Matrice jacobienne

Pour une fonction de plusieurs variables, il n'y a pas une dérivée mais plusieurs : une pour chaque variable. Si en plus la fonction est à valeurs vectorielles alors, pour chaque composante et pour chaque variable, il y a une dérivée. Toute ces dérivées sont regroupées dans la matrice jacobienne.

1. Matrice jacobienne

1.1. Fonctions vectorielles

Une fonction est dite fonction vectorielle lorsque l'espace d'arrivée n'est pas \mathbb{R} mais \mathbb{R}^p , avec $p \ge 2$:

$$F: \mathbb{R}^n \longrightarrow \mathbb{R}^p$$

$$x = (x_1, \dots, x_n) \longmapsto (f_1(x), \dots, f_p(x))$$

Chaque composante f_j , pour $j=1,\ldots,p$, est une fonction de plusieurs variables à valeurs réelles : $f_j:\mathbb{R}^n\to\mathbb{R}$. On note $x \mapsto F(x)$ ou bien encore $(x_1, \dots, x_n) \mapsto F(x_1, \dots, x_n)$.

On a déjà rencontré des fonctions à valeurs vectorielles. Quelques exemples :

- De \mathbb{R} dans $\mathbb{R}^2 : F(t) = (t^2, t)$.
- De \mathbb{R}^2 dans \mathbb{R}^2 : $F(x,y) = (e^x \cos y, e^x \sin y)$.
- De \mathbb{R}^2 dans \mathbb{R}^3 : $F(x,y) = (x^2, y^3, x^2 + y^2)$. De \mathbb{R}^n dans \mathbb{R}^n : $F(x) = \frac{x}{\|x\|}$ où $x = (x_1, ..., x_n) \neq 0$.

Un exemple important est le cas d'une application linéaire.

- Par exemple, L(x, y, z) = (2x + 3y z, 5y 7z) est une application linéaire $L : \mathbb{R}^3 \to \mathbb{R}^2$. Elle s'exprime aussi : $L(x, y, z) = A \times \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ avec $A = \begin{pmatrix} 2 & 3 & -1 \\ 0 & 5 & -7 \end{pmatrix}$.
- Plus généralement, pour une application linéaire $L: \mathbb{R}^n \to \mathbb{R}^p$, il existe une matrice A avec p lignes et ncolonnes telle que

$$L(x_1,\ldots,x_n) = A \times \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

1.2. Matrice jacobienne

Soit $F: \mathbb{R}^n \to \mathbb{R}^p$ une fonction, dont les composantes sont $F = (f_1, \dots, f_p)$. Soit $x \in \mathbb{R}^n$. On suppose que les dérivées partielles $\frac{\partial f_j}{\partial x_i}$ existent en x (pour tous $i=1,\ldots,n$ et $j=1,\ldots,p$).

Définition 1.

La *matrice jacobienne* de F en $x = (x_1, ..., x_n) \in \mathbb{R}^n$ est

$$J_F(x) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x) & \cdots & \frac{\partial f_1}{\partial x_n}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_p}{\partial x_1}(x) & \cdots & \frac{\partial f_p}{\partial x_n}(x) \end{pmatrix}.$$

C'est une matrice à p lignes et n colonnes. La première ligne correspond aux dérivées partielles de f_1 , la seconde ligne aux dérivées partielles de f_2 , etc.

Voici ce que cela donne pour $F: \mathbb{R}^2 \to \mathbb{R}^2$ avec $F = (f_1, f_2)$, en $(x, y) \in \mathbb{R}^2$:

$$J_F(x,y) = \begin{pmatrix} \frac{\partial f_1}{\partial x}(x,y) & \frac{\partial f_1}{\partial y}(x,y) \\ \frac{\partial f_2}{\partial x}(x,y) & \frac{\partial f_2}{\partial y}(x,y) \end{pmatrix}$$

Exemple 1.

Soit $F: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $F(x, y) = (x^2 + y^2, e^{x-y})$. Au point (x, y), on a :

$$J_F(x,y) = \begin{pmatrix} \frac{\partial f_1}{\partial x}(x,y) & \frac{\partial f_1}{\partial y}(x,y) \\ \frac{\partial f_2}{\partial x}(x,y) & \frac{\partial f_2}{\partial y}(x,y) \end{pmatrix} = \begin{pmatrix} 2x & 2y \\ e^{x-y} & -e^{x-y} \end{pmatrix}.$$

Par exemple, au point $(x_0, y_0) = (2, 1)$, la matrice jacobienne est

$$J_F(2,1) = \begin{pmatrix} 4 & 2 \\ e & -e \end{pmatrix}.$$

Exemple 2.

