

Paper Code: BS-M404

Numerical Methods

Time Allotted: 1 Hour

Full Marks: 30

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any five of the following:

5×1

- (i) The number of significant digits in 1.00234 is
 - (a) 4-
 - (b) 6
 - (c) 3
 - (d) 5
- (ii) The ratio of absolute error and the true value is called
 - (a) relative error .
 - (b) truncation error
 - (c) percentage error
 - (d) inherent error
- (iii) Which of the following relations is true?
 - (a) $E = 1 + \Delta$
 - (b) $E = 1 \Delta$
 - (c) $E = \Delta 1$
 - (d) $E = \Delta + 2$
- (iv) If a be the actual value, e be its estimated value, the formula for relative error is

7.0602

- (a) $\frac{a}{a}$
- (b) $\frac{|a-e|}{a}$
- (c) a-e

0.53

(v) The expression for $\Delta^3 y_0$, the symbol Δ has its usual meaning, is

- (a) $y_3 3y_2 + 3y_1 y_0$
- (b) $y_2 2y_1 + y_0$
- (c) $y_3 + 3y_2 + 3y_1 + y_0$
- (d) None of these
- (vi) First order forward difference of a constant is
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 3

Group - B

(Short Answer Type Questions)

Answer any two of the following

2×5

(2) The approximate values of the number 1/3 are given as 0.30,0.33,0.34. Which of these is the best approximation?

(3) Find y(32) when y(10) = 35.3, y(15) = 32.4, y(20) = 29.2, y(25) = 26.1, y(30) = 23.2, y(35) = 20.5?

(4) . Show that $\Delta log f(x) = \log \left[1 + \frac{\Delta f(x)}{f(x)}\right]$

Group - C

(Long Answer Type Questions)

Answer any one of the following

1×15

(5)

(a) Find by Lagrange's formula the interpolation polynomial from the following data

(7+8)

X	-1	0	2	5
у	9	5	3	15

(b) Find sin32° by using suitable interpolation formula from the following table:

X	30	35	40	45	50	55
sinx	0.5000	0.5736	0.6428	0.7071	0.7660	0.8192

(6)

(5+5+5)

Prove that $f[x_0, x_1, x_2] = 1$ if $f(x) = x^2$, where x_0, x_1, x_2 are distinct.

(b) Show that Δ . $\nabla = \Delta - \nabla$

(c) By using the Newton-Gregory formula find y(6), where y(0) = -1, y(1) = 3, y(2) = 8, y(3) = 13

Paper Code: -BS-M404

Numerical Methods

Time Allotted: I Hour

Full Marks: 30

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any five of the following:

5×1

- (1) One root of the equation $x^2 + 2x 2 = 0$ lies between
 - (a) 0 and 0.5
 - (b) 0.5 and 1
 - (c) 1 and 1.5
 - (d) 1.5 and 2
- (II) According to Newton-Raphson method, the algorithm for iterates x_{n+1} (n = 0,1,2,...) is

(a)
$$x_{n+1} = x_n + \frac{f(x_n)}{f'(x_n)}$$

(b)
$$x_{n+1} = x_n + \frac{f'(x_n)}{f(x_n)}$$

(b)
$$x_{n+1} = x_n + \frac{f'(x_n)}{f(x_n)}$$

(c) $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
(d) $x_{n+1} = x_n - \frac{f'(x_n)}{f(x_n)}$

(d)
$$x_{n+1} = x_n - \frac{f'(x_n)}{f(x_n)}$$

- (iii) Newton-Raphson method fails when
 - (a) f'(x) = 1
 - (b) f'(x) = 0
 - (c) f'(x) = -1
 - (d) f''(x) = 0
- (iv) If f(x) is continuous in the interval [a, b] and if f(a) and f(b) are of opposite signs, then there is

1111

Paper Code: BS-M404

Paper Name: Numerical Methods

Time Allotted: 1 Hour

Full Marks: 30

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any five of the following:

5×1=5

- (i) Newton-Raphson method fails when
 - (a) f'(x) = 1
 - $\int b) f'(x) = 0$
 - (c) f'(x) = -1
 - (d) f''(x) = 0
- (ii) The number of significant figures in 0.002501 is
 - (a) 3
 - (b) 4°
 - (c)_6
 - (d) 7
- (iii) The expression for $\Delta^3 y_0$, the symbol Δ has its usual meaning, is
 - (a) $y_3 3y_2 + 3y_1 y_0$
 - (b) $y_2 2y_1 + y_0$
 - $(c) y_3 + 3y_2 + 3y_1 + y_0$
 - (d) None of these
- (iv) Lagrange's interpolation formula deals with
 - (a) equi-spaced arguments only
 - (b) unequi-spaced arguments only
 - (c) both (a) and (b)
 - (d) None of these
- (v) In bisection method, x_{n+1} is the
 - (a) arithmetic mean of a_n and b_n \circ
 - (b) geometric mean of a_n and b_n
 - (c) harmonic mean of a_n and b_n
 - (d) None of these
- (vi) Newton-Raphson method is

- (a) analytical method
- (b) graphical method
- (c) iterative method
- (d) None of these

