ÉRETTSÉGI VIZSGA • 2021. október

FIZIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

2021. október 28. 14:00

Időtartam: 240 perc

Pótlapok száma		
Tisztázati		
Piszkozati		

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét!

A feladatokat tetszőleges sorrendben oldhatja meg.

Használható segédeszközök: zsebszámológép, függvénytáblázatok.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, a megoldást a feladatlap üres oldalain, illetve pótlapokon folytathatja a feladat számának feltüntetésével.

2113 írásbeli vizsga 2 / 16 2021. október 28.

Fizika	ı
emelt	szint

Azonosító								
jel:								

ELSŐ RÉSZ

Az alábbi kérdésekre adott válaszlehetőségek közül pontosan egy jó. Írja be ennek a válasznak a betűjelét a jobb oldali fehér négyzetbe! (Ha szükségesnek tartja, kisebb számításokat, rajzokat készíthet a feladatlapon.)

1.	Egy	oontszerű test lendülete kétszeresére nőtt, miközben a tömege i atunk a mozgási energiájáról?	nem válto	zott. Mit
	A) B) C) D)	A mozgási energia is kétszeres lesz. A mozgási energia több lesz, mint kétszeres. A mozgási energia kevesebb lesz, mint kétszeres. Nem dönthető el a tömeg ismerete nélkül.		
			2 pont	
2.		nengerben súrlódásmentesen mozgó dugattyúval elzárt ideális olt folyamatok közül melyikben a legnagyobb a gáz munkavé	_	Az alább
	A) B) C) D)	Ha a gáz adiabatikus folyamatban a kétszeresére tágul. Ha a gáz izobár folyamatban a kétszeresére tágul. Ha a gáz izoterm folyamatban a kétszeresére tágul. Mindhárom esetben ugyanannyi a munkavégzés.		
			2 pont	
3.	ilyen	a teliholdat nappal is láthatjuk, egyszerre van fönt a Nap és kor sokkal halványabb az égen, mint amikor egy tiszta, te esen világít. Mi ennek az oka?		
	A)	Amikor a Nap a Földet is meg a Holdat is egyszerre süti, sokkal fény jut a Holdra, ezért kevesebbet is ver vissza, tehát halványak Amikor a Hold a Nappal együtt islenik meg az ágan akkaránna	b.	
	B)	Amikor a Hold a Nappal együtt jelenik meg az égen, akkor éppe felét fordítja a Föld felé, amelyik kevésbé veri vissza a napsugar ezért halványabb.		
	C)	A Holdat mindig nagyjából ugyanannyi napfény éri, és ugyanan vissza belőle, de a Nap fénye mellett a látszólagos fényessége ki azaz csak halványabbnak tűnik.	-	
			2 pont	

4. Hogyan változik a mérleg által mutatott érték, miután ollóval elvágjuk a felfüggesztést és a test egyenletesen süllyed?

- A) A mérleg által mutatott érték nő.
- B) A mérleg által mutatott érték csökken.
- C) A mérleg által mutatott érték nem változik.

- 5. Egy $^{238}_{92}$ U uránatom először α -bomlással tóriummá (Th) alakul, majd a tórium β -bomlással tovább alakul, és protaktínium (Pa) lesz belőle. Az alábbiak közül a protaktínium melyik izotópja keletkezik?
 - A) $\frac{234}{89}$ Pa
 - \mathbf{B}) $^{233}_{\mathbf{go}}$ Pa
 - C) ²³⁴₈₇Pa
 - **D**) ${}^{234}_{91}$ Pa

2 pont

6. A mellékelt grafikonon egy áramköri elem két sarkán mérhető feszültség olvasható le az elemen átfolyó áram függvényében. Mit állíthatunk az eszköz ellenállásáról?

- A) Az eszköz ellenállása nő a feszültség növelésével.
- B) Az eszköz ellenállása állandó.
- C) Az eszköz ellenállása csökken a feszültség növelésével.

