VINDEX

- · Creating data frame from the given dataset
- · Replacing Null values
- · Un-nesting the columns those have cells with multiple comma separated
- Segregating the duration into "movie_minutes" and "seasons"
- · Counting number of movies and TV shows
- · Actors with most number of movies
- · Directors with most number of movies
- · Finding top 10 countries which have produced most of movies.
- Finding top 10 countries which have porduced most of TV shows.
- Finding the top 10 directors who have been most productive in last 15 years
- Finding the top 10 actors who have been most productive in last 15 years
- · Find which is the best week to release a Movie or a TV Show
- · Plotting graph that how many TV Shows added on various weeks of an year
- Find which is the best month to release a Movie or a TV Show
- Finding the Top 10 Genre of the movies and shows
- Finding the Days of week when Movies and TV Shows are released on OTT

Importing the libraries and fetching the dataset

import pandas as pd
import numpy as np

Creating data frame from the given dataset

df=pd.read_csv("netflix.csv")
df.head()

0	s1	Movie	Dick Johnson Is Dead	Kirsten Johnson	NaN	United States	September 25, 2021	2020	PG-13	90 min	Documentaries	As her fathe nears the end of his life, filmm
1	s2	TV Show	Blood & Water	NaN	Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban	South Africa	September 24, 2021	2021	TV-MA	2 Seasons	International TV Shows, TV Dramas, TV Mysteries	Afte crossing paths at a party, a Cape Town t
2	s3	TV Show	Ganglands	Julien Leclercq	Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi	NaN	September 24, 2021	2021	TV-MA	1 Season	Crime TV Shows, International TV Shows, TV Act	To protect his family from a powerfu drug lor

Replacing Null values

df["director"]=df["director"].fillna("Unknown director")
df["cast"]=df["cast"].fillna("Unknown actor")
df["country"]=df["country"].fillna("Unknown country")
df["rating"]=df["rating"].fillna("Unknown rating")

New interactive sheet

```
df["description"]=df["description"].fillna("Unknown description")
df["type"]=df["type"].fillna("Unknown type")
df.head()
```

rating d	rating	duration	listed_in	descriptio
PG-13	PG-13	90 min	Documentaries	As her fathe nears th end of h life, filmm
TV-MA	TV-MA	2 Seasons	International TV Shows, TV Dramas, TV Mysteries	paths at
TV-MA 1	TV-MA	1 Season	Crime TV Shows, International TV Shows, TV Act	

Un-nesting the columns those have cells with multiple comma separated

```
director_list=df["director"].apply(lambda x:x.split(", ")).tolist()
director_df=pd.DataFrame(director_list,index=df["title"]).stack().reset_index().drop(columns="level_1")
director_df.columns=["title" , "director"]
director_df.head(10)
```

₹		title	director	
	0	Dick Johnson Is Dead	Kirsten Johnson	ıl.
	1	Blood & Water	Unknown director	
	2	Ganglands	Julien Leclercq	
	3	Jailbirds New Orleans	Unknown director	
	4	Kota Factory	Unknown director	
	5	Midnight Mass	Mike Flanagan	
	6	My Little Pony: A New Generation	Robert Cullen	
	7	My Little Pony: A New Generation	José Luis Ucha	
	8	Sankofa	Haile Gerima	
	9	The Great British Baking Show	Andy Devonshire	

Next steps: (Generate code with director_df) (View recommended plots

```
df["cast"]=df["cast"].fillna("Unknown Director")
actor_list=df["cast"].apply(lambda x:x.split(", ")).tolist()
actor_df=pd.DataFrame(actor_list,index=df["title"]).stack().reset_index().drop(columns="level_1")
actor_df.columns=["title","actor"]
actor_df.head(10)
```


