

CAMPUS CIUDAD DE MÉXICO FACULTAD DE INGENIERÍA ACADEMIA DE COMPUTACIÓN PROCESAMIENTO DE IMÁGENES

Profesor: M. en I. **Horario:** Lun y Vie 14:30 – 16:00

Miguel Angel Camargo Rojas

Email: macamargo@up.edu.mx Lugar: Lab COM2 / Lab COM1

Modalidad: Teórico-Práctico Asesorías: Vía Zoom (solicitar)

OBJETIVOS

- Introducir al alumno a las técnicas y algoritmos clásicos del procesamiento de imágenes.
- Motivar al alumno a que domine los algoritmos más comunes de procesamiento digital de imágenes para finalmente implementar estas técnicas en diversas aplicaciones.

METODOLOGÍA

Procesamiento de Imágenes es un curso teórico-práctico el cual se desarrollará mediante la explicación de los temas para la posterior implementación de cada solución en Python.

PONDERACIÓN

Parcial #1	25%
Parcial #2	25%
Parcial #3	20%
Proyecto Final	30%

FECHAS IMPORTANTES

Días de Asueto	Sep 16, Nov 18
Último día de clases	Noviembre 27
Entrega Reporte Parcial #1	Septiembre 9
Examen Parcial #1	Septiembre 13
Entrega Reporte Parcial #2	Octubre 21
Examen Parcial #2	Octubre 25
Examen Parcial #3	Noviembre 18
Entrega Reporte Final	Noviembre 22
Proyecto Final	Noviembre 29 - Tentativo

POLÍTICAS DEL CURSO

- Mínimo aprobatorio: 6/10
- Tolerancia: 5 min*
- No se permite el acceso a estudiantes no inscritos en la materia
- No desayunar mientras se toma la clase
- · Mantener un ambiente cordial
- · No se aceptan entregas extemporáneas
- Los exámenes se realizarán en la fecha y hora indicada.
- Las inasistencias no afectan la calificación. Sin embargo, no se aceptan trabajos extemporáneos.

CÓDIGO DE ÉTICA

- Cero tolerancia ante el plagio
- Cero tolerancia a la copia académica. Los exámenes contaran con la siguiente leyenda. "Certifico que el trabajo realizado en este examen es estrictamente personal y reconozco que no cumplir las reglas o COMETER ACTOS DESHONESTOS en los exámenes puede resultar en la baja definitiva de la Universidad"

SOFTWARE

• Python 3.x, Anaconda (Jupyter y Spyder) y/o VS Code, OpenCV (latest)

TEMARIO

1. Introducción

- 1.1. Definición de visión humana
 - 1.1.1. Estructura del ojo humano
 - 1.1.2. Sistema de visión humana
- 1.2. Definición de visión computacional
- 1.3. Definición de visión y percepción
- 1.4. Historia de la percepción
- 1.5. ¿Qué es el Procesamiento Digital de Imágenes (DIP)?
- 1.6. Ejemplos y Aplicaciones del DIP
- 1.7. Etapas fundamentales del DIP
 - 1.7.1. Visión de bajo nivel
 - 1.7.2. Visión de alto nivel

2. Fundamentos de la información visual

- 2.1. Adquisición de imágenes
- 2.2. Digitalización de imágenes
 - 2.2.1. Tipos y formatos de archivos de imágenes digitales

3. Procesamiento de imágenes

- 3.1. Operaciones entre píxeles
 - 3.1.1. Vecinos de un pixel
 - 3.1.2. Adyacencia y conectividad
- 3.2. Transformaciones de Intensidad y Filtrado Espacial
 - 3.2.1. Funciones Básicas
 - 3.2.1.1. Negativos
 - 3.2.1.2. Transformaciones logarítmicas
 - 3.2.1.3. Transformaciones Gamma
 - 3.2.2. Procesamiento de Histogramas
 - 3.2.2.1. Ecualización
 - 3.2.2.2. Ecualización local
 - 3.2.3. Filtrado
 - 3.2.3.1. Máscaras
 - 3.2.3.2. Convolución y correlación
 - 3.2.3.3. Filtro promedio
 - 3.2.3.4. Filtro mediano
 - 3.2.3.5. Filtro laplaciano
 - 3.2.3.6. Gradiente
 - 3.2.4. Filtrado en Dominio Frecuencial
 - 3.2.4.1. Conceptos preliminares
 - 3.2.4.2. Series de Fourier
 - 3.2.4.3. Transformada de Fourier
 - 3.2.4.4. Espectro
 - 3.2.5. Proceso de adquisición de espectro
 - 3.2.6. Interpretación de espectro
 - 3.2.7. Aplicaciones de espectro de imágenes
 - 3.2.8. Filtros
 - 3.2.8.1. Filtro pasa-altas
 - 3.2.8.2. Filtro pasa-bajas
- 3.3. Procesamiento en color
 - 3.3.1. Fundamentos de color
 - 3.3.2. Modelos de color
 - 3.3.2.1. Modelo RGB
 - 3.3.2.2. Modelo CMY
 - 3.3.2.3. Modelo HSI
 - 3.3.2.4. YCbCr/YUV
 - 3.3.3. Procesamiento en pseudocolor
 - 3.3.4. Procesamiento en full-color
 - 3.3.5. Filtrado en color
 - 3.3.6. Segmentación de color

4. Transformaciones geométricas

- 4.1. Rotación
- 4.2. Zoom
- 4.3. Escalamiento
 - 4.3.1. Interpolación

5. Transformaciones morfológicas

- 5.1. Conceptos básicos
- 5.2. Erosión y dilatación
- 5.3. Apertura y cierre
- 5.4. Transformaciones
- 5.5. Algoritmos morfológicos
 - 5.5.1. Extracción de bordes
 - 5.5.2. Extracción de esqueletos
 - 5.5.3. Componentes conectados
 - 5.5.4. Reconstrucción morfológica
 - 5.5.5. Morfología en niveles de gris

6. Restauración y Reconstrucción de Imágenes

- 6.1. Modelo de degradación y restauración de imágenes
- 6.2. Modelos de ruido
 - 6.2.1. Ruido espacial
 - 6.2.2. Ruido frecuencial
- 6.3. Restauración en presencia de ruido
- 6.4. Estimación de la función de degradación

BIBLIOGRAFÍA

- Gonzalez (Rafael) & Woods (Richard), Digital Image Processing, Prentice Hall, 3° edición, 2008.
- Petrou, Maria, and Costas Petrou. Image processing: the fundamentals. John Wiley & Sons, 2010.
- Sonka, Milan, Vaclav Hlavac, and Roger Boyle. Image processing, analysis, and machine vision. Cengage Learning, 2014.