GREEN COLOR-EMITTING ALUMINATE-BASED FLUORESCENT SUBSTANCE

Publication number: JP2000290647
Publication date: 2000-10-17

Inventor: MORIYAMA HIROFUMI; MORIYAMA TOMOFUMI;

GOTO TERUO

Applicant: TOKYO KAGAKU KENKYUSHO KK

Classification:

- international: C09K11/64; C09K11/64; (IPC1-7): C09K11/64

- european:

Application number: JP19990105125 19990413 Priority number(s): JP19990105125 19990413

Report a data error here

Abstract of JP2000290647

PROBLEM TO BE SOLVED: To obtain a luminescent substance having a specific chemical composition, a narrow half value width, a remarkably high emission intensity, requiring a small amount of Ce especially in a barium.calcium.aluminate fluorescent substance and capable of being produced at a relative low cost. SOLUTION: This green color-emitting aluminate-based fluorescent substance has a chemical composition expressed by formula I (0.5<x<1,2, 0.2<z<0.51), preferably formula II (0.4<p<0.8, 0.04<q<0.2, 0.04<r<0.2, 0.1<s<0.4, p+q+s+r=1). The aforesaid fluorescent substance is obtained by accurately measuring a raw material, e.g. barium carbonate, calcium carbonate, manganese carbonate, cerium carbonate, zinc carbonate, strontium carbonate, aluminum oxide, and aluminum fluoride as a flux to have a desired molar ratio per unit molar equivalent, mixing in a ball mill, then, baking at a temp. of 1,000-1,500 deg.C and further increasing the amounts of Mn and Ce.

x (Sr. Za, Ca, Mn) O. 6AleOs : Cex

I

z (Sra. Zng. Car. Mns) O-BAli Os:Ce.

П

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-290647

(P2000-290647A)

(43)公開日 平成12年10月17日(2000.10.17)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

C09K 11/64

CPM

C09K 11/64

CPM

4H001

47 A 38-P	-1-38-1	請求項の数3	\circ	(4	0	E)
来曾简求	木帽沢	前氷場の数3	OL	Œ	8	見り

(21)出願番号	特顧平11-105125	(71)出顧人	591008591
			株式会社東京化学研究所
(22)出願日	平成11年4月13日(1999.4.13)		神奈川県大和市下鶴間2丁目2番1号
		(72)発明者	森山 浩文
			神奈川県大和市下鶴間2丁目2番1号 株
			式会社東京化学研究所内
		(72)発明者	森山 智文
			神奈川県大和市下鶴間2丁目2番1号 株
			式会社東京化学研究所内
		(74)代理人	100092082
			弁理士 佐藤 正年 (外1名)
			最終頁に続く

(54) 【発明の名称】 緑色発光性アルミン酸塩系蛍光体

(57)【要約】

【課題】 比較的安価に製造できるBCM蛍光体を母体 にして、発光特性が同等又はそれ以上の優れた緑色発光 性アルミン酸塩系蛍光体を提供する。

【解決手段】 次の一般式で示される化学組成を備えた ものである。

x (Sr. Zn. Ca. Mn) O·6Al₂O₃:Ce

(但し、0.5< x <1.2, 0.2< z <0.51)

【特許請求の範囲】

【請求項1】 次の一般式

x (Sr. Zn. Ca. Mn) O·6Al₂O₃:Ce

(但し、0.5<x<1.2, 0.2<z<0.51) で示される化学組成を備えた緑色発光性アルミン酸塩系蛍光体。

【請求項2】 次の一般式

 $x (Sr_p, Zn_q, Ca_r, Mn_s) O \cdot 6AI_2O$ 3: Ce₇

(但し、0.5 < x < 1.2, 0.4 < p < 0.8, 0.04 < q < 0. 2, 0.04 < r < 0.2, 0.1 < s < 0.4, p + q + r + s = 1, 0.2 < z < 0.51)

