Машинное обучение Лекция 3. Метрические алгоритмы

https://yandexdataschool.ru/edu-process/courses/machine-learning

Содержание лекции

- Обобщенный алгоритм
- Примеры частных алгоритмов:
 - метод ближайших соседей
 - метод окна Парзена
- Понятие выступа объекта
- Алгоритм отбора эталонов
- Проклятие размерности
- Выбор метрики

Гипотезы

- Задачи классификации и регрессии:
 - X объекты, Y ответы;
 - $-X_{\ell} = (x_{i}, y_{i})$ обучающая выборка;
- Гипотеза компактности (для классификации):
 - Близкие объекты, лежат в одном классе.
- Гипотеза непрерывности (для регрессии):
 - Близким объектам соответствуют близкие ответы.
- Формализация понятия «близости»:
 - Задана функция расстояния ρ : X × X → [0, ∞).
- Пример. Евклидово расстояние и его обобщение:

$$\rho(x,x_i) = \left(\sum_{j=1}^n |x^j - x_i^j|^2\right)^{1/2} \quad \rho(x,x_i) = \left(\sum_{j=1}^n w_j |x^j - x_i^j|^p\right)^{1/p}$$

Обобщенный алгоритм

Для заданного х ∈ X отсортируем объекты х₁, . . . , х₂:

$$\rho(x,x^{(1)}) \leqslant \rho(x,x^{(2)}) \leqslant \cdots \leqslant \rho(x,x^{(\ell)}),$$

- x⁽ⁱ⁾ i-тый ближайший сосед объекта х
- y⁽ⁱ⁾ ответ на i-ом соседе объекта х
- Метрический алгоритм классификации:

$$a(x; X^{\ell}) = \arg\max_{y \in Y} \sum_{i=1}^{\ell} \left[y^{(i)} = y \right] w(i, x),$$

- w (i, x) вес (степень важности) і -го соседа объекта x, ≥ 0, ъ по і
- $\Gamma_{V}(x)$ близость объекта x к классу у

Lazy learning

- Это так называемое ленивое обучение, в котором нет этапа тренировки параметров модели. Сразу происходит этап предсказания.
- Подходит для задач, в которых сложно сформулировать набор признаков, но легко сравнивать объекты (пример: сравнительная геномика)
- Недостаток: медленный процесс предсказания

Метод ближайшего соседа

- w(i,x) = 1, если i = 1
- w(i,x) = 0, в противном случае

Метод k ближайших соседей

- w(i,x) = 1, если i <= k
- w(i,x) = 0, в противном случае

Метод к ближайших соседей

• k = 60

Оптимизация к

 Функционал скользящего контроля (leave-one-out)

$$LOO(k, X^{\ell}) = \sum_{i=1}^{\ell} \left[a(x_i; X^{\ell} \setminus \{x_i\}, k) \neq y_i \right] \rightarrow \min_{k}$$

Метод k взвешенных ближайших соседей

Проблема метода ближайших соседей – близкие и далекие учитываются с одним весом

$$w(i,x) = [i \leqslant k]w_i,$$

где w_i — вес, зависящий только от номера соседа;

Возможные эвристики:

 $w_i = rac{k+1-i}{k}$ — линейное убывающие веса; $w_i = q^i$ — экспоненциально убывающие веса, 0 < q < 1;

Проблема. Две ситуации:

- 1) $\rho(x,x_i) = 1$; 1.1; 1.2; 1.3
- 2) $\rho(x,x_i) = 1$; 1.1; 50; 51

приведут к одним и тем же весам

Метод окна Парзена

$$w(i,x) = K\Big(rac{
ho(x,x^{(i)})}{h}\Big)$$
, где h — ширина окна, $K(r)$ — ядро, не возрастает и положительно на $[0,1]$

При фиксированной ширине окна качество классификатора сильно зависит от плотности точек.

Выход: положить ширину h равной расстоянию до kтого соседа

Часто используемые ядра

$$\Pi(r) = ig[|r| \leqslant 1 ig]$$
 — прямоугольное $T(r) = ig(1 - |r|ig) ig[|r| \leqslant 1 ig]$ — треугольное $E(r) = ig(1 - r^2ig) ig[|r| \leqslant 1 ig]$ — квадратичное (Епанечникова) $Q(r) = ig(1 - r^2ig)^2 ig[|r| \leqslant 1 ig]$ — квартическое $G(r) = \expig(-2r^2ig)$ — гауссовское

Отступ (выступ) объекта

 Пусть классификатор а(x) работает по правилу:

$$a(x) = \arg \max_{y \in Y} \Gamma_y(x)$$

 Отступом (margin) объекта х_і обучающей выборки называется величина

$$M(x_i) = \Gamma_{y_i}(x_i) - \max_{y \in Y \setminus y_i} \Gamma_y(x_i)$$

• Отступ показывает степень типичности объекта: чем больше М(х_і), тем «глубже»

$$M(x_i) < 0 \Leftrightarrow a(x_i) \neq y_i;$$

Типы объектов в зависимости от выступа

- Э эталонные (можно оставить только их);
- Н неинформативные (можно удалить из выборки);
- П пограничные (их классификация неустойчива);
- O ошибочные (причина ошибки плохая модель);
- Ш шумовые (причина ошибки плохие данные).

Отступ (выступ) объекта

Вычислите отступы для всех объектов для метода 3NN

15

Отбор эталонов

 Задача: выбрать оптимальное подмножество эталонов Ω из обучающей выборки. Классификатор будет иметь вид:

$$a(x;\Omega) = \arg\max_{y \in Y} \sum_{x^{(i)} \in \Omega} \left[y^{(i)} = y \right] w(i,x)$$

- Алгоритм STOLP. Три основных этапа:
 - исключить выбросы и, возможно, пограничные объекты;
 - найти по одному эталону в каждом классе;
 - добавлять эталоны, пока есть отрицательные отступы;

Алгоритм STOLP

- Исключаем из X_{ℓ} выбросы x_{i} : $M(x_{i}) < \delta$
- Инициализируем множество эталонов Ω, выбирая по одному элементу из каждого класса с максимальным выступом
- Цикл: пока процент ошибок классификации велик и эталонов Ω не слишком много
 - добавляем в Ω объект с наименьшим выступом

Проклятие размерности

- Проклятие размерности усреднение значений метрики при большом количестве признаков. Почти до всех ближайших соседей расстояние одинаково
- Почему это происходит:
 - Шар радиуса R имеет объем V(R)~R^D
 - Объем шара радиуса 0.9 в 20-мерном пространстве составляет всего 12% от объема шара радиуса 1.

T.e. 88% точек лежит на сфере: 0.9<R<1

$$\frac{V(R-\varepsilon)}{V(R)} = \left(\frac{R-\varepsilon}{R}\right)^D \stackrel{D\to\infty}{\longrightarrow} 0$$

Проклятие размерности Пример

- Пространство признаков: Rⁿ.
- Класс +: область х_{1,2}>0 (остальные координаты произвольны)
- Х_ℓ равномерно распределена

Проклятие размерности Пример

- Метод 10 ближайших соседей.
 ℓ = 10000
- Относительная частота класса "+" на прямой: х₁=х₂, х₃=0, х₄=0,...

20

Вывод: для больших размерностей метрические алгоритмы сглаживают границы областей классов

Выбор метрики

Взвешенная метрика Минковского:

$$\rho(x,x_i) = \left(\sum_{j=1}^n w_j \big| f_j(x) - f_j(x_i) \big|^p\right)^{\frac{1}{p}},$$

где w_j — неотрицательные веса признаков, p>0.

В частности, если $w_i \equiv 1$ и p=2, то имеем евклидову метрику.

Роль весов w_i :

- 1) нормировка признаков;
- 2) степень важности признаков;
- 3) отбор признаков (какие $w_j = 0$?);

Жадное добавление признаков

- 1. А вдруг одного признака уже достаточно? Расстояние по j-му признаку: $\rho_j(x,x_i)=\left|x^j-x_i^j\right|$. Выберем наилучшее расстояние: LOO $(j) o \min$.
- 2. Добавим к расстоянию ho ещё один признак j:

$$\rho^{p}(x,x_i) := \rho^{p}(x,x_i) + w_j \rho_j^{p}(x,x_i), \quad w_j \geqslant 0.$$

Найдём признак j и вес w_j , при которых LOO $(j, w_j) \to \min$ (два вложенных цикла перебора).

3. Можно корректировать вес признака k, уже вошедшего в ρ :

$$\rho^{p}(x,x_{i}) := \rho^{p}(x,x_{i}) + w'_{k}\rho^{p}_{k}(x,x_{i}), \quad w'_{k} \geqslant -w_{k}.$$

4. Будем добавлять признаки, пока LOO уменьшается.

Пример необычной метрики

Задача поиска подходящих по цвету вещей

23