Computation tree logics CTL and CTL^* . Model-checking CTL and CTL^* . Logics of programs PDL and \mathcal{L}_{μ} . Embedding CTL and PDL into \mathcal{L}_{μ}

Priorean and Ockhamist temporal logics

William van Ockham - the meaning of a temporal formula is about a particular sequence of events

Arthur Prior - temporal reasoning about a state and the related future (and past) states.

LTL is Ockhamist.

Tense Logic: A simple temporal logic of the Priorean type:

$$\varphi ::= \bot \mid p \mid \varphi \Rightarrow \varphi \mid \Diamond \varphi \mid \Diamond^{-1} \varphi$$

Semantics: Bimodal frames of the form $\langle W, R, R^{-1} \rangle$.

Axiomatisation: $\mathbf{K}_{\diamondsuit}$, $\mathbf{K}_{\diamondsuit^{-1}}$, N_{\diamondsuit} , $N_{\diamondsuit^{-1}}$ and

$$\varphi \Rightarrow \Box \diamondsuit^{-1} \varphi \text{ and } \varphi \Rightarrow \Box^{-1} \diamondsuit \varphi$$

 $\Diamond \varphi$ - φ is possible in the next time instant

 $\Diamond p \land \Diamond \neg p$ is satisfiable in tense logic, whereas $\circ p \land \circ \neg p$ is not in LTL.

Computation Tree Logic CTL^*

Syntax - state formulas φ and path formulas ψ :

$$\varphi ::= \bot \mid p \mid \exists \psi \qquad \psi ::= \varphi \mid \psi \Rightarrow \psi \mid \circ \psi \mid (\psi \cup \psi)$$

Models: $M = \langle W, R, V \rangle$, R - serial,

$$\mathsf{path}_{M}(s) = \{s_{0}s_{1} \ldots \in W^{\omega} : s_{0} = s, s_{i}Rs_{i+1}, i < \omega\}$$

$$M,s \not\models \bot$$

$$M, s \models p$$
 iff $p \in V(s)$

$$M,s \models \exists \psi$$
 iff there exists a $p \in \mathsf{path}_M(s)$ such that $M,p \models \psi$

$$M,p\models \varphi$$
 iff $M,p_0\models \varphi$ for state formulas φ

$$M, p \models \psi_1 \Rightarrow \psi_2$$
 iff either $M, p \not\models \psi_1$ or $M, p \models \psi_2$

$$M, p \models \circ \psi$$
 iff $M, p^{(1)} \models \psi$

$$M, p \models (\psi_1 \cup \psi_2)$$
 iff there exists a $k < \omega$ such that

$$M, p^{(i)} \models \psi_1 \text{ for } i = 0, \dots, k-1, \text{ and } M, p^{(k)} \models \psi_2$$

Abbreviations. Exercises on \models in CTL^*

The LTL abbreviations related to \circ and (.U.) and

$$\forall \psi \rightleftharpoons \neg \exists \neg \psi$$
.

Unlike LTL, where we write $p, i \models \psi$, we write $M, p^{(i)}\psi$ in CTL.

Exercise 1 Show that, given an LTL formula ψ , $\langle W, R, V, \{s\} \rangle$ contains a satisfying behaviour for φ iff $\langle W, R, V \rangle, s \models_{CTL^*} \exists \varphi$.

Exercise 2 Rewrite the definition of \models in CTL^* in the form $M, p, i \models \varphi$, where i is a position in the path p, like in LTL for both state and path φ . To this end use $\operatorname{path}_M(p,i)$ to denote the set of all R-paths q in M such that $q_0 \dots q_i = p_0 \dots p_i$.

Exercise 3 Show that if $\varphi_1 \Leftrightarrow \varphi_2$ is valid, then $[\varphi_1/p]\chi \Leftrightarrow [\varphi_2/p]\chi$ is valid too for state formulas φ_1, φ_2 and arbitrary χ . Why is this not guaranteed to hold about path φ_1, φ_2 ?

