

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики

Отчёт по третьему заданию в рамках курса «Суперкомпьютерное моделирование и технологии»

Вариант 6

Студентка 611 группы М. А. Кулакова

1 Постановка задачи

Требуется методом конечных разностей приближенно решить краевую задачу для уравнения Пуассона с потенциалом в прямоугольной области. Задан прямоугольник $\Pi = [0,4] \times [0,3]$, граница Γ которого состоит из отрезков

$$\gamma_R = \{(4, y), 0 \le y \le 3\}, \gamma_L = \{(0, y), 0 \le y \le 3\}$$

$$\gamma_T = \{(x,3), 0 \le x \le 4\}, \gamma_B = \{(x,0), 0 \le x \le 4\}$$

рассматривается дифференциальное уравнение Пуассона с потенциалом

$$-\Delta u + q(x, y)u = F(x, y), \tag{1}$$

в котором оператор Лапласа

$$\Delta u = \frac{\partial}{\partial x} \left(k(x, y) \frac{\partial u(x, y)}{\partial x} \right) + \frac{\partial}{\partial y} \left(k(x, y) \frac{\partial u(x, y)}{\partial y} \right)$$

Для выделения единственного решения уравнение (1) дополняется граничными условиями.

В моем варианте на каждом отрезке границы прямоугольника Π задаются условия 3 типа в виде:

$$\left(k\frac{\partial u}{\partial n}\right)(x,y) + \alpha u(x,y) = \psi(x,y)$$

В задании принимаем, что для всех границ α постоянна и равна 1.

Функции $F(x,y), \psi(x,y), q(x,y), k(x,y)$ — известные. Необходимо найти функцию u(x,y), удовлетворяющую уравнению (1) и введённым граничным условиям. При этом нормаль n не определена в угловых точках прямоугольника, поэтому краевое условие рассматривается только в тех точках, в которых нормаль существует.

2 Определение функций

Пользуясь явным видом функций u(x,y), k(x,y), q(x,y) необходимо определить правую часть уравнение Пуассона F(x,y) и граничные условия $\psi(x,y)$. В моем варианте они имеют следующий вид:

$$u(x,y) = \sqrt{4 + xy}, k(x,y) = 1, q(x,y) = x + y$$

$$F(x,y) = \frac{1}{4} \frac{x^2 + y^2}{\sqrt{(4 + xy)^3}} + (x + y)\sqrt{4 + xy}$$

$$\psi(x,y) = \begin{cases} \frac{\tilde{y}}{4\sqrt{1 + \tilde{y}}} + 2\sqrt{1 + \tilde{y}}, & x = 4, \tilde{y} \in (0,3) \\ \frac{\tilde{x}}{2\sqrt{4 + 3\tilde{x}}} + \sqrt{4 + 3\tilde{x}}, & y = 3, \tilde{x} \in (0,4) \\ -\frac{\tilde{y}}{4} + 2 & x = 0, \tilde{y} \in (0,3) \\ -\frac{\tilde{x}}{4} + 2 & y = 0, \tilde{x} \in (0,4) \end{cases}$$

3 Разностная схема решения задачи

Краевые задачи для уравнения Пуассона с потенциалом (1) предлагается численно решать методом конечных разностей. В расчетной области П определяется равномерная прямоугольная сетка $\bar{\omega}_h = \bar{\omega}_1 \times \bar{\omega}_2$, где

$$\bar{\omega}_1 = \{x_i = 0 + ih_1, \ i = \overline{0, M}\}, \ \bar{\omega}_2 = \{y_j = 0 + jh_2, \ j = \overline{0, N}\}.$$

Здесь $h_1=(4-0)/M=4/M$, $h_2=(3-0)/N=3/N$. Через ω_h обозначим множество внутренних узлов сетки $\bar{\omega}_h$, т.е. множество узлов сетки прямоугольника, не лежащих на границе Γ .