Les coordonnées polaires d'un point du plan définissent l'application $F : \mathbb{R}_+ \times [0, 2\pi[\to \mathbb{R}^2, F(r, \theta) = (r \cos \theta, r \sin \theta)]$. Alors

$$J_F(r,\theta) = \begin{pmatrix} \cos\theta & -r\sin\theta\\ \sin\theta & r\cos\theta \end{pmatrix}.$$

Voyons une autre situation, où $F: \mathbb{R}^3 \to \mathbb{R}^2$ avec $F = (f_1, f_2)$, en $(x, y, z) \in \mathbb{R}^3$:

$$J_{F}(x,y,z) = \begin{pmatrix} \frac{\partial f_{1}}{\partial x}(x,y,z) & \frac{\partial f_{1}}{\partial y}(x,y,z) & \frac{\partial f_{1}}{\partial z}(x,y,z) \\ \frac{\partial f_{2}}{\partial x}(x,y,z) & \frac{\partial f_{2}}{\partial y}(x,y,z) & \frac{\partial f_{2}}{\partial z}(x,y,z) \end{pmatrix}$$

Exemple 3.

Pour $F(x, y, z) = (e^{xy}, z \sin x)$, on a

$$J_F(x,y,z) = \begin{pmatrix} ye^{xy} & xe^{xy} & 0 \\ z\cos x & 0 & \sin x \end{pmatrix}.$$

Exemple 4.

Soit $F: \mathbb{R} \to \mathbb{R}^p$ une fonction d'une seule variable, mais à valeurs vectorielles, définie par $F(x) = (f_1(x), \dots, f_p(x))$. Alors

$$J_F(x) = \begin{pmatrix} f_1'(x) \\ \vdots \\ f_n'(x) \end{pmatrix}.$$

1.3. Opérateurs différentiels classiques

Gradient

Pour une fonction à valeurs scalaires $f: \mathbb{R}^n \to \mathbb{R}$ dont les dérivées partielles existent, le vecteur *gradient* est :

$$\operatorname{grad} f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(x) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x) \end{pmatrix}.$$

C'est un vecteur colonne qui est la transposée de la matrice jacobienne (qui elle est ici un vecteur ligne) :

$$\operatorname{grad} f(x) = J_f(x)^T$$
.

On reviendra en détail sur le gradient dans le chapitre « Gradient – Théorème des accroissements finis ».

Les physiciens notent le gradient $\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(x) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x) \end{pmatrix}$ où ∇ (qui se lit « nabla ») correspond à l'opérateur

$$\nabla = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{pmatrix}.$$

Divergence

Pour une fonction $F: \mathbb{R}^n \to \mathbb{R}^n$ (n = p) de composantes f_1, \dots, f_n dont toutes les dérivées partielles existent, on définit sa *divergence* par

$$\operatorname{div} F(x) = \operatorname{tr} J_F(x) = \sum_{i=1}^n \frac{\partial f_i}{\partial x_i}(x)$$

où tr $J_F(x)$ est la trace de la matrice jacobienne.

Attention! Ne pas confondre les notions de gradient et de divergence : grad F(x) est un vecteur alors que div F(x) est un nombre réel!

Les physiciens notent la divergence $\operatorname{div} F(x) = \nabla \cdot F(x)$, où $u \cdot v$ est le produit scalaire canonique des vecteurs u et v sur \mathbb{R}^n , ce qui fait que

$$\operatorname{div} F(x) = \nabla \cdot F(x) = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{pmatrix} \cdot \begin{pmatrix} f_1(x) \\ \vdots \\ f_n(x) \end{pmatrix}.$$

Exemple 5.

