

## Engineering and Testing for EMC and Safety Compliance

# **FCC Certification Report**

Airorlite Communications, Inc.

17-01 Pollitt Drive Fair Lawn, NJ 07410 Contact: Lee Masoian Phone: 201-301-6970

E-Mail: masoian@airorlite.com

Model: 50289 Bi-Directional Booster (Uplink) (480 – 490 MHz)

FCC ID: UT650289BA8480UL

June 27, 2007

| Standards Referenced for this Report             |                                                                                     |  |  |  |
|--------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|
| Part 2: 2006                                     | Frequency Allocations and Radio Treaty Matters; General Rules and Regulations       |  |  |  |
| Part 90: 2006 Private Land Mobile Radio Services |                                                                                     |  |  |  |
| ANSI/TIA-603-C-2004                              | Land Mobile FM or PM Communications Equipment Measurement and Performance Standards |  |  |  |

| Frequency Range (MHz)  Measured Transmit Power (dBm) Conducted |       | Frequency<br>Tolerance (ppm) | Emission Designator |
|----------------------------------------------------------------|-------|------------------------------|---------------------|
| 480 - 490                                                      | 27.3* | Amp                          | F8E                 |

<sup>\*</sup> Power listed is conducted per carrier

Report Prepared by Test Engineer: Daniel Biggs

Document Number: 2007151B

This report may not be reproduced, except in full, without the written approval of Rhein Tech Laboratories, Inc.

Test results relate only to the product tested.

# **Table of Contents**

| 1          | Gen   | eral Information                                                                              | 5  |
|------------|-------|-----------------------------------------------------------------------------------------------|----|
| 1          | .1    | Test Facility                                                                                 |    |
| 1          | .2    | Related Submittal(s)/Grant(s)                                                                 | 5  |
| 2          | Test  | ed System Details                                                                             |    |
| 3          | FCC   | Rules and Regulations Part 2 §2.1033(c)(8) Voltages and Currents Through The Final Amplifying | na |
| _          | ge    |                                                                                               |    |
| 4<br>4     | FCC   | Rules and Regulations Part 90 §90.1215(a) and Part 2 §2.1046(a): Peak Output Power            | a  |
| T 4        |       | Test Procedure                                                                                |    |
|            | .1    | Test Data                                                                                     |    |
| 5          | FCC   | Rules and Regulations Part 90 §90.210(b) and Part 2 §2.1049(c): Occupied Bandwidth            |    |
| -          |       | s Masks)                                                                                      | 10 |
|            | .1    | Test Procedure                                                                                |    |
| -          | .1    | Test Data                                                                                     |    |
| 6 0        | -     | dwidth Rejection                                                                              |    |
| 6          |       | Test Procedure                                                                                |    |
| -          | .2    | Test Data                                                                                     |    |
| 7          | FCC   | Rules and Regulations Part 2 §2.1051: Spurious Emissions at Antenna Terminals; Part 90        |    |
| -          |       | Emissions Masks                                                                               | 21 |
| 390<br>7   |       | Test Procedure                                                                                |    |
| -          | .2    | Test Data                                                                                     |    |
| 8          | Inter | modulated Spurious Emissions                                                                  |    |
| <b>.</b> 8 |       | Test Procedure                                                                                |    |
| 8          | .2    | Test Data                                                                                     | _  |
| 9          | FCC   | Rules and Regulations Part 90 §90.210 and Part 2 §2.1053(a): Field Strength of Spurious       |    |
| Rad        |       |                                                                                               | 47 |
| 9          |       | Test Procedure                                                                                |    |
| -          | .2    | Test Data                                                                                     |    |
|            | 9.2.1 | CFR 47 Part 90.210 Requirements                                                               |    |
| 10         | FCC   | Rules and Regulations Part 90 §90.213 and Part 2 §2.1055: Frequency Stability                 | 50 |
| 11         |       | clusion                                                                                       | 50 |
|            |       |                                                                                               |    |

