Análisis de datos longitudinales

Grado en Estadística

Juan R González

Departamento de Matemáticas, UAB Insituto de Salud Global de Barcelona, ISGlobal

juanr.gonzalez@isglobal.org
https://github.com/isglobal-brge/TeachingMaterials
http://www.creal.cat/brge.thml

Análisis de datos longitudinales

Grado en Estadística

Tema 1 Regresión joinpoint

Juan R González

Departamento de Matemáticas, UAB Insituto de Salud Global de Barcelona, ISGlobal

juanr.gonzalez@isglobal.org
https://github.com/isglobal-brge/TeachingMaterials
http://www.creal.cat/brge.thml

Tasas de Mortalidad

Nota: misma definición para incidencia

Mortalidad =
$$\frac{\text{defuncione s}}{\text{población a riesgo}} \times 10^{\text{n}} \text{y año}$$

Población a 1 de julio del año

Tendencia temporal

Cambios en las tendencias

Efectos cohorte

- Diferentes generaciones expuestas a diferentes riesgos
- Cambios en las tasas sucesivos grupos de edad en sucesivos periodos
- Largas exposiciones o hábitos (tabaco, dieta,...)

Efectos periodo

- Cambios en las tasas en un momento del tiempo
- Influyen a todos los grupos de edad a la vez
- Exposición puntual, cambio procesos dx (Chernobil, PSA, ...)

Cambios en las tendencias

- Interés evaluar efectos periodo
 - Cáncer:
 - Monitorizar las tasas
 - Evaluar cambios en el diagnóstico
 - Evaluar el efecto de un cribado
 - Evaluar efecto un tratamiento
 - SIDA
 - Monitorizar las tasas
 - Evaluar la influencia de un nuevo tratamiento

Modelo lineal generalizado de Poisson

$$ln(E[t_{ij}]) = \mu + \beta periodo$$

como

$$ln(E[t_{ij}]) = ln(\theta_{ij} / N_{ij}) = ln(\theta_{ij}) - ln(N_{ij})$$

entonces

$$ln(\theta_{ij}) = \mu + \beta periodo + ln(N_{ij})$$

porcentaje de cambio anual $(1-exp(\beta))$ %

Problema: Sobredispersión (binomial negativa)

Cambios en las tendencias. Motivación

Cambios en las tendencias

European Journal of Canose, Vol. 35, No. 10, pp. 1477–1516, 1999 © 1999 Elsovier Science Ltd. All rights reserved. 1995–80 44999 5 - we from matter

PII: S0959-8049(99)00154-9

Original Paper

Cancer Mortality in Europe, 1990–1994, and an Overview of Trends from 1955 to 1994

F. Levi, 1,2 F. Lucchini, E. Negri, P. Boyle and C. La Vecchia 5,5

¹Registre Vaudois des Tumeurs, Institut Universitaire de Médecine Sociale et Préventive, Centre Hospitalier Universitaire Vaudois, Falaises 1, 1011 Lausanne; ²Unité d'Épidémiologie du Cancer, Institut Universitaire de Médecine Sociale et Préventive, Bugnon, Lausanne, Switzerland; ³Istituto di Ricerche Farmacologiche 'Mario Negri'; ⁴European Institute of Oncology; and ³Istituto di Statistica Medica e Biometria, Università degli Studi di Milano, Milan, Italy

Mortality data, abstracted from the WHO database, are presented in tabular form for 26 cancer sites or groups of sites, plus total cancer mortality, in 35 European countries during the period 1990–1994. Trends in mortality are also given in graphical form for 24 major countries over the period 1955–1994. In most western European countries total cancer mortality was—for the first time—moderately downwards in the early 1990s. Such favourable trends included some decline in lung cancer mortality for males, the persistent decline in stomach cancer for both sexes, and of cervical cancer for women, as well as some decline in breast and colorectal cancers, plus other neoplasms (testis, lymphoid neoplasms), whose treatment has further improved over the last few years. However, cancer mortality was still upwards in a few southern and eastern European countries, including Hungary and Poland, where total cancer mortality rates in middle-aged males are now the highest ever registered in Europea. The favourable trends in western Europe over the recent years are similar to those observed in the U.S.A. © 1999 Elsevier Science Ltd. All rights reserved.

Key words: epidemiology, mortality, neoplasms, time trends, Europe Eur J Cancer, Vol. 35, No. 10, pp. 1477–1516, 1999

Cambios en las tendencias

Int. J. Cancer: 81, 62–66 (1999) © 1999 Wiley-Liss, Inc.

