Labor Elektrotechnik

Versuch 3: Filterelemente

Vorname	Nachname	Immatrikulation

Geräte:

- 1 einstellbares Netzgerät.
- 1 Funktionsgenerator (zur Erzeugung einer Sinusspannung).
- 3 Digitalmultimeter.
- 1 Steckbrett mit Bauteilen für den Schaltungsaufbau.
- 1 Zweikanal-Oszilloskop.

Inhaltsverzeichnis:

1. Versuch Hoch- und Tiefpass Filter

1.1 Schalt- und Leitungsplan	1
1.2 Steckbrettzeichnung	
1.3 Messwerttabelle	2
1.4 Amplitudengang Diagram	
1.5 Auswertung und Rechenweg	
1.6 Diagramm Amplitudengänge	
1.7 Auswertung	
2. Versuch Reihenschwingkreis	
2.1 Schaltplan und Steckbrettzeichnung	5
2.2 Messwerttabelle	
2.3 Diagramm	
2.4 Auswertung Diagramm	6
2.5 Rechenweg	
2.6 Messwerttabelle	
2.7 Diagramm	8

1. Versuch: Hoch- und Tiefpassfilter 1.1 Schalt- und Leitungsplan

1.1.1 Hochpassfilter:

Abbildung 1

1.1.2 Tiefpassfilter:

Abbildung 2

1.2 Steckbrettzeichnung:

1.3 Messwerttabelle:

Frequenz[Hz]	U₁[V]	U _c [V]	U _R [V]	$\frac{U_{\mathcal{C}}}{U_{1}}$ [V]	$\frac{U_R}{U_1}$ [V]
400	5,065	7,2	2,6	1,42152024	0,51332675
600	5,045	6,4	3,6	1,26858276	0,7135778
800	5,002	5,8	4	1,15953619	0,79968013
900	4,995	5,6	4,8	1,12112112	0,96096096
1000	4,982	5,4	4,8	1,08390205	0,96346849
1050	4,975	5,2	5	1,04522613	1,00502513
1100	4,971	5	5,2	1,00583384	1,04606719
1200	4,963	4,8	5,2	0,96715696	1,04775337
1400	4,947	4,4	5,6	0,88942794	1,13199919
1600	4,927	4	6	0,81185305	1,21777958
1800	4,925	3,8	6	0,7715736	1,21827411
2000	4,922	3,4	6,2	0,69077611	1,25965055
2500	4,989	3	6,6	0,60132291	1,3229104
3000	4,988	2,6	6,8	0,521251	1,36327185
4000	5	2	6,8	0,4	1,36
5000	5,005	1,6	6,8	0,31968032	1,35864136
6000	5,01	1,4	6,8	0,27944112	1,35728543
7000	5,014	1,2	6,8	0,23932988	1,35620263
8000	5,025	1	6,8	0,19900498	1,35323383
9000	5,037	1	6,8	0,19853087	1,35000993
10000	5,043	0,9	6,8	0,1784652	1,34840373
15000	5,049	0,7	6,8	0,13864132	1,34680135
20000	5,056	0,5	6,8	0,09889241	1,34493671
25000	5	0,4	6,8	0,08	1,36
50000	5,109	0,3	6,8	0,05871991	1,33098454

Tabelle 1

litudengang Hochpassfilter:

$$\frac{U_2}{U_1} = \frac{1}{\sqrt{1 + \left(\frac{1}{2 * \pi * f * R * C}\right)}}$$

1.4.2 Amplitudengang Tiefpassfilter:

$$\frac{U_2}{U_1} = \frac{1}{\sqrt{1 + (2 * \pi * f * R * C)^2}}$$

Diagramm 1

1.5 Auswertung und Rechenweg:

Das Diagramm stellt die Amplitudengänge des Hoch- und Tiefpassfilters dar, welche von der Frequenz abhängig sind. Die Filter blockieren Schwingungen die sich innerhalb der Grenzfrequenz f_g befinden. Bei einem Hochpass filter werden die niedrigeren Schwingungen gedämft, während ein Tiefpass filter nur höhere Frequenzen dämpft.

Die Grenzfrequenz kann durch folgende Formel berechnet werden:

$$Fg = \frac{1}{2 * \pi * R * C} = \frac{1}{2 * \pi * 1000\Omega * 150 * 10^{-9}F} = 1061 \, Hz$$

Frequenz [kHz]	0,4	0,6	1,0	0,9	1,0	1,1	1,2	1,4	2,0	3,0	5,0	10
Hochpass in [V]	0,4	0,5	1,0	0,6	0,7	0,7	0,8	0,8	0,9	0,9	1,0	1,0
Tiefpass in [V]	0,9	0,9	1,0	0,8	0,7	0,7	0,7	0,6	0,5	0,3	0,2	0,1

Tabelle 2

1.6 Diagramm Amplitudengänge:

1.7 Auswertung

Der Schnittpunkt der beiden Kennlinien befindet sich bei knapp über 1000 Hz, was mit den, durch die Formel berechneten, 1061 Hz übereinstimmt. Dies entsteht durch den Frequenzabhängigen Blindwiderstand, welcher bei der Grenzfrequenz genauso groß ist wie der reelle Widerstand. Die messung des Hoch- und Tiefpassfilters kann in einem Messdurchlauf gemacht werden, indem die Verläufe der beiden Kanäle am Oszilloskop wechselt.

