

Projekt Drogi Budownictwo Komunikacyjne

Michał Buczek

Dębica - Kwiecień 2020

Spis treści:

1	Opis rozwiązań projektowych	4
	1.1 Przedmiot opracowania	4
	1.2 Zakres opracowania	4
	1.3 Podstawa opracowania	4
	1.4 Parametry projektowanego odcinka drogi	5
2	Plan sytuacyjny projektowanego odcinka	6
	2.1 Kąt zwrotu trasy drogi	6
	2.2 Parametry drogi i łuku kołowego	6
	2.2.1 Szerokość drogi	6
	2.2.2 Promień łuku kołowego	6
	2.2.3 Pochylenie poprzeczne jezdni	6
	2.3 Wyznaczenie parametrów krzywej przejściowej	7
	2.3.1 Warunek dynamiczny	7
	2.3.2 Warunek konstrukcyjny I	7
	2.3.3 Warunek konstrukcyjny II	8
	2.3.4 Warunek estetyczny I	8
	2.3.5 Warunek estetyczny II	8
	2.3.6 Warunek estetyczny III	9
	2.3.7 Warunek geometryczny	9
	2.3.8 Warunek wygody jazdy	9
	2.3.9 Dopuszczalny przedział wartości parametru a: .	9
	2.3.10 Wartość parametru a z uwagi na proporcje $L:K:L$	10
	2.4 Pikietaż punktów głównych poziomego	
	przejścia krzywoliniowego	10
	2.4.1 Długość krzywej przejściowej	10
	2.4.2 Kąt zwrotu stycznej krzywej przejściowej	10
	2.4.3 Kąt środkowy łuku kołowego	10
	2.4.4 Rzędna końca krzywej przejściowej	10
	2.4.5 Odcięta końca krzywej przejściowej	11
	2.4.6 Odcięta środka krzywizny	11
	2.4.7 Przesunięcie środka krzywizny względem łuku kołow	rego,
	przed wprowadzeniem krzywych przejściowych	11
	2.4.8 Długość stycznej T_s	11
	2.4.9 Długość stycznej krzywej całkowitej T_o	11
	2.4.1@dległość od wierzchołka do środka krzywizny .	11
	2.4.1Długość łuku kołowego K po wprowadzeniu krzywej	
	przejściowej	11
	2.4.12Długosć całkowita przejścia krzywoliniowego	11
	2.4.1% estawienie parametrów przejścia krzywoliniowego	12
	2.4.1Pikietaż punktów głównych przejścia krzywoliniowe	go 12
3	Profil podłużny wraz z niweletą	13
	3.1 Rzędne punktów, pochylenia podłużne	13
	3.2 Wartości pochyleń podłużnych odcinków prostych	13
	3.3 Miary kątów załomów pionowych	14
	3.4 Rzędne punktów głównych łuków pionowych	14

	3.4.1 Długości łuków	14
	3.4.2 Długość stycznych	14
	3.4.3 Długości strzałek	15
	3.4.4 Rzędne środków łuków pionowych	15
	3.4.5 Rzędne początków łuków pionowych	15
	3.4.6 Rzędne końców łuków pionowych	15
4	Przekrój typowy na prostej i charakterystyczne poprzeczne	16
	4.1 Szerokość i pochylenia poprzeczne jezdni i poboczy .	16
	4.1.1 Szerokość jezdni	16
	4.1.2 Szerokość pobocza	16
	4.1.3 Pochylenie poprzeczne jezdni na odcinku prostym	16
	4.1.4 Pochylenie poprzeczne pobocza na odcinku prostym	16
	4.1.5 Pochylenie poprzeczne jezdni na łuku	16
	4.1.6 Pochylenie poprzeczne pobocza na łuku	16
5	Objętości i rozdział mas ziemnych	17
6	Ostatni punkt	17
7	Załączniki	18

1 Opis rozwiązań projektowych

1.1 Przedmiot opracowania

Przedmiotem opracowania jest projekt odcinka drogi jednojezdniowej, V klasy technicznej, kategorii ruchu KR3.

Prędkość projektowa trasy wynosi 60 km/h, natomiast dobowa liczba pojedynczych osi na obliczeniowy pas ruchu wynosi 122.

