Problem Set 7

Aaron Wang

March 25 2024

1. Let X be a set. Show that $(\forall Y \in \mathbb{P}(X))$ $(|Y| \leq |X|)$.

Proof. Let X and Y be arbitrary sets. Assume $Y \in \mathbb{P}(X)$. By definition of power sets, $Y \subseteq X$. Consider the function $f: Y \to X$ given by f(a) := a. Suppose $a_1, a_2 \in Y$ and assume $f(a_1) = f(a_2)$. Then, since $f(a_1) = a_1$ and $f(a_2) = a_2$, we know $a_1 = a_2$ by definition. This proves $(\forall x, y \in A)(f(x) = f(y) \implies x = y)$, meaning f is injective. Since f is injective, by Equinumerosity, $|Y| \le |X|$. Thus, $(\forall Y \in \mathbb{P}(X))$ $(|Y| \le |X|)$. Q.E.D.

2. Show that $\forall X \forall Y (|X| \leq |Y| \implies \exists Z (Z \subseteq Y \land |X| = |Z|))$.

Proof. Let X and Y be arbitrary sets. Assume $|X| \leq |Y|$. By Equinumerosity, we know that $\exists f(f: X \hookrightarrow Y)$. Let $Z := \{w | ((\exists a \in X)(w = f(a))) \land w \in y\}$. Additionally, let g := f where $g: X \to Z$.

|X| = |Z|

g is injective because f is injective. Let $z \in Z$. By the definition of Z, there exists an $x \in X$ such that f(x) = z. Since g = f, there exists an $x \in X$ such that g(x) = z. Therefore, $(\forall z \in Z)(\exists x \in X)(g(x) = z)$. Consequently, g is surjective. Since g is injective and surjective, g is bijective, and by the definition of Equinumerosity, |X| = |Z|.

 $Z \subseteq Y$

By definition of Z, Z only contains elements that are already contained in Y. Therefore, $\forall w (w \in Z \implies w \in Y)$. Thus, $Z \subset Y$.

Thus, since X and Y are arbitrary sets, $\forall X \forall Y (|X| \leq |Y| \implies \exists Z (Z \subseteq Y \land |X| = |Z|))$. Q.E.D.

- 3. Let X, Y, Z be sets and consider $f: X \to Y$ and $g: Y \to Z$. We define the composition of f with g to be the function $g \circ f: X \to Z$ given by $(g \circ f)(x) := g(f(x))$ for all $x \in X$.
 - (a) Show that, if f and g are both injections, then $g \circ f$ is injective.

Proof. Let $a, b \in X$. We know that $f(a) = f(b) \implies a = b$ because f is injective. Similarly, we know $g(f(a)) = g(f(b)) \implies f(a) = f(b)$ because g is injective. Thus, by hypothetical syllogism, we know that $g(f(a)) = g(f(b)) \implies a = b$ and since $(g \circ f)(x) := g(f(x))$, we know $(g \circ f)(a) = (g \circ f)(b) \implies a = b$. As such, we know that $g \circ f$ is injective. Q.E.D.

(b) Show that, if f and g are both surjections, then $g \circ f$ is surjective.

Proof. Let $z \in Z$. Because g is surjective, we know that there is a $y \in Y$ such that g(y) = z. Similarly, since f is surjective, we know that there is an $x \in X$ such that f(x) = y. Because f(x) = y and g(y) = z, we know that g(f(x)) = z so by definition $g \circ f(x) = z$. As such, there exists an $x \in X$ such that $g \circ f(x) = z$. Since z was arbitrary, we know that $(\forall z \in Z)(\exists x \in X)(g \circ f(x) = z)$. Q.E.D.

(c) Show that, if f and g are both bijections, then $g \circ f$ is bijective.

