201 Real Analysis

Assignment 1

1. Let c_0 be the vector space of sequences limiting to 0 with the $\|\cdot\|_{l^{\infty}}$ -norm. Prove that c_0 is a closed subspace of l^{∞} (and hence is a Banach space). Prove that $l^1 \cong c_0^*$ in the following sense. For every $f = (f_n) \in l^1$ define

$$F_f(x) = \sum_{n=1}^{\infty} x_n f_n, \quad x = (x_n) \in c_0.$$

Prove that $F_f \in c_0^*$, $||F_f||_* = ||f||_{l^1}$, and for every $\phi \in c_0^*$ there exists $f \in l^1$ such that $\phi = F_f$.

2. Let X be a Banach space, $E \subset X^*$. Suppose for every $x \in X$ the set $\{\phi(x) | \phi \in E\} \subset \mathbf{R}$ is bounded. Prove that E is strongly bounded in X^* .

Explain why your proof collapses if X is not complete.

- 3. Let X be a Banach space and (ϕ_j) be a sequence in X^* . Suppose that $\langle \phi_j, x \rangle$ converges for any $x \in X$. Prove that there exists $\phi \in X^*$ such that $\phi_j \xrightarrow{w*} \phi$. (In fancy terminology " X^* is always w* sequentially complete".) Formulate the analogous statement for the w-convergence for a sequence (x_j) in X. Try to extend your proof to this situation. When does the proof collapse? (The statement actually does not hold. Some assumptions are needed for X to be w sequentially complete.)
- 4. Let X be Banach. Prove that a sequence (ϕ_j) in X^* converges w* if and only if it is strongly bounded and there exists a dense set $E, \overline{E} = X$, such that the number sequence $\langle \phi_j, u \rangle$ converges for all $u \in E$.
- 5. Let I = [0,1]. Let $C^1(I)$ denote the space of continuously differentiable functions g, so $g, g' \in C(I)$. (For example f is a polynomial.) Let $d\phi_n = \cos(\pi nx) d\lambda^1(x)$. Prove that

$$\int_{I} g \, d\phi_n \to 0, n \to \infty, \quad \forall g \in C^1(I).$$

Prove that $\phi_n \to 0$ weakly* as measures in C(I)*. (Hint: for g integrate by parts. For the weak* convergence use Wejerstrass approximation theorem.)

The problems below will not be graded and are not obligatory. However, if you are thinking of choosing "analysis" for your research subject, then it's a good idea to attempt to solve them.

- 6. Let $1 \le p < \infty$, and let (x_n) be a sequence in l^p , $x_n = (x_{n1}, x_{n2}, \ldots) \in l^p$. Prove that
 - $x_n \xrightarrow{w} 0 \Leftrightarrow (x_n)$ is strongly bounded and $\forall i \lim_{n \to \infty} x_{ni} = 0$.