PACENT ABSTRACTS OF JAPAN

(11)Publication number:

08-250749

(43) Date of publication of application: 27.09.1996

(51)Int.CI.

H01L 29/786 H01L 21/336 H01L 21/20 H01L 21/265

(21)Application number: 08-020541

(71)Applicant: SEMICONDUCTOR ENERGY LAB CO LTD

(22)Date of filing:

10.01.1996

(72)Inventor: YAMAZAKI SHUNPEI

(30)Priority

Priority number: 07 21012

Priority date: 13.01.1995

Priority country: JP

(54) MANUFACTURE OF THIN FILM TRANSISTOR AND PRODUCTION DEVICE THEREOF

(57)Abstract:

PURPOSE: To improve the characteristics and reliability of a thin film transistor having an active layer consisting of a silicon film crystallized using a catalyst element.

CONSTITUTION: A catalyst element, such as nickel, is added to an amorphous silicon film 103 to anneal the film 103, whereby this film 103 is crystallized at a temperature lower than the distortion temperature of a glass substrate to form an active layer 105 of a TFT, N-type or P-type impurity ions are implanted in the film 105 in a state that the layer 105 is heated at 100 to 400° C. As the layer 105 is properly heated, the impurity ions are also activated on the spot, damage due to an ion-beam emission is immediately removed and a defect, a distortion and the like are not also left. As this result, such a phenomenon that the catalyst element is agglomerated in the boundary between source/drain regions 108 and 109 and a channel is eliminated and the characteristics (specially, an off-state current) and reliability of the TFT are improved.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Japanese Laid-Open Patent Publication No. 8-250749/1996 (Tokukaihei 8-250749) (Published on September 27, 1996)

(A) Relevance to Claims

The following is a translation of passages <u>related</u> to all the claims of the present invention.

(B) Translation of Relevant Passages

[Abstract]

[Objective] To improve characteristics and reliability of a thin film transistor having an active layer made of a film of silicon crystallized using a catalytic element. [Constitution] An active layer 105 including TFTs is formed by adding a catalytic element, such as nickel, to an amorphous film 103 and anneal the product to crystalize it at temperatures not exceeding distorting temperature of glass substrates. N- or p-type impurity ions are injected to the active layer 105 which is heated up to 100-400 degrees Celsius. The suitable heating of the active layer 105 activates the impurities on the spot. Damage caused by ion projection is healed, leaving no defects nor distortions. As a result, no catalytic

elements aggregates at interfaces between the source/drain 108, 109 and channels, improving characteristics (especially, the off current) and reliability of a thin film transistor.

(22)

3

(11) 特粹出版公园番号

(43)公開日 平成8年(1998)9月27日

特開平8-250749

21/265	21/20	21/336	H01L 29/786	(51) Int.Cl.*
٠				
				庁内盛理恐号
			H01L	P I
29/78	21/265	21/20	29/78	
627G	A		616L	
				技特表示印所

(全14頁)

(33) 囚先約主張国 (32) 紅先日 (31) 囚先如主强番号 (22) 出頭日 (21)出顾春月 **特回平7-21012** B本 (JP) 平7 (1995) 1月13日 特回平8-2054 平成8年(1996)1月10日 (71)出版人 000153878 (72) 発明者 本数 野門 以体エネルギー研究所内 神奈川贝耳木市長谷398番炮 株式会社半 神奈川県原本市長谷398番地 殊式会社半導体エネルギー研究所

ら成る活性層を有する苅膜トランジスタの特性・信頼性 【目的】 触媒元菜を用いて結晶化されたシリコン膜か

なくなり、TFTの特性(特にオフ亞流)、個類性が向 ない。この結果、ソース/ドレイン108、109とチ いるので、不純物もその場で活性化され、イオン照射に 物イオンを注入する。活性和105は適度に加熱されて ャネルの境界に触媒元素が凝集するというような現象が よるダメージは直ちに除去されて、欠陥・歪み等も残ら れをガラス基板の歪み温度以下の温度で結晶化させて、 の触媒元素を添加して、熱アニールすることにより、こ $0\sim400$ °Cに加熱した状態で、N型もしくはP型不純 TFTの活性图105を形成する。活性图105を10 【杵成】 アモルファスシリコン膜103にニッケル等

【特許朝水の英囲】

れたゲイト包掻とを有する苻騏トランジスタの製造方法 単結晶半導体被膜と、該非単結晶半導体被膜上に形成さ 019原子/cm3 の過度の金属元霖を有する范膜状の非 【請求項1】 基板上に形成され、1×10¹⁵~1×1

のイオンを加速して照射することを特徴とする辞牒トラ で、前記不鈍物イオンと、水菜イオンもしへはハロゲン る不純物をドーピングする際に、基板を加熱した状態 蒋膜トランジスタに N型もしくは P型の導館型を付与す

れたゲイト電極とを有する符膜トランジスタの製造方法 単結晶半導体被膜と、該非単結晶半導体被膜上に形成さ 019原子/cm3 の過度の金属元素を有する范膜状の非 【請求項2】 基板上に形成され、1×10¹⁵~1×1

ることを特徴とする砕膜トランジスタの製造方法。 **しくはハロゲンのイオンを加速して、前記基板に照射す** 2のチャンパーで、貞記不慎物イオンと、水珠イオンも 記基板を加熱した後に、実効的な加熱手段を有しない第 る不鈍物をドーピングする際に、第1のチャンパーで原 **茚膜トランジスタにN型もしくはP型の導程型を付与す**

せる共に、前記シリコン膜を結晶化せしめる工程と、 より、前記シリコン膜中に前記結晶化触媒元素を拡散さ 工程と、(2)前記シリコン膜を熱アニールすることに に実質的に密宕して、金馭元栞を有する被膜を形成する **状態のショコン膜と、該ショコン膜の上面もしへは下面** 【額求項3】 (1)基板上に、実質的にアモルファス

摂トランジスタの製造方法。 物領域を形成する工程と、を有することを特徴とする常 **アスクにして、前記シリコン版にN型もしへはP型の楽 啞型を付与する不純物をドーピングして、低温度の不禁** 100~400℃に加熱した状態で、前記ゲイト段極を スタのゲイド電極を形成する工程と、(4)前記基板を (3) 結晶化された前記ショコン膜上に、溶膜トランジ

徴とする茚膜トランジスタの製造方法。 って得られた数値の最小値によって定義されることを特 半導体被脱を2次イオン質口分析法に分析することによ 単結晶半導体被膜中の金属元素の殺度は、前記非単結晶

くとも 1 つであることを特徴とする苻殿トランジスタの は、ニッケル、鉄、コバルト、白金、バラジウムの少な 【蔚求項5】 「蔚求項1乃至3において、前記金函元案

でであることを特徴とする范膜トランジスタの製造方 しくはドーピング直前の基板の温度は、100~400 **口型を付与する不純物をドーピング時の基板の温度、も** 【胡朱珥6】 **群求項1乃至群求項3において、前記等**