で示される化学組成を備えた緑色発光性アルミン酸塩系 蛍光体。

【請求項3】 次の一般式

 $x (Sr_p, Zn_q, Ca_r, Mn_s) O \cdot 6Al_2O$ 3: Ce_z

(但し、0.540≦ x ≦1.20, 0.461≦ p ≤0.668, 0.083≦ q ≤0.182, 0.045≦ r ≤0.101, 0.166≦ s ≤0.373, p + q + r + s = 1, 0.216≦ z ≤0.507) で示される化学組成を備えた緑色発光性アルミン酸塩系蛍光体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は緑色発光を生じるアルミン酸塩系蛍光体に関するものである。

[0002]

【従来の技術】緑色発光蛍光体としては、従来から2価のマンガン賦活ケイ酸塩系蛍光体(Zn2SiO4:Mn2+)が知られている。このケイ酸塩系蛍光体は、ピーク波長が525nmであり、半値幅も割合に狭く、ランプ用、複写光源用あるいはネオンサイン用等広い分野で使用されている。

【〇〇〇3】アルミン酸塩系の緑色発光蛍光体としては、テレビウム賦活のセリウム・マグネシウム・アルミネイト蛍光体(以下CAT蛍光体という)及び、マンガンを共賦活したCAT・Mn蛍光体、ユーロピウム・マンガン共賦活のバリウム・マグネシウム・アルミネイト蛍光体(以下BAM・Mn蛍光体という)等があり、それぞれランプ用、複写光源用等に使用されている。

【〇〇〇4】しかしながら、従来から用いられているケイ酸塩系蛍光体は、経時変化、劣化が大きいという欠点があり、CAT蛍光体、BAM・Mn蛍光体については、例えば色調が表示用の緑色としては不向きである等の問題がある。

【0005】また、現在、高効率蛍光ランプとして、3 波長域発光ランプが市販されているが、この高効率蛍光ランプでは、3つの波長、青(ピーク位置450 nm)、黄緑(ピーク位置550 nm)、赤(ピーク位置611 nm)の光を組み合わせて自然色に近い白色ランプとする(いわゆるRa改善型)ために、青色と黄緑色

の間に中間色として、青緑色の発光をもつ蛍光体を併用 して水銀灯のなまの色が出にくくしてある。

【0006】しかし、この種の中間色の場合、高い発光強度をもつ蛍光体がなく、比較的効率の良い蛍光体としてユーロピウム賦活ストロンチウム・アルミネイト蛍光体(以下SAEという。ピーク波長493nm)がある。しかし、このSAE蛍光体も十分満足できる強度の青緑色発光を示さず、SAE蛍光体に代わる蛍光体の開発が求められている。

【0007】そこで、本出願人は、従来用いられていたケイ酸塩系蛍光体やSAE蛍光体より優れた発光特性をもつアルミン酸塩系緑色発光蛍光体を提案した(特許第2663306号)。

【0008】この既に提案したアルミン酸塩系緑色発光 蛍光体は、具体的には、次の一般式に示された3つの蛍 光体である。

(1) マンガン、2価金属置換型セリウム・マグネシウム・アルミネイト蛍光体(マンガン、2価金属置換型CMM蛍光体)

 $Ce_z \cdot \{Mg_{1-m-r} \cdot (M^{2+m}) \cdot Mn_r\} \cdot A$ $I_{12} \cdot O(19+1.5z)$

(但し、1.0≥ z ≥0.80, 0.5>m>0, 0.2> r >0.05 であり、M²⁺はBa, Sr. Ca, Znからなる群から選ばれる。)

(2) マンガン、2価、3価金属置換型セリウム・マグネシウム・アルミネイト蛍光体(マンガン、2価、3価金属置換型CMM蛍光体)

 $(Ce_{1-b}\cdot M^{3}+_{b}) \cdot [Mg_{1-m-r}\cdot (M^{2}+_{m})\cdot Mn_{r}] \cdot Al_{12}\cdot O_{20}.5$

(但し、0.5>b>0.1, 0.5>m>0, 0.2>r>0.05であり、 M^2+ はBa, Sr, Ca, Znからなる群から、 M^3+ はLa, Gd, Y, Inからなる群から選ばれる。)

(3) マンガン置換型パリウム・カルシウム・アルミネイト蛍光体(マンガン置換型BCM蛍光体)