Soit $F: \mathbb{R}^3 \to \mathbb{R}^3$ définie par $F(x, y, z) = (x^2 y, \sin(yz), e^{xyz})$. Alors

$$\operatorname{div} F(x,y,z) = \frac{\partial f_1}{\partial x}(x,y,z) + \frac{\partial f_2}{\partial y}(x,y,z) + \frac{\partial f_3}{\partial z}(x,y,z) = 2xy + z\cos(yz) + xye^{xyz}.$$

Rotationnel en dimension 2

Pour une fonction $F: \mathbb{R}^2 \to \mathbb{R}^2$ de composantes f_1, f_2 dont toutes les dérivées partielles existent, on définit le *rotationnel* de F par

$$\operatorname{rot} F(x, y) = \frac{\partial f_2}{\partial x}(x, y) - \frac{\partial f_1}{\partial y}(x, y).$$

Le rotationnel est ici un nombre réel.

Exemple 6.

Soit $F(x, y) = (\frac{y}{x^3}, y \ln x)$ définie sur $]0, +\infty[\times \mathbb{R}]$. Alors

$$\operatorname{rot} F(x, y) = \frac{\partial (y \ln x)}{\partial x} - \frac{\partial (\frac{y}{x^3})}{\partial y} = \frac{y}{x} - \frac{1}{x^3}.$$

Rotationnel en dimension 3

Pour une fonction $F: \mathbb{R}^3 \to \mathbb{R}^3$ de composantes f_1, f_2, f_3 dont toutes les dérivées partielles existent, on définit le *rotationnel* de F par

$$\operatorname{rot} F(x, y, z) = \begin{pmatrix} \frac{\partial f_3}{\partial y}(x, y, z) - \frac{\partial f_2}{\partial z}(x, y, z) \\ \frac{\partial f_1}{\partial z}(x, y, z) - \frac{\partial f_3}{\partial x}(x, y, z) \\ \frac{\partial f_2}{\partial x}(x, y, z) - \frac{\partial f_1}{\partial y}(x, y, z) \end{pmatrix}.$$

Le rotationnel est donc ici un vecteur. Pour se souvenir de la formule, les physiciens écrivent rot $F(x, y, z) = \nabla \wedge F(x, y, z)$, où $u \wedge v$ désigne le produit vectoriel entre les vecteurs u et v:

$$\operatorname{rot} F(x, y, z) = \nabla \wedge F(x, y, z) = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \wedge \begin{pmatrix} f_1(x, y, z) \\ f_2(x, y, z) \\ f_3(x, y, z) \end{pmatrix}$$

Exemple 7.

Soit $F: \mathbb{R}^3 \to \mathbb{R}^3$ définie par $F(x, y, z) = (x^3, yz^2, xyz)$. Alors

$$\operatorname{rot} F(x, y, z) = \begin{pmatrix} xz - 2yz \\ -yz \\ 0 \end{pmatrix}.$$

1.4. Différentielle

Le pendant théorique de la matrice jacobienne est la différentielle associée à $F: \mathbb{R}^n \to \mathbb{R}^p$ en un point x. Cette section est plus théorique : pour une première lecture, on peut juste retenir que la différentielle $\mathrm{d}F(x)$ est une application linéaire dont la matrice (dans la base canonique) est la matrice jacobienne $J_F(x)$. Autrement dit :

$$dF(x)(h) = J_F(x) \times h$$

où $x \in \mathbb{R}^n$ et $h \in \mathbb{R}^n$, alors que le résultat dF(x)(h) est un élément de \mathbb{R}^p .

Voici les explications de ces notions en détail. Les notions de limite et de continuité pour $F: \mathbb{R}^n \to \mathbb{R}^p$ sont similaires à celles des fonctions $f: \mathbb{R}^n \to \mathbb{R}$: on remplace dans l'espace d'arrivée la valeur absolue de \mathbb{R} par une norme sur \mathbb{R}^p .

Nous allons voir ce qu'il en est pour la différentielle d'une fonction à valeurs vectorielles. Soit $F : \mathbb{R}^n \to \mathbb{R}^p$ dont les composantes sont $F = (f_1, \dots, f_p)$ avec chaque $f_j : \mathbb{R}^n \to \mathbb{R}$.

Définition 2.

