

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga

Robustifying the Set Covering Machine with Disjunctive Normal Forms and Nominal Features

Bachelor's Thesis in Software Engineering by Rebekka Roßberg

Institute of Medical Systems Biology

Marchand's Set Covering Machine

- Based on the algorithms of Valiant and Haussler
- Produces a conjunction or disjunction of base classifiers
- Different kinds of base classifiers possible, such as data-dependent rays or balls
- Results in a compact and easy to interpret classifier and therefore exposes relevant features
- Can handle high-dimensional data sets of low cardinality

Building a Disjunction of Conjunctive Rules

- Extending the expressiveness of the SCM
- Especially useful for data sets with multiple disjunct decision regions

Adjusting the Parameters: sC, sD, minConjSize

minConjSize = 1

minConjSize = 5

Adjusting the Parameters: p

p = 1

p = 1.5

Resolving Tie Situations

- 1. Save history and option 2
- 2. Finish conjunction with option 1
- 3. Use option 2 as the starting point for the next conjunction

Optimizing Rays: Reducing the Complexity by O(|samples|)

Locating the optimal lower border

Locating the optimal upper border

Optimizing Rays: Allowing Re-correction

Without re-correction

With re-correction

Optimizing Rays: Clever Placement of Thresholds

positive samples negative samples

16

14

12

10

10

15

20

25

30

X1

Thresholds on the data points

Thresholds between the data points

Application on Gene Expression Data

- Kidney Chromophobe
- Kidney Renal Papillary Cell Carcinoma
- Kidney Renal Clear Cell Carcinoma
- Cholangiocarcinoma
- Pancreatic Adenocarcinoma
- Liver Hepatocellular Carcinoma
- Colon Adenocarcinoma
- Rectum Adenocarcinoma

→ Classifiers like: IF (EPHA3 | 2042 > 666.5 AND ADORA2B | 136 > 305.5 AND ACO1 | 48 > 2297.5) OR (ELAVL2 | 1993 > 209 AND DDC | 1644 < 5461.5 AND ABCA4 | 24 < 8.5) THEN class 'Rectum Adenocarcinoma'

Extension to Nominal Features

Application on UCI Data Sets

Chess:

IF (bxqsq=f AND wknck=f AND wkna8=f AND hdchk=f AND spcop=f) OR (rimmx=t) THEN won'

German:

IF (status of existing checking account = no checking account AND other installment plans = none AND age > 22.5 AND credit amount < 9504.0 AND age < 66.5) OR (duration in months < 8.5 AND age > 25.0 AND credit amount < 3015.5) OR (credit amount < 421.0) THEN good

Conclusion

- Feasible run times of the optimized algorithm in Julia
- The uniform handling of both, numerical and nominal, features widens the field of possible use cases by a lot

- Using a DNF can improve a SCM's ability to create an accurate classifier
- Mostly helpful for disjunct and low dimensional data
- However chance is often unused, for example in 5/7 gene expression data sets
- Good parameter adjustmenet is essential, especially of `minConjSize`