Hash-uri

Tabele cu adresare directă. Tabele de dispersie

Prewatch

Prewatch:

- <u>Video1</u> (pentru sync-video: https://youtu.be/JZHBa-rLrBA)
 - Ideal tot videoul
 - Măcar de la 29 la 1:02 (33 de minute)
- <u>Video2</u> (pentru sync-video: https://youtu.be/0M_klqhwbFo)
 - Ideal tot videoul :)

Funcții de dispersie:

• Am zis săptămâna trecută că, pentru moment, folosim h(x) = x % p,

unde p este un număr prim.

Rezolvarea coliziunilor:

Am spus că vom ține o listă înlănțuită

Funcții de dispersie:

• Am zis săptămâna trecută că, pentru moment, folosim h(x) = x % p,

unde p este un număr prim.

Rezolvarea coliziunilor:

Am spus că vom ține o listă înlănțuită

- Complexitate:
 - o O(1) căutare?
 - Ce se întâmplă dacă p este ~ sqrt(n)?
 - O(sqrt n) pe căutare
 - Dacă datele nu sunt rele avem O(n/p) ... p nu trebuie să fie mult mai mic decât n, ideal mai mare

Funcții de dispersie:

- Am zis săptămâna trecută că, pentru moment, folosim h(x) = x % p, unde p este un număr prim.
- Ce ne dorim de la o funcție hash? Ipoteza dispersiei uniforme simple:
 - o Fiecare cheie se poate dispersa cu aceeași probabilitate în oricare din cele m locații.
 - o f(x) = cel mai reprezentativ bit a lui x nu e bună
 - $f(24) = f(18) = 16 \rightarrow \text{cheile nu au aceeași probabilitate să ajungă pe cele m locații}$
 - o În practică, nu putem satisface perfect regula, dar ne dorim să fim cât mai aproape
- $\frac{\text{https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-introduction-to-algorithms-sma-5503-fal}{\text{l-2005/video-lectures/lecture-7-hashing-hash-functions/}} (28:38)$
- https://drive.google.com/drive/u/0/folders/1aNqJk0kfKZszEOzvPLh81hvH7OSKbl1g

Funcții de dispersie:

- Am zis săptămâna trecută că, pentru moment, folosim h(x) = x % p, unde p este un număr prim.
- https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-introduction-to-algorithms-sma-5503-fallous/video-lectures/lecture-7-hashing-hash-functions/ (28:38) (recomandare)
- Am vorbit despre <u>Functii de dispersie</u> şi ne-am uitat la diverse metode
 - Metoda diviziunii (discutată și data trecută)
 - Metoda multiplicării (folosită în practică mult, pentru că este mai rapidă)

Dispersie universală

Fie **H** o colecție finită de funcții de dispersie, care transformă un univers dat **U** al cheilor, în domeniul **{0, 1, ..., m−1}**.

O astfel de colecţie se numeşte **universală** dacă, pentru fiecare pereche de chei distincte $\mathbf{x}, \mathbf{y} \in \mathbf{U}$, numărul de funcţii de dispersie $\mathbf{h} \in \mathbf{H}$ pentru care $\mathbf{h}(\mathbf{x}) = \mathbf{h}(\mathbf{y})$ este exact $|\mathbf{H}| / \mathbf{m}$.

Cu alte cuvinte, cu o funcție de dispersie aleasă aleator din H, şansa unei coliziuni între x şi y când $\mathbf{x} = \mathbf{y}$ este exact 1/m, care este exact şansa unei coliziuni dacă h(x) şi h(y) sunt alese aleator din mulțimea $\{0, 1, ..., m - 1\}$.

Dispersie universală

Următoarea teoremă arată că o clasă universală de funcții de dispersie dă un comportament bun în cazul mediu.

<u>Teorema 6.1:</u> Dacă \mathbf{h} este aleasă dintr-o colecție universală de funcții de dispersie și este folosită pentru a dispersa \mathbf{n} chei într-o tabelă de dimensiune \mathbf{m} , unde $\mathbf{n} \leq \mathbf{m}$, numărul mediu de coliziuni în care este implicată o cheie particulară \mathbf{x} este mai mic decât 1.

Rezolvarea coliziunilor

Rezolvarea coliziunilor

Am zis săptămâna trecută că, pentru moment, folosim înlănţuirea

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-introduction-to-algorithms-sma-5503-fallo-2005/video-lectures/lecture-7-hashing-hash-functions/ (50:00)

Rezolvarea coliziunilor

Rezolvarea coliziunilor

- Am zis săptămâna trecută că, pentru moment, folosim înlănțuirea
- Am urmărit 15 minute din cursul de la MIT, pornind cu 50:00, unde se vorbește despre metoda <u>adresării directe</u>
- În cazul adresării directe, au fost evidențiate 2 metode de calculare a poziției elementului în tabelul de dispersie de mărime m:
 - Testare liniară: h(x,i) = (h(x,0) + i) % m
 - h(x,i) = (h1(x) + i * h2(x)) % m

Rezolvarea coliziunilor

Altă metodă:

https://en.wikipedia.org/wiki/Cuckoo hashing