Deep Learning for Physics

Foundations of Al's masterclass

Marie Déchelle

TELECOM ParisTech

Past

Master in Machine Learning - Télécom ParisTech (Sophia Antipolis)
Master in Environmental Engineering - KTH (Sweden)

Present

3rd year PhD student

Neural Networks for the Modeling of Ocean Surface Dynamics
ISIR (Institut des Systèmes Intelligents et de Robotique) / LOCEAN (Laboratoire d'Océanographie et du Climat)

Modeling Dynamical Systems

System = a set of things working together as parts of a mechanism

Dynamical system = system and a law describing the evolution of the system

We are interested in predicting the evolution of the system of interest.

→ we seek for the law describing the evolution of the system

Ocean Surface Dynamics

Ocean Modeling

Necessary to model climate.

Rely on a very old knowledge... Claude-Louis Navier (1822) and George Gabriel Stokes (1840s) described the motion of viscous fluid substances with differential equations:

$$\frac{\partial X_t}{\partial t} = f(X_t, t)$$

where X_t stands for temperature, pressure, currents velocity, salinity, heat exchanges,...

Traditional approach : we know f and use it to predict X_t at future timesteps.

Ocean Modeling

- Ocean models are based on a 3D grid representing the entire ocean
- Each variable is constant for each grid point.
- Current model : grid points with 100km-sides

Problems still unsolved...

- Computationally infeasible to run models at fine resolution in space and time
- Processes which are not completely understood
- Uncertainty Quantification

Data-driven models and physics

- Success of machine learning (ML) for multiple tasks in computer vision, NLP,...
- Available data (satellites, floats,...)
- How could ML help for physics?

$$\frac{\partial X_t}{\partial t} = f(X_t, t)$$

Models rely on a new approach : we learn f to predict $\,X_{t+1}\,$

Note the paradigm shift: such models don't rely on physical knowledge!

Problems:

- Complex systems : lots of interactions, lots of variables
- Interpretability: we want our model to respect the underlying physics
- Learning may be unsupervised

Best of both worlds?

Physics-guided learning is a very recent topic... 2 publications in 2017, 8 in 2018, 27 in 2019, 63 in 2020!

Inputs: coordinates (latitude, longitude), variable of interest (ex: temperature), ...

Outputs: variable at coordinates, prediction, ...

How to integrate scientific knowledge into the ML framework?

Physics-informed neural network

New area of research : hybrid physics-ML modeling

$$\frac{\partial X_t}{\partial t} = f(X_t, t) = (f_p + f_{\underline{d}})(X_t, t)$$

the known part of the dynamics (physical knowledge) the unknown part of the dynamics (to be learnt)

Conclusion

- Two paradigms to model dynamical systems: knowledge-based and data-driven
- Physics-guided learning: how to integrate knowledge into the ML framework?
- Lots of possible applications...

Thank you very much!

Hybrid Physics-ML models

$$\frac{\partial X_t}{\partial t} = f(X_t, t) = (f_p + f_d)(X_t, t)$$

where $\,f\,$ is the dynamics associated to $\,X_t\,$

which we decompose into

the known part of the dynamics (physical knowledge) it relies on physical knowledge, but still depends on unknown parameters $heta_p$ such that $f_p=f_p(heta_p)$

 f_d the unknown part of the dynamics (to be learnt)

Hybrid Physics-ML models

$$\frac{\partial X_t}{\partial t} = f(X_t, t) = (f_p + f_d)(X_t, t)$$

Possible pitfall:

- ullet f_d may learn all the dynamics f
- In this case, the hybrid model has no physical sense anymore!
- ightarrow We have to constrain both f_p and f_d

Physics-guided design of architecture

Established link between residual networks and

$$\frac{\partial X_t}{\partial t} = f(X_t, t)$$

$$X_{t+\Delta t} = X_t + \Delta t f(X_t, t)$$

Hybrid Physics-ML ocean models

$$\frac{\partial T}{\partial t} = -\nabla \cdot (TU) + D^T + F^T$$
$$= f_p(T, U) + f_d(T)$$

where $\,T\,$ is the surface temperature. It is observed with satellites.

U is the surface velocity. It is unobserved!

 f_p the known part of the dynamics (physical knowledge) it relies on physical knowledge, but still depends on unknown parameters U the unknown part of the dynamics (to be learnt)

Hybrid Physics-ML ocean models

$$\frac{\partial T}{\partial t} = -\nabla \cdot (TU) + D^T + F^T$$
$$= f_p(T, U) + f_d(T)$$

We have to learn both $\,U\,$ and $\,f_d\,$

Possible pitfall:

- ullet f_d may learn all the dynamics
- In this case, the hybrid model has no physical sense anymore!
- ightarrow We have to constrain both f_p and f_d