1.2 Zakres opracowania

Zakres opracowania obejmuje:

- 1. Opis rozwiązań projektowych
- 2. Plan sytuacyjny odcinka drogi w skali 1:5000
- 3. Profil podłużny wraz z zaprojektowaną niweletą w skali 1:100/1000
- 4. Przekrój typowy na prostej i charakterystyczne przekroje poprzeczne
- 5. Objętość i rozdział mas ziemnych

1.3 Podstawa opracowania

Projekt opracowano na podstawie danych podanych na karcie projektu. Podstawą normatywną do opracowanie projektu jest: "Rozporządzenie Ministra Transportu i Gospodarki Morskiej z dnia 2 Marca 1999r. w sprawie warunków technicznych jakim powinny odpowiadać drogi publiczne

i ich usytuowanie" Dz. U. Nr 43 poz.430

1.4 Parametry projektowanego odcinka drogi

- Klasa drogi: V
- Prędkość projektowa: $V_p = 60 \frac{km}{h}$
- Dobowa liczba osi na pas ruchu: 122
- Największe dopuszczalne pochylenie niwelety: 8%
- Promień łuku poziomego: $R=250\,m$
- Promień wypukły łuku pionowego: $R_{\uparrow min} = 2500 \, m$
- Promień wklęsły łuku pionowego: $R_{\Downarrow min} = 1500\,m$
- Pochylenie pobocza: ###
- Pochylenie poprzeczne jezdni na prostej: $i_o=2\%$
- Pochylenie poprzeczne jezdni na łuku: $i_p=4\%$
- Szerokość pasa ruchu: $b=3\,m$
- Szerokość jezdni: $B=6\,m$
- Szerokość pobocza: 1 m

2 Plan sytuacyjny projektowanego odcinka

Dla zadanych punktów trasy drogi określono kąt zwrotu trasy, promień łuku kołowego, parametr a krzywej przejściowej oraz pozostałe parametry projektowanego łuku poziomego. Plan sytuacyjny odcinka drogi w skali 1:5000 ujęto w załaczniku, na rysunku 1

2.1 Kąt zwrotu trasy drogi

Kąt zwrotu trasy przyjęto na podstawie pomiaru w programie AutoCAD.

Przyjęto; $\gamma = 39,1013^{o} = 0,682447 \, rad$

2.2 Parametry drogi i łuku kołowego

Parametry zostały przyjęte zgodnie z

"Rozporządzenie Ministra Transportu i Gospodarki Morskiej z dnia 2 Marca 1999r. w sprawie warunków technicznych jakim powinny odpowiadać drogi publiczne i ich usytuowanie" Dz. U. Nr 43 poz.430 (dalej RMTiGW)

2.2.1 Szerokość drogi

Zgodnie z RMTiGW oraz Rozporządzeniem Ministra Infrastruktury i Rozwoju z dnia 10 marca 2015r. §15.1 (dalej RMIiR) szerokość minimalna pasa ruchu na drodze klasy Z wynosi 3m.

Przyjęto: Szerokość pojedyńczego pasa ruchu $b=3\,m$

Przyjęto: Szerokość jezdni $B = 2 \cdot 3 m = 6 m$

2.2.2 Promień łuku kołowego

Zgodnie z RMTiGW §21.1c, dla jezdni nieograniczonej krawężnikami o prędkości projektowej $V=60\,km/h$ Przyjęto: $R=250\,\mathrm{m}$

2.2.3 Pochylenie poprzeczne jezdni

Na odcinku prostym, dla jezdni twardej ulepszonej, zgodnie z RMTiGW §17.2, **Przyjęto:** Obustronne pochylenie jezdni $i_o = 2\%$, dla przekroju daszkowego.

2.3 Wyznaczenie parametrów krzywej przejściowej

Aby krzywa przejściowa spełniała wymogi bezpieczeństwa i wygody ruchu, wartość parametru a musi spełniać szereg poniższych warunków:

2.3.1 Warunek dynamiczny

Przyrost przyspieszenia dośrodkowego działającego na pojazd poruszający się z prędkością projektową nie może być większy od dopuszczalnego.

$$a_{min}^{(1)} = 0,146 \cdot \sqrt{\frac{V_p^3}{k}} \tag{1}$$

Gdzie:

 V_p - Prędkość projektowa. Tutaj: $V_p{=}60\frac{km}{h}{=}16{,}7\frac{m}{s}$

k - Przyrost przyspieszenia dośrodkowego $\,$ wg. RMTiGW §22.1.1 przyjęto: k=0,7 $\frac{m}{s^3}$

Tutaj:
$$a_{min}^{(1)}=0,146\,\cdot\,\sqrt{\frac{V_p^3}{k}}=0,146\,\cdot\,\sqrt{\frac{16,7^3}{0,7}}=11,877\,m$$

