

Оценивание надежности криптографических преобразований на основе нейронных сетей

Максим Юрьевич Деркач Научный руководитель: Юрий Семенович Харин

Факультет прикладной математики и информатики Кафедра математического моделирования и анализа данных

Минск, 2020

Содержание

Введение

Искусственные нейронные сети и их применение в криптографии

Аппроксимация криптографических примитивов преобразования Фейстеля

Оценка надежности криптографического преобразования Фейстеля с помощью его аппроксимации нейронной сетью

Заключение

Введение Обзор литературы

- Харин Ю.С., Берник В.И., Матвеев Г.В., Агиевич С.В. Математические и компьютерные основы криптологии. 2003. Минск.
- Mohammed M. Alani.Neuro-Cryptanalysis of DES and Triple-DES. 2012.
- Kinzel F., Kanter I. Neural Cryptography. 2002.
- Pattanayak S., Ludwig S.A. Encryption based on Neural Cryptography. 2017.
- M. Kim, P. Smaragdis, Bitwise Neural Networks. 2010.

Введение

Цель исследования - оценивание надежности криптографических преобразований сети Фейстеля, используя искусственные нейронные сети.

Введение

Цель исследования и постановка задач

Задачи:

- 1. Провести аналитический анализ работ по теме нейронные сети в криптографии.
- 2. Основываясь на задачах исследования, определить архитектуру и параметры нейронной сети.
- 3. Определить математические модели криптографических примитивов преобразования Фейстеля.
- 4. Определить математические модель криптографического преобразования Фейстеля.
- 5. Разработать генератор модельных данных.
- 6. Построить нейронные сети, аппроксимирующие данную математическую модель. Провести компьютерные эксперименты.
- 7. Оценить результаты полученные в ходе компьютерных экспериментов.

Искусственные нейронные сети и их применение в криптографии Модель криптоанализа

Рис.: Модель криптоанализа на основе нейронной сети

ММАД, ФПМИ, БГУ М.Ю. Деркач Минск, 2020 6 / 22

Искусственные нейронные сети и их применение в криптографии Оценка архитектуры и параметров нейронных сетей

Аппроксимация криптографических примитивов преобразования Фейстеля <u>Математические мод</u>ели

Опишем однотактовое преобразование шифрования ГОСТ 28147-89:

$$Y=g(X,K)=g(X_1||X_2,K)\equiv (S[X_1\boxplus K]\ll 11)\oplus X_2||X_1$$
, где

 $X \in V_{64}$ - вектор входных данных,

 $Y \in V_{64}$ - выходные данные,

 $K \in V_{32}$ - ключ,

S - стандартный S-блок из Γ OCT-28147.

Аппроксимация криптографических примитивов преобразования Фейстеля Математические модели

- 1. $Y_{g_0}=g_0(x)=g_0(x_1||x_2)\equiv x_1\oplus x_2$, где $x\in V_8$ вектор входных данных, $x_1,x_2\in V_4$ левая и правая часть входного вектора, $Y_{g_0}\in V_4$ выходные данные модели g_0 ;
- 2. $Y_{g_1}=g_1(x)=g_1(x_1||x_2,k)\equiv S[x_1]\oplus x_2$, где $x\in V_8$ вектор входных данных, $x_1,x_2\in V_4$ левая и правая часть входного вектора, $Y_{g_1}\in V_4$ выходные данные модели g_1 , S первый узел из стандартного S-блока из ГОСТ-28147 $(S=\{13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7\})$;

Аппроксимация криптографических примитивов преобразования Фейстеля Математические модели

3. $Y_{g_2}=g_2(x)=g_2(x_1||x_2,k)\equiv S[x_1\boxplus k]\oplus x_2$, где $x\in V_8$ - вектор входных данных, $x_1,x_2\in V_4$ - левая и правая часть входного вектора, $k\in V_4$ - некоторый неизвестный постоянный в эксперименте ключ, $Y_{g_2}\in V_4$ - выходные данные модели g_2 ,

 $r_{g_2} \in v_4$ - выходные данные модели g_2 , S - первый узел из стандартного S-блока из ГОСТ-28147;

4. $Y_{g_3}=g_3(X)=g_3(x_1||x_2,k)\equiv (S[x_1\boxplus k]\ll 11)\oplus x_2$, где $x\in V_{64}$ - вектор входных данных, $k\in V_{32}$ - некоторый неизвестный постоянный в эксперименте ключ, $Y_{g_3}\in V_{32}$ - выходные данные модели g_3 , S - стандартный S-блок из ГОСТ-28147;

Аппроксимация криптографических примитивов преобразования Фейстеля <u>Математические мод</u>ели

