1 Булевы операции

1.1. Для любых X, Y и Z имеют место следующие равенства:

1a.
$$(X \cup Y) \cup Z = X \cup (Y \cup Z);$$

16.
$$(X \cap Y) \cap Z = X \cap (Y \cap Z)$$
;

2a.
$$X \cup Y = Y \cup X$$
;

26.
$$X \cap Y = Y \cap X$$
;

3a.
$$X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z);$$

36.
$$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z);$$

4a.
$$X \setminus (Y \cup Z) = (X \setminus Y) \cap (X \setminus Z);$$

46.
$$X \setminus (Y \cap Z) = (X \setminus Y) \cup (X \setminus Z)$$
;

5.
$$X \setminus (X \setminus Y) = X \cap Y$$
.

2 Эквивалентности и частичные порядки

Определим упорядоченную пару X_1 и X_2 как

$$(X_1, X_2) := \{\{X_1\}, \{X_1, X_2\}\}.$$

Нетрудно понять, что такие пары обладают следующим свойством:

$$(X_1,X_2) = (Y_1,Y_2)$$
 тогда и только тогда, когда $X_1 = Y_1$ и $X_2 = Y_2$. (\star)

Далее, для любых X и Y выражение

$$X \times Y := \{(x,y) \mid x \in X \land y \in Y\}$$

$$= \{u \mid \exists x \exists y (u = (x,y) \land x \in X \land y \in Y)\}$$

$$= \{u \in \mathcal{P} (\mathcal{P} (X \cup Y)) \mid \exists x \exists y (u = (x,y) \land x \in X \land y \in Y)\}$$

задаёт множество, которое называют прямым (или декартовым) произведением <math>X и Y. Под бинарными (или деухместными) отношениями на X понимают произвольные подможества $X \times X$. Бинарное отношение R на X называют:

- рефлексивным, если $\forall x (x \in X \to xRx);$
- иррефлексивным, если $\neg \exists x (x \in X \land xRx)$;
- транзитивным, если $\forall x \forall y \forall z ((xRy \land yRz) \rightarrow xRz);$
- симметричным, если $\forall x \, \forall y \, (xRy \to yRx)$;
- антисимметричным, если $\forall x \, \forall y \, ((xRy \land yRx) \rightarrow x = y).$

(Здесь для удобства мы пишем xRy вместо $(x,y) \in R$.) Говорят, что R является:

- npednopяdком на X, если R рефлексивно и транзитивно;
- строгим частичным порядком на X, если R иррефлексивно и транзитивно;
- частичным порядком на X, если R рефлексивно, антисимметрично и транзитивно;
- \bullet *эквивалентностью* на X, если R рефлексивно, симметрично и транзитивно.

Данные базовые понятия играют весьма важную роль в математике.

Пусть \approx — эквивалентность на X. Для каждого $x \in X$ под классом эквивалентности x $no \approx$ понимается множество

$$[x]_{\approx} := \{ u \in X \mid x \approx u \}.$$

 Φ актор-множество X по \approx определяется как

$$X_{\approx} := \{ [x]_{\approx} \mid x \in X \},$$

т.е. как множество всех классов эквивалентности элементов X по \approx .

Для отношений эквивалентности имеется простая характеризация. Чтобы её сформулировать, давайте введём пару вспомогательных понятий. Будем называть Y (взаимно, или попарно) дизтонктным, если оно удовлетворяет условию

$$\forall u \, \forall v \, ((u \in Y \land v \in Y \land u \neq v) \rightarrow u \cap v = \varnothing).$$

Будем говорить, что Y является *разбиением* X, если Y дизъюнктно, $\varnothing \not\in Y$ и $\bigcup Y = X$. Очевидно, элементы всякого разбиения X обязаны быть подмножествами X.

