

Matemática Geometría

PROYECTO DE MEJORA DE FORMACIÓN EN CIENCIAS EXACTAS Y NATURALES EN LA ESCUELA SECUNDARIA

DIRECCIÓN DE PLANEAMIENTO ACADÉMICO SEMINARIO UNIVERSITARIO

©Ing. Claudia R. Garcia - 2014

Objetivos específicos:

Cuando el alumno haya finalizado este eje temático estará en condiciones de:

- Operar con números reales y aplicar propiedades.
- Reconocer figuras y cuerpos geométricos y calcular áreas y volúmenes.
- Aplicar los distintos conjuntos numéricos a la resolución de problemas geométricos.

Contendidos:

▶ Geometría: Triángulos. Propiedades. Clasificación. Triángulo rectángulo. Cuadriláteros: clasificación. Perímetro y área. Polígonos. Características principales. Propiedades. Circunferencia y círculo. Perímetro y área. Cuerpos: prismas, pirámides y cuerpos circulares. Problemas.

CONTENIDO

Geo	metría	3
1.	Triángulos	3
	Propiedades	3
	Clasificación	4
	Perímetro y Área	4
	Triángulo rectángulo.	5
	Teorema de Pitágoras	5
2.	Cuadriláteros	5
	Clasificación.	6
3.	Polígonos Regulares	7
	Clasificación	8
	Propiedades de los polígonos regulares.	9
4.	Circunferencia y círculo	9
5.	Cuerpos Poliedros.	. 10
6.	Cuerpos circulares	. 11
	PRÁCTICA: Geometría	.12
7.	Bibliografía	. 17

GEOMETRÍA

1. TRIÁNGULOS.

Es un polígono cerrado de tres lados. Los tres segmentos que limitan el triángulo se denominan lados, y los extremos de los lados, vértices.

En un triángulo se consideran dos tipos de ángulos: interior (formado por dos lados) y exterior (formado por un lado y la prolongación de otro).

Sus elementos son:

Vértices: a, b y c Lados: \overline{ab} , \overline{bc} y \overline{ac}

Ángulos interiores: $b\hat{a}c$, $a\hat{b}c$ y $a\hat{c}b$ o

 $\hat{\alpha}$, $\hat{\beta}$, $\hat{\varepsilon}$

Ángulos Exteriores: $\hat{\gamma}$, $\hat{\pi}$ y $\hat{\delta}$

Propiedades

A lados congruentes se oponen ángulos congruentes.

La suma de las amplitudes de los ángulos interiores es igual a 180°.

$$\hat{\alpha} + \hat{\beta} + \hat{\varepsilon} = 180^{\circ}$$

La suma de los ángulos exteriores es igual a 360°

$$\hat{\gamma} + \hat{\pi} + \hat{\delta} = 360^{\circ}$$

Cada ángulo exterior es suplementario con el ángulo interior correspondiente.

$$\hat{\alpha} + \hat{\delta} = 180^{\circ}$$
 $\hat{\pi} + \hat{\varepsilon} = 180^{\circ}$ $\hat{\beta} + \hat{\gamma} = 180^{\circ}$

La amplitud de un ángulo exterior es igual a la suma de las amplitudes de los ángulos interiores no adyacentes con él.

$$\hat{\gamma} = \hat{\varepsilon} + \hat{\alpha}$$
 $\hat{\delta} = \hat{\varepsilon} + \hat{\beta}$ $\hat{\gamma} = \hat{\varepsilon} + \hat{\alpha}$

En todo triángulo la longitud de cada lado es menor que la suma de las longitudes de los otros dos, y mayor que el módulo de su diferencia. Esta relación se denomina desigualdad triangular.

Recuerden que

- ✓ La altura de un triángulo es un segmento perpendicular a uno de los lados, que tiene por extremo el vértice opuesto.
- ✓ La mediana correspondiente al lado de un triángulo es el segmento que une el punto medio del lado y el vértice opuesto.
- ☑ La mediatriz correspondiente al lado de un triángulo es la recta perpendicular al mismo que pasa por su punto medio.
- ✓ La bisectriz correspondiente al ángulo interior de un triángulo es la semirrecta formada por todos los puntos que equidistan de los lados del ángulo. Divide el ángulo en dos ángulos iguales.

