Estadística I Grado en Matemáticas, UAM, 2017-2018

Listado de los intervalos de confianza más habituales

NOTACIÓN PARA PERCENTILES

A. Percentiles de la normal estándar

Sea Z una variable normal estándar. Para $\alpha \in (0,1/2)$ se denota por z_{α} el valor real tal que

$$\mathbf{P}(Z>z_{\alpha})=\alpha.$$

Nótese que

$$\mathbf{P}(|Z| < z_{\alpha/2}) = 1 - \alpha.$$

Para calcular $z_{\alpha} = \Phi^{-1}(1-\alpha)$ en excel: =inv.norm.estand(1- α).

B. Percentiles de la t de Student con n grados de libertad

Sea Z una STU(n). Para $\alpha \in (0, 1/2]$, denotamos por $t_{\{n;\alpha\}}$ al valor tal que

$$\mathbf{P}(Z > t_{\{n;\alpha\}}) = \alpha.$$

Nótese además que $\mathbf{P}(|Z| < t_{\{n;\alpha/2\}}) = 1 - \alpha$. Para calcular $t_{\{n;\alpha\}}$ en excel: =inv.t(1- α ;n).

C. Percentiles de la χ_n^2

Sea Z una chi cuadrado con n grados de libertad. Para $\alpha \in (0,1)$, denotamos $\chi^2_{\{n\,;\,\alpha\}}$ al valor tal que

$$\mathbf{P}(Z > \chi^2_{\{n:\alpha\}}) = \alpha.$$

Obsérvese que

$$\mathbf{P}(\chi^2_{\{n; 1-\alpha/2\}} < Z < \chi^2_{\{n; \alpha/2\}}) = 1 - \alpha.$$

Para calcular $\chi^2_{\{n;\alpha\}}$ en excel: =inv.chicuad(1- α ;n).

D. Percentiles de la F de Fisher-Snedecor con n y m grados de libertad

Sea Z una $F_{n,m}$. Para $\alpha \in (0,1)$, denotamos por $F_{\{n,m;\alpha\}}$ al valor tal que

$$\mathbf{P}(Z > F_{\{n,m;\alpha\}}) = \alpha.$$

Obsérvese que

$$\mathbf{P}(F_{\{n,m:1-\alpha/2\}} < Z < F_{\{n,m:\alpha/2\}}) = 1 - \alpha.$$

Para calcular $F_{\{n,m;\alpha\}}$ en excel: =inv.f(1- α ; n; m).

Dada una muestra (x_1, \ldots, x_n) de tamaño n de la variable X, llamamos \overline{x} a la media muestral y s^2 a la cuasivarianza muestral.

Los intervalos que siguen son con confianza $1 - \alpha$.

Normal $\mathcal{N}(\mu, \sigma^2)$

A Intervalo para la media μ

Caso 1. Suponiendo que σ^2 es conocida:

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \stackrel{\text{d}}{=} \mathcal{N}(0, 1) \longrightarrow \text{Intervalo: } I = \left(\overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right).$$

Caso 2. Con σ^2 desconocida:

$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \stackrel{\text{d}}{=} \text{STU}(n-1) \longrightarrow \text{Intervalo: } I = \left(\overline{x} \pm t_{\{n-1; \alpha/2\}} \frac{s}{\sqrt{n}}\right)$$

B. Intervalo para la varianza σ^2

$$\frac{(n-1)\,S^2}{\sigma^2} \stackrel{\mathrm{d}}{=} \chi^2_{n-1} \quad \longrightarrow \quad \text{Intervalo:} \ I = \left(\frac{(n-1)\,s^2}{\chi^2_{\{n-1;\,\alpha/2\}}}, \quad \frac{(n-1)\,s^2}{\chi^2_{\{n-1;\,1-\alpha/2\}}}\right)$$

Proporción p

Para n grande,

$$\frac{\overline{X} - p}{\sqrt{p(1-p)/n}} \stackrel{d}{\approx} \mathcal{N}(0,1) \longrightarrow \text{Intervalo:} \quad I = \left(\overline{x} \pm z_{\alpha/2} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$

Poisson (λ)

Para n grande,

$$\frac{\overline{X} - \lambda}{\sqrt{\lambda/n}} \stackrel{\text{d}}{\approx} \mathcal{N}(0, 1) \longrightarrow \text{Intervalo: } I = \left(\overline{x} \pm z_{\alpha/2} \sqrt{\frac{\overline{x}}{n}}\right)$$

Dos normales,
$$X_1 = \mathcal{N}(\mu_1, \sigma_1^2), X_2 = \mathcal{N}(\mu_2, \sigma_2^2)$$

DATOS:

- muestra de tamaño n_1 de la variable X_1 , con media muestral \overline{x}_1 y cuasivarianza muestral s_1^2 .
- muestra de tamaño n_2 de la variable X_2 , con media muestral \overline{x}_2 y cuasivarianza muestral s_2^2 .

Para la diferencia de medias $\mu_1 - \mu_2$:

• $si \sigma_1, \sigma_2 \ conocidas$:

$$I = \left(\left(\overline{x}_1 - \overline{x}_2 \right) \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right)$$

• $si \ \sigma_1, \sigma_2 \ desconocidas, \ pero \ \sigma_1 = \sigma_2$:

$$I = \left(\left(\overline{x}_1 - \overline{x}_2 \right) \, \pm \, t_{\{n_1 + n_2 - 2; \, \alpha/2\}} \cdot s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \, \right)$$

donde

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 - 1) + (n_2 - 1)}.$$

• $si \ \sigma_1, \sigma_2 \ desconocidas, \ pero \ \sigma_1 \neq \sigma_2$:

$$I = \left(\left(\overline{x}_1 - \overline{x}_2 \right) \pm t_{\{f; \alpha/2\}} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \right)$$

donde f es el entero más próximo a $\frac{\left(s_1^2/n_1+s_2^2/n_2\right)^2}{\frac{(s_1^2/n_1)^2}{n_1-1}+\frac{(s_2^2/n_2)^2}{n_2-1}}.$

Para el cociente de varianzas σ_1^2/σ_2^2 :

$$I = \left(\frac{s_1^2/s_2^2}{F_{\{n_1-1\,,\,n_2-1\,;\,\alpha/2\}}}~,~\frac{s_1^2/s_2^2}{F_{\{n_1-1\,,\,n_2-1\,;\,1-\alpha/2\}}}\right)$$

Comparación de proporciones p_1, p_2

DATOS:

- muestra de tamaño n_1 de la variable $X_1 \sim \text{BER}(p_1)$, media muestral \overline{x}_1 .
- muestra de tamaño n_2 de la variable $X_2 \sim \text{BER}(p_2)$, media muestral \overline{x}_2 .

Tanto n_1 como n_2 son grandes.

Para $p_1 - p_2$:

$$I = \left(\left(\overline{x}_1 - \overline{x}_2 \right) \pm z_{\alpha/2} \sqrt{\frac{\overline{x}_1(1 - \overline{x}_1)}{n_1} + \frac{\overline{x}_2(1 - \overline{x}_2)}{n_2}} \right)$$