1. 디자인 특허 데이터 기반이미지 유사도 분석 결과 발표

2022.03.25

목차

Siamese Neural Network

Vgg19 network

Texture Analysis

전문가 자문 의견

• 입력으로 들어온 2장의 그림의 유사도를 출력하는 Siamese Neural Network 를 학습시키고, 특허로 등록되어 있는 패턴들과의 유사도를 계산

- 특허 이미지셋은 특허를 받을 만한 고유한 특징이 있는 패턴
- 다이텍의 이미지셋은 독특한 패턴인지 특허를 받은 패턴과 유사한 패턴인지에 대한 라벨이 없으므로, 테스트 용도로 적합하지 않음
- 결국 특허 이미지셋을 분할하여 학습과 테스트를 진행해야 함
- 평가 방법은 테스트셋으로 선택된 각각의 이미지들을 고유의 클래스로 생각하고 그 이미지의 다른 부분을 crop한 부분들을 같은 클래스로 분류하고 다른 이미지의 부분들은 다른 클래스로 분류하는지 평가해야 함

Vgg19 network

Train image

Test image

Vgg19 network

Test image

GLRLM(Grey-Level Run-Length Matrix)

Input: 이미지, 각도

Output : GLRLM

Features of GLRLM

각 방향 (0°,45°,90°,135°)에 대하여 만든 GLRLM의 feature들을 구한 후 평균을 사용함

수식	이름
$\frac{1}{n_r} \sum_{i=1}^{M} \sum_{j=1}^{N} \frac{P(i,j)}{j^2}$	Short Run Emphasis
$\frac{1}{n_r} \sum_{i=1}^{M} \sum_{j=1}^{N} P(i,j) \cdot j^2$	Long Run Emphasis
$\frac{1}{n_r} \sum_{i=1}^{M} \sum_{j=1}^{N} \frac{P(i,j)}{i^2}$	Low Gray-Level Run Emphasis
$\frac{\frac{1}{n_r} \sum_{i=1}^{M} \sum_{j=1}^{N} P(i,j) \cdot i^2}{M}$	High Gray-Level Run Emphasis
$\frac{1}{n_r} \sum_{i=1}^{M} \sum_{j=1}^{N} \frac{P(i,j)}{i^2 \cdot j^2}$	Short Run Low Gray-Level Run Emphasis
$\frac{1}{n_r} \sum_{i=1}^{M} \sum_{j=1}^{N} \frac{P(i,j) \cdot i^2}{j^2}$	Short Run High Gray-Level Run Emphasis
$\frac{\frac{1}{n_r} \sum_{i=1}^{M} \sum_{j=1}^{N} \frac{P(i,j) \cdot j^2}{i^2}}{\frac{1}{n_r} \sum_{i=1}^{M} \sum_{j=1}^{N} \frac{P(i,j) \cdot j^2}{i^2}}$	Long Run Low Gray-Level Run Emphasis
$\frac{1}{n_r} \sum_{i=1}^{M} \sum_{j=1}^{N} P(i,j) \cdot i^2 \cdot j^2$	Long Run High Gray-Level Run Emphasis
$\frac{1}{n_r} \sum_{j=1}^{N} (\sum_{i=1}^{M} p(i,j))^2$	Run Length Non-uniformity
$\frac{1}{n_r} \sum_{i=1}^{M} (\sum_{j=1}^{N} p(i,j))^2$	Gray-Level Non-uniformity
$\frac{n_r}{n_p}$	Run Percentage

RGB로 이루어지지 않아 전처리 대상에서 제외된 파일

Train image : 각 이미지를 RGB층으로 나눈 후 각 층 별로 feature를 계산

Test image : 각 이미지를 RGB층으로 나눈 후 각 층 별로 feature를 계산

Train과 test 사이의 거리 계산

Train image

Test image

Data preprocessing

- 이미지의 테두리(1픽셀 단위)에서의 값들을 이용해 outlier 여부 판단
- Outlier의 여부가 판단되면 해당하는 부분을 제거

Similarity analysis via feature

• Autoencoder를 이용해 feature를 추출한 후, PCA를 통해 유의미한 성분에 대한 유사도 검증을 이용한 방법 제시

Deep Learning

영상은 structure와 texture로 구성

해당 디자인 표현의 특성은 structure에 대한 정보의 의존성보다 texture에 대한 의존성이 높음

- 따라서 주어진 영상으로부터 texture와 structure를 구분하기 위한 deep learning 모델을 활용
- 빠른 시간 내에 대용량 데이터와의 유사도 비교를 위하여 deep binary hashing을 통해서 유사도를 비교한 후 정량적으로 표현할 수 있음

Algorithm using CNN and Autoencoder

- CNN과 autoencoder를 결합한 이미지 특성 파악 알고리즘을 개발하는 것을 추천
- 데이터를 구성하는 주요 feature를 찾아내는 방법으로 autoencoder를 활용
- 이미지 데이터 분석을 위한 CNN 계열 알고리즘 적용

주기분석을 통한 패턴 구분

- 이미지의 주기적 성향을 furrier transform과 같은 방법으로 주기별로 분할하여 표현
- 고주파, 저주파, 중주파로 나누어 패턴 성질을 분할하고 이를 사용해 패턴을 구분