Зміст

1	Трохи топології		2
	1.1	Метричні простори	2
	1.2	Відкриті та замкнені множини. Збіжні послідовності	4
	1.3	Замикання множин	8
	1.4	Повнота	10

1 Трохи топології

Метричні простори 1.1

Definition 1.1.1 Задано X - деяка множина та $\rho: X \to X \to \mathbb{R}$ функція

Метричним простором називають пару (X, ρ) , в якому задовільняються три умови

$$\forall x, y \in X : \rho(x, y) \ge 0, \quad \rho(x, y) = 0 \Leftrightarrow x = y$$

 $\forall x, y \in X : \rho(x, y) = \rho(y, x)$
 $\forall x, y, z \in X : \rho(x, z) \le \rho(x, y) + \rho(y, z)$

При цьому функція ρ називається **метрикою** та описує **відстань** між x, y

Example 1.1.2 Розглянемо декілька прикладів

 $1. X = \mathbb{R}$, на якій задається метрика $\rho(x,y) = |x-y|$

2.
$$X=\mathbb{R}^n$$
, на якій можна задати дві метрики $\rho_1(\vec{x},\vec{y})=\sqrt{(x_1-y_1)^2+\cdots+(x_n-y_n)^2}$ $\rho_2(\vec{x},\vec{y})=|x_1-y_1|+\cdots+|x_n-y_n|$

3.
$$X=C([a,b])$$
, на якій задається метрика $\rho(f,g)=\max_{t\in[a,b]}|f(t)-g(t)|$

Definition 1.1.3 Задано (X, ρ) - метричний простір Пару $(Y, \tilde{\rho})$, де $Y \subset X$, назвемо **метричним підпростором** (X, ρ) , якшо

$$\forall x, y \in Y : \tilde{\rho}(x, y) = \rho(x, y)$$

При цьому метрика $\tilde{\rho}$, кажуть, **індукована в** Y **метрикою** ρ

Proposition 1.1.4 Задано (X, ρ) - метричний простір та $(Y, \tilde{\rho})$ - підпростір Для метрики $\tilde{\rho}$ всі три аксіоми зберігаються Вправа: досвідчитись в цьому

Example 1.1.5 Маємо X = F([a,b]) - множину обмежених функцій та $\rho(f, g) = \sup |f(t) - g(t)|$ $t \in [a,b]$

Тоді
$$Y = C([a, b])$$
 маємо метрику $\tilde{\rho}(f, a) = \max_{b} |f(t) - a(t)| = \sup_{b} |f(t)|$

 $\tilde{\rho}(f,g) = \max_{t \in [a,b]} |f(t) - g(t)| = \sup_{t \in [a,b]} |f(t) - g(t)|$

Отже, C([a,b]) - метричний підпростір простору F([a,b])

Definition 1.1.6 Задано L - лінійний простір над \mathbb{R} або \mathbb{C} Задамо функцію $||\cdot||:L\to\mathbb{R}$, що називається **нормою**, якщо виконуються умови:

$$\forall x \in L: ||x|| \ge 0$$

$$\forall x \in L: \forall \alpha \in \mathbb{R} \text{ afo } \mathbb{C}: ||\alpha x|| = |\alpha|||x||$$

$$\forall x, y \in L: ||x + y|| \le ||x|| + ||y||$$

Тоді пару $(L, ||\cdot||)$ назвемо **нормованим простором**

Proposition 1.1.7 Задано $(L, ||\cdot||)$ - нормований простір Тоді функція $\rho(x, y) = ||x - y||$ задає метрику Вправа: перевірити три аксіоми

Example 1.1.8 Задано $(E,(\cdot,\cdot))$ - евклідів простір Ми можемо евклідів простір E перетворити в нормований простір $(E,||\cdot||)$ функцією $||x||=\sqrt{(x,x)}$ Тому (E,ρ) - метричний простір та $\rho(x,y)=||x-y||$

