Течения вязкой жидкости при малых числах Рейнольдса

Верещагин Антон Сергеевич д-р. физ.-мат. наук, доцент

Кафедра аэрофизики и газовой динамики

8 сентября 2024 г.

Аннотация

Задача обтекания сферы вязкой жидкостью. Модель Стокса. Решение задачи обтекания сферы в рамках модели Стокса. Сравнение со случаем обтекания идеальной жидкости. Сила Стокса. Применимость теории Стокса. Формулы Озеена, Озеена – Гольдштейна, Буссинеска.

Обтекание сферы вязкой жидкостью

Постановка задачи (G.G.Stokes, 1851) Определить силу, действующую на сферу радиуса a, движущуюся со скоростью U в потоке вязкой жидкости, плотности ρ и динамической вязкости μ , при малых числах Рейнольдса

$$\mathrm{Re} = \frac{2aU\rho}{\mu} \ll 1.$$

Математическая постановка задачи

Задача обтекания движущейся сферы со скоростью U эквивалентна задаче обтекания покоящейся сферы в начале координат с заданным значением скорости потока на бесконечности. Стационарное течение жидкости около сферы описывается уравнениями Навье — Стокса:

$$\operatorname{div} \vec{v} = 0,$$

$$(\nabla \cdot \vec{v})\vec{v} = -\frac{1}{o}\nabla p + \nu \Delta \vec{v}$$

с граничным условием на сфере ($r = \sqrt{x^2 + y^2 + z^2}$),

$$\vec{v}|_{r=a}=0$$

и на бесконечности при $r \to \infty$

$$v_x \to 0$$
, $v_y \to 0$, $v_z \to U$.

Уравнения Стокса

Оценка слагаемых в уравнениях Навье – Стокса

$$\frac{\rho|(\nabla \cdot \vec{v})\vec{v}|}{\mu|\Delta \vec{v}|} \sim \frac{\rho U^2}{2a} : \frac{\mu U}{(2a)^2} = \text{Re} \ll 1$$

Уравнения Стокса

Оценка слагаемых в уравнениях Навье – Стокса

$$\frac{\rho|(\nabla\cdot\vec{v})\vec{v}|}{\mu|\Delta\vec{v}|}\sim\frac{\rho U^2}{2a}:\frac{\mu U}{(2a)^2}=\mathrm{Re}\ll1$$

Модель Стокса для описания ползущих течений Отбрасывая нелинейные инерционные члены в уравнении импульса из модели Навье – Стокса, получим уравнения:

$$\operatorname{div} \vec{v} = 0, \quad \nabla p = \mu \Delta \vec{v},$$

которые будем решать в сферической системе координат.

Данная модель является линейной относительно функций p и \vec{v} вида:

$$v_r = v_r(r,\theta), \quad v_\theta = v_\theta(r,\theta), \quad v_\lambda = 0, \quad p = p(r,\theta).$$

Задача обтекания сферы в постановке Стокса

Основные уравнения

$$\begin{split} \frac{\partial p}{\partial r} &= \mu \left(\frac{\partial^2 v_r}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} + \frac{2}{r} \frac{\partial v_r}{\partial r} + \frac{\operatorname{ctg} \theta}{r^2} \frac{\partial v_r}{\partial \theta} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta} - \right. \\ & \left. - \frac{2v_r}{r^2} - \frac{2 \operatorname{ctg} \theta}{r^2} v_\theta \right), \\ \frac{1}{r} \frac{\partial p}{\partial \theta} &= \mu \left(\frac{\partial^2 v_\theta}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 v_\theta}{\partial \theta^2} + \frac{2}{r} \frac{\partial v_\theta}{\partial r} + \frac{\operatorname{ctg} \theta}{r^2} \frac{\partial v_\theta}{\partial \theta} + \frac{2}{r^2} \frac{\partial v_r}{\partial \theta} - \frac{v_\theta}{r^2 \sin^2 \theta} \right), \\ \frac{\partial v_r}{\partial r} &+ \frac{1}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{2v_r}{r} + \frac{v_\theta \operatorname{ctg} \theta}{r} = 0. \end{split}$$

Граничные условия

$$v_r(a,\theta) = 0, \quad v_{\theta}(a,\theta) = 0.$$

 $v_r \stackrel{r \to \infty}{\to} U \cos \theta, \quad v_{\theta} \stackrel{r \to \infty}{\to} -U \sin \theta.$

Вид искомых функций

$$v_r(r,\theta) = f(r)\cos\theta$$
, $v_\theta(r,\theta) = -g(r)\sin\theta$, $p(r,\theta) = \mu h(r)\cos\theta$.

