

Applicant : Kustom Musical Amplification INC.

3015 Kustom Drive, Hebron, Kentucky, 41048 USA

Manufacturer : Hzsamko Technologies Co.,Ltd.

No.8, Jiaqi Road, Xianlin Street, Yuhang District,

Hangzhou, China.

Product Name : Power amplifier

Type/Model: PW4X6BT, PW4X8BT, PA2X10BT, PA2X12BT

TEST RESULT: PASS

SUMMARY

The equipment complies with the requirements according to the following standard(s):

47CFR Part 15 (2015): Radio Frequency Devices

ANSI C63.10 (2013): American National Standard for Testing Unlicensed Wireless Devices

RSS-247 Issue 1 (May 2015): Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

RSS-Gen Issue 4 (November 2014): General Requirements for Compliance of Radio Apparatus

Date of issue: May 24, 2016

Prepared by:

Wade zhang

Wade Zhang (Project Engineer)

Reviewed by:

Daniel Zhao (Reviewer)

Description of Test Facility

Name: Intertek Testing Services Limited Shanghai

Address: Building 86, No. 1198 Qinzhou Rd., North, Shanghai 200233, P.R. China

FCC Registration Number: 236597

IC Assigned Code: 2042B-1

Name of contact: Jonny Jing

Tel: +86 21 61278271 Fax: +86 21 54262353

Content

	JMMARY	
Di	ESCRIPTION OF TEST FACILITY	2
1.	GENERAL INFORMATION	5
	1.1 Applicant Information	
	1.2 Identification of the EUT.	5
	1.3 Technical specification	6
2.	TEST SPECIFICATIONS	7
	2.1 Test Standard	7
	2.2 Mode of operation during the test / Test peripherals used	7
	2.3 Test software list	9
	2.4 Test peripherals list.	9
	2.5 Instrument list	10
	2.6 Test Summary	11
3.	20 dB Bandwidth	. 12
	3.1 Limit	12
	3.2 Test Configuration	12
	3.3 Test Procedure and test setup	12
	3.4 Test Protocol	13
	3.5 Measurement uncertainty	17
4.	CARRIER FREQUENCY SEPARATION	. 18
	4.1 Limit	18
	4.2 Test Configuration	18
	4.3 Test Procedure and test setup	18
	4.4 Test Protocol.	19
	4.5 Measurement uncertainty	23
5.	MAXIMUM PEAK OUTPUT POWER	. 24
	5.1 Test limit	24
	5.2 Test Configuration	24
	5.3 Test procedure and test setup	24
	5.4 Test protocol	25
	5.5 Measurement uncertainty	25
6.	RADIATED SPURIOUS EMISSIONS	. 26
	6.1 Test limit	26
	6.2 Test Configuration	26
	6.3 Test procedure and test setup	27
	6.4 Test protocol	28
	6.5 Measurement uncertainty	
7.	BAND EDGE EMISSION	. 31
	7.1 Limit	31
	7.2 Test Configuration	31
	7.3 Test procedure and test setup	
	7.4 Test protocol	
	7.5 Measurement uncertainty	
8.		
	8.1 Limit	30

8.2 Test configuration	
EMI receiver	
8.3 Test procedure and test set up	
8.4 Test protocol	41
8.5 Measurement uncertainty	42
9. NUMBER OF HOPPING FREQUENCIES	43
9.1 Limit	43
9.2 Test Configuration	
9.3 Test procedure and test setup	
9.4 Test protocol	
9.5 Measurement uncertainty	44
10. DWELL TIME	45
10.1 Limit	45
10.2 Test Configuration	45
10.3 Test procedure and test setup	
10.4 Test protocol	
10.5 Measurement uncertainty	53
11. OCCUPIED BANDWIDTH	54
11.1 Test limit	54
11.2 Test Configuration	
11.3 Test procedure and test setup	
11.4 Test protocol	
11.5 Measurement uncertainty	

1. General Information

1.1 Applicant Information

Applicant : Kustom Musical Amplification INC.

