

Sharif University of Technology, Intl. Campus in Kish Island

Examining the Implications of the Bullwhip Effect in Perishable Product Supply Chain and Its Mitigation through Buy-Back Contract Coordination

Supervisor: Dr. Sabbaghnia

By: Mahsa Keshavarzi Nejad

2025

Presentation Outline

- Introduction and Research Motivation
- Problem Statement and Research Objectives
- Literature Review
- Methodology (Mathematical Modeling)
- Simulation Results and Comparative Analysis
- Managerial Implications and Recommendations
- Conclusions and Future Research Directions

Introduction and Research Motivation

- > Growing instability in global supply chains
- > Severe challenges in managing perishable products
- ➤ Bullwhip effect worsens waste and inefficiency
- ➤ Lack of coordination → higher costs, lower service levels
- > Strong need for integrated and incentive-aligned solutions

Problem Statement & Research Objectives

Problem Statement:

- Perishable supply chains face amplified demand fluctuations due to the bullwhip effect.
- Decentralized systems worsen this issue through poor coordination and misaligned incentives.
- Spoilage and service failures increase overall inefficiency.
- Buy-back contracts may offer a solution to reduce volatility and improve alignment.

Research Objectives:

- Investigate the bullwhip effect in perishable product supply chains.
- Develop and compare models for centralized, decentralized, and coordinated (buy-back) systems.
- Represent perishability via fixed deterioration and price-sensitive demand.
- Assess how buy-back contracts improve efficiency and reduce waste.
- Provide insights for better supply chain strategies and policy-making.

Literature Review

Perishable Products in Supply Chains: Importance, Challenges, and Modeling Approaches

- **High Vulnerability**: Short shelf-life, rapid quality decay → complex inventory & logistics.
- Economic Losses: \$400B+ in global food waste; 20% of Canada's food production lost.
- Environmental Impact: Perishable waste \rightarrow 8–10% of global GHG emissions.
- Social Consequences: Unequal food access, vaccine spoilage in cold-chain failures.
- Bullwhip Effect Amplified: Forecast errors → accelerated waste & overstocking.
- Cold-Chain Complexity: Requires strict temperature control, especially in vast geographies.
- Behavioral Biases: Over-ordering, misalignment in decentralized systems.
- Need for Modeling: Mathematical tools essential to optimize pricing, inventory & coordination.

Modeling Approaches for Perishable Supply Chains

Purpose:

Enhance decision-making under perishability through analytical tools.

Inventory Models:

Modified EOQ & Newsvendor models to incorporate spoilage and dynamic pricing

Deterioration functions:

Decay Function Type	Mathematical Formulation	Application Context	
Exponential	$I(t) = I_0 e^{-\theta t}$	Dairy, pharmaceuticals, fresh produce	
Linear	$I(t) = I_0 - \alpha t$	Bakery, fresh vegetables	
Stepwise	$I(t) = I_0 - \delta_n$ (intervalbased)	Vaccines, packaged perishables	
Weibull Distribution	$I(t) = I_0 e^{-(t/\beta)^{\gamma}}$	Seafood, meat products	

Freshness-Sensitive Demand

Demand Model Type	Mathematical Formulation	Key Parameters
Exponential Freshness- Sensitive	$D(t) = D_0 e^{-\alpha(T-t)}$	α: Freshness sensitivity
Linear Freshness- Dependent	$D(t) = D_0 - \beta(T - t)$	β: Linear freshness reduction rate
Stochastic Freshness- Sensitive	$D(t, \theta)$ $= (D_0 + \varepsilon_t)e^{-\gamma(1-\theta)}$	γ : Freshness sensitivity, ϵ_t : Demand shock

Coordination Contracts in Perishable Supply Chains

Role of Contractual Mechanisms:

- •Align decentralized decisions across the supply chain
- •Reduce inefficiencies from double marginalization and spoilage
- •Promote risk-sharing and freshness-sensitive collaboration

