《数字逻辑》 Digital Logic

习题课

北京工业大学软件学院王晓懿

信息的逻辑表示

▶ 数字信号和模拟信号的区别

▶ 156个状态至少需要多少位二进制数码?

基本逻辑的电路表示

▶基本门电路的逻辑电路符号

不同的符号表示

▶ 悬空的输入 悬空为高"1"

例如:

逻辑代数

二、逻辑函数表示方法

常用逻辑函数的表示方法有:逻辑真值表(真值表)、逻辑函数式(逻辑式或函数式)、逻辑图、波形图、卡诺图及硬件描述语言。它们之间可以相互转换。

逻辑代数

- ▶对偶函数与反函数
 - ▶对偶函数

$$Y = A(B+C) + CD \longrightarrow Y^D = (A+BC)(C+D)$$

▶反函数

$$Y = A(B+C) + CD \longrightarrow \overline{Y} = (\overline{A} + \overline{B}\overline{C})(\overline{C} + \overline{D})$$

最小项(MinTerm)

逻辑函数有n个变量,由它们组成的具有n个变量的乘积项中,每个变量以原变量或反变量的形式出现且仅出现一次,这个乘积项为最小项。N个变量有2n个最小项。

例如: n=3,对A、B、C,有8个最小项

 ABC
 ABC
 ABC
 ABC

 ABC
 ABC
 ABC
 ABC

最小项(续)

- ▶对任意最小项,只有一组变量取值使它的值 为1,其他取值使该最小项为0
- ▶ 为方便起见,将最小项表示为m_i n=3的8个最小项为:

$$m_0 = \overline{A}\overline{B}\overline{C}$$
 $m_1 = A\overline{B}\overline{C}$ $m_2 = \overline{A}B\overline{C}$ $m_3 = AB\overline{C}$
 $m_4 = \overline{A}\overline{B}C$ $m_5 = A\overline{B}C$ $m_6 = \overline{A}BC$ $m_7 = ABC$

最小项(续)

- ▶ 任何逻辑函数均可表示为唯一的一组最小项 之和的形式, 称为标准的与或表达式
- ▶某一最小项不是包含在F的原函数中,就是包含在F的反函数中

• 例:
$$F = \overline{AB} + BC + A\overline{BC}$$

$$= \overline{AB}(C + \overline{C}) + (A + \overline{A})BC + A\overline{BC}$$

$$= \overline{ABC} + \overline{ABC} + ABC + A\overline{BC}$$

$$= m_6 + m_2 + m_7 + m_1$$

$$= \sum m^3 (1,2,6,7)$$

最大项(MaxTerm)

▶ n个变量组成的或项,每个变量以原变量或反变量的形式出现且仅出现一次,则称这个或项为最大项

例如: n=3的最大项为
$$M_0 = A + B + C$$
 $M_1 = \overline{A} + B + C$ $M_2 = A + \overline{B} + C$ $M_3 = \overline{A} + \overline{B} + C$ $M_4 = A + B + \overline{C}$ $M_5 = \overline{A} + \overline{B} + \overline{C}$ $M_6 = A + \overline{B} + \overline{C}$ $M_7 = \overline{A} + \overline{B} + \overline{C}$

最大项(续)

- ▶对任意一个最大项,只有一组变量取值 使它的值为0,而变量的其他取值使该 项为1
- ▶ 将最大项记作M_i
- ▶任何一个逻辑函数均可表示为唯一的一组最大项之积,称为标准的或与表达式
- ▶ n个变量全体最大项之积必为"0"
- ▶ 某个最大项不是含在F的原函数中,就 是在F的反函数中

最大项(续)

例如:

$$F = (A + B) \bullet (\overline{A} + B + C)$$

$$= [A + B + (C \bullet \overline{C})] \bullet (\overline{A} + B + C)$$

$$= (A + B + C) \bullet (A + B + \overline{C}) \bullet (\overline{A} + B + C)$$

$$= M_0 + M_4 + M_1$$

$$= \prod M^4(0,1,4)$$

4变量Karnaugh Map

BADA	00	01	11	10
C (m_0	m_1	m_3	m_2
01	m_4	m_5	m ₇	m_6
11	m ₁₂	m ₁₃	m ₁₅	m ₁₄
10	m_8	m_9	m ₁₁	m ₁₀

