

#### **Sortieren mit Halde**

Fachdidaktik Informatik Referent: Hien Nguyen Fachdidaktik DO 18.6

AMT MO 15.6

HCl 1 SO 14.6

HCI 2 SO 14.6

AB MO 15.6

SE-Projektmeeting FR 12.6

SE Hibernate SQLQuerys Arbeit MI 17.6

SE Hibernate SQLQuerys Meeting FR. 19.6

Stochastik Prog SO 14.6

Stochastik Theo MI 16.6



Fachdidaktik DO 18.6

AMT MO 15.6

HCl 1 SO 14.6

HCI 2 SO 14.6

AB MO 15.6

SE-Projektmeeting FR 12.6

SE Hibernate SQLQuerys Arbeit MI 17.6

SE Hibernate SQLQuerys Meeting FR. 19.6

Stochastik Prog SO 14.6

Stochastik Theo MI 16.6



HCl 1 SO 14.6

HCI 2 SO 14.6

Stochastik Prog SO 14.6

AMT MO 15.6

AB MO 15.6

Stochastik Theo MI 16.6

SE Hibernate SQLQuerys Arbeit MI 17.6

Fachdidaktik DO 18.6

SE Hibernate SQLQuerys Meeting FR. 19.6





## Wiederholung & Datenstruktur

Datenstruktur: Heap (Halde), die einen binären Baum mit bestimmten Eigenschaften bezeichnet:



#### Wiederholung & Datenstruktur

- Datenstruktur: Heap (Halde), die einen binären Baum mit bestimmten Eigenschaften bezeichnet:
  - Baum ist vollständig, d.h. jede Blattebene ist von links nach rechts gefüllt



#### Wiederholung & Datenstruktur

- Datenstruktur: Heap (Halde), die einen binären Baum mit bestimmten Eigenschaften bezeichnet:
  - Baum ist vollständig, d.h. jede Blattebene ist von links nach rechts gefüllt
  - Schlüssel eines Elternknoten ist kleiner oder gleich (größer oder gleich) dem Schlüssel seiner 2 Kinder
    - $\rightarrow$   $\leq$ : Min-Heap, d.h.  $arr[parent(i)] \leq arr[i]$
    - $\rightarrow$  : Max-Heap, d.h.  $arr[parent(i)] \ge arr[i]$
    - Wird als Heap-Eigenschaft bezeichnet







#### Min - Heap









#### Max - Heap







#### **Sortieren mit Halde**

Fachdidaktik Informatik Referent: Hien Nguyen

### Anwendung und Eigenschaften

Das kleinste bzw. größte Element befindet sich immer in der Wurzel

#### Anwendung:

- Priority Queue (Warteschlange),
- Sortierung Heapsort



#### Grundidee von Heapsort

- Beim Entfernen der Wurzel wird beim:
  - Max-Heap: größte Element
  - Min-Heap: kleinste Element



#### Entfernen der Wurzel

- Problem: Durch Entfernen der Wurzel entsteht eine "Lücke" im Baum – die Heap-Eigenschaft wird verletzt
- Lösung:
  - Bewege letzte Element des Heaps zur Wurzel
  - Vergleiche mit Nachfolgeelementen und "versickere (percolate)" durch Tauschen der Nachfolger bis Heap-Eigenschaft wiederhergestellt ist



#### Grundidee von Heapsort

- Beim Entfernen der Wurzel wird beim:
  - Max-Heap: größte Element
  - Min-Heap: kleinste Element

aus dem Heap genommen und durch Versickern die Heap-Eigenschaft wiederhergestellt.



### Grundidee von Heapsort

- Beim Entfernen der Wurzel wird beim:
  - Max-Heap: größte Element
  - Min-Heap: kleinste Element
  - aus dem Heap genommen und durch Versickern die Heap-Eigenschaft wiederhergestellt.
- Versickerung immer in den Teilbaum mit der kleineren Wurzel
- Wiederholung auf Rest-Heap bis sortierte Reihenfolge vorliegt



#### Struktur und Eigenschaften

Die Heap-Struktur kann lückenlos in der Implementierung leicht durch ein Array repräsentiert werden, weil ein binärer Heap ein vollständiger binärer Baum ist.

| Index | 1 | 2 | 3 | 4 | 5 | 6 |
|-------|---|---|---|---|---|---|
| Key   | 8 | 7 | 4 | 2 | 0 | 1 |





## Struktur und Eigenschaften

Die Heap-Struktur kann lückenlos in der Implementierung leicht durch ein Array repräsentiert werden, weil ein binärer Heap ein vollständiger binärer Baum ist.

| Index | 1 | 2 | 3 | 4 | 5 | 6 |
|-------|---|---|---|---|---|---|
| Key   | 8 | 7 | 4 | 2 | 0 | 1 |



- Nummerierung der Knoten des Heaps:
  - Kinder des k-ten Knotens auf Position
    - $\rightarrow$  Links: 2k
    - Rechts: 2k+1
  - Eltern-Knoten auf  $\left\lfloor \frac{k}{2} \right\rfloor$

## Eigenschaft auf Arrays

- lacktriangledown Das Array arr[1, ..., n] erfüllt die Heap-Eigenschaft, wenn:
  - $\rightarrow arr[k] \ge arr[2k]$
  - $arr[k] \ge arr[2k+1]$



## Implementierung

- Implementierung in Java
- Zwei Hilfsmethoden
  - Swap
    - Vertauscht zwei Elemente im Array



## Implementierung



#### generateHeap()

Eingabe: arr[0, ..., n-1]

wiederhole für i=arr.laenge / 2 bis 0

percolate(arr, i, arr.laenge)

#### sortHeap()

wiederhole für i=arr.laenge - 1 bis 1

swap(arr, 0, i)

percolate(arr, 0, i)

## Implementierung

#### percolate() Eingabe: arr[0, ..., n-1] Eingabe: int Elternknoten Eingabe: int groesseRestTeilbaum linkesKind = 2 \* parent rechtesKind = 2 \* parent + 1 int groesstesKind rechtesKind < n nein arr[linkesKind] < arr[rechtesKind] linkesKind < n nein arr[Elternknoten] < arr[linkesKind] nein groesstesKind = rechtesKind | groesstesKind = linkesKind swap(arr, linkesKind, parent) arr[Elternknoten] < arr[groesstesKind] Ø nein swap(arr, groesstesKind, parent) percolate(arr, groesstesKind, n)



### Analyse der Laufzeit

- 2 Bestandteile
  - generateHeap
    - Percolate:
      - $\Box O(h) \rightarrow O(\log n)$
    - ▶ Insgesamt:  $\frac{n}{2} * \log n \rightarrow O(n * \log n)$
  - Heapsortierung
    - ▶ Swap: *0*(1)
    - Percolate
    - ▶ Insgesamt:  $(n-1) * 1 * \log n \rightarrow O(n * \log n)$
  - Gesamtlaufzeit:  $O(n \log n)$

### Mögliche GFS-Themen

- Bottom-Up-Heapsort
- Smoothsort
- Ternäre Heaps & n-äre Heaps