- 7. Egy bizonyos fémből a fény elektronokat vált ki. Mit állíthatunk a kilépő elektronok maximális mozgási energiájáról, ha a fény frekvenciáját megkétszerezzük?
 - A) A kilépő elektronok maximális mozgási energiája változatlan lesz.
 - **B)** A kilépő elektronok maximális mozgási energiája nő, de kevesebb lesz, mint a korábbi esetben mért mozgási energia duplája.
 - C) A kilépő elektronok maximális mozgási energiája pontosan kétszerese lesz a korábbinak.
 - **D)** A kilépő elektronok maximális mozgási energiája több mint kétszerese lesz a korábbinak.

8. A mellékelt ábrákon látható, súlytalannak tekinthető rúd egyik vége egy súrlódásmentes csuklóval kapcsolódik a bakhoz. A rúd másik végére M tömegű testet helyezünk, és a rudat egy-egy rugóval támasztjuk meg először az 1), majd a 2) ábrán látható módon úgy, hogy az vízszintes helyzetben, egyensúlyban van. (A két esetben más-más rugóval támasztjuk alá.) Melyik esetben nagyobb az alátámasztó rugó hosszváltozása?

- A) Az 1) esetben, mivel az alátámasztás közelebb van a súlyhoz.
- **B)** A 2) esetben, mivel az alátámasztás közelebb van a csuklóhoz.
- C) Egyforma az összenyomódás mindkét esetben, hiszen a rúd mindkét esetben vízszintes.
- **D)** A megadott adatok alapján nem lehet eldönteni.

- 9. Két műhold körpályán kering a Föld körül, az első nagyobb, a második kisebb sugarú körön. Melyik műhold halad nagyobb sebességgel?
 - A) A nagyobb sugarú pályán keringő.
 - **B)** A kisebb sugarú pályán keringő.
 - C) A sebesség független a pálya sugarától.

2 pont

2113 írásbeli vizsga 5 / 16 2021. október 28.

10. Mit állíthatunk egy félköríven lecsúszó, súrlódás nélkül mozgó test centripetális gyorsulásáról?

- A) A centripetális gyorsulás a lecsúszás közben nő.
- B) A centripetális gyorsulás a lecsúszás közben csökken.
- C) A centripetális gyorsulás a lecsúszás közben nem változik.

11. Egy gáztartály *l* hosszúságú, *A* alapterületű henger. Benne *N* db molekula alkotja a *T* hőmérsékletű gázt. Mekkora nyomóerőt fejt ki a gáz a henger *A* területű fedőlapjára?

- $\mathbf{A)} \quad \frac{NkT}{2A}$
- $\mathbf{B)} \quad \frac{NkT}{2l}$
- C) $\frac{NkT}{A}$
- $\mathbf{D)} \quad \frac{NkT}{l}$

- 12. Egy elektront egy olyan térrészbe lövünk, ahol egyszerre homogén mágneses és homogén elektromos mező is van. Az elektron a térrészen állandó nagyságú és irányú sebességgel halad keresztül. Hogyan lehetséges ez?
 - **A)** A mágneses indukcióvektor és az elektromos térerősségvektor iránya egymásra merőleges.
 - **B)** A mágneses indukcióvektor és az elektromos térerősségvektor iránya egymással párhuzamos és ellentétes irányú.
 - C) A mágneses indukcióvektor és az elektromos térerősségvektor iránya egymással párhuzamos és azonos irányú.

2 pont	

13. Egy vezetőhurok a vezetőkeret síkjára merőleges homogén mágneses térben van. A mágneses indukció időbeli változását a jobb oldali grafikon mutatja. Melyik grafikon ábrázolja helyesen a vezetőhurokban indukálódó feszültség időbeli változását?

- **A)** Az A) grafikon.
- **B)** A B) grafikon.
- C) A C) grafikon.

2 pont

14. Egy sík-homorú lencsét megvilágítunk az ábra szerint, így a lencsét párhuzamos fénynyaláb hagyja el. Ezután a lencse anyagával megegyező törésmutatójú folyadékot öntünk a lencsébe. Változatlan megvilágítás esetén hogyan hagyják el a fénysugarak a lencsét?

- A) Párhuzamos nyaláb hagyja el.
- B) Összetartó nyaláb hagyja el.
- C) Széttartó nyaláb hagyja el.

