|                                          | $\sigma_{1^{+}lphaeta}^{\#1}$                  | $\sigma_{1^{+}lphaeta}^{\#2}$               | $	au_{1}^{\#1}{}_{lphaeta}$                   | $\sigma_{1}^{\#1}{}_{lpha}$                 | $\sigma_{1}^{\#2}{}_{\alpha}$               | $\tau_{1-\alpha}^{\#1}$ | $\tau_{1}^{#2}$ $\alpha$                       |
|------------------------------------------|------------------------------------------------|---------------------------------------------|-----------------------------------------------|---------------------------------------------|---------------------------------------------|-------------------------|------------------------------------------------|
| $\sigma_{1}^{\#1}\dagger^{lphaeta}$      | 0                                              | $\frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2}$ | $\frac{2i\sqrt{2}k}{\alpha_0 + \alpha_0 k^2}$ | 0                                           | 0                                           | 0                       | 0                                              |
| $\sigma_{1}^{\#2} \dagger^{\alpha\beta}$ | $\frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2}$    | $-\frac{2}{\alpha_0 (1+k^2)^2}$             | $-\frac{2ik}{\alpha_0(1+k^2)^2}$              | 0                                           | 0                                           | 0                       | 0                                              |
| $\tau_{1}^{\#1} \dagger^{\alpha\beta}$   | $-\frac{2i\sqrt{2}k}{\alpha_0 + \alpha_0 k^2}$ | $\frac{2ik}{\alpha_0 (1+k^2)^2}$            | $-\frac{2k^2}{\alpha_0(1+k^2)^2}$             | 0                                           | 0                                           | 0                       | 0                                              |
| $\sigma_{1}^{\sharp 1} \dagger^{lpha}$   | 0                                              | 0                                           | 0                                             | 0                                           | $-\frac{2\sqrt{2}}{\alpha_0+2\alpha_0 k^2}$ | 0                       | $-\frac{4 i k}{\alpha_0 + 2 \alpha_0 k^2}$     |
| $\sigma_1^{#2} \dagger^{\alpha}$         | 0                                              | 0                                           | 0                                             | $-\frac{2\sqrt{2}}{\alpha_0+2\alpha_0 k^2}$ | $-\frac{2}{\alpha_0 (1+2 k^2)^2}$           | 0                       | $-\frac{2 i \sqrt{2} k}{\alpha_0 (1+2 k^2)^2}$ |
| $\tau_1^{#1} \dagger^{\alpha}$           | 0                                              | 0                                           | 0                                             | 0                                           | 0                                           | 0                       | 0                                              |
| $\tau_1^{#2} \uparrow^{\alpha}$          | 0                                              | 0                                           | 0                                             | $\frac{4 i k}{\alpha_0 + 2 \alpha_0 k^2}$   | $\frac{2i\sqrt{2}k}{\alpha_0(1+2k^2)^2}$    | 0                       | $-\frac{4k^2}{\alpha_0 (1+2k^2)^2}$            |

|  | Added source term: $f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$ | $\alpha_0  \partial_{\beta} \omega^{\alpha\beta}_{\ \alpha} + \alpha_0  f^{\alpha\beta}  \partial_{\zeta} \omega_{\alpha\beta}^{\ \zeta} - \alpha_0  f^{\alpha}_{\ \alpha}  \partial_{\zeta} \omega^{\beta\zeta}_{\ \beta}$ | $-\frac{1}{2}\alpha_0\omega_{lpha\zetaeta}\omega^{lphaeta\zeta}-\frac{1}{2}\alpha_0\omega^{lphaeta}\omega_{eta}^{\ \zeta}-lpha_0f^{lphaeta}\partial_{eta}\omega_{lpha}^{\ \zeta}+$ | Lagrangian density |
|--|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|--|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|

| $f_{1}^{#2} + \alpha$    | $f_{1^{-}}^{#1} \dagger^{\alpha}$ | $\omega_{1^{-}}^{\#2}\dagger^{lpha}$ | $\omega_{1^{-}}^{*1}\dagger^{lpha}$ | $f_{1+}^{#1} \dagger^{\alpha\beta}$ | $\omega_{1}^{\#2} \dagger^{\alpha\beta}$ | $\omega_{1^+}^{*1} \dagger^{lphaeta}$ |                                  |
|--------------------------|-----------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|------------------------------------------|---------------------------------------|----------------------------------|
| 0                        | 0                                 | 0                                    | 0                                   | $-\frac{i\alpha_0 k}{2\sqrt{2}}$    | $\frac{\alpha_0}{2\sqrt{2}}$             | $\frac{\alpha_0}{4}$                  | $\omega_{1}^{\#1}{}_{lphaeta}$   |
| 0                        | 0                                 | 0                                    | 0                                   | 0                                   | 0                                        | $\frac{\alpha_0}{2\sqrt{2}}$          | $\omega_{1+\alpha\beta}^{\#2}$ i |
| 0                        | 0                                 | 0                                    | 0                                   | 0                                   | 0                                        | $\frac{i \alpha_0 k}{2 \sqrt{2}}$     | $f_{1+\alpha\beta}^{\#1}$        |
| $\frac{i \alpha_0 k}{2}$ | 0                                 | $-\frac{\alpha_0}{2\sqrt{2}}$        | $\frac{\alpha_0}{4}$                | 0                                   | 0                                        | 0                                     | $\omega_{1^{-}lpha}^{\#1}$       |
| 0                        | 0                                 | 0                                    | $-\frac{\alpha_0}{2\sqrt{2}}$       | 0                                   | 0                                        | 0                                     | $\omega_{1^-\alpha}^{\#2}$       |
| 0                        | 0                                 | 0                                    | 0                                   | 0                                   | 0                                        | 0                                     | $f_{1^-\alpha}^{\#1}$            |
| 0                        | 0                                 | 0                                    | $-\frac{1}{2}\bar{l}\alpha_0k$      | 0                                   | 0                                        | 0                                     | $f_{1^-\alpha}^{\#2}$            |

