Intro. to Computer Architecture

Daniel Page

Department of Computer Science, University Of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB. UK. (csdsp@bristol.ac.uk)

January 9, 2018

Keep in mind there are *two* PDFs available (of which this is the latter):

- 1. a PDF of examinable material used as lecture slides, and
- 2. a PDF of non-examinable, extra material:
 - the associated notes page may be pre-populated with extra, written explaination of material covered in lecture(s), plus
 - anything with a "grey'ed out" header/footer represents extra material which is useful and/or interesting but out of scope (and hence not covered).

Notes:	7
Notes:	

Notes:

COMS12200 lecture: week #7

- ▶ Goal: implement a design(s) for integer multiplication, i.e.,
 - ▶ accepts *n*-bit
 - ▶ *y*, the multiplier that does the multiplying, and
 ▶ *x*, the multiplicand that is multiplied

as input, and

• produces 2n-bit **product** $r = y \cdot x$ as output

which

- functions correctly, and
 is efficient (wrt. whatever metrics are deemed important).

© Daniel Page (csdsp@bristol.ac.u Intro. to Computer Architecture

COMS12200 lecture: week #7

Notes:	

Notes:

Multiplication in theory (1) Approach #1: long-hand multiplication

Example Consider a case where b = 10, $x = 623_{(10)}$ and $y = 567_{(10)}$: $623_{(10)} \mapsto$ x =5 6 7 × *y* = $567_{(10)} \mapsto$ $p_0 = 7 \cdot 3 \cdot 10^0 = 21_{(10)} \mapsto$ $p_1 = 7 \cdot 2 \cdot 10^1 = 140_{(10)} \mapsto$ 1 4 $p_2 = 7 \cdot 6 \cdot 10^2 = 4200_{(10)} \mapsto$ 4 2 $p_3 = 6 \cdot 3 \cdot 10^1 = 180_{(10)} \mapsto$ 1 8 $p_4 = 6 \cdot 2 \cdot 10^2 = 1200_{(10)} \mapsto$ 1 2 $p_5 = 6 \cdot 6 \cdot 10^3 = 36000_{(10)} \mapsto$ $p_6 = 5 \cdot 3 \cdot 10^2 = 1500_{(10)} \mapsto$ 5 1 $p_7 = 5 \cdot 2 \cdot 10^3 = 10000_{(10)} \mapsto$ $p_8 = 5 \cdot 6 \cdot 10^4 = 300000_{(10)} \mapsto 3$ 0 $353241_{(10)} \mapsto \overline{3} \quad 5 \quad 3 \quad 2 \quad 4 \quad 1$ r =

Multiplication in theory (2)

Approach #1: long-hand multiplication

Example (operand scanning)

Consider an example where where |x| = |y| = 3:

Notice that

- 1. an outer-loop steps through digits of y, say y_i ,
- 2. an inner-loop steps through digits of x, say x_i .

Example (product scanning)

Consider an example where where |x| = |y| = 3:

Notice that

- 1. an outer-loop steps through digits of r, say r_i ,
- 2. two inner-loops step through matching digits of *x* and y, say x_i and x_i .

Notes:		

Notes:

Multiplication in theory (3) Approach #1: long-hand multiplication

Algorithm (operand scanning) **Input:** Two unsigned, base-*b* integers *x* and *y* **Output:** An unsigned, base-*b* integer $r = x \cdot y$ 1 $l_x \leftarrow |x|, l_y \leftarrow |y|, l_r \leftarrow l_x + l_y$ $r \leftarrow 0$ 3 for j = 0 upto $l_y - 1$ step +1 do for i = 0 upto $l_x - 1$ step +1 do $u \cdot b + v = t \leftarrow y_i \cdot x_i + r_{j+i} + c$ $r_{j+i} \leftarrow v$ $c \leftarrow u$ end 10 $r_{j+l_x} \leftarrow c$ 11 **end**

© Daniel Page (csdsp@bristol.ac.uk)
Intro. to Computer Architecture

12 return r

Multiplication in theory (4) Approach #1: long-hand multiplication

Example (operand scanning)

