

12082CH1

प्रायिकता Probability

❖ The Theory of probabilities is simply the science of logic quantitatively treated − C.S. PEIRCE ❖

13.1 भूमिका (Introduction)

पहले की कक्षाओं में हमने प्रायिकता को किसी यादृच्छिक परीक्षण की घटनाओं के घटित होने की अनिश्चितता की माप के रूप में पढ़ा था। हमने रूसी गणितज्ञ ए.एन. कौल्मोग्रोब (1903-1987) द्वारा प्रतिपादित अभिगृहितीय दृष्टिकोण का उपयोग किया था और प्रायिकता को परीक्षण के परिणामों पर परिभाषित फलन के रूप में निरूपित किया था। हमने समसंभाव्य परिणामों की दशा में प्रायिकता के अभिगृहितीय दृष्टिकोण और क्लासिकल सिद्धांत (classical theory) में समकक्षता भी स्थापित की थी। इस समकक्षता के आधार पर हमने असंतत प्रतिदर्श समष्टि की घटनाओं की प्रायिकता ज्ञात की थी। हमने प्रायिकता के योग नियम का भी अध्ययन किया है। इस अध्याय में हम किसी घटना की सप्रतिबंध प्रायिकता (conditional probability)

Pierre de Fermat (1601-1665)

के बारे में विचार करेंगे, जबिक किसी अन्य घटना के घटित होने की सूचना हमारे पास हो, तथा इस महत्त्वपूर्ण अवधारणा की सहायता से बेज-प्रमेय (Bayes' theorem), प्रायिकता का गुणन नियम तथा स्वतंत्र घटनाओं के बारे में समझेंगे। हम यादृच्छिक चर (random variable) और इसके प्रायिकता बंटन की महत्त्वपूर्ण अवधारणा को भी समझेंगे तथा किसी प्रायिकता बंटन के माध्य (mean) व प्रसरण के बारे में भी पढ़ेंगे। अध्याय के अंतिम अनुभाग में हम एक महत्त्वपूर्ण असंतत प्रायिकता बंटन (discrete probability distribution) के बारे में पढ़ेंगे जिसे द्विपद बंटन कहा जाता है। इस अध्याय में हम ऐसे परीक्षण लेंगे जिनके परिणाम समसंभाव्य होते हैं. जब तक कि अन्यथा न कहा गया हो।

13.2 सप्रतिबंध प्रायिकता (Conditional Probability)

अभी तक हमने किसी घटना की प्रायिकता ज्ञात करने पर चर्चा की है। यदि हमें किसी प्रतिदर्श समष्टि की दो घटनाएँ दी गई हों, तो क्या किसी एक घटना के घटित होने की सूचना का प्रभाव दूसरी घटना की प्रायिकता पर पड़ता है? आइए इस प्रश्न के उत्तर के लिए एक यादृच्छिक परीक्षण पर विचार करें जिसके परिणाम समसंभाव्य हैं।

आइए अब तीन न्याय्य (fair) सिक्कों को उछालने के परीक्षण पर विचार कीजिए। इस परीक्षण का प्रतिदर्श समिष्ट है:

$$S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$$

क्योंकि सिक्के न्याय्य हैं, इसलिए हम प्रतिदर्श समिष्ट के प्रत्येक प्रतिदर्श बिंदु की प्रायिकता $\frac{1}{8}$ निर्दिष्ट कर सकते हैं। मान लीजिए E घटना "न्यूनतम दो चित प्रकट होना" और F घटना "पहले सिक्के पर पट प्रदर्शित होना" को निरूपित करते हैं।

तब
$$E = \{HHH, HHT, HTH, THH\}$$
 और $F = \{THH, THT, TTH, TTT\}$ इसलिए $P(E) = P(\{HHH\}) + P(\{HHT\}) + P(\{HTH\}) + P(\{THH\})$
$$= \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{1}{2} \text{ (क्यों ?)}$$
 और $P(F) = P(\{THH\}) + P(\{THT\}) + P(\{TTT\})$
$$= \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{1}{2}$$
 साथ ही $E \cap F = \{THH\}$ इसलिए $P(E \cap F) = P(\{THH\}) = \frac{1}{8}$

अब मान लीजिए हमें दिया गया है कि पहले सिक्के पर पट प्रकट होता है अर्थात् घटना F घटित हुई है, तब घटना E की प्रायिकता क्या है? F के घटित होने की सूचना पर यह निश्चित है कि E की प्रायिकता ज्ञात करने के लिए उन प्रतिदर्श बिंदुओं पर विचार नहीं किया जाएगा जिनमें पहले सिक्के पर पट नहीं है। घटना E के लिए इस सूचना से प्रतिदर्श समिष्ट S से घटकर इसका उपसमुच्चय F बन गया है। अन्य शब्दों में, इस अतिरिक्त सूचना ने हमें वास्तव में यह बताया है कि हालात को एक ऐसे नए यादृच्छिक परीक्षण के रूप में समझना चाहिए जिसका प्रतिदर्श समिष्ट केवल उन परिणामों का समुच्चय है जो कि घटना F के अनुकूल है।

अब
$$F$$
 का वह प्रतिदर्श बिंदु जो E के भी अनुकूल है; THH है। अत: F को प्रतिदर्श समिष्ट मानते हुए घटना E की प्रायिकता $=$ $\frac{1}{4}$ या F का घटित होना दिया गया होने पर E की प्रायिकता $=$ $\frac{1}{4}$

घटना E की इस प्रायिकता को सप्रतिबंध प्रायिकता कहते हैं, जबिक ज्ञात है कि घटना F घटित हो चुकी है, और इसे P(E|F) द्वारा दर्शाते हैं।

अर्थात्
$$P(E|F) = \frac{1}{4}$$

नोट कीजिए कि F के वो अवयव जो घटना E के भी अनुकूल हैं, E तथा F के साझे अवयव होते हैं, अर्थात् $E \cap F$ के प्रतिदर्श बिंदु हैं।

अत: हम घटना E की सप्रतिबंध प्रायिकता, जबिक ज्ञात है कि घटना F घटित हो चुकी है को निम्न प्रकार से ज्ञात कर सकते हैं।

$$P(E|F) = rac{(E \cap F)$$
 के अनुकूल प्रतिदर्श बिंदुओं की संख्या
$$= rac{n(E \cap F)}{n(F)}$$

अब अंश व हर को प्रतिदर्श समिष्ट के अवयवों की कुल संख्या से विभाजित करने पर हम देखते हैं कि P(E|F) को निम्न प्रकार से लिखा जा सकता है:

$$P(E|F) = \frac{\frac{n(E \cap F)}{n(S)}}{\frac{n(F)}{n(S)}} = \frac{P(E \cap F)}{P(F)} \qquad \dots (1)$$

नोट कीजिए कि (1) तभी मान्य है जब $P(F) \neq 0$ अर्थात् $F \neq \phi$ (क्यों?) अतः हम सप्रतिबंध प्रायिकता को निम्न प्रकार से परिभाषित कर सकते हैं:

परिभाषा 1 यदि E तथा F किसी यादृच्छिक परीक्षण के प्रतिदर्श समिष्ट से सबंधित दो घटनाएँ हैं, तो F के घटित होने की सूचना पर, E की प्रायिकता निम्नलिखित सूत्र से प्राप्त होती है:

$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$
, जबिक $P(F) \neq 0$

13.2.1 सप्रतिबंध प्रायिकता के गुण (Properties of conditional probability)

मान लें कि E तथा F किसी प्रतिदर्श समिष्ट S की दो घटनाएँ हैं गुण 1 P(S|F) = P(F|F) = 1

हमें ज्ञात है कि
$$P(S|F) = \frac{P(S \cap F)}{P(F)} = \frac{P(F)}{P(F)} = 1$$

$$P(F|F) = \frac{P(F \cap F)}{P(F)} = \frac{P(F)}{P(F)} = 1$$

अत:

$$P(S|F) = P(F|F) = 1$$

गुण 2 यदि A और B प्रतिदर्श समिष्ट S की कोई दो घटनाएँ हैं और F एक अन्य घटना इस प्रकार है कि $P(F) \neq 0$, तब

$$P[(A \cup B)|F)] = P(A|F) + P(B|F) - P[(A \cap B)|F]$$

विशेष रूप से, यदि A और B परस्पर अपवर्जी घटनाएँ हों, तो

$$P[(A \cup B)|F)] = P(A|F) + P(B|F)$$

हम जानते हैं कि

$$P[(A \cup B)|F)] = \frac{P[(A \cup B) \cap F]}{P(F)}$$
$$= \frac{P[(A \cap F) \cup (B \cap F)]}{P(F)}$$

(समुच्चयों के सर्वनिष्ठ पर सम्मिलन के बंटन नियम द्वारा)

$$= \frac{P(A \cap F) + P(B \cap F) - P(A \cap B \cap F)}{P(F)}$$

$$= \frac{P(A \cap F)}{P(F)} + \frac{P(B \cap F)}{P(F)} - \frac{P[(A \cap B) \cap F]}{P(F)}$$
$$= P(A|F) + P(B|F) - P(A \cap B|F)$$

जब A तथा B परस्पर अपवर्जी हों तो

$$P[(A \cap B)|F)] = 0$$

$$\Rightarrow$$
 $P[(A \cup B)|F] = P(A|F) + P(B|F)$

अतः जब A तथा B परस्पर अपवर्जी घटनाएँ हों तो $P(A \cup B) = P(A|F) + P(B|F)$

गुण 3 P(E'|F) = 1 - P(E|F)

गुण 1 से हमें ज्ञात है कि P(S|F) = 1

 \Rightarrow $P[(E \cup E')|F)] = 1$ क्योंकि $S = E \cup E'$

 \Rightarrow $P\left(E|F\right)+P\left(E'|F\right)=1$ क्योंकि E तथा E' परस्पर अपवर्जी घटनाएँ हैं

अत: P(E'|F) = 1 - P(E|F)

आइए अब कुछ उदाहरण लें।

उदाहरण 1 यदि $P(A) = \frac{7}{13}$, $P(B) = \frac{9}{13}$ और $P(A \cap B) = \frac{4}{13}$, तो P(A|B) ज्ञात कीजिए।

हल हम जानते हैं कि
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{4}{13}}{\frac{9}{13}} = \frac{4}{9}$$

उदाहरण 2 एक परिवार में दो बच्चे हैं। यदि यह ज्ञात हो कि बच्चों में से कम से कम एक बच्चा लड़का है, तो दोनों बच्चों के लड़का होने की क्या प्रायिकता है?

हल मान लीजिए b लड़के को व g लड़की को निरूपित करते हैं। परीक्षण का प्रतिदर्श समध्य है:

$$S = \{(b,b), (g,b), (b,g), (g,g)\}$$

मान लीजिए E तथा F क्रमश: निम्नलिखित घटनाओं को दर्शाते हैं:

E:'दोनों बच्चे लडके हैं'

F: 'बच्चों में से कम से कम एक लडका है'

तब
$$E = \{(b,b)\}\$$
और $F = \{(b,b), (g,b), (b,g)\}$

সৰ
$$E \cap F = \{(b,b)\}$$

अत:
$$P(F) = \frac{3}{4}$$
 और $P(E \cap F) = \frac{1}{4}$

इसलिए
$$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{\frac{1}{4}}{\frac{3}{4}} = \frac{1}{3}$$

उदाहरण 3 एक बक्से में दस कार्ड 1 से 10 तक पूर्णांक लिख कर रखे गए और उन्हें अच्छी तरह मिलाया गया। इस बक्से से एक कार्ड यादृच्छया निकाला गया। यदि यह ज्ञात हो कि निकाले गए कार्ड पर संख्या 3 से अधिक है, तो इस संख्या के सम होने की क्या प्रायिकता है?

हल मान लीजिए कि A घटना 'निकाले गए कार्ड पर सम संख्या है' और B घटना 'निकाले गए कार्ड पर संख्या 3 से बड़ी है' को निरूपित करते हैं। हमें P(A|B) ज्ञात करना है।

इस परीक्षण का प्रतिदर्श समिष्ट है: $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

বৰ
$$A = \{2, 4, 6, 8, 10\}, B = \{4, 5, 6, 7, 8, 9, 10\}$$

और
$$A \cap B = \{4, 6, 8, 10\}$$

সৰ
$$P(A) = \frac{5}{10}, P(B) = \frac{7}{10}$$
 और $P(A \cap B) = \frac{4}{10}$

বৰ
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{4}{10}}{\frac{7}{10}} = \frac{4}{7}$$

उदाहरण 4 एक पाठशाला में 1000 विद्यार्थी हैं, जिनमें से 430 लड़िकयाँ हैं। यह ज्ञात है कि 430 में से 10% लड़िकयाँ कक्षा XII में पढ़ती हैं। क्या प्रायिकता है कि एक यादृच्छया चुना गया विद्यार्थी कक्षा XII में पढ़ता है यदि यह ज्ञात है कि चुना गया विद्यार्थी लड़की है?

हल मान लीजिए E घटना 'यादृच्छया चुना गया विद्यार्थी कक्षा XII में पढ़ता है' और F घटना 'यादृच्छया चुना गया विद्यार्थी लड़की है', को व्यक्त करते हैं। हमें P (EIF) ज्ञात करना है।

अब
$$P(F) = \frac{430}{1000} = 0.43 \text{ और } P(E \cap F) = \frac{43}{1000} = 0.043 \text{ (क्यों?)}$$
 तब
$$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{0.043}{0.43} = 0.1$$

उदाहरण 5 एक पासे को तीन बार उछालने के परीक्षण में घटना A तथा B को निम्न प्रकार से परिभाषित किया गया है:

A: 'तीसरी उछाल पर संख्या 4 प्रकट होना'

B: 'पहली उछाल पर संख्या 6 और दूसरी उछाल पर संख्या 5 प्रकट होना' यदि B का घटित होना दिया गया है, तो घटना A की प्रायिकता ज्ञात कीजिए।

हल प्रतिदर्श समष्टि में 216 परिणाम हैं।

সৰ,
$$B = \{(6,5,1), (6,5,2), (6,5,3), (6,5,4), (6,5,5), (6,5,6)\}$$

$$A = \begin{cases} (1,1,4) & (1,2,4) \dots (1,6,4) & (2,1,4) & (2,2,4) \dots (2,6,4) \\ (3,1,4) & (3,2,4) \dots (3,6,4) & (4,1,4) & (4,2,4) \dots (4,6,4) \\ (5,1,4) & (5,2,4) \dots (5,6,4) & (6,1,4) & (6,2,4) \dots (6,6,4) \end{cases}$$

और
$$A \cap B = \{(6,5,4)\}$$

अब
$$P(B) = \frac{6}{216}$$
 और $P(A \cap B) = \frac{1}{216}$

বৰ
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{216}}{\frac{6}{216}} = \frac{1}{6}$$

उदाहरण 6 एक पासे को दो बार उछाला गया और प्रकट हुई संख्याओं का योग 6 पाया गया। संख्या 4 के न्यूनतम एक बार प्रकट होने की सप्रतिबंध प्रायिकता ज्ञात कीजिए।

हल मान लीजिए E घटना 'संख्या 4 का न्यूनतम एक बार प्रकट होना' और F घटना 'दोनों पासों पर प्रकट संख्याओं का योग 6 होने' को दर्शाते हैं।

तब
$$E = \{(4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (1,4), (2,4), (3,4), (5,4), (6,4)\}$$
 और
$$F = \{(1,5), (2,4), (3,3), (4,2), (5,1)\}$$

हम जानते हैं कि
$$P(E) = \frac{11}{36}$$
, $P(F) = \frac{5}{36}$

तथा
$$E \cap F = \{(2,4), (4,2)\}$$

সৰ
$$P(E \cap F) = \frac{2}{36}$$

अतः वांछित प्रायिकता

$$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{\frac{2}{36}}{\frac{5}{36}} = \frac{2}{5}$$

अभी तक हमने उन परीक्षणों पर विचार किया है जिनके सभी परिणाम समसंभाव्य थे। इन परीक्षणों के लिए हमनें सप्रतिबंध प्रायिकता को परिभाषित किया है। तथापि सप्रतिबंध प्रायिकता की यही परिभाषा, व्यापक रूप से, उस स्थिति मे भी प्रयोग की जा सकती है, जब मौलिक घटनाएँ समसंभाव्य न हों। प्रायिकताओं P(E ∩ F) तथा P(F) का परिकलन तदनुसार किया जाता है। आइए निम्नलिखित उदाहरण से इसे समझें।

उदाहरण 7 एक सिक्के को उछालने के परीक्षण पर विचार कीजिए। यदि सिक्के पर चित प्रकट हो तो सिक्के को पुन: उछालें परंतु यदि सिक्के पर पट प्रकट हो तो एक पासे को फेंकें। यदि घटना 'कम से कम एक पट प्रकट होना' का घटित होना दिया गया है तो घटना 'पासे पर 4 से बड़ी संख्या प्रकट होना' की सप्रतिबंध चित (H) प्रायिकता ज्ञात कीजिए।

हल परीक्षण के परिणामों को चित्र 13.1 से व्यक्त किया जा सकता है। इस प्रकार के चित्र को वृक्षारेख कहते हैं। परीक्षण का प्रतिदर्श समष्टि है:

 $S = \{(H,H), (H,T), (T,1), (T,2), (T,3), (T,4), (T,5), (T,6)\}$ angle 13.1 (T,6)

जहाँ (H,H) दर्शाता है कि दोनों उछालों पर चित प्रकट हुआ है, तथा (T,i) दर्शाता है कि पहली उछाल पर पट प्रकट हुआ और पासे को फेंकने पर संख्या i प्रकट हुई।

अत: 8 मौलिक घटनाओं (H,H), (H,T), (T,1), (T,2), (T,3) (T,4), (T,5), (T,6) की क्रमश: $\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{12}$ प्रायिकता निर्धारित की जा सकती है, जैसा कि चित्र 13.2 से स्पष्ट है।

मान लें F घटना 'न्यूनतम एक पट प्रकट होना' और E घटना 'पासे पर 4 से बड़ी संख्या प्रकट होना' को दर्शाते हैं।

तब
$$F = \{(H,T), (T,1), (T,2), (T,3), (T,4), (T,5), (T,6)\}$$

$$E = \{(T,5), T,6)\} \text{ और } E \cap F = \{(T,5), (T,6)\}$$
 अब
$$P(F) = P(\{(H,T)\}) + P\left(\{(T,1)\}\right) + P\left(\{(T,2)\}\right) + P\left(\{(T,3)\}\right) + P\left(\{(T,4)\}\right) + P\left(\{(T,5)\}\right) + P\left(\{(T,6)\}\right)$$

$$= \frac{1}{4} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} = \frac{3}{4}$$
 और
$$P\left(E \cap F\right) = P\left(\{(T,5)\}\right) + P\left(\{(T,6)\}\right) = \frac{1}{12} + \frac{1}{12} = \frac{1}{6}$$

अत:
$$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{\frac{1}{6}}{\frac{3}{4}} = \frac{2}{9}$$

प्रश्नावली 13.1

- 1. यदि E और F इस प्रकार की घटनाएँ हैं कि P (E) = 0.6, P (F) = 0.3 और P (E \cap F) = 0.2, तो P (E|F) और P (F|E) ज्ञात कीजिए।
- 2. P(A|B) ज्ञात कीजिए, यदि P(B) = 0.5 और $P(A \cap B) = 0.32$
- 3. यदि P(A) = 0.8, P(B) = 0.5 और P(B|A) = 0.4 ज्ञात कीजिए
 - (i) $P(A \cap B)$
- (ii) P(A|B)
- (iii) $P(A \cup B)$

पट (T)

आकृति 13.2

(T,6)

4. $P(A \cup B)$ ज्ञात कीजिए यदि $2 P(A) = P(B) = \frac{5}{13}$ और $P(A|B) = \frac{2}{5}$

5. यदि
$$P(A) = \frac{6}{11}$$
, $P(B) = \frac{5}{11}$ और $P(A \cup B) = \frac{7}{11}$ तो ज्ञात कीजिए

(i) $P(A \cap B)$

(ii) P(A|B)

(iii) P(B|A)

निम्नलिखित प्रश्न 6 से 9 तक P(E|F) ज्ञात कीजिए।

- 6. एक सिक्के को तीन बार उछाला गया है:
 - (i) E: तीसरी उछाल पर चित F: पहली दोनों उछालों पर चित

(ii) E: न्यूनतम दो चित

F: अधिकतम एक चित

(iii) E: अधिकतम दो पट

F: न्यूनतम दो पट

- 7. दो सिक्कों को एक बार उछाला गया है:
 - (i) E : एक सिक्के पर पट प्रकट होता है F : एक सिक्के पर चित प्रकट होता है
 - (ii) E: कोई पट प्रकट नहीं होता है F कोई चित प्रकट नहीं होता है
- 8. एक पासे को तीन बार उछाला गया है:

E: तीसरी उछाल पर संख्या 4 प्रकट होना

F: पहली दो उछालों पर क्रमश: 6 तथा 5 प्रकट होना

9. एक पारिवारिक चित्र में माता, पिता व पुत्र यादृच्छया खड़े हैं:

E:पुत्र एक सिरे पर खडा है F:पिता मध्य में खडे हैं

- 10. एक काले और एक लाल पासे को उछाला गया है:
 - (a) पासों पर प्राप्त संख्याओं का योग 9 होने की सप्रतिबंध प्रायिकता ज्ञात कीजिए यदि यह ज्ञात हो कि काले पासे पर 5 प्रकट हुआ है।
 - (b) पासों पर प्राप्त संख्याओं का योग 8 होने की सप्रतिबंध प्रायिकता ज्ञात कीजिए यदि यह ज्ञात हो कि लाल पासे पर प्रकट संख्या 4 से कम है।
- 11. एक न्याय्य पासे को उछाला गया है। घटनाओं $E = \{1,3,5\}, F = \{2,3\}, और G = \{2,3,4,5\}$ के लिए निम्नलिखित ज्ञात कीजिए:
 - (i) P (E|F) और P (F|E)
- (ii) P(E|G) और P(G|E)
- (iii) $P(E \cup F|G)$ और $P(E \cap F|G)$
- 12. मान लें कि जन्म लेने वाले बच्चे का लड़का या लड़की होना समसंभाव्य है। यदि किसी परिवार में दो बच्चे हैं, तो दोनों बच्चों के लड़की होने की सप्रतिबंध प्रायिकता क्या है, यदि यह दिया गया है कि (i) सबसे छोटा बच्चा लड़की है (ii) न्यूनतम एक बच्चा लड़की है।
- 13. एक प्रशिक्षक के पास 300 सत्य/असत्य प्रकार के आसान प्रश्न 200 सत्य/असत्य प्रकार के किंटन प्रश्न, 500 बहु-विकल्पीय प्रकार के आसान प्रश्न और 400 बहु-विकल्पीय प्रकार के

कठिन प्रश्नों का संग्रह है। यदि प्रश्नों के संग्रह से एक प्रश्न यादृच्छया चुना जाता है, तो एक आसान प्रश्न की बहु-विकल्पीय होने की प्रायिकता क्या होगी?

