Supplier Quality Analysis Report

1-Solution Approach Report

Introduction: This report provides a comprehensive overview of the methodology used to analyze defect data using Power BI. The approach focuses on identifying key patterns, deriving insights, and improving vendor performance based on defect rates.

Objective: The primary objective of this analysis is to understand the distribution of defects, identify high-risk vendors, and enhance supply chain efficiency by mitigating defect occurrences.

Methodology:

- Data was collected from multiple sources including supplier records, defect logs, and operational reports.
- Data preprocessing was performed to clean and structure the dataset for analysis.
- Power BI was utilized to create an interactive dashboard that visualizes key insights, such as total defects, vendor performance, and defect trends over time.
- DAX calculations were implemented to derive KPIs such as defect rate percentage, average defects per order, and vendor-specific defect impact.

Findings & Insights:

- Total defects recorded: 55M
- The highest defect rate was attributed to the vendor "Solholdings."
- Mechanical and packaging materials accounted for the majority of defects.
- Downtime due to defects varied significantly across plants, with Detroit, MI reporting the highest.
- Key vendors contributing to high defect rates include Bolholdings and Plutax.

Recommendations:

- Implement stricter quality control measures for high-risk vendors.
- Introduce supplier performance monitoring through monthly audits.
- Optimize procurement strategies to reduce dependency on high-defect vendors.

2. Data Cleaning Report

Objective: To ensure that the dataset used for analysis is accurate, consistent, and structured properly for Power BI visualization.

Data Cleaning Steps:

1. Standardization:

- Unified date formats (YYYY-MM-DD).
- Normalized vendor names to maintain consistency.

2. Duplicate Removal:

o Identified and eliminated duplicate defect entries to prevent overestimation.

3. Data Type Correction:

- Converted numerical columns from string to integer/float.
- Ensured defect rates were correctly formatted as percentages.

4. Outlier Detection & Treatment:

- Identified extreme defect counts per order using statistical thresholds.
- Capped excessive values to maintain data integrity.

Outcome:

- The cleaned dataset was validated and uploaded to Power BI for further analysis.
- Ensured accuracy in KPI calculations and visualizations.

3. Power BI Data Model

Data Sources:

- Fact Defect Report (Contains defect-related transactions)
- Vendor_Master (Details about suppliers)
- Plant_Locations (Geographical data of production sites)

Key Measures Created in DAX:

- Total Defects: SUM(Fact_Defect_Report[Defect Qty])
- Average Defects per Order: AVERAGE(Fact_Defect_Report[Defect Qty])
- Defect Rate per Vendor (%): VAR TotalDefects = CALCULATE(SUM('Fact_Defect Report'[Defect Qty]),
 ALL('Fact_Defect Report'))
 RETURN

DIVIDE(SUM('Fact Defect Report'[Defect Qty]), TotalDefects, 0) * 100

Data Relationships:

- Fact_Defect_Report linked to Vendor_Master via Vendor ID.
- Fact Defect Report linked to Plant Locations via Plant ID.

Conclusion: The Power BI data model is structured to support dynamic reporting and allows for an in-depth analysis of defect trends, vendor performance, and plant-specific defect impact.

Prepared by: Mohamed Alaa