EE787 Autumn 2019 Jong-Han Kim

Features

Jong-Han Kim

EE787 Machine learning Kyung Hee University

Records and embedding

Raw data

- ightharpoonup raw data pairs are (u,v), with $u\in \mathcal{U},\,v\in \mathcal{V}$
- U is set of all possible input values
- $ightharpoonup \mathcal{V}$ is set of all possible output values
- each u is called a record
- lacktriangle typically a record is a tuple, or list, $u=(u_1,u_2,\ldots,u_r)$
- each u_i is a *field* or *component*, which has a *type*, *e.g.*, real number, Boolean, categorical, ordinal, word, text, audio, image, parse tree (more on this later)
- ▶ e.g., a record for a house for sale might consist of (address, photo, description, house/apartment?, lot size, . . . , # bedrooms)

Feature map

lacktriangleright learning algorithms are applied to (x,y) pairs,

$$x = \phi(u), \qquad y = \psi(v)$$

- $lackbox{} \phi: \mathcal{U}
 ightarrow \mathbf{R}^d$ is the *feature map* for u
- ullet $\psi: \mathcal{V}
 ightarrow \mathbf{R}$ is the *feature map* for v
- ▶ feature maps transform *records* into *vectors*
- feature maps usually work on each field separately,

$$\phi(u_1,\ldots,u_r)=(\phi_1(u_1),\ldots,\phi_r(u_r))$$

 $ightharpoonup \phi_i$ is an *embedding* of the type of field i into a vector

4

Embeddings

- embedding puts the different field types on an equal footing, i.e., vectors
- some embeddings are simple, e.g.,
 - lacksquare for a number field ($\mathcal{U}=\mathsf{R}$), $\phi_i(u_i)=u_i$
 - lacksquare for a Boolean field, $\phi_i(u_i) = \left\{egin{array}{ll} 1 & u_i = ext{true} \ -1 & u_i = ext{false} \end{array}
 ight.$
- others are more sophisticated
 - text to TFID histogram
 - word2vec (maps words into vectors)
 - pre-trained ImageNet NN (maps images into vectors)

(more on these later)

More embeddings

- ightharpoonup color to (R, G, B)
- ightharpoonup geolocation data: $\phi(u)=$ (Lat,Long) in $m R^2$ or embed in $m R^3$
- ▶ day of week:

Faithful embeddings

- a *faithful* embedding satisfies
 - $lackbox{}\phi(u)$ is near $\phi(\tilde{u})$ when u and \tilde{u} are 'similar'
 - $lackbox{}\phi(u)$ is not near $\phi(\tilde{u})$ when u and \tilde{u} are 'dissimilar'

- ▶ lefthand concept is *vector distance*
- righthand concept depends on field type, application

- interesting examples: names, professions, companies, countries, languages,
 ZIP codes, cities, songs, movies
- we will see later how such embeddings can be constructed

Standardized embeddings

usually assume that an embedding is standardized

- entries of $\phi(u)$ are centered around 0
- lacktriangle entries of $\phi(u)$ have RMS value around 1
- lacktriangleright roughly speaking, entries of $\phi(u)$ ranges over ± 1

with standarized embeddings, entries of feature map

$$\phi(u_1,\ldots,u_r)=(\phi_1(u_1),\ldots,\phi_r(u_r))$$

are all comparable, i.e., centered around zero, standard deviation around one

lacktriangledown rms $(\phi(u)-\phi(ilde{u}))$ is reasonable measure of how close records u and $ilde{u}$ are

Standardization or z-scoring

- suppose U = R (field type is real numbers)
- ightharpoonup for data set $u^1, \ldots, u^n \in \mathbf{R}$

$$ar{u}=rac{1}{n}\sum_{i=1}^n u^i \qquad \mathsf{std}(u)=\left(rac{1}{n}\sum_{i=1}^n (u^i-ar{u})^2
ight)^{rac{1}{2}}$$