Упрощение исходной системы

$$h' = f'' + \frac{2}{r}f' - \frac{4(f-g)}{r^2},$$

$$\frac{h}{r} = g'' + \frac{2}{r}g' + \frac{2(f-g)}{r^2},$$

$$f' + \frac{2(f-g)}{r} = 0.$$

Начальные условия

$$f(a) = 0$$
, $g(a) = 0$, $f(\infty) = U$, $g(\infty) = U$.

Метод исключения переменных

$$\begin{cases} g = f'r/2 + f, \\ h = f'''r^2/2 + 3rf'' + 2f', \\ r^3f^{(4)} + 8r^2f^{(3)} + 8rf'' - 8f' = 0. \end{cases}$$

Метод исключения переменных

$$\begin{cases} g = f'r/2 + f, \\ h = f'''r^2/2 + 3rf'' + 2f', \\ r^3f^{(4)} + 8r^2f^{(3)} + 8rf'' - 8f' = 0. \end{cases}$$

Решение для уравнения типа Эйлера Пусть $f = r^k$, тогда

$$k(k-1)(k-2)(k-3) + 8k(k-1)(k-2) + 8k(k-1) - 8k = 0.$$

Решение:

$$k = 0$$
, $k = 2$, $k = -1$, $k = -3$.

Общий вид
$$f,g,h$$

$$f=\frac{A}{r^3}+\frac{B}{r}+C+Dr^2,$$

$$g=-\frac{A}{2r^3}+\frac{B}{2r}+C+2Dr^2,\quad h=\frac{B}{r^2}+10Dr.$$

Уточнение констант из граничных условий

$$D = 0$$
, $C = U$, $B = -\frac{3}{2}Ua$, $A = \frac{1}{2}Ua^3$.

Скорость и давление

$$v_r(r,\theta) = U\cos\theta \left[1 - \frac{3}{2}\frac{a}{r} + \frac{1}{2}\frac{a^3}{r^3}\right],$$

$$v_{\theta}(r,\theta) = -U\sin\theta \left[1 - \frac{3}{4}\frac{a}{r} - \frac{1}{4}\frac{a^3}{r^3}\right],$$

$$p(r,\theta) = -\frac{3}{2}\mu \frac{Ua}{r^2}\cos\theta.$$

Коэффициент давления

$$c_p = \frac{p - p_{\infty}}{\frac{1}{2}\rho U^2} = -\frac{3\mu}{\rho Ua} \frac{\cos \theta}{(r/a)^2} = -\frac{6}{\text{Re}} \frac{\cos \theta}{(r/a)^2}$$

Коэффициент давления

$$c_p = \frac{p - p_{\infty}}{\frac{1}{2}\rho U^2} = -\frac{3\mu}{\rho Ua} \frac{\cos \theta}{(r/a)^2} = -\frac{6}{\text{Re}} \frac{\cos \theta}{(r/a)^2}$$

(1) Коэффициент давления является функцией числа Рейнольдса Re и угла θ .

Коэффициент давления

$$c_p = \frac{p - p_{\infty}}{\frac{1}{2}\rho U^2} = -\frac{3\mu}{\rho Ua} \frac{\cos \theta}{(r/a)^2} = -\frac{6}{\text{Re}} \frac{\cos \theta}{(r/a)^2}$$

- (1) Коэффициент давления является функцией числа Рейнольдса Re и угла θ .
- (2) Распределение давления не симметрично относительно миделевой плоскости так, что главный вектор сил давления отличен от 0 (парадокс Даламбера не имеет место).

