## CITY UNIVERSITY OF HONG KONG

## MA Courses Review Notes MA2506

## **Probability and Statistics**

Version 1.01

Author: Zongpu Li Zezhu Wei

Instructor: Junhui WANG

October 13, 2017



This document is free; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty of merchantability or fitness for a particular purpose. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this document; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

All  $\LaTeX$  (.tex) files of this document can be accessed from https://github.com/zzw42/review-notes-cityu.

## **Preface**

 $Textbook:\ Probability\ and\ Statistics\ for\ Engineering\ and\ the\ Sciences,\ by\ Jay\ Devore,\ 8th\ Ed.,\\ Brooks/Cole\ Cengage\ Learning,\ 2012.$ 

## Schedules:

| Week | Brief Description                        |
|------|------------------------------------------|
| 1    | Introduction; descriptive statistics     |
| 2    | Probability; random variables            |
| 3    | Discrete random variables                |
| 4    | Continuous random variables              |
| 5    | Expectation, variance, moments           |
| 6    | Multivariate random variables            |
| 7    | Conditional distribution and expectation |
| 8    | Correlation coefficient; independence    |
| 9    | Sampling distribution; point estimation  |
| 10   | Confidence intervals                     |
| 11   | Hypothesis testing                       |
| 12   | One sample hypothesis tests              |
| 13   | Two sample hypothesis tests; review      |

## **Contents**

| Pr | refac             | e                                                       | iii             |
|----|-------------------|---------------------------------------------------------|-----------------|
| 1  | Ove               | erview and Descriptive Statistics                       | 1               |
|    | 1.1               | Populations, Samples, and Processes                     | 1               |
|    | 1.2               | Pictorial and Tabular Methods in Descriptive Statistics | 1               |
|    |                   | 1.2.1 Stem-and-leaf Plot                                | 1               |
|    |                   | 1.2.2 Bar Plot                                          | 2               |
|    |                   | 1.2.3 Histogram                                         | $\overline{2}$  |
|    | 1.3               | Measures of Location and Variability                    | 3               |
|    | 1.0               | 1.3.1 Location                                          | 3               |
|    |                   | 1.3.2 Variability                                       | 4               |
|    |                   | 1.3.3 Boxplot                                           | 4               |
|    |                   | 1.0.0 Boxpiot                                           | 1               |
| 2  | Pro               | bability                                                | 6               |
|    | 2.1               | Sample Spaces and Events                                | 6               |
|    |                   | 2.1.1 The Sample Space of an Experiment                 | 6               |
|    |                   | 2.1.2 Events                                            | 6               |
|    |                   | 2.1.3 Some Relations from Set Theory                    | 6               |
|    | 2.2               | Axioms, interpretations, and Properties of Probability  | 7               |
|    |                   | 2.2.1 Interpreting Probability                          | 8               |
|    |                   | 2.2.2 How to calculate Properties of Probability        | 8               |
|    |                   | 2.2.3 Determining Probabilities Systematically          | 9               |
|    |                   | 2.2.4 Equally Likely Outcomes                           | 10              |
|    | 2.3               | Counting Techniques                                     | 10              |
|    |                   | 2.3.1 Product Rule                                      | 10              |
|    |                   | 2.3.2 Permutations and Combinations                     | 10              |
|    | 2.4               | Conditional Probability                                 | 11              |
|    | 2.1               | 2.4.1 The Definition of Conditional Probability         | 11              |
|    |                   | 2.4.2 The Multiplication Rule for $P(A \cap B)$         | 13              |
|    |                   | 2.4.3 Bayes' Theorem                                    | 13              |
|    | 2.5               | Independence                                            | 14              |
|    | 2.0               | 2.5.1 Independence of More Than Two Events              | 15              |
|    | 2.6               |                                                         | $\frac{15}{15}$ |
|    | $\frac{2.0}{2.7}$ |                                                         | 16              |
|    | 2.1               | Froblem in Frevious Mid-term Test                       | 10              |
| 3  | Dis               | crete Random Variables                                  | 17              |
|    | 3.1               | Random Variable                                         | 17              |
|    |                   | 3.1.1 Two Types of Random Variables                     | 17              |
|    | 3.2               | Probability Distributions for Discrete Random Variables | 17              |
|    |                   | 3.2.1 The Cumulative Distribution Function              | 18              |
|    | 3.3               | Expected Values                                         | 19              |
|    | -                 | 3.3.1 The Expected Value of $X$                         | 19              |
|    |                   | 3.3.2 The Expected Value of a Function                  | 20              |
|    |                   | 3.3.3 Rules of Expected Value                           | 21              |
|    |                   | 3.3.4 The Variance of $X$                               | 21              |
|    |                   | 3.3.5 Short-cut Formula                                 | 21              |
|    |                   | 3.3.6 Rules                                             | 22              |

CONTENTS v

|   | 9.4      | mı D.   | The first program of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ഹ               |
|---|----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|   | 3.4      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22              |
|   |          | 3.4.1   | The Binomial Random Variable and Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
|   |          | 3.4.2   | The Mean and Variance of $X$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22              |
|   |          | 3.4.3   | Using Binomial Tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23              |
|   | 3.5      | Hypers  | geometric and Negative Binomial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|   | 0.0      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23              |
|   |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|   |          | 3.5.1   | Hypergeometric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |
|   |          | 3.5.2   | The Mean and Variance of X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24              |
|   |          | 3.5.3   | The Negative Binomial Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24              |
|   | 3.6      | The Po  | pisson Probability Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25              |
|   |          | 3.6.1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25              |
|   |          | 3.6.2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{1}{25}$  |
|   |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|   |          | 3.6.3   | The Poisson Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25              |
| 4 | <b>C</b> | 4       | - D1 W1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ) <del>/</del>  |
| 4 |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27              |
|   | 4.1      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27              |
|   | 4.2      | Cumul   | ative Distribution Functions and Expected Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27              |
|   |          | 4.2.1   | The Cumulative Distribution Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27              |
|   |          | 4.2.2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28              |
|   |          | 4.2.3   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{28}{28}$ |
|   |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|   |          | 4.2.4   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29              |
|   |          | 4.2.5   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29              |
|   | 4.3      | The No  | ormal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30              |
|   |          | 4.3.1   | The Standard Normal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30              |
|   |          | 4.3.2   | Percentiles of the Standard Normal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31              |
|   |          | 4.3.3   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31              |
|   |          | 4.3.4   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31              |
|   |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|   |          | 4.3.5   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31              |
|   |          | 4.3.6   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32              |
|   |          | 4.3.7   | Approximating the Binomial Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32              |
|   | 4.4      | The Ex  | xponential and Gamma Distributions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32              |
|   |          | 4.4.1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32              |
|   |          | 4.4.2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33              |
|   |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|   |          | 4.4.3   | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34              |
|   |          | 4.4.4   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34              |
|   | 4.5      | Other   | Continuous Distributions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35              |
|   |          | 4.5.1   | The Weibull Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35              |
|   |          | 4.5.2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36              |
|   |          | 4.5.3   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36              |
|   |          | 4.5.4   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37              |
|   |          | 4.5.4   | Chanenge Question 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) (             |
| _ | Tain     | .t Duch | ability Distributions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •               |
| 5 |          |         | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>38</b>       |
|   | 5.1      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38              |
|   |          | 5.1.1   | Two Discrete Random Variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 38              |
|   |          | 5.1.2   | Two Continuous Random Variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39              |
|   |          | 5.1.3   | Independent Random Variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40              |
|   |          | 5.1.4   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40              |
|   |          | 5.1.5   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41              |
|   | ۲.0      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|   | 5.2      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42              |
|   |          | 5.2.1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42              |
|   |          | 5.2.2   | Correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43              |
|   |          | 5.2.3   | Properties (The Distribution of a Linear Combination)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44              |
|   | 5.3      |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $^{}45$         |
|   | 5.5      | 5.3.1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45              |
|   |          |         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |
|   | ٠.       | 5.3.2   | 0 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45              |
|   | 5.4      |         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46              |
|   |          | 5.4.1   | The state of the s | 46              |
|   |          | 5 1 2   | The Central Limit Theorem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16              |

vi CONTENTS

| 6 | Poir | nt Estimation 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 6.1  | Some General Concepts of Point Estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |      | 6.1.1 Unbiased Estimators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |      | 6.1.2 Estimators with Minimum Variance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | 6.2  | Methods of Point Estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |      | 6.2.1 The Method of Moments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |      | 6.2.2 Maximum Likelihood Estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |      | 6.2.3 Estimating Functions of Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |      | 6.2.4 Some Complications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |      | our complement of the compleme |
| 7 | Stat | istical Intervals 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | 7.1  | Basic Properties of Confidence Intervals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |      | 7.1.1 Interpreting a Confidence Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   |      | 7.1.2 Other Levels of Confidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | 7.2  | Intervals Based on a Normal Population Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |      | 7.2.1 A Prediction Interval for a Single Future Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   |      | 7.2.2 Tolerance Intervals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 7.3  | Large-Sample Confidence Intervals for a Population Mean and Proportion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | 1.5  | 7.3.1 A Large-Sample Interval for $\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |      | 7.3.2 How to Construct a Confidence Interval In General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |      | 7.3.3 A General Large-Sample Confidence Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |      | 7.3.4 A Confidence Interval for a Population Proportion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |      | 7.3.5 One-Sided Confidence Intervals (Confidence Bounds)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | 7.4  | Confidence Intervals for the Variance and Standard Deviation of a Normal Population 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8 | Togt | s of Hypotheses 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| O | 8.1  | Hypotheses and Test Procedures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | 0.1  | 8.1.1 Test Procedures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   |      | 8.1.2 Errors in Hypothesis Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   |      | VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | 0.0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 8.2  | Tests About a Population Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |      | 8.2.1 Case I: A Normal Population with Known $\sigma_0^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |      | 8.2.2 Case II: Large-Sample Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |      | 8.2.3 Case III: A Normal Population Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | 0.0  | 8.2.4 Connection to Confidence Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | 8.3  | Tests Concerning a Population Proportion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |      | 8.3.1 Large-Sample Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |      | 8.3.2 Small-Sample Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | 8.4  | <i>P</i> -Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |      | 8.4.1 <i>P</i> -Values for <i>z</i> Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |      | 8.4.2 <i>P</i> -Values for <i>t</i> Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 8.5  | Hypotheses Testing For $\sigma^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | T 0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9 |      | rences Based on Two Samples  63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 9.1  | z Tests and Confidence Intervals for a Difference Between Two Population Means 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |      | 9.1.1 Test Procedures for Normal Populations with Known Variances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |      | 9.1.2 Large-Sample Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | 9.2  | The Two-Sample t Test and Confidence Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |      | 9.2.1 Pooled t Procedures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 9.3  | Analysis of Paired Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |      | 9.3.1 The Paired $t$ Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 9.4  | Inferences Concerning a Difference Between Population Proportions 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   |      | 9.4.1 A Large-Sample Test Procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | 9.5  | Challenge Question 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A |      | nent generating function 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |      | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   |      | Properties of $M_X\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | A.3  | Application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

## **List of Figures**

| 1.1 | A dotplot of the data from Example 1.8               | 2  |
|-----|------------------------------------------------------|----|
| 1.2 | Three different shapes for a population distribution | 3  |
| 1.3 | Boxplots That Show Outliers                          | 5  |
| 2.1 | Venn diagrams                                        | 7  |
| 4.1 | Bell-shaped curve                                    | 30 |
| 4.2 | The Weibull Distribution                             | 35 |
| 7.1 | t and Z distribution                                 | 51 |

viii LIST OF FIGURES

## Chapter 1

## **Overview and Descriptive Statistics**

## 1.1 Populations, Samples, and Processes

**Definition 1.1.** The **population** is the whole class of individuals which an investigator is interested in.

**Definition 1.2.** The **sample** is part of population which is examined or observed.

From sample to population is what statistics do: chapter 6-16.

From population to sample is what probability do: chapter 2-5.

**Definition 1.3.** The **variable** is any characteristic whose value may change from one individual to another in population.

Example 1.1. Household income; Examination score

In statistics, there are two important parts: Estimation and Influence.

- univariable one variable
- bivariable two variables
- multivariable more than two variables

**Example 1.2.** 77 100 52 78 95 55 86 43 86 73 89 68 57 85 58 79 90 45 95 46 85 77 98 86 100 71 60 24 58 44 64 83 88 95 88 91 86 75 89 77 43 100 88 80 76 0 88 86 69 44 40 84 68 87 86 83

## 1.2 Pictorial and Tabular Methods in Descriptive Statistics

### 1.2.1 Stem-and-leaf Plot

#### Procedure

- 1. select one or more leading digits as the **stems**. The tailing digits become the **leaves**;
- 2. List possible **stems** in a verticle column;
- 3. List the **leaves** for every observation beside the corresponding **stem**;
- 4. Indicate the unit of **stems** and **leaves** in the plot.

Therefore,

#### Table 1.1: stem-and-leaf plot, Key: 1|1 = 11

### 1.2.2 Bar Plot

Each observation is repeated as a dot above the corresponding location on a horizontal line with measurement scale.



Figure 1.1: A dotplot of the data from Example 1.8

## 1.2.3 Histogram

**Definition 1.4.** A variable is **discrete** if its set of possible values either is finite or countable. A variable is **continuous** if its set of possible values consists of an entire interval on the real line.

#### Discrete cases

 $\label{eq:requency} \begin{aligned} \text{Frequency} &= \text{number of times a value occur in the dataset.} \\ \text{Relative Frequency} &= \frac{\text{number of times the value occurs}}{\text{number of observation in the dataset}} \end{aligned}$ 

#### Procedure

- 1. calculate the Frequency and Relative Frequency
- 2. mark each value on a horizontal scale
- 3. above each value, draw a rectangular whose height is the frequency or relative frequency of the value.



#### Continuous cases

Need to determine the size of each class.

### (a) Equal class similar to discrete case.



You can also use the relative frequency.

### (b) The unequal class

**Example 1.3.** 0-10K, 10K-20K, 20-30K, ..., 500K-510K, 510K-520K, ... (a waste of space!)  $\Rightarrow$  0-10K, 10K-20K, 20K-30K, 30K-40K, 40K-50K, 50K-100K, 100K-200K

For the unequal class, frequency or relative frequency may mislead some people because of a wide range. Therefore, we use density.

$$\label{eq:Density} Density = \frac{relative \; frequency \; of \; the \; class}{class \; width}$$

Use density as height to draw histogram within unequal class.

## Shape of histogram

- Mode: unimodal, bimodal, multimodal
- Symmetry: symmetric, positive skewed, negative skewed



Figure 1.2: Three different shapes for a population distribution

## 1.3 Measures of Location and Variability

## 1.3.1 Location

Observations:

$$x_1, x_2 \dots x_n$$

Sample mean:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Sample median:

$$\tilde{x} = \begin{cases} \frac{n+1}{2} \text{th ordered value,} & \text{if n is odd} \\ \frac{n}{2} \text{ or } \frac{n+2}{2} \text{th ordered value.} & \text{if n is even} \end{cases}$$

• symmetric:  $x \approx \tilde{x}$ 

• positive skewed:  $x > \tilde{x}$ 

• negative skewed:  $x < \tilde{x}$ 

If you want your mean closer to your sample median. You can use truncated mean.

## 1.3.2 Variability

Example 1.4. Two dataset

• Dataset 1 1,100  $\bar{x} = 50.5$   $\tilde{x} = 50.5$ 

• Dataset 2 50.51  $\bar{x} = 50.5$   $\tilde{x} = 50.5$ 

Sample Variance:

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

Sample Standard deviation (s.d):  $S = \sqrt{S^2}$ 

Short-cut formula:

$$S^2 = \frac{\sum_{i=1}^n x_i^2 - n\bar{x}^2}{n-1}$$

Proof.

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=i}^{n} (x_i^2 + 2x_i\bar{x} + \bar{x}^2) = \sum_{i=i}^{n} x_i^2 - 2\bar{x}\sum_{i=1}^{n} x_i + \sum_{i=i}^{n} \bar{x}^2$$

Since

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}, \qquad n\bar{x} = \sum_{i=1}^{n} x_i$$

Substitute this, and the proof is done.

**Proposition 1.1.** Let  $x_1 \ldots x_n$  be a sample, and c be any nonzero constant.

1. Let 
$$y_1 = x_1 + c, y_2 = x_2 + c, \dots, y_n = x_n + c$$
, then

$$\bar{y} = \bar{x} + c, S_y^2 = S_x^2$$

2. Let  $z_1 = cx_1, z_2 = cx_2, \dots, z_n = cx_n$ , then

$$\bar{z} = c\bar{x}, S_z^2 = c^2 S_z^2$$

## 1.3.3 Boxplot

The simplest boxplot is based on the following five-number summary: smallest  $x_i$ , lower fourth, median, upper fourth, largest  $x_i$ 

**Definition 1.5.** Any observation farther than  $1.5f_s$  from the closest fourth is an **outlier**. An outlier is **extreme** if it is more than  $3f_s$  from the nearest fourth, and it is **mild** otherwise.

Each mild outlier is represented by a closed circle and each extreme outlier by an open circle.



Figure 1.3: Boxplots That Show Outliers

## Chapter 2

## **Probability**

## 2.1 Sample Spaces and Events

**Definition 2.1.** An **experiment** is any action or process that generates observation.

**Example 2.1.** Flip a coin once, observe either H or T.

**Example 2.2.** Roll a dice, observe one one spot, two spot . . . six spot.

**Example 2.3.** Choose a card from a well-shuttled deck, observe a deck of cards. <sup>1</sup>

## 2.1.1 The Sample Space of an Experiment

**Definition 2.2. Sample space** of an experiment, denoted by S, is the set of all possible outcomes of the experiment.

Example 2.4.  $S = \{H, T\}$ 

Example 2.5.  $S = \{1, 2, 3, 4, 5, 6\}$ 

Example 2.6.  $S = \{A \spadesuit, 2 \spadesuit, \dots, K \heartsuit\}$ 

**Example 2.7.** Flip a coin twice,  $S = \{HH, HT, TH, HH\}$ 

#### **2.1.2** Events

**Definition 2.3.** An **event** is a collection of outcomes of the sample space, denoted by E.

**Example 2.8.**  $E = \{H\}$ 

Example 2.9.  $E = \{4, 5, 6\}$ 

Example 2.10.  $E = \{A, 2, \dots, K\}$ 

Example 2.11.  $\mathcal{E} = \{HH, TT\}$ 

#### 2.1.3 Some Relations from Set Theory

**Definition 2.4.** The **union** of two events A and B is the event consisting of all outcomes that are either in A or in B. Notation: $A \cup B$ 

**Definition 2.5.** The **intersection** of two events A and B is the event consisting of all outcomes that are in **both** A or in B. Notation:  $A \cap B$ 

**Definition 2.6.** The **complement** of an event A is the event consisting of all outcome in S but not in A. Notation: A'

 $<sup>^1</sup> Four$  suits: ♠spade; ♥heart; ♦diamond; ♣club. 13 cards in each suit: A,2,3,...,10,J, Q,K.

**Example 2.12.** Roll a dice,  $S = \{1, 2, 3, 4, 5, 6\}$ Let  $A = \{1, 2, 3\}$ ,  $B = \{1, 3, 5\}$  $A \cup B = \{1, 2, 3, 5\}$ ,  $A \cap B = \{1, 3\}$  $A' = \{4, 5, 6\}$ ,  $B' = \{2, 4, 6\}$ 

**Definition 2.7.** If A and B have no outcome in common, then they are **mutually exclusive** or **disjoint**  $\Rightarrow A \cap B = \emptyset$ 

**Proposition 2.1.** A and A' are disjoint.



Figure 2.1: Venn diagrams

**Example 2.13.**  $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ 

## 2.2 Axioms, interpretations, and Properties of Probability

Probability: Given a sample space S, for any event  $A \in S$ , assign a number, say P(A), to it.

**Axiom 2.1.** For every event  $A, P(A) \ge 0$ .

**Axiom 2.2.** P(S) = 1

**Axiom 2.3.** If  $A_1, A_2, A_3, \ldots$  is an infinite collection of disjoint events, then

$$P(A_1 \cup A_2 \cup A_3 \cup \dots) = \sum_{i=1}^{\infty} P(A_i)$$

Proposition 2.2.  $P(\emptyset) = 0$ 

*Proof.* Let  $E_1 = \emptyset, E_2 = \emptyset, \dots E_n = \emptyset$ 

$$P(\varnothing \cup \varnothing \cup \ldots \varnothing) = \sum_{i=1}^{n} P(\varnothing)$$
$$P(\varnothing) = nP(\varnothing)$$
$$P(\varnothing) = 0$$

**Proposition 2.3.** If A and B are disjoint,  $P(A \cup B) = P(A) + P(B)$ .

*Proof.* Let  $E_1 = A, E_2 = B, E_3 = \emptyset \dots E_n = \emptyset$ . Then, we can prove it by Axiom 3.

**Example 2.14.** Flip a coin,  $S = \{H, T\}$ 

$$P(H) = 0.89$$
  $P(T) = 0.1$  
$$P(S) = P(H \cup T) = P(H) + P(T) = \boxed{0.99} \neq 1$$

not a probability.

**Example 2.15.** Batteries come off an assembly line are tested one by one. The test will stop until a battery fails.

$$F: \text{faliure} \qquad S = \text{success}$$
 Suppose  $P(S) = 0.99 \qquad P(F) = 0.01$  
$$\mathcal{S} = \{F, SF, SSF, SSSF, \dots\}$$
 
$$E_1 = \{F\}, E_2 = \{SF\}, E_3 = \{SSF\}, \dots$$
 
$$P(\mathcal{S}) = P(E_1 \cup E_2 \cup E_3 \dots) = P(E_1) + P(E_2) + P(E_3) + \dots$$
 
$$P(E_1) = 0.01 \qquad P(E_2) = 0.01 \times 0.99 \qquad P(E_3) = 0.01 \times 0.99^2$$
 
$$P(\mathcal{S}) = 0.01 + 0.99 \times 0.01 + \dots = 0.01 \times \frac{1}{1 - 0.99} = 1$$

## 2.2.1 Interpreting Probability

**Example 2.16.** If I flip a coin 10 times, ref freq of H = # of H / 10. If I flip a coin n times, ref freq of H = # of H / n.

