Universidad Nacional Autónoma de México Facultad de Ciencias Álgebra Lineal I

Tarea-Examen 1

Ángel Iván Gladín García No. cuenta: 313112470 angelgladin@ciencias.unam.mx

17 de Marzo 2020

- 1. Para los siguientes ejercicios considere V un espacio vectorial.
 - (a) Sean $W_1, W_2 \leq V$ de dimensiones m y n, respectivamente, tales que $m \geq n$. Demuestre que $dim(W_1 \cap W_2) \leq n$ y $dim(W_1 + W_2) \leq m + n$.

Demostración. Sea $W_1 \cap W_2 \subseteq W_2$ y como $dim(W_2) = n$, entonces se sigue la siguiente desigualdad,

$$dim(W_1 \cap W_2) \le dim(W_2)$$
$$dim(W_1 \cap W_2) \le n$$

Por tanto $dim(W_1 \cap W_2) \leq n$.

Teorema 1. Sean $W_1, W_2 \in V$ entonces,

$$dim(W_1 + W_2) = dim(W_1) + dim(W_2) - dim(W_1 \cap W_2)$$

Usando el teorema previamente enunciado, se sigue que,

$$dim(W_1 + W_2) = dim(W_1) + dim(W_2) - dim(W_1 \cap W_2)$$

= $n + m - dim(W_1 \cap W_2)$

Como $dim(W_1 \cap W_2) \le n \le m+n$, entonces $dim(W_1 + W_2) \le m+n$.

(b) Demostrar que si $\{v_1, v_2, v_3\}$ es una base de V entonces $\{v_1 + v_2 + v_3, v_2 + v_3, v_3\}$ también es una base de V.

Demostración. Sea $x \in V$, tal que $a(v_1 + v_2 + v_3) + b(v_2 + v_3) + cv_3 = x$, entonces

$$av_1 + av_2 + av_3 + bv_2 + bv_3 + cv_3 = x \iff av_1 + (a+b)v_2 + (a+b+c)v_3 = x$$

Como v_1, v_2, v_3 son linealmente independientes, se tiene que a = 0, a + b = 0 y a + b + c = 0. Encontrando a, b y c se tiene que a = 0 = b = c. Lo cual muestra que los vectores $\{v_1 + v_2 + v_3, v_2 + v_3, v_3\}$ son linealmente independientes y pueden representar a cualquier vector $y \in V$ como $y = d(v_1 + v_2 + v_3) + e(v_2 + v_3) + fv_3$.

2. Sean V un espacio vectorial y $S_1, S_2 \subseteq V$. Demuestre que $= \langle S_1 \cup S_2 \rangle = \langle S_1 \rangle + \langle S_2 \rangle$.

Demostración.

- \subseteq) Sea $v \in \langle S_1 \cup S_2 \rangle$. Entonces v puede ser escrito como una combinación lineal de los vectores en $S_1 \cup S_2$ como $v = \sum_i a_i x_i + \sum_j b_j y_j$, donde $a_i, b_j \in F$ y $x_i \in S_1$ y $y_i \in S_2$. Como $\sum_i a_i x_i \in \langle S_1 \rangle$ y $\sum_j b_i y_i \in \langle S_2 \rangle$, entonces $v \in \langle S_1 \rangle + \langle S_2 \rangle$.
- \supseteq) Sea $v \in \langle S_1 \rangle + \langle S_2 \rangle$, por definición se tiene que $v = \sum_i a_i x_i + \sum_j b_j y_j$ donde $a_i, b_j \in F$ y $x_i \in S_1$ y $y_i \in S_2$. Lo cual es una combinación lineal de los vectores de $S_1 \cup S_2$. Por tanto $v \in \langle S_1 \cup S_2 \rangle$.
- 3. Considere el espacio vectorial $\mathscr{F}(\mathbb{R},\mathbb{R})$ con la suma y producto por un escalar usuales de funciones. Se definen los subconjuntos $W_1, W_2 \subseteq V$ dados por:

$$W_1 = \{f : \mathbb{R} \to \mathbb{R} \mid \text{es una función par}\}$$
 y $W_2 = \{f : \mathbb{R} \to \mathbb{R} \mid \text{es una función impar}\}$

Resuelva los siguientes incisos justificando adecuadamente cada una de sus afirmaciones:

(a) Demuestre que W_1 y W_2 son subespacios vectoriales de $\mathscr{F}(\mathbb{R}, \mathbb{R})$.

Demostración.

• W_1 es un subespacio de $\mathscr{F}(\mathbb{R},\mathbb{R})$.

Sabemos que un función $f: \mathbb{R} \to \mathbb{R}$ es par si f(x) = -x para todo $x \in R$.

