(11) EP 1 006 123 A2

(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication: 07.06.2000 Bulletin 2000/23

(51) Int CL7: **C07K 14/15**, C12N 15/867, C12N 15/62, A61K 48/00

(21) Numéro de dépôt: 99400735.9

(22) Date de dépôt: 25.03.1999

(84) Etats contractants désignés:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
Etats d'extension désignés:
AL LT LV MK RO SI

(30) Priorité: 03.12.1998 FR 9815302

(71) Demandeur: UNIVERSITÉ PIERRE ET MARIE CURIE PARIS VI 75252 Paris Cédex 05 (FR)

(72) Inventeurs:

 Klatzmann, David 75013, Paris (FR)

- Salzmann, Jean-Loup 75005, Paris (FR)
- Nogulez, Patricia
 91360 Guibeville (FR)
- Cosset, François Loic 69007, Lyon (FR)
- (74) Mandataire: Becker, Philippe et al Ernest Gutmann-Yves Plasseraud S.A.,
 3, rue Chauveau-Lagarde
 75008 Paris (FR)

(54) Protéines d'enveloppe, methodes et utilisations

(57) La présente invention concerne de protéines et compositions utilisables pour la production de virus, notamment rétrovirus recombinants. Elle concerne également des acides nucléiques, vecteurs et cellules modifiées, ainsi que leurs utilisations. L'invention est plus particulièrement relative à de protéines dérivées du vi-

rus GALV et leurs utilisations.

La présente invention concerne en particulier une protéine d'enveloppe chimérique caractérisée en ce qu'elle comprend au moins une partie du domaine extracellulaire de l'enveloppe du virus GALV ou d'un variant fonctionnel de celui-ci.

Description

20

25

30

[0001] La présente invention concerne de nouvelles protéines et compositions utilisables pour la production de virus, notamment rétrovirus recombinants. Elle concerne également des acides nucléiques, vecteurs et cellules modifiées, ainsi que leurs utilisations. L'invention est plus particulièrement relative à de nouvelles protéines dérivées du virus GALV et leurs utilisations.

[0002] Les rétrovirus recombinants sont utilisés dans de nombreuses applications de la biologie, à la fois sur la plan expérimental, diagnostic, vaccinal et thérapeutique. Ainsi, les rétrovirus sont utilisés comme vecteur pour le transfert d'acides nucléiques dans les cellules, essentiellement les cellules en division, in vitro, ex vivo ou in vivo. In vitro, les rétrovirus permettent ainsi, par exemple, d'insérer de manière stable un acide nucléique d'intérêt dans le génome d'une cellule, de manière à produire une protéine ou un peptide recombinant, à étudier la régulation d'un gène, à étudier des composés antiviraux, etc. In vivo et ex vivo, les rétrovirus ont été utilisés dans des protocoles cliniques de transfert de gènes à visée thérapeutique et/ou vaccinale. Pour revue, voir notamment Human Gene Therapy, Décembre 1997. Les rétrovirus sont également utilisables pour le transfert de gènes chez des mammifères non-humains, par exemple dans des buts thérapeutiques, vaccinaux, ou expérimentaux (modèles de pathologies, étude de biodisponibilité, etc.).

[0003] En raison de leur large spectre d'applications évoqué ci-avant, il est important de pouvoir disposer de méthodes efficaces et présentant un caractère sécuritaire élevé pour produire des rétrovirus recombinants ayant de bonnes capacités de transfert de gènes.

[0004] A cet égard, les vecteurs rétroviraux recombinants utilisés comportent généralement, dans une capside rétrovirale, un génome rétroviral défectif. Plus précisément, le génome rétroviral défectif est un vecteur rétroviral recombinant comprenant généralement les séquences cis indispensables à la production et l'encapsidation du génome, c'est-à-dire :

- les séquences "Long Terminal Repeat" (LTR), localisées à chaque extrémité du génome rétroviral. Ces séquences servent notamment d'origine de transcription et de promoteur transcriptionnel. Les séquences LTR se composent plus précisément d'éléments désignés U3, R et U5;
- une séquence d'encapsidation (Psi ou ψ), impliquée dans l'encapsidation du génome rétroviral dans l'enveloppe protéique. La séquence d'encapsidation peut par ailleurs comporter une région étendue à certains éléments du gène gag, qui ont été décrits comme améliorant l'efficacité d'encapsidation;
- la région PB, également impliquée dans la réplication virale.

[0005] En général, le génome rétroviral défectif est en revanche défectif pour tout ou partie des gènes viraux gag, pol et/ou env. L'absence de tout ou partie des gènes viraux rend en effet le virus défectif, c'est-à-dire incapable de réplication autonome dans une cellule. Plus préférentiellement, l'ensemble des gènes viraux gag, pol et env sont délétés. Le génome rétroviral défectif comprend par ailleurs, en substitution des séquences virales délétées, tout acide nucléique d'intérêt dont le transfert dans une cellule est recherché.

[0006] Pour la construction de rétrovirus défectifs, le génome rétroviral peut provenir de différents types de rétrovirus, tels que des virus écotropes et/ou amphotropes. Il peut s'agir notamment de rétrovirus appartenant à la famille des oncovirus, des lentivirus ou des spumavirus. Dans la famille des oncovirus, on peut citer notamment les oncovirus lents, non porteur d'oncogène, tels que par exemple MoMLV, ALV, BLV, ou MMTV et les oncovirus rapides, tels que RSV par exemple. Dans la famille des lentivirus, on peut citer par exemple HIV, SIV, FIV, BIV ou CAEV. Un type de rétrovirus particulièrement utilisé est le virus de Moloney, notamment murin (MoMLV).

[0007] Pour la production des rétrovirus recombinants, le vecteur rétroviral (génome rétroviral défectif ou toute construction le comprenant) est généralement introduit dans une cellule dite de "packaging", exprimant de manière stable les fonctions de complémentation déficientes du génome recombinant (i.e., gag, pol et/ou env). De telles lignées sont par exemples les lignées PSICRIP (Danos et Mulligan, PNAS 85 (1988) p. 6460), PA317 (Miller et Buttimore, Mol. Cell. Biol. 6 (1986) p. 2895), ou GP + Env AM12 (Markowitz et al. Virology 167 (1988) p. 400). D'autres lignées ont par exemple été décrites dans les publications EP 243 204, WO89/07150, WO90/02806, US5,766,945, EP476,953, WO93/04167 et WO93/10218. En outre, d'autres approches ont été envisagées pour la production de rétrovirus recombinants, reposant sur la cotransfection transitoire de lignées cellulaires avec des virus (ou plasmides) helper et le vecteur rétroviral recombinant (voir par exemple W094/29438)

[0008] L'une des particularités des rétrovirus réside dans leur sélectivité pour les cellules en division. Ainsi, dans les conditions naturelles, les retrovirus ne sont pas capables d'infecter efficacement les cellules quiescentes. Par ailleurs, le tropisme des rétrovirus est essentiellement déterminé par la protéine d'enveloppe présente dans la capside. Ainsi, il est possible de construire des rétrovirus écotropes (c'est-à-dire dont le tropisme est restreint à l'espèce dont provient l'enveloppe) ou amphotropes (c'est-à-dire dont le tropisme croise les barrières d'espèces). Des enveloppes particu-

lièrement utilisées pour la construction de rétrovirus sont par exemple les enveloppes des virus 4070A, 10A1, VSV, VIH, du virus de la rage, du virus GALV, ou également des enveloppes cellulaires, codant par exemple pour une protéine membranaire permettant le ciblage de la particule virale sur un ligand spécifique, notamment pour un récepteur de type CD4.

[0009] L'enveloppe du virus GALV présente un intérêt particulier. En effet, il a été décrit dans la littérature que le virus de la leucémie du gibbon (GALV; "Gibbon Ape Leukemia Virus"), notamment son enveloppe, avait un tropisme particulièrement important pour les cellules humaines, notamment hématopoiétiques (cellules souches, lymphocytes, dendritiques, etc.). Il a donc été envisagé, dans l'art antérieur, d'utiliser des rétrovirus recombinants pseudotypés avec l'enveloppe GALV, c'est-à-dire des rétrovirus recombinants de type Moloney par exemple, comprenant une enveloppe GALV, afin d'améliorer les propriétés d'infection des cellules humaines, notamment hématopoiétiques (Bunnel et al., PNAS 92 (1995) 7739). Certains résultats particulièrement encourageants ont été obtenus avec ces rétrovirus.

[0010] Néanmoins, les demandeurs ont maintenant montré que la protéine d'enveloppe GALV telle que décrite dans l'art antérieur, ne pouvait être utilisée efficacement, pour la production de rétrovirus recombinants, que dans certains types limités de cellules de packaging. Ainsi, alors que cette protéine GALV peut être utilisée pour produire des rétrovirus dans les cellules de fibroblastes murins (NIH 3T3) par exemple, cette même enveloppe ne peut être mise en oeuvre efficacement dans des lignées de packaging établies à partir de cellules humaines, notamment. En particulier, les inventeurs de la présente demande ont mis en évidence que la protéine env du virus GALV tel que décrit par Delassus et al. (Virology 173 (1989) 205) (voir résidus d'acides aminés 1 à 667 tels que représentés sur la figure 3 ou SEQ ID NO:5), exprimée dans différents types cellulaires possédant un récepteur à l'enveloppe GALV, produit un effet fusogénique important, conduisant à une fusion des cellules en culture, empêchant toute production de rétrovirus recombinants.

[0011] La présente invention apporte à présent une solution à ce problème.

20

30

40

45

50

55

[0012] Ainsi, la présente invention décrit de nouvelles constructions permettant la production d'une enveloppe de type GALV fonctionnelle, non fusogénique dans les cellules. En particulier, la présente invention découle notamment de la mise en évidence d'une protéine d'enveloppe GALV non fusogénique, et de la construction de molécules chimériques, artificielles, tronquées et/ou étendues ayant des propriétés avantageuses.

[0013] La présente invention découle aussi de la mise en évidence, par les inventeurs, que la fusogénicité de protéines d'enveloppe peut être contrôlée par une région présente dans le domaine C-terminal de la protéine. A cet égard, l'invention décrit aussi de nouvelles protéines d'enveloppe rétrovirales (notamment de type GALV), modifiées (notamment dans la région C-terminale), présentant une activité fusogénique, et leur utilisation pour induire la destruction de cellules, in vitro, ex vivo ou in vivo.

[0014] Ainsi, dans un premier aspect, l'invention réside en particulier dans des constructions chimériques, tronquées et/ou étendues de l'enveloppe GALV, permettant de réduire, voire supprimer les propriétés fusogéniques de cette protéine dans les cellules possédant un récepteur de l'enveloppe GALV. Plus particulièrement, l'invention décrit des enveloppes chimériques de type GALV, dépourvues de fusogénicité, caractérisées en ce qu'elles comprennent un domaine C-terminal (ou cytoplasmique) hétérologue. L'invention décrit aussi une nouvelle protéine d'enveloppe GALV, caractérisée par un domaine C-terminal particulier, également dépourvue de fusogénicité. L'invention réside également dans des variants de ces enveloppes, les acides nucléiques et vecteurs correspondants, et leurs utilisations, notamment pour la production de particules rétrovirales recombinantes. L'invention est également relative aux cellules modifiées, notamment des cellules de packaging, comprenant les constructions génétiques de l'invention, ainsi qu'à des rétrovirus recombinants et des méthodes pour leur production.

[0015] Selon un autre aspect, la présente invention réside également dans l'utilisation des propriétés fusogéniques de protéines d'enveloppes pour induire la destruction de cellules. Ainsi, l'invention décrit également la construction d'enveloppes (rétrovirales) fusogènes modifiées, notamment dans leur région cytoplasmique. L'invention réside dans l'utilisation de telles protéines fusogènes comme molécules toxiques pour induire la destruction de cellules in vitro, ex vivo ou in vivo. L'invention décrit en outre un procédé de préparation de protéines d'enveloppes fusogéniques.

[0016] Comme indiqué ci-avant, la présente invention découle donc notamment de la mise en évidence que des constructions génétiques peuvent être préparées permettant la production d'enveloppes de type GALV sans effet fusogénique. Ainsi, les demandeurs ont maintenant mis en évidence la séquence d'une protéine d'enveloppe GALV dépourvue d'activité fusogène. Les séquences de cette protéine et de l'acide nucléique codant correspondant sont représentées sur la Figure 1 (SEQ ID NOS:1 et 2). Ainsi, par rapport à la séquence de la protéine d'enveloppe de GALV telle que décrite dans la littérature (SEQ ID NO:5), il apparait que cette séquence comprend plusieurs modifications dans la région C-terminale, et notamment le remplacement de la cystéine 667 par une valine, et l'ajout de 18 acides aminés C-terminaux supplémentaires. Ainsi, cette protéine d'enveloppe comporte une extrémité C-terminale particulière, de séquence Val-Lys-Ile-Leu-Val-Leu-Arg-Gln-Lys-Tyr-Gln-Ala-Leu-Glu-Asn-Glu-Gly-Asn-Leu (SEQ ID NO:3). Un objet de la présente invention réside donc dans une protéine d'enveloppe rétrovirale GALV, caractérisée en ce qu'elle comprend une extrémité C-terminale de séquence SEQ ID NO:3 ou un variant fonctionnel de celle-ci, c'est-à-dire une séquence modifiée, comme détaillé plus loin, sans induire de fusogénicité pour la protéine d'enveloppe.

Plus particulièrement, l'invention concerne une protéine d'enveloppe rétrovirale GALV, caractérisée en ce qu'elle comprend un domaine intracytoplasmique de séquence Lys-Leu-Val-Gln-Phe-lle-Asn-Asp-Arg-lle-Ser-Ala-Val-Lys-lle-Leu-Val-Leu-Arg-Gln-Lys-Tyr-Gln-Ala-Leu-Glu-Asn-Glu-Gly-Asn-Leu (SEQ ID NO:4) ou un variant fonctionnel de celle-ci. La présente invention montre maintenant qu'une protéine d'enveloppe GALV telle que définie ci-dessus n'est pas fusogénique, et peut donc être utilisée pour la construction de rétrovirus recombinants. L'invention concerne également tout anticorps dirigé contre la séquence SEQ ID NO:3 définie ci-dessus.

[0017] La séquence complète de la protéine d'enveloppe GALV est représentée sur la séquence SEQ ID NO: 2 (Figure 1). La phase codant pour la protéine d'enveloppe s'étend du nucléotide en position 1 jusqu'au nucléotide en position 2058 de la séquence SEQ ID NO:1. Le codon TAA aux positions 2056-2058 correspond au codon stop. Le nucléotide en position 1 correspond au nucléotide 5552 du génome du virus GALV (Delassus S. et al., Virology 173, 205-213 (1989)). L'enveloppe GALV complète codée par cette séquence comporte donc 685 acides aminés, et non 667 comme décrit par Delassus et al. Les résultats présentés dans les exemples indiquent que l'expression de cette protéine complète n'induit pas la fusion de cellules portant le récepteur Galv.

[0018] Par ailleurs, l'invention montre également que des protéines chimériques peuvent être construites, conservant le tropisme des enveloppes GALV, mais dépourvues de fusogénicité, par délétion de tout ou partie du domaine intracytoplasmique et substitution de celui-ci par un domaine intracyoplasmique hétérologue. L'invention décrit en effet la partie minimale du domaine C-terminal de l'enveloppe qu'il est nécessaire de conserver pour abolir l'effet fusogène des protéines d'enveloppe.

[0019] Ainsi, un objet de l'invention réside également dans une protéine d'enveloppe chimérique caractérisée en ce qu'elle comprend au moins une partie du domaine extracellulaire de l'enveloppe du virus GALV ou d'un variant fonc-

[0020] L'invention a aussi pour objet toute protéine d'enveloppe chimérique comprenant, liés de manière fonction-

- (i) une partie N-terminale comprenant le domaine extracellulaire de la protéine, choisie pour un tropisme désiré,
 - (ii) un domaine transmembranaire, et

25

45

(iii) une extrémité C-terminale comprenant le domaine (intra)cytoplasmique de la protéine, choisie de telle sorte que la protéine d'enveloppe chimérique ne soit pas fusogène dans les cellules.

[0021] Au sens de l'invention, le terme "chimérique" désigne une protéine comprenant deux éléments au moins ayant une origine distincte. Il peut s'agir par exemple de deux éléments provenant de protéines d'espèces différentes ou ayant des propriétés différentes. Généralement, le terme chimérique désigne une protéine hybride entre deux régions au moins de deux protéines d'enveloppe hétérologues ou entre une région d'une enveloppe et une région d'une protéine distincte, par exemple une partie cytoplasmique et éventuellement transmembranaire d'une protéine d'enveloppe et une partie N-terminale provenant de toute autre protéine capable de conférer à la molécule un tropisme donné (anticorps ou fragments ou dérivés, ligands, récepteur, etc.). La protéine chimérique peut être le résultat d'une association chimique, génétique ou biologique. Généralement, il s'agit d'un couplage génétique, donnant lieu à une protéine de fusion, par expression dans une cellule appropriée.

[0022] Les protéines d'enveloppe selon l'invention sont donc généralement composées de trois domaines fonctionnels principaux, un domaine extracellulaire, un domaine transmembranaire et un domaine cytoplasmique.

[0023] Comme indiqué ci-avant, dans un mode particulier de mise en œuvre, les protéines chimériques de l'invention comprennent comme région N-terminale (i), tout ou partie du domaine extracellulaire de la protéine d'enveloppe de GALV ou d'un variant fonctionnel de celui-ci. De manière surprenante, les demandeurs ont en effet montré que le caractère fusogénique de GALV pouvait être supprimé (ou réduit), tout en conservant le domaine extracellulaire (et donc le tropisme avantageux) de cette enveloppe. Ce résultat est d'autant plus surprenant que le domaine extracellulaire, de par sa localisation (exposé à la surface des membranes des cellules qui le produisent, et également des particules rétrovirales), pouvait a priori être supposé jouer un rôle essentiel dans le phénomène de fusion. Les résultats présentés dans la présente demande de brevet montrent maintenant que des enveloppes chimériques de type GALV peuvent être construites, fonctionnelles, conservant le tropisme du GALV, et non fusogéniques. Ces constructions permettent donc de produire des rétrovirus recombinants dans des conditions avantageuses, comme il sera explicité

[0024] Le domaine extracellulaire de la protéine d'enveloppe GALV selon l'invention correspond essentiellement aux résidus d'acides aminés 1 à 490 (correspondant aux nucléotides 1 à 1468) de la séquence SEQ ID NO: 1. Les résidus aux positions 491 à 655 (correspondant aux nucléotides 1469 à 1963) représentent le domaine transmembranaire de la protéine, et les résidus aux positions 656 à 685 (correspondant aux nucléotides 1964 à 2058) représentent le domaine (intra)cytoplasmique de l'enveloppe GALV.

