Bayesian Parameter Estimation of State-Space Models with Intractable Likelihood

Bc. Tomáš Kala Supervisor: Ing. Kamil Dedecius, PhD.

June 20, 2019

State-Space Model (SSM)

$$x_t = \sin x_{t-1} + \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, 5^2)$$

 $y_t = 0.5x_t + \eta_t, \quad \eta_t \sim \mathcal{N}(0, 2^2)$

- Interest in $p(\mathbf{x}_{0:T} \mid \mathbf{y}_{1:T})$.
- Solvable via filtering.

State-Space Model (SSM)

$$\begin{aligned} x_t &= \sin x_{t-1} + \epsilon_t, & \epsilon_t \sim \mathcal{N}(0, \sigma_x^2) \\ y_t &= c x_t + \eta_t, & \eta_t \sim \mathcal{N}(0, \sigma_y^2) \\ \theta &= \left(c, \sigma_x^2, \sigma_y^2\right)^\mathsf{T} \end{aligned}$$

- Interest in $p(\theta, \mathbf{x}_{0:T} \mid \mathbf{y}_{1:T}) = p(\mathbf{x}_{0:T} \mid \theta, \mathbf{y}_{1:T})p(\theta \mid \mathbf{y}_{1:T})$.
- $p(y_{1:T} \mid \theta) = \int p(x_{0:T}, y_{1:T} \mid \theta) dx_{0:T}$ intractable in general.

Particle filter

- Use weighted particles $\left\{ \left(\mathbf{x}_{t}^{(i)}, w_{t}^{(i)} \right) : i = 1, \dots, N \right\}$ to approximate the filtering distribution $p(\mathbf{x}_{t} \mid \mathbf{y}_{1:t}, \boldsymbol{\theta})$.
- Simulate the particles $\mathbf{x}_t^{(i)} \sim f_t(\mathbf{x}_t \mid \mathbf{x}_{t-1}^{(i)})$ and weight them according to $\mathbf{w}_t^{(i)} = g_t(\mathbf{y}_t \mid \mathbf{x}_t^{(i)}, \boldsymbol{\theta})$.
- An unbiased likelihood estimator is

$$\widehat{p}(\mathbf{y}_{1:T} \mid \boldsymbol{\theta}) = \prod_{t=1}^{T} \frac{1}{N} \sum_{i=1}^{N} w_t^{(i)}.$$

■ Problem: the observation model $g_t(\mathbf{x}_t \mid \mathbf{y}_t, \boldsymbol{\theta})$ must be known and probabilistic.

Approximate Bayesian Computation (ABC)

- Still approximating the likelihood, different weight calculation.
- Simulate pseudo-observations u_t from $g_t(y_t \mid x_t, \theta)$.
- Determine $w_t^{(i)}$ based on the distance of u_t to the true y_t measured by a kernel function.
- A flexible and robust approach no longer requiring a probabilistic observation model.

Lotka-Volterra model

• A simplified system of interacting prey (\mathcal{X}_1) and predator (\mathcal{X}_2) species described by

$$\begin{split} \mathcal{R}_1: &\quad \mathcal{X}_1 \rightarrow 2\mathcal{X}_1, \\ \mathcal{R}_2: &\quad \mathcal{X}_1 + \mathcal{X}_2 \rightarrow 2\mathcal{X}_2, \\ \mathcal{R}_3: &\quad \mathcal{X}_2 \rightarrow \emptyset. \end{split}$$

- Assume $\mathbf{y}_t = \mathbf{x}_t = (x_{1,t}, x_{2,t})^\mathsf{T}$, Gaussian observation model and the unknown parameters to be $\theta = (c_1, c_2, c_3)^T$.
- Denoting the number of species i present at the beginning of \mathcal{R}_i by p_{ii} ,

$$c_i \prod_{i=1}^2 \begin{pmatrix} x_{j,t} \\ p_{ij} \end{pmatrix}$$

is the mean time to the next occurrence of \mathcal{R}_i at time t.

Lotka-Volterra model

Figure: Well-specified PF.

Figure: Well-specified ABC.

Figure: Misspecified PF.

Figure: Misspecified ABC.

- Unknown parameters $\theta = (c_1, c_2, c_3, c_4, c_7, c_8)^{\mathsf{T}}$, Gaussian observation model.
- $y_t = P_t + 2(P_2)_t$.

Figure: Well-specified PF.

Figure: Well-specified ABC.

Figure: Misspecified PF.

