MA3205

AY24/25 Sem 2

by ngmh

1. Sets and Operations

```
A1.1 Axiom of Extensionality \forall x \ [x \in A \iff x \in B]
```

D1.6 Subcollection $A \subseteq B$ if $\forall x [x \in A \Rightarrow x \in B]$

D1.7 Empty Set x is empty if $\forall y [y \notin x]$

F1.8 If $x = \emptyset$ and A is a collection then $x \subseteq A$

F1.9 If $x = \emptyset$ and $y = \emptyset$, x = y

D1.11 Basic Operations

- 1. $x \cup y = \{z : z \in x \lor z \in y\}$
- **2.** $x \cap y = \{z : z \in x \land z \in y\}$
- 3. $x \setminus y = \{z : z \in x \land z \notin y\}$
- 4. $x \triangle y = (x \setminus y) \cup (y \setminus x)$
- 5. $\mathcal{P}(x) = \{z : z \subseteq x\}$

L1.12 Properties

- 1. $x \cup y = y \cup x$
- 2. $x \cap y = y \cap x$
- 3. $x \cup (y \cup z) = (x \cup y) \cup z$
- 4. $x \cap (y \cap z) = (x \cap y) \cap z$
- 5. $x \cup (y \cap z) = (x \cup y) \cap (x \cup z)$
- 6. $x \cap (y \cup z) = (x \cap y) \cup (x \cap z)$
- 7. $x \setminus (y \cup z) = (x \setminus y) \cap (x \setminus z)$
- 8. $x \setminus (y \cap z) = (x \setminus y) \cup (x \setminus z)$

D1.13 Union and Intersection

 $\bigcup A = \{x : \exists y \ [y \in A \land x \in y]\}\$

if $A = \emptyset$ $\{x: \forall y \ [y \in A \Rightarrow x \in y]\}$ otherwise

E1.16 Symmetric Difference

- 1. $(X \triangle Y) \triangle Z = X \triangle (Y \triangle Z)$
- 2. $X \triangle X = \emptyset$
- 3. $X \triangle Y = Y \triangle X$
- 4. $X \triangle \emptyset = X$

E1.18 $X \cap (Y \triangle Z) = (X \cap Y) \triangle (X \cap Z)$

2. Pairing, Products, and Relations

D2.1 Ordered Pair $\langle a, b \rangle = \{\{a\}, \{a, b\}\}\$

L2.2 $\langle x, y \rangle = \langle a, b \rangle$ iff $x = a \wedge y = b$

D2.3 Cartesian Product $A \times B = \{z : \exists a \in A \ \exists b \in B \ [z = \langle a, b \rangle] \}$, $A^2 = A \times A$

E2.5 Define $pair(a, b) = \{a, \{a, b\}\}$. Assuming we cannot have $A \in B \in A$, pair(a, b) = pair(x, y) iff $a = x \land b = y$

D2.6 Relation A relation is a collection of ordered pairs.

- 1. R is a relation if $\forall x \in R \exists a \exists b [x = \langle a, b \rangle]$
- 2. R is a relation on A if $R \subseteq A \times A$
- 3. $dom(R) = \{a : \exists b \ [\langle a, b \rangle \in R] \}$
- 4. $ran(R) = \{b : \exists a \ [\langle a, b \rangle \in R] \}$
- 5. $R^{-1} = \{x : \exists a \exists b [\langle a, b \rangle \in R \land x = \langle b, a \rangle] \}$

D2.8 Function A function is a relation where no two elements have the same first coordinate.

- 1. $\forall a, b, c \ [(\langle a, b \rangle \in f \land \langle a, c \rangle \in f) \Rightarrow b = c]$
- 2. $f: A \to B$ if f is a function, dom(f) = A and $ran(f) \subseteq B$

F2.9 If R is a relation and $S \subseteq R$, then S is a relation. If f is a function and $q \subseteq f$, then q is a function.

