PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISI	HED U	JNDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification ⁶ :		(11) International Publication Number: WO 99/01476
C07K 16/00	A1	(43) International Publication Date: 14 January 1999 (14.01.99)
(21) International Application Number: PCT/US (22) International Filing Date: 1 July 1998 (6)		06 (81) Designated States: CA, JP, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
(30) Priority Data: 60/051,645 3 July 1997 (03.07.97) (71) Applicant (for all designated States except US): SMIT	HKLIN	
BEECHAM CORPORATION [US/US]; One Frank Philadelphia, PA 19103 (US).	lin Plaz	.a,
(72) Inventor; and (75) Inventor/Applicant (for US only): SWAIRJO, M [US/US]; 100 West Eighth Street, Bridgeport, P (US).		
(74) Agents: BAUMEISTER, Kirk et al.; SmithKline Corporation, Corporate Intellectual Property, UW2 Swedeland Road, P.O. Box 1539, King of Pru 19406-0939 (US).	2220, 7	09 · · · · · · · · · · · · · · · · · ·
•		
(54) Title: CRYSTAL STRUCTURES OF ANTI-FACTO DESIGN	OR IX I	Pab FRAGMENTS AND METHODS OF USE FOR PEPTIDOMIMETIC
(57) Abstract		
Novel anti-Factor IX Fab fragment crystalline struct are disclosed.	tures a	re identified. Methods of identifying peptidomimetics of these fragments

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU.	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ ·	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

CRYSTAL STRUCTURES OF ANTI-FACTOR IX Fab FRAGMENTS AND METHODS OF USE FOR PEPTIDOMIMETIC DESIGN

This application claims the benefit of U.S. Provisional Application No. 60/051,645, filed 3 July 1997.

FIELD OF THE INVENTION

This invention relates to anti-Factor IX Fab fragment crystals and the use of complementarity determining region (CDR) structural parameters for design and selection of peptidomimetics.

10

15

20

25

30

BACKGROUND OF THE INVENTION

Under normal circumstances, an injury, be it minor or major, to vascular endothelial cells lining a blood vessel triggers a hemostatic response through a sequence of events commonly record to as the coagulation "cascade." The cascade culminates in the conversion of soluble fibrinogen to insoluble fibrin which, together with platelets, forms a localized clot or thrombus which prevents extravasation of blood components. Wound healing can then occur followed by clot dissolution and restoration of blood vessel integrity and flow.

The events which occur between injury and clot formation are a carefully regulated and linked series of reactions. In brief, a number of plasma coagulation proteins in inactive proenzyme forms and cofactors circulate in the blood. Active enzyme complexes are assembled at an injury site and are sequentially activated to serine proteases, with each successive serine protease catalyzing the subsequent proenzyme to protease activation. This enzymatic cascade results in each step magnifying the effect of the succeeding step. For an overview of the coagulation cascade see the first chapter of "Thombosis and Hemorrhage", J. Loscalzo and A. Schafer, eds., Blackwell Scientific Publications, Oxford, England (1994).

While efficient clotting limits the loss of blood at an injury site, inappropriate formation of thrombi in veins or arteries is a common cause of disability and death. Abnormal clotting activity can result in and/or from pathologies or treatments such as myocardial infarction, unstable angina, atrial fibrillation, stroke, renal damage, percutaneous translumenal coronary angioplasty, disseminated intravascular coagulation, sepsis, pulmonary embolism and deep vein thrombosis. The formation of clots on foreign

surfaces of artificial organs, shunts and prostheses such as artificial heart valves is also problematic.

Approved anticoagulant agents currently used in treatment of these pathologies and other thrombotic and embolic disorders include the sulfated heteropolysaccharides heparin and low molecular weight (LMW) heparin. These agents are administered parenterally and can cause rapid and complete inhibition of clotting by activation of the thrombin inhibitor, antithrombin III and inactivation of all of the clotting factors.

5

10

15

20

25

30

However, due to their potency, heparin and LMW heparin suffer drawbacks. Uncontrolled bleeding as a result of the simple stresses of motion and accompanying contacts with physical objects or at surgical sites is the major complication and is observed in 1 to 7% of patients receiving continuous infusion and in 8 to 14% of patients given intermittent bolus doses. To minimize this risk, samples are continuously drawn to enable ex vivo clotting times to be continuously monitored, which contributes substantially to the cost of therapy and the patient's inconvenience.

Further, the therapeutic target range to achieve the desired level of efficacy without placing the patient at risk for bleeding is narrow. The therapeutic range is approximately 1 to less than 3 ug heparin/ml plasma which results in activated partial thromboplastin time (aPTT) assay times of about 35 to about 100 seconds. Increasing the heparin concentration to 3 ug/ml exceeds the target range and at concentrations greater than 4 ug/ml, clotting activity is not detectable. Thus, great care must be taken to keep the patient's plasma concentrations within the therapeutic range.

Another approved anticoagulant with slower and longer lasting effect is warfarin, a coumarin derivative. Warfarin acts by competing with Vitamin K dependent post-translational modification of prothrombin and other Vitamin K-dependent clotting factors.

The general pattern of anticoagulant action, in which blood is rendered non-clottable at concentrations only slightly higher than the therapeutic range is seen for warfarin as well as for heparin and LMW heparin. Clearly, a need exists for an anticoagulant agent which is efficacious in controlling thrombotic and embolic disorders yet does not cause uncontrolled bleeding or its possibility. Accordingly, there is also a need for anticoagulant agent structural information to enable identification and structure-based design of new anticoagulant agents.

SUMMARY OF THE INVENTION

Accordingly, an aspect of the present invention is a BC2 Fab fragment crystal.

Another aspect of the invention is a Fab fragment crystal containing BC2 CDRs.

Another aspect of the invention is a SB249417 Fab fragment crystal.

Another aspect of the invention is a method for identifying a peptidomimetics having Factor IX binding activity comprising the steps of searching a small molecule structural database with CDR structural parameters derived from anti-Factor IX Fab fragment crystals; selecting a molecular structure from the database which mimics the CDR structural parameters; synthesizing the selected molecular structure; and screening the synthesized molecule for Factor IX binding activity.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a three-dimensional structure of the residues of BC2 HC-CDR1.

Figure 2 is a three-dimensional structure of the residues of BC2 HC-CDR2.

5

25

Figure 3 is a three-dimensional structure of the residues of BC2 HC-CDR3.

Figure 4 is a three-dimensional structure of the residues of BC2 LC-CDR1.

Figure 5 is a three-dimensional structure of the residues of BC2 LC-CDR2.

Figure 6 is a three-dimensional structure of the residues of BC2 LC-CDR3.

Figure 7 is a three-dimensional structure of the residues of SB249417 HC-CDR1.

Figure 8 is a three-dimensional structure of the residues of SB249417 HC-CDR2.

Figure 9 is a three-dimensional structure of the residues of SB249417 HC-CDR3.

Figure 10 is a three-dimensional structure of the residues of SB249417 LC-CDR1.

Figure 11 is a three-dimensional structure of the residues of SB249417 LC-CDR2.

Figure 12 is a three-dimensional structure of the residues of SB249417 LC-CDR3.

DETAILED DESCRIPTION OF THE INVENTION

All publications, including but not limited to patents and patent applications, cited in this specification are herein incorporated by reference as though fully set forth.

Factor IX (fIX) is a vitamin K-dependent serine protease zymogen which plays an important role in the amplification of the blood coagulation cascade by catalyzing the activation of factor X on the membrane surface in the presence of activated factor VIII and calcium. Murine anti-human factor IX monoclonal antibody (mAb) BC2, as described in U.S. Patent Application No. 08/783,853 is an IgG1 kappa monoclonal antibody having

useful properties for anticoagulant therapy in arterial and venous thrombosis. BC2 down-regulates the blood clotting cascade in a self-limiting manner. BC2 inhibits the activation of fIX to fIXa by fXI as well as its activation by the complex of tissue factor and fVIIa. BC2 also inhibits fIXa coagulant activity. BC2 binds to human fIX and fIXa in a calcium-dependent manner with a dissociation constant Kd=4 nM. BC2 also cross-reacts with and inhibits rat fIX.

5

10

15

20

25

30

Humanized constructs of BC2 have been made and tested for anticoagulant activity in vitro and in animal models. These constructs are described in U.S. Patent Application No. 08/783,853 and, like BC2, are novel anticoagulants exhibiting self-limiting. neutralizing activity, namely they down-regulate the blood clotting cascade in a selflimiting manner, minimizing the bleeding risks associated with heparin and other anticoagulant therapies. One such humanized construct of BC2 is SB249417. As used herein, the term "self-limiting, neutralizing activity" refers to the activity of a peptidomimetic that binds to human coagulation factor IX or IXa and inhibits thrombosis in a manner such that limited modulation of coagulation is produced. "Limited modulation of coagulation" is defined as an increase in clotting time, as measured by prolongation of the activated partial thromboplastin time (aPTT), where plasma remains clottable with aPTT reaching a maximal value despite increasing concentrations of monoclonal antibody. This limited modulation of coagulation is in contrast to plasma being rendered unclottable and exhibiting an infinite aPTT in the presence of increasing concentrations of heparin. Preferably, the maximal aPTT values are within the heparin therapeutic range. Most preferably, maximal aPTT is within the range of about 35 seconds to about 100 seconds which corresponds to about 1.5 times to about 3.5 times the normal control aPTT value.

In the humanization process, the mouse antibody framework is changed to that from a human antibody, leaving the antigen-binding site unchanged. This site is formed by certain regions in the mAb amino acid sequence which are termed the complementarity determining regions (CDRs), or hypervariable segments. The antigen-binding site, which determines its specificity to its antigen, is located in the Fab fragment of the antibody, which consists of the entire light chain (LC) and part of the heavy chain (HC).

As part of an effort to develop functional small-molecule mimics of these therapeutic macromolecules, the structural and mechanistic features of the anticoagulant activity of the anti-fIX mAbs BC2 and SB249417 have been determined. This information is useful for design and testing of small peptides that functionally mimic the mAb's anticoagulant properties and to develop these peptides for therapeutic use.

The three-dimensional structures of the Fab fragments of BC2 and SB249417 were determined using X-ray crystallography as described in the Examples. The structural information can be stored on a computer-readable medium.

The CDRs from the mouse and humanized Fab fragments have generally similar conformations. R.m.s. differences between corresponding CDR C_{Ω} positions between the two Fabs are below 0.5 Å, except in HC-CDR2 and HC-CDR3 where r.m.s. values are 1.97 and 3.7 Å, respectively. The slight change in the conformations of HC-CDR2 and HC-CDR3 amount to an angular shift in the planes of these loops, keeping the angle between them unchanged. In both Fabs, the three HC CDRs and LC-CDR3 form a groove (27 Å long, 8 Å wide and 9 Å deep) which runs through the CDR surface. CDR residues HC-Asn35, HC-Trp50, and LC-Arg95, which line a deep hole in the center of the groove, are considered important for antigen binding.

Structural information obtained for the CDRs of the BC2 and SB249417 Fab structures is useful for discovery of small molecule peptidomimetics. Preferred peptidomimetics include peptides and synthetic organic molecules which bind to Factor IX and have self-limiting, neutralizing activity in an in vitro clotting assay. An exemplary approach to such a structure-based peptide mimic design follows (Zhao, et al., 1995; Monfardini C. et al., 1996).

5

10

15

20

A search of several small-molecule structural data bases such as Available Chemicals Directory, Cambridge Crystallographic Database, Fine Chemical Database and CONCORD database (for a review, see Rusinko A., 1993) is carried out using parameters derived from the CDR structures. The search can be 2-dimensional, 3-dimensional or both and can be done using a combination of software such as UNITY version 2.3.1 (Tripos, Inc.), MACCS 3D, CAVEAT and DOCK. Conformational flexibility of the small molecules is allowed. The strategy for conducting the search takes into account conformations of individual CDRs as well as combinations of CDRs and/or key residues in the mAb combining site.

An initial approach is to focus on structural parameters from HC-CDR3, LC-CDR3 and HC-CDR2 since these CDRs have been found in other Fabs to participate intimately in antigen recognition. A search for small-molecule mimics of HC-CDR3, LC-CDR3 and HC-CDR2 is separately conducted. The structural parameters from each two of these three CDRs are combined and the search repeated. The next step will be using parameters from all three CDRs. The conformational parameters of the remaining three CDRs will be included at a later stage, resulting in a search combining all six CDRs. Pref rably, the

selected molecular structure mimics the parameters of CDR residues HC-Asn35, HC-Trp50, and LC-Arg95. Small-molecule hits resulting from the searches are synthesized and screened for factor-IX binding in an ELISA assay and preferably, for anti-thrombotic activity in a standard *in vitro* clotting assay. Most preferably, the hits will also exhibit self-limiting, neutralizing activity.

5

10

15

20

25

30

Peptidomimetics produced by the method of the invention are expected to be useful in therapy of thrombotic and embolic disorders such as those associated with myocardial infarction, unstable angina, atrial fibrillation, stroke, renal damage, pulmonary embolism, deep vein thrombosis, percutaneous translumenal coronary angioplasty, disseminated intravascular coagulation, sepsis, artificial organs, shunts or prostheses.

The present invention will now be described with reference to the following specific, non-limiting examples.

Example 1 Preparation and Purification of Fab Fragments

Both BC2 and SB249417 Fab fragments were prepared and purified as follows. 50 mL of freshly purified monoclonal anti-human fIX antibody sample (1.2mg/mL in PBS buffer) was concentrated in an Amicon cell using a 30-kDa molecular weight cutoff membrane (YM30, at 65 psi, 4°C) to a final volume of 5.0 mL and final concentration of 12.0 mg/mL. A papain digest of the mAb was started by adding to the concentrated mAb sample 20µg/mL papain (Boehringer Manheim, cat.# 108014), 2.5 mM EDTA (pH 7.5) and 5.0 mM cysteine-HCL monohydrate (PIERCE, cat.# 44889) and incubating the mixture at 37°C for 4 hours and shaking gently. The reaction was stopped by cooling the mixture on ice for 20 min.

The Fc fragment was removed by incubating the digest with 5 mL of protein A-Sepharose resin (Pharmacia) and mixing at 4°C for 1 hour. The mixture was transferred into a 15 mL gravity-fed column, and the unbound fraction (containing the Fab fragment) was collected. The column was washed twice with a 8 mL volume of 20mM Na₂HPO₄, 150mM NaCl, pH 7.5. The eluate and 2 washes were pooled and concentrated to 5.3 mL using an Amicon cell with a YM10 membrane at 4°C.

The sample was loaded on a Pharmacia Superdex 75 column (volume 320mL), preequilibrated with 20mM Na₂HPO₄, 150mM NaCl, pH 7.5. The column was then eluted with the same buffer at a rate of 2.5 mL/min, and 1 mL fractions collected after 30 min of void-volume collection. The Fab fragment eluted as a single molecular species as indicated

by a large A_{280} peak appearing in fractions 26-36, which were pooled and assayed for protein concentration by A_{280} absorption. A total of 25 mg of Fab were generated using this standard protocol (purification yield = 50-60%). SDS-PAGE analysis of the Superdex 75 eluate revealed a single species with an apparent molecular weight of 47,000Da.

IEF analysis of the BC2 Fab sample revealed the presence of multiple isoelectric variants; the two major isoforms have apparent pI values of 8.9 and 7.35. These two species were separated using an ion exchange chromatography step which proved necessary and sufficient for obtaining usable crystals. The 25 mg SEC eluate was buffer exchanged by thorough and repeated dialysis against 20mM Tris, pH 9.2, concentrated to 5 mL in an Amicon cell, and loaded on a 1 mL Pharmacia Mono Q column, pre-equilibrated with buffer A (20mM Tris, pH 9.2). The column was washed with 10 mL buffer A, and no protein eluted in the flow through. Three protein species were eluted with a 0-15% gradient of buffer B (20mM Tris, pH 9.2, 1.0M NaCl) followed by a 15-100% gradient of buffer B, at a rate of 1.0mL/min. 1 mL fractions were collected. Fractions corresponding to the first (sharp) peak in the chromatogram were pooled, assayed for A280 absorption, buffer exchanged in an Amicon cell against 20mM HEPES, pH 7.4, concentrated to 8mg/mL and used for crystallization. Fractions from the other two peaks did not crystallize. The final yield of the protocol was approximately 36% (crystallizable fraction only).

20

25

30

5

10

15

Example 2

Crystallization of Fab Fragments

BC2 Fab: Protein isoform from peak 1 of the ion exchange step was crystallized using the vapor diffusion method in a sitting-drop setup. The well solution contained 14% PEG6K, 20mM ammonium sulfate (or 100mM LiCl), 10mM CaAc₂ and 200mM imidazole/HEPES, pH 7.0. The drops were prepared by mixing 3 µL of the well solution with 3 µL of protein solution (8mg/mL in 20mM HEPES, pH 7.0). Large orthorhombic crystals grew in 5 days at 21 °C to a size of 0.8x0.3x0.25 mm³. The crystals diffracted to 3.0 Å, in space group P21212, unit cell dimensions a=89.3, b=120.6, c=43.4 Å, and one molecule in the asymmetric unit.

SB249417 Fab: A similar sitting drop method was used. The well solution contained 30-40% saturated ammonium sulfate and 50mM MES, pH 6.0. The drops were prepared by mixing equal volumes of well solution and protein solution (10 mg/mL in 10 mM HEPES, pH 7.0). Large crystals grew in one week at 15 °C to a size of 0.6x0.4x0.3

mm³. The crystals diffracted to 2.2 Å, in space group P1, unit cell dimensions a=56.6, b=56.6, c=73.7 Å, α =86.0, β = 86.0, γ = 64.9°, and two molecules in the asymmetric unit.

Example 3

5

10

15

X-Ray Data Collection

X-ray diffraction data were collected on a MAR area detector mounted on a Rigaku high-brilliance source operated at 50 kV/100 mA with monochromatic CuK_{α} radiation in 1° oscillations frames. Data from three and two different crystals were collected, merged and used for structure determination of the BC2 Fab and SB249417 Fab, respectively. All data were processed using the HKL program, edition 4 (Otwinowski, 1993). Table 1 summarizes the data collection parameters.

For BC2, the merged data were used for structure determination, whereas structure refinement was done against a single-crystal data set with the best R-sym values. For SB249417, merged data were used for structure determination and refinement.

Table 1: Summary of X-ray Diffraction Data.

Parameter	<u>BC2</u>	<u>249417</u>
cell a,b,c (Å) alpha, beta, gamma	89.60, 120.69, 43.58 90.0, 90.0, 90.0 deg.	56.6, 56.6, 73.7 86.0, 86.0, 64.9 deg.
Resolution (Å)	3.0	2.2
Number of observed reflections	132,951	145,877
Number of unique reflections	12,211	21 122
-	,	21,122
mosaicity	0.16	0.22
(1/σ)	11.5	7.0
Completeness	99.7	99.9
% of data >2 σ	76.0	71.4
R-sym	0.12	0.07

Example 4

Structure Determinati n

The structures of the Fabs were determined using generalized molecular replacement methods following the standard protocol of Brünger (1991). The procedure includes a real-space cross-rotation Patterson search (Huber, 1985) followed by Patterson coefficient (PC) refinement (Brünger, 1990), a translation search, and finally rigid-body refinement. The X-PLOR program suite was used (Brünger, 1992) for all four steps.

A search model was constructed for BC2 from the PDB-deposited 1.9Å structures of two Fabs: the light chain model from murine IgG2a Fab that neutralizes human rhinovirus 14 (PDB entry 1FOR), and the heavy chain model from murine idiotype Fab 730.1.4 (PDB entry 1IAI). The two were combined by least-square fitting of the two-chain models. Sequence identity of the resulting probe with BC2 Fab is as follows:

 V_L 84% $C_L 100\%$ 15 V_H 84% C_{H1} 95%,

5

10

25

30

A similar search model was constructed for SB249417 from the PDB-deposited 3.0 Å humanized anti-CD18 antibody Fab fragment (PDB entry 2FGW). Sequence identity of the search model with SB249417 Fab is as follows:

In each model, residues different from those in the amino acid sequence of the Fab were mutated to alanine.

In the case of BC2, a cross-rotation search was done with this model which represents the entire asymmetric unit. Eulerian space was searched in the rotation-function's asymmetric unit $(0 \le \theta_1 < 2\pi, 0 \le \theta_2 \le \pi/2, 0 \le \theta_3 < \pi$, where θ_1 , θ_2 , θ_3 are the Eulerian angles as defined by Rossmann & Blow (1962)) with a constant increment of 2.5° in each dimension. Data in the resolution range 15.0-4.0 Å was used in this search. The top 6000 peaks of the rotation function (RF) were used for cluster analysis. The solutions of the rotation function were then subjected to PC refinement followed by rigid-body minimization of the solution with the highest PC value. The latter was done in three steps: 1) treating the entire molecular model as a rigid body, 2) treating the heavy chain and light

chain each as a rigid body and 3) treating the variable (V_H and V_L) and constant (C_{H1} and C_{L}) domains of each chain as a rigid body.

In the case of SB249417, an initial self-rotation search converged to a single solution representing a non-crystallographic two-fold axis defined by spherical angles psi, phi = 147, 0. A cross-rotation search $(0 \le \theta_1 < 2\pi, 0 \le \theta_2 \le \pi, 0 \le \theta_3 < 2\pi)$ was followed by PC refinement, resulting in two solutions, which were related by non-crystallographic symmetry.

5

10

15

20

Using the structure corresponding to the highest RF peak after PC refinement (one peak in the case of BC2 and two peaks related by NCS in the case of SB249417) and 15.0-4.0Å data, a translation search was carried out. For BC2, the search was restricted to half of the unit cell in all three dimensions. For SB249417, NCS was directly applied to the translation function solution to generate the other molecule in the P1 cell. For each Fab, the structure corresponding to the top solution of the translation function was then rigid-body refined as described above.

The rigid-body refined structure was then used to phase the reflections from a single-crystal data set, in the case of BC2, or merged data from multiple crystals in the case of SB249417. F₀-F_c and 2F₀-F_c electron density maps were calculated and inspected. The model was re-built to fit the map in the CDR regions and elsewhere using the true amino acid sequence of the Fab. The structures were refined using the simulated annealing protocols of X-PLOR (Brünger, 1992). Refinement parameters are summarized in Table 2.

Table 2:Structure Refinement Statistics

25

	Parameter	BC2	SB249417
5	Space group	P2 ₁ 2 ₁ 2	P1
	Observations (N)	47,643	145,877
	Unique reflections (N)	11,353	40,746
	R-sym (on I, %)	0.09	0.07
10	Average I/s	8.8	7.1
	Reflections use in refinement (N)	8469	36,628
	Completeness of refinement data	92.2	94.3
	Refinement resolution range (Å)	20.0-3.0	15.0-2.2
	Atoms used in refinement (N)	3157	6481
15	R _{cryst} (%)	22.0	23.0
	R _{free} (%)	29.0	27.9
	R.m.s. deviations from		
	standard values:		
	Bond length (Å)	0.019	0.014
20	Bond angles (deg.)	3.3	1.27
	Mean B-factor (Å ²)	29.0	27.3

Like all Fab fragments, BC2 and SB249417 Fab structures are made up of a tetrahedral array of four globular domains – V_L , V_H , C_L and C_{H1} – which follow the immunoglobulin fold. Each domain is constituted of two broad sheets of antiparallel β -strands held together by hydrophobic interactions. The CDR loops are ordered with varying temperature-factor values. The three-dimensional coordinates of the residues belonging to all six CDRs of BC2 and SB249417 are listed in Tables 3-8 and Tables 9-14, respectively. Figures 1-6 and 7-12 show the corresponding three dimensional structures.

