Rotazioni, riflessioni e proiezioni ortogonali nel piano.

Le rotazioni.

Fissiamo un punto O nel piano ρ , fissiamo un angolo α , e sia \overrightarrow{OX} un vettore geometrico applicato in O. Sia \overrightarrow{OY} il vettore applicato in O che si ottiene ruotando in senso antiorario il vettore \overrightarrow{OX} . Abbiamo così' definito un'applicazione:

$$f: \overrightarrow{OX} \in \mathcal{V}_{O,\rho} \to \overrightarrow{OY} \in \mathcal{V}_{O,\rho},$$

detta la rotazione di angolo α nel piano ρ .

Ora introduciamo una base $\{\overrightarrow{OE_1}, \overrightarrow{OE_2}\}$ per lo spazio $\mathcal{V}_{O,\rho}$ dei vettori geometrici del piano, formata da due vettori di lunghezza 1 ed ortogonali fra loro, e siano $\mathbf{x} = (x_1, x_2)^T$ le coordinate di \overrightarrow{OX} . Ci chiediamo come si esprimono le coordinate $\mathbf{y} = (y_1, y_2)^T$ di \overrightarrow{OY} in funzione di \mathbf{x} . A tale proposito, sia φ l'angolo formato dal vettore \overrightarrow{OX} rispetto all'asse $\overrightarrow{OE_1}$. Si ha

$$x_1 = l\cos\varphi, \quad x_2 = l\sin\varphi,$$

dove l denota la lunghezza di \overrightarrow{OX} , che e' anche la lunghezza di \overrightarrow{OY} . Poiche' l'angolo che \overrightarrow{OY} forma con l'asse $\overrightarrow{OE_1}$ e' $\varphi + \alpha$ segue anche che

$$y_1 = l\cos(\varphi + \alpha), \quad y_2 = l\sin(\varphi + \alpha),$$

da cui si deduce, tramite le formule di addizione e sottrazione, che

$$\mathbf{y} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \mathbf{x}.$$

Quindi possiamo riguardare la rotazione di un vettore come un'applicazione lineare, con matrice rappresentativa (riferita ad un sistema monometrico ortogonale del tipo $\{\overrightarrow{OE_1}, \overrightarrow{OE_2}\}\)$ data dalla matrice $\begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$, dove α e' l'angolo della rotazione.

Le riflessioni e le proiezioni ortogonali.

Fissiamo un punto O nel piano ρ , e sia r una retta per O. Sia \overrightarrow{OX} un vettore geometrico applicato in O. Sia h la retta del piano passante per X ortogonale ad r. Tale retta interseca r in un punto H. Sia Y il punto di h speculare di X rispetto alla retta r. Allora \overrightarrow{OY} si chiama la riflessione di \overrightarrow{OX} rispetto alla retta r, mentre \overrightarrow{OH} si chiama la proiezione ortogonale di \overrightarrow{OX} su r. Abbiamo cosi' definito due applicazioni:

$$\overrightarrow{OX} \in \mathcal{V}_{O,\rho} \to \overrightarrow{OY} \in \mathcal{V}_{O,\rho}, \quad \overrightarrow{OX} \in \mathcal{V}_{O,\rho} \to \overrightarrow{OH} \in \mathcal{V}_{O,\rho},$$

la prima detta la riflessione (o anche la simmetria ortogonale) di asse r nel piano ρ , e la seconda detta la proiezione ortogonale sulla retta r nel piano ρ .

Come nel caso delle rotazioni, introduciamo una base $\{\overrightarrow{OE_1}, \overrightarrow{OE_2}\}$ per lo spazio $\mathcal{V}_{O,\rho}$ dei vettori geometrici del piano, formata da due vettori di lunghezza 1 ed ortogonali fra loro, e siano $\mathbf{x} = (x_1, x_2)^T$ le coordinate di \overrightarrow{OX} . Ci chiediamo come si esprimono le coordinate $\mathbf{y} = (y_1, y_2)^T$ di \overrightarrow{OY} in funzione di \mathbf{x} . A tale proposito, sia α l'angolo formato dalla retta r rispetto all'asse $\overrightarrow{OE_1}$, e sia φ l'angolo formato dal vettore \overrightarrow{OX} rispetto all'asse $\overrightarrow{OE_1}$. Si ha

$$x_1 = l\cos\varphi, \quad x_2 = l\sin\varphi,$$

dove l denota la lunghezza di \overrightarrow{OX} , che e' anche la lunghezza di \overrightarrow{OY} . Poiche' l'angolo che \overrightarrow{OY} forma con l'asse $\overrightarrow{OE_1}$ e' $2\alpha - \varphi$ segue anche che

$$y_1 = l\cos(2\alpha - \varphi), \quad y_2 = l\sin(2\alpha - \varphi),$$

da cui si deduce, tramite le formule di addizione e sottrazione, che

$$\mathbf{y} = \begin{bmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{bmatrix} \mathbf{x}.$$

Quindi possiamo riguardare la riflessione di un vettore rispetto ad una retta come un'applicazione lineare, con matrice rappresentativa (riferita ad un sistema monometrico ortogonale del tipo $\{\overrightarrow{OE_1}, \overrightarrow{OE_2}\}$) data dalla matrice $\begin{bmatrix}\cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha\end{bmatrix}$, dove α e' l'angolo che l'asse della riflessione forma rispetto al vettore $\overrightarrow{OE_1}$.

Una descrizione analoga sussiste per la proiezione ortogonale. Denotate con \mathbf{z} le coordinate di \overrightarrow{OH} , si ha

$$\mathbf{z} = \begin{bmatrix} \cos^2 \alpha & \sin \alpha \cos \alpha \\ \sin \alpha \cos \alpha & \sin^2 \alpha \end{bmatrix} \mathbf{x}.$$

Infatti sia **u** un vettore di lunghezza 1 su r, per esempio il vettore di coordinate $(\cos \alpha, \sin \alpha)$. Allora il vettore \overrightarrow{OH} sara' del tipo $\overrightarrow{OH} = c\mathbf{u}$. Poiche' l'angolo che \overrightarrow{OX} forma con r e' $\varphi - \alpha$ allora $c = l\cos(\varphi - \alpha)$. Quindi $\mathbf{z} = l\cos(\varphi - \alpha)(\cos\alpha, \sin\alpha)$, da cui la formula precedente.