IoT Lab Solutions:

Experiment No. 1: LED ON/ OFF with some time interval with buzzer ON/OFF.

Aim: Understand the interface of LED and buzzer with IoT development board and programming.

Components: Arduino Uno, Buzzer, LED, 100 Ohms resister, jumper wires, 5V DC supply.

Connections:

From	То
Arduino D10	Anode of LED (long leg)
GND	Cathode of LED(short
	leg)
Arduino D5	Buzzer red wire
GND	Buzzer black wire


```
#define led 10
#define buzzer 5
void setup()
{
        pinMode(led,OUTPUT);
        pinMode(buzzer,OUTPUT)
        Serial.begin(9600);
        Serial.println("LED ON/OFF system");
void loop()
{
        Serial.println("LED is ON now");
```

```
digital.write(led, HIGH);
digital.write(buzzer, HIGH);
delay(2000);
Serial.println("LED is OFF now");
digital.write(led, LOW);
digital.write(buzzer, LOW);
delay(2000);
}
```

Experiment No. 2: Count number of persons entering a room IR sensor.

Aim: To understand working of IR sensors and its applications.

Components: IR sensor, Arduino, 5V DC supply

IR sensor:

From	То
Arduino D10	OUT IR sensor
Arduino GND	GND IR sensor
Arduino 5V pin	Vcc IR Sensor
Arduino D5	Buzzer red wire
GND	Buzzer black wire


```
#define IRout 10
#define led 5
int counter=0;
void setup()
        pinMode(led,OUTPUT);
{
        pinMode(IRout,INPUT);
        Serial.begin(9600); }
void loop()
{
       if (digitalRead(IRout)== LOW) {
       digitalWrite(led,HIGH);
                               counter ++; delay(10);
 else
 { digitalWrite(led,LOW); delay(10); }
Serial.println("Total number of persons entered the room",counter);
}}
```

Experiment No. 3: Measure temperature and humidity in air using DHT11 Sensor.

Aim: To understand working of DHT11 sensor to automatically monitor temperature and humidity of the surrounding.

Components: Arduino Uno, DHT11 sensor, jumper wires, 5V DC supply.

From	То
Arduino D2	Signal pin of DHT11
Arduino GND	GND of DHT11
Arduino 5V pin	Vcc DHT11


```
// REQUIRES the following Arduino libraries:
// - DHT Sensor Library: https://github.com/adafruit/DHT-sensor-library
// - Adafruit Unified Sensor Lib: https://github.com/adafruit/Adafruit_Sensor
#include "DHT.h"
#define DHTPIN 2 // Digital pin connected to the DHT sensor
#define DHTTYPE DHT11 // DHT 11
DHT dht(DHTPIN, DHTTYPE); // Initialize DHT sensor.
void setup() {
Serial.begin(9600);
 dht.begin();
}
void loop() {
 delay(2000);
float h = dht.readHumidity();
float t = dht.readTemperature(); // Read temperature as Celsius (the default)
 Serial.print(F(" Humidity: "));
 Serial.print(h);
 Serial.print(F("% Temperature: "));
```

```
Serial.print(t);
}
```

Experiment No. 4: Measure moisture in soil and use suitable LEDs to indicate the moisture levels like below and above required level.

Components: Arduino, NodeMCU, Moisture sensor, LED, jumper wires

Moisture sensor:

From	То
Arduino A0	A0 of Moisture sensor
Arduino GND	GND of Moisture sensor
Arduino 5V pin	Vcc of Moisture sensor
Arduino D13	Anode of LED (ling pin)
Arduino GND	Cathode of LED (short
	pin)


```
#define sensorPin A0
#define led 13
void setup()
{
       Serial.begin(9600);
       pinMode(led, OUTPUT); }
void loop() {
       sensorValue = analogRead(sensorPin);
       Serial.println("Analog Value: ");
       Serial.println(sensorValue);
       if (sensorValue<limit)
         { digitalWrite(led, HIGH); }
       else
              { digitalWrite(led, LOW); }
       delay(1000);
}
```

Experiment No. 5: Display messages on LCD module on each button press event.