Przyjęto: $a_{min}^{(1)} = 11,88 \, m$

2.3.2 Warunek konstrukcyjny I

Pochylenie podłużne jezdni i_d zewnętrznej krawędzi jezdni na długości krzywej przejściowej nie powinno przekraczać wartości dopuszczalnej, stąd:

$$a_{min}^{(2)} = \sqrt{\frac{b}{2} \cdot \frac{R}{i_d} \cdot (i_o + i_p)}$$
 (2)

Gdzie:

b - Szerokość jezdni, tutaj $b = 6,00 \, m$

R - Promień łuku kołowego, tutaj $R=250\,m$

 i_d - Dopuszczalne dodatkowe pochylenie krawędzi jezdni,

wg. RMTiGW §18.3 przyjęto: $i_d = 1,6\%$

 i_o - Pochylenie poprzeczne na prostej (spadek dwustronny), dopuszczalne dodatkowe pochylenie krawędzi jezdni,

wg. RMTiGM §17.2.1 przyjęto: $i_o = 2,0\%$

 i_p - Pochylenie poprzeczne na łuku (spadek jednostronny),

wg. RMTiGM §21.3 przyjęto $i_p = 4\%$

Tutaj:
$$a_{min}^{(2)} = \sqrt{\frac{b}{2} \cdot \frac{R}{i_d} \cdot (i_o + i_p)} = \sqrt{\frac{6}{2} \cdot \frac{250}{1,6} \cdot (2,0+4,0)} = \sqrt{3 \cdot 156,25 \cdot 6} = 53,033 \, m$$

Przyjęto: $a_{min}^{(2)} = 53,03 \, m$

2.3.3 Warunek konstrukcyjny II

Warunek ten wynika z konieczności poszerzenia pasa ruchu na łuku.

$$a_{min}^{(3)} = 1,86 \cdot \sqrt[4]{R^3 \cdot p_c} \tag{3}$$

Gdzie:

R - Promień łuku kołowego, tutaj $R=250\,m$

 P_c - Całkowite poszerzenie pasa ruchu.

wg. RMTiGM §16.1.1 $p_c = \frac{40}{R} = \frac{40}{250} = 0,16 \, m$

Przyjęto: $p_c = 0,20 \, m$

Tutaj: $a_{min}^{(3)} = 1,86 \cdot \sqrt[4]{R^3 \cdot p_c} = 1,86 \cdot \sqrt[4]{250^3 \cdot 0,20} = 78.203 \, m$

Przyjęto: $a_{min}^{(3)} = 78,21 \, m$

2.3.4 Warunek estetyczny I

Ustalony na podstawie obserwacji połączeń krzywej przejściowej z łukiem kołowym. W celu wyeliminowania zauważalności krzywej przejściowej wartość a musi być większa od minimalnej, a mniejsza od maksymalnej:

Wartość minimalna:
$$a_{min}^{(4)} = \frac{R}{3}$$
 (4)

Wartość maksymalna:
$$a_{max}^{(5)} = R$$
 (5)

Tutaj: $a_{min}^{(4)} = \frac{R}{3} = \frac{250}{3} = 83,33 \, m$

 $a_{max}^{(5)} = R = 250 \, m$

Przyjęto: $a_{min}^{(4)} = 83,34 \, m$

 $a_{max}^{(5)} = 250 \, m$

2.3.5 Warunek estetyczny II

Ze względów realizacyjnych, wartość przesunięcia H środka łuku kołowego względem stycznej głównej nie może być mniejsza od $H_{min}=0,2\,m$. Stąd:

$$a_{min}^{(6)} = 1,48 \cdot \sqrt[4]{R^3} \tag{6}$$

Tutaj: $a_{min}^{(6)} = 1,48 \cdot \sqrt[4]{R^3} = 1,48 \cdot \sqrt[4]{250^3} = 93,05 \, m$

Przyjęto: $a_{min}^{(6)} = 93,05 \, m$

2.3.6 Warunek estetyczny III

W wyniku skrócenia długości odcinka przejazdu wprowadzeniem krzywej przejściowej, wartość przesunięcia H środka łuku kołowego, nie może być większa niż $H_{max}=2,5\,m$. Stąd:

$$a_{max}^{(7)} = 2,78 \cdot \sqrt[4]{R^3} \tag{7}$$

Tutaj: $a_{max}^{(7)} = 2,78 \cdot \sqrt[4]{R^3} = 2,78 \cdot \sqrt[4]{250^3} = 174,783 \, m$

