HNCO Influence of the learning rate on the performance of PBIL

September 25, 2024

Abstract

PBIL is applied many times to the same collection of fitness functions (bit vector size n = 100), each time with a different learning rate taken from a finite set of values. All learning rates are ranked according to their median fitness over 20 independent runs, first for each fitness function, then across the entire collection of fitness functions. The mean and standard deviation of fitness are also plotted as a function of the learning rate.

Contents

T	Global results	1
2	Function one-max	2
3	Function leading-ones	4
4	Function jmp-5	6
5	Function nk	8
6	Function max-sat	10
7	Function labs	12
8	Function ep	14
9	Function cancel	16
10	Function walsh2	18
\mathbf{A}	Plan	19
В	Default parameters	20

1 Global results

Learning rate	Rank				
	min	Q_1	med.	Q_3	max
1	1	1.00	1.0	1.00	6
0.01	1	1.00	2.0	2.00	7
0.02	1	1.00	3.0	3.00	4
0.5	1	2.00	3.0	6.00	7
0.05	1	1.00	4.0	6.00	7
0.1	1	4.00	4.0	6.00	7
0.2	1	3.00	5.0	5.00	7

2 Function one-max

Learning rate	Function value					
	min	Q_1	med.	Q_3	max	
0.01	100	100.00	100.0	100.00	100	
0.02	100	100.00	100.0	100.00	100	
0.05	100	100.00	100.0	100.00	100	
0.1	100	100.00	100.0	100.00	100	
0.2	100	100.00	100.0	100.00	100	
0.5	100	100.00	100.0	100.00	100	
1	100	100.00	100.0	100.00	100	

3 Function leading-ones

Learning rate	Function value					
	min	Q_1	med.	Q_3	max	
0.01	100	100.00	100.0	100.00	100	
0.02	100	100.00	100.0	100.00	100	
0.05	100	100.00	100.0	100.00	100	
0.1	100	100.00	100.0	100.00	100	
0.2	100	100.00	100.0	100.00	100	
0.5	100	100.00	100.0	100.00	100	
1	100	100.00	100.0	100.00	100	

Mean value of solutions as a function of Learning rate (leading-ones)

Standard deviation of value of solutions as a function of Learning rate (leading-ones)

4 Function jmp-5

Learning rate	Func	tion value)		
	min	Q_1	med.	Q_3	max
0.01	100	100.00	100.0	100.00	100
0.02	100	100.00	100.0	100.00	100
0.05	100	100.00	100.0	100.00	100
0.1	95	100.00	100.0	100.00	100
0.2	95	95.00	95.0	95.00	100
0.5	95	95.00	95.0	95.00	95
1	95	95.00	95.0	95.00	95

Standard deviation of value of solutions as a function of Learning rate (jmp-5)

5 Function nk

Learning rate	Funct	tion value			
	min	Q_1	med .	Q_3	max
1	0.84	0.917,5	0.938	0.960,3	0.98
0.01	0.88	0.905,6	0.920	0.943,5	0.99
0.02	0.84	0.882,7	0.905	0.927,3	1.01
0.05	0.80	0.873,1	0.892	0.934,5	0.97
0.2	0.80	0.842,0	0.860	0.889,3	0.94
0.1	0.80	0.844,1	0.859	0.886,8	0.95
0.5	0.79	0.824,7	0.849	0.907,9	0.97

Standard deviation of value of solutions as a function of Learning rate (nk)

6 Function max-sat

Learning rate	Function value						
	min	Q_1	med.	Q_3	max		
1	963	966.00	967.0	967.00	968		
0.01	965	965.00	966.0	967.00	967		
0.02	963	964.75	966.0	967.00	967		
0.05	960	964.75	966.0	967.00	967		
0.2	957	964.00	965.0	967.00	968		
0.1	959	964.00	965.0	967.00	967		
0.5	959	961.75	963.0	967.00	967		

Mean value of solutions as a function of Learning rate (max-sat)

7 Function labs

Learning rate	Funct	ion value			
	min	Q_1	med.	Q_3	max
1	4.47	4.725,9	4.817	4.970,4	$\overline{5.54}$
0.5	3.95	4.085,3	4.188	4.262,6	4.71
0.2	3.52	3.690,2	3.906	4.019,6	4.62
0.02	3.34	3.745,3	3.906	3.943,3	4.39
0.05	3.37	3.589,6	3.894	4.095,0	4.42
0.1	3.43	3.681,9	3.876	4.146,1	4.66
0.01	3.25	3.725,9	3.858	$4.081,\!8$	4.67

Mean value of solutions as a function of Learning rate (labs)

8 Function ep

Learning rate Function value \min med. Q_3 max 1.6×10^{-26} 1 6.4×10^{-29} $8.927 imes 10^{-28}$ $\textbf{5.62}\times \textbf{10}^{-27}$ 1.028×10^{-26} 3.108×10^{-27} 5.4×10^{-26} 5.4×10^{-28} 6.40×10^{-27} 1.314×10^{-26} 0.01 4.523×10^{-27} 6.3×10^{-26} 6.4×10^{-29} 8.04×10^{-27} 2.183×10^{-26} 0.5 5.0×10^{-26} 0.02 1.4×10^{-27} 5.575×10^{-27} 1.18×10^{-26} 2.686×10^{-26} 1.2×10^{-25} 1.7×10^{-27} 1.160×10^{-26} 2.76×10^{-26} 5.574×10^{-26} 0.2 5.5×10^{-28} 1.298×10^{-26} 5.844×10^{-26} 9.9×10^{-26} 3.04×10^{-26} 0.05 2.6×10^{-25} 1.5×10^{-27} 9.633×10^{-27} 6.983×10^{-26} 4.09×10^{-26} 0.1