# **Table of Tables**

| Table 2-1:<br>Table 2-2:<br>Table 2-3:<br>Table 2-4:<br>Table 4-1:<br>Table 4-1:<br>Table 4-2:<br>Table 5-1:<br>Table 6-1:<br>Table 7-1: | Test System Details                                                                                                                                                                                                                                                                       | 7<br>7<br>9<br>9<br>9 |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Table 8-1:<br>Table 9-1:<br>Table 9-2:<br>Table 9-3:<br>Table 9-4:                                                                       | Test Equipment for Testing Intermodulated Spurious Emissions  Field Strength of Spurious Radiation: 480.0125 MHz  Field Strength of Spurious Radiation: 484.9375 MHz  Field Strength of Spurious Radiation: 489.9500 MHz  Test Equipment for Testing Field Strength of Spurious Radiation | .47<br>.48<br>.48     |
|                                                                                                                                          | Table of Plots                                                                                                                                                                                                                                                                            |                       |
| Plot 5-1:                                                                                                                                | Occupied Bandwidth: Input to Booster; 20 dB bandwidth - 480.0125 MHz                                                                                                                                                                                                                      | .10                   |
| Plot 5-2:                                                                                                                                | Occupied Bandwidth: Booster Output; 20 dB bandwidth - 480.0125 MHz                                                                                                                                                                                                                        |                       |
| Plot 5-3:                                                                                                                                | Occupied Bandwidth: Input to Booster; 20 dB bandwidth - 484.9375 MHz                                                                                                                                                                                                                      |                       |
| Plot 5-4:                                                                                                                                | Occupied Bandwidth: Booster Output; 20 dB bandwidth - 484.9375 MHz                                                                                                                                                                                                                        |                       |
| Plot 5-5:                                                                                                                                | Occupied Bandwidth: Input to Booster; 20 dB bandwidth - 489.95 MHz                                                                                                                                                                                                                        |                       |
| Plot 5-6:                                                                                                                                | Occupied Bandwidth: Booster Output; 20 dB bandwidth - 489.95 MHz                                                                                                                                                                                                                          |                       |
| Plot 6-1:                                                                                                                                | Bandwidth Rejection - 480.0125 MHz                                                                                                                                                                                                                                                        |                       |
| Plot 6-2:                                                                                                                                | Bandwidth Rejection - 484.9375 MHz                                                                                                                                                                                                                                                        |                       |
| Plot 6-3:                                                                                                                                | Bandwidth Rejection - 489.9500 MHz                                                                                                                                                                                                                                                        |                       |
| Plot 7-1:                                                                                                                                | Conducted Spurious Emissions: 30 MHz - 1,000 MHz - 480.0125 MHz                                                                                                                                                                                                                           |                       |
| Plot 7-2:                                                                                                                                | Conducted Spurious Emissions: 1,000 MHz - 4,000 MHz - 480.0125 MHz                                                                                                                                                                                                                        |                       |
| Plot 7-3:                                                                                                                                | Conducted Spurious Emissions: 4,000 MHz – 9,000 MHz – 480.0125 MHz                                                                                                                                                                                                                        |                       |
| Plot 7-4:                                                                                                                                | Conducted Spurious Emissions: 30 MHz - 1,000 MHz - 484.9375 MHz                                                                                                                                                                                                                           |                       |
| Plot 7-5:<br>Plot 7-6:                                                                                                                   | Conducted Spurious: 4,000 MHz - 9,000 MHz - 484.9375 MHz                                                                                                                                                                                                                                  |                       |
| Plot 7-6.                                                                                                                                | Conducted Spurious Emissions: 30 MHz - 1,000 MHz - 489.9500 MHz                                                                                                                                                                                                                           |                       |
| Plot 7-7:                                                                                                                                | Conducted Spurious Emissions: 1,000 MHz - 4,000 MHz - 489.9500 MHz                                                                                                                                                                                                                        |                       |
| Plot 7-9:                                                                                                                                | Conducted Spurious Emissions: 4,000 MHz - 4,000 MHz - 489.9500 MHz                                                                                                                                                                                                                        |                       |
| Plot 8-1:                                                                                                                                | Intermodulated Spurious Emissions: In-Band Input Signals to Booster                                                                                                                                                                                                                       |                       |
| Plot 8-2:                                                                                                                                | Intermodulated Spurious Emissions: In-Band Input Signals to Booster                                                                                                                                                                                                                       |                       |
| Plot 8-3:                                                                                                                                | Intermodulated Spurious Emissions: 30 – 470 MHz                                                                                                                                                                                                                                           |                       |
| Plot 8-4:                                                                                                                                | Intermodulated Spurious Emissions: 470 – 490 MHz                                                                                                                                                                                                                                          |                       |
| Plot 8-5:                                                                                                                                | Intermodulated Spurious Emissions: 490 – 1000 MHz                                                                                                                                                                                                                                         |                       |
| Plot 8-6:                                                                                                                                | Intermodulated Spurious Emissions: 1000 – 4000 MHz                                                                                                                                                                                                                                        |                       |
| Plot 8-7:                                                                                                                                | Intermodulated Spurious Emissions: 4000 – 9000 MHz                                                                                                                                                                                                                                        |                       |
| Plot 8-8:                                                                                                                                | Intermodulated Spurious Emissions: In-Band Input Signals to Booster                                                                                                                                                                                                                       |                       |
| Plot 8-9:                                                                                                                                | Intermodulated Spurious Emissions: In-Band Input Signals through Booster                                                                                                                                                                                                                  |                       |
| Plot 8-10:                                                                                                                               | Intermodulated Spurious Emissions: 30 – 480 MHz                                                                                                                                                                                                                                           |                       |
| Plot 8-11:                                                                                                                               | Intermodulated Spurious Emissions: 480 – 500 MHz                                                                                                                                                                                                                                          |                       |
| Plot 8-12:                                                                                                                               | Intermodulated Spurious Emissions: 500 – 1000 MHz                                                                                                                                                                                                                                         |                       |
| Plot 8-13:                                                                                                                               | Intermodulated Spurious Emissions: 1000 – 4000 MHz                                                                                                                                                                                                                                        |                       |
| Plot 8-14:                                                                                                                               |                                                                                                                                                                                                                                                                                           | 45                    |

Client: Airorlite Communications, Inc. Model: 50289 Bi-Directional Booster Standards: FCC Part 90 FCC ID: UT650289BA8480UL Report Number: 2007151B