[0025] Dans un mode préféré de mise en oeuvre, les protéines chimériques de l'invention comprennent donc tout ou partie du domaine extracellulaire de la protéine d'enveloppe GALV ou d'un variant fonctionnel de celui-ci. L'expres-

sion "tout ou partie" indique que les chimères de l'invention peuvent comprendre soit l'intégralité du domaine, soit une partie seulement de celui-ci. Au sens de l'invention, la partie du domaine extracellulaire peut comprendre avantageusement 50% au moins des résidus du domaine, de préférence 60% au moins, encore plus préférentiellement 75% au moins. Cette partie peut être obtenue par les techniques classiques de biologie moléculaire, impliquant par exemple la coupure enzymatique, la ligature, l'amplification, le clonage, etc, comme illustré dans la partie expérimentale.

[0026] Avantageusement, il s'agit d'une partie fonctionnelle du domaine considéré. A cet égard, le terme "variant fonctionnel" ou "partie fonctionnelle" du domaine extracellulaire, désigne plus spécifiquement toute partie ou variant conservant la capacité d'interagir avec le récepteur de l'enveloppe considérée. Le récepteur Glvr-1 (également désigné PiT-1) est le récepteur naturel de l'enveloppe GALV. Lorsque ce récepteur est présent à la surface des cellules, ces cellules sont permissives au virus GALV. Une propriété avantageuse des enveloppes chimériques selon l'invention est qu'elles présentent préférentiellement la capacité de liaison au récepteur Glvr-1.

[0027] La capacité de liaison au récepteur Glvr-1 des domaines extracellulaires (variants ou fragments de GALV) ou des enveloppes chimériques de l'invention peut être testée dans différentes conditions, et notamment par :

- incubation dudit domaine ou de l'enveloppe entière en présence du récepteur Glvr-1, et mise en évidence d'une fixation par les techniques classiques (marquage, compétition, etc.). Le récepteur utilisé peut être sous forme purifiée, le cas échéant fixé sur un support. Il peut également s'agir d'une cellule ou membrane cellulaire exprimant ledit récepteur;
- par production de rétrovirus recombinants comprenant ladite enveloppe chimérique, et mise en évidence de la capacité desdits rétrovirus d'infecter une cellule porteuse du récepteur; ou encore
 - par toute autre technique connue de l'homme du métier.

5

- 25 [0028] En outre, le terme variant indique tout polypeptide comportant une ou plusieurs modifications de structure primaire, en particulier une ou plusieurs mutations, délétions, substitutions et/ou additions de résidus d'acides aminés, de préférence de moins de 30 acides aminés.
 - [0029] Plus préférentiellement, les protéines chimères de l'invention comprennent tout ou partie du domaine extracellulaire de la protéine d'enveloppe GALV représenté par les acides aminés 1 à 490 de la séquence SEQ ID NO:1 ou d'un variant fonctionnel de celui-ci.
 - [0030] Une variante particulière de l'invention consiste en une protéine chimère comprenant le domaine extracellulaire de la protéine d'enveloppe GALV représenté par les acides aminés 1 à 490 de la séquence SEQ ID NO:1.
 - [0031] Comme indiqué ci-avant, le domaine N-terminal des protéines chimères de l'invention peut en outre être composé de tout domaine protéique susceptible de conférer à l'enveloppe un tropisme particulier (autre enveloppe virale, enveloppe cellulaire, anticorps ou fragment ou dérivé d'anticorps, ligand, etc.).
 - [0032] Dans un premier mode particulier de mise en oeuvre, les protéines chimériques selon l'invention comprennent au moins une partie ou un variant fonctionnel du domaine extracellulaire de la protéine d'enveloppe GALV, un domaine transmembranaire hétérologue et un domaine cytoplasmique hétérologue. Une variante plus particulière réside dans une protéine d'enveloppe comprenant un domaine extracellulaire représenté par les acides aminés 1 à 490 de la séquence SEQ ID NO:1, plus un domaine transmembranaire et un domaine cytoplasmique hétérologues.
 - [0033] Dans un autre mode préféré de mise en oeuvre, les protéines chimériques selon l'invention comprennent au moins une partie du domaine extracellulaire et du domaine transmembranaire de l'enveloppe du virus GALV ou d'un variant fonctionnel de ceux-ci.
- [0034] Avantageusement, les protéines chimères de l'invention comprennent tout ou partie des domaines extracellulaire et transmembranaire de la protéine d'enveloppe GALV représentés par les acides aminés 1 à 655 de la séquence
 SEQ ID NO:1 ou d'un variant fonctionnel de ceux-ci. Le terme variant fonctionnel est défini comme ci-avant. Dans le
 cas d'un domaine transmembranaire, il s'agit de tout variant conservant la capacité de s'insérer dans la membrane
 cellulaire.
- [0035] Préférentiellement, les protéines chimères de l'invention comprennent l'intégralité du domaine extracellulaire de la protéine d'enveloppe GALV. Dans un autre mode préféré, les protéines chimères de l'invention comprennent l'intégralité du domaine transmembranaire de la protéine d'enveloppe GALV. Un mode de réalisation particulier de l'invention est représenté par une protéine d'enveloppe chimérique caractérisée en ce qu'elle comprend une région de l'enveloppe GALV consistant en la séquence correspondant aux résidus d'acides aminés 1 à 655 de la séquence SEQ ID NO:1.
- [0036] Les protéines d'enveloppe selon la présente invention sont plus particulièrement caractérisées en ce qu'elle comprennent un domaine cytoplasmique d'une enveloppe hétérologue. Le terme "enveloppe hétérologue" désigne toute protéine d'enveloppe autre que la protéine d'enveloppe du virus GALV dont la séquence est représentée sur la SEQ ID NO:5. En particulier, il peut s'agir d'une enveloppe provenant d'un variant de GALV ayant une séquence dif-

férente de la séquence SEQ ID NO:5 (notamment un domaine cytoplasmique de séquence SEQ ID NO:4 ou un variant fonctionnel de celle-ci), d'une enveloppe d'un rétrovirus d'un autre type que GALV, d'une enveloppe cellulaire ou syn-

[0037] Par ailleurs, comme indiqué ci-avant, les protéines chimériques selon la présente invention peuvent également comporter un domaine transmembranaire hétérologue, c'est-à-dire tout domaine protéique ayant la capacité de s'insérer dans la membrane cellulaire, autre que le domaine transmembranaire de la protéine d'enveloppe du virus GALV dont la séquence est représentée sur la SEQ ID NO:1. Il peut s'agir du domaine transmembranaire d'une enveloppe hétérologue, ou également d'un domaine transmembranaire artificiel ou dérivé de toute protéine membranaire (récepteur, canal ionique, etc.). Préférentiellement, le domaine transmembranaire est un domaine de protéine d'enveloppe rétrovirale, notamment de GALV ou d'une enveloppe hétérologue.

[0038] La protéine d'enveloppe hétérologue peut être toute protéine d'enveloppe connue de l'homme de l'art, telle que par exemple la protéine d'enveloppe des virus 4070A, 10A1, VSV, VIH, du virus de la rage, du virus GALV, ou également une protéine d'enveloppe cellulaire.

[0039] Préférentiellement, la protéine d'enveloppe hétérologue est une protéine d'enveloppe d'un rétrovirus ayant un tropisme pour les cellules humaines, notamment un rétrovirus amphotrope. A cet égard, on peut citer la protéine d'enveloppe des rétrovirus 4070A, 10A1, etc. Une protéine d'enveloppe hétérologue particulièrement préférée au sens de l'invention est la protéine d'enveloppe du rétrovirus 4070A. Cette protéine d'enveloppe a été décrite dans la littérature et est couramment utilisée pour la construction de rétrovirus recombinants (voir notamment Ott et al., J. Virol. Vol. 64, p757-766, 1990). La séquence du domaine cytoplasmique de cette protéine est représentée sur la séquence SEQ ID NO: 6 : la partie cytoplasmique s'étend des acides aminés 635 à 667 (Figure 2) de la séquence SEQ ID NO: 6.

[0040] Dans un mode particulier de réalisation, l'invention concerne donc une protéine d'enveloppe chimérique, comprenant tout ou partie des domaines extracellulaire et transmembranaire de la protéine d'enveloppe GALV et le domaine cytoplasmique de l'enveloppe du rétrovirus 4070A, plus spécifiquement la séquence d'acides aminés du domaine cytoplasmique représenté de l'acide aminé 635 à l'acide aminé 667 dans la séquence SEQ ID NO: 6

[0041] Dans un mode de réalisation spécifique, l'invention concerne une protéine d'enveloppe chimérique caractérisée en ce qu'elle comprend, en N-terminal, les résidus d'acides aminés 1 à 655 de la séquence SEQ ID NO:1 fusionnés aux résidus d'acides aminés 635 à 667 de la séquence SEQ ID NO: 6 (en C-terminal).

[0042] Dans un autre mode de réalisation, il s'agit d'une protéine d'enveloppe chimérique comprenant une région N-terminale déterminée, liée à la séquence comprise entre les résidus 491-685 de la séquence SEQ ID NO:2 ou un variant fonctionnel de celle-ci.

[0043] Une enveloppe chimérique non fusogène particulière de l'invention comprend, comme région C-terminale (iii), la séquence SEQ ID NO:4 ou un variant fonctionnel de celle-ci. Les variants fonctionnels de domaines cytoplasmiques selon l'invention, capables de conférer un caractère non-fusogène aux protéines, peuvent être construits par mutation(s), délétion(s), substitution(s) et/ou insertion(s), comme décrit ci-avant, puis testés sur le plan fonctionnel par un procédé comprenant :

35

- la liaison dudit domaine à un domaine extracellulaire et un domaine transmembranaire de protéines d'enveloppe (par exemple la région 1-655 de la séquence SEQ ID N0:2),
- mesure de l'activité fusogène de la protéine chimère obtenue sur des cellules possédant le récepteur correspondant au domaine extracellulaire utilisé. Le test de fusogénicité peut être réalisé comme décrit par Lavillette et al., 40 1998).

[0044] Selon l'invention, un variant est considéré comme fonctionnel si la fusogénicité de la protéine chimérique n'est par augmentée de plus de 25% par rapport à la même protéine comportant le domaine cytoplasmique de référence. A cet égard, de manière plus générale, cette méthodologie permet également, selon la présente invention, de déterminer la région cytoplasmique minimale des protéines d'enveloppe permettant d'éviter la fusogénicité. De telles régions minimales peuvent être utilisées comme région (iii) dans les protéines de l'invention, pour fabriquer des en-

[0045] Les protéines d'enveloppe chimères selon l'invention comprennent donc avantageusement un domaine extracellulaire, un domaine transmembranaire et un domaine cytoplasmique. Ces différents domaines sont liés de manière fonctionnelle les uns aux autres, c'est-à-dire de sorte que chaque domaine conserve une activité dans la protéine chimérique. Généralement, les domaines sont directement liés les uns aux autres, sans l'intervention d'une molécule (peptide) espaceur. Néanmoins, il est possible que des régions neutres sur le plan fonctionnel soient intercalées entre les/des domaines, notamment du fait des techniques de synthèse utilisées. Ainsi, lorsque les acides nucléiques sont préparés, il est possible que des résidus nouveaux apparaissent, codés par exemple par des sites de restriction. Préférentiellement, de tels peptides espaceurs sont de taille très réduite, en particulier de 1 à 3 résidus.

[0046] L'invention concerne en outre toute composition comprenant une protéine ou un polypeptide de l'invention.

[0047] Un autre objet de l'invention réside également dans un acide nucléique codant pour une protéine telle que définie ci-avant. Il peut s'agir notamment d'un ADN (notamment ADNc) ou d'un ARN. Il peut en outre s'agir d'un acide nucléique de nature synthétique ou semi-synthétique, optimisé pour un usage de codons particulier, ou comprenant un ou plusieurs introns artificiels en vue de favoriser l'expression, etc. L'acide nucléique peut être préparé par les techniques classiques de la biologie moléculaire (criblage de banques, synthèse artificielle, amplification, coupures/ ligations, clonages, etc.). Généralement, pour la constitution des acides nucléiques de l'invention, la région codant pour le ou les domaines de l'enveloppe GALV est préparée, puis assemblée à la région codant pour le(s) domaine(s) de l'enveloppe hétérologue.

[0048] Ainsi, un objet particulier de l'invention réside également dans un acide nucléique codant pour une protéine d'enveloppe GALV comprenant une extrémité C-terminale de séquence SEQ ID NO:3 telle que définie ci-avant, plus particulièrement un domaine cytoplasmique de séquence SEQ ID NO:4 tel que défini ci-avant. Un mode spécifique de réalisation comprend un acide nucléique tel que représenté sur la séquence SEQ ID NO:1, du nucléotide en position 1 jusqu'à un nucléotide compris entre les positions 2056 et 2129 inclus de la séquence SEQ ID NO: 1.

[0049] Des modes de réalisation plus spécifiques de l'invention sont représentés par:

15

20

25

30

40

45

50

55

5

- un acide nucléique codant pour une protéine d'enveloppe GALV, caractérisé en ce qu'il comprend une séquence s'étendant du nucléotide en position 1 jusqu'à un nucléotide compris entre les positions 2056 et 2112 inclus de la séquence SEQ ID NO: 1;
- un acide nucléique codant pour une protéine d'enveloppe GALV, caractérisé en ce qu'il comprend une séquence s'étendant du nucléotide en position 1 jusqu'au nucléotide 2058 de la séquence SEQ ID NO: 1;

[0050] L'invention concerne également les variants des séquences ci-dessus, tels que notamment les séquences résultant de la dégénérescence du code génétique et codant pour une protéine de même structure primaire, les variants résultant du polymorphisme du virus GALV, les variants présentant des altérations génétiques et codant pour une protéine d'enveloppe de type GALV fonctionnelle, c'est-à-dire essentiellement non-fusogénique et capable de lier le récepteur Glvr-1. L'invention concerne en outre toute séquence hybridant avec les séquences ci-dessus, de préférence dans des conditions de stringence élevée, et codant pour une protéine d'enveloppe de type GALV fonctionnelle.

[0051] La présente invention est également relative à tout vecteur comprenant un acide nucléique tel que défini cidessus. Un vecteur selon l'invention peut être de nature plasmidique, épisomique, chromosomique, virale, etc. Il s'agit plus particulièrement d'un vecteur plasmidique, par exemple construit à partir de plasmides connus tels que pBR, pUC, pBS, pCl, etc. Avantageusement, dans les vecteurs, les acides nucléiques de l'invention sont placés sous le contrôle d'un promoteur transcriptionnel. Il peut s'agir à cet effet d'un promoteur transcriptionnel fort ou faible, constitutif ou sélectif, régulé ou non, d'origine cellulaire (procaryote, eucaryote, y compris mammifère, dont humain), virale ou artificielle. Des promoteurs utilisables à cet effet sont par exemple les promoteurs CMV, PGK, TK, SV40, etc. Le choix du promoteur peut être aisément réalisé par l'homme de l'art en fonction des applications recherchées.

[0052] Préférentiellement, le vecteur de l'invention comprend en outre une origine de réplication, notamment une origine de réplication fonctionnelle dans les cellules procaryotes, permettant une manipulation et une production aisées des vecteurs dans ce type d'hôtes (par exemple dans les bactéries, notamment E. coli). Par ailleurs, le vecteur peut également comprendre un gène marqueur, permettant de sélectionner les cellules dans lesquelles le vecteur a été introduit. Il peut s'agir notamment d'un gène de résistance à un composé (par exemple à un antibiotique).

[0053] Un autre objet de l'invention concerne toute cellule comprenant un acide nucléique ou un vecteur tels que définis ci-avant. Une telle cellule peut être procaryote ou eucaryote. En outre parmi les eucaryotes, il peut s'agir d'un eucaryote inférieur (par exemple une levure) ou d'un eucaryote supérieur (cellule végétale, animale, humaine, etc.).

[0054] Avantageusement, l'invention concerne toute cellule de packaging de rétrovirus, caractérisée en ce qu'elle comprend un acide nucléique ou un vecteur tels que définis ci-avant et un acide nucléique codant pour les protéines rétrovirales gag et pol. Une telle cellule de packaging est préférentiellement une cellule de mammifère, telle qu'un fibroblaste, d'insecte, ou bien, de préférence, humaine (cellule embryonaire par exemple). Pour cet objet plus particulier, on utilise avantageusement des cellules cultivables, non-pathogènes, et transfectables par des acides nucléiques. Des exemples particuliers sont des cellules embryonaires de rein ou de rétine humaine, ou de lignées cancéreuses humaines.

[0055] Pour la préparation des cellules de l'invention, les acides nucléiques ou vecteurs peuvent être introduits dans les cellules par toute technique connue de l'homme du métier (ADN "nu", électroporation, précipitation au phosphate de calcium, "gene gun", vecteur lipidique, cationique, polymérique, etc.). Après incubation, les cellules sont sélectionnées, soit sur la base de l'expression de l'enveloppe, soit sur la base de l'expression du gène marqueur (par exemple par culture en milieu antibiotique). Ces cellules peuvent alors être maintenues en culture, ou clonées et/ou conservées sous forme congelée, par exemple.

[0056] L'invention réside également dans l'utilisation d'un acide nucléique ou d'un vecteur tels que définis ci-avant pour la production d'une cellule de packaging de rétrovirus. L'invention réside en outre dans une méthode de production

d'une cellule de packaging de rétrovirus, comprenant l'introduction, dans une cellule compétente, d'un acide nucléique ou d'un vecteur tels que définis ci-avant et d'un ou plusieurs acides nucléiques codant pour les protéines rétrovirales gag et pol. Les différents acides nucléiques peuvent être introduits de manière simultanée ou séquentielle, dans un ordre indifférent. Les cellules compétentes sont toutes cellules telles que définies ci-avant.

[0057] Les protéines d'enveloppe de type-GALV de l'invention telles que décrites ci-avant présentent des propriétés fonctionnelles avantageuses, telles que notamment une absence de fusogénicité. Ainsi, alors que les protéines GALV connues jusqu'à présent induisent une fusion de cellules humaines les produisant, les protéines d'enveloppe chimériques de l'invention sont préférentiellement dépourvues de cet inconvénient. Ces enveloppes peuvent donc être utilisées avantageusement pour la production de rétrovirus recombinants dans des cellules humaines. Ceci représente un avantage important par rapport à l'art antérieur, puisque les rétrovirus produits dans les lignées classiques (fibroblastes murins) possèdent des déterminants antigéniques murins et sont donc potentiellement immunogènes.

