Week 8

Xiaoyuan Xie 谢晓园 xxie@whu.edu.cn 计算机学院E301

- **教材P177 4.7.3** 为练习4.7.1中的文法 **S -> S S + | S S * | a**,使用算法4.6.3,根据该文法的LR(0)项集的内核构造出它的LALR项集族。
 - 1) 构造LR(0)项集。

	10	I1	I2	I3	I4	I 5
内核项	S'->·S	S'->S· S->S·S+ S->S·S*	S->SS·+ S->S·* S->S·S+ S->S·S*	S->a·	S->SS+·	S->SS*·
非内核项	S->·SS+ S->·SS* S->·a	S->·SS+ S->·SS* S->·a	S->·SS+ S->·SS* S->·a			

- **教材P177 4.7.3** 为练习4.7.1中的文法 **S -> S S + | S S * | a**,使用算法4.6.3,根据该文法的LR(0)项集的内核构造出它的LALR项集族。
 - 2) 搜索符的传播。

	到
I0: S'->·S	I1: S'->S· I1: S->S·S+ I1: S->S·S* I3: S->a·
I1: S->S·S+	I2: S->SS+ I2: S->S·S+ I2: S->S·S* I3: S->a-
I1: S->S·S*	I2: S->SS·* I2: S->S·S+ I2: S->S·S* I3: S->a·

-	_
自	到
I2: S->SS·+	I4: S->SS+·
I2: S->SS·*	I5: S->SS*∙
I2: S->S·S+	I2: S->SS·+ I2: S->SS·* I2: S->S·S+ I2: S->S·S* I3: S->a·
I2: S->S·S*	I2: S->SS·+ I2: S->SS·* I2: S->S·S+ I2: S->S·S* I3: S->a·

■ **教材P177 4.7.3** 为练习4.7.1中的文法 S -> S S + | S S * | a , 使用算法4.6.3 ,

根据该文法的LR(0)项集的内核构造出它的LALR项集族。

■ 3) 搜索符的计算。

■ 4) 根据内核可还原项集。

	1五佳			搜索符		
	项集	初始值	第一次	第二次	第三次	第四次
,	I0: S'->·S	#	#	#	#	#
	I1: S'->S∙		a/ #	a/ #	a/#	a/ #
	I1: S->S·S+	а	a/ #	a/ #	a/ #	a/ #
	I1: S->S⋅S*	а	a/ #	a/ #	a/ #	a/ #
	I2: S->SS·+	а	*/ +/ a	*/ +/ a/ #	*/ +/ a/ #	*/ +/ a/ #
	I2: S->SS·*	а	*/ +/ a	*/ +/ a/ #	*/ +/ a/ #	*/ +/ a/ #
	I2: S->S·S+	*/ +/ a	*/ +/ a	*/ +/ a/ #	*/ +/ a/ #	*/ +/ a/ #
	I2: S->S·S*	*/ +/ a	*/ +/ a	*/ +/ a/ #	*/ +/ a/ #	*/ +/ a/ #
	I3: S->a∙	*/ +/ a	*/ +/ a/ #			
	I4: S->SS+·		а	*/ +/ a	*/ +/ a/ #	*/ +/ a/ #
255	I5: S->SS*•		а	*/ +/ a	*/ +/ a/ #	*/ +/ a/ #

■ 教材P177 4.7.4 说明下面的文法

是LALR(1)的,但不是SLR(1)的。

- 1) 不是SLR(1)的。
 - 存在两个项集Ia = {S->d·c , A->d·}和 Ib = {S->bd·a , A->d·}。其中Follow(A) = {a, c}。
 - 因此在Ia和Ib内,存在移进-归约冲突。
- 2) 是LALR(1)的。
 - 对于Ia = {S->d·c,#; A->d·,a}。
 - 对于Ib = {S->bd·a,#; A->d·,c}。
 - 不发生冲突。

■ 教材P178 4.7.5 说明下面的文法

 $A \rightarrow d$

 $B \rightarrow d$

是LR(1)的,但不是LALR(1)的。

- 1) 不是LALR(1)的。
 - 项目集合并后存在 Ic = {A->d·,a/c; B->d·,a/c}。
 - 发生归约-归约冲突
- 2) 是LR(1)的。
 - 依据活前缀不同将Ic拆分为两个项目集 Ia = {A->d·,a; B->d·,c}和Ib = {A->d·,c; B->d·,a}。
 - 不发生冲突。