Example 1.1.9 Більш важливий приклад. Нехай $\vec{a} = (a_1, a_2, \dots)$ - дійсна числова послідовність. Задамо простір

$$l_1 = \left\{ \vec{a} \mid \sum_{n=1}^{\infty} |a_n| < \infty \right\}$$

Задаються такі операції:

$$\vec{a} + \vec{b} = (a_1, a_2, \dots) + (b_1, b_2, \dots) = (a_1 + b_1, a_2 + b_2, \dots)$$

 $\alpha \vec{a} = (\alpha a_1, \alpha a_2, \dots)$

Якщо перевірити 8 аксіом, то отримаємо, що l_1 - лінійний простір

Важливе зауваження: $\vec{a}+\vec{b}, \alpha \vec{a} \in l_1$, тому що маємо $\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$ - збіжні,

а тому збіжним буде
$$\sum_{n=1}^{\infty} (a_n + b_n), \sum_{n=1}^{\infty} \alpha a_n$$

Можна задати нормований простір функцією $||\vec{a}|| = \sum_{n=1}^{\infty} |a_n|$

A тому це - метричний простір з $ho(\vec{a}, \vec{b}) = ||\vec{a} - \vec{b}||$

Узагальнення:
$$l_p = \left\{ \vec{a} \mid \sum_{n=1}^{\infty} |a_n|^p < \infty \right\}$$

Тут задається норма
$$||\vec{a}|| = \left(\sum_{n=1}^{\infty} |a_n|^p\right)^{\frac{1}{p}}$$

Example 1.1.10 Тут ще є така множина: $l_{\infty} = \{\vec{a} \mid \vec{a} - \text{обмеженi}\}$. Задані такі самі операції

Задається норма $||\vec{a}|| = \sup_{n \in \mathbb{N}} |a_n|$

Отже, l_{∞} - метричний простір

1.2 Відкриті та замкнені множини. Збіжні послідовності

Definition 1.2.1 Задано (X, ρ) - метричний простір та $a \in X$ **Відкритою кулею** радіусом r з центром a називають множину

$$B(a; r) = \{x \in X | \rho(a, x) < r\}$$

 $\ddot{\mathrm{l}}\ddot{\mathrm{l}}$ ще називають r**-околом т.** a

Example 1.2.2 Декілька прикладів

- 1. Маємо $X=\mathbb{R},$ $\rho(x,y)=|x-y|$. Тут відкрита куля задається інтервалом $B(a;r)=\{x\in\mathbb{R}|\ |x-a|< r\}=(a-r,a+r)$
- 2. Маємо $X=\mathbb{R}^2,\, \rho(\vec x,\vec y)=||\vec x-\vec y||.$ Тут відкрита куля задається колом $B(0;1)=\{(x,y)\in\mathbb{R}^2|\ x^2+y^2<1\}$

Definition 1.2.3 Задано $A \subset X$ та $a \in A$

Точка a називається **внутрішньою** на A, якщо

$$\exists \varepsilon > 0 : B(a; \varepsilon) \subset A$$

Definition 1.2.4 Множина A називається **відкритою**, якщо кожна точка множини A - внутрішня

Example 1.2.5 Розглянемо такі приклади

1. Маємо $X=\mathbb{R}, \rho(x,y)=|x-y|$ та множину A=[0,1)

$$a=rac{1}{2}$$
 - внутрішня, бо $\exists arepsilon=rac{1}{4}: B\left(rac{1}{2};rac{1}{4}
ight)\subset A$, тобто $\left(rac{1}{4},rac{3}{4}
ight)\subset [0,1)$

a=0 - не внутрішня

Тут A - не відркита, бо a=0 - не внутрішня

- 2. Маємо $X = [0,1], \rho(x,y) = |x-y|$ та множину A = [0,1)
- a=0 уже внутрішня. В попередньому прикладі ми могли arepsilon-околом вийти за межі нуля ліворуч, а тут вже ні

 $\mathrm{Тут}\ A$ - відкрита

3. Маємо $X = \{0, 1, 2\}$ - підпростір метричного простору

$$(\mathbb{R}, \rho(x, y) = |x - y|)$$

Задамо множину $A=\{0,1\}$. Тут кожна точка - внутрішня

Тут A - відкрита

Definition 1.2.6 Задано $A \subset X$ та $x_0 \in X$

Точка x_0 називається **граничною** для A, якщо

$$\forall \varepsilon > 0 : (B(x_0; \varepsilon) \setminus \{x_0\}) \cap A \neq \emptyset$$

