TINYAKOV, G.G.; TINYAKOV, Yu.G.

Spontaneous chromosome mutations under normal and pathological conditions. Dokl.AN SSSR 134 no.1:187-190 S '60.

(MIRA 13:8)

1. Moskovskiy tekhnologicheskiy institut myasnoy i molochnoy promyshlennosti. Predstavleno akad. I.I.Shmal'gauzenom. (Chromosomes)

TINYAKOV, G.G.; GRANIKOV, D.A.; MIKHEYEVA, G.A.

Microstructure of hard rennet cheeses. Izv. vys. ucheb. zav.; plehch. tekh. no.4:68-74 '61. (MIRA 14:8)

1. Moskovskiy tekhnologicheskiy institut myasnoy i molochnoy promyshlennosti, kafedra tekhnologii moloka i molochnykh produktov (Cheese)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755810008-6"

TINYAKOV, G.G.; TINYAKOV, Yu.G.

The second of th

Origin of cancer in the light of proliferative variability of normal cells. Dokl. AN SSSR 141 no.4:998-1001 D 161. (MIRA 14:11)

1. Moskovskiy tekhnologicheskiy institut myasnoy i molochnoy promyshlennosti i Institut terapii Akademii meditsinskikh nauk SSSR. Predstavleno akademikom I.I. Shmal'gauzenom. (CANCER)

42683

27.1220

\$/747/62/000/000/004/025 D268/D307

AUTHORS:

Arsen'yeva, M. A., Tinyakov, G. G., Wang Ang-ch'ih, Ma

Hsiu-ch' uang and Chang Chun-shu

TITLE:

Cytogenetic radiosensitivity of sexual cells in monkeys

and mice at small and other dose levels

SOURCE:

Radiatsionnaya genetika; sbornik rabot. Otd. biol. nauk

AN SSSR. Moscow, Izd-vo AN SSSR, 1962, 50-62

In continuation of earlier work (Trudy mezhd. Konf. po mirnomu ispol'zov. atomnoy energii, M., 385-396, 1959) male monkeys (Nacaca mulatta: 16 5 - 14 year-old individuals) and 2 - 3 month-old white mice were wholebody irradiated with single exposures to x rays at 10 - 400 r for the former and 10 - 600 r for the latter and were

also irradiated with Co⁶⁰ gamma-rays at 10 and 50 r. Irradiation increased the chromosome reorganization rate in germinal cells in both subjects, the average rate being 0.115 and 0.057% in monkeys and mice respectively for 1 r at 10 days after exposure. Cytological and

Card 1/2

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755810008-6"

Cytogenetic radiosensitivity ...

S/747/62/000/000/004/025 D268/D307

histological analyses of testes at different times after irradiation showed disruption of spermatogenesis in monkeys after 10 r, temporary sterility at 30 days following 30 r, and at 20 days following 200 r. Temporary sterility was detected in mice at 20 days after thelium of monkeys than in mice. The rate of chromosome reorganization in monkeys at 10 days is thought to double at 3.8 r, and that epithelium in monkey is 2 - 2 1/2 times higher than that in mice. There are 9 figures and 2 tables.

ASSOCIATION:

Institut biologicheskoy fiziki AN SSSR, Moskva (Institute of Biological Physics AS USSR, Moscow) and Institut biologicheskoy fiziki AN KNR, Pekin (Institute of Biological Physics AS CPR, Peking)

Card 2/2

BEM, Rudolf [Böhm, Rudolf]; PLEVA, Vladinir; VOL'SHANSKIY, M.I. [translator]; TINYAKOV, G.G., dektor biol. nauk, prof. red.; TSIPERSON, A.L., red.

[Microscopy of meat and raw material of animal origin. Translated from the Czech] Mikroskopiia miasa i syr'ia zhivotnogo proiskhozhdeniia. Izd.2., perer. i dop. Mc-skva, Pishchevaia promyshlennost', 1964. 334 p. (MIRA 18:3)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755810008-6"

TINYAKOV, G.G.; BULOCHNIKOVA, Ye.K.

Mitotic and chromosome-aberrational reaction of lymphatic ganglia caused by sarcoma 45. Dokl. AN SSSR 165 no.3:683-685 N '65. (MIRA 18:11)

1. Moskovskiy tekhnologicheskiy institut myasnoy i molochnoy promyshlennosti. Submitted May 20, 1965.

TINYAROV, G.C. Paps of chromosomes of the salivery gland in Drosophila funebris. Biul. MOIP. Otd. bicl. 70 no.4:141-144 Jl-Ag 165.

TINYAKOV, G.G., prof.

Gregor Mendel, the founder of the science of heredity, 1822-1884; centennial of the foundation of experimental genetics. Veterinaria 42 ne-7:112-113 J1 65. (MIRA 18:9)

Pechanism of cell reproduction and cancercusereds. (Fig. 12.2)
no.3:9-26 '63.

1. is kafedry anatemil i gistologii Moskovskogo tokhnologisheskego instituta myasnoy i molochnoy promyshlennosti i laboratorii patologicheskoy anatomii instituta terapii AMI SSSR.

TINYAKOV, G.G.; BULOCHNIKOVA, Ye.K.

Reaction of the bone marrow and spleen to the effect of Ehrlich's ascitic tumor. Dokl. AN SSSR 153 no.1:233-236 N '63. (MIRA 17:1)

1. Moskovskiy tekhnologicheskiy institut myasnoy i molochnoy promyshlennosti. Predstavleno akademikom I.I. Shmal'gauzenom.

K

TELENIN, G.F. (Moskva); TINYAKOV, G.P. (Moskva)

Nonstationary supersonic flow about a blunt cone. Izv.AN SSSR.Otd.
tekh.nauk.Mekh.i mashinostr. no.2:97-105 Mr-Ap 161. (MIRA 14:4)
(Aerodynamics, Supersonic)

L 8810-65 EWT(1)/EPA(b)/FGS(k)/EWA(1) Pd-4 ASD(f)/ASD(d)/SSD/ASD/ AFETR/AEDC(a)/BSD/AFTC(a)/AFWL/E3D(dp:/ESD(gs)/ESD(t) ACCESSION NR: AF4043886 S/0179/ RM 3/0179/64/000/004/0009/0028 AUTHOR: Gilinskiy, S. M. (Moscow); Telenin, G. F. (Moscow); Tinyskov, G. P. TITLE: A method for calculating supersonic flow past blunt-nosed bodies with a detached shock wave

SOURCE: AN SSSR. Izvestiya. Makhanika i mashinostroyeniye, no.4,

TOPIC TAGS: supersonic flow, shock wave, flow past blunt body, numerical method, supersonic perfect gas flow, equilibrium flow, non-

ABSTRACT: A numerical method suggested by G. F. Telenin for calculating supersonic flow over blunt-nosed bodies with a detached shock wave is outlined. The authors present certain results from systematic investigations of supersonic flow of a perfect gas past bodies of various shapes, such as ellipsoids with various axis ratios, bodies with analytical contours of nearly toroidal shape with slightly rounded corners, bodies with concave contours near a critical point, bodies with contour-curvature discontinuities in the subsonic

Card 1/2

paragraphic process of the control o

L 8810-65
ACCESSION NR+ AP4043886

0

region, and bodies with contour breaks at the sonic point. Flows over bodies of various shapes at Nach numbers tending to - and with adiabatic indices tending to one, and equilibrium and nonequilibrium air flows past a sphere are analyzed and discussed. The problem of supersonic flow with a detached shock wave is formulated, and the concepts of the method employed are outlined on the basis of analysis of properties of the solutions of elliptic and mixed, model linear equations. The same method is applied to the solution of the nonlinear, boundary-value problem formulated to the first section of the article. Examples illustrating applications of the method are presented and the results are summarized in graphs. Orig. art. has: Il figures and 52 formulas.

