Tutorial - Οδηγός Εκμάθησης KiCad

Μιχάλης Μισιρλής Οκτώβριος 2015

Περιεχόμενα

1	1.1 Προαπαιτούμενα	3 3 5 7
2	Δ ημιουργία έργου	8
3	Σχεδίαση Σχηματικού Κυκλώματος 3.1 Δημιουργία σχηματικού 3.2 Προσθήκη εξαρτημάτων	264455666
4	Αημιουργία Πλακέτας (PCB) 4.1 Δημιουργία πλακέτας	3355667788899
5	Κατασκευή πλακέτας 4 5.1 Αρχεία gerber 4 5.2 Αρχεία διάτρησης 4 5.3 Αρχεία τοποθέτησης 4 5.4 Επίλονος 4	2

1 Εισαγωγή

Αυτός ο οδηγός εκμάθησης έχει ως στόχο την εξοικείωση του Έλληνα χρήστη του KiCad μέσα από την ανάπτυξη ενός απλού αλλά πλήρους κυκλώματος (ηλεκτρονική συσκευή) ξεκινώντας από την βασική ιδέα και το σκοπό της συσκευής και καταλήγοντας στην παραγωγή αρχείων κατασκευής ώστε να μπορεί να παραχθεί η συσκευή από οποιοδήποτε εργοστάσιο ή εταιρεία παραγωγής πλακετών.

1.1 Προαπαιτούμενα

Αυτός ο οδηγός έχει βασιστεί και απαιτεί το πρόγραμμα KiCad έκδοση 4.0.0 με την Ελληνική μετάφραση. Επίσης ο οδηγός θεωρεί ότι ο χρήστης είναι εξοικειωμένος με τις βασικές έννοιες ηλεκτρονικού σχεδιασμού και μπορεί να σχεδιάσει πλήρως ένα κύκλωμα στο χαρτί ή σε κάποιο άλλο πρόγραμμα. Αυτός ο οδηγός δεν έχει ως στόχο τη διδασκαλία ηλεκτρονικού σχεδιασμού, αλλά τη διδασκαλία του πως γίνεται ο ηλεκτρονικός σχεδιασμός με το KiCad. Τέλος ο οδηγός θεωρεί ότι ο χρήστης είναι εξοικειωμένος τις βασικές έννοιες χρήσης ηλεκτρονικών υπολογιστών, όπως επιλογή μενού, έξοδος από ένα παράθυρο, επιλογή πολλαπλών στοιχείων κα.

Το tutorial αυτό πρέπει να συνοδεύεται από αρχείο zip (kicad_tut018) τα οποίο περιέχει όλα τα σχετικά αρχεία του KiCad για το τελικό κύκλωμα που θα σχεδιάσουμε.

1.2 Αεξικό όρων

Ελληνικός όρος 3Δ προβολή αγκύρωση ακροδέκτης ακτίνα αλφαριθμητικό ανάλυση

αναφορά, ονομασία αναφοράς

αντεστραμμένο αντικολλητική μάσκα αντίσταση συγκόλλησης

απόδοση απόκλιση αποτύπωμα γομα

γραμμή γραφικών

διάκενο διαμπερές διάτρηση δίαυλος δίκτυα μίας έδι

δίκτυα μίας έδρας

δρομολόγηση

δρόμος

Aγγλικός όρος 3d viewer anchor pin spoke string parse reference

inverted

solder resist mask solder resist

render skew footprint eraser graphic line clearance through (hole)

drill bus

single pad nets

route

pcb trace / track

έδρα antipad clearance έδρα pad

EHK **ERC** ΕΚΣ **DRC**

ελεγκτής ηλεκτρικών κανόνων electrical rules checker

εξάρτημα component έξοδος output επάνω πλευρά top side

επεξεργαστής σχεδίασης σελίδας page layout editor

options / choices / selections επιλονές επίπεδα layers επίπεδα eco eco lavers επίπεδο σχεδίων drawings layer adhesive layers

επίπεδοα επικόλλησης επισήμανση flag ζώνες zones θαμμένο via buried via θύρα port θύρα ισχύος power port

κανόνες σχεδιασμού design rule κατοπτρισμός, καθρέφτισμα mirror

κάτω πλευρά bottom side gap

κενό

κοίλες γωνίες fillet g code κώδικας g filLED mode λειτουργία γεμίσματος sketch mode

λειτουργία περιγράμματος λειτουργία περιγράμματος outline mode λίστα δικτύων netlist

λίστα υλικών bill of materials λοξότμηση chamfer solder mask

μάσκα συγκόλλησης unit μέρη

μεταξοτυπία silk screen μετατόπιση & σπρώξιμο Push & shove

μετατόπιση,θέση offset

μηχανές ανύψωσης και τοποθέτησης "pick and place" μικρο-ρύθμιση, ρύθμιση tune μπροστινή όψη front view ονοματοδοσία annotate

όρια πλακέτας pcb/board edge legacy

παλαιότερου τύπου παραπομπή πλαισίου frame reference πάστα συγκόλλησης solder paste περιγράμμα πλακέτας board outline

πίνακας matrix πίσω όψη back view πλαίσιο box (για ui) πλοηγός navigator

πρόγραμμα προβολής pdf pdf viewer προκαθορισμένου default πρόσθετα plugin προτιμώμενο favourite

ρυθμίσεις setting / configuration σκιανοάφηση hatch

stubs

alias

wire

drag

array

design

folder / directory

data sheet

copper pour

ratsnest

courtyard

nickname

excellon

excellon

canvas

padstack

conflict hotkeys

σκιαγράφηση στελέχη στοίβα έδρας σύγκρουση, ασυμβατότητα συντομεύσεις συνώνυμο σύρμα σύρσιμο συστοιχία σχεδίαση σχεδίασης σελίδας σχέδιο

σχεδίασης σελίδας page layout σχέδιο drawing σχεδιογραφώ plot σχηματικό διάγραμμα, σχηματικό schematic τόξο arc hole

φάκελος φύλλο δεδομένων φωλιά συνδέσεων

χαλκός χώρος αποτυπώματος χώρος σχεδίασης ψευδώνυμο excellon excellon gerber NPTH

gerber gerber
NPTH NPTH
PTH PTH
SMD SMD
VIA VIA

1.3 Περιγραφή συσκευής

Η συσκευή ονομάζεται USB2UART και είναι ένας μετατροπέας USB σε 3.3V UART, βασισμένος στο ολοκληρωμένο CP2104 από την εταιρεία Silicon Labs. υποστηρίζεται από τα περισσότερα σύγχρονα λειτουργικά συστήματα ως εικονική σειριακή θύρα. Συνδέεται με έναν standard type B connector από τη μία πλευρά και ένα fourpin header από την άλλη. Περιλαμβάνει power status LED και RX/TX LED.

Το τελικό σχηματικό κύκλωμα της συσκευή και το τελικό σχέδιο της πλακέτας φαίνονται στα σχήματα 1 και 2.

Σχήμα 1: Τελικό σχηματικό κύκλωμα της συσκευής

Σχήμα 2: Τελικό σχέδιο της πλακέτας της συσκευής

1.4 Βασικές Έννοιες KiCad

Το KiCad είναι μία ολοκληρωμένη σουίτα εφαρμογών σχεδίασης ηλεκτρονικών κυκλωμάτων EDA (Electronic Design Automation). Με το KiCad είναι εφικτή η σχεδίαση σχηματικών και τυπωμένων ηλεκτρονικών κυκλωμάτων, χρησιμοποιώντας διαφορετικές εφαρμογές.

Τα σχηματικά κυκλώματα σχεδιάζονται στο KiCad με την εφαρμογή EEschema. Αποτελούνται από εξαρτήματα (για παράδειγμα ένας πυκνωτής ή ένα ολοκληρωμένο) συνδέσεις μεταξύ τους, και άλλα στοιχεία. Τα σχηματικά κυκλώματα είναι οργανωμένα σε σχηματικά φύλλα. Κάθε σχηματικό φύλλο αποτελεί και ένα αρχείο .sch στον υπολογιστή του χρήστη. Επίσης, η λίστα δικτύων κάθε κυκλώματος αποτελεί ένα αρχείο .net στον υπολογιστή του χρήστη.

Τα εξαρτήματα των σχηματικών μπορεί να ανήκουν σε μία βιβλιοθήκη του Ki-Cad ή μπορεί να τα έχει σχεδιάσει από το μηδέν ο χρήστης χρησιμοποιώντας τη σχετική εφαρμογή του KiCad που ονομάζεται Επεξεργαστής Βιβλιοθήκης Εξαρτημάτων. Κάθε βιβλιοθήκη με εξαρτήματα αποτελεί και ένα αρχείο .lib στον υπολογιστή του χρήστη.

Τα τυπωμένα κυκλώματα σχεδιάζονται στο KiCad με την εφαρμογή Pcbnew. Αποτελούνται από πλακέτες που περιέχουν αποτυπώματα εξαρτημάτων, συνδέσεις μεταξύ τους μέσω δρόμων, από τρύπες, via, κ.α. Κάθε πλακέτα αποτελεί και ένα αρχείο .kicad pcb στον υπολογιστή του χρήστη.

Τα τυπωμένα κυκλώματα απεικονίζονται και σε άλλα αρχεία που μπορεί να παράξει ο χρήστης με το KiCad, και κυρίως αρχεία που χρησιμοποιούνται στην κατασκευή της πλακέτας. Τέτοια αρχεία είναι τα αρχεία gerber (.gtl, .gbl, .gtp, .gto, .gbs, .gbr, .gbr, .gm1, κα), τα αρχεία διάτρησης (.drl), και τα αρχεία τοποθέτησης (.pos).

Τα αποτυπώματα εξαρτημάτων μπορεί να ανήκουν σε μία βιβλιοθήκη του KiCad ή μπορεί να τα έχει σχεδιάσει από το μηδέν ο χρήστης χρησιμοποιώντας το σχετικό εργαλείο του KiCad. Κάθε αποτύπωμα αποτελεί και ένα αρχείο .kicad_mod στον υπολογιστή του χρήστη.

Τα αποτυπώματα μπορεί να έχουν τρισδιάστατη απεικόνιση ώστε ο χρήστης να

μπορεί να απεικονίσει τρισδιάστατα το κύκλωμά του και να γνωρίζει πως θα είναι, πριν το κατασκευάσει. Το KiCad προσφέρει τρισδιάστατες απεικονίσεις (3Δ σχήματα) για κάποια τυπικά εξαρτήματα, αλλά ο χρήστης να σχεδιάσει και τα δικά του 3Δ σχήματα από το μηδέν, με κάποιο πρόγραμμα τρισδιάστατης σχεδίασης. Κάθε τρισδιάστατη απεικόνιση αποτελεί και ένα αρχείο .wrl στον υπολογιστή του χρήστη.

Σε κάθε εξάρτημα αντιστοιχεί και σε ένα αποτύπωμα (συνήθως πολλά εξαρτήματα έχουν το ίδιο αποτύπωματα). Αυτή η αντιστοίχιση αποτυπώματος-εξαρτήματος γίνεται από το εργαλείο Cvpcb και αποθηκεύεται σε ένα αρχείο .cmp στον υπολογιστή του χρήστη.

Το σύνολο του κυκλώματος (σχηματικό, πλακέτα) οργανώνεται από το KiCad σε έργα. Κάθε έργο αποτελεί και ένα αρχείο .pro στον υπολογιστή του χρήστη.

Τέλος, βοηθητικά, ο χρήστης συνίσταται να διατηρεί μαζί με τα αρχεία του κυκλώματος και όλα τα εγχειρίδια (ή τα φύλλα δεδομένων) των εξαρτημάτων που χρησιμοποιεί ώστε να μπορεί να αναφέρεται σε αυτά ως προς τις συνδέσεις που απαιτούν, τις έδρες που χρησιμοποιούν κα. Συνήθως κάθε εγχειρίδιο είναι ένα αρχείο .pdf.

Όλα τα παραπάνω αρχεία (εξαρτήματα, αποτυπώματα, κυκλώματα, έργα, κοκ) καλό είναι να τα διατηρούμε στον ίδιο φάκελο αρχείων του υπολογιστή μας, για λόγους οργάνωσης.

2 Δημιουργία έργου

Εκτελέστε το πρόγραμμα KiCad. Δείτε το σχετικό κεφάλαιο 1.1 για την έκδοση του KiCad που πρέπει να εκτελέσετε.

Θα εμφανιστεί η κεντρική οθόνη του προγράμματος KiCad ??. Αυτή αποτελείται από τα παρακάτω

- γραμμή μενού και μπάρα βασικών λειτουργιών στο πάνω μέρος της οθόνης
- μπάρα για εκκίνηση βοηθητικών εφαρμογών δεξί μέρος της οθόνης
- λίστα με τα αρχεία έργου στο αριστερό μέρος της οθόνης

Από το μενού στο πάνω μέρος της οθόνης επιλέγουμε Αρχείο \rightarrow Νέο Έργο \rightarrow Νέο Έργο. Δίνουμε στο νέο έργο (και το σχετικό αρχείο) ένα όνομα, προτείνεται το usb2uart. Προτείνεται να δημιουργηθεί το αρχείο του έργου σε έναν φάκελο του υπολογιστή σας ο οποίος θα είναι αφιερωμένος στο συγκεκριμένο έργο και θα περιέχει όλα τα αρχεία του έργου, και μόνο αυτά.

