

### **CMPT 101**

#### 1. Introduction to Computing I

At the source of every error that is blamed on the computer, you will find at least two human errors, including the error of blaming it on the computer.

Anonymous

Cmpt101-01-Intro & Lab Sched 15F.pptx

www.macewan.ca/ComputerScience



### In these slides...

- Who am I?
- Course introduction
- Course mechanics
- Academic integrity
- Etiquette
- Reference material
- Why study computer science?
- · What is computer science?
- Proposed schedule

1. Intro to Computing I 1.02
© 2013 Meleshko & Boers

www.macewan.ca/ComputerScience



#### Who am I?

- Dr. / Mr. Krieger
  - kriegera3@macewan.ca
    - please use your mymacewan.ca account
  - -780-497-4751
  - -5-173C

1. Intro to Computing I 1.02 © 2013 Meleshko & Boers

www.macewan.ca/ComputerScience

Ε



# Course introduction (1/4)

- a computing science course (<u>not</u> a computer <u>literacy</u> course)
- literacy alternatives @ MacEwan:
  - -EDIT 202
  - Business → Continuing Education
- literacy alternatives @ NAIT, Norquest:
  - various computer technology streams

1. Intro to Computing I 1.02
© 2013 Meleshko & Boers

www.macewan.ca/ComputerScience



### Course introduction (2/4)

- overview of computer science
  - breadth-first approach, i.e. big picture, that introduces various aspects of CS:
    - · algorithms
    - · programming in Python
    - · Boolean logic, truth tables, circuit design
    - encoding data
    - computer architecture

1. Intro to Computing I 1.02 © 2013 Meleshko & Boers

www.macewan.ca/ComputerScience

5



## Course introduction (3/4)

- · later courses:
  - CMPT 103:
    - · continues the overview and Python programming
    - CMPT 101 and 103 fulfill requirements in both the Arts and Science degrees
  - CMPT 200:
    - completes introductory programming through further study of algorithms and data structures
    - · basis for most advanced courses

1. Intro to Computing I 1.02
© 2013 Meleshko & Boers

www.macewan.ca/ComputerScience



#### **CMPT 103**

- Continues Python programming and includes a look at how networks operate
- · Lab exercises are about programming
  - less prescriptive, but still fairly detailed
  - a bit more independent work required than in CMPT 101
- Able to use most (common) programming language features by end of course

1. Intro to Computing I 1.02 © 2013 Meleshko & Boers

www.macewan.ca/ComputerScience

7



#### **CMPT 200**

- Finishes Python and examines standard data structures and algorithms
- Forms the basis for most other CS courses
- Includes an introduction to C
- Labs require more and more independent work (problem solving) as the term progresses

1. Intro to Computing I 1.02
© 2013 Meleshko & Boers

www.macewan.ca/ComputerScience



### Course introduction (4/4)

- Labs (CMPT 101) expand on lecture material
  - do not cover every lecture topic
- notes
  - take notes in class
  - slides are only an outline
- attend class
- ask questions

1. Intro to Computing I 1.02 © 2013 Meleshko & Boers

www.macewan.ca/ComputerScience

q



## Course mechanics (1/3)

- · Deadlines:
  - lab exercises due next lab or week after scheduled period, as specified by instructor
- 0's exist
- do <u>your own</u> work
  - helps with understanding
  - help is OK, BUT ensure that <u>YOU</u> understand <u>every bit</u>
  - prepares you for the exams
- be aware of the rules, e.g., illness and excuses

1. Intro to Computing I 1.02
© 2013 Meleshko & Boers

www.macewan.ca/ComputerScience



### Course mechanics (2/3)

- stay current
  - material **builds on preceding** material
    - difficult to catch up if you fall behind especially the programming
- refer to the textbook and/or references
  - different examples
  - more details about the code

1. Intro to Computing I 1.02 © 2013 Meleshko & Boers

www.macewan.ca/ComputerScience

11



# Course mechanics (3/3)

· Blackboard:

http://learn.macewan.ca/

- lecture notes, course syllabus, links
- · website:

http://academic.macewan.ca/meleshkor/cmpt101

course outline, schedule, student responsibilities

1. Intro to Computing I 1.02
© 2013 Meleshko & Boers

www.macewan.ca/ComputerScience



### Academic integrity (1/3)

- Academic Integrity Policy (C1000): <a href="http://www.macewan.ca/PolicyManual/">http://www.macewan.ca/PolicyManual/</a>
  - parts within the calendar
- rule of thumb:
  - do <u>your own</u> work