70 11 2	PTTS 3.0 A	_	
I ADIA 4.	Three dimensi	noi	coordinates of
Audic J.	A ITI CC GIIIICIISI	_ IIai	COOLGINATES OF

	Table 5: Three dimensi hal coordinates of											
ł	HC	<u> </u>	DR	I (HC: A	<u> </u>	SN35)	from Bo	7.2				
I								72				
					x	У	z	Q B				
ATOM	2287	N	ASN	31	38.145	52.427	-13.427	1.00 48.47				
MOTA	2289	CA	ASN	31	37.357	53.503	-12.856	1.00 48.47				
MOTA	2290	CB	ASN	31	35.961		-13.477	1.00 49.47				
ATOM	2291	CG	ASN	31	35.742		-14.676	1.00 49.47				
ATOM	2292		ASN	31	36.684	52.260	-15.365	1.00 49.47				
ATOM	2293		ASN	31	34.477		-14.916	1.00 49.47				
ATOM	2296	С	ASN	31	37.231		-11.325	1.00 48.47				
MOTA	2297	0	asn	31	36.898		-10.776	1.00 49.47				
ATOM	2298	N	TYR	32	37.491		-10.636	1.00 55.29				
ATOM	2300	CA	TYR	32	37.341	52.392	-9.167	1.00 55.29				
ATOM	2301	CB	TYR	32	36.051	51.709	-8.737	1.00 25.46				
ATOM	2302	CG	TYR	32	34.839	51.959	-9.549	1.00 25.46				
ATOM	2303		TYR	32	34.842		-10.936	1.00 25.46				
ATOM	2304		TYR	32	33.672	51.848	-11.656	1.00 25.46				
MOTA	2305		TYR	32	33.642	52.198	-8.911	1.00 25.46				
MOTA	2306		TYR	32	32.466	52.244	-9.600	1.00 25.46				
MOTA	2307	CZ	TYR	32	32.475	52.071	-10.966	1.00 25.46				
ATOM	2308	ОН	TYR	32	31.269		-11.601	1.00 25.46				
ATOM	2310	С	TYR	32	38.442	51.679	-8.402	1.00 55.29				
ATOM	2311	0	TYR	32	38.845	50.570	-8.772	1.00 25.46				
ATOM	2312	N	GLY	33	38.774	52.229	-7.237	1.00 17.19				
ATOM	2314	CA	GLY	33	39.817	51.656	-6.405	1.00 17.19				
ATOM	2315	С	GLY	33	39.406	50.378	-5.697	1.00 17.19				
ATOM	2316	0	GLY	33	38.237	50.200	-5.296	1.00 65.52				
ATOM	2317	N	MET	34	40.382	49.487	-5.526	1.00 36.25				
MOTA	2319	CA	MET	34	40.143	48.215	-4.854	1.00 36.25				
ATOM	2320	CB	MET	34	40.888	47.087	-5.555	1.00 15.05				
ATOM	2321	CG	MET	34	40.667	45.723	-4.926	1.00 15.05				
MOTA	2322	SD	MET	34	38.944	45.396	-4.815	1.00 15.05				
MOTA	2323	CE	MET	34	38.703	44.674	-6.413	1.00 15.05				
MOTA	2324	С	MET	34	40.635	48.287	-3.430	1.00 36.25				
MOTA	2325	0	MET	34	41.514	49.072	-3.107	1.00 15.05				
MOTA	2326	N	ASN	35	40.072	47.454	-2.570	1.00 16.44				
MOTA	232B	CA	ASN	35	40.513	47.391	-1.182	1.00 16.44				
MOTA	2329	CB	ASN	35	39.359	47.668	-0.196	1.00 23.13				
MOTA	2330	CG	ASN	35	38.947	49.118	-0.149	1.00 23.13				
MOTA	2331	OD1	ASN	35	38.491	49.623	0.888	1.00 23.13				
MOTA	2332	ND2	ASN	35	39.065	49.793	-1.275	1.00 23.13				
ATOM	2335	С	ASN	35	41.038	45.954	-0.980	1.00 16.44				
ATOM	2336	0	ASN	35	41.058	45.182	-1.920	1.00 23.13				
							21720	1.00 63.13				

	HC	<u> </u>	DR2	(HC: 3	CRP50 - G		from B	
ATOM	2474	N	TRP	50	x 45.028	у 49.852	z -0.044	Q B 1.00 2.00
MOTA	2476	CA	TRP	50	44.159	50.501	-1.002	1.00 2.00
MOTA	2477	CB	TRP	50	44.044	51.944	-0.556	1.00 57.49
ATOM	2478	CG	TRP	50	42.874	52.695	-1.042	1.00 57.49
ATOM ATOM	2479 2480	CD2 CE2		50	42.803	53.588	-2.163	1.00 57.49
ATOM	2481	CE3	TRP	50 50	41.556 43.669	54.226	-2.120	1.00 57.49
ATOM	2482		TRP	50	41.703	53.919 52.803	-3.196 -0.412	1.00 57.49 1.00 57.49
ATOM	2483	NE1	TRP	50	40.904	53.723	-1.037	1.00 57.49
ATOM	2485		TRP	50	41.155	55.182	-3.058	1.00 57.49
MOTA MOTA	2486 2487	CZ3	TRP TRP	50	43.267	54.872	-4.132	1.00 57.49
ATOM	2488	C	TRP	50 50	42.033 44.923	55.486 50.556	-4.056	1.00 57.49
ATOM	2489	ŏ	TRP	50	46.141	50.436	-2.296 -2.292	1.00 2.00 1.00 57.49
ATOM	2490	N .		51	44.239	50.756	-3.407	1.00 2.58
ATOM	2492	CA	ILE	51	44.957	50.921	-4.652	1.00 2.58
ATOM ATOM	2493	CB	ILE	51	45.528	49.623	-5.217	1.00 4.23
ATOM	2494 2495		ILE	51 51	44.516	48.983	-6.161	1.00 4.23
ATOM	2496		ILE	51	46.800 47.581	49.968 48.788	-5.991 -6.481	1.00 4.23 1.00 4.23
ATOM	2497	С	ILE	51	44.113	51.616	-5.693	1.00 4.23 1.00 2.58
ATOM	2498	0	ILE	51	42.925	51.332	-5.854	1.00 4.23
MOTA	2499	N	ASN	52	44.738	52.546	-6.398	1.00 33.49
ATOM ATOM	2501 2502	CA CB	asn Asn	52 52	44.042	53.268	-7.441	1.00 33.49
ATOM	2503	CG	ASN	52	44.451 43.618	54.725 55.455	-7.525 -8.514	1.00 15.27 1.00 15.27
ATOM	2504		ASN	52	43.668	55.173	-9.715	1.00 15.27 1.00 15.27
ATOM	2505		ASN	52	42.740	56.301	-8.015	1.00 15.27
ATOM	2508	c	ASN	52	44.369	52.571	-8.732	1.00 33.49
ATOM ATOM	2509 2510	0	ASN	52	45.373	52.841	-9.404	1.00 15.27
ATOM	2510	N CA	THR THR	53 53	43.386	51.808 50.928	-9.129	1.00 16.45
MOTA	2513	CB	THR	53	43.414 42.142	50.928	-10.257 -10.205	1.00 16.45 1.00 42.20
ATOM	2514	OG1		53	41.089	51.138	-10.536	1.00 42.20
MOTA	2516		THR	53	41.936	49.718	-8.773	1.00 42.20
ATOM	2517	Č	THR	53	43.536		-11.656	1.00 16.45
ATOM ATOM	2518 2519	O N	THR ARG	53	42.981	50.923	-12.616	1.00 42.20
ATOM	2521	CA	ARG	54 54	44.229 44.366	52.583	-11.795 -13.107	1.00 50.54
ATOM	2522	СВ	ARG	54	43.377	54.373	-13.131	1.00 50.54 1.00 42.70
ATOM	2523	CG	ARG	54	43.078	54.966	-14.495	1.00 42.70
ATOM	2524	CD	ARG	54	43.317		-14.569	1.00 42.70
ATOM ATOM	2525 2527	NE CZ	ARG ARG	54 54	42.980	56.929	-15.921	1.00 42.70
ATOM	2528	NH1		54	43.854 45.163	57.134 56.985	-16.902 -16.697	1.00 42.70
ATOM	2531	NH2		54	43.407	57.341	-18.139	1.00 42.70 1.00 42.70
MOTA	2534	С	ARG	54	45.798	53.722	-13.122	1.00 50.54
ATOM	2535	0	ARG	54	46.453	53.897	-14.161	1.00 42.70
ATOM ATOM	2536	N	ASN	55	46.349	53.636	-11.933	1.00 22.51
ATOM	2538 2539	CA CB	asn asn	55 55	47.588 47.182	54.260	-11.622	1.00 22.51
ATOM	2540	CG	ASN	55	48.043	55.219 56.422	-10.536 -10.448	1.00 62.29 1.00 62.29
ATOM	2541	OD1	ASN	55	48.996	56.618	-11.205	1.00 62.29 1.00 62.29
ATOM	2542	ND2		55	47.679	57.279	-9.517	1.00 62.29
ATOM ATOM	2545	C	ASN	55	48.594		-11.040	1.00 22.51
ATOM	2546 2547	O N	ASN GLY	55 56	49.771		-11.369	1.00 62.29
ATOM	2549	CA	GLY	56	48.129 49.031	52.529 51.639	-10.088 -9.397	1.00 49.54
ATOM	2550	c	GLY	56	49.476	52.347	-8.124	1.00 49.54 1.00 49.54
MOTA	2551	0	GLY	56	50.042	51.719	-7.214	1.00 47.80
ATOM	2552	N	LYS	57	49.244	53.661	-8.044	1.00 54.37
ATOM ATOM	2554 2555	CA	LYS	57	49.608	54.400	-6.833	1.00 54.37
ATOM	2556	CB CG	LYS LYS	57 57	49.354 50.526	55.911 56.635	-6.963	1.00 38.06
ATOM	2557	CD	LYS	57	50.326	58.024	-7.654 -8.266	1.00 38.06 1.00 38.06
ATOM	2558	CE	LYS	57	50.217	59.176	-7.281	1.00 38.06
ATOM	2559	NZ	LYS	57	51.151	60.258	-7.772	1.00 38.06
ATOM	2563	C	LYS	57 57	48.819	53.662	-5.761	1.00 54.37
atom Atom	2564 2565	O N	LYS SER	57 59	47.726	53.131	-6.030	1.00 38.06
ATOM	2567	CA	SER	58 58	49.419 48.887	53.582	-4.581	1.00 54.98
ATOM	2568	CB	SER	58	49.664	52.742 51.452	-3.525 -3.702	1.00 54.98 1.00 58.93
MOTA	2569	OG	SER .		51.012	51.786	-4.083	1.00 58.93
ATOM	2571	C	SER	58	49.025	53.181	-2.050	1.00 54.98
ATOM ATOM	2572	0	SER	58	50.106	53.608	-1.630	1.00 58.93
ATOM	2573 2575	N CA	THR THR	59 59	47.982	52.953	-1.247	1.00 34.76
ATOM	2576	CB	THR	59	47.991 46.808	53.360 54.265	0.163 0.424	1.00 34.76

	-		-					
				Cor	nt./ Table		ė	
ATOM	2577		THR	59	x 46.669	y 55.185	z -0.672	Q B 1.00 50.04
ATOM ATOM	2579 2580	CG2 C	THR	59	47.012	55.055	1.720	1.00 50.04
ATOM	2581	ò	THR	59 59	47.812 46.880	52.183 51.425	1.085 0.888	1.00 34.76 1.00 50.04
ATOM	2582	N	TYR	60	48.648	52.037	2.111	1.00 30.04
MOTA MOTA	2584 2585	CA CB	TYR TYR	60	48.543	50.877	3.040	1.00 21.76
ATOM	2586	CG	TYR	60 60	49.768 50.373	49.964 49.642	2.990 1.661	1.00 21.25 1.00 21.25
MOTA	2587		TYR	60	49.743	49.934	0.468	1.00 21.25
ATOM ATOM	2588 2589		TYR TYR	60 60	50.336	49.623	-0.751	1.00 21.25
ATOM	2590		TYR	60	51.614 52.191	49.022 48.699	1.600 0.407	1.00 21.25 1.00 21.25
ATOM	2591	CZ	TYR	60	51.557	49.000	-0.763	1.00 21.25
MOTA MOTA	2592 2594	C OH	TYR TYR	60 60	52.147	48.629	-1.923	1.00 21.25
MOTA	2595	ŏ	TYR	60	48.452 49.056	51.284 52.274	4.495 4.882	1.00 21.76 1.00 21.25
ATOM	2596	N	VAL	61	47.793	50.459	5.307	1.00 2.00
MOTA MOTA	2598 2599	CA CB	VAL VAL	61 61	47.636	50.717	6.748	1.00 2.00
MOTA	2600	CG1		61	46.724 47.388	49.642 49.056	7.436 8.727	1.00 36.32 1.00 36.32
ATOM	2601	CG2	VAL	61	45.318	50.258	7.783	1.00 36.32
MOTA MOTA	2602 2603		VAL VAL	61 61	48.997	50.684	7.395	1.00 2.00
ATOM	2604		ASP	62	49.909 49.126	50.132 51.225	6.812 8.610	1.00 36.32 1.00 69.13
ATOM	2606		ASP	62	50.439	51.226	9.291	1.00 69.13
ATOM ATOM	2607 2608		ASP ASP	62 62	50.443	52.071	10.580	1.00 34.42
ATOM	2609	OD1		62	50.989 51.241	53.499 54.198	10.376 11.375	1.00 34.42 1.00 34.42
ATOM	2610	OD2	ASP	62	51.149	53.950	9.218	1.00 34.42
ATOM ATOM	2611 2612		ASP ASP	62 62	51.020	49.843	9.620	1.00 69.13
ATOM	2613		ASP	63	52.212 50.219	49.614 48.932	9.403 10.176	1.00 34.42 1.00 37.05
ATOM	2615		ASP	63	50.841	47.653	10.476	1.00 37.05
ATOM ATOM	2616 2617		ASP ASP	63 63	50.404 49.130	47.047	11.818	1.00 31.00
MOTA	2618		ASP	63	49.206	47.638 48.353	12.344 13.380	1.00 31.00 1.00 31.00
ATOM ATOM	2619		ASP	63	48.083	47.396	11.705	1.00 31.00
ATOM	2620 2621		ASP ASP	63 63	50.729 50.195	46.662 45.574	9.365 9.558	1.00 37.05
ATOM	2622	N	PHE	64	51.151	47.070	8.179	1.00 31.00 1.00 9.67
ATOM ATOM	2624 2625		PHE	64	51.163	46.178	7.041	1.00 9.67
ATOM	2626		PHE PHE	64 64	49.824 48.767	46.205 45.403	6.333	1.00 25.09
ATOM	2627	CD1	PHE	64	47.897	45.403	7.020 7.930	1.00 25.09 1.00 25.09
MOTA MOTA	2628 2629		PHE	64	48.641	44.050	6.761	1.00 25.09
ATOM	2630		PHE PHE	64 64	46.931 47.666	45.264 43.294	8.573 7.403	1.00 25.09 1.00 25.09
ATOM	2631	CZ	PHE	64	46.805	43.902	8.312	1.00 25.09 1.00 25.09
ATOM ATOM	2632 2633		PHE PHE	64	52.293	46.600	6.112	1.00 9.67
ATOM	2634	_	LYS	64 65	52.075 53.521	46.831 46.632	4.923 6.649	1.00 25.09 1.00 35.36
MOTA	2636	CA	LYS	65	54.705	47.077	5.895	1.00 35.36
ATOM ATOM	2637 2638		LYS	65	55.323	48.312	6.556	1.00 32.71
ATOM	2639		LYS LYS	65 65	54.338 53.444	49.329 49.804	7.073 5.960	1.00 32.71 1.00 32.71
MOTA	2640	CE	LYS	65	54.174	50.709	5.006	1.00 32.71
MOTA MOTA	2641 2645		LYS LYS	65 65	53.726	52.139	5.153	1.00 32.71
ATOM	2646		LYS	65	55.847 56.414	46.104 45.574	5.692 6.651	1.00 35.36 1.00 32.71
ATOM	2647	N	GLY	66	56.262	45.981	4.431	1.00 89.30
MOTA MOTA	2649 2650		GLY GLY	66 66	57.401	45.142	4.072	1.00 89.30
ATOM	2651		GLY	66	57.055 57.389	44.153 44.293	2.973 1.781	1.00 89.30 1.00 46.24
					37.309	44.473	1./81	1.00 45.24

	T	`abl	5.1	Three d	imensi na	l coord	ingtes o	ę
	HC	- C	DR3	MC: C	<u> </u>	VR110)	from P	<u>1</u> 2€2
l					×	У	Z	Q B
ATOM ATOM	2965 2967	N CA	GLU	99 99	35.523 34.886	49.858	-3.257	1.00 25.76
ATOM	2968	CB	GLU	99	35.928	51.032 51.777	-2.668 -1.791	1.00 25.76 1.00 63.63
ATOM	2969	CG	GLU	99	35.878	53.373	-1.706	1.00 63.63
ATOM ATOM	2970 2971	CD	GLU	99 99	37.307	54.052	-1.532	1.00 63.63
ATOM	2972		GLU	. 99	38.278 37.460	53.384 55.269	-1.090 -1.828	1.00 63.63 1.00 63.63
ATOM	2973	С	GLU	99	34.507	51.829	-3.943	1.00 25.76
ATOM ATOM	2974 2975	0	GLU	99	35.321	51.930	-4.866	1.00 63.63
ATOM	2977	N CA	GLY GLY	100 100	33.234 32.814	52.203 52.965	-4.085 -5.257	1.00 36.41 1.00 36.41
ATOM	2978	C	GLY	100	31.914	54.127	-4.831	1.00 36.41 1.00 36.41
ATOM	2979	0	GLY	100	31.060	53.923	-3.995	1.00 41.46
ATOM ATOM	2980 2982	N CA	ASN ASN	101 101	31.966	55.277	-5.502	1.00 33.66
ATOM	2983	СВ	ASN	101	31.196 31.810	56.434 57.744	-5.060 -5.534	1.00 33.66 1.00 24.12
ATOM	2984	CĢ	ASN		32.059	58.676	-4.388	1.00 24.12
ATOM ATOM	2985 2986		ASN	101	31.122	59.065	-3.700	1.00 24.12
ATOM	2989	C	asn asn	101 101	33.320 29.689	58.941 56.506	-4.099 -5.183	1.00 24.12 1.00 33.66
ATOM	2990	ō	ASN	101	29.117	56.182	-6.233	1.00 33.88
ATOM ATOM	2991	N	MET	102	29.083	57.024	-4.102	1.00 83.69
ATOM	2993 2994	CA CB	MET MET	102 102	27.625 26.730	57.284 56.030	-3.908 -4.143	1.00 83.69
MOTA	2995	CG	MET	102	25.270	56.204	-3.635	1.00 59.11 1.00 59.11
ATOM	2996	SD	MET	102	23.981	55.029	-4.261	1.00 59.11
MOTA MOTA	2997 2998	CE	MET MET	102	22.477	56.146	-4.344	1.00 59.11
ATOM	2999	0	MET	102 102	27.430 27.367	57.829 57.011	-2.459 -1.513	1.00 83.69 1.00 59.11
ATOM	3000	N	ASP	103	27.313	59.177	-2.335	1.00 81.57
MOTA MOTA	3002	CA	ASP	103	27.125	59.990	-1.086	1.00 B1.57
ATOM	3003 3004	CB	ASP ASP	103 103	26.625 26.176	59.139 59.987	0.117	1.00 22.70
ATOM	3005		ASP	103	26.907	60.892	1.343 1.813	1.00 22.70 1.00 22.70
ATOM	3006		ASP	103	25.106	59.666	1.902	1.00 22.70
ATOM ATOM	3007 3008	С 0	ASP ASP	103 103	28.446	60.681	-0.759	1.00 81.57
MOTA	3009	N	GLY	103	28.961 28.984	60.589 61.379	0.366 -1.761	1.00 22.70 1.00 86.53
MOTA	3011	CA	GLY	104	30.272	62.065	-1.608	1.00 86.53
ATOM ATOM	3012 3013	C	GLY	104	31.473	61.122	-1.460	1.00 86.53
ATOM	3013	N	GLY TYR	104 105	32.234 31.716	60.889 60.669	-2.412 -0.228	1.00 46.20 1.00 98.58
ATOM	3016	CA	TYR	105	32.808	59.688	0.036	1.00 98.58
ATOM	3017	CB	TYR	105	33.017	59.412	1.557	1.00 64.10
MOTA MOTA	3018 3019	CG	TYR TYR	105 105	33.326 34.643	60.523 60.884	2.585 2.881	1.00 64.10
ATOM	3020	CE1		105	34.952	61.681	3.977	1.00 64.10 1.00 64.10
ATOM	3021	CD2		105	32.318	61.015	3.435	1.00 64.10
ATOM ATOM	3022 3023	CE2	TYR TYR	105 105	32.620 33.936	61.810	4.531	1.00 64.10
ATOM	3024	ОН	TYR	105	34.269	62.128 62.843	4.802 5.920	1.00 64.10 1.00 64.10
MOTA	3026	C	TYR	105	32.256	58.342	-0.529	1.00 98.58
MOTA MOTA	3027 3028	N O	TYR	105 106	31.153	58.311	-1.096	1.00 64.10
MOTA	3030	CA	PHE	106	32.944 32.570	57.243 55.829	-0.170 -0.484	1.00 48.28 1.00 48.28
ATOM	3031	СВ	PHE	106	32.058	55.183	0.800	1.00 53.07
ATOM ATOM	3032 3033	CG	PHE PHE	106	30.689	55.652	1.196	1.00 53.07
ATOM	3034		PHE	106 106	30.486 29.597	56.963 54.794	1.576 1.117	1.00 53.07 1.00 53.07
ATOM	3035	CEl	PHE	106	29.255	57.405	1.875	1.00 53.07
MOTA MOTA	3036 3037		PHE	106	28.347	55.232	1.414	1.00 53.07
ATOM	3037	CZ C	PHE PHE	106 106	28.161 31.498	56.548 55.596	1.791 -1.605	1.00 53.07
ATOM	3039	ŏ	PHE	106	31.316	56.481	-2.420	1.00 48.28 1.00 53.07
ATOM	3040	N	PRO	107	30.807	54.401	-1.651	1.00 76.34
ATOM ATOM	3041 3042	CD CA	PRO PRO	107 107	29.472 30.633	54.859	-2.148	1.00 42.84
ATOM	3043	CB	PRO	107	29.321	53.080 52.561	-0.965 -1.567	1.00 76.34 1.00 42.84
ATOM	3044	CG	PRO	107	28.479	53.811	-1.600	1.00 42.84
ATOM	3045	С	PRO	107	31.730	51.933	-0.822	1.00 76.34

j				<u>C</u> 1	nt./ Table	5		
					х	– _v	z	Q B
ATOM	3046	0	PRO	107	32.951	52.163	-0.993	1.00 42.84
MOTA	3047	N	PHE	108	31.227	50.700	-0.638	1.00 52.21
MOTA	· 3049	CA	PHE	108	31.951	49.437	-0.323	1.00 52.21
MOTA	3050	CB	PHE	108	31.919	49.332	1.174	1.00 28.72
MOTA	3051	CG	PHE	108	30.743	50.065	1.736	1.00 28.72
ATOM	3052	CD1	PHE	108	30.900	51.325	2.267	1.00 28.72
MOTA	3053	CD2	PHE	108	29.464	49.611	1.445	1.00 28.72
MOTA	3054	CE1	PHE	108	29.788	52.112	2.467	1.00 28.72
MOTA	3055	CE2	PHE	108	28.351	50.384	1.636	1.00 28.72
MOTA	3056	CZ	PHE	108	28.508	51.635	2.135	1.00 28.72
MOTA	3057	С	PHE	108	30.973	48.375	-0.826	1.00 52.21
MOTA	3058	0	PHE	108	30.487	47.516	-0.077	1.00 28.72
ATOM	3059	N	THR	109	30.699	48.439	-2.115	1.00 26.26
ATOM	3061	CA	THR	109	29.735	47.613	-2.797	1.00 26.26
ATOM	3062	CB	THR	109	29.620	48.129	-4.186	1.00 36.21
ATOM	3063	0G1	THR	109	30.948	48.431	-4.661	1.00 36.21
MOTA	3065	CG2	THR	109	28.723	49.376	-4.229	1.00 36.21
ATOM	3066	Ç	THR	109	29.831	46.122	-2.998	1.00 26.26
ATOM	3067	0	THR		28.942	45.377	-2.617	1.00 36.21
ATOM	3068	N	TYR	110	30.817	45.735	-3.796	1.00 20.44
MOTA	3070	CA	TYR	110	31.000	44.328	-4.171	1.00 20.44
ATOM	3071	CB	TYR	110	30.912	44.207	-5.686	1.00 60.15
MOTA	3072	CG	TYR	110	29.897	45.158	-6.284	1.00 60.15
MOTA	3073	CD1	TYR	110	28.578	45.154	-5.841	1.00 60.15
MOTA	3074	CE1	TYR	110	27.628	45.978	-6.424	1.00 60.15
ATOM	3075	CD2	TYR	110	30.246	46.025	-7.321	1.00 60.15
ATOM	3076	CE2	TYR	110	29.315	46.848	-7.903	1.00 60.15
MOTA	3077	CZ	TYR	110	27.998	46.822	-7.470	1.00 60.15
MOTA	3078	ОН	TYR	110	27.074	47.577	-8.158	1.00 60.15
MOTA	3080	C	TYR	110	32.284	43.665	-3.691	1.00 20.44
ATOM	3081	0	TYR	110	33.283	43.680	-4.404	1.00 60.15

	Table 6: Three dimensional coordinates of											
İ	LO	2 - C	DR1	(LC: A	RG24 - H	IIS33) f	rom BC	2				
1					х	У	Z		В			
ATOM	199	N	ARG	24	31.034	53.669	19.975	1.00	35.70			
MOTA	201	CA	ARG	24	31.810	54.840	20.383		35.70			
MOTA	202	CB	ARG	24	32.226	54.801	21.876	1.00 4				
ATOM	203	CG	ARG	24	31.253	54.267	22.939	1.00 4				
MOTA	204	CD	ARG	24	31.676	54.727	24.383	1.00 4				
ATOM	205	NE	ARG	24	33.056	54.377	24.755	1.00 4				
MOTA	207	CZ	ARG	24	33.426	53.850	25.931	1.00 4				
MOTA	208	NH1	ARG	24	32.531	53.605	26.891	1.00	13.83			
MOTA	211		ARG	24	34.697	53.526	26.132	1.00				
MOTA	214	C	ARG	24	33.123	54.991	19.621	1.00	35.70			
MOTA	215	0	ARG	24	33.959	54.092	19.630	1.00 4	13.83			
MOTA	216	N	ALA	25	33.326	56.123	18.974	1.00	32.87			
ATOM	218	CA	ALA	25	34.622	56.346	18.320	1.00 8	32.87			
MOTA	219	CB	ALA	25	34.436	57.225	17.056	1.00	37.02			
MOTA	220	C	ALA	25	35.461	57.105	19.369	1.00	82.87			
ATOM	221	0	ALA	25	34.882	57.853	20.152	1.00	37.02			
ATOM	222	N	SER	26	36.786	56.920	19.422	1.00	44.67			
ATOM	224	CA	SER	26	37.565	57.688	20.410	1.00	14.67			
ATOM	225	CB	SER	26	39.000	57.177	20.557	1.00	4.82			
ATOM	226	OG	SER	26	39.698	57.261	19.336	1.00	4.82			
ATOM	228	С	SER	26	37.582	59.186	20.040	1.00	14.67			
MOTA	229	0	SER	26	37.708	60.047	20.912	1.00	4.82			
MOTA	230	N	SER	27	37.430	59.501	18.755	1.00	27.16			
MOTA	232	CA	SER	27	37.462	60.916	18.351	1.00	27.16			
ATOM	233	CB	SER	27	38.837	61.282	17.765	1.00	37.32			
MOTA	234	OG	SER	27	39.886	61.091	18.724	1.00	37.32			
ATOM	236	С	SER	27	36.374	61.225	17.362	1.00				
ATOM	237	0	SER	27	35.718	60.310	16.860	1.00				
ATOM	238	N	SER	28	36.185	62.501	17.060	1.00	32.79			
MOTA	240	CA	SER	28	35.117	62.876	16.134		32.79			
ATOM	241	СВ	SER	28	34.817	64.378	16.238	1.00				
ATOM	242	OG	SER	28	34.248	64.686	17.509	1.00				
ATOM	244	C	SER	28	35.316	62.487	14.671	1.00				
MOTA	245	0	SER	28	36.334	62.847	14.060	1.00	44.89			

				Cor	t./ Table	<u>6</u>		
ATOM	246	.,			×	у	z	Q B
ATOM	248	N CA	VAL	29	34.333	61.749	14.132	1.00 25.47
ATOM	249	CB	VAL	29	34.322	61.309	12731	1.00 25.47
ATOM	250		VAL VAL	29	34.592	59.832	12.597	1.00 6.08
ATOM	251		VAL	29	33.479	59.053	13.249	1.00 6.08
	252			29	34.735	59.486	11.152	1.00 6.08
ATOM ATOM	253	c	VAL	29	32.990	61.664	12.049	1.00 25.47
ATOM	254	O N	VAL	29	31.974	61.820	12.715	1.00 6.08
ATOM	256	CA	ASN ASN	30	32.994	61.694	10.711	1.00 14.73
ATOM	257			30	31.843	62.139	9.908	1.00 14.73
ATOM	258	CB	ASN ASN	30	32.372	62.765	8.606	1.00 54.87
ATOM	259	CG		30	33.253	64.006	8.853	1.00 54.87
ATOM	260		ASN ASN	30	33.627	64.730	7.915	1.00 54.87
ATOM	263	C ND2	ASN	30	33.581	64.265	10.123	1.00 54.87
ATOM	264	0	ASN	30 30	30.530	61.380	9.587	1.00 14.73
ATOM	265	N	TYR	31	29.515	62.046	9.304	1.00 54.87
ATOM	267	CA	TYR	31	30.508	60.040	9.619	1.00 32.69
ATOM	268	CB			29.296	59.231	9.272	1.00 32.69
ATOM	269	CG	TYR	31	28.842	59.474	7.827	1.00 35.47
ATOM	270	CD1	TYR	31 31	29.807	58.968	6.782	1.00 35.47
ATOM	271	CE1	TYR TYR		29.369	58.639	5.509	1.00 35.47
ATOM	272	CD2	TYR	31 31	30.253	58.276	4.526	1.00 35.47
ATOM	273	CE2	TYR	31	31.180	58.883	7.021	1.00 35.47
ATOM	274	CZ	TYR	31	32.065	58.497	6.034	1.00 35.47
ATOM	275	OH			31.597	58.200	4.776	1.00 35.47
ATOM	277	C	TYR	31	32.441	57.819	3.774	1.00 35.47
ATOM	278	ò	TYR	31 31	29.598	57.764	9.380	1.00 32.69
ATOM	279	N	TYR MET		30.758	57.393	9.362	1.00 35.47
ATOM	281	CA	MET	32	28.582	56.902	9.311	1.00 32.43
ATOM	282	CB	MET	32	28.871	55.457	9.421	1.00 32.43
ATOM	283	CG	MET	32	28.762	54.944	10.841	1.00 25.19
ATOM	284	SD	MET	32	30.091	54.566	11.416	1.00 25.19
MOTA	285	CE		32	29.802	53.661	12.911	1.00 25.19
ATOM	286		MET	32	30.987	54.323	14.048	1.00 25.19
ATOM	287	C	MET	32	28.286	54.415	8.494	1.00 32.43
ATOM	288	0 N	HIS	32 33	27.156	54.486	8.031	1.00 25.19
ATOM	290	CA	HIS		29.094	53.397	8.266	1.00 41.58
ATOM	290	CB	HIS	33	28.729	52.285	7.411	1.00 41.58
ATOM	291	CG		33	29.763	52.135	6.303	1.00 27.09
ATOM	292	CD2		· 33	29.889	53.329	5.438	1.00 27.09
ATOM	294	ND1			28.963	54.054	4.784	1.00 27.09
ATOM	294	CE1		33	31.084	53.947	5.213	1.00 27.09
ATOM	290	NE2		33	30.912	55.005	4.445	1.00 27.09
ATOM	297			33	29.619	55.085	4.178	1.00 27.09
ATOM	300	C O	HIS	33	28.741	51.040	8.265	1.00 41.58
ATOM	200		HIS	33	29.751	50.763	8.934	1.00 27.09

