Project Title:

Sentiment Analysis of Tweets

Project Members:

19BCE0249 (Kaustubh Dwivedi)

19BCE0276 (Harine A)

19BCE0253 (Nishma Avalon Rebello)

19BCE0200 (Soumyaraj Roy)

Final Project Review

Course Code: CSE3013 - AI

Slot: F1

Professor: Dr. W.B. Vasantha

1. Introduction

Sentiment analysis is a significant tool in social media monitoring and is often performed on textual data, as it allows us to gain an overview of the wider public opinion behind certain topics. Social media monitoring tools, for example, Brand watch Analytics make the process quicker and easier than ever before, because of Realtime monitoring capabilities. This project targets to enact on such a tool for all purpose utility. We have chosen twitter in this project for data collection, experimentation and analysis. Analysing the reactions on twitter, can give a true opinion analysis of majority of the people. We will check the success rate of different algorithms and implement an algorithm to our own understanding and incorporate an aspect that will allow us to judge sentiments in the tweets.

This project deals with Sentiment Analysis, also called opinion mining, which is a Natural Language Processing technique used to determine whether data is positive, negative or neutral. Sentiment analysis is often performed on textual data to help businesses monitor brand and product sentiment in customer feedback, and understand customer needs.

We will use the concepts of Natural Language Processing (NLP), which is a field of Artificial Intelligence, in which computers are programmed how to process, analyze and understand large amounts of natural language data and hence derive meaning from human language in a smart and useful way.

Need of sentiment analysis

i) In Business:

In marketing field, the companies use it to develop their strategies or to understand customers' feelings towards products or brand, how people respond to their campaigns or product launches; and why do the consumers not buy some products.

ii) In Politics:

In the political field, it is used to keep track of political view and to detect consistency and inconsistency between statements and actions at the government level. It can also be used to predict election results.

iii) Public Actions:

Sentiment analysis can also be used to analyze and monitor social phenomena, for the spotting of potentially dangerous situations and determining the general mood of the blogosphere. By automatically sorting the sentiment behind reviews and social media conversations in open platform like Twitter, a company such as an E-Commerce company, can make faster and more accurate decisions for its market.

In this project we will perform the following tasks:

- 1. Firstly, Collection of Datasets from Kaggle.
- 2. Analyse the Data
- 3. Pre-process the data (transformation of data).
- 4. Train the data using python code.
- 5. Test the data.
- 6. Analyze the data and show result.
- 7. Analyze and show the level of accuracy of the prediction (analyze file)

2. <u>Literature Survey</u>

S.N	Authors and	Title (Study)	Concept /	Methodology	Dataset	Relevant Finding	Limitations/ Future
О	Year		Theoretical	used/	details/		Research/ Gaps
	(Reference)		model/	Implementation	Analysis		identified
			Framework				
1.	Erik	Sentiment	This paper	This paper	We can	Sentiment analysis	Some NLP
	Cambria	Analysis Is a	focuses more	basically explains	understand	enormous bag of	undertakings, in any
	and	Big Suitcase	about deep	about the	about the	natural language	case, require more
	Soujanya		learning and its	syntactic layer,	how	processing (NLP)	than a
	Poria,		implementation	and further breaks	sentimental		simple data driven
	Alexander		using	down to	analysis can	issues. sentimental	way to deal with
	Gelbukh,		NLP(natural	Microtext	be	analysis has for	accomplish
	Mike		language	Normalization,	implemented	some time been	human-like
	Thelwall,		program)	Sentence	through	confused with the	execution
	2017			Boundary	NLP, its	undertaking of	
				Disambiguation,	structure and	polarity	more pros and
				Part-of-Speech	the break	detection.	cons are to be
				Tagging and their	down and		discussed regarding
				detailed	use of each	This,	the sentiment