3 Σχεδίαση Σχηματικού Κυκλώματος

3.1 Δημιουργία σχηματικού

Από το μενού στο πάνω μέρος της κεντρικής οθόνης του KiCad επιλέγουμε Εργαλεία \rightarrow Εκτέλεση EEschema, για να εκτελεστεί η εφαρμογή EEschema με την οποία σχεδιάζουμε το σχηματικό κύκλωμα.

Θα δημιουργηθούν δύο αρχεία στον υπολογιστή σας, τα usb2uart.sch και usb2uart-cache.lib.

Σχήμα 3: Κεντρική οθόνη του προγράμματος KiCad

Σχήμα 4: Κεντρική οθόνη της εφαρμογής EEschema

Θα εμφανιστεί στην οθόνη σας η κεντρική οθόνη της εφαρμογής EEschema 4. Αυτή αποτελείται από τα παρακάτω

- ένα φύλλο σχηματικού κυκλώματος στο κέντρο της οθόνης
- γραμμή μενού στο πάνω μέρος της οθόνης
- μπάρα βασικών λειτουργιών στο πάνω μέρος της οθόνης
- μπάρα με γενικές λειτουργίες στο αριστερό μέρος της οθόνης
- μπάρα με συγκεκριμένες λειτουργίες σχεδίασης στο δεξί μέρος της οθόνης

Αξίζει να σημειωθεί πως όπως και στις περισσότερες εφαρμογές, έτσι και στο KiCad και όλες τις εφαρμογές του, οι περισσότερες λειτουργίες μπορούν να γίνουν με δύο τρόπους: είτε επιλέγοντας κάτι στο μενού είτε κάνοντας κλικ στο σχετικό κουμπί μίας μπάρας.

Το EEschema μπορεί να σχεδιάσει κυκλώματα που αποτελούνται από πολλά σχηματικά φύλλα. Σε αυτό το tutorial το κύκλωμά μας αποτελείται από ένα και μοναδικό φύλλο.

Από το μενού στο πάνω μέρος της οθόνης του EEschema επιλέξτε Αρχείο \rightarrow Ρυθμίσεις Σελίδας. Στο παράθυρο που εμφανίζεται 5, ορίστε τις ρυθμίσεις της σελίδας σας, όπως μέγεθος χαρτιού, ημερομηνία έκδοσης, τίτλος κυκλώματος, και πατήστε

Σχήμα 5: Ρυθμίσεις Σελίδας EEschema

ΟΚ. Αυτές οι ρυθμίσεις δεν έχουν κάποια ηλεκτρική ή λειτουργική σημασία για το κύκλωμα, είναι όμως χρήσιμες πληροφορίες για την οργάνωση των κυκλωμάτων σας.

Στη συνέχεια θα σχεδιάσουμε κάποιες βοηθητικές γραμμές στο σχηματικό μας. Από το μενού στο πάνω μέρος της οθόνης του EEschema επιλέξτε "Τοποθέτηση" \rightarrow "Γραφικό Πολυγραμμής".

Με αυτό το εργαλείο μπορείτε να σχεδιάσετε γραμμές στο φύλλο σας. Αυτές οι γραμμές γραφικών δεν έχουν κάποια ηλεκτρική ή λειτουργική σημασία για το κύκλωμα, είναι απλή "ζωγραφική", είναι όμως χρήσιμες για την οργάνωση των κυκλωμάτων σας.

Σχεδιάστε στο φύλλο μία κατακόρυφη γραμμή που χωρίζει το φύλλο σε δύο τμήματα 6. Το δεξί τμήμα πρέπει να είναι περίπου το ένα τρίτο του συνολικού φύλλου. Αυτό το δεξί τμήμα θα το χρησιμοποιήσουμε ως χώρο για να γράφουμε βοηθητικές πληροφορίες (όπως η τρέχουσα έκδοση του κυκλώματος), και για να εναποθέτουμε προσωρινά τα εξαρτήματα πριν τα τοποθετήσουμε στην οριστική τους θέση στο αριστερό τμήμα της σελίδας.

Η εφαρμογή EEschema περιλαμβάνει πολλά εξαρτήματα, τα οποία μπορείτε να χρησιμοποιήσετε στα κυκλώματά σας. Τα εξαρτήματα αυτά είναι οργανωμένα σε βιβλιοθήκες. Το EEschema περιλαμβάνει αρχικά περίπου 30 βιβλιοθήκες οι οποίες περιλαμβάνονται εξαρχής σε κάθε νέο έργο που δημιουργείται. Για λόγους απλότητας του έργου μας, εμείς θα αφαιρέσουμε τις βιβλιοθήκες εξαρτημάτων που δεν

Σχήμα 6: Σχηματικό φύλλο χωρισμένο στα δύο

έχουν εξαρτήματα χρήσιμα για το συγκεκριμένο κύκλωμα που σχεδιάζουμε.

Από το μενού στο πάνω μέρος της οθόνης του EEschema επιλέξτε "Προτιμήσεις" \rightarrow "Βιβλιοθήκες Εξαρτημάτων". Θα εμφανιστεί ένα παράθυρο με τις βιβλιοθήκες του έργου. Σε αυτό το παράθυρο επιλέξτε όλες τις βιβλιοθήκες (μία προς μία ή όλες μαζί) εκτός από τις βιβλιοθήκες power, device και conn και κάντε κλικ στο "Αφαίρεση". Θα πρέπει στο παράθυρο να φαίνονται μόνο οι τρεις βιβλιοθήκες power, device και conn 7.

Κάντε κλικ στο "ΟΚ". Θα επανέλθετε στην κεντρική οθόνη της εφαρμογής EEschema. Από το μενού στο πάνω μέρος της οθόνης του EEschema επιλέξτε "Αρχείο" \rightarrow "Αποθήκευση Σχηματικού Έργου".

3.2 Προσθήκη εξαρτημάτων

Εφόσον έχουμε δημιουργήσει και ρυθμίσει το φύλλο μας, πρέπει να προσθέσουμε τα εξαρτήματα που θα αποτελέσουν το κύκλωμά μας. Πρέπει να βρισκόμαστε στην κεντρική οθόνη της εφαρμογής EEschema.

Από το μενού στο πάνω μέρος της οθόνης του EEschema επιλέξτε "Τοποθέτηση" \rightarrow "Εξάρτημα" και κάντε κλικ στο δεξί τμήμα του φύλλου σας. Θα εμφανιστεί ένα παράθυρο επιλογής εξαρτήματος 8.

Στο παράθυρο επιλογής εξαρτήματος επιλέξτε το εξάρτημα με όνομα "C" (ένας πυκνωτής) από τη βιβλιοθήκη "device", πατήστε ΟΚ (θα επανέλθετε το φύλλο σχηματικού) και κάντε κλικ στο δεξί τμήμα του φύλλου σας ώστε να τοποθετηθεί στο

Σχήμα 7: Παράθυρο με τις βιβλιοθήκες του έργου

Σχήμα 8: Παράθυρο επιλογής εξαρτήματος

Σχήμα 9: Φύλλο σχηματικού με τοποθετημένα 7 εξαρτήματα

φύλλο το εξάρτημα που επιλέξατε.

Αφού τοποθετήσετε το εξάρτημα με όνομα "C" στο φύλλο, ακολουθήστε την ίδια διαδικασία ώστε να τοποθετήσετε στο φύλλο σας (στο δεξί τμήμα) όλα τα παρακάτω εξαρτήματα.

- R, από τη βιβλιοθήκη device
- LED, από τη βιβλιοθήκη device
- VCC, από τη βιβλιοθήκη power
- +3.3V, από τη βιβλιοθήκη power
- GND, από τη βιβλιοθήκη power
- CONN_01X04, από τη βιβλιοθήκη conn

Με την ολοκλήρωση αυτών των τοποθετήσεων, έχουμε στο φύλλο μας 7 εξαρτήματα, τοποθετημένα όλα τακτοποιημένα στο δεξί τμήμα του φύλλου 9.

Για λόγους ευκολίας ανάγνωση του κυκλώματος, θα χρειαστεί να αλλάξουμε το πρόθεμα της ονομασίας αναφοράς του CONN_01X04 από P σε J. Για να το κάνουμε αυτό πρέπει να κάνουμε δεξί κλικ πάνω στο εξάρτημα CONN_01X04, και από το μενού που εμφανίζεται να επιλέξουμε "Επεξεργασία Εξαρτήματος" \rightarrow "Επεξεργασία". Αυτό θα μας εμφανίσει το παράθυρο "Ιδιότητες Εξαρτήματος" 10, όπου πρέπει να ορίσουμε την Τιμή Πεδίου της Ονομασίας Αναφοράς να είναι J? και όχι P?.

Σχήμα 10: Παράθυρο Ίδιότητες Εξαρτήματος'

Στη συνέχεια θα χρειαστεί να τοποθετήσουμε στο κύκλωμά μας και άλλα εξαρτήματα C, R και CONN_01X04. Για να το κάνουμε αυτό, αντί να κάνουμε πάλι τοποθέτηση και να τα επιλέγουμε από τις βιβλιοθήκες, μπορούμε να κάνουμε αντιγραφή των εξαρτημάτων που ήδη έχουμε στο φύλλο μας.

Για να αντιγράψουμε (δηλαδή να φτιάξουμε ακόμα ένα αντίγραφο) ενός εξαρτήματος πρέπει να κάνουμε δεξί κλικ πάνω στο εξάρτημα, από το μενού που εμφανίζεται να επιλέξουμε "Αντιγραφή", και να κάνουμε κλικ πάνω στο φύλλο εκεί όπου θέλουμε να φτιαχτεί το αντίγραφο του εξαρτήματος.

Με αυτό τον τρόπο πρέπει να φτιάξουμε τα παρακάτω εξαρτήματα.

- 3 αντίγραφα του C, ώστε να έχουμε συνολικά 4 C στο φύλλο
- 2 αντίγραφα του R, ώστε να έχουμε συνολικά 3 R στο φύλλο
- 1 αντίγραφο του CONN_01X04, ώστε να έχουμε συνολικά 2 CONN_01X04 στο φύλλο

Με την ολοκλήρωση αυτών των τοποθετήσεων έχουμε στο φύλλο μας 13 εξαρτήματα 11, τοποθετημένα όλα τακτοποιημένα στο δεξί τμήμα του φύλλου.

3.3 Δημιουργία εξαρτημάτων

Το EEschema μας δίνει τη δυνατότητα να επεξεργαστούμε ένα υπάρχον εξάρτημα ή και να δημιουργήσουμε ένα εξάρτημα από το μηδέν.

Εμείς σε αυτή τη φάση θέλουμε να εντάξουμε στο σχηματικό κύκλωμα το ολοκληρωμένο CP2104. Το KiCad όμως δεν έχει στις βιβλιοθήκες του εξάρτημα που να

Σχήμα 11: Φύλλο σχηματικού με τοποθετημένα 13 εξαρτήματα

αντιστοιχεί στο ολοκληρωμένο CP2104, οπότε θα το δημιουργήσουμε.

Από το μενού στο πάνω μέρος της οθόνης του EEschema επιλέξτε Εργαλεία \to Επεξεργαστής Βιβλιοθήκης.

Θα εμφανιστεί στην οθόνη σας η κεντρική οθόνη του Επεξεργαστή Βιβλιοθήκης Εξαρτημάτων 12. Αυτή αποτελείται από τα παρακάτω

- έναν κενό χώρο στο κέντρο της οθόνης
- γραμμή μενού στο πάνω μέρος της οθόνης
- μπάρα βασικών λειτουργιών στο πάνω μέρος της οθόνης
- μπάρα με γενικές λειτουργίες στο αριστερό μέρος της οθόνης
- μπάρα με συγκεκριμένες λειτουργίες σχεδίασης στο δεξί μέρος της οθόνης

Στον κενό χώρο στο κέντρο της οθόνης θα σχεδιάσουμε το σώμα του εξαρτήματος, θα προσθέσουμε ακροδέκτες, θα γράψουμε το όνομά του, κλπ. Όλα αυτά τα στοιχεία αφού τα προσθέσουμε στο σώμα του εξαρτήματος, μπορούμε να τα επιλέγουμε με δεξί κλικ του ποντικιού και να τα επεξεργαζόμαστε- κυρίως να τα μετακινούμε και να τα περιστρέφουμε.

Αρχικά θα δημιουργήσουμε ένα νέο εξάρτημα.

Κάντε κλικ στο εικονίδιο "Δημιουργία νέου εξαρτήματος" στην πάνω μπάρα . Θα εμφανιστεί το παράθυρο "Ιδιότητες Εξαρτήματος" 13. Στο παράθυρο αυτό, στο "Όνομα εξαρτήματος" γράψτε το όνομα CP2104, αφήστε όλες τις υπόλοιπες επιλογές στις προκαθορισμένες ρυθμίσεις, και επιλέξτε ΟΚ.

Σχήμα 12: Κεντρική σελίδα - Επεξεργαστής Βιβλιοθήκης Εξαρτημάτων

Σχήμα 13: Παράθυρο "Ιδιότητες Εξαρτήματος"

Πλέον έχουμε δημιουργήσει ένα νέο εξάρτημα, χωρίς κανέναν ακροδέκτη.