Рассмотрим линейное пространство H функций, заданных на сетке $\bar{\omega}_h$. Обозначим через w_{ij} значение сеточной функции $w \in H$ в узле сетки $(x_i, y_j) \in \bar{\omega}_h$. Будем считать, что в пространстве H задано скалярное произведение и евклидова норма

$$[u,v] = \sum_{i=0}^{M} h_1 \sum_{j=0}^{N} h_2 \rho_{ij} u_{ij} v_{ij}, \quad ||u||_E = \sqrt{[u,u]}.$$

Весовая функция $\rho_{ij} = \rho^{(1)}(x_i)\rho^{(2)}(y_j)$, где

$$\rho^{(1)}(x_i) = \begin{bmatrix} 1, & 1 \leqslant i \leqslant M - 1 \\ 1/2, & i = 0, \ i = M \end{bmatrix} \quad \rho^{(2)}(y_j) = \begin{bmatrix} 1, & 1 \leqslant j \leqslant N - 1 \\ 1/2, & j = 0, \ j = N \end{bmatrix}$$

В методе конечных разностей дифференциальная задача математической физики заменяется конечно-разностной операторной задачей вида

$$Aw = B$$
,

где $A: H \to H$ – оператор, действующий в пространстве сеточных функций, $B \in H$ – известная правая часть.

При построении разностной схемы следует аппроксимировать все уравнения краевой задачи их разностными аналогами – сеточными уравнениями, связывающими значения искомой сеточной функции в узлах сетки. Полученные таким образом уравнения должны быть функционально независимыми, а их общее количество – совпадать с числом неизвестных, т.е. с количеством узлов сетки.

Уравнение (1) во всех внутренних точках сетки аппроксимируется разностным уравнением

$$-\Delta_h w_{ij} + q_{ij} w_{ij} = F_{ij}, \quad i = \overline{1, M - 1}, \ j = \overline{1, N - 1},$$
 (2)

в котором $F_{ij} = F(x_i, y_j), q_{ij} = q(x_i, y_j),$ разностный оператор Лапласа

$$\Delta_h w_{ij} = \frac{1}{h_1} \left(k(x_i + 0.5h_1, y_j) \frac{w_{i+1j} - w_{ij}}{h_1} - k(x_i - 0.5h_1, y_j) \frac{w_{ij} - w_{i-1j}}{h_1} \right) + \frac{1}{h_2} \left(k(x_i, y_j + 0.5h_2) \frac{w_{ij+1} - w_{ij}}{h_2} - k(x_i, y_j - 0.5h_2) \frac{w_{ij} - w_{ij-1}}{h_2} \right).$$

Введем обозначения правой и левой разностных производных по переменным x, y соответственно:

$$w_{x,ij} = \frac{w_{i+1j} - w_{ij}}{h_1}, \quad w_{\overline{x},ij} = w_{x,i-1j} = \frac{w_{ij} - w_{i-1j}}{h_1},$$
$$w_{y,ij} = \frac{w_{ij+1} - w_{ij}}{h_2}, \quad w_{\overline{y},ij} = w_{y,ij-1} = \frac{w_{ij} - w_{ij-1}}{h_2},$$

а также определим сеточные коэффициенты

$$a_{ij} = k(x_i - 0.5h_1, y_i), \quad b_{ij} = k(x_i, y_i - 0.5h_2).$$

В моей задаче $a_{ij} = b_{ij} = 1$

С учетом принятых обозначений разностный оператор Лапласа можно представить в более компактном и удобном виде

$$\Delta_h w_{ij} = \frac{1}{h_1} (w_{\overline{x},i+1j} - w_{\overline{x},ij}) + \frac{1}{h_2} (w_{\overline{y},ij+1} - w_{\overline{y},ij}) = (w_{\overline{x}})_{x,ij} + (w_{\overline{y}})_{y,ij}.$$