「脚求項7] 脚求項1乃至3において、前記導砲型を

ことを特徴とする頑膜トランジスタの製造方法。 ーパング直前の基板の温度は、200~350℃である 付与する不純物をドーピング時基板の過度、もしへはド

的な加熱手段を有せず、N型もしくはP型の導位型を付 基板を加熱する手段を有する第1のチャンパーと、実効 有する砕膜トランジスタの製造装置において、 単結晶半導体被膜と、その上に形成されたゲイトは極を 【請求項8】 基板上に形成され、1×10¹⁵~1×1

イオン照射時に、第2のチャンパーにおいて、前記基板 与する不純物イオンと、水漿イオンもしくはハロゲン元 ャンパーとを少なくとも有し、 **菜のイオンを加速して、照射する手段を有する第2のチ**

の温度を100~400℃に保持することを特徴とする **苻膜トランジスタの製造装置。** 【薜求項9】 基板上に形成され、1×10¹⁵~1×1

イオンをドーピングするためのチャンパーを有し、該チ れたゲイト貿極を有する苅膜トランジスタの製造装置に 019原子/cm3 の温度の金属元素を有する符膜状の非 単結晶半導体被膜と、該非単結晶半導体被膜上に形成さ

物イオンと、水採イオンもしへはパロゲン元採のイオン ャンパーは、N型もしくはP型の尊兌型を付与する不頼 を加速して、照射する手段と、基板を加熱する手段とを

を100~400℃に保持することを特徴とする辞膜ト **ランジスタの製造装置。 イオン照射時に、前記チャンスーにおいて、基板の温度**

(発明の詳細な説明)

[0001]

置に関するものである。 と、その製造装置に関するものであり、特に、ソース/ を付与する不純物のドーピング方法及び、ドーピング装 ドレイン等を作唆するためのN型もしくはP型の導体型 有する淬膜トランジスタ(TFT)およびその製造方法 【蔗棄上の利用分野】本発明は、非単結晶半導体淬膜を

ン等の半導体基板上、いずれに形成されるものをも対象 ンジスタは、ガラス等の絶縁甚板上、又は単結晶シリコ 【0002】なお、本発明によって作製される范膜トラ

[0003]

結晶性シリコンTFTというように区別されている。結 料・結晶状態によって、アモルファスシリコンTFTや 熱心に研究されている。これらは、利用する半導体の材 四の研究がなされている。特に、頑膜状の絶縁ゲイト型 トランジスタ、いわゆる苺膜トランジスタ (TFT) か 晶性シリコンとは言っても、単結晶ではない非単結晶の (活性領域ともいう)を有する絶縁ゲイト型の半導体装 【従来の技術】最近、絶縁基板上に、淬脱状の活性忍 8

特別平8-250749

おこなわれているようなLDD(低辺度ドレイン) 杵造 より良い特性を得るには、単結晶半導体のMOSICで りも電界移動度が大きく、このため、高速動作が可能で を設けることが好ましいと指摘されている。 で、CMOS回路を作製することが可能である。また、 Tのみでなく、PMOSのTFTも同様に得られるの ある。したがって、結晶性シリコンではNMOSのTF 【0005】他方、結晶半導体はアモルファス半導体よ

熱温度の高い基板を使用する必要があり、一般に高価な の高温で長時間の加熱処理が必要である。そのため、苗 石英が使用されている。 アニールすることが必要で、そのためには600℃以上 シリコン半導体を得るには、アモルファスシリコンを熱 【 焼明が解決しようとする課題】しかしながら、結晶性

なった。このような目的には、触媒元素の過度は1×1 0^{15} ~ 1×10^{19} 原子/cm 3 が好ましかった。 アニールによっておこなうことができることが明らかに の不純物元素の活性化も、従来に比較してより低温の熱 により、ソース/ドレイン等の不純物領域を形成した後 膜においては、その後にイオンドーピング法等の手段に 低い、安価なガラス基板を使用することが可能になる。 れらの金属元素を結晶化蚀媒元累、または、単に触媒元 鉄、コバルト、白金、パラジウム等の金属元素がアモル よってN型やP型の不純物イオンを照射・注入すること ち、この結晶化方法を採用することにより、耐熱温度の に添加することにより、従来よりも低温・短時間の熱ア ニールにより結晶性シリコン膜を得ることができた。即 紫という。このような触媒元素をアモルファスシリコン とを見出した。以下、シリコンの結晶化を促進させるこ ファスシリコンの結晶化を促進する触媒効果を有するこ 【0008】さらに、結晶化触媒元素を有するシリコン 【0007】これに対し、本発明人らは、ニッケル、

おける触媒元素の最低値を意味する。 は膜中において分布を示すが、上記の値はシリコン膜に によって、分析された値であり、多くの場合、触媒元素 触媒元素の過度は、2次イオン質①分析法(SIMS) ン半導体特性に悪影響をもたらした。なお、この場合の 促進されず、また、この笕囲を越える高級度ではシリコ 【0009】この范囲に遊しない低辺度では、結晶化が

たおこなうにはワーザー等の強光の照射 (光アニール) 【0010】従来は、ドーピング不純物の活性化を低温

> に匹做する低温での活性化が可能となったことの意味は 性において重大な問題を有しており、口産化が困難であ によらざるを得なかったが、光アニールは再現性・制御 った。結晶化蝕媒元素を用いることにより、光アニール

ෙ

て微妙な部分であり、この部分の欠陥はTFT特性を蓄 ルとソース/ドレインとの境界はTFTにおいては極め との境界付近に凝集してまうという問題である。チャネ 包して、不純物銀茣(ソース/ドレイン等)とチャネル アニールによって活性化する際に、結晶化触媒元素が移 り、新たな問題が生ずる。これはドーピング不鈍物を熱 【0011】しかしながら、結晶化触媒元素の使用によ

材料ではない) の辺度が高まることにより、TFT特性 用によってTFT特性が劣化すること) がもたらされ という) が増大すること)、 信頼性の低下 (長時間の使 **したときのソース/ドレイン間のリーク包造(オフ包造** の悪化(特に、ゲイト位圧をゼロもしくは逆バイアスと (これらはいずれもシリコン半導体にとっては好ましい 【0012】即ち、このような部分に結晶化触媒元素

たがい、 島状シリコン領域2中には結晶化蚀媒元素がほ らにゲイト絶縁膜3、ゲイト気極4を形成する。この段 図4を用いて説明する。図4(A)はゲイト恐幅を作製 ぼ均等に分布している。(図4 (A)) 階では、特開平6~244104で開示された技術にし 島状のシリコン領域(活性悶ともいう)2を形成し、さ 顒(バッファー四ともいう)を形成してもよい)上に、 した段階を示す。基版1(もしくはその上に適当な下地 【0013】結晶化触媒元素の移動メカニズムについて

