大学物理(下)

华中科技大学 张智 zzhang@hust.edu.cn

(Oscillations and Waves)

什么是振动?什么是波动?两者有何关系?

广义地,任一物理量在某个值附近来回变化就代表一个振动。

月落鸟啼霜满天 江枫渔火对愁眠 姑苏城外寒山寺 夜半钟声到客船

--张继 • 夜泊枫桥

意境很美

钟声尤妙

寒山寺

第11章 振动与波动 Oscillations and Waves

第1节 谐振动

第2节 振动的合成与分解

第3节 阻尼振动、受迫振动和共振

第4节 机械波

第5节 波的衍射与波的干涉

第6节 多普勒效应

第7节 电磁振荡与电磁波

任何一物理量在某一定值附近周期性变化的现象称振动。

力学量(如位移x) ——机械振动电磁量(如I、V、E、B)——电磁振荡

最基本、最简单、最重要的振动是谐振动。

复杂的振动 谐振动

任一物理量X在某一数值附近来回变化就称为振动。

若X(t)作周期性变化,X(t)=X(t+T),则

$$\mathbf{X}(t) = \sum_{i} A_{i} \cos(\omega_{i} t + \phi_{i})$$
 (傅里叶级数)
$$= \sum_{i} \mathbf{x}_{i}$$
 其中, A_{i} , ω_{i} , ϕ_{i} 为一系列常数。

若X(t)不作周期变化,则求和改成积分,并采用复数形式。 (傅里叶积分)

上式中每项 x_i 的形式均为 $x=A\cos(\omega t+\phi)$

故,任何振动都是形如 $x=A\cos(\omega t+\phi)$ 的振动的叠加。

方波的分解

例如:人耳的科蒂氏器官(包含上万条纤维,它们的振动频率各不相同。 声振动传入人耳后,相应于声振动所包含的各种谐振动频率的那些纤维被 激发而共振,刺激相应的神经末梢并传入大脑,人就是这样听到和识别各 种声音的。这里不仅是数学上的分解,而且是真实的物理过程。)

第1节 谐振动

1. 定义及运动方程

1) 动力学观点定义

物体在回复力

$$\vec{F} = -kx\vec{i}$$

作用下的运动。

2) 运动学观点定义

以水平弹簧振子为例:

理想模型: $m_{\ddot{\mathbf{m}}} = \mathbf{0}, f_{\ddot{\mathbf{p}}} = \mathbf{0}$

质点在某位置受力为零

平衡位置

(取为坐标原点)

离开平衡位置, 质点受的力总是与质点相对 平衡位置的位移成正比,并指向平衡点。

$$F = -kx$$

根据牛顿定律: $F=m\frac{\mathrm{d}^2x}{\mathrm{d}t^2}$ 则: $m\frac{\mathrm{d}^2x}{\mathrm{d}t^2}=-kx$

$$\frac{1}{2}mv^2 + \frac{1}{2}kx^2 = c$$

$$mv\frac{dv}{dt} + kx\frac{dx}{dt} = 0$$

$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$$

谐振动的运动方

2. 谐振动的数学表达式

(1)运动方程的解:

求解运动方程

$$x = A\cos(\omega t + \varphi) \longrightarrow$$

振动方程

物体的位置x按余弦函数随时间t而变化

若已知 $A \cdot \omega \cdot \phi$ 就唯一确定了一个谐振动

振动曲线

振动物体的<mark>位移</mark>x随时间 t变化的曲线

*振幅A:

振动物体离开平衡位置最大距离的绝对值

*角频率 ω :

2π 秒内振动的次数(描述简谐振动快慢)

$$\omega = 2\pi v$$
 $\omega = 0$

*初位相 φ :

表征振子在 t=0 时刻的运动状态

描 述 谐 振 动 *描述运动状态: 位置、速度

(平衡位置 ---- 振动物体受合外力为零的位置)

*位移x:

振动物体任一时刻离开平衡位置的距离

*周期T:

物体完成一次全振动所需的时间

*频率 v:

物体在单位时间内完成全振动的次数

(2) 振子的振动速度及加速度

$$x = A\cos(\omega t + \phi)$$

速度:
$$v = \frac{\mathrm{d}x}{\mathrm{d}t} = -\omega A \sin(\omega t + \phi) = \omega A \cos(\omega t + \phi + \frac{\pi}{2})$$

加速度:
$$a = \frac{\mathrm{d}v}{\mathrm{d}t} = -\omega^2 A \cos(\omega t + \phi) = \omega^2 A \cos(\omega t + \phi + \pi)$$

可见:

振子的速度v、加速度a均随t按余弦函数规律变化

(3) 振动周期T ——一次完整振动所需的时间

$$x = Acos(\omega t + \phi)$$

$$=Acos[\omega(t+T)+\phi]$$

$$=Acos[\omega t + \omega T + \phi]$$

固有频率:
$$v=\frac{1}{T}=\frac{\omega}{2\pi}$$

振幅 A: 决定振动的范围

 ω 、T: 决定振动的快慢

由余弦函数的周期得:

$$\omega T = 2\pi \qquad \therefore T = \frac{2\pi}{\omega}$$

$$\omega = 2\pi v$$
角频率/圆频率
$$\omega = \sqrt{\frac{k}{m}}$$

由系统本身性质(m, k)决定

$$\phi$$
?

固有周期

(4)位相 ——位置状态

$$x = A\cos(\omega t + \phi)$$

$$v = -\omega A \sin(\omega t + \phi)$$

$$a = -\omega^2 A \cos(\omega t + \phi)$$

振子振动时,任意时刻的运动状态取决于($\omega t+ \phi$)

$$\omega t + \phi = 0$$

$$x = A$$

$$v = 0$$

$$a = -w^2 A$$

$$\omega t + \phi = \frac{\pi}{2} \quad x = 0$$

$$x = 0$$

$$v = -w A$$
 $a = 0$

$$a = 0$$

$$\omega t + \phi = \phi$$

当 t=0 时: $\omega t+\phi=\phi$ 一般: $0 \le \phi < 2\pi$ 或 $-\pi \le \phi \le \pi$

初位相

综上所述: $A \cdot \omega \cdot \phi$ 为系统的三个特征量。

◆ 特征量的求法

(1) 求 (注意举一反三)

写出振子所受的合外力

根据牛顿第二定律

联立得

得
$$\omega = \sqrt{\frac{k}{m}}$$

固有频率、固有周期

(2) 求A

由
$$\begin{cases} \omega \\ \text{初始条件} t = \text{o时, } x_{o}, v_{o}, v_{o},$$

根据
$$\begin{cases} x = A\cos(\omega t + \varphi) \\ v = -A\omega\sin(\omega t + \varphi) \end{cases}$$

当
$$t = o$$
 时
$$\begin{cases} x_o = A\cos\varphi & \Rightarrow \cos\varphi = \frac{x_o}{A} \\ v_o = -A\omega\sin\varphi & \Rightarrow \sin\varphi = -\frac{v_o}{A\omega} \end{cases}$$

$$A = \sqrt{x_0^2 + \left(\frac{v_0}{\omega}\right)^2}$$
 \triangle \ddagger !

$$(3)$$
 求 φ

(3) 求
$$\varphi$$
根据
$$\begin{cases} x = A\cos(\omega t + \varphi) \\ v = -A\omega\sin(\omega t + \varphi) \end{cases}$$

当
$$t = 0$$
 时
$$\begin{cases} x_0 = A\cos\varphi & \Rightarrow \cos\varphi = \frac{x_0}{A} \\ v_0 = -A\omega\sin\varphi & \Rightarrow \sin\varphi = -\frac{v_0}{A\omega} \end{cases}$$

$$tg\varphi = -\frac{v_o}{x_o\omega}$$
 公式!

小结: 谐振动的特征、规律、判定与问题类型

1、特征

动力学特征

运动学特征(微分方程特征)

$$F_{
ho} = -kx$$

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \omega^2 x = 0$$

2、规律

位移 $x=Acos(\omega t+\phi)$ 振动方程

3、谐振动的判定

符合以上三个方程中任意一个的运动即为谐振动。

4. 谐振动问题类型:

- (1) 证明为谐振动,并求周期
- (2) 写出振动方程

5、由初始条件 (x_0, v_0) 定 A, ϕ

注意:振动状态由(x,v)描述。

若 t=0, 位移 x_0 , 速度 v_0 (初始条件)

初始状态

则可得
$$\begin{cases} A = \sqrt{x_0^2 + (v_0/\omega)^2} \\ tg\phi = -\frac{v_0}{\omega x_0} \end{cases}$$

然后根据 v_0 的正负决定 ϕ 的取舍! $v_0=-A \omega sin\phi$

例:某物体沿X轴(向右为正方向)作谐振动,其振动周期 $T=\pi$ s,t=0时, $x_0=4$ m, $v_0=6$ m/s,且向右运动。求物体的振动方程。

