Lección 4: Distribuciones de probabilidad Módulo 2: Probabilidades y decisiones bajo incertidumbre

Magdalena Cornejo

Distribuciones

Definición

Una **distribución de probabilidad** es una función que asigna un probabilidad a cada posible valor de una variable aleatoria.

Vamos a ver dos tipos de distribuciones (las más usuales):

- Distribución Binomial
- Distribución Normal

Distribuciones

Los conceptos desarrollados anteriormente para las variables aleatorias discretas se extienden naturalmente a variables aleatorias continuas.

La función de densidad es un concepto similar a la función de probabilidades.

Figura: Función de probabilidad

Figura: Función de densidad

Ejemplo

Se lanzará una moneda tres veces, ¿cuál es la probabilidad de sacar exactamente una cara?

- (a) 0.125
- (b) 0.250
- (c) 0.333
- (d) 0.375
- (e) 0.500

- Llamemos H al evento de sacar cara y T al evento de sacar ceca.
- Vimos que hay 8 resultados posibles: HHH, HHT, HTH, THH, HTT, THT, TTH, TTT.
- Hay 3 resultados con exactamente una cara: HTT, THT y TTH.
- P(sólo 1 cara)=3/8=0.375

- Llamemos H al evento de sacar cara y T al evento de sacar ceca.
- Vimos que hay 8 resultados posibles: HHH, HHT, HTH, THH, HTT, THT, TTH, TTT.
- Hay 3 resultados con exactamente una cara: HTT, THT y TTH.
- P(sólo 1 cara)=3/8=0.375
- OK. Pero si te preguntan ¿cuál es la probabilidad de sacar una cara cuando se lanza 100 veces una moneda?

- Llamemos H al evento de sacar cara y T al evento de sacar ceca.
- Vimos que hay 8 resultados posibles: HHH, HHT, HTH, THH, HTT, THT, TTH, TTT.
- Hay 3 resultados con exactamente una cara: HTT, THT y TTH.
- P(sólo 1 cara)=3/8=0.375
- OK. Pero si te preguntan ¿cuál es la probabilidad de sacar una cara cuando se lanza 100 veces una moneda?

• Una forma más automática es usar la probabilidad binomial.

- Una forma más automática es usar la probabilidad binomial.
- Un experimento aleatorio arroja dos resultados posibles: **éxito** (con probabilidad p) o **fracaso** (con probabilidad 1 p).

- Una forma más automática es usar la probabilidad binomial.
- Un experimento aleatorio arroja dos resultados posibles: **éxito** (con probabilidad p) o **fracaso** (con probabilidad 1 p).
- Se llevan a cabo *n* repeticiones **independientes** del experimento.

- Una forma más automática es usar la probabilidad binomial.
- Un experimento aleatorio arroja dos resultados posibles: **éxito** (con probabilidad p) o **fracaso** (con probabilidad 1 p).
- Se llevan a cabo *n* repeticiones **independientes** del experimento.
- La distribución de éxitos X resultantes se conoce como distribución binomial:

$$P(X = x) = \binom{n}{x} p^{x} (1 - p)^{n - x}$$

donde $\binom{n}{x} = \frac{n!}{x!(n-x)!}$, se conoce como "combinatoria de n en x"

y $\mathit{n}! = 1 \times 2 \times 3 \times ... \times (\mathit{n}-1) \times \mathit{n}$, se conoce como "factorial de n" .

- E(X) = n.p y V(X) = n.p.(1-p)
- En Excel: DISTR.BINOM()

Ejemplo

(cualquier parecido con la realidad es pura coincidencia)

Un examen final consta de 10 preguntas multiple choice (con 4 opciones cada una) donde sólo una respuesta es correcta. Un alumno no estudió para el final y no sabe la respuesta de ninguna de las diez preguntas por lo que decide contestar al azar. ¿Cuál es la probabilidad de aprobar el examen (acertar 5 o más preguntas)? (Calcular en Excel)

- (a) 1%
- (b) 2.5%
- (c) 5%
- (d) 8%
- (e) 19%
- (f) 25%

Distribución Normal

- Es la distribución más común (de allí su nombre).
- Tiene forma de campana.
- Depende de dos parámetros: la media (μ) y la varianza (σ^2) .
- Notación: $X \sim N(\mu, \sigma^2)$ y se lee como "X sigue una distribución Normal con media μ y varianza σ^2 ".
- μ y σ^2 definirán la forma de la distribución.

