Scenario

Consider a processor with a pipeline of following four stages

- FI fetch instruction
- DI decode instruction
- FO calculate & fetch operands
- El execute instruction & write result

Questions Group A

Suppose the time consumed in these stages is $0.3\mu s$, $0.4\mu s$, $0.8\mu s$ and $0.3\mu s$ respectively.

- 1. How much is the instruction latency in this processor?
- Calculate speedup for running a 15 instruction program compared to a non pipelined processor. Show workings.
- 3. Use the pipeline table to identify any structural hazards. Briefly explain why those hazard(s) exist.

[2 + 4 + 4 marks]

Q1

Pipeline would wait for the slowest stage (0.8 μ s) before advancing. So latency is 0.8 \times 4 = 3.2 μ s.

Q2

Non-pipelined latency is $0.3+0.4+0.8+0.3=1.8\mu s$ So total program time is $15\times1.8=27\mu s$

Pipelined total time is $(4+(15-1))\times 0.8 = 14.4 \mu s$ Speedup = 27/14.4 = 1.88

Q3

FI	DI	FO	EI	
	FI	DI	FO	WR

El and FO stages can not run at the same time because El includes writing result (to registers/memory) and FO will need to read from the same. A resource conflict exists here which causes structural hazard.

Scenario

Consider a processor with a pipeline of following four stages

- FI fetch instruction
- DI decode instruction
- FO calculate & fetch operands
- El execute instruction & write result

Questions Group B

Suppose all stages consume the same time of $0.5\mu s$. There is a state transition delay of $0.1\mu s$.

- 1. How long should the clock cycle be for this processor, and why?
- Calculate throughput for running a 50 instruction program. Compare with throughput of non-pipelined version of same processor. Show workings.
- How long is the penalty (number of clock cycles) of one incorrect branch prediction? Elaborate your answer.
 [2 + 5 + 3 marks]

Q1

Pipeline would wait for each stage to complete and outputs transition to next stage before advancing. So, clock cycle is $0.5+0.1 = 0.6 \mu s$.

Q2

Non-pipelined latency is $0.5 \times 4 = 2\mu s$ (no transition delay) So, throughput = 0.5 instruction per μs

Pipelined total time is $(4+(50-1))\times0.6 = 31.8\mu$ s Throughput = 50/31.8 = 1.57 instruction per μ s

Q3

Incorrect prediction means an instruction already entered the pipeline and completed first three stages (FI, DO, FO). This instruction needs to be flushed from the pipeline and a new instruction is to be brought in.

So branch penalty is number of cycles of wasted work, which is <u>three</u> in this case.

Alternate explanation: Branch penalty is equal to differential between fetch and execute stages.