Meine Antwort zum erweiterten Wigner's Freund Gedankenexperiment

Jannis Naske

April 21, 2019

Abstract

In diesem Dokument schlage ich zwei mögliche Korrekturen zum erweiterten Wigner's Freund Gedankenexperiment von Renner und Frauchiger vor. Durch diese Verbesserungen wird der Widerspruch vernichtet, und alle drei Annahmen, (Q), (C) und (S), bleiben unverletzt.

Der erste Fehler

Im Artikel von Renner und Frauchiger wird folgendes Statement hergeleitet:

• Statement 1 by F_1 : "If I get t, I know that W_2 will measure plus"

Der Beweis, welcher benutzt wird, ist folgender(ich lasse in diesem Dokument die doppelten Symbole weg, da dies in diesem Fall redundante Information ist):

Nachdem F_1 t gemessen hat, setzt er den Spin für F_2 in die Superposition $\frac{1}{\sqrt{2}} |\downarrow\rangle + \frac{1}{\sqrt{2}} |\uparrow\rangle$. In der Basis $\left\{|+\rangle_{L_2}, |-\rangle_{L_2}\right\}$, mit $|+\rangle_{L_2} = \frac{1}{\sqrt{2}} |\downarrow\rangle + \frac{1}{\sqrt{2}} |\uparrow\rangle$, $|-\rangle_{L_2} = \frac{1}{\sqrt{2}} |\downarrow\rangle - \frac{1}{\sqrt{2}} |\uparrow\rangle$, ist diese Superposition dargestellt als $|+\rangle_{L_2}$, und W_2 wird somit $|+\rangle_{L_2}$ messen, und die Aussage folgt.

Jedoch wurde bei diesem Beweis weggelassen, dass die Superposition durch das Messen von W_1 verändert wird. Wenn W_1 nach Annahme $|-\rangle_{L_1} = \frac{1}{\sqrt{2}} |h\rangle + \frac{1}{\sqrt{2}} |t\rangle$ misst, geht die Superposition, nach dem Artikel, in $|-\rangle_{L_1} |\uparrow\rangle = \frac{1}{\sqrt{2}} |h\rangle |\uparrow\rangle - \frac{1}{\sqrt{2}} |t\rangle |\uparrow\rangle = \left(\frac{1}{\sqrt{2}} |h\rangle - \frac{1}{\sqrt{2}} |t\rangle\right) \left(|+\rangle_{L_2} - |-\rangle_{L_2}\right) = \frac{1}{2} |h\rangle |+\rangle_{L_2} - \frac{1}{2} |t\rangle |+\rangle_{L_2} - \frac{1}{2} |h\rangle |-\rangle_{L_2}$ über. Es ist also doch möglich, dass $W_2 |t\rangle |-\rangle_{L_2}$ misst, und Statement 1 stellt sich als falsch heraus.

Zum Schluss misst W_2 nach Annahme noch $|-\rangle_{L_2}$, und der Zustand geht in $\frac{1}{\sqrt{2}}|t\rangle\,|-\rangle-\frac{1}{\sqrt{2}}|h\rangle\,|-\rangle=\frac{1}{2}|t\rangle\,|\downarrow\rangle-\frac{1}{2}|t\rangle\,|\uparrow\rangle-\frac{1}{2}|h\rangle\,|\downarrow\rangle+\frac{1}{2}|h\rangle\,|\uparrow\rangle$ über.

Der zweite Fehler

Da das Statement 1 nicht mehr gilt, verschwindet die sich widersprechende Aussage aus dem ursprünglichen Bericht. Jedoch gibt es noch ein Problem. Oben

haben wir den Zustand $\frac{1}{2}|t\rangle|\downarrow\rangle - \frac{1}{2}|t\rangle|\uparrow\rangle - \frac{1}{2}|h\rangle|\downarrow\rangle + \frac{1}{2}|h\rangle|\uparrow\rangle$ als Schlusszustand hergeleitet, worauf die Korrektur des ersten Fehlers keinen Einfluss hat. Wenn aber in diesem Zustand in den Standardbasen gemessen wird, ist es möglich, den Zustand $|h\rangle|\uparrow\rangle$ zu messen. Dies scheint aber aus der Perspektive von F_1 nicht möglich zu sein; Wenn er h misst, wird er das Qubit, dass er dann an F_2 weiterleitet, in den Zustand $|\downarrow\rangle$ versetzen. Ist dies ein anderer Widerspruch? Um diese Frage zu beantworten, betrachten wir zuerst ein simpleres Problem, und wenden dann unsere Erkenntnis auf das Ursprüngliche Problem an.

Der Aufbau des Experiments ist in Bild 1.1 dargestellt. Q_1 und Q_2 stellen Quantenbits dar, der Freund, F, befindet sich mit den Bits in einer Isolation, die dann von Wigner, W, gemessen wird. Q_1 kann die Zustände $|t\rangle$, $|h\rangle$ annehmen, und Q_2 $|\downarrow\rangle$, $|\uparrow\rangle$. Es werden die gleichen Messregeln wie im originalen Artikel angewendet. Der Plan läuft wie folgt ab:

- Schritt 1: F setzt Q_1 in eine Superposition $\frac{1}{\sqrt{2}}|h\rangle + \frac{1}{\sqrt{2}}|t\rangle$.
- Schritt 2: F misst Q_1 . Ist das Ergebnis $|h\rangle$, setzt er Q_2 als $|\downarrow\rangle$, sonst setzt er Q_2 als $|\uparrow\rangle$.
- Schritt 3: W misst sein Labor in der Basis $\{|+\rangle, |-\rangle\}$, mit $|+\rangle = \frac{1}{\sqrt{2}} |h\rangle + \frac{1}{\sqrt{2}} |t\rangle$ und $|-\rangle = \frac{1}{\sqrt{2}} |h\rangle \frac{1}{\sqrt{2}} |t\rangle$.

Nach Schritt 2 hat das Labor von W den Zustand $\frac{1}{\sqrt{2}}\ket{h}\ket{\downarrow} + \frac{1}{\sqrt{2}}\ket{t}\ket{\uparrow} =$.

1.1: Situation des simplen Problems

1.2: Wie das Problem interpretiert wird