Group - B

(Short Answer Type Questions)

Answer any two of the following

 $2 \times 5 = 10$

- (2) Evaluate √12 correct up to 3 decimal places, using Newton-Raphson method. (CO3, Apply, HOCQ)
- (3) If $y_0 = 3$, $y_1 = 12$, $y_2 = 81$, $y_3 = 2000$, $y_4 = 100$ then find $\Delta^4 y_0$ (CO3, Apply, HOCQ)
- (4) Find the value of $\frac{\Delta^2}{E}x^3$ when h=1 (CO1, Apply, HOCQ)

Group - C

(Long Answer Type Questions)

Answer any one of the following

1×15=15

(5)

- (a) Find the absolute error, relative error, percentage error if 5/3 is approximated to 1.6667 (CO1,Apply,IOCQ)
- (b) Apply Lagrange's interpolation formula to find f(x) at x = 5, if f(1) = 2, f(2) = 4, f(3) = 3, f(4) = 16, f(7) = 128 (CO3, Apply, HOCQ)

5+10

(6)

- (a) Find the root of the equation $x^3 3x + 1.06 = 0$, by the bisection method. (CO3, Apply, HOCQ)
- (b) Apply suitable Interpolation formula to find f(1.02), when f(x) takes the following data:

х	1.00	1.10	1.20	1.30
f(x)	0.8415	0.8912	0.9320	0.9636

(CO3, Apply, HOCQ)

9+6

Rough

Paper Code: BS-M404

Paper Name: Numerical Methods

Time Allotted: 1 Hour

Full Marks: 30

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any five of the following:

 $5 \times 1 = 5$

- (i) If $\frac{dy}{dx} = x + y$ and y(1) = 0, then y(1.1) according to Euler's method [h = 0.1]
 - (a) 0.1
 - (b) 0.3
 - (c) 0.5
 - (d) 0.9
- (ii) If $\int_0^1 \frac{dx}{1+x^2} = 0.7854$ then the value of π , correct up to 3 significant figures, is
 - (a) 3.14
 - (b) 3.15
 - (c) 3.141
 - (d) 3.142
- (iii) An $n \times n$ matrix A is said to be diagonally dominant if

(a)
$$|a_{ij}| \le \sum_{\substack{i,j=1 \ i \ne i}}^{n} |a_{ij}|$$

(b)
$$|a_{ii}| < \sum_{\substack{i,j=1 \ i \neq i}}^{n} |a_{ij}|$$

(c)
$$|a_{ii}| > \sum_{\substack{l,j=1 \ i \neq j}}^{n} |a_{ij}|$$

- (d) none of these
- (iv) The iterative method to solve a system of equations is
 - (a) Gauss-elimination
 - (b) Gauss-Jordon
 - (c) Gauss-Seidel
 - (d) None of these
- (v) A boundary value problem is solved by
 - (a) Newton-Raphson method
 - (b) Finite difference method
 - (c) Predictor-corrector method
 - (d) Secant method
- (vi) The error involved in Euler's method is of
 - (a) O(h)
 - (b) $O(h^2)$
 - (c) $O(h^3)$
 - (d) $O(h^4)$

Group - B

(Short Answer Type Questions)

Answer any two of the following

 $2 \times 5 = 10$

(2.) Find y(1.1) using Runge-Kutta method of 4th order ,given that $\frac{dy}{dx} = y^2 + xy$, y(1) = 1

(CO-3/APPLY/IOCQ/5)

(3) Fit a curve of the form $y = ae^{bx}$ to the following data, considering x as an independent variable:

6					
X	2	4	6	8	10
V	4	11	30	82	223

(CO-4/APPLY/HOCQ/6)

(4) Solve by Gauss-Seidel method up to 2nd iteration of the following equations:

$$x + y + 54z = 110,27x + 6y - z = 85,6x + 15y + 2z = 72$$

(CO-3/APPLY/HOCQ/5)

Group - C

(Long Answer Type Questions)

Answer any one of the following

1×15=15

(5.) (a) Compute y(0.4) by Milne's Predictor-Corrector Method from the equation

$$\frac{dy}{dx} = 4yy(0) = 1, y(0.1) = 1.492, y(0.2) = 2.226, y(0.3) = 3.320$$

(CO-3/APPLY/HOCQ/6)

(b) Fit a curve of the form $y = ax + bx^2$ to the following data, considering x as an independent variable

x	1	2	3	4	5
ν	3	5	6	7	9

(CO-4/APPLY/IOCO/5

(c) Evaluate $\int_0^1 x(1+x)dx$ by taking 6 equal sub-intervals.

