

Mitigating Health Disparity in Hospital Admission for Diabetic

Patients

Kristen Lo - BrainStation Data Science Capstone

TODAY'S AGENDA

THE PROBLEM

• There are **5.7 Million Canadians** living with **Diabetes Mellitus** in 2022⁽¹⁾

• Diabetic patients have complex medical needs, especially in the ER (2)

The prevalence of diabetes is 2.1
 times higher among adults living in the lowest-income group⁽³⁾

THE DATA

What does it look like?

After filtering for **only patients with diabetes**, there were **110K rows and 487 columns**

What changes were made?

Dummying the columns

Feature Engineering/Elimination

What does it look like after?

After preprocessing and Feature Elimination, there were 105K rows and 419 columns

THE ANALYSIS

- The majority of patients are over 40
- About 76% of the patients have hypertension (high blood pressure)
- About 53% of the patients have hyperlipidemia (high cholesterol)

- Train Accuracy
- Test Accuracy
- 5 Fold Cross Validation (CV)
- Mean CV Accuracy
- Classification Report
- Confusion Matrix
- ROC AUC Curve

Logistic Regression

Base

Train Accuracy: **0.792**Test Accuracy: **0.793**

Mean CV Accuracy: 0.789

Optimized

Train Accuracy: **0.787**Test Accuracy: **0.788**

Mean CV Accuracy: 0.789

Summary of Model Performance

MODEL TYPE	TRAIN ACC	TEST ACC	MEAN CV	ROC-AUC
LOGISTIC REGRESSION (BASE)	0.792	0.793	0.789	0.87
DECISION TREE (OPTIMIZED)	0.800	0.782	0.747	0.80
RANDOM FOREST (OPTIMIZED)	0.849	0.779	0.787	0.87
XGBOOST (OPTIMIZED)	0.817	0.795	0.789	0.88

Feature Importance

DECISION TREE

Random Forest

XGBOOST

CURRENT STATUS

• Increasing Explainability

ML IN PRODUCTION

 Use top 2 models to push to production

 Utilize Streamlit to create a web app to interact with the models

BUT WHERE DOES HEALTH DISPARITY FIT IN?

More research into IBM's AIF360
 Toolkit

 Find a way to successfully implement it into model pre-processing

Perhaps predict the Emergency
 Severity Index(ESI) next

THANK YOU!
SO LONG
AND
THANKS FOR
ALL THE FISH!