K VECINO(S) MAS CERCANO(S)

KNN = k-nearest neighbors

VECINOS MÁS CERCANOS

"Dime con quién vas y te diré quién eres" Modelos de clasificación KNN (K-nearest-neighbors)

NONPARAMETRIC DISCRIMINATION: CONSISTENCY PROPERTIES

1. Introduction

The discrimination problem (two population case) may be defined as follows: a random variable Z, of observed value z, is distributed over some space (say, p-dimensional) either according to distribution F, or according to distribution G. The problem is to decide, on the basis of z, which of the two distributions 2 has.

Evelyn Fix – Joshep HedgesDiscriminatory analysis-1951

AGENDA

1

Visión general

- KNN para clasificación
- Ejemplos
- KNN para regresión

2

Características

- Similitud y distancia
- Limitaciones
- Ajuste de hiperparámetros: valores de K

Contenidos: Ricardo Aler Mur y Concepción García Diéguez

1. VISIÓN GENERAL

KNN PARA CLASIFICACIÓN

- Las instancias se componen de varios atributos descriptivos y un solo atributo salida (que identifica la clase a la que pertenecen)
- Clasifica cada nueva instancia en la clase que corresponda teniendo en cuenta la distancia entre datos, según tenga k vecinos más cerca de un grupo o de otro. Esta clase será, por tanto, la de mayor frecuencia con menores distancias.
- KNN es un algoritmo supervisado perezoso (lazy)
 - Durante el entrenamiento, sólo guarda las instancias, no construye ningún modelo (a diferencia de, por ejemplo, los árboles de decisión)
 - La clasificación se hace cuando llega la instancia de test

KNN es un método "perezoso" (lazy): el modelo son los datos

Datos Entrenamiento

Modelo

Galaxia espiral

Con K=5, el modelo daría otra predicción

 Para evitar que los vecinos lejanos tengan mucha influencia, se puede hacer que cada vecino vote de manera inversamente proporcional a la distancia 1/d

KNN PARA REGRESIÓN

- Para predecir una variable continua de salida podemos
- calcular la media de los K vecinos más cercanos
- Para que las instancias más lejanas tengan menos importancia, se puede hacer una media ponderada por 1/d
- Se puede construir un modelo lineal con los K vecinos

Predicción = (7.3+2.7+5.1)/3

Vecindad con K=3

2. CARACTERÍSTICAS

SIMILITUD Y DISTANCIA

- Normalmente se usa la distancia Euclidea:
 - En 2D: $d(\mathbf{x_i}, \mathbf{x_j})^2 = (x_{i1} x_{j1})^2 + (x_{i2} x_{j2})^2$ siendo $\mathbf{x_i} = (x_{i1}, x_{i2})$; $\mathbf{x_j} = (x_{j1}, x_{j2})$
 - En dD: $d(\mathbf{x_i}, \mathbf{x_j})^2 = (x_{i1} x_{i1})^2 + (x_{i2} x_{i2})^2 + ... + (x_{id} x_{id})^2$
 - Es necesario re-escalar (normalizar) los atributos para que atributos con mucho rango no tengan mas peso que los demás (preproceso):
 - Rango (minmax): $x'_{1j} = (x_{1j}-min_j)/(max_j-min_i)$
 - Es aconsejable centrar y reducir (**estandarizar**) los atributos para que no entorpezcan los resultados del algoritmo (preproceso)
 - Estandarización: $x'_{1j} = (x_{1j} \mu_j)/\sigma_j$
- Si los atributos son nominales, usar distancia de Hamming:
 - Si el atributo e es nominal (o discreto o categórico), en lugar del componente $(x_{ie}-x_{je})^2$ se usa:
 - $\delta(x_{ie}, x_{je}) = 0$ si $x_{ie} = x_{je}$; $\delta(x_{ie}, x_{je}) = 1$ en caso contrario
 - También, variables "dummy" o "one-hot" (preproceso)

LIMITACIONES DE KNN

- Lento, si hay muchos datos de entrenamiento (en almacenamiento y en tiempo):
 - Eliminación de instancias superfluas (fase de preproceso)
- Muy sensible a los atributos irrelevantes:
 - Selección de atributos (fase de preproceso)
- Muy sensible al ruido:
 - Ajuste del hiper-parámetro del número de vecinos (K)

LIMITACIONES KNN: ELIMINAR INSTANCIAS SUPERFLUAS

 Hay instancias superfluas: no son necesarias para clasificar. Si las borramos se decrementará el tiempo de clasificación

LIMITACIONES KNN: ATRIBUTOS IRRELEVANTES

Con el atributo relevante, se 0 atributos clasifica bien irrelevantes **Atributo** Atributo irrelevante irrelevante Con el atributo irrelevante, se clasifica mal (las distancias 1 atributo cambian) irrelevante Atributo relevante Vecino mas cercano k=1

AJUSTE DE HIPERPARÁMETROS: VALORES DE K

- K es el hiper-parámetro principal de KNN. La mejor elección de K depende fundamentalmente de los datos de partida. Un buen K puede ser seleccionado mediante optimización de uso
- Con K=1, las instancias con características irrelevantes, con ruido o solape entre clases tienen mucha influencia
- Con K>1, se consideran mas vecinos y el ruido pierde influencia (es como hacer una promediado)
 - Si k es muy alto, se pierde la idea de localidad
 - ¿En que se convierte KNN si K == número de datos?
 - Si hay dos clases,
 - · ¿Qué riesgo hay de usar un K par?

INFLUENCIA DE DATOS CON RUIDO

INFLUENCIA DE DATOS CON RUIDO

