

PCTWELTORGANISATION FÜR GEISTIGES EIGENTUM
Internationales BüroINTERNATIONALE ANMELDUNG VERÖFFENTLICH NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁷ : C12N 15/11, A61K 31/713		A1	(11) Internationale Veröffentlichungsnummer: WO 00/44895
			(43) Internationales Veröffentlichungsdatum: 3. August 2000 (03.08.00)
(21) Internationales Aktenzeichen: PCT/DE00/00244		(81) Bestimmungsstaaten: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(22) Internationales Anmeldedatum: 29. Januar 2000 (29.01.00)			
(30) Prioritätsdaten: 199 03 713.2 30. Januar 1999 (30.01.99) DE 199 56 568.6 24. November 1999 (24.11.99) DE			
(71)(72) Anmelder und Erfinder: KREUTZER, Roland [DE/DE]; Glotzdorf 26, D-95466 Weidenberg (DE). LIMMER, Stephan [DE/DE]; Leibnizstrasse 14, D-95447 Bayreuth (DE).			
(74) Anwalt: GASSNER, Wolfgang; Nägelebachstrasse 49 A, D-91052 Erlangen (DE).		Veröffentlicht <i>Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.</i>	

(54) Title: METHOD AND MEDICAMENT FOR INHIBITING THE EXPRESSION OF A DEFINED GENE**(54) Bezeichnung:** VERFAHREN UND MEDIKAMENT ZUR HEMMUNG DER EXPRESSION EINES VORGEGBENEN GEN**(57) Abstract**

The invention relates to a medicament containing at least one double-stranded oligoribonucleotide (dsRNA) designed to inhibit the expression of a target gene. According to the invention, one strand of the dsRNA is at least in part complementary to the target gene.

(57) Zusammenfassung

Die Erfindung betrifft ein Medikament mit mindestens einem Oligoribonukleotid mit doppelsträniger Struktur (dsRNA) zur Hemmung der Expression eines Zielgens, wobei ein Strang der dsRNA zumindest abschnittsweise komplementär zum Zielgen ist.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Mauretanien	UA	Ukraine
BR	Brasilien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Island	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun	KR	Republik Korea	PT	Portugal		
CN	China	KZ	Kasachstan	RO	Rumänien		
CU	Kuba	LC	St. Lucia	RU	Russische Föderation		
CZ	Tschechische Republik	LI	Liechtenstein	SD	Sudan		
DE	Deutschland	LK	Sri Lanka	SE	Schweden		
DK	Dänemark	LR	Liberia	SG	Singapur		
EE	Estland						

Verfahren und Medikament zur Hemmung der Expression eines vor-gegebenen Gens

Die Erfindung betrifft Verfahren nach den Oberbegriffen der 5 Ansprüche 1 und 2. Sie betrifft ferner ein Medikament und eine Verwendung doppelsträngiger Oligoribonukleotide sowie einen dafür kodierenden Vektor.

Ein solches Verfahren ist aus der nachveröffentlichten WO 10 99/32619 bekannt. Das bekannte Verfahren zielt auf die Hemmung der Expression von Genen in Zellen von Invertebraten ab. Dazu ist es erforderlich, daß das doppelsträngige Oligoribonukleotid eine zum Zielgen identische Sequenz mit einer Länge von mindestens 50 Basen aufweist. Zur Erzielung einer effizienten 15 Hemmung ist eine Länge der identischen Sequenz von 300 bis 1000 Basenpaare erforderlich. Der Herstellungsaufwand eines solchen Oligoribonukleotids ist hoch.

Die DE 196 31 919 C2 beschreibt eine Anti-Sinn-RNA mit besonderen Sekundärstrukturen, wobei die Anti-Sinn-RNA in Form eines sie kodierenden Vektors vorliegt. Bei der Anti-Sinn-RNA handelt es sich um ein RNA-Molekül, das komplementär zu Bereichen der mRNA ist. Durch Bindung an diese Bereiche wird eine Hemmung der Genexpression bewirkt. Diese Hemmung kann insbesondere zur Diagnose und/oder Therapie von Erkrankungen, z.B. Tumorerkrankungen oder viralen Infektionen, eingesetzt werden.
- Die Anti-Sinn-RNA muß nachteiligerweise in einer Menge in die Zelle eingebracht werden, die mindestens genauso groß wie die Menge der mRNA ist. Die Wirksamkeit der bekannten Anti-Sinn-Verfahren ist nicht besonders hoch.

Aus der US 5,712,257 ist ein Medikament bekannt, das fehlgepaarte doppelsträngige RNA (dsRNA) und biologisch aktive fehlgepaarte Bruchstücke von dsRNA in Form eines ternären Komple-

xes mit einem oberflächenaktiven Mittel enthält. Die dabei verwendete dsRNA besteht aus synthetisch hergestellten Nukleinsäureeinzelsträngen ohne definierte Basensequenz. Die Einzelstränge gehen nicht-reguläre, sogenannte "Nicht-Watson-
5 Crick"-Basenpaarungen miteinander ein, so daß fehlgepaarte Doppelstränge gebildet werden. Die bekannte dsRNA dient zur Hemmung der Vermehrung von Retroviren, wie HIV. Die Vermehrung des Virus kann gehemmt werden, wenn nicht-sequenzspezifische dsRNA in die Zellen eingebracht wird. Es kommt dabei zu einer
10 Induktion von Interferon, wodurch die Virusvermehrung gehemmt werden soll. Der hemmende Effekt bzw. die Wirksamkeit dieses Verfahrens ist gering.

Aus Fire, A. et.al, NATURE, Vol. 391, pp. 806 ist es bekannt,
15 daß dsRNA, deren einer Strang abschnittsweise komplementär zu einem zu hemmenden Gen eines Fadenwurms ist, die Expression dieses Gens mit einer hohen Wirksamkeit hemmt. Es wird die Auffassung vertreten, daß die besondere Wirksamkeit der verwendeten dsRNA in Zellen des Fadenwurms nicht auf dem Anti-
20 Sinn-Prinzip beruht, sondern möglicherweise auf katalytische Eigenschaften der dsRNA bzw. durch sie induzierte Enzyme zurückzuführen ist. - Über die Wirksamkeit spezifischer dsRNA in bezug auf die Hemmung der Genexpression, insbesondere in Säugerzellen und humanen Zellen, ist in diesem Artikel nichts
25 ausgesagt.

Aufgabe der vorliegenden Erfindung ist es, die Nachteile nach dem Stand der Technik zu beseitigen. Es soll insbesondere ein möglichst effizientes Verfahren, Medikament bzw. eine mög-
30 lichst effiziente Verwendung zur Herstellung eines Medikaments angegeben werden, mit dem/der eine besonders wirksame Hemmung der Expression eines vorgegebenen Zielgens bewirkbar ist.

Diese Aufgabe wird durch die Merkmale der Ansprüche 1, 2, 37, 38 und 74 und 75 gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den Ansprüchen 3 bis 36, 39 bis 73 und 76 bis 112.

- 5 Nach Maßgabe der verfahrensseitigen Erfindungen ist jeweils vorgesehen, daß der zum Zielgen komplementäre Bereich I höchstens 49 aufeinanderfolgenden Nukleotidpaare aufweist.

Erfindungsgemäß sind ein Oligoribonukleotid oder ein dafür kodierte Vektor vorgesehen. Das Oligoribonukleotid weist zumindest abschnittsweise eine definierte Nukleotidsequenz auf. Der definierte Abschnitt kann auf den komplementären Bereich I beschränkt sein. Es kann aber auch sein, daß das doppelsträngige Oligoribonukleotid insgesamt eine definierte Nukleotidsequenz aufweist.

Es hat sich überraschenderweise gezeigt, daß bereits bei einer Länge des komplementären Bereichs I von höchstens 49 Basenpaaren eine wirksame Hemmung der Expression des Zielgens erreicht werden kann. Entsprechende Oligoribonukleotide können mit geringerem Herstellungsaufwand bereitgestellt werden.

Insbesondere dsRNA mit einer Länge von mehr als 50 Nukleotidpaaren induziert in Säugerzellen und humanen Zellen bestimmte zelluläre Mechanismen, z.B. die dsRNA-abhängige Proteinkinase oder das 2-5A-System. Das führt zum Verschwinden des durch die eine definierte Sequenz aufweisende dsRNA vermittelten Interferenzeffektes. Dadurch wird die Proteinbiosynthese in der Zelle blockiert. Insbesondere dieser Nachteil wird durch die vorliegende Erfindung beseitigt.

Weiterhin ist die Aufnahme von dsRNA mit kurzer Kettenlänge in die Zelle bzw. in den Zellkern gegenüber längerkettigen dsRNAs deutlich erleichtert.

Es hat sich als vorteilhaft erwiesen, daß die dsRNA oder der Vektor verpackt in micellare Strukturen, vorzugsweise in Liposomen, vorliegt. Die dsRNA oder der Vektor kann gleichfalls in 5 virale natürliche Kapside oder in auf chemischem oder enzymatischem Weg hergestellte künstliche Kapside oder davon abgeleitete Strukturen eingeschlossen sein. - Die vorgenannten Merkmale ermöglichen ein Einschleusen der dsRNA bzw. des Vektors in vorgegebene Zielzellen.

10

Nach einem weiteren Ausgestaltungsmerkmal weist die dsRNA 10 bis 1000, vorzugsweise 15 bis 49, Basenpaare auf. Die dsRNA kann also länger als der zum Zielgen komplementäre Bereich I sein. Der komplementäre Bereich I kann endständig angeordnet 15 oder in die dsRNA eingeschaltet sein. Eine solche dsRNA bzw. ein zur Kodierung derselben vorgesehener Vektor können synthetisch bzw. enzymatisch mit gängigen Verfahren hergestellt werden.

