Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа Р3207 К работе допущен

Студент Путинцев Д. Д Работа выполнена 15.04.2025

Преподаватель Терещенко Г.В Отчет принят

Рабочий протокол и отчет по лабораторной работе №3.07

Изучение свойств ферромагнетика

Цель работы

Изучение свойств ферромагнетика

Задачи, решаемые при выполнении работы

- 1. Измерение зависимости магнитной индукции в ферромагнетике от напряженности магнитного поля B = B(H)
- 2. Определение по предельной петле гистерезиса индукции насыщения, остаточной индукции и коэрцитивной силы
- 3. Получение зависимости магнитной проницаемости от напряженности магнитного поля $\mu = \mu(H)$ и оценка максимального значения величины магнитной проницаемости
- 4. Расчет мощности потерь энергии в ферромагнетике в процессе его перемагничивания

Объект исследования

Ферромагнетик

Метод экспериментального исследования

Изменение напряженности магнитного поля

Рабочие формулы и исходные данные

Коэффициент α : $a = \frac{N_1}{lR_1}$

Коэффициент β : $\beta = \frac{R_2C_1}{N_2S}$

Магнитная проницаемость μ : $\mu = \frac{B_{\scriptscriptstyle m}}{\mu_{\scriptscriptstyle 0} H_{\scriptscriptstyle m}}$

Коэффициент X: $X = K_x K_y \frac{N_1 R_2 C_1}{N_2 R_1} f$

Остаточная индукция В: $B = \beta K_y Y$ Коэрцитивная сила Н: $H = a K_y X$

Средняя мощность P, расходуемая на перемагничивание образца: $P = x S_{nz}$

Измерительные приборы

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Цифровой запоминающий осциллограф	-	-	-

Схема установки

- Генератор сигналов АКИП-3409/2
- 2. Стенд с образцом
- Цифровой запоминающий осциллограф (ЦЗО)

Принципиальная схема установки

В лабораторной работе в качестве образца для изучения магнитных свойств ферромагнитного материала выбран сердечник (магнитопровод) трансформатора, размещенного на лабораторном стенде.

Объект измерений имеет прямоугольную форму с прямоугольным же поперечным сечением.

Параметры установки

R_1	68 Om
R ₂	470 кОм
C ₁	0,47 мкФ

Параметры трансформатора

S	$0,64 \text{ cm}^2$		
L	7,8 см		
N_1	1665 вит		
N_2	970 вит		

Результаты прямых измерений и их обработки

Таблица 1

Х₀, дел.	Y _{r,} дел.	H _c , <i>A</i> / <i>M</i>	Вг, Тл
-1.04	0.66	-32.6	0.23

$$a = \frac{N_1}{lR_1} = \frac{1665}{7.8 * 10^{-2} * 68} = 313.91 \frac{1}{M * OM}$$

$$\beta = \frac{R_2 C_1}{N_2 S} = \frac{470 * 10^3 * 0.47 * 10^{-6}}{970 * 6.4 * 10^{-5}} = 3.558$$

Определим коэрцитивную силу H_c: $H = a\,K_x\,X = 313.91*0.1*-1.04 = -32.6\,A/\,M$

Определим остаточную индукицию B_r : $B = \beta K_y Y = 3.558 * 0.1 * 0.66 = 0.23 Тл$

Таблица 2

Х _{т.} ∂ел.	Ү _{т,} ∂ел.	H _{m,} <i>A/M</i>	В _{т,} Тл	μ_{m}
8.12	1.04	279.77	0.37	1052

Определим коэрцитивную силу H_c : $H = a K_x X = 319.91 * 0.1 * 8.12 = 259.03 A/M$

Определим остаточную индукицию B_r : $B = \beta K_y Y = 3.558 * 0.1 * 1.04 = 0.37 Tл$

$$\mu_0 = 4 * pi * 10^{-7}$$
 Гн/ м

$$\mu = \frac{B_m}{\mu_0 H_m}$$

Расчет коэффициента Х:

$$X = \frac{K_x * K_y * N_1 R_2 C_1}{N_2 R_1} f = \frac{0.05 * 0.1 * 1665 * 470000 * 0.47 * 10^{-6}}{970 * 68} * 30 = 0.000836 \, \mu / c$$

Расчет средней мощности Р, расходуемый на перемагничивание образца: 6 мВт

Таблица 3: Результаты прямых измерений и расчетов

U, B	Х, дел.	$K_{x}, \frac{B}{\partial e \pi}$	Н, А/м	Ү, дел.	$K_{y,} \frac{B}{\partial e \pi}$	В, Тл	μ
19	2.00	100	63.98	1.04	50	0.185	2301
18	1.88	100	60.14	0.98	50	0.174	2302
17	1.76	100	56.30	0.92	50	0.164	2318
16	1.60	100	51.19	0.84	50	0.149	2316
15	3.04	50	48.62	0.78	50	0.139	2275
14	2.96	50	47.35	0.72	50	0.128	2152
13	2.8	50	44.79	0.70	50	0.125	2221
12	2.6	50	41.59	0.64	50	0.114	2181
11	2.52	50	40.31	0.58	50	0.103	2033
10	2.4	50	38.39	1.35	20	0.096	1990
9	2.24	50	35.83	1.05	20	0.075	1666
8	2	50	32	1.03	20	0.073	1815
7	1.84	50	29.43	1	20	0.071	1920
6	1.8	50	28.79	0.83	20	0.059	1631
5	1.56	50	24.95	0.68	20	0.048	1531

Графики

Рисунок 1: Кривая начального намагничивания

Рисунок 2: График зависимости магнитной проницаемости

Окончательные результаты

Коэрцитивная сила: $H_{\text{m:}}$ 279.77 A/M Остаточная индукция: $B_{\text{m:}}$ 0.23 $T_{\text{л}}$ Магнитная проницаемость: $\mu = 1052$

Мощность потерь на перемагничивание: Р: 6 мВт

Максимальное значение магнитной проницаемости μ_{max} = 2318 $\Gamma_{\text{H/M}}$

Выводы и анализ результатов работы

В ходе выполнения данной лабораторной работы были определены основные магнитные характеристики материала, такие как коэрцитивная сила, остаточная индукция и магнитная проницаемость. Построены графики зависимостей индукции от напряженности магнитного поля Bm=Bm(Hm) и магнитной проницаемости от напряженности поля μ = μ (Hm). Также рассчитаны мощность потерь на перемагничивание и максимальное значение проницаемости. Полученные результаты подтверждают успешное изучение свойств ферромагнетика и позволяют сделать выводы о его поведении в магнитном поле.