10

[0058] A cet égard, l'invention a aussi pour objet un procédé de production de rétrovirus recombinants défectifs, comprenant l'introduction, dans une cellule de packaging selon l'invention, d'un vecteur rétroviral, et la récupération des virus recombinants produits. Les virus produits peuvent être récupérés par toute technique classique, telle que récolte du surnageant, éventuellement purification des rétrovirus par des étapes de centrifugation et/ou chromatographie. L'invention a également pour objet tout rétrovirus comprenant, dans sa structure, une protéine d'enveloppe telle que décrite ci-avant. Il s'agit plus particulièrement d'un rétrovirus recombinant, en particulier défectif, par exemple produit selon le procédé décrit ci-dessus.

[0059] Par ailleurs, comme indiqué ci-avant, un autre aspect de la présente invention réside dans l'utilisation de protéines d'enveloppes, notamment rétrovirales, fusogéniques pour induire la destruction de cellules.

[0060] Ainsi, l'invention décrit également la construction d'enveloppes rétrovirales modifiées, fusogènes, et leur utilisation comme molécules toxiques pour induire la destruction de cellules in vitro, ex vivo ou in vivo.

[0061] En effet, la présente invention montre qu'il est possible de modifier la structure des protéines d'enveloppe, notamment rétrovirales pour produire des polypeptides fusogènes. La présente invention réside également dans l'utilisation des ces propriétés fusogéniques comme agents de toxicité cellulaire. Cette utilisation est avantageuse puisque, contrairement à certaines toxines connues et utilisées, elle ne se manifeste pas dans certains types cellulaires et peut donc (i) permettre une production en quantités importantes dans des cellules résistantes et (ii) permettre une destruction efficace de cellules in vitro, ex vivo ou in vivo.

[0062] L'invention a donc également pour objet l'utilisation de protéines d'enveloppe fusogène (ou de tout acide nucléique codant de telles protéines) comme agent de toxicité cellulaire, i.e., pour induire une destruction de cellules, in vitro, ex vivo ou in vivo. L'invention concerne notamment l'utilisation de protéines d'enveloppe fusogène pour la préparation de compositions (pharmaceutiques) destinées à la mise en oeuvre d'une méthode de traitement thérapeutique et/ou vaccinal, notamment pour le traitement de cellules humaines in vitro, ex vivo ou in vivo. L'invention concerne également une méthode de destruction de cellules comprenant la mise en contact de cellules avec une enveloppe fusogène ou tout acide nucléique codant une telle enveloppe. L'invention concerne également une méthode de traitement de cellules pour rendre cellules-ci fusogènes, comprenant la mise en contact de cellules avec une enveloppe fusogène ou tout acide nucléique codant une telle enveloppe.

[0063] Cette application de l'invention peut être mise en oeuvre aussi bien pour induire la destruction de cellules, que pour faciliter leur fusion. Ainsi, cette application peut être utilisée pour réaliser (ou faciliter) la fusion de cellules immortalisées (par exemple tumorales) avec des cellules d'intérêt (des cellules productrices d'anticorps ou présentatrices d'antigènes, par exemple). Un exemple particulier concerne la préparation d'hybridomes par fusion de cellules productrices d'anticorps avec des cellules immortalisées (par exemple de myelome). En présence de protéines fusogènes de l'invention, cette fusion est favorisée et le procédé de préparation d'hybridomes est amélioré. Il peut bien entendu s'agir d'un procédé de préparation de toute fusion cellulaires, entre des cellules animales, insectes ou végétales, possédant le récepteur du domaine extracellulaire de l'enveloppe utilisée.

[0064] Plus spécifiquement, les protéines d'enveloppe fusogènes selon l'invention sont des protéines de type rétroviral, c'est-à-dire dérivées de protéines d'enveloppe rétrovirales. Généralement, il s'agit de protéines d'enveloppe rétrovirales modifiées dans la région C-terminale. En effet, la présente invention montre à présent que la modification de l'extrémité C-terminale d'une protéine d'enveloppe rétrovirale peut induire l'apparition de propriétés fusogènes chez cette protéine. Ainsi, la présente demande montre notamment que le domaine cytoplasmique des protéines d'enveloppe rétrovirales comporte des régions d'homologie significative, et que la modification (en particulier la suppression) de tout ou partie de ce domaine conduit à l'apparition de propriétés fusogènes.

[0065] Ainsi, la présente invention réside dans l'utilisation de protéines d'enveloppe rétrovirales modifiées, fusogènes, pour traiter des cellules et/ou induire leur destruction. Plus particulièrement, il s'agit de protéines d'enveloppe rétrovirales fusogènes modifiées dans la région C-terminale, notamment dans le domaine cytoplasmique. Encore plus particulièrement, il s'agit de protéines d'enveloppe rétrovirales fusogènes comprenant une délétion de tout ou partie

[0066] De telles protéines d'enveloppe peuvent être préparées à partir d'enveloppe différentes, notamment rétrovi-

rales, telles que mentionnées ci-avant. Il peut s'agir notamment d'une enveloppe d'un rétrovirus ayant un tropisme pour les cellules humaines, ce qui permet de générer une protéine fusogénique susceptible d'induire la destruction de cellules humaines. A cet égard, on peut citer plus spécifiquement les enveloppes de rétrovirus de type C, tels que GALV, 4070A, 10A1, MuLV, VSV, VIH ou du virus de la rage. Comme illustré sur la figure 6, les domaines cytoplasmiques des protéines d'enveloppe GALV, 4070A, 10A1, MuLV présentent des régions d'homologie forte, qui peuvent être modifiées pour produire des molécules fusogènes.

[0067] L'invention concerne aussi un procédé de préparation d'une protéine fusogène, comprenant (i) la modification de la région cytoplasmique d'une protéine d'enveloppe, notamment rétrovirale, et (ii) la mise en évidence de l'activité fusogène de la protéine, par exemple par incubation en présence de cellules exprimant le récepteur de l'enveloppe. La modification de la région cytoplasmique de la protéine comprend plus spécifiquement la délétion de tout ou partie de cette région, notamment d'un fragment de l'extrémité C-terminale comprenant au moins 5 acides aminés, de préférence au moins 10 acides aminés, encore plus préférentiellement au moins 15 acides aminés. La modification peut également comprendre toute autre inactivation, telle que des mutations et/ou insertions inactivantes dans la région concernée.

10

[0068] Dans un mode particulier de mise en oeuvre, la protéine d'enveloppe est une protéine d'enveloppe de rétrovirus de type C, notamment GALV, 4070A, 10A1 ou MuLV et la modification comprend la suppression d'une région du domaine cytoplasmique comprenant au moins tout ou partie des résidus situés du coté C-terminal du motif LVL.

[0069] Dans un autre mode de réalisation, la protéine d'enveloppe fusogène de l'invention est une protéine chimérique comprenant un domaine extracellulaire ayant un tropisme désiré, un domaine transmembranaire, et un domaine cytoplasmique construit comme décrit ci-dessus, de manière à conférer à ladite protéine une activité fusogène. Ces différents domaines peuvent êtreconstruits et assemblés comme décrits ci-avant pour les chimères non-fusogènes.

[0070] Les protéines d'enveloppe fusogènes ainsi construites et testées peuvent être produites, de préférence sous forme recombinante. Préférentiellement, elles sont produites à partir d'un vecteur rétroviral (sous forme de particules rétrovirales incorporant un tel vecteur). Dans ce mode de réalisation, un vecteur rétroviral comprenant une séquence nucléique codant une protéine fusogène selon l'invention est introduit dans une lignée de packaging de rétrovirus, résistante à la fusogénicité. Une telle lignée est généralement une lignée de cellules n'exprimant pas (ou peu) le récepteur de l'enveloppe. Ainsi, dans le cas particulier de l'enveloppe GALV, on peut utiliser une lignée de packaging murine. Par ailleurs, il peut s'agir d'une lignée de packaging modifiée pour ne plus exprimer de récepteur fonctionnel à la protéine d'enveloppe considérée. Ainsi, dans le cas particulier de l'enveloppe GALV, on peut envisager d'utiliser une lignée de packaging d'origine humaine dont le génome a été modifié par inactivation du gène codant le récepteur de l'enveloppe (i.e., le récepteur Glvr-1 de GALV). La lignée de packaging utilisée est une lignée exprimant les régions gag et pol de rétrovirus, et éventuellement la région env d'un rétrovirus. Le vecteur rétroviral décrit ci-dessus, comprenant une séquence nucléique codant une protéine fusogène selon l'invention constitue un autre objet de la présente invention. Un tel vecteur comprend avantageusement une séquence LTR à chaque extrémité et un site d'encapsidation.

[0071] Lorsque la protéine d'enveloppe est exprimée à partir d'une particule rétrovirale, la mise en contact des cellules à traiter (notamment à détruire) avec l'enveloppe fusogène est réalisée par mise en contact des cellules in vitro, ex vivo ou in vivo avec les particules rétrovirales. L'infection des cellules conduit à l'expression de l'enveloppe dans les membranes cellulaires. Ces protéines d'enveloppe sont ensuite capables d'induire la fusion des cellules traitées avec tout cellule exprimant le récepteur de l'enveloppe.

[0072] A titre d'exemple plus spécifique, le vecteur rétroviral ainsi produit peut être introduit dans des cellules humaines cibles (par exemple des cellules cancéreuses, des cellules infectées par un virus ou produites dans le cas de maladies autoimmunes) pour générer une réaction toxique pour ladite cellule, résultant du caractère fusogénique de l'enveloppe.

[0073] Bien entendu, les protéines d'enveloppe fusogènes peuvent également être produites par expression à partir de tout autre système vecteur, notamment à partir d'un vecteur plasmique ou viral. Un exemple particulier est un vecteur adénoviral comprenant un acide nucléique codant une enveloppe telle que définie ci-avant. La préparation de tels adénovirus peut être réalisée selon les techniques connues de l'homme du métier, par exemple par délétion de tout ou partie de la région E1, E2, E3 et/ou E4 du génome adénoviral, insertion dans ce génome de l'acide nucléique codant, puis introduction du génome ainsi préparé dans une cellule de packaging appropriée, par exemple dérivée des cellules 293, le cas échéant en présence de plasmide(s) ou virus helper. Dans ce mode de mise en oeuvre, il n'est pas nécessaire que la lignée de packaging utilisée soit dépourvue du récepteur d'enveloppe, puisque la phase de production conduit à une lyse des cellules par les adénovirus.

[0074] Plus particulièrement, cette utilisation selon l'invention peut être appliquée à la destruction de cellules sensibles à l'enveloppe utilisée, (par exemple GALV), en particulier de cellules possédant le récepteur de l'enveloppe utilisée (le récepteur Glvr-1 pour GALV). Les propriétés fusogènes peuvent ainsi être appliquées au traitement de cellules humaines pathologiques (cancéreuse, resténose, autoimmunes, etc.).

[0075] D'autres aspects et avantages de la présente invention apparaîtront à la lecture des exemples qui suivent, qui doivent être considérés comme illustratifs et non limitatifs.

Légende des Figures

FIGURE 1:

[0076] Séquence de l'enveloppe GALV (correspondant à la partie 3' du génome du virus), de l'acide aminé en position 1 à l'acide aminé en position 685 (SEQ ID NO: 1).

FIGURE 2:

[0077] Séquence de la protéine d'enveloppe du rétrovirus 4070A (SEQ ID NO:6). Le domaine cytoplasmique s'étend 10 des résidus 635 à 667.

FIGURE 3:

[0078] Séquence de la partie 3' du génome du virus GALV telle que décrite dans l'art antérieur (SEQ ID NO:5). La région correspondant à la protéine d'enveloppe s'étend du nucléotide 1 au nucléotide 2004, correspondant aux nucléotides 5552 à 7555 du génome.

FIGURE 4:

20

[0079] Comparaison de la séquence nucléique et protéique du domaine cytoplasmique des protéines d'enveloppe de séquence SEQ ID NO:1 et 5.

FIGURE 5:

25

[0080] Comparaison de la séquence protéique du domaine cytoplasmique des protéines d'enveloppe de séquence SEQ ID NO:2 et 5.

Figure 6:

30

45

55

[0081] Comparaison de la séquence d'acides aminés de domaines cytoplasmiques de protéines d'enveloppe de

[0082] Dans la description, les exemples et les revendications, il est fait référence au Listing de Séquences, dont le texte libre est reproduit ci-dessous:

35 <223> Enveloppe GALV

<223> Enveloppe GALV <223> Extrémité C-terminale Enveloppe GALV 40

<223> Domaine Cytoplasmique Enveloppe GALV

<223> Enveloppe GALV

<223> Enveloppe amphotrope 4070A

<223> Oligonucléotide OUGalv5' Nsi

<223> Oligonucléotide OLCT1Cla 50

<223> Oligonucléotide OLCT2Cla

<223> Oligonucléotide OLCT3Cla

<223> Oligonucléotide OLCT4Cla

<223> Oligonucléotide 5' Nhe1

<223> Oligonucléotide 3' Xba1

<223> Oligonucléotide 3' Xba1

5 Exemples

10

30

35

40

50

Exemple 1

[0083] Constructions génétiques codant pour une enveloppe GALV non fusogénique.

1.1. Plasmides et constructions.

[0084] Le plasmide CMV-GALV (Chapel-Fernandes et al., 1998) exprime le gène env codant pour la glycoprotéine d'enveloppe du rétrovirus GALV (gibbon ape leukemia virus). Les sites Nsil et Clal sont uniques à l'extrémité 3' du gène env et ont été utilisés pour cloner les fragments suivants :

- CT1, dont l'extrémité 3' (nt 7663) est dans le LTR (long terminal repeat, début: nt 7651) de GALV,
- CT2, CT3, et CT4 dont les extrémités 3' (respectivement aux positions 7606, 7588 et 7552) sont dans la région située entre le gène env et le LTR. Les positions ci-dessus sont données par référence à la séquence génomique de GALV.

[0085] Ces fragments sont obtenus par PCR au moyen d'un oligonucleotide "upper" commun (OUGalv5'Nsi), et d'oligonucléotides "lower" uniques pour chaque fragment (OLCT1Cla, OLCT2Cla, OLCT3Cla, et CLCT4Cla), apportant un codon stop dans les trois cadres de lecture et en particulier celui propre au gène env, suivis d'un site Clal. Les séquences des oligonucléotides, obtenus à partir de la séquence du GALV, sont :

OUGalv5'Nsi (SEQ ID NO: 7):

5'-GAGCGCCAGAAAAGCCAAAACTGGTATGAAGG

OLCT1Cla (SEQ ID NO: 8):

5'- GATCATCGATTATTTACACTTCTTTCATTCCCCCATTTCTCTTGTG

OLCT2Cla (SEQ ID NO: 9):

5'-GATCATCGATTATTTAAAAGGTTACCTTCGTTCTCTAGGGCCTGA

45 OLCT3Cla (SEQ ID NO: 10):

5'-GATCATCGATTATTTATTTATAGGGCCTGATATTTTGTCTAAGGACCA

OLCT4Cla (SEQ ID NO: 11):

55 5'- GATCATCGATTATTTATTTAACATGCACTTATCCTATCATTGATGAAT
TGA

[0086] Les fragments d'ADN obtenus par PCR ont été ensuite purifiés, digérés par les enzymes Nsil et Clal, et clonés dans le plasmide CMV-GALV ouvert aux sites Nsil et Clal. Les quatre plasmides résultants codent pour les enveloppes dénommées GALV-CT1, GALV-CT2, GALV-CT3 et CMV-GALV-CT4. Les plasmides FBASALF (Cosset et al., J. Virol. 69 (1995) 7430) et FBARlessSALF (Lavillette et al., J. Virol. 1998, In press) codent pour des enveloppes amphotropes, non fusogéniques (enveloppe A) et fusogéniques (enveloppe Arless), respectivement. Ces plasmides sont utilisés comme contrôles négatifs et positifs dans les tests de syncytium.

1.2 Cellules et tests de fusion.

[0087] Les cellules humaines TE671 sont issues d'un rhabdomyosarcome humain (ATCC CRL8805), et les cellules NIH-3T3 sont des fibroblastes de souris.

[0088] Les tests de fusions sont réalisés comme publié antérieurement (Lavillette et al., 1998). Les cellules TE671 ensemencées à 5x106 cellules dans des boîtes de 35 mm de diamètre sont transfectées avec 2pg des divers plasmides par la technique de phosphate de calcium. 48 hrs post-transfection, les cellules sont trypsinées et ré-ensemencées dans des boîtes de 35 mm de diamètre à une densité de 2x106 cellules par boîte. Après adhésion de ces cellules productrices de glycoprotéines d'enveloppes, des cellules indicatrices (soit TE671, soit 3T3) sont ajoutées, à une densité de 2x10⁶ cellules par boîte. Les cocultures sont alors maintenues pendant 24-48 hrs et les syncytium sont comptés après fixation au May-Grunwald-Giemsa.

[0089] Les résultats obtenus sont présentés dans le tableau 1 ci-dessous :

20

25

30

35

5

10

Tableau 1

Enveloppesa	Fusogénicité (Syncytia) ^b								
,	3T3	TE671							
-	-	-							
Α	-	-							
Arless	+	+							
GALV-CT1		-							
GALV-CT2		-							
GALV-CT3	-	+/-							
GALV-CT4	-	+							

a : Enveloppe exprimée dans les TE671 transfectées.

1.3. Conclusions

[0090] Les résultats présentés dans le Tableau 1 ci-dessus montrent que l'enveloppe GALV de type sauvage, exprimée à partir d'une construction génétique constituée essentiellement de la séquence codante (i.e., jusqu'au codon stop en position 2004) présente une phénotype fusogénique important dans les cellules humaines (GALV-CT4). En revanche, de manière surprenante, l'enveloppe GALV codée par un vecteur d'expression dans lequel la séquence issue de GALV contient le gène env et une partie au moins de la région située entre ce gène et le LTR3' (ainsi que, le cas échéant, un morceau de LTR3') n'est pas fusogénique en test de syncytium (GALV-CT1, GALV-CT2). Quand on étend cette séquence à partir de l'extrémité 3' (enveloppe CT4 à CT1), on révèle donc progressivement un phénotype non-fusogénique. On en déduit qu'il existe, en 3' de la séquence publiée du gène env, une séquence qui contrôle négativement la fusogénicité de l'enveloppe. Cette fusogénicité semble être spécifique du résultat d'une interaction avec le récepteur du GALV (PiT-1) car seules les cellules PiT-1 positives (les TE671) sont capables de former des syncytia.

