

Algebra Solutions

作者: 正寅

教材: 抽象代数 (张勤海著 第一版)

目录

第	1章	群论 4
	1.1	群与子群 4
	1.2	正规子群和商群11
	1.3	同态与同构
	1.4	直积与半直积
	1.5	群作用
	1.6	Sylow 定理
第	2 章	环与域 23
	2.1	基本概念和例子
	2.2	理想与同态
	2.3	极大理想和素理想
	2.4	整环里的因子分解
	2.5	域的扩张 32
	2.6	代数扩域 35
	2.7	多项式的分裂域与正规扩域37
	2.8	有限域
第	3 章	Galois 理论 38
	3.1	Galois 理论的基本定理
第	4 章	补充题目 40
	4.1	2021 年期中测试题
	4.2	2018-2019 年期末测试题
	4.3	2019 级研究生近世代数试题
	4.4	2020 级研究生近世代数试题

目录										4					
4.5	2021 级近世代数期末试题														60

第1章

群论

1.1 群与子群

1. 证明命题 1.1.1, 1.1.2 和 1.1.3.

命题 1.1.1 证明: (⇒) 假设 HK 为子群. 对于任意 $kh \in KH$, 其中 $k \in K$, $h \in H$. 因为 $k = 1k \in HK$, $h = h1 \in HK$ 且 HK 关于乘法封闭, 所以 $kh \in HK$, 故 $KH \subset HK$.

对于任意 $hk \in HK$, 其中 $h \in H$, $k \in K$. 因为 HK 关于取逆封闭, 所以 $(hk)^{-1} \in HK$, 故存在 $x \in H$ 和 $y \in K$ 使得 $(hk)^{-1} = xy \Rightarrow hk = y^{-1}x^{-1} \in KH$. 因而 $HK \subset KH$.

故 HK = KH.

(\Leftarrow) 显然 HK 包含单位元 1, 下证 HK 关于乘法和取逆封闭. 对于任意 $a,b \in HK$, 可分别将 a,b 表为 $a=h_1k_1,b=h_2k_2$.

因为 $k_1h_2 \in KH = HK$, 所以存在 $h \in H$ 和 $k \in K$ 使得 $k_1h_2 = hk$, 故

$$ab = h_1 k_1 h_2 k_2 = h_1 h k k_2 \in HK$$
,

即 HK 关于乘法封闭.

因为

$$a^{-1} = (h_1 k_1)^{-1} = k_1^{-1} h_1^{-1} \in KH = HK,$$

所以 HK 关于取逆封闭. 从而 HK 为 G 的子群.

第 1 章 群论 6

命题 1.1.2 证明: 当 |G| 有限时, 此命题由 Lagrange 定理立即得证. 下面假设 |G| 无限.

首先给出横截的定义: 设 G 为群, $H \le G$ 且 S 为 G 的子集, 若 H 的每一个右陪集都恰好包含 S 中的一个元素, 则称 S 为 H 在 G 中的右横截. (左横截类似定义)

设T为K在H中的右横截,U为H在G中的右横截.

第一步, 设 $g \in G$, 下证存在 $t \in T$ 和 $u \in U$ 使得 Kg = Ktu. 对于右陪集 Hg, 存在 $u \in U$ 使得 Hg = Hu, 故 $g \in Hu$, 从而存在 $h \in H$ 使得 g = hu. 再考虑陪集 Kh, 自然存在 $t \in T$ 使得 Kh = Kt, 故 $h \in Kt$, 从而存在 $k \in K$ 使得 h = kt. 所以 $g = hu = ktu \in Ktu$, 由此得 Kg = Ktu.

第二步, 若存在 $t,t' \in T$ 和 $u,u' \in U$ 使得 Ktu = Kt'u', 下证 t = t', u = u'. 因为 Ktu = Kt'u', 所以存在 $k \in K$ 使得 tu = kt'u', 故 $u(u')^{-1} = t^{-1}kt' \in H$, 从而 Hu = Hu'. 由横截的定义知 u = u'.

结合 tu=kt'u' 和 u=u' 知 $t(t')^{-1}=k\in K$, 故 Kt=Kt', 再次由横截 的定义知 t=t'.

第三步, 由前两步结论可知 $TU = \{tu \mid t \in T, u \in U\}$ 构成了 K 在 G 中的右横截, 因此

$$|G:K| = |U| \cdot |T| = |G:H| \cdot |H:K|.$$

命题 1.1.3 证明:

2. 设 G 为有限群, |G| = mn, (m, n) = 1, $g \in G$. 证明: G 中存在唯一的元素 x 和 y, 使得 g = xy = yx 且满足 $x^m = y^n = 1$.

证明: 因为 (m,n)=1, 所以存在 $r,s\in\mathbb{Z}$ 使得 rm+sn=1. 令 $x=g^{sn}$, $y=g^{rm}$, 则 $xy=yx=g^{rm+sn}=g$ 且 $x^m=g^{smn}=1$, $y^n=g^{rmn}=1$.

下证唯一性, 假设还存在 x' 和 y' 满足 g = x'y' = y'x' 且 $(x')^m = (y')^n = 1$. 由 xy = x'y' 得

$$(xy)^n = x^n y^n = \frac{x^n}{x^n} = (x'y')^n = (x')^n (y')^n = \frac{(x')^n}{x^n}.$$

第 1 章 群论 7

则

$$x = x^{rm+sn} = (x^n)^s = ((x')^n)^s = (x')^{sn} = (x')^{rm+sn} = x'.$$

同理可得 y = y', 唯一性得证.

3. 设 G 为 n 阶群, $a_1, a_2, \ldots, a_n \in G$, 证明: 存在整数 $i, j, 1 \le i \le j \le n$, 使得 $a_i a_{i+1} \cdots a_j = 1$.

证明: 考虑集合 $\{a_1, a_1a_2, \ldots, a_1a_2 \cdots a_n\}$.

若该集合中存在元素为 1, 则结论自明;

若该集合中不存在元素为 1, 则必有两元素相同, 不妨设 $a_1a_2 \cdots a_{i-1} = a_1a_2 \cdots a_i$, 利用消去律即得 $a_ia_{i+1} \cdots a_i = 1$.

4. 设 G 是群, $K = \{a_1, a_2, \dots, a_n\} \subset G$ 且 $1 \notin K^2$, 证明: 在 n^2 个乘积 $a_i a_j$ 中, 至多有 $\frac{n(n-1)}{2}$ 个元素 $a_i a_j \in K$.

证明: 将 $\{a_ia_j\}_{1\leq i,j\leq n}$ 这 n^2 个元素表为矩阵形式, 即

$$A = \begin{pmatrix} a_1 a_1 & a_1 a_2 & \cdots & a_1 a_n \\ a_2 a_1 & a_2 a_2 & \cdots & a_2 a_n \\ \vdots & \vdots & & \vdots \\ a_n a_1 & a_n a_2 & \cdots & a_n a_n \end{pmatrix}.$$

将 $\{a_i^{-1}a_i\}_{1\leq i,j\leq n}$ 这 n^2 个元素也表为矩阵形式, 即

$$B = \begin{pmatrix} a_1^{-1}a_1 & a_1^{-1}a_2 & \cdots & a_1^{-1}a_n \\ a_2^{-1}a_1 & a_2^{-1}a_2 & \cdots & a_2^{-1}a_n \\ \vdots & \vdots & & \vdots \\ a_n^{-1}a_1 & a_n^{-1}a_2 & \cdots & a_n^{-1}a_n \end{pmatrix}.$$

B 的主对角线元素皆为 1, 必不属于 K. 由于 $1 \notin K^2$, 故 $K \cap K^{-1} = \emptyset$, 而 B 中任意两对称元素皆互为逆元素, 所以 B 中至多只有 $\frac{n(n-1)}{2}$ 个元素属于 K.

定义映射: $\phi: A \cap K \to B \cap K$, $a_i a_j \mapsto a_i^{-1} a_k$, 其中 $a_k = a_i a_j$. 容易验证 ϕ 为双射, 因此

$$|A \cap K| = |B \cap K| \le \frac{n(n-1)}{2},$$

也即 A 中至多有 $\frac{n(n-1)}{2}$ 个元素属于 K.

5. 证明交代群 A_4 没有 6 阶子群.

证法 1: 假设 A_4 存在 6 阶子群 H, 则 $|A_4:H|=\frac{12}{6}=2$, 因此 H 必为 A_4 的正规子群, 由此可构造商群 A_4/H .

由于 A_4 中含有 8 个 3-轮换, 故可取某一 3-轮换 $x \notin H$. 考虑陪集 H, xH, x^2H , 由于商群 A_4/H 的阶为 2, 故这三个陪集中必有两个相同. 然而我们知道 H 与 xH 不相同, 所以必定是 x^2H 与 H, xH 中的一个相同.

若 $H = x^2 H$, 则 $x^2 = x^{-1} \in H \Rightarrow x \in H$, 矛盾.

若 $xH = x^2H$, 则 $x = x^2x^{-1} \in H$, 矛盾.

综上可知假设不成立, 因此 A₄ 没有 6 阶子群. □

证法 2: 假设 A_4 存在 6 阶子群 H, 显然 H 必含 3-轮换且 H 仅有一个三阶子群, 那么 H 还包含另外三个 2 阶元.

由此, $3 \land 2$ 阶元与单位元即可组成 H 的 4 阶子群, 然而 $4 \nmid 6$, 这与 Lagrange 定理相矛盾.

注 其实可以把 A_4 中的元素全部列举出来, 即为

$$A_4 = \{(1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23)\}.$$

可以看出, A_4 包含单位元 (阶为 1)、8 个 3-轮换 (阶为 3) 以及三个不相交 对换的乘积 (阶为 2).

6. 设 $G = \langle g \rangle$ 是一个 n 阶循环群, 证明:

第 1 章 群论 9

(i) 对每一个 n 的因子 d, 恰好存在 G 的一个阶为 d 的子群, 即 $\langle g^{\frac{n}{d}} \rangle$;

- (ii) 若 d 和 e 是 n 的因子, 则阶为 d 和 e 的子群的交是阶为 $\gcd(d,e)$ 的子群;
- (iii) 若 d 和 e 是 n 的因子, 则阶为 d 和 e 的子群的积是阶为 lcm(d,e) 的子群;

证明: 正式证明之前, 先证明一个引理: 设n 为正整数且d, e 皆为n 的 因子, 则

$$\gcd\left(\frac{n}{d}, \frac{n}{e}\right) = \frac{n}{\operatorname{lcm}(d, e)}, \quad \operatorname{lcm}\left(\frac{n}{d}, \frac{n}{e}\right) = \frac{n}{\gcd(d, e)}.$$

第二个等式可由第一个等式推出, 故只需证明第一个等式. 因 $\frac{n}{\operatorname{lcm}(d,e)} \mid \frac{n}{d}$ 且 $\frac{n}{\operatorname{lcm}(d,e)} \mid \frac{n}{e}$, 故 $\frac{n}{\operatorname{lcm}(d,e)}$ 为 $\frac{n}{d}$ 和 $\frac{n}{e}$ 的公因子. 其次, 任取 $\frac{n}{d}$ 和 $\frac{n}{e}$ 的公因子 k, 即 $k \mid \frac{n}{d}$ 且 $k \mid \frac{n}{e}$, 则由于

$$\frac{n}{\operatorname{lcm}(d,e)} = \frac{n \gcd(d,e)}{de} = \frac{n(rd+se)}{de} = r\frac{n}{e} + s\frac{n}{d},$$

故 $k \mid \frac{n}{\operatorname{lcm}(d,e)}$, 所以 $\frac{n}{\operatorname{lcm}(d,e)}$ 为 $\frac{n}{d}$ 和 $\frac{n}{e}$ 的最大公因子, 引理证毕.

(i) 首先, 因为 $|g^{\frac{n}{d}}| = \frac{n}{\gcd(n, \frac{n}{d})} = d$, 故 $\langle g^{\frac{n}{d}} \rangle$ 为阶为 d 的循环群. 然后, 假设 $\langle g^m \rangle$ 也为阶为 d 的循环群, 则

$$\frac{n}{\gcd(n,m)} = d \Rightarrow m = \frac{n}{d}.$$

唯一性得证.

(ii) 利用引理结论得

$$\langle g^{\frac{n}{d}} \rangle \cap \langle g^{\frac{n}{e}} \rangle = \langle g^{\operatorname{lcm}(d,e)} \rangle = \langle g^{\frac{n}{\operatorname{gcd}(d,e)}} \rangle,$$

即阶为 d 的子群和阶为 e 的子群的交为阶为 gcd(d,e) 的子群.

(iii) 由于循环群为交换群, 故由命题 1.1.1 知子群的积仍为子群, 且

$$\langle g^{\frac{n}{d}} \rangle \langle g^{\frac{n}{e}} \rangle = \langle g^{\gcd(\frac{n}{d}, \frac{n}{e})} \rangle = \langle g^{\frac{n}{\operatorname{lcm}(d, e)}} \rangle,$$

即阶为 d 的子群和阶为 e 的子群的积为阶为 lcm(d,e) 的子群.

7. 证明: 恰有一个极大子群的 n 阶群 G 一定是循环群.

证明: 设 $M \in G$ 的极大子群, 取 $a \in G \setminus M$. 记 $H = \langle a \rangle$, 若存在极大子群 K 使得 $H \subset K$, 则显然 $K \neq M$, 这与极大子群的唯一性相矛盾. 因此 H 不存在极大子群, 故 $G = H = \langle a \rangle$ 为循环群.

- **8.** 证明: S_n 的每一个元素可表为若干个对换的乘积, 对换的个数不一定相等, 但对换个数的奇偶性相同.
- 9. 设 a,b 是群 G 中两个可交换的元素且 $\langle a \rangle \cap \langle b \rangle = \{1\}$, 证明: $|ab| = \frac{|a||b|}{(|a|,|b|)}$.

证明: 记 m := |a|, n := |b| 且 r := |ab|.

因为

$$(ab)^{\frac{mn}{(m,n)}} = (a^m)^{\frac{n}{(m,n)}} (b^n)^{\frac{m}{(m,n)}} = 1,$$

所以 $r \mid \frac{mn}{(m,n)}$.

又因为

$$(ab)^r = a^r b^r = 1,$$

所以 $a^r=b^{-r}\in\langle b\rangle$, 从而 $a^r\in\langle a\rangle\cap\langle b\rangle=\{1\}$, 所以 $m\mid r$. 同理可知 $n\mid r$, 故 $\mathrm{lcm}(m,n)=\frac{mn}{(m,n)}\mid r$.

综上,
$$r = \frac{mn}{(m,n)}$$
, 也即 $|ab| = \frac{|a||b|}{(|a|,|b|)}$.

注 不能去掉条件 $\langle a \rangle \cap \langle b \rangle = \{1\}$, 否则结论不成立.

例如: 令 $b = a^{-1}$, 则 $|ab| = |e| = 1 \neq \text{lcm}(a, b) = m$.

又例如: 在 12 阶循环群 $\mathbb{Z}/12\mathbb{Z}$ 中, 考虑元素 $a=\bar{2}$ 和 $b=\bar{4}$, 容易验证 |a|=6 且 |b|=3, 故 $\operatorname{lcm}(|a|,|b|)=6$. 但是 $a+b=\bar{6}$ 的阶为 2.

10. 证明: 若群 G 中除单位元外其余元素的阶均为 2,则 G 为交换群.

证明: 假设 G 不为交换群, 则存在 $a,b \in G$ 使得 $ab \neq ba$. 不等式两侧同时乘以 ab 得

$$abab \neq abba$$
.

然而 $abab = (ab)^2 = 1$ 且 $abba = ab^2a = a^2 = 1$,矛盾.

11. 证明: S_5 可由一个 5-轮换和一个对换生成.

证明: 下证 $S_5 = \langle (12345), (12) \rangle$. 记 s = (12345), t = (12).

事实上,任何置换都可以表示为对换的乘积,故只需证 s 和 t 能生成所有的对换即可. 注意到

$$sts^{-1} = (23),$$

类似地

$$s^2ts^{-2} = (34), \quad s^3ts^{-3} = (45), \quad s^4ts^{-4} = (51).$$

由此不难生成其它的所有对换,例如

$$(13) = (23)(12)(23), (14) = (34)(13)(34).$$

因此 $S_5 = \langle (12345), (12) \rangle$.

注 此结论可以推广为: S_n 可以由一个对换和一个 n-轮换当且仅当 n 为素数, 见 math.stackexchange.

1.2 正规子群和商群

1. 设 G 为有限群, $H \leq G$, $N \subseteq G$, 证明: (i) 若 (|G:N|, |H|) = 1, 则 $H \leq N$; (ii) 若 (|G:H|, |N|) = 1, 则 $N \leq H$.

证明: (i) 因为 (|G:N|, |H|) = 1, 所以存在整数 m, n 使得 m|G:N|+n|H|=1. 对于任意 $h \in H$, 有

$$hN = h^{m|G:N|+n|H|}N$$

$$= h^{m|G:N|}N$$

$$= (hN)^{m|G:N|}$$

$$= N.$$

故 $h \in N$, 从而 $H \leq N$.

(ii) 因为 $H \leq G, \, N \trianglelefteq G,$ 所以 HN = NH, 故由命题 1.1.1 知 $HN \leq G,$ 故

$$|HN| \mid |G| = |G:H| \cdot |H|. \tag{*}$$

第 1 章 群论 12

由第一同构定理知 $HN/N \cong H/H \cap N$, 于是

$$\frac{|HN|}{|N|} = \frac{|H|}{|H\cap N|},$$

即 $|HN| \cdot |H \cap N| = |H| \cdot |N|$, 故

$$|HN| \mid |H| \cdot |N|. \tag{**}$$

因为 (|G:H|,|N|) = 1, 所以存在整数 m 和 n 使得

$$m|G:H|+n|N|=1,$$

结合 $(\star)(\star\star)$ 可得 |HN| | |H|, 于是 |HN| = |H|, 又因为 $H \leq HN$, 所以 $H = HN \Rightarrow N < H$.

2. 设 G 是群, $H \leq G$, |G:H| = n 且 $z \in Z(G)$, 证明: $z^n \in H$.

证明: 设 $N := N_G H = \{g \in G \mid gHg^{-1} = H\}$, 则 $H \subseteq N$ 且 $N \subseteq G$.