Perímetro y Área

1

Triángulo rectángulo.

Como ya se ha definido, un triángulo rectángulo es un triángulo con un ángulo recto. El lado opuesto al ángulo recto se llama hipotenusa y los otros dos lados se llaman catetos.

a: hipotenusa del triángulo rectángulo

 $\stackrel{\Delta}{\mathit{BAC}}$

b: cateto

c: cateto

Teorema de Pitágoras

En todo triángulo rectángulo el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos. Es decir:

A esta relación se le llama relación pitagórica.

2. CUADRILÁTEROS

Un cuadrilátero es un polígono cerrado que tiene cuatro lados y dos diagonales.

Los lados consecutivos son los que tienen un extremo en común y los opuestos, los que no tienen puntos comunes.

Los ángulos opuestos son los que no tienen un lado en común.

Propiedad

La suma de los ángulos interiores es 360° y también la suma de los ángulos exteriores es igual a 360°

Clasificación.

Figura	Características	Formulas
Cuadrado Lado Diagonal	Todos sus lados son iguales. Sus 4 ángulos interiores son rectos (miden 90°). Sus diagonales son iguales y se cruzan en un punto que las divide en partes iguales.	Perímetro P = 4. L Área A= L2 Diagonal D = √2 . L
Paralelogramo Lado: L Base: B	Sus lados Opuestos son iguales. Sus Ángulos interiores opuestos son iguales. Sus diagonales son distintas pero se cortan en un punto que las divide en partes iguales.	Perímetro P = 2.L + 2.B Área A= B.H
Rectángulo Altura: H Diagonal Base: B	Sus lados Opuestos son iguales. Sus 4 ángulos interiores son Rectos. Sus diagonales son iguales y se cruzan en un punto que las divide en partes iguales.	Perímetro P = 2.L + 2.B Área A= B.H Diagonal D = $\sqrt{B^2 + H^2}$
Trapecio Isósceles Diagonal Base Menor: b Lado: Base Mayor: B	Sus lados laterales son iguales. Sus 2 ángulos interiores obtusos son iguales. LSus 2 ángulos interiores agudos son iguales. Sus diagonales son iguales.	Perímetro P = B + b + 2.L Área $A = \frac{(B+B).H}{2}$

Rombo Diagonal Mayor: D Diagonal menor: d	Sus 4 lados son iguales. Sus ángulos interiores opuestos son iguales. Sus diagonales son distintas y se cruzan en un punto que las divide en partes iguales. Las diagonales de un rombo son perpendiculares entre sí.	Perímetro P = 4.L Área $A = \frac{D \cdot d}{2}$
Romboide Diagonal Mayor: D Lado Mayor: Diagonal menor: d	Hay 2 pares de lados consecutivos iguales. Sólo 2 de sus ángulos interiores son iguales. Sus diagonales son distintas y se cruzan en un punto que divide a una de ellas en partes distintas y a la otra en partes iguales	Perímetro P = 2.L + 2.l Área A= $\frac{D \cdot d}{2}$

Base media de un trapecio

La base media de un trapecio es el segmento que une los puntos medios de los dados no paralelos, es paralela a las otras bases e igual a la semisuma de las mismas.

3. Polígonos Regulares

Un polígono es regular cuando tiene todo sus lados y ángulos iguales. Los polígonos regulares son inscribibles en una circunferencia.

Apotema: altura del triángulo cuya base es el lado del polígono.

$$\alpha = \frac{360^{\circ}}{n}$$

n: número de lados del polígono

Clasificación

Nombre	Nº de lados	Nombre	Nº de lados
trígono, triángulo	3	dodecágono	12
cuadrilátero	4	triangulo	13
pentágono	5	tetra decágono	14
hexágono	6	pentadecágono	15
heptágono	7	hexadecágono	16
octógono u octágono	8	heptadecágono	17
eneágono o nonágono	9	octodecágono	18
decágono	10	eneadecágono	19
endecágono o undecágono	11	Icoságono	20

Propiedades de los polígonos

En todo polígono de n lados, se verifica que:

La suma de sus ángulos interiores es igual a $180^{\circ}.(n-2)$. Cada ángulo interior es suplementario del exterior correspondiente.

La suma de los ángulos exteriores es igual a 360°.