D2.10 R restricted to A: $R \upharpoonright A = R \cap (A \times ran(R))$

F2.11 $f \upharpoonright A$ is a function. If $A \subseteq dom(f)$, then $dom(f \upharpoonright A) = A$

D2.12 Image of A under $R: Im_R(A) = \{b : \exists a \in A \ [\langle a, b \rangle \in R] \}$. If f is a function, for any $a \in dom(f)$ f(a) denotes the unique b such that $\langle a, b \rangle \in f$

```
D2.14 Im_{f^{-1}}(B) = \{a : \exists b \in B \ [\langle b, a \rangle \in f^{-1}]\} = \{a : \exists b \in B \ [\langle a, b \rangle \in B \ ]\}
\{a: a \in dom(f) \land f(a) \in B\}
```

L2.15 $Im_{R}([\]A) = [\]\{I : \exists a \in A \ [I = Im_{R}(a)]\}$

L2.16 If for any x and z, if $x \neq z$ then $Im_R(\{x\}) \cap Im_R(\{z\}) = \emptyset$, then

1. $Im_R(\bigcap A) = \bigcap \{I : \exists a \in A \ [I = Im_R(a)] \}$

2. $Im_B(B \setminus A) = Im_B(B) \setminus Im_B(A)$

C2.17 For any function and sets,

- 1. $Im_{f^{-1}}(\bigcup A) = \bigcup \{I : \exists a \in A \ [I = Im_{f^{-1}}(a)]\}$
- 2. $Im_{f-1}(\bigcap A) = \bigcap \{I : \exists a \in A \ [I = Im_{f-1}(a)]\}$
- 3. $Im_{f-1}(B \setminus A) = Im_{f-1}(B) \setminus Im_{f-1}(A)$

D2.18 f as composed with g:

 $g \circ f = \{x : \exists a \; \exists b \; \exists c \; [\langle a, b \rangle \in f \land \langle b, c \rangle \in g \land x = \langle a, c \rangle] \}$

L2.19 If f, q, h are functions then

- 1. $q \circ f$ is a function
- 2. If $f: A \to B$ and $q: B \to C$, then $g \circ f: A \to C$
- 3. $h \circ (g \circ f) = (h \circ g) \circ f$

D2.20 Injection / Surjection / Bijection Consider $f: A \rightarrow B$

- 1. 1-1 / Injection: $\forall a, a' \in A [f(a) = f(a') \Rightarrow a = a']$
- 2. Onto / surjection: ran(f) = B
- 3. Bijection: 1-1 and Onto

D2.21 $X^Y = \{f : f \text{ is a function } \land f : Y \rightarrow X\}$

L2.22 If $f: A \to B$ is 1-1 and onto, then $f^{-1}: B \to A$ is 1-1 and onto.

E2.23 It is possible that $Im_f(a \cap b) \neq Im_f(a) \cap Im_f(b)$

E2.24 If f is 1 - 1, $Im_f(\bigcap A) = \bigcap \{Im_f(a) : a \in A\}$ and

 $Im_f(B \setminus A) = Im_f(B) \setminus Im_f(A)$

2.27 The following are equivalent

- 1. $\forall x, z \ [x \neq z \Rightarrow Im_R(\{x\}) \cap Im_R(\{z\}) = \emptyset]$
- 2. R^{-1} is a function

CV2.28 Functions as sequences Suppose dom(f) = I.

 $f = \langle A_i : i \in I \rangle = \{x : \exists i \in I \ [x = \langle i, A_i \rangle] \}. \ \forall i \in I, f(i) = A_i.$

- 1. $Im_f(A) = \{f(a) : a \in A \cap dom(f)\}$. If $A \subseteq dom(f)$, then $Im_f(A) = \{ f(a) : a \in A \}$
- 2. If $dom(f) = A \times B$, $f(\langle a, b \rangle) = f(a, b)$

CV2.30 Suppose F is a function, $x \in dom(F)$, and F(x) is also a function.

Then if $y \in dom(F(x))$, F(x)(y) = (F(x))(y).

CV2.32 If $F = \langle A_i : i \in I \rangle$, then $\bigcup ran(F) = \bigcup_{i \in I} A_i$, similarly for

CV2.33 To specify a function f with domain I, it is enough to specify f(i) for each $i \in I$. $f = \{z : \exists i \in I \ \exists x \ [z = \langle i, x \rangle \land x \ \text{satisfies property} \ P \ \text{w.r.t} \ i]\}$. If there is a unique object satisfying P for each i, then f is a function and dom(f) = I.

