МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ) Факультет проблем физики и энергетики

«Дозиметр радиации на Arduino» Работа студента 3-его курса, 484 группы Райковского Максима Игоревича

Содержание

1	Вве	дение	3	
2	Прі	инцип работы газоразрядного счётчика Гейгера	4	
3	Устройство и принцип работы дозиметра.			
	3.1	Микроконтроллер	5	
		3.1.1 Общие сведения	5	
		3.1.2 Питание	5	
	3.2	Газовая трубка СТС-6	5	
		3.2.1 Краткое описание	5	
		3.2.2 Характеристики:	6	
	3.3	Трансформатор	7	
	3.4	Схема	7	
	3.5	Скетч и программное обеспечение	8	
		3.5.1 Основные части скетча	8	
	3.6	Вывод данных	9	
4	Зак	лючение	11	

1 Введение

Дозиметр — это устройство, которое применяется для измерения мощности дозы имеющегося ионизирующего излучения. Порой «дозиметром» называют радиометр.

Существует несколько типов дозиметров, а именно: состоящие из газоразрядного счётчика Гейгера-Мюллера, цилиндрического для регистрации гамма-излучения или торцевого счётчика с тонким входным окном – для регистрации бета и гамма-излучения или на Сцинтилляционной Камере.

2 Принцип работы газоразрядного счётчика Гейгера

Принцип работы счетчиков Гейгера основан на эффекте ударной ионизации газовой среды под действием радиоактивных частиц или квантов электромагнитных колебаний в межэлектродном пространстве при высоком ускоряющем напряжении.

Устройство состоит из герметичного металлического или стеклянного баллона, наполненного инертным газом (неон, аргон) или газовой смесью. Внутри баллона имеются электроды — катод и анод. Для облегчения возникновения электрического разряда в газовом баллоне создается пониженное давление. Электроды подключаются к источнику высокого напряжения постоянного тока через нагрузочный резистор, на котором формируются электрические импульсы при регистрации радиоактивных частип.

В исходном состоянии газовый промежуток между электродами имеет высокое сопротивление и тока в цепи нет. Когда заряженная частица, имеющая высокую энергию, сталкивается с элементами конструкции датчика (корпус, баллон, катод), она выбивает некоторое количество электронов, которые оказываются в промежутке между электродами. Под действием ускоряющего напряжения в несколько сотен вольт электроны, находящиеся в инертном газе, начинают устремляться к аноду. На этом пути они легко ионизируют молекулы газа, выбивая вторичные электроны. Процесс многократно повторяется и количество электронов лавинообразно увеличивается, что приводит к возникновению разряда между катодом и анодом. В состоянии разряда газовый промежуток в межэлектродном пространстве становится токопроводящим, что обуславливает скачок тока в нагрузочном резисторе.

3 Устройство и принцип работы дозиметра.

3.1 Микроконтроллер.

3.1.1 Общие сведения

Сердцем дозиметра является микроконтроллер Arduino Nano. Данная платформа, построенна на микроконтроллере ATmega328 (Arduino Nano 3.0) или ATmega168 (Arduino Nano 2.x), имеет небольшие размеры и может использоваться в лабораторных работах.

3.1.2 Питание

Arduino Nano может получать питание через подключение Mini-B USB, или от нерегулируемого 6-20 В (вывод 30), или регулируемого 5 В (вывод 27), внешнего источника питания. Автоматически выбирается источник с самым высоким напряжением.

3.2 Газовая трубка СТС-6

3.2.1 Краткое описание

В работе используется счетчик Гейгера-Мюллера типа СТС-6. Он считает β и γ частицы и относится к самогасящимся счетчикам. Он представляет собой цилиндр из нержавеющей стали с ребрами прочности для

прочности. Счетчик заполнен смесью паров неона и брома. Бром гасит разряд. По оси трубки натянута тонкая проволока, а коаксиально с ней расположен металлический цилиндр. И трубка и проволока являются электродами: трубка — катод, а проволока — анод. К катоду подключают минус от источника постоянного напряжения, а к аноду — через очень большое постоянное сопротивление — плюс от источника постоянного напряжения.

