Ionization Constant (K_a)

K_a – ionization constant for a weak acid

$$HC_2H_3O_{2(aq)} <===> H^+_{(aq)} + C_2H_3O_2^-_{(aq)}$$

What is the formula for K_a?

$$K_a = [H^+_{(aq)}][C_2H_3O_2^-_{(aq)}]$$

 $[HC_2H_3O_{2(aq)}]$

Ionization Constant (K_a)

How do you suppose the K_a values of strong acids compare with weak acids?

1.Strong

- K_a values are very large
- all available H⁺ ions are released into solution

2.Weak

- K_a values are small (< 1.00)
- some H⁺ ions are released into solution

$$pK_a$$

How are K_a and pK_a related?

$$pK_a = - log K_a$$

Example #1

a) Calculate pK_a for acetic acid given $K_a = 1.8 \times 10^{-5}$

$$pK_a = -log K_a$$

 $pK_a = -log (1.8 \times 10^{-5})$
 $pK_a = 4.7$

b) Calculate K_a for ammonium ion given pKa = 9.24.

$$pK_a = -log K_a$$
 $K_a = 10^{-pK_a}$
 $K_a = 10^{-(9.24)}$
 $K_a = 5.75 \times 10^{-10}$

Example #2

Hypoiodous acid has a pK_a of 10.6. The pK_a of hypobromous acid is 8.64. What is the chemical formula for each substance? Which is the weaker acid?

Hypoiodous acid =
$$HIO_{(aq)}$$

pK_a = 10.6

Hypobromous acid = $HBrO_{(aq)}$ $pK_a = 8.64$ Smaller $pK_a = stronger$ acid

Check out the ka...

$$K_a = 10^{-pK_a}$$
 $K_a = 10^{-(10.6)}$
 $K_a = 2.51 \times 10^{-11}$
Smaller value

$$K_a = 10^{-pK_a}$$
 $K_a = 10^{-(8.64)}$
 $K_a = 2.00 \times 10^{-9}$

Calculations using pH

Two types of calculations:

1.Calculate K_a and pK_a from the pH of its solution given initial concentration.

2.Calculate pH or [H⁺] of a solution given the initial concentration and K_a or pK_a.

Example #3

Formic acid, HCHO₂ is a monoprotic acid. In a 0.100 M solution of formic acid, the pH is 2.38 at 25°C. Calculate the K_a and pK_a for formic acid at this temperature.

EXAMPLE #3: Formic acid, $HCHO_2$ is a monoprotic acid. In a 0.100 M solution of formic acid, the pH is 2.38 at 25°C. Calculate the K_a and pK_a for formic acid at this temperature.

$$\begin{array}{c} \text{HCHO}_{2(\text{aq})} <===> \begin{array}{c} \text{H}^{+}_{(\text{aq})} + \text{CHO}_{2^{-}(\text{aq})} \\ \text{I} & 0.100\text{M} & 0 & 0 \\ \text{C} & -x & +x & +x \\ \text{E} & 0.0958 & 0.004169 & 0.004169 \\ & [\text{H}^{+}] = 10^{-\text{pH}} \\ \text{[H}^{+}] = 10^{-(2.38)} \\ \text{[H}^{+}] = 0.004168694\text{M} \\ \Rightarrow \text{ at equilibrium, } x = [\text{H}^{+}] = [\text{CHO}_{2}] = 0.004168694\text{M} \\ \Rightarrow 0.100 - x = 0.100 - (0.004168694) = 0.0958343 \\ \text{K}_{a} = \underbrace{[\text{H}^{+}_{(\text{aq})}][\text{CHO}_{2^{-}_{(\text{aq})}}]}_{\text{[HCHO}_{2(\text{aq})}]} & \text{pK}_{a} = -\text{log } (0.000181425) \\ \text{K}_{a} = \underbrace{[0.004169][0.004169]}_{\text{[0.0958]}} & \text{pK}_{a} = 3.74 \\ & [0.0958] \\ \text{K}_{a} = 0.000181425 \\ & \vdots \text{ k}_{a} = 1.81 \times 10^{-4} \text{ and pK}_{a} = 3.74 \\ \end{array}$$

Example #4

A 0.100 M solution of the weak acid HF was found to have an $[H_3O+] = 0.0080$ M at equilibrium. Calculate the K_a and pK_a for HF.

Example #4: A 0.100 M solution of the weak acid HF was found to have an $[H_3O+] = 0.0080$ M at equilibrium. Calculate the K_a and pK_a for HF.

$$HF_{(aq)} < = = > H^{+}_{(aq)} + F^{-}_{(aq)}$$

$$I \quad 0.100M \quad 0 \quad 0$$

$$C \quad -x \quad +x \quad +x$$

$$E \quad 0.092 \quad 0.008 \quad 0.008$$

$$K_{a} = [H^{+}_{(aq)}][F^{-}_{(aq)}] \quad pK_{a} = -log K_{a}$$

$$[HF_{(aq)}] \quad pK_{a} = 3.1576$$

$$[0.092]$$

$$K_{a} = 0.000695652$$

.: HF has a k_a of 7.0×10^{-4} and a pK_a of 3.2

Example #5

A student planned an experiment that would use 0.100 M acetic acid. Calculate the values of [H $^{+}$] and pH. $K_a = 1.8 \times 10^{-5}$

Example #5: A student planned an experiment that would use 0.100 M acetic acid. Calculate the values of [H $^+$] and pH. $K_a = 1.8 \times 10^{-5}$

