I Définition et notation

A Matrices n*p

On note $M_{n,p}$ l'ensembles des matrices n lignes et p colonnes.

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{ip} \end{pmatrix}$$

B Opérations sur les matrices

1.Transpositions

Soit une matrice $A\in M_{n,p}$, on appelle transposée de A et on note ${}^t\!A.$

Remarque: Transposer une matrice revient à échanger lignes et colonnes

2.Addition

 $Soit \ A \ et \ B \ \in M_{n,p} \ , \ on \ appelle \ somme \ des \ matrices \ A \ et \ B \ et \ on \ note \ A+B \ la \ matrice \ S \ \in M_{n,p} \ telle \ que \ Sij=Aij+Bij.$

Remarque: On ne peut additionner que des matrices de même dimension.

3.Produit par un scalaire

Soit $A \in M_{n,p}$ et $k \in R$, on note k.A.

4.Produit matriciel

Soit $A \in M_{n,p}$ et $B \in M_{n,p}$, on appelle produit matriciel de A par B et note A*B.

1	4	2		1	2	3			9	12	13	
2	3	1	*	1	1	2		=	7	10	13	
1	2	2		2	3	1			7	10	9	
		_	/)					

Remarque

- i) Pour multiplier 2 matrice, le nombre de colonne de celle de gauche est égal nombre de ligne de celle de droite.
- ii) Le produit possède alors le même nombre de ligne de celle de gauche et le même nombre de colonne de celle de droite.

II Matrices carrées

A Définition, notation

L'ensemble Mn,p est noté par la suite Mn;ses éléments sont appelés matrices carrées car ayant le même nombre de lignes que de colonnes.

B Matrices carrées particulières

Soit $A \in Mn$

1.Matrices triangulaires

A est une matrice triangulaire inférieure $\Leftrightarrow \forall i; j \in 1, n, i \le j \Rightarrow Aij=0;$

A est une matrice triangulaire supérieure $\Leftrightarrow \forall i; j \in 1, n, i > j \Rightarrow Aij=0;$

A est une matrice diagonale $\Leftrightarrow \forall i; j \in 1; n, i \neq j \Rightarrow Aij=0;$

1	3	1	
0	1	5	
0	0	1	

2.Matrices symétrique

A est une matrice symétrique $\Leftrightarrow A = {}^{t}A$.

3.Matrice identité

On note In et on appelle matrice identité la matrice Mn.

1	0	0	
0	1	0	
0	0	1	

III Inversion d'une matrice carrée: déterminant et comatrice

A Définitions et notation

Le déterminant de la matrice A, noté det(A) ou encore |Aij| et le cofacteur de Akl, noté ici Ckl sont deux nombres réels définis par:

$$\begin{cases} \det(A) = \sum_{p=1}^{n} (a_{1p}c_{1p}) \\ c_{kl} = (-1)^{k+l} |a_{lj}| & \underset{1 \le j \le n}{1 \le n} \\ \forall a \in \mathbb{R}, |a| = a \end{cases}$$

La matrice des cofacteurs est appelée comatrice de A.

On dit que la matrice A est inversible si et seulement si il existe B &isin Mn, A*B=B*A=In.

B est alors appelée matrice inverse de A et notée A-1.

Remarque: On peut calculer le déterminant selon n'importe quelle ligne ou colonne.

B Propriété fondamentale

A est inversible \Leftrightarrow det(A) \neq 0 Si A est inversible alors $A^{-1}=(1/\det(A))^{*t}$ com(A)

IV Inversion d'une matrice carrée: méthode de Gauss

A Opérations élémentaires

On note Lk ↔ Ll l'opération qui consiste à échanger la k ligne avec la l ligne.

On note Lk $\leftarrow \lambda Lk$ avec $\lambda \neq 0$ l'opération consistant à multiplier la k ligne par lambda.

On note $Lk \leftarrow Lk + \lambda Ll$ avec $\lambda \neq 0$ l'opération qui consiste à ajouter lambda fois la l ligne à k.

Quand on effectue une opération sur la matrice A, on doit l'effectuer aussi transformer la matrice inverse.

Ces opérations ne changent pas la nature d'une matrice.

Remarque: On peut évidemmen définir les mêmes opérations sur les colonnes.

B Principes de la méthode de Gauss

Si A est inversible, on lui applique des opérations élémentaires jusqu'à obtenir la matrice In et on applique simultanément les mêmes opérations à la matrice In. La transformée de In est alors la matrice inverse de A.

100	100
210	0 1 0
0 2 1	0 0 1
100	100
010	-2 1 0
0 2 1	0 0 1
100	100
1 0 0 0 1 0	1 0 0 -2 1 0
010	-2 1 0
0 1 0 0 0 -1	-2 1 0 4 -2 1

Si A n'est pas inversible, une transformée de A par ces opérations sera triangulaire avec un éléments diagonal nul,donc de déterminant nul.

Pivot: on peut par exemple transformer A en une matrice triangulaire supérieure, condition que toute colonne possède un élément non nul pendant cette transformation: on normalise le pivot puis on créer des 0.

V Application à la résolution de système linéaire

Soit
$$n \in \mathbb{N}^*$$
, $\forall (i;j) \in [1;n]^2$, $a_{ij} \in \mathbb{R}$ et $(y_1; y_2; y_3;; y_n) \in \mathbb{R}^n$, $A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in \mathcal{M}_n$

$$\text{Supposons}: A \text{ est inversible ; alors le système } (S): \begin{cases} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = y_1 \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = y_2 \\ a_{31}x_1 + a_{32}x_2 + \ldots + a_{3n}x_n = y_3 \\ \ldots \\ a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n = y_n \end{cases}$$

$$\begin{array}{l} \text{\'equivaut \`a} \ A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \dots \\ y_n \end{pmatrix} \\ \Leftrightarrow A^{-1} \times A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \\ x_n \end{pmatrix} = A^{-1} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \dots \\ y_n \end{pmatrix} \\ \Leftrightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \\ x_n \end{pmatrix} = A^{-1} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \dots \\ y_n \end{pmatrix}$$