- 14. यह दिया गया है कि दो पासों को फेंकने पर प्राप्त संख्याएँ भिन्न-भिन्न हैं। दोनों संख्याओं का योग 4 होने की प्रायिकता ज्ञात कीजिए।
- 15. एक पासे को फेंकने के परीक्षण पर विचार कीजिए। यदि पासे पर प्रकट संख्या 3 का गुणज है तो पासे को पुन: फेंकें और यदि कोई अन्य संख्या प्रकट हो तो एक सिक्के को उछालें। घटना 'न्यूनतम एक पासे पर संख्या 3 प्रकट होना' दिया गया है तो घटना 'सिक्के पर पट प्रकट होने' की सप्रतिबंध प्रायिकता ज्ञात कीजिए।

निम्नलिखित प्रश्नों में से प्रत्येक में सही उत्तर चुनें।

16. यदि
$$P(A) = \frac{1}{2}$$
, $P(B) = 0$ तब $P(A|B)$ है:

- (A) 0 (B) $\frac{1}{2}$ (C) परिभाषित नहीं (D)
- 17. यदि A और B दो घटनाएँ इस प्रकार हैं कि $P(A|B) = P(B|A) \neq 0$ तब
 - (A) $A \subset B$ (B)
 - (B) A = B
- (C) $A \cap B = \phi$

(D) P(A) = P(B)

13.3 प्रायिकता का गुणन नियम (Multiplication Theorem on Probability)

मान लीजिए कि E तथा F एक प्रतिदर्श समिष्ट S की दो घटनाएँ हैं। स्पष्टतया समुच्चय $E \cap F$ दोनों घटनाओं E तथा F के घटित होने को दर्शाता है। अन्य शब्दों में $E \cap F$ घटनाओं E तथा F के युगपत् घटित होने को दर्शाता है। घटना $E \cap F$ को EF भी लिखा जाता है।

प्राय: हमें सयुंक्त घटना EF की प्रायिकता ज्ञात करने की आवश्यकता होती है। उदाहरण के लिए, एक के बाद दूसरा पत्ता निकालने के परीक्षण में हम मिश्र घटना 'एक बादशाह और एक रानी' की प्रायिकता ज्ञात करने में इच्छुक हो सकते हैं। घटना EF की प्रायिकता ज्ञात करने के लिए हम सप्रतिबंध प्रायिकता का उपयोग करते हैं जैसा कि नीचे दिखाया गया है।

हम जानते हैं कि घटना F के दिए जाने पर घटना E की सप्रतिबंध प्रायिकता को P(E|F) द्वारा दर्शाते हैं और इसे निम्नलिखित प्रकार से ज्ञात करते हैं।

$$P(E|F) = \frac{P(E \cap F)}{P(F)}, P(F) \neq 0$$

उपरोक्त परिणाम से हम लिख सकते हैं कि

$$P(E \cap F) = P(F) \cdot P(E|F) \qquad \dots (1)$$

हम यह भी जानते हैं कि

$$P(F|E) = \frac{P(F \cap E)}{P(E)}, P(E) \neq 0$$
 या
$$P(F|E) = \frac{P(E \cap F)}{P(E)} \qquad (क्योंकि \ E \cap F = F \cup E)$$
 अतः
$$P(E \cap F) = P(E) \cdot P(F|E) \qquad \dots (2)$$

(1) और (2) को मिलाने से हमें प्राप्त होता है कि

 $P(E \cap F) = P(E) \ P(F|E) = P(F). \ P(E|F)$ जब कि $P(E) \neq 0$ और $P(F) \neq 0$ उपरोक्त परिणाम को 'प्रायिकता का गुणन नियम' कहते हैं। आइए एक उदाहरण लें।

उदाहरण 8 एक कलश में 10 काली और 5 सफ़ेद गेंदें हैं। दो गेंद एक के बाद एक निकाली जाती हैं और पहली गेंद दूसरे के निकालने से पहले वापस नहीं रखी जाती हैं। मान लीजिए कि कलश में से प्रत्येक गेंद का निकालना समसंभाव्य है, तो दोनों काले गेंद निकलने की क्या प्रायिकता है?

हल माना कि E 'पहली काली गेंद के निकलने' की घटना है और F 'दूसरी काली गेंद के निकलने' की घटना है। हमें P(E∩F) या P (EF) ज्ञात करना है।

अब
$$P(E) = P \text{ (पहली निकाल में काली गेंद निकालना)} = $\frac{10}{15}$$$

साथ ही दिया गया है कि पहली निकाल में काली गेंद निकली है अर्थात् घटना E घटित हुई है, अब कलश में 9 काली गेंद और 5 सफ़ेद गेंद रह गई हैं। इसलिए, दूसरी गेंद काली होने की प्रायिकता जब कि पहली गेंद का काला होना हमें ज्ञात है, कुछ और नहीं केवल F का सप्रतिबंध प्रायिकता है जब E का घटित होना ज्ञात है।

अर्थात्
$$P(F|E) = \frac{9}{14}$$

अब प्रायिकता के गुणन नियम द्वारा हमें प्राप्त होता है

$$P(E \cap F) = P(E) P(F|E) = P(E) \cdot P(F|E) \cdot P(G|EF)$$

= $\frac{10}{15} \times \frac{9}{14} = \frac{3}{7}$

दो से अधिक घटनाओं के लिए प्रायिकता का गुणन नियम यदि E, F और G एक प्रतिदर्श समिष्ट की घटनाएँ हैं तो

$$P(E \cap F \cap G) = P(E) P(F|E) P(G|E \cap F) = P(E) P(F|E) P(G|EF)$$

इसी प्रकार प्रायिकता के गुणन नियम का विस्तार चार या अधिक घटनाओं के लिए भी किया जा सकता है। निम्नलिखित उदाहरण तीन घटनाओं के लिए प्रायिकता के गुणन नियम का दृष्टांत प्रस्तुत करता है। उदाहरण 9 52 पत्तों की अच्छी तरह फेंटी गई गड्डी में से एक के बाद एक तीन पत्ते बिना प्रतिस्थापित किए निकाले गए। पहले दो पत्तों का बादशाह और तीसरे का इक्का होने की क्या प्रायिकता है?

हल मान लें कि K घटना 'निकाला गया पत्ता बादशाह है' को और A घटना 'निकाला गया पत्ता इक्का है' को व्यक्त करते हैं। स्पष्टतया हमें P (KKA) ज्ञात करना है।

সৰ
$$P(K) = \frac{4}{52}$$

साथ ही P(K|K) यह ज्ञात होने पर कि 'पहले निकाला गया पत्ता बादशाह है' पर दूसरे पत्ते का बादशाह होने की प्रायिकता को दर्शाता है। अब गड्डी में (52-1)=51 पत्ते हैं जिनमें तीन बादशाह है

इसलिए
$$P(K|K) = \frac{3}{51}$$

अंतत: P(A|KK) तीसरे निकाले गए पत्ते का इक्का होने की सप्रतिबंध प्रायिकता है जब कि हमें ज्ञात है कि दो बादशाह पहले ही निकाले जा चुके हैं। अब गड्डी में 50 पत्ते रह गए हैं

इसलिए
$$P(A|KK) = P(A|KK) = \frac{4}{50}$$

प्रायिकता के गुणन नियम द्वारा हमें प्राप्त होता है कि

$$P(KKA) = P(K) P(K|K) P(A|KK)$$
$$= \frac{4}{52} \times \frac{3}{51} \times \frac{4}{50} = \frac{2}{5525}$$

13.4 स्वतंत्र घटनाएँ (Independent Events)

52 पत्तों की गड्डी में से एक पत्ता निकालने के परीक्षण पर विचार कीजिए जिसमें प्रत्येक मौलिक घटना को समसंभाव्य माना गया है। यदि E तथा F क्रमश: घटनाओं 'निकाला गया पत्ता चिड़ी का है' और 'निकाला गया पत्ता एक इक्का है' को व्यक्त करते हैं, तो

$$P(E) = \frac{13}{52} = \frac{1}{4}$$
 ਰथा $P(F) = \frac{4}{52} = \frac{1}{13}$

साथ ही 'E और F' घटना 'निकाला गया पत्ता चिड़ी का इक्का है' को व्यक्त करती है, इसलिए

$$P(E \cap F) = \frac{1}{52}$$

अत:

$$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{\frac{1}{52}}{\frac{1}{13}} = \frac{1}{4}$$

क्योंकि $P(E) = \frac{1}{4} = P(E|F)$, हम कह सकते हैं कि घटना F के घटित होने की सूचना ने घटना E की प्रायिकता पर कोई प्रभाव नहीं डाला है।

हमें यह भी प्राप्त है कि

$$P(F|E) = \frac{P(E \cap F)}{P(E)} = \frac{\frac{1}{52}}{\frac{1}{4}} = \frac{1}{13} = P(F)$$

पुन: $P(F) = \frac{1}{13} = P(F|E)$ दर्शाता है कि घटना E के घटित होने की सूचना ने घटना F की प्रायिकता पर कोई प्रभाव नहीं डाला है।

अत: E तथा F इस प्रकार की घटनाएँ है कि किसी एक घटना के घटित होने की सूचना दूसरी घटना की प्रायिकता पर कोई प्रभाव नहीं डालती है।

इस प्रकार की घटनाओं को 'स्वतंत्र घटनाएँ' कहते हैं।

परिभाषा 2 दो घटनाओं E तथा F को स्वतंत्र घटनाएँ कहते हैं यदि

$$P(F|E) = P(F)$$
 जबकी $P(E) \neq 0$

$$P(E|F) = P(E)$$
 जबकी $P(F) \neq 0$

अतः इस परिभाषा में P(E) और P(F) का शून्येत्तर होना आवश्यक है। अब प्रायिकता के गुणन नियम से

$$P(E \cap F) = P(E) \cdot P(F|E) \qquad \dots (1)$$

यदि E और F स्वतंत्र घटनाएँ हों तो (1) से हमें प्राप्त होता है कि

$$P(E \cap F) = P(E). P(F) \qquad ... (2)$$

अत: (2) के उपयोग से हम दो घटनाओं की स्वतंत्रता को निम्नलिखित तरह से भी परिभाषित कर सकते हैं।

परिभाषा 3 मान लें E और F किसी यादृच्छिक परीक्षण के प्रतिदर्श समष्टि की दो घटनाएँ हैं, तो E और F स्वतंत्र घटनाएँ होती हैं यदि

$$P(E \cap F) = P(E) P(F)$$

टिप्पणी

- 1. दो घटनाओं E तथा F को पराश्रित (dependent) कहते हैं, यदि वे स्वतंत्र न हों अर्थात् यदि $P(E \cap F) \neq P(E)$. P(F)
- 2. कभी-कभी स्वतंत्र घटनाओं और परस्पर अपवर्जी घटनाओं के बीच भ्रम पैदा हो जाता है। 'स्वतंत्र घटनाओं' की परिभाषा 'घटनाओं की प्रायिकता' के रूप में की गई है जब कि 'परस्पर अपवर्जी घटनाओं' की परिभाषा 'घटनाओं' के रूप में की गई है। इसके अतिरिक्त, परस्पर अपवर्जी घटनाओं में कोई भी परिणाम सार्व कदापि नहीं हो सकता है किंत स्वतंत्र घटनाओं में

परिणाम सार्व भी हो सकते हैं, यदि प्रत्येक घटना अरिक्त है। स्पष्टतया 'स्वतंत्र घटनाएँ' और 'परस्पर अपवर्जी घटनाएँ' समानार्थी नहीं हैं।

दूसरे शब्दों में, यदि दो ऐसी स्वतंत्र घटनाएँ घटती हैं जिनकी प्रयिकता शून्येतर है, तो वह परस्पर अपवर्जी नहीं हो सकती हैं। विलोमत: यदि दो शून्येतर प्रायिकता वाली परस्पर अपवर्जी घटनाएँ घटती हैं, तो वह स्वतंत्र नहीं हो सकती हैं।

- 3. दो यादृच्छिक परीक्षण स्वतंत्र कहलाते हैं, यदि प्रत्येक घटना युग्म E और F के लिए, जहाँ E पहले परीक्षण से तथा F दूसरे परीक्षण से संबंधित हैं, घटनाओं E तथा F के एक साथ घटित होने की प्रायिकता, जब दोनों परीक्षण संपन्न किए जाएँ, प्रायिकता P(E) और P(F) के गुणनफल के बराबर होती हैं, जिनका परिकलन दोनों परीक्षणों के आधार पर अलग-अलग किया जाता है। अर्थात् $P(E \cap F) = P(E)$. P(F)
- 4. तीन घटनाओं A, B और C को स्वतंत्र कहा जाता है यदि और केवल यदि

$$P(A \cap B) = P(A) P(B)$$

$$P(A \cap C) = P(A) P(C)$$

$$P(B \cap C) = P(B) P(C)$$

और

$$P(A \cap B \cap C) = P(A) P(B) P(C)$$

यदि उपरोक्त में से कम से कम एक भी शर्त सत्य नहीं होती है तो दी गई घटनाओं को स्वतंत्र नहीं कहा जाता है।

उदाहरण 10 एक पासे को एक बार उछाला जाता है। घटना 'पासे पर प्राप्त संख्या 3 का अपवर्त्य है', को E से और 'पासे पर प्राप्त संख्या सम है', को F से निरूपित किया जाए तो बताएँ क्या घटनाएँ E और F स्वतंत्र हैं?

हल हम जानते हैं कि इस परीक्षण का प्रतिदर्श समिष्ट है: $S = \{1, 2, 3, 4, 5, 6\}$

अब

तब

$$P(E) = \frac{2}{6} = \frac{1}{3}, \ P(F) = \frac{3}{6} = \frac{1}{2} \text{ sint } P(E \cap F) = \frac{1}{6}$$

स्पष्टतया

$$P(E \cap F) = P(E) \cdot P(F)$$

अत: E और F स्वतंत्र घटनाएँ हैं।

उदाहरण 11 एक अनिभनत (unbiased) पासे को दो बार उछाला गया। मान लें A घटना 'पहली उछाल पर विषम संख्या प्राप्त होना' और B घटना 'द्वितीय उछाल पर विषम संख्या प्राप्त होना' दर्शाते हैं। घटनाओं A और B के स्वातंत्र्य का परीक्षण कीजिए।

हल यदि सभी 36 मौलिक घटनाओं को समसंभाव्य मान लें तो

$$P(A) = \frac{18}{36} = \frac{1}{2}$$
 silve $P(B) = \frac{18}{36} = \frac{1}{2}$

$$P(A \cap B) = P$$
 (दोनों उछालों में विषम संख्या प्राप्त होना)
$$= \frac{9}{36} = \frac{1}{4}$$

अब

$$P(A) \cdot P(B) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

स्पष्टतया

$$P(A \cap B) = P(A) \cdot P(B)$$

अत: A और B स्वतंत्र घटनाएँ हैं।

उदाहरण 12 तीन सिक्कों को उछाला गया है। मान लें E घटना 'तीन चित या तीन पट प्राप्त होना और F घटना 'न्यूनतम दो चित प्राप्त होना' और G घटना 'अधिकतम दो पट प्राप्त होना' को निरूपित करते हैं। युग्म (E,F), (E,G) और (F,G) में कौन-कौन से स्वतंत्र हैं? कौन-कौन से पराश्रित हैं?