Proof. To show that $f \circ g$ is bijective, we must show that it is injective and surjective. Note that f and g are both injective and surjective because they are bijective. *Injective:*

Let $a, b \in X$. We know that $f(a) = f(b) \implies a = b$ because f is injective. Similarly, we know $g(f(a)) = g(f(b)) \implies f(a) = f(b)$ because g is injective. Thus, by hypothetical syllogism, we know that $g(f(a)) = g(f(b)) \implies a = b$ and since $(g \circ f)(x) := g(f(x))$, we know $(g \circ f)(a) = (g \circ f)(b) \implies a = b$. As such, we know that $g \circ f$ is injective. Surjective:

Let $z \in Z$. Because g is surjective, we know that there is a $y \in Y$ such that g(y) = z. Similarly, since f is surjective, we know that there is an $x \in X$ such that f(x) = y. Because f(x) = y and g(y) = z, we know that g(f(x)) = z so by definition $g \circ f(x) = z$. As such, there exists an $x \in X$ such that $g \circ f(x) = z$. Since z was arbitrary, we know that $(\forall z \in Z)(\exists x \in X)(g \circ f(x) = z)$.

Therefore, $f \circ g$ is bijective. Q.E.D.

- 4. For this problem, let X and Y be arbitrary sets and let $f: X \to Y$.
 - (a) If f is injective, show there exists $g: Y \to X$ such that $g \circ f = id_X$.

Proof. Let $x \in X$ and define $g: Y \to X$ where

$$g(y) = \begin{cases} a & \text{if } (\exists a \in X)(f(a) = y) \\ x & \text{otherwise} \end{cases}$$

Since f is injective, for any $a, b \in X$, if f(b) = f(a), b = a. As such, for each input into g, if there is an a that satisfies the first predicate, there is only one output. Evidently, for any other input, there is only one output and that output is x. Thus, g is a well-defined function. Now, Let $c \in X$ and observe that $g \circ f(c) = id_X(c)$.

$$g \circ f(c) = g(f(c))$$
 By definition of $g \circ f(x)$
= c By definition of $g(x)$
= $id_X(c)$ By definition of id

Consequently, since c was arbitrary, $g \circ f = id_X$.

Q.E.D.

(b) If f is surjective, show there exists $g: Y \to X$ such that $f \circ g = id_Y$.

Proof. Define $g: Y \to X$ where

g(y) := x where $x \in X$ such that f(x) = y; If there are multiple such x, pick one.

g is a well-defined function because for every input in Y, there exists a unique output in X. In other words, g is well-defined because $(\forall y \in Y)(\exists! x \in X)(g(y) = x)$. Let $b \in Y$. Observe $f \circ g(b) = \mathrm{id}_Y(b)$.

$$f \circ g(b) = f(g(b))$$
 By def of $f \circ g(y)$
= b By def of $f(x)$
= $id_Y(b)$ By def of id

Since b was arbitrary, $f \circ g = id_Y$.

Q.E.D.

(c) If f is a bijection, then show that there exists a function $g: Y \to X$ such that $g \circ f = id_X$ and $f \circ g = id_Y$.

Proof. Define $f: Y \to X$ where

$$g(y) := x$$
 where $x \in X$ such that $f(x) = y$

Because f is bijective, f is injective and subjective. Since f is injective, no two values in X map to the same value in Y, and since f is surjective f maps a value to every element of Y. Thus, g is a well-defined function.

Let $a \in X$. Observe $g \circ f(a) = id_X(a)$. Let $b \in Y$. Observe $f \circ g(b) = id_Y(b)$.

$$g \circ f(a) = g(f(a))$$
 By def of $g \circ f(x)$ $f \circ g(b) = f(g(b))$ By def of $f \circ g(y)$
= a By def of $g(y)$ = b By def of $f(x)$
= $\operatorname{id}_X(a)$ By def of id = $\operatorname{id}_Y(b)$ By def of id

Since a was arbitrary, $g \circ f = id_X$. Since b was arbitrary, $f \circ g = id_Y$.

Consequently, we have shown that there is a well-defined function $g:Y\to X$ such that $g\circ f=\mathrm{id}_X$ and $f\circ g=\mathrm{id}_Y$. Q.E.D.

