-				1014				
	Ιo	Inputs		0	upuls			
	А	В	C	A'	AB	A'C	BC	F=AB+A'C+BC
	0	0	0	1	0	0	0	0
	0	6	1	1	0	1	0	1
	0	1	0	1	0	0	0	0
	0	1	1	1	0	1	1	1
	1	0	0	0	0	0	0	0
	1	0	1	0	0	0		0 24

0

0

1

SC) F = AB+A'C+BC

= AB+ A'C + BC (A'+A)

= AB+A'C+A'BC+ABC

= AB(I+C) + A'C(I+B)

= AB+A'C

		1					
	Ir	put	3	Out	puls		
	A	B	e	A'	AB	A'C	AB'+A'C
	0	0	0	1	0	0	0
	0	0	1	1	0	1	1
	0	1	0	1	0	0	0
	0	1	1	Φ	0	1.	
	1	0	0	0	0	0	0
	1	0	1	0	0	0	0
	1	1	0	0	1	0	Trans.
1	1	1		0	1	0	1

.. Depas AB+A'C has the same output as F.

d> F = AB+A'C

2)1>F= X'y'z' + X'yz' + Xy'z' + Xyz'

-	Εηρο	Js		Out	outs	0	0 0			000		
X	Y	Z	χ,	λ,	z'	x'y'z'	x'YZ'	xy'z'	XXZ,	F		
0	0	0	1	1	1	1 1	0	0	0	1		
0	0	1	1	1	0	0	0	0	0	6		
0	1	0	1	0	1	0	1	6	0	1		
0	1	1	1	0	0	0	0	0	0	0		
1	0	0	0	1	1	6	0	1	0	0		
1	0	1	0	1	0	6	0	0	0			
1	T	0	6	0	1	0	0	0		0		
1	1	1	0	0	0	0	0	0	O			

$$= X'z' + Xz'$$

In	Inputs			Outputs			
X	Y	Z	z'				
0000	0000	0-0-0-0-	-0-0-0-0	Same as			

= X'YZ + x'YZ' + XY'Z' + XY'	Z		
× 1 2 × 7 3 2 4 7 7 5 3 6	<u>z'</u>		
	2 X'YZ		
1	3 X'YZ' 1) 3	X, A X + X, A Z,	
	\$ 11 XX, 5,	x'yz+x'yz	' + × Y ' Z'
	13 12 XY'Z	10)	> F

Ī	Inputs Out				outs	uts digital					
X	Y	Z	X,	Y'	Z'	x, AZ	x'YZ'	XY'Z'	xy'z	F	
0	0	0	1	i	1	0	0	0	0	0	
0	0	1	1	1	0	0	0	0	0	0	
0	1	0	1	0	1	0	10	0	0	1	
0	0	1	1	0	0		0	0	0	1	
	0	0	0	1	1	0	0	6	0		
li	1	0	0	0	0	0	0	0	11	6	
1	i	1	00	0	0	0	0	0	0	0	

\$\\ F = X'\YZ + X'\YZ' + X\Y'\Z' + X\Y'\Z'
\(\tau' - \tau' \) + X\Y'\(\tau' + \tau \)

 $= x, \lambda + x \lambda,$

25	X 1 2 X' 1 X'Y
9	$\begin{array}{c c} y & \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
	3 4 6 6

Inc	Inputs		Mpuh	S		
×	Y	X,	Y'	$\times_{\mathfrak{o}}\lambda$	X'Y*	$X,\lambda+\chi\lambda,$
0	0	1	1	0	0	0
0	0	1	1	0	0	10
0	1	1	0	0	1	* 1
0	6	1	0	0	010	PI
1	0	0	1	11	6	
	0	0	1	1	0	1
1	1	0	0	0	0	0
		0	0	0	0,	0

.: X'Y+XY' has the same output as F.

3) F(x, y, z) = xy'z+x'Y+ xyz'+x'z

I	npul	9	C	Oulpuls							
X	Y	Z	x',	y'	Xy'z	XX	YZ	X, Z	F		
0000	0000	0-0-0-0-	1 - 1 - 0 0 0 0	0000	00000-00	0000000	000-000-	0-0-0000	00-0-		

$$= Z(x'+x) + x'y+ZY$$

In	pul	4	Oul	Outputs				
X	Y	7	X,	X'Y	Z+X'Y			
000	0001	0-0	11	00 -	0			
0	000	101	0	10	0			
1	1	0	000	000	0			

JI > LAB -> Components Required → Se. No. Specification Quantity Name of the Component Hex Inverter 7404 IC Quard 29 put AND Gentes 2 7408 IC 3 input AND Create 3 7411 IC Quad d'input OR auté 4 7432 IC Universal Trainer Kit 5 As regul real Connecting Wires 6 238 WG

> Observation >

> F=AB+A'C+BC

I	npu	As on	Theorifical	Output	Practical Output in both the cases
A	B	C	AB+AC+BC	ABHAZ	
0	0	0	0	0	001
0	0	1	1	1	11111
0	1	0	O made	00	0000
0	1	1	chemical write stath to		10
1	0	0	0 0	00	0001
1	0	1	0	0	/ 0
1)	0	1	1	1
1	1	1	1		

Ir	اورا	19	Theoretic	al Output	Practical Output in both the cases
X	Y	Z	MA FORE	Z'	in both the causes
0	0	0	1		
0	0	1	0	0	O I
0	1	0	1	0	0
0	Φ	1	- 0	1	
	0	0		0	0
	1		0	1	
i	I)	0	0	0

I	put	8	Theoretical Output			Practical Output
×	Y	ス	F	x'y+ xy'		in both the cure
0	0	0	0	0		0
0	0	1	0	0		O
0	1	0		1		er tu
0	1	1	and to	1 3 1		11 1124
1	0	0	0 11 000	tool		or alar
1	0	1	1			maked I amountain
1	1	0	0	0	CLUM .	0
	1	1	0	0 =0		2 2013 197000

3) F(x, y, z) = xy'z + x'y + YZ + x'z

	I	puls		Theoretical Output		Practical Output	
	X	Y	Z	Fg	Z+ x'Y	in both th	e coses
	0	0	0	0	0	0	
	0	0	1	1	onigh o	H JA I BA	D 0
	0	V	0	0 1	0	0	0.01
	0	1	1	1			101
/	1	0	0	00	0	0 0	0 1
	1	0	1	1 1			
	1	1	0	00	00	0 0	0.0
	1	1	1	01	9		

Conclusion -

This experciment Implementing Boolean functions using logic gates. Some bouice of logic gates (AND, OR, NOT) in sum of product representation of equations and their implementation using logic gates and 7411 IC, 3 input AND gate is also used.

IV> Post Lab+

Ans

Of literals and construct the circuit using minimum numbers of gates

- 2) We an represent the Boolean function using aforms i.e.
 - i) Standard forem
 - ii) Comunical form

3) ABCF+ACEF+ACDF

= ACF (BIE+D)