EP2.34 Define $F: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$. For $f \in \mathbb{N}^{\mathbb{N}}$, we must specify $F(f) \in \mathbb{N}^{\mathbb{N}}$. We must specify $F(f)(n) \in \mathbb{N}$ for each $n \in \mathbb{N}$. For example, F(f)(n) = f(n) + 1. Then $F(f) = \{\langle n, f(n) + 1 \rangle : n \in \mathbb{N}\}$ and

 $F = \{\langle f, \{\langle n, f(n) + 1 \rangle : n \in \mathbb{N} \} \rangle : f \in \mathbb{N}^{\mathbb{N}} \}$. Similarly, define

 $\mathcal{F}: (\mathbb{N}^{\mathbb{N}})^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$. For $F \in (\mathbb{N}^{\mathbb{N}})^{\mathbb{N}}$, we must specify $\mathcal{F}(F) \in \mathbb{N}^{\mathbb{N}}$ by specifying $\mathcal{F}(F)(n)$ for each n. Since F is a function with domain \mathbb{N} , F(i) is defined for all $i \leq n$ and $F(i) \in \mathbb{N}^{\mathbb{N}}$. So $F(i)(n) \in \mathbb{N}$. Set

 $\mathcal{F}(F)(n) = max\{F(i)(n): i \leq n\}. \mathcal{F}(F)$ eventually dominates ${F(n):n\in\mathbb{N}}.$

EP2.35 Let I be a set, $\langle J_i : i \in I \rangle$ be a sequence of sets, and $\langle A_{i,j} : j \in J_i \rangle$ be a sequence of sets. Define $X = \{\bigcup_{i \in J_i} A_{i,j} : i \in I\}$. First define F with dom(F) = I. For each $i \in I$, $F(i) = \bigcup_{i \in J_i} A_{i,j}$. $X = Im_F(I) = ran(F)$. $\bigcap X = \bigcap_{i \in I} \bigcup_{i \in J_i} A_{i,j}$

EP2.36 There is a biection $F: \mathcal{P}(X) \to \{0,1\}^X$. We must specify F(a) for each $a \in \mathcal{P}(X)$; a function with dom(F(a)) = X and $ran(F(a)) \subseteq \{0,1\}$. It is enough to specify F(a)(x) for each $x \in X$.

 $0 \quad \text{if } x \in A$ which is 1-1 and onto. 1 if $x \notin A$

D2.37 Cartesian Product Let F be a function with dom(F) as a set. $\prod F =$ $\{f: f \text{ is a function } \land dom(f) = dom(F) \land \forall x \in dom(F) [f(x) \in F(x)]\}.$ If $F = \langle A_i : i \in I \rangle$, then

 $\prod F = \prod_{i \in I} A_i = \{f : f \text{ is a function } \land dom(f) = I \land \forall i \in I \ [f(i) \in A_i]\}$ **A2.38 Axiom of Choice** If $\langle A_i : i \in I \rangle$ is a sequence of sets such that

 $\forall i \in I \ [A_i \neq \emptyset], \text{ then } \prod_{i \in I} A_i \neq \emptyset$

D2.40 Directed Collection G is directed if $\forall a, b \in G \exists c \in G [a \subseteq c \land b \subseteq c]$

L2.41 If G is a directed collection of functions, $f = \bigcup G$ is a function. $dom(f) = \bigcup \{dom(\sigma) : \sigma \in G\} \text{ and } ran(f) = \bigcup \{ran(\sigma) : \sigma \in G\}$

T2.47 Generalised De Morgan's (Requires Axiom of Choice) Let I be a set. and $\langle J_i : i \in I \rangle$ be a sequence of sets. Suppose $I \neq \emptyset$ and $\forall i \in I \ [J_i \neq \emptyset]$. For each $i \in I$, let $\langle A_{i,j} : j \in J_i \rangle$ be a sequence of sets.