に関索される。 (図4 (C)) あるので、チャネル7部分に存在していた独媒元繁がソ 媒元素の移動は400℃以上の熱アニールによって顕著 ース/ドレイン5、6の方向に移動する。このような陥 うと、独媒元素は、欠陥等に選択的に捕獲される性質が をおこない、ドーピングされた不純物の活性化をおこな 333951に関示される技術にしたがって熱アニール して、多くの欠陥や歪みが生じている。 (図4 (B)) るが、ソース5、ドレイン6には、イオン照射の結果と えばよい。この結果、ソース5、ドレイン6が形成され ングする。これはイオンドーピング法等によっておこな 【0014】次に、不純物として、例えば、煩をドーヒ 【0015】その後、特開平6-267989、同6-

触媒元素が築中し、チャネル7部分の触媒元素の温度が 境界で非常に過度の高い部分が発生することとなる。 低下するものの、チャネルとソース/ドレイン5、6の 6の境界部(図における矢印の部分)で、移動してきた 【0016】特に、チャネル7とソース/ドレイン5、

元祭の過度分布のグラフ図であり、点線は図4(A)の 【0017】図4(D)は島状シリコン領域2中の触媒

> トランジスタの特性や信頼性を低下させてしまう。 う。このように、髙密度に触媒元素が存在すると、菏服 過度よりも1桁も高い過度で触媒元素が凝集してしま 5、6とチャネル7の境界部において、部分的に初期の することにより、矢印で示すように、ソース/ドレイン 均一に協媒元素が添加されている。他方、実績は図4 **状態を模式的に示したもので、島状シリコン領域2には** (C)の状態を模式的に示したものであり、熱アニール

方法、及びその製造装置を提供することにある。 て、特性、信頼性の優れた淬膜トランジスタを製造する て、触媒元素により結晶化されたシリコン膜を使用し 【0018】本発明の目的は、上述の問題点を解消し

る (Y. Mishima他: J. Appl, Phys. いて、基板を200℃に加熱しておこなうと、その後に 熱アニール等による活性化が不要であるという報告があ る。したがって、欠陥や歪み発生させないようなドービ が信在するのは、明らかに、不純物ドーピングの際に、 74 (193) 7114). ング方法を採用すればよい。 イオンドーピング工程にお **品状シリコン領域に欠陥・歪み等が発生するためであ 【課題を解決するための手段】上述したように独媒元素**

の髙辺度ではシリコンに金属的性質がもたらされ、半導 cm3 であると好ましい。1×1019原子/cm3 以上 る。 陰媒元素の過度は、 1×10¹⁵~1×10¹⁹原子/ 媒元素の添加された島状の結晶性シリコン領域を形成す なうと、シリコン膜に欠陥が生じないことを見出した。 存体在が近減したしま心。 333951に関示される技術にしたがって、結晶化粧 特開平6-244104、飼6-267989、同6-考察を進め、基板温度を100~400°C、より好まし を見出した。さらに、本発明人は、温度范囲についても されるため、イオンドーピング後に欠陥が残らないこと **果、イオン照射による欠陥はただちに(その母で)修復** 【0021】本発明は以下の构成を有する。すなわち、 くは200~350℃にして、イオンドーピングをおこ 【0020】本発明人はこの研究を詳細に検討した結

の色はシリコン既における触媒元素の最低値を意味す 分析法 (SIMS) によって、分析された値であり、多 くの場合、協媒元素は腹中において分布を示すが、上記 【0022】なお、触媒元素の過度は、2次イオン質量

る。不純物イオンに加えて、水紫イオンもしへはこロケ しくはP型の母母型を付与する不純物イオンを照射す た状態で、イオンドーピング法等の方法により、N型も ンのイオンも照射すると、活性化をより効果的におこな 【0023】その後、基板を100~400℃に加熱し

ている日中におこなってもよいが、或いは、直前まで加 【0024】また、基板の加熱は不純物イオンを照射し

> 熟して、不純物イオン照射時には意図的には加熱しなく のドーピング作業の間、100~400℃の温度を保持 ても良い。この場合には、時間の経過とともに基板温度 が低下するが、断熱を十分におこなうことにより、通常

4

に加熱する手段を有しないチャンパーという少なくとも 板を加熱する手段を有するチャンパーと、基板を実効的 2 つのチャンパーが必要である。 【0026】本発明に係るドーピング装置の概念図を図

【0025】このような方式のドーピング装置では、基

板取り出し室)503で構成されている。いずれのチャ より餠成されている。すなわち、第1の予償室(基板投 5に示す。ドーピング装置は大きへ3つのチャンパーに ンパーも内部の圧力を適切に調節するための機群が扱け 入室)501、ドーヒング室502、第2の予億室(基

は、通常のイオンドーピング装置と同じ群成を有し、ド 板505を適切な温度に加熱する。ドーピング室502 理された基板512を取り出す。 509がそれぞれ扱けられている。 基板507はホルタ **-506、プラズマ室508、加速等のための制御登極** ーピングガス導入系510、排気系511、基板ホルタ るサセプター504が扱けられており、これによって基 **〜506上に設置される。第2の予償室人503から処** 【0027】第1の予備室501には、ヒーターを有す

0~400℃、好ましくは200~350℃の過度に保 グ室502におけるドーピングの間の基板507の温度 は適当な温度に加熱される。 口要なことは、第1の予億 の投入と取り出しを撤務させれば、第2の予億室503 持されることにある。 であり、特にドーピングされる半導体領域の過度が10 與5016、基板が結婚される過度ではなへ、ドーアン は設けなくても抑わない。第1の予億館501では基板 【0028】第1の予閲室501において、基板505

[0029]

済むので、恊媒元霖が概算することを回避することがで ニールによる活性化工程が不要もしくは뗩めて短時間で ima街の関示するとおり、ドーピングエ程後に、終ア リコン膜中に欠陥や屈みが生じることがなく、Mish 【作用】もとより、本発明ではイオン照射によって、シ

以することがなく、弦媒元霖の設度分布は初期の状態が 繋が移倒して、ソース/ドレインとチャネルの境界に過 や歪みが残らないために、チャネル中に存在する姶煤元 に400℃以上の温度で熱アニールをおこなう必要があ ったとしても、ドーアングにおいて、シリコン中に久隔 【0030】仮に、何らかの目的により、ドーヒング後

[0031]

厚さ2000Aの酸化珪素の下地膜102を形成した。 条件を満たすことを意味する)のアモルファスシリコン 価またはV価の不純物が、1×1015~1×1018原子 00Å、例えば500Åの真性(I型、すなわち、III さらに、プラズマCVD法によって、厚さ200~15 ニング7059)101上にスパッタリング法によって 〔実施例1〕図1に本実施例を示す。まず、基板(コー ´c m³ の温度である。または、チャネルが発生しない