Aim: To understand and implement a output display system using 16x2 LCD. It is very much essential for a working IOT system to show its output.

Components:

- 1. LCD 16/2 display
- 2. Arduino Software
- 3. Arduino UNO R3
- 4. Connecting wires.

Connections:

To wire your LCD screen to your board, connect the following pins:

- LCD RS pin to digital pin 12
- LCD Enable pin to digital pin 11
- LCD D4 pin to digital pin 5
- LCD D5 pin to digital pin 4
- LCD D6 pin to digital pin 3
- LCD D7 pin to digital pin 2
- LCD R/W pin to GND
- LCD VSS pin to GND
- LCD VCC pin to 5V
- LCD LED+ to 5V through a 220 ohm resistor
- LCD LED- to GND


```
#include <LiquidCrystal.h>
const int rs = 12, en = 11, d4 = 5, d5 = 4, d6 = 3, d7 = 2;
int kount=0;
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);

void setup()
{
    lcd.begin(16, 2);
    lcd.print("hello, world!");
}

void loop()
{
    lcd.setCursor(0, 1);
    lcd.print("CSE Department");
    lcd.setCurson(15,0); // column 15, First line
```

```
lcd.print(kount); // counter
delay(10000);
lcd.setCursor(0, 1);
lcd.print("PDA College");
delay(10000);
kount++;
}
```

Experiment No. 6: Make to glow three different color LEDs by switching through Relays.

Aim: To understand how to build control systems using relays.

Components:

Arduino board, three relays (5V), three different color LEDs, Jumpers, bread board.

Relay (5v) and connections:

The relay module has 3pin screw terminal.

- a). NO Normally open
- b). COM Common
- c). NC Normally closed


```
int Relaypin1= 3; // Define input pin for relay
int Relaypin2= 4; // Define input pin for relay
int Relaypin3= 5; // Define input pin for relay
void setup() {
// put your setup code here, to run once:
pinMode(Relaypin1, OUTPUT);
pinMode(Relaypin2, OUTPUT); // Define the Relaypin2 as output pin
pinMode(Relaypin3, OUTPUT); // Define the Relaypin3 as output pin
}
void loop()
{
               digitalWrite(Relaypin1, HIGH); // Sends high signal
               delay(1000); // Waits for 1 second
               digitalWrite(Relaypin1, LOW); // Makes the signal low
               delay(1000); // Waits for 1 second
               digitalWrite(Relaypin2, HIGH); // Sends high signal
               delay(1000); // Waits for 1 second
               digitalWrite(Relaypin2, LOW); // Makes the signal low
               delay(1000); // Waits for 1 second
               digitalWrite(Relaypin3, HIGH); // Sends high signal
               delay(1000); // Waits for 1 second
               digitalWrite(Relaypin3, LOW); // Makes the signal low
               delay(1000); // Waits for 1 second
}
```

Experiment No. 8: Acoustic controlled motor.

Aim: This experiment will provide idea about a control system that is controlled by acoustic (sound) signal.

Components required:

- Arduino UNO
- Sparkfun sound detecter
- Jumper wires
- DC motor (generic)
- LED
- Resister 200 Ohms
- Breadboard

Connections:

Arduino Pin D2	Sound sensor Digital Out pin
Arduino 5V	Sound sensor Vcc
Arduino GND	Sound sensor GND
Arduino Pin D4	LED positive (long leg)
Arduino Pin 5	One wire of DC motor
Arduino Pin 6	Another wire of DC motor

/*For this project you will have to connect external power supply of 9V or 5V to the 12V pin of driver.*/

int soundSensor=2;

int LED=4;

Experiment NO. 9: Develop a working model to Switch ON/OFF LED based on Switch ON/Switch OFF commands received from smart phone.