Πρέπει να δημιουργήσουμε μία νέα βιβλιοθήκη, να το αποθηκεύσουμε σε αυτήν, και να εντάξουμε τη βιβλιοθήκη στο έργο μας.

Από την μπάρα στο πάνω μέρος της οθόνης επιλέξτε "Αποθήκευση τρέχοντος εξαρτήματος σε νέα βιβλιοθήκη"

Αυτό θα εμφανίσει ένα παράθυρο όπου θα πρέπει να δώσετε το όνομα της νέας βιβλιοθήκης που θέλετε να δημιουργήσετε ώστε να μπει σε αυτή το νέο εξάρτημα. Το όνομα της βιβλιοθήκης θα είναι και το όνομα του αρχείου στον υπολογιστή σας, το οποίο θα περιέχει τη βιβλιοθήκη.

Δώστε στη βιβλιοθήκη το όνομα usb2uart.lib και πατήστε Save/Αποθήκευση ώστε το αρχείο της βιβλιοθήκης να αποθηκευτεί στον υπολογιστή σας.

Θα εμφανιστεί ένα μήνυμα που θα λέει ότι η βιβλιοθήκη πρέπει να δηλωθεί στο EEschema για να χρησιμοποιηθεί. Πατήστε ΟΚ.

Κλείστε τον Επεξεργαστή Βιβλιοθήκης Εξαρτημάτων, εκτελέστε το EEschema (αν δεν τρέχει ήδη) και από το μενού στο πάνω μέρος της οθόνης του EEschema επιλέξτε "Προτιμήσεις" \rightarrow "Βιβλιοθήκες Εξαρτημάτων". Θα εμφανιστεί ένα παράθυρο με τις βιβλιοθήκες του έργου.

Σε αυτό το παράθυρο πατήστε "Προσθήκη", βρείτε στο σύστημα αρχείων του υπολογιστή σας το αρχείο της βιβλιοθήκης που δημιουργήσατε προηγουμένως (usb2uart.lib), και πατήστε Open. Η βιβλιοθήκη usb2uart θα πρέπει να έχει προστεθεί στις βιβλιοθήκες του έργου σας 14. Πατήστε ΟΚ στο παράθυρο με τις βιβλιοθήκες του έργου.

Από το μενού στο πάνω μέρος της οθόνης του EEschema επιλέξτε "Αρχείο" \rightarrow "Αποθήκευση Σχηματικού Έργου".

Από το μενού στο πάνω μέρος της οθόνης του EEschema επιλέξτε Εργαλεία \to Επεξεργαστής Βιβλιοθήκης για να συνεχίσετε να δουλεύετε στον Επεξεργαστή Βιβλιοθήκης.

Κάντε κλικ στο εικονίδιο "Επιλογή βιβλιοθήκης εργασίας" στην πάνω μπάρα , στο παράθυρο που εμφανίζεται επιλέξτε τη βιβλιοθήκη usb2uart, και πατήστε ΟΚ. Πρέπει να έχετε επιστρέψει στην κεντρική οθόνη του Επεξεργαστή Βιβλιοθήκης.

Τώρα πρέπει, στην κεντρική οθόνη του Επεξεργαστή Βιβλιοθήκης, να φορτώσουμε το εξάρτημα το οποίο θέλουμε να επεξεργαστούμε.

Κάντε κλικ στο εικονίδιο "Φόρτωση εξαρτήματος για επεξεργασία από την τρέχουσα βιβλιοθήκη". Στο παράθυρο επιλογής εξαρτήματος που θα εμφανιστεί επιλέξτε το εξάρτημα με όνομα "CP2104" από τη βιβλιοθήκη "usb2uart", και πατήστε ΟΚ. Θα επανέλθετε στην κεντρική οθόνη του Επεξεργαστή Βιβλιοθήκης και θα έχει φορτωθεί στην οθόνη το εξάρτημα "CP2104".

Στη συνέχεια θα ορίσουμε κάποιες από τις γενικές ιδιότητες του εξαρτήματος. Κάντε κλικ στο εικονίδιο "Επεξεργασία ιδιοτήτων εξαρτήματος" για να εμφανιστεί το παράθυρο Ιδιοτήτων για το εξάρτημα.

Σε αυτό το παράθυρο συμπληρώστε τα παρακάτω πεδία και μετά πατήστε ΟΚ για να επιστρέψετε στην κεντρική οθόνη του Επεξεργαστή Βιβλιοθήκης.

- Περιγραφή: CP2104 Μετατροπέας USB-σε-UART
- Φίλτρο αποτυπώματος: QFN

Στην κεντρική οθόνη του Επεξεργαστή Βιβλιοθήκης πρέπει να σχεδιάσουμε αρχικά το σώμα του εξαρτήματος.

Από το μενού στο πάνω μέρος της οθόνης επιλέξετε Τοποθέτηση \to Ορθογώνιο και σχεδιάστε στην οθόνη ένα κατακόρυφο ορθογώνιο όπως φαίνεται στη σχετική

Σχήμα 14: Παράθυρο με τις βιβλιοθήκες του έργου, με την usb2uart

εικόνα. Για να σχεδιάσετε, κάντε κλικ εκεί που θέλετε να είναι η πάνω αριστερή γωνία και μετά ένα ακόμα κλικ εκεί που θέλετε να είναι η κάτω δεξιά γωνία του σχεδίου.

Στο εξάρτημα πρέπει να εμφανίζονται το όνομά του (CP2104) και η ονομασία αναφοράς (U?). Κάντε δεξί κλικ επάνω στο όνομα, επιλέξτε μετακίνηση, και τοποθετήστε το όνομα κάτω από το σώμα του εξαρτήματος. Επίσης κάντε δεξί κλικ επάνω στην ονομασία αναφοράς, επιλέξτε μετακίνηση, και τοποθετήστε την πάνω από το σώμα του εξαρτήματος.

Να σημειωθεί ότι έως τώρα έχουμε ορίσει μόνο βοηθητικά στοιχεία του εξαρτήματος: το όνομά του, τι φίλτρο αποτυπώματος θα έχει, πως θα εμφανίζεται στο σχηματικό, κα. Τίποτα από αυτά δεν έχει ηλεκτρική/λειτουργική σημασία για το εξάρτημα.

Τώρα πρέπει να προσθέσουμε τους ακροδέκτες που θα αποτελούν το εξάρτημά μας. Το πόσους και τι είδους ακροδέκτες πρέπει να προσθέσουμε θα το γνωρίζουμε από το εγχειρίδιο (φύλλο δεδομένων) του ολοκληρωμένου. Αυτό μπορείτε να το βρείτε στην ιστοσελίδα του κατασκευαστή του ολοκληρωμένου.

Κατά τη συγγραφή αυτού του οδηγού εκμάθησης το εγχειρίδιο του CP2104 (έκ-δοση/Rev. 1.1) βρισκόταν στον παρακάτω σύνδεσμο: https://www.silabs.com/Support%20Documents/TechnicalDocs/cp2104.pdf.

Αν δεν είναι διαθέσιμο σε αυτό τον σύνδεσμο επισκεφθείτε τη σελίδα του κατασκευαστή και αναζητήστε εκεί το εγχειρίδιο του CP2104: https://www.silabs.com/

Με βάση το εγχειρίδιο του CP2104, πρέπει να ορίσουμε 25 ακροδέκτες, όπως φαίνεται και στη σχετική εικόνα. Εκτός από τους 24 τυπικούς ακροδέκτες θα έχουμε ως ακροδέκτη και την θερμική έδρα GND του CP2104. Οπότε σύνολικά θα έχουμε 24 ακροδέκτες για το CP2104.

Σε αυτό το tutorial θα ορίσουμε 2 ακροδέκτες μόνο, και οι υπόλοιποι πρέπει να προστεθούν από εσάς, κατά τον ίδιο τρόπο όπως και οι 2 πρώτοι.

Αρχικά ας προσθέσουμε τον ακροδέκτη Vio, ο οποίος σύμφωνα με το εγχειρίδιο έχει το όνομα Vio, του έχει αποδοθεί ο αριθμός 5, και η λειτουργία του είναι είσοδος ισχύος τροφοδοσίας.

Από το μενού στο πάνω μέρος της οθόνης επιλέξετε Τοποθέτηση \to Ακροδέκτης και κάντε κλικ στην κεντρική οθόνη για να εμφανιστεί το παράθυρο Ιδιότητες Ακροδέκτη.

Σε αυτό το παράθυρο πρέπει να ορίσουμε τις παρακάτω σημαντικές ιδιότητες για τον ακροδέκτη, και μετά να το τοποθετήσουμε στο σώμα του εξαρτήματος.

• Όνομα ακροδέκτη: Vio

• Αριθμός ακροδέκτη: 5

• Προσανατολισμός: Αριστερά

• Ηλεκτρικός Τύπος: Είσοδος ισχύος

Δεν έχει ηλεκτρική σημασία σε ποιο σημείο του σώματος θα τοποθετήσουμε τον ακροδέκτη (πάνω αριστερά, στη μέση κλπ) ή τι προσανατολισμό θα του δώσουμε. Αυτά είναι δευτερεύοντα χαρακτηριστικά, τα οποία μας βοηθούν στην απεικόνιση του σχηματικού. Συνήθως τους ακροδέκτες που έχουν συναφή λειτουργία τους σχεδιάζουμε κοντά τον έναν στον άλλο.

Το όνομα, ο αριθμός, και ο τύπος του ακροδέκτη έχουν ηλεκτρική σημασία καθώς λαμβάνονται υπόψιν κατά τον Έλεγχο Ηλεκτρικών Κανόνων που θα κάνουμε με το KiCad αργότερα.

Στη συνέχεια προσθέσετε τον ακροδέκτη D+, ο οποίος σύμφωνα με το εγχειρίδιο έχει το όνομα D+, του έχει αποδοθεί ο αριθμός 3, και η λειτουργία του είναι είσοδος/έξοδος δεδομένων.

Όπως και πριν, από το μενού στο πάνω μέρος της οθόνης επιλέξετε Τοποθέτηση \rightarrow Ακροδέκτης και κάντε κλικ στην κεντρική οθόνη για να εμφανιστεί το παράθυρο Ιδιότητες Ακροδέκτη.

Σε αυτό το παράθυρο πρέπει να ορίσουμε τις παρακάτω σημαντικές ιδιότητες για τον ακροδέκτη, και μετά να τον τοποθετήσουμε στο σώμα του εξαρτήματος.

• Όνομα ακροδέκτη: D+

• Αριθμός ακροδέκτη: 3

• Προσανατολισμός: Δεξιά

• Ηλεκτρικός Τύπος: Αμφίδρομο

Συνεχίζοντας κατά τον ίδιο τρόπο, τοποθετήστε και τους υπόλοιπους 23 ακροδέκτες του εξαρτήματος, ώστε να καταλήξετε τελικά στο εξάρτημα όπως αυτό φαίνεται στη σχετική εικόνα.

Στο εξάρτημα, εκτός από το σχεδιασμό του περιγράμματος και την τοποθέτηση των ακροδεκτών, μπορούμε να τοποθετήσουμε και άλλες οπτικές πληροφορίες, όπως κείμενο και επιπλέον γραμμές γραφικών που να προσφέρουν βοηθητικές πληροφορίες.

Για να προσθέσουμε κείμενο, επιλέγουμε από τη δεξιά μπάρα το το εικονίδιο "Προσθήκη κειμένου στο σώμα εξαρτήματος", κάνουμε κλικ στο σώμα του εξαρτήματος, και στο παράθυρο "Ιδιότητες Κειμένου Βιβλιοθήκης" που εμφανίζεται γράφουμε ό,τι κείμενο θέλουμε, επιλέγουμε αν θα εμφανίζεται κάθετα, τι στοίχιση θα έχει, κοκ.

Για παράδειγμα, στο CP2104 μπορούμε να βάλουμε κατακόρυφα δίπλα στους ακροδέκτες D+ και D- τη λέξη USB, το οποίο θα μας βοηθάει να θυμόμαστε ότι αυτή είναι η λειτουργία τους.

Επίσης, μπορούμε να βάλουμε κατακόρυφα δίπλα στους ακροδέκτες RTX, TXD, DTR τη λέξη UARTOUT, το οποίο θα μας βοηθάει να θυμόμαστε ότι αυτή είναι η λειτουργία τους.

Ομοίως και για τους ακροδέκτες DCD, RI, CTS, RXD, DSR τη λέξη UARTIN.

Αφού έχουμε ορίσει όλους τους ακροδέκτες, καλό θα είναι να αποθηκεύσουμε το εξάρτημα στη βιβλιοθήκη. Από το μενού στο πάνω μέρος της οθόνης επιλέξτε Αρχείο \rightarrow Αποθήκευση της τρέχουσας βιβλιοθήκης. Θα εμφανιστούν δύο παράθυρα που θα ζητούν την επιβεβαίωση αυτή της αποθήκευσης. Επιλέξτε Yes/Ναι και στα δύο.

Πλέον έχουμε ολοκληρώσει τη δημιουργία του εξαρτήματος.

