

Sistemas Operacionais

Profº - Dr. Thales Levi Azevedo Valente thales.l.a.valente@ufma.com.br

Sejam Bem-vindos!

Os celulares devem ficar no silencioso ou desligados

Pode ser utilizado apenas em caso de emergência

Boa tarde/noite, por favor e com licença DEVEM ser usados

Educação é essencial

Resumo da primeira aula..

Na aula anterior...

Válvulas

Primeira Geração (1945 - 1955)

Usou válvulas para elementos lógicos digitais e memória.

Transistores

Segunda Geração (1955 - 1965)

Substituição das válvulas pelo transistor.

CI

Circuitos Integrados foram criados.

Computadores Pessoais

Quarta Geração (1980 - atual)

IBM, Apple e os primeiros computadores pessoais.

Computadores Móveis

Descoberta inovadora (atual-futuro)

Chips que continham todos os elementos de uma CPU.

Resumo da aula anterior....

6a Geração....?

- Sistemas Operacionais Inteligentes?
- Computação Quântica ?

Objetivos de hoje

Mostrar conceitos adicionais e de forma mais organizada sobre os sistemas operacionais e definir processos

Ao final da aula, os alunos serão capazes de identificar principais características e tipos de sistemas operacionais e ter uma definição clara do que é um processo em termos de sistemas

Roteiro: Histórico

Tipos de Sistemas Operacionais

Sistema monoprogramável

 Todos os recursos do sistema (processador, a memória e os periféricos) permaneçam exclusivamente dedicados à execução de um único programa (uma tarefa)

Recursos subutilizados

Sistema multiprogramável

- Os recursos computacionais são compartilhados entre diversos usuários e aplicações
- Redução de custos em função da possibilidade do compartilhamento dos diversos recursos entre as diferentes aplicações

Sistema multiprogramável

- Subclassificações
 - Número de usuários podendo ser mono ou multiusuário. Ambos várias tarefas podem ser realizadas ao mesmo tempo.
 - Monousuário: computadores pessoais e estações de trabalho.
 - Multiusuário: diversos usuários
- Forma de gerenciamento podendo ser um sistema em lote, de tempo compartilhado ou tempo real.

Sistema multiprogramável - Batch

Sistema multiprogramável – Time Sharing

 Permitem que diversos programas sejam executados a partir da divisão do tempo do processador em pequenos intervalos, denominados fatia de tempo (time-slice) ou quantum.

• Usuários interagem com o sistema enquanto o processo executa.

Sistema multiprogramável – Real Time

- Implementado de forma semelhante aos de tempo compartilhado, porém não existe a ideia de fatia de tempo, um programa utiliza o tempo que for necessário ou até que apareça um outro mais prioritário.
- A prioridade é determinada pela aplicação e não pelo S.O.

Sistema multiprogramável – Real Time

- Deve reagir a estímulos oriundos do seu ambiente em prazos específicos (deadlines).
- Também chamado de Sistema Controlador, é necessário a utilização de sensores e atuadores

Sistema de Múltiplos Processadores

- Caracterizam-se por possuir duas ou mais UCP's interligadas e trabalhando em conjunto.
- Permite que que vários programas sejam executados simultaneamente, ou mesmo que um programa seja subdividido em partes para serem executados simultaneamente em mais de um processador.

Sistema de Múltiplos Processadores -Classificação

Fortemente Acoplado

 Vários processadores compartilhando uma única memória física e dispositivos de entrada/saída sendo gerenciados por um único S.O.

Fracamente Acoplado

- Caracterizam-se por dois ou mais sistemas computacionais conectados através de linhas de comunicação;
- Cada sistema funciona de forma independente
- Sistema operacional próprio e gerenciando seus próprios recursos (CPU, memória e dispositivos de E/S).

Sistema de Múltiplos Processadores – Fortemente Aclopados

- Também conhecidos como multiprocessadores
- SMP Symmetric Multiprocessors
 - Os processadores possuem tempo uniforme de acesso à memória principal.
- NUMA Non-Uniforme Memory Access
 - O tempo de acesso à memória varia em função da sua localização física. Apresentam vários conjuntos de processador e memória.