解:
$$x = A\cos(\omega t + \varphi)$$
 $v = -\omega A\sin(\omega t + \varphi)$

$$\omega = \frac{2\pi}{T} = 2 \text{ rad/s} \qquad A = \sqrt{x_0^2 + (\frac{v_0}{\omega})^2} = \sqrt{4^2 + 3^2} = 5 \text{ m}$$

$$\varphi = tg^{-1} \frac{-v_0}{\omega x_0} = tg^{-1}(-\frac{6}{4 \times 2}) = \frac{143}{-36.8^\circ}$$

$$\Rightarrow \frac{1}{2} = \frac{1$$

$$v_0 = -A \cos in \varphi$$
 而 $v_0 > 0$,
所以, $\varphi = -36.8^\circ = -0.64$ rad
故,所求的振动方程为 $x = 5 \cos(2t - 0.64)$ m

$$A = \sqrt{x_0^2 + (v_0/\omega)^2}$$

$$tg\varphi = \frac{-v_0}{\omega x_0}$$

由 ν_0 定 φ 的取舍!

例: 弹簧振子
$$\begin{cases} m = 5 \times 10^{-3} \text{ kg} \\ k = 2 \times 10^{-4} \text{ N m}^{-1} \end{cases}$$

$$t = 0$$
 时 $x_0 = 0$ $U_0 = 0.4$ m s⁻¹

完成振动方程
$$x = 2 \cos(0.2t + \frac{3}{2}\pi)$$
(SI)

解:
$$\omega = \sqrt{k/m}$$

$$= 0.2 \text{ (rad } \cdot \text{s}^{-1})$$

$$A = \sqrt{x_0^2 + \frac{v_0^2}{\omega^2}}$$

$$= 2 (m)$$

例:已知

谐振动的 $X\sim t$ 曲线

完成下列振动方程

$$x = 0.04 \cos \left(\frac{\pi}{2} t + \frac{\pi}{2} \right) (SI)$$

解:由图知:

$$(A) \varphi = \frac{\pi}{4}$$

$$A = 0.04 \text{ (m)}$$

(B)
$$\varphi = \frac{\pi}{3}$$

$$T=2$$
 (s)

(C)
$$\varphi = \frac{\pi}{2}$$

故:

(D)
$$\varphi = \pi$$

$$\omega = 2 \pi / T = \pi \pmod{s}$$

已知 t=0 时,

$$x_0=0, v_0<0$$

$$\exists: x_0 = A \cos \varphi$$

$$v_0 = -\omega A \sin \varphi$$

$$\therefore \quad \varphi = \pi / 2$$

3. 谐振动的种类

(1) 线谐振(例-弹簧振子)

$$\begin{cases} \sum F = -kx \\ x = A\cos(\omega t + \varphi) \end{cases}$$

轨迹是直线

(2) 角谐振(例-单摆)

$$\begin{cases} \sum M = -k\theta \\ \theta = \theta_m \cos(\omega t + \varphi) \end{cases}$$

轨迹是曲线

角谐振-单摆

证明当单摆的摆角 θ 很小时,其运动为谐振动,并求其周期T。(忽略空气摩擦)

证明: 单摆在运动方向受力:

$$F_t = mg\sin\theta$$
 切向力

 $\theta << 1$ $\sin \theta \approx \theta$

∴ $F_t = -mg\theta$ $\theta \rightarrow$ 为质点的角位移可见, F_t 起回复力的作用

$$\mathbf{X}: \mathbf{F}_t = \mathbf{m}\mathbf{a}_t \quad \mathbf{a}_t = l\boldsymbol{\beta} = l \cdot \frac{\mathrm{d}^2\boldsymbol{\theta}}{\mathrm{d}t^2}$$

$$: ml \frac{d^2\theta}{dt^2} = -mg \theta \Leftrightarrow : \omega = \sqrt{\frac{g}{l}}$$

即得: $\frac{d^2\theta}{dt^2} + \omega^2\theta = 0$ →谐振动

摆动周期:

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{l}{g}}$$

利用能量关系证明:当单摆的摆角 θ 很小时,其运动为谐振动,并求其周期T。(忽略空气摩檫)

证:只有重力做功,故系统机械能守恒。

$$\frac{1}{2}mv^2 + mgl(1 - cos\theta) = c$$

$$mv \frac{dv}{dt} + mgl sin\theta \frac{d\theta}{dt} = 0$$

$$v \frac{\mathrm{d}(l\omega)}{\mathrm{d}t} + g \sin\theta \cdot l\omega = 0$$

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} + \frac{g}{l}\theta = 0 \quad (\sin \theta \approx \theta)$$

$$\Leftrightarrow \omega = \sqrt{\frac{g}{l}}$$

即得: $\frac{d^2\theta}{dt^2} + \omega^2\theta = 0$ →谐振动

摆动周期:

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{l}{g}}$$

对角谐振动
$$\theta = \theta_m \cos(\omega t + \varphi)$$

单摆的应用

通过测T,来测g

例:一位月球探险家,安装了一个长为860mm的单摆, 并测出在微小位移时摆的周期 T=4.6s, $g_{\parallel}=?$

显然: 由
$$T=2\pi\sqrt{\frac{l}{g}}$$

显然: 由
$$T=2\pi\sqrt{\frac{l}{g}}$$
 可得: $g_{\parallel}=(\frac{2\pi}{T})^2l=1.6 \text{ m/s}^2$

物理前沿问题

在单摆的讨论中,隐含了一个前提条件:

$$m$$
惯= m 引

$$F_t = ma_t$$
 $F_t = m_{\sharp}a_t$

$$F_{\exists \mid} = m_{\exists \mid} \frac{GM}{r^2} \qquad F_{\underline{\pi}} = m_{\exists \mid} g$$

$$: m \not \exists l \frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = -m \not \exists l g \theta$$

$$F_t = mg\sin\theta$$

$$F_t = ma_t a_t = l\beta = l \cdot \frac{d^2 \theta}{dt^2}$$

若:
$$m_{\text{惯}} = m_{\text{引}}$$
 则: $\omega^2 = \frac{m_{\text{引}}g}{m_{\text{惯}}l}$ $T = 2\pi \sqrt{\frac{m_{\text{惯}}l}{m_{\text{引}}g}}$

$$T = 2\pi \sqrt{\frac{m_{\parallel}l}{m_{\parallel}g}}$$

例.将一倔强系数为k的轻质弹簧竖直悬吊。最初弹簧没有拉伸,然后把质量为m的物块加到另一端,达到平衡时,弹簧伸长了 l_1 ,物块又被向下拉了 l_2 后,静止释放。(1)证明系统作简谐振动。(2)求其振动方程.

例: 证明下列两种情况下,物体作谐振动。

解: (a)
$$mg \sin \theta = k\Delta L$$

$$f = mg \sin \theta - k(\Delta L + x) \qquad f = mg - k(\Delta L + x)$$

$$= -kx \qquad = -kx$$

$$\frac{d^2x}{dt^2} = -\frac{k}{m}x$$

(b) $mg = k\Delta L$

例: 一质量为m的柱体浮在水面上,其横截面积为S。证明其在水中的铅直自由运动是谐振动,并求其振动周期。

解: $mg = \rho g(SL)$ $f = -\rho gS(x+L) + mg$ $= -\rho gSx$ 运动方程:

$$m\frac{\mathrm{d}^2x}{\mathrm{d}^2t} = -\rho gSx$$

$$\frac{\mathrm{d}^2 x}{\mathrm{d}^2 t} + \frac{\rho g S}{m} x = 0 \longrightarrow \frac{\mathrm{d}^2 x}{\mathrm{d}^2 t} + \omega^2 x = 0$$

$$\omega = \sqrt{\frac{\rho gS}{m}}$$

$$\therefore T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{\rho gS}}$$

例: 光滑U形管的截面面积为S,管中流体 的质量为m、密度为 ρ ,求液体振荡周期。

解:设t时刻液面偏离平衡位置的高度为 y。

机械能守恒:
$$\frac{1}{2}mv^2 + (E_P + \Delta E_P) = C^{-\rho Syg \cdot \frac{y}{2}}$$

$$\frac{1}{2}mv^2 + \rho Syg \cdot y = C - E_P$$
 平衡时液

$$\frac{1}{2}mv^2 + \rho Sgy^2 = C - E_P$$

两边求导得: $m\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + 2\rho Sgy = 0$

$$m\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = -2\rho Syg$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + 2 \frac{\rho Sg}{m} y = 0$$

液柱作谐振动。

平衡时液
体的总势
能为一常
数(设为
$$E_P$$
)。

中流体
周期。

$$\rho Syg \cdot \frac{y}{2}$$

平衡位置
 O
平衡位置
 $F = -2yS \cdot \rho \cdot g$ $F = m \frac{d^2y}{dt^2}$
 $-2yS \cdot \rho \cdot g = m \frac{d^2y}{dt^2}$
 $\frac{d^2y}{dt^2} + 2\frac{\rho Sg}{m}y = 0$
 $\frac{m}{2\rho Sg} \leftarrow \frac{d^2y}{dt^2} + \omega^2 y = 0$ $\omega = \sqrt{\frac{2\rho Sg}{3m}}$