हल परीक्षण का प्रतिदर्श समध्टि है :

 $S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$

स्पष्टतया

 $E = \{HHH, TTT\}, F = \{HHH, HHT, HTH, THH\}$

और

 $G = \{HHT, HTH, THH, HTT, THT, TTH, TTT\}$

साथ ही

 $E \cap F = \{HHH\}, E \cap G = \{TTT\}, F \cap G = \{HHT, HTH, THH\}$

इसलिए

$$P(E) = \frac{2}{8} = \frac{1}{4}, P(F) = \frac{4}{8} = \frac{1}{2}, P(G) = \frac{7}{8}$$

$$P(E \cap F) = \frac{1}{8}, P(E \cap G) = \frac{1}{8}, P(F \cap G) = \frac{3}{8}$$

साथ ही $P(E) \cdot P(F) = \frac{1}{4} \times \frac{1}{2} = \frac{1}{8}, P(E) \cdot P(G) = \frac{1}{4} \times \frac{7}{8} = \frac{7}{32}$ और $P(F) \cdot P(G) = \frac{1}{2} \times \frac{7}{8} = \frac{7}{16}$

अत:

$$P(E \cap F) = P(E) \cdot P(F)$$

 $P(E \cap F) = P(E) \cdot P(F)$ $P(E \cap G) \neq P(E) \cdot P(G)$

और

$$P(F \cap G) \neq P(F) \cdot P(G)$$

इसलिए घटनाएँ (E और F) स्वतंत्र हैं जबकी घटनाएँ (F और G) और (E और G) पराश्रित हैं।

उदाहरण 13 सिद्ध कीजिए कि यदि E और F दो स्वतंत्र घटनाएँ हैं तो E और F' भी स्वतंत्र होंगी। हल क्योंकि E तथा F स्वतंत्र है, इसलिए

$$P(E \cap F) = P(E) \cdot P(F) \qquad \dots (1)$$

चित्र 13.3, के वेन-आरेख से यह स्पष्ट है कि $E \cap F$ और $E \cap F'$ परस्पर अपवर्जी हैं और साथ ही

$$E = (E \cap F) \cup (E \cap F')$$
 क्योंकि $E \cap F$ और $E \cap F'$ परस्पर अपवर्जी हैं,
इसलिए
$$P(E) = P(E \cap F) + P(E \cap F')$$
 या
$$P(E \cap F') = P(E) - P(E \cap F)$$

$$= P(E) - P(E) \cdot P(F) (1) \ \vec{\mathsf{t}}$$

$$= P(E) \left[1 - P(F)\right]$$

$$= P(E) \cdot P(F')$$

आकृति 13.3

अत: E और F' स्वतंत्र घटनाएँ हैं।

👉 टिप्पणी इसी प्रकार यह दर्शाया जा सकता है कि यदि

- (a) E' तथा F स्वतंत्र हैं
- (b) E' तथा F' स्वतंत्र हैं।

उदाहरण 14 यदि A और B स्वतंत्र घटनाएँ हैं तो A या B में से न्यूनतम एक के होने की प्रायिकता = 1-P(A') P(B')

हल $P(A \ \text{या} \ B \ \text{में} \ \text{स} \ \text{-यूनतम} \ \text{एक का होना}) = P(A \cup B)$

$$= P(A) + P(B) - P(A \cap B)$$

$$= P(A) + P(B) - P(A) P(B)$$

$$= P(A) + P(B) [1-P(A)]$$

$$= P(A) + P(B) . P(A')$$

$$= 1 - P(A') + P(B) P(A')$$

$$= 1 - P(A') [1 - P(B)]$$

प्रश्नावली 13.2

= 1 - P(A') P(B')

- **1.** यदि $P(A) = \frac{3}{5}$, $P(B) = \frac{1}{5}$ और A तथा B स्वतंत्र घटनाएँ हैं तो $P(A \cap B)$ ज्ञात कीजिए।
- 2. 52 पत्तों की एक गड्डी में से यादृच्छया बिना प्रतिस्थापित किए गए दो पत्ते निकाले गए। दोनों पत्तों के काले रंग का होने की प्रायिकता ज्ञात कीजिए।
- 3. संतरों के एक डिब्बे का निरीक्षण उसमें से तीन संतरों को यादृच्छया बिना प्रतिस्थापित किए हुए निकाल कर किया जाता है। यदि तीनों निकाले गए संतरे अच्छे हों तो डिब्बे को बिक्री के

लिए स्वीकृत किया जाता है अन्यथा अस्वीकृत कर देते हैं। एक डिब्बा जिसमें 15 संतरे हैं जिनमें से 12 अच्छे व 3 खराब संतरे हैं, के बिक्री के लिए स्वीकृत होने की प्रायिकता ज्ञात कीजिए।

- 4. एक न्याय्य सिक्का और एक अभिनत पासे को उछाला गया। मान लें A घटना 'सिक्के पर चित प्रकट होता है' और B घटना 'पासे पर संख्या 3 प्रकट होती है' को निरूपित करते हैं। निरीक्षण कीजिए कि घटनाएँ A और B स्वतंत्र हैं या नहीं?
- 5. एक पासे पर 1, 2, 3 लाल रंग से और 4, 5, 6 हरे रंग से लिखे गए हैं। इस पासे को उछाला गया। मान लें A घटना 'संख्या सम है' और B घटना 'संख्या लाल रंग से लिखी गई है', को निरूपित करते हैं। क्या A और B स्वतंत्र हैं?
- **6.** मान लें E तथा F दो घटनाएँ इस प्रकार हैं कि $P(E) = \frac{3}{5}$, $P(F) = \frac{3}{10}$ और $P(E \cap F) = \frac{1}{5}$ तब क्या E तथा F स्वतंत्र हैं ?
- 7. A और B ऐसी घटनाएँ दी गई हैं जहाँ $P(A) = \frac{1}{2}$, $P(A \cup B) = \frac{3}{5}$ तथा P(B) = p. p का मान ज्ञात कीजिए यदि (i) घटनाएँ परस्पर अपवर्जी हैं। (ii) घटनाएँ स्वतंत्र हैं।
- 8. मान लें A और B स्वतंत्र घटनाएँ हैं तथा P(A) = 0.3 और P(B) = 0.4. तब
 - (i) $P(A \cap B)$
- (ii) $P(A \cup B)$
- (iii) P(A|B)
- (iv) $P(B \mid A)$ ज्ञात कीजिए।
- 9. दी गई घटनाएँ A और B ऐसी हैं, जहाँ $P(A) = \frac{1}{4}$, $P(B) = \frac{1}{2}$ और $P(A \cap B) = \frac{1}{8}$ तब $P(A \pi \epsilon)$ ं और $B \pi \epsilon$ ं) ज्ञात कीजिए।
- 10. मान लें A तथा B स्वतंत्र घटनाएँ हैं और $P(A) = \frac{1}{2}$ तथा $P(B) = \frac{7}{12}$ और $P(A) = \frac{1}{12}$ और P(A)
- **11.** A और B स्वतंत्र घटनाएँ दी गई हैं जहाँ P(A) = 0.3, P(B) = 0.6 तो
 - (i) P(A और B)
- (ii) P(A और B-नहीं)
- (iii) P(A या B)
- (iv) P(A और B में कोई भी नहीं) का मान ज्ञात कीजिए।
- एक पासे को तीन बार उछाला जाता है तो कम से कम एक बार विषम संख्या प्राप्त होने की प्रायिकता ज्ञात कीजिए।
- 13. दो गेंद एक बॉक्स से बिना प्रतिस्थापित किए निकाली जाती है। बॉक्स में 10 काली और 8 लाल गेदें हैं तो प्रायिकता ज्ञात कीजिए (i) दोनों गेंदें लाल हों (ii) प्रथम काली एवं दूसरी लाल हो (iii) एक काली तथा दूसरी लाल हो।

- (i) समस्या हल हो जाती है
- (ii) उनमें से तथ्यत: कोई एक समस्या हल कर लेता है।
- 15. ताश के 52 पत्तों की एक सुमिश्रित गड्डी से एक पत्ता यादृच्छया निकाला जाता है। निम्नलिखित में से किन दशाओं में घटनाएँ E और F स्वतंत्र हैं?
 - (i) E: 'निकाला गया पत्ता हुकुम का है'

F: 'निकाला गया पत्ता इक्का है'

(ii) E: 'निकाला गया पत्ता काले रंग का है'

F: 'निकाला गया पत्ता एक बादशाह है'

(iii) E: 'निकाला गया पत्ता एक बादशाह या एक बेगम है'

F: 'निकाला गया पत्ता एक बेगम या एक गुलाम है'

- 16. एक छात्रावास में 60% विद्यार्थी हिंदी का, 40% अंग्रेज़ी का और 20% दोनों अखबार पढ़ते हैं। एक छात्रा को यादुच्छया चुना जाता है।
 - (a) प्रायिकता ज्ञात कीजिए कि वह न तो हिंदी और न ही अंग्रेज़ी का अखबार पढ़ती है।
 - (b) यदि वह हिंदी का अखबार पढ़ती है तो उसके अंग्रेज़ी का अखबार भी पढ़ने वाली होने की प्रायिकता ज्ञात कीजिए।
 - (c) यदि वह अंग्रेज़ी का अखबार पढ़ती है तो उसके हिंदी का अखबार भी पढ़ने वाली होने की प्रायिकता ज्ञात कीजिए।
- 17. यदि पासों का एक जोड़ा उछाला जाता है तो प्रत्येक पासे पर सम अभाज्य संख्या प्राप्त करने की प्रायिकता निम्नलिखित में से क्या है?

(A) 0 (B)
$$\frac{1}{3}$$
 (C) $\frac{1}{12}$ (D) $\frac{1}{36}$

- 18. दो घटनाओं A और B को परस्पर स्वतंत्र कहते हैं, यदि
 - (A) A और B परस्पर अपवर्जी हैं
- (B) P(A'B') = [1-P(A)][1-P(B)]

(C) P(A) = P(B)

(D) P(A) + P(B) = 1

13.5 बेज़-प्रमेय (Bayes' Theorem)

मान लीजिए कि दो थैले I और II दिए गए हैं। थेला I में 2 सफ़ेद और 3 लाल गेंदें हैं। और थैला II में 4 सफ़ेद और 5 लाल गेंदें हैं। किसी एक थैले में से एक गेंद यादृच्छया निकाली जाती है। हम किसी एक थैले को चुनने की प्रायिकता $\frac{1}{2}$ ज्ञात कर सकते हैं या किसी विशेष थैले (मान लें थेला I) में से एक विशेष रंग (मान लें सफ़ेद) गेंद को निकालने की प्रायिकता भी ज्ञात कर सकते हैं। अन्य शब्दों में हम किसी विशेष रंग की गेंद निकालने की प्रायिकता ज्ञात कर सकते हैं, यदि हमें यह दिया गया हो कि गेंद कीन-से थैले से निकाली गई है। लेकिन क्या हम इस बात की प्रायिकता ज्ञात कर सकते हैं कि गेंद किसी विशेष थैले (मान लें थैला-II) से निकाली गई है यदि हमें निकाली गई गेंद का रंग पता है? यहाँ हमें थैला-II के चुनने की प्रतिलोम (reverse)प्रायिकता ज्ञात करनी है जबिक इसके बाद होने वाली घटना का हमें ज्ञान है। प्रसिद्ध गणितज्ञ जॉन बेज ने प्रतिलोम प्रायिकता ज्ञात करने की समस्या का समाधान सप्रतिबंध प्रायिकता के उपयोग द्वारा किया है। उनके द्वारा बनाया गया सूत्र 'बेज-प्रमेय' के नाम से जाना जाता है जो उनकी मृत्योपरांत 1763 में प्रकाशित हुआ था। बेज-प्रमेय के कथन व प्रमाण से पूर्व आइए एक परिभाषा और कुछ प्रारंभिक परिणामों पर विचार कीजिए।

13.5.1 एक प्रतिदर्श समिष्ट का विभाजन (Partition of a sample space)

घटनाओं $\mathbf{E_1},\mathbf{E_2}\dots\mathbf{E_n}$ के समुच्चय को प्रतिदर्श समिष्ट \mathbf{S} के विभाजन को निरूपित करता है यदि

- (a) $E_i \cap E_i = \emptyset$, $i \neq j$, i, j = 1, 2, 3, ...n
- (b) $E_1 \cup E_2 \cup ... \cup E_n = S$ तथा
- (c) $P(E_i) > 0$, प्रत्येक i = 1, 2, ..., n के लिए

दूसरे शब्दों में, घटनाएँ $E_1, E_2, \dots E_n$ प्रतिदर्श समष्टि S के विभाजन को निरूपित करती हैं यदि वे युग्मतः असंयुक्त हैं, समग्र है तथा उनकी प्रायिकता शून्येतर है।

उदाहरणत: हम देखते हैं कि कोई घटना E और उसकी पूरक घटना E' प्रतिदर्श समिष्ट S का विभाजन है क्योंकि $E \cap E' = \emptyset$ और $E \cup E' = S$.

वेन-आरेख चित्र 13.3, से हम आसानी से प्रेक्षण कर सकते हैं कि यदि E और F किसी प्रतिदर्श समिष्ट S, के संगत कोई दो घटनाएँ हैं, तो $\{E \cap F, E \cap F'\}$ समुच्चय E का एक विभाजन है।

समुच्चय $\{E' \cap F, E \cap F, E \cap F'\}$ समुच्चय $E \cup F$ का एक विभाजन है और समुच्चय $\{E \cap F', E \cap F, E' \cap F, E' \cap F'\}$ संपूर्ण प्रतिदर्श S का एक विभाजन है। अब हम संपूर्ण प्रायिकता की प्रमेय को सिद्ध करेंगे।

13.5.2 संपूर्ण प्रायिकता की प्रमेय (Theorem of Total Probability)

मान लें $\{E_1, E_2, ..., E_n\}$ प्रतिदर्श समिष्ट S, का एक विभाजन है और मान लें कि प्रत्येक घटना $E_1, E_2, ..., E_n$ की प्रायिकता शून्येत्तर है। मान लीजिए A प्रतिदर्श समिष्ट के संगत एक

घटना है, तब,

$$P(A) = P(E_1) P(A|E_1) + P(E_2) P(A|E_2) + ... + P(E_n) P(A|E_n)$$

$$= \sum_{j=1}^{n} P(E_j) P(A \mid E_j)$$

उपपत्ति दिया गया है कि $E_1, E_2, ..., E_n$ प्रतिदर्श समिष्ट S का एक विभाजन है (चित्र 13.4) इसिलए,

$$S = E_1 \cup E_2 \cup ... \cup E_n ... (1)$$

और

$$E_i \cap E_j = \phi \ \forall \ i \neq j, i, j = 1, 2,, n$$

हमें ज्ञात है कि किसी घटना A, के लिए

$$A = A \cap S$$

$$= A \cap (E_1 \cup E_2 \dots E_n)$$

$$= (A \cap E_1) \cup (A \cap E_2) \cup \dots \cup (A \cap E_n)$$

आकृति 13.4

साथ ही $A\cap E_i$, और $A\cap E_j$, क्रमश: समुच्चयो E_i और E_j के उपसमुच्चय हैं जो $i\neq j$, के लिए असंयुक्त है इसलिए $i\neq j,\ i,j=1,2...,n$ के लिए $A\cap E_i$ और $A\cap E_j$ भी असंयुक्त हैं।

इसलिए
$$P(A) = P[(A \cap E_1) \cup (A \cap E_2) \cup \dots \cup (A \cap E_n)]$$
$$= P(A \cap E_1) + P(A \cap E_2) + \dots + P(A \cap E_n)$$

अब $P(A \cap E_i) = P(E_i) P(A|E_i)$ क्योंकि $P(E_i) \neq 0 \forall i = 1,2,...,n$ प्रायिकता के गुणन नियम द्वारा हम जानते हैं कि

इसलिए $P(A) = P(E_1) P(A|E_1) + P(E_2) P(A|E_2) + ... + P(E_n) P(A|E_n)$

या
$$P(A) = \sum_{j=1}^{n} P(E_j) P(A \mid E_j)$$

उदाहरण 15 किसी व्यक्ति ने एक निर्माण कार्य का ठेका लिया है। हड़ताल होने की प्रायिकता 0.65 है। हड़ताल न होने की तथा हड़ताल होने की स्थितियों में निर्माण कार्य के समयानुसार पूर्ण होने की प्रायिकताएँ क्रमश: 0.80 तथा 0.32 हैं। निर्माण कार्य के समयानुसार पूर्ण होने की प्रायिकता ज्ञात कीजिए।

हल मान लीजिए कि 'निर्माण कार्य के समयानुसार पूर्ण होने' की घटना को A और 'हड़ताल होने' की घटना को B द्वारा निरूपित किया जाता है। हमें P(A) ज्ञात करना है। हमें ज्ञात है कि

$$P(B) = 0.65, P$$
 (हड़ताल नहीं) = $P(B') = 1 - P(B) = 1 - 0.65 = 0.35$ $P(A \mid B) = 0.32, P(A \mid B') = 0.80$

क्योंकि घटनाएँ B और B' समष्टि समुच्चय के विभाजन हैं इसलिए संपूर्ण प्रायिकता प्रमेय द्वारा = P(B) . $P(A \mid B) + P(B')$ $P(A \mid B')$

$$= 0.65 \times 0.32 + 0.35 \times 0.8$$
$$= 0.208 + 0.28 = 0.488$$

अत: निर्माण कार्य समयानुसार पूर्ण होने की प्रायिकता 0.488 है। अब हम बेज-प्रमेय का प्रकथन करेंगे तथा इसे सिद्ध करेंगे।

बेज्र-प्रमेय (Bayes' Theorem) यदि $E_1, E_2, ..., E_n$ अरिक्त घटनाएँ हैं जो कि प्रतिदर्श समिष्ट S के विभाजन का निर्माण करती हैं अर्थात् $E_1, E_2,, E_n$ युग्मतः असंयुक्त हैं और $E_1 \cup E_2 \cup, \cup E_n = S$ और A कोई ऐसी घटना है जिसकी प्रायिकता शून्येतर है, तो

$$P(E_i|A) = \frac{P(E_i)P(A|E_i)}{\sum_{j=1}^{n} P(E_j)P(A|E_j)}, i = 1, 2, 3, ..., n$$

उपपत्ति हमें ज्ञात है कि

$$\begin{split} P(\mathbf{E}_i|\mathbf{A}) &= \frac{\mathbf{P}(\mathbf{A} \cap \mathbf{E}_i)}{\mathbf{P}(\mathbf{A})} \\ &= \frac{\mathbf{P}(\mathbf{E}_i)\mathbf{P}(\mathbf{A}|\mathbf{E}_i)}{\mathbf{P}(\mathbf{A})} \qquad \qquad \text{(प्रायिकता के गुणन नियम से)} \\ &= \frac{\mathbf{P}(\mathbf{E}_i)\mathbf{P}(\mathbf{A}|\mathbf{E}_i)}{\sum_{i=1}^n \mathbf{P}(\mathbf{E}_j)\mathbf{P}(\mathbf{A}|\mathbf{E}_j)} \qquad \qquad \text{(संपूर्ण प्रायिकता के नियम से)} \end{split}$$

टिप्पणी बेज-प्रमेय के अनुप्रयोग में निम्नलिखित शब्दावली का उपयोग करते हैं घटनाओं $E_1, E_2, \dots E_n$ को परिकल्पनाएँ (hypotheses)कहते हैं। $P(E_i)$ को परिकल्पना E_i की पूर्वकालीन (a priori) प्रायिकता कहते हैं। सप्रतिबंध प्रायिकता $P(E_iA)$ को परिकल्पना E_i की उत्तरकालीन (a posteriori) प्रायिकता कहते हैं।

बेज प्रमेय को 'कारणों' की प्रायिकता का सूत्र भी कहा जाता है। क्योंिक E_i प्रतिदर्श समिष्ट S के एक विभाजन का निर्माण करते हैं इसिलए घटनाओं E_i में से एक समय में एक और केवल एक ही घटित होती है (अर्थात् E_i में से केवल एक ही घटना घटती है और एक से अधिक नहीं घट सकती है) अतः उपरोक्त सूत्र हमें किसी विशेष E_i (अर्थात् एक कारण)की प्रायिकता देता है जबिक घटना A का घटित होना दिया गया है।

बेज़-प्रमेय की विविध परिस्थितियों में उपयोगिता है। इनमें से कुछ को निम्नलिखित उदाहरणों में स्पष्ट किया गया है।

उदाहरण 16 दो थैले I और II दिए हैं। थैले I में 3 लाल और 4 काली गेंदें हैं जब कि थैले II में 5 लाल और 6 काली गेंदें हैं। िकसी एक थैले में से यादृच्छया एक गेंद निकाली गई है जो कि लाल रंग की है। इस बात की क्या प्रायिकता है कि यह गेंद थैले II से निकाली गई है? हल थैले I का चयन होना को $E_{_{1}}$ से और थैले II के चयन को $E_{_{2}}$ मान लीजिए। मान लीजिए कि लाल रंग की गेंद निकलने की घटना को A से निरूपित करते हैं।

নৰ
$$P(E_1) = P(E_2) = \frac{1}{2}$$

साथ ही $P(A|E_1) = P(\hat{v})$ ले $I + \hat{v}$ लाल रंग की गेंद निकालना) = $\frac{3}{7}$

और $P(A|E_2) = P(\hat{v}) = P(\hat{v}) = \hat{v}$ से लाल रंग की गेंद निकालना) = $\frac{5}{11}$

अब थैले II में से गेंद निकालने की प्रायिकता, जब कि यह ज्ञात है कि वह लाल रंग की है = $P(E_{\gamma}|A)$, बेज-प्रमेय द्वारा

$$P(E_2|A) = \frac{P(E_2)P(A|E_2)}{P(E_1)P(A|E_1) + P(E_2)P(A|E_2)} = \frac{\frac{1}{2} \times \frac{5}{11}}{\frac{1}{2} \times \frac{3}{7} + \frac{1}{2} \times \frac{5}{11}} = \frac{35}{68}$$

उदाहरण 17 तीन अभिन्न डिब्बे I, II और III दिए गए हैं जहाँ प्रत्येक में दो सिक्के हैं। डिब्बे I में दोनों सिक्के सोने के है, डिब्बे II में दोनों सिक्के चाँदी के हैं और डिब्बे III में एक सोने और एक चाँदी का सिक्का है। एक व्यक्ति यादृच्छया एक डिब्बा चुनता है और उसमें से यादृच्छया एक सिक्का निकालता है। यदि सिक्का सोने का है, तो इस बात की क्या प्रायिकता है कि डिब्बे में दूसरा सिक्का भी सोने का ही है?

