Implementierung der Cut & Count-Technik am Beispiel Steiner tree

Levin von Hollen, Tilman Beck

{stu127560-, stu127568-}@informatik.uni-kiel.de
Christian-Albrechts Universität Kiel

3. November 2016

Überblick

- Cut & Count
 - Allgemeines
- Cut & Count mit Steiner Tree
 - Cut
 - Count
- 3 Implementierung

Cut & Count-Technik

- Technik um connectivity-type Probleme mithilfe von Randomisierung zu lösen(Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michał Pilipczuk, Johan van Rooij, Jakub Onufry Wojtaszczyk)
- angewendet auf viele verschiedene Probleme (z.B. Longest Path, Steiner Tree, Feedback Vertex Set, uvm.)
- Randomisierung durch Isolation-Lemma
- als Ergebnis ein einseitiger Monte-Carlo-Algorithmus mit Laufzeit $c^{tw(G)}|V|^{\mathcal{O}(1)}$

Cut & Count-Technik

Theorem

There exist Monte-Carlo algorithms that given a tree decomposition of the (underlying undirected graph of the) input graph of width t solve the following problems:

- Steiner Tree in $3^t |V|^{\mathcal{O}(1)}$
- Feedback Vertex Set in $3^t |V|^{\mathcal{O}(1)}$
- . . .

The algorithms cannot give false positives and may give false negatives with probability at most 1/2.

Steiner Tree

Problem

Input: An undirected graph G = (V, E), a set of terminals $T \subseteq V$ and an integer k.

Question: Is there a set $X \subseteq V$ of cardinality k such that $T \subseteq X$ and G[X] is connected?

Cut (1)

- definiere Gewichtsfunktion $\omega: V \to \{1, \dots, N\}$
- sei \mathcal{R}_W die Menge aller Teilmengen von X aus V mit $T\subseteq X$, $\omega(X)=W$ und |X|=k
- sei $S_W = \{X \in \mathcal{R}_W | G[X] \text{ ist zusammenhängend} \}$
- $\cup_W S_W$ ist die Menge der Lösungen
- gibt es ein W für das die Menge nichtleer ist, so gibt der Algorithmus eine positive Antwort

Cut (2) - wozu ω ?

- Gewichtsfunktion $\omega: V \to \{1, \dots, N\}$
- ullet der Algorithmus (ohne ω) ist korrekt, sofern es **genau eine** oder **keine** Lösung gibt
- mithilfe des Isolation Lemma kann mit hoher Wahrscheinlichkeit eine große Lösungsmenge auf eine einzige reduziert werden

Isolation Lemma

Let $\mathcal{F}\subseteq 2^U$ be a set family over a universe U with $|\mathcal{F}|>0$. For each $u\in U$, choose a weight $\omega(u)\in 1,2,...,N$ uniformly and independently at random. Then

$$prob[\omega \text{ isolates } \mathcal{F}] \geq 1 - \frac{|U|}{N}$$

Cut (3)

- ullet einen beliebigen Terminalknoten $v \in \mathcal{T}$ als v_1 festlegen
- sei \mathcal{C}_W die Menge aller Subgraphen, die einen konsistenten Cut $(X,(X_1,X_2))$ bilden, wobei $X\in\mathcal{R}_W$ und $v_1\in X_1$

Lemma 3.3

Let G = (V, E) be a graph and let X be a subset of vertices such that $v_1 \in X \subseteq V$. The number of consistently cut subgraphs $(X, (X_1, X_2))$ such that $v_1 \in X_1$ is equal to $2^{cc(G[X])-1}$.

Count (1)

- ullet aus Lemma 3.3 ist bekannt: $|\mathcal{C}| = \sum_{X \in \mathcal{R}} 2^{cc(\mathcal{G}[X])-1}$
- wir legen W fest und ignorieren die Indices:

$$|\mathcal{C}| \equiv |\{X \in \mathcal{R}|cc(G[X]) = 1\}| = |\mathcal{S}|$$

Lemma 3.4

Let G, ω , C_W and S_W be as defined above. Then for every W, $|S_W| \equiv |C_W|$.

