Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (Национальный исследовательский университет)»

Физтех-школа аэрокосмических технологий Кафедра теоретической и экспериментальной физики геосистем

Направление подготовки: 03.03.01 Прикладные математика и физика (бакалавриат) **Направленность(профиль) подготовки:** Физика и механика космических и природных систем

Пространственно-временное распределение полного электронного содержания в различных геофизических условиях

(бакалаврская работа)

	Студент:
	Скачков Алексей Павлович
	Научный руководитель:
	Ряховский Илья Александрович
Москва	

2020

Аннотация

Цели и задачи

Целью данной работы является получение пространственно-временного распределения полного электронного содержания во время солнечной вспышки 10 сентября 2017 года.

Для достижения поставленной цели решались следующие задачи:

- Обработка данных со станций GNSS
- Вычисление наклонного ПЭС по групповым и фазовым измерениям
- Оценка вертикального значения ПЭС
- Нахождение пространственных и временных зависимостей изменения ПЭС

Полученные результаты

Содержание

B	Введение			
1	Teo	ретиче	еские сведения	6
	1.1	Испол	ъзование GPS в исследовании ионосферы	6
	1.2	Р. Общие сведения о GPS		
	1.3	Интересующие виды измерений в GPS		
	1.4	Геометрические положения, используемые для GPS зондирования		10
	1.5	Принципы расчета ПЭС по данным GPS приемников		12
		1.5.1	Определение ПЭС по двухчастотным фазовым измере-	
			ниям псевдодальности	12
		1.5.2	Определение ПЭС по кодовым измерениям псевдодаль-	
			ности	13
		1.5.3	Преобразование наклонного ПЭС в вертикальное	15
		1.5.4	Дифференциальные кодовые задержки	15
2 Исследовательская работа		ательская работа	16	
	2.1	Обраб	отка данных со станций GNSS	16
	2.2	Вычис	сление наклонного ПЭС по групповым и фазовым измере-	
		МКИН		17
	2.3	2.3 Оценка вертикального значения ПЭС		18
	2.4 Нахождение пространственных и временных зависимостей и		кдение пространственных и временных зависимостей из-	
		мерен	ия ПЭС	20

Используемые обозначения

Введение

Актуальность темы

Исследование ионосферы является достаточно важным направлением, так как от ее состояния зависит множество факторов, влияющих на нашу повседневную жизнь. Знание о состоянии ионосферы может помогать идентифицировать различные события техногенного и естественного характеров. В современной действительности стало ясно, что различные ионосферные процессы влияют на погодные и климатические условия. Не стоит забывать и о современных средствах связи, навигации и локации, которые напрямую зависят от состояния ионосферы.

Объект исследования

Основные параметры, характеризующие ионосферу: локальная электронная концентрация N_e , температура ионов и электронов и полное электронное содержание.

Объектом исследования данной работы является полное электронное содержание (ПЭС или ТЕС в англоязычной литературе). ПЭС представляет собой количество электронов в столбе единичного сечения. В рамках данной работы предлагается получение пространственно-временного распределения полного электронного содержания во время высокой солнечной активности.

Значимость исследования

1 Теоретические сведения

1.1 Использование GPS в исследовании ионосферы

Существует множество различных методов, применяемых для исследования состояния ионосферы, такие как вертикальное, наклонное, вертикальное наклонное, внешнее зондирования, некогерентное рассеяние и многие другие. Появление глобальной навигационной системы и создание огромной сети GPS станций стали началом новой эры дистанционного исследования ионосферы. Большое количество станций и непрерывная доступность спутников позволяют производить своевременный мониторинг ионосферы в различных участках планеты.

1.2 Общие сведения о GPS

GPS (Global Positioning System) представляет из себя спутниковую систему навигации, которая обеспечивает измерение расстояния между спутником и приемником, а так же времени. На основе этих данных определяется местоположение объекта в пространстве.

Систему GPS можно разделить на три основные составляющие:

- Космический сегмент
- Сегмент управления
- Сегмент потребителей

Космический сегмент состоит из 32 спутников (один из которых находится на этапе развертки)¹, которые размещены на шести круговых орбитах. Высота орбит составляет 20200 км. Наклонение орбит также являет общим и равно 55°. Каждая орбита разнесена друг относительно друга на 60° по долготе. Спутники оборудованы специальным устройством, которое хранит

 $^{^{1}}$ на момент Февраля 2019 года [1]

системное время аппарата. Временные шкалы всех спутников согласованы между собой и синхронизируются системой единого времени.

