

Inequalities associated with certain arithmetic functions

Bencharat Prempreesuk Advisor: Dr. Prapanpong Pongsriiam Department of Mathematics, Faculty of Science, Silpakorn University, Thailand.

E-Mail: meenbencharat@gmail.com

Abstract

In this project, we study and collect some inequalities associated with certain arithmetic functions in number theory. For example, if φ is the Euler-phi function, then $\varphi(n) \geq \sqrt{n}$ for every positive integer n with $n \neq 2$ and $n \neq 6$.

Preliminary

Divisor function: d(n), the number of positive divisors of n

$$d(p^k) = k + 1$$

Sum-of-divisors function: $\sigma(n)$, the sum of all positive divisors of n

$$\sigma(p^k) = 1 + p + p^2 + \dots + p^k = \frac{p^{k+1} - 1}{p-1}$$

Euler-phi function: $\varphi(n)$, the number of positive integers $m \le n$ that are relatively prime to n

$$\varphi(p^k) = p^k - p^{k-1} = p^k \left(1 - \frac{1}{p}\right)$$

Dedekind-psi function:

$$\psi(p^k) = p^k + p^{k-1} = p^k \left(1 + \frac{1}{p}\right)$$

 $m{arphi}^*$ and $m{\sigma}^*$ function: $m{arphi}^*(p^a) = p^a - 1$ $m{\sigma}^*(p^a) = p^a + 1$

Result

Theorem 1 [6] If φ is the Euler-phi function, then $\varphi(n) \ge \sqrt{n}$ for every positive integer n with $n \ne 2$ and $n \ne 6$.

Theorem 2 [2] If $n \ge 3$, then $\sigma(n) < n\sqrt{n}$.

Theorem 3 [4] For all $n \ge 1$,

 $\varphi(n)\psi(n)\sigma(n) \geq \varphi^*(n)(\sigma^*(n))^2 \geq (n-1)(n+1)^2$

Theorem 4 [3] For any $n \ge 2$,

$$\varphi\left(n\left|\frac{\psi(n)}{n}\right|\right) < n$$

where $\lfloor x \rfloor$ denotes the integer part of x. Theorem 5 [1] Let a and n be an integer such that a > 6 and n > 2. Then $a^{\varphi(n)} > an$.

Result

Theorem 6 [5] Let n be a positive integer.

Then $\varphi(n)d(n) \geq n$.

Theorem 7 [3]

(i) There are infinitely many n such that $\psi(\varphi(n)) < \varphi(\psi(n)) < n$

(ii) There are infinitely many m such that

$$\varphi(\psi(m)) < \psi(\varphi(m)) < m$$

(iii) There are infinitely many h such that $\varphi(\psi(h)) < h < \psi(\varphi(h))$

(iv) There are infinitely many k such that

$$\varphi(\psi(k)) = \frac{1}{2}\psi(\varphi(k))$$

Theorem 8 [3] Let $1 < n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ be the prime factorization of n and suppose that the odd part of n is squarefull, i.e. $\alpha_i \geq 2$ for all i with $p_i \geq 3$. Then $\varphi(\psi(n)) = \psi(\varphi(n))$ if and only if for every prime p dividing $(p_1 - 1)(p_2 - 1) \cdots (p_r - 1)$, one has $p \in \{p_1, p_2, \dots, p_r\}$ and for every prime p dividing $(p_1 + 1)(p_2 + 1) \cdots (p_r + 1)$, one has $p \in \{p_1, p_2, \dots, p_r\}$

References

[1] R.L. Goldstein., An inequality for Euler's function $\varphi(n)$. The Mathematical Gazette, 40 (1956), 131.

[2] C.C. Linder., Problem E 1888. *Amer. Math. Monthly*, 73 (1966).

[3] J. Sandor., On the composition of some arithmetic function, II. *Journal of Inequalities in Pure and Applied Mathematics*, 6 (2005).

[4] J. Sandor., On certain inequalities for σ , φ , ψ and related functions. *Notes Numb. Theor. Discr. Math.*, Vol.20, 2014, No.2, 52-60.

[5] R. Sivaramakrishman., Problem E 1962. *Amer. Math. Monthly*, 74 (1967), 198.

[6] A.M. Vaidya., An inequality for Euler's totient function. *Math. Student*, 35 (1967), 79-80.