हल मान लें E_1, E_2 और E_3 क्रमशः डिब्बे I, II और III के चयन को निरूपित करते हैं

বৰ
$$P(E_1) = P(E_2) = P(E_3) = \frac{1}{3}$$

साथ ही मान लें A घटना 'निकाला गया सिक्का सोने का है' को दर्शाता है।

तब $P(A|E_1) = P(डिब्बे I से सोने का सिक्का निकलना) = \frac{2}{2} = 1$ $P(A|E_2) = P(डिब्बे II से सोने का एक सिक्का निकलना) = 0$ $P(A|E_3) = P(डिब्बे III से सोने का सिक्का निकलना) = \frac{1}{2}$

अब डिब्बे में दूसरा सिक्का भी सोने का होने की प्रायिकता

= निकाला गया सोने का सिक्का डिब्बे I से होने की प्रायिकता = $P(E_{\scriptscriptstyle \parallel}|A)$

अब बेज़-प्रमेय द्वारा

$$P(E_1|A) = \frac{P(E_1)P(A|E_1)}{P(E_1)PA|E_1) + P(E_2)P(A|E_2) + P(E_3)P(A|E_3)}$$
$$= \frac{\frac{1}{3} \times 1}{\frac{1}{3} \times 1 + \frac{1}{3} \times 0 + \frac{1}{3} \times \frac{1}{2}} = \frac{2}{3}$$

उदाहरण 18 मान लें कि एक एच.आई.वी. परीक्षण की विश्वसनीयता निम्नलिखित प्रकार से निर्दिष्ट की गई है।

एच.आई.वी. पोजीटिव व्यक्तियों के लिए परीक्षण 90% पता लगाने में और 10% पता न लगाने में सक्षम है। एच.आई.वी. से स्वतंत्र व्यक्तियों के लिए परीक्षण, 99% सही पता लगाता है यानी एच. आई.वी नेगेटिव बताता है जबिक 1% परीक्षित व्यक्तियों के लिए एच.आई.वी. पोजीटिव बताता है। एक बड़ी जनसंख्या, जिसमें 0.1% व्यक्ति एच.आई.वी. ग्रस्त है, में से एक व्यक्ति यादृच्छया चुना जाता है और उस का परीक्षण किया जाने पर रोगविज्ञानी एच.आई.वी. की उपस्थित बताता है। क्या प्रायिकता है कि वह व्यक्ति वास्तव में एच.आई.वी. (पोजीटिव) है?

हल मान लें E चुने गए व्यक्ति के वास्तव में एच.आई.वी. पोजीटिव होने की घटना और A व्यक्ति के एच.आई.वी. परीक्षण में पोजीटिव होने की घटना को दर्शाते हैं। हमें P(E|A) ज्ञात करना है। साथ ही E' चुने गए व्यक्ति के एच.आई.वी. पोजीटिव न होने की घटना को दर्शाता है। स्पष्टतया $\{E,E'\}$ जनसंख्या में सभी व्यक्तियों के प्रतिदर्श समिष्ट का एक विभाजन है। हमें ज्ञात है

$$P(E) = 0.1\% = \frac{0.1}{100} = 0.001$$

P(E') = 1 - P(E) = 0.999

P(A|E) = P (व्यक्ति का परीक्षण में एच.आई.वी. पोजीटिव दर्शाना जबिक दिया गया है कि वह

वास्तव में एच.आई.वी. पोजीटिव है) = $90\% = \frac{9}{10} = 0.9$

और P(A|E') = P (व्यक्ति का परीक्षण में एच.आई.वी. पोजीटिव दर्शाना जब कि दिया गया है कि वह वास्तव में एच.आई.वी. पोजीटिव नहीं है) = 1% = 0.01

अब बेज़-प्रमेय द्वारा

$$\begin{split} P(E|A) &= \frac{P(E)P(A|E)}{P(E)P(A|E) + P(E')P(A|E')} \\ &= \frac{0.001 \times 0.9}{0.001 \times 0.9 + 0.999 \times 0.01} = \frac{90}{1089} = 0.083 \; (लगभग) \end{split}$$

अत: एक यादृच्छया चुने गए व्यक्ति के वास्तव में एच.आई.वी. पोजीटिव होने की प्रायिकता जब कि ज्ञात है कि उसका एच.आई.वी. परीक्षण पोजीटिव है, 0.083 है।

उदाहरण 19 एक बोल्ट बनाने के कारख़ाने में मशीनें (यंत्र) A, B और C कुल उत्पादन का क्रमश: 25%, 35% और 40% बोल्ट बनाती हैं। इन मशीनों के उत्पादन का क्रमश: 5, 4, और 2 प्रतिशत भाग खराब (त्रुटिपूर्ण) हैं। बोल्टों के कुल उत्पादन में से एक बोल्ट यादृच्छया निकाला जाता है और वह खराब पाया जाता है। इसकी क्या प्रायिकता है कि यह बोल्ट मशीन B द्वारा बनाया गया है?

हल मान लिया कि घटनाएँ B₁, B₂, B₃ निम्न प्रकार है:

B, : बोल्ट मशीन A द्वारा बनाया गया है

 ${\bf B}_{_2}$: बोल्ट मशीन ${\bf B}$ द्वारा बनाया गया है

B3: बोल्ट मशीन C द्वारा बनाया गया है

स्पष्ट है कि घटनाएँ $\mathbf{B}_{_{1}},\mathbf{B}_{_{2}},\mathbf{B}_{_{3}}$ परस्पर अपवर्जी और परिपूर्ण है। मान लिया कि घटना \mathbf{E} निम्न प्रकार है: \mathbf{E} बोल्ट खराब है।

घटना E, घटनाओं B, या B, या B, के साथ घटित होती है। दिया है:

$$P(B_1) = 25\% = 0.25$$
, $P(B_2) = 0.35$ और $P(B_3) = 0.40$

पुन: $P(E|B_1) =$ बोल्ट के खराब होने की प्रायिकता जब कि दिया हो कि वह मशीन B द्वारा निर्मित है

$$=5\% = 0.05$$

इसी प्रकार $P(E|B_2) = 0.04$, $P(E|B_3) = 0.02$

बेज-प्रमेय द्वारा हमें ज्ञात है कि

$$P(B_{2}|E) = \frac{P(B_{2})P(E|B_{2})}{P(B_{1})P(E|B_{1}) + P(B_{2})P(E|B_{2}) + P(B_{3})P(E+|B_{3})}$$

$$= \frac{0.35 \times 0.04}{0.25 \times 0.05 + 0.35 \times 0.04 + 0.40 \times 0.02} = \frac{0.0140}{0.0345} = \frac{28}{69}$$

उदाहरण 20 एक डॉक्टर को एक रोगी को देखने आना है। पहले के अनुभवों से यह ज्ञात है कि उसके ट्रेन, बस, स्कूटर या किसी अन्य वाहन से आने की प्रायिकताएँ क्रमश: $\frac{3}{10}$, $\frac{1}{5}$, $\frac{1}{10}$ या $\frac{2}{5}$ है यदि वह ट्रेन, बस या स्कूटर से आता है तो उसके देर से आने की प्रायिकताएँ क्रमश: $\frac{1}{4}$, $\frac{1}{3}$, या $\frac{1}{12}$ है, परंतु किसी अन्य वाहन से आने पर उसे देर नहीं होती है। यदि वह देर से आया, तो उसके ट्रेन से आने की प्रायिकता ज्ञात कीजिए।

हल मान लीजिए कि 'डॉक्टर के रोगी के यहाँ देर से आने' की घटना E है। यदि डॉक्टर के ट्रेन, बस, स्कूटर या किसी अन्य वाहन द्वारा आने की घटनाएँ क्रमश: $T_1, T_2, T_3,$ और T_4 हो, तो

$$P(T_1) = \frac{3}{10}, P(T_2) = \frac{1}{5}, P(T_3) = \frac{1}{10} \text{ silt } P(T_4) = \frac{2}{5}$$
 (दिया है)

 $P(E|T_1) = डॉक्टर के ट्रेन द्वारा आने पर देर से पहुँचने की प्रायिकता = <math>\frac{1}{4}$

इसी प्रकार, $P(E|T_2) = \frac{1}{3}$, $P(E|T_3) = \frac{1}{12}$, $P(E|T_4) = 0$, क्योंकि अन्य वाहन द्वारा आने पर उसे देरी नहीं होती।

अब बेज-प्रमेय द्वारा

 $P(T_i|E) =$ डॉक्टर द्वारा देर से आने पर ट्रेन द्वारा आने की प्रायिकता

$$= \frac{P(T_1)P(E|T_1)}{P(T_1)P(E|T_1) + P(T_2)P(E|T_2) + P(T_3)P(E|T_3) + P(T_4)P(E|T_4)}$$

$$= \frac{\frac{3}{10} \times \frac{1}{4}}{\frac{3}{10} \times \frac{1}{4} + \frac{1}{5} \times \frac{1}{3} + \frac{1}{10} \times \frac{1}{12} + \frac{2}{5} \times 0} = \frac{3}{40} \times \frac{120}{18} = \frac{1}{2}$$

अतः अभीष्ट प्रायिकता $\frac{1}{2}$ है।

उदाहरण 21 एक व्यक्ति के बारे में ज्ञात है कि वह 4 में से 3 बार सत्य बोलता है। वह एक पासे को उछालता है और बतलाता है कि उस पर आने वाली संख्या 6 है। इस की प्रायिकता ज्ञात कीजिए कि पासे पर आने वाली संख्या वास्तव में 6 है।

हल मान लीजिए कि E, 'व्यक्ति द्वारा पासे को उछाल कर यह बताने की कि उस पर आने वाली संख्या 6 है' की घटना है। मान लीजिए कि S_1 , पासे पर संख्या 6 आने की घटना और S_2 पासे पर संख्या 6 नहीं आने की घटना हैं। तब

$$P(S_1) =$$
संख्या 6 आने की घटना की प्रायिकता $= \frac{1}{6}$

$$P(S_2)=$$
 संख्या 6 नहीं आने की घटना की प्रायिकता $=\frac{5}{6}$

 $P(E|S_1) =$ व्यक्ति द्वारा यह बताने पर कि पासे कि संख्या 6 आई है जबिक पासे पर आने वाली संख्या वास्तव में 6 है, की प्रायिकता

$$=$$
 व्यक्ति द्वारा सत्य बोलने की प्रायिकता $=$ $\frac{3}{4}$

 $P(E|S_2) = \alpha$ यिकत द्वारा यह बताने पर कि पासे पर संख्या 6 आई है जबिक पासे पर आने वाली संख्या वास्तव में 6 नहीं है, की प्रायिकता

$$=$$
 व्यक्ति द्वारा सत्य नहीं बोलने की प्रायिकता $=1-\frac{3}{4}=\frac{1}{4}$

अब बेज-प्रमेय द्वारा

 $P(S_1|E) =$ व्यक्ति द्वारा यह बताने की प्रायिकता कि संख्या 6 प्रकट हुई है, जब वास्तव में संख्या 6 है

$$= \frac{P(S_1)P(E|S_1)}{P(S_1)P(E|S_1) + P(S_2)P(E|S_2)} = \frac{\frac{1}{6} \times \frac{3}{4}}{\frac{1}{6} \times \frac{3}{4} \times \frac{5}{6} \times \frac{1}{4}} = \frac{1}{8} \times \frac{24}{8} = \frac{3}{8}$$

अतः अभीष्ट प्रायिकता $\frac{3}{8}$ है।

प्रश्नावली 13.3

- 1. एक कलश में 5 लाल और 5 काली गेदें हैं। यादृच्छया एक गेंद निकाली जाती है, इसका रंग नोट करने के बाद पुन: कलश में रख दी जाती है। पुन: निकाले गए रंग की 2 अतिरिक्त गेंदें कलश में रख दी जाती है तथा कलश में से एक गेंद निकाली जाती है। दूसरी गेंदें की लाल होने की प्रायिकता क्या है?
- 2. एक थैले में 4 लाल और 4 काली गेंदें हैं और एक अन्य थैले में 2 लाल और 6 काली गेंदें हैं। दोनों थैलों में से एक को यादृच्छया चुना जाता है और उसमें एक गेंद निकाली जाती है जो कि लाल है। इस बात की क्या प्रायिकता है कि गेंद पहले थैले से निकाली गई है?
- 3. यह ज्ञात है कि एक महाविद्यालय के छात्रों में से 60% छात्रावास में रहते हैं और 40% छात्रावास में नहीं रहते हैं। पूर्ववर्ती वर्ष के परिणाम सूचित करते हैं कि छात्रावास में रहने वाले छात्रों में से 30% और छात्रावास में न रहने वाले छात्रों में से 20% छात्रों ने A-ग्रेड लिया। वर्ष के अंत में महाविद्यालय के एक छात्र को यादृच्छया चुना गया और यह पाया गया कि उसे A-ग्रेड मिला है। इस बात की क्या प्रायिकता है कि वह छात्र छात्रावास मे रहने वाला है?

- 4. एक बहुविकल्पी प्रश्न का उत्तर देने में एक विद्यार्थी या तो प्रश्न का उत्तर जानता है या वह अनुमान लगाता है। मान लें कि उसके उत्तर जानने की प्रायिकता $\frac{3}{4}$ है और अनुमान लगाने की प्रायिकता $\frac{1}{4}$ है। मान लें कि छात्र के प्रश्न के उत्तर का अनुमान लगाने पर सही उत्तर देने की प्रायिकता $\frac{1}{4}$ है तो इस बात की क्या प्रायिकता है कि कोई छात्र प्रश्न का उत्तर जानता है यदि यह ज्ञात है कि उसने सही उत्तर दिया है?
- 5. किसी विशेष रोग के सही निदान के लिए रक्त की जाँच 99% असरदार है, जब वास्तव में रोगी उस रोग से ग्रस्त होता है। किंतु 0.5% बार किसी स्वस्थ व्यक्ति की रक्त जाँच करने पर निदान गलत रिपोर्ट देता है यानी व्यक्ति को रोग से ग्रस्त बतलाता है। यदि किसी जनसमुदाय में 0.1% लोग उस रोग से ग्रस्त है तो क्या प्रायिकता है कि कोई यादृच्छया चुना गया व्यक्ति उस रोग से ग्रस्त होगा यदि उसके रक्त की जाँच में यह बताया जाता है कि उसे यह रोग है?
- 6. तीन सिक्के दिए गए हैं। एक सिक्के के दोनों ओर चित ही है। दूसरा सिक्का अभिनत है जिसमें चित 75% बार प्रकट होता है और तीसरा अनभितन सिक्का है। तीनों में से एक सिक्के को यादृच्छया चुना गया और उसे उछाला गया है। यदि सिक्के पर चित प्रकट हो, तो क्या प्रायिकता है कि वह दोनों चित वाला सिक्का है?
- 7. एक बीमा कंपनी 2000 स्कूटर चालकों, 4000 कार चालकों और 6000 ट्रक चालकों का बीमा करती है। दुर्घटनाओं की प्रायिकताएँ क्रमश: 0.01, 0.03 और 0.15 है। बीमाकृत व्यक्तियों (चालकों) में से एक दुर्घटनाग्रस्त हो जाता है। उस व्यक्ति के स्कूटर चालक होने की प्रायिकता क्या है?
- 8. एक कारखाने में A और B दो मशीने लगी हैं। पूर्व विवरण से पता चलता है कि कुल उत्पादन का 60% मशीन A और 40% मशीन B द्वारा किया जाता है। इसके अतिरिक्त मशीन A का 2% और मशीन B का 1% उत्पादन खराब है। यदि कुल उत्पादन का एक ढेर बना लिया जाता है और उस ढेर से यादृच्छया निकाली गई वस्तु खराब हो, तो इस वस्तु के 'मशीन A' द्वारा बने होने की प्रायिकता क्या होगी?
- 9. दो दल एक निगम के निदेशक मंडल में स्थान पाने की प्रतिस्पर्धा में हैं। पहले तथा दूसरे दल के जीतने की प्रायिकताएँ क्रमश: 0.6 तथा 0.4 हैं। इसके अतिरिक्त यदि पहला दल जीतता है तो एक नए उत्पाद के प्रारम्भ होने की प्रायिकता 0.7 है और यदि दूसरा दल जीतता है तो इस बात की संगत प्रायिकता 0.3 है। इसकी प्रायिकता ज्ञात कीजिए कि नया उत्पादन दूसरे दल द्वारा प्रारम्भ किया गया था।
- 10. मान लीजिए कि कोई लड़की एक पासा उछालती है। यदि उसे 5 या 6 की संख्या प्राप्त होती है तो वह एक सिक्के को तीन बार उछालती है और 'चितों' की संख्या नोट करती है। यदि

574

उसे 1, 2, 3 या 4 की संख्या प्राप्त होती है तो वह एक सिक्के को एक बार उछालती है और यह नोट करती है कि उस पर 'चित' या 'पट' प्राप्त हुआ। यदि उसे ठीक एक चित प्राप्त होता है, तो उसके द्वारा उछाले गए पासे पर 1, 2, 3 या 4 प्राप्त होने की प्रायिकता क्या है?

- 11. एक व्यावसायिक निर्माता के पास A.B तथा C मशीन ऑपरेटर हैं। प्रथम ऑपरेटर A 1% खराब सामग्री उत्पादित करता हैं तथा ऑपरेटर B और C क्रमश: 5% और 7% खराब सामग्री उत्पादित करता है। कार्य पर A कुल समय का 50% लगाता है, B कुल समय का 30% तथा C कुल समय का 20% लगाता है। यदि एक खराब सामग्री उत्पादित है तो इसे 🗛 द्वारा उत्पादित किए जाने की प्रायिकता क्या है?
- 52 ताशों की गड्डी से एक पत्ता खो जाता है। शेष पत्तों से दो पत्ते निकाले जाते हैं जो ईंट के पत्ते हैं। खो गए पत्ते की ईंट होने की प्रायिकता क्या है?
- 13. A द्वारा सत्य बोलने की प्रायिकता $\frac{4}{5}$ है। एक सिक्का उछाला जाता है तथा A बताता है कि चित प्रदर्शित हुआ। वास्तविक रूप में चित प्रकट होने की प्रायिकता है:
 - (B) $\frac{1}{2}$ (C) $\frac{1}{5}$ (D) $\frac{2}{5}$
- 14. यदि A और B ऐसी घटनाएँ हैं कि A \subset B तथा $P(B) \neq 0$ तो निम्न में से कौन ठीक है:
 - (A) $P(A|B) = \frac{P(B)}{P(A)}$
- (B) P(A|B) < P(A)
- (C) $P(A|B) \ge P(A)$
- (D) इनमें से कोई नहीं

13.6 यादुच्छिक चर और इसके प्रायिकता बंटन (Random Variables and its Probability Distribution)

हम, यादुच्छिक परीक्षणों और उनके प्रतिदर्श निर्माण के बारे में पहले ही सीख चुके हैं इन परीक्षणों में से अधिकतर में हम विशेष परिणाम के इच्छुक नहीं थे किंतु इन परिणामों से संबंधित किसी संख्या में इच्छुक थे।

आइए कुछ परीक्षणों और उनके परिणामों पर विचार करें।

- (i) दो पासों को फेंकने के परीक्षण में हम दोनों पासों पर प्रकट संख्याओं के योग में इच्छुक हो सकते हैं।
- (ii) एक सिक्के को 50 बार उछालने में हमारी रुचि चितों की संख्या में हो सकती है।
- 20 वस्तुओं के एक ढेर से, जिसमें 6 खराब है, 4 वस्तुओं को (एक के बाद एक) निकालने के परीक्षण में हमारी रुचि 4 वस्तुओं के प्रतिदर्श में खराब वस्तुओं की संख्या में हो सकती है न की खराब और ठीक वस्तुओं के किसी विशेष अनुक्रम में।

उपर्युक्त में से प्रत्येक परीक्षण में हमारे पास एक नियम है जो प्रत्येक परिणाम के संगत एक वास्तविक संख्या निर्दिष्ट करता है। परीक्षण के प्रत्येक परिणाम के लिए यह वास्तविक संख्या अलग–अलग भी हो सकती है। इसलिए यह एक चर है। साथ ही इसका मान किसी यादृच्छिक परीक्षण के परिणामों पर निर्भर करता है इसलिए इसे यादृच्छिक चर कहते हैं। एक यादृच्छिक चर को सामान्यत: X से व्यक्त करते हैं।

यदि आप एक फलन की परिभाषा का स्मरण कीजिए तो पाएँगे कि वास्तव में एक यादृच्छिक चर X, फलन होता है जिसका प्रांत (domain) यादृच्छिक परीक्षण के परिणामों का समुच्चय (या प्रतिदर्श समिष्ट) होता है। एक यादृच्छिक चर कोई भी वास्तविक मान ले सकता है, इसिलए इसका सहप्रांत (codomain) वास्तविक संख्याओं का समुच्चय होता है। अत: एक यादृच्छिक चर को निम्न प्रकार से परिभाषित कर सकते हैं।

परिभाषा 4 एक यादृच्छिक चर वह फलन होता है जिसका प्रांत किसी यादृच्छिक परीक्षण का प्रतिदर्श समध्टि होता है।

उदाहरण के लिए, आइए एक सिक्के को दो बार अनुक्रम में उछाले जाने के परीक्षण पर विचार कीजिए। इस परीक्षण का प्रतिदर्श समिष्टि है:

$$S = \{HH, HT, TH, TT\}$$

यदि X, प्राप्त चितों की संख्या को व्यक्त करता है तो X एक यादृच्छिक चर है और प्रत्येक परिणाम के लिए इसका मान निम्न प्रकार से दिया गया है:

$$X (HH) = 2$$
, $X (HT) = 1$, $X (TH) = 1$, $X (TT) = 0$.

