Small switching (60V, 2A) 2SK3065

Features

- 1) Low on resistance.
- 2) High-speed switching.
- 3) Optimum for a pocket resource etc. because of undervoltage actuation (2.5V actuation).
- 4) Driving circuit is easy.
- 5) Easy to use parallel.
- 6) It is strong to an electrostatic discharge.

Structure

Silicon N-channel MOS FET transistor

◆Absolute maximum ratings (Ta = 25°C)

Parameter		Symbol	Limits	Unit
Drain-source voltage		Voss	60	V
Gate-source voltage		Vgss	±20	V
	Continuous	ΙD	2	Α
Drain current	Pulsed		Α	
Reverse drain	Continuous	IDR	2	Α
current	Pulsed	IDRP*1	8	Α
Total power dissipation	on(Tc=25°C)	Pp	0.5 2*2	W
Channel temperature		Tch	Tch 150	
Storage temperature		Tstg	-55~+150 °C	

- *1 Pw \leq 10 μ s, Duty cycle \leq 1% *2 When mounted on a 40 \times 40 \times 0.7 mm alumina board

●External dimensions (Units : mm)

•Internal equivalent circuit

* A protection diode has been built in between the agate and the source to protect against static electricity when the product is in use.

Use the protection circuit when rated voltages are exceeded.

● Electrical characteristics (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Gate-source leakage	Igss	-	-	±10	μА	Vgs = ±20V, Vps = 0V
Drain-source breakdown voltage	V _{(BR)DSS}	60	-	-	V	In= 1mA, Vgs= 0V
Zero gate voltage drain current	IDSS	-	-	10	μА	V _{DS} = 60V, V _{GS} = 0V
Gate threshold voltage	V _{GS(th)}	0.8	-	1.5	V	V _{DS} = 10V, I _D = 1mA
Static drain-source on-state resistance	RDS(on)	-	0.25	0.32	Ω	In = 1A, Vgs = 4V
	RDS(on)	-	0.35	0.45	Ω	In= 1A, Vgs= 2.5V
Forward transfer admittance	Yfs *	1.5	-	-	S	In = 1A, Vns = 10V
Input capacitance	Ciss	-	160	-	pF	V _{DS} = 10V
Output capacitance	Coss	-	85	-	pF	Vgs=0V
Reverse transfer capacitance	Crss	-	25	-	pF	f = 1MHz
Turn-on delay time	td(on)	-	20	-	ns	In = 1A, Vnn ≒ 30V
Rise time	tr	-	50	-	ns	V _G S = 4V
Turn-off delay time	td(off)	-	120	-	ns	R _L = 30Ω
Fall time	tr	-	70	_	ns	R _G = 10Ω

* Pw ≤ 300µs, Duty cycle ≤ 1%

Packaging specifications

Туре	Package	Taping
	Code	T100
	Basic ordering unit (pieces)	1000
2SK3065		0

• Electrical characteristic curves

Fig.1 Total Power Dissipation vs. Case Temperature

Fig.2 Maximum Safe Operating Area

Fig.3 Typical Output Characteristics

Fig.4 Typical Transfer Characteristics

Fig.5 Gate Threshold Voltage vs. Channel Temperature

Fig.6 Static Drain-Source On-State Resistance vs. Drain Current(I)

Fig.7 Static Drain-Source On-State Resistance vs. Drain Current(II)

Fig.8 Static Drain-Source On-State Resistance vs. Gate-Source Voltage

Fig.9 Static Drain-Source On-State Resistance vs. Channel Temperature

Fig.10 Forward Trasfer Admitance vs. Drain Current

 $\begin{array}{ccc} \text{Fig.11} & \text{Reverse Drain Current vs.} \\ & \text{Source-Drain Voltage}(I) \end{array}$

Fig.12 Reverse Drain Current vs. Source-Drain Voltage(II)

Fig.13 Typical Capacitance vs. Drain-Source Voltage

Fig.14 Switching Characteristics (a measurement circuit diagram Fig.17 , it refers 18 times)

Fig.15 Reverse Recovery Time vs. Reverse Drain Current

Fig.16 Normarized Transient Thermal Resistance vs. Pulse Width

•Switching characteristics measurement circuit

Fig.17 Switching Time Test Circuit

Fig.18 Switching Time Waveforms