Einschub: Tree Decomposition (1)

Tree Decomposition

A tree decomposition of a graph G is a tree $\mathbb T$ in which each vertex $x\in\mathbb T$ has an assigned set of vertices $B_x\subseteq V$ (called a bag) such that $\cup_{x\in\mathbb T} B_x=V$ with the following properties:

- for any $uv \in E$, there exists an $x \in \mathbb{T}$ such that $u, v \in B_x$
- if $v \in B_x$ and $v \in B_y$, then $v \in B_z$ for all z on the path from x to y in \mathbb{T}

Kann in polynomieller Zeit berechnet werden (Beweis: Ton Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture Notes in Computer Science. Springer, 1994)

Einschub: Tree Decomposition (2)

Einschub: Nice Tree Decomposition (NTD)

Count (2)

- ullet | \mathcal{C}_W | modulo 2 kann mit dynamischen Programm berechnet werden
- für jeden Bag $x \in \mathbb{T}$, integers $0 \le i \le k, 0 \le w \le kN$ und Färbung $s \in \{0, 1_1, 1_2\}^{B_x}$ definiere:
 - $\mathcal{R}_{x}(i, w) = \{X \subseteq V_{x} | (T \cap V_{x}) \subseteq X \land |X| = i \land \omega(X) = w\}$
 - $C(i, w) = \{(X, (X_1, X_2)) | X \in \mathcal{R}_x(i, w) \land (X, (X_1, X_2)) \text{ is a consistently cut subgraph of } G_x \land (v_1 \in V_x \Rightarrow v_1 \in X_1\}$
 - $A_x(i, w, s) = |\{(X, (X_1, X_2)) \in C_x(i, w) | (s(v) = 1_j \Rightarrow v \in X_j) \land (s(v) = 0 \Rightarrow v \notin X\}|$

Count (3)

Färbung $s \in \{0, 1_1, 1_2\}^{B_x}$

- $s[v] = 0 \Rightarrow v \notin X$
- $s[v] = 1_1 \Rightarrow v \in X_1$
- $s[v] = 1_2 \Rightarrow v \in X_2$
- $A_x(i, w, s)$ zählt die Elemente $C_x(i, w)$, die entsprechend gefärbt sind
- für die Lösung nur $A_r(k, W, \emptyset) = |C_r(k, W)| = |C_W|$ interessant (für alle W)
- ausgehend von Wurzel-Knoten rekursiver Abstieg zu den Blatt-Knoten der NTD

Count (3)

Theorem (Lemma 3.5)

Given G = (V, E), $T \subseteq V$, an integer $k, \omega : V \to \{1, \dots, N\}$ and a nice tree decomposition \mathbb{T} , there exists an algorithm that can determine $|\mathcal{C}_W|$ modulo 2 for every $0 \leq W \leq kN$ in $3^t N^2 |V|^{\mathcal{O}(1)}$ (t is the treewidth of the NTD)

Implementierung

- Inorder-Traversierung der NTD
- Berechnung einer
 Datenmatrix basierend auf dynamischen Programm und Kind-Knoten
- Wurzel- und alle Blattknoten enthalten 2D Datenmatrix

Implementierung

- Entwicklung einer Umformung von $TD \rightarrow NTD$
- anpassen der Färbungs-Dimension mittels ternärer Kodierung
- Tests mit verschiedenen Input-Größen

Input	Т
(k=2,N=6, V =3)	0.XXX
(k=2,N=6, V =3)	0.XXX
(k=2,N=6, V =3)	0.XXX

dynamisches Programm

Berechnungen

- Leaf bag:
 - $A_x = (0, 0, \emptyset) = 1$
- Introduce vertex v:
 - $A_x = (i, w, s[v \to 0]) = [v \notin T]A_v(i, w, s)$
 - $A_x = (i, w, s[v \to 1_1]) = A_v(i-1, w-w(v), s)$
 - $A_x = (i, w, s[v \to 1_2]) = [v \neq v_1]A_y(i-1, w-w(v), s)$
- Introduce edge uv
 - $A_x(i, w, s) = [s(u) = 0 \lor s(v) = 0 \lor s(u) = s(v)]A_y(i, w, s)$
- Forget vertex v
 - $A_{\mathsf{x}}(i, w, s) = \sum_{\alpha \in 0, 1_1, 1_2} A_{\mathsf{x}}(i, w, s[v \to \alpha])$
- Join bag
 - $A_x(i, w, s) = \sum_{i_1+i_2=i+|s^{-1}(1_1,1_2)|\ w_1+w_2=w+w(s^{-1}(1_1,1_2))} A_y(i_1, w_1, s)A_z(i_2, w_2, s)$

Citation

An example of the \cite command to cite within the presentation:

This statement requires citation [Smith, 2012].

References

John Smith (2012)
Title of the publication

Journal Name 12(3), 45 – 678.

Fragen?