3015 Kustom Drive, Hebron, Kentucky, 41048 USA

Name of contact : Kilowatt Mike Brunner

Tel: 001-859-817-7189

Fax : 001-859-817-7199

Manufacturer : Hzsamko Technologies Co.,Ltd.

No.8, Jiaqi Road, Xianlin Street, Yuhang District,

Hangzhou, China.

1.2 Identification of the EUT

Product Name : Power amplifier

Type/model: PW4X6BT, PW4X8BT, PA2X10BT, PA2X12BT

FCC ID : 2AAVGHMG1616A

IC: 11349A-HMG1616A

1.3 Technical specification

Operation Frequency
Band : 2402 - 2480 MHz

Type of Modulation : FHSS

EUT Modes of

Modulation : GFSK, $\pi/4$ DQPSK, 8DPSK

Channel Number : 79 channels with spacing of 1MHz.

The EUT is a Power amplifier and there have four models.

Description of EUT: They are electrically identical except for different speaker,

transformer and appearance. We tested PW2X12BT as a

representative and listed the result in this report.

Port identification : N/A

Antenna : PCB antenna, 0dBi

Rating: 120VAC, 60Hz, 160W

Declared Temperature : /

Category of EUT : Class B

EUT type : Table top

Sample received date : 2016.04.20

Sample Identification : /

Date of test : $2016.04.20 \sim 2016.05.11$

2. TEST SPECIFICATIONS

2.1 Test Standard

47CFR Part 15 (2015) ANSI C63.10 (2013) RSS-247 Issue 1 (May 2015) RSS-Gen Issue 4 (November 2014) DA 00-705

2.2 Mode of operation during the test / Test peripherals used

Radiation and Conducted Emission:

Pretest all models: PW4X6BT, PW4X8BT, PA2X10BT and PA2X12BT,

The worst result is model PA2X12BT, So Final Test choose: PA2X12BT

While testing transmitting mode of EUT, the internal modulation was applied.

Test software setting: Default power setting among the software *BlueTest3*

Test mode:

Mode 1: Hopping off, GFSK DH5

Mode 2: Hopping off, π/4 DQPSK DH5

Mode 3: Hopping off, 8DPSK DH5

Mode 4: Hopping on, GFSK_DH5

Mode 5: Hopping on, $\pi/4$ DQPSK DH5

Mode 6: Hopping on, 8DPSK DH5

Test Channel:

Channel	Frequency (MHz)
L	2402
M	2441
Н	2480

Frequency Hopping System Requirement

\square Compliance for Section 15.247 (a)(1), (g), (h) requirement

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hop sets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

⊠ Compliance for Section 15.247 (a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a ninestage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: $2^9 1 = 511$ bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

20 62 46 77 7 64 8 73 16 75 1

Each frequency used equally on the average by each transmitter.

According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth

transmitters and shift frequencies in synchronization with the transmitted signals.

◯ Compliance for section 15.247(g)

According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinate with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

2.3 Test software list

Test Items Software		Manufacturer	Version
Conducted emission	ESxS-K1	R&S	V2.1.0
Radiated emission	ES-K1	R&S	V1.71

2.4 Test peripherals list

Item No.	Name	Band and Model	Description
1	Laptop computer	HP ProBook 6470b	NA
2	iPod	Apple A1199	NA

