THE ROLE OF MHC GENE PRODUCTS IN IMMUNE REGULATION AND ITS RELEVANCE TO ALLOREACTIVITY

Nobel Lecture, 8 December, 1980 by

BARUJ BENACERRAF

Harvard Medical School, Boston, MA 02115, U.S.A.

The immune system has evolved the capacity to react specifically with a very large number of foreign molecules with which it had no previous contact, while avoiding reactivity for autologous molecules, naturally antigenic in other species or in other individuals of the same species.

Immunological research has been directed to the elucidation of this phenomenon ever since Ehrlich (1) proposed that immunocompetent cells bear receptors for antigen identical with the antibodies to be produced. Gowans (2) identified lymphocytes as the cells responsible for immune phenomena. Burnet (3) proposed the clonal selection theory of immunity which postulated that: 1) lymphocytes differentiate as clones bearing antibody receptors of unique specificity, 2) antibody responses reflect the selective expansion of specific lymphocytes, following the binding of antigen, and their differentiation as secretors of antibody, identical in specificity with the antigen binding receptors on the original clones. The Burnet hypothesis was verified experimentally (4,5,6) and was accepted as a major advance, concerned primarily with the response of antibody producing cells, later identified as B lymphocytes (7) and plasma cells. Accordingly, studies on the specificity of antibodies and on the structure of immunoglobulins revealed that these molecules (8,9) and their structural genes (10.11) evolved in a way that ensures the enormous diversity of antibody combining sites observed.

The discovery by Miller (12) and by Good (13) that lymphocytes differentiate into two separate classes of cells (T and B) with distinct functions, the identification of cellular immune phenomena mediated by T cells (14) and the demonstration that immune responses are regulated by helper (15,16,17) and suppressor (18,19) cells and by macrophages (20) emphasized the complexity of the immune system and the critical role played by T lymphocytes in the regulation of immunity.

It became increasingly apparent that the clonal selection theory, although correct, did not take into account the complex cellular and molecular interactions essential to immune phenomena or the restrictions these interactions dictate in the specificity of T cells. An additional system, beside specific immunoglobulins, involving the products of the major histocompatibility complex (MHC) was shown to be critically involved in the manner by which T cells

perceive antigens on the surface of cells and therefore in the nature of immunogenicity.

I propose to give a historical account of how our present understanding of 1 cell immunity and of T cell immune regulation has evolved with particular emphasis on the genes of the MHC and the molecules for which they code that regulate essential immune mechanisms.

Carrier Function and the Specificity of T Lymphocytes

The pioneering experiments of Landsteiner (21) established that antibodies can be produced against any type of molecule provided it is presented to the immune system coupled to an immunogenic carrier molecule. The determinants against which antibodies can be made were termed "haptens" and "carriers" the essential immunogenic molecules required to initiate immune responses. Landsteiner's experiments implied the existence of a complex process involving the recognition of a "carrier" function by an entity distinct from antibody to initiate immune responses.

Spurred by Landsteiner's observations of the "carrier" effect, Gell and I (22) investigated the specificity of cellular immune responses to haptenprotein conjugates. We noted a fundamental difference between the specificity of cellular immune reactions and of antibodies. Immune cells displayed classical "carrier" specificity in contrast to antibodies which can be largely hapten specific. This was latter shown to be a general property of T cell mediated immune responses (23). Moreover, we also demonstrated another critical difference between the type of determinants reactive with antibodies and with T cells. Extensive denaturation of protein antigens capable of decreasing drastically reactivity with specific antibody had little effect on the ability of such proteins to initiate or elicit delayed type sensitivity (DTH) to the intact molecules (24). This indicated again that T and B lymphocytes may not be specific for the same determinants, and that T cells react preferentially with sequential determinants on proteins. These observations were confirmed by Schirrmacher and Wigzell (25) and by Ishizaka et al. (26).

The Discovery of Immune Response Genes

The identification of the genes which determine biological phenomena and the study of the control they exert on these phenomena has proven to be the most successful approach to a detailed understanding of the mechanism of biological processes. Some of the most significant advances in molecular biology have relied upon the methodology of genetics. The same statement may be made concerning our understanding of immunological phenomena.

Immunologists had not infrequently observed that certain individuals are weak responders to selected antigens. The complexity of most antigens and the marked heterogeneity of the antibody response did not encourage a genetic analysis of specific immune responsiveness. However, when synthetic polypeptides with relatively restricted structural heterogeneity were synthesized (27), the appropriate antigens were available to immunologists to study the genetic requirements for immunogenicity. The response of outbred guinea pigs to

hapten conjugates of the poly-L-lysine homopolymer (DNP-PLL) was the first specific immune response documented to be under the control of a single dominant autosomal gene (28). We introduced the terms "responders" and "nonresponders" to distinguish animals possessing or not possessing the gene, and the gene responsible was referred to as an immune response or Ir gene. Fortunately, two inbred strains of guinea pigs developed originally by Sewell Wright were available at the National Institute of Allergy and Infectious Diseases, strain 2 and strain 13. Strain 2 animals responded to DNP-PLL and strain 13 guinea pigs did not, whereas (2 x 13)F₁were responders. The phenomenon was extended to other polypeptide antigens (Table 1), the random copolymers of L-glutamic acid and L-lysine (GL), L-glutamic acid and L-alanine (GA) and L-glutamic acid and L-tyrosine (GT) (29).

The response to conventional antigens, weak isologous antigens (30) or foreign protein antigens, administered at limiting immunizing doses (31, 32) to ensure response to only the most immunogenic determinants, is under similar control of individual Ir genes.

The phenomenon was extended to other experimental species. McDevitt and Sela demonstrated the Ir gene control of the response of inbred mice to a very interesting set of branched copolymers synthesized by Sela, (T,G)-A-L, (H,G)-A-L, and (Phe,G)-A-L which differed only in one of the amino acids on the side chain (33). The responses to these copolymers were under the control ofdistinct Ir genes. In collaboration with Maurer we also demonstrated Ir gene control of the response of inbred mice to linear random copolymers of L-amino acids (34). Genetic control of immune responsiveness was also reported in rats (35, 36), and rhesus monkeys (37), illustrating the generality of this phenomenon for different antigens and in different species.

Linkage of Ir Genes to the Major Histocompatibility Complex. Mapping of the Genes and Gene Complementation

The availability of inbred strains of mice and guinea pigs permitted the rapid mapping of Ir genes. McDevitt and Chinitz (38) made the exciting finding that responsiveness of inbred mice to (T,G)-A-L, (H,G)-A-L, and (Phe,G)-A-L could be predicted on the basis of their H-2 genotype. The linkage of murine Ir genes with the H-2 complex was confirmed for numerous antigens by many laboratories and is appropriately considered one of the distinctive features of specific Ir genes (39). A summary of the data is shown in Fig. 1 (40). Identical linkage between guinea pig Ir genes and MHC specificities in that species was documented in our laboratory (41). The strategy employed in these experiments is illustrated in Table 1. The genes for the responses to PLL, GA and BSA were observed to be linked to the locus controlling the major histocompatibility complex of strain 2 guinea pigs. Similarly the GT gene and the genes controlling responsiveness to limiting doses of DNP-GPA were found to be linked to the major H locus of strain 13 guinea pigs. Linkage of Ir genes to the MHC of the rat (35, 36) and rhesus monkey (37) was also established, illustrating the general significance of the finding. In contrast, Ir genes were shown not to be linked to the structural genes for the H chain of immunoglobulins (39).

Figure 1. Immune responsiveness to linear random and branched copolymers of L amino acids, to isologous antigens, and to foreign antigen administered at limiting immunizing doses, is determined by the H-2 haplotype.

The availability of congenic resistant mouse strains developed by Snell (42) and of strains with documented recombinant events within the H-2 complex permitted McDevitt, Deak, Shreffler, Klein, Stimpfling and Snell (43) to map the murine Ir- 1 locus controlling responsiveness to (T,G)-A- L to a new region of the mouse H-2 complex termed the I region (Fig. 2).

