

GSCI1801A

Information Science

Lecture 5: Data Communication and Computer Networks

Asst. Prof. Chawanat Nakasan | 2020-11-02

Class Announcement

Report 1 is due next week. レポート1の締め切りは来週です。

Submission closes 2021-11-09 11:59:59 JST. Late submissions lose 20% points per day.

Agenda

- Data Communication
- Network Concepts
- Exploring the TCP/IP Protocol Model

Please save the slides!

- Content presented here is more detailed than the 情報の科学 official textbook.
- Slides can be downloaded from the LMS.
- Content from the slide may be on exam.

Data Communication

"the act or process of using words, sounds, signs, or behaviors to express or exchange information or to express your ideas, thoughts, feelings, etc., to someone else" – Merriam-Webster

"If you communicate with someone, you share or exchange information with them, for example by speaking, writing, or using equipment. You can also say that two people communicate." – <u>Collins Dictionary</u>

share or exchange information, or express ideas with someone else

by speaking, writing, moving your body, using equipment, or signals

"to share information with others by speaking, writing, moving your body, or using other signals" – <u>Cambridge Dictionary</u>

"the activity or process of expressing ideas and feelings or of giving people information" – Oxford Learner's Dictionary

Communication Model

(Modified and Interpreted for Data Communication)

Signal = Signaling method, etc. Channel = Usually physical media + bandwidth, etc.

Network Concepts

The Post/Mail/Courier Model

Human Communication, Data Communication, sending things, all the same. (Use whichever word you remember.)

The Packet Model:

Handling Large Data Sizes

The Packet Model:

Handling Different Data Formats

A **packet** containing data. All packets look and behave the same.

Abstraction

You can sleep easy!

It's his problem now.

- Once the item leaves your hands, you can rest assured it will arrive. The delivery is someone else's problem.
- You can assume that the delivery will somehow complete.

Death Stranding / Kojima Productions, via Gosunoob

The Network Stack

Therefore, the network is all about processes:

Horizontal compatibility: Protocols work with same protocols across the network The Network Stack Since communication creates multiple levels of information processing, Layer 5 Layer 5 L5-Protocol this results in a "stack" of many layers. Layer 4 L4-Protocol Layer 4 Layer 3 Layer 3 L3-Protocol **Vertical compatibility**: Protocols work with other protocols in nearby layers of the same machine. Layer 2 L2-Protocol Layer 2 Layer 1 Layer 1 L1-Protocol

Open Systems Interconnection (OSI) Model

OSI-L7	Application Layer	
OSI-L6	Presentation Layer	
OSI-L5	Session Layer	
OSI-L4	Transport Layer	
OSI-L3	Network Layer	
OSI-L2	Data Link Layer	
OSI-L1	Physical Layer	

- This concept of a network stack is formalized into a global standard.
- The ISO (International Organization for Standardization) defines the OSI Model (Open Systems Interconnection Model) as a 7-layer system of computer network elements.

Open Systems Interconnection (OSI) Model

OSI-L7	Application Layer	Provides functional utility to the user or system operations, such as web content (HTTP), email (SMTP), and network configuration (DHCP).
OSI-L6	Presentation Layer	Data encoding and translation, such as data type definition (MIME types), character systems (ASCII), etc.
OSI-L5	Session Layer	Provides session creation and maintenance ("logging in") and manages long-term connections e.g. SOCKS and PAP.
OSI-L4	Transport Layer	Provides abstraction of applications into port numbers (multiplexing) and provides consistency (packet in-order) and speed (congestion) control.
OSI-L3	Network Layer	Provides addressing and routing between networks (across the Internet) on an individual packet basis.
OSI-L2	Data Link Layer	Provides communication within same network. Provides abstraction of physical layer properties.
OSI-L1	Physical Layer	Defines how data is physically sent across the network, such as by wire and radio signals.

The TCP/IP Protocol Model

- The TCP/IP Protocol Suite reduces some layers from the OSI model and changes some definitions.
- It is considered more practical for general, research, and educational use.
- There are many forms of TCP/IP Protocol Models, but in this class, we will use this model.
 - Kanazawa University official textbook uses a 4-layer model.

Application Layer Transport Layer Network Layer Data Link Layer **Physical Layer**

Comparison between OSI and TCP/IP Protocol Model

OSI-L7	Application Layer	
OSI-L6	Presentation Layer	
OSI-L5	Session Layer	
OSI-L4	Transport Layer	
OSI-L3	Network Layer	
OSI-L2	Data Link Layer	
OSI-L1	Physical Layer	

Application Layer Transport Layer Network Layer Data Link Layer **Physical Layer**

OSI Model

TCP/IP Protocol Model

Addressing

- Addressing allows the network elements to send to the correct destination.
- It's very similar to writing an address.
- Different protocols use different kinds of addresses.

Postal addressing

920-1192 学学術メディア創成センター沢市角間町 あざみ 様

Locally (in-campus) addressed envelope

EMI 角間あざみ 様

Encapsulation

Message

Application

Transport

Network

Data Link

Physical

App-Header Message

Transp.-Header App-Header Message

Net-Header Transp.-Header App-Header Message

Signal Modulation

(Data sequence)

Message Link-Header Net-Header App-Header Transp.-Header

Hey, we're at the bottom of the stack!

Wired (有線)

Wireless (無線)

Application Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

TCP/IP Protocol Model

Types of Wired Media

Image Sources:

Twisted-Pair Cable: Raysonho @ Open Grid Scheduler / Grid Engine

Coaxial Cable: Arj / Wikipedia

Twisted Pair Cables

How to choose cables?

