

ریاضیات گسسته

دکتر منصوره میرزایی

فصل چهارم

نظریه اعداد

• تعریف: فرض کنید a و b دو عدد صحیح باشند و a \neq a گوییم عدد a عدد a را می شمارد، یا a مضربی از a است، اگر عدد صحیح a و جود داشته باشد به طوری که a b و می نویسیم a

- قضیه: فرض کنید $a \neq 0$ و $a \neq 0$ اعداد صحیح باشند، بطوریکه $a \neq 0$ در این صورت:
 - اگر a|b و a|b آنگاه a|b+c
 - اگر a|b آنگاه برای همه اعداد صحیح c داریم:
 - اگر a|b و a|c آنگاه a|c
 - $a \mid c$ و $a \mid b$ و $a \neq 0$ و اعداد صحیح و $a \mid b$ و $a \mid c$ نتیجه: اگر $a \mid b$ و $a \mid b$ اعداد صحیح هستند.

• قضیه: اگر a یک عدد صحیح و d یک عدد صحیح مثبت باشد، آنگاه a=dq+r و $0 \le r < d$ و q و q اعداد یکتای q و q و q و q و q اعداد یکتای q و q و q و q و q به صورت زیر نشان میدهیم:

q = a div d

r = a **mod** d

- فرض کنید a و b اعداد صحیح و m یک عدد صحیح مثبت باشد، در $m \mid a-b$ این صورت گوییم a همنهشت b در پیمانه a است اگر $a \equiv b \pmod{m}$ را به صورت $a \equiv b \pmod{m}$
- قضیه: اگر a و b اعداد صحیح و m یک عدد صحیح مثبت باشد، آنگاه $a \equiv b \pmod m$ اگر و فقط اگر $a \equiv b \pmod m$

- قضیه: فرض کنید m یک عدد صحیح مثبت باشد، اعداد صحیح b و فضیه: فرض کنید b همنهشت هستند اگر و فقط اگر عدد صحیح b وجود داشته باشد بطوریکه a=mk+b
- تعریف: به مجموعه همه اعداد صحیحی که همنشهت a در پیمانه m هستند، کلاس مانده های a در پیمانه m می نامند.

نمایش اعداد صحیح

• فرض کنید b یک عدد صحیح بزرگتر از ۱ باشد. آنگاه اگر n یک عدد صحیح مثبت باشد، میتوان آن را به صورت یکتا به شکل زیر نمایش داد:

$$n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b + a_0,$$

که k یک عدد صحیح نامنفی است و a_0 ، a_1 ، a_0 اعداد صحیح نامنفی کمتر از $a_k \neq 0$ هستند و $a_k \neq 0$

در این حالت به $(a_k a_{k-1} \dots a_0)_b$ نمایش مبنای b عدد این حالت به

تبدیل به مبنای ۱۰

• تبدیل عدد از مبنای دلخواه به مبنای ۱۰ با استفاده از ارزش مکانی هر رقم انجام میشود. مجموع حاصلضرب هر رقم در ارزش مکانی هر رقم باید محاسبه شود.

مثال:

$$(245)_8 = 2 \cdot 8^2 + 4 \cdot 8 + 5 = 165$$

 $(101011)_2 = 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2 + 1 = 43$
 $(2AE0B)_{16} = 2 \cdot 16^4 + 10 \cdot 16^3 + 14 \cdot 16^2 + 0 \cdot 16 + 11 = 175627$

تبدیل از مبنای ۱۰ به یک مبنای دیگر

• برای تبدیل از مبنای ۱۰ به مبنای b با تقسیم متوالی بر b انجام میشود.

تبدیل از مبنای ۱۰ به یک مبنای دیگر

تبدیل به مبنای ۱۶

تبدیل بین مبنای ۲، ۸ و ۱۶

• تبدیل مبنای ۲ به 2^n : از سمت راست n رقم n رقم جدا میکنیم و به جای هر n رقم معادل آن در مبنای 2^n را قرار میدهیم.