 $(Ba_p \cdot Ca_q \cdot Mn_r) \cdot O(p+q+r) \cdot 6A \cdot 12$ O3: Ce z

(但し、1.024 $\geq p \geq 0.7$ 、0.5> q > 0.05、0.22 $\geq r \geq$ 0.13、1.28 $\geq p + q + r \geq 0.956$)、0.2> z > 0.1)

【0009】これら蛍光体は、従来のケイ酸塩系蛍光体等に比べて半値幅も狭く、格段に発光強度の高い緑色蛍光体であり、特にBCM蛍光体ではCe量が少量で済むので比較的安価に製造できるという利点があった。

[0010]

【発明が解決しようとする課題】本発明は、比較的安価に製造できるBCM蛍光体を母体にして、発光特性が同等又はそれ以上の優れた緑色発光性アルミン酸塩系蛍光体を提供することを目的とするものである。

[0011]

【課題を解決するための手段】請求項1に記載された発

明に係る緑色発光性アルミン酸塩系蛍光体は、次の一般式で示される化学組成を備えたものである。

x (Sr. Zn. Ca. Mn) 0 · 6A I 2O3 : Ce

(但し、0.5< x <1.2, 0.2< z <0.51)

【0012】請求項2に記載された発明に係る緑色発光性アルミン酸塩系蛍光体は、次の一般式で示される化学組成を備えたものである。

 $x (Sr_p, Zn_q, Ca_r, Mn_s) O \cdot 6Al_2O$ 3: Ce_z

(但し、0.5 < x < 1.2, 0.4 , <math>0.04 < q < 0.2, 0.04 < r < 0.2, 0.1 < s < 0.4, p + q + r + s = 1, 0.2 < z < 0.51)

【0013】請求項3に記載された発明に係る緑色発光性アルミン酸塩系蛍光体は、次の一般式で示される化学組成を備えたものである。

 $x (Sr_p, Zn_q, Ca_r, Mn_s) O \cdot 6AI_2O_3 : Ce_z$

(但し、 $0.540 \le x \le 1.20$, $0.461 \le p \le 0.668$, $0.083 \le q \le 0.182$, $0.045 \le r \le 0.101$, $0.166 \le s \le 0.373$, p + q + r + s = 1, $0.216 \le z \le 0.507$)

[0014]

【発明の実施の形態】本発明者らは、鋭意努力の結果、 先に提案されたマンガン置換型BCM蛍光体のバリウム の一部を亜鉛に置換すると、発光強度が増強されること を見出し、更に、残りのバリウムをストロンチウムに置 換することにより、更に発光強度が増強されることを見 出して、本発明に至った。

【OO15】即ち、本発明では、次の一般式で示される 化学組成を備えた緑色発光性アルミン酸塩系蛍光体(以 下、CM蛍光体と記す)である。

x (Sr. Zn. Ca. Mn) O·6Al₂O₃: Ce

【0016】即ち、CM蛍光体は、2価の金属であるSr(ストロンチウム)、Zn(亜鉛)、Ca(カルシウム)、Mn(マンガン)と、Al(アルミニウム)とをCe(セリウム)(マンガン共賦活)で賦活している蛍光体である。但し、2価金属の合計は1単位分子当たり、0.5モルを越え、1.2モルを越えず、セリウムは0.2モルを越え、0.51モルを越えないものとする。これらの範囲を逸脱すると本発明の蛍光体の母体となったマンガン置換型BCM蛍光体よりも発光強度が低くなるためである。

【0017】本発明のCM蛍光体の母体となったマンガン置換型BCM蛍光体のピーク液長は、従来の2価マンガン賦活のケイ酸塩系蛍光体よりほぼ9nm程短波長側にシフトし、半値幅27nm程度のシャープな緑色発光を示す。このマンガン置換型BCM蛍光体では、Ce量はMn量とほぼ同じか若干低くとも良く、CMM蛍光体に比べてCe量が少ないために、比較的安価に製造する