1. Intro to Computing I 1.02 © 2013 Meleshko & Boers

www.macewan.ca/ComputerScience

13



# Academic integrity (2/3)

 submitting someone else's work or part of your work:

#### **NOT ACCEPTABLE**

 sharing your work, or even part of your work, with someone else:

**NOT ACCEPTABLE** 

1. Intro to Computing I 1.02
© 2013 Meleshko & Boers

www.macewan.ca/ComputerScience



### Academic integrity (3/3)

- properly <u>acknowledge</u> any help or resources
  - includes anything found on the Internet
- suspicious work
  - 1. discussed with student
  - 2. assigned a mark of 0
  - 3. subject to additional penalties by a Faculty Adjudicator

1. Intro to Computing I 1.02 © 2013 Meleshko & Boers

www.macewan.ca/ComputerScience

15



### Etiquette

- · cell phones and other ringing devices
  - off or muted; PLEASE
  - no talking on cell phones in class; PLEASE
- laptops, PDAs, smart phones
  - you may use them, but do not distract others

1. Intro to Computing I 1.02
© 2013 Meleshko & Boers

www.macewan.ca/ComputerScience



# Primary Reference - Optional

Toby Donaldson, Visual Quickstart Guide Python (3rd ed.), Peachpit Press, 2013.



1. Intro to Computing I 1.02 © 2013 Meleshko & Boers

www.macewan.ca/ComputerScience

17



#### OTHER USEFUL REFERENCES

- Allen Downey. Think Python, How to Think Like a Computer Scientist, Green Tea Press – VERY good, FREE: www.greenteapress.com/thinkpython/thinkpython.pdf
- Quick reference and study guide, on Blackboard:
   File: Cmpt101 Quick Ref & Study Guide 106.pdf
- Interactive Python
   http://interactivepython.org/runestone/static/pythonds/index.html
- TutorialPoints Python <u>www.tutorialspoint.com/python/</u> <u>www.tutorialspoint.com/python/python\_tutorial.pdf</u>
- · Many others, easy to find with Google

1. Intro to Computing I 1.02
© 2013 Meleshko & Boers

www.macewan.ca/ComputerScience



# Why study comp. science? (1/2)

- you might study CS because you...
  - want to better understand computers?
  - want to learn problem solving/thinking skills?
  - want a well-rounded education?
  - want to avoid math classes?
  - need it for your program?

1. Intro to Computing I 1.02 © 2013 Meleshko & Boers

www.macewan.ca/ComputerScience

19



# Why study comp. science? (2/2)

- computer science has become an enabler (indeed a tool) in most (all) disciplines
  - in the last decade, most major breakthroughs in almost all fields have involved computers
- you can study to become a computer scientist, or you can study computer science to use in your area of interest

1. Intro to Computing I 1.02
© 2013 Meleshko & Boers

www.macewan.ca/ComputerScience



### What is computer science?

- there are various definitions, but...
- computer science is the study of algorithms
  - an algorithm expresses <u>how</u> to <u>do</u> something
  - we can also say that computer science is the study of process, specifically processing information

1. Intro to Computing I 1.02 © 2013 Meleshko & Boers

www.macewan.ca/ComputerScience

21



## What is computer science?

- why do we care about algorithms?
  - computers can automate tasks
  - so if we can <u>describe how to do</u> something, then we can use a computing agent to do the work for us
- the computing agent need not be a computer as most people think of them
  - embedded processors under the hood of an auto control many functions in a car

1. Intro to Computing I 1.02 © 2013 Meleshko & Boers

www.macewan.ca/ComputerScience



#### **Process**

- how do we or computers do things?
- how do we specify what we do?
- how do we specify the stuff that we're processing?
- are there limits to what we can do?