Contract Type	Key Mathematical Components	Main Benefits	Primary Limitations
Revenue-Sharing	Revenue distribution (φ), pricing decisions	Reduced double marginalization	Implementation complexity
Buy-Back	Buy-back price (b), leftover stock quantity	Risk mitigation, inventory alignment	Potential moral hazard
Quantity Flexibility	Flexibility parameter (δ), order deviations	Demand responsiveness, reduced uncertainty	Complexity in flexibility management
Freshness- Dependent Incentive	Freshness incentive rate (ψ), target freshness level (F*)	Direct freshness incentives, waste reduction	Freshness measurement complexity

Model Development – Problem Description

Supply Chain Structure:

- Two-tier: 1 Manufacturer + 1 Retailer
- Product: Perishable (deteriorates at constant rate δ)
- Time horizon: Single selling season, no restocking
- Demand: Linearly price-sensitive $\rightarrow D(p) = \alpha \beta p$

Objectives:

- Optimize retail price (p) and order quantity (Q)
- Analyze impact of wholesale price (w) and buy-back incentive (b)
- Compare Decentralized, Centralized, and Coordinated setups in terms of:
- → Profitability
- → Efficiency
- → Incentive alignment

Supply Chain Modelling: Decentralized Structures (Stackelberg Game)

- Two-stage decision process:
 - Manufacturer (Leader) sets wholesale price w.
 - Retailer (Follower) selects retail price p and order quantity Q.

Retailer's Profit Function:

 $\pi_R = p[min(Q(1-\delta), D(p))] - wQ - (h-s)max[0, Q(1-\delta) - D(p)] - kQ\delta$ assuming available inventory after deterioration meets demand: $\pi_R = p(\alpha - \beta p) - wQ - kQ\delta$

Retailer's Optimization Problem

- Maximize with respect to p: $\frac{d\pi_R}{dp} = 0$
- Optimal order quantity: $Q^*(w) = \frac{D(p^*(w))}{1-\delta}$

Supply Chain Modelling: Decentralized Structure (Stackelberg Game)

Manufacturer's Profit Function by anticipating retailer's optimal response:

$$\pi_M = (w - c)Q^*(w)$$

Manufacturer's Optimization Problem

- •Maximize with respect to $w: \frac{d\pi_M}{dw} = 0 \implies w^*$
- •Obtain optimal wholesale price w*

Total Supply Chain Profit: $\pi_{Total} = \pi_R(p^*(w^*), Q^*(w^*); w^*) + \pi_M(w^*)$

Supply Chain Modelling: Centralized Structure (Unified Optimization)

A single decision-maker optimizes both retail price p and order quantity Q to maximize total supply chain profit.

•Eliminates double marginalization and aligns incentives across the chain.

Profit Function

(Assuming supply meets demand Q(1– δ) =D(p)) : $\pi_{SC} = p(\alpha - \beta p) - cQ - kQ\delta$ Optimization Strategy

•Maximize with respect to p: $\frac{d\pi_{SC}}{dp} = 0$

Compute optimal order quantity: $Q_{SC}^* = \frac{D(p_{SC}^*)}{1-\delta}$

Total Supply Chain Profit: $\pi_{SC}^* = \pi_{SC}(p_{SC}^*)$

Supply Chain Modelling: Coordinated Structure (Buy-Back Contract)

Contract Description

Retailer's Profit Function:

$$\pi_R^{BB} = (p-w)(1-\delta)D(p) + (b-h)(1-\delta)(Q-D(p)) - k\delta Q$$

Manufacturer's Profit Function:

$$\pi_M^{BB} = (w - c)Q - b(1 - \delta)(Q - D(p))$$

Total Supply Chain Profit:

$$\pi_{SC}^{BB} = \pi_M^{BB} + \pi_R^{BB}$$

Constraints for Optimization:

- Q > D(p)
- Q > 0, p > 0
- p > w, $b \le p$, $h \le b$

•Optimization Strategy:

Numerical maximization using **NMaximize** in Mathematica to jointly determine:

$$(b, p^*, Q^*)$$

Comparative Analysis: Centralized, Decentralized and Coordinated

In decentralized supply chains, double marginalization leads to **higher retail prices** and **lower order quantities** compared to centralized systems.

Centralized coordination improves system-wide efficiency by jointly optimizing pricing and inventory decisions.

