

ODEs on Manifold

PDEs or Manifold

Manifold Learning

AI4PDE

A Bit Of Differential Geometry and Manifold Learning

Yunfeng Liao

23 August, 2024

Geomtry

PDEs o

Manifo Learnin

Presentation Overview

Differential Geomtry

Definition: Manifold, Tangent Space, Tangent Bundle, Vector Field

Riemannian Metric

ODEs on Manifolds

PDEs on Manifolds

Manifold Learning

Global Methods

Local Methods

ODEs on Manifolds

PDEs or Manifold

Manifol Learnin

Tutorials about Solving PDEs on manifolds

Tutorials: Differential Geometry

- An Introduction to Manifolds. Loring W. Tu.
- Differential Geometry. Loring W. Tu.

Tutorials: Geometric Analysis

- Riemannian geomeotry and geometric analysis. Jurgen Jost.
- Notes for Analysis on Manifolds via the Laplacian. Yaiza Canzani.

Tutorials:Variation

• Introductory Variational Calculus on Manifolds. Ivo Terek.

Numerical Methods

• (ODE)Solving Differential Equations on Manifolds. Ernst Hairer.

Definition: Manifold, Tangent Space, Tange Bundle, Vector Field Riemannian Metric

ODEs on

PDEs on Manifold

Manifoli Learning

Section Overview

Differential Geomtry

Definition: Manifold, Tangent Space, Tangent Bundle, Vector Field
Riemannian Metric

Definition: Manifold, Tangent Space, Tangent Bundle, Vector Field

ODEs or Manifold

PDEs on Manifold

Manifol

Learnin

Manifold

Definition

A **n-dimension manifold** \mathcal{M} is a Hausdorff topological space that **locally looks** like \mathbb{R}^n . It has a set of one-to-one **coordinate mappings**, $\phi: \mathbb{R}^n \to \mathcal{M}$.

Example

A circle in \mathbb{R}^2 is a 1d manifold. It can be equipped with two coordinates map: $\phi_1:(x)\to(x,y),y\geq 0$ $\phi_2:(x)\to(x,y),y\leq 0$

Sorts of Manifold

Definition: Manifold, Tangent Space, Tangent

Tangent Space, Tang Bundle, Vector Field Riemannian Metric

Manifold

PDEs on Manifolds

Learnin

Intuitive Manifolds

A sphere S^2 , any graph of a smooth two variables function $\{(x,y,f(x,y))\}$, any curve or surface and so on are manifolds. These topology can be embedded into an Euclidean space, which are studied in **extrinsic geometry**.

Somewhat Weird Manifolds

 Many matrix groups can be viewed as a manifold. For instance, the n-d general linear group:

$$GL(\mathbb{R}^n) := \{ A \in M_n : \det A \neq 0 \}$$
 (1)

It can be showed that it is a n^2 -d manifold.

• Level set. Sometimes a system parametrized with θ satisfies $f(\theta_1,...\theta_n) = 0$, then the solution of θ 's is termed the zero level set, which also constitutes a manifold.

What is Tangent Space

Definition: Manifold, Tangent Space, Tange

Bundle, Vector Field Riemannian Metric

.....

Manifold

PDEs on Manifold

Manifol Learning **Locally looks like** \mathbb{R}^n ? For a 2d surface manifold embedded in \mathbb{R}^3 , its tangent space at a point $p \in$ can be imagined as its **tangent plane**. One can easily find two basis vectors in \mathbb{R}^3 , which is $\mathbf{e}_1 = (a, b, 0)^T$, $\mathbf{e}_2 = (c, d, 0)^T$ after a proper coordinates transformation.

Since its tangent space is simply 2d, it is enough to write $\mathbf{e}_1 = (a,b)^T$, $\mathbf{e}_2 = (c,d)^T$. To jump out of what the Euclidean space limits, we use $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$ as the basis vectors, i.e.

$$e_1 = a\frac{\partial}{\partial x} + b\frac{\partial}{\partial y} \equiv a\partial_x + b\partial_y; e_2 = c\frac{\partial}{\partial x} + d\frac{\partial}{\partial y} \equiv c\partial_x + d\partial_y$$
 (2)

Definition: Manifold, Tangent Space, Tangent Bundle, Vector Field

Riemannian Met

ODEs o

PDEs or Manifold

Manifol Learnin

Notations

Definition

A n-d \mathcal{M} at any $x \in \mathcal{M}$ has a n-d **tangent vector space** $T_x \mathcal{M}$. Assembly these spaces and yield the tangent bundle $T\mathcal{M}: \mathcal{M} \times \mathbb{R}^n$ with a natural projection $\pi: T\mathcal{M} \to \mathcal{M}$.