2.5 Instrument list

Selected	Equipment	Туре	Manu.	Internal no.	Cal. Date	Due date
×	PXA Analyzer	N9030A	Agilent	EC5338	2016/3/4	2017/3/3
×	Vector SG	N5182B	Agilent	EC5175	2016/3/4	2017/3/3
×	Power sensor	U2021XA	Agilent	EC5338-1	2016/3/4	2017/3/3
×	MXG Analog SG	N5181A	Agilent	EC5338-2	2016/3/4	2017/3/3
×	Power meter	N1911A/N1921A	Agilent	EC4318	2016/4/10	2017/4/9
×	EMI Receiver	ESCS 30	R&S	EC 2107	2015/10/20	2016/10/19
×	A.M.N.	ESH2-Z5	R&S	EC 3119	2015/12/16	2017/12/15
×	I.S.N.	FCC-TLISN-T8-02	FCC	EC3756	2016/2/16	2017/2/15
×	EMI chamber	3m	Albatross	EC 3048	2016/5/5	2017/5/4
×	Test Receiver	ESIB 26	R&S	EC 3045	2015/10/20	2016/10/19
×	Test Receiver	ESCI 7	R&S	EC4501	2016/2/24	2017/2/23
×	Bilog Antenna	CBL 6112D	TESEQ	EC 4206	2015/6/1	2016/5/30
×	Horn antenna	HF 906	R&S	EC 3049	2015/9/12	2016/9/11
×	Horn antenna	HAP18-26W	TOYO	EC 4792-3	2014/6/12	2017/6/11
×	Pre-amplifier	Pre-amp 18	R&S	EC 5262	2014/5/25	2016/5/24
\boxtimes	Pre-amplifier	Tpa0118-40	R&S	EC 4792-2	2016/4/11	2017/4/10
×	Shielded room	-	Zhongyu	EC 2838	2016/1/9	2017/1/8

2.6 Test Summary

This report applies to tested sample only. This report shall not be reproduced in part without written approval of Intertek Testing Service Shanghai Limited.

TEST ITEM	FCC REFERANCE	IC REFERANCE	RESULT
20 dB Bandwidth	15.247(a)(1)	RSS-247 Issue 1 Annex 5.1	Tested
Carrier Frequency Separation	15.247(a)(1)	RSS-247 Issue 1 Annex 5.1	Pass
Output power	15.247(b)(1)	RSS-247 Issue 1 Annex 5.4	Pass
Radiated Spurious Emissions	15.205 & 15.209	RSS-Gen Issue 4 Clause 8.10	Pass
Band Edge Emission	15.247(d)	RSS-247 Issue 1 Annex 5.5	Pass
Power line conducted emission	15.207	RSS-Gen Issue 4 Clause 8.8	Pass
Number of Hopping Frequencies	15.247(a)(1)(iii)	RSS-247 Issue 1 Annex 5.1	Pass
Dwell time	15.247(a)(1)(iii)	RSS-247 Issue 1 Annex 5.1	Pass
Occupied bandwidth	-	RSS-Gen Issue 4 Clause 6.6	Tested

Note: "NA" means "not applied".

20 dB Bandwidth

Tested Test result:

3.1 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separat	ed
by a minimum of 25kHz or the 20 dB bandwidth of the hopping channel, whichever is	
greater.	

Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW.

3.2 Test Configuration

Antenna connector

3.3 Test Procedure and test setup

The 20 bandwidth per FCC § 15.247(a)(1) is measured using the Spectrum Analyzer with Span = approximately 2 to 3 times the 20 dB bandwidth, RBW≥1% of the 20 dB bandwidth, VBW≥RBW, Sweep = auto, Detector = peak, Trace = max hold. The test was performed at 3 channels (lowest, middle and highest channel). The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)

3.4 Test Protocol

Temperature : 25°C Relative Humidity : 55 %

Mode	СН	Bandwidth	Two-thirds of Bandwidth
		(kHz)	(kHz)
	L	840.00	560.00
1	M	890.00	593.33
	Н	890.00	593.33

Channel L

Mode	СН	Bandwidth	Two-thirds of Bandwidth
		(kHz)	(kHz)
	L	1230.00	820.00
3	M	1266.00	844.00
	Н	1260.00	840.00

Channel L

3.5 Measurement uncertainty

Measurement uncertainty: ± 3 %

The measurement uncertainty is given with a confidence of 95%, k=2.

4. Carrier Frequency Separation

Test result: **Pass**

4.1 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW.

