

Projetos 2/2017

Categoria Seguidor de Linha

Sumário

I.	Introdução
	Objetivos
	Expectativas da Equipe
II.	Design:
	Modelo Redondo Compacto
	Modelo Redondo Alongado
	Modelo F1
	Sensores e atuadores
	Microcontrolador
	Melhorias a serem feitas
	Materiais Necessários e custos
III.	Rodas:
IV.	Eletrônica
	Drive de Motor
	Baterias
	Drive de Motor
	Sensores e atuadores
	Microcontrolador
V.	Conclusões
	Comparação entre os robôs – Prós e Contras
	Atividades a serem desenvolvidas no projeto
VI.	Referências Bibliográficas

Introdução

Objetivos

Construção de um robô autônomo seguidor de linha, microcontrolado com o apoio de sensores e técnicas de controle.

Montar um modelo para ser seguido posteriormente por novos integrantes da equipe.

Expectativas da Equipe

A equipe espera figurar entre os 10 primeiros lugares da Winter Challenge.

Design

Redondo Compacto

Figura 1.0 – Redondo Compacto Repositorio (Git: https://github.com/arthursgonzaga/Titans)

Redondo Alongado

F1

Figura 3.0 -F1 (Repositorio Git: https://github.com/arthursgonzaga/Titans)

Escolhemos o Redondo Compacto como primeiro modelo de seguidor de linha feito para competições. Testes ainda devem ser feitos para validar sobre qual modelo é o mais funcional estruturalmente. No entanto, supomos que um robô com caráter compacto e modular, ou seja, feito para ser uma parte estrutural central (Chassi, Motores e Rodas) que recebe vários módulos periféricos (Módulo de Sensoriamento, Módulo de controle e Módulo de Alimentação), seja a melhor opção.

Rodas

Não houve muita documentação científica na internet sobre a construção de robôs seguidores de linhas, contudo, já existem modelos consolidados e que estão prontos para serem somente programados. Foi feita uma pesquisa e o modelo Redondo compacto é encontrado sendo produzido pela empresa Polulu Robotics and Eletronics. Esta empresa fabrica o robô chamado Polulu 3pi robot, que tem o mesmo design que o estipulado. Já existe o chassi do robô pronto para esse robô disponível comercialmente, ele se chama Romi Chassis Kit e suas configurações são bem rotineiras. Existe também duas configurações disponíveis, sendo o Elenco 21-881 e o Elenco 21-880, ambos seguidores de trilha e do mesmo site Polulu.

As rodas escolhidas foram as de 52mm, com o preço de até R\$ 3,00. Ela está disponível no site da Usina Info e é uma boa forma de testarmos se funcionará, com um baixo custo. Caso não funcione, poderemos optar pela impressão do modelo 3D da roda, fazendo assim um trabalho personalizável.

Eletrônica

Driver de Motor

Somando o controle por PWM e o circuito de Ponte H obtemos um drive de motor completo para aplicações em robótica e automação. Portanto, podemos construir esse aparato a partir de transistores arranjados em ponte H e controlados por um sinal PWM gerado por um microcontrolador. No entanto, um projeto desse não exige apenas o conhecimento da lógica de chaveamento e controle de pulsos, mas também todo um estudo sobre o funcionamento dos transistores, bem como uma pesquisa de mercado sobre seus diversos modelos e inúmeros teste para adaptação em nosso projeto. Por sorte, existem muitos CI's no mercados que funcionam como drive para motores utilizando essa lógica, economizando tempo na construção e evitando mal funcionamento do projeto.

Componente	Corrente Máxima de Saída	Tensão Máxima de Saída	Observação
L293	1A	36V	Não possui diodos
L293D	0,6A	36V	Já possui diodos contra FCEM internos
L298N	2A	46V	Não possui diodos
L9110	0,8A	12V	SMD

Tabela 1.0 – [1] PWM e Ponte H Seguidor de Linha

O driver de motor escolhido é o **L298N**, com especificações: corrente de saída de até 2 A, tensão de saída de até 46 V e não possui diodos de proteção, o qual será feito na concepção do circuito.

Baterias

Visto que usaremos microcontroladores de baixo consumo com tensão máxima de 3.7V, as pesquisas das baterias foram em cima desses valores. No seguidor de trilha os componentes que mais consomem corrente são os motores e sensores IR, portanto o dimensionamento da alimentação deve ser de acordo com a quantidade e modelo desses componentes.

