Name: Udandarao Sai Sandeep Roll Number: 180123063

Dept.: Mathematics and Computing

Q1. The Euler's method was followed to approximate the solution of the Initial Value problems.

(a) Number of nodes = 3, h = 0.5

x	Estimate value of y(x)	
0	1	
0.5	1.183940	
1	1.436252	

(b) Number of nodes = 3, h = 0.5

x	Estimate value of y(x)	
1	2	
1.5	2.333333	
2	2.708333	

(c) Number of nodes = 5, h = 0.25

Х	Estimate value of y(x)		
2	2		
2.25	2.207107		
2.5	2.490999		
2.75	2.854680		
3	3.302596		

(d) Number of nodes = 5, h = 0.25

х	Estimate value of y(x)	
2	2	
2.25	1.227324	
2.5	0.832150	
2.75	0.570447	
3	0.378827	

Q2.

By using the given solutions to the IVP's, the corresponding error values was calculated

(a) Number of nodes = 3, h = 0.5

x	Estimate value of y(x)	Error
0	1	0
0.5	1.18394	0.030083
1	1.436252	0.053628

(b) Number of nodes = 3, h = 0.5

х	Estimate value of y(x)	Error
1	2	0
1.5	2.333333	0.020769
2	2.708333	0.033324

(c) Number of nodes = 5, h = 0.25

X	Estimate value of y(x)	Error
2	2	0
2.25	2.207107	0.037014
2.5	2.490999	0.073453
2.75	2.85468	0.110513
3	3.302596	0.148690

(d) Number of nodes = 5, h = 0.25

х	Estimate value of y(x)	Error
2	2	0
2.25	1.227324	0.175875
2.5	0.83215	0.18426
2.75	0.570447	0.167563
3	0.378827	0.150860

Q3.

Similarly, following as above, we have the following results:

(a)

Number of nodes = 21, h = 0.05

X	Estimate value of y(x)	Actual value of y(x)	Error value
1	-1	-1	0
1.05	-0.950000	-0.952381	0.002381
1.1	-0.904535	-0.909091	0.004555
1.15	-0.863007	-0.869565	0.006558
1.2	-0.824917	-0.833333	0.008416
1.25	-0.789848	-0.800000	0.010152
1.3	-0.757447	-0.769231	0.011784
1.35	-0.727415	-0.740741	0.013326
1.4	-0.699495	-0.714286	0.014791
1.45	-0.673467	-0.689655	0.016188
1.5	-0.649141	-0.666667	0.017525
1.55	-0.626350	-0.645161	0.018811
1.6	-0.604949	-0.625000	0.020051
1.65	-0.584812	-0.606061	0.021249
1.7	-0.565825	-0.588235	0.022410
1.75	-0.547890	-0.571429	0.023539
1.8	-0.530918	-0.55556	0.024637
1.85	-0.514832	-0.540541	0.025708
1.9	-0.499561	-0.526316	0.026754
1.95	-0.485043	-0.512821	0.027778
2	-0.47122	-0.500000	0.028780

(b) Number of nodes was set to 21.

The function behavior at x = 1.052, y = 1.555 and x = 1.978 is as follows:

х	Estimated value of y(x) (Interpolation)	Actual value of y(x)	Error value
1.052	-0.948099	-0.950570	0.002472
1.555	-0.624150	-0.643086	0.018937
1.978	-0.477219	-0.505561	0.028342

$$\frac{dy}{dx} = f(x,y)$$

We assume that the solution exists and is twice differentiable. It is also given that $\frac{\partial f(x,y)}{\partial y} \leq 0$

Now,
$$e_n = y(x_n) - y_n$$

As it is twice differentiable, by taylor's theorem,

$$y(x_{n+1}) = y(x_n) + h*f(x_n,y(x_n)) + (h^2/2) y''(\tau)$$
(Equation No. 1)

Here,
$$\tau \in (x_n, x_{n+1})$$
.

