두 영상내 동일점 간의 histogram of gradient 비교

윤석원

Compare the histograms of gradient between two images

Seokwon Yoon

요 약

서로 다른 두 이미지에서 동일 지점을 나타내는 patch간 histogram of gradient들을 비교해본다.

Abstract

In this report, I'll compare histograms of gradient between two different patches, catching same objects' point, of different images

1. 실험 주제

서로 다른 두개의 영상에서 동일 지점을 찾는 문제를 correspondence problem이라고 한다. 왼쪽의 빨간 지점과 동일한 영역을 우측 초록 영역들 중에서 찾는다고 해보자. 모든 pixel values들을 하나하나 비교하여 두 마스크의 일치 여부를 판단할 수 있다. (Correlation-based algorithm) 혹은 마스크의 특징들이 일치하는지 비교하여 판단할 수도 있다. (Feature-based algorithm)

이 리포트에서는 두 마스크 간의 histogram of gradient들을 비교하여 동일 지점 판단에 활용해보고자 한다.

2. 실험 진행 과정

- 1) 동일한 물체를 담고 있는 이미지 A,B 를 불러온다.
- 2) 영상 A,B에서 동일점 네 곳을 마우스로 클릭한다. (ROI, 관심영역 추출, 클릭한 지점을 중심으로 patch 크기는 15x15 로한다)
- 3) 총 8 개의 패치의 histogram of gradient 를 구한다.
- 4) 동일점끼리 histogram of gradient 가 얼마나 일치하는지 확인한다.

OpenCV를 활용하여 위 프로세스를 구현 한다.

3. Histogram of gradient

마우스로 클릭한 네 개의 corner 점을 중심으로 하는 15x15 크기의 patch 를 저장한다.

gx = cv2.Sobel(x, cv2.CV_32F, 1, 0, ksize = 1) gy = cv2.Sobel(x, cv2.CV_32F, 0, 1, ksize = 1)

분리한 8 개의 patch 의 x,y 방향에 대해서 각각 Sobel 연산을 수행한다.

 $Magnitude(\mu) = \sqrt{G_x^2 + G_y^2} \quad Angle(\theta) = |\tan^{-1}(G_y/G_x)|$

mag, angle = cv2.cartToPolar(gx, gy, angleInDegrees=True)

구한 gx, gy 를 가지고 patch 를 구성하는 각 픽셀에 대해서 gradient의 magnitude와 angle을 구한다.

이제 Gradient의 histogram을 만들어보자. direction 의 범위는 [0,180]이다. Gradient 의 화살표와 180 도 반대 방향의 화살표는 동일하게 간주한다. Bin 의 크기는 20 이다. 붉은 원으로 표시한 픽셀의 경우 10 은 0, 20 범위의 중간에 있고

magnitude는 4이므로 2,2씩 나뉘어 0,20 bin 에 값이 더해진다.

4. 소스 코드.

Github url: https://github.com/jsdysw/compare-histogram-of-gradient.git vscode, colab 용 소스코드를 분리해서 업로드 하였다.

5. 실험 결과 및 결론

좌측 순서대로 1,2,3,4 우측 순서대로 1,2,3,4, 쌍이 동일 점들이다.

히스토그램끼리 차를 구하고 각 구간들의 평균으로 오차율을 정의한다. 이렇게 loss 를 정의했을때 최적의 일치율을 보이는 point 쌍들은 다음과 같다.

(좌 1-우 1), (좌 2-우 3), (좌 3-우 4), (좌 4-우 4)