STAT 709: My notes

Ralph Møller Trane Fall 2018 (compiled 2018-09-24)

Contents

1	Intro			
	1.1	Textbook	5	
	1.2	Conventions re: ∞	5	
2	Lecture Notes 7			
	2.1	Chapter 1: Probability Theory	7	
	2.2	Lecture 2: 9/11	9	
	2.3	Lecture 2: 9/11	12	
3	Discussion Notes			
	3.1	Discussion 1: 5/14	13	
4	Homework 17			
	4.1	Chapter 1	17	

4 CONTENTS

Intro

1.1 Textbook

As of Fall 2018, this class uses the book *Mathematical Statistics* by Jun Shao (2nd. edition). Unless otherwise noted, all definitions, lemmas, proposition, theorems, etc. can be found there. Numbering might not match.

1.2 Conventions re: ∞

We will use the following conventions:

- $\infty + x = \infty, x \in \mathbb{R}$
- $x \cdot \infty = \infty$ if x > 0
- $x \cdot \infty = -\infty$ if x < 0
- $0 \cdot \infty = 0$
- $\infty + \infty = \infty$
- $\infty^a = \infty, \forall a > 0$
- $\infty \infty$ and $\frac{\infty}{\infty}$ are not defined

6 CHAPTER 1. INTRO

Lecture Notes

2.1 Chapter 1: Probability Theory

2.1.1 Lecture 1: Measure space, measurable function, and integration

2.1.1.1 σ -fields

Definition 2.1 (σ-field (or σ-algebra)). A \mathcal{F} collection of subsets of Ω is called a σ-field (or σ-algebra) if the following three conditions hold:

- i) $\emptyset \in \mathcal{F}$
- ii) $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$
- iii) If $A_i \in \mathcal{F}$ for all i = 1, 2, ..., then $\bigcup_i A_i \in \mathcal{F}$.

Example 2.1 (A Few σ -fields). There are some trivial examples. One is the example where $\mathcal{F} = \{\emptyset, \Omega\}$. It is easy to check that the three conditions are met for this collection of subsets. Another trivial example would be $\mathcal{F} = \mathbb{P}(\Omega)^1$.

The simplest non-trivial example is $\mathcal{F} = \{\emptyset, A, A^C, \Omega\}$ where $A \subset \Omega$. Since this collection of subsets is so small, it is easy to check the three conditions mentioned above.

Definition 2.2 (Measurable Space). If \mathcal{F} is a σ -field on Ω , then we call (Ω, \mathcal{F}) a measurable space.

2.1.1.2 σ -field generated by a collection of subsets

Sometimes we are interested in a specific collection of subsets, C, that is NOT a σ -field. But since all the machinery we will develop works with σ -fields, we are interested in creating a σ -field that contains C. So we introduce the notion of a σ -field generated by a collection of subsets.

Definition 2.3 (Generated σ -field). The smallest σ -field containing a collection of subsets, \mathcal{C} , is called the σ -field generated by \mathcal{C} .

 $\sigma(\mathcal{C})$ is used to denote the σ -field generated by \mathcal{C} , and is by definition the smallest σ -field that contains \mathcal{C} : if \mathcal{F} is a σ -field with $\mathcal{C} \subset \mathcal{F}$, then $\sigma(\mathcal{C}) \subseteq \mathcal{F}$.

2.1.1.3 Borel σ -field

A particular important σ -field is the Borel σ -field. In general, this is defined as the σ -field generated by the collection of all open subsets of a specific topology. In particular, if we consider \mathbb{R}^k is the k-dimensional

¹P is used to denote the collection of all subsets.

Euclidean space, $\mathcal{O} = \{ O \subseteq \mathbb{R}^k \mid O \text{ open set} \}$, then $\sigma(\mathcal{O}) = \mathcal{B}^k$ (the Borel σ -field on \mathbb{R}^k).

It can be shown that the σ -field generated by the collection of all closed sets is also the Borel σ -field.

Sometimes it is useful to be able to limit ourselves to a subspace of \mathbb{R}^k . In such cases, we can create the Borel σ -field on that subspace in the following way: if $C \in \mathcal{B}^k$, then $\mathcal{B}_C = \{C \cap B \mid B \in \mathcal{B}^k\}$ is the Borel σ -field on C.

2.1.1.4 Measures

Definition 2.4 (Measure). Let (Ω, \mathcal{F}) is a measurable space

 $\nu: \mathcal{F} \to \mathbb{R} \cup \{\infty\}$ is said to be a *measure* if

- i) $0 \le \nu(A) \le \infty$ for all $A \in \mathcal{F}$
- ii) $\nu(\emptyset) = 0$
- iii) If $A_i \in \mathcal{F}$ for i = 1, 2, ..., and $A_i \cap A_j = \emptyset, \forall i \neq j$ (i.e. A_i 's are pairwise disjoint), then it must hold that

$$\nu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \nu(A_i)$$

Example 2.2 (Counting Measure). The *counting measure* is simply the measure that returns the number of elements in a set.

Example 2.3 (Lebesgue Measure). The measure $m: \mathbb{R} \to \mathbb{R}$ satisfying that for all intervals [a, b], a < b,

$$m([a,b]) = b - a,$$

is called the *lebesgue measure*. This measure is unique.

Definition 2.5 (σ -finite measures). A measure ν is called σ -finite if and only if there exists a sequence $\{A_1, A_2, \ldots\}$ such that $\bigcup A_i = \Omega$ and $\nu(A_i) < \infty, \forall i$.

Definition 2.6 (Measure Space). If ν is a measure on \mathcal{F} , and (Ω, \mathcal{F}) is a measurable space, then $(\Omega, \mathcal{F}, \nu)$ is a *measure space*.