Mapping of individual murine Ir genes by several laboratories (reviewed in 40) revealed that most Ir genes map in I-A, a smaller number map in I-B whereas responsiveness to some antigens map in both I-A and I-E. The latter cases deserve to be discussed in some detail as they provide the genetic basis for the molecular identification of Ir gene products, to be discussed in another section. Whereas most immune responses investigated are under the control of

	Strain			(2×13))F ₁ ×13	(2×13)	$F_1 \times 2$
Antigens	2	13	$(2\times13)\mathbf{F}_1$	50 %	* 50 %	50 %	50 %
DNP-PLL	. atrale	_**					
GL	+ **	_**	+	+	_		
GA	+	_	+	+	_		
GT	_	+	+			+	_
BSA 0.1 μg	+	_	+	+			
HSA 1 µg	+	-	+				
DNP-BSA 1 μg	+	_	+	+	-		
DNP-GPA 1 μg	_	+	+			+	-
Major H locus							
strain 2	+**	_	+	+	_		
strain 13	-	+	+			+	_

Table 1. Inheritance of Specific Ir Genes and of the Major Histocompatibility Locus of Strain 2 and Strain 13 Guinea Pigs by $(2 \times 13)F_1$ and Backcross Animals

single loci, complementation of Ir genes for the response to certain antigens is observed in rare cases. Thus Dorf and I showed that the response to the terpolymer of L-glutamic acid, L-lysine and L-phenylalanine ($GL\emptyset$) is determined by two Ir genes which complement in both the cis and trans configura-

Figure 2. Genetic map of the H-2 complex showing the various loci and the subregions of I. Note that Ir genes have been mapped in I-A, I-B and I-E.

^{*} Column identifies the same group of backcross animals.

^{(**) +} indicates responsiveness and presence of major histocompatibility specificities; — indicates nonresponsiveness and absence of major histocompatibility specificities of the inbred strains. From B. Benacerraf in Ann. Immunol. (Inst. Pasteur) 125c, 143 (1974).

Strain	H-2				H-2 reg	H-2 region formulae	٠			GLW response
	haplotype	2	¥ .	1 D	=	L.F)- <u>-</u>	x	n	(% binding ± S. E.)
Bin	Ф	Р	Q	b	Ъ	Р	þ	Р	Р	1 ± 3
B10.BR	ب د	~	-*	*	ᅩ	-*	.¥	-*	*	+1
(B10×B10.BR)F	b/k	b/k	b/k	b/k	b/k	b/k	b/k	b/k	b/k	68 ± 16
B10.S	s	s	SSI	s	s	s	s	s	s	+1
B10.D2	р	p	þ	q	p	þ	þ	q	p	+1
B10.A	R	~	-*	ᅩ	× 1	<u>~</u>	Р	р	р	+1
3R	51	Р	اک	Р	, q	- ×1	þ	р	p	59 ± 7
X 2	i5	9	۵	₽ P	¥	- X1	Р	ت ت	þ	+1
18R	i18	Р	ą	þ	q	Р	Р	- P	p	+1
7.R	t2	S	S		s,	s	so	•	þ	4 ± 2
	4)	so.	S	F ~.	-¥	الخد	р	p	p	71 ± 10
A.TL	11	s	ĭ	-*	- X	~	Դ	-×	q	+1
B10.HTT	t3	s	SOI Δ	ν)	F	ابحہ	<u>~</u> }	ㅗ	p	77 ± 7
			B	1		ಶ				
			<u> </u>							

Vertical bar indicates position of crossing-over. GLOPQ genes are indicated by underlines.

Adapted from Dorf, M. E. and Benacerraf, B. in Proc. Natl. Acad. Sci. (USA) 72, 3671 (1975).

tion to permit a response to GLØ to develop (44). These genes which we termed α and β map in the I-E and I-A subregion (Fig. 2), respectively (Table 2). Possession of either α or β genes alone does not confer responsiveness to GLØ which require the presence of both genes. Response to several other antigens follows the pattern of the GLØ response (45).

We shall discuss later the evidence that Ir gene complementation for GLØ responses reflects the molecular complementation of the α and β subunits of the Ia glycoprotein. This molecule must be expressed on the surface of macrophages and B lymphocytes for the response to GLØ. In the case of this Ia molecule, the a and β chains will be shown to be coded respectively in I-E and I-A. When Ir genes map in a single region such as I-A, distinct a and β subunits, the $A\alpha$ and $A\beta$ chains, are coded in the same A subregion.

Ia Molecules and Histocompatibility Antigens

Taking advantage of the existence of mouse and guinea pig strains which differ solely at the I region of their MHC such as the ATL and ATH strains of mice and the guinea pig strain 2 and strain 13, attempts were made to produce antibodies specific for the Ir gene products by cross-immunization with lymphoid tissue. Alloantisera prepared in this manner by Shreffler and David (46), Klein and Hauptfeld (47) and McDevitt and associates (48) in mice and Schwartz, Paul and Shcvach (49) in guinea pigs reacted with alloantigens termed Ia (immune response-associated) antigens expressed on B lymphocytes and a significant fraction of macrophages (50). A detailed study by Shreffler and David (46) of the specificities detected by anti-Ia antisera revealed the considerable polymorphism of these molecules.

Cullen et al (51, 52) studied the structure of murine Ia antigens expressed on B lymphocytes, and analyzed the membrane antigens specifically reactive with anti-Ia antibodies. Such antibodies bound glycoproteins from B cells composed of an α and a β chain with molecular weights of 33,000 and 28,000 daltons respectively.

Similarly, 13 anti-2 and 2 anti-13 reciprocal alloantisera detected homologous Ia molecules with corresponding α and β chain subunits on guinea pig macrophages and B lymphocytes (49,53).

A graphic representation of an Ia molecule is shown in Fig. 3 and compared with a classical transplantation antigen of the MHC expressed on all cells and comprised of a 45,000 dalton polymorphic chain associated with β_2 , microglobulin (54).

An analysis of the immunological properties of the highly polymorphic la molecules on macrophages and B lymphocytes revealed that these products stimulate the alloreactive proliferation of unprimed clones of T lymphocytes in an *in vitro* test termed the mixed leukocyte reaction (MLR) (55). The ability of la bearing cells to stimulate MLR responses is effectively blocked by anti-la antibodies (56). I region differences and la molecules on cells stimulate strong graft versus host reactions (57) and vigorous homograft rejections (58).

Figure 3. Graphic representation of the chain structure of an Ia molecule, compared with the structure of a histocompatibility antigen. Essentially comparable results were obtained for the mouse H-2 and the human HLA and the guinea pig GPLA complexes.

Function of Ir Genes

The study or Ir gene function contributed to our understanding of the intricate regulatory mechanisms evolved by T cells and macrophages to regulate specific immune responses. Experiments were initially designed to identify the cells of the immune system in which Ir genes are expressed and the nature of the process they control. H-linked Ir genes were shown to determine both humoral and cellular immune responses (28). A further analysis revealed that the genes control the recognition of the "carrier" molecule as an immunogen (59), a property of T lymphocytes. Thus, responder guinea pigs which make anti-DNP antibody upon immunization with DNP-PLL are equally able to make antibenzylpenicilloyl (BPO) antibody to BPO-PLL whereas nonresponder guinea pigs to DNP-PLL do not (59). Similarly, nonresponder animals who failed to make anti-DNP antibody to DNP-PLL, make anti-DNP antibody when immunized with DNP conjugates of a conventional antigen. Moreover, Ira Green in my laboratory made the significant observation that the DNP-PLL genetic defect could be bypassed and nonresponder animals induced to form anti-DNP-PLL antibodies if DNP-PLL is treated as a macromolecular hapten and administered coupled to an immunogeneic carrier such as ovalbumin (60). Consistent with the critical role of the carrier in cellular immunity, the genetic

defect for cellular immunity was not bypassed and the nonresponder guinea pigs immunized with DNP-PLL-ovalbumin did not develop delayed type sensitivity to DNP-PLL in spite of making large amounts of anti-DNP-PLL antibodies. Dunham, Unanue and I (61) then verified the presence of B cells with antibody receptors for nonimmunogeneic polypeptides in the spleens of nonrespender mice. We concluded from these experiments that the process governed by specific H-linked Ir genes controls T cell immune responses and affects antibody production only as a result of the nerd of helper T cells for B cell responses. In agreement with this conclusion, H-linked Ir genes were shown to control only the response to T dependent antigens (39). 'I' independent responses which result from the direct activation of B lymphocytes by antigen are not under H-linked Ir gene control.