1. Intro to Computing I 1.02 © 2013 Meleshko & Boers

www.macewan.ca/ComputerScience

23



#### **Process**

- in some areas (business and system design), we can talk about <u>use</u> cases
  - they describe a specific interaction with a system (such as adding a course to your timetable or generating a tuition invoice)



#### **Process**

- · and there are limits
  - some are practical
    - a process to solve the problem can be given, but the time/resources required makes it impractical
  - some are fundamental
    - there are some problems for which no solution exists

1. Intro to Computing I 1.02 © 2013 Meleshko & Boers

www.macewan.ca/ComputerScience

25



## Algorithms (1/3)

- an algorithm is a precise description of how to achieve some end result
  - you can think of an algorithm as a recipe
- a program is a <u>representation of</u> an algorithm
  - a cookbook recipe is an algorithm in the field of culinary science

1. Intro to Computing I 1.02
© 2013 Meleshko & Boers

www.macewan.ca/ComputerScience



## Algorithms (2/3)

- · examples:
  - instructions for opening a combination lock
  - instructions for converting an audio CD to a folder of MP3s
  - quadratic formula for roots of a 2nd degree polynomial

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

1. Intro to Computing I 1.02 © 2013 Meleshko & Boers

www.macewan.ca/ComputerScience

27



# Algorithms (3/3)

- given a good algorithm (or recipe), we don't need to understand the problem being solved; just follow the instructions
- an algorithm allows us to automate a task
  - programs, hardware implementations, people
  - specific kind of recipes: graphics, computer music, games, e-commerce and web sites, numerical software

1. Intro to Computing I 1.02
© 2013 Meleshko & Boers

www.macewan.ca/ComputerScience



### Overview of course (1/2)

- introduction to CS and algorithms
- algorithms with pseudocode (and Python)
  - input, output, assignment, selection, repetition, functions, ...
    - at the start, develop skills; later, program in the context of media
- Boolean logic, gates, truth tables, and circuits (not in text)
  - basics of data encoding and manipulation

1. Intro to Computing I 1.02 © 2013 Meleshko & Boers

www.macewan.ca/ComputerScience

29



### Overview of course (2/2)

- encoding data: how to physically represent information of interest to us
- working with encodings of complex data (not in text)
  - images
  - audio
- machine architecture (not in text)
  - what's under the hood
- machine code and assembly (not in text)

1. Intro to Computing I 1.02
© 2013 Meleshko & Boers

www.macewan.ca/ComputerScience



### Programming languages

- computer science is not programming
  - programming: a skill that enables you to implement algorithms using a computer
- many programming languages exist
  - each with their own strengths/weaknesses
- choice of a first language is contentious
  - Python is becoming more popular

1. Intro to Computing I 1.02 © 2013 Meleshko & Boers

www.macewan.ca/ComputerScience

31



Introduction to Computing I © 2013
 Meleshko & Boers



# Overall Popularity (July 1, 2013)

- C 17.7%
- Java 14.7%
- Objective-C 8.2%
- C++ 6.8%
- Basic 5.5%
- PHP 4.4%
- Python 3.7%
- C# 3.3%

1. Intro to Computing I 1.02 © 2013 Meleshko & Boers

www.macewan.ca/ComputerScience

33



# Python (1/2)

- designed to be simple and easy to understand
- extensible
- · named after Monty Python, not the snake



1. Intro to Computing I 1.02
© 2013 Meleshko & Boers

www.macewan.ca/ComputerScience



## Python (2/2)

- Python is an <u>interpreted</u> language
  - lines are executed as they are entered
  - you can load prepared lines from a file
- interpretation means that the code will run slower than a compiled language
  - a compiled language is translated into the hardware language of the computer's processor
- Note: Python code can also be compiled for faster execution

1. Intro to Computing I 1.02 © 2013 Meleshko & Boers

www.macewan.ca/ComputerScience

35



### Areas of study (1/4)

- Theory
  - evaluating and comparing algorithms
  - finding better ways of doing things
    - CMPT 204 (Algorithms I)
- Software Engineering
  - collaborating effectively within large groups
    - CMPT 395 (Introduction to Software Engineering)

1. Intro to Computing I 1.02
© 2013 Meleshko & Boers

www.macewan.ca/ComputerScience



### Areas of study (2/4)

- Data Structures and Databases
  - organizing data effectively
    - CMPT 200 (Data Structures and Their Algorithms)
    - CMPT 291 (File and Database Management)
    - CMPT 391(Database Management Systems)
    - CMPT 491 (Datamining and Advanced Databases)
- Intelligent Systems/Artificial Intelligence
  - writing programs that are "intelligent"
    - CMPT 355 (Introduction to Artificial Intelligence)

1. Intro to Computing I 1.02 © 2013 Meleshko & Boers

www.macewan.ca/ComputerScience

37



### Areas of study (3/4)

- Human-Computer Interaction
  - finding the best way for interaction
    - CMPT 250 (Human-Computer Interaction I)
    - CMPT 350 (HCI Interactive Systems)
    - CMPT 351 (HCI Usability)
- Systems
  - CMPT 220 (UNIX, Scripting, and Other Tools)
  - CMPT 229 (Computer Organization and Structure)
  - CMPT 360 (Introduction to Operating Systems)
  - CMPT 361 (Introduction to Networks)