成する。さらに、プラズマCVD法によって早さ120 法の代わりに熱CVD法を採用してもよい。(図1 る。酸化珪泵版106を作製するには、プラズマCVI 0.Aの酸化珪菜膜106をゲイト絶縁膜として堆積す コン膜をエッチングして、島状シリコン領域105を形 て光アニールをおこなってもよい。熱アニール後、シリ 晶化させる。熱アニール後にエキマーレーザー等を用い 3を窒素分囲気中、550℃、4時間熱アニールして結 ので、膜状となっているとは限らない。(図1(A)) 面を酸化処理する。そして、1~100ppmの酢酸ニ 104を形成する。酢酸ニッケル四104は極めて淬い ッケル水溶液を塗布して、乾燥させて、酢酸ニッケル層 【0033】そして、このアモルファスシリコン膜10 【0032】そして、アモルファスシリコン膜103基

形成する。(図1(C)) 結晶シリコン膜をエッチングして、ゲイト電極107を コン膜 (0.1~2%の燐を含む)を堆積する。この多 3000~8000A、例えば6000Aの多結晶シリ 【0034】引き続いて、成圧CVD法によって、厚さ

時にはヒーター110によって、基板を250℃に加熱 ぱ、2×10¹⁴原子/cm² とする。 イオンドーピング する。この結果、N型の不純物領域108 (ソース)、 ドーズ口は1×10¹³~8×10^{15原子/cm²、例え} る。加速配圧は60~90kV、例えば80kVとし、 で1~10%に希釈したフォスフィン(PH3)を用い 不純物(燐)を注入する。ドーピングガスとして、水素 シリコン領域105にゲイトは極107をマスクとして 【0035】次に、イオンドーピング法によって、島状 109 (ドレイン) がそれぞれ形成される。 (図1

を形成した。(図1(E)) TFTのソース、ドレインのほ栖・配模112, 113 材料、例えば、チタンとアルミニウムの多粒膜によって し、これにコンタクトホールを形成する。そして、金周 1 を慰問絶縁物としてプラズマCVD法によって形成 【0036】続いて、厚き6000Aの酸化珪素膜11

3 の過度であり、特に、チャネルの部分の触媒元素の過 域、チャネルとも、1×10¹⁸~5×10¹⁸原子/cm てニッケルの設度を聞べたところ、TFTの不純物領 【0037】2次イオン質Ω分析 (SIMS) 法によっ

度が低下している様子は観察されなかった。

既流は5~20pAであった。 く同じ条件で、同じ大きさで作製したTFTでは、オフ でとし、加熱時間を1時間とした以外は、本実施例と全 板温度を室温とし、活性化工程では基板温度をを500 ~0.5pA程度である。他方、ドーピングエ程では基 が-17V、ドレインQ圧が+1Vの状態で) は0.2 ネル幅=8μm×8μm)では、オフ뎒流(ゲイトQH た、本発明によって得られたTFT(チャネル長×チャ 処理が必要であったが、本発明では不要であった。ま 気等で200~350℃の熱アニールもしくはプラズマ 【0038】従来例では、活性化工程の後に、水泵努囲

図示しない酸化膜を形成する。そして、1~100pp のアモルファスシリコン膜203を形成する。そして、 き200~1500A、例えば500Aの兵性 (I型) ニッケル層204を形成する。 mの酢酸ニッケル水溶液を塗布して、乾燥させて、酢酸 アモルファスシリコン膜203の表面を酸化処理して、 2を形成する。さらに、プラズマCVD法によって、厚 VD法によって厚さ4000Aの酸化珪泵の下地膜20 ず、基板(コーニング7059)201上にプラズマC 【0039】 (実施例2) 図2に本実施例を示す。ま

歪みを除去するうえで有効である。(図2(A)) 0~550°Cで熱アニールを1~4時間施すと、結晶の 0.67. 岩吹したもよい。 さらび、フーガー照覧後で40 また、レーザー照射の際に、越板201を250~40 50~500℃で予備的に熱アニールを施してもよい。 を照射し、結晶化せしめた。レーザー光の照射前に、2 03にKrFエキシマーレーザー光 (波展248nm) れている技術にしたがって、アモルファスシリコン膜 2 【0040】そして、特開平6-318701に開示さ

採販205を堆積する。そして、その上に厚さ4000 有して、エッチングして、ゲイト収極206を形成す に、プラズマCVD法によって写さ1200Aの酸化珪 Aの多結晶シリコン膜(O・1~2%の斑を含む)を堆 エッチングして、島状シリコン領域を形成する。さら 【0041】その後、結晶化されたシリコン膜203を

低温度不純物領域207、208が形成される。(図2 る。また、イオンドーピング時には、ヒーター209に 原子/c m² 、例えば、1×10l3原子/c m² とす えば80kVとし、ドーズ①は1×10¹²~1×10¹⁴ 06をマスクにして、イオンドーピング法によって、島 よって、基板を350℃に加熱する。この結果、P型の 伏シリコン領域に不純物(明殊)を注入する。 ドーヒン グガスとして、水鉄で1~10%に希駅したジポラン 【0042】次に、基板を加熱しながら、ゲイト図幅2 (B₂ H₆)を用いる。加速促圧は60~90kV、例

【0043】次に、プラズマCVD法によって堆積した

域212(ソース)、213(ドレイン)がそれぞれ形 350℃に加熱した。この結果、P型の高級度不純物領 オンドーパング時にはヒーター214によって、堪板を 酸化珪菜のゲイト絶縁膜211が残る。(図2(C)) いては公知のLDD(低温度ドレイン)形成技術を用い 酸化珪素膜を異方性エッチングして、サイドウォール 2 えば20kV、ドーズ立は1×10¹⁴~8×10¹⁶原子 に酸化珪菜膜205をもエッチングする。このため、ゲ ればよい。本実施例では、サイドウォール210形成院 ングガスとした、水採た1~10%に発圧したジボラン ンドーピング法により、P型不純物を導入する。ドービ イト母値206およびサイドウォール210の下部には (B₂ H₆)を用いた。加速切圧は10~30kV、例 10を形成する。サイドウォール210の形成方法につ /cm² 、例えば、1×10l5原子/cm² とした。4 【0044】そして、再び、基板を加熱しながら、イオ

過度ソース215、低温度ドレイン216が形成され 不純物領域207、208には、ドーピングされず、佰 る。(図2 (D)) 【0045】一方、サイドウォール210の下の低級度

タクトホールを形成して、アルミニウムのソース、ドレ **化珪索膜217を回間絶縁物として堆積し、これにコン** イン亀極・配模218,219を形成する。(図2 焼いて、プラズマCVD法によって写さ4000Aの邸

