

Gemeinsame Abituraufgabenpools der Länder

Aufgaben für das Fach Mathematik

Dokument mit mathematischen Formeln

Als Hilfsmittel für die Bearbeitung der Aufgaben des Prüfungsteils B des Pools für das Fach Mathematik ist – neben dem jeweiligen digitalen Hilfsmittel – ein Dokument vorgesehen, das nur die im Folgenden angegebenen Inhalte hat.¹

Das Dokument stellt keine Formelsammlung im klassischen Sinn dar; insbesondere werden im Allgemeinen Bezeichnungen nicht erklärt und Voraussetzungen für die Gültigkeit von Formeln nicht genannt.

1 Grundlagen

Ähnlichkeit zweier Dreiecke

Die folgenden Aussagen zu zwei Dreiecken sind äquivalent:

- ♦ Die Dreiecke sind ähnlich.
- Die Größen der Winkel des einen Dreiecks stimmen mit den Größen der Winkel des anderen Dreiecks überein.
- Die Verhältnisse der Seitenlängen des einen Dreiecks stimmen mit den Verhältnissen der Seitenlängen des anderen Dreiecks überein.

Binomische Formeln

$$a^2 + 2ab + b^2 = (a + b)^2$$

$$a^2 - 2ab + b^2 = (a - b)^2$$

$$a^2 - b^2 = (a + b) \cdot (a - b)$$

Stand: 19.03.2021

¹ Die Möglichkeit der Verwendung anderer Formeldokumente im Unterricht wird durch das Formeldokument, das für die Bearbeitung der Aufgaben des Prüfungsteils B des Pools vorgesehen ist, nicht berührt.

Maße von Figuren

Dreieck

Parallelogramm²

$$A = \frac{1}{2} \cdot g \cdot h$$

 $A = g \cdot h$

Trapez

$$A = \frac{1}{2} \cdot (a + c) \cdot h$$

Drachenviereck

$$A = \frac{1}{2} \cdot e \cdot f$$

Kreis
$$A = \pi \cdot r^2$$

$$U=2\pi\cdot r$$

Prisma

Pyramide

$$V = A_G \cdot h$$
 $V = \frac{1}{3} \cdot A_G \cdot h$

Zylinder

$$V = A_G \cdot h$$

für gerade Zylinder:

$$A_{O} = 2 \cdot A_{G} + 2\pi \cdot r \cdot h$$

Kegel

$$V = \frac{1}{3} \cdot A_G \cdot h$$

 $V = \frac{4}{3} \pi \cdot r^3$ $A_O = 4\pi \cdot r^2$

Kugel

für gerade Kegel:
$$A_O = A_G + \pi \cdot r \cdot m$$

(m: Abstand der Spitze vom Rand der Grundfläche)

Potenzen und Logarithmen

$$a^r \cdot b^r = (a \cdot b)^r$$

$$a^r \cdot a^s = a^{r+s}$$

$$\left(a^{r}\right)^{s}=a^{r\cdot s}$$

$$\left(a^{r}\right)^{s} = a^{r \cdot s} \qquad \qquad a^{\frac{m}{n}} = \sqrt[n]{a^{m}} = \left(\sqrt[n]{a}\right)^{m}$$

$$\frac{a^r}{b^r} = \left(\frac{a}{b}\right)^r$$

$$\frac{a^r}{a^s} = a^{r-s} \qquad \qquad a^{-r} = \frac{1}{a^r}$$

$$a^{-r} = \frac{1}{a^r}$$

$$\log_a (b \cdot c) = \log_a b + \log_a c$$
 $\log_a \frac{b}{c} = \log_a b - \log_a c$

$$\log_a \frac{b}{a} = \log_a b - \log_a c$$

$$\log_a b^r = r \cdot \log_a b$$

Quadratische Gleichung

 $x_1 = -\frac{p}{2} - \sqrt{\left(\frac{p}{2}\right)^2 - q} \quad \text{und} \quad x_2 = -\frac{p}{2} + \sqrt{\left(\frac{p}{2}\right)^2 - q} \quad \text{sind die Lösungen der Gleichung} \quad x^2 + px + q = 0 \; .$

² Ein Parallelogramm mit vier gleich langen Seiten wird als Raute bezeichnet.