3.4 Επεξεργασία εξαρτημάτων με πολλά μέρη

Σε αυτό το κεφάλαιο θα φορτώσουμε ένα εξάρτημα (ένα LED) από μία εσωτερική βιβλιοθήκη του KiCad, θα το επεξεργαστούμε κάνοντάς το να αποτελείται από πολλά μέρη, και θα το αποθηκεύσουμε (αλλαγμένο) σε μία δική μας βιβλιοθήκη.

Όταν ένα εξάρτημα αποτελείται από πολλά "μέρη" στο KiCad, αυτό σημαίνει ότι το εξάρτημα είναι ένα φυσικό αντικείμενο (πχ ένα ολοκληρωμένο) το οποίο όμως αποτελείται εσωτερικά από πολλά ίδια μέρη. Στην περίπτωσή μας, εμείς θέλουμε ένα εξάρτημα το οποίο αποτελείται από δύο LED.

Δεν υπάρχει εξάρτημα το οποίο αποτελείται από δύο LED στις γνωστές βιβλιοθήκες του KiCad. Θα πρέπει να το σχεδιάσουμε εμείς.

Θα μπορούσαμε να δημιουργήσουμε από το μηδέν ένα νέο τέτοιο εξάρτημα, στον Επεξεργαστή Βιβλιοθήκης Εξαρτημάτων.

Είναι όμως καλύτερα να χρησιμοποιήσουμε το υπάρχον εξάρτημα LED, και να σχεδιάσουμε ένα νέο εξάρτημα το οποίο θα αποτελείται από δύο εξαρτήματα LED.

3.4.1 Άνοιγμα του εξαρτήματος

Θεωρούμε ότι είμαστε στην αρχική οθόνη του KiCad.

Από το μενού στο πάνω μέρος της οθόνης επιλέξτε Εργαλεία \to Εκτέλεση Επεξεργαστή Βιβλιοθήκης, ώστε να φορτωθεί η κεντρική οθόνη του Επεξεργαστή Βιβλιοθήκης Εξαρτημάτων.

Από την πάνω μπάρα, επιλέξτε το κουμπί "Επιλογή βιβλιοθήκης εργασίας" και στο παράθυρο που θα εμφανιστεί κάντε κλικ πάνω στη βιβλιοθήκη device και πατήστε ΟΚ για να φορτωθεί η βιβλιοθήκη και να επιστρέψετε στην κεντρική οθόνη του Επεξεργαστή Βιβλιοθήκης Εξαρτημάτων.

Από την κεντρική οθόνη του Επεξεργαστή Βιβλιοθήκης Εξαρτημάτων κάντε κλικ στο εικονίδιο "Φόρτωση εξαρτήματος για επεξεργασία από την τρέχουσα βιβλιοθήκη". Το παράθυρο που θα εμφανιστεί εμφανίζει όλα τα εξαρτήματα της βιβλιοθήκης LED. Βρείτε στη λίστα το εξάρτημα LED, επιλέξτε το, και πατήστε ΟΚ για να φορτωθεί στην κεντρική οθόνη του Επεξεργαστή Βιβλιοθήκης Εξαρτημάτων.

Τώρα, αφού έχουμε φορτώσει το εξάρτημα, θα φτιάξουμε ένα αντίγραφό του, και το αντίγραφο θα το αλλάξουμε ώστε να καλύπτει τις ανάγκες μας.

3.4.2 Δημιουργία αντίγραφου εξαρτήματος

Από την κεντρική οθόνη του Επεξεργαστή Βιβλιοθήκης Εξαρτημάτων κάντε κλικ στο εικονίδιο "Δημιουργία νέου εξαρτήματος από το τρέχον" . Θα εμφανιστεί το παράθυρο "Όνομα Εξαρτήματος". Ονομάστε το νέο εξάρτημα bLED και πατήστε ΟΚ.

Πλέον έχουμε δημιουργήσει ένα νέο εξάρτημα, το οποίο καλό είναι να αποθηκεύσουμε. Αλλά βρισκόμαστε στη βιβλιοθήκη device, η οποία επειδή είναι εσωτερική βιβλιοθήκη του KiCad δεν μπορούμε να γράψουμε σε αυτήν. Πρέπει να αποθηκεύσουμε το νέο εξάρτημα σε άλλη βιβλιοθήκη.

Από την πάνω μπάρα, επιλέξτε το κουμπί "Επιλογή βιβλιοθήκης εργασίας" και στο παράθυρο που θα εμφανιστεί κάντε κλικ πάνω στη βιβλιοθήκη uart και πατήστε ΟΚ για να φορτωθεί η βιβλιοθήκη και να επιστρέψετε στην κεντρική οθόνη του Επεξεργαστή Βιβλιοθήκης Εξαρτημάτων.

Από το μενού στο πάνω μέρος της οθόνης επιλέξτε Αρχείο \to Αποθήκευση της τρέχουσας βιβλιοθήκης. Θα εμφανιστούν δύο παράθυρα που θα ζητούν την επιβεβαίωση αυτή της αποθήκευσης. Επιλέξτε Yes/Ναι και στα δύο.

Πλέον έχουμε αποθηκεύσει το εξάρτημα που φτιάξαμε (αντιγράφοντας ένα υπάρχον) στη δική μας βιβλιοθήκη.

3.4.3 Αλλαγή ιδιοτήτων εξαρτήματος

Κάντε κλικ στο εικονίδιο "Επεξεργασία ιδιοτήτων εξαρτήματος" για να εμφανιστεί το παράθυρο Ιδιοτήτων για το εξάρτημα.

Αλλάξτε τον αριθμό των μερών από ένα σε 2, και πατήστε ΟΚ για να επιστρέψετε στην κεντρική οθόνη του Επεξεργαστή Βιβλιοθήκης Εξαρτημάτων.

Πλέον το εξάρτημά μας αποτελείται από δύο μέρη. Ποιο μέρος του εξαρτήματος (μέρος Α ή μέρος Β) επεξεργάζεστε ανά πάσα στιγμή φαίνεται στο πάνω δεξιά μέρος της κεντρικής οθόνης του Επεξεργαστή Βιβλιοθήκης Εξαρτημάτων.

Αφού πλέον το εξάρτημα bLÉD αποτελείται από δύο μέρη, πρέπει να αριθμήσουμε τους ακροδέκτες του μέρους Α ως 1 και 3 και τους ακροδέκτες του μέρους Β ως 2 και 4.

Για να το κάνουμε αυτό, επιλέγουμε στην "Ένδειξη μέρους εξαρτήματος" το "Μέρος Α", και φροντίζουμε οι δύο ακροδέκτες να έχουν αριθμό 1 (άνοδος) και 3 (κάθοδος). Μπορούμε να αλλάξουμε τον αριθμό ενός ακροδέκτη κάνοντας δεξί κλικ επάνω στον ακροδέκτη και επιλέγοντας "Επεξεργασία Ακροδέκτη".

Παρομοίως, επιλέγουμε στην "Ένδειξη μέρους εξαρτήματος" το "Μέρος Β", και φροντίζουμε οι δύο ακροδέκτες να έχουν αριθμό 2 (άνοδος) και 4 (κάθοδος). Μπορούμε να αλλάξουμε τον αριθμό ενός ακροδέκτη κάνοντας δεξί κλικ επάνω στον ακροδέκτη και επιλέγοντας "Επεξεργασία Ακροδέκτη".

Αφού έχετε ορίσει τους αριθμούς των ακροδεκτών, δεν μένει παρά να αποθηκεύσουμε το εξάρτημα.

Από το μενού στο πάνω μέρος της οθόνης επιλέξτε Αρχείο \rightarrow Αποθήκευση της τρέχουσας βιβλιοθήκης. Θα εμφανιστούν δύο παράθυρα που θα ζητούν την επιβεβαίωση αυτή της αποθήκευσης. Επιλέξτε Yes/Ναι και στα δύο.

Κλείστε τον Επεξεργαστή Βιβλιοθήκης Εξαρτημάτων ώστε να επιστρέψετε στην αρχική οθόνη του KiCad.

3.5 Σχεδίαση κυκλώματος

Εφόσον έχουμε ετοιμάσει όλα τα εξαρτήματα που θα χρειαστούμε, πρέπει να σχεδιάσουμε το κύκλωμα.

Βεβαιωθείτε ότι είστε στην αρχική οθόνη του KiCad και έχετε φορτώσει το έργο usb2uart.

Από το μενού στο πάνω μέρος της οθόνης επιλέγουμε Εργαλεία \rightarrow Εκτέλεση EEschema, για να εκτελεστεί η εφαρμογή EEschema με την οποία σχεδιάζουμε το σχηματικό κύκλωμα.

3.5.1 Προσθήκη εξαρτημάτων

Πρέπει να βρίσκεστε στην αρχική οθόνη της εφαρμογής EEschema, και να είναι φορτωμένο το φύλλο του σχηματικού κυκλώματος του έργου usb2uart.

Αρχικά πρέπει να προσθέσουμε στο κύκλωμα τα εξαρτήματα CP2104 και bLED.

Όπως κάναμε και σε προηγούμενα κεφάλαια, επιλέξτε από το μενού Τοποθέτηση \rightarrow Εξάρτημα, επιλέξτε το CP2104 από τη βιβλιοθήκη usb2uart, και τοποθετήστε το στο κύκλωμα. Στη συνέχεια κάντε το ίδιο για να τοποθετήσετε το εξάρτημα bLED (και τα δύο μέρη), από την ίδια βιβλιοθήκη. Το εξάρτημα bLED αποτελείται από δύο μέρη, οπότε πρέπει να προσθέσετε πρώτα το Μέρος Α και μετά το μέρος B.

Να σημειωθεί ότι αντί να προσθέσουμε δύο φορές το bLED (μία το Μέρος Α, και μία το Μέρος Β), θα μπορούσαμε να το προσθέσουμε μία φορά, μετά να κάναμε αντιγραφή του (δεξί κλικ στο εξάρτημα \rightarrow Αντιγραφή Εξαρτήματος), και μετά να αλλάζαμε στις ιδιότητες του αντίγραφου το Μέρος. Το αποτέλεσμα θα ήταν το ίδιο.

Πλέον πρέπει να έχουμε φορτώσει στο φύλλο όλα τα εξαρτήματα που χρειαζόμαστε για το κύκλωμά μας.

3.5.2 Σχεδίαση κυκλώματος

Πλέον αφού έχουμε όλα τα απαραίτητα εξαρτήματα στο φύλλο μας, πρέπει να τα τοποθετήσουμε στο φύλλο με τρόπο που να μας βοηθάει στην κατανόηση του κυκλώματος, και (κυρίως) να κάνουμε όλες τις συνδέσεις μεταξύ τους.

Κάποιες βασικές λειτουργίες για τη σχεδίαση του κυκλώματος είναι οι παρακάτω. **Μετακίνηση εξαρτήματος** Μετατοπίζουμε το εξάρτημα όπου θέλουμε πάνω στο φύλλο του κυκλώματος. Η θέση αυτή δεν έχει κάποια ηλεκτρική σημασία, βοηθάει όμως στην καλύτερη οργάνωση του κυκλώματος. Για παράδειγμα το μοναδικό ολοκληρωμένο ενός κυκλώματος καλό θα ήταν να είναι στο μέσο του φύλλου ώστε να υπάρχει χώρος να τοποθετηθούν και άλλα εξαρτήματα γύρω του.

Για να μετακινήσουμε ένα εξάρτημα κάνουμε κλικ επάνω του, από το μενού που εμφανίζεται επιλέγουμε "Μετακίνηση Εξαρτήματος", και μετά το τοποθετούμε όπου θέλουμε στο φύλλο.

Εναλλακτικά μπορούμε να πάμε τον δείκτη του ποντικιού επάνω από το εξάρτημα (χωρίς να κάνουμε κλικ) και να πατήσουμε το πλήκτρο m.

Περιστροφή εξαρτήματος Περιστρέφουμε το εξάρτημα πάνω στο φύλλο του κυκλώματος. Η θέση περιστροφής δεν έχει κάποια ηλεκτρική σημασία, βοηθάει όμως στην καλύτερη οργάνωση του κυκλώματος. Για παράδειγμα μία αντίσταση μπορεί να προτιμάμε να εμφανίζεται οριζόντια για να διαβάζεται πιο εύκολα το όνομά της.

Για να περιστρέψουμε ένα εξάρτημα κάνουμε δεξί κλικ επάνω του, και από το μενού που εμφανίζεται επιλέγουμε "Προσανατολισμός Εξαρτήματος" \rightarrow "Περιστροφή Αριστερόστροφα" (ή "Περιστροφή Δεξιόστροφα").

Εναλλακτικά μπορούμε να πάμε τον δείκτη του ποντικιού επάνω από το εξάρτημα (χωρίς να κάνουμε κλικ) και να πατήσουμε το πλήκτρο r.

Τοποθέτηση σύρματος Είναι από τις πιο σημαντικές λειτουργίες, καθώς με αυτή συνδέουμε αγώγιμα τα εξαρτήματα μεταξύ ενώνοντάς τα με σύρμα.

Για να ενώσουμε αγώγιμα δύο σημεία του κυκλώματος (πχ τα άκρα δύο αντιστάσεων) από το μενού στο πάνω μέρος της οθόνης επιλέγουμε "Τοποθέτηση" \rightarrow "Σύρμα", μετά κάνουμε αριστερό κλικ με το ποντίκι πάνω στο κύκλωμα μία φορά για να ξεκινήσει το σύρμα, μετά κάνουμε κλικ όσες φορές θέλουμε για να ορίσουμε τη διαδρομή, και όταν έχουμε τοποθετήσει όσο σύρμα θέλουμε κάνουμε δεξί κλικ και επιλέγουμε "Τέλος Σύρματος".

