Äquivale	Bezeichnung		
$A \wedge B$	$B \wedge A$	Kommutativ	
$A \vee B$	$B \lor A$	Nommutativ	
$A \wedge (B \wedge C)$	$(A \wedge B) \wedge C$	Assoziativ	
$A \vee (B \vee C)$	$(A \lor B) \lor C$	ASSOZIALIV	
$A \wedge (B \vee C)$	$(A \wedge B) \vee (A \wedge C)$	Distributiv	
$A \vee (B \wedge C)$	$(A \lor B) \land (A \lor C)$	Distributiv	
$A \wedge A$	A	Idempotenz	
$A \vee A$	A	idempotenz	
$\neg \neg A$	A	Involution	
$\neg(A \land B)$	$\neg A \lor \neg B$	DE-MORGAN	
$\neg(A \lor B)$	$\neg A \land \neg B$	DE-MORGAN	
$A \wedge (A \vee B)$	A	Absorption	
$A \vee (\mathbf{A} \wedge B)$	A	Absorption	
$A \Rightarrow B$	$\neg A \lor B$		
$\neg(A \Rightarrow B)$	$A \land \neg B$	Elimination	
$A \Leftrightarrow B$	$(A \Rightarrow B) \land (B \Rightarrow A)$		

- $\bigcup_{i \in \emptyset} M_i = \emptyset$ ("hinzufügen")
- $\bigcap_{i \in \emptyset} M_i = U$ ("wegnehmen")

Injektiv
$$\forall x_1, x_2 \in X :$$

 $x_1 \neq x_2 \Leftrightarrow f(x_1) \neq f(x_2)$

Surjektiv $\forall y \in Y \exists x \in X : y = f(x)$

Bijektiv/Invertierbar wenn injektiv und surjektiv

$$\equiv$$
 Reflexiv $\forall x \in M : (\mathbf{x}, \mathbf{x}) \in R$
 $\Leftrightarrow \mathrm{id}_M \subseteq R$

Irreflexiv $\forall x \in M : (x, x) \notin R$ $\Leftrightarrow \mathsf{id}_M \cap R = \emptyset$

- \prec Antis. $\forall x, y : ((x, y) \in R \land (y, x) \in$ $R) \Rightarrow \mathbf{x} = \mathbf{v}$ $\Leftrightarrow R \cap R' \subseteq \mathsf{id}_M$
- \equiv Transitiv $\forall x, y, z : ((x,y) \in R \land$ $(y, z) \in R$ \Rightarrow $(\mathbf{x}, \mathbf{z}) \in R$ $\Leftrightarrow R: R \subseteq R$

Inverse Relation R^{-1} mit $R \in M \times {}^{\bullet} \sqrt[n]{\frac{m}{\sqrt{a}}} = {}^{n*m}\sqrt{a}$ N := $\{(n,m) \in N \times M \mid (m,n) \in R\}$

Komposition $R; R \text{ mit } R' \in N \times P := \bullet {}^{n+1}\sqrt{a} < \sqrt[n]{a} \quad 1 < a$ $\{(m,p)\in M\times P\mid \exists n\in N: (m,n)\in$ $R \wedge (n,p) \in R'$

Leere Relation Ø

Identität
$$id_M := \{(m,m) \mid m \in M\}$$

$$(=)$$

Allrelation $M \times M$

Äquivalenzrelation \equiv reflexiv, symme- • $a^x * a^y = a^{x+y}$ trisch und transitiv. (Gleichheit***)

 \ddot{A} guivalenzklasse [m] auf M. Vertreter $m \in M$.

$$[m]_{\equiv} := \{ x \in M \mid m \equiv x \}$$

$$\Leftrightarrow [m]_{\equiv} = [x]_{\equiv}$$

Zerlegung $\mathcal{N} \subseteq \mathcal{P}(M)$ von M.

- ∅ ∉ N
- *M* = []*N*
- $N \cap N' = \emptyset$ $(N, N' \in \mathcal{N} : N \neq N')$
- (Korrespondiert zur ÄR.)

Quotient (M/\equiv) Sei \equiv ÄR. auf M. (ist Zerlegung)

$$(M/\equiv):=\{[m]_{\equiv}\mid m\in M\}$$

• (Korrespondiert zur ÄK.)

