1. Emlékeztető

Legyen $p \in \mathbb{N}^+$ egy rögzített kitevő. Ekkor az $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p, \ \mathbf{x} < \mathbf{y}$ vektorok esetén az

$$[\mathbf{x}, \mathbf{y}) \coloneqq \left\{ \mathbf{z} \in \mathbb{R}^p \mid \mathbf{x} \le \mathbf{z} < \mathbf{y} \right\}$$

halmazt az \mathbf{x}, \mathbf{y} végpontú, balról zárt és jobbról nyílt (p-dimenziós) intervallumnak nevezzük. Könnyen belátható ilyenkor, hogy az

$$\mathbf{I}^p \coloneqq \Big\{\,\emptyset,\, [\mathbf{x},\mathbf{y}) \ \Big| \ \mathbf{x},\mathbf{y} \in \mathbb{R}^p \ \text{ \'es } \ \mathbf{x} < \mathbf{y} \,\Big\}$$

halmazrendszer egy félgyűrű. Tekintsük az \mathbf{I}^p által generált gyűrűt, vagyis az

$$\mathcal{I}^p \coloneqq \mathcal{G}(\mathbf{I}^p) = \left\{ \left. \bigcup_{k=0}^n I_k \;\middle|\; I_0, \dots, I_n \in \mathbf{I}^p \text{ páronként diszjunktak } (n \in \mathbb{N}) \right. \right\}$$

halmazt.

1.1. Definíció: Borel-halmaz

Az \mathbb{R}^p -beli **Borel**–halmazok rendszere az alábbi szigma-algebra:

$$\Omega_p := \Omega(\mathcal{I}^p) = \Omega(\mathbf{I}^p).$$

2. Invariancia

Definiáljuk egy tetszőleges $A \in \Omega_p$ Borel-halmaz és $\mathbf{a} \in \mathbb{R}^p$ vektor esetén az

$$\mathbf{a} + A \coloneqq \{\, \mathbf{a} + \mathbf{x} \mid \mathbf{x} \in \mathbf{a} \,\}, \qquad -A \coloneqq \{\, -\mathbf{x} \mid \mathbf{x} \in \mathbf{a} \,\}$$

halmazokat. Ekkor igazak a soron következő invariancia tulajdonságok.

2.1. Állítás: Eltolás és tükrözés invariancia

Legyen μ_p az \mathbb{R}^p -beli Lebesgue–Borel-mérték. Ekkor az alábbiak igazak.

a) Eltolás invariancia: bármely $A \in \Omega_p$ halmazra és $\mathbf{a} \in \mathbb{R}^p$ vektorra

$$\mathbf{a} + A \in \Omega_p$$
 és $\mu_p(\mathbf{a} + A) = \mu_p(A)$.

b) Tükrözés invariancia: tetszőleges $A \in \Omega_p$ halmaz esetén

$$-A \in \Omega_p$$
 és $\mu_p(-A) = \mu_p(A)$.

Megjegyzés. Ugyanez fennáll a $\widehat{\mu}_p$ Lebesgue-mérték esetén is.

3. Példa nem Borel-mérhető halmazra

3.1. Állítás

Létezik olyan $A \subseteq \mathbb{R}$ halmaz, ami nem Borel-mérhető, azaz $A \notin \Omega_1$.

Bizonyítás. Vezessük be az alábbi relációt

$$x \sim y \quad :\iff \quad x - y \in \mathbb{Q}.$$

Ekkor fennállnak az alábbi állítások.

- 1. A \sim ekvivalenciareláció.
- 2. Bármely A ekvivalencia
osztály esetén $A \cap [0,1) \neq \emptyset$.

Ezt felhasználva legyen $K\subseteq [0,1)$ az a halmaz, ami minden ekvivalencia-osztályból pontosan egy elemet tartalmaz és más eleme nincsen. Ekkor

$$\mathbb{R} = \bigcup_{r \in \mathbb{Q}} (r + K)$$

és ez páronként diszjunkt felbontás. Ekkor $K \notin \Omega_1$.

Végül indirekt tegyük fel, hogy $K \in \Omega_1$. Ekkor az eltolás invariancia miatt

$$\mu_1(\mathbb{R}) = +\infty = \sum_{r \in \mathbb{Q}} \mu_1(r+K) = \sum_{r \in \mathbb{Q}} \mu_1(K).$$

Innen egyszerűen adódik, hogy $\mu_1(K) > 0$. Ugyanakkor legyen

$$B := \mathbb{Q} \cap [0, 1).$$

Ekkor μ_1 monotonitása miatt

$$\bigcup_{r \in B} (r + K) \subseteq [0, 2) \quad \Longrightarrow \quad \mu_1(B) \le 2.$$

Viszont az eltolás invariancia alapján ellentmondásra jutunk:

$$\mu_1(B) = \sum_{r \in B} \mu_1(r+K) = \sum_{r \in B} \mu_1(K) = +\infty.$$