RECENT DECLINES IN WORLDWIDE MORTALITY FROM CUTANEOUS MELANOMA IN YOUTH AND MIDDLE AGE

Carlo LA VECCHIA^{1,2}, Franca Lucchini³, Eva Negri¹ and Fabio Levi^{3‡}

¹Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy

TRENDS IN MORTALITY FROM CUTANEOUS MELANOMA

63

TABLE I - TRENDS IN MORTALITY: FROM SKIN CANCER AT AGE 20 TO 44 IN SELECTED COUNTRIES, 1955-1984 AND 1985-1995

	Death rate 100,000 makes					Death rate/100,000 forcelor				
	1955-1959	1980-1984	1990-1995	Percent ck 1955–1984	ange'year ² 1985–1995	1955-1959	1980-1984	1990–1995	Percent ch 1955–1984	1985–1995
Austria	0.83	1.46	0.99	2.23	-4.1	0.52	1.01	0.89	2.51	-0.6
Belgium (90–92)	0.33	0.62	1.02	1.8^{3}	2.2	0.45	0.54	0.63	2.0°	-1.9
Denmark (90-93)	0.88	1.64	1.39	2.6^{3}	-2.5	0.83	1.30	1.16	0.7	1.6
Finland	0.74	1.04	0.83	1.5	-5.8	0.91	0.71	0.58	0.6	0.7
France (90–94)	0.33	0.79	0.81	3.7^{3}	-1.0	0.26	0.78	0.67	4.13	0.7
Germany ⁴	0.78	0.95	0.84	0.4	-3.7	0.60	0.81	0.68	1.03	-2.1^{3}
Hungary	0.44	1.50	1.32	4.7^{3}	0.8	0.46	1.05	0.96	3.7°	0.7
Ireland (90–94)	0.70	0.97	0.83	0.9	-5.1	0.66	0.99	0.93	1.3	-2.3
Italy (90-94)	0.43	0.91	0.84	2.8^{3}	-1.4	0.32	0.74	0.71	2.8^{3}	0.3
Netherlands	0.74	1.40	1.41	3.0^{s}	-1.6	0.56	1.03	1.22	2.43	1.8
Norway (90-94)	0.96	2.12	1.87	3.13	-1.6	0.88	1.42	1.38	2.13	-2.2
Poland	0.26	0.87	1.04	3.9^{a}	-0.5	0.19	0.18	1.06	5.13	2.2
Portugal	0.24	0.39	0.54	2.6^{3}	-2.9	0.25	0.21	0.55	-0.5	12.0°
Spain (90-94)	0.17	0.54	0.83	4.8^{3}	2.7	0.14	0.37	0.60	5.03	5.83
Sweden	0.99	1.24	1.35	0.9	0.1	0.52	1.04	0.81	2.53	-6.0°
Switzerland (90-94)	1.14	1.54	1.27	1.1	0.4	0.73	1.05	0.97	1.2	0.8
UK, England and Wales	0.62	1.10	1.19	2.13	0.4	0.74	1.01	0.93	1.43	-0.4
UK, Scotland	0.58	0.84	0.97	1.6^{3}	1.3	0.63	0.98	0.91	2.13	0.4
United States	1.10	1.77	1.40	1.63	-5.0°	0.90	0.97	0.78	0.33	-2.2°
Canada	0.70	1.20	0.99	2.13	-3.2°	0.62	0.97	0.67	1.43	-4.4^{3}
Australia	2.83	2.81	3.01	0.4	0.0	1.89	1.62	1.43	-0.6°	-3.3
New Zealand (90-94)	1.74	3.02	2.73	2.8^{3}	-5.4	1.12	2.76	1.81	2.75	-1.1

¹Age-standardized rates on the world population. ²From a log-linear model based on single calendar year rates. ³p < 0.05. ⁴Before 1973, rates refer to Federal Republic of Germany.