ASSOCIATION: none

SUBMITTED: 17Mar64

ATD PRESS: 310'

ENCL: 00

SUB CODE: ME. AS

NO REF SOVI 008

OTHER: 013

Card 2/2

FERRING Co. .; Figs soc. Co..

Supermonth flow of sit and control of side gus tast a sputce at the months of a control of the gus tast a sputce at the months of the gus tast a sputce at the months of the gus tast a sputce at the control of the gus tast a sputce at the gus tast at the gus tast at the gus tast a sputce at the gus tast at the gus tast a sputce at the gus tast at the gus t

L 15324-65 EWT(1)/EWP(m)/EWA(d)/FCS(k)/EWA(1) Pd-1 AFWL/BSD/SSD(b)/SSD/ AEDC(a)/ASD(f)-2/ASD(p)-3/AFETR/AFTC(a)/ESD(dp) ACCESSION NR: AP4049124 S/0020/64/159/001/0039/0042

AUTHOR: Telenin, G. F.; Tinyakov, G. P.

TITLE: Investigation of supersonic flow of air and CO2 at thermal equilibrium past a sphere

SOURCE: AN SSSR. Doklady*, v. 159, no. 1, 1964, 39-42

TOPIC TAGS: supersonic flow, shock wave, thermal equilibrium flow, supersonic flow past sphere, shock detachment, dissociation

ABSTRACT: The results are presented of a numerical investigation of supersonic flow around a sphere by a mixture of air and $\rm CO_2$ considered to be in thermal equilibrium. Calculations were carried out on a computer for a wide range of flow parameters (M $^\infty$, 3 to 50: pressures, $\rm 10^{-5}$ to 1 atm; temperature, 200 to 1500K). A system of differential equations describing the adiabatic motion of a gas in thermal equilibrium is derived and solved by the method of finite difference, on the basis of multiple solutions of the Cauchy problem in the direction from the shock wave to the body. Analysis of flow fields obtained in a flow of perfect gases with different adiabatic exponents over blunt-

Card 1/2

L 15324-65

ACCESSION NR: AP4049124

nosed bodies shows that in all subsonic regions, and especially near the symmetry axis, density changes comparatively slowly and differs very little from its value behind the snock. The dependencies of shock detachment on density ratio and also on pressure and temperature are given in graphs. It is stated that dissociation, and consequently the dependence on pressure, begin at M = 6-8. Orig. art. has: 4 figures, 3 tables, and 3 formulas.

ASSOCIATION: Nauchno-issledovatel'skiy institut mekhaniki Moskovskogo go Judarstvennogo universiteta im. M. V. Lomonosova (Scientific Research Institute of Mechanics, Moscow State University)

SUBMITTED: 23Apr64

ENCL: 00

SUB CODE: ME, AS

NO REF SOV: 004

OTHER: 000 ATD PRESS: 3138

Card 2/2

D'YAKONCV, Yu.N.; TELENIN, G.F.; TINYAKOV, G.P. (Moscow):

"Study of three-dimensional flow past bodies with detached shock wave."

report presented at the 2nd All-Union Congress on Theoretical and Applied Mechanics, Moscow, 29 Jan - 5 Feb 64.

TELENIN, G.F.; TINYAKOV, G.P.

Method for calculating a three-dimensional flow past bodies. following the passage of a shock wave. Dokl. AN SSSR. 154 (MIRA 17:2)

1. Predstavleno akademikom G.I. Petrovym.

24542

10.1220

S/179/61/000/002/008/017 E081/E141

AUTHORS:

Telenin, G.F., and Tinyakov, G.P. (Moscow)

TITLE:

Unsteady supersonic flow past a cone with a blunt

PERIODICAL: Izvestiya Akademii nauk SSSR, Otdeleniye tekhnicheskikh nauk, Mekhanika i mashinostroyeniye, 1961, No.2,

TEXT: The supersonic flow past the spherical-conical body ABC (see Fig. 1) is analyzed. The spherical part of the body is AB and merges into the conical part at B. The semi-angle of the cone is θ_{s} ; ME is the density discontinuity in the gas, and QP is the accustic line. The body is subjected to small vibrations about the point 0 given by $\alpha = \alpha_0 \cos \omega t$, where α is the instantaneous angle of attack. It is assumed that $\alpha_0 \leqslant 1$, $\omega L/V_i \ll 1$, where V_i is the velocity of the gas stream; that point B always lies in the supersonic region; and that the velocity V, pressure p and density p in the gas stream can be

Card 1/3

totil, Elgi

limbleady supersonic flow past a cone with a blunt vertex

 $A = A^{O} + \alpha A^{\alpha} + \alpha A^{\alpha}$, $b = b^{O} + \alpha b^{\alpha} + \alpha b^{\alpha}$

 $6 = 60 + \alpha b^{\alpha} + \alpha \cdot 6^{\alpha}$

On this basis, the flow is analyzed separately in the two regions ABDM and DBC, the first corresponding to flow past a sphere, and the second to flow past a cone. In each region, the solutions satisfy the gas-dynamic equations and the boundary conditions. The two solutions are combined so as to satisfy the conjunction of a sphere and a cone at B_1 and are used to find expressions for the aerodynamic moment M_2 acting or the body when vibrating in a supersonic field. The quantities determining M2 are calculated for Mach 4, and are plotted against \$\ell/L\$ for various values of the semi-angle of the cone. The coefficients are also determined for a

There are 5 figures and 2 Soviet references.