The involvement of Ir genes in 'I' cell responses could result from either: 1) the expression of Ir genes in T cells and their coding for the T cell receptor, or 2) the expression of Ir genes in macrophage and B cells and their role in determinant selection, antigen presentation and T cell-B cell interaction. The latter alternative was shown to be correct in every respect. Shevach and Rosenthal (62), working with the guinea pig systems we developed, made USC of the finding that primed T cell clones proliferate in vitro and incorporate H³ thymidine when presented with antigen by antigen pulsed macrophages. (2 x 13)F, guinea pigs were immunized with two antigens, DNP-GL, controlled by a strain 2 Ir gene, and GT controlled by a strain 13 Ir gene (Table 1). Their T cells were exposed to DNP-GL or GT on macrophages of 2, 13 or F₁origin. The results were unequivocal. Primed (2 x 13)F₁T cells responded to DNP-GL on strain 2 or F₁macrophages but not on strain 13 macrophages. In contrast, the same primed cell populations responded to GT on strain 13 or F₁ but not strain 2 macrophages (Fig. 4). These experiments were extended in mice by Sredni, Matis, Lerner, Paul and Schwartz (63) using a GLØ specific T cell lint cloned from a responder B10.A(5R) mouse. Such GLØ specific clone lines only proliferated when presented GLØ by antigen presenting cells (macrophages) from high responder mice [B10.A(5R) or (B10.A X B10)F,] expressing both Ir-GLØ α and β genes in the same cell (Table 3). The need for Ia bearing macrophages for T cell stimulation was further documented in our laboratory by Germain and Springer (64). Treatment of antigen presenting cells with monoclonal anti-la antibody and complement abolished the ability of the cells to present antigen for proliferative responses to primed T cells (Table

Another approach to the role of Ir genes in the presentation of antigen to T cells by macrophages involved the use of anti-Ia antisera without complement to block antigen presentation. The original experiments were carried out in guinea pigs by Shevach, Paul and Green (65) and later in mice by Schwartz and associates in collaboration with our laboratory (66). T cells from (2 X 13)F₁ guinea pigs primed to DNP-GL and GT were exposed to DNP-GL or GT *in vitro* together with (2 X 1 3)F₁ macrophages and alloantisera directed to 2 or 13 Ia specificities. Anti-2 antisera blocked only the response to DNP-GL and not to GT whereas anti-13 antisera blocked the response to GT but not to

Figure 4. Ir genes are expressed in Ia bearing macrophages. $(2 \times 13)F_1$ T cells from guinea pigs primed to both DNP-GL (to which strain 2 responds) and GT (to which strain 13 responds) were cultured *in vitro* with strain 2, strain 13, or F_1 macrophages pulsed with GT or DNP-GL. The proliferative responses are recorded as the incorporations of 3H thymidine into DNA. Adapted from Shevach, E. M. and Rosenthal, A. S. in J. Exp. Med. 138, 1213 (1973).

DNP-GL (Table 5). These experiments led to the important conclusion that: 1) Ir genes are expressed on antigen presenting cells with the morphology of macrophages, and 2) T cells detect antigen on the surface of antigen presenting cells and are specific for foreign antigens perceived in the context of autologous la molecules.

Determinant selection for T cell responses clearly results from such a process. Thus, even in the case where two inbred strains are responders to the same T dependent antigen the studies of Barcinski and Rosenthal (67) on the immune response of guinea pig to insulin revealed that strains 2 and 13 respond to distinct determinants; strain 2 T cells respond to a determinant on the A chain of insulin (AR-A9-Al"), whereas in strain 13 guinea pigs, the response is directed to sequential determinants on the B chain of insulin involving the histidine at position 10 (68). Similar data concerning determinant selection in other antigens was reported by Berzofsky et al (69) and Kipps et al in our laboratory (70).

Table 3. Stimulation of GLØ Specific B10.A(5R) T Cell Clones Requires Antigen Presenting Cells (Macrophages) Expressing Both α and β Ir-GLØ Gene Products in the Same Cell

Antigen (GLØ) presenting cells	Ir-GL	Ø alleles	Proliferative response by B10.A(5R) (CPM ± SEM)	
presenting cens	α	β	Clone 6.2	Clone 6.4
none			67 ± 28	173 ± 52
B10.A(5R)	+	+	$7,447 \pm 61$	$9,243 \pm 1,774$
B10.A	+	-	60 ± 15	67 ± 15
B10	_	+	70 ± 10	87 ± 20
B10.A+B10	±	±	73 ± 22	63 ± 23
$(B10.A \times B10)F_1$	+	+	$10,177 \pm 1,492$	$9,497 \pm 1,514$

Note:

Clones 6.2 and 6.4 were selected from GLØ primed T cells of B10.A(5R) responder mice. $5 \times 10^{\circ}$ cells from those cloned lines were stimulated with 100 μ g/ml GLØ in the presence of irradiated antigen presenting spleen cells. Stimulation was assayed by measuring the incorporation of $^{\circ}$ H-thymidine.

Adapted from Sredni, B., Matis, L. A., Lerner, E. A., Paul, W. E. and Schwartz, R. H. in J. Exp. Med. 153, 677, 1981.

Table 4 Treatment with Monoclonal Anti-Ia Antibody and Complement Eliminates Macrophages Required for GAT Induced T Cell Proliferation

Responding cells (a)	Added antigen presenting cells (b)	Response (△CPM)
C treated	none	53,656
anti-Ia + C treated	none	722
anti-Ia + C treated	γR spleen	36,146
anti-Ia + C treated	α -Thy 1 + C treated γR spleen	56,505

Note:

a. 4 X 10° nylon passed lymph node T cells from GAT-CFA primed BALB/c mice, treated with C alone, or M5/114 + C, then cultured with or without 100 μ g/ml GAT for 3 days, pulsed for 18 hr with 3 H-thymidine, harvested, and counted.

b. 3 X 10⁵1500R y-irradiated syngeneic spleen cells.

Table 5. Anti-Ia Alloantisera Block Antigen Presentation to Primed T Cells

Responding cells	Antigen	Antisera added	Increased DNA synthesis
(2×13) F ₁ T cells	DNP-GL	none	++++
,,	DNP-GL	anti-2	+
**	DNP-GL	anti-13	++++
**	GT	none	++++
,,	GT	anti-2	++++
,,	GT	anti-13	+

Note:

 $(2 \times 13)F_1$ guinea pig T cells were primed to DNP-GL and GT. Their response to DNP-GL is blocked by 13%-anti-2 antisera and their response to GT is blocked by Z-anti-13 antisera. These alloantisera are specific for Ia antigens on strain 2 and 13 respectively.

Adapted from Shevach, E. M., Paul, W. E., and Green, I., J. Exp. Med. 136, 1207 (1972).

The genetic restrictions dictated by I region controlled antigen presentation to T cells can also be observed when attempts are made to transfer delayed type sensitivity. I had made the puzzling observation with Paul and Green that delayed type sensitivity to DNP-PLL in random bred guinea pigs could only be adoptively transferred to recipients that were also responders to this antigen (71). Using congenic resistant inbred strains of mice, Miller et al (72) later showed that the successful transfer of delayed type reactivity requires I region identity between the sensitized T cell and the recipient mice which provide the antigen presenting macrophage when the test antigen is injected. Moreover, as expected, sensitized cells from (responder x nonresponder)F₁mice did not transfer DTH to nonresponder recipients lacking the antigen presenting cells (73).

At the same time as the N.I.H. group documented the importance of Ir genes and Ia molecules in antigen presenting cells and their critical role in the presentation of antigen to T cells, experiments were carried out by Katz, Hamaoka, Dorf and me (74) and by Kindred and Shreffler (75) demonstrating the role of I region genes in the control of T cell-B cell interactions in antibody responses.

We devised a double adoptive transfer protocol whereby hapten specific B cells and carrier specific T cells from either the same parental strain or distinct parental strains were transferred to irradiated F₁recipient mice prior to secondary challenge (74). The results were unequivocal. Carrier specific helper T cells and hapten primed B cells need to share I region genes for antibody response to develop to the hapten-carrier conjugate. Successful T cell-B cell interactions were observed between F₁T cells and parental B cells, or parental T cells and F₁B cells which only need to share one haplotype for successful responses provided both strains are responses to the carrier antigen used (Table 6).

Table 6. I Region Genes Restrict T-F	3 Cell Cooperative Interactions

H-2 haplotype of hapten-primed	H-2 haplotype of carrier-primed	Secondary responses in F ₁ irradiated
B cells	T cells	recipients
a	a	++++
b	ь	++++
a	b	_
b	a	_
b	$(\mathbf{a} \times \mathbf{b}) \mathbf{F}_{\mathbf{I}}$	++++
a	$(\mathbf{a} \times \mathbf{b}) \mathbf{F}_1$	++++
$(a \times b)F_1$	a	++++
$(a \times b)F_1$	ь	++++

Note:

Carrier primed T cells were adoptively transferred to (a X b) F_1 recipients which were irradiated; then anti-Thy 1 and C treated, hapten primed spleen cells (B cells) were adoptively transferred to the same (a X b) F_1 recipients. The animals were challenged with the hapten-protein conjugates and the secondary anti-hapten response measured as an indication of T-B cell cooperative interactions.

Adapted from Katz, D. H., Hamaoka, T., Dorf, M. E. and Benacerraf, B. in Proc. Natl. Acad. Sci. (USA) 70, 2624 (1973).

