ASSIGNMENT-2 (21BCE3220) Anoop Kumar

```
In []: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  from matplotlib import rcParams
  import seaborn as sns
```

TASK 1 and TASK 2

```
In [ ]: df=pd.read_csv("/content/House Price India.csv")
    df.head()
```

Out[]:

•		id	Date	number of bedrooms	number of bathrooms	living area	lot area	number of floors	waterfront present	number of views	condition of the house
	0	6762810145	42491	5	2.50	3650	9050	2.0	0	4	5
	1	6762810635	42491	4	2.50	2920	4000	1.5	0	0	5
	2	6762810998	42491	5	2.75	2910	9480	1.5	0	0	3
	3	6762812605	42491	4	2.50	3310	42998	2.0	0	0	3
	4	6762812919	42491	3	2.00	2710	4500	1.5	0	0	4

5 rows × 23 columns

```
In []: df.shape
Out[]: (14620, 23)

TASK 3
```

UNIVARIATE ANALYSIS

```
In [ ]: df["living area"].hist()
  plt.legend(["Area Space"])
  plt.title("Histogram of Living area Graph")
  plt.show()
```



```
In [ ]: category_counts = df['number of views'].value_counts()

plt.figure(figsize=(8, 6))
    category_counts.plot(kind='bar', color='red')
    plt.title('Bar Plot of Number of Views')
    plt.show()
```

Bar Plot of Number of Views

BIVARIATE ANALYSIS

```
In [ ]: plt.scatter(df['Price'], df['Distance from the airport'],color="green")
    plt.xlabel('Price')
    plt.ylabel('Distance from the airport')
    plt.title('Scatter Plot between Price and Distance from the airport')
    plt.show()
```


In []:

MULTIVARIATE ANALYSIS

In []: df.corr()

Out[]:

	id	Date	number of bedrooms	number of bathrooms	living area	lot area	number of floors	waterf pre
id	1.000000	0.045966	-0.329034	-0.516909	-0.648127	-0.100269	-0.312305	-0.11
Date	0.045966	1.000000	-0.015663	-0.026485	-0.021958	0.004392	-0.010335	0.01
number of bedrooms	-0.329034	-0.015663	1.000000	0.509784	0.570526	0.034416	0.177294	-0.00
number of bathrooms	-0.516909	-0.026485	0.509784	1.000000	0.753517	0.080806	0.502924	0.06
living area	-0.648127	-0.021958	0.570526	0.753517	1.000000	0.174420	0.354743	0.10
lot area	-0.100269	0.004392	0.034416	0.080806	0.174420	1.000000	-0.004138	0.02
number of floors	-0.312305	-0.010335	0.177294	0.502924	0.354743	-0.004138	1.000000	0.01
waterfront present	-0.112937	0.012006	-0.006257	0.060104	0.105837	0.026282	0.016316	1.00
number of views	-0.293004	-0.004782	0.078665	0.183789	0.287728	0.078308	0.020153	0.40
condition of the house	-0.045061	-0.027402	0.026597	-0.128232	-0.063358	-0.008548	-0.269928	0.01
grade of the house	-0.673448	-0.033097	0.352945	0.663054	0.761835	0.110546	0.463082	0.07
Area of the house(excluding basement)	-0.565116	-0.015994	0.473599	0.684391	0.875793	0.183553	0.525643	0.07
Area of the basement	-0.290806	-0.015711	0.300332	0.287190	0.441491	0.019755	-0.242976	0.08
Built Year	-0.068645	-0.005869	0.152954	0.498127	0.309602	0.051615	0.481565	-0.02
Renovation Year	-0.109155	-0.011636	0.016132	0.049669	0.059400	0.006848	0.006705	0.08
Postal Code	0.294709	0.018243	-0.044156	-0.105546	-0.080303	0.070131	-0.129788	0.03
Lattitude	-0.479334	-0.023327	-0.013163	0.031156	0.054518	-0.090983	0.050731	-0.02
Longitude	-0.070841	-0.018231	0.135712	0.223904	0.240208	0.221432	0.127550	-0.04
living_area_renov	-0.599900	-0.032495	0.389855	0.570530	0.757571	0.149744	0.285093	0.08
lot_area_renov	-0.089604	-0.000050	0.029400	0.078627	0.180312	0.706812	-0.010120	0.03
Number of schools nearby	-0.004821	-0.004071	0.003397	0.002180	0.002370	-0.012671	-0.007579	0.00
Distance from the airport	-0.004542	0.011457	-0.006157	0.009206	0.002511	0.003291	0.016567	0.00
Price	-0.773114	-0.027919	0.308460	0.531735	0.712169	0.081992	0.262732	0.26