		'abl-	7. 1	Chan di		1		r
					mensiona			ľ
1		LC -	CD	R2 (AL	<u> A49 - SEI</u>	<u> 155) fro</u>	m BC2	
1					X			ОВ
ATOM	462	N	ALA	49	26.073	y 55.473	. Z 5.034	Q B
ATOM	464	CA	ALA	49	25.852	56.839	5.537	1.00 33.29
ATOM	465	CB	ALA	49	25.280	57.702	4.416	1.00 20.38
ATOM	466	C	ALA	49	24.957	56.935	6.776	1.00 33.29
ATOM	467	0.	ALA	49	23.917	57.578	6.722	1.00 20.38
ATOM	.468	N	THR	50	25.356	56.269	7.854	1.00 27.27
MOTA	470	CA	THR	50	24.647	56.254	9.128	1.00 27.27
ATOM	471	CB	THR	50	24.727	57.596	9.824	1.00 38.91
MOTA	472	OG1		50	26.101	57.970	9.914	1.00 38.91
ATOM	474	CG2		50	24.118	57.496	11.237	1.00 38.91
MOTA	475	C	THR	50	23.205	55.813	9.182	1.00 27.27
MOTA	476	0	THR	50	22.882	54.921	9.943	1.00 38.91
ATOM	477	N	SER	51	22.320	56.513	8.481	1.00 17.32
ATOM	479	CA	SER	51	20.912	56.148	8.500	1.00 17.32
ATOM	480	CB	SER	51	20.080	57.295	9.084	1.00 61.11
ATOM	481	OG	SER	51	20.699	57.780	10.281	1.00 61.11
ATOM	483	C	SER	51	20.422	55.717	7.121	1.00 17.32
ATOM	484	0	SER	51	19.258	55.405	6.945	1.00 61.11
ATOM	485	N	ASN	52	21.304	55.713	6.139	1.00 28.10
ATOM	487	CA	ASN	52	20.921	55.255	4.809	1.00 28.10
ATOM	488 489	CB	ASN	52	21.851	55.873	3.788	1.00 33.84
ATOM	499	CG OD1	ASN	52	21.631	57.348	3.607	1.00 33.84
ATOM	491			52 52	20.881	58.004	4.349	1.00 33.84
ATOM	494	C	ASN ASN	52 52	22.323	57.893	2.620	1.00 33.84
ATOM	495	ŏ	ASN	52 52	20.954	53.713	4.650	1.00 28.10
ATOM	496	N	LEU	53	22.032 19.797	53.113 53.084	4.686	1.00 33.84
ATOM	498	CA	LEU	53	19.714	51.607	4.392	1.00 46.86
ATOM	499	CB	LEU	53	18.296	51.079		1.00 46.86
ATOM	500	CG	LEU	53	17.803	51.079	4.477 5.911	1.00 14.22
ATOM	501		LEU	53	16.468	50.481	6.075	1.00 14.22 1.00 14.22
ATOM	502		LEU	÷3	18.826	50.577	6.823	1.00 14.22
ATOM	503	c	LEU	.3	20.224	51.072	2.880	1.00 14.22
ATOM	504	õ	LEU	53	20.184	51.769	1.857	
ATOM	505	Ň	ALA	54	20.731	49.838	2.911	1.00 14.22 1.00 41.00
ATOM	507	CA	ALA	54	21.272	49.153	1.737	1.00 41.00
ATOM	508	CB	ALA	54	22.309	48.157	2.174	1.00 26.54
ATOM	509	Č	ALA	54	20.166	48.465	0.946	1.00 41.00
ATOM	510	ō	ALA ·		19.073	48.220	1.460	1.00 26.54
ATOM	511	N	SER	55	20.480	48.052	-0.272	1.00 19.96
MOTA	513	CA	SER	55	19.452	47.470	-1.097	1.00 19.96
ATOM	514	CB	SER	55	19.787	47.612	-2.576	1.00 64.54
MOTA	515	OG	SER	55	18.587	47.553	-3.340	1.00 64.54
ATOM	517	С	SER	55	19.037	46.060	-0.792	1.00 19.96
MOTA	518	0	SER	55	19.652	45.088	-1.257	1.00 64.54

Table 8:	Three	dimens	innal cons	dinates of LC	-CDR3(GI NRR	THRES) from
			-0144 000	BC2	<u> </u>	OZZ 100	ALADO/HUM
				х	y	z	QB
ATOM ATOM	803 805		LN 88	31.968	y 50.434	10.331	1.00 11.01
ATOM	806		LN 88 LN 88	33.222 33.420	50.903 50.334	9.776 8.398	1.00 11.01 1.00 23.74
MOTA	807	CG G	LN 88	34.485	50.965	7.564	1.00 23.74
ATOM	808		LN 88	33.951	51.156	6.176	1.00 23.74
MOTA ATOM	809 810	OE1 G	LN 88 LN 88	32.768 34.780	51.520 50.887	6.006 5.164	1.00 23.74 1.00 23.74
ATOM	813		LN 88	33.131	52.420	9.743	1.00 23.74 1.00 11.01
MOTA	814		LN 88	32.034	52.987	9.802	1.00 23.74
MOTA MOTA	815 817		LN 89	34.289 34.453	53.063 54.515	9.641	1.00 22.56
ATOM	818		LN 89	35.447	54.806	9.651 10.813	1.00 22.56 1.00 21.80
ATOM	819		LN 89	36.354	56.035	10.763	1.00 21.80
ATOM ATOM	820 821	CD G	LN 89 LN 89	37.702 37.886	55.805	10.084	1.00 21.80
ATOM	822	NE2 G		38.650	56.146 55.247	8.907 10.817	1.00 21.80 1.00 21.80
ATOM	825		LN 89	34.989	54.900	8.266	1.00 22.56
ATOM ATOM	826 827		LN 89 RP 90	35.529	54.045	7.606	1.00 21.80
ATOM	829		RP 90	34.781 35.345	56.120 56.493	7772 6.449	1.00 27.74 1.00 27.74
ATOM	830	CB T	RP 90	34.369	56.131	5.308	1.00 90.21
ATOM ATOM	831 832	CG T	RP 90	34.940	55.660	3.942	1.00 90.21
ATOM	832		RP 90 RP 90	35.677 35.840	56.438 55.671	3.003 1.829	1.00 90.21 1.00 90.21
MOTA	834	CE3 T	RP 90	36.214	57.722	3.022	1.00 90.21
MOTA MOTA	835	CD1 T		34.714	54.453	3.320	1.00 90.21
ATOM	836 838	NE1 T		35.249 36.510	54.456 56.156	2.041 0.702	1.00 90.21 1.00 90.21
ATOM	839	CZ3 T		36.884	58.194	1.890	1.00 90.21
ATOM	840		RP 90	37.019	57.413	0.752	1.00 90.21
MOTA MOTA	841 842		RP 90 RP 90	35.614 34.962	57.999 58.721	6.437 5.694	1.00 27.74 1.00 90.21
ATOM	843		ER 91	36.590	58.456	7.236	1.00 90.21 1.00 33.90
ATOM	845		ER 91	36.919	59.882	7.305	1.00 33.90
ATOM ATOM	846 847		ER 91 ER 91	35.972 34.617	60.566 60.159	8.290	1.00 33.23
ATOM	849		ER 91	38.345	60.167	8.093 7.787	1.00 33.23 1.00 33.90
ATOM	850		ER 91	38.725	61.333	7.955	1.00 33.23
ATOM ATOM	851 853		LE 92 LE 92	39.144	59.128	7.999	1.00 2.00
ATOM	854		LE 92	40.460 40.486	59.355 58.910	8.562 10.044	1.00 2.00 1.00 6.47
ATOM	855	CG2 I	LE 92	41.380	59.809	10.888	1.00 6.47
MOTA MOTA	856 857	CG1 I		39.063 38.423	58.849	10.607	1.00 6.47
ATOM	858		LE 92	41.495	60.168 58.514	10.911 7.947	1.00 6.47 1.00 2.00
ATOM	859	0 I	LE 92	41.199	57.590	7.204	1.00 6.47
MOTA MOTA	860 862		SN 93 SN 93	42.732	58.864	8.266	1.00 50.27
ATOM	863		SN 93	43.854 45.208	58.038 58.800	7.897 7.682	1.00 50.27 1.00 86.79
ATOM	864	CG A	SN 93	46.486	57.828	7.455	1.00 86.79
ATOM ATOM	865 866	OD1 A ND2 A		47.427 46.515	57.772 57.093	8.308	1.00 86.79 1.00 86.79
ATOM	869		SN 93	43.951	57.245	6.321 9.226	1.00 86.79 1.00 50.27
ATOM	870	0 A	SN 93	43.982	57.844	10.306	1.00 86.79
ATOM ATOM	871 872		RO 94 RO 94	43.557 44.264	55.965 54.985	9.198 10.018	1.00 31.00
ATOM	873		RO 94	43.071		7.987	1.00 20.78 1.00 31.00
ATOM	874	CB P	RO 94	43.911	54.060	7.900	1.00 20.78
MOTA MOTA	875 876		RO 94 RO 94	45.051 41.636	54.288	8.974	1.00 20.78
ATOM	877		RO 94	41.636 41.243	55.034 55.377	8.421 9.550	1.00 31.00 1.00 20.78
ATOM	878	N A	RG 95	40.833	54.492	7.530	1.00 12.98
MOTA MOTA	880 881		RG 95 RG 95	39.478	54.164	7.925	1.00 12.98
ATOM	882		RG 95	38.592 39.316	54.022 53.550	6.711 5.504	1.00 25.66 1.00 25.66
ATOM	883	CD A	RG 95	38.629	54.020	4.254	1.00 25.66
ATOM ATOM	884		RG 95	39.628	54.435	3.283	1.00 25.66
ATOM	886 887	CZ A	RG 95 RG 95	39.431 38.274	54.489 54.150	1.973 1.454	1.00 25.66 1.00 25.66
ATOM	890	NH2 A	RG 95	40.412	54.885	1.183	1.00 25.66
ATOM ATOM	893		RG 95	39.599	52.868	8.709	1.00 12.98
ATOM	894 895		RG 95 HR 96	40.633 38.605	52.213 52.532	8.651 9.520	1.00 25.66 1.00 14.80
				30.000			11.00

				Co	nt./Table	8		
ATOM ATOM ATOM ATOM ATOM	898 899 901 902 903	CB OG1 CG2 C	THR THR THR THR THR	96 96 96 96	39.459 38.718 40.908 37.365 36.340	51.542 52.498 52.045 50.730 51.326	11.670 12.439 11.476 10.607 10.292	1.00 36.32 1.00 36.32 1.00 36.32 1.00 14.80 1.00 36.32

ļ	_		Tab	29: Thre	e dimensio	nal conno	inates of		_
		F			N31 - ASP			17	
ATOM	2300	N -	ASN	31	53.647	23.490	34.881	1.00 20.53	
ATOM	2302	CA	ASN	31	54.400	24.257	33.887	1.00 20.53	
ATOM	2303	CB	ASN	31	53.820	25.666	33.715	1.00 20.33	
ATOM	2304	CG	ASN	31	53.118	25.859	32.376	1.00 39.50	
ATOM	2305	OD1	ASN	31	53.469	25.236	31.370	1.00 39.50	
ATOM	2306	ND2	ASN	31	52.128	26.741	32.358	1.00 39.50	
ATOM	2309	С	ASN	31	55.860	24.369	34.306	1.00 20.53	
MOTA	2310	0	ASN	31	56.746	24.530	33.466	1.00 39.50	
ATOM	2311	N	TYR	32	56.103	24.314	35.612	1.00 18.56	
ATOM	2313	CA	TYR	32	57.458	24.408	36.148	1.00 18.56	
ATOM	2314	CB	TYR	32	57.571	25.582	37.122	1.00 41.90	
ATOM	2315	CG	TYR	32	57.374	26.943	36.499	1.00 41.90	
ATOM	2316	CD1		32	56.107	27.516	36.415	1.00 41.90	
MOTA	2317		TYR	32	55.923	28.782	35.869	1.00 41.90	
ATOM	2318	CD2		32	58.459	27.672	36.018	1.00 41.90	
MOTA	2319	CE2	TYR	32	58.288	28.940	35.472	1.00 41.90	
ATOM	2320	CZ	TYR	32	57.017	29.489	35.402	1.00 41.90	
MOTA	2321	он	TYR	32	56.836	30.745	34.875	1.00 41.90	
ATOM	2323	С	TYR	32	57.824	23.124	36.875	1.00 18.56	
ATOM	2324	0	TYR	32	57.024	22.590	37.642	1.00 41.90	
MOTA	2325	N	GLY	33	59.032	22.631	36.626	1.00 32.09	
ATOM	2327	CA	GLY	33	59.480	21.415	37.276	1.00 32.09	
ATOM	2328	C	GLY	33	59.805	21.659	38.736	1.00 32.09	
ATOM	2329	0	GLY	33	60.028	22.802	39.140	1.00 20.56	
MOTA	2330	N	MET	34	59.813	20.593	39.530	1.00 8.75	
MOTA	2332	CA	MET	34	60.119	20.700	40.949	1.00 8.75	
ATOM	2333	CB	MET	34	58.988	20.101	41.787	1.00 26.05	
ATOM ATOM	2334 2335	CG	MET	34	59.129	20.334	43.283	1.00 26.05	
ATOM		SD	MET	34	59.069	22.082	43.705	1.00 26.05	
ATOM	2336 2337	CE	MET	34	57.315	22.344	43.849	1.00 26.05	
ATOM	2337 2338	C	MET	34	61.417	19.972	41.256	1.00 8.75	
ATOM	2338	0	MET	34	61.514	18.759	41.073	1.00 26.05	
ATOM	2339	N	ASN	35	62.425	20.722	41.687	1.00 25.14	
ATOM	2341	CA	ASN	35	63.720	20.147	42.034	1.00 25.14	
ATOM	2342	CB CG	ASN	35	64.859	21.091	41.642	1.00 22.15	
ATOM	2343		ASN ASN	35	65.135	21.097	40.156	1.00 22.15	
ATOM	2344		ASN	35	65.207	22.152	39.533	1.00 22.15	
ATOM	2345	C	ASN	35	65.347	19.921	39.588	1.00 22.15	
ATOM	2349	0	ASN	35 35	63.785	19.906	43.533	1.00 25.14	
	4343	U	WOW	33	63.256	20.693	44.316	1.00 22.15	

Table 10: Three dimensional coordinates of HC-CDR2 (TRP50-GLY66) from SB 249417

15.841 16.753 17.405 16.439 39.634 39.073 37.796 1.00 10.37 63.706 64.255 64.648 ATOM 2492 TRP ATOM 2493 CB TRP 50 50 50 50 .00 82.57 2494 2495 MOTA 36.697 1.00 82.57 1.00 82.57 ATOM CD2 35.282 34.643 TRP 64.574 16.669 ATOM TRP 65.053 64.150 15.504 17.748 1.00 82.57 1.00 82.57 2497 2498 MOTA MOTA CE3 TRP 34.494 CDI 50 50 50 50 TRP 65.155 65.400 15.177 36.849 1.00 82.57 2499 2501 MOTA NE1 14.610 15.386 17.629 16.456 1.00 82.57 1.00 82.57 35.622 65.121 64.219 64.701 ATOM C7.2 TRP ATOM 2502 cz3 33.106 32.501 1.00 82.57 50 50 50 ATOM 2503 CH₂ TRP 1.00 82.57 16.021 14.800 16.766 16.222 16.284 MOTA 2504 62.412 62.403 61.315 60.001 TRP 38.760 1.00 10.37 2505 2506 MOTA TRP 38.616 38.728 1.00 82.57 1.00 26.53 51 51 ATOM N TLE ATOM 38.405 39.603 1.00 26.53 1.00 25.59 51 51 51 59.025 57.689 59.599 MOTA 2509 СВ ILE ATOM 2510 CG2 ILE 15.659 39.225 1.00 ATOM 2511 CG1 15.545 15.577 40.810 1.00 25.59 58.687 59.476 59.386 ATOM 2512 CD1 ILE 51 51 42.024 ATOM 17.151 18.359 37.319 37.531 1.00 26.53 1.00 25.59 51 52 52 ATOM 2514 ō ILE 16.601 17.415 16.569 ATOM 2515 ASN 59.153 58.651 N 1.00 46.03 ATOM 2517 ASN 35.047 33.783 1.00 46.03 2518 ATOM CB ASN 52 58.528 MOTA CG ASN 52 52 58.447 57.625 17.406 18.311 32.528 32.421 31.561 1.00 45.75 MOTA 2520 OD1 ASN 1.00 45.75 ATOM 2521 52 52 ND2 ASN 59.298 17.097 1.00 45.75 35.377 34.768 36.343 36.778 37.009 ATOM ASN 57.300 18.040 19.032 1.00 46.03 ATOM ATOM 2525 ō ASN 56.899 1.00 45.75 19.032 17.449 17.917 19.452 19.781 19.924 17.476 2526 53 53 56.605 55.293 N THR 1.00 38.29 MOTA 2528 THR 1.00 38.29 1.00 46.19 1.00 46.19 ATOM 2529 CB THR 53 53 55.272 56.181 ATOM 0G1 THR 38.067 37.393 2532 2533 ATOM CG2 THR 53.880 1.00 46.19 1.00 38.29 ATOM 53 54.194 53.298 THR MOTA 2534 THR 53 36.203 34.555 1.00 46.19 1.00 53.63 17.906 17.500 18.345 ATOM 2535 2537 N CA ARG 54 54 ATOM ARG 53.261 53.359 33.573 .00 53.63 ATOM ATOM 2538 2539 CB ARG 54 54 54 54 54 32.298 1.00 31.29 1.00 31.29 54.717 54.742 56.062 18.334 19.227 19.229 CG ARG 31.631 ATOM 2540 CD ARG 30.409 29.782 1.00 31.29 2541 2543 ARG ATOM NE 1.00 31.29 ATOM 56.666 56.071 57.871 20.315 21.499 20.218 cz29.312 .00 31.29 ATOM 2544 NH1 29.396 28.766 1.00 .00 31.29 .00 31.29 54 54 ATOM 2547 NH2 ARG ATOM 2550 ARG 33.267 53.457 16.013 15.603 1.00 53.63 2551 2552 ARG ATOM 54.507 1.00 31.29 1.00 58.18 ATOM 15.208 13.754 13.373 55 55 52.477 52.500 33.670 ATOM 2554 ASN 33.486 32.044 1.00 58.18 ATOM 2555 CB ASN 55 55 52.879 1.00 44.20 ATOM 2556 CG ASN 52.809 53.602 11.870 11.326 31.785 31.017 1.00 44.20 2557 2558 1.00 44.20 1.00 44.20 1.00 58.18 1.00 44.20 ATOM OD1 ASN 55 ATOM 55 55 32.411 34.481 34.468 ASN 51.847 53.462 11.197 ND2 ATOM 2561 ASN 2562 55 56 ATOM ASN 53.658 11.888 ATOM Ň 54.013 54.947 56.103 56.637 GLY 13.916 13.406 35.381 36.370 35.723 .00 35.82 2565 2566 GLY GLY ATOM CA 1.00 35.82 ATOM 12.672 11.715 13.118 56 1.00 35.82 ATOM 2567 GLY 56 36.281 34.529 1.00 33.62 56.477 57.571 57.305 ATOM 2568 2570 N LYS 57 57 1.00 56.46 34.529 33.790 32.281 31.749 30.289 29.747 29.495 ATOM CA LYS 12.505 12.584 2571 2572 ATOM 57 1.00 42.16 1.00 42.16 ATOM CG LYS LYS 57 57 57.015 13.984 ATOM 2573 CD 56.585 56.184 13.927 15.294 .00 42.16 2574 2575 57 57 ATOM CE LYS 1.00 42.16 1.00 42.16 ATOM LYS 57.344 58.900 NZ 16.189 ATOM 2579 LYS 57 13.160 13.933 34.138 35.098 1.00 56.46 1.00 42.16 ATOM 2580 2581 ٥ LYS 57 58.987 ATOM 13.933 12.832 13.374 14.767 14.740 13.421 Ñ SER 58 59.930 61.273 33.361 .00 69.70 2583 2584 ATOM 1.00 69.70 1.00 51.34 33.548 ATOM CB SER 58 61.377 ATOM 2585 SER 58 61.034 31.541 35.016 1.00 ATOM 2587 61.679 61.711 SER 58 1.00 69.70 2588 SER 58 14.489 12.245 35.631 35.578 .00 51.34 ATOM 2589 N THR 61.928 1.00 66.55 2591 ATOM CA THR 36.969 37.702 59 62.336 1.00 66.55 ATOM 2592 THR .00 41.34 61.465 11.076 1.00 41.34 ATOM 2593 OG1 THR 59 10.821 36.937

