- Domain of the ADT Set: $S = \{s | s \text{ is a set with elements of the type TElem} \}$
- init (s)
 - descr: creates a new empty set
 - pre: true
 - post: $s \in \mathcal{S}$, s is an empty set.
- add(s, e)
 - descr: adds a new element into the set if it is not already in the set
 - pre: $s \in \mathcal{S}$, $e \in TElem$
 - **post:** $s' \in \mathcal{S}$, $s' = s \cup \{e\}$ (e is added only if it is not in s yet. If s contains the element e already, no change is made). $add \leftarrow$ true if e was added to the set, false otherwise.
- remove(s, e)
 - descr: removes an element from the set.
 - **pre:** $s \in \mathcal{S}$, $e \in TElem$
 - **post:** $s \in \mathcal{S}$, $s' = s \setminus \{e\}$ (if e is not in s, s is not changed). $remove \leftarrow true$, if e was removed, false otherwise
- search(s, e)
 - descr: verifies if an element is in the set.
 - pre: $s \in \mathcal{S}$, $e \in TElem$
 - post:

$$search \leftarrow \begin{cases} \textit{True}, & \text{if } e \in s \\ \textit{False}, & \text{otherwise} \end{cases}$$

- size(s)
 - descr: returns the number of elements from a set
 - pre: $s \in \mathcal{S}$
 - **post:** size \leftarrow the number of elements from s

- isEmpty(s)
 - descr: verifies if the set is empty
 - pre: $s \in \mathcal{S}$
 - post:

$$isEmpty \leftarrow \begin{cases} True, & \text{if } s \text{ has no elements} \\ False, & \text{otherwise} \end{cases}$$

- iterator(s, it)
 - descr: returns an iterator for a set
 - pre: $s \in \mathcal{S}$
 - **post:** $it \in \mathcal{I}$, it is an iterator over the set s
- destroy (s)
 - descr: destroys a set
 - pre: $s \in S$
 - post:the set s was destroyed.