Valori Proprii (1)

Valentin-Ioan VINTILĂ

Facultatea de Automatică și Calculatoare - CTI Universitatea POLITEHNICA București

28 martie 2023 (Lab. 5)

G & (a)

Surpiză (1)

Pentru acest laborator, m-am gândit să vă fac o surpriză plăcută!

Scoateți o foaie de hârtie și un pix - dăm lucrare!

Cuprins

- Recapitulare algebră liniară
- Matrice Jordan
- 3 Cercurile lui Gershgorin
- Descompunerea spectrală
- Coeficientul Rayleigh
- 6 Metoda puterii
- Bibliografie

G & (a)

Surpiză (2)

Sper că v-a plăcut!

Valori și vectori proprii (1)

Dacă $A\mathbf{x} = \lambda \mathbf{x}$, numim λ valoare proprie și \mathbf{x} vectorul propriu asociat.

Definim **polinomul caracteristic** $p(\lambda) = \det(A - \lambda I_n)$. Îl folosim pentru a afla valorile și vectorii proprii (prin **ecuația caracteristică** $p(\lambda) = 0$).

Totalitatea acestor valori proprii formează **spectrul** matricei și se notează fie $\lambda(A)$, fie σ_A :

$$\lambda(A) = \sigma_A = \{\lambda_1, \dots, \lambda_n\}$$

Introducem și raza spectrală:

$$\rho(A) = \max_{\lambda_i \in \lambda(A)} \{|\lambda_i|\}$$

Matrice asemenea (2)

(deci $B = TAT^{-1} \Leftrightarrow A \sim B$), sunt:

matricei B, adică $\lambda(A) = \lambda(B)$;

Valori și vectori proprii (2)

Suma lor dă urma matricei:

Două proprietăți importante ale valorilor proprii:

2 Produsul lor dă determinantul matricei:

 $\sum_{i=1}^{n} \lambda_{i} = \operatorname{Tr}(A) \left(= \sum_{i=1}^{n} A_{ii} \right)$

 $\prod_{i=1}^n \lambda_i = \det(A)$

6 4 0

Două proprietăți importante ale matricelor asemena, să zicem A și B

Onservarea spectrului. Spectrul matricei A este identic cu spectrul

Transferul vectorilor proprii. Dacă x este un vector propriu pentru

A, atunci $\mathbf{y} = T\mathbf{x}$ este un vector propriu pentru B.

Matrice asemenea (1)

Definiție (matrice asemenea)

Fie două matrice $A,B\in\mathbb{C}^{n\times n}$, $n\in\mathbb{N}^*$. Acestea se consideră **asemenea** dacă există o matrice nesingulară $T \in \mathbb{C}^{n \times n}$ cu proprietatea:

$$B = TAT^{-1}$$

Se notează de obicei $A \sim B$.

G & @

Matrice diagonalizabile (1)

Definiție (matrice diagonalizabile)

Fie $A \in \mathbb{R}^{n \times n}$ o matrice pătratică, $n \in \mathbb{N}^*$. Numim această matrice diagonalizabilă dacă este asemenea cu o matrice diagonală.

Altfel spus, dacă există $\Lambda \in \mathbb{R}^{n \times n}$ diagonală astfel încât $A = T \Lambda T^{-1} \Leftrightarrow A \sim \Lambda$, atunci A este diagonalizabilă.

Matrice diagonalizabile (2)

Matricea Λ va conține pe diagonală valorile proprii ai lui A.

Ca să aflăm matricea \mathcal{T} , trebuie să aflăm vectorii proprii ai matricei A. Din vectorii proprii asociați acestora, scoatem o bază pe care o dispunem pe coloanele matricei T:

$$\mathcal{T} = egin{bmatrix} m{b_1} & \dots & m{b_n} \end{bmatrix}, \text{ unde } B = \{m{b_1}, \dots, m{b_n}\}$$

Aici, B este baza subpsațiului vectorilor proprii.