考虑商群 N/H, 由 $|N:H| \mid |G:H| = n$ 可知对于任意 $xH \in N/H$ 有 $(xH)^n = x^nH = H$, 故 $x^n \in H$. 又因为 $Z(G) \leq N_GH$, 所以对于任意 $z \in Z(G)$, 有 $z^n \in H$.

3. 设 H 是群 G 的指数有限的子群, 即 $|G:H|=n<\infty$, 证明: H 含有 G 的一个正规子群 N 使得 $|G:N|<\infty$.

证法一: 考虑群作用 $G \times G/H \to G/H$, $(g, xH) \mapsto gxH$. 此作用对应 同态

$$\phi: G \longrightarrow \Sigma_{G/H} = S_n$$

 $g \longmapsto \sigma_g, \sigma_g(xH) = gxH.$

由群同态基本定理知, $G/\ker\phi\cong\operatorname{Im}\phi\leq S_n$. 由于 $\ker\phi$ 为 G 的正规子群,

$$\ker \phi = \{g \in G \mid \sigma_g = \mathrm{id}\}$$

$$= \{g \in G \mid \sigma_g(xH) = gxH = xH, \forall xH \in G/H\}$$

$$\subseteq \{g \in G \mid \sigma_g(H) = gH = H\} = H.$$

且 $|G: \ker \phi| = |G/\ker \phi| = |\operatorname{Im} \phi| \le n!$, 故取 N 为 $\ker \phi$ 即满足要求. \square

第 1 章 群论 13

证法二: 先证明一个引理: 有限个指数有限的子群的交仍然是指数有限的.

由归纳法, 只需证明 2 个子群的情形, 设 G 为群, $H \leq G$, $K \leq G$, 且 $|G:H| < \infty$, $|G:K| < \infty$. 由于 H 稳定地作用在 HK/K 上, 取 $K \in HK/K$, 因 K 的稳定化子为 $G_K = \{h \in H \mid hK = K\} = H \cap K$, 故由轨道-稳定化子定理知

$$HK/K \cong H/H \cap K$$
.

故 $|HK:K|=|H:H\cap K|$, 因此

 $|G:H\cap K| = |G:H||H:H\cap K| = |G:H||HK:K| \le |G:H||G:K| < \infty.$

设 $\{x_1, x_2, \dots, x_n\}$ 为 H 在 G 中的一个左陪集代表 (不妨设 $x_1 \in H$).

$$N = \bigcap_{i=1}^{n} x_i H x_i^{-1} \subset x_1 H x_1^{-1} = H.$$

由引理知 N 为 G 的指数有限的子群, 故剩下只需证 $N \triangleleft G$ 即可. 任取 $g \in G$, 因 $\{gx_1, gx_2, \ldots, gx_n\}$ 为 H 在 G 中的另一组左陪集代表, 故存在 $\sigma \in S_n$, 使得 $gx_iH = x_{\sigma(i)}H$ $(1 \le i \le n)$, 因此

$$gNg^{-1} = \bigcap_{i=1}^{n} gx_i Hx_i^{-1}g^{-1} = \bigcap_{i=1}^{n} x_{\sigma(i)} Hx_{\sigma(i)}^{-1} = N.$$

所以就得 $N \triangleleft G$.

4. 若群 G 有一个指数为 4 的正规子群, 则 G 也有一个指数为 2 的正规子群.

证明: 假设 N 为 G 的指数为 4 的正规子群, 考虑商群 G/N, 取 $x \notin N$, 则陪集 xN 在商群中的阶 |xN|=2 或 |xN|=4.

若 |xN|=2, 则 $\langle x\rangle N=N\cup xN$, 故 $|\langle x\rangle N:N|=2$, 又因为 $|G:N|=|G:\langle x\rangle N|\cdot |\langle x\rangle N:N|$, 故 $|G:\langle x\rangle N|=2$, 于是 $\langle x\rangle N$ 即为 G 的指数为 2 的正规子群.

若 |xN|=4, 则 $\langle x^2\rangle N=N\cup x^2N$, 同理可得 $\langle x^2\rangle N$ 为 G 的指数为 2 的正规子群.

5. 设 A 和 B 是群 G 的两个正规子群, $A \cap B = \{1\}$, 证明: A 的元素与 B 的元素可交换.

证明: 对于任意 $a \in A$ 和 $b \in B$, 考虑换位子 $a^{-1}b^{-1}ab$.

因为 A 为正规子群, 所以 $b^{-1}ab \in A$, 从而 $a^{-1}b^{-1}ab \in A$; 因为 B 为正规子群, 所以 $a^{-1}b^{-1}a \in B$, 从而 $a^{-1}b^{-1}ab \in B$, 故 $a^{-1}b^{-1}ab \in A \cap B = \{1\}$, 这说明 ab = ba.

6. 证明: 有限交换单群 $G \neq \{e\}$ 一定是素数阶循环群.

证明: 因在交换群中,所有子群都正规,所以在交换单群中没有非平凡的子群. 任取非单位元素 $g \in G$,由于 G 没有非平凡子群,就有 $G = \langle g \rangle$,即 G 为循环群且阶数一定为素数.

7. 证明: 四元数群 Q_8 的每个子群都是正规子群.

证明: 设 $H \leq Q_8$. 显然当 $H = \{1\}$ 或 $H = Q_8$ 时其为正规子群, 否则 |H| = 2 或 4.

当 |H|=4 时, $|Q_8:H|=2$, 又指数为 2 的子群为正规子群, 故此时 $H \triangleleft G$. 当 |H|=2 时, $H=\{1,-1\} \triangleleft G$.

8. 设 G 为群, $x, y \in G$, 证明: 若 $[x, y] \in Z(G)$, 则对任意的 $n \in \mathbb{N}$ 有 $[x^n, y] = [x, y]^n$, $(xy)^n = x^n y^n [y, x]^{\frac{n(n-1)}{2}}$.

证明: 先证明 $[x^n, y] = [x, y]^n$. 当 n = 0 时等式显然成立, 假设等式对 n = k 成立, 则

$$\begin{split} [x^{k+1}, y] &= x^{-(k+1)} y^{-1} x^{k+1} y \\ &= x^{-k} \cdot x^{-1} y^{-1} x y \cdot y^{-1} x^k y \\ &= x^{-1} y^{-1} x y \cdot x^{-k} y^{-1} x^k y \\ &= [x, y] \cdot [x^k, y] \\ &= [x, y] \cdot [x, y]^k \\ &= [x, y]^{k+1}, \end{split}$$

¹原题有误.

故当 n = k + 1 时等式成立, 由归纳法可知对任意 $n \in \mathbb{N}$ 有 $[x^n, y] = [x, y]^n$. 再证明 $(xy)^n = x^n y^n [y, x]^{\frac{n(n-1)}{2}}$. 首先容易由 $[x, y] \in Z(G)$ 证得 $[y, x] \in Z(G)$, 然后注意到一个关系式: 对于任意非负整数 m, n 有

$$x^myx^n = x^mxy \cdot y^{-1}x^{-1}yx \cdot x^{n-1} = x^{m+1}yx^{n-1} \cdot [y,x].$$

当 n=0 时等式显然成立,假设当 n=k 时等式成立,即 $(xy)^k=x^ky^k[y,x]^{\frac{k(k-1)}{2}}$,则不断利用上述关系式得

$$\begin{split} (xy)^{k+1} &= xy \cdot x^k y^k [y,x]^{\frac{k(k-1)}{2}} \\ &= x^2 y x^{k-1} y^k [y,x]^{\frac{k(k-1)}{2}+1} \\ &= x^3 y x^{k-2} y^k [y,x]^{\frac{k(k-1)}{2}+2} \\ &= \cdot \cdot \cdot \\ &= x^{k+1} y x^0 y^k [y,x]^{\frac{k(k-1)}{2}+k} \\ &= x^{k+1} y^{k+1} [y,x]^{\frac{(k+1)k}{2}}, \end{split}$$

故当 n=k+1 时等式成立,由归纳法可知对任意 $n\in\mathbb{N}$,有 $(xy)^n=x^ny^n[y,x]^{\frac{n(n-1)}{2}}$.

1.3 同态与同构

1. 设 G 为有限群, $\varphi(x)=x^3, x\in G$ 是 G 的一个自同态映射. 证明: 若 $3 \nmid |G|$, 则 G 为交换群.

证明: 因 $\varphi(x) = x^3$ 为同态映射, 故对任意 $x, y \in G$, 有 $(xy)^3 = x^3y^3$, 也即 $yxyx = x^2y^2$.

先证对于任意 $x \in G$, 都有 $x^2 \in Z(G)$. 为此, 考虑换位子 $x^2yx^{-2}y^{-1}$,

因为

$$(x^{2}yx^{-2}y^{-1})^{3} = [(x^{2}yx^{-2})y^{-1}(x^{2}yx^{-2})y^{-1}]x^{2}yx^{-2}y^{-1}$$

$$= y^{-2} \cdot x^{2}yx^{-2} \cdot x^{2}yx^{-2} \cdot x^{2}yx^{-2}y^{-1}$$

$$= y^{-2}x^{2}y^{3}x^{-2}y^{-1}$$

$$= y^{-2}x^{-1}(x^{3}y^{3})x^{-2}y^{-1}$$

$$= y^{-2}x^{-1}(xyxyxy)x^{-2}y^{-1}$$

$$= y^{-1}(xyxy)x^{-2}y^{-1}$$

$$= y^{-1}(y^{2}x^{2})x^{-2}y^{-1}$$

$$= 1,$$

且 $3 \nmid |G|$, 故 $x^2yx^{-2}y^{-1} = 1$, 因此 $x^2 \in Z(G)$.

于是对任意 $x, y \in G$, 有

$$x^{3}y^{3} = (xy)^{3} = xyxyxy = x(yx)^{2}y = (yx)^{2}xy = yxyx^{2}y = x^{2}yxy^{2},$$

故 xy = yx, 从而 G 为交换群.

2. 设 $\varphi \in \text{Aut}(G)$, $a^{-1}\varphi(a) \in Z(G)$, $a \in G$. 证明: 对任意的 $b \in G'$, 有 $\varphi(b) = b$.

证明: 先证明对任意的 $x,y\in G$, 都有 $[\varphi(x),\varphi(y)]=[x,y]$. 由于对任意 $a\in G$, 都有 $a^{-1}\varphi(a)\in Z(G)$, 故

$$\begin{split} [\varphi(x),\varphi(y)] &= \varphi(x)^{-1}\varphi(y)^{-1}\varphi(x)\varphi(y) \\ &= \varphi(x)^{-1}\varphi(y)^{-1}\cdot x\cdot x^{-1}\varphi(x)\varphi(y) \\ &= x^{-1}\varphi(x)\cdot \varphi(x)^{-1}\varphi(y)^{-1}x\varphi(y) \\ &= x^{-1}\varphi(y)^{-1}x\varphi(y) \\ &= x^{-1}\varphi(y)^{-1}xy\cdot y^{-1}\varphi(y) \\ &= x^{-1}\cdot y^{-1}\varphi(y)\cdot \varphi(y)^{-1}xy \\ &= x^{-1}y^{-1}xy \\ &= [x,y]. \end{split}$$

对于任意的 $b \in G'$, 可将其表为

$$b = [a_1, b_1][a_2, b_2] \cdots [a_n, b_n],$$

故

$$\varphi(b) = \varphi([a_1, b_1]) \cdots \varphi([a_n, b_n])$$

$$= [\varphi(a_1), \varphi(b_1)] \cdots [\varphi(a_n), \varphi(b_n)]$$

$$= [a_1, b_1] \cdots [a_n, b_n] = b.$$

3. 设 $G = \langle a \rangle$ 是 30 阶的循环群, \mathbb{Z} 为整数加群. 定义 $\pi(n) = a^n$, 则 π 是 \mathbb{Z} 到 G 的同态映射. 确定 (i) $\ker \pi$; (ii) 找出与子群 $\langle 30 \rangle \leq \langle 15 \rangle \leq \langle 5 \rangle \leq \mathbb{Z}$ 对应的 G 的子群.

解: (i) $\ker \pi = \{ n \in \mathbb{Z} \mid a^n = e \} = 30\mathbb{Z}.$

- (ii) 相对应的子群分别为 $e \leq \langle a^{15} \rangle \leq \langle a^5 \rangle \leq \langle a \rangle$.
- **4.** 设 G 为群, $H_1 \triangleleft G$, $H_2 \triangleleft G$. 如果 $H_1 \cong H_2$, 是否 $G/H_1 \cong G/H_2$?

证明: 不一定, 例如取 $G=\mathbb{Z},\,H_1=2\mathbb{Z},\,H_2=3\mathbb{Z},\,$ 则 $H_1\cong H_2,\,$ 但是 $G/H_1\not\cong G/H_2.$

5. 设 G 为群, $G' < H \le G$, 证明: $H \le G$.

证明: 对任意 $g \in G$ 和 $h \in H$, 有 $ghg^{-1} = ghg^{-1}h^{-1}h \in H$, 故 $H \subseteq G$.

- 6. 设 ℚ 是有理数加群, ℤ 是整数加群, 证明:
- (i) 对于 $\mathbb Q$ 的每一个非零数 $k, q \mapsto kq$ 是 $\mathbb Q$ 到 $\mathbb Q$ 的自同构;
- (ii) $\mathbb Q$ 没有有限指数的真子群, 由此得 $\mathbb Q/\mathbb Z$ 没有有限指数的真子群;
- (iii) ℚ 没有极大子群.

证明: (i) trivial.

(ii) 设 N 为 $\mathbb Q$ 的有限指数的真子群且 $|\mathbb Q:N|=n$,考虑商群 $\mathbb Q/N$,对于任意 $q\in\mathbb Q$,有 n(q+N)=nq+N=N,故 $nq\in N$. 那么对任意 $q\in\mathbb Q$,有 $\frac{q}{n}\in\mathbb Q$,从而 $n\frac{q}{n}=q\in N$,因此 $N=\mathbb Q$,矛盾.

假设 $N \leq \mathbb{Q}/\mathbb{Z}$ 为有限指数的真子群, 考虑两个同态

$$\varphi: \mathbb{Q}/\mathbb{Z} \to (\mathbb{Q}/\mathbb{Z})/N, \quad \ker \varphi = N$$

和

$$\sigma: \mathbb{Q} \to \mathbb{Q}/\mathbb{Z}, \quad \ker \sigma = \mathbb{Z}.$$

则 $\varphi \circ \sigma : \mathbb{Q} \to (\mathbb{Q}/\mathbb{Z})/N$ 为同态且 $\ker(\varphi \circ \sigma) = \sigma^{-1}(\varphi^{-1}(N)) = \sigma^{-1}(N)$, 由对应定理知 $\ker(\varphi \circ \sigma)$ 为 \mathbb{Q} 的指数有限的真子群, 矛盾.

(iii) 设 H 为 $\mathbb Q$ 的任意真子群, 取 $x \in G \setminus H$, $y \in H$ 且 $y \neq 0$. 可以记 $\frac{y}{x} = \frac{a}{b}$, 其中 $a, b \in \mathbb Z$ 且 $a \neq 0$. 记 $H' = H + \langle x \rangle$, 则 $H \leq H' \leq G$.

由 $x \notin H$ 但 $x \in H'$ 知 H 为 H' 的真子群.

我们有 $\frac{x}{a} \notin H' = H + \langle x \rangle$, 事实上, 如若不然, 则可设 $\frac{x}{a} = h + nx$ $(h \in H, n \in \mathbb{Z})$, 则 $x = ah + nax = ah + nby \in H$, 矛盾. 故 H' 为 $\mathbb Q$ 的真子群.

综上即知 $H < H' < \mathbb{Q}$, 故 \mathbb{Q} 没有极大子群.

定理 1 设 G 为群, G' 为 G 的导群 (换位子群), 则 $G' \subseteq G$.

证法一: 对于任意 $u \in G'$ 和任意 $g \in G$, 有

$$gug^{-1}=gug^{-1}u^{-1}u=[g^{-1},u^{-1}]u\in G',$$

故 G' ≤ G.

证法二:换位子群 G'的每个元素都形如

$$[a_1,b_1][a_2,b_2]\cdots[a_n,b_n].$$

只需证对任意的换位子 [a,b] 都有 $g[a,b]g^{-1} \in G'$ 即可, 事实上, 由于

$$g[a_1, b_1][a_2, b_2] \cdots [a_n, b_n]g^{-1} = (g[a_1, b_1]g^{-1})(g[a_2, b_2]g^{-1}) \cdots (g[a_n, b_n]g^{-1}),$$

故当 $g[a_i, b_i]g^{-1} \in G' \ (1 \le i \le n)$ 时, 有

$$g[a_1,b_1][a_2,b_2]\cdots[a_n,b_n]g^{-1}\in G'.$$

下证 $g[a,b]g^{-1} \in G'$. 设 $\phi: G \to G$ 为任意同态, 则有

$$\phi([a,b]) = \phi(a^{-1}b^{-1}ab) = \phi(a)^{-1}\phi(b)^{-1}\phi(a)\phi(b) = [\phi(a),\phi(b)].$$

特别地, 我们取同态 $\phi(x) = gxg^{-1}$, 则由上述等式知

$$g[a,b]g^{-1} = [gag^{-1}, gbg^{-1}] \in G'.$$

即证所需.

1.4 直积与半直积

1.5 群作用

1. 证明: 阶为不小于 r! 的有限单群没有指数为 r 的子群.

证明: 假设 G 为有限单群, $|G| \ge r!$, H 为 G 的指数为 r 的子群. G 在 陪集空间 G/H 上有自然作用, 由命题 1.5.1 知此作用对应一个从 G 到 $\Sigma_{G/H}$ 的同态: $\varphi: G \to \Sigma_{G/H} = S_r$. 由同态基本定理知 $G/\ker \varphi \cong \operatorname{Im} \varphi \le S_r$. 由于 $\ker \varphi \triangleleft G$ 且 G 为单群, 故 $\ker \varphi = \{e\}$, $G \cong \operatorname{Im} \varphi$, 从而

$$r! \le |G| = |\operatorname{Im} \varphi| \le |S_r| = r!,$$

所以 $G \cong S_r$, 而 S_r 不是单群 (A_r 为 S_r 的正规子群, 因任取 $\pi \in S_r$, $\sigma \in A_r$, $\pi \sigma \pi^{-1}$ 仍为偶置换, 故 $\pi \sigma \pi^{-1} \in A_r$), 这与 G 为单群相矛盾.

