Hidden Markov Models and Sequence Data

Week 18

Middlesex University Dubai; CST4050 Fall21; Instructor: Dr. Ivan Reznikov

Plan

- Sequential Data
- Sequential Labeling
- Bayesian Networks
- Mixture Models
- Markov assumption
- Hidden Markov Model

What is sequence data?

- Ordered set of elements: $x = x_1, x_2, ..., x_N$
- Order determined by time or position and could be regular or irregular
- Each element x_i could be
 - Numerical (sales, stock price, etc.)
 - Categorical (weather, part-of-speech)
 - Multiple attributes
- The length N of a sequence isn't fixed

Examples of sequence data

- Speech (sequence of phonemes)
- Language-related (sequence of words)
- Bioinformatics (genes sequence of 4 possible nucleotides and proteins – sequence of 20 possible amino-acids)
- Telecommunications (sequence of data packets)
- Time series (sequence of events per time)

•

Sequence labeling

Address:

221B Baker Street, London, UK

House number Street
City Country

Citation:

Pauling, L. (1931). The nature of the chemical bond. II. The one-electron

bond and the three-electron bond. Journal of the

American Chemical Society, 53(9), 3225-3237.

Input: a sequence $x = (x_1, ... x_n)$

Output: a sequence $y = (y_1, ..., y_n)$, where y_i is a label for x_i

Author Year
Article title Journal
Journal number
Volume Pages

Graphical model

Let's assume we have a condition Y.
There are several X, that can occur with
Y happening. We can draw represent our
graph as a probability tree:

- Edges showing dependencies
- Each node has associated conditional
- Probability distribution, conditioned on its parent nodes
- Nodes are independent

$$P(X_{1}X_{2}...X_{N}Y) = P(X_{1}|Y) \times P(X_{2}|Y) ... P(X_{N}|Y) \times P(Y)$$

Graphical model

Let's now draw a directed graph out of 5 nodes.

$$P(X_{11}X_{21}X_{31}X_{41}X_{5}) = P(X_{5} | X_{3}) \times P(X_{4} | X_{2} \times X_{3}) \times P(X_{2} | X_{1}) \times P(X_{3}) \times P(X_{3})$$

conditional distributions marginal distributions

Bayesian Networks

Learning this Bayesian network is equivalent to learning 5 small/simple independent networks from the same data:

Mixture model

whisper words of wisdom let it be

verb noun preposition pronoun

 $P(y, x) = P(verb, noun, preposition, noun, verb, pronoun, verb, whisper, words, of, wisdom, let, it, be) = <math>P(verb, whisper) \times P(noun, words) \times P(noun, words$

= P(whisper 1 verb) × P(verb) ×

× P(words I noun) × P(noun) ×

× ...

Mixture model

whisper words of wisdom let it be

	whispers	words	of	wisdom	let	it	be
verb (0.35)	<u>0.7</u>	0.2	0.1	0.05	<u>0.6</u>	0.0	<u>0.9</u>
noun (0.4)	0.3	<u>0.7</u>	0.1	<u>0.85</u>	0.3	0.15	0.0
prep (0.15)	0.0	0.0	<u>0.7</u>	0.0	0.05	0.1	0.1
pronoun (0.1)	0.0	0.1	0.1	0.1	0.05	<u>0.65</u>	0.0

 $P(y, x) = P(verb, noun, preposition, noun, verb, pronoun, verb, whisper, words, of, wisdom, let, it, be) = <math>P(verb, whisper) \times P(noun, words) \times$

= P(whisper 1 verb) × P(verb) × × P(words 1 noun) × P(noun) ×

x r (words I houn) x r (houn) x

 $= (0.7 \times 0.35) \times (0.7 \times 0.4) \times (0.7 \times 0.15) \times \dots$

Emission model

Better model

The previous probabilistic model is too simple. Context (adjacent words and labels) is essential. We'll add dependencies between labels (<u>not</u> between words)

$$P(y_{1} \times) = P(\times | y) \times P(y)$$

$$P(y) = P(y_{1}) \times P(y_{2} | y_{1}) \times P(y_{3} | y_{11} | y_{2}) \times ... \times P(y_{N} | y_{11} | y_{21} | ... | y_{N-1}) = P(y_{1}) \times P(y_{1}) \times P(y_{1}) \times P(y_{1}) \times P(y_{1} | y_{11} | ... | y_{N-1})$$

thus each y_i depends on all previous i-1 states

Markov assumption

Hard to believe the y_i element depends on all, including the first one.

Markov assumption allows us to consider y, being dependent on only the

last element (y_{i-1})

$$P(y_1 \times) = P(\times | y) \times P(y) P(y)$$

= $P(y_1) \times P(y_2 | y_1) \times$
 $\times P(y_3 | y_2) \times ... \times P(y_N | y_{N-1}) =$

Markov chain

Markov model

Hidden Markov Model

For a hidden Markov Model:

$$P(y, x) = P(x | y) \times P(y)$$

P(y) is the probability of the hidden sequence. For a Markov chain y_i depends only on previous state. $P(y) = i(y_1) \times \prod_{s \in Y_i, y_{i-1}} s(y_i, y_{i-1})$

 $P(x \mid y)$ is the emission model of the HMM => $P(y_1 \mid x)$ = Markov chain × emission model

Higher-order HMMs

1st order HMM bigram HMM

2nd order HMM trigram HMM

Inference problems for HMMs

Given an observation sequence x and an HMM model λ , how do we efficiently compute $P(x|\lambda)$, i.e., the probability of the observation sequence given the model

Given an observation sequence x and an HMM model λ , how do we choose a corresponding state sequence y which is optimal in some sense, i.e., best explains the observations

Given an observation sequence x, how do we adjust (learn) the model parameters λ , to maximise $P(x|\lambda)$

Evaluation forward algorithm Decoding (Recognition) Viterbi algorithm Training Baum-Welch algorithm