

5. Expert Systems

Course: Introduction to AI

Instructor: Saumya Jetley

Teaching Assistant(s): Raghav Awasty & Subhrajit Roy

October 19, 2022

Definition

Systems that encapsulate the knowledge of experts to be able to perform diagnosis and/or assist in decision making in specific domains

- Given symptoms disease diagnosis
- Given history of symptoms and treatments current prescription/treatment
- Given state of production plant decision of opening/closing a valve

Rules of interaction

- Tell: what is being observed in the environment
- Ask: the action that should be performed
- Tell: the action that has been performed

Internal machinery

Expertise is encapsulated in a knowledge base (a list of context-specific axioms), which is amenable to:

- Reasoning: Perform inference given observed data and existing axioms
- Update: Add/remove axioms based on feedback to inferences

4/27

I. Case-based expert systems

Works by finding the best match for the case under study with a historical, successful case; and borrows its decision/diagnosis

Steps:

- 1. Characterise the case to a suitable level of abstraction
- 2. Match the case feature-by-feature to cases in the database
- 3. Select the best-match with matching score > threshold
- 4. Follow its line of reasoning

- 1 Case Retrieval: Old cases that can be labeled by features (or features derived from features) of the new case,
 - Recall previous cases
 - Select the best subset

Challenges:

- Cases may share surface level features even though they may not be relevant
- Need to be compared at more abstract levels
- Derived features need to be extracted efficiently
- Fast retrieval from expansive case libraries

All encapsulated under **indexing problems** which is to assign a label or index that appropriately designates conditions in which cases can be used for inference.

- 2 Propose ballpark solution: Relevant portion of cases are extracted as proposed solution to new case Challenges: What part of the old solution to focus on for the new solution
- solution Challenges: Finding adaptation strategies; can general strategies

3 Adaptation: Old solution to be used as inspiration for new

- be used to define specialized strategies?
- 4 Justification and Criticism: Solution is justified before being tried; compare and contrast to other proposed solutions Issues: Strategies for evaluation using cases; generating appropriate hypotheticals and strategies for using them; assignment of blame or credit to old cases

- **5 Evaluation**: Solution is tried out in the real world; feedback obtained; can lead back to adaptation step to improve the solution
- 6 Store/update memory: New case and its solution stored for future use; expands case-based repository Challenges: indexing problems; using the right vocabulary to store the new case and solution, and keeping all information accessible

Figure: Case-based reasoning system proposed by Koldoner ¹

¹An Introduction to Case-Based Reasoning by Janet L. Kolodner

Advantages

- Extensive applicability
 - Design, planning, diagnosis, explanation
- Intuitive
 - Based on how human thinking relates to previously solved problems
- Time efficient
 - Avoids making previously made mistakes while looking for a solution
- Works on partial knowledge of domain
- Learning over time
 - More old cases stored in repository, higher the chances of success of finding a solution for a new case

Example: Car Fault Diagnosis

Retrieve old cases from repository

Old case 1

Problems and Features

- Problem: Front light not working
- Car: VW Golf, 2.0L
- Year: 1999
- Battery voltage: 13.6V
- State of lights: OK
- State of light switch: OK

Solution

- Diagnosis: Front light fuse defect
 - Repair: Replace front light fuse

Old case 2

Problems and Features

- Problem: Front light not working
- Car: Passat
- Year: 2000
- Battery voltage: 12.6V
 State of lights: surface damaged
- State of light switch: OK

Solution

- Diagnosis: Bulb defect
- Repair: Replace front light

New case

Problems and Features

- Problem: Brake light not working
 - Car: Passat V6
- Year: 2002
- Battery voltage: 12.9V
- State of lights: OK
- State of light switch: ?

