Paper / Subject Code: 50351 / Engineering Mathematics - III(R-2019 (scheme) " Mechanical" May 23 DSE Semill 24/5/2023 Total Marks: 80 3 Hours Note: (1) Question No. 1 is Compulsory. (2) Answer any three questions from Q.2 to Q.6 (3) Figures to the right indicate full marks. Q1. 5 Find the eigen values of $A^2 - 5A + 4I$ if $A = \begin{bmatrix} -1 & 0 & 0 \\ 2 & -3 & 0 \\ 1 & 4 & 2 \end{bmatrix}$ a) b) Find the Fourier expansion of $f(x) = x^2, -\pi \le x \le \pi$ 5 Find a, b, c, d if $f(z) = x^2 + 2axy + by^2 + i(cx^2 + 2dxy + y^2)$ is c) 5 analytic. Find $L[te^{3t}sint]$ d) 5 Q2. Evaluate following Integral using Laplace Transforms. a) $I = \int_0^\infty \frac{\sin^2 t \ e^{-t}}{t} dt$ 6 Determine the Fourier Series $f(x) = \left(\frac{\pi - x}{2}\right)^2$ over $[0, 2\pi]$. b) Prove that $u = x^2 - y^2 - 2xy - 2x + 3y$ is harmonic and find its c) 8 harmonic conjugate. Solve $\frac{\partial^2 u}{\partial x^2} - 32 \frac{\partial u}{\partial t} = 0$ by Bender-Schmidt method subjected to the Q3. 6 conditions u(0, t) = 0, u(x, 0) = 0, u(1, t) = t, taking h = 0.25, a) 0 < x < 1, upto = 5. Determine the analytic function f(z) = u + iv where $u = 3x^2y - y^3$. b.) 6

ii) $tan^{-1}(s)$

4

4

Determine the Inverse Laplace Transform of i) $\frac{s+2}{s^2-4s+13}$

c)

Paper / Subject Code: 50351 / Engineering Mathematics - III

Q4. i) If
$$L\{f(t)\} = \frac{s}{s^2 + s + 4}$$
, find $L\{e^{-2t} f(2t)\}$

3

ii) Find $L(t^2 sinat)$

a)

3

b) Determine the Inverse Laplace Transform of $\log \left[\frac{s^2 + a^2}{(s+b)^2} \right]$

J

c) Is the matrix $A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$ diagonalizable? If so find the diagonal

6

form of A and transforming matrix of A.

8

Q5.

a) Find the Eigen value and the eigen vector of $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & -6 \\ 2 & -2 & 3 \end{bmatrix}$

5

Find Inverse Laplace transform of $\frac{s+29}{(s+4)(s^2+9)}$ using partial fraction method.

6

Solve $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$, by Crank-Nicholson simplified formula, where

8

c) $u(0,t) = 0, u(4,t) = 0, u(x,0) = \frac{x}{3}(16 - x^2)$, find u_{ij} , for i = 0,1,2,3,4 and j = 0,1,2 taking h = 1.

Q6. a) Find analytic function f(z) whose imaginary part is $e^x \cos y + x^3 - 3xy^2$

6

Determine the Fourier Series for $f(x) = \begin{cases} x + \frac{\pi}{2}, & -\pi \le x \le 0 \\ \frac{\pi}{2} - x, & 0 \le x \le \pi \end{cases}$ over $[-\pi, \pi]$

Find the Laplace Transform of $f(t) = \frac{\cos at - \cos bt}{t}$

31128

b)