Example 2.4. Both the Lebesque measure is σ -finite.

The counting measure is σ -finite if and only if Ω is countable.

Definition 2.7 (Probability Space). If $(\Omega, \mathcal{F}, \nu)$ is a measurable space with $\nu(\Omega) = 1$, then it is called a *probability space*.

Proposition 2.1 (Properties of measures). Let $(\Omega, \mathcal{F}, \nu)$ be a measure space. Then the following holds:

- i) Monotonicity: if $A \subseteq B$, then $\nu(A) \le \nu(B)$
- ii) **Subadditivity:** for any sequence, A_1, A_2, \ldots ,

$$\nu\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} \nu(A_i)$$

iii) Continuity: if $A_1 \subset A_2 \subset \dots$ (or $A_1 \supset A_2 \supset \dots$), then

$$\nu\left(\lim_{n\to\infty}A_n\right)=\lim_{n\to\infty}\nu\left(A_n\right),\,$$

where

$$\lim_{n \to \infty} A_n = \bigcup_{i=1}^{\infty} A_i \left(or = \bigcap_{i=1}^{\infty} A_i \right)$$

Definition 2.8 (Cumulative Distribution Function). The *cumulative distribution function* (c.d.f.) of a measure ν is defined as

$$F(x) = \nu((-\infty, x]), x \in \mathbb{R}.$$

There is a one-to-one correspondence between probability measures on (\mathbb{R},\mathcal{B}) and the set of c.d.f.'s.

Proposition 2.2 (Properties of c.d.f.'s). i) For a c.d.f, \mathcal{F} , on \mathbb{R} , it holds that: a) $F(-\infty) = 0$ b) $F(\infty) = 1$ c) $x \leq y \Rightarrow F(x) \leq F(y)$ (non-decreasing) d) $\lim_{y \to x^+} F(y) = F(x)$ (right continuous) ii) If a function $F: \mathbb{R} \to \mathbb{R}$ satisfies the four conditions above, it is a c.d.f. of a unique probability measure on $(\mathbb{R}, \mathcal{B})$.

Proposition 2.3 (The Product Measure Theorem). If $(\Omega_i, \mathcal{F}_i, \nu_i)$, i = 1, ..., k are measure spaces with σ -finite measures. Then there exists a unique measure on the σ -field $\sigma(\mathcal{F}_1 \times ... \mathcal{F}_k)$:

$$\nu_1 \times \cdots \times \nu_k (A_1 \times \cdots \times A_k) = \nu_1 (A_1) \dots \nu_k (A_k)$$

for all $A_i \in \mathcal{F}_i$, $i = 1, \ldots, k$.

This measure is called the product measure.

Definition 2.9 (Joint and Marginal c.d.f.'s). The *join c.d.f.* of a probability measure on $(\mathbb{R}^k, \mathcal{B}^k)$ is defined as

$$F(x_1, \dots, x_k) = P((-\infty, x_1] \times \dots \times (-\infty, x_k]), \quad x_i \in \mathbb{R}.$$

2.2 Lecture 2: 9/11

Definition 2.10 (Measurable Function). Let (Ω, \mathcal{F}) and (Λ, \mathcal{G}) be measurable spaces. Let $f: \Omega \to \Lambda$.

f is called a measurable function if and only if

$$f^{-1}(\mathcal{G}) \subset \mathcal{F}(\text{i.e.} f^{-1}(G) \in \mathcal{F} \forall G \in \mathcal{G}).$$

Note that if \mathcal{F} is the collection of all subsets of Ω , then all functions are measurable.

Definition 2.11 (σ -field generated by a function). Let f be as in @ref{measurable-function}. Then $f^{-1}(\mathcal{G})$ is a sub- σ -field of \mathcal{F} . We call it the σ -field generated by f, and denote it by $\sigma(f)$.

Definition 2.12 (Borel Functions). A function from (Ω, \mathcal{F}) to $(\mathbb{R}, \mathcal{B})$ is called a *Borel function\$ if it is measurable.

Proposition 2.4 (Properties of Borel Functions). Let (Ω, \mathcal{F}) be a measurable space.

- i) A function is Borel if and only if $f^{-1}(a, \infty) \in \mathcal{F}$ for all $a \in \mathbb{R}$.
- ii) If f and g are Borel, then so are fg and af + bg, where $a, b \in \mathbb{R}$. Also, if $g(\omega) \neq 0$ for all $\omega \in \Omega$, then f/g is also Borel.
- iii) If f_1, f_2, \ldots are all Borel functions, then so are $\sup_n f_n$, $\inf_n f_n$, $\lim \sup_n f_n$, and $\lim \inf_n f_n$. Furthermore, the set

$$A = \left\{ \omega \in \Omega | \lim_{n \to \infty} f_n(\omega) \text{ exists} \right\}$$

is an event, and the function

$$h(\omega) = \begin{cases} \lim_{n \to \infty} f_n \omega & \omega \in A \\ f_1(\omega) & \omega \notin A \end{cases}$$

- iv) Suppose that f is measurable from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) and g is measurable from (Λ, \mathcal{G}) to (Δ, \mathcal{H}) . Then the composite function $g \circ f$ is measurable from (Ω, \mathcal{F}) to (Δ, \mathcal{H}) .
- v) Let Ω be a Borel set in \mathbb{R}^p . If f is a continuous function from Ω to \mathbb{R}^q , then f is measurable.

Proposition 2.5. For any non-negative Borel function f there exists a sequence of non-negative simple functions f_1, f_2, \ldots such that

$$f_n \to f \text{ for } n \to \infty$$

Definition 2.13 (Distribution). Let $(\Omega, \mathcal{F}, \nu)$ be a measure space, and f a measurable function from this measure space into the measurable space (Λ, \mathcal{G}) .