When an antigen under Ir gene control was used such as the copolymer GLT, (responder X nonresponder) F_1T cells specific for GLT helped the responder but not the nonresponder hapten specific B cells when challenged with DNP-GLT (76), indicating the critical role of Ir gene expression in B cells, in T cell-B cell interactions (Fig. 5).

The need for I region identity for T cell-B cell interactions was confirmed by Sprent (77) and Kappler and Marrack (78) with different systems. More recently, Chiller, working with clonally derived antigen specific helper T cell lines, observed the same I region requirement for successful T-B cell interaction.

The data of Singer and Hodes (79) indicate that in certain experimental conditions where the antibody response involves solely unprimed B cells of the Ly b5 phenotype, antibody responses may be helped by T cells, across I differences. It is clear, however, that the majority of the responses of primed B cells require the type of I region controlled T cell-B cell interaction discussed earlier. The specificity of the interaction for Ia is determined by the specificity

Figure 5. Failure of GLT primed CAF₁ T cells to cooperate with nonresponder hapten primed parental A/J B cells, in contrast with the ability of KLH primed T cells to cooperate equally well with both parental A/J and parental BALB/c hapten primed B cells for anti-DNP secondary responses.

From Katz, D. H., Hamaoka, T., Dorf, M. E., Maurer, P. H., and Benacerraf, B. in J. Exp. Med. 138, 734 (1973).

of the T cell clones stimulated when antigen is originally presented by the Ia bearing macrophages.

What is the mechanism of I region controlled T cell-B cell interaction and Ir gene function at this level? The data is not as definitive as in the case of macrophage-T cell interaction discussed earlier. I feel, nevertheless, that substantial evidence exists for the view that murine Ly I'T cells are specific for antigen perceived in the context of Ia molecules on antigen presenting cells. The cells are stimulated to proliferate and differentiate into DTH or helper T cells. The helper T cells will in turn interact with Ia bearing B cells which bound antigen through their immunoglobuin receptors. The helper T cells deliver their differentiating signal by interacting with antigen and Ia molecules on B cells in a similar manner as on antigen presenting cells.

The la Molecules are the Ir Gene Products

There is now substantial and very convincing evidence for the view that Ia molecules are the Ir gene products and determine specific immune responsiveness to thymus dependent antigens.

- 1) Ia molecules, the surface glycoproteins composed of a and B chains, expressed primarily on a population of macrophages and B lymphocytes, are coded for in precisely the same subregion of I in which Ir genes map: I-A and I-E.
- 2) Anti-Ia antisera and particularly monoclonal anti-I-A antibodies specifically block *in vitro* responses by interacting with Ia molecules on antigen presenting cells.
- 3) The mapping of the structural genes coding for the α and β chains of Ia molecules in the I region indicates an intimate correlation between -chain structure and the control of the response to GLØ by complementing α and β genes in I-A and I-E.

The structural analysis of Ia molecules and of their component chains in the mouse was carried out by several laboratories using the techniques of 2 dimensional gel electrophoresis and peptide mapping to analyse the basis of polymorphisms.

Jones et al (80) made the fundamental observation that, in strains bearing the appropriate H-2 haplotype, a gene in the I-E subregion, controls the cell surface expression of an Ia molecule, whose polymorphic determinants are largely controlled by the I-A subregion. Cook, Vitetta, Uhr and Capra (81) and later Silver et al (82) confirmed these findings and demonstrated that the 1-E subregion controls the synthesis of the Ia Ea chain which on the cell surface is noncovalently associated with the β chain determined in the I-A subregion (Figs. 2 and 6). Strains with the H-2° haplotype in the I-E subregion fail to synthesize this a chain and as a consequence the corresponding Ia molecule is not expressed on the cell membrane, although the β chain coded in I-A is synthesized and found in the cytoplasm.

The genetic control of the polypeptide chains of this class of Ia molecules by I-E and I-A correlates completely with the Ir gene complementation observed in the response to $GL\varnothing$ discussed earlier (44). Moreover those strains that

Figure 6. Model for the genetic and structural basis of Ir gene complementation in the response to GLØ. The products of the α and β Ir genes required for GLØ presentation are postulated to consist, respectively, of an Ia.7 bearing α chain (designated α E) encoded in the I-E subregion and of a β chain (designated β E) encoded in the I-A subregion which interact selectively to form a functional Ia molecule on the cell membrane of the antigen presenting cells.

exhibit a responder a gene at I-E synthesize an a chain controlled by this locus. It is indeed fortuitous that we called the I-E gene a and the I-A gene b at a time when we did not know that they determined, respectively, the a and b chains of the corresponding Ia molecule.

The availability of cloned lines of antigen specific 'I' cells and of monoclonal anti-Ia antibody provided still more conclusive evidence for the identity between Ia molecules and Ir gene products. Sredni, Schwartz and associates (63) cloned a GLØ specific T cell line derived from a B10.A(5R) responder mouse which was stimulated only by GLØ presented on B10.A(5R) or (B10 X B10.A)F, presenting cells (Table 3). The *in vitro* response of this clone to GLØ was specifically blocked by a monoclonal anti-Ia antibody specific for the conformational determinants (83) on the Ia molecules resulting from the interaction of the I-E coded α chain with the I-A coded β chain.

The other major murine Ia molecule has both α and β chains coded for in I-A. The possibility still exists for genetic complementations at the molecular level corresponding with Ir gene complementation in animals heterozygous at I-A, which is precisely what occurs. Such complementation is more difficult to detect and depends upon clonal analysis of T cells specific for an antigen the response to which is controlled at I-A, such as the terpolymer GAT. Cloned T cell lines specific for GAT were selected by Fathman et al (84) and by Sredni et al (63) from a (B10.A x B10)F, mouse immunized with GAT. Some of these clones responded to GAT when presented by B10.A macrophages, other clones responded to GAT on B 10 macrophages and a third type of clone responded to the antigen only when presented on (Bl0.A x B10)F, macrophages (Table 7). We can conclude that the response to GAT in (B 10.A x B10)F, mice is determined by three types of genetically distinct I-A coded Ia molecules which,

Colony no.	Prolife	erative response	to GAT on spleen cell	s from
	B10.A	B10	$(B10.A \times B10)F_1$	H-2 restriction
1	++++		++++	B10.A
4	++++	_	++++	B10.A
8	++++	_	++++	B10.A
12	++++	_	++++	B10.A
2	_	++++	++++	B10
3	_	++++	++++	B10
5	_	++++	++++	B10
9	_	++++	++++	B10
10	_	++++	++++	B10
13	_	++++	++++	B10
6	_	_	++++	$(B10.A \times B10)F_1$
11	_	_	++++	$(B10.A \times B10)F_{\perp}$
14	_		++++	$(B10.A \times B10)F_1$

Table 7. Three Different Types of MHC Restriction of GAT-Specific T Cell Colonies from (B10.A×B10)F, Mice Primed to GAT

Note:

(B10.A \times B10)F $_1$ mice were immunized with GAT; their T lymphocytes stimulated *in vitro* with GAT and cloned in soft agar. 2×10^4 T cells from each colony were stimulated with 100 µg GAT in the presence of antigen presenting cells from (B10, B10.A or B10.A \times B10)F $_1$ mice. Adapted from Sredni, B., Matis, L. A., Lerner, E. A., Paul, W. E. and Schwartz, R. H. in J. Exp. Med. 153, 677, 1981 press.

together with antigen, specifically select the three types of clones stimulated. The extent to which these three Ia molecules interact with the same determinant on the GAT antigen or with different ones has not been ascertained.

Significance of Ir Gene Specificity

We have made considerable progress in our understanding: 1) of Ir gene function in antigen presenting cells and in B cells, 2) of the identity of Ia molecules and Ir gene products, and 3) of the commitment of murine T cells with the Ly I phenotype (85) to react with autologous Ia molecules and antigens. But an important issue remains unresolved which concerns the process by which the specificity of Ir gene function is imparted, i.e., why certain Ia molecules on antigen presenting cells determine T cell response to some antigens and not to others. The issue can also be presented in other terms, i.e. what mechanism determines the development of T cell clones with combined specificity for autologous Ia molecules and selected antigens.

T cells bear receptors coded at least in part by the immunoglobulin H chain linkage group as shown by Binz and Wigzell (86), Eichmann (87) and our laboratory (88-90). Ir genes do not need to be expressed in T cells for responses to occur. T cells become committed to host MHC specificities as they differentiate. Thus, nonresponder parental T cells can be turned into responder T cells by being developed in (responder X nonresponder)F, irradiated recipients (73, 91). Such T cells respond to the putative antigen, if it is presented on responder macrophages bearing the appropriate la molecules with which the T cells interacted during differentiation.