4.2 Test Configuration

Antenna connector

4.3 Test Procedure and test setup

The Carrier Frequency Separation per FCC § 15.247(a)(1) is measured using the Spectrum Analyzer with Span can capture two adjacent channels, RBW≥1% of the span, VBW\geq RBW, Sweep = auto, Detector = peak, Trace = max hold. The test was performed at 3 channels (lowest, middle and highest channel). The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)

4.4 Test Protocol

Temperature : 25°C Relative Humidity : 55 %

Mode	СН	Frequency Separation	Limit
		(kHz)	(kHz)
	L	1002.00	≥ 2/3 of 20dB BW
1	М	1002.00	≥ 2/3 of 20dB BW
	Н	1002.00	≥ 2/3 of 20dB BW

Channel L

Mode	СН	Frequency Separation	Limit
		(kHz)	(kHz)
	L	1002.00	≥ 2/3 of 20dB BW
3	М	1008.00	≥ 2/3 of 20dB BW
	Н	1002.00	≥ 2/3 of 20dB BW

Channel L

4.5 Measurement uncertainty

Measurement uncertainty: ± 3 %

The measurement uncertainty is given with a confidence of 95%, k=2.

5. Maximum peak output power

Test result: Pass

5.1 Test limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at
least 75 non-overlapping hopping channels, and all frequency hopping systems in the
5725-5850 MHz band: 1 watt
For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts
If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be
reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.
For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and
5725-5850 MHz bands: 1 Watt.

5.2 Test Configuration

5.3 Test procedure and test setup

The power output per FCC § 15.247(b) is measured by setting the Spectrum Analyzer as RBW =3MHz, VBW =8MHz, Sweep = auto, Detector = peak, Trace = max hold. The test was performed at 3 channels (lowest, middle and highest channel). The test method is following DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems).

5.4 Test protocol

Temperature : 25 °C Relative Humidity : 55 %

Mode	СН	Cable loss (dB)	Conducted Power (dBm)	Limit (dBm)
	L	0.80	-1.23	21
1	M	0.80	-0.74	21
	Н	0.80	0.08	21

Mode	СН	Cable loss	Conducted Power	Limit
		(dB)	(dBm)	(dBm)
	L	0.80	-3.15	21
3	М	0.80	-2.30	21
	Н	0.80	-1.35	21

Conclusion: The maximum EIRP = 0.08dBm = 1.019mW which is lower than the limit of 4W listed in RSS-247.

5.5 Measurement uncertainty

Measurement uncertainty: ± 0.74 dB

The measurement uncertainty is given with a confidence of 95%, k=2.

6. Radiated Spurious Emissions

Test result: PASS

6.1 Test limit

The radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) showed as below:

Frequency (MHz)	Field Strength (dBuV/m)	Measurement Distance (m)		
30 - 88	40.0	3		
88 - 216	43.5	3		
216 - 960	46.0	3		
Above 960	54.0	3		

6.2 Test Configuration

6.3 Test procedure and test setup

The measurement was applied in a semi-anechoic chamber. While testing for spurious emission higher than 1GHz, if applied, the pre-amplifier would be equipped just at the output terminal of the antenna and the EUT was placed on a 1.5m height. The EUT and simulators were placed on a 0.8m high wooden turntable above the horizontal metal ground plane. The turn table rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on an antenna mast. The antenna moved up and down between from 1 meter to 4 meters to find out the maximum emission level.

The radiated emission was measured using the Spectrum Analyzer with the resolutions bandwidth set as:

```
RBW = 100kHz, VBW = 300kHz (30MHz~1GHz)
RBW = 1MHz, VBW = 3MHz (>1GHz for PK);
RBW = 1MHz, VBW = 10Hz (>1GHz for AV);
```

If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor".