Segregating the duration into "movie_minutes" and "seasons"

```
df["duration"]=df["duration"].fillna("0")
df["movie_minutes"]=df["duration"][df["type"]=="Movie"].apply(lambda x:int(x.split(" ")[0]))
df["seasons"]=df["duration"][df["type"]=="TV Show"].apply(lambda x:int(x.split(" ")[0]))
df.drop(columns="duration").head()
```

		show_id	type	title	director	cast	country	date_added	release_year	rating	listed_in	description	movie_minute
	0	s1	Movie	Dick Johnson Is Dead	Kirsten Johnson	Unknown actor	United States	September 25, 2021	2020	PG-13	Documentaries	As her father nears the end of his life, filmm	90
	1	s2	TV Show	Blood & Water	Unknown director	Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban	South Africa	September 24, 2021	2021	TV-MA	International TV Shows, TV Dramas, TV Mysteries	After crossing paths at a party, a Cape Town t	Na
	2	s3	TV Show	Ganglands	Julien Leclercq	Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi	Unknown country	September 24, 2021	2021	TV-MA	Crime TV Shows, International TV Shows, TV Act	To protect his family from a powerful drug lor	Na
	3	s4	TV Show	Jailbirds New Orleans	Unknown director	Unknown actor	Unknown country	September 24, 2021	2021	TV-MA	Docuseries, Reality TV	Feuds, flirtations and toilet talk go down amo	Na
	4	s 5	TV Show	Kota Factory	Unknown director	Mayur More, Jitendra Kumar, Ranjan Raj, Alam K	India	September 24, 2021	2021	TV-MA	International TV Shows, Romantic TV Shows, TV	In a city of coaching centers known to train I	Na
	4												•

Counting number of movies and TV shows

Graphical representation showing the proportion of movies and shows

```
import matplotlib.pyplot as plt

y = df["type"].value_counts()
# mylabels = ["Movies", "TV Show"]

plt.pie(y , labels =["Movies", "TV Show"] , explode=[0.2, 0] ,shadow = True , autopct='%1.0f%%')
plt.show()
```


Actors with most number of movies

actor_df["actor"][actor_df["actor"]!="Unknown actor"].value_counts().head(10)

₹		count
	actor	
	Anupam Kher	43
	Shah Rukh Khan	35
	Julie Tejwani	33
	Takahiro Sakurai	32
	Naseeruddin Shah	32
	Rupa Bhimani	31
	Om Puri	30
	Akshay Kumar	30
	Yuki Kaji	29
	Amitabh Bachchan	28

Directors with most number of movies

director_df["director"][director_df["director"]!="Unknown director"].value_counts().head(10)

Finding top 10 countries which have produced most of movies.

```
mv=df[(df["type"] == "Movie") &(df["country"] != "Unknown country") ].groupby("country")["title"].count().sort_values(ascending=False).
→
               country title
           United States
                          2058
      1
                   India
                           893
         United Kingdom
                           206
      3
                Canada
                           122
      4
                 Spain
                           97
      5
                           92
                 Egypt
      6
                 Nigeria
                            86
      7
              Indonesia
                            77
      8
                 Japan
                            76
                 Turkey
                            76
 Next steps:
             Generate code with mv
                                     View recommended plots
                                                                   New interactive sheet
```

Graphical representation of above table

```
plt.figure(figsize=(9,5))
plt.bar(mv["country"], mv["title"] , color='cornflowerblue')
plt.xticks(rotation=90, fontsize=10)
plt.ylabel("Count")
plt.xlabel("country")
plt.show()
```


Finding top 10 countries which have porduced most of TV shows.