20 Das zu hemmende Gen wird zweckmäßigerweise in eukaryontischen Zellen exprimiert. Das Zielgen kann aus der folgenden Gruppe ausgewählt sein: Onkogen, Cytokin-Gen, Id-Protein-Gen, Entwicklungsgen, Prionen. Es kann auch in pathogenen Organismen, vorzugsweise in Plasmodien, exprimiert werden. Es kann Be-
25 standteil eines, vorzugsweise humanpathogenen, Virus oder Viroids sein. - Das vorgeschlagene Verfahren ermöglicht die Herstellung von Mitteln zur Therapie genetisch gesteuerter Krankheiten, z.B. Krebs, viral erkrankungen oder Morbus Alzheimer.

30

Das Virus oder Viroid kann auch ein tier- oder planzenpathogenes Virus oder Viroid sein. In diesem Fall erlaubt das erfundungsgemäße Verfahren auch die Bereitstellung von Mitteln zur Behandlung von Tier- oder Pflanzenkrankheiten.

- Nach einem weiteren Ausgestaltungsmerkmal ist die dsRNA abschnittsweise doppelsträngig ausgebildet. Ein innerhalb der doppelsträngigen Struktur komplementärer Bereich II wird aus
- 5 zwei separaten RNA-Einzelsträngen oder aus selbstkomplementären Bereichen eines, vorzugsweise zirkulär ausgebildeten, topologisch geschlossenen RNA-Einzelstrangs gebildet.
- 10 Die Enden der dsRNA können modifiziert werden, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstränge entgegenzuwirken. Eine Dissoziation tritt insbesondere bei Verwendung niedriger Konzentrationen oder kurzer Kettenlängen auf. Zur besonders wirksamen Hemmung der Dissoziation kann der
- 15 durch die Nukleotidpaare bewirkte Zusammenhalt des komplementären Bereichs II durch mindestens eine, vorzugsweise zwei, weitere chemische Verknüpfung/en erhöht werden. - Eine erfindungsgemäße dsRNA, deren Dissoziation vermindert ist, weist eine höhere Stabilität gegen enzymatischen und chemischen Ab-
- 20 bau in der Zelle bzw. im Organismus auf.

Insbesondere bei Verwendung eines erfindungsgemäßen Vektors kann der komplementäre Bereich II aus selbstkomplementären Bereichen einer RNA-Haarnadelschleife gebildet wird. Die Nukleotide sind im Schleifenbereich zwischen der doppelsträngigen Struktur zum Schutz vor Abbau zweckmäßigigerweise chemisch modifiziert.

Die chemische Verknüpfung wird zweckmäßigerweise durch eine

30 kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet. Sie kann nach einem besonders vorteilhaften Ausgestaltungsmerkmal an mindestens einem, vorzugs-

weise an beiden, Ende/n des komplementären Bereichs II hergestellt werden.

Es hat sich weiter als vorteilhaft erwiesen, daß die chemische
5 Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicoxy-1,3-propandiol)- und/oder Polyethylenglycol-Ketten sind. Die chemische Verknüpfung kann auch durch in den komplementären Bereichen II anstelle von Purinen benutzte
10 Purinanaloga gebildet werden. Von Vorteil ist es ferner, daß die chemische Verknüpfung durch in den komplementären Bereichen II eingeführte Azabenzoleinheiten gebildet wird. Sie kann außerdem durch in den komplementären Bereichen II anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloga gebildet werden.
15

Es hat sich als zweckmäßig erwiesen, daß zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle Gruppen, vorzugsweise
20 Bis-(2-chlorethyl)-amin; N-acetyl-N'-(p-glyoxylbenzoyl)-cystamin; 4-Thiouracil; Psoralen. Ferner kann die chemische Verknüpfung durch an den Enden des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet werden. Vorzugsweise wird die chemische Verknüpfung an den Enden des
25 doppelsträngigen Bereichs durch Tripelhelix-Bindungen hergestellt.

Die chemische Verknüpfung kann zweckmäßigerweise durch ultraviolettes Licht induziert werden.

30

Die Nukleotide der dsRNA können modifiziert sein. Dies wirkt einer Aktivierung einer von doppelsträngiger RNA abhängigen Proteinkinase, PKR, in der Zelle entgegen. Vorteilhafterweise ist mindestens eine 2'-Hydroxylgruppe der Nukleotide der dsRNA

in dem komplementären Bereich II durch eine chemische Gruppe, vorzugsweise eine 2'-Amino- oder eine 2'-Methylgruppe, ersetzt. Mindestens ein Nukleotid in mindestens einem Strang des komplementären Bereichs II kann auch ein sogenanntes "locked nucleotide" mit einem, vorzugsweise durch eine 2'-O, 4'-C-Methylenbrücke, chemisch modifizierten Zuckerring sein. Vorteilhafterweise sind mehrere Nukleotide "locked nucleotides".

Nach einer weiteren besonders vorteilhaften Ausgestaltung ist 10 vorgesehen, daß die dsRNA oder der Vektor an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben wird. Das Hüllprotein kann vom Polyomavirus abgeleitet sein. Es kann das Hüllprotein das Virus- 15 Protein 1 (VP1) und/oder das Virus-Protein 2 (VP2) des Polyomavirus enthalten. Die Verwendung derartiger Hüllproteine ist z.B. aus der DE 196 18 797 A1 bekannt, deren Offenbarungshalt hiermit einbezogen wird. - Die vorgenannten Merkmale erleichtert wesentlich das Einführen der dsRNA bzw. des Vektors 20 in die Zelle.

Vorzugsweise ist bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt. Das gebildete 25 Konstrukt ist besonders stabil.

Die dsRNA kann zum primären oder prozessierten RNA-Transkript des Zielgens komplementär sein.- Die Zelle kann eine Vertebratenzelle oder eine menschliche Zelle sein.

30

Es können mindestens zwei voneinander verschiedene dsRNAs oder mindestens ein dafür kodierender Vektor in die Zelle eingeführt werden, wobei ein Strang jeder dsRNA zumindest abschnittsweise komplementär zu jeweils einem von mindestens

zwei verschiedenen Zielgenen ist. Dadurch ist es möglich gleichzeitig die Expression mindestens zwei verschiedener Zielgene zu hemmen. Um die Expression einer von doppelsträngiger RNA abhängigen Proteinkinase, PKR, in der Zelle zu unterdrücken, ist eines der Zielgene vorteilhafterweise das PKR-Gen. Dadurch kann die PKR-Aktivität in der Zelle wirksam unterdrückt werden.

Nach Maßgabe der Erfindung ist ferner ein Medikament mit mindestens einem Oligoribonukleotid mit doppelsträngiger Struktur (dsRNA) zur Hemmung der Expression eines vorgegebenen Zielgens vorgesehen, wobei ein Strang der dsRNA einen zum Zielgen zumindest abschnittsweise komplementären Bereich I aufweist. - Es hat sich überraschend gezeigt, daß eine solche dsRNA sich als Medikament zur Hemmung der Expression eines vorgegebenen Gens in Säugerzellen eignet. Die Hemmung wird im Vergleich zur Verwendung einzelsträngiger Oligoribonukleotide bereits bei Konzentrationen bewirkt, die um mindestens eine Größenordnung niedriger sind. Das erfindungsgemäße Medikament ist hoch wirksam. Es sind geringere Nebenwirkungen zu erwarten.

Nach weiterer Maßgabe der Erfindung ist ein Medikament mit mindestens einem Vektor zur Kodierung mindestens eines Oligoribonukleotids mit doppelsträngiger Struktur (dsRNA) zur Hemmung der Expression eines vorgegebenen Zielgens vorgesehen, wobei ein Strang der dsRNA einen zum Zielgen zumindest abschnittsweise komplementären Bereich I aufweist. - Das vorschlagene Medikament weist die vorgenannten Vorteile auf. Durch die Verwendung eines Vektors können insbesondere Herstellungskosten eingespart werden.

Nach einer besonders vorteilhaften Ausgestaltung weist der komplementäre Bereich I höchstens 49 aufeinanderfolgende Nukleotidpaare auf. - Es hat sich überraschenderweise gezeigt,

daß bereits bei einer Länge des komplementären Bereichs I von höchstens 49 Basenpaaren eine effiziente Hemmung der Expression des Zielgens erreicht werden kann. Entsprechende Oligoribonukleotide können mit geringerem Herstellungsaufwand bereitgestellt werden.

Nach weiterer Maßgabe der Erfindung ist eine Verwendung eines Oligoribonukleotids mit doppelsträngiger Struktur (dsRNA) zur Herstellung eines Medikaments zur Hemmung der Expression eines vorgegebenen Zielgens vorgesehen, wobei ein Strang der dsRNA einen zum Zielgen zumindest abschnittsweise komplementären Bereich I aufweist. - Überraschenderweise eignet sich eine solche dsRNA zur Herstellung eines Medikaments zur Hemmung der Expression eines vorgegebenen Gens. Bei einer Verwendung von dsRNA wird die Hemmung im Vergleich zur Verwendung einzelsträngiger Oligoribonukleotide schon bei um eine Größenordnung geringeren Konzentrationen bewirkt. Die erfindungsgemäße Verwendung ermöglicht also die Herstellung besonders wirksamer Medikamente.

20

Nach weiterer Maßgabe der Erfindung ist die Verwendung eines Vektors zur Kodierung mindestens eines Oligoribonukleotids mit doppelsträngiger Struktur (dsRNA) zur Herstellung eines Medikaments zur Hemmung der Expression eines vorgegebenen Zielgens vorgesehen, wobei ein Strang der dsRNA einen zu diesem Zielgen zumindest abschnittsweise komplementären Bereich I aufweist. - Die Verwendung eines Vektors ermöglicht eine besonders wirksame Gentherapie.

30 Hinsichtlich vorteilhafter Ausgestaltungen des Medikaments und der Verwendung wird auf die Beschreibung der vorangegangenen Merkmale verwiesen.

Nachfolgend werden anhand der Figuren Ausführungsbeispiele der Erfindung näher erläutert. Es zeigen:

- Fig. 1 die schematische Darstellung eines Plasmids für
5 die *in vitro*-Transkription mit T7- und SP6-
Polymerase,
10 Fig. 2 RNA nach Elektrophorese auf einem 8%igen Po-
lyacrylamidgel und Ethidiumbromidfärbung,
Fig. 3 eine Darstellung radioaktiver RNA-Transkripte
nach Elektrophorese auf einem 8%igen Polyacryla-
midgel mit 7 M Harnstoff mittels eines "Instant
Imagers" und
15 Fig. 4 a - e Texas-Rot- und YFP-Fluoreszenz in murinen Fibro-
blasten.