- $F: \mathbb{R}^n \to \mathbb{R}^p$ est différentiable en $x \in \mathbb{R}^n$ si chacune des composantes $f_j: \mathbb{R}^n \to \mathbb{R}$ (j = 1, ..., p) est différentiable en x. On note $\mathrm{d} f_j(x): \mathbb{R}^n \to \mathbb{R}$ la différentielle de f_j en x.
- La *différentielle* d'une application vectorielle différentiable $F : \mathbb{R}^n \to \mathbb{R}^p$ en $x \in \mathbb{R}^n$ est l'application linéaire $dF(x) : \mathbb{R}^n \to \mathbb{R}^p$ définie par

$$dF(x) = (df_1(x), \dots, df_p(x)).$$

Attention! La différentielle dF(x) de F en $x \in \mathbb{R}^n$ est une application linéaire, donc c'est bien une fonction (et pas un vecteur). L'évaluation de cette fonction donne une expression avec des vecteurs :

$$\forall h \in \mathbb{R}^n$$
 $dF(x)(h) = (df_1(x)(h), \dots, df_p(x)(h)).$

Proposition 1.

Soit $F: \mathbb{R}^n \to \mathbb{R}^p$ différentiable en $x \in \mathbb{R}^n$. Alors

$$dF(x)(h) = J_F(x) \times h$$

où $J_F(x)$ est la matrice jacobienne de F en x, quel que soit $h \in \mathbb{R}^n$.

Autrement dit, trouver la différentielle en x revient à calculer la matrice jacobienne en x. Cette proposition découle de l'expression de chaque différentielle $\mathrm{d} f_j(x)$ à l'aide des dérivées partielles $\frac{\partial f_j}{\partial x_i}$ $(i=1,\ldots,n)$.

Exemple 8.

Soit $F: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $F(x,y) = (ye^{x^2}, x^2 - y)$. Calculons dF(x,y)(h,k) quels que soient $(x,y), (h,k) \in \mathbb{R}^2$.

• La matrice jacobienne de *F* est :

$$J_F(x,y) = \begin{pmatrix} \frac{\partial f_1}{\partial x}(x,y) & \frac{\partial f_1}{\partial y}(x,y) \\ \frac{\partial f_2}{\partial x}(x,y) & \frac{\partial f_2}{\partial y}(x,y) \end{pmatrix} = \begin{pmatrix} 2xye^{x^2} & e^{x^2} \\ 2x & -1 \end{pmatrix}$$

• En (x, y) et pour $(h, k) \in \mathbb{R}^2$, on a donc :

$$dF(x,y)(h,k) = J_F(x,y) \times \begin{pmatrix} h \\ k \end{pmatrix} = \begin{pmatrix} (2xyh+k)e^{x^2} \\ 2xh-k \end{pmatrix}$$

• Par exemple, au point $(x_0, y_0) = (1, 1)$, on a dF(1, 1)(h, k) = ((2h + k)e, 2h - k).

Remarque.

- Si F a des composantes de classe \mathscr{C}^1 (c'est-à-dire toutes les dérivées partielles existent et sont continues), alors elles sont différentiables et F est également différentiable.
- Si F est différentiable en x, alors F est continue en x.
- Si $L: \mathbb{R}^n \to \mathbb{R}^p$ est une application linéaire alors, en tout point, sa différentielle est l'application elle-même : autrement dit, dL(x) = L, pour tout $x \in \mathbb{R}^n$.

Remarque.

Il existe une autre définition équivalente des deux notions rencontrées.

• $F: \mathbb{R}^n \to \mathbb{R}^p$ est différentiable en $x \in \mathbb{R}^n$ s'il existe une application linéaire $L: \mathbb{R}^n \to \mathbb{R}^p$ telle que :

$$\lim_{\|h\| \to 0} \frac{F(x+h) - F(x) - L(h)}{\|h\|} = 0.$$

• Dans ce cas, L est la différentielle de F en x et on la note dF(x).

Mini-exercices.