Matrice diagonalizabile (3)

Cine vine **la tablă** pentru a diagonaliza $A = \begin{bmatrix} 4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{bmatrix}$

Spectrul va fi $\lambda(A)=\{\lambda_1=\lambda_2=1,\ \lambda_3=2\}$, ceea e înseamnă că matricea diagonală este $\Lambda=\begin{bmatrix}1&0&0\\0&1&0\\0&0&2\end{bmatrix}$

Vectorii proprii vor fi de forma $\mathbf{x_1} = \begin{bmatrix} \alpha \\ \alpha \\ \beta \end{bmatrix}$ și $\mathbf{x_2} = \begin{bmatrix} 3\alpha \\ 2\alpha \\ \alpha \end{bmatrix}$, deci

$$T = \begin{bmatrix} 1 & 0 & 3 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix} \text{ (astfel încât } A = T \wedge T^{-1}\text{)}.$$

Matrice diagonalizabile (4)

Sunt toate matricele diagonalizabile? NU, motiv pentru care ne trebuie ceva mai general.

Matrice Jordan (1)

Cea mai simplă formă la care poate fi redusă orice matrice (prin transformări de asemănare) este forma Jordan.

Forma Jordan $(J \in \mathbb{C}^{n \times n})$ este o matrice **bloc diagonală** ce conține pe diagonala principală matrice de forma $J_k \in \mathbb{C}^{n_k \times n_k}$.

Acestea conțin pe diagonala principală aceeași valoare λ_k , iar imediat deasupra diagonalei principale se găsesc valori de 1.

Matrice Jordan (2)

Spre exemplu, pentru o matrice $A \in \mathbb{R}^{n \times n}$, forma Jordan va fi:

$$J = \begin{bmatrix} J_1 & 0 & \dots & 0 \\ 0 & J_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & J_{n' \le n} \end{bmatrix}, \text{ unde } J_k = \begin{bmatrix} \lambda_k & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda_k & 1 & \dots & 0 & 0 \\ 0 & 0 & \lambda_k & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \lambda_k & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda_k \end{bmatrix}$$

Ca să alegem λ_k , ne uităm în $\lambda(A)$. Pentru a afla n_k , numărăm de câte ori apare λ_k în $\lambda(A)$ (multiplicitatea sa algebrică).

Semyon Aranovich Gershgorin

Matrice Jordan (3)

Să vedem cum arată matricea Jordan pentru:

$$A = \begin{bmatrix} 5 & 4 & 2 & 1 \\ 0 & 1 & -1 & -1 \\ -1 & -1 & 3 & 0 \\ 1 & 1 & -1 & 2 \end{bmatrix}$$

Calculați în Octave care sunt valorile proprii ale matricei A (puteți apela funcția eig(A)). Matricea Jordan va fi:

$$J = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

Cercurile lui Gershgorin (1)

Teoremă (cercurile lui Gershgorin)

Toate valorile proprii ale unei matrice $A \in \mathbb{C}^{n \times n}$, $n \in \mathbb{N}^*$, se găsesc în interiorul reuniunii cercurilor (discurilor) lui Gershgorin:

$$D_i = \left\{z \in \mathbb{C} \, \Big| \, |z - A_{ii}| \leq \sum_{j=1, j
eq i}^n |A_{ij}|
ight\}$$

Cu alte cuvinte:

$$\sigma_A \subset \bigcup_{i=1}^n D_i$$

Încercați să demonstrați ca temă!

G & (a)

Cercurile lui Gershgorin (2)

Să încercăm să construim discurile lui Gershgorin pentru:

$$A = \begin{bmatrix} 3 & i & 1 \\ -1 & 4+5i & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

Menționăm că σ_A cuprinde: $\begin{cases} \lambda_1 \approx -1.5793 + 0.2731i \\ \lambda_2 \approx 3.4686 - 0.0005i \\ \lambda_3 \approx 4.1107 + 4.7275i \end{cases}$

Descompunerea spectrală (1)

Teoremă (descompunere spectrală)

/alentin-loan VINTILĂ

Cercurile lui Gershgorin (3)