# **Table of Figures**

| Figure 2-1:   | Configuration of Tested System  | 8  |
|---------------|---------------------------------|----|
|               | Table of Appendixes             |    |
| Appendix A:   | RF Exposure Compliance          | 51 |
| Appendix B:   | Agency Authorization Letter     | 52 |
| Appendix C:   | Confidentiality Request Letter  |    |
| Appendix D:   | Label Information               |    |
| Appendix E:   | Operational Description         |    |
| Appendix F:   | Parts List                      |    |
| Appendix G:   | Tune Up/Alignment Procedure     |    |
| Appendix H:   | Schematics                      |    |
| Appendix I:   | Block Diagram                   |    |
| Appendix J:   | Manual                          |    |
| Appendix K:   | Test Configuration Photographs  |    |
| Appendix L:   | External Photographs            |    |
| Appendix M:   | Internal Photographs            |    |
|               | Table of Photographs            |    |
| Photograph 1: | Radiated Emissions (Front View) | 61 |
| Photograph 2: | Radiated Emissions (Rear View)  | 62 |

Client: Airorlite Communications, Inc. Model: 50289 Bi-Directional Booster Standards: FCC Part 90 FCC ID: UT650289BA8480UL Report Number: 2007151B

#### 1 General Information

The following Certification Report is prepared on behalf of **Airorlite Communications**, **Inc**. in accordance with the Federal Communications Commission Part 90 Rules and Regulations. The Equipment Under Test (EUT) was the **Model 50289 Bi-directional Booster (Uplink)**, **FCC ID: UT650289BA8480UL**. The test results reported in this document relate only to the item that was tested.

All measurements contained in this application were conducted in accordance with the applicable FCC Rules and Regulations in CFR 47. Calibration checks are performed regularly on the instruments, and all accessories including high pass filter, coaxial attenuator, preamplifier and cables.

#### 1.1 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located on the parking lot of Rhein Tech Laboratories, Inc., 360 Herndon Parkway, Suite 1400, Herndon, Virginia, 20170. This site has been fully described in a report submitted to and approved by the Federal Communications Commission to perform AC line conducted and radiated emissions testing.

#### 1.2 Related Submittal(s)/Grant(s)

This is an original application report.

Client: Airorlite Communications, Inc. Model: 50289 Bi-Directional Booster Standards: FCC Part 90 FCC ID: UT650289BA8480UL Report Number: 2007151B

# 2 Tested System Details

The test sample was received on April 3, 2007. Listed below are the identifiers and descriptions of all equipment, cables, and internal devices used with the EUT for this test, as applicable.

The Airorlite Communications, Inc. Model 50289 Bi-Directional Booster (Uplink) is an eight channel bidirectional amplifier utilizing 16 channels of synchronized down-up conversions.

The multi-channel booster is divided into two independent 8 channel systems (8 high channels and 8 low channels) for full duplex operations. Downlink signals are received at the roof antenna, 8 selected frequencies are processed (filtering and amplification), and rebroadcast on a radiating cable (reference FCC ID: UT650289BA8470DL). Conversely, uplink signals induced onto radiating cable are similarly processed and rebroadcast on the roof antenna. The uplink channels are the high band channels (480 - 490 MHz), and the 8 downlink channels are the low band (470 - 480 MHz). Note that the system as a whole is a "bi-directional booster"; this application is only for the uplink channels (the downlink channels are certified under FCC ID: UT650289BA8470DL). We request that the grant notes reflect: "Part of booster system used with FCC ID: UT650289BA8470DL."

Each system consists of a LNA/8-way splitter, 8 channel modules (down-up converters with synthesized LO), 8-way combiner, and RF power amplifiers with an 8-way power combiner. In addition, a duplexer combines the uplink RF output and downlink RF input to a common "Off the Air" antenna.

The RF signal flow of the two systems is identical. RF band pass filters internal to the system modules determine high band or low band operations.

Note that the device does not translate frequencies, and therefore, the RF output will not change with temperature or voltage variation. Additionally, the device is designed to be used with FM input/output signals.

An AGC limits the maximum composite out to 31 dBm.

The EUT is a Class A signal booster which has narrowband filtering via crystal filters.

The input drive level was set at the maximum input rating of -50 dBm for all tests. The gain of the amplifier was set to maximum gain by the manufacturer before testing began.

The device cannot operate in saturation. The channel card is band limited by crystal filters which prevent spectral regrowth. The channel cards are limited to a max output of -20 dBm and the power amplifier is level controlled via an AGC loop. All of these prevent saturation in the power amp and also prevent over modulation.

Client: Airorlite Communications, Inc. Model: 50289 Bi-Directional Booster Standards: FCC Part 90 FCC ID: UT650289BA8480UL Report Number: 2007151B

Table 2-1: Test System Details

| Model Tested         | Model 50289 Bi-Directional Booster (Uplink) |  |  |
|----------------------|---------------------------------------------|--|--|
| Frequency Band       | 480 - 490 MHz                               |  |  |
| Maximum Output Power | 27.3 dBm/carrier                            |  |  |
| Number of Channels   | 8                                           |  |  |
| Channel Bandwidth    | 25 kHz nominal                              |  |  |
| Channel Spacing      | 25 kHz                                      |  |  |
| Primary Power        | 95-132 VAC, 45-64 Hz                        |  |  |
| Duty Cycle           | Continuous                                  |  |  |

# Table 2-2: Equipment Under Test (EUT)

| Part                      | Manufacturer                         | Model | PN/SN           | FCC ID           | RTL Bar<br>Code |
|---------------------------|--------------------------------------|-------|-----------------|------------------|-----------------|
| Bi-Directional<br>Booster | Airorlite<br>Communications,<br>Inc. | 50289 | 52100-02-<br>06 | UT650289BA8480UL | 17857           |

