Laboratoire d'Analyse et d'Architecture des Systèmes

Eclipse Modeling Tools Expression de contrainte

Résumé:

Un méta modèle « ecore » définit la syntaxe du modèle, mais il ne permet pas de modéliser les aspects sémantiques.

Nous allons voir comment le langage « Object Constraint Language » (OCL) permet d'exprimer une contrainte par exemple sur le nombre d'arcs partant d'un nœud.

Mots clés:

Eclipse, INDIGO, Eclipse Modeling Tools, Metamodel, ecore, OCL

Serge Bachmann

Sommaire

1 Introduction	4
1.1 Spécification	
1.2 Lancement de la plate-forme Eclipse	
1.3 Passer en perspective « Ecore »	
2 Installer OCL Tools	
3 Création d'un projet EMF	
4 Édition du méta modèle « Ecore »	
5 Aide à la création d'une contrainte	
5.1 Visualisation de la console OCL	
5.2 Création d'une instance dynamique du modèle	
5.2.1 Saisie d'un modèle	
5.3 Expression d'une contrainte.	
5.3.1 Mise en place de la contrainte	
5.4 Test du modèle.	
6 Génération éditeur arborescent	
6.1 Création « EMF Generation Model »	
6.2 Génération de l'éditeur	
6.3 Test de l'éditeur généré.	29
7 Génération d'un éditeur graphique	36
7.1 Création projet GMF	36
7.2 Sélection du « Domain Model »	
7.3 Sélection du « Domain Gen Model »	
7.4 Génération du « Graphical Def Model »	
7.5 Génération du « Tooling Def Model »	
7.6 Génération du « Mapping Model »	
7.6.1 Génération « Diagram Editor Gen Model »	
7.6.2 Génération de l'éditeur de graphes	52
8 Test modèles édités	53
9 Conclusions	56
10 Licence	56

Informations Générale

Fichier source E:\FORMATION_Eclipse\modeling-indigo-document: SR1\EMT\DOCUMENTATION\OCLinEcore.odt

Version Eclipse: **INDIGO version 3.7.1**

Eclipse Modeling Tools

This package contains framework and tools to leverage models: an Ecore graphical modeler (class-like diagram), Java code generation utility for RCP applications and the EMF Framework, model comparison support, support for XSD schemas, OCL and graphical modeler runtimes. It includes a complete SDK, developer tools and source code.

Download: eclipse-modeling-indigo-SR1-win32.zip

Date de création: 11 novembre 2011

Date d'impression: 6 décembre 2011

Workspace:\INDIGO\EMT\WORKSPACES\OCLinEcore

Plate forme Windows 32

1 Introduction

1.1 Spécification

On souhaite tester dans un graphe la contrainte suivante:

"Pour tout nœud du graphe le nombre d'arcs ayant ce nœud pour origine doit être inférieur ou égal à deux".

Par exemple dans le graphe ci-dessous:

Les nœuds « N0 » et « N2 » ne répondent pas à la contrainte.

1.2 Lancement de la plate-forme Eclipse

Double cliquer : eclipse.exe ou le raccourci vers cet exécutable si vous l'avez créé dans le répertoire destiné à recevoir les « workspaces ». La plate-forme « Eclipse » est lancée:

On sélectionne le workspace:

Cliquer « OK », fermer la fenêtre « Welcome ».

1.3 Passer en perspective « Ecore »

Faire:

Sélectionner:

2 Installer OCL Tools

Faire:

Sélectionner:

Cliquer « Finish »

On obtient:

Cliquer « Next > »

Cliquer « Next > ».

Accepter la licence:

Cliquer « Finish ». Le logiciel s'installe:

Cliquer « Restart Now »:

Eclipse est relancé, ne pas changer de « Workspace ».

Cliquer « OK ».

Après fermetures de quelques vues on obtient:

Tout est en place pour construire notre application.

3 Création d'un projet EMF

Faire:

Sélectionner « Eclipse Modeling Framework > Empty EMF Project »:

Cliquer « Next > », nommer le projet:

Cliquer « Finish ».

4 Édition du méta modèle « Ecore »

Ouvrir le projet faire un clic droit sur « model » et sélectionner la commande « New > Ecore Diagram »:

Nommer le « Domain File »:

Cliquer « Finish »

Éditer le modèle, le sauvegarder :

C'est le modèle défini dans les autres documents.

Nous allons créer une référence supplémentaire (Noeud → Graphe) afin de pouvoir accéder au « Graphe » à partir d'un « Nœud »:

Cette référence va être définie comme « EOpposite » de la référence « Graphe → Noeud ».

Pour cela, dans les « properties » de la référence « Noeud → Graphe » cliquer dans le rectangle contenant les trois points:

Dans « Object selection » sélectionner:

On obtient, après quelques modifications de l'aspect du diagramme :

• EReference « graphe » sélectionnée

• EReference « listeNoeuds » sélectionnée

Faire une sauvegarde.