Εναλλακτικά μπορούμε να επιλέξουμε το κουμπί "Τοποθέτηση σύρματος" στην αριστερή μπάρα, και μετά να πατήσουμε το πλήκτρο w για να αρχίσουμε να τοποθετούμε σύρμα και το πλήκτρο k για ορίσουμε το τέλος του σύρματος.

Αξίζει να σημειωθεί ότι όταν συνδέουμε ένα σύρμα με ένα άλλο σύρμα, το Ki-Cad εμφανίζει ένα σύμβολο κόμβου. Όταν θέλουμε να συνδέσουμε δύο σύρματα σε έναν ακροδέκτη, συνήθως συνδέουμε το ένα σύρμα στον ακροδέκτη και το δεύτερο σύρμα το συνδέουμε πάνω πάνω στο πρώτο σύρμα.

Συνηθίζεται τα σύρματα να έχουν μόνο κατακόρυφη και οριζόντια φορά (να μην τοποθετούνται διαγώνια δύρματα), διότι έτσι παράγονται πιο ευανάγνωστα κυκλώματα.

Τοποθέτηση ετικέτας Μία ετικέτα είναι ένα αντικείμενο του κυκλώματος που συμβολίζει έναν κόμβο, ένα σημείο σύνδεσης. Αν σχεδιάσουμε πχ ένα σύρμα από το εξάρτημα Α προς μία ετικέτα Χ και μετά ένα σύρμα από το εξάρτημα Β προς τη ίδια ετικέτα Χ, τότε τα δύο εξαρτήματα θα είναι συνδεδεμένα μεταξύ τους. Η συνδεσμολογία όπου δύο εξαρτήματα είναι συνδεδεμένα μεταξύ τους απευθείας είναι απόλυτα ισοδύναμη με τη συνδεσμολογία όπου δύο εξαρτήματα είναι συνδεδεμένα μεταξύ τους μέσω ετικέτας.

Για να τοποθετήσουμε μία ετικέτα, από το μενού στο πάνω μέρος της οθόνης επιλέγουμε "Τοποθέτηση" \rightarrow "Ετικέτα", μετά κάνουμε κλικ με το ποντίκι πάνω στο κύκλωμα, στο παράθυρο που εμφανίζεται δίνουμε ένα όνομα στην ετικέτα και πατάμε ΟΚ για να τοποθετήσουμε την ετικέτα πάνω στο κύκλωμα. Στη συνέχεια πρέπει να μετακινήσουμε την ετικέτα ώστε το κουτάκι που υπάρχει κάτω αριστερά από το όνομά της να συμπέσει με το κουτάκι που υπάρχει στο τέλος ενός ασύνδετου σύρματος. Εφόσον αυτά τα δύο κουτάκια είναι στο ίδιο σημείο (συμπίπτουν), πλέον το σύρμα έχει αυτή την ετικέτα, και θεωρείται συνδεδεμένο με όλα τα άλλα σύρματα που έχουν ετικέτα με το ίδιο όνομα. Λέμε ότι όλα αυτά τα σύρματα ανήκουν στο ίδιο δίκτυο.

Διαγραφή αντικειμένου Για να διαγράψουμε ένα αντικείμενο από το φύλλο μας (πχ ένα κομμάτι σύρματος που αποφασίσαμε να τοποθετήσουμε διαφορετικά), κάνουμε δεξί κλικ επάνω του και από το μενού που εμφανίζεται επιλέγουμε "Διαγραφή".

Εναλλακτικά μπορούμε να πάμε τον δείκτη του ποντικιού επάνω από το εξάρτημα (χωρίς να κάνουμε κλικ) και να πατήσουμε το πλήκτρο Delete στο πληκτρολόγιο.

Έχοντας κατανοήσει τις παραπάνω λειτουργίες, μπορούμε να σχεδιάσουμε το κύκλωμά μας.

Για ευκολία στη σχεδίαση συνδέσεων μετακινήστε το CP2104 ώστε να είναι στο κέντρο της σελίδας.

Στη συνέχεια, συνδέστε με σύρμα τους ακροδέκτες 7 και 8 του CP2104 με το εξάρτημα VCC. Για να το κάνετε, συνδέσετε με σύρμα τον ακροδέκτη 7 με το εξάρτημα VCC και συ συνέχεια τοποθετήστε ένα σύρμα από τον ακροδέκτη 7 προς οποιοδήποτε σημείο του προηγούμενου σύρματος.

Στη συνέχεια, συνδέστε με σύρμα τους ακροδέκτες 5,6 και 9 του CP2104 με το 3.3V.

Στη συνέχεια, συνδέστε με σύρμα τους ακροδέκτες 2 και 25 του CP2104 με το GND.

Για να κάνετε τα παραπάνω, ίσως χρειαστεί να μετακινήσετε τα VCC, 3.3V και GND σε πιο βολικές θέσεις στο φύλλο. Για παράδειγμα, το VCC καλό θα ήταν να τοποθετηθεί πάνω αριστερά από το CP2104.

Στη συνέχεια, αλλάξτε τις τιμές στους τέσσερις πυκνωτές ώστε οι τέσσερις πυκνωτές να έχουν τιμές 1u, 1u, 100n και 470n. Για να αλλάξετε τις τιμές δεξί κλικ πάνω στον πυκνωτή και επιλέξετε "Επεξεργασία Εξαρτήματος" \rightarrow "Τιμή".

Στη συνέχεια, συνδέστε τους πυκνωτές 1u και 100n ως bypass στο 3.3V, δηλαδή ανάμεσα στο 3.3V και στο GND. Για να το κάνετε αυτό και το κύκλωμα να παραμείνει ευανάγνωστο μπορείτε να προσθέσετε επιπλέον εξαρτήματα GND. Όλα τα εξαρτήματα GND που θα προσθέσετε συμβολίζουν το ίδιο σημείο, τον ίδιο κόμβο στο κύκλωμά σας, τον κόμβο της γείωσης. Οπότε, για τον πυκνωτή 1u προσθέστε ένα εξάρτημα GND στο φύλλο (επιλέγοντας στο μενού $Toπoθέτηση \rightarrow Eξάρτημα$) λίγο πιο δεξιά από το 3.3V, και μετά τοποθετήστε σύρμα που να συνδέει το 3.3V με το 1u και μετά σύρμα που να συνδέει το 1u με το 1u κοι 1u και 1u το 1u το 1u και 1u το 1

Στη συνέχεια, συνδέστε με τον ίδιο τρόπο όπως παραπάνω τον πυκνωτή 1u ως bypass στο VCC, δηλαδή συνδέστε τον ανάμεσα στο VCC και σε ένα GND.

Στη συνέχεια, συνδέστε τον πυκνωτή 470n ανάμεσα στους ακροδέκτες 16 και 2 του CP2104.

Στη συνέχεια, αλλάξτε τις τιμές στα δύο εξαρτήματα CONN_01X04 ώστε το ένα να λέγεται "USB", και το άλλο "Header". Τοποθετήστε το USB αριστερά του CP2104 και το Header δεξιά του CP2104.

Στη συνέχεια, θα πρέπει να συνδέσουμε όλους τους ακροδέκτες των USB και Header. Αν συνδέαμε απευθείας μεταξύ τους όλους του ακροδέκτες το κύκλωμα δεν θα ήταν ιδιαίτερα ευανάγνωστο και οργανωμένο διότι θα υπήρχαν πολλά διασταυρούμενα (αλλά μην συνδεδεμένα) σύρματα. Για να λύσουμε αυτό το πρόβλημα, θα χρησιμοποιήσουμε ετικέτες.

Με δεδομένο το εργαλείο της ετικέτας, θα τοποθετήσουμε σύρματα ώστε να συνδέσουμε όπως θέλουμε τους ακροδέκτες των USB και Header.

Τοποθετήστε σύρμα από τον ακροδέκτη 1 του USB έως το VCC.

Τοποθετήστε σύρμα από τον ακροδέκτη 4 του USB έως το GND.

Τοποθετήστε σύρμα από τον ακροδέκτη 1 του HEADER έως το 3.3V.

Τοποθετήστε σύρμα από τον ακροδέκτη 4 του HEADER έως το GND.

Τοποθετήστε σύρμα από τον ακροδέκτη 2 του USB έως το D- του CP2104, χρησιμοποιώντας ετικέτα με όνομα USBDP.

Τοποθετήστε σύρμα από τον ακροδέκτη 3 του USB έως το D+ του CP2104, χρησιμοποιώντας ετικέτα με όνομα USBDM.

Τοποθετήστε σύρμα από τον ακροδέκτη 2 του HEADER έως το RXD του CP2104, χρησιμοποιώντας ετικέτα με όνομα RXD.

Τοποθετήστε σύρμα από τον ακροδέκτη 3 του HEADER έως το TXD του CP2104, χρησιμοποιώντας ετικέτα με όνομα TXD.

Πλέον ολοκληρώσαμε τις συνδέσεις των USB και Header.

Τώρα πρέπει να συνδέσουμε τα LED.

Μετακινήστε τα LED (το ένα μονό και το ένα που αποτελείται απόδύο μέρη) και τις τρεις αντιστάσεις στην περιοχή πάνω από το CP2104.

Στη συνέχεια, αλλάξτε τις τιμές στις τρεις αντιστάσεις του κυκλώματος ώστε να έχουν τις τιμές 220R, 220R και 430R.

Στη συνέχεια, τοποθετήστε σύρμα που να συνδέει το VCC με τον ένα ακροδέκτη της 430R, και τον άλλο ακροδέκτη της 430R με την άνοδο του μονού LED και μετά την κάθοδο του μονού LED με το GND.

Στη συνέχεια, τοποθετήστε σύρμα που να συνδέει το 3.3V με τον ένα ακροδέκτη της 220R, και τον άλλο ακροδέκτη της 220R με την άνοδο του bLED (Μέρος Α) και την κάθοδο του bLED (Μέρος Α), μέσω ετικέτας LEDRX, με τον ακροδέκτη 13 του CP2104.

Στη συνέχεια, τοποθετήστε σύρμα που να συνδέει το 3.3V με τον ένα ακροδέκτη της δεύτερης 220R, και τον άλλο ακροδέκτη της δεύτερης 220R με την άνοδο του bLED (Μέρος Β) και την κάθοδο του bLED (Μέρος Β), μέσω ετικέτας LEDRX, με τον ακροδέκτη 14 του CP2104.

Στη συνέχεια, προσθέστε κείμενο δίπλα στα LED ώστε να είναι σαφές τι χρώμα είναι το κάθε ένα (μονό LED = μπλε, A = πράσινο, B = πορτοκαλί). Για να προσθέσουμε κείμενο, επιλέγουμε από τη δεξιά μπάρα το το εικονίδιο "Τοποθέτηση κειμένου", κάνουμε κλικ στο φύλλο, και στο παράθυρο που εμφανίζεται γράφουμε ό,τι κείμενο θέλουμε, επιλέγουμε αν θα εμφανίζεται κάθετα, τι στοίχιση θα έχει, κοκ.

Τέλος, για λόγους καλύτερης οργάνωσης, πρέπει να προσθέσουμε ετικέτες και στα υπόλοιπα δίκτυα του κυκλώματός μας, και συγκεκριμένα στο VPP (ετικέτα VPP), και στα σύρματα ανάμεσα στις αντιστάσεις και τα LED (ετικέτες LEDONR, LEDRXR και LEDTXR).

Πλέον έχουμε σχεδιάσει πλήρως το κύκλωμα. Για λόγους καλύτερης οργάνωσης, και ηλεκτρολογικού ελέγχου του κυκλώματος, χρειαζόμαστε ακόμα δύο βήματα.

Καταρχάς πρέπει σε όλους τους ακροδέκτες που δεν έχουν κάτι συνδεδεμένο επάνω τους (όπως πχ οι ακροδέκτες 15 και 17 του CP2104) να τοποθετήσουμε ένα σύμβολο Μη Σύνδεσης. Αυτό θα βοηθήσει στο να δηλώσουμε στο KiCad ότι ο συγκεκριμένος ακροδέκτης θέλουμε όντως να μην συνδέεται πουθενά και δεν έχουμε απλά ξεχάσει να τον συνδέσουμε. Για να τοποθετήσουμε σύμβολο Μη Σύνδεσης, επιλέγουμε από το μενού στο πάνω μέρος της οθόνης "Τοποθέτηση" \rightarrow "Σήμανση Μη Σύνδεσης" και κάνουμε κλικ στο σημείο όπου θέλουμε να το τοποθετήσουμε. Πρέπει να τοποθετήσουμε μία Σήμανση Μη Σύνδεσης σε κάθε ακροδέκτη του CP2104 που δεν συνδέεται με κάτι άλλο.

Κατά δεύτερον, πρέπει στα δίκτυα VCC και GND να συνδέσουμε μέσω σύρματος από ένα εξάρτημα PWR_FLAG (από τη βιβλιοθήκη power). Με αυτό τον τρόπο το KiCad, όταν κάνει ηλεκτρολογικό έλεγχο, θα καταλάβει ότι τα δύο δίκτυα αυτά είναι δίκτυα ισχύος, και ότι υπάρχει ισχύς στο κύκλωμά μας.