ことができる。

【0018】本発明では、2価金属の一部を亜鉛に置換し、さらにバリウムをストロンチウムに置換えた場合に、セリウムを1単位分子当たり 0.2モルを越え、0.51モルを越えない配合とすることにより、マンガン置換BCM蛍光体と同等以上の発光強度が得られる。特に、Ce量を 0.4モル前後配合することにより強い発光強度が得られる。このCe量は、CMM蛍光体の場合の半分以下である。

【0019】色調については、AIに対する2価金属配合量が変化しても、色度座標のx値は、0.155の前後で変動する程度で殆ど変化しない。y値についても0.70の前後で変動する程度でほとんど変化しない。また、3価金属のCe配合量の変化についても、同様である。

【0020】本発明では、本CM蛍光体における強い発光強度を得られる2価金属の比率を検証した。具体的には、Mn量は3価金属のCe量とほぼ同じか若干低くともよい。具体的には、Mn/Ceの比率が0.6~1.0で、マンガン置換型BCM蛍光体と同等以上の発光強度が得られる。特に、Mn/Ceの比率が0.78±0.04で高い発光強度が得られる。

【0021】 Zn量とCa量とは2価金属合計量の1/20~1/5程度、特に1/10前後の配合で発光強度の増強が見られる。

【0022】尚、本発明で好ましく使用される蛍光体原料としては、酸化アルミニウム、炭酸セリウム、炭酸ストロンチウム、炭酸亜鉛、炭酸カルシウム、炭酸マンガン、その他強熱することで容易に酸化物となる炭酸塩等が挙げられる。

[0023]

【実施例】本発明を以下に詳しく説明する。尚、本実施例では、次の化学組成式で示されるマンガン置換型BCM蛍光体を調整し、本実施例で作成する蛍光体の標準蛍光体とした。即ち、ピーク強度(Ip)及び輝度(ReI、Y)は、この標準BCM蛍光体の相対値(%)として示す。尚、この標準BCM蛍光体の発光特性は、後述する表1に「標準BCM」として表記している。

1.28 (Bao. 80Cao. 08Mno. 12) O·6 Al2O3: Ceo. 13

【0024】実施例1. マンガン置換型BCM蛍光体からの配合組成変化

次の化学組成式で示されるマンガン置換型BCM蛍光体(表中、母体BCMとして表記)の組成を変化させた蛍光体1-1、1-2、1-3を常法に従って製造した。即ち、炭酸パリウム、炭酸カルシウム、炭酸マンガン、炭酸セリウム、炭酸亜鉛、炭酸ストロンチウム、酸化アルミニウム、及び、フラックスとしてフッ化アルミニウムの原料を所望の単位分子量当たりのモル量となるように正確に計りとり、ボールミルで混合した後、1000~1500℃の範囲内で還元焼成して蛍光体を製造した。

1.15 (Bao. 78Cao. 088Mno. 134) O ·6A | 203 : Ce 0. 130

【0025】尚、母体BCM蛍光体は特許第26633 06号公報の実施例8に示した蛍光体であって、本実施 例の標準蛍光体と比較して26%の発光強度を有するも のである。

【0026】具体的には、蛍光体1-1はMn量. Ce

量を増量したもの、蛍光体1-2はZnを添加したも の、蛍光体 1-3 はBa に代えてSr を使用したもので ある。得られた各蛍光体について、発光特性を比較し た。結果を表1に示す。

[0027]

【表1】

x (Bas, Sr, Zn., Cas, Mn.) O·6Al2O: Ce.

	1-1	1-2	1-3	母体BCM	標準BCM
Ba (o) Sr (p) Zn (q) Ca (r) Mn (s) 2 価金属合計(x) Ce (z) Al	0. 646 - 0. 101 0. 253 0. 990 0. 30 12	0. 545 - 0. 101 0. 101 0. 253 0. 990 0. 30 12	0. 545 0. 101 0. 101 0. 253 0. 990 0. 30	0. 780 - 0. 088 0. 134 1. 150 0. 130 12	0.800 - 0.080 0.120 1.280 0.130
im/Ce計算值	0. 833	0. 833	0. 833	1. 185	1. 185
波長(nm) lp(%) x y Rel.Y(%)	515 117. 79 0. 1640 0. 7133 126. 28	0. 1518 0. 7170	516 141. 99 0. 1548 0. 7224 139. 11		516 100. 00 0. 1578 0. 7123 100. 00