Ordnungsrelation

✓ reflexiv, antisymmetrisch, transitiv

Minimale $x \ \forall m \in M \setminus \{x\} : m \not\prec x$ *Untere Schranken* $m \in \downarrow X \ \forall x \in X$: $m \leq x$

Kleinstes $\min_{\prec} X \in X$

Totale Ordnung + vollständig (Tricho-

- \bullet $\sqrt[n]{a * b} = \sqrt[n]{a} * \sqrt[n]{b}$
- $\sqrt[n]{a} < \sqrt[n]{b}$ 0 < a < b
- $\sqrt[n]{a} < \sqrt[n+1]{b}$ 0 < a < 1

$$\sqrt[n]{a^n} = |a| \quad a \in \mathbb{R}$$

- $\bullet \ a^{\times} * b^{\times} = (a * b)^{\circ}$
- $\bullet \ (a^x)^y = a^{x*y}$

$$x = \sum_{n=0}^{\infty} \frac{a_n}{10^n}$$

 $Minimum \min(A) := a_0$ $\Leftrightarrow \forall a \in A : \mathbf{a}_0 \leq a$

 $Maximum \max(A) := a_0$ $\Leftrightarrow \forall a \in A : \mathbf{a} \leq a_0$

Infimum (klein) $\inf(A)$ $:= \max\{s \in \mathbb{R} \mid \forall a \in A : \mathbf{s} \leq a\}$

Supremum (groß) $\sup(A)$ $:= \min\{s \in \mathbb{R} \mid \forall a \in A : \mathbf{a} \le s\}$

$$\sum_{i=1}^{n} i = \frac{n * (n+1)}{2}$$

Geom. Summe $q \in \mathbb{R} \setminus \{0\}, n \in \mathbb{N}_0$

$$\sum_{i=0}^{n} q^{i} = \frac{1 - q^{n+1}}{1 - q}$$

Bernoulli Unglei. $n \in \mathbb{N}_0, x \ge -1$

$$(1+x)^n \ge 1 + nx$$

Binom. Koeff. $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} * a^{n-k} b^k$$

Lemma |x * y| = |x| * |y|

Dreiecksungleichung $|x + y| \le |x| + |y|$

Umgekehrte Dreiecksungleichung $||x| - |y|| \le |x - y|$

$$a_n \xrightarrow{n \to \infty} a \Leftrightarrow$$

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n \in \mathbb{N} n \geq n_0 :$$

$$|\mathbf{a}_n - \mathbf{a}| \leq \epsilon$$

$$(a - \epsilon \leq a_n \leq a + \epsilon)$$

Beschränkt + monoton ⇒ konver-

$$\lim_{n \to \infty} a_n = \begin{cases} \inf\{a_n \mid n \in \mathbb{N}\} & (a_n)_{\text{fall.}} \\ \sup\{a_n \mid n \in \mathbb{N}\} & (a_n)_{\text{steig.}} \end{cases}$$

$$a_n \xrightarrow{n \to \infty} \infty \Leftrightarrow$$

$$\forall R > 0 \exists n \ge n_0 \in \mathbb{N} : a_n \ge R$$

$$a_n \xrightarrow{n \to \infty} -\infty \Leftrightarrow$$

$$\forall R < 0 \exists n \ge n_0 \in \mathbb{N} : a_n \le R$$

- Konvergent ⇒ beschränkt
- Unbeschränkt ⇒ divergent

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = a$$

$$\forall n \ge N \in \mathbb{N} : \mathbf{a_n} \le \mathbf{c_n} \le \mathbf{b_n}$$

$$(\exists) \lim_{n \to \infty} c_n = \mathbf{a}$$

$$\lim_{n \to \infty} a_n = a \Rightarrow \lim_{n \to \infty} a_{nk} = a$$

(da n_k mnt. steigend)

$$\forall (a_n)_{n\in\mathbb{N}} \exists (a_{nk})_{k\in\mathbb{N}_{mnt}}.$$

(nicht streng!)

$$(a_n)_{n \in \mathbb{N}_{beschr.}} \Rightarrow \exists h_{H"auf.}$$

(Beschränkte Teilfolgen besitzen mind. einen Häufungspunkt)

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n, m \ge n_0 :$$

 $|a_n - a_m| \le \epsilon$

Geom.
$$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q} \quad q \in (-1;1)$$

Harmon. $\sum_{k=1}^{\infty} \frac{1}{k}$ divergent

Allg. Harmon. $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ konvergiert

CAUCHY

$$\Leftrightarrow (\sum_{k=1}^n a_k)_{n\in\mathbb{N}}$$
 CAUCHY

$$(\sum_{k=1}^{\infty} a_k)_{\mathsf{konv}}$$

 $\Rightarrow \forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n > m > n_0$:

$$|\sum_{k=m+1}^{n} a_k| \le \epsilon$$

Notwendig

$$(\sum_{n=1}^{\infty} a_n)_{\mathsf{konv.}} \Rightarrow \lim_{n \to \infty} a_n = 0$$

$$\lim_{n\to\infty} a_n \neq 0 \Rightarrow (\sum_{n=1}^{\infty} a_n)_{\text{div.}}$$

