西安交通大学考试题 A

成绩

课 程 <u>数学物理方程</u>

专业班号 _____

姓 名 学 号 期末

一. 选择题(每小题5分)。请将正确答案填在下表中

1	2	3	4	5	6	7	8	9	10	11

- 1、对贝塞尔函数 $J_4(x)$,正确的说法是
 - A、 偶函数; B、奇函数; C、没有奇偶性; D、无界函数。
- 2、对于方程 $xu_t + \cos u \cdot u_{xx} u_t = 1$,正确的说法
 - A、三阶非齐次方程:
- B、二阶线性非齐次方程;
- C、二阶非线性非齐次方程; D、三阶非线性非齐次方程。
- 3、描述区域 $\Omega \subset R^3$ 内稳恒温度分布的(无热源)方程是

A.
$$u_{tt} = a^2(u_{xx} + u_{yy} + u_{zz})$$
; **B.** $u_t = a^2(u_{xx} + u_{yy} + u_{zz})$;

C,
$$u_{xx} + u_{yy} + u_{zz} = 0$$
; D, $u_{xx} + u_{yy} + u_{zz} = f(x, y, z)$.

4、3维拉普拉斯方程的基本解是

A.
$$\Gamma(P_0, P) = \frac{1}{4\pi r_{P_0 P}}$$
; **B.** $\Gamma(P_0, P) = \ln \frac{1}{r_{P_0 P}}$;

C.
$$\Gamma(P_0, P) = \frac{1}{2\pi} \ln \frac{1}{r_{P_0P}}$$
; D. $\Gamma(P_0, P) = \frac{1}{r_{P_0P}}$

5、特征值问题 $\begin{cases} X'' + \lambda X = 0, 0 < x < l \\ X(0) = X'(L) = 0 \end{cases}$ 的解为

A,
$$\lambda_n = (\frac{n\pi}{l})^2$$
, $X_n = \cos\frac{n\pi}{l}x$, $n \ge 0$;

B,
$$\lambda_n = (\frac{n\pi}{l})^2$$
, $X_n = \sin \frac{n\pi}{l} x$, $n \ge 0$;

C.
$$\lambda_n = (\frac{(2n+1)\pi}{2l})^2$$
, $X_n = \cos\sqrt{\lambda_n}x$, $n \ge 0$;

$$\mathbf{D}, \ \lambda_n = (\frac{(2n+1)\pi}{2I})^2, X_n = \sin\sqrt{\lambda_n}x, \ n \ge 0$$

6、那个下列变换可将边界条件: $u(0,t) = 1, u_x(l,t) = \sin t$ 齐次化

$$\mathbf{A}$$
, $v = u - 1$;

B,
$$v = u - \sin t$$
;

C,
$$v = u - 1 - (x - l)\sin t$$
, D, $v = u - 1 - \frac{x^2}{2l}\sin t$

7、柯西问题
$$\begin{cases} u_{tt} = u_{xx,} - \infty < x < \infty, t > 0 \\ u \big|_{t=0} = 0, u_{t} \big|_{t=0} = 2 \sin x \end{cases}$$
 的解为

A, 0; B, $2\sin x \sin t$; C, $2\sin x \cos t$; D, $2\sin t \cos x$

8、方程
$$x^2y'' + xy' + (4x^2 - 9)y = 0$$
的通解为

A.
$$y = J_3(2x)$$
;

B.
$$y = N_3(2x)$$
;

C,
$$y = CJ_3(2x) + DJ_{-3}(2x)$$
; D, $y = CJ_3(2x) + DN_3(2x)$

9、Γ(-3/2)的值为

A.
$$-\frac{1}{2}\sqrt{\pi}$$
; **B.** $\frac{2}{3}\sqrt{\pi}$; **C.** $\frac{4}{3}\sqrt{\pi}$; **D.** $-4\sqrt{\pi}$

10、柯西问题
$$\begin{cases} u_t + 2u_x = x + t, & -\infty < x < +\infty, \ t > 0 \\ u(x,0) = x \end{cases}$$
 的偏微分方程的

特征方程是

A,
$$\frac{dx}{dt} + 2 = 0$$
; **B**, $\frac{dx}{dt} + 2 = x + t$;

C,
$$\frac{dx}{dt} - 2x = 0$$
; D, $\frac{dx}{dt} - 2 = 0$.

11、上题一、10的柯西问题解为

A,
$$u = -\frac{1}{2}t^2 + (t+1)x - 2t$$
; **B**, $u = x - 2t$;

$$\mathbf{C}, \ u = x + 2t;$$

D,
$$u = \frac{1}{2}t^2 + (t+1)x - 2t$$

	. 14	b
_	(10分)	求解下列定解问题。

$$\begin{cases} u_{tt} = a^{2}u_{xx}, & 0 < x < l, \ t > 0 \\ u\big|_{x=0} = 0, u\big|_{x=l} = 0, \ t \ge 0 \\ u\big|_{t=0} = \varphi(x), & u_{t}\big|_{t=0} = 0, \ 0 \le x \le l \end{cases}$$

三 (10 分) 将函数 $f(x) = x^2 + 1, x \in [0,1]$ 按函数系 $\{J_2(\mu_m^{(2)}x)\}$ 展成贝塞尔级数。

四(10分)用格林函数法求解下列定解问题。

$$\begin{cases} -\Delta u = 0, & y > 0, -\infty < x < \infty \\ u(x, 0) = \varphi(x) \end{cases}$$

共 5 页