Przyjęto: $a_{max}^{(7)} = 174,78 \, m$

2.3.7 Warunek geometryczny

Wartośc parametru klotoidy, przy którym nie występuje łuk kołowy przy danym kącie zwrotu wynosi:

$$a_{max}^{(8)} = R \cdot \sqrt{\gamma} \tag{8}$$

Tutaj: $a_{max}^{(8)} = R \cdot \sqrt{\gamma} = 250 \cdot \sqrt{0,682447} = 206,5258 \, m$

Przyjęto: $a_{max}^{(8)} = 206, 52 \, m$

2.3.8 Warunek wygody jazdy

Szczególnie ważne kryterium w przypadku drogi szybkiego ruchu, aby pochylenie poprzeczne jezdni zmieniało się maksymalnie o 2% w czasie 1 sekundy.

$$a_{min}^{(9)} = \sqrt{R \cdot V_p \cdot \frac{i_p - i_d}{7, 2}} \tag{9}$$

Tutaj: $a_{min}^{(9)} = \sqrt{R \,\cdot\, V_p \,\cdot\, \frac{i_p - i_d}{7,2}} = \sqrt{250\,\cdot\, 16, 7\,\cdot\, \frac{4,0 - 1,6}{7,2}} = 37,305\,m$

Przyjęto: $a_{min}^{(9)} = 37,31 \, m$

2.3.9 Dopuszczalny przedział wartości parametru a:

Wartość parametru a krzywej przejściowej nie powinna być mniejsza od największej wartości a_{min} oraz większa od najmniejszej wartości a_{max} .

$$max(a_{min}^{(1)}, a_{min}^{(2)}, a_{min}^{(3)}, a_{min}^{(4)}, a_{min}^{(6)}, a_{min}^{(9)}) \le a \le min(a_{max}^{(5)}, a_{max}^{(7)}, a_{max}^{(8)})$$
 (10)

Tutaj: $a \ge max(11, 88 \, m \, 53, 03 \, m \, 78, 21 \, m \, 83, 33 \, m \, 93, 05 \, m \, 37, 31 \, m) = 93, 05 \, m$

oraz

 $a \le min(250 \, m \, 174,78 \, m \, 206,52 \, m) = 174,78 \, m$

W konsekwencji: $93,05 m \le a \le 174,78 m$

2.3.10 Wartość parametru a z uwagi na proporcje L:K:L

Dla drogi V klasy technicznej korzystna jest proporcja L:K:L=1:2:1, wtedy:

$$a = R \cdot \sqrt{\frac{\gamma}{3}} \tag{11}$$

Tutaj:
$$a = R \cdot \sqrt{\frac{\gamma}{3}} = 250 \cdot \sqrt{\frac{0,682447}{3}} = 119,238 \, m$$

Wartość ta mieści się we wcześniej wskazanym przedziale

• **Przyjęto:** $a = 119, 24 \, m$

2.4 Pikietaż punktów głównych poziomego przejścia krzywoliniowego

Dane:

- Promień łuku kołowego: $R = 250 \, m$
- Kąt zwrotu trasy: $\gamma = 0,682447 \, rad$
- Parametr krzywej przejściowej: $a=119,24\,m$
- Pikietaż wierzchołka: W: km 0 + 651, 50 m

2.4.1 Długość krzywej przejściowej

$$L = \frac{a^2}{R} \tag{12}$$

Tutaj: $L = \frac{a^2}{R} = \frac{119,24^2}{250} = 56,8727 \, m \approx 56,87 \, m$

2.4.2 Kąt zwrotu stycznej krzywej przejściowej

$$\tau = \frac{L}{2R} \tag{13}$$

Tutaj: $\tau = \frac{L}{2R} = \frac{56,8727}{2\cdot 250} = 0,1137454\,rad = 6,51713^o$

2.4.3 Kat środkowy łuku kołowego

$$\beta = \gamma - 2\tau \tag{14}$$

Tutaj: $\beta = \gamma - 2\tau = 0,682447 - 2 \cdot 0,1137454 = 0,454956 \, rad = 26,0671^{\circ}$

2.4.4 Rzędna końca krzywej przejściowej

$$x = L - \frac{L^5}{40 \cdot a^4} \tag{15}$$

Tutaj: $x = L - \frac{L^5}{40 \cdot a^4} = 56,87 - \frac{56,87^5}{40 \cdot 119,24^4} = 56,7964 \, m \approx 56,80 \, m$

2.4.5 Odcięta końca krzywej przejściowej

$$y = \frac{L^3}{6 \cdot a^2} - \frac{L^7}{336 \cdot a^6} \tag{16}$$

Tutaj: $y = \frac{L^3}{6 \cdot a^2} - \frac{L^7}{336 \cdot a^6} = \frac{56,87^3}{6 \cdot 119,24^2} - \frac{56,87^7}{336 \cdot 119,24^6} = 2,1560 - 0,0020 = 2,1540 \, m \approx 2,15 \, m$