Computation tree logic CTL (without the *)

 $\mathsf{Syntax:}\ \varphi ::= \bot \mid p \mid \varphi \Rightarrow \varphi \mid \exists \circ \varphi \mid \exists (\varphi \mathsf{U} \varphi) \mid \forall (\varphi \mathsf{U} \varphi) \ .$

Semantics: \perp , $p \in \mathbf{L}$ and \Rightarrow - as usual;

$$M, s \models \exists \circ \varphi$$
 iff there exists an $s' \in R(s)$ such that $M, s' \models \varphi$;

$$M,s\models \exists (\varphi\mathsf{U}\psi) \quad \text{ iff } \quad \text{there exists an } n<\omega \text{ and an } s_0s_1\ldots \in \mathsf{path}_M(s) \text{ s. t.}$$

$$M, s_i \models \varphi, \ i = 0, \dots, n-1, \ \text{and} \ M, s_n \models \psi;$$

$$M, s \models \forall (\varphi \mathsf{U} \psi)$$
 iff for every $s_0 s_1 \ldots \in \mathsf{path}_M(s)$

there exists an $n < \omega$ such that

$$M, s_i \models \varphi, i = 0, \ldots, n-1, \text{ and } M, s_n \models \psi.$$

Abbreviations:

$$\forall \circ \varphi \rightleftharpoons \neg \exists \circ \neg \varphi$$

$$\exists \Diamond \varphi \rightleftharpoons \exists (\top \mathsf{U} \varphi), \ \forall \Diamond \varphi \rightleftharpoons \forall (\top \mathsf{U} \varphi), \ \exists \Box \varphi \rightleftharpoons \neg \forall \Diamond \neg \varphi, \ \forall \Box \varphi \rightleftharpoons \neg \exists \Diamond \neg \varphi.$$

Note that $\forall \circ \varphi$ is an abbreviation, but $\forall (\varphi U \psi)$ is basic in CTL.

Expressive power of CTL versus LTL

An LTL formula defines a class (linear) behaviours (in Kripke model M.)

There is no means in LTL to express whether M contains other behaviours that are related to a satisfying one.

 $M, p, i \models \exists \psi$ means that M has a behaviour like p until time i that satisfies ψ from time i onwards.

E.g. $\Box(p \land \exists \circ \neg p)$ is satisfiable in CTL.

For $LTL \varphi$, if $Var(\varphi) \subseteq \mathbf{L}$ then

$$M_{\mathbf{L}} = \langle \mathcal{P}(\mathbf{L}), \mathcal{P}(\mathbf{L}) \times \mathcal{P}(\mathbf{L}), \mathcal{P}(\mathbf{L}), \lambda s.s \rangle$$

satisfies φ . Unless φ is valid,

$$M_{\mathbf{L}}, s \not\models \forall \circ \neg \varphi.$$

Expressive power of CTL versus LTL continued

Definition 1 Given a CTL^* formula φ , φ^d stands for the LTL formula obtained by erasing all the occurrences of \exists in φ .

Proposition 1 A CTL^* formula φ is equivalent to a formula of the form $\forall \psi$ in which ψ is an LTL iff it is equivalent to $\forall \varphi^d$.

Definition 2 Given $M=\langle W,R,V\rangle$ and an R-path p in M, $M_p=\langle W_p,R_p,V_p\rangle$ where $W_p=\{s_i:i<\omega\}$ $R_p=R\cap W_p^2=\{\langle s_i,s_{i+1}\rangle:i<\omega\}$

$$V_p = V|_{W_p}.$$

Fact 1 Let $\langle W, R \rangle$ be a tree. Then $M_p, p \models \varphi^d$ iff $M_p, s_0 \models \varphi$ where s_0 is the first state of p.

Expressive power of CTL versus LTL continued

Proof: We can assume that $\langle W, R \rangle$ is a tree in the considered $M = \langle W, R, V \rangle$.