Si on édite « Graphe.ecore » on obtient:

Remarque: depuis un « Nœud » l'attribut « graphe » permet d'accéder au graphe.Noeud

5 Aide à la création d'une contrainte

5.1 Visualisation de la console OCL

Un clic droit dans l'éditeur de « Graphe.ecore » fait monter le menu contextuel, faire:

La console OCL interactive comporte deux zones:

5.2 Création d'une instance dynamique du modèle

Sélectionner Graphe puis faire un clic droit sélectionner la commande « CreateDynamicInstance... »

On ne modifie pas le nom du fichier:

Cliquer « Finish »

On obtient « Graphe.xmi »:

5.2.1 Saisie d'un modèle

Afin de faciliter l'écriture de la contrainte on saisi un modèle expérimental. Le modèle est construit sous « Graphe ». C'est sur ce modèle que nous testerons les expressions OCL.

Pour créer un « Nœud »:

On initialise les « properties » du « Nœud » (Nom) ce qui donne:(Cliquer dans la zone d'édition)

continuer la saisie du modèle:

Faire une sauvegarder.

L'affichage en mode « Texte » (Open With > Text Editor) permet de visualiser le Graphe et les « properties » des Noeuds et des Arcs :

5.3 Expression d'une contrainte

Le modèle édité va nous aider à écrire l'expression « OCL ». Dans ce modèle, le nœud « Origine » est l'« origine » de 3 arcs ce qui ne correspond pas à la contrainte que nous nous sommes fixé:

« Pour tout nœud du graphe le nombre d'arcs ayant ce nœud pour origine doit être inférieur ou égal à deux »

Pour écrire l'expression OCL on sélectionne le Noeud « Origine » dans « Graphe.xmi ».

Les expressions sont tapées dans la zone « Enrty of queries » de la console.

La vue du méta-modèle facilite l'écriture des expressions OCL.

On adopte la disposition ci-dessous des vues:

Les évaluations se font à partir du nœud « Noeud Origine » sélectionné.

On saisit « graphe » dans la zone « Entry of query » (frapper « Entrée » pour valider la saisie).

L'évaluation s'affiche dans la zone « Results »:

On saisit « graphe.listeArcs ». On obtient tous les arcs du graphe:

Nous allons considérer pour chaque arc si la condition suivante est rempli:

l'origine de l'arc correspond au nœud sélectionné: « Origine » représenté par « self » dans l'expression.

pour cela nous allons évaluer:

graphe.listeArcs->select(origine=self)

ce qui donne les trois arcs ayant le nœud « Origine » pour origine.:

Finalement on obtient l'expression recherchée:

```
Interactive OCL

Evaluating:
graphe.listeArcs->select(origine=self)->size()<=2
Results:
false
```

Remarque:

Si nécessaire utiliser 🌬 pour nettoyer la console.

5.3.1 Mise en place de la contrainte

Attention: Fermer « Graphe.xmi » avant toute modification du méta-modèle.

Ouvrir « Graphe.ecore » avec l'éditeur OCLinEcore(Ecore) Editor

Le méta-modèle apparaît sous la forme:

On l'édite pour ajouter la contrainte sur les nœuds:

```
class Noeud
{
    invariant toManyOutput:
        graphe.listeArcs->select(origine=self)->size()<=2;
    attribute name : String[1];
    property graphe#listeNoeuds : Graphe[1];
}</pre>
```

Faire une sauvegarde.

Si on réaffiche « Graphe.xmi » avec (Open with > Sample Reflective Ecore Model Editor)

On obtient:

où la contrainte « toManyOuput » apparaît.

5.4 Test du modèle

Un clic droit dans la zone d'éditeur de « Graphe.xmi » fait monter le menu contextuel. Sélectionner la commande « Validate »:

(On a replié le méta-modèle et déplié le modèle),

le message suivant s'affiche:

L'arc « Arc OrigineToN3 » est supprimé

On relance la validation, le modèle maintenant est correct:

Faire une sauvegarde.

6 Génération éditeur arborescent

6.1 Création « EMF Generation Model »

Sélectionner « Graphe.ecore » puis faire:

Sélectionner:

Cliquer « Next > »

On ne modifie pas le nom du modèle:

Cliquer « Next > »

Sélectionner:

Cliquer « Next > »

Dans:

Cliquer « Load » et « Next > »

Cliquer « Finish »

« Graphe.genmodel » est ouvert en édition.

Sélectionner la racine « Graphe » et initialisé la « property » du « Model » « Operation Reflection » à « true »:

6.2 Génération de l'éditeur

Faire une sauvegarde. Dans l'éditeur de « Graphe.genmodel » faire un clic droit et dans le menu contextuel sélectionner « Generate All »

Après génération trois nouveaux projets sont créés:

6.3 Test de l'éditeur généré

On crée une nouvelle configuration d'exécution, la nommer et faire « Apply » :

Faire « Run »

Une nouvelle plate-forme « Eclipse » est lancée avec pour « workspace » : « runtime-OCLinEcore ». Fermer la fenêtre « Welcome » et quelque vues pour obtenir:

Créer un nouveau projet:

sélectionner:

cliquer « Next > ».

Nommer le projet

cliquer « Finish », le nouveau projet est créé:

Pour créer un modèle faire:

Sélectionner:

Cliquer « Next > ».

