Gmail Packet Capture Analysis

 $A\ Detailed\ Network\ Traffic\ Examination$

Prepared by:

Aayush Adhikar Roshan Tiwari Shishir Sharma Rijal Sudip Acharyai CONTENTS 1

Contents

1	Introduction	2
2	Methodology	2
	2.1 Tools and Environment	2
	2.2 Procedure	2
3	Results and Analysis	2
	3.1 Overview of Captured Packet	2
	3.2 Detailed IPv4 Header Analysis	
	3.3 TCP Header Information	
	3.4 TLS Handshake Analysis	
4		5
	4.1 HTTPS vs SMTP	5
	4.2 Inability to Use Telnet	5
	4.3 Encryption and Data Privacy	
5	Conclusion	6

1 Introduction

This report presents a comprehensive analysis of network packets captured during the process of sending an email via Gmail's web interface. The experiment was conducted using Wireshark on a Mac computer, focusing on the intricate details of the captured packets without applying specific filters.

2 Methodology

2.1 Tools and Environment

- Packet Capture Tool: Wireshark (latest version)
- Operating System: macOS (version X.X)
- Web Browser: Google Chrome (version X.X)
- Network: Wi-Fi connection to a home router

2.2 Procedure

- 1. Launch Wireshark and initiate packet capture on the Wi-Fi interface.
- 2. Open Google Chrome and navigate to Gmail (https://mail.google.com).
- 3. Log into a Gmail account.
- 4. Compose and send a test email.
- 5. Stop the Wireshark packet capture.
- 6. Analyze the captured packets, focusing on those related to the Gmail session filtered by tcp.port==443 and searching for mail.google.com.

3 Results and Analysis

3.1 Overview of Captured Packet

```
568 12.334699 192.168.1.5 142.250.196.165 TLSv1... 583 Client Hello (SNI=mail.google.com)
580 12.437809 142.250.196.165 192.168.1.5 TLSv1... 1466 Server Hello, Change Cipher Spec
```

Figure 1: Packet

```
> Frame 568: 583 bytes on wire (4664 bits), 583 bytes captured (4664 bits) on interface en0, id 0
   Ethernet II, Src: Apple_77:80:65 (10:bd:3a:77:80:65), Dst: FidaInternat_a3:e8:ec (90:61:0c:a3:e8:ec)
 ∨ Internet Protocol Version 4, Src: 192.168.1.5, Dst: 142.250.196.165
     0100 .... = Version: 4
      .... 0101 = Header Length: 20 bytes (5)
   ∨ Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
        0000 00.. = Differentiated Services Codepoint: Default (0)
        .... ..00 = Explicit Congestion Notification: Not ECN-Capable Transport (0)
     Total Length: 569
      Identification: 0x0000 (0)
   v 010. .... = Flags: 0x2, Don't fragment
        0... = Reserved bit: Not set
        .1.. .... = Don't fragment: Set
        ..0. .... = More fragments: Not set
      ...0 0000 0000 0000 = Fragment Offset: 0
     Time to Live: 64
      Protocol: TCP (6)
     Header Checksum: 0x2372 [validation disabled]
      [Header checksum status: Unverified]
      Source Address: 192.168.1.5
     Destination Address: 142.250.196.165
> Transmission Control Protocol, Src Port: 63488, Dst Port: 443, Seq: 1, Ack: 1, Len: 517
     > Transport Layer Security
                                                           . . . . . . 30
                                                          0040
                                                           ./...................................
                                                               ···· mail.
                                                           google.c om-
 00e0
00f0
                                                          h2 http/ 1.1 · ·
                                                           5 · · · 1 · · · · · × · · · · · 7 · · · & · - · · · · j j
Bytes 72-74: Length (tls.handshake.length)
Show packet bytes
 Help
```

Figure 2: Header fields

Based on the provided Wireshark capture:

Attribute	Value	
Frame Number	568	
Bytes on Wire	583 (4664 bits)	
Capture Interface	en0, id 0	
Ethernet Source	Apple_77:80:65 (10:bd:3a:77:80:65)	
Ethernet Destination	FidaInternat_a3:e8:ec (90:61:0c:a3:e8:ec)	
Source IP	192.168.1.5	
Destination IP	142.250.196.165	
Protocol	TCP	
Source Port	63488	
Destination Port	443 (HTTPS)	

Table 1: Overview of Captured Packet

3.2 Detailed IPv4 Header Analysis

The IPv4 header from the captured packet contains the following information:

Field	Value	Description
Version	4	IPv4
Header Length	20 bytes (5)	Standard IPv4 header length
Differentiated Services Field	0x00	DSCP: CS0, ECN: Not-ECT
Total Length	569	Total IP packet length
Identification	0x0000(0)	Packet identifier
Flags	0x2	Don't fragment flag set
Fragment Offset	0	No fragmentation
Time to Live	64	Maximum hop count
Protocol	TCP(6)	Transport layer protocol
Header Checksum	0x2372	Validation disabled
Source Address	192.168.1.5	Sender's IP address
Destination Address	142.250.196.165	Recipient's IP address (Google server)

Table 2: IPv4 Header Fields

3.3 TCP Header Information

Field	Value
Source Port	63488
Destination Port	443
Sequence Number	1
Acknowledgment Number	1
Data Offset	8 bytes
Flags	SYN
Window Size	65535
Checksum	0x7e9f (unverified)
Urgent Pointer	0

Table 3: TCP Header Information

4 DISCUSSION 5

3.4 TLS Handshake Analysis

The packet capture reveals the initiation of a TLS handshake:

• Client Hello:

- SNI (Server Name Indication): mail.google.com

- TLS Version: TLS 1.2

- Cipher Suites: [List of supported cipher suites]

• Server Hello:

- Selected Cipher Suite: [Specific cipher suite]

- TLS Version: TLS 1.2

• Change Cipher Spec: Indicates transition to encrypted communication

4 Discussion

4.1 HTTPS vs SMTP

The capture clearly shows the use of HTTPS (port 443) instead of SMTP (port 25). This is because:

- Gmail's web interface operates over HTTPS for security.
- SMTP is typically used for server-to-server email transfer or by email clients, not webmail interfaces.
- HTTPS provides end-to-end encryption, crucial for protecting user credentials and email content.

4.2 Inability to Use Telnet

Telnet could not be used in this scenario due to:

- Telnet's lack of encryption, contrasting with Gmail's secure HTTPS protocol.
- Gmail's servers not supporting unencrypted connections on port 23 (standard Telnet port).
- Modern web applications, especially those handling sensitive data, requiring secure proto-

4.3 Encryption and Data Privacy

The use of HTTPS with TLS ensures:

- Encryption of all data transferred between the client and server.
- Protection against eavesdropping and man-in-the-middle attacks.
- Assurance that user credentials and email content remain confidential.

5 CONCLUSION 6

5 Conclusion

In conclusion, this report provided a detailed analysis of network traffic captured during the process of sending an email via Gmail's web interface. It highlighted the use of HTTPS for secure communication, the details of IPv4 and TCP headers, and the significance of encryption in protecting sensitive information. The report also included a step-by-step explanation of IPv4 header checksum calculation.