The measure defined as

$$\nu \circ f^{-1}(B) = \nu(f \in B) = \nu(f^{-1}(B)), \quad B \in \mathcal{G}$$

is called the *induced measure* by f.

If ν is a probability measure and f is a random variable (i.e. a Borel function), then $\nu \circ f^{-1}$ is called the distribution (or law) of f, and is denoted ν_f .

Notice that there are many notations for the same thing. If P is a probability measure and X a random variable, then

$$P_X(B) = P(X \in B) = P(X^{-1}(B)) = P \circ X^{-1}.$$

2.2.1 Integration

Definition 2.14 (Simple Function). A function ϕ is called a *simple function* if it is of the form

$$\phi = \sum_{i=1}^{\infty} a_i 1_{A_i},$$

where A_1, A_2, \ldots are sets. If $a_i \geq 0$ for all $i \geq 1$, then ϕ is a non-negative simple function.

Definition 2.15 (Integral of a Non-negative Simple Function). The integral of a non-negative simple function ϕ with respect to a measure ν is defined as

$$\int \phi d\nu = \sum_{i=1}^{k} a_i \nu(A_i).$$

Definition 2.16 (Integral of Non-negative Borel Function). Let f be a non-negative Borel function. Let S_f be the collection of ALL non-negative simple function with $\phi(\omega) \leq f(\omega), \forall \omega \in \Omega$.

The integral of f with respect to ν is defined as

$$\int f d\nu = \sup \left\{ \int \phi d\nu \, | \phi \in \mathcal{S}_f \right\} \, .$$

Note: one consequence of this is that for any non-negative Borel function, there exists a sequence of simple functions ϕ_1, ϕ_2, \ldots such that $0 \le \phi_i \le f$ for all i and

$$\lim_{n \to \infty} \int \phi_n d\nu = \int f d\nu$$

Definition 2.17 (Integral of General Borel Function). Let f be a Borel function, and let $f_+(\omega) =$ $\max\{f(\omega),0\}$ (i.e. the positive part) and $f_{-}(\omega)=\max\{-f(\omega),0\}$ (i.e. the negative part). If at least one of $\int f_+ d\nu$ and $\int f_- d\nu$ is finite, we say that $\int f d\nu$ exists and

$$\int f d\nu = \int f_+ d\nu - \int f_- d\nu.$$

Definition 2.18 (Integrable Functions). When $\int f d\nu < \infty$, i.e. the integral of both the positive and negative part of f is finite, we say that f is *integrable*.

Note: as a consequence of the definition of an integrable function we have that a Borel function is integrable if and only if |f| is integrable. (This is true since $|f| = f_+ + f_-$.)

Notation: There are many different ways to write down an integral:

$$\int f d\nu = \int_{\Omega} f d\nu = \int f(\omega) d\nu = \int f(\omega) d\nu(\omega) = \int f(\omega) \nu(d\omega),$$

and if F is the c.d.f. (2.8) of a probability measure P on $(\mathbb{R}^k, \mathcal{B}^k)$,

$$\int f(x)dP = \int f(x)dF(x) = \int fdF$$

Proposition 2.6 (Linearity of Integrals). Let $(\Omega, \mathcal{F}, \nu)$ be a measure space, and f and g be Borel functions.

i) If $\int f d\nu$ exists, then for any $a \in \mathbb{R}$, $\int (af) d\nu$ exists, and

$$\int (af)d\nu = a \int fd\nu$$

ii) If $\int f d\nu$ and $\int g d\nu$ both are well defined, then $\int (f+g) d\nu$ exists and

$$\int (f+g)d\nu = \int fd\nu + \int gd\nu$$

Proof. Show that it holds for indicator functions, simple functions, non-negative functions, and then all functions.

Definition 2.19 (Almost Everywhere or Almost Surely). A statement is said to be true ν -a.e. (or ν -a.s.) if it is true for all $\omega \notin N$ and $\nu(N) = 0$.

Proposition 2.7 (a.e. for integrals). Let $(\Omega, \mathcal{F}, \nu)$ be a measure space, and f and g be Borel functions.

- i) If $f \leq g \ \nu$ -a.e., then $\int f d\nu \leq \int g d\nu$, given that both integrals exist ii) If $f \geq 0 \ \nu$ -a.e. and $\int f d\nu = 0$, then $f = 0 \ \nu$ -a.e.

Proof. ii) Let $A = \{f > 0\}$ and $A_n = \{f \ge n^{-1}\}$, $n = 1, 2, \ldots$ Then $A_n \subset A$ for any n and $\lim_{n \to \infty} A_n = \{f \ge n^{-1}\}$. $\cup A_n = A$ (show that this holds).

Then, by (iii) of 2.1, $\lim_{n\to\infty} \nu(A_n) = \nu(A)$. By part (i) and proposition 2.6, we get that, for any n,

$$n^{-1}\nu(A_n) = \int n^{-1}I_{A_n}d\nu \le \int fI_{A_n}d\nu \le \int fd\nu = 0.$$

2.2.2 Radon-Nikodym Derivatives

2.3 Lecture 3: 9/13

Proof of Ex 1.11: for any borel set A: if A = (-infty, x), it holds. If not, then...

 π - and λ -systems.

Definition: π -system

If \mathcal{C} is a collection of subsets, and it holds that $A, B \in \mathcal{C} \Rightarrow A \cap B \in \mathcal{C}$.

