

Pink: Unveiling the Power of Referential Comprehension for Multi-modal LLMs

Shiyu Xuan¹*, Qingpei Guo², Ming Yang², Shiliang Zhang¹

¹National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University, Beijing, China.

²Ant Group

CVPR2024

报告人: 胡天乐

2024.05.28

作者简介

2

Shiliang Zhang

> 关注

Department of Computer Science, School of EECS, Peking University 在 pku.edu.cn 的电子邮件经过验证 - <u>首页</u>

Multimedia Information Retr... Multimedia Systems Visual Search

标题	引用次数	年份
MV-VTON: Multi-View Virtual Try-On with Diffusion Models H Wang, Z Zhang, D Di, S Zhang, W Zuo arXiv preprint arXiv:2404.17364		2024
Robust Fine-Grained Visual Recognition with Neighbor-Attention Label Correction S Mao, S Zhang IEEE Transactions on Image Processing		2024
Recognizing Ultra-High-Speed Moving Objects with Bio-Inspired Spike Camera J Zhao, S Zhang, Z Yu, T Huang Proceedings of the AAAI Conference on Artificial Intelligence 38 (7), 7478-7486		2024
Decoupled optimisation for long-tailed visual recognition C Cong, S Xuan, S Liu, S Zhang, M Pagnucco, Y Song Proceedings of the AAAI conference on artificial intelligence 38 (2), 1380-1388	1	2024
Decoupled Contrastive Learning for Long-Tailed Recognition S Xuan, S Zhang Proceedings of the AAAI Conference on Artificial Intelligence 38 (6), 6396-6403		2024
Open Set Recognition in Real World Z Yang, J Yue, P Ghamisi, S Zhang, J Ma, L Fang International Journal of Computer Vision, 1-24		2024

创建我的个人资料

引用次数		查看全部
	总计	2019 年至今
引用 h 指数 i10 指数	10826 44 76	9000 37 64

开放获取的出版物数量 查看全部

26 篇文章 45 篇文章

无法查看的文章

可查看的文章

根据资助方的强制性开放获取政策

智能多媒体内容计算实验室

Intelligent Multimedia Content Computing Lab

研究背景

➤ Background

- 目前的MLLM在细粒度图像理解任务上的表现仍然有限
- 一些方法结合了一些与Referential Comprehension (RC,指代理解) 相关的数据集,如 RefCOCO, PointQA,以增强 MLLM 的细粒度图像感知能力
- 然而,这些数据集涵盖范围不够广泛,RC任务类型有限
- 直接微调整个视觉编码器可能会导致语义丢失
- 模型构建过程中需要大量的指令微调数据和训练资源,现有工作依赖GPT4 API构建指令微调数据集,数据价格昂贵且不可控

> Framework

- 模型架构:
 - ✔ 坐标归一化到[0,1]范围内,使其能作为文本输入输出
 - ✓ 冻结视觉编码器和LLM,同时引入Adapter
- 训练流程:
 - ✓ Stage 1.用少量图像-文本对(CC3M)微调投影层
 - ✓ Stage 2.使用指令调优数据集微调新添加的Adapter和投影层

$$\hat{Z} = \sigma \left(ZW_d \right) W_u + Z,$$

Z: token feature

W: 权重矩阵

智能多媒体内容计算实验室 Intelligent Multimedia Content Computing Lab

- ➤ Instruction tuning Dataset Construction
 - 统一对话格式

Image: {Image tokens}

User: {Instruction template}

Assistant: {Response}

- · 引入不同的RC任务
 - ✓ 现有数据集仅提供有限的 RC 任务
 - ✓ visual grounding, grounding caption, pointQA
 - ✓ 结合Visual Genome 数据集的注释来设计更多样化的 RC 任务
 - ✓ 将这些 RC 任务合并到指令调整中,模型可以学习各种 RC 能力

- ➤ Instruction tuning Dataset Construction
 - ✓ Visual relation reasoning

User: Assist me in finding the relation between <subject> and <object> in the photo.

Assistant: <relation>.

User: Please locate and categorize all the objects that have a relation of <relation> with <subject>.

Assistant: <object> <category> <object> <category>.

- ➤ Instruction tuning Dataset Construction
 - ✓ Coarse visual spatial reasoning

User: Identify the objects located at <loc> of <object>.

Assistant: <object> <category> <object> <category>.

✓ Object counting

User: How many objects in the image are of the same category as <object>.

Assistant: < number > .

✓ Object detection

User: Identify all the objects that fit the same category as <object> and display their coordinates.

Assistant: <object> <object>.