Two types of hypotheses have been formulated to account for Ir gene controlled restrictions. von Boehmer, Haas and Jerne (92) proposed that T cells generate their repertoire for foreign antigens from their receptors for autologous MHC antigens and that Ir gene defects reflect the absence of clones bearing receptors for certain antigens, based upon the restriction placed on the repertoire by the commitment of T cells to a particular set of autologous MHC antigens. As T cells differentiate and are selected to react with different MHC antigens in different individuals, different H-linked Ir gene defects result.

An alternative hypothesis was proposed independently by Rosenthal (93) and myself (94). It postulates:

- 1) that Ia molecules are capable of reacting selectively with certain amino acid sequences on protein antigens,
- 2) that such a selective interaction in antigen presenting cells results in the formation of an Ia molecule-antigen complex reactive with T cell clones differentiated to bear receptors for autologous Ia and antigen (Fig. 7).

A limited number of such binding sites on a relatively small number of la molecules can generate from available antigens an almost unlimited number of determinants specifically recognized by T cells. The size of the binding site on the Ia molecule for the antigen or its fragment should encompass a limited number of amino acids in order not to impose undue restrictions on the system and to permit a given site to bind to a great variety of foreign proteins. The likelihood that such a sequence is present in a given protein varies inversely with the size of the sequence and is considerable for a postulated size involving three or at most four amino acids. The location of the binding sites will vary in different proteins. This dictates the antigenic determinants with which T cells react in conjunction with Ia molecules. A given Ia molecule could thus react with a large number of antigens and yet impose unigenic restriction to immune responsiveness.

Figure 7. Graphic representation of the specific interaction proposed between Ia molecule and antigen fragment on the surface of antigen presenting cells (macrophages), required for specific interaction with T cells.

The identification of the amino acid sequences critical for immunogenicity may provide some indication of the size of the postulated site of interaction with the Ia molecules. The elegant studies of Schlossman and associates (95, 96) on the immunogenicity of DNP-oligo-L-lysines for strain 2 guinea pigs is very informative. The smallest oligolysine polymer which is immunogenic has seven lysines. However, a peptide containing only four lysines and a sequence of L-alanines, terminated with a DNP-lysine, is equally immunogenic in strain 2 guinea pigs, although the specificity of the response is different. It would appear therefore that the critical interaction site in this antigen for strain 2 guinea pigs may consist of at most 4 lysines. The data on the immunogenicity of insulin A chain for strain 2 guinea pigs and of B chain for strain 13 guinea pigs (68) and on the precise amino acids responsible suggest also an interaction site involving 3 or at most 4 amino acids.

Although the second hypothesis appears more compatible with the available findings, definite evidence of Ia molecule-antigen interaction is lacking. Some recent experiments of Nepom and Germain in our laboratory may also be interpreted to indicate a necessary interaction between Ia molecule and antigen for binding of the complex to T cells. We have indeed observed that when F 1 T cells specific far antigens under Ir gene control such as GAT or $GL\varnothing$ are stimulated to proliferate by antigen, they selectively bind autologous Ia molecules of precisely the type which determined responsiveness to the antigen. Considering that some of the T cells in the population studied should have been specific for the allelic Ia molecule, the selective binding observed may indeed imply a requisite interaction between Ia molecules on macrophages and antigen.

I Region Control of T Cell Suppressor Responses

Selected antigens such as the terpolymer GAT induce preferentially suppressor T cells in certain nonresponder mouse strains, which contribute to the unresponsiveness observed (97). These T cells, adoptively transferred, suppress the anti-GAT antibody response to GAT coupled to an immunogenic carrier. Preferential suppressor T cell responses were also observed for other antigens such as the copolymer GT (98) by us and hen egg lysozyme by Scrcarz and associates (99).

The ability to develop specific suppressor T cells also proved to be controlled in the I region of the murine H-2 complex (Table 8). The analysis of the genes responsible, of their products, and of the processes involved in the generation of specific suppressor T cells has not yet permitted a definitive understanding of these complex phenomena. As in the case of I region control of T cell responses, immunogenicity of a complex antigen is determined by the determinants it bears. Apparently certain determinants in mice of the appropriate H-2 haplotype induce selectively suppressor T cell responses (99, 100). Moreover, the presence of determinants which stimulate suppressor T cells preferentially may result in suppression of responses to other determinants on the antigen which otherwise would stimulate helper T cells and thereby antibody responses.

In addition to this type of I region control of suppressor T cell responses

Strain	H-2	% suppression	p values
A/J	a	0	< 0.4
A.By	ь	0	< 0.3
C57BL/J	b	0	< 0.1
129/J	ь	0	< 0.1
BALB/c	d	80	< 0.000001
DBA/2	d	81	< 0.001
D1.C	d	76	< 0.002
A.CA	f	100	< 0.00009
SJL	S	72	< 0.000001
A.SW		68	< 0.001
CAF ₁	a/d	74	< 0.0001

Table 8. H-2 (I region) Control of Suppressor T Cell Responses to the Copolymer GT

Note:

 $100~\mu g$ GT was administered intraperitoneally; 3 days later the experimental and matched control groups were immunized with GT coupled to the immunogenic carrier, methylated bovine serum albumin, and the antibody responses compared to determine the suppression elicited by GT preimmunization.

Dominant GT specific suppression can be generated in mice with $H-2^4$, H-2' and H-2'' but not the H-2'' or H-2' haplotypes. The responsible genes mapped in the I region. In transfer experiments the GT suppression observed was shown to be mediated by suppressor T cells. Adapted from Debré, F., Kapp. J., Dorf, M., and Benacerraf, B. in J. Exp. Med. *142*, 1447 (1975).

which is specific and determinant oriented, the I region affects suppressor T cell responses by coding for specificities expressed on all suppressor T cells. Murphy et al (101), and Tada et al (102, 103) discovered that a new subregion of I, the I-J, controls alloantigens expressed only on suppressor T cells. All the T cells in the suppressor T cell circuits bear I-J coded specificities. Moreover, antigen specific suppressor factors were extracted from antigen specific suppressor T cells (104, 105). Such factors were shown to stimulate the generation of suppressor T cells (106) and to bear on the same molecule determinants coded by the I-J subregion as well as idiotypic determinants coded for by the immunologlobulin heavy chain linkage group (88, 89). The structure of suppressor factor and the nature of the cellular interactions which result in suppressor T cell responses are currently under investigation in several laboratories.

The Functional Specificity of T Cells for the Antigens of the MHC - The Origin of Alloreactivity

In a preceding section we discussed the commitment of helper and DTH T cells to react with antigen and autologous Ia molecules. An analogous commitment of cytolytic T cells (CTL) to histocompatibility antigens of the MHC has been demonstrated by Zinkernagel and Doherty (107) by Shearer et al (108) and by Bevan (109) illustrating the general nature of the commitment of T lymphocytes to react with antigen only on cell surfaces and in relation with gene products of the MHC.

Zinkernagel and Doherty (107) demonstrated that CTL from mice immune

to Lymphocytic choriomeningitis virus (LCM) only lyse LCM infected target cells which share H-2 antigens with the killer cell. The MHC loci concerned map at either K or D of the H-2 complex. Thus, CTL recognize antigen in the context of the K or D histocompatibility antigens, like helper cells react with antigen and Ia molecules.

The evolutionary significance of these restrictions and of the role played by MHC antigens becomes readily apparent when we consider that T cell immune responses are primarily responsible for monitoring self and nonself on cell surfaces. T cells need to determine when an autologous cell becomes malignant or virally infected and must be destroyed. This surveillance function is optimally performed if a large number of T lymphocyte clones are specialized to detect small variants on MHC molecules. Taking advantage of this process, T cells have also evolved the capacity to regulate immune responses as a consequence of their ability to recognize antigen on cell membranes. Because unregulated immune responses can be very harmful, we have developed highly specific T cell mediated mechanisms of immune regulation which require the recognition by T cells of clones of other immune cells bearing antigen.

Because of the two types of MHC specificities exhibited by helper and.. cytolytic T lymphocytes, two types of Ir gene defects can be observed in CTL responses. A major type of Ir gene defect maps in the I region (92, 110) and concerns the generation of helper cells, as in the case of antibody. The other type maps in K (111) or D and reflects the ability of CTL clones to react with antigens on cell surfaces as they are presented in relation with K or D gene products.

The major topic of this paper has been the specificity of T cells for autologous MHC antigens and the manner in which foreign antigens are perceived by T cells in the context of MHC gene products. We postulate that MHC antigens have evolved for precisely this function. Yet they have been originally discovered by Corer et al (112) and identified in a different context as the major antigens, within a species, responsible for alloreactivity and the rejection of allografts, a phenomenon which is of limited evolutionary value. The issue of the origin of alloreactivity can now be appropriately addressed as it appears to be closely related to the process whereby T cells become committed as a class to reactivity with autologous MHC antigens during differentiation.