Sursă: https://golem.ph.utexas.edu/category/2016/08/in_praise_of_ the_gershgorin_di.html

Orice matrice pătratică $A \in \mathbb{R}^{n \times n}$, $n \in \mathbb{N}^*$ este simetrică dacă și numai dacă există o matrice ortogonală $Q \in \mathbb{R}^{n \times n}$ și o matrice diagonală $\Lambda \in \mathbb{R}^{n \times n}$ astfel încât să se formeze transformarea de asemănare:

 $A = Q\Lambda Q^T$ unde $\mathit{Q} = egin{bmatrix} q_1 & \dots & q_n \end{bmatrix}$ este formată din vectorii proprii asociați matricei A și formează o bază ortonormată, iar Λ se calculează utilizând $\lambda(A)$.

Descompunerea spectrală (3)

Să considerăm descompunerea spectrală $A = Q\Lambda Q^T$.

G & @

Descompunerea spectrală (2)

Două proprietăți interesante ar fi:

- O matrice simetrică are exclusiv valori proprii reale;
- Rangul lui A este dat de numărul de valori proprii nenule.

6 4 0

poate fi scrisă sub forma:

Demonstrația rămâne ca temă...

Coeficientul Rayleigh (2)

6 4 0

Avem deci formula:

Se poate demonstra atunci că ridicarea la puterea $n \in \mathbb{N}^*$ a matricei A

 $A^n = Q\Lambda^n Q^T$

Coeficientul Rayleigh (1)

Definiție (coeficientul Rayleigh)

Fie o matrice pătratică $A \in \mathbb{R}^{n \times n}$, $n \in \mathbb{N}^*$. Dacă $\mathbf{x} \in \mathbb{R}^n$ este un vector asociat matricei A, atunci coeficientul Rayleigh se definește drept **scalarul** (funcția $r : \mathbb{R}^n \to \mathbb{R}$):

$$r(\mathbf{x}) = \frac{\mathbf{x}^T A \mathbf{x}}{||\mathbf{x}||^2} = \left(\frac{\mathbf{x}}{||\mathbf{x}||}\right)^T A \left(\frac{\mathbf{x}}{||\mathbf{x}||}\right)$$

G & @

Demonstrația la tablă...

 $r(\mathbf{x}) = \frac{\mathbf{x}^T A \mathbf{x}}{||\mathbf{x}||^2} = \left(\frac{\mathbf{x}}{||\mathbf{x}||}\right)^T A \left(\frac{\mathbf{x}}{||\mathbf{x}||}\right)$

Aplicăm acum coeficientul Rayleigh pe un vector propriu.

Vom obține chiar λ , valoarea proprie asociată.

G & @

Metoda puterii directe (1)

Fie matricea simetrică $A \in \mathbb{R}^{n \times n}$, $n \in \mathbb{N}^*$, cu spectrul $\lambda(A) = \{\lambda_1, \dots, \lambda_n\}$ astfel încât:

$$|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$$

Căutăm o metodă de a calcula valoarea proprie (pre)dominantă, λ_1 .

proprii predominante.

Metoda puterii directe (4)

Metoda puterii directe (2)

Cunoaștem A simetrică, deci avem descompunerea spectrală:

Vectorii din Q sunt ortonormali, deci **formează o bază** în \mathbb{R}^n .

Alternativ, dacă notăm $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ \end{bmatrix}$, putem scrie:

Considerăm $\mathbf{y}^{(k)}$ îmbunătățirea la pasul $k \in \mathbb{N}^*$.

