

Workbook v1.1

Brought to you by the Bootstrap team:

- Emmanuel Schanzer
- Kathi Fisler
- Shriram Krishnamurthi
- Ed Campos
- Emma Youndtsmith
- Sam Dooman

Bootstrap is licensed under a Creative Commons 3.0 Unported License. Based on a work from www.BootstrapWorld.org. Permissions beyond the scope of this license may be available at schanzer@BootstrapWorld.org.

Unit 1

- Many important questions ("what's the best restaurant in town?", "is this law good for citizens?", etc.) are answered with data. Data Scientists try and answer these questions, by writing programs that ask questions of data.
- Data of all types can be organized into **Tables**
- Every Table has a header row, and some number of data rows
- **Quantitative data** is data usually numeric that measures *quantity*, such as a person's height, a score on test, a measure of distance, etc. A list of quantitative data can be ordered from smallest to largest.
- Categorical data is data that specifies categories, such as eye color, country of origin, etc. A list of categorical data has no notion of "smallest" or "largest", and cannot be ordered.
- **Programming languages** involves different *datatypes*, such as Numbers, Strings, Booleans and Images.
- Operators (like +, -, *, <, etc.) are written between values. For example: 4 + 2
- **Functions** (like triangle, star, string-repeat, etc.) are written first, followed by a list of **arguments** in parentheses. For example: star(50, "solid", "red")
- **Examples** help programmers reason about their code. Every example contains two expressions, and the example "passes" if both expressions evaluate to the same thing. For example: 4 + 2 is 6, or "cat" == "dog" is false

Numbers and Strings

Make sure you've loaded the Unit 1 Starter File, and clicked "Run".

- 1. Try typing 42 into the Interactions Area and hitting "Enter". What happens?
- 2. Try typing in other Numbers. What happens if you try a decimal like 0.5? A fraction like 1/3? Try really big Numbers, and really small ones.
- 3. String values are always in quotes. Try typing your name (in quotes!). What happens when you hit "Enter"?
- 4. Try typing your name with the opening quote, but without the closing quote. What happens? Now try typing it without any quotes.
- 5. Is 42 the same as "42"? Why or why not? Write your answer below:

They are different data types: 42 (without quotes) is a Number, and "42" (with quotes) is a string.

Operators

6. Just like in math, Pyret has operators like + and -. Try typing in 4 + 2, and then 4+2 (without the spaces). What can you conclude from this? Write your answer below:

Operators (like +) need whitespace separating them from their operands.

7. Try typing in 4+2+6, 4+2*6, and 4+(2*6). What can you conclude from this? Write your answer below:

You can use the same operator multiple times without parentheses, but you need parentheses to group order of operations if using different operators (like + and *) together.

8. Try typing in 4 + "cat", and then "dog" + "cat". What can you conclude from this? Write your answer below:

The + operator can only be used with Numbers, not Strings.

Booleans

Boolean expressions are yes-or-no questions, and will always evaluate to either true ("yes") or false ("no"). What will each of the expressions below evaluate to? Write down the result in the blanks provided, and type them into Pyret if you're not sure.

3 <= 4	True	"a" > "b"	False
3 == 2	False	"a" <> "b"	True
2 <> 4	True	"a" == "b"	<u> False</u>
3 <> 3	True	"a" <> "a"	False

Boolean Operators

Pyret also has operators that work on *Booleans*. For each expression below, write down your guess about what it will evaluate to. Then type them in and see if you were right!

$(3 \le 4)$ and $(3 = 2)$	_ False
("a" == "b") and $(3 <> 4)$	False
$(3 \le 4) \text{ or } (3 = 2)$	True
("a" == "b") or (3 <> 4)	True

How many different Number values are there in Pyret? <u>Infinite</u>
 How many different String values are there in Pyret? <u>Infinite</u>
 How many different Boolean values are there in Pyret? <u>Two</u>

Lookups

The table below represents four animals at the shelter:

animals

name	gender	age	weight
"Toggle"	"female"	3	48
"Fritz"	"male"	4	92
"Nori"	"female"	6	35.3
"Maple"	"female"	3	51.6

1) Match each Pyret expression (left) to the description of what it does (right).

2) Fill in the blanks (left) with the Pyret lookup code that will produce the value (right).

<u>a.</u>	get-row(animals, 3)["name"]	"Maple" -
b.	get-row(animals, 1)["gender"]	male
c.	get-row(animals, 1)["age"]	4
d.	get-row(animals, 0)["weight"]	48
е.	get-row(animals, 2)["name"]	"Nori"

Writing Examples

In the examples block below, put an "X" next to the examples that will <u>fail</u>.
 Remember: examples only pass if the left- and right-hand expressions evaluate to the same thing!

```
examples:
    1 + 2 + 9
    num-sqrt(16)
    is 2 + 2
    3 > 99
    is true
    square(10, "solid", "red")
end

is 19
is 2 + 2
is true

is rectangle(10, 10, "solid", "red")
end
```

2. In the examples block below, fill in the blank on the right-hand side so the example will pass.

```
examples:
string-repeat("yeah! ", 3)
is "yeah! yeah! yeah! "

string-contains("Maya", "May") is true

"apples" <> "oranges"
is true
```

3. The examples block below refers to the shapes table on the right, using row-accessors and the get-row function. For each example, fill in the blank so the example will pass.

name	corners	Is-round
"triangle"	3	false
"circle"	0	true
"ellipse"	0	true
"square"	4	false

```
      get-row(
      Shapes
      , 3)["name"]
      is
      "square"

      get-row(shapes,
      0
      )["corners"]
      is
      3

      get-row(shapes,
      2)[
      "is-round"
      ]
      is
      true

      end
```

Unit 2

Answering Questions from Data can take many forms. Here are a few types of questions, each requiring a different kind of analysis:

- **Lookup Questions** can be answered just by finding the right row and column a table. (e.g. "How old is Toggle?")
- Compute Questions can be answered by computing over a single row or column. (e.g. – "What is the heaviest animal at the shelter?")
- Analyze Questions require looking for trends across multiple rows or columns.
 (e.g. "Do cats tend to be adopted sooner than dogs?")

Threats to Validity can undermine a conclusion, even if the analysis was done correctly. Some examples of threats are:

- **Selection bias** identifying the favorite food of the rabbits won't tell us anything reliable about what all the animals eat.
- Sample size averaging the age of only three animals won't tell us anything reliable about the age of animals at the shelter!
- **Sample error** surveying dogs when they are puppies won't tell us anything reliable about overall dog behavior, since their behavior changes as they age.
- **Confounding variables** if they person surveying the animals has a piece of bacon in their pocket, they will incorrectly find that all dogs are friendly!

The Animals Dataset

- 1. This dataset is Animals from an animal shelter
- 2. Some of the columns are....
 (For each column in this dataset, fill out the datatype, and whether it contains Qualitative or Categorical data in the table below)

Headers	Name	species	age	fixed	pounds
Sample 1	"Sasha"	"cat"	1	false	6.5
Sample 2	"Nori"	"dog"	6	true	35.3
Sample 3	"Snowcone"	"cat"	2	true	6.1
Datatype	String	String	Number	Boolean	Number
Quantitative or Categorical?	С	С	ď	С	Q

3. For the questions below, check the box to the left of the questions you <u>CAN</u> answer given this dataset:

	Question?
√	How old is Nori?
	What color is Snowcone's fur?
√	What is the average age of the animals in the table?
√	Are there more fixed or unfixed animals in the table?
	Are families with children more likely to adopt kittens?

