Theorie des Algorithmischen Lernens Sommersemester 2006

Teil 5: Informationsextraktion

Version 1.1

Gliederung der LV

Teil 1: Motivation

- 1. Was ist Lernen
- 2. Das Szenario der Induktiven Inf erenz
- 3. Natürlichkeitsanforderungen

Teil 2: Lernen formaler Sprachen

- 1. Grundlegende Begriffe und Erkennungstypen
- 2. Die Rolle des Hypothesenraums
- 3. Lernen von Patternsprachen
- 4. Inkrementelles Lernen

Teil 3: Lernen endlicher Automaten

Teil 4: Lernen berechenbarer Funktionen

- 1. Grundlegende Begriffe und Erkennungstypen
- 2. Reflexion

Teil 5: Informationsextraktion

- 1. Island Wrappers
- 2. Query Scenarios

Information is embedded in structure

Gliederung der LV

Teil 1: Motivation

- 1. Was ist Lernen
- 2. Das Szenario der Induktiven Inf erenz
- 3. Natürlichkeitsanforderungen

Teil 2: Lernen formaler Sprachen

- 1. Grundlegende Begriffe und Erkennungstypen
- 2. Die Rolle des Hypothesenraums
- 3. Lernen von Patternsprachen
- 4. Inkrementelles Lernen

Teil 3: Lernen endlicher Automaten

Teil 4: Lernen berechenbarer Funktionen

- 1. Grundlegende Begriffe und Erkennungstypen
- 2. Reflexion

Teil 5: Informationsextraktion

- 1. Island Wrappers
- 2. Query Scenarios

Sometimes we can recognize the content by its context

```
href="http://www.tgreurope.com/main/gotocompany/11307307302347372307350390"
                               fontsize="+1">L' Air Liquide GmbH</A><FONT
size=1>  (Dü sseldorf)     </FONT> < BR> </LI> </BLOCKQUOTE> </TD> </
TR>
                               <TR>
                               <TD align=left>
                               <BLOCKQUOTE>
                               < T_1 T > < A
href="http://www.tgreurope.com/main/gotocompany/12309309317335386346340304"
                               fontsize="+1">Messer Griesheim GmbH
Industriegase Krefeld</A><FONT
size=1>  (Krefeld)  </FONT><BR></LI></BLOCKQUOTE></TD></TR>
                               <TR>
                               <TD align=left>
                               <BLOCKQUOTE>
                               <1.T><A
href="http://www.tgreurope.com/main/gotocompany/13307300307355305339354390"
                               fontsize="+1">Tyczka Industrie-Gase
                               GmbH</A><FONT
```

Sometimes we can recognize the content by its context

```
href="http://www.tgreurope.com/main/gotocompany/11307307302347372307350390"
                                fontsize="+1">L' Air Liquide GmbH</A><FONT
size=1>  (Düsseldorf)  </FONT><BR></LI></BLOCKQUOTE></TD></
TR>
                                <TR>
                               <TD align=left>
                                <BLOCKQUOTE>
                                <LI><A
href="http://www.tgreurope.com/main/gotocompany/12309309317335386346340304"
                                fontsize="+1">Messer Griesheim GmbH
Industriegase Krefeld</A><FONT
size=1>  (Krefeld)     </FONT> <BR> </LI> </BLOCKQUOTE> </TD> </TR>
                               <TR>
                               <TD align=left>
                               <BLOCKQUOTE>
                                < LI > < A
href="http://www.tgreurope.com/main/gotocompany/13307300307355305339354390"
                                fontsize="+1">Tyczka Industrie-Gase
                                GmbH</A><FONT
```

IE and formal languages

- documents are strings over a certain alphabet
- information is contained in the documents
- can view
 - documents as well as
 - contained information as well as
 - the context
 - as formal languages

Island Wrappers

- in general: delimiters not unique
 - → Delimiter Languages
- *n*: arity of the island wrapper
 - $\sim 2n$ delimiter languages

Definition 5.1:

An *island wrapper* of arity n is a 2n tupel of formal languages $(L_1, R_1, \ldots, L_n, R_n)$.

