

MATHEMATICS: SPECIALIST 1 & 2

SEMESTER 1 2016

TEST 3

Resource Free

Time Allowed: 24 minutes

Total Marks: 19

1. [1, 3 marks]

A line drawn from a point A forms a tangent to a circle at B. A second line from A cuts through the same circle at point C and D.

(a) State a relationship between the lengths of the line segments AB, AD and AC.

(b) Hence prove that $\triangle ABD \sim \triangle ACB$.

2. [3, 1 marks]

Given vectors $\mathbf{m} = 5\mathbf{i} - 2\mathbf{j}$ and $\mathbf{n} = 4\mathbf{i} + 3\mathbf{j}$, determine

(a) the scalar projection of \mathbf{m} onto \mathbf{n} .

$$M.\hat{n} = (51-24).(41+34)$$

$$= 20-6$$

$$= 14$$

(b) the vector projection of \mathbf{m} onto \mathbf{n} .

$$(m \cdot n) \hat{n} = \frac{14}{5} \times (41 + 31)$$

$$= \frac{54}{5} \cdot 1 + \frac{44}{5} \cdot 1$$

3. [6 marks]

Prove that the diagonals of a parallelogram bisect each other.

OABC is a parallelogram with $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OC} = \mathbf{c}$. The diagonals OB and AC meet at M.

If $\overrightarrow{AM} = h\overrightarrow{AC}$ and $\overrightarrow{OM} = k\overrightarrow{OB}$, use the fact that $\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{AM}$ to show that $h = k = \frac{1}{2}$.

$$OM = OA + AM$$
 $kOB = a + hAC$
 $k(a+c) = a + h(c-a)$
 $k(a+c) = a + hc * - ha$
 $k(a+c) = a +$

4. [1, 1, 3 marks]

(a) Find a counter-example to show that the following conjecture is not true.

 $\forall \ a,b \ \in \ \mathbb{Z} \ \mathrm{and} \ a > b \ \mathrm{then} \ a^2 > b^2$

$$a=1,b=-2$$
 $1 > 4$

(b) Find an example to show that the following conjecture is true.

 $\exists \ a \in \mathbb{Q} \text{ such that } \frac{12}{a} \in \mathbb{Z}$

$$a=2$$
, $\frac{12}{2}=6$

(c) Write the mathematical notation for the statement:

For all rational numbers x, there exist integers y and w such that $x = \frac{y}{w}$ where w is non-zero.

MATHEMATICS: SPECIALIST 1 & 2

SEMESTER 1 2016

TEST 3

Calculator Assumed

Time Allowed: 27 minutes

Total Marks: 22

5. [2 marks]

The work done, in joules, by a force of ${\bf F}$ Newtons in changing the displacement of an object by ${\bf s}$ metres is given by the scalar product of ${\bf F}$ and ${\bf s}$.

A force acting on a bearing of 160° does work of 1 200 joules. If the object moved a distance of 350 cm on a bearing of 135°, determine the magnitude of the force. (2 marks)

 $1200 = 14 \times 3.5 \times 60525$ F = 378-3N

[2, 4 marks] 6.

A circle centred at O has s∠AOC = 140°, as shown in (a) the diagram. Determine the values of b and d. Justify your answers.

(b) A circle centred at O has a tangent ST as shown in the diagram. Given that s∠CDT = 55°, determine the value of x. Justify your answer.

$$SLABD = 35$$

 $n = 35$

must have reaso

7. [5 marks]

Prove that if the diagonals of a rectangle are perpendicular then the rectangle is a square.

$$\begin{array}{l}
\vec{5C} &= 9 + b \\
\vec{AB} &= b - 9
\end{array}$$

$$\vec{6C} &= 9 + b$$

$$\vec{6C} &= 9 + b$$

$$\vec{6C} &= 9 + b$$

$$\vec{6D} &= 9$$

$$\vec{6D} &=$$

8. [2, 3 marks]

OABC is a parallelogram, X is the midpoint of AB and Y is such that $\overrightarrow{CY} = \frac{2}{3}\overrightarrow{CB}$.

Let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OC} = \mathbf{b}$.

(a) Express
$$\overrightarrow{OX}$$
 and \overrightarrow{OY} in terms of **a** and/or **b**.

(b) Show that
$$\overrightarrow{OX} \bullet \overrightarrow{OY} = \frac{4}{3} \mathbf{a} \bullet \mathbf{b} + 8$$
, given $|\mathbf{a}| = 3$ and $|\mathbf{b}| = 2$.

$$\overrightarrow{OX} \cdot \overrightarrow{OY} = (a+2b) \cdot (b+39)$$

$$= a \cdot b + 3a^2 + 2b^2 + 39 \cdot b$$

$$= 49 \cdot b + 33^2 + 22^2$$

$$= 43 \cdot b + 6 + 2$$

$$= 43 \cdot b + 8$$

9. [4 marks]

In the diagram, CL is a tangent to a circle with centre O at C.

Angle BCL = x and

Angle CAB = y.

Prove that x = y