4. Some questions I have about this dataset:

Do younger animals get adopted faster?

What is the average weight of all the animals in the shelter?

Are male or female animals more likely to get adopted?

What Questions Can You Answer?

The following is a dataset of a bicycle rider's training rides.

date	miles	time	weather	average speed	max speed
04/10/2018	10	44	"cloudy"	13	30
05/30/2018	15	66	"sunny"	13.5	22
06/12/2018	12	61	"rainy"	11.2	25
06/22/2018	15	61	"cloudy"	13	28
07/04/2018	24	103	"sunny"	14	26
07/12/2018	24	120	"windy"	12.5	26

What <u>can</u> you answer? For each of the following questions, check the box to the left of questions you <u>can</u> answer. For each *checked* question, write whether the question is a **lookup**, **compute**, or **analyze** question.

	Question?	Category?
✓	What is the cyclist's average speed across all rides?	Compute
√	How many miles did they ride in June?	Compute
	What is the tallest hill this cyclist climbed?	
√	Does this cyclist ride slower when it is rainy?	Analyze
	Does this cyclist ride faster when they are late to an appointment?	

What <u>can't</u> you answer? For each of the following questions, check the box to the left of questions you <u>cannot</u> answer. For each *un-checked* question, write whether the question is a **lookup**, **compute**, or **analyze** question.

	Question?	Category?
√	What tire pressure produces the highest avg speed?	
	What is the avg time it takes this cyclist to ride 1mi?	Compute
	Does this cyclist ride more in April or July?	Compute
√	What is the average temperature while this cyclist is riding?	
√	How many flat tires did this cyclist fix in June?	

Threats to Validity

Some volunteers from the animal shelter surveyed a group of pet owners at a local park. They found that almost all of the owners were there with their dogs, and from this survey they concluded that dogs are the most popular pet in the region.

What are some possible threats to the validity of this conclusion?

Not many people are likely to walk their cats at the park, so if the volunteers
only surveyed pet owners at the park, dogs are likely to be more highly
represented in their sampling.
The animal shelter noticed a large increase in pet adoptions between Thanksgiving and New Year's Eve. They conclude that at this current rate, there will be a huge demand for pets between January and April.
What are some possible threats to the validity of this conclusion?
Lots of people may be adopting animals during the holiday season, so these
past patterns are unlikely to predict future patterns in adoption rates.

Threats to Validity

The animal shelter wanted to find out what kind of food to buy for their animals. They took a random sample of two animals and the food they eat, and found that spider and rabbit food was by far the most popular cuisine!

What are some possible threats to the validity of this conclusion?

A random sample may not be representative of the whole group of pets. In
this case, there are many more dogs and cats than spiders and rabbits at the
shelter, so using this random sample to draw conclusions about the whole group
is wrong!
A volunteer opens the shelter in the morning and walks all the dogs. At mid-day, another volunteer feeds all the dogs and walks them again. In the evening, a third volunteer walks the dogs a final time, and closes the shelter. The volunteers report that the dogs are much friendlier and more active at mid-day, so the shelter staff assume the second volunteer must be better with animals then the others.
What are some possible threats to the validity of this conclusion?
There may be other reasons the dogs are happier at mid-day than morning and
evening- for instance, mid-day is when they eat lunch, which is likely to make
the dogs very excited!

My Dataset

1.	My dataset is	[specific to each student]
	Some of my co	
	Headers	
	Sample 1	
	sample 1	
	Sample 2	
	Sample 3	
	Datatype	
	Quantitative	
	or Categorical?	
3.	Some question	s I have about this dataset:
4.	What are som	possible threats to validity you may encounter in your analysis?

Unit 3

- Programming languages let us **define our own function**.
- We use the **Design Recipe** to help us define functions without making mistakes.
- The first step is to write a **Contract** and **Purpose Statement** for the function, which specify the Name, Domain and Range of the function and give a summary of what it does.
- The second step is to **write at least two examples**, which show how the function should work for specific inputs. These examples help us see patterns, and we express those patterns by **circling and labeling** what changes.
- The final step is to **define the function**, which generalizes our examples.

The Design Recipe

				•	
Define	a function ca	lled is-fixed,	which tell	s us whether or not a	n animal is fixed
	is-fixed	::	(animal :: R	?ow) →	Boolean
	name		domai	n –	range
# <u>Col</u>	nsumes an anim	al, and produces	s the value	in the fixed column	
exam	ples:				
	is-fixed	(sasha_) is	sasha["	fixed"]
			_	C 1. E//C	. 1//3
	<u>is-fixed</u>	(<u>felix</u>) is	felix["f	ixed
end					
fun	<u>is-fixed</u>	(<u>anima</u>	<u>(</u>):	animal["	fixed"]
a m d					
end					
Define	a function on	المما المما	hiah aana	unana a Davu af tha an	
	ender of that a	_	nich const	umes a Row of the ar	ilmais table tells us
9					
	gender	•• (animal ::	Row) →	String
	name		domai		range
# <u>Co</u>	nsumes an an	imal, and prod	duces the	value in the gende	er column
	ples:	•			
	<u>gender</u>	(<u>snowcone</u>	<u>:</u>) is	snowcone["gende	er"]
	1		\	+aaala["-aadaa"]	
end	<u>gender</u>	(<u>toggle</u>) 18	toggle["gender"]	
fun	<u>gender</u>	(<u>animal</u>) :	animal["gender"]	

end

Define a function called is-cat,	which consumes of	a Row of the	animals t	table (and
produces true if it's a cat.					

	is-cat	::	(animal :: Row)	\rightarrow	Boolean	
	name		domain		range	
#	Consumes an anim	nal, and retui	rn true if the species is	"cat"		
ΔV	amples					

Define a function called is-young, which consumes a Row of the animals table and produces true if it's an animal that is less than two years old.

Defin	e a function calle	ed nametag, print	s out each animo	ıl's name in l	big red letters.
	nametag	<u>-</u>	mal :: Row)		Image
	name		domain		range
# <u>Co</u>	nsumes an animai	l, and produces an	image of their nai	me in big, red	d letters
exai	mples:				
	nametag	(<u>sasha</u>)	is text(so	ısha["name'	"], 50, "red")
end	nametag	_(felix)	is text(fe	elix["name"]	, 50, "red")
fun	nametag	(<u>animal</u>)	: <u>text(ani</u>	mal["name′	'], 50, "red")
end					
		ed is-kitten, w cat younger than		Row of the o	animals table and
	is-kitten	:: (anima	al :: Row)	\rightarrow	Boolean
	name		domain		range
#	Consumes an a	inimal, returns	true if it's a ca	t less than	two years old
exai	mples:				
	<u>is-kitten</u>	(<u>snuggles</u>)	is (snuggles["spec	cies"] == "cat")	and (snuggles["age"] < 2)
end	<u>is-kitten</u>	(<u>wade</u>)	is (wade["specie	s"] == "cat") an	d (wade["age"] < 2)
fun	<u>is-kitten</u>	(<u>animal</u>)	: (animal["specie	es"] == "cat") a	nd (animal["age"] < 2)
end					