Спутники непрерывно передают сигналы на двух частотах: $f_1=1575.42~{\rm M}\Gamma$ ц и $f_2=1227.60~{\rm M}\Gamma$ ц. Передаваемые сигналы модулируются псевдослучайными последовательностями (PRN - Pseudorandom Noise) двух типов С/А-код и Р-код.

C/A-код является открытым кодом, который, в основном, используется в гражданских целях. Он имеет длину повторения 1 мс и частоту следования импульсов $1.023~\mathrm{M}\Gamma$ ц.

Р-код - это защищенный код. Частота следования имеет значение 10.23 МГц и длину в 267 суток. Сигналы, модулированные Р-кодом, передаются на двух частотах f_1 и f_2 , в то время как С/А-код только на f_1 .

Вместе с PRN-кодами также отправляются навигационные сообщения, которые содержат данные о положении спутника, метки времени, частотновременные поправки, сведения о работоспособности оборудования и др.

Сегмент управления осуществляет слежение за орбитальными аппаратами и управление ими. Главная станция находится в Колорадо-Спрингс, штат Колорадо. Станции слежения выполняют измерения траекторий по сигналам спутников и после корректируют поведение каждого спутника.

Сегмент потребителей состоит из устройств разной степени сложности, от военного оборудования до гражданских мобильных устройств. GPS-приемники производят выбор рабочего созвездия (набора из не менее 4 видимых спутников), поиск, слежение и декодировку входящего сигнала, обработку измеряемых радионавигационных параметров и служебной информации, расчет координат и скорости потребителя.

1.3 Интересующие виды измерений в GPS

Основная величина, которая измеряется в спутниковых системах позиционирования, является «псевдодальность», через которую определяют координаты GPS-приемника.

$$D' = \sqrt{(x - x_S)^2 + (y - y_S)^2 + (z - z_S)^2} + c\tau_R + \sigma_D, \tag{1}$$

где D' - «псевдодальнось» между приемником и спутником; x_S, y_S, z_S - координаты спутника; x,y,z - координаты приемника; c - скорость света; τ_R - отклонение часов приемника от системного времени GPS; σ_D - погрешность измерения. Псевдодальность отличается от действительного расстояния $D=\sqrt{(x-x_S)^2+(y-y_S)^2+(z-z_S)^2}$ наличием ошибок измерений. Зная значения псевдодальности для 4 спутников, можно вычислить координаты приемника и значение τ_R . Нахождение данных величин возможно в любой момент времени, так как в поле зрения приемника всегда оказывается минимум 5 спутников. В современных устройствах для вычисления положения в пространстве используется метод взвешенных наименьших квадратов. Для определения псевдодальности измеряются такие параметры, как время распространения сигнала и набег фазы несущей радиоволны на трассе «спутник – приемник». В зависимости от выбранного параметра различают кодовые и фазовые измерения псевдодальности.

Кодовые измерения псевдодальности. $D' = c\tau$. В данном случае измеряется время задержки между моментом излучения и момента получения сигнала, т.е. время распространения сигнала. Для измерения задержки, с помощью корреляционного анализа, определяется сдвиг выбранного кода, посланного спутником, относительно кода, генерируемого приемным устройством. Таким образом, двухчастотный приемник имеет возможность измерять псевдодальность тремя способами: с помощью C/A-кода на частоте f_1 и по P-коду на частотах f_1 и f_2^2 . Точность определения псевдодальности по кодовым измерениям составляет 1% от длины кода, что позволяет делать измерение по C/A-коду с погрешностью в 3 метра, а по P-коду с погрешностью 0.3 метра.

Фазовые измерения псевдодальности. $D' = \lambda \Delta \varphi + \lambda N$. Для получения пседодальности в этом случае измеряется разность фаз $\Delta \varphi$ двух несущих радиоволн: принятой приемником и сгенерированной в самом приемнике;

 $^{^{2}}$ измерение по C/A-коду обозначается как C1, а для P-кода соответственно P1 и P2

 $\lambda = c/f$ – длина волны несущей частоты. Для фазовых измерений на частотах f_1 и f_2 приняты обозначения L1 и L2 соответственно. Полное число циклов фазы N остается неизвестной величиной. Этому дали название «фазовой неоднозначностью измерений». Для ее устранения существует ряд способов, одним из которых является комбинирование кодовых и фазовых измерений. Погрешность измеренной разности фаз $\Delta \varphi$ имеет точность до 0.01 периода. Тогда псевдодальность может быть определена с точностью до 1-2 мм.

