QCoo 硬件协议详解

目录

QCoo 硬件协议详解	1
说明	2
QCoo 硬件与智能设备之间的通讯总体分为两类:	2
二、查询类:	3
一、控制 LED 方法 1 : 0x41	
二、控制 LED 方法 2 : 0x11	3
三、控制 LED 方法 3 : 0x14	
四、刷新显示 : 0x03	
五、设置亮度 : 0x20	
六、特效切换 : 0x05	
七、关机 : 0x15	
八、马达震动 : 0x16	
九、设置连接状态 : 0x20	
十、保存亮度 : 0x45	
十一、骰子模式 : 0x42	
十二、初始化陀螺仪 : 0x43	
十三、查询电压 : 0x17	
十四、查询充电状态 : 0x18	٠٠٠٠٠ ک

项目名称	版本号	备注	修改日期	修改人
QCoo	2.0.2	完成所有用到的协议	2016.09.01	梁宇
QCoo	2.0.3	修改 LED0 错误	2016.09.21	梁宇

说明

QCoo 硬件深度兼容 Arduino,具备 Arduino 的处理器和 Arduino 的 Bootloader,可以使用 Arduino 的 IDE 对 QCoo 硬件进行重新烧写固件(底层二次开发)操作。注意在 Arduino IDE 里面选择 UNO 板即可。

关于对 QCoo 硬件的理解:实际上 QCoo 硬件可以抽象的理解为一个显示器,这个显示器可以通过蓝牙与智能设备通讯,智能设备可以通过命令的形式对 QCoo 进行控制,主要控制 LED 灯的显示效果,包括颜色、亮度、位置等信息。同时 QCoo 硬件也不完全是执行者,他也会与手机交互,由于 QCoo 硬件上挂载了姿态传感器,那么 QCoo 硬件就会上报给智能设备姿态信息,这些信息通过智能设备的处理,可以得知 QCoo 硬件的姿态变化,从而智能设备可以更有效的与 QCoo 交互,每当智能设备向 QCoo 硬件发送一条命令后,QCoo 硬件都会告诉主机,是否执行了,或者是否执行成功等信息。这样保证了通讯的健壮性。

QCoo 硬件与智能设备之间的通讯总体分为两类:

一类是智能设备发送执行命令让 QCoo 执行;

另一类是智能设备发送查询命令,查询 QCoo 硬件的当前状态;

以下的协议内容会根据以上两类展开,分为执行类和查询类。通讯协议的定制决定着通讯效率,高效的通讯可以保证显示的实时性,体验就会好。

一、执行类:

- 1. 控制 LED 方法 1
- 2. 控制 LED 方法 2
- 3. 控制 LED 方法 3
- 4. 刷新显示
- 5. 设置亮度
- 6. 特效切换
- 7. 关机
- 8. 马达震动
- 9. 设置连接状态
- 10. 保存亮度
- 11. 骰子模式
- 12. 初始化陀螺仪

二、查询类:

- 13. 查询颜色
- 14. 查询电压
- 15. 查询充电状态

协议设计格式

起始码1	起始码2	长度标识	命令 ID	动作	命令字	数据
0xf0	0x55	表示命令长	用于指示命令	标识控制指令和	以上的两大	命令字带的参数用
		度(去除起始	index(用于主机	查询指令	类,一类是执	来辅助完成命令字
		位和长度标	区分异步命令)	0x02 控制	行的,一类是	的功能
		识本身)		0x01 查询	查询的	

QCoo 硬件有六个面标记为 0x01,、0x02、0x03、0x04、0x05、0x06;

OCoo 硬件有 30 种颜色存在硬件本地, 编号为 0x00~0x29;

QCoo 硬件设置亮度的标准是 0~255, 亮度顺次增加, 用十六进制表示为 0x00~0xFF;

QCoo 硬件为标准串口通讯,波特率默认为 115200;