Decision Variable	Decentralized (Stackelberg)	Centralized
Retail Price p*	$\frac{3\alpha}{4\beta} + \frac{c + k\delta}{4(1 - \delta)}$	$\frac{\alpha}{2\beta} + \frac{c + k\delta}{2(1 - \delta)}$
Order Quantity Q*	$\frac{\alpha - \alpha\delta - \beta(c + k\delta)}{4(-1 + \delta)^2}$	$\frac{\alpha - \alpha\delta - \beta(c + k\delta)}{2(-1 + \delta)^2}$
Wholesale Price w*	$\frac{\alpha + c\beta - \alpha\delta - k\beta\delta}{2\beta}$	_

Simulation Setup and Base Parameter Configuration

Parameter	Symb ol	Base Value	Description
Demand Intercept	α	200	Maximum market potential at zero price
Price Sensitivity	β	1.5	Rate at which demand decreases with price
Unit Production Cost	С	20	Manufacturer's cost per unit
Spoilage Cost	k	5	Cost incurred for each unsold, deteriorated unit
Deterioration Rate	δ	0.3	Fraction of stock lost to spoilage before sale
Salvage Value	S	2	Revenue recovered per unit of unsold but salvaged product
Holding Cost	h	1	Inventory holding cost per unsold unit (excluding spoilage)
Buy-Back Price	b	Variable	Price paid by manufacturer to buy back unsold, non- deteriorated units from the retailer

Simulation Focus:

- Optimize decisions: p, Q, w, b
- Compare supply chain efficiency under each structure
- Analyze impact of parameter changes (in sensitivity section)

Optimal Outcomes across Supply Chain Structures

Structure	Optimal Retail Price (p*)	Optimal Order Quantity (Q*)	Buy-Back Price (b*)	Total Profit (π)
Centralized	82.02	109.95	N/A	3949.00
Decentralized (Stackelberg)	107.68	54.97	N/A	2961.75
Coordinated (Buy- Back)	74.25	106.35	40.00	3665.09

Key Insights:

Centralized model gives highest profit and largest order quantity.

Decentralization causes double marginalization \rightarrow higher p*, lower profit.

Coordinated model (Buy-Back) closes the gap with centralized.

Contract-based coordination improves efficiency in perishable supply chains.

Sensitivity of Optimal Decisions to Deterioration Rate (δ)

Profitability vs. Deterioration Rate (δ)

Sensitivity of Optimal Decisions to Price Sensitivity (β)

Profitability vs. Price Sensitivity (β)

Sensitivity of Optimal Decisions to Unit Cost (c)

Profitability vs. Unit Cost Sensitivity

Sensitivity of Optimal Decisions to Spoilage Cost (k)

Profitability vs. Spoilage Cost Sensitivity

Sensitivity to Buy-Back Price (b)

Managerial Insights and Comparative Evaluation

Structural Efficiency:

- Centralized model consistently yields the highest profit due to unified pricing and ordering decisions.
- Decentralized model suffers from **double marginalization**, causing inflated prices and low order volumes.
- Coordinated model (buy-back) **bridges the gap**, enabling shared risk and improved decisions.

Profit Comparison:

- Centralized > Coordinated > Decentralized
- Coordination recovers much of the efficiency lost in decentralization.

Decision Quality:

- Centralized: Most aligned and responsive to parameters (δ, β, c, k) .
- Decentralized: Unstable, conservative ordering; inflated prices.
- Coordinated: Near-centralized performance with smoother decisions.

Managerial Implications:

- Centralization or incentive-aligned contracts (e.g., buy-back) are essential in perishable supply chains.
- Contractual coordination enhances resilience, profitability, and risk-sharing.

Future Directions

Future Research Opportunities

- Incorporating stochastic demand instead of deterministic demand functions.
- Extending the model to allow both demand regimes $(Q \le D(p))$ and Q > D(p)) without preasumption, enabling the model to select the optimal regime endogenously.
- Designing adaptive, piecewise-based decision frameworks for hybrid regimes.
- Developing smart mechanisms for contract selection (e.g., buy-back, revenue-sharing) based on product characteristics.
- Expanding the model to multi-echelon or multi-retailer supply chains.
- Adding realistic constraints such as warehouse capacity and lead time.
- Employing machine learning or reinforcement learning for optimal decision policy in uncertain environments.
- Formal modeling of the **Bullwhip Effect** is proposed as future work, since this study addressed it conceptually through coordination (e.g., Buy-Back) as a step toward centralized decision-making which inherently mitigates such distortions.