- 1. Soient $F,G:\mathbb{R}^n\to\mathbb{R}^p$. Soient $x,y\in\mathbb{R}^n$, $\lambda\in\mathbb{R}$. Justifier que les égalités suivantes sont vraies : $J_{F+G}(x)=J_F(x)+J_G(x)$; $J_{\lambda F}(x)=\lambda J_F(x)$. Trouver un exemple où $J_F(x+y)$ n'est pas égal à $J_F(x)+J_F(y)$.
- 2. Calculer en tout point la matrice jacobienne de l'application F définie par $F(x, y) = (x^2 + y^2, e^{xy}, x + y)$. Même question avec $F(x, y, z) = (x^{y+z}, z \arctan(y))$.
- 3. Calculer la divergence et le rotationnel de F définie par $F(x,y)=(y\,\mathrm{sh}(x),\mathrm{ch}(x/y))$. On rappelle que $\mathrm{ch}\,x=\frac{e^x+e^{-x}}{2}$ et $\mathrm{sh}\,x=\frac{e^x-e^{-x}}{2}$. Même question avec $F(x,y,z)=(x+yz,\sin(y)\sin(z),\sqrt{x+z})$.
- 4. À quelle condition sur la matrice jacobienne $J_F(x)$ la différentielle dF(x) est-elle bijective?
- 5. Exprimer la différentielle de $F(x, y) = \left(\frac{1}{x}\ln(y-1), \frac{e^y x}{x^2}\right)$ en tout point $(x, y) \in \mathbb{R}^* \times]1, +\infty[$.

2. Matrice jacobienne d'une composée

Les dérivées partielles d'une composée de fonctions sont compliquées à obtenir. C'est l'objet de cette section.

2.1. Formule

Rappelons tout d'abord la formule de dérivée d'une composée pour les fonctions de \mathbb{R} dans \mathbb{R} .

Proposition 2.

Soient $f,g:\mathbb{R}\to\mathbb{R}$ des fonctions dérivables. Alors $g\circ f$ est dérivable et

$$(g \circ f)'(x) = g'(f(x)) \times f'(x)$$

Remarque.

Il peut être intéressant de nommer x la variable de la fonction f et y la variable de la fonction g. La formule peut alors aussi s'écrire :

$$\frac{\mathrm{d}(g \circ f)}{\mathrm{d}x}(x) = \frac{\mathrm{d}g}{\mathrm{d}y}(f(x)) \times \frac{\mathrm{d}f}{\mathrm{d}x}(x).$$

En notant y = f(x), alors on peut considérer g comme une fonction de la variable y, mais aussi (par composée) de la variable x. On peut alors écrire comme les physiciens :

$$\frac{\mathrm{d}g}{\mathrm{d}x} = \frac{\mathrm{d}g}{\mathrm{d}y} \times \frac{\mathrm{d}y}{\mathrm{d}x}.$$

C'est une formule que l'on mémorise facilement en disant que l'on simplifie la fraction en éliminant les dy au numérateur et au dénominateur.

Passons maintenant au cas de $F: \mathbb{R}^n \to \mathbb{R}^p$ et $G: \mathbb{R}^p \to \mathbb{R}^q$. La composée est alors $G \circ F: \mathbb{R}^n \to \mathbb{R}^q$, et est bien sûr définie par $(G \circ F)(x) = G(F(x))$.

Si F et G sont différentiables alors $G \circ F$ est différentiable et les matrices jacobiennes sont reliées par la formule suivante:

$$J_{G \circ F}(x) = J_G(F(x)) \times J_F(x)$$

Ici, « × » est le produit des deux matrices jacobiennes.

On rappelle en particulier que si les composantes de F et G sont de classe \mathscr{C}^1 (i.e. les dérivées partielles existent et sont continues) alors les fonctions sont différentiables et la formule est valable. Et en plus $G \circ F$ est de classe \mathscr{C}^1 .

Attention! Noter que $J_F(x)$ et $J_{G\circ F}(x)$ sont des matrices jacobiennes calculées en x mais que, dans la formule, $J_G(F(x))$ est la matrice jacobienne de G en F(x) (et pas en x, ce qui pourrait même ne pas avoir de sens). C'est une source fréquente d'erreurs!

Exemple 9.

Soient $F: \mathbb{R}^2 \to \mathbb{R}^2$, $F(x,y) = (x+y,e^{2x-y})$ et $G: \mathbb{R}^2 \to \mathbb{R}^3$, $G(x,y) = (xy,y\sin x,x^2)$. Les matrices jacobiennes de *F* et de *G* sont :

$$J_F(x,y) = \begin{pmatrix} 1 & 1 \\ 2e^{2x-y} & -e^{2x-y} \end{pmatrix} \qquad J_G(x,y) = \begin{pmatrix} y & x \\ y\cos x & \sin x \\ 2x & 0 \end{pmatrix}$$

