

Session 7: Two-Party Secure Computation for Malicious Adversaries

Yehuda Lindell Bar-llan University

This Session

- Constructing efficient secure two-party protocols for malicious adversaries
 - In principle, this problem is solved by GMW but is not efficient
 - Important: there is no honest majority here and so BGW techniques don't work
- Session outline
 - Survey known approaches to the problem
 - Focus in detail on the cut-andchoose approach
 - Personal bias ©

Yao's Protocol and Malicious

- Malicious P₁ in Yao's Protocol
 - A malicious P₁ can construct an incorrect circuit
 - This can harm correctness, privacy, and independence of inputs
 - A malicious P₁ can carry out a "selective input attack"
 - P_1 can input an incorrect key for the 0-value on the 1st bit of P_2 's input
 - This causes P_2 to abort if $y_1=0$ and to successfully compute output if $y_1=1$
 - In the ideal world, P₁ cannot make the abort depend on P₂'s input

Yao's Protocol and Malicious

- Aim: force the circuit constructor to behave honestly
- This can be achieved using general ZK proofs, but this won't be efficient
- What other ways can this be done?
 - It turns out that there are many other ways...

Approaches

- Prove correctness of circuit construction using zero-knowledge
- 2. LEGO: prove correctness of gate construction and then solder gates together
- 3. Virtual MPC
- 4. From multiplication tuples to arithmetic circuit construction
- 5. Cut-and-choose to prove correctness of Yao circuits

Boolean vs Arithmetic

- Boolean circuits: AND/OR/XOR etc.
- Arithmetic circuits: ADD/MULT over some defined finite field
- What is better?
 - It depends on the application
 - AES:
 - 33,000 gates in a Boolean circuit
 - 2,400 gates over GF[28]
 - Branching is better in Boolean...

ZK Proving (Boolean Circuits)

Jarecki-Shmatikov (Eurocrypt 2007)

- Encrypt gates using asymmetric encryption with algebraic structure
 - Use Camenisch-Shoup based on DCR (N-residuosity);
 two exponentiations mod N²
- Use structure to prove in zero knowledge that circuit is correctly constructed
 - Used correct keys
 - Gate has correct structure
 - And so on...

ZK Proving

- O(1) exponentiations per gate
 - What is O(1)? Here: 720
 - Also, these are N² exponentiations which are much more expensive that DH exponentiations which can be run in an Elliptic curve group
- Optimizing the approach
 - More efficient ZK protocols
 - Challenge: how to build the gates so that they yield efficient proofs
 - Batching of ZK protocols

LEGO (Boolean Circuits)

Nielsen-Orlandi (TCC 2009)

- Generate many encrypted gates using homomorphic commitments
- Open half of the gates to check that they are correctly formed
 - This guarantees that the majority of the remaining gates are correct
- Combine the remaining gates in a fault tolerant circuit
 - Use homomorphic property to "solder" the gates
- Compute the circuit

LEGO Efficiency

- Size of fault tolerant circuit O(s |C|/log |C|)
 - Statistical security parameter s
 - Error is 2^{-s} , so can set s=40
- Number of exponentiations per gate is 32
 - Number of exponentiations is 1280|C|/log|C|
 - Exponentiations are regular Diffie-Hellman

Virtual MPC (Arithmetic Circuits)

Ishai-Prabhakaran-Sahai (Crypto 2008)

- Parties emulate a multiparty protocol with honest majority
 - Such protocols are much more efficient for arithmetic circuits
- Parties run 2-party protocols to simulate every step of the parties in the honest majority protocol
 - The parties use semi-honest protocols and "watchlists" to catch cheating

Multiplication Tuples

(Arithmetic Circuits)

- Damgard-Orlandi (Crypto 2010)
- The protocol
 - Share the inputs
 - Addition: locally add shares (like BGW)
 - Multiplication: as in BGW, this is the hard part
- Based on an idea by Beaver from 1991

Multiplication Tuples

Setup

- Assume that the parties have many tuples of the form [Com(x), Com(y), Com(z)] where $x=y\cdot z$ together with additive shares (x_1,x_2) , (y_1,y_2) and (z_1,z_2) of (x,y,z), respectively
- In addition, Com is homomorphic
 - Can compute shares of Com(x+y) given shares of Com(x) and Com(y)
 - Can computes shares of Com(a·x) given shares of a and shares of Com(x)

Multiplication Using Tuples

Multiplication

- Wire 1: P₁ and P₂ have additive shares u₁,u₂ of u
- Wire 2: P_1 and P_2 have additive shares v_1, v_2 of v_2
- Aim: compute shares of $w=u\cdot v$; i.e. compute w_1,w_2 such that $w_1+w_2=(u_1+u_2)\cdot(v_1+v_2)$