- ➤ Self-consistent Bootstrapping Method (自洽引导)
 - bounding box description bootstrapping
 - ✔ 将某个对象的边界框输入
 - ✓ 利用grounding caption能力提示模型生成该对象的描述

- ➤ Self-consistent Bootstrapping Method
 - self-consistent filtering
 - ✓ 在图像中定位生成的描述,利用visual grounding能力预测边界框
 - ✔ 如果预测框与原框的交集低于预定义的阈值,生成的描述将被删除

实验

▶ 在5个常用多模态理解数据集的表现

Models	Res.	#PT Data	#IT Data	#Trainable Param.	VQAv2	IconQA	VSR	OK-VQA	GQA
Instruct-BLIP [6]	224	129M	1.2M	188M	-	43.1	54.3	-	49.2
Shikra-7B [4]	224	595K	5.5M	7B	76.7†	24.3	63.3	53.5	47.4
Pink	224	595K	396K	6.7M	78.7†	47.8	66.3	59.5	52.6
Qwen-VL [1]	448	1.4B	50M	8B	78.8†	-	-	58.6†	59.3†
LLaVA-1.5 [19]	336	558K	665K	7B	78.5†	-	-	-	62.0†
Pink+	224	595K	477K	6.7M	78.8†	48.8	67.4	60.6†	64.5†

本文方法使用了最少的预训练数据, 最少的指令微调数据,和最少的微调 数量实现了最好的性能

实验

➤ 在RC任务上微调后的表现

Models Visual Enc	Vigual Engador	Res.	RefCOCO			RefCOCO+			RefCOCOg		Visual-7W	LookTwice
	Visual Elicodei		val	testA	testB	val	testA	testB	val	test	visuai-/w	LOOKTWICE
OFA-L [41]	ResNet152	480	80.0	83.7	76.4	68.3	76.0	61.8	67.6	67.6	-	-
Shikra-7B [4]	ViT-L	224	87.0	90.6	80.2	81.6	87.4	72.1	82.3	82.2	84.3	72.1
Pink	ViT-L	224	88.3	91.7	84.0	81.4	87.5	73.7	83.7	83.7	85.1	73.5
Pink*	ViT-L	224	88.7	92.1	84.0	81.8	88.2	73.9	83.9	84.3	85.3	73.6
Qwen-VL [1]	ViT-G	448	89.4	92.3	85.3	83.1	88.3	77.2	85.6	85.5	-	-
Pink-G	ViT-G	224	91.5	93.4	88.0	86.0	89.5	79.8	86.8	87.8	86.8	76.6

本文方法使用了更小的输入分辨率取得了最好的性能

➤ 在 MMBench 上的表现

Models	Overall	LR	AR	RR	FP-S	FP-C	CP
Kosmos-2 [27]	58.2	48.6	59.9	34.7	65.6	47.9	70.4
LLaVA-1.5 [19]	59.5	32.4	72.6	49.3	62.3	52.2	67.7
Qwen-VL [1]	61.8	40.5	74.3	47.9	66.3	46.2	72.8
mPlug-Owl [45]	68.5	56.8	77.9	62.0	72.0	58.4	72.6
Pink	74.1	58.5	78.2	73.2	77.3	67.2	78.7

实验

> 结果可视化

of the object grabbed by Du Feng in the image.

Identify all objects that can control [0.000, 0.150, 0.350, 0.600] in the image.

Objects that can control [0.000, 0.150, 0.350, 0.600] in the image are a mouse and a keyboard.

Yes, there is a laptop computer sitting on the desk.

The objects that can control [0.000,0.150,0.350,0.600] are a laptop computer and a keyboard.

The object grabbed by Du Feng is a bottle [0.322,0.631,0.392,0.835].

In the image, there are two men standing next to each other, both wearing red and white shirts. One of the men is holding a drink in a bottle, while the other one is smiling. They seem to be interacting with each other, possibly discussing a sports game or simply socializing.

I cannot provide the coordinates and name of the object grabbed by Du Feng in the image, as there is no existence of any object being grabbed in the image.

Pink 🛗

Shikra 🐧

Qwen-VL 🤝

Identify the text in [0.368, 0.219, 0.625, 0.380].

The text is "ACM".

The letters are white.

ACM

Identify the text in [0.368,0.609,0.625,0.680].

The text is "1899".

number on the shirt.

I want to know the coordinates and name

总结

> 总结和思考

- 本文提出了一种增强MLLM细粒度图像感知能力的新框架
 - ✔ 以参数高效方式调整了视觉编码器
 - ✔ 以低成本方式构建了指令调优数据集
- 本文所提出方法证明了利用人工设计任务进行RC指令微调的有效性, 设计高效,模型使用公开数据集训练,可以借鉴学习