Microstructure-based modelling of tablet disintegration and dissolution

Frantisek Stepanek

Department of Chemical Engineering
University of Chemistry and Technology, Prague

Tablet microstructure

Primary particles

Conventional dissolution tests

Forward problem (simulation) Fractional release [-] Experiment - 10% Experiment - 60% Simulation - 10% Simulation - 60% 0.2 2 8 10 Time [hr]

Inverse problem (design)

Elementary rate processes

- Ingress of dissolution medium
- Intrinsic dissolution
- Internal mass transfer (diffusion)
- External mass transfer (diffusion/convection)
- Swelling
- Disintegration

Disintegration

Overall methodology / workflow

- 1) Create the starting microstructure
 - physically
 - computationally
- 2) Use experimental data for model validation and parameter calibration
- 3) Run the model to perform parametric studies
 - => structure-property relationships

Model set-up

Components:

- API
- Excipient(s)
- Solvent

Phenomena:

- Mass balance in bulk
- Local dissolution
- Mass transfer (diffusion, convection)

$$\frac{\mathrm{d}n_{s,i}}{\mathrm{d}t} = -\sum_{j} \frac{D}{\delta} (c_i - c_j) A_{ij}$$
$$\frac{\mathrm{d}c_j}{\mathrm{d}t} = \sum_{j} \frac{D}{\delta} (c_i - c_j) \frac{A_{ij}}{V_{cell}}$$

$$\frac{\mathrm{d}c_j}{\mathrm{d}t} = \sum_{i} \frac{D}{\delta} (c_i - c_j) \frac{A_{ij}}{V_{cell}}$$

Progress of a simulation

Diffusion equation in the liquid phase

$$\frac{\partial c_i}{\partial t} = -\nabla \cdot (-D_i \nabla c_i) + s_i \quad i = A, B$$

$$s_i(\mathbf{x}) = \begin{cases} k_i(c_i^{sat} - c_i(\mathbf{x})) & \forall \mathbf{x}: \ \phi_i(\mathbf{x}) > 0 \\ 0 & \text{otherwise} \end{cases}$$

Evolution equation for the solid phase

$$\frac{\partial \phi_i}{\partial t} = -\frac{s_i}{\rho_i}$$

Progress of a simulation

Diffusion equation in the liquid phase

$$\frac{\partial c_i}{\partial t} = -\nabla \cdot (-D_i \nabla c_i) + s_i \quad i = A, B$$

Evolution equation for the solid phase

$$s_i(\mathbf{x}) = \begin{cases} k_i(c_i^{sat} - c_i(\mathbf{x})) & \forall \mathbf{x}: \ \phi_i(\mathbf{x}) > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{\partial \phi_i}{\partial t} = -\frac{s_i}{\rho_i}$$

Component A (fast)

Component B (slow)

Outputs

- Concentration of each species in bulk $c_i(t)$
- Size distribution and composition of tablet residua

Kimber et al. / Comput. Chem. Eng. 35, 1328-1339 (2011)

Input microstructures

1) Computer-generated hypothetical structures

We can vary:

- Mass fraction of components
- Particle size distributions
- Choice of geometrical primitives

2) Computer-generated structures based on process simulation

For example:

DEM simulation of blending and direct compression

3) Real structures from experimental data

- X-ray micro CT
- SEM
- FTIR / Raman mapping

Study 1: microstructure & heterogeneity

Volume fraction of component A 20% 50% 80%

Correlation length [μm] 66 133 200

Random seed 1261 2345 3678 6747 9251

66 μm 133 μm 200 μm % Component A 80 80

Correlation Length

Physical properties kept constant: $D_A = D_B$, $c_A^* = 0.1$ c_B^*

Relative release time of B

Study 2: material properties

Relative release time of pure A

c_A^{sat*}	D_A^*				
	0.5	1	2		
0.1	19.70	9.85	4.93		
0.2	9.87	4.93	2.47		
0.5	3.97	1.98	0.99		
1	2.00	1.00	0.50		
2	1.02	0.51	0.25		
5	0.43	0.21	0.11		
10	0.24	0.12	0.06		

Relative release time of B from 80% A

Relative release time of B from 20% A

Analysis of disintegration residua

During dissolution:

- Test of connectivity (percolation)
- Remove disconnected solid clusters and dissolve them separately

Dissolution and disintegration of tablet residua

Inputs:

- structure
- flowrate, viscosity
- solubilities and Diff coefficients

Output:

- dissolution rate and mechanism

$$\frac{\partial c_i}{\partial t} = -\mathbf{v}\nabla c_i + D_i \nabla^2 c_i$$

$$\eta \nabla^2 \mathbf{v} = \nabla p \quad \nabla \cdot \mathbf{v} = 0$$

$$u_s = \frac{M_{w,i}}{\rho_{s,i}} \mathbf{n_s} \cdot (-D_i \nabla c_i)$$

Effect of porosity on dissolution mechanism

Low porosity, low Re: surface erosion

Effect of porosity on dissolution mechanism

 $\varepsilon = 0.24$

High porosity, high Re: disintegration

Case study: high-shear granulation scale-up

Table 2Values of process parameters for granulation experiments at different scales.

Vessel volume (dm³)	Agitator diameter (m)	Batch size (kg)	Agitation rate (rpm)	Froude number (-)	L/S ratio (-)
4.0	0.21	0.735	209	0.26	0.39
4.0	0.21	0.735	297	0.52	0.39
4.0	0.21	0.735	467	1.23	0.39
4.0	0.21	0.735	602	2.04	0.39
400	1.00	73.5	95	0.26	0.39
400	1.00	73.5	135	0.52	0.39

$$Fr = \frac{N^2d}{g}$$

Scale-up from 4 L to 400 L

Eur. J. Pharm. Biopharm. **106**, 107-116 (2016) Powder Technol. **285**, 88-95 (2015)

Case study: high-shear granulation scale-up

Simultaneous measurement of drug concentration (UV/Vis) and PSD

Eur. J. Pharm. Biopharm. **106**, 107-116 (2016) Powder Technol. **285**, 88-95 (2015)

Validation of microstructure-based models

"non-standard" dissolution tests + imaging methods

Magnetic Resonance Imaging

- ⇒ Penetration rate of dissolution medium into tablet
- ⇒ Swelling / erosion rates

Gajdosova et al. / Int. J. Pharm. 500, 136-143 (2016)

FTIR spectroscopic imaging

Comput. Chem. Eng. **35**, 1328–1339 (2011) Powder. Technol. **214**, 415–422 (2011) Chem. Eng. Sci. **69**, 394–403 (2012) Powder Technol. **248**, 68-76 (2013) Powder Technol. **236**, 179-187 (2013)

Raman mapping

Amorphous solid dispersion

Crystalline Aprepitant

PVP

Int. J. Pharm. 469, 159-167 (2014)

Int. J. Pharm. 483, 256-267 (2015)

Eur. J. Pharm. Biopharm. 101, 119-125 (2016)

Eur. J. Pharm. Sci. **95**, 138-144 (2016) Pharm. Res. **34**, 990-1001 (2017)

X-ray micro-tomography (micro-CT)

Image segmentation based on density Spatial resolution < 1 µm

Int. J. Pharm. **458**, 272-281 (2013) Adv. Powder Technol. **26**, 315-322 (2015) Powder Technol. **278**, 266-277 (2015)

Conclusions

- Mechanistic dissolution / disintegration models are available
- 2. Mechanistic understanding and experimental validation requires non-standard dissolution tests