- **2.** 已知 X 为传递的 G 集合, 证明: 群 G 双传递地作用在集合 X 上当 且仅当 G_x 传递地作用在集 $X \{x\}, x \in X$ 上.
- 证明: (⇒) 任取 $y, z \in X \{x\}$, 因 G 双传递地作用在 X 上, 故存在 $g \in G$, 使得 gx = x, gy = z, 由 gx = x 知 $g \in G_x$, 再由 y, z 的任意性知 G_x 传递地作用在 $X \{x\}$ 上.
- (秦) 任取 $(x_1, x_2), (y_1, y_2) \in X \times X$ 且 $x_1 \neq x_2, y_1 \neq y_2$, 往证存在 $g \in G$, 使得 $gx_1 = y_1$ 且 $gx_2 = y_2$. 因 G 在 X 上传递, 故存在 $h \in G$, 使得

 $hx_1 = y_1$, 令 $hx_2 = x_2' \neq y_1$, 由 G_{y_1} 在 $X - \{y_1\}$ 上传递知存在 $k \in G_{y_1}$, 使得 $kx_2' = y_2$. 令 g = kh, 则 $gx_1 = khx_1 = ky_1 = y_1$, $gx_2 = khx_2 = kx_2' = y_2$. \square

3. 证明: 对群 G 中任意的元素 $g, x, C_G(gxg^{-1}) = gC_G(x)g^{-1}$ 成立.

证明: 对任意 $h = gyg^{-1} \in gC_G(x)g^{-1}$, 其中 $y \in C_G(x)$, 有

$$h(gxg^{-1})h^{-1} = (hg)x(hg)^{-1} = gyxy^{-1}g^{-1} = gxg^{-1},$$

故 $h \in C_G(gxg^{-1})$, 从而 $gC_G(x)g^{-1} \subset C_G(gxg^{-1})$.

在上式中用 $g^{-1}xg$ 替换 x, 得 $gC_G(g^{-1}xg)g^{-1} \subset C_G(x)$, 故 $C_G(g^{-1}xg) \subset g^{-1}C_G(x)g$, 再用 g^{-1} 替换 g, 即得 $C_G(gxg^{-1}) \subset gC_G(x)g^{-1}$, 因此

$$C_G(gxg^{-1}) = gC_G(x)g^{-1}.$$

4. 设 G 为有限群, 证明: $|\{(a,b) \in G \times G \mid ab = ba\}| = r|G|$, 其中 r 为 G 的共轭类的个数.

证明: 设 C_1, \dots, C_r 为 G 的共轭类. 因对任意 $x, y \in C_i$, 有 $|C_G(x)| = |C_G(y)|$, 故

$$|\{(a,b) \in G \times G \mid ab = ba\}| = \sum_{a \in G} |C_G(a)| = \sum_{i=1}^r \sum_{a \in C_i} |C_G(a)|$$
$$= \sum_{i=1}^r |C_i| \cdot |C_G(a)| = \sum_{i=1}^r |G| = r|G|. \quad \Box$$

1.6 Sylow 定理

1. 证明: p^2 阶群 G 是交换群, 其中 p 是素数.

证法一: 若 G 中存在 p^2 阶元,则 G 显然为循环群,从而为交换群;若 G 中不存在 p^2 阶元,则 G 中任意非单位元的阶都为 p.

任取 $x \in G$ 且 |x| = p, 因为 $|G: \langle x \rangle| = p$ 为整除 |G| 的最小素数, 故 $\langle x \rangle \triangleleft G$. 任取 $y \in G$ 且 |y| = p, 由 $\langle x \rangle \triangleleft G$ 知 $yxy^{-1} \in \langle x \rangle$, 故 $yxy^{-1} = x^r$,

其中 $1 \le r \le p-1$, 从而

$$y^{i}xy^{-i} = y^{i-1}(yxy^{-1})y^{-i+1} = y^{i-1}x^{r}y^{-i+1}$$
$$= y^{i-2}(yx^{r}y^{-1})y^{-i+2} = y^{i-2}x^{r^{2}}y^{-i+2}$$
$$= \dots = x^{r^{i}}.$$

特别地, $y^{p-1}xy^{1-p} = x^{r^{p-1}}$, 由 Fermat 定理知 $r^{p-1} \equiv 1 \pmod{p}$, 故 $y^{p-1}xy^{1-p} = x$. 又由于 |y| = p, 故 $y^{-1}xy = x \Rightarrow xy = yx$, 由此可知 x 的中心化子 $Z(x) = G \Leftrightarrow x \in Z(G)$, 因此 Z(G) = G, 这就说明 G 为交换群.

注 参考链接: MSE.

上述证明过程用到一个引理:

引理 1 设 G 为有限群, p 为整除 |G| 的最小素数, 若 H 为 G 的指数为 p 的子群, 则 $H \triangleleft G$.[链接]

证明: 考虑 G 在 H 的陪集空间 $\{xH \mid x \in G\}$ 上的作用:

$$(g, xH) \longmapsto gxH.$$

此作用对应同态 $\phi: G \to S_p, g \mapsto \sigma_g$, 其中 $\sigma_g(xH) = gxH$.

记 $K=\ker\phi$, 则 $K \leq G$. 若 $g\in K$, 则 $\sigma_g=\operatorname{id}$, 故 $\sigma_g(H)=gH=H\Rightarrow g\in H$, 因此 $K\leq H$. 由群同态定理知 G/K 同构于 S_p 的某个子群, 故 |G/K| 整除 p!. 又 |G/K| |G| 且 p 为整除 |G| 的最小素数, 故 |G/K|=p. 从而

$$p = |G/K| = [G:K] = [G:H][H:K] = p[H:K] \Rightarrow H = K.$$

所以 $H \triangleleft G$.

证法二: 证明 p-群必有非平凡的中心. 利用共轭类方程:

$$|G| = |Z(G)| + \sum_{x} |G:Z(x)|,$$

其中 x 取遍非中心元素的共轭类的代表. 首先, 当 $x \notin Z(G)$ 时, Z(x) 为 G 的真子群, 故 $p \mid |G:Z(x)|$, 从而 $p \mid \sum_{x} |G:Z(x)|$, 又因 $p \mid |G|$, 故 $p \mid |Z(G)|$. 显然 Z(G) 非空 $(e \in Z(G))$, 因此 p-群的中心是非平凡的.

特别地,在 p^2 阶群中, Z(G) 非平凡可分为两种可能: |Z(G)| = p 或 $|Z(G)| = p^2$. 若 |Z(G)| = p,则 |G:Z(G)| = p,从而 G/Z(G) 为循环群,那 么 G 为交换群; 若 $|Z(G)| = p^2$,则 Z(G) = G,从而 G 为交换群.

第 2 章

环与域

2.1 基本概念和例子

1. 略

证明: 在矩阵环中寻求反例即可.

- **2.** 设 R 是以 n 为模的剩余类环, 证明:
- (i) 若 $n = a^k b$, 则 [ab] 是 R 的幂零元;
- (ii) 设 m 为整数, 则 $[m] \in R$ 是幂零元当且仅当 n 的每个素因子也是 m 的一个素因子. 特别地, 确定 $\mathbb{Z}/(72)$ 的幂零元.

证明: (i) 若 $n=a^kb$, 则 $([ab])^k=[a^kb^k]=[b^{k-1}n]=[0]$, 故 [ab] 为幂零元.

- (ii)(⇒) 因 $[m] \in R$ 为幂零元, 故存在正整数 k 使得 $[m]^k = [m^k] = [0]$, 那么有 $n \mid m^k$. 若素数 $p \mid n$, 则 $p \mid m^k \Rightarrow p \mid m$.
- (秦)n 有素数分解 $n = p_1^{k_1} \cdots p_s^{k_s}$,由条件知 $p_i \mid m(1 \leq i \leq s)$,故 $p_1 \cdots p_s \mid m$.取 $K = \max_{1 \leq i \leq s} \{k_i\}$,则 $n = p_1^{k_1} \cdots p_s^{k_s} \mid p_1^K \cdots p_s^K \mid m^k$,所以 $[m]^k = [m^k] = [0]$,这说明 [m] 为幂零元.
 - 3. 证明: $\mathbb{Z}/(k)$ 有幂零元当且仅当存在素数 p 使得 $p^2 \mid k$.
- **4.** 设 a 是环 R 中的元, 若 $a^2 = a$, 则 a 称为幂等元. 若 R 的每个非零元为幂等元, 则称 R 为布尔环. 证明: 布尔环是交换环. 进一步地, 若布尔环是整环, 则它必为二元环.

证明: 对任意 $a \in R$, 有

$$2a = (a+a)^2 = 4a^2 = 4a \Rightarrow 2a = 0.$$

又对任意 $x, y \in R$, 有

$$x + y = (x + y)^2 = x^2 + xy + yx + y^2 = x + xy + yx + y \Rightarrow xy + yx = 0.$$

故 xy = xy + (xy + yx) = 2xy + yx = yx, 也即布尔环为交换环.

若布尔环 R 为整环,则 R 无零因子. 对于任意的 $a \in R$ 且 $a \neq 0$,有 $a^2 - a = a(a-1) = 0$,故 a = 1,也即说明 R 为二元环.

5. 设 $\mathcal{F}(\mathbb{R})$ 是所有函数 $f: \mathbb{R} \to \mathbb{R}$ 组成的集, 对任意的 $f, g \in \mathcal{F}(\mathbb{R})$, $a \in \mathbb{R}$, 规定: (f+g)(a) = f(a) + g(a), (fg)(a) = f(a)g(a). 证明: $\mathcal{F}(\mathbb{R})$ 是交换幺环且含无限个元 f 使得 $f^2 = f$.

证明: 容易验证 $\mathcal{F}(\mathbb{R})$ 为交换幺环, 取 $f_{\alpha} = \begin{cases} 1, & x = \alpha \\ 0, & x \neq \alpha, \end{cases}$ 则 $(f_{\alpha})_{\alpha \in \mathbb{R}} \subset \mathcal{F}(\mathbb{R})$ 且 $f^2 = f$.

- **6.** 设 X 是非空集, $\mathcal{P}(X)$ 是 X 的所有子集组成的集. 对于 $A, B \in \mathcal{P}(X)$, 规定 $A+B=A\triangle B$, $AB=A\cap B$. 证明:
 - (i) $\mathcal{P}(X)$ 为交换幺环且为布尔环;
 - (ii) $\mathcal{P}(X)$ 恰有一个单位;
 - (iii) 若 $Y \subset X$, 则 $\mathcal{P}(Y)$ 的单位不同于 $\mathcal{P}(X)$ 的单位.

证明: (i) $\mathcal{P}(X)$ 关于加法成加群:

- $(A+B)+C=(A\triangle B)\triangle C=A\triangle (B\triangle C)=A+(B+C)$
- $A + \emptyset = \emptyset + A = A$
- $A + A = A \triangle A = \emptyset$

 $\mathcal{P}(X)$ 关于乘法成半群:

$$(AB)C = (A \cap B) \cap C = A \cap (B \cap C) = A(BC).$$

 $\mathcal{P}(X)$ 满足分配律:

$$(A+B)C = (A\triangle B) \cap C = (A\cap C)\triangle(B\cap C) = AC + BC,$$

$$C(A+B) = CA + CB.$$

综上知 $\mathcal{P}(X)$ 为环, 又 $AB = A \cap B = B \cap A = BA$, 且 AX = XA = A, 故 $\mathcal{P}(X)$ 为交换幺环. 又因 $A^2 = A \cap A = A$, 故 $\mathcal{P}(X)$ 为布尔环.

- (ii) 由 (i) 知 $\mathcal{P}(X)$ 的单位元为 X. 设 $A \in \mathcal{P}(X)$ 为单位,则存在 $B \in \mathcal{P}(X)$ 使得 $AB = A \cap B = X \Rightarrow A = X$,即 $\mathcal{P}(X)$ 中的单位只有 X.
 - (iii) $\mathcal{P}(Y)$ 中的单位为 Y, 显然不同于 $\mathcal{P}(X)$ 的单位 X.
 - 7. 设 R 是有单位元 1 的交换环, x 是 R 的幂零元, 证明:
 - (i) 对所有的 $r \in R$, rx 是幂零元;
 - (ii) 1+x 是 R 的单位;
 - (iii) 一个幂零元与一个单位的和是一个单位.

证明: (i) 因为 x 是 R 的幂零元, 所以存在正整数 n 使得 $x^n = 0$, 那么 $(rx)^n = r^n x^n = 0$. 从而 rx 是幂零元:

- (ii) $(1+x)(1-x+x^2-\cdots+(-1)^{n-1}x^{n-1})=1+(-1)^{n-1}x^n=1$, 故 1+x 是 R 的单位;
 - (iii) 设 x 为幂零元且 y 为单位, 则 $y + x = y(1 + y^{-1}x)$ 仍为单位.
- **8.** 设 R 是交换幺环, 对任意的 $a, b \in R$, 规定 $a \circ b = a + b ab$. 证明: R 是域当且仅当 $S = \{r \in R \mid r \neq 1\}$ 关于 \circ 运算是交换群.

证明: 显然对任意的 $a,b\in S$ 都有 $a\circ b=b\circ a$ 且 $a\circ 0=0\circ a=a$, 所以若要使得 S 为交换群, 只需其中任意元素 $a\in S$ 关于。运算皆有逆元即可.

(秦) 任取 R 中的非零元 a, 有 $a+1 \neq 1$, 故 $a+1 \in S$. 而 S 关于。运算为交换群, 故存在 $b \in S$ 使得 $(a+1) \circ b = 0$, 即 a+1+b-(a+1)b=0,整理得 a(b-1) = 1, 也即 $a^{-1} = b-1$. 因此 R 是域.

(⇒) 任取元素 $a \in S$, 由 $a \neq 1$ 知 $a - 1 \neq 0$, 故 a - 1 在 R 中可逆, 令 $b = (a - 1)^{-1}a$, 则

$$a \circ b = a + (a - 1)^{-1}a - a(a - 1)^{-1}a$$
$$= a - (a - 1)(a - 1)^{-1}a$$
$$= 0.$$

这说明 $b \in a$ 在 S 中关于 \circ 运算的逆元, 故 S 为交换群.

- 9. 设 R 是环, 证明:
- (i) u 是 R 的单位当且仅当 u 既是左逆元也是右逆元;
- (ii) 若 u 有一个右逆元, 则 u 不是右零因子;
- (iii) 若 u 有多于一个的右逆元, 则 u 必为左零因子;
- (iv) 若 u 有多于一个的右逆元, 则 u 必有无限多个右逆元.

证明: (i) (\Rightarrow) 若 u 是 R 的单位, 则存在 $v \in R$, 使得 uv = vu = 1, 故 u 既是左逆元也是右逆元.

(⇐) 设 u 既是左逆元也是右逆元, 则存在 $v,w \in R$, 使得 uv = wu = 1, 从而

$$v = 1v = (wu)v = w(uv) = w1 = w,$$

因此 u 为单位.

- (ii) 设 u 有右逆元 v, 则 uv = 1. 假设 u 为右零因子, 则存在 $w \in R$, $w \neq 0$, 使得 wu = 0, 则 (wu)v = w(uv) = w = 0, 矛盾.
 - (iii) 设 $v, w \in R$ 都为 u 的右逆元, 则

$$uv = uw = 1 \Rightarrow u(v - w) = 0.$$

注意 $u \neq 0$ 且 $v - w \neq 0$, 故 u 为左零因子.

(iv) 反证法, 设 u 只有有限个右逆元, 记为 u_1, u_2, \cdots, u_m $(m \ge 2)$. 因

$$u(1 - u_i u + u_1) = u - u + u u_1 = 1, \quad 1 \le i \le m$$

且当 $i \neq j$ 时, $1 - u_i u + u_1 \neq 1 - u_j u + u_1$ (假设相等, 则 $(u_i - u_j)u = 0$, 故 $(u_i - u_j)uu_1 = u_i - u_j = 0$, 矛盾),故 $1 - u_i u + u_1$, $1 \leq i \leq m$ 是 u 的全部右逆元,因此必存在 k,使得 $u_1 = 1 - u_k u + u_1 \Rightarrow u_k u = 1$. 因为 $m \geq 2$,故可取 $s \neq k$,用 u_s 右乘 $u_k u = 1$,得 $u_k = u_s$,矛盾,故 u 有无限多个右逆元.

2.2 理想与同态

1. 设 R 为交换环, 证明: $\mathcal{M}_{nm}(R) \cong \mathcal{M}_{n}(\mathcal{M}_{m}(R))$.

证明: 定义映射 $\varphi: \mathcal{M}_{nm}(R) \to \mathcal{M}_{n}(\mathcal{M}_{m}(R)),$

$$\begin{pmatrix} r_{11} & r_{12} & \cdots & r_{1,nm} \\ r_{21} & r_{22} & \cdots & r_{2,nm} \\ \vdots & \vdots & & \vdots \\ r_{nm,1} & r_{nm,2} & \cdots & r_{nm,nm} \end{pmatrix} \mapsto \begin{pmatrix} M_{11} & M_{12} & \cdots & M_{1n} \\ M_{21} & M_{22} & \cdots & M_{2n} \\ \vdots & \vdots & & \vdots \\ M_{n1} & M_{n2} & \cdots & M_{nn} \end{pmatrix},$$

其中 $r_{ij} \in R$, $1 \le i, j \le nm$ 且

$$M_{ij} = \begin{pmatrix} r_{(i-1)m+1,(j-1)m+1} & \cdots & r_{(i-1)m+1,jm} \\ \vdots & & \vdots \\ r_{im,(j-1)m+1} & \cdots & r_{im,jm} \end{pmatrix}.$$

再验证 φ 为双射和同态即可.

2. 设 I, J 是交换幺环 R 的理想, 证明: 若 I + J = R, 则 $IJ = I \cap J$.

证明: 由理想的积的定义可知 $IJ \subset I \cap J$ 是显然的, 故只需证 $I \cap J \subset IJ$. 因 I+J=R 且 R 为交换幺环, 故存在 $a \in I$ 和 $b \in J$, 使得 a+b=1. 那么对任意 $k \in I \cap J$, 有 $k=k(a+b)=ak+kb \in I+J$. 因此 $IJ=I \cap J$.