■ **教材P182 4.8.1** 下面是一个二义性文法,它描述了包含n个二目中缀运算符旦具有n个不同优先级的表达式:

$$E \rightarrow E \theta_1 E \mid E \theta_2 E \mid \cdots \mid E \theta_n E \mid (E) \mid id$$

- 1) 将SLR项集表示为n的函数。
- 2) 要使所有的运算符都是左结合,并且n越小优先级越高,应如何解决SLR项间的冲突。
- 3) 根据在(2)中的决定,给出相应的分析表。
- 4) 对图中的无二义性文法重复(1)和(3)的部分。
- 5) 比较项集总数和语法分析表的大小。

■ 1) 将SLR项集表示为n的函数。

I_0	I ₁	I_2	I_3	I_4	I_5	I _{2n+4}	I _{2n+5}
E'->·E E->·(E) E->·id E->·E θ_n E	E'->E· E->E·θ _n E	E->id·	E->(·E) E->·(E) E->·id E->·E θ_n E	E->(E·) E->E·θ _n E	E->(E)·	$E \rightarrow E\theta_n \cdot E$ $E \rightarrow \cdot (E)$ $E \rightarrow \cdot id$ $E \rightarrow \cdot E\theta_n E$	E->Eθ _n E· E->E·θ _n E

■ 2)&3) SLR分析表 (a≤n, b≤n)

状态			GOTO			
1人心	id	()	θ_{a}	\$	E
I_0	s_2	s_3				s ₁
I ₁				s _{2a+4}	acc	
I_2			r _{n+2}	r _{n+2}	r _{n+2}	
I_3	s_2	s_3				S ₄
I_4			s_3	s _{2a+4}		
I_5			r _{n+1}	r _{n+1}	r _{n+1}	
I _{2b+4}	s_2	s_3				s _{2b+5}
I _{2b+5}			r _b	当a <b时,s<sub>2a+4 当a≥b时,r_b</b时,s<sub>	r _b	

■ 4.1) 将SLR项集表示为n的函数。(i =2,3,4...n)

I ₀	I ₁	I ₂	I_3	I_4	I ₅
$E_{0} - > \cdot E_{1}$ $E_{1} - > \cdot E_{1} \theta_{1} E_{2}$ $E_{1} - > \cdot E_{2}$ $E_{i} - > \cdot E_{i} \theta_{i} E_{i+1}$ $E_{i} - > \cdot E_{i+1}$ $E_{n+1} - > \cdot (E_{1})$ $E_{n+1} - > \cdot id$	$E_0 -> E_1 - E_1 -> E_1 - \theta_1 E_2$	E _{n+1} ->id∙	$\begin{split} E_{n+1} &> (\cdot E_1) \\ E_1 &> \cdot E_1 \theta_1 E_2 \\ E_1 &> \cdot E_2 \\ &\cdots \\ E_i &> \cdot E_i \theta_i E_{i+1} \\ E_i &> \cdot E_{i+1} \\ &\cdots \\ E_{n+1} &> \cdot (E_1) \\ E_{n+1} &> \cdot id \end{split}$	$E_{n+1} - > (E_1 \cdot)$ $E_1 - > E_1 \cdot \theta_1 E_2$	E _{n+1} ->(E ₁)·
I_{3i}	I_{3i+1}	I_{3i+2}	I_{3n+3}	I _{3n+4}	I _{3n+5}
$E_{i-1} -> E_{i} \cdot E_{i-1} -> E_{i} \cdot \theta_{i} E_{i+1}$	$\begin{array}{c} \dots \\ E_{i-1} -> E_{i-1} \theta_{i-1} \cdot E_{i} \\ E_{i} -> \cdot E_{i} \theta_{i} E_{i+1} \\ E_{i} -> \cdot E_{i+1} \\ \dots \\ E_{n+1} -> \cdot (E_{1}) \\ E_{n+1} -> \cdot id \end{array}$	$E_{i-1} -> E_{i-1} \theta_{i-1} E_i \cdot E_i -> E_i \cdot \theta_i E_{i+1}$	E _n ->E _{n+1} ·	$E_{n} - > E_{n} \theta_{n} \cdot E_{n+1}$ $E_{n+1} - > \cdot (E_{1})$ $E_{n+1} - > \cdot id$	E_{n} -> $E_{n}\theta_{n}E_{n+1}$.