				explanation.	process.	notwithstanding, is	approach towards
				further more it	Also the	only one of the	NLP.
				gives us a more	paper	numerous NLP	
				deep	provides the	issues that should	
				understanding of	problems to	be	
				the semantics and	deal with in	addressed to	
				the pragmatics	each process	accomplish	
				layer.	and	human-like	
					alternatives.	execution in	
						sentiment analysis.	
	Daniele	Twitter	This paper	This journal first	In order, to	The extraction of	This paper explains
	Cenni,	Vigilance: a	proposes the	gives us an insight	build this	Part-of-Speech	the architecture very
	Paolo Nesi,	Multi-User	twitter	of what a social	architecture,	(POS) labelled	well, with help of
2.	Gianni	platform for	vigilance	media analytics	the	keywords and	case study and
	Pantaleo,	Cross-Doma	architecture,	platform is, and	important	calculation of	understand the
	Imad Zaza,	in Twitter	which is a	also explains how	aspects	catchphrase event	implementation of
	2017	Data	cross-space,	sentiment analysis	concerned	at various time	the sentiment
		Analytics,	multi-client	of social media	are data,	goal.	analysis through
		NLP and	apparatus for	can be influenced	NLP and	sentiment polarity	NLP and social
		Sentiment	gathering and	such as surveying	Sentiment	extraction for each	media analytics.
		Analysis	dissecting	customer	Analyses	single tweet; this	
			Twitter	sentiments,	based	sort of data can be	
			information,	anticipating	metrics, API	valuable to	
			giving	monetary and	availability,	evaluate and	
			aggregated	market results	User	appraise the overall	
			measurements,	, anticipating	network	notion of the	
			dependent on	political race	analysis, real	Twitter	
			the volume of	results, giving	time	local area in	

	tweets and	early recognition	analysis and	regards to a
	tweets and		, ,	
	retweets,	and cautioning for	full faceted	particular channel
	clients' impact	unfavourable	search. The	or search.
	organization,	technical issues	paper also	lower-level
	Natural	as well as for	gives a	measurements are
	Language	disaster response	detailed	utilized to weight
	Processing and	surveillance	analysis	keyword events
	sentiment	systems.	about the	(registered as
	Analysis of		architecture.	NLP-based
	textual content.			measurements,
				as recently
				depicted) to assess
				the most powerful
				keywords for
				conclusion
				examination, just
				as distinguishing
				conceivable
				sources and
				motivations to
				clarify or decipher
				explicit
				supposition
				patterns.

3	Text	This paper	The proposed	This paper	The paper mainly	As future work of
S.Muthu	Analysis	clarifies various	method they have	distinguishes	focuses on the	this journal, we can
kumaran,	for	strategies for	analyzed various	solid pieces of	implementation of the	refine rule set to
Dr.P.Sur	Product	sentiment	types of algorithms,	information of	sentiment analysis.	extricate more
esh	Reviews	analysis and	for predicting	subjectivity	We can also	reliance relations
2018	for	displays a	semantic	utilizing the	understand more	from datasets and
	Sentimen	productive	orientation.	consequences of a	about opinion mining	that will assist with
	t	methodology. It	They utilized	technique for	as well as sentiment	improving the
	Analysis	likewise features	four-stage	bunching words	analysis. The	precision and

using	the significance	supervised learning	as indicated by	architecture proposed	review
NLP	the	algorithm to derive	distributional	utilizes a	estimations of the
Methods	item surveys are	the semantic	similarity.	non-supervised	framework by
	of most extreme	direction of	Basically this	sentiment order,	characterizing
	significance for	descriptive words	paper uses	approach for	algorithms.
	the	from constraints on	Flip kart Reviews	sentiment	In the event that the
	purchasers to	conjunctions.	Database as	classification and it is	framework ready to
	choose depending	The texts are at that	dataset for this	assessed utilizing a	right all the spelling
	on their interests	point tokenized into	project.	dataset of online	and syntactic
	with respect to	tokens and the	The main source	client surveys of	blunders present in
	item's different	stop-words are	of data used is the	cell phones.	the survey reports
	angles for	recognized and	product reviews	This paper shows	in the
	instance a	taken out.	from Amazon.	that, the framework	pre-processing step
	monitor,	The audits for a	They utilize	performs very well in	itself that will
	processor speed,	couple of	Dirichlet	opinion arrangement	improve the
	memory.	mainstream	distribution and	of client surveys with	review estimation
		telephones have	Bayesian	high exactness.	of the System
		been gotten by	Classification,	implemented fuzzy	execution.
		building a web	that represents a	functions to emulate	
		crawler. The web	supervised	the effect of various	
		crawler has been	learning method	linguistic hedges such	
		written in Python	as well as a	as dilators,	
		utilizing a scraping	statistical method	concentrator and	
		library called	for classifications	negation on	
		Beautiful Soup.	of various words	opinionated phrases	
		Alongside the	and their	help the system to	
		survey text, some	meaning.	achieve more	
		extra information		accuracy in sentiment	
		bunches and the		classifications.	
		lexical semantic			
		highlights are			
		appeared to have			
		higher exactness			
		than.			