Погрешности измерений. На точность измерений влияет множество факторов, которые представлены в таблице 1 [2], [3].

Источник погрешности	Вносимая погрешность	
Геометрическое расположение НИСЗ	PDOP	
Неточности расчетов орбит НИСЗ и времени	0.5 - 3 M	
Случайные отклонения опбит и часов	0.5 - 3 M	
Шумы приемника	1.5 — 3 м	
Задержка сигнала в ионосфере	2 – 10 м	
Задержка сигнала в тропосфере	1 - 2 M	
Многолучевость распространения	1 — 2 м	
(в результате отражений от крупных объектов		
вблизи приемника)		
Меры по искусственному снижению точности	до 30 м	
(с Мая 2000 года не используется)	до 50 м	
Прочие источники	1 м	

Таблица 1: Составляющие погрешности навигационных определений

Наиболее важным фактором для получения хорошей точности является геометрия рабочего созвездия спутников. Для характеристики взаимного расположения приемника и спутника вводится коэффициент PDOP (Position Dilution of Precision)³. На данный коэффициент умножается все другие ошиб-

³Величина PDOP обратно пропорциональна объему фигуры, образованной пересечение лучей «спутник – приемник» со сферой единичного радиуса, центр которой совмещен с приемником.

ки.

Вторым по значимости фактором, снижающим точность, является ионосферная задержка радиосигнала. Именно из-за этого эффекта GPS может использоваться для исследования состояния ионосферы.

Для снижения ионосферной и тропосферной погрешностей измерений используются математические модели, комбинирование данных, сглаживание данных и режим DGPS⁴.

Комбинация кодовых и фазовых измерений и использование их в алгоритмах сглаживания данных позволяют эффективно фильтровать погрешности, связанные с геометрией рабочего созвездия, шумами приемника, случайными отклонениями орбит часов и многолучевостью.

1.4 Геометрические положения, используемые для GPS зондирования

Для расчета полного электронного содержания необходимо знать направление на спутник. На рисунке 1, можно увидеть схематическое представление геометрии системы «Земля – спутник».

Для вычисления координат α_S , θ_S , которые являются, соответственно, азимутом и углом места (элевация), используется метод расчета на основе геодезических координат спутника и точки наблюдения. С достаточной для практических целей точностью азимут и угол места могут быть вычислены с помощью формул [5]:

⁴суть метода заключается в том, что измерения производятся двумя приемниками, один из которых неподвижен (для него известно истинное положение). Неподвижный приемник сравнивает свое истинное положение с положением, полученным с GPS, и отправляет поправочные коэффициенты второму приемнику.

Рис. 1: Геометрия системы «Земля – спутник»: O – центр Земли; S – спутник; B – пункт наблюдения; P – ионосферная точка; P_I – подионосферная точка; P_S – подспутниковая точка; h_{\max} – высота максимума слоя F2 ионосферы. [4]

$$\alpha_S = \arccos\left(\frac{\sin\Phi_S - \sin\Phi\cos\psi_S}{\sin\sigma\cos\Phi}\right);$$

$$\theta_S = \arctan\left(\frac{\cos\Psi_S - R_E/R_S}{\sin\Psi_S}\right);$$
(2)

 $\Psi_S = \arccos\left(\sin\Phi\sin\Phi_S + \cos\Phi\cos\Phi_S\cos\left(\Lambda_S - \Lambda\right)\right),\,$

где R_S – радиус орбиты спутника; R_E – радиус Земли; Φ , Λ – геодезические широта и долгота точки наблюдения; Φ_S , Λ_S – геодезические широта и долгота спутника; Ψ_S – центральный угол между точкой наблюдения и спутником.

