Prediction as a service with Ensemble Model trained in SparkML and Python ScikitLearn on 1Bn observed flight prices daily

Josef Habdank

Lead Data Scientist & Data Platform Architect at INFARE

- jha@infare.com www.infare.com
- in www.linkedin.com/in/jahabdank
- 🔰 @jahabdank

Leading provider of **Airfare Intelligence Solutions** to the Aviation Industry

Collect and processes 1.2 billion distinct airfares daily

150 Airlines & Airports

7 offices worldwide

https://www.youtube.com/watch?v=h9cQTooY92E

What is this talk about?

- Ensemble approach for large scale DataScience
 - Online learning for huge datasets
 - thousands simple models are better than one very complex
 - N-billion rows/day machine learning system architecture
 - Implementation of parallel online training of tens of thousands of models in Spark Streaming and Python ScikitLearn

Ensemble approach on billions of rows

Batch vs Online model training

Batch Bn
$$\left\{egin{array}{cccc} x_{11} & \cdots & x_{1p} \\ x_{21} & \cdots & x_{2p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{np} \end{array}
ight\}$$
 • Large variety of option reasons)
• Often more accurate
• Does not scale well
• Model might be missinforms of the properties.

- Large variety of options available (historical

- Model might be missing critical latest information

EUROPE 2016

- Train on microbatches or individual observations

Especially critical in prediction of volatile signals

Ensemble approach to prediction in BigData

traditional ensemble mixes multiple models for one prediction, here we simply select one best for the data segment

SPARK SUMMIT EUROPE 2016

Segmenting the space

- Entire space consists of 1.2Bn time series
- Best results obtained when division is done using combination of knowledge (manual division) and clustering methods
- Optimal number of slices/clusters is between few thousand to hundreds of thousands
- Clustering methods need dimensionality reduction if subspace has still too many dimensions

Gaussian Mixture Model

(showing only 2 first parameters)

- Fuzzy clustering method which gives probability of a point being in the cluster
- The probability could be used as a model weight, in case of model mixing

SparkML: org.apache.spark.ml.clustering.GaussianMixture http://spark.apache.org/docs/latest/ml-clustering.html#gaussian-mixture-model-gmm

Gaussian Mixture Model Results

SPARK SUMMIT EUROPE 2016

Feature and model selection

- OneHotEncoder:
 - can capture any nonlinear behavior
 - explodes exponentially dims
 - can reduce your problem to a hypercube
- Try assigning values to labels which carry information
 - $hour \in [0, 1, ..., 23]$ → $hour' \in [0.22, 0.45, ..., 0.03]$
- Try to capture nonlinear behavior using linear model, by adding meta-features

- Classification vs regression
 - if your problem can be converted into classification, try this as a first attempt
- Linear online models in Python:
 - sklearn.linear_model.SGDClassifier
 http://scikit-leam.org/stable/modules/generated/skleam.linear_model.SGDClassifier.html
 - sklearn.linear_model.SGDRegressor
 http://scikit-leam.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html
- Other interesting models:
 - whole sklearn.svm package
 - Kalman and ARIMA models
 - Particle Predictor (wrote own library)

Prediction results

N-billion rows/day machine learning architecture using DataBricks

N-billion rows/day machine learning architecture using DataBricks

Training models in parallel in Spark Streaming

Grouping in Spark DataFrames with collect list()

```
> # FLight TimeSeries DataFrame
  fltsdf = dspmin \
    .groupBy("cluster_id") \
    .agg(
         expr("collect_list(days_before_departure) as
  days_before_departure_list"),
         expr("collect_list(price_inc) as price_inc_list"),
         expr("count(price_inc) as price_count"),
         expr("min(days_before_departure) as days_before_departure_min"),
         expr("max(days_before_departure) as days_before_departure_max")
```

	cluster_id	days_before_departure	price_inc	price_exc
SPARK EUROP	345130379	18	404	380
	345130379	24	60	34
	345130379	26	128	102
	345130379	29	240	214
	345130379	40	352	326
	345130379	42	124	100
	345130379	86	270	244
	345130379	103	242	216
	345130379	104	218	194

Wrapping model training in UDF

```
sgdlinreg_models = flt \
.withColumn("sgdlinreg", sgdlinreg_udf(
    flt.cluster_id,
    flt.price_inc_list_zoh,
    flt.price_inc_list_lag1,
    flt.price_inc_list_lag2,
    flt.price_inc_list_lag3,
    flt.price_inc_list_lag4,
    flt.price_inc_list_lag5,
    flt.price_inc_list_lag6,
    flt.price_inc_list_lag7
))

display(sgdlinreg_models.select("sgdlinreg"))
```