一、控制 LED 方法 1 : 0x41

起始码	长度标识	命令 ID	动作	命令字	颜色编码	灯序号
0xF0 0x55	0x05	0x00	0x02	0x41	0x01	0x7D

发送以上数据: F05505410241017D 给 QCoo 硬件

1. 效果: 第125 颗灯点亮, 颜色为颜色编码的1号颜色, 该命令的命令字为0x41, 代表"控制LED方法1"。

2. 参数:数据是 0x01 和 0x7D 者两个参数的意义分别代表所要操作灯的颜色和灯的 ID 号码。

3. 返回值:无

4. 注意:这个命令适合一次操作一个 LED, 尤其适合贪吃蛇的显示。

二、控制 LED 方法 2 : 0x11

起始码 长度 命令 动作 命令字 面编号 颜色 数据 1 数据 2 数据 3 数据 4

	标识	ID				编码				
0XF0	0x09	0x00	0x02	0x11	0x01	0x01	0x01	0x02	0x02	0x01
0x55										

发送以上数据: F05509000211010101020201 给 QCoo 硬件:

1. 效果:面编号为 0x01 的面上,某些灯颜色会变为颜色编号 1 的颜色。该命令的命令字为 0x11,代表"控制 LED 方法 2".

2. 参数:数据1~数据4用来表示面上的灯,可以说这四个数据可以任意表示面上灯的亮灭状态。

3. 返回值:无

4. 注意:关于这四个数据如何获取, QCoo 团队设计了一款专门的软件, 用来生成数据 1~数据 4。

三、控制 LED 方法 3 : 0x14

起始码	长度标识	命令 ID	动作	命令字	面编号	颜色编号
0xF0 0x55	0x05	0x00	0x02	0x14	0x01	0x12

发送数据 F055050002130112 给 QCoo 硬件:

1. 效果:面标号为0x01的面上,全部灯的颜色变为颜色编号为12的颜色。该命令的命令字代表"控制LED方法3"。

2. 参数:面编号 0x01 代表第一面,参数颜色编号 0x12 代表颜色编号为 12 的颜色。

3. 返回值:无

4. 该条命令适合刷单独的面,制作特效使用。

四、刷新显示: 0x03

起始码	长度标识	命令 ID	动作	命令字
0xF0 0x55	0x03	0x00	0x02	0x03

发送 F05503000203 给 QCoo 硬件:

1. 效果:强制刷新当前 QCoo 当前显示。

2. 参数:该命令没有参数。

3. 返回值:无

4. 注意:QCoo 接到命令后就会执行刷新,这个命令很少用,因为每条显示指令都有发数据刷新功能。

五、设置亮度 : 0x20

起始码	长度标识	命令 ID	动作	命令字	参数
0xF0 0x55	0x04	0x00	0x02	0x04	0x20

发送 F0550400020420 给 QCoo 硬件:

1. 效果:接到命令后获取设置亮度的参数,然后设置 QCoo 硬件的亮度,然后刷新显示。

2. 参数:全局亮度设置为参数 0x20 的对应十进制数据为 32。

3. 返回值: F0 55 01 00 10 0D 0A

4. 注意:显示会实时刷新,当设置亮度为 0x00 的时候 QCoo 不会接受,最小亮度为 0x0A (十进制为 10),目的是为了防止错误设置亮度,以后的显示无法呈现效果。

六、特效切换 : 0x05

起始码	长度标识	命令 ID	动作	命令字	参数
0xF0 0x55	0x04	0x00	0x02	0x05	0x01

发送 F0550400020501 给 QCoo 硬件的:

1. 效果: 切换到特效模式, 并且显示特效 1 对应的特效, 命令字 0x05 代表的意义就是切换特效。

2. 参数:参数 0x01 代表切换到的特效,硬件上设置了六个特效,但是实际使用了四个特效值得注意的是. 参数为 0x00 的时候特效效果关闭

3. 返回值: F0 55 01 00 10 0D 0A

4. 注意:当你准备从特效里面跳出来的时候切记要关闭特效,然后发送其他命令才有意义。关闭特效的指令为 F0550400020500。

七、关机 : 0x15

起始码	长度标识	命令 ID	动作	命令字	参数
0xF0 0x55	0x04	0x00	0x02	0x05	0x0A

发送 F055040002050A 给 QCoo 硬件:

1. 效果:接到命令后,马上关机,没有返回值。

2. 参数:参数 0x0A 没有实际意义, 目的是防止解析有误, 误关机。

3. 返回值: F0 55 01 00 10 0D 0A

4. 注意:关机后一切操作无效,需要重新摇一摇启动 QCoo。

八、马达震动: 0x16

起始码	长度标识	命令 ID	动作	命令字	震动强度	震动时间
0xF0 0x55	0x05	0x00	0x02	0x16	0x7D	0xFF

发送 F055050002167DFF 给 QCoo 硬件:

