

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA DEPARTAMENTO DE CIENCIA DE LA COMPUTACION

Tópicos Avanzados en Teoría de la Computación - IIC3810 Tarea 3 Fecha de entrega: Martes 24 de septiembre

1. Sea $f: \Sigma^* \to \mathbb{N}$ una función que admite un FPRAS \mathcal{A} . Utilizando la idea de hacer varias llamada a \mathcal{A} y tomar la mediana de los resultados, demuestre que para cada $\ell \geq 1$, existe un FPRAS \mathcal{B} para f tal que para cada $x \in \Sigma^*$ y $\varepsilon \in (0,1)$:

$$\mathbf{Pr}(|\mathcal{B}(x,\varepsilon) - f(x)| \le \varepsilon \cdot f(x)) \ge 1 - \left(\frac{3}{4}\right)^{\ell}.$$

- 2. Demuestre que si las funciones $f: \Sigma^* \to \mathbb{N}$ y $g: \Sigma^* \to \mathbb{N}$ admiten FPRAS, entonces f+g y $f\cdot g$ también admiten FPRAS.
- 3. Para cada $n \in \mathbb{N}$, sea $f_n : \Sigma^* \to \mathbb{N}$ una función que admite un FPRAS \mathcal{A}_n , donde el número de pasos ejecutados por $\mathcal{A}_n(x,\varepsilon)$ está acotado superiormente por $p_n(|x|,\frac{1}{\varepsilon})$ para un polinomio fijo p_n . Además, suponga que existe un polinomio p(u,v) que acota superiormente a $p_n(u,v)$ para cada $n \in \mathbb{N}$. Sea $f: \Sigma^* \to \mathbb{N}$ una función definida de la siguiente forma para cada $x \in \Sigma^*$:

$$f(x) = \sum_{i=0}^{|x|} f_i(x).$$

Demuestre que f admite un FPRAS.