Supplementary Note 1 Building training samples for a short video

October 30, 2017

For a short video where the length is less than the training sample required, duplicate video frames are added to the beginning of the video sequence to estimate background model. Fig. 1 illustrates the process of constructing the training samples from a short video.

Figure 1: Building training samples for a short video.

The green frame series in Fig. 1 indicates the original time-lapse zebrafish larvae microscopic short video $\mathbb V$. The frames in front of this video are its training sample $\mathbb S$, used to estimate the background model parameters of $\mathbb V$. The set of training samples $\mathbb S$ consists of: S_{obv} , frames from the original short video $\mathbb V$ in obverse order from [start, end-1] frames, shown by the pink frame series; S_{rev} , frames from the original video short video $\mathbb V$ in reverse order from [end, 2nd] frames, shown as the light blue; and, S_{frg} , the video fragment shown in orange. The obverse order frame series S_{obv} and reverse order frame series S_{rev} are alternately linked to each other to construct the training sample, and the last frame to connect to the original video is the reverse order frame to ensure a smooth background transition between the last frame in the reverse order frame series to the first frame of the original microscopic short video.

To construct a training set with length of L_{sample} images, a video fragment, S_{frg} , taken from the short video studied will be added to the training set for the set length requirement when the S_{obv} and S_{rev} series do not have exact L_{sample} images.

The required number of videos, N and number of frames, M, are calculated using Eq. (1) and Eq. (2).

$$N = L_{sample} \backslash N_{frames} \tag{1}$$

where the MATLAB built-in function idivide is applied for the integer division with fractional quotients being rounded toward negative infinity to the nearest integer for implementation.

$$M = L_{sample} - L_{sample} \backslash N_{frames}$$
 (2)

Based on the required number of videos N (in obverse order and reverse order), the video fragment S_{frg} is constructed according to Eq. (3).

$$S_{frg} = \begin{cases} \{S_{rev}(i) \mid i = M+1, \dots, 3, 2\}, & \frac{N}{2} \text{ is even} \\ \{S_{obv}(i) \mid i = 2, \dots, 3, M+1\}, & \frac{N}{2} \text{ is odd} \end{cases}$$
(3)