Аппроксимация граничных условий третьего типа на правой и левой сторонах прямоугольника имеет вид:

$$(2/h_1)(w_{\overline{x}})_{Mj} + (q_{Mj} + 2/h_1)w_{Mj} - (w_{\overline{y}})_{y,Mj} = F_{Mj} + (2/h_1)\psi_{Mj},$$

$$-(2/h_1)(w_{\overline{x}})_{1j} + (q_{0j} + 2/h_1)w_{0j} - (w_{\overline{y}})_{y,0j} = F_{0j} + (2/h_1)\psi_{0j}, \ j = \overline{1, N-1}.$$
(3)

На верхней и нижней сторонах соответственно имеем:

$$(2/h_2)(w_{\overline{y}})_{iN} + (q_{iN} + 2/h_2)w_{iN} - (w_{\overline{x}})_{x,iN} = F_{iN} + (2/h_2)\psi_{iN},$$

$$-(2/h_2)(w_{\overline{y}})_{i1} + (q_{i0} + 2/h_2)w_{i0} - (w_{\overline{x}})_{x,i0} = F_{i0} + (2/h_2)\psi_{i0}, \ i = \overline{1, M-1}.$$

$$(4)$$

Сеточных уравнений (2)-(4) недостаточно, чтобы определить разностную схему для задачи с граничными условиями. Требуются сеточные уравнения для угловых точек прямоугольника П. Они имеют следующий вид:

$$-(2/h_1)(w_{\overline{x}})_{10} - (2/h_2)(w_{\overline{y}})_{01} + (q_{00} + 2/h_1 + 2/h_2)w_{00} = F_{00} + (2/h_1 + 2/h_2)\psi_{00}$$
 (5)

- в точке (0, 0),

$$(2/h_1)(w_{\overline{x}})_{M0} - (2/h_2)(w_{\overline{y}})_{M1} + (q_{M0} + 2/h_1 + 2/h_2)w_{M0} = F_{M0} + (2/h_1 + 2/h_2)\psi_{M0}$$
 (6)

- в точке (4, 0),

$$(2/h_1)(w_{\overline{x}})_{MN} + (2/h_2)(w_{\overline{y}})_{MN} + (q_{MN} + 2/h_1 + 2/h_2)w_{MN} = F_{MN} + (2/h_1 + 2/h_2)\psi_{MN}$$
 (7)

- в точке (4, 3),

$$-(2/h_1)(w_{\overline{x}})_{1N} + (2/h_2)(w_{\overline{y}})_{0N} + (q_{0N} + 2h_1 + 2/h_2)w_{0N} = F_{0N} + (2/h_1 + 2/h_2)\psi_{0N}$$
(8)

- в точке (0, 3),

Замечание. Разностные схемы Aw = B, аппроксимирующие все описанные выше краевые задачи для уравнения Пуассона с положительным потенциалом, обладают самосопряженным и положительно определенным оператором A и имеют единственное решение при любой правой части.

Итого система примет следующий вид:

$$-\Delta_{h}w_{ij} + q_{ij}w_{ij} = F_{ij}, \quad i = \overline{1, M-1}, \quad j = \overline{1, N-1},$$

$$(2/h_{1})(w_{\overline{x}})_{Mj} + (q_{Mj} + 2/h_{1})w_{Mj} - (w_{\overline{y}})_{y,Mj} = F_{Mj} + (2/h_{1})\psi_{Mj}, \quad j = \overline{1, N-1},$$

$$-(2/h_{1})(w_{\overline{x}})_{1j} + (q_{0j} + 2/h_{1})w_{0j} - (w_{\overline{y}})_{y,0j} = F_{0j} + (2/h_{1})\psi_{0j}, \quad j = \overline{1, N-1},$$

$$(2/h_{2})(w_{\overline{y}})_{iN} + (q_{iN} + 2/h_{2})w_{iN} - (w_{\overline{x}})_{x,iN} = F_{iN} + (2/h_{2})\psi_{iN}, \quad i = \overline{1, M-1},$$