Formal Model

Definition 5.2:

$$\Sigma_L^* = \Sigma^* \setminus (\Sigma^* \circ L \circ \Sigma^*)$$

$$\Sigma_L^+ = \Sigma_L^* \setminus \{\varepsilon\}.$$

Definition 5.3:

Let $n \ge 1$, let $L_1, R_1, \ldots, L_n, R_n$ be delimiter languages, and let $W = (L_1, R_1, \ldots, L_n, R_n)$ be the corresponding island wrapper.

Then, the island wrapper W defines the following mapping S_W from documents to n-ary relations: Given any document d, we let $S_W(d)$ be the set of all n-tuples $\langle v_1,\ldots,v_n\rangle\in (\Sigma^+)^n$ for which there are

- $x_0 \in \Sigma^*, \dots, x_n \in \Sigma^*,$
- $l_1 \in L_1, \ldots, l_n \in L_n$ and $r_1 \in R_1, \ldots, r_n \in R_n$

such that:

- 1. $d = x_0 l_1 v_1 r_1 \dots l_n v_n r_n x_n$.
- 2. for all $i \in \{1, \ldots, n\}$, v_i does not contain a substring belonging to R_i , i.e., $v_i \in \Sigma_{R_i}^+$.
- 3. for all $i \in \{1, \ldots, n-1\}$, x_i does not contain a substring belonging to L_{i+1} , i.e., $x_i \in \Sigma_{L_{i+1}}^*$.

conditions 2 and 3: ensure that that the extracted strings are as short as possible and that the distance between them is as small as possible.

without condition 2:

without condition 3:

Learning Scenario for Island Wrappers

remember:

available information / examples:

- ullet user marks interesting n-tuple $\langle v_1,\ldots,v_n \rangle$ in a document d
 - marks the corresponding starting and end positions
- user samples the document into 2n+1 consecutive text parts $u_0,v_1,u_1,\ldots,v_n,u_n$.
 - the string $u_0v_1u_1\cdots v_nu_n$ equals d
- such a 2n+1-tuple $\langle u_0,v_1,u_1,\ldots,v_n,u_n\rangle$ is said to be an n-marked document

Definition 5.4:

Let $W=(L_1,R_1,\ldots,L_n,R_n)$ be an island wrapper and let $m=\langle u_0,v_1,u_1,\ldots,v_n,u_n\rangle$ be an n-marked document.

Then, m is said to be an **example** for W if

- 1. $u_0 \in \Sigma^* \circ L_1$ and $u_n \in R_n \circ \Sigma^*$.
- 2. for all $i \in \{1, \ldots, n\}$, $v_i \in \Sigma_{R_i}^+$.
- 3. for all $i \in \{1, ..., n-1\}$, $u_i \in R_i \circ \Sigma_{L_{i+1}}^* \circ L_{i+1}$.

Encoding: Represent $\langle u_0, v_1, u_1, \dots, v_n, u_n \rangle$ as $u_0 \# v_1 \# u_1 \# \dots \# v_n \# u_n$ with $\# \notin \Sigma$

Learning of complete wrappers

IW(C): set of all island wrappers with delimiter languages from C

Theorem 5.1:

 $\mathit{IW}(\mathcal{IC}) \in \mathit{LimInf}$

Idea: identifiction by enumeration

Theorem 5.2:

 $IW(IC) \notin LimTxt$

$$L_1 = \{a\}, L_2 = \{a\}, R_2 = \{a\}$$

 $R_1 = \{a^n \mid n > 0\} \text{ or } \{a\} \text{ or } \{a, a^2\} \text{ or } \{a, a^2, a^3\} \dots$

Learning of complete wrappers

 $\sum^{\leq k}$: set of all words over Σ of length $\leq k$

Theorem 5.3:

 $\mathit{IW}(\wp(\Sigma^{\leq k})) \in \mathit{LIMTxt} \text{ for all } k \in \mathbb{N}$

Proof.

Observation: Learning an Island Wrapper from text can be decomposed!