(CO-3/APPLY/IOCQ/4)

(6) (a) Solve the following system by matrix inversion method:

$$2x + 5y + 3z = 9.3x + y + 2z = 3.x + 2y - z = 6$$

(CO-3/APPLY/IOCQ/7)

(b) Using the finite difference method solve the boundary value problem: $\frac{d^2y}{dx^2} = y$ with y(0) = 0, y(2) = 3.63 taking h=0.5

(CO-3/APPLY/HOCQ/8)

Paper Code: BS-M404 Numerical Methods

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group - A

	(Multiple C	hoice Type Questio	ons)	
1. Choose the correct	alternatives for any ten of the	e following:		10×1=10
(i) The number of sign	nificant digits in 0.10378 is			
(a) 4	(b) 5 -	(c) 6	(d) 3	
(ii) First order forward	difference of a constant is			
(a) 0	(b) 1	(c) 2	(d) 3	
(iii) In interpolation, th	ne value of x lies	* ×		
(a) between smalle	est and larger value of x -	(b) outside the	range of max. and mir	n. values of x
(c) may be anythin	ng	(d) half of the s	mallest and largest va	lue of x
(iv) Lagrange's interp	olation formula deals with		1 51	
(a) equi-spaced ar		(b) unequi-space	ed arguments only	
(c) both (a) and (b) ((d) None of the	se	
(v) Evaluating $\int_a^b f(x)$	(x) dx, the error in Trapezoida	al rule In is of order		
(a) h^2	(b) h ³	(c) h^4	(d) h	
(vi) In Trapezoidal ru	le, if the interval of the inte	gration $\int_2^9 f(x) dx$ is	divided into equal sub	ointervals taking 8
ordinates, the length of		a -	2	
(a) 0.5	(b) 1	(c) 1.5	(d) 2	
(vii) A first order ordi	nary differential equation is	solved by		
(a) Runge-Kutta n	nethod	(b) Gauss elimi	nation method	
(c) Regula-Falsi n	nethod -	(d) Trapezoidal	rule	
	vergence of bisection method	d is		
(a) 1	(b) 1.62 -	(c) 2	(d) 3	

(ix) Regula-Falsi method is

(a) conditionally convergent

(b) always convergent

(c) non-convergent

(d) None of these

(x) Newton-Raphson method fails when

(a) f'(x) = 1

(b) f'(x) = 0

(c) f'(x) = -1

(d) f''(x) = 0

(xi) A matrix A can be factorized into lower and upper triangular matrices if all the principal minors of A are

(a) non-singular

(b) singular

(c) null

(d) None of these

(xii) Iterative method is convergent for $x = \phi(x)$ if

(a) $|\phi'(x)| = 1$

(b) $|\phi'(x)| > 1$

(c) $|\phi'(x)| < 1$

(d) None of these

Group - B

(Short Answer Type Questions)

Answer any three of the following

 $3 \times 5 = 15$

- 2. Calculate the value of $\int_{1.2}^{1.6} \left(x + \frac{1}{x}\right) dx$ correct upto 3 significant figures, by the Trapezoidal rule, taking 4 intervals
- 3. Compute y(0.4) from the equation $\frac{dy}{dx} = x y$, y(0) = 1, taking h = 0.2, by Euler's Method (correct to 3 decimal places).
 - 4. Find the mean and the standard deviation of the first n natural numbers.
 - 5. Solve the system of liner equation by using Gauss-Seidel method upto 2^{nd} iteration correct upto 4 decimal places: 5x 2y + z = -4, x + 6y 2z = -1, 3x + y + 5z = 13
 - 6. Fit a straight line to the following table, considering x as an independent variable: y = G + br

X	0	2	4	6	8
y	10	12	14	16	18

10+W

Group - C

(Long Answer Type Questions)

Answer any three of the following

 $3 \times 15 = 45$

7.(a) Solve the following system of equations by the LU factorization method:

$$2x - 6y + 8z = 24,5x + 4y - 3z = 2,3x + y + 2z = 1$$

(b) Solve the following system by the matrix inversion method:

$$2x + 5y + 3z = 9.3x + y + 2z = 3.x + 2y - z = 6$$

8+7

8. (a) The arithmetic mean calculated from the following frequency distribution is known to be 67.42 inches. Find the value of unknown frequency f_3

Height(in inches)	60 - 62	63 - 65	66 - 68	69 - 71	72 - 74
Frequency	15	54	f ₃	81	24

(b) Calculate the median and mode of the following frequency distribution:

Height(in inches)	56 - 60	61 - 65	66 – 70	71 – 75	76 - 80	
no of persons	7	25	43	28	7 .	217
	1+1	744		E	\$41.80	68 6+9=15

9. (a) Using Newton-Raphson method find the cube root of 17

(b) Find the root of the equation 3x - cosx - 1 = 0 that lies between 0 and 1 correct up to 3 decimal places using bisection method.

6+9=15

10.a) Find the missing term in the following table:

X	0	1	2 .	3	4	5
у	0	?	8	15	?	35

b) Find the positive root of the equation $x^3 - 3x + 1.06 = 0$, by Regula-Falsi method, up to 4th iteration correct up to 3 decimal places. 8+7=15

- 11.a) Find the polynomial by using Newton's divided difference formula f(-1) = 21, f(1) = 15, f(2) = 12, f(3) = 3
- b) Using Taylor's method to solve $\frac{dy}{dx} = -2y$ with y (0) = 1.
- c) Use Lagrange's interpolation formula to compute f(3) from the following data:

x: 1 2 4 5 6 f(x): 2 4 8 16 128

5+5+5=15

3-17

013-415+a-15+1/2+4a

0.0353