5. Euler's totient function is the function $\varphi_e : \mathbb{N} \to \mathbb{N}$ that counts how many positive integers are *coprime* with each $n \in \mathbb{N}$, defined below.

$$\varphi_e(n) := |\{z \in \mathbb{N} | 1 \le z \le n \land \gcd(z, n) = 1\}|$$

(a) If $p, k, m \in \mathbb{N}_+$ are positive naturals such that p is prime and $m \leq p^k$, then prove $\gcd(p^k, m) \neq 1 \iff p \mid m$.

Proof. Let $p, k, m \in \mathbb{N}_+$ such that p is prime and $m \leq p^k$. To show the biconditional, we must show that the conditional goes both ways.

 $\gcd(p^k,m) \neq 1 \Longrightarrow p \mid m$ Assume $\gcd(p^k,m) \neq 1$. Theorem 5.7 says: $\gcd(a,b) = 1 \iff (\forall p \in \mathbb{N})(p \text{ is prime} \implies (p \nmid a \lor p \nmid b))$. So we know: $\neg(\gcd(a,b) = 1) \iff \neg((\forall p \in \mathbb{N})(p \text{ is prime} \implies (p \nmid a \lor p \nmid b))$. This is equivalent to: $\gcd(a,b) \neq 1 \iff (\exists p \in \mathbb{N})(p \text{ is prime} \land (p \mid a \land p \mid b))$. Consequently, our assumption gives us $(\exists n \in \mathbb{N})(n \text{ is prime} \land (n \mid p^k \land n \mid m))$. We can see that p is the only natural number that is prime and divides p^k . Thus, p is the only natural number that satisfies "n is prime" and " $n \mid p^k$." Consequently, since a value exists it must be p so we know $(p \text{ is prime} \land (p \mid p^k \land p \mid m))$. Finally, with conjunction elimination, we get $p \mid m$.

 $p \mid m \implies \gcd(p^k, m) \neq 1$ Assume $p \mid m$. Observe $p \cdot p^{k-1} = p^k$. When $k \in \mathbb{N}_+$, $p^{k-1} \in \mathbb{Z}$, so we know that $p \mid p^k$. Thus since $p \mid p^k \land p \mid m$, we can conclude that $p \mid \gcd(p^k, m)$. Towards a contradiction, assume that $\gcd(p^k, m) = 1$. Putting those two facts together implies that $p \mid 1$, so $p \leq 1$. However, p > 1 since p is prime. $\frac{1}{2}$. Therefore, $\gcd(p^k, m) \neq 1$.

Since we have shown that $\gcd(p^k,m) \neq 1 \Longrightarrow p \mid m \text{ and } p \mid m \Longrightarrow \gcd(p^k,m) \neq 1 \text{ by biconditional disintegration we know } \gcd(p^k,m) \neq 1 \iff p \mid m.$ Q.E.D.

(b) If p is prime, then prove that $\varphi_e(p) = p - 1$.

Proof. Let p be a prime number. By definition, $\varphi_e(p) = |\{z \in \mathbb{N} | 1 \le z \le p \land \gcd(z,p) = 1\}|$ Observe that since $p, z \in \mathbb{N}_+$, we can apply (a) so $\varphi_e(p) = |\{z \in \mathbb{N} | 1 \le z \le p \land p \nmid z\}|$ An equivalent way to express this is $\varphi_e(p) = |\{z \in \mathbb{N} | (1 \le z Distributing the <math>\wedge$ we get $\varphi_e(p) = |\{z \in \mathbb{N} | (1 \le z Contrapositive of Absolute Monotonicity of Divisibility says: <math>(1 \le z < p) \Longrightarrow p \nmid z$. so $\varphi_e(p) = |\{z \in \mathbb{N} | (1 \le z < p) \lor (z = p \land p \nmid z)\}|$ because $p \nmid z$ is implied by $(1 \le z < p)$. Further, $z = p \Longrightarrow p|z$ because p|p so $(z = p \land p \nmid z)$ because $p \nmid z$ is implied by $(1 \le z < p)$. Thus, $\varphi_e(p) = |\{1, 2, ..., p - 1\}|$. By Lemma 6.2 we know that $|\{1, 2, ..., p - 1\}| = p - 1$ so $\varphi_e(p) = p - 1$. Q.E.D.