Problem A: learn L_1 from Σ^*L_1

Problem B: learn R_n from $\Sigma_{R_n}^+\{\#\}R_n\Sigma^*$

Problem C: learn R_m and L_{m+1} from $\Sigma_{R_m}^+\{\#\}R_m\Sigma_{L_{m+1}}^+L_{m+1}$

Learning of complete wrappers

The IIM M_A for learning problems of type A:

IIM M_A : On input $S=u_0,\ldots,u_m$ do the following:

Set $h=\emptyset$. Determine the set E of all non-empty suffixes of strings in S. For all strings $e\in E$ check whether or not, for all $a\in \Sigma$, $u=a\circ e$ for some $u\in S$. Let T be the set of all strings e passing this test.

While $T \neq \emptyset$ do:

Determine a shortest string e in T. Set $h = h \cup \{e\}$ and $T = T \setminus T_e$, where T_e contains all strings in T with the suffix e.

Output h.

IIM M_B can be obtained from M_A by replacing everywhere the term suffix by prefix and ignoring the part before the # in the examples

IIM M_C : On input $S = u_0 \# w_0, \ldots, u_m \# w_m$ do the following:

Let B and E be the set of all non-empty prefixes and suffixes of the strings w_0,\ldots,w_m .

Let H be the collection of all sets $h\subseteq (B,E)$ such that no string in h is longer than k. Search for an $h\in H$ such that, for every $u\in S$ it holds $u\in \Sigma_B^+\{\#\}B\Sigma_E^*E$. If such an h is found, let h' be the lexicographically first of them. Otherwise, set $h'=(\emptyset,\emptyset)$. Output h'.

Question: What is the relation between the learning tasks?

Definition 5.5:

- \bullet $T_1(L) = \Sigma^* \circ L$.
- $T_2(L) = \Sigma_L^+ \circ \{\#\} \circ L \circ \Sigma^*$.
- $T_3(L, L') = \Sigma_L^+ \circ \{\#\} \circ L \circ \Sigma_{L'}^* \circ L'.$

Let \mathcal{L} be an indexable language class. For all $i \in \{0, \dots, 3\}$, the learning problem $\mathit{LP}_i(\mathcal{L})$ can be solved iff $T_i(\mathcal{L}) \in \mathit{LimTxt}$, where

$$T_0(\mathcal{L}) = \mathcal{L}$$
 (reference problem),

$$T_1(\mathcal{L}) = \{ T_1(L) \mid L \in \mathcal{L} \},\$$

$$T_2(\mathcal{L}) = \{T_2(L) \mid L \in \mathcal{L}\},$$
 and

$$T_3(\mathcal{L}) = \{ T_3(L, L') \mid L, L' \in \mathcal{L} \}.$$

Theorem 5.4:

Let $i, j \in \{0, \dots, 3\}$ with $i \neq j$. Then, there is an indexable class \mathcal{L} such that assertions

- 1. It is possible to solve problem $LP_i(\mathcal{L})$.
- 2. it is impossible to solve problem $LP_j(\mathcal{L})$.

Consequently, there are indexable classes ${\mathcal L}$ such that

- 1. knowing that there is a solution for one of the learning problems does not help to solve the other ones and, vice versa,
- 2. knowing that some learning problem cannot be solved does not mean that one cannot solve the other ones.

Proof.

We only discuss some cases.

 \mathcal{L}_A : collection of the following languages over $\Sigma = \{a, b, c\}$: For all $n \in \mathbb{N}$, let $L_0 = \{a^m b \mid m \ge 1\} \cup \{c\}$ and $L_{n+1} = \{a^m b \mid 1 \le m \le n+1\} \cup \{c, ca\}$.

 $T_0(\mathcal{L}_A) \in \mathit{LimTxt}$: trivial

 $T_1(\mathcal{L}_A) \in \mathit{LimTxt}$

IIM M: On input w_0,\ldots,w_m , check whether some of the strings w_0,\ldots,w_m ends with a. If no such string occurs, output a description for $\Sigma^* \circ L_0$. Otherwise, return a description for $\Sigma^* \circ L_1$.