Jerne (113) proposed a theory which was further elaborated by ourselves (114, 115) to explain the generation in the thymus of T cells specific for autologous MHC antigens. According to the theory, in the first stage T cells initially specific for self MHC gene products are selected in the thymus to differentiate and proliferate. Then, in a second stage, only those T cells which bear low affinity receptors for self MHC antigens are allowed to mature and leave the thymus as functional T cells. Such T cells, having low reactivity for self MHC antigens, have concomitantly high affinity for variants of self MHC antigens. These variants appear to be the same or similar to the allogeneic MHC antigens expressed in the same species. Weaker affinity for xenogeneic MHC antigens would thus be expected. Simultaneously and independently

these T cells develop recognition for determinants on conventional thymus dependent antigens.

The high degree of reactivity to MHC antigens which constitute the polymorphic population encountered in the same species (i.e. alloantigens) and the lower reactivity to xenogeneic MHC antigens may be attributed to the fact that low affinity receptors for self MHC antigens are expected to react optimally with allogeneic MHC antigens, but much less so with xenogeneic antigens. This would account for the paradox that the strongest T cell responses arc not elicited by antigens further removed phylogenetically from the responder. Two predictions from this theory are: (a) that clones of T cells induced by xenogeneic MHC antigens should be highly cross-reactive with allogeneic MHC antigens, even to the extent that they may demonstrate a heteroclitic specificity. This has indeed been demonstrated by Burakoff et al. when mouse anti-rat CTL were shown to be comprised of clones cross-reactive with allogeneic target cells (116) (Table 9). (b) Alloreactive T cells should be expected to be highly. cross-reactive with modified syngeneic cells. This was also shown to be the case when we observed considerable cross-reactivity by alloreactive cells for TNP conjugated target cells syngeneic to the responder (114) (Table 10).

Table 9. Mouse Cytolytic T Lymphocytes Elicited by Rat Stimulator Cells Cross-React Extensively with Murine Allogeneic Target Cells

Stimulator		% Specific ⁵¹ Ci Targets	
	Lewis	B10.BR	B10.D2
Lewis	78	41	15
	76	56	42
	66	75	30
	43	64	38
	59	64	42

Note:

C57BL/6 (H-2 $^{\circ}$) spleen cells were sensitized with rat spleen cells of the Lewis strain. The CTL were assayed for specific 57 Cr release on xenogeneic stimulator rat cells or on allogeneic B10.BR (H-2 $^{\circ}$) or B10.D2 (H-2 $^{\prime\prime}$) mouse cells. Identical results were obtained with ACI and BN stimulators.

Adapted from Burakoff, S.J, Ratnofsky, S. E., and Benacerraf, B. in Proc. Natl. Acad. Sci. (USA) 74, 4572 (1977).

Table IO. Cytolysis of Syngeneic TNP-Modified Taracts by Allogenically Stimulated Cytolytic T Cells

Responder	Stimulator	%	Specific ⁵¹ Cr rel targets	ease
		EL4-TNP (H-2 ^b)	EL4	P815 (H-2 ^d)
B6 (H-2 ^b)	DBA/2 (H-2 ^d)	32	3	80

Note:

Adapted from Lemonnier, F., Burakoff, S. J., Germain, R. N. and Benacerraf, B. in Proc. Natl. Acad. Sci. (USA) 74, 1229 (1978).

Since the T cell repertoire for MHC specificities is normally determined by the self MHC antigens of the thymus, we should expect the T cell repertoire to vary according to the MHC of the thymus in which T cells differentiate. Recent experiments utilizing radiation chimeras by Zinkernagel and associates (117) and Bevan (118) have demonstrated this to be the case.

The postulate that alloreactivity results from T cells differentiating in the thymus that are strongly reactive for variants of self MHC antingens leads to the expectation that immunization with virally infected syngeneic cells should result in the stimulation of T cell clones resctive with the virally infected syngeneic cells used to immunize and also reactive with uninfected allogeneic target cells.

Finberg et al in our laboratory have recently shown that immunization of BALB/c (H-2^d) mice with Sendai coated syngeneic cells stimulates CTL which lyse Sendai coated BALB/c target cells but also lyse uncoated H-2¹, H-2¹, H-2^k, H-2^s and H-2' allogeneic target cells to an appreciable degree (119) (Tabell 11). We further demonstrated by the cold target inhibition technique that the same clones that lysed BALB/c coated Sendai targets also crossreactively lysed the allogeneic targets (Fig. 8). Furthermore, it was observed that separate CTL clones lysed each of the different allogeneic targets. In addition, there was significantly less lysis of target cells bearing the H-2°haplotype than of target cells bearing the H-2* or H-2" haplotypes. This latter finding suggests that the association of Sendai virus antigens with the H-2^d gene products of BALB/c mice creates determinants which are more crossreactive with H-2k and H-2' than with H-2^qgene products. Using cloned T cell lines, the alloreactivity of CTL specific for virally infected syngeneic cells was confirmed by von Bochmer et al (120) and extended by Sredni and Schwartz (121) to T cells reactive with autologous I region products and foreign antigens. B10.A T cells specific for DNP-ovalbumin (DNP-ova) were cloned on DNP-ova pulsed macrophages. Such cloned lines proliferated specifically when exposed to DNPova on syngeneic macrophages. Some of these clones could also be stimulated to proliferate by H-2" allogeneic macrophages in the absence of DNP-ova (Table 12). Therefore the same clone selected on DNP-ova pulsed B 10.A macrophages reacted identically to DNP-ova pulsed B10.A macrophages or B10.S macro-

Table 11. Mouse Cytolytic T Cells (CTL) Specific for Sendai Infected Syngeneic Target Cells Also Lyse Noninfected Allogeneic Target Cells

Specificity of CTL	Target cells		% Specific 51Cr release
BALB/c anti-BALB/c-Sendai (H-2 ^d)	B10.D2-Sendai B10 B10.G B10.B2 B10.R111 B10.S B10.D2	(H-2 ^d) (H-2 ^b) (H-2 ^q) (H-2 ^k) (H-2 ^r) (H-2 ^s) (H-2 ^d)	78 37 12 38 46 28

Note:

Adapted from Finberg, R. S., Burakoff, S. J., Cantor, H. and Benacerraf, B. in Proc. Natl. Acad Sci. (USA) 75, 5145 (1978).

Figure 8. Mature cytolytic T cells specific for Sendai infected syngeneic target cells crossreactively lyse noninfected allogeneic target cells. Using cold target inhibition of lysis by CTL, this experiment illustrates that distinct populations of Sendai specific CTL lyse different allogeneic targets. Adapted from Finberg, R. S., Burakoff, S. J., Cantor, H., and Benacerraf. B., in Proc. Natl. Acad. Sci. (USA) 75, 5145 (1978).

phages without antigen. In both cases the ability to stimulate mapped in the I-A subregion demonstrating that alloreactivity to I region antigens also arises as a consequence of the commitment of T cells to autologous MHC specificities.

The remaining issue concerns the precise nature of the T cell receptor and how the specificity for foreign antigens and MHC coded molecules is concomi-

Table 12. BlO.A Clones Specific for Antigen and Self Ia May Also Be Selectively Alloreactive

Source of spleen cells	H-2	Proliferative response (CPM)	
		Clone 5	Subclone 5.6
B10.A	a	150	180
B10.A + DNP-OVA	a	14,700	39,200
B10	b	130	233
B10.D2	d	236	410
B10.S	s	15,900	36,300

Note:

A colony of DNP-OVA specific proliferating T lymphocytes was derived from lymph node cells of a B10.A mouse immunized with DNP-OVA. A cloned line was derived which was subcloned. Such cells at a concentration of 10^4 or 2×10^4 show reactivity both to DNP-OVA or B10.A cells and to B10.S without antigen.

Adapted from Sredni, B. and Schwartz, R. H., Immunol. Rev., 54, 187, 1981.

tantly maintained. On the basis of idiotypic and genetic evidence, the variable regions of immunoglobulin heavy chains appears to be responsible for both the specificity directed to MHC and the specificity for foreign determinants, when analyzed independently. The problem still remains whether T cells have one receptor or two coupled receptors and whether one or two $V_{\scriptscriptstyle H}$ regions are involved. Moreover, the significance of I region coded determinants on antigen-specific, idiotypc bearing regulatory products on T cells must be clarified. I am not tempted to guess at the answer considering the present availability of cloned lines of specific T cells, and of T cell hybrids. A definitive answer should be forthcoming from the laboratory, and the genes coding for the T cell receptors will soon be identified.