1. Intro to Computing I 1.02
© 2013 Meleshko & Boers

www.macewan.ca/ComputerScience



### Areas of study (4/4)

- · Graphics and Gaming
  - designing games
    - CMPT 230 (Introduction to Computer Games)
    - CMPT 330 (Introduction to Real Time Gaming)
    - CMPT 370 (Introduction to Computer Graphics)
    - CMPT 430 (3D Game Development and Al)
- There are other areas, too...
  - numerical methods, web-centric computing, ethics/law, non-procedural languages, ....

1. Intro to Computing I 1.02 © 2013 Meleshko & Boers

www.macewan.ca/ComputerScience

39



### September



| Lab   | Details                                                     | Weight |
|-------|-------------------------------------------------------------|--------|
| Note  | 9 <sup>th</sup> or 10 <sup>th</sup> : First day of lectures |        |
| Note  | 14th – First day of labs                                    |        |
| Lab 1 | 14 <sup>th</sup> – 18 <sup>th</sup> : Introduction          | 1%     |
| Lab 2 | 21st - 25th: Sequential programming                         | 3%     |
| Lab 3 | 28th - 2nd: Decisions: IF                                   | 3%     |

• September 14<sup>th</sup> is the first week of labs

www.macewan.ca/ComputerScience



#### October



| Lab   |                                       | Details                                      | Weight |  |  |
|-------|---------------------------------------|----------------------------------------------|--------|--|--|
| Lab 4 | 5th - 9th:                            | Repetition: Loops                            | 3%     |  |  |
|       | Oct 12th:                             | Oct 12 <sup>th</sup> : Thanksgiving (No lab) |        |  |  |
| Lab 5 | 12 <sup>th</sup> – 16 <sup>th</sup> : | Functions                                    | 3%     |  |  |
| Lab 6 | 19 <sup>th</sup> – 23 <sup>rd</sup> : | Lists                                        | 3%     |  |  |
| Lab 7 | 26th - 30th:                          | Sorting                                      | 3%     |  |  |

- No labs on Thanksgiving (Monday, October 12<sup>th</sup>).
- Monday labs will have to make up the missed lab work.
   Details will be provided later on in the semester.

www.macewan.ca/ComputerScience



#### November



|        | Nov 11th:                             | h: Remembrance day (No lab) |        |  |
|--------|---------------------------------------|-----------------------------|--------|--|
| Lab    |                                       | Details                     | Weight |  |
| Lab 8  | 2 <sup>nd</sup> - 6 <sup>th</sup> :   | Circuit design              | 3%     |  |
| Lab 9  | 9 <sup>th</sup> - 13 <sup>th</sup> :  | Binary Numbers              | 3%     |  |
| Lab 10 | 16 <sup>th</sup> – 20 <sup>th</sup> : | Image modification I        | 3%     |  |
| Lab 11 | 23 <sup>rd</sup> - 27 <sup>th</sup> : | Image modification II       | 3%     |  |

- No labs on Remembrance Day (Wednesday, November 11<sup>th</sup>).
- Wednesday labs will have to make up the missed lab work.
   Details will be provided later on in the semester.

www.macewan.ca/ComputerScience



## December

| December 2015 |    |    |    |    |    |    |
|---------------|----|----|----|----|----|----|
| S             | M  | Т  | W  | Th | F  | S  |
| 29            | 30 | 1  | 2  | 3  | 4  | 5  |
| 6             | 7  | 8  | 9  | 10 | 11 | 12 |
| 13            | 14 | 15 | 16 | 17 | 18 | 19 |
| 20            | 21 | 22 | 23 | 24 | 25 | 26 |

| December 4 <sup>th</sup> - Last day of labs |                                                        |        |  |
|---------------------------------------------|--------------------------------------------------------|--------|--|
| Lab                                         | Details                                                | Weight |  |
| Lab 12                                      | 30 <sup>th</sup> – 4 <sup>th</sup> : Assembly Language | 4%     |  |
| Note                                        | Dec 7th – 16th: Exam period                            |        |  |

• November 30<sup>th</sup> is the last week of labs

www.macewan.ca/ComputerScience