Consider a case where b = 10, $x = 623_{(10)}$ and $y = 567_{(10)}$:

j	i	r	С	y_i	x_j	$t = y_i \cdot x_i + r_{i+j} + c$	r'	c'
		(0,0,0,0,0,0)						
0	0	(0,0,0,0,0,0)	0	7	3	21	(1,0,0,0,0,0)	2
0	1	(1,0,0,0,0,0)	2	7	2	16	(1,6,0,0,0,0)	1
0	2	(1, 6, 0, 0, 0, 0)	1	7	6	43	(1, 6, 3, 0, 0, 0)	4
0		(1, 6, 3, 0, 0, 0)	4				(1, 6, 3, 4, 0, 0)	
1	0	(1, 6, 3, 4, 0, 0)	0	6	3	24	(1,4,3,4,0,0)	2
1	1	$\langle 1, 4, 3, 4, 0, 0 \rangle$	2	6	2	17	$\langle 1, 4, 7, 4, 0, 0 \rangle$	1
1	2	$\langle 1, 4, 7, 4, 0, 0 \rangle$	1	6	6	41	$\langle 1, 4, 7, 1, 0, 0 \rangle$	4
1		$\langle 1, 4, 7, 1, 0, 0 \rangle$	4				$\langle 1, 4, 7, 1, 4, 0 \rangle$	
2	0	$\langle 1, 4, 7, 1, 4, 0 \rangle$	0	5	3	22	$\langle 1, 4, 2, 1, 4, 0 \rangle$	2
2	1	$\langle 1, 4, 2, 1, 4, 0 \rangle$	2	5	2	13	$\langle 1, 4, 2, 3, 4, 0 \rangle$	1
2	2	(1,4,2,3,5,0)	1	5	6	35	(1,4,2,3,5,0)	3
2		(1,4,2,3,5,0)	3				(1,4,2,3,5,3)	3
		(1,4,2,3,5,3)						

Notes:		

Multiplication in theory (5) Approach #1: long-hand multiplication

```
Algorithm (product scanning)
   Input: Two unsigned, base-b integers x and y
   Output: An unsigned, base-b integer r = x \cdot y
l_x \leftarrow |x|, l_y \leftarrow |y|, l_r \leftarrow l_x + l_y
2 \quad r \leftarrow 0, c_0 \leftarrow 0, c_1 \leftarrow 0, c_2 \leftarrow 0
3 for k = 0 upto l_x + l_y - 1 step +1 do
       for j = 0 upto l_y - 1 step +1 do
            for i = 0 upto l_x - 1 step +1 do
              if (j+i)=k then
                     u \cdot b + v = t \leftarrow y_j \cdot x_i
                     c \cdot b + c_0 = t \leftarrow c_0 + v
                    c \cdot b + c_1 = t \leftarrow c_1 + u + c
10
                  c_2 \leftarrow c_2 + c
                end
11
12
            end
13
        end
14
       r_k \leftarrow c_0, c_0 \leftarrow c_1, c_1 \leftarrow c_2, c_2 \leftarrow 0
15 end
16 r_{l_x+l_y-1} \leftarrow c_0
```

© Daniel Page (Intro. to Computer Architecture

University of BRISTOL

Multiplication in theory (6) Approach #1: long-hand multiplication

Example (product scanning)

Consider a case where b = 10, $x = 623_{(10)}$ and $y = 567_{(10)}$:

k	j	i	r	C2	c_1	c_0	y_i	x_j	$t = y_i \cdot x_i$	r'	c_2'	c'_1	c_0'
			(0,0,0,0,0,0)	0	0	0							
0	0	0	(0,0,0,0,0,0)	0	0	0	7	3	21	(0,0,0,0,0,0)	0	2	1
0			(0,0,0,0,0,0)	0	2	1				(1,0,0,0,0,0)	0	0	2
1	0	1	(1,0,0,0,0,0)	0	0	2	7	2	14	(1,0,0,0,0,0)	0	1	6
1	1	0	(1,0,0,0,0,0)	0	1	6	6	3	18	(1,0,0,0,0,0)	0	3	4
1			(1,0,0,0,0,0)	0	3	4				(1,4,0,0,0,0)	0	0	3
2	0	2	(1, 4, 0, 0, 0, 0)	0	0	3	7	6	42	(1,4,0,0,0,0)	0	4	5
2	1	1	$\langle 1, 4, 0, 0, 0, 0, 0 \rangle$	0	4	5	6	2	12	(1,4,0,0,0,0)	0	5	7
2	2	0	$\langle 1, 4, 0, 0, 0, 0, 0 \rangle$	0	4	7	5	3	15	(1,4,0,0,0,0)	0	7	2
2			$\langle 1, 4, 0, 0, 0, 0 \rangle$	0	7	2				(1,4,2,0,0,0)	0	0	7
3	1	2	(1, 4, 2, 0, 0, 0)	0	0	7	6	6	36	(1,4,2,0,0,0)	0	4	3
3	2	1	$\langle 1, 4, 2, 0, 0, 0 \rangle$	0	4	3	5	2	10	(1,4,2,0,0,0)	0	5	3
3			$\langle 1, 4, 2, 0, 0, 0 \rangle$	0	5	3				(1,4,2,3,0,0)	0	0	5
4	2	2	(1, 4, 2, 3, 0, 0)	0	0	5	5	6	30	(1,4,2,3,0,0)	0	3	5
4			(1, 4, 2, 3, 0, 0)	0	3	5				(1,4,2,3,5,0)	0	0	3
			(1, 4, 2, 3, 5, 0)	0	0	3				(1,4,2,3,5,3)	0	0	3
			(1, 4, 2, 3, 5, 3)										

