DATE - 29/10/2023

PHASE - III

TEAM ID - 719

PROJECT TITLE - AIR QUALITY ANALYSIS IN TAMIL NADU

IMPORTING MODULES

```
In [47]: import pandas as pd
         import numpy as np
         import seaborn as sns
         import matplotlib.pyplot as plt
         import tkinter as tk
         import random
         import requests
         import scipy
         import xgboost
In [5]: dataset = pd.read_csv("datafile.csv")
In [2]: import os
         print("Current working directory:", os.getcwd())
         file_path = 'datafile.csv'
         if os.path.exists(file_path):
             print("The file exists.")
             print("The file does not exist at the specified path.")
```

Current working directory: C:\Users\VIJAYRAJ R The file exists.

IMPORT THE DATA SET

In [6]: dataset

Out[6]:

	Stn Code	Sampling Date	State	City/Town/Village/Area	Location of Monitoring Station	Agency	Type of Location	SO2	NO2
0	38	01-02-14	Tamil Nadu	Chennai	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Tamilnadu State Pollution Control Board	Industrial Area	11.0	17.(
1	38	01-07-14	Tamil Nadu	Chennai	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Tamilnadu State Pollution Control Board	Industrial Area	13.0	17.(
2	38	21-01-14	Tamil Nadu	Chennai	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Tamilnadu State Pollution Control Board	Industrial Area	12.0	18.(
3	38	23-01-14	Tamil Nadu	Chennai	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Tamilnadu State Pollution Control Board	Industrial Area	15.0	16.(
4	38	28-01-14	Tamil Nadu	Chennai	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Tamilnadu State Pollution Control Board	Industrial Area	13.0	14.(
2874	773	12-03-14	Tamil Nadu	Trichy	Central Bus Stand, Trichy	Tamilnadu State Pollution Control Board	Residential, Rural and other Areas	15.0	18.(
2875	773	12-10-14	Tamil Nadu	Trichy	Central Bus Stand, Trichy	Tamilnadu State Pollution Control Board	Residential, Rural and other Areas	12.0	14.(
2876	773	17-12-14	Tamil Nadu	Trichy	Central Bus Stand, Trichy	Tamilnadu State Pollution Control Board	Residential, Rural and other Areas	19.0	22.(
2877	773	24-12-14	Tamil Nadu	Trichy	Central Bus Stand, Trichy	Tamilnadu State Pollution Control Board	Residential, Rural and other Areas	15.0	17.(
2878	773	31-12-14	Tamil Nadu	Trichy	Central Bus Stand, Trichy	Tamilnadu State Pollution Control Board	Residential, Rural and other Areas	14.0	16.(
2879 ı	rows ×	11 columns	S						
	879 rows × 11 columns								

In [15]: dataset.head()

Out[15]:

	Stn Code	Sampling Date	State	City/Town/Village/Area	Location of Monitoring Station	Agency	Type of Location	SO2	NO2	RS
0	38	01-02-14	Tamil Nadu	Chennai	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Tamilnadu State Pollution Control Board	Industrial Area	11.0	17.0	
1	38	01-07-14	Tamil Nadu	Chennai	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Tamilnadu State Pollution Control Board	Industrial Area	13.0	17.0	
2	38	21-01-14	Tamil Nadu	Chennai	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Tamilnadu State Pollution Control Board	Industrial Area	12.0	18.0	
3	38	23-01-14	Tamil Nadu	Chennai	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Tamilnadu State Pollution Control Board	Industrial Area	15.0	16.0	
4	38	28-01-14	Tamil Nadu	Chennai	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Tamilnadu State Pollution Control Board	Industrial Area	13.0	14.0	
4										

In [16]: dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2879 entries, 0 to 2878
Data columns (total 11 columns):