4 Alex		Detectin	This paper mainly	In this paper in	In this paper for	Through this paper	The feature
	Mordkov	g	focuses on	order to analyse	preparation,	we could analyse the	selection was
	ich,	Emotion	detection of	various emotions of	cross-approval,	detection of emotion	executed in two
	Kelly	in	emotion in	the speaker,	and testing, they	in the human speech	ways. The main
	Veit,	Human	speech, they use a	the sound accounts	utilized the	by analysing various	route was to
	Daniel	Speech	free	and record	Emotional	aspects and they	discover the mix of
	Zilber		software(praat)	information are	Prosody Speech	concluded that we	1-3 features that
	2011		which is used to	pre-processed in a	and Transcripts	could take the sample	limits training
			process the audio	custom four-stage	acquired from the	inputs and classify	error. The
			data and extract	pipeline to produce	Linguistic Data	them under 14	subsequent
			various statistics	an information	Consortium.	emotions, when	methodology was
			which includes	document in which	This information	trained on the	to utilize a forward
			voice report. The	every expression is	comprises	complete training	or in backward
			statistic in the	an information test	accounts of	data set.	search heuristic.
			report (pitch,	addressed	expert actors		Neither one of the
			pulses, voicing,	as a single line. This	discussing dates		approaches
			jitter, and	subsequent	and numbers with		improved outcomes
			harmonicity) are	information record	different		fundamentally.
			determined	is stacked into	emotional		These search
			through this	MATLAB as a	intonations.		algorithms for new
			report.	stylized design	The semantic		features end up
			It also emphasises	matrix.	content of the		being slow.
			about	The chose K-Means	expressions is		Basically, the main
			Mel-frequency	clustering as their	proposed to be		aim of this proposal
			cepstral	classification	sincerely		was to analyse
			coefficients	algorithm for	unbiased, as a		various emotions
			(MFCCs) which	simplicity purpose.	type of mental		through the voice.
			are a common set	Also they	control in the		Now they could
			of features used	experimented with	examples.		actually classify
			in voice	the SVM			under 14 emotions
			processing	implementations in			but it can be still
			algorithms.	Liblinear, LibSVM,			improved to expand
				and the			the classifications
				MATLAB-builtin			to improve the

				SVMClassify for			accuracy.
				our classification			
				tasks.			
5	Milad	Sentimen	This paper mainly	In this paper we	The data set	Basically this journal	This paper provides
	Sharif,	t based	proposes that	could analyse that	incorporated in	helps us to analyse	us a very simple
	Soheil	model	create tools to	the semantic	this paper details	the semantic	survey of analysing
	Norouzi	for	evaluate the	orientation and	of the different	orientation and	different
	2011	Reputati	semantics of item			strength of a review	classification model
		on	audits and	strength of a survey	transactions that	incorporated in the	and determined the
		system	determining the	is anticipated by	occurred on	amazon service d by	accurate one which
		in	polarity of	following the	Amazon.com for	tracing the changes in	can predict these
		Amazon	opinions.	adjustments in the	a wide range of	the associated	distributions more
			Also to assess the	related financial	software items.	economic variables of	accurately than
			strength	factors of a dealer.	The data set	a merchant.	other models.
			of an opinion is	the technique	gathered from	Various algorithms	Further more
			utilizing audits	utilizes two diverse	freely accessible	and methods such as	research to be done
			with numeric	parallel classifiers	data at	multivariate	on how its it better
			ratings and	(for example	Amazon.com by	Bernoulli event	than other models
			preparing	Innocent Bayes and	utilizing Amazon	model and	and how the
			(semi-)supervised	semi-directed	Web Services.	Semi-supervised	accuracy can be
			learning	recursive		Auto-Encoder (RAE)	improved.
			calculations to	auto-encoder) to	The data set	architecture are well	
			arrange surveys	foresee the	incorporates two	explained and utilized	
			as certain or	exceptional cost of	sections,	in their model.	
			negative	an item.	transaction	Basically, they	
				The notion	history and	conducted a survey in	
				investigation	reputation data.	which they used	
				calculation (for	The initial	different binary	
				example RAE) was	segment	classification models	
				conveyed to acquire	comprises of	to accurately predict	
				the semantics of the	transaction IDs at	the polarity of the	
				item surveys and	every product and	premium price that a	
				gave a model to the	the cost at which	merchant gets based	
				exceptional costs	the products were	on the costumer	

	sold. The second	reviews	
	piece of data set		
	incorporates the		
	reputation history		
	of every trader		
	that had a product		
	available to be		
	purchased during		
	the time frame		
	which the data set		
	was gathered.		