Для вычисления координат ионосферной и подионосферной точек используются следующие выражения:

$$\phi_P = \arcsin\left(\sin\phi_B\cos\psi_P + \cos\phi_B\sin\Psi_P\cos\alpha_S\right);$$

$$l_P = l_B + \arcsin\left(\sin\Psi_P\sin\alpha_S\sec\phi_P\right);$$

$$\Psi_P = \frac{\pi}{2} - \theta_S - \arcsin\left(\frac{R_E}{R_E + h_{\max}}\cos\theta_S\right),$$
(3)

где ϕ_B, l_B — географические координаты точки наблюдения; α_S, θ_S — азимут и угол места луча «приемник — спутник»; Ψ_P — центральный угол между точкой наблюдения и ионосферной точкой; ϕ_P, l_P — широта и долгота ионосферной точки

1.5 Принципы расчета ПЭС по данным GPS приемников

1.5.1 Определение ПЭС по двухчастотным фазовым измерениям псевдодальности

При распространении сигнала вдоль луча «приемник – спутник» возникает набег фазы, который определяется формулой [6]:

$$\varphi_{1,2} = \frac{2\pi f_{1,2}}{c} \int_{0}^{D} n_{1,2} ds + \varphi_{0}, \tag{4}$$

где f_1 и f_2 – рабочие частоты GPS; $\varphi_{1,2}$ – набег фазы для частот f_1, f_2 ; φ_0 некоторая неизвестная начальная фаза; $n_{1,2}$ – коэффициент преломления в ионосфере для сигналов f_1, f_2 ; D – расстояние между приемником и передатчиком.

При пренебрежении влиянием соударений и магнитного поля Земли, ко-эффициент преломления будет иметь вид [6], [7]:

$$n_{1,2} \approx 1 - \frac{40.308N_e}{f_{1,2}^2},\tag{5}$$

где N_e – локальная электронная концентрация.

Тогда выражение для набега фазы примет вид:

$$\varphi_{1,2} = \frac{2\pi f_{1,2}}{c} D - 40.308 \frac{2\pi}{c f_{1,2}} \int_{S_{hot}}^{S_{top}} N_e ds + \varphi_0, \tag{6}$$

где S_{bot} и S_{top} – высота нижней и верхней границы ионосферы, соответственно. В этом равенстве величина $I=\int\limits_{S_{bot}}^{S_{top}}N_eds$ называется полным электронным содержанием.

Учитывая, что длина волны $\lambda = c/f$, а $L = \varphi/2\pi$ – число оборотов фазы, то уравнение можно записать как:

$$L_{1,2}\lambda_{1,2} = D - \frac{40.308}{f_{1,2}^2}I + \varphi_0. \tag{7}$$

Из последнего выражения можно получить формулу для определения ПЭС:

$$I = \frac{1}{40.308} \frac{f_1^2 f_2^2}{f_1^2 - f_2^2} \left[(L_1 \lambda_1 - L_2 \lambda_2) + \text{const}_{1,2} + \sigma L \right], \tag{8}$$

где $L_1\lambda_1$ и $L_2\lambda_2$ – приращения фазового пути радиосигнала, вызванные задержкой фазы в ионосфере; L_1 и L_2 – фазовые измерения GPS-приемника на соответствующих частотах; const_{1,2} – неоднозначность фазовых измерений; σL – ошибка измерения фазы.

Измерения фазы, получаемые с помощью GPS, имеют достаточно высокую точность, так как ошибка в определении ПЭС при 30-секундных интервалах усреднения не превышает $10^{14} \mathrm{M}^{-2}$ (или 0.01 TECU).

Единица измерения, принятая для описания ПЭС, является ТЕСИ (Total Electron Content Unit). Ее значение равно $10^{16} \rm m^2$.

1.5.2 Определение ПЭС по кодовым измерениям псевдодальности

Сейчас будет рассмотрен метод определения ПЭС по данным кодовых задержек. Групповой путь радиоволны определяется формулой [6]:

$$P_{1,2} = c\tau_{1,2} = \int_{0}^{D} n'_{1,2} ds, \tag{9}$$

где $P_{1,2}$ – групповой путь для соответствующих частот; $\tau_{1,2}$ – время распространения сигналов; $n'_{1,2}=n_{1,2}+f_{1,2}\frac{\partial n_{1,2}}{\partial f_{1,2}}$ – групповой показатель преломления в ионосфере для соответствующих сигналов. Учитывая выражение (5):

$$n'_{1,2} \approx 1 + \frac{40.308N_e}{f_{1,2}^2}. (10)$$

Используя две предыдущие формулы, можно получить формулу для определения ПЭС, аналогичную фазовым измерениям:

$$I = \frac{1}{40.308} \frac{f_1^2 f_2^2}{f_1^2 - f_2^2} \left[(P_2 - P_1) + \sigma P \right], \tag{11}$$

где σP – ошибка измерения по псевдодальности по P-коду.

