Arquitetura de Computadores I Instruções executáveis por um	
processador - a arquitetura MIPS	
(2º grupo de slides)	
António de Brito Ferrari	
ferrari@ua.pt	
ionane dalpe	
8. Representação de inteiros com e sem sinal	
(revisão)	
ABF - AC I - MIPS IS_2 2	
Inteiros positivos em binário	
Número em binário com n-bits	
$X = X_{n-1}2^{n-1} + X_{n-2}2^{n-2} + \dots + X_12^1 + X_02^0$	
■ Gama de representação: 0 a +2 ⁿ − 1	
■ Exemplo	
• 0000 0000 0000 0000 0000 0000 0000 1011 ₂ = 0 + + $1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$ = 0 + + 8 + 0 + 2 + 1 = 11_{10}	
■ Gama de representação com 32 bits	
• 0 a +4,294,967,295	
/ - / - / - ·	
ABF - AC I - MIPS IS_2 3	

Inteiros com sinal: 2s-Complement	
Número com n-bits em 2s-Complement:	
$x = -x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \dots + x_12^1 + x_02^0$	
■ Gama de representação: -2 ⁿ⁻¹ a +2 ⁿ⁻¹ -1	
Exemplo	
■ 1111 1111 1111 1111 1111 1111 1111 1	
 Gama de representação com 32 bits 	
■ -2,147,483,648 a +2,147,483,647	
ABF - AC1 - MIPS IS_2 4	
Inteiros com sinal: 2s-Complement (2)	
Bit 31 é o bit de sinal:	
1 para numeros negativos 0 para numeros positivos e para zero	
Gama de representação assimétrica: -(-2 ⁿ⁻¹) não é	
representável em n-bits Numeros não-negativos têm a mesma representação	
em unsigned e em 2s-complement	
Exemplos: 0: 0000 0000 0000	
–1: 1111 1111 1111 Mais-negativo: 1000 0000 0000	
Mais-positivo: 0111 1111 1111	
ABF - AC I - MIPS IS_2 5	
Negação (obtenção do simétrico)	
Complementar e somar 1	
- Complementar significa inverter bit a bit $1 \rightarrow 0$, $0 \rightarrow 1$	
_	
x+x=1111111 ₂ =-1	
x+1=-x = Example: pager +2	
Examplo: negar +2+2 = 0000 0000 0010₂	
■ -2 = 1111 1111 1101 ₂ + 1	
= 1111 1111 1110 ₂	
ABF - AC1 - MPS IS_2 6	

2s complem	nent: Extensão do sin	al	
No instruction set d addi: valor do ime lb, lh: extende o l beq, bne: extende Replicar o bit de sin c.f. unsigned values exemplos: 8-bit para +2: 0000 0010 => 0	ediato extendido a 32-bits byte/halfword transferido da memória o valor do deslocamento al para a esquerda : extende com Os	a	
	ABF - AC I - MIPS IS_2	7	
9. Represent	ação das instruções		
	ABF - AC1 - MIPS IS_2	8	
High-level language	<pre>swap(int v[], int k) (int temp;</pre>		
language program (in C)			
Assembly language program (for MIPS)	5WBP1 mult \$2, \$5, 4 add \$2, \$4, 52 by \$15, 0(42) by \$16, 4(32) 5W \$16, 0(52) 5W \$16, 4(32) 5W \$15, 4(42) Jr \$31		
	5W 316, U(\$2') 5W 315, 4(\$2') Jr 331		
Binary machine language program (for MIPS)	00000001010000100001000011000 000000000		
	000000111110000000000000000001000	9	

