

DADOS e APRENDIZAGEM AUTOMÁTICA

Supervised Learning
Linear and Logistic Regression

MESTRADO (integrado) EM ENGENHARIA INFORMÁTICA

Contents

Linear models

- Characterized by the simplicity of calculation and analysis
- Linearity is defined in terms of functions with the properties:

$$f(x + y) = f(x) + f(y)$$
 and $f(ax) = af(x)$

- Used for classification (separation between classes) or regression
- Does not solve non-linear problems

Non-linear problems

Linear Regression

Aims to predict the value of an outcome, Y, based on the value of a predictor variable, X.

- Fit a straight line into a data set of observations;
- Use this line to predict unobserved values.

Linear regression models

Represent the relationship between **input variables** x_1 , ..., x_n (independent variables), and an **output variable** y (dependent variable).

Model (h) prediction given by (for the **i**-th example):

n – no. of attributes

θ – model parameters

General case: **regression** models

If n=1: linear regression

If n>=2: multiple linear regression

$$\hat{y}^{(i)} = h_{\theta}(x_1^{(i)}, \dots, x_n^{(i)})$$

$$\hat{y}^{(i)} = h_q(x^{(i)}) = Q_0 + \sum_{j=1}^n Q_j x_j^{(i)}$$

 θ_i – model parameters

Multiple linear regression

θ – model parameters

- Multiple regression is used to determine the effect of a number of independent variables, x_1 , x_2 , x_3 etc, on a single dependent variable, y
- The different x variables are combined in a linear way and each has its own regression coefficient (θ):

$$\hat{y}^{(i)} = \theta_0 + \sum_{j=1}^n \theta_j x_j^{(i)}$$
 Model prediction given by (for the i-th example)

• The θ parameters reflect the independent contribution of each independent variable, x, to the value of the dependent variable, y.

Linear Regression

Model (h):
$$\hat{y}^{(i)} = h_{\theta}(x^{(i)}) = \theta_0 + \sum_{j=0}^{n} \theta_j x_j^{(i)}$$

Linear Regression Models

How does it work?

Usually using "Error/loss (cost) function" and minimizing its value (minimize the squared-error between each point and the line)

Error/loss (cost) function: mean squares errores (MSE)

$$J_{q} = \frac{1}{2m} \mathop{a}_{i=1}^{m} (h_{q}(x^{(i)}) - y^{(i)})^{2}$$

J is a function of the model parameters θ_1 , ..., θ_n $\mathbf{h}_{\theta}(\mathbf{x^{(i)}})$ is the value predicted by the model, $\hat{\mathbf{y}}^{(i)}$ $\mathbf{y^{(i)}}$ is the real value

Objective: to identify the parameters of the model in order to minimize the value of J

```
#calcula o valor da função de custo (para todos os casos do dataset)
def costFunction(self):
    predictions = np.dot(self.X, self.theta) #produto escalar dos atributos pelos parametros
    J = error_sqe(self.predictions(),self.y) #vai buscar a média dos erros de cada caso
    return J
```

```
def error_sqe(predictions,y):
    m = predictions.shape[0]
    sqe = (predictions - y) ** 2
    res = np.sum(sqe) / (2*m)
    return res
```


Logistic Regression

Discrete dependent variable: classification problem

Logistic regression: uses regression models for binary classification by interpreting the model output

in order to extract a class

where $\frac{1}{1+e^{-\theta^T x}}$ is the sigmoid (logistic) function

The Model is given by applying the sigmoid to the linear regression function

Interpretation: p estimates the probability that y (output) is equal to 1 for example x

Sigmoid Function

- The Sigmoid (i.e. Logistic) function takes in any value and outputs it between [0-1];
- This results in a probability from [0-1] of belonging into a class.
- We can set a threshold point at 0.5, defining:
 - Based off this probability, we assign a class
 - Predicted results below this threshold results into a class: 0
 - Predicted results above result results into a class: 1

Logistic Regression: Multiple Classes

- Logistic regression can be applied to cases with more than two classes
- In this case, the strategy is to train a "binary" model for each class separately (considering the others as a single class)
- Each model estimates the probability that the example is of a given class
- When predicting new examples, each model is applied by choosing the class whose value predicted by the model is greater.

Logistic Regression: Error Function

Error function (for each example x):

$$\begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

If y = 1:

If the prediction is correct: error is zero

Otherwise, as the prediction gets closer to 0, error **tends to infinity**.