# Table 2-3: Ports and Cabling (EUT)

| Port   | Cable Type | Quantity | Length (feet) | Shield |
|--------|------------|----------|---------------|--------|
| RF In  | N type     | 1        | N/A           | N/A    |
| RF Out | N type     | 1        | N/A           | N/A    |

# Table 2-4: Support Equipment

| Part                      | Manufacturer | Model     | PN/SN | FCC ID | RTL Bar Code |
|---------------------------|--------------|-----------|-------|--------|--------------|
| Notebook<br>Computer      | Panasonic    | Toughbook | N/A   | N/A    | 13954        |
| Serial Interface<br>Cable | N/A          | DB-9      | N/A   | N/A    | N/A          |

Figure 2-1: Configuration of Tested System



3 FCC Rules and Regulations Part 2 §2.1033(c)(8) Voltages and Currents Through The Final Amplifying Stage

Nominal DC Voltage: 12 VDC

Current: 1.3 A

## 4 FCC Rules and Regulations Part 90 §90.1215(a) and Part 2 §2.1046(a): Peak Output Power

#### 4.1 Test Procedure

ANSI TIA-603-2004, section 2.2.1.

The EUT was connected to a coaxial attenuator having a 50  $\Omega$  load impedance. Any cable losses were accounted for. The maximum gain antenna to be used with the system is 8 dBi = 5.86 dBd.

#### 4.2 Test Data

Table 4-1: RF Power Output: Carrier Output Power

| Frequency<br>MHz | Power Level<br>Measured<br>(dBm/carrier) | Antenna Gain<br>(dBd) | ERP (W) | Limit § 90.219<br>(W) |
|------------------|------------------------------------------|-----------------------|---------|-----------------------|
| 480.0125         | 26.5                                     | 5.86                  | 1.7     | 5                     |
| 484.9375         | 25.8                                     | 5.86                  | 1.5     | 5                     |
| 489.9500         | 27.3                                     | 5.86                  | 2.1     | 5                     |

<sup>\*</sup>Measurement accuracy: +/-0.3 dB

Table 4-2: RF Power Output: Composite Output Power

| Frequency | Composite   | Antenna Gain | ERP (W) | Limit § 90.219 |
|-----------|-------------|--------------|---------|----------------|
| MHz       | Power (dBm) | (dBd)        |         | (W)            |
| 480 – 490 | 31          | 5.86         | 4.9     | 5              |

<sup>\*</sup>Measurement accuracy: +/-0.3 dB

Table 4-3: Test Equipment for Testing RF Power Output - Conducted

| RTL Asset # | Manufacturer            | Model    | Part Type                              | Serial Number | Calibration<br>Due |
|-------------|-------------------------|----------|----------------------------------------|---------------|--------------------|
| 901184      | Agilent<br>Technologies | E4416A   | Power Meter                            | GB41050573    | 10/3/07            |
| 901356      | Agilent<br>Technologies | E9323A   | Power Sensor                           | 31764-264     | 10/3/07            |
| 901396      | MCE<br>Weinschel        | 48-40-34 | Attenuator, 40 dB,<br>DC-18 GHz, 100 W | 93453         | 12/02/08           |

#### Test Personnel:

| Daniel Biggs  | Daniel Begg- | April 20, 2007 |
|---------------|--------------|----------------|
| Test Engineer | Signature    | Date Of Tests  |

# FCC Rules and Regulations Part 90 §90.210(b) and Part 2 §2.1049(c): Occupied Bandwidth (Emissions Masks)

#### 5.1 Test Procedure

ANSI TIA-603-C-2004, Section 2.2.11.

The transmitter is terminated with a 50  $\Omega$  load and interfaced with a spectrum analyzer. Cable losses were accounted for in measurement.

Full modulation was applied with 5 kHz deviation and a 2500 Hz tone.

#### 5.2 Test Data

**Bandwidth Limit: 1 MHz** 

Plot 5-1: Occupied Bandwidth: Input to Booster; 20 dB bandwidth - 480.0125 MHz



Plot 5-2: Occupied Bandwidth: Booster Output; 20 dB bandwidth - 480.0125 MHz



Plot 5-3: Occupied Bandwidth: Input to Booster; 20 dB bandwidth - 484.9375 MHz



Plot 5-4: Occupied Bandwidth: Booster Output; 20 dB bandwidth - 484.9375 MHz



Plot 5-5: Occupied Bandwidth: Input to Booster; 20 dB bandwidth - 489.95 MHz



Plot 5-6: Occupied Bandwidth: Booster Output; 20 dB bandwidth - 489.95 MHz



Client: Airorlite Communications, Inc. Model: 50289 Bi-Directional Booster Standards: FCC Part 90 FCC ID: UT650289BA8480UL Report Number: 2007151B

Table 5-1: Test Equipment for Testing Occupied Bandwidth

| RTL<br>Asset # | Manufacturer       | Model    | Part Type                                        | Serial<br>Number | Calibration<br>Due |
|----------------|--------------------|----------|--------------------------------------------------|------------------|--------------------|
| 901215         | Hewlett<br>Packard | 8596EM   | EMC Analyzer<br>(9 kHz – 12.8 GHz)               | 3826A00144       | 10/16/07           |
| 901057         | Hewlett<br>Packard | 3336B    | Synthesizer/Level<br>Generator<br>(100Hz-20 MHz) | 2514A02585       | 12/19/2007         |
| 901118         | Hewlett<br>Packard | HP8901B  | Modulation Analyzer<br>150kHz-1300MHz            | 2406A00178       | 07/24/2007         |
| 901396         | MCE<br>Weinschel   | 48-40-34 | Attenuator, 40 dB,<br>DC-18 GHz, 100 W           | 93453            | 12/02/08           |

# **Test Personnel:**

| Daniel Biggs             | Daniel Begg- | June 7, 2007  |
|--------------------------|--------------|---------------|
| Test Technician/Engineer | Signature    | Date of Tests |

#### 6 Bandwidth Rejection

#### 6.1 Test Procedure

ANSI TIA-603-C-2004, Section 2.2.11.