Definition 1.2.7 Множина A називається **замкненою**, якщо вона містить всі свої граничні точки

Example 1.2.8 Розглянемо такі приклади

1. Маємо $X = \mathbb{R}, \rho(x, y) = |x - y|$ та множину A = (0, 1)

$$x_0 = \left\{ \frac{1}{2}, 0, 1 \right\}$$
 - граничні

 $x_0 = \frac{3}{2}$ - не гранична

Тут \tilde{A} - не замкнена, бо $x_0=1\not\in A$ - гранична

2. Maemo $X = \mathbb{R}, \rho(x, y) = |x - y|$

Задамо множину $A = \{0, 1\}$. Тут жодна точка - гранична

Тут A - замкнена! Бо нема жодної граничної точки в X для A, щоб порушити означення

 $3. X, \emptyset$ - замкнені

Theorem 1.2.9 Задано $(X, \rho), A \subset X$

Множина A - відкрита \iff множина A^c - замкнена

Proof.

 \implies Дано: A - відкрита

!Припустимо, що A^c - не замкнена, тобто $\exists x_0 \in A: x_0$ - гранична для A^c , але $x_0 \not\in A^c$

За умовою, оскільки $x_0 \in A$, то x_0 - внутрішня, тобто $\exists \varepsilon > 0 : B(x_0; \varepsilon) \subset A$

Отже, $B(x_0; \varepsilon) \cap A^c = \emptyset$ - суперечність!

\leftarrow Дано: A^c - замкнена

Тоді вона містить всі граничні точки. Тоді $\forall x_0 \in A : x_0$ - не гранична для A^c , тобто $\exists \varepsilon > 0 : B(x_0; \varepsilon) \cap A^c = \emptyset \Rightarrow B(x_0; \varepsilon) \subset A$ Отже, x_0 - внутрішня для A, а тому A - відкрита

Theorem 1.2.10 Задано (X, ρ) - метричний простір

1. Нехай $U_{\alpha} \subset X$, $\alpha \in I$ - cim'я відкритих множин

Тоді
$$\bigcup_{\alpha \in I} U_{\alpha}$$
 - відкрита множина

2. Нехай $U_k\subset X, k=\overline{1,n}$ - сім'я відкритих множин

Тоді
$$\bigcap_{k=1}^n U_k$$
 - відкрита множина 3. \emptyset, X - відкриті множини

Proof.

1. Задано множину $U = \bigcup U_{\alpha}$. Зафіксуємо $a \in U$

Тоді $\exists \alpha_0: a \in U_{\alpha_0} \Rightarrow a$ - внутрішня для U_{α_0} $\Rightarrow \exists \varepsilon > 0 : B(a; \varepsilon) \subset U_{\alpha_0} \subset U$

Отже, U - відкрита

2. Задано множину $U = \bigcap_{k=1}^n U_k$. Зафіксуємо $a \in U$

Тоді $\forall k=\overline{1,n}:a\in U_k\Rightarrow a$ - внутрішня для U_k

 $\Rightarrow \exists \varepsilon_k > 0 : B(a; \varepsilon_k) \subset U_k$

Задамо $\varepsilon = \min_{1 \le k \le n} \varepsilon_k \stackrel{\kappa}{\Rightarrow} B(a; \varepsilon) \subset U$

Отже, U - відкрита

3. ∅ - відкрита, бо нема внутрішніх точок, тому що там порожньо X - відкрита, бо для $a \in X$, який б $\varepsilon > 0$ не обрав, $B(a; \varepsilon) \subset X \blacksquare$ Вправа: записати самостійно таку ж теорему для сім'ї замкнених множин

Remark 1.2.11 Відповідь на питання, чому в другому лише скінченна кількість відкритих множин

Розглянемо $X=\mathbb{R}$ із метрикою ho(x,y)=|x-y|

Задана сім'я відкритих множин $U_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$, причому $\forall n \geq 1$