For a pi system, $\sigma(\mathcal{C}) = \mathcal{B}$

Proposition 2.8 (Calculus with Radon-Nikodym Derivatives). Let ν be a σ -finite measure on a measure space (Ω, \mathcal{F}) . All other measures discussed in the following are defined on (Ω, \mathcal{F}) .

i) If λ is a measure, $\lambda \ll \nu$, and $f \geq 0$, then

$$\int f d\lambda = \int f \frac{d\lambda}{d\nu} d\nu.$$

ii) If λ_i , i = 1, 2, are measures and $\lambda_i << \nu$, then $\lambda_1 + \lambda_2 << \nu$ and

$$\frac{d(\lambda_1 + \lambda_2)}{d\nu} = \frac{d\lambda_1}{d\nu} + \frac{d\lambda_2}{d\nu} \quad \nu\text{-a.e.}$$

iii) If τ is a measure, λ a σ -finite measure, and $\tau << \lambda << \nu$, then

$$\frac{d\tau}{d\nu} = \frac{d\tau}{d\lambda} \frac{d\lambda}{d\nu} \quad \nu\text{-}a.e..$$

iv) Let $(\Omega_i, \mathcal{F}_i, \nu_i)$ be a measure space and ν_i be σ -finite, i = 1, 2. Let λ_i be a σ -finite measure on $(\Omega_i, \mathcal{F}_i)$ and $\lambda << \nu_i$, i = 1, 2. Then $\lambda_1 \times \lambda_2 << \nu_1 \times \nu_2$ and

$$\frac{d(\lambda_1 \times \lambda_2)}{d(\nu_1 \times \nu_2)}(\omega_1, \omega_2) = \frac{d\lambda_1}{d\nu_1}(\omega_1) \frac{d\lambda_2}{d\nu_2}(\omega_2) \quad \nu_1 \times \nu_2 \text{-} a.e.$$

.

Discussion Notes

3.1 Discussion 1: 5/14

3.1.1 σ -fields

Exercise 3.1 (Countable intersection/union of σ -fields). Let \mathcal{F}_n , n = 1, 2, ... be a sequence of σ -fields on Ω . Show the following:

- a) $\bigcap_{i=1}^{\infty} \mathcal{F}_n$ is a σ -field.
- b) If $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots$, then $\bigcup_{i=1}^{\infty} \mathcal{F}_n$ is not necessarily a σ -field.

Solution (ref(exr:ex11) a)). We need to show (i)-(iii) from definition 2.1.

- i) Since \mathcal{F}_n are all σ -fields, $\emptyset \in \mathcal{F}_n$ for all $n = 1, 2, \ldots$ Hence, $\emptyset \in \bigcap_{i=1}^{\infty} \mathcal{F}_n$.
- ii) As (i).
- iii) Let $\{A_i\}_{i=1}^{\infty}$ be a sequence of subsets from $\bigcap_{i=1}^{\infty} \mathcal{F}_n$. Then, for all $i, A_i \in \mathcal{F}_n$ for all n. Since F_n is a σ -field, $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}_n$ for all n, and so $\bigcup_{i=1}^{\infty} A_i \in \bigcap_{i=1}^{\infty} \mathcal{F}_n$.

Hence, $\bigcap_{i=1}^{\infty} \mathcal{F}_n$ is a σ -field.

Solution (ref(exr:ex11) b)). Let
$$\Omega = [0, 1]$$
, and $\mathcal{F}_n = \sigma \left\{ [0, \frac{1}{2^n}), [\frac{1}{2^n}, \frac{2}{2^n}), \dots, [\frac{2^{n-1}}{2^n}, 1) \right\}$.

Now, consider the set $B_n = [0, \frac{1}{2^n})$. Clearly $B_n \in \mathcal{F}_n$ for all n, hence $B_n \in \bigcup_{i=1}^{\infty} \mathcal{F}_n$. Hower, $\bigcap_{i=1}^{\infty} B_n = \{0\} \notin \bigcup_{i=1}^{\infty} \mathcal{F}_n$. So $\bigcup_{i=1}^{\infty} \mathcal{F}_n$ is not closed under countable intersection, i.e. it is not a σ -algebra.

3.1.2 $\pi - \lambda$ systems

Definition 3.1 (π -system). Let \mathcal{D} be a collection of subsets of Ω . \mathcal{D} is said to be a π -system if it is closed under intersection, i.e. if

$$A, B \in \mathcal{D} \Rightarrow A \cup B \in \mathcal{D}$$
.

Definition 3.2 (λ -system). Let \mathcal{L} be a collection of subsets of Ω . \mathcal{L} is said to be a λ -system if it satisfies that

- i) $\Omega \in \mathcal{L}$,
- ii) If $A, B \in \Omega$ with $A \subset B$, then $B \setminus A \in \Omega$
- iii) If $A_n \in \mathcal{L}$ and $A_n \subset A_{n+1}$ for all n, then

$$\cup_{i=1}^{\infty} A_n \in \mathcal{L}$$

Theorem 3.1 $(\pi - \lambda \text{ Theorem})$. If \mathcal{D} is a π -system and \mathcal{L} is a λ -system s.t. $\mathcal{D} \subset \mathcal{L}$, the $\sigma\{(D)\} \subset \mathcal{L}$. **Exercise 3.2** (Proof of the $\pi - \lambda$ Theorem).

Solution. Proof hints:

- 1) If \mathcal{L}_t is λ -system for all $t \in I$, $\mathcal{D} \subset \mathcal{L}_t$, then $\cap_{t \in I} \mathcal{L}_t$ is a λ -system. Denote this $\mathcal{L}(\mathcal{D})$ (smallest λ -system containing \mathcal{D}).
- 2) If \mathcal{L} is a π -system AND a λ -system, then \mathcal{L} is a σ -field.
- 3) If \mathcal{D} is π -system, then $\mathcal{L}(\mathcal{D})$ is π -system.