Unit 4

- Methods are special functions that are attached to pieces of data. We use them to manipulate Tables.
- They are different from functions in several ways:
 - Their names can't be used alone: they can only be used as part of data, separated by a dot. (For example, animals.order-by)
 - o Their contracts are different: they include the type of the data as part of their names. (eg, .order-by :: (column :: String) → Table)
 - o They have a "secret" argument, which is the data they are attached to
- We will use three **Table Methods** to manipulate our datasets:
 - o <Table>.order-by order the rows of a table based on a column
 - o <Table>.filter create a subset of the data, with only certain rows
 - o <Table>.build-column use the columns of a table to make a new one

Reviewing Functions

1.	Definitions Area.	
2.	How many values are defined in this file?	4
3.	How many functions are defined in this file?	7
4.	What is the name of the last function?	is-old-dog
5.	What is the Domain of the last function?	Row
6.	What is the Range of the last function?	Boolean
7.	What is the variable name that the last function uses?	animal
8.	Which function will tell us if an animal is a kitten?	is-kitten
9.	Which function will print out " <name> the <species>"?</species></name>	sentence
10	.Which function will tell us if an animal is a dog older than 10?	is-old-dog
11	.Which function will tell us if an animal has been fixed?	is-fixed
12	.Which function will draw a nametag for an animal?	nametag

Plans for the Animals Dataset

What are two ways you might want to order the animals dataset?
1) Order by weight
2) Order by age
What are two subsets into which you might filter the animals dataset?
what are two subsets tho which you might line the animals dataser:
1) Filter animals heavier than 20 pounds
2) Filter animals that have been fixed
What are two new columns you might want to build from the animals dataset?
1) Add a column for time in the shelter by months
2) Add a column for whether or not each animal is a kitten

Methods

Methods are a lot like functions, but they differ in three important ways:

- They can only be called as **part of a value**, using the **dot-accessor**. For example: **animals.**row-n(2)
- Their Contracts are different, because they contain a **Type** as part of their name. For example: <**Table>**.row-n :: (index :: Number) -> Row
- They have a "secret argument", which is the value they are attached to. In the examples above, the row-n method consumes only a Number as part of its Domain, but it also consumes the Table to which it is attached.

Here is the Contract for a method, which consumes the name of a food and produces True if the person likes that food:

<Person>.likes :: (food :: String) → Boolean Table 1. What Type of data is the method attached to? 2. What is the name of this method? likes 1 3. How many things are in its Domain? food 4. What is the name of the argument in its Domain? String 5. What is the Type of the argument in its Domain? Boolean 6. What Type of data will this method will produce? 7. Below are 3 expressions. Based on the contract above, circle the correct one. emma.likes("pizza") likes("pizza") likes(emma, pizza)

8. On the line below, write your own expression that uses this method, replacing emma and "pizza" with your own name and a food you like.

amy.likes("chocolate")

Playing with Methods

You have the following functions defined below (read them carefully!):

```
fun is-fixed(animal): animal["fixed"] end
fun is-young(animal): animal["age"] < 4 end
fun nametag(animal): text(animal["name"], 20, "red") end</pre>
```

The table **t** below represents four animals at the shelter:

name	gender	age	fixed	weight
"Toggle"	"female"	3	true	48
"Fritz"	"male"	4	true	92
"Nori"	"female"	6	true	35.3
"Maple"	"female"	3	true	51.6

Match each Pyret expression (left) to the description of what it does (right).

Unit 5

- Functions can contain value definitions
- We use **Table Plans** to help us use table methods correctly, without making mistakes:
 - Like functions, we start with a Contract and Purpose Statement
 - But instead of writing programmed examples, we sketch out **Start** and **End Tables**, based on the Contract and Purpose.
 - Then we define the function based on our Start and End Tables. Every function includes both the table definition (using methods) and a table expression.

Review

- 1. In the Interactions Area, use table methods to sort your table by one column. **Try sorting your table in both ascending and descending order.**
- 2. If a researcher is looking at a dataset of students, they might want to divide the data into separate populations of boys and girls. A veterinarian might want to look at only the cats at a shelter. Come up with one criteria you could use for animals at the shelter, and describe it below.

Filter	animals	heavier	than	20	pounds
--------	---------	---------	------	----	--------

3. In the space below, use the Design Recipe to write a function that checks if a row in your dataset fits that criteria. Whatever criteria you choose, it should be true for some rows and false for others. Type this function into the Definitions Area.

end

- 4. Use the function to filter your dataset.
- 5. Instead of using the function you wrote to filter your dataset, use another table method to build a new column that shows whether or not each row meets the criteria.

On Kitten Day, the shelter prints up a list of all the cats in their database that are less than 2 years old, and makes nametags for them. They need a function that will help them out! Define a function called get-kittens-tags, which takes in the dataset and produces the correct table.

ge	t and P t-kitte			:	:	(ar	:: Tabi	le)		\rightarrow			Table	
Consur	ne a tah	le of	anima	ls ar	nd prod	luce a t	ntainina	n kittens	uvitk	nama	taas	sorte	d by na	m <i>e</i>
CONSUI	- Tub		u////u	15, ur	ia proa		Training	KITTERS			.rugs,	, 301 120	- Dy Hu	
	e Table: Start Tab		nd a r	esult	based	on the) .							
nimal	s-tab	le					→ a	et-ki	tte	ns-t	ags	(anir	mals-	tab
name	species	age	fixed	legs	weight	adopt								
Sasha	cat	1	FALSE	4	6.5	4	name	species	age			weight	adopt	ta
Toggle	dog	3	TRUE	4	48	3	Sasha	cat	1	FALSE	4	6.5	4	Sas
Buddy	lizard	2	FALSE	4	0.3	12	Wada	cat	1	FALSE	4	3.2	4	Wa
Wade	cat	1	FALSE	4	3.2	4	Wade	cat	ı	rAL3E	4	3.2	4	
Mittens	cat	2	TRUE	4	7.4	5								
Mittens	caf	2	IRUE	4	/.4	5								
	he fund													
e the r	elevant	meth	nods (circl	e your	helper	ns!), th	en prod	luce	a resu	lt wi	th the i	new ta	ble.
un _	9	et-k	kitter	15-to	ags	_ (_	<i>als</i> _)	:				N =	Cin - di	/ h -
	nimals											Dej	fine ti	<u> 18 Ta</u>
<u> </u>			,)	Are the	ana man	
	uild-col	'ıımn	7		name	taa							ere more	e colur
bi	uild-coi Iter(<u>lumn</u>	<u>'</u>		name)	Are t	here fe	
.bi	Iter(is-kit	ten					<u> </u>		here fe	wer r
.bi						ten					<u>)</u>)	Are 1		wer ro s orde

The first weekend of every month, the shelter holds a "meet the dogs" picnic, to encourage families to adopt their dogs. Write a function called get-dogs-by-age, that takes their database and produces a table of all the dogs in the shelter, sorted from youngest to oldest.

