สวนส้มคู่แข่งเจแปน (oranges)

ก่อนหน้านี้คุณได้ไปเที่ยวเล่นในสวนมะม่วงของเจแปนมา ซึ่งเป็นสวนที่มีเทคโนโลยีการรดน้ำต้นไม้ที่ทันสมัยเอา มาก ๆ ติดอยู่อย่างเดียวคือคุณไม่ชอบกินมะม่วง!!! คุณต้องการให้ผู้คนทั่วโลกหันมากินผลไม้ที่คุณหลงใหลอย่าง**ส้ม** แทน คุณจึงตัดสินใจจะตกแต่งสวนส้มในไร่อันกว้างขวางของคุณเพื่อแข่งกับเจแปน

บ้านคุณตั้งอยู่ที่จุด (0,0) ในไร่แห่งนี้ซึ่งสามารถมองได้เป็นระบบพิกัดฉาก เนื่องด้วยลักษณะทางภูมิศาสตร์ของไร่ แห่งนี้มีดินที่ไม่ค่อยดีนัก ทำให้ต้นส้มที่แต่เดิมเคยมีอยู่ในสวนแห่งนี้จะมีลักษณะเรียงกันเป็นเส้นตรงเท่านั้น เรียกว่า **เส้นส้ม** โดยแต่เดิมมีเส้นส้มอยู่แล้วทั้งหมด N เส้น เส้นที่ i เป็นเส้นตรงจาก $(x_1[i],y_1[i])$ ไปยัง $(x_2[i],y_2[i])$

เส้นส้มนั้นเป็นสิ่งมหัศจรรย์ทางธรรมชาติที่เกิดขึ้นเพียงไม่กี่ที่ในโลกใบนี้เท่านั้นเท่านั้น แต่หากมีเส้นส้มสองเส้นใด ๆ ที่บดบังกันจากจุดชมสวนส้มจะทำให้คุณค่าของมันหายไปในทันที กล่าวคือเมื่อลากเส้นตรงจากจุดชมสวนส้ม (ซึ่งก็คือบ้านของคุณ) ไปยังเส้นส้มใด ๆ แล้ว จะต้องไม่ตัดเส้นส้มเส้นอื่นเป็นอันขาด (หากลากเส้นตัดปลายของเส้น ส้มนับว่าตัดกับเส้นส้มเส้นนั้น) ดังนั้นเพื่อตกแต่งสวนส้มของคุณให้เป็นสถานที่ท่องเที่ยวที่สวยงามกว่าสวนมะม่วง ของเจแปน คุณต้องการถอนเส้นส้มบางเส้น (หรืออาจจะไม่ถอนเลยก็ได้) ให้น้อยที่สุดเพื่อให้เส้นส้มที่เหลืออยู่ไม่มี เส้นใดบดบังกันเลยจากบ้านของคุณ

ตัวอย่างเส้นส้มทั้งหมด 5 เส้นดังรูป

ภาพตัวอย่างด้านล่างต่อไปนี้เป็นเพียงส่วนหนึ่งของวิธีการถอนเส้นส้มเท่านั้น โดยเส้นประแทนเส้นส้มที่โดนถอน ออกไป

- ullet ในตัวอย่างที่ 1 มีเส้นส้มที่ถูกถอนไปทั้งสิ้น 1 เส้นและไม่มีเส้นใดบดบังกันทำให้ไม่ผิดเงื่อนไข และเป็นคำ ตอบที่ดีที่สุด
- ในตัวอย่างที่ 2 มีเส้นส้มถูกถอนไปทั้งสิ้น 4 เส้นและไม่มีเส้นใดบดบังกันทำให้ไม่ผิดเงื่อนไข แต่ไม่ใช่คำตอบที่ ดีที่สุด
- ในตัวอย่างที่ 3 มีเส้นส้มถูกถอนไปทั้งสิ้น 3 เส้น แต่มีเส้นส้มบดบังกันทำให้ผิดเงื่อนไข

คุณจึงต้องการเขียนโปรแกรมท<u>ี่มีประสิทธิภาพ</u>ในการหาว่าจะต้องถอนเส้นส้มออกน้อยที่สุดกี่เส้นจึงจะไม่มีเส้นใด บดบังกันเลย และทำให้ผู้คนหันมาเที่ยวและสนใจในสวนส้มของคุณ

ข้อมูลนำเข้า

บรรทัดแรก จำนวนเต็ม N แทนจำนวนเส้นส้มที่แต่เดิมอยู่ในสวนของคุณ

N บรรทัดต่อมา จำนวนเต็ม $x_1[i],y_1[i],x_2[i],y_2[i]$ แทนคู่อันดับ $(x_1[i],y_1[i])$ และ $(x_2[i],y_2[i])$ ของเส้น ส้มที่ $i\ (1\leq i\leq N)$

ข้อมูลส่งออก

ส่งออกจำนวนเต็มเพียงจำนวนเดียว แทนจำนวนเส้นส้มที่น้อยที่สุดที่เป็นไปได้ที่คุณจะต้องถอนเพื่อให้ไม่มีเส้นส้ม สองเส้นใด ๆ บดบังกันเลย

ขอบเขต

- $\bullet \ 1 \leq N \leq 100\,000$
- $ullet \ 0 \leq x_1[i], y_1[i], x_2[i], y_2[i] \leq 1\,000\,000\,000$

ปัญหาย่อย

- 1. (14 คะแนน) $x_1[i] = x_2[i]$ และ $y_1[i] = y_2[i]$
- 2. (25 คะแนน) $y_1[i] = y_2[i] = 1$
- 3. (26 คะแนน) $N \leq 20$
- 4. (18 คะแนน) $N \leq 2\,000$
- 5. (17 คะแนน) ไม่มีเงื่อนไขเพิ่มเติม

ตัวอย่าง

ตัวอย่างที่ 1

ข้อมูลนำเข้า	ข้อมูลส่งออก
5 4 1 1 5 8 5 6 4 4 5 6 6 5 7 3 6 6 3 9 0	1

ตัวอย่างที่ 2

ข้อมูลนำเข้า	ข้อมูลส่งออก
6 6 0 8 1 7 4 7 2 0 3 7 6 1 7 2 5 1 6 5 1	2
4 3 4 5	

ตัวอย่างที่ 3

ข้อมูลนำเข้า	ข้อมูลส่งออก
4 6 0 8 1 7 4 7 2 1 7 3 6 6 6 4 5	Θ

คำอธิบาย

ภาพประกอบตัวอย่างข้อมูลทดสอบที่ 2 และ 3 ตามลำดับ

ข้อจำกัด

Time limit: 1 seconds Memory limit: 32 MB