 $\bigcap_{i} U_{n} = \{0\}$, але така множина вже не є відкритою

Remark 1.2.12 Такі твердження не є правдивими

A - не відкрита, а тому A - замкнена (наприклад, [0,1) в \mathbb{R})

A - відкрита, а тому A - не замкнена (наприклад, \emptyset в \mathbb{R})

Proposition 1.2.13 Задано (X, ρ) - метричний простір та $a \in X$ Множина $B(a;r) = \{x | \rho(a,x) < r\}$ - відкрита Множина $B[a;r] = \{x | \rho(a,x) \le r\}$ - замкнена

Proof.

1. Задамо т. $b \in B(a;r)$. Нехай $\varepsilon = r - \rho(a,b) > 0$. Тоді якщо $x \in B(b;\varepsilon)$, то тоді $\rho(x,a) \leq \rho(x,b) + \rho(b,a) < \varepsilon + \rho(b,a) = r$

Отже, B(a;r) - відкрита

2. Доведемо, що $B^c[a;r]=\{x|\rho(a,x)>r\}$ - відкрита Якщо задати $\varepsilon=\rho(a,b)-r$ для точки $b\in B(a;r)$, то аналогічними міркуваннями отримаємо, що $B^c[a;r]$ - відкрита Отже, B[a;r] - замкнена \blacksquare

Definition 1.2.14 Задана $\{x_n, n \ge 1\} \subset X$ та $x_0 \in X$ Ця послідовність називається **збіжною** до x_0 , якщо

$$\rho(x_n, x_0) \to 0, n \to \infty$$

Позначення: $\lim_{n\to\infty} x_n = x_0$

Theorem 1.2.15 Задано (X, ρ) , $A \subset X$ та $x_0 \in X$. Наступні твердження еквівалентні

- 1. x_0 гранична точка для A
- 2. $\forall \varepsilon > 0 : B(x_0; \varepsilon) \cap A$ нескінченна множина
- 3. $\exists \{x_n, n \geq 1\} \subset A : \forall n \geq 1 : x_n \neq x_0 : x_n \to x_0$

Proof.

 $1) \Rightarrow 2$ Дано: x_0 - гранична для A

Припустимо, що $\exists \varepsilon^* > 0 : B(x_0; \varepsilon) \cap A$ - скінченна множина

Тобто маємо, що $x_1, \ldots, x_n \in B(x_0; \varepsilon^*)$, тоді

$$\rho(x_0, x_1) < \varepsilon^* \dots \rho(x_0, x_n)^* < \varepsilon$$

Оберемо найменшу відстань та задамо це для $\varepsilon_{new}^* = \min_{1 \le i \le n} \rho(x_0, x_i)$

Створимо $B(x_0; \varepsilon_{new}^*) \subset B(x_0; \varepsilon)$

У новому шару жодна точка $x_1,\ldots,x_n\in A$ більше сюди не потрапляє Тоді $B((x_0;\varepsilon_{new}^*)\setminus\{x_0\})\cap A=\emptyset$ - таке неможливо через те, що x_0 - гранична точка

Суперечність!

 $(2) \Rightarrow 3)$ Дано: $\forall \varepsilon > 0 : B(x_0; \varepsilon) \cap A$ - нескінченна множина

Встановимо $\varepsilon=\frac{1}{n}$. Тоді оскільки $\forall n\geq 1: B\left(x_0;\frac{1}{n}\right)\cap A$ - нескінченна,

$$\forall n \ge 1 : \exists x_n \in A : \rho(x_0, x_n) < \frac{1}{n}$$

Якщо далі $n \to \infty$, тоді $\rho(x_0, x_n) \to 0$

Остаточно, $\exists \{x_n, n \geq 1\} \subset A : x_n \neq x_0 : x_n \rightarrow x_0$

 $|3) \Rightarrow 1)$ Дано: $\exists \{x_n, n \ge 1\} \subset A : x_n \ne x_0 : x_n \to x_0$ Tobro $\forall \varepsilon > 0 : \exists N : \forall n \geq N : \rho(x_0, x_n) < \varepsilon$ Або інакше кажучи, $\forall \varepsilon > 0 : x_N \in B(x_0; \varepsilon) \cap A$ Тоді $\forall \varepsilon > 0 : (B(x_0; \varepsilon) \setminus \{x_0\}) \cap A \neq \emptyset$