Example #5 continued: A student planned an experiment that would use 0.100 M acetic acid. Calculate the values of [H $^+$] and pH. $K_a = 1.8 \times 10^{-5}$

$$HC_2H_3O_{2(aq)} <===> H^+_{(aq)} + C_2H_3O_{2(aq)}^ I = 0.100M = 0 = 0$$
 $C = -x = +x = +x = +x = x$
 $X = 0.00134 = [H^+]$
 $PH = -log [H^+]$
 $PH = -log [0.00134]$
 $PH = 2.87$

$$:: [H^+] = 1.34 \times 10^{-3} M$$
 and pH = 2.87

Example #6

What pH results when 0.25 mol of acetic acid is dissolved in enough water to make 1.00 L of solution? pKa = 4.74

Example #6: What pH results when 0.25 mol of acetic acid is dissolved in enough water to make 1.00 L of solution? pKa = 4.74

Example #6: What pH results when 0.25 mol of acetic acid is dissolved in enough water to make 1.00 L of solution? pKa = 4.74

$$HC_2H_3O_{2(aq)}$$
 <===> $H^+_{(aq)}$ + $C_2H_3O_{2^-(aq)}$
I 0.25M
O 0
C -x
E 0.25-x

 $x = [H^+] = 0.00213$
 $pH = -log [H^+]$
 $pH = -log [0.00213]$
 $pH = 2.67$

.: the pH is 2.67

Polyprotic Acids

 acids which may release multiple H⁺ ions into solution (i.e. H₂SO₄)

Polyprotic acids release H+ ions into solution one step at a time.

$$H_2SO_4 \rightarrow H^+ + HSO_4^-$$

 $HSO_4^- <===> H^+ + SO_4^{2-}$

Each H⁺ released is associated with a K_a value.

$$H_2SO_4 \rightarrow H^+ + HSO_4^- \quad K_{a1} = \text{very large}$$

 $HSO_4^- <===> H^+ + SO_4^2 - K_{a2} = 1.0 \times 10^{-2}$

Why is H₂SO₄ considered a strong acid?

Because its first proton dissociates readily in water (has a very large k_a value)

Example #7

Calculate the pH and $[C_6H_6O_6]^{2-}$ of a 0.10 M solution of $H_2C_6H_6O_{6(aq)}$.

$$K_{a1} = 7.9 \times 10^{-5}$$

$$K_{a2} = 1.6 \times 10^{-12}$$

Example #7: Calculate the pH and $[C_6H_6O_6]^{2-}$ of a 0.10 M solution of $H_2C_6H_6O_{6(aq)}$. $K_{a1} = 7.9 \times 10^{-5}$

$$K_{a2} = 1.6 \times 10^{-12}$$

$$H_2C_6H_6O_{6(aq)} <===> H^+_{(aq)} + HC_6H_6O_{6(aq)}^-$$

I 0.10M 0 0
C -x
E 0.09719 0.00281 0.00281

These will be used for the second H+ that is released

$$K_{a} = [H^{+}_{(aq)}][HC_{6}H_{6}O_{6}^{-}_{(aq)}]$$

$$[H_{2}C_{6}H_{6}O_{6(aq)}]$$

$$7.9x10^{-5} = [x][x]$$

$$[0.10] \leftarrow assumption \ used$$

$$\sqrt{7.9x10^{-6}} = \sqrt{x^{2}}$$

$$0.002810694 = x$$

```
Example #7 continued: Calculate the pH and [C_6H_6O_6]^{2-} of a 0.10 M solution of H_2C_6H_6O_{6(aq)}.
K_{a1} = 7.9 \times 10^{-5}
K_{a2} = 1.6 \times 10^{-12}
HC_6H_6O_{6(aq)}^- <===> H^+_{(aq)} + C_6H_6O_6^{2-}_{(aq)}
     0.00281M
                                            0.00281
C -x
```

+x

0.00281+x x

$$K_{a} = \underbrace{[H^{+}_{(aq)}][C_{6}H_{6}O_{6}^{-2}_{(aq)}]}_{[HC_{6}H_{6}O_{6}^{-1}_{(aq)}]}$$

$$1.6x10^{-12} = \underbrace{[0.00281 + x][x]}_{[0.00281 - x]}$$

$$1.6x10^{-12} (0.00281 - x) = 0.00281x + x^{2}$$

$$4.496x10^{-15} - 1.6x10^{-12}x = 0.00281x + x^{2}$$

$$0 = x^{2} + 0.00281x - 4.496x10^{-15}$$

$$x = 1.6x10^{-12} \text{ or } -0.03281$$

E 0.00281-x

```
Example #7 continued: Calculate the pH and [C_6H_6O_6]^{2-} of a 0.10 M solution of H_2C_6H_6O_{6(aq)}. K_{a1} = 7.9 x 10<sup>-5</sup> K_{a2} = 1.6 x 10<sup>-12</sup>
```

$$HC_6H_6O_6^-_{(aq)} <===> H^+_{(aq)} + C_6H_6O_6^{2-}_{(aq)}$$
I 0.00281M 0.00281 0
C -x
E 0.00281 1.6x10⁻¹²

$$x = 1.6x10^{-12}$$

pH = -log [H⁺]
pH = -log [0.00281]
pH = 2.55

.: pH = 2.6 and
$$[C_6H_6O_6^{2-}_{(aq)}] = 1.6x10^{-12}M$$