ATOM 2596 C THR 59 63.774 11.622 36. ATOM 2598 N TYR 60 64.621 12.091 37. ATOM 2600 CA TYR 60 66.002 11.629 37. ATOM 2601 CB TYR 60 66.602 11.629 37. ATOM 2601 CB TYR 60 66.8285 11.842 38. ATOM 2602 CG TYR 60 68.285 11.842 38. ATOM 2603 CD1 TYR 60 68.980 11.483 37. ATOM 2604 CE1 TYR 60 70.255 10.929 37. ATOM 2605 CD2 TYR 60 68.910 11.639 40. ATOM 2606 CE2 TYR 60 70.852 10.734 39. ATOM 2606 CE2 TYR 60 70.852 10.734 39. ATOM 2608 OH TYR 60 72.108 10.181 39. ATOM 2610 C TYR 60 66.035 10.136 38. ATOM 2611 O TYR 60 65.463 9.683 39. ATOM 2612 N VAL 61 66.720 9.387 37. ATOM 2615 CB VAL 61 66.857 7.935 37. ATOM 2616 CG VAL 61 67.864 7.381 36. ATOM 2618 C VAL 61 67.518 7.891 34. ATOM 2619 O VAL 61 67.518 7.891 34. ATOM 2619 O VAL 61 67.518 7.891 34. ATOM 2620 N ASP 62 67.955 8.468 39. ATOM 2622 CA ASP 62 66.192 8.938 41. ATOM 2624 CG ASP 62 66.99 10.131 41. ATOM 2636 CB ASP 62 67.298 7.887 41. ATOM 2637 C ASP 62 66.99 10.131 41. ATOM 2638 O ASP 62 67.298 7.887 41. ATOM 2638 O ASP 62 66.99 10.131 41. ATOM 2630 CB ASP 62 67.298 7.887 41. ATOM 2631 C ASP 62 66.99 10.131 41. ATOM 2634 CD ASP 62 66.99 10.131 41. ATOM 2636 C ASP 62 67.298 7.887 41. ATOM 2637 O ASP 62 66.99 10.131 41. ATOM 2638 O ASP 62 67.298 7.887 41. ATOM 2639 O ASP 62 66.99 10.131 41. ATOM 2630 C ASP 63 73.946 7.051 93. ATOM 2631 CA ASP 63 73.946 7.051 93. ATOM 2632 CB ASP 63 73.946 7.051 93. ATOM 2634 CD ASP 63 73.946 7.051 93. ATOM 2636 C ASP 63 73.946 7.051 93. ATOM 2637 O ASP 63 73.946 7.051 93. ATOM 2638 O ASP 63 73.946 7.051 93. ATOM 2639 O ASP 63 73.946 7.051 93. ATOM 2630 C ASP 63 73.946 7.051 93. ATOM 2631 C ASP 63 73.946 7.051 93. ATOM 2634 CD PHE 64 73.432 1.328 41. ATOM 2636 C ASP 63 73.946 7.051 93. ATOM 2637 O ASP 63 73.946 7.051 93. ATOM 2638 O ASP 63 73.946 7.051 93. ATOM 2636 C ASP 63 73.946 7.051 93. ATOM 2637 O ASP 63 73.946 7.051 93. ATOM 2638 O ASP 63 73.946 7.051 93. ATOM 2636 C ASP 63 73.946 7.051 93. ATOM 2637 O ASP 63 73.946 7.051 93. ATOM 2638 O ASP 63 73.946 7.051 93. ATOM 2636 C ASP 63 73.946 7.051 93. ATOM 2636 C ASP 63 73.946				(nt./Tab	le 10		•	-
ATOM 2596 C THR 59 63.774 11.622 36. ATOM 2597 O THR 59 64.129 10.848 86. ATOM 2598 N TYR 60 64.621 12.091 37. ATOM 2600 CA TYR 60 66.002 11.629 37. ATOM 2601 CB TYR 60 66.869 12.381 38. ATOM 2602 CG TYR 60 68.285 11.842 38. ATOM 2603 CD1 TYR 60 68.980 11.639 37. ATOM 2604 CE1 TYR 60 70.255 10.929 37. ATOM 2605 CD2 TYR 60 70.255 10.929 37. ATOM 2606 CE2 TYR 60 70.555 10.929 37. ATOM 2606 CE2 TYR 60 70.552 10.734 39. ATOM 2606 CE2 TYR 60 70.186 11.087 40. ATOM 2607 CZ TYR 60 70.186 11.087 40. ATOM 2608 OH TYR 60 72.108 10.181 39. ATOM 2610 C TYR 60 66.035 10.136 38. ATOM 2610 C TYR 60 66.35 10.136 38. ATOM 2611 O TYR 60 65.463 9.683 39. ATOM 2612 N VAL 61 66.720 9.387 37. ATOM 2615 CB VAL 61 66.857 7.935 37. ATOM 2616 CGI VAL 61 67.864 7.381 36. ATOM 2617 CG2 VAL 61 67.864 7.381 36. ATOM 2618 C VAL 61 67.518 7.891 34. ATOM 2619 O VAL 61 67.518 7.891 34. ATOM 2620 N ASP 62 67.955 8.468 39. ATOM 2620 N ASP 62 67.955 8.468 39. ATOM 2621 CA ASP 62 66.192 8.938 41. ATOM 2622 CA ASP 62 66.499 10.131 41. ATOM 2628 O ASP 62 66.99 10.131 41. ATOM 2630 CB ASP 62 67.298 7.887 41. ATOM 2628 O ASP 62 66.99 10.131 41. ATOM 2630 CB ASP 62 66.99 10.131 41. ATOM 2631 CA ASP 63 70.755 7.543 40. ATOM 2630 CB ASP 63 73.944 7.004 40. ATOM 2631 CA ASP 63 70.755 7.543 40. ATOM 2632 CB ASP 63 73.946 7.051 39. ATOM 2634 CB ASP 63 73.946 7.051 39. ATOM 2638 N PHE 64 73.486 1.836 6.23 40. ATOM 2639 N ASP 63 73.946 7.051 39. ATOM 2630 CB ASP 63 73.946 7.051 39. ATOM 2631 CA ASP 63 73.946 7.051 39. ATOM 2634 CB PHE 64 73.486 1.836 6.23 40. ATOM 2638 N PHE 64 73.486 1.836 6.23 40. ATOM 2639 N ASP 63 73.946 7.051 39. ATOM 2630 CB ASP 63 73.946 7.051 39. ATOM 2631 CB ASP 63 73.946 7.051 39. ATOM 2634 CB PHE 64 73.488 -0.219 43. ATOM 2636 CB ASP 63 73.946 7.051 39. ATOM 2636 CB ASP 63 73.946 7.051 39. ATOM 2637 O ASP 63 73.946 7.051 39. ATOM 2638 N PHE 64 73.488 -0.219 43. ATOM 2640 CB PHE 64 73.488 -0.219 43. ATOM 2640 CB PHE 64 73.488 -0.219 43. ATOM 2641 CB PHE 64 73.488 -0.219 43. ATOM 2654 CC PHE 64 74.489 -0.717 42. ATOM 2656 CD LYS 65 70	ATOM	2595	CG2 '	тия 59	61 058	11 594	39.066	1.00	41 24
ATOM 2597 O THR 59 64.129 10.848 36. ATOM 2598 N TYR 60 64.621 12.091 37. ATOM 2601 CB TYR 60 66.002 11.629 37. ATOM 2601 CB TYR 60 66.002 11.629 37. ATOM 2601 CB TYR 60 66.069 12.381 38. ATOM 2603 CD1 TYR 60 68.885 11.842 38. ATOM 2603 CD1 TYR 60 68.980 11.483 37. ATOM 2604 CE1 TYR 60 68.980 11.483 37. ATOM 2605 CD2 TYR 60 68.980 11.639 40. ATOM 2606 CE2 TYR 60 70.255 10.929 37. ATOM 2606 CE2 TYR 60 70.851 10.873 40. ATOM 2607 CZ TYR 60 70.852 10.734 39. ATOM 2608 OH TYR 60 70.852 10.734 39. ATOM 2610 C TYR 60 66.035 10.136 38. ATOM 2611 O TYR 60 65.463 9.683 39. ATOM 2612 N VAL 61 66.720 9.387 37. ATOM 2614 CA VAL 61 66.857 7.935 37. ATOM 2615 CB VAL 61 67.864 7.381 36. ATOM 2616 CG1 VAL 61 67.881 5.852 36. ATOM 2617 CG2 VAL 61 67.881 5.852 36. ATOM 2619 O VAL 61 67.518 7.891 34. ATOM 2620 N ASP 62 67.955 8.468 39. ATOM 2620 N ASP 62 67.955 8.468 39. ATOM 2621 CG ASP 62 66.499 10.131 41. ATOM 2622 CA ASP 62 66.499 10.131 41. ATOM 2624 CG ASP 62 66.192 8.938 41. ATOM 2627 C ASP 62 66.192 8.938 41. ATOM 2631 CA ASP 63 71.885 6.623 40. ATOM 2632 CB ASP 63 71.885 6.623 40. ATOM 2634 CD1 ASP 63 77.551 7.543 40. ATOM 2636 C ASP 63 71.885 6.623 40. ATOM 2637 CA ASP 63 71.885 6.623 40. ATOM 2638 CB ASP 63 71.885 6.623 40. ATOM 2639 CB ASP 63 73.946 7.055 9.53 ATOM 2630 CB ASP 63 73.946 7.055 9.53 ATOM 2631 CB ASP 63 73.946 7.055 9.53 ATOM 2632 CB ASP 63 73.946 7.055 9.53 ATOM 2634 CD ASP 63 73.946 7.055 9.53 ATOM 2635 CD ASP 63 73.946 7.055 9.53 ATOM 2636 CD ASP 63 73.946 7.055 9.53 ATOM 2637 CB ASP 63 73.946 7.055 9.53 ATOM 2638 CB ASP 63 73.946 7.055 9.53 ATOM 2636 CD ASP 63 73.946 7.055 9.53 ATOM 2637 CB ASP 63 73.946 7.055 9.53 ATOM 2636 CD ASP 63 73.946 7.055 9.53 ATOM 2637 CB ASP 63 73.946 7.055 9.53 ATOM 2638 CB ASP 63 73.946 7.055 9.53 ATOM 2636 CD ASP 63 73.946 7.055 9.53 ATOM 2637 CB ASP 63 73.946 7.055 9.53 ATOM 2638 CB ASP 63 73.946 7.055 9.53 ATOM 2636 CD							36.924	1.00	
ATOM 2598 N TYR 60 64.621 12.091 37. ATOM 2600 CA TYR 60 66.002 11.629 37. ATOM 2601 CB TYR 60 66.869 12.381 38. ATOM 2602 CG TYR 60 68.898 11.883 38. ATOM 2603 CD1 TYR 60 68.980 11.483 37. ATOM 2604 CE1 TYR 60 70.255 10.929 37. ATOM 2605 CD2 TYR 60 68.980 11.483 37. ATOM 2606 CE2 TYR 60 70.866 11.087 40. ATOM 2607 CZ TYR 60 70.866 11.087 40. ATOM 2608 CH TYR 60 70.885 10.136 38. ATOM 2608 CH TYR 60 70.852 10.734 39. ATOM 2608 CH TYR 60 70.865 10.136 38. ATOM 2610 C TYR 60 65.463 9.683 39. ATOM 2611 O TYR 60 65.463 9.683 39. ATOM 2612 N VAL 61 66.720 9.387 37. ATOM 2615 CB VAL 61 66.857 7.935 37. ATOM 2616 CG1 VAL 61 67.881 5.852 36. ATOM 2617 CG2 VAL 61 67.884 7.381 36. ATOM 2618 C VAL 61 67.518 7.891 34. ATOM 2620 N ASP 62 67.955 8.468 39. ATOM 2620 CA ASP 62 68.455 8.234 40. ATOM 2620 N ASP 62 67.955 8.468 39. ATOM 2621 CA ASP 62 66.499 10.131 41. ATOM 2622 CA ASP 62 66.499 10.131 41. ATOM 2623 CB ASP 62 67.955 7.543 40. ATOM 2624 CG ASP 62 67.998 7.887 41. ATOM 2625 ODI ASP 63 71.885 6.623 40. ATOM 2631 CA ASP 63 73.946 7.051 39. ATOM 2632 CB ASP 63 73.946 7.051 39. ATOM 2633 CG ASP 63 73.946 7.051 39. ATOM 2634 ODI ASP 63 73.946 7.051 39. ATOM 2638 N PHE 64 73.486 1.836 42. ATOM 2638 N PHE 64 73.486 1.836 42. ATOM 2638 N PHE 64 73.486 1.836 42. ATOM 2640 CA PHE 64 73.486 1.836 42. ATOM 2641 CB PHE 64 73.486 1.836 42. ATOM 2640 CP PHE 64 74.489 -0.717 42. ATOM 2640 CP PHE 64 74.489 -0.717 42. ATOM 2655 CD LYS 65 70.284 4.996 43. ATOM 2656 CD LYS 65 72.374 4.831 48. ATOM 2657 NZ LYS 65 70.284 4.996 43. ATOM 2658 CD LYS 65 71.576 5.890 47. ATOM 2656 CD LYS 65 72.374 4.831 48. ATOM 2656 CD LYS 65 72.374 4.831 48.	ATOM	2597					36.029	1.00	
ATOM 2601 CB TYR 60 66.869 12.381 38.4 ATOM 2602 CG TYR 60 68.285 11.842 38.4 ATOM 2603 CD1 TYR 60 68.285 11.842 38.3 ATOM 2604 CE1 TYR 60 68.980 11.483 37. ATOM 2605 CD2 TYR 60 70.255 10.929 37. ATOM 2606 CE2 TYR 60 70.186 11.037 40. ATOM 2607 CZ TYR 60 70.186 11.087 40. ATOM 2608 OH TYR 60 70.852 10.734 39. ATOM 2608 OH TYR 60 70.852 10.734 39. ATOM 2610 C TYR 60 66.035 10.136 38. ATOM 2611 O TYR 60 65.463 9.683 39. ATOM 2612 N VAL 61 66.720 9.387 37. ATOM 2614 CA VAL 61 66.857 7.935 37. ATOM 2615 CB VAL 61 66.857 7.935 37. ATOM 2616 CGI VAL 61 67.864 7.381 36. ATOM 2617 CG2 VAL 61 67.518 7.891 34. ATOM 2618 C VAL 61 67.518 7.891 34. ATOM 2619 O VAL 61 67.518 7.891 34. ATOM 2620 N ASP 62 67.955 8.468 39. ATOM 2620 N ASP 62 67.298 7.887 41. ATOM 2621 CA ASP 62 66.499 10.131 41. ATOM 2622 CA ASP 62 66.192 8.938 41. ATOM 2623 CB ASP 62 66.192 8.938 41. ATOM 2626 ODD ASP 62 66.099 10.131 41. ATOM 2628 O DASP 62 66.099 10.131 41. ATOM 2638 OND ASP 63 71.885 6.623 40. ATOM 2639 N ASP 63 71.885 6.623 40. ATOM 2620 N ASP 63 71.885 6.623 40. ATOM 2621 CB ASP 63 71.885 6.623 40. ATOM 2622 CB ASP 62 66.999 10.131 41. ATOM 2633 CB ASP 63 71.885 6.623 40. ATOM 2634 ODD ASP 63 71.885 5.897 88. ATOM 2635 ODD ASP 63 71.885 5.897 88. ATOM 2636 C ASP 63 71.885 5.897 88. ATOM 2637 CB ASP 63 71.885 5.897 88. ATOM 2638 N PHE 64 71.509 4.461 41. ATOM 2638 N PHE 64 73.486 1.836 42. ATOM 2639 ODD ASP 63 74.667 7.924 8. ATOM 2640 CA PHE 64 73.486 1.836 42. ATOM 2641 CB PHE 64 73.486 1.836 42. ATOM 2640 CA PHE 64 73.486 1.836 42. ATOM 2647 CZ PHE 64 74.489 -0.717 42. ATOM 2648 CP PHE 64 74.588 -0.219 43. ATOM 2647 CZ PHE 64 74.588 -0.219 43. ATOM 2647 CZ PHE 64 74.589 -0.717 42. ATOM 2648 CD PHE 64 73.486 1.836 42. ATOM 2647 CZ PHE 64 74.589 -0.717 42. ATOM 2648 CD PHE 64 73.486 1.836 42. ATOM 2647 CZ PHE 64 74.589 -0.717 42. ATOM 2648 CD PHE 64 73.486 1.836 42. ATOM 2649 O PHE 64 73.486 1.836 42. ATOM 2640 CG PHE 64 73.486 1.836 42. ATOM 2647 CZ PHE 64 74.589 -0.717 42. ATOM 2648 CG PHE 64 73.489 -0.717 42. ATOM 2649 O PHE 64 73.480			N :	TYR 60			37.835	1.00	
ATOM 2601 CB TYR 60 66.869 12.381 38.4 ATOM 2602 CG TYR 60 68.980 11.842 38.4 ATOM 2603 CD1 TYR 60 68.980 11.843 37.4 ATOM 2604 CE1 TYR 60 68.980 11.843 37.4 ATOM 2605 CD2 TYR 60 70.255 10.929 37.4 ATOM 2606 CE2 TYR 60 70.186 11.087 40.4 ATOM 2607 CZ TYR 60 70.852 10.734 39.4 ATOM 2608 OH TYR 60 70.852 10.734 39.4 ATOM 2608 OH TYR 60 70.852 10.734 39.4 ATOM 2610 C TYR 60 66.035 10.136 38.4 ATOM 2611 O TYR 60 65.463 9.683 39.4 ATOM 2612 N VAL 61 66.720 9.387 37.4 ATOM 2615 CB VAL 61 66.857 7.935 37.4 ATOM 2616 CG1 VAL 61 67.864 7.381 36.4 ATOM 2617 CG2 VAL 61 67.864 7.381 36.4 ATOM 2618 C VAL 61 67.518 7.891 34.4 ATOM 2619 O VAL 61 67.518 7.891 34.4 ATOM 2620 N ASP 62 67.955 8.468 39.4 ATOM 2620 N ASP 62 67.955 8.468 39.4 ATOM 2622 CA ASP 62 66.192 8.938 41.4 ATOM 2623 CB ASP 62 66.192 8.938 41.4 ATOM 2624 CG ASP 62 66.499 10.131 41.4 ATOM 2625 OD1 ASP 62 66.499 10.131 41.4 ATOM 2626 OD2 ASP 62 66.499 10.131 41.4 ATOM 2627 C ASP 62 69.501 7.955 340.4 ATOM 2630 CB ASP 62 67.298 7.887 41.4 ATOM 2620 N ASP 62 67.298 7.887 41.4 ATOM 2620 N ASP 62 67.298 7.887 41.4 ATOM 2621 CB ASP 62 67.298 7.887 41.4 ATOM 2622 CB ASP 62 66.499 10.131 41.4 ATOM 2623 CB ASP 62 67.298 7.887 41.4 ATOM 2624 CG ASP 62 67.298 7.887 41.4 ATOM 2625 OD1 ASP 62 66.99 10.131 41.4 ATOM 2626 OD2 ASP 62 69.207 5.953 40.4 ATOM 2631 CA ASP 63 71.885 6.623 40.4 ATOM 2632 CB ASP 63 73.946 7.051 39.4 ATOM 2634 OD1 ASP 63 73.946 7.051 39.4 ATOM 2635 OD2 ASP 63 73.946 7.051 39.4 ATOM 2636 C ASP 63 73.946 7.051 39.4 ATOM 2637 O ASP 63 73.946 7.051 39.4 ATOM 2638 O DPHE 64 73.486 1.836 42.4 ATOM 2640 CA PHE 64 73.489 -0.717 42.4 ATOM 2640 CA PHE 64 73.486 1.836 42.4 ATOM 2640 CA PHE 64 73.486 1.836 42.4 ATOM 2640 CB PHE 64 74.047 1.053 43.4 ATOM 26550 CB LYS 65 70.284 4.996 43.4 ATOM 26560 CB LYS 65 71.243 7.133 45.4 ATOM 26560 CB	ATOM	2600	CA !	TYR 60			37.823	1.00	
ATOM 2602 CG TYR 60 68.285 11.842 38. ATOM 2603 CD1 TYR 60 68.980 11.483 37. ATOM 2604 CE1 TYR 60 70.255 10.929 37. ATOM 2605 CD2 TYR 60 68.910 11.639 40. ATOM 2606 CE2 TYR 60 70.186 11.087 40. ATOM 2607 CZ TYR 60 70.852 10.734 39. ATOM 2608 OH TYR 60 72.108 10.181 39. ATOM 2610 C TYR 60 65.463 9.683 39. ATOM 2611 O TYR 60 65.463 9.683 39. ATOM 2611 O TYR 60 65.463 9.683 39. ATOM 2612 N VAL 61 66.720 9.387 37. ATOM 2615 CB VAL 61 67.864 7.381 36. ATOM 2615 CB VAL 61 67.864 7.381 36. ATOM 2616 CG1 VAL 61 67.881 5.852 36. ATOM 2618 C VAL 61 67.818 5.852 36. ATOM 2619 O VAL 61 67.518 7.891 34. ATOM 2619 O VAL 61 67.113 6.396 39. ATOM 2620 N ASP 62 67.955 8.468 39. ATOM 2623 CB ASP 62 67.298 7.887 41. ATOM 2624 CG ASP 62 66.192 8.938 41. ATOM 2625 OD1 ASP 62 66.192 8.938 41. ATOM 2626 OD2 ASP 62 65.009 8.573 41. ATOM 2631 CA ASP 62 65.009 8.573 41. ATOM 2632 CB ASP 63 70.755 7.543 40. ATOM 2633 CB ASP 63 71.885 6.623 40. ATOM 2634 OD1 ASP 63 71.885 6.623 40. ATOM 2635 OD2 ASP 63 71.885 6.623 40. ATOM 2636 C ASP 63 71.885 6.623 40. ATOM 2637 O ASP 63 73.946 7.051 39. ATOM 2638 N PHE 64 71.509 6.110 42. ATOM 2637 O ASP 63 73.946 7.051 39. ATOM 2630 CB ASP 63 73.946 7.051 39. ATOM 2631 CB ASP 63 73.946 7.051 39. ATOM 2634 CB PHE 64 72.948 3.202 43. ATOM 2636 C ASP 63 73.946 7.051 39. ATOM 2637 O ASP 63 73.946 7.051 39. ATOM 2638 N PHE 64 72.948 3.202 43. ATOM 2639 CB ASP 63 73.946 7.051 39. ATOM 2630 CB ASP 63 73.946 7.051 39. ATOM 2631 CB ASP 63 73.946 7.051 39. ATOM 2634 CB PHE 64 73.432 1.328 1. ATOM 2640 CB PHE 64 73.432 1.328 1. ATOM 2641 CB PHE 64 73.930 0.058 41. ATOM 2640 CB PHE 64 73.432 1.328 1. ATOM 2641 CB PHE 64 73.930 0.058 41. ATOM 2643 CD1 PHE 64 73.930 0.058 41. ATOM 2644 CD2 PHE 64 73.432 1.328 1. ATOM 2655 CD LYS 65 70.284 4.996 43. ATOM 2656 CD LYS 65 70.284 4.996 43. ATOM 2657 NZ LYS 65 70.284 4.996 43. ATOM 2650 CD LYS 65 70.284 4.996 43. ATOM 2651 CD LYS 65 70.284 4.996 43. ATOM 2652 CA LYS 65 70.284 4.996 43. ATOM 2656 CD LYS 65 70.576 5.296 44.						12.381	38.835	1.00	
ATOM 2604 CE1 TYR 60 70.255 10.929 37. ATOM 2605 CD2 TYR 60 68.910 11.639 40. ATOM 2606 CE2 TYR 60 70.186 11.087 40. ATOM 2607 CZ TYR 60 70.852 10.734 39. ATOM 2608 OH TYR 60 72.108 10.181 39. ATOM 2610 C TYR 60 65.463 9.683 39. ATOM 2611 O TYR 60 65.463 9.683 39. ATOM 2611 O TYR 60 65.463 9.683 39. ATOM 2612 N VAL 61 66.720 9.387 37. ATOM 2614 CA VAL 61 66.857 7.935 37. ATOM 2615 CB VAL 61 67.864 7.381 36. ATOM 2616 CG1 VAL 61 67.881 5.852 36. ATOM 2617 CG2 VAL 61 67.881 5.852 36. ATOM 2618 C VAL 61 67.518 7.891 34. ATOM 2619 O VAL 61 67.113 6.396 39. ATOM 2620 N ASP 62 67.955 8.468 39. ATOM 2620 N ASP 62 67.955 8.468 39. ATOM 2620 CA ASP 62 66.192 8.938 41. ATOM 2624 CG ASP 62 66.192 8.938 41. ATOM 2625 OD1 ASP 62 65.009 8.573 41. ATOM 2627 C ASP 62 69.511 7.134 40. ATOM 2631 CA ASP 63 71.885 6.623 40. ATOM 2632 CB ASP 63 71.885 6.623 40. ATOM 2631 CA ASP 63 71.885 6.623 40. ATOM 2632 CB ASP 63 73.194 7.404 40. ATOM 2633 CB ASP 63 73.194 7.404 40. ATOM 2634 OD1 ASP 63 73.828 5.897 38. ATOM 2637 O ASP 63 73.946 7.051 39. ATOM 2638 C ASP 63 73.194 7.404 40. ATOM 2639 O ASP 63 73.194 7.404 40. ATOM 2630 CB ASP 63 73.194 7.404 40. ATOM 2631 CA ASP 63 73.194 7.404 40. ATOM 2633 CB ASP 63 73.194 7.404 40. ATOM 2634 OD1 ASP 63 73.194 7.404 40. ATOM 2636 C ASP 63 73.194 7.404 40. ATOM 2637 O ASP 63 73.194 7.404 40. ATOM 2638 C BASP 63 73.194 7.404 40. ATOM 2639 C BASP 63 73.194 7.404 40. ATOM 2630 CB ASP 63 73.194 7.404 40. ATOM 2631 CA ASP 63 73.194 7.051 39. ATOM 2634 OD1 ASP 64 70.592 39. ATOM 2635 OD2 ASP 63 74.667 7.924 38. ATOM 2636 C ASP 63 73.486 1.836 42. ATOM 2637 O ASP 63 73.486 1.836 42. ATOM 2638 N PHE 64 73.430 1.836 1.836 42. ATOM 2639 N ASP 63 73.486 1.836 42. ATOM 2640 CB PHE 64 73.488 0.219 43. ATOM 2641 CB PHE 64 73.488 0.219 43. ATOM 2643 CD1 PHE 64 73.930 0.058 41. ATOM 2644 CD2 PHE 64 73.486 0.219 43. ATOM 2655 CD LYS 65 70.284 4.996 43. ATOM 2656 CD LYS 65 71.576 5.890 47. ATOM 2658 CD LYS 65 70.284 4.996 43. ATOM 2658 CD LYS 65 71.576 5.890 47. ATOM 2656 CD LYS 65 71.576 5.890 47. ATOM 2656 CD					68.285		38.911	1.00	
ATOM 2605 CD2 TYR 60 68.910 11.639 40. ATOM 2606 CE2 TYR 60 70.186 11.087 40. ATOM 2607 CZ TYR 60 70.186 11.087 40. ATOM 2608 OH TYR 60 72.108 10.134 39. ATOM 2610 C TYR 60 65.463 9.683 39. ATOM 2611 O TYR 60 65.463 9.683 39. ATOM 2612 N VAL 61 66.720 9.387 37. ATOM 2614 CA VAL 61 66.857 7.935 37. ATOM 2615 CB VAL 61 66.857 7.935 37. ATOM 2616 CG1 VAL 61 67.864 7.381 36. ATOM 2616 CG1 VAL 61 67.518 7.891 34. ATOM 2617 CG2 VAL 61 67.518 7.891 34. ATOM 2619 O VAL 61 67.323 7.531 38. ATOM 2619 O VAL 61 67.323 7.531 38. ATOM 2620 N ASP 62 67.955 8.468 39. ATOM 2622 CA ASP 62 68.455 8.234 40. ATOM 2623 CB ASP 62 66.192 8.938 41. ATOM 2624 CG ASP 62 66.499 10.131 41. ATOM 2626 OD2 ASP 62 66.499 10.131 41. ATOM 2627 C ASP 62 65.009 8.573 41. ATOM 2628 O ASP 62 67.298 7.887 40. ATOM 2629 N ASP 63 70.755 7.543 40. ATOM 2631 CA ASP 63 70.755 7.543 40. ATOM 2633 CG ASP 63 73.194 7.404 40. ATOM 2634 OD1 ASP 63 73.828 5.897 38. ATOM 2635 OD2 ASP 63 73.828 5.897 38. ATOM 2636 C ASP 63 73.828 5.897 38. ATOM 2637 O ASP 63 73.828 5.897 38. ATOM 2638 N PHE 64 71.509 4.461 41. ATOM 2630 CR ASP 63 73.828 5.897 38. ATOM 2634 OD1 ASP 63 73.828 5.897 38. ATOM 2635 OD2 ASP 63 73.828 5.897 38. ATOM 2636 C ASP 63 73.828 5.897 38. ATOM 2637 O ASP 63 73.828 5.897 38. ATOM 2638 C ASP 63 73.828 5.897 38. ATOM 2639 N PHE 64 73.432 1.328 41. ATOM 2640 CA PHE 64 73.436 1.836 42. ATOM 2641 CB PHE 64 73.432 1.328 41. ATOM 2643 CD1 PHE 64 73.432 1.328 41. ATOM 2644 CD2 PHE 64 73.436 1.836 42. ATOM 2647 CZ PHE 64 74.647 1.053 43. ATOM 2659 N LYS 65 69.749 6.824 45. ATOM 2650 N LYS 65 69.749 6.824 45. ATOM 2651 CLYS 65 71.576 5.890 47. ATOM 2652 CA LYS 65 72.374 4.831 48. ATOM 2656 CD LYS 65 71.576 5.890 47.						11.483	37.755	1.00	
ATOM 2606 CE2 TYR 60 70.186 11.087 40. ATOM 2607 CZ TYR 60 70.852 10.734 39. ATOM 2608 OH TYR 60 72.108 10.181 39. ATOM 2610 C TYR 60 65.035 10.136 38. ATOM 2611 O TYR 60 65.463 9.683 39. ATOM 2612 N VAL 61 66.720 9.387 37. ATOM 2614 CA VAL 61 66.857 7.935 37. ATOM 2615 CB VAL 61 67.864 7.381 36. ATOM 2616 CG1 VAL 61 67.881 5.852 36. ATOM 2617 CG2 VAL 61 67.518 7.891 34. ATOM 2618 C VAL 61 67.518 7.891 34. ATOM 2619 O VAL 61 67.113 6.396 39. ATOM 2620 N ASP 62 67.955 8.468 39. ATOM 2620 N ASP 62 67.298 7.887 41. ATOM 2624 CG ASP 62 66.499 10.131 41. ATOM 2625 OD1 ASP 62 66.499 10.131 41. ATOM 2628 O ASP 62 69.511 7.134 40. ATOM 2631 CA ASP 63 70.755 7.543 40. ATOM 2632 CB ASP 63 73.946 7.051 39. ATOM 2633 CG ASP 63 73.946 7.051 39. ATOM 2634 CB ASP 63 73.946 7.051 39. ATOM 2635 OD2 ASP 63 73.946 7.051 39. ATOM 2636 C ASP 63 73.946 7.051 39. ATOM 2637 CB ASP 63 73.946 7.051 39. ATOM 2638 N PHE 64 71.521 3.437 42. ATOM 2638 N PHE 64 71.521 3.437 42. ATOM 2638 N PHE 64 71.521 3.437 42. ATOM 2639 C ASP 63 73.946 7.051 39. ATOM 2630 C ASP 63 73.946 7.051 39. ATOM 2631 CB ASP 63 73.946 7.051 39. ATOM 2632 CB ASP 63 73.946 7.051 39. ATOM 2634 CB PHE 64 73.432 1.328 41. ATOM 2635 OD2 ASP 63 73.946 7.051 39. ATOM 2636 C ASP 63 73.946 7.051 39. ATOM 2637 CB ASP 63 73.946 7.051 39. ATOM 2638 N PHE 64 71.509 4.461 41. ATOM 2636 C ASP 63 73.946 7.051 39. ATOM 2637 CB ASP 63 73.946 7.051 39. ATOM 2638 N PHE 64 71.509 4.461 41. ATOM 2640 CB PHE 64 73.432 1.328 41. ATOM 2641 CB PHE 64 73.432 1.328 41. ATOM 2649 CP PHE 64 73.432 1.328 41. ATOM 2640 CA PHE 64 70.592 3.723 43. ATOM 2641 CB PHE 64 73.432 1.328 41. ATOM 2642 CB PHE 64 73.432 1.328 41. ATOM 2643 CD PHE 64 73.432 1.328 41. ATOM 2644 CD2 PHE 64 73.432 1.328 41. ATOM 2645 CE PHE 64 73.432 1.328 41. ATOM 2646 CE PHE 64 73.432 1.328 41. ATOM 2647 CZ PHE 64 73.486 1.836 42. ATOM 2650 N LYS 65 71.576 5.890 47. ATOM 2651 CB LYS 65 71.576 5.890 47. ATOM 2652 CA LYS 65 71.576 5.890 47. ATOM 2655 CE LYS 65 71.576 5.890 47. ATOM 2656 CE LYS 65 71.576 5.890 47. ATOM 2656 CE LYS						10.929	37.821	1.00	
ATOM 2607 CZ TYR 60 70.852 10.734 39.1 ATOM 2608 OH TYR 60 72.108 10.181 39. ATOM 2610 C TYR 60 66.035 10.136 38. ATOM 2611 O TYR 60 65.463 9.683 39. ATOM 2611 O TYR 60 65.463 9.683 39. ATOM 2612 N VAL 61 66.720 9.387 37. ATOM 2615 CB VAL 61 66.720 9.387 37. ATOM 2615 CB VAL 61 67.864 7.381 36. ATOM 2616 CG1 VAL 61 67.881 5.852 36. ATOM 2617 CG2 VAL 61 67.881 5.852 36. ATOM 2618 C VAL 61 67.518 7.891 34. ATOM 2619 O VAL 61 67.323 7.531 38. ATOM 2619 O VAL 61 67.323 7.531 38. ATOM 2620 N ASP 62 68.455 8.234 40. ATOM 2621 CG ASP 62 68.455 8.234 40. ATOM 2622 CA ASP 62 66.192 8.938 41. ATOM 2624 CG ASP 62 66.192 8.938 41. ATOM 2625 OD1 ASP 62 66.499 10.131 41. ATOM 2626 OD2 ASP 62 65.009 8.573 41. ATOM 2628 O ASP 62 69.511 7.134 40. ATOM 2629 N ASP 62 69.207 5.953 40. ATOM 2629 N ASP 63 70.755 7.543 40. ATOM 2631 CA ASP 63 73.194 7.404 40. ATOM 2632 CB ASP 63 73.194 7.404 40. ATOM 2631 CA ASP 63 73.888 5.897 38. ATOM 2632 CB ASP 63 73.885 6.623 40. ATOM 2631 CA ASP 63 73.894 7.404 40. ATOM 2631 CA ASP 63 73.894 7.404 40. ATOM 2632 CB ASP 63 73.894 7.404 40. ATOM 2631 CA ASP 63 73.894 7.404 40. ATOM 2632 CB ASP 63 73.894 7.404 40. ATOM 2631 CA ASP 63 73.894 7.404 40. ATOM 2632 CB ASP 63 73.994 7.404 40. ATOM 2634 OD1 ASP 63 73.898 5.897 38. ATOM 2636 C ASP 63 73.994 6.7051 39. ATOM 2637 O ASP 63 73.994 6.7051 39. ATOM 2638 N PHE 64 73.432 1.328 41. ATOM 2640 CA PHE 64 73.432 1.328 41. ATOM 2641 CB PHE 64 73.492 1.328 41. ATOM 2640 CA PHE 64 73.492 1.328 41. ATOM 2640 CA PHE 64 73.492 1.328 41. ATOM 2640 CA PHE 64 73.492 1.328 41. ATOM 2640 CB PHE 64 73.492 1.328 41. ATOM 2640 CB PHE 64 73.493 1.328 41. ATOM 2641 CB PHE 64 73.493 1.328 41. ATOM 2643 CD1 PHE 64 73.493 1.328 41. ATOM 2644 CD2 PHE 64 73.493 1.328 41. ATOM 2645 CE1 PHE 64 73.432 1.328 41. ATOM 2646 CE2 PHE 64 73.432 1.328 41. ATOM 2647 CZ PHE 64 73.432 1.328 41. ATOM 2648 CD1 PHE 64 73.593 0.058 41. ATOM 2649 O PHE 64 73.432 1.328 41. ATOM 2640 CB PHE 64 73.432 1.328 41. ATOM 2651 CB LYS 65 71.576 5.890 47. ATOM 2652 CD LYS 65 71.576 5.890 47. ATOM 2651							40.137	1.00	
ATOM 2608 OH TYR 60 72.108 10.181 39. ATOM 2610 C TYR 60 66.035 10.136 38. ATOM 2611 O TYR 60 65.463 9.683 39. ATOM 2612 N VAL 61 66.720 9.387 37. ATOM 2614 CA VAL 61 66.857 7.935 37. ATOM 2615 CB VAL 61 67.881 5.852 36. ATOM 2616 CG1 VAL 61 67.881 5.852 36. ATOM 2617 CG2 VAL 61 67.518 7.891 34. ATOM 2618 C VAL 61 67.518 7.891 34. ATOM 2619 O VAL 61 67.323 7.531 38. ATOM 2619 O VAL 61 67.113 6.396 39. ATOM 2620 N ASP 62 67.955 8.468 39. ATOM 2622 CA ASP 62 67.955 8.468 39. ATOM 2623 CB ASP 62 66.192 8.938 41. ATOM 2624 CG ASP 62 66.192 8.938 41. ATOM 2625 OD1 ASP 62 66.499 10.131 41. ATOM 2626 OD2 ASP 62 65.009 8.573 41. ATOM 2627 C ASP 62 69.511 7.134 40. ATOM 2628 N ASP 62 69.511 7.134 40. ATOM 2629 N ASP 62 69.511 7.134 40. ATOM 2631 CA ASP 63 73.885 6.623 40. ATOM 2633 CG ASP 63 73.946 7.051 39. ATOM 2634 OD1 ASP 63 73.828 5.897 38. ATOM 2635 CD ASP 63 73.946 7.051 39. ATOM 2636 C ASP 63 73.946 7.051 39. ATOM 2637 O ASP 63 73.946 7.051 39. ATOM 2638 N PHE 64 73.432 1.328 41. ATOM 2640 CA PHE 64 73.432 1.328 41. ATOM 2641 CB PHE 64 73.432 1.328 41. ATOM 2642 CG PHE 64 73.432 1.328 41. ATOM 2643 CD1 PHE 64 73.432 1.328 41. ATOM 2644 CD2 PHE 64 73.432 1.328 41. ATOM 2645 CE2 PHE 64 74.047 1.053 43. ATOM 2646 CE2 PHE 64 74.047 1.053 43. ATOM 2647 CZ PHE 64 74.489 -0.717 42. ATOM 2648 C PHE 64 73.432 1.328 41. ATOM 2649 O PHE 64 73.432 1.328 41. ATOM 2640 CA PHE 64 73.432 1.328 41. ATOM 2641 CB PHE 64 73.432 1.328 41. ATOM 2643 CD1 PHE 64 73.432 1.328 41. ATOM 2645 CE1 PHE 64 73.432 1.328 41. ATOM 2646 CE2 PHE 64 74.489 -0.717 42. ATOM 2657 CB PHE 64 73.432 1.328 41. ATOM 2648 C PHE 64 73.432 1.328 41. ATOM 2649 O PHE 64 73.432 1.328 41. ATOM 2650 CB LYS 65 70.284 4.996 43. ATOM 2651 CB LYS 65 70.284 4.996 43. ATOM 2652 CA LYS 65 71.576 5.890 47. ATOM 2651 CB LYS 65 71.576 5.890 47. ATOM 2651 CB LYS 65 71.576 5.890 47. ATOM 2651 CB LYS 65 71.576 5.890 47. ATOM 2651 C							40.214	1.00	
ATOM 2610 C TYR 60 66.035 10.136 38. ATOM 2611 O TYR 60 65.463 9.683 39. ATOM 2612 N VAL 61 66.720 9.387 37. ATOM 2614 CA VAL 61 66.720 9.387 37. ATOM 2615 CB VAL 61 66.857 7.935 37. ATOM 2615 CB VAL 61 67.864 7.381 36. ATOM 2616 CGI VAL 61 67.864 7.381 36. ATOM 2617 CG2 VAL 61 67.518 7.891 34. ATOM 2618 C VAL 61 67.518 7.891 34. ATOM 2619 O VAL 61 67.113 6.396 39. ATOM 2620 N ASP 62 67.955 8.468 39. ATOM 2621 CB ASP 62 67.955 8.468 39. ATOM 2622 CA ASP 62 66.192 8.938 41. ATOM 2624 CG ASP 62 66.192 8.938 41. ATOM 2625 OD1 ASP 62 66.192 8.938 41. ATOM 2626 OD2 ASP 62 66.192 8.938 41. ATOM 2627 C ASP 62 66.192 8.938 41. ATOM 2628 O ASP 62 69.207 5.953 40. ATOM 2629 N ASP 62 69.207 5.953 40. ATOM 2621 CB ASP 62 69.207 5.953 40. ATOM 2623 CB ASP 63 70.755 7.543 40. ATOM 2631 CA ASP 63 71.885 6.623 40. ATOM 2632 CB ASP 63 73.194 7.404 40. ATOM 2631 CA ASP 63 73.946 7.051 39. ATOM 2632 CB ASP 63 73.946 7.051 39. ATOM 2634 OD1 ASP 63 73.946 7.051 39. ATOM 2635 OD2 ASP 63 73.946 7.051 39. ATOM 2636 C ASP 63 73.946 7.051 39. ATOM 2637 O ASP 63 73.946 7.051 39. ATOM 2638 N PHE 64 71.509 4.461 41. ATOM 2638 N PHE 64 71.509 4.461 41. ATOM 2644 CD2 PHE 64 73.488 -0.219 43. ATOM 2648 CD PHE 64 73.486 1.836 42. ATOM 2648 CD PHE 64 73.486 1.836 42. ATOM 2648 CD PHE 64 73.486 -0.219 43. ATOM 2648 CD PHE 64 73.486 -0.219 43. ATOM 2649 O PHE 64 73.486 -0.219 43. ATOM 2640 CA PHE 64 73.486 -0.219 43. ATOM 2641 CB PHE 64 73.486 -0.219 43. ATOM 2643 CD1 PHE 64 73.486 -0.219 43. ATOM 2644 CD2 PHE 64 74.489 -0.717 42. ATOM 2648 CD PHE 64 73.486 -0.219 43. ATOM 2649 O PHE 64 74.548 -0.219 43. ATOM 2650 N LYS 65 70.284 4.996 43. ATOM 2651 CD LYS 65 71.576 5.890 47. ATOM 2652 CD LYS 65 71.576 5.890 47. ATOM 2651 CD LYS 65 71.576 5.890 47. ATOM 2651 CD LYS 65 71.576 5.890 47. ATOM 2651 CD LYS 65 71.576 5.890 47. ATOM 2652 CD LYS 65 71.576 5.890 47. ATOM 2651 CD LYS 65 71.576 5.890 47. ATOM 2651 CD LYS 65 71.576 5.890 47. ATOM 2651 CD LYS 65 72.017 6.042 46. ATOM 2652 CD LYS 65 71.576 5.890 47. ATOM 2651 CD LYS 65 72.017 6.042 46. ATOM 26							39.055	1.00	
ATOM 2611 O TYR 60 65.463 9.683 39. ATOM 2612 N VAL 61 66.720 9.387 37. ATOM 2615 CB VAL 61 66.720 9.387 37. ATOM 2615 CB VAL 61 67.864 7.381 36. ATOM 2616 CG1 VAL 61 67.881 5.852 36. ATOM 2617 CG2 VAL 61 67.518 7.891 34. ATOM 2618 C VAL 61 67.323 7.531 38. ATOM 2619 O VAL 61 67.323 7.531 38. ATOM 2620 N ASP 62 67.298 7.887 41. ATOM 2620 N ASP 62 68.455 8.234 40. ATOM 2623 CB ASP 62 66.192 8.938 41. ATOM 2624 CG ASP 62 66.192 8.938 41. ATOM 2625 OD1 ASP 62 66.499 10.131 41. ATOM 2626 OD2 ASP 62 65.009 8.573 41. ATOM 2627 C ASP 62 69.511 7.134 40. ATOM 2628 O ASP 62 69.207 5.953 40. ATOM 2629 N ASP 62 69.207 5.953 40. ATOM 2631 CA ASP 63 70.755 7.543 40. ATOM 2632 CB ASP 63 73.194 7.404 40. ATOM 2631 CA ASP 63 73.885 6.623 40. ATOM 2632 CB ASP 63 73.885 6.623 40. ATOM 2634 OD1 ASP 63 73.885 6.623 40. ATOM 2636 C ASP 63 73.888 5.897 38. ATOM 2637 O ASP 63 73.894 7.404 40. ATOM 2638 N PHE 64 71.509 6.110 42. ATOM 2638 N PHE 64 71.509 6.110 42. ATOM 2639 N ASP 63 73.888 5.897 38. ATOM 2631 CB ASP 63 73.888 5.897 38. ATOM 2634 OD1 ASP 63 73.894 7.404 40. ATOM 2637 O ASP 63 73.894 7.404 40. ATOM 2638 N PHE 64 71.509 4.461 41. ATOM 2639 N ASP 63 73.894 7.404 40. ATOM 2631 CB ASP 63 73.894 7.404 40. ATOM 2634 OD1 ASP 63 73.898 5.897 38. ATOM 2636 C ASP 63 73.996 7.051 39. ATOM 2637 O ASP 63 73.996 7.051 39. ATOM 2638 N PHE 64 73.492 1.328 41. ATOM 2640 CA PHE 64 73.492 1.328 41. ATOM 2640 CB PHE 64 73.492 1.328 41. ATOM 2641 CB PHE 64 73.493 1.328 41. ATOM 2643 CD1 PHE 64 73.493 1.328 41. ATOM 2644 CD2 PHE 64 74.489 -0.717 42. ATOM 2645 CE1 PHE 64 73.493 1.328 41. ATOM 2646 CE2 PHE 64 73.493 1.328 41. ATOM 2647 CZ PHE 64 73.493 1.328 41. ATOM 2648 CD1 PHE 64 73.432 1.328 41. ATOM 2649 O PHE 64 73.432 1.328 41. ATOM 2640 CB PHE 64 73.432 1.328 41. ATOM 2651 CB LYS 65 71.576 5.890 47. ATOM 2652 CB LYS 65 71.576 5.890 47. ATOM 2651 CB LYS 65 71.576 5.890 47. ATOM 2652 CB LYS 6							39.136 38.119	1.00	
ATOM 2612 N VAL 61 66.720 9.387 37. ATOM 2614 CA VAL 61 66.857 7.935 37. ATOM 2615 CB VAL 61 67.864 7.381 36. ATOM 2615 CG VAL 61 67.881 5.852 36. ATOM 2616 CG1 VAL 61 67.518 7.891 34. ATOM 2617 CG2 VAL 61 67.518 7.891 34. ATOM 2619 O VAL 61 67.518 7.891 34. ATOM 2620 N ASP 62 67.955 8.468 39. ATOM 2622 CA ASP 62 67.955 8.468 39. ATOM 2623 CB ASP 62 67.298 7.887 41. ATOM 2624 CG ASP 62 66.192 8.938 41. ATOM 2625 OD1 ASP 62 66.192 8.938 41. ATOM 2626 OD2 ASP 62 65.009 8.573 41. ATOM 2627 C ASP 62 65.009 8.573 41. ATOM 2628 O ASP 62 69.511 7.134 40. ATOM 2629 N ASP 62 69.511 7.134 40. ATOM 2631 CA ASP 63 70.755 7.543 40. ATOM 2631 CA ASP 63 73.885 6.623 40. ATOM 2632 CB ASP 63 73.885 6.623 40. ATOM 2633 CG ASP 63 73.946 7.051 39. ATOM 2634 OD1 ASP 63 73.828 5.897 38. ATOM 2636 C ASP 63 73.946 7.051 39. ATOM 2637 O ASP 63 73.946 7.051 39. ATOM 2638 C ASP 63 73.946 7.051 39. ATOM 2638 C ASP 63 73.946 7.051 39. ATOM 2636 C ASP 63 73.946 7.051 39. ATOM 2637 O ASP 63 73.946 7.051 39. ATOM 2638 C ASP 63 73.946 7.051 39. ATOM 2638 C ASP 63 73.946 7.051 39. ATOM 2639 C ASP 63 73.946 7.051 39. ATOM 2630 C ASP 63 73.946 7.051 39. ATOM 2631 CA ASP 63 73.828 5.897 38. ATOM 2634 OD1 ASP 63 73.828 5.897 38. ATOM 2636 C ASP 63 73.946 7.051 39. ATOM 2637 O ASP 63 73.946 7.051 39. ATOM 2638 C ASP 63 73.946 7.051 39. ATOM 2638 C ASP 63 73.946 7.051 39. ATOM 2639 C ASP 63 73.946 7.051 39. ATOM 2630 C ASP 63 73.946 7.051 39. ATOM 2631 CA ASP 63 73.946 7.051 39. ATOM 2634 OD1 ASP 63 73.946 7.051 39. ATOM 2636 C ASP 63 73.996 7.075 5.697 41. ATOM 2637 O ASP 63 73.996 7.075 5.697 41. ATOM 2638 C ASP 63 73.996 7.075 5.697 41. ATOM 2637 O ASP 63 73.996 7.075 5.990 44. ATOM 2638 C ASP 63 73.996 7.075 7.924 38. ATOM 2636 C ASP 63 73.996 7.075 7.924 38. ATOM 2636 C ASP 63 73.996 7.075 7.924 38. ATOM 2636 C ASP 63 73.996 7.075 7.924 38. ATOM 2637 O ASP 63 73.996 7.096 8.296 44. ATOM 2648 C PHE 64 73.432 1.3328 41. ATOM 2649 O PHE 64 73.432 1.3328 41. ATOM 2640 CA PHE 64 73.432 1.3328 41. ATOM 2641 CB PHE 64 73.432 1.3328 41. ATOM 2645 CEI PH							39.106	1.00	
ATOM 2615 CB VAL 61 67.864 7.381 36. ATOM 2616 CG1 VAL 61 67.881 5.852 36. ATOM 2617 CG2 VAL 61 67.518 7.891 34. ATOM 2618 C VAL 61 67.518 7.891 34. ATOM 2619 O VAL 61 67.323 7.531 38. ATOM 2620 N ASP 62 67.955 8.468 39. ATOM 2622 CA ASP 62 68.455 8.234 40. ATOM 2623 CB ASP 62 66.192 8.938 41. ATOM 2624 CG ASP 62 66.192 8.938 41. ATOM 2625 OD1 ASP 62 66.192 8.938 41. ATOM 2625 OD2 ASP 62 66.099 8.573 41. ATOM 2626 OD2 ASP 62 65.009 8.573 41. ATOM 2628 O ASP 62 69.207 5.953 40. ATOM 2629 N ASP 62 69.207 5.953 40. ATOM 2620 N ASP 63 70.755 7.543 40. ATOM 2631 CA ASP 63 71.885 6.623 40. ATOM 2632 CB ASP 63 73.194 7.404 40. ATOM 2631 CA ASP 63 73.885 5.897 38. ATOM 2632 CB ASP 63 73.946 7.051 39. ATOM 2634 OD1 ASP 63 73.828 5.897 38. ATOM 2635 OD2 ASP 63 73.946 7.051 39. ATOM 2636 C ASP 63 73.946 7.051 39. ATOM 2637 O ASP 63 73.946 7.051 39. ATOM 2638 N PHE 64 71.509 4.461 41. ATOM 2638 N PHE 64 71.509 4.461 41. ATOM 2644 CD2 PHE 64 73.486 1.836 42. ATOM 2646 CE2 PHE 64 73.486 1.836 42. ATOM 2647 CZ PHE 64 73.486 -0.219 43. ATOM 2648 C PHE 64 73.486 -0.219 43. ATOM 2648 C PHE 64 73.486 -0.219 43. ATOM 2649 O PHE 64 74.548 -0.219 43. ATOM 2650 N LYS 65 69.749 6.824 45. ATOM 2651 CE LYS 65 70.284 4.996 43. ATOM 2652 CA LYS 65 69.749 6.824 45. ATOM 2653 CB LYS 65 71.576 5.890 47. ATOM 2650 C LYS 65 71.576 5.890 47. ATOM 2651 C LYS 65 72.374 4.831 48. ATOM 2651 C LYS 65 71.576 5.890 47. ATOM 2651 C LYS 65 72.374 4.831 48. ATOM 2652 C C LYS 65 72.374 4.831 48. ATOM 2651 C LYS 65 72.374 4.831 48. ATOM 2652 C C LYS 65 72.374 4.831 48. ATOM 2652 C C LYS 65 72.374 4.831 48. ATOM 2652 C C LYS 65 72.374 4.831 48. ATOM 2661 C LYS 65 72.374 4.831 48. ATOM 2662 O LYS 65 67.188 6.271 44.							37 25R		78.68