Bandwidth rejection was performed by sweeping below and through the channel band with the spectrum analyzer on max hold. The transmitter is terminated with a 50  $\Omega$  load and interfaced with a spectrum analyzer. Cable losses were accounted for in measurement.

Full modulation was applied with 5 kHz deviation and a 2500 Hz tone.

#### 6.2 Test Data

Plot 6-1: Bandwidth Rejection - 480.0125 MHz



Plot 6-2: Bandwidth Rejection - 484.9375 MHz



Plot 6-3: Bandwidth Rejection - 489.9500 MHz



Client: Airorlite Communications, Inc. Model: 50289 Bi-Directional Booster Standards: FCC Part 90 FCC ID: UT650289BA8480UL Report Number: 2007151B

Table 6-1: Test Equipment for Testing Bandwidth Rejection

| RTL Asset # | Manufacturer        | Model                | Part Type                                        | Serial<br>Number | Calibration<br>Due |
|-------------|---------------------|----------------------|--------------------------------------------------|------------------|--------------------|
| 901215      | Hewlett<br>Packard  | 8596EM               | EMC Analyzer<br>(9 kHz – 12.8 GHz)               | 3826A00144       | 10/16/07           |
| 901396      | MCE<br>Weinschel    | 48-40-34             | Attenuator, 40 dB,<br>DC-18 GHz, 100 W           | 93453            | 12/02/08           |
| 901057      | Hewlett<br>Packard  | 3336B                | Synthesizer/Level<br>Generator<br>(100Hz-20 MHz) | 2514A02585       | 12/19/07           |
| 901118      | Hewlett<br>Packard  | HP8901B              | Modulation Analyzer<br>150kHz-1300MHz            | 2406A00178       | 07/24/07           |
| 901424      | Insulated Wire Inc. | KPS-1503-<br>360-KPS | RF cable 36"                                     | NA               | 12/12/07           |

#### **Test Personnel:**

| Daniel Biggs  | Daniel Beggs | April 24, 2007 |
|---------------|--------------|----------------|
| Test Engineer | Signature    | Date Of Tests  |

Client: Airorlite Communications, Inc. Model: 50289 Bi-Directional Booster Standards: FCC Part 90 FCC ID: UT650289BA8480UL Report Number: 2007151B

# FCC Rules and Regulations Part 2 §2.1051: Spurious Emissions at Antenna Terminals; Part 90 §90.210: Emissions Masks

#### 7.1 Test Procedure

ANSI TIA-603-C-2004, Section 2.2.13.

The transmitter is terminated with a 50  $\Omega$  load and interfaced with a spectrum analyzer. Cable losses were accounted for in measurement.

#### 7.2 Test Data

Frequency range of measurement per Part 2.1057: 9 kHz to 10xFc.

The worst case (unwanted emissions) channels are shown. The magnitude of emissions attenuated more than 20 dB below the FCC limit need not be recorded.

Plot 7-1: Conducted Spurious Emissions: 30 MHz - 1,000 MHz - 480.0125 MHz



Plot 7-2: Conducted Spurious Emissions: 1,000 MHz - 4,000 MHz - 480.0125 MHz



Plot 7-3: Conducted Spurious Emissions: 4,000 MHz – 9,000 MHz – 480.0125 MHz



Plot 7-4: Conducted Spurious Emissions: 30 MHz - 1,000 MHz - 484.9375 MHz



Plot 7-5: Conducted Spurious Emissions: 1,000 MHz - 4,000 MHz - 484.9375 MHz



Plot 7-6: Conducted Spurious: 4,000 MHz - 9,000 MHz - 484.9375 MHz



Plot 7-7: Conducted Spurious Emissions: 30 MHz - 1,000 MHz - 489.9500 MHz



Plot 7-8: Conducted Spurious Emissions: 1,000 MHz - 4,000 MHz - 489.9500 MHz



Plot 7-9: Conducted Spurious Emissions: 4,000 MHz - 9,000 MHz - 489.9500 MHz



Client: Airorlite Communications, Inc. Model: 50289 Bi-Directional Booster Standards: FCC Part 90 FCC ID: UT650289BA8480UL Report Number: 2007151B

Table 7-1: Test Equipment for Testing Conducted Spurious Emissions

| RTL Asset # | Manufacturer        | Model                | Part Type                                        | Serial<br>Number | Calibration<br>Due |
|-------------|---------------------|----------------------|--------------------------------------------------|------------------|--------------------|
| 901215      | Hewlett<br>Packard  | 8596EM               | EMC Analyzer<br>(9 kHz – 12.8 GHz)               | 3826A00144       | 10/16/07           |
| 901396      | MCE<br>Weinschel    | 48-40-34             | Attenuator, 40 dB,<br>DC-18 GHz, 100 W           | 93453            | 12/02/08           |
| 901057      | Hewlett<br>Packard  | 3336B                | Synthesizer/Level<br>Generator<br>(100Hz-20 MHz) | 2514A02585       | 12/19/07           |
| 901118      | Hewlett<br>Packard  | HP8901B              | Modulation Analyzer<br>150kHz-1300MHz            | 2406A00178       | 07/24/07           |
| 901424      | Insulated Wire Inc. | KPS-1503-<br>360-KPS | RF cable 36"                                     | NA               | 12/12/07           |

