IGBT-Module IGBT-modules

FF1400R12IP4

PrimePACK™3 Modul mit Trench/Fieldstopp IGBT4 und Emitter Controlled 4 Diode und NTC PrimePACK™3 module with Trench/Fieldstop IGBT4 and Emitter Controlled 4 diode and NTC

Vorläufige Daten / preliminary data

Typische Anwendungen

- Hilfsumrichter
- Hochleistungsumrichter
- Motorantriebe
- Traktionsumrichter
- USV-Systeme
- Windgeneratoren

Elektrische Eigenschaften

- Erweiterte Sperrschichttemperatur Tvj op
- Große DC-Festigkeit
- Hohe Kurzschlussrobustheit, selbstlimitierender Kurzschlussstrom
- Sehr große Robustheit
- V_{CEsat} mit positivem Temperaturkoeffizienten
- niedriges V_{CEsat}

Mechanische Eigenschaften

- 4kV AC 1min Isolationsfestigkeit
- Gehäuse mit CTI > 400
- Große Luft- und Kriechstrecken
- Hohe Last- und thermische Wechselfestigkeit
- Hohe Leistungsdichte
- Substrat f
 ür kleinen thermischen Widerstand

VCES = 1200V

 $I_{C \text{ nom}} = 1400A / I_{CRM} = 2800A$

Typical Applications

- Auxiliary Inverters
- High Power Converters
- Motor Drives
- Traction Drives
- UPS Systems
- Wind Turbines

Electrical Features

- Extended Operation Temperature T_{vj} op
- High DC Stability
- High Short Circuit Capability, Self Limiting Short Circuit Current
- Unbeatable Robustness
- V_{CEsat} with positive Temperature Coefficient
- Low V_{CEsat}

Mechanical Features

- 4kV AC 1min Insulation
- Package with CTI > 400
- High Creepage and Clearance Distances
- High Power and Thermal Cycling Capability
- High Power Density
- Substrate for Low Thermal Resistance

Module Label Code

Barcode Code 128

DMX - Code

Content of the Code	Digit
Module Serial Number	1 - 5
Module Material Number	6 - 11
Production Order Number	12 - 19
Datecode (Production Year)	20 - 21
Datecode (Production Week)	22 - 23

prepared by: AC	date of publication: 2009-08-13	material no: 32925
approved by: MS	revision: 2.4	

1

IGBT-Module **IGBT-modules**

FF1400R12IP4

Vorläufige Daten preliminary data

IGBT-Wechselrichter / IGBT-inverter

Kollektor-Emitter-Sperrspannung collector-emitter voltage	$T_{vj} = 25^{\circ}C$	V _{CES}	1200	V
Kollektor-Dauergleichstrom DC-collector current	$T_C = 100$ °C, $T_{vj} = 175$ °C	I _{C nom}	1400	Α
Periodischer Kollektor Spitzenstrom repetitive peak collector current	t _P = 1 ms	ICRM	2800	Α
Gesamt-Verlustleistung total power dissipation	$T_C = 25^{\circ}C, T_{vj} = 175^{\circ}C$	P _{tot}	7,65	kW
Gate-Emitter-Spitzenspannung gate-emitter peak voltage		V _{GES}	+/-20	V

	Charakteristische	Werte /	charact	teristic	values
--	-------------------	---------	---------	----------	--------