Let
$$s_0 \in W$$
 and $p = s_0 s_1 \ldots \in \mathsf{path}_m(s_0)$

Let φ be equivalent to $\forall \psi$, where ψ is in LTL. Let $s_0 \in W$. Then

$$M,s_0\models arphi \quad ext{iff} \quad ext{for all paths } p\in ext{path}_M(s_0) \quad M,p\models \psi$$

$$ext{iff} \quad ext{for all paths } p\in ext{path}_M(s_0) \quad M_p,p\models \psi$$

$$ext{iff} \quad ext{for all paths } p\in ext{path}_M(s_0) \quad M_p,s_0\models arphi$$

$$ext{iff} \quad ext{for all paths } p\in ext{path}_M(s_0) \quad M_p,p\models arphi^d$$

$$ext{iff} \quad ext{for all paths } p\in ext{path}_M(s_0) \quad M,p\models arphi^d .$$

$$ext{iff} \quad ext{for all paths } p\in ext{path}_M(s_0) \quad M,s_0\models \forall arphi^d .$$

 \dashv

Model-checking CTL formulas

The efficiency of model-checking is the main benefit of using CTL. Unlike LTL, we can define

$$\llbracket \varphi \rrbracket_M = \{ w \in W : M, w \models \varphi \}.$$

Model-checking CTL amounts to calculating $[\![\varphi]\!]_M$:

$$\begin{bmatrix} \bot \end{bmatrix}_{M} = \emptyset
 \begin{bmatrix} p \end{bmatrix}_{M} = V(p)
 \begin{bmatrix} \varphi \Rightarrow \psi \end{bmatrix}_{M} = \llbracket \psi \rrbracket_{M} \cup W \setminus \llbracket \varphi \rrbracket_{M}
 \begin{bmatrix} \exists \circ \varphi \rrbracket_{M} = \{w \in W : R(w) \cap \llbracket \varphi \rrbracket_{M} \neq \emptyset\} = R^{-1}(\llbracket \varphi \rrbracket_{M})
 \end{bmatrix}$$

Model-checking CTL: $[\exists (\psi \cup \chi)]_M$ and $[\forall (\psi \cup \chi)]_M$

$$\models_{CTL} \exists (\psi \mathsf{U} \chi) \Leftrightarrow \chi \lor (\psi \land \exists \circ \exists (\psi \mathsf{U} \chi))$$

and

$$\models_{CTL} \forall (\psi \mathsf{U} \chi) \Leftrightarrow \chi \vee (\psi \wedge \forall \circ \forall (\psi \mathsf{U} \chi)).$$

entail

$$[\![\exists (\psi \cup \chi)]\!]_M = [\![\chi]\!]_M \cup ([\![\psi]\!]_M \cap R^{-1}([\![\exists (\psi \cup \chi)]\!]_M))$$

and

$$\llbracket \forall (\psi \mathsf{U} \chi) \rrbracket_M = \llbracket \chi \rrbracket_M \cup (\llbracket \psi \rrbracket_M \cap W \setminus R^{-1}(W \setminus \llbracket \forall (\psi \mathsf{U} \chi) \rrbracket_M)).$$

Let
$$F_{\psi,\chi}^\exists, F_{\psi,\chi}^\forall : \mathcal{P}(W) \to \mathcal{P}(W)$$
 and

$$F_{\psi,\chi}^{\exists}(X) = [\![\chi]\!]_M \cup ([\![\psi]\!]_M \cap R^{-1}(X))$$

$$F_{\psi,\chi}^{\forall}(X) = [\![\chi]\!]_M \cup ([\![\psi]\!]_M \cap W \setminus R^{-1}(W \setminus X))$$

$[\![\exists (\psi \mathsf{U} \chi)]\!]_M$ and $[\![\forall (\psi \mathsf{U} \chi)]\!]_M$ continued

$$F_{\psi,\chi}^{\exists}(X) = \llbracket \chi \rrbracket_M \cup (\llbracket \psi \rrbracket_M \cap R^{-1}(X))$$

$$F_{\psi,\chi}^{\forall}(X) = \llbracket \chi \rrbracket_M \cup (\llbracket \psi \rrbracket_M \cap W \setminus R^{-1}(W \setminus X))$$

Fact 2 $F_{\psi,\chi}^{\exists}$ and $F_{\psi,\chi}^{\forall}$ are monotonic:

$$X,Y\subseteq W \text{ and } X\subseteq Y \text{ imply } F_{\psi,\chi}^*(X)\subseteq F_{\psi,\chi}^*(Y),\ *\in\{\exists,\forall\}.$$

Proposition 3 Let $F: \mathcal{P}(W) \to \mathcal{P}(W)$ be monotonic. Let $W' \subseteq W$ be the least subset of W such that $F(W') \subseteq W'$, i.e., let W' be the least pre-fixpoint of F. Then W' is also the least fixpoint of F, i.e. the least subset of W such that F(W') = W.