# **Test Personnel:**

| Daniel Biggs  | Daniel Beggs | April 24, 2007 |
|---------------|--------------|----------------|
| Test Engineer | Signature    | Date Of Tests  |

#### 8 Intermodulated Spurious Emissions

## 8.1 Test Procedure

The transmitter is terminated with a 50  $\Omega$  load and interfaced with a spectrum analyzer. Cable losses were accounted for in measurement. Two signal generators were used to produce interference signals. Two signals were injected on low end of band and two signals were injected on high end of band. Testing was performed from 30 MHz – 9 GHz.

Low end: Plots 1-7

480.0125 MHz – 5 kHz deviation, 1 kHz tone at -50 dBm 482.5625 MHz - 5 kHz deviation, 2.5 kHz tone at -50 dBm

High end: Plots 8-14

487.9375 MHz – 5 kHz deviation, 1 kHz tone at -50 dBm 489.95 MHz - 5 kHz deviation, 2.5 kHz tone at -50 dBm

#### 8.2 Test Data

## Plot 8-1: Intermodulated Spurious Emissions: In-Band Input Signals to Booster



Plot 8-2: Intermodulated Spurious Emissions: In-Band Input Signals through Booster



Plot 8-3: Intermodulated Spurious Emissions: 30 – 470 MHz



Plot 8-4: Intermodulated Spurious Emissions: 470 – 490 MHz



Plot 8-5: Intermodulated Spurious Emissions: 490 – 1000 MHz



Plot 8-6: Intermodulated Spurious Emissions: 1000 – 4000 MHz



Plot 8-7: Intermodulated Spurious Emissions: 4000 – 9000 MHz



Plot 8-8: Intermodulated Spurious Emissions: In-Band Input Signals to Booster



Plot 8-9: Intermodulated Spurious Emissions: In-Band Input Signals through Booster



Plot 8-10: Intermodulated Spurious Emissions: 30 – 480 MHz



Plot 8-11: Intermodulated Spurious Emissions: 480 – 500 MHz



Plot 8-12: Intermodulated Spurious Emissions: 500 – 1000 MHz



Plot 8-13: Intermodulated Spurious Emissions: 1000 – 4000 MHz



Plot 8-14: Intermodulated Spurious Emissions: 4000 – 9000 MHz



Table 8-1: Test Equipment for Testing Intermodulated Spurious Emissions

| RTL Asset # | Manufacturer                                                       | Model                                            | Part Type                          | Serial<br>Number | Calibration<br>Due |
|-------------|--------------------------------------------------------------------|--------------------------------------------------|------------------------------------|------------------|--------------------|
| 901215      | Hewlett<br>Packard                                                 | 8596EM                                           | EMC Analyzer<br>(9 kHz – 12.8 GHz) | 3826A00144       | 10/16/07           |
| 900352      | Werlatone                                                          | C1795                                            | Directional Coupler                | 4989             | 06/06/08           |
| 901157      | Marconi<br>Instruments                                             | 2022D                                            | Signal Generator                   | 119161/056       | N/A                |
| 900948      | Weinschel<br>Corp.                                                 | 47-10-43 Attenuator DC-18 GHz<br>10dB 50W        |                                    | BH1487           | 12/05/08           |
| 900917      | Hewlett<br>Packard                                                 | I 8648C I Signal Generator                       |                                    | 3537A01741       | 08/29/07           |
| 901396      | MCE<br>Weinschel                                                   | 1 48-40-34 1                                     |                                    | 93453            | 12/02/08           |
| 901139      | Weinschel<br>Corp.                                                 | 1 48-70-34                                       |                                    | BK5859           | 01/13/09           |
| 901057      | Hewlett Packard 3336B Synthesizer/Level Generator (100Hz - 20 MHz) |                                                  | 2514A02585                         | 12/19/07         |                    |
| 901118      | Hewlett<br>Packard                                                 | HP8901B Modulation Analyzer (150 kHz – 1300 MHz) |                                    | 2406A00178       | 07/24/07           |
| 901424      | Insulated Wire Inc.                                                | KPS-1503-<br>360-KPS                             | RF cable 36"                       | NA               | 12/12/07           |

### **Test Personnel:**

| Daniel Biggs  | Daniel Beggs | June 7, 2007  |
|---------------|--------------|---------------|
| Test Engineer | Signature    | Date Of Tests |

# 9 FCC Rules and Regulations Part 90 §90.210 and Part 2 §2.1053(a): Field Strength of Spurious Radiation

#### 9.1 Test Procedure

ANSI TIA-603-C-2004, section 2.2.12.

The EUT was placed on a floor-mounted turntable at a distance of 3 meters from the receiving antenna. The receiving antenna was varied between 1-4 meters to maximize emissions. The spurious emissions levels were measured and the device under test was replaced by a substitution antenna connected to a signal generator. This signal generator level was then corrected by subtracting the cable loss from the substitution antenna to the signal generator, and the gain of the antenna was further corrected to a half wave dipole.

The output was terminated with 50 ohm load.