Einstein Summation Convention

$$a_i c_j d_k b^i := \left(\sum_i a_i b^i\right) c_j d_k \tag{3}$$

Definition

A function or scalar field on \mathcal{M} is a map $f: \mathcal{M} \to \mathbb{R}$. A vector field on \mathcal{M} is a map $X: \mathcal{M} \to T\mathcal{M}$. A curve on \mathcal{M} is a map $\gamma: \mathbb{R} \to \mathcal{M}$

Definition: Manifold, Tangent Space, Tange Bundle, Vector Field

Riemannian Metric

ODEs o Manifold

PDEs on Manifold

Manifol Learnin

Riemannian Manifold

Definition

If we endow those tangent spaces with an inner product, i.e. ,assume them **Hilbert**, then we write $(x,y) = x^T G_p y, x, y \in T_p M, p \in M$. If $\forall p, G_p$ is **positive-definite**, such $G_p := g(p)$ is called a **Riemannian metric** on M.

Remark

g can be viewd as a matrix, whose (i,j) element g_{ij} , are all functions on M. Its **inverse matrix** is g^{ij} s.t. $g_{ij}g^{jk} = \delta_i^k$.

Remark

All basis vectors $\mathbf{e}_1, \mathbf{e}_2, ... \mathbf{e}_n$ on a smooth manifold can constitute n vector fields with a proper permutation.

Christoffel Symbol

Since the basis vectors in each tangent space will vary, we must use Christofel symbols to depict such changes.

$$\partial_{\mathbf{x}^j} \mathbf{e}_i = \Gamma_{ij}^k \mathbf{e}_k \tag{4}$$

or equivently, where $g_{mk,l} := \frac{\partial}{\partial x^l} g_{mk}$

$$\Gamma_{ij}^{k} = \frac{1}{2}g^{im}(g_{mk,l} + g_{ml,k} - g_{kl,m})$$
 (5)

The **connection**, i.e., the generalized version of the **gradient** ∇ is unique in the sense of being compatible with Riemannian manifold (M,g). So the Christofel symbol is somewhat the components of a *directional derivative*.

Here $\nabla: T_{\times}M \times T_{\times}M \to T_{\times}M, \nabla_{\times}Y \mapsto Z$

$$\nabla_{\partial_i} \mathbf{e}_j = \Gamma_{ii}^k \mathbf{e}_k \tag{6}$$

Geomtry

Definition: Manifold, Tangent Space, Tange Bundle, Vector Field

Riemannian Metric

ODEs on

PDEs on Manifolds

Manifold Learning

Author Name Research Title Here 10/33

ODEs on Manifolds

PDEs on Manifolds

Manifold Learning

Section Overview

ODEs on Manifolds

ODEs on Manifolds

PDEs or Manifold

Manifo Learnin

Problem Settings

Usually, the solution of an ODE on a manifold is a **curve**(also **flow** in some literature) $\gamma(t)$.

Example

Geodesic. $\gamma(t)$ where $\dot{\gamma} := \frac{d\gamma^i}{dt} \frac{\partial}{\partial x^i}$ is a geodesic iff

$$\nabla_{\dot{\gamma}(t)}\dot{\gamma}(t) = 0 \Leftrightarrow \frac{d^2}{dt^2}\gamma^{i} + \Gamma^{i}_{jk}\frac{d\gamma^{j}}{dt}\frac{d\gamma^{k}}{dt} = 0$$
 (7)

A more generalized version is:

$$\dot{y} = f(y), y(0) = y_0$$
 (8)

where $y \in M, f : M \to T_{\times}M$

ODEs on Manifolds

Manifold

Manifold Learning

FDM with Projection

If the manifold is embedded in \mathbb{R}^n , then one can take the tangent space on M as a subspace in \mathbb{R}^n and use FDM directly.

$$\dot{y} = f(y) \Rightarrow y^{n+1} - y^n = f(y^n)h \tag{9}$$

However, since it always happens that the obtained $y^{n+1} \notin M$ even if $y^n \in M$, a projection step is required.

