Lucas da Mata Guimarães

Titulo do Trabalho

Lucas da Mata Guimarães

Titulo do Trabalho

Monografia apresentada na disciplina Trabalho de Conclusão de Curso, como parte dos requisitos para obtenção do título de Bacharel em Ciência da Computação.

Centro Universitário Senac - Santo Amaro Bacharelado em Ciência da Computação

Orientador: Nome do Orientador

São Paulo - Brasil2025

Agradecimentos

Texto de agradecimento.

Resumo

Texto do resumo

Palavras-chaves: palavra-chave 1, palavra-chave 2, palavra-chave 3.

Abstract

Abstract text in english

 $\mathbf{Key\text{-}words}$: keyword 1, keyword 2, keyword 3

Lista de ilustrações

Lista de tabelas

Lista de abreviaturas e siglas

GAM Generalized Additive Models

GLM Generalized Linear Model

MARS Multivariate Adaptive Regression Spline

ML Maximum likelihood

Sumário

1	INTRODUÇÃO	11
1.1	Contexto	11
1.2	Justificativa	11
1.3	Objetivo	12
1.3.1	Objetivos Específicos	12
2	REVISÃO BIBLIOGRÁFICA	13
2.1	Modelos Computacionais	13
2.1.1	Modelos Lineares	13
2.1.2	Acurácia	13
2.1.3	Maximum Likelihood	13
2.1.4	Modelos de distribuição de Especies	13
2.1.4.1	GLM	
2.1.4.2	GAM	13
2.1.4.3	MARS	13
2.2	Análise de algoritmos	13
2.2.1	Análise de complexidade	13
2.2.2	Análise de espaço	
3	DESENVOLVIMENTO	14
4	RESULTADOS	15
5	CONCLUSÃO	16
5.1	Trabalhos Futuros	
	REFERÊNCIAS	17
	APÊNDICES 1	19
	APÊNDICE A – EXEMPLO DE SECÃO DE ANEXO	20

1 Introdução

1.1 Contexto

O uso de modelos computacionais, na Biologia, possibilita o avanço de diferentes estudos (COSME, 2025), uma destas aplicações são os modelos de distribuição de especies, que são capazes de fornecer uma visualização da situação da fauna e flora de determinada região, podendo mostrar como estas estão se comportando no decorrer do tempo (ELITH; LEATHWICK, 2009).

Entre esses modelos, os mais utilizados são o Generalized Additive Models (GAM) (HASTIE; TIBSHIRANI, 1986) e o Generalized Linear Model (GLM) (PAUL; SAHA, 2007). Esses dois modelos usam uma função para estabelecer uma relação entre a média da variável de resposta e uma função 'suavizada' das variáveis explanatórias, sendo o GLM uma estenção de modelos lineares que não forçam o dado a escalas não naturais, e o GAM uma extenção semi-parametrizada do GLM, tendo a capacidade de atuar com relações não lineares e não monótonas (GUISAN; EDWARDS; HASTIE, 2002).

Já o Multivariate Adaptive Regression Spline (MARS) combina partição recursiva e ajustes por splines, de modo a manter seus aspectos positivos, enquanto sendo menos vulneravel a suas propriedades não favoraveis. Gerando um conjunto de regras para prever valores futuros apartir de uma análise regressiva. (FRIEDMAN, 1991)

Porém, estes modelos podem requisitar uma alta demanda de processamento e memória do computador hospedeiro, como citado por (COSME, 2025), ponto este, que não é repassado nos trabalhos referentes a análise ou uso dos modelos citados. Logo, mesmo com a facilidade de se adquirir um computador, tais modelos requerem computadores de alto desempenho para serem treinados, tornando esse processo lento ou criando a necessidade de se alugar maquinas virtuais para está finalidade (RICHTER, 2025).

E quando se colocam a necessidade de se manter um controle das populações de espécies, dentro ou próximo a centros urbanos, a velocidade de preparo destes modelos se torna mais critica, já que é necessário ir desde a coleta dos dados, ao treino e validação do modelo, e análise dos resultados obtidos.

1.2 Justificativa

Identificar a distribuição de espécies em um dado ambiente, em um determinado intervalo de tempo, é importante para termos noção de como as espécies estão respondendo a mudanças no ambiente, no aumento ou diminuição de outra espécie.

Uma vez que essas mudanças podem ser geradas pela ação humana, na construção civil e de infraestrutura (AMETEPEY; ANSAH, 2014), conseguir estimar o impacto dessas ações é vantajoso para a preservação de espécies.