Reason: $\Sigma^* \circ L_1 = \Sigma^* \circ L_2 = \Sigma^* \circ L_3 = \dots$

$T_2(\mathcal{L}_A) \notin \mathsf{LimTxt}$.

assume the contrary, i.e., let M be an IIM that learns $T_2(\mathcal{L}_A)$ in the limit from text.

- since $\Sigma_{L_i}^+ = \Sigma_{L_j}^+$ for any $i, j \in \mathbb{N}$, one can easily transform M into an IIM M' that LimTxt -identifies the indexable class $\{L \circ \Sigma^* \mid L \in \mathcal{L}_A\}$.
- hence, there is a finite telltale set $S_0 \subseteq L_0 \circ \Sigma^*$ such that $S_0 \subseteq L \circ \Sigma^*$ implies $L \circ \Sigma^* \not\subset L_0 \circ \Sigma^*$, for any $L \in \mathcal{L}_A$.
- \bullet for the ease of argumentation assume that some string in S_0 has a prefix of form $a^{n'}b$
- let n be the maximal index n'
- ullet clearly, $L_n \circ \Sigma^* \subset L_0 \circ \Sigma^*$
- on the other hand, $S_0 \subseteq L_n \circ \Sigma^*$.
- ullet this contradicts our assumptions that S_0 serves as a finite tell-tale set for L_0

$T_3(\mathcal{L}_A) \in \mathit{LimTxt}$: Exercise

```
\mathcal{L}_{B}: collection of the following languages L_{n} over \Sigma = \{a, b\}, where, for all n \in \mathbb{N}, L_{0} = \{ab^{m}a \mid m \geq 1\} and L_{n+1} = L_{0} \setminus \{ab^{n+1}a\}.
```

$$T_0(\mathcal{L}_B) \notin \textit{LimTxt}$$
: trivial

$$T_1(\mathcal{L}_B) \notin \textit{LimTxt}$$
: Exercise

Observation:

- for all $n\in\mathbb{N}$, $\Sigma_{L_{n+1}}^+$ contains exactly one string that belongs to L_0 , namely the string $ab^{n+1}a$.
- ullet this allows one to distinguish the languages $T_2(L_0)$ and $T_2(L_{n+1})$ as well as $T_3(L_0)$ and $T_3(L_{n+1})$

$$T_2(\mathcal{L}_B) \in \mathit{LimTxt}$$
.

$$T_3(\mathcal{L}_B) \in \mathit{LimTxt}$$
.

qed

Gliederung der LV

Teil 1: Motivation

- 1. Was ist Lernen
- 2. Das Szenario der Induktiven Inf erenz
- 3. Natürlichkeitsanforderungen

Teil 2: Lernen formaler Sprachen

- 1. Grundlegende Begriffe und Erkennungstypen
- 2. Die Rolle des Hypothesenraums
- 3. Lernen von Patternsprachen
- 4. Inkrementelles Lernen

Teil 3: Lernen endlicher Automaten

Teil 4: Lernen berechenbarer Funktionen

- 1. Grundlegende Begriffe und Erkennungstypen
- 2. Reflexion

Teil 5: Informationsextraktion

- 1. Island Wrappers
- 2. Query Scenarios

The LExIKON Interaction Scenario

Prototypical Questions

one may/may not expect that most powerful learning algorithms have one of the following features ...

- all wrappers constructed in the learning phase are consistent with the information they are built upon
- all wrappers constructed in the learning phase are applicable to all possible documents
- one can see whether or not the wrapper most recently constructed is a correct one, i.e. that the learning phase is already finished
- explicit acces to the information provided in the previous steps of the learning phase is not needed

5.1 Our Model: IE by CQ

two players query learner M and user U

purpose U wants to exploit the capabilities of M in order to create a particular wrapper

internal actions of the learner M synthesizes a wrapper based on all information seen so far

internal actions of the user U checks whether or not the synthesized wrapper behaves on the recent document as expected

Technicalities

Notions and Notations

- By convention, $\varphi_0(x) = 0$ for all $x \in \mathbb{N}$.
- $(F_i)_{i\in\mathbb{N}}$ is the canonical enumeration of all finite subsets of \mathbb{N} , where $F_0=\emptyset$.