Definamos la función $0 : \mathbb{R} \to \mathbb{R} = 0$ como 0(x) = 0 para todo $x \in \mathbb{R}$. Como $0 \in W_1$ porque 0(x) = 0 = 0(-x) para toda $x \in \mathbb{R}$

Sabemos que para cualquier $a \in \mathbb{R}$ y $f \in \mathbb{R}$ se tiene que, $(a \cdot f)(-x) = a \cdot (f(-x)) = a \cdot (f(x)) = (a \cdot f)(x)$, porque f es par. Teniendo así que $a \cdot f$ es par, lo que significa que $a \cdot f \in W_1$.

De forma similar sabemos que $f, g \in \mathbb{R}$ se tiene que (f+g)(-x) = f(-x) + g(-x) = f(x) + g(x) = (f+g)(x), como f, g son pares entonces se tiene que $f+g \in W_1$.

• W_2 es un subespacio de $\mathscr{F}(\mathbb{R},\mathbb{R})$.

Sabemos que un función $f: \mathbb{R} \to \mathbb{R}$ es impar si f(-x) = -f(x) para todo $x \in \mathbb{R}$.

Definamos la función $0: \mathbb{R} \to \mathbb{R} = 0$ como 0(x) = 0 para todo $x \in \mathbb{R}$. Como $0 \in W_2$ porque 0(-x) = 0 = -0(x) para todo $x \in \mathbb{R}$.

Sabemos que para cualquier $a \in \mathbb{R}$ y $f \in \mathbb{R}$ se tiene que, $(a \cdot f)(-x) = a \cdot (f(-x)) = a \cdot (-f(x)) = -(a \cdot f)(x)$, porque f es impar. Teniendo así que $a \cdot f$ es impar, lo que significa que $a \cdot f \in W_2$.

De forma similar sabemos que $f, g \in \mathbb{R}$ se tiene que (f+g)(-x) = f(-x) + g(-x) = -f(x) - g(x) = -(f(x) + g(x)) = -(f+g)(x), como f, g son impares entonces se tiene que $f+g \in W_2$.

(b) Demuestre que $\mathscr{F}(\mathbb{R},\mathbb{R}) = W_1 \oplus W_2$.

Demostración. Lo primero que debemos mostrar es que $W_1 \cap W_2 = \{0\}$, tomemos $f \in W_1 \cap W_2$, entonces para cada $x \in \mathbb{R}$ se tiene que f(x) = f(-x), pero como f es para también tenemos que f(-x) = -f(x) porque f es impar. Lo que juntas significa que -f(x) = f(x) lo cual implica que f(x) = 0. Pero si f(x) = 0 para toda $x \in \mathbb{R}$, entonces f es la función 0 mostrando así que $W_1 \cap W_2 = \{0\}$.

Para mostrar que $W_1 + W_2 = \mathscr{F}(\mathbb{R}, \mathbb{R})$ se tiene que para cualquier $f \in \mathscr{F}(\mathbb{R}, \mathbb{R})$ definimos f_p y f_i funciones por

$$f_p(x) = \frac{f(x) + f(-x)}{2}$$
 y $f_i(x) = \frac{f(x) - f(-x)}{2}$

Comprobemos que $f_p \in W_1$ es par,

$$f_p(-x) = \frac{f(-x) + f(x)}{2} = \frac{f(x) + f(-x)}{2} = f_p(x)$$

Comprobemos que $f_i \in W_2$ es impar,

$$f_i(-x) = \frac{f(-x) - f(x)}{2} = \frac{-f(x) + f(-x)}{2} = \frac{f(x) - f(-x)}{2} = -f_i(x)$$

También se tiene que,

$$(f_p + f_i)(x) = \frac{f(-x) + f(x)}{2} + \frac{f(-x) - f(x)}{2} = f(x)$$

así $f_p + f_i = f$, lo cual muestra que cada función f puede ser escrita como una suma de una función par f_p y una impar f_i , teniendo así que $W_1 + W_2 = \mathscr{F}(\mathbb{R}, \mathbb{R})$.

Por tanto
$$\mathscr{F}(\mathbb{R},\mathbb{R}) = W_1 \oplus W_2$$
.

- 4. Sean W_1, W_2 subespacios de un espacio vectorial V tales que $V = W_1 \oplus W_2$. Sean β_1 y β_2 bases de W_1 y W_2 , respectivamente. Resuelva los siguientes incisos justificando adecuadamente cada una de sus afirmaciones:
 - (a) $\beta_1 \cap \beta_2 = \emptyset$

Demostración. Como $V = W_1 \oplus W_2$, tenemos que $W_1 \cap W_2 = \{0\}$. Sean $\beta_1 = \{v_1, \dots, v_m\}$ y $\beta_2 = \{w_1, \dots, w_m\}$. Notemos que los vectores de la base $v_1, \dots, v_m \in W_1$ y $w_1, \dots, w_m \in W_2$ son todos no ceros, porque son linealmente independientes. Por tanto $\beta_1 \cap \beta_2 = \emptyset$.