Além disso, estas abordagens aumentam as possibilidades para integrar a infraestrutura necessária, contribuindo para a sobrevivência de espécies que estão em níveis populacionais baixos. Modelos estatísticos, que tem a capacidade de demonstrar estes eventos, aplicam de maneiras diferentes algumas linhas de abordagem. O Generalized Additive Models (GAM), Generalized Linear Model (GLM), e o Multivariate Adaptive Regression Spline (MARS), ambos com uma abordagem de Maximum likelihood (ML), variando em sua capacidade de atuar com um determinado tipo de dado e o custo levado para seu treinamento e utilização (NORBERG et al., 2019).

Modelos que são utilizados na modelagem de distribuição de espécies necessitam de uma quantidade elevada de dados (WISZ et al., 2008), de ocorrência e ausência, sendo os dados de ausência não necessários em todos os tipos de modelos.

Nem todas as espécies são facilmente modeláveis devido à dificuldade de coleta de dados, seja pela sua raridade ou habitat (STOCKMAN; BEAMER; BOND, 2006). A colaboração de cidadãos na coleta de dados pode auxiliar na identificação de áreas prioritárias para pesquisa. Portanto, a identificação de bons modelos que trabalham com esses dados é vantajosa.

Dentro destes modelos, além da quantidade e tipo de dados necessários, precisamos levar em consideração, o custo necessário de processamento e o espaço de memória utilizado pelo mesmo, para este fim utilizamos a análise de complexidade e espaço (CORMEN et al., 2009), já que um modelo mais barato nesse quesito pode ser criado em computadores mais acessíveis (SEDGEWICK; FLAJOLET, 2013), e ser possível a construção de mais de um modelo de modo simultâneo.

Os pontos levantados anteriormente podem afetar a acurácia de um modelo, mesmo atendendo os requisitos, de pouco adianta se o mesmo nos entrega respostas que induzem ao erro. Identificar um modelo que tenham uma boa acurácia, quando trabalham somente com dados de ocorrência, assim como uma melhor avaliação computacional, se vê vantajoso para situações em que queremos criar uma análise inicial de um determinado senário.

1.3 Objetivo

Este trabalho tem como o bjetivo avaliar e comparar a implementação encontrada nas bibliotecas mda e mgcv da linguagem R, dos modelos de distribuição de espécies, GAM, GML e MARS, levantando o custo computacional de cada um destes apartir de uma análise de complexidade e espaço. Encontrando um modelo que melhor aprensente um equilibrio entre a acurácia e o custo computacional.

1.3.1 Objetivos Específicos

- 1. Análise de complexidade e espaço dos modelos.
 - Generalized Addtive Model;
 - Generalized Linear Model;
 - Multivariate Adaptive Regression Spline;
- 2. Avaliação da acurácia dos modelos com dados de ocorrência.
- 3. Comparação dos modelos.
- 4. Avaliação dos modelos com base na relação custo x acurácia.

2 Revisão Bibliográfica

- 2.1 Modelos Computacionais
- 2.1.1 Modelos Lineares
- 2.1.2 Acurácia
- 2.1.3 Maximum Likelihood
- 2.1.4 Modelos de distribuição de Especies
- 2.1.4.1 GLM
- 2.1.4.2 GAM
- 2.1.4.3 MARS
- 2.2 Análise de algoritmos
- 2.2.1 Análise de complexidade
- 2.2.2 Análise de espaço

3 Desenvolvimento

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed sollicitudin tempor sapien in maximus. Quisque in vulputate dui, ac vestibulum sem. Suspendisse urna velit, dapibus nec egestas a, rhoncus vitae neque. Mauris quis efficitur augue. Aliquam quis tellus eget orci aliquet aliquam. Sed luctus, quam vitae elementum malesuada, quam lacus imperdiet urna, sed ullamcorper libero magna non elit. Cras laoreet arcu a augue volutpat, suscipit pretium tellus tempus. Sed eros tortor, imperdiet eu neque id, interdum egestas tortor.

4 Resultados

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed sollicitudin tempor sapien in maximus. Quisque in vulputate dui, ac vestibulum sem. Suspendisse urna velit, dapibus nec egestas a, rhoncus vitae neque. Mauris quis efficitur augue. Aliquam quis tellus eget orci aliquet aliquam. Sed luctus, quam vitae elementum malesuada, quam lacus imperdiet urna, sed ullamcorper libero magna non elit. Cras laoreet arcu a augue volutpat, suscipit pretium tellus tempus. Sed eros tortor, imperdiet eu neque id, interdum egestas tortor.