Proof: $F(W') \subseteq W'$ implies $F(F(W')) \subseteq F(W')$, whence F(W') is a pre-fixpoint of F too, and therefore $W' \subseteq F(W')$. \dashv

$[\![\exists (\psi \cup \chi)]\!]_M$ and $[\![\forall (\psi \cup \chi)]\!]_M$ continued

Proposition 4 Let p, φ , ψ be in the vocabulary of M and

$$[\![\chi\vee(\psi\wedge\exists\circ p)]\!]_M\subseteq[\![p]\!]_M,\ \mathrm{resp.}\ [\![\chi\vee(\psi\wedge\forall\circ p)]\!]_M\subseteq[\![p]\!]_M.$$

Then $[\exists (\psi \cup \chi)]_M \subseteq [p]_M$, resp., $[\forall (\psi \cup \chi)]_M \subseteq [p]_M$.

Proof: $[\exists (\psi \cup \chi)]_M \subseteq [p]_M$ can be proved by induction on n in

 $s \in [p]_M$, provided that there is a $s_0 s_1 \ldots \in \operatorname{path}_M(s)$ such that there is a $k \leq n$ such that $M, s_k \models \chi$ and $M, s_i \models \psi$ for $i = 0, \ldots, k-1$.

The second inclusion requires transfinite induction to prove. \dashv

Corollary 1 $[\exists (\psi \cup \chi)]_M$ and $[\forall (\psi \cup \chi)]_M$ are the least fixed points of $F_{\psi,\chi}^\exists$ and $F_{\psi,\chi}^\forall$, respectively.

 $[\![\exists (\psi \mathsf{U} \chi)]\!]_M$ and $[\![\forall (\psi \mathsf{U} \chi)]\!]_M$ continued

$$F^k(X) \rightleftharpoons \underbrace{F(\dots F(X)\dots)}_{k \text{ times}}$$

Proposition 5 Let $|W| < \omega$ and $F : \mathcal{P}(W) \to \mathcal{P}(W)$ be monotonic. Then $F^{k+1}(\emptyset) = F^k(\emptyset)$ for some $k \leq |W|$ and $F^k(\emptyset)$ is the least solution of X = F(X) wrt \subset in $\mathcal{P}(W)$.

Model-checking CTL^*

 CTL^* model-checking is about calculating $[\![\varphi]\!]_M$ for CTL^* state formulas φ .

Technique: interleaved stages of LTL and CTL model-checking.

To calculate $[\exists \psi]_M$:

1. Find an LTL formula θ and state formulas χ_1, \ldots, χ_k such that

$$\psi \doteq [\chi_1/q_1, \dots, \chi_k/q_k]\theta.$$

2. Extend $M=\langle W,R,V\rangle$ to $M'=\langle W,R,V'\rangle$ for $\mathbf{L}\cup\{q_1,\ldots,q_k\}$ by putting $V'(q_i)=[\![\chi_i]\!]_M,\ i=1,\ldots,k.$

Then

$$\llbracket \exists \psi \rrbracket_M = \llbracket \exists \theta \rrbracket_{M'}.$$

3. Use LTL model-checking to calculate $[\exists \theta]_{M'}$.

Propositional Dynamic Logic (*PDL***)**

Syntax: propositional variables p, q, \ldots , and program variables a, b, \ldots ; formulas φ and program terms α :

$$\alpha ::= Id \mid a \mid \alpha \cup \alpha \mid \alpha; \alpha \mid \alpha^* \mid \varphi?$$

$$\varphi ::= \bot \mid p \mid \varphi \Rightarrow \varphi \mid \langle \alpha \rangle \varphi$$

Semantics: $M = \langle W, R, V \rangle$; $R(a) \subset W \times W$ for program variables a.