مثال:

$$(110101001)_2 = (110 \ 101 \ 001)_2 = (651)_8$$

 $(110101001)_2 = (0001 \ 1010 \ 1001)_2 = (1A9)_{16}$

تبدیل بین مبنای ۲، ۸ و ۱۶

تبدیل از مبنای ²ⁿ به مبنای ۲: به جای هر رقم، n رقم در مبنای ۲ قرار میدهیم.

مثال:

 $(7103)_8 = (111\ 001\ 000\ 011)_2$ $(A19E)_{16} = (1010\ 0001\ 1001\ 1110)_2$

جمع اعداد درمبنای ۲

• الگوريتم جمع اعداد مبناي ٢

ALGORITHM 2 Addition of Integers.

```
procedure add(a, b): positive integers)

{the binary expansions of a and b are (a_{n-1}a_{n-2} \dots a_1a_0)_2

and (b_{n-1}b_{n-2} \dots b_1b_0)_2, respectively}

c := 0

for j := 0 to n-1

d := \lfloor (a_j + b_j + c)/2 \rfloor
s_j := a_j + b_j + c - 2d
c := d
s_n := c
return (s_0, s_1, \dots, s_n) {the binary expansion of the sum is (s_n s_{n-1} \dots s_0)_2}
```

جمع اعداد درمبنای ۲

$$\begin{array}{c}
 111 \\
 1110 \\
 +1011 \\
 \hline
 11001
 \end{array}$$

$$a_0 + b_0 = 0 + 1 = 0 \cdot 2 + 1$$
,

so that $c_0 = 0$ and $s_0 = 1$. Then, because

$$a_1 + b_1 + c_0 = 1 + 1 + 0 = 1 \cdot 2 + 0$$
,

it follows that $c_1 = 1$ and $s_1 = 0$. Continuing,

$$a_2 + b_2 + c_1 = 1 + 0 + 1 = 1 \cdot 2 + 0$$
,

so that $c_2 = 1$ and $s_2 = 0$. Finally, because

$$a_3 + b_3 + c_2 = 1 + 1 + 1 = 1 \cdot 2 + 1$$
,

follows that $c_3 = 1$ and $s_3 = 1$. This means that $s_4 = c_3 = 1$. Therefore, $s = a + b = (1\,1001)_2$.

ضرب اعداد در مبنای ۲

• الگوریتم ضرب اعداد در مبنای ۲

ALGORITHM 3 Multiplication of Integers.

```
procedure multiply(a, b): positive integers)
{the binary expansions of a and b are (a_{n-1}a_{n-2}\dots a_1a_0)_2 and (b_{n-1}b_{n-2}\dots b_1b_0)_2, respectively}
for j:=0 to n-1

if b_j=1 then c_j:=a shifted j places else c_j:=0
{c_0,c_1,\dots,c_{n-1} are the partial products}
p:=0
for j:=0 to n-1
p:=p+c_j
return p {p is the value of ab}
```

ضرب اعداد در مبنای ۲

$$\begin{array}{r}
110 \\
\times 101 \\
\hline
110 \\
000 \\
110 \\
\hline
11110
\end{array}$$

مثال: حاصلضرب دو عدد ۲(۱۱۰) و ۱(۱۰۱) را پیدا کنید:

$$ab_0 \cdot 2^0 = (110)_2 \cdot 1 \cdot 2^0 = (110)_2,$$

 $ab_1 \cdot 2^1 = (110)_2 \cdot 0 \cdot 2^1 = (0000)_2,$

and

$$ab_2 \cdot 2^2 = (110)_2 \cdot 1 \cdot 2^2 = (11000)_2.$$

add $(110)_2$, $(0000)_2$, and $(11000)_2$.

$$ab = (1\ 1110)_2$$

محاسبه باقیمانده و تقسیم صحیح

ALGORITHM 4 Computing div and mod.

```
procedure division algorithm(a: integer, d: positive integer)
q := 0
r := |a|

while r \ge d
r := r - d
q := q + 1

if a < 0 and r > 0 then
r := d - r
q := -(q + 1)

return (q, r) {q = a div d is the quotient, r = a mod d is the remainder}
```

