Задание № 3

Кокорин Илья, М3439

6 октября 2019 г.

1 Описание задания

Дано отношение с атрибутами StudentId, StudentName, GroupId, GroupName, CourseId, CourseName, LecturerId, LecturerName, Mark.

- 1. Найдите функциональные зависимости в данном отношении.
- 2. Найдите все ключи данного отношения.
- 3. Найдите неприводимое множество функциональных зависимостей для данного отношения.

2 Функциональные зависимости

В данном отношении есть следующие функциональные зависимости:

- 1. $StudentId \rightarrow StudentName, GroupId$ (студент имеет имя и обучается в группе)
- 2. $GroupId \rightarrow GroupName$ (группа имеет название)
- 3. $CourseId \rightarrow CourseName$ (предмет имеет название)
- 4. $LecturerId \rightarrow LecturerName$ (лектор имеет имя)
- 5. $GroupId, CourseId \rightarrow LecturerId$ (в группе предмет ведёт определённый человек, в разных группах предмет могут вести разные люди)
- 6. $StudentId, CourseId \rightarrow Mark$ (студент имеет оценку по предмету)

3 Ключи отношения

Будет находить ключ методом минимизации надключа.

 ${\it O} \ {\it HeB} \ {\it u} \ {\it d} \ {\it He} \ {\it d} \$

Но не ключ, потому что $StudentId \to StudentName$ (По правилу расщепления $\Phi 3$ $StudentId \to StudentName$, GroupId на $StudentId \to StudentName$ и $StudentId \to GroupId$). Следовательно, не выполнено требование минимальности по включению

Убираем StudentName из надключа.

(StudentId, GroupId, GroupName, CourseId, CourseName, LecturerId, LecturerName, Mark) - надключ.

Аналогично поступаем с GroupName, CourseName, LecturerName (учитываем функциональные зависимости $GroupId \rightarrow GroupName, CourseId \rightarrow CourseName, LecturerId \rightarrow LecturerName$)

(StudentId, GroupId, CourseId, LecturerId, Mark) - надключ.

Но не ключ, так как $StudentId, CourseId \rightarrow Mark$. Следовательно, не выполнено требование минимальности по включению

Убираем Mark из надключа.

(StudentId, GroupId, CourseId, LecturerId) - надключ.

Но не ключ, так как $GroupId, CourseId \rightarrow LecturerId$. Следовательно, не выполнено требование минимальности по включению.

Убираем LecturerId из надключа.

(StudentId, GroupId, CourseId) - надключ.

Но не ключ, так как $StudentId \to GroupId$ (По правилу расщепления $\Phi 3$ $StudentId \to StudentName$, GroupId на $StudentId \to StudentName$ и $StudentId \to GroupId$). Следовательно, не выполнено требование минимальности по включению.

Убираем GroupId из надключа.

(StudentId, CourseId) - надключ.

V в то же время ключ, так как отсутствует как функциональная зависимость $StudentId \rightarrow CourseId$, так и функциональная зависимость $CourseId \rightarrow StudentId$.

Заметим, что любой другой порядок минимизации надключа привёл к точно такому же единственному ключу отношения.

Otbet: $\{(StudentId, CourseId)\}$

4 Неприводимое множество

4.1 Расщепление правых частей

Для начала расщепляем правые части всех ФЗ по правилу расщепления

```
S = \{ \\ StudentId \rightarrow StudentName, \\ StudentId \rightarrow GroupId, \\ GroupId \rightarrow GroupName, \\ CourseId \rightarrow CourseName, \\ LecturerId \rightarrow LecturerName, \\ GroupId, CourseId \rightarrow LecturerId, \\ StudentId, CourseId \rightarrow Mark \\ \}
```

4.2 Минимизация левых частей

Можно минимизировать левую часть в следующих Φ 3: $\{GroupId, CourseId \rightarrow LecturerId; StudentId, CourseId \rightarrow Mark\}$

- 1. Попробуем минимизировать левую часть $GroupId, CourseId \rightarrow LecturerId$
 - (a) Попробуем исключить GroupId.

```
S' = S \setminus \{GroupId, CourseId \rightarrow LecturerId\} \cup \{CourseId \rightarrow LecturerId\} Заметим, что CourseId_S^+ = \{CourseName\} CourseId_{S'}^+ = \{CourseName, LecturerId\} То есть CourseId_S^+ \neq CourseId_{S'}^+, то есть нельзя исключать GroupId.
```

(b) Попробуем исключить CourseId.

```
S' = S \setminus \{CourseId, GroupId \rightarrow LecturerId\} \cup \{GroupId \rightarrow LecturerId\} Заметим, что GroupId_S^+ = \{GroupName\} GroupId_{S'}^+ = \{GroupName, LecturerId\} То есть GroupId_S^+ \neq GroupId_{S'}^+, то есть нельзя исключать CourseId.
```

- 2. Попробуем минимизировать левую часть StudentId, CourseId o Mark
 - (a) Попробуем исключить StudentId.

```
S'=S\setminus \{StudentId, CourseId \to Mark\} \cup \{CourseId \to Mark\} Заметим, что CourseId_S^+=\{CourseName\} CourseId_{S'}^+=\{CourseName, Mark\} То есть CourseId_S^+\neq CourseId_{S'}^+, то есть нельзя исключать StudentId.
```

(b) Попробуем исключить CourseId. $S' = S \setminus \{StudentId, CourseId \rightarrow Mark\} \cup \{StudentId \rightarrow Mark\}$ Заметим, что $StudentId_S^+ = \{StudentName, GroupId, GroupName\}$ $StudentId_{S'}^+ = \{StudentName, GroupId, GroupName, Mark\}$ To есть $StudentId_S^+ \neq StudentId_{S'}^+$, то есть нельзя исключать CourseId.

Значит, левая часть каждой ФЗ из S минимальна по включению.

4.3 Минимизация множества S

Будем по очереди пытаться исключить каждую ФЗ из множества S

- 1. $S' = S \setminus \{StudentId \rightarrow StudentName\}$ $StudentName \notin StudentId_{S'}^+ = \{GroupId, GroupName\}$
- $2. \ S' = S \setminus \{StudentId \rightarrow GroupId\}$ $GroupId \not\in StudentId_{S'}^+ = \{StudentName\}$
- 3. $S' = S \setminus \{GroupId \rightarrow GroupName\}$ $GroupName \not\in GroupId_{S'}^+ = \emptyset$
- 4. $S' = S \setminus \{CourseId \rightarrow CourseName\}$ $CourseName \not\in CourseId_{S'}^+ = \emptyset$
- 5. $S' = S \setminus \{LecturerId \rightarrow LecturerName\}$ $LecturerName \notin LecturerId_{S'}^+ = \emptyset$
- 6. $S' = S \setminus \{GroupId, CourseId \rightarrow LecturerId\}$
- $LecturerId \notin \{GroupId, CourseId\}_{S'}^+ = \{GroupName, CourseName\}$ 7. $S' = S \setminus \{StudentId, CourseId \rightarrow Mark\}$

 $Mark \not \in \{StudentId, CourseId\}_{S'}^+ = \{StudentName, GroupId, GroupName, CourseName, LecturerId, LecturerName\}_{S'}^+ = \{StudentName, GroupName, GroupName,$ Так как никакой элемент из S исключить нельзя, S минимален по включению. Значит, S -неприводимое множество ФЗ.