SUBMITTED: December 10, 1960

Card 2/3

ACC NR: AP6002315

SOURCE CODE: UR/0373/65/000/006/0010/0019

AUTHOR: Tinyakov, G. P. (Moscow)

ORG: none

TITLE: Investigation of a three-dimensional supersonic flow past ellipsoids of revolution

SOURCE: AN SSSR. Izvestiya. Mekhanika, no. 6, 1965, 10-19

TOPIC TAGS: supersonic flow, three dimensional flow, shock wave, detached shock wave, flow analysis, numeric integration, that flow, gas flow, flowflody, ABSTRACT: This article gives the results of a theoretical investigation of a three-based on the method of numerical integration of equations of insertional by G. F. Telenin and the author (Abadomty numb. Duklindy, v. 174, no. 7, 1964). A flowed ballow in the authority and supersonic testing the first and supersonic flow in the authority numb. Duklindy, v. 174, no. 7, 1964). A flowed ballow in the authority and supersonic testing the first and supersonic flow in the authority numb. Duklindy, v. 174, no. 7, 1964). A flowed ballow in the authority and supersonic testing the first and supersonic flow in the substitute of the first and supersonic flow in the substitute of the first and supersonic flow in the substitute of the first and supersonic flow in the substitute of the first and supersonic flow in the substitute of the first and supersonic flow and the substitute of first and supersonic flow and the first

RUTSKIY, Aleksandr Ivanovich; ZAGOROVSKIY, Ye.N., kand. tekhn. nauk, prepodavatel; RUMYANTSEV, Yu.G., inzh., prepodavatel; SKVARKO, E.A., inzh., prepodavatel; red.; TINYAKOV, N.A., kand. tekhn. nauk, dots., red.; VARENIKOVA, V., tekhn. red.

over a service of all delication

[Electric power plants and substations; principal electrical equipment] Elektricheskie stantsii i ppdstantsii; osnovnoe elektricheskoe oborudovanie. Minsk, Gos.izd-vo BSSR. Red. nauchnotekhn. lit-ry, 1962. 423 p. (MIRA 16:3)

l. Kafedra elektricheskikh stantsiy Belorusskogo politekhnicheskogo instituta (for Zagorovskiy, Rumyantsev). (Electric power plants) (Electric substations)

S/143/60/009/007/011/012/XX D271/D305

AUTHORS:

Zhunina, L.A., Tinyakov, N.A., Candidates of Technical

Sciences, Docents

TITLE:

New glass for high-voltage insulators

PERIODICAL:

Izvestiya vysshikh uchebnych zavedeniy. Energetika,

no. 7, 1960, 51-55

TEXT: The article reports on work carried out at the Belorusskiy politekhnicheskiy institut (Belorussian Polytechnic Institute). An increasing demand for insulators in all regions of the Soviet Union and the resulting difficulty in satisfying local needs prompted the BSSR to organize its own production of insulators. The materials problem was solved by utilizing glass. Glass insulators have the following advantages: 1) A higher electric and mechanical strength compared to porcelain which makes it possible to reduce the size of glass insulators; 2) Smaller sized glass insulators make it possible to reduce metal consumption for reinforcement and the sizes of poles or with equal poles, to increase the span; 3)

Card 1/5

New glass for high-voltage insulators S/143/60/000/007/011/012/XX

Glass insulators are made of widespread cheap raw materials; 4) The technology of glass insulators permits overall automation of the production process at lower costs than those for porcelain insulators; 5) The application of hardened suspension glass insulators eliminates the need for their inspection during the service by means of a rod or other methods; 6) Testing finished hard glass insulators is much simpler than testing porcelain insulators and can be fully mechanized; 7) Capital investments are lower than for a comparable volume of production of porcelain insulators. Studies on optimum glass composition for high-voltage insulators are being carried out at the Belorussian Polytechnic Institute. Based on preliminary experiments it was decided to seek such an optimum composition in the SiO₂-Al₂O₃-CaO-MgO-NaO system. As raw materials for glass of this system such widespread materials can be used as quartz sand, kaolin, dolomite, limestone, manganese ore. Nine sand kaolin-chalk-dolomite-pyrosulite and three sand-kaolin-dolomitepyrolusite mixtures (Table 1) were processed under the following conditions: charge beginning at 1300°C, charge end at 1200°C, temperature raised over 1 hour to 1380-1420°C, exposure at this tem-Card 2/5

The same of the street of the

New glass for high-voltage insulators S/143/60/000/007/011/012/XX

perature during 0.5 - 1 hour, temperature reduction to 1300° during 1 hour, yield at 1300-1320°C. It was established that almost all types of glass of this series show good processing properties; they can be easily cast, pressed, rolled and drawn to threads. The interval of technological viscosity is sufficient for products of, a complex configuration. The following characteristics of the glass types were investigated: 1) Technological characteristics: founding and yielding capacities (visually); 2) Physico-chemical properties: crystallizing capacity (polythermic method), softening temperature (I.I. Kitaygorodskiy's device) / Abstracter's note: Not described / specific gravity, thermal resistance (air-water method), linear expansion coefficient (tubular dynamometer), chemical resistance to water and to binormal sodium solution (powder method recommended by VNIIS); 3) Mechanical characteristics: microhardness and microtransparency (TMT (PMT) - 3 device); 4) Electric characteristics, determined according to GOST 6433-52: specific resistance (galvanometer and F-57 ohmmeter), dielectric phase angle tangent and dielectric permeability (MAT (MDP) high-voltage bridge), electric strength (60 kilovolts, 5 kilowatts testing unit). Four glass

Card 3/5

· 中心上中,但此时中心理论是是是是是是是是是是是是是是是是是是是是是是是是是是是是是

New glass for high-voltage insulators S/143/60/000/007/011/012/XX D271/D305

compositions with the best technological, physico-chemical and electric properties have been selected for further tests under industrial conditions. There are 2 tables and 4 references: 3 Goviet-bloc and 1 non-Soviet-bloc.

Table L Legend: (1) Composition	Hosiega	Co Illuxita, nec. u.				Cronsin, nec. no 1 7						
of experimental charges and glass	стекол (2)	Песок (3)	Каолин (4)	Me.1	Доломит	Пиролю- зит (ў)	SiOa	VI°O2	1	MgO	MnO	
(2) Number of glass; (3) Sand:	19/1	31,47	12,65	10,90	45,72	11,12	55,00	5,00	20,00	10,00	10,00	
(4) Kaolin; (5)	19/11	31,47	12,65	1,94	45,72	,16,65	55,00	5,00	15,00	10,00	15,00	
Charge (weight);	19/111	43,20	25,40	14,28	22,86	16,65	55,00	10,00	15,00	.5,00	15,0Q	
(6) Chalk; (7)	19/IV 19/V	32,04	25,40		68,58	5,55	55,00	10,00	15,00	15,00	5,00	
Dolomite; (8) Py-	19/VI	37,34 37,34	37,95 37,95	1,94	45,72	5,55	55,00	15,00	15,00	10,00	5,00	
rolusite; (9)	19/VII	31,47	50,60	14,28 14,28	22,86	11,12	55,00	15,00	15,00	5,00	10,00	
Glass (weight %).	19/VIII	37,34	37,95		22,86 68,58	5,55	55,00	20,00	15,00	5,00	5,00	
	19/IX	37,34	37,95		45,72	5,55	55,00	15,00	10,00	15,00	5,00	
	19/X	37:34	. 37,95	9,52	22,86		55,00 55,00	15,00	11,00	11,00	10'00	
0-144	19/XI	37,34	37,95	23,22	22,86	,	55,00	15,00	10,00	5,00	15,00	
Card 4/5	19/XII	31,47	12,65	14,28	22,86		55.00	- 1	15,00	5,00	5,00	
The state of the s								01-0-1	.0,00	2,00	20,00	