Wrappers

- wrapper: function that, given a document, returns a finite set of information pieces contained in the document.
- formal: use natural numbers to describe both documents as well as the information pieces extracted.
- ullet a wrapper can be seen as a computable mapping from ${\mathbb N}$ to $\wp({\mathbb N})$

More formally:

- ullet wrapper: computable mapping f from ${\mathbb N}$ to ${\mathbb N}$, where
 - for all $x \in \mathbb{N}$ with $f(x) \downarrow$, f(x) is interpreted to denote the finite set $F_{f(x)}$.
 - If f(x)=0, the wrapper f fails to extract anything of interest from the document x

(since $F_0 = \emptyset$).

Interaction Sequence

- system starts with a default wrapper $h_0=0$ $(\varphi_0(x)=0$ for all x and $F_0=\emptyset\to h_0$ does not extract any data from any document)
- the user selects an initial document d and presents d to the system.
- 1. system applies the most recently stored wrapper h_i to the current document x_i ($x_0 = d$)
- 2. Let $F_{h_i(x_i)}$ be the set of data that has have been extracted from x_i by the wrapper h_i .
 - we demand that the wrapper h_i is defined on input x_i . Otherwise, the interaction between the system and the user will definitely crash.
- 3. the *consistency query* $q_i = (x_i, F_{h_i(x_i)})$ is presented to the user for evaluation.
- 4. is $F_{h_i(x_i)}$ correct (i.e., $F_{h_i(x_i)}$ contains only interesting data) and complete (i.e., $F_{h_i(x_i)}$ contains all interesting data)?
 - if yes: signal that wrapper h_i is accepted for the current document x_i :
 - select another document d^\prime subject to further interrogation
 - return the accepting reply $r_i = d'$
 - otherwise: select either
 - a data item n_i which was erroneously extracted from x_i (i.e., a negative example) or
 - a data item p_i which is of interest in x_i and which was not extracted (i.e., a positive example).
 - i.e. return the *rejecting reply* $r_i = (n_i, -)$ or $r_i = (p_i, +)$.
- 5. system: generates wrapper h_{i+1} (new hypothesis) based on all previous interactions, the last consistency query q_i , and the corresponding reply r_i .
- 6. Goto 1.

Interaction Sequence

Definition 5.6:

Let $d \in \mathbb{N}$ and $I = ((q_i, r_i))_{i \in \mathbb{N}}$ be an infinite sequence.

I is said to be an *interaction sequence* between a query learner M and a user U with respect to a target wrapper f iff for every $i \in \mathbb{N}$ the following conditions hold:

- 1. $q_i = (x_i, E_i)$, where
 - $x_0 = d$ and $E_0 = \emptyset$.
 - $x_{i+1} = r_i$, if r_i is an accepting reply.
 - $x_{i+1} = x_i$, if r_i is a rejecting reply.
 - $\bullet E_{i+1} = F_{\varphi_{M(I_i)}(x_{i+1})}.*$
- 2. If $F_{f(x_i)} = E_i$, then r_i is an accepting reply, i.e., $r_i \in \mathbb{N}$.
- 3. If $F_{f(x_i)} \neq E_i$, then r_i is a rejecting reply, i.e., it holds either $r_i = (n_i, -)$ with $n_i \in E_i \setminus F_{f(x_i)}$ or $r_i = (p_i, +)$ with $p_i \in F_{f(x_i)} \setminus E_i$.

^{*} It is assumed that $\varphi_{M(I_i)}(x_{i+1}) \downarrow$, i.e. M's most recent hypothesis, i.e. the wrapper $w = \varphi_{M(I_i)}$ has to be applicable to the most recent document x_{i+1} .