References

- [1] H. L. Lee, V. Padmanabhan, and S. Whang, "The bullwhip effect in supply chains," Sloan Management Review, vol. 38, no. 3, pp. 93–102, 1997.
- [2] J. A. Durán Peña, Á. Ortiz Bas, and N. M. Reyes Maldonado, "Impact of bullwhip effect in quality and waste in perishable supply chain," *Processes*, vol. 9, no. 7, p. 1232, 2021.
- [3] S. A. Osman, C. Xu, M. Akuful, and E. R. Paul, "Perishable food supply chain management: Challenges and the way forward," Open Journal of Social Sciences, vol. 11, no. 7, pp. 349–364, 2023.
- [4] S. Mercier, M. Mondor, S. Villeneuve, and B. Marcos, "The Canadian food cold chain: A legislative, scientific, and prospective overview," *International Journal of Refrigeration*, vol. 88, pp. 637–645, 2018.
- [5] M.-A. Hayhoe, "Exploration into Food Waste Occurring in Bovine Dairy, Leafy Green and Apple Supply Chains," University of Guelph, 2019.
- [6] Food and Agriculture Organization of the United Nations. "Agri-food systems hold key to beating back the global loss and waste of food." FAO. https://www.fao.org/newsroom/detail/FAO-UNEP-agriculture-environment-food-loss-waste-day-2022/en (accessed 2025).
- [7] Environment and Climate Change Canada. "Taking stock: Reducing food loss and waste in Canada." https://www.canada.ca/en/environment-climate-change/services/managing-reducing-waste/food-loss-waste/taking-stock.html (accessed 2025).
- [8] R. Kampstra, J. Ashayeri, and J. L. Gattorna, "Realities of supply chain collaboration," *The international journal of logistics management*, vol. 17, no. 3, pp. 312–330, 2006.
- [9] (2024). Report 23 The Canadian Supply Chain: Addressing Disruptions and Strengthening Resilience. [Online] Available: https://www.ourcommons.ca/documentviewer/en/44-1/CIIT/report-23
- [10] (2024). State of Trade Report 2024, The Benefits of Open and Inclusive Trade. [Online] Available: <a href="https://www.international.gc.ca/transparency-tran
- [11] United Nations. "Transforming our world: the 2030 Agenda for Sustainable Development." https://sdgs.un.org/goals/goal12 (accessed 2025).
- [12] S. Nahmias, "Perishable inventory theory: A review," *Operations research*, vol. 30, no. 4, pp. 680–708, 1982.
- [13] M. E. Ferguson and O. Koenigsberg, "How Should a Firm Manage Deteriorating Inventory?," *Production and Operations Management,* vol. 16, no. 3, pp. 306–321, 2007, doi: 10.1111/j.1937-5956.2007.tb00261.x.
- [14] H. L. Lee, V. Padmanabhan, and S. Whang, "Information distortion in a supply chain: The bullwhip effect," *Management science*, vol. 43, no. 4, pp. 546–558, 1997.
- [15] J. Forrester, "W.(1961). Industrial Dynamics," Waltham MA, Pegasus Communications, 1961.
- D. E. Rivera and M. D. Pew, "Evaluating PID control for supply chain management: A freshman design project," in *Proceedings of the 44th IEEE conference on Decision and Control*, 2005: IEEE, pp. 3415–3419.
- J. Dejonckheere, S. M. Disney, M. R. Lambrecht, and D. R. Towill, "Measuring and avoiding the bullwhip effect: A control theoretic approach," *European journal of operational research*, vol. 147, no. 3, pp. 567–590, 2003.
- [18] R. Croson and K. Donohue, "Behavioral causes of the bullwhip effect and the observed value of inventory information," *Management science*, vol. 52, no. 3, pp. 323–336, 2006.
- [19] J. C. Fransoo and M. J. Wouters, "Measuring the bullwhip effect in the supply chain," Supply Chain Management: An International Journal, vol. 5, no. 2, pp. 78–89, 2000.
- [20] Food and Agriculture Organization of the United Nations, "The State of Food and Agriculture 2019: Moving Forward on Food Loss and Waste Reduction," 2019. [Online]. Available: [21] G. P. Cachon, "Supply chain coordination with contracts," *Handbooks in operations research and management science*, vol. 11, pp. 227–339, 2003.
- [22] F. Chen, A. Federgruen, and Y.-S. Zheng, "Coordination mechanisms for a distribution system with one supplier and multiple retailers," *Management science*, vol. 47, no. 5, pp. 693–708, 2001.
- [23] E. Sucky, "The bullwhip effect in supply chains—An overestimated problem?," International Journal of Production Economics, vol. 118, no. 1, pp. 311–322, 2009.
- [24] Z. Zhang, M. K. Lee, P. Huang, L. Zhang, and X. Huang, "A framework of ERP systems implementation success in China: An empirical study," *International journal of production economics*, vol. 98, no. 1, pp. 56–80, 2005.
- [25] F. Sahin and E. P. Robinson, "Flow coordination and information sharing in supply chains: review, implications, and directions for future research," *Decision sciences*, vol. 33, no. 4, pp. 505–536, 2002.
- [26] S. K. Paik and P. K. Bagchi, "Understanding the causes of the bullwhip effect in a supply chain," *International Journal of Retail & Distribution Management*, vol. 35, no. 4, pp. 308–324, 2007.
- [27] World Blank. "Responding to Global Supply Chain Disruptions: Resilience, Sustainability, and Trade Facilitation." -disruptions (accessed 2025).
- [28] W. C. Mitchell, Business cycles: The problem and its setting. National Bureau of Economic Research, Incorporated, 1927.
- [29] J. D. Sterman, "Modeling managerial behavior: Misperceptions of feedback in a dynamic decision making experiment," *Management science*, vol. 35, no. 3, pp. 321–339, 1989.
- [30] L. A. Metzler, "The nature and stability of inventory cycles," *The Review of Economics and Statistics*, vol. 23, no. 3, pp. 113–129, 1941.

