CPEG 472/672 — Applied Cryptography

April 28, 2020

Handout A

Instructor: Nektarios Tsoutsos

1 Basic Divisibility

We denote a set of integers with \mathbb{Z} . If $a,b,q,r\in\mathbb{Z}$, the Euclidean division Theorem states that:

$$a = q \cdot b + r \text{ so that } 0 \le r < b. \tag{1}$$

In this case, we write $a = r \mod q$.

For $a, b, q \in \mathbb{Z}$, we say a divides b and write a|b if there exists integer q so that $a \cdot q = b$. If $a, b, c, X, Y \in \mathbb{Z}$ so that a|b and a|c, then a|(Xb+Yc) for any X, Y. If $a, b \in \mathbb{Z}$ and a|b so that $a \neq 1$ and $a \neq b$, then a is called a non-trivial factor of b.

Prime numbers: An integer p > 1 is called a *prime number* if it does not have non-trivial factors. Note, the first prime number is 2.

Modular arithmetic: If $a, b, N \in \mathbb{Z}$ we say that a, b are congruent modulo N if the remainder $(a \mod N)$ equals the remainder $(b \mod N)$. That is, a, b are congruent modulo N when:

$$a = q_a \cdot N + r, \quad b = q_b \cdot N + r. \tag{2}$$

If a is congruent to b modulo N, we write $a \equiv b \mod N$.

Multiplicative inverse mod N: If $b, N \in \mathbb{Z}$, we define the multiplicative inverse of b the value b^{-1} so that $b \cdot b^{-1} = 1 \mod N$.

2 The Fundamental Theorem of Arithmetic

The fundamental theorem of arithmetic states that every integer greater than 1 can be expressed in *exactly one way* (apart from rearrangement) as a product of one or more primes. This is also known as the *unique factorization theorem*.

Greatest Common Divisor (GCD): If $a, b \in \mathbb{Z}$ so that $a \geq 0$ and $b \geq 0$ but not both a, b = 0 at the same time, then GCD(a, b) equals the largest integer c so that c|a and c|b. **Remarks:** If p is prime, GCD(a, p) equals either 1 or p. If $a, b \in \mathbb{Z}$ and GCD(a, b) = 1, then a, b are relatively prime (or co-prime or mutually prime). If $a, b, c \in \mathbb{Z}$ with GCD(a, b) = 1 and a|c as well as b|c, then ab|c. If $a, N \in \mathbb{Z}$ with N > 1, then a has a modular multiplicative inverse if and only if GCD(a, N) = 1. The GCD can be efficiently computed using the Euclidean Algorithm.

Extended Euclidean Algorithm: If $a, b \in \mathbb{Z}$ and a, b > 0, then there exist $X, Y \in \mathbb{Z}$ so that $GCD(a, b) = X \cdot a + Y \cdot b$. The value of X, Y and GCD(a, b) can be efficiently computed using the *Extended Euclidean Algorithm*.

3 Basic Group Theory

A $Group \ \mathbb{G}$ is a set of numbers along with a mathematical operation \diamond that has the following properties:

- 1. Closure: For any a, b in the group, then $a \diamond b$ is also in the group.
- 2. Associativity: For any a, b, c in the group, then $(a \diamond b) \diamond c = a \diamond (b \diamond c)$.
- 3. Existence of unique identity: The group as a unique element e so that $e \diamond a = a \diamond e = a$ for any a in the group.
- 4. Existence of inverse for each element: For any a in the group, there is always a unique element b in the group so that $a \circ b = e$.

A Group \mathbb{G} is called an *Abelian* group if it also *commutative*, so that $a \diamond b = b \diamond a$. When the group operation is *additive* then \diamond resembles addition (+), while when the group operation is *multiplicative* then \diamond resembles multiplication (·). In a multiplicative group, we can write $g^b = g \cdot g \cdot \ldots \cdot g$, to indicate that g is multiplied b times.

Example: The set of integers is an Abelian Group under addition. However, the set of integers is not a group under multiplication as many integers do not have a multiplicative inverse (such as integer 2).

Order of a group: The order of a Group \mathbb{G} , denoted as $|\mathbb{G}|$, is the number of its elements (i.e., its *cardinality*).

3.1 Finite Groups

If \mathbb{G} is group and n = |G| is the order of the group, we say that \mathbb{G} is a *finite group* if it contains a finite number of elements. In this case, for any element $g \in \mathbb{G}$, we have $g^n = 1$.

If \mathbb{G} is a finite group and n = |G| > 1 is the order of the group, then for any element $g \in \mathbb{G}$ and integer i, we have $g^i = g^{i \mod n}$.