S/143/60/000/007/011/012/XX D271/D305 New glass for high-voltage insulators

ASSOCIATION: Belorusskiy politekhnicheskiy institut (Belorussian Polytechnic Institute)

PRESENTED: On February 16, 1960 by the Kafedry tekhnologii stekla

i silikatov i tekhniki vysokikh napryazheniy (Departments for Glass and Silicate Technology and High-Vol-

tage Engineering)

The second resident and the second se

Card 5/5

CONTROL OF THE STATE OF THE STA

RUTSKIY, A.I., kand. tekhn. nauk, zasl. deyate' nauki i tekhniki

BSSR; ZAGOROVSKIY, Ye.N., inzh.; SLEPYAN, Ya.Yu., kand.

tekhn. nauk; NOVASH, V.I., kand. tekhn.nauk; TINYAKOV, N.A.,

kand. tekhn. nauk; POL'SKIY, S., red.; KALECHITS, G., tekhn.

red.; DOMOVSKAYA, G., tekhn. red.

[Electrician's manual] Spravochnoe posobie clektromontera.
2., perer. izd. Pod red. A.I.Rutskogo. Minsk, Gos. izd-vo
BSSR. Red. nauchno-tekhn. lit-ry, 1961. 377 p.

(MIRA 15:4)

(Electric engineering-Handbooks, mamuals, etc.)

ZHUNINA, L.A., dotsent, kand.tekhn.nauk; TINYAKOV, N.A., dotsent, kand. tekhn.nauk

New types of glass for high-voltage insulators. Izv. vys. ucheb. zav.; energ. 3 no. 7:51-55 Jl '60. (MIRA 13:8)

1. Belorusskiy politekhnicheskiy institut. Predstavlena kafedrami tekhnologii stekla i silikatov i tekhnik vysokikh napryazheniy.

(Electric insulators and insulation)

ATABEKOV, G.I.; BASHARIN, A.V.; BOGORODITSKIY. N.P.; BULGAKOV, K.V.;

VASILYEV, D.V.; YEGIAZAROV, I.V.; YERMOLIN, N.P.; KOGTENKO, M.I.;

MATKHANOV, P.N.; NOVASH, V.I.; HORHEVSKIY, B.I.; RUTSKIY, L.I.;

RYZHOV, P.I.; SOLOV'TEV, I.I.; SOLODNIKOV, G.S.; SIEPTAN, YA.T.;

SMUROVA N.V.; TINYAKOV, V.A.; FATEYEV, A.V.; FELOSEYEV, A.M.;

SHABADASH B.I.; SHCHEDFIN, N.N.

Viktor Ivanovich Ivanov, 1900-1964; obituary. Izv. vys. ucheb.

zav.; energ. 8 no.1:122-123 Ja 165.

(MIRA 18:2)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755810008-6"

STEPANCHUK, K.F., inzh.; TINYAKOV, N.A., kand. tekhu. nauk, dotsent

Puncture of transformer oil in a flow. Izv. vys. ucheb. zav.;
energ. 7 no.12:13 D 164.

[MIFA 12:2]

1. Belorusskiy politekhnicheskiy institut. Predstavlens kafedroy
tekhniki vysokikh napryazheniy.

では、10mmである。 10mm では、10mmでは、10mmでは、10mmでは、10mmでは、10mmでは、10mmでは、10mmでは、10mmでは、10mmでは、10mmでは、10mmでは、10mmでは、10mmでは

TINYAKOV, Nikolay Arsen'yevich; VANCHUK, L., red.; VARENIKOVA, V., tekhn. red.

[New materials in electric power engineering] Novye materialy v elektroenergetike. Minsk, Izd-vo "Belorus"," (MIRA 17:2)

SLEPYAN, Ya.Yu., kand.tekhn.nauk, dotsent; TINYAKOV, N.A., kand.tekhn.nauk, dotsent

"Development of Power Engineering in White Russia" by I.F. Voloshina. Reviewed by IA. IU. Slepian and N. A. Tiniakov. Izv. vys. ucheb. zav.; energ. 5 no.9:130-131 S '62. (MIRA 15:10)

1. Relorusskiy politekhnicheskiy institut.
(White Russia-Power engineering) (Voloshina, I.F.)

STEPANGHUK, K.F., inzin.; TINYAKOV, N.A., kand.tekhn.nauk, dotsent

Deformation of gas bubbles in a liquid in an electric field.

Izv.vya.ucheb.zav.; energ. 8 no.4:11-18 Ap '65.

1. Belorusskiy politekhnicheskiy institut. Predstavlena kafedroy tekhniki vysokikh napryazheniy.

ACC N	0-66 EWP(k)/EWT(m)/T/EWP(w)/EWP(t)/ETI IJP(c) JD/HW R: AP6024260 COUPCE COUPCE
7	SCURCE CODE: UR/0128/66/000/007/0010/0011
AUTHOR (Engin	R: Mirzoyan, G. S. (Candidate of technical sciences); Zav'yalov, V. F. G. (Engineer)
ORG:	
TITLE:	Centrifugal casting of thin-wall steel shells
SOURCE	: Liteynoye proizvodstvo no 7 1000 10 to
TOPIC steel,	TAGS: steel rine alloy steel, chromium containing steel, silicon containing nickel containing steel, tungsten containing steel, vanadium containing steel, tube shell casting, centrifugal casting/30KhSNVFA steel
ABSTRAG diamete The ste cooled in 50-	CT: The possibility of manufacturing 30KhSNVFA steel tube shells 520 mm in er, 15—20 mm wall-thickness, and up to 400 mm long, has been investigated. mold at a speed of 400 rpm. Shells with a wall thickness of about 28 mm. cast
to 16 s	ongitudinal cracks. No cracks were observed when the pouring time was reduced and the solidification rate was increased to 1.10—1.70 mm/sec. Castings, about HB228, a tensile strength of 79—89 kg/mm², a yield strength of 52—58
Card 1	/2 UDC: 621,74,042:669,141,25
	327.74.046.5009.141.25
er verbrokeren.	. The first constant ℓ is a first constant ℓ in ℓ

	ACC NR: AP6024260
	kg/mm ² , and a microstructure consisting of lamellar perlite and sorbite without in diameter with a wall thickness of 5 mm. Orig. art. has: 3 figures and 2 tables.
•	SUB CODE: 13/ SUBM DATE: none/ ORIG REF: 001/ ATD PRESS: 5039
	·
	na
	Card 2/2

TINYAKOV, Yu.G. (Moskva)

BRIEFIE AND STATES BEFORE STEPHEN STATES AND SELECTION OF LANGE STATES.

Organization of fibrin. Arkh. pat. no.12:54-61 162 (MIRA 18:1)

1. Iz kafedry patologicheskoy anatomii II Moskovskogo meditsinskogo instituta imeni N.I. Firogova (zav. - deystvitel'nyy chlen AMN SSSR I.V. Davydovskiy) i laboratorii patologicheskoy anatomii (zav. - doktor med. nauk A.M. Vikhert) Instituta terapii AMN SSSR.

