パターン情報学 プログラミングレポート課題

03-140299 東京大学機械情報工学科 3 年 和田健太郎

2015年2月9日

1 課題1

--- 課題 1 -

2 クラス ($\omega 1$, $\omega 2$) の識別問題を考える. データは 2 次元とする. 配布するデータセットの説明を以下に示す.

- Train1.txt, Train2.txt: ω1, ω2 に属する訓練データ集合. 各データ数 50.
- Test1.txt, Test2.txt: ω1, ω2 に属するテストデータ集合. 各データ数 20.

2 クラスで,2 次元のデータに対するウィドロー・ホフのアルゴリズムを実装し,訓練データから分離超平面を学習せよ.また,テストデータの識別率(全テストデータ数に対する正しく識別されたテストデータ数の比率)を求めよ.さらに,訓練データ,テストデータ,学習された識別面を図示せよ.

ウィドロー・ホフのアルゴリズムを初期の重みはランダムとし、指定した回数だけ繰り返し重みの更新を行うように実装した.

2 次元の訓練データ 100 件を用いて識別器の学習を行い、40 件のテストデータで性能を測定したところ、0.875という結果が出た.

また, 訓練データ, テストデータのそれぞれ 2 クラス と識別面を図示したものが図 1 である.

図 1: データおよび識別面

2 課題2

– 課題 2 ––

擬似逆行列を計算するプログラムを書き,課題 1 と同じ訓練データから分離超平面を学習せよ.また,テストデータの識別率を求めよ.クラスラベルについて, $\omega 1$ に属するものを 1 , $\omega 2$ に属するものを-1などとせよ.さらに,学習された識別面を課題 1 と同じ図に示せ.

擬似逆行列を数値計算ライブラリである numpy を利用して実装した.

$$A^+ = (A^T \cdot A)^{-1} \cdot A^T$$

擬似逆行列を用いて訓練データに関して重みを計算し、 テストデータによって識別性能を測定したところ、1 と 同様に 0.875 という結果だった.

訓練データ、テストデータおよび識別面を図示したものが図2で、識別面の位置をウィドロー・ホフのアルゴリズムによるものと比べてみると、ほぼ同じ位置にあることがわかる.

図 2: データおよび識別面

3 課題3

- 課題 3 -

本課題も課題 1 と同じデータセットを利用する.

- 1. テストデータの集合を k 近傍法 (kNN) を用いて識別することを考える. 訓練データに対して一つ抜き出し, (LOO: leave-one-out) 法により k の値を 1 から 10 まで変化させ, 最適なk の値を求めよ.また, 横軸に k, 縦軸に識別率としてグラフを作成せよ.
- 2. LOO により得られた k の値を用いてテスト データを識別せよ.そして,識別率を求めよ.

訓練データに対して LOO により識別を行い, k の値を 1 から 10 まで変化させて識別率を測定した。その関係を示したのが図 3 である。図 3 より, k が 3 の時に最も識別性能が高くなっていることがわかる。

図 3: k 値と LOO 法による kNN の識別率の関係

4 課題4

- 課題 4 -

表にあるデータを利用する.また潜在的な確率密度分布は正規分布であるとする. $P(\omega i)=1/3$ とする.表にあげた各クラスのデータセットは omega1.txt , omega2.txt , omega3.txt である.このとき次の問いに答えよ.

- 1. テスト点: $(1,2,1)^T$, $(5,3,2)^T$, $(0,0,0)^T$, $(1,0,0)^T$ と各クラスの平均との間のマハラノビス距離を求めよ.
- 2. これらの点を識別せよ.
- 3. 次に $P(\omega_1)=0.8$ かつ $P(\omega_2)=P(\omega_3)=0.1$ と 仮定し,テスト点をもう一度識別せよ

テスト点: $(1,2,1)^T$, $(5,3,2)^T$, $(0,0,0)^T$, $(1,0,0)^T$ に関して, 各クラス集合の平均とのマハラノビス距離

$$M_D(x) = \sqrt{(x - \mu_i)^T \sum (x - \mu_i)}$$
 (1)

を表1に計算した.

確率的生成モデルを用いて、これらのテスト点を識別したところ、表 2 に示す識別結果となった. $(P(\omega_i)=1/3)$

 $P(\omega_1)=0.8,\,P(\omega_2)=P(\omega_3)=0.1$ として識別を行ったところ表 3 に示す識別結果となり、表 2 と同じ結果となった.

sample points	ω_1	ω_2	ω_3
$(1, 2, 1)^T$	21.275575	15.5762194	9.85157479
$(5, 3, 2)^T$	39.1226698	37.4144013	9.82164589
$(0,0,0)^T$	9.175011	4.78336417	23.4702917
$(1,0,0)^T$	12.0187365	9.85778568	20.7996021

表 1: テスト点の各クラス集合の平均とのマハラノビス 距離

$$(1,2,1)^T$$
 $(5,3,2)^T$ $(0,0,0)^T$ $(1,0,0)^T$ ω_2 ω_2 ω_1 ω_1

表 2: $P\omega_i = 1/3$ での識別結果

$$(1,2,1)^T$$
 $(5,3,2)^T$ $(0,0,0)^T$ $(1,0,0)^T$ ω_2 ω_1 ω_1

表 3: $P\omega_1=0.8,\,P\omega_2=P\omega_3=0.1$ での識別結果