3.2.2 Характеристики:

- Напряжение начала счета. 285-335 В
- Рекомендуемое рабочие напряжение. . . . 360-440 В
- Наибольшийй натуральный фон. 110 имп. в мин.

3.3 Трансформатор

T1 E26 M2000HM1 II-420 I-4

Схема построена на преобразователе напряжения с использованием трансформатора на броневом сердечнике типоразмера Б26 из феррита М2000НМ1. Сначала накручиалась II обмотка 420 витков диаметром 0.15 мм. Поверх нее моталась I обмотка 4 витка диаметром 0.3 мм. Межобмоточная изоляция состоит из нескольких слоев фторопластовой ленты.

3.4 Схема

- 1. С1 электролитический конденсатор
- 2. С2 конденсатор
- 3. С3 конденсатор
- 4. R1 резистор с сопротивлением 10МОм
- 5. R2 резистор с сопротивлением 10кОм
- 6. R3 резистор с сопротивлением 150Ом
- 7. VT1 биполярный транзистор
- 8. VT2 биполярный транзистор
- 9. VD1 кремниевый диод
- 10. VD2 кремниевый диод
- 11. VD3 кремниевый диод

Счетчик управляется с микроконтроллера Arduino Uno. Переменное напряжение на первой обмотке создается за счет импульсного напряжения, приходящего с порта 3 на резистор R3. На порт 2 поступает сингнал с счётного каскада. И уже на самом контроллере происходит обработка полученных сигналов.

3.5 Скетч и программное обеспечение

Cкетч - программа написанная на C++ подобном языке, которую выполняет микроконтроллер.

Данный скетч был написан и загружен на плату с помощью бесплатной среды программирования ArduinoIDE, специально созданной для программирования плат типа Arduino.

3.5.1 Основные части скетча

Основными частями скетча являются 3 функции:

1) impuls() - отвечает за подачу импульсов на пин 3.

```
// функция подающая импульсы
void impuls(void)
{
   digitalWrite(3, HIGH);
   _delay_ms(5);
   digitalWrite(3, LOW);
   _delay_ms(5);
}
```

2) schetchik() - отвечает за снятие значений напряжения с СТС-6 каждые 0.5 секунд.

```
// функция подсчета импульсов void schetchik(void) {
  long int iz = 0;
  for (int jk = GEIGER_TIME - 2; jk > 0 ; jk--) rad_mass[jk] = rad_mass[jk + 1];
  rad_mass[0] = 0;
  rad_mass[0] = analogRead(2); // присвивание нулевому элементу массива значения impuls();
}
```

3) Timer1_action() - суммирует значения снятые за минуту и получает текущий фон.

```
void Timer1_action(void)
{
  rad_now = 0;
  for (int i = 0; i <= GEIGER_TIME - 1; i++) rad_now += rad_mass[i];
  rad_now = rad_now/GEIGER_TIME;
}</pre>
```

3.6 Вывод данных

В программе прописано два способа вывести полученный уровень фона:

- 1. LCD экран
- 2. СОМ порт

Так как с первым способом (LCD экран) все понятно, то второй надо пояснить.

В среде программирование ArduinoIDE, о которой говорилось ранее, есть возможность считывать показания прикодящие по USB кабелю на компьютер. Для этого нужно пройти в:

Инструменты \rightarrow Монитор порта

после чего откроется окно как показано на рисунке.

4 Заключение

Преимущество и удобство платформы при прототипировании реальных устройств заключаются в наличии наработанной базы готовых библиотек для подключения устройств и использования аппаратных возможностей, например таймер, большого количеста примеров и совместимости со многими модулями. Единственный минус, платформы данного типа имеют высокую цену при прочих равных характеристиках.

Дозиметр не был испытан в условиях повышенного радиационного фона. Поэтому поведение оного в этих условиях сейчас не известно.