एक ही प्रतिदर्श समिष्ट पर एक से अधिक यादृच्छिक चर परिभाषित किए जा सकते हैं। उदाहरण के लिए मान लें कि Y, प्रतिदर्श समिष्ट S के प्रत्येक परिणाम के लिए चितों की संख्या से पटों की संख्या के घटाव को व्यक्त करता है। तब

$$Y(HH) = 2$$
, $Y(HT) = 0$, $Y(TH) = 0$, $Y(TT) = -2$.

अत: एक प्रतिदर्श समिष्ट S में X और Y दो भिन्न यादृच्छिक चर परिभाषित किए गए हैं।

उदाहरण 22 एक व्यक्ति एक सिक्के को तीन बार उछालने का खेल खेलता है। खेल के आयोजक द्वारा उस व्यक्ति को प्रत्येक चित के लिए Rs 2 देता है और प्रत्येक पट के लिए वह व्यक्ति आयोजक को Rs 1.50 देता है। मान लें X व्यक्ति द्वारा जीती गई या हारी गई राशि को व्यक्त करता है। दर्शाएँ कि X एक यादृच्छिक चर है और इसे परीक्षण के प्रतिदर्श समिष्ट के फलन के रूप में प्रदर्शित कीजिए।

हल X ऐसी संख्या है जिसका मान किसी यादृच्छिक परीक्षण के परिणामों पर परिभाषित है। इसलिए X एक यादृच्छिक चर है।

अब परीक्षण का प्रतिदर्श समष्टि है:

 $S = \{HHH,\,HHT,\,HTH,\,THH,\,HTT,\,THT,\,TTH,\,TTT\}$

तब

$$X \text{ (HHH)} = \text{Rs } (2 \times 3) = \text{Rs } 6$$

 $X \text{ (HHT)} = X \text{ (HTH)} = X \text{ (THH)} = \text{Rs } (2 \times 2 - 1 \times 1.50) = \text{Rs } 2.50$
 $X \text{ (HTT)} = X \text{ (THT)} = X \text{ (TTH)} = \text{Rs } (1 \times 2 - 2 \times 1.50) = -\text{Re } 1$
 $X \text{ (TTT)} = -\text{Rs } (3 \times 1.50) = -\text{Rs } 4.50$

यहाँ ऋण चिह्न, खिलाड़ी की हानि को दर्शा रहा है। अत: प्रतिदर्श समष्टि के प्रत्येक अवयव के लिए X का एक अद्वितीय मान है, इसलिए X प्रतिदर्श समष्टि पर एक फलन है जिसका परिसर है: $\{-1, 2.50, -4.50, 6\}$

उदाहरण 23 एक थैले में 2 सफ़ेद और 1 लाल गेंद हैं। यादृच्छया एक गेंद निकाली गई और उसका रंग नोट करने के बाद उसे पुन: थैले में डाला गया। इस प्रक्रिया को पुन: किया गया। यदि X दो निकालों में सफलता की संख्या को दर्शाता है तो, X का विवरण दें, जहाँ एक लाल गेंद का निकलना सफलता माना गया है।

हल मान लें कि थैले में रखी गेंदों को w_1, w_2, r से व्यक्त करते हैं। तब प्रतिदर्श समिष्ट है:

$$S = \{w_1 \ w_1, \ w_1 \ w_2, \ w_2 \ w_2, \ w_2 \ w_1, \ w_1 \ r, \ w_2 \ r, \ r \ w_1, \ r \ w_2, \ r \ r\}$$
 अब
$$X = \text{लाल पोंदों की संख्या} = \text{सफलता की संख्या}$$
 इसिलए
$$X \left(\{w_1, w_1\}\right) = X \left(\{w_1 \ w_2\}\right) = X \left(\{w_2 \ w_2\}\right) = X \left(\{w_2 \ w_1\}\right) = 0$$

$$X \left(\{w_1, r\}\right) = X \left(\{w_2 \ r\}\right) = X \left(\{r \ w_1\}\right) = X \left(\{r \ w_2\}\right) = 1 \text{ और } X \left(\{r \ r\}\right) = 2$$
 अतः X एक यादुच्छिक चर है जो 0 , 1 या 2 मान ले सकता है।

13.6.1 एक यादृच्छिक चर की प्रायिकता बंटन (Probability distribution of a random variable)

आइए दस परिवारों f_1 , f_2 ... f_{10} से एक परिवार को इस प्रकार चुनने के परीक्षण पर विचार करें कि प्रत्येक परिवार का चुनाव समसंभाव्य हो। मान लें कि परिवारों f_1 , f_2 ... f_{10} में क्रमश: 3, 4, 3, 2, 5, 4, 3, 6, 4, 5 सदस्य हैं।

आइए एक परिवार को चुने व उसके सदस्यों की संख्या को नोट कर, X से व्यक्त कीजिए। स्पष्टतया X एक यादृच्छिक चर है जिसे निम्न प्रकार से परिभाषित किया गया है:

$$X(f_1) = 3$$
, $X(f_2) = 4$, $X(f_3) = 3$, $X(f_4) = 2$, $X(f_5) = 5$, $X(f_6) = 4$, $X(f_7) = 3$, $X(f_8) = 6$, $X(f_9) = 4$, $X(f_{10}) = 5$

अत: 2, 3, 4, 5, 6 में से X कोई भी मान ले सकता है

अब X का मान 2 होगा जबिक परिवार f_4 को चुना गया हो। X का मान 3 हो सकता है जब f_1 , f_3,f_7 में से किसी परिवार को चुना जाए। इसी प्रकार

$$X=4$$
, जब परिवार f_{γ},f_{6} या f_{φ} को चुना जाएगा

$$X=5$$
, जब परिवार f_5 या f_{10} को चुना जाएगा

और X=6, जब परिवार f_8 को चुना जाएगा

चूँिक हमने माना है कि प्रत्येक परिवार का चुना जाना समसंभाव्य है, इसलिए परिवार f_4 के चुने जाने की प्रायिकता $\frac{1}{10}$ है।

अत: X का मान 2 होने की प्रायिकता $\frac{1}{10}$ है।

हम लिखते हैं
$$P(X = 2) = \frac{1}{10}$$

साथ ही $f_{\scriptscriptstyle 1}, f_{\scriptscriptstyle 2}$, या $f_{\scriptscriptstyle 7}$ से किसी भी एक परिवार को चुनने की प्रायिकता

$$P(\{f_1, f_2, f_3\}) = \frac{3}{10}$$
 है।

अत: X का मान 3 होने की प्रायिकता $=\frac{3}{10}$

हम लिखते हैं $P(X=3) = \frac{3}{10}$

इसी प्रकार हम पाते हैं कि

$$\begin{split} & P(X=4) = P(\{f_2,f_6,f_9\}) = \frac{3}{10} \,, \, P(X=5) = P(\{f_5,f_{10}\}) = \frac{2}{10} \\ & \text{sht} \ P(X=6) = P(\{f_8\}) = \frac{1}{10} \end{split}$$

इस प्रकार का विवरण जिसमें यादृच्छिक चर के साथ उसकी संगत प्रायिकताओं को लिखा जाता है, को यादृच्छिक चर X की प्रायिकता बंटन कहते हैं।

व्यापकतः एक यादृच्छिक चर X की प्रायिकता बंटन को निम्न प्रकार से परिभाषित किया जाता है। $\frac{1}{2}$ पिरिभाषा $\frac{1}{2}$ किसी यादृच्छिक चर $\frac{1}{2}$ की प्रायिकता बंटन संख्याओं की निम्नलिखित प्रणाली (निकाय) होता है

X :
$$x_1$$
 x_2 ... x_n
P(X) : p_1 p_2 ... p_n
 $p_i > 0, \sum_{i=1}^{n} p_i = 1, i = 1, 2, ..., n$

जहाँ

वास्तविक संख्याएँ $x_1,x_2,\dots x_n$ यादृच्छिक चर X के संभव मान (मूल्य) है और p_i $(i=1,2,\dots n)$ यादृच्छिक चर X का मान x_i होने की प्रायिकता है अर्थात् $P(X=x_i)=p_i$

टिप्पणी यदि x_i यादृच्छिक चर X, का कोई संभव मूल्य है तो कथन $X=x_i$ प्रतिदर्श समिष्ट के कुछ बिंदु (ओं) के लिए ही सत्य होता है। अतः X का x_i मूल्य लेने की प्रायिकता सदैव शून्येत्तर होती है अर्थात् $P(X=x_i) \neq 0$ ।

साथ ही X के सभी संभावित मानों के लिए प्रतिदर्श समिष्ट के सभी बिंदुओं का समावेश हो जाता है। इसलिए किसी प्रायिकता बंटन के लिए सभी प्रायिकताओं का योग एक होना चाहिए।

उदाहरण 24 ताश के 52 पत्तों की एक सुमिश्रित गड्डी से दो पत्ते उत्तरोत्तर प्रतिस्थापना के साथ निकाले जाते हैं। इक्कों की संख्या का प्रायिकता बंटन ज्ञात कीजिए।

हल इक्कों की संख्या एक यादृच्छिक चर है। इसको हम X से निरूपित करते हैं। स्पष्टतया X का मान 0,1, या 2 है। क्योंकि पत्तों को प्रतिस्थापना के साथ निकाला गया है इसलिए दोनों पत्तों का निकालना स्वतंत्र परीक्षण हैं।

अत: अभीष्ट प्रायिकता बंटन है:

X	0	1	2
P(X)	$\frac{144}{169}$	$\frac{24}{169}$	1 169

उदाहरण 25 पासों के एक जोड़े को तीन बार उछालने पर द्विकों (doublets) की संख्या का प्रायिकता बंटन ज्ञात कीजिए।

हल मान लीजिए कि X द्विकों की संख्या निरूपित करता है। (1,1), (2,2), (3,3), (4,4), (5,5), और (6,6) संभव द्विक हैं। स्पष्ट है कि X का मान 0, 1, 2, या 3 है।

एक द्विक प्राप्त होने की प्रायिकता $=\frac{6}{36} = \frac{1}{6}$

एक द्विक प्राप्त न होने की प्रायिकता $=1-\frac{1}{6}=\frac{5}{6}$

अब

अत: X का अभीष्ट प्रायिकता बंटन निम्नलिखित हैं:

X	0	1	2	3
P(X)	$\frac{125}{216}$	$\frac{75}{216}$	$\frac{15}{216}$	$\frac{1}{216}$

सत्यापन प्रायिकताओं का योग

$$\sum_{i=1}^{n} p_i = \frac{125}{216} + \frac{75}{216} + \frac{15}{216} + \frac{1}{216}$$
$$= \frac{125 + 75 + 15 + 1}{216} = \frac{216}{216} = 1$$

अत: उपरोक्त प्रायिकता बंटन सही है।

उदाहरण 26 मान लें किसी यादुच्छिक चुने गए विद्यालयी दिवस में पढ़ाई के घंटों को X से दर्शाया जाता है। X के मान x लेने की प्रायिकता निम्नलिखित तरह से है, जहाँ k एक वास्तविक संख्या है:

$$P(X = x) = \begin{cases} 0.1 & \text{यदि } x = 0 \\ kx & \text{यदि } x = 1 \text{ या } 2 \\ k(5 - x) \text{ यदि } x = 3 \text{ या } 4 \\ 0 & \text{अन्यथा} \end{cases}$$

(a) k का मान ज्ञात कीजिए

(b) इस बात की क्या प्रायिकता है कि आप न्यूनतम दो घंटे पढ़ते हैं? तथ्यत: दो घंटे पढ़ते हैं? अधिकतम दो घंटे पढ़ते हैं?

हल X का प्रायिकता बंटन नीचे दिया गया है:

X	0	1	2	3	4
P(X)	0.1	k	2 <i>k</i>	2 <i>k</i>	k

(a) हमें ज्ञात है कि
$$\sum_{i=1}^{n} p_i = 1$$

इसलिए
$$0.1 + k + 2k + 2k + k = 1$$

 $\Rightarrow k = 0.15$

(b) $P(आप न्यूनतम दो घंटे पढ़ते हैं) = <math>P(X \ge 2)$

$$= P (X = 2) + P (X = 3) + P (X = 4)$$

= $2k + 2k + k = 5k = 5 \times 0.15 = 0.75$

P(आप तथ्यत: दो घंटे पढ़ते हैं) = P(X = 2)

$$= 2k = 2 \times 0.15 = 0.3$$

 $P(\text{आप अधिकतम दो घंटे पढ़ते हैं}) = P(X \le 2)$

$$= P (X = 0) + P(X = 1) + P(X = 2)$$

= 0.1 + k + 2k = 0.1 + 3k = 0.1 + 3 × 0.15 = 0.55

13.6.2 यादृच्छिक चर का माध्य (Mean of a random variable)

बहुत सी समस्याओं में किसी यादृच्छिक चर के किसी लक्षण को एकल संख्या से दर्शाना वांछनीय होता है, जिसे चर की प्रायिकता बंटन से ज्ञात कर सकते हैं ऐसी ही कुछ संख्याएँ माध्य, माध्यक व बहुलक होते हैं। इस कक्षा में हम माध्य पर चर्चा करेंगे। माध्य अवस्थिति या केंद्रीय प्रवृति की माप इन अर्थों में है कि यह किसी यादृच्छिक चर के मध्यमान या औसत मान को इंगित करता है।

परिभाषा 6 मान लें X एक यादृच्छिक चर है जिसके संभावित मान $x_1, x_2, x_3, ..., x_n$ की क्रमश:

प्रायिकता $p_1, p_2, p_3, ..., p_n$ है। X का माध्य, जिसे μ , से व्यक्त करते हैं, संख्या $\sum_{i=1}^{n} x_i p_i$ होती है। अर्थात् x का माध्य, चर X, के संभावित मानों का भारित औसत होता है, जब प्रत्येक मान को उसकी संगत प्रायिकता से भारित किया गया हो।

यादृच्छिक चर X के माध्य को X की प्रत्याशा (Expectation) भी कहते हैं, जिसे E(X) से व्यक्त करते हैं। अत:

$$E(X) = \mu = \sum_{i=1}^{n} x_i p_i = x_1 p_1 + x_2 p_2 + \dots + x_n p_n$$

अन्य शब्दों में

यादृच्छिक चर X का माध्य या प्रत्याशा X के सभी संभावित मानों का उनकी संगत प्रायिकताओं के गुणन का योग होता है।

उदाहरण 27 मान लें कि पासों के एक जोड़े को उछाला जाता है और यादृच्छिक चर X, पासों पर प्राप्त संख्याओं का योग लिया जाता है। X का माध्य या प्रत्याशा ज्ञात कीजिए।

हल इस परीक्षण का प्रतिदर्श समिष्ट 36 मौलिक घटनाओं से निर्मित हुआ है, जिन्हें क्रिमित युग्म (x_i, y_i) के रूप में लिखा जा सकता है जहाँ $x_i = 1, 2, 3, 4, 5, 6$ और $y_i = 1, 2, 3, 4, 5, 6$.