get	-dogs-b	y-ag	<i>де</i>	::_		(animo	s :: Table)		_ >			Та	ble	
t Consum	e a table	of ai	nimals, d	and pi	roduce	a table	containing only	the do	095, SO	rtea	l by ag	e		
				····					9-7		- / - 9			
zample.	•													
cample: ake a St	art Table	e and	d a resu	t bas	sed on	that to	le.							
nimals	-table	e					→ ge	t-dog	z-bv-	-aσ	e(an	ima	ls-ta	abl
name	species	age	fixed	legs	weight	adopt	<u> </u>							
nowcone	cat	2	TRUE	4	6.1	5					I			
Wade	cat	1	FALSE	4	3.2	4	Togo		dog	age 3	fixed TRUE	legs 4	weight 48	add
ercules	cat	3	FALSE	4	13.4	7	Fri		dog	4	TRUE	4	92	6
[oggle	dog	3	TRUE	4	48	3			aog	1	TIVOL	1	22	
Fritz	dog	4	TRUE	4	92	6								
Define th			ods (circ	cle yo	our help	per fun	ions!), then pr	roduce	e a res	sult v	vith th	e ne	w table	е.
un	get-d	ogs-	by-age	2	(anim	s):				6	· ·	, ,	,
<u>† = ar</u>	nimals										\underline{L}	etir	<u>ie the</u>	Ta
.bui	ild-colui	mn()	Are	there	more c	olun
					is-de	200					Ar	e the	re fewe	
	16.11				10 0	74 /								er ro
fil:	der-by("(age",)	Ar	e the	rows of	

It's important for animals to stay healthy, especially when they get older. The veterinarians at the shelter want to put some of the dogs on a diet! They need a regular report of all the older dogs, sorted from heaviest-to-lightest. Define a function old-dogs-diet, which does just that!

Contract	and Purpo	ose													
old	old-dogs-diet ::			(animals :: Table) →						Table					
# Cons	umes a ta	ble	of anin	nals,	and p		ces a lightes		h only	old (dogs, s	orte	d heav	/iest	
Example	s art Table a	nd a	result h	asec	l on the	at tah	ماد								
Make a 31	an rable a	na a	103011 0	ascc	. OIT IIT										
animals	s-table						\rightarrow	old-	-dogs-	-die	t(ani	mal	s-tal	ble)	
name	species	age	fixed	legs	weight	adopt		name	species	age	fixed	legs	weight	adopt	
Snowcone	cat	2	TRUE	4	6.1	5		Mr. PB	dog	10	FALSE	4	161	6	
Lucky	dog	3	TRUE	3	45.4	9		Boo-boo	dog	11	TRUE	4	123	24	
Mr. PB	dog	10	FALSE	4	161	6								<u> </u>	
Boo-boo	dog	11	TRUE	4	123	24									
Snuggles	tarantula	2	FALSE	8	0.1	1									
- 0															
	e function levant met		<i>l</i> circle	vour	helner	funct	tionsII	then produ	ice a re	v tli 124	with the	new	/table		
030 1110 10		11003	(Circic	your	ПСІРСІ	101101	10113:7,	inen prode	JCC G IC	,3011 \	WIIII IIIC	TICV	ridbic.		
fun	old-dog	محط	iat		(.	- mi m	16)								
	~	<u> </u>	<u>eı</u>		_ _	<u> imma</u>	15/	•			De	efine	e the i	table	
	nimals										Are th	here n	nore col	lumnsa	
	build-column()										Are there more columns?				
										Are there fewer rows?					
ord	der-by("weig	<u>ht", f</u>	alse				Are the rows ordered?				
											Prod	<u>luce</u>	the r	esu/t	
end															

The shelter is tracking birth-years for all the animals who've been fixed. They need a function that takes in their database and returns a table that contains the birth-year for each one. Define get-fixed-birth that will do this for them.

Contract	and Purpo	se														
get-fixed-birth ::_					(animals :: Table) →							Table				
Example	sumes a to		٧	with	a nev	v colu	ımı	n for birt			s who	have	e been	fixe	d,	
animals	-table						-	→ get-f	ixed-	-by-	-legs	(ani	mals	-tab	ole)	
name	species	age	fixed	legs	weight	adopt	,	name	species	age	fixed	legs	weight	adont	Vear	
Snowcone	cat	2	TRUE	4	6.1	5		Snowcone	cat	2	TRUE	4	6.1	5	2015	
Lucky	dog	3	TRUE	3	45.4	9		Lucky	dog	3	TRUE	3	45.4	9	2014	
Hercules	cat	3	FALSE	4	13.4	7		Toggle	dog	3	TRUE	4	48	3	2014	
Toggle Snuggles	dog tarantula	3	TRUE FALSE	4 8	48	3		33	,							
							ı									
	e function levant metl		•	•				,	produce	e a re	esult wi	th the	new to	able.		
fun <u>† = ar</u>	get-fixed nimals	l-bir	<u>`th</u>		_ (anima	ls):				De	efine 1	the to	<u>able</u>	
.build-column(birth-year))	Are th	here moi	re colu	mns?	
.filter(is-fixed												Are	there t	ewer i	ows?	
	der-by(71.00							Are	the rou	vs orde	ered?	
												Proc	duce ti	he re	Sult	

My Dataset

What are two ways you might want to order this dataset?
1) [specific to each student]
2)
What are two subsets into which you might filter this dataset?
1)
2)
What are two new columns you might want to build from this dataset?
1)
2)

Unit 6

- **Bar charts** show the *absolute* quantity of each row in a dataset. The larger the quantity, the longer the bar. Bar charts provide a visual representation of values in a dataset.
- **Pie charts** show the *relative* quantity of each row in a dataset. The greater the percentage, the larger the pie slice. Pie charts provide a visual representation of proportions in a dataset.
- Choosing a Sample Table is important when coming up with small examples for Table Plans. A good sample table has:
 - 1. At least all the relevant columns
 - 2. Enough rows to accurately represent the dataset
 - 3. Rows that are randomly-ordered

Statements about Columns

Use the Table below to help you answer the questions.

name	species	age	pounds
Sasha	cat	1	6.5
Felix	cat	16	9.2
Wade	cat	1	3.2
Boo-boo	dog	11	123
Maple	dog	3	51.6
Nori	dog	6	35.3
Nibblet	rabbit	6	4.3

1. Which animal(s) is/are the heaviest?

2. Which animal(s) is/are the youngest?

3. How much of the total weight comes from Maple?

4. How much of the combined age comes from Nori?

5. Would these questions be harder to answer if the table had 100 rows? If so, why?

Much harder if you were estimating, because it is harder to calculate a large number of entries without using software.

Visualizing Quantity

In the table below, there are two observations drawn from the following charts. Add two more.

15.1% Sasha Felix Wade Boo-boo 22.1% Maple Nori 52.8% Nibblet

Animals Ages (yrs)

Animals Weights (lbs)

Based on a chart of	I notice that
Based on a bar chart of 7 animals' ages	Felix is by far the oldest
Based on a pie chart of 7 animals' weights	Boo-boo weighs more than the other six animals combined!
Based on a bar chart of 7 animals' ages	Wade and Sasha are the youngest animals
Based on a pie chart of 7 animals' weights	Maple is as large as the five smallest animals

Dogs are generally a lot bigger heavier than cats, so the shelter wants to look at a chart of only the dogs to determine who needs more exercise time. Define a function pie-dog-weight, which will make a pie chart showing the relative weights of all the dogs in the shelter.

Bad Sample Tables!

For each word problem, a Sample Table must have (1) all the columns that matter, (2) a representative sample of the rows, and be in (3) random order. For each problem below, check the boxes to determine if the Sample Table meets those criteria.