توان رسانی پیمانه ای modular) (exponentiation)

- فرض كنيد ميخواهيم bⁿ mod m را محاسبه كنيم.
- ابتدا عدد $n = (a_{k-1}a_{k-2}...a_1a_0)_2$. بنابراین $n = (a_{k-1}a_{k-2}...a_1a_0)_2$. بنابراین

$$b^n = b^{a_{k-1} \cdot 2^{k-1} + \dots + a_1 \cdot 2 + a_0} = b^{a_{k-1} \cdot 2^{k-1}} \cdot \dots \cdot b^{a_1 \cdot 2} \cdot b^{a_0}.$$

بنابراین فقط نیاز به محاسبه b^{2J} برای j های مختلف داریم. برای هر کدام باقیمانده را به پیمانه m حساب میکنیم.

توان رسانی پیمانه ای

• الگوريتم توان رساني پيمانه اي

ALGORITHM 5 Modular Exponentiation.

```
procedure modular exponentiation(b: integer, n = (a_{k-1}a_{k-2} \dots a_1a_0)_2, m: positive integers)

x := 1

power := b \mod m

for i := 0 to k-1

if a_i = 1 then x := (x \cdot power) \mod m

power := (power \cdot power) \mod m

return x\{x \text{ equals } b^n \mod m\}
```

توان رسانی پیمانه ای

مثال: 3⁶⁴⁴ mod 645 را با استفاده از الگوریتم پیدا کنید.

$$644 = (1010000100)_2$$

```
i=0: Because a_0=0, we have x=1 and power=3^2 \mod 645=9 \mod 645=9; i=1: Because a_1=0, we have x=1 and power=9^2 \mod 645=81 \mod 645=81; i=2: Because a_2=1, we have x=1\cdot 81 \mod 645=81 and power=81^2 \mod 645=6561 \mod 645=111; i=3: Because a_3=0, we have x=81 and power=111^2 \mod 645=12,321 \mod 645=66; i=4: Because a_4=0, we have x=81 and power=66^2 \mod 645=4356 \mod 645=486; i=5: Because a_5=0, we have x=81 and power=486^2 \mod 645=236,196 \mod 645=126; i=6: Because a_6=0, we have x=81 and power=126^2 \mod 645=15,876 \mod 645=396; i=7: Because a_7=1, we find that x=(81\cdot 396) \mod 645=471 and power=396^2 \mod 645=156,816 \mod 645=81; i=8: Because a_8=0, we have x=471 and power=81^2 \mod 645=6561 \mod 645=111; i=9: Because a_9=1, we find that x=(471\cdot 111) \mod 645=36.
```

اعداد اول (prime)

- مبحث اعداد اول در رمزنگاری کاربرد بسیاری دارد.
- عدد صحیح p که بزرگتر از ۱ است را اول گوییم اگر فقط بر ۱ و p
 بخشپذیر باشد. اعداد غیر اول را مرکب گوییم.
- قضیه اساسی حساب: هر عدد صحیح بزرگتر از ۱ میتواند بطور یکتا به صورت یک عدد اول یا حاصلضربی دو یا چند عدد اول بیان شود که در آن فاکتورهای اول به صورت غیر کاهشی نوشته شده اند.

آزمون تقسیم (trial division)

- قضیه اگر n یک عدد مرکب باشد، آنگاه یک مقسوم علیه اول کمتر یا مساوی با \sqrt{n} دارد.
- آزمون تقسیم برای مشخص کردن اول بودن یک عدد استفاده میشود. \sqrt{n} به این ترتیب که عدد n را بر همه اعداد اول کوچکتر یا مساوی با تقسیم میکنیم. اگر بر هیچکدام بخشپذیر نباشد، عدد اول است.
 - برای پیدا کردن فاکتورهای اول یک عدد هم به همین ترتیب عمل میکنیم.

