VE311 Electronic Circuits RC 3

Yucheng Huang

University of Michigan Shanghai Jiao Tong University Joint Institute

July 14, 2023

- MOSFET Single Stage Amplifier
 - Common Source Amplifier
 - Common Drain Amplifier (Source Follower)
 - Common Gate Amplifier
 - Cascode Amplifier

MOSFET Differential Pair Amplifier

- MOSFET Single Stage Amplifier
 - Common Source Amplifier
 - Common Drain Amplifier (Source Follower)
 - Common Gate Amplifier
 - Cascode Amplifier

MOSFET Differential Pair Amplifier

CS with Resistive Load

If no channel-length and body effect:

$$A_{v} = \frac{v_{out}}{v_{in}} = -g_{m1}R_{D} \tag{1}$$

No body effect:

$$A_{v} = -g_{m1}(R_{D} \parallel r_{o1}) \tag{2}$$

In the common source stage amplifier, $V_{DD}=5V, R_D=10k\Omega$, change the input voltage and let the current pass through M1 be 0.1mA. What is the gain of the amplifier? (Neglect body effect) Parameter for NMOS: $V_{THN}=0.7V$, $K_n=110\mu A/V^2, \lambda=0.04V^{-1}$ Parameter for PMOS: $V_{THP}=-0.7V$, $K_p=50\mu A/V^2, \lambda=0.05V^{-1}$ All the size of transistor is $W=20\mu m, L=1\mu m$

CS with Diode-connected Load

NMOS:

$$A_{\rm v} = -\sqrt{\frac{(W/L)_1}{(W/L)_2}} \frac{1}{1+\eta} \qquad \eta = g_{\rm mb2}/g_{\rm m2}$$
 (3)

PMOS:

$$A_{\rm v} = -\sqrt{\frac{\mu_{\rm n}(W/L)_1}{\mu_{\rm p}(W/L)_2}} \tag{4}$$

CS with Current Source Load

In the common source stage amplifier, the current source is ideal. Find the intrinsic gain A_v for the amplifier when $I_0=0.01$ and 0.1mA respectively. (Neglect body effect) Parameter for NMOS: $V_{THN}=0.7V$, $K_n=110\mu A/V^2$, $\lambda=0.04V^{-1}$ Parameter for PMOS: $V_{THP}=-0.7V$, $K_p=50\mu A/V^2$, $\lambda=0.05V^{-1}$ All the size of transistor is $W=20\mu m$, $L=1\mu m$

- MOSFET Single Stage Amplifier
 - Common Source Amplifier
 - Common Drain Amplifier (Source Follower)
 - Common Gate Amplifier
 - Cascode Amplifier

MOSFET Differential Pair Amplifier

Source Follower

$$A_{v} = \frac{g_{m}R_{S}}{1 + g_{m}R_{S}(1 + \eta)} = \frac{g_{m}R_{S}}{1 + (g_{m} + g_{mb})R_{S}} \approx \frac{1}{1 + \eta}$$
 (6)

In the source follower with current source load, the current source is ideal. Find the output impedance for the amplifier when $I_0=0.01$ and 0.1mA respectively. (Neglect body effect) Parameter for NMOS: $V_{THN}=0.7V$, $K_n=110\mu A/V^2$, $\lambda=0.04V^{-1}$ Parameter for PMOS: $V_{THP}=-0.7V$, $K_p=50\mu A/V^2$, $\lambda=0.05V^{-1}$ All the size of transistor is $W=20\mu m$, $L=1\mu m$

- MOSFET Single Stage Amplifier
 - Common Source Amplifier
 - Common Drain Amplifier (Source Follower)
 - Common Gate Amplifier
 - Cascode Amplifier

MOSFET Differential Pair Amplifier

Common Gate

$$R_{in} = \frac{R_D + r_o}{1 + (g_m + g_{mb})r_o} \begin{cases} \text{If } R_D = 0 & R_{in} = r_o \parallel \frac{1}{g_m} \parallel \frac{1}{g_{mb}} \\ \text{If } R_D = \infty & R_{in} = \infty \end{cases}$$
(7)
$$R_{out} = [R_S + r_{o1} + (g_{m1} + g_{mb1})r_{o1}R_S] \parallel R_D$$
(8)

In the common gate stage amplifier , what is the input resistance when $I_{REF}=0.01mA$ and 0.1mA respectively? (Neglect body effect)

Parameter for NMOS: $V_{THN} = 0.7 V$,

$$K_n = 110\mu A/V^2, \lambda = 0.04V^{-1}$$

Parameter for PMOS: $V_{THP} = -0.7V$,

$$K_p = 50\mu A/V^2, \lambda = 0.05V^{-1}$$

All the size of transistor is $\textit{W} = 20\mu\textit{m}, \textit{L} = 1\mu\textit{m}$

- MOSFET Single Stage Amplifier
 - Common Source Amplifier
 - Common Drain Amplifier (Source Follower)
 - Common Gate Amplifier
 - Cascode Amplifier

MOSFET Differential Pair Amplifier

Cascode

Cascode

$$G_{m} = -g_{m1} \frac{r_{o1}}{r_{o1} + \left(r_{o2} \parallel \frac{1}{g_{m2} + g_{mb2}}\right)}$$
(11)
$$R_{out} = r_{o1} + r_{o2} + (g_{m2} + g_{mb2})r_{o2}r_{o1}$$
(12)
$$A_{v} = G_{m}R_{out}$$
(13)

Cascode

In the cascode amplifier , what is the input resistance when $I_{REF}=0.01mA$ and 0.1mA respectively? (Neglect body effect) Parameter for NMOS: $V_{THN}=0.7V$, $K_n=110\mu A/V^2$, $\lambda=0.04V^{-1}$ Parameter for PMOS: $V_{THP}=-0.7V$, $K_p=50\mu A/V^2$, $\lambda=0.05V^{-1}$ All the size of transistor is $W=20\mu m$, $L=1\mu m$

- MOSFET Single Stage Amplifier
 - Common Source Amplifier
 - Common Drain Amplifier (Source Follower)
 - Common Gate Amplifier
 - Cascode Amplifier

MOSFET Differential Pair Amplifier

Differential Pair

Differential Pair with MOS Loads

$$A_{DM} = -g_{m1,2}(r_{o1,2} \parallel r_{o3,4})$$
 (20)

Differential Pair with Cascode Loads

$$A_{DM} \cong -g_{m1,2}[(g_{m3,4} + gmb_{3,4})r_{o3,4}r_{o1,2} \parallel (g_{m5,6} + g_{mb5,6})r_{o5,6}r_{o7,8}]$$
(21)

In the differential pair , what is the input resistance when $I_{SS}=0.02mA$ and 0.2mA respectively? (Neglect body effect) Parameter for NMOS: $V_{THN}=0.7V$, $K_n=110\mu A/V^2$, $\lambda=0.04V^{-1}$ Parameter for PMOS: $V_{THP}=-0.7V$, $K_p=50\mu A/V^2$, $\lambda=0.05V^{-1}$ All the size of transistor is $W=20\mu m$, $L=1\mu m$

END

Thanks