Ausführungsbeispiel 1:

- 20 Die Inhibition der Transkription wurde durch sequenzhomologe
dsRNA in einem *in vitro*-Transkriptionssystem mit einem Kern-
extrakt aus humanen HeLa-Zellen nachgewiesen. Die DNA-Matrize
für diesen Versuch war das mittels *Bam*HI linearisierte Plasmid
pCMV1200.
25

Herstellung der Matrizenplasmide:

- Zur Verwendung bei der enzymatischen Synthese der dsRNA wurde
das in Fig. 1 dargestellte Plasmid konstruiert. Dazu wurde
zunächst eine Polymerase-Kettenreaktion (PCR) mit der "positi-
30 ve control DNA" des HeLaScribe® Nuclear Extract *in vitro* Tran-
skriptionskits der Firma Promega, Madison, USA als DNA-Matrize
durchgeführt. Einer der verwendeten Primer enthielt die Se-
quenz einer *Eco*RI-Schnittstelle und des T7-RNA-Polymerase-
Promotors gemäß Sequenzprotokoll Nr. 1. Der andere Primer ent-

hielt die Sequenz einer *Bam*HI-Schnittstelle und des SP6-RNA-Polymerase-Promotors gemäß Sequenzprotokoll Nr. 2. Darüber hinaus wiesen beide Primer an ihren 3'-Enden identische bzw. komplementäre Bereiche zur DNA-Matrize auf. Die PCR wurde mit 5 tels des "Taq PCR Core Kits" der Firma Qiagen, Hilden, Deutschland nach Herstellerangaben durchgeführt. In einem Volumen von 100 µl wurden 1,5 mM MgCl₂, je 200 µM dNTP, je 0,5 µM Primer, 2,5 U Taq-DNA-Polymerase und etwa 100 ng "positive control DNA" als Matrize in PCR-Puffer eingesetzt. Nach der 10 anfänglichen Denaturierung der Matrizen-DNA durch Erhitzen auf 94°C für 5 Minuten erfolgte die Amplifikation in 30 Zyklen von je 60 Sekunden Denaturierung bei 94°C, 60 Sekunden Annealing bei 5°C unterhalb der berechneten Schmelztemperatur der Primer und 1,5 - 2 Minuten Polymerisation bei 72°C. Nach einer 15 Schlußpolymerisation von 5 Minuten bei 72°C wurden 5 µl des Reaktionsansatzes durch Agarosegelektrophorese analysiert. Die Länge des so amplifizierten DNA-Fragmentes betrug 400 Basenpaare, wobei 340 Basenpaare der "positive control DNA" entsprachen. Das PCR-Produkt wurde aufgereinigt, mit EcoRI und 20 *Bam*HI hydrolysiert und nach erneuter Aufreinigung zur Ligation mit einem ebenfalls durch EcoRI und *Bam*HI hydrolysierten pUC18 Vektor eingesetzt. Es erfolgte Transformation von *E. coli* XL1-blue. Das erhaltene Plasmid (pCMV5) trägt ein DNA-Fragment, das am 5'-Ende von dem T7- und am 3'-Ende von dem SP6-Promotor 25 flankiert wird. Durch Linearisierung des Plasmids mit *Bam*HI kann es in vitro mit der T7-RNA-Polymerase zur run-off-Transkription einer 340 Nukleotide langen, in Sequenzprotokoll Nr. 3 dargestellten, einzelsträngigen RNA eingesetzt werden. Wird das Plasmid mit EcoRI linearisiert, kann es zur run-off-30 Transkription mit der SP6-RNA-Polymerase eingesetzt werden, wobei der komplementäre Strang entsteht. Entsprechend dem zuvor dargestellten Verfahren wurde auch eine 23 Nukleotide längere RNA synthetisiert. Dazu wurde eine in Sequenzprotokoll

Nr. 4 dargestellte DNA über die EcoRI und BamHI-Schnittstellen mit dem pUC18 Vektor ligiert.

Als DNA-Matrize für die in vitro-Transkription mit HeLa-5 Kernextrakt wurde das Plasmid pCMV1200 konstruiert. Dazu wurde ein 1191 bp großes EcoRI/BamHI-Fragment der im HeLaScribe® Nuclear Extract in vitro Transkriptionskit enthaltenen Positivkontroll-DNA mittels PCR amplifiziert. Das amplifizierte Fragment umfaßt den 828 bp großen "unmittelbar frühen" CMV-10 Promotor und ein 363 bp großes transkribierbares DNA-Fragment. Das PCR-Produkt wurde über "T-Überhang"-Ligation mit dem Vektor pGEM-T ligiert. Am 5'-Ende des Fragments ist eine BamHI-Schnittstelle. Das Plasmid wurde durch Hydrolyse mit BamHI linearisiert und als Matrize zur run-off-Transkription eingesetzt.
15

in vitro-Transkription der komplementären Einzelstränge:

pCMV5-Plasmid-DNA wurde mit EcoRI bzw. BamHI linearisiert. Sie wurde als DNA-Matrize für eine in vitro-Transkription der komplementären RNA-Einzelstränge mit SP6- bzw. T7-RNA-Polymerase verwendet. Dazu wurde das "Riboprobe in vitro Transcription" System der Firma Promega, Madison, USA eingesetzt. Nach Herstellerangaben wurden 2 µg linearisierte Plasmid-DNA in 100 µl Transkriptionspuffer und 40 U T7- oder SP6-RNA-Polymerase 5 -
25 6 Stunden bei 37°C inkubiert. Anschließend wurde die DNA-Matrize durch Zugabe von 2,5 µl RNase-freier DNase RQ1 und Inkubation für 30 Minuten bei 37°C abgebaut. Der Transkriptionsansatz wurde mit H₂O auf 300 µl aufgefüllt und durch Phenolextraktion gereinigt. Die RNA wurde durch Zugabe von 150 µl 7 M
30 Ammoniumacetat und 1125 µl Ethanol gefällt und bis zur Hybridisierung bei -65°C aufbewahrt.

Herstellung der RNA-Doppelstränge:

Zur Hybridisierung wurden 500 µl der in Ethanol aufbewahrten und gefällten einzelsträngigen RNA abzentrifugiert. Das resultierende Pellet wurde getrocknet und in 30 µl PIPES-Puffer, pH 6,4 in Gegenwart von 80 % Formamid, 400 mM NaCl und 1 mM EDTA 5 aufgenommen. Jeweils 15 µl der komplementären Einzelstränge wurden zusammengegeben und für 10 Minuten auf 85°C erhitzt. Anschließend wurden die Ansätze bei 50°C über Nacht inkubiert und auf Raumtemperatur abgekühlt.

- 10 Bei der Hybridisierung wurden nur annähernd äquimolare Mengen der beiden Einzelstränge eingesetzt. Dadurch enthielten die dsRNA-Präparationen einzelsträngige RNA (ssRNA) als Kontamination. Um diese ssRNA-Kontaminationen zu entfernen, wurden die Ansätze nach der Hybridisierung mit den einzelstrangspezifischen 15 Ribonukleasen RNase A aus Rinderpankreas und RNase T1 aus *Aspergillus oryzae* behandelt. RNase A ist eine für Pyrimidine spezifische Endoribonuklease. RNase T1 ist eine Endoribonuklease, die bevorzugt auf der 3'-Seite von Guanosinen schneidet. dsRNA ist kein Substrat für diese Ribonukleasen.
- 20 Für die RNase-Behandlung wurde zu den Ansätzen in 300 µl Tris, pH 7,4, 300 mM NaCl und 5 mM EDTA 1,2 µl RNaseA in einer Konzentration von 10 mg/ml und 2 µl RNaseT1 in einer Konzentration von 290 µg/ml zugegeben. Die Ansätze wurden 1,5 Stunden bei 30°C inkubiert. Danach wurden die RNasen durch Zugabe von 5 µl 25 Proteinase K in einer Konzentration von 20 mg/ml sowie 10 µl 20%iges SDS und Inkubation für 30 Minuten bei 37°C denaturiert. Die dsRNA wurde durch Phenol-Extraktion gereinigt und mit Ethanol gefällt. Um die Vollständigkeit des RNase-Verdaus überprüfen zu können, wurden zwei Kontrollansätze mit ssRNA 30 analog zu den Hybridisierungsansätzen behandelt.

Das getrocknete Pellet wurde in 15 µl TE-Puffer, pH 6,5 aufgenommen und auf einem 8%igen Gel einer nativen Polyacrylamidgelektrophorese unterzogen. Das Acrylamidgel wurde anschlie-

ßend in einer Ethidiumbromidlösung gefärbt und in einem Was-
serbad gespült. Fig. 2 zeigt die auf einem UV-Transilluminator
sichtbar gemachte RNA. Die auf Spur 1 aufgetragene sense- und
die auf Spur 2 aufgetragene antisense-RNA zeigten unter den
5 gewählten Bedingungen ein anderes Laufverhalten als die auf
Spur 3 aufgetragene dsRNA des Hybridisierungsansatzes. Die auf
den Spuren 4 bzw. 5 aufgetragene RNase-behandelte sense- bzw.
antisense-RNA erzeugte keine sichtbare Bande. Dies zeigt, daß
die einzelsträngigen RNAs vollständig abgebaut wurden. Die auf
10 Spur 6 aufgetragene RNase-behandelte dsRNA des Hybridisie-
rungsansatzes ist resistent gegenüber der RNase-Behandlung.
Die im nativen Gel im Vergleich zu der auf Spur 3 aufgetrage-
nen dsRNA schneller wandernde Bande resultiert aus dsRNA, die
frei von ssRNA ist. Neben der dominierenden Hauptbande treten
15 nach der RNase-Behandlung schwächere, schneller wandernde Ban-
den auf.

in vitro-Transkriptions-Test mit menschlichem Zellkernextrakt:

Unter Verwendung des HeLaScribe® Nuclear Extract *in vitro*
20 Transkriptionskits der Firma Promega, Madison, USA wurde die
Transkriptionseffizienz des oben angegebenen, im Plasmid
pCMV1200 enthaltenen, zur "positive control DNA" homologen
DNA-Fragments in Gegenwart der sequenzhomologen dsRNA
(dsRNA-CMV5) bestimmt. Außerdem wurde der Einfluß der nicht-
25 sequenzhomologen, dem "Gelb fluoreszierenden Protein" (YFP)-
Gen entsprechenden dsRNA (dsRNA-YFP) untersucht. Diese dsRNA
war analog zur sequenzhomologen dsRNA hergestellt worden. Die
Sequenz eines Stranges dieser dsRNA ist Sequenzprotokoll Nr. 5
zu entnehmen. Als Matrize für die run-off-Transkription diente
30 das Plasmid pCMV1200. Es trägt den "unmittelbar frühen" Promo-
tor des Cytomegalievirus, der von der eukaryotischen RNA-
Polymerase II erkannt wird, und ein transkribierbares DNA-
Fragment. Die Transkription erfolgte mittels des HeLa-
Kernextrakts, der alle notwendigen Proteine für eine Tran-

skription enthält. Durch Zugabe von [α -³²P]rGTP zum Transkriptionsansatz wurde radioaktiv markiertes Transkript erhalten. Das verwendete [α -³²P]rGTP hatte eine spezifische Aktivität von 400 Ci/mmol, 10 mCi/ml. Pro Ansatz wurden 3 mM MgCl₂, je 5 400 μM rATP, rCTP, rUTP, 16 μM rGTP, 0,4 μM [α -³²P]rGTP und je nach Versuch 1 fmol linearisierte Plasmid-DNA und verschiedene Mengen an dsRNA in Transkriptionspuffer eingesetzt. Jeder Ansatz wurde mit H₂O auf ein Volumen von 8,5 μl aufgefüllt. Die Ansätze wurden vorsichtig gemischt. Zum Starten der Transkription 10 wurden 4 U HeLa-Kernextrakt in einem Volumen von 4 μl zugegeben und für 60 Minuten bei 30°C inkubiert. Die Reaktion wurde durch Zugabe von 87,5 μl auf 30°C erwärmten Stopp-Mix beendet. Zur Entfernung der Proteine wurden die Ansätze mit 100 μl Phenol/Chloroform/Isoamylalkohol (25:24:1, v/v/v), ge- 15 sättigt mit TE-Puffer, pH 5,0, versetzt und 1 Minute kräftig gemischt. Zur Phasentrennung wurde etwa 1 Minute bei 12000 rpm zentrifugiert und die obere Phase in ein neues Reaktionsgefäß überführt. Zu jedem Ansatz wurden 250 μl Ethanol zugegeben. Die Ansätze wurden gut gemischt und für mindestens 15 Minuten 20 auf Trockeneis/Methanol inkubiert. Zur Präzipitation der RNA wurden die Ansätze 20 Minuten bei 12000 rpm und 4°C zentrifugiert. Der Überstand wurde verworfen. Das Pellet wurde 15 Minuten im Vakuum getrocknet und in 10 μl H₂O resuspendiert. Zu jedem Ansatz wurden 10 μl denaturierender Probenpuff- 25 fer zugegeben. Die Trennung des freien GTP vom entstandenen Transkript erfolgte mittels denaturierender Polyacrylamid-Gelelektrophorese auf einem 8%igen Gel mit 7 M Harnstoff. Die bei der Transkription mit HeLa-Kernextrakt gebildeten RNA-Transkripte in denaturierendem Probenpuffer wurden für 10 Mi- 30 nuten auf 90°C erhitzt und 10 μl davon sofort in die frisch gespülten Probentaschen aufgetragen. Die Elektrophorese erfolgte bei 40 mA. Die Menge der bei der Transkription gebildeten radioaktiven ssRNA wurde nach der Elektrophorese mit Hilfe eines Instant Imager analysiert.

Fig. 3 zeigt die mittels des *Instant Imagers* dargestellte radioaktive RNA aus einem repräsentativen Tests. Es wurden aus folgenden Transkriptionsansätzen gewonne Proben aufgetragen:

5

- Spur 1: ohne Matrizen-DNA, ohne dsRNA;
- Spur 2: 50 ng Matrizen-DNA, ohne dsRNA;
- Spur 3: 50 ng Matrizen-DNA, 0,5 µg dsRNA-YFP;
- Spur 4: 50 ng Matrizen-DNA, 1,5 µg dsRNA-YFP;
- 10 Spur 5: 50 ng Matrizen-DNA, 3 µg dsRNA-YFP;
- Spur 6: 50 ng Matrizen-DNA, 5 µg dsRNA-YFP;
- Spur 7: ohne Matrizen-DNA, 1,5 µg dsRNA-YFP;
- Spur 8: 50 ng Matrizen-DNA, ohne dsRNA;
- Spur 9: 50 ng Matrizen-DNA, 0,5 µg dsRNA-CMV5;
- 15 Spur 10: 50 ng Matrizen-DNA, 1,5 µg dsRNA-CMV5;
- Spur 11: 50 ng Matrizen-DNA, 3 µg dsRNA-CMV5;
- Spur 12: 50 ng Matrizen-DNA, 5 µg dsRNA-CMV5;

Es zeigte sich eine deutliche Verringerung der Menge an Transkript in Gegenwart von sequenzhomologer dsRNA im Vergleich zum Kontrollansatz ohne dsRNA sowie auch zu den Ansätzen mit nicht-sequenzhomologer dsRNA-YFP. Die Positivkontrolle in Spur 2 zeigt, daß bei der *in vitro*-Transkription mit HeLa-Kernextrakt radioaktives Transkript gebildet wurde. Der Ansatz dient zum Vergleich mit den Transkriptionsansätzen, die in Gegenwart von dsRNA inkubiert worden waren. Die Spuren 3 bis 6 zeigen, daß die Zugabe von nicht-sequenzspezifischer dsRNA-YFP keinen Einfluß auf die Menge des gebildeten Transkripts hat. Die Spuren 9 bis 12 zeigen, daß die Zugabe einer zwischen 1,5 und 3 µg liegenden Menge sequenzspezifischer dsRNA-CMV5 zu einer Abnahme der gebildeten Transkript-Menge führt. Um auszuschließen, daß die beobachteten Effekte nicht auf der dsRNA, sondern auf einer möglicherweise bei der Herstellung der dsRNA unabsichtlich mitgeführten Kontamination beruhen, wurde eine

weitere Kontrolle durchgeführt. Einzelstrang-RNA wurde wie oben beschrieben transkribiert und anschließend der RNase-Behandlung unterzogen. Mittels nativer Polyacrylamidgelektrophorese konnte gezeigt werden, daß die ssRNA vollständig abgebaut worden war. Dieser Ansatz wurde wie die Hybridisierungsansätze einer Phenolextraktion und einer Ethanolfällung unterzogen und anschließend in TE-Puffer aufgenommen. Auf diese Weise wurde eine Probe erhalten, die keine RNA enthielt, aber mit den gleichen Enzymen und Puffern behandelt worden war wie die dsRNA. Spur 8 zeigt, daß der Zusatz dieser Probe keinen Einfluß auf die Transkription hatte. Die Abnahme des Transkripts bei Zugabe sequenzspezifischer dsRNA kann deshalb eindeutig der dsRNA selbst zugeschrieben werden. Die Reduzierung der Transkript-Menge eines Gens in Gegenwart von dsRNA bei einem menschlichen Transkriptionssystem zeigt eine Hemmung der Expression des entsprechenden Gens an. Dieser Effekt ist auf einen neuartigen, durch die dsRNA bedingten Mechanismus zurückzuführen.

20 **Ausführungsbeispiel 2:**

Als Testsystem für diese *in vivo*-Experimente diente die murine Fibroblasten-Zelllinie NIH3T3, ATCC CRL-1658. Mit Hilfe der Mikroinjektion wurde das YFP-Gen in die Zellkerne eingebracht. Die Expression des YFP wurde unter dem Einfluß gleichzeitig mittransfizierter sequenzhomologer dsRNA untersucht. Diese dsRNA-YFP ist über eine Länge von 315 bp zum 5'-Bereich des YFP-Gens homolog. Die Nukleotidsequenz eines Strangs der dsRNA-YFP ist in Sequenzprotokoll Nr. 5 wiedergegeben. Die Auswertung unter dem Fluoreszenzmikroskop erfolgte 3 Stunden nach Injektion anhand der grün-gelben Fluoreszenz des gebildeten YFP.

Konstruktion des Matrizenplasmids und Herstellung der dsRNA:

Als Matrize für die Herstellung der YFP-dsRNA mittels T7- und SP6-*in vitro*-Transkription wurde ein Plasmid nach dem gleichen Prinzip wie im Ausführungsbeispiel 1 beschrieben konstruiert.

- 5 Das gewünschte Genfragment wurde unter Verwendung des Primers *Eco_T7_YFP* gemäß Sequenzprotokoll Nr. 6 und *Bam_SP6_YFP* gemäß Sequenzprotokoll Nr. 7 mittels PCR amplifiziert und analog zu der obigen Beschreibung zur Herstellung der dsRNA verwendet. Die erhaltene dsRNA-YFP ist identisch mit der in Ausführungs-
10 beispiel 1 als nicht-sequenzspezifische Kontrolle verwendeten dsRNA.

Es wurde eine am 3'-Ende der RNA gemäß Sequenzprotokoll Nr. 8 über eine C18-Linkergruppe chemisch mit dem 5'-Ende der kom-
15 plementären RNA verknüpfte dsRNA (L-dsRNA) hergestellt. Dazu wurden mit Disulfid-Brücken modifizierte Synthonen verwendet. Das 3'-terminale Synthon ist über den 3'-Kohlenstoff mit einer aliphatischen Linker-Gruppe über eine Disulfidbrücke an den festen Träger gebunden. Bei dem zum 3'-terminalen Synthon des
20 einen Oligoribonukleotids komplementären 5'-terminalen Synthon des komplementären Oligoribonukleotids ist die 5'-Tritylschutzgruppe über einen weiteren aliphatischen Linker und eine Disulfidbrücke gebunden. Nach Synthese der beiden Einzelstränge, Entfernen der Schutzgruppen und Hybridisierung
25 der komplementären Oligoribonukleotide gelangen die entstehenden Thiolgruppen in räumliche Nachbarschaft zueinander. Durch Oxidation werden die Einzelstränge über ihre aliphatischen Linker und eine Disulfidbrücke miteinander verknüpft. Anschließend erfolgt Reinigung mit Hilfe der HPLC.

