

Data Driven Engineering I: Machine Learning for Dynamical Systems

Analysis of Static Datasets I: Regression

Institute of Thermal Turbomachinery Prof. Dr.-Ing. Hans-Jörg Bauer

Today's Agenda

Basic Steps to Follow =

- O.) Understand the business/task-
- 1.) Understand the data.
- 2.) Explore & prepare the data.
- 3.) Shortlist candidate models.
- 4.) Training the model 5.) Evaluate the model predictions.
- 6.) "Serve, the model of

#0 Understanding the task

- Problem: NACA 0012 Airfoil Noise Prediction based on Wind Tunnel Testing
- Noise generated by an aircraft is an economic (efficiency) and environmental issue.
- □ One component of the noise is **self-noise** of the airfoil: interaction of the airfoil with its own boundary layer

1917, the NACA Technical Report No. 18 titled "Aerofoils and Aerofoil Structural Combinations," was released.

Institute of Thermal Turbomachinery (I

#0 Understanding the task

- ☐ Engineering: semi-empirical models (Brooks)
- ☐ Five self-noise mechanisms due to specific boundary-layer phenomena have been identified
- ☐ The database is from seven NACA0012 airfoil blade sections of different sizes tested at wind tunnel speeds up to Mach 0.21 and at angles of attack from 0° to 25.2°.
 - ✓ Freq. of noise
 - ✓ Angle of attack
 - ✓ Free stream velocity
 - ✓ Geometry of the airfoil

Figure 2. Two-dimensional NACA 0012 airfoil blade models.

#1 Understanding the data

Karlsruhe Institute of Technology

- ☐ Check the data source: understand what the data refers to
- ☐ Objective: understand the characteristics of the data
- □ Look at the feature columns:
 - □ Any missing values?
 - Any features with NaN values?
 - ☐ Uniqueness of the dataset? ("cardinality")

	ss 'pandas.core.frame.Da eIndex: 1503 entries, 0		
_	columns (total 6 column		
#	Column	Non-Null Count	Dtype
0	frequency	1503 non-null	int64
1	angle_attack	1503 non-null	float64
2	chord_length	1503 non-null	float64
3	Free-stream_velocity	1503 non-null	float64
4	displacement_thickness	1503 non-null	float64
5	sound_pressure	1503 non-null	float64
dtyp	es: float64(5), int64(1)		
memo	ry usage: 70.6 KB		

0	de	ata.head(5)				
₽		frequency	angle_attack	chord_length	Free- stream_velocity	displacement_thickness
	0	800	0.0	0.3048	71.3	0.002663
	1	1000	0.0	0.3048	71.3	0.002663
	2	1250	0.0	0.3048	71.3	0.002663
	3	1600	0.0	0.3048	71.3	0.002663
	4	2000	0.0	0.3048	71.3	0.002663

Institute of Thermal Turbomachinery (

#2 Exploring the data

- □ Objective: generate a data quality report
- ☐ Using standard statistical measures of central tendency and variation
 - □ tabular data and visual plots
 - ☐ mean, mode, and median
 - □ standard deviation and percentiles
 - □ bars, histograms, box and violin plots
- ✓ Missing values,
- ✓ Irregular cardinality problems,
 - 1 or comparably small
- ✓ Outliers
 - invalid outliers and valid outliers

#2 Exporing the data: Correlation Matrix

☐ Shows the correlation between each pair of features

$$Cov(a,b) = \frac{1}{n-1} \sum_{i=1}^{n} \left[(a_i - \overline{a}) \times (b_i - \overline{b}) \right]$$
Features

Sinstance mean mean

□ Normalized form of "covariance"

$$Corr(a_1b) = \frac{Cov(a,b)}{SD(a) \times SD(b)}$$

$$\frac{1}{SD(a) \times SD(b)}$$
+ Normalized
** Dimensionless

Easy to interpret

□ Ranges between -1 and +1

#2 Preparing the Data

□ Classification >> supervised >> training & test split

- □ Reducing overfitting via **cross-validation**: take **random portions** of the data to build a model
- \Box **k-fold** method: k = 5; (typically 10)

Model Selection: Linear Regression 1

0 800 0.0 0.3048 71.3 0.002 1 1000 0.0 0.3048 71.3 0.002 2 1250 0.0 0.3048 71.3 0.002 3 1600 0.0 0.3048 71.3 0.002) d	ata.head(5)				
1 1000 0.0 0.3048 71.3 0.002 2 1250 0.0 0.3048 71.3 0.002 3 1600 0.0 0.3048 71.3 0.002	•	frequency	angle_attack	chord_length		displacement_thickness
2 1250 0.0 0.3048 71.3 0.002 3 1600 0.0 0.3048 71.3 0.002	0	800	0.0	0.3048	71.3	0.002663
3 1600 0.0 0.3048 71.3 0.002	1	1000	0.0	0.3048	71.3	0.002663
	2	1250	0.0	0.3048	71.3	0.002663
4 2000 0.0 0.3048 71.3 0.002	3	1600	0.0	0.3048	71.3	0.002663
	4	2000	0.0	0.3048	71.3	0.002663

