2017 高考试题(全国卷 II) 文科数学

一、选择题: (本大题共12个小题, 每小题5分, 满分 60分, 在每小题给出的四个选项中, 只有 一项是符合题目要求的)

1. 设集合 $A = \{1, 2, 3\}, B = \{2, 3, 4\}.$ 则 $A \cup B =$

- A. $\{1, 2, 3, 4\}$
- B. $\{1, 2, 3\}$
 - $C. \{2,3,4\}$
- D. $\{1, 3, 4\}$

2. (1+i)(2+i) =

- A. 1 i
- B. 1 + 3i
- C. 3 + i
- D. 3 + 3i

3. 函数 $f(x) = \sin\left(2x + \frac{\pi}{2}\right)$ 的最小正周期为

A. 4π

B. 2π

C. π

D. $\frac{\pi}{2}$

4. 设非零向量 a, b 满足 |a + b| = |a - b|, 则

- A. $a \perp b$
- B. |a| = |b|
- C. a // b
- D. |a| > |b|

5. 若 a > 1,则双曲线 $\frac{x^2}{a^2} - y^2 = 1$ 的离心率的取值范围是

- A. $(\sqrt{2}, +\infty)$ B. $(\sqrt{2}, 2)$
- C. $(1, \sqrt{2})$
- D. (1,2)

6. 如图,网格纸上小正方形边长为1,粗实线画出的是某几何体 的三视图, 该几何体由一平面将一圆柱截去一部分后所得, 则 该几何体的体积为

- B. 63π
- C. 42π
- D. 36π

- $\begin{cases} 2x + 3y 3 \le 0, \\ 2x 3y + 3 \ge 0, \end{cases}$, 则 z = 2x + y 的最大值为
 - A. -15
- B. -9

C. 1

D. 9

- 8. 函数 $f(x) = \ln(x^2 2x 8)$ 的单调递增区间是
 - A. $(-\infty, -2)$ B. $(-\infty, 1)$
- C. $(1, +\infty)$
- D. $(4, +\infty)$
- 9. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩. 老师说: 你们四人中有两位优秀, 2 位良好, 我现在给甲看乙、丙的成绩, 给乙看丙的成绩, 给丁看甲的成绩. 看后甲对大家说: 我还是不知道我的成绩. 根据以上信息,则

- A. 乙可以知道四人的成绩
- C. 乙、丁可以知道对方的成绩
- B. 丁可以知道四人的成绩
- D. 乙、丁可以知道自己的成绩
- 10. 执行右面的程序框图,如果输入的 a = -1,则输出的

S =

- A. 2
- B. 3
- C. 4
- D. 5

- 11. 从分别写有 1.2.3.4.5 的 5 张卡片中随机抽取 1 张, 放回后再随机抽取一张, 则抽得的第一张 卡片上的数大于第二张卡片上的数的概率为

- C. $\frac{3}{10}$ D. $\frac{2}{5}$
- 12. 过抛物线 $C: y^2 = 4x$ 的交点 F,且斜率为 $\sqrt{3}$ 的直线交 C 于点 M (M 在 x 轴上方),l 为 C的准线, 点 N 在 l 上且 $MN \perp l$, 则 M 到 NF 的距离为
 - A. $\sqrt{5}$
- B. $2\sqrt{2}$
- C. $2\sqrt{3}$
- D. $3\sqrt{3}$

- 二、填空题: (共 4个小题, 每小题5分, 满分 20分)
- 13. 函数 $f(x) = 2\cos x + \sin x$ 的最大值为 .
- 14. 己知函数 f(x) 是定义在 **R** 上的奇函数,当 $x \in (-\infty,0)$ 时, $f(x) = 2x^3 + x^2$,则 $f(2) = 2x^3 + x^2 + x^2$
- 15. 长方体的长,宽,高分别为 3,2,1,其顶点都在球 O 的球面上. 则球 O 的表面积为 ...
- 16. $\triangle ABC$ 的内角 A, B, C 的对边分别为 a, b, c, . 若 $2b\cos B = a\cos C + c\cos A$. 则 B=_____.
 - 三、解答题: (共5个小题,满分70分)
- 17. (12分)

已知等差数列 $\{a_n\}$ 的前 n 项和为 S_n ,等不数列 $\{b_n\}$ 的前 n 项和为 T_n , $a_1 = -1$, $b_1 = 1$, $a_2 + b_2 = 2$.

- (1) 若 $a_3 + b_3 = 5$, 求 $\{b_n\}$ 的通项公式;
- (2) 若 $T_3 = 21$,求 S_3 .