Charakteristische Werte / chara	acteristic values			min.	typ.	max.	
Kollektor-Emitter Sättigungsspannung collector-emitter saturation voltage	I _C = 1400 A, V _{GE} = 15 V I _C = 1400 A, V _{GE} = 15 V I _C = 1400 A, V _{GE} = 15 V	$T_{vj} = 25^{\circ}C$ $T_{vj} = 125^{\circ}C$ $T_{vj} = 150^{\circ}C$	VCE sat		1,75 2,05 2,15	2,05	V V V
Gate-Schwellenspannung gate threshold voltage	I_C = 49,0 mA, V_{CE} = V_{GE} , T_{vj} = 25°C		V _{GEth}	5,0	5,8	6,5	٧
Gateladung gate charge	V _{GE} = -15 V +15 V		Q _G		9,60		μC
Interner Gatewiderstand internal gate resistor	T _{vj} = 25°C		RGint		0,8		Ω
Eingangskapazität input capacitance	f = 1 MHz, T _{vj} = 25°C, V _{CE} = 25 V, V _{GE} = 0 V		Cies		82,0		nF
Rückwirkungskapazität reverse transfer capacitance	f = 1 MHz, T _{vj} = 25°C, V _{CE} = 25 V, V _{GE} = 0 V		Cres		4,60		nF
Kollektor-Emitter Reststrom collector-emitter cut-off current	V _{CE} = 1200 V, V _{GE} = 0 V, T _{vj} = 25°C		Ices			5,0	mA
Gate-Emitter Reststrom gate-emitter leakage current	V _{CE} = 0 V, V _{GE} = 20 V, T _{vj} = 25°C		I _{GES}			400	nA
Einschaltverzögerungszeit (ind. Last) turn-on delay time (inductive load)	I_C = 1400 A, V_{CE} = 600 V V_{GE} = ±15 V R_{Gon} = 1,0 Ω	T_{vj} = 25°C T_{vj} = 125°C T_{vj} = 150°C	t _{d on}		0,20 0,21 0,21		μs μs μs
Anstiegszeit (induktive Last) rise time (inductive load)	I _C = 1400 A, V _{CE} = 600 V V _{GE} = ±15 V R _{Gon} = 1,0 Ω	T_{vj} = 25°C T_{vj} = 125°C T_{vj} = 150°C	tr		0,12 0,13 0,13		μs μs μs
Abschaltverzögerungszeit (ind. Last) turn-off delay time (inductive load)	I _C = 1400 A, V _{CE} = 600 V V _{GE} = ±15 V R _{Goff} = 1,0 Ω	T_{vj} = 25°C T_{vj} = 125°C T_{vj} = 150°C	t _{d off}		0,87 0,95 0,97		µs µs µs
Fallzeit (induktive Last) fall time (inductive load)	I _C = 1400 A, V _{CE} = 600 V V _{GE} = ±15 V R _{Goff} = 1,0 Ω	T_{vj} = 25°C T_{vj} = 125°C T_{vj} = 150°C	t _f		0,20 0,23 0,23		µs µs µs
Einschaltverlustenergie pro Puls turn-on energy loss per pulse	I_C = 1400 A, V_{CE} = 600 V, L_S = 30 nH V_{GE} = ±15 V, di/dt = 8600 A/μs (T_{vj} =150°C) R_{Gon} = 1,0 Ω	T_{vj} = 25°C T_{vj} = 125°C T_{vj} = 150°C	Eon		65,0 80,0 95,0		mJ mJ mJ
Abschaltverlustenergie pro Puls turn-off energy loss per pulse	I_C = 1400 A, V_{CE} = 600 V, L_S = 30 nH V_{GE} = ±15 V, du/dt = 2500 V/μs (T_{vj} =150°C) R_{Goff} = 1,0 Ω	T_{vj} = 25°C T_{vj} = 125°C T_{vj} = 150°C	E _{off}		215 280 305		mJ mJ mJ
Kurzschlussverhalten SC data	$V_{GE} \le 15 \text{ V}, V_{CC} = 800 \text{ V}$ $V_{CEmax} = V_{CES} - L_{sCE} \cdot di/dt$ $t_P \le 10 \text{ µs}$, T _{vj} = 150°C	Isc		5600		А
Innerer Wärmewiderstand thermal resistance, junction to case	pro IGBT / per IGBT		R _{th} JC			19,5	K/kW
Übergangs-Wärmewiderstand thermal resistance, case to heatsink	pro IGBT / per IGBT $\lambda_{Paste} = 1 \text{ W/(m·K)}$ / $\lambda_{grease} = 1 \text{ W/(m·K)}$		RthCH		9,30		K/kW

prepared by: AC	date of publication: 2009-08-13
approved by: MS	revision: 2.4

IGBT-Module IGBT-modules FF1400R12IP4

Vorläufige Daten preliminary data

Diode-Wechselrichter / diode-inverter Höchstzulässige Werte / maximum rated values