Distribución Normal

• Si se cambia μ sin cambiar σ se produce un desplazamiento de la curva a lo largo del eje horizontal sin que cambie su dispersión.

Distribución Normal

En cambio, a mayor varianza (σ^2), la curva presenta mayor dispersión:

Función de Distribución Acumulada

• La función de distribución acumulada, F(x), es:

$$F(x) = P(X \le x)$$

Función de Distribución Acumulada

- Se puede usar la F(x) para calcular rangos de probabilidad.
- Por ejemplo:

$$P(a \le X \le b) = F(b) - F(a)$$

- Calcular dichas probabilidades puede ser muy tedioso (para cada μ y σ^2 posibles).
- Afortunadamente, los cálculos se facilitan a través del proceso de estandarización.

Definición

Si Z es una variable aleatoria normal con media 0 y varianza 1; esto es, $Z \sim N(0,1)$. Entonces Z se dice que sigue una **distribución normal estándar**.

El **proceso de estandarización** consiste en expresar cualquier variable aleatoria normal en términos de una variable aleatoria normal estándar.

Estandarización

Una variable $X \sim N(\mu, \sigma^2)$ se puede convertir en una $Z \sim N(0, 1)$ si se le sustrae su media y se la divide por su desvío estándar.

$$Z = \frac{X - \mu}{\sigma}$$
, donde $Z \sim N(0, 1)$

Distribución Normal Distribución Normal Estándar $Z = \frac{X - \mu}{\sigma}$ 0 $Z = \frac{X}{\sigma}$

Tabla de la Normal Estándar

- El proceso de estandarización permite que, al transformar $X \sim N(\mu, \sigma^2)$ en $Z \sim N(0, 1)$, podamos usar la **tabla de la distribución normal estándar acumulada**.
- Esta tabla nos arroja las probabilidades de que Z sea **menor o igual** a un valor dado z: $P(Z \le z) = F(z)$.
- ¡La ventaja de usar la tabla de la normal estándar es que alguien ya calculó las probabilidades!
- El archivo de Excel distribucion_normal.xls muestra la tabla de la distribución normal estándar.

