

► Título da Lista	
Professor: Fulado Cicrano de Tal	Disciplina: Miscelânea
Curso: Licenciatura em Matemática	8º semestre

Aluno (a): Data: / /

Lista de Atividade I

1 Sequências & Séries

Questão 1. Na Figura 1 temos uma espiral formada por semicírculos cujos centros pertencem ao eixos das abscissas. Se o raio do primeiro semicírculo é igual a 1 e o raio de cada semicírculo é igual a metade do semicírculo anterior, determine:

Figura 1: Um tipo de espiral

(a) o comprimento da espiral.

Resp.: 2π

(b) a abscissa do ponto assintótico da espiral.

Resp.: 4/3

Questão 2. Uma sequência $(x_n)_{n\in\mathbb{N}}$ é dita Sequência de Cauchy quando:

Dado arbitrariamente um número real $\varepsilon > 0$, pode-se obter $n_0 \in \mathbb{N}$ tal que:

$$m > n_0$$
 e $n > n_0 \Longrightarrow |x_m - x_n| < \varepsilon$.

(a) Mostre que toda sequência convergente é de Cauchy.

 $\overline{\mathbf{Questão 3.}}$ Classifique as afirmações abaixo com \mathbf{V} (Verdadeiro) ou \mathbf{F} (Falso). Justificando cada uma. Procure justificar as afirmações falsas com um contra exemplo.

() toda sequência divergente é não monótona.

) toda sequência decrescente limitada é convergente e	()	toda sequência limitada é convergente.
	seu limite é zero.	()	toda sequência limitada é monótona.
,) toda sequência divergente é não limitada.	(,	toda sequencia inintada e inonotona.
,) toda sequência alternada é divergente.	()	toda sequência monótona é convergente

2 Cálculo Vetorial e Integral

) toda sequência convergente é limitada.

2.1 Integrais Triplas

2.1.1 Coordenadas Cilíndricas e Esféricas

Questão 4. Use coordenadas esféricas e calcule as seguintes integrais:

(a)
$$\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{8-x^2-y^2}} (x^2+y^2+z^2) dz dy dx.$$

Resp.:
$$\frac{256\pi}{5} \left(\sqrt{2} - 1/2 \right)$$

(a)
$$\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{8-x^{2}-y^{2}}} \left(x^{2}+y^{2}+z^{2}\right) dz dy dx.$$
(b)
$$\int_{0}^{\sqrt{2}} \int_{y}^{\sqrt{4-y^{2}}} \int_{0}^{\sqrt{4-x^{2}-y^{2}}} \sqrt{x^{2}+y^{2}+z^{2}} dz dx dy.$$

Resp.: π

Integrais de Linha

Questão 5. Seja Γ o segmento de reta que liga a origem ao ponto A = (1, 1, 1). Calcule $\int_{\Gamma} \vec{F} d\Gamma$, onde:

$$\vec{F}(x, y, z) = xy \cdot \vec{\mathbf{i}} - y \cdot \vec{\mathbf{j}} + 1 \cdot \vec{\mathbf{k}}.$$

Álgebra Linear 3

3.1Sistemas Lineares

Questão 6. (Fuvest-SP-Adap.) Considerando o sistema

$$\begin{cases} x + 2y + 3z = 14 \\ 4y + 5z = 23, \\ 6z = 18 \end{cases}$$

então o valor de x é igual a:

(a) -2

(b) 0

(c) 1

(d) 3

(e) 27

Questão 7. (IBMEC) Num prédio existem 12 andares, todos ocupados. Alguns, por 4 pessoas, outros, por apenas 2 pessoas, num total de 38 pessoas. O número de andares ocupados por 2 pessoas é:

(a) 4

(d) 8

(b) 5

(e) 19

(c) 6

Estatística

Questão 8. Uma pesquisa realizada sobre a preferência dos consumidores por três categorias de veículos $A, B \in C$ de uma indústria automobilística revelou que dos 500 entrevistados:

I) 210 preferiam o veículo A

IV) 90 preferiam o v eículo $A \in B$

II) 230 preferiam o veículo B

V) 90 preferiam os veículos $A \in C$

III) 160 preferiam o veículo C

VI) 70 preferiam os veículos $B \in C$

Um consumidor é selecionado ao acaso entre os entrevistados. Calcule a probabilidade de que:

- (a) Ele prefira as três categorias.
- (b) Ele prefira somente uma das categorias.
- (c) Ele prefira apenas a categoria A

Questão 9. Cinco corredores foram examinados para determinar a quantidade máxima de aspiração de oxigênio, que é uma medida usada para caracterizar a situação cardiovascular de uma pessoa. Os resultados estão na Tabela 1, onde "x" é o número de segundos no melhor tempo feito em um quilômetro e "y" é o número de mililitros por minuto, por quilograma de peso corporal da aspiração máxima de oxigênio do corredor.

- (a) Trace o diagrama de dispersão.
- (b) Ache a reta de regressão para os dados da tabela.
- (c) Use a reta de regressão para estimar a máxima aspiração de oxigênio de um corredor, cujo melhor tempo em uma milha é de 340,4 s.

Tabela 1: Segundos por melhor corredor

	Corredor A	Corredor B	Corredor C	Corredor D	Corredor E
x	300,5	350,6	407,3	326,2	512,8
\mathbf{y}	350,2	325,8	375,6	418,5	400,2

Variáveis Complexas 5

Questão 10.] (UFMS-adap.) Sobre o número complexo z que satisfaz a equação

$$2\bar{z} + iz + 1 - i = 0,$$

julgue os itens abaixo em V (verdadeiro) ou F (falso).

$$(\quad) |z| = \sqrt{z}.$$

()
$$z^2 = i$$
.

()
$$|z| = \sqrt{z}$$
.
() $\text{Re}(z) + \text{Im}(z) = 0$.

Questão 11. Sendo $\varphi \colon [0, 2\pi] \to \mathbb{C}$, definida por $\varphi(t) = 1 + e^{it}$, tal que $\Phi = \varphi([0, 2\pi])$, encontre:

$$\oint_{\Phi} \frac{1}{z^2 - 1} \, \mathrm{d}z$$

de duas formas:

- (a) Diretamente (usando parametrização).
- (b) Usando o Teorema da Integral de Cauchy.

Questão 12.) Prove que

$$\operatorname{sen}\left(\frac{2\pi}{7}\right) + \operatorname{sen}\left(\frac{4\pi}{7}\right) + \operatorname{sen}\left(\frac{8\pi}{7}\right) = \frac{\sqrt{7}}{2}.$$