3. 令 $u = \sqrt{2} + \sqrt{3}$, 找一个 $\mathbb{Q}[x]$ 理想 I 使得 $\mathbb{Q}[u] \cong \mathbb{Q}[x]/I$.

解: 考虑满同态映射 $\varphi: \mathbb{Q}[x] \to \mathbb{Q}[u]$, $\sum a_i x^i \mapsto \sum a_i u^i$. 故 $\ker \varphi = \{\sum a_i x^i \mid \sum a_i u^i = 0\}$. 由 $u = \sqrt{2} + \sqrt{3}$ 可知 u 满足有理系数方程 $u^4 - 10u^2 + 1 = 0$, 故 $x^4 - 10x^2 + 1 \in \ker \varphi$. 因 $\ker \varphi$ 为 $\mathbb{Q}[x]$ 的理想且 $\mathbb{Q}[x]$ 为主理想环,故 $\ker \varphi = (x^4 - 10x^2 + 1)$,由环同态定理得 $\mathbb{Q}[x]/(x^4 - 10x^2 + 1) \cong \mathbb{Q}[u]$. \square

注 设 F 为域, F[x] 为 F 上的多项式环, 则 F[x] 为主理想环. 事实上, 任取 F[x] 的理想 I, 若 $I = \{0\}$, 则 I 显然为主理想; 若 $I \neq \{0\}$, 设 d(x) 为 I 中次数最低的非零多项式, 对于 I 中任意多项式 a(x), 有 a(x) = q(x)d(x) + r(x), 其中 $\deg r(x) < \deg d(x)$. 因 $a(x) \in I$, $q(x)d(x) \in I$, 故 $r(x) = a(x) - q(x)d(x) \in I$, 而 $\deg r(x) < \deg d(x)$, 因此必有 r(x) = 0, 从而 $a(x) = q(x)d(x) \Rightarrow I = (d(x))$.

上述结论表明 $\mathbb{Q}[x]$ 、 $\mathbb{R}[x]$ 、 $\mathbb{C}[x]$ 都是主理想环, 但是 $\mathbb{Z}[x]$ 不是主理想环, 因为 $\mathbb{Z}[x]$ 上的理想 (2,x) 不是主理想.

4. 设 $I \in R$ 的理想, 证明: $R[x]/I[x] \cong (R/I)[x]$.

证明: 考虑映射 $\varphi: R[x] \to (R/I)[x], a_0 + \cdots + a_n x^n \mapsto (a_0 + I) + \cdots + (a_n + I) x^n$. 显然 φ 为满射, 又

$$\varphi(a_0 + b_0 + \dots + (a_n + b_n)x^n)$$

$$= (a_0 + b_0 + I) + \dots + (a_n + b_n + I)x^n$$

$$= (a_0 + I) + \dots + (a_n + I)x^n + (b_0 + I) + \dots + (b_n + I)x^n$$

$$= \varphi(a_0 + \dots + a_n x^n) + \varphi(b_0 + \dots + b_n x^n),$$

故 φ 为同态. 然后 φ 的核为

$$\ker \varphi = \{ a_0 + \dots + a_n x^n \mid (a_0 + I) + \dots + (a_n + I) x^n = I + \dots + I x^n \}$$

$$= \{ a_0 + \dots + a_n x^n \mid a_0, a_1, \dots, a_n \in I \}$$

$$= I[x].$$

因此 $R[x]/I[x] \cong (R/I)[x]$.

5. 设 p 为素数, 证明: $(p)/(p^m)$ 为 $\mathbb{Z}/(p^m)$ 的幂零理想.

证明: 先证 $(p)/(p^m)$ 为 $\mathbb{Z}/(p^m)$ 的理想, 对任意 $a \in (p)/(p^m)$ 和 $r \in \mathbb{Z}/(p^m)$, 可将其分别表为 $a = kp + (p^m)$, $r = z + (p^m)$, 于是

$$ar = (kp + (p^m))(z + (p^m)) = kzp + (p^m) \in (p)/(p^m),$$

同理可证 $ra \in (p)/(p^m)$, 因此 $(p)/(p^m)$ 为 $\mathbb{Z}/(p^m)$ 的理想.

再证 $(p)/(p^m)$ 为幂零理想 (若理想 I 满足 $I^n = \{\sum a_1 a_2 \cdots a_n \mid a_i \in I\} = 0$, 则称 I 为幂零理想), 因为 $(p)/(p^m)$ 中的任意 m 个元素的乘积

$$(k_1p + (p^m))(k_2p + (p^m))\cdots(k_mp + (p^m)) = k_1k_2\cdots k_mp^m + (p^m) = (p^m),$$

所以 $((p)/(p^m))^m = (p^m)$,即证 $(p)/(p^m)$ 为幂零理想.

6. 证明: (i) $\mathbb{Z}[x]/(x) \cong \mathbb{Z}$; (ii) $\mathbb{Z}[x]/(2,x) \cong \mathbb{Z}/(2)$.

证明: (i) 考虑映射 $\varphi: \mathbb{Z}[x] \to \mathbb{Z}, a_0 + \cdots + a_n x^n \mapsto a_0$. 容易验证 φ 为满同态, 且

$$\ker \varphi = \{a_0 + \dots + a_n x^n \mid a_0 = 0\}$$

$$= \{a_1 x + \dots + a_n x^n\}$$

$$= \{(a_1 + \dots + a_n x^{n-1})x\} = (x).$$

故 $\mathbb{Z}[x]/(x) \cong \mathbb{Z}$.

也可以定义映射 $\phi: \mathbb{Z} \to \mathbb{Z}[x]/(x), n \mapsto n + (x)$, 证明 ϕ 为同构映射.

(ii) 考虑映射 $\varphi: \mathbb{Z}[x] \to \mathbb{Z}/(2), \ a_0 + \cdots + a_n x^n \mapsto \begin{cases} \bar{0} & \text{若 } a_0 \text{ 为偶数} \\ \bar{1} & \text{若 } a_0 \text{ 为奇数}, \end{cases}$ 容易验证 φ 为满同态映射,且 $\ker \varphi = \{a_0 + \cdots + a_n x^n \mid a_0 \text{ 为偶数}\} = (2, x),$ 因此 $\mathbb{Z}[x]/(2, x) \cong \mathbb{Z}/(2).$

也可以定义映射 $\phi:\mathbb{Z}\to\mathbb{Z}[x]/(2,x),$ $n\mapsto n+(2,x).$ 然后验证 ϕ 为满同态且 $\ker\phi=2\mathbb{Z}.$

2.3 极大理想和素理想

2.4 整环里的因子分解

1. 设 F 是域, 令 $R = \{a_0 + a_2 x^2 + \dots + a_n x^n \mid a_i \in F\} \subset F[x]$. 证明: x^5 和 x^6 在 R 里没有最大公因子.

证明: x^5 和 x^6 在 R 中的公因子有 $1, x^2, x^3$ (注意 $x \notin R$, 故在 R 中 x^4 不是 x^5 的因子, x^5 不是 x^6 的因子). 若 x^5 和 x^6 在 R 中有最大公因子, 其必为 x^3 , 但在 R 中 x^2 不是 x^3 的因子, 故 x^5 和 x^6 在 R 中没有最大公因子.

2. 设 R 是唯一分解环, F 是 R 的商域, $\alpha \in F$, 证明: α 可以写为 $\frac{a}{b}$ 的形式, 其中 $a,b \in R$ 且 (a,b) = 1.

证明: 由于 F 是 R 的商域,故对任意 $\alpha \in F$,存在 $a_1,b_1 \in R$,使得 $\alpha = \frac{a_1}{b_1}$. 因 R 是唯一分解环,故 (a_1,b_1) 存在,令 $a = \frac{a_1}{(a_1,b_1)}$, $b = \frac{b_1}{(a_1,b_1)}$,则 $\alpha = \frac{a}{b}$ 且 (a,b) = 1.

3. 设 R 是唯一分解环, F 是 R 的商域, $\alpha \in F$, $f(x) \in R[x]$ 是首项系数为 1 的多项式. 证明: 若 $f(\alpha) = 0$, 则 $\alpha \in R$.

证明: 设 $f(x) = x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n \in R[x]$, 则

$$f(\alpha) = \alpha^n + a_1 \alpha^{n-1} + \dots + a_{n-1} \alpha + a_n = 0.$$

由上一题知存在 $a,b \in R$ 且 (a,b) = 1, 使得 $\alpha = \frac{a}{b}$, 故

$$\left(\frac{a}{b}\right)^n + a_1 \left(\frac{a}{b}\right)^{n-1} + \dots + a_{n-1} \left(\frac{a}{b}\right) + a_n = 0,$$

整理得

$$a^{n} = -(a_{1}a^{n-1} + \dots + a_{n-1}ab^{n-2} + a_{n}b^{n-1})b,$$

故 $b \mid a^n$, 又 (a,b) = 1, 由命题 2.4.6(iv) 知 $b \mid a^{n-1}$, 依次递推可得 $b \mid a$, 从 而 $\alpha = \frac{a}{b} \in R$.

4. 在 $\mathbb{Z}[x]$ 里, $(x^2 + 1, x^5 + x^3 + 1)$ 是否为一个主理想? 在 $\mathbb{Q}[x]$ 里, 它是否为一个主理想? 等于怎样一个主理想?

证明: 由定义知

$$(x^2+1, x^5+x^3+1) = \{(x^2+1)p(x) + (x^5+x^3+1)q(x) \mid p(x), q(x) \in \mathbb{Z}[x]\}.$$

因 $(x^2+1)(-x^3)+(x^5+x^3+1)=1$, 故 $1 \in (x^2+1,x^5+x^3+1)$, 于是 $(x^2+1,x^5+x^3+1)=\mathbb{Z}[x]$.

同理在 \mathbb{Q} 中, (x^2+1, x^5+x^3+1) 为主理想且等于 $\mathbb{Q}[x]$.

5. 设 R 是主理想环, $R \subset S$, S 是整环, $a,b \in R$. 证明: 若 d 是 a,b 在 R 中的最大公因子, 则 d 也是 a,b 在 S 中的最大公因子.

证明: 用 $(\cdot)_R$ 和 $(\cdot)_S$ 分别表示相应集合在 R 和 S 中生成的理想. 因在 R 中, $d \mid a \perp d \mid b$, 故 $a \in (d)_R \perp b \in (d)_R$, 从而 $(a,b)_R \in (d)_R$. 由于 R 为 主理想环, 故设 $(a,b)_R = (e)_R$, 则在 R 中 $e \mid a \perp e \mid b$, 故在 R 中 $e \mid d$, 所以 $(d)_R \subset (e)_R = (a,b)_R$, 因此 $(d)_R = (a,b)_R$.

任取 a,b 在 S 中的因子 c, 则 $(a,b)_S \subset (c)_S$, 显然 $(a,b)_R \subset (a,b)_S$, 故 $(d)_R \subset (c)_S \Rightarrow d \in (c)_S$, 所以在 S 中 $c \mid d$, 故 d 是 a,b 在 S 中的最大公因 子.

6. 设 I 是主理想环, $a, b \in I$, 证明 (a) + (b) = I 当且仅当 (a, b) = 1.

证明: (⇒) 若 (a) + (b) = I, 则存在 $u, v \in I$, 使得 ua + vb = 1. 设 $c \mid a$ 且 $c \mid b$, 则 $c \mid ua + vb$, 即 $c \mid 1$, 也即 c 为单位, 所以 (a, b) = 1.

- (\Leftarrow) 由定理 2.4.10 知存在 $u, v \in I$, 使得 ua + vb = (a, b) = 1, 故 $1 \in (a) + (b)$, 从而 (a) + (b) = I.
 - 7. 设 F 是域, $f(x) \in F[x]$. 决定 F[x]/(f(x)) 的所有理想.

证明: 由环的第四同构定理知 I/(f(x)) 为 F[x]/(f(x)) 的理想当且仅当 I 为 F[x] 的包含 (f(x)) 的理想,而 F[x] 为主理想环,故可设 I=(p(x)), $p(x) \in F[x]$. 由于 $(f(x)) \subset I=(p(x))$,故 $p(x) \mid f(x)$,因此 F[x]/(f(x)) 的所有理想为 (p(x))/(f(x)),其中 $p(x) \mid f(x)$.

8. 决定 $\mathbb{Z}[x]/(2, x^3 + 1)$ 的所有理想.

证法一: 因 $\mathbb{Z}[x]/(2, x^3 + 1) \cong \mathbb{Z}_2[x]/(x^3 + 1)$, 故我们考虑 $\mathbb{Z}_2/(x^3 + 1)$ 的理想. 由于 \mathbb{Z}_2 为域, 故 $\mathbb{Z}_2[x]$ 为主理想环, 从而是唯一分解环, 在 $\mathbb{Z}_2[x]$ 中, $x^3 + 1$ 有唯一分解 $x^3 + 1 = (x+1)(x^2 + x + 1)$. 由第 13 题结论知 $\mathbb{Z}_2[x]/(x^3 + 1)$ 的所有理想为 $(p(x))/(x^3 + 1)$, 其中 $p(x) \mid (x+1)(x^2 + x + 1)$, 也即有四个理想

$$(1)/(x^3+1) = \mathbb{Z}_2[x]/(x^3+1) \qquad (x+1)/(x^3+1)$$
$$(x^2+x+1)/(x^3+1) \qquad ((x+1)(x^2+x+1))/(x^3+1) = 0$$

因此
$$\mathbb{Z}[x]/(2, x^3 + 1)$$
 有四个理想: $\mathbb{Z}[x]/(2, x^3 + 1)$, $(2, x + 1)/(2, x^3 + 1)$, $(2, x^2 + x + 1)/(2, x^3 + 1)$ 和 (0) .

证法二: $I/(2, x^3 + 1)$ 为 $\mathbb{Z}[x]/(2, x^3 + 1)$ 的理想当且仅当 I 为 $\mathbb{Z}[x]$ 的包含 $(2, x^3 + 1)$ 的理想. 故需要向理想 $(2, x^3 + 1)$ 中添加元得到包含 $(2, x^3 + 1)$ 的理想, 任取 $f(x) \in \mathbb{Z}[x]$, f(x) 模 $x^3 + 1$ 后得到次数不超过 2 的多项式, 再将得到的多项式模 2 得到各项系数为 0 和 1 的多项式, 因此可供选择的 f(x) 有: 0、1、x、 x^2 、x + 1、 x^2 + 1 、 x^2 + x 和 x^2 + x + 1. 注意到

$$(2, x^3 + 1, x) = (2, x^3 + 1, x^2) = (2, x^3 + 1, 1) = (1) = \mathbb{Z}[x]$$

$$(2, x^3 + 1, x + 1) = (2, x^3 + 1, x^2 + 1) = (2, x^3 + 1, x^2 + x) = (2, x + 1)$$

$$(2, x^3 + 1, x^2 + x + 1) = (2, x^2 + x + 1)$$

所以 $\mathbb{Z}[x]/(2, x^3 + 1)$ 的理想有四个,分别为平凡理想 $\mathbb{Z}[x]/(2, x^3 + 1)$ 、(0) 和非平凡理想 $(2, x + 1)/(2, x^3 + 1)$ 、 $(2, x^2 + x + 1)/(2, x^3 + 1)$.

2.5 域的扩张

1. 设 $E \neq F$ 的有限扩域, 证明: (i) $[E:F] = 1 \iff E = F$; (ii) 若 $\alpha \in E \neq F$ 上的代数元, 则 $n \mid [E:F]$ (这里 $n \not$ 为 α 的次数).

证明: (i) (\Leftarrow) 显然. (\Rightarrow) 若 [E:F] = 1, 则 E 为 F 上的一维向量空间, 故存在 $e \in E$, 使得 $E = \{fe \mid f \in F\}$, 故 |E| = |F|, 又 $F \subset E$, 故 E = F.

- (ii) 因 $[E:F] = [E:F(\alpha)][F(\alpha):F]$, 且 $[F(\alpha):F] = n$, 故 $n \mid [E:F]$.
 - **2.** 设 $E = \mathbb{Q}(\sqrt{2}, \sqrt{3})$, 求 $[E : \mathbb{Q}]$, 并给出 E 在 \mathbb{Q} 上的一个基.

证明: $[E:\mathbb{Q}] = [\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 4$, E 在 \mathbb{Q} 上的一个基为 $1,\sqrt{2},\sqrt{3},\sqrt{6}$.

3. 证明: $\mathbb{Q}(\sqrt{2})$ 与 $\mathbb{Q}(\sqrt{-1})$ 作为 \mathbb{Q} 上的向量空间是同构的, 但作为域是不同构的.

证明: $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = [\mathbb{Q}(\sqrt{-1}):\mathbb{Q}] = 2$, 维数相同的向量空间是同构的.

假设存在域同构 $\varphi: \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{-1})$, 由于 $\varphi(1) = 1$, 故对任意整数 n, 有 $\varphi(n) = n$, 继而对任意有理数 $\frac{n}{m}$, $n \in \mathbb{Z}$, m > 0, 有 $\varphi(\frac{n}{m} \cdot m) = m\varphi(\frac{n}{m}) = n \Rightarrow \varphi(\frac{n}{m}) = \frac{n}{m}$, 也即 φ 固定 \mathbb{Q} 中元不动.

由于 φ 为同构, 故存在 $w = a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2})$, 使得 $\varphi(w) = \sqrt{-1}$, 故

$$-1 = (\sqrt{-1})^2 = \varphi(w^2) = \varphi(a^2 + 2b^2 + 2\sqrt{2}ab)$$
$$= \varphi(a^2) + \varphi(2b^2) + \varphi(2\sqrt{2}ab)$$
$$= a^2 + 2b^2 + 2ab\varphi(\sqrt{2}),$$

由此可得 $\varphi(\sqrt{2}) = -\frac{a^2+2b^2+1}{2ab} \in \mathbb{Q}$, 这说明

$$\varphi(\mathbb{Q}(\sqrt{2})) \subset \mathbb{Q} \subsetneq \mathbb{Q}(\sqrt{-1}),$$

与假设 $\varphi(\mathbb{Q}(\sqrt{2})) = \mathbb{Q}(\sqrt{-1})$ 相矛盾.

4. 设 $F(\alpha)$ 是域 F 的单代数扩域, 证明: 若 $[F(\alpha):F]$ 是奇数, 则 $F(\alpha)=F(\alpha^2)$.