Tabla de la Normal Estándar

DISTRIBUCION NORMAL ESTANDARIZADA									DISTRIBUCION NORMAL ESTANDARIZADA							
z	F(z)	z	F(z)	z	F(z)	z	F(z)	z	F(z)	z	F(z)	z	F(z)	z	F(z)	
-3.50	0.000	-2.91	0.002	-2.32	0.010	-1.73	0.042	-1.14	0.127	-0.55	0.291	0.04	0.516	0.63	0.736	
-3.49	0.000	-2.90	0.002	-2.31	0.010	-1.72	0.043	-1.13	0.129	-0.54	0.295	0.05	0.520	0.64	0.739	
-3.48	0.000	-2.89	0.002	-2.30	0.011	-1.71	0.044	-1.12	0.131	-0.53	0.298	0.06	0.524	0.65	0.742	
-3.47	0.000	-2.88	0.002	-2.29	0.011	-1.70	0.045	-1.11	0.133	-0.52	0.302	0.07	0.528	0.66	0.745	
-3.46	0.000	-2.87	0.002	-2.28	0.011	-1.69	0.046	-1.10	0.136	-0.51	0.305	0.08	0.532	0.67	0.749	
-3.45	0.000	-2.86	0.002	-2.27	0.012	-1.68	0.046	-1.09	0.138	-0.50	0.309	0.09	0.536	0.68	0.752	
-3.44	0.000	-2.85	0.002	-2.26	0.012	-1.67	0.047	-1.08	0.140	-0.49	0.312	0.10	0.540	0.69	0.755	
-3.43	0.000	-2.84	0.002	-2.25	0.012	-1.66	0.048	-1.07	0.142	-0.48	0.316	0.11	0.544	0.70	0.758	
-3.42	0.000	-2.83	0.002	-2.24	0.013	-1.65	0.049	-1.06	0.145	-0.47	0.319	0.12	0.548	0.71	0.761	
-3.41	0.000	-2.82	0.002	-2.23	0.013	-1.64	0.051	-1.05	0.147	-0.46	0.323	0.13	0.552	0.72	0.764	
-3.40	0.000	-2.81	0.002	-2.22	0.013	-1.63	0.052	-1.04	0.149	-0.45	0.326	0.14	0.556	0.73	0.767	
-3.39	0.000	-2.80	0.003	-2.21	0.014	-1.62	0.053	-1.03	0.152	-0.44	0.330	0.15	0.560	0.74	0.770	
-3.38	0.000	-2.79	0.003	-2.20	0.014	-1.61	0.054	-1.02	0.154	-0.43	0.334	0.16	0.564	0.75	0.773	
-3.37	0.000	-2.78	0.003	-2.19	0.014	-1.60	0.055	-1.01	0.156	-0.42	0.337	0.17	0.567	0.76	0.776	
-3.36	0.000	-2.77	0.003	-2.18	0.015	-1.59	0.056	-1.00	0.159	-0.41	0.341	0.18	0.571	0.77	0.779	
-3.35	0.000	-2.76	0.003	-2.17	0.015	-1.58	0.057	-0.99	0.161	-0.40	0.345	0.19	0.575	0.78	0.782	
-3.34	0.000	-2.75	0.003	-2.16	0.015	-1.57	0.058	-0.98	0.164	-0.39	0.348	0.20	0.579	0.79	0.785	
-3.33	0.000	-2.74	0.003	-2.15	0.016	-1.56	0.059	-0.97	0.166	-0.38	0.352	0.21	0.583	0.80	0.788	
-3.32	0.000	-2.73	0.003	-2.14	0.016	-1.55	0.061	-0.96	0.169	-0.37	0.356	0.22	0.587	0.81	0.791	
-3.31	0.000	-2.72	0.003	-2.13	0.017	-1.54	0.062	-0.95	0.171	-0.36	0.359	0.23	0.591	0.82	0.794	
-3.30	0.000	-2.71	0.003	-2.12	0.017	-1.53	0.063	-0.94	0.174	-0.35	0.363	0.24	0.595	0.83	0.797	
-3.29	0.001	-2.70	0.003	-2.11	0.017	-1.52	0.064	-0.93	0.176	-0.34	0.367	0.25	0.599	0.84	0.800	
-3.28	0.001	-2.69	0.004	-2.10	0.018	-1.51	0.066	-0.92	0.179	-0.33	0.371	0.26	0.603	0.85	0.802	
-3.27	0.001	-2.68	0.004	-2.09	0.018	-1.50	0.067	-0.91	0.181	-0.32	0.374	0.27	0.606	0.86	0.805	
-3.26	0.001	-2.67	0.004	-2.08	0.019	-1.49	0.068	-0.90	0.184	-0.31	0.378	0.28	0.610	0.87	0.808	
-3.25	0.001	-2.66	0.004	-2.07	0.019	-1.48	0.069	-0.89	0.187	-0.30	0.382	0.29	0.614	0.88	0.811	
-3.24	0.001	-2.65	0.004	-2.06	0.020	-1.47	0.071	-0.88	0.189	-0.29	0.386	0.30	0.618	0.89	0.813	
-3.23	0.001	-2.64	0.004	-2.05	0.020	-1.46	0.072	-0.87	0.192	-0.28	0.390	0.31	0.622	0.90	0.816	
-3.22	0.001	-2.63	0.004	-2.04	0.021	-1.45	0.074	-0.86	0.195	-0.27	0.394	0.32	0.626	0.91	0.819	
-3.21	0.001	-2.62	0.004	-2.03	0.021	-1.44	0.075	-0.85	0.198	-0.26	0.397	0.33	0.629	0.92	0.821	
2.20	0.001	2.01	0.005	2.02	0.022	1.42	0.076	0.04	0.200	0.25	0.401	0.24	0.633	0.92	0.024	

Dos tipos de problemas

Tipo 1. Encontrar una probabilidad para un valor dado x:

$$P(X < x) = ?$$

• En Excel: DISTR.NORM(), se indica la media y desvío de una Normal, se da un valor x hasta el se desea acumular probabilidad.