$$[\![\bot]\!]_M = \emptyset,$$

$$[\![\varphi]\!]_M = V(p),$$

$$[\![\varphi]\!]_M = [\![\psi]\!]_M \cup W \setminus [\![\varphi]\!]_M,$$

$$[\![\langle\alpha\rangle\varphi]\!]_M = ([\![\alpha]\!]_M)^{-1}([\![\varphi]\!]_M);$$

$$[Id]_{M} = Id_{W} = \{\langle w, w \rangle : w \in W\}, \quad [a]_{M} = R(a),$$
$$[\alpha \cup \beta]_{M} = [\alpha]_{M} \cup [\beta]_{M}, \quad [\alpha; \beta]_{M} = [\alpha]_{M} \circ [\beta]_{M},$$
$$[\alpha^{*}]_{M} = ([\alpha]_{M})^{*}, \quad [\varphi?]_{M} = ([\varphi]_{M})^{2} \cap Id_{W}.$$

 \circ - relation composition; $(\llbracket \alpha \rrbracket_M)^*$ - the reflexive and transitive closure of $\llbracket \alpha \rrbracket_M$.

Definition of *PDL* continued

$$[\alpha]\varphi \rightleftharpoons \neg \langle \alpha \rangle \neg \varphi$$

Exercise 4 Prove that the following formulas are valid in PDL:

$$\langle Id \rangle \varphi \Leftrightarrow \varphi, \ \langle \varphi? \rangle \psi \Leftrightarrow \varphi \wedge \psi, \ \langle \alpha \cup \beta \rangle \varphi \Leftrightarrow \langle \alpha \rangle \varphi \vee \langle \beta \rangle \varphi, \ \langle \alpha; \beta \rangle \varphi \Leftrightarrow \langle \alpha \rangle \langle \beta \rangle \varphi.$$

Corollary 2 *-free PDL can be viewed as multimodal \mathbf{K} .

A Hoare triple $\{P\}\mathbf{code}\{Q\}$ can be written in PDL as $P\Rightarrow[\llbracket\mathbf{code}\rrbracket]Q$.

The semantics of a \mathbf{while} -programming language written in PDL:

$$\begin{aligned}
&\llbracket \mathbf{skip} \rrbracket \rightleftharpoons Id \\
&\llbracket v := b \rrbracket \rightleftharpoons a_{v:=b}, \qquad b \Leftrightarrow [a_{v:=b}]v, \ v' \Leftrightarrow [a_{v:=b}]v' \text{ for variables } v' \neq v \\
&\llbracket \mathbf{if} \ b \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2 \rrbracket \rightleftharpoons (b?; \llbracket S_1 \rrbracket) \cup ((\neg b)?; \llbracket S_2 \rrbracket) \\
&\llbracket \mathbf{while} \ b \ \mathbf{do} \ S \rrbracket \rightleftharpoons (b? : \llbracket S \rrbracket)^*; (\neg b)?
\end{aligned}$$

More facts about PDL

PDL has the finite model property and a complete axiomatisaton. Intersection \cap can be allowed in program terms:

$$\llbracket \alpha \cap \beta \rrbracket_M = \llbracket \alpha \rrbracket_M \cap \llbracket \beta \rrbracket_M,$$

Decidability still holds in that extension, but the axiomatisation of PDL^{\cap} is rather difficult.

Book: Harel, D., Kozen, D., and J. Tiuryn, *Dynamic Logic*, Cambridge, MA, MIT Press, 2000.

The modal μ -calculus \mathcal{L}_{μ}

In CTL model checking we used that $[\exists (\varphi U \psi)]_M$ and $[\forall (\varphi U \psi)]_M$ are Ifps of

$$F_{\varphi,\psi}^{\exists} = \lambda X. \llbracket \chi \vee (\psi \wedge \exists \circ p) \rrbracket_{M_p^X} \text{ and } F_{\varphi,\psi}^{\forall} = \lambda X. \llbracket \chi \vee (\psi \wedge \forall \circ p) \rrbracket_{M_p^X}.$$

 \mathcal{L}_{μ} is a multi-modal logic with constructs for the extreme fixpoints of arbitrary definable monotonic mappings of type $\mathcal{P}(W) \to \mathcal{P}(W)$.