6.4 Test protocol

Mode 1

CH	Antenna	Frequency (MHz)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	2402.20	30.70	88.30	Fundamental	/	PK
	V	393.51	18.10	41.00	46.00	5.00	PK
	V	873.65	10.40	34.50	46.00	11.50	PK
	Н	399.34	18.20	35.60	46.00	10.40	PK
	Н	874.10	10.40	40.60	46.00	5.40	PK
T	Н	1599.19	-10.20	50.90	54.00	3.10	PK
L	Н	2390.00	-8.00	40.60	54.00	13.40	PK
	V	2390.00	-8.00	38.20	54.00	15.80	PK
	Н	4806.18	-1.50	54.10	74.00	19.90	PK
	Н	4805.87	-1.50	36.60	54.00	17.40	AV
	V	4804.45	-1.50	51.50	74.00	22.50	PK
	V	4804.46	-1.50	34.60	54.00	19.40	AV
	Н	2441.07	30.70	88.90	Fundamental	/	PK
	V	393.51	18.10	41.00	46.00	5.00	PK
	V	873.65	10.40	34.50	46.00	11.50	PK
	Н	399.34	18.20	35.60	46.00	10.40	PK
	Н	874.10	10.40	40.60	46.00	5.40	PK
M	Н	1625.25	-10.10	51.20	54.00	2.80	PK
	Н	4885.77	-1.10	54.60	74.00	19.40	PK
	Н	4885.23	-1.10	36.80	54.00	17.20	AV
	V	4883.45	-1.10	52.60	74.00	21.40	PK
	V	4883.66	-1.10	34.40	54.00	19.60	AV
	Н	2479.83	30.70	89.80	Fundamental	/	PK
Н	V	393.51	18.10	41.00	46.00	5.00	PK
	V	873.65	10.40	34.50	46.00	11.50	PK
	Н	399.34	18.20	35.60	46.00	10.40	PK
	Н	874.10	10.40	40.60	46.00	5.40	PK
	Н	1651.30	-9.90	50.40	54.00	3.60	PK
	Н	2483.50	-7.80	40.20	54.00	13.80	PK
	V	2483.50	-7.80	38.50	54.00	15.50	PK
	Н	4961.54	-0.80	54.30	74.00	19.70	PK
	Н	4960.79	-0.80	36.50	54.00	17.50	AV
	V	4960.42	-0.80	51.40	74.00	22.60	PK
	V	4960.42	-0.80	34.50	54.00	19.50	AV

Mode 3

Mode 3	Antenna	Frequency	Correct	Corrected	Limit	Margin	Detector
		(MHz)	Factor (dB/m)	Reading (dBuV/m)	(dBuV/m)	(dB)	
	Н	2402.20	30.70	86.30	Fundamental	/	PK
	V	393.51	18.10	41.00	46.00	5.00	PK
	V	873.65	10.40	34.50	46.00	11.50	PK
	Н	399.34	18.20	35.60	46.00	10.40	PK
	Н	874.10	10.40	40.60	46.00	5.40	PK
T	Н	1599.19	-10.20	50.90	54.00	3.10	PK
L	Н	2390.00	-8.00	38.60	54.00	13.40	PK
	Н	2390.00	-8.00	34.90	54.00	19.10	PK
	Н	4806.18	-1.50	52.10	74.00	19.90	PK
	Н	4805.87	-1.50	35.60	54.00	17.40	AV
	V	4804.12	-1.50	50.30	74.00	23.70	PK
	V	4804.23	-1.50	34.40	54.00	19.60	AV
	Н	2441.07	30.70	86.80	Fundamental	/	PK
	V	393.51	18.10	41.00	46.00	5.00	PK
	V	873.65	10.40	34.50	46.00	11.50	PK
	Н	399.34	18.20	35.60	46.00	10.40	PK
M	Н	874.10	10.40	40.60	46.00	5.40	PK
IVI	Н	1625.25	-10.10	51.20	54.00	2.80	PK
	Н	4885.77	-1.10	53.60	74.00	19.40	PK
	Н	4885.23	-1.10	35.80	54.00	17.20	AV
	V	4882.74	-1.10	51.20	74.00	22.80	PK
	V	4882.66	-1.10	33.10	54.00	20.90	AV
	Н	2479.83	30.70	87.80	Fundamental	/	PK
	V	393.51	18.10	41.00	46.00	5.00	PK
	V	873.65	10.40	34.50	46.00	11.50	PK
	Н	399.34	18.20	35.60	46.00	10.40	PK
	Н	874.10	10.40	40.60	46.00	5.40	PK
Н	Н	1651.30	-9.90	50.40	54.00	3.60	PK
	Н	2483.50	-7.80	39.70	54.00	13.80	PK
	V	2483.50	-7.80	35.60	54.00	18.40	PK
	Н	4961.54	-0.80	53.50	74.00	19.70	PK
	Н	4960.79	-0.80	35.80	54.00	17.50	AV
	V	4960.34	-0.80	50.50	74.00	23.50	PK
	V	4960.26	-0.80	32.70	54.00	21.30	AV

Remark: 1. For fundamental emission, no amplifier is employed.