- 1. $\bigcup_{i \in I} \bigcap_{j \in J_i} A_{i,j} = \bigcap \{ \bigcup_{i \in I} A_{i,f(i)} : f \in \prod_{i \in I} J_i \}$
- 2. $\bigcap_{i \in I} \bigcup_{j \in J_i} A_{i,j} = \bigcup \{ \bigcap_{i \in I} A_{i,f(i)} : f \in \prod_{i \in I} J_i \}$
- 3. $\prod_{i \in I} (\bigcup_{j \in J_i} A_{i,j}) = \bigcup \{\prod_{i \in I} A_{i,f(i)} : f \in \prod_{i \in I} J_i\}$
- 4. $\prod_{i \in I} (\bigcap_{j \in I_i} A_{i,j}) = \bigcap \{\prod_{i \in I} A_{i,f(i)} : f \in \prod_{j \in I} J_i\}$

T2.48 Fix $n \ge 1$, Let X be a set and $A_1, ..., A_n$ be subsets of X. There are at most 2^{2^n} sets that can be formed using $X \setminus ., \cup$, and \cap .

- 1. Redefine $\bigcap \emptyset = X$
- 2. Let $S = \{0, 1\}^{\{1, \dots, n\}}$, then $|S| = 2^n$
- 3. For each $\sigma \in S$ define $b_{\sigma} = (\bigcap \{A_i : \sigma(i) = 0\}) \cap (\bigcap \{X \setminus A_i : \sigma(i) = 1\})$
- 4. For each $a \in \mathcal{P}(S)$ let $c_a = \bigcup \{b_\sigma : \sigma \in a\}$
- 5. Let $\mathcal{B} = \{c_a : a \in \mathcal{P}(S)\}. |\mathcal{B}| \le |\mathcal{P}(S)| = 2^{2^n}$
- 6. **CL2.49** For each $1 \leq i \leq n$, $A_i \in \mathcal{B}$
- 7. **CL2.50** For any $a, b \in \mathcal{P}(S), c_a \cup c_b = c_{(a,b)}$
- 8. **CL2.51** For any $a, b \in \mathcal{P}(S), X \setminus c_a = c_{(S \setminus a)}$
- 9. Claim 2.52 For any $a, b \in \mathcal{P}(S), c_a \cap c_b = c_{(a \cap b)}$

E2.53 There exists $\langle A_n : n \in \mathbb{N} \rangle$ and $\langle B_n : n \in \mathbb{N} \rangle$ such that

- 1. $\forall n \in \mathbb{N} [B_n \subset A_n]$
- 2. $\forall n, m \in \mathbb{N} [n \neq m \Rightarrow B_n \cap B_m = \emptyset]$
- 3. $\bigcup_{n\in\mathbb{N}} A_n = \bigcup_{n\in\mathbb{N}} B_n$

E2.55 If $I \neq \emptyset$ is a set and $\langle A_i : i \in I \rangle$ is a sequence of sets and X is a set then

- 1. $X \setminus (\bigcup_{i \in I} A_i) = \bigcap_{i \in I} (X \setminus A_i)$ 2. $X \setminus (\bigcap_{i \in I} A_i) = \bigcup_{i \in I} (X \setminus A_i)$

3. Russell's Paradox and Proper Classes

T3.1 Russell $R = \{x : x \text{ is a set } \land x \notin x\}$ is not a set **Modified Morse-Kelley Rules**

- 1. Everything is a class.
- 2. Every set is a class.
- 3. Every collection of sets is a class.
- 4. Axiom of Comprehension: If A is a class and x is a set, then $A \cap x$ is a set.
- 5. Axiom of Replacement: If F is a class which is a function and x a set, then $Im_F(x)$ is a set.
- 6. Axioms of Pairing / Union / Power-Set: If A and B are sets, then so are $\{A, B\}, [JA, \mathcal{P}(A)]$
- 7. Axiom of Choice
- 8. Axiom of infinity: N is a set
- 9. Axiom of Extensionality

T3.3 $V = \{x : x \text{ is a set}\}\$ is not a set, but a proper class

EP3.4 $A \times B$ is a set

E3.5 $dom(A), ran(A), \bigcap A, A^B$ are sets

E3.6 For I and $\langle A_i : i \in I \rangle$ which is a sequence of sets, $\prod_{i \in I} A_i$ is a set

