COMPUTER VISION 2018 - 2019

>PERFORMANCE MEASURES

UTRECHT UNIVERSITY
RONALD POPPE & ALEXANDROS STERGIOU

OUTLINE

Recap

Reporting performance

Overfitting vs underfitting

Data augmentation

Negative hard mining

Assignment

RECAP

RECAP

RECAP²

If we are to classify images, we need a trained classifier

We can train a classifier using training data

 Supervised learning requires a dataset of pairs of image features with image labels (x, y)

There are many different classifiers

RECAP³

Once we have a trained classifier, we can classify images of which we do not know the label ("unseen data")

First, we calculate image features:

- HOG
- SIFT
- Color histogram
- Etc.

Then we test/evaluate the trained classifier

PERFORMANCE MEASURES

PERFORMANCE MEASURES

Often, we want to know how good a trained classifier is

- Requires objective and insightful measures
- Always a summarization of the data
- Single measure usually doesn't tell the whole story

We discuss performance measures

- For image classification
- For object detection

PERFORMANCE MEASURES²

Performance measures typically calculated on the test set

- Can also be used during validation to select the best parameters
- Can also be used during training to guide the optimization (loss function discussed next lecture)

PERFORMANCE MEASURES³

Consider a binary classification problem

- True class (ground truth) is either the target class or "other"
- Guess (classification outcome) is either the target class or "other"

When we calculate the performance over an entire test set

- The guess for each image is either correct or incorrect
- Accuracy: percentage of correct classifications across the test set
- Naturally between 0% (no correct classifications) and 100% (all correct)

PERFORMANCE MEASURES⁶

A class ther or other the class mistake can have a different importance

 E.g. guessing that someone is not ill whereas the person is, can have dramatic consequences

Especially when there is a skewed distribution, it is advisable to use more informative performance measures

Allows us to put more emphasis on a minority class

PERFORMANCE MEASURES⁷

Based on the fact that an image has an actual label and a guessed label, we define:

- True positive: actual class guessed right
- True negative: other class guessed right
- False negative: actual class guessed wrong (missed detection)
- False positive: other class guessed wrong (insertion)

Guessed

Actual

	True	False
True	True positive	False negative
False	False positive	True negative

PERFORMANCE MEASURES⁸

Usually, we use the precision (P) and recall (R) measures:

Guessed

Actual

	True	False	
True	True positive	False negative	
False	False positive	True negative	

- P = TP / (TP + FP)
- Of all guesses, how many percent is correct
- R = TP / (TP + FN)
- Of all actual instances of the class, how much percent was found

PERFORMANCE MEASURES⁹

Often, there is a trade-off between precision and recall

- Due to a threshold or by changing a parameter
- As a result of varying amounts of training data

PERFORMANCE MEASURES¹⁰

Only 100% precision and 100% recall when classes are perfectly separable

When the other class becomes larger, precision and recall usually drop

More difficult to identify the target class amongst the other class

PERFORMANCE MEASURES¹¹

We often want to say something about both precision and recall, at the same time

- E.g. to say which of two outcomes is best, two numbers create ambiguity
- To select the best set of parameters, or to guide the training (loss function)

Three options:

- F-score
- Curve-based
- Recall@X, precision@Y

PERFORMANCE MEASURES¹²

F-score is a measure that takes both precision and recall into account

- It is sometimes called the "harmonic mean" of P and R.
- Or f1-score, f-measure

$$F-score = 2 * P * R / (P + R)$$

Naturally between 0 and 1

Relatively steep decline when P or R decreases

PERFORMANCE MEASURES¹³

We can use a PR-curve to show how P and R are related as a function of the changing parameters

E.g. amount of training data or a threshold

PERFORMANCE MEASURES¹⁴

The average precision (AP) is the area under the PR-curve

 Single number that tells us how specific our results are to a range of parameters

Some issues when calculating (AP)

- Interpolation (red vs. blue line)
- Missing values for recall 0 and/or 1

PERFORMANCE MEASURES¹⁵

An alternative is the receiver-operating characteristic (ROC) curve

- Y-axis: Sensitivity (recall, true positive rate) = TP / (TP + FN)
- X-axis: 1-Specificity (1 true negative rate) = 1 TN / (TN + FN)

Area under the curve (AUC) is single-value measure

Calculation similar to AP

PERFORMANCE MEASURES¹⁶

We can also assume a specific value for either P or R and report the value on the other

Examples:

- Precision@90% recall
- Recall@80% precision

PERFORMANCE MEASURES¹⁷

For a multi-class problem

Image class is from a limited set of class labels

We can still consider a guess correct or incorrect

- Not all mistakes might be equally bad
- Biases in the class distribution might go unnoticed

We can also look at the type of mistakes/confusions

PERFORMANCE MEASURES¹⁸

A confusion matrix shows these confusions

Rows: true class labels

Columns: guessed class labels

Accuracy can be calculated by dividing the sum of the diagonal by the sum of all cells

Estimated/guessed class

True class

	Ferrari	McLaren	Daihatsu
Ferrari	40	7	3
McLaren	8	30	2
Daihatsu	4	1	5

PERFORMANCE MEASURES¹⁹

For object detection, we estimate the object class and location (bounding box)

- Introduces additional complexity regarding position and size
- Requires a criterion what constitutes a "match"

PERFORMANCE MEASURES²⁰

We say that a guess is correct if it "sufficiently" overlaps with the actual (ground truth) location

Requires a threshold

Sufficient can be percentage of "intersection over union" (IoU)

- Divide the area of overlap by the area of union
- Area of union is area1 + area2 overlap1-2
- IoU naturally between 0 and 1

PERFORMANCE MEASURES²¹

For object detection, we typically evaluate many different regions

- Slightly different scales and positions
- Many detections can represent the same object

