1 Power Spectral Density Function (PSDF)/ Power Density Spectrum (PDS)

Definition 1.0.1. If $\{X(t)\}$ be a stationary process (either in strict sense or wide sense) with autocorrelation function $R_{XX}(\tau)$, then the power spectral density of $\{X(t)\}$ is the Fourier transform of $R_{XX}(\tau)$ is denoted by $S_{XX}(\omega)$ or $S_{XX}(\omega)$ or $S_{XX}(\omega)$ and is given by

$$S_{XX}(\omega) = \int_{-\infty}^{\infty} R_{XX}(\tau) e^{-i\omega\tau} d\tau$$
 (1.1)

if the variable ω is replaced by $2\pi f$ with f as the frequency variable, then the spectral density function is function of f, the corresponding effect is given below:

$$S_{XX}(f) = \int_{-\infty}^{\infty} R_{XX}(\tau) e^{-i2\pi f \tau} d\tau$$
 (1.2)

Wiener-Khinchine Relation

Equations (1.1) and (1.2) sometimes called as the Wiener-Khinchine relation.

Note: $R_{XX}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XX}(\omega) e^{i\omega\tau} d\omega$ is the Fourier inverse transform of $S_{XX}(\omega)$.

Similarly
$$R_{XX}(au) = \int_{-\infty}^{\infty} S_{XX}(f) e^{-i2\pi f au} \, d\omega$$

1.0.1 Properties of PSDF

Property 1.0.1. The value of the power spectral density function at zero frequency is equal to the total area under the graph of autocorrelation function. i.e. By applying $\omega = 0$ or f = 0, we have

$$S_{XX}(0) = \int_{-\infty}^{\infty} R_{XX}(au) \, d au$$

Property 1.0.2. The mean square value of a WSS process is equal to the total area under the graph of the spectral density. i.e. By applying $\omega = 0$ or f = 0, we have

$$E\{X^2(t)\} = R_{XX}(0) = \int_{-\infty}^{\infty} S_{XX}(\omega) \, d\omega$$

Property 1.0.3. The spectral density of a real process is an even function. i.e. $S_{XX}(-\omega) = S_{XX}(\omega)$.

Proof.

$$egin{array}{lll} S(-\omega) &=& \int_{-\infty}^{\infty} R(au) e^{i\omega au} \, d au \ &=& \int_{-\infty}^{\infty} R(-u) e^{-i\omega u} \, du \ &=& \int_{-\infty}^{\infty} R(u) e^{-i\omega u} \, du = S(\omega), \ ext{(Since } R(u) = R(-u)) \end{array}$$

Property 1.0.4. The spectral density of any real or complex process $\{X(t)\}$ is a real function of ω . i.e. $S_{XX}^*(\omega) = S_{XX}(\omega)$.

Proof.

$$egin{array}{lll} S^*(\omega) &=& \int_{-\infty}^{\infty} R^*(au) e^{i\omega au} \, d au \ &=& \int_{-\infty}^{\infty} R(- au) e^{i\omega au} \, d au \ &=& \int_{-\infty}^{\infty} R(u) e^{-i\omega u} \, du \, = S(\omega) \geq 0, \end{array}$$
 (Substuting $u=- au$)

Property 1.0.5. The spectral density and the autocorrelation function of a real WSS process forms a Fourier cosine transform pair.

Property 1.0.6 (Wiener-Khinchine Theorem). If $X_T(\omega)$ is the Fourier transform of the truncated random process $X_T(\omega) = \begin{cases} X(t), & \text{for } |t| \leq T \\ 0, & \text{for } |t| > T \end{cases}$ where $\{X(t)\}$ is a real WSS process with PSD function $S(\omega)$, then we have $S_{XX}(\omega) = \lim_{T \to \infty} \left[\frac{1}{2T} E\{|X_T(\omega)|^2\} \right]$.

Example/Solved Problems

Example: 1. The power spectral density of a random process $\{X(t)\}$ is given by $S_{XX}(\omega) = \begin{cases} \pi, & |\omega| < 1 \\ 0, & elsewhere \end{cases}$. Find its autocorrelation function.