Замикання множин 1.3

Definition 1.3.1 Задано (X, ρ) , множина $A \subset X$ та A' - множина граничних точок A

 ${f 3}$ амиканням множини A називають таку множину

$$\bar{A} = A \cup A'$$

Example 1.3.2 Маємо $X = \mathbb{R}$, $\rho(x, y) = |x - y|$ та множину A = (0, 1)Тоді множина A' = [0, 1]. А замикання $\bar{A} = A \cup A' = [0, 1]$

Remark 1.3.3 Розглянемо зараз сукупність замкнених множин $A \subset$ $A_{\alpha} \subset X$

Перетин $B = \bigcap A_{\alpha}$ - також замкнена, водночас $A\alpha \supset B \supset A$

Отже, B - найменша замкнена множина, що містить A

Proposition 1.3.4 Задано \bar{A} - замикання

- 1. A найменша замкнена множина, що містить A
- 2. $\overline{A \cup B} = \overline{A} \cup \overline{B}$ $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$
- 3. A замкнена $\iff A = \bar{A}$

Proof.

1. !Припустимо, що \bar{A} - не є найменшою замненою, що містить A, тобто $\exists B \subset \bar{A} : B \supset A$ - замкнена

Зафіксуємо т. $x_0 \in \bar{A}$ - гранична, тоді $x_0 \in A' \cup A$

Якщо $x_0 \in A'$, то тоді $x_0 \in B$, тому що B містить всі граничні т. A

Якщо $x_0 \in A$, то тоді $x_0 \in B$

В обох випадках $A \subset B$. Отже, $\bar{A} = B$. Суперечність!

2. Перша тотожність

$$\overline{A \cup B} = (A \cup B)' \cup (A \cup B) = 1$$

 $x_0 \in (A \cup B)' \iff x_0$ - гранична т. $A \cup B \iff \forall \varepsilon > 0$:

$$B(x_0; \varepsilon) \cap (A \cup B) = (B(x_0; \varepsilon) \cap A) \cup (B(x_0; \varepsilon) \cap B) \neq \emptyset$$
 (без т. x_0) \iff

$$\begin{bmatrix} x_0 - \text{гранична для } A \\ x_0 - \text{гранична для } B \end{cases} \iff \begin{bmatrix} x_0 \in A' \\ x_0 \in B' \end{cases} \iff x_0 \in A' \cup B'$$

Отже, $(A \cup B)' = A' \cup B'$

 $3. \Longrightarrow$ Дано: A - замкнена

Тоді A містить всі свої граничні точки. Так само A' містить граничні точки A. Тому $A = \bar{A}$

 \sqsubseteq Дано: $A = \bar{A}$

Тобто A містить всі свої граничні точки. Отже, A - замкнена \blacksquare

Definition 1.3.5 Задано (X, ρ)

Множина A називається **щільною** в X, якщо

$$\bar{A} = X$$

Definition 1.3.6 Задано (X, ρ)

Метричний простір називається **сепарабельним**, якщо в ньому існує скінченна чи зліченна щільна підмножина

Example 1.3.7 Розглянемо такі приклади:

1. $(\mathbb{R}, \rho(x,y) = |x-y|)$ - сепарабельний, тому що

 $\mathbb Q$ - зліченна та щільна підмножина в $\mathbb R$

2. Маємо простір
$$l_2 = \left\{ \vec{a} | \sum_{n=1}^{\infty} a_n^2 < \infty \right\}$$
 - нормований простір

Розглянемо множину $l_2O=\{\vec{a}\in l_2|$ скінченна кількість членів не нуль $\}$ Розглянемо $\vec{a}=\{a_1,a_2,\dots\}\in l_2$. Доведемо, що вона - гранична для l_2O Задамо послідовність $\{\vec{a}_n,n\geq 1\}\subset l_2O$, де кожний елемент задається таким чином

$$\vec{a}_n = \{a_1, \dots, a_n, 0, \dots\}$$
 $\Rightarrow \rho(\vec{a}, \vec{a}_n) = ||\vec{a} - \vec{a}_n|| = \sum_{n=k+1}^{\infty} a_n^2 \to 0$, оскільки ряд збіжний, а тому