2.4.6 Odcięta środka krzywizny

$$X_s = x - R \cdot \sin(\tau) \tag{17}$$

Tutaj: $X_s = x - R \cdot sin(\tau) = 56,80 - 250 \cdot sin(0,113745) = 56,80 - 28,37 = 28,43 \, m$

2.4.7 Przesunięcie środka krzywizny względem łuku kołowego, przed wprowadzeniem krzywych przejściowych

$$H = \frac{L^2}{24 \cdot R} \tag{18}$$

Tutaj: $H = \frac{L^2}{24 \cdot R} = \frac{56,87^2}{24 \cdot 250} = 0,54 \, m$

2.4.8 Długość stycznej T_s

$$T_s = (R+H) \cdot tan(\frac{\gamma}{2}) \tag{19}$$

Tutaj: $T_s = (R+H) \cdot tan(\frac{\gamma}{2}) = (250+0,54) \cdot tan(\frac{0.682447}{2}) = 88,97 \, m$

2.4.9 Długość stycznej krzywej całkowitej T_o

$$T_o = X_s + T_s \tag{20}$$

Tutaj: $T_o = X_s + T_s = 28,43 + 88,97 = 117,40 \, m$

2.4.10 Odległość od wierzchołka do środka krzywizny

$$Z = R \cdot \left(\frac{1}{\cos(\frac{\gamma}{2})} - 1\right) + H \tag{21}$$

Tutaj: $Z=R\,\cdot\,(\frac{1}{\cos(\frac{\gamma}{2})}-1)+H=250\,\cdot\,(\frac{1}{\cos(\frac{0.682447}{2})}-1)+0,54=15,84\,m$

2.4.11 Długość łuku kołowego K po wprowadzeniu krzywej przejściowej

$$K = R \cdot \beta \tag{22}$$

Tutaj: $K = R \cdot \beta = 250 \cdot 0,454956 = 113,74 \, m$

2.4.12 Długosć całkowita przejścia krzywoliniowego

$$L = 2L + K \tag{23}$$

Tutaj: $L = 2L + K = 2 \cdot 56,87 + 113,74 = 227,48 \, m$

2.4.13 Zestawienie parametrów przejścia krzywoliniowego

- Promień łuku kołowego: $R = 250 \, m$
- Kąt zwrotu trasy: $\gamma = 39,1013^{\circ} = 0,682447rad$
- Parametr krzywej przejściowej: a = 119, 24 m
- Pikietaż wierzchołka: $W: km \ 0+651, 50 \ m$
- Długość krzywej przejściowej: $L = 56,87 \, m$
- Kat zwrotu stycznej krzywej przejściowej: $\tau = 6,5171^{\circ} = 0,113745rad$
- Kat środkowy łuku kołowego: $\beta = 26,071^{\circ} = 0,454956 rad$
- Rzędna końca krzywej przejściowej: $x = 56,80 \, m$
- Odcięta końca krzywej przejściowej: $y = 2,15 \, m$
- Przesunięcie środka krzywizny: $H=0,54\,m$
- Długość stycznej: $T_s = 88,97 \, m$
- Długość stycznej krzywej całkowitej: $T_o = 117,40 \, m$
- Odległość wierzchołka od środka krzywizny: $Z=15,84\,m$
- Długość łuku kołowego: $K = 113,74 \, m$
- Długość krzywej przejściowej: $L = 56,87 \, m$
- Długość całkowita przejścia krzywoliniowego: $L = 227,48 \, m$

2.4.14 Pikietaż punktów głównych przejścia krzywoliniowego

(a) Początek krzywej przejściowej wejścia:

$$PKP_{Wej} = W - T_o = 651, 50 - 117, 40 = 534,10 \,\mathrm{m}$$

(b) Koniec krzywej przejściowej wejścia | Początek łuku kołowego:

$$KKP_{Wej}|PLK = PKP_{Wej} + L = 534, 10 + 56, 87 = 590,97 \text{ m}$$

(c) Środek łuku kołowego:

$$SLK = PLK + \frac{K}{2} = 590,97 + \frac{113,74}{2} = 647,84 \,\mathrm{m}$$

(d) Koniec łuku kołowego | Koniec krzywej przejściowej wyjścia:

$$KLK|KKP_{Wyj} = SLK + \frac{K}{2} = 647,84 + \frac{113,74}{2} = 704,71 \text{ m}$$

(e) Początek krzywej przejściowej wyjścia:

$$PKP_{Wyj} = KKP_{Wyj} + L = 704,71 + 56,87 = 761,58 \,\mathrm{m}$$

3 Profil podłużny wraz z niweletą

Zgodnie z RMTiGW §24 dla dróg klasy technicznej V, usytuowanej poza obszarem zabudowanym, dla prędkości projektowej $60 \frac{km}{h}$, przyjęto maksywalne pochylenie podłużne jezdni: $i_{max} = 8,0\%$ oraz minimalne: $i_{min} = 0,3\%$.

