

# Acquisition of allophonic variation in second language speech: An acoustic and articulatory study of English laterals by Japanese speakers

Takayuki Nagamine (Lancaster University)

t.nagamine@lancaster.ac.uk

Interspeech2022 19th September 2022

## Acquisition of L2 allophonic variation



- Clear /l/: pre-vocalic, higher F2-F1, tongue body raising/fronting
- Dark /l/: post-vocalic, lower F2-F1, tongue dorsum lowering/retraction

(Sproat & Fujimura, 1993; Turton, 2017; Narayanan, Alwan, & Haker, 1997; Recasens, 2012)



#### Acquisition of L2 allophonic variation



# Do L2 speakers also employ similar articulatory strategies in distinguishing clear and dark /l/s?

L1 Japanese speakers often substitute English /l/ with Japanese /r/.

- Japanese /r/ lacks the specific TD gestural target (Yamane & Howson, 2015)
- L1 Japanese speakers use multiple articulatory strategies for English /r/ (Moore, Shaw, Kawahara & Arai, 2018)
- EPG data show L1 Japanese can learn the lateral allophony but show individual variations (Kochetov, 2022)

#### The current study



# What are the tongue shape properties in production of English lateral allophony by L1 Japanese speakers?

Key effects: syllable position (initial vs final)

**vowel context** (/i\_a/, /i\_i/, /a\_i/, /a\_a/)



# Methods

## Participants & Equipment



#### **Five participants**

- L1 Japanese / L2 English
- Two females and three males
- Aged between 23 30 (M = 24.6)
- High L2 proficiency
- No speech//hearing impairment



#### Elicitation materials (cf. Gick et al., 2007)



- **16** target words
  - 8 with word-initial /l/
  - 8 with word-final /l/
- 4 vowel environments
  - Pseudo phrases by adding another word before/after the target word
- Embedded in a carrier sentence
  - '(Someone) said "X Y" to (someone's) boss.'

| Vowel | Initial | Final | Example phrase                     |
|-------|---------|-------|------------------------------------|
| high  | leap    | peal  | heap leap (i#li), peal heap (il#i) |
|       | lead    | deal  | heap lead (i#li), deal heap (il#i) |
|       | lean    | kneel | hap lean (a#li), kneel hap (il#a)  |
|       | leave   | veal  | hap leave (a#li), veal hap (il#a)  |
| low   | lap     | pal   | heap lap (i#la), pal heap (al#i)   |
|       | lag     | gal   | heap lag (i#la), gal heap (al#i)   |
|       | lab     | bal   | hap lab (a#la), bal hap (al#a)     |
|       | lack    | Cal   | hap lack (a#la), Cal hap (al#a)    |

JP01F ()) ())

JP03M ()) ())

# Acoustic / articulatory analysis







Q

#### Statistical analysis: Mixed-effect models



#### **Acoustic: Linear mixed-effect model (LME)**

Final model: z.F2F1 ~ position + vowel / speaker) + position:vowel

#### Articulation: Generalised additive mixed effect models (GAMMs)

- Focussing only on within-speaker variations
- Full model: Y ~ position + vowel + s(X, by = position) + s(X, by = vowel)
- Position model:  $Y \sim position + s(X, by = position)$
- Vowel-context model: Y ~ vowel + s(X, by = vowel)



# Results & Discussion



## Acoustics – articulatory comparisons



#### **Acoustics**

- expected clear-dark patterns
  - Higher F2-F1 word-initially
  - Lower F2-F1 word-finally
- Significant effects of:
  - **Position**  $(\chi^2(1) = 8.801, p = .003)$
  - **Vowel**  $(\chi^2(3) = 10.727, p = .013)$
  - Position-vowel interaction

 $(\chi^2(3) = 171.800, p < .001)$ 

Japanese speakers acquire the clear-dark allophony of laterals



## Acoustics – articulatory comparisons



#### **Articulation**

- Vowel context > syllable position
  - Vowel context (sig.)
  - Position (n/s)
- The degree of contrast in articulation doesn't match that in acoustics.

Japanese speakers do not differentiate clear-dark /l/s in articulation?



#### Findings and discussion



- Acoustics: Position + Vowel
- Tongue shape: Vowel
- Acoustic-articulatory correspondence is not clear.
  - JP01F: A clear contrast in acoustics but a small contrast in articulation
  - JP03M: A small contrast in acoustics but a clear contrast in articulation

#### Findings and discussion



#### What could account for the acoustic-articulatory mismatch?

- 1. Gestural complexity (Sproat & Fujimura, 1993)
  - Clear and dark /l/s differ in the relative timing between lingual gestures.
  - Lateral midpoint may not represent the broad phonetic quality of /I/
  - Articulatory changes precede changes in acoustics (Ying, Shaw, Kroos & Best, 2012)

#### 2. Tongue lateralisation on the coronal plane

Speakers may have an active control over the lateral gestures

(Ying, Shaw, Carignan, Proctor, Derrick, & Best, 2021)

However, tongue lateralisation strategy is not always positively transferred from L1 to L2

(Morimoto, 2021)

#### Conclusion



- L1 Japanese speakers could acquire lateral allophony in English.
- The specific ways they demonstrate the contrast in articulation is still unknown.
- Future L2 research should take into account the complex spatiotemporal coordination between articulatory gestures in English /l/ (and /r/)
  - Tongue tip and tongue dorsum gestures for /l/ (e.g., Sproat & Fujimura, 1993)
  - Labial, tongue anterior and tongue posterior gestures for /r/

(e.g., Campbell, Gick, Wilson & Vatikiotis-Bateson, 2010)

### Acknowledgement



I thank all the participants who gave up their time for the data collection.