E3.7 If R is a relation, $Im_R(A)$ is a set **E3.8** U = $\{x : \exists a \ \exists b \ [x = \langle a, b \rangle] \}$ is not a set

E3.9 Let F be a class. If F is a function and dom(F) is a set, F is a set

4. The Natural Numbers

F4.1 Peano Axioms

- 1. 0 is a natural number
- 2. If n is a natural number, there exists S(n) which is also a natural number
- 3. If $n \neq m$, then $S(n) \neq S(m)$
- 4. $0 \neq S(n)$ for any natural number n
- 5. If X is a class of natural numbers where $0 \in X$ and $\forall n \in X \ [S(n) \in X]$, then $X = \mathbb{N}$
- **D4.2** $S(x) = x \cup \{x\}$
- **D4.3** 0 is the empty set ∅

D4.4 A class is inductive if $0 \in A$ and $\forall x \in A \ [S(x) \in A]$. n is a natural number if it belongs to every inductive class.

F4.5 Axiom of infinity The class of all natural numbers

 $\mathbb{N} = \{n : n \text{ is a natural number}\}\$ is a set.

L4.6 0 is a natural number, and if n is a natural number, then so is S(n). $\mathbb N$ is an inductive class, and $\mathbb N\subseteq A$ for every inductive class A.

L4.7 If X is any set of natural number such that $0 \in X$ and

 $\forall n \in X \ [S(n) \in X], \text{ then } X = \mathbb{N}$

F4.8 Principle of Mathematical Induction Suppose P is a property, which 0 has, and $\forall n \in \mathbb{N} \ [n \text{ has property } P \Rightarrow S(n) \text{ has property } P]$. Then all natural numbers have property P.

L4.9 If *n* is a natural number then

- 1. $\forall x \in n [x \subseteq n]$
- 2. $n \subseteq \mathbb{N}$
- 3. $\forall x [(x \subseteq n \land x \neq \emptyset) \Rightarrow \exists m \in x [x \cap m = \emptyset]]$

L4.10 For natural numbers n, m, k

- 1. $n \notin n$
- 2. $m \subseteq n \Rightarrow (m \in n \lor m = n)$
- 3. $(m \subseteq n \land n \in k) \Rightarrow m \in k$
- 4. $m = n \lor m \in n \lor n \in m$

L4.11 For $X \subseteq \mathbb{N}$, if $X \neq \emptyset$, then $\exists n \in X [X \cap n = \emptyset]$

D4.12 We identify the relation < on natural numbers with €

F4.13 Principle of Strong Induction Suppose P is some property. Suppose that $\forall n \in \mathbb{N}$ [if P holds for all $m \in \mathbb{N}$ less than n then P holds for n]. Then P holds for all $n \in \mathbb{N}$.

L4.14 If $n, m \in \mathbb{N}$ and $n \neq m$, then $S(n) \neq S(m)$.

E4.15 For natural numbers n, m, k

- 1. $m \in n \in k$ implies $m \in k$
- 2. It is impossible to have $m \in n \in S(m)$
- 3. If $n \neq 0$ then $n = S(\lfloor \rfloor n)$
- 4. $n \leq m$ iff $n \subseteq m$
- 5. $max\{n,m\} = n \cup m$
- 6. Either n = 0 or $\exists k \in n \ [S(k) = n]$

E4.16 If $X \subseteq \mathbb{N}$ and $\forall n \in X [n \subseteq X]$, then $X = \mathbb{N}$ or $\exists n \in \mathbb{N} [X = n]$

D4.17 Extenders Let $\mathbf{FN} = \{\sigma : \sigma \text{ is a function } \land \exists n \in \mathbb{N} \ [dom(\sigma) = n]\}$ be the proper class of all functions whose domain is some natural number. An extender is a function $\mathbf{E} : \mathbf{FN} \to \mathbf{V}$. When you input

 $\sigma = \{\langle 0, \sigma(0) \rangle, ..., \langle n, \sigma(n) \rangle\} \text{ into } \mathbf{E}, \mathbf{E}(\sigma) \text{ outputs the next value } \sigma(S(n)).$

T4.19 Suppose $\mathbf{E}: \mathbf{FN} \to \mathbf{V}$ is an extender. Then there exists a unique $f: \mathbb{N} \to \mathbf{V}$ satisfying $\forall n \in \mathbb{N} \ [f(n) = \mathbf{E}(f \upharpoonright n)]$.