Exemple 2:

55

[0091] Constructions génétiques codant pour une enveloppe GALV non-fusogénique.

2.1. Constructions génétiques

. Plasmide pGALV-1

[0092] L'ADNc de l'enveloppe de GALV a été cloné par PCR à partir du vecteur d'expression pMOV GALV (Miller et

b : Formation de syncytium dans les cocultures des cellules productrices d'enveloppes avec les 3T3 ou avec les TE671

al., J. Virol. 65 (1991) 2220) dans le plasmide commercial pCl (Stratagène) aux sites Nhe1 et Xbal. L'ADNc cloné à une taille de 2004 paires de bases (nt 5552 (ATG du gène) au nt 7555 (codon stop)).

Oligonucléotide 5' Nhe1 (SEQ ID NO: 12)

5

5'-GCTAGCATGGTATTGCTGCCTGGGTCCATGCTTCTCACCT-3'

Oligonucléotide 3' Xba1 (SEQ ID NO: 13)

10

5'-TCTAGATTAACATGCACTTATCCTATCATTG

. Plasmide pGALV-2

[0093] L'ADNc du gène de l'enveloppe GALV est obtenu par PCR, la partie 3' du gène est prolongée jusqu'au site Fst1 qui se situe dans le long terminal repeat (LTR). L'ADNc cloné dans le plasmide pC1 aux sites Nhe1-Xba1 a une taille de 2118 paires de bases (nt 5552 au nt 7670).

Oligonucléotide 5' Nhe1 (SEQ ID NO: 12)

5'-GCTAGCATGGTATTGCTGCCTGGGTCCATGCTTCTCACCT-3'

25

30

20

Oligonucleotide 3' Xba1 (SEQ ID NO: 14)

. Plasmide témoin

35 [0094] Le plasmide pCMV-4070A est le plasmide pCI dans lequel est cloné dans les sites Nhe1-Xba1, l'ADNc du gène de l'enveloppe amphotrope 4070A (nt 37 au nt 2001, Ott et al. 1990).

5'-TCTAGAAGTTGGCTAAAAAAAAACACTTCTTTCATTCC-3'

2.2. Lignées cellulaires

40 [0095] La lignée cellulaire humaine H293 est une lignée cellulaire embryonaire de rein (ATCC CRL-1573). Les cellules NIH-3T3 sont des fibroblastes de souris.

[0096] Les cellules TelCeb6 sont des cellules dérivées de la lignée humaine TE671 issues d'un rhabdomyosarcome humain (ATCC CRL 8805) (Cosset FL, Lyon).

45 2.3. Etude de fusogénicité

[0097] Les plasmides p-GALV-1 et p-GALV-2 ont été transfectés dans les cellules H293, NIH-3T3 et TelCeb6 par la méthode de phosphate de calcium.

[0098] 5pg de plasmides ont été transfectés dans chaque lignée cellulaire en boite de petri de 60 mm. 24 h après la transfection le milieu est changé. La présence ou l'apparition de fusion cellulaire sont observées dans les 48 h à 72 h post transfection, selon la méthode décrite dans l'exemple 1.2. Les résultats obtenus sont présentés dans le Tableau 2 ci-dessous.

Tableau 2

ſ	Plasmides	fusogénicité sur NIH-3T3	Fusogénicité sur Telceb6	Fusogénicité sur H293
ſ	pas de plasmide	0	0	0

Tableau 2 (suite)

		20.2 (00.10)	
Plasmides	fusogénicité sur NIH-3T3	Fusogénicité sur Telceb6	Fusogénicité sur H293
			0
pCMV-4070a	0	0	<u> </u>
		++	++
pGALV-1	0		
pGALV-2	0	0	l ⁰
pGALV-2			

2.4. Conclusion

5

10

15

20

25

40

[0099] Nous avons montré que l'enveloppe GALV (exprimée à partir du plasmide pGALV-1) pouvait entraîner une forte fusogénicité des cellules qui possèdent le récepteur PiT-1 du GALV (cellules Telceb6 et H293). Les résultats obtenus montrent que cette fusogénicité est abolie quand on prolonge la partie 3' de la séquence exprimée, notamment de 100 pb environ (pGALV2).

Exemple 3

[0100] Pour caractériser plus précisément les mécanismes de fusogénicité, un gène de l'enveloppe GALV a été cloné (plasmide pNp5000) et sa séquence a été réalisée et analysée. De manière surprenante, cette analyse a permis de mettre en évidence un domaine C-terminal étendu par rapport à la séquence décrite dans l'art antérieur. La séquence protéique de cette enveloppe, présentée sur la séquence SEQID NO:2, comprend en effet 685 résidus, et fait apparaître une extrémité C-terminale comprenant la séquence Val-Lys-Ile-Leu-Val-Leu-Arg-Gln-Lys-Tyr-Gln-Ala-Leu-Glu-Asn-Glu-Gly-Asn-Leu (SEQ ID NO:3). Plus particulièrement, le domaine intracytoplasmique de cette protéine d'enveloppe comprend la séquence Lys-Leu-Val-Gln-Phe-Ile-Asn-Asp-Arg-Ile-Ser-Ala-Val-Lys-Ile-Leu-Val-Leu-Arg-Gln-Lys-Tyr-Gln-Ala-Leu-Glu-Asn-Glu-Gly-Asn-Leu (SEQ ID NO:4). Une comparaison de la séquence du domaine intracytoplasmique de la protéine d'enveloppe déterminée ci-dessus avec la séquence SEQ ID NO:5 est représentée sur les figures 4 et 5.

[0101] Il est intéressant de noter que le domaine C-terminal identifié ci-dessus est absent des constructions GALV-CT4 et pGALV1, qui expriment une enveloppe GALV fusogénique (cf. Tableaux 1 et 2), alors que la séquence SEQ ID NO:1 (nt 1 à 2058) exprime une enveloppe non fusogénique. Ces résultats indiquent que l'intégrité de ce domaine est importante dans la manifestation des propriétés fusogéniques de l'enveloppe GALV. Ces résultats montrent aussi que la modification de la région C-terminale, notamment du domaine cytoplasmique, de la protéine GALV, permet de construire des protéines fusogéniques, utilisables comme agents toxiques.

[0102] Dans cette perspective, une comparaison de la séquence des domaines C-terminaux de différentes protéines d'enveloppe a été entreprise. Ainsi, la figure 6 montre l'alignement des séquences protéiques des domaines cytoplasmiques de plusieurs enveloppes de rétrovirus de type C. Cet alignement fait apparaître certaines homologies, comme notamment la présence d'un site consensus de clivage LVL. La présence de ces homologies sugggère que l'altération des domaines cytoplasmiques des protéines d'enveloppe, notamment rétrovirales, permet de produire des protéines fusogéniques, comme dans le cas de l'enveloppe GALV.

Exemple 4

[0103] Constructions génétiques codant pour une enveloppe de type GALV chimérique.

3.1. Construction du plasmide pGALV-3

[0104] La partie cytoplasmique du gène de l'enveloppe GALV (à partir du nt 7501 de la séquence SEQ ID NO 1 ou 5) a été remplacée par la partie cytoplasmique du gène de l'enveloppe du virus amphotrope 4070A (nt 1903 au nt 2001), SEQ ID NO: 6. L'ADNc cloné dans le plasmide pCI a donc une taille de 2061 paires de bases.

[0105] Cet ADN chimérique a été construit comme suit :

- 1) par PCR on a obtenu un fragment s'entendant de l'acide aminé 635 à l'acide aminé 667 de la séquence SEQ ID NO: 6.
- 2) on a remplacé les acides aminés 655 à 668 de la séquence SEQ ID NO: 5 ou 655 à 685 de la séquence SEQ
 ID NO: 2 par le fragment obtenu dans l'étape 1) ci-dessus.

3.2. Etude de fusogénicité

[0106] Les plasmides p-GALV-1 et p-GALV-3 ont été transfectés dans les cellules H293, NIH-3T3 et TelCeb6 par la méthode de phosphate de calcium. 5µg de plasmides ont été transfectés dans chaque lignée cellulaire en boite de petri de 60 mm. 24 h après la transfection le milieu est changé. La présence ou l'apparition de fusion cellulaire sont observées dans les 48 h à 72 h post transfection, selon la méthode décrite dans l'exemple 1.2. Les résultats obtenus sont présentés dans le Tableau 3 ci-dessous.

Tableau 3

Plasmides	fusogénicité sur NIH-3T3	Fusogénicité sur Telceb6	Fusogénicité sur H293
pas de plasmide	0	0	0
pCMV-4070a	0	0	0
pGALV-1	0	++	++
pGALV-3	0	0	0

[0107] Ces résultats montrent de manière surprenante qu'une enveloppe chimérique, comprenant un domaine extracellulaire et transmembranaire fonctionnel de type GALV, et un domaine cytoplasmique hétérologue, est dépourvue de phénotype fusogénique, lorsqu'elle est exprimée dans une cellule humaine exprimant le récepteur PiT-1.

[0108] Ces résultats illustrent les propriétés avantageuses des méthodes et compositions selon la présente invention

Annexe à la description

[0109]

55

	[0,00]		
5		LISTE DE SEQUENCES	
		110> UNIVERSITE PIERRE ET MARIE CURIE (PARIS VI)	
		120> PROTEINES D'ENVELOPPE, METHODES ET UTILISATIONS	
10			
		130> B4124A - PB/KM	
		:140> :141>	
15		2160> 14	
		170> PatentIn Ver. 2.1	
		2210> 1	
20		<211> 2129	
		<212> ADN <213> Séquence artificielle	
		<220>	
25		<pre><220> <223> Description de la séquence artificielle: ENVELOPPE GALV</pre>	
		<220>	
		<221> CDS <222> (1)(2058)	
30			
50		<400> 1 atg gta ttg ctg cct ggg tcc atg ctt ctc acc tca aac ctg cac cac 48 atg gta ttg ctg cct ggg tcc atg ctt ctc acc tca aac ctg cac cac 48	
		Met Val Leu Pro Gly Ser Met Leu Leu Ini Ser Asi 200 115	
		1	
35		ctt cgg cac cag atg agt cct ggg agc tgg aaa aga ctg atc atc ctc 96 Leu Arg His Gln Met Ser Pro Gly Ser Trp Lys Arg Leu Ile Ile Leu	
		Leu Arg His Gill Met Sel 170 of 25 30	
		tta age tge gta tte gge gge gge ggg aeg agt etg caa aat aag aac 144	
		Leu Ser Cys Val Phe Gly Gly Gly Gly Ini Ser Bed Gli Abb 45	
40		33	,
		ccc cac cag ccc atg acc ctc act tgg cag gta ctg tcc caa act gga 192 Pro His Gln Pro Met Thr Leu Thr Trp Gln Val Leu Ser Gln Thr Gly	
		50 55 60	
45		gac gtt gtc tgg gat aca aag gca gtc cag ccc cct tgg act tgg tgg 240)
		Asp Val Val Trp Asp Thr Lys Ala Val Gln Pro Pro Trp Thr Trp 65 70 75 80	
			8
		ccc aca ctt aaa cct gat gta tgt gcc ttg gcg gct agt ctt gag tcc 280 Pro Thr Leu Lys Pro Asp Val Cys Ala Leu Ala Ala Ser Leu Glu Ser	
50		85	
		tgg gat atc ccg gga acc gat gtc tcg tcc tct aaa cga gtc aga cct 33	6
		Trp Asp Ile Pro Gly Thr Asp Val Ser Ser Ser Lys Arg Val Arg Pro	

100 105 110 ccg gac tca gac tat act gcc gct tat aag caa atc acc tgg gga gcc 384

	Pro	Asp	Ser 115		Tyr	Thr	Ala	Ala 120		Lys	Gln	Ile	Thr 125	_	Gly	Ala	
5																acc Thr	432
10	ttc Phe 145	tac Tyr	gta Val	tgt Cys	ccc Pro	cgg Arg 150	gat Asp	ggc	cgg Arg	acc Thr	ctt Leu 155	tca Ser	gaa Glu	gct Ala	aga Arg	agg Arg 160	480
15											gaa Glu						528
											tca Ser						576
20	gta Val	aaa Lys	tgg Trp 195	gac Asp	caa Gln	aat Asn	agc Ser	gaa Glu 200	tgg Trp	act Thr	caa Gln	aaa Lys	ttt Phe 205	caa Gln	cag Gln	tgt Cys	624
25	cac His	cag Gln 210	acc Thr	ggc Gly	tgg Trp	tgt Cys	aac Asn 215	ccc Pro	ctt Leu	aaa Lys	ata Ile	gat Asp 220	ttc Phe	aca Thr	gac Asp	aaa Lys	672
30	gga Gly 225	aaa Lys	tta Leu	tcc Ser	aag Lys	gac Asp 230	tgg Trp	ata Ile	acg Thr	gga Gly	aaa Lys 235	acc Thr	tgg Trp	gga Gly	tta Leu	aga Arg 240	720
	ttc Phe	tat Tyr	gtg Val	tct Ser	gga Gly 245	cat His	cca Pro	ggc Gly	gta Val	cag Gln 250	ttc Phe	acc Thr	att Ile	cgc Arg	tta Leu 255	aaa Lys	768
35	atc Ile	acc Thr	aac Asn	atg Met 260	cca Pro	gct Ala	gtg Val	gca Ala	gta Val 265	ggt Gly	cct Pro	gac Asp	ctc Leu	gtc Val 270	ctt Leu	gtg Val	B16
40	gaa Glu	Gln	gga Gly 275	cct Pro	cct Pro	aga Arg	acg Thr	tcc Ser 280	ctc Leu	gct Ala	ctc Leu	Pro	cct Pro 285	cct Pro	ctt Leu	ccc Pro	864
45	cca Pro	agg Arg 290	gaa Glu	gcg Ala	cca Pro	ccg Pro	cca Pro 295	tct Ser	ctc Leu	ccc Pro	Asp	tct Ser 300	aac Asn	tcc Ser	aca Thr	gcc Ala	912
70	ctg Leu 305	gcg Ala	act Thr	agt Ser	Ala	caa Gln 310	act Thr	ccc Pro	acg Thr	gtg Val	aga Arg 315	aaa Lys	aca Thr	att Ile	gtt Val	acc Thr 320	960
50	cta Leu	aac Asn	act Thr	Pro	cct Pro 325	ccc Pro	acc Thr	aca Thr	Gly	gac Asp 330	aga Arg	ctt Leu	ttt Phe	Asp	ctt Leu 335	gtg Val	1008
55	cag Gln	gly aaa	Ala	ttc Phe 340	cta Leu	acc Thr	tta Leu	Asn	gct Ala 345	acc Thr	aac Asn	cca Pro	gly 999	gcc Ala 350	act Thr	gag Glu	1056

	tct (Сув	Trp 355	Leu	Cys 1	Leu .	Ala	360	GIY	PIO	PIO	171	365				1104
		Ser 370	ser	Gly	Glu '	Val	375	ıyı	261	1111	vaħ	380		•	•		1152
10	tgg Trp 385	Gly	Thr	Gln	Gly	Lys 390	Leu	Thr	Leu	1111	395	401	501	-		400	1200
15	ttg Leu	Суѕ	Ile	Gly	Lys 405	Val	Pro	рпе	1111	410	GIII	1110	500	-,-	415		1248
	Thr	Leu	Ser	11e 420	Asn	Ser	Ser	GIÀ	425	nıs	GIII	ıyı	Deu	430		Ser	1296
20	Asn	His	Ser 435	Trp	Trp	Ala	Сув	440	Int	Gly	п¢с		445	-,-	_	tcc Ser	1344
25	acc Thr	tca Ser 450	Val	ttt Phe	aat Asn	cag Gln	act Thr 455	Arg	gat Asp	tto Phe	tgt Cyf	ato Ile 460		gto Val	cag LGlr	g ctg n L eu	1392
30	att Ile 465	Pro	cgc Arg	atc Ile	tat Tyr	tac Tyr 470	Ту	ect Pro	gaa Glu	gaa Glu	a gti 1 Va: 47	r ner	tta Lev	a caq	g gco n Ala	tat Tyr 480	1440
35	gac Asp	aat Asr	tct Ser	cac His	ccc Pro	Arg	act Thi	t aaa r Lys	a aga	g ga g G1	u AI	t gto a Vai	tca L Sei	act r Le	t acu u Th 49	c cta r Leu 5	1488
35	gct Ala	gtt Val	tta Lev	cto Lei 500	ı Gly	ttg Lev	g 99	a ato	e Th	. WI	g gg a Gl	a ata y Il	agg eGl	t ac y Th 51		t tca y Ser	1536
40	act Thi	gc r Al	c tta a Lei 51	a Ile	t aaa	a gga s Gl	a cc y Pr	t ato o Il 52	e As	c ct p Le	c ca u Gl	g ca n Gl	a gg n Gl 52	,	g ac	a agc r Ser	1584
45	ct: Le	c ca u Gl 53	n Il	c gc e Al	c ata a Il	a ga e As	t go p Al 53	a As	c ct	c cg	ig go :g Al	c ct la Le 54	u 01	a ga .n As	ic to sp S€	a gtc er Val	1632
50	ag Se 54	r Ly	g tt s Le	a ga u Gl	g ga u As	c tc p Se 55	r Le	g ac eu Th	t to r Se	c cl	=u 3	cc ga er Gl 55	ig gt .u Va	a gt	eg ci	c caa eu Glr 560	1680 1
	aa As	it ag	gg ag	ga gg g Gl	c ct y Le	u As	c to	tg ct eu Le	eu Pl	ie r	ta a eu L 70	aa ga ys Gi	aa gg Lu G	gt g ly G	-, -	tc tgt eu Cyf 75	1728
55	go	g go	ec ct	ca aa	ig ga	ıa ga	ag t	gc t	gt t	tt t	ac a	ta g	ac c	ac t	ca g	gt gc	a 1776