Notes:		

Multiplication in theory (7) Approach #2: multiplication as repeated addition

▶ Idea: scalar multiplication of x by y is simply repeated addition, i.e.,

$$y \cdot x = \underbrace{x + x + \dots + x + x}_{y \text{ terms}}$$

so, if $y = 14_{(10)}$, then

© Daniel Page (csdsp@bristol.ac.uk Intro. to Computer Architecture

git # 3b6f641 @ 2018-01-09

University of BRISTOL

Multiplication in theory (8)

Approach #2: multiplication as repeated addition

▶ Idea: by writing *y* in base-*b* we express the product as a summation, i.e.,

$$y \cdot x \equiv (\sum_{i=0}^{n-1} y_i \cdot b^i) \cdot x \equiv \sum_{i=0}^{n-1} y_i \cdot x \cdot b^i$$

so, if $y = 14_{(10)} \mapsto 1110_{(2)}$, then

noting that *if* b = 2, for any t

1. we know

$$t \cdot 2^i \equiv t \ll i$$
,

and

2. we know

$$t \cdot y_i \equiv \begin{cases} t & \text{if } y_i = 1 \\ 0 & \text{if } y_i = 0 \end{cases}$$

Notes:			

Multiplication in practice (1) Candidate design #2: combinatorial, bit-parallel

▶ Idea: for b = 2 and given

$$\sum_{i=0}^{n-1} y_i \cdot x \cdot 2^i,$$

construct a combinatorial design to compute r via

- 1. some AND gates to generate partial products (i.e., $y_i \cdot x$),
- 2. some left-shift components to scale the partial products correctly (i.e., $y_i \cdot x \cdot 2^i$), and
- 3. some adder components to sum the scaled partial products

i.e., ...

University of BRISTOL

Multiplication in practice (2) Candidate design #2: combinatorial, bit-parallel

- ▶ Note that this design
 - -ve: requires a larger data-path
 - +ve: requires a smaller control-path (i.e., none at all),
 - +ve: requires less steps (i.e., 1),
 - -ve: has a longer critical path (meaning each step is longer).

Notes:		
Notes:		

Notes:

Multiplication in practice (3) Candidate design #2: iterative, bit-serial

▶ Idea: for b = 2, apply Horner's rule st. if $y = 14_{(10)} \mapsto 1110_{(2)}$ we (re)bracket

$$\sum_{i=0}^{n-1} y_i \cdot x \cdot 2^i$$

```
as y \cdot x = y_0 \cdot x + 2 \cdot (y_1 \cdot x + 2 \cdot (y_2 \cdot x + 2 \cdot (y_3 \cdot x + 2 \cdot (0))))
= 0 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (0))))
= 0 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (1 \cdot x + 0)))
= 0 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (1 \cdot x + 0)))
= 0 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (1 \cdot x + 0)))
= 0 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (1 \cdot x + 0))
= 0 \cdot x + 2 \cdot (1 \cdot x + 0 \cdot x + 0)
= 0 \cdot x + 2 \cdot (1 \cdot x + 0 \cdot x + 0 \cdot x + 0)
= 0 \cdot x + 2 \cdot (1 \cdot x + 0 \cdot x + 0 \cdot x + 0)
= 0 \cdot x + 2 \cdot (1 \cdot x + 0 \cdot x + 0 \cdot x + 0)
= 0 \cdot x + 2 \cdot (1 \cdot x + 0 \cdot x + 0 \cdot x + 0)
= 0 \cdot x + 2 \cdot (1 \cdot x + 0 \cdot x + 0 \cdot x + 0 \cdot x + 0)
= 14 \cdot x
```

then ...