证明: $[F(\alpha):F]=[F(\alpha):F(\alpha^2)][F(\alpha^2):F]$, 由于 α 为 $F(\alpha^2)$ 上多项式 $x^2-\alpha$ 的根, 故 α 在 $F(\alpha^2)$ 上的极小多项式的次数至多为 2, 所以 $[F(\alpha):F(\alpha^2)]=1$ 或 2. 当 $[F(\alpha):F(\alpha^2)]=2$ 时, $[F(\alpha):F]$ 为偶数, 矛盾, 故必有 $[F(\alpha):F(\alpha^2)]=1$, 从而 $F(\alpha)=F(\alpha^2)$.

5. 设 E 是域 F 的扩域, $\alpha \in E$, 证明: α 是 F 上的代数元当且仅当 $[F(\alpha):F]<\infty$.

证明: (⇒) 因 α 是 F 上的代数元, 故存在 $0 \neq f(x) \in F[x]$, 使得 $f(\alpha) = 0$, 故 $[F(\alpha) : F] = \deg p(x) \leq \deg f(x) < \infty$.

6. 设 α 是 $\mathbb{Q}[x]$ 上多项式 $x^2 - 5x + 7$ 的根, 试把 $\frac{1-7\alpha+2\alpha^2}{1+\alpha-\alpha^2}$ 写成关于 α 的多项式.

解: 设 $\frac{1-7\alpha+2\alpha^2}{1+\alpha-\alpha^2}=A+B\alpha$, 则

$$1 - 7\alpha + 2\alpha^2 = (1 + \alpha - \alpha^2)(A + B\alpha).$$

利用条件 $\alpha^2 = 5\alpha - 7$ 和待定系数法可求得 $A = \frac{9}{2}$, $B = -\frac{7}{4}$.

7. 求 $\mathbb{Q}(\sqrt[3]{2})$ 中元 $1 + \sqrt[3]{2} + \sqrt[3]{4}$ 的逆元.

解: 由于
$$(\sqrt[3]{2} - 1)(1 + \sqrt[3]{2} + \sqrt[3]{4}) = 1$$
, 故逆元为 $\sqrt[3]{2} - 1$.

8. 求 $[\mathbb{Q}(\sqrt{3+2\sqrt{2}}):\mathbb{Q}].$

解: 令 $u = \sqrt{3 + 2\sqrt{2}}$, 则 $u^2 = 3 + 2\sqrt{2} \Rightarrow u^4 - 6u^2 + 1 = 0$, 即 u 在 \mathbb{Q} 上的极小多项式为 $x^4 - 6x^2 + 1$, 因此 $[\mathbb{Q}(\sqrt{3 + 2\sqrt{2}}) : \mathbb{Q}] = 4$.

9. 证明: $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$

证明: 显然 $\mathbb{Q}(\sqrt{2} + \sqrt{3}) \subset \mathbb{Q}(\sqrt{2}, \sqrt{3})$, 故

$$[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}(\sqrt{2} + \sqrt{3})][\mathbb{Q}(\sqrt{2} + \sqrt{3}) : \mathbb{Q}],$$

因 $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}] = [\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}] = 4$, 故

$$[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}(\sqrt{2} + \sqrt{3})] = 1,$$

因此
$$\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3}).$$

2.6 代数扩域

一个域 K 称为代数闭域, 若 K[x] 中每个次数大于零的多项式在 K 内有一个根. 此定义等价于: 若 K[x] 中每个次数大于零的多项式的根都在 K 中. 事实上,设 $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in F[x]$ 有一个根 $x_0 \in F$,则 f(x) 可分解为 $f(x) = (x - x_0)g(x)$,其中 $g(x) \in F[x]$ 为 n-1 次多项式,由条件知 g(x) 在 F 中也有根,同样可以分解,如此进行下去,便得到 f(x) 的所有根都在 F 中.

1. 设 $E \in F$ 的代数扩域, $\alpha \in E$ 上的代数元, 证明: $\alpha \in F$ 上的代数元.

证明: 因 α 是 E 上的代数元, 故存在 E 中元 $e_0, e_1, \dots, e_n \neq 0$ 使 得 $e_0 + e_1\alpha + \dots + e_n\alpha^n = 0$, 因此 α 为 $F(e_0, \dots, e_n)$ 上的代数元, 从而 $F(e_0, \dots, e_n, \alpha)$ 为 $F(e_0, \dots, e_n)$ 的有限扩域, 又因为 $F(e_0, \dots, e_n)$ 为 F 的有限扩域, 所以 $F(e_0, \dots, e_n, \alpha)$ 为 F 的有限扩域, 当然也为 F 的代数扩域.

2. 设 $E \in F$ 的代数扩域, $\alpha, \beta \in E$, $[F(\alpha) : F] = m$, $[F(\beta) : F] = n$. 证明: $[F(\alpha, \beta) : F(\beta)] = m$ 当且仅当 $[F(\alpha, \beta) : F(\alpha)] = n$.

证明: 只需利用等式

$$[F(\alpha, \beta) : F] = [F(\alpha, \beta) : F(\alpha)][F(\alpha) : F]$$
$$= [F(\alpha, \beta) : F(\beta)][F(\beta) : F]$$

及题给条件即可.

3. 设 F 是域, $x^n - a \in F[x]$, α 是 $x^n - a$ 在 F 的某个扩域 E 内的根. 证明: 若 $[F(\alpha):F] = n, m \mid n, \text{则} [F(\alpha^m):F] = n/m, [F(\alpha):F(\alpha^m)] = m.$

证明: 若 $[F(\alpha):F]=n$, 则 α 在 F 上的极小多项式即为 x^n-a , 从 而 α^m 在 F 上的极小多项式为 $x^{\frac{n}{m}}-a$, 故 $[F(\alpha^m):F]=n/m$, $[F(\alpha):F(\alpha^m)]=m$.

4. 设 F, K, E 均为域且满足 $F \subset K \subset E$, 证明: $E \neq F$ 的代数扩域当且仅当 $E \neq K$ 的代数扩域且 $K \neq F$ 的代数扩域.

证明: (\Rightarrow) 因 $E \neq F$ 的代数扩域, 故 E 中任意元都是 K 上的代数元 且 K 中任意元都是 F 上的代数元, 即 $E \neq K$ 的代数扩域且 $K \neq F$ 的代数扩域.

- (⇐) 因 $E \not\in K$ 的代数扩域, 故对任意 $e \in E$, $e \not\in K$ 上的代数元, 又 $K \not\in F$ 的代数扩域, 故由第一题知 $e \not\to F$ 上的代数元, 从而 $E \not\in F$ 的代数扩域.
- 5. 设 $E \neq F$ 的代数扩域, $A \neq F$ 在 E 中的代数闭包, 则 A 在 E 中是代数闭的.

证明: 即证 A 在 E 中的代数闭包即为 A 自身. 任取 $x \in E \setminus A$, 若 x 为 A 上的代数元, 注意到 A 为 F 的代数扩域, 故由第一题结论知 x 为 F 上的代数元, 这与 A 的定义相矛盾, 故 x 不是 A 上的代数元, 从而 A 在 E 中的代数闭包即为 A 自身.

6. 设 $E \neq F$ 的扩域, 证明: $E \neq F$ 的有限扩域当且仅当 $E \neq F$ 上有限个代数元生成的.

证明: (\Rightarrow) 设 [E:F]=n 且 E 作为 F 上的向量空间有一组基 e_1, \dots, e_n ,则 $E=F(e_1, \dots, e_n)$. 由于有限扩域为代数扩域,故 e_i 皆为 F 上的代数元.

(←) 即为定理 2.6.5.	
(·) M. / J. / C.Z. = 10101	

7. 设 E 是域 F 的扩域, $f(x) \in F[x]$ 是素数 p 次不可约多项式, $[E:F] < \infty$. 证明: 若 f(x) 在 E[x] 里可约, 则 $p \mid [E:F]$.

证明: 因 f(x) 在 E[x] 中可约, 故 f(x) 在 E[x] 中可分解为 f(x) = g(x)h(x), 其中 g(x) 不可约且 $\deg g(x) < p$. 设 α 是 g(x) 的一个根, 则 $L = E(\alpha)$ 是 E 的扩域且 $[L:E] = \deg g(x)$, 又 $[L:F] = [L:F(\alpha)][F(\alpha):F]$, 故 $p \mid [L:F]$, 所以 $p \mid [L:E][E:F]$, 但 $p \nmid [L:E]$, 因此 $p \mid [E:F]$.

第 2 章 环与域 37

2.7 多项式的分裂域与正规扩域

1. 设 $E \in n$ 次多项式 f(x) 在 F 上的分裂域, 证明: $[E:F] \mid n!$. [E:F] = n! 何时成立?

2.8 有限域

1. \Diamond F 是特征为 2 的素域, 找出 F[x] 中的所有三次不可约多项式.

解: 特征为 2 的素域同构于 \mathbb{Z}_2 , 而 $\mathbb{Z}_2[x]$ 上的三次多项式有 $x^3, x^3 + 1, x^3 + x, x^3 + x + 1, x^3 + x^2, x^3 + x^2 + x, x^3 + x^2 + 1, x^3 + x^2 + x + 1$. 若三次多项式可约,则其必可分解出一次因式,从而该三次多项式必然在 \mathbb{Z}_2 上有根. 因此所有三次不可约多项式只有 $x^3 + x + 1$ 和 $x^3 + x^2 + 1$.

2. 证明: 有限域不可能是代数闭域.

证明: 设 $F = \{a_1, \dots, a_n\}$ 为有限域, 因多项式 $(x - a_1)(x - a_2) \dots (x - a_n) - 1$ 在 F 上无根, 所以 F 不是代数闭域.

3. 证明: 当 $n \ge 3$ 时, $x^{2^n} + x + 1$ 是 $F_2[x]$ 中不可约多项式.

Galois 理论

3.1 Galois 理论的基本定理

1. 设 $f(x) = x^3 - 2 \in \mathbb{Q}[x]$, 计算 f(x) 的 Galois 群.

证明: 第一步, 计算 f(x) 在 \mathbb{Q} 上的分裂域. $f(x) = 0 \Rightarrow x = \sqrt[3]{2}, \sqrt[3]{2}\omega, \sqrt[3]{2}\omega^2$, 其中 ω 为三次本原单位根, 故 f(x) 在 \mathbb{Q} 上的分裂域为 $E = \mathbb{Q}(\sqrt[3]{2}, \sqrt[3]{2}\omega, \sqrt[3]{2}\omega^2) = \mathbb{Q}(\sqrt[3]{2}, \omega)$.

第二步, 计算 $[E:\mathbb{Q}]$.

$$[E:\mathbb{Q}] = [E:\mathbb{Q}(\sqrt[3]{2})][\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}].$$

 ω 在 $\mathbb{Q}(\sqrt[3]{2})$ 上的极小多项式为 x^2+x+1 , 故 $[E:\mathbb{Q}(\sqrt[3]{2})]=2$, 且 E 作为 $\mathbb{Q}(\sqrt[3]{2})$ 上的向量空间具有一组基 $1,\omega$.

 $\sqrt[3]{2}$ 在 \mathbb{Q} 上的极小多项式为 x^3-2 , 故 $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=3$, 且 $\mathbb{Q}(\sqrt[3]{2})$ 作为 \mathbb{Q} 上的向量空间具有一组基 $1,\sqrt[3]{2},\sqrt[3]{4}$.

因此 $[E:\mathbb{Q}]=6$,且 E 在 \mathbb{Q} 上的一组基为 $1,\sqrt[3]{2},\sqrt[3]{4},\omega,\sqrt[3]{2}\omega,\sqrt[3]{4}\omega$.

第三步, 求 $G(E/\mathbb{Q})$. 对任意 $\sigma \in G(E/\mathbb{Q})$, σ 由其在 $\sqrt[3]{2}$ 和 ω 上的取值唯一确定. 由于 σ 置换 $x^2+x+1=0$ 的根, 故 $\sigma(\omega) \in \{\omega,\omega^2\}$. 又由于 σ 置换 $x^3-2=0$ 的根, 故 $\sigma(\sqrt[3]{2}) \in \{\sqrt[3]{2},\sqrt[3]{2}\omega,\sqrt[3]{2}\omega^2\}$. 由此我们便可以得到六个自同构, 但为叙述方便, 选取两个自同构 $\sigma,\tau \in G(E/\mathbb{Q})$ 满足:

$$\begin{cases} \sigma(\sqrt[3]{2}) = \sqrt[3]{2}\omega \\ \sigma(\omega) = \omega \end{cases} \qquad \begin{cases} \tau(\sqrt[3]{2}) = \sqrt[3]{2} \\ \tau(\omega) = \omega^2 \end{cases}$$

	$\sqrt[3]{2}$	$\sqrt[3]{2}\omega$	$\sqrt[3]{2}\omega^2$	ω	ω^2
1	$\sqrt[3]{2}$	$\sqrt[3]{2}\omega$	$\sqrt[3]{2}\omega^2$	ω	ω^2
σ	$\sqrt[3]{2}\omega$	$\sqrt[3]{2}\omega^2$	$\sqrt[3]{2}$	ω	ω^2
σ^2	$\sqrt[3]{2}\omega^2$	$\sqrt[3]{2}$	$\sqrt[3]{2}\omega$	ω	ω^2
au	$\sqrt[3]{2}$	$\sqrt[3]{2}\omega^2$	$\sqrt[3]{2}\omega$	ω^2	ω
$\sigma\tau$	$\sqrt[3]{2}\omega$	$\sqrt[3]{2}$	$\sqrt[3]{2}\omega^2$	ω^2	ω
$\sigma^2 \tau$	$\sqrt[3]{2}\omega^2$	$\sqrt[3]{2}\omega$	$\sqrt[3]{2}$	ω^2	ω

则可得下表

2. 证明 $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ 是 \mathbb{Q} 的 Galois 扩张, 并求其 Galois 群.

证明:由于 $\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5})$ 是可分多项式 $f(x)=(x^2-2)(x^2-3)(x^2-5)$ 在 \mathbb{Q} 上的分裂域,故 $\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5})$ 是 \mathbb{Q} 的 Galois 扩张,且 $[\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5}):\mathbb{Q}]=8$,令

$$\sigma: \begin{cases} \sqrt{2} \mapsto -\sqrt{2} \\ \sqrt{3} \mapsto \sqrt{3} \\ \sqrt{5} \mapsto \sqrt{5} \end{cases} \qquad \tau: \begin{cases} \sqrt{2} \mapsto \sqrt{2} \\ \sqrt{3} \mapsto -\sqrt{3} \\ \sqrt{5} \mapsto \sqrt{5} \end{cases} \qquad \pi: \begin{cases} \sqrt{2} \mapsto \sqrt{2} \\ \sqrt{3} \mapsto \sqrt{3} \\ \sqrt{5} \mapsto -\sqrt{5} \end{cases}$$

则 $G(\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})/\mathbb{Q}) = \{id, \sigma, \tau, \pi, \sigma\tau, \sigma\pi, \tau\pi, \sigma\tau\pi\}.$

第 4 章

补充题目

1. 求有理数域上多项式 $x^3 - x^2 - x - 2$ 的分裂域 E, 并求 $[E : \mathbb{Q}]$.

证明: 因 $x^3 - x^2 - x - 2 = (x - 2)(x^2 + x + 1)$, 故 $E = \mathbb{Q}(\omega)$, 其中 ω 为三次单位根, 且 ω 在 \mathbb{Q} 上的极小多项式为 $x^2 + x + 1$, 故 $[E:\mathbb{Q}] = 2$.

2. 设 $x^3 - a$ 是 $\mathbb{Q}[x]$ 上不可约多项式, α 为 $x^3 - a$ 的一个根, 证明: $\mathbb{Q}(\alpha)$ 不是 $x^3 - a$ 在 \mathbb{Q} 上的分裂域.

证明: 因 α 在 \mathbb{Q} 上极小多项式的次数为 3, 故 $[\mathbb{Q}(\alpha):\mathbb{Q}]=3$. 假设 $\mathbb{Q}(\alpha)$ 为 x^3-a 的分裂域, 因 $\alpha,\omega\alpha\in\mathbb{Q}(\alpha)$, 故 $\omega\in\mathbb{Q}(\alpha)$, 因此 $\mathbb{Q}\subset\mathbb{Q}(\omega)\subset\mathbb{Q}(\alpha)$, 但 $[\mathbb{Q}(\alpha):\mathbb{Q}]=3$, $[\mathbb{Q}(\omega):\mathbb{Q}]=2$, 矛盾.

3. 证明: $\mathbb{Q}(\sqrt[3]{5})$ 不是 \mathbb{Q} 的正规扩张.

证明: $\sqrt[3]{5}$ 的极小多项式为 x^3-5 , 注意到 $\sqrt[3]{5}\omega$ 为 x^3-5 的根, 但 $\sqrt[3]{5}\omega \notin \mathbb{Q}(\sqrt[3]{5})$.

4. 设 a, b 为含幺环 R 中的元, 则 1 - ab 可逆 $\Leftrightarrow 1 - ba$ 可逆.

证明: 只需证明必要性, 充分性证明同理. 此题可采用形式分析. 若 1-ab 可逆, 则

$$(1-ab)^{-1} = 1 + ab + abab + ababab + \cdots.$$

则从形式上看

$$(1 - ba)^{-1} = 1 + ba + baba + bababa + \cdots$$

= $1 + b(1 + ab + abab + \cdots)a$
= $1 + b(1 - ab)^{-1}a$.

下面验证 1 - ba 的逆确实为 $1 + b(1 - ab)^{-1}a$.

$$(1 - ba)(1 + b(1 - ab)^{-1}a) = 1 + b(1 - ab)^{-1}a - ba - bab(1 - ab)^{-1}a$$

$$= 1 + b[(1 - ab)^{-1} - 1 - ab(1 - ab)^{-1}]a$$

$$= 1 + b[(1 - (1 - ab) - ab)(1 - ab)^{-1}]a$$

$$= 1,$$

类似地 $(1+b(1-ab)^{-1}a)(1-ba)=1$, 证毕.

5. 求环 $\mathbb{Z}[\sqrt{-1}]$ 的单位群, 证明此环为整环但不是域.