2.1. і. Если Y — разбиение X, то

$$\mathscr{E}_Y := \left\{ (u, v) \in X^2 \mid \exists y \, (y \in Y \land u \in y \land v \in y) \right\}$$

- эквивалентность на X, причём $X_{/\mathscr{E}_Y}$ равно Y.
- іі. Если pprox эквивалентность на X, то $X_{/pprox}$ разбиение X, причём $\mathscr{E}_{X_{/pprox}}$ равно pprox.

Предпорядки можно превращать в частичные порядки посредством факторизации по подходящей эквивалентности:

2.2. Пусть R — предпорядок на X. Тогда

$$\mathscr{S}_R := \{(u,v) \in X^2 \mid uRv \wedge vRu\}$$

— эквивалентность на X. Кроме того,

$$R^{\sharp} \ := \ \Big\{ \Big([u]_{\mathscr{S}_R}, [v]_{\mathscr{S}_R} \Big) \mid u \in X \wedge v \in X \wedge uRv \Big\},$$

— частичный порядок на $X_{/\mathscr{S}_{\mathcal{R}}}$.

Связь же между обычными и строгими частичными порядками вполне тривиальна:

- **2.3.** і. Если R строгий частичный порядок на X, то $R \cup \mathrm{id}_X$ частичный порядок на X;
 - іі. Если R частичный порядок на X, то $R \setminus \mathrm{id}_X$ строгий частичный порядок на X.

3 Отношения и функции

3.1. Пусть R — множество упорядоченных пар, т.е.

$$\forall z (z \in R \to \exists x \exists y z = (x, y)).$$

Тогда найдутся X и Y такие, что $R \subseteq X \times Y$.

3.2. Пусть P, Q и R — бинарные отношения на X. Тогда:

a.
$$P \circ (Q \circ R) = (P \circ Q) \circ R$$
;

b.
$$(P \circ Q)^{-1} = Q^{-1} \circ P^{-1}$$
;

c.
$$id_X \circ P = P \circ id_X = P$$
.

3.3. Отношение R между X и Y функционально тогда и только тогда, когда $R^{-1} \circ R \subseteq \mathrm{id}_Y.$

3.4. Если
$$f: X \to Y$$
 и $g: Y \to Z$, то $f \circ g: X \to Z$, причём $(f \circ g)(x) = g(f(x))$ для всех $x \in X$.

3.5. Пусть $f: X \to Y$. Говорят, что на f можсно сокращать справа, если для любых $g_1: Z_1 \to X$ и $g_2: Z_2 \to X$,

$$g_1 \circ f = g_2 \circ f$$
 влечёт $g_1 = g_2$.

По аналогии, на f можно сокращать слева, если для любых $g_1: Y \to Z_1$ и $g_2: Y \to Z_2$,

$$f \circ g_1 = f \circ g_2$$
 влечёт $g_1 = g_2$.

Имеют место следующие эквивалентности:

- $i.\ f$ инъективна тогда и только тогда, когда на f можно сокращать справа;
- іі. f сюрьективна тогда и только тогда, когда на f можно сокращать слева.

(Проверьте это.)

3.6. Пусть $f: X \to Y$. Под правой обратной κ f понимают любую $g: Y \to X$ такую, что

$$f \circ g = \mathrm{id}_X$$
.

По аналогии, под *левой обратной* κ f понимают любую $g:Y\to X$ такую, что

$$g \circ f = \mathrm{id}_Y$$
.

Имеют место следующие эквивалентности:

- і. f инъективна тогда и только тогда, когда существует правая обратная к f;
- $ii.\ f$ сюрьективна тогда и только тогда, когда существует левая обратная к f.

(Проверьте это.) Кроме того, если правая и левая обратные к f обе существуют, то они должны совпадать.

3.7. В литературе аксиома выбора иногда формулируется так:

$$\forall X \,\exists f \,(f : \mathcal{P} \,(X) \setminus \{\emptyset\} \to X \land \forall u \,(u \subseteq X \land u \neq \emptyset \to f \,(u) \in u)). \tag{C'}$$

Предполагая наличие всех остальных аксиом, покажите, что С и С' выводятся друг из друга.

