Apprentissage automatique

Public: L3 cours IA

Bruno Bouzy

bruno.bouzy@parisdescartes.fr

www.mi.parisdescartes.fr/~bouzy

Avril 2022

Objectif

« Apercu » de l'apprentissage automatique (AA)

- « Deux » techniques de AA :
 - Arbres de décisions
 - Réseaux de neurones

- Problématiques :
 - Classification (surtout)
 - Approximation de fonction (aussi)

Techniques non abordées

- Apprentissage symbolique
- Réseaux bayésiens
- Machine a vecteurs support
- Méthodes ensemblistes
- Méthodes des différences temporelles
- Evolution artificielle
- Algorithmes « bandit »
- Apprentissage par renforcement

Techniques représentatives

- « Machine Learning » top-cited papers (2011):
 - Quinlan 1986, induction of decision trees (~3000)
 - Cortes & vapnik 1995, support vector networks (~2000)
 - Sutton 1988, learning to predict by methods of temporal differences
 - Breiman 2001, random forests (bagging) (~1000)
 - Aha 1991, instance-based learning algorithms
 - Cooper Herskovits 1992, a bayesian method for the induction of probabilistic networks from data (~900)
 - Shapire 1999, improved **boosting** algo... (~800)
 - etc.

« Deux » techniques abordées

Réseaux bayésiens

Evolution artificielle

Différences temporelles

Algorithmes « bandit »

Apprentissage supervisé ou non?

- Supervisé
 - Un oracle classe les exemples
 - L'apprenant apprend à classer comme l'oracle

- Non supervisé
 - L'apprenant apprend par lui-même
- à classer
- à décider d'une action

- Langage courant:
 - Expliquer
 - Prédire, classifier
 - Faire simple

- Jargon de l'apprentissage automatique:
 - Engendrer des hypothèses
 - ...plus ou moins simples
 - mour classifier, expliquer, décider

Exemples non classifiés

```
- X_1, X_2, ..., X_m.
```

- 1 oracle classifie les exemples
 - $(x_1, u_1), (x_2, u_2), ..., (x_m, u_m).$
- L'apprenant apprend (phase d'apprentissage)
 - En recherchant une hypothèse h(. , α)
 permettant de classifier au mieux les exemples
- L'apprenant classifie (phase de test)
 - les exemples nouveaux en utilisant l' hypothèse apprise

Les espaces et ensembles

- X: espace des exemples x
- H: espace des hypothèses h
- F: espace des fonctions cibles f
- S: échantillon (sample)
- S₊: ensemble des exemples positifs
- S₋: ensemble des exemples négatifs S = S₊ + S₋
- A: ensemble d'apprentissage
- T: ensemble de test S = A + T

Biais et variance

- Apprentissage d'une hypothèse h dans H.
- h*: hypothèse optimale dans H.
- h h*: « variance » ou « erreur d'estimation ».
- Exemples classifiés idéalement avec une fonction cible optimale f* dans F ≠ H.
- h* f*: « biais » ou « erreur d'approximation ».
- h f* : erreur totale.

Compromis biais-variance

- Erreur totale =
 - erreur d'estimation + erreur d'approximation
 - variance + biais
- Plus H est complexe...
 - plus H se rapproche de F, plus le biais diminue.
 - plus 2 hypothèses donnent des résultats différents, plus la variance augmente.
- H de complexité intermédiaire pour minimiser l'erreur totale

Compromis biais-variance

Compromis biais-variance

- Reconnaitre les hommes et les femmes...
 - Modèle simple: la taille pour classifier
 - Les hommes sont plus grands que les femmes.
 - biais important: hommes petits et femmes grandes (erreur d'approximation)
 - variance faible: seuil de taille précisément calculé
 - Modèle plus complexe: taille, longueur cheveux, poids, timbre de la voix, pilosité.
 - biais moins important,
 - variance plus importante.

Environnement X:

Engendre des **exemples** x_i tirés indépendamment suivant une distribution D_x .

Oracle:

Pour chaque x_i, fournit une **étiquette u**_i dans U (avec une distribution de probabilité F(u|x) inconnue)

Apprenant:

Construit une hypothèse h dans H telle que:

 $h(x_i) = u_i$ pour chaque x_i .

Perte (loss) de décider sur x_i avec h:

 $L(u_i,h(x_i))$ coût de la décision $h(x_i)$.

Risque réel d'une hypothèse h:

$$R_{r\acute{e}el}(h) = \int_{X \times U} L(u_i, h(x_i)) dF(x, u)$$

- Principe inductif: minimiser R_{réel}(h)
- Problème: F est inconnue, R_{réel} inconnu
- $h^* = argmin_h(R_{réel}(h))$

 Risque empirique d'une hypothèse h sur un échantillon S:

$$R_{emp}(h,S) = 1/m \sum_{i=1,m} L(u_i,h(x_i))$$

Perte moyenne mesurée sur l'échantillon S

- Minimiser R_{emp}(h,S).
- Empirical Risk Minimization (ERM)
- $h_S^* = \operatorname{argmin}_h(R_{emp}(h,S))$

Risque empirique et risque réel

 $R_{r\acute{e}el}(h)$ inconnu, f^* inconnu, $R_{emp}(h,S_m)$ connu

- (0) $R_{réel}(f^*)=0$ (par définition)
- (1) $R_{réel}(h^*)>0$ (biais) (par définition)
- (2) $R_{reel}(h^*) < R_{reel}(h^{\land}_{S})$ (par définition)
- (3) $R_{emp}(h_{S}^{*}) < R_{emp}(h^{*})$
- (4) $R_{emp}(h_S^*)$ augmente si m-> ∞ (plus S grand, plus difficile de minimiser)
- (5) $R_{reel}(h_S^*)$ diminue si m-> ∞ (plus S grand, plus monde réel couvert)
- (6) $\lim_{m\to\infty} (R_{emp}(h_S^*)) < R_{r\acute{e}el}(h^*) < \lim_{m\to\infty} (R_{r\acute{e}el}(h_S^*))$ (oui si pertinence)

Risque empirique et risque réel

Références

[1] Antoine Cornuéjols & Laurent Miclet,
 « Apprentissage artificiel, concepts et algorithmes », (préface de Tom Mitchell),
 Eyrolles.

 [2] Stuart Russell & Peter Norvig, « Artificial Intelligence: a modern approach ».

[3] Machine Learning.