Multiplication Using Tuples

Computation:

- Parties have additive shares of Com(x), Com(y),
 Com(z) where x=y·z
- Compute shares of Com(u-y), and open; denote u'
- Compute shares of Com(v-z), and open; denote v'
- Compute shares of Com(u'·v) + Com(v'·u) + Com(x) - u'·v'
- What does it equal? Shares of:

$$(u-y)\cdot v + (v-z)\cdot u + y\cdot z - (u-y)(v-z)$$

= $uv-yv+vu-zu+yz-uv+zu+yv-yz$
= $u\cdot v$

The Protocol

- Run a specific two-party computation to generate multiplication tuples
 - This uses a special-purpose protocol, secure for malicious adversaries
- Share the inputs using the homomorphic commitments
- Locally add shares for addition
- Use tuples as shown for multiplication

Cut-and-Choose (Boolean Circuits)

Lindell-Pinkas (Eurocrypt 2007, TCC 2011)

- The basic idea prove that the Yao circuit is correctly constructed as follows:
 - P₁ constructs s garbled circuits and sends them to P₂
 - P₂ chooses a random subset of ½ and sends it to P₁
 - P₁ "opens" these circuits by sending all of the garbled keys
 - P₂ checks that the circuits are correctly constructed

Cut-and-Choose

- What is guaranteed?
 - A majority of the remaining circuits are correctly constructed
- The rest of the protocol
 - The parties compute all of the remaining garbled circuits
 - It is not enough to compute one because it is only guaranteed that the majority are fine

Difficulties and Attacks

- What does P₂ do if it obtains different outputs?
 - Option 1: it detects P₁ cheating and so aborts
 - Attack: P₁ can use this to cheat:
 - P₁ constructs one circuit that outputs garbage if the first bit of P₂'s input equals 0 (otherwise, computes f)
 - If P₂ aborts, P₁ knows that P₂'s 1st input bit equals 0
 - Option 2: output majority value
 - This is the correct option; sometimes need to be quiet even when cheating is detected!

Difficulties and Attacks

- It may be possible for P₁ to construct a garbled circuit G with 2 different sets of garbled values/keys K,K' such that
 - The keys in K decrypt G to the correct circuit C
 - The keys in K' decrypt G to an incorrect circuit C'

This can be solved by having P₁ also commit to the keys

Difficulties and Attacks

Input consistency

- P_2 may use different inputs $y_1, y_2, ...$ in different circuits, in order to get $f(x,y_1), f(x,y_2), ...$
- P_1 may use different inputs $x_1, x_2,...$ in different circuits in order to get $f(x_1,y), f(x_2,y),...$
 - But won't this be detected by P₂ who gets the output?
 - Not necessarily; it depends on the function

Solutions - Protocol 2007

- Cut-and-choose on the circuit does not prevent a selective-input attack
- Preventing selective-input attacks
 - Split each input bit y of P_2 into s random bits $y_1,...,y_s$ such that $y_1 \oplus ... \oplus y_s = y$
 - Change the circuit to first compute the XOR of these bits and then the function
- Why does this help?
 - Each input bit is now random (the correlation between $y_1,...,y_s$ and the actual bit y can be guessed w.p. 2^{-s}
 - Thus, any attack on the input bits is not correlated to the actual input

Selective-Input Attacks

- The drawback:
 - Increases the size of the circuit
 - Increases the number of oblivious transfers
 - Need an oblivious transfer for each input bit
- Using randomized encoding of the input, this can be improved, but still costs

Input Consistency

- Forcing P₂ to use the same inputs in every circuit
 - Carry out the oblivious transfers on all circuits at once (also more efficient)
- In the ith oblivious transfer
 - P_1 (sender) inputs (K_0^i, K_1^i) where K_0^i is the <u>vector</u> of 0-keys in ALL circuits on the wire associated with P_2 's i^{th} input bit
 - P₂ (receiver) inputs its ith input bit

Input Consistency

- Forcing P₁ to use the same inputs in every circuit
 - Use zero-knowledge expensive
 - Use cut-and-choose on commitments
- P₁ sends many sets of commitments to its input keys
 - P₁ opens all commitments of opened circuits to show that correctly constructed
 - P₁ opens some commitments of computed circuits to show that it sent consistent keys

Input Consistency

- Cost: 2s²L commitments are needed (s is a statistical security parameter, L is the input length)
 - For s = 160, n = 128, this constitutes 6,553,600 commitments
 - In addition to significant computation (even if just hashing), this involves sending and processing a gigabit of data (if 160-bits is the size of each commitment)
- This was a mistake...