证明: 定义 $\phi: \mathbb{Z}[\sqrt{-1}] \to \mathbb{Z}, \ a+b\sqrt{-1} \mapsto a^2+b^2$, 则可验证对任意 $a+b\sqrt{-1}, c+d\sqrt{-1} \in \mathbb{Z}[\sqrt{-1}]$, 有

$$\phi((a+b\sqrt{-1})(c+d\sqrt{-1})) = \phi(a+b\sqrt{-1})\phi(c+d\sqrt{-1}).$$

若 $a+b\sqrt{-1}$ 为单位, 则存在 $c+d\sqrt{-1}$ 使得

$$(a + b\sqrt{-1})(c + d\sqrt{-1}) = 1,$$

则

$$\phi(a+b\sqrt{-1})\phi(c+d\sqrt{-1}) = (a^2+b^2)(c^2+d^2) = 1.$$

因此 $a + b\sqrt{-1} = \pm 1$ 或 $\pm i$, 即 $\mathbb{Z}[\sqrt{-1}]$ 的单位群为 $\{\pm 1, \pm i\}$.

容易验证 $\mathbb{Z}[\sqrt{-1}]$ 为交换幺环且没有零因子, 故为整环 (事实上, 可以进一步验证其为欧式环). 取 $2 \in \mathbb{Z}[\sqrt{-1}]$, 显然 2 没有乘法逆元, 故 $\mathbb{Z}[\sqrt{-1}]$ 不是域.

6. 证明: 若整环 R 只有有限多个理想, 则 R 为域.

证明: 任取非零元 $\alpha \in R$, 考虑理想 $(\alpha), (\alpha^2), \cdots$, 由于 R 只有有限 多个理想, 故存在正整数 m < n, 使得 $(\alpha^m) = (\alpha^n)$, 则 $\alpha^m \in (\alpha^n)$, 从 而 $\alpha^m = \alpha^n \beta \Rightarrow \alpha^m (1 - \alpha^{n-m} \beta) = 0$, 而 R 没有零因子且 $\alpha^m \neq 0$, 故 $1 - \alpha^{n-m} \beta = 0$, 因此 α 可逆. 从而 R 为域.

- 7. 设 u 是多项式 $x^3 6x^2 + 9x + 3$ 的一个实根.
- $(1) 求证 [\mathbb{Q}(u):\mathbb{Q}] = 3;$
- (2) 将 u^4 , $(u+1)^{-1}$, $(u^2-6u+8)^{-1}$ 表示成 $1, u, u^2$ 的 \mathbb{Q} -线性组合.

证明: (1) 取素数 3, 由于 $3 \nmid 1$, $3 \mid (-6)$, $3 \mid 9$, $3 \mid 3$ 且 $3^2 \nmid 3$, 故由 Eisenstein 判别法知 $x^3 - 6x^2 + 9x + 3$ 在 \mathbb{Q} 上不可约, 因此其就是 u 在 \mathbb{Q} 上的极小多项式, 从而 $[\mathbb{Q}(u):\mathbb{Q}] = 3$.

(2) 利用 $u^3 = 6u^2 - 9u - 3$, 有

$$u^4 = u(6u^2 - 9u - 3) = 27u^2 - 57u - 18.$$

由于

$$(u+1)(u^2-7u+16) = u^3-6u^2+9u+16 = 13,$$

故 $(u+1)^{-1} = \frac{1}{13}(u^2 - 7u + 16)$. 利用辗转相除法可得

$$1 = \frac{1}{35}(x^2 - 9x + 1)(x^2 - 6x + 8) - \frac{1}{35}(x - 9)(x^3 - 6x^2 + 9x + 3).$$

在上式中取 x=u, 得 $1=\frac{1}{35}(u^2-9u+1)(u^2-6u+8)$, 故

$$(u^2 - 6u + 8)^{-1} = \frac{1}{35}(u^2 - 9u + 1).$$

8. 设 α 是 \mathbb{Q} 上的超越元, $u = \frac{\alpha^3}{1+\alpha}$, 求 $[\mathbb{Q}(\alpha):\mathbb{Q}(u)]$.

解: 下证 $x^3 - ux - u$ 是 α 在 $\mathbb{Q}(u)$ 上的不可约多项式. 反证法, 假设 $x^3 - ux - u$ 在 $\mathbb{Q}(u)$ 上可约, 则 $x^3 - ux - u = 0$ 在 $\mathbb{Q}(u)$ 内有根 β , 记 $\beta = \frac{f(u)}{g(u)}$, 其中 $f(x), g(x) \in \mathbb{Q}[x]$, 则

$$\left(\frac{f(u)}{g(u)}\right)^3 - u\frac{f(u)}{g(u)} - u = 0,$$

即

$$(f(u))^3 - uf(u)(g(u))^2 - u(g(u))^3 = 0.$$

故 u 为 \mathbb{Q} 上的代数元, 从而 $\mathbb{Q}(u)$ 为 \mathbb{Q} 的有限扩张, 于是

$$[\mathbb{Q}(\alpha):\mathbb{Q}] = [\mathbb{Q}(\alpha):\mathbb{Q}(u)][\mathbb{Q}(u):\mathbb{Q}] < \infty.$$

这表明 α 在 \mathbb{Q} 上为代数元, 矛盾. 因此 x^3-ux-u 是 α 在 $\mathbb{Q}(u)$ 上的极小多项式, 从而 $[\mathbb{Q}(\alpha):\mathbb{Q}(u)]=3$.

9. 设 $K = \mathbb{Q}(\alpha)$ 为 \mathbb{Q} 的单扩张, 其中 α 在 \mathbb{Q} 上代数, 求证: $|\operatorname{Aut}(K)| \leq [K:\mathbb{Q}]$.

证明: $[K:\mathbb{Q}]$ 等于 α 在 \mathbb{Q} 上的极小多项式 p(x) 的次数 n, 且 K 作为 \mathbb{Q} 上的向量空间具有一组基: $1,\alpha,\alpha^2,\cdots,\alpha^{n-1}$. 任取 $\sigma\in \operatorname{Aut}(K)$, σ 由其 在 α 上的作用唯一确定. 设 p(x) 的全部根为 $\{\alpha_1=\alpha,\alpha_2,\cdots,\alpha_n\}$, 由于 σ 将 p(x) 的根映为 p(x) 的根,故

$$\sigma(\alpha) \in \{\alpha_1, \alpha_2, \cdots, \alpha_n\} \cap K.$$

因此 $|\operatorname{Aut}(K)| \leq n = [K : \mathbb{Q}].$

4.1 2021 年期中测试题

1. 设 G 是群, G_1, G_2 是 G 的有限子群, 证明:

$$|G_1G_2| = \frac{|G_1||G_2|}{|G_1 \cap G_2|}.$$

证法一: 考虑 G_1 在陪集空间 G/G_2 上的自然作用, 取 $G_2 \in G/G_2$, G_2 的轨道为 $\{gG_2 \mid g \in G_1\}$, 而 G_2 的稳定化子为

$$\{g \in G_1 \mid gG_2 = G_2\} = G_1 \cap G_2.$$

于是由轨道-稳定化子定理得

$$|\{gG_2 \mid g \in G_1\}| = |G_1/G_1 \cap G_2| = \frac{|G_1|}{|G_1 \cap G_2|},$$

而 $|\{gG_2 \mid g \in G_1\}| = \frac{|G_1G_2|}{|G_2|}$, 因此

$$\frac{|G_1 G_2|}{|G_2|} = \frac{|G_1|}{|G_1 \cap G_2|}.$$

证法二: 所证等式等价于

$$\frac{|G_1G_2|}{|G_2|} = \frac{|G_1|}{|G_1 \cap G_2|}.$$

考虑两个陪集族

$$G_1G_2/G_2$$
: = { $hG_2 \mid h \in G_1$ }

和

$$G_1/G_1 \cap G_2 := \{hG_1 \cap G_2 \mid h \in G_1\}.$$

下面在两个陪集族上建立双射, 为此考虑映射

$$\phi \colon G_1 G_2 / G_2 \longrightarrow G_1 / G_1 \cap G_2$$
$$hG_2 \longmapsto hG_1 \cap G_2$$

 ϕ 合理定义: 当 $h_1G_2 = h_2G_2$ 时,有 $h_1h_2^{-1} \in G_2$,又因为 $h_1h_2^{-1} \in G_1$, 所以 $h_1h_2^{-1} \in G_1 \cap G_2$,从而 $h_1G_1 \cap G_2 = h_2G_1 \cap G_2$,这说明 ϕ 是合理定义的.

 ϕ 是单射: 设 $h_1G_1 \cap G_2 = h_2G_1 \cap G_2$, 则 $h_1h_2^{-1} \in G_1 \cap G_2 \Rightarrow h_1h_2^{-1} \in G_2 \Rightarrow h_1G_2 = h_2G_2$.

φ 是满射: 显然.

因此 G_1G_2/G_2 的陪集个数等于 $G_1/G_1 \cap G_2$ 的陪集个数, 故

$$\frac{|G_1G_2|}{|G_2|} = \frac{|G_1|}{|G_1 \cap G_2|}.$$

证法三: 因 $G_1 \cap G_2 \leq G_1$, 故可考虑陪集空间 $G_1/G_1 \cap G_2$. 设 $|G_1/G_1 \cap G_2| = m$ 且 $G_1 = h_1(G_1 \cap G_2) \cup h_2(G_1 \cap G_2) \cup \cdots \cup h_m(G_1 \cap G_2)$, 其中 $h_i \in G_1$ 且 $h_i h_i^{-1} \notin G_2$, $i \neq j$.

下证 G_1G_2 可表示为如下不相交的陪集之并

$$G_1G_2 = h_1G_2 \cup h_2G_2 \cup \dots \cup h_mG_2. \tag{*}$$

首先因 $h_i h_j^{-1} \notin G_2, i \neq j$,故 $(h_i G_2)_{i=1}^m$ 两两不相交. 其次对任意的 $hk \in G_1 G_2$,因 $G_1 = h_1(G_1 \cap G_2) \cup h_2(G_1 \cap G_2) \cup \cdots \cup h_m(G_1 \cap G_2)$,故存在 $h_i \in G_1$ 和 $g \in G_1 \cap G_2$ 使得 $h = h_i g$,那么 $hk = h_i gk \in h_i G_2$,即证 (*).

所以
$$|G_1G_2| = m|G_2| = \frac{|G_1||G_2|}{|G_1\cap G_2|}$$
.

2. 证明: 若 Abel 群 $G = H_1 + H_2 + \cdots + H_n, H_i$ 都是有限群,则有

$$|G| \mid |H_1| |H_2| \cdots |H_n|,$$

 $\underline{\mathbb{H}}. |G| = |H_1| |H_2| \cdots |H_n| \Leftrightarrow G = H_1 \oplus H_2 \oplus \cdots \oplus H_n.$

证明: 考虑映射 $\phi: H_1 \oplus H_2 \oplus \cdots \oplus H_n \to G = H_1 + H_2 + \cdots + H_n$, $(h_1, h_2, \cdots, h_n) \mapsto h_1 + h_2 + \cdots + h_n$. 验证 ϕ 为满同态, 故

$$H_1 \oplus H_2 \oplus \cdots \oplus H_n / \ker \phi \cong G$$
,

所以 $|G| | |H_1| |H_2| \cdots |H_n|$.

 $\underline{\overset{}}$ $G = H_1 \oplus H_2 \oplus \cdots \oplus H_n$, 显然 $|G| = |H_1||H_2| \cdots |H_n|$;

当 $|G| = |H_1||H_2|\cdots|H_n|$ 时, $|\ker \phi| = 1 \Rightarrow \ker \phi = \{0\}$, 故 $G = H_1 \oplus H_2 \oplus \cdots \oplus H_n$.

3. 设 G 和 G' 分别是阶为 m 和 n 的有限循环群, 证明: 存在 G 到 G' 的满同态的充要条件是 $n \mid m$.

证明: (⇒) 设 $\phi: G \to G'$ 为满同态, 则 $G/\ker \phi \cong G'$, 故 $\frac{|G|}{|\ker \phi|} = |G'|$, 也即 $\frac{m}{|\ker \phi|} = n \Rightarrow n \mid m$.

(\Leftarrow) 设 g,h 分别为 G 和 G' 的生成元, 定义 $\phi:G\to G',\,g^a\mapsto h^a,\,$ 则

$$\phi(g^{a}g^{b}) = \phi(g^{a+b}) = h^{a+b} = h^{a}h^{b} = \phi(g^{a})\phi(g^{b}).$$

又因 $m \ge n$, 故 ϕ 为满射, 从而为满同态.

第4章 补充题目

46

- **4.** 在剩余类环 \mathbb{Z}_n 中, 记满足 (a,n)=1 的剩余类 [a] 的个数为 $\varphi(n)$, 证明:
 - (1) 令 $R = \{[a] \in \mathbb{Z}_n \mid (a, n) = 1\}$, 则 R 关于剩余类的乘法构成一个 群;
 - (2) 若 (a, n) = 1, 则 $a^{\varphi(n)} \equiv 1 \pmod{n}$ (欧拉定理).

证明: (1) (i) 结合律显然满足; (ii) [1] 为单位元,即 [a][1] = [1][a] = [a]; (iii) 任取 $[a] \in R$,由于 (a,n) = 1,故存在整数 r,s,使得 ar + ns = 1,从而 [a][r] = [ar] = [1 - ns] = [1],即 [r]为 [a]的逆元.综上即知 R关于剩余类的乘法构成一个群.

- (2) 任取 $[a] \in R$, 由 Lagrange 定理知 [a] 的阶为 $\varphi(n)$ 的因子, 故 $[a]^{\varphi(n)} = [a^{\varphi(n)}] = [1]$, 所以 $a^{\varphi(n)} \equiv 1 \pmod{n}$.
 - 5. 设 I,J 是环 R 的理想且 R=I+J, 证明: $R/(I\cap J)\cong R/I\oplus R/J$. 证明: 定义映射

$$\phi: R \longrightarrow R/I \oplus R/J$$

 $r \longmapsto (r+I, r+J).$

首先, ϕ 为同态: 对于任意 $r_1, r_2 \in R$, 有

$$\phi(r_1 + r_2) = (r_1 + r_2 + I, r_1 + r_2 + J) = \phi(r_1) + \phi(r_2),$$

$$\phi(r_1r_2) = (r_1r_2 + I, r_1r_2 + J) = (r_1 + I, r_1 + J)(r_2 + I, r_2 + J) = \phi(r_1)\phi(r_2).$$

其次, ϕ 为满射: 任取 $(r_1+I,r_2+J)\in R/I\oplus R/J$, 由于 R=I+J, 故存在 $r_{1I},r_{2I}\in I$, $r_{1J},r_{2J}\in J$, 使得 $r_1=r_{1I}+r_{1J}$ 且 $r_2=r_{2I}+r_{2J}$. 取 $r=r_{1J}+r_{2I}$, 则

$$\phi(r) = (r_{1J} + r_{2I} + I, r_{1J} + r_{2I} + J) = (r_1 + I, r_2 + J).$$

又因 $\ker \phi = \{r \in R \mid (r + I, r + J) = (I, J)\} = I \cap J$, 故

$$R/(I \cap J) \cong R/I \oplus R/J.$$

6. 设 R 是交换环, P 是 R 的真理想, 证明: P 是 R 的素理想 \Leftrightarrow 对 R 的任意两个理想 I, J,若 $IJ \subseteq P$,则 $I \subseteq P$ 或 $J \subseteq P$,其中 $IJ = \{ij \mid i \in I, j \in J\}$.

证明: (\Rightarrow) 若 $IJ \subseteq P$, 假设 $I \not\subseteq P$, 则存在 $x \in I$, 使得 $x \notin P$. 由于 $IJ \subseteq P$, 故对任意 $y \in J$, $xy \in P$, 但 $x \notin P$, 故 $y \in P$, 从而 $J \subseteq P$.

- (\Leftarrow) 设 $ab \in P$, 则 $(a)(b) \subseteq P \Rightarrow (a) \subseteq P$ 或 $(b) \subseteq P$, 故 $a \in P$ 或 $b \in P$, 因此 P 为素理想.
- 7. 设 R 是唯一分解整环, $a \in R$ 且 $a \neq 0$, 证明: R 仅有有限多个主理想包含 a.

证明: 设 $a \in (b)$, 则 $b \mid a$, 由于 a 为唯一分解整环, 故整除 a 的元素 b 有限.

8. 证明:

- (1) $p(x) = x^3 + x + 1$ 是 $\mathbb{Z}_2[x]$ 中的不可约多项式;
- (2) $\mathbb{Z}_2[x]/(x^3+x+1)$ 是域.

证明: (1) 由于 $\deg p(x) = 3$, 故 p(x) 可约 $\iff p(x)$ 在 \mathbb{Z}_2 中有根. 但 $p(0) \neq 0$, $p(1) \neq 0$, 故 p(x) 不可约.

(2) 由于 \mathbb{Z}_2 为域, 故 $\mathbb{Z}_2[x]$ 为主理想环. 设 I 为理想且 $(x^3 + x + 1) \subset I \subseteq \mathbb{Z}_2[x]$, 由于 $\mathbb{Z}_2[x]$ 为主理想环, 故可设 I = (a(x)), 则 $x^3 + x + 1 \in (a(x))$, 故存在 $b(x) \in \mathbb{Z}_2[x]$ 使得 $x^3 + x + 1 = a(x)b(x)$, 而 $x^3 + x + 1$ 不可约, 故 $a(x) = 1 \Rightarrow I = \mathbb{Z}_2[x]$, 即证 $(x^3 + x + 1)$ 为极大理想, 所以 $\mathbb{Z}_2[x]/(x^3 + x + 1)$ 是域. (教材定理 2.4.9: 在主理想环中素元生成的主理想为极大理想)

4.2 2018-2019 年期末测试题

1. 设 G 是一个阶为偶数的有限群, 证明 G 中阶大于 2 的元素的个数一定为偶数, G 中阶等于 2 的元素的个数一定为奇数.

第4章 补充题目

证明: 任取 G 中阶大于 2 的元 a, 必有 $a \neq a^{-1}$, 且 a^{-1} 的阶等于 a 的阶, 故 G 中阶大于 2 的元素可两两组队, 因此阶数大于 2 的元素的个数一定为偶数, 从而 G 中阶等于 2 的元素的个数一定为奇数.

2. 设 G 为群, 如果 G/Z(G) 为循环群, 则 G 为交换群.