TINYAKOV, G.G.; TIN AKOV, Yu.G.

Origin of cancer in the light of proliferative variability of normal cells. Dokl. AN SSSR 141 no.4:998-1001 D '61. (MTRA 14:11)

1. Moskovskiy tekhnologicheskiy institut myasnoy i molochnoy promyshlennosti i Institut terapii Akademii meditsinskikh nauk SSSR. Predstavleno akademikom I.I. Shmal'gauzenom. (CANCER)

Spontaneous chromosome mutations under normal and pathological conditions. Dokl.AN SSSR 134 no.1:187-190 S '60.

(MIRA 13:8)

1. Moskovskiy tekhnologicheskiy institut myasnoy i molochnoy promyshlennosti. Predstavleno akad. I.I.Shmal'gauzenom.

(Chromosomes)

ZORIN, Yevgeniy Timofeyevich; TINYAKOV, Yuriy Mikhaylovich; ROMADIN, A.G., red.; LIFEROVA, A.I., red.izd-va; FOMICHEV, P.M., tekhn. red.

[Assembly, operation and repair of bakery equipment] Montazh, ekspluatatsiia i remont khlebopekarnogo oborudovaniia, Moskva, Izd-vo TSentrosoiuza, 1963. 251 p. (MIRA 16:12) (Bakeries—Equipment and supplies)

TINYAKOVA, H.I.

Pharmacology of sweet William, Trudy Oren, otd. Vses. fizioll. ob-va no.2:142-146:60. (MINA 16:8)

KUTSEROK, B.Ye.; TINYAKOVA, Ye.I.; DOLGOPLOSK, B.A.

医多型 自由的存储的过程的 经现代的 医多种性 医多种性 医多种性 医多种性

Interaction between isopropylbenzene hydroperoxide and rongalite, and the use of this reaction for initiating polymerization in acid media. Vysokom.soed. 1 no.12:1830-1839 D '59.

(MIRA 13:5)

1. Vsesoyuznyy nauchno-issledovatel skiy institut sinteticheskogo kauchuka.

(Polymerization) (Sodium formaldehyde sulfoxylate)
(Hydroperoxides)

ANGHRLESCU, V.; TIRMOVEANU, G.; THIPAN, C.; CIOBANU, C.; VOICU, A.

Contributions to the study of staphylococcal gastro-enteritis in children, Shumanian M. Rev. H no.1:58-60 Ja-Mr '60.

1. Hospital for Children in Galati (D. sctor: Dr. Virgil Anghelescu).

(CASTROENTERITIS in infancy & childhood)

(STAPHYLOCOCCAL INFECTIONS in infancy & childhood)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755810008-6"

unin sa-taki ku anga B. A. A. A. Wallis, anga Ser Ser Ser Ser Ser Ser Ser Ser Ser

19.04 : UESR U.T.DGGRY : Farm Animals. Cattle. . J. 70%: : RLBiol., No. 3, 195), No. 11985 AUTHOR : Tinyakov, G.G. fille. : Institute of Animal Morphology. AS USSR : Embryonic Development of the Mamrary Gland ITTUL in Cattle ORIG. PUG. : Tr. In-ta morfol. zhivotnykh AN SSSR, vyp. 22 116-131 ABSERAGI : The successive development is described of the marmary gland in cattle from the embryonic age of one month to the parturition of calves of both sexes. It is noted that the fundamental differentiation of the gland's epithelial rudiment which forms the epithelial infundibulum, the cervix of the infundibulum, the basic rudimental cistern, the preudder canel and rudimentary cistern of the udder is accomplished when the fetus reaches the age Call: 1/3

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755810008-6"

PHONE STORY IN THE PROPERTY OF 10011277 111.54 CATEGORY ABS. JOUR. 1 RZhBiol., No. 1959, No. 红牙 100 [!'... . MILL DRIG. PUB. TRAMBACT of 4 months. The marmary gland's earliest slement is represented by the mammilary canal , which is formed by the walls of the epithelial infundibulum which originates in turn in the epithelial comes of 2-month old embryos. At the same time the establishment of the udder's fatty tissue also takes place in the form of fatty islats which consormently undergo rapidly progressing growth in terms of quantity and quality. The formation mechanism of the udder's lymph vessel is lard: 2/3

non anni: USSR JATE C.Z NBS . JCTR. : AShBiol., No. 1959, No. **WTHOR** MST. FITL MIG. PUB. determined as well as the manner in which their valves develop, consisting of the formation of the vessel's inner endothelial layer ABSTRACT by means of fiberblasts being adsorbed at the surface of the lymphatic fluid and which are apparently greatly flattened and tightly bound to each other. -- A. D. Musin 3/3 : CULAC 19

TINYAKOV, N.A., dots.; HUMYANTSEV, Yu.G., inzh.

All-Union conference on groundings. Izv.vys.ucheb.zav.; energ. no.12:
118-120 D '58. (MIRA 12:3)

1. Belorusskiy politekhnicheskiy institut.
(Electric currents--Grounding)

RUTSKIY, A.I., kand.tekhn.nauk, zasluzhennyy deyatel' nauki i tekhniki BSSR;
ZAGOROVSKIY, Ye.N., inzh.; SLRPYAN, YA.Yu., kand.tekhn.nauk; NOVASH,
V.I., kand.tekhn.nauk; TINYAKOV, N.A., kand.tekhn.nauk; KASHTANOV, F.,
red.; STEPANOVA, N., tekhn.red.

[Electrician's handbook] Spravochnoe posobie elektromontera.
Minsk, Gos.izd-vo BSSR, Red.nauchno-tekhn.lit-ry, 1960. 360 p.
(MIRA 13:9)

(Electricity--Handbooks, manuals, etc.)

TINTAKOV, N.I., inzh.

Standard electric switchbox. Nov.tekh. i pered. op. v stroi.
19 no.7:27 Jl '57. (MIRA 10:10)

(Electric switchgear)

SIDOROV, V.A., inzhoner; TINYAKOV, N.I., tekhnik.

Granite and ceramic facing of building facades in winter using electric heating; construction experience on the Moscow State University buildings. Gor.khoz.Mosk. 28 no.1:35-37 Ja '54.

(MLRA 7:2)

(Bricklaying -- Cold weather conditions)

VIKHERT, A.M.; SEREBROVSKAYA, Yu.A.; TINYAKOV, Yu.G. (Moskva)

Renin and the juxtaglomerular apparatus in experimental nephritis. Arkh.pat. no.2:17-24 163 (MIRA 16:11)

1. Iz Instituta terapii ANN SSSR (dir. - deystvitel'nyy chlen ANN SSSR prof. A.L. Myasnikov.)

TINYAKOV, Yu.G. (Moskva)

Microtome. Arkh. pat. 26 no.2:86 '64.