اعداد اول

- قضیه: بی نهایت عدد اول وجود دارد.
- قضیه اعداد اول: اگر $\pi(x)$ تعداد اعداد اول کوچکتر از π باشد، آنگاه

$$\lim_{x \to \infty} \frac{\pi(x)}{x/\ln x} = 1$$

مثال: در میان اعداد صحیح مثبت با حداکثر ۱۰۰۰ رقم، حدود ۱ عدد از هر ۲۳۰۰ تا اول است.

بزرگترین مقسوم علیه مشترک

- فرض کنید a و b اعداد صحیح غیر صفر باشند. بزرگترین مقسوم علیه مشترک a و d|b و d|a و d و آن را بزرگترین عدد b که a و d|b و آن را برابر است با بزرگترین عدد gcd(a,b) و آن با gcd(a,b)
 - اعداد a و b را نسبت به هم اول گوییم، اگر ب.م.م آنها ۱ باشد.

بزرگترین مقسوم علیه مشترک

• برای محاسبه ب.م.م میتوان از تجزیه اعداد به عوامل اول استفاده کرد.

$$a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}, \ b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n},$$

$$gcd(a, b) = p_1^{min(a_1, b_1)} p_2^{min(a_2, b_2)} \cdots p_n^{min(a_n, b_n)},$$

کوچکترین مضرب مشترک

اگر اعداد a و b اعداد صحیح مثبت باشند، کوچکترین مضرب مشترک b و a برابر است با کوچکترین عددی که بر هر دو عدد a و b و a بخشپذیر باشد و آن را با (lcm(a,b) نشان میدهیم.

• ک.م.م را میتوان به صورت زیر مشخص کرد:

$$lcm(a, b) = p_1^{max(a_1, b_1)} p_2^{max(a_2, b_2)} \cdots p_n^{max(a_n, b_n)},$$

کوچکترین مضرب مشترک

• قضیه: فرض کنید a و b اعداد صحیح مثبت باشند، در این صورت:

 $ab = gcd(a,b) \cdot Lcm(a,b)$

الگوريتم اقليدس

- برای محاسبه ب.م.م دو عدد میتوان از الگوریتم اقلیدس استفاده کرد.
- قضیه: فرض کنید a = bq + r که q ،b ،a که a = bq + r و اعداد صحیح هستند. در این صورت gcd(a,b) = gcd(b,r)

الگوريتم اقليدس

مثال: ب.م.م ۴۱۴ و ۶۶۲ را با الگوریتم اقلیدس محاسبه کنید.

$$662 = 414 \cdot 1 + 248$$

 $414 = 248 \cdot 1 + 166$
 $248 = 166 \cdot 1 + 82$
 $166 = 82 \cdot 2 + 2$
 $82 = 2 \cdot 41$

$$gcd(414, 662) = 2$$

الگوريتم اقليدس

ALGORITHM 1 The Euclidean Algorithm.

```
procedure gcd(a, b): positive integers)
x := a
y := b
while y \neq 0
r := x \mod y
x := y
y := r
return x\{gcd(a, b) \text{ is } x\}
```

اعداد اول و ب.م.م

- اگر a و b و c اعداد صحیح مثبت باشند بطوریکه gcd(a,b)=1 و a | c و a اعداد صحیح مثبت باشند بطوریکه a | b و a | b و a
- اگر $p \mid a_1 a_2 ... a_n$ عدد صحیح است، $p \mid a_1 a_2 ... a_n$ عدد صحیح است، $i \mid i$ آنگاه $i \mid i$ وجود دارد که $p \mid a_i$
 - با استفاده از این دو قضیه میتوان یکتا بودن تجزیه به عوامل اول را ثابت کرد.

اعداد اول و ب.م.م

• قضیه: فرض کنید a یک عدد صحیح مثبت باشد و a و a اعداد $ac \equiv bc \pmod m$ آنگاه $ac \equiv bc \pmod m$ آنگاه $a \equiv b \pmod m$