Codificação das instruções	
nstruções codificadas em binário: <i>código máquina</i> Instruções MIPS	
Codificadas em 32-bits (<i>instruction words</i>) – comprimento fixo	
 Número reduzido de formatos de instrução Codificam: código de operação (opcode), número dos 	
registos, Regularidade!	
Número dos registos \$t0 – \$t7 são os registos 8 – 15	
\$t8 – \$t9 são os registos 24 – 25	
\$50 - \$57 são os registos 16 - 23 ABT-ACI-MIPS IS_2 10	
Formatos de instrução: Tipo R	
op rs rt rd shamt funct 6 bits 5 bits 5 bits 5 bits 6 bits	
• Instruction fields	
– op: operation code (opcode)	
– rs: first source register number	
rt: second source register numberrd: destination register number	
– shamt: shift amount (00000 for now)	
 funct: function code (extensão do opcode) 	
ABF - AC I - MIPS IS_2 11	
Formato Tipo R: exemplo	
op rs rt rd shamt funct	
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits	
add \$t0, \$s1, \$s2	
special \$s1 \$s2 \$t0 0 add	
0 17 18 8 0 32	
000000 10001 10010 01000 00000 100000	
0000001000110010010000000100000 ₂ = 02324020 ₁₆	
ABF-AC I - MIPS IS_2 12	

Formatos de instrução: Tipo I

ор	rs	rt	constant or address
6 bits	5 bits	5 bits	16 bits

- Instruções load/store e operações com imediatos
 - rt: destination or source register number
 - Constant: -2¹⁵ to +2¹⁵ 1
 - Address: offset added to base address in rs

ABF - AC I - MIPS IS_2

Codificação das instruções: Tipo R e Tipo I

		ор		rt		shamt		
add	R	0	reg	reg	reg	0	32 _{ten}	n.a.
sub (subtract)	R	0	reg	reg	reg	0	34 _{ten}	n.a.
add immedi ate	1	8 _{ten}	reg	reg	n.a.	n.a.	n.a.	constant
lw (load word)	1	35 _{ten}	reg	reg	n.a.	n.a.	n.a.	address
s w (s tore word)	T	43 _{ten}	reg	reg	n.a.	n.a.	n.a.	address

Tipo R – instruções aritméticas e lógicas Tipo I – loads, stores e operações com imediatos

ABF - AC I - MIPS IS_2

The BIG Picture

- Instruções representadas em binário, tal como os dados
- Instruções e dados armazenados na memória
- Programas podem operar sobre programas
 - compilers, linkers, assembler...
- Compatibilidade Binária permite aos programas compilados serem executados em diferentes computadores
 - Standardized ISAs

Operações Lógicas

• Instruções para manipulação de bits

Operação	С	Java	MIPS
Shift left	<<	<<	s11
Shift right	>>	>>>	srl
Bitwise AND	&	&	and, andi
Bitwise OR	I		or, ori
Bitwise NOT	~	~	nor

 Uteis para extrair e inserir grupos de bits numa word

ABF - AC I - MIPS IS_2

Operações de deslocamento (shift)

ор	rs	rt	rd	shamt	funct
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

- shamt: indica quantas posições deslocar
- Shift left logical
 - Shift left e preencher com zeros
 - S11 *i* bits multiplica por 2^i
- Shift right logical
 - Shift right preencher com zeros
 - − srl i bits divide por 2i (só unsigned)

ABF - AC I - MIPS IS_2

AND

• Útil para mascarar (selecionar) bits numa word

- Seleciona alguns bits, coloca os outros a 0

and \$t0, \$t1, \$t2

\$t2	0000 0000 0000 0000 00	00 11	01 1100 0000
\$t1	0000 0000 0000 0000 00	11 11	00 0000 0000
\$t0	0000 0000 0000 0000 00	00 11	00 0000 0000

OR	
 Util para incluir bits numa word Coloca alguns bits a 1, os restantes não se alteram 	
or \$t0, \$t1, \$t2	
\$t2	
\$t0 0000 0000 0000 0000 00 <mark>11 11</mark> 01 1100 0000	
ABF - ACT - MIPS IS_2 19	
NOT	
 Util para inverter bits numa word Muda 0 para 1, e 1 para 0 	
MIPS tem NOR 3-operand instruction	
- a NOR b == NOT (a OR b)	
nor \$t0, \$t1, \$zero ← Register 0: always read as zero	
\$t1 0000 0000 0000 0000 0011 1100 0000 0000	
\$to 1111 1111 1111 1111 1100 0011 1111 11	
ABF - AC1 - MIPS IS_2 20	
10. Instruções de escolha – operações condicionais	
ABF - AC I - MIPS IS_2 2 21	

