Package 'rdist'

October 14, 2022
Title Calculate Pairwise Distances
Version 0.0.5
Description A common framework for calculating distance matrices.
Depends R (>= $3.2.2$)
License GPL
<pre>URL https://github.com/blasern/rdist</pre>
<pre>BugReports https://github.com/blasern/rdist/issues</pre>
Encoding UTF-8
LazyData true
LinkingTo Rcpp, RcppArmadillo
Imports Rcpp, methods
RoxygenNote 7.1.0
Suggests testthat
NeedsCompilation yes
Author Nello Blaser [aut, cre]
Maintainer Nello Blaser < nello . blaser@uib . no>
Repository CRAN
Date/Publication 2020-05-04 16:00:02 UTC
R topics documented:
farthest_point_sampling is_metric product_metric rdist
Index

Description

Farthest point sampling returns a reordering of the metric space $P = p_1, ..., p_k$, such that each p_i is the farthest point from the first i-1 points.

Usage

```
farthest_point_sampling(
  mat,
  metric = "precomputed",
  k = nrow(mat),
  initial_point_index = 1L,
  return_clusters = FALSE
)
```

Arguments

Examples

```
# generate data
df <- matrix(runif(200), ncol = 2)
dist_mat <- pdist(df)
# farthest point sampling
fps <- farthest_point_sampling(dist_mat)
fps2 <- farthest_point_sampling(df, metric = "euclidean")
all.equal(fps, fps2)
# have a look at the fps distance matrix
rdist(df[fps[1:5], ])
dist_mat[fps, fps][1:5, 1:5]</pre>
```

is_metric 3

is_metric

Metric and triangle inequality

Description

Does the distance matric come from a metric

Usage

```
is_distance_matrix(mat, tolerance = .Machine$double.eps^0.5)
triangle_inequality(mat, tolerance = .Machine$double.eps^0.5)
```

Arguments

mat The matrix to evaluate

tolerance Differences smaller than tolerance are not reported.

Examples

```
data <- matrix(rnorm(20), ncol = 2)
dm <- pdist(data)
is_distance_matrix(dm)
triangle_inequality(dm)

dm[1, 2] <- 1.1 * dm[1, 2]
is_distance_matrix(dm)</pre>
```

product_metric

Product metric

Description

Returns the p-product metric of two metric spaces. Works for output of 'rdist', 'pdist' or 'cdist'.

Usage

```
product_metric(..., p = 2)
```

Arguments

... Distance matrices or dist objects

p The power of the Minkowski distance

4 rdist

Examples

```
# generate data
df <- matrix(runif(200), ncol = 2)
# distance matrices
dist_mat <- pdist(df)
dist_1 <- pdist(df[, 1])
dist_2 <- pdist(df[, 2])
# product distance matrix
dist_prod <- product_metric(dist_1, dist_2)
# check equality
all.equal(dist_mat, dist_prod)</pre>
```

rdist

rdist: an R package for distances

Description

rdist provide a common framework to calculate distances. There are three main functions:

- rdist computes the pairwise distances between observations in one matrix and returns a dist object,
- pdist computes the pairwise distances between observations in one matrix and returns a matrix, and
- cdist computes the distances between observations in two matrices and returns a matrix.

In particular the cdist function is often missing in other distance functions. All calculations involving NA values will consistently return NA.

Usage

```
rdist(X, metric = "euclidean", p = 2L)
pdist(X, metric = "euclidean", p = 2)
cdist(X, Y, metric = "euclidean", p = 2)
```

Arguments

```
X, Y A matrix

metric The distance metric to use

p The power of the Minkowski distance
```

rdist 5

Details

Available distance measures are (written for two vectors v and w):

- "euclidean": $\sqrt{\sum_i (v_i w_i)^2}$
- "minkowski": $(\sum_i |v_i w_i|^p)^{1/p}$
- "manhattan": $\sum_i (|v_i w_i|)$
- "maximum" or "chebyshev": $\max_i (|v_i w_i|)$
- "canberra": $\sum_i (\frac{|v_i-w_i|}{|v_i|+|w_i|})$
- "angular": $\cos^{-1}(cor(v,w))$
- "correlation": $\sqrt{\frac{1-cor(v,w)}{2}}$
- "absolute_correlation": $\sqrt{1-|cor(v,w)|^2}$
- "hamming": $(\sum_i v_i \neq w_i)/\sum_i 1$
- "jaccard": $(\sum_i v_i \neq w_i)/\sum_i 1_{v_i \neq 0 \cup w_i \neq 0}$
- Any function that defines a distance between two vectors.

Index

```
cdist(rdist), 4
farthest_point_sampling, 2
is_distance_matrix(is_metric), 3
is_metric, 3

pdist(rdist), 4
product_metric, 3

rdist, 2, 4

triangle_inequality(is_metric), 3
```