Figure: Misspecified ABC.

Figure: Well-specified PF.

Figure: Well-specified ABC.

Figure: Misspecified PF.

Figure: Misspecified ABC.

Summary

- Static parameters complicate inference.
- Intractable likelihood can be approximated through the particle filter, assuming a known observation density $g_t(\mathbf{y}_t \mid \mathbf{x}_t, \boldsymbol{\theta})$.
- When only a deterministic observation process is available, ABC methods can be used instead.
- Robust to outliers and model misspecification.
- Flexibility in kernel choice.

■ The model assumes that the dimer of a protein P, denoted P_2 , represses the transcription of its coding gene by binding to a regulatory region in the gene.

Gillespie algorithm

All operations for i = 1, ..., v, the number of reactions.

- 1. Set t = 0, initialize x_t .
- 2. While $t \leq T$:
 - 2.1 Calculate $h_i(\mathbf{x}_t, c_i) = c_i \prod_{j=1}^u \begin{pmatrix} x_{j,t} \\ p_{ij} \end{pmatrix}$.
 - 2.2 Sample $dt \sim \mathcal{E}xp(\sum_{i=1}^{v} h_i(\mathbf{x}_t, c_i))$.
 - 2.3 Sample *i* with probability $\propto h_i(\mathbf{x}_t, c_i)$.
 - 2.4 Set \mathbf{x}_{t+dt} by updating \mathbf{x}_t according to \mathcal{R}_i .
 - 2.5 t = t + dt.
- 3. Output x_t , t.

ABC filter

All operations for i = 1, ..., N.

- 1. Sample $\mathbf{x}_0^{(i)} \sim p(\mathbf{x}_0 \mid \boldsymbol{\theta})$, set $w_0^{(i)} = \frac{1}{N}$.
- 2. For t = 1, ..., T:
 - 2.1 Sample $\mathbf{x}_t^{(i)} \sim f_t(\mathbf{x}_t \mid \mathbf{x}_t^{(i)}, \boldsymbol{\theta})$.
 - 2.2 Simulate $\boldsymbol{u}_{t}^{(i)}$ from $g_{t}(\cdot \mid \boldsymbol{x}_{t}^{(i)}, \boldsymbol{\theta})$.
 - 2.3 Identify $u_t^{[\alpha]}$, the α th closest pseudo-observation to y_t .
 - 2.4 Set the kernel scale $\epsilon_t = \frac{\left|u_t^{[\alpha]} y_t\right|}{F^{-1}(\frac{1+\rho}{2})}$.
 - 2.5 Set the weights $w_t^{(i)} \propto \kappa(\frac{u_t^{(i)} y_t}{\epsilon_t}) w_{t-1}^{(i)}$.
 - 2.6 Resample $\mathbf{x}_t^{(i)}$ and reset $\mathbf{w}_t^{(i)}$.
- 3. Output $\{w_1^{(1)}, \dots, w_1^{(N)}, \dots, w_T^{(1)}, \dots, w_T^{(N)}\}$.

ABC Metropolis-Hastings

- 1. Initialize $\boldsymbol{\theta}^{(0)}$, estimate $\widehat{p}(\boldsymbol{y}_{1:T} \mid \boldsymbol{\theta}^{(0)})$.
- 2. For m = 1, ..., M:
 - 2.1 Propose $\theta' \sim q(\cdot \mid \theta^{(m-1)})$.
 - 2.2 Estimate $\widehat{p}(\mathbf{y}_{1:T} \mid \boldsymbol{\theta}')$.
 - 2.3 Calculate the acceptance ratio

$$\alpha = \min \left\{ 1, \frac{\widehat{p}(\mathbf{y}_{1:T} \mid \boldsymbol{\theta}') \pi(\boldsymbol{\theta}')}{\widehat{p}(\mathbf{y}_{1:T} \mid \boldsymbol{\theta}^{(m-1)}) \pi(\boldsymbol{\theta}^{(m-1)})} \frac{q(\boldsymbol{\theta}^{(m-1)} \mid \boldsymbol{\theta}')}{q(\boldsymbol{\theta}' \mid \boldsymbol{\theta}^{(m-1)})} \right\}$$

- 2.4 With probability α , set $\theta^{(m)} = \theta'$. Otherwise, set $\theta^{(m)} = \theta^{(m-1)}$.
- 3. Output $\{\boldsymbol{\theta}^{(1)}, \dots, \boldsymbol{\theta}^{(M)}\}$.