Operações	condiciona is	(branch)

Salta para a instrução indicada se a condição é verdadeira Senão, continua sequencialmente beq rs, rt, L1 if (rs == rt) branch to instruction labeled L1; bne rs, rt, L1 if (rs!= rt) branch to instruction labeled L1; j L1 unconditional jump to instruction labeled L1

ABF - AC I - MIPS IS_2

Compilação de If

• Código C:

```
if (i==j) f = g+h;
else f = g-h;
-f, g, ... \text{ em } $50, $51, ...
```

· Código Compilado MIPS:

```
bne $s3, $s4, Else add $s0, $s1, $s2 j Exit
Else: sub $s0, $s1, $s2
Exit: Assembler calcula ender
```

Compilação de ciclos

Código C:

while (save[i] == k) i += 1;
i em \$s3, k em \$s5, endereço de save em \$s6

Código Compilado MIPS:

Loop: sll \$t1, \$s3, 2
add \$t1, \$t1, \$s6
lw \$t0, 0(\$t1)
bne \$t0, \$s5, Exit
addi \$s3, \$s3, 1
j Loop

Exit: ...

Basic Blocks • basic block - sequência de instruções sem - branches (exceto no fim) - branch targets (exceto no início) O compilador identifica basic blocks para optimização O processador pode acelerar a execução dos basic blocks ABF - AC I - MIPS IS_2 Outras operações condicionais • Set result to 1 if a condition is true · Otherwise, set to 0 • slt rd, rs, rt if (rs < rt) rd = 1; else rd = 0; • slti rt, rs, constant • if (rs < constant) rt = 1; else rt = 0; • Usado em combinação com beq, bne slt \$t0, \$s1, \$s2 # if (\$s1 < \$s2) bne \$t0, \$zero, L # branch to L ABF - AC I - MIPS IS_2 Comparações signed e unsigned • Signed comparison: slt, slti • Unsigned comparison: sltu, sltui • Exemplo: $-\$s1 = 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000$ -slt \$t0, \$s0, \$s1 # signed • −1 < +1 ⇒ \$t0 = 1 -sltu \$t0, \$s0, \$s1 # unsigned • +4,294,967,295 > +1 ⇒ \$t0 = 0 ABF - AC I - MIPS IS_2

11. Invocação de funções/procedures	
(sub-rotinas)	
ABF-ACI-MIPS IS_2 28	
Investora de auses dinesantes	
Invocação de procedimentos Passos necessários:	
Colocar os parâmetros em registos Transferir o controlo para o procedimento	
Adquirir espaço de memória para o procedimento	
4. Executar as instruções do procedimento5. Colocar o resultado num registo para o	
passar ao invocador 6. Regressar ao ponto do programa onde foi	
feita a chamada do procedimento ABF-ACI-MBFS IS_2 29	
Utilização dos registos	
• \$a0 – \$a3: argumentos (r4 – r7)	
 \$v0, \$v1: valores do resultado (r2 e r3) \$t0 - \$t9: temporaries 	
 O seu conteúdo pode ser destruído pelo callee \$s0 - \$s7: saved Têm de ser preservados (saved/restored) pelo callee 	
\$gp: global pointer for static data (reg 28)\$sp: stack pointer (reg 29)	
\$fp: frame pointer (reg 30)\$ra: return address (reg 31)	
ABF-AC1-MIPS IS_2 30	

Instruções para invocação	de
procedimentos	

- Procedure call: jump and link
 - jal ProcedureLabel
 - Endereço da instrução seguinte colocado em \$ra
 - Salta para o endereço alvo
- · Procedure return: jump register

jr \$ra

- Copia \$ra para o program counter (PC) = (\$ra)
- Pode tambem ser usado para "computed jumps"
 - e.g., case/switch statements