·	Ala Al	a Leu	Lys G1 580	u Glu	Cys	Cys	Phe 585	-	Ile	Asp	His	Ser 590	•	Ala	
5			tcc at Ser Me				Lys								1824
10	tta ga Leu Gl 61	u Arg	cag aa Gln Ly	a agc s Ser	caa Gln 615	aac Asn	tgg Trp	tat Tyr	gaa Glu	gga Gly 620	Trp	ttc Phe	aat Asn	aac Asn	1872
15	tcc cc Ser Pr 625	t tgg o Trp	ttc ac Phe Th	t acc r Thr 630	Leu	cta Leu	tca Ser	acc Thr	atc Ile 635	gct Ala	Gly aaa	ccc Pro	cta Leu	tta Leu 640	1920
	ctc ct Leu Le	c ctt u Leu	ctg tt Leu Le 64	u Leu	atc Ile	ctc Leu	G] A 333	cca Pro 650	tgc Cys	atc Ile	atc Ile	aat Asn	aag Lys 655	tta Leu	1968
20	gtt ca Val Gl	n Phe	atc aa Ile As: 660	t gat n Asp	agg Arg	ata Ile	agt Ser 665	gca Ala	gtt Val	aaa Lys	att Ile	ctg Leu 670	gtc Val	ctt Leu	2016
25	aga ca Arg Gl											taa			2058
	ttttgc	cta a	gattag	agc t	attca	acaaç	g aga	aaatg	1333	gaat	gaaa	iga a	ıgtgt	tttt	2118
30	tttagc	caac t													2129
35	<210> : <211> (<212> <213> ; <223> 1	885 Séquen				ıence	e art	ific	eiell:	.e: F	NVEL	OPPE	:		
40	<400> 2 Met Val		Leu Pro		Ser	Met	Leu	Leu 10	Thr	Ser	Asn	Leu	His 15	His	
	Leu Arg	His (Gln Met 20	Ser	Pro	Gly	Ser 25	Trp	Lys	Arg	Leu	Ile 30	Ile	Leu	
45	Leu Sei	Cys \ 35	Val Phe	Gly	Gly	Gly 40	Gly	Thr	Ser	Leu	Gln 45	Asn	Lys	Asn	
50	Pro His		Pro Met	Thr	Leu 55	Thr	Trp	G1n	Val	Leu 60	Ser	Gln	Thr	Gly	
	Asp Val	. Val :	Trp Asp	Thr 70	Lys	Ala	Val	Gln	Pro 75	Pro	Trp	Thr	Trp	Trp 80	
55	Pro Thi	Leu 1	Lys Pro		Val	Сув	Ala	Leu 90	Ala	Ala	Ser	Leu	Glu 95	Ser	

	Trp Asp Ile Pro Gly	Thr Asp Val Ser Se	er Ser Lys Arg Val 110	Arg Pro
5	Pro Asp Ser Asp Tyr 115	Thr Ala Ala Tyr Ly	ys Gln Ile Thr Trp 125	Gly Ala
	Ile Gly Cys Ser Tyr 130	Pro Arg Ala Arg T	hr Arg Met Ala Ser 140	Ser Thr
10	Phe Tyr Val Cys Pro 145	Arg Asp Gly Arg T	hr Leu Ser Glu Ala 155	Arg Arg 160
	Cys Gly Gly Leu Glu	Ser Leu Tyr Cys L	ys Glu Trp Asp Cys 170	Glu Thr 175
15	Thr Gly Thr Gly Tyr	Trp Leu Ser Lys S	Ger Ser Lys Asp Leu 190	Ile Thr
20	Val Lys Trp Asp Glr 195	200		
	His Gln Thr Gly Try 210	o Cys Asn Pro Leu I 215	Lys Ile Asp Phe Thr 220	Asp Lys
25	Gly Lys Leu Ser Lys 225	230	233	
	Phe Tyr Val Ser Gl	5	250	
30	260	265	Gly Pro Asp Leu Val 270	
	275	280	Ala Leu Pro Pro Pro 285	
35	290	295	Pro Asp Ser Asn Ser 300	
40	305	310	Val Arg Lys Thr Ilo 315	920
	32	25	Asp Arg Leu Phe As 330	
45	340	345	Thr Asn Pro Gly Al	
	355	360	Pro Pro Tyr Tyr Gl 365	
50	370	375	Thr Asp Leu Asp Ar 380	
	385	390	Thr Glu Val Ser Gl 395	
55	Leu Cys Ile Gly I	Lys Val Pro Phe Thr	His Gln His Leu C	ys Asn Gln

					405					410					415	
5	Thr	Leu	Ser	Ile 420	Asn	Ser	Ser	Gly	Asp 425		Gln	Tyr	Leu	Leu 430		Ser
	Asn	His	Ser 435	Trp	Trp	Ala	Сув	Ser 440	Thr	Gly	Leu	Thr	Pro 445	Сув	Leu	Ser
10	Thr	Ser 450	Val	Phe	Asn	Gln	Thr 455	Arg	Asp	Phe	Сув	Ile 460		Val	Gln	Leu
	Ile 465	Pro	Arg	Ile	Tyr	Tyr 470	Tyr	Pro	Glu	Glu	Val 475	Leu	Leu	Gln	Ala	Tyr 480
15	Авр	Asn	Ser	His	Pro 485	Arg	Thr	Lys	Arg	Glu 490	Ala	Val	Ser	Leu	Thr 495	Leu
	Ala	Val	Leu	Leu 500	Gly	Leu	Gly	Ile	Thr 505	Ala	Gly	Ile	Gly	Thr 510	Gly	Ser
20	Thr	Ala	Leu 515	Ile	Lув	Gly	Pro	11e 520	Asp	Leu	Gln	Gln	Gly 525	Leu	Thr	Ser
25	Leu	Gln 530	Ile	Ala	Ile	Asp	Ala 535	Asp	Leu	Arg	Ala	Leu 540	Gln	Asp	Ser	Val
	Ser 545	Lys	Leu	Glu	Asp	Ser 550	Leu	Thr	Ser	Leu	Ser 555	Glu	Val	Val	Leu	Gln 560
30	Asn	Arg	Arg	Gly	Leu 565	Asp	Leu	Leu	Phe	Leu 570	Lys	Glu	Gly	Gly	Leu 575	Сув
	Ala	Ala	Leu	Lys 580	Glu	Glu	Cys	Cys	Phe 585	Tyr	Ile	Asp	His	Ser 590	Gly	Ala
35	Val	Arg	Дар 595	Ser	Met	Lys	Lys	Leu 600	Lys	Glu	Lys	Leu	Asp 605	Lys	Arg	Gln
	Leu	Glu 610	Arg	Gln	Lys	Ser	Gln 615	Asn	Trp	Tyr	Glu	Gly 620	Trp	Phe	Asn	Asn
40	Ser 625	Pro	Trp	Phe	Thr	Thr 630	Leu	Leu	Ser	Thr	Ile 635	Ala	Gly	Pro	Leu	Leu 640
45	Leu	Leu	Leu	Leu	Leu 645	Leu	Ile	Leu	Gly	Pro 650	Cys	Ile	Ile	Asn	Lys 655	Leu
	Val	Gln	Phe	Ile 660	Asn	Asp	Arg	Ile	Ser 665	Ala	Val	Lys	Ile	Leu 670	Val	Leu
50	Arg	Gln	L ув 675	Tyr	Gln	Ala	Leu	Glu 680	Asn	Glu	Gly	Asn	Leu 685			
		.> 19														
55		> PR > Sé		ice a	rtif	icie	lle									

5	<pre><220> <223> Description de la séquence artificielle: Extrémité</pre>														
	Val Lys Ile Leu Val Leu Arg Gln Lys Tyr Gln Ala Leu Glu Asn Glu 1 10 15														
10	Gly Asn Leu														
15	<210> 4 <211> 31 <212> PRT <213> Séquence artificielle <220>														
20	<223> Description de la séquence artificielle: Domaine cytoplasmique enveloppe GALV														
20	<400> 4 Lys Leu Val Gln Phe Ile Asn Asp Arg Ile Ser Ala Val Lys Ile Leu 5 10 15														
25	Val Leu Arg Gln Lys Tyr Gln Ala Leu Glu Asn Glu Gly Asn Leu 20 25 30														
30	<210> 5 <211> 2129 <212> ADN <213> Séquence artificielle														
35	<220> <223> Description de la séquence artificielle: Enveloppe GALV														
40	<220> <221> CDS <222> (1)(2004)														
	<pre><400> 5 atg gta ttg ctg cct ggg tcc atg ctt ctc acc tca aac ctg cac cac 48 Met Val Leu Leu Pro Gly Ser Met Leu Leu Thr Ser Asn Leu His His 1 15</pre>														
45	ctt cgg cac cag atg agt cct ggg agc tgg aaa aga ctg atc atc ctc 96 Leu Arg His Gln Met Ser Pro Gly Ser Trp Lys Arg Leu Ile Ile Leu 20 25 30														
50	tta agc tgc gta ttc ggc ggc ggc ggg acg agt ctg caa aat aag aac 144 Leu Ser Cys Val Phe Gly Gly Gly Gly Thr Ser Leu Gln Asn Lys Asn 35 40 45														
55	ccc cac cag ccc atg acc ctc act tgg cag gta ctg tcc caa act gga 192 Pro His Gln Pro Met Thr Leu Thr Trp Gln Val Leu Ser Gln Thr Gly 50 55 60														

5	gac Asp 65	gtt Val	gtc Val	tgg Trp	gat Asp	aca Thr 70	aag Lys	gca Ala	gtc Val	cag Gln	ccc Pro 75	cct Pro	tgg Trp	act Thr	tgg Trp	tgg Trp 80	240
	ccc Pro	aca Thr	ctt Leu	aaa Lys	cct Pro 85	gat Asp	gta Val	tgt Cys	gcc Ala	ttg Leu 90	gcg Ala	gct Ala	agt Ser	ctt Leu	gag Glu 95	tcc Ser	288
10	tgg Trp	gat Asp	atc Ile	ccg Pro 100	gga Gly	acc Thr	gat Asp	gtc Val	tcg Ser 105	tcc Ser	tct Ser	aaa Lys	cga Arg	gtc Val 110	aga Arg	cct Pro	336
15			tca Ser 115														384
20			tgc Cys														432
	ttc Phe 145	tac Tyr	gta Val	tgt Cys	ccc Pro	cgg Arg 150	gat Asp	ggc Gly	cgg Arg	acc Thr	ctt Leu 155	tca Ser	gaa Glu	gct Ala	aga Arg	agg Arg 160	480
25	tgc Cys	G1 y 999	GJ Y 999	cta Leu	gaa Glu 165	tcc Ser	cta Leu	tac Tyr	tgt Cys	aaa Lys 170	gaa Glu	tgg Trp	gat Asp	tgt Cys	gag Glu 175	acc Thr	528
30	acg Thr	gjå aaa	acc Thr	ggt Gly 180	tat Tyr	tgg Trp	cta Leu	tct Ser	aaa Lys 185	tcc Ser	tca Ser	aaa Lys	gac Asp	ctc Leu 190	ata Ile	act Thr	576
35	gta Val	aaa Lys	tgg Trp 195	gac Asp	caa Gln	aat Asn	agc Ser	gaa Glu 200	tgg Trp	act Thr	caa Gln	aaa Lys	ttt Phe 205	caa Gln	cag Gln	tgt Cys	624
	cac His	cag Gln 210	acc Thr	ggc Gly	tgg Trp	tgt Cys	aac Asn 215	ccc Pro	ctt Leu	aaa Lys	Ile	gat Asp 220	ttc Phe	aca Thr	gac Asp	aaa Lys	672
40	gga Gly 225	aaa Lys	tta Leu	tcc Ser	aag Lys	gac Asp 230	tgg Trp	ata Ile	acg Thr	gga Gly	aaa Lys 235	acc Thr	tgg Trp	gga Gly	Leu	aga Arg 240	720
45	ttc Phe	tat Tyr	gtg Val	tct Ser	gga Gly 245	cat His	cca Pro	ggc Gly	gta Val	cag Gln 250	ttc Phe	acc Thr	att Ile	cgc Arg	tta Leu 255	aaa Lys	768
50	atc Ile	acc Thr	aac Asn	atg Met 260	cca Pro	gct Ala	gtg Val	Ala	gta Val 265	ggt Gly	cct Pro	gac Asp	Leu	gtc Val 270	ctt Leu	gtg Val	816
	gaa Glu	caa Gln	gga Gly 275	cct Pro	cct Pro	aga Arg	acg Thr	tcc Ser 280	ctc Leu	gct Ala	ctc Leu	Pro	cct Pro 285	cct Pro	ctt Leu	ccc Pro	864
55	cca	agg	gaa	gcg	cca	ccg	сса	tct	ctc	ccc	gac	tct	aac	tcc	aca	gcc	912

	Pro	Arg 290	Gl u	Ala	Pro	Pro	Pro 295	Ser	Leu	Pro	qaA	Ser 300	Asn	Ser	Thr	Ala	
5	ctg Leu 305	gcg Ala	act Thr	agt Ser	gca Ala	caa Gln 310	act Thr	ccc Pro	acg Thr	gtg Val	aga Arg 315	aaa Lys	aca Thr	att Ile	gtt Val	acc Thr 320	960
10	cta Leu	aac Asn	act Thr	ccg Pro	cct Pro 325	ccc Pro	acc Thr	aca Thr	ggc Gly	gac Asp 330	aga Arg	ctt Leu	ttt Phe	gat Asp	ctt Leu 335	gtg Val	1008
	cag Gln	Gly ggg	gcc Ala	ttc Phe 340	cta Leu	acc Thr	tta Leu	aat Asn	gct Ala 345	acc Thr	aac Asn	cca Pro	Gly 999	gcc Ala 350	act Thr	gag Glu	1056
15	tct Ser	tgc Cys	tgg Trp 355	ctt Leu	tgt Cys	ttg Leu	gcc Ala	atg Met 360	ggc Gly	ccc Pro	cct Pro	tat Tyr	tat Tyr 365	gaa Glu	gca Ala	ata Ile	1104
20	gcc Ala	tca Ser 370	tca Ser	gga Gly	gag Glu	gtc Val	gcc Ala 375	tac Tyr	tcc Ser	acc Thr	gac Asp	ctt Leu 380	gac Asp	cgg Arg	tgc Cys	cgc Arg	1152
25	tgg Trp 385	ggg ggg	acc Thr	caa Gln	gga Gly	aag Lys 390	ctc Leu	acc Thr	ctc Leu	act Thr	gag Glu 395	gtc Val	tca Ser	gga Gly	cac His	999 Gly 400	1200
	ttg Leu	tgc Cys	ata Ile	gga Gly	aag Lys 405	gtg Val	ccc Pro	ttt Phe	acc Thr	cat His 410	cag Gln	cat His	ctc Leu	tgc Cys	aat Asn 415	cag Gln	1248
30	acc Thr	cta Leu	tcc Ser	atc Ile 420	aat Asn	tcc Ser	tcc Ser	gga Gly	gac Asp 425	cat His	cag Gln	tat Tyr	ctg Leu	ctc Leu 430	ccc Pro	tcc Ser	1296
35	aac Asn	cat His	agc Ser 435	tgg Trp	tgg Trp	gct Ala	tgc Cys	agc Ser 440	Thr	ggc Gly	ctc Leu	acc Thr	cct Pro 445	tgc Cys	ctc Leu	tcc Ser	1344
40	acc Thr	tca Ser 450	Val	ttt Phe	aat Asn	cag Gln	act Thr 455	Arg	gat Asp	ttc Phe	tgt Cys	atc Ile 460	cag Gln	gtc Val	cag Gln	ctg Leu	1392
	att Ile 465	cct Pro	cgc Arg	atc Ile	tat Tyr	tac Tyr 470	Tyr	cct Pro	gaa Glu	gaa Glu	gtt Val 475	Leu	tta Leu	cag Gln	gcc Ala	tat Tyr 480	1440
45	gac	aat Asn	tct Ser	cac His	ccc Pro 485	Arg	act Thr	aaa Lys	aga Arg	gag Glu 490	Ala	gtc Val	tca Ser	ctt Leu	acc Thr 495	cta Leu	1488
50	gct Ala	gtt Val	tta Leu	ctg Lev 500	Gly	ttg Lev	gga Gly	ato Ile	acg Thr	Ala	gga Gly	ata Ile	ggt Gly	act Thr 510	GIA	tca Ser	1536
55	act Thi	gcc Ala	tta Leu 515	ı Ile	aaa Lys	gga Gly	cct Pro	ata 520	Asp	cto Lev	cag 1 Glr	g caa n Glr	ggo Gly 525	Leu	aca Thr	agc Ser	1584

	ctc cag atc gcc ata gat gct gac ctc cgg gcc ctc caa gac tca gtc 1632 Leu Gln Ile Ala Ile Asp Ala Asp Leu Arg Ala Leu Gln Asp Ser Val 530 535 540
5	agc aag tta gag gac tca ctg act tcc ctg tcc gag gta gtg ctc caa 1680 Ser Lys Leu Glu Asp Ser Leu Thr Ser Leu Ser Glu Val Val Leu Gln 545 550 555 560
10	aat agg aga ggc ctt gac ttg ctg ttt cta aaa gaa ggt ggc ctc tgt 1728 Asn Arg Arg Gly Leu Asp Leu Leu Phe Leu Lys Glu Gly Gly Leu Cys 565 570 575
15	gcg gcc cta aag gaa gag tgc tgt ttt tac ata gac cac tca ggt gca 1776 Ala Ala Leu Lys Glu Glu Cys Cys Phe Tyr Ile Asp His Ser Gly Ala 580 585 590
20	gta cgg gac tcc atg aaa aaa ctc aaa gaa aaa ctg gat aaa aga cag 1824 Val Arg Asp Ser Met Lys Lys Leu Lys Glu Lys Leu Asp Lys Arg Gln 595 600 605
	tta gag cgc cag aaa agc caa aac tgg tat gaa gga tgg ttc aat aac 1872 Leu Glu Arg Gln Lys Ser Gln Asn Trp Tyr Glu Gly Trp Phe Asn Asn 610 615 620
25	tcc cct tgg ttc act acc ctg cta tca acc atc gct ggg ccc cta tta 1920 Ser Pro Trp Phe Thr Thr Leu Leu Ser Thr Ile Ala Gly Pro Leu Leu 625 630 635 640
30	ctc ctc ctt ctg ttg ctc atc ctc ggg cca tgc atc atc aat aag tta 1968 Leu Leu Leu Leu Leu Ile Leu Gly Pro Cys Ile Ile Asn Lys Leu 645 650 655
35	gtt caa ttc atc aat gat agg ata agt gca tgt taa aattctggtc 2014 Val Gln Phe Ile Asn Asp Arg Ile Ser Ala Cys 660 665
	cttagacaaa atatcaggcc ctagagaacg aaggtaacct ttaattttgc tctaagatta 2074 gagctattca caagagaaat gggggaatga aagaagtgtt tttttttagc caact 2129
40	
45	<210> 6 <211> 2001 <212> ADN <213> Séquence artificielle
50	<220> <223> Description de la séquence artificielle: Enveloppe Amphotrope 4070A
	<220> <221> CDS <222> (1)(2001)
55	<400> б