1. The shelter wants to know the median age of all the cats

name	species	age	fixed	legs	pounds	weeks
Sasha	cat	1	FALSE	4	6.5	3
Mittens	cat	2	TRUE	4	7.4	5
Sunfower	cat	5	TRUE	4	8.1	10

- Relevant columns
- Representative sample of rows Random order

2. The shelter wants a pie chart showing all the dogs' weight

name	species	age
Fritz	dog	4
Wade	cat	2
Nibblet	rabbit	6
Daisy	dog	5

PA	levant	\sim	lumn
	ic vai ii	\sim	1011111

- Representative sample of rows
- Random order

3. Sort all the animals alphabetically by name

name	species	age	fixed	legs	pounds	weeks
Ada	dog	2	TRUE	4	32	3
Во	dog	4	TRUE	4	76.1	10
Boo-boo	dog	11	TRUE	4	123	10

/	Rح	leva	nt.	\sim	ıım	nc
v	$\kappa \hookrightarrow$		1111	(()	1 11 1	II I 🔨

- Representative sample of rows
- Random order

Make a bar chart for all the fixed animals

name	species	age	fixed	legs	pounds	weeks	Relevant columns
Sasha							Representative sample of rows
							Random order

Define a function bar-kitten-adoption, which takes in a Table of animals and creates a bar chart showing how many weeks it took for each kitten to be adopted

Contract and Purpose										
	bar-kitten-adoption :: (animals :: Table) → Image									
# Consur kitten to			animals,	, produce	s a bar	chart show	wing the	: weeks it	took for	each
Examples										
Make a Sto	art Table a	ınd a r	esult base	∍d on that	table.					
anin	nals-tak	ole			\rightarrow	<u>bar-kit</u>	ten-ado	option(ar	nimals-te	able)
name	species	age	fixed	pounds	weeks	4				
Sasha	cat	1	FALSE	6.5	3					
Wade	cat	1	FALSE	7.4	1	3				
Sunfower	cat	5	TRUE	8.1	10	2 ——				
Boo-boo	dog	11	TRUE	123	10	2				
						0 —	Sasha		Wade	
Define the Use the rele			circle you	ur helper fi	unctions	!), then prod	luce a res	sult with the	e new tabl	e.
	ir-kittei animals	n-ado	ption	(<u>ani</u>	imals	_):		D	efine the	table
	-column(Are t	here more c	:olumns?
	•		ده: ا ما					<i>_</i>	e there fewe	
<u>.filtei</u> .ordei			is-kitte	:n				<u></u>	e the rows o	
		+/+ "-	ame" "					<i>D</i>	duce the	2001.14
end	oar-char	1(1, 1	iunie, V	veens)				<i>P1'00</i>	uuce ITIE	resuit

Contract and Purpose	2					
					_ → -	
Examples						
Make a Start Table and	a result based	d on that to	ıble.			
			→ _			
Define the function						
Use the relevant metho	ds (circle your	helper fun	ctions!), t	nen produc	e a result	with the new table.
_		,	,			
fun						Define the table
<u>† =</u>						Are there more columns?
						Are there fewer rows?
						Are the rows ordered?
						Produce the result
 end						, , , , , , , , , , , , , , , , , , , ,

Contract and Purpose				
	::			→
Examples Make a Start Table and a	result based on th	hat table.		
		11011000		
		>		
Define the function				
Use the relevant methods	s (circle your helpe	er functions!),	then produce	a result with the new table.
fun	(١	:	
t =		/	•	Define the table
<u>, -</u>				 Are there more columns?
				 Are there fewer rows?
				 Are the rows ordered?
				 Produce the result
 end				, , , , , , , , , , , , , , , , , , , ,

Visualizing My Dataset

What quantity charts did you make, and what do you notice? Fill in the table below.

Based on a	_ chart of	I notice that
	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	
·		

Unit 7

- There are three ways to measure the "center" of a dataset, to talk about a whole column of data using just one number:
 - 1. The **mean** of a dataset is the average of all the numbers
 - 2. The **median** of a dataset is a value that is smaller than half the dataset, and larger than the other half
 - 3. The **modes** of a dataset are the numbers that appear the most often.
- Data Scientists can also measure the "variation" of a dataset using a **five number summary:**
 - 1. The **minimum** the smallest value in the dataset
 - 2. The **first**, **or** "**lower**" **quartile (Q1)** the median value that separates the first quarter of the values in the dataset from the second quarter
 - 3. The **second quartile (Q2)** the median value which separates the entire dataset into "top" and "bottom" halves.
 - 4. The **third**, **or "upper" quartile (Q3)** the median value that separates the third quarter of the values in the dataset from the fourth quarter
 - 5. The **maximum** the largest value in the dataset
- The five number summary can be used to draw a box-and-whisker plot.

Summarizing Columns in Animals

The column I choose to measure is	weeks	
-----------------------------------	-------	--

Measures of Center

The three measures for this column are:

Mean (Average)	Median	Mode(s)
6.0689	4	1

Based on the differences between mean and median, I conclude:

On average, animals stay at the shelter for about 6 weeks, but half of all the animals were adopted after 4 weeks or less.

Measures of Variation

My five-number summary is:

Minimum	Q1	Q2 (Median)	Q3	Maximum
1	2.5	4	8	30

A box plot can be drawn from this summary on the number line below:

From this summary and box-plot, I conclude:

The vast majority of animals are adopted before 8 weeks in the shelter, but there are a number of outliers (such as the maximum of 30)

The shelter wants a summary of the variation in ages among the dogs. Write a function called variation-dog-age that will take in a table of animals and produce a boxplot that shows this variation.

Contract	and Purpo	se														
variat	ion-dog-	age	::		(ani	mals	; :: ·	Tak	ole)		-	>	Imag	е		
# Cons	sumes a t	tabl	e of a							plo [.]	t sh	owir	ng the	vario	ıtion	of
Example:	s tart Table ai	nd a	regult h	ased	on the	at tah	مام									
Make a 31	an rabie ai	nu u	163011 D	asea	OHILI	JI IUD	ie.									
animals	s-table						\rightarrow	va	riat	ion	-do	g-a	ge(ani	nals	-tab	<u>le)</u>
name	species	age	fixed	legs	weight	weeks										
Snowcone	cat	2	TRUE	4	6.1	5		12 —				_				
Lucky	dog	3	TRUE	3	45.4	9										
Hercules	cat	3	FALSE	4	13.4	7		8 —								
Toggle	dog	3	TRUE	8	48	3										
Shuggies	tarantula		LALSE	0	0.1	1		4 -								
										L						
												_				
								0 -				а	ge			
	e function															
Use the re	elevant metl	hods	(circle	your	helper	funct	ions!	!), th	en pro	oduc	e a r	esult	with the	new t	able.	
_					,	•	1_	,								
	variation	<u>-aog</u>	g-age		_ (<u> </u>	nima	lls_	_) :					De	fine :	the ta	ible
	<u>animals</u> ild-column										-		Are the	ere mo	re colur	nns.2
		<u>(</u>													ewer ro	
	ter(15	s-dog	1										vs ordei	
ord	der-by(_						
	box-plot	<u>(†, "(</u>	age")										Produ	ice t	he res	<u>su/t</u>
end																

Interpreting Variation

Consider the following list dataset, representing the annual income of ten people:

\$65k, \$12k, \$14k, \$280k, \$15k, \$22k, \$45k, \$34k, \$45k, \$175k

1. In the space below, rewrite this dataset in **sorted order**.

\$12k, \$14k, \$15k, \$22k, \$34k, \$45k, \$45k, \$65k, \$175k, \$280k

2. In the table below, compute the **measures of center** for this dataset.

Mean (Average)	Median	Mode(s)
70,700	39,500	45,000

3. In the table below, compute the **five number summary** of this dataset.

Minimum	Q1	Q2 (Median)	Q3	Maximum
12,000	15,000	39,500	65,000	280,000

4. On the number line below, draw a **box plot** for this dataset.

5. The following statements are correct...but misleading. Write down the reason why.

Statement	Why it's misleading
"They're rich! The average person makes more than \$70k dollars!"	While the mean is close to \$70k, there are some very high earning outliers pushing the average up
list: the most common	Looking at the full dataset, more than half of the entries are people making less than \$45k, making the mode misleading
"This group is really diverse, with people making as little as 12k and as much as \$280k!"	While the spread of incomes is large, the vast majority are still making less than \$65k, with very high earning outliers.