Cryostat. Ibid.:86-87 (MIRA 17:8)

1. Institut terapii AMN SSSR.

Dissertation: "Investigation of the Polymerization of 2-Chlorobutadiene1, 3 in Solutions." Moscow Inst of Fine Chemical Technology imeni
M. V. Lomonosov, 24 Mar 47.

S0: Vechernyaya Moskva, Mar, 1947 (Project #17836)

TINYAKOVA NE. I

USSR/Organic Chemistry - Theoretical and General Questions on Organic Chemistry,

Abst Journal: Referat Zhur - Khimiya, No 19, 1956, 61379

Author: Tinyakova, Ye. I., Dolgoplosk, B. A., Tikhomolova, M. P.

Institution: None

Title: Reactions of Free Radicals in Solutions. III. Study of the Re-

actions of Free Radicals with Sulfur

Original

Periodical: Zh. obshch. khimii, 1955, 25, No 7, 1387-1394

Abstract: A study of the reactions of methyl, ethyl, isopropyl and allyl free

radicals with S and polysulfides. As a source of free radicals use was made of alkyl phenyltriazenes and azobenzene (mechanism of reaction, see communication II, Referat Zhur - Khimiya, 1955, 40009). As solvent was chosen isopropylbenzene (I) in order to evaluate the competing reactions of free radicals with S and with the solvent. A solution of 3.2 mol % triazene and S (6-8 mol per 1 mol triazene) in I was heated at 1120 until evolution of gas ceased. It is shown

Card 1/3

USSR/Organic Chemistry - Theoretical and General Questions on Organic Chemistry,

Abst Journal: Referat Zhur - Khimiya, No 19, 1956, 61379

CONTRACTOR OF THE PROPERTY OF

Abstract: that free radicals are almost completely taken up by S with the formation of alkyl polysulfides which are the primary products of the reaction and do not depend on the presence of by-products of the reaction, namely amines, in the reaction medium. The abovestated radicals differ greatly by their activity in the reaction of removal of H from I and differ but little in the reaction with S due to the lower energy of activation of this reaction. On reaction of allyl radical with S are formed diallylpolysulfides with a low yield which is explained by the instability of these products. On interaction of azobenzyl /sic/ with S (1:13.7) H2S is formed with a yield of 81-87% and benzaldazine (II), yield 51%. Formation of H2S and II is the result of oxidation of azabenzyl by S. The author assumes that such reactions of dehydrogenation are also possible in rubbers containing diallyl groupings. It is shown that on action of methyl radical with S in the presence of mercaptans (or H2S) there takes place removal of hydrogen from mercaptan (or H2S) with formation of hydrocarbons and the radicals RS (or SH). Studied is the reaction of methyl radical with

Card 2/3

USSR/Organic Chemistry - Theoretical and General Questions on Organic Chemistry, E-1

Abst Journal: Referat Zhur - Khimiya, No 19, 1956, 61379

Abstract: polysulfides (dilauryltetrasulfide and dibenzyltetrasulfide), which confirmed the fact that the polysulfides formed in the course of the reaction react with free radicals the same as elemental S. It is shown on the example of dimethylpolysulfide using S35 that under these conditions are formed molecules of dimethylpolysulfide containing on the average 6 atoms of sulfur.

Card 3/3

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755810008-6"

電影	1 Vm	100 miles
		Oxidation-reduction systems for initiation of radial processes. I Reversible systems with participation of demod hydropererides and salts of metals with varioble valence. Q. Information in the participation and in the participation of the processes. If the processes and it is a process of the processes and it is a process of the proce
		the late of the case by the case of the system of the syst
		with dihydroxymalck aeld, PhCMesOOH (or dikopropyl- benzene hydroperoxida or p-tert-bitylisopropylbenzene hydroperoxide), and Mohr aelt componenta. The aeld component was 0.3% of the substrate, hydroperoxide 0.5% with Mohr salt 0->15 mole %. The most effective hydroperoxide on the p-tert-bitylisopropylkenzene, although
1	以外的数据的数据	

TIMYMOVA, ...Y., ICHEPTAJE, J. A., C. I WICH, V. I.

"Redon systems in polyminisation," a paper presented at the (th Co. greens on the Chemistry and Physics of High Polymons, 20 Jan-2 Feb 57, Hosney, Polymons, Research Inst.

B-3,004,395

TIHYAKOVA, E. Y., DOLGOPLASK, B. A., REYKH, V. P., KALAHU, A. J.

"Synthesis of acrylic rubbers and their properties," a paper presented at the 9th/congress on the Chemistry and Physics of High Polymers, 28 Jun - 2 Feb 57, Moscow, Rubber Research Inst.

B-3,084,395

THIYAKOVA, J.Y., BELOHOVSKAYA, G.P., and DOLGOPLASK, B. A.

"Low temperature polymerization initiated by di-enols and properties of the resulting polymers," a paper presented at the 9th Congress on the Chemistry and Physics of High Polymers, 28 Jan-2 Feb 57, Moseou, Polymer Research Inst.

B-3,084,395

AUTHORS:

Belonovskaya, G. P.; Dolgoplosk, B. A.; Tinyakova, Ye. I. 62-1-9/21

TITLE:

Oxidation-Reduction Systems for the Initiation of Radical Processes. Part 2. Iritiation of Polymerization in Aqueous Emulsions under the effect of Reversible Systems at a Temperature of below 00 and Study of the Microstructure of the Polymeric Chain (Okislitel'novosstanoviteliny sistemy dlya initsiirovaniya radikalinykh protsessov. Soobshcheniye 2. Initsiirovaniye polimerizatsii v vodnykh emul'siyakh pod vliyaniyem obratimykh sistem pri temperature nizhe 0° i izucheniye

mikrostruktury polimernoy tsepi).

PERIODICAL:

Izvestiya Akademii Nauk SSSR, Otdeleniya Khimicheskikh Nauk, 1957,

No. 1, pp. 65-69 (U.S.S.R.)

The purpose of this report is to study the applicability of an ABSTRACT: oxidation-reduction system, consisting of dienols, hydrogen peroxide of isopropylbenzene and very small amount of ferric salt or cupric salt, for the initiation of polymerization in an aqueous emulsion at very low temperatures for the purpose of establishing the relation between the

Card 1/3

2008年1月1日 - 1908年1月1日 - 1908年1月1日 - 1908年1月1日 - 1908年1日 - 1908年1日 - 1908年1日 - 1908年1日 - 1908年1日 - 1908年1日 - 19

62-1-9/21

Oxidation-Reduction Systems for the Initiation of Radical Processes. Part 2. Initiation of Polymerization in Aqueous Emulsions under the effect of Reversible Systems at a Temperature of below 0° and Study of the Microstructure of the Polymeric Chain

polymerization temperature and the microstructure of the polymeric chain. It was found that the application of such system is perfectly possible for polymerization initiation at temperatures ranging down to -47°. It is evident from results obtained that the system containing dioxymaleic acid and ferric salt is the most active one but only in the presence of hydrogen peroxide of r-tertiary-butyl-isopropyl benzene.