ABF - AC I - MIPS IS_2

Procedimento que não invoca outro (leaf)

```
• Código C:
 int leaf_example (int g, h, i, j)
 { int f;
    f = (g + h) - (i + j);
    return f;
  – Argumentos g, ..., j em $a0, ..., $a3
```

– f em \$s0 (necessário preservar \$s0 no stack)

- Resultado em \$v0

ABF - AC I - MIPS IS_2

leaf_example: código MIPS

addi sw		\$sp, -4 0(\$sp)	Guardar \$s0 no stack
add add sub	\$t1,	\$a0, \$a1 \$a2, \$a3 \$t0, \$t1	Corpo do procedimento
add	\$v0,	\$s0, \$zero	Resultado em \$v0
lw addi		0(\$sp) \$sp, 4	Restaurar \$s0
jr	\$ra		Regresso ao caller

Procedimentos que invocam	outros
procedimentos	

- Para invocações em cadeia o caller precisa de guardar no stack:
 - O seu endereço de retorno
 - Valores de argumentos e variáveis temporárias de que necessite depois da invocação
- Restaurar o stack quando o procedimento que invocou retorna

ABF - AC I - MIPS IS_2

Exemplo 2 – código C

```
    C:
        int fact (int n)
        {
              if (n < 1) return f;
              else return n * fact(n - 1);
        }
        - Argumento n em $a0
        - Resultado em $v0</li>
```

ABF - AC I - MIPS IS_2

Exemplo 2 - código MIPS

```
fact:
    addi $sp, $sp, -8
    sw $ra, 4($sp)
    sw $a0, 0($sp)
    slti $t0, $a0, 1
    beq $t0, $zero, L1
    addi $sp, $sp, 8
    jr $ra

L1: addi $a0, ($sp)
    w $a0, 0($sp)
    w $a0, 0($sp)
    lw $a0, 0($sp)
    lw $ra, 4($sp)
    addi $sp, $sp, 8
    mul $v0, $a0, $v0
    jr $ra

# ajusta o stack para 2 items
# save return address
# save argument
# teste se n < 1
# pop 2 items do stack
# e return
# else decrement n
# else decrement n
# ercursive call
# recursive call
# restore valor original de n
# e return address
# pop 2 items from stack
# multiplicar to get result
# return
```

Dados locais no stack	
High address	
\$ fp -+ \$ sp -	
Saved return address Sered served reguletra (if arry) Local arrays and s.p turturures (if arry)	
Low address a. b. c.	
Local data allocated by callee e.g., C automatic variables Procedure frame (activation record) Usado por alguns compiladores para administrar o stack	
ABF-ACI-MPS IS,2 37	
Mapa de memória	
Mapa de memoria	
Text: program code Static data: global variables e.g., static variables in C, Static Variables in C,	
constant arrays and strings \$gp initialized to address allowing ±offsets into this \$gp - 1000 8000 _{lns} . Static data	
segment 1000 0000 _{hes} Text Dynamic data: heap pc 0040 0000 _{hes} Researed	
E.g., <i>malloc</i> em C, <i>new</i> em Java Stack: automatic storage	
ABF - AC I - MIPS IS_2 38	
12. Representação de outros tipos de dados	

Carateres	
Byte-encoded character sets	
- ASCII: 128 carateres • 95 graphic, 33 control	
Latin-1: 256 carateres ASCII, +96 more graphic characters	
Unicode: 32-bit character set	
Usado em Java, C++ wide characters,Codifica a maior parte dos alfabetos exitentes mais os	
símbolos — UTF-8, UTF-16: variable-length encodings	
ABF - AC I - MIPS IS_2 40	
Operaçãos com butas o baltuardo	
Operações com <i>bytes</i> e <i>halfwords</i>	
Podem usar operações bitwiseMIPS byte/halfword load/store	
String processing	
<pre>lb rt, offset(rs)</pre>	
<pre>lbu rt, offset(rs)</pre>	
<pre>sb rt, offset(rs)</pre>	
ABF - ACI - MIPS IS, 2 41	
Exemplo: String copy	
• C:	
- Null-terminated string void strcpy (char x[], char y[])	
{ int i; i = 0;	
while ((x[i]=y[i])!='\0') i += 1;	
} — Endereços de x, y em \$a0, \$a1	
– i em \$s0	
ABF - AC I - MIPS IS_2 42	