30

Vorbereitung der Zellkulturen:

Die Zellen wurden in DMEM mit 4,5 g/l Glucose, 10 % fötalem Rinderserum unter 7,5 % CO₂-Atmosphäre bei 37°C in Kulturschalen inkubiert und vor Erreichen der Konfluenz passagiert. Das

Ablösen der Zellen erfolgte mit Trypsin/EDTA. Zur Vorbereitung der Mikroinjektion wurden die Zellen in Petrischalen überführt und bis zu Bildung von Mikrokolonien weiter inkubiert.

5 Mikroinjektion:

Die Kulturschalen wurde zur Mikroinjektion für ca. 10 Minuten aus dem Inkubator genommen. Es wurde in ca. 50 Zellkerne pro Ansatz innerhalb eines markierten Bereichs unter Verwendung des Mikroinjektionssystems AIS der Firma Carl Zeiss, Göttingen, Deutschland einzeln injiziert. Anschließend wurden die Zellen weitere drei Stunden inkubiert. Für die Mikroinjektion wurden Borosilikat-Glaskapillaren der Firma Hilgenberg GmbH, Malsfeld, Deutschland mit einem Spitzendurchmesser unter 0,5 µm vorbereitet. Die Mikroinjektion wurde mit einem Mikromanipulator der Firma Narishige Scientific Instrument Lab., Tokyo, Japan durchgeführt. Die Injektionsdauer betrug 0,8 Sekunden, der Druck ca. 100 hPa. Für die Transfektion wurde das Plasmid pCDNA-YFP verwendet, das ein ca. 800 bp großes BamHI/EcoRI-Fragment mit dem Gen des YFP im Vektor pcDNA3 enthält. Die in die Zellkerne injizierten Proben enthielten 0,01 µg/µl pCDNA-YFP sowie an Dextran-70000 gekoppeltes Texas-Rot in 14 mM NaCl, 3 mM KCl, 10 mM KPO₄, pH 7,5. Zusätzlich wurden ca. 100 pl RNA mit einer Konzentration von 1 µM, bzw. 375 µM im Fall der L-dsRNA, zugegeben.

25

Die Zellen wurden bei Anregung mit Licht der Anregungswellenlänge von Texas-Rot, 568 nm, bzw. von YFP, 488 nm, mittels eines Fluoreszenzmikroskops untersucht. Einzelne Zellen wurden mittels einer digitalen Kamera dokumentiert. Die Figuren 4 a - e zeigen das Ergebnis für NIH3T3-Zellen. Bei den in Fig. 4 a gezeigten Zellen ist sense-YFP-ssRNA, in Fig. 4 b antisense-YFP-ssRNA, in Fig. 4 c dsRNA-YFP, in Fig. 4 d keine RNA und in Fig. 4 e L-dsRNA injiziert worden.

Das jeweils linke Feld zeigt die Fluoreszenz von Zellen, die mit 568 nm angeregt wurden. Rechts ist die Fluoreszenz derselben Zellen bei Anregung mit 488 nm zu sehen. Die Texas-Rot-Fluoreszenz aller dargestellten Zellen zeigt, daß die Injektionslösung erfolgreich in die Zellkerne appliziert wurde und getroffene Zellen nach drei Stunden noch lebendig waren. Abgestorbene Zellen zeigten keine Texas-Rot-Fluoreszenz mehr.

Die jeweils rechten Felder der Figuren 4 a und 4 b zeigen, daß die Expression des YFP bei Injektion der einzelsträngigen RNA in die Zellkerne nicht sichtbar inhibiert wurde. Das rechte Feld der Fig. 4 c zeigt Zellen, deren YFP-Fluoreszenz nach Injektion von dsRNA-YFP nicht mehr nachweisbar war. Fig. 4 d zeigt als Kontrolle Zellen, in die keine RNA injiziert worden war. Die in Fig. 4 e dargestellte Zelle zeigt durch die Injektion der L-dsRNA, die zum YFP-Gen sequenzhomologe Bereiche aufweist, eine nicht mehr nachweisbare YFP-Fluoreszenz. Dieses Ergebnis belegt, daß auch kürzere dsRNAs zur spezifischen Inhibition der Genexpression bei Säugern verwendet werden können, wenn die Doppelstränge durch chemische Verknüpfung der Einzelstränge stabilisiert werden.

Literatur:

- Asanuma, H., Ito, T., Yoshida, T., Liang, X. & Komiya, M.
(1999). Photoregulation der Bildung und Dissoziation ei-
5 nes DNA-Duplexes durch *cis-trans*-Isomerisierung einer
Azobenzoleinheit. *Angew. Chem.* **111**, 2547-2549.
- Azhayeva, E., Azhayev, A., Auriola, S., Tengvall, U., Urtti,
A. & Lönnberg, H. (1997). Inhibitory properties of double
10 helix forming circular oligonucleotides. *Nucl. Acids Res.*
25, 4954-4961.
- Castelli, J., Wood, K.A. & Youle, R.J. (1998). The 2-5A system
in viral infection and apoptosis. *Biomed. Pharmacother.*
15 **52**, 386-390.
- Dolinnaya, N.G., Blumenfeld, M., Merenkova, I., Oretskaya,
T.S., Krynetskaya, N.F., Ivanovskaya, M.G., Vasseur, M. &
Shabarova, Z.A. (1993). Oligonucleotide circularization
20 by template-directed chemical ligation. *Nucl. Acids Res.*
21, 5403-5407.
- Expert-Bezancon, A., Milet, M. & Carbon, P. (1983). Precise
localization of several covalent RNA-RNA cross-link in
25 *Escherichia coli* 16S RNA. *Eur. J. Biochem.* **136**, 267-274.
- Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E.
& Mello, C.C. (1998). Potent and specific genetic inter-
ference by double-stranded RNA in *Caenorhabditis elegans*.
30 *Nature* **391**, 806-811.

- Gao, H., Yang, M., Patel, R. & Cook, A.F. (1995). Circularization of oligonucleotides by disulfide bridge formation. *Nucl. Acids Res.* **23**, 2025-2029.
- 5 Gryaznov, S.M. & Letsinger, R.L. (1993). Template controlled coupling and recombination of oligonucleotide blocks containing thiophosphoryl groups. *Nucl. Acids Res.* **21**, 1403-1408.
- 10 Kaufman, R.J. (1999). Double-stranded RNA-activated protein kinase mediates virus-induced apoptosis: A new role for an old actor. *Proc. Natl. Acad. Sci. USA* **96**, 11693-11695.
- 15 Lipson, S.E. & Hearst, J.E. (1988). Psoralen cross-linking of ribosomal RNA. In *Methods in Enzymology* Anonymous pp. 330-341.
- 20 Liu, Z.R., Sargueil, B. & Smith, C.W. (1998). Detection of a novel ATP-dependent cross-linked protein at the 5' splice site-U1 small nuclear RNA duplex by methylene blue-mediated photo-cross-linking. *Mol. Cell. Biol.* **18**, 6910-6920.
- 25 Micura, R. (1999). Cyclic oligoribonucleotides (RNA) by solid-phase synthesis. *Chem. Eur. J.* **5**, 2077-2082.
- 30 Skripkin, E., Isel, C., Marquet, R., Ehresmann, B. & Ehresmann, C. (1996). Psoralen crosslinking between human immunodeficiency virus type 1 RNA and primer tRNA₃^{Lys}. *Nucl. Acids Res.* **24**, 509-514.

- Wang, S. & Kool, E.T. (1994). Circular RNA oligonucleotides. Synthesis, nucleic acid binding properties, and a comparison with circular DNAs. *Nucl. Acids Res.* **22**, 2326-2333.
- 5 Wang, Z. & Rana, T.M. (1996). RNA conformation in the Tat-TAR complex determined by site-specific photo-cross-linking. *Biochem.* **35**, 6491-6499.
- Watkins, K.P. & Agabian, N. (1991). *In vivo* UV cross-linking
10 of U snRNAs that participate in trypanosome trans-
splicing. *Genes & Development* **5**, 1859-1869.
- Wengel, J. (1999). Synthesis of 3'-C- and 4'-C-branched oligo-
deoxynucleotides and the development of locked nucleic
15 acid (LNA). *Acc. Chem. Res.* **32**, 301-310.
- Zwieb, C., Ross, A., Rinke, J., Meinke, M. & Brimacombe, R.
(1978). Evidence for RNA-RNA cross-link formation in
Escherichia coli ribosomes. *Nucl. Acids Res.* **5**, 2705-
20 2720.

Patentansprüche

1. Verfahren zur Hemmung der Expression eines vorgegebenen Zielgens in einer Zelle, wobei ein Oligoribonukleotid mit doppelsträngiger Struktur (dsRNA) in die Zelle eingeführt wird, wobei ein Strang der dsRNA einen zum Zielgen zumindest abschnittsweise komplementären Bereich I aufweist, **dadurch gekennzeichnet**, daß der zum Zielgen komplementäre Bereich I höchstens 49 aufeinanderfolgende Nukleotidpaare aufweist.
10
2. Verfahren zur Hemmung der Expression eines vorgegebenen Zielgens in einer Zelle, wobei ein Vektor zur Kodierung mindestens eines Oligoribonukleotids mit doppelsträngiger Struktur (dsRNA) in die Zelle eingeführt wird, wobei ein Strang der dsRNA einen zum Zielgen zumindest abschnittsweise komplementären Bereich I aufweist, **dadurch gekennzeichnet**, daß der zum Zielgen komplementäre Bereich I höchstens 49 aufeinanderfolgende Nukleotidpaare aufweist.
15
3. Verfahren nach Anspruch 1 oder 2, wobei die dsRNA oder der Vektor in micellare Strukturen, vorzugsweise in Liposomen, eingeschlossen wird.
20
- 25 4. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA oder der Vektor in virale natürliche Kapside oder in auf chemischem oder enzymatischem Weg hergestellte künstliche Kapside oder davon abgeleitete Strukturen eingeschlossen wird.
- 30 5. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA 10 bis 1000, vorzugsweise 15 bis 49, Basenpaare aufweist.

6. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen in eukaryontischen Zellen exprimiert wird.
7. Verfahren nach einem der vorhergehenden Ansprüche, wobei 5 das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen, Cytokin-Gen, Id-Protein-Gen, Entwicklungsgen, Prionen.
8. Verfahren nach einem der vorhergehenden Ansprüche, wobei 10 das Zielgen in pathogenen Organismen, vorzugsweise in Plasmodien, exprimiert wird.
9. Verfahren nach einem der vorhergehenden Ansprüche, wobei 15 das Zielgen Bestandteil eines Virus oder Viroids ist.
10. Verfahren nach Anspruch 9, wobei das Virus ein humanpathogenes Virus oder Viroid ist.
11. Verfahren nach Anspruch 9, wobei das Virus oder Viroid 20 ein tier- oder pflanzenpathogenes Virus oder Viroid ist.
12. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA abschnittsweise doppelsträngig ausgebildet ist.
- 25 13. Verfahren nach einem der vorhergehenden Ansprüche, wobei ein innerhalb der doppelsträngigen Struktur komplementärer Bereich II aus zwei separaten RNA-Einzelsträngen oder aus selbstkomplementären Bereichen eines, vorzugsweise zirkulär ausgebildeten, topologisch geschlossenen RNA-Einzelstrangs gebildet wird.
14. Verfahren nach einem der vorhergehenden Ansprüche, wobei 30 der komplementäre Bereich II aus selbstkomplementären Bereichen einer RNA-Haarnadelschleife gebildet wird.

15. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Nukleotide im Schleifenbereich zwischen der doppelsträngigen Struktur zum Schutz vor Abbau chemisch modifiziert sind.
5
16. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Enden der dsRNA modifiziert werden, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstränge entgegenzuwirken.
10
17. Verfahren nach einem der vorhergehenden Ansprüche, wobei der durch die Nukleotidpaare bewirkte Zusammenhalt des komplementären Bereichs II durch mindestens eine, vorzugsweise zwei, weitere chemische Verknüpfung/en erhöht wird.
15
18. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stape-lungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet wird.
20
- 25 19. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung an mindestens einem, vorzugsweise an beiden, Enden des komplementären Bereichs II hergestellt wird.
- 30 20. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicoxy-1,3-propandiol)- und/oder Polyethylenglycol-Ketten sind.

21. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch in den komplementären Bereichen II anstelle von Purinen benutzten Purinanaloge gebildet wird.
5
22. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch in den komplementären Bereichen II eingeführte Azabenzoleinheiten gebildet wird.
10
23. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch in den komplementären Bereichen II anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloge gebildet wird.
15
24. Verfahren nach einem der vorhergehenden Ansprüche, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoralen.
20
25. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch an den Enden des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet wird.
25
26. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung an den Enden des doppelsträngigen Bereichs durch Tripelhelix-Bindungen hergestellt wird.
30
27. Verfahren nach einem der vorhergehenden Ansprüche, wobei mindestens eine 2'-Hydroxylgruppe der Nukleotide der

dsRNA in dem komplementären Bereich II durch eine chemische Gruppe, vorzugsweise eine 2'-Amino- oder eine 2'-Methylgruppe, ersetzt ist.

5 28. Verfahren nach einem der vorhergehenden Ansprüche, wobei mindestens ein Nukleotid in mindestens einem Strang des komplementären Bereichs II ein "locked nucleotide" mit einem, vorzugsweise durch eine 2'-O, 4'-C-Methylenbrücke, chemisch modifizierten Zuckerring ist.

10

29. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA oder der Vektor an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben wird.

15

30. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

20 31. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-Protein 2 (VP2) des Polyomavirus enthält.

25 32. Verfahren nach einem der vorhergehenden Ansprüche, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist.

30 33. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist.

34. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Zelle eine Vertebratenzelle oder eine menschliche Zelle ist.
- 5 35. Verfahren nach einem der vorhergehenden Ansprüche, wobei mindestens zwei voneinander verschiedene dsRNAs oder mindestens ein dafür kodierender Vektor in die Zelle einge-führt werden, wobei ein Strang jeder dsRNA zumindest ab-schnittsweise komplementär zu jeweils einem von minde-stens zwei verschiedenen Zielgenen ist.
10
36. Verfahren nach einem der vorhergehenden Ansprüche, wobei eines der Zielgene das PKR-Gen ist.
- 15 37. Medikament mit mindestens einem Oligoribonukleotid mit doppelsträngiger Struktur (dsRNA) zur Hemmung der Expres-sion eines vorgegebenen Zielgens, wobei ein Strang der dsRNA einen zum Zielgen zumindest abschnittsweise komple-mentären Bereich I aufweist.
20
38. Medikament mit mindestens einem Vektor zur Kodierung min-destens eines Oligoribonukleotids mit doppelsträngiger Struktur (dsRNA) zur Hemmung der Expression eines vorge-gebenen Zielgens, wobei ein Strang der dsRNA einen zum Zielgen zumindest abschnittsweise komplementären Bereich
25 I aufweist.
39. Medikament nach Anspruch 37 oder 38, wobei die dsRNA oder der Vektor verpackt in micellare Strukturen, vorzugsweise in Liposomen, vorliegt.
30
40. Medikament nach Anspruch 37 oder 38, wobei die dsRNA oder der Vektor in virale natürliche Kapside oder in auf che-mischem oder enzymatischem Weg hergestellte künstliche

Kapside oder davon abgeleitete Strukturen eingeschlossen ist.

41. Medikament nach einem der Ansprüche 37 bis 40, wobei
5 dsRNA 10 bis 1000, vorzugsweise 15 bis 49, Basenpaare aufweist.
42. Medikament nach einem der Ansprüche 37 bis 41, wobei das Zielgen in eukaryontischen Zellen exprimierbar ist.
10
43. Medikament nach einem der Ansprüche 37 bis 42, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen, Cytokin-Gen, Id-Protein-Gen, Entwicklungsgen, Prionen.
- 15 44. Medikament nach einem der Ansprüche 37 bis 43, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmoidien, exprimierbar ist.
45. Medikament nach einem der Ansprüche 37 bis 44, wobei das Zielgen Bestandteil eines Virus oder Viroids ist.
20
46. Medikament nach Anspruch 45, wobei das Virus ein humanpathogenes Virus oder Viroid ist.
- 25 47. Medikament nach Anspruch 45, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus oder Viroid ist.
48. Medikament nach einem der Ansprüche 37 bis 47, wobei die dsRNA abschnittsweise doppelsträngig ausgebildet ist.
30
49. Medikament nach einem der Ansprüche 37 bis 48, wobei der komplementäre Bereich I höchstens 49 aufeinanderfolgende Nukleotidpaare aufweist.

50. Medikament nach einem der Ansprüche 37 bis 49, wobei ein innerhalb der doppelsträngigen Struktur komplementärer Bereich II aus zwei separaten RNA-Einzelsträngen oder aus selbstkomplementären Bereichen eines, vorzugsweise zirkulär ausgebildeten, topologisch geschlossenen, RNA-Einzelstrangs gebildet ist.
5
51. Medikament nach einem der Ansprüche 37 bis 50, wobei der komplementäre Bereich II aus selbstkomplementären Bereichen einer RNA-Haarnadelschleife gebildet ist.
10
52. Medikament nach einem der Ansprüche 37 bis 51, wobei die Nukleotide im Schleifenbereich zwischen der doppelsträngigen Struktur zum Schutz vor Abbau chemisch modifiziert
15 ist.
15
53. Medikament nach einem der Ansprüche 37 bis 52, wobei die Enden der dsRNA modifiziert sind, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstränge entgegenzuwirken.
20
20
54. Medikament nach einem der Ansprüche 37 bis 53, wobei der durch die Nukleotidpaare bewirkte Zusammenhalt des komplementären Bereichs II durch mindestens eine, vorzugsweise zwei, weitere chemische Verknüpfung/en erhöht ist.
25
25
55. Medikament nach einem der Ansprüche 37 bis 54, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stape-lungswechselwirkungen, oder durch Metall-Ionenko-ordination gebildet ist.
30
30

56. Medikament nach einem der Ansprüche 37 bis 55, wobei die chemische Verknüpfung an mindestens einem, vorzugsweise an beiden, Enden des komplementären Bereichs II hergestellt ist.

5

57. Medikament nach einem der Ansprüche 37 bis 56, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet ist, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicooxy-1,3-propandiol)- und/oder Polyethylenglycol-Ketten sind.

10

58. Medikament nach einem der Ansprüche 37 bis 57, wobei die chemische Verknüpfung durch in den komplementären Bereichen II anstelle von Purinen benutzte Purinanaloge gebildet ist.

15

59. Medikament nach einem der Ansprüche 37 bis 58, wobei die chemische Verknüpfung durch in die komplementären Bereiche II eingeschaltete Azabenzoleinheiten gebildet ist.

20

60. Medikament nach einem der Ansprüche 37 bis 59, wobei die chemische Verknüpfung durch in den komplementären Bereichen II anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloge gebildet ist.

25

61. Medikament nach einem der Ansprüche 37 bis 60, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N`-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoralen.

30

62. Medikament nach einem der Ansprüche 37 bis 61, wobei die chemische Verknüpfung durch an den Enden des doppelsträn-

gigen Bereichs vorgesehene Thiophosphoryl-Gruppen gebildet ist.

