Computer Science 203 Programming Languages

Bindings, Procedures, Functions, Functional Programming, and the Lambda Calculus

Cormac Flanagan

University of California, Santa Cruz

CMPS203 Lambda Calculus

1

Plan

- Informal discussion of procedures and bindings
- Introduction to the lambda calculus
 - Syntax and operational semantics
 - Technicalities
 - Evaluation strategies
- Relationship to programming languages

Study of types and type systems (later)

Beyond IMP: Procedures and Bindings

Bindings

A binding associates a value or attribute with a name.

It can occur at various times:

- language definition or implementation time (e.g., defining the meaning of +),
- compile time or link time (e.g., constant inlining),
- run time (e.g., passing parameters).

with a trade-off between efficiency and flexibility

Static vs Dynamic Scoping

Should this program print 0 or 1?

Dynamic Scoping

- use most recent value of Y
 when print(X × Y) is reached
- based on chain of activations
- cute, concise, confusing code

Static Scoping

- use "nearest" binding of Y that encloses $print(X \times Y)$
- based on structure of the program
- easier to understand

```
declare Y;
procedure P(X);
  begin
     print(X * Y);
  end:
procedure Q(Y);
   begin
     P(Y);
   end;
begin
   y := 0;
   Q(1);
end;
```

Higher-Order Languages and Scoping

- A language is higher-order if procedures can be passed as arguments or returned as results.
- Scoping issues are important for free variables in procedure parameters and results.
- In part because of scoping difficulties, some higherorder languages are not fully general.
 (E.g., Pascal does not allow procedure results.)

The "downward funarg" Problem

```
declare Y;
procedure P();
  begin print(Y); end;
procedure Q(R);
  declare Y:
  begin Y := 0; R(); end;
begin Y := 1; Q(P); end;
```

Q should be given a closure for P (including Y).

The "upward funarg" Problem

```
procedure R();
  declare Y:
  procedure Q();
    begin print(Y); end;
  begin Y := 0; return Q; end;
begin T := R(); T(); end;
```

· R should return a closure for Q (including Y).

Parameter Passing

- There are many parameter-passing modes, such as:
 - By value: the formal is bound to a variable with an unused location, set to the actual's value.
 - By name (in the ALGOL sense): the actual is not evaluated until the point of use.
 - By reference: the formal is bound to the variable designated by the actual ("aliased").
 - In-only: by reference, but the procedure is not allowed to modify the parameter.
 - Out-only: on termination, the value of the formal is assigned to the actual.
 - By value-result: like by value, plus the copying of out-only.

Lambda Calculus and Functional Programming

Background

- Developed in 1930's by Alonzo Church.
- Subsequently studied (and still studied) by many people in logic and computer science.
- Considered the "testbed" for procedural and functional languages.
 - Simple.
 - Powerful.
 - Easy to extend with features of interest.

"Whatever the next 700 languages turn out to be, they will surely be variants of lambda calculus."

(Landin '66)

Syntax

 The lambda calculus has three kinds of expressions (terms):

```
e ::= x Variables

| \lambda x.e | Functions (abstraction)

| e_1 e_2 | Application
```

- $\lambda x.e$ is a one-argument function with body e.
- $e_1 e_2$ is a function application.
- Application associates to the left:

```
x y z means (x y) z
```

Abstraction extends to the right as far as possible:

```
\lambda x. \times \lambda y. \times y z means \lambda x.(x (\lambda y. ((x y) z)))
```

Examples of Lambda Expressions

The identity function:

$$I =_{def} \lambda x. x$$

 A function that given an argument y discards it and computes the identity function:

$$\lambda y. (\lambda x. x)$$

 A function that given a function f invokes it on the identity function:

$$\lambda f. f(\lambda x. x)$$

Scoping, Free and Bound Variables

- Scope of an identifier
 - the portion of a program where the identifier is accessible
- An abstraction λx . E binds the variable x in E:
 - x is the newly introduced variable.
 - E is the scope of x.
 - We say x is bound in λx . E.
- y a free variables of E
 - if it has occurrences that are not bound in E.
 - defined recursively as follows:

```
Free(x) = { x}

Free(E_1 E_2) = Free(E_1) \cup Free(E_2)

Free(\lambda x. E) = Free(E) - { x }
```

• Example: Free($\lambda x. \times (\lambda y. \times y. z)$) = { z }

Free and Bound Variables (Cont.)