数字逻辑电路的电气特性

- ▶ 逻辑电压电平
- ▶ 直流噪声容限
- ▶ 扇入/扇出
- ▶ 延时/速度
- ▶ 功耗
- ▶ 噪声
- ▶ 漏极开路输出、三态输出

物理上的 而不是逻辑上的

延迟(延时,时延,Delay)

理想情况:门电路没有延迟

实际情况:门电路存在延迟

竞争冒险问题

门电路的传输延迟造成竞争冒险问题。

二输入AND门(OR门)的输入为A和A时,A滞后于A,则Y会出现尖峰信号。

功率损耗

分为:静态功耗、动态功耗

动态功耗的来源:

- ▶ 两个管子瞬间同时导通 产生的功耗 P_T
- ▶对负载电容充、放电所 产生的功耗 P_L

组合逻辑电路

- ▶组合逻辑电路功能分析方法
- ▶组合逻辑电路功能设计方法
- ▶常见组合逻辑器件的表示
 - ▶符号友好的表示法
- ▶ 译码器

输出表达式

符号友好的表示法

$$\begin{cases} \overline{Y}_0 = \overline{\overline{A}} \overline{\overline{B}} \\ \overline{Y}_1 = \overline{\overline{A}} \overline{\overline{B}} \\ \overline{Y}_2 = \overline{\overline{A}} \overline{\overline{B}} \\ \overline{Y}_3 = \overline{\overline{A}} \overline{\overline{B}} \end{cases}$$

"小模块组成大模块"

5片2一4译码器构成4一16译码器。第一层的一个译码器用作选片。 \overline{E} = 0时,CD = 00时选中左边一片,译出 $Y_0...Y_3$;依此类推。

组合逻辑电路

▶数据选择器

逻辑框图

真值表

S_1	S_0	Y
0	0	D_0
0	1	D_1
1	0	D_2
1	1	D_3

$$Y = \overline{S_0} \overline{S_1} D_0 + S_0 \overline{S_1} D_1 + \overline{S_0} S_1 D_2 + S_0 S_1 D_3$$

译码器实现逻辑函数

- ▶译码器输出可以看成是N个输入变量组成的2N个最小项,再经一级与非门,组成"与非-与非"逻辑,既可表达"与-或"表达式。
- ▶例如: F=ABC+ABC+ABC=m₁+m₂+m₇

数据选择器实现逻辑函数

数据选择器:逻辑结构就是与-或表达式。

数据选择器可以看成是N个控制端选择2N个最小项组成的"与-或"表达式。选择某些输入为"1",就是选中这些最小项组成逻辑函数。逻辑变量接到选择控制端,逻辑表达式中包含的最小项取"1",其余取"0"。

例如,用八选一数据选择器实现函数: F = B + AC + AC

组合逻辑电路

▶ 全加器 (全减器?)

真值表

输 入 输 出

X _n	Y _n	C _{n-1}	F _n	C_n
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

全加器的逻辑表达式

多位加法器

1. 4位串行进位加法器

优点: 简单

缺点:慢

$$(CI)_{i} = (CO)_{i-1}$$

$$S_{i} = A_{i} \oplus B_{i} \oplus (CI)_{i}$$

$$(CO)_{i} = A_{i}B_{i} + (A_{i} + B_{i})(CI)_{i}$$

2. 并行进位 (超前进位)加法器

优点:快,每1位的和

及最后的进位基本同时产生。

缺点: 电路复杂。

连续赋值

```
assign R = X \mid (Y \& \sim Z);
                                           位操作符
assign r = \&X;
                                  reduction操作符
assign R = (a == 1'b0) ? X : Y;
assign P = 8'hff;
                                    算术操作符
assign P = X * Y;
                                         扩展操作符和拼接操作符
assign P[7:0] = \{ 4\{X[3]\}, X[3:0] \};
assign \{cout, R\} = X + Y + cin;
assign Y = A \ll 2;
                                               移位操作符
```

assign $Y = \{A[1], A[0], 1'b0, 1'b0\};$

Verilog中常用运算符

Symbol	Operation	Symbol	Operation
+	binary addition		
_	binary subtraction		
&	bitwise AND	&&	logical AND
I	bitwise OR		logical OR
٨	bitwise XOR		
~	bitwise NOT	!	logical NOT
= =	equality		
>	greater than		
<	less than		
{}	concatenation		
?:	conditional		

"always"语句回顾

▶ always 语句

end

endmodule

- ▶总是等待触发信号的变化
- ▶触发信号变化即开始执行

always块中左端项 必须为reg类型,但 是并不一定就是寄 存器!

