MATH-F-427 students

Coxeter groups

Course notes

May 26, 2019

Contents

Proposition 0.1. Take $\varphi \in GL(V)$ with $\langle \varphi(u), \varphi(v) \rangle = \langle u, v \rangle$, $\forall u, v \in V$. Then, we have the following properties:

- 1) $\varphi \sigma_{\alpha} \varphi^{-1} = \sigma_{\varphi(\alpha)}$, 2) $\sigma_{\alpha} = \sigma_{\beta}$ if and only if $\alpha = c\beta$ with $c \neq 0$,
- 3) σ_{α} and σ_{β} commute if and only if $\langle \alpha, \beta \rangle = 0$ or $\alpha = c\beta$ with $c \neq 0$.

Proof. 1) This is a simple computation let to the reader.

2) It is obvious to see that the condition is sufficient. Let us show that it is necessary. If $\sigma_{\alpha} = \sigma_{\beta}$, then

$$\sigma_{\alpha}(v) = v - 2 \frac{\langle v, \alpha \rangle \alpha}{\langle \alpha, \alpha \rangle}$$

$$= v - 2 \frac{\langle v, \alpha \rangle}{\langle \alpha, \alpha \rangle}$$

$$= v - 2 \frac{\langle v, \beta \rangle}{\langle \beta, \beta \rangle}$$

$$= \sigma_{\beta}(v)$$

$$(0.1)$$

 $\forall v \in V$. This implies that

$$\frac{\langle v, \alpha \rangle}{\langle \alpha, \alpha \rangle} = \frac{\langle v, \beta \rangle}{\langle \beta, \beta \rangle} \tag{0.2}$$

 $\forall v \in V$, which leads to $\alpha = c\beta$, with $c \neq 0$.

3) We have

$$(\sigma_{\alpha}\sigma_{\beta} - \sigma_{\beta}\sigma_{\alpha})v = (\langle v, \beta \rangle \alpha - \langle v, \alpha \rangle \beta) \frac{4\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle \langle \beta, \beta \rangle}$$
(0.3)

 $\forall v \in V$. The right-hand side gives 0 if and only if $\langle \alpha, \beta \rangle = 0$ or $\alpha = c\beta$ with $c \neq 0$.

Proposition 0.2. Let (Φ, Δ) be a root system. We have the following proper-

- 1) If $\beta \in \Phi$, then $\langle \beta, \beta \rangle > 0$, $\sigma_{\beta} \in W$, and $-\beta \in \Phi$.
- 2) If $\alpha, \beta \in \Delta$, $\alpha \neq \beta$, then $\langle \alpha, \beta \rangle \leq 0$.

Proof. 1) Let $\beta \in \Phi$, $\beta = w\alpha$, where $w \in W$ and $\alpha \in \Delta$ (" $w\alpha$ " designates the action of w on α). We have

$$\langle \beta, \beta \rangle = \langle w\alpha, w\alpha \rangle = \langle \alpha, \alpha \rangle > 0$$
 (0.4)

Furthermore,

$$\sigma_{\beta} = \sigma_{w\alpha} = w\sigma_{\alpha}w^{-1} \in W \tag{0.5}$$

and

$$\sigma_{\beta}(\beta) = -\beta \in \Phi \tag{0.6}$$

2) We have

$$\sigma_{\alpha}(\beta) = \beta - 2 \frac{\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle} \alpha \tag{0.7}$$

Since $\langle \alpha, \alpha \rangle \leq 0$, using the point R.5 of the definition of root system, we obtain $\langle \alpha, \beta \rangle \leq 0$.

Lemma 0.3. If $\alpha \in \Delta$, then σ_{α} permutes with $\Phi^+ \setminus \{\alpha\}$.

Proof. Let $\beta \in \Phi^+ \setminus \{\alpha\}$. We have

$$\sigma_{\alpha}(\beta) = \beta - 2 \frac{\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle} \alpha \in \Phi^{+} \setminus \{\alpha\}$$
 (0.8)

Theorem 0.4. If (Φ, Δ) is a root system, then (W, S) with $S = {\sigma_{\alpha} | \alpha \in \Delta}$ is a Coxeter system.

This theorem follows directly using Matsumoto theorem and the following result:

Theorem 0.5. Let $\alpha \in \Delta$ and $w = \sigma_1 \sigma_2 \dots \sigma_n$ a reduced word, where $\sigma_i \in S$. The following assertions are equivalent:

- 1) $w\alpha < 0$,
- 2) $l(w\sigma_{\alpha}) < l(w)$,
- 3) $w\sigma_{\alpha} = \sigma_1 \dots \hat{\sigma}_i \dots \sigma_n$.