- [31] M. Zymelman, "A stabilization policy for the cotton textile cycle," Management Science, vol. 11, no. 5, pp. 572–580, 1965.
- [32] J. L. Burbidge, "The "new approach" to production," *Production Engineer*, vol. 40, no. 12, pp. 769–784, 1961.
- [33] R. Metters, "Quantifying the bullwhip effect in supply chains," Journal of operations management, vol. 15, no. 2, pp. 89–100, 1997.
- [34] S. Geary, S. M. Disney, and D. R. Towill, "On bullwhip in supply chains—historical review, present practice and expected future impact," *International Journal of Production Economics*, vol. 101, no. 1, pp. 2–18, 2006.
- Y. Yang, J. Lin, G. Liu, and L. Zhou, "The behavioural causes of bullwhip effect in supply chains: A systematic literature review," *International Journal of Production Economics*, vol. 236, p. 108120, 2021.
- [36] G. P. Cachon, T. Randall, and G. M. Schmidt, "In search of the bullwhip effect," Manufacturing & Service Operations Management, vol. 9, no. 4, pp. 457–479, 2007.
- D. Ivanov, "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," *Annals of operations research*, vol. 319, no. 1, pp. 1411–1431, 2022.
- [38] M. M. Queiroz, D. Ivanov, A. Dolgui, and S. Fosso Wamba, "Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review," *Annals of operations research*, vol. 319, no. 1, pp. 1159–1196, 2022.
- [39] T. S. Malone, Kaitlyn; Lusk, Jayson L. "Food Supply Chains During the COVID-19 Pandemic." University of Illinois at Urbana-Champaign. https://farmdocdaily.illinois.edu/2020/09/food-supply-chains-during-the-covid-19-pandemic.htm] (accessed May 24, 2024).
- [40] D. C. Yaffe-Bellany, Michael, "Dumped Milk, Smashed Eggs: Food Waste of the Pandemic," in *The New York Times*, ed, 2020.
- J. Chocholáč and P. Průša, "The Analysis of Orders of Perishable Goods in Relation to the Bullwhip Effect in the Logistic Supply Chain of the Food Industry: a Case Study," *Open Engineering*, vol. 6, no. 1, 2016, doi: doi:10.1515/eng-2016-0094.
- [42] Y. Benrqya, "Order batching and the bullwhip effect reduction in a cross-docking strategy," *Transportation Journal*, vol. 61, no. 4, pp. 369–391, 2022.
- [43] (2022). Report 9—COVID-19 Vaccines. [Online] Available: https://www.oag-bvg.gc.ca/internet/English/parl oag 202212 09 e 44175.html
- [44] A. Mahmud. "How big of a vaccine surplus will the US have?" https://www.brookings.edu/articles/how-big-of-a-vaccine-surplus-will-the-us-have/ (accessed.
- [45] N. K. Quan, N. L. M. Anh, and A. W. Taylor-Robinson, "The global COVID-19 vaccine surplus: tackling expiring stockpiles," Infectious Diseases of Poverty, vol. 12, no. 02, pp. 106–111, 2023.
- [46] D. C. Love et al., "Emerging COVID-19 impacts, responses, and lessons for building resilience in the seafood system," Global Food Security, vol. 28, p. 100494, 2021.
- [47] (2024). Asia-Pacific Trade Facilitation Report 2024: Promoting Sustainability and Resilience of Global Supply Chains. [Online] Available: https://www.adb.org/sites/default/files/publication/954501/asia-pacific-trade-facilitation-report-2024.pdf