If y = 0:

If prediction is correct: error is zero

Otherwise, as the prediction gets closer to 1, error tends to infinity.

Parameter Estimation: Optimization

Knowing the model structure: parameter estimation is a **numerical optimization problem** – error function minimization

In the case of linear models, the **least squares method** can be used, which minimizes the error function (square of errors) or iterative method

Parameter Estimation: Least Squares Method for Linear Regression

Analytical method to determine optimal values of parameters that minimize **J** Algebraic method that involves solving a system of equations given by:

$$\frac{\partial}{\partial \theta_{i}} J(\theta) = 0, j = 1, ..., n \qquad q = (X^{T} X)^{-1} X^{T} y$$

Matricial version; X matrix includes examples + 1st collumn of 1's

The **computational complexity** when training a linear regression model using the least squares method is linear with respect to the number of instances and features.

Parameter Estimation: Gradient Descent for Linear Regression

J is the error, h is the model and x is the vector with the

Method that depends on whether the error function is differentiable Iterative method, which in each iteration changes the values of each of the parameters θ_i

For each θ_j the update rule is as follows:

$$Q_j := Q_j - \partial \frac{\P}{\P Q_j} J(Q)$$

$$Q_j := Q_j - \partial \frac{1}{m} \mathop{\mathring{a}}_{i=1}^m (h(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Simultaneous updates on all parameters

attributes, m is the number of instances The method starts the theta (parameters) with random values and improves gradually at each iteration, taking a small step at each iteration. The size of the step is called "learning rate (α)". To implement the gradient descent, we need to calculate how much the cost function will change if we change just a little bit of the parameters (theta). This is called the partial derivative. The derivative gives us the rate of change of a function at a given

point. When we have a variation equal to zero it means we have

reached the objective of the function.

def gradientDescent (self, iterations = 1000, alpha = 0.001): #cria o modelo usando gradiente - descendente m = self.X.shape[0] #numero de casos n = self.X.shape[1] #numero de atributos self.theta = np.zeros(n) #os parametros inicializam a 0 for its in range(iterations):

J = error_sqe(self.predictions(),self.y) #vai buscar a média dos erros de cada caso if its%100 == 0: print(f"Erro na iteração {its} : {J}") delta = self.X.T.dot(self.X.dot(self.theta) - self.y) self.theta -= (alpha/m * delta)

Parameter Estimation: Gradient Descent for Linear Regression

Parameter Estimation: Gradient Descent

The parameter α is called the **learning rate** and controls the "speed" of updating the parameters

Lower α values guarantee convergence but it may be slower

Higher α **values** can lead to **faster convergence**, but carry risks of divergence

Parameter Estimation: Gradient Descent vs. Analytic Method

Analytical method guarantees the optimal solution; GD may not converge

In the analytical method there are no parameters; GD may take time to converge

Analytical method can become slow with **very large n** ($n \times n$ **matrices** can become **intractable** for n>105)

More generic GD are applicable to other types of models

Parameter Estimation: Advanced Methods

In many cases, gradient descent is **too slow to converge** to be used in practice

Other more advanced numerical optimization methods can be used

Python example with the **fmin** function from package **optimize** (in this case, no derivatives needed). Other alternatives available in the same package

Algorithm	Many Instances (m)	Many Attributes (n)
Square Min.	Fast	Slow
Batch GD (all data at each iteration)	Lento	Fast
Stocastic GD (one instance at each iteration)	Fast	Fast
Mini Batch GD (random data at each iteration)	Fast	Fast

Overfitting in Logistic Regression: example

Underfitting:

insuficient complexity

g is a sigmoid function

"Adequate" complexity

 $+\theta_5x_1x_2$

Overfitting: excessive complexity

Solutions for Overfitting: Functional Models

Reduce the number of attributes (coefficients) used **Select** attributes "manually" by knowledge of the problem

Attribute selection algorithms

Regularization:

Keep all attributes but **try to reduce magnitude** of parameter values

Standardization and Normalization

Transformations in the data are often necessary for the learning algorithm to **work better** Gradient descent algorithms may **work worse** with variables with v**ery different scales** Several possible methods:

- Convert to mean 0 and standard deviation 1
- Convert to a [0,1] or [-1,1] range, setting minimum and maximum values

Left: Model Accuracy, without normalized data Right: Model Accuracy with normalized data