2. Versuch Reihenschwingkreis:

2.1 Schaltplan und Steckbrettzeichnung:

2.2 Messwerttabelle:

Frequenz[KHz]	Uc[V]	UL [V]	U1 [V]	Iges[mA]
1	3	0,04	2,102	1,98
2	3,1	0,16	2,093	4,12
3	3,2	0,38	2,075	6,56
4	3,5	0,72	2,035	9,52
5	4	1,3	1,961	13,36
6	4,8	2	1,808	18,54
7	5,4	3,4	1,486	25,4
8	6	4,8	0,848	32,51
8,5	6	5,6	0,443	34,66
9	5,8	6	0,271	35
10	4,8	6	0,928	31,36
11	3,6	5,6	1,379	26,12
15	1,45	4	1,925	14,02
20	0,72	3,6	2,0103	0,72

Tabelle 3

2.3 Diagramm:

Diagramm 3

2.4 Auswertung Diagramm:

Im Diagramm ist zu sehen, dass bei 0 Hz kein Strom fließt, doch steigen mit zunehmender Frequenz Strom und Spannung, bis die Resonanzfrequenz erreicht wird. Ab erreichen der Resonanzfrequenz sinkt der Strom wiederum. Der Schnittpunkt der Kurve U_L und U_C markiert den Punkt, wo der Blindwiderstand gleich den Reellen Widerstand ist, also Z=R.

2.5 Rechenweg:

Gegeben :
$$C = 150 * 10^{-9} F$$

 $L = 2.2 * 10^{-3} H$
 $R = 50 \Omega$

- Resonanzfrequenz f_r :

$$f_r = (\frac{1}{2*\pi}) * \sqrt{\frac{1}{L*C}} = (\frac{1}{2*\pi})^* \sqrt{\frac{1}{(2.2*10^{-3}\,H\,*150*10^{-9}\,F)}}$$

$$f_r = 8761,191 \, Hz$$

$$W_r = 2 * \pi * f_r = 55048,186 \text{ Hz}$$

- Güte *0* :

$$Q = \frac{1}{2*W_{r}*C} = \frac{1}{2*50 \Omega*8761.191 Hz*150*10^{-9} F} = 2,42$$

- Dämpfung d:

$$d = \frac{1}{0} = \frac{1}{2,42} = 0,413$$

- Grenzfrequenzen f_1 und f_2 :

$$f_1 = \left(\frac{1}{2*\pi}\right) * \left(\sqrt{(2*\pi*f_r)^2 + \left(\frac{R}{2*L}\right)^2} - \frac{R}{2*L}\right)$$

$$= \left(\frac{1}{2*\pi}\right) * \left(\sqrt{(2*\pi*8761,191 Hz)^2 + \left(\frac{50 \Omega}{2*2,2*10^{-3}H}\right)^2} - \left(\frac{50 \Omega}{2*2,2*10^{-3}H}\right)$$

$$f_1 = 7137,33 Hz$$

$$f_2 = \left(\frac{1}{2 * \pi}\right) * \left(\sqrt{(2 * \pi * f_r)^2 + \left(\frac{R}{2 * L}\right)^2} + \frac{R}{2 * L}\right)$$

$$= \left(\frac{1}{2 * \pi}\right) * \left(\sqrt{(2 * \pi * 8761,191 \, Hz)^2 + \left(\frac{50 \, \Omega}{2 * 2,2 * 10^{-3} H}\right)^2} + \left(\frac{50 \, \Omega}{2 * 2,2 * 10^{-3} H}\right)$$

$$f_2 = 10754 \, 49 \, Hz$$

- Bandbreite b:

$$b = f_2 - f_1$$

= 10754,49 Hz - 7137,33 Hz
 $b = 3617,16$ Hz

- Scheinwiderstand Z:

$$Z = \sqrt{R^2 + (X_L - X_c)^2}$$

Wir müssen zuerst X_L und X_C berechnen:

$$X_L = 2 * \pi * f * L$$
 ; $X_C = \frac{1}{2 * \pi * f * C}$

Wir schreiben nun die Formel, die wir für die Tabelle benötigen:

7

$$U_L = I_{ges} * X_L \qquad ; \qquad \qquad U_C = I_{ges} * X_C *$$

$$I_{ges} = \frac{U_1}{Z}$$

2.6 Messwerttabelle

Frequenz[KHz]	$X_L[\Omega]$	$X_{\mathcal{C}}[\Omega]$	$Z[\Omega]$	$I_{ges}[mA]$	$U_c[V]$	$U_L[V]$
1	13,823	1061,033	1048,403	2,005	2,127	0,028
2	27,646	530,516	505,350	4,142	2,197	0,115
3	41,469	353,678	316,187	6,563	2,321	0,272
4	55,292	265,258	215,837	9,428	2,501	0,521
5	69,115	212,207	151,576	12,937	2,745	0,894
6	82,938	176,839	106,383	16,995	3,005	1,410
7	96,761	151,576	74,194	20,029	3,036	1,938
8	110,584	132,629	54,644	15,519	2,058	1,716
8,5	117,496	124,827	50,535	8,766	1,094	1,030
9	124,407	117,893	50,423	5,375	0,634	0,669
10	138,230	106,103	59,432	15,615	1,657	2,158
11	152,053	96,458	74,772	18,443	1,779	2,804
15	207,345	70,736	145,472	13,233	0,936	2,744
20	276,460	53,052	228,935	8,781	0,466	2,428

Tabelle 4

2.7 Diagramm

Diagramm 4