

What is claimed is:

1. A method for performing autoconvergence, comprising:
2. receiving an image having a first aspect ratio and a plurality of sides;
3. displaying said image on a display having a second aspect ratio and at least one
4. sensor corresponding to each side of said image;
5. moving said image so that each sensor can detect said corresponding side of
6. said image.

1. 2. The method of claim 1, wherein said first aspect ratio is a 16:9 aspect ratio and
2. said second aspect ratio is a 4:3 aspect ratio.

1. 3. The method of claim 1, wherein said first aspect ratio is a 4:3 aspect ratio and
2. said second aspect ratio is a 16:9 aspect ratio.

1. The method of claim 1, wherein said moving comprises:
2. shifting said image from an initial position towards a first sensor until said first
3. sensor can detect a first side of said image;
4. shifting said image towards a second sensor until said second sensor can detect
5. a second side of said image; and
6. shifting said image to said initial position.

5. The method of claim 4, wherein shifting said image comprises:
measuring a first vertical height and a horizontal width for said display;
defining a digital step for said display;
determining a distance between said side and said sensor;
determining a number of digital steps corresponding to said distance; and
shifting said image said number of digital steps.

6. The method of claim 1, wherein said moving comprises:
stretching a first side and a second side of said image from an initial size until
a first sensor can detect said first side and a second sensor can detect said second side;
and
reducing said stretched image to said initial size.

7. The method of claim 6, wherein stretching said image comprises:
measuring a first vertical height and a horizontal width for said display;
defining a digital step for said display;
determining a distance between each side and each sensor;
determining a number of digital steps corresponding to said distance; and
stretching said image said number of digital steps.

8. The method of claim 2, wherein said image has a top side, a bottom side, a left
side and a right side, and said display has a top sensor, a bottom sensor, a left
sensor and a right sensor, with said moving comprising moving said image so
that said top sensor can detect said top side, and said bottom sensor can detect
said bottom side.

1 9. The method of claim 2, wherein said image has a top side, a bottom side, a left
2 side and a right side, and said display has a top sensor, a bottom sensor, a left
3 sensor and a right sensor, with said moving comprising moving said image so
4 that said left sensor can detect said left side, and said right sensor can detect
5 said right side.

1 10. A machine-readable medium whose contents cause a computer system to
2 perform autoconvergence by performing the steps of:
3 receiving an image having a first aspect ratio and a plurality of sides;
4 displaying said image on a display having a second aspect ratio and at least one
5 sensor corresponding to each side of said image;
6 moving said image so that each sensor can detect said corresponding side of
7 said image.

1 11. The machine-readable medium of claim 10, wherein said first aspect ratio is a
2 16:9 aspect ratio and said second aspect ratio is a 4:3 aspect ratio.

1 12. The machine-readable medium of claim 10, wherein said first aspect ratio is a
2 4:3 aspect ratio and said second aspect ratio is a 16:9 aspect ratio.

1 13. The machine-readable medium of claim 10, wherein said moving comprises:
2 shifting said image from an initial position towards a first sensor until said first
3 sensor can detect a first side of said image;
4 shifting said image towards a second sensor until said second sensor can detect
5 a second side of said image; and
6 shifting said image to said initial position.

- 1 14. The machine-readable medium of claim 13, wherein shifting said image
2 comprises:
3 measuring a first vertical height and a horizontal width for said display;
4 defining a digital step for said display;
5 determining a distance between said side and said sensor;
6 determining a number of digital steps corresponding to said distance; and
7 shifting said image said number of digital steps.
- 1 15. The machine-readable medium of claim 10, wherein said moving comprises:
2 stretching a first side and a second side of said image from an initial size until
3 a first sensor can detect said first side and a second sensor can detect said second side;
4 and
5 reducing said stretched image to said initial size.
- 1 16. The machine-readable medium of claim 15, wherein stretching said image
2 comprises:
3 measuring a first vertical height and a horizontal width for said display;
4 defining a digital step for said display;
5 determining a distance between each side and each sensor;
6 determining a number of digital steps corresponding to said distance; and
7 stretching said image said number of digital steps.
- 1 17. The machine-readable medium of claim 11, wherein said image has a top side,
2 a bottom side, a left side and a right side, and said display has a top sensor, a
3 bottom sensor, a left sensor and a right sensor, with said moving comprising
4 moving said image so that said top sensor can detect said top side, and said
5 bottom sensor can detect said bottom side.

1 18. The machine-readable medium of claim 11, wherein said image has a top side,
2 a bottom side, a left side and a right side, and said display has a top sensor, a
3 bottom sensor, a left sensor and a right sensor, with said moving comprising
4 moving said image so that said left sensor can detect said left side, and said
5 right sensor can detect said right side.

1 19. An apparatus to perform autoconvergence, comprising:
2 a video receiver to receive a video signal representing an image having a first
3 aspect ratio;
4 a display connected to said video receiver to display said image, said display
5 having a second aspect ratio and at least one sensor; and
6 an image adjustor connected to said video receiver and said display to adjust
7 said displayed image on said display for said at least one sensor to detect said image.

1 20. The apparatus of claim 19, wherein said first aspect ratio is a 16:9 aspect ratio
2 and said second aspect ratio is a 4:3 aspect ratio.

1 21. The apparatus of claim 19, wherein said first aspect ratio is a 4:3 aspect ratio
2 and said second aspect ratio is a 16:9 aspect ratio.