Sistema de Múltiplos Processadores – Fracamente Aclopados

- Também conhecidos como Multicomputadores.
- SO de rede
- Sistemas Distribuidos
- Clusters

Sistema de Múltiplos Processadores – Fracamente Aclopados – SO de Rede

- Cada sistema (Host) possui recursos de hardware próprios
- Os Nós totalmente independentes, conectados por uma rede
- Redes Locais (LAN) –Ethernet, Token Ring
- Redes distribuídas (WAN) –Internet
- Comunicação por uma interface de rede
- Exemplos–Microsoft Windows 2003–Novel Netware– UNIX–Linux

Sistema de Múltiplos Processadores — Fracamente Aclopados — SO Distribuído

- Conjunto de sistemas autônomos, interconectados por uma rede de comunicação que funciona como se fosse um sistema fortemente acoplado
- Cada componente possui seus próprios recursos
- O sistema esconde os detalhes dos hosts individuais e trata como um conjunto único. Como um sistema fortemente acoplado
- Sistema Fracamente Acoplado pelo aspecto de hardware e fortemente acoplado pelo aspecto de software

Sistema de Múltiplos Processadores — Fracamente Aclopados — SO Distribuído

- Transparência de acesso
- Transparência de localização
- Transparência de migração
- Transparência de replicação
- Transparência de concorrência
- Transparência de paralelismo
- Transparência no desempenho
- Transparência de escalabilidade
- Transparência a falhas

Sistema de Múltiplos Processadores — Fracamente Aclopados - Cluster

- Nós conectados por uma rede de interconexão de alto desempenho dedicada
- Cada nó possui seus próprios recursos como processadores, memória, dispositivos de E/S e SO
- Permite o compartilhamento de dispositivos de E/S
- Permite processamento paralelo
- Maior necessidade de tolerância a falhas e alta disponibilidade, escalabilidadee balanceamento de carga

- Referência 1: "Operating System Concepts" de Silberschatz, Galvin e Gagne:
- "Um processo é um programa em execução, incluindo seu estado atual, que é representado pelos valores das variáveis do programa, pelos valores dos registradores da CPU e pela lista de instruções a serem executadas. Cada processo tem seu próprio espaço de endereçamento, contendo tanto o código do programa quanto as áreas de dados associadas a esse programa."

- Referência 2: "Modern Operating Systems" de Tanenbaum e Bos:
- "Um processo é um programa em execução. Mais precisamente, é uma instância de um programa em execução, juntamente com seu estado atual. Um processo inclui um contador de programa, registradores de CPU, espaço de memória e descritores de arquivos, entre outras coisas. Cada processo tem seu próprio contador de programa e registradores, mas compartilha o mesmo código (geralmente) com outros processos. O espaço de memória inclui o código, os dados do programa e o heap."

- Como pode ser definido
- "Um processo em sistemas operacionais é uma unidade fundamental de execução que representa a execução de um programa ou aplicativo. Ele inclui o código do programa, seu estado atual (incluindo valores de variáveis e registradores) e recursos associados, como espaços de memória, arquivos abertos e identificadores de sistema."

 Cada processo opera de forma independente e isolada de outros processos, o que significa que eles não podem acessar diretamente os recursos de outros processos

```
alana — -bash — 120×24
Last login: Fri Mar 31 09:53:46 on console
     -iMac:~
  PID TTY
                    TIME CMD
2708 ttys000
                 0:00.02 -bash
      -iMac:∼
                     ps -l -A
 UID
        PID PPID
                          F CPU PRI NI
                                                    RSS WCHAN
                                                                  S
                                                                                 ADDR TTY
                                                                                                     TIME CMD
                                        2492548
                                                   8664 -
                                                                                    0 ??
                                                                                                  0:47.69 /sbin/launchd
                                                               Ss
         51
                                        2502312
                                                 41680 -
                                                                                    0 ??
                                                                                                 0:04.39 /usr/libexec/Use
                                                               Ss
         52
                       4004
                                        2471108
                                                   2492 -
                                                               Ss
                                                                                    0 ??
                                                                                                  0:01.71 /usr/sbin/syslog
         54
                       4004
                                 20
                                        2702220
                                                 10760 -
                                                                                    0 ??
                                                                                                  0:03.06 /usr/local/bin/w
         55
                                                                                                 0:00.88 /System/Library/
                       4004
                                        2469392
                                                 10652 -
                                                                                    0 ??
         56
                                                                                    0 ??
                                                                                                 0:03.26 /usr/libexec/kex
                       4004
                                        2503668
                                                 14576 -
                                                               Ss
         57
                                                                                    0 ??
                   1004004
                                        2514592
                                                   5640 -
                                                               Ss
                                                                                                 0:12.52 /System/Library/
         59
                                                                                    0 ??
                                                                                                 0:00.16 /System/Library/
                       4004
                                        2496484
                                                 24644 -
                                                               Ss
         62
                                                                                    0 ??
                       4004
                                        2497132
                                                 12736 -
                                                               Ss
                                                                                                 0:00.45 /System/Library/
         63
                                                                                    0 ??
                                                                                                 0:04.71 /usr/libexec/con
                       400c
                                        2500096
                                                 15032 -
                                                               Ss
         64
                       4004
                                        2495068
                                                   9684 -
                                                               Ss
                                                                                    0 ??
                                                                                                  0:01.84 /System/Library/
                                                                                    0 ??
                                                                                                 0:00.74 /usr/libexec/mob
         65
                       4004
                                        2512136
                                                 13688 -
                                                               Ss
         69
                                                                                    0 ??
                                                                                                 0:09.04 /usr/libexec/log
                       4004
                                        2553360
                                                 11760 -
         73
                       4004
                                        2503480
                                                 24696 -
                                                                                    0 ??
                                                                                                  0:23.81 /usr/libexec/air
                                                               Ss
         75
                       4004
                                        2496808
                                                 13572 -
                                                               SNs
                                                                                    0 ??
                                                                                                  0:00.17 /usr/libexec/war
                                                                                                 0:30.96 /System/Library/
                   1004004
                                 50
                                        2656120
                                                 36128 -
                                                               Ss
                                                                                    0 ??
                       4004
                                        2500596
                                                 17756 -
                                                               Ss
                                                                                    0 ??
                                                                                                 0:00.26 /Applications/Se
         82
                                                                                                 0:00.04 /System/Library/
  240
                       4004
                                        2471116
                                                  6832 -
                                                                                    0 ??
```