Security Parameter

- On the importance of tight proofs
 - This protocol has a proven error of 2^{-s/17}
 - The number of circuits sent and more is s
 - Thus, to obtain an error of 2^{-40} , we need to take s=680
- This is a huge number of circuits
 - It also means that the commitment sets are 20 gigabits)
- We conjectured that the error is really 2^{-s/4} but are not sure

Efficiency...

- Efficiency means many things
 - Theoretical efficiency: constant number of rounds, sublinear bandwidth, minimal number of oblivious transfers,...
 - Concrete efficiency: actual running time in comparison to other protocols
- Both areas of research are important, but if you are doing concrete efficiency, then

be concrete

Implementations are Important

- In [LP07], our aim was to reduce the number of oblivious transfers to a minimum
 - Symmetric operations, like commitments were assumed to be almost free
- In reality: the commitments are the bottleneck
 - They cost much more than the OTs

Solutions - Protocol 2011

- Solution based on cut-and-choose, but using a very different approach
- More oblivious transfers and more exponentiations
 - No commitment sets
 - No selective-input attack is possible so don't need to split the inputs
 - Proven concrete error of 2^{-0.31s}
 - Suffices to take s=128 for 2^{-40} error
 - Many less circuits very important!

Consistency Proof

- The keys on the wires associated with P₁'s input are chosen in a special way
 - Let $r_1, ..., r_s$ be random values (one for each circuit)
 - Let a_i⁰,a_i¹ be random values (for the ith bit of P₁'s input)
 - The keys for wire associated with the ith bit of P_1 's input in the jth circuit are $g^{a_i^0 \cdot r_j}, g^{a_i^1 \cdot r_j}$
 - \circ P₁ sends $g^{r_1},...,g^{r_s},g^{a_1^1},g^{a_1^0},...,g^{a_L^0},g^{a_L^1}$
 - These are commitments to all of the values on these wires
 - By DDH, the values are hidden

Consistency Proof

The proof

• Given $g^{r_1},...,g^{r_s},g^{a_1^1},g^{a_1^0}...,g^{a_L^0},g^{a_L^1}$ and keys $k_i^1,k_i^2,...,k_i^s$ prove that there exists a bit be{0,1} such that

$$k_i^1 = g^{a_i^b \cdot r_1}, k_i^2 = g^{a_i^b \cdot r_2}, ..., k_i^s = g^{a_i^b \cdot r_s}$$

- In other words, the key used for the ith bit in all s circuits relates to the same bit (0 or 1)
- ▶ This looks complicated, but...
 - This is an OR between two "extended Diffie-Hellman tuples"
 - Using Sigma protocols, this can be proven with just s+18 exponentiations
 - First combine to one tuple (randomly), then prove OR of two DH tuples

Cut-and-Choose OT

- In the previous protocol, cut-and-choose on the circuits is separate from the OT
 - This enables P₁ to carry out a selective input attack because P₁ can use different keys in the OT to what are used in the opening
- In this protocol, we define cut-and-choose oblivious transfer to intertwine the two

Cut-and-Choose OT

▶ Input:

- The sender has a vector of s pairs
 - These are the keys for a wire associated with P₂'s input in all circuits
- The receiver has a bit
 - This is P₂'s input bit for this wire
- The receiver also has a set J of s/2 indices

Output:

- The receiver obtains the 1st or 2nd value in every pair (as per its input)
- The receiver obtains both values for every index in J

Using Cut-and-Choose OT

- P₁ sends the garbled circuits and the "commitments" to its own input wires
- P₁ and P₂ run cut-and-choose OT for the input wires of P₂'s input
- ▶ P_2 asks P_1 to send r_i for every $j \in J$
 - P₂ proves J by sending both values on some wire
 - This enables P₂ to compute all of the values on P₁'s input wires in the circuit
 - From the cut-and-choose OT it has all the values on its input wires
 - Thus, this is a full "opening"

Using Cut-and-Choose OT

- The circuit checks and the oblivious transfers are now intertwined
- Any incorrect value used in the oblivious transfers is either used few times (and so doesn't affect the majority) or used many times, and will be detected
- This also enables a much cleaner proof of security and analysis
 - There aren't different sources of error

Cut-and-Choose OT

Background – Oblivious Transfer of [PVW]

