frac{1}{2}\mathbf{w}^T\mathbf{w}$$
 subject to: $y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1$ $i = 1, ..., N$

Denoting
$$\mathbf{u} = \begin{bmatrix} b \\ \mathbf{w} \end{bmatrix}$$
, we have

$$\mathbf{\dot{w}}^{\mathsf{T}}\mathbf{w} = \begin{bmatrix} b & \mathbf{w}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} 0 & \mathbf{o}_{d}^{\mathsf{T}} \\ \mathbf{o}_{d} & \mathbf{I}_{d} \end{bmatrix} \begin{bmatrix} b \\ \mathbf{w}^{\mathsf{T}} \end{bmatrix} = \mathbf{u}^{\mathsf{T}} \begin{bmatrix} 0 & \mathbf{o}_{d}^{\mathsf{T}} \\ \mathbf{o}_{d} & \mathbf{I}_{d} \end{bmatrix} \mathbf{u},$$

$$\mathbf{a}_{n}^{\mathsf{T}} = y_{n} \begin{bmatrix} 1 & \mathbf{x}_{n}^{\mathsf{T}} \end{bmatrix} \text{ and } c_{n} = 1$$

SVM – standard QP formulation

Linear Hard-Margin SVM with QP

1: Let $\mathbf{p} = \mathbf{0}_{d+1}$ ((d+1)-dimensional zero vector) and $\mathbf{c} =$ $\mathbf{1}_N$ (N-dimensional vector of ones). Construct matrices Q and A, where

$$\mathbf{Q} = \begin{bmatrix} 0 & \mathbf{0}_{d}^{\mathrm{T}} \\ \mathbf{0}_{d} & \mathbf{I}_{d} \end{bmatrix}, \quad \mathbf{A} = \underbrace{\begin{bmatrix} y_{1} & -y_{1}\mathbf{x}_{1}^{\mathrm{T}} - \\ \vdots & \vdots \\ y_{N} & -y_{N}\mathbf{x}_{N}^{\mathrm{T}} - \end{bmatrix}}_{\text{signed data matrix}}.$$

- 2: Calculate $\begin{bmatrix} b^* \\ \mathbf{w}^* \end{bmatrix} = \mathbf{u}^* \leftarrow \mathsf{QP}(\mathbf{Q}, \mathbf{p}, \mathbf{A}, \mathbf{c})$.

 3: Return the hypothesis $g(\mathbf{x}) = \mathrm{sign}(\mathbf{w}^{*\mathsf{T}}\mathbf{x} + b^*)$.

$$v = \begin{bmatrix} b \\ w_1 \\ w_2 \end{bmatrix}$$

 $M = \begin{cases} w_1 \\ w_2 \end{cases}$

$$Q = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & w_1 & w_2 \end{bmatrix} \begin{bmatrix} b & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & w_1 & w_2 \end{bmatrix} \begin{bmatrix} b & 0 \\ w_1 & w_2 \end{bmatrix}$$

= [0 w, w2] [b]

= WW