Syntax: propositional variables X, Y, \ldots , and constants p, q, \ldots

$$\varphi ::= p \mid \neg \varphi \mid \varphi \vee \varphi \mid \langle a \rangle \varphi \mid \mu X. \varphi.$$

X should have only positive occurrences in φ for $\mu X.\varphi$ to be well-formed.

Semantics: $M = \langle W, R, V \rangle$ like in PDL

$$[\![p]\!]_M = V(p), [\![X]\!]_M = V(X), \qquad [\![\neg \varphi]\!]_M = W \setminus [\![\varphi]\!]_M$$
$$[\![\langle \alpha \rangle \varphi]\!]_M = ([\![\alpha]\!]_M)^{-1} ([\![\varphi]\!]_M), \qquad [\![\varphi \vee \psi]\!]_M = [\![\varphi]\!]_M \cup [\![\psi]\!]_M,$$

$$\llbracket \mu X \cdot \varphi \rrbracket_M = \bigcap \{ W' \subseteq W : \llbracket \varphi \rrbracket_{M_X^{W'}} \subseteq W' \}$$

\mathcal{L}_{μ} continued

Exercise 5 Prove that $\models_{\mathcal{L}_{\mu}} \mu X. \varphi \Leftrightarrow [\mu X. \varphi/X] \varphi$.

Exercise 6 Prove that if $\models_{\mathcal{L}_{\mu}} [\psi/X]\varphi \Rightarrow \psi$ implies $\models_{\mathcal{L}_{\mu}} \mu X.\varphi \Rightarrow \psi$.

Exercise 7 Prove that, for the same M, $[\![\langle a^* \rangle \varphi]\!]_M^{PDL} = [\![\mu X.\varphi \lor \langle a \rangle X]\!]_M^{\mathcal{L}_{\mu}}$.

Hint: Define $[\![\![\bigvee_{k<\omega}\varphi_k]\!]_M$ as $\bigcup_{k<\omega}[\![\varphi_k]\!]_M$ and prove that

$$[\![\langle a^* \rangle \varphi]\!]_M^{PDL} = [\![\mu X.\varphi \vee \langle a \rangle X]\!]_M^{\mathcal{L}_\mu} = [\![\bigvee_{k < \omega} \underbrace{\langle \alpha \rangle \dots \langle \alpha \rangle}_{k \text{ times}} \varphi]\!]_M.$$

Greatest fixpoint is written as

$$\nu X.\varphi \rightleftharpoons \neg \mu X. [\neg X/X] \neg \varphi.$$

Exercise 8 Prove that the formula denoted by $\nu X.\varphi$ satisfies

$$\llbracket \nu X \cdot \varphi \rrbracket_M = \bigcup \{ W' \subseteq W : \llbracket \varphi \rrbracket_{M_X^{W'}} \supseteq W' \}.$$

Example: modelling board games in \mathcal{L}_{μ}

 $w \in W$ - the possible board configurations + whose turn is next;

 w_1Rw_2 iff w_1 can change to w_2 by a single move;

 $player_i$ - player i is to move next, i = 1, 2; win_i - player i wins.

$$M, w \models player_1 \lor player_2 \lor win_1 \lor win_2.$$

A single action move with R(move) = R; $\diamondsuit \rightleftharpoons \langle move \rangle$, $\square \rightleftharpoons [move]$.

Player 1 can win in one move from state w iff $M, w \models player_1 \land \Diamond win_1$.

Whatever player 2 does at state w, player 1 wins at the next move iff $M, w \models player_2 \land \Box \diamondsuit win_1$.

