ECS509U - Probability & Matrices

Tassos Tombros

Week 4

Week 4: Learning Objectives

- Basics of Probability Distributions
- At the end of Week 4 you should be able to:
 - Understand the concept of a random variable and how it relates to probability problems
 - Work with probability mass functions
 - Calculate the expected value, variance and standard deviation of random variables
 - Solve probability problems involving the binomial probability model

Random Variables

- A random variable is a function from the sample space S to a set of numbers that makes sense for the sample space
 - we will use capital letters to denote a r.v., e.g. X
 - you can define many r.v. for the same sample space
- Suppose you roll two dice
 - sample space consists of 36 outcomes S={(1,1), (1,2), (2,1), . . . , (6,6)}
 - one possible r.v. will represent the sum of the potential outcomes on the two dice, let's call the r.v. X
 - X will have a different value for each point of the sample space (each pair of dice), but is constrained to range from 2 to 12

The two-dice example

Out-	X										
come	value										
(1,1)	2	(2,1)	3	(3,1)	4	(4,1)	5	(5,1)	6	(6,1)	7
(1,2)	3	(2,2)	4	(3,2)	5	(4,2)	6	(5,2)	7	(6,2)	8
(1,3)	4	(2,3)	5	(3,3)	6	(4,3)	7	(5,3)	8	(6,3)	9
(1,4)	5	(2,4)	6	(3,4)	7	(4,4)	8	(5,4)	9	(6,4)	10
(1,5)	6	(2,5)	7	(3,5)	8	(4,5)	9	(5,5)	10	(6,5)	11
(1,6)	7	(2,6)	8	(3,6)	9	(4,6)	10	(5,6)	11	(6,6)	12

X is the random variable

It is a function from S to the set of numbers that correspond to the sum of two dice = $\{2, 3, ..., 12\}$

Some more examples

- Select a random student amongst the class, and measure his/her height in cm.
 - S=set of students
 - r.v. X is 'height' which is a function from the set of students to the set of real numbers that correspond to heights of students
- I toss a coin 3 times, and measure the number of heads
 - S= {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
 - Random variable Y is a function from S to {0, 1, 2, 3}

Types of random variables

Discrete

- A r.v. is discrete if the values it can take are finite or countably infinite (link to week 1 slides for these)
- The examples with the coin and the dice correspond to finite cases
- A countably infinite case would be e.g. a r.v.
 measuring the number of accidents in a year in the M1

Continuous

- A r.v. is continuous if the values it can take are uncountably infinite
- e.g. the r.v. measuring the height of students could take any real number between certain extreme limits
- e.g. r.v. measuring the length of phone calls

Probability mass function (pmf)

- Let X be a discrete random variable
 - Given any value a in the set of possible values for X, what is the probability that X will have that value a?
- One way to write this:
 - A={x∈S:X(x)=a}, and we would then be interested in P(A)
- Another way to write this:
 - P(X=a): the probability that X will take the value a, or even simpler P(a)

Definitions and properties of pmf

- The probability mass function (pmf) of a discrete r.v. will give us the value of P(X=a) for each element a in the set of possible values of the random variable X
- For a function to be a probability mass function of a discrete r.v., 2 conditions must hold:
 - P(X=a)≥0, for all possible a
 - \sum (P(X=a)) = 1, for all possible a
 - Both conditions should feel familiar!!!
 - Also, to find the probability that the r.v takes the values a OR b: P(X=a OR X=b) = P(X=a) + P(X=b)

Example

	p.m.f of X=Sum of
X	two dice
(the r.v.)	P(X=a) or P(a)
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

- What is the p.m.f. for the dice-rolling example, where the random variable X is the sum of the two dice?
- How did we find these probability values?
- Do they sum up to 1?

A graphical illustration

1

Another example

- Consider the case of tossing a coin 3 times
 - S= {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
- Let X be a r.v. that records the number of heads {0, 1, 2, 3}. Find the p.m.f. of X

	p.m.f of X=number of heads in 3 coin tosses
X (the r.v.)	P(X=a) or P(a)
0	1/8
1	3/8
2	3/8
3	1/8

- To find the probability that X takes the values 1 **OR** 2:

$$P(X=1) + P(X=2) = P(1)+P(2) = 3/8 + 3/8 = 6/8$$

Expectation & distribution parameters

Using the probability mass function you can figure three important parameters:

Expected Value

 The long-term average value that you would expect to see after an experiment is repeated a theoretically infinite number of times

Variance

The amount of variability you would need to expect from one set of results of the experiment to another