хвіст ряду прямує до нуля

Отже, $\vec{a}_n o \vec{a}$, тож \vec{a}_n - гранична точка

 $\frac{\text{Тоді}}{l_2O}$ можна ствердити, що l_2O - щільна в $l_2,$ або інакше $\overline{l_2O}=l_2$

А оскільки $l_2O \subset l_2$ та ще й нескінченна, то тоді l_2 - сепарабельний

- 3. Простір C([a,b]) сепарабельний Доведу пізніше, коли дізнаюсь про теорему Вейерштрасса про наближення неперервної на відрізку функції многочленами
- 4. А вот простір l_{∞} не сепарабельний \mathcal{L} оведу пізніше
- 5. Підпростір сепарабельного метричного простору сепарабельний *Доведу пізніше*

1.4 Повнота

Definition 1.4.1 Задано (X, ρ) - метричний простір Послідовність $\{x_n, n \geq 1\}$ називається фундаментальною, якщо

$$\forall \varepsilon > 0 : \exists N : \forall m, n \ge N : \rho(x_n, x_m) < \varepsilon$$

Remark 1.4.2 Це означення можна інакше переписати

$$\rho(x_n, x_m) \stackrel{m,n \to \infty}{\longrightarrow} 0$$

Proposition 1.4.3 Будь-яка збіжна послідовність є фундаментальною Proof.

Маємо $\{x_n, n \geq 1\}$ - збіжна, тобто $\rho(x_n, x) \stackrel{n \to \infty}{\to} 0$

За нерівністю трикутника, маємо

$$\rho(x_n, x_m) \le \rho(x_n, x) + \rho(x, x_m)$$

Якщо спрямувати одночасно $m.n \to \infty$, то тоді $\rho(x_n, x_m) \to 0$

Отже, $\{x_n, n \geq 1\}$ - фундаментальна \blacksquare

Remark 1.4.4 Щоб не заплутатись

$$X=(0,1]$$
 - підпростір $\mathbb R$. Розглянемо послідовність $\left\{x_n=rac{1}{n}, n\geq 1
ight\}$

 $x_n o 0$ при $n o \infty$ - збіжна, проте $0
ot\in X$

Тому така послідовність не має границі в X, але вона - фундаментальна за твердженням

Definition 1.4.5 Метричний простір (X, ρ) називається **повним**, якщо будь-яка фундаментальна послідовність має границю

Example 1.4.6 Два приклади

 $1. \ X = \mathbb{R}$ - повний за критерієм Коші із матану

2.
$$X=(0,1]$$
 - не повний, бо принаймні $\left\{x_n=\frac{1}{n}, n\geq 1\right\}$ - фундаментальна, проте не має границі

Proposition 1.4.7 Задано (X, ρ) - повний та підпрострір (Y, ρ) Простір (Y, ρ) - повний $\iff Y$ - замкнена в X

Proof.

 \Longrightarrow Дано: (Y, ρ) - повний

Візьмемо фундаментальну послідовність $\{x_n, n \geq 1\}$ в Y, а тому вона є збіжною, тобто $y_n \to y_0 \in Y$

Отже, y_0 - гранична точка. А тому в силу повноти Y - замкнена в X

Візьмемо $\{y_n, n \geq 1\} \subset Y \subset X$ - фундаментальна. Тоді в силу повноти X, вона - збіжна (доробити)

Definition 1.4.8 Повний нормований простір називається **банаховим**. Повний евклідів простір (відносно метрики, що породжена скалярним добутков) називається **гільбертовим**

Proposition 1.4.9 Нормований простір C([a,b]) - банахів **Proof.**

Задамо фундаментальну послідовність $\{x_n, n \geq 1\}$ на множині C([a,b]) Тоді $\forall t_0 \in [a,b]: |x_n(t_0) - x_m(t_0)| \leq ||x_n - x_m|| = \max_{t \in [a,b]} |x_n(t) - x_m(t)|$