Стоит заметить, что ПЭС, вычисленный по формуле (11), также содержит некоторую аддитивную константу, которая зависит от станции и спутника, которая, вероятнее всего, связана с частотно-зависимыми задержками в аппаратуре [8]. Кроме того, такие данные сильно зашумлены по сравнению с фазовыми измерениями. Рисунок 2 демонстрирует различную зашумленность ПЭС.

Рис. 2: Зашумленность ПЭС, вычисленного по данным измерений группового (кривые «FFMJ», «LEIJ» и «РТВВ») и фазового (кривая «Phase») запаздывания сигналов GPS [8].

Из-за высокого уровня шума в данных, определенных по кодовым задержкам, делает практически невозможным выделение вариаций ПЭС, обусловленными неоднородностями электронной концентрации в ионосфере. Таким образом, в ионосферных исследованиях предпочитают использовать ПЭС, измеренный фазовым методом.

1.5.3 Преобразование наклонного ПЭС в вертикальное

Измеренная по выше описанным формулам величина ПЭС пропорциональная расстоянию между спутником и приемником. В основном при исследовании ионосферных возмущений требуется некоторая нормировка амплитуда вариации ПЭС. С этой целью преобразуют полученные значения «наклонного» ПЭС в эквивалентное «вертикальное», соответствующее углу места $\theta_S = 90^\circ$

Учитывая модель сферичной Земли, формула преобразования имеет вид [9]:

$$I_V = I \cos \left[\arcsin \left(\frac{R_E}{R_E + h_{\text{max}}} \cos \theta_s \right) \right],$$
 (12)

где I_V – вертикальное значение ПЭС.

1.5.4 Дифференциальные кодовые задержки

Стоит отметить, что при получении абсолютных значений полного электронного содержания, существует систематическая погрешность - ДКЗ (дифференциальная кодовая задержка). Появление ДКЗ связано с тем, что время прохождения сигналов диапазонов L1 и L2 в радиочастотных тактах приемника и спутника различается, и зависит от частоты сигнала.

ДКЗ определяется с помощью формулы:

$$I_{BIAS} = -\frac{f_1^2 f_2^2}{f_1^2 - f_2^2} \frac{1}{40.308} c\Delta \tau, \tag{13}$$

где I_{BIAS} - погрешность в ПЭС из-за влияния ДКЗ, c - скорость света, $\Delta \tau$ - ДКЗ, f_1 и f_2 - первая и вторая частоты.

Также предполагается, что значение ДКЗ не изменяется в течение суток.

2 Исследовательская работа

2.1 Обработка данных со станций GNSS

GNSS станции записывают данные, получаемые со спутника, используя специальный формат записи RINEX (Receiver Independent Exchange Format).

Существуют различные версии данного формата, каждый из которых поддерживает различные типы файлов: файл с данными наблюдений, файлы навигационного сообщения, файл с метеорологическими данными, файл с показаниями часов спутника и приемника.

В рамках данной работы использовались файлы с данными наблюдений и навигационного сообщения. Из этих файлов доставалась информация об измерениях, предоставляемых спутниками, и данные о положении и движении спутников.

```
--|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|
                         OBSERVATION DATA M (MIXED)
                                                                                RINEX VERSION / TYPE
BLANK OR G = GPS, R = GLONASS, E = GALILEO, M = MIXED XXRINEXO V9.9 AIUB 24-MAR-01 14:43 EXAMPLE OF A MIXED RINEX FILE (NO FEATURES OF V 2.11)
                                                                                COMMENT
PGM / RUN BY / DATE
A 9080
                                                                                MARKER NAME
9080.1.34
                                                                                MARKER NUMBER
                                                                               OBSERVER / AGENCY
REC # / TYPE / VERS
ANT # / TYPE
APPROX POSITION XYZ
BILL SMITH
X1234A123
                          ABC INSTITUTE
                          XX
YY
                         .0000 4589095.
  4375274.
                      587466.
                                                                                ANTENNA: DELTA H/E/N
                                                                                WAVELENGTH FACT L1/2
                      6 G14 G15 G16 G17 G18 G19
                                                                                WAVELENGTH FACT L1/2
                                                                               RCV CLOCK OFFS APPL
# / TYPES OF OBSERV
  18.000
2005 3 24 13 10 36.0000000
                                                                                INTERVAL
TIME OF FIRST OBS
                                                                                END OF HEADER
 05 3 24 13 10 36.0000000 0 4G12G09G06E11
                                                                                           -.123456789

    23629347.915
    .300 8
    -.353
    23629364.158

    20891534.648
    -.120 9
    -.358
    20891541.292

    20607600.189
    -.430 9
    .394
    20607605.848

                                                                                                   .178 7
 05 3 24 13 10 50.0000000
                                  G12
   1 2 2 G 9 G12
*** WAVELENGTH FACTOR CHANGED FOR 2 SATELLITES ***
                                                                               WAVELENGTH FACT L1/2
                                                                                COMMENT
        NOW 8 SATELLITES HAVE WL FACT 1 AND 2!
```