63. Medikament nach einem der Ansprüche 37 bis 62, wobei die
5 chemische Verknüpfung an den Enden des doppelsträngigen Bereichs vorgesehene Tripelhelix-Bindungen sind.
64. Medikament nach einem der Ansprüche 37 bis 63, wobei mindestens eine 2'-Hydroxylgruppe der Nukleotide der dsRNA
10 in dem komplementären Bereich II durch eine chemische Gruppe, vorzugsweise eine 2'-Amino- oder eine 2'-Methylgruppe, ersetzt ist.
65. Medikament nach einem der Ansprüche 37 bis 64, wobei mindestens ein Nukleotid in mindestens einem Strang des komplementären Bereichs II ein "locked nucleotide" mit einem, vorzugsweise durch eine 2'-O, 4'-C-Methylenbrücke,
15 chemisch modifizierten Zuckerring ist.
- 20 66. Medikament nach einem der Ansprüche 37 bis 65, wobei die dsRNA oder der Vektor an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben ist.
25
67. Medikament nach einem der Ansprüche 37 bis 66, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.
68. Medikament nach einem der Ansprüche 37 bis 67, wobei das
30 Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-Protein 2 (VP2) des Polyomavirus enthält.
69. Medikament nach einem der Ansprüche 37 bis 68, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem

Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist.

70. Medikament nach einem der Ansprüche 37 bis 69, wobei die
5 dsRNA zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist.
71. Medikament nach einem der Ansprüche 37 bis 70, wobei die
10 Zelle eine Vertebratenzelle oder eine menschliche Zelle ist.
72. Medikament nach einem der Ansprüche 37 bis 71, wobei darin mindestens zwei voneinander verschiedene dsRNAs oder
15 mindestens ein dafür kodierender Vektor enthalten sind, wobei ein Strang jeder dsRNA zumindest abschnittsweise komplementär zu jeweils einem von mindestens zwei verschiedenen Zielgenen ist.
73. Medikament nach Anspruch 72, wobei eines der Zielgene das
20 PKR-Gen ist.
74. Verwendung eines Oligoribonukleotids mit doppelsträngiger Struktur (dsRNA) zur Herstellung eines Medikaments zur Hemmung der Expression eines vorgegebenen Zielgens, wobei
25 ein Strang der dsRNA einen zum Zielgen zumindest abschnittsweise komplementären Bereich I aufweist.
75. Verwendung eines Vektors zur Kodierung mindestens eines Oligoribonukleotids mit doppelsträngiger Struktur (dsRNA)
30 zur Herstellung eines Medikaments zur Hemmung der Expression eines vorgegebenen Zielgens, wobei ein Strang der dsRNA einen zu diesem Zielgen zumindest abschnittsweise komplementären Bereich I aufweist.

76. Verwendung nach Anspruch 74 oder 75, wobei die dsRNA oder der Vektor verpackt in ~~micellare~~ Strukturen, vorzugsweise in Liposomen, vorliegt.
- 5 77. Verwendung nach Anspruch 74 oder 75, wobei die dsRNA oder der Vektor in virale natürliche Kapside oder in auf chemischem oder enzymatischem Weg hergestellte künstliche Kapside oder davon abgeleitete Strukturen eingeschlossen ist.
- 10 78. Verwendung nach einem der Ansprüche 74 bis 77, wobei dsRNA 10 bis 1000, vorzugsweise 15 bis 49, Basenpaare aufweist.
- 15 79. Verwendung nach einem der Ansprüche 74 bis 78, wobei das Zielgen in eukaryontischen Zellen exprimierbar ist.
- 20 80. Verwendung nach einem der Ansprüche 74 bis 79, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen, Cytokin-Gen, Id-Protein-Gen, Entwicklungsgen, Prionen.
- 25 81. Verwendung nach einem der Ansprüche 74 bis 80, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmoidien, exprimierbar ist.
82. Verwendung nach einem der Ansprüche 74 bis 81, wobei das Zielgen Bestandteil eines Virus oder Viroids ist.
- 30 83. Verwendung nach Anspruch 82, wobei das Virus ein humanpathogenes Virus oder Viroid ist.
84. Verwendung nach Anspruch 82, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

85. Verwendung nach einem der Ansprüche 74 bis 84, wobei die dsRNA abschnittsweise doppelsträngig ausgebildet ist.
86. Verwendung nach einem der Ansprüche 74 bis 85, wobei ein innerhalb der doppelsträngigen Struktur komplementärer Bereich II aus zwei separaten RNA-Einzelsträngen oder aus selbstkomplementären Bereichen eines, vorzugsweise zirkulär ausgebildeten, topologisch geschlossenen RNA-Einzelstrangs gebildet ist.
10
87. Verwendung nach einem der Ansprüche 74 bis 86, wobei der komplementäre Bereich II aus selbstkomplementären Bereichen einer RNA-Haarnadelschleife gebildet wird.
- 15 88. Verwendung nach einem der Ansprüche 74 bis 87, wobei die Nukleotide im Schleifenbereich zwischen der doppelsträngigen Struktur zum Schutz vor Abbau chemisch modifiziert sind.
- 20 89. Verwendung nach einem der Ansprüche 74 bis 88, wobei die Enden der dsRNA modifiziert sind, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstränge entgegenzuwirken.
- 25 90. Verwendung nach einem der Ansprüche 74 bis 89, wobei der durch die Nukleotidpaare bewirkte Zusammenhalt des komplementären Bereichs II durch mindestens eine, vorzugsweise zwei, weitere chemische Verknüpfung/en erhöht ist.
- 30 91. Verwendung nach einem der Ansprüche 74 bis 90, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stape-

lungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet ist.

92. Verwendung nach einem der Ansprüche 74 bis 91, wobei die chemische Verknüpfung an mindestens einem, vorzugsweise an beiden, Enden des komplementären Bereichs II hergestellt ist.
93. Verwendung nach einem der Ansprüche 74 bis 92, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet ist, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicoxy-1,3-propandiol)- und/oder Polyethylenglycol-Ketten sind.
94. Verwendung nach einem der Ansprüche 74 bis 93, wobei die chemische Verknüpfung durch in den komplementären Bereichen II anstelle von Purinen benutzte Purinanaloge gebildet ist.
95. Verwendung nach einem der Ansprüche 74 bis 94, wobei die chemische Verknüpfung durch in den komplementären Bereichen II eingeführte Azabenzoleinheiten gebildet ist.
96. Verwendung nach einem der Ansprüche 74 bis 95, wobei die chemische Verknüpfung durch in den komplementären Bereichen II anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloge gebildet ist.
97. Verwendung nach einem der Ansprüche 74 bis 96, wobei zur Herstellung der chemischen Verknüpfung mindestenes eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoralen.

98. Verwendung nach einem der Ansprüche 74 bis 97, wobei die chemische Verknüpfung durch an den Enden des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet ist.
- 5
99. Verwendung nach einem der Ansprüche 74 bis 98, wobei die chemische Verknüpfung an den Enden des doppelsträngigen Bereichs durch Tripelhelix-Bindungen hergestellt ist.
- 10
100. Verwendung nach einem der Ansprüche 74 bis 99, wobei mindestens eine 2'-Hydroxylgruppe der Nukleotide der dsRNA in dem komplementären Bereich II durch eine chemische Gruppe, vorzugsweise eine 2'-Amino- oder eine 2'-Methylgruppe, ersetzt ist.
- 15
101. Verwendung nach einem der Ansprüche 74 bis 100, wobei mindestens ein Nukleotid in mindestens einem Strang des komplementären Bereichs II ein "locked nucleotide" mit einem, vorzugsweise durch eine 2'-O, 4'-C-Methylenbrücke, chemisch modifizierten Zuckerring ist.
- 20
102. Verwendung nach einem der Ansprüche 74 bis 101, wobei die dsRNA oder der Vektor an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben ist.
- 25
103. Verwendung nach einem der Ansprüche 74 bis 102, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.
- 30
104. Verwendung nach einem der Ansprüche 74 bis 103, wobei das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-Protein 2 (VP2) des Polyomavirus enthält.

105. Verwendung nach einem der Ansprüche 74 bis 104, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder
5 kapsidartigen Gebildes gewandt ist.
106. Verwendung nach einem der Ansprüche 74 bis 105, wobei die dsRNA zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist.
10
107. Verwendung nach einem der Ansprüche 74 bis 106, wobei die Zelle eine Vertebratenzelle oder eine menschliche Zelle ist.
15
108. Verwendung nach einem der Ansprüche 74 bis 107, wobei mindestens zwei voneinander verschiedene dsRNAs oder mindestens ein dafür kodierender Vektor verwendet werden, wobei ein Strang jeder dsRNA zumindest abschnittsweise komplementär zu jeweils einem von mindestens zwei verschiedenen Zielgenen ist.
20
109. Verfahren nach Anspruch 108, wobei eines der Zielgene das PKR-Gen ist.
25
110. Verwendung nach einem der Ansprüche 74 bis 109, wobei das Medikament in die Blutbahn oder das Interstitium des zu therapiierenden Organismus injizierbar ist.
30
111. Verwendung nach einem der Ansprüche 74 bis 110, wobei die dsRNA bzw. der sie kodierende Vektor in Bakterien oder Mikroorganismen aufgenommen sind.

112. Verwendung nach einem der Ansprüche 74 bis 111, wobei der komplementäre Bereich I höchstens 49 aufeinanderfolgende Nukleotidpaare aufweist.