Percent change/year

1955-84 1985-95

Ustituto di Statistica Medica e Biometria, Università di Milano, Milan, Italy

³Registre Vaudois des Tumeurs, Institut Universitaire de Médecine Sociale et Préventive, Lausanne, Switzerland

Regresión Joinpoint

- $(x_1,y_1), ..., (x_n,y_n) con x_1 \le ... \le x_n$
- E[y|x]= β_0 + β_1 x+ δ_1 (x- τ_1)++...+ δ_k (x- τ_k)+

 Donde τ_k es un joinpoint desconocido

 a+= a para a>0
- Solución (regresión no lineal con restricciones):

regresión "piecewise"
regresión segmentada
regresión "broken line"
regresión multi-fase

Inferencia sobre los Joinpoints

PERMUTATION TESTS FOR JOINPOINT REGRESSION WITH APPLICATIONS TO CANCER RATES

Hyune-Ju Kim¹, Michael P. Fay², Eric J. Feuer² and Douglas N. Midthune³

Test de permutaciones

A B B A B A B B A A media
$$A=2,70$$
 2,3 2,8 3,6 2,5 5,6 4,2 3,6 5,8 1,6 2,9 $\Delta=-1.58$

$$H_0$$
: $A=B$ H_1 : $A\neq B$

Si H₀ cierta cualquier combinación de A y B debería ser igual

B A B A B A B B A A media
$$A=2,80$$

2,3 2,8 3,6 2,5 5,6 4,2 3,6 5,8 1,6 2,9 $\Delta=-1.38$

A B B A B A B A B A B A 2,3 2,8 3,6 2,5 5,6 4,2 3,6 5,8 1,6 2,9

media A=3,54 media B=3,44 \triangle =0.10

Test de permutaciones

$$H_0$$
: $A=B$ H_1 : $A\neq B$

Si H₀ cierta cualquier combinación de A y B debería ser igual

Para α =0,025 y 1000 muestras \rightarrow 25

Otra forma es calcular p-valor directamente $(\#\Delta > obs)/n$

Test de permutaciones

Otra forma es calcular p-valor directamente $(\#\Delta > obs)/n$

contamos ($\#\Delta$ >-1.58) y dividimos por n con n el total de permutaciones

PROBLEMA: n/2 A's y n/2 B's n es muy grande n!

SOLUCION: Montecarlo tomar p.e. 1000 de esas permutaciones al azar y calcular el p-valor igual

Test de permutaciones (Joinpoint)

Regresión Joinpoint. Algoritmo

Testamos k₀ joinpoints vs. k₁ joinpoints

Rech. H_0 con α_1

Testamos k₁+1 joinpoints vs. k₁ joinpoints

Testamos k₀ joinpoints vs. k₁-1 joinpoints

- K+1 joinpoints si rechazamos el último test
- K si no
- k₁ k₀ tests Ajustamos α por Bonferroni
- ICA entre τ_j y τ_{j+1} es: 100*exp($\beta_1 + \delta_1 + ... + \delta_j$)-1

Regresión Joinpoint.

- 1. Estimar el modelo bajo H₀ (modelo nulo)
- 2. Permutar los residuales del modelo nulo. Obtenermos N_p data sets permutados
- 3. Para cada uno de estos set de datos, estimamos el modelo alternativo (bajo H₁) y calculamos un estadístico de bondad de ajuste
- 4. El p-valor se determina de la distribución permutacional de dicho estadístico.

$$H_0: k=0 \text{ vs } H_1: k=1$$

1º Estimar el modelo bajo la Hipótesis nula

$$E[y|x] = \beta_0 + \beta_1 x + \delta_1 (x - \tau_1)^+$$

Se lleva a cabo mediante regresión segmentada (paquete 'segemented' en R)

2º Permutar los residuales y añadirlos al modelo nulo

$$y'_{(a)} = \hat{\mu}^{(k_0)'} + [\hat{\epsilon}^{(k_0)}_{\pi_{a1}}, \dots, \hat{\epsilon}^{(k_0)}_{\pi_{an}}]$$

Ej.			Ej.	
Año	tasa	error	Año	tasa'
1985	12	2	1985	13
1986	16	3	1986	17
1987	19	1	1987	22
1988	20	4	1988	22

Permutación: 1342

3º Estimar el modelo bajo H₁para esos datos permutados

 $T(y_{(a)}) = error bajo H0 / error bajo H1$

4º Realizamos el cálculo mediante Monte-Carlo

 N_p - 1 permutaciones de $T(y_{(a)})$ a=1, ..., N_p - 1 Tomamos el estadístico $T(y) \equiv T(y_{(0)})$ de los datos originales. El p-valor viene dado por:

$$p = \frac{\text{\#veces que}\left[T(y_{(a)}) \ge T(y)\right] \text{ para } a \in \{0,1,\ldots,N_p-1\}}{N_p}$$