 $\label{tv=df} $$ tv=df[(df["type"]=="TV Show")&(df["country"]!="Unknown country")].groupby("country")["title"].count().sort_values(ascending=False).reset to $$ tv=df[(df["type"]=="TV Show")&(df["country"]!="Unknown country")].groupby("country")["title"].count().sort_values(ascending=False).reset to $$ tv=df[(df["type"]=="TV Show")&(df["country"]!="Unknown country")].groupby("country")["title"].count().sort_values(ascending=False).reset to $$ tv=df[(df["type"]=="TV Show"]).groupby("country")["title"].count().sort_values(ascending=False).reset to $$ tv=df[(df["type"]=="TV Show"]).groupby("country")["title"].count().sort_values(ascending=False).reset to $$ tv=df[(df["type"]=="TV Show"]).groupby("country")["title"].groupby("country")["title"].groupby("country")["title"].groupby("country")["title"].groupby("country")["title"].groupby("country")["title"].groupby("country")["title"].groupby("country")["title"].groupby("country")["title"].groupby("country")["title"].groupby("country")["title"].groupby("country")["title"].groupby("country")["title"].groupby("country")["title"].groupby("country")["title"].groupby("country")["title"].groupby("country")["title"].groupby("country")["title"].groupby("country")["title"].groupby("country"].groupby("country")["title"].groupby("country")["title"].groupby("country"].groupby("country")["title$

→ Graphical representaion of above table

```
plt.figure(figsize=(9,5))
plt.bar(tv["country"], tv["title"] , color='green')
plt.xticks(rotation=90, fontsize=10)
plt.ylabel("Count")
plt.xlabel("Country")
plt.show()
```


Finding the top 10 directors who have been most productive in last 15 years

year_df=df[["title","release_year","country"]][(df["release_year"]>=2011)]

year_direc_merge_df=pd.merge(director_df,year_df , on="title" , how="right")[["title","director","release_year","country"]]
year_direc_merge_df.head(10)

productive_dir=year_direc_merge_df["director"][year_direc_merge_df["director"]!="Unknown director"].value_counts().reset_index().head(10)

Graphical representation of above table

```
plt.figure(figsize=(9,5))
plt.bar(productive_dir["director"], productive_dir["count"] , color='orange')
plt.xticks(rotation=90, fontsize=10)
plt.ylabel("number of movies in last 15 years")
plt.xlabel("Director name")
plt.show()
```


• Jan Suter , Raúl Campos , Rajiv Chilaka are few of the most productive directors with whom Netflix can tie up

Finding the top 10 actors who have been most productive in last 15 years

 $actor_year_merge_df=pd.merge(actor_df,year_df , on="title" , how="right")[["title","actor","release_year","country"]] \\ actor_year_merge_df.head(10)$

Graphical representation of above table

```
plt.figure(figsize=(9,5))
plt.bar(productive_actor["actor"], productive_actor["count"] , color='blue')
plt.ylabel("Count")
plt.xlabel("Actor")
plt.xticks(rotation=90, fontsize=10)
plt.show()
```


• Takahiro Sakurai , Julie Tejwani, Yuki Kaji, Rupa Bhimani are few of the most productive actors with whom Netflix can tie up

Find which is the best week to release a Movie or a TV Show

 $\label{lem:condition} release OTT_df['week_number'] = release OTT_df['date_added'].dt.isocalendar().week_release OTT_df['date_added'].dt.isocalendar().week_release OTT_df['week_number'] = release OTT_df['date_added'].dt.isocalendar().week_release OTT_df['date_added'].dt.isocalendar().week_added'].dt.isocalendar().week_added'].dt.isocalendar().week_added'].dt.isocalendar().week_added'].dt.isocalendar().week_added'].dt.isocalendar().week_added'].dt.isocalendar().week_added'].dt.isocalendar().week_added'].dt.isocalendar().week_added'].dt.isocalendar().week_added'].dt.isocalendar().week_added'].dt.isocalendar().week_added'].dt.isocalendar().week_added'].dt.isocalendar().week_added'].dt.isocalendar().week_added'].$