Proof. 1) \Rightarrow 3). We have $\alpha > 0$, $\sigma_n \alpha > 0$, $\sigma_{n-1} \sigma_n \alpha > 0$, ..., $\sigma_1 \ldots \sigma_n \alpha < 0$. There is a $i \in \{1, \ldots, n\}$ such that $\sigma_{i+1} \ldots \sigma_n \alpha > 0$ and $\sigma_i \sigma_{i+1} \ldots \sigma_n \alpha < 0$. Using the lemma, we have that $\sigma_{i+1} \ldots \sigma_n \alpha = \alpha_i$ is a simple root, and, writing

$$\alpha = \underbrace{\sigma_n \sigma_{n-1} \dots \sigma_{i+1}}_{u} \alpha_i \tag{0.9}$$

we have $\sigma_{\alpha} = \sigma_{u\alpha_i} = u\sigma_{\alpha_i}u^{-1}$. Hence,

$$w\sigma_{\alpha} = \sigma_{1} \dots \sigma_{n}\sigma_{n} \dots \sigma_{i+1}\sigma_{i}\sigma_{i+1} \dots \sigma_{n} = \sigma_{1} \dots \hat{\sigma}_{i} \dots \sigma_{n}$$
 (0.10)

- $3) \Rightarrow 2$). This implication is obvious.
- 2) \Rightarrow 1). We prove the contrapositive. By the point R.5 of the definition of root system, we have $w\alpha > 0$ and so $w(-\alpha) = w\sigma_{\alpha}(\alpha) < 0$. From 1) \Rightarrow 3) \Rightarrow 2), we get

$$\ell(w) = \ell(w\sigma_{\alpha}\sigma_{\alpha}) < \ell(w\sigma_{\alpha}) \tag{0.11}$$

which achieves the proof.

Now, we are going to show that a root system can be associated to every Coxeter group. First, recall that given (W, S) a Coxeter system with $S = \{s_1, \ldots, s_n\}$, and V a \mathbb{R} -vector space with basis $\{\alpha_1, \ldots, \alpha_n\}$, we can define a symmetric bilinear form as

$$\langle \alpha_i, \alpha_j \rangle = \begin{cases} -\cos\left(\frac{\pi}{m_{ij}}\right) & \text{if } m_{ij} < +\infty \\ -1 & \text{if } m_{ij} = +\infty \end{cases}$$
 (0.12)

Writing $\sigma_i = \sigma_{\alpha_i}$, we showed that the map

$$W \mapsto GL(V), s_i \to \sigma_i$$
 (0.13)

is a homomorphism. Let us define

$$\Delta := \{\alpha_1, \dots, \alpha_n\}$$

$$\Phi := \{w\alpha_i | w \in W, \alpha_i \in \Delta\}$$

$$(0.14)$$

Theorem 0.6. (Φ, Δ) is a root system.

The points R.1, R.2, R.3 and R.4 of the definition of a root system are clearly satisfied. The point R.5 is a consequence of the following theorem:

Theorem 0.7. Let $w \in W$ and $s_i \in S$. We have:

- 1) $\ell(ws_i) > \ell(w) \Rightarrow w\alpha_i > 0$.
- 2) $\ell(ws_i) < \ell(w) \Rightarrow w\alpha_i < 0$.

Proof. First, we show that $1) \Rightarrow 2$). We have $\ell(ws_i) < \ell(w) = \ell(ws_is_i)$. Hence $0 < ws_i\alpha_i = w(-\alpha_i) = -w\alpha_i$, which leads to $w\alpha_i < 0$.

Now, we prove 1). First, it can be shown for the dihedral group (exercise¹). We now consider the general case. Let $s_i \in S$, $w \in W$, such that $\ell(ws_i) > \ell(w)$. We proceed by induction on $\ell(w)$. For $\ell(w) = 0$, this is obvious. For $\ell(w) \ge 1$, let $s \in S$ be such that $\ell(ws) < \ell(w)$. Let $J := \{s_i, s\} \subset S$. We write

$$w = w^J w_J, \quad w^J \in W^J, w_J \in W_J \tag{0.15}$$

with $\ell(w) = \ell(w^J) + \ell(w_J)$, and w^J is the minimum of wW_J . Note that $\ell(w_J) \geq 1$: if $w = w^J$, we have $\ell(w^J s) < \ell(w^J)$, which leads to a contradiction since W^J is the minimum of $w^J W_J$.

Claim: $w_J \alpha_i > 0$.

