Module 4: Population genomics of admixture and introgression

Shyamalika Gopalan, PhD AGAR Workshop, July 28th 2022

Outline

Part 1: Population genetics and evolutionary forces (~1 hr)

Part 2: Gene flow (~2 hrs)

** We will have two breaks **

To prepare:

Check out the github directory for this module - https://github.com/alanrogers/agar22/tree/main/introgression

Download all necessary materials

- Exercise document
- All .R and .py scripts

Install all necessary software

- R and RStudio
- python3 (conda)
- msprime (conda)
- plink (conda)
- admixture (conda)
- vcftools (conda)
- rfmix (conda)

Part 1 objectives

- Understand genetic drift and its effects on patterns of neutral diversity
- Understand how demographic parameters impact drift and population differentiation
- Predict the effect of a parameter change on F_{ST} between two populations

Population genetics examines patterns of genetic variation within and between populations to understand how they are shaped over time by fundamental mechanisms of evolution

- 1. Mutation
- 2. Selection
- 3. Drift
- 4. Migration

- 1. Mutation generates new variation
- 2. Selection
- 3. Drift
- 4. Migration

- 1. Mutation generates new variation
- 2. Selection directional change in frequency
- 3. Drift
- 4. Migration

- 1. Mutation generates new variation
- 2. Selection directional change in frequency
- 3. Drift random change in frequency
- 4. Migration

- 1. Mutation generates new variation
- 2. Selection directional change in frequency
- 3. Drift random change in frequency
- 4. Migration introduces new variation

Mutation

- Generates new variation within a population
- Generally modelled by a single fixed rate

Selection

 Favours certain alleles over others, causing them to increase in frequency

- Stochastic change in allele frequency due to the effect of sampling a finite population
- A completely neutral process

The effect of drift is stronger in smaller populations

Founder effects and bottlenecks

From Henn et al. 2012, PNAS

What is effective population size (N_e) ?

- A theoretical population parameter
- The size that an idealised (i.e. Wright-Fisher)
 population would need to be in order to exhibit
 the same qualities as the real population
- These qualities generally derive from patterns of neutral genetic diversity, such as nucleotide diversity

Exercise 1 ~20 min.

github.com/alanrogers/agar22/tree/main/introgression

- A single population becoming multiple populations - why might this occur?
- We can understand this process by analyzing genomic data
- Following divergence, daughter populations begin to evolve independently

F_{ST} is a measure of divergence calculated from allele frequencies across populations

$$F_{ST} = \frac{\text{total variance - within-pop variance}}{\text{total variance}}$$

$$\mathsf{F}_{\mathsf{ST}} = \frac{\mathsf{H}_{\mathsf{T}} - \mathsf{H}_{\mathsf{S}}}{\mathsf{H}_{\mathsf{T}}}$$

Hardy-Weinberg equilibrium for biallelic locus

$$p + q = 1$$

 $f_{AA} + f_{Aa} + f_{aa} = 1$

$$f_{AA} = p^2$$

 $f_{aa} = q^2$
 $f_{Aa} = 2pq$

$$p_1 = 0.3$$

$$p_2 = 0.6$$

$$p_{T} = 0.5$$

$$p_1 = 0.3$$

$$p_2 = 0.6$$

$$p_{T} = 0.5$$

$$H_1 = 2p_1q_1$$

$$p_1 = 0.3$$

$$p_2 = 0.6$$

$$p_{T} = 0.5$$

$$H_1 = 2p_1q_1$$

 $H_1 = 2(0.3)(0.7)$

$$p_1 = 0.3$$

$$p_2 = 0.6$$

$$p_{T} = 0.5$$

$$H_1 = 2p_1q_1$$

 $H_1 = 2(0.3)(0.7)$
 $H_1 = 0.42$

$$p_1 = 0.3$$

$$p_2 = 0.6$$

$$p_{T} = 0.5$$

$$H_1 = 2p_1q_1$$

 $H_1 = 2(0.3)(0.7)$
 $H_1 = 0.42$

$$H_2 = 2p_2q_1$$
 $H_2 = 2(0.6)(0.4)$
 $H_2 = 0.48$

$$p_1 = 0.3$$

$$p_2 = 0.6$$

$$p_{T} = 0.5$$

$$H_1 = 2p_1q_1$$

 $H_1 = 2(0.3)(0.7)$
 $H_1 = 0.42$

$$H_2 = 2p_2q_1$$

$$H_2 = 2(0.6)(0.4)$$

$$H_2 = 0.48$$

$$H_s = (0.42 + 0.48) / 2 = 0.45$$

$$p_1 = 0.3$$

$$p_2 = 0.6$$

$$p_{T} = 0.5$$

$$H_1 = 2p_1q_1$$

 $H_1 = 2(0.3)(0.7)$
 $H_1 = 0.42$

$$H_2 = 2p_2q_1$$
 $H_2 = 2(0.6)(0.4)$
 $H_3 = 0.48$

$$H_s = (0.42 + 0.48) / 2 = 0.45$$

 $H_T = 2(0.5)(0.5) = 0.5$

$$p_1 = 0.3$$

$$p_2 = 0.6$$

$$p_{T} = 0.5$$

$$H_1 = 2p_1q_1$$

 $H_1 = 2(0.3)(0.7)$

$$H_1 = 0.42$$

$$H_2 = 2p_2q_1$$

$$H_2 = 2(0.6)(0.4)$$

$$H_2 = 0.48$$

$$H_s = (0.42 + 0.48) / 2 = 0.45$$

$$H_T = 2(0.5)(0.5) = 0.5$$

$$F_{ST} = (0.5 - 0.45) / 0.5 = 0.1$$

Exercise 2 ~20 min.

github.com/alanrogers/agar22/tree/main/introgression