Wymiar Hausdorffa zbioru granicznego IFS

Marta Sommer

23 września 2013

IFS

Definicja

Iterowanym układem funkcyjnym (IFS - iterated function system) nazywamy rodzinę kontrakcji $\{S_1,\ldots,S_m\}$ taką, że $S_i:D\longrightarrow D$, gdzie $D\subset\mathbb{R}^n$.

Trójkąt Sierpińskiego

$$S_1(x,y) = \left(\frac{1}{2}x, \frac{1}{2}y\right),$$

$$S_2(x,y) = \left(\frac{1}{2}x + \frac{1}{4}, \frac{1}{2}y + \frac{\sqrt{3}}{4}\right),$$

$$S_3(x,y) = \left(\frac{1}{2}x + \frac{1}{2}, \frac{1}{2}y\right).$$

Twierdzenie o istnieniu atraktora

Twierdzenie

Rozważmy IFS określony na zbiorze $D \subset \mathbb{R}^n$ kontrakcjami $\{S_1, \ldots, S_m\}$. Wtedy istnieje jednoznacznie wyznaczony atraktor F, tj. niepusty i zwarty zbiór taki, że:

$$F = \bigcup_{i=1}^m S_i(F).$$

Trójkąt Sierpińskiego

Twierdzenie o istnieniu atraktora cd.

Twierdzenie cd.

Zdefiniujmy dodatkowo przekształcenie S na klasie X niepustych i zwartych podzbiorów D jako:

$$\forall_{E \in X} \quad S(E) = \bigcup_{i=1}^{m} S_i(E)$$

oraz oznaczymy przez S^k k-tą iterację S tzn.

$$\left\{ \begin{array}{l} S^0(E)=E, \\ S^k(E)=S\left(S^{k-1}(E)\right) & dla \ k\geqslant 1, \end{array} \right.$$

wtedy:

$$\forall_{E \in X \ takiego, \ \dot{z}e \ \forall_{i=1,...,m}} \ S_i(E) \subset E \ F = \bigcap_{k=0}^{\infty} S^k(E).$$

Warunek zbioru otwartego

Definicja

Funkcje S_1, \ldots, S_m takie, że $S_i : D \longrightarrow D$, spełniają warunek zbioru otwartego (*open set condition*), jeśli istnieje niepusty, ograniczony i otwarty zbiór V taki, że:

$$\bigcup_{i=1}^m S_i(V) \subset V$$

oraz $S_i(V)$ są parami rozłączne dla $i=1,\ldots,m$.

Twierdzenie o wymiarze fraktali

Twierdzenie

Przypuśćmy, że podobieństwa S_1, \ldots, S_m określone na \mathbb{R}^n ze stałymi $c_i \in (0,1)$ dla $i=1,\ldots,m$, spełniają warunek zbioru otwartego.

Jeśli F jest atraktorem IFS $\{S_1, \ldots, S_m\}$ tzn.

$$F=\bigcup_{i=1}^m S_i(F),$$

wtedy $dim_H F = s$, gdzie s jest rozwiązaniem równania:

$$\sum_{i=1}^m c_i^s = 1.$$

Co więcej, dla tej wartości s, $0 < \mathcal{H}^s(F) < \infty$.

Wymiar Hausdorffa trójkąta Sierpińskiego

$$c_1 = c_2 = c_3 = \frac{1}{2}$$

$$\sum_{i=1}^{3} c_i^s = 1$$

$$c_1^s + c_2^s + c_3^s = 1$$

$$2^s = 3$$

$$s = \log_2 3 = 1.58496...$$

Wymiar Hausdorffa trójkąta Sierpińskiego jest więc równy $\log_2 3 \approx 1.58$.

Fraktal 1

Wymiar Hausdorffa atraktora

$$c_{1} = c_{3} = \frac{1}{4}, \ c_{2} = c_{4} = \frac{1}{2}$$

$$\sum_{i=1}^{4} c_{i}^{s} = 1$$

$$2 \cdot \left(\frac{1}{4}\right)^{s} + 2 \cdot \left(\frac{1}{2}\right)^{s} = 1$$

$$s = \log_{2} \frac{2}{-1 + \sqrt{3}} = 1.449984...$$

Wymiar Hausdorffa tak utworzonego fraktala jest więc równy $\log_2 \frac{2}{-1+\sqrt{3}} \approx 1.45$.

Fraktal 2

Wymiar Hausdorffa atraktora

$$c_1 = 0.3, \ c_2 = 0.4, \ c_3 = 0.5, \ c_4 = 0.3$$

$$\sum_{i=1}^{4} c_i^s = 1$$

$$0.4^s + 0.5^s + 2 \cdot 0.3^s = 1$$

Nie da się wyznaczyć *s* analitycznie. Z numerycznej metody bisekcji otrzymujemy, że:

$$s \simeq 1.428292002903$$
.

Wymiar Hausdorffa atraktora tego fraktala jest więc równy w przybliżeniu 1.43.

Dziękuję za uwagę