Fig. 1: Naive FDM

Section Overview

Differential Geomtry

ODEs on

PDEs on Manifolds

Manifold Learning

PDEs on Manifolds

Generalized Grad, Div, LBO on Manifolds

Geomtry
ODEs on

PDEs on Manifolds

Manifold Learning Use the generalizations below and one can develop the corresponding PDE on manifolds, where u, X are a function and a vector field on M, resp.

$$\nabla u := g^{ij} \frac{\partial u}{\partial x^i} \frac{\partial}{\partial x^j} \tag{10}$$

$$\operatorname{div}_{g} X := \frac{1}{\sqrt{|\det g|}} \frac{\partial}{\partial x^{i}} (b^{i} \sqrt{|\det g|}), X = b^{i} \frac{\partial}{\partial x^{i}}$$
(11)

$$\Delta_{g} u := \operatorname{div}_{g} \nabla u = \frac{1}{\sqrt{|\det g|}} \frac{\partial}{\partial x^{i}} \left(g^{ij} \frac{\partial u}{\partial x^{i}} \sqrt{|\det g|} \right) \tag{12}$$

Example

The eigenproblems of Laplacian-Beltramin Operator.

$$\Delta_{g} u(x) = \lambda u, x \in M; u(x) = 0, x \in \partial M$$
(13)

Differential

ODEs o

PDEs on Manifolds

Manifold Learning

A Possible Task Scenario

Point Clouds On a Manifold.

Fig. 2: Solving The Possion Equation On A Point Cloud

(

Geomtry

Manifold

PDEs on Manifolds

Manifold Learning

Challenges

Challenges

- How to find a proper chart(or more exactly, the coordinate system) for the manifold?
- How to reconstruct the manifold by the point cloud?
- How to solve the PDE given a manifold?
- Another way: can we solve u without estimating g directly?
- Difference(or derivative) is not easily to realize on a point cloud, but integral is much easier.

Challenge I: Find a proper coordinate system

Geomtry
ODEs on

PDEs on

Manifo Learnin

Possible coordinate systems are:

- The original coordinate system. Not recommended. i) Nobody know how to **segment** an unknown manifold properly; ii) it can be ill-conditioned;
- If M is known of n-1-dimension, i.e., a hyper surface, then one may compute its normal vector field via SVD. A simple BFS can generate a set of well-behaved coordinates.
- **Harmonic Coordinates**. Widely utilized in harmonic analysis and determined only by the metric itself.
- Coordinates used in manifold learning. However, these coordinates don't seem to involve much useful geometric info about the manifold.

ODEs on Manifold

PDEs on Manifolds

Manifol Learnin

Find An Euclidean Chart Of A Hypersurface N

Algorithm 1: Find An Euclidean Chart Of A Hypersurface N

```
1 Find k-nearest neighbors of each point k > n-1
2 for Each Point x; do
        displacement \mathbf{u}_i = \mathbf{x}_i - \mathbf{x}_i, \mathbf{x}_i \in \mathcal{N}(\mathbf{x}_i)
 3
       A = concat(u_i)
       U, \Sigma, V^T = SVD(A)
       normal vector \mathbf{n}_i = \text{lastRowOf}(V^T)
7 while Not All Points Have A Coordinate System do
        Choose a uncoordinated point x_i with n_i.
 8
        Establish an Euclidean coordinates using projection orthogonal to \mathbf{n}_i.
 9
        repeat
10
            BFS, add new neighboring point xi
11
        until \mathbf{n}_i \cdot \mathbf{n}_i > \epsilon;
12
```


Harmonic Coordinates

Geomtry

PDEs on

Manifolds Manifold The harmonic coordinate $(x^1, x^2..., x^n)$ on manifold M is n linearly independent harmonic functions $x^{1:n}$ s.t.

$$\Delta_g x_i = 0 \tag{14}$$

Equivalently

$$2g^{ij}g_{jk,i} = g^{ij}g_{ij,k} (15)$$

Fortunately, it can be showed that:

$$-\int_{M} \Delta_{g} u(y) R'_{t}(x,y) d\mu_{y} \approx \frac{1}{t} \int_{M} R_{t}(x,y) (u(x) - u(y)) d\mu_{y} - 2 \int_{\partial M} R'_{t}(x,y) \frac{\partial u}{\partial n}(y) d\tau_{y}$$
(16)

where R_t is Gaussian kernel and R'_t is its error function, i.e.

$$R_{t}(x,y) = C_{t}R(\frac{|x-y|^{2}}{4t}), R'_{t}(x,y) = C_{t}\int_{\frac{|x-y|^{2}}{4t}}^{+\infty} R(s)ds$$
 (17)

R(s) has a compact support within [0,1] and is usually chosen as $\exp{-s^2}$ in engineering.

Manifold Learning

Section Overview

Manifold Learning Global Methods Local Methods

ODEs on

PDEs o Manifol

Manifold Learning Global Methods Local Methods

Fig. 3: Coordinate Representation Methods

ODEs on Manifolds

PDEs on Manifold

Manifold Learning Global Methods Local Methods

Why Manifold Learning?

