$0 \longrightarrow dv \longrightarrow 0$				
$X(n\omega) T = \frac{2\pi}{\omega} X(n\omega) = \frac{1}{T} \int_{\frac{T}{2}}^{\frac{T}{2}} x(t) e^{-\frac{1}{2}\omega_{x}t} dt$	·			
→ 10 → 0 Alvo → dvo 隐能频率nua 通话 X(nia) → 0, 22 X(nia) → 有限	CCCW			
	-			
X(10) = Lim 20 X(nw) = Lim X(nw) = Vim X(nw) 军轮灾带性的频谱值。				
X(ω) 是 xtt) 向频谱密度函数, 简称频1				
正夏校 Xiw)= lim (表 xtt)e=1	nut obt = $\int_{-\infty}^{+\infty} \chi(t) e^{-jnunt} dt$			
逆変換、×lt) = 「 X(w) einat du				
条件. Sixtt) oft 464				
时限能(福时间内形0)频谱.	1			
在格脉冲 A. H < 至				
X(t)=1 0. 其他 .	-5 3			
$X(N) = \binom{tree}{x(t)} e^{-jn}$	$dt = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} A e^{jn\omega t} dt =$	A (-înw=	2	
مدار				
		= A = [-2 sin(n	w z)]	
	=	- Wh = 2	7	
X118	$= AT \cdot \frac{Sin(nw^{2})}{hw^{2}} =$	6 C . 7		
711103	- AL. hwz	AZ·Sa(nw=)		
	(X) = Az. S	a (nwī)		
	φ(ω) =) o	[4n2 = 1 = 2(2	n+1)z 7	
	()	$\begin{bmatrix} \frac{4n\pi}{\tau} & \leq w < \frac{2(2n+1)\pi}{\tau} \\ \frac{2(2n+1)\pi}{\tau} & \leq w < \frac{2(2n+1)\pi}{\tau} \end{bmatrix}$	ر ا	
	,	$\left\lfloor \frac{1}{\tau} \right\rfloor \leq \left \omega \right < \frac{2}{\tau}$	7	
非周期信号	分解或指波能量的叠	ħ₽.		
与周期信息	<i>插</i> 不同, 街腹瞎的	预率是连续的.		
粉譜也是				
	最基本的信号。			
Taj T	, , , , , , , , , , , , , , , , , , , ,			