ATOM 2615 CB VAL 61 67.864 7.381 36. ATOM 2616 CG1 VAL 61 67.881 5.852 36. ATOM 2617 CG2 VAL 61 67.518 7.891 34. ATOM 2618 C VAL 61 67.518 7.891 34. ATOM 2619 O VAL 61 67.323 7.531 38. ATOM 2620 N ASP 62 67.955 8.468 39. ATOM 2622 CA ASP 62 68.455 8.234 40. ATOM 2623 CB ASP 62 66.192 8.938 41. ATOM 2624 CG ASP 62 66.192 8.938 41. ATOM 2625 OD1 ASP 62 66.192 8.938 41. ATOM 2625 OD2 ASP 62 66.099 8.573 41. ATOM 2626 OD2 ASP 62 65.009 8.573 41. ATOM 2628 O ASP 62 69.207 5.953 40. ATOM 2629 N ASP 62 69.207 5.953 40. ATOM 2620 N ASP 63 70.755 7.543 40. ATOM 2631 CA ASP 63 71.885 6.623 40. ATOM 2632 CB ASP 63 73.194 7.404 40. ATOM 2631 CA ASP 63 73.885 5.897 38. ATOM 2632 CB ASP 63 73.946 7.051 39. ATOM 2634 OD1 ASP 63 73.828 5.897 38. ATOM 2635 OD2 ASP 63 73.946 7.051 39. ATOM 2636 C ASP 63 73.946 7.051 39. ATOM 2637 O ASP 63 73.946 7.051 39. ATOM 2638 N PHE 64 71.509 4.461 41. ATOM 2638 N PHE 64 71.509 4.461 41. ATOM 2644 CD2 PHE 64 73.486 1.836 42. ATOM 2646 CE2 PHE 64 73.486 1.836 42. ATOM 2647 CZ PHE 64 73.486 -0.219 43. ATOM 2648 C PHE 64 73.486 -0.219 43. ATOM 2648 C PHE 64 73.486 -0.219 43. ATOM 2649 O PHE 64 74.548 -0.219 43. ATOM 2650 N LYS 65 69.749 6.824 45. ATOM 2651 CE LYS 65 70.284 4.996 43. ATOM 2652 CA LYS 65 69.749 6.824 45. ATOM 2653 CB LYS 65 71.576 5.890 47. ATOM 2650 C LYS 65 71.576 5.890 47. ATOM 2651 C LYS 65 72.374 4.831 48. ATOM 2651 C LYS 65 71.576 5.890 47. ATOM 2651 C LYS 65 72.374 4.831 48. ATOM 2652 C C LYS 65 72.374 4.831 48. ATOM 2651 C LYS 65 72.374 4.831 48. ATOM 2652 C C LYS 65 72.374 4.831 48. ATOM 2652 C C LYS 65 72.374 4.831 48. ATOM 2652 C C LYS 65 72.374 4.831 48. ATOM 2661 C LYS 65 72.374 4.831 48. ATOM 2662 O LYS 65 67.188 6.271 44.							37.386	1.00	
ATOM 2616 CG1 VAL 61 67.881 5.852 36. ATOM 2617 CG2 VAL 61 67.518 7.891 34. ATOM 2618 C VAL 61 67.323 7.531 38. ATOM 2619 O VAL 61 67.323 7.531 38. ATOM 2620 N ASP 62 67.955 8.468 39. ATOM 2622 CA ASP 62 68.455 8.234 40. ATOM 2623 CB ASP 62 66.455 8.234 40. ATOM 2624 CG ASP 62 66.499 10.131 41. ATOM 2625 OD1 ASP 62 66.499 10.131 41. ATOM 2626 OD2 ASP 62 65.009 8.573 41. ATOM 2627 C ASP 62 69.511 7.134 40. ATOM 2628 O ASP 62 69.511 7.134 40. ATOM 2629 N ASP 62 69.511 7.134 40. ATOM 2631 CA ASP 63 70.755 7.543 40. ATOM 2631 CA ASP 63 70.755 7.543 40. ATOM 2631 CA ASP 63 73.194 7.404 40. ATOM 2632 CB ASP 63 73.194 7.404 40. ATOM 2633 CG ASP 63 73.828 5.897 38. ATOM 2634 OD1 ASP 63 73.828 5.897 38. ATOM 2635 OD2 ASP 63 73.946 7.051 39. ATOM 2636 C ASP 63 71.972 5.697 41. ATOM 2637 O ASP 63 72.399 6.110 42. ATOM 2638 N PHE 64 71.509 4.461 41. ATOM 2634 CD1 PHE 64 73.432 1.328 41. ATOM 2640 CA PHE 64 73.432 1.328 41. ATOM 2641 CB PHE 64 73.432 1.328 41. ATOM 2642 CG PHE 64 73.482 -0.219 43. ATOM 2645 CE1 PHE 64 73.492 1.328 41. ATOM 2646 CE2 PHE 64 73.498 -0.219 43. ATOM 2647 CZ PHE 64 74.047 1.053 43. ATOM 2648 C PHE 64 73.492 1.328 41. ATOM 2646 CE2 PHE 64 74.489 -0.717 42. ATOM 2647 CZ PHE 64 74.489 -0.717 42. ATOM 2648 C PHE 64 73.432 1.328 41. ATOM 2649 O PHE 64 73.432 1.328 41. ATOM 2640 CA PHE 64 73.432 1.328 41. ATOM 2641 CB PHE 64 73.432 1.328 41. ATOM 2642 CB PHE 64 73.432 1.328 41. ATOM 2643 CD1 PHE 64 73.432 1.328 41. ATOM 2644 CD2 PHE 64 73.432 1.328 41. ATOM 2645 CE1 PHE 64 73.432 1.328 41. ATOM 2646 CE2 PHE 64 73.432 1.328 41. ATOM 2647 CZ PHE 64 73.432 1.328 41. ATOM 2648 C CHI PHE 64 73.432 1.328 41. ATOM 2649 O PHE 64 73.432 1.328 41. ATOM 2647 CZ PHE 64 73.432 1.328 41. ATOM 2648 C CEI PHE 64 73.432 1.328 41. ATOM 2649 O PHE 64 73.432 1.328 41. ATOM 2640 C CEI PHE 64 73.432 1.328 41. ATOM 2640 C CEI PHE 64 73.432 1.328 41. ATOM 2640 C CEI PHE 64 73.432 1.328 41. ATOM 2640 C CEI PHE 64 73.432 1.328 41. ATOM 2640 C CEI PHE 64 73.432 1.328 41. ATOM 2640 C CEI PHE 64 73.432 1.328 41. ATOM 2640 C CEI PH	ATOM	2615	CB 1	VAL 61			36.341	1.00	
ATOM 2618 C VAL 61 67.323 7.531 38. ATOM 2619 O VAL 61 67.113 6.396 39. ATOM 2620 N ASP 62 67.955 8.468 39. ATOM 2622 CA ASP 62 68.455 8.234 40. ATOM 2623 CB ASP 62 68.455 8.234 40. ATOM 2624 CG ASP 62 66.499 10.131 41. ATOM 2625 OD1 ASP 62 66.499 10.131 41. ATOM 2626 OD2 ASP 62 65.009 8.573 41. ATOM 2627 C ASP 62 69.511 7.134 40. ATOM 2628 O ASP 62 69.207 5.953 40. ATOM 2629 N ASP 62 69.207 5.953 40. ATOM 2629 N ASP 63 70.755 7.543 40. ATOM 2631 CA ASP 63 71.885 6.623 40. ATOM 2632 CB ASP 63 73.194 7.404 40. ATOM 2631 CA ASP 63 73.885 6.897 38. ATOM 2632 OB ASP 63 73.885 5.897 38. ATOM 2633 OD2 ASP 63 73.828 5.897 38. ATOM 2636 C ASP 63 73.828 5.897 38. ATOM 2637 O ASP 63 72.399 6.110 42. ATOM 2638 N PHE 64 71.509 4.461 41. ATOM 2640 CA PHE 64 71.509 4.461 AT. ATOM 2641 CB PHE 64 71.509 4.461 AT. ATOM 2642 CG PHE 64 73.432 1.328 41. ATOM 2643 CD1 PHE 64 73.432 1.328 41. ATOM 2644 CD2 PHE 64 73.486 -0.219 43. ATOM 2645 CE1 PHE 64 73.492 1.328 41. ATOM 2646 CE2 PHE 64 74.047 1.053 43. ATOM 2647 CZ PHE 64 74.548 -0.219 43. ATOM 2648 C PHE 64 74.548 -0.219 43. ATOM 2649 O PHE 64 74.548 -0.219 43. ATOM 2640 CA PHE 64 73.432 1.328 41. ATOM 2641 CB PHE 64 73.432 1.328 41. ATOM 2646 CE2 PHE 64 74.548 -0.219 43. ATOM 2647 CZ PHE 64 74.548 -0.219 43. ATOM 2648 C PHE 64 73.432 1.328 41. ATOM 2649 O PHE 64 70.592 3.723 43. ATOM 2640 CB PHE 64 73.432 1.328 41. ATOM 2641 CB PHE 64 73.432 1.328 41. ATOM 2642 CG PHE 64 74.548 -0.219 43. ATOM 2643 CD1 PHE 64 73.432 1.328 41. ATOM 2644 CD2 PHE 64 74.548 -0.219 43. ATOM 2645 CE1 PHE 64 73.432 1.328 41. ATOM 2647 CZ PHE 64 74.548 -0.219 43. ATOM 2648 C PHE 64 74.548 -0.219 43. ATOM 2655 CD LYS 65 70.284 4.996 43. ATOM 2657 NZ LYS 65 71.243 7.133 45. ATOM 2658 CD LYS 65 71.576 5.890 47. ATOM 2656 CE LYS 65 71.576 5.890 47. ATOM 2657 NZ LYS 65 72.374 4.831 48. ATOM 2656 CE LYS 65 71.576 5.890 47. ATOM 2656 CE LYS 65 71.576 5.890 47.			CG1 '	VAL 61		5.852	36.363	1.00	
ATOM 2619 O VAL 61 67.113 6.396 39. ATOM 2620 N ASP 62 67.955 8.468 39. ATOM 2622 CA ASP 62 68.455 8.234 40. ATOM 2623 CB ASP 62 66.192 8.938 41. ATOM 2624 CG ASP 62 66.192 8.938 41. ATOM 2625 OD1 ASP 62 66.192 8.938 41. ATOM 2625 OD2 ASP 62 65.009 8.573 41. ATOM 2626 OD2 ASP 62 65.009 8.573 41. ATOM 2627 C ASP 62 69.511 7.134 40. ATOM 2628 O ASP 62 69.511 7.134 40. ATOM 2629 N ASP 63 70.755 7.543 40. ATOM 2631 CA ASP 63 71.885 6.623 40. ATOM 2631 CA ASP 63 73.194 7.404 40. ATOM 2632 CB ASP 63 73.946 7.051 39. ATOM 2633 CG ASP 63 73.828 5.897 38. ATOM 2634 OD1 ASP 63 73.828 5.897 38. ATOM 2635 OD2 ASP 63 74.667 7.924 38. ATOM 2636 C ASP 63 71.972 5.697 41. ATOM 2637 O ASP 63 72.399 6.110 42. ATOM 2638 N PHE 64 71.521 3.437 42. ATOM 2640 CA PHE 64 71.521 3.437 42. ATOM 2641 CB PHE 64 73.432 1.328 41. ATOM 2642 CG PHE 64 73.432 1.328 41. ATOM 2643 CD1 PHE 64 73.432 1.328 41. ATOM 2644 CD2 PHE 64 73.432 1.328 41. ATOM 2645 CE1 PHE 64 73.432 1.328 41. ATOM 2646 CE2 PHE 64 74.047 1.053 43. ATOM 2647 CZ PHE 64 74.489 -0.717 42. ATOM 2648 C PHE 64 73.432 1.328 41. ATOM 2649 O PHE 64 70.592 3.723 43. ATOM 2645 CE1 PHE 64 73.432 1.328 41. ATOM 2646 CE2 PHE 64 74.489 -0.717 42. ATOM 2647 CZ PHE 64 74.489 -0.717 42. ATOM 2648 C PHE 64 70.592 3.723 43. ATOM 2655 CD LYS 65 70.284 4.996 43. ATOM 2655 CD LYS 65 71.576 5.890 47. ATOM 2657 NZ LYS 65 71.576 5.890 47. ATOM 2651 C LYS 65 71.576 5.890 47. ATOM 2651 C LYS 65 77.576 5.890 47.							34.945	1.00	61.99
ATOM 2620 N ASP 62 67.955 8.468 39. ATOM 2622 CA ASP 62 68.455 8.234 40. ATOM 2623 CB ASP 62 68.455 8.234 40. ATOM 2624 CG ASP 62 66.192 8.938 41. ATOM 2625 OD1 ASP 62 66.499 10.131 41. ATOM 2626 OD2 ASP 62 65.009 8.573 41. ATOM 2627 C ASP 62 69.511 7.134 40. ATOM 2628 O ASP 62 69.511 7.134 40. ATOM 2629 N ASP 63 70.755 7.543 40. ATOM 2621 CA ASP 63 71.885 6.623 40. ATOM 2631 CA ASP 63 73.188 6.623 40. ATOM 2631 CA ASP 63 73.194 7.404 40. ATOM 2632 CB ASP 63 73.194 7.404 40. ATOM 2633 CG ASP 63 73.946 7.051 39. ATOM 2634 OD1 ASP 63 73.828 5.897 38. ATOM 2635 OD2 ASP 63 73.828 5.897 38. ATOM 2636 C ASP 63 73.946 7.051 39. ATOM 2637 O ASP 63 74.667 7.924 38. ATOM 2638 N PHE 64 71.509 4.461 41. ATOM 2638 N PHE 64 71.509 4.461 41. ATOM 2640 CA PHE 64 71.509 4.461 41. ATOM 2641 CB PHE 64 73.486 1.836 42. ATOM 2642 CG PHE 64 73.486 1.836 42. ATOM 2646 CE2 PHE 64 73.486 1.836 42. ATOM 2647 CZ PHE 64 74.489 -0.717 42. ATOM 2648 C PHE 64 74.548 -0.219 43. ATOM 2648 C PHE 64 70.592 3.723 43. ATOM 2648 C PHE 64 70.592 3.723 43. ATOM 2655 OD LYS 65 71.243 7.133 45. ATOM 2657 NZ LYS 65 71.243 7.133 45. ATOM 2657 NZ LYS 65 72.374 4.831 48. ATOM 2657 NZ LYS 65 72.374 4.831 48. ATOM 2656 CE LYS 65 71.576 5.890 47. ATOM 2656 CE LYS 65 72.374 4.831 48. ATOM 2656 CE LYS 65 77.576 5.890 47. ATOM 2657 NZ LYS 65 72.374 4.831 48. ATOM 2656 CE LYS 65 72.374 4.831 48. ATOM 2656 CE LYS 65 77.576 5.890 47. ATOM 2656 CE LYS 65 77.374 4.831 48. ATOM 2666 CE LYS 65 77.374 4.831 48.							38.788	1.00	
ATOM 2622 CA ASP 62 68.455 8.234 40.1 ATOM 2623 CB ASP 62 67.298 7.887 41. ATOM 2624 CG ASP 62 66.192 8.938 41. ATOM 2625 OD1 ASP 62 66.499 10.131 41. ATOM 2626 OD2 ASP 62 65.009 8.573 41. ATOM 2627 C ASP 62 69.511 7.134 40.1 ATOM 2628 O ASP 62 69.207 5.953 40.1 ATOM 2629 N ASP 62 69.207 5.953 40.1 ATOM 2621 CB ASP 63 70.755 7.543 40.1 ATOM 2631 CA ASP 63 70.755 7.543 40.1 ATOM 2632 CB ASP 63 73.194 7.404 40.1 ATOM 2631 CA ASP 63 73.885 6.623 40.1 ATOM 2632 CB ASP 63 73.885 6.623 40.1 ATOM 2633 CG ASP 63 73.885 5.897 38.1 ATOM 2636 OD2 ASP 63 73.828 5.897 38.1 ATOM 2636 C ASP 63 73.828 5.897 38.1 ATOM 2637 O ASP 63 74.667 7.924 38.1 ATOM 2638 N PHE 64 71.509 4.461 41.1 ATOM 2640 CA PHE 64 71.509 4.461 41.1 ATOM 2641 CB PHE 64 71.509 4.461 41.1 ATOM 2642 CG PHE 64 73.432 1.328 41.1 ATOM 2643 CD1 PHE 64 73.432 1.328 41.1 ATOM 2644 CD2 PHE 64 73.432 1.328 41.1 ATOM 2646 CE2 PHE 64 73.486 -0.219 43.1 ATOM 2646 CE2 PHE 64 74.047 1.053 43.1 ATOM 2646 CE2 PHE 64 74.548 -0.219 43.1 ATOM 2647 CZ PHE 64 74.489 -0.717 42.1 ATOM 2648 C PHE 64 74.548 -0.219 43.1 ATOM 2649 O PHE 64 74.548 -0.219 43.1 ATOM 2645 CE1 PHE 64 74.489 -0.717 42.1 ATOM 2646 CE2 PHE 64 74.548 -0.219 43.1 ATOM 2647 CZ PHE 64 74.489 -0.717 42.1 ATOM 2648 C PHE 64 76.592 3.723 43.1 ATOM 2650 C LYS 65 69.444 5.395 45.1 ATOM 2651 C LYS 65 71.243 7.133 45.1 ATOM 2655 CD LYS 65 71.243 7.133 45.1 ATOM 2656 CE LYS 65 71.576 5.890 47.1 ATOM 2651 C LYS 65 72.374 4.831 48.1 ATOM 2651 C LYS 65 67.940 5.296 44.1 ATOM 2651 C LYS 65 67.940 5.296 44.1							39.218	1.00	
ATOM 2623 CB ASP 62 67.298 7.887 41. ATOM 2624 CG ASP 62 66.192 8.938 41. ATOM 2625 OD1 ASP 62 66.192 8.938 41. ATOM 2626 OD2 ASP 62 65.009 8.573 41. ATOM 2627 C ASP 62 69.511 7.134 40. ATOM 2628 O ASP 62 69.511 7.134 40. ATOM 2629 N ASP 63 70.755 7.543 40. ATOM 2631 CA ASP 63 70.755 7.543 40. ATOM 2631 CA ASP 63 71.885 6.623 40. ATOM 2632 CB ASP 63 73.194 7.404 40. ATOM 2633 CG ASP 63 73.946 7.051 39. ATOM 2634 OD1 ASP 63 73.828 5.897 38. ATOM 2635 OD2 ASP 63 73.828 5.897 38. ATOM 2636 C ASP 63 71.972 5.697 41. ATOM 2638 N PHE 64 71.509 4.461 41. ATOM 2638 N PHE 64 71.509 4.461 41. ATOM 2640 CA PHE 64 71.521 3.437 42. ATOM 2641 CB PHE 64 73.432 1.328 41. ATOM 2642 CG PHE 64 73.432 1.328 41. ATOM 2643 CD1 PHE 64 73.432 1.328 41. ATOM 2646 CE2 PHE 64 74.047 1.053 43. ATOM 2646 CE2 PHE 64 74.047 1.053 43. ATOM 2646 CE2 PHE 64 74.489 -0.717 42. ATOM 2649 O PHE 64 70.592 3.723 43. ATOM 2649 O PHE 64 70.141 2.795 44. ATOM 2655 CB LYS 65 70.284 4.996 43. ATOM 2655 CD LYS 65 71.243 7.133 45. ATOM 2656 CE LYS 65 71.576 5.890 47. ATOM 2657 NZ LYS 65 72.374 4.831 48. ATOM 2657 NZ LYS 65 77.576 5.890 47. ATOM 2651 C LYS 65 77.576 5.890 47. ATOM 2651 C LYS 65 77.576 5.890 47.							39.491	1.00	
ATOM 2624 CG ASP 62 66.192 8.938 41. ATOM 2625 OD1 ASP 62 66.499 10.131 41. ATOM 2626 OD2 ASP 62 65.009 8.573 41. ATOM 2627 C ASP 62 65.009 8.573 41. ATOM 2628 O ASP 62 69.511 7.134 40. ATOM 2628 O ASP 62 69.511 7.134 40. ATOM 2629 N ASP 63 70.755 7.543 40. ATOM 2631 CA ASP 63 71.885 6.623 40. ATOM 2632 CB ASP 63 73.194 7.404 40. ATOM 2631 CA ASP 63 73.828 5.897 38. ATOM 2633 CG ASP 63 73.946 7.051 39. ATOM 2634 OD1 ASP 63 73.828 5.897 38. ATOM 2635 OD2 ASP 63 74.667 7.924 38. ATOM 2636 C ASP 63 71.972 5.697 41. ATOM 2638 N PHE 64 71.509 4.461 41. ATOM 2630 CA PHE 64 71.509 4.461 41. ATOM 2641 CB PHE 64 71.509 4.461 41. ATOM 2642 CG PHE 64 73.486 1.836 42. ATOM 2645 CE1 PHE 64 73.486 1.836 42. ATOM 2646 CE2 PHE 64 73.432 1.328 41. ATOM 2646 CE2 PHE 64 73.930 0.058 41. ATOM 2648 C PHE 64 74.548 -0.219 43. ATOM 2648 C PHE 64 74.548 -0.219 43. ATOM 2648 C PHE 64 70.592 3.723 43. ATOM 2655 CD LYS 65 71.243 7.133 45. ATOM 2657 NZ LYS 65 71.243 7.133 45. ATOM 2657 NZ LYS 65 72.374 4.831 48. ATOM 2656 CE LYS 65 71.576 5.890 47. ATOM 2651 C LYS 65 72.374 4.831 48. ATOM 2656 CE LYS 65 72.374 4.831 48. ATOM 2666 CE LYS 65 72.374 4.831 48.					67 200		40.840	1.00	
ATOM 2625 OD1 ASP 62 66.499 10.131 41. ATOM 2626 OD2 ASP 62 65.009 8.573 41. ATOM 2627 C ASP 62 69.511 7.134 40. ATOM 2628 O ASP 62 69.511 7.134 40. ATOM 2629 N ASP 62 69.207 5.953 40. ATOM 2631 CA ASP 63 70.755 7.543 40. ATOM 2631 CA ASP 63 71.885 6.623 40. ATOM 2632 CB ASP 63 73.194 7.404 40. ATOM 2633 CG ASP 63 73.946 7.051 39. ATOM 2634 OD1 ASP 63 73.828 5.897 38. ATOM 2635 OD2 ASP 63 74.667 7.924 38. ATOM 2636 C ASP 63 71.972 5.697 41. ATOM 2637 O ASP 63 72.399 6.110 42. ATOM 2638 N PHE 64 71.509 4.461 41. ATOM 2640 CA PHE 64 71.509 4.461 41. ATOM 2641 CB PHE 64 72.948 3.202 43. ATOM 2642 CG PHE 64 73.482 1.328 41. ATOM 2643 CD1 PHE 64 73.482 1.328 41. ATOM 2646 CE2 PHE 64 73.486 -0.219 43. ATOM 2646 CE2 PHE 64 74.047 1.053 43. ATOM 2646 CE2 PHE 64 74.548 -0.219 43. ATOM 2648 C PHE 64 70.592 3.723 43. ATOM 2649 O PHE 64 70.592 3.723 43. ATOM 2645 CE1 PHE 64 70.592 3.723 43. ATOM 2645 CE1 PHE 64 70.592 3.723 43. ATOM 2646 CE2 PHE 64 74.489 -0.717 42. ATOM 2647 CZ PHE 64 70.592 3.723 43. ATOM 2648 C PHE 64 70.592 3.723 43. ATOM 2655 CB LYS 65 70.284 4.996 43. ATOM 2657 NZ LYS 65 71.243 7.133 45. ATOM 2657 NZ LYS 65 71.576 5.890 47. ATOM 2656 CE LYS 65 71.576 5.890 47. ATOM 2656 CE LYS 65 71.576 5.890 47. ATOM 2656 CE LYS 65 72.374 4.831 48. ATOM 2656 CE LYS 65 71.576 5.890 47. ATOM 2656 CE LYS 65 72.374 4.831 48. ATOM 2661 C LYS 65 67.940 5.296 44.							41.764	1.00	
ATOM 2626 OD2 ASP 62 65.009 8.573 41. ATOM 2627 C ASP 62 69.511 7.134 40. ATOM 2628 O ASP 62 69.511 7.134 40. ATOM 2629 N ASP 63 70.755 7.543 40. ATOM 2631 CA ASP 63 71.885 6.623 40. ATOM 2631 CA ASP 63 73.194 7.404 40. ATOM 2632 CB ASP 63 73.946 7.051 39. ATOM 2633 CG ASP 63 73.828 5.897 38. ATOM 2634 OD1 ASP 63 73.828 5.897 38. ATOM 2635 OD2 ASP 63 74.667 7.924 38. ATOM 2636 C ASP 63 71.972 5.697 41. ATOM 2637 O ASP 63 72.399 6.110 42. ATOM 2638 N PHE 64 71.521 3.437 42. ATOM 2640 CA PHE 64 71.521 3.437 42. ATOM 2641 CB PHE 64 72.948 3.202 43. ATOM 2642 CG PHE 64 73.432 1.328 41. ATOM 2643 CD1 PHE 64 73.432 1.328 41. ATOM 2644 CD2 PHE 64 73.432 1.328 41. ATOM 2646 CE2 PHE 64 74.047 1.053 43. ATOM 2646 CE2 PHE 64 74.047 1.053 43. ATOM 2646 CE2 PHE 64 74.489 -0.717 42. ATOM 2649 O PHE 64 70.592 3.723 43. ATOM 2649 O PHE 64 70.592 3.723 43. ATOM 2649 C PHE 64 70.592 3.723 43. ATOM 2650 C LYS 65 69.749 6.824 45. ATOM 2651 C LYS 65 71.243 7.133 45. ATOM 2655 CD LYS 65 71.576 5.890 47. ATOM 2651 C LYS 65 72.374 4.831 48. ATOM 2652 CA LYS 65 71.576 5.890 47. ATOM 2651 C LYS 65 77.576 5.890 47.							41.559	1.00	
ATOM 2627 C ASP 62 69.511 7.134 40.1 ATOM 2628 0 ASP 62 69.207 5.953 40.4 ATOM 2629 N ASP 63 70.755 7.543 40.4 ATOM 2631 CA ASP 63 71.885 6.623 40.4 ATOM 2632 CB ASP 63 73.194 7.404 40.4 ATOM 2633 CG ASP 63 73.946 7.051 39.4 ATOM 2635 OD2 ASP 63 73.828 5.897 38.4 ATOM 2635 OD2 ASP 63 71.828 5.897 38.4 ATOM 2636 C ASP 63 71.972 5.697 41.4 ATOM 2637 O ASP 63 72.399 6.110 42.4 ATOM 2638 N PHE 64 71.509 4.461 41.4 ATOM 2640 CA PHE 64 71.509 4.461 41.4 ATOM 2641 CB PHE 64 72.948 3.202 43.4 ATOM 2642 CG PHE 64 73.486 1.836 42.4 ATOM 2646 CD1 PHE 64 73.486 1.836 42.4 ATOM 2647 CC PHE 64 73.432 1.328 41.4 ATOM 2646 CE2 PHE 64 73.432 1.328 41.4 ATOM 2646 CE2 PHE 64 73.930 0.058 41.4 ATOM 2646 CE2 PHE 64 74.548 -0.219 43.4 ATOM 2648 C PHE 64 70.592 3.723 43.4 ATOM 2655 N LYS 65 69.749 6.824 45.4 ATOM 2655 CD LYS 65 71.243 7.133 45.4 ATOM 2655 CD LYS 65 71.243 7.133 45.4 ATOM 2655 CD LYS 65 71.243 7.133 45.4 ATOM 2655 CD LYS 65 71.576 5.890 47.4 ATOM 2656 CE LYS 65 72.374 4.831 48.4 ATOM 2661 C LYS 65 67.940 5.296 44.4 ATOM 2661 C L							41.936	1.00	
ATOM 2628 O ASP 62 69.207 5.953 40.1 ATOM 2629 N ASP 63 70.755 7.543 40.1 ATOM 2631 CA ASP 63 71.885 6.623 40.1 ATOM 2631 CB ASP 63 73.194 7.404 40.1 ATOM 2632 CB ASP 63 73.194 7.404 40.1 ATOM 2633 CG ASP 63 73.946 7.051 39.1 ATOM 2635 OD2 ASP 63 73.828 5.897 38.1 ATOM 2635 OD2 ASP 63 74.667 7.924 38.1 ATOM 2636 C ASP 63 71.972 5.697 41.1 ATOM 2637 O ASP 63 71.972 5.697 41.1 ATOM 2638 N PHE 64 71.509 4.461 41.1 ATOM 2640 CA PHE 64 71.509 4.461 41.1 ATOM 2641 CB PHE 64 71.509 4.461 41.1 ATOM 2642 CG PHE 64 73.486 1.836 42.1 ATOM 2644 CD2 PHE 64 73.486 1.836 42.1 ATOM 2645 CE1 PHE 64 73.486 1.836 42.1 ATOM 2646 CE2 PHE 64 73.488 -0.219 43.1 ATOM 2646 CE2 PHE 64 74.548 -0.219 43.1 ATOM 2648 C PHE 64 70.592 3.723 43.1 ATOM 2649 O PHE 64 70.592 3.723 43.1 ATOM 2650 N LYS 65 69.749 6.824 45.1 ATOM 2651 CB LYS 65 71.243 7.133 45.1 ATOM 2655 CD LYS 65 71.243 7.133 45.1 ATOM 2656 CE LYS 65 71.576 5.890 47.1 ATOM 2656 CE LYS 65 72.374 4.831 48.1 ATOM 2651 C LYS 65 67.940 5.296 44.1 ATOM 2662 O LYS 65 67.188 6.271 44.4							40.810	1.00	
ATOM 2629 N ASP 63 70.755 7.543 40.4 ATOM 2631 CA ASP 63 71.885 6.623 40.4 ATOM 2632 CB ASP 63 73.194 7.404 40.4 ATOM 2633 CG ASP 63 73.946 7.051 39.4 ATOM 2634 OD1 ASP 63 73.828 5.897 38.4 ATOM 2635 OD2 ASP 63 74.667 7.924 38.4 ATOM 2636 C ASP 63 71.972 5.697 41.4 ATOM 2637 O ASP 63 72.399 6.110 42.4 ATOM 2638 N PHE 64 71.509 4.461 41.4 ATOM 2640 CA PHE 64 71.509 4.461 41.4 ATOM 2641 CB PHE 64 72.948 3.202 43.4 ATOM 2642 CG PHE 64 72.948 3.202 43.4 ATOM 2643 CD1 PHE 64 73.432 1.328 41.4 ATOM 2644 CD2 PHE 64 73.486 1.836 42.4 ATOM 2646 CE2 PHE 64 73.498 0.058 41.4 ATOM 2646 CE2 PHE 64 74.047 1.053 43.4 ATOM 2646 CE2 PHE 64 74.047 1.053 43.4 ATOM 2646 CE2 PHE 64 74.548 -0.219 43.4 ATOM 2648 C PHE 64 70.592 3.723 43.4 ATOM 2648 C PHE 64 70.592 3.723 43.4 ATOM 2648 C PHE 64 70.592 3.723 43.4 ATOM 2649 O PHE 64 70.141 2.795 44.4 ATOM 2650 N LYS 65 70.284 4.996 43.4 ATOM 2651 CB LYS 65 69.749 6.824 45.4 ATOM 2652 CA LYS 65 71.243 7.133 45.4 ATOM 2655 CD LYS 65 71.243 7.133 45.4 ATOM 2656 CE LYS 65 71.576 5.890 47.4 ATOM 2657 NZ LYS 65 72.374 4.831 48.4 ATOM 2651 C LYS 65 72.374 4.831 48.4 ATOM 2652 O LYS 65 72.374 4.831 48.4 ATOM 2651 C LYS 65 72.374 4.831 48.4 ATOM 2652 O LYS 65 67.980 5.296 44.4 ATOM 2662 O LYS 65 67.188 6.271 44.4	ATOM	2628			69.207		40.977	1.00	
ATOM 2631 CA ASP 63 71.885 6.623 40. ATOM 2632 CB ASP 63 73.194 7.404 40. ATOM 2633 CG ASP 63 73.946 7.051 39. ATOM 2634 OD1 ASP 63 73.828 5.897 38. ATOM 2635 OD2 ASP 63 74.667 7.924 38. ATOM 2636 C ASP 63 71.972 5.697 41. ATOM 2638 N PHE 64 71.509 4.461 41. ATOM 2638 N PHE 64 71.509 4.461 41. ATOM 2640 CA PHE 64 71.521 3.437 42. ATOM 2641 CB PHE 64 72.948 3.202 43. ATOM 2641 CB PHE 64 73.486 1.836 42. ATOM 2644 CD2 PHE 64 73.432 1.328 41. ATOM 2646 CE2 PHE 64 73.432 1.328 41. ATOM 2646 CE2 PHE 64 73.930 0.058 41. ATOM 2646 CE2 PHE 64 73.930 0.058 41. ATOM 2646 CE2 PHE 64 73.930 0.058 41. ATOM 2648 C PHE 64 74.548 -0.219 43. ATOM 2648 C PHE 64 70.592 3.723 43. ATOM 2655 N LYS 65 70.284 4.996 43. ATOM 2655 CD LYS 65 69.414 5.395 45. ATOM 2657 NZ LYS 65 71.243 7.133 45. ATOM 2656 CE LYS 65 71.243 7.133 45. ATOM 2656 CE LYS 65 772.374 4.831 48. ATOM 2657 NZ LYS 65 772.374 4.831 48. ATOM 2656 CE LYS 65 772.374 4.831 48. ATOM 2651 C LYS 65 67.940 5.296 44. ATOM 2661 C LYS 65 67.940 5.296 44. ATOM 2662 O LYS 65 67.940 5.296 44. ATOM 2661 C LYS 65 67.940 5.296 44. ATOM 2662 O LYS 65 67.980 5.271 44. ATOM 2661 C LYS 65 67.940 5.296 44. ATOM 2662 O LYS 65 67.980 5.271 44.	ATOM	2629	N i	ASP 63	70.755		40.574	1.00	
ATOM 2633 CG ASP 63 73.946 7.051 39.4 ATOM 2634 OD1 ASP 63 73.828 5.897 38. ATOM 2635 OD2 ASP 63 74.667 7.924 38. ATOM 2636 C ASP 63 71.972 5.697 41. ATOM 2637 O ASP 63 72.399 6.110 42. ATOM 2638 N PHE 64 71.509 4.461 41. ATOM 2640 CA PHE 64 71.509 4.461 41. ATOM 2641 CB PHE 64 72.948 3.202 43. ATOM 2642 CG PHE 64 73.486 1.836 42. ATOM 2642 CG PHE 64 73.486 1.836 42. ATOM 2642 CD PHE 64 73.486 1.836 42. ATOM 2644 CD2 PHE 64 73.432 1.328 41. ATOM 2646 CE2 PHE 64 73.930 0.058 41. ATOM 2647 CZ PHE 64 74.047 1.053 43. ATOM 2647 CZ PHE 64 74.047 1.053 43. ATOM 2648 C PHE 64 74.489 -0.717 42. ATOM 2648 C PHE 64 70.592 3.723 43. ATOM 2648 C PHE 64 70.592 3.723 43. ATOM 2648 C PHE 64 70.141 2.795 44. ATOM 2650 N LYS 65 70.284 4.996 43. ATOM 2655 CD LYS 65 69.414 5.395 45. ATOM 2655 CD LYS 65 71.243 7.133 45. ATOM 2655 CD LYS 65 71.243 7.133 45. ATOM 2657 NZ LYS 65 72.017 6.042 46. ATOM 2657 NZ LYS 65 72.017 6.042 46. ATOM 2657 NZ LYS 65 72.374 4.831 48. ATOM 2661 C LYS 65 71.576 5.890 47. ATOM 26561 C LYS 65 71.576 5.890 47. ATOM 26561 C LYS 65 72.374 4.831 48. ATOM 2661 C LYS 65 71.88 6.271 44.							40.492	1.00	
ATOM 2634 OD1 ASP 63 73.828 5.897 38. ATOM 2635 OD2 ASP 63 74.667 7.924 38. ATOM 2636 C ASP 63 74.667 7.924 38. ATOM 2636 C ASP 63 71.972 5.697 41. ATOM 2637 O ASP 63 72.399 6.110 42. ATOM 2638 N PHE 64 71.509 4.461 41. ATOM 2640 CA PHE 64 71.521 3.437 42. ATOM 2641 CB PHE 64 72.948 3.202 43. ATOM 2642 CG PHE 64 73.486 1.836 42. ATOM 2643 CD1 PHE 64 73.432 1.328 41. ATOM 2644 CD2 PHE 64 73.432 1.328 41. ATOM 2646 CE2 PHE 64 74.047 1.053 43. ATOM 2646 CE2 PHE 64 74.548 -0.219 43. ATOM 2647 CZ PHE 64 74.548 -0.219 43. ATOM 2648 C PHE 64 70.592 3.723 43. ATOM 2649 O PHE 64 70.592 3.723 43. ATOM 2649 O PHE 64 70.141 2.795 44. ATOM 2650 N LYS 65 70.284 4.996 43. ATOM 2651 CB LYS 65 69.414 5.395 45. ATOM 2652 CB LYS 65 71.243 7.133 45. ATOM 2655 CB LYS 65 71.243 7.133 45. ATOM 2656 CE LYS 65 71.576 5.890 47. ATOM 2657 NZ LYS 65 72.374 4.831 48. ATOM 2651 C LYS 65 72.374 4.831 48. ATOM 2661 C LYS 65 79.40 5.296 44. ATOM 2661 C LYS 65 71.88 6.271 44.							40.344	1.00	
ATOM 2635 OD2 ASP 63 74.667 7.924 38. ATOM 2636 C ASP 63 71.972 5.697 41. ATOM 2637 O ASP 63 72.399 6.110 42. ATOM 2638 N PHE 64 71.509 4.461 41. ATOM 2640 CA PHE 64 71.521 3.437 42. ATOM 2641 CB PHE 64 72.948 3.202 43. ATOM 2642 CG PHE 64 73.486 1.836 42. ATOM 2643 CD1 PHE 64 73.486 1.836 42. ATOM 2644 CD2 PHE 64 73.432 1.328 41. ATOM 2644 CD2 PHE 64 74.047 1.053 43. ATOM 2646 CE2 PHE 64 74.047 1.053 43. ATOM 2646 CE2 PHE 64 74.548 -0.219 43. ATOM 2647 CZ PHE 64 74.489 -0.717 42. ATOM 2648 C PHE 64 70.592 3.723 43. ATOM 2649 O PHE 64 70.141 2.795 44. ATOM 2650 N LYS 65 70.284 4.996 43. ATOM 2651 CB LYS 65 69.749 6.824 45. ATOM 2653 CB LYS 65 71.243 7.133 45. ATOM 2656 CE LYS 65 71.243 7.133 45. ATOM 2657 NZ LYS 65 72.017 6.042 46. ATOM 2651 C LYS 65 72.374 4.831 48. ATOM 2661 C LYS 65 72.374 4.831 48. ATOM 2661 C LYS 65 67.940 5.296 44.							39.072	1.00	
ATOM 2636 C ASP 63 71.972 5.697 41. ATOM 2637 O ASP 63 72.399 6.110 42. ATOM 2638 N PHE 64 71.509 4.461 41. ATOM 2640 CA PHE 64 71.521 3.437 42. ATOM 2641 CB PHE 64 72.948 3.202 43. ATOM 2642 CG PHE 64 73.486 1.836 42. ATOM 2643 CD1 PHE 64 73.432 1.328 41. ATOM 2644 CD2 PHE 64 74.047 1.053 43. ATOM 2645 CE1 PHE 64 73.930 0.058 41. ATOM 2646 CE2 PHE 64 74.548 -0.219 43. ATOM 2646 CE2 PHE 64 74.548 -0.219 43. ATOM 2648 C PHE 64 70.592 3.723 43. ATOM 2649 O PHE 64 70.141 2.795 44. ATOM 2650 N LYS 65 70.284 4.996 43. ATOM 2651 CA LYS 65 69.414 5.395 45. ATOM 2652 CA LYS 65 69.414 5.395 45. ATOM 2653 CB LYS 65 71.243 7.133 45. ATOM 2655 CD LYS 65 71.243 7.133 45. ATOM 2656 CE LYS 65 71.576 5.890 47. ATOM 2657 NZ LYS 65 772.374 4.831 48. ATOM 2651 C LYS 65 67.940 5.296 44. ATOM 2651 C LYS 65 772.374 4.831 48. ATOM 2651 C LYS 65 772.374 4.831 48. ATOM 2661 C LYS 65 67.940 5.296 44. ATOM 2661 C LYS 65 67.940 5.296 44.							38.604	1.00	
ATOM 2637 O ASP 63 72.399 6.110 42. ATOM 2638 N PHE 64 71.509 4.461 41. ATOM 2640 CA PHE 64 71.521 3.437 42. ATOM 2641 CB PHE 64 72.948 3.202 43. ATOM 2642 CG PHE 64 73.486 1.836 42. ATOM 2643 CD1 PHE 64 73.432 1.328 41. ATOM 2644 CD2 PHE 64 73.432 1.328 41. ATOM 2645 CE1 PHE 64 73.930 0.058 41. ATOM 2646 CE2 PHE 64 74.548 -0.219 43. ATOM 2647 CZ PHE 64 74.548 -0.219 43. ATOM 2648 C PHE 64 70.592 3.723 43. ATOM 2648 C PHE 64 70.592 3.723 43. ATOM 2650 N LYS 65 70.284 4.996 43. ATOM 2653 CB LYS 65 69.414 5.395 45. ATOM 2654 CG LYS 65 69.414 5.395 45. ATOM 2655 CD LYS 65 71.243 7.133 45. ATOM 2656 CE LYS 65 72.374 4.831 48. ATOM 2656 CE LYS 65 72.374 4.831 48. ATOM 2657 NZ LYS 65 772.374 4.831 48. ATOM 2651 C LYS 65 67.940 5.296 44. ATOM 2661 C LYS 65 67.940 5.296 44. ATOM 2661 C LYS 65 67.980 5.296 44.							38.546	1.00	
ATOM 2640 CA PHE 64 71.509 4.461 41. ATOM 2640 CA PHE 64 71.521 3.437 42. ATOM 2641 CB PHE 64 72.948 3.202 43. ATOM 2642 CG PHE 64 73.486 1.836 42. ATOM 2643 CD1 PHE 64 73.482 1.328 41. ATOM 2644 CD2 PHE 64 74.047 1.053 43. ATOM 2645 CE1 PHE 64 73.930 0.058 41. ATOM 2646 CE2 PHE 64 74.548 -0.219 43. ATOM 2647 CZ PHE 64 74.548 -0.219 43. ATOM 2648 C PHE 64 76.592 3.723 43. ATOM 2649 O PHE 64 70.191 2.795 44. ATOM 2650 N LYS 65 70.284 4.996 43. ATOM 2652 CA LYS 65 69.414 5.395 45. ATOM 2653 CB LYS 65 69.749 6.824 45. ATOM 2655 CD LYS 65 71.243 7.133 45. ATOM 2656 CE LYS 65 72.017 6.042 46. ATOM 2657 NZ LYS 65 72.374 4.831 48. ATOM 2656 CE LYS 65 67.940 5.296 44. ATOM 2651 C LYS 65 67.940 5.296 44. ATOM 2651 C LYS 65 67.940 5.296 44. ATOM 2661 C LYS 65 67.980 5.296 44.							41.696	1.00	
ATOM 2640 CA PHE 64 71.521 3.437 42. ATOM 2641 CB PHE 64 72.948 3.202 43. ATOM 2642 CG PHE 64 73.486 1.836 42. ATOM 2643 CD1 PHE 64 73.432 1.328 41. ATOM 2644 CD2 PHE 64 74.047 1.053 43. ATOM 2645 CE1 PHE 64 73.930 0.058 41. ATOM 2646 CE2 PHE 64 74.548 -0.219 43. ATOM 2646 CE2 PHE 64 74.489 -0.717 42. ATOM 2647 CZ PHE 64 70.592 3.723 43. ATOM 2648 C PHE 64 70.592 3.723 43. ATOM 2649 O PHE 64 70.592 3.723 43. ATOM 2650 N LYS 65 70.284 4.996 43. ATOM 2652 CA LYS 65 69.414 5.395 45. ATOM 2655 CD LYS 65 71.243 7.133 45. ATOM 2656 CE LYS 65 71.243 7.133 45. ATOM 2657 NZ LYS 65 72.017 6.042 46. ATOM 2657 NZ LYS 65 72.374 4.831 48. ATOM 2651 C LYS 65 67.940 5.296 44. ATOM 2661 C LYS 65 67.940 5.296 44. ATOM 2661 C LYS 65 67.980 5.296 44.							41.515	1.00	
ATOM 2641 CB PHE 64 72.948 3.202 43.4 ATOM 2642 CG PHE 64 73.486 1.836 42.4 ATOM 2643 CD1 PHE 64 73.432 1.328 41.4 ATOM 2644 CD2 PHE 64 74.047 1.053 43.4 ATOM 2645 CE1 PHE 64 73.930 0.058 41.4 ATOM 2646 CE2 PHE 64 74.548 -0.219 43.4 ATOM 2647 CZ PHE 64 74.548 -0.717 42.4 ATOM 2648 C PHE 64 70.592 3.723 43.4 ATOM 2649 O PHE 64 70.592 3.723 43.4 ATOM 2650 N LYS 65 70.284 4.996 43.4 ATOM 2653 CB LYS 65 69.414 5.395 45.4 ATOM 2654 CG LYS 65 69.414 5.395 45.4 ATOM 2655 CD LYS 65 71.243 7.133 45.4 ATOM 2656 CE LYS 65 72.017 6.042 46.4 ATOM 2657 NZ LYS 65 72.374 4.831 48.4 ATOM 2656 CE LYS 65 77.376 5.890 47.4 ATOM 2656 CE LYS 65 72.374 4.831 48.4 ATOM 2651 C LYS 65 67.940 5.296 44.4 ATOM 2662 O LYS 65 67.940 5.296 44.4							42.562	1.00	
ATOM 2642 CG PHE 64 73.486 1.836 42. ATOM 2643 CD1 PHE 64 73.432 1.328 41. ATOM 2645 CE1 PHE 64 73.930 0.058 41. ATOM 2646 CE2 PHE 64 74.548 -0.219 43. ATOM 2646 CE2 PHE 64 74.548 -0.219 43. ATOM 2647 CZ PHE 64 70.592 3.723 43. ATOM 2648 C PHE 64 70.592 3.723 43. ATOM 2649 O PHE 64 70.141 2.795 44. ATOM 2650 N LYS 65 70.284 4.996 43. ATOM 2652 CA LYS 65 69.414 5.395 45. ATOM 2653 CB LYS 65 69.414 5.395 45. ATOM 2655 CD LYS 65 71.243 7.133 45. ATOM 2656 CE LYS 65 72.017 6.042 46. ATOM 2657 NZ LYS 65 72.374 4.831 48. ATOM 2651 C LYS 65 72.374 4.831 48. ATOM 2661 C LYS 65 67.940 5.296 44. ATOM 2662 O LYS 65 67.188 6.271 44.							43.071	1.00	
ATOM 2643 CD1 PHE 64 73.432 1.328 41. ATOM 2644 CD2 PHE 64 74.047 1.053 43. ATOM 2645 CE1 PHE 64 74.047 1.053 43. ATOM 2646 CE2 PHE 64 74.548 -0.219 43. ATOM 2647 CZ PHE 64 74.489 -0.717 42. ATOM 2648 C PHE 64 70.592 3.723 43. ATOM 2649 O PHE 64 70.141 2.795 44. ATOM 2650 N LYS 65 70.284 4.996 43. ATOM 2652 CA LYS 65 69.749 6.824 45. ATOM 2653 CB LYS 65 71.243 7.133 45. ATOM 2654 CG LYS 65 71.243 7.133 45. ATOM 2655 CD LYS 65 72.017 6.042 46. ATOM 2657 NZ LYS 65 72.374 4.831 48. ATOM 2656 CE LYS 65 67.940 5.296 44. ATOM 2651 C LYS 65 67.940 5.296 44. ATOM 2661 C LYS 65 67.980 5.296 44.	ATOM	2642	CG 1	PHE 64			42.762	1.00	
ATOM 2644 CD2 PHE 64 74.047 1.053 43. ATOM 2645 CE1 PHE 64 73.930 0.058 41. ATOM 2646 CE2 PHE 64 74.548 -0.219 43. ATOM 2647 CZ PHE 64 74.548 -0.219 43. ATOM 2648 C PHE 64 70.592 3.723 43. ATOM 2649 O PHE 64 70.141 2.795 44. ATOM 2650 N LYS 65 70.284 4.996 43. ATOM 2651 CB LYS 65 69.414 5.395 45. ATOM 2652 CA LYS 65 69.749 6.824 45. ATOM 2655 CD LYS 65 71.243 7.133 45. ATOM 2656 CE LYS 65 72.017 6.042 46. ATOM 2656 CE LYS 65 72.017 6.042 46. ATOM 2656 CE LYS 65 72.374 4.831 48. ATOM 2661 C LYS 65 67.940 5.296 44. ATOM 2662 O LYS 65 67.188 6.271 44.	ATOM	2643	CD1				41.467	1.00	
ATOM 2645 CE1 PHE 64 73,930 0.058 41. ATOM 2646 CE2 PHE 64 74.548 -0.219 43. ATOM 2647 CZ PHE 64 74.489 -0.717 42. ATOM 2648 C PHE 64 70.592 3.723 43. ATOM 2649 O PHE 64 70.141 2.795 44. ATOM 2650 N LYS 65 70.284 4.996 43. ATOM 2651 CA LYS 65 69,414 5.395 45. ATOM 2653 CB LYS 65 69.414 5.395 45. ATOM 2653 CB LYS 65 71.243 7.133 45. ATOM 2655 CD LYS 65 72.017 6.042 46. ATOM 2656 CE LYS 65 71.576 5.890 47. ATOM 2657 NZ LYS 65 72.374 4.831 48. ATOM 2661 C LYS 65 67.940 5.296 44. ATOM 2662 O LYS 65 67.188 6.271 44.					74.047	1.053	43.766	1.00	
ATOM 2647 CZ PHE 64 74.489 -0.717 42. ATOM 2648 C PHE 64 70.592 3.723 43. ATOM 2649 O PHE 64 70.141 2.795 44. ATOM 2650 N LYS 65 70.284 4.996 43. ATOM 2652 CA LYS 65 69.414 5.395 45. ATOM 2653 CB LYS 65 69.749 6.824 45. ATOM 2654 CG LYS 65 71.243 7.133 45. ATOM 2655 CD LYS 65 72.017 6.042 46. ATOM 2656 CE LYS 65 72.017 6.042 46. ATOM 2657 NZ LYS 65 72.374 4.831 48. ATOM 2661 C LYS 65 67.940 5.296 44. ATOM 2662 O LYS 65 67.188 6.271 44.							41.177	1.00	
ATOM 2648 C PHE 64 70.592 3.723 43. ATOM 2649 O PHE 64 70.141 2.795 44. ATOM 2550 N LYS 65 70.284 4.996 43. ATOM 2652 CA LYS 65 69.414 5.395 45. ATOM 2653 CB LYS 65 69.749 6.824 45. ATOM 2653 CB LYS 65 71.243 7.133 45. ATOM 2655 CD LYS 65 71.243 7.133 45. ATOM 2655 CD LYS 65 72.017 6.042 46. ATOM 2657 NZ LYS 65 72.374 4.831 48. ATOM 2661 C LYS 65 67.940 5.296 44. ATOM 2661 C LYS 65 67.940 5.296 44. ATOM 2662 O LYS 65 67.188 6.271 44.							43.485	1.00	
ATOM 2649 O PHE 64 70.141 2.795 44. ATOM 2550 N LYS 65 70.284 4.996 43. ATOM 2652 CA LYS 65 69.414 5.395 45. ATOM 2653 CB LYS 65 69.749 6.824 45. ATOM 2654 CG LYS 65 71.243 7.133 45. ATOM 2655 CD LYS 65 72.017 6.042 46. ATOM 2656 CE LYS 65 71.576 5.890 47. ATOM 2657 NZ LYS 65 72.374 4.831 48. ATOM 2661 C LYS 65 67.940 5.296 44. ATOM 2662 O LYS 65 67.188 6.271 44.							42.188	1.00	
ATOM 2550 N LYS 65 70.284 4.996 43. ATOM 2652 CA LYS 65 69.414 5.395 45. ATOM 2653 CB LYS 65 69.749 6.824 45. ATOM 2654 CG LYS 65 71.243 7.133 45. ATOM 2655 CD LYS 65 72.017 6.042 46. ATOM 2656 CE LYS 65 71.576 5.890 47. ATOM 2657 NZ LYS 65 72.374 4.831 48. ATOM 2661 C LYS 65 67.940 5.296 44. ATOM 2662 O LYS 65 67.188 6.271 44.							43.740	1.00	
ATOM 2652 CA LYS 65 69.414 5.395 45. ATOM 2653 CB LYS 65 69.749 6.824 45. ATOM 2654 CG LYS 65 71.243 7.133 45. ATOM 2655 CD LYS 65 72.017 6.042 46. ATOM 2656 CE LYS 65 71.576 5.890 47. ATOM 2657 NZ LYS 65 72.374 4.831 48. ATOM 2661 C LYS 65 67.940 5.296 44. ATOM 2662 O LYS 65 67.188 6.271 44.							44.419	1.00	
ATOM 2653 CB LYS 65 69.749 6.824 45. ATOM 2654 CG LYS 65 71.243 7.133 45. ATOM 2655 CD LYS 65 72.017 6.042 46. ATOM 2655 CE LYS 65 71.576 5.890 47. ATOM 2657 NZ LYS 65 72.374 4.831 48. ATOM 2661 C LYS 65 67.940 5.296 44. ATOM 2662 O LYS 65 67.188 6.271 44.							43.967	1.00	
ATOM 2654 CG LYS 65 71.243 7.133 45. ATOM 2655 CD LYS 65 72.017 6.042 46. ATOM 2656 CE LYS 65 71.576 5.890 47. ATOM 2657 NZ LYS 65 72.374 4.831 48. ATOM 2661 C LYS 65 67.940 5.296 44. ATOM 2662 O LYS 65 67.188 6.271 44.							45.066 45.525	1.00	
ATOM 2655 CD LYS 65 72.017 6.042 46. ATOM 2656 CE LYS 65 71.576 5.890 47. ATOM 2657 NZ LYS 65 72.374 4.831 48. ATOM 2661 C LYS 65 67.940 5.296 44. ATOM 2662 O LYS 65 67.188 6.271 44.							45.654	1.00	59.28
ATOM 2656 CE LYS 65 71.576 5.890 47. ATOM 2657 NZ LYS 65 72.374 4.831 48. ATOM 2661 C LYS 65 67.940 5.296 44. ATOM 2662 O LYS 65 67.188 6.271 44.							46.394	1.00	59.28
ATOM 2657 NZ LYS 65 72.374 4.831 48. ATOM 2661 C LYS 65 67.940 5.296 44. ATOM 2662 O LYS 65 67.188 6.271 44.					71.576		47.841	1.00	59 29
ATOM 2661 C LYS 65 67.940 5.296 44. ATOM 2662 O LYS 65 67.188 6.271 44.	ATOM				72.374		48.536	1.00	
ATOM 2662 O LYS 65 67.188 6.271 44.		2661					44.675	1.00	
				LYS 65			44.781	1.00	
	ATOM	2663		GLY 66	67.523	4.105	44.255		33.49
ATOM 2665 CA GLY 66 66.141 3.893 43.					66.141	3.893	43.863	1.00	33.49
					65.248		45.067 45.117	1.00	