Коэффициент давления

$$c_p = \frac{p - p_{\infty}}{\frac{1}{2}\rho U^2} = -\frac{3\mu}{\rho Ua} \frac{\cos \theta}{(r/a)^2} = -\frac{6}{\text{Re}} \frac{\cos \theta}{(r/a)^2}$$

- (1) Коэффициент давления является функцией числа Рейнольдса Re и угла θ .
- (2) Распределение давления не симметрично относительно миделевой плоскости так, что главный вектор сил давления отличен от 0 (парадокс Даламбера не имеет место).
- (3) Коэффициент давления в критических точках не равен единице; при $\theta=\pi/2$ давление равно давлению в невозмущенном потоке; максимальное разряжение достигается в задней критической точке.

Сила, действующая на тело со стороны жидкости

Компоненты тензора напряжений в сферической системе координат

$$\begin{split} \sigma_{rr} &= -p + 2\mu \frac{\partial v_r}{\partial r}, \quad \sigma_{r\theta} = \mu \left(\frac{1}{r} \frac{\partial v_r}{\partial \theta} + \frac{\partial v_\theta}{\partial r} - \frac{v\theta}{r} \right), \\ \sigma_{\theta\theta} &= -p + 2\mu \left(\frac{1}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{v_r}{r} \right), \quad \sigma_{\theta\lambda} = \mu \left(\frac{1}{r\sin\theta} \frac{\partial v_\theta}{\partial \lambda} + \frac{1}{r} \frac{\partial v_\lambda}{\partial \theta} - \frac{v_\lambda \cot\theta}{r} \right), \\ \sigma_{\lambda\lambda} &= -p + 2\mu \left(\frac{1}{r\sin\theta} \frac{\partial v_\lambda}{\partial \lambda} + \frac{v_r}{r} + \frac{v_\theta \cot\theta}{r} \right), \\ \sigma_{\lambda r} &= \mu \left(\frac{\partial v_\lambda}{\partial r} + \frac{1}{r\sin\theta} \frac{\partial v_r}{\partial \lambda} - \frac{v_\lambda}{r} \right). \end{split}$$

Сила

$$\vec{F} = \int_{S} \vec{n} \cdot \sigma dS,$$

где S — поверхность тела; \vec{n} — вектор внешней единичной нормали, направленный в жидкость.

Сила Стокса

Компоненты тензора напряжений на поверхности сферы

$$\sigma_{rr}|_{r=a} = \left(-p + 2\mu \frac{\partial v_r}{\partial r}\right)_{r=a} = \frac{3}{2}\mu \frac{U}{a}\cos\theta,$$

$$\sigma_{\theta r}|_{r=a} = \sigma_{r\theta}|_{r=a} = \mu \left(\frac{1}{r}\frac{\partial v_r}{\partial \theta} + \frac{\partial v_{\theta}}{\partial r} - \frac{v_{\theta}}{r}\right)_{r=a} = -\frac{3\mu U}{2a}\sin\theta.$$

Сила Стокса

Компоненты тензора напряжений на поверхности сферы

$$\sigma_{rr}|_{r=a} = \left(-p + 2\mu \frac{\partial v_r}{\partial r}\right)_{r=a} = \frac{3}{2}\mu \frac{U}{a}\cos\theta,$$

$$\sigma_{\theta r}|_{r=a} = \sigma_{r\theta}|_{r=a} = \mu \left(\frac{1}{r}\frac{\partial v_r}{\partial \theta} + \frac{\partial v_{\theta}}{\partial r} - \frac{v_{\theta}}{r}\right)_{r=a} = -\frac{3\mu U}{2a}\sin\theta.$$

Сила, действующая на сферу

$$W = \int_{S} (\sigma_{rr} \cos \theta - \sigma_{r\theta} \sin \theta) dS = \int_{0}^{\pi} (\sigma_{rr} \cos \theta - \sigma_{r\theta} \sin \theta) 2\pi a^{2} \sin \theta d\theta =$$
$$= 3\pi \mu U a \int_{0}^{\pi} \sin \theta d\theta = 6\pi \mu U a.$$

Границы применимости формулы Стокса

Линии тока в осевой плоскости установившегося течения около сферы радиуса *а* (Танеда, 1956б)

Границы применимости формулы Стокса

Линии тока в осевой плоскости установившегося течения около сферы радиуса *а* (Танеда, 1956б)

