Estadística I Tercero del grado en Matemáticas, UAM, 2018-2019

Examen parcial 1, 26-10-2018

Ejercicio 1.

a) Disponemos de una serie de datos (x_1,\ldots,x_{100}) , cuya media muestral es \overline{x} y cuya varianza muestral es V_x .

Formamos una nueva serie de datos añadiéndole, a la anterior, dos valores: $\overline{x} + \varepsilon$ y $\overline{x} - \varepsilon$, para cierto número $\varepsilon > 0$.

¿Qué condiciones debe cumplir ε para que la varianza de la nueva muestra sea la misma que la de la original?

b) Disponemos de una serie de datos emparejados $((x_1, y_1), \dots, (x_{40}, y_{40}))$. Ya hemos determinado la recta de regresión:

$$y = \widehat{a} + \widehat{b} x$$

donde

$$\widehat{b} = \frac{\text{cov}_{x,y}}{V_x}$$
 y $\widehat{a} = \overline{y} - \frac{\text{cov}_{x,y}}{V_x} \overline{x}$.

Añadimos a la serie doble anterior el dato $(\overline{x}, \overline{y})$. ¿Cuál es la ecuación de la recta de regresión de esta nueva serie de datos emparejados?

Ejercicio 2.

El vector $\mathbb{X}=(X_1,\ldots,X_{10})^{\mathsf{T}}$ sigue una normal $\mathcal{N}(\mathbf{0},V)$, donde V es la matriz cuyas entradas son

$$v_{i,i} = \sigma^2, \quad \text{para } i = 1, \dots, 10, \qquad v_{i,j} = \rho, \quad \text{para } i \neq j.$$

Aquí, $\sigma^2 > 0$ y $\rho \in (0,1)$.

Se consideran las dos siguientes variables aleatorias:

$$Y = X_1 + \dots + X_{10},$$

 $Z = X_1 - X_2.$

Calcula $\mathbf{V}(Z)$ y cov(Y, Z).

Ejercicio 3.

(En este ejercicio **debes** dejar la respuesta en términos de valores de la función Φ de distribución de la normal estándar).

a) Dada una muestra aleatoria de tamaño 10 de una $X \sim \mathcal{N}(0,2)$, ¿cuál es la probabilidad de que el máximo de la muestra sea mayor que 3?

- b) Dada una muestra aleatoria de tamaño 10 de una $X \sim \mathcal{N}(1,4)$, ¿cuál es la probabilidad de que, o bien el máximo de los cinco primeros datos de la muestra sea mayor que 2, o bien el mínimo de los cinco últimos datos de la muestra sea menor que -3?
 - c) Calcula el mínimo valor de n para el que se cumple la siguiente condición:
- la probabilidad de que el mínimo de una muestra de n normales estándar independientes sea ≤ -1 es mayor del 90 %.

Ejercicio 4.

(En este ejercicio **debes** dejar la respuesta en términos de valores de la función Φ de distribución de la normal estándar y/o de valores de la función de distribución de variables χ^2 o t de Student con cierto número de grados de libertad).

a) Se sortea una muestra aleatoria de tamaño 100 de una variable $X \sim \mathcal{N}(\mu, \sigma^2)$, con $\mu = 1$ y $\sigma^2 = 9$.

Determina la probabilidad de que se cumplan, *simultáneamente*, las tres siguientes condiciones:

- que la media muestral sea mayor que 1,
- que el valor absoluto de la media muestral sea menor que 3/2,
- y que la desviación típica muestral esté entre 5/2 y 3.
- b) Se diseña el siguiente experimento:
- se sortean 50 normales estándar independientes,
- se suman los resultados obtenidos por bloques: los 10 primeros, los 10 siguientes, etc.,
- se anotan los resultados de esas cinco sumas.

¿Cuál es la probabilidad de que la media aritmética de esos cinco números y su desviación típica estén (ambas) entre 1/5 y 1?