Рис. 3: Пример данных наблюдения для формата RINEX 2.1

```
--|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|
                                                                                RINEX VERSION / TYPE
                          N: GPS NAV DATA
XXRINEXN V2.10 AIUB
EXAMPLE OF VERSION 2.10 FORMAT
                                                                               PGM / RUN BY / DATE
COMMENT
      .1676D-07 .2235D-07 -.1192D-06 -.1192D-06 .1208D+06 .1310D+06 -.1310D+06 -.1966D+06
                                                                                ION BETA
       .133179128170D-06 .107469588780D-12
                                                                        1025 DELTA-UTC: A0,A1,T,W
                                                                                LEAP SECONDS
                                                                               END OF HEADER
 6 99 9 2 17 51 44.0 -.839701388031D-03 -.165982783074D-10 .000000000000D+00 .910000000000D+02 .93406250000D+02 .116040547840D-08 .162092304801D+00 .484101474285D-05 .626740418375D-02 .652112066746D-05 .515365489006D+04
       .40990400000D+06 -.242143869400D-07
                                                         .329237003460D+00 -.596046447754D-07
       .111541663136D+01 .326593750000D+03
                                                         .206958726335D+01 -.638312302555D-08
                                                                                  .00000000000D+00
       .307155651409D-09
                               .00000000000D+00
                                                          .102500000000D+04
       .00000000000D+00
                              .000000000000D+00
                                                         .000000000000p+00
                                                                                  .910000000000D+02
       .40680000000D+06 .0000000000D+00
9 2 19 0 0.0 .490025617182D-03
                                                         .204636307899D-11
      .133000000000D+03 -.963125000000D+02 -.498816370964D-05 .200239347760D-02 .41400000000D+06 -.279396772385D-07
                                                         .146970407622D-08
                                                         .928156077862D-05
                                                                                  .515328476143D+04
       .110192796930D+01 .271187500000D+03 -.232757915425D+01 -.619632953057D-08 .785747015231D-11 .00000000000D+00 .102500000000D+04 .00000000000D+00
      -.785747015231D-11
       00+d00000000000+00
                                .000000000000D+00
                                                         .000000000000D+00 .38900000000D+03
       .410400000000D+06
                               .000000000000D+00
    -|--1|0---|--2|0---|--3|0---|--4|0---|--5|0---|--6|0---|--7|0---|--8|
```

Рис. 4: Пример данных навигационного сообщения для формата RINEX 2.1

2.2 Вычисление наклонного ПЭС по групповым и фазовым измерениям

После обработки данных со станций GNSS следующим шагом является вычисление наклонного значения ПЭС. Значение наклонного полного электронного содержания происходит с помощью формул (8) и (11), соответственно для фазового и кодового методов.

Как упоминалось выше, из-за высокого уровня шума кодовых измерений практически невозможно выделить вариации ПЭС. Это обуславливает использование фазовых измерений для определения вариаций ПЭС, но начальное значение ПЭС остается неизвестным в силу существования фазовой неоднозначности.

Для решения этой проблемы используются кодовые измерения, с помощью которых находят неоднозначность фазы для фазовых измерений, так как они являются абсолютно с точностью до ошибки, обусловленной ДКЗ.

Измеренное значение ПЭС вычисляется по формуле:

$$I_m = I_{\varphi} + \frac{1}{N} \sum_{i=1}^{N} (I_p - I_{\varphi}),$$
 (14)

где I_m - измеренное значение ПЭС с устраненной фазовой неоднозначно-

стью, I_{φ} - фазовые измерения, I_p - кодовые измерения, N - число измерений.