Periodische Spitzensperrspannung repetitive peak reverse voltage	$T_{vj} = 25^{\circ}C$	VRRM	1200	V
Dauergleichstrom DC forward current		lF	1400	А
Periodischer Spitzenstrom repetitive peak forward current	t _P = 1 ms	IFRM	2800	А
Grenzlastintegral I²t - value	$V_R = 0 \text{ V, t}_P = 10 \text{ ms, } T_{vj} = 125^{\circ}\text{C}$ $V_R = 0 \text{ V, t}_P = 10 \text{ ms, } T_{vj} = 150^{\circ}\text{C}$	l²t	165 160	kA²s kA²s

Charakteristische Werte / char	acteristic values			min.	typ.	max.	
Durchlassspannung forward voltage	I _F = 1400 A, V _{GE} = 0 V I _F = 1400 A, V _{GE} = 0 V I _F = 1400 A, V _{GE} = 0 V	T_{vj} = 25°C T_{vj} = 125°C T_{vj} = 150°C	VF		1,90 1,85 1,80	2,30	V V V
Rückstromspitze peak reverse recovery current	$I_F = 1400 \text{ A, - dir/dt} = 8600 \text{ A/}\mu\text{s} (T_{vj} = 150^{\circ}\text{C})$ $V_R = 600 \text{ V}$ $V_{GE} = -15 \text{ V}$	T_{vj} = 25°C T_{vj} = 125°C T_{vj} = 150°C	I _{RM}		780 1000 1050		A A A
Sperrverzögerungsladung recovered charge	$I_F = 1400 \text{ A, - di}_F/dt = 8600 \text{ A/}\mu\text{s} (T_{vj} = 150^{\circ}\text{C})$ $V_R = 600 \text{ V}$ $V_{GE} = -15 \text{ V}$	T_{vj} = 25°C T_{vj} = 125°C T_{vj} = 150°C	Qr		135 235 270		μC μC μC
Abschaltenergie pro Puls reverse recovery energy	$I_F = 1400 \text{ A, - di}_F/dt = 8600 \text{ A/}\mu\text{s} (T_{vj} = 150^{\circ}\text{C})$ $V_R = 600 \text{ V}$ $V_{GE} = -15 \text{ V}$	T_{vj} = 25°C T_{vj} = 125°C T_{vj} = 150°C	Erec		70,0 110 130		mJ mJ mJ
Innerer Wärmewiderstand thermal resistance, junction to case	pro Diode / per diode		R _{th} JC			36,0	K/kW
Übergangs-Wärmewiderstand thermal resistance, case to heatsink	pro Diode / per diode $\lambda_{Paste} = 1 \text{ W}/(\text{m}\cdot\text{K})$ / $\lambda_{grease} = 1 \text{ W}/(\text{m}\cdot\text{K})$		RthCH		17,0		K/kW

NTC-Widerstand / NTC-thermistor

Charakteristische Werte / characteristic values			min.	typ.	max.	
Nennwiderstand rated resistance	T _C = 25°C	R ₂₅		5,00		kΩ
Abweichung von R ₁₀₀ deviation of R ₁₀₀	T _C = 100°C, R ₁₀₀ = 493 Ω	ΔR/R	-5		5	%
Verlustleistung power dissipation	T _C = 25°C	P ₂₅			20,0	mW
B-Wert B-value	$R_2 = R_{25} \exp [B_{25/50}(1/T_2 - 1/(298,15 \text{ K}))]$	B _{25/50}		3375		К
B-Wert B-value	$R_2 = R_{25} \exp [B_{25/80}(1/T_2 - 1/(298,15 \text{ K}))]$	B _{25/80}		3411		К
B-Wert B-value	$R_2 = R_{25} \exp [B_{25/100}(1/T_2 - 1/(298,15 \text{ K}))]$	B _{25/100}		3433		К

Angaben gemäß gültiger Application Note.