Summarizing a Column in My Dataset

The column I choose to measure is	[Specific to each student]
-----------------------------------	----------------------------

Measures of Center

The three measures for this column are:

Mean (Average)		Median		Mode(s)			
Based on the differences between mean and median, I conclude :							
	Measi	ures of Variatio	on				
		number summo					
Minimum G	1 (Q2 (Median)	Q3	Maximum			
A box plot can be drawn from this summary on the number line below:							
From this summary and box-plot, I conclude:							

Unit 8

- Frequency Bar charts show the number of rows belonging to a given category. The more rows in each category, the longer the bar. Frequency bar charts provide a visual representation of the frequency of values in a categorical column. Since categorical data cannot be ordered, there is no strict ordering of bars in a frequency bar chart.
- Histograms show the number of rows that fall within certain ranges, or "bins" of a
 dataset. The more rows that that fall within a particular "bin", the longer the bar.
 Histograms provide a visual representation of the frequency of values in a
 quantitative column. Quantitative data can be ordered, so the bars of a
 histogram are always sorted.
- When dealing with histograms, it's important to select a good **bin size**. If the bins are too small or too large, it is difficult to see the distribution in the dataset.

Visualizing Quantity (Review)

Use the charts below to help you answer the questions.

Boo-boo

2. Which animal is the lightest?

1. Which animal is the heaviest?

Wade

3. How much of the total weight comes from Maple?

22.1%

4. How much of the total weight comes from Nori?

15.1%

5. Which chart did you use for questions 1 and 2?

Bar chart

6. Which chart did you use for questions 3 and 4?

Pie chart

7. Why are some questions easier to answer with one kind of chart or another?

Bar charts are better for finding the amount of something quickly, whereas pie charts are better for seeing the percentage of something relative to the total for other elements in a table.

Visualizing Frequency

name	species	age	pounds
"Sasha"	"cat"	1	6.5
"Boo-boo"	"dog"	11	123
"Felix"	"cat"	16	9.2
"Nori"	"dog"	6	35.3
"Wade"	"cat"	1	3.2
"Nibblet"	"rabbit"	6	4.3
"Maple"	"dog"	3	51.6

1. How many cats are there?

3

2. How many dogs are there?

3

3. How many animals are between 3-6 years old?

3

4. How many weigh between 0-5 pounds?

- 2
- 5. Are there more animals weighing 0-5 than 6-10 pounds?
- Yes
- 6. The charts below are based on the Sample Table above. What is each one measuring? Write down your guess underneath each one.

Amount of each species

Frequency of animal weights

Define a function freq-bar-gender, which takes in a Table of animals and creates a frequency bar chart showing how many animals are male v. female.

Contract	and Purpo	ose							
freq-b	freq-bar-gender :: (animals :: Table) → Image								
# Consu	# Consumes a table of animals and produces a frequency bar chart of their								
genders									
Examples									
Make a Sto	rt Table a	ınd a r	esult base	ed on that t	table.				
	.ــ ما۔	- - -			\rightarrow	freq-bar-ge	ender(a	nimals-t	able)
an	imals-ta	lbie			_	1109 241 91	JIIGOI (G		<u>ubic)</u>
			_	-					
name	species		gender male						
Fritz Wade	dog cat	2	male						
Nibblet	rabbit	6	male						
Daisy	dog	5	female						
_				I					
						female		male	
Define the	function								
			circle you	ır helper fu	nctions!), t	nen produce a re	esult with	the new to	ıble.
fun	freq-ba	r-ger	nder	(<u>aniı</u>	<u>mals</u>):			Define t	he table
<u>† = a</u>	nimals								
	Are there more columns							e columns?	
								Are there fo	ewer rows?
								Are the row	s ordered?
free	g-bar-ch	 art(t,	, "gender	·")			 P.	Produce th	ne result

Define a function histogram-adoption, which takes in a Table of animals and creates a histogram showing how long it took for animals to get adopted

Contract	Contract and Purpose										
histog	histogram-adoption :: (animals :: Table) → Image										
# Cons	# Consumes a table of animals and produces a histogram showing how long it										
Example											
Make a St	art Table a	nd a	result b	asec	l on the	at tabl	le.				
an	imals-ta	ble					→ <u>hi</u> s	stogran	m-ado	ption(anin	nals-table)
name	species	age	fixed	legs	weight	weeks					
Snowcone	cat	2	TRUE	4	6.1	5	2.0				
Lucky	dog	3	TRUE	3	45.4	9	1.5				
Hercules	cat	3	FALSE	4	13.4	7					
Toggle	dog	3	TRUE	4 8	48	3	1.0				_
Snuggles	tarantula	2	FALSE	0	0.1	1	0.5	1 2 3	3 4	5 6 7 8	9 10
	e function		/ pingla		ام مایم می	· £ 1	المصال المصا	uana aku a		مر م ملا ملائر را ال	akadala
Use the re	levant meti	noas	(circle	your	neiper	tunct	ions!), ther	n produc	e a resu	ult with the n	ew table.
	<u>istogram</u>	-ad	option	l	_ (<u>ar</u>	nimal	<u>s</u>):			<u>Def</u>	ine the table
<u>† = a</u>	nimals									Ana thai	re more columns?
										_	e more columns? here fewer rows?
										_	,
										Are th —	ne rows ordered?
histo	ogram(t, "v	veek	(s", 1)							Produc	ce the result

Visualizing My Dataset

What frequency charts did you make, and what do you notice? Fill in the table below.

Based on a	_ chart of	I notice that
	· · · · · · · · · · · · · · · · · · ·	

Matching Charts to Questions

For each of the questions below, draw a line to the chart that will best answer it. (You may find that more than one question is best answered by the same chart!)

Unit 9

- **Scatter Plots** show the relationship between two quantitative columns. Each row in the dataset is represented by a point, with one column providing the x-value and the other providing the y-value. The resulting "point cloud" makes it possible to look for a relationship between those two columns.
- If the points in a scatter plot appear to follow a pattern, it is possible that a relationship or **correlation** exists between those two columns.
- If there is a pattern to the points in a scatter plot, points that are far away from the pattern are called **outliers**.
- We can express this correlation by drawing line through the data cloud, so that
 the distance between the line and each of the points is as small as possible. This
 line is called the line of best fit or predictor function and allows us to make
 predictions based on the dataset.

