Preliminary analysis of the Icelandic Gyrfalcon CMR

dataset

Frederic Barraquand, Olafur Nielsen

November 6, 2017

- 5 Here I attempt to explore the CMR dataset, before we go to inferential models to estimate survival and
- 6 perhaps link this to an integrated pop. model.

7 Basic statistics

8 How many birds have been ringed?

```
dringed<-read.csv("Gyrs_ringed.csv")
head(dringed) # What's in the data table</pre>
```

9	##		Program	RingNo	Species	Colo	ourRing	Ringer	Code				Ringer
10	##	1	REYK	14499	Fálki				32		Finnur (Guðn	nundsson
11	##	2	REYK	2451	Fálki				62	Helgi	Þórarins	son	(eldri)
12	##	3	REYK	2452	Fálki				62	Helgi	Þórarins	son	(eldri)
13	##	4	REYK	2453	Fálki				62	Helgi	Þórarins	son	(eldri)
14	##	5	REYK	32671	Fálki				88	На	allgrímur	Sæn	nundsson
15	##	6	REYK	21602	Fálki				97		Tryggvi	Eyj	ólfsson
16	##		Ringing	Date Sit	teID Age	Code				Age	SEX		
17	##	1	7/31/1	1954	3376	202			Eldi	isungi	0		
18	##	2	7/8/1	1940	703	101	Ófleygu	ır ungi	í hi	reiðri	0		
19	##	3	7/8/1	1940	703	101	Ófleygu	ır ungi	í hi	reiðri	0		
20	##	4	7/8/1	1940	703	101	Ófleygu	ır ungi	í hi	reiðri	0		
21	##	5	9/28/1	1943	3437	460	Full	Lvaxinn	(1.	árs+)	0		
22	##	6	9/12/1	1958 :	1743	100		Ófle	eygui	ungi	0		
23	##										Notes		

```
24 ## 1 Tekinn úr hr. alinn til útflutnings á Ystafelli, S-Þing.
25 ## 2
26 ## 3
27 ## 4
28 ## 5
29 ## 6
```

length(unique(dringed\$RingNo)) #How many unique bird IDs

```
30   ## [1]  1738
```

- OK, so we have a little more than 1700 unique IDs. Isn't this much compared to the total population?
- Let's compare to how many gyrs have been recovered.

```
drecov<-read.csv("Gyrs_recovered.csv")
length(unique(drecov$RingNo)) #How many unique bird IDs in Gyrs_recovered.csv</pre>
```

33 **##** [1] 274

34 Let's now analyse the number of birds that have been ringed as a function of the year

We now analyse the patterns of recovery (and resighting)

- Now how many birds have been seen several times? We see below that very few birds have been recovered
- more than once (also this tends to be recent?).

Question: when did the change from recovery of dead birds to resighting of live birds occur?

- I can infer the earliest date at which a bird has been resighted a second time, but given few birds have been
- resighted, but it might be preferable to allow later for a change in protocol (in the CMR models) using a
- 42 predefined time (we can use several if unsure). I have noted 2006 earlier but I am unsure.

43

- 45 ## ntimes_recovered
- 46 ## 1 2 3
- **##** 260 12 2
- 48 Thus for all practical purposes, we can consider that such data consists mainly of individual that are either
- 49 recovered or not recovered/resighted. We'll now turn to whether the individuals have been found live or dead,
- 50 and how this varies in time.
- Also whether the recoveries of dead birds are of young vs. adult birds (which may provide quick and dirty
- estimates of survival rates, at least for the youngs...)

table(drecov\$RecoveryCode) ## these are all the recovery codes that we have (top row), and how many of

```
##
           100
                              116
                                           118
                                                 119
                                                        120
                                                              121
                                                                           123
                                                                                  124
                                                                                        125
                                                                                               130
##
       0
                  110
                        115
                                     117
                                                                     122
            23
                                 3
                                                                              7
                                                                                    2
                                                                                          2
                                                                                                 4
       3
                    7
                          8
                                       5
                                              4
                                                   17
                                                         26
                                                                        1
##
                 190
                        210
                              216
                                     226
                                           291
                                                  292
                                                        296
                                                              352
                                                                     605
                                                                           620
                                                                                  621
                                                                                        622
                                                                                               625
##
     131
           146
       2
            21
                    6
                                       2
                                              5
                                                    1
                                                                              4
                                                                                   10
                                                                                          3
                                                                                                 2
##
                           1
                                 1
                                                           1
                                                                 1
                                                                        1
    626
           630
                 631
                        632
                              633
                                     635
                                           641
                                                  643
                                                        644
                                                              650
                                                                     651
                                                                           680
                                                                                  761
                                                                                        805
                                                                                               810
       2
                    3
              4
                           2
                                              1
                                                           1
                                                                                                 1
```

```
852 870 981
                       982
                            995 996 1030 1031 1035 1080 1085 1086 4500 4800
## 4820 5600 5601 5621 5700 6000 6220 6280 6281 6400 6500 6510 6800 6810 6815
          3
                         15
                              3
                                    5
                                         1
                                              6
                                                   1
                                                        2
## 6860 6871 6872 6873
     2
          1
               1
```

 $\,$ Now we need some more info on the codes, I'm attempting below to fill this gap but may need some help

AGE Code	Meaning
100	unfledged young
101	unfledged young at the nest
501	adult at the nest

RECOVERY Code	Meaning
100	found dead
120	found dead for a long time
121	found dead with one tag only?
146	found dead just outside the nest
5700	read colourmark
981,996	found injured and had to kill it