The essential spirit of manifold learning is dimension reduction(RD), or namely feature extraction to be high-brow. It helps to avoid curse of dimensionality.

How to use manifolds? Coordinates is all you need .

PDEs or

Manifold Manifold

Learning
Global Method

The Powerful SVD Technique

For any matrix $A_{d\times D}$, we have:

$$A = U_{d \times d} \Sigma_{d \times D} V_{D \times D}^{T} \tag{18}$$

where $UU^T = I$, $VV^T = I$, Σ without the last (D-d) columns is diagonal, denoted by diag $\{\lambda_1,...\lambda_d\}$. It is of great use in the following aspects:

- **Dimension Reduction**. SVD induces low-rank decomposition, since $A = \sum_{i=1}^{d} \lambda_i u_i v_i^T$. One can cast away terms where the corresponding λ_i is too small.
- As the optimization solution. The optimization target $\min_{X^TX=I} \operatorname{tr} X^T A X$ is often met in manifold learning. Its solution is just about the eigenpairs (the eigenvalue and eigenvector) of A.
- **Discrete spectral method**. We use its eigenvectors to generate the coordinates

ODEs or Manifold

Manifol

Global Methods Local Methods

If the manifold is assumed to be a vector subspace...

Then we have classical dimension-reduction methods, like PCA, LDA and FA. LDA turns out to be linear in the end and FA only differs a little bit from eq.(20)

PCA: Principal component analysis

It has two equivalent optimization target: minimize reconstruction error and maximize the principal variance. $X, P_{d \times D}, Y = PX$ denotes the input data matrix, output matrix and linear transformation. In the sense of **maximize the principal variance**, Cov $Y := \frac{1}{n} YY^T$ and we wish to maximize tr Cov Y, i.e.

$$\max_{P} \operatorname{tr}(P\operatorname{Cov}[X]P^{T}) \tag{19}$$

Apply SVD on Cov[X] and X is the first d columns of V. It is equivalent to minimize reconstruction error by

$$\min_{\mathcal{D}} (Y' - X)^2 \tag{20}$$

Author Name Research Title Here 25 / 33

Now the manifold is a non-trivial manifold

Geomtry

PDEs or

Manifol

Global Methods Local Methods

MDS:Multidimensional Scaling [1]

MDS gives a framework for ISOMAP. Given the distance matrix $L_{ij} := d(x_i, x_j)$, d here can be any distance function. Let d be l_2 and yield

$$G := XX^T \equiv -\frac{1}{2}JLJ, J = I_n - \frac{1}{n}11^T$$
 (21)

Notice that G is symmetric, positive semi-definite (p.s.d.),so \sqrt{G} is well-defined.

$$G = (\sqrt{\Lambda}P)^{T} \sqrt{\Lambda}P, X \approx \sqrt{G} := \sqrt{\Lambda}P$$
(22)

SVD here acts as low-rank decomposition. One can cast away small eigenvalues in Λ for RD.

What if *d* is the geodesic distance? It is followed with ISOMAP.

Global Methods

ISOMAP [2]

Suppose the manifold M is given in the form of **point cloud**. One can construct a KNN(k-nearest neighbors graph) onwards.

Spirit

It is unrealistic to solve a geodesic on M. Instead, we use the virtue of M that

- It looks locally like \mathbb{R}^d
- Its parameter space is Euclidean.
- Geodesic is the shortest curve on M

ISOMAP:Isometric Mapping

- Approximate geodesic distance via Euclidean distance. $d(x_i, x_i) := ||x_i - x_i||_2, x_i \in N(x_i)$
- Evaluate the distance matrix L_{ii} by a shortest path algorithm.

Research Title Here

Local Methods

Local Embedding Methods:LLE/Eigenmaps

Since M looks locally like \mathbb{R}^d , the linear approximation holds water:

$$x_i = \sum_{j \neq i} w_{ij} x_j, x_j \in N(x_i)$$
 (23)

Thus the embedded coordinate Y also enjoys:

$$y_i = \sum_{j \neq i} w_{ij} y_j, y_j \in N(y_i)$$
 (24)

Generally, we require Y to be translation-invariant and orthogonal normal:

$$Y\mathbf{1} = 0, Y^T Y = I \tag{25}$$

LLE only gives the relative coordinates.

LLE: Local Linear Embedding [3]

- Yield weights W by minimizing $|x_i \sum_{i \neq i} w_{ij} x_i|^2 + \alpha \sum_i w_{ii}^2$
- Yield $Y = \arg\min_{Y^T Y = I} |Y WY|^2 = \arg\min_{Y^T Y = I} Y^T [(I W)^T (I W)] Y$ by SVD.