Hints/Solution:

We know that
$$R_{XX}(au)=rac{1}{2\pi}\int_{-\infty}^{\infty}S_{XX}(\omega)e^{i\omega au}\,d\omega$$
 $R_{XX}(au)=rac{1}{2\pi}\int_{-1}^{1}\pi e^{i\omega au}\,d\omega=rac{1}{ au}\sin au$

Example: 2. If $R_{XX}(\tau) = e^{2\lambda|\tau|}$ is the autocorrelation of a random process $\{X(t)\}$, obtain its spectral density.

Hints/Solution:

From $R_{XX}(\tau)$ we will get,

$$egin{align} S_{XX}(w) &= \int\limits_{-\infty}^{\infty} R_{XX}(au) e^{-i\omega au} \, d au = \int\limits_{-\infty}^{\infty} e^{-2\lambda| au|} e^{-i\omega au} \, d au \ &= \int\limits_{-\infty}^{0} e^{2\lambda au} e^{-i\omega au} \, d au + \int\limits_{0}^{\infty} e^{-2\lambda au} e^{-i\omega au} \, d au \ &= rac{1}{2\lambda-iw} + rac{1}{2\lambda+iw} = rac{4\lambda}{4\lambda^2+w^2} \end{split}$$

Example: 3. If the power spectral density of a WSS process is given by $S_{XX}(w) = \begin{cases} \frac{b}{a}(a-|w|), & |\omega| \leq a \\ 0, & \text{otherwise} \end{cases}$. Find the autocorrelation function of the process.

Hints/Solution:

$$S_{XX}(w) = egin{cases} rac{b}{a}(a-|w|), & -a < w < a \ 0, ext{otherwise} \end{cases}$$

$$egin{align} R_{XX}(au) &=& rac{1}{2\pi}\int\limits_{-a}^{a}rac{b}{a}(a-|w|)e^{iw au}\,dw \ &=& rac{1}{\pi}\int\limits_{0}^{a}rac{b}{a}(a-w)\cos w au\,dw \ &=& rac{2b}{a\pi au^2}\sin^2\left(rac{a au}{2}
ight) \end{split}$$

Definition 1.0.2 (Average Power). The average power of a random process $\{X(t)\}$ is denoted by P_{XX} and is given by

$$P_{XX} = rac{1}{2\pi} \int_{-\infty}^{\infty} S_{XX}(\omega) \, d\omega$$

In terms of the time average it is given by

$$P_{XX} = \lim_{T o\infty}rac{1}{2T}\int_{-T}^T E[X^2(t)]\,dt$$

If X(t) is a WSS process, then $E[X^2(t)]$ is constant and $P_{XX}=E[X^2(t)]$.

Important Formulae/Results:

$$F^{-1}\left[rac{2a}{a^2+\omega^2}
ight] = e^{-a| au|}$$
 $F^{-1}\left[rac{1}{(a^2-\omega^2)^2}
ight] = u(au) au e^{a| au|}$ $F^{-1}\left[rac{1}{(a^2+\omega^2)^2}
ight] = u(au) au e^{-a| au|}$ where $u(au)$ is unit step function, $lpha>0$

Example: 4. The power spectrum of a WSS process X(t) is given by $S_{XX}(\omega) = \frac{4}{(4+\omega^2)}$. Find the corresponding autocorrelation and average power.

Hints/Solution:

We know that
$$R_{XX}(au)=rac{1}{2\pi}\int_{-\infty}^{\infty}S_{XX}(\omega)e^{i\omega au}\,d\omega$$

$$egin{array}{lll} F(e^{-a| au|}) &=& 2\int_0^\infty e^{-a au}\cos\omega au\,d au \ &=& 2\left[rac{e^{-a au}}{a^2+\omega^2}(-a\cos\omega au+\omega\sin\omega au)
ight]_0^\infty \ &=& rac{2a}{a^2+\omega^2},a>0 \ \Longrightarrow &e^{-a| au|} &=& F^{-1}\left[rac{2a}{a^2+\omega^2}
ight] \end{array}$$

Substituting
$$a=2$$
, we get $F^{-1}\left[S_{XX}(\omega)
ight]=F^{-1}\left[rac{4}{4+\omega^2}
ight]=e^{-2| au|}=R_{XX}(au)$

Since X(t) is a WSS process, the average power $P_{XX}=E[X^2(t)]=R_{XX}(0)=e^0=1$.

