Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Alexander Krauss Sommersemester 2010 Lösungsblatt Endklausur 20. August 2010

Einführung in die Theoretische Informatik

Name			Vorname				Studi	engang	Matrikelnummer	
			·····				Diplom Bachelor Lehramt	☐ Inform.	wathkemummer	
Hörsaal			Reihe				Sitz	zplatz	Unterschrift	
Code:										
Bitte füller	ı Sie o	bige					i nwe	eise aus und un	nterschreil	ben Sie!
		_						ser/grüner F		3011 210.
• Die Arbeit								/ 6		
seiten) der	betref rechnu	fende ngen	en Au mac	ifgabe hen.	en ein Der	zutra Schm	gen. A lerblat	uf dem Schi	mierblatt	n (bzw. Rüch bogen könne lls abgegebe
								riebenen DI	N-A4-Bla	tt zugelassei
Hörsaal verlasse	en		von		l	ois .		/ von		bis
Vorzeitig abgeg	eben		um							
Besondere Bem	erkun	gen:								
	A1	A2	A3	A4	A5	A6	Σ	Korrektor		
Erstkorrektur									_	
Zweitkorrektur										

Aufgabe 1 (8 Punkte)

Wahr oder falsch? Begründen Sie im Folgenden Ihre Antworten möglichst knapp! Sei im folgenden Σ ein Alphabet, und $a \in \Sigma$.

- 1. $\{w \mid M_w \text{ berechnet eine LOOP-berechenbare Funktion}\}\$ ist entscheidbar.
- 2. $\{w \mid M_w \text{ berechnet eine WHILE-berechenbare Funktion}\}\$ ist entscheidbar.
- 3. Seien $A, B \subseteq \{0, 1\}^*$. Falls $A \subseteq B$, dann $A \leq B$, d.h., dann ist A reduzierbar auf B.
- $4. \ A \leq_p B \Longrightarrow \overline{A} \leq_p \overline{B}.$
- 5. Seien a(n,m) die Ackermann-Funktion und $k \in \mathbb{N}$ fest. Dann ist f(n) = a(k,n) primitiv rekursiv.
- 6. Falls $ntime_M$ berechenbar ist, dann ist L(M) entscheidbar.
- 7. Die folgende Funktion $f: \mathbb{N} \to \mathbb{N}$ ist berechenbar:

$$f(x) = \begin{cases} 1: P = NP \\ 0: \text{sonst} \end{cases}$$

8. Sei K das spezielle Halteproblem. Dann gibt es eine kontextfreie Grammatik G mit K = L(G).

Lösungsvorschlag

- 1. (f) Satz von Rice.
- 2. (w) φ_{M_w} ist stets WHILE-berechenbar. Die entsprechende Menge ist also gleich Σ^* .
- 3. (f) Sei $B = \Sigma^*$.
- 4. (w) $A \leq_p B$ gilt genau dann, wenn für entsprechendes f sowohl $f(A) \subseteq B$ gilt als auch $f(\overline{A}) \subseteq \overline{B}$ gilt.
- 5. (w) Lemma der Vorlesung. Der explizite Beweis erfordert Induktion über k.
- 6. (w) Man berechnet $ntime_M(w)$. Falls $ntime_M(w) = 0$, dann ist $w \notin L(M)$. Falls $ntime_M(w) \neq 0$, dann hält M[w] und es gilt $w \in L(M) \iff M[w]$ hält mit akzeptierendem Endzustand.
- 7. (w) Konstante Funktionen sind berechenbar (auch dann, wenn man sie nicht kennt).
- 8. (f) Anderfalls wäre K entscheidbar, weil L(G) entscheidbar ist für kfG.

Richtige Antwort: 0,5 Punkte

Begründung auch richtig/sinnvoll: 0,5 Punkte

Aufgabe 2 (8 Punkte)

- 1. Zeigen Sie: Das Prädikat \leq : $\mathbb{N} \times \mathbb{N} \to \{0,1\}$ ist primitiv rekursiv.
- 2. Zeigen Sie, dass die wie folgt spezifizierte Approximation ld des dualen Logarithmus primitiv rekursiv ist:

$$ld(m) = \max\{n \in \mathbb{N} \mid 2^n < m+1\}$$

3. Sei a die Ackermann-Funktion. Zeigen Sie, dass die durch $f(m,n)=2^{a(m,n)}-1$ definierte Funktion nicht primitiv rekursiv ist.

<u>Hinweis</u>: Sie dürfen zusätzlich zu den Basisfunktionen der primitiven Rekursion die folgenden Funktionen als primitiv rekursiv annehmen:

plus(m,n) (+), times(m,n) (·), dotminus(m,n) (·), pred(n), $a \mod b$, ifthen(n,a,b), c_n^k (konstante k-stellige Funktion mit Wert n) sowie $Q(m,n) = \max\{x \leq m \mid P(x,n)\}$ mit einem PR Prädikat P.