Tipo 2. Dada una probabilidad, encontrar para qué valor de la distribución Normal se cumple esa probabilidad:

$$P(X < ?) = p$$

 En Excel: DISTR.NORM.INV(), indicar media y desvío además del valor de probabilidad, y calcula el valor x hasta el cual se acumula dicha probabilidad.

Dos tipos de problemas

Ejemplo

X es una variable aleatoria que representa "la venta semanal de revistas en un kiosko de diarios y revistas". En promedio, un kiosko vende 100 revistas semanales con un desvío de 25. Asuma que las ventas siguen una distribución normal.

Tipo 1. ¿Cuál es la probabilidad de vender menos de 75 revistas?

Tipo 2. ¿Y si me dicen que quieren saber cuánto es lo máximo que puede llegar a vender un kiosko con 95% de probabilidad (es decir, el 95% de las veces)?

Dos tipos de problemas

Ejemplo

X es una variable aleatoria que representa "la venta semanal de revistas en un kiosko de diarios y revistas". En promedio, un kiosko vende 100 revistas semanales con un desvío de 25. Asuma que las ventas siguen una distribución normal.

Tipo 1. ¿Cuál es la probabilidad de vender menos de 75 revistas?

Tipo 2. ¿Y si me dicen que quieren saber cuánto es lo máximo que puede llegar a vender un kiosko con 95% de probabilidad (es decir, el 95% de las veces)?

Solución:

- Tipo 1: $P(X < 75) = ? \leftarrow = DISTR.NORM(75,100,25, VERDADERO)$
- Tipo 2: $P(X <?) = 0.95 \leftarrow = +DISTR.NORM.INV(0.95,100,25)$

• Es un método para medir riesgos en el mercado.

- Es un método para medir riesgos en el mercado.
- En 1990 el CEO de JP Morgan pidió el reporte 4:15 (en una página había que resumir todo el riesgo de la compañía a los 15 minutos que cerraba el mercado)

- Es un método para medir riesgos en el mercado.
- En 1990 el CEO de JP Morgan pidió el reporte 4:15 (en una página había que resumir todo el riesgo de la compañía a los 15 minutos que cerraba el mercado)
- En 1994 JP Morgan publica la metodología y le da difusión.

- Es un método para medir riesgos en el mercado.
- En 1990 el CEO de JP Morgan pidió el reporte 4:15 (en una página había que resumir todo el riesgo de la compañía a los 15 minutos que cerraba el mercado)
- En 1994 JP Morgan publica la metodología y le da difusión.
- El VaR es muy utilizado porque en una simple pregunta resume la idea del riesgo asociado: ¿Qué es lo peor que puede pasar?

- Es un método para medir riesgos en el mercado.
- En 1990 el CEO de JP Morgan pidió el reporte 4:15 (en una página había que resumir todo el riesgo de la compañía a los 15 minutos que cerraba el mercado)
- En 1994 JP Morgan publica la metodología y le da difusión.
- El VaR es muy utilizado porque en una simple pregunta resume la idea del riesgo asociado: ¿Qué es lo peor que puede pasar?
- Veremos cómo calcular el VaR usando la distribución normal.
- Ventajas:
 - Medida única de riesgo
 - Relativamente libre de modelo y supuestos
 - No depende de la aversión al riesgo
 - Fácil de explicar
 - Permite desviaciones del supuesto de normalidad

- Nos concentraremos en la cola izquierda (escenario negativo) de la distribución normal.
- Tenemos que decidir qué riesgo queremos trabajar (¿1%, 5%?)

Ejemplo

Las ventas diarias de mi empresa siguen una distribución normal con una media de 234 millones de pesos y un desvío de 128 millones de pesos. Calcular el VaR al 5%. ¿Cómo se interpreta?

- Nos concentraremos en la cola izquierda (escenario negativo) de la distribución normal.
- Tenemos que decidir qué riesgo queremos trabajar (¿1%, 5%?)

Ejemplo

Las ventas diarias de mi empresa siguen una distribución normal con una media de 234 millones de pesos y un desvío de 128 millones de pesos. Calcular el VaR al 5%. ¿Cómo se interpreta?

Respuesta: \$23,46 millones. ¡Es siempre un problema de Tipo 2! =DISTR.NORM.INV(0.05,234,128)