Distributed Machine Learning Efficient DL'23, Episode II

Yandex Research

Зачем это всё?

Зачем это всё?

BERT-Large Training Times on GPUs

Time	System	Number of Nodes	Number of V100 GPUs
47 min	DGX SuperPOD	92 x DGX-2H	1,472
67 min	DGX SuperPOD	64 x DGX-2H	1,024
236 min	DGX SuperPOD	16 x DGX-2H	256

(single V100 – **over 2 weeks**)

Зачем это всё?

BERT-Large Training Times on GPUs

Time	System	Number of Nodes	Number of V100 GPUs
47 min	DGX SuperPOD	92 x DGX-2H	1,472
67 min	DGX SuperPOD	64 x DGX-2H	1,024
236 min	DGX SuperPOD	16 x DGX-2H	256

(single V100 – **over 2 weeks**)

Зачем мы тут?

Заставить много железяк вместе учить одну модель

Зачем мы тут?

Заставить много железяк вместе учить одну модель

понять общие подходы

закодить своими руками

на python / pytorch

lectures 4,5,6

4) Distributed machine learning Embeddings or log.regression with tons of training data

lectures 4,5,6

- 4) Distributed machine learning Embeddings or log.regression with tons of training data
- 5) Data-parallel deep learning

 Train BERT-base on wikipedia in 20 minutes or less

lectures 4,5,6

- 4) Distributed machine learning Embeddings or log.regression with tons of training data
- 5) Data-parallel deep learning

 Train BERT-base on wikipedia in 20 minutes or less
- 6) Model-parallel deep learning Fine-tune and deploy models with 100B parameters

lectures 4,5,6

- 4) Distributed machine learning Embeddings or log.regression with tons of training data
- 5) Data-parallel deep learning

 Train BERT-base on wikipedia in 20 minutes or less
- 6) Model-parallel deep learning Fine-tune and deploy models with 100B parameters

like OPT-175B, BLOOM-176B, YALM, GLM, Galactica

lectures 4,5,6

4) Distributed machine learning Embeddings or log.regression with tons of training data

Today: learn the basics behind it all

Example problem: word embeddings

semantic: $v(king) - v(man) + v(woman) \approx v(queen)$

syntactic: $v(kings) - v(king) + v(queen) \approx v(queens)$

Example problem: word embeddings

This is an example problem, don't focus on NLP too much computationally similar: large-scale LogReg, SVD, GBDT

Image source: Lena's blog, Ruder's blog

Co-occurence matrix

Context:

 surrounding words in a L-sized window

Matrix element:

 N(w, c) – number of times word w appears in context c

2-sized window for cat

... I saw a cute grey cat playing in the garden ...

contexts for cat Slide source: Lena's blog

Note: in our case, N is symmetric!

GloVe

$$L = \sum_{i \neq j} w(N(i,j)) \cdot (\langle \vec{v}_i, \vec{v}_j \rangle + b_i + b_j - \log N(i,j))^2$$

GloVe

$$L = \sum_{i \neq j} w(N(i,j)) \cdot (\langle \vec{v}_i, \vec{v}_j \rangle + b_i + b_j - \log N(i,j))^2$$

Weighting function to:

- penalize rare events
- not to over-weight frequent events

 $(x/x_{max})^{\alpha} \text{ if } x < x_{max},$ $1 \qquad \text{otherwise.}$

 $\alpha = 0.75$, $x_{max} = 100$

Slide source: Lena's blog

GloVe

$$L = \sum_{i \neq j} w(N(i,j)) \cdot (\langle \vec{v}_i, \vec{v}_j \rangle + b_i + b_j - \log N(i,j))^2$$

Learn more: lena-voita.github.io/nlp_course/word_embeddings.html

So how do we train 'em?

Trainable parameters:

Trainable parameters:

How do we go faster with 8 CPU cores?

Trainable parameters:

[let's formalize your ideas]

- Runs some code
- Has some memory
- No one else can access your memory

- Runs some code
- Has some memory
- No one else can access your memory

- Runs some code
- Has some memory
- No one else can access your memory*
- * not if you use shared memory

- Runs some code
- Has some memory
- No one else can access your memory*†
- * not if you use shared memory
- [†] superuser can still do that (os-dependent)

- Runs some code
- Has some memory
- No one else can access your memory*†‡
- * not if you use shared memory
- [†] superuser can still do that (os-dependent)
- [‡] attacker can do that through spectre/meltdown/etc

Process:

- Runs some code
- Has some memory
- No one else should access your memory*^{†‡}

*^{†‡} – not relevant for this course

Process:

- Runs some code
- Has some memory
- No one else should access your memory*†‡

*^{†‡} – not relevant for this course

Q: How do we make processes work together?

