

Institut Mines-Telecom

Compression d'images par la norme JPEG

F. Dufaux, M. Cagnazzo

SIGMA207

Plan

Principes

Exemples

Extensions

Plan

Principes

Norme de codage JPEG

- Norme de compression d'images basée sur la TCD
- Spécifiée en 1991, adoptée en 1992
- Normalise l'algorithme et le format de décodage
- On va parler de un codeur à niveaux de gris, qui produise un train binaire conforme

Norme JPEG: Schéma

- L'image est préalablement découpée en blocs 8 × 8
- On soustrait 128 aux valeurs de luminance
- Les blocs sont codés indépendamment

Norme JPEG : Découpage par blocs

Exemple de bloc 8x8

173	171	171	143	109	100	91	96
171	169	150	137	112	101	94	96
184	158	139	120	110	107	94	100
170	156	134	119	117	104	98	99
157	147	125	127	103	109	90	98
149	146	132	120	113	107	101	93
147	141	119	119	111	101	100	92
160	122	117	116	115	116	102	95

Compression d'images par la norme JPEG

02.05.16

Norme JPEG: Transformée

- ▶ La taille de la TCD est 8 × 8
- ▶ Petits blocs → signal stationnaire
- ▶ Grands blocs → exploit de la corrélation
- Taille choisie après des expériences
- Coefficients TCD : impact SVH

Norme JPEG: Transformée

Coefficients TCD du bloc considérée

985.3	186.2	34.1	11.6	7.3	1.6	4.9	-8.2
40.3	47.8	5.7	-26.0	-5.3	-3.5	4.0	-1.0
6.3	4.0	-9.3	-6.7	-1.2	8.1	3.4	4.1
-0.0	4.9	-13.3	-20.8	-10.4	-1.0	-4.5	-5.1
2.1	-1.3	-1.6	0.6	3.6	3.3	8.1	-1.7
1.3	3.7	2.4	-2.7	-2.2	-3.0	-4.1	7.8
5.1	0.4	3.1	4.8	-1.4	2.5	9.8	5.3
-5.6	1.6	4.4	0.1	3.3	2.3	4.3	-8.4

Norme JPEG: Transformée

Écart-type des coefficients TCD d'une image naturelle

396.64	100.99	49.26	31.15	19.74	14.57	8.76	7.33
100.23	55.78	37.40	24.77	16.44	11.70	8.44	6.25
49.42	36.39	28.01	20.40	14.64	10.46	7.64	5.88
30.82	24.05	19.73	15.47	11.99	8.88	6.83	5.45
21.09	16.79	14.79	11.54	9.19	7.30	5.90	4.68
15.32	11.91	10.31	8.71	7.15	5.78	4.61	3.91
11.22	8.58	7.66	6.78	5.69	4.64	3.82	3.24
8.21	6.65	5.93	5.52	4.45	3.75	3.15	2.80

Norme JPEG: Quantification

- Quantification uniforme à zone morte
- $ightharpoonup \widetilde{c}_{i,j} = \left| \frac{c_{i,j}}{q_{i,j}} \right|$
- Le compromis débit distorsion est complètement géré par le tableau de quantification q
- ▶ Le standard ne spécifie pas q, qui doit être transmis
- Facteur de qualité Q

Norme JPEG: Quantification

Exemple de table de quantification

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	81	61
18	22	37	56	68	109	103	77
24	35	55	64	81	104	111	90
49	63	78	87	101	121	120	100
72	92	95	98	112	100	103	99
	12 14 14 18 24 49	12 12 14 13 14 17 18 22 24 35 49 63	12 12 14 14 13 16 14 17 22 18 22 37 24 35 55 49 63 78	12 12 14 19 14 13 16 24 14 17 22 29 18 22 37 56 24 35 55 64 49 63 78 87	12 12 14 19 26 14 13 16 24 40 14 17 22 29 51 18 22 37 56 68 24 35 55 64 81 49 63 78 87 101	12 12 14 19 26 58 14 13 16 24 40 57 14 17 22 29 51 87 18 22 37 56 68 109 24 35 55 64 81 104 49 63 78 87 101 121	12 12 14 19 26 58 60 14 13 16 24 40 57 69 14 17 22 29 51 87 81 18 22 37 56 68 109 103 24 35 55 64 81 104 111 49 63 78 87 101 121 120