Rechtwinkliges Dreieck

•
$$\sin \phi = \frac{u}{w}$$

$$\cos \phi = \frac{V}{W}$$

$$\tan \varphi = \frac{\sin \varphi}{\cos \varphi} = \frac{u}{v}$$

Satz des Pythagoras

Wenn ein Dreieck rechtwinklig ist, dann gilt für die Längen u und v der beiden Katheten und die Länge w der Hypotenuse $u^2 + v^2 = w^2$.

Wenn für die Längen u, v und w der Seiten eines Dreiecks $u^2 + v^2 = w^2$ gilt, dann hat dieses Dreieck einen rechten Winkel, der der Seite mit der Länge w gegenüber liegt.

Satz des Thales

Wenn ein Dreieck beim Eckpunkt W einen rechten Winkel hat, dann liegt W auf dem Kreis, der den Mittelpunkt der gegenüberliegenden Seite als Mittelpunkt hat und durch die beiden anderen Eckpunkte verläuft.

Wenn der Eckpunkt W eines Dreiecks auf dem Kreis liegt, der den Mittelpunkt der gegenüberliegenden Seite als Mittelpunkt hat und durch die beiden anderen Eckpunkte verläuft, dann hat dieses Dreieck bei W einen rechten Winkel.

Symbole in Verbindung mit Mengen

$$\mathbb{N} = \{0, 1, 2, 3, ...\}$$

$$IR^+ = \left\{ x \in IR \mid x > 0 \right\}$$

$$[a;b] = \{x \in \mathbb{R} \mid a \le x \le b\}$$

$$7 = \{ -3 - 2 - 10123 \}$$

$$\mathbb{R}_{0}^{+} = \{x \in \mathbb{R} \mid x > 0\}$$

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

$$A \cap B = \left\{ x \mid x \in A \land x \in B \right\} \\ A \cup B = \left\{ x \mid x \in A \lor x \in B \right\} \\ A \setminus B = \left\{ x \mid x \in A \land x \notin B \right\}$$

$$A \setminus B = \{x \mid x \in A \land x \notin B\}$$

Trigonometrie

$$sin(-\phi) = -sin\phi$$

$$\sin(\phi - 90^\circ) = -\cos\phi$$

$$\left(\sin\varphi\right)^2 + \left(\cos\varphi\right)^2 = 1$$

$$cos(-\phi) = cos\phi$$

$$\cos(\phi - 90^\circ) = \sin\phi$$

Winkelmaße

Beträgt die Größe eines Winkels im Gradmaß 360°, so beträgt sie im Bogenmaß 2π .

2 Analysis

Ableitung

$$f'\big(x_0^{}\big) = \lim_{x \to x_0^{}} \frac{f\big(x^{}\big) - f\big(x_0^{}\big)}{x - x_0^{}} = \lim_{h \to 0} \frac{f\big(x_0^{} + h\big) - f\big(x_0^{}\big)}{h}$$

Ableitungen ausgewählter Funktionen

Term der Funktion	Term der Ableitungsfunktion
x ^r	r ⋅ x ^{r−1}
sin x	cosx
cosx	-sinx
e ^x	e ^x
lnx	1 <u>x</u>
$-x + x \cdot \ln x$	ln x

Ableitungsregeln

Term der Funktion	Term der Ableitungsfunktion
k·u(x)	$k \cdot u'(x)$
u(x)+v(x)	u'(x) + v'(x)
$u(x) \cdot v(x)$	$u'(x) \cdot v(x) + u(x) \cdot v'(x)$
u(v(x))	$u'(v(x)) \cdot v'(x)$

Ableitung von Integralfunktionen

Für
$$I(x) = \int_{a}^{x} f(t) dt$$
 gilt $I'(x) = f(x)$.

Bestimmtes Integral

 $\text{Ist F eine Stammfunktion von f, so gilt } \int\limits_a^b f \Big(x \Big) dx = \Big[F \Big(x \Big) \Big]_a^b = F \Big(b \Big) - F \Big(a \Big) \, .$

Grenzwerte

Ist p(x) ein Polynom, so gilt $\lim_{x\to +\infty} \frac{p(x)}{e^x} = 0$.

Ist p(x) ein nicht konstantes Polynom, so gilt $\lim_{x \to +\infty} \frac{\ln x}{p(x)} = 0$.

Ist p(x) ein Polynom ohne konstanten Summanden, so gilt $\lim_{x\to 0} (p(x) \cdot \ln x) = 0$.

Rotationskörper

$$V=\pi\cdot\int\limits_{a}^{b}\!\left(f\!\left(x\right)\right)^{2}dx$$

Schneiden und Berühren zweier Funktionsgraphen

Die Graphen zweier Funktionen f und g schneiden sich in einem Punkt genau dann, wenn sie diesen Punkt gemeinsam haben.