By 1)-3), $\mathcal{L} = \sigma(\mathcal{D})$, which implies ...

3.1.3 The "Good Sets" Principle

Exercise 3.3. Let \mathcal{P} be a π -system, and ν_1 and ν_2 two measures that agree on \mathcal{P} , i.e.

$$\nu_1(A) = \nu_2(A)$$
 for all $A \in \mathcal{P}$.

Assume there is a sequence of sets $A_n \in \mathcal{P}$ with $A_n \uparrow \Omega$ and $\nu_i(A_n) < \infty$ for all n.

Use the $\pi - \lambda$ theorem to prove that ν_1 and ν_2 agree on $\sigma(\mathcal{P})$. Solution. Let \mathcal{F}_n be given by

$$\mathcal{F}_n = \{ A \in \sigma(\mathcal{P}) \mid \nu_1(A \cap A_n) = \nu_2(A \cap A_n) \forall n \}$$

Let $A \in \mathcal{P}$. Since $A_n \in \mathcal{P}$ for all n and \mathcal{P} is a π -system, $A \cap A_n \in \mathcal{P}$. So $\nu_1(A \cap A_n) = \nu_2(A \cap A_n)$, hence $\mathcal{P} \subset \mathcal{F}_n$.

By definition, $\mathcal{F}_n \subset \sigma(\mathcal{P})$, so $\mathcal{P} \subset \mathcal{F}_n \subset \sigma(\mathcal{P})$.

Now, if we can prove that \mathcal{F}_n is a λ -system for all n, then by the $\pi - \lambda$ theorem (theorem 3.1), we have that $\sigma(\mathcal{P}) \subset \mathcal{F}_n$, which combined with the paragraph above gives us that $\sigma(\mathcal{P}) = \mathcal{F}_n$, hence ν_1 and ν_2 agree on $\sigma(\mathcal{P})$.

So let us show that \mathcal{F}_n is indeed a λ -system:

i) $\Omega \in \mathcal{F}_n$. Since $A_n \uparrow \Omega$, we can use continuity of measure (proposition 2.1) to conclude that

$$\lim_{n \to \infty} \nu_i(A_n) = \nu_i(\lim_{n \to \infty} A_n)$$
$$= \nu_i(\Omega).$$

Since $\nu_1(A_n) = \nu_2(A_n)$ $(A_n \in \mathcal{P})$, it holds that $\nu_1(\Omega) = \nu_2(\Omega)$, so $\Omega \in \mathbb{P} \subset \mathcal{F}_n$.

ii) Let $A, B \in \mathcal{F}_n$ with $A \subset B$. So,

$$\nu_1((A \setminus B) \cap A_n) = \nu_1(A \cap A_n) - \nu_1(B \cap A_n)$$
$$= \nu_2(A \cap A_n) - \nu_2(B \cap A_n)$$
$$= \nu_2((A \setminus B) \cap A_n),$$

which means that $A \setminus B \in \mathcal{F}_n$.

iii) Let $B_i \in \mathcal{F}_n$ s.t. $B_i \subset B_{i+1}$. Then, once again using continuity of measures to move limits around, we have

$$\nu_1 \left(\cup_{i=1}^{\infty} B_i \cap A_n \right) = \nu_1 \left(\cup_{i=1}^{\infty} (B_i \cap A_n) \right) \tag{3.1}$$

$$= \lim_{i \to \infty} \nu_1(B_i \cap A_n) \tag{3.2}$$

$$= \lim_{i \to \infty} \nu_2(B_i \cap A_n) \tag{3.3}$$

$$= \nu_2 \left(\cup_{i=1}^{\infty} (B_i \cap A_n) \right) \tag{3.4}$$

$$= \nu_2 \left(\bigcup_{i=1}^{\infty} B_i \cap A_n \right), \tag{3.5}$$

which gives us that $\bigcup_{i=1}^{\infty} B_i \in \mathcal{F}_n$, hence \mathcal{F}_n is a λ -system.

3.1.4 From Indicator Function to General (Borel) Function

When we deine the Lebesgue integral, we define it in three steps.

- 1) First for indicator functions, which in turn is generalized to simple non-negative functions (i.e. linear combinations of indicator functions).
- 2) Second for any non-negative functions (which is done by utilizing that any such function can be described as the limit of a sequence of simple functions)
- 3) A general function (by separating the positive and negative parts)

Exercise 3.4. Let $\Omega = \{\omega_1, \omega_2, \ldots\}$ be a countable set, \mathcal{F} all subsets of Ω , and ν the counting measure on Ω . Show that for any Borel function f, the integral of f with respect to ν is

$$\int f d\nu = \sum_{i=1}^{\infty} f(\omega_i) \tag{3.6}$$

Solution. Let $A \in \mathcal{F}$ and define $f = 1_A$. Then

$$\int f d\nu = \int_A d\nu$$
$$= \nu(A)$$
$$= \sum_{i=1}^{\infty} 1_A(\omega_i)$$

I.e. (3.6) holds for indicator functions, and hence also for simple functions.

Now, let f be a non-negative Borel function. Then we know that there exists a sequence $(f_n)_i^{\infty}$ of simple functions such that $f_n \uparrow f$. Then

$$\int f d\nu = \int \lim_{n \to \infty} f_n d\nu$$
$$= \lim_{n \to \infty} \int f_n d\nu.$$

Since f_n is a simple function, we know that @ref{eq:ex14} holds. Hence,

$$\int f d\nu = \lim_{n \to \infty} \sum_{i=1}^{\infty} f_n(\omega_i)$$
$$= \sum_{i=1}^{\infty} \lim_{n \to \infty} f_n(\omega_i)$$
$$= \sum_{i=1}^{\infty} f(\omega_i),$$

and so @ref{eq:ex14} holds for non-negative Borel functions.