(Dis)Proving a Claim

"Younger animals are cuter, so they get adopted faster."

Do you agree? If so, why?
I hypothesize
that younger animals will get adopted faster, possibly because they
are considered cuter, but there may be other factors causing them to
get adopted faster.
[specific to each student]
What would you look for in the dataset to see if you are right?
I would look at both the ages and number of weeks until adoption for
each animal to see if there was a correlation. I would also want to
collect more data, such as conduct a survey of adopters.

Creating a Scatter Plot

name	species	age	weeks
"Sasha"	"cat"	1	3
"Boo-boo"	"dog"	11	5
"Felix"	"cat"	16	4
"Buddy"	"lizard"	2	24
"Nori"	"dog"	6	9
"Wade"	"cat"	1	2
"Nibblet"	"rabbit"	6	12
"Maple"	"dog"	3	2

- 1. For each row in the Sample Table on the left, add a point to the scatter plot on the right. The first 3 rows have been completed for you. Use the values from the age column for the x-axis, and values from the weeks column for the y-axis.
- 2. Do you see a pattern? Do the points seem to shift up or down as age increases? **Draw a line on the scatter plot to show this pattern**.
- 3. Does the line slope upwards or downwards?

Slightly upwards

4. Are the points mostly close to the line?

A few points are close to the line, but as ages increase the points get much farther apart.

Define a function <code>dogs-age-weeks</code>, which takes in a Table of animals and creates a scatter plot of all the dogs, tracking their <code>age</code> on the x-axis and the number of <code>weeks</code> it took for them to be adopted on the y-axis.

Contract	Contract and Purpose													
dog-	dog-age-weeks :: (animals :: Table) → Image													
J														
# Cons	# Consumes a table of animals and produces a scatter plot showing the													
relation	nship betw	veel	n age	and	week	s to	adopt	tion						
Example	S													
Make a St	art Table a	nd a	result b	ased	on the	at tabl	e.							
an	<u>imals-tal</u>	ole					→	_dog-d	ige-	week	s(ani	mals-	table	:)
name	species	age	fixed	legs	weight	weeks		30 —				•		
Snowcone	cat	2	TRUE	4	6.1	5								
Lucky	dog	3	TRUE	3	45.4	9		20						•
Hercules	cat	3	FALSE	4	13.4	7		20						
Toggle	dog	3	TRUE	4	48	3								
Snuggles	tarantula	2	FALSE	8	0.1	1		10	:	•				
									•			•	•	
									2	4	6	8	10	
									2	4	0	o	10	
	e function													
Use the re	levant met	hods	(circle	your	helper	funct	ions!),	then proc	duce (a resul	t with	the nev	v table	·.
	_		_											
	log-age-		KS		_ (<u>ar</u>	nimal	<u>s_</u>)	:				Define	e the	table
<u>† = ar</u>	<u>iimals-tab</u>	le_									_			
											_ Ar	e there i	nore co	lumns?
.filte	r(is-	dog)		Are ther	e fewer	rows?
											,	Are the i	rows or	dered?
scatt	 er-plot(t,	"aae	 e", "wea	eks")						- Pi	roduce	the r	esult
end									-				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Drawing Predictors

For each of the scatter plots below, draw a **predictor line** that fits best.

Correlations in My Dataset

1) There may be a correlation between		and
	column	
I think it is a		
COLUMN	strong / weak	positive / negative
correlation, because		
	It would	d be stronger if I looked
1		
a subset	or extension of my da	ta
a subset	of extension of my da	. ca
_		
1) There may be a correlation between		and
	column	
I think it is a		
I think it is a	strong / weak	
0014	sciong / weak	positive / negative
correlation, because		
	It would	d be stronger if I looked
at		
ata subset	or extension of my da	ta
	-	
1) There may be a correlation between		and
	column	
I think it is a		
I think it is a	strong / weak	
	Sololly , would	receive, integrated
correlation, because		
	It would	a be stronger it I looked
ata subset		
a subset	or extension of my da	ta

Unit 10

- Given a **predictor function** and a scatter plot, we can compute the error by adding the squares of all the distances between the function and each point in the plot. The error is called the **r**² **statistic**, which tells us how much of the variation in the y-axis can be explained by the x-axis.
- A strong correlation will have a large r². A weak correlation will have a small r².
- A **positive correlation** means the slope of the line of best fit is positive. A **negative correlation** means the slope is negative.
- **Linear Regression** is a way of computing the **line of best fit**, by taking a scatter plot and deriving the slope and y-intercept for a line that has the smallest possible r².
- <u>Correlation is not causation!</u> Correlation only suggests that two measures are related, but does not tell us if one causes the other. For example, hot days are correlated with people running their air conditioners, air conditioners do not cause hot days!

Grading Predictors

Below are the scatter plots for data sets A-D, with two different lines predictor lines drawn on top. For plots A-D:

- 1. Circle the plot with the line that fits better
- 2. Give the plot you circled a grade between 0 (no correlation) and 1 (perfect correlation)

Findings in the animals Dataset

I performed a line	ear regression on	d	, and	
•			dataset or subset	
found	a weak (r²	=0.25), positive	correlation be	tween
		and numb	er of weeks to be adopted	From this, I
L	r-axis]		[y-axis]	
conclude that	25% of th	ie variability in d	adoption time is explained] is explained by [x-axis]	
		ation in [y-axis] is explained by [x-axis]	
by the age of t	the dog			
I performed a line	ear rearession on	co	ts at the shelter	, and
			dataset or subset	,
found	a weak (r²=0.0	25), positive	correlation be	tween
	a strong	/weak (r2=), pos	correlation be sitive/negative	
			er of weeks to be adopted	
	-axis]	<u> </u>	[y-axis]	
conclude that	2.5% of the var	riability in adopt	ion time is explained	
	r² % of the vari	ation in [y-axis	ion time is explained] is explained by [x-axis]	
by the weigh				
	· · · · · · · · · · · · · · · · · · ·			·
I porformed a line	ar ragrassion on	fixed	animals at the shelter	and
i periornea a iirie	edi regression on	TIXOG	dataset or subset	, and
found	a weak (r ² =0 0	25) nositive	correlation bo	twoon
10011d	a strong	/weak $(r^2=)$, pos	correlation be sitive/negative	IWEEII
			of the animal (in pounds)	
	r-axis]	and weight	[y-axis]	110111 11113, 1
conclude that	2.5% of the vo	riability in weia	nt is explained	
CONCIDUE INCI	r^2 % of the vari	ation in [y-axis	ht is explained] is explained by [x-axis]	
by the age o				
				·

Correlations in My Dataset

I performed a linear regression on			, and
		dataset or subset	
found a strong/wea		correlation b	etween
a strong/wea	$1 k (r^2 =), pos$	itive/negative	
	and		From this, I
[x-axis]		[y-axis]	
conclude that $ \underline{\hspace{2cm} r^2 \ \text{\% of the variation} } $			
r² % of the variation	on in [y-axis]	is explained by [x-axis]	
			·
I performed a linear regression on			, and
		dataset or subset	
found a strong/wea		correlation b	etween
	and	[y-axis]	From this, I
[x-axis]		-	
conclude that $ \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	n in [v=aviel	ie ovnlainod by [v=aviel	
1 % Of the variation	ni ili [y axis]	is explained by [x axis]	
			•
I performed a linear regression on		dataset or subset	, and
founda strong/wea	$\frac{1}{2}$ ak ($r^2 =$), pos	correlation b	etween
			From this I
	uria	[y-axis]	HOITI IIIIS, I
		-	
conclude that $ \underline{ \hspace{1cm} \hspace{1cm} \hspace{1cm} r^2 \ \$ \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} r$	on in [y-axis]	is explained by [x-axis]	

Unit 11

Fake News!

