Matrix V

REA1121

Mathematics for programming

Outline

- Roadmap
- Projections
- Non-solvable linear equations
- Exercises

ROADMAP

Roadmap

PROJECTIONS

• What are the projections of $b = [2 \ 3 \ 4]^T$ onto the z axis and the xy plane?

• What are the projections of $b = [2 \ 3 \ 4]^T$ onto the z axis and the xy plane?

- What are the projections of $b = [2 \ 3 \ 4]^T$ onto the z axis and the xy plane?
- What matrices produce those projections onto a line and a plane?

$$p = Pb$$

$$P = ?$$

- What are the projections of $b = [2 \ 3 \ 4]^T$ onto the z axis and the xy plane?
- What matrices produce those projections onto a line and a plane?

$$P_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- A line goes through the origin in the direction of $\mathbf{a} = [a_1, a_2, \cdots, a_m]^T$.
- Along that line, we want the point p closest to $\mathbf{b} = [b_1, b_2, \dots, b_m]^T$.

- The key to projection is orthogonality:
 - The line from \boldsymbol{b} to \boldsymbol{p} is perpendicular to the vector \boldsymbol{a} .
- The projection p is some multiple of a. Call it $p = \hat{x}a$.

- Projecting \boldsymbol{b} onto \boldsymbol{a} .
- Error $e = b \hat{x}a$.
- Orthogonality: $\mathbf{a} \cdot (\mathbf{b} \hat{x}\mathbf{a}) = \mathbf{0}$ or $\mathbf{a} \cdot \mathbf{b} \hat{x}\mathbf{a} \cdot \mathbf{a} = \mathbf{0}$

$$\bullet \ \hat{\chi} = \frac{a \cdot b}{a \cdot a} = \frac{a^T b}{a^T a}$$

- The projection of b onto the line through a is the vector $p = \hat{x}a = \frac{a^Tb}{a^Ta}a$.
- $p = a\hat{x} = a\frac{a^Tb}{a^Ta} = \frac{aa^T}{a^Ta}b$, p = PbProjection matrix $P = \frac{aa^T}{a^Ta}$
- Two special cases:
 - If $\boldsymbol{b}=\boldsymbol{a}$, then $\hat{x}=1$, $\boldsymbol{p}=\boldsymbol{a}$
 - If ${m b}$ is perpendicular to ${m a}$, then ${m a}^T{m b}=0$, ${m p}=0$

Project
$$\boldsymbol{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 onto $\boldsymbol{a} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ to find $\boldsymbol{p} = \hat{x}\boldsymbol{a}$

$$\hat{x} = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\boldsymbol{a} \cdot \boldsymbol{a}} = \frac{\boldsymbol{a}^T \boldsymbol{b}}{\boldsymbol{a}^T \boldsymbol{a}} = \frac{5}{9}$$

$$\boldsymbol{p} = \hat{x}\boldsymbol{a} = \frac{5}{9}\boldsymbol{a}$$

$$\boldsymbol{p} \cdot \boldsymbol{e} = ?$$

$$\|\boldsymbol{p}\| = ?$$

$$\hat{x} = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\boldsymbol{a} \cdot \boldsymbol{a}} = \frac{\boldsymbol{a}^T \boldsymbol{b}}{\boldsymbol{a}^T \boldsymbol{a}} = \frac{5}{9}$$

$$\boldsymbol{p} = \hat{x}\boldsymbol{a} = \frac{5}{9}\boldsymbol{a}$$

$$\boldsymbol{p} \cdot \boldsymbol{e} = \boldsymbol{0}$$

$$\|\boldsymbol{p}\| = \frac{\|\boldsymbol{a}\| \|\boldsymbol{b}\| \cos \boldsymbol{\theta}}{\|\boldsymbol{a}\|^2} \|\boldsymbol{a}\| = \|\boldsymbol{b}\| \cos \boldsymbol{\theta}$$

Find the projection matrix $P = \frac{aa^T}{a^Ta}$ onto the line through $a = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Projection matrix P

$$P = \frac{aa^{T}}{a^{T}a} = \frac{1}{9} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 4 & 4 \end{bmatrix}$$

- $P: m \times m$ matrix
- Its rank is 1
- P projects any \boldsymbol{b} onto \boldsymbol{a} ,1-dimensional subspace which is the column space of P
- ||a|| does not influence P
- $P^2 = P$

- P projects onto a subspace (a)
- I P projects onto the perpendicular subspace (the plane perpendicular to a).

Projection onto a subspace

- Find the combination $p = \widehat{x_1}a_1 + \cdots + \widehat{x_n}a_n$ closest to a given vector \boldsymbol{b} .
- We are projecting each b in \mathbf{R}^m onto the subspace spanned by the a's, to get p.