Die Graphen zweier Funktionen f und g berühren sich in einem Punkt genau dann, wenn sie diesen Punkt gemeinsam und dort die gleiche Steigung haben.

Zueinander senkrechte Geraden

Zwei Geraden mit den Steigungen m₁ und m₂ sind genau dann senkrecht zueinander, wenn $m_1 \cdot m_2 = -1$ gilt.

3 Analytische Geometrie/Lineare Algebra

Skalarprodukt

$$\vec{a} \circ \vec{b} = a_1b_1 + a_2b_2 + a_3b_3 \qquad \qquad \vec{a} \circ \vec{b} = \left|\vec{a}\right| \cdot \left|\vec{b}\right| \cdot \cos\phi$$

$$\vec{a} \circ \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \phi$$

$$\vec{a} \circ \vec{a} = |\vec{a}|^2$$

Ebenen

• Parameterform: $\vec{x} = \vec{a} + \lambda \cdot \vec{u} + \mu \cdot \vec{v}$

• Koordinatenform: $n_1x_1 + n_2x_2 + n_3x_3 + k = 0$

• Normalenform: $\vec{n} \circ (\vec{x} - \vec{a}) = 0$

4 Stochastik

Bedingte Wahrscheinlichkeit und stochastische Unabhängigkeit

$$P_{A}\left(B\right) = \frac{P(A \cap B)}{P(A)}$$

Die folgenden Aussagen zu Ereignissen A und B sind äquivalent:

- ♦ A und B sind stochastisch unabhängig.
- $\bullet \ P_B(A) = P(A)$
- \bullet $P_A(B) = P(B)$

Binomialkoeffizient

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

Zufallsgrößen

- Für eine Zufallsgröße X mit den Werten $x_1, x_2, ..., x_n$ gilt:
 - Erwartungswert: $E(X) = \sum_{i=1}^{n} x_i \cdot P(X = x_i)$
 - Varianz: $Var(X) = \sum_{i=1}^{n} (x_i E(X))^2 \cdot P(X = x_i)$
 - Standardabweichung: $\sqrt{Var(X)}$
- ♦ Für eine binomialverteilte Zufallsgröße X gilt:

•
$$P_p^n(X=k) = {n \choose k} \cdot p^k \cdot (1-p)^{n-k}$$

- Erwartungswert: $\mu = n \cdot p$
- Standardabweichung: $\sigma = \sqrt{n \cdot p \cdot (1-p)}$
- Dichtefunktion einer normalverteilten Zufallsgröße: $\phi(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \cdot e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$

Sigma-Regeln

Ist X eine normalverteilte Zufallsgröße, so gilt:

•
$$P(\mu - \sigma \le X \le \mu + \sigma) \approx 68,3\%$$

$$\qquad \qquad \bullet \quad P\left(\mu-1,64\sigma \leq X \leq \mu+1,64\sigma\right) \approx 90,0\,\%$$

•
$$P(\mu - 1,96\sigma \le X \le \mu + 1,96\sigma) \approx 95,0\%$$

•
$$P(\mu - 2\sigma \le X \le \mu + 2\sigma) \approx 95,4\%$$

♦
$$P(\mu - 2,58\sigma \le X \le \mu + 2,58\sigma) \approx 99,0\%$$

•
$$P(\mu - 3\sigma \le X \le \mu + 3\sigma) \approx 99,7\%$$

Prognoseintervall und Konfidenzintervall

Für eine binomialverteilte Zufallsgröße gilt näherungsweise:

• Prognoseintervall:
$$\left[p - c \cdot \sqrt{\frac{p \cdot (1-p)}{n}}; p + c \cdot \sqrt{\frac{p \cdot (1-p)}{n}} \right]$$

♦ Die Gleichung $|h-p| = c \cdot \sqrt{\frac{p \cdot (1-p)}{n}}$ liefert die beiden Grenzen eines Konfidenzintervalls für den Wert von p.

Signifikanztest

Wird die Nullhypothese irrtümlich abgelehnt, so bezeichnet man dies als Fehler erster Art. Das Signifikanzniveau ist der Wert, den die Wahrscheinlichkeit für den Fehler erster Art nicht überschreiten soll.

Wird die Nullhypothese irrtümlich nicht abgelehnt, so bezeichnet man dies als Fehler zweiter Art.