Parciális derivált

$$f_{xy} = \chi^5 + \chi^6 + \chi \chi^3 - \chi^3 \chi^4 + 12$$

$$\frac{d}{dx} = 5x^{4} + 0 + 1y^{3} - 3x^{2}y^{4} + 0$$

$$\frac{d}{dy} = 0 + 6y^5 + x 3y^2 - x^3 4y^3 + 0$$

Másodrendű derivált

Lokális szélsőértékek

$$f'_{x}(x,y) = 0$$
 = stac. portok
 $f'_{y}(x,y) = 0$ = ez megadja a lehetséges
pontok koordinátáit

det Hose m étrix = be kell helyettesíteni a koordinátákat

Kettős integrál (térfogat)

(sorrend felcserélhető)

$$\iint f(x,y) dxdy = \iint f(x,y) dydx$$

Kiszámolás menete:

- Integrál felírása az optimális alakban a. külső integrálban nincs változó
 - b. létezik primitív függvény
- 2. belső integrál kiszámítása
- 3. határértékek behelyettesítése [Fb Fa]
 - a. itt a hatérték tartalmazhat változót is
- 4. A már egyváltozós integrál kiszámolása

Polár koordináta (henger)

Tripla integrál - J mátrix

$$\begin{array}{ccc}
 & r' & phi' & 0' \\
 & dx \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

henger esetében det(J) = rkör esetében $det(J) = r^2 * sin(phi)$

Tripla integrál - J mátrix


```
r = sqrt(x^2 + y^2 + z^2)
0 = atan(y/x)
phi = acos(z/r)
x = rsin(phi)cos(0)
y = rsin(phi)sin(0)
z = rcos(phi)
```

Feltételes szélsőértékek

Adott
$$g(x,y)$$
 feltétel
 $F(x,y) = f(x,y) - g(x,y)$
 $F'_x = 0$
 $F'_y = 0$ stac. pontok & Leszt (feltétel)
 $g = 0$

Érintősík egyenlete

$$x^2 + y^2 = 2^2$$

0 <= z <= 8

$$y = r*\sin(0)$$

$$z = h$$
3)
$$x^{2} + y^{2} = \left[(\tau \cos \theta)^{2} + (y \sin \theta)^{2} \right] \cdot \tau$$

$$= -\infty^{3} \left[\cos^{2} \theta \cos^$$

= 73. [cos2 p+ sin20] 4) $\int_{0}^{2\pi} \int_{0}^{2\pi} r^{2} = 4$ $\int_{0}^{2\pi} \int_{0}^{2\pi} r^{2} dr d\theta dh = \int_{0}^{2\pi} 1 dh \cdot \int_{0}^{2\pi} 1 d\theta \cdot \int_{0}^{2\pi} r^{2} dr$ 8.21 · [29] = 647

Taylor formula

$$P_0 = (X_0, Y_0)$$

 $h = (h_1, h_2)$

n (2=0

a táblázatban azonos sorban vannak

New grid

k	f^(k)	f^(k) (P_0)	hatvány
0	f	behelyett esítés	1
1	f'x = f'y =		h_1 h_2
2	f'xx f'xy f'yx f'yy		h_1^2 h1h2 h1h2 h_2^2

mirc