Mortalidad Cataluña

E Fernández, JR González, JM Borràs et al. Eur J Cancer, 2001

Hombres 35-64

Año	1975-92	1992-97
PCA	1,3	-2,2

Mujeres 35-64

Año	1975-82	1982-92	1992-97
PCA	-2,4	0,7	-3,5

Mortalidad Cataluña

Cáncer de Pulmón

	Global					
	1975-1998	Tendencia 1	Tendencia 2	Tendencia 3		
Hombres	1,9	1975-1982 2,3	1982-1989 4,1	1989-1997 -0,9		
Mujeres	-0,2	1975-1988 -1,8	1988-1997 2,2			

E Fernández, JR González, JM Borràs et al. Eur J Cancer, 2001

Cáncer Cataluña 1975-98. Hombres

	Age-standardised mortality rates		Annual	Joinpoint analysis (1975-1998)							
			percent of	Trend 1		Trend 2		Trend 3		Trend 4	
	1975-76	1997-98	change 1975-98	Years	APC	Years	APC	Years	APC	Years	APC
All sites	150.92	171.81	0.7 ^b	1975-1981	0.5	1981-1992	1.6 ^b	1992-1996	-2.5 ^b	1996-1998	1.2
Smoke related	61.86	83.98	1.5 ^b	1975-1990	2.8 ^b	1990-1998	-1.1 ^b				
Oral Cavity and pharynx (140-149)	3.64	6.93	3.4 ^b	1975-1998	3.4 ^b						
Oesophagus (150)	5.35	5.05	0.3	1975-1998	0.3						
Stomach (151)	20.50	10.42	-2.9 ^b	1975-1981	-4.3 ^b	1981-1998	-2.6 ^b				
Colon (153)	8.08	13.45	3.3 ^b	1975-1978	0.6	1978-1981	-8.1	1981-1988	8.8 ^b	1988-1998	2.0^{b}
Recto (154)	5.24	4.75	-0.6 ^b	1975-1988	0.1	1988-1998	-3.2 ^b				
Colorectal (153, 154, 159.0)	13.31	18.47	1.9 ^b	1975-1982	0.2	1982-1991	3.5 ^b	1991-1998	-0.1		
Liver (155)	9.78	8.90	0.1	1975-1983	0.3	1983-1987	-6.0	1987-1990	9.9	1990-1998	-1.5
Gallbladder (156)	1.17	1.37	1.4 ^b	1975-1977	-16.7	1977-1987	7.9 ^b	1987-1991	-7.4	1991-1998	1.9
Pancreas (157)	3.87	6.50	2.3 ^b	1975-1987	3.9 ^b	1987-1998	8.0				
Larynx (161)	7.87	5.25	-1.7 ^b	1975-1991	-1.3 ^b	1991-1998	-3.4 ^b				
Lung (162)	32.77	48.77	1.8 ^b	1975-1982	2.3 ^b	1982-1989	4.0 ^b	1989-1998	-0.8 ^b		
Melanoma (172)	0.42	1.14	5.0 ^b	1975-1986	10.3 ^b	1986-1998	2.1				
Prostate (185)	12.90	14.24	0.4 ^b	1975-1998	0.4 ^b						
Urinary bladder (188)	6.68	8.57	1.1 ^b	1975-1992	2.3 ^b	1992-1998	-3.3				
Kidney (189)	2.00	3.08	2.4 ^b	1975-1990	3.9 ^b	1992-1998	-0.4				
Brain (191.192)	5.57	4.27	-1.6 ^b	1975-1998	-1.6 ^b						
Thyroid (193)	0.15	0.27	1.8	1975-1998	1.8						
Hodgkin disease (201)	1.46	0.87	-2.9 ^b	1975-1998	-2.9 ^b						
Non-Hodgkin lymphoma (200.202)	1.76	3.76	3.4 ^b	1975-1991	5.6 ^b	1991-1998	-1.9				
Myeloma (203)	1.02	1.93	2.8 ^b	1975-1990	4.9 ^b	1991-1998	-0.9				
Leukemias (204-208)	5.35	4.91	-0.2	1975-1991	0.9 ^b	1991-1998	-3.3				

Cáncer Pulmón Europa. 1955-1998

JM Borràs, E Fernández, JR González, Eva Negri, Franca Lucchini, Carlo La Vecchia, Fabio Levi Annals of Oncology, 2003

Cáncer Pulmón Europa. 1955-1998

JM Borràs, E Fernández, JR González, Eva Negri, Franca Lucchini, Carlo La Vecchia, Fabio Levi Annals of Oncology, 2003

Cáncer Pulmón Europa. 1955-1998

JM Borràs, E Fernández, JR González, Eva Negri, Franca Lucchini, Carlo La Vecchia, Fabio Levi Annals of Oncology, 2003