- [48] N. C. C. f. E. Health. "Climate Change Impacts on Canada's Food Supply Cold Chain." https://ncceh.ca/resources/evidence-reviews/climate-change-impacts-canadas-food-supply-cold-chain (accessed.
- [49] M. Zhang, X. Yang, T. E. Cheng, and C. Chang, "Inventory management of perishable goods with overconfident retailers," *Mathematics*, vol. 10, no. 10, p. 1716, 2022.
- [50] M.-X. Xu, S. Li, L.-L. Rao, and L. Zheng, "The Relationship between Distance and Risk Perception in Multi-Tier Supply Chain: The Psychological Typhoon Eye Effect," Sustainability, vol. 15, no. 9, p. 7507, 2023.
- [51] M. Meeker, "Meeker, Mary." Bond Capital. https://www.bondcap.com/report/pdf/Internet Trends 2019.pdf (accessed.
- [52] M. Laber, P. Klimek, M. Bruckner, L. Yang, and S. Thurner, "Shock propagation from the Russia–Ukraine conflict on international multilayer food production network determines global food availability," *Nature Food*, vol. 4, no. 6, pp. 508–517, 2023.
- [53] N. C. C. f. E. Health. "Climate Change Impacts on Canada's Food Supply Cold Chain." https://ncceh.ca/resources/evidence-reviews/climate-change-impacts-canadas-food-supply-cold-chain (accessed.
- [54] A. Young. "Lost Miles: The Cold Storage Challenge in North America's Grocery Supply Chain." https://www.avisonyoung.us/viewpoints/fall-2024/following-our-food-the-grocery-cold-chain (accessed.
- [55] P. o. Montreal. "Cold Chain: A Rapidly Expanding Sector." https://www.port-montreal.com/en/the-port-of-montreal/news/news/cold-chain (accessed.
- [56] S. Nikolicic, M. Kilibarda, M. Maslaric, D. Mircetic, and S. Bojic, "Reducing food waste in the retail supply chains by improving efficiency of logistics operations," *Sustainability*, vol. 13, no. 12, p. 6511, 2021.
- [57] S. M. Disney and D. R. Towill, "The effect of vendor managed inventory (VMI) dynamics on the Bullwhip Effect in supply chains," *International journal of production economics*, vol. 85, no. 2, pp. 199–215, 2003.
- [58] R. Kaipia, I. Dukovska-Popovska, and L. Loikkanen, "Creating sustainable fresh food supply chains through waste reduction," *International journal of physical distribution & logistics management*, vol. 43, no. 3, pp. 262–276, 2013.
- [59] P. Li, "Global Supply Chain Information Sharing Platforms: Challenges, Opportunities, and Trends," Advances in Economics, Management and Political Sciences, vol. 120, pp. 101–105, 2024.
- [60] U. N. E. Programme, "UNEP Food Waste Index Report 2021," United Nations, 2021. [Online]. Available: https://www.unep.org/resources/report/unep-food-waste-index-report-2021
- [61] F. Chen, Z. Drezner, J. K. Ryan, and D. Simchi-Levi, "Quantifying the bullwhip effect in a simple supply chain: The impact of forecasting, lead times, and information," *Management science*, vol. 46, no. 3, pp. 436–443, 2000.
- [62] S. M. Disney and D. R. Towill, "On the bullwhip and inventory variance produced by an ordering policy," Omega, vol. 31, no. 3, pp. 157–167, 2003.
- [63] J. Blackburn and G. Scudder, "Supply chain strategies for perishable products: the case of fresh produce," Production and Operations Management, vol. 18, no. 2, pp. 129–137, 2009.