Beschränkt $a_n \geq 0 \ (\Rightarrow mnt.) \ \forall n \in \mathbb{N}$

$$(\sum_{n=1}^{\infty} a_n)_{beschr.} \Leftrightarrow (\sum_{n=1}^{\infty} a_n)_{konv.}$$

Majorante $0 \le \mathbf{a_n} \le \mathbf{b_k} \quad \forall n \in \mathbb{N}$

$$(\sum_{n=1}^{\infty} b_n)_{\text{konv.}} \Leftrightarrow (\sum_{n=1}^{\infty} a_n)_{\text{konv.}}$$

Quotient $a_n > 0 \quad \forall n \in \mathbb{N}$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} \begin{cases} <1 \to (\sum_{n=1}^{\infty} a_n)_{\mathsf{konv.}} \\ >1 \to (\sum_{n=1}^{\infty} a_n)_{\mathsf{div.}} \end{cases}$$

Wurzel $a_n > 0 \quad \forall n \in \mathbb{N}$

$$\lim_{n\to\infty} \sqrt[n]{a_n} \begin{cases} <1\to (\sum_{n=1}^\infty a_n)_{\mathsf{konv.}} \\ >1\to (\sum_{n=1}^\infty a_n)_{\mathsf{div.}} \end{cases}$$

Absolut

$$(\sum_{n=1}^{\infty} |a_n|)_{\text{konv.}} \Rightarrow (\sum_{n=1}^{\infty} a_n)_{\text{konv.}}$$

$$|\sum_{n=1}^{\infty} a_n| \le \sum_{n=1}^{\infty} |a_n|$$

(Dreiecksungleichung)

Leibniz $(a_n)_{n\in\mathbb{N}}$ mnt. Nullfolge

$$(\sum_{n=1}^{\infty} (-1)^n * a_n)_{\mathsf{konv.}}$$

Grenzwert $a_n, b_n \geq 0 \quad \forall n \in \mathbb{N}$

$$\lim_{n\to\infty}\frac{a_n}{b_n}>0\Rightarrow$$

$$(\sum_{n=1}^{\infty} a_n)_{\mathsf{konv.}} \Leftrightarrow (\sum_{n=1}^{\infty} b_n)_{\mathsf{konv.}}$$

$$\exp(x) := \sum_{n=0}^{\infty} \frac{x^n}{x!}$$

$$\exp(x) * \exp(y) = \exp(x + y)$$

$$(\sum_{n=0}^{\infty} a_n)(\sum_{n=0}^{\infty} b_n) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$$

Groß-O-Notation Kosten $C_f(n)$ mit $q: \mathbb{N} \to \mathbb{R} \exists c > 0 \exists n_0 > 0 \forall n \geq n_0$

Untere Schranke
$$\Omega(f)$$

 $C_f(n) \ge c * g(n)$

Obere Schranke
$$O(f)$$

 $C_f(n) \le c * g(n)$

Exakte Schranke
$$\Theta(f)$$

 $C_f(n) \in \Omega(f) \cap O(f)$
Polynom k ten Grades $\in \Theta(n^k)$

(Beweis: q und c finden)

Elementare Operationen, Kontrollstr. $\in O(1)$

 $\begin{array}{l} \textit{Schleifen} \in i \; \text{Wiederholungen} \; * \; O(f) \\ \text{teuerste Operation} \end{array}$

$$\begin{array}{ccc} \textit{Abfolge} \ O(g) & \mathsf{nach} & O(f) & \in \\ O(\max(f;g)) & \end{array}$$

 $\begin{array}{l} \textit{Rekursion} \in k \text{ Aufrufe} * O(f) \text{ teuerste} \\ \text{Operation} \end{array}$

Mastertheorem $a \ge 1$, b > 1, $\Theta \ge 0$

$$T(n) = a * T(\frac{n}{b}) + \Theta(n^k)$$

$$\Rightarrow \begin{cases} \Theta(n^k) & a < b^k \\ \Theta(n^k \log n) & a = b^k \\ \Theta(n^{\log_b a}) & a > b^k \end{cases}$$

Skip

- Zeiger auf Ebene i zeigt zu nächstem 2^i Element
- Suchen $\in O(\log n)$

$$\begin{array}{ll} \textit{(Perfekt)} \; \mathsf{Einf\"{u}gen}, & \mathsf{L\"{o}schen} & \in \mathbf{O}(n) \\ & (\mathsf{Vollst.} \; \mathsf{Reorga.}) \end{array}$$

Randomisiert Höhe zufällig (keine vollst. Reorga.) $P(h) = \frac{1}{2^{h+1}} \colon \text{ Einfügen, Löschen} \in O(\log n)$