Fig. 1

Fig. 2

3/5

Fig. 3

Fig. 4 a

Fig. 4 b

Fig. 4 c

5/5

Fig. 4 d

Fig. 4 e

SEQUENZPROTOKOLL

<110> Kreutzer Dr., Roland
Limmer Dr., Stephan
5
<120> Verfahren und Medikament zur Hemmung der Expression
eines vorgegebenen Gens

<130> 400968
10
<140>
<141>

<150> 199 03 713.2
15 <151> 1999-01-30

<150> 199 56 568.6
<151> 1999-11-24

20 <160> 8

<170> PatentIn Ver. 2.1

<210> 1
25 <211> 45
<212> DNA
<213> Künstliche Sequenz

<220>
30 <223> Beschreibung der künstlichen Sequenz:
EcoRI-Schnittstelle, T7-RNA-Polymerasepromotor

<400> 1
ggaattctaa tacgactcac tatagggcga tcagatctct agaag
35

<210> 2
<211> 50
<212> DNA
40 <213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:

BamHI-Schnittstelle, SP6-RNA-Polymerasepromotor

5 <400> 2

gggatccatt tagtgacac tatagaatac ccatgatcgc gtagtcgata

50

<210> 3

10 <211> 340

<212> RNA

<213> Künstliche Sequenz

<220>

15 <223> Beschreibung der künstlichen Sequenz: RNA, die
einer Sequenz aus der "positive control DNA" des
HeLaScribe Nuclear Extract in vitro
Transkriptionskits der Firma Promega entspricht

20 <400> 3

ucagaucucu agaagcuuua augcgguaug uuaucacagu uaaaauugcu aacgcagucag 60
gcaccgugua ugaaaucuaa caaugcguc aucgucaucc ucggcacccu cacccuggau 120
gcuguaggca uaggcuuggu uaugccggua cugccgggcc ucuugcggga uaucguccau 180
uccgacagca ucgccaguca cuauggcgug cugcuagcgc uaauaugcguu gaugcaauuu 240
25 cuaugcgcac ccguucucgg agcacugucc gaccgcuuug gccgcccggcc aguccugcuc 300
gcuucgcuac uuggagccac uaucgacuac gcgaucaugg 340

<210> 4

30 <211> 363

<212> DNA

<213> Künstliche Sequenz

<220>

35 <223> Beschreibung der künstlichen Sequenz: DNA, die
einer Sequenz aus der "positive control DNA" des
HeLaScribe Nuclear Extract in vitro
Transkriptionskits der Firma Promega entspricht

40 <400> 4

tcagatctct agaagcttta atgcggtagt ttatcacagt taaattgcta acgcagtcag 60

gcaccgtgta tgaaatctaa caatgcgc tc atcgcatcc tcggcaccgt caccctggat 120
gctgttaggca taggcttggt tatgccggta ctgccggcc tcttgcggga tatcgccat 180
tccgacagca tcgcccagtca ctatggcggtg ctgcttagcgc tatatgcgtt gatgcaattt 240
ctatgcgcac ccgttctcggt agcactgtcc gaccgctttg gccgcccggcc agtcctgctc 300
5 gcttcgctac ttggagccac tatcgactac gcgatcatgg cgaccacacc cgtcctgtgg 360
atc 363

<210> 5
10 <211> 315
<212> RNA
<213> Künstliche Sequenz

<220>
15 <223> Beschreibung der künstlichen Sequenz: Sequenz aus
dem YFP-Gen

<400> 5
uggugagca agggcgagga gcuguucacc gggguggugc ccauccuggu cgagcuggac 60
20 ggcgacguaa acggccacaa guucagcgug uccggcgagg gcgagggcga ugccaccuac 120
ggcaaggcuga cccugaaguu caucugcacc accggcaagc ugccccgugcc cuggccacc 180
cucgugacca cccugaccua cggcgugcag ugcuucagcc gcuaccccgaa ccacaugaag 240
cagcacgacu ucuucaaguc cgccaugccc gaaggcuacg uccaggagcg caccaucuuc 300
uucaaggacg acggc 315
25

<210> 6
<211> 52
<212> DNA
30 <213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz:
EcoRI-Schnittstelle, T7-RNA-Polymerasepromotor,
35 komplementärer Bereich zum YFP-Gen

<400> 6
ggaattctaa tacgactcac tatagggcga atggtgagca agggcgagga gc 52
40 <210> 7

<211> 53
<212> DNA
<213> Künstliche Sequenz

5 <220>
<223> Beschreibung der künstlichen Sequenz:
BamHI-Schnittstelle, SP6-RNA-Polymerasepromotor,
komplementärer Bereich zum YFP-Gen

10 <400> 7
gggatccatt taggtgacac tatagaatac gccgtcgcc ttgaagaaga tgg 53

<210> 8
15 <211> 21
<212> RNA
<213> Künstliche Sequenz

<220>
20 <223> Beschreibung der künstlichen Sequenz: RNA, die
einer Sequenz aus dem YFP-Gen entspricht

<400> 8
ucgagcugga cggcgacqua a 21
25

INTERNATIONAL SEARCH REPORT

Int'l. Jonal Application No
PCT/DE 00/00244

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/11 A61K31/713

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 92 19732 A (GENSET) 12 November 1992 (1992-11-12)	1-29, 32-34, 37-43, 45-66, 69-71, 74-80, 82-102, 105-108, 112
Y	abstract, page 11 lines 18-28 pages 12-13, page 15 line 22 bis page 20 line 1, pages 33 and 46, figures 1-6 --- -/-	1-35, 37-43, 45-72, 74-80, 82-108, 110-112

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

6 June 2000

Date of mailing of the international search report

20/06/2000

Name and mailing address of the ISA

European Patent Office, P.O. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Gore, V

INTERNATIONAL SEARCH REPORT

Int. Application No
PCT/DE 00/00244

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 98 05770 A (ROTHBARTH KARSTEN ; JOSWIG GABY (DE); WERNER DIETER (DE); SCHUBERT) 12 February 1998 (1998-02-12)	1-29, 32-34, 37-43, 45-66, 69-71, 74-80, 82-102, 105-108, 112
Y	abstract, pages 2-3	1-35, 37-43, 45-72, 74-80, 82-108, 110-112
X,P	WO 99 32619 A (CARNEGIE INST OF WASHINGTON ; MONTGOMERY MARY K (US); FIRE ANDREW () 1 July 1999 (1999-07-01))	1-29, 32-34, 37-43, 45-66, 69-71, 74-80, 82-102, 105-108, 112
	abstract, pages 6, 11-12, 15-17	
Y	UHLMANN E ET AL: "ANTISENSE OLIGONUCLEOTIDES: A NEW THERAPEUTIC PRINCIPLE" CHEMICAL REVIEWS, US, AMERICAN CHEMICAL SOCIETY, EASTON, vol. 90, no. 4, 1 June 1990 (1990-06-01), pages 543-584, XP000141412 ISSN: 0009-2665 pages 558, 565-566, 574-575	15-28, 52-65, 88-101
A	MADHUR K. ET AL.: "Antisense RNA : function and fate of duplex RNA in cells of higher eukaryotes." MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, vol. 62, December 1998 (1998-12), pages 1415-1434, XP000909741 * pages 1422-1423 and 1428 *	1-112

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int'l. Application No.

PCT/DE 00/00244

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9219732	A 12-11-1992	FR 2675803	A	30-10-1992
		AU 660679	B	06-07-1995
		AU 1759692	A	21-12-1992
		CA 2102229	A	26-10-1992
		EP 0581848	A	09-02-1994
		JP 6506834	T	04-08-1994
-----	-----	-----	-----	-----
WO 9805770	A 12-02-1998	DE 19631919	A	12-02-1998
		EP 0918853	A	02-06-1999
-----	-----	-----	-----	-----
WO 9932619	A 01-07-1999	AU 1938099	A	12-07-1999
-----	-----	-----	-----	-----

INTERNATIONALER RECHERCHENBERICHT

Int. nationales Aktenzeichen

PCT/DE 00/00244

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 C12N15/11 A61K31/713

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 A61K

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie ^a	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	WO 92 19732 A (GENSET) 12. November 1992 (1992-11-12)	1-29, 32-34, 37-43, 45-66, 69-71, 74-80, 82-102, 105-108, 112
Y	* Zusammenfassung, Seite 11 Z.18-28, Seiten 12-13, Seite 15 Z.22 bis Seite 20 Z.1, Seiten 33 und 46, Abbildungen 1-6 *	1-35, 37-43, 45-72, 74-80, 82-108, 110-112
	----	-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

^a Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchebericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung,

eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Rechercheberichts

6. Juni 2000

20/06/2000

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Gore, V

INTERNATIONALER RECHERCHENBERICHT

Inte ionales Aktenzeichen

PCT/DE 00/00244

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der im Betracht kommenden Teile	Betr. Anspruch Nr.
X	WO 98 05770 A (ROTHBARTH KARSTEN ; JOSWIG GABY (DE); WERNER DIETER (DE); SCHUBERT) 12. Februar 1998 (1998-02-12)	1-29, 32-34, 37-43, 45-66, 69-71, 74-80, 82-102, 105-108, 112
Y	* Zusammenfassung, Seiten 2-3 *	1-35, 37-43, 45-72, 74-80, 82-108, 110-112
X,P	--- WO 99 32619 A (CARNEGIE INST OF WASHINGTON ; MONTGOMERY MARY K (US); FIRE ANDREW () 1. Juli 1999 (1999-07-01)	1-29, 32-34, 37-43, 45-66, 69-71, 74-80, 82-102, 105-108, 112
Y	* Zusammenfassung, Seiten 6,11-12,15-17 * --- UHLMANN E ET AL: "ANTISENSE OLIGONUCLEOTIDES: A NEW THERAPEUTIC PRINCIPLE" CHEMICAL REVIEWS, US, AMERICAN CHEMICAL SOCIETY, EASTON, Bd. 90, Nr. 4, 1. Juni 1990 (1990-06-01), Seiten 543-584, XP000141412 ISSN: 0009-2665 * Seiten 558,565-566,574-575 *	15-28, 52-65, 88-101
A	--- MADHUR K. ET AL.: "Antisense RNA : function and fate of duplex RNA in cells of higher eukaryotes." MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, Bd. 62, Dezember 1998 (1998-12), Seiten 1415-1434, XP000909741 Seiten 1422-1423 und 1428 -----	1-112

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

		Internationales Aktenzeichen PCT/DE 00/00244	
Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 9219732 A	12-11-1992	FR 2675803 A AU 660679 B AU 1759692 A CA 2102229 A EP 0581848 A JP 6506834 T	30-10-1992 06-07-1995 21-12-1992 26-10-1992 09-02-1994 04-08-1994
WO 9805770 A	12-02-1998	DE 19631919 A EP 0918853 A	12-02-1998 02-06-1999
WO 9932619 A	01-07-1999	AU 1938099 A	12-07-1999