<u>Table 11: Three dimensional coordinates of</u> <u>HC - CDR3 (GLU99 - TYR110) from SB249417</u>

ATOM	2507	N	GLU	99	61.719	25.581	38.831	1.00 50.46
ATOM	2508	CA	GLU	99	62.445	25.725	37.560	
ATOM	2509	CB	GLU	99	63.093	27.110	37.435	1.00 50.46
ATOM	2510	CG	GLU	99	62.109			1.00 52.10
ATOM	2511	CD	GLU	99		28.216	37.059	1.00 52.10
ATOM	2512				62.112	29.390	38.028	1.00 52.10
		OE1		99	61.436	30.397	37.735	1.00 52.10
ATOM	2513	OE2		99	62.772	29.310	39.086	1.00 52.10
ATOM	2514	C	GLU	99	63.461	24.618	37.297	1.00 50.46
ATOM	2515	0	GLU	99	63.484	23.616	38.010	1.00 52.10
ATOM	2516	N	GLY	100	64.259	24.775	36.242	1.00 42.17
ATOM	2517	CA	GLY	100	65.249	23.764	35.914	1.00 42.17
ATOM	2518	С	GLY	100	66.331	24.192	34.937	1.00 42.17
ATOM	2519	0	GLY	100	66.089	24.997	34.033	1.00 27.11
ATOM	2520	N	ASN	101	67.526	23.635	35.132	1.00 59.61
ATOM	2521	CA	ASN	101	68.704	23.902	34.306	
ATOM	2522	CB	ASN	101	68.654	23.089		1.00 59.61
ATOM	2523	CG	ASN	101	68.926		33.006	1.00 55.09
ATOM	2524	OD1		101		21.612	33.229	1.00 55.09
ATOM	2525	ND2			68.323	20.985	34.102	1.00 55.09
ATOM				101	69.834	21.046	32.439	1.00 55.09
	2528	C	ASN	101	68.940	25.379	34.011	1.00 59.61
ATOM	2529	0	ASN	101	69.643	26.062	34.763	1.00 55.09
ATOM	2530	N	MET	102	68.369	25.867	32.914	1.00 51.25
MOTA	2531	CA	MET	102	68.514	27.265	32.530	1.00 51.25
MOTA	2532	CB	MET	102	69.931	27.556	32.037	1.00 39.15
ATOM	2533	CG	MET	102	70.367	29.002	32.229	1.00 39.15
ATOM	2534	SD	MET	102	69.099	30.248	31.922	1.00 39.15
ATOM	2535	CE	MET	102	69.132	31.094	33.482	1.00 39.15
ATOM	2536	č	MET	102	67.519	27.571	31.424	1.00 51.25
ATOM	2537	ŏ	MET	102	67.866	27.577		
ATOM	2538	N	ASP	103	66.270		30.241	1.00 39.15
ATOM	2539	CA	ASP	103		27.787	31.814	1.00 52.39
ATOM	2540	CB			65.210	28.095	30.867	1.00 52.39
ATOM			ASP	103	64.309	26.865	30.664	1.00 81.62
	2541	CG	ASP	,103	65.099	25.592	30.350	1.00 81.62
ATOM	2542	OD1		103	64.784	24.533	30.939	1.00 81.62
ATOM	2543	OD2	ASP	103	66.028	25.642	29.514	1.00 81.62
ATOM	2544	С	ASP	103	64.391	29.250	31.440	1.00 52.39
ATOM	2545	0	ASP	103	64.181	29.324	32.653	1.00 81.62
ATOM	2546	N	GLY	104	63.980	30.176	30.577	1.00 38.36
ATOM	2547	CA	GLY	104	63.181	31.309	31.019	1.00 38.36
ATOM	2548	С	GLY	104	63.874	32.286	31.954	
ATOM	2549	ō	GLY	104	63.209	33.068	32.630	1.00 38.36
ATOM	2550	N	TYR	105	65.204	32.221		1.00 35.81
ATOM	2551	CA	TYR	105	66.028		32.005	1.00 78.70
ATOM	2552	CB	TYR	105		33.098	32.843	1.00 78.70
ATOM	2553	CG			66.298	34.426	32.125	1.00 41.71
ATOM			TYR	105	67.726	34.593	31.653	1.00 41.71
	2554	CD1	TYR	105	68.492	33.493	31.266	1.00 41.71
ATOM	2555	CE1	TYR	105	69.812	33.644	30.838	1.00 41.71
ATOM	2556	CD2	TYR	105	68.315	35.854	31.599	1.00 41.71
ATOM	2557	CE2	TYR	105	69.632	36.017	31.172	1.00 41.71
ATOM	2558	CZ	TYR	105	70.372	34.910	30.794	1.00 41.71
ATOM	2559	ОН	TYR	105	71.671	35.077	30.382	1.00 41.71
ATOM	2560	С	TYR	105	65.515	33.355	34.263	1.00 78.70
ATOM	2561	0	TYR	105	65.349	34.503	34.679	1.00 41.71
ATOM	2562	N	PHE	106	65.297	32.275	35.006	1.00 53.79
ATOM	2563	CA	PHE	106	64.815	32.362	36.381	1.00 53.79
ATOM	2564	CB	PHE	106	63.302	32.606	36.355	1.00 64.88
ATOM	2565	CG	PHE	106	62.867	33.837	37.093	
ATOM	2566	CD1		106	63.142	35.104		
ATOM	2567	CD2	PHE	106			36.586	1.00 64.88
ATOM	2568		PHE	106	62.162	33.732	38.286	1.00 64.88
ATOM	2569				62.722	36.246	37.255	1.00 64.88
ATOM	2570		PHE	106	61.736	34.868	38.964	1.00 64.88
		CZ	PHE	106	62.016	36.129	38.447	1.00 64.88
ATOM	2571	C	PHE	106	65.099	31.140 31.055	37.282	1.00 53.79
ATOM	2572	0	PHE	106	64.552	31.055	38.381	1.00 64.88
ATOM	2573	N	PRO	107	66.005	30.221	36.878	1.00 52.80
ATOM	2574	CD	PRO	107	66.836	30.142	35.667	1.00 42.34
ATOM	2575	CA	PRO	107	66.268	29.051	37.725	1.00 52.80
ATOM	2576	CB	PRO	107	67.393	28.338	36.977	1.00 42.34
ATOM	2577	CG	PRO	107	67.103	28.666	35.568	1.00 42.34
ATOM	2578	c	PRO	107	66.623	29.241	39.198	1.00 52.80
ATOM	2579	ō	PRO	107	67.275	30.212	39.596	1.00 42.34
ATOM	2580	N	PHE	108	66.199	28.252	39.980	
ATOM	2581	CA	PHE	108	66.421	28.160		1.00 39.89
ATOM	2582	CB	PHE	108	67.823	27.639	41.417	1.00 39.89
					U	21.033	41.713	1.00 29.53