4 Натуральные числа и индукция

- **4.1.** Для любого $n \in \mathbb{N}$ верно $n \subseteq n+1 \land \neg \exists x \, n \subseteq x \subseteq n+1$.
- **4.2.** Для любых $m, n \in \mathbb{N}$,

m < n тогда и только тогда, когда $m \subseteq n$.

- **4.3.** Для всех $n, m \in \mathbb{N}$ верно следующее:
 - i. $n \neq 0 \leftrightarrow \exists k \in \mathbb{N} \ n = k+1;$
 - ii. $n+1=m+1 \leftrightarrow n=m$.
- **4.4** (принцип Дирихле). і. Для любого $n \in \mathbb{N}$ не существует инъекции из n+1 в n.
 - іі. Для любых $n, m \in \mathbb{N}$, если m < n, то не существует инъекции из n в m.
 - ііі. Для любых $n, m \in \mathbb{N}$, если $n \neq m$, то не существуєт биекции между n и m.

Говорят, что X содержит n элементов, где $n \in \mathbb{N}$, и пишут |X| = n, если существует биекция между n и X. Далее, X называют конечным, если |X| = n для некоторого $n \in \mathbb{N}$, и бесконечным, если оно не конечно.

Свойство «быть конечным» можно определять по-разному. Для произвольного Y обозначим

$$\operatorname{Max}(Y) := \{ u \in Y \mid \neg \exists v (v \in Y \land u \subsetneq v) \}.$$

Элементы $\mathrm{Max}\,(Y)$ называют \subsetneq -максимальными в Y. Говорят, что X конечно по Тарскому, или T-конечно, если оно удовлетворяет условию

$$\forall Y ((Y \subseteq \mathcal{P}(X) \land Y \neq \varnothing) \rightarrow \operatorname{Max}(Y) \neq \varnothing),$$

и бесконечно по Тарскому, или Т-бесконечно, если оно не Т-конечно.

- 4.5. Каждое натуральное число Т-конечно.
- 4.6. Множество всех натуральных чисел Т-бесконечно.
- 4.7. Множество конечно тогда и только тогда, когда оно Т-конечно.

5 Возвратная индукция и рекурсия

5.1. Используя лишь обычную индукцию, докажите, что для любого $n \in \mathbb{N}$,

$$\forall X ((X \subseteq n \land X \neq \varnothing) \to \operatorname{Min}(X) \neq \varnothing).$$

Выведите отсюда принцип минимального элемента.

5.2. Выведите принцип возвратной индукции из принципа минимального элемента.

Пусть $X \subseteq \mathbb{N}$ и $X \neq \emptyset$. Будем называть X ограниченным, если $\exists n \in \mathbb{N} \ \forall u \in X \ (u \leqslant n)$. Будем говорить, что $x \in X$ является наибольшим в X, если $\forall u \in X \ (u \leqslant x)$.

- **5.3.** Если непустое множество натуральных чисел ограничено, то оно содержит наибольший элемент, причём такой элемент единственнен.
- **5.4.** Завершите доказательство теоремы о рекурсии, т.е. проверьте, что определённое в этом доказательстве отношение f будет искомой функцией из $\mathbb N$ в Y.
- **5.5.** Завершите доказательство параметризованной теоремы о рекурсии, т.е. проверьте, что определённая в этом доказательстве функция f будет искомой.
- **5.6.** Для всех $k, m, n \in \mathbb{N}$ верно следующее:

- i. (k+m) + n = k + (m+n);
- ii. m + n = n + m.

Можно продолжить в том же духе изучать свойства различных арифметических операций. Делать мы этого не будем.

- 5.7. Докажите теорему о возвратной рекурсии.
- **5.8.** Докажите теорему о возвратной «классовой рекурсии».