- 15. Két különböző színű monokromatikus fénysugár hullámhossza azonos. Lehetséges ez?
 - A) Nem lehetséges, mert a fény színét a hullámhossza határozza meg.
 - **B)** Megfelelő közegben ez lehetséges, de akkor a fénysugarak frekvenciájának el kell térnie.
 - C) Lehetséges, de csak ha a két fénysugár két különböző közegben halad.
 - D) Nem lehetséges, mert azonos közegben a frekvencia is azonos lesz.

MÁSODIK RÉSZ

Az alábbi három téma közül válasszon ki egyet, és fejtse ki másfél-két oldal terjedelemben, összefüggő ismertetés formájában! Ügyeljen a szabatos, világos fogalmazásra, a logikus gondolatmenetre, a helyesírásra, mivel az értékelésbe ez is beleszámít! Mondanivalóját nem kell feltétlenül a megadott szempontok sorrendjében kifejtenie. A megoldást a következő oldalakra írhatja.

1. Wien-féle sebességszűrő

Wilhelm Wien (1864-1928) német fizikus olyan sebességszűrőt javasolt, amely csak bizonyos sebességű (v₀) töltött részecskék Ehhez áthaladását lehetővé. teszi szükséges, hogy a mozgó töltések olvan térrészen haladjanak keresztül, amelyben egymásra merőleges homogén elektromos és homogén mágneses mező van (lásd a mellékelt ábrát). Adott elektromos és mágneses térerősség esetén egy bizonyos fajtájú (azaz adott töltésű és tömegű) részecskéből csak bizonyos sebességűek haladnak egyenesen ebben a hibrid térben. Így megtervezhető, az elektromos és a mágneses tér nagyságának beállításával. hogy mekkora sebességű részecskék hagyják el a belépéssel szemközt

elhelyezkedő, kicsiny lyukon keresztül a sebességszűrőt. Ha például a részecskék töltése pozitív, akkor a tervezettnél lassabb részecskék a negatív kondenzátorlemez felé, a gyorsabbak a pozitív töltésű lemez felé térnek el az egyenes pályától és ütköznek bele a szűrőkamra falába. (A nehézségi erő a folyamat során elhanyagolható.)

Kép: https://de.wikipedia.org/wiki/Geschwindigkeitsfilter

- a) Mutassa be a homogén elektromos térbe az erővonalakra merőlegesen belépő pozitív *q* töltésre ható erőt, és az erő hatására kialakuló mozgást!
- b) Mutassa be a homogén mágneses térbe az indukcióvonalakra merőlegesen belépő *q* pozitív töltésű ionra ható erőt, és az erő hatására kialakuló mozgást!
- c) Milyen irányú elektromos erő és mágneses (Lorentz-) erő hat az ábrán látható szűrőbe belépő pozitív töltésre? Mit állíthatunk e két erő nagyságáról, amikor a töltés egyenes vonalú pályán halad? (A mágneses indukcióvektor a papír síkjába befelé mutat.)
- d) Mutassa meg, hogy a szűrő a $v_0 = \frac{E}{B}$ sebességű töltéseket engedi át!
- e) Hogyan következtethetünk a b) pontban szereplő pozitív *q* töltésű ion tömegére mozgásának jellemzőiből, ha a homogén mágneses térbe való belépést megelőzően sebességszűrőn haladt keresztül?

2113 írásbeli vizsga 8 / 16 2021. október 28.

2. Töltöttségi szint mérése

Nehezen hozzáférhető (föld alatti) folyadéktartályok töltöttségi szintjének mérésére radioaktív sugárzást is használhatunk. A mérés alapelve az, hogy egy megfelelően kialakított sugárforrásból kiinduló sugárzás a tartályon áthaladva éri el a detektort. Mivel a tartály tartalma befolyásolja, hogy mennyi nyelődik el a sugárzásból, mielőtt elérné a detektort, a mérésből következtetni lehet a tartály telítettségére. Sugárforrásnak általában cézium-137 (felezési idő kb. 30 év) vagy kobalt-60 (felezési idő kb. 5,3 év) izotópot használnak, melyek tipikus γ-sugárzók. A mérés többféle elrendezésben is megvalósítható. A legegyszerűbb megoldás egy pontszerű sugárforrást használ, és azt mutatja meg, hogy a tartály töltöttségi szintje elér-e egy bizonyos értéket. Ekkor a γ-sugárforrás és a hozzá tartozó érzékelő a tartály egymással szemben lévő oldalain helyezkednek el, egy bizonyos magasságban. Kiterjedt sugárforrás használata esetén a detektor által mért sugárzásmennyiségből pontosan meg lehet határozni a tartály pillanatnyi töltöttségét.