The probability of flipping a coin resulted in H= relative freq of H when  $n \to \infty$ .

$$P(H) = \lim_{x \to \infty} \frac{\#ofH}{n}$$

## 2.2.2 How to calculate Properties of Probability

**Proposition 2.4.** P(A') = 1 - P(A)

Proof.

$$1 = P(S) = P(A \cup A') = P(A) + P(A')$$

**Example 2.17.** Components connected in a series, each component has 0.3 probability of fail, and they fail independently.

$$A=\{\text{the system fails}\}$$
 
$$P(A)=P(\{FSSSS,SFSSS,\dots\})$$
 
$$P(A)=1-P(\{\text{the system works}\})=1-P(SSSS)=1-0.7^5$$

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ 

**Proposition 2.5.** If  $A \cap B = \emptyset$ ,  $P(A \cap B) = 0$ 

**Proposition 2.6.**  $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ 

*Proof.* Let  $E = B \cap A'$ , A and E are disjoint

$$A\cup B=A\cup E$$
 
$$P(A\cup B)=P(A\cup E)=P(A)+P(E) \qquad (*)$$
 Let  $F=B\cap A$  
$$E\cup F=B \qquad E\cap F=\varnothing$$
 
$$P(B)=P(E\cup F)=P(E)+P(F)=P(E)+P(A\cap B)$$
 
$$P(E)=P(B)-P(A\cap B)$$
 Plug in (\*),

**Example 2.18.** A card is drawn form a well-shuttled deck, what is the probability that it is a queen or a heart?

$$Q = \{ \text{the card is a Queen} \}$$
  
 $H = \{ \text{the card is a heart} \}$ 

$$P(Q \cup H) = P(Q) + P(H) - P(Q \cap H) = \frac{16}{52}$$

**Example 2.19.** In pccw, 80% of the customers subscribed to cable TV. 30% of the customers subscribed to Internet. 25% of the customers subscribed to both. Randomly select one customer, what is the chance that the person has either TV or Internet.

 $C = \{ \text{the customers subscribed to cable TV} \}$ 

 $I = \{\text{the customers subscribed to Internet}\}\$ 

$$P(C) = 0.8$$
  $P(I) = 0.3$   $P(C \cap I) = 0.25$ 

$$P(C \cup I) = P(C) + P(I) - P(C \cap I) = \boxed{0.85}$$

Proposition 2.7.

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap A) + P(A \cap B \cap C)$$

**Example 2.20.** C: Cable I: Internet T:Telephone.<sup>2</sup>

$$P(C) = 0.8$$
  $P(I) = 0.3$   $P(T) = 0.5$   $P(C \cap I) = 0.25$   $P(I \cap T) = 0.4$   $P(C \cap T) = 0.3$   $P(C \cap I \cap T) = 0.2$ 

$$P(C \cup I \cup T) = P(C) + P(I) + P(T) - P(C \cap I) - P(C \cap T) - P(I \cap T) + P(C \cap I \cap T) = \boxed{0.85}$$

## 2.2.3 Determining Probabilities Systematically

Any event A is a union of simple events, i.e. with only one outcome. Then

$$P(A) = \sum_{E_i \in A} P(E_i),$$

and we just need to determine  $P(E_i)$ .

**Example 2.21.** Toss a dice,  $S = \{1, 2, 3, 4, 5, 6\}$ 

$$P(\text{the spots} < 4)$$

$$A = \{\text{the spot} < 4\} = \{1, 2, 3\}$$

$$E_i = \{i\}; \qquad i = 1, 2, 3, 4, 5, 6$$

$$A = E_1 \cup E_2 \cup E_3 \qquad P(A) = P(E_1) + P(E_2) + P(E_3)$$

Suppose

$$P(1) = P(2) = P(6) = \frac{1}{9}$$

$$P(3) = P(4) = P(5) = \frac{2}{9}$$

$$P(A) = P(1) + P(2) + P(3) = \frac{4}{9}$$

<sup>&</sup>lt;sup>2</sup>Acutually a mistake  $P(I \cap T) = 0.4$ 

## 2.2.4 Equally Likely Outcomes

Suppose S has N outcomes,  $E_1, \ldots E_N$ , they are equally likely to occur, then

$$P(E_i) = \frac{1}{N}$$
  $i = 1, 2, \dots$ 

Then

$$P(A) = \frac{\text{\# of outcome in A}}{N}$$

**Example 2.22.** Toss a pair of fair dices. What is the chance that the sum of spots is 3?

$$N = 36$$
  $S = \{(1,1), (1,2), \dots, (6,6)\}$ 

 $A = \{\text{the sum of spots is } 3\} = \{(1,2), (2,1)\}\$ 

$$P(A) = \frac{2}{36}$$

**Example 2.23.** What is the chance that the sum of spots  $\leq 4$ ?

$$B = \{\text{the sum of spots} \le 4\} = \{(1,1), (1,2), (1,3), (2,1), (2,2), (3,1)\}$$

$$P(B) = \frac{6}{36}$$

## 2.3 Counting Techniques

**Example 2.24.** A new guy comes to HK. If there are 3 brands of cell phone, 4 telephone companies offer mobile service.

## 2.3.1 Product Rule

Select two elements in a row. The first element has  $n_1$  choices, the second has  $n_2$  choices. Then the number of pairs  $= n_1 \cdot n_2$ .

In general: suppose a set consists of K ordered elements (K-tuples), 1st element has  $n_1$  choices, 2nd element has  $n_2$  choices, 3rd element has  $n_3$  choices,.... Then the number of different K-tuples is  $n_1 n_2 \ldots n_k$ .

### 2.3.2 Permutations and Combinations

**Example 2.25.** 70 students in the room choose 4 students to form a committee (secretary, treasury, officer 1, officer 2).

1. How many possible committees with position assigned?

$$70 \times 69 \times 68 \times 67 = \frac{70!}{66!}$$

2. How many possible committees without position assigned?

$$\binom{70}{4} = \frac{70!}{4!66!}$$

**Definition 2.8.** The number of **permutation** of size k of n objects is denoted as  $P_{k,n} = \frac{n!}{(n-k)!}$ . In specific,  $P_{n,n} = n!$  (0! = 1)

**Definition 2.9.** Given n distinct objects, any disordered subject of size k is called a **combination** of size k. The number of combination of size k of n objects, is denoted as  $C_{k,n}$  or  $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ .

Example 2.26.

$$\{A, B, C, D, E\}$$

1. Choose 3 letters, how many choices?

$$\binom{5}{3} = 10$$

2. Choose 3 letters to form a word, how many different words?

$$P_{3.5} = 60$$

Proposition 2.8.

$$k! \times C_{k,n} = \binom{n}{k} \times k! = P_{k,n}$$

Example 2.27 ("Birthday Paradox"). 365 different dates, n students.

P{at least two students share the same birthday} = 1 - P{every one has a diffrent birthday} =  $1 - \frac{P_{n,365}}{365^n}$ 

If 
$$n = 50$$
,  $P = 97\%$   
If  $n = 100$ ,  $P = 99.99997\%$ 

## 2.4 Conditional Probability

Example 2.28. 52 cards. One card is dealt, and the another card is dealt.

- 1. P(the second card is 7 of clubs) =  $\frac{1}{52}$
- 2. P(the second card is 7 of clubs given the first is J of spade) =  $\frac{1}{51}$
- 3. P(the first card is J of spade, and the second card is 7 of clubs) =  $\frac{1}{P_{2,52}} = \frac{1}{52 \times 51}$
- 4. P(the first card is J of spade) =  $\frac{1}{52}$

So P(B given A)=
$$\frac{P(A\cap B)}{P(A)}$$

Example 2.29. Fishing in the sea

|     | Walleye | Pike |
|-----|---------|------|
| Sam | 2       | 3    |
| I   | 1       | 5    |

Randomly pick one, found, it is s Walleye. What is the chance that it is caught by me?

$$A = \{\text{Walleye}\}$$

$$B = \{\text{Caught by me}\}$$

$$P(A) = \frac{3}{11} \qquad P(B) = \frac{6}{11}$$

$$P(B \text{ given } A) = \frac{P(A \cap B)}{P(A)} = \boxed{\frac{1}{3}}$$

## 2.4.1 The Definition of Conditional Probability

**Definition 2.10.** For any two events A and B, with P(B) > 0, the conditional probability of A given that B has occurred is defined by

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

**Example 2.30.** Of all costumers purchasing computers, 60% of them include M\$ Word; 50% of them include M\$ Excel; 30% of them include both.

$$A = \{ \text{Word is included} \}$$
 
$$B = \{ \text{Excel is included} \}$$
 
$$P(A|B) = 0.6 \qquad P(B|A) = 0.5$$
 
$$P(A|B) \neq P(B|A)$$

Recall: Axioms of probability

- 1. For every event  $A, P(A) \ge 0$ .
- 2. P(S) = 1
- 3. If  $A_1, A_2, A_3, \ldots$  is an infinite collection of disjoint events, then

$$P(A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n) = \sum_{i=1}^n P(A_i)$$

Similarly,

- 1. For every event A, P(A|B) > 0.
- 2. P(B|B) = 1
- 3. If  $A_1, A_2, A_3, \ldots$  is an infinite collection of disjoint events, then

$$P(A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n | B) = \sum_{i=1}^n P(A_i | B)$$

**Example 2.31.** A new magazine publishes 3 columns: "Art" (A), "Boobs" (B), "Cinema" (C). Research shows the reading habits:

| $\overline{A}$ | B    | C    | $A \cap B$ | $A \cap C$ | $B \cap C$ | $A \cap B \cap C$ |
|----------------|------|------|------------|------------|------------|-------------------|
| 0.14           | 0.23 | 0.37 | 0.08       | 0.09       | 0.13       | 0.05              |

Randomly select one reader

(1)

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \boxed{\frac{8}{23}}$$

(2)

$$P(A|B \cup C) = \frac{P(A \cap (B \cup C))}{P(B \cup C)}$$

$$= \frac{P((A \cap B) \cup (A \cap C))}{P(B) + P(C) - P(B \cap C)}$$

$$= \frac{P(A \cap B) + P(A \cap C) - P(A \cap B \cap C)}{P(B) + P(C) - P(B \cap C)}$$

(3)  $P(A|A \cup B \cup C)$ : What is the probability that the reader read "Art" Column given that he/she reads at least one column?

$$\begin{split} P(A|A \cup B \cup C) &= \frac{P(A \cap (A \cup B \cup C))}{P(A \cup B \cup C)} = \frac{P(A)}{P(A \cup B \cup C)} \\ &= \frac{P(A)}{P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap A) + P(A \cap B \cap C)} \\ &= \boxed{\frac{14}{49}} \end{split}$$

$$P(A \cup B|C) = \frac{P((A \cup B) \cap C)}{P(C)}$$
$$= \frac{P(A \cap C) + P(B \cap C) - P(A \cap B \cap C)}{P(C)} = \boxed{\frac{17}{37}}$$

## **2.4.2** The Multiplication Rule for $P(A \cap B)$

Proposition 2.9.

$$P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$$

Example 2.32. Two cards are dealt.

$$P(1st \text{ is J of spade and 2nd is 7 of heart}) = P(A)P(B|A) = \frac{1}{52} \times \frac{1}{51}$$

Example 2.33. Same scenario

$$A = \{\text{1st is a club}\}$$
 
$$B = \{\text{2nd is a club}\}$$
 
$$P(A \cap B) = P(A)P(B|A) = \frac{13}{52} \times \frac{12}{51}$$
 
$$C = \{\text{3rd card is a heart}\}$$

$$P(A \cap B \cap C) = P(A \cap B)P(C|A \cap B) = P(A)P(B|A)P(C|A \cap B) = \frac{13}{52} \times \frac{12}{51} \times \frac{13}{50}$$

Proposition 2.10.

$$P(A_1 \cap A_2 \dots \cap A_k) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2)\dots P(A_k|A_1 \cap A_2 \dots \cap A_{k-1})$$

Example 2.34. Same scenario

$$A = \{1st \text{ is a club}\}$$

$$B = \{2nd \text{ is A of club}\}$$

$$C = \{3rd \text{ is 2 of club}\}$$

$$P(A \cap B \cap C) = P(C)P(B|C)P(A|B \cap C) = \frac{1}{52} \times \frac{1}{51} \times \frac{11}{50}$$

Introduce  $D = \{1st \text{ is either } 3,4,\dots K \text{ of club}\}$ 

$$P(A \cap B \cap C) = P(D \cap B \cap C) = \frac{11}{52} \times \frac{1}{51} \times \frac{1}{50}$$

## 2.4.3 Bayes' Theorem

**Theorem 2.1** (The Law of Total Probability). Let  $A_1, ..., A_k$  be mutually exclusive and exhaustive events. Then for any other event B,

$$P(B) = \sum_{i=1}^{k} P(B|A_i)P(A_i)$$

Example 2.35. A store sells 3 brands of game consoles

| Brand      | 1   | 2   | 3   |
|------------|-----|-----|-----|
| Proportion | 50% | 30% | 20% |

A one year warranty is offered, known

|                    | Brand                           | 1          | 2          | 3             |                  |
|--------------------|---------------------------------|------------|------------|---------------|------------------|
|                    | Under warranty                  | 25%        | 20%        | 10%           |                  |
|                    | $A_i = \{ \text{bought bra} $   | and $i$ }  | i =        | 1, 2, 3       |                  |
|                    | $B = \{ \text{needs repair} \}$ | re unde    | er warra   | anty}         |                  |
| P(.                | $A_1) = 0.5 \qquad P(A_2)$      | (2) = 0.3  | P(         | $(A_3) = 0$   | 0.2              |
| $P(B A_1$          | $P(B A) = 0.25 \qquad P(B A)$   | $A_2) = 0$ | .2         | $P(B A_3)$    | ) = 0.1          |
| Q1:                | $P(B' A_1) = 1 -$               | -P(B A)    | $A_1) = 0$ | 0.75          |                  |
| Q2: $P(B) = P(A_1$ | $)P(B A_1) + P(A_2)$            | $P(B A_2$  | (2) + P(   | $(A_3)P(B_3)$ | $B A_3) = 0.205$ |
| Q3:                |                                 |            |            |               |                  |

$$P(A_1|B) = \frac{P(A_1 \cap B)}{P(B)} = \frac{P(A_1)P(B|A_1)}{P(B)} = 0.61$$

$$P(A_2|B) = 0.29$$

$$P(A_3|B) = 0.10$$

Theorem 2.2 (Bayes' Theorem).

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(A_i)P(B|A_i)}{\sum_{i=1}^k P(A_i)P(B|A_i)}$$

**Example 2.36.**  $\frac{1}{1000}$  adults has a rare disease.

99% of people with the disease can be found positive

20% of people without the disease can be found positive

Randomly select a person and test him. Suppose the result is positive. What is the chance that he really has the disease?

Let

 $A = \{\text{the individual has the disease}\}\$ 

 $A' = \{$ the individual does not have the disease $\}$ 

$$B = \{\text{that positive}\}\$$

$$P(A) = \frac{1}{1000}$$
  $P(B|A) = 0.99$   $P(B|A') = 0.20$ 

Question:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B|A)}{P(A)P(B|A) + P(A')P(B|A')}$$

Because A and A' are portions of S

$$= \frac{0.001 \times 0.99}{0.001 \times 0.99 + 0.999 \times 0.2} = 0.493\%$$

#### 2.5 Independence

**Definition 2.11.** Two events A and B. If A and B are **independent**, then

$$P(A \cap B) = P(A)P(B)$$

Note that  $P(A \cap B) = P(A)P(B|A)$  apply for any condition.

$$P(B) = P(B|A),$$

event A has nothing to do with event B.

**Example 2.37.** Roll a dice once.  $P(i) = \frac{1}{6}$ ; i = 1, 2, ..., 6

$$A = \{2, 4, 6\}, B = \{1, 2, 3\}, C = \{1, 2, 3, 4\}$$

$$P(A) = \frac{3}{6} = \frac{1}{2}$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{1/6}{3/6} = \frac{1}{3}$$

$$P(A|C) = \frac{P(A \cap C)}{P(C)} = \frac{2/6}{4/6} = \frac{1}{2}$$

So A and C are independent.  $A \not\perp\!\!\!\perp B$ 

**Proposition 2.11.** if A and B are independent

- A' and B' are independent
- A' and B are independent
- A and B' are independent

Example 2.38. Toss a fair coin repeatedly until the first H occurs.

 $A = \{ \text{at least 5 tosses result in the first H} \}$ 

$$P(A) = ?$$

Solution. Assume the tossing are independent.

$$A = \{TTTTH\} \cup \{TTTTTH\} \cup \dots$$

$$P(A) = P(\{TTTTH\}) + \dots = (P(T))^4 P(H) + (P(T))^5 P(H)$$
$$= \left(\frac{1}{2}\right)^5 + \left(\frac{1}{2}\right)^6 + \dots = \frac{1}{16}$$

### 2.5.1 Independence of More Than Two Events

**Definition 2.12.**  $A_1, A_2, \dots A_k$  are events. If for any indices  $i, \dots, i_k$ 

$$P(A_1 \cap A_2 \cap \dots A_k) = P(A_1)P(A_2)\dots P(A_k)$$

Then  $A_1, A_2, \dots A_k$  are said to be mutually independent.

**Example 2.39.** Component works with probability 0.9, and they work independently.

P(system works)

Solution. Let

$$A_i = \{\text{the } i\text{th component works}\}$$
 
$$P(A_i) = 0.9$$
 
$$P(\text{system works}) = P\left((A_1 \cap A_2) \cup (A_3 \cap A_4)\right) = 0.9639$$

## 2.6 Challenge Question 1

Monty Hall problem. https://en.wikipedia.org/wiki/Monty\_Hall\_problem

## 2.7 Problem in Previous Mid-term Test

## Example 2.40.

 $D = \{ \text{David makes a right decision} \}$ 

 $J = \{ \text{John makes a right decision} \}$ 

 $P = \{ \text{Peter makes a right decision} \}$ 

David and Peter make decision independently.

$$P(D) = 0.7$$
  $P(D|J) = 0.9$   $P(D'|J') = 0.8$   $P(J|P) = 0.3$   $P(J'|P') = 0.2$   $P(D \cap J \cap P) = 0.1$ 

Question:

- (1) P(J) = ?
- (2) P(P) = ?
- (3) P(at least two make right decision) = ?

Solution. (1)

$$0.9 = P(D|J) = \frac{P(D \cap J)}{P(J)}$$

$$0.8 = P(D'|J') = \frac{P(D' \cap J')}{P(J')} = \frac{P(D \cup J)'}{1 - P(J)} = \frac{1 - P(D \cup J)}{1 - P(J)}$$

$$P(D \cup J) = P(D) + P(J) - P(D \cap J) = 0.7 + P(J) - P(D \cap J)$$

$$P(J) = \frac{5}{7}$$

(2) Similar to (1)

(3)

P(at least two make right decision)

Method A:

= 1 - 
$$P$$
(no more than 1 make right decisions)  
= 1 -  $P(D \cap J \cap P')$  -  $P(D' \cap J \cap P')$  -  $P(D' \cap J' \cap P)$  -  $P(D' \cap J' \cap P')$ 

Method B:

$$= P(A \cap B) + P(B \cap C) + P(C \cap A) - 2P(A \cap B \cap C)$$

## Chapter 3

## **Discrete Random Variables**

## 3.1 Random Variable

**Definition 3.1.** For a given sample space S of some experiment, a random variable (rv) is any rule that associates a number with each outcome in S. In mathematical language, a random variable is a function whose domain is the sample space and whose range is the set of real numbers.

**Example 3.1.** Flip a coin,  $S = \{H, T\}$ 

$$X(H) = 1 \qquad X(T) = 0$$

Example 3.2. Randomly pick a student, height

$$X(\text{height} \ge 6 \text{ feet}) = 1$$
  $X(\text{height} \le 6 \text{ feet}) = 0$ 

**Definition 3.2.** Any r.v. whose possible values are 0 and 1 is called a **Bernoulli random variable**.

Example 3.3. Randomly pick a student, phone brand

$$X(Apple) = 1$$
  $X(Samsung) = 0$ 

**Example 3.4.** Waiting MTR at Kowloon Tong

$$X(\text{waiting time}) = \text{waiting time}$$

## 3.1.1 Two Types of Random Variables

**Definition 3.3.** a **discrete** r.v. whose possible values are either finite or countable. a **continuous** r.v. is a r.v. whose possible values consist of an entire interval on the real lines.

## 3.2 Probability Distributions for Discrete Random Variables

**Definition 3.4.** S is a sample space, X(s) is a r.v.  $p(x) = P(s \in S; X(s) = x)$  is called the probability mass function (p.m.f) or probability distribution function (p.d.f) of x.

Example 3.5.

$$S = (5 \text{ feet}, 7 \text{ feet})$$

$$X(s) = \begin{cases} 1, & \text{if} \quad s \geq 6 \text{ feet} \\ 0. & \text{if} \quad s \leq 6 \text{ feet} \end{cases}$$

$$P(X=1) = P(s \ge 6 \text{ feet})$$

**Example 3.6.** Six lots of components that the # of defectives are listed as follows

| lot             | 1 | 2 | 3 | 4 | 5 | 6 |
|-----------------|---|---|---|---|---|---|
| # of defectives | 0 | 2 | 0 | 1 | 2 | 0 |

One of those is randomly selected. X = # of defectives in the selected lot

$$P(X = 0) = P(\{1, 3, 6\}) = \frac{1}{2}$$

$$P(X = 1) = P(\{4\}) = \frac{1}{6}$$

$$P(X = 2) = P(\{2, 5\}) = \frac{1}{3}$$

**Example 3.7.** Five person 1,2,3,4,5 are blood donors. Among them, only 1 and 2 have "O" type. Collect their blood in a random segment, X = # of typing necessary to get the first "O" type.

$$X = 1, 2, 3, 4$$

$$P(X = 1) = P(\text{typing after the first trail}) = \frac{2}{5}$$

#### Review

X is a discrete r.v.

- 1. Support  $x \in \mathcal{D}$
- 2. p.m.f  $p(x) = P(s \in S; X(s) = x), \forall x \in D$

### 3.2.1 The Cumulative Distribution Function

**Example 3.8.** Roll a dice. Let x = # of spots. What is the probability that  $x \leq 5$ 

$$\mathcal{D} = \{1, 2, 3, 4, 5, 6\}$$

$$P(1) = P(2) = \dots = P(6) = \frac{1}{6}$$

$$P(X \le 5) = P(\{1, 2, 3, 4, 5\}) = P(1) + P(2) + P(3) + P(4) + P(5) = \frac{5}{6}$$

$$F(x) = \begin{cases} P(X \le x) = 0 & \text{if } x < 1 \\ P(X \le x) = \frac{1}{6} & \text{if } 1 \le x < 2 \\ \dots \\ P(X \le x) = 1 & \text{if } x \ge 6 \end{cases}$$

It is called step function.

**Definition 3.5.** The Cumulative Distribution Function (c.d.f) of a r.v X is defined as

$$F(x) = P(X \le x) = \sum_{y \le x} p(y)$$

Example 3.9. a r.v Y

$$F(y) = P(Y \le y) = \begin{cases} 0 & \text{if } y < 1\\ 0.4 & \text{if } 1 \le y < 2\\ 0.7 & \text{if } 2 \le y < 3\\ 0.9 & \text{if } 3 \le y < 4\\ 1 & \text{if } y \ge 4 \end{cases}$$

**Example 3.10.** Toss a coin until the first head. Suppose P(Head) = p, P(Tail) = q = 1 - p, x = # of toses until the first head

$$\mathcal{D} = \{1, 2, 3, \dots\}$$

$$p(x) = q^{x-1}p, \qquad x = 1, 2, 3, \dots$$

$$F(x) = P(X \le x) = \sum_{y \le x} p(y) = \sum_{y \le x} q^{y-1}p = p\frac{1 - q^{\lfloor x \rfloor}}{1 - q} = 1 - q^{\lfloor x \rfloor}$$

where |x| is the largest integer  $\leq x$  (floor function).

$$F(x) = \begin{cases} 0, & \text{if } x < 0\\ 1 - q^{\lfloor x \rfloor}, & \text{if } x \ge 0 \end{cases}$$

### How do we get p.m.f from c.d.f

In examples thus far, the cdf has been derived from the pmf. This process can be reversed to obtain the pmf from the cdf whenever the latter function is available.

$$P(X = 3) = P(x \le 3) - P(x \le 2) = F(3) - F(2)$$

Suppose X takes integer values, for any integers a and b,

$$P(a \le X \le b) = P(X \le b) - P(X \le a - 1) = F(b) - F(a - 1)$$

Generally, for a and b

$$P(a \le X \le b) = F(b) - F(a_{-})$$

Here  $a_{-}$  is the largest integer value that is strictly less than a. If a=2,  $\lfloor a \rfloor = 2$ ,  $a_{-}=1$ 

## 3.3 Expected Values

**Example 3.11** ("Russian roulette"). Bet even or odd. Bet \$1 on even, I will win \$1 if indeed it is even, and I will lose \$1 if it is odd, or 0, or 00.

Expected value

$$\frac{18}{38} \times 1 + \frac{20}{38} \times (-1) = -\frac{2}{38}$$

## 3.3.1 The Expected Value of X

**Definition 3.6.** Let X be a discrete rv with set of possible values  $\mathcal{D}$  and pmf p(x). The expected value or mean value of X, denoted by E(X) or  $\mu_X$  or just  $\mu$ , is

$$E(X) = \sum_{x \in \mathcal{D}} x p(x)$$

$$x = \begin{cases} 1, & \text{w.p.} \frac{18}{38} \\ -1, & \text{w.p.} \frac{20}{38} \end{cases}$$

$$E(X) = -\frac{2}{38}$$

**Example 3.12.** X is a Bernoulli r.v

$$p(x) = \begin{cases} p, & \text{if } x = 1\\ 1 - p, & \text{if } x = 0 \end{cases}$$

$$E(X) = 1p + 0(1 - p) = p$$

**Example 3.13.** A newly-wed couple want a girl. Their plan is to keep having children until they get a girl.

X = # of children when the girl is born

$$P(\text{boy}) = p \qquad P(\text{girl}) = 1 - p = q$$

$$p(x) = p^{x-1}q \qquad x = 1, 2, 3, \dots$$

$$E(X) = \sum_{x=1}^{\infty} x p^{x-1} q = q \sum_{x=1}^{\infty} x p^{x-1}$$

$$S = p^0 + 2p^1 + 3p^2 + 4p^3 + \dots$$

$$pS = p^1 + 2p^2 + 3p^3 + 4p^4 + \dots$$

$$(1-p)S = p^0 + p^1 + p^2 + p^3 + p^4 + \dots = \frac{1}{1-p}$$

$$E(X) = q \frac{1}{(1-p)^2} = \frac{1}{q}$$

Another method to calculate  $\sum_{x=1}^{\infty} xp^{x-1}q$ 

$$\sum_{x=1}^{\infty} x p^{x-1} = \sum_{x=1}^{\infty} (p^x)' = \left(\sum_{x=1}^{\infty} p^x\right)'$$

Example 3.14.

$$p(k) = \frac{1}{k^2} \frac{6}{\pi^2}$$
  $k = 1, 2, 3, \dots$ 

Verify

$$\sum_{k=1}^{\infty} p(k) = 1$$

$$E(x) = \sum_{k=1}^{\infty} k \frac{1}{k^2} \frac{6}{\pi^2} = \frac{6}{\pi^2} \sum_{k=1}^{\infty} \frac{1}{k} = \infty$$

## 3.3.2 The Expected Value of a Function

Proposition 3.1.

$$E(h(X)) = \sum_{x \in \mathcal{D}} h(x)p(x)$$

**Example 3.15.** # of cylinders in the engine of the next car to be turned up.

Cost for x cylinders

$$h(x) = 20 + 3x + 0.5x^2$$

History shows that

$$E(h(x)) = 40 \times 0.5 + 56 \times 0.3 + 76 \times 0.2 = \boxed{52}$$

## 3.3.3 Rules of Expected Value

**Proposition 3.2.** Let a and b be two constant, X r.v

$$E(aX + b) = aE(X) + b$$

Particularly,

if 
$$b = 0$$
,  $E(aX) = aE(X)$ 

if 
$$a = 0$$
,  $E(X + b) = E(X) + b$ 

**Example 3.16.** A computer store has purchased three computers of a certain type at \$500 apiece. It will sell them for \$1000 apiece. The manufacturer has agreed to repurchase any computers still unsold after a specified period at \$200 apiece. Let X denote the number of computers sold.

$$Y = 1000X + 200(3 - X) - 1500 = 800X - 900$$
$$E(Y) = 800E(X) - 900 = 700$$

### 3.3.4 The Variance of X

Example 3.17.

| $\overline{x}$ | 1             | 2             | 3             | 4             | 5             | 6             |
|----------------|---------------|---------------|---------------|---------------|---------------|---------------|
| p(x)           | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ |

$$E(X) = \frac{7}{2}$$

$$\begin{array}{c|ccc}
x & 3 & 4 \\
\hline
p(x) & \frac{1}{6} & \frac{1}{6}
\end{array}$$

$$E(X) = \frac{7}{2}$$

**Definition 3.7.** X is a discrete random variable  $E(X) = \mu$ ,

$$\sigma_x^2 = Var(X) = E((X - \mu)^2) = \sum_{x \in \mathcal{D}} (x - \mu)^2 p(x)$$

$$\sigma_x = s.d(X) = \sqrt{Var(X)}$$

For Ex(1), Var(X) = 2.92; For Ex(2), Var(X) = 0.25.

#### 3.3.5 Short-cut Formula

Proposition 3.3.

$$Var(X) = E(X^2) - (E(X))^2$$

Proof.

$$\begin{split} Var(X) = & E((X - \mu)^2) = E(x^2 - 2X\mu + \mu^2) \\ = & E(X^2) + E(-2X\mu) + E(\mu^2) = E(X^2) - 2\mu E(X) + \mu^2 \\ = & E(X^2) - 2\mu\mu + \mu^2 = E(X^2) - (E(X))^2 \end{split}$$

### 3.3.6 Rules

Proposition 3.4.

$$Var(aX + b) = a^2 Var(X)$$

$$s.d(aX + b) = |a|s.d(X)$$

since a could be negative.

Example 3.18. Computer store

$$Y = 800X - 900$$

| $\overline{x}$ | 0   | 1   | 2   | 3   |
|----------------|-----|-----|-----|-----|
| p(x)           | 0.1 | 0.2 | 0.3 | 0.4 |

$$Var(Y) = Var(800X - 900) = 800^{2} Var(X)$$

$$E(X) = 2 \qquad E(X^2) = 5$$

$$Var(Y) = 800^2(5 - 2^2) = 640000$$

## 3.4 The Binomial Probability Distribution

Recall  $X \sim Bernobli(p)$ 

$$p(0) = 1 - p \qquad p(1) = p$$

**Example 3.19.** Flip a coin 3 times independently. X=# of Heads. What's the distribution of X?

$$\mathcal{D} = \{0, 1, 2, 3\}$$

|               | x | p(x)        |
|---------------|---|-------------|
| TTT           | 0 | $(1-p)^3$   |
| HTT, THT, TTH | 1 | $3p(1-p)^2$ |
| HHT, HTH, THH | 2 | $3p^2(1-p)$ |
| ННН           | 3 | $p^3$       |

$$\sum p(x) = 1$$

### 3.4.1 The Binomial Random Variable and Distribution

Generally, n Bernouli trails, independently. the success rate of each trail is constant p, then the # of success out of these n trails is a **Binomial** r.v, denoted as  $X \sim Bin(n,p)$ 

If 
$$X \sim Bin(n, p)$$
,

$$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$
  $x = 0, 1, \dots n$ 

Back to the example,

$$P(X=0) = {3 \choose 0} p^0 (1-p)^3 = (1-p)^3$$

## 3.4.2 The Mean and Variance of X

**Proposition 3.5.** If  $X \sim Bin(n, p)$ ,

$$E(X) = np$$
  $Var(X) = np(1-p)$ 

Proof.

$$E(X) = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} = \sum_{k=0}^{n} k \frac{n!}{k!(n-k)!} p^{k} (1-p)^{n-k}$$

$$= \sum_{k=1}^{n} \frac{n \cdot (n-1)!}{(k-1)!(n-k)!} p^{k} (1-p)^{n-k}$$

$$= np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1} (1-p)^{n-k}$$

$$= np \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k-1} (1-p)^{n-k}$$

$$= np \sum_{k'=0}^{n'} \binom{n'}{k'} p^{k'} (1-p)^{n'-k'} = np$$

**Example 3.20.** Six cola drinkers. Two brand: C, P. X = # of cola C they choose.

$$P(C) = \frac{1}{2} \qquad P(P) = \frac{1}{2}$$

$$X \sim Bin\left(6, \frac{1}{2}\right)$$

$$P(X = 3) = \binom{6}{3}\left(\frac{1}{2}\right)^3\left(1 - \frac{1}{2}\right)^{6-3} = 0.313$$

$$P(X \le 1) = P(X = 0) + P(X = 1) = 0.109$$

$$P(X \ge 3) = 1 - P(X \le 2)$$

## 3.4.3 Using Binomial Tables

## 3.5 Hypergeometric and Negative Binomial Distributions

**Example 3.21.** 5 balls in a box, 3 red, 2 blue. Randomly choose 3 balls out of the box with replacement. What is the chance of getting 2 red and 1 blue balls?

$$X = \#$$
 of red balls out of 3

$$X \sim Bin\left(3, \frac{3}{5}\right)$$
$$P(X = 2) = \binom{3}{2} = \frac{54}{125}$$

Example 3.22. Same step. without replacement.

$$X = \#$$
 of red balls out of 3

$$X \not\sim Bin\left(3, \frac{3}{5}\right)$$

$$P(X = 2) = \frac{\text{\# of outcome in } E}{\text{\# of outcomes in } S}$$
$$= \frac{\binom{3}{2}\binom{2}{1}}{\binom{5}{2}} = \frac{3}{5}$$

## 3.5.1 Hypergeometric

**Proposition 3.6.** In general, M of type "1", N-M of type "2 in a box, choose n items.

$$Y \sim hypergeometric(N, M, n)$$

$$P(Y = k) = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}} \qquad k = (0 \lor n - (N-M)), 1, 2, \dots, (n \land M)$$

## 3.5.2 The Mean and Variance of X

**Proposition 3.7.** If  $X \sim hypergeometric(N, M, n)$ ,

$$E(X) = n \cdot \frac{M}{N}$$
 
$$Var(X) = \frac{N-n}{N-1} \cdot n \cdot \frac{M}{N} \left( 1 - \frac{M}{N} \right)$$

**Example 3.23.** Five wolves are caught in a forest. Tagged and released to mix with other wolves. After a while, 10 wolves are caught.

Assume there are 25 such wolves in the forest. P(X = 2) = ?

$$X \sim h.g.(25, 5, 10)$$

$$P(X = 2) = \frac{\binom{5}{2}\binom{20}{8}}{\binom{25}{10}} = 0.385$$

$$E(X) = 2$$

$$Var(X) = 1$$

If we have no idea about the number of wolves in the forest. But X=3, how to estimate the # of wolves in the forest?

$$N=\#$$
 of wolves in total  $10\cdot\frac{5}{N}=E(X)\approx 3$   $N\approx 10\cdot\frac{5}{3}\approx 17$ 

### 3.5.3 The Negative Binomial Distribution

Example 3.24. A couple wants 3 girls. How many children they need to have to have fulfil his planning?

$$P(girl) = p$$
  $P(boy) = 1 - p$ 

X=# of children to attain this planning

$$x \ge 3$$
  $\mathcal{D} = \{3, 4, \dots\}$   
 $P(X = k) = {k-1 \choose 2} p^3 (1-p)^{k-3}$ 

This is called "Negative binomial r.v"

**Proposition 3.8.** In general,  $X \sim Negative Binomial(r, p)$ 

$$P(X = k) = {\binom{k-1}{r-1}} p^r (1-p)^{k-r} \qquad k = r, r+1, \dots$$
$$E(X) = \frac{r}{p} \qquad Var(X) = \frac{r(1-p)}{p^2}$$

**Example 3.25.** Roll a dice repeatedly until the first "one" occurs. X = # of rollings.

$$X \sim n.b(1, \frac{1}{6})$$
 
$$E(X) = \frac{1}{\frac{1}{6}} = 6 \qquad Var(X) = 30$$

## 3.6 The Poisson Probability Distribution

**Definition 3.8.** A r.v. X takes value 0,1,2,3,...

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda} \qquad k = 0, 1, 2 \dots$$

where  $\lambda > 0$ . Then we say  $X \sim Poisson(\lambda)$ 

Check

 $\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = 1$ 

Since

$$e^{\lambda} = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!}$$

(Taylor expansion)

## 3.6.1 The Mean and Variance of X

**Proposition 3.9.** If  $X \sim Poisson(\lambda), E(X) = \lambda, \ Var(X) = \lambda$ 

Proof.

$$\begin{split} E(X) &= \sum_{k=0}^{\infty} k P(X=k) = \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda} \\ &= \lambda \sum_{k=0}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda} = \lambda \sum_{k'=0}^{\infty} \frac{\lambda^{k'}}{k'!} e^{-\lambda} = \lambda \end{split}$$

#### 3.6.2 The Poisson Distribution as a Limit

**Proposition 3.10.** If  $X \sim Bin(n, p)$ , n is large, p is small. Then  $X \sim Poisson(\lambda)$  with  $\lambda = np$ .

**Example 3.26.** A publisher is publishing a non-technical book. P(making at least one error in a page)=0.005. The book has 400 pages, independent from page to page. X=# of pages with errors  $\sim Bin(400,0.005)$ 

$$P(X=2) = \binom{400}{2} 0.005^{2} (1 - 0.005)^{400-2}$$
 
$$X \sim Poisson(2)$$
 
$$P(X=2) = \frac{2^{2}}{2!} e^{-2} = 0.27$$

#### Rule of Thumb

When  $n \geq 50$ ,  $np \leq 5$ , we consider n is large enough, p is small enough.

## 3.6.3 The Poisson Process

**Example 3.27.** Counting the number of customers at a bank counter. Suppose

1.  $\exists \alpha > 0$  such that

$$P(\text{exact one customer in } \Delta t) = \alpha \Delta t + o(\Delta t)$$

2.

$$P(\text{more than one customer in } \Delta t) = o(\Delta t)$$

3. Number of customers during  $\Delta t$  is independent of that prior to this period

Then 
$$P(k \text{ customers during } (0,t)) = \frac{(\alpha t)^k}{k!} e^{-\alpha t}$$
. Let  $X_t = \#$  of customers during  $(0,t)$ .

$$X_t \sim Poisson(\alpha t)$$

$$E(X_t) = \alpha t$$
  $Var(X_t) = \alpha t$ 

## Chapter 4

# Continuous Random Variables and Probability Distributions

## 4.1 Probability Density Functions

**Example 4.1.** Study the ecology of a lake, measure the depth of the lake. Denote  $L_{max}$  as the largest depth of the lake.

$$X = \text{depth of the lake}$$

The support of X is  $(0, L_{max}]$ 

This is a continues r.v., but it shares some properties of a discrete r.v.

**Definition 4.1.** In general, X is supported on [a,b] . There is a f(x) satisfying

1. 
$$f(x) \ge 0$$
,  $\forall x \in [a, b]$ 

$$2. \int_a^b f(x)dx = 1$$

3. 
$$P(c < x < d) = \int_{c}^{d} f(x) dx$$

Such an f(x) is called the **probability distribution function(p.d.f)** of X

$$f(x) = \lim_{h \to 0} \frac{P(x \le X \le x + h)}{h}$$

**Example 4.2.** X=waiting time of a MTR at Kowloon Tong Station is

$$f(x) = \begin{cases} \frac{1}{15}, & 0 \le x \le 15\\ 0, & \text{otherwise} \end{cases}$$

Check

$$\int_0^{15} f(x)dx = \int_0^{15} \frac{1}{15} dx = 1$$

$$P(5 \le X \le 10) = \int_{5}^{10} \frac{1}{15} dx = \frac{1}{3}$$

## 4.2 Cumulative Distribution Functions and Expected Values

### 4.2.1 The Cumulative Distribution Function

**Definition 4.2.** Let X be a constant r.v. with c.d.f f(x). Its **c.d.f.** is

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(y)dy$$

<sup>&</sup>quot;uniform r.v"

Example 4.3.

$$X \sim unif(a, b)$$

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{otherwise} \end{cases}$$

$$F(x) = \int_{-\infty}^{x} f(y)dy = \begin{cases} 0, & \text{if } x < a \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & \text{if } x > b \end{cases}$$

**Example 4.4.**  $X \sim exp(\lambda)$ , "exponential r.v".

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0\\ 0, & \text{otherwise} \end{cases}$$

$$F(x) = \int_{-\infty}^{x} f(y)dy = \begin{cases} 0, & \text{if } x < 0\\ 1 - e^{-\lambda x}. & \text{if } x \ge 0 \end{cases}$$

If x > 0,

$$\begin{split} \int_{-\infty}^x f(y) dy &= \int_0^x \lambda e^{-\lambda y} dy = \int_0^x e^{-\lambda y} d(\lambda y) \\ &= -e^{-\lambda y} \Big|_0^x = 1 - e^{-\lambda x} \end{split}$$

**Proposition 4.1.** If X is continuous. For any constant c,

$$P(X=c) = 0$$

Furthermore, for any a, b, we have

$$P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a < X < b)$$

## **4.2.2** Using F(x) to Compute Probabilities

Let X be a constant r.v. with p.d.f f(x) and c.d.f. F(x), Then

$$P(X > a) = 1 - P(X \le a) = 1 - F(a)$$

$$P(X \ge a) = 1 - F(a)$$

$$P(a < X < b) = 1 - F(b)$$

$$P(a < X < b) = P(x < b) - P(x < b) = F(b) - F(a)$$

**Example 4.5.** X has a p.d.f

$$f(x) = \begin{cases} \frac{1}{8} + \frac{3}{8}x, & \text{if } 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$

$$F(x) \int_{-\infty}^{x} f(y) dy = \begin{cases} 0, & \text{if } x < 0\\ \frac{x}{8} + \frac{3}{16}x^{2}, & \text{if } 0 \le x \le 2\\ 1, & \text{if } x > 2 \end{cases}$$

$$P(1 \le X \le 1.5) = F(1.5) - F(1) = 0.297$$

$$P(X \ge 1) = 1 - F(1) = \frac{11}{16}$$

## **4.2.3** Obtaining f(x) from F(x)

X continues with f(x) and F(x)

$$f(x) = F'(x)$$

**Example 4.6.** X continues with  $f(x) = 1 - e^{-\lambda x}, x > 0$ 

$$f(x) = F'(x) = \lambda e^{-\lambda x}, x > 0$$

#### 4.2.4 Percentiles of a Continuous Distribution

**Example 4.7.** John's exam score is at the 85th percentile of the class, meaning that John's score is higher than 85% of the class.

**Definition 4.3.** Let  $0 \le p \le 1$ , the (100p)th percentile of the distribution of X, denoted by  $\eta_p$  is defined as

$$p = F(\eta_p)$$

Set up the equation  $F(\eta_p) = p$ , solve for  $\eta_p$ .

Example 4.8. X has  $f(x) = \begin{cases} 2(1-x), & 0 \le x \le 1 \\ 0. & \text{o.w.} \end{cases}$ 

$$F(x) = \begin{cases} 0, & \text{if } x < 0\\ 2x - x^2, & \text{if } 0 \le x \le 1\\ 1, & \text{if } x > 1 \end{cases}$$

To get 90% percentile

$$F(\eta_{0.9}) = 0.9$$

Solve the equation,  $\eta_{0.9} = 1 \pm \sqrt{0.1}$ . Since  $0 \le \eta_{0.9} \le 1$ 

$$\eta_{0.9} = 1 - \sqrt{0.1}$$

To get 50th percentile,  $F(\eta_{0.5}) = 0.5$ 

$$\eta_{0.5} = 1 - \frac{\sqrt{2}}{2}$$

**Median** is the 50th percentile of the distribution of X.

#### 4.2.5 Mean and Variance

**Definition 4.4.** X is continues with f(x) and F(x). The expected or mean value of a continuous rv X with pdf f(x) is

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

Example 4.9.

$$f(x) = \begin{cases} \frac{2}{3}(1 - x^2), & \text{if } 0 \le x \le 1\\ 0. & \text{otherwise} \end{cases}$$

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx = \frac{3}{8}$$

**Proposition 4.2.** X is continues with f(x), for any h(x)

$$E(h(X)) = \int_{-\infty}^{\infty} h(x)f(x)dx$$

Particularly,

$$h(x) = ax + b \qquad E(aX + b) = aE(X) + b$$

Example 4.10.  $X \sim uniform(0,1)$ 

$$f(x) = \begin{cases} 1, & \text{if } 0 \le x \le 1 \\ 0, & \text{if o.w.} \end{cases}$$
$$h(x) = \max\{x, 1 - x\}$$
$$E[h(x)] = \int_{o}^{1} h(x)f(x)dx$$
$$E(2X + 3) = 4 \qquad E(X) = \frac{1}{2}$$

**Definition 4.5.** The variance of a continuous random variable X with pdf f(x) and mean value  $\mu$  is

$$Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx = E[(X - \mu)^2]$$

Proposition 4.3.

$$Var(X) = E[(X - E(X))^{2}] = E(X^{2}) - (E(X))^{2}$$

#### 4.3 The Normal Distribution

X has p.d.f

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} - \infty < x < \infty$$

Then X has a normal distribution, or  $X \sim N(\mu, \sigma^2)$ 



Figure 4.1: Bell-shaped curve

Symmetric about  $\mu$ ,  $\mu$ =shift,  $\sigma$ =scale, large  $\sigma \Rightarrow$ large spread out.

Proposition 4.4. Properties

1. 
$$E(X) = \mu$$
  $Var(X) = \sigma^2$ 

2. 
$$f(x) \to 0$$
, when  $x \to \pm \infty$ 

#### 4.3.1 The Standard Normal Distribution

The Standard Normal Distribution, N(0,1), denoted by Z,

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \qquad -\infty < x < \infty$$

c.d.f of Z

$$\Phi(x) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

$$\Phi(0) = 0.5$$

$$\Phi(1.645) = 0.95$$
  $\Phi(1.96) = 0.975$ 

$$\Phi(-1.645) = 0.05 \qquad \Phi(-1.96) = 0.025$$

Example 4.11. (1)

$$\begin{split} &P(-1.645 \leq Z \leq 1.96) \\ = &P(Z \leq 1.96) - P(Z \geq -1.645) \\ = &\Phi(1.96) - \Phi(-1.645) = 0.975 - 0.05 = 0.925 \end{split}$$

(2) 
$$P(-0.38 \le Z \le 1.25)$$

$$= \Phi(1.25) - \Phi(-0.38) = 0.8944 - (1 - \Phi(0.38))$$

$$= 0.8944 - (1 - 0.6486) = 0.5424$$

#### **Using Standard Normal Table**

#### 4.3.2 Percentiles of the Standard Normal Distribution

100p th percentile  $\eta_p$  of X is the solution of

$$F(\eta_p) = p$$

Example 4.12. For Z

$$\eta_{0.975} = 1.96$$
 $\eta_{0.95} = 1.645$ 
 $\eta_{0.025} = -1.96$ 
 $\eta_{0.05} = -1.645$ 
 $\eta_{0.9} = 1.28$ 

#### 4.3.3 $z_{\alpha}$ Notation for z Critical Values

 $z_{\alpha}$  will denote the value on the z axis for which  $\alpha$  of the area under the z curve lies to the right of z.

$$z_{0.05} = \eta_{0.95} = 1.645$$

(lower percentile)

#### 4.3.4 Nonstandard Normal Distributions

If  $X \sim N(\mu, \sigma^2)$ , then

$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

$$P(a \le X \le b) = P\left(\frac{a - \mu}{\sigma} \le \frac{X - \mu}{\sigma} \le \frac{b - \mu}{\sigma}\right)$$

$$= P\left(\frac{a - \mu}{\sigma} \le Z \le \frac{b - \mu}{\sigma}\right) = \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right)$$

Similarly,

$$P(X \le a) = P\left(\frac{X - \mu}{\sigma} \le \frac{a - \mu}{\sigma}\right)$$
$$= P\left(Z \le \frac{a - \mu}{\sigma}\right) = \Phi\left(\frac{a - \mu}{\sigma}\right)$$
$$P(X \ge b) = 1 - \Phi\left(\frac{b - \mu}{\sigma}\right)$$

Example 4.13.  $X \sim N(1.25, 0.46)$ 

$$\begin{split} P(1 \leq X \leq 1.75) &= P\left(\frac{1 - 1.25}{\sqrt{0.46}} \leq \frac{X - 1.25}{\sqrt{0.46}} \leq \frac{1.75 - 1.25}{\sqrt{0.46}}\right) \\ &= P\left(-0.369 \leq Z \leq 0.737\right) \\ &= \Phi\left(0.737\right) - \Phi\left(-0.369\right) = \boxed{0.4147} \end{split}$$

#### 4.3.5 Empirical Rule

If a population distribution of a r.v is roughly normal. Then

- 1. 68% of the values are within 1 s.d of their mean.
- 2. 95% of the values are within 2 s.d of their mean.
- 3. 99.7% of the values are within 3 s.d of their mean.

Proof.

$$LHS = P(\mu - \sigma \le X \le \mu + \sigma) = P(-1 \le \frac{X - \mu}{\sigma} \le 1)$$
$$= \Phi(1) - \Phi(-1) = 0.8413 - (1 - 0.8413) = 68.26\%$$

#### 4.3.6 Percentiles of an Arbitrary Normal Distribution

If  $X \sim N(\mu, \sigma^2)$  c.d.f F(x), (100p)th percentile of X is the root of

$$P = F(\eta_p) = P(X \le \eta_p)$$

$$= P\left(\frac{X - \mu}{\sigma} \le \frac{\eta_p - \mu}{\sigma}\right) = \Phi\left(\frac{\eta_p - \mu}{\sigma}\right)$$

So,  $\frac{\eta_p - \mu}{\sigma}$  is the (100p)th percentile of N(0,1). Therefore, (100p)th percentile of  $N(\mu, \sigma^2) = \mu + \sigma \times \sigma$ [100pth percentile of N(0,1)]

**Example 4.14.**  $X \sim N(64, 0.78^2)$ . Then 99.5 percentile of X is  $64 + 0.78 \times 2.58 = 66$ , where 2.58 is the 99.5 percentile of Z.

#### Approximating the Binomial Distribution

If  $X \sim Binom(n,p)$ . When n is large, and p is not too small or too large, s.t.  $np \ge 10, n(1-p) \ge 10$ . Then  $X \sim N(np, np(1-p))$ 

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}$$
  $x = 0, 1, ..., n$ 

 $X \sim Binom(n, p)^{1}$ ,

$$P(a \le X \le b) = P(a - 0.5 \le X \le b + 0.5)$$

$$P(X \le a) = P(X \le a + 0.5)$$

$$P(X \ge b) = P(X \ge b - 0.5)$$

**Example 4.15.** 25% of all drivers in Hong Kong don't have insurance. Randomly select 50 drivers. X = # of drivers uninsured.

- 1.  $P(X \le 10)$
- 2. P(5 < X < 15)

First  $X \sim Binom(50, 0.25) \sim N(12.5, 12.5 \times 1.75)$ .

(1)

$$P(X \le 10) = P(X \le 10.5)$$

$$= P\left(\frac{X - 12.5}{\sqrt{12.5 \times 1.75}} \le \frac{10.5 - 12.5}{\sqrt{12.5 \times 1.75}}\right) = \Phi(-0.653) = 0.2578$$

(2)

$$\begin{split} P(5 \leq X \leq 15) = & P(4.5 \leq X \leq 15.5) \\ = & P\left(\frac{4.5 - 12.5}{\sqrt{12.5 \times 1.75}} \leq \frac{X - 12.5}{\sqrt{12.5 \times 1.75}} \leq \frac{15.5 - 12.5}{\sqrt{12.5 \times 1.75}}\right) \\ = & \Phi(0.95) - \Phi(-2.61) = 0.832 \end{split}$$

#### 4.4 The Exponential and Gamma Distributions

#### 4.4.1 The Gamma Function

Definition 4.6.

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$$

This function has the following properties:

1. 
$$\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$$

2. 
$$\Gamma(1) = 1, \Gamma(2) = 1, \Gamma(3) = 2$$
  
 $\Gamma(n) = (n-1)!$   $n = 1, 2, ...$ 

3. 
$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$

<sup>3.</sup>  $\Gamma(\frac{1}{2}) = \sqrt{\pi}$   ${}^{1}X \sim N(np, np(1-p))$ , to avoid significant deviation

#### 4.4.2 The Gamma Distribution

**Definition 4.7.** X follows a Gamma distribution.  $X \sim Gamma(\alpha, \beta)$ .

$$f(x) = \begin{cases} \frac{1}{\Gamma(\alpha)} \frac{1}{\beta^{\alpha}} x^{\alpha - 1} e^{-x/\beta}, & \text{if} \quad x \ge 0\\ 0, & \text{if} \quad x < 0 \end{cases}$$

for  $\alpha > 0, \beta > 0$ 

If  $\beta = 1$ ,  $X \sim Gamma(\alpha, 1)$ . Standard Gamma distribution.

$$f(x) = \begin{cases} \frac{1}{\Gamma(\alpha)} x^{\alpha - 1} e^{-x}, & \text{if } x \ge 0\\ 0. & \text{if } x < 0 \end{cases}$$

Check

$$\int_0^\infty \frac{1}{\Gamma(\alpha)} \frac{1}{\beta^{\alpha}} x^{\alpha - 1} e^{-x/\beta} dx = 1$$

$$L.H.S. = \int_0^\infty \frac{1}{\Gamma(\alpha)} u^{\alpha - 1} e^{-u} du$$
$$= \frac{1}{\Gamma(\alpha)} \int_0^\infty u^{\alpha - 1} e^{-u} du = 1$$

**Proposition 4.5.** If  $X \sim Gamma(\alpha, \beta)$ , then  $E(X) = \alpha\beta$ ,  $Var(X) = \alpha\beta^2$ 

Proof.

$$\begin{split} E(X) &= \int_0^\infty x \frac{1}{\Gamma(\alpha)} \frac{1}{\beta^\alpha} x^{\alpha - 1} e^{-x/\beta} dx = \frac{1}{\Gamma(\alpha)} \int_0^\infty \frac{1}{\beta^\alpha} x^\alpha e^{-x/\beta} dx \\ &= \frac{\beta}{\Gamma(\alpha)} \int_0^\infty \frac{1}{\beta^{\alpha + 1}} x^\alpha e^{-x/\beta} dx = \frac{\beta \Gamma(\alpha + 1)}{\Gamma(\alpha)} \int_0^\infty \frac{1}{\Gamma(\alpha + 1)} \frac{1}{\beta^{\alpha + 1}} x^\alpha e^{-x/\beta} dx \\ &= \frac{\Gamma(\alpha + 1)}{\Gamma(\alpha)} \beta = \alpha \beta \end{split}$$

**Example 4.16.** Suppose that the reaction time X of a randomly selected individual to a certain stimulus has a standard Gamma distribution with  $\alpha = 2$ .

$$P(3 \le X \le 5) = F(5; 2) - F(3; 2)$$

Here  $F(x; \alpha)$  is the c.d.f of  $\Gamma(\alpha, 1)$ 

$$Table A.4 = 0.960 - 0.801 = 0.159$$

**Proposition 4.6.** If  $X \sim Gamma(\alpha, \beta)$ , then  $X/\beta \sim Gamma(\alpha, 1)$ 

$$P(X \le x) = P\left(\frac{X}{\beta} \le \frac{x}{\beta}\right) = F\left(\frac{x}{\beta}; \alpha\right)$$

**Example 4.17.** The survival time X of a randomly selected male mouse exposed to gamma radiation has Gamma distribution with  $\alpha = 8$ ,  $\beta = 15$ . Then

$$E(X) = \alpha\beta = 8 \times 15 = 120$$

$$Var(X) = \alpha\beta^2 = 8 \times 15^2 = 1800$$

$$P(60 \le X \le 120) = P\left(\frac{60}{15} \le \frac{X}{15} \le \frac{120}{15}\right) = F(8; 8) - F(4; 8)$$

= 0.547 - 0.051 = 0.496

#### 4.4.3 Exponential distribution

If  $X \sim exp(\lambda)$ ,  $f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & \text{otherwise} \end{cases}$ . Then X has an exponential distribution with parameter  $\lambda$ .

**Proposition 4.7.** If  $X \sim exp(\lambda)$ . Then  $X \sim Gamma(1, 1/\lambda)$ 

$$E(X) = \lambda$$
  $Var(X) = \frac{1}{\lambda^2}$ 

**Example 4.18.** X=response time at some computer terminal.  $X \sim exp(\lambda)$ . Suppose that the expected reacting time is 5 seconds.

$$E(X) = 5 \qquad \frac{1}{\lambda} = 5 \Rightarrow \lambda = \frac{1}{5}$$

$$P(X \le 10) = \int_0^{10} \frac{1}{5} e^{-x/5} dx = e^{-x/5} \Big|_0^{10} = 1 - e^{-2}.$$

In general, if  $X \sim exp(\lambda)$ ,

$$F(x) = \int_0^x \lambda e^{-\lambda y} dy = e^{-\lambda y} \Big|_0^x = 1 - e^{-\lambda x}$$

#### Two applications

(A) Suppose # of customers coming in any wait time  $\sim Possion(\alpha)$ , and # of customers is non-overlapping intervals are independent. Then

X = the elapsed time between the successive customers coming in  $\sim exp(\alpha)$ 

Why? Let  $X_1$ =waiting time before the 1st customer coming in. Want to show that  $X_1 \sim exp()\lambda$ , just need to find  $f_{X_1}(x)$ . Then we just need to find  $F_{X_1}(x)$ , as  $f_{X_1}(x) = F'_{X_1}(x)$ .

$$F_{X_1}(x) = P(X_1 \le x) = P(\text{at least 1 customer in } (0, x))$$

$$= 1 - P(\text{no customer in } (0, x))$$

$$= 1 - \frac{(\alpha x)^0}{0!} e^{-\alpha x} = 1 - e^{-\alpha x}$$

$$f_{X_1}(x) = F'_{X_1}(x) = \alpha e^{-\alpha x} \qquad x > 0$$

$$X_1 \sim \exp(\lambda)$$

**(B)Memoryless property** Suppose component lifetime  $\sim exp(\lambda)$ . Putting this component into work, after  $t_0$  time, check it and find it is still working. What is the probability that it will last at least another t time?

Let  $T = \text{lifetime of this component } \sim exp(\lambda)$ 

$$P(T \ge t_0 + t | T \ge t_0) = \frac{P(T \ge t_0 + t \cap T \ge t_0)}{P(T \ge t_0)}$$

$$= \frac{P(T \ge t_0 + t)}{P(T \ge t_0)} = \frac{1 - P(T \le t_0 + t)}{1 - P(T \le t_0)}$$

$$= \frac{1 - (1 + e^{-\alpha(t_0 + t)})}{1 - (1 + e^{-\alpha t_0})} = \frac{e^{-\alpha(t_0 + t)}}{e^{-\alpha t_0}}$$

$$= e^{-\alpha t}$$

#### 4.4.4 The Chi-Squared Distribution

Let  $\nu$  be an integer, if  $X \sim Gamma(\frac{\nu}{2}, 2)$ , then we say X has a  $\chi^2$ -distribution with parameter  $\nu$ ,  $X \sim \chi^2(\nu)$ .

It's p.d.f is

$$f(x;\nu) = \begin{cases} \frac{1}{2^{\nu/2}\Gamma(\nu/2)} x^{\nu/2-1} e^{-x/2} & x > 0\\ 0 & o.w. \end{cases}$$

#### Proposition 4.8. Properties

- 1. If  $X \sim N(0,1)$ , then  $X^2 \sim \chi^2(1)$
- 2. If  $X_1 \sim \chi^2(n)$ ,  $X_2 \sim \chi^2(m)$ , independently. Then  $X_1 + X_2 \sim \chi^2(m+n)$
- 3. If  $X_1 \sim N(0,1), \ X_2 \sim N(0,1),$  independently. Then  $X_1 + X_2 \sim \chi^2(2)$

#### 4.5 Other Continuous Distributions

#### 4.5.1 The Weibull Distribution

If  $X \sim Weibull(\alpha, \beta)$ 

$$f(x) = \frac{1}{\beta^{\alpha}} x^{\alpha - 1} e^{-(x/\beta)^{\alpha}} \qquad x > 0$$

If  $\alpha = 1$ ,  $X \sim Weibull(1, \beta)$ . Then  $X \sim exp(\frac{1}{\beta})$ 





Figure 4.2: The Weibull Distribution

#### **Proposition 4.9.** $X \sim Weibull(\alpha, \beta)$

1. 
$$E(X) = \beta \Gamma(1 + 1/\alpha)$$

2. 
$$Var(X) = \beta^2 \left( \Gamma(1+2/\alpha) - (\Gamma(1+1/\alpha))^2 \right)$$

$$F(x) = \begin{cases} 1 - e^{-(\alpha/\beta)^{\alpha}} & x \ge 0\\ 0 & o.w. \end{cases}$$

**Example 4.19.** X = the strength at -20 F of a type of steel exhibiting "cold brittleness" at low temperature .  $X \sim Weibull(20, 100)$ 

$$P(X \le 105) = F(105) = 1 - e^{-(105/100)^{20}} = 1 - 0.07 = \boxed{0.93}$$

(2) 
$$P(90 \le X \le 100) = F(110) - F(90) = \left(1 - e^{-(110/100)^{20}}\right) - \left(1 - e^{-(90/100)^{20}}\right) = \boxed{\dots}$$

#### 4.5.2 The Lognormal Distribution

X is positive. If  $\log X \sim N(\mu, \sigma^2)^2$ , then  $X \sim Lognormal(\mu, \sigma^2)$ .

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(\log x - \mu)^2}{2\sigma^2}}$$
  $x > 0$ 

$$E(X) = e^{\mu + \frac{\sigma^2}{2}}$$

$$Var(X) = e^{2\mu + \sigma^2} (e^{\sigma^2} - 1)$$

$$P(X \le x) = P(\log X \le \log x) = P\left(\frac{\log X - \mu}{\sigma} \le \frac{\log x - \mu}{\sigma}\right) = \Phi\left(\frac{\log x - \mu}{\sigma}\right)$$

**Example 4.20.** X=the modulus of elasticity of some floor system.

$$X \sim Lognormal(0.375, 0.25^2)$$

$$E(X) = e^{0.375 + 0.25^2/2} = 1.5$$

$$Var(X) = e^{2 \times 0.375 + 0.25^2} \left( e^{0.25^2} - 1 \right) = 0.145$$

$$P(1 \le X \le 2) = P(\log 1 \le \log X \le \log 2)$$

$$= P\left( \frac{0 - 0.375}{0.25} \le \frac{\log X - 0.375}{0.25} \le \frac{\log 2 - 0.375}{0.25} \right)$$

$$= \Phi\left( \frac{\log 2 - 0.375}{0.25} \right) - \Phi\left( \frac{-0.375}{0.25} \right) = \boxed{0.8312}$$

#### 4.5.3 The Beta Distribution

If X has a p.d.f

$$f(x) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) + \Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1} & 0 \le x \le 1\\ 0. & o.w. \end{cases}$$

Then,  $X \sim Beta(\alpha, \beta)$ 

**Proposition 4.10.** Particularly, if  $\alpha = \beta = 1$ ,  $X \sim unif(0,1)$ 

**Proposition 4.11.** Let A < B, and Y = A + (B - A)X, then Y be density.

$$f(y) = \begin{cases} \frac{1}{B-A} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) + \Gamma(\beta)} \left(\frac{y-A}{B-A}\right)^{\alpha-1} \left(\frac{B-y}{B-A}\right)^{\beta-1} & A \le x \le B\\ 0. & o.w. \end{cases}$$

$$Y \sim GBeta$$

**Proposition 4.12.** *If*  $Y \sim Beta(\alpha, \beta)$ 

$$E(X) = \frac{\alpha}{\alpha + \beta}$$
  $Var(X) = \frac{\alpha\beta}{(\alpha + \beta)(\alpha + \beta + 1)}$ 

 $<sup>^2\</sup>log=\ln$ 

If  $Y \sim GBeta(\alpha, \beta, A, B)$ 

$$E(Y) = A + (B - A)\frac{\alpha}{\alpha + \beta}$$
  $Var(Y) = (B - A)^2 \frac{\alpha\beta}{(\alpha + \beta)(\alpha + \beta + 1)}$ 

Because Y = A + (B - A)X,

$$E(Y) = E(A + (B - A)X) = A + (B - A)E(X)$$
  $Var(Y) = (B - A)^{2}Var(X)$ 

Example 4.21.

X =time to complete certain project

$$X \sim GBeta(\alpha = 2, \beta = 3, A = 2, B = 5)$$
 
$$E(X) = 2 + (5 - 2)\frac{2}{2 + 3} = 3.2 \qquad Var(X) = 0.36$$
 
$$P(X \le 3) = \int_{2}^{3} \frac{1}{5 - 2} \frac{\Gamma(5)}{\Gamma(2) + \Gamma(3)} \left(\frac{x - 2}{3}\right)^{2 - 1} \left(\frac{5 - x}{3}\right)^{3 - 1} dx = \boxed{0.407}$$

#### 4.5.4 Challenge Question 2

Cauchy distribution

$$f(x) = \frac{1}{\pi(1+x^2)}$$

https://en.wikipedia.org/wiki/Cauchy\_distribution

## Chapter 5

# Joint Probability Distributions and Random Samples

#### 5.1 Jointly Distributed Random Variables

#### 5.1.1 Two Discrete Random Variables

X,Y are r.v's defined on S. The joint p.m.f is defined as

$$p(x,y) = P(X = x, Y = y)$$

Let A be an event consisting of pairs of (x, y). Then

$$P\left((X,Y)\in A\right) = \sum_{(X,Y)\in A} p(x,y)$$

**Example 5.1.** Insurance company. For a newcomer, he has two insurance. Home & Cars. Deductible amount: Auto \$100, \$250; Home \$0, \$100, \$200.

|   |              |      | Y    |     |
|---|--------------|------|------|-----|
|   | p(x,y) $100$ | 0    | 100  | 200 |
| X | 100          | 0.2  | 0.1  | 0.2 |
|   | 250          | 0.05 | 0.15 | 0.3 |

An individual home-owner is randomly selected.

$$P(Y \ge 100) = P(X = 100, Y = 100) + P(X = 250, Y = 100) + P(X = 100, Y = 200) + P(X = 250, Y = 200)$$
  
= 0.1 + 0.15 + 0.2 + 0.3 = 0.75

**Definition 5.1.** "Marginal" p.m.f of X and Y, denoted by  $p_X(x)$  and  $p_Y(y)$  respectively, are given by

$$p_X(x) = \sum_y p(x, y)$$

$$p_Y(y) = \sum_x p(x, y)$$

$$p_X(x) = P(X = x) = P(X + x, Y = \dots) + \dots$$

**Example 5.2.** In the Insurance example,

$$P(X = x) = \begin{cases} P_X(100) = \dots = 0.5 \\ P_X(250) = \dots = 0.5 \end{cases}$$

$$P(Y = y) = \begin{cases} P_Y(0) = \dots = 0.25 \\ P_Y(100) = \dots = 0.25 \\ P_Y(200) = \dots = 0.5 \end{cases}$$

|   |                                                |      | Y    |     |          |
|---|------------------------------------------------|------|------|-----|----------|
|   | $\begin{array}{c c} p(x,y) \\ 100 \end{array}$ | 0    | 100  | 200 | $p_X(x)$ |
| X |                                                | 0.2  | 0.1  | 0.2 | 0.5      |
|   | 250                                            | 0.05 | 0.15 | 0.3 | 0.5      |
|   | $p_Y(y)$                                       | 0.25 | 0.25 | 0.5 | 1        |

#### 5.1.2 Two Continuous Random Variables

(X,Y) continuous r.v. f(x,y) is the joint p.d.f of X and Y if for any 2-dimensional set.

$$P((X,Y) \in A) = \iint_A f(x,y) \, dx \, dy$$

Particularly for  $A = \{(x, y), a \le x \le b, c \le y \le d\},\$ 

$$P(A) = P(a \le X \le b, c \le Y \le d)$$

$$= \int_{a}^{b} \int_{c}^{d} f(x, y) \, dy \, dx = \int_{c}^{d} \int_{a}^{b} f(x, y) \, dx \, dy$$

#### Example 5.3.

X = right front tyre pressureY = left front tyre pressure

$$f(x,y) = \begin{cases} k(x^2 + y^2) & 20 \le x, y \le 30\\ 0, & o.w. \end{cases}$$

(1) What is k?

$$1 = \int_{20}^{30} \int_{20}^{30} k(x^2 + y^2) dx dy = k \int_{20}^{30} \left( \left( \frac{x^3}{3} + xy^2 \right) \Big|_{20}^{30} \right) dy$$
$$= k \int_{20}^{30} \left( \frac{19000}{3} + 10y^2 \right) dy = k \left( \frac{19000}{3} + \frac{19000}{3} \right)$$
$$\Rightarrow k = \frac{3}{38000}$$

(2)

$$\begin{split} P(X \leq 26, Y \leq 26) &= \int_{20}^{26} \int_{20}^{26} k(x^2 + y^2) dx dy \\ &= k \int_{20}^{26} \left( \frac{26^3 - 20^3}{3} + 6y^2 \right) dy \\ &= 2k \cdot 6 \cdot \frac{1}{3} (26^3 - 20^3) = 0.3024 \end{split}$$

 $\textbf{Definition 5.2.} \ \operatorname{Marginal} \ \operatorname{rv}$ 

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

Example 5.4. Example 5.4 (continued) (3)

$$f_X(x) = \int_{20}^{30} k(x^2 + y^2) dy = k \left( \frac{y^3}{3} + x^2 y \right) \Big|_{20}^{30}$$
$$= k \left( 10x^2 + \frac{19000}{3} \right) = \frac{3}{38000} x^2 + \frac{1}{20} \qquad 20 \le x \le 30$$

$$f_Y(y) = \frac{3}{38000}y^2 + \frac{1}{20} \qquad 20 \le y \le 30$$

$$(4)$$

$$P(20 \le X \le 25) = \int_{20}^{25} f_X(x) dx = \dots = 0.45$$

**Definition 5.3.** Expected Values

$$E[h(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y)f(x,y)dxdy$$

Example 5.5. Example 5.4 (continued)

(5)

$$E(X+Y) = \int_{20}^{26} \int_{20}^{26} (x+y)k(x^2+y^2)dxdy = \dots$$

#### 5.1.3 Independent Random Variables

X and Y are said to be independent, if

$$discrete: p(x,y) = p_X(x)p_Y(y) \text{ for all } (x,y)$$
  
 $continuous: f(x,y) = f_X(x)f_Y(y) \text{ for all } (x,y)$ 

Example 5.6. Example 5.4 (continued)

(6)

$$f(x,y) = \frac{3}{38000}(x^2 + y^2) \qquad 20 \le x, y \le 30$$

$$f_X(x) = \frac{3}{38000}x^2 + \frac{1}{20} \qquad 20 \le x \le 30$$

$$f_Y(y) = \frac{3}{38000}y^2 + \frac{1}{20} \qquad 20 \le y \le 30$$

$$f(x,y) \ne f_X(x)f_Y(y) \qquad \text{for } x = 20, y = 20$$

X and Y are not independent.

#### Example 5.7.

$$f(x,y) = \lambda_1 \lambda_2 e^{-\lambda_1 x - \lambda_2 y}, x \ge 0, y \ge 0$$

Are X and Y independent?

$$f_X(x) = \int_0^\infty \lambda_1 \lambda_2 e^{-\lambda_1 x - \lambda_2 y} dy$$

$$= \lambda_1 e^{-\lambda_1 x} \int_0^\infty \lambda_2 e^{-\lambda_2 y} dy = \lambda_1 e^{-\lambda_1} \qquad x \ge 0$$

$$f_Y(y) = \lambda_2 e^{-\lambda_2} \qquad y \ge 0$$

$$f(x, y) = f_X(x) f_Y(y) \qquad \text{for any } (x, y)$$

So,  $X \perp \!\!\!\perp Y$ .

#### 5.1.4 More Than Two Random Variables

**Definition 5.4.**  $X_1, X_2, \dots, X_n$  are discrete rvs', the joint p.m.f is defined as

$$p(x_1, x_2, \dots, x_n) = P(X_1 = x_1, \dots, X_n = x_n)$$

In continuous case, the joint p.d.f  $f(x_1, x_2, ..., x_n)$  is such that

$$P(A) = \int_A \cdots \int f(x_1, x_2, \dots, x_n) dx_n \dots dx_1$$

Particularly,  $A = \{a_1 \le x_1 \le b_1, \dots, a_n \le x_n \le b_n\}$ 

$$P(A) = P(a_1 \le x_1 \le b_1, \dots, a_n \le x_n \le b_n)$$
  
=  $\int_{a_1}^{b_1} \dots \int_{a_n}^{b_n} f(x_1, x_2, \dots, x_n) dx_n \dots dx_1$ 

**Example 5.8.** A dice is rolled 100 times.  $X_i = \#$  of i dots out of 100 times; i = 1, 2, ..., 6

$$p_i = P(i \text{ dots})$$
  $p_1 + p_2 + \dots + p_6 = 1$ 

$$P(X_1 = x_1, \dots, X_6 = x_6) = \frac{100!}{x_1! x_2! \dots x_6!} p_1^{x_1} p_2^{x_2} \dots p_6^{x_6} \quad (0 \le x_1, \dots, x_6 \le 100, x_1 + \dots + x_6 = 100)$$

**Example 5.9.**  $(X_1, X_2, X_3)$  has the joint p.d.f

$$f(x_1, x_2, x_3) = \begin{cases} kx_1x_2(1 - x_3) & 0 \le x_1, x_2, x_3 \le 1, x_1 + x_2 + x_3 \le 1\\ 0, & o.w. \end{cases}$$

(1) What is k?

$$1 = \iiint kx_1x_2(1 - x_3) dx_3 dx_2 dx_1$$

$$= \int_0^1 \int_0^{1 - x_1} \int_0^{1 - x_2 - x_1} kx_1x_2(1 - x_3) dx_3 dx_2 dx_1$$

$$= \frac{k}{144} \Rightarrow k = 144$$

(2)

$$P(X_1 + X_2 \le 0.5) = \iiint kx_1x_2(1 - x_3) dx_3 dx_2 dx_1 = 0.606$$

$$0 \le x_1, x_2, x_3 \le 1, x_1 + x_2 \le 0.5^{-1}$$

#### Independence

**Definition 5.5.**  $X_1, X_2, \ldots, X_n$  are independent if

$$p(x_1, x_2, \dots, x_n) = p_{X_1}(x_1) \dots p_{X_n}(x_n)$$

or

$$f(x_1, x_2, \dots, x_n) = f_{X_1}(x_1) \dots f_{X_n}(x_n)$$

for all possible  $(x_1, \ldots, x_n)$ 

#### 5.1.5 Conditional Distributions

**Definition 5.6.** (X,Y) with  $f(x,y), f_X(x), f_Y(y)$ , then the conditional p.d.f of Y given X=x,

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$$

for discrete case

$$p_{Y|X}(y|x) = \frac{p(x,y)}{p_X(x)}$$

Example 5.10.

$$f(x,y) = \begin{cases} \frac{6}{5}(x+y^2) & 0 \le x \le 1, 0 \le y \le 1\\ 0 & o.w. \end{cases}$$

<sup>&</sup>lt;sup>1</sup>The value might be wrong, run this in Mathematica - Integrate[144\*x y (1 - z),  $\{x, 0, 0.5\}$ ,  $\{y, 0, 0.5 - x\}$ ,  $\{z, 0, 1 - x - y\}$ ]

$$f_X(x) = \int_0^1 \frac{6}{5} (x + y^2) \, dy = \left( \frac{6}{5} xy + \frac{6}{5} \frac{1}{3} y^3 \right) \Big|_0^1$$

$$= \frac{6}{5} x + \frac{2}{5}. \qquad 0 \le x \le 1$$

$$f_{Y|X}(y|0.8) = \frac{f(0.8, y)}{f_X(0.8)} = \frac{15}{17} y^2 + \frac{12}{17} \qquad 0 \le y \le 1$$

$$E(Y|X=0.8) = \int_0^1 y f_{Y|X}(y|0.8) \, dy = \int_0^1 y \left( \frac{15}{17} y^2 + \frac{12}{17} \right) \, dy = \frac{39}{68}$$

#### 5.2 Expected Values, Covariance, and Correlation

Proposition 5.1.

$$E[h(x,y)] = \begin{cases} \sum_{x} \sum_{y} h(x,y) p(x,y) & discrete \\ \int_{-\infty}^{x} \int_{-\infty}^{\infty} h(x,y) f(x,y) dx dy & continuous \end{cases}$$

Example 5.11.

$$X =$$
 amount of almonds  $Y =$  amount of pecans

$$f(x) = \begin{cases} 24xy & \text{if } 0 \le x, y \le 1, x + y \le 1\\ 0 & o.w. \end{cases}$$

Unit test: almonds: \$1.00; pecans: \$1.00; peanuts: \$0.50

$$h(X,Y) = X + 1.5Y + 0.5(1 - X - Y) = 0.5 + 0.5X + Y$$

$$E[h(x,y)] = \int_0^1 \int_0^{1-y} (0.5 + 0.5x + y) 24xy \, dx \, dy = 1.10$$

#### 5.2.1 Covariance

Definition 5.7.

$$Cov(X,Y) = E((X - \mu_X)(Y - \mu_Y))$$

where  $\mu_X = E(X), \mu_Y = E(Y)$ 

$$\Rightarrow Cov(X,Y) = E(XY) - E(X)E(Y)$$

Example 5.12. In Example 5.1

|   |                                              |      | Y    |     |          |
|---|----------------------------------------------|------|------|-----|----------|
|   | $\begin{array}{c} p(x,y) \\ 100 \end{array}$ | 0    | 100  | 200 | $p_X(x)$ |
| X | 100                                          | 0.2  | 0.1  | 0.2 | 0.5      |
|   | 250                                          | 0.05 | 0.15 | 0.3 | 0.5      |
|   | $p_Y(y)$                                     | 0.25 | 0.25 | 0.5 | 1        |

$$E(X) = 100 \times 0.5 + 250 \times 0.5 = 175$$
  
 $E(Y) = \dots = 125$   
 $Cov(X, Y) = \dots = 1875$ 

Example 5.13.

$$f(x) = \begin{cases} 24xy & \text{if } 0 \le x, y \le 1, x + y \le 1\\ 0 & o.w. \end{cases}$$

$$Cov(X, Y) = E(XY) - E(X)E(Y)$$

$$f_X(x) = \int_0^{1-x}$$

Similarly,

$$f_Y(y) = 12y(1-y)^2, 0 \le y \le 1$$

$$E(X) = \int_0^1 x \cdot 12x(1-x)^2 dx = \frac{2}{5}$$

$$E(Y) = \frac{2}{5}$$

$$E(XY) = \int_0^1 \left( \int_0^{1-y} xy \cdot 24xy \, dx \right) \, dy = \frac{2}{15}$$

$$Cov(X,Y) = E(XY) - E(X) - E(Y) = -\frac{2}{75}$$

X, Y are negatively related. But Covariance cannot indicate the relation is strong or weak.

#### 5.2.2 Correlation

**Definition 5.8.** The correlation coefficient of X and Y, denoted by Corr(X,Y),  $\rho_{X,Y}$ , or just  $\rho$ , is defined by

$$Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}}$$

Back to Example 5.21,

$$Var(X) = E(X^2) - E(X)^2$$

$$E(X^{2}) = \int_{0}^{1} x^{2} 12x(1-x)^{2} gx = 12 \int_{0}^{1} x^{3} (1-x)^{2} dx = \frac{1}{5}$$

$$Var(X) = \frac{1}{5} - \left(\frac{2}{5}\right) = \frac{1}{25}$$

Similarly,

$$Var(Y) = \frac{1}{25}$$

$$Corr(X,Y) = \frac{-\frac{2}{75}}{\sqrt{\frac{1}{25}\frac{1}{25}}} = -\frac{2}{3}$$

**Proposition 5.2.** Fact: for any X and Y,

$$-1 \le Corr(X, Y) \le 1$$

**Proposition 5.3.** If  $ac > 0^2$ , then

$$Corr(aX + b, cX + d) = Corr(X, Y)$$

" $unit\ free$ "

**Proposition 5.4.** 1. If X and Y are independent, then

$$Corr(X,Y) = 0$$

But  $Corr(X, Y) = 0 \Rightarrow X$  and Y are independent.

2. If Corr(X,Y) = 1 or -1 if and only if Y = aX + b for some a,b with  $a \neq 0$ .

 $<sup>^{2}</sup>a$  and c are either both positive or negative

**Example 5.14.** X and Y are discrete r.v.'s

$$p(x,y) = \begin{cases} \frac{1}{4} & (x,y) = (-4,1), (4,-1), (2,2), (-2,-2) \\ 0 & o.w. \end{cases}$$
 
$$p_X(x) = \begin{cases} \frac{1}{4} & x = -4, -2, 2, 4 \\ 0 & o.w. \end{cases}$$
 
$$p_Y(y) = \begin{cases} \frac{1}{4} & y = -2, -1, 1, 2 \\ 0 & o.w. \end{cases}$$
 
$$E(X) = \frac{1}{4}(-4 + -2 + 2 + 4) = 0 \qquad E(Y) = 0$$
 
$$E(XY) = \frac{1}{4}(-4 + -4 + 4 + 4) = 0$$
 
$$Cov(X,Y) = 0 - 0 \times 0 = 0 \qquad Corr(X,Y) = 0$$

But  $X \not\perp\!\!\!\perp Y$ .

**Example 5.15.**  $X \sim N(0,1), Y = X^2 \sim \chi^2(1)$ 

$$E(X) = 0 \qquad E(Y) = E(X^2) = (Var(X)) = 1$$
 
$$E(XY) = E(X^3) = \int_{-\infty}^{\infty} x^3 \phi(x) dx = 0$$
 
$$Cov(X, Y) = E(XY) - E(X)E(Y) = 0 - 0 \times 1 = 0$$
 
$$Cov(X, Y) = 0 \qquad X \not\perp \!\!\!\perp Y$$

#### 5.2.3 Properties (The Distribution of a Linear Combination)

**Proposition 5.5.** (1).  $X_1, X_2 ... X_n$  are rv's. For any constant  $a_1, a_2 ... a_n$ ,

$$E(a_1X_1 + \dots + a_nX_n) = a_1E(X_1) + \dots + a_nE(X_n)$$

$$Var(a_1X_1 + \dots + a_nX_n) = \sum_{i=1}^n a_i^2 Var(X_i) + \sum_{i\neq j} a_i a_j Cor(X_i, Y_j)$$

$$= \sum_{i=1}^n a_i^2 Var(X_i) + 2\sum_{i=1}^n \sum_{j=i+1}^n a_i a_j Cor(X_i, Y_j)$$

If  $X_1, X_2 \dots X_n$  are independent

$$Var(a_1X_1 + \dots + a_nX_n) = \sum_{i=1}^n a_i^2 Var(X_i)$$

$$Var(X) = Cov(X, X) = E(XX) - E(X)E(X)$$

(2). If  $X_1, X_2 ... X_n$  are independent, and  $X_i \sim N(\mu_i, \sigma_i^2)$ . Then

$$a_1 X_1 + \dots + a_n X_n \sim N(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i \sigma^2)$$

Particularly, if  $\mu_i = \mu, \sigma_i = \sigma, a_i = \frac{1}{n} (i = 1, \dots, n)$ , then

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$

#### 5.3 Statistics and Their Distributions

**Example 5.16.** Number of certificate obtained by students: 2,1,4,2,0.

Sample mean:  $\bar{x} = \frac{2+1+4+2+0}{5} = 1.8$ Sample variance:  $s^2 = \frac{(2-1.8)^2 + (1-1.8)^2 + (4-1.8)^2 + \dots}{4}$ 

Generally,  $x_1, x_2, \ldots, x_n$ ,

Sample mean:

$$\bar{x} = \frac{x_1 + \dots + x_n}{n}$$

Sample variance:

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

**Definition 5.9.** A statistic is a function of data before sampling (or before data are observed). There is an uncertainty on what value the statistic will result.

Usually, we use upper-case letter to denote statistic, and lower-case letter to denote observe values of a statistic.

$$\bar{X} = \frac{X_1 + \dots + X_n}{n} \qquad S^2 = \frac{\sum (X_i - \bar{X})^2}{n}$$

 $\bar{x}, s^2$ .  $T = \frac{\bar{X}}{S}$  is also a statistic.

#### 5.3.1 Random Samples

**Definition 5.10.**  $X_1, X_2 \dots X_n$  are said to be a random sample of size n if they are independent and identically distributed (i.i.d).

#### **Deriving the Sampling Distribution of a Statistic** 5.3.2

**Example 5.17.** A car dealer, tune-up charge (\$40,\$45,\$50) for (4,6,8) cylinder cars. At a particular day, of all tune-up cars, (20%, 30%, 50%) are (4,6,8) cylinder cars.

The pmf of revenue is

| $\overline{x}$ | 40  | 45  | 50  |
|----------------|-----|-----|-----|
| p(x)           | 0.2 | 0.3 | 0.5 |

$$E(X) = 46.5$$
  $Var(X) = 15.25$ 

At another day, two tune-ups are done.

 $X_1$  = revenue for the 1st car

 $X_2$  = revenue for the 2nd car

Then  $X_1, X_2$  iid X with pmf p(x),  $\bar{X} = \frac{X_1 + X_2}{2}$ .

| $x_1$ | $x_2$ | $p(x_1, x_2)$ | $\bar{x}$ | $s^2$ |
|-------|-------|---------------|-----------|-------|
| 40    | 40    | 0.04          | 40        | 0     |
| 40    | 45    | 0.06          | 42.5      | 12.5  |
| 40    | 50    | 0.10          | 45        | 50    |
| 45    | 40    | 0.06          | 42.5      | 12.5  |
| 45    | 45    | 0.09          | 45        | 0     |
| 45    | 50    | 0.15          | 47.5      | 12.5  |
| 50    | 40    | 0.10          | 45        | 50    |
| 50    | 45    | 0.09          | 47.5      | 12.5  |
| 50    | 50    | 0.25          | 50        | 0     |

Distribution of  $\bar{X}$ 

| $\bar{x}$              |      | 42.5 | _    |     |      |
|------------------------|------|------|------|-----|------|
| $p_{\bar{X}}(\bar{x})$ | 0.04 | 0.12 | 0.29 | 0.3 | 0.25 |

Distribution of  $S^2$ 

| $s^2$          | 0    | 12.5 | 50   |
|----------------|------|------|------|
| $p_{S^2}(s^2)$ | 0.38 | 0.42 | 0.20 |

$$E(\bar{X}) = 46.5$$
 
$$E(S^2) = 15.25 = Var(X)$$
 
$$Var(S^2) =$$

**Example 5.18.** (Example 5.21 in the textbook)  $X_1, X_2 \stackrel{iid}{\sim} exp(\lambda)$ 

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0\\ 0, & \text{otherwise} \end{cases}$$

 $Y = X_1 + X_2$  is the statistic of interest.  $f_Y(y) = ?$ .

$$\begin{split} F_Y(y) = & P(Y \le y) = P(X_1 + X_2 \le y) \\ &= \iint_{X_1 + X_2 \le y} f(x_1, x_2) \, dx_1 \, dx_2 = \int_0^y \int_0^{y - x_2} \lambda e^{-\lambda x_1} \lambda e^{-\lambda x_2} dx_1 \, dx_2 \\ &= \int_0^y \int_0^{y - x_2} \lambda^2 e^{-\lambda (x_1 + x_2)} dx_1 \, dx_2 = \dots = 1 - e^{-\lambda y} - \lambda y e^{-\lambda y} \qquad 0 \le y \le \infty \\ & f_Y(y) = F_Y'(y) = \lambda e^{-\lambda y} - \lambda e^{-\lambda y} + \lambda^2 y e^{-\lambda y} = \lambda^2 y e^{-\lambda y} \qquad y \ge 0 \\ & Y \sim Gamma(2, \frac{1}{\lambda}) \\ & E(Y) = \frac{2}{\lambda} \qquad Var(Y) = \frac{2}{\lambda^2} \end{split}$$

#### 5.4 The Distribution of the Sample Mean

**Proposition 5.6.** Let  $X_1, X_2, \ldots, X_n$  be a random sample from a distribution with mean  $\mu$  and variance  $\sigma^2$ . Then

$$E(\bar{X}) = \mu$$
  $Var(\bar{X}) = \frac{\sigma^2}{n}$   $s.d(\bar{X}) = \frac{\sigma}{\sqrt{n}}$ 

If  $T = X_1 + X_2 + \cdots + X_n$ ,

$$E(T) = n\mu$$
  $Var(T) = n\sigma^2$   $s.d(T) = \sqrt{n}\sigma$ 

#### 5.4.1 The Case of a Normal Population Distribution

**Example 5.19.** In a previous class of MA2506, students' final exam score  $\sim N(70, 20^2)$ . This year, the same class, 36 students.

$$\bar{X} = \text{average score}$$

$$P(65 < \bar{X} < 75)$$

Since  $X_1, X_2, \dots, X_n \stackrel{iid}{\sim} (70, 20^2), \ \bar{X} \sim N(70, \frac{20^2}{36})$ 

$$P(65 \le \bar{X} \le 75) = P\left(\frac{65 - 70}{20/6} \le \frac{\bar{X} - 70}{20/6} \le \frac{75 - 70}{20/6}\right) = \Phi(-1.5 \le Z \le 1.5) = 0.8664$$

#### 5.4.2 The Central Limit Theorem

What if  $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} (\mu, \sigma^2)$ ? No normality.

#### Theorem 5.1. The Central Limit Theorem(CLT)

Let  $X_1, X_2, \ldots, X_n$  be a random sample from a distribution with mean  $\mu$  and variance  $\sigma^2$ . Then if n is sufficiently large,  $\bar{X}$  has approximately a normal distribution with  $\mu_{\bar{X}} = \mu$  and  $\sigma_{\bar{X}} = \frac{\sigma^2}{n}$ , and T also has approximately a normal distribution with  $\mu_T = n\mu$ ,  $\sigma_T^2 = n\sigma^2$ . The larger the value of n, the better the approximation. Usually,  $n \geq 30$ .

## Chapter 6

# **Point Estimation**

#### 6.1 Some General Concepts of Point Estimation

**Example 6.1.** Population  $N(\mu, 1)$ .

A "guess" of  $\mu$  can be  $\frac{10.2+9.8+9.5+11+13+9}{6}=10.4$ 

**Definition 6.1.** Generally, we need to estimate a parameter  $\theta$  based on a sample data set  $x_1, x_2, \dots, x_n$ . A point estimate of  $\theta$  is a suitable statistic on  $X_1, X_2, \dots, X_n$ .

Example 6.2. (Example 6.1 in textbook)

Example 6.3. (Example 6.2 in textbook)

#### 6.1.1 Unbiased Estimators

**Definition 6.2.** An estimate  $\hat{\theta}$  is said to be unbiased if

$$E(\hat{\theta}) = \theta$$

Otherwise  $E(\hat{\theta}) - \theta$  is called the bias of  $\hat{\theta}$ .

Example 6.4.  $X \sim Bin(n,p), \hat{p} = \frac{X}{n}$ 

$$E(\hat{p}) = E\left(\frac{X}{n}\right) = \frac{1}{n}E(X) = p$$

So  $\hat{p}$  is an unbiased estimate of p.

Example 6.5.  $X_1, \ldots, X_n \stackrel{iid}{\sim} (\mu, \sigma^2)$ 

$$\hat{\mu} = \bar{X} \qquad \hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

$$E(\hat{\mu}) = E(\frac{X_1 + \dots + X_n}{n}) = \frac{1}{n} E(X_1 + \dots + X_n)$$

$$E(a_1X_1 + \dots + a_nX_n) = a_1E(X_1) + \dots + a_nE(X_n)$$

$$Var(a_1X_1 + \dots + a_nX_n) = \sum_{i=1}^n a_i^2 Var(X_i)$$
 if  $X_1, \dots, X_n$  are independent

$$\Rightarrow E(\hat{\mu}) = \frac{1}{n} (E(X_1) + \dots + E(X_n)) = \frac{1}{n} (\mu + \dots + \mu) = \mu$$

$$E(S^2) = E\left(\frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n-1}\right) = \frac{1}{n-1} E\left(\sum_{i=1}^n (X_i^2 - 2X_i\bar{X} + \bar{X}^2)\right)$$

$$= \frac{1}{n-1} E\left(\left(\sum_{i=1}^n X_i^2\right) - n\bar{X}^2\right) = \frac{1}{n-1} \left(\sum_{i=1}^n E(X_i^2) - nE(\bar{X}^2)\right)$$

Recall:  $Var(X_i) = E(X_i^2) - (E(X_i))^2$ ,  $E(X_i) = \mu$ ,  $Var(X_i) = \sigma^2$  in normal distribution.  $\Rightarrow E(X_i^2) = \mu^2 + \sigma^2$ .  $Var(\bar{X}) = E(\bar{X}^2) - (E(\bar{X}))^2 \Rightarrow E(\bar{X}^2) = \mu^2 + \frac{\sigma^2}{n}$ .

$$E(S^{2}) = \frac{1}{n-1} \left( \sum_{i=1}^{n} (\mu^{2} + \sigma^{2}) - n \left( \mu^{2} + \frac{\sigma^{2}}{n} \right) \right) = \sigma^{2}$$

So,  $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$  is an unbiased estimate of  $\sigma^2$ . If we use  $\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$ , would generate a bias.

Example 6.6. (Example 6.4 in textbook)

**Proposition 6.1.** If  $X_1, X_2, \ldots, X_n$  is a random sample from a distribution with mean  $\mu$ , then  $\bar{X}$  is an unbiased estimator of  $\mu$ . If in addition the distribution is continuous and symmetric, then  $\tilde{X}$  (Sample median) and any trimmed mean are also unbiased estimators of  $\mu$ .

#### 6.1.2 Estimators with Minimum Variance

#### Principle of Minimum Variance Unbiased Estimation

Among all estimators of  $\theta$  that are unbiased, choose the one that has minimum variance. The resulting is called the minimum variance unbiased estimator (MVUE) of  $\theta$ .

Example 6.7. (Example 6.6 in textbook)

**Theorem 6.1.**  $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$ , then  $\hat{\mu} = \bar{X}$  is the MVUE of  $\mu$ .

#### 6.2 Methods of Point Estimation

#### 6.2.1 The Method of Moments

**Definition 6.3.**  $X_1, \ldots, X_n$  random sample.

k-th sample moment:

$$\frac{1}{n} \sum_{i=1}^{n} X_i^k$$

k-th population moment:

$$E(X^k)$$

**Definition 6.4.** Point estimation: use  $\frac{1}{n} \sum_{i=1}^{n} X_i^k \to E(X^k)$ 

Example 6.8.  $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$ 

$$E(X)=\mu \qquad E(X^2)=(E(X))^2+Var(X)=\mu^2+\sigma^2$$

$$\begin{cases} \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \\ \hat{\mu}^{2} + \hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \end{cases} \Rightarrow \begin{cases} \hat{\mu} = \bar{X} \\ \hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - \bar{X}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} \end{cases}$$

Example 6.9.  $X_1, \ldots, X_n \stackrel{iid}{\sim} Unif(0, \theta)$ 

$$E(X) = \frac{\theta}{2}$$

$$\frac{\hat{\theta}}{2} = \frac{1}{n} \sum_{i=1}^{n} X_i \Rightarrow \hat{\theta} = 2\bar{X}$$

Example 6.10. (Example 6.13 in textbook)

 $X_1, \ldots, X_n \stackrel{iid}{\sim} Gamma(\alpha, \beta)$ 

$$\begin{cases} \hat{\alpha}\hat{\beta} = \bar{X} \\ \hat{\alpha}\hat{\beta}^2 + (\hat{\alpha}\hat{\beta})^2 = \frac{1}{n}\sum_{i=1}^n X_i^2 \end{cases} \Rightarrow \begin{cases} \hat{\alpha} = \frac{\bar{X}^2}{\frac{1}{n}\sum_{i=1}^n X_i^2 - \bar{X}^2} \\ \hat{\beta} = \frac{1}{\bar{X}} \left(\frac{1}{n}\sum_{i=1}^n X_i^2 - \bar{X}^2\right) \end{cases}$$

#### 6.2.2 Maximum Likelihood Estimation

**Example 6.11.** (Similar to Example 6.15 in the textbook) A coin, P(H) = p, unknown.

$$X_i = \begin{cases} 1, & H \\ 0. & T \end{cases}$$

 $10100000001, \hat{p}.$ 

The probability of the sequence happening is  $p^3(1-p)^7$ . try to make  $p^3(1-p)^7$  large, Let  $L=p^3(1-p)^7$ .

$$\ln L = 3 \ln p + 7 \ln (1 - p)$$

$$\operatorname{argmax} L = \operatorname{argmax} \ln L$$

$$\operatorname{argmax} (\log p + 7 \log 1 - p) = \frac{3}{10}$$

$$(\log L)' = \frac{3}{p} - \frac{7}{1 - p} \qquad \hat{p} = \frac{3}{10}$$

**Definition 6.5.** Let  $X_1, \ldots, X_n$  have joint pmf or pdf  $f(x_1, \ldots, x_n; \theta)$ . The MLE of  $\theta$  is the one that maximizes the joint pdf (pmf) or  $f(x_1, \ldots, x_n; \theta) \geq f(x_1, \ldots, x_n; \theta)$  for any  $\theta$ .

Example 6.12. (Example 6.16 in the textbook)

Example 6.13. (Example 6.17 in the textbook)

#### 6.2.3 Estimating Functions of Parameters

**Proposition 6.2** (The Invariance Principle). Let  $\hat{\theta}_1, \ldots, \hat{\theta}_n$  be the mles of the parameters  $\theta_1, \ldots, \theta_m$ . Then the mle of any function  $h(\theta_1, \ldots, \theta_m)$  of these parameters is the function  $h(\hat{\theta}_1, \ldots, \hat{\theta}_m)$  of the mles.

**Example 6.14.** (Example 6.20 in the textbook) the mle for  $\sigma$  is  $\sqrt{\frac{1}{n}\sum_{i=1}^{n}(X_i-\bar{X})^2}$ 

$$h(\mu, \sigma^2) = \sqrt{\sigma^2}$$
**Example 6.15.**  $X_1, \dots, X_n \stackrel{iid}{\sim} f(x; \theta) = \begin{cases} (\theta + 1)x^{\theta} & 0 \le x \le 1 \\ 0 & o.w. \end{cases}$ , with  $\theta > -1$ 

1. Use MM

$$E(X) = \int_0^1 x(\theta+1)x^{\theta} dx = (\theta+1) \left. \frac{x^{\theta+2}}{\theta+2} \right|_0^1 = \frac{\theta+1}{\theta+2}$$
$$E(X) = \frac{1}{n} \sum_{i=1}^n X_i$$
$$\frac{\theta+1}{\theta+2} = \bar{X} \Rightarrow \hat{\theta}_{MM} = \frac{2\bar{X}-1}{1-\bar{X}}$$

2. Use MLE

$$L(\theta) = f(x_1, \dots, x_n; \theta) = \prod_{i=1}^n (\theta + 1) x_i^n = (\theta + 1)^n \left(\prod_{i=1}^n x_i\right)^{\theta}$$
$$l(\theta) = n \log \theta + 1 + \theta \sum_{i=1}^n \log x_i$$
$$l'(\theta) = \frac{n}{\theta + 1} + \sum_{i=1}^n \log x_i \Rightarrow \hat{\theta}_{MLE} = -\frac{n}{\sum_{i=1}^n \log X_i} - 1$$

3. Compare  $\hat{\theta}_{MM}$  and  $\hat{\theta}_{MLE}$  by their variance

#### 6.2.4 Some Complications

Example 6.16. (Example 6.22 in the textbook)

# Chapter 7

# Statistical Intervals Based on a Single Sample

#### 7.1 Basic Properties of Confidence Intervals

 $X_1, \ldots, X_n \stackrel{iid}{\sim} f(x; \theta)$ , use an interval to "estimate"  $\theta$ .

**Example 7.1.**  $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma_0^2), \sigma_0^2$  known.

$$\begin{split} \bar{X} \sim N\left(\mu, \frac{\sigma_0^2}{n}\right) \\ Z &= \frac{\bar{X} - \mu}{\sigma_0/\sqrt{n}} \sim N(0, 1) \\ P\left(-1.96 \leq \frac{\bar{X} - \mu}{\sigma_0/\sqrt{n}} \leq 1.96\right) = 0.95 \\ P\left(\bar{X} - 1.96 \frac{\sigma_0}{\sqrt{n}} \leq \mu \leq \bar{X} + 1.96 \frac{\sigma_0}{\sqrt{n}}\right) = 0.95 \end{split}$$

So the chance that  $\mu$  is within  $\bar{x} \pm \frac{\sigma_0}{\sqrt{n}}$  is 95%. Then we call  $(\bar{X} - 1.96 \frac{\sigma_0}{\sqrt{n}}, \bar{X} + 1.96 \frac{\sigma_0}{\sqrt{n}})$  is the 95% CI for  $\mu$ .

#### 7.1.1 Interpreting a Confidence Level

Get 10000 such random samples independently, then 10000 different  $\bar{X}$ 's. Almost 9500 of such intervals will cover  $\mu$ .

#### 7.1.2 Other Levels of Confidence

**Example 7.2.** A swimmer adopts a new swimming style. Historical data suggests that the time he needed to swim 200 metres is  $\mu$  minutes within 0.5 minutes s.d. He swims 9 times and the average he spent is 2.5 minutes. Suppose the swimming time is normally distributed. What is the 95% CI for  $\mu$ ?

$$X_1, \dots, X_9 \stackrel{iid}{\sim} N(\mu, 0.5^2)$$
  
 $\bar{X} \pm 1.96 \frac{\sigma_0}{\sqrt{n}} = 25 \pm 1.645 \frac{0.5}{\sqrt{9}} = 2.5 \pm 0.274 = (2.226, 2.774)$ 

the 97.5th percentile of Z is 1.96

$$P(Z \le 1.96) = 0.975$$

Denote  $z_{0.025} = 1.96$ , as the 2.5th upper percentile of Z.

**Example 7.3.** The response time to do a command is normally distributed with  $\sigma_0 = 25$  ms. Want to estimate the  $\mu$  for the system. How many times are necessary to assure that the 95% CI for  $\mu$  has a width at most 10 ms?

95% CI for  $\mu$  is  $\bar{X} \pm z_{\alpha/2} \frac{\sigma_0}{\sqrt{n}}$ . Its width is  $2z_{0.025} \frac{25}{\sqrt{n}} \le 10$ .

$$\sqrt{n} > 9.8 \Rightarrow n > 96.04, \quad n = 97$$

Proposition 7.1. In general,

$$P\left(-z_{\alpha/2} \le \frac{\bar{X} - \mu}{\sigma_0^2/\sqrt{n}} \le z_{\alpha/2}\right) = 1 - \alpha$$

So  $\bar{x} \pm z_{\alpha/2} \frac{\sigma_0}{\sqrt{n}}$  is the  $100(1-\alpha)\%$  CI for  $\mu$ .

#### 7.2 Intervals Based on a Normal Population Distribution

#### Assumption

The population of interest is normal, so that  $X_1, \ldots, X_n$  constitutes a random sample from a normal distribution with both  $\mu$  and  $\sigma$  unknown.

**Theorem 7.1.**  $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2), \sigma \text{ unknown.}$ 

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

where  $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$  is the sample s.d.

Figure 7.1: t and Z distribution



$$P\left(-t_{\alpha/2,n-1} \le \frac{\bar{X} - \mu}{S/\sqrt{n}} \le t_{\alpha/2,n-1}\right) = 1 - \alpha$$

where  $t_{\alpha/2,n-1}$  denotes the  $\frac{\alpha}{2}$ -th upper percentile of t(n-1).

Then  $\bar{x} \pm t_{\alpha/2,n-1} \frac{S}{\sqrt{n}}$  is the  $100(1-\alpha)\%$  CI for  $\mu$ .

**Example 7.4.** The following data are believed to be sampled from normal distribution. 10490, 16620, ..., 14760 (n = 16)

Then the 95% CI for  $\mu$  is

$$\bar{x} \pm t_{\alpha/2,n-1} \frac{S}{\sqrt{n}} = 14532.5 \pm t_{0.025,15} \frac{2055.67}{\sqrt{16}}$$

$$= (13437.3, 15627.7)$$

#### 7.2.1 A Prediction Interval for a Single Future Value

See the corresponding text in the textbook.

#### 7.2.2 Tolerance Intervals

See the corresponding text in the textbook.

# 7.3 Large-Sample Confidence Intervals for a Population Mean and Proportion

#### 7.3.1 A Large-Sample Interval for $\mu$

**Proposition 7.2.**  $X_1, \ldots, X_n \stackrel{iid}{\sim} (\mu, \sigma^2)$ .  $\mu$  and  $\sigma$  are both unknown. By CLT if n is large

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \stackrel{\cdot}{\sim} N(0, 1)$$

$$P\left(-z_{\alpha/2} \le \frac{\bar{X} - \mu}{S/\sqrt{n}} \le z_{\alpha/2}\right) \stackrel{.}{=} 1 - \alpha$$

Then  $100(1-\alpha)\%$  CI for  $\mu$  is  $\bar{x} \pm z_{\alpha/2} \frac{s}{\sqrt{n}}$ .

**Example 7.5.** A random sample with n = 48 is as follows 62, 50, 53,..., 50, 56, 58 with n = 48,  $\bar{x} = 54.7$ , s = 5.23.

Then the 95% CI for  $\mu$  is

$$54.7 \pm z_{0.025} \frac{5.23}{\sqrt{48}} = (53.2, 56.2)$$

#### 7.3.2 How to Construct a Confidence Interval In General

 $X_1, \ldots, X_n \stackrel{iid}{\sim} f(x; \theta)$ . Want to construct a confidence interval for  $\theta$ 

- 1. Find a statistic (pivot) which depends on  $X_1, \ldots, X_n$  and  $\theta$  only;
- 2. Its distribution does not depend on  $\theta$  or any other unknown parameters.

#### 7.3.3 A General Large-Sample Confidence Interval

 $X_1, \ldots, X_n \stackrel{iid}{\sim} f(x; \theta)$  and  $\hat{\theta}$  is an estimate. For  $\theta$ , satisfying

- 1. approximately normal
- 2. is approxiantely unbiasd
- 3.  $\sigma_{\hat{\theta}}^2 = Var(\hat{\theta})$  is available

Then

$$P\left(-z_{\alpha/2} \le \frac{\hat{\theta} - \theta}{\sigma_{\hat{\theta}}} \le z_{\alpha/2}\right) = 1 - \alpha$$

#### 7.3.4 A Confidence Interval for a Population Proportion

**Example 7.6.** A random sample of n individual is selected from Bern(p). p =success rate.

$$X_1, \dots, X_n \stackrel{iid}{\sim} Bern(p)$$
 
$$Var(X_i) = p(1-p) \qquad \hat{p} = \bar{X}$$
 
$$Y = \sum_{i=1}^n X_i \sim Bin(n, p)$$

 $\hat{p} = \frac{Y}{n}$  is an estimate for p. By CLT,

$$\frac{\sqrt{n}(\hat{p}-p)}{\sqrt{p(1-p)}} \stackrel{\cdot}{\sim} N(0,1)$$

$$P\left(-z_{\alpha/2} \le \frac{\sqrt{n}(\hat{p}-p)}{\sqrt{p(1-p)}} \le z_{\alpha/2}\right) \doteq 1 - \alpha$$

So,  $100(1-\alpha)\%$  CI for p is  $\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{p(1-p)}{n}}$ , but p is unknown.

#### Remedy

1. If *n* is large, replace *p* by  $\hat{p}$  in the CI formula  $\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ 

$$P\left(-z_{\alpha/2} \le \frac{\sqrt{n}(\hat{p}-p)}{\sqrt{p(1-p)}} \le z_{\alpha/2}\right) \stackrel{.}{=} 1 - \alpha$$

$$p - z_{\alpha/2}\sqrt{\frac{p(1-p)}{n}} \le \hat{p} \le p + z_{\alpha/2}\sqrt{\frac{p(1-p)}{n}}$$

$$(p - \hat{p})^2 \le z_{\alpha/2}^2 \frac{p(1-p)}{n}$$

Solving the quadratic equation for p.

$$\frac{\hat{p} + \frac{z_{\alpha/2}}{2n} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n} + \frac{z_{\alpha/2}^2}{4n^2}}}{1 + z_{\alpha/2}^2/n}$$

is the  $100(1-\alpha)\%$  CI for p.

#### One-Sided Confidence Intervals (Confidence Bounds)

$$X_1, \dots, X_n \stackrel{iid}{\sim} N(\mu, \sigma_0^2)$$
$$P\left(\frac{\bar{X} - \mu}{\sigma_0 / \sqrt{n}} \le z_\alpha\right) = 1 - \alpha$$

Then  $P\left(\mu \leq \bar{X} + z_{\alpha} \frac{\sigma_0}{\sqrt{n}}\right) = 1 - \alpha$ . So  $\bar{X} + z_{\alpha} \frac{\sigma_0}{\sqrt{n}}$  is the  $100(1 - \alpha)\%$  upper confidence bound for  $\mu$ . Similarly,  $\bar{X} - z_{\alpha} \frac{\sigma_0}{\sqrt{n}}$  is the  $100(1-\alpha)\%$  lower confidence bound for  $\mu$ .  $P\left(\mu \geq \bar{X} - z_{\alpha} \frac{\sigma_0}{\sqrt{n}}\right) = 1 - \alpha$ .

If  $\sigma$  is unknown,  $\bar{X} + t_{\alpha,n-1} \frac{\sigma_0}{\sqrt{n}}$  is the  $100(1-\alpha)\%$  upper confidence bound for  $\mu$ .  $\bar{X} - t_{\alpha,n-1} \frac{\sigma_0}{\sqrt{n}}$  is the  $100(1-\alpha)\%$  lower confidence bound for  $\mu$ . If large sample,  $\bar{x} + z_{\alpha} \frac{s}{\sqrt{n}}, \ \bar{x} - z_{\alpha} \frac{s}{\sqrt{n}}.$ 

Example 7.7. (Example 7.10 in the textbook)

**Example 7.8.** 37 helmets are tested. 24 of them shown damage: let p denote the proportions of all helmets showing damage under the same impact condition.

- 1. Caculate 99% CI for p.
- 2. What sample size is required for the width of 99% CI to be at most 0.1?

#### Solution.

(1) X = # of helmets with damages  $\sim Bin(37, p)$ . Observe x = 24,  $\hat{p} = \frac{x}{p} = \frac{24}{37}$ . MM: E(X) = np, then  $n\hat{p} = X$ ,  $\hat{p} = \frac{X}{n}$ MLE:  $L(p) = \binom{37}{x} p^x (1-p)^{37-x}$ 

$$l(p) = \log \binom{37}{x} + x \log p + (37 - x) \log (1 - p)$$

$$l'(p) = 0 \qquad \hat{p} = \frac{x}{n} = \frac{24}{37}$$
$$\hat{p} = \frac{X}{n} \stackrel{\cdot}{\sim} N\left(p, \frac{p(1-p)}{n}\right)$$

99% CI for p is  $\hat{p} \pm z_{0.005} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = (0.4465, 0.8507).$  (2) Width of 99% CI is

$$2z_{0.005}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le 0.1$$

$$n \ge \left(\frac{2 \times 2.575}{0.1}\right)^2 \hat{p}(1-\hat{p})$$

$$n \ge \left(\frac{2 \times 2.575}{0.1}\right)^2 \cdot \frac{1}{4}$$

#### 7.4 Confidence Intervals for the Variance and Standard Deviation of a Normal Population

**Theorem 7.2.** Then  $X_1, \ldots, X_n$  are a random sample from  $N(\mu, \sigma^2)$ . Then

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

Then

$$P\left(\chi_{1-\alpha/2,n-1}^2 \le \frac{(n-1)S^2}{\sigma^2} \le \chi_{\alpha/2,n-1}^2\right) = 1 - \alpha$$

So  $100(1-\alpha)\%$  CI for  $\sigma^2$  is

$$\left(\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}}, \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}\right)$$

Then  $100(1-\alpha)\%$  CI for  $\sigma$  is

$$\left(\sqrt{\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}}}, \sqrt{\frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}}\right)$$

Example 7.9. (Example 7.15 in the textbook)

# **Chapter 8**

# Tests of Hypotheses Based on a Single Sample

#### 8.1 Hypotheses and Test Procedures

A test hypothesis is a method using sample data to describe between two competing claims about a population characteristic.

Example 8.1.  $X_1, \ldots, X_n \stackrel{iid}{\sim} f(x; \theta)$ Claim 1:  $\theta = 0$ 

Claim 2:  $\theta \neq 0$ 

**Definition 8.1.** Null hypothesis  $(H_0)$ : a population characteristic is usually assumed to be true. Alternative hypothesis  $(H_a)$ : competing claim.

 $H_0$  be rejected in favour of  $H_a$ , if sample evidence suggests that  $H_0$  is false.

Example 8.2.

$$H_0: \mu = 0.75$$
  $H_a: \mu > 0.75$ 

Only if the sample data strongly suggests that  $\theta$  is something different from 0.75, should  $H_0$  be rejected. Otherwise,  $H_a$  will be rejected.

Usually,  $H_0: \theta = \theta_0$ 

1.  $H_a: \theta > \theta_0$  (One-sided alternative)

2.  $H_a: \theta < \theta_0$  (One-sided alternative)

3.  $H_a: \theta \neq \theta_0$ 

Example 8.3.

$$H_0: \mu = 0.75$$
  $H_a: \mu > 0.75$ 

 $x_1 = 0.01, x_2 = 0.03, x_3 = 0.02$ . Even though the dataset indicates that  $\hat{\mu}$  should be very small, if we have to choose one from  $H_0, H_a$ , choose  $H_0$ . "Not reject  $H_0$ ".

#### 8.1.1 Test Procedures

A test procedure: a rule, based on sample data, for deciding whether to reject  $H_0$ .

**Example 8.4.** X=# of defective among 200 randomly selected products.

$$H_0: p = 0.1$$
  $H_a: p < 0.1$ 

Here p is the defective rate.

$$X \sim Bin(200, p)$$

Under  $H_0 \Rightarrow E(X) = 20$ . If  $H_0$  is true, we would expect < 20 deflective products.

If x = 19, 18, 17, they are not strong enough for us to make a decision.

If x = 1, 2, 3, they are very strong.

#### Test Procedure:

- 1. A test statistic: a function of sample data on which the decision is made.
- 2. Rejection Region (RR): the set of all the statistic values for which  $H_0$  will be rejected.

#### 8.1.2 Errors in Hypothesis Testing

|                  | $H_0$ True   | $H_0$ False   |
|------------------|--------------|---------------|
| Reject $H_0$     | Type I Error | ✓             |
| Not Reject $H_0$ | ✓            | Type II Error |

Denote  $\alpha = P(\text{Type I Error}), \beta = P(\text{Type II Error}).$ 

Example 8.5. (Example 8.1 in textbook)

Example 8.6. (Example 8.2 in textbook)

As the  $\mu$  become smaller and smaller, the probability of Type II error is getting down.

**Proposition 8.1.** Suppose the sample size is fixed, and a test statistic is chosen. Then decreasing the size of RR to obtain a small  $\alpha$  result in a larger  $\beta$  for any particular parameter consisting with  $H_a$ .

#### 8.1.3 Level- $\alpha$ Test

A type I error is usually more serious than a type II error. The approach adhered to by most statistical practitioners is then to specify the largest value of  $\alpha$  that can be tolerated and find a rejection region having that value of  $\alpha$  rather than anything smaller. This makes  $\beta$  as small as possible subject to the bound on  $\alpha$ . The resulting value of  $\alpha$  is often referred to as the **significance level** of the test. Traditional levels of significance are 0.10, 0.05, and 0.01, though the level in any particular problem will depend on the seriousness of a type I errorthe more serious this error, the smaller should be the significance level. The corresponding test procedure is called a **level**  $\alpha$  **test** (e.g., a level 0.05 test or a level 0.01 test). A test with significance level  $\alpha$  is one for which the type I error probability is controlled at the specified level.

Example 8.7. (Example 8.5 in textbook)

$$\beta(1.55) = P(\bar{X} \le 1.56 \text{ if } H_0 \text{ is false })$$

$$= P(\bar{X} \le 1.56) \qquad \bar{X} \sim N\left(1.55, \frac{0.2^2}{32}\right)$$

$$= P\left(\frac{\bar{X} - 1.55}{\frac{0.2}{\sqrt{32}}} \le \frac{1.56 - 1.55}{\frac{0.2}{\sqrt{32}}}\right) = 0.6103$$

#### 8.2 Tests About a Population Mean

### **8.2.1** Case I: A Normal Population with Known $\sigma_0^2$

$$H_0: \mu = \mu_0$$

Test statistic

$$Z = \frac{\bar{X} - \mu_0}{\sigma_0 / \sqrt{n}}$$

Use of the following sequence of steps is recommended when testing hypotheses about a parameter.

1. With  $H_a: \mu > \mu_0$ ,  $RR: Z \ge c$ .

Level- $\alpha$  test

$$P(Z > c) < 0.05 \Rightarrow x > z_{0.05} = 1.645 \Rightarrow c = 1.645$$

2. With  $H_a: \mu < \mu_0, RR: Z \le c$ .

Level- $\alpha$  test

$$P(Z \le c) \le 0.05 \Rightarrow x \le -z_{0.05} = -1.645 \Rightarrow c = -1.645$$

3. With  $H_a: \mu \neq \mu_0$ ,  $RR: Z \geq c$  or  $Z \leq -c$ . Level- $\alpha$  test

$$P(Z \ge c \text{ or } Z \le -c) \le 0.05 \Rightarrow x \ge z_{0.025} = 1.96 \Rightarrow c = 1.96$$

#### Conclusion:

 $H_0: \mu = \mu_0$ . Test statistic  $Z = \frac{\bar{X} - \mu_0}{\sigma_0 / \sqrt{n}}$ 

- 1.  $H_a: \mu < \mu_0, RR: Z \le -z_\alpha$
- 2.  $H_a: \mu > \mu_0, RR: Z \ge z_{\alpha}$
- 3.  $H_a: \mu \neq \mu_0, RR: |Z| \geq z_{\alpha/2}$

#### **Procedure**

- 1. identify the parameter of interest
- 2. determine the null value & state  $H_0$
- 3. state the "appropriate"  $H_a$
- 4. construct a test statistic
- 5. for the given significance level  $\alpha$ , state RR
- 6. compare the observed test statistic' value
- 7. decide whether to reject  $H_0$ , give conclusion

Example 8.8. (Example 8.6 in textbook)

#### $\beta$ and Sample Size Determination

 $H_0: \mu = \mu_0.$ 

$$H_a: \mu > \mu_0$$

$$Z = \frac{\bar{X} - \mu_0}{\sigma_0 / \sqrt{n}} \stackrel{H_0}{\sim} N(0, 1) \qquad RR: Z \ge z_\alpha$$

For  $\mu' > \mu_0$ :

$$\beta(\mu') = P(Z \le z_{\alpha}) \qquad \bar{X} \sim \left(\mu', \frac{\sigma_0^2}{n}\right)$$

$$= P\left(\bar{X} \le \mu_0 + z_{\alpha} \frac{\sigma_0}{\sqrt{n}}\right)$$

$$= P\left(\frac{\bar{X} - \mu'}{\sigma_0/\sqrt{n}} \le \frac{\mu_0 + z_{\alpha} \frac{\sigma_0}{\sqrt{n}} - \mu'}{\sigma_0/\sqrt{n}}\right)$$

$$= \Phi\left(\frac{\mu_0 - \mu'}{\sigma_0/\sqrt{n}} + + z_{\alpha}\right)$$

Recall that  $\Phi$  increases.

 $\beta(\mu')$  decreases if  $\mu'$  increases, n increases.

If  $\beta(\mu') \leq \beta$ ,  $\beta$  is given

$$\Phi\left(\frac{\mu_0 - \mu'}{\sigma_0/\sqrt{n}} + z_\alpha\right) \le \beta$$
$$n \ge \left(\frac{z_\alpha + z_\beta}{\mu_0 - \mu'} \cdot \sigma_0\right)^2$$

For two-sided  $H_a$ :

$$n \ge \left(\frac{z_{\alpha/2} + z_{\beta}}{\mu_0 - \mu'} \cdot \sigma_0\right)^2$$

Example 8.9. (Example 8.7 in textbook)

#### 8.2.2 Case II: Large-Sample Tests

$$X_1, \dots, X_n \stackrel{iid}{\sim} (\mu, \sigma^2)$$
 with large  $n \ (n \ge 30)$   
 $H_0: \mu = \mu_0, \ Z = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \stackrel{\cdot}{\sim} N(0, 1)$ 

- 1. With  $H_a: \mu > \mu_0$ ,  $RR: Z \geq z_\alpha$ .
- 2. With  $H_a: \mu < \mu_0, RR: Z \leq -z_{\alpha}$ .
- 3. With  $H_a: \mu \neq \mu_0, RR: |Z| \geq z_{\alpha/2}$ .

Example 8.10. (Example 8.8 in textbook)

#### $\beta$ and Sample Size Determination

Determination of  $\beta$  and the necessary sample size for these large-sample tests can be based either on specifying a plausible value of  $\sigma$  and using the case I formulas (even though s is used in the test) or on using the methodology to be introduced shortly in connection with case III.

#### 8.2.3 Case III: A Normal Population Distribution

$$X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$$

 $H_0: \mu = \mu_0$ . Test statistic:  $T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \sim t(n-1)$  under  $H_0: \mu > \mu_0, RR: \{T \geq ?\}$ 

$$\alpha = P(\text{Type I Error}) = P(T \ge ?) \text{ if } H_0 \text{ is true} = P(T \ge t_{\alpha, n-1})$$

- 1. With  $H_a: \mu > \mu_0, RR: T \ge t_{\alpha, n-1}$ .
- 2. With  $H_a: \mu < \mu_0, RR: T \leq -t_{\alpha, n-1}$ .
- 3. With  $H_a: \mu \neq \mu_0, RR: |T| \geq t_{\alpha/2, n-1}$ .

**Example 8.11.**  $N(\mu, \sigma^2)$ ,  $\sigma$  unknown. Sample: 25.8, 36.6, 26.3, 21.8, 27.2.

$$H_0: \mu = 25, \qquad H_a: \mu > 25$$

$$T = \frac{\bar{X}}{S/\sqrt{n}} \sim t(4) \text{ under } H_0$$

$$RR: T \ge t_{0.05,4} = 2.132$$

Obviously that statistic  $T^* = \frac{27.54 - 25}{5.47/\sqrt{5}} = 1.04$ .  $T^* \notin RR$ . Fail to reject  $H_0$ .

#### $\beta$ and Sample Size Determination

See the text in textbook.

Claim: 99.9% of MTR train will be on-time.

$$X_1, \dots, X_n \stackrel{iid}{\sim} Bern(p)$$

$$H_0: p = 0.999$$

- 1.  $H_a: p \neq 0.999$
- 2.  $H_a: p < 0.999$  work against MTR
- 3.  $H_a: p > 0.999$  work for MTR

Example 8.12. (Exercise 8.32 in textbook)

#### 8.2.4 Connection to Confidence Interval

$$X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma_0^2)$$

 $\sigma_0$  known.  $100(1-\alpha)\%$  CI for  $\mu$  is  $\bar{x} \pm z_{\alpha/2} \frac{\sigma_0}{\sqrt{n}}$ .

$$H_0: \mu = \mu_0 \qquad H_a: \mu \neq \mu_0$$

$$RR: \left| \frac{\bar{X} - \mu_0}{\sigma_0 / \sqrt{n}} \ge z_{\alpha/2} \right| \Leftrightarrow \mu_0 \ge \bar{X} + z_{\alpha/2} \frac{\sigma_0}{\sqrt{n}} \text{ or } \mu_0 \le \bar{X} - z_{\alpha/2} \frac{\sigma_0}{\sqrt{n}}$$
$$\Leftrightarrow \mu_0 \notin \left( \bar{X} - z_{\alpha/2} \frac{\sigma_0}{\sqrt{n}}, \bar{X} + z_{\alpha/2} \frac{\sigma_0}{\sqrt{n}} \right)$$
$$\Leftrightarrow \mu_0 \notin 100(1 - \alpha)\% \text{ CI for } \mu$$

However, when  $H_a$  is not two-sided.

$$H_a: \mu > \mu_0$$

$$RR: \frac{\bar{X} - \mu_0}{\sigma_0 / \sqrt{n}} \ge z_\alpha \Leftrightarrow \mu_0 \le \bar{X} - z_\alpha \frac{\sigma_0}{\sqrt{n}}$$
$$\Leftrightarrow \mu_0 \notin \left(\bar{X} - z_\alpha \frac{\sigma_0}{\sqrt{n}}, +\infty\right)$$
$$\Rightarrow \text{is not a CI for } \mu_0$$

#### 8.3 Tests Concerning a Population Proportion

#### 8.3.1 Large-Sample Tests

Generally, for a parameter  $\theta$ , if

- 1. sample size is large
- 2.  $\hat{\theta}$  is approximately normal
- 3.  $\sigma_{\hat{\theta}}^2$  is available

Test statistic: 
$$Z = \frac{\hat{\theta} - \theta}{\sigma_{\hat{\theta}}}$$
.

Suppose 
$$X \sim Bin(n,p), \ \hat{p} = \frac{X}{n}, \ Var(\hat{p}) = Var\left(\frac{X}{n}\right) = \frac{p(1-p)}{n}$$

$$Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \stackrel{\cdot}{\sim} N(0,1)$$

$$H_0: p = p_0 \qquad H_a: p > p_0$$

$$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} \stackrel{\cdot}{\sim} N(0,1) \text{ under } H_0$$

Reject  $H_0$  if  $Z > z_{\alpha}$ .

**Example 8.13.** (Exercise 8.39 in textbook) A random sample of 150 recent donations at a certain blood bank reveals that 82 were type A blood. Does this suggest that the actual percentage of type A donations differs from 40%, the percentage of the population having type A blood? Carry out a test of the appropriate hypotheses using a significance level of 0.01. Would your conclusion have been different if a significance level of 0.05 had been used?

#### $\beta$ and Sample Size Determination

$$H_0: p = p_0$$
  $H_a: p' > p_0$  
$$RR: Z = \frac{\frac{X}{n} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \ge z_{\alpha}$$

$$\begin{split} \beta(p') = & P(\text{fail to reject } H_0 \text{ if } H_0 \text{ is false}) \\ = & P(Z \leq z_\alpha) \qquad X \sim Bin(n,p') \\ = & P\left(\frac{\frac{X}{n} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} \leq z_\alpha\right) = P\left(\frac{X}{n} \leq p_0 + z_\alpha\sqrt{\frac{p_0(1-p_0)}{n}}\right) \\ = & P\left(\frac{\frac{X}{n} - p'}{\sqrt{\frac{p'(1-p')}{n}}} \leq \frac{p_0 + z_\alpha\sqrt{\frac{p_0(1-p_0)}{n}} - p'}{\sqrt{\frac{p'(1-p')}{n}}}\right) \\ = & \Phi\left(\frac{p_0 + z_\alpha\sqrt{\frac{p_0(1-p_0)}{n}} - p'}{\sqrt{\frac{p'(1-p')}{n}}}\right) \leq \beta \end{split}$$

$$\frac{p_0 + z_\alpha \sqrt{\frac{p_0(1 - p_0)}{n}} - p'}{\sqrt{\frac{p'(1 - p')}{n}}} \le -z_\beta \Rightarrow n \ge \left(\frac{z_\alpha \sqrt{p_0(1 - p_0)} + z_\beta \sqrt{p'(1 - p')}}{p' - p_0}\right)^2$$

"One-sided" for  $p' < p_0$ 

$$\beta(p') = 1 - \Phi\left(\frac{p_0 - p' - z_{\alpha}\sqrt{\frac{p_0(1-p_0)}{n}}}{\sqrt{\frac{p'(1-p')}{n}}}\right) \le \beta$$

"Two-sided" for  $p' \neq p_0$ 

$$\beta(p') = \Phi\left(\frac{p_0 - p' + z_{\alpha/2}\sqrt{\frac{p_0(1 - p_0)}{n}}}{\sqrt{\frac{p'(1 - p')}{n}}}\right) - \Phi\left(\frac{p_0 - p' - z_{\alpha/2}\sqrt{\frac{p_0(1 - p_0)}{n}}}{\sqrt{\frac{p'(1 - p')}{n}}}\right) \le \beta$$

Example 8.14. (Example 8.12 in textbook)

#### 8.3.2 Small-Sample Tests

$$H_0: p = p_0 \qquad H_a: p > p_0$$

Observe  $X \sim Bin(n, p)$ , reject  $H_0$  if  $X \geq c$ .

$$P(\text{Type I error}) = P(X \ge x)$$
 if  $H_0$  is true  
=  $1 - B(c - 1; n; p_0) < \alpha$ 

$$\beta(p') = P(X \le c - 1) \qquad X \sim Bin(n, p')$$
$$= B(c - 1; n; p')$$

Example 8.15. (Example 8.13 in textbook)

8.4. P-VALUES 61

#### 8.4 P-Values

**Example 8.16.** In a community, the mean household water usage for Jan. '93 is 0.6. In '94, water conservation was conducted. In Jan. '95, n=50 households are randomly selected.  $n=50, \bar{x}=$ 0.054, s = 0.016. Does the data suggest that the water usage become less?

$$H_0: \mu = 0.6 \qquad H_a: \mu < 0.6$$
 
$$Z = \frac{\bar{X} - 0.6}{S/\sqrt{n}} \stackrel{H_0}{\sim} N(0, 1)$$
 
$$RR: Z \le z_{-\alpha} = \begin{cases} -1.645 & \text{if } \alpha = 0.05, \\ -2.33 & \text{if } \alpha = 0.01, \end{cases}$$
 
$$z^* = \frac{0.054 - 0.6}{0.016/\sqrt{50}} = -2.61$$

If  $\alpha = 0.05$ , reject  $H_0$ ; If  $\alpha = 0.01$ , reject  $H_0$ .

P-value:  $P(Z \le -2.61) = 0.0045$ . Consider  $\alpha = 0.0045$ ,  $RR : Z \le -2.61$ .

**Definition 8.2.** P-value is the smallest level of significance at which  $H_0$  will be rejected when the test is used on a given database.

Conclusion:

If P-value  $\leq \alpha$ , then reject  $H_0$ . If P-value  $\geq \alpha$ , then fail to reject  $H_0$ .

**Definition 8.3.** The P-value is the probability, calculated assuming that the null hypothesis is true, of obtaining a value of the test statistic at least as contradictory to  $H_0$  as the value calculated from the available sample. The smaller the P-value, the more contradiction is the data to  $H_0$ .

#### P-Values for z Tests 8.4.1

Case I: A Normal Population with Known  $\sigma_0^2$ 

$$X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma_0^2)$$

 $H_0: \mu = \mu_0$ . Test statistic  $Z = \frac{\bar{X} - \mu_0}{\sigma_0 / \sqrt{n}}$ 

 $H_a: \mu > \mu_0$ . P-value =  $P(Z \ge Z^*)$ 

 $H_a: \mu < \mu_0$ . P-value =  $P(Z \le Z^*)$ 

 $H_a: \mu \neq \mu_0$ . P-value =  $P(|Z| \geq |Z^*|) = 2(1 - \Phi(|Z^*|))$ 

#### Case II: Large-Sample Tests

Similar as Case I.

Example 8.17. (Example 8.17 in textbook)

#### 8.4.2 P-Values for t Tests

$$X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$$

$$\begin{split} H_0: \mu &= \mu_0. \text{ Test statistic: } T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \sim t(n-1) \text{ under } H_0 \\ H_a: \mu &> \mu_0. \text{ $P$-value} = P(T \geq T^*) = 1 - CDF_{n-1}(T^*) \\ H_a: \mu &< \mu_0. \text{ $P$-value} = P(T \leq T^*) = CDF_{n-1}(T^*) \\ H_a: \mu &\neq \mu_0. \text{ $P$-value} = P(|T| \geq |T^*|) = 2(1 - CDF_{n-1}(|T^*|)) \end{split}$$

**Example 8.18.** Six readings from a device: 85, 77, 82, 68, 72, 69. It is believed that the CO concentration is set at 70 ppm. Is recalibration of this device necessary? ( $\alpha = 0.05$ )

$$H_0: \mu = 70$$
. Test statistic:  $T = \frac{\bar{X} - 70}{S/\sqrt{n}} \stackrel{H_0}{\sim} t(n-1)$   
 $H_a: \mu \neq 70$ .  $T^* = \frac{75.5 - 70}{7/\sqrt{6}} = 1.92$ 

$$H_a: \mu \neq 70. \ T^* = \frac{75.5 - 70}{7/\sqrt{6}} = 1.92$$

$$P - Value = P(|T| \ge 1.92) = 2(1 - CDF_5(1.92)) = 0.116 > 0.05$$

Fail to reject  $H_0$ .

### **8.5** Hypotheses Testing For $\sigma^2$

Then  $X_1, \ldots, X_n$  are a random sample from  $N(\mu, \sigma^2)$ .  $\mu, \sigma^2$  unknown.

$$H_0: \sigma^2 = \sigma_0^2 \qquad H_a: \sigma^2 \neq \sigma_0^2$$

$$\frac{(n-1)S^2}{\sigma^2} \stackrel{H_0}{\sim} \chi^2(n-1)$$

$$RR: \{\chi^2 \le \chi^2_{1-\alpha/2, n-1} \text{ or } \chi^2 \ge \chi^2_{\alpha/2, n-1} \}$$

(b) 
$$H_a: \sigma^2 > \sigma_0^2$$
,  $RR: \{\chi^2 \ge \chi_{\alpha,n-1}^2\}$   
(c)  $H_a: \sigma^2 < \sigma_0^2$ ,  $RR: \{\chi^2 \le \chi_{1-\alpha,n-1}^2\}$ 

**Example 8.19.** A battery manufacture claims that he produce batteries have a s.d. equal to 0.9 year. A random sample is collected n = 10, s = 1.2 year. Does the data suggest that  $\sigma > 0.9$ ? Assume normality.

$$H_0: \sigma = 0.9$$
  $H_a: \sigma \ge 0.9$   $H_0: \sigma^2 = 0.81$   $H_a: \sigma^2 \ge 0.81$  
$$\frac{(n-1)S^2}{0.81} \stackrel{H_0}{\sim} \chi^2(n-1)$$

 $RR: \{\chi^2 \ge \chi^2_{0.05,9}\} = \{\chi^2 \ge 16.919\}$ 

$$(\chi^2)^* = \frac{(10-1)1.2^2}{0.9^2} = 16.0 \notin RR$$

Fail to reject  $H_0$ .

$$P - Value = P(\chi^2 \ge (\chi^2)^*) = P(\chi^2 \ge 16) = 0.07$$

P-Value > 0.05, fail to reject  $H_0$ .

# Chapter 9

# Inferences Based on Two Samples

# 9.1 $\,z\,$ Tests and Confidence Intervals for a Difference Between Two Population Means

$$X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu_1, \sigma_1^2), \sigma_1$$
 known.

$$Y_1, \ldots, Y_n \stackrel{iid}{\sim} N(\mu_2, \sigma_2^2), \sigma_2$$
 known.

Proposition 9.1.

$$E(\bar{X} - \bar{Y}) = \mu_1 - \mu_2$$

$$Var(\bar{X} - \bar{Y}) = \frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{n}$$

#### 9.1.1 Test Procedures for Normal Populations with Known Variances

Case I

$$Z = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{n}}} \sim N(0, 1)$$

$$H_0: \mu_1 - \mu_2 = \Delta_0$$

- 1. With  $H_a: \mu_1 \mu_2 > \Delta_0, RR: Z \ge z_{\alpha}$ .
- 2. With  $H_a: \mu_1 \mu_2 < \Delta_0, RR: Z \leq -z_{\alpha}$ .
- 3. With  $H_a: \mu_1 \mu_2 \neq \Delta_0, RR: |Z| \geq z_{\alpha/2}$ .

Example 9.1. (Example 9.1 in textbook)

#### 9.1.2 Large-Sample Tests

Case II large sample,  $\sigma^2$  unknown

$$Z = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n} + \frac{S_2^2}{n}}} \sim N(0, 1)$$

$$100(1-\alpha)$$
 CI for  $\mu_1 - \mu_2$ 

$$\bar{X} - \bar{Y} \pm z_{\alpha/2} \sqrt{\frac{S_1^2}{n} + \frac{S_2^2}{n}}$$

#### 9.2 The Two-Sample t Test and Confidence Interval

Case III
(a)

$$X_1, \dots, X_n \stackrel{iid}{\sim} N(\mu_1, \sigma_1^2)$$
  
 $Y_1, \dots, Y_n \stackrel{iid}{\sim} N(\mu_2, \sigma_2^2)$ 

 $\sigma_1, \sigma_2$  independent

$$T = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n} + \frac{S_2^2}{n}}} \sim t(\nu) \qquad \nu = \frac{\left(\frac{S_1^2}{n} + \frac{S_2^2}{n}\right)^2}{\frac{\left(\frac{S_1^2}{n}\right)^2}{m-1} + \frac{\left(\frac{S_1^2}{n}\right)^2}{n-1}}$$

 $100(1-\alpha)$  CI for  $\mu_1 - \mu_2$ 

$$\bar{X} - \bar{Y} \pm t_{\alpha/2,\nu} \sqrt{\frac{S_1^2}{n} + \frac{S_2^2}{n}}$$

$$H_0: \mu_1 - \mu_2 = \Delta_0 \qquad T = \frac{\bar{X} - \bar{Y} - \Delta_0}{\sqrt{\frac{S_1^2}{n} + \frac{S_2^2}{n}}} \sim t(\nu)$$

- 1. With  $H_a: \mu_1 \mu_2 > \Delta_0$ ,  $RR: T \ge t_{\alpha,\nu}$ .
- 2. With  $H_a: \mu_1 \mu_2 < \Delta_0, RR: T \le -t_{\alpha,\nu}$ .
- 3. With  $H_a: \mu_1 \mu_2 \neq \Delta_0$ ,  $RR: |T| \geq t_{\alpha/2,\nu}$ .

Example 9.2. (Example 9.6 in textbook)

#### **9.2.1** Pooled *t* Procedures

(b) Small sample size,  $\sigma_1^2 = \sigma_2^2$ 

$$T = \frac{X - Y - (\mu_1 - \mu_2)}{\sqrt{\frac{S_p^2}{n} + \frac{S_p^2}{n}}}$$
$$S_p = \frac{n - 1}{m + n - 2}S_1^2 + \frac{m - 1}{m + n - 2}S_2^2$$

"pooled sample variance"

$$S_1^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$
  $S_2^2 = \frac{1}{m-1} \sum_{i=1}^m (Y_i - \bar{Y})^2$ 

**Example 9.3.** Body weight gained on animal treatment: given 1 mg/piller dose of soft steroid control: placebo.

treatment 
$$m = 8$$
  $\bar{x} = 32.8$   $s_1 = 2.6$   
placebo  $n = 8$   $\bar{y} = 40.5$   $s_2 = 2.5$ 

Does the data suggest the average weight gain in the control group exceeds that in the treatment group by more than 5 g?  $\alpha=0.01$ 

1. 
$$H_0: \mu_1 - \mu_2 = -5$$
  $H_a: \mu_1 - \mu_2 < -5$  
$$T^* = \frac{\bar{X} - \bar{Y} - (-5)}{\sqrt{\frac{S_1^2}{n} + \frac{S_2^2}{n}}} = -2.23$$
 
$$\nu = \frac{\left(\frac{S_1^2}{n} + \frac{S_2^2}{n}\right)^2}{\frac{\left(\frac{S_1^2}{m}\right)^2}{m-1} + \frac{\left(\frac{S_1^2}{m}\right)^2}{n-1}} = \frac{\left(\frac{2.6^2}{8} + \frac{2.5^2}{10}\right)^2}{\frac{1}{7}\left(\frac{2.6^2}{8}\right)^2 + \frac{1}{9}\left(\frac{2.5^2}{10}\right)^2} = 14.886 \approx 14$$
 
$$P - Value = P(T_{14} < T^*) = 0.022 > 0.1$$

2. Assume 
$$\sigma_1^2 = \sigma_2^2$$
  
 $H_0: \mu_1 - \mu_2 = -5$   $H_a: \mu_1 - \mu_2 < -5$ 

$$T^* = \frac{\bar{X} - \bar{Y} - (-5)}{\sqrt{\frac{S_p^2}{n} + \frac{S_p^2}{n}}} = -2.24$$

Here 
$$S_p = \sqrt{\frac{2.6^2(8-1)}{8+10-2} + \frac{2.5^2(10-1)}{8+10-2}} = 2.54$$

$$P - Value = P(T_{16} < -2.24) = 0.021 > 0.01$$

#### 9.3 Analysis of Paired Data

n independent selected pairs  $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$ 

$$E(X_i) = \mu_1 \qquad E(Y_i) = \mu_2$$

$$H_0: \mu_1 - \mu_2 = \Delta \qquad H_a: \mu_1 - \mu_2 \neq \Delta$$

$$X_1 \qquad X_2 \qquad \dots \qquad X_n$$

$$Y \qquad Y_1 \qquad Y_2 \qquad \dots \qquad Y_n$$

$$D = X - Y \qquad D_1 = X_1 - Y_1 \qquad D_2 = X_2 - Y_2 \qquad \dots \qquad D_n = X_n - Y_n$$

$$H_0: \mu_D = \mu_1 - \mu_2 = \Delta \qquad H_a: \mu_D = \mu_1 - \mu_2 \neq \Delta$$

$$D_1, D_2, \dots, D_n$$

$$T = \frac{\bar{D} - \Delta}{S_D / \sqrt{n}}$$

$$\bar{D} = \frac{1}{n} \sum_{i=1}^n D_i \qquad S_D^2 = \frac{1}{n-1} \sum_{i=1}^n (D_i - \bar{D})^2$$

#### 9.3.1 The Paired t Test

**Example 9.4.** (Exercise 8.39 in textbook) reports the accompanying data on amount of milk ingested by each of 14 randomly selected infants.

Does it appear that the true average difference between intake values measured by the two methods is something other than zero? Determine the P-value of the test, and use it to reach a conclusion at significance level 0.05.

$$100(1-\alpha)\%$$
 CI for  $\mu_1 - \mu_2 = \mu_0$  
$$\bar{D} \pm t_{\alpha/2,n-2} \frac{S_D}{\sqrt{n}}$$

# 9.4 Inferences Concerning a Difference Between Population Proportions

**Proposition 9.2.** Let  $X \sim Bin(n, p_1)$ ,  $Y \sim Bin(m, p_2)$  with X and Y independently.  $\hat{p_1} = \frac{X}{n}$ ,  $\hat{p_2} = \frac{Y}{m}$ 

$$E(\hat{p_1} - \hat{p_2}) = p_1 - p_2$$

$$Var(\hat{p_1} - \hat{p_2}) = \frac{p_1(1 - p_1)}{n} + \frac{p_2(1 - p_2)}{m}$$

As n and m get larger,

$$Z = \frac{\hat{p_1} - \hat{p_2} - (p_1 - p_2)}{\sqrt{\frac{p_1(1-p_1)}{n} + \frac{p_2(1-p_2)}{m}}} \stackrel{iid}{\sim} N(0,1)$$

 $100(1-\alpha)\%$  CI for  $p_1 - p_2$ 

$$\hat{p_1} - \hat{p_2} \pm z_{\alpha/2} \sqrt{\frac{\hat{p_1}(1-\hat{p_1})}{n} + \frac{\hat{p_2}(1-\hat{p_2})}{m}}$$

#### 9.4.1 A Large-Sample Test Procedure

To test  $H_0$ :  $p_1 - p_2 = 0$ 

Test statistic:

$$Z = \frac{\hat{p_1} - \hat{p_2} - 0}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n} + \frac{1}{m}\right)}}$$

where  $\hat{p} = \frac{X+Y}{n+m}$ 

- 1. With  $H_a: p_1 p_2 > 0$ ,  $RR: Z \ge z_{\alpha}$ .
- 2. With  $H_a: p_1 p_2 < 0, RR: Z \le -z_{\alpha}$ .
- 3. With  $H_a: p_1 p_2 \neq 0, RR: |Z| \geq z_{\alpha/2}$ .

Example 9.5.

|                     | plea guilty | plea not guilty |
|---------------------|-------------|-----------------|
| Judged guilty       | m = 191     | n = 64          |
| Sentenced to prison | x = 101     | y = 56          |
|                     |             |                 |

$$H_0: p_1 - p_2 = 0 p_1 \neq p_2$$

$$\hat{p_1} = \frac{101}{191} = 0.53 \hat{p_2} = \frac{56}{64} = 0.875$$

$$Z = \frac{\hat{p_1} - \hat{p_2} - 0}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n} + \frac{1}{m}\right)}} \hat{p} = \frac{101 + 56}{191 + 64} = 0.616$$

$$Z^* = -4.91 RR: \{|Z| \ge z_{\alpha/2} = 2.58\} \alpha = 0.01$$

$$Z^* \in RR \Rightarrow \text{Reject } H_0$$

Conclusion:

#### 9.5 Challenge Question 4

**EXAMPLE:** For the sample median,  $\tilde{X}_n$ , from a symmetric distribution with location  $\theta$ , where the distribution median is  $\theta$ , we consider  $x = \theta$  and  $p = F_X(\theta) = 1/2$ , so

$$\sqrt{n}(\tilde{X}_n - \theta) \stackrel{d}{\longrightarrow} X \sim N\left(0, \frac{1}{4\{f_X(\theta)\}^2}\right).$$

Proof.

oof. 
$$\lim_{n \to \infty} P(\sqrt{n}(\tilde{X}_n - \theta) \le a) = P(Z \le 2f(\theta)a)$$
 Let  $Y_i = I\left(X_i \le \theta + \frac{a}{\sqrt{n}}\right)$   $i = 1, 2, \dots, n$  
$$Y_i = \begin{cases} 1, & x_i \le \theta + \frac{a}{\sqrt{n}} \\ 0, & x_i \ge \theta + \frac{a}{\sqrt{n}} \end{cases}$$

Clearly,  $Y_1, Y_2, \dots, Y_n \stackrel{iid}{\sim} Bern(p_n)$ 

$$p_n = P\left(X_i \le \theta + \frac{a}{\sqrt{n}}\right) = F\left(\theta + \frac{a}{\sqrt{n}}\right)$$

$$P(\sqrt{n}(\tilde{X}_n - \theta) \le a) = P\left(\tilde{X}_n \le \theta + \frac{a}{\sqrt{n}}\right)$$

$$= P\left(\sum_{i=1}^n Y_i \ge \frac{n+1}{2}\right)$$

$$= P\left(\frac{\sum_{i=1}^n Y_i - np_n}{\sqrt{np_n(1 - p_n)}} \ge \frac{\frac{n+1}{2} - np_n}{\sqrt{np_n(1 - p_n)}}\right)$$

Note that  $p_n \to \frac{1}{2}, n \to \infty$ . By CLT,

$$\frac{\sum_{i=1}^{n} Y_{i} - np_{n}}{\sqrt{np_{n}(1 - p_{n})}} \xrightarrow{d} N(0, 1)$$

$$\lim_{n \to \infty} \frac{F\left(\theta + \frac{a}{\sqrt{n}} - F(\theta)\right)}{a/\sqrt{n}} = F'(\theta) = f(\theta)$$

$$\frac{n\left(p_{n} - \frac{1}{2}\right)}{\sqrt{n}} \longrightarrow f(\theta) \cdot a$$

$$\frac{np_{n} - \frac{n+1}{2}}{\sqrt{n}} \longrightarrow f(\theta) \cdot a \qquad \sqrt{p_{n}(1 - p_{n})} \longrightarrow \frac{1}{2} \qquad n \to \infty$$

$$\frac{\frac{n+1}{2} - np_{n}}{\sqrt{np_{n}(1 - p_{n})}} \longrightarrow -2af(\theta)$$

Another proof: Bootstrap.

*Proof.*  $X_1, \ldots, X_n \stackrel{iid}{\sim} f(x)$ . Distribution of  $\tilde{X}_n$ . Bootstrap: if f(x) is "known".

Sample n values from  $\{x_1, \ldots, x_n\}$  with replacement.

# Appendix A

# Moment generating function

#### A.1 Definition

**Definition A.1.** The moment generating function (MGF) of a r.v. X is defined as

$$M_X(\theta) = E(e^{\theta x}) = \begin{cases} \sum_{x \in \mathcal{D}} e^{\theta x} p(x) & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} e^{\theta x} f(x) dx & \text{if } X \text{ is continues} \end{cases}$$

**Example A.1.** If  $Z \sim N(0,1)$ . Find the mgf  $M_Z(\theta)$ 

$$M_Z(\theta) = E(e^{\theta x}) = \int_{-\infty}^{\infty} e^{\theta z} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} dz$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{\theta z - \frac{1}{2}z^2} dz$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}\theta^2 + \theta z - \frac{1}{2}z^2} e^{\frac{1}{2}\theta^2} dz$$

$$= e^{\frac{1}{2}\theta^2}$$

### **A.2** Properties of $M_X\theta$

**Proposition A.1.** 1. There is a unique distribution with  $mgf M_X \theta$ 

2.

$$M_X \theta = E(e^{\theta x})$$

$$= E\left(1 + \frac{\theta X}{1!} + \frac{\theta^2 X^2}{2!} + \dots\right)$$

$$= 1 + \frac{\theta E(X)}{1!} + \frac{\theta^2 E(X)^2}{2!} + \dots$$

3.

$$\begin{split} \frac{dM_X(\theta)}{d\theta} &= \frac{dE(e^{\theta x})}{d\theta} = E\left(\frac{de^{\theta x}}{d\theta}\right) = E(e^{\theta X}X) \\ &\left. \frac{dM_X(\theta)}{d\theta} \right|_{\theta=0} = E(X) \end{split}$$

Similarly,

$$\left. \frac{d^r M_X(\theta)}{d\theta^r} \right|_{\theta=0} = E(X^r) \qquad r = 1, 2, \dots,$$

4. Let 
$$Y = a + bX$$
, then  $M_Y(\theta) = e^{a\theta} M_X(b\theta)$ 

$$M_Y(\theta) = E(E^{\theta Y}) = E(e^{\theta(a+bX)}) = E(e^{a\theta+b\theta x}) = e^{a\theta}E(e^{b\theta x}) = e^{a\theta}M_X(b\theta)$$

**Example A.2.** If  $X \sim N(\mu, \sigma^2)$ , find  $M_Y(\theta)$ 

by (4) 
$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1) \text{ then } X = \mu + \sigma Z$$

$$M_Y(\theta) = e^{\mu \theta} M_Z(\sigma \theta) = e^{\mu \theta + \frac{1}{2}\sigma^2 \theta^2}$$

$$E(Y) = \frac{dM_Y(\theta)}{d\theta} \Big|_{\theta=0} = \mu$$

$$E(Y^2) = \frac{d^2 M_Y(\theta)}{d\theta^2} \Big|_{\theta=0} = \mu^2 + \sigma^2$$

$$E(Y^3) = \frac{d^3 M_Y(\theta)}{d\theta^3} \Big|_{\theta=0} = \dots$$

**Theorem A.1.** X and Y are two independent r.v. with  $mgf M_X(\theta)$  and  $M_Y(\theta)$  respectively. Then

$$M_{X+Y}(\theta) = M_X(\theta)M_Y(\theta)$$

Proof.

$$M_{X+Y}(\theta) = E(e^{\theta(X+Y)}) = E(e^{\theta X}e^{\theta Y}) = M_X(\theta)M_Y(\theta)$$

Corollary A.1.1. If  $X_1, \ldots, X_n$  are independent r.v.'s

$$M_{X_1+\cdots+X_n}(\theta) = M_{X_1}(\theta) \dots M_{X_n}(\theta)$$

**Example A.3.** 1.  $Z^2 \sim \chi^2(1)$ 

2. 
$$Z_1, ..., Z_n \stackrel{iid}{\sim} N(0, 1)$$
, then

$$Z_1^2 + Z_2^2 + \dots + Z_n^2 \sim \chi^2(n)$$

Proof. 1.

$$M_{Z^{2}}(\theta) = E(e^{\theta z^{2}}) = \int_{-\infty}^{\infty} e^{\theta z^{2}} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^{2}} dz$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{(\theta - \frac{1}{2})z^{2}} dz$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(-2\theta + 1)z^{2}} dz$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^{2}} \frac{1}{\sqrt{1 - 2\theta}} dy$$

$$= \frac{1}{\sqrt{1 - 2\theta}} \qquad \theta < \frac{1}{2}$$

Assume  $\theta < \frac{1}{2}$ , Let  $y = \sqrt{1 - 2\theta}z$ .

Let  $A \sim \chi^2(1)$ , then

$$f_A(x) = \frac{1}{2^{1/2}\Gamma(1/2)}a^{-\frac{1}{2}}e^{-\frac{a}{2}}$$

Then

$$M_A(\theta) = E(e^{\theta A}) = \int_0^\infty e^{\theta a} \frac{1}{2^{1/2} \Gamma(1/2)} a^{-\frac{1}{2}} e^{-\frac{a}{2}} da$$

$$= \int_0^\infty \frac{1}{2^{1/2} \Gamma(1/2)} a^{-\frac{1}{2}} e^{(\theta - \frac{1}{2})a} da$$

$$= \int_0^\infty \frac{1}{\Gamma(1/2)} (1 - 2\theta)^{\frac{1}{2}} t^{-\frac{1}{2}} e^{-t} dt$$

$$= (1 - 2\theta)^{-\frac{1}{2}} \qquad \theta < \frac{1}{2}$$

Let 
$$t = \frac{1}{2}(1 - 2\theta)a$$
,  $\theta < \frac{1}{2}$   
Since  $M_{Z^2}(\theta) = M_A(\theta) \Rightarrow Z^2 \sim A \sim \chi^2(1)$   
2. Let  $S = Z_1^2 + Z_2^2 + \dots + Z_n^2$   
 $M_S(\theta) = (1 - 2\theta)^{-\frac{n}{2}}$   
Let  $B \sim \chi^2(n)$   

$$f_B(b) = \frac{1}{2^{n/2}\Gamma(n/2)}b^{\frac{n}{2}-1}e^{-\frac{b}{2}}$$

$$M_B(\theta) = \int_0^\infty e^{\theta b} \frac{1}{2^{n/2}\Gamma(n/2)}b^{\frac{n}{2}-1}e^{-\frac{b}{2}}b = (1 - 2\theta)^{-\frac{n}{2}}$$

$$M_S(\theta) = M_B(\theta) \Rightarrow S \sim B \sim \chi^2(n)$$

#### A.3 Application

**Theorem A.2.** Let  $Y_1, Y_2, \ldots, Y_n$  be a sequence of rv's with cdf  $F_{Y_1}(y)$ ,  $F_{Y_2}(y)$ , ... and  $mgf M_{Y_1}(\theta)$ ,  $M_{Y_2}(\theta)$ , .... Suppose as  $n \to \infty$ 

$$M_{Y_n}(\theta) \to M_Y(\theta)$$
 for any  $\theta$ 

where  $M_Y(\theta)$  is the mgf of Y with cdf F(y) that

$$F_{Y_n} \to F_Y(y)$$
 for any y as  $n \to \infty$ 

or 
$$Y_n \stackrel{d}{\longrightarrow} Y$$
.

**Example A.4.** If  $X_n \sim Bin(n, p)$ .  $np = \lambda > 0$ . fixed

$$M_{X_n}(\theta) = E(e^{\theta X_n}) = \sum_{i=1}^n e^{\theta k} \binom{n}{k} p^k (1-p)^{n-k}$$
$$= \sum_{k=0}^n \binom{n}{k} (pe^{\theta})^k (1-p)^{n-k}$$
$$= (pe^{\theta} + 1 - p)^n$$
$$= \left(1 + \frac{\lambda}{n} (e^{\theta} - 1)\right)^n$$

Let  $n \to \infty \ (p \to 0)$ 

$$M_{X_n}(\theta) = \left(1 + \frac{\lambda}{n}(e^{\theta} - 1)\right)^n \longrightarrow e^{\lambda(e^{\theta} - 1)}$$

Since  $\lim_{n\to\infty} \left(1+\frac{a}{n}\right)^n = e^a$ .

Let  $Y \sim Poisson(\lambda)$ ,  $P(Y = k) = \frac{e^{-\lambda} \lambda^k}{k!}$ 

$$\begin{split} M_Y\theta = & E(e^{\theta Y}) = \sum_{k=0}^{\infty} e^{\theta k} \frac{e^{-\lambda} \lambda^k}{k!} \\ = & \sum_{k=0}^{\infty} \frac{e^{-\lambda} (e^{\theta} \lambda)^k}{k!} \\ = & \sum_{k=0}^{\infty} \frac{e^{-\lambda e^{\theta}} (e^{\theta} \lambda)^k}{k!} e^{\lambda e^{\theta}} e^{-\lambda} \\ = & e^{\lambda (e^{\theta} - 1)} \end{split}$$

$$X_1, X_2, \ldots, X_n$$

$$X_n \sim Bin(n, p) \xrightarrow{d} Y \sim Poisson(\lambda)$$

<sup>&</sup>lt;sup>1</sup>converge to distribution

A.3. APPLICATION 71

**Theorem A.3.** Central Limit Theorem  
Let 
$$X_1, \ldots, X_n \stackrel{iid}{\sim} (\mu, \sigma^2)$$
.  $S_n = X_1 + \cdots + X_n$ .

$$\bar{X} = \frac{S_n}{n}$$
  $Z_n = \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} = \frac{S_n - n\mu}{\sqrt{n}\sigma}$ 

*Proof.* Let  $Y_i = X_i - \mu$ , then  $Y_1, Y_2, \dots, Y_n \stackrel{iid}{\sim} (0, \sigma^2)$ .

$$S_n - n\mu = Y_1 + Y_2 + \dots + Y_n$$

$$M_{S_n-n\mu}(\theta) = M_{Y_1}(\theta) \dots M_{Y_n}(\theta)$$

$$\begin{split} M_{Z_n}(\theta) = & E(e^{\theta Z_n}) = E\left(e^{\theta \frac{S_n - n\mu}{\sqrt{n}\sigma}}\right) \\ = & E\left(e^{\frac{\theta}{\sqrt{n}\sigma}(S_n - n\mu)}\right) \\ = & M_{S_n - n\mu}\left(\frac{\theta}{\sqrt{n}\sigma}\right) \\ = & M_{Y_1}\left(\frac{\theta}{\sqrt{n}\sigma}\right) \dots M_{Y_n}\left(\frac{\theta}{\sqrt{n}\sigma}\right) \\ = & \left(M_{Y_1}\left(\frac{\theta}{\sqrt{n}\sigma}\right)\right)^n \end{split}$$

Note that  $E(Y_1) = 0$ ,  $E(Y_1^2) = Var(Y_1) + (E(Y_1))^2 = \sigma^2$ 

$$M_{Y_1}(\theta) = 1 + E(Y_1) \frac{\theta}{1!} + E(Y_2) \frac{\theta^2}{2!} + \dots$$
$$= 1 + \sigma^2 \frac{\theta^2}{2} + \mathcal{O}(\theta^2)$$

where  $\mathcal{O}(\theta^2)$  denotes a function  $g(\theta)$  s.t  $\frac{g(\theta)}{\theta^2} \to 0$ , as  $\theta to 0$ 

$$\begin{split} M_{Z_n}(\theta) &= \left(1 + \frac{1}{2} \left(\frac{\theta}{\sqrt{n}\sigma}\right)^2 + \mathcal{O}\left(\frac{\theta^2}{n\sigma^2}\right)\right)^n \\ &= \left(1 + \frac{\frac{1}{2}\theta^2}{n} + \mathcal{O}\left(\frac{1}{n}\right)\right)^n \longrightarrow e^{\frac{1}{2}\theta^2} \text{ as } n \to \infty \end{split}$$

So, by theorem,  $Z_n \stackrel{d}{\longrightarrow} N(0,1)$ 

1.  $X_1, X_2, \ldots, X_n \sim Bern(p)$ .  $E(X_1) = p$ ,  $Var(X_1) = p(1-p)$ . By CLT,  $\frac{X-np}{\sqrt{np(1-p)}} \stackrel{d}{\longrightarrow} N(0,1)$ .

$$X \xrightarrow{d} N(np, np(1-p))$$

2. What if  $X_1, X_2, \ldots, X_n \sim Bern(p_n)$ ? Modified CLT

$$X_1, X_2, \dots, X_n \sim (\mu_n, \sigma_n^2)$$

$$\frac{\sqrt{n}(\bar{X} - \mu_n)}{\sigma_n} \xrightarrow{d} N(0, 1)$$

Happy TEX(IATEX, IATEX  $2_{\mathcal{E}}) \mathrm{ing}$  with pdfTeX, XTEX, LuaTeX!