(b) $\beta_1 \cup \beta_2$ es una base de V

Demostración. Consideremos $\beta = \beta_1 \cup \beta_2 = \{v_1, \dots, v_m, w_1, \dots, w_m\}$. Los vectores de β son linealmente independientes, ya que si $(a_1v_1 + \dots + a_nv_m) + (b_1w_1 + \dots + b_nw_m) = 0$, entonces el primer vector está en W_1 y el segundo en W_2 así $a_1v_1 + \dots + a_nv_m = b_1w_1 + \dots + b_nw_m = 0$. Como β_1, β_2 son bases, nos da que $a_1 = \dots = a_n = 0$ y $b_1 = \dots = b_n = 0$. Los vectores de β también generan a V porque $V = W_1 \oplus W_2$ lo que significa que cada vector $v \in V$ puede escribirse como v = x + y con $x \in W_1$ y $t \in W_2$. Pero β_1, β_2 son bases para W_1 y W_2 respectivamente, entonces $v = x + y = a_1v_1 + \dots + a_nv_m = b_1w_1 + \dots + b_nw_m$ para algunos coeficientes a_i y b_j . Por tanto $\beta_1 \cup \beta_2$ son una base pasa V.

- 5. Considere la función $T: \mathbb{P}_3(\mathbb{R}) \to \mathbb{P}_4(\mathbb{R})$ dada por $T(f(x)) = 5f'(x) \int_0^x f(t)dt$. Resuelva los siguientes incisos justificando adecuadamente cada una de sus afirmaciones:
 - (a) Demuestre que T es una transformación lineal.

Demostración. Sean $f, g \in \mathbb{P}_3(\mathbb{R})$ y $a \in \mathbb{R}$, entonces,

$$T((af+g)(x)) = 5(af+g)'(x) - \int_0^x (af+g)(t)dt$$

$$= 5(af'(x) + g(x)) - \int_0^x (af(t) + g(t))dt$$

$$= 5(af'(x) + g(x)) - a\int_0^x f(t) - \int_0^x g(t)dt$$

$$= a(5f'(x) - \int_0^x f(t)dt) + 5g'(x) - \int_0^x g(t)dt$$

$$= aT(f(x)) + T(g(x))$$

Por lo tanto T es una transformación lineal.

(b) Calcule $dim(\mathbb{P}_3(\mathbb{R}))$ y $dim(\mathbb{P}_4(\mathbb{R}))$

Demostración. Tomemos $\beta = \{1, x, x^2, x^3\}$ y $\gamma = \{1, x, x^2, x^3, x^4\}$ las bases estándares de $\mathbb{P}_3(\mathbb{R})$ y $\mathbb{P}_4(\mathbb{R})$ respectivamente, pero por definición la dimesión de un espacio vectorial es la cardinalidad de sus bases. Por tanto $dim(\mathbb{P}_3(\mathbb{R})) = 4$ y $dim(\mathbb{P}_4(\mathbb{R})) = 5$.

(c) Encuentre los subespacios N(T) y R(T).

Demostración. Tomemos la base estándar $\beta = \{1, x, x^2, x^3\}$ de $dim(\mathbb{P}_3(\mathbb{R}))$ donde

$$R(T) = \langle \{T(1), T(x), T(x^2), T(x^3)\} \rangle = \langle \{-x, 5 - \frac{x^2}{2}, 10x - \frac{x^3}{3}, 15x^2 - \frac{x^4}{4}\} \rangle$$

Como $\{-x, 5-\frac{x^2}{2}, 10x-\frac{x^3}{3}, 15x^2-\frac{x^4}{4}\}$ son linealmente independientes, entonces dim(R(T))=4. Usando el teorema de la dimesión 4=R(T)+N(T)=4+N(T)=4+0, se concluye que $N(T)=\{0\}$.

(d) Encuentre bases para N(T) y R(T), ¿cuáles son sus dimensiones?

 $\begin{array}{lll} \textit{Demostraci\'on.} \ \ \text{Para} \ \ N(T) \ \ \text{su} \ \ \text{base es} \ \ \beta = \{T(1), T(x), T(x^2), T(x^3)\} = \{-x, 5 - \frac{x^2}{2}, 10x - \frac{x^3}{3}, 15x^2 - \frac{x^4}{4}\} \ \ \text{y} \ \ dim(N(T)) = 4. \ \ \text{Por el inciso anterior} \ \ N(T) = \{0\} \ \ \text{y} \ \ dim(N(T)) = 0. \end{array}$

(e) ¿La transformación lineal T es inyectiva?

Demostración. Sí porque si T es lineal si y sólo si $N(T) = \{0\}$, pero por el inciso c) se tiene que $N(T) = \{0\}$.