	ggc cga (Gly Arg)	cac cca His Pro	gag t Glu T 5	gg aco	atc c Ile	ctc t Leu 7	igg ac Trp Ti	cg ga hr As	c atg p Met	gcg Ala	cgt Arg :	tca Ser	48
5	acg ctc Thr Leu	Ser Lys 20	Pro P	ro Gli	n Asp	Lув . 25	iie a	SII PL	0 115	30			96
10	ata gtc Ile Val	Met Gly 35	Val I	eu Le	u GIY 40	vai	GIA L	CC AI	45	202			144
15	cag gtc Gln Val 50	ttt aat Phe Asn	gta a Val 1	rnr Tr	g aga p Arg 5	gtc Val	acc a Thr A	COLL DC	g atg u Met i0	act Thr	GJÀ aaa	cgt Arg	192
	acc gcc Thr Ala 65	aat gcc Asn Ala	acc f	tcc ct Ser Le 70	c ctg u Leu	gga Gly	act g Thr V	pta ca Val GJ 75	na gat In Asp	gcc Ala	ttc Phe	cca Pro 80	240
20	aaa tta Lys Leu	tat ttt Tyr Phe	gat Asp	cta tg Leu Cy	rt gat vs Asp	ctg Leu	gtc g Val G 90	gga ga Bly Gl	ag gaç lu Gli	tgg Trp	gac Asp 95	cct Pro	288
25	tca gac Ser Asp	Gln Glu 100	Pro	Tyr Va	al Gly	105	GIY C	zys r	ye iy	110	AIG		336
30	aga cag Arg Gln	Arg Thi	Arg	Thr Pl	ne Asp 120) Phe	Tyr	vai C	ув РГ 12	5		1111	384
	gta aag Val Lys 130	Ser Gly	g tgt y Cys	Gly G	ga cca ly Pro 35	a gga o Gly	gag (GIA I	ac tg yr Cy 40	t ggt s Gly	aaa Lys	tgg Trp	432
35	ggg tgt Gly Cys 145	gaa ac	c acc r Thr	gga c Gly G 150	ag gct ln Ala	tac a Tyr	Trp .	aag c Lys P 155	cc ac	a tca r Ser	tcg Ser	tgg Trp 160	480
40	gac cta Asp Leu	atc tc lle Se	c ctt r Leu 165	aag c Lys A	gc ggt rg Gly	t aac y Asn	acc Thr 170	ccc t Pro T	gg ga	c acc	g gga Gly 175	Cyb	528
45	tct aaa Ser Lys	gtt gc Val Al 18	a Cys	ggc c	cc tg	c tac s Tyr 185	Asp	ctc t Leu S	cc aa Ser Ly	a gta vs Val		aat Asn	576
	tcc tto Ser Pho	caa gg e Gln Gl 195	g gct y Ala	act o	ga gg Arg Gl 20	À GIÀ	aga Arg	tgc a	ASII PI	ct ct. co Le	a gto u Val	cta Leu	624
50	gaa tt Glu Ph 21	c act ga e Thr As	at gca sp Ala	Gly 1	aaa aa Lys Ly 215	g gct rs Ala	aac a Asn	Trp .	gac g Asp G 220	gg cc ly Pr	c aa o Ly:	a tcg s Ser	672
55	tgg gg Trp Gl	a ctg a y Leu A	ga cto rg Lei	tac (cgg ac Arg Th	a gga nr Gl	a aca y Thr	gat Asp	cct a Pro I	tt ac le Th	c at ir Me	g ttc t Phe	720

	225					230					235	i				240	
5											Pro					ggg	768
10										Leu					Ile	gag Glu	816
																Pro	864
15								Ser								gtc Val	912
20	cca Pro 305	cag Gln	cca Pro	ccc Pro	cca Pro	gga Gly 310	act Thr	gga Gly	gat Asp	aga Arg	cta Leu 315	cta Leu	gct Ala	cta Leu	gtc Val	aaa Lys 320	960
25	gga Gly	gcc Ala	tat Tyr	cag Gln	gcg Ala 325	ctt Leu	aac Asn	ctc Leu	acc Thr	aat Asn 330	ccc Pro	gac Asp	aag Lys	acc Thr	caa Gln 335	gaa Glu	1008
20	tgt Cys	tgg Trp	ctg Leu	tgc Cys 340	tta Leu	gtg Val	tcg Ser	gga Gly	cct Pro 345	cct Pro	tat Tyr	tac Tyr	gaa Glu	gga Gly 350	gta Val	gcg Ala	1056
30	gtc Val	gtg Val	ggc Gly 355	act Thr	tat Tyr	acc Thr	aat Asn	cat His 360	tcc Ser	acc Thr	gct Ala	ccg Pro	gcc Ala 365	aac Asn	tgt Cys	acg Thr	1104
35	gcc Ala	act Thr 370	tcc Ser	caa Gln	cat His	aag Lys	ctt Leu 375	acc Thr	cta L eu	tct Ser	gaa Glu	gtg Val 380	aca Thr	gga Gly	cag Gln	ggc Gly	1152
40	cta Leu 385	tgc Cys	atg Met	Gly 999	gca Ala	gta Val 390	cct Pro	aaa Lys	act Thr	cac His	cag Gln 395	gcc Ala	tta Leu	tgt Cys	aac Asn	acc Thr 400	1200
45	acc Thr	caa Gln	agc Ser	gcc Ala	ggc Gly 405	tca Ser	gga Gly	tcc Ser	tac Tyr	tac Tyr 410	ctt Leu	gca Ala	gca Ala	ccc Pro	gcc Ala 415	gga Gly	1248
	aca Thr	atg Met	tgg T rp	gct Ala 420	tgc Cys	agc Ser	act Thr	gga Gly	ttg Leu 425	act Thr	ccc Pro	tgc Cys	ttg L e u	tcc Ser 430	acc Thr	acg Thr	1296
50	gtg Val	ctc Leu	aat Asn 435	cta Leu	acc Thr	aca Thr	gat Asp	tat Tyr 440	tgt Cys	gta Val	tta Leu	Val	gaa Glu 445	ctc Leu	tgg Trp	ccc Pro	1344
55	aga Arg	gta Val 450	att Ile	tac Tyr	cac His	tcc Ser	ccc Pro 455	gat Asp	tat Tyr	atg Met	tat Tyr	ggt Gly 460	cag Gln	ctt Leu	gaa Glu	cag Gln	1392

	cgt acc aaa tat aaa aga gag cca gta tca ttg acc ctg gcc ctt cta 1440 Arg Thr Lys Tyr Lys Arg Glu Pro Val Ser Leu Thr Leu Ala Leu Leu 465 470 475 480	
5	cta gga gga tta acc atg gga ggg att gca gct gga ata ggg acg ggg 1488 Leu Gly Gly Leu Thr Met Gly Gly Ile Ala Ala Gly Ile Gly Thr Gly 485 490 495	
10	acc act gcc tta att aaa acc cag cag ttt gag cag ctt cat gcc gct 1536 Thr Thr Ala Leu Ile Lys Thr Gln Gln Phe Glu Gln Leu His Ala Ala 500 505 510	
15	atc cag aca gac ctc aac gaa gtc gaa aag tca att acc aac cta gaa 1584 Ile Gln Thr Asp Leu Asn Glu Val Glu Lys Ser Ile Thr Asn Leu Glu 515 520 525	
	aag toa otg acc tog ttg tot gaa gta gto ota cag aac ogc aga ggo 1632 Lys Ser Leu Thr Ser Leu Ser Glu Val Val Leu Gln Asn Arg Arg Gly 530 535 540	
20	cta gat ttg cta ttc cta aag gag gga ggt ctc tgc gca gcc cta aaa 1680 Leu Asp Leu Leu Phe Leu Lys Glu Gly Gly Leu Cys Ala Ala Leu Lys 545 550 555 560	
25	gaa gaa tgt tgt ttt tat gca gac cac acg ggg cta gtg aga gac agc 1728 Glu Glu Cys Cys Phe Tyr Ala Asp His Thr Gly Leu Val Arg Asp Ser 565 570 575	
30	atg gcc aaa tta aga gaa agg ctt aat cag aga caa aaa cta ttt gag 1776 Met Ala Lys Leu Arg Glu Arg Leu Asn Gln Arg Gln Lys Leu Phe Glu 580 585 590	
	aca ggc caa gga tgg ttc gaa ggg ctg ttt aat aga tcc ccc tgg ttt 1824 Thr Gly Gln Gly Trp Phe Glu Gly Leu Phe Asn Arg Ser Pro Trp Phe 595 600 605	
35	acc acc tta atc tcc acc atc atg gga cct cta ata gta ctc tta ctg 1872 Thr Thr Leu Ile Ser Thr Ile Met Gly Pro Leu Ile Val Leu Leu 610 615 620	
40	atc tta ctc ttt gga cct tgc att ctc aat cga ttg gtc caa ttt gtt 1920 Ile Leu Leu Phe Gly Pro Cys Ile Leu Asn Arg Leu Val Gln Phe Val 625 630 635 640	
45	aaa gac agg atc tca gtg gtc cag gct ctg gtt ttg act cag caa tat 1968 Lys Asp Arg Ile Ser Val Val Gln Ala Leu Val Leu Thr Gln Gln Tyr 645 650 655	
	cac cag cta aaa ccc ata gag tac gag cca tga 2001 His Gln Leu Lys Pro Ile Glu Tyr Glu Pro 660 665	
50		
55	<210> 7 <211> 32 <212> ADN	

```
<213> Séquence artificielle
            <220>
            <223> Description de la séquence artificielle:
                  Oligonucleotide OUGalv5'Nsi
            <400> 7
            gagegecaga aaagecaaaa etggtatgaa gg
                                                                                32
10
            <210> 8
            <211> 50
            <212> ADN
            <213> Séquence artificielle
15
            <223> Description de la séquence artificielle:
                  Oligonucleotide OLCT 1Cla
20
            gatcatcgat tatttattta cacttettte atteccecat ttetettgtg
                                                                                50
            <210> 9
25
            <211> 48
            <212> ADN
            <213> Séquence artificielle
            <220>
            <223> Description de la séquence artificielle:
30
                  Oligonucleotide OLCT 2Cla
            <400> 9
            gatcatcgat tatttattta aaggttacct tcgttctcta gggcctga
                                                                                48
35
            <210> 10
            <211> 51
            <212> ADN
            <213> Séquence artificielle
40
            <220>
            <223> Description de la séquence artificielle:
                  Oligonucleotide OLCT3Cla
45
            <400> 10
            gatcatcgat tatttattta tagggcctga tattttgtct aaggaccaga a
                                                                               51
            <210> 11
            <211> 51
50
            <212> ADN
            <213> Séquence artificielle
            <223> Description de la séquence artificielle:
55
                  Oligonucleotide OLCT4Cla
```

	<400> 11 gatcatcgat tatttattta acatgcactt atcctatcat tgatgaattg a	51
5		
	<210> 12	
	<211> 40	
	<212> ADN	
10	<213> Séquence artificielle	
	<220>	
	<223> Description de la séquence artificielle: Oligonucleotide 5' Nhel	
15	<400> 12	
	gctagcatgg tattgctgcc tgggtccatg cttctcacct	40
20	<210> 13	
	<211> 31	
	<212> ADN	
	<213> Séquence artificielle	
25	<220>	
	<223> Description de la séquence artificielle: Oligonucleotide 3' Xbal	
	<400> 13	
30	tctagattaa catgcactta tcctatcatt g	31
	<210> 14 <211> 38	
35	<211> 38 <212> ADN	
55	<213> Séquence artificielle	
	C2137 Bequence discrete	
	<220>	
	<223> Description de la séquence artificielle:	
40	Oligonucleotide 3' Xbal	
	<400> 14	2.0
	tctagaagtt ggctaaaaaa aaacacttct ttcattcc	38
45		

Revendications

- Protéine d'enveloppe chimérique caractérisée en ce qu'elle comprend au moins une partie du domaine extracellulaire de l'enveloppe du virus GALV ou d'un variant fonctionnel de celui-ci.
 - 2. Protéine d'enveloppe chimérique selon la revendication 1, caractérisée en ce qu'elle comprend au moins une partie du domaine extracellulaire et du domaine transmembranaire de l'enveloppe du virus GALV.
 - Protéine d'enveloppe chimérique selon la revendication 1 ou 2, caractérisée en ce qu'elle comprend un domaine cytoplasmique d'une enveloppe hétérologue.

- 4. Protéine d'enveloppe chimérique selon la revendication 3, caractérisée en ce que l'enveloppe hétérologue est une enveloppe amphotrope.
- 5. Protéine d'enveloppe chimérique selon la revendication 4, caractérisée en ce que l'enveloppe amphotrope est l'enveloppe 4070A.
 - 6. Protéine d'enveloppe chimérique, caractérisée en ce qu'elle comprend une région de l'enveloppe GALV consistant en tout ou partie de la séquence correspondant aux résidus 1 à 655 de la séquence SEQ ID NO: 1.
- 7. Protéine d'enveloppe chimérique caractérisée en ce qu'elle comprend une région consistant en la séquence correspondant aux résidus 1 à 655 de la séquence SEQ ID NO: 1 et une région consistant en la séquence correspondant aux résidus 635 à 667 de la séquence SEQ ID NO: 6.
- 8. Protéine d'enveloppe rétrovirale GALV, caractérisée en ce qu'elle comprend une extrémité C-terminale de séquence SEQ ID NO:3.
 - Protéine d'enveloppe rétrovirale GALV, caractérisée en ce qu'elle comprend un domaine intracytoplasmique de séquence SEQ ID NO:4.
- 20 10. Protéine d'enveloppe rétrovirale GALV, caractérisée en ce qu'elle comprend la séquence d'acides aminés entre les résidus 1 à 685 de la séquence SEQ ID NO:1.
 - 11. Acide nucléique codant pour une protéine d'enveloppe selon l'une des revendications 1 à 10.
- 12. Acide nucléique codant pour une protéine d'enveloppe GALV, caractérisé en ce qu'il comprend une séquence s'étendant du nucléotide en position 1 jusqu'à un nucléotide compris entre les positions 2056 et 2129 inclus de la séquence SEQ ID NO: 1.
- 13. Acide nucléique codant pour une protéine d'enveloppe GALV, caractérisé en ce qu'il comprend une séquence s'étendant du nucléotide en position 1 jusqu'à un nucléotide compris entre les positions 2056 et 2112 inclus de la séquence SEQ ID NO: 1.
 - 14. Acide nucléique codant pour une protéine d'enveloppe GALV, caractérisé en ce qu'il comprend une séquence s'étendant du nucléotide en position 1 jusqu'au nucléotide 2058 de la séquence SEQ ID NO: 1.
 - 15. Vecteur comprenant un acide nucléique selon l'une des revendications 11 à 14.

35

40

- 16. Cellule comprenant un acide nucléique selon l'une des revendications 11 à 14 ou un vecteur selon la revendication
- 17. Cellule de packaging de rétrovirus, caractérisée en ce qu'elle comprend un acide nucléique selon l'une des revendications 11 à 14 ou un vecteur selon la revendication 15 et un acide nucléique codant pour les protéines gag et pol d'un rétrovirus.
- 45 18. Cellule selon les revendications 16 ou 17, caractérisée en ce qu'il s'agit d'une cellule de mammifère, de préférence humaine.
 - 19. Utilisation d'un acide nucléique selon l'une des revendications 11 à 14 ou un vecteur selon la revendication 15 pour la production d'une cellule de packaging de rétrovirus.
 - 20. Procédé de production de rétrovirus recombinants défectifs, comprenant l'introduction, dans une cellule selon la revendication 17, d'un vecteur rétroviral, et la récupération des virus recombinants produits.
- 21. Utilisation d'une protéine d'enveloppe fusogène pour la préparation d'une composition destinée à la mise en œuvre d'une méthode de traitement thérapeutique et/ou vaccinal, notamment au traitement de cellules humaines.
 - 22. Utilisation d'une protéine d'enveloppe fusogène pour la destruction de cellules humaines in vitro.