Із цієї нерівності випливає, що $\forall t_0 \in [a.b]: \{x_n(t_0), n \geq 1\}$ - фундаментальна За критерієм Коші (із матану), вона - збіжна, тобто $x_n(t_0) \stackrel{n \to \infty}{\to} y(t_0)$

Щойно показали поточкову збіжність $\{x_n, n \geq 1\}$ до функції y

Доведемо, що вона збігається рівномірно (тобто за нормою)

 ${x_n, n \ge 1}$ - фундаментальна, тобто

 $\forall \varepsilon > 0 : \exists N : \forall m, n \ge N : ||x_n(t) - x_m(t)|| < \varepsilon$

Aбо $\forall t \in [a, b] : |x_n(t) - x_m(t)| < \varepsilon$

Зафіксуємо деякі $t\in [a,b]$ та $n\geq N.$ А потім спрямуємо $m\to\infty.$ Тоді $|x_n(t)-y(t)|<\varepsilon$

Це виконується $\forall t \in [a,b]$ та $n \geq N$, або це записується інакше

 $\forall n \ge N : ||x_n - y|| < \varepsilon$

Отже, $x_n \to y \blacksquare$

${f Proposition}$ 1.4.10 Евклідів простір l_2 - гільбертів

Proof.

Задамо фундаментальну послідовність $\{\vec{x}_n, n \geq 1\}$ на множині l_2 Тобто $\forall \varepsilon > 0: \exists N: \forall n, m \geq N: ||\vec{x}_n - \vec{x}_m|| < \varepsilon$

$$\Rightarrow ||\vec{x}_n - \vec{x}_m||^2 = \sum_{k=1}^{\infty} (x_n^k - x_m^k)^2 < \varepsilon^2 \Rightarrow \forall k \ge 1 : |x_n^k - x_m^k| < \varepsilon$$

Тоді послідовність $\{x_n^k, n \geq 1\}$ - фундаментальна - тому (за матаном) збіжна, $x_n^k \to y^k$

Доведемо, що \vec{x} збігається до \vec{y} за нормою

Маємо
$$\sum_{k=1}^{\infty} (x_n^k - x_m^k)^2 < \varepsilon^2 \Rightarrow \forall K \ge 1 : \sum_{k=1}^K (x_n^k - x_m^k)^2 < \varepsilon^2$$

Спрямуємо
$$m \to \infty$$
, тоді $\sum_{k=1}^K (x_n^k - y^k)^2 < \varepsilon^2$

Звідки випливає збіжність ряду $\sum_{k=1}^{\infty} (x_n^k - y^k)^2$ та його оцінка

$$\sum_{k=1}^{\infty} (x_n^k - y^k)^2 < \varepsilon^2 \Rightarrow ||\vec{x}_n - \vec{y}|| < \varepsilon$$
Other, $\vec{x}_n \to \vec{y} \blacksquare$

Lemma 1.4.11 Задано $\{x_n, n \geq 1\}$ - фундаментальна та $\{x_{n_k}, k \geq 1\}$ - збіжна. Тоді $\{x_n, n \geq 1\}$ - збіжна

Proof.

Маємо $a_{n_k} \to a, k \to \infty$ $\Rightarrow \forall \varepsilon > 0 : \exists K : \forall k \ge K : \rho(a_{n_k}, a) < \varepsilon$ Також відомо, що $\forall n, m \ge N : \rho(a_n, a_m) < \varepsilon$ Треба ще $n_k \ge N$. Тоді для $n \ge n_K$ $\rho(a_n, a) \le \rho(a_n, a_{n_K}) + \rho(a_{n_K}, a) < 2\varepsilon$ Отже, $a_n \to a_0$

Theorem 1.4.12 Критерій Кантора

Задано умова Кантора: для кожної послдовності $\{B[a_n;r_n], n \geq 1\}$ такої, що $B[a_1;r_1] \supset B[a_2;r_2] \supset \dots$ та $r_n \to 0$, існує непорожній перетин (тобто послідовність куль, що стягується)

