HW Solution (Math111-01, July 13th, 2017)

In these problems, μ represents the population mean, \bar{x} represents the sample mean, σ represents the population standard deviation (sometimes approximated by the sample standard deviation), n is the sample size, μ_0 is the null value, and Z is a standard normal random variable.

Problem 4.24b

The hypothesis test is one-sided:

$$H_0$$
: $\mu = 32$
 H_A : $\mu < 32$.

The test statistic (z-score) is given by:

$$z - \text{score} = \frac{\text{point estimate} - \text{null value}}{\text{standard error}}$$

$$= \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

$$\approx \frac{30.69 - 32}{4.31 / \sqrt{36}}$$

$$\approx -1.82$$

The p-value is given by

$$p$$
 - value = $P(Z < -1.82)$
 $\approx .0344$.

Since the p-value is so small, one rejects the null hypothesis with the significance level of 0.10.

Problem 4.25b

The hypothesis test is two-sided:

$$H_0$$
: $\mu = 127$
 H_A : $\mu \neq 127$

The z-score is given as

$$z - \text{score} = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

$$\approx \frac{137.5 - 127}{39 / \sqrt{64}}$$

$$\approx 2.15$$

The p-value is given by

$$\begin{aligned} p - \text{value} &\approx 2P(Z > 2.15) \\ &\approx 2(.0158) \\ &= .0316. \end{aligned}$$

Since this is quite lower than the significance level of .05, we reject the null hypothesis that $\mu = 127$.

Problem 4.26a

The hypothesis test is two-sided:

$$H_0$$
: $\mu = 100$
 H_0 : $\mu \neq 100$.

The z-score is

$$z - \text{score} = \frac{118.2 - 100}{6.5 / \sqrt{36}}$$
$$\approx 16.8$$

The p – value is given by

$$p$$
 - value $\approx 2P(Z > 16.8)$
 $\approx 0.$

At any reasonable level of significance, the IQ of of mothers of gifted children is higher than the average IQ of the population at large.