FTD Profitability

Pricing Model Development for Floral Arrangements

Introduction and Background

In order to determine the most suitable selling price for various floral arrangements, we embarked on a journey to develop a pricing model. The main objective was to ensure that the margins remained relatively normalized across different arrangements, regardless of their cost of goods (COGS).

Initial Approach and Analysis

Our initial approach was to explore a parabolic pricing model, with the formula:

$$SRP = COGS + \alpha \times COGS \times (1 - \beta \times COGS)$$

However, this model led to extreme margins, especially for arrangements with a high COGS. This led to limited returns on items with COGS above \$40.

Modifications and Adjustments

After several iterations, we realized that a linear increase in SRP for higher COGS might lead to exorbitantly priced products. Thus, we explored a variety of models including logarithmic and piecewise functions to achieve a balance.

Final Piecewise Model

Our final model was a piecewise function that utilized a linear model for products up to a certain COGS and a logarithmic model beyond that point. The transition point for the piecewise function was determined to be a COGS of \$40.

For "Sympathy":

For COGS ≤ \$40:

$$SRP = 2.5 \times COGS$$

For COGS > \$40:

$$\mathrm{SRP} = 2.5 \times 40 + 25 \times \log(\mathrm{COGS} - 39)$$

For "EDay":

• For COGS ≤ \$40:

$$\mathrm{SRP} = 2.8 \times \mathrm{COGS}$$

• For COGS > \$40:

$$\mathrm{SRP} = 2.8 \times 40 + 28 \times \log(\mathrm{COGS} - 39)$$

Graphical Representation

Sympathy: Current SRP vs New SRP

