1 Distribuzioni

Definizione: Sia Ω aperto di \mathbb{R}^n

 $C_0^{\infty}(\Omega) = \{ \text{funzioni } C^{\infty} \text{ su } \Omega \text{ con supporto compatto in } \Omega \}$

È uno spazio vettoriale

Muniamo C_0^{∞} di una convergenza

Definizione: Sia $\{\varphi_k\} \subseteq C_0^{\infty}(\Omega)$. Diciamo che

$$\varphi_k \to 0$$
 in $C_0^{\infty}(\Omega)$ se

- 1. $\exists K$ compatto, indipendente da h, tale che supp $(\varphi_h) \subseteq K \ \forall h >> \nu$
- 2. $\varphi_h \to 0$ uniformemente su K con tutte le derivate $\forall \alpha$ multiindice $D^{\alpha}\varphi_h \to 0$ unif. su K

Definizione: Lo spazio $C_0^{\infty}(\Omega)$ munito della convergenza definita sopra si indica con $\mathcal{D}(\Omega)$ e si chiama spazio delle funzioni test

Definizione: Lo spazio delle distribuzioni su Ω , che si indica con $\mathcal{D}'(\Omega)$ è lo spazio degli operatori $T: \mathcal{D}(\Omega) \to \mathbb{R}$ lineari e continui rispetto alla convergenza introdotta su $\mathcal{D}(\Omega)$.

Ovvero, una distribuzione è un operatore $T: \mathcal{D}(\Omega) \to \mathbb{R}$ tale che

- T lineare
- T continuo $(\varphi_h \to 0 \text{ in } \mathcal{D}(\Omega)(\varphi_h) \to 0 \text{ in } \mathbb{R})$

Esempi

1. Sia $u \in L^1(\Omega)$, ad u posso associare una distribuzione $T_u \in \mathcal{D}'(\Omega)$

$$T_u(\varphi) := \int_{\Omega} u\varphi \ \forall \varphi \in \mathcal{D}(\Omega)$$

È ben definito:

$$\bigg| \int_{\Omega} u \varphi \bigg| \leq \int_{\Omega} |u \varphi| \leq \int_{K} \max |\varphi| |u| \leq \max_{k} |\varphi| \int_{K} |u|$$

È lineare:

$$T_u(\alpha\varphi + \beta\psi) = \int_{\Omega} u(\alpha\varphi + \beta\psi)$$

completare