3. Objective of the project:

Sentiment analysis, which is otherwise called opinion mining, assessment extraction, sentiment mining or subjectivity analysis is the way toward dissecting if a piece of web-based composition (online media notices or blog entries or news locales, or some other piece) communicates positive, neutral or negative perspectives.

There are a lot of aspects in which the sentiment analysis can be done and it can be really helpful in various situations. In our project we have taken the airlines sentiment analysis.

The main objective of our project is to analyses and monitor social platforms accessed by various users from different backgrounds to detect consistency and inconsistency between statements and actions based on uses such as product development, governmental issues, and determining the general mood of the blogosphere.

As per the first source, A sentiment analysis work about the issues of each major U.S. carrier. Twitter information was scratched from February of 2015 and benefactors were asked to initially group positive, negative, and unbiased tweets, trailed by sorting negative reasons, (for example, "late flight" or "discourteous service").

Our objective is to investigate the sentiment and anticipate the class of the sentiment as "positive", "neutral" or "negative".

4. <u>Innovation component in the project</u>:

In our case we have taken the 'twitter airlines sentiment analysis' as the topic for our sentimental analysis. This data utilized for this analysis was taken from Kaggle.com.

In this project we have researched and analyzed the success rate of the sentimental analysis by testing through various algorithms such as

- 1. Logistic regression
- 2. 2. Naive bayes
- 3. 3. SVM

4. 4. Random Forest

To compute the general extremity of a post, we alluded to the past researches and added some worth by presenting new metrics. This sentiment Analysis Model which we have made can be utilized in various situations such as governance, public opinion predictions, e-commerce...etc

5. Work done and implementation

a. Methodology adapted

- 1. Use data sets from Kaggle (An online platform capable of providing users with datasets)
- 2. Analyse the data using various Visualization libraries
- 3. Pre-processing the data

Cleaning, normalization, transformation, feature extraction and selection, and so on are all part of the pre-processing. The result of pre-processing would be coherent and uniform data that can be used to improve the performance of the classifier.

4. Use python code to train the data set

The machine learning modules which we plan to use include SVM, Logistic regression, random forest, Naïve Bayes.

One of the most basic text classification algorithms is the Naive Bayes classifier. It's a simple classifier based on the Bayes theorem that makes naive assumptions about the feature variables' independence.

Random forests are a way of averaging multiple deep decision trees, trained on different parts of the same training set, with the goal of reducing the variance. This comes at the expense of a small increase in the bias and some loss of interpretability, but generally greatly

boosts the performance in the final model

Support vector machines so called as SVM is a supervised learning algorithm. The Ideology behind SVM is to find a hyperplane that best separates the features into different domains.

- 5. Testing phase
- 6. Analyze the data and display results

Perform Sentiment Analysis on Tweets After gathering and cleaning our data set, we are ready to execute the sentiment analysis algorithm on each tweet. Then, we will calculate an average score for all the tweets combined.

7. Visualization of results using graphs and charts

We plan to use Pyplot to display figures. matplotlib.pyplot is a collection of command style functions that make matplotlib work like MATLAB. Each pyplot function makes some change to a figure: e.g., creates a figure, creates a plotting area in a figure, plots some lines in a plotting area, decorates the plot with labels, etc

8. Analyze as well as show the accuracy-level of the prediction (analyses file).

Tf-Idf

Tf-idf stands for term frequency-inverse document frequency, and the tf-idf weight is a weight often used in information retrieval and text mining. This weight is a statistical measure used to evaluate how important a word is to a document in a collection or corpus. The importance increases proportionally to the number of times a word appears in the document but is offset by the frequency of the word in the corpus. Variations of the tf-idf weighting scheme are often used by search engines as a central tool in scoring and ranking a document's relevance given a user query.

