INFO 1998: Introduction to Machine Learning

Lecture 9: Clustering and Unsupervised Learning

INFO 1998: Introduction to Machine Learning

"If intelligence was a cake, unsupervised learning would be the cake, supervised learning would be the icing on the cake, and reinforcement learning would be the cherry on the cake."

Yan Lecun, Facebook Director of Al research

Recap: Supervised Learning

- The training data you feed into your algorithm includes desired solutions
- Two types you've seen so far: regressors and classifiers
- In both cases, there are definitive "answers" to learn from

Example 1: Regressor **Predicts value**

Example 2: Classifier **Predicts label**

Recap: Supervised Learning

Supervised learning algorithms we have covered so far:

- k-Nearest Neighbors
- Perceptron
- Linear Regression
- Logistic Regression
- Support Vector Machines
- Decision Trees and Random Forest

Regression

What's the main underlying limitation of supervised learning?

Today: Unsupervised Learning

- In unsupervised learning, the training data is unlabeled
- Algorithm tries to learn by itself

An Example: Clustering

Unsupervised Learning

Some types of unsupervised learning problems:

- Clustering
 k-Means, Hierarchical Cluster Analysis (HCA), Gaussian Mixture Models (GMMs), etc.
- Dimensionality Reduction
 Principal Component Analysis (PCA), Locally Linear Embedding (LLE)
- Association Rule Learning
 Apriori, Eclat, Market Basket Analysis
- ... More

Unsupervised Learning

Some types of unsupervised learning problems:

- 1 Clustering
 - k-Means, Hierarchical Cluster Analysis (HCA), Gaussian Mixture Models (GMMs), etc.
- Dimensionality Reduction
 Principal Component Analysis (PCA), Locally Linear F.
- Association Rule Learning
 Apriori, Eclat, Market Basket Analysis
- ... More

Cluster Analysis

Cluster Analysis

- Loose definition: Clusters have objects which are "similar in some way" (and "dissimilar to objects in other clusters)
- Clusters are latent variables
- Understanding clusters can:
 - Yield underlying trends in data
 - Supply useful parameters for predictive analysis
 - Challenge boundaries for pre-defined classes and variables

Why Cluster Analysis?

Real life example: **Recommender Systems**

Running Example: Recommender Systems

Use 1: Collaborative Filtering

- "People similar to you also liked X"
- Use other's rating to suggest content

Pros

If cluster behavior is clear, can yield good insights

Cons

Computationally expensive

Can lead to dominance of certain groups in predictions

Running Example: Recommend MOVIES

	Amy	Jef	Mike	Chris	Ken
The Piano	-	-	+		+
Pulp Fiction	_	+	+	-	+
Clueless	+		-	+	-
Cliffhanger	-	-	+	-	+
Fargo	-	+	+	-	+

Running Example: Recommender Systems

Use 2: Content filtering

- "Content similar to what YOU are viewing"
- Use user's watch history to suggest content

Pros

Recommendations made by learner are intuitive

Scalable

Cons

Limited in scope and applicability

Another Example: Cambridge Analytica

- Uses Facebook profiles to build psychological profiles, then use traits for target advertising
- Ex. has personality test measuring openness, conscientiousness, extroversion, agreeableness and neuroticism -> different types of ads

How do we actually perform this "cluster analysis"?

Popular Clustering Algorithms

Hierarchical Cluster Analysis (HCA)

k-Means Clustering Gaussian Mixture Models (GMMs)

Defining 'Similarity'

- How do we calculate proximity of different datapoints?
- Euclidean distance:

$$E(x,y) = \sqrt{\sum_{i=0}^{n} (x_i - y_i)^2}$$

- Other distance measures:
 - Squared euclidean distance, manhattan distance

Algorithm 1: Hierarchical Clustering

Two types:

- Agglomerative Clustering
 - Creates a tree of increasingly large clusters (Bottom-up)
- Divisive Hierarchical Clustering
 - Creates a tree of increasingly small clusters (Top-down)

Agglomerative Clustering Algorithm

- Steps:
 - Start with each point in its own cluster
 - Unite adjacent clusters together
 - Repeat
- Creates a tree of increasingly large clusters

Agglomerative Clustering Algorithm

How do we visualize clustering? Using dendrograms

- Each width represents distance between clusters before joining
- Useful for estimating how many clusters you have

Demo 1

Popular Clustering Algorithms

Hierarchical Cluster Analysis (HCA)

k-Means Clustering Gaussian Mixture Models (GMMs)

Algorithm 2: k-Means Clustering

Input parameter: k

- Starts with k random centroids
- Cluster points by calculating distance for each point from centroids
- Take average of clustered points
- Use as new centroids
- Repeat until convergence

Algorithm 2: k-Means Clustering

- A greedy algorithm
- Disadvantages:
 - Initial means are randomly selected which can cause suboptimal partitions
 Possible Solution: Try a number of different starting points
 - Depends on the value of k

Demo 2

Coming Up

- Assignment 9: Due at 5:30pm on May 6th, 2020
- Last Lecture: Real-world applications of machine learning (May 6th, 2020)
- Final Project Proposal Feedback Released
- Final Project: Due on May 13th, 2020