Standard Deviation

Helps us to interpret the variance of the results

Expected value of a random variable

- The expected value of a random variable X, E(X), is the long-run theoretical average value of X
- You can also see it as the weighted average of all possible values of X, weighted by how often we expect each value to occur over the longterm

$$E(X) = \sum_{\text{all } x} xp(x)$$
, where x is a value of the r.v. X, and p(x) the probability of observing that value

Another way to describe E(X) is as the mean of
 X, denoted with the letter μ

Methodology & Example

- To find the expected value of a random variable:
 - Multiply the value of X by its probability
 - Repeat the step for all values of X
 - Sum the results
- In the example of rolling the two dice and the r.v. X recording the sum of the dice:

$$E(X) = 2(1/36) + 3(2/36) + 4(3/36) + 5(4/36) + 6(5/36) + 7(6/36) + 8(5/36) + 9(4/36) + 10(3/36) + 11/2/36 + 12(1/36) = 7$$

 so, if we were to throw two dice a theoretically infinite number of times and every time record the sum, the average sum of all the rolls would be 7

The variance of a random variable

The variance V(X) of a r.v. is the amount of variability you would expect in the results after repeating the experiment a theoretically infinite number of times

$$V(X) = E(X^2) - \mu^2 = E(X^2) - [E(X)]^2$$

- In other words, this is the difference between the expected value of X² and the square of the expected value of X
- To find $E(X^2)$ you just need to calculate $\Sigma x^2 p(x)$ for all x that are values of the r.v. X
- Always, V(X)≥0

An example

- Consider the case where we toss a coin 3 times and the r.v. X counts the number of heads.
 Calculate E(X) and V(X)
- $E(X) = \mu = \sum_{\text{all } x} xp(x) = 0x(1/8) + 1x(3/8) + 2x(3/8) + 3x(1/8)$ = 3/2

$$V(X) = E(X^{2}) - (E(X))^{2} = (\sum_{\text{all x}} x^{2} p(x)) - (E(X))^{2}$$
$$= [(0^{2} \times (1/8)) + (1^{2} \times (3/8)) + (2^{2} \times (3/8)) + (3^{2} \times (1/8))] - (3/2)^{2}$$
$$= 3/4$$

Standard deviation

- The standard deviation of a random variable is simply the square root of its variance
 - we use the letter σ to denote the standard deviation

$$\sigma = \sqrt{V(X)}$$

- Standard deviation allows us to easier interpret the variation within the outcomes of the random variable.
 - It shows us the variability of X in the original units of X and not in their square, as does V(X)

"Celebrity" Probability Distributions

- A number of probability distributions have their own names and their own characteristics
 - they are distributions that occur in many probability problems, so people have studied them and their properties well
- Discrete Uniform, Binomial, Normal, Bernoulli, Poisson, Gaussian, etc.
- For each distribution there are:
 - Conditions that must be met
 - Formulas for pmf, E(X), V(X)

The Binomial probability model

- Binomial means 'two names' and is associated with situations involving two outcomes, e.g. success/failure
- The conditions to have a Binomial model are:
 - A fixed number of trials, n
 - The outcome of each trial is either in one of two groups, e.g. success or failure
 - The probability of success is the same in each trial, let it be p, and therefore 1-p the probability of failure
 - The trials are independent of each other

Checking the conditions

- Do the following examples satisfy the conditions of the Binomial model?
 - You toss a coin 10 times and count the number of heads
 - You toss a coin until you get 4 heads
 - You have a drawer with 10 red pens, 10 blue and 10 black. You take a pen out and record its colour (then you do not put it back in). You repeat the process 5 times, and you are interested in the total number of red pens that you will pick from the jar

The pmf of the Binomial

- The probability mass function of the Binomial model for a r.v. X is given by:
 - P(X=x) is the probability of having exactly x successes, P(X=x) =C(n,x)p^x(1-p)^{n-x}, where:
 - n is the fixed number of trials
 - x is the specified number of successes, so n-x is the number of failures
 - p is the probability of success in any given trial, so 1-p is the probability of failure in any given trial
 - C(n,x) is our known formula for combinations of x items chosen from n items (here: x successes chosen from the total of n trials)

Examples

You flip a coin 3 times, the r.v. X records the number of heads. What is the probability that we get:

All heads?

- n=3, x=3, n-x=0, p=1/2, 1-p=1/2
- The chance of getting all heads is P(X=3) or P(3) since X is recording the number of heads
- $P(3) = C(3,3)(1/2)^3(1/2)^0 = (1)(1/8)(1) = 1/8$

More than one tail?