Sortierproblem

Gegeben (endliche) Folge von Schlüsseln (von Daten) $(K_i)_{i \in I}$

Gesucht Bijektive Abbildung $\pi:I \to I$ (Permutation), sodass $K_{\pi(i)} \le K_{\pi(i+1)} \quad \forall i \in I$

Ordnung Allgemein vs. speziell: Ordnung wird nur über Schlüsselvergleiche hergestellt

Relation Stabil vs. instabil: Vorherig relative Reihenfolge bleibt erhalten

Speicher In situ vs. ex situ: Zusätzlicher Speicher notwendig

Lokal Intern vs. extern: Alles im RAM oder Mischung vorsortierter externer Teilfolgen

Anzahl der Inversionen Anzahl kleinerer Nachfolger für jedes Element:

$$\begin{aligned} &\operatorname{inv}(L) := |\{(i,j) \mid \\ &0 \leq i < j \leq n-1, \\ &L[i] \geq L[j]\}| \end{aligned}$$

Anzahl der Runs Ein Run ist eine sortierte Teilliste, die nicht nach links oder rechts verlängert werden kann. Die Anzahl der Runs ist:

$$\begin{aligned} & \mathsf{runs}(L) := |\{i \mid \\ & 0 \leq i < n-1, \\ & L[i+1] < L[i]\}| + 1 \end{aligned}$$

Längster Run Anzahl der Elemente der längsten sortierten Teilliste:

$$\begin{aligned} \mathsf{las}(L) &:= \max\{r.\mathsf{len} \mid \\ r & \mathsf{ist} \ \mathsf{Run} \ \mathsf{in} \ L\} \\ \mathsf{rem}(L) &:= L.\mathsf{len} - \mathsf{las}(L) \end{aligned}$$

Jedes allgemeine Sortierverfahren benötigt im Worst- und Average-case Schlüsselvergleiche von mindestens:

$$\Omega(n \log n)$$

$$v = (v_1, \dots, v_p) \le w = (w_1, \dots, w_q)$$

$$\Leftrightarrow \forall 1 \le i \le p : v_i = w_i \quad p \le q$$

$$\forall \forall 1 \le j \le i : v_j = w_i \quad v_i < w_i$$

Fachverteilen Sortieren von n k-Tupeln in k Schritten: Sortieren nach letztem Element, vorletzem usw.

Algo.	Stabil	Mem.	Schlüsselvergleiche			Satzbewegungen			
	Stabil		C_B	C_A	C_W	M_B	M_A	M_W	
Selection	×	1	n(n-1)	n(n-1) 2	n(n-1)	3(n - 1)	3(n-1)	3(n-1)	_
Insertion	/	1	n-1	$\stackrel{n\to\infty}{\approx} \frac{n(n-1)}{4} + n - \ln n$	$\frac{n(n-1)}{2}$	2(n - 1)	$\frac{n^2+3n-4}{4}+n-1$	$\frac{n^2+3n-4}{2}$	2(%)
Bubble	/	1	$\frac{n(n-1)}{2}$	n(n-1)	$\frac{n(n-1)}{2}$	0	$\frac{3n(n-1)}{4}$	$\frac{3n(n-1)}{2}$	-
			Best-case Aver		rage-case Worst-case		se		
Shell	×	- 1					-		
Quick	×	$\log n$		nlogn	nlogn		n ²		8
Turnier	×	2n-1		nlogn	nlogn		nlogn		O(n log n)
Heap	×	1		$n \log n$	n log n		n log n		ő
Merge	/	n		$n \log n$	$n \log n$		nlogn		
			Untere:	Schranke $\Omega(n \log n)$ für al	lgemeine	Sortierverf	ahren		
Distribution		71		n n			n log n, n ²		O(n)

Einfach keine Schleife vo oder Doppelkanten vow

Zusammenhängend Für jede zwei Knoten gibt es genau eine Folge von Kanten die sie verbindet

Azyklisch kein Zyklus (Cycle) 💝

Ordnung Max. Anzahl von Kindern jedes Knoten eines Baums

Tiefe Anzahl Kanten zwischen einem Knoten und Wurzel

Stufe Alle Knoten gleicher Tiefe

Höhe Max. Tiefe +1

Geordnet Kinder erfüllen Ordnung von links nach rechts

Vollständig Alle Blätter auf gleicher Stufe, jede Stufe hat max. Anzahl von Kindern

Strikt Jeder Knoten hat 0 oder 2 Kinder (Kein Knoten hat genau 1 Kind).

Vollständig Jeder Knoten außer der letzten Stufe hat genau 2 Kinder.

Fast Vollständig Vollständig, außer Blätter können rechts fehlen.

Ausgeglichen Vollständig, aber Blätter auf letzten 2 Stufen

$$(AB)_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}$$

(Reihe \times Spalte)