【0028】表1に示す通り、蛍光体1-1はMn量、 Ce量を増量したため、母体BCM蛍光体と比較してI p及びRe I. Yが共に減少している。しかし、蛍光体 1-2に関しては、母体BCM蛍光体と比較して同等以 上の発光特性を有しており、蛍光体1-3に関しては母 体BCM蛍光体を遙かに上回る発光特性を有している。

【0029】実施例2.2価金属の配合組成変化 実施例1に示された通り、Baに代えてZn及びSrを 使用した蛍光体は母体BCM蛍光体と比較して優れた発 光特性を有することが確認された。そこで、この蛍光体 について、更に検証した。3価金属であるCeを一定と して、2価金属のSr、Zn、Ca、Mnを変えた蛍光 体2-1~蛍光体2-5を常法に基づいて製造し、発光 特性を比較した。結果を表2に示す。

[0030]

【表2】

x (Sr., Zn., Car, Mn.) O · 6 AlzO: Ce.

	2-1	2-2	2-3	2-4	2-5
Sr (p) Zn (q) Ca (r) Mn (s) 2価金属合計(x) Ce (z)	0.600 0.100 0.050 0.250 1.000 0.30	0. 619 0. 095 0. 048 0. 238 1. 050 0. 30 12	0. 563 0. 097 0. 097 0. 243 1. 030 0. 30	0. 607 0. 093 0. 047 0. 252 1. 070 0. 30	0. 545 0. 182 0. 045 0. 227 1. 100 0. 30 12
lin/Ce計算值	0. 833	0. 833	0. 833	0. 900	0. 833
被長(nm) lp(%) x y Rel.Y(%)	516 141.22 0.1540 0.7156 137.36	0. 1541 0. 7117	0. 1540 0. 7164		0. 1568 0. 7107

【0031】表2に示す通り、得られた蛍光体2-1~ 蛍光体2-5の何れの蛍光体についても、標準BCM蛍 光体は元より、母体BCM蛍光体をも遙かに上回る発光 特性を有することが確認された。Zn量とCa量とは2 価金属合計量の1/20~1/5程度、特に1/10前後の配合で 高い発光強度が得られている。

【0032】実施例3.2価金属の配合量変化 2価金属の配合組成割合を一定として2価金属合計量 (x)を変化させた蛍光体3-1~3-13を常法に基 づいて製造し、発光特性を比較した。尚、Ce量に対す る2価金属のMn量の比率をほぼ0.778として(Mn/

C e ≒0.778) 配合した。結果を表3に示す。また、図 1 は表3に示したピーク強度(I p)と2価金属合計量 【0033】 【表3】

(x)との関係を示す線図である。

x (Sr., Zn., Ca., Mn.) O - 6 A 12O1: Ce.

	3-1	3-2	3-3	3-4	3-5	3-6	3-7
Sr (p) Zn (q) Ca (r) Mn (s) 2価金属合計(x) Ce (z)	0. 522 0. 083 0. 083 0. 311 0. 540 0. 216 12	0. 522 0. 083 0. 083 0. 311 0. 700 0. 280 12	0. 522 0. 083 0. 083 0. 311 0. 800 0. 320 12	0. 522 0. 083 0. 083 0. 311 0. 850 0. 339 12	0. 522 0. 083 0. 083 0. 311 0. 900 0. 360 12	0. 522 0. 083 0. 083 0. 311 0. 930 0. 371 12	0. 522 0. 083 0. 083 0. 311 0. 960 0. 384 12
Lan/Ce計算值。	0. 778	0. 779	0. 778	D. 779	0. 778	0. 779	0. 779
波長(nm) lp(%) x y Rel.Y(%)		0. 1573 0. 7027	516 138. 61 0. 1551 0. 7075 134. 89	0. 1559 0. 7054	0. 1539 0. 7008	0. 1537 0. 7030	516 146. 32 0. 1538 0. 6972 143. 85
	3-8	3-9	3-10	3-11	3-12	3-13	
Sr (p) Zn (q) Ca (r) Mn (s) 2価金属合計(x) Ce (z) Al	0. 522 0. 083 0. 083 0. 311 0. 980 0. 392 12	0. 522 0. 083 0. 083 0. 311 1. 000 0. 400 12	0. 522 0. 083 0. 083 0. 311 1. 030 0. 411 12	0. 522 0. 083 0. 083 0. 311 1. 050 0. 420 12	0. 522 0. 083 0. 083 0. 311 1. 100 0. 440 12	0. 522 0. 083 0. 083 0. 311 1. 200 0. 479 12	
Min/Ce計算值	0.778	0. 778	0. 779	0. 778	0.779	0. <i>7</i> 78	
波長(nm) Ip (%) x y Rel.Y (%)	516 147. 72 0. 1528 0. 7135 142. 93	0. 1549 0. 6891	516 144. 95 0. 1548 0. 6951 143. 85	0. 1540 0. 6803	0. 1538 0. 6757		1

