Automatically Evaluating the Efficiency of Search-Based Test Data Generation

(for Relational Database Schemas)

Cody Kinneer

SEKE 2015

July 7, 2015

Random Testing

Random Testing

Easy to implement — and yet not always very effective!

Search-Based Testing

Search-Based Testing

Often much more effective than random testing

How do parameter values influence the efficiency of SBST?

Analytical

XAnalytical

XAnalytical Empirical

XAnalytical ✓ Empirical

Input

Input

Input

Time = 14.98

Input

Input

Time = 14.98

Input

Input

Time = 14.98

Time = 14.98 Time = 31.45

Time = 14.98 Time = 31.45

Input Input Time = 14.98 Time = 31.45 Ratio \approx 2

Input Input Time = 14.98 Time = 31.45Ratio \approx 2 Linear — O(n)

Input

Input

Input

Input

Time = 12.63

Time = 12.63 Time = 51.48

Input Input Time = 51.48 Time = 12.63 Ratio \approx 4 Quadratic — $O(n^2)$

Input

Input

Input

Input

Time = 11.23

Time = 11.23 Time = 89.72

Doubling Experiment

Input Input Time = 11.23 Time = 89.72 Ratio ≈ 8 Cubic — $O(n^3)$

Deployment Locations for Databases

Deployment Locations for Databases

Database Application Server

PostgreSQL

PostgreSQL

Relational Database Management System

E-commerce

Relational Database
Management System

Database Testing

The Data Warehouse Institute reports that North American organizations experience a \$611 billion annual loss due to poor data quality

Database Testing

The Data Warehouse Institute reports that North American organizations experience a \$611 billion annual loss due to poor data quality

Scott W. Ambler argues that the "virtual absence" of database testing — the validation of the contents, schema, and functionality of the database — is the primary cause of this loss

Database Testing

The Data Warehouse Institute reports that North American organizations experience a \$611 billion annual loss due to poor data quality

Scott W. Ambler argues that the "virtual absence" of database testing — the validation of the contents, schema, and functionality of the database — is the primary cause of this loss

Past papers presented SchemaAnalyst, a search-based system for testing the complex integrity constraints in relational schemas

SchemaAnalyst Execution

Coverage Criterion

> SchemaAnalyst Execution

Table

- Column 1
- Column 2
- **...**
- Column n

Doubling Schemas

Doubling Schemas

Experimental Parameters

Experimental Parameters

Coverage Criterion

Over 2,000 unique combinations of parameters!

Over 2,000 unique combinations of parameters!

Schema	Tables	Columns	Constraints
BioSQL	28	129	186
Cloc	2	10	0
iTrust	42	309	134
JWhoisServer	6	49	50
NistWeather	2	9	13
NistXTS7	1	3	3
NistXTS749	1	3	3
RiskIt	13	57	36
UnixUsage	8	32	24

Schema	Tables	Columns	Constraints
BioSQL	28	129	186
Cloc	2	10	0
iTrust	42	309	134
JWhoisServer	6	49	50
NistWeather	2	9	13
NistXTS7	1	3	3
NistXTS749	1	3	3
RiskIt	13	57	36
UnixUsage	8	32	24

Schema	Tables	Columns	Constraints
BioSQL	28	129	186
Cloc	2	10	0
iTrust	42	309	134
JWhoisServer	6	49	50
NistWeather	2	9	13
NistXTS7	1	3	3
NistXTS749	1	3	3
RiskIt	13	57	36
UnixUsage	8	32	24

Schema	Tables	Columns	Constraints
BioSQL	28	129	186
Cloc	2	10	0
iTrust	42	309	134
JWhoisServer	6	49	50
NistWeather	2	9	13
NistXTS7	1	3	3
NistXTS749	1	3	3
RiskIt	13	57	36
UnixUsage	8	32	24

Doubled

- **► UNIQUES**
- NOT NULLs
- ▶ CHECKs

Doubled

- UNIQUEs
- NOT NULLs
- ▶ CHECKs

Doubled

- UNIQUEs
- NOT NULLs
- **CHECKs**

699 Experiments

8% Stopped

Doubled

- UNIQUEs
- NOT NULLs
- **CHECKs**

- 8% Stopped
- 20% O(1) or O(log)

Doubled

- UNIQUEs
- ► NOT NULLs
- ▶ CHECKs

- 8% Stopped
- 20% *O*(1) or *O*(log)
- $72\% \overline{O(n) \text{ or } O(n \log n)}$

Doubled

- **► UNIQUES**
- NOT NULLs
- ▶ CHECKs

699 Experiments

8% Stopped

20% O(1) or O(log)

 $72\% O(n) \text{ or } O(n \log n)$

 $SchemaAnalyst \in O(n)$ for constraints studied

Doubled

Tables

467 Experiments

Doubled

▶ Tables

Doubled

▶ Tables

467 Experiments

56% Stopped

SchemaAnalyst $\in O(n^3)$ or worse for tables

Doubled

Columns

467 Experiments

Doubled

Columns

Doubled

Columns

467 Experiments

203 Stopped

Doubled

203 Stopped

Columns

208 O(n) or O(n log n)

 Doubled
 203 Stopped

 Columns
 208 O(n) or O(n log n)

 28 O(n²) and 2 O(n³)

SchemaAnalyst $\in O(n^3)$ or worse for columns

Adequacy Criteria

Adequacy Criteria

More effective criteria require additional runtime

Data Generator

Data Generator

More effective generators can also be more efficient

Search-based test data generation is often highly effective, but worst-case time complexity unknown

Search-based test data generation is often highly effective, but worst-case time complexity unknown

A technique for automated doubling experiments

Search-based test data generation is often highly effective, but worst-case time complexity unknown

A technique for automated doubling experiments

Emprical suggestions for worst-case time complexity

Search-based test data generation is often highly effective, but worst-case time complexity unknown

A technique for automated doubling experiments

Emprical suggestions for worst-case time complexity

Tradeoffs in search-based test data generation

Search-based test data generation is often highly effective, but worst-case time complexity unknown

A technique for automated doubling experiments

Emprical suggestions for worst-case time complexity

Tradeoffs in search-based test data generation

https://github.com/kinneerc/ExpOse