RACHUNEK PRAWDOPODOBIEŃSTWA 1R LISTA ZADAŃ NR 2

- **1.** Niech $A \cup B \cup C = \Omega$, $\mathbb{P}(B) = 2\mathbb{P}(A)$, $\mathbb{P}(C) = 3\mathbb{P}(A)$, $\mathbb{P}(A \cap B) = \mathbb{P}(A \cap C) = \mathbb{P}(B \cap C)$. Pokaż, że $1/6 \leq \mathbb{P}(A) \leq 1/4$, przy czym oba ograniczenia są osiągalne.
- **2.** Rzucamy symetryczną monetą do chwili otrzymania orła. Zdefiniuj odpowiednią przestrzeń probabilistyczną. Jaka jest szansa, że liczba rzutów będzie parzysta? podzielna przez 3? podzielna przez m?
- **3.** 10 małżeństw usiadło losowo przy okrągłym stole. Oblicz prawdopodobieństwo, że żaden mąż nie siedzi przy swojej żonie.
- **4.** (*Kolekcjoner kuponów*) W sprzedaży są kupony N różnych typów. Wylosowanie każdego z nich jest jednakowo prawdopodobne. Oblicz prawdopodobieństwo, że kolekcjoner po zakupie n kuponów $(n \ge N)$ posiada ich komplet.
- 5. Na odcinku [0,1] umieszczono losowo punkty L i M. Obliczyć prawdopodobieństwo, że:
 - a) środek odcinka LM należy do [0, 1/3];
 - b) z L jest bliżej do M niż do zera.
- **6.** Z przedziału [0,1] wybrano losowo dwa punkty, które podzieliły go na trzy odcinki. Obliczyć prawdopodobieństwo, że z tych odcinków można skonstruować trójkąt.
- 7. Na nieskończoną szachownicę o boku a rzuca się monetę o średnicy 2r < a. Znaleźć prawdopodobieństwo, że
 - a) moneta znajdzie się całkowicie we wnętrzu jednego z pól;
 - b) moneta przetnie się z co najwyżej jednym bokiem szachownicy.
- 8. Igłę o długości l rzucono na podłogę z desek o szerokości $a \ge l$. Znajdź prawdopodobieństwo, że igła przetnie krawędź deski.
- 9. Z przedziału [0,1] wybrano losowo liczbę x. Znaleźć prawdopodobieństwo, że jest to liczba: wymierna, niewymierna, algebraiczna, przestępna.
- $\mathbf{10}^*$. Niech $A_1, \ldots, A_{2021} \in \mathcal{F}$ będą zbiorami o własności $\mathbb{P}[A_i] \geq 1/2$. Wykaż, że istnieje $\omega \in \Omega$ taka, że $\omega \in A_i$ dla przynajmniej 1011 wartości i.
- 11*. Niech (Ω, \mathcal{F}) będzie przestrzenią mierzalną. Uzasadnij, że σ -ciało \mathcal{F} nie może być nieskończoną przeliczalną rodziną zbiorów.
- 12^* . Oznaczmy przez \mathcal{B}_0 ciało składające się ze skończonych sum rozłącznych przedziałów (a,b] zawartych w odcinku (0,1]. Określmy na \mathcal{B}_0 funkcję P taką, że P(A)=1 lub 0 w zależności od tego, czy zbiór A zawiera przedział postaci $(1/2,1/2+\varepsilon]$ dla pewnego $\varepsilon>0$, czy też nie. Pokaż, że P jest miarą addytywną, ale nie przeliczalnie addytywną.
- ${\bf 13}^*.$ Na rodzinie wszystkich podzbiorów $\mathbb N$ określamy miarę probabilistyczną $\mathbb P_n$ wzorem

$$\mathbb{P}_n(A) = \frac{|\{m: \ 1 \le m \le n, m \in A\}|}{n}$$

Mówimy, że zbiór A ma gęstość

$$D(A) = \lim_{n} \mathbb{P}_n(A)$$

jeżeli istnieje powyższa granica. Niech $\mathcal D$ oznacza rodzinę zbiorów posiadających gęstość.

- a) Pokaż, że D jest skończenie addytywna na \mathcal{D} , ale nie jest przeliczalnie addytywna.
- b) Czy \mathcal{D} jest σ -ciałem?

- c) Wykaż, że jeżeli $x \in [0,1]$, to istnieje zbiór A taki, że D(A) = x.
- 14*. Niech Ω będzie przestrzenią przeliczalnych ciągów 0-1, tj. $\Omega = \{0,1\}^{\mathbb{N}}$. Dla $\omega \in \Omega$ oznaczmy przez ω_n wartość n-tej składowej. Dla ustalonego ciągu $u = (u_1, \dots, u_n) \in \{0,1\}^n$ niech

$$C_u = \{\omega : \ \omega_i = u_i; i = 1, \dots, n\}.$$

Zbiór C_u nazywamy cylindrem rzędu n. Każdemu takiemu zbiorowi przypisujemy miarę probabilistyczną $\mathbb P$ równą 2^{-n} . Oznaczmy przez $\mathcal F_0$ ciało składające się ze zbioru pustego oraz skończonych sum rozłącznych cylindrów. W naturalny sposób definiujemy $\mathbb P$ na $\mathcal F_0$.

- a) Pokaż, że miara \mathbb{P} jest przeliczalnie addytywna na \mathcal{F}_0 .
- b) Utożsamiając Ω z przedziałem (0,1] porównaj miarę $\mathbb P$ z miarą Lebesgue'a.
- 15*. Niech $\Omega=\mathbb{R}$ i niech $\mathcal F$ składa się ze wszystkich podzbiorów $A\subset\mathbb{R}$ takich, że jeden ze zbiorów A lub A^c jest przeliczalny. Ponadto zdefiniujmy

$$\mathbb{P}[A] = \left\{ \begin{array}{ll} 0, & \text{ jeżeli } A \text{ jest przeliczalny} \\ 1, & \text{ jeżeli } A^c \text{ jest przeliczalny.} \end{array} \right.$$

Pokaż, że $(\Omega, \mathcal{F}, \mathbb{P})$ jest przestrzenią probabilistyczną.