CS188 Fall 2017 Section 10: HMMs and Naive Bayes

1 HMMs

Consider the following Hidden Markov Model.

W_1	W_1
.3	0
.7	1
-	1

W_t	W_{t+1}	$P(W_{t+1} W_t)$
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

W_t	O_t	$P(O_t W_t)$
0	A	0.9
0	В	0.1
1	Α	0.5
1	В	0.5

Suppose that we observe $O_1 = A$ and $O_2 = B$. Using the forward algorithm, compute the probability distribution $P(W_2|O_1 = A, O_2 = B)$ one step at a time.

1. Compute $P(W_1, O_1 = A)$.

$$P(W_1, O_1 = A) = P(W_1)P(O_1 = A|W_1)$$

 $P(W_1 = 0, O_1 = A) = (0.3)(0.9) = 0.27$
 $P(W_1 = 1, O_1 = A) = (0.7)(0.5) = 0.35$

2. Using the previous calculation, compute $P(W_2, O_1 = A)$.

$$\begin{array}{l} P(W_2,O_1=A) = \sum_{x_1} P(x_1,O_1=A) P(W_2|x_1) \\ P(W_2=0,O_1=A) = (0.27)(0.4) + (0.35)(0.8) = 0.388 \\ P(W_2=1,O_1=A) = (0.27)(0.6) + (0.35)(0.2) = 0.232 \end{array}$$

3. Using the previous calculation, compute $P(W_2, O_1 = A, O_2 = B)$.

$$P(W_2, O_1 = A, O_2 = B) = P(W_2, O_1 = A)P(O_2 = B|W_2)$$

 $P(W_2 = 0, O_1 = A, O_2 = B) = (0.388)(0.1) = 0.0388$
 $P(W_2 = 1, O_1 = A, O_2 = B) = (0.232)(0.5) = 0.116$

4. Finally, compute $P(W_2|O_1 = A, O_2 = B)$.

Renormalizing the distribution above, we have $P(W_2=0|O_1=A,O_2=B)=0.0388/(0.0388+0.116)\approx 0.25\\ P(W_2=1|O_1=A,O_2=B)=0.116/(0.0388+0.116)\approx 0.75$

1

Let's use Particle Filtering to estimate the distribution of $P(W_2|O_1=A,O_2=B)$. Here's the HMM again:

$P(W_1)$
0.3
0.7

W_t	W_{t+1}	$P(W_{t+1} W_t)$
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

W_t	O_t	$P(O_t W_t)$
0	Α	0.9
0	В	0.1
1	Α	0.5
1	В	0.5

We start with two particles representing our distribution for W_1 .

 $P_1: W_1 = 0$ $P_2: W_1 = 1$

Use the following random numbers to run particle filtering:

$$[0.22, 0.05, 0.33, 0.20, 0.84, 0.54, 0.79, 0.66, 0.14, 0.96]$$

1. **Observe**: Compute the weight of the two particles after evidence $O_1 = A$.

$$w(P_1) = P(O_t = A|W_t = 0) = 0.9$$

 $w(P_2) = P(O_t = A|W_t = 1) = 0.5$

2. **Resample**: Using the random numbers, resample P_1 and P_2 based on the weights.

We now sample from the weighted distribution we found above. After normalizing the weights, we find that P_1 maps to range [0, 0.643), and P_2 maps to range [0.643, 1). Using the first two random samples, we find:

 $P_1 = sample(weights, 0.22) = 0$ $P_2 = sample(weights, 0.05) = 0$

3. Elapse Time: Now let's compute the elapse time particle update. Sample P_1 and P_2 from applying the time update.

$$\begin{split} P_1 &= sample(P(W_{t+1}|W_t = 0), 0.33) = 0 \\ P_2 &= sample(P(W_{t+1}|W_t = 0), 0.20) = 0 \end{split}$$

4. **Observe**: Compute the weight of the two particles after evidence $O_2 = B$.

 $w(P_1) = P(O_t = B|W_t = 0) = 0.1$ $w(P_2) = P(O_t = B|W_t = 0) = 0.1$

5. **Resample**: Using the random numbers, resample P_1 and P_2 based on the weights.

Because both of our particles have X=0, resampling will still leave us with two particles with X=0. $P_1=0$ $P_2=0$

2

6. What is our estimated distribution for $P(W_2|O_1 = A, O_2 = B)$?

$$P(W_2 = 0|O_1 = A, O_2 = B) = 2/2 = 1$$

 $P(W_2 = 1|O_1 = A, O_2 = B) = 0/2 = 0$

2 Naive Bayes

In this question, we will train a Naive Bayes classifier to predict class labels Y as a function of input features A and B. Y, A, and B are all binary variables, with domains 0 and 1. We are given 10 training points from which we will estimate our distribution.

A	1	1	1	1	0	1	0	1	1	1
B	1	0	0	1	1	1	1	0	1	1
Y	1	1	0	0	0	1	1	0	0	0

1. What are the maximum likelihood estimates for the tables P(Y), P(A|Y), and P(B|Y)?

Y	P(Y)
0	3/5
1	2/5

A	Y	P(A Y)
0	0	1/6
1	0	5/6
0	1	1/4
1	1	3/4

В	Y	P(B Y)
0	0	1/3
1	0	2/3
0	1	1/4
1	1	3/4

2. Consider a new data point (A = 1, B = 1). What label would this classifier assign to this sample?

$$P(Y = 0, A = 1, B = 1) = P(Y = 0)P(A = 1|Y = 0)P(B = 1|Y = 0)$$
(1)

$$= (3/5)(5/6)(2/3) \tag{2}$$

$$=1/3\tag{3}$$

$$P(Y = 1, A = 1, B = 1) = P(Y = 1)P(A = 1|Y = 1)P(B = 1|Y = 1)$$
(4)

$$= (2/5)(3/4)(3/4) \tag{5}$$

$$=9/40\tag{6}$$

(7)

Our classifier will predict label 0.

3. Let's use Laplace Smoothing to smooth out our distribution. Compute the new distribution for P(A|Y) given Laplace Smoothing with k=2.

A	Y	P(A Y)
0	0	3/10
1	0	7/10
0	1	3/8
1	1	5/8