String copy: código MIPS	
Sample and the same	
<pre>strcpy: addi \$sp, \$sp, -4</pre>	
add \$s0, \$zero, \$zero # i = 0 L1: add \$t1, \$s0, \$a1 # addr of y[i] in \$t1 bu \$t2, 0(\$t1) # \$t2 = y[i]	
add \$t3, \$s0, \$a0 # addr of x[i] in \$t3 sb \$t2, 0(\$t3) # x[i] = y[i] beq \$t2, \$zero, L2 # exit loop if y[i] == 0	
addi \$s0, \$s0, 1 # i = i + 1 j L1 # next iteration of loop L2: lw \$s0, 0(\$sp) # restore saved \$s0	
addi \$sp, \$sp, 4 # pop 1 item from stack jr \$ra # return	
ABF-ACI-MPSIS_2 43	
13. Modos de endereçamento de <i>branch</i> e <i>jump</i>	
ABF-ACI-MPS IS 2 44	
Endereçagem de branch	
As instruções de <i>branch</i> especificam	
Opcode, dois registos, target address	
A maioria dos branch saltam para instruções	
próximas – Forward or backward	
op rs rt constant or address	
6 bits 5 bits 5 bits 16 bits Endereçagem PC-relative	
■ Target address = PC + offset × 4	
 PC já a apontar para a instrução seguinte (previamente incrementado de 4) 	
(previamente incrementado de 4) ABF-ACI-MPSIS_2 45	

Endereçagem de jump

 Jump (j and jal) targets podem estar em qualquer posição do segmento de texto (não existe a limitação dos branch) – endereço completo no código de instrução

ор	address
6 bits	26 bits

- (Pseudo)Direct jump addressing
 - Target address = PC_{31...28} : (address × 4)

ABF - AC I - MIPS IS_2

Modos de Endereçamento: sumário

Target Addressing: exemplo

- Assume-se que Loop em 80000

Loop:	s11	\$t1,	\$s3,	2	80000	0	0	19	9	4	0
	add	\$t1,	\$t1,	\$s6	80004	·0	9	22	9	0	32
	1w	\$t0,	0(\$t	1)	80008	35	9	8		0	
	bne	\$t0,	\$s5,	Exit	80012	5	8.	21		2	
	addi	\$s3,	\$s3,	1	80016	8	19	19		1	
	j	Loop			80020	2		100	20000		
Exit:					80024						

Instruções MIPS já vistas

MIPS instructions	Name	Format	Pseudo MIPS	Name	Format
edd	ndd	R	move	move	R
subtract	sub	R	multiply	mult	R
add immediate	2001	1	multiply immediate	multi	1
load word	Tie	1	load immediate		1
store word	5W	1	branch less than	blt	10
load half	Th	1.	branch less than		
load half unsigned	Thu	- 1	or equal	ble	1.5
store half	.68	1.	branch greater than	bgt	- 1
load byte	16	1	branch greater than		
load byte unsigned	1 bru	1.	or equal	tige	1.5
stone byte	sb	1			
load linked	11	1.5			
store conditional	50	10			
load upper immediate	1ut	- 1			
and	and	R			
07	0.0	8			
nor	nor	R			
and immediate	andi	1			
or immediate	pri	1			
shift left logical	sli	R			
shift right logical	srl	B			
branch on equal	beq	1			
branch on not equal	bne	- 12			
set less than	511	R			
set less than immediate		1.			
set less than immediate unsigned	sitiu	- 12			
jump	3	1			
jump register	5+	R			
jump and link	Jal	1			