Learning style based learner classifier using HistGradientBoosting

By

Maheswari R J

Department of Computer Science and Engineering 220701155 Guide

Dr. V.Auxilia Osvin Nancy., M.Tech, Ph.D.,

SUPERVISOR, Assistant Professor
Department of Computer
Science and Engineering

Introduction

PROBLEM STATEMENT SOLUTION AND THE IMPACT.

- E-learning often ignores individual learning preferences.
- One-size-fits-all content reduces learning effectiveness.
- Learner engagement drops without personalized delivery.

- Classification of learners into VARK styles
- Use a 15-question quiz to gather learner behavior data.
- Apply
 HistGradientBoost
 ingClassifier to
 classify learning
 styles.

- Categories based on VARK: Visual, Auditory, Reading/Writing, Kinesthetic.
- Deploy model via a Flask REST API for real-time use.
- Enable personalized content delivery in digital platforms.

Literature Survey

Understanding Learning Styles & Traditional Limitations

Fleming's VAK Model (2006):

Categorizes learners into Visual, Auditory, or Kinesthetic based on how they best absorb and retain information.

Limitations of Traditional Self-Assessments:

Often rely on subjective responses; results may be inconsistent and not reflect real-world behavior or evolving learning needs.

Role of Machine Learning (ML):

ML offers the ability to analyze large datasets and identify learning preferences through user interaction patterns, enabling dynamic, adaptive learning environments.

Rising Need for Personalization:

With the shift toward learner-centric platforms, static assessments fall short in supporting real-time personalized learning.

Literature Survey

Machine Learning Approaches to Learning Style Prediction

Decision Trees (Ali & Al-Khanjari, 2020):

Used for predicting learning styles based on quiz responses; easy to interpret, making them practical for educational applications.

Support Vector Machines – SVM (Xu et al., 2017):

Superior accuracy in classifying subtle differences in learner behavior; effective in high-dimensional spaces with complex patterns.

Ensemble Learning Methods (Zhang et al., 2020):

Techniques like HistGradientBoostingClassifier combine multiple models to improve prediction accuracy, especially with noisy or incomplete data.

Real-Time Adaptation (Gibbons et al., 2018):

ML-powered systems adapt to user feedback and performance over time, modifying content and delivery methods to suit changing learner needs.

Literature Survey

Advancements, Challenges & Future Scope

Multimodal Data Integration (Li et al., 2020):

Incorporates sensor data, eye-tracking, and behavioral logs to enhance prediction accuracy by understanding not just actions but cognitive and emotional states.

Current Challenges:

- Dynamic Preferences: Learner styles are not fixed and can evolve with time and exposure.
- Hybrid Learners: Many learners exhibit a mix of styles, making classification more complex.
- Dataset Diversity: Existing models often lack inclusiveness and fail to generalize across varied learner populations.

Future Directions:

- Refinement of algorithms to support hybrid and evolving styles
- Broader datasets for inclusivity
- Smarter adaptive systems for scalable, real-time personalization in diverse learning environments

Objectives

Identify learners' dominant learning style using ML:

Develop an intelligent system that leverages machine learning to determine whether a user prefers Visual, Auditory, Reading/Writing, or Kinesthetic learning methods, based on behavioral input.

Design a scalable, quiz-based data collection approach:

Create a structured, multiple-choice quiz rooted in the VARK model that effectively captures individual learning tendencies and can be used across large user bases.

Train a model to classify based on VARK learning preferences:

Use supervised machine learning techniques—specifically, the HistGradientBoostingClassifier—to analyze quiz responses and accurately categorize learning styles.

Enable integration with web/mobile e-learning platforms:

Build the system as a modular RESTful API that can be easily plugged into various digital learning platforms to support dynamic content delivery tailored to each learner.

System Architecture

Methodology

Quiz Design (VARK-Based):

Crafted a 15-question multiple-choice quiz using the VARK model to capture learning behavior traits (Visual, Auditory, Reading/Writing, Kinesthetic).

Dataset Acquisition:

Obtained a labeled dataset of 10,000 quiz responses from Kaggle, containing user answers and their corresponding learning style category.

Data Preprocessing:

Applied encoding techniques (label/one-hot), handled missing values, and normalized data where necessary to ensure consistency and readiness for model input.

Feature Selection & Engineering:

Selected key features from quiz responses that most effectively represent learning behavior. Performed feature encoding to convert categorical choices into numerical format.

Methodology

Model Selection – HistGradientBoostingClassifier:

Chose this model from Scikit-learn for its efficiency, ability to handle categorical features, and strong performance on structured, tabular datasets.

Model Training:

Trained the classifier using the preprocessed dataset; tuned hyperparameters for optimal performance using cross-validation.

Model Evaluation:

Evaluated using metrics like accuracy, precision, recall, and confusion matrix to validate classification performance across all learning styles.

Implementation

Data Collection:

Track user behavior (quiz responses, interaction patterns) in real-time.

Feature Engineering:

Convert continuous data into binned features using HistGradientBoosting (256 bins). Structured feature extraction from user interactions.