	23.	Utilisation d'une protéine d'enveloppe fusogène pour la préparation d'hybridomes in vitro.
5		Utilisation selon les revendications 21 à 23, caractérisé en ce qu'il s'agit d'une protéine d'enveloppe rétrovirale modifiée dans la région C-terminale, notamment par délétion de tout ou partie du domaine cytoplasmique ou d'une protéine d'enveloppe chimérique comprenant un tel domaine C-terminal modifié.
	25.	. Procédé de préparation d'une protéine fusogène, comprenant (i) la modification de la région cytoplasmique d'une protéine d'enveloppe, notamment rétrovirale, et (ii) la mise en évidence de l'activité fusogène de la protéine.
10		
15		
20		
25		
30		
35		
40		
45		
50		

/00/		NO.I														
_				aat	999	+ 00	250	a++	at a	200	t 0 2	220	ata	cac	cac	48
-	_															-10
	Val	Leu	Leu		Gly	Ser	мес	rea		Thr	ser	ASI	Leu		uir	
1				5					10					15		
ctt	cgg	cac	cag	atg	agt	cct	999	agç	tgg	aaa	aga	ctg	atc	atc	ctc	96
Leu	Arg	His	Gln	Met	Ser	Pro	Gly	Ser	Trp	Lys	Arg	Leu	Ile	Ile	Leu	
			20					25					30			
tta	agc	tgc	gta	ttc	ggc	ggc	ggc	999	acg	agt	ctg	caa	aat	aag	aac	144
Leu	Ser	Сув	Val	Phe	Gly	Gly	Gly	Gly	Thr	Ser	Leu	Gln	Asn	Lys	Asn	
		35					40					45				
ccc	cac	cag	ccc	atg	acc	ctc	act	tgg	cag	gta	ctg	tcc	caa	act	gga	192
Pro	His	Gln	Pro	Met	Thr	Leu	Thr	Trp	Gln	Val	Leu	Ser	Gln	Thr	Gly	
	50					55					60					
gac	gtt	gtc	tgg	gat	aca	aag	gca	gtc	cag	ccc	cct	tgg	act	tgg	tgg	240
					Thr											
65			•	•	70	•				75		_		-	80	
ccc	aca	ctt	aaa	cct	gat	qta	tat	acc	ttq	aca	qct	agt	ctt	qaq	tcc	288
					Asp						_					
			,	85			-,-		90					95		
									-							
taa	gat	atc	cca	gga	acc	gat	atc	tca	tcc	tct	aaa	cga	atc	ада	cct	336
					Thr											
	***OP		100	01 /		F		105	-		-,-	3	110			
			100					105								
cca	asc	+02	~~~	+=+	act	acc	act	tat	220	caa	atc	200	taa	aaa	acc	384
_	_		-		Thr	_										204
PIO	wab		Авр	ryr	IIII	MIA		ıyı	пув	GIII	116		пр	GIY	ATG	
		115					120					125				
				.												4
					cct		-									432
11e	_	cys	ser	ιγr	Pro	•	Ala	Arg	Tnr	Arg		Ala	ser	ser	Thr	
	130					135					140					

FIGURE 1A

												733	act	202	agg	480
ttc	tac	gta	tgt	CCC	cgg	gat	ggc	cgg	acc	CCC	CCa	gaa	31-	aga	~==	••-
Phe	Tyr	Val	CAa	Pro	Arg	Asp	Gly	Arg	Thr	Leu	Ser	GIU	Ala	Arg		
145					150					155					160	
tgc	999	999	cta	gaa	tcc	cta	tac	tgt	aaa	gaa	tgg	gat	tgt	gag	acc	528
Сув	Gly	Gly	Leu	Glu	Ser	Leu	Tyr	Сув	Lys	Glu	Trp	Asp	Cys	Glu	Thr	
-	-			165					170					175		
200	aaa	acc	aat	tat	tqq	cta	tct	aaa	tcc	tca	aaa	gac	ctc	ata	act	576
Thr	232	Thr	GIV	Tvr	Tro	Leu	Ser	Lys	Ser	Ser	Lys	Asp	Leu	Ile	Thr	
TIII	GIY	1111	180	-,-				185					190			
			100													
						200	gaa	taa	act	caa	aaa	ttt	caa	cag	tgt	624
														Gln		
Val	ГÀв		Asp	GIII	YPII	261	200	119			_,_	205			-	
		195					200									
											~-+	++~	303	ca c	aaa	672
cac	cag	acc	ggc	tgg	tgt	aac	ccc	CEE	aaa	ata	gau	. Dbc	The	gac	Lve	0.2
His	Gln	Thr	Gly	Trp	Сув	Asn	Pro	Leu	Lys	iie			Int	Asp	Буз	
	210					215					220	,				
																700
														tta -		720
Gly	Lys	Leu	Ser	Lys	Asp	Trp	Ile	Thr	Gly	. TAa	Thr	Trp	Gly	Leu		
225					230)				235	;				240	
														: tta		768
Phe	Туг	· Va]	Sex	Gly	/ His	Pro	Gly	val	Glr	n Phe	Thi	: Ile	Arg	Lev	Lys	
				245	5				250)				255	.	
ato	aco	aa	atg	g cca	gct	t gt	g gca	a gta	ggt	cct	ga	cto	gt	c ctt	gtg	816
Tle	Thi	r Ası	n Met	Pro	- Ala	a Vai	l Ala	a Val	Gl	y Pro	o As	p Lev	ı Va	l Lev	val	
			260					269					27			
~~~			a cc	ר ככי	t ao	a ac	g tc	c cto	ge	t ct	c cc	a cc	t cc	t ct	ccc	864
															u Pro	
ĢΙ	, G1:			O FI	U AL	J ***	28			_		28				
		27	3				20	-								

# FIGURE 1B

cca	agg	gaa	gcg	cca	ccg	cca	tct	ctc	ccc	gac	tct	aac	tcc	aca	gcc	912
Pro	Arg	Glu	Ala	Pro	Pro	Pro	Ser	Leu	Pro	Asp	Ser	Asn	Ser	Thr	Ala	
	290					295					300					
ctg	gcg	act	agt	gca	caa	act	ccc	acg	gtg	aga	aaa	aca	att	gtt	acc	960
Leu	Ala	Thr	Ser	Ala	Gln	Thr	Pro	Thr	Val	Arg	Lys	Thr	Ile	Val	Thr	
305					310					315					320	
cta	aac	act	ccg	cct	ccc	acc	aca	ggc	gac	aga	ctt	ttt	gat	ctt	gtg	1008
Leu	Asn	Thr	Pro	Pro	Pro	Thr	Thr	Gly	Asp	Arg	Leu	Phe	Asp	Leu	Val	
				325					330	_				335		
cag	999	gcc	ttc	cta	acc	tta	aat	gct	acc	aac	cca	qqq	qcc	act	gag	1056
					Thr											
	-		340					345					350			
tct	tgc	tgg	ctt	tgt	ttg	gcc	atg	ggc	ccc	cct	tat	tat	qaa	qca	ata	1104
					Leu											
	-	355		•			360	•				365				
gcc	tca	tca	qqa	qaq	gtc	qcc	tac	tcc	acc	gac	ctt	gac	caa	tac	cac	1152
					Val					_		_		_	_	
	370		•			375	•				380		5	-,-	5	
tgg	999	acc	caa	gga	aag	ctc	acc	ctc	act	qaq	qtc	tca	qqa	cac	aaa	1200
					Lys						_					
385	-			-	390					395			,		400	
ttg	tgc	ata	qqa	aaq	gtg	CCC	ttt	acc	cat	caq	cat	ctc	tac	aat	caq	1248
					Val										-	
	-		-	405					410				•	415	<b>-</b>	
acc	cta	tcc	atc	aat	tcc	tcc	gga	gac	cat	caq	tat	cta	ctc	CCC	tcc	1296
					Ser											/
			420				• 4	425			-,-		430	•	~ <b>~~</b>	

### FIGURE 1C

226	cat	age	taa	taa	act	tgc	agc	act	ggc	ctc	acc	cct	tgc	ctc	tcc	1344
aac	uic	Car	Trn	Trn	Ala	Cvs	Ser	Thr	Gly	Leu	Thr	Pro	Сув	Leu	Ser	
ASII	HIS	435				•	440		_			445				
		433														
3.00	tca	art	ttt	aat	caq	act	aga	gat	ttc	tgt	atc	cag	gtc	cag	ctg	1392
Th-	car	val	Phe	Asn	Gln	Thr	Arg	Asp	Phe	Сув	Ile	Gln	Val	Gln	Leu	
1111	450	141				455	_				460					
	430															
att	cct	cac	atc	tat	tac	tat	cct	gaa	gaa	gtt	ttg	tta	cag	gcc	tat -	1440
Tla	Pro	Ara	Ile	Tyr	Tyr	Tyr	Pro	Glu	Glu	Val	Leu	Leu	Gln	Ala	Tyr	
465	110				470	-				475					480	
403																
gac	aat	tct	cac	ccc	agg	act	aaa	aga	gag	gct	gtc	tca	ctt	acc	cta	1488
Asp	Asn	Ser	His	Pro	Arg	Thr	Lys	Arg	Glu	Ala	Val	Ser	Leu	Thr	Leu	
				485					490					495		
gct	gtt	tta	ctg	999	ttg	gga	atc	acg	gcg	gga	ata	ggt	act	ggt	tca	1536
Ala	Val	Leu	Lev	Gly	Leu	Gly	Ile	Thr	Ala	Gly	Ile	Gly	Thr	Gly	ser .	
			500					505					510			
act	god	: tta	a att	aaa	a gga	a cct	ata	gad	cto	cag	, caa	a ggo	cts	g aca	a agc	1584
Thi	. Ala	Lev	ı Ile	e Lys	Gly	/ Pro	Ile	e Asp	Lev	Glr	ı Glı	n Gly	, Lei	ı Thi	r Ser	
		51	5				520	)				529	5			
																1632
ct	c ca	g at	c gc	c at	a gat	t gc1	gad	c cto	cgg	ggc	ct	c caa	a gad	c tc	a gtc	1632
Le	u Gl	n Il	e Al	a Il	e As	p Ala	a Ası	p Le	ı Arg	Ala			n Asj	p Se	r Val	
	53	0				53	5				54	0				
														- at	~ ~~	1680
ag	c aa	g tt	a ga	g ga	c tc	a ct	g ac	t tc	c ct	g tc	c ga	g gt	a gt	9 CL	c caa	1000
Se	r Ly	s Le	u Gl	u As			u Th	r Se	r Le			u va	ı va	ד הפ	u Gln 560	
54	5				55	0				55	>				200	
											. ~-		+ ~~	יר הד	c tat	1728
aa	t ag	g ag	ga gg	jc ct	t ga	c tt	g ct -	g tt	t ct	a aa	a 9a	11 G1	יי אט יי אט	v 1.4	c tgt	_,,
As	n Ar	g Aı	g GI			sp Le	u Le	u Ph			. G.	.u G1	. y G1	.y 50 57	eu Cys	-
				56	5				57	. 17				,	. <b>.</b>	

### FIGURE 1D

gcg gcc cta	a aag gaa	gag tgc	tgt ttt	tac ata	gac cac	tca ggt	gca 1776
Ala Ala Le	Lys Glu	ı Glu Cys	Cys Phe	Tyr Ile	Asp His	Ser Gly	/ Ala
	580		585			590	
gta cgg gad	tcc atg	aaa aaa	ctc aaa	gaa aaa	ctg gat	aaa aga	cag 1824
Val Arg Asp	Ser Met	Lys Lys	Leu Lys	Glu Lys	Leu Asp	Lys Arg	Gln
595	i		600		605		
tta gag cgc							
Leu Glu Arg	GIN LYS	Ser Gin	Asn Trp	Tyr Glu	Gly Trp	Phe Asn	Asn
010		013			620		
tcc cct tgg	ttc act	acc ctg	cta tca	acc atc	gct ggg	ccc cta	tta 1920
Ser Pro Trp							
625		630		635			640
ctc ctc ctt							
Leu Leu Leu		Leu Ile	Leu Gly	Pro Cys	Ile Ile	Asn Lys	Leu
	645			650		655	
att ass tra	250 225						
gtt caa ttc Val Gln Phe							
V41 011 1110	660	nop my	665	AIG VGI	nys lie	670	Leu
aga caa aaa	tat cag	gcc cta	gag aac	gaa ggt	aac ctt	taa	2058
Arg Gln Lys	Tyr Gln	Ala Leu	Glu Asn	Glu Gly	Asn Leu		
675			680		685		
ttttgctcta	agattaga	gc tattca	acaag aga	aatgggg	gaatgaaa	ıga agtgı	ttttt 2118
tttagccaac	t						2129

#### FIGURE 1E

SEO																40
ggc	cga	cac	сса	gag	tgg	acc	atc	ctc	tgg	acg	gac	atg	gcg	cgt	tca	48
Gly	Arg	His	Pro	Glu	Trp	Thr	Ile	Leu	Trp	Thr	Asp	Met	Ala	Arg	Ser	
1				5					10					15		
acq	ctc	tca	aaa	ccc	cct	caa	gat	aag	att	aac	ccg	tgg	aag	ccc	tta	96
						Gln										
			20					25					30			
		250	~~	atc	cta	tta	gga	αta	ggg	atg	gca	gag	agc	ccc	cat	144
						Leu										
IIe	Vai		Gly	Vai	neu	DCG	40		1			45				
		35					40									
								<b>-</b> +-	200	220	cta	ato	act	aaa	cat	192
						tgg										
Gln	Val	Phe	Asn	Val	Thr	Trp	Arg	vai	Inr	ASII		MEC	1111	O.J	, j	
	50					55					60					
																240
															cca	240
Thr	Ala	Asn	Ala	Thr	Ser	Leu	Leu	Gly	Thr	Val	Gln	Asp	Ala	Phe		
65					70					75					80	
aaa	tta	tat	ttt	gat	cta	tgt	gat	ctg	gtc	gga	gag	gag	tgg	gac	cct	288
Lys	Lev	Tyr	Phe	Asp	Leu	Cys	Asp	Leu	Val	Gly	Glu	Glu	Trp	Asp	Pro	
				85	;				90					95		
tca	qaq	cag	gaa	ccg	tat	gto	999	tat	ggc	tgo	aag	tac	ccc	gca	ggg	336
															Gly	
	•		100					105					110			
20:		ı cac	a acc	cac	act	: ttt	gac	ttt	: tac	gto	, tgo	cct	ggg	cat	acc	384
															3 Thr	
Arg	9 611	115			,		120		•		-	12				
		11:	,					-								
_					<b>.</b> ~~	a aa		ם ממי	a crac	a aa	tac	c tai	c aat	aaa	a tgg	43
Va	l Ly	s Se	r Gl	у Су	s GI	A GT	y PIC	ָדטּ נ	A GT	, GI	, TÀ.	L Cy	. <u> </u>	, 47	s Trp	

FIGURE 2A

999	tgt	gaa	acc	acc	gga	cag	gct	tac	tgg	aag	ccc	aca	tca	tcg	tgg	480
Gly	Cys	Glu	Thr	Thr	Gly	Gln	Ala	Tyr	Trp	Lys	Pro	Thr	Ser	Ser	Trp	
145					150					155					160	
gac	cta	atc	tcc	ctt	aag	cgc	ggt	aac	acc	ccc	tgg	gac	acg	gga	tgc	528
Asp	Leu	Ile	Ser	Leu	Lys	Arg	Gly	Asn	Thr	Pro	Trp	Asp	Thr	Gly	Cys	
				165					170					175		
tct	aaa	gtt	gcc	tgt	ggc	ccc	tgc	tac	gac	ctc	tcc	aaa	gta	tcc	aat	576
Ser	Lys	Val	Ala	Сув	Gly	Pro	Сув	Tyr	Asp	Leu	Ser	Lys	Val	Ser	Asn	
			180					185					190			
					act											624
Ser	Phe		Gly	Ala	Thr	Arg	Gly	Gly	Arg	Сув	Asn	Pro	Leu	Val	Leu	
		195					200					205				
	4.															
					gga										_	672
GIU		Thr	Asp	Ala	Gly		Lys	Ala	Asn	Trp		Gly	Pro	Lys	Ser	
	210					215					220					
	~~~				•••											
					tac									_		720
225	GIY	Deu	Arg	nen	Tyr 230	AIG	1111	GIY	Inr	235	Pro	116	THE	met		
223					230					235					240	
tcc	cta	acc	caa	caq	gtc	ctt	aat	ata	gga	ccc	cga	atc	ccc	ata	aaa	768
					Val											700
			,	245					250		5			255	01	
ccc	aac	cca	gta	tta	ccc	gac	caa	aga	ctc	cct	tcc	tca	cca	ata	gaq	816
Pro	Asn	Pro	Val	Leu	Pro	qaA	Gln	Arg	Leu	Pro	Ser	Ser	Pro	Ile	Glu	
			260					265					270			
att	gta	ccg	gct	cca	cag	cca	cct	agc	ccc	ctc	aat	acc	agt ·	tac	ccc	864
Ile	Val	Pro	Ala	Pro	Gln	Pro	Pro	Ser	Pro	Leu	Asn	Thr	Ser	Tyr	Pro	
		275					280					285				

FIGURE 2B

							tca	acc	tcc	cct	aca	agt	cca	agt	gtc	912
cct	tcc	act	acc 	agt -	aca	200	cor	Thr	Car	Dro	Thr	Ser	Pro	Ser	Val	
Pro	Ser	Thr	Thr	Ser	Thr		Set	1111	361	FIU	300	Ser				
	290					295					300					
											ot a	act	cta	atc	aaa	960
cca	cag	cca	ccc	cca	gga	act	gga ->	gat	aga	cta	tan	gct	Lan	Val	Lvs	
Pro	Gln	Pro	Pro	Pro	Gly	Thr	GīÀ	Asp	Arg		Pen	Ala	Deu	vui	320	
305					310					315					320	
																1008
gga	gcc	tat	cag	gcg	ctt	aac	ctc	acc	aat	ccc	gac	aag	acc	caa	gaa	1000
Gly	Ala	Tyr	Gln	Ala	Leu	Asn	Leu	Thr	Asn	Pro	Asp	Lys	Thr		GIU	
				325					330					335		
																1056
												gaa				1056
Сув	Trp	Leu	Сув	Leu	Val	Ser	Gly	Pro	Pro	Tyr	Tyr	Glu	Gly	Val	Ala	
			340					345					350			
gtc	gtg	ggc	act	tat	acc	aat	cat	tcc	acc	gct	ccg	gcc	aac	tgt	acg	1104
Val	Val	Gly	Thr	Tyr	Thr	Asn	His	Ser	Thr	Ala	Pro	Ala	Asn	Cys	Thr	
		355					360					365				
															ggc	1152
Ala	Thr	Ser	Gln	His	Lys	Leu	Thr	Leu	Ser	Glu	Val	Thr	Gly	Glr	Gly	
	370					375					380	1				
cta	tgo	ato	999	gca	gta	cct	aaa	act	cac	cag	gco	tta	tgt	aac	acc	1200
Leu	Cys	Met	: Gly	/ Ala	val	Pro	Lys	Thr	His	Glr	Ala	Leu	Сув	Ası	1 Thr	
385	ı				390)				395	5				400	
acc	caa	aago	gc	gg(c tca	gga	tco	: tac	tac	ctt	gca	a gca	CCC	gc	gga	1248
Thr	Gli	ı Se	r Ala	a Gly	y Sei	Gly	/ Sea	туз	Тут	Lev	ı Ala	a Ala	Pro	Ala	a Gly	
				40					410					41		
aca	aat	g tg	g gc	t tg	c ag	c act	t gga	a tte	act		c tg	c ttg	tc	c ac	c acg	1296
															r Thr	
			- 42					42					43			

FIGURE 2C

ata	ctc	aat	cta	acc	aca	gat	tat	tqt	qta	tta	gtt	gaa	ctc	tgg	ccc	1344
					Thr											
V	Deu	435					440	-,-				445				
		433					110									
							~~+	+ - +	350	+-+	cat	~~~	ctt		C20	1392
_	_				tcc											1372
Arg		Пе	Tyr	HIS	Ser		Asp	ıyr	met	Tyr		GIII	ьеи	GIU	GIII	
	450					455					460					
					aga											1440
Arg	Thr	Lys	Tyr	Lys	Arg	Glu	Pro	Val	Ser	Leu	Thr	Leu	Ala	Leu	Leu	
465					470					475					480	
cta	gga	gga	tta	acc	atg	gga	9 99	att	gca	gct	gga	ata	999	acg	999	1488
Leu	Gly	Gly	Leu	Thr	Met	Gly	Gly	Ile	Ala	Ala	Gly	Ile	Gly	Thr	Gly	
				485					490					495		
acc	act	gcc	tta	att	aaa	acc	cag	cag	ttt	gag	cag	ctt	cat	gcc	gct	1536
Thr	Thr	Ala	Leu	Ile	Lys	Thr	Gln	Gln	Phe	Glu	Gln	Leu	His	Ala	Ala	
			500					505					510			
atc	cag	aca	gac	ctc	aac	gaa	gtc	gaa	aag	tca	att	acc	aac	cta	gaa	1584
Ile	Gln	Thr	Asp	Leu	Asn	Glu	Val	Glu	Lys	Ser	Ile	Thr	Asn	Leu	Glu	
		515					520					525				
aag	tca	ctg	acc	tcg	ttg	tct	gaa	gta	gtc	cta	cag	aac	cgc	aga	ggc	1632
Lys	Ser	Leu	Thr	Ser	Leu	Ser	Glu	Val	Val	Leu	Gln	Asn	Arg	Arg	Gly	
	530					535					540					
cta	gat	ttg	cta	ttc	cta	aag	gag	gga	ggt	ctc	tgc	gca	gcc	cta	aaa	1680
Leu	Asp	Leu	Leu	Phe	Leu	Lys	Glu	Gly	Gly	Leu	Cys	Ala	Ala	Leu	Lys	
545					550					555					560	
gaa	gaa	tgt	tgt	ttt	tat	gca	gac	cac	acg	999	cta	gtg	aga	gac	agc	1728
Glu	Glu	Cys	Cys	Phe	Tyr	Ala	Asp	His	Thr	Gly	Leu	Val	Arg	Asp	Ser	
				565					570					575		