10⁻¹ Learning rate

10⁻²

10⁰

9 Function cancel

Learning rate	Funct	ion value			
	min	Q_1	med.	Q_3	max
0.01	0.04	0.097,5	0.185	0.305,0	1.33
0.02	0.09	0.237,5	0.455	0.727,5	1.64
1	0.12	0.390,0	0.755	1.382,5	1.97
0.1	0.12	0.667,5	0.985	1.755,0	3.03
0.5	0.16	0.417,5	1.195	1.992,5	2.96
0.05	0.35	0.875,0	1.200	1.820,0	2.98
0.2	0.08	$0.927,\!5$	1.420	1.927,5	4.18

10 Function walsh2

Learning rate	Function	n value			
	min	Q_1	med.	Q_3	max
1	681.90	717.404,8	725.264	728.678,5	740.55
0.5	654.29	679.893,3	689.477	703.958,3	728.55
0.02	617.32	654.363,8	680.890	706.381,8	726.07
0.1	611.54	658.972,0	680.462	698.162,8	727.67
0.2	631.53	663.066,8	680.143	702.004,5	726.48
0.01	593.18	657.673,3	679.825	691.700,0	733.81
0.05	567.56	652.509,0	677.868	697.966,5	732.02

A Plan

```
{
    "exec": "hnco",
    "opt": "-A 500 -x 10 -y 1 --print-results --map 1 --map-random -s 100",
    "budget": 200000,
    "num_runs": 20,
    "parallel": true,
    "parameter": {
        "id": "learning-rate",
        "labels": {
            "latex": "Learning rate",
            "gnuplot": "Learning rate"
        "values": [ 1e-2, 2e-2, 5e-2, 1e-1, 2e-1, 5e-1, 1 ]
    },
    "graphics": {
        "logscale": true,
        "candlesticks": {
            "boxwidth": "$1 * 0.3"
        },
        "mean": {
            "title": true
        },
        "stddev": {
            "title": true
   },
    "functions": [
        {
            "id": "one-max",
            "opt": "-F 0 --stop-on-maximum",
            "rounding": {
                "value": { "before": 3, "after": 0 },
                "time": { "before": 1, "after": 2 } }
        },
            "id": "leading-ones",
            "opt": "-F 10 --stop-on-maximum",
            "rounding": {
                "value": { "before": 3, "after": 0 },
                "time": { "before": 1, "after": 2 } }
        },
            "id": "jmp-5",
```

```
"opt": "-F 30 --stop-on-maximum -t 5",
    "rounding": {
        "value": { "before": 3, "after": 0 },
        "time": { "before": 1, "after": 2 } }
},
    "id": "nk",
    "opt": "-F 60 -p instances/nk.100.4",
    "rounding": {
        "value": { "before": 1, "after": 2 },
        "time": { "before": 1, "after": 2 } }
},
    "id": "max-sat",
    "opt": "-F 70 -p instances/ms.100.3.1000",
    "rounding": {
        "value": { "before": 3, "after": 0 },
        "time": { "before": 1, "after": 2 } }
},
    "id": "labs",
    "opt": "-F 81",
    "rounding": {
        "value": { "before": 1, "after": 2 },
        "time": { "before": 1, "after": 2 } }
},
    "id": "ep",
    "opt": "-F 90 -p instances/ep.100",
    "reverse": true,
    "logscale": true,
    "rounding": {
        "value": { "before": 1, "after": 1 },
        "time": { "before": 1, "after": 2 } }
},
    "id": "cancel",
    "opt": "-F 100 -s 99",
    "reverse": true,
    "rounding": {
        "value": { "before": 1, "after": 2 },
        "time": { "before": 1, "after": 2 } }
},
    "id": "walsh2",
    "opt": "-F 162 -p instances/walsh2.100",
    "rounding": {
        "value": { "before": 3, "after": 2 },
        "time": { "before": 1, "after": 2 } }
}
```

B Default parameters

]

}

```
# algorithm = 100
# bm_mc_reset_strategy = 1
# bm_num_gs_cycles = 1
# bm_num_gs_steps = 100
# bm_sampling = 1
# budget = 10000
# bv_size = 100
```

```
# description_path = description.txt
\# ea_lambda = 100
\# ea_mu = 10
\# expression = x
# fn_name = noname
# fn_num_traps = 10
# fn_prefix_length = 2
# fn_threshold = 10
# fp_expression = (1-x)^2+100*(y-x^2)^2
# fp_lower_bound = -2
# fp_num_bits = 8
# fp_precision = 0.01
# fp_upper_bound = 2
# function = 0
# ga_crossover_bias = 0.5
# ga_crossover_probability = 0.5
# ga_tournament_size = 10
# hea_bit_herding = 0
# hea_num_seq_updates = 100
# hea_reset_period = 0
# hea_sampling_method = 0
# hea_weight = 1
# learning_rate = 0.001
\# map = 0
# map_input_size = 100
# map_path = map.txt
# map_ts_length = 10
# map_ts_sampling_mode = 0
# mutation_rate = 1
# neighborhood = 0
# neighborhood_iterator = 0
# noise_stddev = 1
# num_iterations = 0
# num_threads = 1
# path = function.txt
# pn_mutation_rate = 1
# pn_neighborhood = 0
# pn_radius = 2
# population_size = 10
# pv_log_num_components = 5
# radius = 2
# rep_categorical_representation = 0
# results_path = results.json
# rls_patience = 50
# sa_beta_ratio = 1.2
# sa_initial_acceptance_probability = 0.6
# sa_num_transitions = 50
# sa_num_trials = 100
\# seed = 0
# selection_size = 1
# solution_path = solution.txt
# target = 100
# print_defaults
# last_parameter
# exec_name = hnco
# version = 0.18
# Generated from hnco.json
```