Interaction Sequence

- interaction sequence: pairs of queries and responses $(q_0, r_0), (q_1, r_1), (q_2, r_2), \dots$
- (hidden) sequence of hypotheses

$$h_0 = M((q_0, r_0)), h_1 = M((q_0, r_0), (q_1, r_1)), h_2 = M((q_0, r_0), (q_1, r_1), (q_2, r_2)), \dots$$

Fairness Requirements

• ensure that the learner does not get stuck in a single document

Definition 5.7:

A query learner M is said to be *open-minded* with respect to $\mathcal L$ iff

- ullet for all users U, all wrappers $f\in\mathcal{L}$, and all interaction sequences $I=((q_i,r_i))_{i\in\mathbb{N}}$ between M and U with respect to f
- ullet there are infinitely many $i\in\mathbb{N}$ such that r_i is an accepting reply.
- ullet if M is not open-minded, the user might not get the opportunity to inform the system adequately about her expectations

Fairness Requirements

 a query learner can only be successful in case when the user illustrates her intentions on various different documents

Definition 5.8:

A user U is said to be *co-operative* with respect to $\mathcal L$ iff

- ullet for all open-minded query learners M, for all wrappers $f\in\mathcal{L}$, all interaction sequences $I=((q_i,r_i))_{i\in\mathbb{N}}$ between M and U with respect to f, and all $x\in\mathbb{N}$
- there is an accepting reply r_i with $r_i = x$.

LIMCQ

Definition 5.9:

Let $\mathcal{L}\subseteq\mathcal{R}$ and let M be an *open-minded* query learner. $\mathcal{L}\subseteq\mathit{LIMCQ}(M)$ iff

- for all *co-operative* users U, all wrappers $f \in \mathcal{L}$, and all interaction sequences I between M and U with respect to f
- there is a $j \in \mathbb{N}$ with $\varphi_j = f$ such that, for almost all $n \in \mathbb{N}$, $j = h_{n+1} = M(I_n)$.

By LIMCQ we denote the collection of all $\mathcal{L}' \subseteq \mathcal{R}$ for which there is an open-minded query learner M' such that $\mathcal{L}' \subseteq LIMCQ(M')$.

FINCQ, CONSCQ and the like

<u>Definition 5.10</u>: $\mathcal{L} \subseteq \mathit{ET}(M)(\mathit{ET} \in \{\mathit{FINCQ}, \mathit{TOTALCQ}, \mathit{CONSCQ}, \mathit{ITCQ}\})$ iff there is an open-minded query learner M with $\mathcal{L} \subseteq \mathit{LIMCQ}(M)$ such that

• for all co-operative users U, U', for all $f, f' \in \mathcal{L}$, all interaction sequences I and I' between M and U with respect to f resp. between M and U' with respect to f', and all $n, m \in \mathbb{N}$:

FINCQ	$M(I_n)=M(I_{n+1})$ implies $arphi_{M(I_n)}=f.$
TOTALCQ	$\varphi_{M(I_n)} \in \mathcal{R}.$
CONSCQ	For all $(x,y)\in I_n^+$ and all $(x,y')\in I_n^-$, it holds $y\in F_{\varphi_{M(I_n)}(x)}$ and
	$y' \notin F_{\varphi_{M(I_n)}(x)}.$
ITCQ	$M(I_n) \ = \ M(I_m')$ and $I(n+1) \ = \ I'(m+1)$ imply $M(I_{n+1}) \ = \ I'(m+1)$
	$M(I'_{m+1}).$

where, for any prefix σ of an interaction sequence

- ullet σ^+ : set of all pairs (x,y) such that there is a consistency query (x,E) in σ that
 - receives the rejecting reply (y,+) or receives an accepting reply and $y\in E$
- ullet σ^- : set of all pairs (x,y') such that there is a consistency query (x,E) in σ that
 - receives the rejecting reply (y',-) or receives an accepting reply and $y' \notin E$

- LIMCQ far below in large hierarchy of identification types
 - IE is quite ambitious and doomed to fail in situations where other more theoretical learning approaches still work
- coincides with well-known identification type TOTAL
 - power of IE is well-understood
- IE can always be consistent and can return fully defined wrappers that work on every document
- IE can not always work incrementally by taking wrappers developed before and just presenting new samples
- query learner can not always decide when the work is done

Theorem 5.5:

For all $ET \in \{FIN, TOTAL, CONS, LIM\}$: $ETCQ \subseteq ET^{arb}$.