Cada ángulo exterior es suplementario del interior correspondiente.

Por cada vértice se pueden trazar 3 - n diagonales.

El número total de diagonales es igual a $\frac{n \cdot (n-3)}{2}$

Propiedades de los polígonos regulares.

En todo polígono regular de n lados, se verifica que:

El valor de cada ángulo interior α es igual a $\frac{180^{\circ}.(n-2)}{n}$. El valor de cada ángulo exterior es igual a $\frac{360^{\circ}}{n}$.

La Superficie del polígono es igual a $\frac{n \cdot l \cdot Ap}{2}$

4. CIRCUNFERENCIA Y CÍRCULO.

La circunferencia es el conjunto de puntos de un plano que están a una misma distancia de un punto fijo llamado centro. El segmento que tiene por extremos al centro y a cualquier punto de la circunferencia es el radio.

El círculo es el conjunto de puntos del plano que están a una distancia igual o menor que el radio.

Longitud de la circunferencia: $2.\pi.r$ Longitud de un arco: $\frac{2.\pi.r.\alpha}{360^{\circ}}$ Superficie del círculo: $\pi.r^2$

<u>ab</u> Cuerda
 <u>cb</u> diámetro
 <u>ab</u> arco
 α ángulo central
 <u>ao</u> radio

Posiciones relativas de una recta y una circunferencia

Una recta es exterior a una circunferencia si no tienen puntos en común (recta C).

Una recta es tangente a una circunferencia si tienen un punto en común (recta B).

Una recta es secante a una circunferencia si tienen dos puntos en común(recta A)

5. CUERPOS POLIEDROS.

Los cuerpos poliedros son aquellos cuyas caras son polígonos y se clasifican en prismas y pirámides.

El **prisma** es un poliedro cuyas caras laterales son paralelogramos y las bases son polígonos paralelos e iguales.

La **pirámide** es una sola base y un vértice o cúspide en el que concurren todas las caras menos una, que es la base.

Base = B Altura = H Apotema = Ap Perímetro de la Base = PB Superficie de la Base = SB

	Prisma recto regular	Pirámide recta regular
Superficie lateral	PB .H	$\frac{PB.Ap}{2}$
Superficie total	PB . H + 2.SB	PB . H + SB
Volumen	SB . H	$\frac{PB.H}{3}$

6. **CUERPOS CIRCULARES.**

Los cuerpos que tienen alguna cara no plana se llaman cuerpos redondos.

Cilindro		
Superfície lateral: $2.\pi.r.h$ Superfície total: $2.\pi.r.h+2.\pi.r^2$ Volumen: $\pi.r^2.h$	Bases	Altura Genetratriz Radio de la base (r)
Cono		
Superfície lateral: $\pi . r . g$ Superfície total: $\pi . r . g + \pi . r^2$ Volumen: $\frac{\pi . r^2 . h}{3}$	Vértic	Altura Generatriz (g) Radio de la base (r)
Esfera	-	
Superfície total: $4 \cdot \pi \cdot r^2$ Volúmen: $\frac{4 \cdot \pi \cdot r^3}{3}$	Radio (r)	Círculo máximo

PRÁCTICA: Geometría

- 1. El perímetro de un triángulo abc es de 59 cm, el lado \overline{ab} es 4 cm mayor que el lado \overline{bc} y el lado \overline{ac} es 5 cm menor que el duplo de \overline{bc} . Calculen la longitud de los lados del triángulo abc.
- 2. En un triángulo rectángulo la diferencia entre la amplitud del mayor de sus ángulos agudos el doble de la del menor es de 30°. Calculen la amplitud de sus ángulos agudos.
- 3. Los triángulos rectángulos abc y bcd son isósceles, y el lado \overline{bd} tiene una longitud de $\sqrt{5}$ cm.
- 4. Calculen:

La longitud de ab El perímetro de los triángulos abc y bcd. La superficie del triangulo abc

- 5. El perímetro de un triángulo equilátero es de $6\sqrt{3}$ cm. Calcular, utilizando radicales, la superficie del triángulo.
- 6. Calculen el perímetro y la superficie del triángulo rectángulo abc.

$$\begin{cases} \overline{bc} = 8 \text{ m} \\ \overline{ad} = \frac{3}{8} \overline{ab} \\ \overline{bd} \text{: mediana correspondiente al lado } \overline{ac} \end{cases}$$

6. Calcular la base media y el perímetro del trapecio isósceles.

7. Dado el cuadrado ABCD, determinar el valor del lado BC en cada una de las siguientes situaciones:

El área de ABCD = 441 cm2.

