Due: Thursday November 13, 2014

Follow the rules of the previous written assignment. The first to solve problem H gets \$20.

(50 pts) 1. Streaming Medians

In this problem we develop the algorithm to find an approximate median using a sampling idea.

Given a set A of n distinct numbers, let M be the set of elements with ranks in the interval $((1-\varepsilon)\frac{n}{2},(1+\varepsilon)\frac{n}{2})$, let L be the elements with ranks $[1,(1-\varepsilon)\frac{n}{2}]$, and H be the elements with ranks $[(1+\varepsilon)\frac{n}{2},n]$. An ε -approximate median is any element in M.

(a) Let $\varepsilon > 0$. Suppose you have a coin with "heads" probability $p = \frac{1}{2}(1 - \varepsilon)$ and "tails" probability $1 - p = \frac{1}{2}(1 + \varepsilon)$. You flip it $\ell = 2k + 1$ times. Show that the probability of getting a majority of flips being heads (i.e., at least k + 1 heads) is at most

$$\frac{1}{\varepsilon^2} (1 - \varepsilon^2)^{k+1} \le \frac{1}{\varepsilon^2} e^{-\varepsilon^2(k+1)} \le \frac{1}{\varepsilon^2} e^{-\varepsilon^2 k}.$$

(Hint: write down the exact probability and then use simple approximations. This is not the best answer possible, we know how to do better; if you can do better, please do not panic.)

(b) Consider the algorithm:

Define $k := \frac{1}{\varepsilon^2} \ln \frac{2}{\varepsilon^2 \delta}$.

Let S be a set of $\ell = 2k+1$ uniformly random elements of A (chosen with replacement). Let m be a median of S. Return m. (Observe that we succeed exactly when m lies in M.)

Show that $\Pr[m \in L \cup H] \leq \delta$. (Hint: Show that $\Pr[m \in L] \leq \delta/2$.)

Hence, observe that the algorithm above finds an ε -approximate median with probability at least $1 - \delta$. (This is not a streaming algorithm, however.)

- (c) (Nothing to do here.) Suppose T is a uniformly random subset of A, of size ℓ . (Hence T is like sampling ℓ random elements without replacement.) Return the median m' of T. We're not asking you to prove it, but it is possible to show that $\mathbf{Pr}[m' \in L \cup H] \leq \delta$, even in this setting.
- (d) Give a procedure that, given a stream a_1, a_2, \ldots , of numbers, maintains at each time $t \geq \ell$ a set $T \subseteq a_{[1:t]}$ with size exactly ℓ , such that T is a uniformly random subset of $a_{[1:t]}$ of size ℓ . (This procedure stores at most ℓ numbers and time t in memory.)

Putting the parts together, observe that if we run the procedure in part (e) to maintain the random set T of size $O(\frac{1}{\varepsilon^2}\log\frac{1}{\varepsilon^2\delta})$, the median of the elements in T at some time t is an ε -approximate median of $a_{[1:t]}$ with probability at least $1-\delta$.

(20 pts) 2. Counting Substrings

A suffix tree has been built for a string s of length n. (Actually the suffix tree has been built for the string s\$ which is s augmented with a special unique terminal character.) Your job is to give an algorithm which counts the number of distinct non-empty substrings of s in O(n) time.

For example, if s = abab, then there are seven such substrings: a, ab,aba,abab,b,ba,bab.

(30 pts) 3. LDIS

The Longest Duplicate Initial Substring problem (LDIS) is the following. Given a string s compute the length of the longest string w such that ww occurs at the beginning of s (or determine if no such string exists). (Note that ww means the string w concatented with itself.)

For example if s = aaaaabaaaab then the answer is 2.

- (a) Give a linear-time probabilistic algorithm for this problem based on Karp-Rabin fingerprinting.
- (b) Give a linear-time algorithm for this problem based on suffix trees.

(\$20) H. Problem To Be Announced