

CS 564: Database Management Systems

Lecture 7: ER Model and Functional Dependency

Xiangyao Yu 2/7/2024

Announcement

Assignment #1 due today

Assignment #1 (Grades and solutions will be posted next week)

Assignment #2 posted

- Group assignment. One submission per group.

Module A2: Database Design

ER Model

Functional Dependency

Normalization I

Normalization II

Outline of this Lecture

ER Model

- Multi-way relationship
- Roles in relationships
- Weak entities
- Class Hierarchies

Functional Dependency

- Functional dependencies
- Armstrong's rules
- Keys and superkeys

Multi-Way Relationship

Multi-Way to Binary Relationship

Multi-Way to Binary Relationship

Multiple Relationships

Roles in Relationship

Label the edges to indicate the roles if an entity set plays more than one role

Weak Entities

A weak entity can be identified uniquely only by considering some of its attributes in conjunction with the primary key of another entity

- Owner entity set
- Weak entity set

Restrictions:

- Weak entity set must participate in one-to-many relationship set
- Weak entity set must have total participation

Weak entity set and the associated relationship are drawn with dark lines

Class Hierarchy

Superclass: Product

Subclass: Software Product and Educational Product

Class Hierarchy -> Schema

Option 1

Product (<u>name</u>, price, category)

SoftwareProduct (name, price, category, version)

EducationalProduct (name, category, price, age-group)

Class Hierarchy -> Schema

Option 2

Product (<u>name</u>, price, category)

SoftwareProduct (name, version)

EducationalProduct (name, age-group)

Class Hierarchy -> Schema

Option 3

Product (<u>name</u>, price, category, version, age-group)

- Use NULL to denote that the attribute makes no sense for a specific tuple

Outline of this Lecture

ER Model

- Multi-way relationship
- Roles in relationships
- Weak entities
- Class Hierarchies

Functional Dependency

- Functional dependencies
- Armstrong's rules
- Keys and superkeys

Motivation

<u>SSN</u>	name	rating	hourly_wages	hours_worked
123-22-3666	Attishoo	8	10	40
231-31-5368	Smiley	8	10	30
131-24-3650	Smethurst	5	7	30
434-26-3751	Guldu	5	7	32
612-67-4134	Madayan	8	10	40

Functional Dependency (FD)

- rating determines hourly_wages
- If two tuples have the same rating, they must have the same hourly_wages
- This leads to possible redundancy: rating=8 corresponding to hourly wage=10 is repeated three times

Solution: Decomposition

<u>SSN</u>	name	rating	hourly_wages	hours_worked
123-22-3666	Attishoo	8	10	40
231-31-5368	Smiley	8	10	30
131-24-3650	Smethurst	5	7	30
434-26-3751	Guldu	5	7	32
612-67-4134	Madayan	8	10	40

<u>SSN</u>	name	rating	hours_worked
123-22-3666	Attishoo	8	40
231-31-5368	Smiley	8	30
131-24-3650	Smethurst	5	30
434-26-3751	Guldu	5	32
612-67-4134	Madayan	8	40

rating	hourly_wages		
8	10		
5	7		

Solution: Decomposition

<u>SSN</u>	name	rating	hourly_wages	hours_worked
123-22-3666	Attishoo	8	10	40
231-31-5368	Smiley	8	10	30
131-24-3650	Smethurst	5	7	30
434-26-3751	Guldu	5	7	32
612-67-4134	Madayan	8	10	40

<u>SSN</u>	name	rating	hours_worked
123-22-3666	Attishoo	8	40
231-31-5368	Smiley	8	30
131-24-3650	Smethurst	5	30
434-26-3751	Guldu	5	32
612-67-4134	Madayan	8	40

rating	rating hourly_wages		
8	10		
5	7		

Functional Dependency (FD)

Functional dependencies (FDs) are a form of constraint; they generalize the concept of keys

If two tuples agree on the attributes

$$A = A_1, A_2, \dots, A_n$$

then they must agree on the attributes

$$B = B_1, B_2, ..., B_m$$

Formally:

$$A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_m$$

We then say that A functionally determines B

FDs help us detect redundancy in a schema and tell us how to normalize it

Identifying FDs

An FD is domain knowledge:

- An inherent property of the application & data
- Not something we can infer from a set of tuples

Given a table with a set of tuples

- We can confirm that a FD seems to be valid
- To infer that a FD is **definitely** invalid
- We can never prove that a FD is valid

Example 1

<u>SSN</u>	name	rating	hourly_wages	hours_worked
123-22-3666	Attishoo	8	10	40
231-31-5368	Smiley	8	10	30
131-24-3650	Smethurst	5	7	30
434-26-3751	Guldu	5	7	32
612-67-4134	Madayan	8	10	40

rating → hourly_wages

SSN → name, rating, hourly_wages, hours_worked

Example 2

Given a particular relation:

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Black	Toys	99
Gizmo	Stationary	Green	Office-supplies	59

Q1: Is $name \rightarrow department$ an FD?