CL4.21 For each $n \in \mathbb{N}$ there is an approximation to f with domain equal to n.

CL4.22 Let $\sigma, \tau \in \mathbf{FN}$ be approximations to f. Either $\sigma \subseteq \tau$ or $\tau \subseteq \sigma$.

This set $\bigcup ran(f)$ is the transitive closure of X, trcl(X). **EP4.24** Consider $f(0) = \emptyset$, $f(S(n)) = \mathcal{P}(f(n))$. Set

 $\mathbf{E}(\sigma) = \emptyset, \mathbf{E}(\sigma) = \mathcal{P}(\sigma(m))$. This gives

 $V_0 = f(0) = \emptyset, V_{S(n)} = f(S(n)) = \mathcal{P}(f(n)) = \mathcal{P}(V_n).$

 $V_{\omega} = \bigcup ran(f) = \bigcup \{V_n : n \in \mathbb{N}\}.$

D2.45 Addition and Multiplication

- Define $\langle f_m: m \in \mathbb{N} \rangle$ such that $f_m: \mathbb{N} \to \mathbb{N}$ is the unique function such that $f_m(0) = m$ and $\forall n \in \mathbb{N}$ $[f_m(S(n)) = S(f_m(n))]$
- In other words, define the extender ${f E}:{f FN} o{f V}$ as follows. For any $\sigma\in{f FN},$

 $\mathbf{E}(\sigma) = \begin{cases} m & \text{if } dom(\sigma) = 0\\ S(\sigma(\bigcup dom(\sigma))) & \text{if } dom(\sigma) \neq 0 \end{cases}$

- $f_m: \mathbb{N} \to \mathbf{V}$ is the unique function satisfying $\forall n \in \mathbb{N} \ [f_m(n) = \mathbf{E}(f_m \upharpoonright n)]$.
- Then $m + n = f_m(n)$, and m + S(n) = (m + n) + 1.
- Define $\langle g_m: m\in \mathbb{N} \rangle$ such that $g_m: \mathbb{N} \to \mathbb{N}$ is the unique function such that $g_m(0)=0$ and $\forall n\in \mathbb{N}$ $[g_m(S(n))=f_{q_m(n)}(m)]$
- In other words, define the extender ${f E}: {f FN} o {f V}$ as follows. For any $\sigma \in {f FN},$

 $\mathbf{E}(\sigma) = \left\{ \begin{array}{ll} 0 & \text{if } dom(\sigma) = 0 \\ f_{\sigma(\bigcup dom(\sigma))}(m) & \text{if } dom(\sigma) \neq 0 \text{ and } \sigma(\bigcup dom(\sigma)) \in \mathbb{N} \\ \emptyset & \text{if } dom(\sigma) \neq 0 \text{ and } \sigma(\bigcup dom(\sigma)) \notin \mathbb{N} \end{array} \right.$

- $g_m: \mathbb{N} \to \mathbf{V}$ is the unique function satisfying $\forall n \in \mathbb{N} \ [g_m(n) = \mathbf{E}(g_m \upharpoonright n)]$.
- Then $m \cdot n = g_m(n)$, and $m \cdot S(n) = (m \cdot n) + m$.

E4.26 For $n, m, k \in \mathbb{N}$

- 1. n+1 = S(n)
- 2. n + (m + k) = (n + m) + k
- 3. n + m = m + n
- 4. $n + n = 2 \cdot n$
- 5. If $2 \cdot n = 2 \cdot m$ then n = m
- 6. $n \cdot (m+k) = n \cdot m + n \cdot k$
- 7. $n \cdot (m \cdot k) = (n \cdot m) \cdot k$
- 8. $n \cdot m = m \cdot n$

E4.27 For $m, n, k \in \mathbb{N}$

- 1. If n < k then m + n < m + k
- 2. If $m \neq 0$ and n < k then $m \cdot n < m \cdot k$

E4.28 A transitive set satisfies $\forall x \in X \ [x \subseteq X]$.

