Derivation rules

1.	$\frac{d}{dx}x = 1$	2.	$\frac{d}{dx}cf(x) = cf'(x)$	3.	$\frac{d}{dx}(f(x) + g(x)) = f' + g'$
4.	$\frac{d}{dx}\left(f(x)g(x)\right) = f'g + fg'$	5.	$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'g - fg'}{g^2}$	6.	$\frac{d}{dx}f(g(x)) = \frac{df}{dg}\frac{dg}{dx}$
7.	$\frac{d}{dx}u^n = nu^{n-1}\frac{du}{dx}$	8.	$\frac{d}{dx}e^u = e^u \frac{du}{dx}$	9.	$\frac{d}{dx}\ln u = \frac{1}{u}\frac{du}{dx}$
10.	$\frac{d}{dx}\sin(u) = \cos(u)\frac{du}{dx}$	11.	$\frac{d}{dx}\cos(u) = -\sin(u)\frac{du}{dx}$	12.	$\frac{d}{dx}\tan(u) = \sec^2(u)\frac{du}{dx}$
13.	$\frac{d}{dx}\csc(u) = -\csc(u)\cot(u)\frac{du}{dx}$	14.	$\frac{d}{dx}\sec(u) = \sec(u)\tan(u)\frac{du}{dx}$	15.	$\frac{d}{dx}\cot(u) = -\csc^2(u)\frac{du}{dx}$
16.	$\frac{d}{dx}\arcsin(u) = \frac{1}{\sqrt{1-u^2}}\frac{du}{dx}$	17.	$\frac{d}{dx}\arccos(u) = \frac{-1}{\sqrt{1-u^2}}\frac{du}{dx}$	18.	$\frac{d}{dx}\arctan(u) = \frac{1}{1+u^2}\frac{du}{dx}$

Integration rules

1.	$\int \frac{df(x)}{dx} dx = f(x) + k$	2.	$\int cf(x)dx = c \int f(x)dx$	3.	$\int (f+g) dx = \int f dx + \int g dx$
4.	$\int x^n dx = \frac{x^{n+1}}{n+1} + k, n \neq -1$	5.	$\int \frac{dx}{x} = \ln x + k$	6.	$\int e^x dx = e^x + k$
7.	$\int \sin(x)dx = -\cos(x) + k$	8.	$\int \cos(x)dx = \sin(x) + k$	9.	$\int \tan(x)dx = \ln \sec(x) + k$
10.	$\int \cot(x)dx = \ln \sin(x) + k$	11.	$\int \sec^2(x)dx = \tan(x) + k$	12.	$\int \csc^2(x) = -\cot(x) + k$

13. $\int \csc(x)dx = -\ln \csc(x) + \cot(x) + k$	14. $\int \sec(x)dx = \ln \sec(x) + \tan(x) + k$
15. $\int \sec(x)\tan(x)dx = \sec(x) + k$	16. $\int \csc(x)\cot(x)dx = -\csc(x) + k$
17. $\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin\left(\frac{x}{a}\right) + c$	18. $\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + c$
19. $\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln x + \sqrt{x^2 \pm a^2} + k$	$20. \int u dv = uv - \int v du$

Trigonometric identities

1.	$\sin^2(x) + \cos^2(x) = 1$	2.	$\sin(x)\sin(y) = \frac{1}{2}(\cos(x-y) - \cos(x+y))$	3.	$\tan(x) = \frac{\sin(x)}{\cos(x)}$
4.	$\sec^2(x) - \tan^2(x) = 1$	5.	$\sin(x)\cos(y) = \frac{1}{2}(\sin(x+y) + \sin(x-y))$	6.	$\csc(x) = \frac{1}{\sin(x)}$
7.	$\csc^2(x) - \cot^2(x) = 1$	8.	$\cos(x)\cos(y) = \frac{1}{2}(\cos(x+y) + \cos(x-y))$	9.	$\sec(x) = \frac{1}{\cos(x)}$
10.	$\sin^2(x) = \frac{1}{2}(1 - \cos(2x))$	11.	$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$	12.	$\cot(x) = \frac{\cos(x)}{\sin(x)}$
13.	$\cos^2(x) = \frac{1}{2}(1 + \cos(2x))$	14.	$\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)$	15.	$\cot(x) = \frac{1}{\tan(x)}$
16.	$\sin(2x) = 2\sin(x)\cos(x)$	17.	$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$	18.	$\sin(-x) = -\sin(x)$
19.	$\cos(2x) = \cos^2(x) - \sin^2(x)$	20.	$\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$	21.	$\cos(-x) = \cos(x)$