Rules: Channel / Pipe

Process A:

Channel (pipe):

- Communication in O(message size)
- Asynchronous read/write

MP Rules

Channel (pipe):

- Communication in O(message size)
- Asynchronous read/write

Details are (not) important

Operation parallelism

run algorithm in parallel without changing the math

Operation parallelism

run algorithm in parallel without changing the math model weights → Compute $\langle v_i, v_j \rangle$ → +b → L → **Update** CPU1 batch CPU2 CPU3 CPU4

Operation parallelism

run algorithm in parallel without changing the math model weights → Compute $\langle v_i, v_j \rangle$ → +b → L → **Update** CPU1 batch CPU2 CPU3 CPU4

"Data parallelism"

Each process runs **full** model on **some** samples

"Data parallelism"

Each process runs **full** model on **some** samples

Q: Is it guaranteed to be faster?

Q: Is it guaranteed to be faster?

No, sending data may take longer than computing

Q: any other way to compute <vi, vj> in parallel?

Q: do we have to send params from P1 each time?

Optimization: each process can update it's own params locally instead of receiving them from P1

Summary: operation parallelism

Data-parallel: one process applies all model on partial data

Model-parallel: one process applies partial model on all data

Which one is better..
for word2vec?
In general?

Summary: operation parallelism

Data-parallel:

one process applies all model on **partial data** best for smaller model, more computations

Model-parallel: one process applies partial model on all data best for larger model, fewer computations

Which one is better..
for word2vec?
In general?

Summary: operation parallelism

Ecли time() < 19:00, тут можно поговорить про бустинг. и-или сделать перерыв

Operation parallelism

More processes = more overhead

- waiting for each other
- sending data over the network
- performance fluctuations

Eventually adding more threads will no longer boost performance

Operation parallelism

More processes = more overhead

- waiting for each other
- sending data over the network
- performance fluctuations

Eventually adding more threads will no longer boost performance

How do we push this point further?

Parameter Server

Paper: Smola et al. (2010)

Make a dedicated process for parameters & optimizer

HOGWILD! arxiv.org/abs/1106.5730

Idea: remove synchronization step alltogether, use parameter server

HOGWILD! arxiv.org/abs/1106.5730

Idea: remove synchronization step alltogether, use parameter server

HOGWILD! arxiv.org/abs/1106.5730

Idea: remove synchronization step alltogether, use parameter server

Q: have we lost anything by going asynchronous?

HOGWILD! arxiv.org/abs/1106.5730

Idea: remove synchronization step alltogether, use parameter server

Paper: arxiv.org/abs/1511.05950 & others

Updates accumulated: $c = |(\lambda/n)|$

Average gradient: $g_i = \frac{1}{c}\sum^{\circ} \alpha(\tau_{i,l})\Delta\theta_l, \ l\in\{1,2,\ldots,\lambda\}$

New parameters: $\theta_{i+1} = \theta_i - g_i$,

Paper: arxiv.org/abs/1511.05950 & others

Updates accumulated:
$$c = \lfloor (\lambda/n) \rfloor$$
 $\lambda = \text{``accumulation factor''}$

Average gradient:

$$g_i = \frac{1}{c} \sum_{l=1}^{c} \alpha(\tau_{i,l}) \Delta \theta_l, \ l \in \{1, 2, \dots, \lambda\}$$

New parameters:

$$\theta_{i+1} = \theta_i - g_i,$$

Paper: arxiv.org/abs/1511.05950 & others

Updates accumulated: $c = |(\lambda/n)|$

Average gradient:

$$g_i = \frac{1}{c} \sum_{l=1}^{c} \underline{\alpha(\tau_{i,l})} \Delta \theta_l, \ l \in \{1, 2, \dots, \lambda\}$$
 staleness-dependent

New parameters: $\theta_{i+1} = \theta_i - g_i$,

"learning rate"

Paper: arxiv.org/abs/1511.05950 & others

Updates accumulated: $c = |(\lambda/n)|$

Average gradient:

$$g_i = \frac{1}{c} \sum_{l=1}^{c} \alpha(\tau_{i,l}) \Delta \theta_l, \ l \in \{1, 2, \dots, \lambda\}$$

New parameters:

$$\theta_{i+1} = \theta_i - g_i,$$

$$lpha_{i,l} = rac{lpha_0}{ au_{i,l}}$$
 base learning rate staleness (\geq 1)

Parameter Server Applications

Conventional ML: e.g. (Logistic Regression, CNN classifiers)

Paper (sharded PS): https://www.cs.cmu.edu/~muli/file/ps.pdf Another paper (optimizaton tricks): parameter_server_nips14.pdf PyTorch tutorial (hogwild), TF tutorial (parameter server)

Reinforcement learning:

Async. RL: arxiv.org/abs/1602.01783 IMPALA: arxiv.org/abs/1802.01561

SEED RL: arxiv.org/abs/1910.06591

More:

(english) https://youtu.be/kOy49NqZeqI (russian) https://youtu.be/wswbMkT55mI

Modern Parameter Server Systems

Read more: https://www.usenix.org/system/files/osdi20-jiang.pdf

Baseline: sharded PS on every node Each server runs a subset of weights

BytePS: add non-GPU nodes to help averaging gradients (and nothing else)

CPU nodes are ~10x cheaper to deploy / rent

Modern Parameter Server Systems

Read more: https://www.usenix.org/system/files/osdi20-jiang.pdf

- (a) TensorFlow, ResNet-50, batch=256 images
- (b) MXNet, BERT-Large, batch=8192 tokens