 (X, ρ) - повний \iff виконується умова Кантора

Перед доведенням пропоную зробити безліч зауважень

І. Доведемо, що існує не більше однієї точки, що належить перетину

!Припустимо, що це не так, тобто
$$\exists b^*, b^{**} \in \bigcap_{n=1}^{\infty} B[a_n; r_n]$$

Тоді
$$\forall n \geq 1: \begin{cases} \rho(a_n, b^*) < r_n \\ \rho(a_n, b^{**}) < r_n \end{cases}$$
 $\Rightarrow \rho(b^*, b^{**}) \leq \rho(b^*, a_n) + \rho(a_n, b^{**}) < r_n + r_n = 2r_n$ Спрямуємо $n \to \infty$, тоді $\rho(b^*, b^{**}) \leq 0 \Rightarrow \rho(b^*, b^{**}) = 0 \Rightarrow b^* = b^{**}$. Суперечність!

II. Покажемо, що $\{a_n,n\geq 1\}$ - послідовність центрів - фундаментальна За умовою, $r_n\to 0\Rightarrow \forall \varepsilon>0:\exists N:\forall n\geq N:r_n<\varepsilon$

Достатньо взяти лише $r_N < \varepsilon$

Тоді
$$\forall n, m \geq N : a_m, a_n \in B[a_N, r_N] \Rightarrow \rho(a_m, a_N) < r_N$$
 та $\rho(a_n, a_N) < r_N$ $\Rightarrow \rho(a_n, a_m) \leq \rho(a_n, a_N) + \rho(a_N, a_m) < 2r_N < 2\varepsilon$

Отже, $\{a_n, n \geq 1\}$ - фундаментальна

А тепер час доводити

Proof.

 \Longrightarrow Дано: (X, ρ) - повний

Задамо послідовність куль $\{B[a_n;r_n], n\geq 1\}$, що стягується. Тоді послідовність $\{a_n, n\geq 1\}$ - фундаментальна

Оскільки X - повний, то тоді $\{a_n, n \geq 1\}$ - збіжна, тобто $a_n \to a_0$

Оскільки $B[a_n;r_n]$ - замкнені, то маємо, що $a_0\in B_n$. Звідси $a_0\in\bigcap_{n=1}^\infty B_n$

(⇐ Дано: умова Кантора

 $\overline{\text{Дос}}$ татньо знайти для $\{a_n, n \geq 1\}$ - уже фундаментальна - збіжну підпослідовність

Нехай маємо $n_1 \in \mathbb{N}$, щоб $\forall n \geq n_1 : \rho(a_n, a_{n_1}) < \frac{1}{2}$

Тоді
$$\exists n_2 > n_1 : \forall n \geq n_2 : \rho(a_n, a_{n_2}) < \frac{1}{4}$$

Тоді маємо послідовність $n_1 < n_2 < n_3 < \dots$ із властивістю

$$\forall n \ge n_k : \rho(a_n, a_{n_k}) < \frac{1}{2^k}$$

Маємо тоді кулі $B\left[a_{n_k}; \frac{1}{2^{k-1}}\right]$, що вкладені одна в одну

Дійсно,
$$x \in B\left[a_{n_{k+1}}; \frac{1}{2^k}\right] \Rightarrow$$

$$\rho(a_{n_k}, x) \le \rho(a_{n_k}, a_{n_{k+1}}) + \rho(a_{n_{k+1}}, x) \le \frac{1}{2^{k-1}} \Rightarrow x \in B\left[a_{n_k}; \frac{1}{2^{k-1}}\right]$$

Якщо a - спільна точка куль, то $a_{n_k} \to a$

Описує час чекання, вимірювання з ціною поділки:

$$\xi \sim U(a,b) \iff f_{\xi}(x) = \begin{cases} \frac{1}{b-a}, x \in [a,b] \\ 0, \text{ інакше} \end{cases}$$

$$\mathbb{E}\xi = \frac{a+b}{2}$$

$$\mathbb{D}\xi = \frac{(a-b)^2}{12}$$