Specification according to the valid application note.

prepared by: AC	date of publication: 2009-08-13
approved by: MS	revision: 2.4

IGBT-Module IGBT-modules

FF1400R12IP4

Vorläufige Daten preliminary data

Modul / module

Isolations-Prüfspannung insulation test voltage	RMS, f = 50 Hz, t = 1 min.	VisoL		4,0		kV
Material Modulgrundplatte material of module baseplate				Cu		
Material für innere Isolation material for internal insulation				Al ₂ O ₃		
Kriechstrecke creepage distance	Kontakt - Kühlkörper / terminal to heatsink Kontakt - Kontakt / terminal to terminal			33,0 33,0		mm
Luftstrecke clearance distance	Kontakt - Kühlkörper / terminal to heatsink Kontakt - Kontakt / terminal to terminal			19,0 19,0		mm
Vergleichszahl der Kriechwegbildung comparative tracking index		СТІ		> 400		
	1	'	min.	typ.	max.	
Übergangs-Wärmewiderstand thermal resistance, case to heatsink	pro Modul / per module $\lambda_{Paste} = 1 \text{ W/(m·K)} / \lambda_{grease} = 1 \text{ W/(m·K)}$	RthCH		3,00		K/kW
Modulinduktivität stray inductance module		L _{sCE}		10		nH
Modulleitungswiderstand, Anschlüsse - Chip module lead resistance, terminals - chip	T _C = 25°C, pro Schalter / per switch	Rcc'+EE'		0,20		mΩ
Höchstzulässige Sperrschichttemperatur maximum junction temperature	Wechselrichter, Brems-Chopper / Inverter, Brake-Chopper	T _{vj max}			175	°C
Temperatur im Schaltbetrieb temperature under switching conditions	Wechselrichter, Brems-Chopper / Inverter, Brake-Chopper	T _{vj op}	-40		150	°C
Lagertemperatur storage temperature		T _{stg}	-40		150	°C
Anzugsdrehmoment f. mech. Befestigung mounting torque	Schraube M5 - Montage gem. gültiger Applikation Note screw M5 - mounting according to valid application note	М	3,00	-	6,00	Nm
Anzugsdrehmoment f. elektr. Anschlüsse terminal connection torque	Schraube M4 - Montage gem. gültiger Applikation Note screw M4 - mounting according to valid application note	М	1,8	-	2,1	Nm
	Schraube M8 - Montage gem. gültiger Applikation Note screw M8 - mounting according to valid application note	141	8,0	-	10	Nm
Gewicht weight		G		1200		g

prepared by: AC	date of publication: 2009-08-13
approved by: MS	revision: 2.4

IGBT-Module IGBT-modules

FF1400R12IP4

Vorläufige Daten preliminary data

Ausgangskennlinie IGBT-Wechselr. (typisch) output characteristic IGBT-inverter (typical) $I_C = f(V_{CE})$ $V_{GE} = 15 \text{ V}$

Ausgangskennlinienfeld IGBT-Wechselr. (typisch) output characteristic IGBT-inverter (typical) $I_{C} = f(V_{CE})$ $T_{vj} = 150^{\circ}C$

Übertragungscharakteristik IGBT-Wechselr. (typisch) transfer characteristic IGBT-inverter (typical) Ic = f (V_{GE}) V_{CE} = 20 V

Schaltverluste IGBT-Wechselr. (typisch) switching losses IGBT-inverter (typical) $E_{on} = f$ (Ic), $E_{off} = f$ (Ic) $V_{GE} = \pm 15$ V, $R_{Gon} = 1$ Ω , $R_{Goff} = 1$

prepared by: AC	date of publication: 2009-08-13
approved by: MS	revision: 2.4

IGBT-Module IGBT-modules

FF1400R12IP4

Vorläufige Daten preliminary data

Schaltverluste IGBT-Wechselr. (typisch) switching losses IGBT-Inverter (typical) $E_{on} = f (R_G)$, $E_{off} = f (R_G)$ $V_{GE} = \pm 15 \text{ V}$, $I_C = 1400 \text{ A}$, $V_{CE} = 600 \text{ V}$

Transienter Wärmewiderstand IGBT-Wechselr. transient thermal impedance IGBT-inverter $Z_{\text{thJC}} = f(t)$

Sicherer Rückwärts-Arbeitsbereich IGBT-Wr. (RBSOA) reverse bias safe operating area IGBT-inv. (RBSOA) Ic = f (VcE) $V_{GE} = \pm 15 \text{ V}, \, R_{Goff} = 1 \, \Omega, \, T_{vj} = 150 ^{\circ}\text{C}$

Durchlasskennlinie der Diode-Wechselr. (typisch) forward characteristic of diode-inverter (typical) $I_F = f(V_F)$

prepared by: AC	date of publication: 2009-08-13
approved by: MS	revision: 2.4

IGBT-Module IGBT-modules

FF1400R12IP4

Vorläufige Daten preliminary data

Schaltverluste Diode-Wechselr. (typisch) switching losses diode-inverter (typical)

