Actuadores

2 C2.1 Reto en clase

Actuadores Neumatico e Hidraulicos, y sus tipos

Instrucciones

- De acuerdo con la información presentada por el asesor referente al tema actuadores y a los videos observados sobre el mismo tema, elabore lo que se solicita dentro del apartado desarrollo.
- Toda actividad o reto se deberá realizar utilizando el estilo MarkDown con extension .md y el
 entorno de desarrollo VSCode, debiendo ser elaborado como un documento single page, es
 decir si el documento cuanta con imágenes, enlaces o cualquier documento externo debe ser
 accedido desde etiquetas y enlaces.
- Es requisito que el archivo .md contenga una etiqueta del enlace al repositorio de su documento en Github, por ejemplo **Enlace a mi GitHub**
- Al concluir el reto el reto se deberá subir a github el archivo .md creado.
- Desde el archivo .md se debe exportar un archivo .pdf con la nomenclatura
 C2.1_NombreAlumno_Equipo.pdf, el cual deberá subirse a classroom dentro de su apartado correspondiente, para que sirva como evidencia de su entrega; siendo esta plataforma oficial aquí se recibirá la calificación de su actividad por individual.
- Considerando que el archivo .pdf, fue obtenido desde archivo .md, ambos deben ser idénticos y mostrar el mismo contenido.
- Su repositorio ademas de que debe contar con un archivo readme.md dentro de su directorio
 raíz, con la información como datos del estudiante, equipo de trabajo, materia, carrera, datos del
 asesor, e incluso logotipo o imágenes, debe tener un apartado de contenidos o indice, los cuales
 realmente son ligas o enlaces a sus documentos .md, evite utilizar texto para indicar enlaces
 internos o externo.
- Se propone una estructura tal como esta indicada abajo, sin embargo puede utilizarse cualquier otra que le apoye para organizar su repositorio.

```
| readme.md
| | blog
| | C2.1_x.md
| | C2.2_x.md
| | C2.3_x.md
| img
| docs
| | A2.1_x.md
| | A2.2_x.md
```

Desarrollo

Listado de preguntas:

1. Basándose en el video actuadores en Robótica, realice un cuadro sinóptico sobre la clasificación de los actuadores.

2. De acuerdo con el video descripcion de los actuadores industriales realice una matriz comparativa indicando clasificacion, subclasificacion, principio de funcionamiento, ventajas y desventajas.

Matriz Comparativa de Actuadores							
	Clasificación	Subclasificación	Prinicipio de Funcionamiento	Ventajas	Desventajas		
Motores de Corriente Continua	Actuador Eléctrico	Continuo	Rotativo	Amplio rango de potencia Control de velocidad Es reversible Permite un control de par preciso	Su construccion es menos robusta Requiere mayor mantenimiento Mayor tamaño por unidad de potencia		
Motores de Corriente Alterna (Asincrono)	Actuador Eléctrico	Continuo	Rotativo	Coste bajo Robusto Puede controlarse mediente maniobras por conectores sencillas	Su velocidad depende de la carga, pudiera se entre un 2 y 8% menor que la nominal. El coste del variado incrementa el coste del motor		
Motores de Corriente Alterna (Sincrono)	Actuador Eléctrico	Todo - Nada	Rotativo	Mantiene su velocidad independiente de la carga, dependiendo unicamente de la frecuancia Mejora el factor potencia con respecto a los asincronos	Son mas caros y complejos Requieren de un sistema auxiliar hasta alcanzar la velocidad de sincrnismo Requiere un mayor mantenimiento		
Motores Paso a Paso	Actuador Eléctrico	Continuo	Rotativo	Posocionamiento muy preciso Permite velocidades muy bajas	Potencia muy limitada		
Servomotores	Actuador Eléctrico	Continuo	Rotativo	Posicionamiento muy preciso, apto para el control de maquinas herramienta, o como preaccionador de valvulas de control, etc.	Requieren de un circuito de control interno La potencia es muy limitada		

3. De acuerdo con el video Neumática Industrial, explique como trabaja un sistema Neumático?

Se compone de 5 componentes, con el fin de generar un movimiento.

Empezamos en el compresor que toma el aire del ambiente, lo comprime y envía a un FLR (filtro

regulador lubricador) en el FLR el aire comprimido pasa por un separador de líquidos el cual hace circular el aire utilizando paletas con forma especial, gracias a la fuerza centrífuga se elimina la humedad no deseada. Después pasamos al filtro el cual elimina partículas y humedad, el aire comprimido es ajustado por un regulador que funciona con un resorte.

El barómetro muestra al usuario la presión del sistema, finalmente se agrega un lubricante y se pasa a una válvula de control direccional y de aquí al actuador que se requiera.

Rubrica

Criterios	Descripción	Puntaje
Instrucciones	Se cumple con cada uno de los puntos indicados dentro del apartado Instrucciones?	20
Desarrollo	Se respondió a cada uno de los puntos solicitados dentro del desarrollo de la actividad?	80

Enlace a mi GitHub