Projection onto a subspace

$$\begin{bmatrix} \boldsymbol{a}_1^T \\ \vdots \\ \boldsymbol{a}_n^T \end{bmatrix} [\boldsymbol{b} - A\widehat{\boldsymbol{x}}] = \mathbf{0}$$

$$A^T(\boldsymbol{b} - A\widehat{\boldsymbol{x}}) = 0$$

$$A^T A \widehat{\boldsymbol{x}} = A^T \boldsymbol{b}$$

Projection onto a subspace

If the a's are independent, A^TA is invertible.

$$A^{T}A\widehat{\boldsymbol{x}} = A^{T}\boldsymbol{b}$$
$$\widehat{\boldsymbol{x}} = (A^{T}A)^{-1}A^{T}\boldsymbol{b}$$

$$\mathbf{p} = A\widehat{\mathbf{x}} = A(A^T A)^{-1} A^T \mathbf{b}$$
$$P = A(A^T A)^{-1} A^T$$

If
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}$$
 onto $\mathbf{b} = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$, find \hat{x} and \mathbf{p} .

$$A^T A \widehat{\boldsymbol{x}} = A^T \boldsymbol{b}$$

$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix}$$
$$A^{T}\boldsymbol{b} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix}, \widehat{\boldsymbol{x}} = \begin{bmatrix} 5 \\ -3 \end{bmatrix}$$

$$\mathbf{p} = A\widehat{\mathbf{x}} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ -3 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \\ -1 \end{bmatrix}$$
$$\mathbf{e} = \mathbf{b} - \mathbf{p} = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 5 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

$$p \cdot e = ?$$

$$P = A(A^{T}A)^{-1}A^{T}$$

$$(A^{T}A)^{-1} = \frac{1}{6} \begin{bmatrix} 5 & -3 \\ -3 & 3 \end{bmatrix}$$

$$P = \frac{1}{6} \begin{bmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{bmatrix}$$

- A^TA is invertible if and only if A has linearly independent columns.
- When A has independent columns, A^TA is square, symmetric, and invertible.

$$\begin{bmatrix} 1 & 1 & 0 \\ 2 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 4 & 8 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 1 & 0 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 4 & 9 \end{bmatrix}$$

NON-SOLVABLE LINEAR EQUATIONS

Non-solvable equations

- It often happens that Ax = b has no solution.
- The usual reason is: too many equations.
 - m is greater than n (more equations than unknowns)
 - The *n* columns span a small part of *m*-dimensional space
 - $-\mathbf{b}$ is outside the column space of A
 - Elimination reaches an impossible equation and stops

Find the closest line to the points (0,6), (1,0), and (2,0).

• Suppose a straight line b = C + Dt goes through these three points

$$\begin{cases} C + D \cdot 0 = 6 \\ C + D \cdot 1 = 0 \\ C + D \cdot 2 = 0 \end{cases}$$

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}, x = \begin{bmatrix} C \\ D \end{bmatrix}, b = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$$

Ax = b is not solvable no straight line goes through the three points

The vector \boldsymbol{b} does not lie in the column space of A.

The vector \boldsymbol{b} does not lie in the column space of A.

How do we find \hat{x} that minimizes e = b - Ax?

By geometry:

We look for the point closest to $m{b}$ The nearest point is the projection $m{p}$

By algebra

Every vector \mathbf{b} splits into two parts. The part in the column space is \mathbf{p} . The perpendicular part in the nullspace of A^T is \mathbf{e} . $\mathbf{b} = \mathbf{p} + \mathbf{e}$

By algebra

Ax = b is not solvable.

Ax = p is solvable.

By algebra

For any x, the squared length

$$||Ax - b||^2 = ||Ax - p||^2 + ||e||^2$$

 $x = \hat{x}$ leads to the smallest possible error e

The *least squares* solution \hat{x} makes $E = ||Ax - b||^2$ as small as possible.

$$\begin{cases} C + Dt_1 = b_1 \\ C + Dt_2 = b_2 \\ \vdots \\ C + Dt_m = b_m \end{cases}$$

$$A = \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix}, \mathbf{x} = \begin{bmatrix} C \\ D \end{bmatrix}, \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Ax = b is not solvable, however we can solve $A\widehat{x} = b$.