	cluster_id	days_before_departure_list price_inc_list price_exc_list
	1780623700	▶ [0,1,2,3,4,5,6,7,8,9,10,11,12,1] ▶ [158,134,112,112,92,62,52, ▶ [158,134,112,11
	268037612	▶ [0,1,2,5,6,7,8,9,12,13,14,15,1() [66,46,46,46,18,18,18,18,18,18,1] ▶ [66,46,46,46,18
	-2009081663	▶ [0,1,4,5,6,7,8,11,12,13,14,15, ▶ [240,134,92,66,66,66,46,32 ▶ [240,134,92,66,
	-634639582	▶ [0,1,2,3,4,5,6,7,8,9,10,11,12,1) [66,34,28,28,32,18,16,14,14) [66,34,28,28,32
	1411515385	▶ [0,3,4,5,6,7,10,11,12,13,14,15) [190,112,112,92,92,92,78,6) [190,112,112,92
	-286460299	▶ [0,1,2,3,6,7,8,9,10,13,14,15,1() [240,240,240,158,92,92,78,) [240,240,240,158,92,92,78]
	-610713405	▶ [0,3,4,5,6,7,10,11,12,13,14,17 ▶ [134,66,66,60,34,34,32,26,; ▶ [134,66,66,60,3
SPARK	JU11111111	

EUROPE 2016

 ▶ [0.312164452051516,0.2500195199688649,0.14696794292077753,0.07397744845

 ▶ [0.312164452051516,0.2500195199688649,0.14696794292077753,0.07397744845

 ▶ [0.13338744526183177,0.12112968431128747,0.11130912766696988,0.10185600

 ▶ [0.23559433475348757,0.19604764243883754,0.1619729900436198,0.123211434

 ▶ [-0.10016315603086957,-0.16458613496443103,-0.27811271711971636,-0.331335

 ▶ [0.14668838712780405,0.13123599721355966,0.12017499750599304,0.09930765

 ▶ [1.168599501383796,0.4523697946893281,0.5174869129611258,0.494670248345

 ▶ [0.15681717241410567,0.13897152879352645,0.11634114582885006,0.10410808

Wrapping model training in UDF

```
def sgdlinreg(cluster_id, x0, x1, x2, x3, x4, x5, x6, x7):
                                                              Prepare the Matrix with inputs
                                                             for model training
  # create a data matrix from columns
  X = np.transpose(np.matrix([x1, x2, x3, x4, x5, x6, x7]))
                                                             Normalize the data using normalization
  # normalize the data
                                                              defined for this particular cluster
  X = normalize_using_db_norm(cluster_id, X)
  Y = np.reshape(normalize_using_db_norm(cluster_id, x0)[0],
                (1, len(x0)))[0]
                                                              Generate sample weights which enable
                                                              controlling the learning rate
  # generate sample weights to adjust the learning
  sample_weights = generate_sample_weights(X)
                                                             Get the current model from DB
  # get the model:
                                                              (use in memory DB for fast response)
  sgd_model = get_sgdregressor_from_db(cluster_id)
  # model train
                                                             Preform partial fit using the sample weights
  sgd_model.partial_fit(X, Y, sample_weights)
  # copy the coeffs (list of numpy floats) into native list
                                                             Important trick:
  # of python doubles (for Spark type compatibility)
                                                             Converts numpy.ndarray[numpy.float64]
                                                             into native python list[float] which then
  [retval.append(p.item()) for p in sgd_model.coef_];
                                                             can be autoconverted to Spark List[Double]
  return(retval)
                                                             Register UDF which returns Spark List[Double]
sgdlinreg_udf = udf(sgdlinreg, ArrayType(DoubleType()))
```

SPA EUR

Time Series Prediction as a Service

- Provided the labels identify time series and lookup the model
- Get historical data (performance is the key)
- Recursively predict next price, shifting the window for the desired length

$$f\begin{pmatrix} x_{n-l} \\ \vdots \\ x_n \end{pmatrix} = x_{n+1} \Rightarrow f\begin{pmatrix} x_{n-l+1} \\ \vdots \\ x_{n+1} \end{pmatrix} = x_{n+2} \Rightarrow \dots$$

 The same workflow for any model: SGDClassifier, SGDRegressor, ARIMA, Kalman, Particle Predictor

Summary

- Spark + Python is AWESOME for DataScience ©
- Large scale DataScience needs correct infrastructure (Kafka-Kinesis, Spark Streaming, in memory DB, Notebooks)
- It is much easier to work with large volumes of models, then very few ones
- Gaussian Mixture is great for fuzzy clustering, has very mature and fast implementations
- Spark DataFrames with UDF can be used to efficiently palletize the model training in tens and even hundreds of thousands models

Want to work with cutting edge 100% Apache Spark + Python projects? We are hiring!!!

Senior Data Scientist, working with

Apache Spark + Python doing Airfare/price forecasting

Senior Big Data Engineer/Senior Backend Developer, working with Apache Spark/S3/MemSql/Scala + MicroAPIs

job@infare.com http://www.infare.com/jobs/

THANK YOU!

Remember, we are hiring!

Josef Habdank

Lead Data Scientist & Data Platform Architect at INFARE

- jha@infare.com www.infare.com
- in www.linkedin.com/in/jahabdank
- 🥑 @jahabdank