$$-(2/h_{2})(w_{\overline{y}})_{i1} + (q_{i0} + 2/h_{2})w_{i0} - (w_{\overline{x}})_{x,i0} = F_{i0} + (2/h_{2})\psi_{i0}, \quad i = \overline{1, M-1},$$

$$-(2/h_{1})(w_{\overline{x}})_{10} - (2/h_{2})(w_{\overline{y}})_{01} + (q_{00} + 2/h_{1} + 2/h_{2})w_{00} = F_{00} + (2/h_{1} + 2/h_{2})\psi_{00},$$

$$(2/h_{1})(w_{\overline{x}})_{M0} - (2/h_{2})(w_{\overline{y}})_{M1} + (q_{M0} + 2/h_{1} + 2/h_{2})w_{M0} = F_{M0} + (2/h_{1} + 2/h_{2})\psi_{M0},$$

$$(2/h_{1})(w_{\overline{x}})_{MN} + (2/h_{2})(w_{\overline{y}})_{MN} + (q_{MN} + 2/h_{1} + 2/h_{2})w_{MN} = F_{MN} + (2/h_{1} + 2/h_{2})\psi_{MN},$$

$$-(2/h_{1})(w_{\overline{x}})_{1N} + (2/h_{2})(w_{\overline{y}})_{0N} + (q_{0N} + 2h_{1} + 2/h_{2})w_{0N} = F_{0N} + (2/h_{1} + 2/h_{2})\psi_{0N},$$

$$(9)$$

4 Метод решения СЛАУ

Приближенное решение системы уравнений Aw=B для сформулированных выше краевых задач может быть получено итерационным методом наименьших невязок. Этот метод позволяет получить последовательность сеточных функций $w^{(k)} \in H$, $k=1,2,\ldots$, сходящуюся по норме пространства H к решению разностной схемы, т.е.

$$||w - w^{(k)}||_E \to 0, \quad k \to +\infty.$$

Начальное приближение $w^{(0)}$ можно выбрать любым способом, например, равным нулю во всех точках расчетной сетки.

Метод является одношаговым. Итерация $w^{(k+1)}$ вычисляется по итерации $w^{(k)}$ согласно равенствам:

$$w_{ij}^{(k+1)} = w_{ij}^{(k)} - \tau_{k+1} r_{ij}^{(k)}, \tag{10}$$

где невязка $r^{(k)} = Aw^{(k)} - B$, итерационный параметр

$$\tau_{k+1} = \frac{\left[Ar^{(k)}, r^{(k)}\right]}{\left\|Ar^{(k)}\right\|_E^2}.$$

В качестве условия остановки итерационного процесса можно взять неравенство

$$\|w^{(k+1)} - w^{(k)}\|_E < \varepsilon,$$

где ε — положительное число, определяющее точность итерационного метода. Оценку точности приближенного решения сеточных уравнений можно проводилось в максимум норме

$$||w||_C = \max_{x \in \overline{\omega}_h} |w(x)|. \tag{11}$$

5 Описание программной реализации

5.1 Последовательный код

Для решения задачи без распараллеливания ипользовались следующие идеи решения:

- 1. Реализованы функции F, u, q (функция k в моем варианте была = 1).
- 2. Были реализованы функции, отвечающие граничным условиям ψ
- 3. Были реализованы функции для вычисления скалярного произведения, нормы по скалярному произведению, разности векторов.
- 4. Были реализованы функции, заполняющие левую часть СЛАУ (матрицу Aw (и Ar), вытянутую в вектор и функция заполняющая правую часть СЛАУ (вектор B).
- 5. Далее в основной части программы, динамически выделялась память под все участвующие в решении векторы. Вычислялся вектор B.
- 6. Решение СЛАУ было реализовано в цикле, пока не будет достигнута необходимая точность между вычисленной функцией и функцией, вычисленной на предыдущей итерапии.
- 7. После решения системы происходит вывод времени, количества итераций, ошибки. Вычисленная функция записывается в файл, для последующего графического анализа.
- 8. Освобождается динамически выделенная память.