$$A^T A \hat{\boldsymbol{x}} = A^T \boldsymbol{b}$$

$$A^{T}A = \begin{bmatrix} 1 & \cdots & 1 \\ t_{1} & \cdots & t_{m} \end{bmatrix} \begin{bmatrix} 1 & t_{1} \\ \vdots & \vdots \\ 1 & t_{m} \end{bmatrix} = \begin{bmatrix} m & \sum t_{i} \\ \sum t_{i} & \sum t_{i}^{2} \end{bmatrix}$$
$$A^{T}\mathbf{b} = \begin{bmatrix} 1 & \cdots & 1 \\ t_{1} & \cdots & t_{m} \end{bmatrix} \begin{bmatrix} b_{1} \\ \vdots \\ b_{m} \end{bmatrix} = \begin{bmatrix} \sum b_{i} \\ \sum t_{i}b_{i} \end{bmatrix}$$

The line C+Dt minimizes

$$e_1^2 + \dots + e_m^2 = ||Ax - b||^2$$

when $A^T A \hat{\boldsymbol{x}} = A^T \boldsymbol{b}$

$$\begin{bmatrix} m & \sum t_i \\ \sum t_i & \sum t_i^2 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} \sum b_i \\ \sum t_i b_i \end{bmatrix}$$

Pseudoinverse

- For a linear system Ax = b
- $x = A^{-1}b$ provides the unique solution if A is invertible
- We can find the pseudoinverse A^+ , which is a generalization of the inverse matrix.
- The most widely known type of matrix pseudoinverse is the *Moore–Penrose* pseudoinverse.
- A^+ exists for any matrix.

Pseudoinverse

- In particular, when A has linearly independent columns, namely, A^TA is invertible,
- $A^+ = (A^T A)^{-1} A^T$
- $A^{+}A = I$
- A^+ provides least squares solutions $\mathbf{x} = A^+ \mathbf{b} = (A^T A)^{-1} A^T \mathbf{b}$ to the system.
- In this particular case, b is projected onto A.

EXERCISES

Project the vector b onto the line through a. Check that e is perpendicular to a:

1)
$$\boldsymbol{b} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$
, $\boldsymbol{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

2)
$$b = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$$
, $a = \begin{bmatrix} -1 \\ -3 \\ -1 \end{bmatrix}$

- In Problem 1, find the projection matrix P onto the line through each vector \boldsymbol{a} .
- Verify in both cases that $P^2 = P$. Compute the projection p by p = Pb.

- 1) If $P^2 = P$ show that $(I P)^2 = I P$.
- 2) When P projects onto the column space of A, I P projects onto the _____?
- 3) If P is the 2 by 2 projection matrix onto the line through $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$, then I P is the projection matrix onto _____?
- 4) If P is the 3 by 3 projection matrix onto the line through $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$, then I P is the projection matrix onto _____?

- With b = 0,8,8,20 at t = 0,1,3,4, set up and solve the normal equations $A^T A \hat{x} = A^T b$.
- For the best straight line, find its four heights p_i and four errors e_i .
- What is the minimum value $E = e_1^2 + e_2^2 + e_3^2 + e_4^2$?

- Write down three equations for the line b = C + Dt to go through b = 7 at t = -1, b = 7 at t = 1, and b = 21 at t = 2.
- Find the least squares solution $\hat{x} = (C, D)$ and draw the closest line.

1)
$$\hat{x} = \frac{a^T b}{a^T a} = \frac{5}{3}$$
, $p = \frac{5}{3}a$, $e = \frac{1}{3}[-2 \ 1 \ 1]^T$

2)
$$\hat{x} = \frac{a^T b}{a^T a} = -1$$
, $p = -a$, $e = 0$

1)
$$P = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
, $Pb = \frac{1}{3} \begin{bmatrix} 5 \\ 5 \\ 5 \end{bmatrix}$

2)
$$P = \frac{1}{11} \begin{bmatrix} 1 & 3 & 1 \\ 3 & 9 & 3 \\ 1 & 3 & 1 \end{bmatrix}, Pb = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$$

- 1) If $P^2 = P$ then $(I P)^2 = (I P)(I P) = I PI IP + P^2$.
- 2) When P projects onto the column space, (I P) projects onto the left nullspace, or the nullspace of A^T .
- 3) I P is the projection matrix onto $\begin{bmatrix} 1 & -1 \end{bmatrix}^T$ in the perpendicular direction to $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$
- 4) I P projects onto the plane x + y + z = 0 perpendicular to $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$.

•
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}$$
, $b = \begin{bmatrix} 0 \\ 8 \\ 8 \\ 20 \end{bmatrix}$, $p = \begin{bmatrix} 1 \\ 5 \\ 13 \\ 17 \end{bmatrix}$, $e = \begin{bmatrix} -1 \\ 3 \\ -5 \\ 3 \end{bmatrix}$

•
$$E = ||e||^2 = 44$$

$$\cdot \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 7 \\ 7 \\ 21 \end{bmatrix}$$

•
$$\hat{x} = \begin{bmatrix} 9 \\ 4 \end{bmatrix}$$