- 2. Correct Factor = Antenna Factor + Cable Loss (-Amplifier, is employed)
- 3. Corrected Reading = Original Receiver Reading + Correct Factor
- 4. Margin = limit Corrected Reading
- 5. If the PK reading is lower than AV limit, the AV test can be elided.
- 6. The emission was conducted from 30MHz to 25GHz.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10dBuV.

Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m; Corrected Reading =

10dBuV + 0.20dB/m = 10.20dBuV/m

Assuming limit = 54dBuV/m, Corrected Reading = 10.20dBuV/m, then Margin

= 54 - 10.20 = 43.80 dBuV/m

6.5 Measurement uncertainty

Measurement uncertainty of radiated emission (30MHz-1000MHz) is: \pm 4.90dB Measurement uncertainty of radiated emission (1000MHz-6000MHz) is: \pm 5.02dB The measurement uncertainty is given with a confidence of 95%, k=2.

7. Band Edge Emission

Test result: **PASS**

7.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

7.2 Test Configuration

7.3 Test procedure and test setup

The Band Edge Emissions per FCC § 15.247(d) is measured using the Spectrum Analyzer with Span wide enough capturing all spurious from the lowest emission frequency of the EUT up to 10th harmonics, RBW = 100kHz, VBW≥RBW, Sweep = auto, Detector = peak, Trace = max hold.

The test was performed at 3 channels (lowest, middle and highest channel).

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)

7.4 Test protocol

Mode 6 - F X Keysight Spectrum Analyzer - Swept SA ALIGN AUTO 04:08:55 PM Apr 03, 2015 SENSE:INT Marker Marker 3 2.400000000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run PNO: Fast ↔ IFGain:Low Atten: 10 dB Select Marker Mkr3 2.400 000 GHz -80.991 dBm Ref 0.00 dBm 10 dB/div Log Normal Delta **Fixed**▷ Start 2.3000 GHz Stop 2.5000 GHz #Res BW 100 kHz **#VBW** 300 kHz Sweep 2.667 ms (40000 pts) Off FUNCTION FUNCTION WIDTH FUNCTION VALUE 2.406 153 GHz 2.483 500 0 GHz 2.400 000 GHz -25.799 dBm -81.186 dBm -80.991 dBm **Properties** More 1 of 2 10 11 MSG

7.5 Measurement uncertainty

Measurement uncertainty: $\pm 0.74dB$

8. Power line conducted emission

Test result: Pass

8.1 Limit

Frequency of Emission (MHz)	Conducted Limit (dBuV)		
	QP	AV	
0.15-0.5	66 to 56*	56 to 46 *	
0.5-5	56	46	
5-30	60	50	
* Decreases with the logarithm of the frequency.			

8.2 Test configuration

For table top equipment, wooden support is 0.8m height table

For floor standing equipment, wooden support is 0.1m height rack.

8.3 Test procedure and test set up

The EUT are connected to the main power through a line impedance stabilization network (LISN). This provides a $50\Omega/50uH$ coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a $50\Omega/50uH$ coupling impedance with 50Ω termination.

Both sides (Line and Neutral) of AC line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4 on conducted measurement.

The bandwidth of the test receiver is set at 9 kHz.