FIGURE 2D

atg	acc	aaa	tta	aga	gaa	agg	ctt	aat	cag	aga	caa	aaa	cta	ttt	gag	1776
Met	Ala	Lvs	Leu	Arg	Glu	Arg	Leu	Asn	Gln	Arg	Gln	Lys	Leu	Phe	Glu	
MCC		/ -	580			_		585					590			
	aac		aaa	taa	ttc	gaa	qqq	ctg	ttt	aat	aga	tcc	ccc	tgg	ttt	1824
aca mb-	ggc	Cln	Glv	Tro	Phe	Glu	Gly	Leu	Phe	Asn	Arg	Ser	Pro	Trp	Phe	
Thr	GIÀ	595	Gly				600					605				
		573					•									
			_ 4			250	ato	gga	cct	cta	ata	qta	ctc	tta	ctg	1872
acc	acc	tta -	atc	tee	acc mb	110	Mat	Gly	Pro	Leu	Tle	Val	Leu	Leu	Leu	
Thr		Leu	IIe	ser	Int		Mec	Gry			620					
	610					615					020					
										000	tta	atc	caa	ttt	att	1920
atc	tta	ctc	ttt	gga	cct	tgc	att	ctc	aac	cga	tou	val	Gln	Dhe	Val	
Ile	Leu	Leu	Phe	Gly		Сув	He	Leu	ASI		пеи	Vai	GIII	2110	640	
625					630					635					040	
																1968
															tat	1968
ГÀв	Asp	Arg	Ile	Ser	Val	Val	Gln	Ala			Leu	Thr	Gin		Tyr	
				645					650					655		
cac	cag	cta	aaa	ccc	ata	gag	tac	gag	сса	tga	l					2001
His	Gln	Leu	Lys	Pro	Ile	Glu	Туг	Glu	Pro	•						
			660)				665	i							

FIGURE 2E

SRO	ID]	NO:5														
atg	gta	ttg	ctg	cct	999	tcc	atg	ctt	ctc	acc	tca	aac	ctg	cac	cac	48
Met	Val	Leu	Leu	Pro	Gly	Ser	Met	Leu	Leu	Thr	Ser	Asn	Leu	His	His	
1				5					10					15		
ctt	cgg	cac	cag	atg	agt	cct	999	agc	tgg	aaa	aga	ctg	atc	atc	ctc	96
Leu	Arg	His	Gln	Met	Ser	Pro	Gly	Ser	Trp	Lys	Arg	Leu	Ile	Ile	Leu	
			20					25					30			
tta	agc	tgc	gta	ttc	ggc	ggc	ggc	999	acg	agt	ctg	caa	aat	aag	aac	144
Leu	Ser	Cys	Val	Phe	Gly	Gly	Gly	Gly	Thr	Ser	Leu	Gln	Asn	Lys	Asn	
		35					40					45				
ccc	cac	cag	ccc	atg	acc	ctc	act	tgg	cag	gta	ctg	tcc	caa	act	gga	192
Pro	His	Gln	Pro	Met	Thr	Leu	Thr	Trp	Gln	Val	Leu	Ser	Gln	Thr	Gly	
	50					55					60					
gac	gtt	gtc	tgg	gat	aca	aag	gca	gtc	cag	CCC	cct	tgg	act	tgg	tgg	240
Asp	Val	Val	Trp	Asp	Thr	Lys	Ala	Val	Gln	Pro	Pro	Trp	Thr	Trp	Trp	
65					70					75					80	
					_	_	_	_	_		_	_		gag		288
Pro	Tnr	Leu	rys		Asp	Val	Cys	Ala		ATA	Ala	Ser	Leu	Glu	ser	
				85					90					95		
- ~ ~	ast	250	000	5 53	200	52	ata		t .c.c	***			~+~	aga		226
	•		_			_	•	•				_	_	•		336
ΙΙĐ	vaħ	116	100	Gly	1111	App	Vai	105	261	per	цуз	Arg	110	Arg	PIO	
								103					110			
cca	gac	tca	gac	tat	act	acc	act	tat	aaa	caa	atc	acc	taa	gga	acc	384
														Gly	_	304
	•	115		-,-			120	-,-	-4-			125		7		
ata	999	tgc	agc	tac	cct	cgg	gct	agg	act	aga	atg	gca	agc	tct	acc	432
														Ser		

FIGURE 3A

		~+ a	tat	ccc	caa	gat	qqc	cgg	acc	ctt	tca	gaa	gct	aga	agg	480
TTC	m	yca val	Cyc	Pro	Ara	Asp	Gly	Arg	Thr	Leu	Ser	Glu	Ala	Arg	Arg	
	туг	vai	Cys		150		•	_		155					160	
145					200											
		~~~	cta	gaa	tcc	cta	tac	tgt	aaa	gaa	tgg	gat	tgt	gag	acc	528
tgc	999	999	Len	Glu	Ser	Leu	Tyr	Cys	Lys	Glu	Trp	Asp	Cys	Glu	Thr	
Cys	GIY	GIY	Deu	165			•	•	170					175		
				103												
		200	aat	tat	taa	cta	tct	aaa	tcc	tca	aaa	gac	ctc	ata	act	576
acg	999	Thr	Glv	Tyr	Tro	Leu	ser	Lys	Ser	Ser	Lys	Asp	Leu	Ile	Thr	
Thr	GIY	1111	180	-1-				185					190			
			100													
ar a	222	taa	gac	caa	aat	agc	gaa	tgg	act	caa	aaa	ttt	caa	cag	tgt	624
yea	LVS	מזיד מיד	Asp	Gln	Asn	Ser	Glu	Trp	Thr	Gln	Lys	Phe	Gln	Gln	Сув	
Val	Буо	195					200					205				
cac	cag	acc	ggo	tgg	tgt	aac	ccc	ctt	aaa	ata	gat	ttc	aca	gac	aaa	672
His	Gln	Thr	Gly	Trp	Cys	Asn	Pro	Leu	Lys	Ile	asp	Phe	Thr	Ast	Lys	
•	210		_			215					220					
qqa	aaa	ı tta	tc	aag	gac	tgg	g ata	acg	gga	a aaa	a acc	tgg	g gga	ı tta	a aga	720
Gly	, Lys	s Let	ı Sei	r Lys	Asp	Tr	ıle	e Thr	Gly	Ly:	s Thi	rTr	Gly	/ Let	ı Arg	
225					230					23					240	
tto	ta!	t gt	g to	t gga	a cat	t cc	a gg	c gta	ca	g tt	c ac	c at	cg(	: tt	a aaa	768
Phe	∍ Ty:	r Va	l Se	r Gly	/ Hi	s Pr	o G1	y Val	l Gl	n Ph	e Th	r Ile	e Ar	g Le	u Lys	
				24					25					25	5	
at	c ac	c aa	c at	g cc	a gc	t gt	g gc	a gt	a gg	t cc	t ga	c ct	c gt	c ct	t gtg	816
Il	e Th	r As	n Me	t Pr	o Al	a Va	1 A1	a Va	1 G1	y Pr	o As	p Le	u Va	l Le	u Val	•
			26	0				26	5				27	0		
ga	a ca	a gg	a co	t cc	t ag	a ac	g to	c ct	c go	t ct	c cc	a cc	t cc	t ct	t ccc	864
Gl	u Gl	n Gl	y Pr	o Pr	o Ar	g Th	r Se	r Le	u Al	a Le	eu Pr			O Le	u Pro	)
		27	75				28	0				28	15			

# FIGURE 3B

сса	agg	gaa	gcg	сса	ccg	cca	tct	ctc	ccc	gac	tct	aac	tcc	aca	gcc	912
Pro	Arg	Glu	Ala	Pro	Pro	Pro	Ser	Leu	Pro	Asp	Ser	Asn	Ser	Thr	Ala	
	290					295					300					
ctg	gcg	act	agt	gca	caa	act	ccc	acg	gtg	aga	aaa	aca	att	gtt	acc	960
Leu	Ala	Thr	Ser	Ala	Gln	Thr	Pro	Thr	Val	Arg	Lys	Thr	Ile	Val	Thr	
305					310					315					320	
cta	aac	act	ccg	cct	ccc	acc	aca	ggc	gac	aga	ctt	ttt	gat	ctt	gtg	1008
Leu	Asn	Thr	Pro	Pro	Pro	Thr	Thr	Gly	Авр	Arg	Leu	Phe	Asp	Leu	Val	
				325					330					335		
cag	999	gcc	ttc	cta	acc	tta	aat	gct	acc	aac	cca	<b>9</b> 99	gcc	act	gag	1056
Gln	Gly	Ala	Phe	Leu	Thr	Leu	Asn	Ala	Thr	Asn	Pro	Gly	Ala	Thr	Glu	
			340					345					350			
tct	tgc	tgg	ctt	tgt	ttg	gcc	atg	ggc	ccc	cct	tat	tat	gaa	gca	ata	1104
Ser	Сув	Trp	Leu	Сув	Leu	Ala	Met	gly	Pro	Pro	Tyr	Tyr	Glu	Ala	Ile	
		355					360					365				
gcc	tca	tca	gga	gag	gtc	gcc	tac	tcc	ac¢	gac	ctt	gaç	cgg	tgc	cgc	1152
Ala	Ser	Ser	Gly	Glu	Val	Ala	Tyr	Ser	Thr	Asp	Leu	Asp	Arg	Сув	Arg	
	370					375					380					
				-	_									cac		1200
Trp	Gly	Thr	Gln	Gly	Lys	Leu	Thr	Leu	Thr		Val	Ser	Gly	His		
385					390					395					400	
														aat		1248
Leu	Cys	Ile	GIÀ	_	Val	Pro	Phe	Thr		GIn	HIS	Leu	Cys	Asn	GIN	
				405					410					415		
					<b>.</b>						<b>.</b>	<b></b>			<b>.</b>	
								_				_		CCC		1296
Thr	Leu	ser		Asn	ser	ser	GIÀ	_	H1S	GID	ıyr	Leu		Pro	ser	
			420					425					430			

# FIGURE 3C

аас	cat	aqc	tgg	tgg	gct	tgc	agc	act	ggc	ctc	acc	cct	tgc	ctc	tcc	1344
Asn	His	Ser	Trp	Trp	Ala	Cys	Ser	Thr	Gly	Leu	Thr	Pro	Cys	Leu	Ser	
		435					440					445				
acc	tca	gtt	ttt	aat	cag	act	aga	gat	ttc	tgt	atc	cag	gtc	cag	ctg	1392
Thr	Ser	Val	Phe	Asn	Gln	Thr	Arg	Asp	Phe	Cys	Ile	Gln	Val	Gln	Leu	
	450					455					460					
att	cct	cgc	atc	tat	tac	tat	cct	gaa	gaa	gtt	ttg	tta	cag	gcc	tat	1440
Ile	Pro	Arg	Ile	Tyr	Tyr	Tyr	Pro	Glu	Glu	Val	Leu	Leu	Gln	Ala	Tyr	
465					470					475					480	
gac	aat	tct	cac	ccc	agg	act	aaa	aga	gag	gct	gtc	tca	ctt	acc	cta	1488
Asp	Asn	Ser	His	Pro	Arg	Thr	Lys	Arg	Glu	Ala	Val	Ser	Leu		Leu	
				485					490					495		
															<b>h</b> .a.a	1536
gct	gtt	tta	ctg	999	ttg	gga	atc	acg	gcg	gga	ata	ggt	act	ggt	tca	1536
Ala	Val	Leu	Leu	Gly	Leu	Gly	Ile		Ala	Gly	Ile	Gly			Ser	
			500					505					510			
												900	cto	aca	agc	1584
act	gco	tta	att	aaa	gga	. cct	ata	gac	CCC	Cay	, Cln	GIV	. Ley	Thr	agc Ser	
Thr	Ala			Lys	Gly	Pro			nen	GII	GIL	525			Ser	
		515	5				520	,								
							~ ~ ~ ~ ~	· ctc	caa	acc	- ctc	: caa	a qaq	: tca	gtc	1632
cto	cas	ato	gc	; ata	. yar	. gcc	. yac	Let	Aro	Ala	a Leu	ı Glı	n Asp	Se	· Val	
Let			e Ale	1 114	. war	539		, 200			540					
	530	,				-	-									
		~ ++		a da	r toa	a cto	act	t tc	cto	tc	c gag	g gt	a gt	g ct	caa	1680
ag	C 449	9 66	a 9a;	n Dei	n Sei	r Lei	ı Th:	r Sei	r Lei	ı Se	r Gl	u Va	l Va	l Le	u Gln	
		в пс	u 01	u 1.00	55					55					560	
54	_															
22	t ac	g ag	a oro	c ct	t qa	c tt	g ct	g tt	t cta	a aa	a ga	a gg	t gg	c ct	c tgt	1728
aa Na	n Ar	g Ar	- 33 q Gl	y Le	u As	p Le	u Le	u Ph	e Le	u Ly	s Gl	u Gl	y Gl	y Le	u Cys	
, no	***	. ·	<b>J</b>	56					57					57		

#### FIGURE 3D

gcg	gcc	cta	aag	gaa	gag	tgc	tgt	ttt	tac	ata	gac	cac	tca	ggt	gca	1776
Ala	Ala	Leu	Lys	Glu	Glu	Сув	Cys	Phe	Tyr	Ile	Asp	His	Ser	Gly	Ala	
			580					585					590			
gta	cgg	gac	tcc	atg	aaa	aaa	ctc	aaa	gaa	aaa	ctg	gat	aaa	aga	cag	1824
Val	Arg	Asp	Ser	Met	Lys	Lys	Leu	Lys	Glu	Lys	Leu	Asp	Lys	Arg	Gln	
		595					600					605				
tta	gag	cgc	cag	aaa	agc	caa	aac	tgg	tat	gaa	gga	tgg	ttc	aat	aac	1872
Leu	Glu	Arg	Gln	Lys	Ser	Gln	Asn	Trp	Tyr	Glu	Gly	Trp	Phe	Asn	Asn	
	610					615					620					
tcc	cct	tgg	ttc	act	acc	ctg	cta	tça	acc	atc	gct	999	ccc	cta	tta	1920
Ser	Pro	Trp	Phe	Thr	Thr	Leu	Leu	Ser	Thr	Ile	Ala	Gly	Pro	Leu	Leu	
625					630					635					640	
ctc	ctc	ctt	ctg	ttg	ctc	atc	ctc	999	cca	tgc	atc	atc	aat	aag	tta	1968
Leu	Leu	Leu	Leu	Leu	Leu	Ile	Leu	Gly	Pro	Cys	Ile	Ile	Asn	Lys	Leu	
				645					650					655		
gtt	caa	ttc	atc	aat	gat	agg	ata	agt	gca	tgt	taa	aatt	ctg	gtc		2014
Val	Gln	Phe	Ile	Asn	Asp	Arg	Ile	Ser	Ala	Сув						
			660					665								
ctta	gaca	aaa a	tato	aggo	cc ct	agaç	gaacg	g aag	gtaa	acct	ttaa	tttt	gc t	ctaa	gatta	2074
gago	tati	ca d	aaga	gaaa	at go	ggga	atga	aag	aagt	gtt	tttt	ttta	ige d	aact	:	2129

# FIGURE 3E

7555 2004 5'arg tta git car itc atc art gat agg ata agt gca <u>i</u>gt taa aat ict ggt cct tag aca aaa tat cag gcc cta gag aac gaa ggt aac ctt taa K L V Q F I N D R I S A C * ¥. GIT ANA ATT CTG GTC CTT AGA CAA ANA TAT CAG GCC CTA GAG AAC GAA GGT AAC CTT V K I L V L R Q K Y Q A L E N E G N L PNP 5000 S'AAG TIA GIT CAA TIC AIC AAT GAI AGG AIA AGT GCA K L V Q F I N D R I S A

FIGURE Nº4

			*		z	<b>&gt;</b> -	>-	
			7		ပ	ш	ы	
			z		ы	H	H	
			ၒ		z	Δ,		
			ы		<u>ы</u>	*		
			z		- -	-		
			ம		4	a		
			H		0		H	
			æ		, ب≺		<b>-</b>	
			ø		×		o o	
			>-		o o	a	o o	
			×		æ	£	F	
			ø		_ 	ᆵ		_
			æ		1	>	>	
			н		7 2	ū	ر ا	
			>		<u></u>	K	4	
			н		×	o	o	
			н		>	>	>	
	*	*	×		ø	>	>	
	ပ	Ö	>		[S	တ	S	-
	A	Ø	×		н	н	н	
	S	ဟ	တ		ac.	œ	œ	
	H	H	H		۵	Ω	۵	•
	æ	œ	α		z	×	×	-:
	۵	۵	۵		H	>	>	:
	Z	z	Z		[24	بعا	[H	
ne	H	:5) I	H		o .>	a	a	•
ogè	ĹĿ	S &	[tu		· >	>	>	:
fus	O	010	O		H	H	H	
Env GALV fusogène	K L V	GALV (SEQ ID NO:5) K L V Q F I	PNP 5000 K L v		×	α,	œ	-
G.	1	> 'I	50 J.	<b>10</b> 1		_		
Env	×	SAL R	ON O O'A	z	00	5 C	70A	-
				FIGURE Nº 6	PNP 5000	env MuLV (ecotrope)	40.	1001
				FIG	ďNo	ecc (ecc	au v	;

FIGURE N°S



# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

# BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

☐ BLACK BORDERS ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES ☐ FADED TEXT OR DRAWING
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)