Assume $f(x_n,y)$ is a C^1 function of y after fixing x_n . Lagrange mean value theorem gives the below:

$$f(x_n,y(x_n)) = f(x_n,y_n) + f_y(x_n,\eta) (y(t_n) - y_n)$$
 where :

 $\eta \in [y(t_n), y_n]$ or $[y_n, y(t_n)]$ depending on $y(t_n) \le y_n$ or vice versa.

$$f(x_n,y(x_n)) = f(x_n,y_n) + f_y(x_n,\eta)e_n$$

Therefore, substituting in 1, we get:

$$y(x_{n+1}) = y(x_n) + hf(x_n, y_n) + hf_y(x_n, \eta)e_n + (h^2/2)y''(\tau)$$

$$y(\mathbf{x}_{n+1}) - y_{n+1} = y(x_n) + hf(x_n, y_n) + hf_y(x_n, \eta)e_n + (h^2/2)y''(\tau) - y_{n+1}$$

(Equation No. 2)

But,
$$y_{n+1} = y_n + hf(x_n, y_n)$$
 — By Euler's Method

Therefore, substituting in Equation 2, we get:

$$y(x_{n+1}) - y_{n+1} = y(x_n) + hf(x_n, y_n) + hf_v(x_n, \eta)e_n + (h^2/2)y''(\tau) - y_n - hf(x_n, y_n)$$

$$e_{n+1} = e_n + hf_y(x_n, \eta)e_n + (h^2/2)y''(\tau)$$

$$|e_{n+1}| = |e_n(1 + hf_y(x_n, \eta))| + (h^2/2)|y''(\tau)|$$

where :
$$\tau \in [x_n, x_n + 1]$$
 and $\eta \in [y_n, y(x_n + 1)]$
Assuming $f_y(x, y(x))$ is bounded,

$$M = \min(f_v(x,y(x))) \le 0, x \in [x_n, x_{n+1}].$$

Then take
$$h = 0.5$$
 if $M = 0$

and take
$$h = -\frac{0.2}{M}$$
 if $M < 0$

in either case

$$|\mathbf{e}_{n+1}| = |\mathbf{e}_n| + (h^2/2)|y''(\tau)|$$

$$e_{n+1} < e_n + (h^2/2) \ y''(\tau)$$
 for some h
 $|e_{n+1}| = |e_n(1 + hf_y(x_n, \eta))| + (h^2/2)|y''(\tau)|$
From 1, we have $|e_{n+1}| < |e_n| + \frac{h^2}{2}|Y''(z)|$ for some $h > 0$.

Also,
$$|e_{n+1}| \le |e_n| |1 + h f_y(x_n, n)| + (h^2/2) |Y''(z_n)|$$

Additionally assuming, $f_y(x, y(x))$ is a bounded function in $[x_0, x_n]$ we have $M = \min f_y(x, y(x)) \le 0$, $x \in [x_0, x_n)$ Then take

$$h = \begin{cases} 0.5 & if M = 0\\ \\ \frac{1}{5M} & if M < 0 \end{cases}$$

Then
$$|e_n| \leq |e_n| + \frac{h^2}{2} \left[\sum_{n=0}^{n-1} |Y''(\tau_n)| \right]$$
 (by telescoping sums) Clearly $\frac{\sum_{n=0}^{n-1} |Y''(\tau_n)|}{n} \leq \max_{x \in [x_0, x_n]} |Y''(X)|$

Therefore, $|e_n| \le |e_0| + h^2 n Y$ where $Y = \frac{1}{2} \max |Y''(x)|$ $x \in [x_0, x_n]$

Q5.

 $\lambda = -20.$

The value of h has been set to 0.5.

Number of Nodes =7

Function Approximation at x = 3:

```
For x = 3, the estimated value of y is: -785.2886498351329
For x = 3, the actual value of y is: 0.1411200080598672
The error between actual and real value is: 785.4297698431927
```

It can be seen that error is very large.

Now, if we decrease the value of h to 0.05, we have the following results:

```
Function Approximation at x = 3:
For x = 3, the estimated value of y is: 0.14133753721110437
For x = 3, the actual value of y is: 0.1411200080598672
The error between actual and real value is: 0.00021752915123715577
```

So, choosing a lesser value of h results in great reduction in error values.

$$h = 0.5$$

Now,
$$Y = \frac{1}{2} \max |-\sin(x)|$$
 where $x \in [0,3]$.
So, the maximum error bound is: $err = nh^2Y = 0.75$ (h = 0.5)

The **actual absolute error** is much **greater** than the **theoretical upper bound** for error. However, this **does not contradict** the validity of theorem proved in Q4. In **Q4**, it was stated

that there exists a h such that $|e_n| \leq |e_{n-1}| + \frac{h^2}{2}f^{''}(\xi)$, with the help of which the theoretical upper bound was calculated. This theorem is indeed valid for that particular value of h, and

not for every possible value of h. in **Q5**, the value of h was fixed to **0.5**, fairly large value, which resulted in **large** error. However, when the value of h was **decreased**, the error became much **smaller**.