1. 效果:接到指令后马达开始震动,震动的强度为 0x7D, 震动持续时间为 0xFF;

2. 参数:震动强度从 0x00~0xFF, 震动依次增强, 震动持续时间从 0x00~0xFF 依次增长。

3. 返回值: F0 55 01 00 10 0D 0A

4. 注意:马达震动为独立行为,不影响其他指令执行。

九、设置连接状态 : 0x20

起始码	长度标识	命令 ID	动作	命令字	参数
0xF0 0x55	0x04	0x00	0x02	0x020	0x01

发送 F0550400022001 给 QCoo 硬件

1. 效果:OCoo 接到这条命令后会进入工作状态。

2. 参数:参数 0x01 的意义是 APP 主动与 QCoo 硬件连接,参数 0x00 的意义是 APP 主动与 QCoo 断开连接

3. 返回值: F0 55 01 00 10 0D 0A

4. 注意:只有连接成功后所有命令才有意义,在新版本固件中也可以跳过连接,直接发送命令。当 APP 发送 F0550400022000 给 QCoo 后,如果三分钟没有连接 QCoo 并且没有动过 QCoo, QCoo 硬件会主动关机,降低电能消耗。

十、保存亮度 : 0x45

起始码	长度标识	命令 ID	动作	命令字	参数
0xF0 0x55	0x04	0x00	0x02	0x045	0x3C

发送 F055040002453C 给 QCoo 硬件:

1. 效果:QCoo 没有明显效果,只是把当前参数的亮度存储在 EEPROM 里面,重启后亮度信息不会丢失。

2. 参数:参数存储着亮度的信息,从 0x00~0xFF(实际效果从 0x0A 开始)

3. 返回值: F0 55 01 00 10 0D 0A

4. 注意:该命令将信息存储在 EEPROM 里面,每次开机 QCoo 硬件回去读取亮度信息作为初始化亮度。

十一、骰子模式 : 0x42

起始码	长度标识	命令 ID	动作	命令字	参数
0xF0 0x55	0x04	0x00	0x02	0x042	0x01

发送 F0550400024201 给 QCoo 硬件:

1. 效果: QCoo 硬件会进入骰子模式, 拿起 QCoo 就可以当骰子使用。

2. 参数:该命令参数有两个, 0x01 代表进入骰子命令, 0x00 代表退出骰子命令。

3. 返回值: F0 55 01 00 10 0D 0A

4. 注意:该模式可以触发 QCoo 内置的骰子模式,退出使用的时候需要发送 F0550400024201 给 QCoo 硬件。

十二、初始化陀螺仪: 0x43

起始码	长度标识	命令 ID	动作	命令字	参数
0xF0 0x55	0x04	0x00	0x02	0x043	0x01

发送 F0550400024301 给 QCoo 硬件:

1. 效果: QCoo 会主动初始化姿态传感器一次。

2. 参数:0x01 没有意义,只是为了防止误触发。

3. 返回值: F0 55 01 00 10 0D 0A

4. 注意:有些时候 IIC 总线会与姿态传感器断讯,如果发现这种情况,那么发送该条指令就会恢复通信。

十三、查询电压: 0x17

起始码	长度标识	命令 ID	动作	命令字	参数
0xF0 0x55	0x04	0x00	0x02	0x017	0x0A

发送 F055040002170A 给 QCoo 硬件:

1. 效果:无实际效果,在 APP 端会收到蓝牙的 Notify 信息,内容为当前 QCoo 电压,形式为字符串

2. 参数: 0x0A 无实际意义, 只是为了防止误触发

3. 返回值:电压值,例如:4.2;此返回值为字符串模式

4. 注意:这个电压值可以大致反映电池的电量状态,接收注意是字符串类型。

十四、查询充电状态: 0x18

起始码	长度标识	命令 ID	动作	命令字	参数
0xF0 0x55	0x04	0x00	0x02	0x018	0x0A

发送 F055040002180A 给 QCoo 硬件:

1. 效果:无实际效果,在 APP 端会收到蓝牙的 Notify 信息,内容为当前 QCoo 的充电状态,形式为字符串。

2. 参数: 0x0A 无实际意义,只是为了防止误触发。

3. 返回值:充电状态数值,"0"代表没有在充电,"1"代表在充电。

4. 注意:APP 上没使用该指令,仅供开发者参考,配合电压查询的话可以预判电池充电状态(饱和或者在充电)