Graphes: Parcours en profondeur (DFS)

Quentin Fortier

September 29, 2023

Parcours de graphe

Pour parcourir les sommets d'un graphe :

- Parcours en profondeur (Depth-First Search) : on visite les sommets le plus profondément possible avant de revenir en arrière.
- **2** Parcours en largeur (Breadth-First Search): on visite les sommets par distance croissante depuis une racine.

Si le graphe est connexe, tous les sommets sont visités. Sinon, on peut appliquer un parcours sur chacune des composantes connexes.

Parcours de graphe

Pour simplifier, on va utiliser la fonction OCaml

```
List.iter : ('a -> unit) -> 'a list -> unit qui applique une fonction à tous les éléments d'une liste.
```

Un DFS sur G=(V,E) depuis une racine r consiste, si r n'a pas déjà été visité, à le visiter puis s'appeler récursivement sur ses voisins :

Un DFS sur G=(V,E) depuis une racine r consiste, si r n'a pas déjà été visité, à le visiter puis s'appeler récursivement sur ses voisins :

```
let dfs g r =
 let n = Array.length g in
 let visited = Array.make n false in
 let rec aux v =
      if not visited.(v) then (
          visited.(v) <- true;
          List.iter aux g.(v)
      ) in
 aux r</pre>
```

g est ici représenté par liste d'adjacence (de type int list array).

Exercice **Exerci**

Adapter dfs si g est représenté par matrice d'adjacence.

```
let dfs g r =
 let n = Array.length g in
 let visited = Array.make n false in
 let rec aux v =
      if not visited.(v) then (
          visited.(v) <- true;
          List.iter aux g.(v)
      ) in
 aux r</pre>
```

Complexité:

```
let dfs g r =
let n = Array.length g in
let visited = Array.make n false in
let rec aux v =
    if not visited.(v) then (
        visited.(v) <- true;
      List.iter aux g.(v)
    ) in
aux r</pre>
```

$\underline{\mathsf{Complexit\acute{e}}} : \Big| \mathsf{O}(|\mathit{V}| + |\mathit{E}|) \Big| \, \mathsf{si} \,\, \mathsf{repr\acute{e}sent\acute{e}} \,\, \mathsf{par} \,\, \mathsf{liste} \,\, \mathsf{d'adjacence} \,\, \mathsf{car}$

- lacktriangle Array.make est en O(|V|)
- 2 chaque arête donne lieu à au plus 2 appels récursifs de aux (1 si orienté), d'où ${\rm O}(|E|)$ appels récursifs
- **3** chaque appel récursif est en O(1) (g. (v) est en O(1))

Le parcours en profondeur sur $G=(\,V,E)$ depuis une racine r consiste, si r n'a pas déjà été visité, à le traiter puis s'appeler récursivement sur ses voisins :

```
let dfs g r =
 let n = Array.length g in
 let visited = Array.make n false in
 let rec aux v =
      if not visited.(v) then (
          visited.(v) <- true;
          List.iter aux g.(v)
      ) in
 aux r</pre>
```

Complexité : $O(|V|^2)$ si représenté par matrice d'adjacence car

- **1** Array.make est en O(|V|)
- ② on fait au plus |V| appels à g.adj en O(|V|)

En Python (vu en MPSI) :

```
def dfs(G, s):
  visited = [False]*len(G)
  def aux(u):
      if not visited[u]:
          visited[u] = True
          for v in G[u]:
               aux(v)
      aux(s)
```

Parcours en profondeur (DFS) : Arbre binaire

L'ordre de visite des voisins est quelconque, a priori.

Dans le cas particulier d'un arbre binaire, on distingue plusieurs parcours en profondeur (depuis la racine), suivant l'ordre de parcours de N(r, g, d):

- 1 Parcours préfixe : r, puis g, puis d
- Parcours infixe : g, puis r, puis d
- Parcours suffixe : g, puis d, puis r

Parcours en profondeur (DFS) : Application à la connexité

Question

Comment déterminer si un graphe non orienté est connexe?

Parcours en profondeur (DFS) : Application à la connexité

Question

Comment déterminer si un graphe non orienté est connexe?

Il suffit de vérifier que le tableau visited ne contient que des true.

Parcours en profondeur (DFS) : Application à la connexité

Si le graphe n'est pas connexe, on peut effectuer un parcours sur chacune des composantes connexes :

```
let dfs g r =
  let n = Array.length g in
  let visited = Array.make n false in
  let rec aux v =
      if not visited.(v) then (
          visited.(v) <- true;</pre>
          List.iter aux g.(v)
      ) in
  for r = 0 to g.n - 1 do
       aux r
  done
```

Question

Comment déterminer si un graphe non orienté contient un cycle ?