- a) Mit nevezünk egy radioaktív elem felezési idejének?
- b) Mit ad meg egy radioaktív preparátum aktivitása? Hogyan változik időben egy adott preparátum aktivitása?
- c) Mikor mér nagyobb értéket a tartályon lévő sugárzásdetektor? Ha üres a tartály, vagy ha tele van? Magyarázza meg, miért!
- d) Indokolja meg, miért nem alkalmas a szövegben bemutatott szintmérési eljáráshoz az α- vagy β-sugárzás!
- e) Miért előnyösebb a ¹³⁷Cs-izotóp használata, mint a ⁶⁰Co-izotópé?
- f) Mennyi ideig tartózkodhat egy karbantartó a tartály belsejében, ha eközben 0,15 Sv/h sugárzási érték éri, és az előírás szerint maximum 500 mSv sugárzás érheti a munka ideje alatt?

2113 írásbeli vizsga 9 / 16 2021. október 28.

3. Párolgás, forrás

Számos kísérleteknél, kiváltkép az időjárás kikémlelésénél igen nyomós tudni azon vízmennyiséget, mely a levegőben páraalakban tartózkodik. E tudományra azon eszközök által jutunk, melyek nedvmérőnek neveztetnek. Alapulnak ezek vagy a vízpárának merő és híg testek általi elnyeletésén, vagy a kipárolgás által megkötött melegen, mely miatt a vízpárák csöppalakúakká válnak.

Schirkhuber Móricz: Az elméleti és tapasztalati természettan alaprajza. Pest, 1851.

- a) Mutassa be a párolgás és lecsapódás jelenségét!
- b) Írja le a párolgás és lecsapódás jelenségét energetikai szempontból, mutassa be a párolgáshő fogalmát!
- c) Adja meg a párolgás sebességét befolyásoló tényezőket! Értelmezze a telített gőz és a relatív páratartalom fogalmát!
- d) Mutassa be, hogy adott gőzsűrűség mellett miért és hogyan befolyásolja a hőmérséklet a relatív páratartalmat!
- e) Hogyan keletkezik a harmat? Mit nevezünk harmatpontnak?
- f) Értelmezze a párolgás jelenségének szerepét az élőlények túlmelegedésének megakadályozásában!
- g) Miért okozhat égési sérüléseket az ember testére lecsapódó forró gőz?

2113 írásbeli vizsga 10 / 16 2021. október 28.

Tartalom	Kifejtés	Összesen
18 pont	5 pont	23 pont

HARMADIK RÉSZ

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

1. Egy mindkét végén nyitott, 39 cm hosszú, vékony cső tetejénél egy kis hangszórót helyezünk el. A hangszórót változtatható frekvenciájú hanggenerátorra kötjük. A hang frekvenciáját fokozatosan növeljük.

Melyik lesz a legkisebb frekvencia, amelynél rezonanciát tapasztalunk? Melyik lesz a második legkisebb frekvencia?

(A kísérlet elvégzésekor a hang terjedési sebessége a levegőben 343 m/s.)

Összesen

- 2. Egy tekercs ohmos ellenállása 6 Ω , induktivitása 0,4 H. A tekercset egy 24 V feszültségű, elhanyagolható belső ellenállású telepre kötjük.
 - a) Mekkora maximális áramerősség alakul ki a tekercsben?
 - b) Mekkora energiát tárol a tekercs ekkor?
 - c) Mekkora ebben az esetben a tekercs teljes fluxusa?
 - d) Az áramkörben erről az értékről az áramerősséget 0,05 s alatt egyenletesen nullára csökkentjük. Mekkora az indukált feszültség abszolút értéke?

a)	b)	c)	d)	Összesen
3 pont	3 pont	3 pont	3 pont	12 pont

2113 írásbeli vizsga 13 / 16 2021. október 28.