Πλέον έχουμε ολοκληρώσει πλήρως το κύκλωμα στο KiCad.

3.5.3 Ολοκλήρωση σχεδιασμού σχηματικού

Αφού έχουμε ολοκληρώσει τον σχεδιασμό του κυκλώματος, πρέπει να δώσουμε ονομασίες αναφοράς σε όλα τα εξαρτήματα, ώστε οι αντιστάσεις να έχουν ονομασία αναφοράς R1, R2, R3 κοκ. Να σημειωθεί ότι η ονομασία αναφοράς είναι διαφορετική έννοια από την τιμή (πχ 220R).

Ονομασίες αναφοράς μπορούμε να δώσουμε μόνοι μας, κάνοντας επεξεργασία σε κάθε ένα εξάρτημα ή μπορούμε να πούμε στο KiCad να δώσει αυτόματα ονομασίες αναφοράς σε όλα τα εξαρτήματα. Για να το το κάνουμε αυτό, επιλέγουμε από

Σχήμα 15: Πλήρως σχεδιασμένο κύκλωμα

το μενού στο πάνω μέρος της οθόνης "Εργαλεία" \to "Ονοματοδοσία σχηματικού", στο παράθυρο που εμφανίζεται δεν αλλάζουμε καμία ρύθμιση και κάνουμε κλικ στο "Ονοματοδοσία".

Όταν ολοκληρωθεί η διαδικασία, όλα τα εξαρτήματα θα έχουν συγκεκριμένες, αριθμημένες ονομασίες αναφοράς (και όχι ερωτηματικά).

Αφού ολοκληρωθεί η ονοματοδοσία, πρέπει να κάνουμε Έλεγχο Ηλεκτρικών Κανόνων στο κύκλωμα, ώστε να αναλύσει το κύκλωμα το KiCad και να μας ενημερώσει για πιθανά προβλήματα όπως πχ αν έχουμε ξεχάσει να συνδέσουμε ένα δίκτυο ή αν ένας ακροδέκτης εξαρτήματος έχει χαρακτηρισμό "Είσοδος" αλλά είναι συνδεδεμένος με έναν ακροδέκτη που έχει επίσης χαρακτηρισμό "Είσοδος".

Για να κάνουμε Έλεγχο Ηλεκτρικών Κανόνων, επιλέγουμε από το μενού στο πάνω μέρος της οθόνης "Εργαλεία" \rightarrow "Ελεγκτής Ηλεκτρικών Κανόνων" και στο παράθυρο που εμφανίζεται δεν αλλάζουμε καμία ρύθμιση και κάνουμε κλικ στο "Εκτέλεση".

Αν έχετε χρησιμοποιήσει τα αρχεία του tutorial, ο Ελεγκτής Ηλεκτρικών Κανόνων πρέπει να σας βγάλει μία προειδοποίηση: ότι ο ακροδέκτης 9 (χαρακτηρισμένος ως αμφίδρομος στο εξάρτημα) του CP2104 είναι συνδεδεμένος με τον ακροδέκτη 6 (χαρακτηρισμένος ως έξοδος) του CP2104. Αυτό φαίνεται στο KiCad να είναι λάθος διότι ένας ακροδέκτης έξοδος πρέπει να είναι συνδεδεμένος με έναν ακροδέκτη είσοδο και όχι έναν αμφίδρομο. Στη συγκεκριμένη περίπτωση πρόκειται για απλό θέμα χαρακτηρισμού του ακροδέκτη 9 και μπορούμε να αγνοήσουμε την προειδοποίηση. Οπότε απλά κλείστε το παράθυρο του Ελεγκτή. Εναλλακτικά, μπορούμε να επεξεργαστούμε το εξάρτημα CP2104 με το σχετικό εργαλείο (εξάλλου εμείς το δημιουργήσαμε το εξάρτημα, από το μηδέν) και να αλλάξουμε τον χαρακτηρισμό του ακροδέκτη 9 σε είσοδο.

Τέλος, αφού έχουμε ολοκληρώσει το κύκλωμά μας, καλό είναι να το κρατήσουμε και σε ένα αρχείο pdf, ώστε να είναι εύκολη η αναφορά σε αυτό χωρίς να ανοίγουμε το KiCad. Για να το κάνουμε αυτό, επιλέγουμε από το μενού στο πάνω μέρος της οθόνης Αρχείο \to Σχεδιογράφηση \to Σχεδιογράφηση και στο παράθυρο που εμφανίζεται επιλέγουμε Μορφή PDF, και πατάμε το κουμπί "Σχεδιογράφηση Τρέχουσας Σελίδας".

Πλέον το κύκλωμα υπάρχει και σε μορφή pdf, στο φάκελο όπου έχουμε και όλα τα άλλα αρχεία του έργου μας.

Αφού έχουμε ολοκληρώσει το σχηματικό κύκλωμα, θα χρειαστεί να κρατήσουμε κάποια από τα δεδομένα του, τα οποία θα μας χρειαστούν κατά τη σχεδίαση της πλακέτας. Αυτά τα δεδομένα είναι η λίστα υλικών και η λίστα δικτύων.

Για να κρατήσουμε λίστα με όλα τα υλικά και εξαρτήματα του κυκλώματος, από το μενού επιλέγουμε Εργαλεία \rightarrow Δημιουργία Λίστας Υλικών, στο παράθυρο που εμφανίζεται επιλέγουμε Δημιουργία, και τέλος επιλέγουμε Κλείσιμο. Πλέον έχει δημιουργηθεί ένα αρχείο usb2uart.xml, στο φάκελο όπου έχουμε και όλα τα άλλα αρχεία του έργου μας. Αυτό το αρχείο είναι η λίστα υλικών (Bill Of Materials - BOM) του κυκλώματός μας.

Για να κρατήσουμε λίστα με όλα τα δίκτυα του κυκλώματος, από το μενού επιλέγουμε Εργαλεία \rightarrow Δημιουργία Αρχείου Λίστας Δικτύων, στο παράθυρο που εμφανίζεται επιλέγουμε Δημιουργία, και τέλος αποθηκεύουμε το αρχείο με όνομα usb2uart.net

στο φάκελο που θέλουμε. Συνίσταται να αποθηκευτεί μαζί με όλα τα άλλα αρχεία του έργου.

4 **Δ**ημιουργία Πλακέτας (PCB)

4.1 Δημιουργία πλακέτας

Από την κεντρική οθόνη του KiCad εκτελέστε την εφαρμογή Pcbnew, με την οποία θα σχεδιάσουμε την πλακέτα.

Αφού βρεθείτε στην κεντρική οθόνη του Pcbnew, επιλέξτε από το μενού Αρχείο \rightarrow Αποθήκευση. Το Pcbnew θα δημιουργήσει ένα νέο αρχείο στον υπολογιστή σας, το αρχείο usb2uart.kicad_pcb και θα το αποθηκεύσει μαζί με τα υπόλοιπα αρχεία του έργου σας.

Η κεντρική οθόνη του Pcbnew αποτελείται από τα παρακάτω

- ένας κενός χώρος για σχεδίαση στο κέντρο της οθόνης
- γραμμή μενού στο πάνω μέρος της οθόνης
- μπάρα βασικών λειτουργιών στο πάνω μέρος της οθόνης
- μπάρα με γενικές λειτουργίες στο αριστερό μέρος της οθόνης
- μπάρες με συγκεκριμένες λειτουργίες σχεδίασης στο δεξί μέρος της οθόνης
- λίστα όλα τα επίπεδα της πλακέτας στο δεξί μέρος της οθόνης

Αρχικά πρέπει να ορίσουμε τις ιδιότητες της σελίδας μας, από το μενού Αρχείο \rightarrow Ρυθμίσεις σελίδας. Σε αυτό το παράθυρο, ορίστε τις ρυθμίσεις της σελίδας σας, όπως μέγεθος χαρτιού, ημερομηνία έκδοσης, τίτλος κυκλώματος, και πατήστε ΟΚ. Αυτές οι ρυθμίσεις δεν έχουν κάποια ηλεκτρική ή λειτουργική σημασία για το κύκλωμα, είναι όμως χρήσιμες πληροφορίες για την οργάνωση των κυκλωμάτων σας.

Στη συνέχεια θα πρέπει να ορίσουμε τα επίπεδα από τα οποία θα αποτελείται η πλακέτα μας. Έχουμε πάρει την απόφαση ότι το κύκλωμα που θα σχεδιάσουμε θέλουμε να έχει δύο επίπεδα, και θα τοποθετηθούν εξαρτήματα μόνο στο ένα επίπεδο, το μπροστινό επίπεδο.

Από το μενού επιλέξτε Κανόνες Σχεδίασης \rightarrow Ρύθμιση Επιπέδων. Στο παράθυρο που θα εμφανιστεί επιλέξτε από πάνω αριστερά την προκαθορισμένη ομαδοποίηση "Δύο επίπεδα, εξαρτήματα μόνο Μπροστά" και φροντίστε να είναι επιλεγμένα μόνο τα παρακάτω επίπεδα

- F.Paste, διότι θα έχουμε εξαρτήματα SMD στην μπροστινή πλευρά
- F.SilkS, διότι θα έχουμε σχέδια και κείμενα στην μπροστινή πλευρά
- F.Mask, διότι θα έχουμε εξαρτήματα στην μπροστινή πλευρά
- F.Cu, διότι θα έχουμε αγώγιμους δρόμους στην μπροστινή πλευρά

- Β.Cu, διότι θα έχουμε αγώγιμους δρόμους στην πίσω πλευρά
- B.Mask, διότι θα έχουμε (μόνο διαμπερή) εξαρτήματα στην πίσω πλευρά
- Edge.Cuts, για να σχεδιάσουμε τα όρια της πλακέτας
- Dwgs.User για να μπορούμε να σχεδιάζουμε σημειώσεις, να γράφουμε μηχανικές διαστάσεις, κα

Αφού κάνετε τα παραπάνω, επιλέξτε ΟΚ και θα επανέλθετε στην κεντρική οθόνη του Pcbnew.

Στο δεξί μέρος της κεντρικής οθόνης του Pcbnew υπάρχει λίστα με όλα τα επίπεδα της πλακέτας. Κάνοντας κλικ στο μικρό κουτάκι με το χρώμα αριστερά από το όνομα κάθε επιπέδου, μπορούμε να αλλάξουμε εάν θέλουμε το χρώμα που χρησιμοποιεί το KiCad για να εμφανίσει κάθε επίπεδο. Συνήθως επιλέγουμε να εμφανίζεται κόκκινο το μπροστά επίπεδο (F.Cu) και να εμφανίζεται πράσινο το πίσω επίπεδο (B.Cu).

Επίσης σε αυτή τη λίστα φαίνεται ένα μικρό βέλος δίπλα στο επίπεδο το οποίο είναι τρέχων, το επίπεδο δηλαδή στο οποίο σχεδιάζουμε. Σε κάθε σημείο όπου σχεδιάζουμε ή τοποθετούμε κάται στην πλακέτα μας, πρέπει να φροντίζουμε αυτό να γίνεται στο σωστό επίπεδο.

Αφού ορίσουμε τα επίπεδα, πρέπει να καθορίσουμε τους κανόνες σχεδίασης που θα διέπουν την πλακέτα μας. Από το μενού επιλέξτε Κανόνες Σχεδίασης \rightarrow Κανόνες Σχεδίασης. Στο παράθυρο που θα εμφανιστεί ορίστε το Διάκενο στα 0,2mm το Πλάτος Δρόμου στα 0.25mm και τη Διάμετρο/Διάτρηση Via στα 0,7/0,4mm. Αφού ορίσετε όλες αυτές τις διαστάσεις, πατήστε ΟΚ και θα επανέλθετε στην κεντρική οθόνη του Pcbnew.

Μία πολυύ χρήσιμη λειτουργία για τη σχεδίαση στο Pcbnew είναι ο ορισμός και η αλλαγή του πλέγματος το οποίο υπάρχει νοητά πάνω στο κύκλωμά μας και ορίζει τα σημεία όπου μπορεί να τοποθετηθεί ο δείκτης του ποντικιού. Πλέγμα 1mm σημαίνει ότι ο δείκτης του ποντικιού μπορεί να τοποθετηθεί σε διαστήματα του ενός mm αλλά όχι ενδιάμεσα. Το πλέγμα είναι βοηθητική έννοια και δεν επηρεάζει με κανένα τρόπο το κύκλωμά μας. Για να αλλάξει το πλέγμα, κάνουμε δεξί κλικ σε κενό χώρο της κεντρική οθόνης και επιλέγουμε "Επιλογή Πλέγματος".

Στη συνέχεια θα χρειαστεί να ορίσουμε τις βιβλιοθήκες αποτυπωμάτων που θα χρησιμοποιήσουμε.

Από μενού επιλέξτε Προτιμήσεις \rightarrow Διαχειριστής Βιβλιοθηκών Αποτυπωμάτων. Σε αυτό το παράθυρο, επιλέξτε "Προσθήκη με Οδηγό" και προσθέστε από το αποθετήριο https://github.com/KiCad τις παρακάτω βιβλιοθήκες

- LEDs.pretty
- Capacitors_SMD.pretty
- Resistors_SMD.pretty
- SMD_Packages.pretty

- · Pin Headers.pretty
- · Connect.pretty

Οι βιβλιοθήκες πρέπει να προστεθούν μόνο στο τρέχον Έργο και όχι ως Καθολικές.