Proof.

let M be a query learner, let $ET \in \{FIN, TOTAL, CONS, LIM\}$, let $f \in ETCQ(M)$, and let $((x_j, f(x_j)))_{j \in \mathbb{N}}$ be any representation of f

define IIM M' such that $ETCQ(M) \subseteq ET^{arb}(M')$:

ullet main idea: M' uses the information which it receives about the graph of f in order to interact with M on behalf of a user. Then, in case where M's actual consistency query will receive an accepting reply, M' takes over the actual hypothesis generated by M.

- Initially, for the input $(x_0, f(x_0))$, M' presents x_0 as initial document to M, and the first round of the interaction between M' and M starts.
- In general, the (i+1)-st round of the interaction between M' and M can be described as follows.
 - Let (x_i, E_i) be the actual consistency query posed by M. (Initially: (x_0, \emptyset))
 - M' checks whether or not E_i equals $F_{f(x_i)}$.
 - * If not: M' selects the least element z from the symmetrical difference of E_i and $F_{f(x_i)}$ and returns the counterexample (z,b(z)). $(b(z)=+, \text{ if } z\in F_{f(x_i)}\setminus E_i \text{ and } b(z)=-, \text{ if } z\in E_i\setminus F_{f(x_i)}.)$ In addition, M' and M continue the (i+1)-st round of their interaction.
 - * Otherwise, the actual round is finished and M' takes over M's actual hypothesis. Moreover, M' answers M's last consistency query with the accepting reply x_{i+1} and the next round of the interaction between M' and M starts.

Theorem 5.6:

 $\mathit{FIN}^{arb} \subseteq \mathit{FINCQ}.$

Proof.

- If a consistency query (x_i, E_i) receives an accepting response, one knows for sure that $f(x_i)$ equals y_i , where y_i is the unique index with $F_{y_i} = E_i$.
 - notation: $\mathit{content}(\tau)$ is the set of all pairs (x, f(x)) from the graph of f that can be determined according to the accepting responses in the interaction sequence τ

Let an IIM M be given and let $f \in \mathit{FIN}^{arb}(M)$. The query learner M' works as follows:

- Let τ be the most recent initial segment of the resulting interaction sequence between M and U with respect to f. (* Initially, τ is empty. *) M' arranges all elements in $content(\tau)$ in lexicographical order, let σ be the resulting sequence. Then, M' simulates M when fed σ .
- If M outputs a final hypothesis, say j, M' generates the hypothesis j. Past that point, M' will never change its mind and will formulate all consistency queries with respect to φ_j .
- If M does not output a final hypothesis, M' starts a new interaction cycle with U. Let x_i be either the document that was initially presented or the document that M' received as its last accepting response. Informally speaking, in order to find $f(x_i)$, M' subsequently asks the consistency queries $(x_i, F_0), (x_i, F_1), \ldots$ until it receives an accepting reply. Obviously, this happens, if M' queries $(x_i, F_{f(x_i)})$. At this point, the actual interaction cycle between M' and U is finished and M' continues as described above, i.e., M' determines σ based on the longer initial segment of the interaction sequence.

Theorem 5.7:

 $TOTAL^{arb} \subseteq TOTALCQ$.

Proof.

analogously to last proof

Theorem 5.8:

 $LIMCQ \subseteq TOTALCQ$.

Proof.

Let M be an open-minded query learner and let τ be an initial segment of any interaction sequence.

Notations:

- τ^l is the last element of τ and τ^{-1} is the initial segment of τ without the last element τ^l .
- we fix some effective enumeration $(\rho_i)_{i\in\mathbb{N}}$ of all non-empty finite initial segments of all possible interaction sequences which end with a query q that received an accepting reply $r\in\mathbb{N}$.
- $\#\tau$: least index of τ in this enumeration.
- Let $i \in \mathbb{N}$. We call ρ_i a *candidate stabilizing segment* for τ iff
 - 1. $content(\rho_i) \subseteq content(\tau)$,
 - 2. $M(\rho_i^{-1}) = M(\rho_i)$, and
 - 3. $M(\rho_j) = M(\rho_i^{-1})$ for all ρ_j with $j \leq \#\tau$ that meet $content(\rho_j) \subseteq content(\tau)$ and that have the prefix ρ_i^{-1} .