Bag of words (BoW) converts the text into a feature vector by counting the occurrence of words in a document. It is not considering the importance of words. Term frequency — Inverse document frequency (TFIDF) is based on the Bag of Words (BoW) model, which contains insights about the less relevant and more relevant words in a document. The importance of a word

in the text is of great significance in information retrieval.

Example — If you search something on the search engine, with the help of TFIDF values, search engines can give us the most relevant documents related to our search.

Term Frequency (TF)

It is a measure of the frequency of a word (w) in a document (d). TF is defined as the ratio of a word's occurrence in a document to the total number of words in a document. The denominator term in the formula is to normalize since all the corpus documents are of different lengths.

$$TF(w,d) = \frac{occurences\ of\ w\ in\ document\ d}{total\ number\ of\ words\ in\ document\ d}$$

Inverse Document Frequency (IDF)

It is the measure of the importance of a word. Term frequency (TF) does not consider the importance of words. Some words such as' of', 'and', etc. can be most frequently present but are of little significance. IDF provides weightage to each word based on its frequency in the corpus.

$$IDF(w, D) = \ln(\frac{Total\ number\ of\ documents\ (N)\ in\ corpus\ D}{number\ of\ documents\ containing\ w})$$

Term Frequency — **Inverse Document Frequency** (**TFIDF**)

It is the product of TF and IDF.

TFIDF gives more weightage to the word that is rare in the corpus (all the documents).

TFIDF provides more importance to the word that is more frequent in the document.

$$TFIDF(w, d, D) = TF(w, d) * IDF(w, D)$$

Term Frequency — Inverse Document Frequency (TFIDF) is a technique for text vectorization based on the Bag of words (BoW) model. It performs better than the BoW model as it considers

the importance of the word in a document into consideration. The main limitation is that it does not capture the semantic meaning of the words. This limitation of TFIDF can be overcome by more advanced techniques such as word2Vec.

Parameters used:

input: text document

lowercase: bool(Default-True). Convert all characters to lowercase before tokenizing.

stop words: Remove the defined words from resulting vocabulary.

ngram_range: The lower and upper boundary of the range of n-values for different n-grams to be extracted.

max_df: Ignore the term that has a document frequency higher than a threshold.

min df: Ignore the term that has a document frequency lower than a threshold.

max features: Build a vocabulary that only considers top max features ordered by word occurrence.

norm: '11', '12' or 'None' (Default-'12')

use_idf: boolean (default=True). Enable inverse-document-frequency reweighting.

smooth_idf: boolean (default=True). Smooth idf weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once. Prevents zero divisions.

sublinear_tf: boolean (default=False). Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf).

Machine Learning Model Used:

- **1. Support Vector Machine**: Support vector machines so called as SVM is a supervised learning algorithm which can be used for classification and regression problems as support vector classification (SVC) and support vector regression (SVR).
- **2. Logistic Regression**: Logistic regression is a statistical model that in its basic form uses a logistic function to model a binary dependent variable, although many more complex extensions exist.
- **3. Random Forest Classifier**: A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting.
- **4. Multinomial NB**: The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for text classification). The multinomial distribution normally requires integer feature counts.

Major Libraries Used:

- 1. Pandas: Pandas is an open-source Python Library providing high-performance data manipulation and analysis tool using its powerful data structures.
- 2. Numpy: NumPy, which stands for Numerical Python, is a library consisting of multidimensional array objects and a collection of routines for processing those arrays.
- 3. Matplotlib: Matplotlib is one of the most popular Python packages used for data visualization.
- 4. Seaborn: Seaborn is a library mostly used for statistical plotting in Python.
- 5. Sklearn Scikit-learn (Sklearn) is the most useful and robust library for machine learning in Python.

HARDWARE AND SOFTWARE REQUIREMENTS:

SOFTWARE REQUIREMENT:

- 1. Operating System: Windows 7, Windows XP, Windows Vista or higher versions
- 2. Programming Language: Python 3
- 3. Coding Platform: Any Python Platform such as Anaconda, Spyder or Jupyter Notebook
- 4. Modern Web Browser: Preferably Chrome or Firefox or Edge
- 5. Kaggle Data Set

HARDWARE REQUIREMENT:

1. RAM: 1GB or more

2. Processor: Any Intel Processor

3. Hard Disk: 6GB or more

4. Speed: Min 1 GHz

5. No additional hardware components are required.

b. Dataset used:

a. The dataset used is Twittern Airlines sentiment Analysis.