5 Conclusão

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed sollicitudin tempor sapien in maximus. Quisque in vulputate dui, ac vestibulum sem. Suspendisse urna velit, dapibus nec egestas a, rhoncus vitae neque. Mauris quis efficitur augue. Aliquam quis tellus eget orci aliquet aliquam. Sed luctus, quam vitae elementum malesuada, quam lacus imperdiet urna, sed ullamcorper libero magna non elit. Cras laoreet arcu a augue volutpat, suscipit pretium tellus tempus. Sed eros tortor, imperdiet eu neque id, interdum egestas tortor.

5.1 Trabalhos Futuros

- Trabalho Futuro 1
- Trabalho Futuro 2
- Trabalho Futuro 3

Referências

AMETEPEY, S. O.; ANSAH, S. K. Impacts of construction activities on the environment: the case of ghana. *Journal of Construction Project Management and Innovation*, v. 4, n. sup-1, p. 934–948, 2014. Disponível em: https://journals.co.za/doi/abs/10.10520/EJC162729. Citado na página 11.

CORMEN, T. et al. *Introduction to Algorithms, third edition*. MIT Press, 2009. (Computer science). ISBN 9780262033848. Disponível em: https://books.google.com.br/books?id=i-bUBQAAQBAJ. Citado na página 12.

COSME, A. L. Modelagem computacional: o que é, qual sua aplicação. 2025. Acesso em: 17 de Abril de 2025. Disponível em: https://123ecos.com.br/docs/modelagem-computacional/. Citado na página 11.

ELITH, J.; LEATHWICK, J. R. Species distribution models: Ecological explanation and prediction across space and time. *Annual Review of Ecology, Evolution, and Systematics*, Annual Reviews, v. 40, n. Volume 40, 2009, p. 677–697, 2009. ISSN 1545-2069. Disponível em: https://www.annualreviews.org/content/journals/10.1146/annurev.ecolsys.110308.120159. Citado na página 11.

FRIEDMAN, J. H. Multivariate Adaptive Regression Splines. *The Annals of Statistics*, Institute of Mathematical Statistics, v. 19, n. 1, p. 1 – 67, 1991. Disponível em: https://doi.org/10.1214/aos/1176347963. Citado na página 11.

GUISAN, A.; EDWARDS, T. C.; HASTIE, T. Generalized linear and generalized additive models in studies of species distributions: setting the scene. *Ecological Modelling*, v. 157, n. 2, p. 89–100, 2002. ISSN 0304-3800. Disponível em: https://www.sciencedirect.com/science/article/pii/S0304380002002041. Citado na página 11.

HASTIE, T.; TIBSHIRANI, R. Generalized Additive Models. *Statistical Science*, Institute of Mathematical Statistics, v. 1, n. 3, p. 297 – 310, 1986. Disponível em: https://doi.org/10.1214/ss/1177013604. Citado na página 11.

NORBERG, A. et al. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. *Ecological Monographs*, v. 89, n. 3, p. e01370, 2019. Disponível em: https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/ecm.1370. Citado na página 12.

PAUL, S.; SAHA, K. K. The generalized linear model and extensions: a review and some biological and environmental applications. *Environmetrics*, v. 18, n. 4, p. 421–443, 2007. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1002/env.849. Citado na página 11.

RICHTER, F. Amazon and Microsoft Stay Ahead in Global Cloud Market. 2025. Acesso em: 19 de Abril de 2025. Disponível em: https://www.statista.com/chart/18819/ worldwide-market-share-of-leading-cloud-infrastructure-service-providers/>. Citado na página 11.

Referências 18

SEDGEWICK, R.; FLAJOLET, P. An Introduction to the Analysis of Algorithms. Pearson Education, 2013. ISBN 9780133373486. Disponível em: https://books.google.com.br/books?id=P3tCB8Q7mA8C. Citado na página 12.

STOCKMAN, A. K.; BEAMER, D. A.; BOND, J. E. An evaluation of a garp model as an approach to predicting the spatial distribution of non-vagile invertebrate species. *Diversity and Distributions*, v. 12, n. 1, p. 81–89, 2006. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1366-9516.2006.00225.x. Citado na página 12.

WISZ, M. S. et al. Effects of sample size on the performance of species distribution models. $Diversity\ and\ Distributions$, v. 14, n. 5, p. 763–773, 2008. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1472-4642.2008.00482.x. Citado na página 12.

APÊNDICE A – Exemplo de seção de anexo

EXEMPLO DE CODIGO A SER ADICIONADO