- Just like in any language with statically nested scoping we have to worry about variable shadowing.
 - An occurrence of a variable might refer to different things in different contexts.
- E.g., in IMP with locals: let $x \leftarrow E$ in $x + (let x \leftarrow E'$ in x) + x
- In lambda calculus: $\lambda x. \times (\lambda x. \times) \times \uparrow \downarrow \downarrow \downarrow \downarrow$

Renaming Bound Variables

- λ -terms that can be obtained from one another by renaming bound variable occurrences are considered identical.
- Example: λx . x is identical to λy . y and to λz . z
- Convention: we will often try to rename bound variables so that they are all unique
 - e.g., write $\lambda x. \times (\lambda y.y) \times \text{instead of } \lambda x. \times (\lambda x.x) \times x$
- · This makes it easy to see the scope of bindings.

Substitution

- The substitution of E' for \times in E (written $[E'/\times]E$)
 - Step 1. Rename bound variables in E and E' so they are unique.
 - Step 2. Perform the textual substitution of E' for x in E.
- Example: $[y (\lambda x. x) / x] \lambda y. (\lambda x. x) y x$
 - After renaming: [y (λv . v)/x] λz . (λu . u) z x
 - After substitution: λz . (λu . u) z (y (λv . v))

The deBruijn Notation

- An alternative syntax avoids naming of bound variables (and the subsequent confusions).
- The deBruijn index of a variable occurrence is the number of lambda's that separate the occurrence from its binding lambda in the abstract syntax tree.
- The deBruijn notation replaces names of occurrences with their deBuijn index
- Examples:

-	λx.x	λ.0
_	$\lambda x. \lambda x. x$	λ.λ.Ο
-	λχ.λγ.γ	$\lambda.\lambda.0$
-	$(\lambda \times \times x) (\lambda \times \times x)$	$(\lambda.0\ 0)\ (\lambda.0\ 0)$
-	$\lambda x. (\lambda x. \lambda y.x) x$	$\lambda.(\lambda.\lambda.1)$ O

Identical terms have identical representations!

Informal Semantics

The evaluation of

$$(\lambda x. e) e'$$

- 1. binds x to e',
- 2. evaluates e with the new binding,
- 3. yields the result of this evaluation.
- Like "let x = e' in e".
- Example:

```
(\lambda f. f(f e)) g evaluates to g(g e)
```

Another View of Reduction

The application

becomes:

Terms can "grow" substantially through reduction!

Operational Semantics

• We formalize this semantics with the β -reduction rule:

$$(\lambda x. e) e' \rightarrow_{\beta} [e'/x]e$$

- A term $(\lambda x. e) e'$ is a β -redex.
- We write $\mathbf{e} \to_{\beta} \mathbf{e}'$ if $\mathbf{e} \beta$ -reduces to \mathbf{e}' in one step.
- We write $\mathbf{e} \to_{\beta}^* \mathbf{e}'$ if $\mathbf{e} \beta$ -reduces to \mathbf{e}' in many steps.

Examples of Evaluation

The identity function:

$$(\lambda x. x) E$$

$$\rightarrow [E / x] x$$

$$= E$$

Another example with the identity:

```
(\lambda f. f (\lambda x. x)) (\lambda x. x)
\rightarrow [\lambda x. x / f] f (\lambda x. x)
= [(\lambda x. x) / f] f (\lambda y. y)
= (\lambda x. x) (\lambda y. y)
\rightarrow [\lambda y. y / x] x
= \lambda y. y
```

Examples of Evaluation (Cont.)

A non-terminating evaluation:

Evaluation and Static Scoping

 The definition of substitution guarantees that evaluation respects static scoping:

(y remains free, i.e., defined externally)

If we forget to rename the bound y:

(y was free before but is bound now)

Nondeterministic Evaluation

We define a small-step reduction relation:

$$\begin{array}{c|c} \hline (\lambda x.\ e)\ e' \rightarrow [e'/x]e \\ \hline \\ e_1 \rightarrow e_1' \\ \hline e_1\ e_2 \rightarrow e_1'\ e_2 \\ \hline \\ e_1\ e_2 \rightarrow e_1\ e_2' \\ \hline \\ \lambda x.\ e \rightarrow \lambda x.\ e' \\ \hline \end{array}$$

- · This is a nondeterministic set of rules.
- · Three congruence rule saying where to evaluate
 - e.g. under λ

Contexts

Define contexts with one hole

$$H := \bullet \mid \lambda x. H \mid He \mid eH$$

- H[e] fills the hole in H with the expression e.
- Example:

$$H = \lambda x. x \bullet H[\lambda y.y] = \lambda x. x (\lambda y. y)$$

Filling the hole allows variable capture!

$$H = \lambda x. x \bullet$$
 $H[x] = \lambda x. x x$

Context-Based Version of Operational Semantics

Contexts simplify writing congruence rules.

- Reduction occurs at a β -redex that can be anywhere inside the expression.
- The above rules do not specify which redex must be reduced first.
- The second rule is called a congruence or structural rule.

The Order of Evaluation

- In a λ -term there could be many β -redexes (λx . E) E'
- (λy. (λx. x) y) E
 - We could reduce the inner or the outer application.
 - Which one should we pick?

Normal Forms

- A term without redexes is in normal form.
- A reduction sequence stops at a normal form.
- If e is in normal form and e \rightarrow^*_β e' then e is identical to e' .
- $K = \lambda x \cdot \lambda y \cdot x$ is in normal form.
- $K \lambda z$. z is not in normal form.

The Diamond Property

• A relation R has the diamond property if whenever $e R e_1$ and $e R e_2$ then there exists e' such that $e_1 R e'$ and $e_2 R e'$.

- $m{\cdot} \quad \rightarrow_{eta}$ does not have the diamond property.
 - For example, consider $(\lambda x. \times \times \times)(\lambda y. (\lambda x. \times) y)$.
- \rightarrow_{β} * has the diamond property.
 - The proof is quite technical.

The Diamond Property

- Languages defined by nondeterministic sets of rules are common:
 - Logic programming languages.
 - Expert systems.
 - Constraint satisfaction systems.
 - Make.
- It is useful to know whether such systems have the diamond property.

Equality

• Let $=_{\beta}$ be the reflexive, transitive and symmetric closure of \rightarrow_{β} :

$$=_{\beta}$$
 is $(\rightarrow_{\beta} \cup \leftarrow_{\beta})^*$

• That is, $e_1 = e_2$ if e_1 converts to e_2 via a sequence of forward and backward \rightarrow_{β} :

The Church-Rosser Theorem

• If e_1 = $_\beta$ e_2 then there exists e' such that $e_1 \to_\beta^* e'$ and $e_2 \to_\beta^* e'$:

 Proof (informal): apply the diamond property as many times as necessary.

Corollaries

- If $e_1 = e_2$ and e_1 and e_2 are normal forms then e_1 is identical to e_2 .
 - From CR we have $\exists e'. e_1 \rightarrow^*_{\beta} e'$ and $e_2 \rightarrow^*_{\beta} e'.$
 - Since e_1 and e_2 are normal forms they are identical to e'.
- If $e \to_{\beta}^* e_1$ and $e \to_{\beta}^* e_2$ and e_1 and e_2 are normal forms then e_1 is identical to e_2 .
 - Every term has a unique normal form (if it has a normal form at all).

Combinators

- A λ -term without free variables is a closed term or a combinator.
 - Some interesting examples:

```
I = \lambda x. x
K = \lambda x. \lambda y. x
S = \lambda f. \lambda g. \lambda x. f \times (g \times)
D = \lambda x. x \times x
Y = \lambda f. (\lambda x. f (x \times)) (\lambda x. f (x \times))
```

- Theorem: Any closed term is equivalent to one written with just 5, K, I.
 - Example: $D =_{\beta} S I I$

(we will discuss this form of equivalence)

Evaluation Strategies

- Church-Rosser theorem says that independently of the reduction strategy we will not find more than one normal form.
- Some reduction strategies might fail to find a normal form:
 - $(\lambda x. y) ((\lambda y. y y) (\lambda y. y y)) \rightarrow (\lambda x. y) ((\lambda y. y y) (\lambda y. y y)) \rightarrow ...$
 - $(\lambda x. y) ((\lambda y. y y) (\lambda y. y y)) \rightarrow y$
- · We will consider three strategies:
 - normal order
 - call-by-name
 - call-by-value

Normal-Order Reduction

- A redex is outermost if it is not contained inside another redex.
- Example:

$$S(K \times y)(K \cup v)$$

- Both K u and S $(K \times y)$ are outermost.
- Normal order always reduces the leftmost outermost redex first.
- Theorem: If e has a normal form e' then normal order reduction will reduce e to e'.

Why Not Normal Order? (Weak vs. Strong Reduction)

- In most (all?) programming languages, functions are considered values (fully evaluated).
- Thus, no reduction is done under lambdas.
 Reduction is "weak".
- Reduction under lambdas ("strong" reduction) can play a role in partial evaluation and other optimizations.

Call-by-Name

- Don't reduce under λ.
- Don't evaluate the argument to a function call.
- · Call-by-name is demand-driven
 - an expression is not evaluated unless needed.
- It is normalizing
 - it converges whenever normal order converges.
- Call-by-name does not necessarily evaluate to a normal form.

Call-by-Name

• Example:

```
(\lambda y. (\lambda x. x) y) ((\lambda u. u) (\lambda v. v))

\rightarrow_{\beta} (\lambda x. x) ((\lambda u. u) (\lambda v. v))

\rightarrow_{\beta} (\lambda u. u) (\lambda v. v)

\rightarrow_{\beta} \lambda v. v
```

Call-by-Value Evaluation

- Don't reduce under lambda.
- Do evaluate the argument to a function call.
- Most languages are primarily call-by-value.
- But CBV is not normalizing
 - (λx. I) (D D)
 - CBV may diverge even if normal order (or CBN) converges.

Considerations

- · Call-by-value:
 - Easy to implement.
 - Predictable evaluation order
 - well-behaved with respect to side-effects
- · Call-by-name:
 - More difficult to implement
 - must pass unevaluated exprs
 - Order of evaluation is less predictable
 - side-effects are problematic
 - Has a simpler theory than call-by-value.
 - Terminates more often than call-by-value.

CBV vs. CBN

- The debate about whether languages should be strict (CBV) or lazy (CBN) is decades old.
- This debate is confined to the functional programming community (where it is sometimes intense).
- · CBV appears to be winning at the moment.
- Outside the functional community CBN is rarely considered (though it arises in special cases).

Review

The lambda calculus is a calculus of functions:

$$e := x | \lambda x. e | e_1 e_2$$

• Several evaluation strategies exist based on β reduction:

(
$$\lambda x.e$$
) $e' \rightarrow_{\beta} [e'/x] e$

 How does this simple calculus relate to real programming languages?

Functional Programming

- The lambda calculus is a prototypical functional language with:
 - no side effects,
 - several evaluation strategies,
 - lots of functions,
 - nothing but functions
 (pure lambda calculus does not have any other data type).
- · How can we program with functions?
- How can we program with only functions?

Programming With Functions

- Functional programming style is a programming style that relies on lots of functions.
- A typical functional paradigm is using functions as arguments or results of other functions.
 - Higher-order programming.
- Some "impure" functional languages permit sideeffects (e.g., Lisp, Scheme, ML, OCaml):
 - references (pointers), arrays, exceptions.

Variables in Functional Languages

We can introduce new variables:

let
$$x = e_1$$
 in e_2

- x is bound by let.
- x is statically scoped in e_2 .
- This is much like $(\lambda x. e_2) e_1$.
- In a functional language, variables are never updated.
 - They are just names for expressions.
 - E.g., x is a name for the value denoted by e_1 in e_2 .
- This models the meaning of "let" in mathematics.

Referential Transparency

 In "pure" functional programs, we can reason equationally, by substitution:

let
$$x = e_1$$
 in $e_2 \equiv [e_1/x]e_2$

- In an imperative language a "side-effect" in e_1 might invalidate this equation.
- The behavior of a function in a "pure" functional language depends only on the actual arguments.
 - Just like a function in mathematics.
 - This makes it easier to understand and to reason about functional programs.

Expressiveness of Lambda Calculus

- The lambda calculus is a minimal system but can express:
 - data types (integers, booleans, pairs, lists, trees, etc.),
 - branching,
 - recursion.
- This is enough to encode Turing machines.
- Corollary: $e =_{\beta} e'$ is undecidable.
- Still, how do we encode all these constructs using only functions?
- Idea: encode the "behavior" of values and not their structure.

Encoding Booleans in Lambda Calculus

- What can we do with a boolean?
 - We can make a binary choice.
- A boolean is a function that given two choices selects one of them:
 - true = $_{def} \lambda x. \lambda y. x$
 - false = $def \lambda x$. λy . y
 - if E_1 then E_2 else $E_3 =_{def} E_1 E_2 E_3$
- · Example: "if true then u else v" is

$$(\lambda x. \lambda y. x) u v \rightarrow_{\beta} (\lambda y. u) v \rightarrow_{\beta} u$$

Encoding Pairs in Lambda Calculus

- What can we do with a pair?
 - We can select one of its elements.
- A pair is a function that given a boolean returns the left or the right element:

```
mkpair x y =_{def} \lambda b. b x y
fst p =<sub>def</sub> p true
snd p =<sub>def</sub> p false
```

· Example:

```
fst (mkpair xy) \rightarrow (mkpair xy) true \rightarrow true xy \rightarrow x
```

Encoding Natural Numbers in Lambda Calculus

- What can we do with a natural number?
 - We can iterate a number of times over some function.
- A natural number is a function that given an operation f and a starting value s, applies f to s a number of times:

```
0 =_{def} \lambda f. \lambda s. s
1 =_{def} \lambda f. \lambda s. f s
2 =_{def} \lambda f. \lambda s. f (f s)
and so on.
```

 These are numerals in unary representation, or Church numerals. There are others (e.g., Scott's).

