

Blockchain, Criptomoedas & Tecnologias Descentralizadas

Blockchain sem o hype: Como funcionam blockchains

Prof. Dr. Marcos A. Simplicio Jr. – mjunior@larc.usp.br Escola Politécnica, Universidade de São Paulo

Objetivos

- Entender as engrenagens principais que compõem um Blockchain
 - Necessário para entender o que um blockchain (não) é capaz de fazer
 - Sem entrar em soluções específicas
- Entender a (grande!) utilidade de blockchains em cenários envolvendo troca de ativos digitais em ambiente distribuído
 - Para fins de contexto, vamos falar um pouco do funcionamento do Bitcoin como "caso base"

Bitcoin

- Para entender o funcionamento do blockchain, é interessante analisá-lo no contexto de troca de ativos
 - Afinal, essa é uma de suas principais aplicações!
 - Ex.: Bitcoin, Ethereum, Ripple, Algorand, Solana, ...
- O que é o Bitcoin:
- Livro de contabilidade (*ledger*) digital: permite verificar saldos ao analisar a **ordem de eventos** no sistema
 - Evento = transação monetária assinada por usuário
- Permite transações sem intermediários: descentralização
 - Embora plataformas de gerenciamento ("Exchanges") possam atuar como intermediários, facilitando acesso por usuários
- Previne fraudes, como duplicação de moedas: embora usuários não sejam confiáveis

Bitcoin (cont.)

- Para entender o funcionamento do blockchain, é interessante analisá-lo no contexto de troca de ativos
 - Afinal, essa é uma de suas principais aplicações!
 - Ex.: Bitcoin, Ethereum, Ripple, Algorand, Solana, ...
- O que é o Bitcoin:
- Há incentivos para participação: mineração de moedas e taxas pagas pelas transações
- Permite pseudoanonimato: usuários são representados por suas chaves públicas (pseudônimos)
 - Chaves públicas são sequência de bits sem qualquer relação óbvia com a identidade de seus donos!
- Uso de diferentes chaves permite algum grau de privacidade
 - Embora existam várias técnicas para ligar um usuário a suas transações (e.g., análise estatística, rastreamento de IPs, etc.)

- Início: verificar saldos (e integridade) do blockchain do Bitcoin requer validar todas as transações registradas, desde a 1^a ("bloco gênesis")
- Depois: basta manter base de dados com moedas não gastas

Bitcoin: visão geral da rede

- Rede P2P aberta à participação. Papéis principais:
 - Usuários finais: enviam transações assinadas para a rede
 - Nós mineradores: armazenam e validam transações
 - Recebem moedas pela sua participação (discussão mais adiante)

Rede P2P de nós mineradores

Usuários finais

- Problema alvo: Double spending (ou "gasto duplo")
 - Pergunta: Bob ou Carol é @ nov@ don@ da moeda?

- Problema alvo: Double spending (ou "gasto duplo")
 - Pergunta: Bob ou Carol é @ nov@ don@ da moeda?

- Problema alvo: Double spending (ou "gasto duplo")
 - Pergunta: Bob ou Carol é @ nov@ don@ da moeda?

- Problema alvo: Double spending (ou "gasto duplo")
 - Rede deve entrar em acordo sobre ordem de eventos: só a "1ª transação" é válida, pois a "2ª transação" não tem fundos!
 - Apenas após consenso, Carol/Bob entrega produto a Alice

Conflito: Bob ou Carol é @ nov@ don@ da moeda?

Blockchain: processando eventos

- Eventos processados em duas fases:
 - Fase 1: nós informam sobre evento (broadcast via gossip)
 - Nós receptores adicionam evento a sua lista de não validados

Blockchain: processando eventos

- Eventos processados em duas fases:
 - Fase 1: nós informam sobre evento (broadcast via gossip)
 - Nós receptores adicionam evento a sua lista de não validados

Blockchain: processando eventos

- Eventos processados em duas fases:
 - Fase 2: nós validam eventos e informam rede (broadcast)
 - Eventos validados movidos para blockchain... mas como...?