- 1. For each $n \in \mathbb{N}$, V_n is transitive and V_{ω} is transitive
- 2. For each $n \in \mathbb{N}$, $n \subseteq V_n$ and $n \notin V_n$
- 3. $\mathbb{N} \subseteq V_{\omega}$ and $\mathbb{N} \notin V_{\omega}$

E4.29 $f \in \mathbb{N}^{\mathbb{N}}$ is increasing if $\forall n \in \mathbb{N}$ $[f(n) \leq f(n+1)]$. f is unbunded if $\forall k \in \mathbb{N} \ \exists n \in \mathbb{N}$ [f(n) > k]. Let $H : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be a function. For each $m \in \mathbb{N}$, let h_m be the function in $\mathbb{N}^{\mathbb{N}}$ such that $\forall n \in \mathbb{N}$ $[h_m(n) = H(m,n)]$ which is increasing and unbounded. There exists an increasing and unbounded function f such that $\forall m \in \mathbb{N} \ \exists l \in \mathbb{N} \ \forall n \in \mathbb{N}$ $[n \geq l \Rightarrow f(n) < h_m(n)]$.

E4.30 Let X be a set, $0_X \in X$ be some function. Suppose

- 1. $\forall x \in X [S_x(x) \neq 0_X]$
- 2. $\forall x, y \in X [x \neq y \Rightarrow S_X(x) \neq S_X(y)]$
- 3. For every $A \subseteq X$, if $0_X \in A$ and $\forall x \in A$ $[S_X(x) \in A]$, then X = AThen $\langle \mathbb{N}, S, 0 \rangle$ is isomorphic to $\langle X, S_X, 0_X \rangle$. There is a 1-1 and onto function $F: \mathbb{N} \to X$ such that $F(0) = 0_X$ and $\forall n \in \mathbb{N}$ $[F(S(n)) = S_X(F(n))]$.

E4.31 Define $A_0 = \{\emptyset\}, A_1 = \mathbb{N}$, for $n \ge 1, A_{S(n)} = A_n \times \mathbb{N}$. There is an extender $\mathbf{E} : \mathbf{F} \mathbf{N} \to \mathbf{V}$, $\mathbf{E}(\sigma) = \sigma(||dom(\sigma)) \times \mathbb{N}$, where

extender $\mathbf{E}: \mathbf{FN} \to \mathbf{V}, \mathbf{E}(\sigma) = \sigma(\bigcup dom(\sigma)) \times \mathbb{N}$, where $dom(\sigma) = 0 \Rightarrow \mathbf{E}(\sigma) = \{\emptyset\}, dom(\sigma) = 1 \Rightarrow \mathbf{E}(\sigma) = \{\mathbb{N}\}$ that generates $\langle A_n : n \in \mathbb{N} \rangle$.

E4.32

- 1. X is transitive iff $\bigcup X \subseteq X$
- 2. trcl(X) is the smallest transitive set containing X as a subset

5. Comparing Sizes of Sets

D5.1 Equinumerosity $A \approx B$ if there exists $f: A \rightarrow B$ which is both 1-1 and onto.

F5.2 $\mathcal{P}(A) \approx \{0, 1\}^A$

D5.4 $A \lessapprox B$ means there exists $f:A \to B$ which is 1-1 and B is at least as big as A. If $A \lessapprox B$ but $A \not\approx B$, then $A \lessapprox B$. It is not possible to find $g:A \to B$ that is both 1-1 and onto. B is strictly bigger in size than A.

L5.5 If $f:A \to B$ and $g:B \to C$ are 1-1 functions then $g \circ f:A \to C$ is 1-1.

L5.6 For sets *A*, *B*, *C*

- 1. $A \lesssim A$
- 2. If $A \lesssim B$ and $B \lesssim C$ then $A \lesssim C$
- 3. If $A \approx B$ and $B \approx C$ then $A \approx C$

T5.7 Cantor For any set $X, X \lessapprox \mathcal{P}(X)$.