のような問風は一切生じなかった。 性化のために熱アニールをおこなう必要がないので、そ 要であった。しかしながら、本実施例では、そもそも活 不純物領域では、然アニール温度を応めにすることが必 **阪的低温の熱アニールによって活性化できたが、低温度** 67989)では、高辺度の不純物が存在する領域は出 うえで極めて有効であった。従来の方法(特開平6-2 アニールによる活性化を行わないので、工程を短縮する 【0046】本実施例では、ドーピング工程後には、熱

形成する。その後、基板301を450~580℃、例 る。結晶化は、特開平6-244104にも記述されて とによりアモルファスシリコン膜303を結晶化させ えば、550℃で8時間の熱アニール処理をおこなうこ に、突施例1および2と同様に酢酸ニッケル四306を チングして、その一部に開孔部305を形成し、さら 304を堆積する。これらの成膜は逆続的におこなう。 プラズマCVD法によって、厚さ300Aの酸化珪絮版 のアモルファスシリコン膜303を堆積する。さらに、 き200~1500A、例えば500Aの耳性 (I型) 2を堆積する。さらに、プラズマCVD法によって、厚 【0048】そして、酸化珪泵膜304を選択的にエッ VD法によって写さ3000Aの酸化珪素の下地膜30 ず、基板(コーニング1737)301上にプラズマC 【0047】〔実施例3〕図3に本実施例を示す。ま

> 進行した。上記の熱アニール工程の後に、レーザー光等 を用いて光アニールをおこなってもよかった。 (図3 いるように、開孔郎305から周囲に図の矢印に沿って

309を堆積する。 (図3 (B)) プラズマCVD法によって厚さ1200Åの酸化珪素膜 【0049】その後、結晶化されたシリコン膜をエッチ ゲして、島状シリコン領域308を形成し、さらに、

囲のパリヤ型陽極酸化物被膜311を含む)の始面とゲ イト絶縁膜312の端面をxだけずらした群造とする。 る。その際、ゲイトは極恕(ゲイトの極3 1 0 とその周 さは1500~2000 Aとする。また、酸化珪素膜3 よい。本実施例ではパリヤ型陽極酸化物胺膜311の厚 極の陽極酸化技術によって、ゲイトは極310の側面お 09をエッチングして、ゲイト絶縁膜312を形成す よび上面をバリヤ型陽極酸化物被膜311で被覆すれば するには、特開平5-267667に示されるゲイトは ゲイトロ幅310を形成する。ゲイトロ幅310を形成 ニウム膜(0.1~0.3%のスカンジウムを含む) の 【0050】そして、その上に厚さ6000名のアルミ (図3 (C))

例えば、1×10¹⁵原子/cm²とする。 子/cm²、例えば、1×10¹³原子/cm²とする。 は80kVとし、ドーズ丘は1×10¹²~1×10¹⁴原 ておこなう。最初は、加速電圧は60~90kV、例え V、ドーズ口は1×10¹⁴~8×10^{15原子/cm²、} 2度目は、加速電圧は10~30kV、例えば20k フィン(PH3)を用いる。ドーピングは2段階に分け 状シリコン領域308に不純物(燐)を注入する。ドー ピングガスとして、水菜で1~10%に希釈したフォス 12をマスクにして、イオンドーピング法によって、島 【0051】次に、ゲイトロ協問およびゲイト絶縁與3

314がそれぞれ形成される。(図3(D)) れぞれ形成され、次に、低い加速位圧の高辺度ドードン 315によって、基板301を300℃に加熱する。高 結果、低級皮ソース316、低級皮ドレイン317ガモ **い泊油口圧の瓜辺皮ドーヒング (最初のドーヒング)の** [0052] いずれのドーピングにおいても、ヒーター `(後のドーピング) の結果、ソース313、ドレイン

ス、ドレイン位極・配線319,320を形成する。 000 Aの酸化珪絜膜318を四間絶縁物として堆積 し、これにコンタクトホールを形成して、チタンのソー (図3 (E)) 【0053】続いて、プラズマCVD法によって写さ5

得るために、低温度ドーピング工程後、成原工程等をお 本実施例は実施例2と異なり、低温度および高温度のド うようにしたため、ドーピング工程が不違税であるが、 こない、その後、再び、高温度ドーピング工程をおこな 【0054】実施例2においては、同様なLDD枠造を ・ピングを連続的におなうことができるため、極めて口

6

しないで、LDD構造を形成するようにしたものであ するようにしたが、本実施例は緻密な陽極酸化物を形成 るために、ゲイト電極の周囲に鍛密な陽極酸化物を形成 【0055】〔実施例4〕実施例3ではLDD構造を得

を500名の厚さに形成する。 膜602として形成する。さらに、プラズマCVD法に よって、真性(I型)のアモルファスシリコン膜503 バッタリング法により写さ2000Aの酸化珪素を下地 作製工程を示す断面図であり、図6 (A) に示すよう に、ガラス基板(コーニング7059)601上に、ス 【0056】図6、7は本実施例の符膜トランジスタの

の表面に、 1~100 p p mの酢酸ニッケル水溶液を塗 布して、乾燥して、酢酸ニッケル四604を形成する。 して、図示しない磁化膜を極薄く形成する。この磁化膜 【0057】アモルファスシリコン膜603表面を酸化 (B) 6 (A))

ザー等を用いて光アニールを行ってもよい。 均一に拡散するのに伴って、アモルファスシリコン膜 6 03が結晶化される。熱アニールの後に、エキマーレー ッケルに分解して、アモルファスシリコン版603中に アニールする。加熱により、酢酸ニッケル四604岁ニ 【0058】次に、窒素雰囲気中、550°C、4時間熱

606を堆積する。(図6(B)) グして、島状シリコン領域605を形成する。さらに、 プラズマCVD法によって厚さ1000Aに酸化珪素膜 【0059】次に、結晶化されたシリコン膜をエッチン

ロックやウィスカーが発生するのを抑制する。 は後にゲイト館極607になるものであり、アルミニウ 膜を5000人の母さに堆積する。このアルミニウム膜 ムには、予めスカンジウムをO. 2wt含有させて、ヒ 【0060】次に、スパッタ法によって、アルミニウム

酸、ほう酸、又は硝酸が3~10%含有されたエチレン エッチングして、ゲイト電極607を形成する。(図6 化膜608は、レジストの密芍度を高める作用を有す に印加する食圧で慰御することができる。 緻密な陽極酸 度の厚さに形成する。この場合には、ઉ解液には、酒石 酸化して、表面に緻密な隔極酸化膜608を100A程 する。緻密な陽極酸化膜608の早さはアルミニウム膜 グリコール溶液を、PHを7程度に調整した溶液を使用 して、このマスク609を利用して、アルミニウム膜を る。この後、フォトレジスタストのマスク609を形成 【0061】そして、アルミニウム膜を凸解液中で隔極