PID - identificação do processo;

PRI -indica a prioridade;

TIME - o tempo de utilização do processador

Gerência de Processos

 Uma das tarefas mais importantes dos Sistemas Operacionais Gerenciamento do Processador Gerenciamento da Memória Gerenciamento de Dispositivos Gerenciamento de Armazenamento Interface de Aplicativos

Estrutura de Processos

- Processo é basicamente uma unidade de programa em execução.
- Todo processo é formado por três partes:
 - Contexto de Software
 - Contexto de Hardware
 - Espaço de Endereçamento

Contexto do Hardware — Dar uma aula basica de arquitetura de CPUs

- Armazena o conteúdo dos registradores gerais da CPU, além dos registradores de uso específicos, como program counter (PC) e registrador de status (PSW).
- É fundamental para a implementação em sistemas multiprogramáveis, onde os processos alteram a CPU. Então a mudança contexto consiste basicamente em salvar o conteúdo dos registradores do processo e carregar os valores do novo processo.

Von-Neumann Basic Structure:

Von-Neumann Basic Structure:

• 1. Registradores

 Os registradores são como a bancada da cozinha. Eles contêm dados com os quais a CPU está trabalhando diretamente. Assim como você pode pegar rapidamente um ingrediente ou utensílio da bancada, a CPU pode acessar rapidamente os dados nos registradores.

2. Memória principal (RAM)

 Esta é a gaveta da sua cozinha. Armazena mais coisas do que a bancada (registradores), mas leva mais tempo para pegar algo dela do que da bancada. A RAM armazena os programas em execução e os dados com os quais eles estão trabalhando.

Von-Neumann Basic Structure:

• 3. Unidade de Controle

• Esta é como o "chef" da cozinha. Ela controla e coordena todas as operações da CPU. Decide qual instrução executar a seguir, busca essa instrução e garante que ela seja executada corretamente.

• 4. Unidade Lógica e Aritmética

 Esta é a parte da CPU que faz todos os cálculos matemáticos e lógicos. É como um liquidificador ou processador de alimentos na sua cozinha, fazendo todo o trabalho pesado.

Von-Neumann Basic Structure:

• 1. Registradores

- A. Contador de Programas (PC program counter)
 - Enquanto você cozinha, está seguindo uma receita. Você tem um marcador que indica qual é o próximo passo. Esse marcador é o Contador de Programas (PC) da CPU, que indica qual é a próxima instrução a ser executada.

Von-Neumann Basic Structure:

• 1. Registradores

- B. AC (Accumulator):
 - Tigela Principal na Bancada: Imagine que você tem uma tigela principal na bancada onde mistura ingredientes ou combina resultados parciais. Por exemplo, ao fazer uma salada, você pode adicionar ingredientes a essa tigela um por um. Esta tigela representa o acumulador, que armazena resultados temporários de operações.