3.1 Rzędne punktów, pochylenia podłużne

Rzędne punktów głównych, razem z odległościami pomiędzy nimi zestawiono poniżej:

•
$$r_{1_{Pocz}} = 282,00 \, m.n.p.m.$$

$$l_{1-2} = 259,92 \, m$$

•
$$r_2 = 281, 19 \, m.n.p.m.$$

$$l_{2-3} = 320, 53 \, m$$

•
$$r_3 = 282,86 \, m.n.p.m$$

$$l_{3-4} = 308,09 \, m$$

•
$$r_4 = 280, 42 \, m.n.p.m.$$

$$l_{4-5} = 260, 14 \, m$$

•
$$r_5 = 282,55 \, m.n.p.m.$$

$$l_{5-6} = 403,64 \, m$$

•
$$r_{6_{Kon}} = 280,47 \, m.n.p.m.$$

3.2 Wartości pochyleń podłużnych odcinków prostych

Wartość pochyleń podłużnych dla poszczególnych odcinków obliczono wg. wzoru:

$$i = \frac{r_{n+1} - r_n}{l} \tag{24}$$

•
$$i_{1-2} = \frac{r_2 - r_1}{l_{1-2}} \cdot 100\% = \frac{281,19 - 282,00}{259,92} \cdot 100\% = -0,0031163 \cdot 100\% \approx -0,31\%$$

•
$$i_{2-3} = \frac{r_3 - r_2}{l_{2-3}} \cdot 100\% = \frac{282,86 - 281,19}{320,53} \cdot 100\% = 0,0052101 \cdot 100\% \approx 0,52\%$$

•
$$i_{3-4} = \frac{r_4 - r_3}{l_{3-4}} \cdot 100\% = \frac{280,42 - 282,86}{308,09} \cdot 100\% = -0,0079198 \cdot 100\% \approx -0,79\%$$

•
$$i_{4-5} = \frac{r_5 - r_4}{l_{5-6}} \cdot 100\% = \frac{282,55 - 280,42}{260,14} \cdot 100\% = 0,0081879 \cdot 100\% \approx 0,82\%$$

•
$$i_{5-6} = \frac{r_6 - r_5}{l_{5-6}} \cdot 100\% = \frac{280,47 - 282,55}{403,64} \cdot 100\% = -0,0051531 \cdot 100\% \approx -0,52\%$$

Jak widać, wszystkie wartości nachyleń mieszczą się pomiędzy wartością minimalną $i_{min}=0,3\%$ a maksymalną $i_{max}=8\%$

3.3 Miary katów załomów pionowych

Kąty załomów pionowych określono wg. wzoru:

$$\alpha_n = i_{n+1} - i_n \tag{25}$$

- $\alpha_1 = i_{2-3} i_{1-2} = 0,0052101 + 0,0031163 = 0,0083264 \, rad$
- $\alpha_2 = i_{3-4} i_{2-3} = -0,0079198 0,0052101 = -0,0131299 \, rad$
- $\alpha_3 = i_{4-5} i_{3-4} = 0,0081879 + 0,0079198 = 0,0161077 \, rad$
- $\alpha_4 = i_{5-6} i_{4-5} = -0,0051531 0,0081879 = -0,0133410 \, rad$

3.4 Rzędne punktów głównych łuków pionowych

Zgodnie z Rozporządzeniem MTIGW §24.7 dla drogi jednojezdniowej o predkości projektowej $60\frac{km}{h}$ promienie łuków wypukłych powinny być większe od $R_{\uparrow min}=2500\,m$, promienie łuków wklęsłych $R_{\downarrow min}=1500\,m$. Takie też wartości przyjęto.

