

TENTAMEN

Kursnummer:	HF0024			
	Matematik för basår II			
Moment:	TENB			
Program:	Tekniskt basår			
Rättande lärare:	Svante Granqvist, Niclas Hjelm & Jonas			
	Stenholm			
Examinator:	Niclas Hjelm			
Datum:	2019-05-29			
Tid:	08:00-12:00			
Hjälpmedel:	Formelsamling: Björk m fl "Formler och			
J	tabeller" utan anteckningar, passare,			
	gradskiva, penna, radergummi och linjal			
	Miniräknare är ej	tillåten!		
Omfattning och				
betygsgränser:	Poäng	Betyg		
	11	Fx		
	12 – 14	E		
	15 – 17	D		
	18 – 20	С		
	21 – 23	В		
	24 – 26	A		
	Till comtlige uppg	ifter krävs fullständi	്ഹ	
		garna skall vara tydli	_	
	och lätta att följa.	garna skan vara tyun	go	
	•	aar ekall definierse		
	Införda beteckningar skall definieras. Uppställda samband skall motiveras.			
	Skriv helst med blyertspenna!			
	Svaret ska framgå tydligt och vara förenklat			
	så långt som möjligt. Svara med enhet och			
	lämplig avrundning på tillämpade uppgifter.			
	Svara exakt på övri	ga uppgifter, om inte		

annat anges.

- 1. Beräkna
 - a) (2+3*i*)·(3-2*i*)
 - b) $\frac{2+3i}{3-2i}$
- 2. Polynomet $2z^3 4z^2 + 3z 1$ har ett nollställe z = 1. Bestäm övriga nollställen! **2 p**
- 3. Bestäm de z som uppfyller ekvationen |z-2i|=|z|. Illustrera dessa i det komplexa talplanet.
- 4. Funktionen f definieras som $f(x) = x^3$. Beräkna ett närmevärde till f(1,02) genom att approximera funktionen med dess tangent i punkten (1;1).
- 5. Bestäm alla lösningar till ekvationen $z^3 = i 1$. Svaret får ges på valfri form. **2 p**
- 6. För en aritmetisk talföljd gäller att det första talet är 4 och summan av de 10 första talen är 130. Vilket är det femte talet i denna talföljd?
- 7. Bestäm den lösning till differentialekvationen y'' + 2y' 3y = 0 som uppfyller villkoren $\begin{cases} y(0) = 0 \\ y'(0) = 4 \end{cases}$ 3 **p**
- 8. Beräkna volymen av den rotationskropp som uppkommer när den del av kurvan $y = 3 e^x$ som ligger i första kvadranten roterar kring *x*-axeln. 3 **p**
- 9. Beräkna $\int_1^2 \frac{\ln x}{x^2} dx$.
- 10. En krukmakare håller på att forma en massiv lerklump på en drejskiva. Lerklumpen har hela tiden formen av en rak cirkulär kon med spetsen uppåt, och med den konstanta volymen 800 π cm³. Vid ett tillfälle är konens radie 10 cm och ökar med 0,50 cm/s. Hur snabbt minskar höjden vid denna tidpunkt?
- 11. Det radioaktiva ämnet A sönderfaller till ett annat ämne B, som i sin tur sönderfaller till ett stabilt ämne. Den momentana sönderfallshastigheten av A är konstanten a gånger den momentana mängden av A. Den momentana sönderfallshastigheten av B är konstanten b gånger den momentana mängden av B. Vid ett tillfälle tillverkades ett preparat innehållande N_0 kärnor av ämnet A och inga kärnor av ämnet B. Löser man differentialekvationen för ämnet A får man att $x(t) = N_0 e^{-at}$ där x(t) betecknar antalet kärnor av ämnet A vid tidpunkten t. Mängden av B förändras både genom det egna sönderfallet och genom tillskott från sönderfallet av ämnet A. Bestäm en funktion som beskriver antalet kärnor av B som funktion av tiden!

2 p

Lösningsförslag

1. a) $(2+3i)\cdot(3-2i) = 2\cdot 3 - 2\cdot 2i + 3i\cdot 3 - 3i\cdot 2i = 6 - 4i + 9i - 6i^2 = 6 - 4i + 9i + 6 = 12 + 5i$.

b)
$$\frac{2+3i}{3-2i} = \frac{(2+3i)(3+2i)}{(3-2i)(3+2i)} = \frac{6+4i+9i-6}{3^2+2^2} = \frac{13i}{13} = i$$
.

Svar: a) 12+5*i*; b) *i*.

2. Enligt faktorsatsen är polynomet delbart med z - 1. Vi utför polynomdivisionen:

Kvoten är alltså $2z^2 - 2z + 1$. Vi söker nu nollställen till detta polynom:

$$z^{2} - z + \frac{1}{2} = 0$$
 \Rightarrow $z = \frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^{2} - \frac{1}{2}} = \frac{1}{2} \pm \frac{i}{2}$.

<u>Svar:</u> De övriga nollställena är $\frac{1+i}{2}$ och $\frac{1-i}{2}$.