- Remember that X counts the number of heads. More than one tail means 2 or 3 tails, which means 0 or 1 heads!!! So the answer will be given by P(0) + P(1)
- Apply the formula for n=3, p=1/2, 1-p=1/2 and x=0 or 1 (and n-x=3 or 2 respectively)
- P(more than one tail) = P(1)+P(0)=3/8+1/8=4/8=1/2

4

Expected value and variance

- In the Binomial model, for a r.v. X:
 - **E(X)=np**, where:
 - n is the number of trials, and p the probability of success in any given trial
 - V(X)=np(1-p), where:
 - n is the number of trials, and p the probability of success in any given trial
 - The standard deviation $\sigma = \sqrt{np(1-p)}$

Summary of lecture

- In Week 4 we covered:
 - Random variables
 - Probability mass function
 - Expected value, variance and standard deviation
 - The Binomial probability distribution
- Don't forget:
 - Work on the exercises for Friday BEFORE you come to the class

Exercises on expected values

- Two fair dice are rolled, and the r.v. X records the max of the two numbers that show on the dice. Find E(X)
- A coin is tossed until a head, or 5 tails occur. Find the expected number of tosses of the coin.
 - Hint: what is the sample space? What does the random variable represent in this problem?
- A player tosses two coins. The player wins £2 if 2 heads occur, and £1 if 1 head occurs. The player loses £3 if no head occurs. Is the game fair?
 - Hint: the game is favorable, fair or unfavorable to the player respectively, if E>0, E=0, or E<0

4

Sample answers

First we would need to find the distribution of the r.v. X: P(X=1)=1/36 since only one toss (1,1) has the max value of 1, P(X=2)=3/36 for (1,2), (2,1) and (2,2) and similarly P(X=3)=5/36, P(X=4)=7/36, P(X=5)=9/36, P(X=6)=11/36 (hint: check if they sum up to 1)

Now we can easily calculate $E(X)=1(1/36)+2(3/36)+3(5/36)+4(7/36)+5(9/36)+6(11/36)\approx4.47$

■ S={H,TH,TTTH,TTTTH,TTTTT} with respective probabilities (we multiply because of independent trials): 1/2, $(1/2)^2=1/4$, $(1/2)^3=1/8$, $(1/2)^4=1/16$, $(1/2)^5=1/32$, $(1/2)^5=1/32$ P(1)=1/2, P(2)=1/4, P(3)=1/8, P(4)=1/16, P(5)=P(TTTTH)+P(TTTTT)=1/32+1/32=1/16It follows that E(X)=1(1/2)+2(1/4)+3(1/8)+4(1/16)+5(1/16)=31/16=1.9375

Sample answers cntd.

S={HH, HT, TH, TT}. Let the r.v. X denote the player's gain: X(HH)=£2, X(HT)=X(TH)=£1, X(TT)=-£3 P(£2)=1/4, P(£1)=2/4, P(-£3)=1/4 It can then be calculated that E(X)= £2(1/4)+ £1(2/4)+ (-£3) (1/4) = £0.25 So the game is favorable to the player because E(X)>0

ECS509U - Week 4

Exercises on the binomial distribution

- West Ham have a probability 2/3 of winning every time they play!!! Suppose they play 6 games. Find the probability that they win more than half of the games.
- 2. A student takes an 18-question multiple choice exam, with 4 choices per question. Suppose 1 of the 4 choices is obviously wrong, and the student decides to choose randomly amongst the other 3 choices for each question.
 - What is the probability that the student gets 7 questions correctly and thus scrapes a pass?
 - What is the expected number of correct answers and the standard deviation σ?

Sample answers

- This is a binomial model, with n=6, p=2/3, 1-p=1/3, number of successes (wins) x = 4, 5, 6 $P(X>3)=P(4)+P(5)+P(6)=C(6,4)(2/3)^4(1/3)^2+$ $C(6,5)(2/3)^5(1/3)^1 + C(6,6)(2/3)^6(1/3)^0$ (you are expected to continue the calculations)
- This is a binomial experiment with n=18, p=1/3, 1-p=2/3, x=7, n-x=11 $P(7)=C(18,7)(1/3)^7(2/3)^{11} = 0.168$ The expected number of correct answers is given by E(X) = np = 18(1/3) = 6

The standard deviation $\sigma = \sqrt{np(1-p)} = \sqrt{18(1/3)(2/3)} = 2$