Example: 5. The power spectrum of a WSS process X(t) is given by $S_{XX}(\omega) = \frac{1}{(1+\omega^2)^2}$. Find the corresponding autocorrelation and average power.

Hints/Solution:

We know that

$$e^{-a| au|} = F^{-1}\left[rac{2a}{a^2+\omega^2}
ight], \ u(au) au e^{-a au} = F^{-1}\left[rac{1}{(a+i\omega)^2}
ight]$$
 and $u(au) au e^{a au} = F^{-1}\left[rac{1}{(a-i\omega)^2}
ight]$

$$egin{aligned} R_{XX}(au) &=& F^{-1}\left[S_{XX}(\omega)
ight] \ &=& F^{-1}\left[rac{1}{(1+\omega^2)^2}
ight] = rac{1}{4}F^{-1}\left\{\left[rac{(1+i\omega)+(1-i\omega)}{(1+\omega)(1-i\omega)}
ight]^2
ight\} \ &=& rac{1}{4}\left\{F^{-1}\left[rac{1}{(1-i\omega)^2}
ight] + F^{-1}\left[rac{1}{(1+i\omega)^2}
ight] + F^{-1}\left[rac{2}{1+\omega^2}
ight]
ight\} \ &=& rac{1}{4}\left\{u(au) au\left[e^{a au}+e^{-a au}
ight] + rac{1}{2}e^{-a| au|}
ight\} \end{aligned}$$

Since X(t) is a WSS process, the average power $P_{XX}=E[X^2(t)]=R_{XX}(0)=rac{1}{4}$.

Example: 6. Check whether the following functions are valid power density spectrums.

Example: 6. Check whether the follows
$$(i) \; S_{XX}(\omega) = \frac{4+\omega^2}{(4\omega^4+3\omega^2+5)}$$

$$(ii) \; S_{XX}(\omega) = \frac{\omega^2}{(\omega^6+3\omega^2+3)}$$

$$(iii) \; S_{XX}(\omega) = \frac{\omega+4}{(5+\omega^2)}$$

(ii)
$$S_{XX}(\omega) = \frac{\omega^2}{(\omega^6 + 3\omega^2 + 3)}$$

(iii)
$$S_{XX}(\omega) = rac{\omega + 4}{(5 + \omega^2)}$$

Hints/Solution:

We know that $S_{XX}(\omega)$ is an even function and real. We need to verify whether $S_{XX}(-\omega)=$ $S_{XX}(\omega)$, if it is, then the given function is a valid spectral density function.

(i)
$$S_{XX}(\omega)$$
, if it is, then the given function is a valid solution $S_{XX}(-\omega) = \frac{4 + \omega^2}{(4\omega^4 + 3\omega^2 + 5)} = S_{XX}(\omega)$
 \therefore the given function is a valid power spectrum.

(ii)
$$S_{XX}(-\omega) = \frac{\omega^2}{(\omega^6 + 3\omega^2 + 3)} = S_{XX}(\omega)$$

 \therefore the given function is a valid power spectrum.

(iii)
$$S_{XX}(\omega) = rac{-\omega + 4}{(5 + \omega^2)}
eq S_{XX}(\omega)$$

: the given function is not a valid power spectrum.

Example: 7. Find the autcorrelation function of the process whose power density spectrum is given by $\frac{9+\omega^2}{\omega^4+5\omega^2+4}$. Also find its average power(mean square value).