【0034】表3に示す通り、得られた蛍光体3-1~ 蛍光体3-13の何れの蛍光体についても、標準BCM 蛍光体をも遙かに上回る発光特性を有することが確認された。また、図1に示す通り、2価金属合計量(x)は、0.5を越え、1.2を越えないことで、母体BCM蛍光体と比較して遙かに上回る発光特性を有することが確認された。特に、0.98±0.2で高い発光強度が得られることが確認された。

【0035】実施例4. セリウム量の配合割合変化1 2価金属合計量(x)とCe量に対する2価金属のMn 量の比率とを一定としてCe量を変化させた蛍光体4-1~4~9を常法に基づいて製造し、発光特性を比較した。尚、Ce量に対する2価金属のMn量の比率をほぼ0.778とし(Mn/Ce=0.778)、Mn量の増加分はSr量を滅じて2価金属合計量(x)を一定とした。結果を表4に示す。また、図2は表4に示したピーク強度(Ip)とCe量(z)との関係を示す線図である。【0036】

【表4】

x (Sr, Zn, Ca, Mn.) 0 · 6 A l 2 O a : Ce.

	4-1	4-2	4-3	4-4	4-5	4-6	4-7
S r (p) Z n (q) C a (r)	0. 668 0. 083 0. 083	0. 627 0. 083 0. 083	0. 585 0. 083 0. 083	0. 564 0. 083 0. 083 0. 270	0.545 0.083 0.083 0.289	0. 535 0. 083 0. 083 0. 299	0. 523 0. 083 0. 083 0. 311
Mn (s) 2 価金属合計(x)	0. 166 1. 020	0. 207 1. 020	0. 249 1. 020	1. 020	1.020	1. 020	1. 020
Ce (z) Al	0. 217 12	0. 271 12	0. 326 12	0. 353 12	0. 379 12	0. 392 12	0. 407 12
lin/Ce計算值	0.779	0. 779	0. 779	0. 779	0. 778	0. 778	0. 779
被長(nm) Ip(%) x y Rel.Y(%)	516 131-60 0-1529 0-6724 127-98	0. 1529 0. 6815	0. 1526 0. 6838	516 146. 08 0. 1528 0. 6909 142. 40	0. 1553 0. 7030		516 146. 95 0. 1555 0. 7019 144. 77
	4-8	4-9		L		ı	
Sr (p) Zn (q) Ca (r) Mn (s) 2価金属合計(x) Ce (z) Al	0.502 0.083 0.083 0.332 1.020 0.436	0. 461 0. 083 0. 083 0. 373 1. 020 0. 488 12					
lin/Ce計算值	0.778	0. 779					
被長(nm) Ip (%) x y Rel.Y (%)	516 144. 59 0. 1564 0. 7027 143. 19	0.7039					

【0037】表4に示す通り、得られた蛍光体4-1~ 蛍光体4-9の何れの蛍光体についても、標準BCM蛍光体は元より、母体BCM蛍光体をも遙かに上回る発光特性を有することが確認された。また、図2に示す通り、Ce量は0.2を越え、0.51を越えないことで、母体BCM蛍光体と比較して遙かに上回る発光特性を有することが確認された。特に、Ce量を 0.4±0.05配合することにより強い発光強度が得られることが確認された。【0038】実施例5.セリウム量の配合割合変化22価金属合計量(x)と2価金属組成割合とを一定とし

