MATH-F113 TP6

TP6: Fonctions

1. Tracer le graphe des fonctions suivantes :

a)
$$f_1(x) = x$$
,

- b) $f_2(x) = x^2$,
- c) $f_3(x) = x^3$,
- d) $f_4(x) = |x|,$
- e) $f_5(x) = \frac{1}{x}$,

a) $q_1(x) = x^2 + 2$,

c) $q_3(x) = 2\sin(x)$,

f) $f_6(x) = \sqrt{x}$,

g) $f_7(x) = \sqrt[3]{x}$,

h) $f_8(x) = \sin(x)$,

i) $f_0(x) = \cos(x)$,

j) $f_{10}(x) = \tan(x)$.

b) $g_2(x) = (x+2)^3$.

d) $q_4(x) = \cos(2x)$.

3. Tracer le graphe de la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} \frac{1}{x^2} & \text{si } x < 0, \\ 2x + 1 & \text{si } 0 \le x < 1, \\ x^2 + 2 & \text{si } x \ge 1. \end{cases}$$

En quels points cette fonction est-elle continue?

- 4. Tracer les graphes des fonctions $f(x) = a^x$ et $g(x) = \log_a x$ (i) si a > 1; (ii) si 0 < a < 1.
- 5. Pour quelles valeurs de a et x a-t-on $\log_a x < 0$?
- 6. Que valent $\log_2 32$, $\log_3 81$, $\log_8 16$, $\log_{16} 8$?
- 7. En utilisant l'approximation $\log_{10} 2 = 0.30103$, calculer

$$\log_{10} 5$$
, $\log_{10} 125$, $\log_{10} 8$, $\log_2 0.001$, $\log_2 1.6$.

8. Résoudre les équations et inéquations suivantes :

- a) $\log_5 x = -1$
 - $x = -1 f) \ln(\ln x) = 0$
- b) $\log_3 x^3 = 2$

g) $\log_{10}(x+4) > \log_{10} 4 + \log_{10} x$

c) $\log_x 5 = \frac{1}{2}$

h) $(0.5)^x > 10$

d) $\log_2(\log_x 81) = 2$

i) $e^{x^2} > 10^x$

e) $\arctan(\log_{10} x) = \frac{\pi}{4}$

- j) $\ln\left(\frac{x}{2} \frac{3}{2x}\right) > 0$
- 9. Quel est le nombre de chiffres de 2^{56} (dans le système décimal)?
- 10. Simplifier les expressions suivantes :
 - (a) $\ln e^{4x^2}$

(b) $10^{4 \log \sqrt{x}}$

11. On obtient un graphique logarithmique en portant en abscisse $X = \log_{10} x$ et en ordonnée $Y = \log_{10} y$. Quelle est la fonction y = f(x) dont le graphique logarithmique est la droite d'équation Y = aX + b?

MATH-F113 TP6

12. Tracer, dans un repère bien choisi, le graphique logarithmique des fonctions

$$y = x^2;$$
 $y = 10x^2;$ $y = x^3;$ $y = \sqrt{x};$ $y = \frac{1}{x}.$

- 13. Nous supposons, dans les exercices suivants, que dans une culture de bactéries, toute bactérie donne, après un certain temps T_g , 2 bactéries "filles". Le temps T_g écoulé entre 2 divisions est appelé "durée d'une génération". On suppose que toutes les bactéries présentes dans le milieu de culture se divisent en même temps.
 - (a) Soit N_0 le nombre de bactéries présentes à l'instant initial t=0.
 - a) Quel est le nombre de bactéries présentes à la nème génération?
 - b) Si T_g est la durée d'une génération, quel est le nombre N(t) de bactéries présentes à l'instant t?
 - (b) Le nombre initial de bactéries d'une culture est $N_0 = 2 * 10^3$ et $T_q = 45$ minutes.
 - a) Quel est le nombre de bactéries présentes au bout de 9 heures?
 - b) Quel est le nombre de bactéries N(t) présentes dans la culture à l'instant t (exprimé en heures)?
 - (c) Dans un milieu de culture, on introduit un certain nombre de bactéries. Après 3 heures, le nombre de ces bactéries est $64 * 10^9$ et après 5 heures il est $1024 * 10^9$. Quel est le nombre initial de bactéries qui a été introduit?