3.4.1 Długości łuków

Długości łuków pionowych obliczono wg. wzoru:

$$L_n = R_{min} \cdot \alpha_n \tag{26}$$

- $L_1 = R_{\downarrow min} \cdot \alpha_1 = 1500 \cdot 0,0083264 \approx 12,49 \, m$
- $L_2 = R_{\uparrow min} \cdot \alpha_2 = 2500 \cdot 0,0131299 \approx 32,82 \, m$
- $L_3 = R_{\Downarrow min} \cdot \alpha_3 = 1500 \cdot 0,0161077 \approx 24,16 \, m$
- $L_4 = R_{\uparrow min} \cdot \alpha_4 = 2500 \cdot 0,0133410 \approx 33,35 \, m$

3.4.2 Długość stycznych

Długości stycznych łuków pionowych obliczono wg.wzoru:

$$T_i = R_n \cdot \tan(\frac{\alpha_n}{2}) \tag{27}$$

- $T_1 = R_{\downarrow min} \cdot tan(\frac{\alpha_1}{2}) = 1500 \cdot tan(\frac{0,0083264}{2}) \approx 6,24 \, m$
- $T_2 = R_{\uparrow min} \cdot tan(\frac{\alpha_2}{2}) = 2500 \cdot tan(\frac{0.0131299}{2}) \approx 16,41 \, m$
- $T_3 = R_{\downarrow min} \cdot tan(\frac{\alpha_3}{2}) = 1500 \cdot tan(\frac{0,0161077}{2}) \approx 12,08 \, m$
- $T_4 = R_{\uparrow min} \cdot tan(\frac{\alpha_4}{2}) = 2500 \cdot tan(\frac{0.0133410}{2}) \approx 16,68 \, m$

3.4.3 Długości strzałek

Długości strzałek łuków pionowych obliczono wg. wzoru:

$$B_n = \frac{T_n^2}{2 \cdot R_n} \tag{28}$$

•
$$B_1 = \frac{T_1^2}{2 \cdot R_{\parallel min}} = \frac{6.24^2}{2 \cdot 1500} \approx 0.013 \, m$$

•
$$B_2 = \frac{T_2^2}{2 \cdot R_{\oplus min}} = \frac{16,41^2}{2 \cdot 2500} \approx 0,054 \, m$$

•
$$B_3 = \frac{T_3^2}{2 \cdot R_{\parallel min}} = \frac{12,08^2}{2 \cdot 1500} \approx 0,049 \, m$$

•
$$B_4 = \frac{T_4^2}{2 \cdot R_{0min}} = \frac{16,68^2}{2 \cdot 2500} \approx 0,056 \, m$$

3.4.4 Rzędne środków łuków pionowych

Rzędne środków łuków pionowych obliczono wg. wzoru:

$$r_{s\,n} = r_{n+1} \pm B_n \tag{29}$$

•
$$r_{s 1} = r_2 + B_1 = 281, 19 + 0, 013 = 281, 203 \approx 281, 20 \, m.n.p.m.$$

•
$$r_{s2} = r_3 - B_2 = 282,86 - 0,054 = 282,806 \approx 282,81 \, m.n.p.m.$$

•
$$r_{s3} = r_4 + B_3 = 280,42 + 0,049 = 280,469 \approx 280,47 \, m.n.p.m.$$

•
$$r_{s4} = r_5 - B_4 = 282,55 - 0,056 = 282,494 \approx 282,49 \, m.n.p.m.$$

3.4.5 Rzędne początków łuków pionowych

Rzędne początków łuków pionowych obliczono wg. wzoru:

$$r_{n} = r_{n+1} \pm T_n \cdot i_n \tag{30}$$

•
$$r_{p \ 1} = r_2 + T_1 \cdot i_1 = 281, 19 + 6, 24 \cdot 0, 0031163 \approx 281, 21 \, m.n.p.m.$$

•
$$r_{p\ 2} = r_3 - T_2 \cdot i_2 = 282,86 - 16,41 \cdot 0,0052101 \approx 282,77\ m.n.p.m.$$

•
$$r_{p3} = r_4 + T_3 \cdot i_3 = 280,42 + 12,08 \cdot 0,0079198 \approx 280,50 \, m.n.p.m.$$

•
$$r_{p4} = r_5 - T_4 \cdot i_4 = 282,55 - 16,68 \cdot 0,0081879 \approx 282,41 \, m.n.p.m.$$

3.4.6 Rzędne końców łuków pionowych

Rzędne końców łuków pionowych obliczono wg. wzoru:

$$r_{k n} = r_{n+1} \pm T_n \cdot i_{n+1} \tag{31}$$

•
$$r_{k \ 1} = r_2 + T_1 \cdot i_2 = 281, 19 + 6, 24 \cdot 0, 0052101 \approx 281, 22 \, m.n.p.m.$$