6 Равномощность

- **6.1.** Для любых X, Y и Z верно следующее:
 - i. $|X \times Y| = |Y \times X|$;
 - ii. $|(X \times Y) \times Z| = |X \times (Y \times Z)|$;
 - іїі. если |X| = |Y|, то $|X \times Z| = |Y \times Z|$.
- **6.2.** Для любых X, Y и Z верно $\left|Z^{X \times Y}\right| = \left|\left(Z^{Y}\right)^{X}\right|$.
- **6.3.** Для любых X, Y и Z верно следующее:
 - і. если $X \subseteq Y$, то $|X| \leqslant |Y|$;
 - ії. если $|X| \leqslant |Y|$, то $|X \times Z| \leqslant |Y \times Z|$;
 - ііі. если $Y \neq \emptyset$, то $|X| \leqslant |X \times Y|$.
- **6.4.** Для любых X, Y и Z верно следующее:
 - і. если $|X| \leq |Y|$, то $|X^Z| \leq |Y^Z|$;
 - іі. если $|X| \leqslant |Y|$, то $|Z^X| \leqslant |Z^Y|$;
 - ії. если $Y \neq \emptyset$, то $|X| \leqslant |X^Y|$.
- **6.5.** Пусть $|X| \leq |Y|$ и $X \neq \emptyset$. Тогда существует сюрьекция из Y на X.
- **6.6** (в ZFC). Пусть существует сюрьекция из Y на X. Тогда $|X| \leq |Y|$.

7 Счётные множества

- 7.1. Дайте убедительное (хотя и неформальное) обоснование счётности следующих множеств:
 - і. множество всех целых чисел;
 - іі. множество всех рациональных чисел;
 - ііі. множество всех периодических дробей;
 - iv. множество всех полиномов с целыми коэффициентами;
 - v. множество всех полиномов с рациональными коэффициентами;

vi. множество всех вещественных алгебраических чисел.[†]

(Хотя последний пункт подразумевает доказательство, в котором используется аксиома выбора, тут это не принципиально.)

Говорят, что X бесконечно по \mathcal{L} едекинду, или D-бесконечно, если X равномощно некоторому своему собственному подмножеству. В противном случае его называют конечным по \mathcal{L} едекинду, или D-конечным.

- 7.2. Если множество конечно, то оно D-конечно.
- 7.3 (в ZFC). Если множество бесконечно, то оно D-бесконечно.
- **7.4.** Пусть $f: X \to \mathbb{R}$. Предположим также, что

$$\left\{ \sum\nolimits_{s\in S}f\left(s\right) \mid S\subseteq X$$
 и S конечно $\right\}$

ограничено, т.е. существует $N \in \mathbb{N}$ такое, что для любого конечного $S \subseteq X$,

$$\left| \sum_{s \in S} f(s) \right| \leqslant N.$$

Тогда $\{x \in X \mid f(x) \neq 0\}$ не более чем счётно.

8 Континуальные множества

Будем называть X континуальным, если оно равномощно $2^{\mathbb{N}}$.

Факт. \mathbb{R} континуально. [На практике был дан набросок доказательства.]

Из этого факта нетрудно вывести следующее:

- **8.1.** $\mathbb{R} \times \mathbb{R}$, $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$ и т.д. континуальны.
- **8.2.** \mathbb{R}^* континуально.

Используя «диагональную конструкцию» и явную сюрьекцию из \mathbb{N} на множество всех вещественных алгебраических чисел, мы можем определить вполне конкретное трансцендентное число. ‡ По мощности же таких чисел столько же, сколько и вещественных:

8.3. Множество всех трансцендентных чисел континуально.

Напоследок отметим одно свойство, связанное с «вычитанием» из континуума:

8.4 (в ZFC). Пусть $X \cup Y = \mathbb{R}$. Тогда хотя бы одно из X и Y континуально.

[†]Здесь и далее мы будем свободно пользоваться базовыми результатами из области алгебры и анализа (включая обычные свойства вещественных чисел).