Conclusions

The evolutionary significance of the commitment of T cells to MHC antigens should be assessed from several vantage points. From the point of view of the individual concerned, the existence of such a broadly polymorphic system to determine specific responsiveness and suppression will unescapably result in individuals with different immunological potential to a given challenge. Some.. will clearly be at greater risk, whereas others will be better prepared to resist to certain infectious agents, and it is not surprising that immunological diseases are linked to the MHC. As far as the species is concerned, this polymorphic defense system results in a very significant survival advantage to unforeseen challenges and a better possibility for the immune system to adapt to evolutionary pressures.

As biologists we contemplate with admiration and awe the wondrous array of sophisticated cell interactions and recognitions evolved in the T cell immune system which must be a model for other similarly complex biological systems of highly differentiated organisms.

ACKNOWLEDGEMENTS

I would like to express my deep appreciation and my profound affection for my numerous students and associates who have shared with me in the toil and should now equally share in the honor. I am also deeply grateful to the National Institute of Allergy and Infectious Diseases which supported my work faithfully and generously since 1957, and housed me from 1968 to 1970, and to the National Cancer Institute which supported my program for the last ten years. I owe also a debt of gratitude to New York University Medical School and to Harvard Medical School which provided the stimulating academic environment without which our work could not have progressed.

REFERENCES

- 1. Ehrlich, P. Proc. Roy. Soc. B. 66, 424, 1900.
- 2. Gowans, Y. L., McGregor, D. D., and Cowen, D. M. Nature 196,651, 1962.
- 3. Burnet, F. M. The clonal selection theory of acquired immunity. Cambridge University Press, 1959
- 4. Nossal, G.J. V. Brit. J. Exp. Path. 41, 89, 1960.
- 5. Green, I., Vassalli, P., Nussenzweig, V., and Benacerraf, B. J. Exp. Med. 125, 511, 1967.
- 6. Kohler, G., and Milstein, C. Eur. J. Immunol. 6, 51 I, 1976.
- 7. Miller, J, F. A. P., and Mitchell, G. F.J. Exp. Med. 131, 675, 1970.
- 8. Hood, L., Loh, E., Hubert, J., Barstad, P., Eaton, B., Early, P., Fuhrman, J., Johnson, N., Kronenberg, M., and Schilling, J. Cold Spring Harbor Symp. Quant. Biol. 41, 817, 1976.
- 9. Kabat, E. A., Wu, 'I'. T., Bilowsky, H. U.S. Dept. of H.E.W., Public Health Service, National Institutes of Health Publication #80-2008, 1979.
- Tonegawa, S., Maxam, A. M., Tizard, R., Bernard, O., and Gilbert, W. Proc. Nat. Acad. Sci. USA 75, 1485, 1978.
- 11. Seidman, J. G., Leder, A., Edgell, M. H., Polsky, F., Tilghman, S. M., Tiemeier, D. C., and Leder, P. Proc. Natl. Acad. Sci. USA 75, 3881, 1978.
- 12. Miller, J. F. A. P. Nature (London) 195, 1318, 1962.
- Good, R. A., Dalmasso, A. P., Martinez, C., Hither, O. K., Pierce, J. C., and Papermaster, B. W. J. Exp. Med. 116, 773, 1962.
- 14. Warner, N. L., Szenberg, A., and Burnet, F. M. Austr. J. Exp. Biol. Med. Sci. 40, 373, 1962.
- 15. Mitchison, N. A. Eur. J, Immunol. I, 18, 1971.
- 16. Rajewsky, K., Schirrmacher, B., Nase, S., and Jerne, N. K. J. Exp. Med. 129, 1131, 1969.
- 17. Katz, D. H., and Benacerraf, B. Adv. Immunol. 15, I, 1972.
- 18. Gershon, R. K. Contemp. Top. Immunobiol. 3, 1, 1974.
- 19. Kapp, J. A., Pierce, C. W., Schlossman, S., and Bcnacerraf, B. J. Exp. Med. 140, 648, 1974.
- 20. Unanue, E. R., and Askonas, B. A. J., Exp. Med. 127, 915, 1968.
- Landsteiner, K. The Specificity of Serological Reactions. Harvard University Press, Cambridge, 1945.
- 22. Gell, P. G. H., and Benacerraf, B. J. Exp. Med. 113,571, 1961.
- 23. Paul, W. E., and Benacerraf, B. Science 195, 1293, 1977.
- 24. Gell, P. G. H., and Bcnacerraf, B. Immunol. 2, 64, 1959.
- 25. Schirrmacher, V., and Wigzell, H., J. Exp. Med. 113, 1635, 1974.
- 26. Ishizaka, K., Kishimoto, T., Delespessr, G., and King, T. P., J. Immunol. 113, 70. 1974.
- 27. Katchalski, E., and Sela, M. Adv. Protein Chem. 13, 243, 1958.
- 28. Levine, B. B., Ojeda, A., and Benacerraf, B. J. Exp. Med. 118, 953, 1963.
- 29. Bluestein, H. G., Green, I., and Benacerraf, B., J. Exp. Med. 134, 458, 1971.
- Lieberman, R., Paul, W. E., Humphrey, W., and Stimplling, J. H., J. Exp. Med. 136, 1231, 1972.
- 31. Vaz, N. M., de Souza, C. M., and Maia, L. C. S. Int. Arch. Allergy Appl. Immunol. 46, 275, 1974.
- 32. Green, I., and Benacerraf, B. J. Immunol. 107, 374, 1971.
- 33. McDevitt, H. O., and Sela, M. J, Exp. Med. 122, 517, 1965.
- 34. Martin, W. J., Maurer, P. H., and Benacerraf, B. J., Immunol. 107, 715, 1971.
- 35. Gunther, E., Rude, E., and Stark. 0. Eur. J. Immunol. 2, 151, 1972.
- 36. Amerding, A., Katz, D., and Benacerraf, B. Immunogenetics 4, 340, 1974.
- 37. Dorf, M. E., Balner, H., and Benacerraf, B. J. Exp. Med. 142,673, 1975.
- 38. McDevitt, H. O., and Chinitz, A. Science 163, 1207, 1969.
- 39. Benacerraf, B., and McDevitt, H. O. Science 21, 273, 1972.
- 40. Benacerraf, B., and Katz, D. H. Adv. Canc. Res. 21, 121, 1975.
- 41. Ellman, L., Green, I., Martin, W. J., and Benacerraf, B. Prof. Natl. Acad. Sci. USA 66, 322, 1970
- 42. Snell, G. D. J. Genet. 49, 87, 1948.