•
$$r_{k,2} = r_3 - T_2 \cdot i_3 = 282,86 - 16,41 \cdot 0,0079198 \approx 282,73 \, m.n.p.m.$$

•
$$r_{k3} = r_4 + T_3 \cdot i_4 = 280, 42 + 12, 08 \cdot 0,0081879 \approx 280, 52 \, m.n.p.m.$$

•
$$r_{k,4} = r_5 - T_4 \cdot i_5 = 282,55 - 16,68 \cdot 0,0051531 \approx 282,46 \, m.n.p.m.$$

4 Przekrój typowy na prostej i charakterystyczne poprzeczne

Dla projektowanego odcinka drogi w załączeniu zamieszczono przekroje poprzeczne typowe na odcinku prostym i na łuku, w skali 1:50.

4.1 Szerokość i pochylenia poprzeczne jezdni i poboczy

4.1.1 Szerokość jezdni

Zgodnie z wcześniejszym punktem 2.2 A przyjęto:

- Szerokość pojedyńczego pasa ruchu: $b = 3,00 \, m$
- Szerokość jezdni: $B=6,00\,m$

4.1.2 Szerokość pobocza

Zgodnie z RMTiGW §37.1 pobocze gruntowe dla drogi klasy Z powinno mieć szerokość nie mniejszą niż 1,00 m.

Przyjęto: szerokość pobocza $b_{pob} = 1,00 \, m$

4.1.3 Pochylenie poprzeczne jezdni na odcinku prostym

Zgodnie z wcześniejszym punktem **2.2** C jezdnia posiada przekrój daszkowy o pochyleniu poprzeczym $i_o = 2\%$.

4.1.4 Pochylenie poprzeczne pobocza na odcinku prostym

Zgodnie z RMTiGW §37.2 pkt.1, pochylenie poprzeczne pobocza gruntowego na odcinku prostym powinno wynosić od 6% do 8%, przy szerokości pobocza nie mniejszej niż 1 m. **Przyjęto:** Pochylenie poprzeczne pobocza $i_{pob} = 7\%$

4.1.5 Pochylenie poprzeczne jezdni na łuku

Zgodnie z wcześniejszym punktem opracowania **2.2 B** oraz RMTiGW §21.2 pkt.C **Przyjęto:** Pochylenie poprzeczne jezdni na łuku $i_p=4\%$

4.1.6 Pochylenie poprzeczne pobocza na łuku

Zgodnie z RMTiGM §37.3 pkt.1 pochylenie poprzeczne pobocza gruntowego na odcinku krzywoliniowym o pochyleniu poprzecznym innym, niż na odcinku prostym, powinno mieć:

- Od 2% do 3% więcej, niż pochylenie jezdni po wewnętrznej stronie łuku
- Tyle co pochylenie jezdni, doszerokości 1 m.
 Na pozostałej części 2% w kierunku przeciwnym po zewnętrznej stronie łuku.

Przyjęto:

- 5 Objętości i rozdział mas ziemnych
- 6 Ostatni punkt

7 Załączniki

Lista załączonych dokumentów

- 1. Karta projektowa
- 2. Rewers karty projektowej
- 3. Załącznik
- 4. Załącznik
- 5. Załacznik
- 6. Załącznik
- 7. Załącznik
- 8. Załacznik
- 9. Załącznik
- 10. Załącznik

AKADEMIA GÓRNICZO-HUTNICZA
IM. STANISŁAWA STASZICA W KRAKOWIE

Wydział Górnictwa i Geoinżynierii

KATEDRA GEOMECHANIKI, BUDOWNICTWA I GEOTECHNIKI

ĆWICZENIE PROJEKTOWE

z przedmiotu

BUDOWNICTWO KOMUNIKACYJNE

dla studenta

Nr indeksu 304508

Temat:

Zaprojektować elementy drogi ogólnodostępnej V klasy technicznej

Zawartość opracowania:

- 1. Opis rozwiązań projektowych
- 2. Plan sytuacyjny odcinka drogi
- 3. Profil podłużny wraz zaprojektowaną niweletą
- 4. Przekrój typowy na prostej i charakterystyczne przekroje poprzeczne
- 5. Objętości i rozdział mas ziemnych

Data wydania tematu: 25.02.2020

Termin oddania projektu: 09.06.2020

Opracował:

Sprawdził:

e-mail: katgeom@agh.edu.pl

Skala 1: 10000

Dane:

Prędkość projektowa 6.0. km/h
Dobowa liczba 12.2.... pojedynczych osi na obliczeniowy pas ruchu