- 5. $Y_{g_4} = g_4(x) \equiv x \boxplus K$, где $x \in V_4$ вектор входных данных, $k \in V_4$ некоторый неизвестный постоянный в эксперименте ключ, $Y_{g_4} \in V_4$ выходные данные модели g_4 ;
- 6. $Y_{g_8} = g_8(x) \equiv x \boxplus K$, где $x \in V_8$ вектор входных данных, $k \in V_8$ некоторый неизвестный постоянный в эксперименте ключ, $Y_{g_8} \in V_8$ выходные данные модели g_8 ;

Аппроксимация криптографических примитивов преобразования Фейстеля Математические модели

- 7. $Y_{g_{16}}=g_{16}(x)\equiv x\boxplus K$, где $x\in V_{16}$ вектор входных данных, $k\in V_{16}$ некоторый неизвестный постоянный в эксперименте ключ, $Y_{g_{16}}\in V_{16}$ выходные данные модели g_{16} ;
- 8. $Y_{g_{32}}=g_{32}(x)\equiv x\boxplus K$, где $x\in V_{32}$ вектор входных данных, $k\in V_{32}$ некоторый неизвестный постоянный в эксперименте ключ, $Y_{g_{32}}\in V_{g_{32}}$ выходные данные модели g_{32} .

Рис.: График точности построенной однослойной нейронной сети модели g_0 от количества итераций обучения

16 / 22

Модель	HC	N	NP	To	T _e	f	1	Σ	Ψ
g ₀	MNN	8	96	128	24	4	0.1072	5000	1.3754
g ₀	NN	0	96	128	24	3.2	0.5867	5000	1.6164
g ₁	MNN	8	96	128	24	4	0.1365	10000	2.7018
g ₁	NN	0	96	128	24	2.300	0.6505	25000	6.1263
g 2	MNN	8	96	128	24	4	0.1585	20000	5.4420
g 2	NN	0	96	128	24	2.6539	0.6341	20000	7.1460
g ₄	MNN	4	32	10	5	4	0.0720	10000	2.0639
g ₄	NN	0	32	10	5	3.500	0.5526	10000	3.1317
g 8	MNN	8	128	128	24	8	0.0519	5000	2.4865
g 8	NN	0	128	128	24	7.5385	0.5039	10000	3.8590
g 16	MNN	16	512	512	129	16	0.0520	15000	6.3108
g ₁₆	NN	0	512	512	129	14.3650	0.5386	20000	9.5851
g 32	MNN	32	4096	2048	409	32	0.0120	10000	18.8175
g 32	NN	0	4096	2048	409	27.2161	0.5614	15000	20.2561

Таблица: Сравнение построенных нейронных сетей


```
V = 0, 1;
N- размерность;
X = (x_i) \in V^{2N}, X = (X_1 || X_2) \in V^{2N}, X_i \in V^N, i = 1, 2;
Y = (y_i) \in V^{2N}, Y = (Y_1 || Y_2) \in V^{2N}, Y_i \in V^N, i = 1, 2;
K = (K1||...||K_8) = (k_1, ..., k_{8N}) - ключ тактового
преобразования;
< K_i > \in \{0, 1, ..., 2^N - 1\} - числовое представление двоичного
вектора K_i;
\ll L - циклический сдвиг влево на L бит;
f(\cdot):V^N\times V^N	o V^N - функция криптографического
преобразования Фейстеля;
g(\cdot):V^N\to V^N - расписание ключей.
```


Оценка надежности криптографического преобразования Фейстеля с помощью его аппроксимации нейронной сетью Математические модели

 $f(X_2;K) = S[X_2 \boxplus K]$, где S - два первых стандартных S-блока из ГОСТ-28147.

$$g(K) = K_1, ..., K_8; K_1, ...K_8; ...; K_1, ...K_8.$$

Параметр N постоянный и равен = 8.

Параметры L, I - изменяемые параметры в следующих диапозонах:

- $L \in \{0, 1, ..., 7\};$
- $I \in \{1, ..., 8\};$

Оценка надежности криптографического преобразования Фейстеля с помощью его аппроксимации нейронной сетью Численные результаты

Заключение

Основные результаты:

- 1. Для математических моделей криптографических преборазований Фейстеля был разработан генератор и построенны нейронные сети;
- 2. Была проведена оценка полученных результатов.
- 3. Проведены компьютерные эксперименты, иллюстрирующие теоретические результаты.

Спасибо за внимание!

Оценивание надежности криптографических преобразований на основе нейронных сетей

Максим Юрьевич Деркач Научный руководитель: Юрий Семенович Харин

Минск, 2020