				C	ont./Tabl	e 11			$\neg \neg$
ATOM	2583	CG	PHE	108	67.986	26.177	41.417	1.00 29.53	
MOTA	2584	CD1	PHE	108	67.950	25.711	40.107	1.00 29.53	- 1
ATOM	2585	CD2	PHE	108	68.127	25.258	42.450	1.00 29.53	ı
ATOM	2586	CE1	PHE	108	68.049	24.350	39.833	1.00 29.53	
ATOM	2587	CE2	PHE	108	68.228	23.894	42.186	1.00 29.53	- 1
ATOM	2588	CZ	PHE	108	68.188	23.440	40.878	1.00 29.53	- 1
ATOM	2589	С	PHE	108	66.057	29.348	42.287	1.00 39.89	
ATOM	2590	0	PHE	108	66.654	29.578	43.342	1.00 29.53	- 1
ATOM	2591	N	THR	109	65.082	30.115	41.821	1.00 37.60	- 1
ATOM	2592	CA	THR	109	64.572	31.243	42.571	1.00 37.60	- 1
ATOM	2593	CB	THR	109	64.110	32.374	41.638	1.00 39.99	- 1
ATOM	2594	0G1	THR	109	63.235	31.842	40.638	1.00 39.99	- 1
ATOM	2595	CG2	THR	109	65.303	33.016	40.950	1.00 39.99	- 1
ATOM	2596	С	THR	109	63.369	30.609	43.267	1.00 37.60	- 1
ATOM	2597	0	THR	109	62.694	29.761	42.676	1.00 39.99	- 1
ATOM	2598	N	TYR	110	63.113	30.999	44.511	1.00 23.43	- 1
ATOM	2599	CA	TYR	110	62.006	30.449	45.292	1.00 23.43	- 1
ATOM	2600	CB	TYR	110	60.701	30.367	44.481	1.00 42.41	ı
MOTA	2601	CG	TYR	110	60.156	31.673	43.951	1.00 42.41	
ATOM	2602	CD1	TYR	110	60.138	31.931	42.583	1.00 42.41	
ATOM	2603	CE1	TYR	110	59.587	33.104	42.077	1.00 42.41	
ATOM	2604	CD2	TYR	110	59.611	32.628	44.807	1.00 42.41	- 1
ATOM	2605	CE2	TYR	110	59.055	33.807	44.309	1.00 42.41	- 1
ATOM	2606	CZ	TYR	110	59.047	34.035	42.942	1.00 42.41	- 1
ATOM	2607	ОН	TYR	110	58.484	35.185	42.439	1.00 42.41	- 1
MOTA	2608	С	TYR	110	62.358	29.042	45.763	1.00 23.43	ı
MOTA	2609	0	TYR	110	62.436	28.111	44.960	1.00 42.41	- 1
					-				

