Political Science 209 - Fall 2018

Linear Regression

Florian Hollenbach 9th October 2018

Recall Correlation & Scatterplot

What is the correlation?

Recall the definition of correlation

Correlation (x,y) =
$$\frac{1}{N} \sum_{i=1}^{N} z$$
-score of $x_i \times z$ -score of y_i
Correlation (x,y) = $\frac{1}{N} \sum_{i=1}^{N} \frac{x_i - \bar{x}}{sd_x} \times \frac{y_i - \bar{y}}{sd_y}$

Correlations & Scatterplots/Data points

- 1. positive correlation → upward slope
- 2. negative correlation → downward slope
- 3. high correlation → tighter, close to a line
- 4. correlation cannot capture nonlinear relationship

Correlations & Scatterplots/Data points

Moving from Correlation to Linear Regression

Preview:

- linear regression allows us to create predictions
- linear regression specifies direction of relationship
- linear regression allows us to examine more than two variables at the same time (*statistical control*)

- regression has one dependent (y) and for now one independent
 (x) variable
- regression is a statistical method to estimate the linear relationship between variables

• goal of regression is to approximate the (linear) relationship between X and Y as best as possible

- goal of regression is to approximate the (linear) relationship between X and Y as best as possible
- regression is the mathematical model to draw best fitting line through cloud of points

Linear regression is the mathematical model to draw best fitting line through cloud of points

- regression line is an estimate of the (for now bivariate) relationship between x and y
- for each x we have a prediction of y: what would we expect y
 to be given the value of x?

Equation of a line?

Equation of a line?
$$y = mx + b$$

 \rightarrow b? m?

Equation of a line?

$$y = mx + b$$

 $b \rightarrow y\text{-intercept}$

 $\mathsf{m} \to \mathsf{slope}$

Equation of a line?

$$y = mx + b$$

$$\mathsf{b} \to \mathsf{y}\text{-}\mathsf{intercept}$$

$$\mathsf{m} \to \mathsf{slope}$$

regression equation:

$$Y = \alpha + \beta X + \epsilon$$

$$\rightarrow \alpha$$
? β ? ϵ ?

Equation of a line?

$$y = mx + b$$

 $b \rightarrow y$ -intercept

 $m \to slope$

regression equation:

$$Y = alpha + \beta X + \epsilon$$

 $\alpha \rightarrow \text{y-intercept}$

 $\beta \to \mathsf{slope}$

 $\epsilon o {\sf error}$

$$Y = 282.46 + -26.61X + \epsilon$$

- but, we don't know the equation that generates the data
- our regression line is an estimate, based on the collected data

- but, we don't know the equation that generates the data
- our regression line is an estimate, based on the collected data

ullet estimates are denoted with little hats: \hat{eta} and \hat{lpha}

- but, we don't know the equation that generates the data
- our regression line is an estimate, based on the collected data
- ullet estimates are denoted with little hats: \hat{eta} and \hat{lpha}
- ullet is an estimate of how good/bad our approximation is