Recurrent Independent Mechanisms

https://arxiv.org/pdf/1909.10893.pdf

Flexible Learning Reading Group, 8th Jan

NeurIPS 2019

SYSTEM 1 VS. SYSTEM 2 COGNITION

2 systems (and categories of cognitive tasks):

Manipulates high-level / semantic concepts, which can be recombined combinatorially

System 1

- Intuitive, fast, UNCONSCIOUS, non-linguistic, habitual
- · Current DL

System 2

- Slow, logical, sequential, CONSCIOUS, linguistic, algorithmic, planning, reasoning
- · Future DL

₩Mila

https://slideslive.com/38921750/from-system-1-deep-learning-to-system-2-deep-learning

Challenge: Handle Changes in Distribution

Assumption of IID data is necessary for generalization

But: most data is not IID,
 Agents face non-stationarities

The Black Swan

http://sites.utexas.edu/climatesecurity/2019/12/16/cli ate-change-and-black-swan-a-case-for-alarmism/

- Compositionality helps systematic IID and OOD generalization
 - Dynamically recombine existing concepts

Changes are Consequences of Interventions

Builds on informationally *independent mechanisms* (Schölkopf et al. 2012)

Good representation of mechanisms ⇒ Only few bits/observations needed

SOTA struggles with fully independent mechanisms

Fully-connected layers are used over entire hidden state

- → Information separation between states only possible if most entries are zero
- → No perfect modularity (just well enough for training data)
- → Poor generalization to changing environment

Learning independent mechanisms that can flexibly be reused, composed and re-purposed is desirable!

Computation through Attention

The attending RNN generates a query describing what it wants В to focus on. Each item is dot producted with the guery to produce a score, describing softmax how well it matches the query. The scores are fed into a softmax to create the attention distribution.

(...the transformer network, machine translation type...)

- Consider all options in parallel but focus only few relevant elements
 - learn where to attend
 - sequentially use the right words
- Attention as dynamic connection
 - allows developing (fairly) independent subsystems
- Information bottleneck!

https://distill.pub/2016/augmented-rnns/

Recurrent Independent Mechanisms

- Soft-attention: Attention $(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d}}\right)V$,
 - Queries come from the RIMs, while keys and values come from the current input

- Soft-attention: Attention $(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d}}\right)V$,
 - Queries come from the RIMs, while keys and values come from the current input
- Parameters of attention mechanism itself are separate for each RIM
 - o Input at time t is set of elements x_t . $X=\emptyset\oplus x_t$. $K=XW^k, V=XW^v, Q=RW^q_k$

- Soft-attention: Attention $(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d}}\right)V$,
 - Queries come from the RIMs, while keys and values come from the current input
- Parameters of attention mechanism itself are separate for each RIM
 - o Input at time t is set of elements x_t . $X=\emptyset\oplus x_t$. $K=XW^k, V=XW^v, Q=RW^q_k$
- Attention: $A_k^{(in)} = \operatorname{softmax}\left(\frac{RW_k^q(XW^k)^T}{\sqrt{d_e}}\right)XW^v$, where $\theta_k^{(in)} = (W_k^q, W^e, W^v)$.

- Soft-attention: Attention $(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d}}\right)V$,
 - Queries come from the RIMs, while keys and values come from the current input
- Parameters of attention mechanism itself are separate for each RIM
 - o Input at time t is set of elements x_t . $X=\emptyset\oplus x_t$. $K=XW^k, V=XW^v, Q=RW^q_k$
- Attention: $A_k^{(in)} = \operatorname{softmax}\left(\frac{RW_k^q(XW^k)^T}{\sqrt{d_e}}\right)XW^v$, where $\theta_k^{(in)} = (W_k^q, W^e, W^v)$.
- ullet At each step, select the top ${\sf k_{\scriptscriptstyle A}}$ RIMs to be activated $o \mathcal{S}_t$

