Cálculo Diferencial e Integral I

LEA, LEM, LEAN, MEAer, MEMec

2º Semestre de 2006/2007

Aula de Revisões de Funções

1. Usando as expressões

$$sen(a + b) = cos a sen b + sen a cos b$$

 $cos(a + b) = cos a cos b - sen a sen b$

mostre que

- a) sen(2a) = 2 sen a cos a, $cos(2a) = cos^2 a sen^2 a = 1 2 sen^2 a = 2 cos^2 a 1$,
- b) $\cos^2(\frac{a}{2}) = \frac{1+\cos a}{2}$, $\sin^2(\frac{a}{2}) = \frac{1-\cos a}{2}$,
- c) $\operatorname{sen} a \operatorname{sen} b = 2 \operatorname{sen} \left(\frac{a-b}{2}\right) \cos \left(\frac{a+b}{2}\right), \cos a \cos b = -2 \operatorname{sen} \left(\frac{a-b}{2}\right) \operatorname{sen} \left(\frac{a+b}{2}\right).$ (Sugestão: mostre primeiro que $\operatorname{sen}(x+y) \operatorname{sen}(x-y) = 2 \operatorname{sen} y \cos x$ e faça a = x + y, b = x y; para cos proceda da mesma forma.)
- 2. Mostre, usando as identidades anteriores e $\cos \frac{\pi}{2} = 0$, sen $\frac{\pi}{2} = 1$, que
 - a) $\sin \pi = 0$, $\cos \pi = -1$, $\sin 2\pi = 0$, $\cos 2\pi = 1$,
 - b) $\sin \frac{\pi}{4} = \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$,
 - c) $sen(a + 2\pi) = sen a$, $cos(a + 2\pi) = cos a$ (ou seja, sen e cos são periódicas de periodo 2π),
 - d) $sen(a + \frac{\pi}{2}) = cos a, cos(a + \frac{\pi}{2}) = -sen a,$
- 3. No intervalo $[0, \frac{\pi}{2}]$, a função sen é estritamente crescente e a função cos é estritamente decrescente. (Sugestão: use c) do Exercício 1 e que $\cos x > 0$, para $x \in]-\frac{\pi}{2},\frac{\pi}{2}[.)$
- 4. a) Mostre que

$$sen 3x = 3 sen x - 4 sen3 x, \qquad cos 3x = cos x - 4 sen2 x cos x$$

$$cos 3x = 4 cos3 x - 3 cos x.$$

b) Use as identidades anteriores para mostrar que sen $\frac{\pi}{6} = \frac{1}{2}$, $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$, $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$ e $\cos \frac{\pi}{3} = \frac{1}{2}$.

5. Deduza

- a) $\sec^2 x = 1 + \tan^2 x$, para x tal que $\cos x \neq 0$ (em que $\sec x = \frac{1}{\cos x}$).
- b) $\operatorname{tg}(x-y) = \frac{\operatorname{tg} x \operatorname{tg} y}{1 + \operatorname{tg} x \operatorname{tg} y}$, para x, y tais que $\operatorname{tg} x \operatorname{tg} y \neq -1$.
- 6. a) Seja a > 0 e $b \in \mathbb{R}$. Mostre, partindo das propriedades da exponencial e da definição de logaritmo, que $a^b = e^{b \log a}$ (donde, em particular, se deduz a identidade $\log(a^b) = b \log a$).
 - b) Seja $a \in \mathbb{R}^+ \setminus \{1\}$, e $\log_a : \mathbb{R}^+ \to \mathbb{R}$ a função inversa da função a^x (ou seja, $y=a^x$ sse $x=\log_a(y)$). Mostre que

$$\forall_{y>0}, \quad \log_a y = \frac{\log y}{\log a}.$$