## Example 2.3

J. Frye

#### Example 2.3:

Two snowmobiles are pulling a disabled snowmobile by means of two ropes. The tension in rope AB is 1500 N and the angle  $\alpha$  is  $20^{\circ}$ . Knowing that the resultant of the two forces applied at A is directed along the longitudinal axis of the disabled snowmobile, determine by trigonometry:

- (a) the tension in the rope AC,
- (b) the magnitude of the resultant of the two forces applied at A.





The resultant vector,  $\mathbf{R}$ , is the vector sum of force vectors  $\mathbf{T}_{AB}$  and  $\mathbf{T}_{AC}$  which are the tension forces of the cables exerted at point A.

$$T_{AB} + T_{AC} = R$$

Hint: Make a small Table indicating what you know and what you don't know.

In this example we know:

Magnitude and Direction of  $T_{AB}$ , Direction of  $T_{AC}$ , and Direction of R.

| Force       | Magnitude | Direction   |
|-------------|-----------|-------------|
| $T_{AB}$    | 1500      | 30°         |
| $T_{ m AC}$ | ?         | 20°         |
| R           | ?         | $0_{\rm o}$ |

### **Graphical Solution:**

Begin by Plotting  $T_{AB}$  to scale since you know both its magnitude and direction.



## At "Tip" of $T_{AB}$ Draw in Line of Action of $T_{AC}$



### Draw in Line of Action of Resultant, R



# Scale Magnitudes of R and T<sub>AC</sub>



$$T_{AB} + T_{AC} + R$$

### **Scale Results:**

$$R = 3200 \text{ N}$$
  
TAC = 2000 N

## Trig Solution:



### **Sine Rule:**

$$\frac{R}{\sin 130^{\circ}} = \frac{T_{AC}}{\sin 30^{\circ}} = \frac{1500}{\sin 20^{\circ}}$$
$$T_{AC} = 2192.85N$$
$$R = 3359.65N$$

### Rectangular Components Solution:

#### At Point A:

$$\mathbf{R} = \mathbf{R}_{\mathbf{x}} + \mathbf{R}_{\mathbf{v}}$$

But  $\mathbf{R}_{y} = 0$  since we are given that R is directed along the logitudinal axis of the snowmobile. We write the equations:

$$\mathbf{R_{x}} = \sum F_{x} = 1500\cos 30^{\circ} + T_{AC}\cos 20^{\circ}$$
 (1)  
$$\mathbf{R_{y}} = \sum F_{y} = 1500\sin 30^{\circ} - T_{AC}\sin 20^{\circ} = 0$$
 (2)

#### From Equation (2):

$$T_{AC} = \frac{1500 \sin 30^{\circ}}{\sin 20^{\circ}} = 2192.85 \text{ N}$$

#### From Equation (1):

$$R = R_x = 1500\cos 30^\circ + (2192.85)\cos 20^\circ = 3359.64 \text{ N}$$