Коэффициент сопротивления

Коэффициент сопротивления для решения Стокса

$$c_z = \frac{W}{\frac{1}{2}\rho U^2 \pi a^2} = \frac{6\pi \mu a U}{\frac{1}{2}\rho U^2 \pi a^2} = \frac{24}{\text{Re}}$$

Коэффициент сопротивления

Коэффициент сопротивления для решения Стокса

$$c_z = \frac{W}{\frac{1}{2}\rho U^2 \pi a^2} = \frac{6\pi \mu a U}{\frac{1}{2}\rho U^2 \pi a^2} = \frac{24}{\text{Re}}$$

Теория Озеена и Озеена – Гольдштейна

$$c_z = \frac{24}{\text{Re}} \left(1 + \frac{3}{16} \,\text{Re} - \frac{19}{1280} \,\text{Re}^2 + \ldots \right)$$

Если сохранить только первый член, то будет формула Стокса, если первые два — формула Озеена и т.д.

Формула Озеена получается при линеаризации конвективного слагаемого в уравнениях Навье — Стокса по формуле

$$(\vec{v}\cdot\nabla)\vec{v}\approx(\vec{U}\cdot\nabla)\vec{v}.$$

Сравнение теорий

Зависимость коэффициента сопротивления сферы от числа Рейнольдса (1 – Стокс, 2 – Озеен, 3 – эксперимент)

Другие решения уравнений Стокса

Постановка задачи

Определить силу сопротивления сферы радиуса a потоку вязкой несжимаемой жидкости плотности ρ и вязкости μ , движущемуся поступательно, с заданной переменной скоростью $\vec{U}(t)$ ($\vec{U}(0)=0$).

Другие решения уравнений Стокса

Постановка задачи

Определить силу сопротивления сферы радиуса а потоку вязкой несжимаемой жидкости плотности ρ и вязкости μ , движущемуся поступательно, с заданной переменной скоростью $\vec{U}(t)$ ($\vec{U}(0) = 0$). Формула Буссинеска

$$ec{W} = -\underbrace{6\pi\mu a ec{U}(t)}_{ ext{Стокс}} \underbrace{-rac{2}{3}\pi
ho a^3 ec{U}'(t)}_{ ext{присоединенная масса}} - 6\pi\mu a^2 rac{1}{\sqrt{\pi
u}} \int\limits_0^t rac{ec{U}'(au)d au}{\sqrt{t- au}}$$

Бассе

Другие решения уравнений Стокса

Постановка задачи

Определить силу сопротивления сферы радиуса a потоку вязкой несжимаемой жидкости плотности ρ и вязкости μ , движущемуся поступательно, с заданной переменной скоростью $\vec{U}(t)$ ($\vec{U}(0)=0$). Формула Буссинеска

$$ec{W} = -\underbrace{6\pi\mu a ec{U}(t)}_{ ext{Стокс}} \underbrace{-\frac{2}{3}\pi
ho a^3 ec{U}'(t)}_{ ext{присоединенная масса}} - 6\pi\mu a^2 \frac{1}{\sqrt{\pi
u}} \int\limits_0^t \frac{ec{U}'(au) d au}{\sqrt{t- au}}_{ ext{bacce}}$$

Сила для импульсно приведенного из состояния покоя в движение шара до скорости U_0 :

$$W = 6\pi\mu a U_0 \left(1 + \sqrt{\frac{a^2}{\pi\nu t}} \right).$$

Литература

- 1. *Бэтчелор Дж*. Введение в динамику жидкости. М.: Мир, 1973.
- 2. *Кочин Н. Е., Кибель И. А., Розе Н. В.* Теоретическая гидромеханика. М.:Гос. издат. физ.-мат. лит., 1963.
- 3. *Ландау Л. Д., Лифшиц Е. М.* Теоретическая физика: Учебное пособие. В 10 т. Т. VI. Гидродинамика. 3-е изд., перераб. М.: Наука. Гл. ред. физ-мат. лит., 1986.
- 4. *Лойцянский Л. Г.* Механика жидкости газа и плазмы: Учеб. для вузов. 7-е изд., испр. М.:Дрофа, 2003.