#### 9.2 Test Data

#### 9.2.1 CFR 47 Part 90.210 Requirements

The worst-case emissions test data are shown.

The magnitude of emissions attenuated more than 20 dB below the FCC limit need not be recorded.

Limit: P(dBm) - (43 + 10xLOG P(W))

Table 9-1: Field Strength of Spurious Radiation: 480.0125 MHz

| Frequency<br>(MHz) | Meas<br>Level ( |      | _     | al Gen.<br>el (db) | Cable<br>Loss<br>(dB) | Loss Antenna Gain |      |       |       | Limit<br>(dBm) |       | rgin<br>B) |
|--------------------|-----------------|------|-------|--------------------|-----------------------|-------------------|------|-------|-------|----------------|-------|------------|
|                    | Н               | V    | Н     | ٧                  |                       | Н                 | V    | Н     | V     |                | Н     | V          |
| 960.0250           | 30.2            | 32.9 | -80.3 | -77.2              | 4.3                   | -1.0              | -1.5 | -85.6 | -83.0 | -13            | -72.6 | -70.0      |
| 1440.0375          | 30.2            | 33.8 | -79.1 | -75.1              | 5.1                   | 4.4               | 4.5  | -79.9 | -75.7 | -13            | -66.9 | -62.7      |
| 1920.0500          | 33.3            | 33.3 | -72.3 | -70.8              | 5.6                   | 5.0               | 5.1  | -73.0 | -71.3 | -13            | -60.0 | -58.3      |
| 2400.0625          | 33.0            | 31.6 | -74.4 | -76.4              | 6.2                   | 6.6               | 6.8  | -74.1 | -75.8 | -13            | -61.1 | -62.8      |
| 2880.0750          | 34.9            | 33.4 | -71.2 | -72.6              | 7.0                   | 7.1               | 7.3  | -71.2 | -72.4 | -13            | -58.2 | -59.4      |
| 3360.0875          | 34.6            | 33.7 | -69.5 | -70.2              | 7.8                   | 7.4               | 7.6  | -69.9 | -70.4 | -13            | -56.9 | -57.4      |
| 3840.1000          | 32.3            | 31.7 | -69.4 | -70.1              | 8.3                   | 7.3               | 7.4  | -70.4 | -71.0 | -13            | -57.4 | -58.0      |
| 4320.1125          | 31.5            | 31.0 | -65.1 | -65.8              | 8.8                   | 7.6               | 7.9  | -66.3 | -66.7 | -13            | -53.3 | -53.7      |
| 4800.1250          | 31.0            | 32.0 | -65.0 | -64.1              | 9.6                   | 7.5               | 7.9  | -67.2 | -65.8 | -13            | -54.2 | -52.8      |

<sup>\*</sup>This insertion loss corresponds to the cable connecting the RF Signal Generator to the ½ wave dipole antenna.

Table 9-2: Field Strength of Spurious Radiation: 484.9375 MHz

| Frequency<br>(MHz) |      | Measured<br>Level (dBuv) |       |       |     | Signal Gen.<br>Level (db)  Cable<br>Loss<br>(dB) |      | Antenna Gain<br>(dBd) |       | ERP<br>(dBm) |       | Limit<br>(dBm) |  | rgin<br>B) |
|--------------------|------|--------------------------|-------|-------|-----|--------------------------------------------------|------|-----------------------|-------|--------------|-------|----------------|--|------------|
|                    | Н    | V                        | Н     | V     |     | Н                                                | V    | Н                     | V     |              | Н     | ٧              |  |            |
| 969.8750           | 32.3 | 32.7                     | -78.3 | -77.5 | 4.3 | -1.0                                             | -1.5 | -83.6                 | -83.3 | -13          | -70.6 | -70.3          |  |            |
| 1454.8125          | 33.4 | 30.3                     | -75.9 | -78.6 | 5.1 | 4.4                                              | 4.6  | -76.7                 | -79.1 | -13          | -63.7 | -66.1          |  |            |
| 1939.7500          | 32.5 | 31.6                     | -73.1 | -72.7 | 5.7 | 5.0                                              | 5.1  | -73.8                 | -73.3 | -13          | -60.8 | -60.3          |  |            |
| 2424.6875          | 31.8 | 34.0                     | -75.0 | -73.2 | 6.2 | 6.1                                              | 6.9  | -75.2                 | -72.5 | -13          | -62.2 | -59.5          |  |            |
| 2909.6250          | 30.9 | 34.0                     | -73.7 | -71.1 | 7.1 | 7.1                                              | 7.3  | -73.8                 | -70.9 | -13          | -60.8 | -57.9          |  |            |
| 3394.5625          | 32.3 | 34.3                     | -72.3 | -70.9 | 7.7 | 7.4                                              | 7.6  | -72.6                 | -71.0 | -13          | -59.6 | -58.0          |  |            |
| 3879.5000          | 31.8 | 32.6                     | -69.2 | -68.8 | 8.5 | 7.2                                              | 7.3  | -70.6                 | -70.1 | -13          | -57.6 | -57.1          |  |            |
| 4364.4375          | 32.7 | 30.7                     | -63.0 | -66.8 | 9.0 | 7.7                                              | 7.9  | -64.4                 | -67.9 | -13          | -51.4 | -54.9          |  |            |
| 4849.3750          | 31.9 | 32.3                     | -66.0 | -64.8 | 9.5 | 7.6                                              | 7.9  | -68.0                 | -66.4 | -13          | -55.0 | -53.4          |  |            |

<sup>\*</sup>This insertion loss corresponds to the cable connecting the RF Signal Generator to the ½ wave dipole antenna.