证明: 因商群 G/Z(G) 为循环群, 故存在 $g \in G$, 使得 $G/Z(G) = \langle gZ(G) \rangle$. 对任意 $g_1, g_2 \in G/Z(G)$, 存在正整数 m_1, m_2 使得

$$g_1Z(G) = g^{m_1}Z(G), \quad g_2Z(G) = g^{m_2}Z(G).$$

故 $g_1 = g^{m_1} z_1, g_2 = g^{m_2} z_2,$ 其中 $z_1, z_2 \in Z(G)$, 于是

$$g_1g_2 = g^{m_1}z_1g^{m_2}z_2 = g^{m_2}z_2g^{m_1}z_1 = g_2g_1.$$

因此 G 为交换群.

3. 证明域 F 关于乘法的有限子群 G 为循环群.

证法一: 任意取 $d \mid n$, 令 $G_d = \{x \in G \mid o(x) = d\}$. 假设 $G_d \neq \emptyset$, 则存在 $y \in G_d$, 显然 $\langle y \rangle \subseteq \{x \in G \mid x^d = 1\}$. 但是 $\#\langle y \rangle = d$, 故 $\langle y \rangle = \{x \in G \mid x^d = 1\}$. 因此 G_d 就是 d 阶循环群 $\langle y \rangle$ 的生成元构成的集合, 故 $\#G_d = \varphi(d)$.

上述过程说明对于 $\forall d \mid n, G_d$ 或者为空集或者满足 $\#G_d = \varphi(d)$, 故

$$n = \#G = \sum_{d|n} \#G_d \le \sum_{d|n} \varphi(d) = n.$$

故对任意的 $d \mid n$, 有 $\#G_d = \varphi(d)$, 特别地, $\#G_n = \varphi(n)$, 因此 G 为循环群.

证法二: 在有限交换群 G 中存在元素 g, 使得 g 的阶是 G 中所有元素 的阶的倍数, 记 o(g) = n, 则 G 中所有元素都满足方程

$$x^n = e$$
.

但是在域中满足 $x^n = e$ 的元素个数不超过 n, 故 $|G| \le n$. 显然, $n \le |G|$, 因 而 |G| = n, 这就说明 $G = \langle g \rangle$ 为循环群.

证法三: 由有限交换群的结构定理知 $G \cong \mathbb{Z}_{p_1^{r_1}} \oplus \cdots \oplus \mathbb{Z}_{p_s^{r_s}}$, 其中 p_1, p_2, \cdots, p_s 不一定两两互异, 记此同构为

$$\phi: G \longrightarrow \mathbb{Z}_{p_1^{r_1}} \oplus \cdots \oplus \mathbb{Z}_{p_s^{r_s}}$$
$$a \longmapsto (a_1, \cdots, a_s).$$

令 $m = \text{lcm}(p_1^{r_1}, \cdots, p_s^{r_s})$, 对任意 $a_i \in \mathbb{Z}_{p_i^{r_i}}$, 有 $p_i^{r_i}a_i = 0$, 故 $ma_i = 0$. 因此 对任意 $a \in G$, 有

$$\phi(a^m) = m(a_1, \cdots, a_s) = 0 \Rightarrow a^m = 1.$$

即 G 中每个元素都满足 $x^m = 1$, 而在域 F 中方程 $x^m - 1 = 0$ 至多只有 m 个根, 故 $|G| \le m$. 显然 $m \le |G|$, 故 $m = |G| = p_1^{r_1} \cdots p_s^{r_s}$, 这说明 p_1, p_2, \cdots, p_s 两两互异, 故 $G \cong \mathbb{Z}_m$ 为循环群.

注 这是一个一般性的结论, 值得关注. 任何一个域 F 去掉其中的零元素得到的集合 $F^* = F \setminus \{0\}$ 关于乘法构成一个群, 本题要说明的就是 F^* 的有限子群一定是循环群.

相关链接: (1) MSE 上关于这个问题的讨论. (2) 一个 PDF.

4. 设交换幺环 R 只有一个极大理想 M, 证明 $R \setminus M$ 中的元素都是 R 中的单位.

证明: 若 $x \in R$ 不是单位, 则 (x) 为 R 的真理想, 而 M 为唯一的极大理想, 故 $(x) \subset M \Rightarrow x \in M$, 因此 $R \setminus M$ 中的元都是单位.

5. 证明: 设 R 为特征为素数 p 的交换环, 则 $a \mapsto a^p$ 为 R 的自同态.

证明: 记映射 $\phi: a \mapsto a^p$, 则

$$\phi(a+b) = (a+b)^p = \sum_{k=0}^p \binom{p}{k} a^k b^{p-k} = a^p + b^p = \phi(a) + \phi(b),$$

$$\phi(ab) = (ab)^p = a^p b^p = \phi(a)\phi(b).$$

故 ϕ 为 R 的自同态.

6. 如果在环 R 中对于每个元素 x 均存在大于 1 的自然数 n (n 可能与 x 有关) 使得 $x^n = x$, 证明 R 的每个素理想都是极大理想.

证明: 设 P 为 R 的素理想, 任取 $x \in R \setminus P$, 存在 n > 1 使得 $x^n = x$, 即 $x(x^{n-1} - 1) = 0 \in P$, 但 $x \notin P$, 故 $x^{n-1} - 1 \in P$, 因此 (x, P) = (1) = R, 由此可知 P 为极大理想.

7. 证明代数闭域为无限域.

证明: 假设代数闭域 F 为有限域, 记 $F = \{a_1, \dots, a_n\}$, 考虑方程 $(x - a_1)(x - a_2) \cdots (x - a_n) - 1 = 0$, 显然其在 F 中没有根, 这与 F 为代数闭域相矛盾.

8. 证明: 整环 $\mathbb{Z}[\sqrt{2}]=\{m+n\sqrt{2}\mid m,n\in\mathbb{Z}\}$ 关于 $\mathbb{Z}[\sqrt{2}]^*$ 到 $\mathbb{Z}^{\geq 0}$ 的映射

$$\phi(m + n\sqrt{2}) = |m^2 - 2n^2|$$

是一个欧式环.

证明: 可以验证 $\phi(\alpha\beta) = \phi(\alpha)\phi(\beta)$ 对任意的 $\alpha, \beta \in \mathbb{Q}(\sqrt{2})$ 成立. 任取 $m_1 + n_1\sqrt{2}, m_2 + n_2\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ 且 $m_2 + n_2\sqrt{2} \neq 0$, 则

$$\frac{m_1 + n_1\sqrt{2}}{m_2 + n_2\sqrt{2}} = \frac{\left(m_1 + n_1\sqrt{2}\right)\left(m_2 - n_2\sqrt{2}\right)}{m_2^2 - 2n_2^2} = s + t\sqrt{2},$$

其中 $s=\frac{m_1m_2-2n_1n_2}{m_2^2-2n_2^2},\ t=\frac{n_1m_2-m_1n_2}{m_2^2-2n_2^2}.$ 选取整数 q_1,q_2 使得 $|q_1-s|\leq \frac{1}{2},$ $|q_2-t|\leq \frac{1}{2},$ 则

$$\frac{m_1 + n_1\sqrt{2}}{m_2 + n_2\sqrt{2}} = \left(q_1 + q_2\sqrt{2}\right) + (s - q_1) + (t - q_2)\sqrt{2}.$$

即

$$m_1 + n_1 \sqrt{2} = \left(q_1 + q_2 \sqrt{2} \right) \left(m_2 + n_2 \sqrt{2} \right) + \left[(s - q_1) + (t - q_2) \sqrt{2} \right] \left(m_2 + n_2 \sqrt{2} \right).$$

记
$$r_1 + r_2\sqrt{2} = [(s - q_1) + (t - q_2)\sqrt{2}] (m_2 + n_2\sqrt{2}) \in \mathbb{Z}[\sqrt{2}],$$
则
$$m_1 + n_1\sqrt{2} = (q_1 + q_2\sqrt{2}) (m_2 + n_2\sqrt{2}) + r_1 + r_2\sqrt{2}.$$

由于

$$\phi\left(r_{1} + r_{2}\sqrt{2}\right) = \phi\left(s - q_{1} + (t - q_{2})\sqrt{2}\right)\phi\left(m_{2} + n_{2}\sqrt{2}\right)$$

$$= \left|\left(s - q_{1}\right)^{2} - 2(t - q_{2})^{2}\right|\phi\left(m_{2} + n_{2}\sqrt{2}\right)$$

$$\leq \left(\left(s - q_{1}\right)^{2} + 2(t - q_{2})^{2}\right)\phi\left(m_{2} + n_{2}\sqrt{2}\right)$$

$$\leq \frac{3}{4}\phi\left(m_{2} + n_{2}\sqrt{2}\right) < \phi\left(m_{2} + n_{2}\sqrt{2}\right).$$

故 $\mathbb{Z}[\sqrt{2}]$ 为欧式环.

9. 如果 f(x) 为域 F 上的一个多项式, E_1 和 E_2 都是该多项式的分裂域, 证明 E_1 与 E_2 同构.

证明: 对 $[E_1:F]$ 作数学归纳法.

若 $[E_1:F]=1$, 即 $f(x)=\prod_{i=1}^n(x-\alpha_i)$, 其中 $\alpha_i\in F$, 则 $E_1=E_2=F$, 取 $\sigma:E_1\to E_2$ 为 id 即可.

假设 $[E_1:F] < n$ 时命题为真. 下面假设 $[E_1:F] = n \ (n \ge 2)$, 故 f(x) 存在次数大于或等于 2 的不可约因式, 设

$$f(x) = f_1(x)g(x), \quad f_1(x), g(x) \in F[x], \deg f_1(x) \ge 2.$$

其中 $f_1(x)$ 是 f(x) 在 F[x] 中的一个次数大于或等于 2 的不可约因式. 设 $\alpha \in E_1$ 是 $f_1(x)$ 的一个零点, $\alpha' \in E_2$ 是 $f_1(x)$ 的一个零点, 则

$$\sigma: F(\alpha) \longrightarrow F(\alpha')$$

$$g(\alpha) \longmapsto g(\alpha'), \quad g(x) \in F[x]$$

是域同构且 $\sigma|_F = id$. 由于 $[F(\alpha): F] = \deg f_1(x) \geq 2$,所以 $[E_1: F(\alpha)] < n$. 显然 E_1 是 f(x) 在 $F(\alpha)$ 上的分裂域, E_2 是 f(x) 在 $F(\alpha')$ 上的分裂域, 由归纳假设, 存在同构 $\tilde{\sigma}: E_1 \to E_2$ 且 $\tilde{\sigma}|_{F(\alpha)} = \sigma$,于是 $\tilde{\sigma}|_F = \sigma|_F = id$,所以当 [E: F] = n 时命题成立.

10. 设 $a + bi \in \mathbb{Z}[i]$, 且 $a^2 + b^2 = p$, p 为素数, 证明 $\mathbb{Z}[i]/\langle a + bi \rangle \cong \mathbb{Z}_p$. 证明: 考虑映射

$$\phi: \mathbb{Z} \longrightarrow \mathbb{Z}[i]/\langle a + bi \rangle,$$
$$n \longmapsto n + \langle a + bi \rangle.$$

首先, ϕ 为同态: 对任意 $m, n \in \mathbb{Z}$, 有

$$\phi(m+n) = m+n+\langle a+b\mathrm{i}\rangle = \phi(m)+\phi(n).$$

$$\phi(mn) = mn+\langle a+b\mathrm{i}\rangle = \phi(m)\phi(n).$$

其次, ϕ 为满射: 因 a^2+b^2 为素数, 故 (a,b)=1, 故存在整数 r,s 使得 ra+sb=1, 对任意 $m+n\mathrm{i}+\langle a+b\mathrm{i}\rangle\in\mathbb{Z}[\mathrm{i}]/\langle a+b\mathrm{i}\rangle$, 取 k=m+bnr-ans, 则

$$m + n\mathbf{i} - k = n\mathbf{i} + ans - bnr = (a + b\mathbf{i})(ns + nr\mathbf{i}) \in \langle a + b\mathbf{i} \rangle.$$

故

$$\phi(k) = k + \langle a + bi \rangle = (m + ni) + \langle a + bi \rangle.$$

又因

$$\ker \phi = \{n \mid n = (a+b\mathbf{i})(c+d\mathbf{i})\}$$

$$= \{n \mid n = ac - bd + (ad+bc)\mathbf{i}\}$$

$$= \left\{ -\frac{d}{b}(a^2 + b^2) \mid b \ \mathbb{E} \Re \ d \right\}$$

$$= \langle a^2 + b^2 \rangle.$$

所以 $\mathbb{Z}[i]/\langle a+bi\rangle \cong \mathbb{Z}_{a^2+b^2}$.

注 在证明 ϕ 为满射时, 我们要寻找 k 使得

$$k + \langle a + bi \rangle = m + ni + \langle a + bi \rangle.$$

第 4 章 补充题目

即要求 $m + n\mathbf{i} - k \in \langle a + b\mathbf{i} \rangle$, 故

$$m + ni - k = (a + bi)(p + qi) = (ap - bq) + (aq + bp)i.$$

53

所以要求 m - k = ap - bq 且 n = aq + bp,我们的目标是利用已知值 a, b, r, s, m, n 表示 k. 注意

$$k = m - ap + bq.$$

于是需要想办法替换掉 p,q. 这时注意 $n = ap + bq = n \cdot 1 = n(ra + sb) = anr + bns$, 故令 p = nr, q = ns 即可.

4.3 2019 级研究生近世代数试题

1. 证明: p^2 阶群 G 是循环群, 其中 p 是素数.

证明: 见第 1.6 节: Sylow 定理.

2. 证明有理数加法群的任一有限生成子群为循环群.

证明: 设 $\frac{m_1}{n_1}, \ldots, \frac{m_k}{n_k}$ 为群 $G < \mathbb{Q}$ 的生成元, 则对于 $\forall g \in G$, 有

$$g = a_1 \frac{m_1}{n_1} + \dots + a_k \frac{m_k}{n_k} = \frac{a_1 m_1 n_2 \dots n_k + \dots + a_k m_k n_1 \dots n_{k-1}}{n_1 \dots n_k},$$

其中 a_1, \ldots, a_k 为整数, 显然 G 为循环群 $\left\langle \frac{1}{n_1 \cdots n_k} \right\rangle$ 的子群, 从而 G 为循环群.

3. 设 G 为群, 证明 G/Z(G) 同构于 G 的内在同构群 (内自同构群).

证明: 内自同构群为 $\operatorname{In}(G) = \{ \sigma_g \in \operatorname{Aut}(G) \mid \sigma_g(x) = gxg^{-1}, \forall x \in G \}.$ 考虑映射 $\phi : G \to \operatorname{In}(G), g \mapsto \sigma_g$. 显然 ϕ 为满射, 又由于

$$\sigma_{g_1g_2}(x) = g_1g_2xg_2^{-1}g_1^{-1} = \sigma_{g_1}\sigma_{g_2}(x),$$

故 $\phi(g_1g_2) = \sigma_{g_1g_2} = \sigma_{g_1}\sigma_{g_2} = \phi(g_1)\phi(g_2)$, 故 ϕ 为满同态. 并且 ϕ 的核为

$$\ker \phi = \{g \in G \mid \sigma_g = \mathrm{id}\}$$
$$= \{g \in G \mid gxg^{-1} = x, \forall x \in G\}$$
$$= Z(G).$$

从而由群同态基本定理, 得 $G/Z(G) \cong In(G)$.

4. 证明: $\mathbb{Z}[i]/(3+i) \cong \mathbb{Z}_{10}$.

证明: 考虑映射 $\phi: \mathbb{Z}[i] \to \mathbb{Z}_{10}, a+bi \mapsto \overline{a-3b}$ 即可.

5. 设 I, J 为交换幺环 R 的理想, 证明: 若 I + J = R, 则 $IJ = I \cap J$.

证明: 显然 $IJ \subset I \cap J$. 下证 $I \cap J \subset IJ$, 任取 $r \in I \cap J$, 由于 I+J=R, 故存在 $a \in I, b \in J$ 使得 a+b=1, 从而 $r=r(a+b)=ar+rb \in IJ$, 因此 $I \cap J \subset IJ$.

6. 设 U 为 R 的理想, 证明 $r(U) = \{x \mid xu = 0, \forall u \in U\}$ 为 R 的理想. 证明: 按定义直接验证.

证明: 按定义直接验证.

7. 证明对任意的域, 其中的有限乘法子群一定是循环群.

证明: 见 2018-2019 年期末测试题第三题.

8. 构造一个有9个元素的域,并给出它的加法和乘法.

解: 考虑 $\mathbb{Z}_3[x]/(x^2+1)$, 此为含有 9 个元素的域, 其中元素为

$$[0], [1], [2], [x], [x+1], [x+2], [2x], [2x+1], [2x+2].$$

加法为 [f(x) + g(x)] = [f(x) + g(x)], 乘法为 [f(x)][g(x)] = [f(x)g(x)].

9. 设 $E \neq F$ 的代数扩域, $A \neq F$ 在 E 中的代数闭包, 证明 A 在 E 中是代数闭的.

证明: 即证 A 在 E 中的代数闭包即为 A 自身. 任取 $x \in E \setminus A$, 若 x 为 A 上的代数元, 注意到 A 为 F 的代数扩域, 故由第一题结论知 x 为 F 上的代数元, 这与 A 的定义相矛盾, 故 x 不是 A 上的代数元, 从而 A 在 E 中的代数闭包即为 A 自身.

10. 设 K 为多项式 $(x^2+3)(x^2+5)$ 在 \mathbb{Q} 上的分裂域, 求 $G(K/\mathbb{Q})$, 找 出所有子群并写出它们对应的中间域.

55

解: 第一步, 求出 K. 因为 $(x^2+3)(x^2+5)=0$ 的根为 $\pm \sqrt{3}i, \pm \sqrt{5}i,$ 故 $K=\mathbb{Q}(\sqrt{3}i,\sqrt{5}i).$

第二步, 求 $[K:\mathbb{Q}]$.

$$[K:\mathbb{Q}] = [K:\mathbb{Q}(\sqrt{3}i)][\mathbb{Q}(\sqrt{3}i):\mathbb{Q}] = 4$$

且 K 作为 \mathbb{Q} 上的向量空间具有一组基: $1,\sqrt{3}i,\sqrt{5}i,\sqrt{15}$.