Sie dürfen die erweiterte Komposition und das erweiterte rekursive Definitionsschema benützen. LOOP-Programme sind nicht erlaubt.

Lösungsvorschlag

1.
$$\leq (a,b) = 1 - (a - b)$$
. (2 P.)

2.
$$2^n$$
 ist PR: $2^0 = s(0)$, $2^{n+1} = times(s(s(0)), 2^n)$. (1 P.)

Wir definieren das Prädikat
$$P(x,n)$$
 durch $\overline{P}(x,n) = \leq (2^x, n+1)$. (1 P.)

Dann gilt

$$\text{ld}(m) = \max\{n \in \mathbb{N} \mid 2^n \le m+1\}
= \max\{x \le m+1 \mid P(x,m)\}
= Q(m+1,m).
 (1 P.)$$

3. Widerspruchsbeweis: Sei f PR. Dann ist $\mathrm{ld}(f(m,n)+1)$ auch PR. Es gilt aber

$$dd(f(m, n) + 1) = dd(2^{a(m,n)})$$

= $a(m, n)$. (1 P.)

Widerspruch, weil a(m, n) nicht PR ist. (1 P.)

Aufgabe 3 (5 Punkte)

1. Beweisen oder widerlegen Sie, dass folgendes Problem entscheidbar ist:

Gegeben: Eine Turingmaschine M.

Problem: Schreibt M mit leerer Eingabe jemals ein nicht- \square Symbol auf das Band?

2. Ist $\{w \mid \varphi_w(\epsilon) = \epsilon\}$ entscheidbar? Beweis!

 $H\ddot{o}rsaalansage {:}\ M$ sei deterministisch.

Lösungsvorschlag

1. Entscheidbar! (1 P.)

Bei den Berechnungsschritten von M wird eine Schleife erreicht, falls noch kein neues Zeichen geschrieben wurde und sich ein Zustand wiederholt. (1 P.)

Wenn nach spätestens |Q| Berechnungsschritten kein anderes Symbol als \square geschrieben wird, dann wird niemals ein anderes Symbol als \square geschrieben. (1 P.)

2. Nicht entscheidbar. (1 P.)

Rice! (1 P.)

Aufgabe 4 (6 Punkte)

Erinnerung: Das modifizierte PCP (MPCP) ist das Problem, ob ein PCP

$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$$

mit n > 0 und $x_i, y_i \in \Sigma^+$ eine Lösung i_1, i_2, \ldots, i_k mit $i_1 = 1$ besitzt. Im Folgenden dürfen Sie annehmen, dass Sie eine Funktion f haben, die das MPCP entscheidet.

- 1. Beschreiben Sie einen Algorithmus, der das PCP entscheidet.
- 2. Beschreiben Sie einen Algorithmus, der eine Lösung für das PCP ausgibt, falls eine existiert. Der Algorithmus soll stets terminieren. Existiert keine Lösung, soll er 0 ausgeben.

Lösungsvorschlag

- 1. MCPC muss mit jedem der n Tupel als Erstem aufgerufen werden. (2 P.)
- 2. Zunächst wird die Existenz einer Lösung des PCP mit Algorithmus der Teilaufgabe 1 festgestellt. (1 P.)

Falls keine Lösung existiert, wird 0 ausgegeben.

Andernfalls werden die Folgen der Tupel der Länge nach durchprobiert. (2 P.)

Der Algorithmus muss dann mit einer Lösung terminieren. (1 P.)

Aufgabe 5 (8 Punkte)

- 1. Sei Σ ein Alphabet mit $\# \in \Sigma$. Geben Sie eine deterministische Turingmaschine B an, die die Menge $\{v \in \Sigma^* \mid \exists w \in (\Sigma \setminus \{\#\})^*. v = \#w\}$ akzeptiert.
- 2. Wir nennen eine Turingmaschine mit Eingabealphabet Σ und $\# \in \Sigma$ links-markiert, wenn sie sich auf Eingaben #w mit $w \in (\Sigma \setminus \{\#\})^*$ wie folgt verhält: Nach jedem Berechnungsschritt enthält das Band ein Wort lu mit $u \in (\Gamma \setminus \{\#\})^*$ und $l \in \{\#, \#\#\}$. Links und rechts von lu sei das Band mit Leerzeichen \square angefüllt.

Sei $T = (Q, \Sigma, \Gamma, \delta, q_0, \square, F)$ mit $\# \notin \Gamma$ (und damit auch $\# \notin \Sigma$) eine deterministische Turingmaschine. Konstruieren Sie eine *links-markierte* Turingmaschine $T_{\#}$, so dass für die akzeptierten Sprachen gilt:

$$L(T_{\#}) = \{ \#w \mid w \in L(T) \}.$$

Erläutern Sie Ihre Konstruktion!

Hinweis: Beachten Sie, dass T an den Wortgrenzen ein Leerzeichen \square erwartet.

3. Modifizieren Sie Ihre Konstruktion in Punkt 2 derart, dass für die Zustandsmengen Q von T bzw. $Q_{\#}$ von $T_{\#}$ jedenfalls $|Q_{\#}| \leq |Q| + 10$ gilt.

