illusion Sewim 2 vol. 12,12. Discussion Example 设 V_1 为F上n维线性空间V的一个真子空间,且 $\dim V_1 = r$,证明: 若存在k个 n-1维子空间满足 U_1,\cdots,U_k 使得 $\bigcap_{i=1}^{\kappa} U_i = V_1$ 则 $k \geqslant n - r$ Notes: • F^n 上的真子空间一定可以看成某个线性方程组AX = O的解空间,其 中A不可逆 • 如何用 $V \cong F^n$ 给出一个更具体的构造? \leftrightarrow 将 V_1 看成线性方程组的解空间 另: 由V,为其3空间, 况V≅F", 中: V→F", 特α映着下的好,只证(V)可以 BTX=0 F3 \$ \$2\$\$ \$ \$4\$ n-1 F5\$, kp η_1 - η_{n-1} , if $\Lambda = (\eta_1, -1, \eta_{n-1})_{n \times n-1}$ $\Rightarrow A^TX=0$ F3 \$2\$\$ \$4\$ 7 | F5\$, $A \Rightarrow B^T \eta_1 = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) = 0 \Rightarrow 3$ $\eta_1 = 0$ olim (U Ui) > n-k

$$Try$$
後 $V = \{z \in \mathbb{C} \mid |z| = 1, z \neq -1\}$ 、 V 中两个数 z_1, z_2 的运算定义为 $z_1 \oplus z_2 = \frac{-1 + z_1 + z_2 + 3z_1z_2}{3 + z_1 + z_2 - z_1z_2}$ $k \oplus z = \frac{(1 - k) + (1 + k)z}{(1 + k) + (1 - k)z}$. 证明: (V, \oplus, \odot) 是实数域 \mathbb{E} 上 \mathbb{E} 的线性空间 $\mathbf{z} = \mathbf{a}$ \mathbf{b} \mathbf{c} \mathbf{c}

Example 设dim V = n, $\varphi \in \text{End}_F(V)$, 且 $\varphi^2 = \mathscr{O}$, 求证: 存在V的一组基 ξ_1, \dots, ξ_n 满足 $\varphi(\xi_1,\cdots,\xi_n)=(\xi_1,\cdots,\xi_n)\begin{pmatrix} O & E_r & O \\ O & O & O \end{pmatrix}.$ pf: XEP\$ 12 = 1 . r[A]=r, x2: A~ (0 & r 0) to A= P(Ero) a , P, a JZZ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon} r \circ \right) \otimes p p^{-1}$ $= p \left(\stackrel{\varepsilon}{\epsilon}$ $A=0 \Leftrightarrow \begin{pmatrix} \mathcal{E}_{r,0} \\ 0 \end{pmatrix} H \begin{pmatrix} \mathcal{E}_{r,0} \\ 0 \end{pmatrix} H =0 \Leftrightarrow \begin{pmatrix} \mathcal{E}_{r,0} \\ 0 \end{pmatrix} H \begin{pmatrix} \mathcal{E}_{r,0} \\ 0 \end{pmatrix} =0$ $\begin{array}{c|c} & & & \\ &$ ~ (o o o o) [7]