 \blacktriangleright the *z-score* or *standardization* of u is the embedding

$$x = \mathsf{zscore}(u) = \frac{1}{\mathsf{std}(u)}(u - \bar{u})$$

- ensures that embedding values are centered at zero, with standard deviation one
- ightharpoonup z-scored features are very easy to interpret: $x=\phi(u)=+1.3$ means that u is 1.3 standard deviations above the mean value

Standardized data matrix

- suppose all d (real) features have been standardized
- ightharpoonup columns of $n \times d$ feature matrix X have zero mean, RMS value one
- ▶ $(1/n)X^TX = \Sigma$ is the feature correlation matrix
- $ightharpoonup \Sigma_{ii} = 1$ (since each column of X has RMS value 1, and so norm \sqrt{n})
- $ightharpoonup \Sigma_{ij}$ is correlation coefficient of ith and jth raw features

Log transform

- ▶ old school rule-of-thumb: if field u is positive and ranges over wide scale, embed as $\phi(u) = \log u$ (or $\log(1+u)$) (and then standarize)
- examples: web site visits, ad views, company capitalization
- interpretation as faithful embedding:
 - ▶ 20 and 22 are similar, as are 1000 and 1100
 - but 20 and 120 are not similar
 - ▶ i.e., you care about fractional or relative differences between raw values

(here, log embedding is faithful, affine embedding is not)

▶ can also apply to output or label field, i.e., $y = \psi(v) = \log v$ if you care about percentage or fractional errors; recover $\hat{v} = \exp(\hat{y})$

Example: House price prediction

- lacktriangle we want to predict house selling price v from record $u=(u_1,u_2)$
 - $\triangleright u_1 = area (sq. ft.)$
 - $u_2 = \# \text{ bedrooms}$
- we care about relative error in price, so we embed v as $\psi(v) = \log v$ (and then standardize)
- \blacktriangleright we standardize fields u_1 and u_2

$$x_1=rac{u_1-\mu_1}{\sigma_1}, \qquad x_2=rac{u_2-\mu_2}{\sigma_2}$$

- ho $\mu_1 = \bar{u}_1$ is mean area
- $\mu_2 = \bar{u}_2$ is mean number of bedrooms
- $ightharpoonup \sigma_1 = \operatorname{std}(u_1)$ is std. dev. of area
- $ightharpoonup \sigma_2 = \operatorname{std}(u_2)$ is std. dec. of # bedrooms

(means and std. dev. are over our data set)

Example: House price regression model

- ightharpoonup regression model: $\hat{y} = \theta_1 + \theta_2 x_1 + \theta_3 x_2$
- ▶ in terms of original raw data:

$$\hat{v} = \exp\left(heta_1 + heta_2 rac{u_1 - \mu_1}{\sigma_1} + heta_3 rac{u_2 - \mu_2}{\sigma_2}
ight)$$

exp undoes log embedding of house price

Vector embeddings

Vector embeddings for real field

- lacktriangle we can embed a field u into a vector $x=\phi(u)\in \mathsf{R}^k$
- ▶ useful even when U = R (real field)
- polynomial embedding:

$$\phi(u)=(1,u,u^2,\ldots,u^d)$$

piecewise linear embedding:

$$\phi(u) = (1,(u)_-,(u)_+)$$

where
$$(u)_{-} = \min(u, 0), (u)_{+} = \max(u, 0)$$

regression with these features yield polynomial and piecewise linear predictors

Whitening

- lacksquare analog of standardization for raw data $\mathcal{U}=\mathsf{R}^d$
- ightharpoonup start with raw data, n imes d matrix U
- $ar{u} = U^T \mathbf{1}/n$ is vector of column means
- $oldsymbol{ ilde{U}} = U \mathbf{1}ar{u}^T$ is de-meaned data matrix
- $ightharpoonup ilde{U} = QR$ is its QR factorization
- $igwedge X = \sqrt{n}Q = \sqrt{n} ilde{U}R^{-1}$ defines embedding $x^i = \phi(u^i)$
 - columns of X have zero mean and RMS value one
 - ightharpoonup columns of X are orthogonal
 - ▶ features are uncorrelated
 - feature correlation matrix is $\Sigma = I$