© Daniel Page (csdsp@bristol.ac.u Intro. to Computer Architecture

it # 3b6f641 @ 2018-01-09

Multiplication in practice (4) Candidate design #2: iterative, bit-serial

• ... evaluate the expression inside-out, *accumulating* the result via the rule

$$r \leftarrow y_i \cdot x + 2 \cdot r$$

i.e.,

8 return r

Example

Consider a case where $y = 14_{(10)} \mapsto 1110_{(2)}$:

	i	r	y_i	r'	
ı		0			
	3	0	1	x	$r' \leftarrow 2 \cdot r + x$
	2	x	1	$3 \cdot x$	$r' \leftarrow 2 \cdot r + x$
	1	3 · x	1	7 · x	$r' \leftarrow 2 \cdot r + x$
	0	7 · x	0	$14 \cdot x$	$r' \leftarrow 2 \cdot r$
		14 · x			

Notes:

N.
Notes:

Multiplication in practice (5) Candidate design #2: iterative, bit-serial

▶ Note that this design

- +ve: requires a smaller data-path
- -ve: requires a larger control-path (i.e., an entire FSM),
- -ve: requires more steps (i.e., n),
- +ve: has a shorter critical path (meaning each step is shorter).

© Daniel Page (csdsp@bristol.ac.ul Intro. to Computer Architecture

t # 3b6f641 @ 2018-01-09

Conclusions

► Take away points:

- 1. The design strategy we used is important and (fairly) general-purpose:
- 1.1 explore and understand an approach in theory,
- 1.2 translate, formalise, and generalise the approach into an algorithm,
- 1.3 translate the algorithm into a hardware design,
- 1.4 refine (or select) the hardware design to satisfy any design constraints.
- 2. Computer arithmetic is an interesting special-case:
 - it's a broad topic with a rich history,
 - there's usually a large design space of potential approaches,
 - they're often easy to understand at an intuitive, high level,
 - correctness and efficiency of resulting low-level solutions is vital and challenging.

Notes:		
Notes:		

Additional Reading

- ▶ Wikipedia: Computer Arithmetic. URL: http://en.wikipedia.org/wiki/Category:Computer_arithmetic.
- D. Page. "Chapter 7: Arithmetic and logic". In: A Practical Introduction to Computer Architecture. 1st ed. Springer-Verlag, 2009.
- B. Parhami. "Part 3: Multiplication". In: Computer Arithmetic: Algorithms and Hardware Designs. 1st ed. Oxford University Press, 2000
- W. Stallings. "Chapter 10: Computer arithmetic". In: Computer Organisation and Architecture. 9th ed. Prentice-Hall, 2013.
- A.S. Tanenbaum and T. Austin. "Section 3.2.2: Arithmetic circuits". In: Structured Computer Organisation. 6th ed. Prentice-Hall, 2012.

© Daniel Page (csdsp@bristol.ac.uk Intro. to Computer Architecture

git # 3b6f641 @ 2018-01-09

References

- [1] Wikipedia: Computer Arithmetic. url: http://en.wikipedia.org/wiki/Category:Computer_arithmetic (see p. 37).
- [2] D. Page. "Chapter 7: Arithmetic and logic". In: A Practical Introduction to Computer Architecture. 1st ed. Springer-Verlag, 2009 (see p. 37).
- [3] B. Parhami. "Part 3: Multiplication". In: Computer Arithmetic: Algorithms and Hardware Designs. 1st ed. Oxford University Press, 2000 (see p. 37).
- [4] W. Stallings. "Chapter 10: Computer arithmetic". In: Computer Organisation and Architecture. 9th ed. Prentice-Hall, 2013 (see p. 37).
- [5] A.S. Tanenbaum and T. Austin. "Section 3.2.2: Arithmetic circuits". In: Structured Computer Organisation. 6th ed. Prentice-Hall, 2012 (see p. 37).

Notes:	
Notoe:	
Notes:	