Attention, nous avons besoin de $J_G(F(x, y))$. Donc, dans $J_G(x, y)$, on remplace x par la première composante de F (c'est x + y) et y par la seconde composante de F (c'est e^{2x-y}). Ainsi,

$$J_G(F(x,y)) = \begin{pmatrix} e^{2x-y} & x+y \\ e^{2x-y}\cos(x+y) & \sin(x+y) \\ 2(x+y) & 0 \end{pmatrix}.$$

Pour obtenir la matrice jacobienne de la composée $G \circ F : \mathbb{R}^2 \to \mathbb{R}^3$, on applique la formule donnée par le produit de matrices :

$$J_{G \circ F}(x, y) = J_G(F(x, y)) \times J_F(x, y)$$

On trouve

$$J_{G \circ F}(x,y) = \begin{pmatrix} (1+2x+2y)e^{2x-y} & (1-x-y)e^{2x-y} \\ (\cos(x+y)+2\sin(x+y))e^{2x-y} & (\cos(x+y)-\sin(x+y))e^{2x-y} \\ 2x+2y & 2x+2y \end{pmatrix}.$$

Voici la version du théorème en termes de différentielles.

Théorème 2.

Si $F: \mathbb{R}^n \to \mathbb{R}^p$ est différentiable en x, et si $G: \mathbb{R}^p \to \mathbb{R}^q$ est différentiable en F(x), alors $G \circ F: \mathbb{R}^n \to \mathbb{R}^q$ est différentiable en x et on a :

$$d(G \circ F)(x) = dG(F(x)) \circ dF(x).$$

Autrement dit, l'application linéaire $d(G \circ F)(x)$ est la composée de l'application linéaire dG(F(x)) avec l'application linéaire dF(x).

2.2. Applications

Nous allons appliquer la formule de la matrice jacobienne d'une composée pour calculer des dérivées partielles. Le plus compliqué est d'identifier quelles sont les fonctions à composer et de s'adapter aux noms des variables qui peuvent changer selon les situations.

Les deux seules choses à retenir, c'est d'abord la formule $J_{G \circ F}(x) = J_G(F(x)) \times J_F(x)$, et ensuite comment l'appliquer. Il est donc inutile d'apprendre les formules qui suivent.

Cas
$$F: \mathbb{R} \to \mathbb{R}^2$$
, $G: \mathbb{R}^2 \to \mathbb{R}$

Soit $F: \mathbb{R} \to \mathbb{R}^2$, $t \mapsto F(t) = (x(t), y(t))$ une fonction, avec $t \mapsto x(t)$ et $t \mapsto y(t)$ dérivables, et soit $G: \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto G(x, y)$ une fonction différentiable. Alors $h = G \circ F: \mathbb{R} \to \mathbb{R}, t \mapsto h(t) = G(x(t), y(t))$ est dérivable et

$$h'(t) = \frac{\partial G}{\partial x} (x(t), y(t)) \cdot x'(t) + \frac{\partial G}{\partial y} (x(t), y(t)) \cdot y'(t).$$

C'est une application directe de la formule $J_h(t) = J_G(F(t)) \times J_F(t)$, avec :

$$J_h(t) = \frac{\mathrm{d}h}{\mathrm{d}t}(t) = h'(t) \qquad J_G(x,y) = \left(\frac{\partial G}{\partial x}(x,y) - \frac{\partial G}{\partial y}(x,y)\right) \qquad J_F(t) = \left(\frac{\mathrm{d}x}{\mathrm{d}t}(t)\right) = \begin{pmatrix} x'(t)\\ \frac{\mathrm{d}y}{\mathrm{d}t}(t) \end{pmatrix} = \begin{pmatrix} x'(t)\\ y'(t) \end{pmatrix}$$

Exemple 10.

Soit $G(x, y) = \cos(y)e^x$. Calculer la dérivée de la fonction $h: t \mapsto G(t^2, \sin t)$.

Solution.

Une première méthode serait d'écrire $h(t) = \cos(\sin t)e^{t^2}$ puis de dériver h...