A pesquisa obteve vários tipos de baterias, mas por já termos em estoque o modelo **NK18650**, ela foi escolhida. As especificações são:

Química: Li-Ion

Tensão: 3.7v

Capacidade: 6800mAh

Dimensão: 18 mm x 67 mm.

Peso: 26 Gramas

Sensores e atuadores

Sensores Infravermelhos

Serão utilizados sensores Infravermelho, com duas possibilidades: o SMD, **QRE1113/1114** ou o **componente discreto**, com LEDs, o qual já possuímos. Foi decidida a topologia com 8 sensores, conforme a figura abaixo:

Motores

O modelo decidido pela equipe foi o motor DC de 3-6V, com especificações:

Características	Especificações
Tamanho	5,1 x 42 x 22,7 (mm)
Peso	29g
Diâmetro externo do eixo	Diâmetro externo do eixo
Diâmetro externo do eixo	3 a 6V
Relação de transmissão	1:120
Velocidade a 3V (sem carga)	100rpm
Corrente a 3V (sem carga)	60mA;
Corrente a 3V (com carga)	260mA;

Torque a 3V	1.20 kgf-cm
Velocidade a 6V (sem carga)	200 rpm
Corrente a 6V (sem carga)	71 mA
Corrente a 6V (com carga)	470 mA
Torque a 6V	1.92 kgf-cm

Além do motor escolhido foram consideradas outras opções. Além de outras opções de motores DC, foi levado em consideração servo motores conforme as tabelas abaixo.

O critério decisivo para escolha, levou em consideração, principalmente, o torque e a velocidade de rotação de cada um.

CaracterísticasMotor DC 12V	Especificações
Tamanho	5,1 x 42 x 22,7 (mm)
Velocidade	3500 rpm
Corrente	40mA;
Torque	25 gf-cm
Velocidade a 6V (sem carga)	200 rpm
Potência	0,7 W

CaracterísticasServo MG995	Especificações
Tamanho	40 x 19 x 43(mm)
Velocidade	60 rpm
Corrente	40mA;
Torque	13 kg.cm (4,8V)
Tensão de operação	4,8 a 7,2V
Peso	69 g

O servo motor não tem a necessidade de utilizar drives de para o funcionamento pois é microcontrolado e possui alto torque, todavia a velocidade de rotação é considerada baixa para a necessidade do projeto.

Os motores DC estão disponíveis comercialmente com diversas velocidades de rotação, porém nem todas elas apresentam um torque bom, contudo isso pode ser amenizado com a inserção de uma caixa de redução, na qual reduz a velocidade angular e aumenta o torque, e ainda ameniza eventuais movimentos bruscos que poderiam prejudicar o robô.

Microcontrolador

Para controlar as funções acopladas em nosso robô será utilizado microcontrolador , dentre os diferentes tipos, famílias foi necessário pesquisar , através dos parâmetros do projeto,

qual modelo estabelece melhor relação custo-benefício. Os microcontroladores em geral seguem dois tipos de arquiteturas : Von-Neumann e Harvard.O padrão Harvard contém ramificações que podem ser encontradas com o nome Harvard modificado que pode fazer acesso aleatório ao conjunto de instruções do programa como em uma memória de dados volátil. A principal diferença entre as arquiteturas é o separamento físico da memória do programa à memória de dados, na arquitetura Harvard, enquanto a arquitetura Von Neumann contém uma só memória para os dois tipos. Existem três famílias principais: MSP430, AVR e PIC.

Tabela x- comparativo entre principais famílias de fabricantes encontrados.