यादृच्छिक चर X के मान अर्थात् पासों पर प्राप्त संख्याओं का योग 2,3,4,5,6,7,8,9,10,11 या 12 हो सकता है

রাজ
$$P(X = 2) = P(\{(1, 1)\}) = \frac{1}{36}$$

$$P(X = 3) = P(\{(1, 2), (2, 1)\}) = \frac{2}{36}$$

$$P(X = 4) = P(\{(1, 3), (2, 2), (3, 1)\}) = \frac{3}{36}$$

$$P(X = 5) = P(\{(1, 4), (2, 3), (3, 2), (4, 1)\}) = \frac{4}{36}$$

$$P(X = 6) = P(\{(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)\}) = \frac{5}{36}$$

$$P(X = 7) = P(\{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)\}) = \frac{6}{36}$$

$$P(X = 8) = P(\{(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)\}) = \frac{5}{36}$$

$$P(X = 9) = P(\{(3, 6), (4, 5), (5, 4), (6, 3)\}) = \frac{4}{36}$$

$$P(X = 10) = P(\{(4, 6), (5, 5), (6, 4)\}) = \frac{3}{36}$$

$$P(X = 11) = P(\{(5, 6), (6, 5)\}) = \frac{2}{36}$$

$$P(X = 12) = P(\{(6, 6), (6, 5)\}) = \frac{2}{36}$$

X का प्रायिकता बंटन है:

X या x _i	2	3	4	5	6	7	8	9	10	11	12
P(X) या p _i	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	l —	<u>1</u> 36

इसलिए
$$\mu = E(X) = \sum_{i=1}^{n} x_i p_i = 2 \times \frac{1}{36} + 3 \times \frac{2}{36} + 4 \times \frac{3}{36} + 5 \times \frac{4}{36}$$

$$+ 6 \times \frac{5}{36} + 7 \times \frac{6}{36} + 8 \times \frac{5}{36} + 9 \times \frac{4}{36} + 10 \times \frac{3}{36} + 11 \times \frac{2}{36} + 12 \times \frac{1}{36}$$

$$= \frac{2 + 6 + 12 + 20 + 30 + 42 + 40 + 36 + 30 + 22 + 12}{36} = 7$$

अत: दो पासों के फेंकने पर प्रकट संख्याओं के योग का माध्य 7 है।

13.6.3 यादुच्छिक चर का प्रसरण (Variance of a random variable)

यादृच्छिक चर का माध्य उस चर के मानों में विचरण के बारे में कोई सूचना नहीं देता है। साथ ही विभिन्न प्रायिकता बंटन वाले यादृच्छिक चरों के माध्य समान हो सकते हैं, जैसा कि X और Y के निम्नलिखित बंटनों में दिखाया गया है।

X	1	2	3	4
P(X)	$\frac{1}{9}$	$\frac{2}{\circ}$	$\frac{3}{\circ}$	$\frac{2}{\circ}$

Y	-1	0	4	5	6
P(Y)	$\frac{1}{8}$	$\frac{2}{8}$	$\frac{3}{8}$	$\frac{1}{8}$	$\frac{1}{8}$

स्पष्टतया

$$E(X) = 1 \times \frac{1}{8} + 2 \times \frac{2}{8} + 3 \times \frac{3}{8} + 4 \times \frac{2}{8} = \frac{22}{8} = 2.75$$

और
$$E(Y) = -1 \times \frac{1}{8} + 0 \times \frac{2}{8} + 3 \times \frac{4}{8} + 5 \times \frac{1}{8} + 6 \times \frac{1}{8} = \frac{22}{8} = 2.75$$

चर X और Y अलग-अलग हैं यद्यपि उनके माध्य समान हैं यह इन चरों के चित्रात्मक निरूपण से भी आसानी से प्रेक्षित किया जा सकता है (आकृति 13.5)।

X को Y से अलग करने के लिए हमें यादूच्छिक चर के मान में बिखराव की सीमा तक के माप की आवश्यकता है। हमने सांख्यिकी में पढ़ा है कि आँकड़ों में विचरण या बिखराव की माप ही प्रसरण है। इसी प्रकार यादुच्छिक चर के मूल्यों में बिखराव को प्रसरण से मापा जा सकता है।

परिभाषा 7 मान लीजिए X एक यादृच्छिक चर है जिसके संभावित मूल्य $x_1, x_2 ... x_n$ संगत प्रायिकताओं $p(x_1), p(x_2), ..., p(x_n)$ के साथ विद्यमान हैं।

मान लें $\mu = E(X)$, X का माध्य है। X का प्रसरण var(X) या σ_x^2 द्वारा निरूपित, को निम्न प्रकार से परिभाषित किया जाता है;

$$\sigma_x^2=\mathrm{Var}(X)=\sum_{i=1}^n(x_i-\mu)^2\;p(x_i)$$
 या समतुल्यतः
$$\sigma_x^2=\mathrm{E}(X-\mu)^2$$
 ऋणेत्तर संख्या
$$\sigma_x=\sqrt{\mathrm{Var}}(X)=\sqrt{\sum_{i=1}^n(x_i-\mu)^2\;p(x_i)}$$

ऋणेत्तर संख्या

को याद्रच्छिक चर X का मानक विचलन (standard deviation) कहते हैं। यादृच्छिक चर का प्रसरण ज्ञात करने का अन्य सूत्र हम जानते हैं कि

$$Var(X) = \sum_{i=1}^{n} (x_i - \mu)^2 p(x_i)$$

$$= \sum_{i=1}^{n} (x_i^2 + \mu^2 - 2\mu x_i) p(x_i)$$

$$= \sum_{i=1}^{n} (x_i^2 p(x_i) + \sum_{i=1}^{n} \mu^2 p(x_i) - \sum_{i=1}^{n} 2\mu x_i p(x_i)$$

$$= \sum_{i=1}^{n} (x_i^2 p(x_i) + \mu^2 \sum_{i=1}^{n} p(x_i) - 2\mu \sum_{i=1}^{n} x_i p(x_i)$$

$$= \sum_{i=1}^{n} x_i^2 p(x_i) + \mu^2 - 2\mu^2 \left[\text{ क्यों क } \sum_{i=1}^{n} p(x_i) = 1 \text{ और } \mu = \sum_{i=1}^{n} x_i P(x_i) \right]$$

$$= \sum_{i=1}^{n} (x_i^2 p(x_i) - \mu^2$$

$$\text{या} \qquad \text{Var}(X) = \sum_{i=1}^{n} (x_i^2 p(x_i)) - \left(\sum_{i=1}^{n} x_i p(x_i) \right)^2$$

$$\text{या} \qquad \text{Var}(X) = \text{E}(X^2) - [\text{E}(X)]^2 \text{, जहाँ E}(X^2) = \sum_{i=1}^{n} x_i^2 p(x_i)$$

उदहारण 28 एक अनिभनत पासे को फेंकने पर प्राप्त संख्याओं का प्रसरण ज्ञात कीजिए।

हल परीक्षण का प्रतिदर्श समिष्ट है $S = \{1, 2, 3, 4, 5, 6\}$

मान लें X, पासे पर प्रकट संख्या को व्यक्त करता है। तब X एक यादृच्छिक चर है जो 1,2,3,4,5, या 6 मान ले सकता है।

साथ ही
$$P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = \frac{1}{6}$$

इसलिए X का प्रायिकता बंटन है:

X	1	2	3	4	5	6
P(X)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

अब
$$E(X) = \sum_{i=1}^{n} x_i \ p(x_i)$$

$$= 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6} = \frac{21}{6}$$
साथ हो
$$E(X^2) = 1^2 \times \frac{1}{6} + 2^2 \times \frac{1}{6} + 3^2 \times \frac{1}{6} + 4^2 \times \frac{1}{6} + 5^2 \times \frac{1}{6} + 6^2 \times \frac{1}{6} = \frac{91}{6}$$
अत:
$$Var(X) = E(X^2) - (E(X))^2$$

$$= \frac{91}{6} - \left(\frac{21}{6}\right)^2 = \frac{91}{6} - \frac{441}{36} = \frac{35}{12}$$

उदाहरण 29 ताश के 52 पत्तों की एक भली-भाँति फेंटी गई गड्डी में से दो पत्ते उत्तरोत्तर बिना प्रतिस्थापना के (या एक साथ) निकाले जाते हैं। बादशाहों की संख्या का माध्य, प्रसरण व मानक-विचलन ज्ञात कीजिए।

हल मान लीजिए कि दो पत्ते निकालने में बादशाहों की संख्या को X से व्यक्त करते हैं। X एक याद्रच्छिक चर है जो 0,1 या 2 मान ले सकता है।

अब
$$P(X=0) = P(कोई बादशाह नहीं) = \frac{{}^{48}C_2}{{}^{52}C_2} = \frac{\frac{48!}{2!(48-2)!}}{\frac{52!}{2!(52-2)!}} = \frac{48 \times 47}{52 \times 51} = \frac{188}{221}$$

$$P(X = 1) = P($$
एक बादशाह और एक बादशाह नहीं $) = \frac{{}^4C_1{}^{48}C_1}{{}^{52}C_2}$

$$= \frac{4 \times 48 \times 2}{52 \times 51} = \frac{32}{221}$$

$$=\frac{4\times48\times2}{52\times51}=\frac{32}{221}$$
 और
$$P(X=2)=P\ (दोनों\ बादशाह)=\frac{^4C_2}{^{52}C_2}=\frac{4\times3}{52\times51}=\frac{1}{221}$$

अत: X का प्रायिकता बंटन है:

इसलिए

X	0	1	2
D(V)	188	32	1
P(X)	221	221	221

अब माध्य
$$X = E(X) = \sum_{i=1}^n x_i \, p(x_i)$$

$$= 0 \times \frac{188}{221} + 1 \times \frac{32}{221} + 2 \times \frac{1}{221} = \frac{34}{221}$$
 साथ ही
$$E(X^2) = \sum_{i=1}^n x_i^2 \, p(x_i) = 0^2 \times \frac{188}{221} + 1^2 \times \frac{32}{221} + 2^2 \times \frac{1}{221} = \frac{36}{221}$$
 अब
$$Var(X) = E(X^2) - [E(X)]^2$$

$$= \frac{36}{221} - \left(\frac{34}{221}\right)^2 = \frac{6800}{(221)^2}$$
 इसलिए
$$\sigma_x = \sqrt{Var(X)} = \frac{\sqrt{6800}}{(221)} = 0.37 \quad (लगभग)$$

प्रश्नावली 13.4

1. बताइए कि निम्नलिखित प्रायिकता बंटनों में कौन से एक यादृच्छिक चर के लिए संभव नहीं है। अपना उत्तर कारण सहित लिखिए।

(i)	X	0	1	2
	P(X)	0.4	0.4	0.2

(ii)	X	0	1	2	3	4
	P(X)	0.1	0.5	0.2	- 0.1	0.3

(iii)	Y	- 1	0	1
	P(Y)	0.6	0.1	0.2

(iv)	Z	3	2	1	0	-1
	P(Z)	0.3	0.2	0.4	0.1	0.05

- 2. एक कलश में 5 लाल और 2 काली गेंद हैं। दो गेंद यादृच्छया निकाली गई। मान लीजिए X काली गेंदों की संख्या को व्यक्त करता है। X के संभावित मान क्या है? क्या X यादृच्छिक चर है?
- 3. मान लीजिए X चितों की संख्या और पटों की संख्या में अंतर को व्यक्त करता है, जब एक सिक्के को 6 बार उछाला जाता है। X के संभावित मृल्य क्या है?
- 4. निम्नलिखित के प्रायिकता बंटन ज्ञात कीजिए:
 - (i) एक सिक्के की दो उछालों में चितों की संख्या का
 - (ii) तीन सिक्कों को एक साथ एक बार उछालने पर पटों की संख्या का
 - (iii) एक सिक्के की चार उछालों में चितों की संख्या का
- 5. एक पासा दो बार उछालने पर सफलता की संख्या का प्रायिकता बंटन ज्ञात कीजिए जहाँ
 - (i) '4 से बड़ी संख्या' को एक सफलता माना गया है।
 - (ii) 'पासे पर संख्या 6 प्रकट होना' को एक सफलता माना गया है।
- 6. 30 बल्बों के एक ढेर से, जिसमे 6 बल्ब खराब हैं 4 बल्बों का एक नमूना (प्रतिदर्श) यादृच्छया बिना प्रतिस्थापना के निकाला जाता है। खराब बल्बों की संख्या का प्रायिकता बंटन ज्ञात कीजिए।
- 7. एक सिक्का समसर्वय संतुलित नहीं है जिसमें चित प्रकट होने की संभावना पट प्रकट होने की संभावना की तीन गुनी है। यदि सिक्का दो बार उछाला जाता है तो पटों की संख्या का प्रायिकता बंटन ज्ञात कीजिए।

8. एक यादृच्छिक चर X का प्रायिकता बंटन नीचे दिया गया है।

X	0	1	2	3	4	5	6	7
P(X)	0	k	2 <i>k</i>	2 <i>k</i>	3 <i>k</i>	k^2	$2k^2$	$7k^2 + k$

ज्ञात कीजिए

(i)
$$k$$
 (ii) $P(X < 3)$ (iii) $P(X > 6)$ (iv) $P(0 < X < 3)$

9. एक यादृच्छिक चर X का प्रायिकता फलन P(x) निम्न प्रकार से है, जहाँ k कोई संख्या है

$$P(x) = \begin{cases} k & \text{यदि } x = 0 \\ 2k & \text{यदि } x = 1 \\ 3k & \text{यदि } x = 2 \\ 0 & \text{अन्यथा} \end{cases}$$

- (a) k का मान ज्ञात कीजिए
- (b) P(X < 2), P(X ≤ 2), P(X ≥ 2) ज्ञात कीजिए।
- 10. एक न्याय्य सिक्के की तीन उछालों पर प्राप्त चितों की संख्या का माध्य ज्ञात कीजिए।
- 11. दो पासों को युग्मत् उछाला गया। यदि X, छक्कों की संख्या को व्यक्त करता है, तो X की प्रत्याशा ज्ञात कीजिए।
- 12. प्रथम छ: धन पूर्णांकों में से दो संख्याएँ यादृच्छया (बिना प्रतिस्थापन) चुनी गई। मान लें X दोनों संख्याओं में से बड़ी संख्या को व्यक्त करता है। E(X) ज्ञात कीजिए।
- मान लीजिए दो पासों को फेंकने पर प्राप्त संख्याओं के योग को X से व्यक्त किया गया है।
 X का प्रसारण और मानक विचलन ज्ञात कीजिए।
- 14. एक कक्षा में 15 छात्र हैं जिनकी आयु 14, 17, 15, 14, 21, 17, 19, 20, 16, 18, 20, 17, 16, 19 और 20 वर्ष हैं। एक छात्र को इस प्रकार चुना गया कि प्रत्येक छात्र के चुने जाने की संभावना समान है और चुने गए छात्र की आयु (X) को लिखा गया। यादृच्छिक चर X का प्रायिकता बंटन ज्ञात कीजिए। X का माध्य, प्रसरण व मानक विचलन भी ज्ञात कीजिए।
- 15. एक बैठक में 70% सदस्यों ने किसी प्रस्ताव का अनुमोदन किया और 30% सदस्यों ने विरोध किया। एक सदस्य को यादृच्छया चुना गया और, यदि उस सदस्य ने प्रस्ताव का विरोध किया हो तो X=0 लिया गया, जब कि यदि उसने प्रस्ताव का अनुमोदन किया हो तो X=1 लिया गया। E(X) और Var(X) ज्ञात कीजिए।

निम्नलिखित में से प्रत्येक में सही उत्तर चुनें।

16. ऐसे पासे, जिसके तीन फलकों पर 1 अन्य तीन पर 2 और एक फलक पर 5 लिखा गया है, को उछालने पर प्राप्त संख्याओं का माध्य है:

(A) 1 (B) 2 (C) 5 (D)
$$\frac{8}{3}$$

588

मान लीजिए ताश की एक गड्डी से याद्रच्छया दो पत्ते निकाले जाते हैं। मान लीजिए X इक्कों की संख्या प्रकट करता है। तब E(X) का मान है:

(A)
$$\frac{37}{221}$$
 (B) $\frac{5}{13}$ (C) $\frac{1}{13}$ (D) $\frac{2}{13}$

(B)
$$\frac{5}{13}$$

(C)
$$\frac{1}{13}$$

(D)
$$\frac{2}{13}$$

13.7 बरनौली परीक्षण और द्विपद बंटन (Bernoulli Trails and Binomial Distribution)

13.7.1 बरनौली परीक्षण

अनेक प्रयोगों की प्रकृति द्विपरिणामी होती है। उदाहरणार्थ उछाला गया सिक्का एक 'चित' या एक 'पट' दर्शाता है, किसी प्रश्न का उत्तर 'हाँ' या 'नहीं' हो सकता है, एक अंडे से बच्चा 'निकल चुका है' या 'नहीं निकला है, एक निर्णय 'हाँ' या 'नहीं' है आदि। इस प्रकार की स्थितियों में ऐसा प्रचलन है कि प्राप्त परिणामों में से एक को 'सफलता' और दसरे को 'असफलता' कहा जाता है। उदाहरण के लिए. एक सिक्के को उछालने पर 'चित' आने को सफलता माना जाए तो 'पट' आने को असफलता कहा जाएगा।

प्रत्येक बार, जब हम एक सिक्का उछालते हैं या एक पासा उछालते हैं या कोई अन्य प्रयोग करते हैं, तब हम इसे एक परीक्षण (trial) कहते हैं। यदि एक सिक्का मान लीजिए, चार बार उछाला जाए तो परीक्षणों की संख्या 4 होगी और इनमें से प्रत्येक के परिणाम तथ्यत: दो होंगे अर्थात् सफलता या असफलता। किसी एक परीक्षण का परिणाम किसी दूसरे परीक्षण के परिणाम से स्वतंत्र होता है। इस प्रकार के प्रत्येक परीक्षण में सफलता (या असफलता) की प्रायिकताएँ अचर होती है। इस प्रकार के स्वतंत्र परीक्षण, जिनके केवल दो परिणाम होते हैं जो प्राय: 'सफलता' या 'असफलता' कहलाते हैं, बरनौली परीक्षण कहलाते हैं।

परिभाषा 8 एक यादृच्छिक प्रयोग के परीक्षणों को बरनौली परीक्षण कहते हैं यदि वे निम्नलिखित शर्तों को संतुष्ट करते हैं:

- (i) परीक्षणों की संख्या निश्चित (परिमित) होनी चाहिए
- (ii) परीक्षण स्वतंत्र होने चाहिए
- (iii) प्रत्येक परीक्षण के तथ्यत: दो ही परिणाम होने चाहिए, सफलता या असफलता
- (iv) किसी परिणाम की प्रायिकता प्रत्येक परीक्षण में समान रहनी चाहिए

उदाहरण के लिए एक पासे को 50 बार उछालना, 50 बरनौली परीक्षणों की स्थिति है, जिसमें प्रत्येक परीक्षण का परिणाम सफलता (मान लें सम संख्या प्रकट होना) या असफलता (विषम संख्या प्रकट होना) है और सभी 50 उछालों में सफलता की प्रायिकता (p) एक समान है। नि:सन्देह पासे की उत्तरोत्तर उछालें स्वतंत्र प्रयोग होते हैं। यदि पासा न्याय्य है और इसके छ: फलकों पर छ: संख्याएँ 1 से 6 तक लिखी गई है तो $p=\frac{1}{2}$ सफलता की और $q=1-p=\frac{1}{2}$ असफलता की प्रायिकता है। उदाहरण 30 7 लाल और 9 काली गेंदों वाले एक कलश में से उत्तरोत्तर छ: गेंद निकाली गई। बताइए कि गेंद निकालने के परीक्षण बरनौली परीक्षण हैं या नहीं यदि प्रत्येक निकाल के बाद गेंद को

- (i) प्रतिस्थापित किया गया हो।
- (ii) प्रतिस्थापित न किया गया हो।

हल

- (i) परीक्षणों की संख्या परिमित (निश्चित) है। जब गेंद को निकालने के बाद कलश में पुन: प्रतिस्थापित किया गया हो तो सफलता (मान लें लाल गेंद निकलना) की प्रायिकता $p=\frac{7}{16}$ है जो कि सभी छ: परीक्षणों में समान है अत: गेंदों को प्रतिस्थापना के साथ निकालना बरनौली परीक्षण हैं।
- (ii) जब गेंदों को बिना प्रतिस्थापना के निकाला गया तो पहले परीक्षण में सफलता (अर्थात् लाल गेंद का निकलना) की प्रायिकता $\frac{7}{16}$ है, दूसरे परीक्षण में $\frac{6}{15}$ है और इस तरह स्पष्टतया सभी परीक्षणों में सफलता की प्रायिकता समान नहीं है, अतः यह परीक्षण बरनौली परीक्षण नहीं हैं।

13.7.2 द्विपद बंटन (Binomial Distribution)

एक सिक्के के उछालने के प्रयोग पर विचार कीजिए जिसमें प्रत्येक परीक्षण का परिणाम सफलता (मान लें चित) या असफलता (पट) होते हैं। प्रत्येक परीक्षण में सफलता और असफलता को क्रमशः S और F मान लीजिए।

कल्पना कीजिए कि हम छ: परीक्षणों में एक सफलता के विभिन्न तरीकों को ज्ञात करने में इच्छुक हैं। स्पष्टतया छ: विभिन्न तरीके हैं जैसा कि नीचे सुचीबद्ध किया गया है:

SFFFFF, FSFFFF, FFFFFF, FFFFFFF, FFFFFSF, FFFFFFS

इसी प्रकार, दो सफलताएँ और चार असफलताएँ $\frac{6!}{4! \times 2!}$ क्रमचय में हो सकती हैं। इन सभी क्रमचयों की सूची बनाना काफ़ी लंबा कार्य होगा। इसिलए, 0,1,2,...,n सफलताओं की प्रायिकता ज्ञात करना लंबा और समय लेने वाला कार्य हो सकता है। n बरनौली परीक्षणों में से सफलताओं की संख्या की प्रायिकता ज्ञात करने के लिए एक सूत्र का निर्माण किया गया है, जिससे गणना में लगने वाले समय और संभव परिणामों की सूची बनाने से बचा जा सकता है। इस उद्देश्य के लिए तीन बरनौली परीक्षणों से बने यादृच्छिक प्रयोग को लेते हैं जिसमें प्रत्येक परीक्षण में सफलता और असफलता की प्रायिकताएँ क्रमश: p तथा q हैं। इस प्रयोग (परीक्षण) का प्रतिदर्श समष्टि कार्तीय गुणन

$$S = \{SSS, SSF, SFS, FSS, SFF, FSF, FFS, FFF\}$$
 ਵੈ

सफलताओं की संख्या एक यादृच्छिक चर X है और 0, 1, 2, या 3 मान ले सकता है। सफलताओं की संख्या का प्रायिकता बंटन निम्नलिखित प्रकार से प्राप्त किया गया है।