Communication between RIMs

- Attention mechanism allows sharing of information among the RIMs
 - o activated RIMs can read from all other RIMs

$$\begin{split} Q_{t,k} &= \tilde{W}_k^q \tilde{h}_{t,k}, \quad \forall k \in \mathcal{S}_t \\ K_{t,k} &= \tilde{W}_k^e \tilde{h}_{t,k}, \quad \forall k \\ V_{t,k} &= \tilde{W}_k^v \tilde{h}_{t,k}, \quad \forall k \\ h_{t+1,k} &= \operatorname{softmax} \left(\frac{Q_{t,k} (K_{t,:})^T}{\sqrt{d_e}} \right) V_{t,:} + \tilde{h}_{t,k} \quad \forall k \in \mathcal{S}_t, \text{ where } \theta_k^{(c)} = (\tilde{W}_k^q, \tilde{W}_k^e, \tilde{W}_k^v). \end{split}$$

Experiments

- Drop-in replacement for an LSTM or GRU cell, following the exact same interface with the exact same inputs and outputs.
 - No change to the loss function which results from using RIMs
- Diverse tasks, focus on changing environments

Temporal Task: Copying

- → Receiving short sequence of characters
- → Blank inputs for large number of steps
- → Task: Reproduce the original sequence

Copyin	g			Train(50)	Test(200)
$k_{ m T}$		k_{A}	$h_{ m size}$	CE	CE
RIMs	6	5	600	0.01	3.5
	6	4	600	0.00	0.00
	6	3	600	0.00	0.00
	6	2	600	0.00	0.00
	5	3	500	0.00	0.00
LSTM	-	-	300	0.00	2.28
	82	_	600	0.00	3.56
NTM	-	3 - 2	_	0.00	2.54
RMC	-	-	-	0.00	0.13
Transformers			-	0.00	0.54

⇒ RIMs can specialize over distinct patterns in the data and improve generalization to settings where these patterns change

Temporal Task: Sequential MNIST

- → Receiving sequence of pixels
- → Train on 14x14 resolution
- → Task: Classify MNIST digits

Sequen	tial	MNI	ST	16 x 16	19 x 19	24 x 24
$k_{ m T}$		$k_{ m A}$	$h_{ m size}$	Accuracy	Accuracy	Accuracy
	6	6	600	85.5	56.2	30.9
DING	6	5	600	88.3	43.1	22.1
RIMs	6	4	600	90.0	73.4	38.1
LSTM	_	-	300	86.8	42.3	25.2
	-	-	600	84.5	52.2	21.9
EntNet	-	_	_	89.2	52.4	23.5
RMC	_	_	_	89.58	54.23	27.75
DNC	-	-	-	87.2	44.1	19.8
Transfo	rm	ers -	-	91.2	51.6	22.9

⇒ RIM model shows higher robustness to changing the sequence length and is able to pass gradients through large empty regions

Object Task: Bouncing Ball Environment

→ Multiple balls with independent movement, except for collision events

Object Task: Environment with Novel Distractors

- → Task: Agent must retrieve a specific object in the presence of distractors
- → Challenges: Partial observability of environment and sparsity of reward

Generalization in Complex Environments Task

- → RL agent trained using PPO with a recurrent network producing the policy
 - → Task: Learn to play Atari games (with same PPO settings)

⇒ RIM improves most in environments with a dynamic combination of risks and opportunities, since it allows to rapidly adapt information processing

Conclusion

- New architecture that reflects independence of mechanisms in the real world
 - Inductive bias from SOTA RNN models: FC ↔ all processes interact
- RIMs with sparse interaction (attention) lead to improved OOD generalization
 - o Experiments show specialization and improved robustness to changing task distributions
- Support for consciousness prior...?

operating on sets of pointable objects with dynamically recombined modules modularize computation and operate on sets of named and typed objects in a DL

way

apply idea of independent mechanisms to RNNs