Laplacian LE/Laplacian Eigenmaps

Differentia Geomtry

PDEs or

Manifold Learning Global Methods What if we wanna get something like harmonic coordinates? i.e. $\Delta f = 0$. We may not as well impose the homogenous Neumann condition on M. Then by Green's first equation

$$f = \arg\min_{f} \int_{M} |\nabla f|^{2} = \arg\min_{f} \int_{M} f \Delta f$$
 (26)

Use the integration where G_t is the Neumann heat kernel

$$e^{-t\Delta} = \int_{M} G_{t}(x, y) f(y), G_{t}(x, y) \approx (4\pi t)^{-\frac{d}{2}} e^{-\frac{|x-y|^{2}}{4t}}$$
 (27)

Given $\Delta = -\lim_{t \to 0^+} \frac{I - e^{-t\Delta}}{t}$, a discretized version is:

$$\Delta f(x_i) = \frac{1}{t} (f(x_i) - (4\pi t)^{-\frac{d}{2}} \sum_{x_j \in N(x_i)} \exp{-\frac{|x_i - x_j|^2}{4t}} f(x_j)) =: \frac{1}{t} (d_i f(x_i) - \sum_j w_{ij} f(x_j))$$
(28)

Whence here comes the graph Laplacian matrix L := D - W, the approximation of Δ .

Laplacian LE/Laplacian Eigenmaps

ODEs on

PDEs o

Manifold Learning Global Methods Local Methods Normalize L symmetrically as what we do in GNN, $\mathcal{L} := D^{-\frac{1}{2}}LD^{-\frac{1}{2}}$

Laplacian Eigenmaps [4], chap. 12

As required in LLE,

$$Y\mathbf{1} = 0, Y^T Y = I \tag{29}$$

The variation and SVD gives Y:

$$\arg\min_{f} \int_{M} f \Delta f \approx \arg\min_{Y} \operatorname{tr} Y^{T} \mathcal{L} Y =: Y$$
 (30)

LTSA:Local Tangent Space Alignment

ıl

PDEs or

Manifold Learning Global Methods Local Methods There is a mapping between the coordinates on the manifold and in the Euclidean space, f(y) = x. Hence we have a push-forward df s.t.

$$x_j - \overline{x} = \mathsf{df}(\overline{y})(y_j - \overline{y}) \tag{31}$$

Hence its inverse $dh := df^{-1}$ gives:

$$y_j - \overline{y} = dh(\overline{x})(x_j - \overline{x})$$
 (32)

H denotes the centralized matrix, and we have:

$$Y_i H = \operatorname{dh}(\overline{x}) X_i H = \operatorname{dh}(\overline{x}) U \Sigma V^T$$
(33)

Then we have:

$$Y_iH(I-VV^T)=O$$

(34)

Define $W_i = H(I - VV^T)$ and we have $Y_iW_i = O$. Extend W_i, Y_i to the whole graph and yield W^i, Y . And it is expected that

$$YW^{i} = O, \forall i \Rightarrow YK = O, K = \sum W^{i}$$
(35)

ODEs on

PDEs on Manifold

Learning
Global Methods
Local Methods

LTSA [4],chap.11

Since K is s.p.d. , the optimization problem can be:

$$Y = \arg_{Y} \min_{Y^T Y = I} \operatorname{tr} Y^T K Y \tag{36}$$

The solution is the 2nd to (n+1)st eigenvectors because K has a trivial eigenvector $\mathbf{1}$ s.t. $K\mathbf{1} = \mathbf{0}$.

HLLE: Hessian LLE [4], chap.13

We may define the **Hessian operator** $H[f] := \frac{\partial^2}{\partial v^i \partial v^j} f$ and must have:

$$H[y^i] = 0, H[c] = 0$$
 (37)

where c is the constant function on M. If we can find an approximation of H at x_i and replace the W_i in LTSA, then we have the so-called HLLE.

ODEs on Manifolds

Manifold

Learning
Global Methods
Local Methods

Ref.

- 1 https://www.sjsu.edu/faculty/guangliang.chen/Math253S20/lec9mds.pdf
- https://www.sjsu.edu/faculty/guangliang.chen/Math253S20/lec10ISOmap.pdf
- 3 https://www.stat.cmu.edu/ cshalizi/350/lectures/14/lecture-14.pdf
- 4 Geometric Structure of High-Dimensional Data and Dimensionality Reduction, Jianzhong Wang.
- 5 Manifold Learning: What, How, and Why. Marina Meila and Hanyu Zhang. Annual Review of Statistics and Its Applications.