

Project 4

Nationwide Ventilator Allocation during COVID-19 Pandemic

Group 1:

Jacob Andreesen Miao Xu Jeff Chen Yiyi Wang

TABLE OF CONTENTS

0

O1 PROJECT VISION

O3 SOFTWARE & RESOURCES

02 TECHNICAL APPROACH

04 RESPONSIBILITIES & TIMELINE

01 VISION

The Problem:

The need for **ventilation services** during COVID-19 quickly overwhelmed many day-to-day operational capabilities. Many states in the U.S. have faced **shortage** of ventilators. This project aims to optimize the **Nationwide Ventilator Allocation** during the COVID-19 pandemic.

Goals:

- Minimize the unmet demand for resources by optimally distributing them across all states. Find the optimal allocation of ventilators among the U.S.
- Implement Deterministic/Simple Recourse Model in Stochastic
 Optimization
- Solving the Stochastic Optimization problem by Benders
 Decomposition

02

TECHNICAL APPROACH

Approach:

Notation **Definition**

Optimization Setup

Solving Deterministic and **SR**

Performance **Evaluation**

Notation: Sets

- $S = \{0, 1, ..., 50\}$, the index set of all states and Washington, D.C..
- $S^+=S \cup \{51\}$, where 51 is the index for the Strategic National Stockpile. We assume that once SNS transfers the ventilators to a state, these ventilators belong to the state.
- S_j = a subset of S, which includes the indexes of the states able to transfer resources to location j, $\forall j \in S^+$.
- $\mathcal{T} = \{1, 2, ..., T\}$, the set of days which the plan covers.

Notation: Data Variables

- a_{jj} = the initial total number of resources that are available at $j \in \mathcal{S}^+$, and owned by j.
- a_{ij} = the initial total number of resources that are available at $j \in \mathcal{S}^+$, and owned by $i \in \mathcal{S}_j$.
- d_{jt} = the demand for resources at $j \in \mathcal{S}$ on day $t \in \mathcal{T}$.
- U_{ji} = the maximum number of ventilators owned by $j \in \mathcal{S}^+$, and transferred to $i \in \mathcal{S}$.
- G_j = the minimum number of ventilators owned by state j which must be retained at location $j \in \mathcal{S}$.

Notation: Decision Variables

- x_{ij} = the number of ventilators shipped from location $i \in \mathcal{S}^+$ to location $j \in \mathcal{S}^+$ at time 0. The flow matrix is X, with x_{ij} as the element at (i, j).
- s_{jj} = the total number of ventilators that are available in $j \in \mathcal{S}^+$ after initial allocation, and owned by j.
- s_{ij} = the total number of ventilators that are available in $j \in \mathcal{S}^+$ after initial allocation, and owned by $i \in \mathcal{S}_j$.
- Δ_{jt} = unmet demand for ventilators at location $j \in \mathcal{S}$ on day $t \in \mathcal{T}$. The matrix representation is Δ .

t = 7 days T=10 Weeks

Deterministic Model: Point Forecast

Main Idea:

InvVen_mean from "Prediction" dataset as the deterministic demand

Unmet Demand

Policy Constraints

$$\operatorname{Min} \quad \sum_{j \in \mathcal{S}, t \in \mathcal{T}} \Delta_{jt} + \lambda \left(\sum_{j \in \mathcal{S}, i \in \mathcal{S}_j} s_{ij} \right)$$

s.t.
$$s_{jj} = a_{jj} - \sum_{i \in \mathcal{S}_j} x_{ji} + x_{51,j}, \forall j \in \mathcal{S}$$

$$s_{51,51} = a_{51,51} - \sum_{j \in \mathcal{S}} x_{51,j}$$

$$s_{ij} = a_{ij} + x_{ij}, \forall j \in \mathcal{S}, i \in \mathcal{S}_j$$

$$\Delta_{jt} \ge \max\{0, d_{jt} - s_{jj} - \sum s_{ij}\}, \forall j \in \mathcal{S}, t \in \mathcal{T}$$

Flow Balance

$$\begin{cases} s_{jj} \ge G_j, \forall j \in \mathcal{S}^+ \\ -a_{ij} \le x_{ij} \le U_{ij}, \forall i, j \in \mathcal{S}^+ \end{cases}$$

Simple Recourse Model: Forecast uncertainty

First Stage:

$$\operatorname{Min} \lambda \left(\sum_{j \in \mathcal{S}, i \in \mathcal{S}_{j}} s_{ij} \right) + \widehat{\mathbb{E}}[h(s, X, \widetilde{\omega})]$$

$$s_{jj} = a_{jj} - \sum_{i \in \mathcal{S}_{j}} x_{ji} + x_{51,j}, \forall j \in \mathcal{S}$$

$$s_{51,51} = a_{51,51} - \sum_{j \in \mathcal{S}} x_{51,j}$$

$$s_{ij} = a_{ij} + x_{ij}, \forall j \in \mathcal{S}, i \in \mathcal{S}_{j}$$

$$s_{jj} \ge G_{j}, \forall j \in \mathcal{S}^{+}$$

$$- a_{ij} \le x_{ij} \le U_{ij}, \forall i, j \in \mathcal{S}^{+}$$

Second Stage:

Forecast uncertainty

$$h(s, X, \omega) = \operatorname{Min} \sum_{j \in \mathcal{S}, t \in \mathcal{T}} \Delta_{jt}^{\omega}$$

$$s.t. \quad \Delta^{\omega} > \max\{0, d^{\omega} - s... - \sum_{s...} s...\} \quad \forall i$$

s.t.
$$\Delta_{jt}^{\omega} \ge \max\{0, d_{jt}^{\omega} - s_{jj} - \sum_{i \in \mathcal{S}_j} s_{ij}\}, \ \forall j \in \mathcal{S}, t \in \mathcal{T}$$

Benders Decomposition

Solve First Stage:

Lower bound

Solve Second Stage:

Upper bound and subgradient

Add Benders Cuts and resolve First Stage:

Optimal solution for 1 week

Resolve the problem:

Use the solution for last week as the initial stock of the new week

Results

Week	Point Forecasts	Forecast Uncertainty - SR
1	781	781
2	4421	3438
3	6427	4078
4	5949	4637
5	3855	3077
6	1706	923
7	0	0
8	0	0
9	0	0
10	0	0
Total	23139	16934

FUTURE WORK:

Option 1: Demand Forecast

Current Demand Distribution (Three Discrete Values)

Utilize Regression b/w Covariates to Construct Regression

Predictors:

- State Case Growth Rate (✓)
- Prior Unmet Ventilator Demand
 (✓)
- Vaccinated Population (✓)

Option 2: Algorithm

Run with SGD instead of
Benders and sample demand
according to low:0.25,
mean:0.5, high:0.25 demands
OR
All in one LP with SAA

03

SOFTWARE & RESOURCES

Supporting Software

Programming

Determninistic & Simple Recourse Modeling

Solvers

GLPK

| pandas

CBC

04

RESPONSIBILITIES & TIMELINE

Responsibilities

OUR PROCESS

THANK YOU

Fight On