Player 1 has a winning strategy starting from state w iff

$$M, w \models \mu X.(win_1 \lor player_1 \land \Diamond X \lor player_2 \land \Box X).$$

Polyadic \mathcal{L}_{μ}

Principle of Bekič $\mu X_1 X_2 . \varphi_1, \varphi_2 \Leftrightarrow \mu X_1 . [\mu X_2 . \varphi_2 / X_2] \varphi_2.$

Example 1 Consider programs consisting of statements of the form

 $i: v_i := b_i; ext{ if } c_i ext{ then goto } l'_i ext{ else goto } l''_i$

where one of the labels i = 1, ..., n, l'_i , and l''_i is stop. Show that $\{P\}code\{Q\}$ where code is of this form can be written as the formula

$$P \Rightarrow \mu X_1 \dots X_n X_{\mathbf{stop}} \quad [a_{v_1:=b_1}]((c_1 \Rightarrow X_{l'_1}) \land (\neg c_1 \Rightarrow X_{l''_1})),$$

$$\dots$$

$$[a_{v_n:=b_n}]((c_n \Rightarrow X_{l'_n}) \land (\neg c_n \Rightarrow X_{l''_n})),$$

$$Q.$$

Embedding PDL into \mathcal{L}_{μ}

$$\begin{split} \mathsf{t}(\bot) & \rightleftharpoons \bot \\ \mathsf{t}(X) & \rightleftharpoons X \end{split} \qquad \qquad \mathsf{t}(p) \rightleftharpoons p \\ \mathsf{t}(X) & \rightleftharpoons X \end{split} \qquad \qquad \mathsf{t}(\varphi \Rightarrow \psi) \rightleftharpoons \mathsf{t}(\varphi) \Rightarrow \mathsf{t}(\psi) \end{split}$$

$$\mathsf{t}(\langle Id \rangle \varphi) \rightleftharpoons \mathsf{t}(\varphi) \\ \mathsf{t}(\langle a \rangle \varphi) & \rightleftharpoons \langle a \rangle \mathsf{t}(\varphi) \\ \mathsf{t}(\langle a \rangle \varphi) & \rightleftharpoons \langle a \rangle \mathsf{t}(\varphi) \\ \mathsf{t}(\langle \varphi? \rangle \psi) & \rightleftharpoons \mathsf{t}(\varphi) \wedge \mathsf{t}(\psi) \\ \mathsf{t}(\langle \varphi? \rangle \psi) & \rightleftharpoons \mathsf{t}(\varphi) \wedge \mathsf{t}(\psi) \\ \mathsf{t}(\langle \alpha \cup \beta \rangle \varphi) & \rightleftharpoons \mathsf{t}(\langle \alpha \rangle \varphi) \vee \mathsf{t}(\langle \beta \rangle \varphi) \\ \mathsf{t}(\langle \alpha; \beta \rangle \varphi) & \rightleftharpoons \mathsf{t}(\langle \alpha \rangle \langle \beta \rangle \varphi) \\ \mathsf{t}(\langle \alpha; \beta \rangle \varphi) & \rightleftharpoons \mathsf{t}(\langle \alpha \rangle \langle \beta \rangle \varphi) \\ \mathsf{t}(\langle \alpha^* \rangle \varphi) & \rightleftharpoons \mu X. \mathsf{t}(\varphi) \vee \mathsf{t}(\langle \alpha \rangle X) \\ \end{split} \qquad \qquad \mathsf{t}([\alpha^*] \varphi) & \rightleftharpoons \nu X. \mathsf{t}(\varphi) \wedge \mathsf{t}([\alpha] X) \end{split}$$

The clause $t(X) \rightleftharpoons X$ in the definition is needed for the handling of formulas such as $\langle \alpha \rangle X$ which commence in the translation of Kleene star.

Embedding CTL into \mathcal{L}_{μ}

A single primitive program — for the passage of a unit of time.

$$t(\bot) \rightleftharpoons \bot, \ t(p) \rightleftharpoons p$$

$$t(\varphi \Rightarrow \psi) \rightleftharpoons t(\varphi) \Rightarrow t(\psi)$$

$$t(\exists \circ \varphi) \rightleftharpoons \langle -\rangle t(\varphi)$$

$$t(\exists (\varphi \cup \psi)) \rightleftharpoons \mu X.\psi \lor (t(\varphi) \land \langle -\rangle X)$$

$$t(\forall (\varphi \cup \psi)) \rightleftharpoons \mu X.\psi \lor (t(\varphi) \land [-]X)$$