Finally, let f be any Borel function. Then we can write $f = f_+ - f_-$, where $f_+ = \max(f,0)$ and $f_- = \max(f,0)$ $\max(-f,0)$. Then both f_+ and f_- are non-negative Borel functions, hence $\operatorname{@ref}\{\operatorname{eq}: \exp(14)\}$ holds for both. So

$$\int f d\nu = \int f_{+} d\nu - \int f_{-} d\nu$$

$$= \sum_{i=1}^{\infty} f_{+}(\omega_{i}) - \sum_{i=1}^{\infty} f_{-}(\omega_{i})$$

$$= \sum_{i=1}^{\infty} f_{+}(\omega_{i}) - f_{-}(\omega_{i})$$

$$= \sum_{i=1}^{\infty} f(\omega_{i}).$$

So (3.6) holds for all Borel functions.

3.1.5Switch the Order of Integration and Limit

Exercise 3.5 (Generalized Dominated Convergence Theorem). If $\lim f_n = f$ and there exists a sequence of integrable functions g_1, g_2, g_3, \ldots such that

- $|f_n| \leq g_n$ a.e.
- $g_n \to g$ a.e. $\lim_{n\to\infty} \int g_n d\nu = \int g d\nu$

then

$$\int \lim_{n \to \infty} f_n d\nu = \lim_{n \to \infty} \int f_n d\nu \tag{3.7}$$

Homework

4.1 Chapter 1

4.1.1 First Exam Period

Exercise 4.1 (Ex 2). Let \mathcal{C} be a collection of subsets of Ω and let $\Gamma = \{\mathcal{F} | \mathcal{F} \text{ is a } \sigma\text{-field on } \Omega \text{ and } \mathcal{C} \subset \mathcal{F}\}$. Show that $\Gamma \neq \emptyset$ and $\sigma(\mathcal{C}) = \cap_{\mathcal{F} \in \Gamma} \mathcal{F}$.

Solution (Ex 2). Let $\mathbb{P}(\Omega)$ be the collection of all subsets of Ω . We know that this is a σ -field. It also contains \mathcal{C} . Hence, $\Gamma \neq \emptyset$.

By definition, $\sigma(\mathcal{C})$ is the smallest σ -field that contains \mathcal{C} , hence $\sigma(\mathcal{C}) \in \Gamma$ and $\sigma(\mathcal{C}) \subset \mathcal{F}$ for all $\mathcal{F} \in \Gamma$. Therefore, $\sigma(\mathcal{C}) \subset \cap_{\mathcal{F} \in \Gamma} \mathcal{F}$. But since $\sigma(\mathcal{C}) \in \Gamma$, $\sigma(\mathcal{C}) \in \cap_{\mathcal{F} \in \Gamma} \mathcal{F}$, which in turn ensures that $\cap_{\mathcal{F} \in \Gamma} \mathcal{F} \subset \sigma(\mathcal{C})$.

Hence $\sigma(\mathcal{C}) = \cap_{\mathcal{F} \in \Gamma} \mathcal{F}$.

Exercise 4.2 (Ex 3). Let Ω, \mathcal{F}_j), j = 1, 2, ..., be measurable spaces such that $\mathcal{F}_j \subset \mathcal{F}_{j+1}$. Is $\cup_j \mathcal{F}_j$ a σ -field? Solution (Ex 3). No.

Let
$$\Omega = [0, 1]$$
, and $\mathcal{F}_n = \sigma \left\{ [0, \frac{1}{2^n}), [\frac{1}{2^n}, \frac{2}{2^n}), \dots, [\frac{2^{n-1}}{2^n}, 1) \right\}$.

Now, consider the set $B_n = [0, \frac{1}{2^n})$. Clearly $B_n \in \mathcal{F}_n$ for all n, hence $B_n \in \bigcup_{i=1}^{\infty} \mathcal{F}_i$. Hower, $\bigcap_{i=1}^{\infty} B_i = \{0\} \notin \bigcup_{i=1}^{\infty} \mathcal{F}_i$. So $\bigcup_{i=1}^{\infty} \mathcal{F}_i$ is not closed under countable intersection, i.e. it is not a σ -algebra.

Exercise 4.3 (Ex 5). a) Let \mathcal{C} be a π -system and \mathcal{D} be a λ -system such that $\mathcal{C} \subset \mathcal{D}$. Show that $\sigma(\mathcal{C}) \subset \mathcal{D}$. Solution (Ex 6).

Exercise 4.4 (Ex 6). Prove part (ii) and (iii) of proposition 2.1.

Solution (Ex 6). i) Let $A \subset B$. Then $B \setminus A \cap A = \emptyset$, hence $\nu(B) = \nu((B \setminus A) \cup A) = \nu(B \setminus A) + \nu(A) \ge \nu(A)$.

ii) Let $A_1, A_2, ...$ be a sequence of sets. Define $B_i = A_i \setminus (\bigcup_{k=1}^{i-1} A_k)$. Then the B_i s are pairwise disjoint. Hence,

$$\nu\left(\cup_{i=1}^{\infty} A_i\right) = \nu\left(\cup_{i=1}^{\infty} B_i\right)$$

$$= \sum_{i=1}^{\infty} \nu(B_i)$$

$$= \sum_{i=1}^{\infty} \nu\left(A_i \setminus \left(\cup_{k=1}^{i-1} A_k\right)\right).$$