The authors obtained data which established a close relation between the polymerization temperature of **p**ivinyl and isoprene and the microstructure of the polymeric chain. A reduction in polymerization temperature displaces the equilibrium toward a more stable trans-form. Divnyl polymers at a reduced polymerization temperature show a positive tendency toward crystallization.

Card 2/3

Tables, graphs, illustrations. There are ll references, of which 2 are Slavic.

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755810008-6"

Oxidation-Reduction Systems for the Initiation of Radial Processes. Part 2. Initiation of Polymerization in Aqueous Emulsions under the effect of Reversible Systems at a Temperature of below 0° and Study of the Microstructure of the Polymeric Chain

ASSOCIATION:

Academy of Sciences of the USSR, Institute of High Molecular

PRESENTED BY:

SUBMITTED:

December 13, 1955

AVAILABLE:

Library of Congress

Card 3/3

"APPROVED FOR RELEASE: 07/16/2001

CIA-RDP86-00513R001755810008-6

DOLGOPLOSK, B.A., professor; TINYAKOVA, Ye.I., kandidat tekhnicheskikh nauk.

Basic types of oxidation-reduction systems for the initiation of radical processes in aqueous and hydrocarbon media and the mechanism of their reaction. Khim. nauka i prom. 2 no.3:280-298 '57.

(vxidation-reduction reaction)

(Polymerization)

(Radicals (Chemistry))

TINGAKOVA, UT. L.

TINYAKOVA, Ye.I.; DOLGOPLOSK, B.A.; REYKH, V.N.

Redox systems for initiating radical processes. Report No.6: Systems with participation of oxygen for initiating the process of oxidation destruction of polymers. Izv. AN SSSR. Otd. khim. nauk no.9:1111-1121 S 157. (MIRA 10:12)

1. Institut vysokomolekulyarnykh soyedineniy AN SSSR. (Oxidation-Reduction reaction) (Polymers)

DOLGOPIOSK, B.A.; TINYAKOVA, Ye.I.; REYKH, V.N.; ZHURAVLEVA, T.G.;

Carboxyl-containing rubbers. Part 1: Synthesis of carboxyl-containing rubbers and the study of the structure of polymers and vulcanized rubber. Kauch. i rez. 16 no.3:11-14 Mr '57.

(MIRA 12:3)

1. Vsesoyuznyy nauchno-issledovatel'skiy institut sinteticheskogo Kauchuka. (Rubber, Synthetic) (Carboxyl group) (Polymers)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755810008-6"

DOIGOPIOSK, B.A.; REYKH, V.N.; TINYAKOVA, Ye.I.; KALAUS, A.Ye.;

KORYUSHENKO, Z.A.; SLADKEVICH, Ye.G.

Carboxyl-containing rubbers. Report no. 2: Basic qualities of vulcanizates from carboxyl-containing rubbers. Kauch. i rez.

(MIRA 10:10)

1. Vsesoyuznyy nauchno-issledovatel'skiy institut sinteticheskogo (Rubber, Synthetic)

(Vulcanization)

MARKEVA, YE. I

AUTHORS:

Dolgoplosk, B. A., ferusalimskiy, B. L., (2-50-4-17/20

TITLE:

CRIMINIAL PLANS

Generation of Free Radicals in Solutions and Their Reactions in Model Systems (Genericovaniye svobodnykh radikalov v restvorakh i ikh reaktsii v model'nykh sistemakh). Report of the Conference on Themical Sciences of the AS USSR on October 30, 1957 (Doklad SSSR, 30 oktyabrya 1957)

PERIODICAL:

Izvestiya Akademii Nauk SSSR, Otdelenje Khimicheskikh Nauk, 1958, Nr 4, pp. 469-481 (USSR)

ABSTRACT:

The present paper gives the final results of the work of the authors with - in the field of oxidation - and reduction initiation of radical processes and the insecret corresponding to their action the oxidation and reduction systems are given in 3 groups (Ref. 1): To the place between the reducing agent and the oxidizing agent

Card 1/3

22-5: - 1-17/32

TO THE PARTY OF THE PROPERTY OF THE PARTY OF

Generation of Free Radicals in Solutions and Their Reactions in Model Systems. Report of the Conference on Chemical Spishoes of the AS USSR on October 30, 1957

by forming a radical (see formulae 1,2,3). The detailed description of the first type (system with peroxides) follows. Also systems in which also actal salts with varying valence take part (as oxidizing agenta) blsobelong here. The systems of the second kind are of interest in theoretical and practical respects (second type). Among them is also a system which acts with hy= droquinone taking part. This system was utilized industrially (initiation of polymerizations in emalsions) There is still a number of other systems in which the reactions take part between the omidizing agent and the reducing agent by formation of 2 radicals. Those systems belong to the third kind which have a participation of the diazoamino compounds. 2. Systems with participation of ethylenediamine and polyethylenepolyamine. 3. Systems with participation of sulfur and oxygen (as oxidising agents). After classification of the systems according to their mechanisms the report coals with the different reactions of alkyl- and heteroradicals with various mo=

Card 2/3

以表现的语言 · 不会是正常 斯里女正的 医眼底线 医皮肤 网络克莱克斯 医克里克斯克斯克氏病 · 不是不是否

62-50-4-13/32 Generation of Free Andicals in Delations and Wair Leactions in of the Conference on The ical Science Report Model Systems. of the AS USGR on Getober 30, 1957

nomers and polymers on which occasion a break of the

bonds C-H, C=C, C - C and S - S is formed. Finally the part played by the cell in the heat stable

lity of colymers was investigated.

There are 2 tables and 44 references, 40 of which are

Soviet.

Institut vysokomolekulyarnykh sojedinenij Akademii nauk SSSR (Institute for High-Molecular Compounds, AS ASSOCIATION:

USSR)

December 23, 1957 SUBMITTED:

Library of Congress AVAILABLE:

1. Chemical conference-Report . 2. Free radicals--Solu-

tions-Reactions 3. Free radicals-Solutions-Generation

card 3/3

CIA-RDP86-00513R001755810008-6 "APPROVED FOR RELEASE: 07/16/2001

577/62-51-9-12/26 Tinyakova, Ye., I., Bogomol'nyy, Y.Ya., AUTHORS: Zhuravieva, T. G. Reactions of the Triamenes With Dienols and Acide is Anhydrous Hydrocarbon Media (Reaktsii triawenov s digenol mi TITLE: i kislotami v uglevodorodnykh bezvodnykh sredakh) Izvestiya Akademii nauk SSSR. Otdeleniye khimicheskikh nauk, 1958, Nr 9, pp 1094 - 1098 (USSR) PERIODICAL: It has already been found that the decomposition of alighaticaromatic triazenes in anhydrous media is accelerated ABSTRACT: by the catalytic effect of dienols and acids or acidcontaining substances. The decomposition of triezenes can hydrocarbon also be definitely accelerated in anhydrous media in the presence of acids. This reaction is not a catalytic one, since esters form during the reaction (Refs 2,3). The authors were interested in the application of this reaction to the quantitative determination of

and dienols in anhydrous

Card 1/2

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755810008-6"

carboxyl groups in organic compounds. They considered the investigation of the reaction between the triazenes

portance because of the possible use of his reaction

media of still greater in-

307/62-58-9-1 /26 Reactions of the Triazenes With Diesols and Acids in Anhydrous Hydrocarbon Media

in the alkylation or arylation of dienol groups. It was found that in anhydrous hydrocarbon media dioxymaleic acid and its diethyl ester and ascorbic acid accelerate the decomposition of the triazenes. The reaction is accompanied by the formation of nitrogen and the alkylation (or arylation) of the carboxyl and dienol groups. The authors found that the decomposition reaction of triamenes under the effect of acids can be used for the volumetric quantitative determination of carboxyl groups (especially in polymers) in anhydrous hydrocarbon media. There are 2 figures, 3 tables, and 8 references, 4 of which are Soviet.