590 गणित

$$P(X=0) = P(\hat{a})$$
 सफलता नहीं)
$$= P(\{FFF\}) = P(F) \ P(F) \ P(F)$$

$$= q \cdot q \cdot q = q^3 \qquad (क्योंकि परीक्षण स्वतंत्र हैं)$$
 $P(X=1) = P(\hat{b}) = P(\hat{b}$

अत: X का प्रायिकता बंटन है

X	0	1	2	3
P(X)	q^3	$3q^2p$	$3qp^2$	p^3

साथ ही $(q+p)^3$ का द्विपद विस्तार निम्नलिखित है

$$q^3 + 3q^2p + 3qp^2 + p^3$$

नोट कीजिए कि 0, 1, 2, या 3 सफलताओं की प्रायिकताएँ क्रमश: $(q+p)^3$ के विस्तार की पहली, दूसरी, तीसरी और चतुर्थ पद हैं।

साथ ही क्योंकि q+p=1 है जिससे यह अर्थ निकलता है कि सभी प्रायिकताओं का योग 1 है जैसा कि आपेक्षित था।

अत: हम यह निष्कर्ष निकाल सकते हैं कि n-बरनौली परीक्षणों वाले प्रयोग में 0, 1, 2, ..., n सफलताओं की प्रायिकताएँ $(q+p)^n$ के विस्तार की प्रथम, द्वितीय, तृतीय, ...n वों पद से प्राप्त की जा सकती हैं। इस परिणाम को सिद्ध करने के लिए हम n –बरनौली परीक्षणों वाले प्रयोग में x-सफलताओं की प्रायिकता ज्ञात करते हैं।

स्पष्टतया x सफलताओं (S) की दशा में (n-x) असफलताएँ (F) होंगी।

अब x सफलताएँ (S) और (n-x) असफलताएँ (F), $\frac{n!}{x!(n-x)!}$ तरीकों से क्रमचय होती हैं।

इनमें से प्रत्येक तरीके में x सफलताओं और (n-x) असफलताओं की प्रायिकता

$$= P(x \text{ सफलताएँ}). P[(n-x) असफलताएँ}]$$

$$= \underbrace{\frac{P(S).P(S)...P(S)}{x \text{ qut}} \cdot \frac{P(F).P(F)...P(F)}{(n-x) \text{ qut}}}_{x \text{ qut}} = p^x q^{n-x}$$

अतः n-बरनौली परीक्षणों में x सफलताओं की प्रायिकता $\frac{n!}{x!(n-x)!}p^xq^{n-x}$ या ${}^nC_xp^xq^{n-x}$ है।

अत:
$$P(x \text{ सफलताएँ}) = {}^{n}C_{x}p^{x}q^{n-x}, x = 0, 1, 2, ..., n, (q = 1 - p)$$

स्पष्टतया P(x) सफलताएँ) अर्थात् ${}^{n}C_{x}p^{x}q^{n-x}$, $(q+p)^{n}$ के विस्तार की (x+1)वीं पद है। इस प्रकार, n-बरनौली परीक्षणों वाले एक प्रयोग में सफलताओं की संख्या की प्रायिकता बंटन $(q+p)^{n}$ के द्विपद-विस्तार द्वारा प्राप्त की जा सकती है। अत:, सफलताओं की संख्या X का बंटन निम्नलिखित प्रकार से लिखा जा सकता है।

X	0	1	2	x	i	n
P(X)	${}^{n}C_{0}q^{n}$	${}^{n}C_{1}q^{n-1}p^{1}$	$^{n}C_{2}q^{n-2}p^{2}$	${}^{n}C_{x}q^{n-x}p^{x}$	٦,	${}^{n}C_{n}p^{n}$

उपर्युक्त प्रायिकता बंटन को **द्विपद बंटन** कहते हैं जिसमें n तथा p, प्राचल हैं, क्योंकि n तथा p के मान दिए होने पर हम संपूर्ण प्रायिकता बंटन ज्ञात कर सकते हैं।

x सफलताओं की प्रायिकता P(X=x) को P(x) से भी व्यक्त करते हैं और इसे

$$P(x) = {}^{n}C_{x}q^{n-x}p^{x}, x = 0, 1, ..., n (q = 1 - p)$$
 से प्राप्त करते हैं।

इस P(x) को द्विपद बंटन का **प्रायिकता फलन** कहते हैं।

एक n-बरनौली परीक्षणों और प्रत्येक परीक्षण में सफलता की प्रायिकता p, वाले द्विपद बंटन को $\mathrm{B}(n,p)$ से व्यक्त करते हैं।

आइए अब कुछ उदाहरण लें।

उदाहरण 31 यदि एक न्याय्य सिक्के को 10 बार उछाला गया तो निम्न की प्रायिकताएँ ज्ञात कीजिए:

- (i) ठीक छ: चित
- (ii) न्यूनतम छ: चित
- (iii) अधिकतम छ: चित

हल एक सिक्के को बारबार उछालना बरनौली परीक्षण होते हैं। 10 परीक्षणों में चितों की संख्या को X मान लीजिए।

स्पष्टतया X बंटन n=10 और $p=\frac{1}{2}$ वाला द्विपद बंटन है।

इसलिए
$$P(X=x) = {}^{n}C_{x}q^{n-x}p^{x}$$
 यहाँ
$$n = 10, \ p = \frac{1}{2}, \quad q = 1 - p = \frac{1}{2}$$
 इसलिए
$$P(X=x) = {}^{10}C_{x}\left(\frac{1}{2}\right)^{10-x}\left(\frac{1}{2}\right)^{x} = {}^{10}C_{x}\left(\frac{1}{2}\right)^{10}$$

अब

(i)
$$P(\vec{\text{ठीक}}\ \vec{\text{छ}}:\ \vec{\text{चित}})\ P(X=6) = {}^{10}\text{C}_6 \left(\frac{1}{2}\right)^{10} = \frac{10!}{6! \times 4!} \frac{1}{2^{10}} = \frac{105}{512}$$

(ii)
$$P(\overline{\text{--यूनतम}}\ \overline{\text{छ}}: \overline{\text{चित}}) = P(X \ge 6)$$

$$= P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10)$$

$$= {}^{10}C_6 \left(\frac{1}{2}\right)^{10} + {}^{10}C_7 \left(\frac{1}{2}\right)^{10} + {}^{10}C_8 \left(\frac{1}{2}\right)^{10} + {}^{10}C_9 \left(\frac{1}{2}\right)^{10} + {}^{10}C_{10} \left(\frac{1}{2}\right)^{10}$$

$$= \left(\frac{10!}{6! \times 4!}\right) + \left(\frac{10!}{7! \times 3!}\right) + \left(\frac{10!}{8! \times 2!}\right) + \left(\frac{10!}{9! \times 1!}\right) + \left(\frac{10!}{10!}\right) \frac{1}{2^{10}} = \frac{193}{512}$$

(iii)
$$P$$
 (अधिकतम छ: चिंत) = $P(X \le 6)$
= $P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)$
+ $P(X = 4) + P(X = 5) + P(X = 6)$
= $\left(\frac{1}{2}\right)^{10} + {}^{10}C_1\left(\frac{1}{2}\right)^{10} + {}^{10}C_2\left(\frac{1}{2}\right)^{10} + {}^{10}C_3\left(\frac{1}{2}\right)^{10} + {}^{10}C_4\left(\frac{1}{2}\right)^{10}$
+ ${}^{10}C_5\left(\frac{1}{2}\right)^{10} + {}^{10}C_6\left(\frac{1}{2}\right)^{10}$
= $\frac{848}{1024} = \frac{53}{64}$

उदाहरण 32 10% खराब अंडों वाले एक ढेर से 10 अंडो उत्तरोत्तर प्रतिस्थापना के साथ निकाले गए। इस बात की प्रायिकता ज्ञात कीजिए कि 10 अंडों के प्रतिदर्श में कम से कम एक खराब अंडा है। हल मान लीजिए X खराब अंडों की संख्या को व्यक्त करता है। क्योंकि अंडों को प्रतिस्थापना के साथ निकाला गया है इसिलए यह बरनौली परीक्षण हैं। स्पष्टतया X का बंटन n=10 और $p=10\%=\frac{10}{100}=\frac{1}{10}$ वाला द्विपद बंटन है।

इसलिए

$$q = 1 - p = 1 - \frac{1}{10} = \frac{9}{10}$$

अब

$$= 1 - {}^{10}C_0 \left(\frac{9}{10}\right)^{10} = 1 - \frac{9^{10}}{10^{10}}$$

प्रश्नावली 13.5

- एक पासे को 6 बार उछाला जाता है। यदि 'पासे पर सम संख्या प्राप्त होना' एक सफलता है तो निम्नलिखित की प्रायिकताएँ क्या होंगी?
 - (i) तथ्यत: 5 सफलताएँ ? (ii) न्यूनतम 5 सफलताएँ ? (iii) अधिकतम 5 सफलताएँ ?
- 2. पासों के एक जोड़े को 4 बार उछाला जाता है। यदि 'पासों पर प्राप्त अंकों का द्विक होना' एक सफलता मानी जाती है, तो 2 सफलताओं की प्रायिकता ज्ञात कीजिए।
- 3. वस्तुओं के एक ढेर में 5% त्रुटियुक्त वस्तुएँ है। इसकी क्या प्रायिकता है कि 10 वस्तुओं के एक प्रतिदर्श में एक से अधिक त्रुटियुक्त वस्तुएँ नहीं होंगी?
- 4. 52 ताश के पत्तों की एक भली-भाँति फेंटी गई गड्डी में से 5 पत्ते उत्तरोतर प्रतिस्थापना सहित निकाले जाते हैं। इसकी क्या प्रायिकता है कि
 - (i) सभी 5 पत्ते हुकुम के हों ?
 - (ii) केवल 3 पत्ते हुकुम के हों?
 - (iii) एक भी पत्ता हुकुम का नहीं हो ?
- 5. किसी फ़ैक्ट्री में बने एक बल्ब की 150 दिनों के उपयोग के बाद फ्यूज़ होने की प्रायिकता 0.05 है। इसकी प्रायिकता ज्ञात कीजिए कि इस प्रकार के 5 बल्बों में से
 - (i) एक भी नहीं

(ii) एक से अधिक नहीं

- (iii) एक से अधिक
- (iv) कम से कम एक, 150 दिनों के उपयोग के बाद फ्यूज़ हो जाएँगे।
- 6. एक थैले में 10 गेंदें है जिनमें से प्रत्येक पर 0 से 9 तक के अंकों में से एक अंक लिखा है। यदि थैले से 4 गेंदें उत्तरोतर पुन: वापस रखते हुए निकाली जाती है, तो इसकी क्या प्रायिकता है कि उनमें से किसी भी गेंद पर अंक 0 न लिखा हो?
- 7. एक सत्य-असत्य प्रकार के 20-प्रश्नों वाली परीक्षा में मान लें कि एक विद्यार्थी एक न्याय्य सिक्के को उछाल कर प्रत्येक प्रश्न का उत्तर निर्धारित करता है। यदि पासे पर चित प्रकट हो तो वह प्रश्न का उत्तर 'सत्य' देता है और यदि पट प्रकट हो तो 'असत्य' लिखता है। इस की प्रायिकता ज्ञात कीजिए कि वह कम से कम दो प्रश्नों का सही उत्तर देता है।

9. एक बहु-विकल्पीय परीक्षा में 5 प्रश्न है जिनमें प्रत्येक के तीन संभावित उत्तर हैं। इसकी क्या प्रायिकता है कि एक विद्यार्थी केवल अनुमान लगा कर चार या अधिक प्रश्नों के सही उत्तर दे देगा?

10. एक व्यक्ति एक लॉटरी के 50 टिकट खरीदता है, जिसमें उसके प्रत्येक में जीतने की प्रायिकता $\frac{1}{100}$ है। इसकी क्या प्रायिकता है कि वह (a) न्यूनतम एक बार (b) तथ्यत: एक बार (c) न्यूनतम दो बार, इनाम जीत लेगा।

- 11. एक पासे को 7 बार उछालने पर तथ्यत: दो बार 5 आने की प्रायिकता ज्ञात कीजिए।
- 12. एक पासे को छ: बार उछालने पर अधिकतम 2 बार छ: आने की प्रायिकता ज्ञात कीजिए।
- यह ज्ञात है कि किसी विशेष प्रकार की निर्मित वस्तुओं की संख्या में 10% खराब है। इसकी क्या प्रायिकता है कि इस प्रकार की 12 वस्तुओं के यादुच्छिक प्रतिदर्श में से 9 खराब हों?
- 14. एक बॉक्स में 100 बल्ब हैं। जिसमें 10 त्रुटियुक्त हैं। 5 बल्ब के नमूने में से, किसी भी बल्ब के त्रुटियुक्त न होने की प्रायिकता है:
 - (B) $\left(\frac{1}{2}\right)^5$ (C) $\left(\frac{9}{10}\right)^5$ (D) $\frac{9}{10}$ (A) 10^{-1}
- 15. एक छात्र की तैराक न होने की प्रायिकता $\frac{1}{5}$ है। तब 5 छात्रों में से 4 छात्रों की तैराक होने की प्रायिकता है:
 - (B) $\left(\frac{4}{5}\right)^4 \frac{1}{5}$ (A) ${}^{5}C_{4} \left(\frac{4}{5}\right)^{4} \frac{1}{5}$ (C) ${}^{5}C_{1} \frac{1}{5} \left(\frac{4}{5}\right)^{4}$
 - (D) इनमें से कोई नहीं

विविध उदाहरण

उदाहरण 33 चार डिब्बों में रगींन गेंदें निम्न सारणी में दर्शाए गए तरह से आंबटित की गई है:

डिब्बा	रंग							
	काला	सफेद	लाल	नीला				
I	3	4	5	6				
II	2	2	2	2				
III	1	2	3	1				
IV	4	3	1	5				

एक डिब्बे को यादृच्छया चुना गया और फिर उसमें से एक गेंद निकाली गई। यदि गेंद का रंग काला है तो इसकी क्या प्रायिकता है कि गेंद को डिब्बा- III से निकाला गया है?

हल मान लीजिए A, E_1, E_2, E_3 और E_4 निम्न प्रकार से परिभाषित घटनाएँ हैं:

A: एक काली गेंद का निकलना

E, : डिब्बा-I का चुनाव

 E_2 : डिब्बा-II का चुनाव

 E_3 : डिब्बा-III का चुनाव

E, : डिब्बा-IV का चुनाव

क्योंकि डिब्बों को याद्रच्छया चुना गया है,

इसलिए
$$P(E_1) = P(E_2) = P(E_3) = P(E_4) = \frac{1}{4}$$

साथ ही
$$P(A|E_1) = \frac{3}{18}, P(A|E_2) = \frac{2}{8}, P(A|E_3) = \frac{1}{7} \text{ और } P(A|E_4) = \frac{4}{13}$$

$$P(\text{डिब्बा - III an } \text{ चुनाव, जब यह ज्ञात है कि काली गेंद निकाली गई है)}$$

$$= P(E_3|A) \text{ बेज़-प्रमेय } \text{ से}$$

$$P(E_3|A) = \frac{P(E_3).P(A|E_3)}{P(E_1)P(A|E_1) + P(E_2)P(A|E_2) + P(E_3)P(A|E_3) + P(E_4)P(A|E_4)}$$

$$= \frac{\frac{\frac{1}{4} \times \frac{1}{7}}{\frac{1}{4} \times \frac{3}{18} + \frac{1}{4} \times \frac{1}{4} + \frac{1}{4} \times \frac{1}{7} + \frac{1}{4} \times \frac{4}{13}} = 0.165$$

उदाहरण 34 द्विपद बंटन $B\left(4,\frac{1}{3}\right)$ का माध्य ज्ञात कीजिए।

हल मान लें X वह यादृच्छिक चर है जिसका प्रायिकता बंटन $B\left(4, \frac{1}{3}\right)$ है।

यहाँ

$$n = 4, p = \frac{1}{3}$$
 और $q = 1 - \frac{1}{3} = \frac{2}{3}$

हम जानते हैं कि

$$P(X = x) = {}^{4}C_{x} \left(\frac{2}{3}\right)^{4-x} \left(\frac{1}{3}\right)^{x}, x = 0, 1, 2, 3, 4$$

अर्थात् X का बंटन निम्नलिखित है is

\boldsymbol{x}_{i}	$\mathbf{P}(\mathbf{x}_i)$	$x_i P(x_i)$
0	${}^{4}C_{0}\left(\frac{2}{3}\right)^{4}$	0
1	${}^4C_1\left(\frac{2}{3}\right)^3\left(\frac{1}{3}\right)$	$^{4}C_{1}\left(\frac{2}{3}\right)^{3}\left(\frac{1}{3}\right)$
2	$^{4}C_{2}\left(\frac{2}{3}\right)^{2}\left(\frac{1}{3}\right)^{2}$	$2\left({}^{4}\mathrm{C}_{2}\left(\frac{2}{3}\right)^{2}\left(\frac{1}{3}\right)^{2}\right)$
3	$^{4}C_{3}\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)^{3}$	$3\left({}^{4}C_{3}\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)^{3}\right)$
4	$^{4}C_{4}\left(\frac{1}{3}\right)^{4}$	$4\left({}^{4}C_{4}\left(\frac{1}{3}\right)^{4}\right)$

अब माध्य (
$$\mu$$
) = $\sum_{i=1}^{n} x_i \, p(x_i)$
= $0 + {}^4\mathrm{C}_1 \left(\frac{2}{3}\right)^3 \left(\frac{1}{3}\right) + 2 \cdot {}^4\mathrm{C}_2 \left(\frac{2}{3}\right)^2 \left(\frac{1}{3}\right)^2 + 3 \cdot {}^4\mathrm{C}_3 \left(\frac{2}{3}\right) \left(\frac{1}{3}\right)^3 + 4 \cdot {}^4\mathrm{C}_4 \left(\frac{1}{3}\right)^4$
= $4 \times \frac{2^3}{3^4} + 2 \times 6 \times \frac{2^2}{3^4} + 3 \times 4 \times \frac{2}{3^4} + 4 \times \frac{1}{3^4}$
= $\frac{32 + 48 + 24 + 4}{3^4} = \frac{108}{81} = \frac{4}{3}$

उदाहरण 35 एक निशानेबाज के लक्ष्य-भेदन की प्रायिकता $\frac{3}{4}$ है। वह कम से कम कितनी बार गोली चलाए कि लक्ष्य को कम से कम एक बार भेदने की प्रायिकता 0.99 से अधिक हो?