てCe量を変化させた蛍光体 $4-1\sim4-9$ を常法に基づいて製造し、発光特性を比較した。従って、Ce量の増加に伴い、Ce量に対する 2 価金属のM n 量の比率(M n / C e)が減少していく。結果を表5 に示す。また、図 3 は表5 に示したピーク強度(I p)とC e 量に対するM n 量の比率(M n / C e)との関係を示す線図である。

[0039]

【表5】

x (Sr, Zn, Ca, Mn.) 0 · 6 Al₂O₈: Ce.

	5-1	5-2	5-3	5-4	5-5	5-6	5-7
Sr (p) Zn (q) Ca (r) Mn (s) 2価金属合計(x) Ce (z) Al	0. 523 0. 083 0. 083 0. 311 1. 020 0. 397 12	0. 523 0. 083 0. 083 0. 311 1. 020 0. 405 12	0. 523 0. 083 0. 083 0. 311 1. 020 0. 406 12	0. 523 0. 083 0. 083 0. 311 1. 020 0. 407 12	0. 523 0. 083 0. 083 0. 311 1. 020 0. 409	0. 523 0. 083 0. 083 0. 311 1. 020 0. 423 12	0. 523 0. 983 0. 083 0. 311 1. 020 0. 465
lkn/Ce計算值	0. 798	0. 783	0. 781	0. 779	0. 775	0. 749	0. 682
被長(nm) lp(%) x y Rel.Y(%)	516 143. 42 0. 1555 0. 7156 139. 86	0. 1552	0. 1533 0. 7133	0_ 1529 0_ 7179	0. 1549 0. 7043	0. 1555	0. 1536 0. 6448
	5-8		<u>L</u>		L		
Sr (p) Zn (q) Ca (r) Mn (s) 2 個金属合計(x) Ce (z) Al	0. 523 0. 083 0. 083 0. 311 1. 020 0. 507 12	·					
Lin/Ce計算值	0. 625	1					
波長(nm) Ip (%) x y Rel.Y(%)	516 119. 98 0. 1543 0. 6031 120. 95						

【0040】表5に示す通り、得られた蛍光体5-1~ 蛍光体3-8の何れの蛍光体についても、標準BCM蛍光体をも遙かに上回る発光特性を有することが確認された。また、図3に示す通り、Mn/Ceの比率が0.6~1.0で、マンガン置換型BCM蛍光体と同等以上の発光強度が得られることが確認された。特に、Mn/Ceの比率が0.78±0.04で高い発光強度が得られることが確認された。

[0041]

【発明の効果】本発明は以上説明した通り、比較的安価に製造できるBCM蛍光体を母体にして、発光特性が同等又はそれ以上の優れた緑色発光性アルミン酸塩系蛍光体を得ることができるという効果がある。

【図面の簡単な説明】

【図1】2価金属組成割合を一定とした2価金属合計量

(x)の変化に対するピーク強度(Ip)の関係を示す 線図である。図において、縦軸はピーク強度(Ip)(%)、横軸は2価金属合計量(x)である。

【図2】2価金属合計量とCe量に対する2価金属のMn 量の比率 (Mn/Ce) とを一定としたCe量(z)の変化に対するピーク強度 (Ip) の関係を示す線図である。図において、縦軸はピーク強度 (Ip) (%)、横軸はCe量(z)である。

【図3】2価金属合計量(x)と2価金属組成割合とを一定としたCe量に対するMn量の比率(Mn/Ce)の変化に対するピーク強度(Ip)の関係を示す線図である。図において、縦軸はピーク強度(Ip)(%)、横軸はCe量に対するMn量の比率(Mn/Ce)である。

フロントページの続き

(72) 発明者 後藤 輝夫 神奈川県大和市下鶴間2丁目2番1号 株 式会社東京化学研究所内

Fターム(参考) 4H001 XA08 XA13 XA20 XA25 XA30 XA38 YA58