Question

Comment déterminer si un graphe non orienté contient un cycle ?

On regarde si on revient sur un sommet déjà visité...

Question

Comment déterminer si un graphe non orienté contient un cycle ?

On regarde si on revient sur un sommet déjà visité... et que ce n'est pas un fils qui revient sur son père!

Question

Comment déterminer si un graphe non orienté contient un cycle ?

On regarde si on revient sur un sommet déjà visité... et que ce n'est pas un fils qui revient sur son père!

Question

Comment déterminer si un graphe non orienté contient un cycle ?

On regarde si on revient sur un sommet déjà visité... et que ce n'est pas un fils qui revient sur son père!

Question

Comment déterminer si un graphe non orienté contient un cycle ?

Ne pas considérer un cycle si on revient sur le prédécesseur :

```
let has cycle (g : int list array) =
  let n = Array.length g in
  let pere = Array.make n (-1) in
  let ans = ref false in
  let rec aux p u = (* p a permis de découvrir u *)
      if pere.(u) = -1 then (
          pere.(u) <- p;
          List.iter (aux p) g.(u)
      else if pere.(p) <> u then ans := true (* cycle trouvé *)
      in
  aux 0 0; (* cherche un cycle depuis le sommet 0 *)
  !ans
```

Question

Comment déterminer si un graphe **orienté** $\overrightarrow{G}=(V,\overrightarrow{E})$ contient un cycle?

Question

Comment déterminer si un graphe **orienté** $\overrightarrow{G} = (V, \overrightarrow{E})$ contient un cycle?

Soit A un arbre de parcours en profondeur de \overrightarrow{G} .

Question

Comment déterminer si un graphe **orienté** $\overrightarrow{G} = (V, \overrightarrow{E})$ contient un cycle?

Soit A un arbre de parcours en profondeur de \overrightarrow{G} .

Un arc arrière de A est un arc $\overrightarrow{e} \in \overrightarrow{E}$ d'un sommet de A vers un de ses ancêtres.

Soit A un arbre de parcours en profondeur de \overrightarrow{G} depuis r :

Théorème

 \overrightarrow{G} a un cycle $\overrightarrow{\mathcal{C}}$ atteignable depuis r

 ${\cal A}$ possède un arc arrière

Soit A un arbre de parcours en profondeur de \overrightarrow{G} depuis r :

Théorème

$$\overrightarrow{G}$$
 a un cycle $\overrightarrow{\mathcal{C}}$ atteignable depuis r

 ${\cal A}$ possède un arc arrière

Preuve:

 \iff : évident.

 \Longrightarrow : Soit v_0 le **premier** sommet de $\overrightarrow{\mathcal{C}}$ atteint par A. Notons

 $\vec{\mathcal{C}} = v_0 \to v_1 \to \dots \to v_k \to v_0.$

Soit A un arbre de parcours en profondeur de \overrightarrow{G} depuis r :

Théorème

$$\overrightarrow{G}$$
 a un cycle $\overrightarrow{\mathcal{C}}$ atteignable depuis r

 ${\cal A}$ possède un arc arrière

Preuve:

<= : évident.

 \Longrightarrow : Soit v_0 le **premier** sommet de $\overrightarrow{\mathcal{C}}$ atteint par A. Notons

 $\vec{\mathcal{C}} = v_0 \to v_1 \to \dots \to v_k \to v_0.$

Alors l'appel de dfs sur v_0 va visiter v_k :

Soit A un arbre de parcours en profondeur de \overrightarrow{G} depuis r :

Théorème

$$\overrightarrow{G}$$
 a un cycle $\overrightarrow{\mathcal{C}}$ atteignable depuis r

 ${\cal A}$ possède un arc arrière

Preuve:

<= : évident.

 \Longrightarrow : Soit v_0 le **premier** sommet de $\overrightarrow{\mathcal{C}}$ atteint par A. Notons

 $\vec{\mathcal{C}} = v_0 \to v_1 \to \dots \to v_k \to v_0.$

Alors l'appel de dfs sur v_0 va visiter v_k : (v_k, v_0) est un **arc arrière**.

On teste l'existence d'un arc arrière (qui revient sur un sommet en cours d'appel récursif) :

```
let has_cycle g =
  (* q : graphe orienté représenté par liste d'adjacence *)
  let n = Array.length g in
  let visited = Array.make n 0 in
  let ans = ref false in
  let rec aux v = match visited.(v) with
      | 0 -> visited.(v) <- 1;
             List.iter aux g.(v);
             visited.(v) < -2
      | 1 -> ans := true
      | _ -> () in
  for i = 0 to n - 1 do
      aux i (* cherche un cycle depuis le sommet i *)
  done;
  !ans
```