5.2 Программа, использующая MPI и OPENMP

Для решения задачи с распараллеливанием ипользовались следующие идеи решения:

- 1. Основные функции и идеи с решением СЛАУ были взяты из последовательного решения.
- 2. Вся область разделяется с помощью двумерного разбиения. Количество строк и столбцов, на которое разбивается область определяется с помощью функции get_domens, т.к. количество процессов является степенью 2, функция делит область пополам по направлению, имеющего наибольшее количество узлов, до тех пор, пока количество доменов не будет равно количеству процессов.

- 3. По полученному массиву, определяющему количество узлов в каждой размерности, мы можем узнать координаты в декартовой решетке для каждого процесса.
- 4. Зная коррдинаты каждого процесса, настроем направления, в которых будут отправляться буферные границы для каждого домена. Если процессу нечего отправлять по какому-либо из направлений (вверх, вниз, вправо, влево), то устанавливается MPI_PROC_NULL. После этого каждый процесс сможет использовать функцию MPI Sendrecv
- 5. Аналогично последовательному решению динамически выделяется память для всех участвующих в решении векторов. Дополнительно выделяется память буферов для отправки и для приема данных с границ.
- 6. В цикле, который исполняется пока не будет достигнута необходимая точность, сначала происходит отправка и прием граничных буферов, далее как и в последовательном коде на каждом домене происходит решение СЛАУ, далее с помощью функции $MPI_Allreduce$ по операции MPI_MAX каждому процессу отправляется вычисленная точность.
- 7. После цикла вызывается функция $MPI_Barrier$, чтобы дождаться окончания работы всех процессов, происходит вывод времени работы программы и количества итераций. Очищается выделенная память.

Были получены следующие результаты (N_p количество процессов)

Таблица 1: Таблица с результатами расчетов на ПВС IBM Polus (MPI код)

N_p	Число точек сетки $M \times N$	Время решения $T(s)$	Ускорение <i>S</i>	Количество итераций
4	500×500	1009.2	1	36636
8	500×500	199.709	5.05	16468
16	500×500	137.746	7.3	12162
32	500×500	176.77	5.7	4886
4	500×1000	3075.72	1	121400
8	500×1000	917.849	3.3	53684
16	500×1000	187.714	16.4	18694
32	500×1000	372.073	5.5	10836

Можно заметить, что ускорение падает в случае 8 и 32 процессов. Это может быть связано с тем, что они имеют нечетную степень двойки, то есть размерность одного из направлений будет больше другого, из-за этого не получается разделить сетку на домены, приближенные к квадратам. Также скачки во времени могут быть вызваны высокой загруженностью системы Polus. При этом можно заметить также, что количество итераций стабильно уменьшается приблизительно в 2 раза, следовательно можно сделать вывод, что определенное время тратиться на пересылку границ, которое увеличивается при увеличении количества процессов.

Число нитей для всех запусков равно 4.

Таблица 2: Таблица с результатами расчетов на ПВС IBM Polus (Гибридный MPI + OPENMP)

N_p	Число точек сетки $M \times N$	Время решения Т	Ускорение S	Количество итераций
1	500×500	2054.84	1	41392
2	500×500	1266.37	1.6	27051
4	500×500	696.773	2.9	25660
8	500×500	918.76	2.2	13370
1	500×1000	5371.89	1	123643
2	500×1000	2042.3	2.6	69540
4	500×1000	899.34	5.96	56892
8	500×1000	1278.47	4.2	34370

График исходной функции и посчитанной приближенно представлены ниже.

Полученная точность, посчитанная как максимум норма, составляет 0.04

Рис. 1: Исходная функция

Рис. 2: Приближенная на сетке функция

Рис. 3: Разность