第三步, 求 $G(K/\mathbb{Q})$. 任取 $\sigma \in G(K/\mathbb{Q})$, σ 将 $\sqrt{3}i$ 映为 $\pm\sqrt{3}i$, 将 $\sqrt{5}i$ 映为 $\pm\sqrt{5}i$, 故取 $\sigma,\tau \in G(K/\mathbb{Q})$ 满足

$$\sigma: \begin{cases} \sqrt{3}i \mapsto -\sqrt{3}i \\ \sqrt{5}i \mapsto \sqrt{5}i \end{cases} \qquad \tau: \begin{cases} \sqrt{3}i \mapsto \sqrt{3}i \\ \sqrt{5}i \mapsto -\sqrt{5}i \end{cases}$$

则 $G(K/\mathbb{Q}) = \{id, \sigma, \tau, \sigma\tau\}$. 并且 $G(K/\mathbb{Q})$ 的子群和对应的中间域分别为:

$$G_1 = \{ id \}, K^{G_1} = K;$$

$$G_2 = \{ id, \sigma \}, K^{G_2} = \mathbb{Q}(\sqrt{5}i);$$

$$G_3 = \{ \mathrm{id}, \tau \}, K^{G_3} = \mathbb{Q}(\sqrt{3}\mathrm{i});$$

$$G_4 = \{ id, \sigma \tau \}, K^{G_4} = \mathbb{Q}(\sqrt{15});$$

$$G_5 = \mathcal{G}(K/\mathbb{Q}), \ K^{G_5} = \mathbb{Q}.$$

4.4 2020 级研究生近世代数试题

1. 设 M 和 N 分别是群 G 的正规子群, 且 $M \cap N = \{1\}$, 证明: 对任 意 $a \in M$, $b \in N$, 有 ab = ba.

证明: 证明
$$a^{-1}b^{-1}ab \in M \cap N = \{1\}$$
 即可.

2. 设 p 是一个素数, $\mathbb{Z}_{p^3} \oplus \mathbb{Z}_{p^2}$ 有多少个 p^2 阶子群?

证明: 原题出自近世代数三百题第 87 页, 答案为 $p^2 + p + 1$.

因 $\mathbb{Z}_{p^3} \oplus \mathbb{Z}_{p^2}$ 中元的阶只可能为 $1, p, p^2, p^3$, 故我们分别求出阶为 $1, p, p^2, p^3$ 的元素个数. 任取 $(a, b) \in \mathbb{Z}_{p^3} \oplus \mathbb{Z}_{p^2}$, 有

$$|(a,b)| = \operatorname{lcm}(|a|,|b|).$$

- (1) 阶为 1 的元只有单位元 (1,1);
- (2) 阶为 p 的元分为三类:
- $|a| = 1, |b| = p, \, \sharp \hat{a} \, 1 \times (p-1) = p-1 \, \uparrow$
- $|a| = p, |b| = 1, \, \sharp f \, (p-1) \times 1 = p-1 \, \uparrow$
- |a|=p, |b|=p, 共有 $(p-1)\times (p-1)=(p-1)^2$ 个 故有 p^2-1 个 p 阶元.
- (3) 阶为 p^3 的元: 设 $|(a,b)| = p^3$, 则必需 $|a| = p^3$, 而 b 可任意选择, 在 \mathbb{Z}_{p^3} 中有 $\varphi(p^3) = p^2(p-1)$ 个 p^3 阶元, 因此 $\mathbb{Z}_{p^3} \oplus \mathbb{Z}_{p^2}$ 中 p^3 阶元共有 $p^2(p-1) \cdot p^2 = p^4(p-1)$ 个.
 - (4) 阶为 p^2 的元: 由群的阶减去上述三类之和, 即有

$$p^5 - 1 - (p^2 - 1) - p^4(p - 1) = p^2(p^2 - 1)$$

个 p² 阶元.

设 H 为 $\mathbb{Z}_{p^3}\oplus\mathbb{Z}_{p^2}$ 的 p^2 阶子群, 由有限交换群的结构定理知 $H\cong\mathbb{Z}_{p^2}$ 或 $H\cong\mathbb{Z}_p\oplus\mathbb{Z}_p$.

当 $H\cong \mathbb{Z}_{p^2}$ 时, H 由 p^2 阶元生成, 但每个 p^2 阶循环群中有 $\varphi(p^2)=p(p-1)$ 个生成元, 故共有

$$\frac{p^2(p^2-1)}{p(p-1)} = p^2 + p$$

个 p² 阶循环群.

当 $H \cong \mathbb{Z}_p \oplus \mathbb{Z}_p$ 时, H 由 $p^2 - 1$ 个 p 阶元和一个单位元组成, 故 H 恰好包含 $\mathbb{Z}_{p^3} \oplus \mathbb{Z}_{p^2}$ 中全部 p 阶元, 所以这样的 H 只有一个.

综上可得,
$$\mathbb{Z}_{p^3} \oplus \mathbb{Z}_{p^2}$$
 共有 $p^2 + p + 1$ 个 p^2 阶子群.

3. 设 D 为整环, m 和 n 为互素的正整数, $a,b \in D$. 如果 $a^m = b^m$, $a^n = b^n$, 求证 a = b.

证明: 由于 (m,n)=1, 故存在整数 r,s 使得 rm+sn=1. 不妨设 r>0, s<0, 则 rm=1-sn>0. 由于 $a^m=b^m$, 故 $a^{rm}=b^{rm}$, 即 $a^{1-sn}=b^{1-sn}$, 也即 $a\cdot a^{-sn}=b\cdot b^{-sn}$. 由于 $a^n=b^n$, 故 $a^{-sn}=b^{-sn}=:c$, 则 $ac=bc\Rightarrow (a-b)c=0$. 若 c=0, 则 a=b=0; 若 $c\neq 0$, 则 $a-b=0\Rightarrow a=b$.

4. 设 $a + bi \in \mathbb{Z}[i]$, 且 $a^2 + b^2 = p$, p 为素数, 证明 $\mathbb{Z}[i]/\langle a + bi \rangle \cong \mathbb{Z}_p$.

证明: 见 2018-2019 年最后一题. □

5. 求多项式 $x^4 - 3x$ 在 \mathbb{Q} 上的分裂域 (在 \mathbb{Q} 上的) Galois 群的全部子群以及子群的不动域.

证明: 第一步, 求分裂域. 由 $x^4 - 3x = 0$ 得 $x = 0, \sqrt[3]{3}, \sqrt[3]{3}\omega, \sqrt[3]{3}\omega^2$, 其中 ω 为三次本原单位根. 因此 $x^4 - 3x$ 在 $\mathbb Q$ 上的分裂域为 $E = \mathbb Q(\sqrt[3]{3}, \omega)$.

第二步, 计算 $[E:\mathbb{Q}]$.

$$[E:\mathbb{Q}] = [E:\mathbb{Q}(\sqrt[3]{3})][\mathbb{Q}(\sqrt[3]{3}):\mathbb{Q}] = 2 \times 3 = 6.$$

且 E 在 \mathbb{Q} 上的一组基为 $1, \sqrt[3]{3}, \sqrt[3]{9}, \omega, \sqrt[3]{3}\omega, \sqrt[3]{9}\omega$.

第三步, 求 $G(E/\mathbb{Q})$. 任取 $\sigma \in G(E/\mathbb{Q})$, 由于 σ 将 ω 映为 ω 或 ω^2 , 将 $\sqrt[3]{3}$ 映为 $\sqrt[3]{3}$ 或 $\sqrt[3]{3}\omega^2$, 故可取 $\sigma, \tau \in G(E/\mathbb{Q})$ 满足条件

$$\sigma: \begin{cases} \omega \mapsto \omega \\ \sqrt[3]{3} \mapsto \sqrt[3]{3}\omega \end{cases} \qquad \tau: \begin{cases} \omega \mapsto \omega^2 \\ \sqrt[3]{3} \mapsto \sqrt[3]{3} \end{cases}$$

则 $G(E/\mathbb{Q}) = \{id, \sigma, \sigma^2, \tau, \sigma\tau, \sigma^2\tau\}$, Galois 群中各自同态关于根的置换见表 **4.1**. 相应的子群以及固定域分别为:

$$G_1 = {\text{id}}, E^{G_1} = E;$$

$$G_2 = \{ \mathrm{id}, \sigma, \sigma^2 \}, E^{G_2} = \mathbb{Q}(\omega);$$

$$G_3 = \{ id, \tau \}, E^{G_3} = \mathbb{Q}(\sqrt[3]{3});$$

$$G_4 = \{ \mathrm{id}, \sigma \tau \}, E^{G_4} = \mathbb{Q}(\sqrt[3]{3}\omega^2);$$

表 4.1 : $G(E/\mathbb{Q})$ 关于根的置换							
	$\sqrt[3]{3}$	$\sqrt[3]{3}\omega$	$\sqrt[3]{3}\omega^2$	ω	ω^2		
1	$\sqrt[3]{3}$	$\sqrt[3]{3}\omega$	$\sqrt[3]{3}\omega^2$	ω	ω^2		
σ	$\sqrt[3]{3}\omega$	$\sqrt[3]{3}\omega^2$	$\sqrt[3]{3}$	ω	ω^2		
σ^2	$\sqrt[3]{3}\omega^2$	$\sqrt[3]{3}$	$\sqrt[3]{3}\omega$	ω	ω^2		
au	$\sqrt[3]{3}$	$\sqrt[3]{3}\omega^2$	$\sqrt[3]{3}\omega$	ω^2	ω		
$\sigma\tau$	$\sqrt[3]{3}\omega$	$\sqrt[3]{3}$	$\sqrt[3]{3}\omega^2$	ω^2	ω		
$\sigma^2 \tau$	$\sqrt[3]{3}\omega^2$	$\sqrt[3]{3}\omega$	$\sqrt[3]{3}$	ω^2	ω		

$$G_5 = \{ \mathrm{id}, \sigma^2 \tau \}, E^{G_5} = \mathbb{Q}(\sqrt[3]{3}\omega);$$

$$G_6 = G, E^{G_6} = \mathbb{Q}.$$

6. 设 R 为交换幺环, 若对任意 $a \in R$, a 或 1-a 可逆, 证明: $N = \{a \in R \mid a \text{ 为不可逆元}\}$ 为 R 的理想.

证明: 任取 $a_1, a_2 \in N$, 假设 $a_1 - a_2$ 可逆, 则存在 $b \in R$, 使得 $(a_1 - a_2)b = 1$, 即 $a_1b = 1 + a_2b$. 由于 a_2 不可逆, 故 $-a_2b$ 不可逆, 故 $1 - (-a_2b) = 1 + a_2b$ 可逆, 从而 a_1b 可逆, 由 a_1b 可逆可得 a_1 可逆, 矛盾. 因此 $a_1 - a_2 \in N$.

任取 $a \in N$, $r \in R$, 由于 a 不可逆, 故 ar 不可逆, 故 $ar \in N$.

因此
$$N$$
 为 R 的理想.

7. 证明代数闭域为无限域.

8. 证明: 若 f(x) 为 \mathbb{R} 上的不可约多项式,则其次数为 1 或 2.

证明: 设 $f(x) \in \mathbb{R}[x]$ 为不可约多项式,由代数学基本定理知 $f(x) \in \mathbb{C}[x]$ 有根 $z_0 \in \mathbb{C}$.

若 $z_0 \in \mathbb{R}$, 则 $f(x) = (x - z_0)g(x)$, $g(x) \in \mathbb{R}[x]$. 由于 f(x) 不可约, 故 g(x) 必为非零常数且 $\deg f(x) = 1$.

若 $z_0 \notin \mathbb{R}$, 则 $f(\overline{z_0}) = \overline{f(z_0)} = 0$, 因此在 $\mathbb{C}[x]$ 中 f(x) 可被 $x - z_0$ 和 $x - \overline{z_0}$ 整除,又 $1 \cdot (x - z_0) + (-1)(x - \overline{z_0}) = \overline{z_0} - z_0 = -2 \operatorname{Im}(z_0) i \neq 0$ 为 $\mathbb{C}[x]$ 中单位,故 f(x) 可以被 $(x - z_0)(x - \overline{z_0}) = x^2 - 2 \operatorname{Re}(z_0)x + |z_0|^2 \in \mathbb{R}[x]$ 整

除, 即 $f(x) = (x^2 - 2 \operatorname{Re}(z_0)x + |z_0|^2)g(x)$, 其中 $g(x) \in \mathbb{R}[x]$ 必为非零常数 且 $\deg f(x) = 2$.

9. 设 F 为域, E = F(a) 为 F 的单扩域, $b \in E - F$. 证明: a 在 F(b) 上为代数的.

证明: 因 $b \in E - F$, 故存在 $g(x), h(x) \in F[x]$, 使得 $b = \frac{g(a)}{h(a)}$, 故 g(a) - bh(a) = 0, 令 $f(x) = g(x) - bh(x) \in F(b)[x]$, 则 f(a) = 0, 所以 a 在 F(b) 上为代数的.

10. 设域 F 的特征为 0, E 是 F 的扩域, 并且 [E:F]=4. 证明存在一个满足条件 $F \subset I \subset E$ 的 F 的二次扩域 I 的充要条件是: $E=F(\alpha)$, 而 α 在 F 上的极小多项式是 x^4+ax^2+b .

证明: (⇒) 第一步, 首先证明存在 $\alpha \in E \setminus I$, 使得 α 在 I 上的极小多项式为 $x^2 - a$, $a \in I$. 对任意 $\alpha_1 \in E \setminus I$, 设 α_1 的极小多项式为 $x^2 + k_1x + k_0$, 设此极小多项式的另一个根为 α_2 , 则由韦达定理知 $\alpha_1 + \alpha_2 = -k_1 \in I$. 记 $\alpha = \alpha_1 - \alpha_2$, 断言 $\alpha \notin I$, 否则, 由 $\alpha_1 + \alpha_2 \in I$ 且 $\alpha_1 - \alpha_2 \in I$ 可推知 $\alpha_1 \in I$, 矛盾. 于是 α 在 I 上的极小多项式为二次多项式. 令 $f(x) = x^2 - a \in I[x]$, 其中 $a = k_1^2 - 4k_0$, 则

$$f(\alpha) = (\alpha_1 - \alpha_2)^2 - (k_1^2 - 4k_0) = (\alpha_1 + \alpha_2)^2 - 4\alpha_1\alpha_2 - (k_1^2 - 4k_0) = 0,$$

所以 α 在 I 上的极小多项式即为 $f(x) = x^2 - a \in I[x]$.

第二步, 若 $a \in I \setminus F$, 设 a 在 F 上的极小多项式为 $x^2 + \ell_1 x + \ell_0$, 令 $g(x) = x^4 + \ell_1 x^2 + \ell_0$, 则由 $\alpha^2 = a$ 得

$$g(\alpha) = \alpha^4 + \ell_1 \alpha^2 + \ell_0 = a^2 + \ell_1 a + \ell_0 = 0.$$

下证 g(x) 是 α 在 F 上的极小多项式. 实际上, 也就是要证明扩张次数 $[F(\alpha):F]=4$, 由于

$$E = I(\alpha) \supset F(\alpha) \supset F(\alpha^2) = F(a) = I \supset F.$$

故

$$4 = [E : F] = [E : F(\alpha)][F(\alpha) : I][I : F],$$

结合 $[F(\alpha):I] > 1$ 和 [I:F] = 2 即得 $[F(\alpha):F] = 4$. 所以此时 $g(x) = x^4 + \ell_1 x^2 + \ell_0$ 就是 α 在 F 上的极小多项式.

若 $a \in F$, 则 $F(\alpha^2) = F(a) = F$, 故 $[F(\alpha) : F] = [F(\alpha) : F(\alpha^2)] \le 2$, 而 $\alpha \notin F$, 故 $[F(\alpha) : F] = 2$, 因此此时 g(x) 必然不是 α 在 F 上的极小多项式. 类似于第一步知, 存在 $\beta \in I \setminus F$, 使得 β 在 F 上的极小多项式为 $x^2 - b \in F[x]$, 令 $\gamma = \alpha + \beta$, 则

$$\gamma^4 = (a+b)^2 + 4ab + 2(a+b) \cdot 2\alpha\beta,$$

且

$$\gamma^2 = (\alpha + \beta)^2 = a + b + 2\alpha\beta.$$

结合上面两式得 $\gamma^4 - 2(a+b)\gamma^2 + (a-b)^2$. 令 $h(x) = x^4 - 2(a+b)x^2 + (a-b)^2 \in F[x]$, 则 $h(\gamma) = 0$, 下证 h(x) 为 γ 在 F 上的极小多项式. 即需证 $[F(\gamma):F] = [F(\alpha+\beta):F] = 4$. 事实上,由于 $\alpha+\beta \in F(\alpha+\beta)$,故 $\frac{a-b}{\alpha+\beta} = \frac{\alpha^2-\beta^2}{\alpha+\beta} = \alpha-\beta \in F(\alpha+\beta)$,因此 $\alpha,\beta \in F(\alpha+\beta) \Rightarrow F(\alpha+\beta) = F(\alpha,\beta) = E$,故 $[F(\alpha+\beta):F] = [E:F] = 4$.

4.5 2021 级近世代数期末试题

- **1.** 设交换群 G 中元素 a 及 b 的阶分别为 m, n, 证明或否定 ab 的阶为 m, n 的最小公倍数.
 - **2.** 设 S 为复平面中的单位圆, 关于乘法构成群. 证明 $\mathbb{R}/\mathbb{Z} \cong S$.
 - 3. 给出 63 阶交换群的所有同构类.
 - 4. 求出群 \mathbb{Z}_{12} 的自同构群.
 - 5. 证明: 若一个整环只有有限多个理想, 则它是一个域.
 - **6.** 证明: $\mathbb{Q}[x,y,z]$ 中的理想 (x^2-2,y^2+1,z) 为真理想.
- 7. 设 I 为主理想环, a, b 为 I 中元素. 证明 (a) + (b) = I 当且仅当 (a, b) = 1 (即 a, b 互素).
- 8. 设 K 为域 F 的扩域, E 为域 K 的扩域, 证明 E 为 F 的代数扩域 当且仅当 E 为 K 的代数扩域且 K 为 F 的代数扩域.

第 4 章 补充题目 61

9. 设 p(x) 为特征为 0 的域 F 上的不可约多项式且它有一根可以用根式表示,则它的所有根都可以用根式表示.

10. 求 $(x^2+3)(x^3-2)$ 在 $\mathbb Q$ 上的分裂域 K, 并求 $G(K/\mathbb Q)$, 找出其所 有子群并写出它们所对应的中间域.