# 1. Serie Trigonométrica de Fourier

## 1.1. Objetivo General

Representar y reconstruir señales de tiempo continuo y tiempo discreto a través del muestreo de una señal y procesar las señales como funciones matemáticas.

## 1.2. Objetivos Específicos

- Implementar el algoritmo para el cálculo de la Serie Trigonométrica de Fourier
- Reconstrucción de una señal periódica a partir de la identidad para la serie trigonométrica de Fourier.
- Identificación del Fenómeno de Gibss

#### 1.3 Material

- Computadora con software Matlab(R) instalado con la herramienta Simulink(R)
- Tarjeta de Desarrollo *Launchpad TIVA* de *Texas Instruments* (R)

#### 1.4. Desarrollo

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left[a_n cos(n\omega_0 t) + b_n sin(n\omega_0 t)\right]$$

$$a_0 = \frac{2}{T} \int_{-T/2}^{T/2} f(t) dt$$

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) cos(n\omega_0 t) dt$$

$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) sin(n\omega_0 t) dt$$

#### 1.4.1. Tren de Pulso

- 1. Calcula los coeficientes  $a_0$ ,  $a_n$  y  $b_n$ de la Serie Trigonométrica de Fourier para la siguiente señal periódica
- 2. Reconstruya el tren de pulsos para 5, 10, 20 términos. Identifique el fenómeno de Gibss



### 1.4.2. Señal Trapezoidal

1. Para la señal mostrada en la figura, reconstruya la señal trapezoidal. Considere los casos T=3,  $T=6\ {\rm y}\ T=9$ 



$$x_2(t) = \begin{cases} -t & -\frac{T}{3} \le t < \frac{T}{3} \\ t & 0 \le t < \frac{T}{3} \\ \frac{T}{3} & \frac{T}{3} \le t < \frac{2T}{3} \end{cases}$$

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left[ a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right]$$

$$a_0 = \frac{4T}{9}$$

$$a_n = \frac{T\left( -3 + 3\cos\left[\frac{2n\pi}{3}\right] + n\pi\sin\left[\frac{2n\pi}{3}\right] + n\pi\sin\left[\frac{4n\pi}{3}\right] \right)}{3n^2\pi^2}$$

$$b_n = \frac{T\left(\cos\left[\frac{2n\pi}{3}\right] - \cos\left[\frac{4n\pi}{3}\right] \right)}{3n\pi}$$

#### 1.4.3. Señal Exponencial

1. Para la señal mostrada en la figura, reconstruya la señal tipo exponencial. Considere los casos  $T=6,\ T=4.5$  y T=9



$$x_3(t) = \begin{cases} e^{-t} & -\frac{T}{2} \le t < 0 \\ e^t & 0 \le t < \frac{T}{2} \end{cases}$$

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left[ a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right]$$

$$a_0 = \frac{4\left(-1 + e^{T/2}\right)}{T}$$

$$a_n = \frac{4\left(-T + e^{T/2}(T\cos[n\pi] + 2n\pi\sin[n\pi])\right)}{4n^2\pi^2 + T^2}$$

$$b_n = 0$$

#### 1.4.4. Señal ECG

- 1. Realiza una propuesta para una representación matemática de una señal normal x(t) de ECG, mediante la aproximación de rectas y cosenos.
- 2. A través de la herramienta de matemáticas simbólicas de Matlab, calcula los coeficientes  $a_0$ ,  $a_n$  y  $b_n$  de la señal x(t)
- 3. Genera la reconstrucción de la señal de ECG a partir de la serie trigonométrica.