Optimization Algorithms

최근 제출물 성적 100%

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what bias correction is doing.)

- $igotimes v_2 = 7.5$, $v_2^{corrected} = 10$
- $\bigcirc \ v_2=10, v_2^{corrected}=7.5$
- $\bigcirc \ v_2=10, v_2^{corrected}=10$
- $\bigcirc \ v_2 = 7.5, v_2^{corrected} = 7.5$
- ⊘ 맞습니다
- 6. Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

1/1점

- $\bigcirc \ \alpha = 0.95^t \alpha_0$
- $\bigcirc \ \alpha = \frac{1}{1+2*t}\alpha_0$
- $\bigcap \alpha = \frac{1}{\sqrt{t}}\alpha_0$
- ⊘ 맞습니다
- 7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

1/1점

- $\hfill \square$ Decreasing β will shift the red line slightly to the right.
- $\hfill \square$ Increasing β will shift the red line slightly to the right.
- ⊘ 맞습니다

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

- $\hfill \square$ Decreasing β will create more oscillation within the red line.
- ⊘ 맞습니다

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

- $\hfill \square$ Increasing β will create more oscillations within the red line.
- 8. Consider this figure:

1/1점

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)
- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent

9.	Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)	1/1점
	igstar Try tuning the learning rate $lpha$	
	◇ 맞습니다	
	Try initializing all the weights to zero	
	✓ Try using Adam	
	⊘ 맞습니다	
	✓ Try mini-batch gradient descent	
	◇ 맞습니다	
	✓ Try better random initialization for the weights	
	◇ 맞습니다	
10	Which of the following statements about Adam is False?	1/1점
	igcup The learning rate hyperparameter $lpha$ in Adam usually needs to be tuned.	
	O We usually use "default" values for the hyperparameters β_1,β_2 and ε in Adam ($\beta_1=0.9,\beta_2=0.999,\varepsilon=10^{-8}$)	
	Adam should be used with batch gradient computations, not with mini-batches.	
	Adam combines the advantages of RMSProp and momentum	
	⊘ 맞습니다	