Revisão de CPU

Central Processing Unit

Control Unit

Arithmetice/Logic Unit

Registers

PC CIR

Memory Unit

Output Device

• 1. Registradores

- C. MAR (Memory Address Register)
 - Etiquetas na Gaveta: Suponha que cada compartimento da sua gaveta tenha uma etiqueta. Quando você precisa buscar um ingrediente, primeiro verifica a etiqueta. Essas etiquetas são como o MAR, que indica qual "compartimento" da memória (ou qual endereço) a CPU deve acessar.

Revisão de CPU

• 1. Registradores

- D. CIR (Current Instruction Register)
 - Passo Atual da Receita: Imagine que você destaque o passo atual da receita que está seguindo. Esse passo destacado, que está atualmente em foco, é como o CIR. Ele armazena a instrução que está sendo decodificada ou executada no momento.

Revisão de CPU

Central Processing Unit

Control Unit

Arithmetice/Logic Unit

Registers

PC CIR

Output Device

Memory Unit

• 1. Registradores

- E. MDR (Memory Data Register)
 - Bandeja de Transferência: Perto da gaveta, você tem uma pequena bandeja onde coloca ingredientes que acabou de pegar ou que planeja guardar. Essa bandeja é como o MDR. Ela "segura" os dados que foram retirados da memória ou os que serão armazenados nela.
 - Imagine que a bandeja branca é essa bandeja e aqueles potes contém temperos e ervas das gavetas

Processos – Mudança de Contexto

- 1. Salva os registradores do processo A
- 2. Carrega os registradores do processo B
- 3. Salva os registradores do processo B
- 4. Carrega os registradores do processo A

Ou seja, alterna entre salvar e carregar todo o contexto dos processos A e B ao fazer isso com os dados armazenados nos registradores. Dessa forma, o processo interrompido pode continuar de onde parou.

Processos – Contexto de Software

 São especificados limites e características dos recursos que podem ser alocados pelo processo.

• O Contexto de software é composto por três grupos de informações sobre o processo: identificação, quotas e privilégios.

Contexto de Software - Identificação

- Cada processo recebe uma identificação única (PID process identification).
- Alguns sistemas além do PID, identificam um processo pelo nome;
- Identificação do usuário:
 - Cada usuário possui um UID (user identification)
 - Permite implementar modelos de segurança

Contexto de Software - Quotas

• São o limite de cada recurso do sistema que um processo pode alocar.

• Caso uma quota seja o insuficiente o processo pode ser executado lentamente, ser interrompido ou até não ser executado.

Contexto de Software — Exemplo de Quotas

- Numero máximo de arquivos abertos
- Tamanho máximo da memória principal e secundária que pode ser alocada
- Número máximo de operações de E/S pendentes
- Tamanho máximo do buffer para operações de E/S
- Número máximo de processos

Contexto de Software – Privilégios

- Definem as ações que um processo pode fazer em relação a ele mesmo, aos demais processos e ao sistema operacional.
- Privilégios que afetam o sistema são mais amplos e poderosos. Como por exemplo:
 - Desativação do sistema;
 - Alteração de regras segurança;
 - Criação de processos privilegiados;
 - Modificação de parâmetros de configuração de sistema, entre outros.

Espaço de Endereçamento

• É a área de memória pertencente ao processo onde instruções e dados do programa são armazenados para a execução.

 Cada processo possui seu próprio espaço de endereçamento, que deve ser devidamente protegido do acesso dos demais processos.

Bloco de Controle de Processo

 O processo é implementado pelo sistema operacional através de uma estrutura de dados chamada de bloco de controle de processo (Process Control Block - PCB).

• Cada processo possui seu PCB que mantêm todas as suas informações.

Bloco de Controle de Processo

- OS PCBS de **todos os processos** são mantidos na **memória principal** em uma área exclusiva do sistema operacional.
- O tamanho dessa área é geralmente limitado → Parâmetro do SO.

Atividade

• Identificar no seu sistema operacional os principais comandos para visualizar os processos em execução na máquina, quais informações o sistema exibe e os principais comandos que podem ser utilizados para obter informações de processos e até mesmo encerrar um processo.

Adicionar prints.

Bibliografia

TANENBAUM, A. S.; BOS, H. Sistemas Operacionais Modernos. 4ª Edição. Editora Pearson, 2016.

TANEMBAUM, A. S.; WOODHULL, A. S. Sistemas Operacionais. 3ª Edição. Editora Bookman, 2008.

DEITEL, H. M.; DEITEL, P. J.; CHOFFNES, D. R. Sistemas Operacionais. 3ª Edição. Editora Pearson, 2005.

Dúvidas?

Apresentador

Thales Levi Azevedo Valente

E-mail:

thales.l.a.valente@gmail.com