The Group \mathbb{Z}_N : If $N \in \mathbb{Z}$ and N > 1, then we define as \mathbb{Z}_N the *additive* Abelian group of order N, comprising the integers $\{0, 1, \ldots, N-1\}$. The group operation is *addition modulo* N.

The Group \mathbb{Z}_N^* : If $N \in \mathbb{Z}$ and N > 1, then \mathbb{Z}_N^* is an Abelian group under multiplication modulo N and it is defined as:

$$\mathbb{Z}_N^* = \{ a, \text{ so that } 0 < a < N \text{ and } GCD(a, N) = 1 \}$$

$$\tag{3}$$

That is, \mathbb{Z}_N^* is the group of integers less than N that are invertible with respect to multiplication. Invertibility is guaranteed for an integer a if and only if GCD(a, N) = 1. Note, not every integer less than N is invertible. In \mathbb{Z}_N^* the identity element is integer 1.

Euler's totient function $\varphi()$: Every integer N is either prime or can be factorized to a set of primes and prime powers. If $N \in \mathbb{Z}$ then N is factorized as:

$$N = \prod_{i} p_i^{e_i},\tag{4}$$

where p_i are distinct prime numbers raised to power $e_i > 0$, and \prod_i denotes multiplication of i prime powers. Then, in the general case where we have prime powers (i.e., $e_i > 1$ for some i), Euler's totient function of N is denoted as $\varphi(N)$ and equals:

$$\varphi(N) = \prod_{i} p_i^{e_i - 1} \cdot (p_i - 1). \tag{5}$$

If we do not have prime powers in the factorization of N (i.e., when $e_i = 1$ for every prime p_i), then $\varphi(N)$ equals:

$$\varphi(N) = \prod_{i} (p_i - 1). \tag{6}$$

Example: If $N = 15 = 3 \cdot 5$ then $\varphi(N) = (3 - 1) \cdot (5 - 1) = 8$. Also, if p is a prime, $\varphi(p) = p - 1$.

The order of \mathbb{Z}_N^* : The order of the group \mathbb{Z}_N^* is $|\mathbb{Z}_N^*| = \varphi(N)$.

3.2 Euler's Theorem

For any $N > 1 \in \mathbb{Z}$ and $a \in \mathbb{Z}_N^*$ it holds that:

$$a^{\varphi(N)} = 1 \mod N$$
 (Euler's Theorem). (7)

Note, since $a \in \mathbb{Z}_N^*$, then a, N must be comprime (i.e., GCD(a, N) = 1).

Fermat's Little Theorem: If p is a prime integer and $a > 0 \in \mathbb{Z}_p$ then it holds that:

$$a^{p-1} = 1 \bmod p. \tag{8}$$

4 Cyclic Groups

If \mathbb{G} is a finite group of order $m = |\mathbb{G}|$ and $g \in \mathbb{G}$ then $g^m = 1$. That is, any element of \mathbb{G} multiplied m times, where m is the order of the group, equals 1.

If $i \in \mathbb{Z}$ with $0 < i \le m$, and if i is the smallest integer so that $g^i = 1$, then g can generate exactly i elements of \mathbb{G} (i.e., g defines a subgroup of \mathbb{G}). The integer i is called the order of group element g. Specifically, if \mathbb{G} is a finite group and $g \in \mathbb{G}$ is a group element, the order of g is the smallest integer $i > 0 \in \mathbb{Z}$ so that $g^i = 1$. Note, the order of the group element g is not necessarily the same as the order of the group \mathbb{G} .

If \mathbb{G} is a finite group of order $m = |\mathbb{G}|$, and $g \in \mathbb{G}$ has order i, then i|m.

Group Generators: If \mathbb{G} is a finite group and there exists an element $g \in \mathbb{G}$ so that the order of g equals $m = |\mathbb{G}|$ (i.e., the order of g equals the order of \mathbb{G}), then \mathbb{G} is a cyclic group and g is a generator of \mathbb{G} . Specifically, the set of all possible values g^a for $a \in \{0, 1, 2, \ldots, m-1\}$ is exactly the set of all m elements of \mathbb{G} .

If \mathbb{G} is a *cyclic group* with order $m = |\mathbb{G}|$ then for each integer d > 0 that divides m there is exactly one subgroup of \mathbb{G} of order d that has exactly $\varphi(d)$ different generators; each generator of the subgroup has order d.

If the order of \mathbb{G} is a prime number p, then \mathbb{G} is a *cyclic group*. In this case, every element of \mathbb{G} , except its identity element e, is a generator of \mathbb{G} .

If p is a prime number, then the group \mathbb{Z}_p^* is cyclic. In this case, the order of the group is $|\mathbb{Z}_p^*| = p - 1$.