- 0. 0 0.			
#	Column	Non-Null Count	Dtype
0	Stn Code	2879 non-null	int64
1	Sampling Date	2879 non-null	object
2	State	2879 non-null	object
3	City/Town/Village/Area	2879 non-null	object
4	Location of Monitoring Station	2879 non-null	object
5	Agency	2879 non-null	object
6	Type of Location	2879 non-null	object
7	S02	2868 non-null	float64
8	NO2	2866 non-null	float64
9	RSPM/PM10	2875 non-null	float64
10	PM 2.5	0 non-null	float64

dtypes: float64(4), int64(1), object(6)

memory usage: 247.5+ KB

In [17]: dataset.describe()

Out[17]:

	Stn Code	SO2	NO2	RSPM/PM10	PM 2.5
count	2879.000000	2868.000000	2866.000000	2875.000000	0.0
mean	475.750261	11.503138	22.136776	62.494261	NaN
std	277.675577	5.051702	7.128694	31.368745	NaN
min	38.000000	2.000000	5.000000	12.000000	NaN
25%	238.000000	8.000000	17.000000	41.000000	NaN
50%	366.000000	12.000000	22.000000	55.000000	NaN
75%	764.000000	15.000000	25.000000	78.000000	NaN
max	773.000000	49.000000	71.000000	269.000000	NaN

In [58]: print(data.isna())

	Stn Code	Sampling Date	State	City/To	wn/Village/Area	\
0	False	False	False		False	
1	False	False	False		False	
2	False	False	False		False	
3	False	False	False		False	
4	False	False	False		False	
		• • •			• • •	
2874	False	False	False		False	
2875	False	False	False		False	
2876	False	False	False		False	
2877	False	False	False		False	
2878	False	False	False		False	
	Location	of Monitoring S	tation	Agency	Type of Location	n S02

	Location of Monitoring Station	Agency	Type of Location	S02	NO2	\
0	False	False	False	False	False	
1	False	False	False	False	False	
2	False	False	False	False	False	
3	False	False	False	False	False	
4	False	False	False	False	False	
	•••		• • •			
2874	False	False	False	False	False	
2875	False	False	False	False	False	
2876	False	False	False	False	False	
2877	False	False	False	False	False	
2878	False	False	False	False	False	

	RSPM/PM10	PM 2.5
0	False	True
1	False	True
2	False	True
3	False	True
4	False	True
2874	False	True
2875	False	True
2876	False	True
2877	False	True
2878	False	True

[2879 rows x 11 columns]

```
In [59]:
         print(data.isna().any())
         Stn Code
                                            False
         Sampling Date
                                            False
                                            False
         State
         City/Town/Village/Area
                                            False
         Location of Monitoring Station
                                            False
                                            False
         Agency
         Type of Location
                                            False
         S02
                                             True
         NO2
                                             True
         RSPM/PM10
                                             True
         PM 2.5
                                             True
         dtype: bool
In [25]: import pandas as pd
         dataset = pd.read_csv('datafile.csv')
         numeric_dataset = dataset.select_dtypes(include=[np.number])
         correlation_matrix = numeric_dataset.corr()
         print(correlation_matrix)
                    Stn Code
                                    S02
                                                   RSPM/PM10 PM 2.5
                                              NO2
         Stn Code
                    1.000000 0.263537 -0.043257
                                                                 NaN
                                                    0.336190
         S02
                    0.263537
                              1.000000 0.078246
                                                    0.445152
                                                                 NaN
         NO2
                   -0.043257
                              0.078246 1.000000
                                                    0.068277
                                                                 NaN
         RSPM/PM10 0.336190 0.445152 0.068277
                                                    1.000000
                                                                 NaN
         PM 2.5
                         NaN
                                   NaN
                                              NaN
                                                         NaN
                                                                 NaN
In [35]: import pandas as pd
         data = pd.read_csv('datafile.csv')
         data = data.drop(columns=['PM 2.5'])
```

In [36]: data

Out[36]:

	Stn Code	Sampling Date	State	City/Town/Village/Area	Location of Monitoring Station	Agency	Type of Location	SO2	NO2
0	38	01-02-14	Tamil Nadu	Chennai	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Tamilnadu State Pollution Control Board	Industrial Area	11.0	17.(
1	38	01-07-14	Tamil Nadu	Chennai	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Tamilnadu State Pollution Control Board	Industrial Area	13.0	17.(
2	38	21-01-14	Tamil Nadu	Chennai	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Tamilnadu State Pollution Control Board	Industrial Area	12.0	18.(
3	38	23-01-14	Tamil Nadu	Chennai	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Tamilnadu State Pollution Control Board	Industrial Area	15.0	16.(
4	38	28-01-14	Tamil Nadu	Chennai	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Tamilnadu State Pollution Control Board	Industrial Area	13.0	14.(
2874	773	12-03-14	Tamil Nadu	Trichy	Central Bus Stand, Trichy	Tamilnadu State Pollution Control Board	Residential, Rural and other Areas	15.0	18.(
2875	773	12-10-14	Tamil Nadu	Trichy	Central Bus Stand, Trichy	Tamilnadu State Pollution Control Board	Residential, Rural and other Areas	12.0	14.(
2876	773	17-12-14	Tamil Nadu	Trichy	Central Bus Stand, Trichy	Tamilnadu State Pollution Control Board	Residential, Rural and other Areas	19.0	22.(
2877	773	24-12-14	Tamil Nadu	Trichy	Central Bus Stand, Trichy	Tamilnadu State Pollution Control Board	Residential, Rural and other Areas	15.0	17.(
2878	773	31-12-14	Tamil Nadu	Trichy	Central Bus Stand, Trichy	Tamilnadu State Pollution Control Board	Residential, Rural and other Areas	14.0	16.(
2879 r	ows ×	10 column	s						
4									

```
In [38]: mean_SO2 = data['SO2'].mean()
    mean_NO2 = data['NO2'].mean()
    mean_RSPM_PM10 = data['RSPM/PM10'].mean()

In [39]: mean_SO2,mean_NO2, mean_RSPM_PM10

Out[39]: (11.503138075313808, 22.136775994417306, 62.494260869565224)

In [40]: data['SO2'].fillna(value=mean_SO2,inplace=True)
    data['NO2'].fillna(value=mean_NO2,inplace=True)
    data['RSPM/PM10'].fillna(value=mean_RSPM_PM10,inplace=True)
```

PREPROCSSING DATA


```
In [41]: cleandata=new_data.isnull().sum()
```

```
In [42]:
          cleandata
Out[42]:
          Stn Code
                                              0
          Sampling Date
                                              0
          State
                                              0
          City/Town/Village/Area
                                              0
          Location of Monitoring Station
                                              0
          Agency
                                              0
          Type of Location
                                              0
          S02
                                              0
          NO2
                                              0
          RSPM/PM10
                                              0
          dtype: int64
```

```
In [43]: import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(12, 7))
sns.lineplot(data=new_data, x='Sampling Date', y='RSPM/PM10', label='RSPM/PM10')
sns.lineplot(data=new_data, x='Sampling Date', y='SO2', label='SO2')
sns.lineplot(data=new_data, x='Sampling Date', y='NO2', label='NO2')
plt.title('Air Quality Trends')
plt.xlabel('Date')
plt.ylabel('Concentration')
plt.legend()
plt.show()
```



```
In [28]: plt.figure(figsize=(10,5))
sns.heatmap(dataset.corr(numeric_only = True), annot=True)
```

Out[28]: <Axes: >

In [29]: dataset.hist(figsize=(10,8))

[<Axes: title={'center': 'PM 2.5'}>, <Axes: >]], dtype=object)


```
In [30]: import seaborn as sns
sns.histplot(data=dataset, x="RSPM/PM10", kde=True)
```

Out[30]: <Axes: xlabel='RSPM/PM10', ylabel='Count'>

In [32]: import seaborn as sns
sns.histplot(data=dataset, x="S02", kde=True)

Out[32]: <Axes: xlabel='S02', ylabel='Count'>


```
In [34]: import seaborn as sns
sns.histplot(data=dataset, x="NO2", kde=True)
```

Out[34]: <Axes: xlabel='NO2', ylabel='Count'>

In []: