Computer Architecture 컴퓨터 구조

Lecture 1: Introduction

미래관 **718**호 임은진

Assessment

- Quiz + Homework (30%)
- 출석 (10%)
 - 9/12 부터 반영
 - 전자 출석 (학기 중 11.25 시간(7.5회) 이상 출석이면 감점 없음)
- 중간 고사 (30%)
- 기말 고사 (30%)
 - 중간 고사 대면 10/24 화 오후 6:00-7:00
 - 기말 고사 대면 12/12 화 오후 6:00-7:00

http://ecampus.kookmin.ac.kr

- 강의 슬라이드 다운로드
- 공지 사항
- QnA

교과목 개요/교육목표

○ 컴퓨터의 작동 원리를 디지털 회로 수준에서 이해한다.

● 이진 논리식을 디지털 회로로 구현할 수 있고, 이를 바탕으로 컴퓨터에서 데이타와 명령어를 이진수로 표현하는 방법을 이해 하여, 컴퓨터 프로세서가 동작하는 원리를 이해한다. 프로세서 의 성능을 측정하고 비교하는 방법을 이해하고 프로세서 성능의 최적화 방안의 대표적 기법들인 파이프라인 프로세서와 메모리 계층 구조에 대해 이해한다.

○ 컴퓨터 구조 및 설계 하드웨어/소프트웨어 인터페이스, Computer Organization and Design (COD): The Hardware/Software Interface, by Patterson and Hennessy MIPS edition, 6th edition

COMPUTER ORGANIZATION AND DESIGN MIPS EDITION

The Hardware/Software Interface

컴퓨터 구조 및 설계

하드웨어/소프트웨어 인터페이스

David A. Patterson · John L. Hennessy 지음

박명순 김병기 하순회 장훈 옮김

Author 1: David A. Patterson

• founder of RISC I & II architecture

David A. Patterson

Professor Emeritus, Professor in the Graduate School

Research Areas

Research Centers

Computer Architecture & Engineering (ARC), Computer Architecture and Systems: Center for Computational Biology (CCB)

Author 2: John L. Hennessy

founder of MIPS architecture

JUNE 11, 2015

Stanford University President John L. Hennessy to step down in 2016

President John L. Hennessy announced today that he plans to step down as Stanford University's 10th president after more than 15 years leading the transformation of one of the world's foremost research institutions.

Hennessy informed both the Board of Trustees and the Faculty Senate of his decision to depart his post in summer 2016, after serving in major academic leadership roles at Stanford for more than two decades.

"The time has come to return to

Stanford President John L. Hennessy will depart his post in summer 2016. (Image credit: L.A. Cicero)

Pioneers of Modern Computer Architecture Receive ACM A.M. Turing Award

Hennessy and Patterson's Foundational Contributions to Today's Microprocessors Helped Usher in Mobile and IoT Revolutions

NEW YORK, NY, March 21, 2018 – ACM , the Association for Computing Machinery, today named John L. Hennessy , former President of Stanford University, and David A. Patterson , retired Professor of the University of California, Berkeley, recipients of the 2017 ACM A.M. Turing Award for pioneering a systematic, quantitative approach to the design and evaluation of computer architectures with enduring impact on the microprocessor industry. Hennessy and Patterson created a systematic and quantitative approach to designing faster, lower power, and reduced instruction set computer (RISC) microprocessors. Their approach led to lasting and repeatable principles that generations of architects have used for many projects in academia and industry. Today, 99% of the more than 16 billion microprocessors produced annually are RISC processors, and are found in nearly all smartphones, tablets, and the billions of embedded devices that comprise the Internet of Things (IoT).

Hennessy and Patterson codified their insights in a very influential book, *Computer Architecture: A Quantitative Approach*, now in its sixth edition, reaching generations of engineers and scientists who have adopted and further developed their ideas. Their work underpins our ability to model and analyze the architectures of new processors, greatly accelerating advances in microprocessor design.

- » Computer Architecture = 컴퓨터 구조
- » ISA (Instruction Set Architecture) = 명령어 집합 구조
- » Examples of ISA
 - MIPS
 - − RISC I,II → SPARC
 - ARM
 - x86 family (intel)

Table of Contents

- 1: Computer Abstractions and Technology.
- 2: Instructions: Language of the Computer.
- 3: Arithmetic for Computers.
- 4: The Processor.
- 5: Large and Fast: Exploiting Memory Hierarchy.
- 6: Parallel Processors from Client to Cloud.

MIPS Reference Data

	Itt	ici	ence Data	4	
CORE INSTRUCTI	ON SE	т			OPCODE
		FOR-			/ FUNCT
NAME, MNEMO	NIC	MAT	OPERATION (in Verilog)		(Hex)
Add	add	R	R[rd] = R[rs] + R[rt]	(1)	$0/20_{hex}$
Add Immediate	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}
Add Imm. Unsigned	addiu	I	R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		$0/21_{hex}$
And	and	R	R[rd] = R[rs] & R[rt]		0 / 24 _{hex}
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	chex
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}
Branch On Not Equa	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}
Jump	j	J	PC=JumpAddr	(5)	2 _{hex}
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3 _{hex}
Jump Register	jr	R	PC=R[rs]		0 / 08 _{hex}
Load Byte Unsigned	lbu	I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	$25_{ m hex}$
Load Linked	11	I	R[rt] = M[R[rs]+SignExtImm]	(2,7)	30_{hex}
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}
Load Word	lw	I	R[rt] = M[R[rs]+SignExtImm]	(2)	23 _{hex}
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}
Or	or	R	R[rd] = R[rs] R[rt]		0 / 25 _{hex}
Or Immediate	ori	Ι	R[rt] = R[rs] ZeroExtImm	(3)	d _{hex}
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(-)	0 / 2a _{hex}
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)?	: 0 (2)	a _{bex}
Set Less Than Imm. Unsigned	sltiu		R[rt] = (R[rs] < SignExtImm) $? 1: 0$	(2,6)	b _{hex}
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2b _{hex}
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$	(-)	0 / 00 _{hex}
Shift Right Logical	srl	R	R[rd] = R[rt] >>> shamt		0 / 02 _{hex}
	211		M[R[rs]+SignExtImm](7:0) =		
Store Byte	sb	I	R[rt](7:0)	(2)	$28_{\rm hex}$
Store Conditional	sc	I	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	$38_{ m hex}$
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	$29_{ m hex}$
Store Word	sw	I	M[R[rs]+SignExtImm] = R[rt]	(2)	2b _{hex}
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	0 / 22 _{hex}
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		0 / 23 _{hex}
	(1) Ma	y caus	se overflow exception	adicto	

(2) SignExtImm = { 16{immediate[15]}, immediate } (3) ZeroExtImm = { 16{1b'0}, immediate }

FOR-	ARITHMETIC COR	RE INS	TRU	ICTION SET (OPCODE / FMT /FT
NAME, MNEMONIC Branch On FP True belt FI if(FPcond)PC=PC+4+BranchAddr (4) 11/8/1/ Branch On FP False belf FI if(FPcond)PC=PC+4+BranchAddr (4) 11/8/0/ Divide div R Lo=R[rs]/R[rt]; Hi=R[rs]%[Rt] 0///1a Divide Unsigned divu R Lo=R[rs]/R[rt]; Hi=R[rs]%[Rt] 0///1b FP Add Single add.s FR F[fd] = F[fs] + F[ft] 11/10//0 FP Add add.d FR F[fd],F[fd+1] = {F[fs],F[fs+1]} + {I1/10//0} FP Compare Single c.x.s* FR FPcond = (F[fs], op F[ft]) ? 1 : 0 11/10//0 FP Compare Double c.x.d* FR FPcond = (F[fs],F[fs+1]) op {F[ft],F[ft+1]} > 11/10//0 FP Divide Single div.s FR F[fd] = F[fs] / F[ft] 11/10//3 FP Divide div.d FR F[fd] = F[fs] / F[ft] 11/10//3 FP Multiply Single mul.s FR F[fd] = F[fs] / F[ft] 11/10//3 FP Subtract Single sub.s FR F[fd] = F[fs] / F[ft] 11/10//2 FP Subtract Single sub.s FR F[fd] = F[fs] / F[ft] 11/10//2 FP Subtract Single sub.d FR F[fd],F[fd+1] = {F[fs],F[fs+1]} / {F[ft],F[ft+1]} 11/10//1 FP Subtract Single sub.d FR F[fd],F[fd+1] = {F[fs],F[fs+1]} / {F[ft],F[ft+1]} 11/10//1 Load FP Single lwc1 I F[rt]=M[R[rs]+SignExtImm] (2) 31//			FOR-			
Branch On FP True Be1t FI if(FPcond)PC=PC+4+BranchAddr (4) 11/8/1/-Branch On FP False be1f FI if(!FPcond)PC=PC+4+BranchAddr (4) 11/8/0/-Divide div R Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] 0///1a 0///	NAME, MNEMO					
Branch On FP False bc1f Divide Divide div R Lo=R[rs]/R[rt]; Hi=R[rs]/R[rt] O///1a					(4)	
Divide Unsigned divu R Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6) 0//-1b FP Add Single add.s FR F[fd] = F[fs] + F[ft] 11/10//0 FP Add Double add.d FR F[fd],F[fd+1]] = {F[fs],F[fs+1]} + (F[ft],F[ft+1]) + (F[ft],F[ft	Branch On FP False	bclf	FI			11/8/0/
Divide Unsigned	Divide	div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]		0///1a
FP Add Single add.s FR F[fd] = F[fs] + F[ft] 11/10/-/0 FP Add Double add.d FR F[fd],F[fd+1]] = F[fs],F[fs+1]] + FP Compare Single c.x.s* FR FP FP Cond = (F[fs], F[fs+1]) op FP Compare C.x.d* FR FP FP Cond = (F[fs],F[fs+1]) op FP Compare C.x.d* FR FP FP Cond = (F[fs],F[fs+1]) op FP Compare C.x.d* FR FP FP Cond = (F[fs],F[fs+1]) op FP Compare C.x.d* FR FP Cond = (F[fs],F[fs+1]) op FP Compare C.x.d* FR FP Cond = (F[fs],F[fs+1]) op FP Compare C.x.d* FR FP Cond = (F[fs],F[fs+1]) op FP Compare C.x.d* FR FP Cond = (F[fs],F[fs+1]) op FP Compare C.x.d* FR FP Cond = (F[fs],F[fs+1]) op FP Cond = (F[fn],F[fn]) op FP Con	Divide Unsigned	divu	R		(6)	0///1b
FP Add Double		add.s	FR		(-)	11/10//0
FP Compare Single c.x.s* FR FPcond = (F[fs] op F[ft])? 1:0		add.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]}$	+	11/11//0
FP Compare Double			FD			11/10//v
Double	EP Compare					11/10//
* (x is eq, lt, or le) (op is ==, <, or <=) (y is 32, 3c, or 3e) FP Divide Single div.s FR F[fd] = F[fs] / F[ft]		c.x.d*	FR			11/11//y
FP Divide Single div.s FR F[fd] = F[fs]/F[ft] 11/10/-/3 FP Divide Double div.d FR {F[fd],F[fd+1]} = {F[fs],F[fs+1]} / {F[ft],F[ft+1]} 11/11/-/3 FP Multiply Single mul.s FR FF[fd] = F[fs] * F[ft] 11/10/-/2 11/10/-/2 FP Multiply Double mul.d FR FF[fd] = F[fs] * F[ft] 11/10/-/2 11/10/-/2 FP Subtract Single FP Subtract Double sub.d FR FF[fd]=F[fs] - F[ft] 11/10/-/2 FP Subtract Double sub.d FR F[fd]=F[fs] - F[ft] 11/10/-/2 Load FP Single lwc1 I F[rd]=M[R[rs]+SignExtImm] (2) 31///- Load FP Single ldc1 I F[rt]=M[R[rs]+SignExtImm] (2) 35/// Move From Hi mfhi R R[rd] = Hi 0 //-/10 Move From Control mfc0 R R[rd] = Lo 0 //-/12 Move From Control mfc0 R R[rd] = CR[rs] 10/0/-/0 Multiply mult R Hi,Lo} = R[rs] * R[rt] (6) 0///18 <td></td> <td>1e) (</td> <td>on is</td> <td></td> <td></td> <td></td>		1e) (on is			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						11/10//3
Double	FP Divide				/	11/11/ /2
FP Multiply Double mul.d FR {F[fd],F[fd+1]} = {F[fs],F[fs+1]} * 11/11/-/2 FP Subtract Single sub.s FR F[fd]=F[fs] - F[ft] 11/10/-/1 FP Subtract Double sub.d FR {F[fd],F[fd+1]} = {F[fs],F[fs+1]} - 11/10/-/1 11/11/-/1 Load FP Single 1 wc1 I F[rt]=M[R[rs]+SignExtImm] (2) 31// Load FP Double 1 dc1 I F[rt]=M[R[rs]+SignExtImm]; F[rt+1]=M[R[rs]+SignExtImm] (2) 35///- Move From Hi mfhi R R[rd] = Hi 0 //-/10 Move From Control mfc0 R R[rd] = Lo 0 ///12 Move From Control mfc0 R R[rd] = CR[rs] 10 /0/-//18 Multiply mult R {Hi,Lo} = R[rs] * R[rt] 0///18 Multiply Unsigned mult R {Hi,Lo} = R[rs] * R[rt] (6) 0///19 Shift Right Arith. sra R R[rd] = R[rt] >> shamt 0///3 Store FP Single swc1 I M[R[rs]+SignExtImm] = F[rt] (2) 39// M[R[rs]+SignExtImm] = F[rt] (2) 34//	Double	div.d	FK			11/11//3
Double	FP Multiply Single	nul.s	FR	F[fd] = F[fs] * F[ft]		11/10//2
FP Subtract Single	FP Multiply		ED	${F[fd],F[fd+1]} = {F[fs],F[fs+1]}$		11/11/ /2
FP Subtract	Double	nui.a	PK	{F[ft],F[ft+1]}		11/11//2
Double	FP Subtract Single	sub.s	FR	F[fd]=F[fs] - F[ft]		11/10//1
Double	FP Subtract	and a	ED	${F[fd],F[fd+1]} = {F[fs],F[fs+1]}$	-	11/11/_/1
	Double	sub.a	FK			11/11//1
Double	Load FP Single	lwcl	I	F[rt]=M[R[rs]+SignExtImm]	(2)	31//
Move From Hi mfhi R R[rd] = Hi 0 ///10 Move From Lo mflo R R[rd] = Lo 0 ///12 Move From Control mfco R R[rd] = CR[rs] 10 /0//0 Multiply mult R {Hi,Lo} = R[rs] * R[rt] 0///18 Multiply Unsigned mult R {Hi,Lo} = R[rs] * R[rt] (6) 0///19 Shift Right Arith. sra R R[rd] = R[rt] >> shamt 0///3 Store FP Single swcl I M[R[rs] + SignExtImm] = F[rt] (2) 39// Store FP mfcl I M[R[rs] + SignExtImm] = F[rt] (2) 34//		ldcl	I		(2)	35//
Move From Lo mflo R R[rd] = Lo 0 ///12 Move From Control mfc0 R R[rd] = CR[rs] 10 /0//0 Multiply mult R {Hi,Lo} = R[rs] * R[rt] 0///18 Multiply Unsigned multu R {Hi,Lo} = R[rs] * R[rt] (6) 0///19 Shift Right Arith. sra R R[rd] = R[rt] >> shamt 0///3 Store FP Single swc1 I M[R[rs]+SignExtImm] = F[rt] (2) 39///- Store FP mfc1 I M[R[rs]+SignExtImm] = F[rt] (2) 34///-		mfhi	R			0 ///10
Move From Control mfc0 R R[rd] = CR[rs] 10 /0//0 Multiply mult R {Hi,Lo} = R[rs] * R[rt] 0///18 Multiply Unsigned multu R {Hi,Lo} = R[rs] * R[rt] (6) 0///19 Shift Right Arith. sra R R[rd] = R[rt] >> shamt 0///3 Store FP Single swc1 I M[R[rs] + SignExtImm] = F[rt] (2) 39// Store FP mfc M[R[rs] + SignExtImm] = F[rt] (2) 34//		mflo				
Multiply mult R $\{Hi,Lo\} = R[rs] * R[rt]$ $0///18$ Multiply Unsigned multu R $\{Hi,Lo\} = R[rs] * R[rt]$ (6) $0///19$ Shift Right Arith. sra R $R[rd] = R[rt] >> \text{shamt}$ $0///3$ Store FP Single swc1 I $M[R[rs] + \text{SignExtImm}] = F[rt]$ (2) $39///-$ Store FP math and a sign of the control of the con		mfc0		6 3		
Multiply Unsigned multu R $\{Hi,Lo\} = R[rs] * R[rt]$ (6) $0///19$ Shift Right Arith. sra R $[rt] = R[rt] >> \text{shamt}$ $0///3$ Store FP Single swc1 I $M[R[rs] + \text{SignExtImm}] = F[rt]$ (2) $39//$ Store FP $[rt] = R[rt] + R[rt] + R[rt]$ (2) $34//$						
Shift Right Arith. sra R $R[rt] = R[rt] >> \text{shamt}$ $0//-3$ Store FP Single swc1 I $M[R[rs] + \text{SignExtImm}] = F[rt]$ (2) $39//$ Store FP $M[R[rs] + \text{SignExtImm}] = F[rt]$; (2) $34//$		multu			(6)	0///19
Store FP Single swc1 I M[R[rs]+SignExtImm] = F[rt] (2) $39//-$ Store FP M[R[rs]+SignExtImm] = F[rt]; (2) $34//-$		sra	R		(-)	0///3
Store FP $M[R[rs]+SignExtImm] = F[rt];$ (2) $3d/a/a/a$					(2)	***
infictial officermin at a first	Store FP				(2)	

FLOATING-POINT INSTRUCTION FORMATS

FR	opco	ode	fmt	ft		fs	fd		funct
	31	26 25	2	20	16 15	11	10	6.5	0
FΙ	opco	opcode fmt		ft		immediate			

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	if(R[rs] >= R[rt]) PC = Label
Load Immediate	11	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVED ACROSS A CALL?
Szero	0	The Constant Value 0	N.A.
Sat	1	Assembler Temporary	No
		Volume Con Francisco December	