- Not all features are well known when mapping to old cases
- Compare features with old cases weighted by importance and find similar cases

Example: Car Fault Diagnosis

Similarity =
$$\frac{(6 \times (0.8 + 0.4 + 1.0)) + (1 \times (0.7 + 0.9))}{20}$$
 Similarity =
$$\frac{(6 \times (0.8 + 0.8 + 0.0)) + (1 \times (0.8 + 0.9))}{20}$$
 = 0.59

very important (weight: 6)

less important (weight: 1)

Example: Car Fault Diagnosis

Similarity higher with case $1 \to \text{Reuse solution}$

Old case 1

Problems and Features

Problem: Front light not working

Solution

- Diagnosis: Front light fuse defect
- Repair: Replace front light fuse

$New\ case$

Problems and Features

 Problem: Brake light not working

Proposed solution

- Diagnosis: Brake light fuse defect
- Repair: Replace brake light fuse

Store the new case along with solution in the repository

Case 3

Problems and Features

- Problem: Brake light not working
- Car: Passat V6
- Year: 2002
- Battery voltage: 12.9V
- State of lights: OK
- State of light switch: OK

Solution

- Diagnosis: Brake light fuse defect
- Repair: Replace brake light fuse

13/27

Case matching: Challenges

- How to?
 - Define level of abstraction
 - Choose the threshold for match
- Data sufficiency?
 - Data needed for good-decision making grows exponentially with depth of abstraction
- Tractability?

Retrospective

Need for a generalised framework for representation and matching

Whilst working with different kinds of knowledge:

- Heuristic knowledge
 Empirical knowledge of correlations
 Symptoms and disease associations
- Deep knowledge
 Causal knowledge based on system understanding
 Anatomy or physics of this causing that
- Meta knowledge
 Knowledge about knowledge
 Reliability of source; certainty of knowledge

Pre-discussion:

- Goal trees
- Necessity Logic

A. Categorical knowledge base

- Uses facts that are known without doubt
- Maps logical relationships between facts to outcome facts
- Represented as IF < antecedents >-THEN< conclusion > constructs
 - the antecedent is a collection/conjunction of facts
 - the conclusion is some new fact that follows

Declarative (rule listing) instead of procedural (embedded in structure); easy to modify context by changing rules

B. Inference in categorical knowledge base

- TELL: Observations
 - Two feet
 - \blacksquare Wings
 - Can't fly
- ASK: What is it? or Is it this?

FORWARD CHAINING

- Pick rules whose antecedents are all established and add their conclusion to the list of facts
- TERMINATION: Repeat this until one of the facts of interest is proven or no further rules are to be found

Characteristics:

- Breadth or Depth first depends on the order in which the rules are presented/added to the knowledge base
- Data driven

BACKWARD CHAINING

- Take all the rules where the conclusion is the 'target' conclusion
- Prove recursively all the antecedents in the rule

Characteristics:

- Depth-first
- Goal driven
- BUT: won't end if the knowledge base is cyclic
- TERMINATION: When all propositions with intended conclusion are tried, and one or none is proved.

TRADE-OFF

- Backward Chaining
 - Works more efficiently when the number of diagnoses are few
 - Cannot handle cyclical knowledge bases
- Forward Chaining
 - Works more efficiently when the number of diagnoses are large
 - Can handle cyclical knowledge bases

Characteristics

- Interactive
 - ASK: Does it have this?
 - TELL: Yes/No
- Explanatory
 - List of antecedents that were confirmed

Conflict resolution:

- Priority
- Specificity
- Utility
- Recency
- Disjointedness/ Context Limiting

Reasoning under Certainty

- Uses: Simple to organise and reason
- Limitations:
 - Intractable database to capture the world
 - Not all facts are known with 100% confidence

Reasoning under Uncertainty

- Aggregating evidence
- Belief propagation

References

- An Introduction to Expert Systems by Bryan S. Todd, 1992 (Chapter-4)
- 2 Artificial Intelligence A Modern Approach by Stuart Russell and Peter Norvig, 2021 (Chapter-9)
- 3 An Introduction to Case-Based Reasoning by Janet L. Kolodner, 1992

Overview

1 Introduction

- What are expert systems?
- Rules of Interaction
- Internal machinery of expert systems

2 Knowledge base and Inference

- Case-based reasoning
- Challenges-I
- Rule-based systems
- Challenges-II
- Reasoning under Uncertainty