- Objetivo: definir uma ordem para eventos registrados
 - Blocos: contêm conjuntos de transações

Mas como decidir qual o próximo bloco "correto"?

- Consenso: proof-of-work (PoW)
 - O primeiro que achar "nonce" que satisfaz certas condições faz broadcast para a rede toda
 - Nós da rede sempre incluem blocos sobre maior cadeia recebida

- Consenso: proof-of-work (PoW)
 - O primeiro que achar "nonce", faz broadcast para a rede toda
 - Nós da rede sempre incluem blocos sobre maior cadeia recebida

Exemplo didático: hash de 2 dígitos; alvo < 20

tempo

t _n	0	88 🔾
t _n +1	1	17 🕢
t _n +2	2	29 🕢
t _n +3	4	33 🙆
t _n +4	8	13 🕖
, t _n +5	16	02 🕢

← broado	east
propagando	
propagando	
propagando	
propagando	broadcast →

0	29 🐼
1000	54 🐼
2000	91 🐼
3000	38 🐼
4000	54 🐼
5000	12 🕢

- Consenso: proof-of-work (PoW)
 - O primeiro que achar "nonce", faz broadcast para a rede toda
 - Maior cadeia recebida → consenso...

- Consenso: proof-of-work (PoW)
 - O primeiro que achar "nonce", faz broadcast para a rede toda
 - Maior cadeia recebida → consenso...

- Consenso: proof-of-work (PoW)
 - O primeiro que achar "nonce", faz broadcast para a rede toda
 - Maior cadeia recebida → consenso... nem sempre!!!

- Consenso: proof-of-work (PoW)
 - Cadeia que cresce mais rápido ganha a "corrida do consenso"
 - Fork (bifurcação) temporário: 2+ visões da realidade (pré-consenso)

- Consenso: proof-of-work (PoW)
 - Cadeia que cresce mais rápido ganha a "corrida do consenso"
 - Forks: desaparecem à medida que consenso é atingido

- Possível trapacear o consenso?
 - Se minha cadeia crescer muito rápido, posso apagar eventos!!!

- Possível trapacear o consenso?
 - Se minha cadeia crescer muito rápido, posso apagar eventos!!!

- Possível trapacear o consenso?
 - Só com poder computacional "superior ao da rede toda"...

Blockchain: que tipo de eventos? 🚕

- Blockchain não faz validação dos eventos em si
 - Isso fica a cargo da camada de aplicação!
 - Nota: análogo a ACTs centralizadas...
- Verificabilidade: depende do sistema...

- No Bitcoin: evento = transferência de moeda de A → B
 - Verificar assinatura de A sobre evento
 - Verificar saldo de A: (1) A recebeu as moedas referenciadas na trasferência?; (2) A ainda não usou essas moedas?
 - Obs.: nó mantém base separada com "moedas não gastas"
- Outros cenários: pode ser complexo...
 - Assinatura dos envolvidos no evento costuma ser comum

 Interação com o mundo real (e.g., execução de um serviço, ou entrega de um produto) pode exigir auditoria no mundo real

Blockchain: incentivos?

- Comumente necessário em qualquer rede P2P
 - Motivação p/ nós fornecerem recursos uns aos outros = ?
- Ex.: Bitcoin (e várias outras criptomoedas)
 - PoW: remuneração da rede e taxas para minerador

Blockchain: incentivos?

- Comumente necessário em qualquer rede P2P
 - Motivação p/ nós fornecerem recursos uns aos outros = ?
- Ex.: Bitcoin (e várias outras criptomoedas)
 - PoW: remuneração da rede e taxas para minerador

Blockchain: consenso?