Hinweis: Im Gegensatz zu den Zustandsmengen ist Γ beliebig erweiterbar.

Lösungsvorschlag

1. Seien $B = (Q, \Sigma, \{\Box\}, \delta, q_0, \Box, \{q_e\})$ mit $Q = \{q_0, q_1, q_e\}$ und für alle $x \in \Sigma$:

$$\delta(q_0, \#) = (q_1, \#, R), \quad \delta(q_1, x) = (q_1, x, R), \quad \delta(q_1, \square) = (q_e, \square, N).$$
 (2 P.)

2. Erläuterung:

Sei
$$T_{\#} = (Q_{\#}, \Sigma, \Gamma_{\#}, \delta_{\#}, q_{\#}, \square, F)$$
 mit $Q_{\#} = Q \cup \{s_q \mid q \in Q\} \cup \{q_{\#}\}.$ Dabei bezeichne s_q eine Kopie von q .

Für ein Eingabewort #w mit $w \in \Sigma^*$ steht beim Start der Kopf von $T_\#$ auf #. Akzeptiert wird genau dann, wenn w von T akzeptiert wird.

Zunächst wird der Kopf auf den ersten Buchstaben von w gesetzt. Falls $w=\epsilon$, dann steht der Kopf auf \square rechts neben #.

Nun wird T gestartet. Wenn T auf # trifft, dann wird # nach links versetzt und dabei aber der momentane Zustand q in s_q gespeichert! Dann wird ein \square eingefügt und T auf dem eingefügten \square mit dem Zustand q wieder gestartet.

(2 P.)

Konstruktion von $\delta_{\#}$ durch Erweiterung von δ für alle $q \in Q$:

$$\delta_{\#}(q_{\#}, \#) = (q_0, \#, R), \quad \delta_{\#}(q, \#) = (s_q, \#, L),
\delta_{\#}(s_q, \square) = (s_q, \#, R), \quad \delta_{\#}(s_q, \#) = (q, \square, N).$$
(2 P.)

3. Die Speicherung des Zustands bei der Versetzung von # erfolgt nun mit neuen Bandzeichen aus $\{\gamma_q \mid q \in Q\}$. Allerdings erfordert die Einhaltung der Berechnungsbedingungen die Verwendung von Doppelrauten als Begrenzung.

$$\delta_{\#}(q_{\#}, \#) = (q_{\#\#}, \#, L), \quad \delta_{\#}(q_{\#\#}, \square) = (q_{\#\#}, \#, R), \quad \delta_{\#}(q_{\#\#}, \#) = (q_0, \#, R).$$
(1 P.)

Man modifiziert dann für alle $q \in Q$ und neuen Zuständen q_1, q_2

$$\delta_{\#}(q,\#) = (q_1, \gamma_q, L), \quad \delta_{\#}(q_1,\#) = (q_1, \#, L), \quad \delta_{\#}(q_1, \square) = (q_2, \#, R),
\delta_{\#}(q_2, \#) = (q_2, \#, R), \quad \delta_{\#}(q_2, \gamma_q) = (q, \square, N).$$
(1 P.)

Aufgabe 6 (5 Punkte)

Sei *IF* die Menge aller aussagenlogischen Formeln, die ausschließlich mit den Konstanten 0 und 1, logischen Variablen x_i mit $i \in \mathbb{N}$ und der Implikation \Rightarrow als Operationszeichen aufgebaut sind, wobei natürlich auch Klammern zugelassen sind. Beachten Sie, dass $x_i \Rightarrow x_j$ die gleiche Wahrheitstafel wie $(\neg x_i) \lor x_j$ hat.

Wir betrachten das Problem ISAT:

Gegeben: $F \in IF$.

Problem: Ist F erfüllbar, d. h., gibt es eine Belegung der Variablen mit Konstanten 0 oder 1, so dass F den Wert 1 annimmt?

Zeigen Sie: ISAT ist NP vollständig.

Sie dürfen benützen, dass das SAT Problem NP vollständig ist.

Lösungsvorschlag

• $ISAT \leq_p SAT$:

Sei f die Abbildung, die in jeder Formel F aus IF jedes Vorkommen der Implikation $a \Rightarrow b$ mit Teilformeln a und b durch $\neg a \lor b$ ersetzt.

(2 P.)

• $SAT \leq_p ISAT$:

Sei f die Abbildung, die in jeder Formel F aus SAT mit Teilformeln a und b jedes Vorkommen

- der Negation
$$\neg a$$
 durch $a \Rightarrow 0$ ersetzt. (1 P.)

- der Disjunktion
$$a \lor b$$
 durch $(a \Rightarrow 0) \Rightarrow b$ ersetzt. (1 P.)

- der Konjunktion
$$a \wedge b$$
 durch $(a \Rightarrow (b \Rightarrow 0)) \Rightarrow 0$ ersetzt. (1 P.)