る。この場合には、ゲイトは極607の表面にフォトレ ロム酸又は硫酸を3~20%含有した酸性溶液を使用す を替けたままで、ゲイト包極607を隔極にして、再び 【0062】更に、フォトレジスタストのマスク609

> 質の臨極観化物610が形成される。 が存在するために、ゲイト包括607の側面のみに多孔 ジスタストのマスク609と、緻密な陽極酸化膜608

3

が決定される。本実施例では、多孔質の陽極酸化物 6 1 は、ゲイト包値607に電流を流す時間で制御すること 0を5000Åの厚さに成長させる。 (図6 (D)) ができ、この成長距離により、低温度不純物領域の長さ 【0064】次に、フォトレジスタストのマスク609 【0063】この多孔質の陽極酸化物610の成長距離

を使用して、酸化珪素膜606をエッチングして、ゲイ ト絶縁膜611を形成する。(図6(E))

8、多孔質の陽極酸化物610を頃次に除去して、ゲイ レジスタストのマスク609、緻密な隔極酸化膜60 ト包値607を露出させる。 【0065】そして、図7 (A) に示すように、フォト

お、後の工程で、ヒロックやウィスカーの発生を抑制で 制するために、露出されたゲイトQ極607の表面をオ 酸、酢酸及び硝酸を混合した混酸を用いて、エッチング な陽極酸化膜608は極めて薄いため、選択的に除去す を専用の剝燵液により除去する。緻密な陽極酸化度60 きるならば、酸化膜を形成しなくてもよい。 ゾン水で洗浄して、図示しない酸化膜を形成する。な め、ゲイト妈債607がエッチングされることがない。 ることが可能である。多孔質の陽極酸化物610は、燐 8はパッファーフッ酸を用いて、エッチングする。 緻密 する。多孔質の陽極酸化物610は容易に除去できるた 【0067】そして、ヒロックやウィスカーの発生を抑 【0066】次に、フォトレジスタストのマスク609

駅したフォスフィン (PH3) を用いる。ドーピングは ヒーター612によって、基板601を300°Cに加熱 ために、ドーピングガスとして、水珠で1~10%に希 05に不純物を注入する。本実施例では、燐を注入する 2段階に分けておこなう。また、ドーピングの間には、 【0068】次に、ゲイト四個607ををマスクにし イオンドーピング法によって、島状シリコン領域 6

過して、島状シリコン領域605にドープされるが、ド イオンがドープされないため、チャネル形成領域615 4が形成される。また、ゲイトは極607の直下には燐 ーズ口が小さいために、低温度不純物領域613、61 際には、加速包圧が比較的大きいため、燐イオンはゲイ して、ドーズ凸を1×10¹³原子/cm²とする。この 90kVとし、ドーズ口は1×10¹²~1×10¹⁴原子 ト四極607は迸過しないが、ゲイト絶縁膜611を迸 となる。 (図7 (A)) 【0069】1度目のドーピングは、加速包圧は60~ ′c m² とする。本実施例では、加速包圧を80k V と

大きくして、1×10¹⁴~8×10¹⁵原子/cm²す 速燃圧を小さくして、10~30kVとし、ドーズ凸は 【0070】2度目のドーピングは、1度目よりも、加

> はゲイト絶縁膜612を通過できず、主に、島状シリコ を 1×10^{15} 原子/c m^2 とする。このため、燐イオン 3、614、チャネル形成領域615のまま残存する。 ソース/ドレイン領域616、617が形成される。ま る。本実施例では、加速包圧を20kVとし、ドーズロ た、ゲイト絶縁膜612の下部は低温度不純物領域6 ン領域605の엷出された部分に高過度にドープされ、 (図7 (B))

能するように、加速包圧、ドーズ①等の条件を適宜に設 定すればよい。 合には、ゲイト絶縁膜612が半透過なマスクとして概 6、617とをそれぞれ形成することもできる。この場 図7 (B) に示すような、低温度不純物領域 6 1 3 、6 に分けて行うようにしたが、1度のドーピング工程で、 14と、髙辺度不鋺物であるソース/ドワイン領域61 【0071】本実施例では、イオンドーにイングを2度

法により超化珪素取618を300Aの厚さに形成す ことにより、クラックやヒロックの発生を防止する。 施例では、ゲイト低値607を銀化珪素膜618で狙う て、クラックやヒロックが発生するおそれがある。本実 607が加熱されるために、アルミニウムが異常成長し る。後に実施される水繋化工程等において、ゲイト口径

関絶縁物 6 1 9 としてプラズマC V D 法によって形成 上の工程を経て、苅膜トランジスタが完成される。(図 この水菜分田気中において、 1時間の加熱処理する。以 口酒・田穣620、621を形成する。最後に、350 コンタクトホールに、金属材料、例えば、チタンとアル し、これにコンタクトホールを形成する。そして、この ミニウムの多四膜によってTFTのソース、ドレインの 【0073】続いて、写さ6000Aの酸化珪素膜を磨

れることを防ぐことができる。更に、オフ電流を小さく 銀域615とドレイン銀域617の間に高臼圧が印泊さ 物領域614を配置する群成としたため、チャネル形成 形成領域615とドレイン領域617の間に低道度不純 することもできる。 【0074】本実施例の苻朠トランジスタは、チャネル

ので、プロセスの低温化が推進される。 もそも活性化のために熱アニールをおこなう必要がない ることが必要である。しかしながら、本実施例では、そ きるが、低温度不純物領域は熱アニール温度を高めにす 在する領域は比段的低温の熱アニールによって活性化で で、工程の短縮化が図れる。また、高辺度の不純物が存 ニール、レーザーアニールによる活性化を行わないの

で、クラックやヒロックが発生することがなければ、毀 熱アニール、レーザーアニールを行なう必要がないの 形成して、ゲイトは極607を保護するようにしたが、

8

8に本実施例を示す。 化珪絮膜 6 1 8を形成しなくてもよい。

【0072】 イオンドーピングの後に、プラスマCVD

【0075】本実施例では、ドーピング工程後に、熱フ

【0076】なお、本実施例では、窒化珪素膜618を

せたCMOS蒋麒トランジスタを形成する例を示す。図 ンジスタとP型符膜トランジスタとを相補的に組み合わ 【0077】(実施例5)本実施例では、N型深限トラ

ズマCVD法により写さ1500Åの酸化珪素観804 シリコン領域802、803を形成する。 さらに、プラ **化し、結晶化されたシリコン版をエッチングして、島状** モルファスシリコン膜を適当な結晶化方法によって結晶 えば2000Aの厚さの酸化珪素膜を用いる。次に、ア ン膜を500Aの厚さに形成する。下地膜としては、宛 ズマCVD法により兵性(I型)のアモルファスシリコ **【0078】まず、上面に下地膜を形成したガラス基板** (コーニング7059又は1737) 801上に、ブラ