3. Om man skriver z på formen z = a + bi så får man

$$|z-2i| = |z| \Leftrightarrow$$

$$|z-2i|^2 = |z|^2 \Leftrightarrow$$

$$a^2 + (b-2)^2 = (a^2 + b^2)$$

$$-4b + 4 = 0$$

$$b = 1$$

<u>Svar:</u> Alla komplexa tal som kan skrivas $z = a + 1 \cdot i$ där a är en godtycklig reell konstant.

Anm: Alternativt kan svaret uttryckas

Svar: Alla komplexa tal som uppfyller Im z = 1

4. Ekvationen för kurvans tangent i (1,1) ska alltså bestämmas.

$$f(x) = x^3 \implies f'(x) = 3x^2 \implies f'(1) = 3$$

Vi approximerar funktionen med dess tangent i (1;1) och kallar tangenten g(x)Tangentens ekvation blir y = 3x + m, där m bestäms genom att sätta in punkten (1;1):

$$1 = 3 \cdot 1 + m \Leftrightarrow m = -2$$

Tangentens ekvation är alltså: g(x) = 3x - 2

Approximativt funktionsvärde: $g(1,02) \approx 1,02^3 \approx 3 \cdot 1,02 - 2 = 1,06$

Svar:
$$f(1,02) \approx 1,06$$

5. Skriv båda leden på polär form.

Vänsterledet:

$$z = r(\cos v + i \sin v)$$
 \Rightarrow $z^3 = r^3(\cos 3v + i \sin 3v)$.

Högerledet:

$$i - 1 = \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$$

Att absolutbeloppen är lika i båda leden ger

$$r^3 = \sqrt{2} \Leftrightarrow r = \sqrt[6]{2}$$
.

Att argumenten är likvärdiga i båda leden ger

$$3v = \frac{3\pi}{4} + n \cdot 2\pi \Leftrightarrow v = \frac{\pi}{4} + \frac{n \cdot 2\pi}{3}$$
, *n* heltal.

Det är bara tre n-värden som ger olika z, t.ex. n = 0, 1 och 2.

6. Först bestäms a_{10} ur ekvationen $s_{10} = \frac{10(a_1 + a_{10})}{2}$, dvs. $130 = \frac{10(4 + a_{10})}{2}$. Vi löser ut $a_{10} = 22$.

Därefter bestäms differensen ur sambandet $a_{10} = a_1 + 9d$, dvs. 22 = 4 + 9d $\Leftrightarrow d = 2$. Slutligen beräknas $a_5 = a_1 + 4 \cdot d = 4 + 4 \cdot 2 = 12$.

<u>Svar:</u> $a_5 = 12$.

7. Karaktäristisk ekvation $m^2 + 2m - 3 = 0$ med lösningar $m = -1 \pm \sqrt{1^2 + 3} = -1 \pm 2$, dvs. $m_1 = 1$ och $m_2 = -3$. Allmän lösning $y = Ae^x + Be^{-3x} \Rightarrow y' = Ae^x - 3Be^{-3x}$. Randvillkoren ger

$$\begin{cases} A+B=0\\ A-3B=4 \end{cases}.$$

Övre ekvationen ger B = -A. Insättning i undre ekvationen ger $4A = 4 \Leftrightarrow A = 1$; B = -1.

Svar:
$$y = e^x - e^{-3x}$$
.

8. Skärningspunkten med y-axeln ges av
$$3 - e^x = 0 \Leftrightarrow x = \ln 3$$
. Skivmetoden ger

$$V = \pi \int_{0}^{\ln 3} (3 - e^{x})^{2} dx = \pi \int_{0}^{\ln 3} (9 - 6e^{x} + e^{2x}) dx =$$

$$\pi \left[9x - 6e^{x} + \frac{e^{2x}}{2} \right]_{0}^{\ln 3} =$$

$$\pi \left[9\ln 3 - 6\cdot 3 + \frac{3^{2}}{2} - \left(0 - 6 + \frac{1}{2}\right) \right] = \pi \left(9\ln 3 - 8\right).$$

Svar:
$$\pi(9\ln 3-8)$$

9.

$$\int_{1}^{2} \frac{\ln x}{x^{2}} dx = \left\{ \text{Partiell integration} \right\} = \left[-\frac{1}{x} \ln x \right]_{1}^{2} - \int_{1}^{2} \left(-\frac{1}{x} \cdot \frac{1}{x} \right) dx =$$

$$= -\frac{\ln 2}{2} - \left(-\frac{\ln 1}{1} \right) + \int_{1}^{2} \left(x^{-2} \right) dx = \left\{ \ln 1 = 0 \right\} = -\frac{\ln 2}{2} + \left[-\frac{1}{x} \right]_{1}^{2} =$$

$$-\frac{\ln 2}{2} + \left(-\frac{1}{2} - \left(-\frac{1}{1} \right) \right) = \frac{1 - \ln 2}{2}$$

Svar:
$$\frac{1-\ln 2}{2}$$
.