23 rows × 23 columns

```
In [ ]: sns.heatmap(df.corr())
Out[ ]: <Axes: >
```


PAIRPLOT

TASK 4

```
In [ ]: df.describe()
```

Out[]:

	id	Date	number of bedrooms	number of bathrooms	living area	lot area	numbe fl
count	: 1.462000e+04	14620.000000	14620.000000	14620.000000	14620.000000	1.462000e+04	14620.000
mean	6.762821e+09	42604.538646	3.379343	2.129583	2098.262996	1.509328e+04	1.507
std	6.237575e+03	67.347991	0.938719	0.769934	928.275721	3.791962e+04	0.540
min	6.762810e+09	42491.000000	1.000000	0.500000	370.000000	5.200000e+02	1.000
25%	6.762815e+09	42546.000000	3.000000	1.750000	1440.000000	5.010750e+03	1.000
50%	6.762821e+09	42600.000000	3.000000	2.250000	1930.000000	7.620000e+03	1.500
75%	6.762826e+09	42662.000000	4.000000	2.500000	2570.000000	1.080000e+04	2.000
max	6.762832e+09	42734.000000	33.000000	8.000000	13540.000000	1.074218e+06	3.500

8 rows × 23 columns

TASK 5

```
df.isnull().any()
 In [ ]:
         id
                                                    False
 Out[]:
         Date
                                                    False
         number of bedrooms
                                                    False
         number of bathrooms
                                                    False
         living area
                                                    False
         lot area
                                                    False
         number of floors
                                                    False
         waterfront present
                                                    False
         number of views
                                                    False
         condition of the house
                                                    False
         grade of the house
                                                    False
         Area of the house(excluding basement)
                                                    False
         Area of the basement
                                                    False
         Built Year
                                                    False
         Renovation Year
                                                    False
         Postal Code
                                                    False
         Lattitude
                                                    False
         Longitude
                                                    False
         living_area_renov
                                                    False
         lot area renov
                                                    False
         Number of schools nearby
                                                    False
         Distance from the airport
                                                    False
         Price
                                                    False
         dtype: bool
         x = df.iloc[:, :-1].values
In [50]:
          from sklearn.impute import SimpleImputer
          imputer = SimpleImputer(missing_values = np.nan, strategy = 'median')
          imputer.fit(x[:, 2:18])
          x[:, 2:18] = imputer.transform(x[:, 2:18])
          print(x)
```

```
[[6.76281014e+09 4.24910000e+04 5.00000000e+00 ... 5.40000000e+03 2.00000000e+00 5.80000000e+01]
[6.76281064e+09 4.24910000e+04 4.00000000e+00 ... 4.00000000e+03 2.00000000e+00 5.10000000e+01]
[6.76281100e+09 4.24910000e+04 5.00000000e+00 ... 6.60000000e+03 1.00000000e+00 5.30000000e+01]
...
[6.76283062e+09 4.27340000e+04 2.000000000e+00 ... 6.12000000e+03 2.00000000e+00 6.40000000e+01]
[6.76283071e+09 4.27340000e+04 4.00000000e+00 ... 6.63100000e+03 3.00000000e+00 5.40000000e+01]
[6.76283146e+09 4.27340000e+04 3.00000000e+00 ... 3.48000000e+03 2.00000000e+00 5.500000000e+01]
```