 $^{^\}ddagger$ Безусловно, куда более красивыми трансцендентными числами являются π или e, но их транцендентность существенно сложнее доказать.

9 Упорядоченные множества

Пусть дано л.у.м. $\mathfrak{A} = \langle A, \leqslant \rangle$. Будем называть $S \subseteq A$ начальным сегментом \mathfrak{A} , если для любых $a_1, a_2 \in A$,

$$a_1 \leqslant a_2$$
 и $a_2 \in S \implies a_1 \in S$.

(На лекции это определение было дано для в.у.м., но можно и для л.у.м.)

- **9.1.** Пусть $\langle A, \leqslant \rangle$ л.у.м.
 - і. Если S начальный сегмент $\langle A,\leqslant \rangle$, а T начальный сегмент $\langle S,\leqslant_S \rangle$, то T начальный сегмент $\langle A,\leqslant \rangle$.
 - іі. Если $S\subseteq A$, а T начальный сегмент $\langle A,\leqslant \rangle$, то $S\cap T$ начальный сегмент $\langle S,\leqslant_S \rangle$.

[Здесь \leq_S обозначает $\leq \cap S \times S$.]

- **9.2.** Пусть $\mathfrak{A} \pi$.у.м.
 - і. Если S и T начальные сегменты \mathfrak{A} , то $S\subseteq T$ или $T\subseteq S$.
 - іі. Если $\mathscr S$ некоторое множество начальных сегментов $\mathfrak A$, то $\bigcup \mathscr S$ и $\bigcap \mathscr S$ окажутся начальными сегментами $\mathfrak A$.

Альтернативное определение в.у.м. даёт:

- **9.3.** Для всякого ч.у.м. $\langle A, \leqslant \rangle$ следующие условия эквивалентны:
 - і. \leq полный порядок на A;
 - іі. в каждом непустом подмножестве A есть наименьший элемент.

Таким образом, (ii) гарантирует линейность ≤.]

- **9.4 (в ZFC).** Ч.у.м. $\langle A, \leqslant \rangle$ фундировано тогда и только тогда, когда не существует инъективной функции f из $\mathbb N$ в A такой, что f(n+1) < f(n) для всех $n \in \mathbb N$.
- **9.5.** Гомоморфизм f из ч.у.м. $\mathfrak A$ в ч.у.м. $\mathfrak B$ является изоморфизмом тогда и только тогда, когда существует гомоморфизм q из $\mathfrak B$ в $\mathfrak A$ такой, что

$$f \circ g = \mathrm{id}_A$$
 и $g \circ f = \mathrm{id}_B$.

[Иными словами, изоморфизмы суть «гомоморфизмы, обратимые в классе гомоморфизмов».]

Следующие два упражнения, несмотря на всю тривиальность формулировок, отнюдь не лишены смысла, поскольку их строгие решения содержат идеи, полезные при доказательстве результатов о бесконечных множествах.

- 9.6. Всякое ч.у.м. с конечным носителем фундировано. [Постараться решить строго.]
- **9.7.** Пусть $\mathfrak{A} = \langle A, \leqslant \rangle$ ч.у.м., причём A конечно. Тогда для каждого $a \in A$ существует максимальный в \mathfrak{A} элемент a' такой, что $a \leqslant a'$. [Постараться решить строго.]

Следующее упражнение не столь очевидно, хотя и похоже на предыдущие два.

9.8. Пусть $\mathfrak{A}=\langle A,\leqslant \rangle$ — ч.у.м., причём A конечно. Тогда существует линейный порядок \preccurlyeq на A такой, что \leqslant \subseteq \preccurlyeq .

Далее мы поговорим о характеризации с точностью до изоморфизма.

- **9.9.** Пусть $\mathfrak{A} = \langle A, \leqslant_A \rangle$ в.у.м., удовлетворяющий следующим условиям:
 - а. в $\mathfrak A$ есть наименьший элемент, но нет наибольшего;
 - b. в каждом непустом подмножестве A, имеющем вернюю грань, есть наибольший элемент.