 $E_{rec} = f(I_F)$ $R_{Gon} = 1 \Omega$, $V_{CE} = 600 V$

Schaltverluste Diode-Wechselr. (typisch) switching losses diode-inverter (typical) $E_{rec} = f(R_G)$ I_F = 1400 A, V_{CE} = 600 V

Transienter Wärmewiderstand Diode-Wechselr. transient thermal impedance diode-inverter $Z_{thJC} = f(t)$

NTC-Temperaturkennlinie (typisch) NTC-temperature characteristic (typical) R = f(T)

prepared by: AC	date of publication: 2009-08-13
approved by: MS	revision: 2.4

IGBT-Module IGBT-modules

FF1400R12IP4

Vorläufige Daten preliminary data

Schaltplan / circuit diagram

Gehäuseabmessungen / package outlines

prepared by: AC	date of publication: 2009-08-13
approved by: MS	revision: 2.4

IGBT-Module IGBT-modules

FF1400R12IP4

Vorläufige Daten preliminary data

Nutzungsbedingungen

Die in diesem Produktdatenblatt enthaltenen Daten sind ausschließlich für technisch geschultes Fachpersonal bestimmt. Die Beurteilung der Eignung dieses Produktes für Ihre Anwendung sowie die Beurteilung der Vollständigkeit der bereitgestellten Produktdaten für diese Anwendung obliegt Ihnen bzw. Ihren technischen Abteilungen.

In diesem Produktdatenblatt werden diejenigen Merkmale beschrieben, für die wir eine liefervertragliche Gewährleistung übernehmen. Eine solche Gewährleistung richtet sich ausschließlich nach Maßgabe der im jeweiligen Liefervertrag enthaltenen Bestimmungen. Garantien jeglicher Art werden für das Produkt und dessen Eigenschaften keinesfalls übernommen.

Sollten Sie von uns Produktinformationen benötigen, die über den Inhalt dieses Produktdatenblatts hinausgehen und insbesondere eine spezifische Verwendung und den Einsatz dieses Produktes betreffen, setzen Sie sich bitte mit dem für Sie zuständigen Vertriebsbüro in Verbindung (siehe www.infineon.com, Vertrieb&Kontakt). Für Interessenten halten wir Application Notes bereit.

Aufgrund der technischen Anforderungen könnte unser Produkt gesundheitsgefährdende Substanzen enthalten. Bei Rückfragen zu den in diesem Produkt jeweils enthaltenen Substanzen setzen Sie sich bitte ebenfalls mit dem für Sie zuständigen Vertriebsbüro in Verbindung.

Sollten Sie beabsichtigen, das Produkt in Anwendungen der Luftfahrt, in gesundheits- oder lebensgefährdenden oder lebenserhaltenden Anwendungsbereichen einzusetzen, bitten wir um Mitteilung. Wir weisen darauf hin, dass wir für diese Fälle

- die gemeinsame Durchführung eines Risiko- und Qualitätsassessments;
- den Abschluss von speziellen Qualitätssicherungsvereinbarungen;
- die gemeinsame Einführung von Maßnahmen zu einer laufenden Produktbeobachtung dringend empfehlen und gegebenenfalls die Belieferung von der Umsetzung solcher Maßnahmen abhängig machen.

Soweit erforderlich, bitten wir Sie, entsprechende Hinweise an Ihre Kunden zu geben.

Inhaltliche Änderungen dieses Produktdatenblatts bleiben vorbehalten.

Terms & Conditions of usage

The data contained in this product data sheet is exclusively intended for technically trained staff. You and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics.

Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you (see www.infineon.com, sales&contact). For those that are specifically interested we may provide application notes.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify. Please note, that for any such applications we urgently recommend

- to perform joint Risk and Quality Assessments;
- the conclusion of Quality Agreements;
- to establish joint measures of an ongoing product survey, and that we may make delivery depended on the realization of any such measures.

If and to the extent necessary, please forward equivalent notices to your customers.

Changes of this product data sheet are reserved.

prepared by: AC	date of publication: 2009-08-13
approved by: MS	revision: 2.4