Από το μενού επιλέξτε Αρχείο \to Αποθήκευση για να αποθηκευτούν όλες οι αλλαγές που κάνατε.

4.2 Δημιουργία αποτυπώματος

Η εφαρμογή Pcbnew χρησιμοποιεί αποτυπώματα για να αναπαριστά τα εξαρτήματα. Το αποτύπωμα ενός εξαρτήματος δείχνει πως ακριβώς θα τοποθετηθεί, ενωθεί και κολληθεί ένα εξάρτημα σε μία πλακέτα. Πληροφορίες για το πως είναι το αποτύπωμα κάθε εξαρτήματος μπορούν να βρεθούν στο εγχειρίδιο (data sheet) κάθε εξαρτήματος.

Συνήθως το αποτύπωμα κάθε εξαρτήματος δεν είναι τελείως μοναδικό, αλλά ανήκει σε κάποια γενική κατηγορία. Για παράδειγμα το εξάρτημα CP2104 του κυκλώματός μας έχει αποτύπωμα τύπου gfn24.

Κάθε εξάρτημα (πυκνωτής, αντίσταση, ολοκληρωμένο, LED, κοκ) του κυκλώματός μας πρέπει να έχει ένα αποτύπωμα, το οποίο θα τοποθετήσουμε στην πλακέτα που σχεδιάζουμε.

Το KiCad έχει βιβλιοθήκες με αποτυπώματα για πολλά τυπικά εξαρτήματα. Αν κάποιο εξάρτημα που θέλουμε να χρησιμοποιήσουμε δεν έχει αποτύπωμα στις βιβλιοθήκες του KiCad, μπορούμε να σχεδιάσουμε μόνοι μας το αποτύπωμα από το μηδέν, χρησιμοποιώντας το εργαλείο "Επεξεργαστής Αποτυπώματος".

Συγκεκριμένα για το κύκλωμα usb2uart που θέλουμε να σχεδιάσουμε, πρέπει να σχεδιάσουμε με τον Επεξεργαστή Αποτυπώματος το αποτύπωμα για το διπλό LED που χρησιμοποιούμε (εξάρτημα bLED, αποτύπωμα bLED_0603) και για το ολοκληρωμένο που χρησιμοποιούμε (εξάρτημα CP2104, αποτύπωμα qfn24), καθώς τα αποτυπώματα αυτά δεν είναι στις βιβλιοθήκες του KiCad. Εναλλακτικά, συνίσταται να πάρετε τα αποτυπώματα αυτά από τα αρχεία του tutorial, καθώς η δημιουργία αποτυπωμάτων από το μηδέν είναι μία επίπονη διαδικασία που ξεφεύγει από τα πλαίσια του tutorial.

4.3 Αντιστοίχηση αποτυπωμάτων

Σε αυτό το σημείο θεωρούμε ότι έχετε όλα τα απαραίτητα αποτυπώματα για το κύκλωμα, αποθηκευμένα στις βιβλιοθήκες του έργου.

Αρχικά θα χρειαστεί να ορίσουμε ποια αποτυπώματα αντιστοιχούν σε ποια εξαρτήματα στο κύκλωμά μας.

Για να το κάνουμε αυτό, εκτελούμε το πρόγραμμα Eeschema, και από το μενού επιλέγουμε Εργαλεία \rightarrow Αντιστοίχηση Αποτυπωμάτων με Εξαρτήματα. Αυτό θα εκτελέσει τη βοηθητική εφαρμογή Cvpcb η οποία κάνει ακριβώς αυτή τη δουλειά. Αυτό σημαίνει ότι φορτώνει τη Λίστα Δικτύων του κυκλώματος (την οποία παράξαμε στο τέλος της σχεδίασης του σχηματικού), και μας επιτρέπει να ορίσουμε για κάθε εξάρτημα στη λίστα και ένα αρχείο αποτυπώματος.

Αφού ολοκληρώσετε την αντιστοίχηση, επιλέξτε από το μενού Αρχείο \to Αποθήκευση ώστε να αποθηκευτεί η αντιστοίχηση στο αρχείο usb2uart.cmp. Με αυτό τον τρόπο, θα μπορούμε να φορτώσουμε αυτό το αρχείο στο Pcbnew να γνωρίζει το Pcbnew ποια είναι τα εξαρτήματα του κυκλώματος.

Αφού κάνετε τα παραπάνω, κλείστε την εφαρμογή Cvpcb.

4.4 Εισαγωγή αποτυπωμάτων

Από την κεντρική οθόνη του KiCad εκτελέστε την εφαρμογή Pcbnew.

Από το δεξί μέρος της κεντρικής οθόνης του Pcbnew, επιλέξτε το επίπεδο F.cu ως τρέχον επίπεδο.

Στη συνέχεια επιλέξτε στο μενού Εργαλεία \rightarrow Λίστα Δικτύων, στο παράθυρο που εμφανίζεται επιλέξτε "Ανάγνωση τρέχουσας λίστας δικτύων" και τέλος επιλέξτε Κλείσιμο.

4.4.1 Προσωρινή τοποθέτηση των αποτυπωμάτων

Πλέον στην πλακέτα μας έχουν εισαχθεί τα αποτυπώματα από όλα τα εξαρτήματα του κυκλώματος.

Τα αποτυπώματα έχουν τοποθετηθεί προσωρινά όλα στο ίδιο σημείο της πλακέτας. Για καλύτερη οργάνωση, μπορείτε να μετακινήσετε ένα προς ένα τα εξαρτήματα ώστε να τα τοποθετήσετε (και πάλι προσωρινά) το ένα δίπλα στο άλλο ώστε να έχετε καλύτερη εικόνα του κυκλώματος.

Για να μετακινήσετε ένα αποτύπωμα ακολουθείτε την ίδια διαδικασία όπως και για ένα εξάρτημα. Αυτό σημαίνει ότι μπορείτε να κάνετε δεξί κλικ στο αποτύπωμα και να επιλέξετε μετακίνηση ή να πάτε τον δείκτη του ποντικιού πάνω από το αποτύπωμα (χωρίς να κάνετε κλικ) και να πατήσετε το πλήκτρο m ή να ορίσετε τις ακριβείς συντεταγμένες του (Χ,Ψ) στις παράθυρο Ιδιότητες Εξαρτήματος.

Εναλλακτικά, αντί να μετακινήσετε όλα τα εξαρτήματα ένα προς ένα μόνοι σας, μπορείτε να πείτε στο Pcbnew να τα διατάξει αυτόματα στην άκρη της σελίδας σας. Για να το κάνετε αυτό, κάντε κλικ στην επάνω μπάρα στο κουμπί "Λειτουργία αποτυπώματος" ώστε το κουμπί να είναι πατημένο και στη συνέχεια κάντε κλικ επάνω σε κενό σημείο του κυκλώματος και επιλέξτε Καθολικό Άπλωμα και Τοποθέτηση \rightarrow Άπλωμα Όλων των Αποτυπωμάτων, επιλέγοντας Yes/Ναι αν η εφαρμογή σας ζητήσει να επιβεβαιώσετε τη λειτουργία.

Πλέον όλα τα αποτυπώματα είναι τακτοποιημένα στην άκρη της σελίδας, και έτοιμα να τα τοποθετήσετε ένα προς ένα στις τελικές τους θέσεις.

4.4.2 Φωλιά Συνδέσεων

Θα παρατηρήσετε ότι κάθε αποτύπωμα έχει λεπτές λευκές γραμμές που ενώνουν κάθε μία έδρα/ακροδέκτη του με την έδρα/ακροδέκτη που πρέπει, σύμφωνα με το σχηματικό κύκλωμα. Για παράδειγμα υπάρχει μία λεπτή λευκή γραμμή που ενώνει τη μία άκρη του R2 με τη μία άκρη του LED.

Το σύνολο αυτών των λευκών γραμμών λέγεται "Φωλιά Συνδέσεων". Ένας από τους ουσιαστικούς στόχους της σχεδίασης της πλακέτας είναι να αντικαταστήσουμε κάθε μία από από τις γραμμές της φωλιάς με μία πραγματική σύνδεση πάνω στην πλακέτα μας, έναν αγώγιμο δρόμο.

Μπορούμε να επιλέξουμε την εμφάνιση ή όχι της φωλιάς, κάνοντας κλικ στο κουμπί "Απόκρυψη/Εμφάνιση φωλιάς συνδέσεων πλακέτας" στην αριστερή μπάρα εργαλείων.

4.4.3 Οριστική τοποθέτηση αποτυπωμάτων

Σε αυτό το σημείο θα μετακινήσουμε τα αποτυπώματα στις τελικές θέσεις τους στην πλακέτα μας. Στο κάτω μέρος της κεντρικής οθόνης του Pcbnew εμφανίζονται πολλές χρήσιμες πληροφορίες για το κύκλωμα, και για αντικείμενο που έχετε επιλέξει. Βασική πληροφορία είναι οι συντεταγμένες Χ και Ψ της θέσης του δείκτη του ποντικιού.

Μπορούμε να ορίσουμε τις συντεταγμένες όπου θα τοποθετηθεί ένα αποτύπωμα, στις ιδιότητές του κάνοντας δεξί κλικ επάνω του και επιλέγοντας "Αποτύπωμα (στοιχεία αποτυπώματος)" \rightarrow Επεξεργασία Παραμέτρων. Εναλλακτικά, τοποθετείτε τον δείκτη του ποντικιού πάνω από το αποτύπωμα (χωρίς να κάνετε κλικ) και να πατήσετε το πλήκτρο e.

Στο Παράθυρο Ιδιότητες Αποτυπώματος που εμφανίζεται, στο κάτω αριστερά μέρος του, μπορείτε να ορίσετε την ακριβή θέση του αποτυπώματος με βάση συντεταγμένες.

Στη συνέχεια ορίστε το πλέγμα στα 1mm.

Μετακινήστε το U1 στις συντεταγμένες (148,105), και κλειδώστε το σε αυτή τη θέση για να μην μετακινηθεί κατά λάθος. Για να κλειδώσετε ένα εξάρτημα σε μία θέση, κάντε δεξί κλικ επάνω και από το παράθυρο που εμφανίζεται επιλέξτε Κλείδωμα Αποτυπώματος. Εναλλακτικά μπορείτε να πάτε τον δείκτη του ποντικιού πάνω από το αποτύπωμα (χωρίς να κάνετε κλικ) και να πατήσετε το πλήκτρο Ι για να το κλειδώσετε.

Στη συνέχεια μετακινήστε το J1 στις συντεταγμένες (133,105) και κλειδώστε το. Στη συνέχεια μετακινήστε το J2 στις συντεταγμένες (156,105) και κλειδώστε το. Στη συνέχεια ορίστε το πλέγμα στα 0,25mm.

Στη συνέχεια μετακινήστε το C1 στις συντεταγμένες (146.50 108.50), και περιστρέψτε το κατά 90 μοίρες. Για να περιστρέψετε ένα εξάρτημα κατά 90 μοίρες, κάντε δεξί κλικ επάνω και από το παράθυρο που εμφανίζεται επιλέξτε "Αποτύπωμα (στοιχεία αποτυπώματος)" \rightarrow Περιστροφή. Εναλλακτικά μπορείτε να πάτε τον δείκτη του ποντικιού πάνω από το αποτύπωμα (χωρίς να κάνετε κλικ) και να πατήσετε το πλήκτρο r για να το περιστρέψετε.

Στη συνέχεια μετακινήστε το C2 στις συντεταγμένες (151.50 104.25), και περιστρέψτε το κατά 270 μοίρες.

Στη συνέχεια μετακινήστε το C3 στις συντεταγμένες (143.00 106.75).

Στη συνέχεια μετακινήστε το C4 στις συντεταγμένες (143.00 105.50).

Στη συνέχεια μετακινήστε το D1 στις συντεταγμένες (144.50 109.75), και περιστρέψτε το κατά 270 μοίρες.

Στη συνέχεια μετακινήστε το D2 στις συντεταγμένες (151.50 109.75), και περιστρέψτε το κατά 90 μοίρες.

Στη συνέχεια μετακινήστε το R1 στις συντεταγμένες (143.00 108.50), και περιστρέψτε το κατά 90 μοίρες.

Στη συνέχεια μετακινήστε το R2 στις συντεταγμένες (149.75 109.75), και περιστρέψτε το κατά 90 μοίρες.

Στη συνέχεια μετακινήστε το R3 στις συντεταγμένες (153.25 109.75), και περιστρέψτε το κατά 90 μοίρες.

Πλέον έχουμε τοποθετήσει τα αποτυπώματα στις τελικές θέσεις τους.

4.5 Δημιουργία αγώγιμων ζωνών και δρόμων

4.5.1 Σχεδίαση ορίων πλακέτας

Αρχικά ορίστε το πλέγμα στα 1mm.

Τοποθετήστε το δείκτη του ποντικιού στο κέντρο του U1 και πατήστε το πλήκτρο space για να οριστεί αυτό το σημείο ως το σημείο έναρξης των σχετικών συντεταγμένων.