Every claim below is wrong! Your job is to figure out why, by looking at the data.

	Data	Claim	Why it's wrong
1	The average player on a basketball team is 6'1".	"Most of the players on the team are taller than 6'."	The average is based on all the players, and there may be outliers pushing the average height up-average tells you nothing about the majority of the players.
2	After performing linear regression on census data, a positive correlation (r ² =0.18) was found between people's height and salary.	"Taller people get paid more."	Only 18% of the variation in salary is based on height, which is not a large enough r-squared value to say that taller people get paid more.
3	y=12.234x + -17.089; r-sq: 0.636	"According to the predictor function indicated here, the value on the x-axis is will predict the value on the y-axis 63.6% of the time."	The r-squared value of 0.636 does not mean how often the y-value will be predicted, rather what percent of variation in the y-value is based on the x-value.
4	15 Sasha Felix Wade Boo-boo Maple Nori Bar Chart of Pet Ages	"According to this bar chart, Felix makes up a little more than 15% of the total ages of all the animals in the dataset."	Bar charts are not the most appropriate image for showing the percentage of each measurement based on the total- pie charts should be used for that info. This bar chart shows that Felix is a little more than 15 years old.
5	20 40 60 80 100 120 140 160 180 Weight (pounds)	"According to this histogram, most animals weigh between 40 and 60 pounds."	More animals fit into the histogram bin between 40-60 lbs than any other bin, but that doesn't mean that most animals weigh between 40-60 lbs.
6	After performing linear regression, a negative correlation (r ² =0.91) was found between the number of hairs on a person's head and their likelihood of owning a wig.	"Owning wigs causes people to go bald."	Though there is a strong correlation between hair and owning a wig, correlation does NOT equal causation.

Blank Recipes, Table Plans, and References

Design Recipes

		::		\rightarrow	
	name		domain		range
xampl	es:	 			
_		() is		
		\			
nd —		() is		
un		() :		
nd					
		::			
	name		domain		range
xampl	es:				
_					
		() is		
		() is		
nd					
un		() :		
end					

Design Recipes

	::		\rightarrow	
name		domain		range
mples:				
	() is		
	(, •		
	\.	,		
	() :		
	::		>	
name		domain		range
mples:				
•				
	() is		
	() is		
1	() :		
đ				
l				

Design Recipes

	::		\rightarrow	
name		domain		range
mples:				
	() is		
	(, •		
	\.	,		
	() :		
	::		>	
name		domain		range
mples:				
•				
	() is		
	() is		
1	() :		
đ				
l				

Table Plan

Contract and Purpose				
	::			\rightarrow
Examples				
Make a Start Table and o	a result based on tha	ıt table.		
		\rightarrow		
		- <i>'</i>		
		_		
Define the function				
Use the relevant method	s (circle your helper	functions!)	then produce	a result with the new table.
	,			
	(:	Define the table
<u>† =</u>				 Are there more columns?
				Are there fewer rows?
				Are the rows ordered?
				<u>Produce the result</u>
end				

Table Plan

Contract and Purpose				
	::			\rightarrow
Examples				
Make a Start Table and a	a result based on th	nat table.		
		\rightarrow		
		_ ′		
Define the function				
Use the relevant method	s (circle your helpe	er functions!)	, then produce	a result with the new table.
	,	,		
	():	Define the table
<u>† =</u>				 Are there more columns?
				Are there fewer rows?
				 Are the rows ordered?
 end				<u>Produce the result</u>
Elia				

Table Plan

Contract and Purpos	е					
	::				> _	
_						
Examples Make a Start Table and	d a result based	d on that to	able.			
			\rightarrow			
Define the function			- 4: 1\	He are real and		and the the constraint of the
Use the relevant metho	oas (circie your	neiper tun	CTIONS!),	tnen produ	ice a resuit	with the new table.
fun		()			
<i>t =</i>						Define the table
<u> </u>						Are there more columns?
						Are there fewer rows?
						Are the rows ordered?
						Produce the result
end						

Contracts

Name	Domain		Range
triangle	:: (side-length :: Number, style :: String, color :: String)	\rightarrow	Image
circle	:: (radius :: Number, style :: String, color :: String)	\rightarrow	Image
star	:: (radius :: Number, style :: String, color :: String)	\rightarrow	Image
rectangle	:: (width :: Num, height :: Num, style :: Str, color :: Str)	\rightarrow	Image
ellipse	:: (width :: Num, height :: Num, style :: Str, color :: Str)	\rightarrow	Image
square	:: (side-length :: Number, style :: String, color :: String)	\rightarrow	Image
text	:: (str :: String, size :: Number, color :: String)	\rightarrow	Image
overlay	:: (img1 :: <i>Image</i> , img2 :: <i>Image</i>)	\rightarrow	Image
rotate	:: (degree :: Number, img :: Image)	\rightarrow	Image
scale	:: (factor :: Number, img :: Image)	\rightarrow	Image
string-repeat	:: (text :: String, repeat :: Number)	\rightarrow	String
string-contains	:: (text :: String, search-for :: String)	\rightarrow	Boolean
num-sqr	:: (n :: Number)	\rightarrow	Number
num-sqrt	:: (n :: Number)	\rightarrow	Number
num-min	:: (a :: Number, b:: Number)	\rightarrow	Number
num-max	:: (a :: Number, b:: Number)	\rightarrow	Number
get-row	:: (t :: Table, index :: Number)	\rightarrow	Row

Contracts

Name	Domain		Range
<table>.row-n</table>	:: (n :: Number)	\rightarrow	Row
<table>.order-by</table>	:: (col :: String, increasing :: Boolean)	\rightarrow	Table
<table>.filter</table>	:: (test :: (Row → Boolean))	\rightarrow	Table
<table>.build-column</table>	:: (col :: String, builder :: (Row → Value))	\rightarrow	Table
mean	:: (<u>t</u> :: Table, col :: String)	\rightarrow	Number
median	:: (t :: Table, col :: String)	\rightarrow	Number
modes	:: (t :: Table, col :: String)	\rightarrow	List <number></number>
bar-chart	:: (t :: Table, labels :: String, values :: String)	\rightarrow	Image
pie-chart	:: (t :: Table, labels :: String, values :: String)	\rightarrow	Image
box-plot	:: (t :: Table, col:: String)	\rightarrow	Image
freq-bar-chart	:: (t :: Table, values :: String)	\rightarrow	Image
histogram	:: (t :: Table, values :: String, bin-width :: Number)	\rightarrow	Image
scatter-plot	:: (t :: Table, xs :: String, ys :: String)	\rightarrow	Image
labeled-scatter-plot	:: (t :: Table, labels :: String, xs :: String, ys :: String)	\rightarrow	Image
lr-plot	:: (t :: Table, xs :: String, ys :: String)	\rightarrow	Image
labeled-lr-plot	:: (t :: Table, labels :: String, xs :: String, ys :: String)	\rightarrow	Image