Since $A_i \setminus \left(\bigcup_{k=1}^{i-1} A_k \right) \subset A_i$, we use (i) to get the result:

$$\sum_{i=1}^{\infty} \nu\left(A_i \setminus \left(\bigcup_{k=1}^{i-1} A_k\right)\right) \le \sum_{i=1}^{\infty} \nu\left(A_i\right)$$

iii) Let $A_1 \subset A_2 \subset A_3 \subset \dots$ Define $B_i = A_i \setminus A_{i-1}$. Then B_1, B_2, \dots is a sequence of pairwise disjoint sets, and $\bigcup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} A_i$. Hence,

$$\nu\left(\bigcup_{i=1}^{k} A_{i}\right) = \nu\left(\bigcup_{i=1}^{k} B_{i}\right)$$

$$= \sum_{i=1}^{k} \nu(B_{i})$$

$$= \sum_{i=1}^{k} \nu(A_{i} \setminus A_{i-1})$$

$$= \sum_{i=1}^{k} \nu(A_{i}) - \nu(A_{i-1})$$

$$= \nu(A_{k}).$$

Taking the limit on both sides gives us

$$\nu\left(\bigcup_{i=1}^{k} A_i\right) = \lim_{n \to \infty} \nu(A_n).$$

Exercise 4.5 (Ex 12). Let ν and λ be two measures on (Ω, \mathcal{F}) such that $\nu(A) = \lambda(A)$ for any $A \in \mathcal{C} \subset \mathcal{F}$, where \mathcal{C} is a π -system (3.1). Assume that ν is σ -finite (2.5).

Show that $\nu(A) = \lambda(A)$ for all $A \in \sigma(\mathcal{C})$.

Solution (Ex 12). Let $\mathcal{F} = \{A \in \sigma(\mathcal{C}) | \nu(A) = \lambda(A) \}$. Then $\mathcal{C} \subset \mathcal{F}$. If we can show that \mathcal{F} is a σ -field, then $\sigma(\mathcal{C}) \subset \mathcal{F}$ (since $\sigma(\mathcal{C})$ is the smallest σ -field that contains \mathcal{C}), which proves that $\nu(A) = \lambda(A)$ for all $A \in \sigma(\mathcal{C})$.

Exercise 4.6 (Ex 14). Prove proposition 1.4 (proposition 2.4)

Solution. i) Assume f is Borel. Then $f^{-1}(A) \in \mathcal{F}$ for all open sets $A \in \mathcal{B}$, hence $f^{-1}(a, \infty) \in \mathcal{F}$.

Now assume $f^{-1}(a, \infty) \in \mathcal{F}$ for all $a \in \mathbb{R}$, and let $\mathcal{G} = \{A \in \mathcal{B} | f^{-1}(A) \in \mathcal{F}\}$. So, $(a, \infty) \in \mathcal{G}$ for all $a \in \mathbb{R}$. If we can show that \mathcal{G} is a σ -field, then we will have that $\sigma((a, \infty)) = \mathcal{B} \subset \mathcal{G}$, hence $f^{-1}(B) \in \mathcal{F}$ for all $B \in \mathcal{B}$, meaning that f is measurable.

So let us prove that \mathcal{G} is a σ -field.

- a) First of all, $f^{-1}(\emptyset) = \emptyset \in \mathcal{F}$.
- b) Second, let $A \in \mathcal{G}$. Since $f^{-1}(A^C) = (f^{-1}(A))^C \in \mathcal{F}$ (\mathcal{F} is a σ -field and $f^{-1}(A) \in \mathcal{F}$, so $(f^{-1}(A))(C) \in \mathcal{F}$).
- c) Finally, let A_1, A_2, \ldots be a sequence of sets such that $A_i \in \mathcal{G}$ for all i. Then $f^{-1}(\bigcup_{i=1}^{\infty} A_i) = \bigcup_{i=1}^{\infty} f^{-1}(A_i)$. Since $f^{-1}(A_i) \in \mathcal{F}$ for all i and \mathcal{F} is a σ -field, $\bigcup_{i=1}^{\infty} f^{-1}(A_i) \in \mathcal{F}$, so $\bigcup_{i=1}^{\infty} A_i \in \mathcal{G}$.

So \mathcal{G} is a σ -field, which concludes the proof.

ii) Assume f and q are Borel functions. Let $a, b \in \mathbb{R}$. af is Borel, since

$$(af)^{-1}((c,\infty)) = \{\omega \in \Omega : a \cdot f(\omega) \in (c,\infty)\}.$$

If $a \neq 0$,

4.1. CHAPTER 1 19

$$(af)^{-1}((c,\infty)) = \left\{ \omega \in \Omega : f(\omega) \in \left(\frac{c}{a}, \infty\right) \right\}$$
$$= f^{-1}(\frac{c}{a}, \infty).$$

Since f is Borel, this is a measurable set (by (i)). If a = 0, then

$$(af)^{-1}((c,\infty)) = \begin{cases} \Omega & \text{if } c \le 0\\ \emptyset & \text{if } c < 0 \end{cases}$$

In either case, $(af)^{-1}((c,\infty)) \in \mathcal{F}$. Since it holds that for all $a,c \in \mathbb{R}$ that $(af)^{-1}((c,\infty)) \in \mathcal{F}$, af is measurable by (i).

Let $c \in \mathbb{R}$. Now consider the sum of f and g:

$$(f+g)^{-1}((c,\infty)) = \{\omega \in \Omega : f(\omega) + g(\omega) > c\}$$

$$. = \bigcup_{t \in \mathbb{Q}} \{\omega \in \Omega : f(\omega) > c - t\} \cap \{\omega \in \Omega : g(\omega) > t\}$$

$$= \bigcup_{t \in \mathbb{Q}} f^{-1}((c - t, \infty)) \cap g^{-1}((t, \infty)).$$

Since f and g are both measurable, $f^{-1}((c-t,\infty)) \in \mathcal{F}$ and $g^{-1}((t,\infty)) \in \mathcal{F}$ for all $t \in \mathbb{R}$. Hence, the intersection of the two is measurable for any $t \in \mathbb{R}$, which in turn implies that the union over all rational numbers is measurable (countable union of measurable sets). Hence, f + g is measurable.

