

Understanding Computer Storage & Big Data

Dhavide Aruliah
Director of Training, Anaconda

What is "Big Data"?

"Data > one machine"

Storage Units: Bytes, Kilobytes, Megabytes, ...

watt	W	
Kilowatt	KW	$10^3~W$
Megawatt	MW	$10^6~W$
Gigawatt	GW	$10^9~W$
Terawatt	TW	$10^{12}~W$

Byte	В	2^3 bits
Kilobyte	KB	2 ¹⁰ Bytes
Megabyte	MB	2 ²⁰ Bytes
Gigabyte	GB	2 ³⁰ Bytes
Terabyte	TB	2 ⁴⁰ Bytes

- Conventional units: factors of 1000
 - Kilo \rightarrow Mega \rightarrow Giga \rightarrow Tera \rightarrow \cdots
- Binary computers: base 2:
 - Binary digit (bit)
 - Byte: 2^3 bits = 8 bits
 - $10^3 = 1000 \mapsto 2^{10} = 1024$

Hard disks

• Hard storage: hard disks (permanent, big, **slow**)

Random Access Memory (RAM)

Soft storage: RAM (temporary, small, fast)

Time Scales of Storage Technologies

Storage medium	Access time	
RAM	120 ns	
Solid-state disk	50-150 µs	
Rotational disk	1-10 ms	
Internet (SF to NY)	40 ms	

Storage medium	Rescaled	
RAM	1 s	
Solid-state disk	7-21 min	
Rotational disk	2.5 hr - 1 day	
Internet (SF to NY)	3.9 days	

Big Data in Practical Terms

- RAM: **fast** (ns-µs)
- Hard disk: **slow** (µs-ms)
- I/O (input/output) is punitive!

Querying Python interpreter's Memory Usage

```
In [1]: import psutil, os
In [2]: def memory_footprint():
    ...: '''Returns memory (in MB) being used by Python process'''
    ...: mem = psutil.Process(os.getpid()).memory_info().rss
    ...: return (mem / 1024 ** 2)
```


Allocating Memory for an Array

```
In [3]: import numpy as np
In [4]: before = memory_footprint()
In [5]: N = (1024 ** 2) // 8 # Number of floats that fill 1 MB
In [6]: x = np.random.randn(50*N) # Random array filling 50 MB
In [7]: after = memory_footprint()
In [8]: print('Memory before: {} MB'.format(before))
Memory before: 45.68359375 MB
In [9]: print('Memory after: {} MB'.format(after))
Memory after: 95.765625 MB
```


Allocating Memory for a Computation

Querying Array Memory Usage

```
In [14]: x.nbytes # memory footprint in bytes (B)
Out[14]: 52428800

In [15]: x.nbytes // (1024**2) # memory footprint in megabytes (MB)
Out[15]: 50
```


Querying DataFrame Memory Usage

```
In [16]: df = pd.DataFrame(x)

In [17]: df.memory_usage(index=False)
Out[17]:
0     52428800
dtype: int64

In [18]: df.memory_usage(index=False) // (1024**2)
Out[18]:
0     50
dtype: int64
```


Let's practice!

Thinking about Data in Chunks

Dhavide Aruliah
Director of Training, Anaconda

Using pd.read csv with chunksize

Examining a chunk

```
In [5]: chunk.shape
Out[5]: (49999, 14)
In [6]: chunk.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 49999 entries, 150000 to 199998
Data columns (total 14 columns):
         49999 non-null object
medallion
hack license 49999 non-null object
vendor id 49999 non-null object
rate code 49999 non-null int64
store and fwd flag
                   162 non-null object
pickup datetime
                   49999 non-null object
dropoff_datetime
                   49999 non-null object
                 49999 non-null int64
passenger count
                49999 non-null int64
trip time in secs
                49999 non-null float64
trip distance
pickup longitude 49999 non-null float64
pickup latitude 49999 non-null float64
dropoff longitude 49999 non-null float64
dropoff latitude
                   49999 non-null float64
dtypes: float64(5), int64(3), object(6)
memory usage: 5.3+ MB
```

Filtering a chunk

```
In [7]: is_long_trip = (chunk.trip_time_in_secs > 1200)
In [8]: chunk.loc[is_long_trip].shape
Out[8]: (5565, 14)
```

	passenger_count	trip_time_in_secs	trip_distance
167	1	300	2.1
168	3	2100	13.51
169	1	420	1.56
170	3	120	0.67
171	4	960	3.34
172	2	1140	4.13
173	5	300	2.19
174	1	1620	10.1
175	1	120	0.55
176	1	1440	10.63
177	1	120	0.47
178	1	1320	6.82
179	1	1500	5.32
180	1	420	1.71
181	3	960	4.72
182	6	1020	4.77
183	1	600	1.73
184	1	1020	7.29
185	3	1260	11.17

	passenger_count	trip_time_in_secs	trip_distance
168	3	2100	13.51
174	1	1620	10.1
176	1	1440	10.63
178	1	1320	6.82
179	1	1500	5.32
185	3	1260	11.17

Chunking & filtering together

```
In [9]: def filter_is_long_trip(data):
    ...: "Returns DataFrame filtering trips longer than 20 minutes"
    ...: is_long_trip = (data.trip_time_in_secs > 1200)
    ...: return data.loc[is_long_trip]

In [10]: chunks = []

In [11]: for chunk in pd.read_csv(filename, chunksize=1000):
    ...: chunks.append(filter_is_long_trip(chunk))

In [12]: chunks = [filter_is_long_trip(chunk)
    ...: for chunk in pd.read_csv(filename,
    ...: chunksize=1000) ]
```


Using pd.concat()

```
In [13]: len(chunks)
Out[13]: 200

In [14]: lengths = [len(chunk) for chunk in chunks]

In [15]: lengths[-5:]  # each has ~100 rows
Out[15]: [115, 147, 137, 109, 119]

In [16]: long_trips_df = pd.concat(chunks)

In [17]: long_trips_df.shape
Out[17]: (21661, 14)
```


Plotting the filtered results

Let's practice!