PERFORMANCE MEASURES²²

We need to filter "duplicate" object guesses out

• Ideally, we end up with one guess for each object of interest

When we detect objects, the assumption is that we have a score that indicates the classifier's confidence

 Non-maximum suppression is an algorithm that filters out duplicates based on these detection scores

PERFORMANCE MEASURES²³

After object detection (sliding window, selective search, etc.), we have a list of detections:

Bounding boxes with associated detection scores

Basic idea of Non-Maximum Suppression (NMS):

- Sort detections based on detection score (highest first)
- Iteratively remove bounding boxes that overlap with those with higher detection scores

PERFORMANCE MEASURES²⁴

Conceptually: keep the best detections at a certain area, across variations in position and size

Minimum overlap to remove detections determined empirically

- Intersection over union
- Typically set to 0.5

Result is a limited list of detections

PERFORMANCE MEASURES²⁵

Based on the remaining detections, we can again say whether it is correct or not

- Matching problem turned into binary problem
- All previously discussed performance measures apply

Alternatively, we can decide not to filter, and use other measures:

- False positives per window (FPPW)
- False positives per image (FPPI)

Typically, curves such as missed detections vs. FPPW are used

QUESTIONS?

OVERFITTING VS UNDERFITTING

OVERFITTING VS UNDERFITTING

Ideally, our machine learning model generalizes perfectly on a validation/test set

Overfitting occurs if our trained model is tailored to the training data

Usually too many parameters for the amount of training data

Underfitting occurs if the complexity of our model is too low

Usually too few parameters to model the difference between classes

OVERFITTING VS UNDERFITTING²

Finding the right balance between overfitting and underfitting is difficult

In practice, always found empirically

When iteratively training a machine learning model, consider performance on training and validation set

If scores start to diverge: overfitting

Underfitting can only be identified when iteratively increasing the machine learning model's complexity and observing the scores

DATA AUGMENTATION

DATA AUGMENTATION

A training set should be representative of the application domain

Cover relevant variations in nuisance factors

Adding more data can help to cover more variation

Sometimes not possible

Using data augmentation, we synthetically inflate the variation

 No new images, just variations (transformations) of our original training data

DATA AUGMENTATION²

The primary goal for the creation of new data is:

- Changing the pixel values without changing the image label
- So label distribution remains the same but number of images per class increases
- Ideal for stratification

34	185	207	21	36	
148	52	24	147	123	
250	74	214	278	41	ľ
0	78	51	247	255	
72	74	136	251	74	

DATA AUGMENTATION³

Horizontal flips

- Straight-forward technique
- Doubles the size of the dataset

Make sure mirroring is justified

Can we mirror an image of two people shaking hands?

DATA AUGMENTATION⁴

Angle rotation

- Defining a number that the image can be rotated/tilted (left-right)
- Typically small angles (-30 30)

• Effectively targets rotation invariance

DATA AUGMENTATION⁵

Random crops

- Select parts of the image by cropping and resizing it
- Make sure crops contain "enough" of the object
- Effectively targets translation invariance

DATA AUGMENTATION⁶

Color jitter

- Randomly jitter contrast to produce new images
- Can also be performed per color channel

- Can also be done locally
- Effectively targets lighting invariance

DATA AUGMENTATION⁷

There are plenty of other ways of performing data augmentation

- Stretching, shearing
- Distortions, blending of images

Most importantly:

- Different techniques can be combined
- Significantly increases the number of transformed images

Remember: there is no real substitute for additional images, but data augmentation can help

QUESTIONS?

HARD NEGATIVE MINING

HARD NEGATIVE MINING

When we evaluate a trained classifier, it is likely to return false positives

- Images that resemble (in some way) the target class
- Ideally, we learn from these mistakes!

HARD NEGATIVE MINING²

We can retrain the classifier using these false positives

Ensure test data is not used for training!

Typical for training object detectors

Recipe:

- Train object detector using initial positive and negative training images
- Run object detector on training set and find false positives
- Re-train object detector using augmented training set

HARD NEGATIVE MINING²

Hard negative mining can be used iteratively

Risk that number of positive samples is eventually too small

- This causes undersampling
- Overfitting can then occur

QUESTIONS?

ASSIGNMENT

ASSIGNMENT

Assignment 4:

- Essential piece of Python coding
- Will be interactively discussed in first practical session
- Tuesday March 19, 13:15-15:00, BBG-209
- Deadline Sunday March 24, 23:00

ASSIGNMENT²

In Assignment 5, you will develop a pipeline to train/test CNNs

- Choice for ANN if you do not have a GPU: contact Alex Stergiou
- Coding in Python: TensorFlow and Keras
- Deadline Sunday April 14, 23:00

Two practical sessions:

- Tuesday March 19, 13:15-15:00 BBG-209
- Tuesday March 26, 13:15-15:00 BESTUURS-LIEREGG

ASSIGNMENT³

Action recognition: determining what a person in an image does

Stanford 40 Action dataset: 40 actions, ~6k images

ASSIGNMENT⁴

In a nutshell:

- Train and test a CNN/ANN pipeline for action recognition
- Evaluate various algorithmic improvements
- Develop an algorithm for parameter search

Reporting is important:

- Motivate your choices
- Document your results (with graphs and tables)
- Reflect on your choices and results

COORDINATION

From here on, Alex Stergiou will teach lectures, practical sessions and will provide feedback for and grade the assignments

Contact him at a.g.stergiou@uu.nl or use Slack

For all organizational matters, contact me at r.w.poppe@uu.nl

See you at the Exam Q&A lecture on Tuesday April 2

NEXT LECTURE

Next lecture:

- Thursday March 14, 11:00-12:45, RUPPERT-042
- Neural networks