有させてヒロックやウィスカーが発生するのを抑制す アルミニウム膜には、予めスカンジウムをO. 2wt合 ちにゲイトロ債805、806になるものである。この 4000人の厚さに堆積する。このアルミニウム版はの 【0079】次に、スパッタ法によりアルミニウム膜を

酸化膜を形成し、その上にフォトレジストのマスクを形 ト四個805、806を形成する。 クを利用して、アルミニウム膜をエッチングして、ゲィ 成してバターニングを行う。このフォトレジストのマス 化して、図示しないが表面に100 A程度の緻密な隔極 【0080】次に、アルミニウム版を口解液中で陽極酸

る。この多孔質の陽極酸化物807、808の成長距距 を3~20%含有した酸性溶液、例えば3%シュウ酸水 7、808を7000Aの長さに成長させる。 さを決定する。本実施例では、多孔質の陽極酸化物80 は、陽極酸化の処理時間で制御することができる。この のみに多孔質の隔極酸化物807、808が形成され 成長距離は、後に低過度不純物領域(LDD領域)の長 **化膜が存在するため、ゲイト包稿805、806の側面** 06の表面にはフォトレジストのマスクと緻密な臨極的 溶液を使用する。この場合には、ゲイト以格805、8 口解溶液には、クエン酸、シュウ酸、クロム酸又は硫酸 まで、ゲイトの協805、806を再度問題酸化する。 【0081】更に、フォトレジストのマスクを付けた。

して使用する。 (図8(A)) ングリコール溶液を、アンモニア水でPH6.9に中和 る。本実施例では、凸焊溶液として3%酒石酸のエチレ して、錬密で強固な陽極酸化取809、810を形成す 【0082】再びゲイトは6805、806を周倍酸化

をエッチング可能であれば、ウェットエッチングでも、 09、810をエッチングせず、酸化珪採膜804のみ 9、810をマスクとして、酸化珪霖取804をエッチ ングする。エッチングは陽極酸化物807、808、8 【0083】次に、陽極酸化物807、808、80

3 ガスを用いたドライエッチングによって、酸化珪素膜 を形成する。(図8(B)) 804をエッチングして、ゲイト絶縁膜811、812 ドライエッチングでも悩わない。本実施例では、ClF

9

酸を混合した混酸を用いて除去する。多孔質の陽極酸化 孔質の陽極酸化物807、808は、燐酸、酢酸及び硝 な陽極酸化物809、810がエッチングされることは 物807、808は容易に除去できるため、緻密で強固 ない緻密な関極酸化物はパッファーフッ酸で除去し、多 質な陽極酸化物807、808を頃次除去する。図示し 【0084】次に、図示しない緻密な隔極酸化物、多孔

は、ヒーターにより、基板801を250℃~350℃ を注入するために、ドーピングガスとして、水素で1~ 2、803に不純物を注入する。本実施例では、まず燐 にして、イオンドーピング法により、 島状シリコン80 -ピングは2段階に分けて行う。また、ドーピングの間 10%に希釈したフォスフィン (PH3)を用いる。ド 【0085】次に、ゲイト鐚極805、806をマスク

領域813、816、ドレイン領域814、815が形 30kVとし、ドーズ口は1×10¹⁴~8×10^{15原子} 浅い領域にピークを有するように注入される。 成される。その際、頌はソース/ドレイン領域の比較的 ン802、803の匈出された部分に注入され、ソース 絶縁膜811、812を迅過できず、主に、島状シリコ **ごは、岩巌は田が田俊忠やかっため、森イギンはゲイト** し、ドーズ①を1×10¹⁵原子/cm² とする。この際 【0086】1度目のドーピングは、加速Q圧を10~ /cm² とする。本実施例では、加速促圧を10kVと

速電圧が比較的大きいため、燐イオンはゲイト電極80 を1.5×10¹³原子/cm²とする。この際には、加 ように注入される。このため、1度目と2度目のドーヒ 極805、806の直下は煩が注入されないため、チャ D領域) 817、818が形成される。また、ゲイト包 て煩の注入口が小さいために、低温度不純物領域(LD 5、806を透過しないが、ゲイト絶縁膜811、81 る様になる。 (図8 (C)) ングにより、燐はソース/ドレイン領域に一模に存在す ース/ドレイン領域の比較的深い領域にピークを有する ネル形成領域819、820となる。この場合、傾はソ る。しかし、ゲイト絶様原直下はゲイト絶縁限に進られ 2を迸過して、島状シリコン802、803に注入され る。本質施例では、加速以圧を80kVとし、ドーズロ グよりも加速位圧を大きくして、60~90kVとし、 ドーズ丘は1×10¹²~5×10¹³原子/cm²とす 【0087】2度目のドーピングは、1度目のドーピン

なる部分のみのレジストを除去する。(図8(D)) 1で披覆し、パターニングにより、P型トランジスタと 【0088】次に、ポリイミド又は耐熱性レジスト82

> 型のまま残存する。 821で被覆された領域は、硼素が注入されないためN m² となるようにする。ポリイミド又は耐熱性レジスト 遠電圧を10kVとし、ドーズ①を2×10¹⁵原子/c となるようにする。次いで、2度目のドーピングを、加 65kVとし、ドーズ①を1~5×10¹⁴原子/cm² る。本実施例では、1度目のドーピングを、加速促圧を 純物として、硼素をイオンドーピング法により注入す 【0089】続いて、N型をP型に反転させるための不

囲気中において、2時間の加熱処理を行う。以上の工程 を経て、CMOS蒋膜トランジスタが完成される。(図 824、825を形成する。最後に、350°Cの水霖穿 にコンタクトホールを形成する。そして、このコンタク 緑膜822としてプラズマCVD法により形成し、これ を除去する。そして、厚さ1μmの酸化珪素膜を層間絶 多層膜により、ソース/ドレインの臨極、配線823、 トホールに、金属材料、例えばチタンとアルミニウムの 【0090】イオンドーピング終了後、レジスト821

出来る。また、ドーピング工程後に熱アニール、レーサ ーアニールによる活性化を行わないので、工程の短縮化 4、815の間に高位界が形成されることを防ぐことが チャネル形成領域819、820とドレイン領域81 不純物領域817、818を配置する柏成としたため、 9、820とドレイン領域814、815の間に低級度 MOS构造を形成するため、トランジスタを駆動する際 ンジスタとP型トランジスタを相補的に組み合わせたC 【0091】本実施例の苻膜トランジスタは、N型トラ 低電力化が図れる。また、チャネル形成領域81