5.2 The Schröder Bernstein Theorem

T5.8 If $f:A\to B$ and $g:B\to A$ are both 1-1 functions, then there exists $I\subseteq A$ and $J\subseteq B$ such that $f\restriction I:I\to J$ is 1-1 and onto, and $g\restriction (B\setminus J):B\setminus J\to A\setminus I$ is 1-1 and onto.

CL5.9 For each $b \in B \setminus J$, $g(b) \in A \setminus I$.

CL5.10 For each $a \in A \setminus I$, there exists $b \in B \setminus J$ with g(b) = a.

T5.11 Schröder-Bernstein For any sets A and B, if $A\lessapprox B$ and $B\lessapprox A$, then $A\thickapprox B$.

E5.12 Suppose $f: X \to Y$ is a 1-1 function. For any $Z \subseteq X$, $Z \approx Im_f(Z)$.

E5.13 Suppose $I\subseteq A$ and $J\subseteq B$. If Ipprox J and $(A\setminus I)pprox (B\setminus J)$, then Approx B.

E5.14 If $n \in \mathbb{N}$ and $A \approx S(n)$, then $\forall a \in A, (A \setminus \{a\} \approx n)$.

E5.15 If $n \in \mathbb{N}$ and $A \approx n$, then if $a \notin A$, $(A \cup \{a\}) \approx S(n)$.

E5.16 Let $n, m \in \mathbb{N}$. Then

- 1. If $f:n\to n$ is 1-1, then f is onto. There is no 1-1 function from S(n) to n.
- 2. If $m \in n$, then $m \leq n$.
- 3. If $x \subseteq n$, then $x \lessapprox n$.
- 4. $n \lesssim \mathbb{N}$
- 5. If $\widetilde{A} \approx n$, $B \approx m$, and $A \cap B = \emptyset$, then $(A \cup B) \approx (n + m)$.

D5.19 A set is finite if there exits $n \in \mathbb{N}$ such that $n \approx A$. A is infinite if it is not finite. A is countable if $A \lesssim \mathbb{N}$. A is uncountable if it is not countable.

L5.20 If $f:A\to B$ is a 1-1 function, then for any $X,Y\subseteq A$, if $Im_f(X)=Im_f(Y)$, then X=Y.

L5.21 For sets *A*, *B*, *C*, *D*

- 1. If $A \lesssim B$ then $\mathcal{P}(A) \lesssim \mathcal{P}(B)$
- 2. If $A \lesssim B$ then $A^C \lesssim B^C$
- 3. If $A \lesssim B$, $C \lesssim D$, and $B \cap D = \emptyset$, then $A \cup C \lesssim B \cup D$

L5.22 If $n \in \mathbb{N}$ and $A \lesssim n$, then A is finite.

L5.23 If $n \in \mathbb{N}$ and there exists an onto function $\sigma : n \to A$, then $A \lesssim n$

L5.24 If A and B are finite, then so is $A \cup B$.

T5.25 If A is a finite set and f is a function with dom(f) = A then

- 1. If $X \subsetneq A$, then $X \lessapprox A$
- 2. ran(f) is finite and $ran(f) \lesssim A$
- 3. If $\forall a \in A \ [a \text{ is finite}] \ \text{then } \cup A \ \text{is finite}$
- 4. $\mathcal{P}(A)$ is finite

E5.26 If $A \subseteq \mathbb{N}$ is finite and nonempty, $max(A) = \bigcup A$

E5.27 If $A \lesssim C$ and $B \lesssim D$, then $A \times B \lesssim C \times D$. If A and B are finite, $A \times B$ and A^B are finite.

E5.28 If I is a finite set and $\langle A_i:i\in I\rangle$ is a sequence of sets such that $\forall i\in I\ [A_i \text{ is finite}]$, then $\prod_{i\in I}A_i$ is finite.

E5.29 Suppose $(A_n:n\in\mathbb{N})$ is a sequence of infinite subsets of \mathbb{N} . There exists an infinite set $A\subset\mathbb{N}$ such that

 $\forall n \in N \ [A \cap A_n \text{ is infinite and } (\mathbb{N} \setminus A) \cap A_n \text{ is infinite}].$

E5.30 For any function, $dom(f) \approx f$.