Nommer le fichier:

Cliquer « Next > »

Sélectionner « Graphe »

Cliquer « Finish ».

On édite un graphe:

Faire une sauvegarde.

On peut ouvrir le graphe avec un éditeur textuel afin de visualiser les arcs.

```
Remarque: On a la correspondance:

N0 → @listeNoeuds.0

N1 → @listeNoeuds.1
...
```

Du nœud N0 part trois arcs.

Si on demande une validation du graphe on obtient:

L'erreur est reportée dans la vue « Project Explorer »

7 Génération d'un éditeur graphique

Ce reporter au document « Génération d'un éditeur graphique »

7.1 Création projet GMF

Faire:

sélectionner:

Cliquer « Next> »

nommer le projet:

Cliquer « Next ».

Sélectionner le « Dashboard »

Cliquer « Finish ».

Sélectionner le projet « exemple.graphe.gmf » on obtient:

7.2 Sélection du « Domain Model »

Dans le pavé « Domain Model » cliquer « Select » dans:

Sélectionner « Graphe.ecore »

Cliquer « OK ». On obtient:

7.3 Sélection du « Domain Gen Model »

Graphe.genmodel existe déjà dans le projet « exemple.graphe.emf ».

Dans le pavé « Domain Gen Model » cliquer « Select »:

Sélectionner « Graphe.genmodel »:

Cliquer « OK »

On obtient:

7.4 Génération du « Graphical Def Model »

Cliquer « Derive »:

Sélectionner le répertoire « model » du projet « exemple.graphe.gmf »

Cliquer « Next > »

Faire « Load « et sélectionner « Graphe »:

Cliquer « Next > »

Ne rien modifier:

Cliquer « Finish »

Ajout des flèches aux arcs

Dans le projet « exemple.graphe.gmf », on édite le fichier « model > Graphe.gmfgraph »

Modifier « property » Name de « Polyline Decoration:

Modifier « property » « Target Decoration » de « Polyline Connection ArcFigure », faire une sauvegarde.

7.5 Génération du « Tooling Def Model »

Cliquer « Derive »:

Sélectionner le répertoire « model » du projet « exemple.graphe.gmf »

Cliquer « Next > ».

Cliquer « Load », sélectionner « Graphe »

Cliquer « Next »

Cliquer « Finish ».

On obtient:

7.6 Génération du « Mapping Model »

Cliquer « Combine »:

Sélectionner le répertoire « model » du projet « exemple.graphe.gmf »

Cliquer « Next > »

Cliquer « Load », sélectionner « Graphe »:

Cliquer « Next > ».

Cliquer « Load » puis « Next > »

Ce qui donne:

Cliquer « Load » puis « Next > », on obtient:

On modifie le « mapping »:

Dans « Links » sélectionner « Arc(<unspecified>;listeArcs) et cliquer « Change... » Editer les « Properties »:

Cliquer « OK ». Dans « Create GMFMap model - Mapping » cliquer « Finish ».

7.6.1 Génération « Diagram Editor Gen Model »

Cliquer « Transform » ne pas cocher « RCP ».

On a maintenant dans le répertoire « model » du projet « exemple.graphe.gmf »:

7.6.2 Génération de l'éditeur de graphes

Cliquer dans le « GMF Dashboard » : « Generate diagram editor »

Le projet « exemple.graphe.emf.diagram » est généré.

8 Test modèles édités

Faire un clic droit sur le projet : « exemple.graphe.emf.diagram ». Sélectionner la commande « RunAs > Run Configuration ». On retrouve la configuration « OCLinEcore » précédement créée.

Créer une nouvelle configuration. Que l'on nomme « OCLinEcore », faire « Apply » :

Faire « Run »

Une nouvelle plate-forme Eclipse est lancée. On crée un nouveau projet de type « General > Project » nommé « testGraphe ». Sous le projet on crée un graphe de type : « Examples > Graphe Diagram » que l'on nomme « G1.graphe diagram » . On l'édite et **on le sauvegarde**.

On valide le graphe :

On sélectionne « G1.graphe » et on utilise le menu contextuel de l'éditeur :

Le message suivant s'affiche:

La première ligne correspond au nombre d'arcs issus du nœud « N1 ».

Les autre ligne indique que le méta-modèle attend un nom pour chaque arc.

On modifie le modèle :

Seul les problèmes liés aux noms des arcs sont affichés :

On modifie le modèle. On nomme les arcs en utilisant les properties :

la validation donne:

9 Conclusions

La console « Interactive OCL » nous a permis de tester la contrainte appliquée au graphe. Cette contrainte intégrée au méta-modèle « ecore » est utilisée dans les éditeurs graphiques.

10 Licence

La licence « créative commons » :

http://creativecommons.org/licenses/by-nc-nd/2.0/fr/

s'applique à ce document.

Ce documents rédigés par <u>Serge Bachmann</u> est mis à disposition selon les termes de la <u>licence Creative Commons Paternité-Pas d'Utilisation Commerciale-Pas de Modification 2.0 France.</u>

Pour toute précision s'adresser à « bach@laas fr ».