THE OPERATIONAL AMPLIFIER (OP-AMP)

- The Ultimate: A phenomenal application of everything that we have learnt so far in this course
- Op-Amp: Operational Amplifier
- Hugely powerful block
- Capable of performing various circuit functions
- Original inventor: George Philbrick of Bell Labs in 1952 using vacuum tube technology

- Remarkable innovations in design in the form of an IC by Bob Widlar of Fairchild Semiconductors in 1963
- After that, *several improvements* took place, and the *most versatile design*, widely came to be known as the *741 op-amp*, originated
- Basically a three-stage architecture:
 - > The Input Stage
 - > The Gain Stage
 - > The Output Stage

• The Input Stage:

- > Should be capable of double-ended to singleended conversion
- > Should have moderate to high gain
- ➤ Must definitely have extremely large CMRR (this is the main requirement)
- ➤ Almost invariably a Differential Amplifier (DA)

• The Gain Stage:

- > Can be any one of the many that we have studied in the chapter on Amplifiers
- > CC-CE Darlington configuration preferred
- > Should have moderate to large gain
- The Output Stage:
 - > Needed when the op-amp is expected to either source or sink large amount of current to or from the load

Basic Three-Stage Architecture of an Op-Amp

• 2 Input Terminals:

- $\succ V_1 (non-inverting [+])$
- $\triangleright V_2$ (inverting [-])
- 1 Output Terminal: V₀
- V₁, V₂, and V₀ can be simply DC, or simply ac, or a combination of both
- I₁, I₂: Input currents flowing into the + and -terminals respectively
- Dual symmetric power supplies $(V_S + and V_S -)$

- Refer to the *MacroModel*:
 - > R_i: *Input Resistance*
 - Very high (ideally infinite)
 - > R₀: *Output Resistance*
 - Very small (ideally zero)
 - ➤ A_{vOL}: *Open-Loop Gain*
 - Very large (ideally infinite)
- Input-Output Relation:

$$V_0 = A_{\text{vOL}}(V_1 - V_2)$$

- V_1 , V_2 , and V_0 are measured *w.r.t. ground*, but V_i is a *floating signal* (*difference* between V_1 and V_2)
- The *controlled source* in the *MacroModel* is *VCVS*
- For $V_1 > (<) V_2$, V_0 is **positive** (negative)
- Typical values for 741 op-amp:
 - $ightharpoonup A_{vOL} \sim 10^5 \ (100 \ dB), R_i > 1 \ MΩ, R_0 < 100 \ Ω,$ CMRR ~ 80-100 dB, V_S+ and V_S-: ±3 V to ±15 V