Whitening example

Categorical data

- data field is categorical if it only takes a finite number of values
- \blacktriangleright *i.e.*, \mathcal{U} is a finite set $\{\alpha_1, \ldots, \alpha_k\}$
- examples:
 - ▶ TRUE/FALSE (two values, also called Boolean)
 - ► APPLE, ORANGE, BANANA (three values)
 - ▶ MONDAY, ..., SUNDAY (seven values)
 - ➤ ZIP code (40000 values)
- lacktriangle one-hot embedding for categoricals: $\phi(\alpha_i) = e_i \in \mathsf{R}^k$

$$\phi(\text{APPLE}) = (1,0,0), \quad \phi(\text{ORANGE}) = (0,1,0), \quad \phi(\text{BANANA}) = (0,0,1)$$

standardizing these features handles unbalanced data

Ordinal data

- ordinal data is categorical, with an order
- ▶ example: *Likert scale*, with values

STRONGLY DISAGREE, DISAGREE, NEUTRAL, AGREE, STRONGLY AGREE

- ightharpoonup can embed into **R** with values -2, -1, 0, 1, 2
- ▶ or treat as categorical, with one-hot embedding into R⁵
- example: number of bedrooms in house
 - can be treated as a real number
 - or as an ordinal with (say) values 1,...,6

Feature engineering

How feature maps are constructed

start by embedding each field

$$\phi(u_1,\ldots,u_r)=(\phi_1(u_1),\ldots,\phi_r(u_r))$$

- > can then standardize, if needed
- ▶ use *feature engineering* to create new features from existing ones

Creating new features

- ightharpoonup product features: $x_{\text{new}} = x_i x_j$ (models *interactions* between features)
- ightharpoonup max features: $x_{\text{new}} = \max(x_i, x_j)$ (can also use min)
- positive/negative parts:

$$x_{\text{new}+} = (x_i)_+ = \max(x_i, 0), \qquad x_{\text{new}-} = (x_i)_- = \min(x_i, 0)$$

- random features:
 - choose random matrix R
 - ightharpoonup new features are $(Rx)_+$ or $(Rx)_-$

Un-embedding

Un-embedding

- $lackbox{}$ we embed v as $y=\psi(v),\ \psi:\mathcal{V}
 ightarrow\mathsf{R}$
- lacktriangle we need to 'invert' this operation, and go from \hat{y} to \hat{v}
- lacktriangle when the inverse function exists, we use $\psi^{-1}: \mathbf{R}
 ightarrow \mathcal{V}$
- lacktriangle example: log embedding $y = \log v$ has inverse $v = \exp y$
- prediction stack:
 - 1. *embed*: given record u, feature vector is $x = \phi(u)$
 - 2. predict: $\hat{y} = g(x)$
 - 3. *un-embed*: $\hat{v} = \psi^{-1}(\hat{y})$
- lacksquare final predictor is $\hat{v}=\psi^{-1}(g(\phi(u)))$

Un-embedding

- lacktriangleright in many cases, the inverse of ψ function doesn't exist
- ▶ for example, embedding a Boolean or ordinal into R
- ▶ for the purposes of un-embedding, we define

$$\psi^{-1}(y) = \operatorname*{argmin}_{v \in \mathcal{V}} \lVert y - \psi(v) \rVert$$

i.e., we choose the value of v for which $\psi(v)$ is closest to y

- ▶ example: embed TRUE \mapsto 1 and FALSE \mapsto -1
- un-embed via

$$\psi^{-1}(y) = egin{cases} ext{TRUE} & ext{if } y > 0 \ ext{FALSE} & ext{otherwise} \end{cases}$$

Example: Un-embedding one-hot

$$lacktriangledown$$
 one-hot embedding: $\phi(u)=e_u$ for $\mathcal{U}=\{1,\ldots,d\}$

un-embed

$$\phi^{-1}(x) = \operatorname*{argmin}_{u} \mid \mid x - e_u \mid \mid_2 = \operatorname*{argmax}_{u} x_u$$