 Formally called Ethernet Cables, there are two popular ways to indicate a cable.

<u>"Cat" System</u> (Common "market" language)

Cat 5e = Supports Gigabit Ethernet Cat 6 = Supports 10Gig Ethernet

etc.

Pros:

- Easy to understand by consumers
- Higher number is always more modern Cons:
- Does not reflect actual specification of the cable

Pros:

 Very specific and you're likely to get what you want if you order by this specification system.

Cons:

Most consumers don't understand this system.

Wireless Communication

Wi-Fi

5G Emerging Tech: mmWave vs Sub6 ... what's going on?

28

mmWave vs Sub6

mmWave

- Higher frequency (30-300 GHz)
- Harder to go through buildings ("line-of-sight")
- Less coverage
- Requires specific phone models (as of 2021)

Sub6

- Lower frequency (Sub6 = "less than 6 GHz")
- Easier to go through buildings
- Better coverage

Data Link Layer

Application Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

TCP/IP Protocol Model

Roles of the Data Link Layer

Lowest abstraction level possible

Collision detection

Stop sending when others are sending

Error detection

Packet Switching

More things in Data Link Layer

Your device may have more than one MAC address.

Network Layer: The Internet Protocol

Key roles of the Internet Protocol

Internetwork Routing

- Internetwork = Between the networks.
- IP is the basis of the *Internet* itself.

IP Address as Globally Unique Address System

 There are no repeated IP addresses on the global scale.

Provides a common format for packets

 Pretty much all protocols in the world rely on IP.

How to check your MAC and IP addresses (Windows)

```
Ethernet adapter Ethernet 2:
  Connection-specific DNS Suffix .:
  Description . . . . . . . . : Intel(R) Ethernet Connection (7) I219-V
  DHCP Enabled. . . . . . . . . . Yes
  Autoconfiguration Enabled . . . . : Yes
  Link-local IPv6 Address . . . . : fe80::5886:7093:b8a2:7608%14(Preferred)
  Lease Obtained. . . . . . . . : Sunday, October 24, 2021 18:36:39
  Lease Expires . . . . . . . . . Tuesday, November 2, 2021 11:17:16
  Default Gateway . . . . . . . : 172.16.0.1
  DHCP Server . . . . . . . . . : 172.16.0.1
  DHCPv6 IAID . . . . . . . . . . . . 195600729
  DHCPv6 Client DUID. . . . . . . : 00-01-00-01-28-03-18-C5-A8-A1-59-03-XX-XX
  DNS Servers . . . . . . . . . . . . . . . . . 172.16.0.1
                               8.8.8.8
                               8.8.4.4
  NetBIOS over Tcpip. . . . . . : Enabled
```

- Start command prompt
- Type "ipconfig /all"
- Do not share this information without technical need.

Difference between MAC and IP addresses

MAC Address

- Address for data link layer
- Used for routing within network
- Hardware-specific, cannot be changed (conventionally).

IP Address

- Address for network layer
- Used for routing across networks
- Can be configured by the OS.

Usually, one interface has one MAC address and one IP address. In more advanced network configurations, this may change.

Transport Layer

UDP

User Datagram Protocol

(Connectionless)

TCP

Transmission Control Protocol

(Connection-oriented)

Application Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

TCP/IP Protocol Model

This is where port numbers are!

Each computer can run multiple processes at a time. Port numbers allow you to guide network traffic to each process.

:22 = ssh (remote control)

:68 = bootp/dhcp (network configuration)

:80 = web server

:8080 = another web server

If you want to connect to this computer using ssh, you should access "10.0.0.8:22".

What TCP does that UDP doesn't?

- Congestion control
- Connections
- Packet ordering

Finally, we're at the application layer!

 Lots of functionality is provided here, and this layer has the greatest variety of protocols and applications.

Application Layer Transport Layer Network Layer Data Link Layer **Physical Layer**

TCP/IP Protocol Model

Examples of Application-Layer Protocols

>nslookup kanazawa-u.ac.jp

Server: UnKnown

Address: 172.16.0.1

Non-authoritative answer: Name: kanazawa-u.ac.jp

Address: 133.28.0.180

Domain Name Services (DNS)

Hypertext Transfer Protocol (HTTP)
The main protocol for the World Wide Web

Message Queue Telemetry Transport (MQTT)

Very prominent in Internet of Things

Extensible Messaging and Presence Protocol (XMPP)

Some chat apps use this protocol.

Examples of Application-Layer Protocols

Dynamic Host Configuration Protocol (DHCP)

And so on!

- There are hundreds of application layer protocols. More are being developed every day.
- You don't have to remember the details. The most important thing today is to understand the context of things so it's easier for you to learn in the future.

What can you learn further in single sentences?

- Virtual Private Network (VPN)
 - Encapsulate and encrypt *total* data transmission to achieve privacy.
- Internet of Things (IoT)
 - Many small devices communicate and provide useful functionality in physical world.
- Personal Area Network (PAN)
 - Things around your body that communicate with each other.
- Blockchain
 - Using concepts in computer networks, computation, and security to create a tamper-proof public record system.
 - We'll talk about this later!

Class Announcement (again)

Report 1 is due next week. レポート1の締め切りは来週です。

Submission closes 2021-11-09 11:59:59 JST. Late submissions lose 20% points per day.