El perímetro de ABCD = 38 cm.

El lado AC = $10\sqrt[2]{2}$ cm.

El lado BD = 4 m.

8. Dado el rectángulo PQRS rectángulo, determinar el valor del lado PS en cada una de las siguientes situaciones:

PQ = 12 cm., y el perímetro de PQRS = 32 cm.

PQ = 8 m., y el área de PQRS = 136 m2.

PQ = 2QR, perímetro de PQRS = 42 cm.

La diagonal PR = 20 mm., PQ = 16 mm.

9. es el centro de la circunferencia, determinar OS en cada una de las siguientes situaciones:

El diámetro de la circunferencia = 17 cm.

El perímetro de la circunferencia = $16\pi m$.

El área de la circunferencia = $225\pi m^2$.

10. Calcular el perímetro y la superficie de la zona sombreada, en las siguientes figuras.

11. Calculen para cada uno de los siguientes poliedros las superficies lateral y total, y el volumen

$$\overline{ab}$$
 = 2 cm \overline{bc} = $\sqrt{2}$ cm \overline{dc} = $2\sqrt{2}$ cm

$$\overline{ab} = 9$$

 $\overline{ot} = \overline{10} \, \mathrm{cm},$ superficie de la base = 25 cm²

La apotema de la base mide 3m y $\bar{o}t$ tiene igual longitud que el semiperímetro de la base.

12. Calculen para cada uno de los siguientes las superficies lateral y total, y el volumen

El perímetro de la base = 31,4 cm

- b.1) $h = \frac{5}{3} r$ $g = \frac{17}{18} cm$ b.2) superficie de la base = 78,5 cm²

13. Calcular el perímetro y el área de las siguientes figuras.

ABCD es un cuadrado, M, N, P y Q son puntos medios, BN = 3 cm.

ABCD es un cuadrado, BC = 6 m cada lados esta dividido en partes iguales.

La figura representada es un cuadrado de lado 24 cm.

ABC es un triángulo equilátero, circunscripto a la circunferencia de radio 10 cm.

14. Calcular el área del sector pintado en cada una de las siguientes figuras.

15. Resolver los siguientes problemas

- A. La superficie de un trapecio es 72 cm², sus bases tienen 11 cm y 7cm de longitud. Calculen cuánto mide su altura.
- B. Un trapecio mide 15cm de altura y 12cm de base menor; calculen la longitud de su base mayor sabiendo que su superficie es 240 cm².
- C. La superficie de un trapecio es 420 cm² y la suma de sus bases es 28 cm; calculen su altura.
- D. Calculen las longitudes de las bases de un trapecio, sabiendo que una es el doble de la otra, la altura mide 10 cm y la superficie es 105 cm².
- E. Un tanque australiano tiene capacidad para 70 000 litros de agua y mide 1,25 m de altura. ¿Cuánto mide su radio? Recuerden que 1 litro equivale a 1 dm³.
- F. 2. Se tiene un pocillo cilíndrico de 4 cm de diámetro por 6 cm de altura, y un tazón del doble de diámetro y del doble de altura. Si llenamos ambos con café, ¿en el tazón cabe el doble de lo que cabe en el pocillo?

7. BIBLIOGRAFÍA

- Pablo J.Kaczor, Ruth A. Schaposchnik, Eleonora Franco, Rosa A. Cicala, Bibiana H. Diaz, (2000). "Matemática I". Editorial Santillana.
- Susana N. Etchegoyen, Enrique D Fagale, Silvia A. Rodriguez, Marta Avila de Kalan, Maria Rosario Alonso, (2000). "MATEMATICA 1". Editorial Kapelusz.
- Dure Diana Analía, Capítulo I: Conjuntos Numéricos. Seminario Universitario 2011.
 UTN-FRRE.

Sitios Web recomendados:

https://es.khanacademy.org/ http://www.math2me.com/ http://webdelmaestrocmf.com/portal/