■ 4.2&3) SLR分析表 (i,a,b = 2,3,4...n)

状态					GOTO				
	id	()	θ ₁	θ_a	\$	E ₁	E _i	E _{n+1}
I_0	s ₂	s_3					s ₁	s _{3i}	s _{3n+3}
I_1				s ₇		acc			
I_2			r _{2n+2}	r _{2n+2}	r _{2n+2}	r _{2n+2}			
I_3	s ₂	s_3					S ₄	s _{3i}	s _{3n+3}
$\mathbf{I_4}$			s ₅	s ₇					
I_5			r _{2n+1}	r _{2n+1}	r _{2n+1}	r _{2n+1}			
I_{3b}					当a <b时,r<sub>2b-2 当a=b时,s_{3a+4}</b时,r<sub>				
I _{3b+1}	s ₂	s_3						s _{3i}	s _{3n+3}
I _{3b+2}			r _{2b-1}		当a <b时,r<sub>2b-1 当a=b时,s_{3a+4}</b时,r<sub>	r _{2b-1}			
I _{3n+3}			r _{2n}		r _{2n}	r _{2n}			
I _{3n+4}	s ₂	s_3							S _{3n+5}
I _{3n+5}			r _{2n-1}		r _{2n-1}	r _{2n-1}			

教材P207, 5. 3. 2:给出把中缀表达式翻译成没有冗余括号的中缀表达式的语法制导定义。例如,因为+和*是左结合,((a*(b+c))*(d))可以重写成a*(b+c)*d

两种方法:

- 先把表达式的括号都去掉,然后在必要的地方再加括号
- 去掉表达式中的冗余括号,保留必要的括号

第一种方法

```
\begin{array}{l} T \to T_1 * F \\ \text{if } (F.\ op == \ plus) \ \text{or } (F.\ op == \ times) \ \text{then} \\ \text{if } T_1.\ op == \ plus \ \text{then} \\ T.\ code = "(" \mid\mid T_1.\ code \mid\mid ")" \mid\mid "*" \mid\mid "(" \mid\mid F.\ code \mid\mid ")" \\ \text{else} \\ T.\ code = T_1.\ code \mid\mid "*" \mid\mid "(" \mid\mid F.\ code \mid\mid ")" \\ \text{else if } T_1.\ op = \ plus \ \text{then} \\ T.\ code = "(" \mid\mid T_1.\ code \mid\mid ")" \mid\mid "*" \mid\mid F.\ code \\ \text{else} \\ T.\ code = T_1.\ code \mid\mid "*" \mid\mid F.\ code; \\ T.\ op = \ times \end{array}
```

```
T \rightarrow F
T. \ code = F. \ code; \ T. \ op = F. \ op
F \rightarrow id
F. \ code = id. \ lexeme; \ F. \ op = id
F \rightarrow (E)
F. \ code = E. \ code; \ F. \ op = E. \ op
```

第二种方法

- 给E, T和F两个继承属性left_op和right_op 分别表示左右两侧算符的优先级
- 给它们一个综合属性self_op表示自身主算符的优先级
- 再给一个综合属性code表示没有冗余括号的代码
- 分别用1和2表示加和乘的优先级,用3表示id和(E)的优先级,用0表示左侧或右侧没有运算对象的情况

```
S' \rightarrow E
E. \ left\_op = 0; E. \ right\_op = 0; print (E. \ code)
E \rightarrow E_1 + T
E_1. \ left\_op = E. \ left\_op; E_1. \ right\_op = 1;
T. \ left\_op = 1; T. \ right\_op = E. \ right\_op;
E. \ code = E_1. \ code || "+" || T. \ code ; E. \ self\_op = 1;
E \rightarrow T
T. \ left\_op = E. \ left\_op;
T. \ right\_op = E. \ right\_op;
E. \ code = T. \ code; E. \ self\_op = T. \ self\_op
```

$$T \rightarrow T_1 * F \dots$$
 $T \rightarrow F \dots$

$$F \rightarrow id$$

$$F. \ code = id. \ lexeme; \ F. \ self_op = 3$$

```
F 
ightarrow (E)
E. left\_op = 0; E. right\_op = 0;
F. self\_op =
if (F. left\_op < E. self\_op) and
(E. self\_op >= F. right\_op)
then E. self\_op else 3
F. code =
if (F. left\_op < E. self\_op) and
(E. self\_op >= F. right\_op)
then E. code else "(" || E. code || ")"
```

Thank you!