声明了触发信号,即语句执行的时机

always触发事件(敏感列表)

- ▶ 边沿触发posedge, negedge表明always语句描述的是时序逻辑;
- ▶ 与组合逻辑不同,时序逻辑中敏感列表会影响电路 综合结果;
- ▶ 一个变量只在一个always块中设置,避免竞争冒险;

同步重置的D触发器

```
module D_FF (output reg Q,
    input D, clk, set, rst);
always @ ( posedge clk)
    if (rst)
        Q <= 1'b0;
    else if (set)
        Q <= 1'b1;
    else
        Q <= D;
endmodule</pre>
```

异步重置的D触发器

```
module D_FF (output reg Q,
    input D, clk, set, rst);
always @ ( posedge clk, posedge set,
    negedge rst)
    if (!rst)
        Q <= 1'b0;
    else if (set)
        Q <= 1'b1;
    else
        Q <= D;
endmodule</pre>
```

reg类型

- ▶ always块中赋值的左端必须是reg类型
- ▶ always块中赋值的输出变量也必须是reg类型
- ▶ 在always触发之前reg类型数据保持不变

阻塞式赋值和非阻塞式赋值

- ▶ always块中赋值分为阻塞式赋值和非阻塞式赋值
 - ► 阻塞式赋值:= 赋值完成前不往下执行

右端表达式同时开始求值,时间步长结束后同时赋值 always @(*) begin x <= a | b; y <= a ^ b ^ c; z <= b & ~c; //时间步长结束,才开始赋值

▶ 非阻塞式赋值:=

end

有时候两种赋值逻辑综合得到的结果完全不同!

触发器

- ▶ JK触发器
- ▶ D触发器
- ▶ 下降沿触发,上升沿触发
- ▶ Set和Reset信号
- ▶ 时序电路的输出波形
 - ▶ 一次触发

触发器

▶ JK触发器和D触发器

$$Q^* = JQ' + K'Q$$

CLK	J	K	Q^*
×	×	×	Q
Ţ	0	0	Q
Ţ	0	1	0
Ţ	1	0	1
7	1	1	Q'

$$Q^*=D$$

特性表		
CLK	D	Q*
0	×	Q
f	0	0
f	1	1

Reset和Set

- 1. 异步置0和置1
- 2. 为"0"时置0或者置1

JK触发器

$$Q^* = JQ' + K'Q$$

Verilog描述触发器

时序逻辑电路

- ▶同步时序电路和异步时序电路对比
- ▶时序逻辑电路功能分析方法
- ▶时序逻辑电路的设计方法
- ▶计数器
 - ▶ 74LS161和74LS160
 - ▶ 重置法,置数法
 - ▶使用N位计数器组成M位计数器

时序逻辑电路的分析方法

时序电路的分析步骤:

时钟方程、 电路图 状态方程 驱动方程和 将驱动方 输出方程 程代入特 性方程 判断电路逻辑功能, 状态图、 检查自启动 时序图 状态表

几个概念

有效状态: 在时序电路中,凡是被利用了的状态。

有效循环: 有效状态构成的循环。

无效状态: 在时序电路中,凡是没有被利用的状态。

无效循环: 无效状态若形成循环,则称为无效循环。

自启动: 在CLK作用下,无效状态能自动地进入到有效循环中,则称电路能自启动,否则称不能自启动。

解: ①写方程组

$$egin{aligned} \mathbb{R} & \begin{cases} J_1 = (Q_2 \cdot Q_3)' & K_1 = 1 \ J_2 = Q_1 & K_2 = (Q_1' \cdot Q_3')' \ J_3 = Q_1 & \cdot Q_2 & K_3 = Q_2 \end{cases} \end{aligned}$$