9に本実施例を示す。 せたCMOS蒋旗トランジスタを形成する例を示す。図 ンジスタとP型淬膜トランジスタとを相補的に組み合わ 【0092】〔実施例6〕本実施例では、N型荷膜トラ

形成したガラス基板 (コーニング7059又は173 D法により写さ1500Aの酸化珪菜膜904を堆積す 形成する。さらに、ゲイト絶縁限として、プラズマCV をエッチングして、島状シリコン領域902、903を 結晶化方法によって結晶化し、結晶化されたシリコン膜 **絜膜を用いる。次に、アモルファスシリコン膜を迢当な** る。下地膜としては、例えば2000Aの早さの酸化珪 のアモルファスシリコン膜を500人の厚さに形成す 7) 901上に、プラズマCVD法により真性 (I型) 【0093】図9 (A) に示すように、上面に下地既を

せてヒロックやウィスカーが発生するのを抑制する。 ミニウム膜には、予めスカンジウムをO.2wt含有さ ちにゲイト段極905、906になるものである。アル 4000名の口さに堆積する。このアルミニウム版はの 【0094】次に、メバッタ街によりアルミニウム版を

> 化して、図示しないが表面に100 A程度の緻密な陽極 トロ極905、906を形成する。 クを利用して、アルミニウム既をエッチングして、ゲイ 成してパターニングを行う。このフォトレジストのマス 酸化膜を形成し、その上にフォトレジストのマスクを形 【0095】次に、アルミニウム膜を鴟解液中で陽極顔

> > Ē

のみに多孔質の陽極酸化物909、910が形成され 9、910を7000人の長さに成長させる。 を決定する。本実施例では、多孔質の隔極酸化物90 長距離は、後に低温度不純物領域(LDD領域)の長さ は、陽極酸化の処理時間で制御することができ、この成 る。この多孔質の隔極酸化物909、910の成長距離 化膜が存在するため、ゲイトは極905、906の側面 06の表面にはフォトレジストのマスクと緻密な陽極部 洛液を使用する。この場合には、ゲイトは極905、9 を3~20%含有した酸性溶液、例えば3%シュウ酸水 **頃解溶液には、クエン酸、シュウ酸、クロム酸又は硫酸** まで、ゲイトロ極905、906を再度陽極酸化する。 【0096】更に、フォトレジストのマスクを着けたま

陽極酸化して、緻密で強固な陽極酸化膜 9 1 1、 9 1 2 6.9に中和して使用する。(図9(A)) 酸のエチレングリコール洛液を、アンモニア水でPH を形成する。本実施例では、逗解溶液として、 3%酒石 【0097】さらに、再びゲイト電極905、906を

14、915を形成する。その際、ゲイトは極905. 膜904を迸過して、島状シリコン902、903に注 の間は、ヒーターにより、基板901を250℃~35 域917、918となる。(図9 (B)) 906の直下は傾が注入されないため、チャネル形成領 入され、ソース領域913、916及びドレイン領域9 陽極酸化物909、910を迸過しないが、ゲイト絶縁 め、燐イオンはゲイト包極905、906及び多孔質の kVとし、ドーズ①を1×10¹⁵原子/cm²とする。 m² となるようにする。本実施例では、加速以圧を80 kVとし、ドーズ口を1×10¹⁴~8×10¹⁵原子/c 0℃に対象する。ドーピングは、加速均用を60~90 たフォスフィン(PH3)を用いる。また、ドーヒング に、ドーピングガスとして、水採で1~10%に希釈し 純物を注入する。本実施例では、まず煩を注入するため ドーピング法により、島状シリコン902、903に不 質の陽極酸化物909、910をマスクにして、イオン 【0099】この際には、加速矯圧が比較的大きいた 【0098】次に、ゲイトロ極905、906及び多孔

除去する。多孔質の隔極酸化物909、910は容易に 混合した混酸で、多孔質の隔極酸化物909、910を 2がエッチングされることはない。 除去できるため、緻密で強固な陽極酸化物911、91 ファーフッ酸で除去し、次いで、燐酸、酢酸及び硝酸を 【0100】次に、図示しない緻密な隔極酸化物をパッ

【0101】次に、再び燐のドーヒングを行う。加速電

圧は60~90kVとし、ドーズはは1×10¹²~1× に注入される。また、チャネル形成領域917、918 純物領域(LDD領域)919、920が形成される。 4、915との間は燐の注入口が少ないため、低温度不 と、ソース領域913、916及びドレイン領域91 る。この際には、加速低圧が比較的大きいため、燐イオ 80kVとし、ドーズ位を1×10l4原子/cm²とす 10¹⁴原子/cm²とする。本実施例では、加速電圧を 絶縁膜904を送過して、島状シリコン902、903 ンはゲイトロ個905、906を迸過しないが、ゲイト

る。本実施例では、加速包圧を80kVとし、弱気のド 入されないためN型のまま残存する。 は耐熱性レジスト921で被囚された領域は、囚緊がi ーズ口は2×1015原子/c m² とする。ポリイミド又 純物として、姻素をイオンドーピング法により注入す なる部分のみのレジストを除去する。(図 9 (D)) 1で被覆し、パターニングにより、P型トランジスタと 【0102】次に、ポリイミド又は耐熱性レジスト92 【0103】続いて、N型をP型に反伝させるための不

の水泵分田気中において、2時間の加熱処理を行う。 921を除去する。そして、厚さ1μmの酸化珪素膜を 923、924、925を形成する。最後に、350℃ **ニウムの多辺殿により、ソース/ドレインの口砲、明線** コンタクトホールに、金囚材料、例えばチタンとアルミ **石間絶縁膜922としてプラズマCVD法により形成** 領域(LDD領域)は形成されない。続いて、レジスト ン領域915、チャネル領域918の間に低過度不純物 し、これにコンタクトホールを形成する。そして、この 【0104】この際、弱素の注入口が多いため、ドレイ

スタが完成される。本英施例の孲膜トランジスタは、N を防ぐことが出来る。また、ドーピング工程後に熱アニ 917とドレイン領域914の間に低温度不純物領域9 する際に、低電力化が図れる。また、チャネル形成領域 せたCMOS섺道を形成するため、トランジスタを駆励 型トランジスタとP型トランジスタを相傾的に組み合わ **工程の短額化が図れる。** ール、レーザーアニールによる活性化を行わないので、 7とドレイン領域914の間に高電界が形成されること 19を配記する柏成としたため、チャネル形成領域91 【0105】以上の工程を経て、CMOS符膜トランジ

(0106)

信頼性を沿ることができ、したがって、特開平6244 も、低いオフG流に代表されるような高いTFT特性と 低温結晶化技術を発展させることが可能となった。この 6-333951に示されるような、触媒元素を用いた 104、 同6-267989、 同6-318401、 同 ように本発明は工棄上有益な発明である。 【免明の効果】本免明により、結晶化触媒元霖を用いて

