

NAPOTKI ZA DELO OD DOMA								
Razred: 9. razred Predmet: MATEMATIKA Učitelj: Vesna Nadarevič		Ura: 104 / 128 (3. skupina)	Datum: 9. 4. 2020					
Učni sklop: FUNKCIJA		Učna enota: Odvisnost dveh količin, funkcija						

Danes, v zvezek, napišite nov naslov: FUNKCIJA

V tem poglavju bomo izvedeli kdaj sta dve količini med seboj odvisni; kako ponazorimo odvisnost dveh količin in kaj je funkcija.

Ker se v življenju pogosto srečamo s količinami, ki so med seboj odvisne, se spomnimo najprej nekaj primerov medsebojno odvisnih količin.

- Obseg kroga je odvisen od polmera kroga.
- Znesek plačila za nakup čokolade je odvisen od vrste čokolade in količine kupljene čokolade.

Verjetno se spomniš, da smo o tem govorili že pri premem sorazmerju.

Da bomo lažje razumeli kaj pomeni **funkcija** pa najprej premislimo kaj pomeni **NEODVISNA SPREMENLJIVKA**.

Nekaj primerov bom vnesla v tabelo, da si lažje predstavljate.

NEODVISNA SPREMENLJIVKA (jo lahko poljubno izberemo) Običajno označimo z	ODVISNA SPREMENLJIVKA (je odvisna od neodvisne spremenljivke) Običajno označimo z				
\boldsymbol{x}	y				
Dolžina stranice	Obseg kvadrata				
Količina bencina	Znesek na blagajni				
Hitrost s katero hodimo	Čas v katerem prehodimo določeno razdaljo				

Odvisnost med količinama lahko izražamo na različne načine. Oglejmo si, kako bi odvisnost prikazali na primeru **obsega kvadrata**.

1. način: PUŠČIČNI DIAGRAM

2. način: FUNKCIJSKI PREDPIS

$$f(x) = 4x$$

3. način: PREGLEDNICA

X	у
dolžina stranice	obseg kvadrata
	f(x)
2	8
7	28
10	40

Uporabljali bomo predvsem 3. in 4. način, katera pa sigurno že obvladate iz premega in obratnega sorazmerja ③.

4. način: GRAF

Naj povzamem bistvo...

Za začetek je pomembno, da prepoznaš oz. znaš zapisati funkcijski predpis.

Tako smo npr. za obseg kvadrata zapisali f(x) = 4x in ne o = 4a (čeprav nam da isti rezultat za izbrano dolžino stranice a).

Druga pomembna zadeva pa je, da znaš sestaviti tabelo za vrednosti x in izračunati vrednost funkcije za izbrani x.

Najbolje, da kar rešimo 1. nalogo na strani 192 ...

1. naloga (stran 192)

Za funkcijske predpise sestavi tabelo, za vrednosti x je od -4 do 5.

a)
$$f(x) = 3x - 5$$

х	-4	-3	-2	-1	0	1	2	3	4	5
y ali										
f(x)										

Za vsak x si napiši račun izven tabele in izračunaj f(x).

Najbolje, da zapis f(x)=3x-5 zapišeš tako $f(x)=3\cdot()-5$, nato pa v oklepaj vsakič vstaviš drug x.

$$x = 4$$

 $f(-4) = 3 \cdot (-4) - 5$
 $f(-4) = -17$

Ko izračunaš vneseš rezultat v tabelo...

x	-4	-3	-2	-1	0	1	2	3	4	5
y ali $f(x)$	-17									

In tako naprej, za vsak x posebej. Vem, da je zamudno ©.

$$f(-3) = 3 \cdot (-3) - 5$$
 $f(-2) = 3 \cdot (-2) - 5$ $f(-1) = 3 \cdot (-1) - 5$ $f(-3) = -14$ $f(-2) = -11$ $f(-1) = -8$

$$f(0) = 3 \cdot (0) - 5$$
 $f(1) = 3 \cdot (1) - 5$ $f(2) = 3 \cdot (2) - 5$ $f(2) = 1$

$$f(3) = 3 \cdot (3) - 5$$
 $f(4) = 3 \cdot (4) - 5$ $f(5) = 3 \cdot (5) - 5$ $f(3) = 4$ $f(5) = 10$

x	-4	-3	-2	-1	0	1	2	3	4	5
<i>y</i> ali <i>f</i> (<i>x</i>)	-17	-14	-11	-8	-5	-2	1	4	7	10

Zdaj pa samostojno, na isti način, v zvezek naredi 1. b in 1. č nalogo (stran 192).

To je to za danes ③.