Causality and directed acyclic graphs

Get to know and have some intuition about

- Causality in philosophy (of science)
- Conditional independence relations
- Causal discovery algorithms
- Confounds and back doors

David Hume (1711-1776)

4 ●

:

$$r(3,5)$$
 $r(3,5|1)$ $r(3,5|2)$ $r(3,5|4)$ $r(3,5|1,2)$ ···

3 - 5

$$r(3,5)$$
 $r(3,5|1)$ $r(3,5|2)$ $r(3,5|4)$ $r(3,5|1,2)$ ···

3-5 TRUE

	r(3, 5)	r(3, 5 1)	r(3, 5 2)	r(3, 5 4)	r(3, 5 1, 2)	• • •
3 – 5	TRUE	TRUE	TRUE	TRUE	TRUE	

	r(3,3)	r(3,5 1)	r(3, 5 2)	r(3,5 4)	r(3,5 1,2)	•••
5	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE

There is no (set of) node(s) x such that $(3 \perp 5 \mid x)$ holds; and so connection 3-5 is TRUE

_

3 - 4

	r(3, 4)	r(3, 4 1)	r(3, 4 2)	r(3,4 5)	r(3,4 1,2)	• • •
3 – 4	FALSE	FALSE	FALSE			

	r(3,4)	r(3, 4 1)	r(3, 4 2)	r(3, 4 5)	r(3,4 1,2)	• • •
3 – 4	FALSE	FALSE	FALSE	TRUE		

	r(3,4)	r(3, 4 1)	r(3, 4 2)	r(3,4 5)	r(3,4 1,2)	
3 – 4	FALSE	FALSE	FALSE	TRUE	FALSE	

	r(3,4)	r(3, 4 1)	r(3, 4 2)	r(3, 4 5)	r(3,4 1,2)	• • •
3 – 4	FALSE	FALSE	FALSE	TRUE	FALSE	

No correlation between 3 and 4 and so no (direct) connection 3-4, but conditioning on 5 gives correlation r(3,4) and so a collider $3 \rightarrow 5 \leftarrow 4$.

.

r(1,4)	r(1,4 2)	r(1,4 3)	r(1,4 5)	r(1,4 3,5)

1 - 4

	r(1,4)	r(1,4 2)	r(1,4 3)	r(1,4 5)	r(1,4 3,5)
1 – 4	FALSE	FALSE	FALSE		

	r(1,4)	r(1,4 2)	r(1,4 3)	r(1,4 5)	r(1,4 3,5)
1 – 4	FALSE	FALSE	FALSE	TRUE	

	r(1,4)	r(1,4 2)	r(1,4 3)	r(1,4 5)	r(1,4 3,5)
1 – 4	FALSE	FALSE	FALSE	TRUE	

	r(1, 4)	r(1, 4 2)	r(1,4 3)	r(1,4 5)	r(1,4 3,5)
1 – 4	FALSE	FALSE	FALSE	TRUE	

There is no correlation between 1 and 4, and so no (direct) connection 1-4.

	r(1, 4)	r(1, 4 2)	r(1,4 3)	r(1,4 5)	r(1,4 3,5)
1 – 4	FALSE	FALSE	FALSE	TRUE	FALSE

There is no correlation between 1 and 4, and so no (direct) connection 1-4.

No collider since conditioning on 3 and 5 removes the correlation again.

IC-Algorithm Pearl (1988)

(

IC-Algorithm Pearl (1988)

Input \hat{P} a sampled distribution

IC-Algorithm Pearl (1988)

Input \hat{P} a sampled distribution Output some acyclic graph for \hat{P}

IC-Algorithm Pearl (1988)

Input \hat{P} a sampled distribution Output some acyclic graph for \hat{P}

1. For each pair a and b, look for $(a \perp b \mid S_{ab})$. If no such S_{ab} exists, then a and b are dependent.

(

IC-Algorithm Pearl (1988)

Input \hat{P} a sampled distribution Output some acyclic graph for \hat{P}

- 1. For each pair a and b, look for $(a \perp b \mid S_{ab})$. If no such S_{ab} exists, then a and b are dependent.
- 2. For each trio (a, b, c) such that a c b check if c belongs to S_{ab} . If so, then nothing. If c is not in S_{ab} then make a collider at c, i.e. $a \rightarrow c \leftarrow b$.

IC-Algorithm Pearl (1988)

Input \hat{P} a sampled distribution Output some acyclic graph for \hat{P}

- 1. For each pair a and b, look for $(a \perp b \mid S_{ab})$. If no such S_{ab} exists, then a and b are dependent.
- 2. For each trio (a, b, c) such that a c b check if c belongs to S_{ab} . If so, then nothing. If c is not in S_{ab} then make a collider at c, i.e. $a \rightarrow c \leftarrow b$.
- 3. Orient as many of the undirected edges as possible, subject to: (i) no new *v*-structures and (ii) no cycles.

IC-algorithm with multivariate normal (Gaussian) data

IC-algorithm with multivariate normal (Gaussian) data

For any X, Y, and Z that have a multivariate normal distribution, we have

IC-algorithm with multivariate normal (Gaussian) data

For any X, Y, and Z that have a multivariate normal distribution, we have

1. If *X* and *Y* are independent conditional on *Z* then they are conditionally uncorrelated, i.e. the partial correlation is 0.

IC-algorithm with multivariate normal (Gaussian) data

For any X, Y, and Z that have a multivariate normal distribution, we have

- 1. If *X* and *Y* are independent conditional on *Z* then they are conditionally uncorrelated, i.e. the partial correlation is 0.
- 2. If *X* and *Y* given *Z* have a partial correlation of 0, then they are conditionally independent.

$$\Leftrightarrow \rho(X, Y \mid Z), \dots$$

regression framework

,

regression framework

$$r(y, 3|1, 2, 4)$$

 $y-3$

regression framework

	r(y, 3 1, 2, 4)
y-3	TRUE

regression framework

	r(y, 3 1, 2, 4)
y-3	TRUE

False inference that 3 has influence on y

ç

regression framework

r(y, 3 1, 2, 4)
TRUE

False inference that 3 has influence on *y* Solution: Verify all combinations of partial correlations!

.