ASSOCIATION:

Institut vysokomolekulyarnykh soyedineniy Akademii nauk SSSR

(Institute of High Molecular Compounds, AS USSR)

SUBMITTED:

January 30, 1957

Card 2/2

AUTHORS:

Tinyakova, Ye. T., Khrennikova, Ye. K., SOV/79-28-12-24/41

Dolgoplosk, B. A.

TITLE:

On the Effective Mechanism of the Accelerators in the Process of Sulfur Vulcanization (O mekhanizme deystviya uskoriteley protsess: sernoy vulkanizatsii)

PERIODICAL:

Zhurnal obshchey khimii, 1958. Vol 28, Nr 12, pp 3269-3274 (USSR)

ABSTRACT:

To explain the effective mechanism of the accelerators in the vulcanization it was necessary to investigate the composition of the products formed in the reaction with sulfur in various solvents, and to compare them to the composition of the desolvents, and to compare them to the composition of the desolvents.

composition products of H_2S_2 in the same solvents. For this reason, the reaction of monoethanol amine, ethylene diamine and fructose with sulfur in the pentenes-1 and -2, in cycloand fructose with sulfur in the pentenes, ethyl benzene, hexane, isoprene, A-methyl styrene, styrene, ethyl benzene, and in rubber solution at 130-160° was investigated. This process was characterized according to the formation of H_2S . In

the case of the reaction of monoethanol amine with sulfur in the pentenes-1 and -2 all main reaction products were separated

Card 1/3

On the Effective Mechanism of the Accelerators in the Process of Sulfur Vulcanization

SOV/79-28-12-24/41

and characterized. In table 1 the data are mentioned which characterize the formation of H2S in the reaction of sulfur with the vulcanization accelerators, as well as in the decomposition of $\mathrm{H_2S_2}$ in various solvents. In table 2 the experimental results of the composition of the reaction products of sulfur with monoethanol amine in the solution of pentenes-1 and -2 are mentioned together with the results of the experiments on the decomposition of H2S20 which are given for the purpose of comparison. It was shown that the reaction of sulfur with various reducing agents which occur in the sulfur vulcanization as accelerators takes place by way of an intermediate stage of H2S2 under the formation of S° and S2°. Based on the investigation of the composition of the products formed in the reaction of sulfur with the vulcanization accelerators and in the decomposition of H_2S_2 in α - and β -olefins, a more detailed information on the mechanism of the occurring sulfur formations in the vulcanization process is obtained, and the part is

Card 2/3

On the Effective Mechanism of the Accelerators in the Process of Sulfur Vulcanization

507/79-28-12-24/41

detected which is played by the accelerators therein. It was shown that the outer double bonds are much more reactive in the reaction with the radicals HS. and HS2. than the inner

ones. At temperatures up to 130° the radicals HS. do not separate hydrogen from the aliphatic hydrocarbon solvents. There are 2 tables and 13 references, 8 of which are Soviet.

ASSOCIATION:

Institut vysokomolekulyarnykh soyedineniy Akademii nauk SSSR (Institute of High-Molecular Compounds, Academy of Sciences, USSR)

SUBMITTED:

November 10, 195?

Card 3/3

SOV/79-29-4-50/77 5(3) Tinyakova, Ye. I., Zhuravleva, T. G. AUTHORS: On the Decomposition Mechanism of Isopropylbenzene Hydrogen TITLE: Peroxide Under the Influence of Salts of Metals of Variable Valencies (O mekhanizme raspada gidroperekisi izopropilbenzola pod vliyaniyem soley metallov peremennoy valentnosti) Zhurnal obshchey khimii, 1959, Vol 29, Nr 4, pp 1262-1269 PERIODICAL: (USSR) The study of the effect of these salts on the decomposition of ABSTRACT: hydrogen peroxides is of great importance on account of the role played by them in the oxidation, polymerization, and other radical processes. It is known that salts of this kind in their lower oxide- and oxide forms accelerate the decomposition of hydrogen peroxide catalytically. The decomposition of hydrogen peroxides in aqueous solutions below 50, and in hydrocarbon solutions below 90-100 takes place only under the influence of ferrous salts, hydrogen peroxide and salts Fe2+ being consumed in equivalent quantities. In hydrocarbon solutions the catalytic splitting of hydrogen peroxide under the influence of small amounts of ferric salts takes place only at 100° and up, while the reaction takes place instantly even at Card 1/3

so7/79-29-4-50/77

On the Decomposition Mechanism of Isopropylbenzene Hydrogen Peroxide Under the Influence of Salts of Metals of Variable Valencies

 -70° if the ferrous salt is used (Ref 1). The decomposition of hydrogen peroxides is also accelerated by the salts of other metals, e.g. by the naphthenates of Co, Cu, Pd, Mn, Pb, Ag, Cr, Ni, and Fe; the activity of the metals drops in that series from Co to Fe. For the mechanism of the effect of these metals the following scheme has been suggested (Ref 1):

 $ROOH + Me^{n} \rightarrow RO^{\bullet} + Me^{n+1} + HO^{-}$

 $ROOH + Me^{n+1} \longrightarrow ROO^{\bullet} + Me^{n} + H^{+}$ (2) Hydrogen peroxide thus plays the part alternatively of an oxidizing and reducing agent. This has, however, not yet been proved by experiments. In the present paper the experimental data regarding the decomposition of isopropylbenzene hydrogen peroxide in the presence of the naphthenates of the metals Mn, Cu, Co, and Pd in various solvents are given. The results confirm the validity of the suggested scheme. Tables and figures illustrate these results. There are 3 figures, 2 tables, and 17 references, 4 of which are Soviet.

Card 2/3

sov/79-29-4-50/77

On the Decomposition Mechanism of Isopropylbenzene Hydrogen Peroxide Unier the Influence of Salts of Metals of Variable Valencies

ASSOCIATION:

Institut vysokomolekulyarnykh soyedineniy Akademii nauk SSSR High Molecular Weight Compounds of the

(Institute of

Academy of Sciences USSR)

SUBMITTED:

March 3, 1958

Card 3/3

CIA-RDP86-00513R001755810008-6" APPROVED FOR RELEASE: 07/16/2001