Managing Data with Generators

Dhavide Aruliah
Director of Training, Anaconda

Filtering in a List Comprehension

Filtering & Summing with Generators

Examining Consumed Generators

Reading Many Files

```
In [10]: template = 'yellow tripdata 2015-{:02d}.csv'
In [11]: filenames = (template.format(k) for k in range(1,13)) # generator
In [12]: for fname in filenames:
            print(fname) # Examine contents
yellow tripdata 2015-01.csv
yellow tripdata 2015-02.csv
yellow tripdata 2015-03.csv
yellow tripdata 2015-04.csv
yellow tripdata 2015-05.csv
yellow tripdata 2015-06.csv
yellow tripdata 2015-07.csv
yellow tripdata 2015-08.csv
yellow tripdata 2015-09.csv
yellow tripdata 2015-10.csv
yellow tripdata 2015-11.csv
yellow tripdata 2015-12.csv
```


Examining a Sample DataFrame

```
In [16]: df = pd.read csv('yellow tripdata 2015-12.csv', parse dates=[1, 2])
In [17]: df.info() # columns deleted from output
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 71634 entries, 0 to 71633
Data columns (total 19 columns):
VendorID
                        71634 non-null int64
tpep_pickup_datetime 71634 non-null datetime64[ns]
tpep dropoff datetime 71634 non-null datetime64[ns]
                 71634 non-null int64
passenger count
dtypes: datetime64[ns](2), float64(12), int64(4), object(1)
memory usage: 10.4+ MB
In [18]: def count long trips(df):
             df['duration'] = (df.tpep dropoff datetime -
                                df.tpep pickup datetime).dt.seconds
            is long trip = df.duration > 1200
             result dict = {'n long':[sum(is long trip)],
                            'n total':[len(df)]}
    . . . :
            return pd.DataFrame (result dict)
    . . . .
```


Aggregating with Generators

Computing the Fraction of Long Trips

```
In [23]: print(annual_totals)
    n_long    n_total
0  172617  851390

In [24]: fraction = annual_totals['n_long'] / annual_totals['n_total']

In [25]: print(fraction)
0  0.202747
dtype: float64
```


Let's practice!

Delaying Computation with Dask

Dhavide Aruliah
Director of Training, Anaconda

Composing functions

```
In [1]: from math import sqrt
In [2]: def f(z):
   \dots: return sqrt(z + 4)
In [3]: def g(y):
   ...: return y - 3
In [4]: def h(x):
   ...: return x ** 2
In [5]: x = 4
In [6]: y = h(x)
In [7]: z = g(y)
In [8]: w = f(z)
In [9]: print(w) # final result
4.123105625617661
In [10]: print(f(g(h(x)))) # equivalent to before
4.123105625617661
```


Deferring Computation with delayed

```
In [11]: from dask import delayed
In [12]: y = delayed(h)(x)
In [13]: z = delayed(g)(y)
In [14]: w = delayed(f)(z)
In [15]: print(w)
Delayed('f-5f9307e5-eb43-4304-877f-1df5c583c11c')
In [16]: type(w) # a dask Delayed object
Out[16]: dask.delayed.Delayed
In [17]: w.compute() # computation occurs *now*
Out[17]: 4.123105625617661
```


Visualizing a Task Graph

In [18]: w.visualize()

Renaming Decorated Functions

```
In [19]: f = delayed(f)
In [20]: g = delayed(g)
In [21]: h = delayed(h)
In [22]: w = f(g(h(4))
In [23]: type(w) # a dask Delayed object
Out[23]: dask.delayed.Delayed
In [24]: w.compute() # computation occurs *now*
Out[24]: 4.123105625617661
```


Using Decorator @-Notation

Deferring Computation with Loops

```
In [28]: @delayed
    ...: def increment(x):
    ...: return x + 1

In [29]: @delayed
    ...: def double(x):
    ...: return 2 * x

In [30]: @delayed
    ...: def add(x, y):
    ...: return x + y
```

```
In [35]: total
Out[35]: Delayed('add-c6803f9e890c95cec8e2e3dd3c62b384')

In [36]: output
Out[36]:
[Delayed('add-6a624d8b-8ddb-44fc-b0f0-0957064f54b7'),
    Delayed('add-9e779958-f3a0-48c7-a558-ce47fc9899f6'),
    Delayed('add-f3552c6f-b09d-4679-a770-a7372e2c278b'),
    Delayed('add-ce05d7e9-42ec-4249-9fd3-61989d9a9f7d'),
    Delayed('add-dd950ec2-c17d-4e62-a267-1dabe2101bc4')]

In [37]: total.visualize()
```


Visualizing the task graph

Aggregating with delayed Functions

Computing Fraction of Long Trips with delayed Functions

Let's practice!