– Not possible!

Example 2

Given a particular relation:

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Black	Toys	99
Gizmo	Stationary	Green	Office-supplies	59

Q1: Is $name \rightarrow department$ an FD?

– Not possible!

Q2: Is name, category \rightarrow department an FD?

- We don't know!

Outline of this Lecture

ER Model

- Multi-way relationship
- Roles in relationships
- Weak entities
- Class Hierarchies

Functional Dependency

- Functional dependencies
- Armstrong's rules
- Keys and superkeys

Armstrong's Axioms: 1

Reflexivity

```
For any subset X \subseteq \{A_1, ..., A_n\}:

A_1, A_2, ..., A_n \rightarrow X
```

Examples

- $-A \longrightarrow A$
- $-A,B \longrightarrow B$
- $-A,B,C \longrightarrow A,B$
- $-A,B,C \longrightarrow A,B,C$

Armstrong's Axioms: 2

Augmentation

For any attribute sets X, Y, Z: if $X \longrightarrow Y$ then X, $Z \longrightarrow Y$, Z

Examples

- $-A \longrightarrow B$ implies $A, C \longrightarrow B, C$
- $-A, B \rightarrow C$ implies $A, B, C \rightarrow C$

Armstrong's Axioms: 3

Transitivity

For any attribute sets X, Y, Z: if $X \longrightarrow Y$ and $Y \longrightarrow Z$ then $X \longrightarrow Z$

Examples

- $-A \longrightarrow B$ and $B \longrightarrow C$ imply $A \longrightarrow C$
- $-A \longrightarrow C, D$ and $C, D \longrightarrow E$ imply $A \longrightarrow E$

Product(name, category, color, department, price)

- 1. $name \rightarrow color$
- 2. $category \rightarrow department$
- 3. $color, category \rightarrow price$

Can we infer name, $category \rightarrow price$?

Product(name, category, color, department, price)

- 1. name \rightarrow color
- 2. category \rightarrow department
- 3. $color, category \rightarrow price$

Can we infer $name, category \rightarrow price$?

- 1. We apply the augmentation axiom to (1) to obtain (4) $name, category \rightarrow color, category$
- 2. We apply the transitivity axiom to (4) and (3) to obtain $name, category \rightarrow price$

Product(name, category, color, department, price)

- 1. $name \rightarrow color$
- 2. $category \rightarrow department$
- 3. $color, category \rightarrow price$

Can we infer *name*, *category* \rightarrow *color* ?

Product(name, category, color, department, price)

- 1. name \rightarrow color
- 2. category \rightarrow department
- 3. $color, category \rightarrow price$

Can we infer name, category \rightarrow color?

- 1. We apply the reflexivity axiom to obtain (5) $name, category \rightarrow name$
- 2. We apply the transitivity axiom to (5), (1) to obtain $name, category \rightarrow color$

Outline of this Lecture

ER Model

- Multi-way relationship
- Roles in relationships
- Weak entities
- Class Hierarchies

Functional Dependency

- Functional dependencies
- Armstrong's rules
- Keys and superkeys

Keys and Superkeys

Superkey: a set of attributes $A_1, A_2, ..., A_n$ such that for any other attribute B in the relation:

$$A_1, A_2, \dots, A_n \longrightarrow B$$

key: a minimal superkey

- None of its subsets functionally determines all attributes of the relation

If a relation has multiple keys, we specify one to be the **primary key**

Product(name, category, price, color)

- $-name \rightarrow color$
- color, category \rightarrow price

Superkeys:

Product(name, category, price, color)

- $-name \rightarrow color$
- $-color, category \rightarrow price$

Superkeys:

```
- {name, category}, {name, category, price}, {name, category, color}, {name, category, price, color}
```

Product(name, category, price, color)

- $-name \rightarrow color$
- color, category \rightarrow price

Superkeys:

```
- {name, category}, {name, category, price}, {name, category, color}, {name, category, price, color}
```

Keys:

Product(name, category, price, color)

- $-name \rightarrow color$
- color, category \rightarrow price

Superkeys:

- {name, category}, {name, category, price}, {name, category, color}, {name, category, price, color}

Keys:

- {name, category}

Multiple Keys

Q: Is it possible to have many keys in a relation **R**?

YES!! Take relation R(A, B, C) with FDs

- $-A,B \rightarrow C$
- $-A,C \longrightarrow B$

Friday Lecture

TA Sweksha Sinha will go through Assignment #2

Summary

ER Model

- Multi-way relationship
- Roles in relationships
- Weak entities
- Class Hierarchies

Functional Dependency

- Functional dependencies
- Armstrong's rules
- Keys and superkeys