

WHAT IS CLAIMED IS:

10.

1

1	1.	An optical switching system for switching one of a plurality of optical	
2	signals, the system comprising:		
3		an optical cross-connect apparatus;	
4		a control device coupled to the optical cross-connect apparatus;	
5		a multiplexing device coupled to the optical cross-connect apparatus;	
6		a trunk monitoring device disposed before the multiplexing device, the	
7	trunk monitoring device being coupled to at least a first fiber and a second fiber;		
8		a fiber switch coupled between the multiplexing device and the trunk	
9	moni	toring device, the fiber switch being adapted to switch an optical signal from	
10	the first fiber to the second fiber.		
1	2.	The system of claim 1 wherein the fiber switch is a two by two switch.	
1	3.	The system of claim 1 wherein the multiplexing device is a DWDM	
2	device.		
1	4.	The system of claim 1 wherein the optical cross-connect apparatus	
2	comprises at	least an array of 256 mirror devices.	
1	5.	The system of claim 1 wherein the fiber switch is positioned after the trunk	
2	monitoring device.		
1	6.	The system of claim 1 wherein the first fiber is a primary fiber and the	
2	second fiber	is a back up fiber.	
1	7.	The system of claim 1 wherein the control device couples to the trunk	
2	monitoring device.		
1	8.	The system of claim 1 wherein the control device couples to the fiber	
2	switch.		
1	9.	The system of claim 1 wherein the trunk monitoring device monitors	
2		ted from a fiber cut, a defective fiber, or other signal degrading causes.	
_		, , , , , , , , , , , , , , , , , , , ,	

The system of claim 1 wherein the system is coupled to a second system.

1	11. A method for monitoring and controlling optical signals through a long		
2	haul communication network, the method comprising:		
3	monitoring optical signals from a first optical path on a first fiber using a		
4	trunk monitoring device, the trunk monitoring device being disposed before a		
5	multiplexing device coupled to an input port of a switching system;		
6	detecting a defect in the optical signals using the trunk monitoring device	,	
7	determining if the defect is from a selected defect being monitored;		
8	if the defect is a selected defect, initiating a process to switch the optical		
9	signals from the first path in the first fiber to a second path in a second fiber; and		
10	transferring the optical signals from the first path to the second path.		
1	12. The method of claim 11 wherein the selected defect is a fiber cut, a		
2	degraded fiber, or other signal degrading causes.		
1	13. The method of claim 11 wherein the transferring is provided by switching	3	
2	the optical signals from the first path to the second path.		
1	14. The method of claim 11 wherein the transferring is provided by a fiber		
2	switch coupled to the multiplexing device and the trunk monitoring device.		
1	15. The method of claim 14 wherein the fiber switching is between the fiber		
2	switch and the first fiber and the second fiber.		
1	16. A method for monitoring and controlling optical signals through an optical	al	
2	communication network, the method comprising:		
3	monitoring optical signals from a first optical path on a first fiber using a		
4	trunk monitoring device, the trunk monitoring device being disposed before a		
5	multiplexing device coupled to an input port of a switching system;		
6	detecting a defect in the optical signals using the trunk monitoring device	,	
7	determining if the defect is from a selected defect being monitored;		
8	if the defect is a selected defect, initiating a process to switch the optical		
9	signals from the first path in the first fiber to a second path in a second fiber;		
10	determining an available path for the second path from a pool of fibers, the	ıe	
11	pool of fibers having a plurality of optical paths;		
12	selecting one of the available paths for the second path; and		

13		transferring the optical signals from the first path to the second path.	
1	17.	The method of claim 16 wherein the selected defect is a fiber cut, a	
2	degraded fiber	, or other signal degrading causes.	
1	18.	The method of claim 16 wherein the transferring is provided by switching	
2	the optical sign	nals from the first path to the second path.	
1	19.	The method of claim 16 wherein the transferring is provided by a fiber	
2	switch coupled	to the multiplexing device and the trunk monitoring device.	
1	20.	The method of claim 19 wherein the fiber switching is between the fiber	
2	switch and the	first fiber and the second fiber.	
1	21.	A method for monitoring and controlling optical signals through an optical	
2	communication network, the method comprising:		
3		monitoring optical signals from a first optical path on a first fiber using a	
4	trunk monitori	ng device, the trunk monitoring device being disposed before a	
5	multiplexing device coupled to an input port of a switching system;		
6		detecting a defect in the optical signals using the trunk monitoring device;	
7		determining if the defect is from a selected defect being monitored;	
8		if the defect is a selected defect, initiating a process to switch the optical	
9	signals from th	ne first path in the first fiber to a second path in a second fiber based upon	
10	predetermined selection criteria;		
11		if the first optical path is for a first service level, suspending the process to	
12	switch the optical signals from the first path to the second path;		
13		if the first optical path is for a second service level, transferring the optical	

signals from the first path to the second path.