Aşadar, din $m{q_i} = rac{A^k}{\lambda_i^k}m{q_i}$, formăm: $m{y^{(k)} = rac{A}{\lambda_1}m{y}^{(k-1)}}$

Deci, orice vector $\mathbf{y}^{(0)} \in \mathbb{R}^n$ se poate scrie ca o **combinație liniară**:

 $A = Q \Lambda Q^T$

 $\mathbf{y}^{(0)} = x_1 \mathbf{q}_1 + \cdots + x_n \mathbf{q}_n = \sum_{i=1}^n x_i \mathbf{q}_i$

Vom considera $\mathbf{y}^{(0)}$ aproximația inițială a vectorului propriu asociat valorii

 $\mathbf{y}^{(0)} = Q\mathbf{x} \Leftrightarrow \mathbf{x} = Q^{-1}\mathbf{y}^{(0)}$

G & (a)

Metoda puterii directe (3)

Cunoaștem și faptul că $A^k = Q \Lambda^k Q^T$, $\forall k \in \mathbb{N}^*$, deci:

$$A^k Q = Q \Lambda^k \Rightarrow A^k \mathbf{q}_i = \lambda_i^k \mathbf{q}_i$$

Obținem așadar că $\overline{m{q}_i = rac{A^k}{\lambda_i^k}m{q}_i}$ — ce este așa spectaculos?

Exact, l-am scris pe q_i față de el însuși, ceea ce ne duce cu gândul la metodele iterative!

Metoda puterii directe - sinteză

Algoritmic, MPD se poate scrie astfel:

Trecem la algoritm – facem notația: ${m y}^{(k)} o {m t}$

valorii proprii predominante:

 Se aproximează y'(0) (primește o valoare de început); ② Pentru fiecare pas $k \in \mathbb{N}^*$, procedăm astfel:

ullet Se calculează un *vector auxiliar*: $oldsymbol{t} = A oldsymbol{y'}^{(k-1)};$

• Acest vector normalizat va fi chiar $m{y'}^{(k)}$, adică $m{y'}^{(k)} = rac{m{t}}{||m{t}||}$; • Folosind coeficientul Rayleigh, se poate calcula o nouă aproximare a

Metoda puterii directe (5)

Ce se întâmplă dacă aplicăm coeficientul Rayleigh pe $y^{(k)}$? Vom obține o aproximație a lui $\lambda_1!$

Ce problemă are recurența $\mathbf{y}^{(k)} = \frac{A}{\lambda_1} \mathbf{y}^{(k-1)}$? Ea presupune deja cunoscută valoarea lui λ_1 , pe care vrem să îl aflăm.

Cum reparăm? Normalizăm:

$$\boxed{ \mathbf{y}^{\prime(k)} = \frac{\mathbf{y}^{(k)}}{||\mathbf{y}^{(k)}||} = \frac{A\mathbf{y}^{(k-1)}/\lambda_1}{||A\mathbf{y}^{(k-1)}/\lambda_1||} = \frac{A\mathbf{y}^{(k-1)}}{||A\mathbf{y}^{(k-1)}||} = \frac{A\mathbf{y}^{\prime(k-1)}}{||A\mathbf{y}^{\prime(k-1)}||}}$$

 $\lambda_{1}^{(k)} = r\left(\mathbf{y}^{\prime(k)}\right) = \frac{\left(\mathbf{y}^{\prime(k)}\right)^{T} A\left(\mathbf{y}^{\prime(k)}\right)}{\left|\left|\mathbf{y}^{\prime(k)}\right|\right|^{2}}$ $= \left(\mathbf{y}^{\prime(k)}\right)^{\mathsf{T}} A\left(\mathbf{y}^{\prime(k)}\right)$

6 4 0

Metoda puterii directe - concluzii

O folosim în practică? NU! Vom vedea de ce preferăm să utilizăm metoda puterii inverse...

Bibliografie

Pentru această prezentare, am utilizat:

- Cărțile Matrix Decomposition and Applications, respectiv Numerical Matrix Decomposition and its Modern Applications: A Rigorous First Course ale lui Jun Lu;
- Cartea Linear Algebra and Its Applications (2006), Gilbert Strang;
- de George Em Karniadakis și Robert M. Kirby II;
- Articolul Numerical Solution of Linear Eigenvalue Problems, scris de Jessica Bosch și Chen Greif.

Mulțumesc frumos pentru atenție!

Vă rog frumos să completați formularul de feedback!