Hints/Solution:

We know that
$$R_{XX}(au)=rac{1}{2\pi}\int_{-\infty}^{\infty}S_{XX}(\omega)e^{i\omega au}\,d\omega$$

Using partial fractions, we will h

$$\frac{9+\omega^2}{(1+\omega^2)(4+\omega^2)} = \frac{8/3}{(1+\omega^2)} + \frac{-5/3}{(4+\omega^2)}$$
Also we know from the Fourier transform that

$$egin{array}{lll} F(e^{-a| au|}) &=& 2\int_0^\infty e^{-a au}\cos\omega au\,d au \ &=& 2\left[rac{e^{-a au}}{a^2+\omega^2}(-a\cos\omega au+\omega\sin\omega au)
ight]_0^\infty \ &=& rac{2a}{a^2+\omega^2}, a>0 \ \Longrightarrow &e^{-a| au|} &=& F^{-1}\left[rac{2a}{a^2+\omega^2}
ight] \end{array}$$

$$\begin{split} F^{-1}\left[S_{XX}(\omega)\right] &= \frac{4}{3}F^{-1}\left[\frac{2\cdot 1}{1+\omega^2}\right] - \frac{5}{12}F^{-1}\left[\frac{2\cdot 2}{4+\omega^2}\right] \\ &= \frac{4}{3}e^{-|\tau|} - \frac{5}{12}e^{-2|\tau|} = R_{XX}(\tau) \end{split}$$

Now, the average power is given by $P_{XX}=R_{XX}(0)=E\{X^2(t)\}=rac{4}{3}+rac{5}{12}=rac{11}{12}$

Example: 8. Find the autocorrelation function corresponding to the PSD $S_{XX}(\omega) =$ $\frac{10.112\omega}{(16+\omega^2)(9+\omega^2)}$. Also find the average power.

Hints/Solution:

We know that
$$R_{XX}(au)=rac{1}{2\pi}\int_{-\infty}^{\infty}S_{XX}(\omega)e^{i\omega au}\,d\omega$$

Using partial fractions, we will have

$$rac{157+12\omega^2}{(16+\omega^2)(9+\omega^2)} = rac{5}{(16+\omega^2)} + rac{7}{(9+\omega^2)}$$

$$\begin{split} F(e^{-a|\tau|}) &= 2\int_0^\infty e^{-a\tau}\cos\omega\tau\,d\tau \\ &= 2\left[\frac{e^{-a\tau}}{a^2+\omega^2}(-a\cos\omega\tau+\omega\sin\omega\tau)\right]_0^\infty \\ &= \frac{2a}{a^2+\omega^2}, a>0 \\ \Longrightarrow e^{-a|\tau|} &= F^{-1}\left[\frac{2a}{a^2+\omega^2}\right] \end{split}$$

$$egin{array}{lll} F^{-1}\left[S_{XX}(\omega)
ight] &=& rac{5}{8}F^{-1}\left[rac{2\cdot 4}{16+\omega^2}
ight] + rac{7}{6}F^{-1}\left[rac{2\cdot 3}{9+\omega^2}
ight] \ &=& rac{5}{8}e^{-4| au|} + rac{7}{6}e^{-3| au|} = R_{XX}(au) \end{array}$$

Now, the average power is given by $P_{XX}=R_{XX}(0)=E\{X^2(t)\}=rac{5}{8}+rac{7}{6}=rac{43}{24}$

Example: 9. The auto correlation function of the binary transmission is given by

$$R_{XX}\left(au
ight) = egin{cases} 1 - | au|\,, & ext{for } | au| \leq 1 \ 0, & ext{elsewhere} \end{cases}$$
 . Find the PSD.

Hints/Solution:

$$egin{aligned} S_{XX}(au) &= \int\limits_{-\infty}^{\infty} R_{XX}(au) e^{-iw au} \, d au \ &= \int\limits_{-1}^{1} (1-| au|) [\cos(w au) - i\sin(w au)] \, d au \ &= 2 \int\limits_{0}^{1} (1- au) \cos(w au) \, d au \ &= rac{2}{w^2} [1-\cos(w)] = rac{4}{w^2} \left[\sin^2\left(rac{w}{2}
ight)
ight] \end{aligned}$$