

The LNM Institute of Information Technology

Department of Computer Science & Engineering

Cryptographic Algorithms (CSE3112) **End-term Examination**

Time: 3 hours(11.30.00-2.30PM)

Date:30/04/2019

Maximum Marks: 50

1. Suppose Alice signs on a m using DSA and sends the signed message to Bob over a public network. Let the adversary Eve sets $\theta = (SHA-I(m))^{-1} \mod q$, $\gamma = y^{\theta} \mod p$. Suppose the she can find $r, \mu \in \mathbb{Z}_p^*$, such that

$$((\alpha \gamma^r)^{\mu^{-1} \bmod Q} \bmod p \bmod q = r$$

Define $s = \mu$ SHA-I(m) mod q. Prove that she can mount a potential attack in this setting.

[7]

HINTS: (r, s) is valid signature on message m.

- 2. Let the message m_0 is being signed using ECDSA scheme. Where the message $m_0 \in \{0, 1\}^*$ is a bit string such that SHA- $\Pi(m_0) = 00...0$, i.e SHA- $\Pi(m_0) \equiv 0 \mod \phi$ in ECDSA. Prove that it is possible to forge the signature which would be a Total break.
- 3. Write Schmorr Signature Scheme and prove that signature verification works.

 $[3\frac{1}{2} + 3\frac{1}{2}]$

4. Suppose that Alice signs on a message m using ElGamal Signature Scheme. In order to save time in generating the random numbers k that are used to sign messages, Alice chooses tan initial value k_0 , and then signs the i^{th} message say m_i using $k_i = k_0 + 2i \mod p$, therefor $k_i = k_{i-1} + 2 \mod p$ for all $i \ge 1$. Suppose Bob observes two consecutive signed messages, say $(m_i, sig(m_i))$ and $(m_{i+1}, sig(m_{i+1}))$. Describe how Bob can easily compute Alice's private key a given this information, without solving an instance of Discrete Logarithm Problem.

5. (a) Write RSA Encryption scheme and its proof of correctness.

[4]

(b) Prove that it satisfies multiplicative property.

[4]

Let Bob intercepts a ciphertext intended for Alice while communicating over a public network and encrypted with Alice's public key e. Bob wants to obtains original message $m = c^d \mod n$. Bob chooses a random value r less than n and computes

> $Z = r^e \mod n$ $X = Zc \mod n$

 $t = r^{-1} \mod n$

Next Bob gets to authenticate X intercepting his own private key thereby decrypting X. Alice returns $Y = X^d \mod n$. Show that Bob can use the information now available to him to determine m. [7]

7. Write ElGamal Signature Scheme and justify that the randomly chosen k, $1 \le k \le p-2$ would be co-prime with p-1 in Signing algorithm. [7]

****END***