Combine the two results to get the final result.¹

iii)

iv) Assume f is measurable from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) , and g measurable from (Λ, \mathcal{G}) to (Λ, \mathcal{H}) . Let $H \in \mathcal{H}$. We want to show that $(q \circ f)^{-1}(H) \in \mathcal{F}$, since this would mean $q \circ f$ is measurable. So,

$$(g \circ f)^{-1}(H) = \{\omega \in \Omega | g(f(\omega)) \in H\}$$
$$= \{\omega \in \Omega | f(\omega) \in g^{-1}(H)\}$$
$$= f^{-1}(g^{-1}(H)).$$

Since g is measurable, $g^{-1}(H) \in \mathcal{G}$, and since f is measurable, $f^{-1}(g^{-1}(H)) \in \mathcal{F}$. So, $g \circ f$ is measurable.

v) Let $f:\Omega\to\mathbb{R}^p$, where Ω is a borel set. Assume f is continuous. Then, if A is an open set, $f^{-1}(A)$ is an open set, and therefore borel. Hence, $f^{-1}((a,\infty))$ is a borel set for all a, and by (i) we have that f is a borel function.

Exercise 4.7 (Ex 15). Show that a monotone function from \mathbb{R} to \mathbb{R} is Borel, and a c.d.f. on \mathbb{R}^k is Borel. **Exercise 4.8** (Ex 17). Let f be a non-negative Borel function on (Ω, \mathcal{F}) . Show that f is the limit of a sequence of simple functions $\{\phi_n\}$ on (Ω, \mathcal{F}) with $0 \le \phi_1 \le \phi_2 \le \cdots \le f$.

Exercise 4.9 (Ex 19). Let $\{f_n\}$ be a sequence of Borel functions on a measurable space. Show that

a) $\sigma(f_1, f_2, ...) = \sigma(\bigcup_{j=1}^{\infty} \sigma(f_j)) = \sigma(\bigcup_{j=1}^{\infty} \sigma(f_1, ..., f_j)).$ b) $\sigma(\limsup_n f_n) \subset \cap_{n=1}^{\infty} \sigma(f_n, f_{n+1}, ...).$ **Exercise 4.10** (Ex 24). Let f be an integrable function on $(\Omega, \mathcal{F}, \nu)$. Show that for each $\epsilon > 0$, there exists a δ_{ϵ} such that for $A \in \mathcal{F}$:

$$\nu(A) < \delta_{\epsilon} \Rightarrow \int_{A} |f| d\nu < \epsilon.$$

¹Note: This could be done in one step, but I found it easier to split up into two.

Solution. Let $\epsilon > 0$, $A \in \mathcal{F}$ with $\nu(A) < \delta_{\epsilon} = \frac{\epsilon}{\max_{\omega \in A} |f(\omega)|}$. Then

$$\begin{split} \int_{A} |f| d\nu & \leq \int_{A} \max_{\omega \in A} |f(\omega)| d\nu \\ & = \max_{\omega \in A} |f(\omega)| \nu(A) \\ & \leq \epsilon \end{split}$$

Exercise 4.11 (Ex 30). For any c.d.f. F and any $a \ge 0$, show that $\int [F(x+a) - F(x)]dx = a$ Solution.

Exercise 4.12 (Ex 34). Prove proposition 2.8

Solution (Ex 34 i)). Let g be the unique function denoted by $\frac{d\lambda}{d\nu}$. Assume $f=1_A$ for some $A\in\mathcal{F}$. Since $\lambda<<\nu$, we know that $\lambda(A)=\int_A gd\nu$. So,

$$\int f d\lambda = \int 1_A d\lambda$$

$$= \lambda(A)$$

$$= \int_A g d\nu$$

$$= \int 1_A g d\nu = \int f g d\nu.$$

Hence, (i) is true for all indicator functions, and so by linearity of integrals (2.6) for all non-negative simple functions.

Now, let f be a general non-negative Borel function. Then we know that there exists a sequence of simple functions ϕ_1, ϕ_2, \ldots such that $\phi_n \uparrow f$. Hence, utilizing the monotone convergence theorem and the fact that we know (i) holds for simple functions,

$$\int f d\lambda = \int \lim_{n \to \infty} \phi_n d\lambda$$

$$= \lim_{n \to \infty} \int \phi_n d\lambda$$

$$= \lim_{n \to \infty} \int \phi_n g d\nu$$

$$= \int \lim_{n \to \infty} \phi_n g d\nu$$

$$= \int f g d\nu,$$

and so we have shown that (i) holds for any non-negative Borel function. Solution (Ex 34 ii)). Assume $\lambda_1 << \nu$ and $\lambda_2 << \nu$. Then

$$(\lambda_1 + \lambda_2)(A) = \lambda_1(A) + \lambda_2(A)$$
$$= \int_A g_1 d\nu + \int_A g_2 d\nu$$
$$= \int_A (g_1 + g_2) d\nu,$$

4.1. CHAPTER 1 21

so $\lambda_1 + \lambda_2 << \nu$, and

$$\frac{d(\lambda_1 + \lambda_2)}{d\nu} = g_1 + g_2 = \frac{d\lambda_1}{d\nu} + \frac{d\lambda_2}{d\nu}.$$