- [64] U. N. E. Programme, "Food Waste Index Report 2024," United Nations Environment Programme, 2024. [Online]. Available: https://www.unep.org/resources/publication/food-waste-index-report-2024
- [65] S. Canada, "Overview of Canada's agriculture and agri-food sector," 2024. [Online]. Available: https://www.statcan.gc.ca/en/subjects-start/agriculture_and_food.
- [66] E. a. C. C. Canada. "Taking Stock: Reducing food loss and waste in Canada." https://www.canada.ca/en/environment-climate-change/services/managing-reducing-waste/food-loss-waste/taking-stock.html (accessed.
- [67] O. G. Foundation, "Annual Report 2022–2023," Ontario Greenbelt Foundation, 2022. [Online]. Available: https://www.greenbelt.ca/2022_2023_annual_report
- [68] P. H. A. o. Canada, "Departmental Results Report 2022–2023," Government of Canada, 2023. [Online]. Available: https://www.canada.ca/en/public-health/corporate/transparency/corporate management-reporting/departmental-performance-reports/2022-2023.html
- [69] Q. Duan and T. W. Liao, "Optimization of blood supply chain with shortened shelf lives and ABO compatibility," *International journal of production economics*, vol. 153, pp. 113–129, 2014.
- [70] ReFED, "ReFED US Food Waste Report 2025," ReFED, 2025. [Online]. Available: https://refed.org/downloads/refed-us-food-waste-report-2025.pdf
- [71] R. C. o. Canada. "Canadian Retail Trends Report 2024." https://www.retailcouncil.org/resources/industry-trends/retail-trends-report-2024 (accessed.
- [72] F. a. A. O. o. t. U. N. (FAO), "On the International Day of Awareness of Food Loss and Waste: Learn how FAO is leveraging data to advance the 2030 Agenda," FAO, 2023. [Online]. Available: https://www.fao.org/statistics/highlights-archive/highlights-detail/on-the-international-day-of-awareness-of-food-loss-and-waste-learn-how-fao-is-leveraging-data-to-advance-the-2030-agenda/en
- [73] G. Owusu-Antwi, R. Banerjee, and J. Antwi, "Interest rate spread on bank profitability: The case of Ghanaian banks," *Journal of Accounting, Business and Finance Research*, vol. 1, no. 1, pp. 34–45, 2017.
- [74] (2023). Nutrition North Canada: Annual Report 2022–2023. [Online] Available: https://www.nutritionnorthcanada.gc.ca/eng/1415385762263/1415385790537
- [75] N. Gaudio Harrison, "Towards an Integrated Indigenous Food Security Strategy for Ontario," *Rural Review: Ontario Rural Planning, Development, and Policy*, vol. 7, no. 1, 2023, doi: https://doi.org/10.21083/ruralreview.v7i1.7383.
- [76] O. o. t. A. G. o. Canada, "Report 10—Securing Personal Protective Equipment and Medical Devices," Ottawa, 2022. [Online]. Available: https://www.oag-bvg.gc.ca/internet/English/parl_oag_202212_10_e_44142.html
- [77] M. K. Goyal, "Real-Time Supply Chain Resilience: Predictive Analytics for Global Food Security and Perishable Goods."
- [78] J. E. Hobbs, "Food supply chains during the COVID-19 pandemic," *Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie*, vol. 68, no. 2, pp. 171–176, 2020.
- [79] A. a. A.-F. Canada. "Impacts of the British Columbia floods on agricultural supply chains." https://agriculture.canada.ca/en/about-our-department/transparency-and-corporate-reporting/impacts-be-floods-agriculture (accessed.

Thanks for your attention