Let us prove this claim. We have $ws_i = w^J w_J s_i$ and $wJs_i \in W$. Hence, using the hypothesis, we obtain

$$\ell(w) + 1 = \ell(ws_i) = \ell(w^J) + \ell(w_J s_i)$$
(0.16)

This leads to $\ell(w_J s_i) = \ell(w_J) + 1 > \ell(w)$. Therefore, $w_J \alpha_i > 0$, which proves the claim.

Now, we have

$$w_J \alpha_i = a\alpha_i + b\alpha_s \tag{0.17}$$

with $a, b \ge 0$ and

¹ To show the dihedral case, drawing a picture may be useful.

$$w\alpha_i = w^J(a\alpha_i + b\alpha_s) = aw^J\alpha_i + bw^J\alpha_s \tag{0.18}$$

Since $\ell(w_J) \geq 1$, we have $\ell(w^J) < \ell(w)$. Furthermore, since w^J is the minimum of wW_J , we have

$$\ell(w^J s) > \ell(w^J)$$
 and $\ell(w^J s_i) > \ell(w^J)$ (0.19)

So, by induction, $w^J \alpha_s > 0$, and $w^J \alpha_i > 0$, which leads to $w \alpha_i > 0$.

Corollary 0.8. We have $\Phi = \Phi^+ \sqcup \Phi^-$.

Corollary 0.9. The geometric representation $W \mapsto GL(V), s_i \to \sigma_i$ is faithful.

Proof. Let $w \in W$ such that $\sigma(w) = id$. We have $w\alpha_i = \alpha_i > 0$, $\forall i$. Therefore, using theorem 0.7, we obtain $\ell(ws_i) > \ell(w) \ \forall i$, which implies w = e.

Proposition 0.10. For $w \in W$, $\ell(w) = number$ of positive roots that are sent to negative roots by w.

Proof. Let us proceed by induction on $\ell(w)$. For $\ell(w)$ 0, this is obvious. The case $\ell(w) = 1$ also holds using the above lemma. Now, take $\ell(w) > 1$, and let $s_i \in S$ be such that $\ell(xs_i) < \ell(w)$. By induction, there are $\ell(ws_i)$ many $\alpha > 0$ such that $ws_i\alpha_i < 0$. By the above lemma, $s_i\alpha > 0$, unless $\alpha = \alpha_i$. On the other hand, using theorem 0.7, we have $ws_i\alpha_i = -w\alpha_i > 0$. Hence, $\alpha \neq \alpha_i$. So we found $\ell(ws_i)$ many $s_i\alpha > 0$ such that $ws_i\alpha < 0$. Adding α_i , we get the right number. If $\beta > 0$, $\beta \neq \alpha_i$, such that $w\beta < 0$, $(ws_i)(s_i\beta) < 0$ and $s_i\beta > 0$. Hence, $s_i\beta$ is one of the many α , so β is one of many $s_i\alpha$.

Remark 0.11. Let (W, S) a Coxeter system and $T = \{wsw^{-1} | s \in S, w \in W\}$. Taking (0.13) into account and noting that $w\sigma_{\alpha_i}w^{-1} = \sigma_{w\alpha_i}$, we get the following correspondence:

{Algebraic reflexions $t \in T$ } \leftrightarrow {Geometric reflection σ_{β} } \leftrightarrow {Positive roots} (0.20)

Proposition 0.12. Let $w \in W$, $t \in T$ and α the corresponding positive root. We have:

- 1) $\ell(wt) > \ell(w) \Rightarrow w\alpha > 0$,
- 2) $\ell(wt) < \ell(w) \Rightarrow w\alpha < 0$.

Proof. First, we show that $2 \Rightarrow 1$. We have $\ell(wt) < \ell(w) = \ell(wtt)$. Hence $0 < xt\alpha = w(\alpha)$, and so $w\alpha < 0$.

Now we prove 2). Suppose that $\ell(wt) < \ell(w)$. Let $w = s_1 \dots s_k$ reduced, with $s_i \in S$. By the exchange property, we have

$$t = \underbrace{s_k s_{k-1} \dots s_{i+1}}_{u} s_i \underbrace{s_{i+1} \dots s_k}_{u^{-1}} \tag{0.21}$$

Therefore, $\alpha = u\alpha_i$, where we use the correspondence $\alpha_i \leftrightarrow s_i$. Now, $w\alpha =$ $uu\alpha_i = s_1s_2\dots s_i\alpha_i$. But $\ell(s_1s_2\dots s_is_i) < \ell(s_1s_2\dots s_{i-1})$. By theorem 0.7, we deduce $s_1 s_2 \dots s_i \alpha_i < 0$.