同步时序电路,时钟方程省去。

输出方程

$$Y = Q_2 \cdot Q_3$$

②求状态方程

将驱动方程代入JK触发器的特性方程 中得电路的状态方程:

$$Q^* = JQ' + K'Q$$

$$\begin{cases} Q_1^* = J_1 Q_1' + K_1' Q_1 = (Q_2 \cdot Q_3)' \cdot Q_1' \\ Q_2^* = J_2 Q_2' + K_2' Q_2 = Q_1 \cdot Q_2' + Q_1' \cdot Q_3' \cdot Q_2 \\ Q_3^* = J_3 Q_3' + K_3' Q_3 = Q_1 \cdot Q_2 \cdot Q_3' + Q_2' \cdot Q_3 \end{cases}$$

③计算、列状态转换表

ナン グリル	人心 # ?				$Q_2^* = Q_2$	$Q_1 \cdot Q_2' +$	$Q_1' \cdot Q_3' \cdot Q_2$
现 态			次		$Q_3^* = Q_1 \cdot Q_2 \cdot Q_3' + Q_2' \cdot Q_3$		
$Q_{\scriptscriptstyle 3}$	Q_2	Q_1	Q_3^*	$\mathcal{Q}_{\scriptscriptstyle 2}^{\scriptscriptstyle *}$	Q_1^*	Y	
0	0	0	0	0	1	0	
0	0	1	0	1	0	0	
0	1	0	0	1	1	0	
0	1	1	1	0	0	0	
1	0	0	1	0	1	0	
)* = (($O_2 \cdot 0$	$(Q_3)' \cdot Q$) ₁ '		0	0	
_	_		$Q_1' \cdot Q_3'$	· O =	0	1	
			$+Q_2'$		0	1	
$z_3 - \zeta$	z_1	\mathcal{L}_2 \mathcal{L}_3	\mathcal{L}_2	\mathcal{L}_3	7-1-035	1000	

 $Q_1^* = (Q_2 \cdot Q_3)' \cdot Q_1'$

画状态转换图

现	·	态		输出		
Q_3	Q_2	Q_1	Q_3^*	Q_2^*	Q_1^*	Y
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	1	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	1	0	0	0	1

④作时序图

⑤说明电路功能

这是一个同步七进制加法计数器,能自启动。

时序逻辑电路

- ▶计数器
 - ▶74LS161(2^N 进制)和74LS160 (10进制)
 - ▶置零法,置数法
 - ▶使用N位计数器组成M位计数器

当M<N时,一片N进制计数器即可实现

例:利用同步十进制计数器构成同步六进制计数器

解:

置零法

74LS160具有异步清零功能

$$R_D' = (Q_2 \cdot Q_1)'$$

74LS160具有同步置数功能

$$LD' = (Q_2 \cdot Q_0)'$$

用两片74LS160接成二十九进制计数器.

解: ①整体置零方式

②整体置数方式

555定时器

▶ 555定时器接成多谐振荡器

充振荡周期: $T=0.69(R_1+2R_2)C$ + $R_2)C \ln 2$

输出脉冲占空比:

$$q = \frac{R_1 + R_2}{R_1 + 2R_2}$$

存储器与可编程逻辑器件

- ▶任意逻辑函数的表示
 - ▶译码器
 - ▶数据选择器
 - ► ROM
 - ▶可编程逻辑器件

用存储器实现组合逻辑函数

例 试用ROM产生如下一组多输出逻辑函数

$$\begin{cases} Y_1 = A'BC + A'B'C \\ Y_2 = AB'CD' + BCD' + A'BCD \\ Y_3 = ABCD' + A'BC'D' \\ Y_4 = A'B'CD' + ABCD \end{cases}$$

解: 化为最小项之和的形式:

$$\begin{cases} Y_1 = A'BCD' + A'BCD + A'B'CD' + A'B'CD \\ Y_2 = AB'CD' + A'BCD' + ABCD' + A'BCD \\ Y_3 = ABCD' + A'BC'D' \\ Y_4 = A'B'CD' + ABCD \end{cases}$$

