HW6 COMBINATIONAL SYSTEM 2

Handong university

Jong-won Lee

- □ 1. Design 8-to-1 mux with 2-to-1 mux. (10점)
 - Operation of 2-to-1 mux

- Operation of 8-to-1 mux
 - If $S_2S_1S_0=0b000$, out= i_0 , If $S_2S_1S_0=0b001$, out= i_1 ,
 - If $S_2S_1S_0=0b010$, out= i_2 , If $S_2S_1S_0=0b011$, out= i_3 ,
 - If $S_2S_1S_0=0b100$, out= i_4 , If $S_2S_1S_0=0b101$, out= i_5 ,
 - If $S_2S_1S_0=0b110$, out= i_6 , If $S_2S_1S_0=0b111$, out= i_7 ,

□ 2. Design the following function (각각 5점)

$$g(a,b,c) = \sum m(1,4,6,7)$$

- (a) Using a PLA
- (b) Using a PAL
- (c) Using a ROM

□ 2. (a) Using a PLA

input

- **2.**
 - (b) Using a PAL

□ 2. (c) Using a ROM

- □ 3. Design a combinational system to convert 5-bit binary to a BCD (50점)
 - Design it and confirm its operation via logisim-evolution.
 - Design "add- 3" module using multiplexer
 - You can use "8-to-1 multiplexer" device in logisim-evolution.
 - Display the result converted to BCD on 7-segment LEDs.
 - Refer to the explanation in lecture.

- 4. Design a circuit which converts a BCD signal to drive for 7-segment LED and confirm its operation via logisim-evolution.
 (20점)
 - Design it via decoders
 - You can use "3-to-8 decoder" device in logisim-evolution.
 - Refer to the explanation in lecture.

- \square 5. Design an encoder and a decoder for (7,4) Hamming code.
 - □ Design them and confirm their operation via logisim-evolution. (40점)
 - You can use "3-to-8 decoder" device for a Hamming decoder in logisim-evolution.
 - Refer to the explanation in lecture.