| Total #: | $\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$ 3 | $t_{1}^{\#1\alpha} == 0$ | $\tau_{1}^{\#2\alpha} + 2ik \sigma_{1}^{\#2\alpha} == 0$ | $\tau_{0+}^{\#2} == 0$ | SO(3) irreps | Source constraints |
|----------|---------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------|------------------------|--------------|--------------------|
| 10       | ω                                                                               | 3                        | 3                                                        | 1                      | #            |                    |

|                      | $\omega_0^{\sharp 1}$           | $f_{0^{+}}^{#1}$                 | $f_{0^{+}}^{#2}$ | $\omega_0^{\#1}$ |
|----------------------|---------------------------------|----------------------------------|------------------|------------------|
| $\omega_{0}^{\#1}$ † | <u>α</u> 0<br>2                 | $-\frac{i \alpha_0 k}{\sqrt{2}}$ | 0                | 0                |
| $f_{0}^{#1}$ †       | $\frac{i \alpha_0 k}{\sqrt{2}}$ | 0                                | 0                | 0                |
| $f_{0}^{#2}$ †       | 0                               | 0                                | 0                | 0                |
| $\omega_{0}^{#1}$ †  | 0                               | 0                                | 0                | <u>α</u> 0<br>2  |

| _                    | $\sigma_{0^{+}}^{\#1}$         | $\tau_{0}^{\#1}$                | $	au_{0}^{\#2}$ | $\sigma_0^{\#1}$     |
|----------------------|--------------------------------|---------------------------------|-----------------|----------------------|
| $\sigma_{0}^{\#1}$ † | 0                              | $-\frac{i\sqrt{2}}{\alpha_0 k}$ | 0               | 0                    |
| $\tau_{0}^{\#1}$ †   | $\frac{i\sqrt{2}}{\alpha_0 k}$ | $-\frac{1}{\alpha_0 k^2}$       | 0               | 0                    |
| $\tau_{0}^{\#2}$ †   | 0                              | 0                               | 0               | 0                    |
| $\sigma_{0}^{\#1}$ † | 0                              | 0                               | 0               | $\frac{2}{\alpha_0}$ |

| $\sigma_{2^{-}}^{\#1} \dagger^{lphaeta\chi}$ | $\tau_{2+}^{*1} + \alpha \beta$  | $\sigma_{2^{+}}^{*1} \dagger^{\alpha\beta}$ |                                           |
|----------------------------------------------|----------------------------------|---------------------------------------------|-------------------------------------------|
| 0                                            | $-\frac{2i\sqrt{2}}{\alpha_0 k}$ | 0                                           | $\sigma_{2}^{\#1}{}_{lphaeta}$            |
| 0                                            | $\frac{2}{\alpha_0 k^2}$         | $\frac{2i\sqrt{2}}{\alpha_0k}$              | $\tau_{2}^{\#1}{}_{\alpha\beta}$ $\sigma$ |
| $-\frac{4}{\alpha_0}$                        | 0                                | 0                                           | $\sigma_{2^{-}}^{\#1}{}_{lphaeta\chi}$    |

| $\omega_{2}^{#1} \dagger^{\alpha\beta\chi}$ | $f_{2^{+}}^{#1} \dagger^{\alpha\beta}$ | $\omega_{2^{+}}^{*1}\dagger^{lphaeta}$ |                                                                                               |
|---------------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------|
| 0                                           | $-\frac{i\alpha_0 k}{2\sqrt{2}}$       | $-\frac{\alpha_0}{4}$                  | $\omega_{2}^{\#1}{}_{lphaeta}$                                                                |
| 0                                           | 0                                      | $\frac{i \alpha_0 k}{2 \sqrt{2}}$      | $f_{2}^{\#1}_{\alpha\beta}$                                                                   |
| $-\frac{\alpha_0}{4}$                       | 0                                      | 0                                      | $\omega_{2^{+}\alpha\beta}^{*1} f_{2^{+}\alpha\beta}^{*1} \omega_{2^{-}\alpha\beta\chi}^{*1}$ |



Unitarity conditions  $\alpha_0 > 0$ 

(No massive particles)