			Tah	le 12: Thr	vee dinnensio	mal conv	dinates of	•
		I			RG24-HIS			
ATOM ATOM	161 162	N CA	ARG ARG	24 24	85.923 86.364	25.430	39.568	1.00 40.61
ATOM	163	CB	ARG	.24	87.477	24.572 23.636	38.468 38.953	1.00 40.61 1.00 54.47
MOTA	164	CG	ARG	24	88.672	23.525	38.021	1.00 54.47
ATOM ATOM	165 166	CD NE	ARG	24	89.786	24.476	38.433	1.00 54.47
ATOM	167	CZ	ARG	24 24	89.329 90.019	25.861 26.850	38.511 39.069	1.00 54.47 1.00 54.47
ATOM	168	NH1	ARG	24	91.212	26.619	39.605	1.00 54.47
ATOM	171	NH2		24	89.510	28.073	39.101	1.00 54.47
ATOM ATOM	174 175	C	ARG ARG	24 24	85.191 84.258	23.729 23.455	37.974	1.00 40.61
ATOM	176	N	ALA	25	85.251	23.296	38.735 36.718	1.00 54.47 1.00 33.05
ATOM	177	CA	ALA	25	84.185	22.475	36.146	1.00 33.05
ATOM ATOM	178 179	CB C	ALA ALA	25	83.270	23.332	35.275	1.00 58.44
MOTA	180	ŏ	ALA	25 25	84.702 83.923	21.278 20.409	35.348 34.958	1.00 33.05 1.00 58.44
ATOM	181	N	SER	26	86.006	21.249	35.087	1.00 57.44
ATOM	182	CA	SER	26	86.641	20.165	34.330	1.00 57.44
ATOM ATOM	183 184	CB OG	SER	26 26	86.518 87.351	18.828 17.828	35.080	1.00 65.59
ATOM	185	c	SER	26	86.093	20.030	34.505 32.903	1.00 65.59 1.00 57.44
ATOM	186	0	SER	26	86.698	20.533	31.952	1.00 65.59
ATOM ATOM	187 188	N CA	SER	27 27	84.946	19.366	32.762	1.00 55.02
MOTA	189	CB	SER	27	84.317 82.987	19.158 18.420	31.459 31.627	1.00 55.02 1.00 53.39
ATOM	190	ŌĞ	SER	27	83.183	17.167	32.259	1.00 53.39
MOTA	191	C	SER	27	84.091	20.476	30.725	1.00 55.02
ATOM ATOM	192 193	о И	SER	27 28	84.718	20.717	29.690	1.00 53.39
ATOM	194	CA	SER	28	83.232 82.834	21.316 22.647	31.307 30.825	1.00 33.90 1.00 33.90
ATOM	195	CB	SER	28	83.830	23.274	29.833	1.00 57.68
ATOM	196	OG	SER	28	83.804	22.660	28.552	1.00 57.68
ATOM ATOM	197 198	c o	SER SER	28 28	81.430 81.089	22.670	30.238	1.00 33.90
ATOM	199	N	VAL	29	80.619	21.866 23.592	29.368 30.742	1.00 57.68 1.00 39.14
ATOM	200	CA	VAL	29	79.244	23.773	30.294	1.00 39.14
ATOM ATOM	201 202	CB	VAL	29	78.226	23.123	31.278	1.00 50.11
ATOM	203	CG1 CG2	VAL VAL	29 29	78.394 78.401	21.612 23.688	31.295 32.681	1.00 50.11 1.00 50.11
ATOM	204	c	VAL	29	79.031	25.282	30.251	1.00 50.11 1.00 39.14
ATOM	205	0	VAL	29	79.981	26.036	30.028	1.00 50.11
ATOM ATOM	206 207	N CA	ASN ASN	30 30	77.798 77.518	25.731 27.157	30.449	1.00 34.36
ATOM	208	CB	ASN	30	77.105	27.633	30.446 29.051	1.00 34.36 1.00 69.95
ATOM	209	CG	ASN	30	77.315	29.129	28.859	1.00 69.95
ATOM ATOM	210 211		ASN	30	76.945	29.938	29.712	1.00 69.95
ATOM	214	C	ASN ASN	30 30	77.935 76.405	29.501 27.416	27.744 31.437	1.00 69.95 1.00 34.36
ATOM	215	ō	ASN	30	75.668	26.496	31.799	1.00 34.36 1.00 69.95
ATOM	216	N	TYR	31	76.313	28.662	31.895	1.00 51.94
ATOM ATOM	217 218	CA CB	TYR	31	75.299	29.094	32.853	1.00 51.94
ATOM	219	CG	TYR TYR	31 31	73.896 73.464	28.690 29.386	32.379 31.105	1.00 66.29 1.00 66.29
MOTA	220	CD1	TYR	31	72.980	28.661	30.016	1.00 66.29
ATOM ATOM	221		TYR	31	72.567	29.305	28.844	1.00 66.29
ATOM	222 223	CD2	TYR TYR	31 31	73.528 73.120	30.773	30.993	1.00 66.29
ATOM	224	CZ	TYR	31	72.641	31.424 30.687	29.832 28.763	1.00 66.29 1.00 66.29
ATOM	225	OH	TYR	31	72.237	31.345	27.626	1.00 66.29
ATOM ATOM	226	C	TYR	31	75.562	28.609	34.276	1.00 51.94
ATOM	227 228	O N	TYR MET	31 32	.74.995 76.435	27.610 29.331	34.729	1.00 66.29
ATOM	229	CA	MET	32	76.788	29.013	34.972 36.351	1.00 31.75 1.00 31.75
ATOM	230	CB	MET	32	78.246	29.392	36.631	1.00 29.56
MOTA MOTA	231 232	CG	MET	32	78.807	28.822	37.925	1.00 29.56
ATOM	232	SD CE	MET MET	32 32	78.874 80.515	27.021 26.716	37.900 38.506	1.00 29.56 1.00 29.56
ATOM	234	С	MET	32	75.857	29.820	37.246	1.00 29.36
ATOM	235	0	MET	32	75.576	30.984	36.960	1.00 29.56
ATOM ATOM	236 237	N CA	HIS HIS	33 33	75.355	29.192	38.303	1.00 18.73
ATOM	238	CB	HIS	33	74.441 73.154	29.848 29.022	39.231 39.412	1.00 18.73 1.00 59.11
ATOM	239	CG	HIS	33	72.630	28.395	38.153	1.00 59.11
ATOM	240		HIS	33	73.216	27.574	37.249	1.00 59.11
ATOM	241 242		HIS HIS	33	71.325	28.548	37.736	1.00 59.11
ATOM	243		HIS	33 33	71.130 72.262	27.850 27.250	36.631 36.315	1.00 59.11 1.00 59.11
ATOM	244	С	HIS	33	75.136	29.943	40.584	1.00 18.73
MOTA	245	0	HIS	33	75.667	28.945	41.071	1.00 59.11

			Tab	e 13: Thre	e dinnensio	nal coore	linates of	
İ		I	<u> C-C</u>	DR2(AL	449-SER	55) firem	SB24941	7
ATOM ATOM ATOM ATOM	385 386 387 388	N CA CB C	ALA ALA ALA ALA	49 49 49 49	73.341 73.888 72.879	32.762 32.759 33.352	35.709 34.358 33.379	1.00 21.70 1.00 21.70 1.00 50.17
ATOM ATOM	389 390	0 N	ALA	49 50	75.206 75.335 76.154	33.523 34.507 33.083	34.298 33.564 35.119	1.00 21.70 1.00 50.17 1.00 36.52
ATOM ATOM	391 392	CA CB	THR	50 50	77.494 78.362	33.655	35.211 33.978	1.00 36.52 1.00 58.15
ATOM ATOM	393 394	OG1 CG2	THR	50 50	77.656 78.692	33.610 31.819	32.773 33.979	1.00 58.15 1.00 58.15
ATOM ATOM	395 396	C O	THR THR	50 50	77.605 77.942	35.152 35.558	35.482 36.594	1.00 36.52 1.00 58.15
ATOM ATOM	397 398	N CA	SER SER	51 51	77.327 77.441	35.965 37.413	34.471 34.592	1.00 31.35 1.00 31.35
ATOM	399 400	OG .	SER	51 51	77.862 79.126	38.009 37.511	33.245 32.836	1.00 35.38 1.00 35.38
ATOM ATOM ATOM	401 402 403	C 0	SER SER ASN	51 51	76.228 76.352	38.169	35.120 35.528	1.00 31.35 1.00 35.38
ATOM ATOM	404	N CA CB	ASN ASN	52 52 52	75.060 73.863 72.614	37.540 38.238 37.715	35.129 35.592 34.879	1.00 34.69 1.00 34.69 1.00 34.18
MOTA MOTA	406 407	CG	ASN ASN	.52 52	72.561 72.529	38.131	33.420 33.102	1.00 34.18 1.00 34.18 1.00 34.18
ATOM ATOM	408 411		ASN ASN	52 52	72.576 73.653	37.151 38.278	32.525 37.098	1.00 34.18 1.00 34.69
ATOM ATOM	412 413	O N	ASN LEU	52 53	73.720 73.386	37.260 39.480	37.786 37.593	1.00 34.18 1.00 28.58
MOTA	414	CA CB	LEU	53 53	73.156 73.805	39.733 41.074	39.008 39.380	1.00 28.58 1.00 36.89
ATOM ATOM ATOM	416 417 418		LEU	53 53	73.657 74.996	41.716	40.761 41.209	1.00 36.89 1.00 36.89
ATOM ATOM	419 420	C C O	LEU LEU LEU	53 53 5 3	72.624 71.649 70.876	42.829 39.753 40.229	40.711 39.266 38.432	1.00 36.89 1.00 28.58
ATOM ATOM	421 422	N CA	ALA	54 54	71.233 69.817	39.208 39.157	40.406	1.00 36.89 1.00 17.93 1.00 17.93
ATOM ATOM	423 424	CB C	ALA ALA	54 54	69.579 69.307	38.092 40.507	41.823	1.00 27.99 1.00 17.93
MOTA MOTA	425 426	O N	ALA SER	54 55	70.083 67.996	41.433 40.617	41.459 41.417	1.00 27.99 1.00 46.64
ATOM	427 428	CA CB	SER	55 55	67.390 65.914	41.857 41.917	41.881	1.00 46.64 1.00 60.10
ATOM ATOM ATOM	429 430 431	OG C	SER	55 55	65.769 67.513	41.953	40.062 43.396	1.00 60.10 1.00 46.64
ATOM	431	<u> </u>	Tob	55 la 1/1 TShum	67.249	40.973	44.104	1.00 60.10
		T.		e 14: Thre DR3 (GL)				
		_			1777	<u> </u>	1022 W	
MOTA MOTA	677 678	N CA	GLN GLN	88 88	76.228 75.808	26.138 24.954	40.949 40.213	1.00 23.98 1.00 23.98
MOTA MOTA	679 680	CB	GLN GLN	88 88	74.400 73.285	24.510 25.370	40.616 40.066	1.00 33.56 1.00 33.56
ATOM	681 682		GLN GLN	88 88	71.932 71.415	24.738 24.691	40.259 41.369	1.00 33.56 1.00 33.56
ATOM ATOM ATOM	683 686 687	C O	GLN	88 88 88	71.346 75.850	24.251 25.282	39.179 38.730	1.00 33.56 1.00 23.98
ATOM ATOM	688 689	N CA	GLN GLN GLN	89 89	75.909 75.775 75.833	26.452 24.254 24.439	38.349 37.897 36.456	1.00 33.56 1.00 53.56 1.00 53.56
ATOM ATOM	690 691	CB CG	GLN GLN	89 89	77.082 77.610	23.752	35.888 36.694	1.00 50.20
ATOM ATOM	692 693	CD	GLN GLN	89 89	76.615 75.598	21.414 21.532	36.823 37.510	1.00 50.20 1.00 50.20
ATOM ATOM	694 697	NE2 C	GLN GLN	89 89	76.923 74.596	20.289 23.944	36.194 35.728	1.00 50.20 1.00 53.56
ATOM	698 699	O N	GLN	89 90	73.772 74.447	23.224 24.383	36.298 34.481	1.00 50.20 1.00 42.71
ATOM ATOM	700 701	CB	TRP	90 90	73.331 73.336	23.967	33.641	1.00 42.71 1.00107.30
ATOM ATOM ATOM	702 703 704	CG CD2 CE2	TRP TRP	90 90 90	72.630 73.219 72.197	24.093 23.652 23.037	31.185 29.955 29.200	1.00107.30 1.00107.30 1.00107.30

ATOM	705	CE3	TRP	90	74.513	23.715	29.418	1.00107.30
ATOM	706	CD1	TRP	90	71.313	23.748	31.124	1.00107.30
ATOM	707	NE1	TRP	90	71.044	23.111	29.935	1.00107.30
ATOM	708	CZ2	TRP	90	72.427	22.485	27.935	1.00107.30
ATOM	709	CZ3	TRP	90	74.742	23.165	28.157	1.00107.30
ATOM	710	CH2	TRP	90	73.702	22.559	27.432	1.00107.30
ATOM	711	c	TRP	90	73.497	22.473		
ATOM	712	ŏ	TRP	90	72.522		33.371	1.00 42.71
ATOM	713	N	SER	91	74.746	21.720	33.366	1.00107.30
ATOM	714	CA	SER			22.068	33.154	1.00 53.84
ATOM	715	CB	SER	91	75.130	20.683	32.897	1.00 53.84
ATOM	716			91	74.815	19.789	34.106	1.00 38.65
ATOM		OG.	SER	91	73.457	19.379	34.150	1.00 38.65
	717	Ç	SER	91	74.545	20.057	31.639	1.00 53.84
ATOM	718	0	SER	91	73.464	20.425	31.184	1.00 38.65
ATOM	719	N	ILE	92	75.313	19.148	31.051	1.00 51.50
ATOM	720	CA	ILE	92	74.874	18.421	29.867	1.00 51.50
ATOM	721	CB	ILE	92	76.070	17.967	28.991	1.00 66.93
MOTA	722	CG2	ILE	92	75.598	17.678	27.570	1.00 66.93
ATOM	723	CG1	ILE	92	77.154	19.047	28.948	1.00 66.93
ATOM	724		ILE	92	78.444	18.594	28.271	1.00 66.93
ATOM	725	C	ILE	92	74.211	17.171	30.446	1.00 51.50
ATOM	726	0	ILE	92	73.268	16.621	29.881	1.00 66.93
ATOM	727	N	ASN	93	74.714	16.755	31.605	1.00 60.16
ATOM	728	CA	ASN	93	74.232	15.580	32.319	1.00 60.16
ATOM	729	CB	ASN	93	75.290	14.473	32.228	1.00 59.88
ATOM	730	CG	ASN	93	74.696	13.083	32.312	1.00 59.88
ATOM	731	OD1	ASN	93	74.187	12.673	33.354	1.00 59.88
ATOM	732	ND2	ASN	93	74.769	12.345	31.213	1.00 59.88
ATOM	735	С	ASN	93	74.046	16.023	33.775	1.00 60.16
ATOM	736	0	ASN	93	74.952	16.620	34.363	1.00 59.88
ATOM	737	N	PRO	94	72.883	15.709	34.377	1.00 45.30
ATOM	738	CD	PRO	94	72.057	14.607	33.849	1.00 61.85
ATOM	739	CA	PRO	94	72.443	16.011	35.740	1.00 45.30
ATOM	740	CB	PRO	94	72.227	14.621	36.314	1.00 61.85
ATOM	741	CG	PRO	94	71.516	13.930	35.137	1.00 61.85
ATOM	742	č	PRO	94	73.280	16.922	36.644	
ATOM	743	ŏ	PRO	94	74.461	16.670	36.913	1.00 45.30 1.00 61.85
ATOM	744	N	ARG	95	72.607	17.959	37.141	
ATOM	745	CA	ARG	95	73.181	18.975	38.024	1.00 55.22
ATOM	746	CB	ARG	95	72.097	19.992		1.00 55.22
ATOM	747	CG	ARG	95	71.364	20.575	38.393 37.194	1.00 42.76
ATOM	748	CD	ARG	95	70.022			1.00 42.76
ATOM	749	NE	ARG	95		21.178	37.591	1.00 42.76
ATOM	750	CZ		95 95	68.909	20.524	36.902	1.00 42.76
ATOM	751		ARG		67.634	20.899	36.995	1.00 42.76
ATOM	754		ARG	95	67.286	21.931	37.752	1.00 42.76
ATOM	757	NH2	ARG	95	66.701	20.246	36.315	1.00 42.76
ATOM	758	Ç	ARG	95	73.753	18.352	39.294	1.00 55.22
		0	ARG	95	73.351	17.255	39.684	1.00 42.76
MOTA	759	N	THR	96	74.657	19.066	39.963	1.00 47.74
ATOM	760	CA	THR	96	75.270	18.543	41.183	1.00 47.74
ATOM	761	CB	THR	96	76.630	17.877	40.875	1.00 32.33
ATOM	762	OG1		96	77.370	18.701	39.967	1.00 32.33
MOTA	763	CG2	THR	96	76.433	16.494	40.264	1.00 32.33
ATOM	764	С	THR	96	75.456	19.495	42.370	1.00 47.74
ATOM	765	0	THR	96	75.379	19.052	43.515	1.00 32.33

References

Brünger A.T., (1990) Acta Cryst. A46:46-57.

Brünger A.T., (1991) Acta Cryst. A47:195-204.

Brünger A.T., X-PLOR 3.0 Manual (Yale University, 1992).

Huber R., (1985). In Molecular Replacement. Proc. of the Daresbury Study

Weekend, Daresbury, February 1985, pp. 58-61. SERC Daresbury Laboratory, Daresbury, Warrington, England.

Monfardini C., Kieber-Emmons T., Voet D., Godillot A.P., Weiner D.B., Williams W.V., (1996) J. Biol. Chem. 271:2966-2971.

Otwinowski Z., "Oscillation Data Reduction," in *Proceedings of the CCP4 Study Weekend: "Data Collection and Processing," 29-30 January 1993*, comiled by L. Sawyer, N. Isaacs and S. Bailey (SERC Daresbury Laboratory, England), pp. 56-62.

Rossmann M.G. and Blow D.M., (1962). Acta Cryst. 15:24-31.

Rusinko, A., (1993) Chem. Des. Auto. News 8:44-47.

5

Zhao B., Helms L.R., DesJarlais R.L., Abdel-Meguid S.S. & Wetzel R., (1995)

Nature Struct. Biol. 2:1131-1137.

The present invention may be embodied in other specific forms without departing

from the spirit or essential attributes thereof, and, accordingly, reference should be made to
the appended claims, rather than to the foregoing specification, as indicating the scope of
the invention.

CLAIMS

1. A BC2 Fab fragment crystal.

5

20

- 2. A Fab fragment crystal containing BC2 complementarity determining regions (CDRs).
- 3. The crystal of claim 2 wherein the CDRs are characterized by the coordinates of Tables 3-8.
 - 4. A SB249417 Fab fragment crystal.
- 5. The crystal of claim 4 wherein the CDRs are characterized by the coordinates of Tables 9-14.
 - 6. A method for identifying a peptidomimetic having Factor IX binding activity comprising:
 - a. searching a small molecule structural database with CDR structural parameters derived from the crystal of claim 1, 2 or 4;
- b. selecting a molecular structure from the database which mimics the
 CDR structural parameters;
 - c. synthesizing the selected molecular structure; and
 - d. screening the synthesized molecule for Factor IX binding activity.
 - 7. The method of claim 6 wherein the synthesized molecule is further screened for antithrombotic activity.
 - 8. The method of claim 7 wherein the synthesized molecule is further screened for self-limiting, neutralizing activity.
 - 9. The method of claim 6 wherein the selected molecular structure mimics the parameters of CDR residues HC-Asn35, HC-Trp50, and LC-Arg95.
- 25 10. A computer-readable medium having BC2 CDR structural information stored thereon.
 - 11. A computer-readable medium having SB249417 CDR structural information stored thereon.

Figure 1: BC2 HC - CDR1

Figure 2: BC2 HC - CDR2

Figure 3: BC2 HC - CDR3

Figure 4: BC2 LC - CDR1

Figure 5: BC2 LC - CDR2

Figure 6: BC2 LC - CDR3

Figure 7: SB24917 HC - CDR1

Fig .. re 8: SB24917 HC - CDR2

Fig re 9: SB24917 HC CDR3

Figure 10: SB24917-L \(\(\) - CDR1

Fig. re 11: SB24917 LC GDR2

Figure 12: SB24917 _ C - CDR3

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/13806

A. CLASSIFICATION OF SUBJECT MATTER IPC(6) : C07K 16/00		
US CL : 530/388.25		
According to International Patent Classification (IPC) or to both	national classification and IPC	
B. FIELDS SEARCHED		
Minimum documentation searched (classification system followe		
U.S. : 530/388.25; 530/388.22; 435/214; 514/18; 435/5; 53	00/381; 43 <i>5/</i> 472; 530/381; 424/145.1; 51 ₄	4/56; 514/12; 530/350
Documentation searched other than minimum documentation to the Please See Extra Sheet.	e extent that such documents are included	in the fields searched
Electronic data base consulted during the international search (n MEDLINE EXPRESS, APS, WEST	ame of data base and, where practicable,	, search terms used)
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category* Citation of document, with indication, where ap	ppropriate, of the relevant passages	Relevant to claim No.
Y MURRAY, C.W. PRO_SELECT: Codesign and combinatorial chemistry Technology. Journal of Computer November 1997, Vol. 11, No. 2, page and 204-206.	for rapid lead discovery.1. r-Aided Molecular Design.	2-3, 5-7 and 9
Y BOHM, HANS-JOACHIM. The Community Method For The de novo Design of I Computer-Aided Molecular Design. A page 61-78, especially 62.	Enzyme Inhibitors. Journal of	1 and 6
Y MARTIN, Y.C. 3D Database Searchi Medicinal Chemistry. June 1992, V 2154, especially pages 2149-2151.		6-8
X Further documents are listed in the continuation of Box C	C. See patent family annex.	
Special categories of cited documents:	"T" later document published after the inte	rnational filing date or priority
"A" document defining the general state of the art which is not considered	date and not in conflict with the appl the principle or theory underlying the	
to be of particular relevance "E" earlier document published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is	"X" document of particular relevance; the considered novel or cannot be consider when the document is taken alone	e claimed invention cannot be red to involve an inventive step
cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the	
"O" document referring to an oral disclosure, use, exhibition or other means	considered to involve an inventive combined with one or more other such being obvious to a person skilled in t	documents, such combination
P document published prior to the international filing date but later than the priority date claimed	*&* document member of the same patent	family
Date of the actual completion of the international search	Date of mailing of the international sea	rch report
05 NOVEMBER 1998	17 DEC 19	
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 2023	Authorized officer Jawrence JA-NA HINES	for
Washington, D.C. 20231 Facsimile No. (703) 305-3230	Telephone No. (703) 308-0196	

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/13806

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
gory	or coordinary with indication, where appropriate, of the relevant passages	Veleasur to cisim N
7, P	US 5,739,277 A (PRESTA et al) 14 April 1998, col. 5, lines 19-21, col. 6 lines 37-65, col. 8 lines 25-47.	1 and 2
, P	WO 97/26010 A1 (SMITHKLINE BEECHAM CORPORATION) 24 July 1997, page 1-20	1-8
·		

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/13806

B. FIELDS SEARCHED Documentation other than minimum documentation that are included in the fields searched:		
Journal of Medicinal Chemistry, Journal of Computer-Aided Molecular Design, Nucleic Acids Research, Journal of Biological Chemistry, Blood Coagulation and Fibrinolysis, Nature Structual Biology		
	-	
t		