10. Den konstanta volymen ger
$$\frac{\pi r^2 h}{3} = 800\pi \iff h = \frac{2400}{r^2}$$
.

Derivering med kedjeregeln ger

$$\frac{dh}{dt} = \frac{dh}{dr} \cdot \frac{dr}{dt} = -\frac{4800}{r^3} \cdot \frac{dr}{dt} = -4.8 \cdot 0.50 = -2.4.$$

Svar: Höjden minskar med 2,4 cm/s.

11. Låt x vara antalet kärnor av A, y antalet kärnor av B och t tiden. Sönderfallsekvationen för A blir x' = -ax vilket med randvillkoret $x(0) = N_0$ ger lösningen $x(t) = N_0 e^{-at}$ [1] (Lösningen men inte differentialekvationen var given i uppgiftstexten. Man kan

antingen använda differentialekvationen eller den givna lösningen för att teckna en differentialekvation för B.)

Detta sönderfall ger tillskott till mängden B, som samtidigt minskar pga sitt sönderfall.

Mängden B ges därför av ekvationen

$$y' = ax - by . [2]$$

Insättning av [1] i [2] ger

$$y' = aN_0e^{-at} - by \implies y' + by = aN_0e^{-at}$$
. [3]

Detta är en inhomogen, linjär 1:a ordningens differentialekvation. Vi söker en partikulärlösning på formen

$$y_p = Ce^{-at} \Rightarrow y_p' = -aCe^{-at}$$
.

Insättning i [3] ger

$$-aCe^{-at} + bCe^{-at} = aN_0e^{-at} \Leftrightarrow C = \frac{aN_0}{b-a}.$$

Partikulärlösningen är alltså

$$y_p = \frac{aN_0}{b-a}e^{-at}.$$

Den homogena ekvationen $y_h' = -by_h$ har allmänna lösningen $y_h(t) = De^{-bt}$. Allmänna lösningen till [2] blir därmed

$$y(t) = y_p + y_h = \frac{aN_0}{b-a}e^{-at} + De^{-bt}$$
.

Randvillkoret y(0) = 0 ger

$$D = -\frac{aN_0}{b-a}.$$

Svar:
$$y(t) = \frac{aN_0\left(e^{-at} - e^{-bt}\right)}{b-a}$$
.

Rättningsmall

Generella riktlinjer för tentamensrättning

A. Varje beräkningsfel -1 poäng (Därefter fortsatt rättning enligt nya förutsättningar) B. Beräkningsfel; allvarliga och/eller leder till förenkling -2 poäng eller mer C. Prövning istället för generell metod - samtliga poäng D. Felaktiga antaganden/ansatser - samtliga poäng E. Antar numeriska värden - samtliga poäng F. Lösning svår att följa och/eller Svaret framgår inte tydligt -1 poäng eller (Vid flera svar väljs det minst gynnsamma. Svara antingen avrundat eller exakt, se nedan.) G. Matematiska symboler används felaktigt/saknas -1poäng eller mer Bl.a Om '=' saknas (t.ex. '=>' används istället) -1 poäng/tenta Om '=' används felaktigt (t.ex. istället för '=>') -1 poäng/tenta Teoretiska uppgifter: H. Avrundat svar -1 poäng/tenta Tillämpade uppgifter: I. Enhet saknas/fel -1 poäng/tenta J. Avrundningar i delberäkningar som ger fel svar -1 poäng/tenta K. Svar med felaktigt antal värdesiffror (±1 värdesiffra ok) -1 poäng/tenta L. Andra avrundningsfel -1 poäng/tenta -1 poäng/tenta M. Exakt svar

Uppgiftsspecifika rättningsanvisningar

1a. -

1b. -

2. Har med $z_3 = 1$ i svaret -0 p Formella fel av typen $z_3 = 1 \Rightarrow z - 1$ // Ställer upp polynomdivision, utan

	att på något sätt nämna sambandet mellan nollställe och faktor	-1p			
3.	Bara figur utan motivering Geometrisk motivering "z ligger lika långt från 0 som från 2i"	-2 p OK			
	Korrekt beräkning eller geometrisk motivering, men svaret bara illustrerat				
	i figur och ej givet på algebraisk form	-0p denna gång			
4. 5.	Tangentens ekvation rätt Felaktig lösning av $r^3 = \sqrt{2}$ Varje saknad / felaktig lösning	+1p -1 p -1p			
6.	Korrekt differens $d = 2$, sedan felet $a_5 = 4 + 5d$	-1 p			
7.	Fel vid insättning av randvillkor Helt felaktig allmän lösning, rätt tillämpning av randvillkor	-1 p -3 p			
8.	Fel gränser Fel integrand Fel primitiv funktion om inte enkelt räknefel Svarar med $\pi \left(\ln 3^9 - 8 \right)$ eller liknande	-1 p -3 p -3 p OK			
9.	Integreringsfel	-2p			
	Har med ln 1 i svaret	-1 p			
	Svarar med a.e.	-1p			
10.	Deriveringsfel	-2p			
	Svarar med -2,4 cm/s	-1 p			
	Teckenfel i svaret, t.ex. $\frac{dh}{dt} = +2,4$	-1 p			
11.	Ekvationen $y' = aN_0e^{-at} - by$ korrekt Ingen eller felaktig tillämpning av randvillkoret $y(0) = 0$	+1 p -1 p			