Notes

2 fevrier, 2015

from the grader

- 1. no frillies
- 2. no paperclips
- 3. no folding corners
- 4. staple

grading scheme

10 available points, 5 for completeness, 5 for 1 or 2 graded problems. 80% is an A

2.5 Menger's Theorem

a u-v separating set is a set $S\subseteq V(G)$ such that S separates G with u and v in different components.

exmple

 $\{a,b\}$ minimally separates u and v in the sense that no subset of $\{a,b\}$ separates u and v but $\{c\}$ is a minimum u-v separating set

theorem

let u and v be non-adjacent vertices in G. the size of a minimum u-v separating set is equal to the number of internally disjoint u-v paths.

thm/corollary (whitney)

a non-trivial graph is k-connected $k \geq 2$ if and only if every pair of vertices has at least k internally disjoint paths between them.

NOTE: adjacency isn't in the second theorem.

PROOF: forward direction:

let $k \ge 2$ and let S be a minimal vertex cut. Take any two different points u, v. any u - v separating has at least size k (it is S). By menger, there are at least k internally disjoint paths from u to v. but menger's theorem doesn't apply if u, v are adjacent. if u and v are adjacent, remove uv (the edge). this reduces connectivity by up to 1. (check this for homework). now repeat the argument on $G - \{uv\}$

this results in at least k-1 internally disjoint paths by menger. of course add in the edge we removed and we have k internally disjoint paths.

reverse direction: any two vertices u, v have k internally disjoint paths between them. let S be a minimal vertex cut. them $G - S = G_1 \cup G_2$ where $G_1 \cap G_2 = \emptyset$. union with dot is disjoint union.

pick $u \in G_1$ and $v \in G_2$. There are at least k internally disjoint u - v paths. so S must contain at least one element of each path, hence G is at least |S|-connected. S is minimal, so |S| = k

issue: check complete graph. if G were complete then our proof fails. $|V(G)| \ge k+1$ why? second part of homework. so $\kappa(G) \ge k+1-1=k$ because $k(k_n)=n-1$

aside: mengers theorem is often referred to as the max-flow min-cut theorem outside of graph theory.

homework

prove check this and why, also 2.5~#1-5