- Vários mecanismos possíveis (tema de aula específica)
 - Dependendo do cenário, será mais ou menos custoso
 - Comumente chamados de "proof-of-something"
 - Segurança requer resiliência a conluio
 - "Ataque dos 51%": reversão de consenso anterior se um nó (ou grupo de nós) for mais poderoso que o restante da rede
- Cenário do Bitcoin: nenhum nó conhece a rede toda, e nós são anônimos e não-confiáveis
 - Consenso: proof-of-work
 - Processo custoso computacionalmente e demorado:
 - Recomenda-se aguardar a validação de alguns (e.g., 8) blocos antes de aceitar transações como "parte do consenso" (forks temporários...)
 - Mais info: https://www.blockchain.com/pt/explorer

Blockchain: resumo

Do ponto de vista funcional:

- Mecanismo distribuído para ordenação de eventos
 - Não necessariamente corresponde à ordem do mundo real
- Requer consenso entre as partes, para que todos concordem com a ordem armazenada
 - Consenso nada tem a ver com conteúdo (tarefa da aplicação)
- Do ponto de vista estrutural, combina
 - Cadeia de blocos encadeados como estrutura de dados:
 - Cada bloco contém o hash de seu antecessor

- Todos os nós armazenam uma cópia dos blocos
- Todos os nós concordam com a ordem dos blocos na cadeia

Blockchain: módulos

Ex.: transferência de ativos digitais

Visão uniforme por toda a rede

Disponibilidade, resistência a censura

Ordenação de dados

Detecção de alterações, Irretratabilidade

- : operação do módulo costuma envolver incentivos
- Importante: algumas aplicações precisam apenas de alguns desses módulos!

Blockchain: log transparente

Criptografia (hashes & assinatura Digital)

Ex.: transferência de ativos digitais

Visão uniforme por toda a rede

Disponibilidade, resistência a censura

Ordenação de dados

Detecção de alterações, Irretratabilidade

Blockchain: "A structure for storing data in which groups of valid transactions, called blocks, form a chronological chain, with each block cryptographically linked to the previous one." **MIT Technology Review**

→ Obs.: Merkle Tree configurada p/ só aceitar adições de dados satisfaz essa definição...

Blockchain: só que não...

Ex.: transferência de ativos digitais

Visão uniforme por toda a rede

Disponibilidade, resistência a censura

Ordenação de dados

Detecção de alterações, Irretratabilidade

Algumas propriedades extras fantásticas....

Log transparente pode ser útil

Soluções no mercado (minha experiência):

10%: fazem bastante sentido

50%: bastam assinaturas digitais

20-30%: basta sist. arquivos distribuído

10-20%: requerem "mágica"

Blockchain, Criptomoedas & Tecnologias Descentralizadas

Blockchain sem o hype: Como funcionam blockchains

Prof. Dr. Marcos A. Simplicio Jr. – mjunior@larc.usp.br Escola Politécnica, Universidade de São Paulo

Referências

- S. Nakamoto. "Bitcoin: A Peer-to-Peer Electronic Cash System". Whitepaper, 2008.
 URL: https://bitcoin.org/bitcoin.pdf. Veja também (tradução paara português): https://cointimes.com.br/whitepaper-do-bitcoin-traduzido/
- A. Narayanan, J. Bonneau, E. Felten. "Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction". Princeton University Press, 2016. ISBN: 0691171696. Available:
 https://d28rh4a8wq0iu5.cloudfront.net/bitcointech/readings/princeton_bitcoin_book.pd f?a=1
- L. Lantz and D. Cawrey. "Mastering Blockchain: Unlocking the Power of Cryptocurrencies, Smart Contracts, and Decentralized Applications". O'Reilly Media, 2020. ISBN: 1492054704
- I. Eyal, E. Sirer (2014). Majority is not enough: "Bitcoin mining is vulnerable". In Int. Conf. on financial cryptography and data security (pp. 436-454). Springer, Berlin Heidelberg. URL: https://www.cs.cornell.edu/~ie53/publications/btcProcFC.pdf
- Vídeos (inglês):
 - CuriousInventor. How Bitcoin Works in 5 Minutes (Technical). YouTube, Apr 14, 2014.
 URL: https://youtu.be/l9jOJk30eQs
 - How Bitcoin Works Under the Hood (22 min), YouTube, Jul 15, 2013. URL: https://youtu.be/Lx9zgZCMqXE

