Haszowanie

- złożoność obliczeniowa: O(h + 1)/O(h + 1 + n) ← h to złożoność funkcji haszującej
- haszowanie tablicowanie za pomocą funkcji haszującej, różniące się tym, że zamiast umieszczania wartości w indeksie odpowiadającej liczbie to umieszczamy w wartość o indeksie będącym wyjściem funkcji haszującej dla tej wartości
 - w przypadku kolizji haszowania (nieunikniona) przeszukujemy liniowo tablicę w poszukiwanie następnego wolnego miejsca → stąd pesymistyczna złożoność to O(h + n)
- maskowanie bitowe haszowanie, tyle że wynikiem funkcji haszującej jest liczba w systemie binarnym (dwójkowym), gdzie 1 oznacza, że i-ta liczba należy do podzbioru, a 0 nie → patrz generowanie podzbiorów

Algorytm wstawiania łańcucha do tablicy haszowanej

Wejście:

S	łańcuch do umieszczenia w tablicy haszowanej
Т	tablica łańcuchów
n	rozmiar tablicy, $n \in N$

Wyjście:

Tablica T z wstawionym łańcuchem s, jeśli było dla niego wolne miejsce.

Zmienne pomocnicze:

i	indeks, $i \in N$
h	przechowuje wartość haszu, $h \in N$
hf (x, n)	oblicza indeks w T na podstawie łańcucha x i liczby komórek n .

Lista kroków dla wersji z duplikatami:

Haszowanie 1

K02:	i ← h	przeszukiwanie tablicy rozpoczynamy od wyliczonego indeksu
K03:	Jeśli <i>T</i> [<i>i</i>] = "", to <i>T</i> [<i>i</i>] ← Si zakończ	w puste miejsce zapisujemy łańcuch
K04:	$i \leftarrow (i + 1) \mod n$	przechodzimy do następnej komórki
K05:	Jeśli i = h,to zakończ	Jeśli wróciliśmy w to samo miejsce, to kończymy
K06:	Idź do kroku K03	inaczej kontynuujemy pętlę

Lista kroków dla wersji bez duplikatów:

K01:	$h \leftarrow hf(s, n)$	obliczamy indeks początkowy
K02:	<i>i</i> ← <i>h</i>	przeszukiwanie tablicy rozpoczynamy od wyliczonego indeksu
K03:	Jeśli <i>T</i> [<i>i</i>] = "",to <i>T</i> [<i>i</i>] ← Si zakończ	w puste miejsce zapisujemy łańcuch
K04:	Jeśli $T[i] = s$,to zakończ	jeśli w tablicy już jest łańcuch s, to kończymy bez wstawiania
K05:	$i \leftarrow (i + 1) \mod n$	przechodzimy do następnej komórki
K06:	Jeśli $i = h$,to zakończ	Jeśli wróciliśmy w to samo miejsce, to kończymy
K07:	Idź do kroku K03	inaczej kontynuujemy pętlę

Algorytm wyszukiwania łańcucha w tablicy haszowanej

Wejście:

S	łańcuch do wyszukania w tablicy haszowanej
Т	tablica łańcuchów
n	rozmiar tablicy, $n \in N$

Wyjście:

Indeks łańcucha w T lub -1, jeśli łańcucha nie ma w T.

Zmienne pomocnicze:

i	indeks, $i \in N$
h	przechowuje wartość haszu, $h \in N$

Haszowanie 2

Lista kroków:

K01:	$h \leftarrow hf(s, n)$	obliczamy indeks początkowy
K02:	i ← h	przeszukiwanie tablicy rozpoczynamy od wyliczonego indeksu
K03:	Jeśli $T[i] = $ "",to zakończ z wynikiem -1	brak łańcucha
K04:	Jeśli $T[i] = s$,to zakończ z wynikiem i	łańcuch odnaleziony
K05:	$i \leftarrow (i + 1) \mod n$	przechodzimy na następną pozycję
K06:	Jeśli <i>i = h</i> ,to zakończ z wynikiem -1	powrót na pozycję wyjściową, czyli brak łańcucha
K07:	Idź do kroku K03	inaczej kontynuujemy pętlę

Haszowanie 3