Computing with Natural Numbers

The successor function

succ
$$n =_{def} \lambda f. \lambda s. f (n f s)$$

or succ $n =_{def} \lambda f. \lambda s. n f (f s)$

Addition

add
$$n_1 n_2 =_{def} n_1$$
 succ n_2

Multiplication

mult
$$n_1 n_2 =_{def} n_1 \pmod{n_2} 0$$

· Testing equality with 0

iszero n =
$$_{def}$$
 n (λb . false) true

Computing with Natural Numbers: Example

Computing with Natural Numbers: Example

What is the result of the application add 0?

```
(\lambda n_1. \lambda n_2. n_1 \text{ succ } n_2) 0 \rightarrow_{\beta} \lambda n_2. 0 \text{ succ } n_2 = \lambda n_2. (\lambda f. \lambda s. s) \text{ succ } n_2 \rightarrow_{\beta} \lambda n_2. n_2 = \lambda x. x
```

- By computing with functions we can express some optimizations.
 - But we need to reduce under lambdas.

Encoding Recursion

- Given a predicate P encode the function "find" such that "find P n" is the smallest natural number which is larger than n and satisfies P.
 - With find we can encode all recursion
- "find" satisfies the equation:

```
find p n = if p n then n else find p (succ n)
```

Define

```
F = \lambda f.\lambda p.\lambda n.(p n) n (f p (succ n))
```

We need a fixed point of F:

```
find = F find
```

or

find
$$p n = F find p n$$

The Y Fixed-Point Combinator

- Let $Y = \lambda F$. $(\lambda y.F(y y)) (\lambda x. F(x x))$
 - This is called the (or a) fixed-point combinator.
 - Verify that Y F is a fixed point of F Y F \rightarrow_{β} (λy .F (γy)) (λx . F (x x)) \rightarrow_{β} F((λy .F (γy))(λx . F (x x))) F(YF) \rightarrow_{β} F((λy .F (γy)) (λx . F (x x)))
 - Thus $Y F =_{\beta} F (Y F)$
- Given any function in lambda calculus we can compute its fixed-point (if it has one).
 - We may also let rec x. b = $Y(\lambda x. b)$
- Thus we can define "find" as the fixed-point of the function from the previous slide.
- The essence of recursion is the self-application "y y".

Expressiveness of Lambda Calculus

- Encodings are fun.
- But programming in pure lambda calculus is painful.
- Encodings complicate static analysis.
- We will add constants (0, 1, 2, ..., true, false, if-thenelse, etc.).
- And we will add types.

Lisp, Briefly

Lisp (from ca. 1960)

- Not Fortran or C (a chance to think differently).
- A fairly elegant, minimal language.
- · Representing many general themes in language design.
- By now, with many dialects and a wide influence.
- Emphasis on artificial intelligence and symbolic computation.

Syntax

- · Simple, regular syntax:
 - (+ (* 1 2 3 4) 5)
 - $(f \times y z)$
 - (cond (p1 e1) ... (pn en))
- · No explicit typing.

Atoms, S-expressions, Lists

- Atoms include numbers and indivisible strings.
- Symbolic expressions (s-expressions) are atoms and pairs.
- · Lists are built up from the atom nil and pairing.

Primitives

- Basic functions on numbers and pairs: cons car cdr eq atom
- Control: cond
- Declaration and evaluation: lambda quote eval
- Some functions with side-effects (for efficiency):
 rplaca rplacd set setq

Example:

```
(lambda (x) (cond ((atom x) x) (T (cons 'A x))))
```

Evaluation

- Interactive evaluation, often with an interpreter: read-eval-print loop.
- Also compilation (though with some historical complications).
- Function calls evaluate all their arguments.
- Special forms do not evaluate all their arguments.
 - E.g., (cond ...).
 - E.g., (quote A).

Some Contributions of Lisp

- Expression-oriented language.
 - Lots of parentheses!
- · Abstract view of memory:
 - Cells (rather than concrete addresses).
 - Garbage collection.
- Programs as data.
 - Higher-order functions.
 - "Metacircular" interpreters.

Reading

· Read Cardelli's paper "Type Systems".