8.4 Test protocol

Temperature: 21°C Relative Humidity: 50%

Test Data:

_	Quasi-peak			Average		
Frequency (MHz)	level dB(µV)	Limit dB(µV)	Margin (dB)	level dB(µV)	$\begin{array}{c} limit \\ dB(\mu V) \end{array}$	Margin (dB)
0.152	42.44	65.90	23.46	15.95	55.90	39.95
0.182	40.16	64.38	24.22	13.36	54.38	41.02
2.211	18.87	56.00	37.13	0.25	46.00	45.75
2.502	18.24	56.00	37.76	0.10	46.00	45.90
12.604	4.68	60.00	55.32	0.37	50.00	49.63
23.968	10.35	60.00	49.65	8.53	50.00	41.47

Test Data:

		Quasi-peak		Average		
Frequency (MHz)	level dB(µV)	Limit dB(µV)	Margin (dB)	level dB(µV)	limit dB(µV)	Margin (dB)
0.153	42.28	65.83	23.55	15.66	55.83	40.17
0.285	31.86	60.66	28.80	5.94	50.66	44.72
2.176	18.75	56.00	37.25	0.14	46.00	45.86
2.573	17.77	56.00	38.23	-0.02	46.00	46.02
15.888	10.27	60.00	49.73	3.82	50.00	46.18
23.968	10.61	60.00	49.39	8.75	50.00	41.25

Notes: All possible modes of operation were investigated. Only the worst case emissions measured.

8.5 Measurement uncertainty

Measurement uncertainty: ± 3.19dB

9. Number of Hopping Frequencies

Test result: Pass

9.1 Limit

Number of Hopping Frequencies in the 2400-2483.5 MHz band shall use at least 15 channels.

9.2 Test Configuration

9.3 Test procedure and test setup

The channel number per FCC §15.247(a)(1)(iii) is measured using the Spectrum Analyzer with RBW=1MHz, VBW≥RBW, Sweep = auto, Detector = peak, Trace = max hold. The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems).

9.4 Test protocol

Channel Number	Limit
79	≥15

9.5 Measurement uncertainty

Measurement uncertainty: ± 3%

10. Dwell Time

Test result: Pass

10.1 Limit

The dwell time on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

10.2 Test Configuration

10.3 Test procedure and test setup

Dwell time per FCC § 15.247(a)(1)(iii) is measured using the Spectrum Analyzer with Span = 0, RBW=1MHz, VBW≥RBW, Sweep can capture the entire dwell time, Detector = peak, Trace = max hold.

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems).

10.4 Test protocol

Packet	Occupancy time for single hop (ms)	СН	Real observed period (s)	Hops among Observed period I	Dwell time (s) T	Limit (s)
		L	3.16	33	0.14	
3DH1	0.422	M	3.16	33	0.14	
		Н	3.16	33	0.14	
		L	3.16	17	0.29	
3DH3	1.688	M	3.16	17	0.29	≤0.4
		Н	3.16	17	0.29	
		L	3.16	11	0.32	
3DH5	2.924	M	3.16	11	0.32	
		Н	3.16	11	0.32	

Remark: 1. There are 79 channels in all. So the complete observed period P = 0.4 * 79 = 31.6 s.

^{2.} Average time of occupancy T = O *I * 31.6 / P

10.5 Measurement uncertainty

Measurement uncertainty: \pm 3%

11. Occupied Bandwidth

Test Status: Pass

11.1 Test limit

None

11.2 Test Configuration

11.3 Test procedure and test setup

The occupied bandwidth per RSS-Gen Issue 4 Clause 6.6 was measured using the Spectrum Analyzer with the RBW close to 1% of the selected span, VBW = 3 * RBW Detector = Sample, Sweep = Auto.

11.4 Test protocol

Temperature : 26 °C Relative Humidity : 55 %

Mode	Channel	Occupied Bandwidth (kHz)
	L	835.00
1	М	840.00
	Н	840.00

Channel L

Span 2.5 MHz

Center 2.441 GHz

250 kHz/

Mode	Channel	Occupied Bandwidth (kHz)
	L	1158.00
3	М	1158.00
	Н	1158.00

Channel L

Span 3 MHz

1 PK MAXH Ref 10 dBm

10 Offset 0.8

Center 2.441 GHz

dВ

300 kHz/

11.5 Measurement uncertainty

Measurement uncertainty: \pm 3%