LA DÉRIVATION E04

Un peu de pratique : dérivée et équation de tangente EXERCICE N°1

Pour chaque fonction f, déterminer sa fonction dérivée f' sur l'intervalle I qui est donné puis déterminer l'équation réduite de la tangente à la courbe représentative C_f de la fonction f au point d'abscisse a.

1)
$$f(x) = 4x^3 - 5x + 3$$
 , $I = \mathbb{R}$, $a = 1$.

2)
$$f(t) = -7t^2 - \frac{3}{t} + 5$$
 , $I =]0 ; +\infty[$, $a = 3$.

3)
$$f(x) = (2x-3)^3(x^2+1)$$
 , $I = \mathbb{R}$, $a = -1$.

4)
$$f(x) = \frac{4x^5 - 10x^2 + 3}{2x}$$
 , $I =]-\infty$; 0[, $a = -1$.

Un peu de pratique : dérivée et nombre dérivé

Pour chaque fonction f, déterminer sa fonction dérivée f' sur l'intervalle I qui est donné puis calculer le nombre dérivé de f en a. Aide au calcul

1)
$$f(x) = \frac{\sqrt{2x+1}}{3x+2}$$
 , $I = [0; +\infty[$ $\frac{\begin{vmatrix} 125 \times 105 = 13125 \\ 54 \times 11^4 = 790614 \end{vmatrix}}{3x+2}$, $a = 1$.

2)
$$f(t) = (2t+1)^3(5-3t)^4$$
 $I = \mathbb{R}$,

3)
$$f(x) = \frac{3+x^2}{(5x-10)^4}$$
 , $I =]2; +\infty[$

4)
$$f(x) = \frac{\sqrt{6-2x}}{x^2}$$
 , $I =]0; 3]$, $a = 1$.

EXERCICE N°3 Tangentes parallèles à une droite donnée

Extrait du déclic 1er spé 74 p 122

On considère la courbe C_f représentant la fonction f définie sur \mathbb{R} par :

Déterminer les tangentes à C_f parallèles à la droite d'équation y = -8x+2. On précisera l'abscisse des points de tangence et leurs équations réduites respectives.

EXERCICE N°4 Tangentes passant par un point donné

Extrait du déclic 1er spé 99 p 127

On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = \frac{2}{x^2 + 1}$$

et on note C_f sa courbe représentative.

On souhaite déterminer les tangentes à C_f passant par le point M(0; 2).

1) Démontrer que la tangente t_a au point d'abscisse $a \in \mathbb{R}$ à la courbe C_f a pour équation réduite :

$$y = -\frac{4a}{(a^2+1)^2}x + \frac{6a^2+2}{(a^2+1)^2}$$
.

- Montrer que $M(0; 2) \in T_a \Leftrightarrow a^2 a^4 = 0$.
- 3) Conclure.

LA DÉRIVATION E04

Un peu de pratique : dérivée et équation de tangente EXERCICE N°1

Pour chaque fonction f, déterminer sa fonction dérivée f' sur l'intervalle I qui est donné puis déterminer l'équation réduite de la tangente à la courbe représentative C_f de la fonction f au point d'abscisse a.

1)
$$f(x) = 4x^3 - 5x + 3$$
 , $I = \mathbb{R}$, $a = 1$.

2)
$$f(t) = -7t^2 - \frac{3}{t} + 5$$
 , $I =]0 ; +\infty[$, $a = 3$.

3)
$$f(x) = (2x-3)^3(x^2+1)$$
 , $I = \mathbb{R}$, $a = -1$.

4)
$$f(x) = \frac{4x^5 - 10x^2 + 3}{2x}$$
 , $I =]-\infty$; 0[, $a = -1$.

Un peu de pratique : dérivée et nombre dérivé

Pour chaque fonction f, déterminer sa fonction dérivée f' sur l'intervalle I qui est donné puis calculer le nombre dérivé de f en a. Aide au calcul

1)
$$f(x) = \frac{\sqrt{2x+1}}{3x+2}$$
 , $I = [0; +\infty[$ $\frac{\begin{vmatrix} 125 \times 105 = 13125 \\ 54 \times 11^4 = 790614 \end{vmatrix}}{54 \times 11^4 = 790614}$, $a = 1$.

2)
$$f(t) = (2t+1)^3(5-3t)^4$$
 $I = \mathbb{R}$,

3)
$$f(x) = \frac{3+x^2}{(5x-10)^4}$$
 , $I =]2; +\infty[$

4)
$$f(x) = \frac{\sqrt{6-2x}}{x^2}$$
 , $I = [0; 3]$

EXERCICE N°3 Tangentes parallèles à une droite donnée

Extrait du déclic 1er spé 74 p 122

On considère la courbe C_f représentant la fonction f définie sur \mathbb{R} par :

représentant la fonction
$$f$$
 définie sur \mathbb{R} par :
$$\frac{343}{243} - \frac{49}{81} - \frac{7}{9} + 1 = -\frac{436}{243}$$

$$f(x) = -3x^3 - x^2 - x + 1$$

$$\frac{56}{9} - \frac{436}{243} = \frac{1076}{243}$$

Aide au calcul

Déterminer les tangentes à C_f parallèles à la droite d'équation y = -8x+2. On précisera l'abscisse des points de tangence et leurs équations réduites respectives.

EXERCICE N°4 Tangentes passant par un point donné

Extrait du déclic 1er spé 99 p 127

On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = \frac{2}{x^2 + 1}$$

et on note C_f sa courbe représentative.

On souhaite déterminer les tangentes à C_f passant par le point M(0; 2).

1) Démontrer que la tangente t_a au point d'abscisse $a \in \mathbb{R}$ à la courbe C_f a pour équation réduite :

$$y = -\frac{4a}{(a^2+1)^2}x + \frac{6a^2+2}{(a^2+1)^2}$$
.

- Montrer que $M(0; 2) \in T_a \Leftrightarrow a^2 a^4 = 0$.
- 3) Conclure.