

## COS 210 Worksheet 10

| • This worksheet consists of <b>3 questions</b> for a total of <b>9 marks</b> .                                     |   |
|---------------------------------------------------------------------------------------------------------------------|---|
| Question 1                                                                                                          |   |
| $L = \{(10)^n \in \{0, 1\}^* : n \ge 0\}.$                                                                          |   |
| Provide your solution as a file containing the alistat code of your Turing machine.                                 |   |
| Question 2                                                                                                          |   |
| $L = \{w \in \{0,1\}^*: w \text{ contains twice as many 0's as 1's}\}.$                                             |   |
| Provide your solution as a file containing the alistat code of your Turing machine.                                 |   |
| Question 3 (2 marks Consider the Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ with | ) |
| $\bullet \ Q = \{q_0, q_1, q_2, q_L, q_{accept}, q_{reject}\}$                                                      |   |
| • $\Sigma = \{a, b, c\}$                                                                                            |   |
| • $\Gamma = \{a, b, c, d, \square\}$                                                                                |   |
| $ullet$ $\delta: \ q_0 a \square  ightarrow q_0 da RR$                                                              |   |
| $q_0b\Box 	o q_0b\Box RN$                                                                                           |   |
| $q_0c\Box 	o q_0c\Box RN$                                                                                           |   |
| $q_0\Box\Box 	o q_1\Box\Box LN$                                                                                     |   |
| $q_1 d\Box 	o q_1 d\Box LN$                                                                                         |   |
| $q_1b\Box 	o q_1dbLR$                                                                                               |   |
| $q_1c\square 	o q_1c\square LN$                                                                                     |   |
| $q_1 \Box \Box \to q_2 \Box \Box RN$                                                                                |   |
| $q_2 d\Box 	o q_2 d\Box RN$                                                                                         |   |
| $q_2c\Box 	o q_2dcRR$                                                                                               |   |
| $q_2\square\square 	o q_L\square\square LL$                                                                         |   |
| $q_L da 	o q_L a \square LL$                                                                                        |   |
| $q_L db 	o q_L b \Box LL$                                                                                           |   |
| $q_L dc 	o q_L c \Box LL$                                                                                           |   |
| $q_1 \square \square 	o q_{accent}$                                                                                 |   |

What kind of algorithm does M implement? Answer this question in one sentence.