

多元线性回归

- 人的体重与身高、胸围
- 血压值与年龄、性别、劳动强度、饮食习惯、吸烟状况、家族史
- 糖尿病人的血糖与胰岛素、糖化血红蛋白、 血清总胆固醇、甘油三脂
- 射频治疗仪定向治疗脑肿瘤过程中,脑皮质的毁损半径与辐射的温度、与照射的时间

多元回归模型: 含两个以上解释变量的回归模型

多元线性回归模型:一个应变量与多个解释变量之间设定 的是线性关系

多元线性回归模型一般形式为:

多元线性回归模型的假设:

$$Y = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_k X_k + u$$

解释变量 X_i 是确定性变量,不是随机变量;解释变量之间互不相关,即无多重共线性。随机误差项不存在序列相关关系 随机误差项与解释变量之间不相关 随机误差项服从0均值、同方差的正态分布

多元模型的解析表达式:

$$Y = b_0 + b_1 X_1 + b_2 X_2 + \ldots + b_k X_k + \varepsilon$$

$$egin{cases} Y_1 = b_0 + b_1 X_{11} + b_2 X_{21} + \ Y_2 = b_0 + b_1 X_{12} + b_2 X_{22} + \ \dots & \dots & \dots \end{cases}$$

$$Y_n = b_0 + b_1 X_{1n} + b_2 X_{2n} + b_1 X_{2n} + b_2 X_{2n} + b_2$$

多元模型的矩阵表达式:

$$\begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} 1 & X_{11} & X_{21} & \cdots & X_{k1} \\ 1 & X_{12} & X_{22} & \cdots & X_{k2} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & X_{1n} & X_{2n} & \cdots & X_{kn} \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ \cdots \\ b_k \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

$$Y = XB + \varepsilon$$

完整课程请长按下方二维码

1.3 多元线性回归

参数值估计: 最小二乘估计

$$Q = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$= \sum_{i=1}^{n} (Y_i - (\hat{b}_0 + \hat{b}_1 X_{1i} + \dots + \hat{b}_k X_{ki}))^2$$

参数估计公式:

$$\hat{B} = (X^T X)^{-1} X^T Y$$

 $\left(\frac{\partial Q}{\partial \hat{b}_0} = 0\right)$

多元线性回归模型的检验

主要介绍:

拟合优度检验(判定系数)

回归方程的显著性检验(F一检验)

回归参数的显著性检验(t一检验)

拟合优度检验

目的:构造一个不含单位,可以相互比较,而且能直观判断拟合优劣的指标。

判定系数的定义: $R^2 = \frac{SSR}{SST}$

意义:判定系数越大,自变量对因变量的解释程度越高,自变量引起的变动占总变动的百分比高。观察点在回归直线附近越密集。

取值范围: 0-1

回归方程的显著性检验

检验的目的

检验Y与解释变量 x_1, x_2, \dots, x_k 之间的线

性关系是否显著。

检验的步骤

第一步,提出假设:

 $\{ \text{原假设: } \mathbf{H_0: b_1=b_2=.....b_k=0} \}$ 备择假设: $\mathbf{H_1: b_i}$ 不全为 $\mathbf{0}$ ($\mathbf{i=1, 2, ..., k}$)

第二步, 计算统计量:

$$F = \frac{SSR/k}{SSE/(n-k-1)} \sim F(k, n-k-1)$$

第三步,查表,得:
$$F_{\alpha} = F_{\alpha}(k, n-k-1)$$

第四步,做检验:

拒绝H₀, 回归方程显著

接受H₀, 回归方程不显著

回归系数的显著性检验

回归方程显著,并不意味着每个解释变量对因 变量Y的影响都重要,因此需要进行检验。

回归系数显著性的检验的步骤

第一步,提出假设:

「原假设:
$$\mathbf{H_0}$$
: $\mathbf{b_i} = \mathbf{0}$ ($\mathbf{i} = \mathbf{1}$,2,...... \mathbf{k})

原假设: H_0 : $b_i=0$ (i=1, 2,k) 备择假设: H_1 : $b_i\neq 0$ (i=1, 2,k)

第二步,构造并计算统计量:

$$T_i = \frac{\hat{b}_i}{s(\hat{b}_i)}$$
 $(i = 1, 2, \dots, k)$

第三步,查表得: $t_{\alpha/2}=t_{\alpha/2}(n-k-1)$

第四步,做检验:

例 某品种水稻糙米含镉量y(mg/kg)与地上部生

物量x1(10g/盆)及土壤含镉量x2(100mg/kg)的8组观测

值如表2.1。试建立多元线性回归模型。

x1	1.37	11.34	9.67	0.76	17.67	15.91	15.74	5.41
x2	9.08	1.89	3.06	10.2	0.05	0.73	1.03	6.25
y	4.93	1.86	2.33	5.78	0.06	0.43	0.87	3.86

```
/*代码以及结果的解释见教材*/
data ex;
input x1-x2 y@@;
cards;
proc reg;
model y=x1 x2;
run;
```

回归方程显著性检验:

由方差分析表可知,其F value=494.06,pr>F的值 <0.0001,远小于0.05,故拒绝原假设,接受备择假设,认为y1与x1,x2之间具有显著性的线性关系;

1.3 多元线性回归参数显著性检验:

Parameter Estimates								
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > [t]			
Intercept x1 x2	1 1 1	3.61051 -0.19828 0.20675	0.95915 0.05822 0.09769	3.76 -3.41 2.12	0.0131 0.0191 0.0879			

由参数估计 表可知,对自变量 x_2 检验t值分别为 t=2.12,Pr>|t|的值=0.0879,大于0.05,因此,拒绝原假设认为 x_2 的系数应为0,说明 x_2 的系数没有通过检验。为此,需要在程序中model y1=x1 x2中去掉 x_2

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t		
Intercept x1	1 1	5.62117 -0.31911	0.16580 0.01436	33.90 -22.23	<.0001 <.0001		

对常数检验t值分别为t=33.9、, \Pr |t|的值<0.0001,远小于0.05,说明截距项通过检验,估计值为5.62117,同理可知 x_1 的系数通过检验,估计值为-0.31911 回归方程: $y = -0.31911x_1 + 5.62117$

许多实际问题中可能还会出现某几个变量 的系数并没有通过检验,此时,可以在原程序中的 model y1=x1-x2中去掉没用通过的变量,直到所有的 系数均通过检验。或者使用逐步回归方法,让软件 自动保留通过检验的变量。