02.05.16

Norme JPEG : Facteur de qualité

- Outil non normatif
- "Facteur de qualité" Q variable entre 1 et 100
- Définit un facteur d'échelle S_F pour la matrice de quantification

$$S_F = \begin{cases} \frac{5000}{Q} & 1 \le Q \le 50\\ 200 - 2Q & 50 < Q \le 99\\ 1 & Q = 100 \end{cases}$$

$$q \leftarrow \frac{S_F q^* - 50}{100}$$

Norme JPEG: Quantification

Coefficients quantifiés avec la table précédente

61	16	3	0	0	0	0	0
3	3	0	-1	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Norme JPEG: Exemple

Zig-zag scan : concentre les coefficients nuls à la fin du balayage

Institut Mines-Telecom

- Coefficient DC : codage prédictif + Huffman
- Coefficients AC : codage "run-lenght" + Huffman

coeff≠ 0	n. de 0	coeff≠ 0	n. de 0	 EOB	

Coefficients quantifiés et codés

61	16	3	0	0	0	0	0
3	3	0	-1	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

$61-dc_{k-1}$	0,16	0,3	1,3	0,3	7,-1	EOB

Coefficients DC:

- représentés par la couple catégorie, amplitude.
- ► Il y a 12 catégories, nommées 0, . . . , 11, codée sur 4 bit
- ▶ La catégorie k contient 2^k valeurs : $\{\pm 2^{k-1}, \dots, \pm 2^k 1\}$; chaque valeur est codée sur k bits

Coefficients AC:

représentés par run-length, catégorie, amplitude.

Institut Mines-Telecom

- Les catégories et les run-lengths sont codée sur 4 bit chacune : 8 bits pour le symbole (R,C)
 - Symbole spécial 1: (15,0) signifie "au moins 15 zéros avant le prochain coefficient non nul"
 - Symbole spécial 2: (0,0) signifie "fin du bloc"
- Comme dans le cas DC, la catégorie k contient 2^k valeurs, chacune codée sur k

Plan

Exemples

Débit 1.0198674.2 bpp PSNR 33.92 dB TC 23.532

Débit 0.7481384.2 bpp PSNR 33.45 dB TC 32.080

Institut Mines-Telecom

Débit 0.3081364.2 bpp PSNR 31.31 dB TC 77.888

Plan

Extensions

Norme JPEG: Parties

- JPEG baseline (sequential DCT mode)
- JPEG progressif
- JPEG hiérarchique
- ▶ JPEG sequential lossless mode
- JPEG partie 3
 - Variable quantization
 - Tiling
- Standard JPEG-LS
- Motion JPEG

Modalités de JPEG

Les modalités de JPEG peuvent être utilisées conjointement

JPEG progressif

- Représentation progressive des images
- Application : Web, bases de données, ...
- Deux sous-modalités : Spectral selection et Successive approximations

JPEG progressif

Spectral selection

Exemple avec quatre couches de qualité :

- 1. Le coefficient DC de tout bloc
- Le premiers trois coefficient AC de chaque bloc (ordre du zig-zag scan)
- 3. Le coefficient AC de 4 à 7 de chaque bloc
- 4. Le coefficient AC restants

Codage Run-length suivi de Huffman, comme dans le Baseline En effet la syntaxe JPEG permet de définir des couches arbitraires, avec la seule contrainte de avoir coefficients consécutifs en chaque couche

Qualité identique à JPEG baseline Débit faiblement augmenté

02.05.16

JPEG progressif

Successive approximation

- Première couche : coefficient DC de chaque bloc (comme en JPEG-SS)
- Couches successives : codage par bit-plane des coefficients
 - Matrice de 8 x 8 coefficients représentés sur 16 bits ⇒ 16 Matrices de 8×8 bits
 - Codage entropique des plains de bit
- Complexité augmentée
- Performance débit-distorsion faiblement améliorée

Il est possible de coder en mode SA les groupes de coefficients définis en mode SS

JPEG hiérarchique

Institut Mines-Telecom

On définit une hiérarchie d'images à résolutions décroissantes (schéma pyramidale)

Chaque image peut être codée en JPEG baseline ou progressif.