The data is collected from-

https://www.kaggle.com/crowdflower/twitter-airline-sentiment

According to the original source "A sentiment analysis job about the problems of each major U.S. airline. Twitter data was scraped from February of 2015 and contributors were asked to first classify positive, negative, and neutral tweets, followed by categorizing negative reasons (such as "late flight" or "rude service")".

Our job is to analyze the sentiment and predict the category of the sentiment as "positive", "negative", "neutral". The data embodies the relationship mapping tweets to their author's sentiments: positive or negative. The tweets have been extracted using the twitter api.

Tools Used: We have used Jupyter Notebook as a tool for running our ML Models.

b. Reference paper we are taking in consideration is

Sailunaz, K. (2018). Emotion and Sentiment Analysis from Twitter Text (Unpublished master's thesis), University of Calgary, Calgary.

The link for the following project is mentioned below:

https://prism.ucalgary.ca/handle/1880/107533

c. Our project differs the above research paper that we are analyzing the tweets and using Machine Learning models and Natural Language Processing concepts to predict whether a tweet tweeted by the user is positive negative or neutral and analyze the other trends with highest accuracy. Our is a practical hands-on approach by using NLP and ML concepts.

d. Screenshot and Demo:

1. First step is to import all the libraries that are required in this project.

We imported pandas to manipulate our data, converting the csv file to data frame so that we can use it for Models. Pyplot is used to plot graph in python, we will use it to plot a bar graph for comparison of the models.

Sklearn is the most important library we will use here for importing various models that we will use to train our data and compare their accuracy using classification report, accuracy score, confusion matrix, etc. We will also import TfidfVectorizer.

A Scikit-Learn provides the implementation of the TfidfVectorizer.

```
In [2]: from __future__ import print_function
        import sys
        %matplotlib inline
        import pandas as pd
        import itertools
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
        sns.set()
        import re
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.svm import LinearSVC
        from sklearn.svm import SVC
        from sklearn.model_selection import GridSearchCV
        from sklearn.feature_extraction import text
        from sklearn.pipeline import make_pipeline
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import classification_report, accuracy_score, confusion_matrix, roc_curve
        from sklearn.feature_extraction.text import TfidfVectorizer
```

i	<pre>input_df= pd.read_csv("/Tweets.csv")</pre>												
C	Check first few rows of the	table											
i	nput_df.head()												
	tweet_id	airline_sentiment	airline_sentiment_confidence	negativereason	negativereason_confidence	airline	airline_sentiment_gold	name					
	570306133677760513	neutral	1.0000	NaN	NaN	Virgin America	NaN	cairdi					
1000	1 570301130888122368	positive	0.3486	NaN	0.0000	Virgin America	NaN	jnardi					
	2 570301083672813571	neutral	0.6837	NaN	NaN	Virgin America	NaN	yvoni					
;	3 570301031407624196	negative	1.0000	Bad Flight	0.7033	Virgin America	NaN	jnardi					
	4 570300817074462722	negative	1.0000	Can't Tell	1.0000	Virgin America	NaN	jnard					

2. Then we will read our dataset using pandas read csv function which reads a csv file and returns a dataframe.

We will store that dataset in our variable input_df .

Head function is used to view top 5 rows of our dataset.

```
Analysing the data and get some insights
           The shape of the table: rows=14640, columns=15. Each row corresponds to one twitter user.
In [6]: input_df.shape, input_df.columns
Out[6]: ((14640, 15),
Index(['tweet_id', 'airline_sentiment', 'airline_sentiment_confidence',
                    'negativereason', 'negativereason_confidence', 'airline',
'airline_sentiment_gold', 'name', 'negativereason_gold',
'retweet_count', 'text', 'tweet_coord', 'tweet_created',
'tweet_location', 'user_timezone'],
                   dtype='object'))
           Total number of passengers grouped by airlines
In [7]: input_df["airline"].value_counts()
Out[7]: United
           US Airways
           American
                                2759
           Southwest
                                 2420
           Delta
                                 2222
          Virgin America
                                  504
           Name: airline, dtype: int64
           There are 3 different category of sentiments -"positive", "negative", "neutral"
In [8]: input_df["airline_sentiment"].value_counts()
Out[8]: negative
                         9178
           neutral
                         3099
                         2363
           positive
           Name: airline_sentiment, dtype: int64
           Checking if there any null entry. Most importantly we care if the "text" entry is blank. As foolows there is no empty "text" entry. Good for us :). We do not need to deal with
           missing entry problem.
```

3. The next part is to do some data analysis on our dataframe using various pandas function. We will count the various values of different airways present in our dataset. Then we will count the number of sentiments available for each type that is positive, negative and neutral.

