Demand Forecasting

Using ARIMA/SARIMAX Time Series Models

GAREGIN MANVELYAN

PROJECT EXECUTION STEPS

Business Value

[Preventing Overstocking & Stockouts]

The Aim is to Develop an Improved Demand Forecast Model for Inventory Optimization and 10% Cost Savings.

DATASET SELECTION

Data Gathering

[Kaggle online platform]

The "Forecasts for Product Demand" dataset contains historical product demand for a global manufacturing company with thousands of products across various categories.

Records :	1 048 575
Time Period :	5 years / 60 months
Unique Products:	2 160
Warehouses:	4
Product Categories:	33

Dataset was downloaded from kaggle online platform

Null Values: 11 239removed
Data Types: 2converted
Single Negative Values: 26removed
Negative/Positive Pairs:11 746removed
Rows after cleaning: 997 700

Preprocessing

[<mark>EDA</mark>]

Busiest warehouse: "J" (76%)

Most used product category: "#19" (43%)

Preprocessing

mean

variance

Preprocessing

[reshaping]

Pivoting Data for Product-Level Analysis*

Product_Code	Warehouse	Category	Date	Demand
Product_0965	Whse_A	Category_006	2011-11-18	1
Product_0504	Whse_J	Category_015	2011-12-05	1
Product_2165	Whse_C	Category_024	2011-12-06	1
Product_1699	Whse_J	Category_026	2011-12-07	1
Product_1680	Whse_S	Category_021	2011-12-09	1
Product_0965	Whse_A	Category_006	2011-12-16	1
Product_1757	Whse_J	Category_001	2011-12-20	1
Product_0609	Whse_J	Category_001	2011-12-20	1
Product_0620	Whse_J	Category_001	2011-12-20	1
Product_0620	Whse_J	Category_001	2011-12-21	1
Product_0258	Whse_J	Category_001	2011-12-21	1
Droduct 0260	Whee I	Cotogony 001	2011 12 21	4

Date	Product_1359 Whse_J	Product_1360 Whse_J	Product_1367 Whse_J	Product_1368 Whse_J
2012-01-31	8910000	1178000	11300	3300
2012-02-29	8061000	1162000	7300	5500
2012-03-31	7625000	1222000	13100	6100
2012-04-30	8850000	864000	12200	5800
2012-05-31	8475000	937000	6700	2100
2012-06-30	6531000	1113000	11500	4500
2012-07-31	7406000	1021000	11400	4800
2012-08-31	6667000	827000	8200	5500
2012-09-30	7349000	957000	9300	10200
2012-10-31	7668000	780000	11500	5600
2012-11-30	7843000	1319000	13900	1800
2012-12-31	8102000	920000	12800	2200
2013-01-31	9455000	885000	13800	1500

Preprocessing

[<mark>splitting</mark>]

Split Data to Stationary and Non-Stationary Datasets*

ARIMA time series model

[pdq -hyperparameters]

p=2

q=5

p,d,q hyperparameters (explanation)

p (AutoRegressive order): quantifies how many past time steps are used to predict the current value

Description	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Product_1359 Actual	150	100	25	15	20	54	220	260	300	

q (Moving Average order): quantifies how many past forecast errors are used to predict the current value

Description	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Product_1359 Actual	150	100	25	15	20	54	220	260	300
Product_1359 Predicted	125	110	30	14	21	52	240	280	370
Forecast Error	25	-10	-5	1	-1	2	-20	-20	-70

d (Integration order): represents the number of differences needed to make the series stationary

Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
150	100	25	15	20	54	220	260	300		
100	25	15	20	54	220	260	300	<==	1 step left ←	d=1
50	75	10	-5	-34	-166	-40	-40			
	150 100	150 100 100 25	150 100 25 100 25 15	150 100 25 15 100 25 15 20	150 100 25 15 20 100 25 15 20 54	150 100 25 15 20 54 100 25 15 20 54 220	150 100 25 15 20 54 220 100 25 15 20 54 220 260	150 100 25 15 20 54 220 260 100 25 15 20 54 220 260 300	150 100 25 15 20 54 220 260 300 100 25 15 20 54 220 260 300 <==	150 100 25 15 20 54 220 260 300 100 25 15 20 54 220 260 300 <== 1 step left ←

ARIMA time series model

[pdq -hyperparameters]

Get optimal p,d,q hyperparameters for all products in stationary data

ARIMA time series model

[pdq -hyperparameters]

Initializing ARIMA model to Forecast Demand for Specified PDQ and Error<10%

2017-04-01

2017-04-01

SARIMAX time series model

[pdq -hyperparameters]

Get optimal p,d,q hyperparameters for all products in NON-stationary data

Code Flowcharts

SARIMAX time series model

[pdq -hyperparameters]

Initializing SARIMAX model to Forecast Demand for Specified PDQSand Error<10%

Results / Challenges

- 1) Arima and Sarimax models demonstrate positive performance and can provide a 10% improvement in forecast accuracy compared to a simple naive forecast.
- 2) Despite positive performance, the models gave accurate results for only 30% of the products.
- 3) Hyperparameters tuning required big amount of time.

 ARIMA [580 items]: Flansed time: 5 hours

ARIMA [580 items]: Elapsed time: 5 hours

SARIMAX [180 items]: Elapsed time: 57 hours

Future Goals

Implementation of Models on the Provided Time Series Dataset

- 1) Random Forest Model
- 2) XGBoost Model
- 3) Multivariate Time Series Analysis

Thank you!

Garegin Manvelyan