हल मान लीजिए कि निशानेबाज n बार गोली चलाता है। निस्संदेह n बार गोली चलाना n बरनौली परीक्षण हैं।

p= प्रत्येक परीक्षण में लक्ष्य भेदन की प्रायिकता $=\frac{3}{4}$ और q= लक्ष्य को न भेदने की प्रायिकता $=\frac{1}{4}$

तब
$$P(X=x) = {}^{n}C_{x} q^{n-x} p^{x} = {}^{n}C_{x} \left(\frac{1}{4}\right)^{n-x} \left(\frac{3}{4}\right)^{x} = {}^{n}C_{x} \frac{3^{x}}{4^{n}}$$

अब दिया है

P(न्यूनतम एक बार लक्ष्य भेदन) > 0.99

अर्थात्
$$P(x \ge 1) > 0.99$$

इसलिए
$$1 - P(x = 0) > 0.99$$

या
$$1-{}^{n}C_{0}\frac{1}{4^{n}}>0.99$$

या
$${}^4C_0 \frac{1}{4^n} < 0.01$$
 अर्थात् $\frac{1}{4^n} < 0.01$

या
$$4^n > \frac{1}{0.01} = 100$$
 ... (1)

असमिका (1) को संतुष्ट करने वाली n की न्यूनतम मान 4 है। अतः निशानेबाज को कम से कम 4 गोली चलानी होगी।

उदाहरण 36 A और B बारी-बारी से एक पासे को उछालते हैं जब तक कि उनमें से कोई एक पासे पर छ: प्राप्त कर खेल को जीत नहीं लेता। यदि A खेल को शुरू करें तो उनके जीतने की क्रमश: प्रायिकता ज्ञात कीजिए।

हल मान लीजिए S सफलता (पासे पर 6 प्रकट होना) को और F असफलता (पासे पर 6 प्रकट न होना) को व्यक्त करते हैं।

अत:
$$P(S) = \frac{1}{6}, P(F) = \frac{5}{6}$$

 $P(A \Rightarrow \text{ पहली } 3 \text{ छाल } \text{ में } \text{ जीतना}) = P(S) = \frac{1}{6}$

598 गणित

A को तीसरी उछाल का अवसर तब मिलता है जब A पहली उछाल में और B दूसरी उछाल में असफल होते हैं। इसलिए

$$\begin{split} & P(A \text{ का तीसरी उछाल में जीतना}) = P(FFS) = P(F)P(F)P(S) = \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6} \ = \left(\frac{5}{6}\right)^2 \times \frac{1}{6} \\ & \text{इसी प्रकार P(A का पाँचवीं उछाल में जीतना}) = P(FFFFS) = \left(\frac{5}{6}\right)^4 \left(\frac{1}{6}\right) \end{split}$$

और इसी प्रकार अन्य अत:
$$P(A \text{ जीतना}) = \frac{1}{6} + \left(\frac{5}{6}\right)^2 \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^4 \left(\frac{1}{6}\right) + \dots$$

$$=\frac{\frac{1}{6}}{\frac{1-25}{36}}=\frac{6}{11}$$

$$P(B जीतना)=1-P(A जीतना)=1-\frac{6}{11}=\frac{5}{11}$$

टिप्पणी यदि $a + ar + ar^2 + ... + ar^{n-1} + ...$, जहाँ r | < 1, तब इस अनंत श्रेणी का योग $\frac{a}{1-r}$ (देखिए कक्षा XI की पाठ्यपुस्तक का A.1.3)

उदाहरण 37 यदि एक मशीन समुचित ढंग से स्थापित की जाती है तो यह 90% स्वीकार्य वस्तु उत्पादित करती है। यदि यह समुचित ढंग से स्थापित नहीं की जाती है तो यह मात्र 40% स्वीकार्य वस्तु बनाती है। पूर्व अनुभव यह दर्शाता है कि मशीन स्थापन 80% समुचित है। यदि एक निश्चित स्थापन के बाद मशीन 2 स्वीकार्य वस्तु उत्पादित करती है तो मशीन की समुचित ढंग से स्थापित होने की प्रायिकता ज्ञात कीजिए।

हल मान लीजिए A एक घटना है जिसमें एक मशीन दो स्वीकार्य वस्तुओं का उत्पादन करती है। साथ ही मान लीजिए \mathbf{B}_1 सही कार्य प्रणाली की घटना को प्रदर्शित करता है और \mathbf{B}_2 गलत कार्य प्रणाली की घटना को प्रदर्शित करता है।

अब
$$P(B_1)=0.8,\ P(B_2)=0.2$$

$$P(A|B_1)=0.9\times0.9 \ \text{और} \ P(A|B_2)=0.4\times0.4$$

इसलिए
$$\begin{split} P(B_1|A) &= \frac{P(B_1) P(A|B_1)}{P(B_1) P(A|B_1) + P(B_2) P(A|B_2)} \\ &= \frac{0.8 \times 0.9 \times 0.9}{0.8 \times 0.9 \times 0.9 + 0.2 \times 0.4 \times 0.4} = \frac{648}{680} = 0.95 \end{split}$$

अध्याय 13 पर आधारित विविध प्रश्नावली

- 1. A और B इस प्रकार घटनाएँ हैं कि $P(A) \neq 0$. P(B|A) ज्ञात कीजिए यदि
 - (i) A, समुच्चय B का उपसमुच्चय है
- (ii) $A \cap B = \phi$

- एक दंपति के दो बच्चे हैं
 - (i) दोनों बच्चों के लड़का होने की प्रायिकता ज्ञात कीजिए यदि यह ज्ञात हैं कि दोनों बच्चों में से कम से कम एक बच्चा लड़का है।
 - (ii) दोनों बच्चों के लड़की होने की प्रायिकता ज्ञात कीजिए यदि यह ज्ञात है कि बड़ा बच्चा लड़की है।
- 3. कल्पना कीजिए कि 5% पुरुषों और 0.25% महिलाओं के बाल सफ़ेद हैं। एक सफ़ेद बालों वाले व्यक्ति को यादृच्छिक चुना गया है। इस व्यक्ति के पुरुष होने की प्रायिकता क्या है? यह मान लें कि पुरुषों और महिलाओं की संख्या समान है।
- 4. मान लीजिए कि 90% लोग दाहिने हाथ से काम करने वाले हैं। इसकी प्रायिकता क्या है कि 10 लोगों में से यादुच्छया चुने गए अधिक से अधिक 6 लोग दाहिने हाथ से काम करने वाले हों?
- 5. एक कलश (पात्र) में 25 गेंदें हैं, जिनमें से 10 गेंदों पर चिह्न 'X' अंकित है और शेष 15 पर चिह्न 'Y'. अंकित है। कलश में से एक गेंद यादृच्छया निकाली जाती है और उस पर अंकित चिह्न को नोट (लिख) करके उसे कलश में प्रतिस्थापित कर दिया जाता हे। यदि इस प्रकार से 6 गेंदें निकाली जाती हों, तो अग्रलिखित प्रायिकताएँ ज्ञात कीजिए।
 - (i) सभी पर चिह्न 'X' अंकित हो।
 - (ii) 2 से अधिक पर चिह्न 'Y' नहीं अंकित हो।
 - (iii) कम से कम 1 गेंद पर चिह्न 'Y' अंकित हो।
 - (iv) 'X' तथा 'Y' चिह्नों से अंकित गेंदों की संख्याएँ समान हों।
 - 'X' चिह्न से अंकित गेंदों की संख्या का माध्य भी ज्ञात कीजिए।
- 6. एक बाधा दौड़ में एक प्रतियोगी को 10 बाधाएँ पार करनी है इसकी प्रायिकता कि वह प्रत्येक बाधा को पार कर लेगा $\frac{5}{6}$ है। इसकी क्या प्रायिकता है कि वह 2 से कम बाधाओं को गिरा देगा (नहीं पार कर पाएगा)?
- 7. एक पासे को बार-बार तब तक उछाला जाता है जब तक कि उस पर 6 का अंक तीन बार प्राप्त नहीं हो जाता। इसकी प्रायिकता ज्ञात कीजिए कि पासे पर तीसरा 6 का अंक उसे छठी बार उछालने पर प्राप्त होता है।
- 8. यदि एक लीप वर्ष को यादृच्छया चुना गया हो तो इसकी क्या प्रायिकता है कि उस वर्ष में 53 मंगलवार होंगे?
- एक प्रयोग के सफल होने का संयोग उसके असफल होने से दो गुना है। प्रायिकता ज्ञात कीजिए कि अगले छ: परीक्षणों में कम से कम 4 सफल होंगे।

- 10. एक व्यक्ति एक न्याय्य सिक्के को कितनी बार उछाले कि कम से कम एक चित की प्रायिकता 90% से अधिक हो?
- 11. एक खेल में किसी व्यक्ति को एक न्याय्य पासे को उछालने के बाद छ: प्रकट होने पर एक रुपया मिलता है और अन्य कोई संख्या प्रकट होने पर वह एक रुपया हार जाता है। एक व्यक्ति यह निर्णय लेता है, कि वह पासे को तीन बार फेंकेगा लेकिन जब भी छ: प्राप्त होगा वह खेलना छोड देगा। उसके द्वारा जीती/हारी गई राशि की प्रत्याशा ज्ञात कीजिए।
- 12. मान लीजिए हमारे पास A, B, C और D बक्से हैं जिसमें रखी संगमरमर की लाल, सफेद और काली टुकड़ियों का विवरण निम्न तरीके से है यादृच्छया एक बॉक्स चुना जाता है तथा इससे एक टुकड़ा निकाला जाता है। यदि टुकड़ा लाल हो तो इसे बॉक्स A; बॉक्स B, बॉक्स C से निकाले जाने की क्या प्रायकता है?

बॉक्स	संगमरमर की टुकड़ियों का रंग						
	लाल सफ़ेद		काला				
A	1	6	3				
В	6	2	2				
С	8	1	1				
D	0	6	4				

- 13. मान लीजिए किसी रोगी को दिल का दौरा पड़ने का संयोग 40% है। यह मान लिया जाता है कि ध्यान ओर योग विधि दिल का दौरा पड़ने के खतरे को 30% कम कर देता है और दवा द्वारा खतरे को 25% कम किया जा सकता है। किसी भी समय रोगी इन दोनों में से किसी एक विकल्प का चयन करता है। यह दिया गया है कि उपरोक्त विकल्पों से किसी एक का चुनाव करने वाले रोगियों से यादृच्छया चुना गया रोगी दिल के दौरे से ग्रसित हो जाता है। रोगी द्वारा ध्यान और योग विधि का उपयोग किए जाने की प्रायिकता ज्ञात कीजिए।
- 14. यदि 2 कोटि के एक सारिणक के सभी अवयव शून्य या एक हो तो सारिणक का धनात्मक मान होने की क्या प्रायिकता हैं। (मान लीजिए की सारिणक के प्रत्येक अवयव स्वतंत्र रूप से चुने जा सकते हैं तथा प्रत्येक की चुने जाने की प्रायिकता 1/2 है।)
- 15. एक इलेक्ट्रॉनिक एसेंबली के दो सहायक निकाय A और B हैं। पूर्ववर्ती निरीक्षण द्वारा निम्न प्रायिकताएँ ज्ञात है:

 $P(A \Rightarrow \text{ असफल होने } \Rightarrow 0.2$ $P(B \Rightarrow \text{ अकेले } \Rightarrow \text{ असफल होने } \Rightarrow 0.15$ $P(A \Rightarrow \text{ } \Rightarrow \text{ }$

- तो, निम्न प्रायिकताएँ ज्ञात कीजिए:
 - (i) P(A असफल/B असफल हो चुकी हो)
 - (ii) P(A के अकेले असफल होने की)
- 16. थैला 1 में 3 लाल तथा 4 काली गेंदें है तथा थैला II में 4 लाल और 5 काली गेंदें हैं। एक गेंद को थैला 1 से थैला 2 में स्थानांतरित किया जाता है और तब एक गेंद थैला 2 से निकाली जाती है। निकाली गई गेंद लाल रंग की है। स्थानांतरित गेंद की काली होने की प्रायिकता ज्ञात कीजिए।

निम्नलिखित प्रश्नों में सही उत्तर का चुनाव कीजिए:

- **17.** यदि A और B दो ऐसी घटनाएँ है कि $P(A) \neq 0$ और P(B/A) = 1, तब
 - (A) $A \subset B$
- (B) $B \subset A$
- (C) $B = \phi$
- (D) $A = \phi$
- 18. यदि P(A/B) > P(A), तब निम्न में से कौन सही है।
 - (A) P(B|A) < P(B)

(B) $P(A \cap B) < P(A) \cdot P(B)$

(C) P(B|A) > P(B)

- (D) P(B|A) = P(B)
- 19. यदि A और B ऐसी दो घटनाएँ हैं कि
 - P(A) + P(B) P(A) और B) = P(A), तब
 - (A) P(B|A) = 1

(B) P(A|B) = 1

(C) P(B|A) = 0

(D) P(A|B) = 0

सारांश

इस अध्याय के मुख्य बिंदु निम्न प्रकार से हैं

◆ घटना E की सप्रतिबंध प्रायिकता जब कि घटना F दी गई है, निम्न प्रकार से ज्ञात की जाती है

$$P(E|F) = \frac{P(E \cap F)}{P(F)}, P(F) \neq 0$$

- $0 \le P(E|F) \le 1$, P(E'|F) = 1 P(E|F) $P(E \cup F|G) = P(E|G) + P(F|G) - P(E \cap F|G)$
- $P(E \cap F) = P(E) P(F|E), P(E) \neq 0$ $\exists P(E \cap F) = P(F) (E|F), P(F) \neq 0$
- यदि E और F स्वतंत्र घटनाएँ हैं तो
 P (E ∩ F) = P (E) P (F)

 $P(F|E) = P(F), P(E) \neq 0$

और P (E|F) = P (E), P (F) \neq 0

• संपूर्ण प्रायिकता की प्रमेय: मान लें $\{E_1, E_2, ...E_n\}$ प्रतिदर्श समष्टि S का एक विभाजन है और $E_1, E_2, ...E_n$, में प्रत्येक की प्रायिकता शून्येत्तर है। साथ ही A प्रतिदर्श समष्टि से संबंधित एक घटना है, तब $P(A) = P(E_1) P(A|E_1) + P(E_2) P(A|E_2) + ... + P(E_n) P(A|E_n)$

• बेज़-प्रमेय: यदि E_1, E_2,E_n प्रतिदर्श समिष्ट S के विभाजन का निर्माण करती हैं अर्थात् $E_1, E_2,, E_n$ युग्मत: असंयुक्त हैं और $E_1 \cup E_2 \cup ... \cup E_n = S$ और A एक शून्येतर प्रायिकता की घटना है तब

$$P(E_i|A) = \frac{P(E_i)P(A|E_i)}{\sum_{i=1}^{n} P(E_j)P(A|E_j)}$$

 एक यादृच्छिक चर किसी यादृच्छिक परीक्षण के प्रतिदर्श समिष्ट पर परिभाषित वास्तिवक मान फलन होता है।

◆ यादुच्छिक चर X की प्रायिकता बंटन संख्याओं की निम्नलिखित प्रणाली है

অहाँ
$$p_i > 0, \sum_{i=1}^{n} p_i = 1, i = 1, 2, ..., n$$

• मान लें X एक यादृच्छिक चर है जिसके संभावित मूल्य $x_1, x_2, x_3, \dots, x_n$ हैं जिनकी क्रमश: प्रायिकताएँ $p_1, p_2, p_3, \dots, p_n$ हैं। X का माध्य, μ से व्यक्त, संख्या $\sum_{i=1}^n x_i p_i$ है। यादृच्छिक चर X के माध्य को X, की प्रत्याशा भी कहते हैं जिसे E(X) से व्यक्त करते हैं।

• मान लें X एक यादृच्छिक चर है जिसके संभावित मूल्य $x_1, x_2,...,x_n$ हैं जिनकी क्रमशः प्रायिकताएँ $p_1, p_2, ..., p_n$ हैं। मान लीजिए $\mu = E(X), X$ का माध्य है। X, का प्रसरण, var(X) या σ_x^2 से व्यक्त, को निम्न प्रकार से परिभाषित किया जाता है

$$\sigma_x^2 = \text{Var}(X) = \sum_{i=1}^n (x_i - \mu)^2 p(x_i)$$

या समतुल्यत: $\sigma_x^2 = E(X - \mu)^2$

ऋणेतर संख्या
$$\sigma_x = \sqrt{\operatorname{var}(X)} = \sqrt{\sum_{i=1}^n (x_i - \mu)^2 p(x_i)}$$

को यादुच्छिक चर X की मानक विचलन कहते हैं।

603

- $\operatorname{var}(X) = E(X^2) [E(X)]^2$
- किसी यादृच्छिक प्रयोग के परीक्षणों को बरनौली परीक्षण कहते हैं यदि वे निम्नलिखित शर्तों को संतुष्ट करते हैं:
 - (i) परीक्षणों की संख्या निश्चित (परिमित) होनी चाहिए
 - (ii) परीक्षण स्वतंत्र होने चाहिए
 - (iii) प्रत्येक परीक्षण के तथ्यत: दो ही परिणाम होने चाहिए: सफलता या असफलता
 - (iv) किसी परिणाम की प्रायिकता प्रत्येक परीक्षण में एक ही (समान) रहनी चाहिए।
- द्विपद बंटन B (n, p), के लिए P $(X = x) = {}^{n}C_{x} q^{n-x} p^{x}$

ऐतिहासिक नोट

एक पासे पर आधारित खेल में प्रायिकता (अवसर) के माप का पहला संदर्भ दाँते के दैवी प्रहसन पर एक व्याख्या में मिलता है। जेरनीमोंकॉरडन (1501-1576) ने जुए के खेल पर एक विस्तृत निबंध जिसका नाम 'लिबर डे लूडो अलकाए' लिखा था जो उनके मृत्योपरांत 1663 में प्रकाशित हुआ था। इस निबंध में उन्होंने दो पासों को उछालने पर प्रत्येक घटना के अनुकूल परिणामों की संख्या के बारे में बताया है। गैलिलियो (1564-1642) ने तीन पासों के एक खेल में संयोग के माप के संबंध में आकस्मिक टिप्पणी की है। गैलिलियो ने विश्लेषण किया था कि जब तीन पासों को उछाला जाता है तो प्रकट संख्याओं के योग का 10 होना योग 9 से अधिक संभाव्य है क्योंकि योग को दस होने के अनुकूल परिणामों की संख्या योग 9 के अनुकूल परिणामों की संख्या से अधिक है।

इस प्रारंभिक योगदान के अतिरिक्त यह सामान्यत: माना जाता है कि प्रायिकता के विज्ञान का प्रमाणिक उद्गम सत्रहवीं शताब्दी के दो महान गणितज्ञों पॉस्कल (1623-1662) और पीअरे द् फ़र्मा (1601-1665) के मध्य हुए पत्र व्यवहार से हुआ है। एक फ्रांसिसी जुआरी शेवेलियर डे मेरे ने सैंद्धातिक तर्क और जुए में एकत्रित प्रेक्षणों में अंतर्विरोध की व्याख्या के लिए पॉस्कल से पूछा। इस प्रश्न के हल के लिए 1654 के इर्द-गिर्द पॉस्कल और फ़र्मा के बीच हुए पत्र व्यवहार की शृंखला में प्रायिकता के विज्ञान की प्रथम नींव रखी गई। पॉस्कल ने समस्या को बीजगणितीय रूप में हल किया जबकि फ़र्मा ने संचय की विधियों का उपयोग किया।

महान हालैंड निवासी वैज्ञानिक ह्यजेन (1629-1695) को पॉस्कल और फ़र्मा के मध्य हुए पत्र व्यवहार के बारे में जानकारी मिली तो उन्होंने प्रायिकता की प्रथम पुस्तक 'डे रेशियोसिनिस इन लूडो अलाय' को प्रकाशित किया जिसमें संयोग के खेल में प्रायिकता पर बहुत सारी रोचक लेकिन कठिन समस्याओं के हल प्रस्तुत किए। प्रायिकता सिद्धांत पर अगला महान कार्य जैकब बरनौली (1654-1705) ने एक पुस्तक 'आर्स कंजेकटेंडी' के रूप में किया जो उनके

मृत्योपरांत उनके भतीजे निकॉलस बरनौली ने 1713 में प्रकाशित की थी। उन्हें एक महत्त्वपूर्ण प्रायिकता बंटन 'द्विपद बंटन' की खोज का श्रेय भी जाता है। प्रायिकता पर अगला आकर्षक कार्य 'अब्राहम डे मोवियर (1667-1754) की पुस्तक 'द डॉक्ट्रिन ऑफ चांस' में विद्यमान है जिसे 1718 में प्रकाशित किया गया था। थॉमस बेज (1702-1761) ने उनके नाम पर प्रसिद्ध प्रमेय 'बेज-प्रमेय' को व्युत्पन्न करने के लिए सप्रतिबंध प्रायिकता का उपयोग किया। प्रसिद्ध खगोलशास्त्री 'पियरे साइमन डे लॉपलास (1749-1827) ने भी प्रायिकता सिद्धांत पर कार्य किया और 1812 में एक पुस्तक 'थियोरी एनॉलिटिक डेस प्रोबेबिलिटिज' प्रकाशित की। इसके बाद रूसी गणितज्ञों शेबीशेव (1821-1894), मॉरकोव (1856-1922), ए. लियापोनोव (1821-1918) और ए.एन. कॉल्मोग्रोव (1903-1987) ने प्रायिकता सिद्धांत पर सार्थक योगदान दिया। कॉल्मोग्रोव ने प्रायिकता का समुच्चय फलन के रूप में सूत्रपात किया। जिसे 1933 में प्रकाशित पुस्तक 'प्रायिकता का आधारभूत सिद्धांत' में प्रायिकता के अभिगृहितीय दृष्टिकोण के नाम से जाना जाता है।