4. After counting the different sentiments we will use seaborn library to plot the three sentiments against the different airlines to get the insight of data. Then we will find the percentage of the data for each airlines for different kind of sentiment.

We observe that the maximum negative tweets came for the United Airlines (71%) while the positive tweets came from the southwest airlines.(25%).

5. Then we have represented the same information of the previous percentage in the form of bar graph. Then We have found out the various reasons for negative tweets by the users. We found out that customer service issues and late flight are the two main reasons for negative tweets.

Around 40 % = (5462/14640)*100 of the "negativereason" rows are empty. Therefore we will use only "text" column for our model as X.

6. Then we have presented the same information in the form of visualization using bar graph for different airlines: how much a reason is responsible for a negative tweet for various flight.

```
Data Preprocessing
In [17]: X = input_df['text']
          y = input_df['airline_sentiment']
          Split data into train, test
In [18]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=42)
          X_train.shape, y_train.shape
Out[18]: ((7320,), (7320,))
          We will use scikit-learn's feature extraction tool: Term Frequency times Inverse Document Frequency (tf-idf) For more details please see - https://en.wikipedia.org/wiki/Tf-idf
          For improving performance of our model we shrink the vocabulary by removing stopwords from the "english" library which will remove some redunadant words "a", "the",
          "about"
In [19]: def plot_confusion_matrix(cm,target_names,title='Confusion matrix',normalize=True):
              cmap = plt.get_cmap('Reds')
              plt.figure(figsize=(8, 6))
              plt.imshow(cm, interpolation='nearest', cmap=cmap)
             if target_names is not None:
                  tick_marks = np.arange(len(target_names))
                  plt.xticks(tick_marks, target_names)
                  plt.yticks(tick_marks, target_names)
                  cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
              thresh = cm.max() / 1.5 if normalize else cm.max() / 2
              for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
                  if normalize:
                      plt.text(j, i, "{:0.4f}".format(cm[i, j]),
                               horizontalalignment="center",
                                color="white"
                               if cm[i, j] > thresh else "black")
                  else:
                      plt.text(j, i, "{:,}".format(cm[i, j]),
                                horizontalalignment="center",
                                color="white" if cm[i, j] > thresh else "black")
              plt.ylabel('True label')
              plt.xlabel('Predicted label')
              plt.show()
```

7. Here is the important step of our project i.e. Data PreProcessing

We have divided the data into X (our features - text) and Y (our target which we have to predict - airline-sentiment). After that we have used train test split function of scikit learn library for dividing the whole dataset into training and testing set. We have divided the dataset into two equal parts for testing and training sets.

After that we have defined our function plot_confusion_matrix for plotting the classification report that we will get from testing of different models.

Different Models

a. Our first model **Multinomial Naive Bayes Classifier** that we have used for predicting values on our test dataset. On trying various values for alpha, we have found it that it has given best result when the value of alpha is set to 1. For tf-idf we are training the data in it and calculating the accuracy score with the confusion matrix.

The accuracy that we get after using this model is around 68% which is very low and can be more improved by using various other models. After that we have called our function that we have defined before plot_confusion_matrix and plotted our results for visual representation of our data.

b. The second model we have used is the **logistic regression model** used mainly for binary classification but can also be used for multiclass classification. On trying various parameters we found out that it gives optimum result when 11_ratio is 0.2, solver is 'saga' and tolerance is 0.01 and when fit_intercept is true. For tf-idf we are training the data in it and calculating the accuracy score with the confusion matrix.

Logistic Regression has given a huge improvement as compared to Naive Bayes Classifier on the accuracy as our accuracy reached around 77%. After that we have plotted the graph of our result predictions using our function plot confusion matrix which we have defined before.

c. **Support Vector Machines** is the third type of classifier is the third type of classifier we have used for predicting sentiment. For tf-idf we are training the data in it and calculating the accuracy score with the confusion matrix. We have tried two different kernels 'linear' and 'rbf'. Linear kernel has given the more optimum result with a test accuracy of 78% which is an improvement but not much as compared to previous Logistic Regression. The we have plotted our result using the function plot confusion matrix defined before.

d. The last model we have used is **Random Forest** for testing and classifying our test dataset. We have tried different values of max_features and different values for estimators. Best result is given when max_features are 10 and n_estimators are 250. For tf-idf we are training the data in it and calculating the accuracy score with the confusion matrix.