Thank you, **Dr Sam Kirkham** and **Dr Claire Nance**, for helpful comments and support throughout the research project.

The work has improved thanks to comments from **three anonymous reviewers**.

This research is financially supported by **Graduate Scholarship for Degree Seeking Students, Japan Student Services Organization** (JASSO) awarded to the author.

#### Key references (1)



Campbell, F., Gick, B., Wilson, I., & Vatikiotis-Bateson, E. (2010). Spatial and Temporal Properties of Gestures in North American English /r/. Language and Speech, 53(1), 49–69. https://doi.org/10.1177/0023830909351209

Carter, P., & Local, J. (2007). F2 variation in Newcastle and Leeds English liquid systems. *Journal of the International Phonetic Association*, *37*(2), 183–199. <a href="https://doi.org/10.1017/S0025100307002939">https://doi.org/10.1017/S0025100307002939</a>

Flege, J. E., & Bohn, O.-S. (2021). The Revised Speech Learning Model (SLM-r). In R. Wayland (Ed.), *Second Language Speech Learning: Theoretical and Empirical Progress* (1st ed., pp. 3–83). Cambridge University Press. <a href="https://doi.org/10.1017/9781108886901.002">https://doi.org/10.1017/9781108886901.002</a>

Gick, B., Campbell, F., Oh, S., & Tamburri-Watt, L. (2006). Toward universals in the gestural organization of syllables: A cross-linguistic study of liquids. *Journal of Phonetics*, *34*(1), 49–72. <a href="https://doi.org/10.1016/j.wocn.2005.03.005">https://doi.org/10.1016/j.wocn.2005.03.005</a>

Kochetov, A. (2020). Research methods in articulatory phonetics I: Introduction and studying oral gestures. *Language and Linguistics Compass*, 14(4), 1–1. https://doi.org/10.1111/lnc3.12368

Kochetov, A. (2022). *Production of English phonemic contrasts and allophony by Japanese learners: Electropalatographic evidence*. 43.

Moore, J., Shaw, J., Kawahara, S., & Arai, T. (2018). Articulation strategies for English liquids used by Japanese speakers. *Acoustical Science and Technology*, 39(2), 75–83. <a href="https://doi.org/10.1250/ast.39.75">https://doi.org/10.1250/ast.39.75</a>

Morimoto, M. (2021). Articulatory Preference in Japanese Liquids and F3 in English: A Preliminary Report. *ICU Working Papers in Linguistics: Selected Papers from the 5th Asian Junior Linguists Conference (AJL5)*, 15, 1–6.

## Key references (2)



Narayanan, S. S., Alwan, A. A., & Haker, K. (1997). Toward articulatory-acoustic models for liquid approximants based on MRI and EPG data. Part I. The laterals. *The Journal of the Acoustical Society of America*, 101(2), 1064–1077. https://doi.org/10.1121/1.418030

Recasens, D. (2012). A cross-language acoustic study of initial and final allophones of /l/. *Speech Communication*, *54*(3), 368–383. <a href="https://doi.org/10.1016/j.specom.2011.10.001">https://doi.org/10.1016/j.specom.2011.10.001</a>

Sproat, R., & Fujimura, O. (1993). Allophonic variation in English /l/ and its implications for phonetic implementation. *Journal of Phonetics*, 21(3), 291–311. <a href="https://doi.org/10.1016/S0095-4470(19)31340-3">https://doi.org/10.1016/S0095-4470(19)31340-3</a>

Turton, D. (2017). Categorical or gradient? An ultrasound investigation of /l/-darkening and vocalization in varieties of English. *Laboratory Phonology: Journal of the Association for Laboratory Phonology*, 8(1), 13. https://doi.org/10.5334/labphon.35

Yamane, N., & Howson, P. (2015). An ultrasound examination of taps in Japanese. *Proceedings of the 18th International Congress of Phonetic Sciences*, 5. <a href="https://www.internationalphoneticassociation.org/icphs-proceedings/ICPhS2015/Papers/ICPHS0815.pdf">https://www.internationalphoneticassociation.org/icphs-proceedings/ICPhS2015/Papers/ICPHS0815.pdf</a>

Ying, J., Shaw, J. A., Carignan, C., Proctor, M., Derrick, D., & Best, C. T. (2021). Evidence for active control of tongue lateralization in Australian English /l/. *Journal of Phonetics*, 86, 101039. https://doi.org/10.1016/j.wocn.2021.101039

Ying, J., Shaw, J. A., Kroos, C., & Best, C. T. (2012). Relations Between Acoustic and Articulatory Measurements of /l/. *Proceedings of the 14th Australasian International Conference on Speech Science and Technology*, 109–112.



# Thank you!

# Takayuki Nagamine t.nagamine@lancaster.ac.uk

PhD student, Phonetics Lab
Department of Linguistics and English Language
Lancaster University





# Unused slides

#### Acquisition of L2 allophonic variation



 Acquisition of position-sensitive allophones is the fundamental mechanisms of second language (L2) speech learning

(Flege & Bohn, 2021)

English laterals have two canonical allophonic variants:

- Clear /l/: Syllable-initial, higher F2 and greater F2-F1 distance

- Dark /l/: Syllable-final, lower F2 and smaller F2-F1 distance

(Carter & Local, 2007)

- L1 English speakers employ tongue tip (TT) and tongue dorsum (TD) gestures to distinguish the two allophones in English laterals:

- Clear /l/: tongue body raising/fronting

- Dark /l/: pre-dorsum lowering, postdorsum retraction

(Sproat & Fujimura, 1993; Turton, 2017; Narayanan, Alwan, & Haker, 1997; Recasens, 2012)



Clear /l/



Dark /l/