- RAND function: $RAND(w,x,y,z) = (u,v) = (w^sy^t,x^sz^t)$
- If (w,x,y,z) is a DH tuple: $x=w^a$, $z=y^a$
 - $v = x^s z^t = w^{as} y^{at} = (w^s y^t)^a$ and so $v = u^a$
 - Thus, given $(\mathbf{u},\mathbf{v}')=(\mathbf{u},\mathbf{v}\cdot\mathbf{m})$ can compute $\mathbf{m}=\mathbf{v}/\mathbf{u}^a$
- If (w,x,y,z) are <u>not</u> a DH tuple: $x=w^a$, $z=y^b$ $(a\neq b)$
 - $v = x^s z^t = w^{as} y^{bt}$; let $y = w^c$
 - Then $v = w^{as+cbt}$, $u=w^{s+ct}$
 - as+cbt and s+ct are linearly indep.
 equations and so for every m, there
 exist s,t such that (u,v')=(u,v·m)

[PVW] Oblivious Transfer

- Inputs: $(m_0, m_1), \sigma$
 - Receiver R sends (g_0,g_1,h_0,h_1) that is <u>not</u> a DH tuple $(h_0=g_0^a, h_1=g_1^b, a\neq b)$
 - ▶ R chooses random r; computes $g=g_{\sigma}^{r}$, $h=h_{\sigma}^{r}$
 - R sends (g,h) to S
 - S computes $(\mathbf{u}_0, \mathbf{v}_0) = \text{RAND}(\mathbf{g}_0, \mathbf{g}, \mathbf{h}_0, \mathbf{h})$
 - S computes $(u_1,v_1)=RAND(g_1,g,h_1,h)$
 - **S** sends $(u_0, v_0 \cdot m_0), (u_1, v_1 \cdot m_1)$
- Only one of (g₀,g,h₀,h), (g₁,g,h₁,h) is a Diffie-Hellman tuple

[PVW] Oblivious Transfer

- Only one of (g_0,g,h_0,h) , (g_1,g,h_1,h) is a Diffie-Hellman tuple
 - Recall: (g_0,g_1,h_0,h_1) is <u>not</u> a DH tuple; $h_0=g_0^a$, $h_1=g_1^b$
 - Thus, for every (g,h), if $g=g_0^c$ and $h=h_0^c$, then it <u>cannot be</u> that $g=g_1^c$ and $h=h_1^c$

Security

- By what we have seen, this means that at least one of m_0,m_1 is perfectly hidden
 - The simulator can choose $(\mathbf{g}_0, \mathbf{g}_1, \mathbf{h}_0, \mathbf{h}_1)$ as a DH tuple and so can extract both
- By the DDH assumption, the sender also cannot know if (g,h) equals (g₀^r,h₀^r) or (g₁^r,h₁^r)

[PVW] Oblivious Transfer

- What prevents R from sending a Diffie-Hellman tuple?
- R can prove in ZK that it's not a DH tuple
 - How can this be done efficiently?
- Alternative: R computes $(g_0,g_1,h_0=g_0^a,h_1=g_1^{a+1})$
 - Then, R proves that $(g_0,g_1,h_0,h_1/g_1)$ is a DH tuple
 - This guarantees that (g_0,g_1,h_0,h_1) is not a DH tuple

40

Cut-and-Choose OT

- We demonstrate this on two executions
 - Choose 1-out-of-2; same principle for many
- R chooses 2 tuples, one is DH and one is not
- R proves in ZK that 1 of 2 tuples is not DH
 - Use OR of sigma protocols
- R and S run the rest of [PVW] on each tuple
 - The execution for which the tuple is not DH is a regular OT
 - In the other execution, R receives both values, as required

Lessons

- It is possible to improve efficiency using ZK proofs intelligently
 - It's all about setting up the inputs in a way that is amenable to efficient proving
- Tight security reductions and proofs are crucial when considering concrete efficiency
- Constants are crucial for concrete efficiency
 - We didn't discuss this too much; except for the protocol of ZK-proving of Jarecki-Shmatikov (there O(1) = 720)

There is Much More

- There are many considerations regarding concrete efficiency
 - We often count exponentiations, but:
 - A Paillier and RSA exponentiation is much more expensive than an Elliptic curve exponentiation
 - A pairing exponentiation is like an RSA exponentiation (plain DH is best out of these)
 - Multi-exponentiations of the type gshr cost about
 1.33 regular exponentiations
 - This is just one example

Conclusion

- We can compute any function for malicious adversaries with <u>reasonable</u> efficiency
- There is still a long way to go
 - The blowup of 128 times Yao is problematic
 - Other solutions requiring O(1) or more exponentiations per gate are also problematic
- This is currently a very active research area
 - In 2006, there was nothing, now there are at least 5 different approaches