Рис. 5: Вычисленные значения ПЭС по кодовым и фазовым измерениям с учетом фазовой неоднозначности.

Стоит отметить, что значения ПЭС, которые представлены на рисунке 5, уже учитывают влияние дифференциальных кодовых задержек.

2.3 Оценка вертикального значения ПЭС

Для вычисления вертикального значения полного электронного содержания используется модель, предложенная в работе Мыльниковой А.А. [milnikova].

Идея используемой модели заключается в том, что рассматривается разложение измеренного значения ПЭС в ряд Тейлора:

$$I_{m} = \frac{1}{S} \left[I_{v}(\phi_{0}, l_{0}, t_{0}) + G_{\phi} \Delta \phi + G_{l} \Delta l + G_{t} \Delta t + \ldots \right] + I_{BIAS}, \tag{15}$$

где I_m - измеренное значение наклонного ПЭС, $\Delta \phi$ - разница по широте между координатой ионосферной точки и станции ϕ_0 , Δl - разница по долготе между координатой ионосферной точки и станции l_0 , Δt - разница между временем измерения и временем, для которого осуществляется расчет t_0 , $G_\phi = \frac{\partial I_v}{\partial \phi}$, $G_l = \frac{\partial I_v}{\partial l}$, $G_t = \frac{\partial I_v}{\partial t}$ - пространственные и временая производные, I_{BIAS} - ошибка, обусловленная ДКЗ, S - функция преобразования (12).

Для нахождения значений вертикального ПЭС строится система уравнений. Для каждого спутника записывается уравнение (15) во все доступные моменты времени. Неизвестными величинами являются значение вертикального ПЭС, ДКЗ для каждого спутника, пространственные градиенты и временые производные. Расчет неизвестных осуществляется за полные сутки для выбранных моментов времени с интервалом, позволяющим использовать окрестность выбранных времен, в которой значение вертикального ПЭС принимается неизменным.

На рисунке 6 представлены результаты решения системы уравнений для станции dent.

Верность данного решения можно подтвердить, сверив его с данными $MADRIGAL^5$. Видимые малые отклонения от проверочных данных связанны с тем, что координаты ионосферной точки над станцией dent не совпадают с координатами, которые предоставляет MADRIGAL, на величину не более 0.5 градусов.

Также верность решения подтверждает сравнение дифференциальных кодовых задержек, полученных при решении системы уравнений, со значениями, которые публикует HACA.

Для анализа ДКЗ спутников часто применяют условие нулевого среднего. Дифференциальные кодовые задержки для определенного спутника определяются как:

$$I_{BIAS_SAT}^{i} = I_{BIAS}^{i} - \frac{\sum_{i=1}^{N} I_{BIAS}^{i}}{N}.$$
 (16)

⁵MADRIGAL - научная база данных о верхних слоях атмосферы.

где N - число спутников, I^i_{BIAS} - полученное значение ДКЗ из системы уравнений.

Рис. 6: Значение вертикального ПЭС, полученное решением системы уравнений.

ВСТАВИТЬ ИЗОБРАЖЕНИЕ ДЛЯ ДКЗ

2.4 Нахождение пространственных и временных зависимостей измерения ПЭС

Список литературы

- [1] GPSgov. Space Segment. 2020. URL: www.gps.gov/systems/gps/space/.
- [2] Collins J. Hofmann-Wellenhof B. Lichtenegger H. Global Positioning System: Theory and Practice. 1992.
- [3] Шебшаевич В.М. и др. Дифференциальный режим сетевой спутниковой радионавигационной системы. 1989.
- [4] Перевалова Н.П. Афраймович Э.Л. *GPS-мониторинг верхней атмосферы* Земли. 2006.
- [5] Котяшкин С.И. Определение ионосферной задержки сигналов в одночастотной аппаратуре потребителей спутниковой системы навигации. 1989.
- [6] Дэвис К. Радиоволны в ионосфере. 1973.
- [7] Ратклифф Дж.А. *Магнитно-ионная теория и ее приложения к ионосфере.* 1962.
- [8] Кожарин М.А. Куницын В.Е. Детектирование и исследование временно-го развития крупных ионосферных структур с помощью данных навигационных спунтиков систем GPS/ГЛОНАСС. 2004.
- [9] Klobuchar J.A. Ionospheric time-delay algorithm for single-frequency GPS users. 1986.