- McDevitt, H. O., Desk, B. D., Shreffler, D. C., Klein J., Stimpfling, J. H., and Snell, G. D. J. Exp. Med. 135, 1259, 1972.
- 44. Dorf, M. E., and Benacerraf, B. Prof. Natl. Arad. Sci. 72, 3671, 1975.
- 45. Dorf, M. E. Springer Sem. Immunopath. 1, 171, 1978.
- 46. Shreffler, D. C., and David, C. S. Adv. Immunol. 20, 125, 1974.
- 47. Klein, J., and Hauptfeld, B. Transplant. Rev. 30, 83, 1976.
- 48. McDevitt, H. O., Delovitch, T. L., Press, J. L., and Murphy, D. B. Transplant. Rev. 30, 197, 1976.
- 49. Schwartz, B. D., Paul, W. E., and Shwach, E. M. Transplant. Rev. 30. 174, 1976.
- Dorf, M. E., and Unanue, E. R. In: Ir Genes and Ia Antigens, H. O. McDevitt, ed., Academic Press, New York, p. 171, 1978.
- 51. Cullen, S. E., David, S. C., Shreffler, D. C., and Nathrnson, S. G. Proc. Natl. Acad. Sci. USA 71, 648, 1975.
- 52. Cullen, S. E., Freed, J. H., and Nathenson, S. G. Transplant. Rev. 30, 236, 1976
- Schwartz, B. D., and Cullen, S. E. In: The Role of thr Histocompatibility Gene Complex in Immune Response. D. H. Katz and B. Brnacerraf, eds. Academic Press, New York, 1976.
- Springer, T. A., Kaufman, J. F., Siddoway. L. A., Mann, D. L., and Strominger, J. I.. J. Biol. Chem. 252, 6201, 1977.
- 55. Niederhuber, J. E., and Frielinger, J. A. Transplant. Rev. 30, 101, 1975.
- 56 Mro, T., David. C. S., Rijnberk, A. M., Nabholz. M., Miggiano, V. C., and Shrefflrr, D. C. Transplant. Rev. 7, 127, 1975.
- 57. Livnat, S., Klein, J., and Bach, F. H. Nature 243, 42, 1973.
- 58. Klein, J., Geih, R., Chiang. C., and Hauptfeld, V.J. Exp. Med. 143, 1439, 1976.
- 59. Levine, B. B., and Brnacerraf, B. Science 147, 517, 1965.
- 60. Green, I., Paul, W. E., and Benacerraf. B., J. Exp. Med. 123, 859. 1966.
- 61. Dunham, E. K., Unanue, E. R.. and Benacerraf. B., J. Exp. Mrd. 136. 403, 1972.
- 62. Shevach, E. M.. and Rosenthal, A. S.J. Exp. Med. 138. 1213, 1973.
- Sredni. B., Matis. L. A., Lernr E. A., Paul. W. E., and Schwartz, R. H. J. Exp. Med. 153, 677, 1981.
- 64. Germain, R. N., and Springer, T unpublished data.
- 65. Shevarh. E. M., Paul, W. E., and Green. I.J. Exp. Mrd. 136. 1207. 1972.
- Schwartz. R. H., David, C. S., Dorf, M. E., Benacerraf B., and Paul. W. E. Proc. Natl. Acad. Sci. 75, 2387, 1978.
- 67. Barcinski, M. A., and Rosenthal. A. S. J. Exp. Med. 145, 726, 1977.
- 68. Rosenthal, A. S., Lin, C. S., Hahn, T., Thomas, J. W., Danho, W., Ballesbach and Fohles, J. In: Proceedings of Basic and Clinical Aspects of Immunity of Insulin International Workshop, K. Keck and P. Erb. eds., in press, 1981.
- Berzofsky, J. A., Schecter, A. N., Shrarer, G. M., and Sachs, D. H., J. Exp. Med. 14.5, 123, 1977.
- 70. Kipps, T.J., Benacerraf, B., and Dorf, M. E. Eur. J Immunol. 8, 415, 1978.
- 71. Green, I., Paul, W. E., and Benarcerraf, B.,J. Exp. Med. 126, 959, 1967.
- 72. Miller, J. F. A. P., Vadas. M. A., Whitelaw, A., and Gamble. J. Proc. Natl. Acad. Sci. 73, 2486, 1976.
- 73. Miller, J. F. A. P., Gamble, J., Mottram. P., and Smith, F. I. Scand. J. Immunol 9, 29. 1979.
- Katz. D. H., Hamaoka, T., Dorf. M. E., and Benacerraf. B. Proc. Natl. Acad. Sci. 70. 2624, 1973.
- 75. Kindrrd, B., and Shreffler, D. C.J. Immunol. 109, 940. 1972.
- Katz, D. H., Hamaoka, T., Dorf, M. E., Maurer P. H. and Benacerraf, B.J. EXp. Med. 138, 734, 1973.
- 77. Sprent, J, Immunol. Rev. 42, 108, 1978.
- 78. Kappler, J. W., and Marrack, P., J. Exp. Med. 148, 1510, 1978.
- 79. Singer, J., Hathcock, K. S., and Hades. R. J. J. Exp. Med. 149, 1208. 1979.
- 80. Jones, P. P., Murphy, D. B., and McDevitt, H. 0. J. Exp. Med. 148, 925, 1978.
- 81. Cook, R. G., Vitetta, E. S., Uhr, J. W., and Capra, J. D.J. Exp. Med. 149, 981, 1979.

- Silver, J., Russell, W. A., Reis, B. L., and Frelinger, J. A. Proc. Natl. Acad. Sci. 74, 5131, 1977
- Lerner, E. A., Matis, L. A., Janeway, C. A., Jr., Jones, P. P., Schwartz, R. H., and Murphy,
 D. B. J. Exp. Med. 152, 1085, 1980.
- 84. Kimoto, M., and Fathman, C. G. J. Exp. Med. 152, 759, 1980.
- 85. Cantor, H., and Boyse, E. A. J. Exp. Med. 141, 1390, 1975.
- 86. Binz, H., and Wigzell, H. J. Exp. Med. 142, 197, 1975.
- 87. Eichmann, K. Adv. Immunol. 26, 195, 1978.
- 88. Greene, M. I., Bach, B. A., and Benacerraf, B. J. Exp. Med. 149, 1069, 1979.
- Germain, R. N., Ju, S-T., Kipps, T. J., Benacerraf, B., and Dorf, M. E. J. Exp. Med. 149,613, 1979.
- Weinberger, J. Z., Greene, M. I., Benacerraf, B., and Dorf, M. E. J. Exp. Med. 149, 1336, 1979.
- 91. Longo, D. L., and Schwartz, R. H. Fed. Proc. 39, 1127, 1980.
- 92. von Boehmer, H., Haas, W., and Jerne, N. K. Proc. Natl. Acad. Sci. 75, 2439, 1978.
- 93. Rosenthal, A. S. Immunol. Rev. 40, 135, 1978.
- 94. Benacerraf, B. J. Immunol. 120, 1809, 1978.
- 95. Schlossman, S. F. Transplant. Rev. 10, 97, 1972.
- 96. Yaron, A., Dunham, E. K., and Schlossman, S. F. Biochemistry 13, 347, 1974.
- 97. Kapp, J. A., Pierce, C. W., and Benacerraf, B. J. Exp. Med. 140, 172, 1974.
- 98. Debré, P., Waltenbaugh, C., Dorf, M. E., and Benacerraf, B. J. Exp. Med. 144, 272, 1976.
- 99. Adorini, L., Harvey, M. A., Miller, A., and Sercarz, E. E. J. Exp. Med. 150, 293, 1979.
- 100. Schwartz, M., Waltenbaugh, C., Dorf, M., Cesla, R., Sela, M., and Benacerraf, B. Proc. Natl. Acad. Sci. 73, 2862, 1976.
- Murphy, D. B., Herzenberg, L. A., Okumura, K., Herzenberg, L. A., and McDevitt, H. O. J. Exp. Med. 144,699, 1976.
- 102. Tada, T., Taniguchi, M., and David, C. S. J. Exp. Med. 144, 713, 1976.
- 103. Tada, T., Taniguchi, M., and David, C. S. Cold Spring Harbor Symp. Quant. Biol. 41, 119, 1976.
- 104. Tada, T., Taniguchi, M., Hayakawa, K., and Okumura, K. In: T and B Lymphocytes: Recognition and Function E. S. Vitetta and C. F. Fox, eds., Academic Press, New York p. 293, 1979.
- 105. Thtze, J., Kapp, J. A., and Benacerraf, B. J. Exp. Med. 145, 839, 1977.
- 106. Waltenbaugh, C., Thtze, J., Kapp, J. A., and Benacerraf, B. J. Exp. Med. 146, 970, 1977.
- 107. Zinkernagel, R. M., and Doherty, P. C. J. Exp. Med. 141, 1427, 1975.
- 108. Shearer, G. M., Rehn, T. G., and Garharino, C. A. J. Exp. Med. 141, 1348, 1975.
- 109. Bevan, M. J. J. Exp. Med. 142, 1349, 1975.
- 110. Simpson, E., and Gordon, R. D. Immunol. Rev. 35,59, 1977.
- 111. Zinkernagel, R. M., Althage, A., Cooper, S., Kreeb, G., Klein, P. A., Sefton, B., Flaherty, L., Stimpfling, J., Shremer, D., and Klein, J. J. Exp. Med. 148, 592, 1978.
- 112. Gorer, P. A., Lyman, S., and Snell, G. D. Proc. Roy. Soc. Lond. [Biol.] 135, 499, 1948.
- '113. Jerne, N.K. Eur. J. Immunol. 1, 1, 1971.
- 114. Lemonnier, F., Burakoff, S. J., Germain, R. N., and Benacerraf, B. Proc. Natl. Acad. Sci. USA 74, 1229, 1977.
- 115. Burakoff, S. J., Finberg, R., Glimcher, L., Lemonnier, F., Benacerraf, B., and Cantor, H. J. Exp. Med. 148, 1414, 1978.
- Burakoff, S. J., Ratnofsky, S. E., and Benacerraf, B. Proc. Natl. Acad. Sci. USA 74, 4572, 1977.
- Zinkernagel, R. M., Althage, A., Cooper, S., Callahan, G., and Klein, J. J. Exp. Med. 148, 805, 1978.
- 118. Bevan, M. J., Nature 269, 417, 1977.
- 119. Finberg, R., Burakoff, S., Cantor, H., and Benacerraf, B. Proc. Natl. Acad. Sci. 75, 5145, 1978
- 120. von Boehmer, H., Turton, K., and Haas, W. Eur. J. Immunol. 9, 592, 1979.
- 121. Sredni, B., and Schwartz, R. H. Immunol. Rev. 54, 187, 1981.