- *27th week * is the best time for a TV show to release
- Plotting graph that how many TV Shows added on various weeks of an year

w=releaseOTT_df[releaseOTT_df["type"]=="TV Show"].groupby("week_number")["title"].count().sort_values(ascending=False).reset_index()
w.head(10)


```
import seaborn as sns
fig = plt.figure(figsize=(8,6))
sns.scatterplot(data=w , x="week_number", y="title")
plt.ylabel('number of TV shows added')
plt.xlabel('week number')
fig.suptitle('TV Shows added on various weeks')
plt.show()
```

∓*

TV Shows added on various weeks

Find which is the best month to release a Movie or a TV Show

releaseOTT_df['month_name']=releaseOTT_df['date_added'].dt.month_name()
releaseOTT_df

month_name

565

₹		title	date_added	type	movie_minutes	seasons	week_number	month_name	
	0	Dick Johnson Is Dead	2021-09-25	Movie	90.0	NaN	38	September	1.
	1	Blood & Water	2021-09-24	TV Show	NaN	2.0	38	September	*/
	2	Ganglands	2021-09-24	TV Show	NaN	1.0	38	September	-
	3	Jailbirds New Orleans	2021-09-24	TV Show	NaN	1.0	38	September	
	4	Kota Factory	2021-09-24	TV Show	NaN	2.0	38	September	
	8802	Zodiac	2019-11-20	Movie	158.0	NaN	47	November	
	8803	Zombie Dumb	2019-07-01	TV Show	NaN	2.0	27	July	
	8804	Zombieland	2019-11-01	Movie	88.0	NaN	44	November	
	8805	Zoom	2020-01-11	Movie	88.0	NaN	2	January	
	8806	Zubaan	2019-03-02	Movie	111.0	NaN	9	March	
9	RRN7 ro	owe x 7 columns		_		_			•
Novt									
INEXL	Next steps: Generate code with releaseOTT_df View recommended plots New interactive sheet								
releas	se0TT_	df[releaseOTT_df["ty	ype"]=="Movi	e"].groupl	by("month_name")["title"].count().sor	t_values(asc	ending=False).head(1)
→ *									
ت ۔		title							

· July is the best month to release a movie

```
releaseOTT_df[releaseOTT_df["type"]=="TV Show"].groupby("month_name")["title"].count().sort_values(ascending=False).head(1)

title

month_name
December 266
```

· December is the best month to release a TV Show

Finding the Top 10 Genre of the movies and shows

• The Top 10 genre shown above include International_movies,Drama, Comedies etc.

Graphical resentation of the above table

```
plt.figure(figsize=(9,5))
plt.bar(g["genre"], g["title"] , color="purple")
plt.xticks(rotation=90, fontsize=10)
plt.ylabel("Count")
plt.xlabel("Genre")
plt.show()
```


- International Movies , Dramas , Comedies are genre which have maximum number of shows
- Finding the Days of week when Movies and TV Shows are released on OTT
 - For Movies

releaseOTT_df['release_day_name']=releaseOTT_df['date_added'].dt.day_name()
j=releaseOTT_df[releaseOTT_df["type"]=="Movie"].groupby("release_day_name")["title"].count().sort_values(ascending=False).reset_index()
j

_				
→		release_day_name	title	\blacksquare
	0	Friday	1566	ıl.
	1	Thursday	1053	+/
	2	Wednesday	906	-
	3	Tuesday	852	
	4	Monday	628	
	5	Sunday	569	
	6	Saturday	557	

Next steps: Generate code with j View recommended plots New interactive sheet

• For TV Show

k=releaseOTT_df[releaseOTT_df["type"]=="TV Show"].groupby("release_day_name")["title"].count().sort_values(ascending=False).reset_index.k

Graphical resentation of the above table

```
plt.figure(figsize=(8,4))
sns.lineplot(x='release_day_name', y='title', data=j , label='Movies')
sns.lineplot(x='release_day_name', y='title', data=k , label='TV Show')
plt.xlabel("week day name")
plt.ylabel("count")
plt.show()
```


· Most of the movies and TV shows added are on Friday

"The End"