	ARM	8051	AVR	PIC	MSP430
Bus Width	32-bit mostly also available in 64-bit	8-bit for standard core	8/32-bit	8/16/32-bit	16-bit
Communication Protocols	UART, USART, LIN, I2C, SPI, CAN, USB, Ethernet, I2S, DSP, SAI (serial audio interface), IrDA	UART, USART, SPI, I2C	UART, USART, SPI, I2C, (special purpose AVR support CAN, USB, Ethernet)	PCI, UART, USART, LIN,CAN, Ethernet, SPI, 12S	UART, USART, LIN, 12C, SPI, 12S, IrDA
Speed	1 clock / instruction cycle	12 clock / instruction cycle	1 clock / instruction cycle	4 clock / instruction cycle	6 clock / instruction cycle
Memory	Flash, SDRAM, EEPROM	ROM, SRAM, FLASH	Flash, SRAM, EEPROM	SRAM, FLASH	SRAM, FLASH
ISA	RISC	CISC	RISC	Some feature of RISC	Some feature of RISC
Memory Architecure	Modified Harvard architecture	Von Neumann architecture	Modified Harvard	Harvard architecture	Von Neumann architecture
Power Consumption	Low	Average	Low	Low	Ultra Low
Families	ARMv4,5,6,7 and Cortex series	8051 variants	Tiny, Atmega, Xmega, special purpose AVR,	PIC16, PIC17, PIC18, PIC24, PIC32	MSP430X,MSP430FR57xx MSP430x1xx to \x6xx series
Community	Vast	Vast	Very Good	Very Good	Average
Manufacturer	Apple, Nvidia, Qualcomm, Samsung Electronics, and TI, etc.	NXP, Atmel, Silicon Labs, Dallas, Cyprus, infineon, etc	Atmel	Microchip	TI
Cost (as compared to feature provided)	Low	Very Low	Average	Average	Average
Other Feature	High speed operation	Known for its Standard	Cheap, effective	Cheap	Known for Ultra low powe operation
Popular Iicrocontrollers	LPC2148, ARM Cortex-M0 to ARM Cortex-M7, etc	AT89C51, P89v51,etc	Atmega8,16,32, Arduino Community	PIC18fXX8, PIC16f88X, PIC32MXXX	MSP430G2553, MSP430 launchpad.

A tabela x demonstra um comparativo encontrado acerca dos diferentes tipos de microcontroladores, dentre as especificações apresentadas e os requisitos levantados, destacaram-se três modelos: MSP, AVR e ARM.

Os MCU's ARM possuem muitas funcionalidades o que implica em preço elevado para o projeto.

Os microcontroladores MSP e AVR se adequam melhor às necessidades de projeto: Portas com acesso à conversores A/D e PWM e são mais acessíveis ao projeto.

Em contrapartida microcontroladores 8051 e PIC não possuem comunidade desenvolvedora e ferramentas para desenvolvimento acessíveis(Preço /facilidade de compra, programadores).

O microcontrolador escolhido foi a AVR atmega328. As especificações são:

- 23 portas GPIO;
- Até 20 MIPS para 20 MHz de clock;
 - Algumas instruções podem ser executadas em 1us.
- 8 canais de conversores A/D de bits para encapsulamentos TQFP, QFN/MLF e 6 canais para encapsulamento PDIP;
 - Esses canais podem ser usados para realizar leitura nos sensores de reflectância infravermelha.
- Watchdog timer programável com oscilador separado no chip;
 - Pode ser programada subrotina para desligar as funções de movimento se o robo sair do percurso.
- Memória flash de 32Kb, 1kb de EEPROM, 2k de RAM.
 - Memória do programa (Flash) e memória volátil (RAM).
- Arquitetura RISC;
- 32 registradores de 8 bits:
 - Conectados diretamente com a ULA, dois registradores podem ser acessados em uma única instrução em um ciclo de clock.
- Hardware multiplier(2 ciclos).
 - A função de multiplicação entre duas palavras geralmente não vem implementada em hardware, consumindo mais recursos ao ser implementada através de somas sucessivas,

com o hardware multiplier espera-se diminuir o tempo de processamento que uma operação de multiplicação consome.

Conclusão

Melhorias a serem feitas

Um dos pontos a serem melhorados durante o semestre que ainda não foram especificados é os controladores PID. Eles serão feitos no microcontrolador, sem a necessidade de um CI **complementar**. Está sendo pesquisado ainda como deve ocorrer a implementação, já que o assunto não foi muito abordado ainda para esta aplicação (robô seguidor de trilha).

Materiais Necessários e custos

Nome	Quantidade	Preço
Kit para PCB (chassi)	1	R\$ 130,00
Rodas (com frete)	2	R\$ 33,14
Driver de Motor	1	R\$ 22,90
Motores	2	R\$ 19,80
Microcontrolador	1	R\$ 16,90
Bateria	2	R\$ 8,60

Referências Bibliográficas

[1] PWM e Ponte H (Seguidor de Linha)

Repositório Git: https://github.com/arthursgonzaga/Titans