3 Extended to Nonlinearity via
$$\emptyset$$
 $y_p = w_0 + \sum_{i,j} w_i \phi(x_i) \Rightarrow Basis functions \Rightarrow x_i (polynomial)$

linear nonlinear

Model Selection: Linear Regression 2

$$\overrightarrow{X}$$
 Model

X YTrue = yp; + Error; } Error Metric (norm) := Goodness of a fit

$$(l_{\infty})$$

■ Mean absolute error
$$(l_i)$$
 $\frac{1}{n} = \frac{\hat{y}_{i+1}}{y_{i+1}}$

Deast Squares error
$$(l_2)$$
 $(1/n \sum_{i=1}^{n} |y_{mu_i} - y_{i}|^2)^{1/2}$

Model Selection: Linear Regression 3

(a) Ridge Regression
$$\Rightarrow$$
 $E_{R} = \frac{\alpha}{2} \sum_{i=1}^{n} w_{i}^{2}$ (no bias here)

(b) Lasso
$$\Rightarrow$$
 $E_{R} \Leftarrow \geqslant l_{1}$ norm $E_{R} = \frac{\alpha}{2} \frac{5}{i-1} |w_{i}| \left(\frac{\alpha}{w} \text{ is large}; \frac{\alpha}{2} \right)$

© Elastic Net =>
$$\epsilon_R = \frac{1-\epsilon_{\alpha} \sum w_i^2 + \epsilon_{\alpha} \sum |w_i|}{2}$$

#4 Training the model

□ Classification >> supervised >> training & test split

- □ Reducing overfitting via **cross-validation**: take **random portions** of the data to build a model
- \Box **k-fold** method: k = 5; (typically 10)

12

#5 Evaluation of the results

- □ Coefficient of determination, R²
 - Indicates the goodness of fit
 - Measure of generalization capability
 - Best possible score is 1.0
 - It can be negative

$$R^{2}(y_{true}, y_{p}) = 1 - \frac{\sum_{i=1}^{N} (y_{true}, -y_{p_{i}})^{2}}{\sum_{i=1}^{N} (y_{true}, -\overline{y})^{2}} = \frac{1}{N} \sum_{i=1}^{N} y_{true}$$

#5 Evaluation of the results: Learning Curves

- (11) as it learns, model parameters generalizes.
- (iii) ED is found

- (i) Compare it with n=7;
- (ii) Divergence of $E_{\rm D}\Rightarrow$ Overfitting

#5 Evaluation of the results: Learning Curves

colab

Classification

- * fits a street between classes
- uses support vectors (sv)
- * Decision is based on SVs, not other instances.
- * Feature scaling is important
- wouthers = "Soft Margin, (~C)

 Limit margin vialotions
- * must be Inearly separable

Classification

- * linear decision bound. >> X
- * "Kernel Trick := \$(x)
 - (v) introduce non-linearity
 - (v) "feature eng., without adding new features.

- * Fit as many instance as possible
- * "Street " width is controlled by margin E.
- * Convex optimization problem;
 - \square C
 - otin C
 - 1 Kernel

(2)
$$E_0 = \begin{cases} 0, & \text{if } |y_{\text{true}} - y_{\text{P}}| < \epsilon \\ |y_{\text{true}} - y_{\text{P}}| - \epsilon, & \text{otherwise} \end{cases}$$

Ne minimize: Kernel
$$f$$

 (C) $\sum_{i=1}^{N} [|y_{true_i} - y_{P_i}| - E] + 1/2 \frac{1}{N} \sum_{i=1}^{N} w_i^2$
 \downarrow Regularization parameter

colab

* Freq. based regression > fit wi via error min. > yp'

L. predictions do not capture uncertainity > wi

- yp

1) Bayesian approach;
$$y_t = y_p + Error$$

$$\rho(y_{\ell}|X, \omega, \alpha) = \mathcal{N}(y_{\ell}|y_{\ell}, \alpha) \Rightarrow \alpha$$
"Given that

1) Bayesian approach; $y_t = y_p + Error$,

"Gaussian noise, $p(y_t | X, w, x) = \mathcal{N}(y_t | y_p, x) \Rightarrow x$ There are that, $p(w | \lambda) = \mathcal{N}(w | D, \lambda^T I_p) \Rightarrow \lambda$ in sailst learn of

Pattern Recognition and Machine Learning, Chapter 3

Pattern Recognition and Machine Learning, Chapter 3

colab

Additional Notes