Тогда $\langle A, \leqslant_A \rangle$ изоморфно $\langle \mathbb{N}, \leqslant \rangle$, где \leqslant — естественный порядок на \mathbb{N} .

Ч.у.м. $\mathfrak{A} = \langle A, \leqslant_A \rangle$ называют *плотным*, если

$$\forall a_1 \in A \, \forall a_2 \in A \, (a_1 <_A a_2 \to \exists a_{1.5} \in A \, (a_1 <_A a_{1.5} <_A a_2)).$$

Под ч.у.м. *без концов* понимается произвольное ч.у.м., в котором нет ни наибольшего, ни наименьшего элементов.

- **9.10.** Пусть $\mathfrak{A} = \langle A, \leqslant_A \rangle$ и $\mathfrak{B} = \langle B, \leqslant_B \rangle$ два плотных л.у.м. без концов, причём A и B счётны. Тогда \mathfrak{A} и \mathfrak{B} изоморфны. [Решение см. тут.]
- **9.11.** С точностью до изоморфизма существует ровно четыре плотных л.у.м. со счётными носителями.
- **9.12.** Постройте два плотных л.у.м. без концов с континуальными носителями, которые не изоморфны.

10 Ординалы и кардиналы

- 10.1. Докажите, что сложение и умножение на Ord ассоциативны.
- 10.2. Докажите, что ни сложение, ни умножение на Ord не коммутативно.
- 10.3. Аккуратно докажите теорему о классовой трансфинитной рекурсии.
- 10.4. Докажите, что сложение и умножение на Card ассоциативны и коммутативны.
- 10.5 (в ZFC). Докажите, что Card не является множеством.

11 Лемма Цорна

[Здесь всё в ZFC!]

- 11.1. У всякого векторного пространства есть базис.
- **11.2.** Пусть $\mathfrak{A}=\langle A,\leqslant \rangle$ ч.у.м. Тогда сущ. линейный порядок \preccurlyeq на A такой, что \leqslant \subseteq \preccurlyeq .

Набросок решения. Рассмотрим

X := множество всех частичных порядков на A.

Обозначим через \preccurlyeq порядок по включаению на S, т.е. для любых $R_1, R_2 \in X$,

$$R_1 \preccurlyeq R_2 \iff R_1 \subseteq R_2.$$

Легко убедиться, что объединение произвольной цепи частичных порядков на A является частичным порядком на A. Значит, ч.у.м. $\langle X, \preccurlyeq \rangle$ удовлетворяет условиям (следствия) леммы Цорна.

Пусть \leqslant' — это максимальный в $\langle X, \preccurlyeq \rangle$ элемент такой, что $\leqslant \subseteq \leqslant'$. Предположим, что \leqslant' не линейный, т.е. для некоторых $c_1, c_2 \in A$ мы имеем

$$c_1 \not\leq' c_2$$
 и $c_1 \not\leq' c_2$.

Определим бинарное отношение \leq " на A по правилу

$$a_1\leqslant'' a_2$$
 : \Longleftrightarrow $a_1\leqslant' a_2$ или $(a_1\leqslant' c_1$ и $c_2\leqslant' a_2).$

Нетрудно убедиться, что \leqslant " будет частичным порядком на A. Однако \leqslant " строго больше \leqslant ' в $\langle X, \preccurlyeq \rangle$ — противоречие.

Цепь S в ч.у.м. $\mathfrak A$ называют *максимальной*, если S максимальна по включению среди всех цепей в $\mathfrak A$, т.е. не существует цепи S' в $\mathfrak A$ такой, что $S \subsetneq S'$.

11.3 (принцип максимума Хаусдорфа). Пусть $\mathfrak{A} = \langle A, \leqslant \rangle$ — ч.у.м. Тогда для каждой цепи S в \mathfrak{A} найдётся максимальная цепь S' в \mathfrak{A} такая, что $S \subseteq S'$.