We got an accuracy of 76% on our test data set which is not an improvement from the previous two models having accuracy of 77% and 78%. But it performs much better than Naive Bayes Classifier. Then we have plotted the data using our function plot_confusion_matrix defined before.

6. Results and discussion

We have used 4 different machine learning models for predicting sentiment of tweets on our test dataset. These models have given different accuracies on our testing dataset. They are as follows:

1. Naive Bayes Classifier:

68%

2. Logistic Regression:

77%

3. Support Vector Machine:

78%

4. Random Forest Classifier:

76%

The most accurate model with 78 % accuracy is SVM with TFIDFVectorizer.

The Naive Bayes Classifier gives us the least accuracy of 68% so we can't use that model for the prediction purpose. The other three models have given pretty good accuracy >75% so they can be used for sentiment prediction purpose.

The prediction process can be furthurly improved in future to achieve an accuracy greater than 80% by using different classifiers or just modifying and tuning the hyper-parameters of the existing models more finely. We can also try different other techniques to improve the performance of our existing model.

1. Logistic Regression:

Logistic Regression has given an accuracy of 77% when its parameters are set as follows :

C: 1.0,

fit intercept: True,

L1_ratio: 0.2,

Tolerance: 0.01,

Solver: saga,

In case of Logistic Regression with the above tuned parameters, the F1 score of negative, neutral and positive tweets are 0.86, 0.51 and 0.67 respectively.

2. Random Forest Classifier:

Random Forest	Classifier l	nas given	a slightly b	petter accuracy of 78°	% when its paramet	ers are set as follows:

Criterion: entropy,

Max_depth : None,

Max_features: 10,

N_estimators: 250,

The Random Forest Classifier with the above tuned parameters has the F1 score for negative, neutral and positive tweets as .85, .49 and .57 respectively.

3. Support Vector Classifier:

The Support Vector Classifier has given the best accuracy of 78% when its parameters are set as follows:

C:1,

Kernel: Linear

The Support Vector Classifier with the above tuned parameters has the F1 score for negative, neutral and positive tweets as .86, .53 and .70 respectively.

Online Link of our Project

The complete link of the project along with the dataset can be find out at the following GitHub repository of our team member Kaustubh Dwivedi (Github Username : onlykingKD).

https://github.com/onlykingKD/Twittern-Airlines-sentiment-Analysis

7. References:

- [1] E. Cambria, S. Poria, A. Gelbukh and M. Thelwall, "Sentiment Analysis Is a Big Suitcase," in *IEEE Intelligent Systems*, vol. 32, no. 6, pp. 74-80, November/December 2017, doi: 10.1109/MIS.2017.4531228.
- [2] D. Cenni, P. Nesi, G. Pantaleo and I. Zaza, "Twitter vigilance: A multi-user platform for cross-domain Twitter data analytics, NLP and sentiment analysis," 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), San Francisco, CA, USA, 2017, pp. 1-8, doi: 10.1109/UIC-ATC.2017.8397589.
- [3] maran, S.Muthuku & esh, P.Sur. (2017). Text Analysis for Product Reviews for Sentiment Analysis using NLP Methods. International Journal of Engineering Trends and Technology. 47. 474-480. 10.14445/22315381/IJETT-V47P278.
- [4] Detecting Emotion in Human Speech (2011), Alex Mordkovich, Kelly Veit, Daniel Zilber, stanford university
- [4] SENTIMENT' BASED MODEL FOR REPUTATION SYSTEMS N AMAZON (2011), Milad Sharif, Soheil Norouzi, stanford university
- [6] Victoria Ikoro, Maria Sharmina, Khaleel Malik, and Riza Batista-Navarro : Analyzing Sentiments Expressed on Twitter by UK Energy Company Consumers. 2018
- [7] A Machine Learning based Framework for Sentiment Classification: Indian Railways Case Study (IJITEE ISSN: 2278- 3075, Volume-8 Issue-4, February 2019)
- [8] A Survey: Sentiment Analysis Using Machine Learning Techniques for Social Media Analytics (IJPAM International Journal of Pure and Applied Mathematics)