

Lecture#4:

[Reminder] Micro-lithography

The Four Components of Lithographic Image Formation

Photolithography (2): Nanolithography

- Illuminating actinic light
- Reticle
- Lens
- Photoresist

<Points to consider for nanolithography>

- The edge of the feature is not well defined.
- Even if the feature could be printed, linewidth control becomes a problem.
- If slope becomes too degraded, imaging becomes impossible.

General Image Formation (1) - Theory (Ideal)

- Diffraction orders can be recombined, as they are coherent, since they originate from the same point source.
- If the projection lens of a lithography system has an NA that is large enough to capture only the "0-order beam" no pattern is formed.

General Image Formation (2) - Theory (Ideal)

Photolithography (2): Nanolithography

$$\sin \alpha_n \downarrow = n\lambda/P \uparrow$$

Large pitch \rightarrow small α Easy image formation, as many diffraction orders are captured by NA

$$\sin \alpha_n \uparrow = n\lambda/P \downarrow$$

Small pitch \rightarrow large α

Image formation requires at least 2 orders to be captured (e.g. 0 and ± 1).

Larger NA can help capturing more orders.

- If at least one additional beam can be captured, after passing through lens and arriving at the wafer surface, the two beams will interference and produce a pattern.
 - => The more beams a lens can capture, the more closely will the images resemble mask features.
- But, beyond a minimum pitch, a lens with a given λ and NA will not be able to image a grating pattern at all.

General Image Formation (3) - Real Lithographic System

Photolithography (2): Nanolithography

- Real source is only partial coherent.

General Image Formation (4) — Real Lithographic System

Photolithography (2): Nanolithography

FOCAL POINT

 $NA = Numerical Aperture = n \cdot sin \theta$ where θ is the collection angle of the lens and n is the index of refraction of the medium light passes through $(n_{air}=1)$

Practical resolution limit for half-pitch: (spatial resolution)

$$R_{H.P.} = \frac{P}{2} = k_1 \frac{\lambda}{NA}$$

Process para. $k_1 > 0.25$

<Three key parameters for improving resolution>

- Lower K₁
- Shorter wavelength
- Higher NA (lager: more expensive lenses, fundamentally limited by geometry: $\sin \theta < 1$)

Low K₁ is Impassible

- Unlike λ and NA, there is no "K₁ knob" you can turn to increase resolution
 - K₁ is simply NA x R_{H.P} / λ
 - For a fixed λ and NA, if you try to print smaller features, you are effectively working at lower K₁.

- As K₁ shrinks, the aerial image becomes worse
 - Low K₁ means trying to print good resist images with worse aerial image.
 - Higher probability of CD variation leading to shorts, breaks.

Higher NA Has Limitation

Photolithography (2): Nanolithography

Lens complexity (193 nm)

- Increasing NA
 - Lens design and fabrication now allow NA near 1 (~0.93)
 - There is no room left (fundamentally limited by geometry: $\sin \theta < 1$)
 - Lens increases in size and cost

Immersion for Higher NA

[Note] Production Lithography System

- Current Status for 14 nm node
 - Unchanged in ~ 9 years
 - 193 nm Step & Scan Exposure
 - Chemically-Amplified Resist
 - 300-mm Silicon Wafer Substrates
 - NA= 1.35
 - (Immersion Lithography)
 - Resolution:
 - ~ λ/3 λ/4
 - Throughput:
 - 150-200 wafers/hour
 - Leading edge fabs running "14 nm" processes, heading to "10 nm"
 - Development underway for 7 nm node

Resolution Limit

Photolithography (2): Nanolithography

Transitions in optical lithographic technologies

Data from WikiChip (https://en.wikichip.org/wiki/WikiChip).

What is EUV Lithography?

Photolithography (2): Nanolithography

EUV lithography

- **EUV (Extreme Ultraviolet) lithography** uses an EUV light of the extremely short wavelength of 13.5 nm.
- It allows exposure of fine circuit patterns with a half-pitch below 20 nm that cannot be exposed by the conventional optical lithography using an ArF excimer laser (193 nm).

- Visible is 400 700nm (1.7 to 3eV)
- UV down to about 170 nm (~7eV)
- EUV lithography, it is at ~13.5nm (92eV)

Patterning Racing in Industry

History

Photolithography (2): Nanolithography

EUV lithography

- First studied by Kinoshita (currently with University of Hyogo) and others from NTT in Japan.
- Almost simultaneously, in the US EUV lithography was beginning to be studied at the Bell Laboratories and continued to be researched at the National Institute in the '90s.
 - => under development since the 1990s when it was called projection X-ray Lithography
- In 1997, the EUV Limited Liability Company (EUVLLC) was established to start extensive research on the EUV lithography.
 - => extensive research was started in the US, Europe and Japan.
- Carl Zeiss and ASML have been leading and aggressively working on development of EUV lithography tools.

Comparison

Photolithography (2): Nanolithography

DUV (193 nm) vs EUV (13.5 nm)

ArFi (193nm)	EUV (13.5nm)
Transmission optics (lenses)	Reflection optics (Bragg mirrors)
Excimer laser source	Laser produced plasma source (LPP)
Immersion (NA _{water} =1.33)	Vacuum (NA= 0.33)

ASML EUV Lithographic System

Module 1: EUV Source (1)

Module 1: EUV Source (2)

Photolithography (2): Nanolithography

How to generate EUV source (Movie)		

https://www.youtube.com/watch?v=NHSR6AHNiDs

Module 2: Reflective Mask

Module 3: Beam Delivery & Scanning

Summary