Model Training (HGB):

Use HistGradientBoostingClassifier to calculate gradients and build decision trees. Efficient histogram-based splitting for faster and scalable learning.

Real-Time Adaptation:

Dynamic learning style prediction based on continuous feedback.

Adjust content delivery (e.g., more visual/auditory tasks based on user style).

Platform Integration:

Seamlessly integrate with e-learning platforms via API or plugin for personalized learning experience.

Implementation

Results

Model Evaluation Summary

- Accuracy: 84% (superior to traditional classifiers)
- Precision/Recall: > 92% for all VAK categories
- F1-Score: 0.93 (balanced performance)
- ROC-AUC: > 0.90 (excellent class separation)

Confusion Matrix Highlights

- Minimal misclassification between Visual/Auditory/Kinesthetic.
- Kinesthetic learners showed the highest prediction confidence (96%).

Visualizations

- 1. Confusion Matrix Heatmap
 - Clear diagonal dominance (high true positives).
- 2.ROC Curves
 - All classes close to top-left (ideal classification).
- 3.Feature Importance Bar Chart
 - Top 3 influential quiz questions highlighted.

Results

Model C	omparison:
---------	------------

Model	Accuracy	Precision	Recall	F1 Score
Decision Tree	0.4808	0.4977	0.4808	0.4846
K-Nearest Neighbors	0.6346	0.5875	0.6346	0.6078
Support Vector Machine	0.7115	0.7413	0.7115	0.6899
Random Forest Classifier	0.6731	0.7051	0.6731	0.6531
HistGradientBoosting	0.7308	0.7486	0.7308	0.7378

Comparison with existing work

Aspect	Traditional System	Proposed System (Apex)
Personalization	× Not personalized	✓ Tailored to individual learning styles
Learning Style Support	× Not supported	✓ VAK/VARK-based classification using ML
Use of ML/AI	× No ML or Al involved	✓ Uses ML (HistGradientBoostingClassifier) + generative AI
Content Adaptation	X Static, same for everyone	✓ Dynamically adapts based on user progress & feedback
Feedback Utilization	X Ignored	✓ Used to improve recommendations and outcomes
Content Delivery	Limited formats (text-heavy)	✓ Multi-format (video, audio, text, interactive)
Learning Outcomes	Varies; depends on learner effort	✓ Improved understanding, retention & engagement

Conclusion and Future Work

The HistGradientBoostingClassifier model predicted learning styles (Visual, Auditory, Read/Write, Kinesthetic) with 81% accuracy.

Personalized learning content enhances engagement, motivation, and comprehension by tailoring to individual learning styles.

Model handles both categorical and numerical inputs and is robust against overfitting.

Key Insights:

- Machine learning reveals actionable insights for educational personalization.
- Successful application in predicting and adapting content to user learning behaviors.

Future Scope:

- Deep Learning and Neural Networks to capture complex behavioral patterns.
- Integration of real-time feedback and adaptive testing for dynamic content adjustment.
- Use of Natural Language Processing and Transfer Learning for deeper insights.
- Development of gamified interfaces, intelligent tutoring systems, and cross-platform learning environments.

Reference

- [1] Z. E. Ahmed, A. A. Hassan, and R. A. Saeed, Al-Enhanced Teaching Methods. IGI Global, 2024.
- [2] S. B. Dias, J. A. Diniz, and L. J. Hadjileontiadis, Towards an Intelligent Learning Management System Under Blended Learning: Trends, Profiles and Modeling Perspectives. Springer Science & Business Media, 2013.
- [3] J. Sheve, K. Allen, and V. Nieter, Understanding Learning Styles: Making a Difference for Diverse Learners. Teacher Created Materials, 2010.
- [4] D. A. Kolb, Experiential Learning: Experience as the Source of Learning and Development. FT Press, 2014.
- [5] N. D. Fleming, Teaching and Learning Styles: VARK Strategies. 2006.
- [6] Y. M. Sayed, Investigating the Learning Styles of First Year Students Using Honey and Mumford's Learning Styles Questionnaire. 1988*.

Reference

- [7] R. Dunn and K. J. Dunn, Teaching Students Through Their Individual Learning Styles: A Practical Approach. Prentice Hall, 1978.
- [8] E. P. Byrne, Learning & Teaching Styles in Engineering Education. 2008.
- [9] S. E. Nancekivell, X. Sun, S. A. Gelman, and P. Shah, "A Slippery Myth: How Learning Style Beliefs Shape Reasoning about Multimodal Instruction and Related Scientific Evidence," Cogn. Sci., vol. 45, no. 10, p. e13047, Oct. 2021.
- [10] (dr). Mita Banerjee, (dr). Sridipa Sinha, and P. Pandey, ARTIFICIAL INTELLIGENCE IN EDUCATION: REVOLUTIONIZING LEARNING AND TEACHING. RED UNICORN PUBLISHING, 2024.
- [11] M. Tung and Tran, Adaptive Learning Technologies for Higher Education. IGI Global, 2024.
- [12] P. J. Durlach and A. M. Lesgold, Adaptive Technologies for Training and Education. Cambridge University Press, 2015.

THANK YOU