Table 9-3: Field Strength of Spurious Radiation: 489.9500 MHz

| Frequency<br>(MHz) | Meas<br>Level ( |      |       | al Gen.<br>el (db) | Cable<br>Loss<br>(dB) |      | na Gain<br>3d) | EF<br>(dE |       | Limit<br>(dBm) |       | rgin<br>B) |
|--------------------|-----------------|------|-------|--------------------|-----------------------|------|----------------|-----------|-------|----------------|-------|------------|
|                    | Н               | V    | Н     | ٧                  |                       | Н    | ٧              | Н         | ٧     |                | Н     | ٧          |
| 979.9000           | 31.7            | 35.3 | -79.2 | -75.4              | 4.4                   | -1.0 | -1.5           | -84.6     | -81.3 | -13            | -71.6 | -68.3      |
| 1469.8500          | 31.9            | 34.7 | -77.4 | -73.9              | 5.1                   | 4.4  | 4.6            | -78.1     | -74.4 | -13            | -65.1 | -61.4      |
| 1959.8000          | 31.8            | 33.5 | -74.3 | -70.9              | 5.8                   | 4.9  | 5.1            | -75.3     | -71.6 | -13            | -62.3 | -58.6      |
| 2449.7500          | 30.8            | 31.8 | -75.9 | -75.2              | 6.3                   | 6.7  | 6.9            | -75.6     | -74.6 | -13            | -62.6 | -61.6      |
| 2939.7000          | 34.4            | 31.9 | -71.5 | -73.1              | 7.0                   | 7.2  | 7.4            | -71.4     | -72.7 | -13            | -58.4 | -59.7      |
| 3429.6500          | 32.9            | 34.4 | -71.2 | -70.8              | 7.8                   | 7.4  | 7.6            | -71.7     | -71.0 | -13            | -58.7 | -58.0      |
| 3919.6000          | 32.5            | 32.6 | -68.8 | -69.0              | 8.5                   | 7.1  | 7.3            | -70.3     | -70.3 | -13            | -57.3 | -57.3      |
| 4409.5500          | 32.4            | 31.9 | -64.3 | -65.0              | 9.1                   | 7.7  | 7.9            | -65.8     | -66.2 | -13            | -52.8 | -53.2      |
| 4899.5000          | 31.2            | 31.3 | -65.0 | -64.8              | 9.7                   | 7.5  | 8.0            | -67.3     | -66.5 | -13            | -54.3 | -53.5      |

<sup>\*</sup>This insertion loss corresponds to the cable connecting the RF Signal Generator to the ½ wave dipole antenna.

Table 9-4: Test Equipment for Testing Field Strength of Spurious Radiation

| RTL<br>Asset # | Manufacturer            | Model                  | Part Type                                        | Serial<br>Number | Calibration<br>Due |
|----------------|-------------------------|------------------------|--------------------------------------------------|------------------|--------------------|
| 901053         | Schaffner-<br>Chase     | CBL6112                | Antenna (25 MHz – 2 GHz)                         | 2648             | 11/1/07            |
| 901364         | MITEQ                   | JS4-01002600-<br>36-5P | Preamplifier (1 - 26.5 GHz)                      | 849863           | N/A                |
| 901215         | Hewlett<br>Packard      | 8596EM                 | Portable Spectrum Analyzer<br>(9 kHz – 12.8 GHz) | 3826A00144       | 10/16/07           |
| 900928         | Hewlett<br>Packard      | HP 83752A              | Synthesized Sweeper<br>(.01 – 20 GHz)            | 3610A00866       | 11/30/07           |
| 900772         | EMCO                    | 3161-02                | Horn Antennas (2 – 4 GHz)                        | 9504-1044        | 05/20/07           |
| 900321         | EMCO                    | 3161-03                | Horn Antennas (4 – 8 GHz)                        | 9508-1020        | 05/20/07           |
| 900814         | Electrometrics          | RGA-60                 | Double Ridge Horn Antenna<br>(1 – 18 GHz)        | 2310             | 03/30/09           |
| 901423         | Insulated<br>Wire, Inc. | KPS-1503-<br>2400-KPS  | RF cable, 20'                                    | NA               | 12/12/07           |
| 901424         | Insulated<br>Wire Inc.  | KPS-1503-360-<br>KPS   | RF cable 36"                                     | NA               | 12/12/07           |

## **Test Personnel:**

| Daniel Biggs  | Daniel Begg- | April 27, 2007 |
|---------------|--------------|----------------|
| Test Engineer | Signature    | Date Of Tests  |

Rhein Tech Laboratories, Inc. 360 Herndon Parkway Suite 1400 Herndon, VA 20170 http://www.rheintech.com Client: Airorlite Communications, Inc. Model: 50289 Bi-Directional Booster Standards: FCC Part 90 FCC ID: UT650289BA8480UL Report Number: 2007151B

# 10 FCC Rules and Regulations Part 90 §90.213 and Part 2 §2.1055: Frequency Stability

There are no frequency determining elements, hence the EUT is not subject to frequency stability requirements.

#### 11 Conclusion

The data in this measurement report shows that the **Airorlite Communications, Inc. Model 50289 Booster (Uplink), FCC ID: UT650289BA8480UL,** complies with all the applicable requirements of FCC Parts 90, 15 and 2.