Σε αυτό το σημείο πρέπει να ορίσουμε τα όρια της πλακέτας. Για να το κάνουμε αυτό δεν υπάρχει κάποιο ειδικό εργαλείο, αλλά αρκεί να σχεδιάσουμε γραμμές γραφικών στο επίπεδο Edge.Cuts.

Από το δεξί μέρος της κεντρικής οθόνης του Pcbnew, επιλέξτε το επίπεδο Edge.Cuts ως τρέχον επίπεδο. Επίσης από την μπάρα στο αριστερό μέρος της οθόνης φροντίστε να μην είναι επιλεγμένη η Εμφάνιση πολικών συντεταγμένων.

Στο επίπεδο Edge.Cuts σχεδιάστε ένα ορθογώνιο διαστάσεων 32x18mm με σχετικές συντεταγμένες (-19,-9) πάνω αριστερά και (13, 9) κάτω δεξιά.

Για να το κάνετε αυτό βεβαιωθείτε ότι έχετε ορίσει το κέντρο του U1 ως το σημείο έναρξης των σχετικών συντεταγμένων, επιλέξτε από το μενού στο πάνω μέρος της οθόνης Τοποθέτηση \rightarrow "Γραμμή ή Πολύγωνο", και σχεδιάστε τις τέσσερις γραμμές που θα αποτελούν το ορθογώνιο των ορίων. Δηλαδή σχεδιάστε μία γραμμή από το (-19,-9) έως το (13,-9) μετά μία γραμμή από το (13,-9) έως το -19,9) και μετά μία γραμμή από το (-19,9) έως το -19,-9). Όλες οι συντεταγμένες είναι σχετικές ως προς το σημείο που επιλέξαμε.

4.5.2 Προσθήκη ζώνης

Αφού έχουμε σχεδιάσει τα όρια της πλακέτας το πρώτο πράγμα που πρέπει να κάνουμε είναι να σχεδιάσουμε μία ζώνη για τη γείωση του κυκλώματος.

Βεβαιωθείτε ότι έχετε ορίσει το κέντρο του U1 ως το σημείο έναρξης των σχετικών συντεταγμένων. Επίσης από την μπάρα στο αριστερό μέρος της οθόνης φροντίστε επιλεγμένη η Εμφάνιση γεμισμένων περιοχών σε ζώνες.

Η ζώνη θα είναι στο επίπεδο B.CU και θα έχει συντεταγμένες (-18,8) πάνω αριστερά και (12,8) κάτω δεξιά.

Από το μενού στο πάνω μέρος της οθόνης επιλέξτε Τοποθέτηση \to Ζώνη και κάντε κλικ στις συντεταγμένες (-18,8). Στο παράθυρο που εμφανίζεται ορίστε τις παρακάτω ρυθμίσεις.

Στη συνέχεια ορίστε το πλέγμα στα 1mm.

- επιλέξτε το επίπεδο Β.Cu
- επιλέξτε το δίκτυο GND
- διάκενο 0,2
- ελάχιστο πλάτος 0,25
- εξομάλυνση γωνιών λοξότμηση με απόσταση 0,25
- θερμικές εκτονώσεις διάκενο 0,25 και πάχος ακτίνας 0.5
- κλίση περιγράμματος μόνο οριζ., καθ. και 45 μοίρες

Αφού ορίσετε τα παραπάνω, πατήστε ΟΚ και θα επιστρέψετε στην αρχική οθόνη του Pcbnew όπου θα πρέπει να ορίσετε την κάτω δεξιά συντεταγμένη της ζώνης. Αφού την ορίσετε, κάντε δεξί κλικ πάνω στο περίγραμμα της ζώνης και επιλέξτε Zώνη \to Γέμισμα ζώνης.

4.5.3 Προσθήκη αγώγιμων δρόμων

Αρχικά ορίστε το πλέγμα στα 0,25mm, και ορίστε το F.Cu ως τρέχον επίπεδο. Στη συνέχεια επιλέξτε το εργαλείο "Προσθήκη δρόμων και via" από την αριστερή μπάρα.

Στη συνέχεια προσθέστε via προς τη ζώνη της γείωσης για όλα τα αποτυπώματα που έχουν έδρα που συνδέεται με τη γείωση (4 via για το U1).

Στη συνέχεια σχεδιάστε όλους του υπόλοιπους αγώγιμους δρόμους, με οδηγό τις συνδέσεις που εμφανίζει η φωλιά συνδέσεων.

Ειδικά για την κεντρική σύνδεση VCC, προσθέστε στους κανόνες σχεδίασης αγώγιμο δρόμο πλάτους 0,5mm και χρησιμοποιήστε τον για τους δρόμους του δικτύου του VCC.

4.5.4 Προσθήκη ζώνης 3,3V

Αρχικά ορίστε το πλέγμα στα 1mm.

Στη συνέχεια προσθέστε μία ζώνη όπως προηγουμένως, με συντεταγμένες (-17,7) πάνω αριστερά και (11,7) κάτω δεξιά, και τις παρακάτω ιδιότητες.

- επιλέξτε το επίπεδο F.Cu
- επιλέξτε το δίκτυο 3.3V
- διάκενο 0.2
- ελάχιστο πλάτος 0,25

- εξομάλυνση γωνιών λοξότμηση με απόσταση 0,25
- θερμικές εκτονώσεις διάκενο 0,25 και πάχος ακτίνας 0.5
- κλίση περιγράμματος μόνο οριζ., καθ. και 45 μοίρες

Αφού ορίσετε τη ζώνη, κάντε δεξί κλικ πάνω στο περίγραμμα αυτής της ζώνης και επιλέξτε Zώνη \to Γέμισμα ζώνης.

Πλέον έχουμε τελειώσει ουσιαστικά τον ηλεκτρικό σχεδιασμό της πλακέτας.

4.5.5 Αισθητικές διορθώσεις

Αν θέλουμε, μπορούμε να κάνουμε αισθητικές διορθώσεις και επεμβάσεις την πλακέτα, όπως τα παρακάτω

- Ορισμός ομοιόμορφων μεγεθών σε όλα τα αποτυπώματα για τις ενδείξεις αναφοράς (πλάτος 8, ύψος 7, πάχος 12). Αυτό γίνεται από το μενού Επεξεργασία → Ορισμός Μεγεθών για Πεδία Αποτυπωμάτων.
- Τοποθέτηση σε ομοιόμορφη θέση (πχ πάνω αριστερά από το αποτύπωμα) για όλες τις ενδείξεις αναφοράς αποτυπωμάτων. Αυτό γίνεται μετακινώντας μία προς μία όλες ενδείξεις αναφοράς.
- Τοποθέτηση κειμένων γραφικών όπου θέλουμε στην πλακέτα, με το όνομα του κυκλώματος, την ένδειξη copyright, κα. Αυτό γίνεται από το μενού Τοποθέτηση
 Κείμενο και τοποθέτηση όποιου κειμένου θέλουμε στο επίπεδο F.Silks.

Σε αυτό το σημείο έχουμε τελειώσει τον σχεδιασμό, και πρέπει να κάνουμε έναν ηλεκτρικό έλεγχο με το εργαλείο του KiCad που βρίσκεται στο μενού Εργαλεία \rightarrow ΕΚΣ (Έλεγχος Κανόνων Σχεδίου).

Πλέον έχουμε ολοκληρώσει πλήρως τον σχεδιασμό της πλακέτας, και είμαστε έτοιμοι να δημιουργήσουμε αρχεία παραγωγής τα οποία θα δώσουμε σε ένα εργοστάσιο και θα μας κατασκευάσει την πλακέτα.

5 Κατασκευή πλακέτας

Σε αυτό το κεφάλαιο έχουμε έτοιμο το κύκλωμα και θέλουμε δημιουργήσουμε αρχεία παραγωγής τα οποία θα δώσουμε σε ένα εργοστάσιο και θα μας κατασκευάσει την πλακέτα.

Τα αρχεία παραγωγής είναι τριών ειδών.

- αρχεία gerber, που δηλώνουν κυρίως που θα μπει πάστα συγκόλλησης στην πλακέτα (και πολλές ακόμα πληροφορίες)
- αρχεία διάτρησης, που δηλώνουν κυρίως που θα γίνουν μηχανικές τρύπες στην πλακέτα
- αρχεία τοποθέτησης, που δηλώνουν κυρίως τη θέση των υλικών πάνω στην πλακέτα

Σχήμα 16: Τελικό κύκλωμα πλακέτας

Αξίζει να σημειωθεί ότι πολλές από τις επιλογές που θα κάνουμε κατά τη δημιουργία όλων των αρχείων ίσως χρειαστεί να τις ορίσετε αφού επικοινωνήσετε με το εργοστάσιο ή την εταιρεία που θα κατασκευάσει την πλακέτα καθώς μπορεί τα μηχανήματα ή οι διαδικασίες τους να απαιτούν κάποια ειδική ρύθμιση για τα αρχεία. Εμείς έχουμε κάνει τις πιο συνηθισμένες ρυθμίσεις και επιλογές.

Πριν φτιάξουμε τα αρχεία θα πρέπει να κάνουμε μία τελευταία επέμβαση (αισθητική) στο κύκλωμα, προσθέτοντας ενδείξεις διαστάσεων στην πλακέτα μας για το συνολικό πλάτος (32mm) και ύψος (18mm) της πλακέτας. Αυτό γίνεται από το μενού Τοποθέτηση \rightarrow Διάσταση.

5.1 Αρχεία gerber

Για να δημιουργήσουμε τα αρχεία gerber της πλακέτας, επιλέγουμε από το μενού Αρχείο \to Σχεδιογράφηση, και στο παράθυρο που εμφανίζεται ορίζουμε τις παρακάτω επιλογες.

- Μορφή σχεδιογράφησης: Gerber
- Επιλογή όλων των επιπέδων
- Επιλογή του "Σχεδιογράφηση αναφορών αποτυπωμάτων"
- Επιλογή του "Αποκλεισμός επιπέδου ορίων pcb από άλλα επίπεδα"

Αφού ορίσουμε τις επιλογές, κάνουμε κλικ στο Σχεδιογράφηση, και το Pcbnew παράγει όλα τα απαραίτητα αρχεία gerber για την παραγωγή της πλακέτας.

Με αυτό τον τρόπο θα δημιουργηθούν τα παρακάτω αρχεία και θα τοποθετηθούν μέσα στο φάκελο μαζί με τα άλλα αρχεία του έργου.

- usb2uart-F Cu.gtl
- usb2uart-B_Cu.gbl
- usb2uart-F_Paste.gtp
- usb2uart-F_SilkS.gto
- usb2uart-B_Mask.gbs
- usb2uart-F_Mask.gts
- usb2uart-Dwgs User.gbr
- usb2uart-Edge_Cuts.gm1

5.2 Αρχεία διάτρησης

Για να δημιουργήσουμε τα αρχεία διάτρησης της πλακέτας, επιλέγουμε από το μενού Αρχείο \rightarrow Έξοδοι Παραγωγής \rightarrow Αρχείο Διατρήσεων, και στο παράθυρο που εμφανίζεται ορίζουμε Μορφή Αρχείου Χάρτη Διατρήσεων: Gerber, και στην συνέχεια κάνουμε κλικ στο κουμπί Αρχείο Διατρήσεων και μετά κλικ στο κουμπί Αρχείο Χάρτη. Αφού το κάνουμε αυτό, κάνουμε κλικ στο Κλείσιμο.

Με αυτό τον τρόπο θα δημιουργηθούν τα αρχεία usb2uart.drl και usb2uart-drl_map.gbr και θα τοποθετηθούν μέσα στο φάκελο μαζί με τα άλλα αρχεία του έργου.

5.3 Αρχεία τοποθέτησης

Για να δημιουργήσουμε τα αρχεία τοποθέτησης της πλακέτας, επιλέγουμε από το μενού Αρχείο \rightarrow Έξοδοι Παραγωγής \rightarrow Αρχείο Θέσης Αποτυπωμάτων, και στο παράθυρο που εμφανίζεται επιλέγουμε ένα αρχείο ανά πλακέτα και την επιλογή "Εξαναγκασμός ιδιότητας INSERT για όλα τα αποτυπώματα SMD. Αφού το κάνουμε αυτό, κάνουμε κλικ στο OK.

Με αυτό τον τρόπο θα δημιουργηθούν τα αρχεία usb2uart-top.pos και usb2uart-bottom.pos και θα τοποθετηθούν μέσα στο φάκελο μαζί με τα άλλα αρχεία του έργου.

5.4 Επίλογος

Πλέον έχουμε δημιουργήσει όλα τα απαραίτητα αρχεία που πρέπει να δώσουμε σε ένα εργοστάστιο για να κατασκευάσει την πλακέτα μας.

Τα αρχεία που συνηθίζεται να δίνουμε σε ένα εργοστάσιο παραγωγής είναι τα παρακάτω.

- αρχεία gerber
- αρχεία διάτρησης
- αρχεία τοποθέτησης
- αρχείο pdf με το σχηματικό μας κύκλωμα (παράχθηκε σε προηγούμενο κεφάλαιο)
- λίστα υλικών (παράχθηκε σε προηγούμενο κεφάλαιο)

Σε αυτό το σημείο αντιστοιχούν τα αρχεία από το αρχείο kicad_tut18.zip.