Components required:

- Arduino board
- HC-05 bluetooth module
- Bluetooth SPPO Pro APK (android program) Download from Google Paly Store.
- Jumper wires
- LEDs
- 5 V Power supply

- Arduino 5v to VCC Bluetooth module
- Arduino GND to GND of Bluetooth module
- Arduio RXD to TXD of Bluetooth module
- Arduio TXD to RXD of Bluetooth module
- LED anode to PIN 12 of Arduino
- LED cathode to GND of Arduino


```
#include <HC05.h>
#include <SoftwareSerial.h>
#define LED 12
SoftwareSerial mySerial(0, 1);
int command=-1; //Int to store app command state.
void setup()
{
        pinMode(LED, OUTPUT); //Set the LED pin.
        digitalWrite(LED, HIGH);
        mySerial.begin(38400); //Set the baud rate to your Bluetooth module.
```

```
}
void loop()
{
        if (mySerial.available() > 0)
         {
                command = mySerial.read();
                 switch (command)
                 {
                         case '0': // zero for LED off
                          {
                             digitalWrite(LED, LOW);
                             delay(1000);
                           }
                           break;
                         case '1': // one for LED on
                             digitalWrite(LED, HIGH);
                             delay(1000);
                           }
                            break;
                 } // switch
                 command=-1;
          } }
```

Experiment No. 11: Develop a working model to mark attendance using RFID module and store data in cloud.

Aim: To understand the interface of arduino with RFID for developing useful applications.

PinWiring to Arduino Uno:

SDADigital 10
SCKDigital 13
MOSIDigital 11
MISODigital 12
IRQunconnected
GNDGND

```
RST-----Digital 9
3.3V-----3.3V (DO NOT CONNECT TO 5V)
```



```
// Look for new cards
                if (! mfrc522.PICC IsNewCardPresent())
                    return; }
                // Select one of the cards
                if ( ! mfrc522.PICC_ReadCardSerial())
                      return; }
                //Show UID on serial monitor
                Serial.print("UID tag :");
                String content= "";
                byte letter;
                for (byte i = 0; i < mfrc522.uid.size; i++)
                {
                         Serial.print(mfrc522.uid.uidByte[i] < 0x10 ? " 0" : " ");
                         Serial.print(mfrc522.uid.uidByte[i], HEX);
                         content.concat(String(mfrc522.uid.uidByte[i] < 0x10 ? " 0" : " "));</pre>
                         content.concat(String(mfrc522.uid.uidByte[i], HEX));
                }
                Serial.println();
                Serial.print("Message:");
                content.toUpperCase();
                if (content.substring(1) == "BD 31 15 2B") //change here the UID of the
                              card/cards that you want to give access
                {
                        Serial.println("Authorized access");
                        Serial.println();
                        delay(3000);
                }
                else {
                        Serial.println(" Access denied");
                        delay(3000);
}
```

Experiment No. 12: Detect Gas leakage and enable alarm on detection of leakage of gas.

Aim: To understand working of Gas sensor with arduino

Components:

- Arduino UNO
- MQ-6 gas sensor
- Red and green LEDs
- Jumper wires and a breadboard
- Bread board

MQ-6 Gas sensor and its pinout diagram:

'Analog Out

Arduino A0	Analog Out pin of MQ-6
Arduino 5V	Vcc of MQ-6
Arduino GND	GND pin of MQ-6
Arduino D11	Green LED long leg
	Green LED Short leg to Arduino GND
Arduino D12	Red LED long leg
	Red LED Short leg to Arduino GND


```
Program:
```

```
int GAS_VAL = 0;
void setup()
        pinMode(A0, INPUT); // MQ-6 A0 Pin
        Serial.begin(9600);
        pinMode(11,OUTPUT); // LED Green
        pinMode(12,OUTPUT); // LED Red
}
void loop()
{
        GAS_VAL = analogRead(A0);
        Serial.println(GAS_VAL);
if (GAS_VAL > 500)
{
         Serial.println(" LPG Detected ");
         digitalWrite(11,HIGH);
         digitalWrite(12,LOW);
 }
```