(c) If p is prime and $k \in \mathbb{N}_+$, then prove that $\varphi_e(p^k) = p^k - p^{k-1}$.

Proof. Let p be a prime number and $k \in \mathbb{N}_+$. By definition, $\varphi_e(p^k) = |\{z \in \mathbb{N} | 1 \le z \le p^k \land \gcd(z, p^k) = 1\}|$

Observe that since $p, z, k \in \mathbb{N}_+$, we can apply (a) so $\varphi_e(p) = |\{z \in \mathbb{N} | 1 \le z \le p^k \land p \nmid z\}|$ By Theorem 6.4, we know $\varphi_e(p) = |\{z \in \mathbb{N} | 1 \le z \le p^k\}| - |\{z \in \mathbb{N} | 1 \le z \le p^k \land p \mid z\}|$.

- i. $|\{z \in \mathbb{N} | 1 \le z \le p\}| = p^k$ $|\{z \in \mathbb{N} | 1 \le z \le p^k\}| = |\{1, 2, ...p^k\}|$. By Lemma 6.2 we know that $|\{1, 2, ...p^k\}| = p^k$.
- $$\begin{split} &\text{ii. } |\{z \in \mathbb{N} | 1 \leq z \leq p^k \wedge p \mid z\}| = p^{k-1} \\ &\text{Define } A \coloneqq |\{z \in \mathbb{N}_+ | z \leq p^{k-1}\} \\ &\text{Define } B \coloneqq |\{z \in \mathbb{N} | 1 \leq z \leq p^k \wedge p \mid z\}|. \\ &\text{Observe } B = |\{z \in \mathbb{N} | 1 \leq z \leq p^k \wedge (\exists c \in \mathbb{Z})(pc = z)\}| \\ &B = |\{z \in \mathbb{N} | (\exists c \in \mathbb{Z})(1 \leq z \leq p^k \wedge p \cdot c = z)\}| \\ &B = |\{z \in \mathbb{N}_+ | (\exists c \in \mathbb{N}_+)(z \leq p^k \wedge p \cdot c = z)\}| \\ &B = |\{z \in \mathbb{N}_+ | (\exists c \in \mathbb{N}_+)(p \cdot c \leq p^k \wedge p \cdot c = z)\}| \\ &B = |\{z \in \mathbb{N}_+ | (\exists c \in \mathbb{N}_+)(c \leq p^{k-1} \wedge p \cdot c = z)\}| \\ &\text{So we have } A = |\{z \in \mathbb{N}_+ | (\exists c \in \mathbb{N}_+)(c \leq p^{k-1} \wedge p \cdot c = z)\}|. \\ &\text{Let us define a function } f : A \to B \text{ where} \\ \end{aligned}$$

$$f(a) = p \cdot a$$

A. f is injective

Let $a_1, a_2 \in A$. Assume $f(a_1) = f(a_2)$. By definition of f(a), we know that $p \cdot a_1 = p \cdot a_2$. Further by multiplicative cancellation, $a_1 = a_2$. Therefore, f is injective.

B. f is surjective

Let $b \in B$. By definition of B, $(\exists c \in \mathbb{N}_+)(c \leq p^{k-1} \land p \cdot c = z)$. Thus, $(\exists a \in A)(p \cdot a = b)$. Since b was arbitrary, we know that $(\forall b \in B)(\exists a \in A)(f(a) = b)$

Since f is both subjective and injective, f is bijective. We know that $|A| = p^{k-1}$ because $|\{z \in \mathbb{N} | 1 \le z \le p^k\}| = |\{1, 2, ... p^{k-1}\}|$ and by Lemma 6.2 we know that $|\{1, 2, ... p^{k-1}\}| = p^{k-1}$. Further, since sets, with a bijective function between them have the same cardinality, |A| = |B| so $|B| = p^{k-1}$.

Consequently, we have shown that $|\{z \in \mathbb{N} | 1 \le z \le p\}| = p^k$ and $|\{z \in \mathbb{N} | 1 \le z \le p^k \land p \mid z\}| = p^{k-1}$. From these two facts, we know that $\varphi_e(p) = p^k - p^{k-1}$. Q.E.D.