AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (original) Process for the preparation of an enantiomerically enriched β^2 -amino acid of formula 1

$$HO_2C$$
 R^2
 R^4
 R^3
 R^3
 R^4

wherein R^2 , R^3 and R^4 each independently stand for H, an optionally substituted (hetero)aryl, an optionally substituted alkyl, OR^5 , CO_2R^6 , $C(O)R^7$, SR^8 , NR^9R^{10} , $OC(O)R^{11}$ wherein R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} and R^{11} each independently stand for H, an optionally substituted alkyl or for an optionally substituted (hetero)aryl and wherein R^2 and R^3 , R^2 and R^4 or R^3 and R^4 may form a ring together with the carbon atom to which they are attached, comprising the steps of reacting a stereoselective hydrolytic enzyme with a mixture of enantiomers of a β^2 -amino acid ester of formula 2

$$R^1O_2C$$
 R^2
 R^4
 R^3
 R^4

wherein R^1 stands for an optionally substituted alkyl and wherein R^2 , R^3 and R^4 are as defined above and collecting the resulting enantiomerically enriched β^2 -amino acid of formula 1.

2. (original) Process for the preparation of an enantiomerically enriched β^2 -amino acid ester of formula 2

KAPTEIN et al

U.S. National Phase of PCT/EP2005/002103

$$R^{1}O_{2}C$$
 R^{2}
 R^{4}
 R^{3}
 R^{3}
 R^{4}

wherein R¹ stands for an optionally substituted alkyl and whereinR², R³ and R⁴ each independently stand for H, an optionally substituted (hetero)aryl, an optionally substituted alkyl, OR⁵, CO₂R⁶, C(O)R⁷, SR⁸, NR⁹R¹⁰, OC(O)R¹¹ wherein R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰ and R¹¹ each independently stand for H, an optionally substituted alkyl or for an optionally substituted (hetero) aryl and

wherein R^2 and R^3 , R^2 and R^4 or R^3 and R^4 may form a ring together with the carbon atom to which they are attached, comprising the steps of reacting a stereoselective hydrolytic enzyme with a mixture of enantiomers of a β^2 -amino acid ester of formula 2, wherein R^1 , R^2 , R^3 and R^4 are as defined above and collecting the remaining enantiomerically enriched β^2 -amino acid ester of formula 2.

- 3. (currently amended) Process according to claim 1 or claim 2, wherein the stereoselective hydrolytic enzyme is an enzyme from the enzyme classification group EC 3.1.1, 3.4.21, 3.4.22 or 3.4.23.
- 4. (currently amended) Process according to any one of claims 1-3 claim 1, wherein the stereoselective hydrolytic enzyme has an E-ratio > 5.
- 5. (currently amended) Process according to any one of claims 2-4 claim 2, wherein the collected remaining enantiomerically enriched β^2 -amino acid ester is further hydrolysed in a manner known per se.
- 6. (currently amended) Process according to any one of claims 1-5 claim 1, wherein the β^2 -amino acid ester of formula 2 is prepared by reduction of the corresponding nitrile of formula 3

KAPTEIN et al

U.S. National Phase of PCT/EP2005/002103

$$R^{1}O_{2}C$$
 R^{2}
 R^{4}
 R^{3}
(3)

wherein R¹, R², R³ and R⁴ are as defined above with a suitable reducing agent and optionally in the presence of a suitable catalyst.

7. (original) Process according to claim 6, wherein the nitrile of formula 3, wherein R¹, R² and R³ are as defined above and wherein R⁴ stands for H is prepared by reduction of the corresponding nitrile of formula 4,

NC
$$\mathbb{R}^3$$

$$\mathbb{R}^2$$
 (4)

wherein R¹, R² and R³ are as defined above with a suitable reducing agent and optionally in the presence of a suitable catalyst.

- 8. (currently amended) Process according to any one of claims 1-5 claim 1, wherein the β^2 -amino acid ester of formula 2, wherein R^4 stands for H and R^1 , R^2 and R^3 are as defined above is prepared by reduction of the corresponding nitrile of formula 4, wherein R^1 , R^2 and R^3 are as defined above with a suitable reducing agent and optionally in the presence of a suitable catalyst.
- 9. (original) Process according to claim 6, wherein the nitrile of formula 3, wherein R¹, R², R³ and R⁴ are as defined in claim 6 is prepared from the corresponding nitrile of formula 4, wherein R¹, R² and R³ are as defined above by introduction of R⁴ via nucleophilic 1,4-addition using a suitable nucleophile.
- 10. (currently amended) Process according to any one of claims 7-9 claim 7, wherein the nitrile of formula 4, wherein R¹, R² and R³ are as defined above is prepared by condensation of a ketone or aldehyde of formula 6

KAPTEIN et al

U.S. National Phase of PCT/EP2005/002103

$$O = \bigcap_{\mathbb{R}^3}^{\mathbb{R}^2}$$

wherein R² and R³ are as defined above and a nitrile of formula 7

wherein R¹ is as defined above, in the presence of a suitable base or a dehydrating reagent.

11. (currently amended) Process according to any one of claims 1-5 claim 1, wherein the β^2 -amino acid ester of formula 2, wherein R¹, R², R³ and R⁴ are as defined in anyone of claims 1-5 claim 1 is prepared by reacting NH₃ or an NH₃-analogue with the 2-substituted acrylic acid ester of formula 5

$$R^{1}O_{2}C$$
 \overline{R}^{3} (5)

wherein R¹, R², R³ and R⁴ are as defined above.

- 12. (currently amended) Process according to any one of claims 1-11 claim 1, wherein the enantiomerically enriched β^2 -amino acid (ester) prepared according to a process of any one of claims 1-11 claim 1 is further converted into a pharmaceutically active ingredient.
- 13. (original) Process according to claim 12, wherein the pharmaceutical active ingredient is formulated into a pharmaceutical composition comprising the pharmaceutical active ingredient and an excipient.