Let τ be the most recent initial segment of the interaction sequence between M' and user U and x be the most recent document.

M' searches for the least index $i \leq \#\tau$ such that ρ_i is a candidate stabilizing segment for τ .

Case A. No such index is found.

Now, M' simply generates an index j as auxiliary hypothesis such that φ_j is a total function that meets $\varphi_j(x) = \varphi_{M(\tau)}(x)$. $(\varphi_{M(\tau)}(x)$ has to be defined.)

Case B. Otherwise.

M determines an index of a total function as follows. Let $ho_i^l=(q,r)$.

$$(\varphi_{M(\rho_i^{-1}\diamond(q,x))}(x) \text{ and } \varphi_{M(\tau)}(x) \text{ have to be defined.})$$

Subcase B1.
$$\varphi_{M(\rho_i^{-1} \diamond (q,x))}(x) = \varphi_{M(\tau)}(x)$$
.

M determines an index k of a function meeting $\varphi_k(z)=\varphi_{M(\rho_i^{-1}\diamond(q,z))}(z)$ for all $z\in\mathbb{N}$.

 $(M(
ho_i^{-1}\diamond(q,z))$ is defined for all $z\in\mathbb{N}$, since ho_i ends with an accepting reply.)

Subcase B2.
$$\varphi_{M(\rho_i^{-1} \diamond (q,x))}(x) \neq \varphi_{M(\tau)}(x)$$
.

 ${\cal M}$ generates an index j of a total function as in Case A.

Verification:

Let $f \in \mathit{LIMCQ}(M)$, let I be the resulting interaction sequence between M and U w.r.t. f.

Have to show that M' is an open-minded query learner with $f \in \mathit{TOTALCQ}(M')$:

- 1. M^{\prime} obviously outputs exclusively indices of total functions
- 2. M' is an open-minded query learner:

Let x be the most recent document. By definition, it is guaranteed that the most recent hypotheses of M and M''s yield the same output on document x.

 \leadsto interaction sequence I equals the corresponding interaction sequence between M and U (although M' may generate hypotheses that are different from that ones produced by M).

M is an open-minded learner $\leadsto M'$ is open-minded, too

3. M' learns as required:

 $f \in \mathit{LIMCQ}(M) \leadsto$ there is a *locking interaction sequence* σ of M for f

• i.e., $\varphi_{M(\sigma^{-1})}=f$ and for all interaction sequences I' of M and U with respect to f and all $n\in\mathbb{N}$, we have that $M(I'_n)=M(\sigma)$ provided that σ is an initial segment of I'_n .

Let ρ_i be the least (w.r.t. $(\rho_i)_{i\in\mathbb{N}}$) locking interaction sequence of M for f that ends with an accepting reply.

- ullet I equals an interaction sequence between M and U w.r.t. $f \leadsto M$ has to stabilize on I.
- M' is open-minded \leadsto there is an n such that $\mathit{content}(\rho_i) \subseteq \mathit{content}(I_n)$ and M outputs its final hypothesis when fed I_n .
- $\bullet \leadsto$ past this point M' always forms its actual hypothesis according to Subcase B1
- M stabilizes on I to $M(I_n)$, $\varphi_{M(I_n)}=f$, and $\varphi_{M(\rho_i^{-1})}=f \leadsto \varphi_{M'(I_n)}=f$.

Literatur:

- [6] G. Grieser & S. Lange: Learning Approaches to Wrapper Induction. In: Russell & Kolen (eds.), Proc. 14th International FLAIRS Conference, pp. 249–253, AAAI-Press 2001.
- [7] G. Grieser & K.P. Jantke & S. Lange: Consistency Queries in Information Extraction. *In: Cesa-Bianchi & Numao & Reischuk (eds.), Proc. 13th International Conference on Algorithmic Learning Theory*, pp. 173–187, Springer-Verlag 2002.

Changelog

- V1.1:
 - Folie 15: last line changed
 - Folie 27: request → reply