Mais utilisons ici la formule $J_h(t) = J_G(F(t)) \times J_F(t)$, où l'on définit $F(t) = (t^2, \sin t)$, de sorte que $h = G \circ F$. Sachant que:

$$J_h(t) = h'(t)$$
 $J_G(x, y) = (\cos(y)e^x - \sin(y)e^x)$ $J_F(t) = \begin{pmatrix} 2t \\ \cos t \end{pmatrix}$,

on calcule $J_G(F(t))$ et on obtient

$$h'(t) = 2t \left(\cos(\sin t)e^{t^2}\right) + \cos(t)\left(-\sin(\sin t)e^{t^2}\right) = \left(2t\cos(\sin t) - \cos(t)\sin(\sin t)\right)e^{t^2}.$$

Exemple 11.

Soit $G: \mathbb{R}^2 \to \mathbb{R}$ une fonction différentiable. Soit $h: \mathbb{R} \to \mathbb{R}$ telle que $h(t) = G(2t, 1 + t^2)$. Exprimer la dérivée de h en fonction des dérivées partielles de G.

Solution.

On pose $F: \mathbb{R} \to \mathbb{R}^2$ définie par $F(t) = (2t, 1 + t^2)$, de sorte que $h = G \circ F$. Nous avons donc

$$J_h(t) = h'(t)$$
 $J_G(x, y) = \left(\frac{\partial G}{\partial x}(x, y) \quad \frac{\partial G}{\partial y}(x, y)\right)$ $J_F(t) = \begin{pmatrix} 2\\2t \end{pmatrix}$.

Ainsi:

$$h'(t) = J_h(t) = J_G(F(t)) \times J_F(t) = 2\frac{\partial G}{\partial x}(2t, 1+t^2) + 2t\frac{\partial G}{\partial y}(2t, 1+t^2).$$

Cas $F: \mathbb{R} \to \mathbb{R}^n$, $G: \mathbb{R}^n \to \mathbb{R}$.

Plus généralement, on a le résultat suivant.

Proposition 4.

Soit $F: \mathbb{R} \to \mathbb{R}^n$ une fonction dont chacune des composantes est dérivable, et soit $G: \mathbb{R}^n \to \mathbb{R}$ différentiable. Alors $h: \mathbb{R} \to \mathbb{R}$ définie par h(t) = G(F(t)) est dérivable et :

$$h'(t) = \langle \operatorname{grad} G(F(t)) | F'(t) \rangle.$$

Cas
$$F: \mathbb{R}^2 \to \mathbb{R}^2$$
, $G: \mathbb{R}^2 \to \mathbb{R}$

Proposition 5.

Soient $F: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (f_1(x, y), f_2(x, y))$, $G: \mathbb{R}^2 \to \mathbb{R}$, $(u, v) \mapsto G(u, v)$ des fonctions différentiables. La fonction $H = G \circ F: \mathbb{R}^2 \to \mathbb{R}$, $(x, y) \mapsto G(F(x, y))$ est différentiable et :

$$\begin{cases} \frac{\partial H}{\partial x}(x,y) &= \frac{\partial G}{\partial u}(F(x,y))\frac{\partial f_1}{\partial x}(x,y) + \frac{\partial G}{\partial v}(F(x,y))\frac{\partial f_2}{\partial x}(x,y) \\ \frac{\partial H}{\partial y}(x,y) &= \frac{\partial G}{\partial u}(F(x,y))\frac{\partial f_1}{\partial y}(x,y) + \frac{\partial G}{\partial v}(F(x,y))\frac{\partial f_2}{\partial y}(x,y) \end{cases}$$

C'est encore une fois la formule $J_H(x,y) = J_G(F(x,y)) \times J_F(x,y)$, avec :

$$J_H(x,y) = \begin{pmatrix} \frac{\partial H}{\partial x}(x,y) & \frac{\partial H}{\partial y}(x,y) \end{pmatrix} \qquad J_G(u,v) = \begin{pmatrix} \frac{\partial G}{\partial u}(u,v) & \frac{\partial G}{\partial y}(u,v) \end{pmatrix}$$

et

$$J_F(x,y) = \begin{pmatrix} \frac{\partial f_1}{\partial x}(x,y) & \frac{\partial f_1}{\partial y}(x,y) \\ \frac{\partial f_2}{\partial x}(x,y) & \frac{\partial f_2}{\partial y}(x,y) \end{pmatrix}.$$

Exemple 12.

Calculer les dérivées partielles de la fonction $(x, y) \mapsto G(x - y, x + y)$ où $G : \mathbb{R}^2 \to \mathbb{R}$ est une fonction différentiable.