A mérnököket régóta foglalkoztatja az ún. űrlift gondolata. Ennek lényege az volna, hogy egy, a Földdel együtt forgó, a Föld felszínére mindig merőleges, feszes kötél nyúlna az űrbe. A kötelet úgy alakítanák ki, hogy azon kisebb tömegű kabinok közlekedhessenek, azaz a kötélbe kapaszkodva felfelé, illetve lefelé mozoghatnának a földfelszín és az űr között. A kötél egvik vége az Egyenlítőnél lenne rögzítve, a másik végén egy nagy tömegű ellensúly lenne. Az ellensúlyt körpályára állítanák akkora sebességgel, hogy mindig az Egyenlítőn lévő rögzítési

pont fölött tartózkodjon. A keringési ideje tehát megegyezne a Föld tengely körüli forgásának periódusával. Az ellensúly sebessége meghaladná a pályához tartozó körsebességet, ezért a kötél megfeszülne, az ellensúlyt a gravitációs vonzerő és a kötélerő eredője tartaná körpályán. A súly ily módon feszesen tartaná a kötelet, és azon kisebb tömegű kabinok "közlekedhetnének", azaz a kötélbe kapaszkodva mozoghatnának fel, illetve le a földfelszín és az űr között.

Tegyük fel, hogy egy 1000 tonna tömegű ellensúlyt egy 73 630 km hosszúságú kötéllel rögzítünk az Egyenlítőhöz. (A kötél tömege elhanyagolható.)

- a) Mekkora legyen ebben a magasságban az ellensúly sebessége, hogy az Egyenlítő ugyanazon pontja felett maradjon mozgása során?
- b) Mekkora, a Föld közepe felé mutató eredő erőre van szükség az ellensúly körpályán tartásához?
- c) Mekkora erővel húzza az ellensúly a kötél felső végét?

(A Föld tömege $M_F = 5.97 \cdot 10^{24}$ kg, sugara $R_F = 6370$ km, a gravitációs állandó $\gamma = 6.67 \cdot 10^{-11}$ m³/kg·s², a Föld tengely körüli forgásának periódusát közelítsük 1 nappal.)

a)	b)	c)	Összesen
4 pont	2 pont	6 pont	12 pont

2113 írásbeli vizsga 14 / 16 2021. október 28.

- 4. Egy radioaktív hulladékot tartalmazó tartályban 2 év felezési idejű izotóp van, amely 2 MeV energiájú alfa-részecskéket bocsát ki bomlása során. A bomló atommagok által kibocsátott részecskék energiája a tartály vastag falában nyelődik el, a hulladék kezdetben 200 W teljesítménnyel fűti a tartályt. Hogy a tároló hőmérséklete állandó maradjon, egy hűtőrendszernek percenként 0,5 l hűtővizet kell pumpálnia a tároló falában lévő csöveken keresztül, az adott fűtőteljesítmény mellett.
 - a) Kezdetben hány radioaktív bomlás történik a tartályban másodpercenként?
 - b) Hány fokkal nő meg a hűtővíz hőmérséklete, amíg a hűtőrendszeren átfolyik?
 - c) Hány év elteltével csökken az izotóp fűtőteljesítménye 25 W-ra?

(A víz fajhője $c=4183~\rm J/kg\cdot C^\circ$, sűrűsége $\rho=1~\rm kg/l$, az elemi töltés $e=1,6\cdot 10^{-19}~\rm C$, $1~\rm eV=1,6\cdot 10^{-19}~\rm J$. Feltehetjük, hogy a fal hőmérséklete állandó és a falban elnyelődött energia mind a hűtővíz felmelegítésére fordítódik, az egyéb hőveszteség elhanyagolható.)

a)	b)	c)	Összesen
4 pont	5 pont	3 pont	12 pont

2113 írásbeli vizsga 15 / 16 2021. október 28.

Fizika	Azonosító								
emelt szint	jel:						,		

	ponts	szám
	maximális	elért
I. Feleletválasztós kérdéssor	30	
II. Témakifejtés: tartalom	18	
II. Témakifejtés: kifejtés módja	5	
III. Összetett feladatok	47	
Az írásbeli vizsgarész pontszáma	100	

dátum	javító tanár

	pontszáma egész számra kerekítve	
	elért	programba beírt
I. Feleletválasztós kérdéssor		
II. Témakifejtés: tartalom		
II. Témakifejtés: kifejtés módja		
III. Összetett feladatok		

dátum	dátum
javító tanár	jegyző