Solution.

On pose F(x, y) = (x - y, x + y), on note (u, v) les variables de la fonction G et $H(x, y) = (G \circ F)(x, y) =$ G(x-y,x+y).

On a donc:

$$J_H(x,y) = \begin{pmatrix} \frac{\partial H}{\partial x}(x,y) & \frac{\partial H}{\partial y}(x,y) \end{pmatrix} \qquad J_G(u,v) = \begin{pmatrix} \frac{\partial G}{\partial u}(u,v) & \frac{\partial G}{\partial v}(u,v) \end{pmatrix} \qquad J_F(x,y) = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

Donc:

$$\begin{cases} \frac{\partial H}{\partial x}(x,y) &= \frac{\partial G}{\partial u}(x-y,x+y) + \frac{\partial G}{\partial v}(x-y,x+y) \\ \frac{\partial H}{\partial y}(x,y) &= -\frac{\partial G}{\partial u}(x-y,x+y) + \frac{\partial G}{\partial v}(x-y,x+y) \end{cases}$$

Un autre exemple.

Exemple 13.

Prenons $F: \mathbb{R}^2 \to \mathbb{R}^3$ et $G: \mathbb{R}^3 \to \mathbb{R}$ deux fonctions définies par

$$F(x, y) = (x + y^4, y - 3x^2, 2x^2 - 3y)$$
 et $G(x, y, z) = 2xy - 3(x + z)$.

Calculer les dérivées partielles de la fonction $H = G \circ F$.

Solution.

- Tout d'abord, on note que H est une fonction de deux variables à valeurs réelles, c'est-à-dire $H: \mathbb{R}^2 \to \mathbb{R}$. Pour calculer $\frac{\partial H}{\partial x}$ et $\frac{\partial H}{\partial y}$, il suffit de calculer la matrice jacobienne de H.
- La formule de la matrice jacobienne d'une composée s'écrit :

$$J_H(x, y) = J_C(F(x, y)) \times J_F(x, y).$$

• On a

$$J_H(x,y) = \begin{pmatrix} \frac{\partial H}{\partial x}(x,y) & \frac{\partial H}{\partial y}(x,y) \end{pmatrix} \qquad J_G(x,y,z) = \begin{pmatrix} 2y-3 & 2x & -3 \end{pmatrix} \qquad J_F(x,y) = \begin{pmatrix} 1 & 4y^3 \\ -6x & 1 \\ 4x & -3 \end{pmatrix}.$$

• On en déduit que

$$J_G(F(x,y)) = (2(y-3x^2)-3 \quad 2(x+y^4) \quad -3).$$

• On obtient $\frac{\partial H}{\partial x}(x,y)$ comme la première composante de $J_H(x,y)$:

$$\frac{\partial H}{\partial x}(x,y) = 1 \cdot \left(2(y-3x^2) - 3\right) - 6x \cdot \left(2(x+y^4)\right) + 4x \cdot \left(-3\right) = -12xy^4 - 18x^2 + 2y - 12x - 3$$

• À vous de faire le calcul de $\frac{\partial H}{\partial y}$!

Mini-exercices.

- 1. Calculer de deux façons différentes la dérivée de la fonction $t\mapsto G(\sin t,e^t)$, où $G(x,y)=\frac{x}{y}$. Même question avec $t \mapsto G(t+1, t^2, \frac{1}{t})$ et $G(x, y, z) = x^2 + \sqrt{yz}$.
- 2. Exprimer les dérivées partielles de $(x, y) \mapsto G(x^2 y^3, \ln(x) y)$ en fonction des dérivées partielles

de G: R² → R. Même question avec (x, y, z) → G(x + y², 2y - z, xz) et G: R³ → R.
 3. Soit G: R² → R² définie par G(x, y) = (x/y, ln(x + y)). Calculer la matrice jacobienne de la fonction définie par (x, y) → G(ax + by, cx + dy), où a, b, c, d ∈ R sont des constantes.

Auteurs du chapitre

Arnaud Bodin. D'après des cours de Abdellah Hanani (Lille), Goulwen Fichou et Stéphane Leborgne (Rennes), Laurent Pujo-Menjouet (Lyon). Relu par Anne Bauval, Vianney Combet et Barbara Tumpach.